Mini Project

Shubham Patil

204076008

Among the three models, the **Pao-sah** has very less approximation, although the presence of double integral makes them highly computational expensive.

The **Brews** model uses the charge sheet approximation Reducing the expression to one integral however its still not in compact form.

The **Piece-wise** model uses lot of approximation. It's has a compact form equation making them suitable for adaptation in compact models with some bearable loss in accuracy.

All the 3 modes simulation with expression are shown further.

For NMOS

• Pao-Sah model

Pao-Sah Model

Master equation:

$$I_D = \mu_{eff} \frac{W}{L} \int_0^{V_{DS}} \left[-Q_I(V) \right] dV = q \mu_{eff} \frac{W}{L} \int_0^{V_{DS}} \left[\int_{\delta}^{\psi_S} \frac{n_i^2}{N_A} e^{q(\psi - V)/kT} d\psi \right] dV$$

$$\left(-\frac{d\psi}{dx}\right) = \sqrt{\frac{2kTN_A}{\varepsilon_{Si}}} \left[\frac{q\psi}{kT} + \frac{n_i^2}{N_A^2} e^{q(\psi-V)/kT}\right]^{0.5}$$
 Keeping only relevant terms

$$V_{GS} = V_{FB} + \psi_S + \frac{\sqrt{2\varepsilon_{Si}kTN_A}}{C_{OX}} \left[\frac{q\psi_S}{kT} + \frac{n_i^2}{N_A^2} e^{q(\psi_S - V)/kT} \right]^{0.5}$$

Find ψ_S at S and D ends for different V_{GS} , V_{DS} using this expression

Numerical solution, valid for all V_{GS} , V_{DS}

Brews Model

Brews Model

Master equation:

$$\begin{split} I_{D} &= \mu_{eff} \, \frac{W}{L} \int_{\psi_{SS}}^{\psi_{SD}} \left[-Q_{I}(\psi_{S}) \right] \frac{dV}{d\psi_{S}} d\psi_{S} \\ &= \mu_{eff} \, \frac{W}{L} \int_{\psi_{SS}}^{\psi_{SD}} \left[C_{OX}(V_{GS} - V_{FB} - \psi_{S}) - \sqrt{2\varepsilon_{Si} q N_{A} \psi_{S}} \right. \\ &+ \frac{2kT}{q} \frac{C_{OX}^{2}(V_{GS} - V_{FB} - \psi_{S}) + \varepsilon_{Si} q N_{A}}{C_{OX}(V_{GS} - V_{FB} - \psi_{S}) + \sqrt{2\varepsilon_{Si} q N_{A} \psi_{S}}} \right] d\psi_{S} \end{split}$$

Only a single integral needs to be evaluated (numerically), however, the model is valid for below and above threshold

• Piece-Wise

Drain Current Calculation: Linear Region

Drain current above threshold (V_{GS}>V_T), for small V_{DS} values

$$\begin{split} I_D(V_{GS},V_{DS}) &= \mu_{eff} \, C_{OX} \frac{W}{L} \left[\left(V_{GS} - V_T - \frac{mV_{DS}}{2} \right) V_{DS} \right] \\ V_T &= V_{FB} + 2\phi_B + \frac{\sqrt{4q \, \varepsilon_{Si} N_A \phi_B}}{C_{OX}} \end{split}$$

 $m = 1 + \frac{C_D}{C_{OX}}, C_{OX} = \frac{\varepsilon_{OX}}{T_{OX}}, C_D = \frac{\varepsilon_{Si}}{W_D}, W_D = \sqrt{\frac{4\varepsilon_{Si}\phi_B}{qN_A}}$

Piece-wise expression valid till the onset of pinch-off induced saturation

Approximate closed form solution: Subthreshold region

$$I_D(V_{GS}, V_{DS}) = \mu_{eff} \frac{W}{L} C_{OX}(m-1) \left(\frac{kT}{q}\right)^2 e^{q(V_{GS} - V_T)/mkT} \left[1 - e^{-qV_{DS}/kT}\right]$$

Saturation region:

$$I_{DSAT}(V_{GS}) = \mu_{eff} C_{OX} \frac{W}{L} \frac{(V_{GS} - V_T)^2}{2m}$$

• Piece-wise equations plots

• Comparison plot

a. IDVG Comparison

b. IDVD Comparison

PMOS

a. IDVG

i. Pao-sha

j. Piece-wise

k. Brews

A. IDVG Comparison plots: PMOS

B. IDVD comparison plot: PMOS

All the three models show well consistency and current within the acceptable error bar.

Slide's courtesy: Prof. Souvik