Universidade Federal do Ceará Campus de Quixadá Matemática Computacional (2017.1) Prof. Wladimir Araújo Tavares

Trabalho de Implementação Raízes da Equação Trabalho em equipe máximo 2 alunos Data de Entrega: 30/05/2017 Plágio será punidos com nota zero

 $Reposit\'orio: https://github.com/WladimirTavares/matematica_computacional2017/tree/master/raizes_de_equacoes$

No código disponível no repositório acima, temos a implementação dos seguintes métodos para encontrar raízes de equações:

- Método da Bisseção
- Método da Posição Falsa
- Método de Newton

Método da Posição Falsa

No método da posição falsa, a função f(x) é aproximada por uma função linear g(x).

O coeficiente angular da função g(x) é:

$$m = \frac{y_1 - y_0}{x_1 - x_0} \tag{1}$$

Considerando $(x_0,y_0)=(a,f(a)),(x_1,y_1)=(b,f(b)),m=\frac{y_1-y_0}{x_1-x_0}$ e (x,0) é a raiz da função g(x). Temos que

$$y - y_0 = m(x - x_0)$$

$$-f(a) = \frac{f(b) - f(a)}{b - a}(x - a)$$

$$-f(a) = x \frac{f(b) - f(a)}{b - a} - a \frac{f(b) - f(a)}{b - a}$$

$$x \frac{f(b) - f(a)}{b - a} = -f(a) + a \frac{f(b) - f(a)}{b - a}$$

$$x \frac{f(b) - f(a)}{b - a} = \frac{-f(a)(b - a) + a(f(b) - f(a))}{b - a}$$

$$x(f(b) - f(a)) = -bf(a) + af(a) + af(b) - af(a)$$

$$x(f(b) - f(a)) = af(b) - bf(a)$$

$$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

A raiz de g(x) é utilizada como uma aproximação da raiz de f(x)

A ideia do método é partir de um intervalo $[a_0,b_0]$ com $f(a_0)f(b_0) < 0$, em cada passo do algoritmo, encontrar um intervalo menor $[a_k,b_k]$ com $f(a_k)f(b_k) < 0$. Na iteração k,

$$c_{k+1} = \frac{a_{k-1}f(b_{k-1}) - b_{k-1}f(a_{k-1})}{f(b_{k-1}) - f(a_{k-1})}$$
(2)

Se $f(c_k)f(a_{k-1}) < 0$ então $a_k = a_{k-1}$ e $b_k = c_k$, caso contrário, $a_k = c_k$ e $b_k = b_{k-1}$. O processo é repetido até que seja encontrada uma raiz aproximada, suficientemente compatível com o erro estimado. A única diferença entre o método da posição falsa e o método da bissecção é que o último utiliza $c_k = \frac{a_k + b_k}{2}$

A interpretação gráfica do método da Posição Falsa pode ser vista da Figura 1.

Figura 1: Interpretação Gráfica do método da Posição Falsa

Se a função é côncava ou convexa em [a,b], então o método da Posição Falsa uma das extremidades permanece fixa, como demonstrado na Figura 2.

Utilizando o método da bissecção para encontrar a raiz ξ da função $f(x)=2x^3-4x^2+3x$ com $\varepsilon=0.001$ e $\xi\in[-1,0.5]$.

Figura 2: Comportamento do método da Posição Falsa quando a função f é côncava ou convexa no intercalo

\overline{k}	a_k	b_k	c_k	$f(c_k)$	$b_k - a_k$
0	-1.00000	0.50000	-0.25000	-1.03125	1.50000
1	-0.25000	0.50000	0.12500	0.31641	0.75000
2	-0.25000	0.12500	-0.06250	-0.20361	0.37500
3	-0.06250	0.12500	0.03125	0.08990	0.18750
4	-0.06250	0.03125	-0.01562	-0.04786	0.09375
5	-0.01562	0.03125	0.00781	0.02319	0.04688
6	-0.01562	0.00781	-0.00391	-0.01178	0.02344
7	-0.00391	0.00781	0.00195	0.00584	0.01172
8	-0.00391	0.00195	-0.00098	-0.00293	0.00586
9	-0.00098	0.00195	0.00049	0.00146	0.00293
10	-0.00098	0.00049	-0.00024	-0.00073	0.00146

O valor de ξ encontrado foi -0.000244141.

Utilizando o método da posição falsa para encontrar a raiz ξ da função $f(x)=2x^3-4x^2+3x$ com $\varepsilon=0.001$ e $\xi\in[-1,0.5]$.

\overline{k}	a_k	b_k	c_k	$f(c_k)$	$b_k - a_k$
0	-1.00000	0.50000	0.38462	0.67592	1.50000
1	-1.00000	0.38462	0.28789	0.57987	1.38462
2	-1.00000	0.28789	0.20994	0.47202	1.28789
3	-1.00000	0.20994	0.14964	0.36605	1.20994
4	-1.00000	0.14964	0.10471	0.27257	1.14964
5	-1.00000	0.10471	0.07224	0.19659	1.10471
6	-1.00000	0.07224	0.04932	0.13846	1.07224
7	-1.00000	0.04932	0.03342	0.09586	1.04932
8	-1.00000	0.03342	0.02253	0.06557	1.03342
9	-1.00000	0.02253	0.01513	0.04448	1.02253
10	-1.00000	0.01513	0.01014	0.03000	1.01513
11	-1.00000	0.01014	0.00678	0.02016	1.01014
12	-1.00000	0.00678	0.00453	0.01351	1.00678
13	-1.00000	0.00453	0.00303	0.00904	1.00453
14	-1.00000	0.00303	0.00202	0.00604	1.00303
15	-1.00000	0.00202	0.00135	0.00403	1.00202
16	-1.00000	0.00135	0.00090	0.00269	1.00135
17	-1.00000	0.00090	0.00060	0.00180	1.00090
18	-1.00000	0.00060	0.00040	0.00120	1.00060
_19	-1.00000	0.00040	0.00027	0.00080	1.00040

O valor de ξ encontrado foi 0.000266329.

Observe que neste caso, uma das extremidades do intervalo ficou fixa durante o método da posição falsa.

Na literatura, podemos encontrar algumas alterações do método da posição falsa para ter uma convergência mais rápida. O método de Pégaso é umas dessas adaptações. Durante o método de Pégaso, os pesos atribuídos aos pontos $[a_k,b_k]$ são modificados apropriadamente.

Método de Pégaso

A ideia do método é partir dos valores $(a_0, F(a_0), b_0, F(b_0))$ com $F(a_0) = f(a_0), F(b_0) = f(b_0)$ e $F(a_0)F(b_0) < 0$, encontrar novos valores $(a_k, F(a_k), b_k, F(b_k))$ com $F(a_k)F(b_k) < 0$ em cada passo do método. Na iteração k,

$$c_{k+1} = \frac{a_{k-1}F(b_{k-1}) - b_{k-1}F(a_{k-1})}{F(b_{k-1}) - F(a_{k-1})}$$

$$F(c_{k+1}) = f(c_{k+1})$$

Se $F(a_{k-1})F(c_k) < 0$ então

$$(a_k, F(a_k), b_k, F(b_k)) \leftarrow (a_{k-1}, F(a_{k-1}) \frac{F(b_{k-1})}{F(b_{k-1}) + F(c_k)}, c_k, F(c_k))$$
(3)

Note que o valor $F(a_k)$ é reduzido por um fator $\frac{F(b_{k-1})}{F(b_{k-1})+F(c_k)}$ para evitar a retenção de um ponto como ocorre no método da posição falsa. Com isso, estamos diminuindo o valor do ponto fixo na média ponderada e aumentando a velocidade de convergência. Em alguns casos, o valor de c_k pode passar da raiz, ou seja, $F(a_{k-1})F(c_k) > 0$. Quando isso acontece, consideramos que aconteceu um estouro. Essa condição será tratada a seguir.

Se $F(a_{k-1})F(c_k) > 0$ então

$$(a_k, F(a_k), b_k, F(b_k)) \leftarrow (b_{k-1}, F(b_{k-1}), c_k, F(c_k))$$
 (4)

Observe que o ponto fixo da função muda de a_{k-1} para b_{k-1} tornando condição $F(b_{k-1})F(c_k)<0$ satisfeita. Dessa maneira a aproximação passa a ser contrária a anterior.

Utilizando o método de Pégaso, encontre a raiz ξ da função $f(x)=2x^3-4x^2+3x$ com $\varepsilon=0.001$ e $\xi\in[-1,0.5]$.

\overline{k}	a_k	b_k	c_k	$f(c_k)$	$b_k - a_k$
0	-1.00000	0.05000	0.03389	0.09715	1.05000
1	-1.00000	0.03389	0.01534	0.04508	1.03389
2	-1.00000	0.01534	0.00289	0.00863	1.01534
3	-1.00000	0.00289	0.00006	0.00017	1.00289

Interpretação gráfica do método de Pégaso:

- 1. Implemente o Método de Pégaso para encontrar uma raiz da equação f(x) no intervalo [a,b] com erro ε .
- 2. Use o método da Bisseção, Posição Falsa, Método de Pégaso para encontrar uma raiz de $x^5-3x^4-3x^2+2$ com $\varepsilon=2^{-5}$.
- 3. Use o método da Bisseção, Posição Falsa e Método de Pégaso para encontrar uma raiz de $\sqrt{x}-5^{-x}$ com $\varepsilon=10^{-3}$
- 4. Use o método da Bisseção, Posição Falsa e Método de Pégaso para aproximar uma raiz de x^5-x^4-4x+1 com $\varepsilon=0.01$.
- 5. Use o método da Bisseção, Posição Falsa e Método de Pégaso para encontrar uma raiz de $f(x)=0.05x^3-0.4x^2+3xsenx=0$ com $\varepsilon=0.005$

- 6. Uma condição suficiente para a convergência do método de Newton é que f'(x) e f''(x) sejam não nulas e preservem o sinal em (a,b) e x_0 seja tal que $f(x_0)f''(x_0) > 0$. Desenvolva uma função que tente verificar se essa condição é satisfeita.
- 7. Use o método da Newton para encontrar uma raiz de $x^5 3x^4 3x^2 + 2$ com $\varepsilon = 2^{-5}$ utilizando sua função que verifica a condição de convergência.
- 8. A concentração hidrogeniônica [H3O+] de uma solução diluída em um ácido fraco pode ser calculada resolvendo-se a equação $[H3O+]^3+K_a[H3O+]^2-(K_aC_a+K_w)[H3O+]-K_wK_a=0$, em que K_a é a constante de dissociação do ácido, C_a a concentração do ácido e K_w o produto iônico da água. Determine o pH de uma solução de ácido bórico a 250řC, sabendo-se que $pH=-log_10[H3O+]$, $K_a=6.510^{-10}M$, $C_a=2.010^{-5}M$ e $K_w=1.010^{-14}M$ utilizando o Método da Bisseção com $\varepsilon=10^{-2}$