

Análisis Comparativo GT 2.4 - GT 4.0

Juan Eduardo Murrieta León

eml@super.unam.mx

Temario

- Escenario
- Globus y el Globus Toolkit.
- Globus Toolkit 2.4
 - Los cuatro componentes: GSI, GRAM, GridFTP, MDS
- Evaluación del GT 2.4
- OGSA, Web Services y el GT 4.0
- Globus Toolkit 4.0
 - Pre-WS
 - GT-WebServices: GSI, WS-GRAM, GridFTP, MDS4
- Conclusiones

• El *cómputo científico* es una herramienta tan poderosa y necesaria como lo es el trabajo teórico y experimental en la investigación científica actual.

• Los centros de investigación cuentan con una gran diversidad de recursos técnicos y computacionales

accesibles vía red:

- Computadoras
- Bases de datos
- Instrumentos
- Personal
- etc.

• Las necesidades de cómputo son extremas, mientras que los recursos son limitados.

LHC y Alice
10 Petabytes de datos al año.

- Una **GRID** es un sistema que:
 - 1. Cordina recursos que no son susceptibles de un control centralizado
 - Utiliza protocolos e interfaces estandarizadas, abiertas y de propósito general
 - 3. Proporciona calidades de servicio no triviales

Ian Foster, What is the Grid? A three point checklist. GRIDToday, Julio 20, 2002.

Grids en el Mundo

L C G (LHC Computing Grid)

EU-DataGrid Project (EDG)

DataTAG (Trans Atlantic Grid)

INFN Grid

GriPhyN (Grid Physics Network)

PPDG (Particle Physics Data Grid)

International Virtual Data Grid Laboratory (iVDgL)

Grids en el Mundo

ApGrid (Asia Pacific Grid)

(Canada)

PRAGMA (Pacific Rim Applications and Grid Middleware Assembly)

www.grama.org.mx

Globus y el Globus Toolkit

Globus y el Globus Toolkit

• Se han explorado diversos mecanismos para crear la infraestructutra de software de la GRID.

- Globus es un proyecto muti-institucional de *The Globus Alliance* para proveer la infraestructura necesaria para la construcción de grids.
 - ANL, Universidad de Chicago, EPCC, NCSA, USC, Instituto Real de Tecnología de Suecia.

Globus y el Globus Toolkit

- El elemento central del proyecto Globus es el Globus Toolkit (GT)
 - . Basado en un modelo de paquete de servicios.
- El GT es considerado como uno de los elementos clave en desarrollo de las grids computacionales:
 - "The Globus Toolkit ... is one of the **Ten Technologies That Will Change the World**"

MIT Technology Review

Arquitectura por capas del GT

Fábrica

Administración colectiva de recursos "lógicos"

Administración de recursos individuales

Comunicación y seguridad

Recursos "físicos"

Globus Toolkit 2.4

Globus Toolkit 2.4

- El Globus Toolkit se ha convertido en el estándar para la implementación de servicios de GRID.
 - La versión más utilizada y estable en GRIDs de producción en el mundo es la versión 2.4.
- La experiencia generada con esta versión sirvió para diseñar una serie estándares para servicios de Grid.
 - Open Grid Services Architecture (OGSA) 2002.

Globus Toolkit 2.4

The Globus Toolkit

Componentes del Globus Toolkit 2.4

G S I Seguridad

Globus Toolkit 2.4 - GSI

- El elemnto básico del GT2.4 es la infraestructura GSI (GRID Security Infraestructure) que proporciona servicios de autenticación y comunicación segura.
- Su diseño se basó en las siguientes premisas:
 - Comunicación segura (autenticación y confidencialidad) entre los elementos de la GRID.
 - Mecanismo de seguridad no centralizado.
 - Soporte para registro único (**single sign-on**), y delegación de credenciales para procesos que involucren múltiples recursos.

Globus Toolkit 2.4 - GSI

- Basado en PKI, certificados X.509 y el protocoloTLS.
- La implementación GSI se apega al API: Servicio de Seguridad Genérico (GSS-API), propuesto por el IETF para sistemas de seguridad.
- Cada usuario y servicio en la GRID es identificado mediante un certificado.

Componentes del Globus Toolkit 2.4

GRAM

Acceso a Recursos

- El Gerente de Asignación de Recursos de Grid (**GRAM**) proporciona los mecanismos necesarios para ejecutar y monitorear trabajos en la Grid.
- Una grid construida con Globus, contiene varios GRAMs, cada uno responsable de un recurso físico local.

- Las solicitudes de recursos son expresadas en términos de un Lenguaje de Especificación de Recursos (**RSL**).
- Interfaz única para todos los mecanismos locales de envío de trabajos.
 - LSF, NQE, fork, etc.
- No es necesario recordar/conocer la sintaxis de cada sistema.

Ejecución de procesos:

 Para ejecutar el comando "date" en el host "cotz" % globus-job-run cotz /bin/date

Componentes del Globus Toolkit 2.4

M D S

Servicios de Información

Globus Toolkit 2.4 - MDS

- El Servicio de Monitoreo y Descubrimiento (MDS) está diseñado para proporcionar información sobre los recursos de la Grid, adaptándose a los cambios y estado del sistema.
- MDS utiliza el protocolo LDAP como una interfaz de acceso a la información.
- MDS 2.2 cuenta con:
 - Un proveedor de información local: GRIS (Grid Resource Information Service).
 - Un servicio de directorio : GIIS (Grid Index Information Service).

Globus Toolkit 2.4 - MDS

- MDS 2.2 permite obtener información sobre los recursos y el estado operacional del sistema.
 - Plataforma y arquitectura.
 - Sistema operativo (del host): nombre y versión.
 - CPU: tipo, cantidad, versión, velocidad, caché, etc.
 - Memoria (física y virtual): tamaño, espacio libre, etc.
 - Interfaz de red: nombre de máquina y dirección.
 - Sistema de archivos: tamaño, espacio libre, etc.
 - Otros

Globus Toolkit 2.4 - MDS

Componentes del Globus Toolkit 2.4

GridFTP, GASS, GRC, GRM Control de Datos

Globus Toolkit 2.4 – Datos

- El proyecto Globus se interesa en resolver los retos existentes para implementar una "GRID de Datos".
- Proporciona una infraestructura en la forma de:
 - Servicios de transferencia de datos.
 - Bibliotecas genéricas para el control de datos.
- Estos bloques fundamentales pueden usarse para construir sistemas y aplicaciones destinadas a usuarios finales.

Globus Toolkit 2.4 – Datos

• Global Access to Secondary Storage (GASS)

• biblioteca que permite acceder a datos remotos, vía interfaces estándar de entrada y salida.

. GridFTP

 mecanismo de transferencia de datos seguro, robusto y de alto desempeño.

• Globus Replica Catalog (GRC)

• un mecanismo para mantener un catálogo de réplicas de conjuntos de datos.

• Globus Replica Management (GRM)

• mecanismo que conjunta el **GRC** y el **GridFTP** para permitir a las aplicaciones, crear y administrar réplicas de datos.

Evaluación del Globus Toolkit 2.4

Evaluación del GT 2.4

Evaluación (+) del Globus Toolkit

- Buena solución técnica para problemas clave:
 - Autenticación y autorización.
 - Descubrimiento de recursos y monitoreo.
 - Petición de recursos remotos confiable.
 - Acceso de alto desempeño a datos remotos.
- Este diseño ha permitido el progreso de:
 - Esquemas de calidad, soporte de múltiples interfaces y sistemas, una gran base de usuarios y soporte comercial.

Evaluación del GT 2.4

Evaluación (-) del Globus Toolkit

Deficiencias en protocolos

- Base heterogénea: HTTP, LDAP, FTP.
- Mecanismos no estándar de invocación, notificación, propagación de error, autorización, terminación, etc.

Funcionalidad deficiente

- Bases de datos, sensores, instrumentos, etc.
- Dependencia del sistema.
- Falta de calidad de servicio de punto-a-punto.
- Virtualización del sistema final.

OGSA, Web Services y el Globus Toolkit 4

OGSA, Web Services y el GT4

- Open Grid Services Architecture (OGSA)
 - Desarrollada por The Global Grid Forum
 - Define una arquitectura abierta y estándar para el desarrollo de aplicaciones de grid
 - Especifica las interfaces estándar para cualquier servicio que pueda estar disponible en una grid.
 - Basado en estándares ya existentes.
 - Implementado sobre Servicios Web

• Técnicamente, OGSA permite

- Reconstrucción de los protocolos: GRAM, MDS2, etc., conservando todas las características y conceptos del GT 2.4.
- Un conjunto amplio y estándar de servicios.
- Integración de la industria en el desarrollo.
- Valores agregados de tipo comercial.
- El Globus Toolkit 3.0 fué la primera implementación del estándar OGSA.

OGSA main architecture

Servicios Web

- Creciente popularidad en la estandarización de marcos de trabajo para acceder a aplicaciones de red.
- Permiten crear aplicaciones cliente/servidor distribuidas y poco acopladas.
- Independientes de plataforma y lenguaje:
 - XML
 - WSDL: Lenguaje de descripción de servicios Web.
 - SOAP: Protocolo de Acceso a Objeto Simple.
- Desventajas: sobrecarga, falta de madurez.

Servicios Web

- Globus Toolkit 4.0
 - Liberado en abril del 2005
 - Implementa los principales servicios definidos por OGSA
 - Monitoreo de recuros
 - Servicios de descubrimiento
 - Ejecución de trabajos
 - Seguridad
 - Administración de datos
 - Implementado sobre Web Services Resource Framework
 (WSRF), una extensión a los Web Services.

Las aplicaciones se — construyen sobre los servicios definidos por OGSA

Aplicaciones

OGSA

Estandarizado (OASIS) implementado (GT4)

WSRF

Web Services

Estándares definidos por GGF: seguridad, manejo de recursos, manejo de trabajos, servicios de datos, etc.

GT4 incorpora muchos de estos servicios.

Estandarizado (W3C, OASIS, IETF, etc.) e implementado (Apache axis)

Globus Toolkit 4.0

Globus Toolkit 4.0

- En producción, liberado en abril de 2005
- Enfocado a la calidad, robustez, facilidad de uso y idocumentación!
- Basado en estándares: OGSA, WSRF, XML
- Herramientas de usuario para el desarrollo de interfaces
- Compatible GT3 y con soporte para GT2.4
- Soporte comercial de UNIVA Corporation

Componentes del GT4.0

Pre-WebServices

- Técnicamente los mismos servicios del GT2.4
 - GSI, GRAM, MDS, GridFTP
- Permiten la operación de clientes y servicios del GT2.4 con los del GT4.0
 - Servidor GridFTP del GT4 compatible con versiones anteriores
 - Pre WS MDS está descontinuado y desaparecerá en el GT4.4
 - Pre WS GRAM continuará operando, se espera una migración de usuarios hacia WS GRAM

WS Seguridad

- GSI realiza cuatro funciones básicas:
 - Protección de mensajes, autenticación, delegación y autorización.
- Se basa en cuatro estándares
 - TLS (a nivel de transporte) o WS-Security y WS-SecureConversation (a nivel de mensaje)
 - X.509 End Entity Certificates o Usuario-Contraseña para autenticación
 - X.509 Proxy Certificates y WS-Trust para delegación
 - SAML para autorización

WS Seguridad

- Autenticación y Autorización: controla el acceso a los servicios y recursos, permitiendo el uso de métodos implementados por el usuario.
- Delegación: servicio que delega credenciales a un contenedor.
- Autorización comunitaria: el Servicio de Autorización
 Comunitaria (CAS) permite administrar políticas en
 Organizaciones Virtuales sobre sus recursos.
- Manejo de Credenciales: simpleCA y MyProxy
- GSI-OpenSSH: parche del OpenSSH para aceptar autenticación con certificados.

WS Seguridad

Message-level Security w/X.509 Credentials Message-level Security w/Usernames and Passwords

Transport-level Security w/X.509 Credentials

Authorization

Delegation

Authentication

Message Protection

Message format

SAML	and
grid-m	apfile

X.509 Proxy Certificates/ WS-Trust

X.509 End Entity Certificates

WS-Security WS-SecureConversation

SOAP

grid-mapfile

Username/ Password

WS-Security

SOAP

SAML and grid-mapfile

> X.509 Proxy Certificates/ WS-Trust

X.509 End Entity Certificates

TLS

SOAP

WS Manejo de datos

- Servicios de descubrimiento, transferencia y acceso a grandes bancos de datos.
 - GridFTP: cliente y servidor FTP optimizado para transferencias de grandes cantidades de datos.
 - Reliable File Transfer (RFT): servicio de tranferencia confiable, a prueba de interrupciones.
 - Replica Location (RLS): servicio de ubicación de réplicas
 - Data Replication (DRS): Servicio de replicación de datos
 - OGSA-DAI: acceso e integración de datos, permite integrar conjuntos de datos en formatos diferentes.

WS Control de ejecución

- Ejecución, calendarización y monitoreo de trabajos.
 - WS-GRAM: ejecuta y monitorea trabajos
 - Community Scheduler Framework (CSF): interfaz unificada de diferentes calendarizadores (PBS, Condor, LSF, SGE).
 - Workspace Management: permite crear y administrar espacios de trabajo en hosts remotos.
 - Grid Telecontrol Protocol: servicio WSRF para control remoto de instrumentos.

WS-GRAM

Service host(s) and compute element(s)

WS Servicios de información

- MDS4, permite monitorear y descubrir recursos en la grid.
 - Servicio de indexado: permite agregar recursos de interés a la grid.
 - *Trigger Service*: colecta datos de los recursos y realiza acciones basado en esa información.
 - WebMDS: proporciona una vista apta para un navegador de los datos colectados por el servicio de indexado.

WS Common Runtime

- Conjunto de bibliotecas y herramientas para desarrollar nuevos servicios.
 - C: Incluye herramientas, bibliotecas y hospedaje en WS de programas en C
 - **Python**: Incluye herramientas, bibliotecas y hospedaje en WS de programas en Python
 - Java: Incluye herramientas, bibliotecas y servicio de hospedaje para desarrollos en Java.

• El GT2.4

- ha demostrado estabilidad y eficiencia para la implementación de grids en el mundo.
- Utiliza diversos protocolos, algunos no estándares, que dificultan su uso en aplicaciones más generales o comerciales.
- Documentación deficiente
- Sirvió de base para la formulación del estándar OGSA.

- El GT4.0 (+)
 - Es la primera implementación estable de OGSA
 - Cuenta con una gran diversidad de servicios
 - Protocolos basados en estándares reconocidos por la industria (i.e. soporte comercial)
 - Es compatible en gran medida con el GT2.4
 - Gran mejoría en la documentación
 - Herramientas para desarrollo de aplicaciones

- El GT4.0 (-)
 - Es más complejo que el GT2.4 y con muchos requerimientos adicionales (Ant, Java, C, Apache, Tomcat, Postgresql).
 - Se requiere el conocimiento de muchas tecnologías no típicas del CAR para comprender su operación.
 - Pese a que el rendimiento de los WebServices ha mejorado sigue siendo una tecnología costosa computacionalmente.

Semana de Cómputo Científico 2006 Supercómputo, Visualización y Realidad Virtual

Ciudad de México del 24 al 28 de abril de 2006 Ciudad Universitaria

http://dci.dgsca.unam.mx/semana2006

