Chapitre V : OSCILLATEURS HARMONIQUES (la loi de force en – k x)

L'objet de ce chapitre est l'étude des petits mouvements d'un point matériel au voisinage d'une position d'équilibre stable à l'aide d'un modèle : oscillateur harmonique.

I – OSCILLATEUR HARMONIQUE NON AMORTI (libre)

1-1 Définition:

Un oscillateur harmonique à une dimension est un point matériel mobile sur un axe dont le mouvement est décrit par une équation différentielle de la forme :

$$\frac{\mathbf{d^2 x}}{\mathbf{dt^2}} + \mathbf{w_0^2} \mathbf{x} = \mathbf{0} \quad \text{avec} \quad \omega_0 = \frac{2\pi}{T_0}$$
 (1)

Sa solution est de la forme : $x = A \cos \omega_0 t + B \sin \omega_0 t$

Ou $x = C \cos(\omega_0 t + \varphi)$

avec: ϕ , A, B et C sont des constantes et t est le temps

Remarque: $T_0 = \frac{2\pi}{C}$ est la période du mouvement, C est l'amplitude,

 ω_0 est la pulsation propre.

1-2 EXEMPLE: Oscillateur vertical

Une particule M de masse m fixée à l'extrémité d'un ressort de longueur \mathbf{l}_0

La figure ci-dessous représente trois positions d'un ressort de raideur k, suspendu à un point fixe :

- Résolution de l'équation (2): $\mathbf{z} + \frac{\mathbf{K}}{\mathbf{m}} \mathbf{z} = \mathbf{O}$ **(2)**

soit:
$$z(t) = z_0 \cos(\omega_0 t + \phi)$$
 Est une solution de l'équation (2)

Avec:
$$\omega_0^2 = \frac{K}{m}$$

Les constantes z_o et ϕ sont calculées par <u>les conditions initiales.</u>

D'après l'équation (2) le mouvement est périodique de période:

$$T_0 = \frac{2\pi}{\omega_0}$$

Soit:
$$T_{_{0}}=2\pi\sqrt{\frac{m}{K}}$$

3

1-3 DETERMINATION DES ENERGIES

a- Energie cinétique : Ec On a :
$$E_c = \frac{1}{2}m|\overline{V(M)}|^2$$

Soit:
$$\mathbf{E}_{c} = \frac{1}{2} \mathbf{m} \dot{\mathbf{z}}^{2}$$
 (3)

b- Energie potentielle: Ep On a:
$$E_P = E_P(\vec{T}) + E_P(\vec{P})$$

• Pour le poids
$$\vec{P}$$
:
$$\exists E_{P}(\vec{P})/ \vec{P} = -\overline{grad}E_{P}(\vec{P}) \qquad \mathbf{mg} = \frac{-\mathbf{dE}_{P}}{\mathbf{dz}}$$
Soit : $E_{P} = -mgz + Cste$
• Pour la force \vec{T} :
$$\exists E_{P}(\vec{T})/ \vec{T} = -\overline{grad}E_{P}(\vec{T}) \qquad -K(\Delta l + z) = -\frac{\mathbf{dE}_{P}}{\mathbf{dz}}$$

Soit:
$$E_P = -mgz + Cste$$

$$\exists E_P(\vec{T})/ \quad \vec{T} = -\overrightarrow{grad}E_P(\vec{T}) \qquad -\mathbf{K}(\Delta \mathbf{l} + \mathbf{z}) = -\frac{\mathbf{d}\mathbf{E}_p}{\mathbf{d}\mathbf{z}}$$

Soit:
$$E_P(\overrightarrow{T}) = K\Delta l \ z + \frac{1}{2}Kz^2 + Cste$$

tenant compte de l'équation d'équilibre (1), on obtient : $E_p = \frac{1}{2}Kz^2 + cte$ **(4)** supposant que Ep = 0 à l'équilibre (z=0),

$$\longrightarrow$$

$$E_P = \frac{1}{2}Kz^2$$
 (5

c- Energie mécanique totale : E

On a:
$$E = Ep + Ec$$

$$E = \frac{1}{2} m \dot{z}^2 + \frac{1}{2} K z^2$$
 (6)

On montre que \forall t, E = cte

Puisque : $z=z_0 \cos(w_0 t + \varphi)$

$$\dot{z} = -\omega_0 z_0 \sin \left(\omega_0 t + \varphi\right)$$

$$E = \frac{1}{2}m\omega_0^2 z_0^2$$

$$E = Cste$$

Remarques:

1-on peut vérifier de même que d'après l'équation (6) :

$$\frac{dE}{dt} = 0$$

$$E = Cste$$

5

2- réciproquement si un mouvement est représenté par une équation de type :

$$\boxed{\ddot{z} + \frac{K}{m}z = 0} \tag{2}$$

multipliant (2) par 2(dz/dt) et en intégrant on obtient :

 $\dot{z}^2 + \omega_0^2 z^2 = cons \ tan \ te \qquad \text{Et multiplier par } \frac{m}{2} \dot{z}^2 + \frac{m}{2} \omega_0^2 z^2 = cons \ tan \ te \quad \text{Et puisque}: \qquad \omega_0^2 = \frac{K}{m}$

$$\frac{1}{2}m\dot{z}^2 + \frac{1}{2}Kz^2 = Cste$$

Propriété:

L'énergie mécanique totale E est constante pour tout système physique dont

l'évolution obéit à une équation de type : $\ddot{X} + \omega_0^2 X = 0$

II – OSCILLATEUR AMORTI

- Les oscillateurs réels n'oscillent pas indéfiniment,
- L'amplitude du mouvement décroît avec le temps et le système atteint une position d'équilibre.
- L'amortissement des oscillations est lié à une perte d'énergie du système au profit du milieu qui l'entoure.
- Cette perte d'énergie est due à des forces de frottement qui sont toujours opposées à la direction du mouvement.

On adopte dans ce chapitre une force de fortement proportionnelle à la vitesse et opposée au mouvement du type :

$$\overrightarrow{F} = -\alpha \overrightarrow{V(M)}_{/R}$$
 avec $\alpha = \text{cste}$

2.1- Equation de l'oscillateur amorti

- Considérons une masse m suspendue à un ressort et supposons que M(m) soit soumise à une force de frottement visqueuse donnée par :

$$\overrightarrow{F} = -\alpha \overrightarrow{V(M)}_{/R}$$
 (7) où $\alpha = \text{cste.}$

Le P.F.D nous donne : $\vec{P} + \vec{T} + \vec{F} = m \overline{\gamma(M)}_{/R}$ On a : $\vec{P} = mg \ \vec{K}$

 $\vec{T} = -K(\Delta l + z) \vec{K}$ $\vec{F} = -\alpha \frac{dz}{dt} \vec{K} = -\alpha \dot{z} \vec{K}$ Et $\vec{\gamma} = \frac{d^2z}{dt^2} \vec{K} = \ddot{z}\vec{K}$

et en tenant compte de <u>l'équation d'équilibre</u> (1), on obtient :

 $\ddot{\mathbf{z}} + 2\lambda\dot{\mathbf{z}} + \omega_0^2 \mathbf{z} = 0$

avec: $2\lambda = \frac{\alpha}{m}$ (9) paramètre qui caractérise le phénomène dissipatif

 $\omega_0^2 = \frac{K}{m}$ pulsation de l'oscillateur en absence d'amortissement

période de l'oscillateur en absence d'amortissement.

- Temps de relaxation de l'oscillateur

On appelle temps de relaxation le temps que met le système pour atteindre sa position d'équilibre stable.

D'après l'équation (9), l'unité de λ est 1/s. Donc 1/ λ est un temps

$$r = \frac{1}{2\lambda}$$

Ce temps τ est appelé le temps de relaxation de l'oscillateur :

τ est le temps que met le système pour atteindre sa position d'équilibre stable

2-2 Résolution de l'équation de l'O. Amorti

D'après l'équation (8), le type de l'équation d'un oscillateur amorti est la forme :

$$\ddot{x} + 2\lambda \dot{x} + \omega_0^2 x = 0 \qquad \text{(10)} \qquad \text{Avec}: \qquad \begin{cases} 2\lambda = \frac{\alpha}{m} \\ \omega_0^2 = \frac{K}{m} \end{cases}$$

$$2\lambda = \frac{G}{m}$$
$$\omega_0^2 = \frac{K}{m}$$

A noter que x(t) est l'élongation ou déplacement à l'instant t de l'O.H.

On propose une solution de la forme :

$$\mathbf{x}(\mathbf{t}) = \mathbf{e}^{\mathbf{r}\mathbf{t}}$$
 (11) Avec r nombre complexe ou réel

En reportant cette expression dans l'équation (10), on obtient :

$$r^2 + 2\lambda r + \omega_0^2 = 0$$
 (12)

La solution de cette équation (12), dépend du signe de $\Delta' = \lambda^2 - \omega_0^2$

$$\Delta' = \lambda^2 - \omega_0^2$$

 $(\lambda < \omega_{\rm o})$, 1^{er} cas: $\Delta' < 0$ Amortissement <u>faible</u> (régime pseudo-période) $\Delta' = 0$ 2ème cas: $(\lambda = \omega_0)$ Lorsque l'amortissement est <u>critique</u> ($\lambda = \omega_0$), on ne peut plus parler d'un oscillateur puisque le système retourne à sa position d'équilibre sans effectuer d'oscillation autour de cette position. X $(\lambda > \omega_0)$, $\Delta' > 0$ 3ème cas: Amortissement fort (régime fort ou régime apériodique) 11

2-2-1 AMORTISSEMENT FAIBLE (régime pseudo-période) Δ ' < O

L'amortissement faible est caractérisé par $\lambda < \mathbf{w_0}$ \longrightarrow $\Delta' = \lambda^2 - \omega_0^2 < 0$

L'équation (12) admet donc <u>2 solutions</u> complexes, soient :

$$r_{1} = -\lambda + i\sqrt{-\Delta'} = -\lambda + i\sqrt{\omega_{0}^{2} - \lambda^{2}} = -\lambda + i\omega_{1}$$

$$r_{2} = -\lambda - i\sqrt{-\Delta'} = -\lambda - i\sqrt{\omega_{0}^{2} - \lambda^{2}} = -\lambda - i\omega_{1}$$

Avec:
$$\omega_1 = \sqrt{\omega_0^2 - \lambda^2}$$

La solution générale de l'équation (10) est une combinaison linéaire de e^{r_1t} et e^{r_2t}

$$\mathbf{x}(t) = \mathbf{A}\mathbf{e}^{\mathbf{r}_1 t} + \mathbf{B}\mathbf{e}^{\mathbf{r}_2 t}$$
 Où A et B sont des constantes.

En reportant l'expression de r_1 et r_2 dans x(t):

$$x(t) = e^{-\lambda t} \left(A e^{i\omega_l t} + B e^{-i\omega_l t} \right)$$

En utilisant la formule de **Moivre**: $e^{in\theta} = \cos n\theta + i \sin n\theta \ \forall n, \theta$ On peut écrire x(t) sous la forme suivante :

$$x(t) = e^{-\lambda t} \left[(A+B)\cos \omega_1 t + (A-B)i\sin \omega_1 t \right]$$

On sait que x(t) est une élongation, donc cette solution x(t) est une valeur réelle en choisissant les coefficients arbitraires A et B tels que :

- (A-B) imaginaire pur. (A + B) soit réel
 - $\mathbf{x}(\mathbf{t}) = \mathbf{e}^{-\lambda \mathbf{t}} \left[\mathbf{C} \cos \omega_1 \mathbf{t} + \mathbf{D} \sin \omega_1 \mathbf{t} \right]$

 $x(t) = a_0 e^{-\lambda t} \cos(\omega_1 t + \varphi)$ ou

où l'amplitude initiale (t=0) = a_0 et la phase φ sont deux constantes, à déterminer par les conditions initiales.

- ightharpoonup pulsation de l'oscillateur Amorti donnée par $\omega_1^2 = \omega_0^2 \lambda^2$
- > La période de l'oscillateur amorti T_1 est donnée par : $T_1 = \frac{2\pi}{3}$ 13

- Représentation graphique de x(t): $x(t) = a_0 e^{-\lambda t} \cos(\omega_1 t + \varphi)$

Cette solution x(t) représente un oscillateur amorti de période T₁ telle que

$$T_1 = \frac{2\pi}{\omega_1}$$
 Et puisque: $\omega_1^2 = \omega_0^2 - \lambda^2$ Donc: $T_1 = \frac{T_0}{\sqrt{1 - \left(\frac{\lambda}{\omega_0}\right)^2}}$

Et <u>d'amplitude</u> décroissante exponentiellement en fonction de $a_0 e^{-\lambda t}$

- Conditions initiales :

A t=0: x(0) = 0 et $V_0 = \dot{x}(0) \neq 0$

- Conditions initiales :

Puisque $\lambda < \omega_0 \implies \frac{\lambda^2}{\omega_0^2} < 1$ On a: $T_1 = \frac{T_0}{\sqrt{1 - \left(\frac{\lambda}{\omega_0}\right)^2}} = T_0 \left(1 - \left(\frac{\lambda}{\omega_0}\right)^2\right)^{-\frac{1}{2}} \approx T_0$

- ENERGIE MÉCANIQUE TOTALE :

- <u>L'énergie cinétique</u> de la particule : \implies $\mathbf{E}_{c} = \frac{1}{2} \mathbf{m} \dot{\mathbf{z}}^{2}$
- <u>L'énergie potentielle:</u> $\mathbf{E}_{p} = \frac{1}{2} \mathbf{K} \mathbf{z}^{2}$
- Multiplions scalairement, l'équation différentielle du mouvement,

with prioris scalar efficient, i equation differentiate du mouvement,
$$m\ddot{z} + \alpha \dot{z} + kz = 0 , \quad \text{par} \frac{dz}{dt} \qquad \qquad \frac{dz}{dt} (m\ddot{z} + kz) = (-\alpha \dot{z}) \frac{dz}{dt}$$
Soit:
$$\frac{d}{dt} \left(\frac{1}{2} m \, \dot{z}^2 + \frac{1}{2} k \, z^2 \right) = (-\alpha) \left(\frac{dz}{dt} \right)^2 \quad \text{ou} \qquad \frac{d}{dt} (E) = (-\alpha) \left(\frac{dz}{dt} \right)^2$$

Constats:

- 1- La dérivée de E par rapport au temps est négative, l'énergie ne reste pas constante, E décroît depuis une valeur initiale E
- **E** décroît depuis une valeur initiale E_0 **2-** Si l'on écrit : $\frac{dE}{dt} = -\alpha \vec{V}.\vec{V} = \vec{F}.\vec{V} = \text{Puissance de frottement}$

On fait apparaître la puissance P de la force de frottement responsable de la décroissance de l'énergie E.

1

2-2-2 AMORTISSEMENT CRITIQUE (Δ'=0)

L'amortissement critique est défini par $\lambda = \omega_0$ dans ce cas on a $\Delta' = \lambda^2 - \omega_0^2 = 0$

L'équation caractéristique (12) admet une racine double

soit:
$$x(t) = Ae^{-\omega_0 t}$$
 (a)

la relation (10) est une équation différentielle de second ordre,

la solution générale est une combinaison linéaire de deux fonctions indépendantes :

Cherchons une deuxième solution de l'équation (10) de la forme :

$$x(t) = te^{-rt}$$
 avec $r \in C$

En reportant les expressions de $\dot{x}(t) = (tr+1)e^{rt}$ et $\ddot{x}(t) = (tr^2 + 2r)e^{rt}$

soit
$$x(t) = te^{-\omega_0 t}$$
 \Rightarrow $x(t) = Bte^{-\omega_0 t}$ (b)

Donc la solution générale de l'équation (10) s'écrit(a+b) :

$$x(t) = (A + Bt)e^{-\omega_0 t}$$

où A et B sont des constantes à déterminées à partir des conditions initiales.

- Représentation graphique de x(t)

 $x(t) = (A + Bt)e^{-\omega_0 t}$ On a: donc

x(t) est toujours positif, sans effectué aucune oscillation.

$$\label{eq:energy} \text{Et quand} \quad \begin{cases} t = 0 & \text{on a: } x(0) = A \\ t \to \infty & \text{on a: } x(\infty) = 0 \end{cases} \quad \text{De même} \quad \frac{dx}{dt} = 0 \qquad \text{pour} \quad t_m = \frac{\mathbf{B} - A\omega_0}{\mathbf{B}\omega_0}$$

Donc x(t) admet un maximum pour t = tm.

- Conditions initiales:

- Conditions initiales:

à
$$t=0 \ x(0)=a_0$$
 et $\dot{x}(0)=0$

C.I
$$\Rightarrow$$
 A=a₀ B=a₀ $\omega_0 \Rightarrow t_m = 0$
soit: $x(t)=a_0(1+\omega_0 t)e^{-\omega_0 t}$

2.2.3- AMORTISSEMENT FORT (régime apériodique)

 $\lambda > \omega_0^{}$ Ce qui implique : $\quad \Delta' = \lambda^2 - \omega_0^2 > 0$ C'est le cas où:

L'équation (10) admet donc deux solutions réelles :

$$r_1 = -\lambda + \sqrt{\Delta'} = -\lambda + \sqrt{\lambda^2 - \omega_0^2} = -\lambda + \omega_1$$

$$r_2 = -\lambda - \sqrt{\Delta'} = -\lambda - \sqrt{\lambda^2 - \omega_0^2} = -\lambda - \omega_1$$

$$x(t) = \left(A e^{\omega_1 t} + B e^{-\omega_1 t}\right) e^{-\lambda t}$$

- Représentation graphique de x(t)

C.I: à t=0 $x(0)=a_0$ et $\dot{x}(0)=0$

III – OSCILLATEUR AMORTI ENTRETENU

- L'énergie d'un oscillateur amorti décroît, cette énergie se dissipe sous l'action des forces de frottement et le mouvement s'amortit après quelques temps.
- Pour entretenir un phénomène physique amorti, on lui applique une force excitatrice extérieure qui lui apporte autant d'énergie qu'en dissipent les frottements.

3-1 EQUATION DE L'OSCILLATEUR AMORTI ENTRETENU (OAE)

Prenons l'exemple précédent de l'oscillateur vertical soumis en plus à une force extérieure F(t), l'équation du mouvement, s'écrit :

$$\ddot{x} + 2\lambda \dot{x} + \omega_0^2 x = F(t) \quad \text{(III)}$$

Démonstration

Le P.F.D nous donne :
$$\vec{P} + \vec{T} + \vec{F} + \vec{F}_e = m \gamma(M)_{/R}$$

En tenant compte de <u>l'équation d'équilibre</u> (1), on obtient :

$$\ddot{x} + 2\lambda \dot{x} + \omega_0^2 x = F(t)$$

où:

 $2\lambda = \frac{\alpha}{m}$ paramètre qui caractérise le <u>phénomène dissipatif</u>

 $\omega_0^2 = \frac{K}{m}$ pulsation de l'oscillateur en <u>absence d'amortissement</u>

 $T_0 = \frac{2\pi}{\omega_0}$ période de l'oscillateur en <u>absence d'amortissement</u>. ₂₁

3-2 Résolution de l'équation de l'O.A.E.

La solution x(t) de l'équation (III) est la somme de :

1- La solution générale de l'équation sans second membre, soit $\underline{x_1(t)}$ solution <u>déjà</u> <u>calculée</u> dans l'étude de l'oscillateur amortie (voir II).

2- La solution particulière avec second membre, soit $\mathbf{x}_2(t)$ que nous allons calculer ci-dessous.

On a donc :
$$x(t) = x_1(t) + x_2(t)$$

• Au début de mouvement, x(t) est compliquée et représente le régime transitoire.

•Quand $t \to \infty$, $x_1(t) \to 0$ donc $x(t) \to x_2(t)$ Ceci définit le régime permanent.

-<u>Détermination de $x_2(t)$ </u>: régime permanent

Etude le cas où $F(t) = F_0 \cos \omega t$ Avec F_0 le module de F(t) et ω sa pulsation

Dans ce cas $x_2(t)$ s'écrit :

$$x_2(t) = A \cos \omega t + B \sin \omega t$$
 ou bien $x_2(t) = a \cos (\omega t + \varphi)$

où a et φ deux constantes a déterminé en utilisant la <u>NOTION COMPLEXE</u>

-<u>Déterminer de l'amplitude $a(\omega)$ </u>: Par une méthode basée sur la notion complexe

Soient
$$F(t) = \frac{F_0 e^{i\omega t}}{F_0} = F_0 (\cos \omega t + i \sin \omega t)$$

Dans ce cas
$$x_2(t)$$
 s'écrit : $x_2(t) = ae^{i(\omega t + \varphi)} = a[\cos(\omega t + \varphi) + i\sin(\omega t + \varphi)]$

Injectant ces expressions, dans l'équation (III),

$$\Rightarrow \quad |\ddot{\mathbf{x}} + 2\lambda\dot{\mathbf{x}} + \omega_0^2 \mathbf{x} = \mathbf{F}(\mathbf{t})| \quad (III)$$

23

Rappel : Soient z_1 et $z_2 \in \mathbb{C}$

$$\begin{split} z_1 &= a_1 + ib_1 & \implies \overline{z}_1 = a_1 - ib_1 \\ z_2 &= a_2 + ib_2 & \implies \overline{z}_2 = a_2 - ib_2 \\ \overline{z_1 z_2} &= \overline{z}_1 \overline{z}_2 & \text{et si } x \in \mathbb{R} \quad \overline{x} = x \end{split}$$

Donc:
$$(1)$$
 $\Longrightarrow a \left[\left(\omega_0^2 - \omega^2 \right) - i \left(2\lambda \omega \right) \right] e^{-i\phi} = \frac{F_0}{m}$ (2)

Multipliant membre à membre les équations (1) et (2) :

$$\mathbf{a}^{2} \left[\left(\omega_{0}^{2} - \omega^{2} \right)^{2} + \left(2\lambda \omega \right)^{2} \right] = \left(\frac{F_{0}}{m} \right)^{2}$$

Soit:

$$a = \frac{F_0}{m\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + \left(2\lambda\omega\right)^2}}$$

-Détermination de φ.

D'après la relation (1), on peut écrire que :

$$\left[\left(\omega_0^2 - \omega^2\right) + i\left(2\lambda\omega\right)\right] e^{i\varphi} = \frac{F_0}{am}$$

$$\underline{Rappel}: on \ a: \quad Arg(z_1 z_2) = Arg z_1 + Arg z_2$$

ce qui implique :
$$Arg \left[\left(\omega_0^2 - \omega^2 \right) + i \left(2 \lambda \omega \right) \right] + \phi = 0$$

donc:
$$tg\phi = \frac{2\lambda\omega}{\omega^2 - \omega_0^2}$$

25

Remarque 1: Résonance

Pour $\omega = \omega_r$, on dit qu'il y a résonance entre l'oscillateur et la force excitatrice et si le frottement n'est pas trop important (λ faible) l'amplitude passe par un maximum pour $\omega^2 = \omega_0^2 - 2\lambda^2$

le phénomène de résonnasse commence à apparaître

$$\mathbf{a}\left(\omega_{r}\right) = \frac{F_{0}}{\mathrm{m}2\lambda\omega_{0}} \left[1 - \frac{\lambda^{2}}{\omega_{0}^{2}}\right]^{-1/2}$$

$$\mathbf{Si} \quad \lambda \ll \frac{\omega_{0}}{\sqrt{2}} \qquad \mathbf{a}\left(\omega_{r}\right) = \frac{F_{0}}{\mathrm{m}\omega_{0}} \frac{1}{2\lambda}$$
And the following density at the following density and the following density at the following density and the following density density density and the following density de

Si
$$\lambda \ll \frac{\omega_0}{\sqrt{2}}$$

Avec la fréquence de résonance. $f_r = \frac{\omega_r}{2\pi}$

Remarque 2:

Grâce au modèle des oscillateurs, on peut faire une analogie électromécanique forte utile pour des modélisations de comportement:

Position $x \rightarrow charge q$	Vitesse v→intensité i	Force f(t)→tension u(t)
Masse $m \rightarrow inductance L$	Coefficient f→ résistance R	Constante rappel k→ 1/C capacité