

Reconhecimento Facial

Trabalho de Implementação

Professor: Fernando dos Santos

Viviane Maria Wehrmeister

Ponto de Partida

- Linguagem Java
- JavaCV x OpenCV
- Reconhecimento Facial
- Treinamento
- Reconhecimento Facial Eingenfaces
- Avaliação do Algoritmo
- Aplicação

Reconhecimento Facial

- Identifica as faces.
- Se a imagem é do Goku ou Kuririn.
- Características.

Reconhecimento Facial

- Dataset Yale Faces
- Treinamento
- Teste

Dataset Yale faces

15 sujeitos

Sujeito 11

Sujeito 12

Sı

Sujeito 13

Sujeito 14

4 Sujeito 15

Dataset Yale faces

11 imagens de cada sujeito

Luz central

Óculos

Feliz

Luz esquerda

Sem óculos

Normal

Luz direita

Triste

Olhos Fechados

Surpreso

Piscada

Treinamento

- 8 imagens de cada sujeito, ou seja, 120 imagens no total para treinamento.
- 73% das imagens para treinamento.

Teste

- 3 imagens de cada sujeito, ou seja, 45 imagens no total para teste.
- 27% das imagens para testes.

Escolha das imagens para teste

- Sujeitos=[Sujeito1, ..., Sujeito 15].
- Condição=[a)Luz Central, b)Óculos, c)Feliz, d)Luz Esquerda, e)Sem óculos, f)Normal, g)Luz a direita, h)Triste, i)Olhos Fechados, j)Surpreso, k)Piscada]
- Sujeito 1: a, b, c.
 Sujeito 6: e, f, g.
- Sujeito 2: d, e, f.
 Sujeito 7: h, i, j.
- Sujeito 3: g, h, i.
 Sujeito 8: k, a, b.
- Sujeito 4: j, k, a.
 Sujeito 9: c, d, e.
- Sujeito 5: b, c, d.
 Sujeito 10: f, g, h.

- Sujeito 6: i, j, k.
- Sujeito 7: a, e, i.
- Sujeito 8: b, f, j.
- Sujeito 9: c, g, k.
- Sujeito 10: d, h, a.

PCA Principal Componente Analysis

- A abordagem Eigenfaces é um método PCA, no qual um pequeno conjunto de características das imagens é usado para descrever a variação entre as imagens de rosto.
- O objetivo é encontrar os autovetores (eigenfaces) da matriz de covariância da distribuição, abrangidos pelo treinamento de um conjunto de imagens faciais.
- Posteriormente, cada imagem facial é representada por uma combinação linear desses autovetores.

Eingenfaces

- EingenFaces é o nome para autovetores que são componentes da própria face
- Luminosidade.

PCA Componentes

 Representar cada imagem do dataset-treino como um vetor

$$I_i = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1N} \\ a_{21} & a_{22} & \dots & a_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NN} \end{bmatrix}_{N \times N} \xrightarrow{\text{concatenation}} \begin{bmatrix} a_{11} \\ \vdots \\ a_{1N} \\ \vdots \\ a_{2N} \\ \vdots \\ a_{NN} \end{bmatrix}_{N^2 \times 1} = \Gamma_i$$

ImagemA=	1	3	ImagemB=	3	3
	0	2		1	7

Imagem A=	1	Imagem B=	3
	3		3
	0		1
	2		7

Calcular a face média

https://digitalrepository.trincoll.edu/cgi/viewcontent.cgi?article=1221&context=theses

$$\Psi = \frac{1}{M} \sum_{i=1}^{M} \Gamma_i$$

Subtrair cada face Γi do vetor médio

$$\Phi_i = \Gamma_i - \Psi$$

Imagem A=	-1	Imagem B=	1
	0		0
	-0,5		0,5
	-2,5		2,5

Calcular a matriz de covariância

$$C = AA^T$$
 $A = [\Phi_1, \Phi_2 \dots \Phi_M]$

-1	1	AT=	-1	0	-0,5	-2,5	
0	0		1	0	0,5	2,5	
-0,5	0,5		•				
-2,5	2,5						
	·						
2	0	5					
0	0	0					
1	0	2,5					
5	0	12,5					
	-0,5 -2,5	0 0 -0,5 0,5 -2,5 2,5	0 0 -0,5 0,5 -2,5 2,5 2 0 5 0 0 0 1 0 2,5 5 0 12,5	-0,5 0,5 -2,5 2,5	-0,5 0,5 -2,5 2,5	-0,5 0,5 -2,5 2,5	-0,5 0,5 -2,5 2,5

Escolha os k autovetores mais importantes.

Autovalores=det(A-Lambda*I)								
A-Lambda*l=	2-lambda	0	5					
	0	0	0					
	1 0 2,5							
	5 0 12,5-lambda							

$$\lambda_1 = 15$$

$$\lambda_2 = 0$$

$$\lambda_3 = 0$$

$$\lambda_4 = 0$$

$$v_1 = \left(\frac{2}{5}, 0, \frac{1}{5}, 1\right)$$

$$v_2 = \left(-\frac{5}{2}, 0, 0, 1\right)$$

$$v_3 = \left(-\frac{1}{2}, 0, 1, 0\right)$$

$$v_4 = (0, 1, 0, 0)$$

 Quando os eingenfaces encontrados são transforma em nxn geram uma imagem com rosto de fantasma

• Encontramos as k eigenfaces (autovetores) que aproximam as M imagens de faces usadas no treinamento. $v_1 = \left(\frac{2}{5}, 0, \frac{1}{5}, 1\right)$ $v_3 = \left(-\frac{1}{2}, 0, 1, 0\right)$

$$v_1 = \left(\frac{2}{5}, 0, \frac{1}{5}, 1\right)$$
 $v_2 = \left(-\frac{5}{2}, 0, 0, 1\right)$
 $v_4 = (0, 1, 0, 0)$

$$proj(\Phi_i, E_j) = \frac{\Phi_i \cdot E_j}{|E_j|} = \Phi_i \cdot E_j, 1 \le i \le M, 1 \le j \le 9$$

$$\begin{pmatrix} \frac{2}{5} & 0 & \frac{1}{5} & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 0 \\ -0.5 \\ -2.5 \end{pmatrix} = (-3) \qquad \begin{pmatrix} \frac{2}{5} & 0 & \frac{1}{5} & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0.5 \\ 2.5 \end{pmatrix} = (3)$$

Ver no Netbeans

- Projeta a imagem de teste no espaço de faces
- Extrai componentes eingenfaces da imagem
- Calcula distancia entre a nova face e as face de treinamento.
- Busca nas imagem de treino pela mais semelhante.

Eingenfaces - Teste - Threshold

- Limite de confiança/ distância (vizinho mais próximo)
- Faces com valor de threshold a maior que o especificado não são consideradas (retorna -1)
- Margem de erro que indica se a face pertence a alguma classe da base de treinamento
- Como definir o valor?

Ver no Netbeans

								RE	AL							
		S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15
	S1	3	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	S2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0
	S3	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
	S4	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0
Р	S5	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
R	S6	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0
Ď	S 7	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
†	S8	0	0	0	0	0	0	0	3	0	1	0	0	0	0	0
V	S9	0	0	0	0	0	0	0	0	2	0	0	1	0	0	0
0	S10	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0
	S11	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0
	S12	0	0	0	0	1	0	0	0	1	0	0	2	0	0	0
	S13	0	0	0	0	0	0	0	0	0	0	0	0	3	1	0
	S14	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
	S15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3

Acurária= 0,84

Precis	sion	Recall			
Sujeito 1	0,60	Sujeito 1	1,00		
Sujeito 2	1,00	Sujeito 2	0,67		
Sujeito3	1,00	Sujeito3	0,67		
Sujeito 4	1,00	Sujeito 4	1,00		
Sujeito 5	1,00	Sujeito 5	0,67		
Sujeito 6	1,00	Sujeito 6	1,00		
Sujeito 7	1,00	Sujeito 7	1,00		

0,75

0.67

1,00

1,00

0,50

0,75

1,00

1,00

Sujeito 8

Sujeito 9

Sujeito 10

Sujeito 11

Sujeito 12

Sujeito 13

Sujeito 14

Sujeito 15

Sujeito 1	1,00	
Sujeito 2	0,67	
Sujeito3	0,67	
Sujeito 4	1,00	
Sujeito 5	0,67	
Sujeito 6	1,00	
Sujeito 7	1,00	
Sujeito 8	1,00	
Sujeito 9	0,67	
Sujeito 10	0,67	
Sujeito 11	1,00	
Sujeito 12	0,67	
Sujeito 13	0,67	
Sujeito 14	0,67	
Sujeito 15	1,00	

Erro	
Luz Central	20,00%
Óculos	0,00%
Feliz	0,00%
Luz a esquerda	100,00%
Sem óculos	0,00%
Normal	0,00%
Luz a direita	75,00%
Triste	0,00%
Olhos Fechados	0,00%
Surpreso	0,00%
Piscada	0,00%

Eingenfaces - Aplicação

Ver no Netbeans

Bibliografia

- Bugra, PCA, EigenFace and All That, Disponível em: https://bugra.github.io/posts/2013/7/27/ PCA-EigenFace-And-All-That/ Acesso em: 11/09/2020.
- Chen, J.M., Eigenfaces for Dummies. Disponível em: http://jmcspot.com/ Eigenface/ Acesso em: 11/09/2020.
- FingerTec, Face Recognition, Disponível em: https://www.fingertec.com/whatsnew/face-recognition-white-paper-technology-2. Acesso em: 11/09/2020.
- GeeksforGeeks, Face Recognition Using Eingenfaces(PCA Algorithm), Diponível em: https://www.geeksforgeeks.org/ml-face-recognition-using-eigenfaces-pca-algorithm/ Acesso em: 11/09/2020.
- Huang, K., Principal Componente Analysis in the Eingenface Technique for Facial Recognition, Disponível em: https://digitalrepository.trincoll.edu/cgi/viewcontent. cgi?article=1221&context=theses Acesso em: 11/09/2020.
- OpenCV,Face Recognizer, Disponível em: https://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html?highlight=eigenface Acesso em: 11/09/2020.
- Santos, E. F, et al. Aplicativo de foto chamada. Disponível em: https://www.ic.unicamp.br/~rocha/teaching/2011s1/mc906/trabalhos/tp/tp-gr-01.pdf. Acesso em: 11/09/2020.

Grata pela atenção!

UDESC – Universidade do Estado de Santa Catarina

CEAVI – Centro de Educação Superior do Alto Vale do Itajaí

Graduandos do curso de Engenharia de Software

Viviane.mw@edu.udesc.br