NĀCHESTES MAL: ORACLE

WIEDERHOLUNG

WARUM GIBT ES VERSCHIEDENE DATENMODELLE?

RELATIONSHIP-

AUFGABE:

SIE SOLLEN EINE TODO-APP MIT EINEM ER-MODELL MODELLIEREN. Folgende regeln:

- > TODO HAT IMMER TEXT
- > KANN MEHRERE BILDER ENTHALTEN
 - > HAT MINDESTENS EINEN AUTOR
- > MAN MUSS HERAUSFINDEN KOENNEN, WANN DIE TODOS ERSTELLT UND GEAENDERT WURDEN

RELATIONENSCHEMATA

TRANSFORMATION:

ERM -> RELATIONENSCHEMA

- > JEDER ENTITATSTYP WIRD AUF EINE RELATION ABGEBILDET
- DIE ATTRIBUTE DER DES ENTITÄTSTYPS WERDEN DEN ATTRIBUTEN DER RELATION ZUGEORDNET
 - > ES MUSS EIN PRIMÄRSCHLÜSSEL GEWÄHLT WERDEN
 - ABSCHLIEßEND WERDEN DIE BEZIEHUNGEN TRANSFORMIERT
- > BEZIEHUNGSTYP INNERHALB DES ERM WIRD MITTELS EINES EIGENEN FREMDSCHLÜSSELS IM RELATIONENMODELL ABGEBILDET
- > NM BZW. N:MC BEZIEHUNGEN WERDEN IN ZWEI 1:N BZW. 1:NC BEZIEHUNGEN AUFGELÖST.

SCHLÜSSEL

SUPERSCHLÜSSEL

SCHLÜSSELKANDIDAT

AUFGABE: BESTIMMEN DER SUPERSCHLUSSEL

 Name	Nummer	 Königshaus
Edward	II	Plantagenet
Edward	III	Plantagenet
Richard	III	Plantagenet
Henry 	IV	Lancaster

PRINARSCHLÜSSEL

Buch

Titel	ISBN	BuchId
Hamlet	 4FA33	1
Die Verwandlung	 E5B11	2

FRENDSCHLÜSSEL

Titel	ISBN	BuchId
 Hamlet	4FA33	1
 Die Verwandlung	E5B11	2
King Lear	CD652	3

BuchId	AutorId
1	1
2	2
2	1

AutorId	Vorname	Nachname
1	 William	Shakespeare
2	Franz	Kafka

WIEDERHOLUNG DER DATENMODELLE

HIERARCHISCHES MODELL

NETZWERKMODELL

OBJEKT-ORIENTIERTES MODELL

OBJEKT-RELATIONALES MODELL

XML-BASIERENDES MODELL

LOS GEHTS

NOSQL-DATENMODELLE

KEY-VALUE-STORE

shop.settings.vat=19

shop.country="de_DE"

DOKUMENTENDATENBANKEN

BEISPIEL: COUCHDB-DOKUMENT

```
" id" : "00a271787f89c0ef2e10e88a0c0001f4"
"_rev": "5509377776",
"name": "Peter Lustig",
"address": {
    "street": "Teststr.",
    "city": "Hamburg"
```

ZUSAMMENFASSUNG

HHAIIIMAI ES DATFINRANK-I)FSI(JN

SCHREIBWEISEN

```
Autor = (Autorvorname, Autornachname, Verlag,
Buchtitel, ISBN, Preis, Sprache, Seitenanzahl)
Autor = (
  Autorvorname,
  Autornachname,
  Verlag,
  Buchtitel,
  ISBN,
  Preis,
  Sprache,
  Seitenanzahl
```

EINE TABELLE FUER ALLES

	Autorvorname	Autornachname	Verlag	Buchtitel	ISBN	Preis	Sprache	Seitenanzahl
	Franz	Kafka	 Ideenbrücke Verlag 	Die Verwandlung	 978-3-945909-67-6	3,99 EUR	Deutsch	 64
 	Franz	Kafka	Philipp Reclam Jun.	Die Verwandlung	978-3-15-009900-1	2,00 EUR	Deutsch	80
	Franz	Kafka	Fischer Taschenbuch Verlag	Das Urteil	978-3-596-20019-1	6,95 EUR	Deutsch	 185

FUNKTIONALE ABHANGIGKEITEN (FUNCTIONAL DEPENDENCY - FD)

DEFINITION:

Sei V eine Attributmenge, X, Y ⊆ V und r ∈ Rel(V)

Dann ist Y funktional abhängig von X, notiert als X → Y, wenn und nur wenn jeder X-Wert von r genau einen eindeutigen Y-Wert in r bestimmt.

Α	В	С	D	E
1	1	1	1	1
1	0	1	1	1
2	2	0	0	1
2	3	2	0	1

MENGE F VON FDS:

$$F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow E\}$$

TEST. OB EINE RELATION r ∈ Rel(V) EINE FD DER FORM X → Y ERFÜLLT:

- > SORTIEREN VON R NACH WERTEN DES ATTRIBUTES X.
- > PRÜFEN ALLER TUPEL MIT GLEICHEN X-WERTEN AUF GLEICHE Y-WERTE.

Prof	Veranstaltung	Student	Buchtitel	Autor	ISBN	Semester
Rainbow	Ponylehre	Clara	Meine Ponies	Spike	4711	3
Rainbow	Ponylehre	Buffy	Meine Ponies	Spike	4711	2
Dr. Brown	Future 101	Clara Clayton	In Hill Valley	Marty McFly, Jennifer Parker	4713	3

Prof	Veranstaltung	Student	Buchtitel	Autor	ISBN	Semester
Rainbow	Ponylehre	Clara Clayton	Meine Ponies	Spike	4711	3
Rainbow	Ponylehre	Buffy	Meine Ponies	Spike	4711	2
Dr. Brown	Future 101	Clara Clayton	In Hill Valley	Marty McFly, Jennifer Parker	4713	3

TRIVIALE FUNKTIONALE ABHÄNGIGKEIT X X

VOLLE FUNKTIONALE ABHÄNGIGKEIT

```
X = \{X1, X2, ..., Xn\}

Y = \{Y1, Y2, ..., Ym\}

X \rightarrow Y
```

Y ist voll funktional abhängig von X, wenn Y funktional abhängig von X, aber nicht funktional abhängig von einer echten Teilmenge von X ist.

EIGENSCHAFTEN DER FUNKTIONALEN ABHÄNGIGKEITEN

SCHLUSSEL SIND SPEZIALFALLE VON FUNKTIONALEN ABHÄNGIGKEITEN.

EIN SCHLUSSEL X LIEGT VOR, WENN FÜR EIN RELATIONENSCHEMA R EINE FUNKTIONALE ABHÄNGIGKEIT X → Y GILT UND X MINIMAL IST.

FUNKTIONALE ABHANGIGKEITEN SIND AUSSAGEN ÜBER DAS SCHEMA, NICHT ÜBER EINE AUSPRÄGUNG

WENN MAN EINIGE FD GEFUNDEN HAT, DANN GIBT ES EINEN ALGORITHMUS, UM WEITERE FD DARAUS ABZULEITEN

AUS EINER MENGE VON GEGEBENEN FD (ALS F BEZEICHNET) KÖNNEN MEIST WEITERE FD ABGELEITET WERDEN

TRANSITIVE HÜLLE

ARMSTRONGSCHE AXIOME

REFLEXIVITAT

WENN $Y \subseteq X$, DANN $X \rightarrow Y$ IN F+ (X. Y. Z SIND MENGEN VON ATTRIBUTEN):

ERWEITERBARKEIT

WENN X → Y IN F+, DANN XZ → YZ IN F+ FÜR BELIEBIGE Z

(X, Y, Z SIND MENGEN VON ATTRIBUTEN):

TRANSITIVITAT

WENN $X \rightarrow Y$ UND $Y \rightarrow Z$ IN F+. DANN $X \rightarrow Z$ IN F+. (X, Y, Z SIND MENGEN VON ATTRIBUTEN):

ANOMALIEN

EINFÜGEANOMALIE

LÖSCHANOMALIE

ANDERUNGSANOMALIE

NORMALFORMEN

Prof	Veranstaltung	Student	Buchtitel	Autor	ISBN	Semester
Rainbow	Ponylehre	Clara Clayton	Meine Ponies	Spike	4711	3
Rainbow	Ponylehre	Buffy	Meine Ponies	Spike	4711	2
Dr. Brown	Future 101	Clara	In Hill Valley	Marty McFly, Jennifer Parker	4713	3

ERSTE NORMALFORM 1\1

1. ALLE WERTE ENTSTAMMEN AUSSCHLIEßLICH ATOMAREN WERTEBEREICHEN

Inventar- nummer	Buchtitel	Autor	ISBN	Lagerbestand
001	Meine Ponies	Spike	4711	1
002	In Hill Valley	Jennifer Parker, Marty McFly	4713	4
003	PostgreSQL Administration	Peter Eisentraut, Bernd Helmle	6565	3

Inventar- nummer	Buchtitel	Autor	ISBN	Lagerbestand
001	Meine Ponies	Spike	4711	1
002	In Hill Valley	Jennifer Parker	4713	4
002	In Hill Valley	Marty McFly	4713	4
003	PostgreSQL Administration	Peter Eisentraut	6565	3
003	PostgreSQL Administration	Bernd Helmle	6565	3

Inventar- nummer	Buchtitel	Autorvorname	Autornachname	ISBN	Lagerbestand
001	Meine Ponies	Spike	Spike	4711	1
002	In Hill Valley	Jennifer	Parker	4713	4
002	In Hill Valley	Marty	McFly	4713	4
003	PostgreSQL Administration	Peter	Eisentraut	6565	3
003	PostgreSQL Administration	Bernd	Helmle	6565	3

ZWEITE NORMALFORM 2NF

1. RELATION IST IN 1NF

2. KEIN NICHT-SCHLÜSSELATTRIBUT IST FUNKTIONAL ABHÄNGIG VON EINER ECHTEN TEILMENGE EINES SCHLÜSSELKANDIDATEN

Inventar- nummer	Buchtitel	Autorvorname	Autornachname	ISBN
001	Meine Ponies	Spike	Sparkle	4711
002	In Hill Valley	Jennifer	Parker	4713
002	In Hill Valley	Marty	McFly	4713
003	PostgreSQL Administration	Peter	Eisentraut	6565
003	PostgreSQL Administration	Bernd	Helmle	6565

Buch

Inventar- nummer	Buchtitel	ISBN
001	Meine Ponies	4711
002	In Hill Valley	4713
003	PostgreSQL Administration	6565

Buchautor

Inventar- nummer	Autorvorname	Autornachname
001	Spike	Sparkle
002	Jennifer	Parker
002	Marty	McFly
003	Peter	Eisentraut
003	Bernd	Helmle

DEKOMPOSITION

SEI

DANN GILT

```
R1 = (Schlüsselteil1, Schlüsselteil2, NichtSchlüssel1)
R2 = (Schlüsselteil2, NichtSchlüssel2)
```

Name	Wohnort	PLZ		
Spike	Hamburg	22761		
McFly	Hamburg	22761		
Helmle	Rostock	23456		

Name -> {Wohnort, PLZ}

PLZ -> Wohnort

Name -> PLZ -> Wohnort

Name	Wohnort	PLZ		
Spike	Hamburg	22761		
McFly	Hamburg	22761		
Helmle	Rostock	23456		

DRITTE NORMALFORM 3NF

1. RELATION IST IN 2NF

2. JEDES ATTRIBUT AUBERHALB DES PRIMÄRSCHLÜSSELS IST DIREKT ABHÄNGIG VOM PRIMÄRSCHLÜSSEL (INSBESONDERE KEINE TRANSITIVEN ABHÄNGIGKEITEN)

Name	PLZ
Spike	22761
McFly	22761
Helmle	23456

Wohnort	PLZ
Hamburg	22761
Rostock	23456

DEKOMPOSITION

SEI

```
R = (Schlüsselteil1, NichtSchlüssel1, NichtSchlüssel2)
FD = {NichtSchlüssel1 -> NichtSchlüssel2}
```

DANN ERGIBT SICH

```
R1 = (Schlüsselteil1, NichtSchlüssel1)
R2 = (NichtSchlüssel1, NichtSchlüssel2)
```

BOYCE-CODD-NORMALFORM BCNF

VIERTE/FÜNFTE NORMALFORM 4NF/5NF

AUFGABE

			datum	name	leiter		start	antwortliche Abteilung
Ada	Lovelace	10.12.65	01.06.90	Informatik	Lovelace	Möbius Umzug nach Berlin	12.14 10.13	Informatik Controlling
Grace	Hopper	21.12.60	01.06.87	Informatik	Lovelace	Möbius	12.14	Informatik
Jean	Bartik	09.03.61	01.03.84	Finanzen	Euler	Umzug nach Berlin	10.13	Controlling
Howard	Aiken	22.07.69	01.09.98	Informatik	Lovelace	Möbius	12.14	Informatik
Pierre	de Fermat	30.01.55	01.01.72	Controlling	Descartes	Umzug nach Berlin	10.13	Controlling
René	Descartes	09.10.50	01.01.90	Controlling	Descartes	Umzug nach Berlin Möbius	10.13 12.14	Controlling Informatik
Leonhard	Euler	16.04.68	01.09.97	Finanzen	Euler	Umzug nach Berlin Integrale	10.13 04.15	Controlling Informatik

Abteilungs

Nachname

Wilson

John

Vorname

Geburtstag

03.09.73

Einstellungs

01.09.99

Abteilungs

Lovelace

Projektname

Umzug nach Berlin

Integrale

Projektver-

Controlling

Informatik

Projekt

10.13

04.15

83 - TINA UMLANDT, 2015

Informatik

DATENBANKENTWURF

KRITERIEN

- 1. REDUNDANZFREIE INFORMATIONEN
- 2. VOLLSTÄNDIGE DARSTELLUNG ALLER DATEN
 - 3. KONSISTENZ DES ENTWURFS
- 4. SPRACHE IST AUSDRUCKSSTARK UND VERSTÄNDLICH
- 5. BESCHREIBUNGSKONSTRUKTE SIND KLAR DEFINIERT
 - 6. DOKUMENTE SIND LEICHT LESBAR

MODELLIERUNG EINER SCHULE ?!

DATENDEFINITION

DATA DEFINITION LANGUAGE

CREATE TABLE

ALTER TABLE

DROP TABLE

CREATE VIEW

DROP VIEW

BZW ORACLE

CREATE INDEX
ALTER INDEX
DROP INDEX

```
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
(create_definition,...)
[table_options]
[partition_options]
                         CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
[(create_definition,...)]
[table_options]
[partition_options]
select_statement
{ LIRE old_tbl_name | (LIRE old_tbl_name) }

create_definition:

col_name colum_definition
[(DOSTRAINT (symbol]) FRINKAY KEY [index_tppe] (index_col_name,...)
[(Index_potion] ...
(INDEX_LIREY (index_name) [index_tppe] (index_col_name,...)
[(DOSTRAINT (symbol]) UNIQUE (INDEX_LIREY)
[index_name] (index_tppe] (index_col_name,...)
[index_potion] ...
[(PULICENT_SYMIAL) (INDEX_LIREY) [index_name] (index_col_name,...)
[index_potion] ...
[index_name] (index_col_name,...) reference_definition
[OHEOX (expr)]
               column_definition:
data_type [NOT NULL | NULL] [DEFAULT default_value]
[AUTD_INCEMENT] [UNIQUE [KEY] | [PRIMMAY] KEY]
[COMMENT "string!]
[COMMENT 
          [STROMEE (DISK|HEMDEN(DEFAULT)]
[reference_effrintion]
data_type:
data_type:
dif((negth)) [UNSIGNED) [ZEMOFILL]

SMALLHT((length)) [UNSIGNED) [ZEMOFILL]

SMALLHT((length)) [UNSIGNED) [ZEMOFILL]

HOT((length)) [UNSIGNED) [ZEMOFILL]

HOT((length)) [UNSIGNED) [ZEMOFILL]

HOT((length)) [UNSIGNED] [ZEMOFILL]

HOTOLOGIC [Length)] [UNSIGNED] [ZEMOFILL]

HOTOLOGIC [Length] (Length) [UNSIGNED] [ZEMOFILL]

HOTOLOGIC [Length] [Length] [UNSIGNED] [ZEMOFILL]

HOTOLOGIC [Length] [Length]

[UNBALTER SET charset_name] [COLLATE collation_name]

HOTOLOGIC [Length] [Length]

[UNBALTER SET charset_name] [COLLATE collation_name]

HOTOLOGIC [Length] [Length]

[UNBALTER SET charset_name] [COLLATE collation_name]

HOTOLOGIC [Length] [Length]

[Length] [Length] [Length] [Lourance]

HOTOLOGIC [Length] [Length]

               index_col_name:
   col_name [(length)] [ASC | DESC]
               index_option:

KEY_BLOCK_SIZE [=] value
| index_type
| WITH PARSER parser_name
               reference_definition:

REFERENCES tbl_name (index_col_name,...)

[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]

[ON DELETE reference_option]

[ON UPDATE reference_option]
                              reference_option:
RESTRICT | CASCADE | SET NULL | NO ACTION
                         table_options:
table_option [[,] table_option] ...
table_option [[,] table_option] ...

table_option [[,] table_option] ...

BGGBE [;] engine_name

[ADTO_DECEMBER [;] value

[OFFART_DECAMCTER_SET [;] charset_name

OUCCSUM [-] [0 | 1)

[OFFART_DECAMCTER_SET [;] charset_name

OUCCSUM [-] [0 | 1)

OUNCETION [-] should past to directory'

DELAW_SET_SET [-] [0 | 1)

INDEX_DECEMBER [-] (0 | 1)

INDEX_DECEMBER [-] (0 | 1)

INDEX_DECEMBER [-] (0 | 1)

INDEX_DECEMBER [-] value

INDEX_DECAMBER [-] value

INDEX_DECAM
          partition, gritions:

PARTITION BY

( [LINEAR] MSK(espr)

( [LINEAR] MSK(espr)

| BAMG(espr)

| LIST(espr) |

( [MSTITION ma)

( [LINEAR] MSK(espr)

| [LINEAR] MSK(espr)

| [LINEAR] MSK(espr)

| ([MSTITION ma)

]

[(partition_definition [, partition_definition] ...)]
                         partition_definition:

PARTITION partition_name

[VALUES

{LESS THAN {(expr) | MAXVALUE}
                                                                                     (ELSS TWM ((expr) | MWXMLUE)

[N (value Litt)]

[(STOMOKE] BORINE (1) engine, name)

[(COMBET[ 0'] \comment_text']

[DATA DIRECTORY [ 1] 'stext_pir:]

[DATA DIRECTORY [ 2] 'stext_pir:]

[MILL, Albox [ 1] \comment_text']

[MILL, Albox [ 1] \comment_text']

[MILL, Albox [ 1] \comment_text']

[MILL, Albox [ 1] \comment_text_pir:]

[MILL, Albox [ 2] \comment_text_pir:]

                              select_statement:
   [IGNORE | REPLACE] [AS] SELECT ... (Some valid select statement)
```

```
CREATE TABLE employees_demo
    ( employee_id
                    NUMBER(6)
                    VARCHAR2(20)
    , first_name
    , last_name
                    VARCHAR2(25)
                                  CONSTRAINT emp_last_name_nn_demo NOT NULL
    , email
                    VARCHAR2(25)
                                  CONSTRAINT emp_email_nn_demo
                                                                   NOT NULL
    , phone_number
                    VARCHAR2(20)
    , hire_date
                    DATE DEFAULT SYSDATE CONSTRAINT emp_hire_date_nn_demo NOT NULL
    , job_id
                    VARCHAR2(10) CONSTRAINT emp_job_nn_demo
                                                                      NOT NULL
    , salary
                    NUMBER(8,2)
                                  CONSTRAINT emp_salary_nn_demo
                                                                      NOT NULL
    , commission_pct NUMBER(2,2)
     manager_id
                    NUMBER(6)
                    NUMBER(4)
    , department_id
    , dn
                    VARCHAR2(300)
                    emp_salary_min_demo CHECK (salary > 0)
    , CONSTRAINT
    , CONSTRAINT
                    emp_email_uk_demo UNIQUE (email)
```

WERTEBEREICHE

ZEICHEN UND ZEICHENKETTEN

CHAR

VARCHAR2 BZW VARCHAR

CHAR(10) 'abcdef'

VARCHAR2(10) 'abcdef'

DATUM DATE DD-MON-YY

ZEIT TIMESTAMP

ZEITZONEN TIMESTAMP WITH LOCAL TIME ZONE

NUMERISCHE WERTE

INTEGER int

smallint

float

ORACLE NUMBER (precision, scale)

LOB LARGE OBJECTS

CLOB CHARACTER LARGE OBJECT

BLOB BINARY LARGE OBJECT

CONSTRAINTS

PRIMARSCHLÜSSEL

```
CREATE TABLE Bücher (
  ISBN char (13),
  PRIMARY KEY (ISBN)
CREATE TABLE Bücher (
  ISBN char (13) PRIMARY KEY
CREATE TABLE Bücher (
  ISBN char (13),
  CONSTRAINT PK Bücher PRIMARY KEY (ISBN)
```

UNIQUE

```
CREATE TABLE Bücher (
ID integer PRIMARY KEY,
ISBN char (13) UNIQUE
)
```

FREMDSCHLÜSSEL

```
CREATE TABLE Bücher (
   Verlagsname varchar (100),
   FOREIGN KEY (Verlagsname) REFERENCES Verlage (Verlagsname)
)
CREATE TABLE Bücher (
   Verlagsname varchar (100) REFERENCES Verlage (Verlagsname)
)
```

REAKTIONEN AUF MODIFIKATIONEN

```
ON (<UPDATE>|<DELETE>)
<NO ACTION>|<SET NULL>|<SET DEFAULT>|<CASCADE>
```

```
CREATE TABLE supplier
( supplier_id numeric(10) >not null,
  supplier_name varchar2(50) not null,
  contact name varchar2(50),
  CONSTRAINT supplier_pk PRIMARY KEY (supplier_id)
);
CREATE TABLE products
( product_id numeric(10) not null,
  supplier_id numeric(10) not null,
  CONSTRAINT fk_supplier
    FOREIGN KEY (supplier_id)
    REFERENCES supplier(supplier_id)
    ON DELETE CASCADE
```

INTEGRITÄTSBEDINGUNGEN

```
CREATE TABLE Bücher (
Jahr integer CHECK (Jahr BETWEEN 1980 AND 2050)
```

DEFAULT-WERTE PRO SPALTE ANGEGEBEN WERDEN

```
CREATE TABLE Bücher (
   Lieferbar SMALLINT(1) DEFAULT 1
)
CREATE TABLE Bücher (
   Bestelldatum DATE NOT NULL
)
```

```
CREATE TABLE Bücher (
  ISBN char (13),
  PRIMARY KEY (ISBN),
  Lieferbar smallint(1) default 1,
  Jahr integer CHECK (Jahr BETWEEN 1980 AND 2050),
  Verlagsname varchar (100),
  PRIMARY KEY (ISBN),
  FOREIGN KEY (Verlagsname) REFERENCES Verlage (Verlagsname)
```

ALTER TABLE

DROP TABLE

SEQUENCE

```
CREATE SEQUENCE matrikel_seq;
CREATE TABLE Student (
  matrikelnummer INTEGER DEFAULT nextval('matrikel_seq'),
  name VARCHAR(30)
)
```

INDEX

CREATE INDEX schnelle_namen_suche ON Bücher (ISBN asc);

