

RL78/G13

RENESAS MCU

R01DS0131EJ0330 Rev.3.30 Mar 31, 2016

True Low Power Platform (as low as 66 μ A/MHz, and 0.57 μ A for RTC + LVD), 1.6 V to 5.5 V operation, 16 to 512 Kbyte Flash, 41 DMIPS at 32 MHz, for General Purpose Applications

1. OUTLINE

1.1 Features

Ultra-low power consumption technology

- VDD = single power supply voltage of 1.6 to 5.5 V
- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed (0.03125 µs: @ 32 MHz operation with high-speed on-chip oscillator) to ultra-low speed (30.5 µs: @ 32.768 kHz operation with subsystem clock)
- Address space: 1 MB
- General-purpose registers: (8-bit register x 8) x 4 banks
- On-chip RAM: 2 to 32 KB

Code flash memory

- Code flash memory: 16 to 512 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming (with boot swap function/flash shield window function)

Data Flash Memory

- Data flash memory: 4 KB to 8 KB
- Back ground operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (TYP.)
- Voltage of rewrites: V_{DD} = 1.8 to 5.5 V

High-speed on-chip oscillator

- Select from 32 MHz, 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz
- High accuracy: +/- 1.0 % (VDD = 1.8 to 5.5 V, TA = -20 to +85°C)

Operating ambient temperature

- T_A = -40 to +85°C (A: Consumer applications, D: Industrial applications)
- T_A = -40 to +105°C (G: Industrial applications)

Power management and reset function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from 14 levels)

DMA (Direct Memory Access) controller

- 2/4 channels
- Number of clocks during transfer between 8/16-bit SFR and internal RAM: 2 clocks

Multiplier and divider/multiply-accumulator

- 16 bits × 16 bits = 32 bits (Unsigned or signed)
- 32 bits ÷ 32 bits = 32 bits (Unsigned)
- 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)

Serial interface

- CSI: 2 to 8 channels
- UART/UART (LIN-bus supported):2 to 4 channels
- I²C/Simplified I²C communication: 2 to 8 channels

Time

- 16-bit timer: 8 to 16 channels
- 12-bit interval timer: 1 channel
- Real-time clock: 1 channel (calendar for 99

years, alarm function, and clock correction function)

• Watchdog timer: 1 channel (operable with the

dedicated low-speed on-chip

oscillator)

A/D converter

- 8/10-bit resolution A/D converter (VDD = 1.6 to 5.5 V)
- Analog input: 6 to 26 channels
- Internal reference voltage (1.45 V) and temperature sensor Note 1

I/O port

- I/O port: 16 to 120 (N-ch open drain I/O [withstand voltage of 6 V]: 0 to 4, N-ch open drain I/O [VDD withstand voltage Note 3]: 5 to 25)
- Can be set to N-ch open drain, TTL input buffer, and on-chip pull-up resistor
- Different potential interface: Can connect to a 1.8/2.5/3 V device
- On-chip key interrupt function
- On-chip clock output/buzzer output controller

Others

On-chip BCD (binary-coded decimal) correction circuit

Notes 1. Can be selected only in HS (high-speed main) mode

- 2. Products with 20 to 52 pins
- 3. Products with 64 to 128 pins

Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

O ROM, RAM capacities

Flash	Data	RAM	RL78/G13						
ROM	flash		20 pins	24 pins	25 pins	30 pins	32 pins	36 pins	
128	8 KB	12	-	-	-	R5F100AG	R5F100BG	R5F100CG	
KB	-	KB	-	-	-	R5F101AG	R5F101BG	R5F101CG	
96	8 KB	8 KB	-	=	-	R5F100AF	R5F100BF	R5F100CF	
KB	_		-	-	-	R5F101AF	R5F101BF	R5F101CF	
64	4 KB	4 KB	R5F1006E	R5F1007E	R5F1008E	R5F100AE	R5F100BE	R5F100CE	
KB	=	Note	R5F1016E	R5F1017E	R5F1018E	R5F101AE	R5F101BE	R5F101CE	
48	4 KB	3 KB Note	R5F1006D	R5F1007D	R5F1008D	R5F100AD	R5F100BD	R5F100CD	
KB	_	11010	R5F1016D	R5F1017D	R5F1018D	R5F101AD	R5F101BD	R5F101CD	
32	4 KB	2 KB	R5F1006C	R5F1007C	R5F1008C	R5F100AC	R5F100BC	R5F100CC	
KB	=		R5F1016C	R5F1017C	R5F1018C	R5F101AC	R5F101BC	R5F101CC	
16	4 KB	2 KB	R5F1006A	R5F1007A	R5F1008A	R5F100AA	R5F100BA	R5F100CA	
KB	_		R5F1016A	R5F1017A	R5F1018A	R5F101AA	R5F101BA	R5F101CA	

Flash	Data	RAM				RL78	3/G13			
ROM	flash		40 pins	44 pins	48 pins	52 pins	64 pins	80 pins	100 pins	128 pins
512	8 KB	32 KB Note	-	R5F100FL	R5F100GL	R5F100JL	R5F100LL	R5F100ML	R5F100PL	R5F100SL
KB	_	Note	-	R5F101FL	R5F101GL	R5F101JL	R5F101LL	R5F101ML	R5F101PL	R5F101SL
384	8 KB	24 KB	-	R5F100FK	R5F100GK	R5F100JK	R5F100LK	R5F100MK	R5F100PK	R5F100SK
KB	=		-	R5F101FK	R5F101GK	R5F101JK	R5F101LK	R5F101MK	R5F101PK	R5F101SK
256	8 KB	20 KB Note	=	R5F100FJ	R5F100GJ	R5F100JJ	R5F100LJ	R5F100MJ	R5F100PJ	R5F100SJ
KB	_	Note	-	R5F101FJ	R5F101GJ	R5F101JJ	R5F101LJ	R5F101MJ	R5F101PJ	R5F101SJ
192	8 KB	16 KB	R5F100EH	R5F100FH	R5F100GH	R5F100JH	R5F100LH	R5F100MH	R5F100PH	R5F100SH
KB	_		R5F101EH	R5F101FH	R5F101GH	R5F101JH	R5F101LH	R5F101MH	R5F101PH	R5F101SH
128	8 KB	12 KB	R5F100EG	R5F100FG	R5F100GG	R5F100JG	R5F100LG	R5F100MG	R5F100PG	-
KB	=		R5F101EG	R5F101FG	R5F101GG	R5F101JG	R5F101LG	R5F101MG	R5F101PG	-
96	8 KB	8 KB	R5F100EF	R5F100FF	R5F100GF	R5F100JF	R5F100LF	R5F100MF	R5F100PF	-
KB	_		R5F101EF	R5F101FF	R5F101GF	R5F101JF	R5F101LF	R5F101MF	R5F101PF	-
64	4 KB	4 KB Note	R5F100EE	R5F100FE	R5F100GE	R5F100JE	R5F100LE	-	-	-
KB	_	Note	R5F101EE	R5F101FE	R5F101GE	R5F101JE	R5F101LE	-	-	_
48	4 KB	3 KB Note	R5F100ED	R5F100FD	R5F100GD	R5F100JD	R5F100LD	=	=	-
KB	_		R5F101ED	R5F101FD	R5F101GD	R5F101JD	R5F101LD	-	=	-
32	4 KB	2 KB	R5F100EC	R5F100FC	R5F100GC	R5F100JC	R5F100LC	=	=	-
KB	_		R5F101EC	R5F101FC	R5F101GC	R5F101JC	R5F101LC	-	-	-
16	4 KB	2 KB	R5F100EA	R5F100FA	R5F100GA	=	=	=	=	-
KB	-		R5F101EA	R5F101FA	R5F101GA	-	-	-	-	-

Note The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = 6 to 8, A to C, E to G, J, L): Start address FF300H R5F100xE, R5F101xE (x = 6 to 8, A to C, E to G, J, L): Start address FEF00H R5F100xJ, R5F101xJ (x = F, G, J, L, M, P): Start address FAF00H R5F100xL, R5F101xL (x = F, G, J, L, M, P, S): Start address F7F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/G13

Notes 1. Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}$ C)", and "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)"

2. Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}$ C)", and "D: Industrial applications ($T_A = -40$ to $+85^{\circ}$ C)"

Table 1-1. List of Ordering Part Numbers

(1/12)

Pin	Package	Data	Fields of	Ordering Part Number
count	-	flash	Application Note	
20 pins	20-pin plastic LSSOP	Mounted	Α	R5F1006AASP#V0, R5F1006CASP#V0, R5F1006DASP#V0,
	(7.62 mm (300), 0.65			R5F1006EASP#V0
	mm pitch)			R5F1006AASP#X0, R5F1006CASP#X0, R5F1006DASP#X0,
				R5F1006EASP#X0
			D	R5F1006ADSP#V0, R5F1006CDSP#V0, R5F1006DDSP#V0,
				R5F1006EDSP#V0
				R5F1006ADSP#X0, R5F1006CDSP#X0, R5F1006DDSP#X0,
				R5F1006EDSP#X0
			G	R5F1006AGSP#V0, R5F1006CGSP#V0, R5F1006DGSP#V0,
				R5F1006EGSP#V0
				R5F1006AGSP#X0, R5F1006CGSP#X0, R5F1006DGSP#X0,
				R5F1006EGSP#X0
		Not	Α	R5F1016AASP#V0, R5F1016CASP#V0, R5F1016DASP#V0,
		mounted		R5F1016EASP#V0
				R5F1016AASP#X0, R5F1016CASP#X0, R5F1016DASP#X0,
				R5F1016EASP#X0
			D	R5F1016ADSP#V0, R5F1016CDSP#V0, R5F1016DDSP#V0,
				R5F1016EDSP#V0
				R5F1016ADSP#X0, R5F1016CDSP#X0, R5F1016DDSP#X0,
				R5F1016EDSP#X0
24 pins	24-pin plastic	Mounted	Α	R5F1007AANA#U0, R5F1007CANA#U0, R5F1007DANA#U0,
	HWQFN (4 \times 4mm,			R5F1007EANA#U0
	0.5 mm pitch)			R5F1007AANA#W0, R5F1007CANA#W0, R5F1007DANA#W0,
				R5F1007EANA#W0
			D	R5F1007ADNA#U0, R5F1007CDNA#U0, R5F1007DDNA#U0,
				R5F1007EDNA#U0
				R5F1007ADNA#W0, R5F1007CDNA#W0, R5F1007DDNA#W0,
				R5F1007EDNA#W0
			G	R5F1007AGNA#U0, R5F1007CGNA#U0, R5F1007DGNA#U0,
				R5F1007EGNA#U0
				R5F1007AGNA#W0, R5F1007CGNA#W0, R5F1007DGNA#W0,
		Net		R5F1007EGNA#W0
		Not	Α	R5F1017AANA#U0, R5F1017CANA#U0, R5F1017DANA#U0,
		mounted		R5F1017EANA#U0 R5F1017AANA#W0, R5F1017CANA#W0, R5F1017DANA#W0,
				R5F1017AANA#W0, R5F1017CANA#W0, R5F1017DANA#W0,
			D	R5F1017ADNA#U0, R5F1017CDNA#U0, R5F1017DDNA#U0,
				R5F1017ADNA#00, R5F1017CDNA#00, R5F1017DDNA#00,
				R5F1017ADNA#W0, R5F1017CDNA#W0, R5F1017DDNA#W0,
				R5F1017ADNA#W0, R5F1017CDNA#W0, R5F1017DDNA#W0,
]		KOF IU I / EDIVA#WU

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Table 1-1. List of Ordering Part Numbers

(2/12)

D:	D/	·	Fig. 6	(2/12)
Pin	Package	Data	Fields of	Ordering Part Number
count		flash	Application	
			Note	
25 pins	25-pin plastic	Mounted	Α	R5F1008AALA#U0, R5F1008CALA#U0, R5F1008DALA#U0,
25 piris		Mounted	, ,	R5F1008EALA#U0
	WFLGA (3×3 mm,			R5F1008AALA#W0, R5F1008CALA#W0, R5F1008DALA#W0,
	0.5 mm pitch)			R5F1008EALA#W0
	. ,		G	
			G	R5F1008AGLA#U0, R5F1008CGLA#U0, R5F1008DGLA#U0,
				R5F1008EGLA#U0
				R5F1008AGLA#W0, R5F1008CGLA#W0, R5F1008DGLA#W0,
			_	R5F1008EGLA#W0
		Not	Α	R5F1018AALA#U0, R5F1018CALA#U0, R5F1018DALA#U0,
		mounted		R5F1018EALA#U0
				R5F1018AALA#W0, R5F1018CALA#W0, R5F1018DALA#W0,
				R5F1018EALA#W0
30 pins	30-pin plastic LSSOP	Mounted	Α	R5F100AAASP#V0, R5F100ACASP#V0, R5F100ADASP#V0,
00 p0	(7.62 mm (300), 0.65			R5F100AEASP#V0, R5F100AFASP#V0, R5F100AGASP#V0
				R5F100AAASP#X0, R5F100ACASP#X0, R5F100ADASP#X0
	mm pitch)			R5F100AEASP#X0, R5F100AFASP#X0, R5F100AGASP#X0
			D	R5F100AADSP#V0, R5F100ACDSP#V0, R5F100ADDSP#V0,
				R5F100AEDSP#V0, R5F100AFDSP#V0, R5F100AGDSP#V0
				R5F100AADSP#X0, R5F100ACDSP#X0, R5F100ADDSP#X0,
				R5F100AEDSP#X0, R5F100AFDSP#X0, R5F100AGDSP#X0
			G	
			G	R5F100AAGSP#V0, R5F100ACGSP#V0,
				R5F100ADGSP#V0,R5F100AEGSP#V0,
				R5F100AFGSP#V0, R5F100AGGSP#V0
				R5F100AAGSP#X0, R5F100ACGSP#X0,
				R5F100ADGSP#X0,R5F100AEGSP#X0,
				R5F100AFGSP#X0, R5F100AGGSP#X0
		Not	Α	R5F101AAASP#V0, R5F101ACASP#V0, R5F101ADASP#V0,
		mounted		R5F101AEASP#V0, R5F101AFASP#V0, R5F101AGASP#V0
				R5F101AAASP#X0, R5F101ACASP#X0, R5F101ADASP#X0,
				R5F101AEASP#X0, R5F101AFASP#X0, R5F101AGASP#X0
			D	R5F101AADSP#V0, R5F101ACDSP#V0, R5F101ADDSP#V0,
				R5F101AEDSP#V0, R5F101AFDSP#V0, R5F101AGDSP#V0
				R5F101AADSP#X0, R5F101ACDSP#X0, R5F101ADDSP#X0,
				R5F101AEDSP#X0, R5F101AFDSP#X0, R5F101AGDSP#X0
32 pins	32-pin plastic	Mounted	Α	R5F100BAANA#U0, R5F100BCANA#U0, R5F100BDANA#U0,
32 pins		Mounted		R5F100BEANA#U0, R5F100BFANA#U0, R5F100BGANA#U0
	HWQFN (5 \times 5 mm,			R5F100BAANA#W0, R5F100BCANA#W0, R5F100BDANA#W0,
	0.5 mm pitch)			R5F100BEANA#W0, R5F100BFANA#W0, R5F100BGANA#W0
			D	R5F100BADNA#U0, R5F100BCDNA#U0, R5F100BDDNA#U0,
			D	, , , , , , , , , , , , , , , , , , , ,
		1		R5F100BEDNA#U0, R5F100BFDNA#U0, R5F100BGDNA#U0
		1		R5F100BADNA#W0, R5F100BCDNA#W0, R5F100BDDNA#W0,
		1		R5F100BEDNA#W0, R5F100BFDNA#W0, R5F100BGDNA#W0
		1	G	R5F100BAGNA#U0, R5F100BCGNA#U0, R5F100BDGNA#U0,
		1		R5F100BEGNA#U0, R5F100BFGNA#U0, R5F100BGGNA#U0
		1		R5F100BAGNA#W0, R5F100BCGNA#W0, R5F100BDGNA#W0,
				R5F100BEGNA#W0, R5F100BFGNA#W0, R5F100BGGNA#W0
		Not	Α	R5F101BAANA#U0, R5F101BCANA#U0, R5F101BDANA#U0,
				R5F101BEANA#U0, R5F101BFANA#U0, R5F101BGANA#U0
		mounted		R5F101BAANA#W0, R5F101BCANA#W0, R5F101BDANA#W0,
		1		R5F101BEANA#W0, R5F101BFANA#W0, R5F101BGANA#W0
1		1	D	R5F101BADNA#U0, R5F101BCDNA#U0, R5F101BDDNA#U0,
1		1		R5F101BEDNA#U0, R5F101BFDNA#U0, R5F101BGDNA#U0
1				·
]		R5F101BADNA#W0, R5F101BCDNA#W0, R5F101BDDNA#W0,
		1		R5F101BEDNA#W0, R5F101BFDNA#W0, R5F101BGDNA#W0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Table 1-1. List of Ordering Part Numbers

(3/12)

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
			Note	
36 pins	36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)	Mounted	A G	R5F100CAALA#U0, R5F100CCALA#U0, R5F100CDALA#U0, R5F100CEALA#U0, R5F100CFALA#U0, R5F100CGALA#U0 R5F100CAALA#W0, R5F100CAALA#W0, R5F100CAALA#W0, R5F100CEALA#W0, R5F100CGALA#W0 R5F100CAGLA#W0, R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#U0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0, R5F100CAGLA#W0
		Not mounted	A	R5F101CAALA#U0, R5F101CCALA#U0, R5F101CDALA#U0, R5F101CEALA#U0, R5F101CFALA#U0, R5F101CAALA#W0, R5F10AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
				R5F101CEALA#W0, R5F101CFALA#W0, R5F101CGALA#W0
40 pins	40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch)	Mounted	A	R5F100EAANA#U0, R5F100ECANA#U0, R5F100EDANA#U0, R5F100EEANA#U0, R5F100EFANA#U0, R5F100EGANA#U0, R5F100EHANA#U0
				R5F100EAANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EEANA#W0, R5F100EFANA#W0, R5F100EGANA#W0, R5F100EHANA#W0
			D	R5F100EADNA#U0, R5F100ECDNA#U0, R5F100EDDNA#U0, R5F100EEDNA#U0, R5F100EFDNA#U0, R5F100EGDNA#U0, R5F100EHDNA#U0
				R5F100EADNA#W0, R5F100ECDNA#W0, R5F100EDDNA#W0, R5F100EEDNA#W0, R5F100EFDNA#W0, R5F100EGDNA#W0, R5F100EHDNA#W0
			G	R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EDGNA#U0, R5F100EEGNA#U0, R5F100EFGNA#U0, R5F100EHGNA#U0 R5F100EAGNA#W0, R5F100ECGNA#W0,
				R5F100EDGNA#W0, R5F100ECGNA#W0,
				R5F100EFGNA#W0, R5F100EGGNA#W0, R5F100EHGNA#W0
		Not mounted	А	R5F101EAANA#U0, R5F101ECANA#U0, R5F101EDANA#U0, R5F101EEANA#U0, R5F101EFANA#U0, R5F101EGANA#U0,
		mounted		R5F101EEANA#00, R5F101EFANA#00, R5F101EGANA#00, R5F101EAANA#W0, R5F101ECANA#W0, R5F101EDANA#W0, R5F101EEANA#W0, R5F101EFANA#W0, R5F101EGANA#W0, R5F101EHANA#W0
			D	R5F101EADNA#U0, R5F101ECDNA#U0, R5F101EDDNA#U0, R5F101EEDNA#U0, R5F101EFDNA#U0, R5F101EGDNA#U0, R5F101EHDNA#U0 R5F101EADNA#W0, R5F101ECDNA#W0, R5F101EFDNA#W0, R5F101EDNA#W0, R5F101EFDNA#W0,
				R5F101EGDNA#W0, R5F101EHDNA#W0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Table 1-1. List of Ordering Part Numbers

(4/12)

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
44 pins	44-pin plastic LQFP	Mounted	Α	R5F100FAAFP#V0, R5F100FCAFP#V0, R5F100FDAFP#V0,
	(10 × 10 mm, 0.8 mm			R5F100FEAFP#V0, R5F100FFAFP#V0, R5F100FGAFP#V0,
	pitch)			R5F100FHAFP#V0, R5F100FJAFP#V0, R5F100FKAFP#V0,
				R5F100FLAFP#V0
				R5F100FAAFP#X0, R5F100FCAFP#X0, R5F100FDAFP#X0,
				R5F100FEAFP#X0, R5F100FFAFP#X0, R5F100FGAFP#X0,
				R5F100FHAFP#X0, R5F100FJAFP#X0, R5F100FKAFP#X0,
				R5F100FLAFP#X0
			D	R5F100FADFP#V0, R5F100FCDFP#V0, R5F100FDDFP#V0,
				R5F100FEDFP#V0, R5F100FFDFP#V0, R5F100FGDFP#V0,
				R5F100FHDFP#V0, R5F100FJDFP#V0, R5F100FKDFP#V0,
				R5F100FLDFP#V0
				R5F100FADFP#X0, R5F100FCDFP#X0, R5F100FDDFP#X0,
				R5F100FEDFP#X0, R5F100FFDFP#X0, R5F100FGDFP#X0,
				R5F100FHDFP#X0, R5F100FJDFP#X0, R5F100FKDFP#X0,
				R5F100FLDFP#X0
			G	R5F100FAGFP#V0, R5F100FCGFP#V0, R5F100FDGFP#V0,
				R5F100FEGFP#V0, R5F100FFGFP#V0, R5F100FGGFP#V0,
				R5F100FHGFP#V0, R5F100FJGFP#V0
				R5F100FAGFP#X0, R5F100FCGFP#X0, R5F100FDGFP#X0,
				R5F100FEGFP#X0, R5F100FFGFP#X0, R5F100FGGFP#X0,
				R5F100FHGFP#X0, R5F100FJGFP#X0
		Not mounted	Α	R5F101FAAFP#V0, R5F101FCAFP#V0, R5F101FDAFP#V0,
				R5F101FEAFP#V0, R5F101FFAFP#V0, R5F101FGAFP#V0,
				R5F101FHAFP#V0, R5F101FJAFP#V0, R5F101FKAFP#V0,
				R5F101FLAFP#V0
				R5F101FAAFP#X0, R5F101FCAFP#X0, R5F101FDAFP#X0,
				R5F101FEAFP#X0, R5F101FFAFP#X0, R5F101FGAFP#X0,
				R5F101FHAFP#X0, R5F101FJAFP#X0, R5F101FKAFP#X0,
				R5F101FLAFP#X0
			D	R5F101FADFP#V0, R5F101FCDFP#V0, R5F101FDDFP#V0,
				R5F101FEDFP#V0, R5F101FFDFP#V0, R5F101FGDFP#V0,
				R5F101FHDFP#V0, R5F101FJDFP#V0, R5F101FKDFP#V0,
				R5F101FLDFP#V0
				R5F101FADFP#X0, R5F101FCDFP#X0, R5F101FDDFP#X0,
				R5F101FEDFP#X0, R5F101FFDFP#X0, R5F101FGDFP#X0,
				R5F101FHDFP#X0, R5F101FJDFP#X0, R5F101FKDFP#X0,
				R5F101FLDFP#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Table 1-1. List of Ordering Part Numbers

(5/12)

Pin	Package	Data	Fields of	Ordering Part Number
count		flash	Application Note	
48 pins	48-pin plastic	Mounted	Α	R5F100GAAFB#V0, R5F100GCAFB#V0, R5F100GDAFB#V0,
	LFQFP (7 × 7 mm,			R5F100GEAFB#V0, R5F100GFAFB#V0, R5F100GGAFB#V0,
	0.5 mm pitch)			R5F100GHAFB#V0, R5F100GJAFB#V0, R5F100GKAFB#V0,
				R5F100GLAFB#V0
				R5F100GAAFB#X0, R5F100GCAFB#X0, R5F100GDAFB#X0,
				R5F100GEAFB#X0, R5F100GFAFB#X0, R5F100GGAFB#X0,
				R5F100GHAFB#X0, R5F100GJAFB#X0, R5F100GKAFB#X0,
				R5F100GLAFB#X0
			D	R5F100GADFB#V0, R5F100GCDFB#V0, R5F100GDDFB#V0,
				R5F100GEDFB#V0, R5F100GFDFB#V0, R5F100GGDFB#V0,
				R5F100GHDFB#V0, R5F100GJDFB#V0, R5F100GKDFB#V0,
				R5F100GLDFB#V0
				R5F100GADFB#X0, R5F100GCDFB#X0, R5F100GDDFB#X0,
				R5F100GEDFB#X0, R5F100GFDFB#X0, R5F100GGDFB#X0,
				R5F100GHDFB#X0, R5F100GJDFB#X0, R5F100GKDFB#X0,
				R5F100GLDFB#X0
			G	R5F100GAGFB#V0, R5F100GCGFB#V0, R5F100GDGFB#V0,
				R5F100GEGFB#V0, R5F100GFGFB#V0, R5F100GGGFB#V0,
				R5F100GHGFB#V0, R5F100GJGFB#V0
				R5F100GAGFB#X0, R5F100GCGFB#X0, R5F100GDGFB#X0,
				R5F100GEGFB#X0, R5F100GFGFB#X0, R5F100GGGFB#X0,
				R5F100GHGFB#X0, R5F100GJGFB#X0
		Not	Α	R5F101GAAFB#V0, R5F101GCAFB#V0, R5F101GDAFB#V0,
		mounted		R5F101GEAFB#V0, R5F101GFAFB#V0, R5F101GGAFB#V0,
				R5F101GHAFB#V0, R5F101GJAFB#V0, R5F101GKAFB#V0,
				R5F101GLAFB#V0
				R5F101GAAFB#X0, R5F101GCAFB#X0, R5F101GDAFB#X0,
				R5F101GEAFB#X0, R5F101GFAFB#X0, R5F101GGAFB#X0,
				R5F101GHAFB#X0, R5F101GJAFB#X0, R5F101GKAFB#X0,
				R5F101GLAFB#X0
			D	R5F101GADFB#V0, R5F101GCDFB#V0, R5F101GDDFB#V0,
				R5F101GEDFB#V0, R5F101GFDFB#V0, R5F101GGDFB#V0,
				R5F101GHDFB#V0, R5F101GJDFB#V0, R5F101GKDFB#V0,
				R5F101GLDFB#V0
				R5F101GADFB#X0, R5F101GCDFB#X0, R5F101GDDFB#X0,
				R5F101GEDFB#X0, R5F101GFDFB#X0, R5F101GGDFB#X0,
				R5F101GHDFB#X0, R5F101GJDFB#X0, R5F101GKDFB#X0,
				R5F101GLDFB#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Table 1-1. List of Ordering Part Numbers

(6/12)

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
48 pins	48-pin plastic	Mounted	А	R5F100GAANA#U0, R5F100GCANA#U0, R5F100GDANA#U0,
	HWQFN (7 \times 7 mm,			R5F100GEANA#U0, R5F100GFANA#U0, R5F100GGANA#U0,
	0.5 mm pitch)			R5F100GHANA#U0, R5F100GJANA#U0, R5F100GKANA#U0,
				R5F100GLANA#U0
				R5F100GAANA#W0, R5F100GCANA#W0,
				R5F100GDANA#W0, R5F100GEANA#W0,
				R5F100GFANA#W0, R5F100GGANA#W0,
				R5F100GHANA#W0, R5F100GJANA#W0,
				R5F100GKANA#W0, R5F100GLANA#W0
			D	R5F100GADNA#U0, R5F100GCDNA#U0, R5F100GDDNA#U0,
				R5F100GEDNA#U0, R5F100GFDNA#U0, R5F100GGDNA#U0,
				R5F100GHDNA#U0, R5F100GJDNA#U0, R5F100GKDNA#U0,
				R5F100GLDNA#U0
				R5F100GADNA#W0, R5F100GCDNA#W0,
				R5F100GDDNA#W0, R5F100GEDNA#W0,
				R5F100GFDNA#W0, R5F100GGDNA#W0,
				R5F100GHDNA#W0, R5F100GJDNA#W0,
				R5F100GKDNA#W0, R5F100GLDNA#W0
			G	R5F100GAGNA#U0, R5F100GCGNA#U0, R5F100GDGNA#U0,
				R5F100GEGNA#U0, R5F100GFGNA#U0, R5F100GGGNA#U0,
				R5F100GHGNA#U0, R5F100GJGNA#U0
				R5F100GAGNA#W0, R5F100GCGNA#W0,
				R5F100GDGNA#W0, R5F100GEGNA#W0,
				R5F100GFGNA#W0, R5F100GGGNA#W0,
				R5F100GHGNA#W0, R5F100GJGNA#W0
		Not	Α	R5F101GAANA#U0, R5F101GCANA#U0, R5F101GDANA#U0,
		mounted		R5F101GEANA#U0, R5F101GFANA#U0, R5F101GGANA#U0,
				R5F101GHANA#U0, R5F101GJANA#U0, R5F101GKANA#U0,
				R5F101GLANA#U0
				R5F101GAANA#W0, R5F101GCANA#W0,
				R5F101GDANA#W0, R5F101GEANA#W0,
				R5F101GFANA#W0, R5F101GGANA#W0,
				R5F101GHANA#W0, R5F101GJANA#W0,
				R5F101GKANA#W0, R5F101GLANA#W0
			D	R5F101GADNA#U0, R5F101GCDNA#U0, R5F101GDDNA#U0,
				R5F101GEDNA#U0, R5F101GFDNA#U0, R5F101GGDNA#U0,
				R5F101GHDNA#U0, R5F101GJDNA#U0, R5F101GKDNA#U0,
				R5F101GLDNA#U0
				R5F101GADNA#W0, R5F101GCDNA#W0,
				R5F101GDDNA#W0, R5F101GEDNA#W0,
				R5F101GFDNA#W0, R5F101GGDNA#W0,
				R5F101GHDNA#W0, R5F101GJDNA#W0,
				R5F101GKDNA#W0, R5F101GLDNA#W0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Table 1-1. List of Ordering Part Numbers

(7/12)

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
52 pins	52-pin plastic	Mounted	А	R5F100JCAFA#V0, R5F100JDAFA#V0, R5F100JEAFA#V0,
	LQFP (10 × 10			R5F100JFAFA#V0, R5F100JGAFA#V0, R5F100JHAFA#V0,
	mm, 0.65 mm			R5F100JJAFA#V0, R5F100JKAFA#V0, R5F100JLAFA#V0
	pitch)			R5F100JCAFA#X0, R5F100JDAFA#X0, R5F100JEAFA#X0,
				R5F100JFAFA#X0, R5F100JGAFA#X0, R5F100JHAFA#X0,
				R5F100JJAFA#X0, R5F100JKAFA#X0, R5F100JLAFA#X0
			D	R5F100JCDFA#V0, R5F100JDDFA#V0, R5F100JEDFA#V0,
				R5F100JFDFA#V0, R5F100JGDFA#V0, R5F100JHDFA#V0,
				R5F100JJDFA#V0, R5F100JKDFA#V0, R5F100JLDFA#V0
				R5F100JCDFA#X0, R5F100JDDFA#X0, R5F100JEDFA#X0,
				R5F100JFDFA#X0, R5F100JGDFA#X0, R5F100JHDFA#X0,
				R5F100JJDFA#X0, R5F100JKDFA#X0, R5F100JLDFA#X0
			G	R5F100JCGFA#V0, R5F100JDGFA#V0, R5F100JEGFA#V0,
				R5F100JFGFA#V0,R5F100JGGFA#V0, R5F100JHGFA#V0,
				R5F100JJGFA#V0
				R5F100JCGFA#X0, R5F100JDGFA#X0, R5F100JEGFA#X0,
				R5F100JFGFA#X0,R5F100JGGFA#X0, R5F100JHGFA#X0,
				R5F100JJGFA#X0
		Not	Α	R5F101JCAFA#V0, R5F101JDAFA#V0, R5F101JEAFA#V0,
		mounted		R5F101JFAFA#V0, R5F101JGAFA#V0, R5F101JHAFA#V0,
				R5F101JJAFA#V0, R5F101JKAFA#V0, R5F101JLAFA#V0
				R5F101JCAFA#X0, R5F101JDAFA#X0, R5F101JEAFA#X0,
				R5F101JFAFA#X0, R5F101JGAFA#X0, R5F101JHAFA#X0,
				R5F101JJAFA#X0, R5F101JKAFA#X0, R5F101JLAFA#X0
			D	R5F101JCDFA#V0, R5F101JDDFA#V0, R5F101JEDFA#V0,
				R5F101JFDFA#V0, R5F101JGDFA#V0, R5F101JHDFA#V0,
				R5F101JJDFA#V0, R5F101JKDFA#V0, R5F101JLDFA#V0
				R5F101JCDFA#X0, R5F101JDDFA#X0, R5F101JEDFA#X0,
				R5F101JFDFA#X0, R5F101JGDFA#X0, R5F101JHDFA#X0,
				R5F101JJDFA#X0, R5F101JKDFA#X0, R5F101JLDFA#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Table 1-1. List of Ordering Part Numbers

(8/12)

Pin count	Package	Data flash	Fields of	Ordering Part Number
			Application Note	
64 pins	64-pin plastic LQFP	Mounted	Α	R5F100LCAFA#V0, R5F100LDAFA#V0,
	(12 × 12 mm, 0.65			R5F100LEAFA#V0, R5F100LFAFA#V0,
	mm pitch)			R5F100LGAFA#V0, R5F100LHAFA#V0,
				R5F100LJAFA#V0, R5F100LKAFA#V0, R5F100LLAFA#V0
				R5F100LCAFA#X0, R5F100LDAFA#X0,
				R5F100LEAFA#X0, R5F100LFAFA#X0,
			D	R5F100LGAFA#X0, R5F100LHAFA#X0,
				R5F100LJAFA#X0, R5F100LKAFA#X0, R5F100LLAFA#X0
				R5F100LCDFA#V0, R5F100LDDFA#V0,
				R5F100LEDFA#V0, R5F100LFDFA#V0,
				R5F100LGDFA#V0, R5F100LHDFA#V0,
				R5F100LJDFA#V0, R5F100LKDFA#V0, R5F100LLDFA#V0
			G	R5F100LCDFA#X0, R5F100LDDFA#X0,
				R5F100LEDFA#X0, R5F100LFDFA#X0,
				R5F100LGDFA#X0, R5F100LHDFA#X0,
				R5F100LJDFA#X0, R5F100LKDFA#X0, R5F100LLDFA#X0
				R5F100LCGFA#V0, R5F100LDGFA#V0,
				R5F100LEGFA#V0, R5F100LFGFA#V0
				R5F100LCGFA#X0, R5F100LDGFA#X0,
				R5F100LEGFA#X0, R5F100LFGFA#X0
				R5F100LGGFA#V0, R5F100LHGFA#V0,
				R5F100LJGFA#V0
				R5F100LGGFA#X0, R5F100LHGFA#X0,
				R5F100LJGFA#X0
		Not	Α	R5F101LCAFA#V0, R5F101LDAFA#V0,
		mounted		R5F101LEAFA#V0, R5F101LFAFA#V0,
				R5F101LGAFA#V0, R5F101LHAFA#V0,
				R5F101LJAFA#V0, R5F101LKAFA#V0, R5F101LLAFA#V0
				R5F101LCAFA#X0, R5F101LDAFA#X0,
				R5F101LEAFA#X0, R5F101LFAFA#X0,
			D	R5F101LGAFA#X0, R5F101LHAFA#X0,
				R5F101LJAFA#X0, R5F101LKAFA#X0, R5F101LLAFA#X0
				R5F101LCDFA#V0, R5F101LDDFA#V0,
				R5F101LEDFA#V0, R5F101LFDFA#V0,
				R5F101LGDFA#V0, R5F101LHDFA#V0,
				R5F101LJDFA#V0, R5F101LKDFA#V0, R5F101LLDFA#V0
				R5F101LCDFA#X0, R5F101LDDFA#X0,
				R5F101LEDFA#X0, R5F101LFDFA#X0,
				R5F101LGDFA#X0, R5F101LHDFA#X0,
				R5F101LJDFA#X0, R5F101LKDFA#X0, R5F101LLDFA#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Table 1-1. List of Ordering Part Numbers

(9/12)

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
64 pins	64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)	Mounted	A	R5F100LCAFB#V0, R5F100LDAFB#V0, R5F100LEAFB#V0, R5F100LFAFB#V0, R5F100LGAFB#V0, R5F100LHAFB#V0, R5F100LJAFB#V0, R5F100LKAFB#V0, R5F100LCAFB#X0, R5F100LCAFB#X0, R5F100LFAFB#X0, R5F100LFAFB#X0, R5F100LFAFB#X0, R5F100LJAFB#X0, R5F100LJAFB#X0
			D	R5F100LCDFB#V0, R5F100LDDFB#V0, R5F100LEDFB#V0, R5F100LFDFB#V0, R5F100LFDFB#V0, R5F100LHDFB#V0, R5F100LJDFB#V0, R5F100LKDFB#V0, R5F100LCDFB#X0, R5F100LDDFB#X0, R5F100LEDFB#X0, R5F100LFDFB#X0, R5F100LFDFB#X0, R5F100LFDFB#X0, R5F100LJDFB#X0, R5F100LJDFB#X0
			G	R5F100LCGFB#V0, R5F100LDGFB#V0, R5F100LEGFB#V0, R5F100LFGFB#V0 R5F100LCGFB#X0, R5F100LDGFB#X0, R5F100LEGFB#X0, R5F100LFGFB#X0 R5F100LGGFB#V0, R5F100LHGFB#V0, R5F100LJGFB#V0
			Α	R5F100LGGFB#X0, R5F100LHGFB#X0, R5F100LJGFB#X0
		Not mounted	A	R5F101LCAFB#V0, R5F101LDAFB#V0, R5F101LEAFB#V0, R5F101LFAFB#V0, R5F101LFAFB#V0, R5F101LHAFB#V0, R5F101LJAFB#V0, R5F101LJAFB#V0, R5F101LCAFB#X0, R5F101LCAFB#X0, R5F101LFAFB#X0, R5F101LFAFB#X0, R5F101LFAFB#X0, R5F101LJAFB#X0, R5F101LJAFB#X0
			D	R5F101LCDFB#V0, R5F101LDDFB#V0, R5F101LEDFB#V0, R5F101LFDFB#V0, R5F101LFDFB#V0, R5F101LHDFB#V0, R5F101LJDFB#V0, R5F101LLDFB#V0 R5F101LCDFB#X0, R5F101LCDFB#X0, R5F101LFDFB#X0, R5F101LFDFB#X0, R5F101LFDFB#X0, R5F101LFDFB#X0, R5F101LJDFB#X0, R5F101LJDDFB#X0, R5F101LJDDFB#X0, R5F101LJDDFB#X0, R5F101LJDDFB#X0, R5F101LJDDFB#X0, R5F101LJDDFB#X0, R5F101LJDDFB#X0, R5F101LJDDFB#X0, R5F101LJDDFB#X0, R5F101LJDFB#X0, R5T101LJDFB#X0, R5T101LJDFB#X0, R5T101LJDFB#X0, R5T101LJDFB#X0, R5T101LJDFB#X0, R5T101
	64-pin plastic VFBGA (4 × 4 mm, 0.4 mm pitch)	Mounted	A	R5F100LCABG#U0, R5F100LDABG#U0, R5F100LEABG#U0, R5F100LFABG#U0, R5F100LGABG#U0, R5F100LHABG#U0, R5F100LJABG#U0 R5F100LCABG#W0, R5F100LDABG#W0, R5F100LEABG#W0, R5F100LFABG#W0, R5F100LGABG#W0, R5F100LHABG#W0,
			G	R5F100LJABG#W0 R5F100LCGBG#U0, R5F100LDGBG#U0, R5F100LEGBG#U0, R5F100LFGBG#U0, R5F100LGGBG#U0, R5F100LHGBG#U0, R5F100LJGBG#U0 R5F100LCGBG#W0, R5F100LDGBG#W0, R5F100LEGBG#W0,
				R5F100LFGBG#W0, R5F100LGGBG#W0, R5F100LHGBG#W0, R5F100LJGBG#W0
		Not mounted	A	R5F101LCABG#W0 R5F101LCABG#U0, R5F101LDABG#U0, R5F101LEABG#U0, R5F101LFABG#U0, R5F101LGABG#U0, R5F101LHABG#U0, R5F101LJABG#U0 R5F101LCABG#W0, R5F101LDABG#W0, R5F101LEABG#W0, R5F101LFABG#W0, R5F101LGABG#W0, R5F101LHABG#W0.

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Table 1-1. List of Ordering Part Numbers

(10/12)

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
80 pins	80-pin plastic LQFP (14 × 14 mm, 0.65 mm pitch)	Mounted	А	R5F100MFAFA#V0, R5F100MGAFA#V0, R5F100MHAFA#V0, R5F100MJAFA#V0, R5F100MKAFA#V0, R5F100MLAFA#V0 R5F100MFAFA#X0, R5F100MGAFA#X0, R5F100MHAFA#X0, R5F100MJAFA#X0, R5F100MKAFA#X0, R5F100MLAFA#X0
			D	R5F100MFDFA#V0, R5F100MGDFA#V0, R5F100MHDFA#V0, R5F100MJDFA#V0, R5F100MKDFA#V0, R5F100MFDFA#X0, R5F100MFDFA#X0, R5F100MJDFA#X0, R5F100MKDFA#X0, R5F100MJDFA#X0, R5F100MKDFA#X0, R5F100MLDFA#X0
			G	R5F100MFGFA#V0, R5F100MGGFA#V0, R5F100MHGFA#V0, R5F100MJGFA#V0 R5F100MFGFA#X0, R5F100MGGFA#X0, R5F100MHGFA#X0, R5F100MJGFA#X0
		Not mounted	A	R5F101MFAFA#V0, R5F101MGAFA#V0, R5F101MHAFA#V0, R5F101MJAFA#V0, R5F101MKAFA#V0, R5F101MLAFA#V0 R5F101MFAFA#X0, R5F101MGAFA#X0, R5F101MJAFA#X0, R5F101MKAFA#X0, R5F101MLAFA#X0
			D	R5F101MFDFA#V0, R5F101MGDFA#V0, R5F101MHDFA#V0, R5F101MJDFA#V0, R5F101MKDFA#V0, R5F101MLDFA#V0 R5F101MFDFA#X0, R5F101MGDFA#X0, R5F101MHDFA#X0, R5F101MJDFA#X0, R5F101MKDFA#X0, R5F101MLDFA#X0
	80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)	Mounted	A	R5F100MFAFB#V0, R5F100MGAFB#V0, R5F100MHAFB#V0, R5F100MJAFB#V0, R5F100MKAFB#V0, R5F100MLAFB#V0 R5F100MFAFB#X0, R5F100MGAFB#X0, R5F100MJAFB#X0, R5F100MKAFB#X0, R5F100MLAFB#X0
			D	R5F100MFDFB#V0, R5F100MGDFB#V0, R5F100MHDFB#V0, R5F100MJDFB#V0, R5F100MKDFB#V0, R5F100MLDFB#V0 R5F100MFDFB#X0, R5F100MGDFB#X0, R5F100MHDFB#X0, R5F100MJDFB#X0, R5F100MKDFB#X0, R5F100MLDFB#X0
			G	R5F100MFGFB#V0, R5F100MGGFB#V0, R5F100MHGFB#V0, R5F100MJGFB#V0 R5F100MFGFB#X0, R5F100MGGFB#X0, R5F100MHGFB#X0, R5F100MJGFB#X0
		Not mounted	A	R5F101MFAFB#V0, R5F101MGAFB#V0, R5F101MHAFB#V0, R5F101MJAFB#V0, R5F101MKAFB#V0, R5F101MFAFB#X0, R5F101MGAFB#X0, R5F101MHAFB#X0, R5F101MJAFB#X0, R5F101MKAFB#X0, R5F101MLAFB#X0
			D	R5F101MFDFB#V0, R5F101MGDFB#V0, R5F101MHDFB#V0, R5F101MJDFB#V0, R5F101MKDFB#V0, R5F101MLDFB#V0 R5F101MFDFB#X0, R5F101MGDFB#X0, R5F101MHDFB#X0, R5F101MJDFB#X0, R5F101MKDFB#X0, R5F101MLDFB#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Table 1-1. List of Ordering Part Numbers

(11/12)

Pin count	Package	Data flash	Fields of Application	Ordering Part Number
100 pins	100-pin plastic LFQFP (14 × 14 mm, 0.5 mm pitch)	Mounted	А	R5F100PFAFB#V0, R5F100PGAFB#V0, R5F100PHAFB#V0, R5F100PJAFB#V0, R5F100PKAFB#V0, R5F100PLAFB#V0 R5F100PFAFB#X0, R5F100PGAFB#X0, R5F100PHAFB#X0,
	min, 0.5 min pitch)			R5F100PJAFB#X0, R5F100PKAFB#X0, R5F100PLAFB#X0
			D	R5F100PFDFB#V0, R5F100PGDFB#V0, R5F100PHDFB#V0,
				R5F100PJDFB#V0, R5F100PKDFB#V0, R5F100PLDFB#V0
				R5F100PFDFB#X0, R5F100PGDFB#X0, R5F100PHDFB#X0,
				R5F100PJDFB#X0, R5F100PKDFB#X0, R5F100PLDFB#X0
			G	R5F100PFGFB#V0, R5F100PGGFB#V0, R5F100PHGFB#V0,
				R5F100PJGFB#V0
				R5F100PFGFB#X0, R5F100PGGFB#X0, R5F100PHGFB#X0,
				R5F100PJGFB#X0
		Not	Α	R5F101PFAFB#V0, R5F101PGAFB#V0, R5F101PHAFB#V0,
		mounted		R5F101PJAFB#V0, R5F101PKAFB#V0, R5F101PLAFB#V0
				R5F101PFAFB#X0, R5F101PGAFB#X0, R5F101PHAFB#X0,
				R5F101PJAFB#X0, R5F101PKAFB#X0, R5F101PLAFB#X0
			D	R5F101PFDFB#V0, R5F101PGDFB#V0, R5F101PHDFB#V0,
				R5F101PJDFB#V0, R5F101PKDFB#V0, R5F101PLDFB#V0
				R5F101PFDFB#X0, R5F101PGDFB#X0, R5F101PHDFB#X0,
				R5F101PJDFB#X0, R5F101PKDFB#X0, R5F101PLDFB#X0
	100-pin plastic	Mounted	Α	R5F100PFAFA#V0, R5F100PGAFA#V0, R5F100PHAFA#V0,
	LQFP (14 × 20 mm,			R5F100PJAFA#V0, R5F100PKAFA#V0, R5F100PLAFA#V0
	0.65 mm pitch)			R5F100PFAFA#X0, R5F100PGAFA#X0, R5F100PHAFA#X0,
				R5F100PJAFA#X0, R5F100PKAFA#X0, R5F100PLAFA#X0
			D	R5F100PFDFA#V0, R5F100PGDFA#V0, R5F100PHDFA#V0,
				R5F100PJDFA#V0, R5F100PKDFA#V0, R5F100PLDFA#V0
				R5F100PFDFA#X0, R5F100PGDFA#X0, R5F100PHDFA#X0,
				R5F100PJDFA#X0, R5F100PKDFA#X0, R5F100PLDFA#X0
			G	R5F100PFGFA#V0, R5F100PGGFA#V0, R5F100PHGFA#V0,
				R5F100PJGFA#V0
				R5F100PFGFA#X0, R5F100PGGFA#X0, R5F100PHGFA#X0,
				R5F100PJGFA#X0
		Not	Α	R5F101PFAFA#V0, R5F101PGAFA#V0, R5F101PHAFA#V0,
		mounted		R5F101PJAFA#V0, R5F101PKAFA#V0, R5F101PLAFA#V0
				R5F101PFAFA#X0, R5F101PGAFA#X0, R5F101PHAFA#X0,
				R5F101PJAFA#X0, R5F101PKAFA#X0, R5F101PLAFA#X0
			D	R5F101PFDFA#V0, R5F101PGDFA#V0, R5F101PHDFA#V0,
				R5F101PJDFA#V0, R5F101PKDFA#V0, R5F101PLDFA#V0
				R5F101PFDFA#X0, R5F101PGDFA#X0, R5F101PHDFA#X0,
				R5F101PJDFA#X0, R5F101PKDFA#X0, R5F101PLDFA#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Table 1-1. List of Ordering Part Numbers

(12/12)

Pin count	Package	Data flash	Fields of Application Note	Ordering Part Number
128 pins	128-pin plastic LFQFP (14 × 20 mm, 0.5 mm pitch)	Mounted	A D	R5F100SHAFB#V0, R5F100SJAFB#V0, R5F100SKAFB#V0, R5F100SLAFB#V0 R5F100SHAFB#X0, R5F100SJAFB#X0, R5F100SKAFB#X0, R5F100SLAFB#X0 R5F100SHDFB#V0, R5F100SJDFB#V0, R5F100SKDFB#V0, R5F100SLDFB#V0 R5F100SHDFB#X0, R5F100SJDFB#X0, R5F100SKDFB#X0, R5F100SLDFB#X0
		Not mounted	A D	R5F101SHAFB#V0, R5F101SJAFB#V0, R5F101SKAFB#V0, R5F101SLAFB#V0 R5F101SHAFB#X0, R5F101SJAFB#X0, R5F101SKAFB#X0, R5F101SLAFB#X0 R5F101SHDFB#V0, R5F101SJDFB#V0, R5F101SKDFB#V0, R5F101SLDFB#V0 R5F101SHDFB#X0, R5F101SJDFB#X0, R5F101SKDFB#X0, R5F101SLDFB#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

1.3 Pin Configuration (Top View)

1.3.1 20-pin products

• 20-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see 1.4 Pin Identification.

1.3.2 24-pin products

• 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. It is recommended to connect an exposed die pad to $V_{\mbox{\scriptsize ss}}.$

1.3.3 25-pin products

<R>

• 25-pin plastic WFLGA (3 × 3 mm, 0.50 mm pitch)

	Α	В	С	D	E	
5	P40/TOOL0	RESET	P01/ANI16/ TO00/RxD1	P22/ANI2	P147/ANI18	5
4	P122/X2/ EXCLK	P137/INTP0	P00/ANI17/ TI00/TxD1	P21/ANI1/ AV _{REFM}	P10/SCK00/ SCL00	4
3	P121/X1	V _{DD}	P20/ANI0/ AV _{REFP}	P12/SO00/ TxD0/ TOOLTxD	P11/SI00/ RxD0/ TOOLRxD/ SDA00	3
2	REGC	Vss	P30/INTP3/ SCK11/SCL11	P17/TI02/ TO02/SO11	P50/INTP1/ SI11/SDA11	2
1	P60/SCLA0	P61/SDAA0	P31/TI03/ TO03/INTP4/ PCLBUZ0	P16/TI01/ TO01/INTP5	P130	1
	Α	В	С	D	E	

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see **1.4 Pin Identification**.

1.3.4 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.5 32-pin products

• 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to $V_{\mbox{\scriptsize ss}}.$

1.3.6 36-pin products

• 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)

	Α	В	С	D	E	F	
6	P60/SCLA0	V _{DD}	P121/X1	P122/X2/EXCLK	P137/INTP0	P40/TOOL0	6
]
5	P62	P61/SDAA0	Vss	REGC	RESET	P120/ANI19	5
J]
4	P72/SO21	P71/SI21/ SDA21	P14/RxD2/SI20/ SDA20/(SCLA0) /(TI03)/(TO03)	P31/TI03/TO03/ INTP4/ PCLBUZ0	P00/Tl00/TxD1	P01/TO00/RxD1	4
3	P50/INTP1/ SI11/SDA11	P70/SCK21/ SCL21	P15/PCLBUZ1/ SCK20/SCL20/ (TI02)/(TO02)	P22/ANI2	P20/ANI0/ AV _{REFP}	P21/ANI1/ AV _{REFM}	3
2	P30/INTP3/ SCK11/SCL11	P16/TI01/TO01/ INTP5/(RxD0)	P12/SO00/ TxD0/TOOLTxD /(TI05)/(TO05)	P11/SI00/RxD0/ TOOLRxD/ SDA00/(TI06)/ (TO06)	P24/ANI4	P23/ANI3	2
1	P51/INTP2/ SO11	P17/TI02/TO02/ (TxD0)	P13/TxD2/ SO20/(SDAA0)/ (TI04)/(TO04)	P10/SCK00/ SCL00/(TI07)/ (TO07)	P147/ANI18	P25/ANI5	1
	Α	В	С	D	E	F	

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.7 40-pin products

• 40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to Vss.

1.3.8 44-pin products

• 44-pin plastic LQFP (10 × 10 mm, 0.8 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.9 48-pin products

• 48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

• 48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to $V_{\rm ss.}$

1.3.10 52-pin products

• 52-pin plastic LQFP (10 × 10 mm, 0.65 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.11 64-pin products

- 64-pin plastic LQFP (12 x 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 x 10 mm, 0.5 mm pitch)

- Cautions 1. Make EVsso pin the same potential as Vss pin.
 - 2. Make VDD pin the potential that is higher than EVDDO pin.
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the Vss and EV_{SS0} pins to separate ground lines.
- 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

• 64-pin plastic VFBGA (4 × 4 mm, 0.4 mm pitch)

Pin No.	Name	Pin No.	Name	Pin No.	Name	Pin No.	Name
A1	P05/TI05/TO05	C1	P51/INTP2/SO11	E1	P13/TxD2/SO20/ (SDAA0)/(TI04)/(TO04)	G1	P146
A2	P30/INTP3/RTC1HZ /SCK11/SCL11	C2	P71/KR1/SI21/SDA21	E2	P14/RxD2/SI20/SDA20 /(SCLA0)/(TI03)/(TO03)	-	P25/ANI5
А3	P70/KR0/SCK21 /SCL21	СЗ	P74/KR4/INTP8/SI01 /SDA01	E3	P15/SCK20/SCL20/ (TI02)/(TO02)	G3	P24/ANI4
A4	P75/KR5/INTP9 /SCK01/SCL01	C4	P52/(INTP10)	E4	P16/TI01/TO01/INTP5 /(SI00)/(RxD0)	G4	P22/ANI2
A5	P77/KR7/INTP11/ (TxD2)	C5	P53/(INTP11)	E5	P03/ANI16/SI10/RxD1 /SDA10	G5	P130
A6	P61/SDAA0	C6	P63	E6	P41/TI07/TO07	G6	P02/ANI17/SO10/TxD1
A7	P60/SCLA0	C7	Vss	E7	RESET	G7	P00/TI00
A8	EV _{DD0}	C8	P121/X1	E8	P137/INTP0	G8	P124/XT2/EXCLKS
B1	P50/INTP1/SI11 /SDA11	D1	P55/(PCLBUZ1)/ (SCK00)	F1	P10/SCK00/SCL00/ (TI07)/(TO07)	H1	P147/ANI18
B2	P72/KR2/SO21	D2	P06/TI06/TO06	F2	P11/SI00/RxD0 /TOOLRxD/SDA00/ (TI06)/(TO06)	H2	P27/ANI7
B3	P73/KR3/SO01	D3	P17/TI02/TO02/ (SO00)/(TxD0)	F3	P12/SO00/TxD0 /TOOLTxD/(INTP5)/ (TI05)/(TO05)	НЗ	P26/ANI6
B4	P76/KR6/INTP10/ (RxD2)	D4	P54	F4	P21/ANI1/AV _{REFM}	H4	P23/ANI3
B5	P31/TI03/TO03 /INTP4/(PCLBUZ0)	D5	P42/TI04/TO04	F5	P04/SCK10/SCL10	H5	P20/ANI0/AVREFP
B6	P62	D6	P40/TOOL0	F6	P43	H6	P141/PCLBUZ1/INTP7
B7	V _{DD}	D7	REGC	F7	P01/TO00	H7	P140/PCLBUZ0/INTP6
B8	EVsso	D8	P122/X2/EXCLK	F8	P123/XT1	H8	P120/ANI19

Cautions 1. Make EVsso pin the same potential as Vss pin.

- 2. Make V_{DD} pin the potential that is higher than EV_{DD0} pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the Vss and EV_{SS0} pins to separate ground lines.
- **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

1.3.12 80-pin products

- 80-pin plastic LQFP (14 × 14 mm, 0.65 mm pitch)
- 80-pin plastic LFQFP (12 x 12 mm, 0.5 mm pitch)

- Cautions 1. Make EVsso pin the same potential as Vss pin.
 - 2. Make VDD pin the potential that is higher than EVDDO pin.
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the Vss and EV_{SS0} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

1.3.13 100-pin products

• 100-pin plastic LQFP (14 × 14 mm, 0.5 mm pitch)

- Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin.
 - 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD}, EV_{DDO} and EV_{DD1} pins and connect the Vss, EV_{SS0} and EV_{SS1} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

• 100-pin plastic LQFP (14 × 20 mm, 0.65 mm pitch)

- Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin.
 - 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD}, EV_{DD0} and EV_{DD1} pins and connect the Vss, EV_{SS0} and EV_{SS1} pins to separate ground lines.
 - 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.14 128-pin products

• 128-pin plastic LFQFP (14 × 20 mm, 0.5 mm pitch)

Cautions 1. Make EVsso, EVss1 pins the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDDD, EVDDD pins (EVDDD = EVDDD).
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD}, EV_{DD0} and EV_{DD1} pins and connect the Vss, EVss₀ and EVss₁ pins to separate ground lines.
- 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.4 Pin Identification

ANI0 to ANI14,		REGC:	Regulator capacitance
ANI16 to ANI26:	Analog input	RESET:	Reset
AVREFM:	A/D converter reference	RTC1HZ:	Real-time clock correction clock
	potential (- side) input		(1 Hz) output
AVREFP:	A/D converter reference	RxD0 to RxD3:	Receive data
	potential (+ side) input	SCK00, SCK01, SCK10,	
EVDD0, EVDD1:	Power supply for port	SCK11, SCK20, SCK21,	
EVsso, EVss1:	Ground for port	SCLA0, SCLA1:	Serial clock input/output
EXCLK:	External clock input (Main	SCLA0, SCLA1, SCL00,	
	system clock)	SCL01, SCL10, SCL11,	
EXCLKS:	External clock input	SCL20,SCL21, SCL30,	
	(Subsystem clock)	SCL31:	Serial clock output
INTP0 to INTP11:	Interrupt request from	SDAA0, SDAA1, SDA00	,
	peripheral	SDA01,SDA10, SDA11,	
KR0 to KR7:	Key return	SDA20,SDA21, SDA30,	
P00 to P07:	Port 0	SDA31:	Serial data input/output
P10 to P17:	Port 1	SI00, SI01, SI10, SI11,	
P20 to P27:	Port 2	SI20, SI21, SI30, SI31:	Serial data input
P30 to P37:	Port 3	SO00, SO01, SO10,	
P40 to P47:	Port 4	SO11, SO20, SO21,	
P50 to P57:	Port 5	SO30, SO31:	Serial data output
P60 to P67:	Port 6	TI00 to TI07,	
P70 to P77:	Port 7	TI10 to TI17:	Timer input
P80 to P87:	Port 8	TO00 to TO07,	
P90 to P97:	Port 9	TO10 to TO17:	Timer output
P100 to P106:	Port 10	TOOL0:	Data input/output for tool
P110 to P117:	Port 11	TOOLRxD, TOOLTxD:	Data input/output for external device
P120 to P127:	Port 12	TxD0 to TxD3:	Transmit data
P130, P137:	Port 13	V _{DD} :	Power supply
P140 to P147:	Port 14	Vss:	Ground
P150 to P156:	Port 15	X1, X2:	Crystal oscillator (main system clock)
PCLBUZ0, PCLBUZ1	: Programmable clock	XT1, XT2:	Crystal oscillator (subsystem clock)
	output/buzzer output		

1.5 Block Diagram

1.5.1 20-pin products

1.5.2 24-pin products

1.5.3 25-pin products

1.5.4 30-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.5 32-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.6 36-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.7 40-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.8 44-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.9 48-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.10 52-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.11 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.12 80-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.13 100-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.14 128-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.6 Outline of Functions

[20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)

												(1/2	
	Item	20-	pin	24-	-pin	25	-pin	30-	pin	32-	pin	36-	pin
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx
Code flash me	emory (KB)	16 to	64	16 t	o 64	16 t	o 64	16 to	128	16 to	128	16 to	128
Data flash me	mory (KB)	4	=	4	_	4	-	4 to 8	=	4 to 8	-	4 to 8	=
RAM (KB)		2 to	4 ^{Note1}	2 to	4 ^{Note1}	2 to	4 ^{Note1}	2 to 1	12 ^{Note1}	2 to 1	12 ^{Note1}	2 to 1	2 ^{Note1}
Address space	e	1 MB											
Main system clock	High-speed system clock	HS (Hig HS (Hig LS (Low	h-speed h-speed v-speed	l main) m I main) m main) m	node: 1 t node: 1 t ode: 1 to	o 20 M⊢ o 16 M⊢ o 8 MHz	main sys Iz (V _{DD} = Iz (V _{DD} = (V _{DD} = 1. z (V _{DD} = 1	2.7 to 5. 2.4 to 5. 8 to 5.5	5 V), 5 V), V),	EXCLK)			
	High-speed on-chip oscillator	HS (Hig LS (Lov	h-speed v-speed	l main) m main) m	node: 1 t ode: 1 t	:o 16 MH :o 8 MHz	dz (Vdd = dz (Vdd = z (Vdd = 1 z (Vdd = 1	2.4 to 5.5	.5 V), 5 V),				
Subsystem clo	ock						-	-					
Low-speed on	-chip oscillator	15 kHz	(TYP.)										
General-purpo	ose registers	(8-bit re	gister×	8) × 4 ba	anks								
Minimum instr	ruction execution time	0.03125	μs (Hig	h-speed	on-chip	oscillato	or: fін = 32	2 MHz o _l	peration)			
		0.05 <i>μ</i> s	(High-sp	peed sys	tem cloc	:k: fмx =	20 MHz	operation	า)				
Instruction set		AddeMultip	r and sul	(8 bits ×	logical o 8 bits)		(8/16 bit		t, and B	oolean o	peration), etc.	
I/O port	Total	1	6	2	.0	2	21	2	6	2	8	3	2
	CMOS I/O	(N-ch C (V _{DD} wit voltag	D.D. I/O hstand	(N-ch C	5 D.D. I/O thstand ge]: 6)	(N-ch (D.D. I/O thstand ge]: 6)	2 (N-ch C [V _{DD} with voltage	D.D. I/O thstand	2 (N-ch C [V _{DD} wi ⁻ voltag	thstand	(N-ch C [V _{DD} wit voltage	D.D. I/O thstand
	CMOS input	3	3	(3	;	3	3	3	3	3	3	3
	CMOS output	=	-	-	=		1	=	=	=	=	=	=
	N-ch O.D. I/O (withstand voltage: 6 V)	-	-	2	2	:	2	2	2	3	3	3	3
Timer	16-bit timer						8 cha	nnels					
	Watchdog timer						1 cha	ınnel					
	Real-time clock (RTC)						1 chanı	nel Note 2					
	12-bit interval timer (IT)						1 cha	ınnel					
	Timer output	3 chann (PWM c 2 Note 3)		4 chanr (PWM	nels outputs:	3 Note 3)				M output			
	RTC output						_	-					

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = 6 to 8, A to C): Start address FF300H R5F100xE, R5F101xE (x = 6 to 8, A to C): Start address FEF00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

2. Only the constant-period interrupt function when the low-speed on-chip oscillator clock (fill) is selected

3. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see **6.9.3 Operation as multiple PWM output function** in the RL78/G13 User's Manual).

4. When setting to PIOR = 1

70	n	١
1/	'	1
_	_	,

Iter	m	20-	nin	24-	nin	25-	nin	30-	pin	32	-pin	36	pin
itoi											İ		İ
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx
Clock output/buzze	er output	-	=		1		1		2		2		2
				88 kHz, 9 n clock: fr				ИНz, 5 М	Hz, 10 N	МНz			
8/10-bit resolution	A/D converter	6 chanr	nels	6 chanr	nels	6 chanr	nels	8 chanı	nels	8 chan	nels	8 chan	nels
Serial interface		[20-pin,	24-pin,	25-pin p	roducts]								
		• CSI:	1 chann	el/simplif	ied I ² C:	1 channe	el/UART	: 1 chanr	nel				
		• CSI:	1 chann	el/simplif	ied I ² C:	1 channe	el/UART	: 1 chanr	nel				
		[30-pin,	32-pin	products]]								
		• CSI:	1 chann	el/simplif el/simplif	ied I ² C:	1 channe	el/UART	: 1 chanr	nel				
				el/simplif	fied I ² C:	1 channe	el/UART	(UART s	supportir	ng LIN-b	us): 1 ch	nannel	
		[36-pin											
		1		el/simplif el/simplif									
1				els/simpli						rting LIN	-bus): 1	channel	
ſ	I ² C bus	-	=	1 chanr		1 chanr		1 chanı		1 chan		1 chan	nel
Multiplier and divide accumulator	er/multiply-	• 32 bits	s ÷ 32 b	its = 32 b its = 32 b its + 32 b	its (Uns	igned)		r signed)	1			•	
DMA controller		2 chanr	nels										
Vectored interrupt	Internal	2	3	2	24	2	<u>!</u> 4	2	27	2	27	2	27
sources	External	;	3	ļ	5		5		6		6		6
Key interrupt								•					
Reset													
		InterrInterrInterrInterrInterr	nal reset nal reset nal reset nal reset nal reset	SET pin by watch by power by volta by illega by RAM by illega	er-on-res ge detec al instruc parity e	et ctor tion exec rror		e					
Power-on-reset circ	puit	InterrInterrInterrInterrInterrInterrInterrPower	nal reset nal reset nal reset nal reset nal reset er-on-res	by watch by power by volta by illega by RAM by illega	er-on-res ge detect al instruct parity e al-memod	et stor stor tion exec rror ry access		0					
Power-on-reset circ	cuit	InterrInterrInterrInterrInterrInterrInterrPower	nal reset nal reset nal reset nal reset nal reset nal reset er-on-reser er-down-	by watch by power by volta by illega by RAM by illega set: 1 reset: 1	er-on-res ge detectal instruction parity et al-memorial.51 V (Tours) (et stor stor tion exec rror ry access	s 14 stage	es)					
		Interr Interr Interr Interr Interr Interr Interr Powe	nal reset nal reset nal reset nal reset nal reset nal reset nal reset er-on-reser-down- g edge: g edge	by watch by power by volta by illega by RAM by illega set: 1 reset: 1	er-on-res ge detectal instruction parity et al-memorial.51 V (Tours) (et ctor tion exec rror ry access YP.) YP.)	s 14 stage	es)					
Voltage detector	ction	Interresident In	nal reset nal reset nal reset nal reset nal reset nal reset nal reset nal reset er-on-reser-down- g edge: g edge d	by watch by power by volta by illega by RAM by illega set: 1 reset: 1	er-on-res ge detect al instruct parity e al-memon .51 V (T .50 V (T .67 V to	set stor rich execution ex	s 14 stage	es)					
Voltage detector On-chip debug fund	ction	 Interr Interr Interr Interr Interr Interr Powe Powe Rising Fallin Provide 	nal reset nal reset nal reset nal reset nal reset nal reset nal reset nal reset nal reset er-on-reser-down- g edge: g edge d	by watch by power by volta by illega by RAM by illega set: 1 reset: 1	er-on-res ge detect al instruct parity e al-memon .51 V (T .50 V (T .67 V to .63 V to	set stor return execution exec	s 14 stage	es)					
Voltage detector On-chip debug fund	ction	 Interr Interr Interr Interr Interr Interr Interr Powe Powe Rising Fallin Provide V_{DD} = 1 V_{DD} = 2. 	nal reset nal reset nal reset nal reset nal reset nal reset nal reset nal reset nal reset er-on-reser er-down- g edge g edge d .6 to 5.5	by watch by power by volta by illegate by RAM by illegate by illeg	er-on-res ge detect al instruct parity e al-memor .51 V (T .50 V (T .63 V to .63 V to	set stor rich execution ex	s 14 stage 14 stage	es)	applica	tions)			

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

[40-pin, 44-pin, 48-pin, 52-pin, 64-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)

	Item	40	·pin	4.4	-pin	40	·pin	F0	nin		·pin
	item		<u> </u>	44	i			52-	-pin I		İ
		R5F100Ex	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx
		100	101	100	101	100	101	100	101	100	101
		Ex	Ex	×	×	χ Ω	ωx	×	×	Ž	Ž
Code flash me	emory (KB)	16 to	o 192	16 t	o 512	16 t	512	32 to	o 512	32 to	o 512
Data flash me	emory (KB)	4 to 8	-	4 to 8	-	4 to 8	-	4 to 8	_	4 to 8	_
RAM (KB)		2 to 1	16 ^{Note1}	2 to :	32 ^{Note1}	2 to 3	32 ^{Note1}	2 to 3	32 ^{Note1}	2 to 3	32 ^{Note1}
Address space	e	1 MB									
Main system clock	High-speed system clock	HS (High HS (High LS (Low-	n-speed ma n-speed ma speed ma	ain) mode ain) mode in) mode:	on, externa : 1 to 20 l : 1 to 16 l 1 to 8 M e: 1 to 4 M	MHz (V _{DD} : MHz (V _{DD} : IHz (V _{DD} =	= 2.7 to 5. = 2.4 to 5. 1.8 to 5.5	5 V), 5 V), V),	CLK)		
	High-speed on-chip oscillator	HS (High LS (Low-	speed ma	ain) mode in) mode:	: 1 to 32 M : 1 to 16 M : 1 to 8 M e: 1 to 4 M	MHz (Vdd = Hz (Vdd =	= 2.4 to 5.5 1.8 to 5.5	5 V), V),			
Subsystem cl	ock	XT1 (crys 32.768 k		ation, exte	ernal subsy	stem cloc	k input (E	XCLKS)			
Low-speed or	n-chip oscillator	15 kHz (TYP.)									
General-purp	ose registers	(8-bit register × 8) × 4 banks									
Minimum insti	ruction execution time	0.03125	μs (High-s	speed on-	chip oscilla	tor: fin = 3	2 MHz op	eration)			
		0.05 <i>μ</i> s (High-spee	ed system	clock: fmx	= 20 MHz	operation)			
		30.5 μs (Subsyster	n clock: fs	ыв = 32.76	8 kHz ope	ration)				
Instruction se	t	AdderMultipl	ication (8	actor/logic bits × 8 bit	al operation ts) t manipula			and Book	ean opera	tion), etc.	
I/O port	Total	3	36	4	40	2	14	4	18	5	58
	CMOS I/O	(N-ch (28 O.D. I/O ithstand ge]: 10)	(N-ch [V _{DD} w	31 O.D. I/O rithstand ge]: 10)	(N-ch (34 O.D. I/O ithstand je]: 11)	(N-ch (38 O.D. I/O ithstand ge]: 13)	(N-ch (18 O.D. I/O ithstand ge]: 15)
	CMOS input		5		5		5		5		5
	CMOS output		=		=		1		1		1
	N-ch O.D. I/O (withstand voltage: 6 V)		3		4		4		4		4
Timer	16-bit timer					8 cha	nnels				
	Watchdog timer					1 cha	annel				
	Real-time clock (RTC)					1 cha	annel				
	12-bit interval timer (IT)				-		annel				
	Timer output	4 channels outputs: 3 8 channels outputs: 7	Note 2), s (PWM	5 channe 8 channe	els (PWM o els (PWM o	utputs: 4 ™ utputs: 7 ™	ote ²), ote ²) Note ³			8 channe outputs:	
	RTC output	1 channe • 1 Hz (s		ı clock: fsu	ıв = 32.768	3 kHz)					

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = E to G, J, L): Start address FF300H R5F100xE, R5F101xE (x = E to G, J, L): Start address FEF00H R5F100xJ, R5F101xJ (x = F, G, J, L): Start address FAF00H R5F100xL, R5F101xL (x = F, G, J, L): Start address F7F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

3. When setting to PIOR = 1

(2/2)

Clock output/buzzer output 2.44 k (Main e. 256 H. (Subs) 8/10-bit resolution A/D converter Serial interface Serial interface [40-pin, 4 e. CSI: 1 e. CSI: 2 [48-pin, 5] e. CSI: 2 e.		1		ī		ī		_	12)
Clock output/buzzer output 2.44 k (Main 256 H (Subs)	pin	44	-pin	48-	-pin	52	-pin	64	-pin
Notation and divider/multiply-accumulator **Description and divider/multiply-accumulator** **Description and divider/multiply-accumulator** **DMA controller** **Vectored Internal External** Key interrupt **Reset** **Power-on-reset circuit** **	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx
8/10-bit resolution A/D converter Serial interface Serial interface [40-pin, 4	2		2		2		2		2
Serial interface [40-pin, 4 • CSI: 1 • CSI: 2 [48-pin, 5 • CSI: 2 • CSI: 1 • CSI: 2 • CSI:	system cl	ock: fмаіn = , 1.024 kH;	:Hz, 1.25 M : 20 MHz o z, 2.048 kH 2.768 kHz	peration) Iz, 4.096 k	Hz, 8.192			2.768 kHz	
CSI: 1 CSI: 2 [48-pin, 5] CSI: 2 [48-pin, 5] CSI: 2 CSI: 1 CSI: 2	ls	10 chanı	nels	10 chann	nels	12 chanr	nels	12 chani	nels
CSI: 1 CSI: 2 [64-pin p CSI: 2	 [40-pin, 44-pin products] CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel [48-pin, 52-pin products] CSI: 2 channels/simplified I²C: 2 channels/LIART: 1 channel 						I		
Multiplier and divider/multiply- accumulator	 CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel [64-pin products] CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel 								
Multiplier and divider/multiply- accumulator		1 channe		1 channe		1 channe		1 channe	
Vectored interrupt sources External Key interrupt Reset	÷ 32 bits	= 32 bits (l	Jnsigned of Jnsigned) 32 bits (U		signed)			1	
interrupt sources Key interrupt Reset Reset Reset Reset Interna Interna Interna Interna Interna Interna Voltage detector Rising Falling	ls								
Key interrupt Reset Reset Reset Interna Interna Interna Interna Interna Interna Voltage detector Reset Reset Reset Reset Interna Interna Reset Reset Interna Reset Reset Interna Reset Reset Interna Reset Reset	27		27	2	27	:	27		27
Reset Reset Reset Interna I	7		7		10		12		13
Voltage detector Power Rising Falling	al reset by al reset by al reset by al reset by	watchdog power-on voltage do illegal insi RAM pari	-reset etector truction exc	ecution ^{Note}	6		8	1	8
• Falling	-on-reset:		(TYP.)						
	-		to 4.06 V (to 3.98 V (
On-chip debug function Provided									
Power supply voltage $V_{DD} = 1.6$	to 5.5 V	$(T_A = -40 \text{ to})$	+85°C)						
	$V_{DD} = 2.4 \text{ to } 5.5 \text{ V } (T_A = -40 \text{ to } +105^{\circ}\text{C})$ Tating ambient temperature $T_A = 40 \text{ to } +85^{\circ}\text{C (A: Consumer applications, D: Industrial applications)}$								

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

<R>

[80-pin, 100-pin, 128-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)

		I		I			(1/2)				
	Item	80-)-pin	128					
		R5F100Mx	R5F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx				
Code flash me	emory (KB)	96 to	512	96 to	o 512	192 t	o 512				
Data flash me	mory (KB)	8	-	8	_	8	_				
RAM (KB)		8 to 3	2 Note 1	8 to 3	32 Note 1	16 to 3	32 Note 1				
Address spac	e	1 MB									
Main system clock	High-speed system clock	HS (High-speed HS (High-speed LS (Low-speed	I main) mode: 1 I main) mode: 1 main) mode: 1	external main systo 20 MHz (Vpb to 16 MHz (Vpb to 8 MHz (Vpb to 4 MHz (Vpb =	= 2.4 to 5.5 V), 1.8 to 5.5 V),	EXCLK)					
	High-speed on-chip oscillator	HS (High-speed LS (Low-speed	(High-speed main) mode: 1 to 32 MHz (V_{DD} = 2.7 to 5.5 V), (High-speed main) mode: 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V), (Low-speed main) mode: 1 to 8 MHz (V_{DD} = 1.8 to 5.5 V), (Low-voltage main) mode: 1 to 4 MHz (V_{DD} = 1.6 to 5.5 V)								
Subsystem clo	ock	XT1 (crystal) os 32.768 kHz	cillation, externa	l subsystem cloc	k input (EXCLKS)					
Low-speed on	n-chip oscillator	15 kHz (TYP.)									
General-purpo	ose register	(8-bit register ×	8) × 4 banks								
Minimum instr	ruction execution time	0.03125 <i>μ</i> s (Hig	h-speed on-chip	oscillator: fін = 3	2 MHz operation)					
		0.05 <i>μ</i> s (High-s _l	peed system clo	ck: f _{MX} = 20 MHz	operation)						
		30.5 <i>μ</i> s (Subsys	stem clock: fsub =	32.768 kHz ope	eration)						
Instruction set	t	Multiplication	btractor/logical c (8 bits × 8 bits)	peration (8/16 bi		oolean operation)), etc.				
I/O port	Total	7	'4	9	92	1:	20				
	CMOS I/O	(N-ch O.D. I/O	64 [EV _{DD} withstand re]: 21)	(N-ch O.D. I/O	32 [EV _{DD} withstand ge]: 24)	(N-ch O.D. I/O	10 [EV _{DD} withstand e]: 25)				
	CMOS input		5		5		5				
	CMOS output		1		1		1				
	N-ch O.D. I/O (withstand voltage: 6 V)		4		4		4				
Timer	16-bit timer	12 cha	annels	12 cha	annels	16 cha	nnels				
	Watchdog timer	1 cha	annel	1 cha	annel	1 cha	nnel				
	Real-time clock (RTC)	1 cha	annel	1 cha	annel	1 cha	nnel				
	12-bit interval timer (IT)	1 cha	annel	1 cha	annel	1 cha	nnel				
	Timer output	12 channels (PWM outputs:	10 Note 2)	12 channels (PWM outputs:	10 Note 2)	16 channels (PWM outputs:	14 Note 2)				
	RTC output	1 channel • 1 Hz (subsyst	tem clock: fsuв =	32.768 kHz)							

Notes 1. The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xJ, R5F101xJ (x = M, P): Start address FAF00H R5F100xL, R5F101xL (x = M, P, S): Start address F7F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

(2/2)

	Reset by Reset properties Reset by Reset Properties Reset By Reset Properties Reset By Reset Properties Reset By Reset Properties Reset By Reset Properties	\ /								
Ite	em									
		R5F100Mx	R5F101Mx	R5F100Px	R5F101Px	R5F100Sx R5F10 2 0 MHz 2, 16.384 kHz, 32.768 kHz 26 channels 2 channels 2 channels 41 13	R5F101Sx			
Clock output/buzz	er output		2		2		2			
		•		•	Hz, 5 MHz, 10 N	ИНz				
		, ,			ll= 0.400 ld l= -	10 004 1-11- 00 7-	20 141-			
						16.384 KHZ, 32.70	o8 KHZ			
8/10-bit resolution	A/D converter		710011. 100B — 0E.7		<u>'</u>	26 channels				
Serial interface	TAB CONVOICE									
ocha interiace										
			•							
			,							
		CSI: 2 channel	els/simplified I ² C	2 channels/UAR	T: 1 channel					
	I ² C bus	2 channels		2 channels		2 channels				
Multiplier and divid	der/multiply-	• 16 bits × 16 bi	ts = 32 bits (Uns	igned or signed)						
accumulator		• 32 bits ÷ 32 bi	ts = 32 bits (Uns	igned)						
		• 16 bits × 16 bi	ts + 32 bits = 32	bits (Unsigned or	signed)					
DMA controller		4 channels								
Vectored	Internal	3	37	3	37	41				
interrupt sources	External	1	13	1	3		13			
Key interrupt			8	;	8		8			
Reset		Reset by RES	SET pin							
			-							
			-							
Power-on-reset ci	rcuit	Power-on-res	et: 1.51 V (TY	′P.)						
		Power-down-	reset: 1.50 V (TY	′P.)						
Voltage detector		Rising edge :	1.67 V to 4	1.06 V (14 stages))					
		Falling edge :	1.63 V to 3	3.98 V (14 stages)						
On-chip debug fur	nction	Provided								
Power supply volt	age	$V_{DD} = 1.6 \text{ to } 5.5$	$V (T_A = -40 \text{ to } +8)$	35°C)						
		$V_{DD} = 2.4 \text{ to } 5.5 \text{ V } (T_{A} = -40 \text{ to } +105^{\circ}\text{C})$								
Operating ambien	t temperature	T _A = 40 to +85°C (A: Consumer applications, D: Industrial applications)								
		$T_A = 40 \text{ to } +105$	°C (G: Industrial	applications)						

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C)

This chapter describes the following electrical specifications.

Target products A: Consumer applications $T_A = -40$ to $+85^{\circ}C$

R5F100xxAxx, R5F101xxAxx

D: Industrial applications T_A = −40 to +85°C

R5F100xxDxx, R5F101xxDxx

G: Industrial applications when $T_A = -40$ to $+105^{\circ}C$ products is used in the range of $T_A = -40$ to $+85^{\circ}C$

R5F100xxGxx

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EV_{DD0}, EV_{DD1}, EV_{SS0}, or EV_{SS1} pin, replace EV_{DD0} and EV_{DD1} with V_{DD}, or replace EV_{SS0} and EV_{SS1} with V_{SS}.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($T_A = 25$ °C) (1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.5 to +6.5	V
	EV _{DD0} , EV _{DD1}	EV _{DD0} = EV _{DD1}	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	Vıı	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		V
	V _{I2}	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	V _I 3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	Vo ₁	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147		V
	V ₀₂	P20 to P27, P150 to P156	-0.3 to V _{DD} +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI26	-0.3 to EV _{DD0} +0.3 and -0.3 to AV _{REF} (+) +0.3 ^{Notes 2,3}	V
	V _{Al2}	ANI0 to ANI14	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 Notes 2, 3	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. AV_{REF} (+): + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

Absolute Maximum Ratings (TA = 25°C) (2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins -170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	І ОН2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lo _{L1}	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	lo _{L2}	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +85	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{DD} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4~V \leq V_{DD} < 2.7~V$	1.0		16.0	MHz
		$1.8~V \leq V_{DD} < 2.4~V$	1.0		8.0	MHz
		$1.6~V \leq V_{DD} < 1.8~V$	1.0		4.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator.

2.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(12 10 10 100 0, 110 1	1	10 1, 100 0 1,	,			1	1
Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fıн			1		32	MHz
High-speed on-chip oscillator		–20 to +85 °C	$1.8~V \leq V_{DD} \leq 5.5~V$	-1.0		+1.0	%
clock frequency accuracy			$1.6 \text{ V} \le \text{V}_{DD} < 1.8 \text{ V}$	-5.0		+5.0	%
		–40 to –20 °C	$1.8~V \leq V_{DD} \leq 5.5~V$	-1.5		+1.5	%
			$1.6~V \le V_{DD} < 1.8~V$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fiL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

2.3 DC Characteristics

2.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іонт	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$1.6~V \leq EV_{DD0} \leq 5.5~V$			-10.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			-55.0	mA
		P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	$2.7~V \leq EV_{DD0} < 4.0~V$			-10.0	mA
		(When duty $\leq 70\%^{\text{Note 3}}$)	$1.8~V \leq EV_{DD0} < 2.7~V$			-5.0	mA
			$1.6~V \le EV_{DD0} < 1.8~V$			-2.5	mA
		Total of P05, P06, P10 to P17, P30, P31,				-80.0	mA
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to	$2.7~V \leq EV_{DD0} < 4.0~V$			-19.0	mA
		P117, P146, P147	$1.8~V \leq EV_{DD0} < 2.7~V$			-10.0	mA
		(When duty ≤ 70% Note 3)	$1.6~V \leq EV_{DD0} < 1.8~V$			-5.0	mA
		Total of all pins (When duty $\leq 70\%$ Note 3)	$1.6~V \leq EV_{DD0} \leq 5.5~V$			-135.0 Note 4	mA
	10н2	Per pin for P20 to P27, P150 to P156	$1.6~V \leq V_{DD} \leq 5.5~V$			-0.1 Note 2	mA
		Total of all pins (When duty $\leq 70\%$ Note 3)	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and loh = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. The applied current for the products for industrial application (R5F100xxDxx, R5F101xxDxx, R5F100xxGxx) is -100 mA.

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (2/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lol1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147				20.0 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P07, P32 to	$4.0~V \leq EV_{DD0} \leq 5.5~V$			70.0	mA
		P37, P40 to P47, P102 to P106, P120,	$2.7~V \leq EV_{DD0} < 4.0~V$			15.0	mA
		P125 to P127, P130, P140 to P145	$1.8~V \leq EV_{DD0} < 2.7~V$			9.0	mA
		(When duty $\leq 70\%^{\text{Note 3}}$)	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			4.5	mA
		, , , , , , , , , , , , , , , , , , , ,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			80.0	mA
		P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97,	$2.7~V \leq EV_{DD0} < 4.0~V$			35.0	mA
		P100, P101, P110 to P117, P146,	$1.8~V \leq EV_{DD0} < 2.7~V$			20.0	mA
		P147 (When duty ≤ 70% Note 3)	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			10.0	mA
		Total of all pins (When duty ≤ 70% Note 3)				150.0	mA
	lol2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% Note 3)	$1.6~V \leq V_{DD} \leq 5.5~V$			5.0	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1 and Vss pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(lol \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and lol = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (3/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	0.8EVDDO		EV _{DD0}	V	
	V _{IH2}	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V	2.2		EV _{DD0}	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EV _{DD0}	V
			TTL input buffer 1.6 V ≤ EV _{DD0} < 3.3 V	1.5		EV _{DD0}	V
	V _{IH3}	P20 to P27, P150 to P156		0.7V _{DD}		V _{DD}	٧
	V _{IH4}	P60 to P63	0.7EV _{DD0}		6.0	٧	
	V _{IH5}	P121 to P124, P137, EXCLK, EXCL	0.8V _{DD}		V _{DD}	٧	
Input voltage, low	V _{IL1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	,	0		0.2EV _{DD0}	V
	V _{IL2}	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	0		0.5	V
			TTL input buffer 1.6 V ≤ EV _{DD0} < 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3V _{DD}	٧
	V _{IL4}	P60 to P63		0		0.3EV _{DD0}	٧
	V _{IL5}	P121 to P124, P137, EXCLK, EXCL	KS, RESET	0		0.2V _{DD}	٧

Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (4/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OH1} = -10.0~mA$	EV _{DD0} –			V
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -3.0 \text{ mA}$	EV _{DD0} – 0.7			V
		P117, P120, P125 to P127, P130, P140 to P147	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ loh1 = -2.0 mA	EV _{DD0} – 0.6			V
			1.8 V \leq EV _{DD0} \leq 5.5 V, Іон1 = -1.5 mA	EV _{DD0} – 0.5			V
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ Iон1 = -1.0 mA	EV _{DD0} – 0.5			V
	V _{OH2}	P20 to P27, P150 to P156	1.6 V \leq V _{DD} \leq 5.5 V, I _{OH2} = $-100~\mu$ A	V _{DD} – 0.5			V
Output voltage, low	V _{OL1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 20~mA$			1.3	V
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 8.5~mA$			0.7	V
			$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V,$ $I_{\text{OL1}} = 3.0~\text{mA}$			0.6	V
			$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$			0.4	V
			$1.8~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ $I_{\text{OL1}} = 0.3 \text{ mA}$			0.4	V
	V _{OL2}	P20 to P27, P150 to P156	1.6 V \leq V _{DD} \leq 5.5 V, I _{DL2} = 400 μ A			0.4	V
	Vol3	P60 to P63	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $\text{Iol3} = 15.0 \text{ mA}$			2.0	V
			$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 5.0~mA$			0.4	V
			$2.7~\textrm{V} \leq \textrm{EV}_\textrm{DD0} \leq 5.5~\textrm{V},$ $\textrm{Iol3} = 3.0~\textrm{mA}$			0.4	V
			$1.8~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 2.0~mA$			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ $10 \text{L3} = 1.0 \text{ mA}$			0.4	V

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \ 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \ \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}) (5/5)$

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVDDO	Vi = EVddo			1	μΑ
	ILIH2	P20 to P27, P1 <u>37,</u> P150 to P156, RESET	$V_{I} = V_{DD}$				1	μΑ
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	P121 to P124 $V_1 = V_{DD}$ In input port or external clock				1	μΑ
				In resonator connection			10	μΑ
Input leakage current, low	lut1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	7, P40 to P47, 7, P60 to P67, 7, P80 to P87, 7, P100 to P106,				-1	μΑ
	ILIL2	P20 to P27, P137, P150 to P156, RESET	Vı = Vss				-1	μΑ
	Ішз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vı = Vss	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pll-up resistance	R∪	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vı = EVsso	, In input port	10	20	100	kΩ

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit	
Supply	I _{DD1}	Operating	HS (high-	fin = 32 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		2.1		mA	
current Note 1		mode	speed main) mode Note 5		operation	V _{DD} = 3.0 V		2.1		mA	
			mode		Normal	V _{DD} = 5.0 V		4.6	7.0	mA	
					operation	V _{DD} = 3.0 V		4.6	7.0	mA	
				fin = 24 MHz Note 3	Normal	V _{DD} = 5.0 V		3.7	5.5	mA	
					operation	V _{DD} = 3.0 V		3.7	5.5	mA	
				fin = 16 MHz Note 3	Normal	V _{DD} = 5.0 V		2.7	4.0	mA	
					operation	V _{DD} = 3.0 V		2.7	4.0	mA	
		speed	LS (low-	fih = 8 MHz Note 3	Normal	V _{DD} = 3.0 V		1.2	1.8	mA	
			speed main) mode Note 5		operation	V _{DD} = 2.0 V		1.2	1.8	mA	
			LV (low-	fin = 4 MHz Note 3	Normal	V _{DD} = 3.0 V		1.2	1.7	mA	
			voltage main) mode		operation	V _{DD} = 2.0 V		1.2	1.7	mA	
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	4.6	mA	
		speed main) mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.2	4.8	mA		
				fmx = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	4.6	mA	
			V _{DD} = 3.0 V	operation	Resonator connection		3.2	4.8	mA		
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.7	mA	
			V _{DD} = 5.0 V	operation	Resonator connection		1.9	2.7	mA		
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.7	mA	
				V _{DD} = 3.0 V	operation	Resonator connection		1.9	2.7	mA	
			LS (low-	fmx = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	1.7	mA	
			speed main) mode Note 5	V _{DD} = 3.0 V	operation	Resonator connection		1.1	1.7	mA	
				f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	1.7	mA	
				V _{DD} = 2.0 V	operation	Resonator connection		1.1	1.7	mA	
			Subsystem	fsub = 32.768 kHz	Normal	Square wave input		4.1	4.9	μА	
			clock operation	Note 4 TA = −40°C	operation	Resonator connection		4.2	5.0	μА	
				fsub = 32.768 kHz	Normal	Square wave input		4.1	4.9	μΑ	
				Note 4 $T_A = +25^{\circ}C$	operation	Resonator connection		4.2	5.0	μΑ	
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μA	
				Note 4 TA = +50°C	operation	Resonator connection		4.3	5.6	μА	
			fsuB = 32.768 kHz	Normal	Square wave input		4.3	6.3	μΑ		
			Note TA	Note	Note 4 TA = +70°C	operation	Resonator connection		4.4	6.4	μΑ
					Normal	Square wave input		4.6	7.7	μА	
			Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		4.7	7.8	μΑ		
				14 - 700 U							

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz

 $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 16~MHz

LS (low-speed main) mode: 1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fih: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2}	HALT	HS (high- speed main)	fih = 32 MHz Note 4	V _{DD} = 5.0 V		0.54	1.63	mA
Current	Note 2	mode	mode Note 7		V _{DD} = 3.0 V		0.54	1.63	mA
				fih = 24 MHz Note 4	V _{DD} = 5.0 V		0.44	1.28	mA
					V _{DD} = 3.0 V		0.44	1.28	mA
				fih = 16 MHz Note 4	V _{DD} = 5.0 V		0.40	1.00	mA
					V _{DD} = 3.0 V		0.40	1.00	mA
			LS (low-	fih = 8 MHz Note 4	V _{DD} = 3.0 V		260	530	μА
			speed main) mode Note 7		V _{DD} = 2.0 V		260	530	μА
			LV (low-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μА
			voltage main) mode		V _{DD} = 2.0 V		420	640	μΑ
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.00	mA
			mode	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	0.60	mA
			V _{DD} = 5.0 V	Resonator connection		0.26	0.67	mA	
			$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.19	0.60	mA	
				V _{DD} = 3.0 V	Resonator connection		0.26	0.67	mA
		LS (low- speed main) mode Note 7	LS (low-	$f_{MX} = 8 MHz^{Note 3},$	Square wave input		95	330	μΑ
			V _{DD} = 3.0 V	Resonator connection		145	380	μА	
			mode	$f_{MX} = 8 MHz^{Note 3},$	Square wave input		95	330	μА
				V _{DD} = 2.0 V	Resonator connection		145	380	μΑ
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μА
			clock operation	T _A = -40°C	Resonator connection		0.44	0.76	μА
			operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μА
				T _A = +25°C	Resonator connection		0.49	0.76	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.37	1.17	μА
				T _A = +50°C	Resonator connection		0.56	1.36	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.53	1.97	μΑ
				T _A = +70°C	Resonator connection		0.72	2.16	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.82	3.37	μΑ
	$I_{DD3}^{Note 6}$ STOP $T_{A} = -40^{\circ}C$	T _A = +85°C	Resonator connection		1.01	3.56	μΑ		
		T _A = -40°C				0.18	0.50	μΑ	
		mode ^{Note 8}	T _A = +25°C				0.23	0.50	μΑ
			T _A = +50°C				0.30	1.10	μΑ
		[-	T _A = +70°C				0.46	1.90	μΑ
			T _A = +85°C				0.75	3.30	μΑ

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into V_{DD} and EV_{DDO}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DDO} or V_{SS}, EV_{SSO}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$ $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 16 \text{ MHz}$ LS (low-speed main) mode: $1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 8 \text{ MHz}$ LV (low-voltage main) mode: $1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 4 \text{ MHz}$

- **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operating	HS (high-	fin = 32 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		2.3		mA
Current Note 1		mode	speed main) mode Note 5		operation	V _{DD} = 3.0 V		2.3		mA
			modo		Nomal	V _{DD} = 5.0 V		5.2	8.5	mA
					operation	V _{DD} = 3.0 V		5.2	8.5	mA
				fin = 24 MHz Note 3	Nomal	V _{DD} = 5.0 V		4.1	6.6	mA
					operation	V _{DD} = 3.0 V		4.1	6.6	mA
				fin = 16 MHz Note 3	Nomal	V _{DD} = 5.0 V		3.0	4.7	mA
					operation	V _{DD} = 3.0 V		3.0	4.7	mA
			LS (low-	fin = 8 MHz Note 3	Nomal	V _{DD} = 3.0 V		1.3	2.1	mA
			speed main) mode Note 5		operation	V _{DD} = 2.0 V		1.3	2.1	mA
			LV (low-	fin = 4 MHz Note 3	Normal	V _{DD} = 3.0 V		1.3	1.8	mA
		voltage main) mode Note 5		operation	V _{DD} = 2.0 V		1.3	1.8	mA	
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		3.4	5.5	mA
			mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.6	5.7	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		3.4	5.5	mA
			V _{DD} = 3.0 V	operation	Resonator connection		3.6	5.7	mA	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.1	3.2	mA
				V _{DD} = 5.0 V	operation	Resonator connection		2.1	3.2	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.1	3.2	mA
				V _{DD} = 3.0 V	operation	Resonator connection		2.1	3.2	mA
			LS (low-	$f_{MX} = 8 MHz^{Note 2}$	Normal operation	Square wave input		1.2	2.0	mA
			speed main) mode Note 5	V _{DD} = 3.0 V		Resonator connection		1.2	2.0	mA
			modo	$f_{MX} = 8 MHz^{Note 2}$		Square wave input		1.2	2.0	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.2	2.0	mA
			Subsystem	fsub = 32.768 kHz	Nomal	Square wave input		4.8	5.9	μΑ
			clock operation	T _A = -40°C	operation	Resonator connection		4.9	6.0	μA
				fsub = 32.768 kHz	Nomal	Square wave input		4.9	5.9	μΑ
				T _A = +25°C	operation	Resonator connection		5.0	6.0	μА
				fsuB = 32.768 kHz	Nomal	Square wave input	_	5.0	7.6	μΑ
				Note 4	operation	Resonator connection		5.1	7.7	μΑ
				T _A = +50°C	Name 1	0		F 0	0.0	
				Make 4	Normal operation	Square wave input Resonator connection		5.2 5.3	9.3 9.4	μA μA
				T _A = +70°C		1 10301 IGUO TOTI I I I I I I I I I I I I I I I I I		0.0	0.4	μΛ
			fs	fsub = 32.768 kHz	Nomal	Square wave input		5.7	13.3	μΑ
				T _A = +85°C	operation	Resonator connection		5.8	13.4	μA
				14 - +00 0				<u> </u>	<u> </u>	

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz

 $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 4 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (high-	fin = 32 MHz Note 4	V _{DD} = 5.0 V		0.62	1.86	mA
Current Note 1	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.62	1.86	mA
			mode	fih = 24 MHz Note 4	V _{DD} = 5.0 V		0.50	1.45	mA
					V _{DD} = 3.0 V		0.50	1.45	mA
				fin = 16 MHz Note 4	V _{DD} = 5.0 V		0.44	1.11	mA
					V _{DD} = 3.0 V		0.44	1.11	mA
			LS (low-	f _{IH} = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		290	620	μΑ
			speed main) mode Note 7		V _{DD} = 2.0 V		290	620	μΑ
			LV (low-	fih = 4 MHz Note 4	V _{DD} = 3.0 V		440	680	μΑ
			voltage main) mode		V _{DD} = 2.0 V		440	680	μΑ
			HS (high- speed main)	f _M x = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
			mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.48	1.28	mA
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		0.31	1.08	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	1.28	mA
			$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	0.63	mA	
				V _{DD} = 5.0 V	Resonator connection		0.28	0.71	mA
			f _M x = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.63	mA	
				V _{DD} = 3.0 V	Resonator connection		0.28	0.71	mA
			LS (low-	f _M x = 8 MHz ^{Note 3} ,	Square wave input		110	360	μΑ
			speed main) mode Note 7	V _{DD} = 3.0 V	Resonator connection		160	420	μΑ
				$f_{MX} = 8 \text{ MHz}^{Note 3},$	Square wave input		110	360	μА
				V _{DD} = 2.0 V	Resonator connection		160	420	μА
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μΑ
			clock operation	T _A = -40°C	Resonator connection		0.47	0.80	μА
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μΑ
				T _A = +25°C	Resonator connection		0.53	0.80	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μΑ
				T _A = +50°C	Resonator connection		0.60	2.49	μА
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μΑ
				T _A = +70°C	Resonator connection		0.83	4.22	μА
				fsub = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μΑ
				T _A = +85°C	Resonator connection		1.28	8.23	μΑ
	IDD3 ^{Note 6}	STOP	T _A = -40°C	•	•		0.19	0.52	μΑ
		mode ^{Note 8}	T _A = +25°C				0.25	0.52	μΑ
			T _A = +50°C				0.32	2.21	μΑ
			T _A = +70°C				0.55	3.94	μΑ
			T _A = +85°C				1.00	7.95	μΑ

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVSSD, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz

- **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (1/2)

Parameter	Symbol			Conditions	,	1	MIN.	TYP.	MAX.	Unit
Supply current Note 1	I _{DD1}	Operating	HS (high-	fih = 32 MHz Note 3	Basic	V _{DD} = 5.0 V		2.6		mA
current		mode	speed main) mode Note 5		operation	V _{DD} = 3.0 V		2.6		mA
					Normal	V _{DD} = 5.0 V		6.1	9.5	mA
					operation	V _{DD} = 3.0 V		6.1	9.5	mA
				fin = 24 MHz Note 3	Normal	V _{DD} = 5.0 V		4.8	7.4	mA
					operation	V _{DD} = 3.0 V		4.8	7.4	mA
			fin = 16 MHz Note 3	Normal	V _{DD} = 5.0 V		3.5	5.3	mA	
				operation	V _{DD} = 3.0 V		3.5	5.3	mA	
			LS (low-	fih = 8 MHz Note 3	Nomal	V _{DD} = 3.0 V		1.5	2.3	mA
			speed main) mode Note 5		operation	V _{DD} = 2.0 V		1.5	2.3	mA
		LV (low-	fin = 4 MHz Note 3	Normal	V _{DD} = 3.0 V		1.5	2.0	mA	
			voltage main) mode		operation	V _{DD} = 2.0 V		1.5	2.0	mA
		HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.9	6.1	mA	
			speed main) mode Note 5	V _{DD} = 5.0 V	C	Resonator connection		4.1	6.3	mA
			$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		3.9	6.1	mA	
				V _{DD} = 3.0 V	operation	Resonator connection		4.1	6.3	mA
			$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.5	3.7	mA	
				V _{DD} = 5.0 V	operation	Resonator connection		2.5	3.7	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		2.5	3.7	mA
				V _{DD} = 3.0 V	operation	Resonator connection		2.5	3.7	mA
				$f_{MX} = 8 MHz^{Note 2}$	Normal operation	Square wave input		1.4	2.2	mA
				V _{DD} = 3.0 V		Resonator connection		1.4	2.2	mA
				$f_{MX} = 8 MHz^{Note 2}$	Nomal	Square wave input		1.4	2.2	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.4	2.2	mA
			Subsystem	fsub = 32.768 kHz	Nomal	Square wave input		5.4	6.5	μΑ
			clock operation	T _A = -40°C	operation	Resonator connection		5.5	6.6	μΑ
				fsub = 32.768 kHz	Nomal	Square wave input		5.5	6.5	μΑ
				T _A = +25°C	operation	Resonator connection		5.6	6.6	μΑ
				fsub = 32.768 kHz	Nomal	Square wave input		5.6	9.4	μΑ
				T _A = +50°C	operation	Resonator connection		5.7	9.5	μΑ
				fsuB = 32.768 kHz	Normal	Square wave input		5.9	12.0	μΑ
				Note 4 $T_A = +70^{\circ}C$	operation	Resonator connection		6.0	12.1	μΑ
				fsuB = 32.768 kHz	Nomal	Square wave input		6.6	16.3	μΑ
				Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		6.7	16.4	μΑ

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz

 $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 4 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fih: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit	
Supply	I _{DD2}	HALT	HS (high-	f _{IH} = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.62	1.89	mA	
current	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.62	1.89	mA	
			mode	fih = 24 MHz Note 4	V _{DD} = 5.0 V		0.50	1.48	mA	
					V _{DD} = 3.0 V		0.50	1.48	mA	
				fih = 16 MHz Note 4	V _{DD} = 5.0 V		0.44	1.12	mA	
					V _{DD} = 3.0 V		0.44	1.12	mA	
			LS (low-	fih = 8 MHz Note 4	V _{DD} = 3.0 V		290	620	μΑ	
			speed main) mode Note 7		V _{DD} = 2.0 V		290	620	μΑ	
			LV (low-	fih = 4 MHz Note 4	V _{DD} = 3.0 V		460	700	μΑ	
			voltage main) mode		V _{DD} = 2.0 V		460	700	μΑ	
			HS (high-	fmx = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.14	mA	
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.48	1.34	mA	
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		0.31	1.14	mA	
				V _{DD} = 3.0 V	Resonator connection		0.48	1.34	mA	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.21	0.68	mA	
		V _{DD} = 5.0 V Resonator connection				0.28	0.76	mA		
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.21	0.68	mA	
				10.00	V _{DD} = 3.0 V	Resonator connection		0.28	0.76	mA
					LS (low-	$f_{MX} = 8 MHz^{Note 3}$	Square wave input		110	390
							160	450	μΑ	
					110	390	μΑ			
				V _{DD} = 2.0 V	Resonator connection		160	450	μΑ	
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.66	μΑ	
			clock operation	T _A = -40°C	Resonator connection		0.50	0.85	μΑ	
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.38	0.66	μΑ	
				T _A = +25°C	Resonator connection		0.57	0.85	μΑ	
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.47	3.49	μΑ	
				T _A = +50°C	Resonator connection		0.66	3.68	μΑ	
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.80	6.10	μΑ	
				T _A = +70°C	Resonator connection		0.99	6.29	μΑ	
				fsub = 32.768 kHz ^{Note 5}	Square wave input		1.52	10.46	μΑ	
				T _A = +85°C	Resonator connection		1.71	10.65	μΑ	
	IDD3 Note 6	STOP mode ^{Note 8}	T _A = -40°C				0.19	0.54	μΑ	
		mode	T _A = +25°C				0.26	0.54	μΑ	
			$T_A = +50^{\circ}C$				0.35	3.37	μΑ	
			T _A = +70°C				0.68	5.98	μA	
			T _A = +85°C				1.40	10.34	μΑ	

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$ $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 16 \text{ MHz}$ LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 8 \text{ MHz}$ LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 4 \text{ MHz}$

- **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C

(4) Peripheral Functions (Common to all products)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	IFIL Note 1				0.20		μA
RTC operating current	RTC Notes 1, 2, 3				0.02		μΑ
12-bit interval timer operating current	IIT Notes 1, 2, 4				0.02		μΑ
Watchdog timer operating current	WDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μΑ
A/D converter	IADC Notes 1, 6	When	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
operating current		conversion at maximum speed	Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1				75.0		μА
Temperature sensor operating current	ITMPS Note 1				75.0		μΑ
LVD operating current	LVI Notes 1, 7				0.08		μΑ
Self- programming operating current	FSP Notes 1, 9				2.50	12.20	mA
BGO operating current	BGO Notes 1, 8				2.50	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
operating current			The A/D conversion operations are performed, Low voltage mode, AVREFP = $V_{DD} = 3.0 \text{ V}$		1.20	1.44	mA
		CSI/UART opera	tion		0.70	0.84	mA

Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.

- **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode.
- Remarks 1. fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - **4.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

2.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Items	Symbol		Conditions	·	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main	HS (high-	$2.7V\!\leq\!V_{DD}\!\leq\!5.5V$	0.03125		1	μS
instruction execution time)		system clock (fmain)	speed main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
		operation	LS (low-speed main) mode	$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.125		1	μS
			LV (low- voltage main) mode	1.6 V ≤ V _{DD} ≤ 5.5 V	0.25		1	μS
		Subsystem of	clock (fsuв)	1.8 V ≤ V _{DD} ≤ 5.5 V	28.5	30.5	31.3	μS
		operation						
		In the self	HS (high-	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.03125		1	μS
		programming mode	speed main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
			LS (low-speed main) mode	$1.8 V \le V_{DD} \le 5.5 V$	0.125		1	μS
			LV (low- voltage main) mode	1.8 V ≤ V _{DD} ≤ 5.5 V	0.25		1	μS
External system clock	fex	2.7 V ≤ V _{DD} ≤	≤ 5.5 V		1.0		20.0	MHz
frequency		2.4 V ≤ V _{DD} <			1.0		16.0	MHz
		1.8 V ≤ V _{DD} <	< 2.4 V		1.0		8.0	MHz
		1.6 V ≤ V _{DD} <			1.0		4.0	MHz
	fexs				32		35	kHz
External system clock input	texh, texl	2.7 V ≤ V _{DD} ≤	≤ 5.5 V		24			ns
high-level width, low-level width	-	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} < 2.7~\textrm{V}$			30			ns
		1.8 V ≤ V _{DD} < 2.4 V			60			ns
		1.6 V ≤ V _{DD} < 1.8 V			120			ns
	texhs, texhs				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтін, tтіL				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	fто	HS (high-spe	eed 4.0 V	≤ EV _{DD0} ≤ 5.5 V			16	MHz
output frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			1.8 V	≤ EV _{DD0} < 2.7 V			4	MHz
			1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LS (low-spec	ed 1.8 V	$\leq EV_{DD0} \leq 5.5 V$			4	MHz
		main) mode	1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-volta main) mode	age 1.6 V	\leq EV _{DD0} \leq 5.5 V			2	MHz
PCLBUZ0, PCLBUZ1 output	fpcL	HS (high-spe	eed 4.0 V	$\leq EV_{DD0} \leq 5.5 V$			16	MHz
frequency		main) mode		≤ EV _{DD0} < 4.0 V			8	MHz
				\leq EV _{DD0} $<$ 2.7 V			4	MHz
				≤ EV _{DD0} < 1.8 V			2	MHz
		LS (low-spec		\leq EV _{DD0} \leq 5.5 V			4	MHz
		main) mode	_	≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-volta main) mode		\leq EV _{DD0} \leq 5.5 V \leq EV _{DD0} $<$ 1.8 V			2	MHz MHz
Interrupt input high-level width,	tinth,	INTP0		≤ V _{DD} ≤ 5.5 V	1		=	μS
low-level width	tintl	INTP1 to INT		≤ EV _{DD0} ≤ 5.5 V	1			μS
Karrintanının tianın tarınlarınl	tkr	KR0 to KR7		≤ EV _{DD0} ≤ 5.5 V	250			ns
Key interrupt input low-level					1		1	
Key interrupt input low-level width			1.6 V	≤ EV _{DD0} < 1.8 V	1			μS

(Note and Remark are listed on the next page.)

Note The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$

 $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V} : \text{MIN. } 125 \text{ ns}$ $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V} : \text{MIN. } 250 \text{ ns}$

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn).

m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation

- When the high-speed on-chip oscillator clock is selected
- During self programming
 When high-speed system clock is selected

Tcy vs Vdd (LV (low-voltage main) mode)

- When the high-speed on-chip oscillator clock is selected During self programming
- --- When high-speed system clock is selected

AC Timing Test Points

External System Clock Timing

TI/TO Timing

Interrupt Request Input Timing

Key Interrupt Input Timing

RESET Input Timing

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		Conditions		h-speed Mode	d LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1		2.4 V≤ EV	DD0 ≤ 5.5 V		fMCK/6 Note 2		fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		5.3		1.3		0.6	Mbps
		1.8 V ≤ EV	$_{\text{DD0}} \leq 5.5 \text{ V}$		fMCK/6 Note 2		fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate fack Note 3		5.3		1.3		0.6	Mbps
		1.7 V ≤ EV	$000 \le 5.5 \text{ V}$		fMCK/6 Note 2		fMCK/6 Note 2		fмск/6	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		5.3		1.3		0.6	Mbps
		1.6 V ≤ EV	$000 \le 5.5 \text{ V}$	_	_		fMCK/6 Note 2		fмск/6	bps
			Theoretical value of the maximum transfer rate fmck = fclk Note 3	_	_		1.3		0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The following conditions are required for low voltage interface when EVDDO < VDD.

 $2.4 \text{ V} \le \text{EV}_{\text{DDO}} < 2.7 \text{ V} : \text{MAX. } 2.6 \text{ Mbps}$ $1.8 \text{ V} \le \text{EV}_{\text{DDO}} < 2.4 \text{ V} : \text{MAX. } 1.3 \text{ Mbps}$ $1.6 \text{ V} \le \text{EV}_{\text{DDO}} < 1.8 \text{ V} : \text{MAX. } 0.6 \text{ Mbps}$

3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 32 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

16 MHz (2.4 V \leq VDD \leq 5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)

2. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	(Conditions		HS (high-speed main) Mode		r-speed Mode	LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t KCY1	tkcy1 ≥ 2/fclk	$4.0~V \leq EV_{DD0} \leq 5.5~V$	62.5		250		500		ns
			$2.7~V \leq EV_{DD0} \leq 5.5~V$	83.3		250		500		ns
SCKp high-/low-level width	tкн1, tкL1	4.0 V ≤ EV _{DI}	oo ≤ 5.5 V	tксү1/2 — 7		tксү1/2 – 50		tксү1/2 — 50		ns
		2.7 V ≤ EV _{DI}	oo ≤ 5.5 V	tксү1/2 – 10		tксү1/2 – 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑)	tsıĸı	4.0 V ≤ EV _{DI}	00 ≤ 5.5 V	23		110		110		ns
Note 1		2.7 V ≤ EV _{DI}	00 ≤ 5.5 V	33		110		110		ns
SIp hold time (from SCKp↑) Note 2	tksı1	2.7 V ≤ EV _{DI}	$2.7~V \leq EV_{DD0} \leq 5.5~V$			10		10		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 20 pF No	te 4		10		10		10	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- Remarks 1. This value is valid only when CSI00's peripheral I/O redirect function is not used.
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),g: PIM and POM numbers (g = 1)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00))

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	C	Conditions		n-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/fс∟к	$2.7~V \leq EV_{DD0} \leq 5.5$ V	125		500		1000		ns
			$2.4~V \le EV_{DD0} \le 5.5$ V	250		500		1000		ns
			$1.8~V \le EV_{DD0} \le 5.5$ V	500		500		1000		ns
			$1.7~V \le EV_{DD0} \le 5.5$ V	1000		1000		1000		ns
			$1.6~V \le EV_{DD0} \le 5.5$ V	_		1000		1000		ns
SCKp high-/low-level width	tkhi, tkli	4.0 V ≤ EV _D	00 ≤ 5.5 V	tксү1/2 – 12		tксу1/2 — 50		tксү1/2 – 50		ns
		2.7 V ≤ EV _D	oo ≤ 5.5 V	tксү1/2 – 18		tксу1/2 — 50		tксү1/2 – 50		ns
				tксү1/2 – 38		tксу1/2 — 50		tксү1/2 — 50		ns
				tксү1/2 — 50		tксү1/2 — 50		tксү1/2 – 50		ns
		1.7 V ≤ EV _D	00 ≤ 5.5 V	tксу1/2 — 100		tксу1/2 — 100		tксу1/2 — 100		ns
		1.6 V ≤ EVD	₀₀ ≤ 5.5 V	_		tксу1/2 — 100		tксу1/2 — 100		ns
SIp setup time	tsıĸı	4.0 V ≤ EV _{DI}	00 ≤ 5.5 V	44		110		110		ns
(to SCKp↑)		2.7 V ≤ EV _{DI}	00 ≤ 5.5 V	44		110		110		ns
		2.4 V ≤ EV _{DI}	00 ≤ 5.5 V	75		110		110		ns
		1.8 V ≤ EV _{DI}	oo ≤ 5.5 V	110		110		110		ns
		1.7 V ≤ EV _{DI}	oo ≤ 5.5 V	220		220		220		ns
		1.6 V ≤ EV _{DI}	00 ≤ 5.5 V	_		220		220		ns
SIp hold time	tksi1	1.7 V ≤ EV _{DI}	00 ≤ 5.5 V	19		19		19		ns
(from SCKp↑) Note 2		1.6 V ≤ EV _{DI}	00 ≤ 5.5 V	_		19		19		ns
Delay time from SCKp↓ to SOp	tkso1	$1.7 \text{ V} \le \text{EV}_{DI}$ $C = 30 \text{ pF}^{\text{Note}}$			25		25		25	ns
output Note 3		$1.6 \text{ V} \leq \text{EV}_{DI}$ $C = 30 \text{ pF}^{\text{Note}}$			_		25		25	ns

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Condit	HS (hig	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy2	$4.0~V \leq EV_{DD0} \leq 5.5$	20 MHz < fмск	8/fмск				_		ns
Note 5		V	fмcк ≤ 20 MHz	6/fмск		6/ƒмск		6/ƒмск		ns
		$2.7~V \leq EV_{DD0} \leq 5.5$	16 MHz < fмск	8/fмск		_		_		ns
		V	fмcк ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4~V \le EV_{DD0} \le 5.5~V$		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5	V	_		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/low- level width	tkH2,	4.0 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 – 7		tксү2/2 - 7		tксү2/2 - 7		ns
		$2.7~\text{V} \leq \text{EV}_\text{DD0} \leq 5.5~\text{V}$		tксу2/2 — 8		tксу2/2 - 8		tксу2/2 - 8		ns
	1.8 V ≤ EV _{DD0} ≤ 5.5 V 1.7 V ≤ EV _{DD0} ≤ 5.5 V 1.6 V ≤ EV _{DD0} ≤ 5.5 V			tксү2/2 – 18		tксу2/2 - 18		tксу2/2 - 18		ns
				tксү2/2 – 66		tксү2/2 - 66		tксү2/2 - 66		ns
			_		tkcy2/2 - 66		tkcy2/2 - 66		ns	

(Notes, Caution, and Remarks are listed on the next page.)

220

220

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ Parameter Symbo Conditions HS (high-speed LS (low-speed main) LV (low-voltage main) Unit main) Mode ı Mode Mode MIN. MIN. MAX. MIN. MAX. MAX. Slp setup time tsik2 $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$ $1/f_{MCK}+2$ 1/fmck+30 1/fmck+30 ns (to SCKp↑) Note 1 n $1.8~V \leq EV_{DD0} \leq 5.5~V$ 1/fмск+3 1/fмск+30 1/fмcк+30 ns 0 $1.7~V \leq EV_{DD0} \leq 5.5~V$ 1/fмск+4 $1/f_{MCK}+40$ $1/f_{MCK}+40$ ns 0 1/fмск+40 1/fмск+40 $1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$ ns Slp hold time tks12 $1.8~V \leq EV_{DD0} \leq 5.5~V$ 1/fмск+3 1/fмcк+31 1/fмcк+31 ns (from SCKp↑) 1 $1.7~V \leq EV_{DD0} \leq 5.5~V$ 1/fмcк+ 1/fмск+ 1/fмcк+ ns 250 250 250 $1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$ 1/fmck+ 1/fмcк+ ns 250 250 2/f_{MCK+} 2/f_{MCK+} Delay time tks02 C = 30 $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fmck+ ns pF Note 4 from SCKp↓ to 44 110 110 SOp output Note $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fmck+ 2/fмcк+ 2/fмск+ ns 110 75 110 2/fмск+ $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fмск+ 2/fмск+ ns 110 110 110 $1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fmck+ 2/fmck+ 2/fмск+ ns 220 220 220 $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$ 2/fмск+ 2/fмск+ ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)
 - 2. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)

2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(5) During communication at same potential (simplified I²C mode) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	` ` `	h-speed Mode	`	/-speed Mode	`	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$		1000 Note 1		400 Note 1		400 Note 1	kHz
		1.8 V \leq EV _{DD0} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ		400 Note 1		400 Note 1		400 Note 1	kHz
		1.8 V \leq EV _{DD0} $<$ 2.7 V, C _b = 100 pF, R _b = 5 kΩ		300 Note 1		300 Note 1		300 Note 1	kHz
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$		250 Note 1		250 Note 1		250 Note 1	kHz
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$		_		250 Note 1		250 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		1.8 V ≤ EV _{DD0} ≤ 5.5 V, $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	1150		1150		1150		ns
		1.8 V \leq EV _{DD0} $<$ 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1550		1550		1550		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	1850		1850		1850		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5 \text{ k}\Omega$	_		1850		1850		ns
Hold time when SCLr = "H"	tніgн	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		1.8 V ≤ EV _{DD0} ≤ 5.5 V, $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	1150		1150		1150		ns
		1.8 V \leq EV _{DD0} $<$ 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1550		1550		1550		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5 \text{ k}\Omega$	1850		1850		1850		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5 \text{ k}\Omega$	_		1850		1850		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(5) During communication at same potential (simplified I²C mode) (2/2)

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		,	r-speed Mode	`	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	1/f _{MCK} + 85 _{Note2}		1/fmck + 145 Note2		1/f _{MCK} + 145 _{Note2}		ns
		$1.8~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 100~pF,~R_b = 3~k\Omega$	1/f _{MCK} + 145 _{Note2}		1/f _{MCK} + 145 _{Note2}		1/f _{MCK} + 145 _{Note2}		ns
		$1.8~V \leq EV_{DD0} < 2.7~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$	1/fmck + 230 Note2		1/fmck + 230 Note2		1/fmck + 230 Note2		ns
		$1.7~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$	1/fmck + 290 Note2		1/fmck + 290 Note2		1/fmck + 290 Note2		ns
		$1.6~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$	_		1/fmck + 290 Note2		1/fmck + 290 Note2		ns
Data hold time (transmission)	thd:dat	$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	0	305	0	305	0	305	ns
		$1.8~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 100~pF,~R_b = 3~k\Omega$	0	355	0	355	0	355	ns
		$1.8~V \leq EV_{DD0} < 2.7~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$	0	405	0	405	0	405	ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	0	405	0	405	0	405	ns
		$1.6~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$	_	_	0	405	0	405	ns

Notes 1. The value must also be equal to or less than fmck/4.

2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (Vpb tolerance (When 20- to 52-pin products)/EVpb tolerance (When 64- to 128-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Remarks are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14), h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),
 - n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		Conditions			HS (high- speed main) Mode		/-speed Mode	•		Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Recep- tion	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$			fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
				Theoretical value of the maximum transfer rate fmck = fclk Note 4		5.3		1.3		0.6	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$			fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
				Theoretical value of the maximum transfer rate fack Note 4		5.3		1.3		0.6	Mbps
			$1.8 \ V \le EV_{DD0} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V$			fMCK/6 Notes 1 to 3		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate fmck = fclk Note 4		5.3		1.3		0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. Use it with EVDD0≥Vb.
- 3. The following conditions are required for low voltage interface when $E_{VDDO} < V_{DD}$.

 $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V} : \text{MAX. } 2.6 \text{ Mbps}$ $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.4 \text{ V} : \text{MAX. } 1.3 \text{ Mbps}$

4. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 32 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq V_{DD} \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq V_{DD} \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vpd tolerance (When 20- to 52-pin products)/EVpd tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For ViH and ViL, see the DC characteristics with TTL input buffer selected.

Remarks 1. $V_b[V]$: Communication line voltage

- **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
- 3. fmcκ: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13)
- **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-	LS (low-		low- age Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$			Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$			Note 3		Note 3		Note 3	bps
		2.3 V ≤ Vb ≤ 2.7 V	Theoretical value of the maximum transfer rate Cb = 50 pF, Rb =		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps
			$2.7 \text{ k}\Omega, V_b = 2.3$							
		$1.8 \ V \le EV_{DD0} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V$			Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps
			$C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$							

Notes 1. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV $_{DD0} \leq$ 5.5 V and 2.7 V \leq V $_{b} \leq$ 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

3. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $EV_{DD0} \ge V_b$.
- **6.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

$$\text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \text{ln } (1 - \frac{1.5}{V_b})\} \times 3} \text{ [bps]}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- $\begin{tabular}{ll} \begin{tabular}{ll} \bf R_b[\Omega]: Communication line (TxDq) pull-up resistance, \\ C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage \\ \end{tabular}$
 - 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
 - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only) (1/2)

(Ta = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol		HS (hig	HS (high-speed main) Mode		r-speed Mode	LV (low-voltage main) Mode		Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 2/fclk	$ \begin{aligned} &4.0 \; V \leq E V_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 20 \; pF, \; R_b = 1.4 \\ &k \Omega \end{aligned} $	200		1150		1150		ns
			$\begin{split} & 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ & 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ & C_{\text{b}} = 20 \text{ pF}, R_{\text{b}} = 2.7 \\ & k\Omega \end{split}$	300		1150		1150		ns
SCKp high-level width	tкнı	$4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq 6$ $C_{b} = 20 \text{ pF, F}$	4.0 V,	tксү1/2 — 50		tксу1/2 — 50		tксү1/2 — 50		ns
		$2.7 \text{ V} \leq \text{EV}_{DD}$ $2.3 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ pF, F}$	2.7 V,	tксу1/2 — 120		tксу1/2 — 120		tксу1/2 — 120		ns
SCKp low-level width	tĸL1	$4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq 6$ $C_{b} = 20 \text{ pF, F}$	4.0 V,	tксү1/2 — 7		t _{KCY1} /2 – 50		t _{KCY1} /2 – 50		ns
		$2.7 \text{ V} \leq \text{EV}_{DD}$ $2.3 \text{ V} \leq \text{V}_{b} \leq 2$ $C_{b} = 20 \text{ pF, F}$	2.7 V,	tксу ₁ /2 – 10		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑) Note 1	tsıĸı	$4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq 4$ $C_{b} = 20 \text{ pF, F}$	4.0 V,	58		479		479		ns
		$2.7 \text{ V} \leq \text{EV}_{DD}$ $2.3 \text{ V} \leq \text{V}_{b} \leq 2$ $C_{b} = 20 \text{ pF, F}$	2.7 V,	121		479		479		ns
SIp hold time (from SCKp↑) Note 1	tksi1	$4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq 4$ $C_{b} = 20 \text{ pF, F}$	4.0 V,	10		10		10		ns
		$2.7 \text{ V} \le \text{EV}_{DD}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.3 \text{ V}$ $C_b = 20 \text{ pF}, \text{ F}$	0 < 4.0 V, 2.7 V,	10		10		10		ns
Delay time from SCKp↓ to SOp output Note 1	tkso1	$4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ C}$ $2.7 \text{ V} \leq 2.0 \text{ pF}, \text{ F}$	o ≤ 5.5 V, 4.0 V,		60		60		60	ns
		$2.7 \text{ V} \leq \text{EV}_{DD}$ $2.3 \text{ V} \leq \text{V}_{b} \leq 3$ $C_{b} = 20 \text{ pF, F}$	o < 4.0 V, 2.7 V,		130		130		130	ns

(Notes, Caution, and Remarks are listed on the next page.)

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions	Conditions HS (high-speed LS (low-sp main) Mode main) Mo			LV (low-voltage main) Mode		Unit	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) Note 2	tsıkı	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $2.7~V \leq V_b \leq 4.0~V,$	23		110		110		ns
		$C_b = 20 \text{ pF}, R_b = 1.4 \text{ k}\Omega$							
		$ 2.7 \ V \leq EV_{DD0} < 4.0 \ V, $ $ 2.3 \ V \leq V_b \leq 2.7 \ V, $	33		110		110		ns
		$C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							
SIp hold time (from SCKp↓) Note 2	tksi1	$ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, $ $ 2.7 \ V \leq V_b \leq 4.0 \ V, $	10		10		10		ns
		$C_b = 20 \text{ pF}, R_b = 1.4 \text{ k}\Omega$							
		$2.7 \ V \leq EV_{DD0} < 4.0 \ V,$ $2.3 \ V \leq V_b \leq 2.7 \ V,$	10		10		10		ns
		$C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							
Delay time from SCKp↑	tkso1	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $2.7~V \leq V_b \leq 4.0~V,$		10		10		10	ns
SOp output Note 2		$C_b = 20 \text{ pF}, R_b = 1.4 \text{ k}\Omega$							
		$2.7 \ V \le EV_{DD0} < 4.0 \ V,$ $2.3 \ V \le V_b \le 2.7 \ V,$		10		10		10	ns
		$C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- **Remarks 1.** $R_b[\Omega]$:Communication line (SCKp, SOp) pull-up resistance, $C_b[F]$: Communication line (SCKp, SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00))
 - 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions		` `	HS (high-speed main) Mode		r-speed Mode	LV (low- main)	Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$\begin{split} 4.0 & \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 & \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 & \ pF, \ R_b = 1.4 \ k\Omega \end{split}$	300		1150		1150		ns
			$\begin{split} 2.7 \ V & \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V & \leq V_b \leq 2.7 \ V, \\ C_b & = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	500		1150		1150		ns
			$\begin{aligned} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{Note}, \end{aligned}$	1150		1150		1150		ns
SCKp high-level width	width 2.7	$4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq$ $C_{b} = 30 \text{ pF},$	4.0 V,	tксү1/2 – 75		tксү1/2 – 75		tксу1/2 — 75		ns
		$2.7 \text{ V} \le \text{EV}_{DD}$ $2.3 \text{ V} \le \text{V}_{b} \le$ $C_{b} = 30 \text{ pF},$	00 < 4.0 V, 2.7 V,	tксу1/2 — 170		tксу1/2 — 170		tксу1/2 — 170		ns
		$1.8 \text{ V} \le \text{EV}_{DD}$ $1.6 \text{ V} \le \text{V}_{b} \le \text{C}_{b} = 30 \text{ pF},$	00 < 3.3 V, 2.0 V ^{Note} ,	tксү1/2 – 458		tксү1/2 – 458		tксү1/2 – 458		ns
SCKp low-level width	tĸL1	$4.0 \text{ V} \leq \text{EV}_{DD}$ $2.7 \text{ V} \leq \text{V}_{b} \leq$	00 ≤ 5.5 V, 4.0 V,	tксу1/2 —		tксү1/2 – 50		tксү1/2 — 50		ns
		$C_b = 30 \text{ pF},$ $2.7 \text{ V} \leq \text{EVor}$ $2.3 \text{ V} \leq \text{V}_b \leq$ $C_b = 30 \text{ pF},$	00 < 4.0 V, 2.7 V,	tксү1/2 — 18		tксү1/2 — 50		tксү1/2 — 50		ns
		$1.8 \text{ V} \leq \text{EV}_{DD}$ $1.6 \text{ V} \leq \text{V}_{b} \leq$ $C_{b} = 30 \text{ pF},$	00 < 3.3 V, 2.0 V ^{Note} ,	tксү1/2 — 50		tксү1/2 – 50		tксу1/2 — 50		ns

Note Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	, 0	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) Note 1	tsıĸı	$ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, $	81		479		479		ns
		$C_b = 30$ pF, $R_b = 1.4$ k Ω							
			177		479		479		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							
		$\label{eq:local_local_local_local_local} \begin{split} 1.8 \ V & \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V & \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{split}$	479		479		479		ns
		$C_b = 30$ pF, $R_b = 5.5$ k Ω							
SIp hold time (from SCKp↑) Note 1	t KSI1	$ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, $	19		19		19		ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$							
			19		19		19		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$	19		19		19		ns
		$C_b = 30$ pF, $R_b = 5.5$ k Ω							
Delay time from SCKp↓ to	tkso1	$ \begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array} $		100		100		100	ns
SOp output Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$							
		$ 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, $		195		195		195	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							
		$\begin{array}{c} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$		483		483		483	ns
		$C_b = 30$ pF, $R_b = 5.5$ k Ω							

Notes

- 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- 2. Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	, 5	h-speed Mode	,	r-speed Mode	LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) Note 1	tsik1	$ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, $	44		110		110		ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$							
		$ \begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \end{array} $	44		110		110		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							
		$ \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array} $	110		110		110		ns
		$C_b = 30$ pF, $R_b = 5.5$ k Ω							
SIp hold time (from SCKp↓) Note 1	t _{KSI1}	$ \begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \end{array} $	19		19		19		ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$							
		$ 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, $	19		19		19		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$	19		19		19		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$							
Delay time from SCKp↑ to	tkso1	$ \begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \end{array} $		25		25		25	ns
SOp output Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$							
		$ \begin{array}{c} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array} $		25		25		25	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							
		$\begin{array}{c} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array}$		25		25		25	ns
		$C_b = 30$ pF, $R_b = 5.5$ k Ω							

Notes

- 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 2. Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number , n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/2)$

Parameter	Symbol	Conditions		HS (high- speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1		$4.0 \text{ V} \le \text{EV}_{DD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}$	24 MHz < fмск	14/ fмск		_		_		ns
			20 MHz < fмcк ≤ 24 MHz	12/ fмск		_				ns
			8 MHz < fмcк ≤ 20 MHz	10/ fмск		_		_		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/ fмск		_		ns
			fmck ≤ 4 MHz	6/fмск		10/ fмск		10/ fмск		ns
		$2.7 \text{ V} \le \text{EV}_{DD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$	24 MHz < fмск	20/ fмск		_		_		ns
		20 MHz < fмcк ≤ 24 MHz	16/ fмск		_		_		ns	
			16 MHz < fмcк ≤ 20 MHz	14/ fмск		_		_		ns
			8 MHz < fмcк ≤ 16 MHz	12/ fмск		_		_		ns
			4 MHz < fмck ≤ 8 MHz	8/fмск		16/ fмск		_		ns
			fмcк ≤ 4 MHz	6/ƒмск		10/ fмск		10/ fмск		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note}}$	24 MHz < fмск	48/ fмск		_		_		ns
		2	20 MHz < fмck ≤ 24 MHz	36/ fмск		_		_		ns
			16 MHz < fмcк ≤ 20 MHz	32/ fмск		_		_		ns
			8 MHz < f _{MCK} ≤ 16 MHz	26/ fмск		_				ns
			4 MHz < f _{MCK} ≤ 8 MHz	16/ fмск		16/ fмск		_		ns
			fмcк ≤ 4 MHz	10/ fмск		10/ fмск		10/ fмск		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (2/2)

Parameter	Symbol	Conditions	ons HS (high- speed main) Mode		LS (low-speed LV (low-voltage main) Mode main) Mode				Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp high-/low-level width	tкн2, tкL2	$ 4.0 \ V \le EV_{DD0} \le 5.5 \ V, $ $ 2.7 \ V \le V_b \le 4.0 \ V $	tксу2/2 - 12		tксү2/2 - 50		txcy2/2 - 50		ns
		$ 2.7 \ V \le EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \le V_b \le 2.7 \ V $	tксу2/2 - 18		tксү2/2 - 50		txcy2/2 - 50		ns
		$\begin{aligned} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{aligned}$	tkcy2/2 - 50		tксү2/2 - 50		tkcy2/2 - 50		ns
SIp setup time (to SCKp↑) Note 3	tsık2	$\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V \end{aligned}$	1/fмск + 20		1/fмск + 30		1/fмcк + 30		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\begin{aligned} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}} \end{aligned}$	1/fмск + 30		1/fмск + 30		1/fмcк + 30		ns
SIp hold time (from SCKp [↑]) Note 4	tksi2		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output Note 5	tkso2	$\label{eq:continuous} \begin{array}{l} 4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0 \\ V, \\ C_b = 30~pF,~R_b = 1.4~k\Omega \end{array}$		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \\ \text{V}, \\ \text{C}_{\text{b}} = 30 \text{ pF}, \ \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$\begin{split} &1.8 \; V \leq \text{EV}_{\text{DD0}} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ &C_b = 30 \; p\text{F}, \; R_b = 5.5 \; k\Omega \end{split}$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

- 2. Use it with $EV_{DD0} \ge V_b$.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

- Remarks 1. $R_b[\Omega]$:Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage
 - **2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (1/2)

(Ta = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	` `	h-speed Mode	`	v-speed Mode	,	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned}$		1000 Note 1		300 Note 1		300 Note 1	kHz
		$ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $		1000 Note 1		300 Note 1		300 Note 1	kHz
		$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $		400 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:section} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$		400 Note 1		300 Note 1		300 ote 1	kHz
		$\begin{split} &1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$		300 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	475		1550		1550		ns
		$ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	475		1550		1550		ns
		$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $	1150		1550		1550		ns
		$\label{eq:section} \begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	1150		1550		1550		ns
		$\begin{split} &1.8~V \leq EV_{DD0} < 3.3~V,\\ &1.6~V \leq V_b \leq 2.0~V^{\text{Note 2}},\\ &C_b = 100~pF,~R_b = 5.5~k\Omega \end{split}$	1550		1550		1550		ns
Hold time when SCLr = "H"	tнідн	$\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$	245		610		610		ns
		$\label{eq:substitute} \begin{split} 2.7 \ V & \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V & \leq V_b \leq 2.7 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	200		610		610		ns
		$\begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned}$	675		610		610		ns
		$\label{eq:section} \begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	600		610		610		ns
		$\begin{split} &1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	610		610		610		ns

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2)

(Ta = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	HS (high	•	`	/-speed Mode	LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	1/f _{MCK} + 135 Note 3		1/fMCK + 190 Note 3		1/fmck + 190 Note 3		kHz
		$\label{eq:section_section} \begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	1/f _{MCK} + 135 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		kHz
		$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $	1/f _{MCK} + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		kHz
		$\label{eq:section} \begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	1/f _{MCK} + 190 Note 3		1/fMCK + 190 Note 3		1/fmck + 190 Note 3		kHz
		$ \begin{aligned} &1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{aligned} $	1/f _{MCK} + 190 Note 3		1/fMCK + 190 Note 3		1/fmck + 190 Note 3		kHz
Data hold time (transmission)	thd:dat	$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	0	305	0	305	0	305	ns
		$ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	0	305	0	305	0	305	ns
		$ \begin{cases} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{cases} $	0	355	0	355	0	355	ns
		$\label{eq:section} \begin{split} 2.7 \ V & \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V & \leq V_b \leq 2.7 \ V, \\ C_b & = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	0	355	0	355	0	355	ns
		$\begin{split} &1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	0	405	0	405	0	405	ns

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- 2. Use it with $EV_{DD0} \ge V_b$.
- 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** $R_b[\Omega]$:Communication line (SDAr, SCLr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance, $V_b[V]$: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00, 01, 02, 10, 12, 13)

2.5.2 Serial interface IICA

(1) I2C standard mode

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	С	Conditions			,	/-speed Mode	LV (low main)	-voltage Mode	Unit
					MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Standard	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	0	100	0	100	0	100	kHz
		mode:	1.8 V ≤ EV _{DD0} ≤ 5.5 V	0	100	0	100	0	100	kHz
		fc∟k≥ 1 MHz	1.7 V ≤ EV _{DD0} ≤ 5.5 V	0	100	0	100	0	100	kHz
			1.6 V ≤ EV _{DD0} ≤ 5.5 V	_	_	0	100	0	100	kHz
Setup time of restart	tsu:sta	2.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μS
condition		1.8 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μS
		1.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μS
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	_	_	4.7		4.7		μS
Hold time ^{Note 1}	thd:STA	2.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.0		4.0		4.0		μS
		1.8 V ≤ EV _{DD0} :	≤ 5.5 V	4.0		4.0		4.0		μS
		1.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.0		4.0		4.0		μS
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	_	_	4.0		4.0		μS
Hold time when SCLA0 =	tLOW	2.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μS
" <u>L</u> "		1.8 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μS
		1.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μS
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	_	_	4.7		4.7		μS
Hold time when SCLA0 =	t HIGH	2.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.0		4.0		4.0		μS
"H"		1.8 V ≤ EV _{DD0} :	≤ 5.5 V	4.0		4.0		4.0		μS
		1.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.0		4.0		4.0		μS
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	_	_	4.0		4.0		μS
Data setup time	tsu:dat	2.7 V ≤ EV _{DD0} :	≤ 5.5 V	250		250		250		ns
(reception)		1.8 V ≤ EV _{DD0} :	≤ 5.5 V	250		250		250		ns
		1.7 V ≤ EV _{DD0} :	≤ 5.5 V	250		250		250		ns
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	_	_	250		250		ns
Data hold time	thd:dat	2.7 V ≤ EV _{DD0} :	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μS
(transmission) ^{Note 2}		1.8 V ≤ EV _{DD0} :	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μS
		1.7 V ≤ EV _{DD0} :	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μS
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	_	_	0	3.45	0	3.45	μS
Setup time of stop	tsu:sto	2.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.0		4.0		4.0		μS
condition		1.8 V ≤ EV _{DD0} :	≤ 5.5 V	4.0		4.0		4.0		μS
		1.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.0		4.0		4.0		μS
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V			4.0		4.0		μS
Bus-free time	t BUF	2.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μS
		1.8 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μS
		1.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μS
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	_		4.7		4.7		μS

(Notes, Caution and Remark are listed on the next page.)

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

<R>

- 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$

(2) I2C fast mode

(Ta = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Сог	nditions	, ,	h-speed Mode	`	/-speed Mode	`	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	400	0	400	0	400	kHz
		fc∟κ≥ 3.5 MHz	1.8 V ≤ EV _{DD0} ≤ 5.5 V	0	400	0	400	0	400	kHz
Setup time of restart	tsu:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
condition		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
Hold time when SCLA0 =	tLOW	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	1.3		1.3		1.3		μS
" <u>L</u> "		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	1.3		1.3		1.3		μS
Hold time when SCLA0 =	t HIGH	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0.6		0.6		0.6		μS
"H"		1.8 V ≤ EV _{DD0} ≤ 5.8	5 V	0.6		0.6		0.6		μS
Data setup time	tsu:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	100		100		100		μS
(reception)		1.8 V ≤ EV _{DD0} ≤ 5.8	5 V	100		100		100		μS
Data hold time	thd:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0	0.9	0	0.9	0	0.9	μS
(transmission)Note 2		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	0	0.9	0	0.9	0	0.9	μS
Setup time of stop	tsu:sto	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.$	5 V	0.6		0.6		0.6		μS
condition		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.$	$.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			0.6		0.6		μS
Bus-free time	t BUF	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	1.3		1.3		1.3		μS
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.8$	5 V	1.3		1.3		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

<R>

<R>

(3) I2C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions		h-speed Mode	LS (low main)	r-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: fcLk≥ 10 MHz	$2.7~V \le EV_{DD0} \le 5.5~V$	0	1000	_	-	_	-	kHz
Setup time of restart condition	tsu:sta	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	0.26		_	_	_	_	μS
Hold time ^{Note 1}	thd:STA	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$	5 V	0.26		_	-	_	_	μS
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	0.5		_	-	_	-	μS
Hold time when SCLA0 = "H"	tніgн	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	0.26		_	-	_	-	μS
Data setup time (reception)	tsu:dat	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	50		_	-	_	_	μS
Data hold time (transmission) ^{Note 2}	thd:dat	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	0	0.45	_	-	_	_	μS
Setup time of stop condition	tsu:sto	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	0.26			_	_	_	μs
Bus-free time	tbuf	2.7 V ≤ EV _{DD0} ≤ 5.5	5 V	0.5		_	_	_	_	μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: $C_b = 120 \ pF, \ R_b = 1.1 \ k\Omega$

IICA serial transfer timing

Remark n = 0, 1

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

		Reference Voltage	
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = V _{BGR}
Input channel	Reference voltage (-) = AVREFM	Reference voltage (-) = Vss	Reference voltage (–) = AVREFM
ANI0 to ANI14	Refer to 2.6.1 (1) .	Refer to 2.6.1 (3) .	Refer to 2.6.1 (4) .
ANI16 to ANI26	Refer to 2.6.1 (2) .		
Internal reference voltage	Refer to 2.6.1 (1) .		_
Temperature sensor output			
voltage			

(1) When reference voltage (+)= AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V		1.2	±3.5	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$	$1.6~V \leq AV_{REFP} \leq 5.5~V^{\text{Note 4}}$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2 to	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		ANI14	$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μS
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±0.25	%FSR
		$AV_{REFP} = V_{DD}^{Note 3}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±0.50	%FSR
Full-scale error Notes 1, 2	E _{FS}	10-bit resolution	$1.8~V \leq AV_{REFP} \leq 5.5~V$			±0.25	%FSR
		$AV_{REFP} = V_{DD}^{Note 3}$	$1.6~V \leq AV_{REFP} \leq 5.5~V^{\text{Note 4}}$			±0.50	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8~V \leq AV_{REFP} \leq 5.5~V$			±2.5	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±5.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq AV_{REFP} \leq 5.5~V$			±1.5	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±2.0	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS			V _{BGR} Note 5		V
		Temperature sensor outp (2.4 V \leq VDD \leq 5.5 V, HS	•	\	/TMPS25 Note	5	V

(Notes are listed on the next page.)

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.
 - Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD} .
 - Zero-scale error/Full-scale error: Add $\pm 0.05\%FSR$ to the MAX. value when AV_{REFP} = V_{DD}.
 - Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 - **4.** Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
 - 5. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFM}} = 0 \text{ V})$

Parameter	Symbol	Conditi	ons	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq AV_{REFP} \leq 5.5~V$		1.2	±5.0	LSB
		EVDD0 = AVREFP = VDD Notes 3, 4	$1.6~V \leq AV_{REFP} \leq 5.5~V^{Note}$		1.2	±8.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target ANI pin : ANI16 to	$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	3.1875		39	μS
		ANI26	1.8 V ≤ VDD ≤ 5.5 V	17		39	μS
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq AV_{REFP} \leq 5.5~V$			±0.35	%FSR
		EVDD0 = AVREFP = VDD Notes 3, 4	$1.6~V \leq AV_{REFP} \leq 5.5~V^{Note}$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±0.35	%FSR
		EVDD0 = AVREFP = VDD Notes 3, 4	$1.6~V \le AV_{REFP} \le 5.5~V^{Note}$			±0.60	%FSR
Integral linearity error ^{Note}	ILE	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±3.5	LSB
1		EVDD0 = AVREFP = VDD Notes 3, 4	$1.6~V \le AV_{REFP} \le 5.5~V^{Note}$			±6.0	LSB
Differential linearity	DLE	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±2.0	LSB
error Note 1		EVDD0 = AV _{REFP} = V _{DD} Notes 3, 4	$1.6~V \le AV_{REFP} \le 5.5~V^{Note}$			±2.5	LSB
Analog input voltage	VAIN	ANI16 to ANI26	,	0		AVREFP and EVDD0	V

- **Notes 1.** Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

- **4.** When $AV_{REFP} < EV_{DD0} \le V_{DD}$, the MAX. values are as follows.
 - Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

5. When the conversion time is set to 57 μs (min.) and 95 μs (max.).

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{DD}}, \text{Reference voltage (-)} = \text{V}_{\text{SS}})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANIO to ANI14,	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		ANI16 to ANI26	$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μS
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±0.85	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±2.5	LSB
Analog input voltage	VAIN	ANI0 to ANI14	•	0		V _{DD}	V
		ANI16 to ANI26		0		EV _{DD0}	٧
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (hi	gh-speed main) mode)		VBGR Note 4		V
		Temperature sensor output (2.4 V \leq VDD \leq 5.5 V, HS (hi	•		VTMPS25 Note 4	1	V

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26

(Ta = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, 1.6 V \leq EVDD0 = EVDD1 \leq VDD, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM = 0 V Note 4, HS (high-speed main) mode)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	٧

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.
 - 4. When reference voltage (-) = Vss, the MAX. values are as follows.
 Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.
 Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.
 Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

2.6.2 Temperature sensor/internal reference voltage characteristics

(TA = -40 to $+85^{\circ}$ C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, Ta = +25°C		1.05		٧
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.5	٧
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

2.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	V _{PDR}	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	T _{PW}		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(Ta = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	V _{LVD0}	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		V _{LVD1}	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		V _{LVD2}	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		V _{LVD3}	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		V _{LVD4}	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		V _{LVD5}	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		V _{LVD6}	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		V LVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		V _{LVD8}	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		V _{LVD9}	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		V _{LVD10}	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		V _{LVD11}	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		V _{LVD12}	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		V _{LVD13}	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum p	ulse width	tLW		300			μS
Detection d	elay time					300	μS

LVD Detection Voltage of Interrupt & Reset Mode

(Ta = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Cond	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	V _{LVDA0}	V _{POC2} ,	VPOC1, VPOC0 = 0, 0, 0	, falling reset voltage	1.60	1.63	1.66	V
mode	VLVDA1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	V _{LVDB0}	V _{POC2} ,	VPOC1, VPOC0 = 0, 0, 1	, falling reset voltage	1.80	1.84	1.87	V
	V _{LVDB1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	V LVDB3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	V _{LVDC0}	V _{POC2} ,	VPOC1, VPOC0 = 0, 1, 0	, falling reset voltage	2.40	2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	V _{LVDD0}	V _{POC2} ,	VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.70	2.75	2.81	V
	V _{LVDD1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	Svdd				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 2.4 AC Characteristics.

2.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

2.8 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$1.8~V \leq V \text{dd} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites		Retained for 1 years TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200	_	1,000,000	bps

2.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuіліт	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

tsu: Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications.

Target products G: Industrial applications $T_A = -40$ to +105°C R5F100xxGxx

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product.
 - 4. Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to $+105^{\circ}C$. Derating is the systematic reduction of load for the sake of improved reliability.

Remark When RL78/G13 is used in the range of $T_A = -40$ to +85°C, see CHAPTER 2 ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C).

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Ар	plication
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode Operating voltage range	HS (high-speed main) mode: $2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0} 1 \text{ MHz to } 32 \text{ MHz}$ $2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0} 1 \text{ MHz to } 16 \text{ MHz}$ $LS \text{ (low-speed main) mode:}$ $1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0} 1 \text{ MHz to } 8 \text{ MHz}$ $LV \text{ (low-voltage main) mode:}$ $1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V} \textcircled{0} 1 \text{ MHz to } 4 \text{ MHz}$	HS (high-speed main) mode only: $2.7~V \le V_{DD} \le 5.5~V @ 1~MHz~to~32~MHz$ $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz~to~16~MHz$
High-speed on-chip oscillator clock accuracy	1.8 V \leq V _{DD} \leq 5.5 V \pm 1.0%@ TA = -20 to +85°C \pm 1.5%@ TA = -40 to -20°C 1.6 V \leq V _{DD} $<$ 1.8 V \pm 5.0%@ TA = -20 to +85°C \pm 5.5%@ TA = -40 to -20°C	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ $\pm 2.0\%@ \text{ T}_{A} = +85 \text{ to } +105^{\circ}\text{C}$ $\pm 1.0\%@ \text{ T}_{A} = -20 \text{ to } +85^{\circ}\text{C}$ $\pm 1.5\%@ \text{ T}_{A} = -40 \text{ to } -20^{\circ}\text{C}$
Serial array unit	UART CSI: fclk/2 (supporting 16 Mbps), fclk/4 Simplified I ² C communication	UART CSI: fclk/4 Simplified I ² C communication
IICA	Normal mode Fast mode Fast mode plus	Normal mode Fast mode
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V (14 levels) Fall detection voltage: 1.63 V to 3.98 V (14 levels)	Rise detection voltage: 2.61 V to 4.06 V (8 levels) Fall detection voltage: 2.55 V to 3.98 V (8 levels)

(Remark is listed on the next page.)

Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to **3.1** to **3.10**.

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($T_A = 25$ °C) (1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.5 to +6.5	٧
	EV _{DD0} , EV _{DD1}	EVDD0 = EVDD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	Vıı	P00 to P07, P10 to P17, P30 to P37, P40 to P47,	-0.3 to EV _{DD0} +0.3	V
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	and -0.3 to V _{DD} +0.3 ^{Note 2}	
	V _{I2}	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	V _{O1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47,	-0.3 to EV _{DD0} +0.3	٧
		P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	and -0.3 to V _{DD} +0.3 ^{Note 2}	
	V ₀₂	P20 to P27, P150 to P156	-0.3 to V _{DD} +0.3 Note 2	٧
Analog input voltage	VAI1	ANI16 to ANI26	-0.3 to EV _{DD0} +0.3 and -0.3 to AV _{REF} (+) +0.3 $^{\text{Notes 2, 3}}$	V
	V _{Al2}	ANI0 to ANI14	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 $^{\text{Notes 2, 3}}$	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

Absolute Maximum Ratings (TA = 25°C) (2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins -170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	- 70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lo _{L1}	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	lo _{L2}	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient temperature	Та	In normal operati	on mode programming mode	-40 to +105	°C
	l				

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{DD} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4~V \leq V_{DD} < 2.7~V$	1.0		16.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator.

3.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator		–20 to +85 °C	$2.4~V \leq V_{DD} \leq 5.5~V$	-1.0		+1.0	%
clock frequency accuracy		–40 to −20 °C	$2.4~V \leq V_{DD} \leq 5.5~V$	-1.5		+1.5	%
		+85 to +105 °C	$2.4~V \leq V_{DD} \leq 5.5~V$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$2.4~V \leq EV_{DD0} \leq 5.5~V$			-3.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			-30.0	mA
		P125 to P127, P130, P140 to P145	$2.7~V \leq EV_{DD0} < 4.0~V$			-10.0	mA
			$2.4~V \le EV_{DD0} < 2.7~V$			-5.0	mA
		Total of P05, P06, P10 to P17, P30, P31,				-30.0	mA
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to	$2.7~V \leq EV_{DD0} < 4.0~V$			-19.0	mA
		P117, P146, P147 (When duty ≤ 70% Note 3)	2.4 V ≤ EVDD0 < 2.7 V			-10.0	mA
		Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4~V \leq EV_{DD0} \leq 5.5~V$			-60.0	mA
	І ОН2	Per pin for P20 to P27, P150 to P156	$2,4~V \leq V_{DD} \leq 5.5~V$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4~V \leq V_{DD} \leq 5.5~V$			-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and $I_{OH} = -10.0$ mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

$(T_A = -40 \text{ to } +105^{\circ}\text{C}.$	2 4 V / EVans	_ EVan. < Van	CEEV Voc	_ EV EV.	$\alpha = 0.1/(2/E)$
$(1A = -40 10 + 100^{\circ}C.$. Z.4 V > E V DD0:	= ⊏∨ ∪∪1 ≤ ∨ ∪∪) > 3.3 v. v ss :	= EV SS0 = EV S	S1 = U V I (2/3)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lol1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147				8.5 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
	Total of P00 to P04, P07, P32 to	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA	
		P37,	$2.7~V \leq EV_{DD0} < 4.0~V$			15.0	mA
		P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145 (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4~V \le EV_{DD0} < 2.7~V$			9.0	mA
		P31, P50 to P57, P60 to P67,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA
			$2.7~V \leq EV_{DD0} < 4.0~V$			35.0	mA
		P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 $(\text{When duty} \leq 70\%^{\text{Note 3}})$	2,4 V ≤ EV _{DD0} < 2.7 V			20.0	mA
		Total of all pins (When duty ≤ 70% Note 3)				80.0	mA
	lol2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% Note 3)	$2.4~V \leq V_{DD} \leq 5.5~V$			5.0	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1 and Vss pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(lol \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = (10.0 \times 0.7)/(80 \times 0.01) \cong 8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (3/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EV _{DD0}		EV _{DD0}	V
	V _{IH2}	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V ≤ EVDD0 ≤ 5.5 V	2.2		EV _{DD0}	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EVDD0 < 4.0 V	2.0		EV _{DD0}	V
			TTL input buffer 2.4 V ≤ EVDD0 < 3.3 V	1.5		EV _{DD0}	V
	V _{IH3} P20 to P27, P150 to P156					V_{DD}	٧
	V _{IH4}	P60 to P63		0.7EV _{DD0}		6.0	V
	V _{IH5}	P121 to P124, P137, EXCLK, EXCL	KS, RESET	0.8V _{DD}		V_{DD}	V
Input voltage, low	VIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Normal input buffer	0		0.2EVDD0	V
	V _{IL2}	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V ≤ EV _{DD0} ≤ 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EVDD0 < 4.0 V	0		0.5	V
			TTL input buffer 2.4 V ≤ EV _{DD0} < 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3V _{DD}	٧
	V _{IL4}	P60 to P63		0		0.3EV _{DD0}	٧
	V _{IL5}	P121 to P124, P137, EXCLK, EXCLK	KS, RESET	0		0.2V _{DD}	٧

Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}. 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}. \text{ Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (4/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Iон1 = -3.0 mA	EV _{DD0} – 0.7			V
		P90 to P97, P100 to P106, P110 to	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -2.0 \text{ mA}$	EV _{DD0} – 0.6			V
		P117, P120, P125 to P127, P130, P140 to P147	$2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OH1} = -1.5~mA$	EV _{DD0} – 0.5			V
	V _{OH2}	P20 to P27, P150 to P156	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH2} = -100 \ \mu \text{ A}$	V _{DD} – 0.5			V
Output voltage, low	V _{OL1}	P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 8.5~mA$			0.7	V
			$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$			0.6	V
			$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$			0.4	V
			$2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$			0.4	V
	V _{OL2}	P20 to P27, P150 to P156	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V},$ $\text{Iol2} = 400 \ \mu \text{ A}$			0.4	V
	Vоьз	P60 to P63	$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 15.0~mA$			2.0	V
			$4.0~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 5.0~mA$			0.4	V
			$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 3.0~mA$			0.4	V
	2		$2.4~V \leq EV_{DD0} \leq 5.5~V,$ $I_{OL3} = 2.0~mA$			0.4	V

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (5/5)$

Items	Symbol	Condition	ons		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVDDO				1	μΑ
	ILIH2	P20 to P27, P137, P150 to P156, RESET	$V_{I} = V_{DD}$				1	μΑ
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	CLK, V _I = V _{DD} In input port or external clock input				1	μΑ
				In resonator connection			10	μΑ
Input leakage current, low	lut1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVsso				-1	μΑ
	ILIL2	P20 to P27, P137, P150 to P156, RESET	Vı = Vss				-1	μΑ
	ILIL3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vı = Vss	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pll-up resistance	Rυ	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	V _I = EVsso	, In input port	10	20	100	kΩ

3.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (Ta = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operating	HS (high-			V _{DD} = 5.0 V		2.1		mA
Current Note 1		mode	mode Note 5		operatio n	V _{DD} = 3.0 V		2.1		mA
					Normal	V _{DD} = 5.0 V		4.6	7.5	mA
					operatio n	V _{DD} = 3.0 V		4.6	7.5	mA
				fin = 24 MHz ^{Note 3}	Normal operatio	V _{DD} = 5.0 V		3.7	5.8	mA
						V _{DD} = 3.0 V		3.7	5.8	mA
				fih = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.7	4.2	mA
					operatio n	V _{DD} = 3.0 V		2.7	4.2	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.9	mA
			speed main) mode Note 5	$V_{DD} = 5.0 \text{ V}$	operatio n	Resonator connection		3.2	5.0	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.9	mA
			$V_{DD} = 3.0 \text{ V}$	operatio n	Resonator connection		3.2	5.0	mA	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	10 MHz ^{Note 2} , Normal	Square wave input		1.9	2.9	mA
			V _{DD} = 5.0 V	operatio n	Resonator connection		1.9	2.9	mA	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.9	mA
				$V_{DD} = 3.0 \text{ V}$	operatio n	Resonator connection		1.9	2.9	mA
			Subsystem clock operation		Normal	Square wave input		4.1	4.9	μΑ
				Note 4 $T_A = -40^{\circ}C$	operatio n	Resonator connection		4.2	5.0	μА
				fsuB = 32.768 kHz	Normal	Square wave input		4.1	4.9	μΑ
				Note 4 $T_A = +25^{\circ}C$	operatio n	Resonator connection		4.2	5.0	μА
				fsuB = 32.768 kHz	Normal	Square wave input		4.2	5.5	μΑ
				Note 4 $T_A = +50^{\circ}C$	operatio n	Resonator connection		4.3	5.6	μΑ
				fsuB = 32.768 kHz	Normal	Square wave input		4.3	6.3	μA
				Note 4 $T_A = +70^{\circ}C$	operatio n	Resonator connection		4.4	6.4	μΑ
				fsuB = 32.768 kHz	Normal	Square wave input		4.6	7.7	μA
				Note 4	operation	_ ' _ '		4.7	7.8	μΑ
				T _A = +85°C f _{SUB} = 32.768 kHz	Normal	Square wave input		6.9	19.7	,,Λ
				ISUB = 32.700 KHZ Note 4	operation	Resonator		7.0	19.7	μA μA
				T _A = +105°C		connection				

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fih: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (Ta = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit	
Supply	I _{DD2}	HALT	HS (high-	fih = 32 MHz Note 4	V _{DD} = 5.0 V		0.54	2.90	mA	
current	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.54	2.90	mA	
				fih = 24 MHz Note 4	V _{DD} = 5.0 V		0.44	2.30	mA	
					V _{DD} = 3.0 V		0.44	2.30	mA	
				fih = 16 MHz Note 4	V _{DD} = 5.0 V		0.40	1.70	mA	
					V _{DD} = 3.0 V		0.40	1.70	mA	
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.90	mA	
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.45	2.00	mA	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.90	mA	
				V _{DD} = 3.0 V	Resonator connection		0.45	2.00	mA	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	1.02	mA	
				V _{DD} = 5.0 V	Resonator connection		0.26	1.10	mA	
					$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	1.02	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	1.10	mA	
			Subsystem clock operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μА	
				T _A = -40°C	Resonator connection		0.44	0.76	μА	
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μА	
				T _A = +25°C	Resonator connection		0.49	0.76	μА	
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.37	1.17	μА	
				T _A = +50°C	Resonator connection		0.56	1.36	μА	
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.53	1.97	μА	
				T _A = +70°C	Resonator connection		0.72	2.16	μА	
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.82	3.37	μА	
				T _A = +85°C	Resonator connection		1.01	3.56	μА	
				fsub = 32.768 kHz ^{Note 5}	Square wave input		3.01	15.37	μА	
				T _A = +105°C	Resonator connection		3.20	15.56	μА	
	IDD3 ^{Note 6}	STOP	T _A = -40°C				0.18	0.50	μА	
		mode ^{Note 8}	T _A = +25°C	T _A = +25°C				0.50	μА	
		T _A = +50°C				0.30	1.10	μА		
			T _A = +70°C				0.46	1.90	μА	
		-	T _A = +85°C				0.75	3.30	μА	
			T _A = +105°C				2.94	15.30	μА	

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 32~MHz $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to 16~MHz

- **8.** Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (Ta = -40 to $+105^{\circ}$ C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, Vss = EV_{SS0} = EV_{SS1} = 0 V) (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operating	HS (high-	fin = 32 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		2.3		mA
Current Note 1		mode	speed main) mode Note 5		operatio n	V _{DD} = 3.0 V		2.3		mA
					Normal	V _{DD} = 5.0 V		5.2	9.2	mA
					operatio n	V _{DD} = 3.0 V		5.2	9.2	mA
				fin = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		4.1	7.0	mA
					operatio n	V _{DD} = 3.0 V		4.1	7.0	mA
				fih = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.0	5.0	mA
					operatio n	V _{DD} = 3.0 V		3.0	5.0	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.4	5.9	mA
			speed main) mode Note 5	V _{DD} = 5.0 V	operatio n	Resonator connection		3.6	6.0	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.4	5.9	mA
			V _{DD} = 3.0 V	operatio n	Resonator connection		3.6	6.0	mA	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.1	3.5	mA
				V _{DD} = 5.0 V	operatio n	Resonator connection		2.1	3.5	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.1	3.5	mA
			Subsystem clock operation	V _{DD} = 3.0 V	operatio n	Resonator connection		2.1	3.5	mA
				fsuв = 32.768 kHz	operatio	Square wave input		4.8	5.9	μΑ
				Note 4 $T_A = -40^{\circ}C$		Resonator connection		4.9	6.0	μΑ
				fsub = 32.768 kHz	Normal	Square wave input		4.9	5.9	μΑ
				Note 4 $T_A = +25^{\circ}C$	operatio n	Resonator connection		5.0	6.0	μΑ
				fsuв = 32.768 kHz	Normal	Square wave input		5.0	7.6	μΑ
				Note 4 $T_A = +50^{\circ}C$	operatio n	Resonator connection		5.1	7.7	μΑ
				fsuв = 32.768 kHz	Normal	Square wave input		5.2	9.3	μА
				Note 4 $T_A = +70^{\circ}C$	operatio n	Resonator connection		5.3	9.4	μΑ
				fsuB = 32.768 kHz	Normal	Square wave input		5.7	13.3	μΑ
				Note 4 TA = +85°C	operatio n	Resonator connection		5.8	13.4	μΑ
				fsuв = 32.768 kHz	Normal	Square wave input		10.0	46.0	μΑ
				Note 4 TA = +105°C	operatio n	Resonator connection		10.0	46.0	μA

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz $2.4~V \leq$ VDD \leq 5.5 V@1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (Ta = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2}	HALT	HS (high-	fih = 32 MHz Note 4	V _{DD} = 5.0 V		0.62	3.40	mA
Current Note 1	Note 2	mode	speed main) mode Note 7		V _{DD} = 3.0 V		0.62	3.40	mA
			mode	fih = 24 MHz Note 4	V _{DD} = 5.0 V		0.50	2.70	mA
					V _{DD} = 3.0 V		0.50	2.70	mA
				fih = 16 MHz Note 4	V _{DD} = 5.0 V		0.44	1.90	mA
					V _{DD} = 3.0 V		0.44	1.90	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.31	2.10	mA
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.48	2.20	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.31	2.10	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	2.20	mA
			$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.21	1.10	mA	
				V _{DD} = 5.0 V	Resonator connection		0.28	1.20	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.21	1.10	mA
				V _{DD} = 3.0 V	Resonator connection		0.28	1.20	mA
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μA
			clock operation	T _A = -40°C	Resonator connection		0.47	0.80	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μΑ
			T _A = +25°C	Resonator connection		0.53	0.80	μΑ	
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μA
				T _A = +50°C	Resonator connection		0.60	2.49	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μA
				T _A = +70°C	Resonator connection		0.83	4.22	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μΑ
				T _A = +85°C	Resonator connection		1.28	8.23	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		5.50	41.00	μΑ
				T _A = +105°C	Resonator connection		5.50	41.00	μΑ
	DD3 ^{Note 6}	STOP	T _A = -40°C				0.19	0.52	μΑ
		mode ^{Note 8}	T _A = +25°C				0.25	0.52	μΑ
			T _A = +50°C				0.32	2.21	μΑ
			T _A = +70°C				0.55	3.94	μΑ
			T _A = +85°C	T _A = +85°C			1.00	7.95	μA
			T _A = +105°C			<u> </u>	5.00	40.00	μΑ

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz

- 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(3) Peripheral Functions (Common to all products)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	FIL Note 1				0.20		μΑ
RTC operating current	RTC Notes 1, 2, 3				0.02		μΑ
12-bit interval timer operating current	IIT Notes 1, 2, 4				0.02		μА
Watchdog timer operating current	WDT Notes 1, 2, 5	f∟ = 15 kHz			0.22		μΑ
A/D converter	ADC Notes 1, 6	When conversion	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
operating current	Notes 1, 6	at maximum speed	Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note 1				75.0		μА
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	ILVD Notes 1, 7				0.08		μА
Self programming operating current	FSP Notes 1, 9				2.50	12.20	mA
BGO operating current	BGO Notes 1, 8				2.50	12.20	mA
SNOOZE	Isnoz	ADC operation	The mode is performed Note 10		0.50	1.10	mA
operating current	Note 1		The A/D conversion operations are performed, Loe voltage mode, AVREFP = VDD = 3.0 V		1.20	2.04	mA
		CSI/UART operation	n		0.70	1.54	mA

Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.

- **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter is in operation.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- **9.** Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode in the RL78/G13 User's Manual.
- Remarks 1. fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - **4.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

3.4 AC Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Items	Symbol		Condition	3	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Tcy	Main	HS (high-speed	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.03125		1	μS
instruction execution time)		system clock (fmain) operation	main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
		Subsystem of operation	clock (fsua)	$2.4~V \le V_{DD} \le 5.5~V$	28.5	30.5	31.3	μS
		In the self	HS (high-speed	2.7 V ≤ V _{DD} ≤ 5.5 V	0.03125		1	μS
		programming mode	main) mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
External system clock frequency	fex	$2.7 \text{ V} \leq \text{V}_{DD} \leq$	5.5 V		1.0		20.0	MHz
		$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$			1.0		16.0	MHz
	fexs				32		35	kHz
External system clock input high-	texh, texl	, texl $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		24			ns	
level width, low-level width		2.4 V ≤ V _{DD} <	< 2.7 V		30			ns
	texhs, texhs				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтін, tті∟				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	f то	HS (high-spe	eed 4.0 V	≤ EV _{DD0} ≤ 5.5 V			16	MHz
output frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			2.4 V	≤ EV _{DD0} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	fpcL	HS (high-spe	eed 4.0 V	\leq EV _{DD0} \leq 5.5 V			16	MHz
frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			2.4 V	≤ EV _{DD0} < 2.7 V			4	MHz
Interrupt input high-level width,	tinth,	INTP0	2.4 V	$\leq V_{DD} \leq 5.5 \text{ V}$	1			μS
low-level width	tintl	INTP1 to INT	TP11 2.4 V	\leq EV _{DD0} \leq 5.5 V	1			μS
Key interrupt input low-level width	t KR	KR0 to KR7	2.4 V	\leq EV _{DD0} \leq 5.5 V	250			ns
RESET low-level width	trsl				10			μS

Note The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$ $2.4V \le EV_{DD0} < 2.7 \text{ V}$: MIN. 125 ns

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn).

m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Points

External System Clock Timing

TI/TO Timing

Interrupt Request Input Timing

Key Interrupt Input Timing

RESET Input Timing

3.5 Peripheral Functions Characteristics

AC Timing Test Points

3.5.1 Serial array unit

(1) During communication at same potential (UART mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Symbol Conditions		HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
Transfer rate Note 1					fmck/12 Note 2	bps
			Theoretical value of the maximum transfer rate fclk = 32 MHz, fMck = fclk		2.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The following conditions are required for low voltage interface when EVDDO < VDD.

 $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 1.3 Mbps

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)

2. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

			·		•	
Parameter	Symbol		Conditions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	250		ns
			$2.4~V \leq EV_{DD0} \leq 5.5~V$	500		ns
SCKp high-/low-level width	t кн1,	4.0 V ≤ EV _{DD}	4.0 V ≤ EV _{DD0} ≤ 5.5 V			ns
	t _{KL1}	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү1/2 – 36		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		tkcy1/2 - 76		ns
SIp setup time (to SCKp↑) Note 1	tsıĸı	$4.0~V \leq EV_{DD0} \leq 5.5~V$		66		ns
		2.7 V ≤ EV _{DD}	$2.7~V \leq EV_{DD0} \leq 5.5~V$			ns
		2.4 V ≤ EV _{DD}	2.4 V ≤ EV _{DD0} ≤ 5.5 V			ns
SIp hold time (from SCKp↑) Note 2	t KSI1			38		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF Note	o 4		50	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3).
 - g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)
 - 2. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 - n: Channel number (mn = 00 to 03, 10 to 13))

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Cond	ditions	HS (high-speed ma	in) Mode	Unit	
				MIN.	MAX.		
SCKp cycle time Note 5	tkcy2	$4.0~V \leq EV_{DD0} \leq 5.5$	20 MHz < fмск	16/fмск		ns	
		V	fмcк ≤ 20 MHz	12/fмск		ns	
		2.7 V ≤ EV _{DD0} ≤ 5.5	16 MHz < fмск	16/fмск		ns	
		V	fмck ≤ 16 MHz	12/fмск		ns ns ns ns ns ns ns ns ns ns ns ns ns n	
		2.4 V ≤ EV _{DD0} ≤ 5.5 V					
				12/fмcк and 1000			
SCKp high-/low-level	t кн2,	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ M}$	V	tkcy2/2 – 14		ns	
width	t _{KL2}	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tkcy2/2 – 16		ns	
		2.4 V ≤ EV _{DD0} ≤ 5.5	V	tkcy2/2 - 36		ns	
SIp setup time	tsık2	$2.7~V \leq EV_{DD0} \leq 5.5$	V	1/fмск+40		ns	
(to SCKp↑) Note 1		$2.4~V \leq EV_{DD0} \leq 5.5$	V	1/fмск+60		ns	
SIp hold time (from SCKp↑) Note 2	tksi2	2.4 V ≤ EV _{DD0} ≤ 5.5	V	1/fмск+62		ns	
Delay time from SCKp↓ to SOp output	tkso2	C = 30 pF Note 4	$2.7~V \leq EV_{DD0} \leq 5.5$ V		2/fмск+66	ns	
Note 3			$2.4~V \leq EV_{DD0} \leq 5.5$ V		2/fмск+113	ns	

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)
 - 2. fmck: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

 n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)

2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(4) During communication at same potential (simplified I²C mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-sp Mo	,	Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$2.7~V \leq EV_{DD0} \leq 5.5~V,$		400 Note1	kHz
		$C_b = 50$ pF, $R_b = 2.7$ k Ω			
		$2.4~V \leq EV_{DD0} \leq 5.5~V,$		100 Note1	kHz
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Hold time when SCLr = "L"	tLow	$2.7~V \leq EV_{DD0} \leq 5.5~V,$	1200		ns
		$C_b = 50$ pF, $R_b = 2.7$ k Ω			
		$2.4~V \leq EV_{DD0} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Hold time when SCLr = "H"	tніgн	$2.7~V \leq EV_{DD0} \leq 5.5~V,$	1200		ns
		$C_b = 50$ pF, $R_b = 2.7$ k Ω			
		$2.4~V \leq EV_{DD0} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{DD0} \leq 5.5~V,$	1/fmck + 220		ns
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	Note2		
		$2.4~V \leq EV_{DD} \leq 5.5~V,$	1/fmck + 580		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	Note2		
Data hold time (transmission)	thd:dat	$2.7~V \leq EV_{DD0} \leq 5.5~V,$	0	770	ns
		$C_b = 50$ pF, $R_b = 2.7$ k Ω			
		$2.4~V \leq EV_{DD0} \leq 5.5~V,$	0	1420	ns
		$C_b = 100 \ pF, \ R_b = 3 \ k\Omega$			

Notes 1. The value must also be equal to or less than fmck/4.

2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Remarks are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Remarks 1. $R_b[\Omega]$:Communication line (SDAr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance

- **2.** r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14), h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
- 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol		Conditions		HS (high-speed main) Mode		Unit
					MIN.	MAX.	
Transfer rate		Reception	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$			fmck/12 Note 1	bps
			V , $2.7 \ V \le V_b \le 4.0 \ V$	Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk		2.6	Mbps
			$2.3~V \leq V_b \leq 2.7~V \hspace{1cm} n$			fmck/12 Note 1	bps
				Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk		2.6	Mbps
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$			fMCK/12 Notes 1,2	bps
			$1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate fclk = 32 MHz, fmck = fclk		2.6	Mbps

- Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
 - 2. The following conditions are required for low voltage interface when EVDDO < VDD.

 $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 1.3 Mbps

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- Remarks 1. V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00 to 03, 10 to 13)
 - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		Condit	ions	HS (high-spee	ed main) Mode	Unit
					MIN.	MAX.	
Transfer rate		Transmission	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$			Note 1	bps
			$V,$ $2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \ pF, \ R_b = 1.4 \ k\Omega, \ V_b = 2.7 \ V$		2.6 Note 2	Mbps
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0$			Note 3	bps
			V , $2.3 \text{ V} \le V_b \le 2.7 \text{ V}$	Theoretical value of the maximum transfer rate $C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega, \ V_b = 2.3 \ V$		1.2 Note 4	Mbps
			2.4 V ≤ EV _{DD0} < 3.3			Note 5	bps
			$V,$ $1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 V$		0.43 Note 6	Mbps

Notes 1. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD0} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.2}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DDO} < 4.0 V and 2.4 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.0}{V_b})}\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

5. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{1.5}{V_b})}\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- $\begin{array}{lll} \textbf{Remarks 1.} & R_b[\Omega]: Communication line (TxDq) \ pull-up \ resistance, \\ & C_b[F]: \ Communication \ line \ (TxDq) \ load \ capacitance, \ V_b[V]: \ Communication \ line \ voltage \\ \end{array}$
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
 - **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-speed	d main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time txcy1 t		tkcy1 ≥ 4/fclk	$4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0$ $V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$	600		ns
			$2.7~V \leq EV_{DD0} < 4.0~V,~2.3~V \leq V_b \leq 2.7$ $V,$ $C_b = 30~pF,~R_b = 2.7~k\Omega$	1000		ns
			$2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0$ $V,$ $C_b = 30~pF,~R_b = 5.5~k\Omega$	2300		ns
SCKp high-level width	tкн1	4.0 V ≤ EV _{DD} C _b = 30 pF, F	$_{0}$ \leq 5.5 V, 2.7 V \leq V $_{b}$ \leq 4.0 V, $_{c}$ $_{c$	tксу1/2 - 150		ns
			$2.7~V \leq EV_{DD0} < 4.0~V,~2.3~V \leq V_b \leq 2.7~V,$ $C_b = 30~pF,~R_b = 2.7~k\Omega$			ns
		2.4 V ≤ EV _{DD} C _b = 30 pF, F	$_{0}$ < 3.3 V, 1.6 V \leq V $_{b}$ \leq 2.0 V, R_{b} = 5.5 k Ω	tксу1/2 — 916		ns
SCKp low-level width	tĸL1	$4.0 \text{ V} \leq \text{EV}_{DD}$ $C_b = 30 \text{ pF, F}$	$_{0} \leq 5.5 \; \text{V, } 2.7 \; \text{V} \leq \text{V}_{\text{b}} \leq 4.0 \; \text{V,}$ $R_{\text{b}} = 1.4 \; \text{k}\Omega$	tkcy1/2 - 24		ns
$C_b = 30$ $2.4 \text{ V} \le$		$2.7 \text{ V} \leq \text{EV}_{DD}$ $C_b = 30 \text{ pF, F}$	0 < 4.0 V, 2.3 V \leq V _b \leq 2.7 V, $R_b = 2.7 \text{ k}\Omega$	tkcy1/2 - 36		ns
		$2.4 \text{ V} \leq \text{EV}_{DD}$ $C_b = 30 \text{ pF, F}$	$_{0} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V,$ $R_{b} = 5.5 \ k\Omega$	tксу1/2 — 100		ns

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vpd tolerance (for the 20- to 52-pin products)/EVpd tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-spe	eed main) Mode	Unit
			MIN.	MAX.	
SIp setup time	tsıĸı	$4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	162		ns
(to SCKp↑) Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	354		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \le EV_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V,$	958		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
SIp hold time (from SCKp $^{\uparrow}$) Note	tksi1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
Delay time from SCKp↓ to	tkso1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$		200	ns
SOp output Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V,$		390	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \le EV_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V,$	_	966	ns
		$C_b=30~pF,~R_b=5.5~k\Omega$			

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-spe	eed main) Mode	Unit
			MIN.	MAX.	
SIp setup time	tsıĸı	$4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	88		ns
(to SCKp↓) Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	88		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \ V \le EV_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V,$	220		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
SIp hold time (from SCKp \downarrow) Note	tksi1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$	38		ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
Delay time from SCKp↑ to	tkso1	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$		50	ns
SOp output Note		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$			
		$2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \; 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V,$		50	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$		50	ns
		$C_b=30~pF,~R_b=5.5~k\Omega$			

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

- Remarks 1. $R_b[\Omega]$:Communication line (SCKp, SOp) pull-up resistance, $C_b[F]$: Communication line (SCKp, SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 00, 01, 02, 10, 12, 13), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	C	Conditions	HS (high-spe	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkCY2	$4.0~V \leq EV_{DD0} \leq 5.5$	24 MHz < fмск	28/fмск		ns
		V,	20 MHz < fмcк ≤ 24 MHz	24/fмск		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмcк ≤ 20 MHz	20/fмск		ns
			4 MHz < fmck ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le EV_{DD0} < 4.0$	24 MHz < fмск	40/fмск		ns
		V,	$20~\text{MHz} < \text{fmck} \le 24~\text{MHz}$	32/fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмcк ≤ 20 MHz	28/fмск		ns
			8 MHz < fмcк ≤ 16 MHz	24/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$2.4~V \leq EV_{DD0} < 3.3$	24 MHz < fмск	96/fмск		ns
		V,	20 MHz < fмcк ≤ 24 MHz	72/fмск		ns
		$1.6 \ V \le V_b \le 2.0 \ V$	16 MHz < fмcк ≤ 20 MHz	64/fмск		ns
			8 MHz < fмcк ≤ 16 MHz	52/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	32/fмск		ns
			fмcк ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tкн2, tкL2	$4.0 \ V \le EV_{DD0} \le 5.$ $2.7 \ V \le V_b \le 4.0 \ V$	5 V,	tkcy2/2 - 24		ns
		$ 2.7 \ V \le EV_{DD0} < 4.0 \ V, $ $ 2.3 \ V \le V_b \le 2.7 \ V $		tkcy2/2 - 36		ns
		$\begin{split} 2.4 \ V & \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V & \leq V_{b} \leq 2.0 \ V^{\text{Note 2}} \end{split}$		tkcy2/2 - 100		ns
SIp setup time (to SCKp↑) Note2	tsık2	$ 4.0 \ V \leq EV_{DD0} \leq 5.5 $ $ 2.7 \ V \leq V_b \leq 4.0 \ V $	5 V,	1/fмск + 40		ns
		$2.7 \ V \le EV_{DD0} < 4.$ $2.3 \ V \le V_b \le 2.7 \ V$	0 V,	1/fмск + 40		ns
		$2.4 \ V \le EV_{DD0} < 3.$ $1.6 \ V \le V_b \le 2.0 \ V$	3 V,	1/fмск + 60		ns
Slp hold time (from SCKp [↑]) Note 3	tksi2			1/fmck + 62		ns
Delay time from SCKp↓ to SOp output Note 4	t KSO2	$4.0~V \leq EV_{DD0} \leq 5.$ $C_b = 30~pF,~R_b = 1$	5 V, 2.7 V \leq V _b \leq 4.0 V, .4 k Ω		2/fмск + 240	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2$	0 V, 2.3 V \leq V _b \leq 2.7 V, .7 kΩ		2/fмск + 428	ns ns ns ns ns ns ns ns ns ns ns ns ns n
		$2.4 \ V \le EV_{DD0} < 3.$ $C_b = 30 \ pF, \ R_b = 5$	3 V, 1.6 V ≤ V _b ≤ 2.0 V .5 kΩ		2/fмск + 1146	ns

(Notes, Caution and Remarks are listed on the next page.)

- Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 00, 01, 02,
 - 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions		peed main) ode	Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$		400 Note 1	kHz
		$\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		400 Note 1	kHz
		$\begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$		100 Note 1	kHz
		$2.7 \text{ V} \leq \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$		100 Note 1	kHz
		$\begin{split} &2.4 \; V \leq \text{EV}_{\text{DDO}} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V, \\ &C_b = 100 \; p\text{F}, \; R_b = 5.5 \; k\Omega \end{split}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLow	$\begin{aligned} 4.0 & \ V \le EV_{DD0} \le 5.5 \ V, \\ 2.7 & \ V \le V_b \le 4.0 \ V, \\ C_b = 50 & \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$	1200		ns
		$\begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1200		ns
		$\begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$	4600		ns
		$\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	4600		ns
		$\begin{split} 2.4 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	4650		ns
Hold time when SCLr = "H"	tніgн	$\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$	620		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$	500		ns
		$\begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$	2700		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$	2400		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DDO}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega$	1830		ns

(${f Notes}$ and ${f Caution}$ are listed on the next page, and ${f Remarks}$ are listed on the page after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (2/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-sp	,	Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\begin{aligned} 4.0 & \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 & \ V \leq V_b \leq 4.0 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$	1/f _{MCK} + 340 Note 2		ns
		$ \begin{aligned} 2.7 & \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 & \ V \leq V_b \leq 2.7 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	1/f _{MCK} + 340 Note 2		ns
		$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $	1/f _{MCK} + 760 Note 2		ns
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ns		
		$1.6 \text{ V} \le V_b \le 2.0 \text{ V},$			ns
Data hold time (transmission)	thd:dat	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	0	770	ns
		$\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	0	770	ns
		$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $	0	1420	ns
		$ \begin{aligned} &2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ &2.3 \; V \leq V_b \leq 2.7 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	0	1420	ns
		$\label{eq:substitute} \begin{split} 2.4 \ V & \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V & \leq V_b \leq 2.0 \ V, \\ C_b & = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	0	1215	ns

Notes 1. The value must also be equal to or less than fmck/4.

2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VIL, see the DC characteristics with TTL input buffer selected.

- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00, 01, 02, 10, 12, 13)

3.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (h	igh-spee	ed main)	Mode	Unit
				ndard ode	Fast Mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclk ≥ 3.5 MHz	-	_	0	400	kHz
		Standard mode: fclk ≥ 1 MHz	0	100	-	_	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μS
Hold time when SCLA0 = "H"	thigh		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) Note 2	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	t BUF		4.7		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark n = 0, 1

<R>

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

		Reference Voltage	
	Reference voltage (+) = AVREFP	Reference voltage (+) = V _{DD}	Reference voltage (+) = VBGR
Input channel	Reference voltage (-) = AVREFM	Reference voltage (-) = Vss	Reference voltage (-) = AVREFM
ANI0 to ANI14	Refer to 3.6.1 (1) .	Refer to 3.6.1 (3) .	Refer to 3.6.1 (4) .
ANI16 to ANI26	Refer to 3.6.1 (2) .		
Internal reference voltage	Refer to 3.6.1 (1) .		_
Temperature sensor output			
voltage			

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Condition	าร	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	2.4 V ≤ AVREFP ≤ 5.5 V		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AVREFP = VDD Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Integral linearity error	ILE	10-bit resolution AVREFP = VDD Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$\begin{array}{c} 2.4 \ V \leq AV_{REFP} \leq 5.5 \\ V \end{array}$			±1.5	LSB
Analog input voltage	Vain	ANI2 to ANI14	ANI2 to ANI14			AVREFP	V
		Internal reference voltage out (2.4 V \leq VDD \leq 5.5 V, HS (high		V _{BGR} Note 4			V
		'	Femperature sensor output voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode)				V

(Notes are listed on the next page.)

- **Notes 1.** Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD} .

Zero-scale error/Full-scale error: Add $\pm 0.05\% FSR$ to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.

4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}} = 0 \text{ V})$

Parameter	Symbol	Condition	าร	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution $EVDD0 \le AV_{REFP} = V_{DD}^{Notes 3, 4}$	2.4 V ≤ AVREFP ≤ 5.5 V		1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin : ANI16 to ANI26	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution $EV_{DD0} \le AV_{REFP} = V_{DD}^{Notes 3, 4}$	$2.4~V \le AV_{REFP} \le 5.5$ V			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution $EVDD0 \le AV_{REFP} = V_{DD}^{Notes 3, 4}$	$2.4~V \le AV_{REFP} \le 5.5$ V			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution $EVDD0 \le AV_{REFP} = V_{DD}^{Notes 3, 4}$	$2.4~V \leq AV_{REFP} \leq 5.5$ V			±3.5	LSB
Differential linearity error	DLE	10-bit resolution $EVDD0 \le AV_{REFP} = V_{DD}^{Notes 3, 4}$	$2.4~V \le AV_{REFP} \le 5.5$ V			±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI26		0		AV _{REFP} and EV _{DD0}	V

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\% FSR$ to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

4. When $AV_{REFP} < EV_{DD0} \le V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\% FSR$ to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions	S	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANIO to ANI14,	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		ANI16 to ANI26	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal reference	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		voltage, and temperature sensor output voltage (HS	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
		(high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Full-scale errorNotes 1, 2	Ers	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
Differential linearity error	DLE	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Analog input voltage	Vain	ANI0 to ANI14		0		V _{DD}	٧
		ANI16 to ANI26		0		EV _{DD0}	٧
		Internal reference voltage output (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 3			V
		'	remperature sensor output voltage 2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode)				V

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	Vain			0		V _{BGR} Note 3	٧

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.
 - 4. When reference voltage (-) = Vss, the MAX. values are as follows.
 Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.
 Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.
 Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

3.6.2 Temperature sensor/internal reference voltage characteristics

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, Ta = +25°C		1.05		V
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

3.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time		1.51	1.57	V
	V _{PDR}	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width	T _{PW}		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(Ta = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	V _{LVD0}	Power supply rise time	3.90	4.06	4.22	V
voltage			Power supply fall time	3.83	3.98	4.13	V
		V _{LVD1}	Power supply rise time	3.60	3.75	3.90	V
			Power supply fall time	3.53	3.67	3.81	V
		V _{LVD2}	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		V LVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		V _{LVD4}	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		V _{LVD5}	Power supply rise time	2.70	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		V _{LVD6}	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		V _{LVD7}	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum p	ulse width	tLW		300			μS
Detection d	elay time					300	μS

LVD Detection Voltage of Interrupt & Reset Mode

(Ta = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Cond	itions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	V _{LVDD0}	VPOC2, VPC	oc1, VPOC0 = 0, 1, 1,	falling reset voltage	2.64	2.75	2.86	٧
mode	VLVDD1	LV	'IS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	٧
	VLVDD2	LV	'IS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	٧
	V LVDD3	LV	'IS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

3.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.8 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$2.4~V \le V_{DD} \le 5.5~V$	1		32	MHz
Number of code flash rewrites	Cerwr	Retained for 20 years TA = 85°C Note 4	1,000			Times
Number of data flash rewrites		Retained for 1 years TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C Note 4	100,000			
		Retained for 20 years TA = 85°C Note 4	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library.
 - **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
 - 4. This temperature is the average value at which data are retained.

3.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

3.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tнo	POR and LVD reset must be released before the external reset is released.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

tsu: Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

4. PACKAGE DRAWINGS

4.1 20-pin Products

R5F1006AASP, R5F1006CASP, R5F1006DASP, R5F1006EASP R5F1016AASP, R5F1016CASP, R5F1016DASP, R5F1016EASP R5F1006ADSP, R5F1006CDSP, R5F1006DDSP, R5F1006EDSP R5F1016ADSP, R5F1016CDSP, R5F1016DDSP, R5F1016EDSP R5F1006AGSP, R5F1006CGSP, R5F1006DGSP, R5F1006EGSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP20-0300-0.65	PLSP0020JC-A	S20MC-65-5A4-3	0.12

© 2012 Renesas Electronics Corporation. All rights reserved.

4.2 24-pin Products

R5F1007AANA, R5F1007CANA, R5F1007DANA, R5F1007EANA R5F1017AANA, R5F1017CANA, R5F1017DANA, R5F1017EANA R5F1007ADNA, R5F1007CDNA, R5F1007DDNA, R5F1007EDNA R5F1007AGNA, R5F1007CGNA, R5F1007DGNA, R5F1007EGNA

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN24-4x4-0.50	PWQN0024KE-A	P24K8-50-CAB-3	0.04

Referance	Dimension in Millimeters			
Symbol	Min	Nom	Max	
D	3.95	4.00	4.05	
E	3.95	4.00	4.05	
Α		_	0.80	
A ₁	0.00			
b	0.18	0.25	0.30	
е	_	0.50	_	
Lp	0.30	0.40	0.50	
х	_		0.05	
у	_		0.05	
Z _D		0.75		
Z _E		0.75		
C ₂	0.15	0.20	0.25	
D ₂		2.50		
E ₂		2.50		

4.3 25-pin Products

R5F1008AALA, R5F1008CALA, R5F1008DALA, R5F1008EALA R5F1018AALA, R5F1018CALA, R5F1018DALA, R5F1018EALA R5F1008AGLA, R5F1008CGLA, R5F1008DGLA, R5F1008EGLA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-WFLGA25-3x3-0.50	PWLG0025KA-A	P25FC-50-2N2-2	0.01

©2012 Renesas Electronics Corporation. All rights reserved.

R0.215±0.05

0.33±0.05

0.43±0.05

4.4 30-pin Products

R5F100AAASP, R5F100ACASP, R5F100ADASP, R5F100AEASP, R5F100AFASP, R5F100AGASP R5F101AAASP, R5F101ACASP, R5F101ADASP, R5F101AEASP, R5F101AFASP, R5F101AGASP R5F100AADSP, R5F100ACDSP, R5F100ADDSP, R5F100AEDSP, R5F100AFDSP, R5F100AGDSP R5F101AADSP, R5F101ACDSP, R5F101ADDSP, R5F101AEDSP, R5F101AFDSP, R5F101AGDSP R5F100AAGSP, R5F100ACGSP, R5F100ADGSP,R5F100AEGSP, R5F100AFGSP, R5F100AGGSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24^{+0.08}_{-0.07}$
Е	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
М	0.13
N	0.10
Р	3°+5°
Т	0.25
U	0.6±0.15
	·

4.5 32-pin Products

R5F100BAANA, R5F100BCANA, R5F100BDANA, R5F100BEANA, R5F100BFANA, R5F100BGANA R5F101BAANA, R5F101BCANA, R5F101BDANA, R5F101BEANA, R5F101BFANA, R5F101BGANA R5F100BADNA, R5F100BCDNA, R5F100BDDNA, R5F100BEDNA, R5F100BFDNA, R5F100BGDNA R5F101BADNA, R5F101BCDNA, R5F101BDDNA, R5F101BEDNA, R5F100BGGNA, R5F100BGNA, R5F100BGN

JEITA Package code	RENESAS code	Previous code	MASS (TYP.)[g]
P-HWQFN32-5x5-0.50	PWQN0032KB-A	P32K8-50-3B4-5	0.06

Referance	Dimension in Millimeters		
Symbol	Min	Nom	Max
D	4.95	5.00	5.05
E	4.95	5.00	5.05
Α			0.80
A ₁	0.00	_	
b	0.18	0.25	0.30
е		0.50	
Lp	0.30	0.40	0.50
х			0.05
у			0.05
Z _D		0.75	
Z _E		0.75	
C ₂	0.15	0.20	0.25
D ₂		3.50	_
E ₂		3.50	

 \bigcirc 2013 Renesas Electronics Corporation. All rights reserved.

4.6 36-pin Products

R5F100CAALA, R5F100CCALA, R5F100CDALA, R5F100CEALA, R5F100CFALA, R5F100CGALA R5F101CAALA, R5F101CCALA, R5F101CDALA, R5F101CEALA, R5F101CFALA, R5F101CGALA R5F100CAGLA, R5F100CCGLA, R5F100CDGLA, R5F100CEGLA, R5F100CFGLA, R5F100CGGLA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-WFLGA36-4x4-0.50	PWLG0036KA-A	P36FC-50-AA4-2	0.023

©2012 Renesas Electronics Corporation. All rights reserved.

4.7 40-pin Products

R5F100EAANA, R5F100ECANA, R5F100EDANA, R5F100EEANA, R5F100EFANA, R5F100EGANA, R5F100EHANA R5F101EAANA, R5F101ECANA, R5F101EDANA, R5F101EEANA, R5F101EFANA, R5F101EGANA, R5F101EHANA R5F100EADNA, R5F100ECDNA, R5F100EDDNA, R5F100EEDNA, R5F100EFDNA, R5F100EGDNA, R5F100EHDNA

R5F101EADNA, R5F101ECDNA, R5F101EDDNA, R5F101EEDNA, R5F101EFDNA, R5F101EGDNA, R5F101EHDNA

R5F100EAGNA, R5F100ECGNA, R5F100EDGNA, R5F100EEGNA, R5F100EFGNA, R5F100EGGNA, R5F100EHGNA

JEITA Package code	RENESAS code	Previous code	MASS (TYP.) [g]
P-HWQFN40-6x6-0.50	PWQN0040KC-A	P40K8-50-4B4-5	0.09

Referance	Dimension in Millimeters		
Symbol	Min	Nom	Max
D	5.95	6.00	6.05
Е	5.95	6.00	6.05
А			0.80
A ₁	0.00	_	
b	0.18	0.25	0.30
е		0.50	
Lp	0.30	0.40	0.50
х	_		0.05
у			0.05
Z _D		0.75	
Z _E		0.75	
C ₂	0.15	0.20	0.25
D ₂		4.50	_
E ₂		4.50	

4.8 44-pin Products

R5F100FAAFP, R5F100FCAFP, R5F100FDAFP, R5F100FEAFP, R5F100FFAFP, R5F100FGAFP,

R5F100FHAFP, R5F100FJAFP, R5F100FKAFP, R5F100FLAFP

R5F101FAAFP, R5F101FCAFP, R5F101FDAFP, R5F101FEAFP, R5F101FFAFP, R5F101FGAFP,

R5F101FHAFP, R5F101FJAFP, R5F101FKAFP, R5F101FLAFP

R5F100FADFP, R5F100FCDFP, R5F100FDDFP, R5F100FEDFP, R5F100FFDFP, R5F100FGDFP,

R5F100FHDFP, R5F100FJDFP, R5F100FKDFP, R5F100FLDFP

R5F101FADFP, R5F101FCDFP, R5F101FDDFP, R5F101FEDFP, R5F101FFDFP, R5F101FGDFP,

R5F101FHDFP, R5F101FJDFP, R5F101FKDFP, R5F101FLDFP

R5F100FAGFP, R5F100FCGFP, R5F100FDGFP, R5F100FEGFP, R5F100FFGFP, R5F100FGGFP,

R5F100FHGFP, R5F100FJGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP44-10x10-0.80	PLQP0044GC-A	P44GB-80-UES-2	0.36

4.9 48-pin Products

R5F100GAAFB, R5F100GCAFB, R5F100GDAFB, R5F100GEAFB, R5F100GFAFB, R5F100GAFB, R5F100GHAFB, R5F100GJAFB, R5F100GKAFB, R5F100GLAFB

R5F101GAAFB, R5F101GCAFB, R5F101GDAFB, R5F101GEAFB, R5F101GFAFB, R5F101GHAFB, R5F101GJAFB, R5F101GKAFB, R5F101GLAFB

R5F100GADFB, R5F100GCDFB, R5F100GDDFB, R5F100GEDFB, R5F100GFDFB, R5F100GHDFB, R5F100GHDFB, R5F100GHDFB, R5F100GHDFB, R5F100GHDFB

R5F101GADFB, R5F101GCDFB, R5F101GDDFB, R5F101GEDFB, R5F101GFDFB, R5F101GHDFB, R5F101GJDFB, R5F101GKDFB, R5F101GKDFB, R5F101GKDFB, R5F101GKDFB

R5F100GAGFB, R5F100GCGFB, R5F100GDGFB, R5F100GEGFB, R5F100GFGFB, R5F100GHGFB, R5F10

RENESAS Code

Previous Code

MASS (TYP.) [g]

JEITA Package Code

its true position at maximum material condition.

					/ [9]
	P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	0.16	
	P-LFQFP48-7x7-0.50 HD 36 37	PLQP0048KF-A	P48GA-50-8EU-1		lead end
+ =	48	13		ITEM	(UNIT:mm) DIMENSIONS
	. 1	12.			7.00±0.20
1				E	7.00±0.20
└-ZE		ــــــــــــــــــــــــــــــــــــــ	<u> </u>	HD	9.00±0.20
				HE	9.00±0.20
	- ZD	→ e		A	1.60 MAX.
				A1	0.10±0.05
	- b 🕀 :	x M S	А¬	A2	1.40±0.05
				A3	0.25
			A2 ¬	b	0.22±0.05
			+ +	С	$0.145^{+0.055}_{-0.045}$
				L	0.50
1				S Lp	0.60±0.15
	<u>/ </u>			L1	1.00±0.20
	<u> </u>		† ' †	θ	3°+5°
	└─ y S		A1 [_]	е	0.50
				x	0.08
				у у	0.08
				ZD	0.75
NO	TE ch lead centerline is located within	n 0 00 mm of		ZE	0.75
⊏ac	on read centerline is located within	11 0.00 11111 01			

© 2012 Renesas Electronics Corporation. All rights reserved.

R5F100GAANA, R5F100GCANA, R5F100GDANA, R5F100GEANA, R5F100GFANA, R5F100GHANA, R5F100GHANA, R5F100GKANA, R5F100GKANA, R5F100GKANA, R5F100GKANA

R5F101GAANA, R5F101GCANA, R5F101GDANA, R5F101GEANA, R5F101GFANA, R5F101GHANA, R5F101GHANA, R5F101GHANA, R5F101GKANA, R5F101GKANA, R5F101GLANA

R5F100GADNA, R5F100GCDNA, R5F100GDDNA, R5F100GEDNA, R5F100GFDNA, R5F100GDNA, R5F100GHDNA, R5F100GJDNA, R5F100GKDNA, R5F100GLDNA

R5F101GADNA, R5F101GCDNA, R5F101GDDNA, R5F101GEDNA, R5F101GFDNA, R5F101GGDNA, R5F101GHDNA, R5F101GJDNA, R5F101GKDNA, R5F101GLDNA

R5F100GAGNA, R5F100GCGNA, R5F100GDGNA, R5F100GEGNA, R5F100GFGNA, R5F100GHGNA, R5F100GJGNA

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN48-7x7-0.50	PWQN0048KB-A	48PJN-A P48K8-50-5B4-6	0.13

Referance	Dimension in Millimeters		
Symbol	Min	Nom	Max
D	6.95	7.00	7.05
Е	6.95	7.00	7.05
А			0.80
A ₁	0.00		
b	0.18	0.25	0.30
е		0.50	
Lp	0.30	0.40	0.50
Х			0.05
у			0.05
Z _D		0.75	
Z _E		0.75	
C ₂	0.15	0.20	0.25
D ₂		5.50	_
E ₂	_	5.50	_

©2013 Renesas Electronics Corporation. All rights reserved.

4.10 52-pin Products

R5F100JCAFA, R5F100JDAFA, R5F100JEAFA, R5F100JFAFA, R5F100JGAFA, R5F100JHAFA, R5F100JJAFA, R5F100JKAFA, R5F100JLAFA

R5F101JCAFA, R5F101JDAFA, R5F101JEAFA, R5F101JFAFA, R5F101JGAFA, R5F101JHAFA, R5F101JJAFA, R5F101JLAFA

R5F100JCDFA, R5F100JDDFA, R5F100JEDFA, R5F100JFDFA, R5F100JGDFA, R5F100JHDFA, R5F100JDFA, R5F100JLDFA

R5F101JCDFA, R5F101JDDFA, R5F101JEDFA, R5F101JFDFA, R5F101JGDFA, R5F101JHDFA, R5F101JDFA, R5F101JLDFA

R5F100JCGFA, R5F100JDGFA, R5F100JEGFA, R5F100JFGFA, R5F100JGGFA, R5F100JHGFA, R5F100JJGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

© 2012 Renesas Electronics Corporation. All rights reserved.

4.11 64-pin Products

R5F100LCAFA, R5F100LDAFA, R5F100LEAFA, R5F100LFAFA, R5F100LGAFA, R5F100LHAFA, R5F100LJAFA, R5F100LKAFA, R5F100LLAFA

R5F101LCAFA, R5F101LDAFA, R5F101LEAFA, R5F101LFAFA, R5F101LGAFA, R5F101LHAFA, R5F101LJAFA, R5F101LKAFA, R5F101LLAFA

R5F100LCDFA, R5F100LDDFA, R5F100LEDFA, R5F100LFDFA, R5F100LGDFA, R5F100LHDFA, R5F100LJDFA, R5F100LKDFA, R5F100LLDFA

R5F101LCDFA, R5F101LDDFA, R5F101LEDFA, R5F101LFDFA, R5F101LGDFA, R5F101LHDFA, R5F101LJDFA, R5F101LKDFA, R5F101LLDFA

Previous Code

MASS (TYP.) [g]

R5F100LCGFA, R5F100LDGFA, R5F100LEGFA, R5F100LFGFA, R5F100LGGFA, R5F100LHGFA, R5F100LJGFA

RENESAS Code

JEITA Package Code

R5F100LCAFB, R5F100LDAFB, R5F100LEAFB, R5F100LFAFB, R5F100LGAFB, R5F100LHAFB, R5F100LJAFB, R5F100LKAFB, R5F100LLAFB

R5F101LCAFB, R5F101LDAFB, R5F101LEAFB, R5F101LFAFB, R5F101LGAFB, R5F101LHAFB,

R5F101LJAFB, R5F101LKAFB, R5F101LLAFB

R5F100LCDFB, R5F100LDDFB, R5F100LEDFB, R5F100LFDFB, R5F100LGDFB, R5F100LHDFB, R5F100LDFB, R5F100LKDFB, R5F100LKDFB

Previous Code

MASS (TYP.) [g]

R5F101LCDFB, R5F101LDDFB, R5F101LEDFB, R5F101LFDFB, R5F101LGDFB, R5F101LHDFB,

R5F101LJDFB, R5F101LKDFB, R5F101LLDFB

JEITA Package Code

R5F100LCGFB, R5F100LDGFB, R5F100LEGFB, R5F100LFGFB, R5F100LGGFB, R5F100LHGFB, R5F100LJGFB

RENESAS Code

	DETITITIONAGE COUC	1121120/10 0000	1 1011040 0040	1417 (50 (1111) [9]	
	P-LFQFP64-10x10-0.50	PLQP0064KF-A	P64GB-50-UEU-2	0.35	1
		I.			_
-	————HD—				
	- D —	-			
	1				
			<u> </u>	detail of lead	end
	48	33	`)	
	49	32	」		A3
			$\Rightarrow \ \ \ / $		c —
			\supseteq $ $ $ $ $ $	/	↓ ↓
			$\exists \mid \mid \mid \succeq$		
	1				↑ ↑
				$\theta \rightarrow \uparrow $	← L
	<u> </u>		E HE	-	← Lp
					•
				← L1 →	
			\supset $ $ $ $		
					(UNIT:mm)
	64	17		ITEM DIM	IENSIONS
		J	_	D 10	0.00±0.20
	1	16	↓		0.00±0.20
					2.00±0.20
ZE			<u> </u>		2.00±0.20
					60 MAX.
-	- - ZD	<u>→</u> e			10±0.05
		x M S		A2 1.4	40±0.05
			A¬		22±0.05
			A2 ¬		145 +0.055
	1		↓ ↓	L 0.	
)		In o	60±0.15
r	`	HHHHHHH	\		00±0.20
	` 				+5° -3°
	y s		A1	e 0.	
			AI-	x 0.	
				у 0.	

©2012 Renesas Electronics Corporation. All rights reserved.

ZD

ZΕ

1.25

1.25

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

R5F100LCABG, R5F100LDABG, R5F100LEABG, R5F100LFABG, R5F100LGABG, R5F100LHABG, R5F100LJABG

R5F101LCABG, R5F101LDABG, R5F101LEABG, R5F101LFABG, R5F101LGABG, R5F101LHABG, R5F101LJABG

R5F100LCGBG, R5F100LDGBG, R5F100LEGBG, R5F100LFGBG, R5F100LGGBG, R5F100LHGBG, R5F100LJGBG

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-VFBGA64-4x4-0.40	PVBG0064LA-A	P64F1-40-AA2-2	0.03

	(UNIT:mm)
ITEM	DIMENSIONS
D	4.00±0.10
E	4.00±0.10
w	0.15
Α	0.89±0.10
Α1	0.20±0.05
A2	0.69
е	0.40
b	0.25±0.05
х	0.05
У	0.08
y1	0.20
ZD	0.60
ZE	0.60

4.12 80-pin Products

R5F100MFAFA, R5F100MGAFA, R5F100MHAFA, R5F100MJAFA, R5F100MKAFA, R5F100MLAFA R5F101MFAFA, R5F101MGAFA, R5F101MHAFA, R5F101MJAFA, R5F101MKAFA, R5F101MLAFA R5F100MFDFA, R5F100MGDFA, R5F100MHDFA, R5F100MJDFA, R5F100MKDFA, R5F101MLDFA R5F101MFDFA, R5F101MGDFA, R5F101MHDFA, R5F101MJDFA, R5F101MKDFA, R5F101MLDFA R5F100MFGFA, R5F100MGGFA, R5F100MHGFA, R5F100MJGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP80-14x14-0.65	PLQP0080JB-E	P80GC-65-UBT-2	0.69

S

detail of lead end

Referance	Dimension in Millimeters			
Symbol	Min	Nom	Max	
D	13.80	14.00	14.20	
Е	13.80	14.00	14.20	
HD	17.00	17.20	17.40	
HE	17.00	17.20	17.40	
Α			1.70	
A1	0.05	0.125	0.20	
A2	1.35	1.40	1.45	
A3		0.25		
bp	0.26	0.32	0.38	
С	0.10	0.145	0.20	
L		0.80		
Lp	0.736	0.886	1.036	
L1	1.40	1.60	1.80	
θ	0°	3°	8°	
е		0.65		
х		_	0.13	
У			0.10	
ZD		0.825		
ZE		0.825		

© 2012 Renesas ElectronicsCorporation. All rights reserved.

R5F100MFAFB, R5F100MGAFB, R5F100MHAFB, R5F100MJAFB, R5F100MKAFB, R5F100MLAFB R5F101MFAFB, R5F101MGAFB, R5F101MHAFB, R5F101MJAFB, R5F101MKAFB, R5F101MLAFB R5F100MFDFB, R5F100MGDFB, R5F100MHDFB, R5F100MJDFB, R5F100MKDFB, R5F100MLDFB R5F101MFDFB, R5F101MGDFB, R5F101MHDFB, R5F101MJDFB, R5F101MKDFB, R5F101MLDFB R5F100MFGFB, R5F100MGGFB, R5F100MHGFB, R5F100MJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP80-12x12-0.50	PLQP0080KE-A	P80GK-50-8EU-2	0.53

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

4.13 100-pin Products

R5F100PFAFB, R5F100PGAFB, R5F100PHAFB, R5F100PJAFB, R5F100PKAFB, R5F100PLAFB R5F101PFAFB, R5F101PGAFB, R5F101PHAFB, R5F101PJAFB, R5F101PKAFB, R5F101PLAFB R5F100PFDFB, R5F100PGDFB, R5F100PHDFB, R5F100PJDFB, R5F100PKDFB, R5F101PGDFB, R5F101PGDFB, R5F101PJDFB, R5F101PJDFB, R5F101PLDFB R5F100PFGFB, R5F100PGGFB, R5F100PHGFB, R5F100PJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP100-14x14-0.50	PLQP0100KE-A	P100GC-50-GBR-1	0.69

R5F100PFAFA, R5F100PGAFA, R5F100PHAFA, R5F100PJAFA, R5F100PKAFA, R5F100PLAFA R5F101PFAFA, R5F101PGAFA, R5F101PHAFA, R5F101PJAFA, R5F101PKAFA, R5F101PLAFA R5F100PFDFA, R5F100PGDFA, R5F100PHDFA, R5F100PJDFA, R5F100PKDFA, R5F101PLDFA R5F101PFDFA, R5F101PGDFA, R5F101PHDFA, R5F101PJDFA, R5F101PKDFA, R5F101PLDFA R5F100PFGFA, R5F100PGGFA, R5F100PHGFA, R5F100PJGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP100-14x20-0.65	PLQP0100JC-A	P100GF-65-GBN-1	0.92

4.14 128-pin Products

R5F100SHAFB, R5F100SJAFB, R5F100SKAFB, R5F100SLAFB R5F101SHAFB, R5F101SJAFB, R5F101SKAFB, R5F101SLAFB R5F100SHDFB, R5F100SJDFB, R5F100SKDFB, R5F100SLDFB R5F101SHDFB, R5F101SJDFB, R5F101SKDFB, R5F101SLDFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP128-14x20-0.50	PLQP0128KD-A	P128GF-50-GBP-1	0.92

RL78/G13 Data Sheet

			Description
Rev.	Date	Page	Summary
1.00	Feb 29, 2012	-	First Edition issued
2.00	Oct 12, 2012	7	Figure 1-1. Part Number, Memory Size, and Package of RL78/G13: Pin count corrected.
		25	1.4 Pin Identification: Description of pins INTP0 to INTP11 corrected.
		40, 42, 44	1.6 Outline of Functions: Descriptions of Subsystem clock, Low-speed on-chip oscillator, and General-purpose register corrected.
		41, 43, 45	1.6 Outline of Functions: Lists of Descriptions changed.
		59, 63, 67	Descriptions of Note 8 in a table corrected.
		68	(4) Common to RL78/G13 all products: Descriptions of Notes corrected.
		69	2.4 AC Characteristics: Symbol of external system clock frequency corrected.
		96 to 98	2.6.1 A/D converter characteristics: Notes of overall error corrected.
		100	2.6.2 Temperature sensor characteristics: Parameter name corrected.
		104	2.8 Flash Memory Programming Characteristics: Incorrect descriptions corrected.
		116	3.10 52-pin products: Package drawings of 52-pin products corrected.
		120	3.12 80-pin products: Package drawings of 80-pin products corrected.
3.00	Aug 02, 2013	1	Modification of 1.1 Features
		3	Modification of 1.2 List of Part Numbers
		4 to 15	Modification of Table 1-1. List of Ordering Part Numbers, note, and caution
		16 to 32	Modification of package type in 1.3.1 to 1.3.14
		33	Modification of description in 1.4 Pin Identification
		48, 50, 52	Modification of caution, table, and note in 1.6 Outline of Functions
		55	Modification of description in table of Absolute Maximum Ratings (T _A = 25°C)
		57	Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics
		57	Modification of table in 2.2.2 On-chip oscillator characteristics
		58	Modification of note 3 of table (1/5) in 2.3.1 Pin characteristics
		59	Modification of note 3 of table (2/5) in 2.3.1 Pin characteristics
		63	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products
		64	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products
		65	Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products
		66	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products
		68	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products
		70	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products
		72	Modification of notes 1 and 4 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products
		74	Modification of notes 1, 5, and 6 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products
		75	Modification of (4) Peripheral Functions (Common to all products)
		77	Modification of table in 2.4 AC Characteristics
		78, 79	Addition of Minimum Instruction Execution Time during Main System Clock Operation
		80	Modification of figures of AC Timing Test Points and External System Clock Timing

		Description	
Rev.	Date	Page	Summary
3.00	Aug 02, 2013	81	Modification of figure of AC Timing Test Points
		81	Modification of description and note 3 in (1) During communication at same potential (UART mode)
		83	Modification of description in (2) During communication at same potential (CSI mode)
		84	Modification of description in (3) During communication at same potential (CSI mode)
		85	Modification of description in (4) During communication at same potential (CSI mode) (1/2)
		86	Modification of description in (4) During communication at same potential (CSI mode) (2/2)
		88	Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2)
		89	Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2)
		91	Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)
		92, 93	Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)
		94	Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)
		95	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2)
		96	Modification of table and caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (2/2)
		97	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)
		98	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)
		99	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)
		100	Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)
		102	Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)
		103	Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)
		106	Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2)
		107	Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2)
		109	Addition of (1) I ² C standard mode
		111	Addition of (2) I ² C fast mode
		112	Addition of (3) I ² C fast mode plus
		112	Modification of IICA serial transfer timing
		113	Addition of table in 2.6.1 A/D converter characteristics
		113	Modification of description in 2.6.1 (1)
		114	Modification of notes 3 to 5 in 2.6.1 (1)
		115	Modification of description and notes 2, 4, and 5 in 2.6.1 (2)
		116	Modification of description and notes 3 and 4 in 2.6.1 (3)
		117	Modification of description and notes 3 and 4 in 2.6.1 (4)

			Description
Rev.	Date	Page	Summary
3.00	Aug 02, 2013	118	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics
		118	Modification of table and note in 2.6.3 POR circuit characteristics
		119	Modification of table in 2.6.4 LVD circuit characteristics
		120	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode
		120	Renamed to 2.6.5 Power supply voltage rising slope characteristics
		122	Modification of table, figure, and remark in 2.10 Timing Specs for Switching Flash Memory Programming Modes
		123	Modification of caution 1 and description
		124	Modification of table and remark 3 in Absolute Maximum Ratings (T _A = 25°C)
		126	Modification of table, note, caution, and remark in 3.2.1 X1, XT1 oscillator characteristics
		126	Modification of table in 3.2.2 On-chip oscillator characteristics
		127	Modification of note 3 in 3.3.1 Pin characteristics (1/5)
		128	Modification of note 3 in 3.3.1 Pin characteristics (2/5)
		133	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (1/2)
		135	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (2/2)
		137	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (1/2)
		139	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (2/2)
		140	Modification of (3) Peripheral Functions (Common to all products)
		142	Modification of table in 3.4 AC Characteristics
		143	Addition of Minimum Instruction Execution Time during Main System Clock Operation
		143	Modification of figure of AC Timing Test Points
		143	Modification of figure of External System Clock Timing
		145	Modification of figure of AC Timing Test Points
		145	Modification of description, note 1, and caution in (1) During communication at same potential (UART mode)
		146	Modification of description in (2) During communication at same potential (CSI mode)
		147	Modification of description in (3) During communication at same potential (CSI mode)
		149	Modification of table, note 1, and caution in (4) During communication at same potential (simplified I ² C mode)
		151	Modification of table, note 1, and caution in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)
		152 to 154	Modification of table, notes 2 to 6, caution, and remarks 1 to 4 in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)
		155	Modification of table in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)
		156	Modification of table and caution in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)
		157, 158	Modification of table, caution, and remarks 3 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)
		160, 161	Modification of table and caution in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode)

		Description		
Rev.	Date	Page	Summary	
3.00	Aug 02, 2013	163	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2)	
		164, 165	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2)	
		166	Modification of table in 3.5.2 Serial interface IICA	
		166	Modification of IICA serial transfer timing	
		167	Addition of table in 3.6.1 A/D converter characteristics	
		167, 168	Modification of table and notes 3 and 4 in 3.6.1 (1)	
		169	Modification of description in 3.6.1 (2)	
		170	Modification of description and note 3 in 3.6.1 (3)	
		171	Modification of description and notes 3 and 4 in 3.6.1 (4)	
		172	Modification of table and note in 3.6.3 POR circuit characteristics	
		173	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode	
		173	Modification from Supply Voltage Rise Time to 3.6.5 Power supply voltage rising slope characteristics	
		174	Modification of 3.9 Dedicated Flash Memory Programmer Communication (UART)	
		175	Modification of table, figure, and remark in 3.10 Timing Specs for Switching Flash Memory Programming Modes	
3.10	Nov 15, 2013	123	Caution 4 added.	
		125	Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted.	
3.30	Mar 31, 2016		Modification of the position of the index mark in 25-pin plastic WFLGA (3 \times 3 mm, 0.50 mm pitch) of 1.3.3 25-pin products	
			Modification of power supply voltage in 1.6 Outline of Functions [20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]	
			Modification of power supply voltage in 1.6 Outline of Functions [40-pin, 44-pin, 48-pin, 52-pin, 64-pin products]	
			Modification of power supply voltage in 1.6 Outline of Functions [80-pin, 100-pin, 128-pin products]	
			ACK corrected to ACK	
			ACK corrected to ACK	

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below

"Standard": Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances: machine tools: personal electronic equipment: and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- nt may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

California Eastern Laboratories, Inc.

4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A Tel: +1-408-919-2500, Fax: +1-408-988-0279

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141