

Figure 45.3: The \mathcal{H} -polytope associated with Linear Program (*). The objective function (with $x_1 \to x$ and $x_2 \to y$) is represented by vertical planes parallel to the purple plane x + y = 0.7, and reaches it maximal value when x + y = 1.

Proof. If x is a basic feasible solution, then there is some subset $K \subseteq \{1, \ldots, n\}$ of size m such that the columns of A_K are linearly independent and $x_j = 0$ for all $j \notin K$, so by definition, $J_{>} \subseteq K$, which implies that the columns of the matrix $A_{J_{>}}$ are linearly independent.

Conversely, assume that x is a feasible solution such that the columns of the matrix $A_{J_{>}}$ are linearly independent. If $|J_{>}| = m$, we are done since we can pick $K = J_{>}$ and then x is a basic feasible solution. If $|J_{>}| < m$, we can extend $J_{>}$ to an m-element subset K by adding $m - |J_{>}|$ column indices so that the columns of A_{K} are linearly independent, which is possible since A has rank m.

Next we prove that if a linear program in standard form has any feasible solution x_0 and is bounded above, then is has some basic feasible solution \widetilde{x} which is as good as x_0 , in the sense that $c\widetilde{x} \geq cx_0$.

Proposition 45.3. Let (P_2) be any standard linear program with objective function cx, where Ax = b and A is an $m \times n$ matrix of rank m. If (P_2) is bounded above and if x_0 is some feasible solution of (P_2) , then there is some basic feasible solution \widetilde{x} such that $c\widetilde{x} \geq cx_0$.

Proof. Among the feasible solutions x such that $cx \ge cx_0$ (x_0 is one of them) pick one with the maximum number of coordinates x_i equal to 0, say \tilde{x} . Let

$$K = J_{>} = \{ j \in \{1, \dots, n\} \mid \widetilde{x}_{j} > 0 \}$$

and let s = |K|. We claim that \tilde{x} is a basic feasible solution, and by construction $c\tilde{x} \geq cx_0$.

If the columns of A_K are linearly independent, then by Proposition 45.2 we know that \tilde{x} is a basic feasible solution and we are done.