Sparse Modeling: Lasso and Best Subset

Statistical Learning CLAMSES - University of Milano-Bicocca

Aldo Solari

References

Tibshirani, Wasserman (2017). Sparsity, the Lasso, and Friends.
Lecture notes on Statistical Machine Learning

Three norms: ℓ_0 , ℓ_1 and ℓ_2

- Let's consider three canonical choices: the ℓ_0 , ℓ_1 and ℓ_2 norms:

$$\|\beta\|_0 = \sum_{j=1}^p \mathbb{1}\{\beta_j \neq 0\}, \quad \|\beta\|_1 = \sum_{j=1}^p |\beta_j|, \quad \|\beta\|_2 = \sqrt{\sum_{j=1}^p \beta_j^2}$$

- ℓ_0 is not a proper norm: it does not satisfy positive homogeneity, i.e. $||a\beta||_0 \neq |a||\beta||_0$ for $a \in \mathbb{R}$

Constrained form

$$\begin{split} & \min_{\beta \in \mathbb{R}^p} \|y - X\beta\|_2^2 \text{ subject to } \|\beta\|_0 \leq c & \text{Best Subset Selection} \\ & \min_{\beta \in \mathbb{R}^p} \|y - X\beta\|_2^2 \text{ subject to } \|\beta\|_1 \leq c & \text{Lasso Regression} \\ & \min_{\beta \in \mathbb{R}^p} \|y - X\beta\|_2^2 \text{ subject to } \|\beta\|_2^2 \leq c & \text{Ridge Regression} \end{split}$$

The "classic" illustration comparing lasso and ridge constraints. From Chapter 3 of ESL

Sparsity

- Signal sparsity is the assumption that only a small number of predictors have an effect, i.e. have $\beta_i \neq 0$
- In this case we would like our estimator $\hat{\beta}$ to be sparse, meaning that $\hat{\beta}_j = 0$ for many components $j \in \{1, \dots, p\}$
- Sparse estimators are desirable because perform variable selection and improve interpretability of the result
- The best subset selection and the lasso estimators are sparse, the ridge estimator is not sparse

Penalized form

$$\begin{aligned} & \min_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - X\beta\|_2^2 + \lambda \|\beta\|_0 & \text{Best Subset Selection} \\ & \min_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1 & \text{Lasso Regression} \\ & \min_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - X\beta\|_2^2 + \lambda \|\beta\|_2^2 & \text{Ridge Regression} \end{aligned}$$

- Suppose that $\gamma \sim N(\mu, 1)$ - ℓ_0 penalty

 $\min_{\mu} \frac{1}{2} (y - \mu)^2 + \lambda \mathbb{1} \{ \mu \neq 0 \}, \qquad \hat{\mu} = H_{\sqrt{2\lambda}}(y)$

where $H_a(y) = y\mathbb{1}\{|y| > a\}$ is the hard-thresholding operator

 $\min_{\mu} \frac{1}{2} (y - \mu)^2 + \lambda |\mu|, \qquad \hat{\mu} = S_{\lambda}(y)$

- ℓ_1 penalty

- ℓ_2 penalty

where
$$S_a(y) = \begin{cases} y - a & \text{if } y > a \\ 0 & \text{if } -a \le y \le a \end{cases}$$

is the soft-thresholding operator

$$\min_{\mu} \frac{1}{2} (y - \mu)^2 + \lambda \mu^2, \qquad \hat{\mu} = \left(\frac{1}{1 + 2\lambda}\right) y$$

 $\lambda = 1$

Hard and soft thresholding

- ℓ_0 penalty creates a zone of sparsity but it is discontinuous (hard thresholding)
- ℓ_1 penalty creates a zone of sparsity but it is continuous (soft thresholding)
- ℓ_2 penalty creates a nice smooth estimator but it is never sparse

Orthogonal case

- Suppose $X^tX = I_p$
- OLS estimator

$$\hat{\beta}_j = X^t y$$

BSS estimator

$$\hat{\beta}_j = H_{\sqrt{2\lambda}}(X^t y)$$

- Lasso estimator

$$\hat{\beta} = S_{\lambda}(X^t y)$$

Ridge estimator

$$\hat{\beta} = \left(\frac{1}{1+2\lambda}\right) X^t y$$

where $H_a(\cdot)$, $S_a(\cdot)$ are the componentwise hard- and soft-thresholding operators

Solution paths of ℓ_0, ℓ_1 and ℓ_2 penalties as a function of λ

Convexity

- Consider using the norm $\|\beta\|_q = (\sum_{j=1}^q |\beta_j|^q)^{1/q}$ as a penalty. Sparsity requires $q \leq 1$ and convexity requires $q \geq 1$. The only norm that gives sparsity and convexity is q = 1
- The lasso and ridge regression are convex optimization problems, best subset selection is not
- The ridge regression optimization problem is always *strictly* convex for $\lambda>0$
- The best subset selection optimization problem is N-P-complete because of its combinatorial complexity (there are 2^p subsets), the worst kind of non convex problem

BSS algorithm

A natural approach is to consider all possible regression models each involving regressing the response on a different set of predictors

- Set B_0 as the null model (intercept only)
- For k = 1, ..., p
 - 1. Fit all $\binom{p}{k}$ models that contain exactly k predictors
 - 2. Pick the best among these $\binom{p}{k}$ models, and call it B_k , where best is defined having the smallest residual sum of squares
- Select a single best model from among B_0, B_1, \ldots, B_p (e.g. using Cp, BIC, Cross-Validation, validation set, etc.)

prostate

	lcavol	lweight	age	lbph	svi	lcp	gleason	pgg45	RSS
B_1	*								44.53
B_2	*	*							37.09
B_3	*	*			*				34.91
B_4	*	*		*	*				32.81
B_5	*	*		*	*			*	32.07
B_6	*	*		*	*	*		*	30.54

All possible subset models for the prostate cancer example

BIC Best Subset = B_2

Computational bottleneck

- Furnival and Wilson (1974) and Hofmann et al. (2006) solve with $p \approx 30$ by using branch and bound algorithms. Implemented in the R packages leaps and lmSubsets
- Bertsimas et al. (2016) solve with $p \approx 100$ by using a mixed integer quadratic program along with the gurobi solver. Implemented in the R package bestsubset

Forward Stepwise Selection

Greedy forward algorithm, sub-optimal but feasible alternative to BSS and applicable when p>n

- Set S_0 as the null model (intercept only)
- For $k = 0, ..., \min(n-1, p-1)$:
 - 1. Consider all p-k models that augment the predictors in S_k with one additional predictor
 - 2. Choose the best among these p k models and call it S_{k+1} , where best is defined having the smallest RSS
- Select a single best model from among S_0, S_1, S_2, \ldots (e.g. using Cp, BIC, Cross-Validation, validation set, etc.)

Forward Stepwise solution path as a function of training \mathbb{R}^2

- Lagrange form

$$\frac{1}{2n} \min_{\beta \in \mathbb{R}^p} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1$$

- Intercept term omitted (center / scale y and the columns of X)
- The solution satisfies the subgradient / Karush-Kuhn-Tuker conditions

$$\frac{1}{n}X^{t}(y-X\hat{\beta})=\lambda s$$

where $s \in \partial \|\beta\|_1$, a subgradient of the ℓ_1 norm evaluated at $\hat{\beta}$

The solution satisfies

$$-\frac{1}{n}\langle X_j, y - X\hat{\beta}\rangle + \lambda s_j = 0 \quad j = 1, \dots, p$$

where

$$s_{j} \in \left\{ \begin{array}{ccc} 1 & \text{if } \hat{\beta}_{j} > 0 \\ \left[\textbf{-1,1} \right] & \text{if } \hat{\beta}_{j} = 0 \\ -1 & \text{if } \hat{\beta}_{j} < 0 \end{array} \right.$$

- Each of the variables in the model (with nonzero coefficient) has the same covariance with the residuals (in absolute value), i.e.

$$\frac{1}{n}|\langle X_j, y - X\hat{\beta}\rangle| = \lambda$$

- For all variables with zero coefficient

$$\frac{1}{n}|\langle X_j, y - X\hat{\beta}\rangle| \leq \lambda$$

- The coefficient profiles for the lasso are continuous and piecewise linear over the range of λ , with knots occurring whenever the *active set* changes, or the sign of the coefficients changes

Lasso solution path as a function of training \mathbb{R}^2

Boosting with componentwise linear least squares

- Response and predictors are standardized to have mean zero and unit norm
- Initialize $\hat{\beta}^{(0)} = 0$
- For b = 1, ..., B
 - compute the residuals $r = y X \hat{\beta}^{(b-1)}$
 - find the predictor X_i most correlated with the residuals r
 - update $\hat{\beta}^{(b-1)}$ to $\hat{\beta}^{(b)}$ with

$$\hat{\beta}_j^{(b)} = \hat{\beta}_j^{(b-1)} + \epsilon \cdot s_j$$

where s_i is the sign of the correlation

- This is known as *forward stagewise regression* and converges to the least squares solution when n > p
- Forward stagewise regression with infinitesimally small step-sizes, i.e. $\epsilon \to 0$, produces a set of solutions which is approximately equivalent to the set of Lasso solutions

Left: forward stagewise regression with $\epsilon=0.005;$ Right: lasso

Cross-validation

- lambda.min: λ that minimize the cross-validation error
- lambda.1se: largest value of lambda such that error is within 1 standard error of the minimum (one standard error rule). To compute cross-validation "standard errors"

$$se = \frac{1}{\sqrt{K}}sd(Err^{-1}, \dots, Err^{-K})$$

where Err^{-k} denotes the error incurred in predicting the observations in the *k* hold-out fold, $k = 1, \dots, K$.

 $\lambda_{\rm min}=0.012$ (7 nonzero), $\lambda_{\rm 1se}=0.21$ (3 nonzero)

Group Lasso

- Suppose we have a partition G_1, \ldots, G_q of $\{1, \ldots, p\}$
- The group Lasso penalty (Yuan and Lin, 2006) is given by

$$\lambda \sum_{k=1}^{q} m_k \|\beta_{G_k}\|_2$$

The multipliers $m_k > 0$ serve to balance cases where the groups are of very different sizes; typically we choose $m_k = \sqrt{|G_k|}$

- This penalty encourages either an entire group G to have $\hat{\beta}_G = 0$ or $\hat{\beta}_j \neq 0$ for all $j \in G$
- Such a property is useful when groups occur through coding for categorical predictors or when expanding predictors using basis functions.

Relaxed Lasso

- Originally proposed by Meinshausen (2006). We present a simplified version.
- Suppose $\hat{\beta}_{\lambda}$ is the lasso solution at λ and let \hat{A} be the active set of indices with nonzero coefficients in $\hat{\beta}_{\lambda}$
- Let $\hat{\beta}^{\text{LS}}$ be the coeffcients in the least squares fit, using only the variables in \hat{A} . Let $\hat{\beta}^{\text{LS}}_{\lambda}$ be the full-sized version of this coeffcient vector, padded with zeros. $\hat{\beta}^{\text{LS}}_{\lambda}$ debiases the lasso, while maintaining its sparsity.
- Define the Relaxed Lasso

$$\hat{\beta}_{\lambda}^{\rm RELAX} = \gamma \hat{\beta}_{\lambda} + (1 - \gamma) \hat{\beta}_{\lambda}^{\rm LS}$$

with $\gamma \in [0,1]$ is an additional tuning parameter which can be selected by cross-validation

 $\gamma = 0$

 $\gamma = 0$

Elastic Net

– Define the objective function f for some $\lambda > 0$ and $\alpha \in [0,1]$ as

$$\mathit{f}(\beta;\lambda,\alpha) = \frac{1}{2n} \|y - X\beta\|_2^2 + \lambda \left((1-\alpha) \frac{1}{2} \|\beta\|_2^2 + \alpha \|\beta\|_1 \right)$$

and the corresponding *elastic net* estimator as

$$\hat{\beta}_{\lambda,\alpha} = \arg\min_{\beta} f(\beta; \lambda, \alpha)$$

- Setting α to 1 yields the Lasso regression and setting it to 0 the ridge regression.
- Adding a small ℓ_2 -penalty preserves the variable selection and convexity properties of the ℓ_1 -penaltized regression, while reducing the variance of the model when X contains sets of highly correlated variables.