

Next: About this document ...

Find the three parameters of this non-inverting amplifier: open-circuit voltage gain A_{oc} , input resistance R_{in} and output resistance R_{out} .

• Voltage gain:

• First, assume $r_{out} = 0$. Connect an ideal voltage source v_s (with $R_s = 0$) to the positive input so that $v^+ = v_s$, and denote the voltage across r_{in} by $v_{in} = v^+ - v^-$, i.e., $v^- = v_s - v_{in}$. Applying KCL to the node of v^- , we get

$$\frac{-v_{in}}{r_{in}} + \frac{v_s - v_{in}}{R_1} + \frac{v_s - v_{in} - Av_{in}}{R_f} = 0$$

Solving this for v_{in} , we get:

$$v_{in} = v_s \frac{r_{in}(R_f + R_1)}{R_1 R_f + r_{in} R_f + r_{in} R_1 (A + 1)}$$

The open-circuit voltage gain is:

$$A_{\infty} = \frac{v_{out}}{v_s} \approx \frac{Av_{in}}{v_s} = \frac{Ar_{in}(R_f + R_1)}{R_1R_f + r_{in}R_f + r_{in}R_1(A+1)}$$

As A >> 1 and r_{in} is usually very large, we have

$$A_{oc} \approx \frac{R_1 + R_f}{R_1}$$

• Second, assume $r_{in} \to \infty$ but $r_{out} \neq 0$, we have

$$v_{out} = A(v^{+} - v^{-}) \frac{R_f + R_1}{r_{out} + R_f + R_1} = A(v^{+} - v^{-}) \frac{R_f + R_1}{r_{out} + R_f + R_1} = A(v_s - v_{out} \frac{R_1}{R_1 + R_f}) \frac{R_f + R_1}{r_{out} + R_f + R_1}$$

Solving for v_{out} we get

$$v_{out} = v_s \frac{A(R_f + R_1)}{r_{out} + R_f + (A+1)R_1}$$

and

$$A_{\infty} = \frac{v_{out}}{v_s} = \frac{A(R_1 + R_f)}{r_{out} + R_f + (A+1)R_1} \approx \frac{A(R_1 + R_f)}{AR_1} = \frac{R_1 + R_f}{R_1}$$

The approximation is due to A >> 1 and $r_{out} << R_f + R_1$, i.e., $(R_f + R_1)(r_{out} + R_f + R_1) \approx 1$.

• If we could assume both $r_{in} \to \infty$ and $r_{out} = 0$, we can apply KCL to the v^- node to get

$$\frac{v^-}{R_1} + \frac{v^- - v_{out}}{R_f} = 0, \quad \text{or} \quad v_{out} = \frac{R_1 + R_f}{R_1} v^-$$

But as $v^- \approx v^+ = v_s$, we get the same result for A_{oc} .

In particular, when $R_f = 0$, $A_{oc} = 1$ and the circut becomes the voltage follower.

• Input resistance: We let $v^+ = v_s$ (with $R_s = 0$) and assume the input current is i_{in} , then we have $v^+ - v^- = r_{in}i_{in}$, i.e.,

 $v^- = v^+ - r_{in}i_{in} = v_s - r_{in}i_{in}$. Applying KCL to the node of v^- we get:

$$i_{in} - \frac{v_s - r_{in}i_{in}}{R_1} - \frac{v_s - r_{in}i_{in} - Ar_{in}i_{in}}{R_f + r_{out}} = 0$$

Solving this we get:

$$R_{in} = \frac{v_s}{i_{in}} = \frac{[(A+1)R_1 + R_f + r_{out}]r_{in} + (R_f + r_{out})R_1}{R_1 + R_f + r_{out}} = \frac{(A+1)R_1 + R_f + r_{out}}{R_1 + R_f + r_{out}}r_{in} + R_1||(R_f + r_{out})||(R_f +$$

The same result can be obtained if we use loop current method. As A >> 1 and $r_{out} \approx 0$, we get

$$R_{in} \approx \frac{(A+1)R_1 + R_f}{R_1 + R_f} r_{in} + R_1 ||R_f \approx A r_{in} + R_1||R_f$$

Moreover, when $R_f = 0$, $R_{in} \approx Ar_{in}$ as in the voltage follower case.

• Output resistance: To simplify the analysis we still assume $r_{in} = \infty$. First, as shown above, the open-circuit output voltage is

$$v_{oc} = \frac{A(R_f + R_1)}{r_{out} + R_f + (A+1)R_1} v_s$$

Second, we find the short-circuit current, i.e., output port is shorted with $v_{out} = 0$, we have $v^- = v_{out}R_1/(R_1 + R_f) = 0$, and $v_{in} = v^+ - v^- = v_s$,

$$i_{sc} = \frac{A(v^+ - v^-)}{r_{out}} = \frac{Av_{in}}{r_{out}} = \frac{Av_s}{r_{out}}$$

Now the output resistance can be obtained as:

$$R_{out} = \frac{v_{oc}}{i_{sc}} = \frac{A(R_f + R_1)v_s}{r_{out} + R_f + (A+1)R_1} \frac{r_{out}}{Av_s} = \frac{(R_1 + R_f)r_{out}}{r_{out} + R_f + (A+1)R_1} \approx \frac{r_{out}}{A} \frac{R_1 + R_f}{R_1}$$

The approximation is due to A >> 1. In particular, when $R_f = 0$, $R_{out} = r_{out}/A$, as in the voltage follower case.

• About this document ...

Next: About this document ...

Ruye Wang 2008-02-22