Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

Tennisdata.csv

```
import csv
from collections import defaultdict
def load data(filename):
  with open(filename, 'r') as f:
     return list(csv.DictReader(f))
def calc probabilities(data):
  total = len(data)
  class prob = defaultdict(int)
  cond prob = defaultdict(lambda: defaultdict(int))
  # Calculate class probabilities and conditional probabilities
  for row in data:
     class prob[row['PlayTennis']] += 1
     for col, val in row.items():
       if col != 'PlayTennis':
          cond prob[(col, val)][row['PlayTennis']] += 1
  class prob = \{k: v \mid total \text{ for } k, v \text{ in class prob.items()}\}
  cond prob = {k: {label: v / sum(d.values()) for label, v in d.items()} for k, d in cond prob.items()}
  return class prob, cond prob
def predict(instance, class prob, cond prob):
  probs = \{\}
  for cls, p cls in class prob.items():
     prob = p cls
     for col, val in instance.items():
       if (col, val) in cond prob:
          prob *= cond prob[(col, val)].get(cls, 0)
     probs[cls] = prob
  return max(probs, key=probs.get)
def accuracy(data, class prob, cond prob):
  correct = sum(predict({k: v for k, v in row.items() if k != 'PlayTennis'}, class prob, cond prob) ==
row['PlayTennis'] for row in data)
  return correct / len(data)
def naive bayes(filename):
  data = load data(filename)
  class prob, cond prob = calc probabilities(data)
  print(fAccuracy: {accuracy(data, class_prob, cond prob) * 100:.2f}%')
naive bayes('Tennisdata.csv')
```

2. You are provided with a dataset containing information about various plants with two features: Height (cm) and Width (cm). Each plant is labeled as either "Flower" or "Shrub." You need to use the K-Nearest Neighbors (K-NN) algorithm to classify a new, unlabeled plant based on its height and width.

import numpy as np

```
# Example dataset (with n rows and m columns)
X = \text{np.array}([[5, 2], [6, 3], [7, 2], [8, 3], [4, 1]]) \# n=5, m=2
y = np.array(["flower", "flower", "shrub", "shrub", "flower"])
def knn predict(X train, y train, test point, k=3):
  # Vectorized computation of Euclidean distances between test point and all training points
  distances = np.linalg.norm(X train - test point, axis=1)
  # Get the indices of the k smallest distances
  sorted indices = distances.argsort()[:k]
  # Get the labels of the nearest neighbors
  nearest labels = y train[sorted indices]
  # Predict the most common class among the k neighbors
  prediction = max(set(nearest labels), key=list(nearest labels).count)
  return prediction
# Take input for the test point
try:
  test height = float(input("Enter the height of the plant: "))
  test width = float(input("Enter the width of the plant: "))
  test point = np.array([test height, test width])
  # Predict the class of the test point
  predicted_class = knn_predict(X, y, test_point)
  print(f"Predicted Class for the plant (Height: {test height}, Width: {test width}):
{predicted class}")
except ValueError:
  print("Invalid input. Please enter numeric values for height and width.")
```

6. Construct decision tree also display the information gain for sunny,

overcast and rain.

Outlook	Temperature	Humidity	Wind	Played football(yes/no)
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes

import math

```
# Dataset
# Format: [Outlook, Temperature, Humidity, Windy, PlayTennis]
data = [
  ["sunny", "hot", "high", False, "no"],
  ["sunny", "hot", "high", True, "no"],
  ["overcast", "hot", "high", False, "yes"],
  ["rain", "mild", "high", False, "yes"],
  ["rain", "cool", "normal", False, "yes"],
  ["rain", "cool", "normal", True, "no"],
  ["overcast", "cool", "normal", True, "yes"],
  ["sunny", "mild", "high", False, "no"],
  ["sunny", "cool", "normal", False, "yes"],
  ["rain", "mild", "normal", False, "yes"],
  ["sunny", "mild", "normal", True, "yes"],
  ["overcast", "mild", "high", True, "yes"],
  ["overcast", "hot", "normal", False, "yes"],
  ["rain", "mild", "high", True, "no"]
1
# Calculate entropy
def entropy(labels):
  total = len(labels)
  counts = {label: labels.count(label) for label in set(labels)}
  return -sum((count / total) * math.log2(count / total) for count in counts.values())
# Information gain calculation
def information gain(data, attribute index, target index):
  total_entropy = entropy([row[target_index] for row in data])
  values = set(row[attribute index] for row in data)
  weighted entropy = 0
  for value in values:
```

```
subset = [row for row in data if row[attribute index] == value]
    subset labels = [row[target index] for row in subset]
    subset entropy = entropy(subset labels)
    weighted entropy += (len(subset) / len(data)) * subset entropy
  return total entropy - weighted entropy
# Display information gain for 'Outlook' (attribute index 0)
attributes = ["Outlook", "Temperature", "Humidity", "Windy"]
target index = -1 # 'PlayTennis' is the target column
print("Information Gain for attributes:")
for i, attribute in enumerate(attributes):
  gain = information gain(data, i, target index)
  print(f"{attribute}: {gain:.4f}")
    3 . Apply PCA to reduce the dimensionality to 1 component, and visualise the result in a 2D
    scatter plot.
    Sample
                  Feature_1
                                 Feature 2
           5.702 4.386
           9.884 1.020
           2.089 1.613
    3
           6.531 2.533
    4
    5
           4.663 2.444
    6
           1.590 1.104
           6.563 1.382
           1.966 3.687
    8
    9
           8.210 0.971
           8.379 0.961
import numpy as np
import matplotlib.pyplot as plt
# Sample data
data = np.array([
  [5.702, 4.386],
  [9.884, 1.020],
  [2.089, 1.613],
  [6.531, 2.533],
  [4.663, 2.444],
  [1.590, 1.104],
  [6.563, 1.382],
  [1.966, 3.687],
  [8.210, 0.971],
  [8.379, 0.961],
])
# PCA function
def pca manual(data, n components=1):
  # Step 1: Center the data
  mean vec = np.mean(data, axis=0)
  centered data = data - mean vec
  # Step 2: Calculate the covariance matrix
```

```
cov matrix = np.cov(centered data.T)
  # Step 3: Calculate eigenvalues and eigenvectors
  eig values, eig vectors = np.linalg.eig(cov matrix)
  # Step 4: Sort eigenvectors by eigenvalues in descending order
  sorted indices = np.argsort(eig values)[::-1]
  eig vectors = eig vectors[:, sorted indices]
  eig values = eig values[sorted indices]
  # Step 5: Project the data onto the top n components eigenvectors
  reduced data = centered data @ eig vectors[:, :n components]
  return reduced data, eig vectors[:, :n components]
# Reduce to 1 dimension
reduced data, top components = pca manual(data, n components=1)
# Plot the reduced data
plt.scatter(data[:, 0], data[:, 1], color='blue', label='Original Data')
plt.scatter(reduced_data, np.zeros(len(reduced_data)), color='red', label='PCA Reduced Data')
plt.axhline(0, color='black', linewidth=0.5)
plt.title('PCA: Original Data vs Reduced Data')
plt.legend()
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
4. Classify the retinal diseases using CNN. USE dataset from this:
https://www.kaggle.com/code/muhammadfaizan65/retinal-disease-classification
import tensorflow as tf
from tensorflow.keras import layers, models
import numpy as np
import matplotlib.pyplot as plt
import os
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# Set up ImageDataGenerator for data augmentation
train datagen = ImageDataGenerator(
  rescale=1./255.
  rotation range=30,
  width shift range=0.2,
  height shift range=0.2,
  shear range=0.2,
  zoom range=0.2,
  horizontal flip=True,
  fill mode='nearest'
)
test datagen = ImageDataGenerator(rescale=1./255)
# Set up directories for training and testing
```

```
train dir = '/path to train data'
test dir = '/path to test data'
# Prepare data generators
train generator = train datagen.flow from directory(
  train dir,
  target size=(224, 224),
  batch size=32,
  class mode='categorical'
test generator = test datagen.flow from directory(
  test dir,
  target size=(224, 224),
  batch size=32,
  class mode='categorical'
)
test loss, test acc = model.evaluate(test generator, verbose=2)
print(f"Test accuracy: {test acc:.2f}")
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val accuracy'], label = 'val accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0, 1])
plt.legend(loc='lower right')
plt.show()
plt.plot(history.history['loss'], label='loss')
plt.plot(history.history['val loss'], label = 'val loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.ylim([0, 1])
plt.legend(loc='upper right')
plt.show()
model.save('retinal disease classifier.h5')
model = tf.keras.models.load model('retinal disease classifier.h5')
```

5. Apply gradient on a simple linear regression (single variable). It takes a set of 15 data points and iteratively updates the parameters to minimise the mean squared error

```
import numpy as np
import matplotlib.pyplot as plt

# Sample data

X = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])

y = np.array([3, 4, 2, 5, 6, 7, 8, 6, 10, 9, 11, 14, 13, 16, 15])
```

```
# Initialize parameters
m = 0 \# Slope
b = 0 \# Intercept
learning rate = 0.01
epochs = 1000
# Gradient descent
for epoch in range(epochs):
  y pred = m * X + b
  error = y - y pred
  m gradient = -(2 / len(X)) * np.sum(X * error)
  b gradient = -(2 / len(X)) * np.sum(error)
  m -= learning rate * m gradient
  b -= learning rate * b gradient
# Final parameters
print(f"Final slope (m): {m}, intercept (b): {b}")
# Plot the results
plt.scatter(X, y, color="blue", label="Original Data")
plt.plot(X, m * X + b, color="red", label="Linear Regression Fit")
plt.xlabel("X")
plt.ylabel("y")
plt.title("Gradient Descent for Linear Regression")
plt.legend()
plt.show()
```