SEPARACIJA SPREMENLJIVK

```
L^2([-\pi,\pi]) = \{f: [-\pi,\pi] \longrightarrow \mathbb{R}, \int_{-\pi}^{\pi} |f|^2
```

 $dx<\infty\}$ je vektorski prostor s skalarnim produktom $\langle f,g\rangle=\int_{-\pi}^\pi f(x)g(x)\,\mathrm{d}x.$ Množica funkcij

 $\{\frac{1}{2\pi}, \frac{1}{\pi}\sin x, \frac{1}{\pi}\cos x, \frac{1}{\pi}\sin 2x, \frac{1}{\pi}\cos 2x, \ldots\}$. je kompleten (vsako funkcijo se da na enoličen način razviti v tem sistemu), ortonormiran sistem za ta produkt.

Fourierjev razvoj: $f \in L^2([-\pi, \pi])$:

$$\tilde{f}(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx).$$

Fourierjev razvoj:
$$f \in L^2([-\pi, \pi])$$
:
$$\tilde{f}(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx),$$

$$a_n = \langle f, \frac{1}{\pi} \cos nx \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx, \quad n \in \mathbb{N}_0,$$

$$b_n = \langle f, \frac{1}{\pi} \sin nx \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx, \quad n \in \mathbb{N}.$$
Singular in kosingan yesta: $f \in L^2([0, \pi])$

$$b_n = \langle f, \frac{\hat{n}}{\pi} \sin nx \rangle = \frac{\hat{n}}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx, \quad n \in \mathbb{N}$$

Sinusna in kosinusna vrsta: $f \in L^2([0,\pi])$. Za tako funkcijo obstaja liha in soda razširitev na $[-\pi,\pi]$. Za \tilde{f}^S so $b_n=0$, za \tilde{f}^L pa $a_n = 0$.

POSLEDICA: Na $[0,\pi]$ za f obstajata dva razvoja: sinusna vrsta: $\tilde{f}(x) = \sum_{n=1}^{\infty} \tilde{b}_n \sin nx$ in kosinusna vrsta: $\tilde{f}(x) = \sum_{n=1}^{\infty} \tilde{b}_n \sin nx$ $\frac{\tilde{a}_0}{2} \sum_{n=1}^{\infty} \tilde{a}_n \cos nx$, kjer sta:

 $\tilde{a}_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx, \quad n \in \mathbb{N},$

$$\tilde{b}_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx, \quad n \in \mathbb{N}_0.$$

S substitucijo lahko razvoje prevedemo na poljuben interval [-L,L] oz. [0,L], L>0. V tem primeru je $\{\frac{1}{2L},\frac{1}{L}\sin\frac{n\pi x}{L},\frac{1}{L}\cos\frac{n\pi x}{L},\dots\}$

Metoda separacije: Kdaj jo uporabimo: Trivialen pogoj: Imamo eno spremenljivko na omejenem območju in s homogenimi robnimi pogoji, npr.

$$x \in [0, L]$$
: $\alpha u(0, t) + \beta u_x(0, t) = 0$, $\gamma u(t) + \delta u_x(L, t) = 0$, $\alpha, \beta, \gamma, \delta \in \mathbb{R}$.

Netrivialen pogoj: Diferencialni operator, ki določa PDE, zadošča Sturm-Liouvillovi teoriji, tj. množica lastnih funkcij, ki jih dobimo iz robnega problema tvori K.O.N.S.

Štirje koraki metode:

#1: Separacija: nastavek u(x,t) = X(x)T(t). (Nastavek vstavi v enačbo in loči spremenljivke, dobljeno enačbo pa enači z $\mu \in \mathbb{R}$.)

#2: Določanje lastnih funkcij $\{X_n\}_{n\in\mathbb{N}}$ iz robnega problema za NDE. (Reši NDE za X, homogeni robni pogoji ti dajo začetne pogoje za NDE. Obravnavati moraš možnosti $\mu > 0, \mu = 0, \mu < 0$. Ce je v kakšnem primeru $X \equiv 0$, lastnih funkcij v tem primeru ni. Pri izbire množice lastnih funkcij, lahko splošno konstanto za vsak člen BŠS postaviš na 1.)

#3: Iskanje pripadajočih $\{T_n\}_{n\in\mathbb{N}}$. (Z μ , ki ga dobiš v #2 in določa družino lastnih funkcij, reši še NDE za T. Splošno konstanto lahko tu pustiš, lahko si misliš, za je v njej spravljena konstanta iz množice lastnih funkcij za X.)

#4: Splošna rešitev $u = \sum_{n=1}^{\infty} X_n T_n$. (Rešitev naj bi bila odvisna od števno mnogo konstant, ki jih določiš iz nehomogenega robnega pogoja. Dobro je opaziti morebitne sinusne/kosinusne vrste, ki jih dobiš z robnim pogojem, in upoštevati zvezo s koeficienti iz razvoja v sinusno/kosinusnov vrsto, torej $C_n = a_n$ ali b_n .)

Ce za nobeno od spremenljivk nimamo homogenega robnega pogoja, razbijemo problem na dva dela, npr: $\Delta u = 0$ razbijemo na u = v + w, $\triangle v = 0$ in $\triangle w = 0$, pri čemer v-ju in w-ju damo vsakemu en homogen robni pogoj in en pogoj, ki je od u-ja.

Reševanje nehomogene enačbe s separacijo:

Naredimo #1 in #2 za homogen problem (pri drugem koraku preveri, da lastne funkcije tvorijo K.O.S., tj. $\langle X_n, X_m \rangle =$

$$c_n \delta_{n,m} = \begin{cases} c_n; & n=m \\ 0; & n \neq m \end{cases}$$
, korak #3 pa naredimo tako, da rešitev iz #2 vstavimo v $u(x,t) = \sum_{n=0}^{\infty} X_n(x) T_n(t)$. Tu T_n

ne poznamo in računamo za splošnega. Vstavimo v nehomogeno enačbo in primerjamo koeficiente s tistimi iz razvoja nehomogenega dela po $\{X_n\}$. Partikularno rešitev dobimo z nastavkom. Ko razvijamo nehomogeni del f(x) po $\{X_n\}$, si napišemo $\tilde{f}(x) = \sum_{n=0}^{\infty} \frac{\langle f, X_n \rangle}{\langle X_n, X_n \rangle} X_n$ in izračunamo koeficiente iz razvoja.

Laplace v polarnih koordinatah: $\triangle u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\varphi\varphi}$

Pri polarnih koordinatah imamo namesto homogenega robnega pogoja lahko tudi naravni pogoj: 2π -periodičnost: u(r,0) = $u(r, 2\pi), u_{\varphi}(r, 0) = u_{\varphi}(r, 2\pi).$

Sistem $M\vec{x} = 0$ ima netrivialne rešitve $\iff \det M = 0$.

Eksistenca:

 $u_{tt}-c^2u_{xx}=0, c\in\mathbb{R}_+$ ima pri pogojih $u_x(0,t)=u_x(L,t)=0$ in $u(x,0)=u_t(x,0)=0$ edino rešitev $u\equiv 0$. Za poljubne $a,b,f,g\in\mathcal{C}^\infty(\mathbb{R})$ ima $u_{tt}-c^2u_{xx}=0,c\in\mathbb{R}_+$ enolično rešitev tudi pri pogojih $u_x(0,t)=a(t),u_x(L,t)=b(t),u(x,0)=f(x)$ in $u_t(x,0) = g(x)$

STURM-LIOUVILLEOVA TEORIJA

 $A \in \mathbb{R}^{n \times n}$ je sebi adjungiran, če $A^T = A$, lastni vektorji tvorijo ortogonalno bazo. Velja $\langle Av, w \rangle = (Av)^T w = v^T A^T w = v^T A^T w$

SL-operator: $L: \mathcal{C}^2([a,b]) \longrightarrow \mathcal{C}([a,b]), L(y) = \frac{1}{r(x)}[(p(x)y')' + q(x)y], p,r > 0, x \in [a,b] + \text{mešani ali periodični robni}$ pogoj. Gledamo skrčitev operatorja na $V = \mathcal{C}^2([a,b]) \cap \{\text{robni pogoji}\}, \langle f,g \rangle = \int_a^b f(x)g(x)r(x)dx$, kjer je r utež. L je sebi adjungiran za robne pogoje:

- (1) y(a) = y(b) = 0,
- (2) y'(a) = y'(b) = 0,
- (3) y(a) = y(b), p(a)y'(a) = p(b)y'(b).

Izrek (o kompletnosti lastnih funkcij)

 $p \in \mathcal{C}^1([a,b]); r,q \in \mathcal{C}([a,b]); p,r > 0.$ Potem ima lastni problem $L(y) = \mu y$ pri robnih pogojih a) $\alpha y(a) + \beta y'(a) = 0$ in $\gamma y(b) + \delta y'(b) = 0; \ \alpha^2 + \beta^2 \neq 0, \gamma^2 + \delta^2 \neq 0$

- b) y(a) = y(b) in $\alpha y'(a) = \beta y'(b)$; $\alpha^2 + \beta^2 \neq 0$

števno mnogo rešitev z lastnostmi:

- i) $\mu_1 > \mu_2 > \dots$, $\lim_{n \to \infty} \mu_n = -\infty$
- ii) $\{g_n\}_{n\in\mathbb{N}}$ tvorijo kompleten ortonormiran sistem v $L^2([a,b])\cap\{\text{robni pogoji}\}$ in za $\langle f,g\rangle=\int_a^b f(x)g(x)r(x)dx$.

Enačbe oblike $u_t = au_{xx} + bu_x + cu$, kjer $a, b, c \in \mathbb{R}$, $a \neq 0$, u(o, t) = u(L, t) = 0 lahko rešujemo s separacijo spremenljivk za poljubne koeficiente a, b, c.

$$y(x) = \tilde{A}x^{ia} + \tilde{B}x^{-ia} = A\cos(a\ln x) + B\sin(a\ln x)$$

Dejstvo, ali določena družina funkcij tvori K.O.S., preverjamo z identifikacijo istoležnih funkcij v $L(y) = \frac{1}{r(x)}[(p(x)y')' +$ $q(x)y] = \mu y = \text{naša enačba (npr. } L(y) = \frac{1}{r(x)}[(p(x)y')' + q(x)y] = x^2y'' + xy' = \mu y \text{ za reševanje enačbe } x^2y'' + xy' = \mu y.$ Poiščemo utež r in za prostor vzamemo prostor funkcij, za katere rešujemo enačbo, presekan z robni pogoji.

Legendrova enačba

 $L(y) = ((1-x^2)y')' = \mu y, x \in [-1,1]$. To je singularen diferencialni operator, saj $p(\pm 1) = 0$, izrek pa deluje za p > 0. L je omejena v $x=\pm 1$ natanko tedaj, ko je $\mu=-n(n+1), n\in\mathbb{N}$. Tedaj obstajata neodvisni polinomski rešitvi stopenj 2m in 2m + 1.

Kvocientni kriterij za vrsto $\sum C_n x^n$: $\lim_{n\to\infty} \left|\frac{C_{n+1}x^{n+1}}{C_nx^n}\right| < 1$, potem vrsta konvergira. Raabejev kriterij za vrsto $\sum C_n x^n$: $\lim_{n\to\infty} n(1-\frac{C_nx^n}{C_{n+1}x^{n+1}}<1$, potem ta vrsta divergira. Če gledamo operator $L(y)=((1-x^2)y')'=\mu y$ na prostoru $\mathcal{C}^2(-1,1)\cap\{\text{omejene funkcije v }\pm 1\}$, dobimo lastne pare $(-n(n+1), P_n)$ in $\{P_n\}_{n\in\mathbb{N}_0}$ je K.O.S.

Laplace v sferičnih koordinatah: $\triangle u = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 u_r) + \frac{1}{r^2} \left[\frac{1}{\cos \vartheta} \frac{\partial}{\partial \vartheta} (\cos \theta u_\vartheta) + \frac{1}{\cos \vartheta} u_{\varphi\varphi} \right], r \in [0, \infty), \varphi \in [0, 2\pi], \vartheta \in [-\frac{\pi}{2}, \frac{\pi}{2}].$

Bessiova enacoa $x^2y'' + xy' + (x^2 - n^2)y = 0, x > 0, n \in \mathbb{N}_0$, singularna za x = 0. Z nastavkom $y = \sum_{m=0}^{\infty} C_m x^{m+k}, k \in \mathbb{N}_0, C_0 \neq 0$ dobimo rešitev, ki je omejena v x = 0: $J_n(x) = C_0 \sum_{l=0}^{\infty} \frac{(-1)^l}{2^{2l} l! (n+l)(n+l-1) \cdots (n+1)} x^{2l}$.

Dodatek k Besslovi enačbi:

- (1) Enačbo lahko obravnavamo tudi za $n \in \mathbb{R}_+ \backslash \mathbb{N}_0$, vendar v eksplicitni obliki namesto (n+l)! dobimo $\Gamma(n+l+1)$.
- (2) Enačbo lahko obravnavamo tudi za $n \in \mathbb{R}_{-}$, vendar dobimo Besslove funkcije drugega reda Y_n , ki so singularne v
- (3) Splošna rešitev Besslove enačbe: $y(x) = AJ_n(x) + BY_n(x)$.
- (4) Besslova funkcija ima števno mnogo ničel.

FOURIEROVA TRANSFORMACIJA IN PDE

$$\begin{array}{l} f \in L^1(\mathbb{R}) = \{f: \mathbb{R} \longrightarrow \mathbb{R}; \int_{\mathbb{R}} |f| dx < \infty\}. \\ \mathcal{F}(f)(x) = \int_{-\infty}^{\infty} f(s) e^{isx} ds \\ \mathcal{F}^{-1}(f)(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(s) e^{-isx} ds \\ \text{Lastnosti:} \end{array}$$

- (1) \mathcal{F} je linearna: $\mathcal{F}(\alpha f + \beta g) = \alpha \mathcal{F}(f) + \beta \mathcal{F}(g)$
- (2) $\mathcal{F}(f')(x) = (-ix)\mathcal{F}(f)(x)$ (3) $\frac{d}{dx} [\mathcal{F}(f)(x)] = \mathcal{F}(ixf)(x)$
- (4) $\widetilde{\text{Ce}}$ je f soda funkcija, velja $\mathcal{F}^{-1}(f) = \frac{1}{2\pi}\mathcal{F}(f)$.

Nekaj izračunanih transformacij:

•
$$f_1(x) = \begin{cases} 1; & |x| \le 1 \\ 0; & \text{sicer} \end{cases}$$
, $\mathcal{F}(f_1) = \frac{2\sin x}{x}$
• $\mathcal{F}(e^{-a|x|})(x) = \frac{2a}{a^2 + x^2}$, $a > 0$

- $\mathcal{F}(e^{-ax^2})(x) = \sqrt{\frac{\pi}{a}}e^{-\frac{x^2}{4a}}$
- $\mathcal{F}^{-1}(e^{-ax^2})(x) = \frac{1}{2\pi} \sqrt{\frac{\pi}{a}} e^{-\frac{x^2}{4a}}$ $f_2 = \begin{cases} 1 |x|; & |x| < 1\\ 0; & \text{sicer} \end{cases}$, $\mathcal{F}(f_2) = \frac{2}{x^2} (1 \cos x)$
- $\mathcal{F}(\cos(ax^2)) = \sqrt{\frac{\pi}{a}}\cos(\frac{x^2}{4a} \frac{\pi}{4}), a > 0$

Uporaba Fourierovih transformacij v PDE

Želimo reševati PDE, v kateri je ena spremenljivka neomejena, npr. $x \in \mathbb{R}, t > 0$. $U(x,t) = \mathcal{F}(u)(x,t) = \int_{-\infty}^{\infty} u(s,t) e^{isx} ds$ (transformacija po x)

Veljajo pravila:

- $\begin{array}{ll} (1) \ \ \mathcal{F}(\alpha u + \beta v) = \alpha \mathcal{F}(u) + \beta \mathcal{F}(v), \ \alpha, \beta \in \mathbb{C} \\ (2) \ \ \mathcal{F}(\frac{\partial^n}{\partial t^n} u) = \frac{\partial^n}{\partial t^n} \mathcal{F}(u) = \frac{\partial^n}{\partial t^n} U \\ (3) \ \ \mathcal{F}(\frac{\partial^n}{\partial x^n} u) = (-ix)^n \mathcal{F}(u) = (-ix)^n U \end{array}$

Strategija: PDE z odvodi po t in x s Fourierovo transformacijo pretvorimo v NDE z odvodi po t (tudi začetne pogoje), nato pa dobljeno rešitev NDE z inverzno Fourierovo transformacijo pretvorimo v rešitev PDE.

Enačba $u_{xx} = u_t + u$ ima enolično rešitev pri pogojih $u(x,0) = g(x), \forall g \in \mathcal{C}^{\infty}(\mathbb{R})$. Če je g soda (oz. liha), je rešitev soda (oz. liha). (Včasih za uporabo te lastnosti lahko naše začetne podatke sodo (oz. liho) razširiti, odvisno katera razširitev nam da nov pogoj. Z razširjenim začetnim podatkom nalogo rešimo, na koncu pa vzamemo samo ustrezno polovico.)

Konvolucija:
$$f * g(x) = \int_{-\infty}^{\infty} f(\xi)g(x - \xi) d\xi$$

Volia: $\mathcal{F}(f * g) = \mathcal{F}(f)\mathcal{F}(g)$

Velja: $\mathcal{F}(f * g) = \mathcal{F}(f)\mathcal{F}(g)$

Splošna rešitev enačbe $u_t - 2u_{xx} = 0$ pri pogoju u(x,0) = f(x) je: $u(x,t) = \sqrt{\frac{1}{8\pi t}} \int_{-\infty}^{\infty} f(\xi) e^{-\frac{(x-\xi)^2}{8t}} d\xi$

Če iščemo splošno rešitev za poljuben začetni pogoj, se pri uporabi inverzne Fourierove transformacije splača uporabiti lastnost konvolucije in vriniti $\mathcal{F}\mathcal{F}^{-1}$.

Diracova δ -funkcija

Diracova δ -funkcija zadošča dvema lastnostma:

- (1) $\delta(x) = 0$ za $\mathbb{R} \setminus \{0\}$,
- (2) $\int_{\mathbb{R}} \delta \, \mathrm{d}x = 1$.

Diracovo δ-funkcijo lahko realiziramo tudi kot limito funkcij $f_n(x) = \begin{cases} n; & |x| \leq \frac{1}{2n} \\ 0; & \text{sicer} \end{cases}$ ali kot limito funkcij $g_n(x) = \frac{n}{\sqrt{\pi}} e^{-n^2 x^2}$.

Definiramo jo lahko tudi kot $\delta(x) := \mathcal{F}^{-1}(1) = \frac{1}{2\pi}\mathcal{F}(1)$.

Za $f \in \mathcal{C}^{\infty}(\mathbb{R})$ velja: $\int_{\mathbb{R}} \delta(x-a) f(x) dx = f(a)$.

Poissonovo jedro in Greenova funkcija

Rešujemo za: $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\bar{\Omega}), f \in \mathcal{C}(\Omega), g \in \mathcal{C}(\partial\Omega)$ in Ω odprta, povezana podmnožica v \mathbb{R}^2 .

 $\triangle u = f$ je Poissonova enačba.

Robni pogoji:

- (1) $u|_{\partial\Omega} = g$ Dirichletov
- (2) $\partial_{\vec{n}} u|_{\partial\Omega} = g$ Neumannov.

Poseben primer tega problema za f = 0 so harmonične funkcije.

Izrek o povprečni vrednosti za harmonične funkcije: $u(x_0, y_0) = \frac{1}{2\pi R} \int_{\partial K((x_0, y_0), R)} u \, ds$.

Šibki princip maksima: Če je Ω omejeno: $\max_{\Omega} v = \max_{\partial\Omega} v$ oz. $\min_{\Omega} v = \min_{\partial\Omega} v$

Krepki princip maksima: Če je Ω neomejeno in če harmonična funkcija doseže lokalni ekstrem v notranjosti Ω , je funkcija konstantna.

Zveza med harmoničnimi in holomorfnimi funkcijami:

- (1) Če f = u + iv holomorfna, potem sta u in v harmonični.
- (2) Ce je u harmonična, potem obstaja harmonična funkcija v, da je f = u + iv holomorfna (velja samo za enostavno povezana območja Ω).

Množica harmoničnih homogenih polinomov stopnje n $(p(\lambda x, \lambda y) = \lambda^n p(x, y))$ tvori vektorski prostor dimenzije 2 za vsak

Za omejeno območje $\Omega \subseteq \mathbb{R}^2$ velja $\int_{\Omega} u \triangle u dS + \int_{\Omega} \nabla u \cdot \nabla u dS = \int_{\partial \Omega} u (\nabla u \cdot \vec{n}) ds$, kjer je \vec{n} zunanja enotska normala na Ω . Edina rešitev enačbe $\Delta u = \lambda u, \lambda \geq 0, u|_{\partial\Omega} = 0$ je funkcija $u \equiv 0$.

Dirichletov problem je na omejenem območju enolično rešljiv.

Krivuljni integral vektorskega polja: $\int_{\partial\Omega} \vec{V} d\vec{s} = \int_{\alpha}^{\beta} \vec{V}(\gamma(t)) \cdot \dot{\gamma}(t) dt = \int_{\partial\Omega} \vec{V} \cdot \vec{T} ds$, kjer je $\vec{T} = \frac{\dot{\gamma}(t)}{||\dot{\gamma}(t)||}$

 $\gamma(t) = (x(t), y(t))$, normalni vektor: $(\dot{y}(t), -\dot{x}(t))$: $\int_{\alpha}^{\beta} (P, Q) \cdot (\dot{x}, \dot{y}) dt = \int_{\alpha}^{\beta} (Q, -P) \cdot (\dot{y}, -\dot{x}) dt$

Greenova formula za integral vektorskega polja po normali: $\int_{\Omega} (Q_x - P_y) dS = \int_{\partial\Omega} (P, Q) d\vec{s} = \int_{\partial\Omega} (Q, -P) \cdot \vec{n} ds$, kjer \vec{n} enotska normala.

Reševanje Dirichletovega problema

Rešitev je vsota dveh problemov: $\Delta v = 0, v|_{\partial\Omega} = g$ (Poissonov del) in $\Delta w = f, w|_{\partial\Omega} = 0$ (Greenov del).

Poissonov del: $v(x,y) = \int_{\partial\Omega} P(x,y,s)g(s) ds$, $P: \Omega \times \partial\Omega \to \mathbb{R}$, $(x,y,s) \mapsto P(x,y,s)$ (Poissonovo jedro)

Greenov del: $w(x,y) = \int_{\Omega} G(x,y;\xi,\eta) f(\xi,\eta) dS(\xi,\eta), G: \Omega \times \Omega \setminus \{(p,p); p \in \Omega\} \to \mathbb{R}, (x,y;\xi,\eta) \mapsto G(x,y;\xi,\eta)$ (Greenova funkcija).

Greenova identiteta: $\int_{\Omega} (u \triangle v - v \triangle u) dS = \int_{\partial\Omega} (u \partial_{\vec{n}} v - v \partial_{\vec{n}} u) ds$, kjer $\partial_{\vec{n}} v = \langle \nabla v, \vec{n} \rangle$ in \vec{n} zunanja normala.

Poissonovo jedro se vedno da izračunati iz Greenove funkcije. Velja zveza: $P(x,y,t) = \partial_{\vec{n}} G(x,y;\xi,\eta)|_{(\xi,\eta)\in\partial\Omega}$.

Kompleksni logaritem: $\log z = \ln |z| + i \arg z$

Fundamentalna rešitev: $\Gamma(x,y;\xi,\eta) = \frac{1}{4\pi} \ln((\xi-x)^2 + (\eta-y)^2) = \frac{1}{2\pi} \ln|z-q| = Re(\frac{1}{2\pi} \log(z-q))$

Greenova funkcija za:

- polravnino $\mathbb{H} = \{(x,y) \in \mathbb{R}^2, y > 0\} = \{Im(z) > 0\}$: $G(z,w) = \Gamma(z,w) \Gamma(\bar{z},w) = \frac{1}{4\pi} \log \left(\frac{(\xi-x)^2 + (\eta-y)^2}{(\xi-x)^2 + (\eta+y)^2}\right)$
- enotski disk $\mathbb{D} = \{x^2 + y^2 < 1\}$: $G_{\mathbb{D}} = \frac{1}{2\pi} \ln |\frac{w-z}{1-\bar{z}w}|$ pas $\mathbb{R} \times (-1,1)$: $G_{\mathbb{R} \times (-1,1)}(z,w) = \Gamma(e^{\frac{\pi}{2}(z+i)},e^{\frac{\pi}{2}(w+i)}) \Gamma(e^{\frac{\pi}{2}(\bar{z}-i)},e^{\frac{\pi}{2}(w+i)})$
- disk z radijem R presekan s polravnino $\mathbb{H}\colon G(z,w)=\frac{1}{2\pi}\log\left|\frac{(z-w)(R^2-zw)}{(z-\bar{w})(R^2-z\bar{w})}\right|$

Poissonovo jedro za:

- polravnino \mathbb{H} : $P(x,y,\xi)=\frac{y}{\pi((\xi-x)^2+y^2)}$ enotski disk: $P(r,\varphi,\vartheta)=\frac{1-r^2}{1-2r\cos(\theta-\varphi)+r^2}$

Pas $\mathbb{R} \times (-1,1)$ s preslikavo $z \mapsto (z+i)\frac{\pi}{2}$ preslikamo v pas $\mathbb{R} \times (0,\pi)$, tega pa z $e^{x+iy} = e^x(\cos y + i\sin y)$ v polravnino $\mathbb{H} = \{(x, y) \in \mathbb{R}^2, y > 0\} \text{ (ker je } y \in (0, \pi), \text{ je } \sin y > 0)$

Če je $\Omega \subset \mathbb{C} \setminus \mathbb{D}(a, r)$, potem obstaja natanko ena omejena rešitev Dirichletovega problema.

Vsaka rešitev enačbe $\Delta(\xi,\eta)G(x,y;\xi,\eta)=\delta(\xi-x,\eta-y),\ G|_{(\xi,\eta)\in\partial\Omega}=0$ je za $(x,y)\in\Omega$ Greenova funkcija.