Dirichlet process mixture model on Hopkinson-bar experiments

Mickey Warner

7 December 2015 AMS 241

Data: simulated

Generated n=100 curves, each of length k_i ,

$$\mathbf{y}_i = \beta_{i0} \mathbf{1}_{k_i} + \beta_{i1} \mathbf{x}_i + \beta_{i2} \mathbf{x}_i^2 + \boldsymbol{\epsilon}_i$$

where

$$\cdot \epsilon_i \stackrel{iid}{\sim} N(0, 0.05^2 \mathbf{I}_{k_i})$$

$$\beta_{i0} \stackrel{iid}{\sim} N(3, 0.3^2)$$

$$\beta_{i1} \stackrel{iid}{\sim} N(1.5, 0.1^2)$$

$$\beta_{i2} \stackrel{iid}{\sim} 0.5\delta_0(\cdot) + 0.5N(-1, 0.1^2)$$

Data: simulated (continued)

We use $\mathbf{x}_1 = \cdots = \mathbf{x}_n = \mathbf{x}$ that is a vector of $k_i = 10$ equally spaced values from -0.5 to 2

Thus we have 100 curves with random intercepts, slopes, and quadratic terms, about half of which are lines and the others are parabolas

Parametric hierarchical model

The curves y_i are modeled as a multivariate normal with a quadratic polynomial as the mean:

$$f(\mathbf{y}_{i}|\mathbf{x}_{i},\boldsymbol{\beta}_{i},\tau^{2}) = N_{k_{i}}(\mathbf{y}_{i}|p(\mathbf{x}_{i},\boldsymbol{\beta}_{i}),\tau^{2}\mathbf{I}_{k_{i}}), \qquad i = 1,\dots,n$$

$$\boldsymbol{\beta}_{i} \stackrel{iid}{\sim} N(\boldsymbol{\mu},\boldsymbol{\Sigma}), \qquad i = 1,\dots,n$$

$$\tau^{2} \sim IG(a_{\tau},b_{\tau})$$

$$\boldsymbol{\mu} \sim N(\mathbf{m},\mathbf{S})$$

$$\boldsymbol{\Sigma} \sim IW(\mathbf{V},d)$$

where $\boldsymbol{\beta}_i = (\beta_{i0}, \beta_{i1}, \beta_{i2})^{\mathsf{T}}$, $p(\mathbf{x}_i, \boldsymbol{\beta}_i) = \beta_{i0} \mathbf{1}_{k_i} + \beta_{i1} \mathbf{x}_i + \beta_{i2} \mathbf{x}_i^2$, and $a_{\tau}, b_{\tau}, \mathbf{m}, \mathbf{S}, \mathbf{V}, d$ are specified.

Dirichlet process mixture (DPM) model

We mix over the parameters in the mean function to obtain

$$f(\mathbf{y}_i|G, \mathbf{x}_i, \tau^2) = \int N_{k_i}(\mathbf{y}_i|p(\mathbf{x}_i, \boldsymbol{\beta}), \tau^2 \mathbf{I}_{k_i}) dG(\boldsymbol{\beta})$$
$$G|\alpha, G_0 \sim DP(\alpha, G_0 = N_p(\boldsymbol{\beta}|\boldsymbol{\mu}, \boldsymbol{\Sigma}))$$

and the priors are specified as in the parametric model.

Fitting the models

The priors all yield conjugate posterior conditionals, so sampling can be done easily with Gibbs

For the DPM, since $p(\cdot)$ is a polynomial and G_0 is normal, we can use the Gibbs sampler from Escobar and West.

Simulated data: posterior predictive of a new β_0

Black – parametric; Blue – DPM)

Predictions for a new β = (β_0 β_1 β_2)

Simulated data: posterior predictive of a new y_0

Based on the posterior predictive for $oldsymbol{eta}_0$

Hopkinson-bar experiments

A small piece of material is compressed or stretched, either slowly or rapidly

The deformation of the material is measured in two ways: stress and strain

Experiments are done at various temperatures and strain rates

Hopkinson-bar experiments

We have curves from n=10 experiments

Materials models are typically used to model the data

Material model

For $\mathbf{x}=(\boldsymbol{\epsilon}_p,\dot{\boldsymbol{\epsilon}}^*,T^*)$ and $\boldsymbol{\theta}=(A,B,n,C,m)$ the Johnson-Cook model is given by

$$h(\mathbf{x}, \boldsymbol{\theta}) = (\mathbf{A} + \mathbf{B}\boldsymbol{\epsilon}_p^{\mathbf{n}})(1 + \mathbf{C}\log\dot{\boldsymbol{\epsilon}}^*)(1 - T^{*\mathbf{m}})$$

where $\dot{\epsilon}^*$ is the experimental strain rate, T^* is the experimental temperature, scaled by melting temperature (in Kelvin), and ϵ_p is the plastic strain (x-axis)

There are other, much better models, but the Johnson-Cook is very simple and is a useful starting point

Statistical models

Replace $p(\mathbf{x}_i, \boldsymbol{\beta}_i)$ with the Johnson-Cook model $h(\mathbf{x}_i, \boldsymbol{\theta}_i)$ for the parametric and semi-parametric models:

Parametric

$$f(\mathbf{y}_i|\mathbf{x}_i,\boldsymbol{\theta}_i,\tau^2) = N_{k_i}(\mathbf{y}_i|h(\mathbf{x}_i,\boldsymbol{\theta}_i),\tau^2\mathbf{I}_{k_i})$$

DPM

$$f(\mathbf{y}_i|G,\mathbf{x}_i,\tau^2) = \int N_{k_i}(\mathbf{y}_i|h(\mathbf{x}_i,\boldsymbol{\theta}),\tau^2\mathbf{I}_{k_i})dG(\boldsymbol{\theta})$$

Fitting the models

Since we no longer have conjugacy with θ so we update the latent variables using a Metropolis step (Algorithm 6 from Neal (2000))

All other priors are the same as before and can be updated with Gibbs steps

Posteriors for θ

Black – μ ; colored dots – means of each θ_i

Predictions (given the random effects)

Conclusions and future work

Predictions based a new θ_0 (not shown) were very poor

For covariates \mathbf{x}^* draw a new $oldsymbol{ heta}_0$ that are similar to one of the $oldsymbol{ heta}_i$'s

Hierarchical DPs? Nested DPs?