QUANTUM INFORMATION

IAN LIM LAST UPDATED JANUARY 21, 2019

These notes were taken for the *Quantum Information* course taught by Nilajana Datta at the University of Cambridge as part of the Mathematical Tripos Part III in Lent Term 2019. I live-TEXed them using Overleaf, and as such there may be typos; please send questions, comments, complaints, and corrections to itel2@cam.ac.uk.

Many thanks to Arun Debray for the LATEX template for these lecture notes: as of the time of writing, you can find him at https://web.ma.utexas.edu/users/a.debray/.

CONTENTS

1 5

1.	Friday, January 18, 2019
2.	Monday, January 21, 2019

Friday, January 18, 2019

Note. Here's the relevant admin content for the first day. The lecturer's email is n.datta@damtp.cam.ac.uk., and course notes can be found on the CQIF webiste under Part III lectures.

Quantum information theory (QIT) was born out of classical information theory (CIT).

Definition 1.1. Classical information theory is the mathematical theory of information processing tasks, e.g. storage, transmission, processing of information.

In contrast, quantum information theory asks how these tasks can be performed if we harness quantum mechanical systems as information carriers. Such systems include electrons, photons, ions, etc.

QM has some novel features which are not present in our old Newtonian theories. We know that quantum systems obey the Heisenberg uncertainty principle, that energy is quantized in these systems, and QM systems cannot generically be copied (the famous no-cloning theorem). Quantum mechanically, one can describe the full state of a system without knowing the state of the subsystems—this is essentially the idea of entanglement.¹

Here's a quick overview now of the structure of the course.

- Basic concepts of CIT
- o Study of open quantum systems
- Mathematical tools for QIT
- o Entanglement
- o QIT itself

When we say open quantum systems, we mean quantum systems which interact with a broader environment. If we prepare a state and allow it to interact, what happens to the information stored in that state?

Classical information theory Historically, CIT was invented in 1948 with a pioneering paper by Claude Shannon. In this paper, he asked two critical questions.

- Q1. What is the limit to which information can be *reliably* compressed?
- Q2. What is the maximum rate at which information can be reliably sent through a communication channel?

1

¹If you like, some composite states in a tensor product space cannot be decomposed into a direct product.

FIGURE 1. A sketch of the sort of systems we will be interested in in this class. We have an open system *S* which will naturally interact with its environment *E*.

That is, we may ask about how to encode information in such a way that it can still be recovered with a high probability of success. And we can ask how to send this information when our communication channels will naturally be noisy. The answers to these questions are known as *Shannon's Source Coding Theorem* and *Shannon's Noisy Channel Coding Theorem*, respectively.

What is information? We have an intuitive sense of what information means, but to formalize this takes a little work. In the loosest sense, information is associated to uncertainty and in particular information gain is related to a reduction in uncertainty.

Example 1.2. Suppose I have a system which takes some discrete values, e.g. I roll a fair die. The outcome is a variable x which takes values in some set, $J = \{1, 2, ..., 6\}$. We write that capital X is proportional to $p(x), x \in J$, where $P(X = x) = p(x) = 1/6 \forall x \in J$. That is, there is a probability mass function associated to the possible outcomes. The probability that we measure the system X in outcome x is 1/6 for any outcome x in the set of outcomes.

We also define the following quantity.

Definition 1.3. *Surprisal* is the quantity

$$\gamma(x) = -\log p(x). \tag{1.4}$$

When an event is very unlikely and it happens anyway... you are very surprised. For example, $p(x) = 1 \implies \gamma(x) = 0$ (certainties are not very surprising) while $p(x) \approx 0 \implies \gamma(x)$ large. See Fig. 2 for a plot of γ versus p.

This quantity has some features:

- \circ It only depends on p(x) and not on x.
- \circ It is a continuous function of p(x).
- It is additive for independent events.

This last property is easy to prove:

$$P(X = x, Y = y) = P_{XY}(x, y) = P_X(x)P_Y(y)$$

when X, Y are independent. Then

$$\gamma(x,y) = -\log P_{XY}(x,y) = \gamma(x) + \gamma(y).$$

Definition 1.5. We can now define the *Shannon entropy* of *X* to be

$$H(X) \equiv \mathbb{E}(\gamma(X)) = \sum_{x \in J} (-\log p(x)) p(x), \tag{1.6}$$

the expected value of the surprisal. We see again that H(X) does not depend on the actual outcomes themselves but only on the probability distribution P(X).

Figure 2. The surprisal $\gamma(p) \equiv -\log_2 p$ as a function of p, the probability of some event. Certainties (p=1) are not very surprising, whereas very rare events ($p\ll 1$) are surprising, and so get $\gamma=0$ and γ large respectively.

Figure 3. The Shannon entropy of a binary event where there are two possible outcomes, one of which happens with probability p and the other with 1-p. When p=0.5, our ignorance is at a maximum– we know nothing a priori about what our generator will spit out.

As a matter of convention we will take logs to be $\log \equiv \log_2$, and for events which are impossible, P(x) = 0, we have $0 \log 0 = 0$ (which one can prove by taking the limit $\lim_{u \to 0} u \log u = 0$).

Binary entropy Consider an event which has two possible outcomes, $X \sim P(x), x \in J = \{0,1\}$ where P(X = 0) = p and P(X = 1) = 1 - p. Then the Shannon entropy is

$$H(X) = -p\log p - (1-p)\log(1-p) \equiv h(p). \tag{1.7}$$

We see that if the probability is p = 1/2, then we have no information a priori about this systems—the entropy is maximized. h(p) is a continuous function of p, and it is concave. See the illustration in Fig. 3.

Definition 1.8. We can also define a different entropy, the Rényi entropy, which is

$$H_{\alpha}(X) = \frac{1}{1-\alpha} \log \left(\sum_{x \in J} p(x)^{\alpha} \right), \tag{1.9}$$

with $\alpha \in (1,2]$. As an exercise, we can verify that $\lim_{\alpha \to 1} H_{\alpha}(X) = H(X)$, i.e. the Renyi entropy reduces to the Shannon entropy.²

Why do we choose to work with the Shannon entropy? It has to do with the operational interpretation—the Shannon entropy represents an optimal rate of data compression, i.e. the data compression limit.

In CIT, a classical information source emits some messages/data/signals/information. For instance, *J* could output a binary output or perhaps telegraph English (26 letters and a space). Now, the simplest class of sources is *memoryless*— they are "independent identically distributed" sources (i.i.d.), which means that successive messages are independent of each other, and they are identically distributed.

Definition 1.10. Suppose we have some random variables $U_1, U_2, ..., U_n$ with $U_i \sim p(u), u \in J$. We say these are *identically distributed* if

$$p(u) = P(U_k = u), u \in J \quad \forall 1 \le k \le n.$$

We could study a signal emitted by n uses of the source to get some sequence $\underline{u}^{(n)} = (u_1, u_2, \dots, u_n)$.

Definition 1.11. Moreover, if the probability mass function takes the form

$$p(\underline{u}^{(n)}) = P(U_1, \dots, U_n = u_n)$$

= $p(u_1) \dots p(u_n)$.

If the source is indeed independent and identically distributed, then it makes sense to describe it by a sincle probability mass function, $U \sim p(u)$, so that the Shannon entropy of the source can be said to be

$$H(U) = -\sum_{u \in I} p(u) \log p(u).$$
 (1.12)

Another guiding question. Why is data compression possible? Our information source has some *redundancy*. For instance, in the English language, certain letters are more common than others, so we can encode something that is more common in a shorter string in anticipation it will be used more often.

This sort of scheme is known as variable length coding, e.g. we might encode the letter "e" as the string 10 and the letter "z" as 11000. In contrast, we could also use a fixed length coding scheme where we have a "typical set", a subset of our total outcomes J^n (things we might like to encode). Our typical set then has a one-to-one mapping to the set of encoded messages, e.g. $\{0,1\}^m$, so we can always recover them precisely, while several outcomes outside the typical set might map to the same encoded message. There's some probability that we'll want to encode things outside the typical set, and in decoding we'll get the original message a little bit wrong. But if we choose the typical set well, this can be made to be a rare occurrence. We are usually interested in *asymptotic i.i.d.* settings, i.e. in the limit as the size of the set of possible messages to be encoded goes to ∞ .

Example 1.13. Suppose we have a horse race with eight horses. They have labels 1, 2, ..., 8, and the message we would like to encode is the label of the winning horse. A priori, we only need 3 bits to encode the label since 2^n different messages can be stored in n bits.

However, what if the horses are not all equally fast (i.e. likely to win)? Suppose that p_i is the probability of the *i*th horse winning, such that

$$p_i = 1/2, 1/4, 1/8, 1/16, 1/64, \dots, 1/64.$$

$$\lim_{\alpha \to 1} H_{\alpha}(X) = \lim_{\alpha \to 1} \frac{1}{1 - \alpha} \log \left(\sum_{x \in J} p(x)^{\alpha} \right)$$

$$= \lim_{\alpha \to 1} \frac{1}{(-1)} \frac{\sum_{x \in J} (p(x)^{\alpha} \log p(x))}{\sum_{x \in J} p(x)^{\alpha}}$$

$$= -p(x) \log p(x) = H(X).$$

Technically I have done this calculation with a natural log rather than a base 2 log, but the result is the same, since the numerical factor from taking the derivative of the log cancels with the factor from rewriting the derivative of $p(x)^a$ in terms of a base 2 log.

²The proof is fairly quick. First note that as $\alpha \to 1$, the denoninator $1 - \alpha$ goes to zero and the log becomes $\log(\sum_{x \in J} p(x)) = \log 1 = 0$, so we can apply L'Hôpital's rule and take some derivatives. Note also that $\frac{d}{dx}a^x = \frac{d}{dx}e^{\log a^x} = \frac{d}{dx}e^{x\log a} = \log ae^{x\log a} = a^x\log a$. Thus by L'Hôpital's rule,

Now we assign the following code words:

$$C(1) = 0$$

 $C(2) = 10$
 $C(3) = 110$
 $C(4) = 1110$
 $C(5) = 111100$
 $C(6) = 111101$
 $C(7) = 111110$
 $C(8) = 111111$

Let l_i be the length of the ith codeword, e.g. $l_5 = 6$. We can compute that the average length of a code is then $\sum p_i l_i = 2$, and we've chosen a "prefix-free code" so that a sequence like 10011001110 can be uniquely decoded to a sequence of winners from our code words. That is, no codeword is a prefix of any other code. Let's compute the expected length of the codeword— it is

$$\sum_{i} p_{i} l_{i} = 1 \times \frac{1}{2} + 2 \times \frac{1}{4} + 3 \times \frac{1}{8} + 4 \times \frac{1}{16} + 4 \times \frac{1}{64} \times 6 = 2, \tag{1.14}$$

and this is exactly the Shannon entropy of the system, as expected.

Lecture 2.

Monday, January 21, 2019

Last time, we introduced Shannon's Source Coding Theorem:

Theorem 2.1. For an i.i.d (memoryless) source, the optimal rate of reliable data compression (i.e. the data compression limit) is precisely the Shannon entropy H(X) of the source.

We started by saying that if we have an iid source, we can model it by a collection of n sources U_1, U_2, \ldots, U_n which outputs a length-n vector $\underline{u}^{(n)} = (u_1, \ldots, u_n)u_i \in J$. For an iid source, all the sources have the same probability mass function,

$$U_i \sim p(u), u \in J$$
,

which means that we can equivalently model the source as a single source,

$$U \sim p(u), u \in J; p(\underline{u}^{(n)}) = \prod_{i=1}^{n} P(U_i = u_i) = \partial(u_1) \dots p(u_n).$$

The Shannon entropy of the source is given as usal by

$$H(U) = -\sum_{i \in I} p(u) \log p(u).$$
 (2.2)

Now let us define a compression map.

Definition 2.3. A compression map of rate R is a map C with

$$C^n: \underline{u}^{(n)} = (u_1, \dots, u_n) \mapsto \underline{x}^{m_n} = (x_1, \dots, x_{m_n}) \in \{0, 1\}^{m_n}.$$
(2.4)

That is, C maps our output string of length n to a compressed (encoded) string \underline{x} of length m_n . We say that the *rate* of encoding is then

$$R = \frac{m_n}{n} = \frac{\text{number of bits in codeword}}{\text{number of uses of source}}.$$
 (2.5)

If a compression scheme has rate R, then we assign unique codewords to $2^{\lceil nR \rceil}$ messages.

 $^{^{3}}$ For the sequence 10011001110, we know that the first winner was the horse corresponding to 10, horse 2. The next winner was horse 1 with code 0. This sequence breaks up as 10|0|110|0|1110, so the winners were 2, 1, 3, 1, and 4 in that order.

Question: when is such a map C^n a compression map? If our source outputs n values in the alphabet J, then we have total possibilities

$$|I|^n = 2^{n\log|J|}. (2.6)$$

These can be stored in $n \log |J|$ bits. Thus c^n is a compression map if $m_n < n \log |J|$, i.e. if we encode the output in fewer bits than it would take to uniquely encode every single string in the naive binary way.

We can of course also define a decompression map:

Definition 2.7. A decompression map \mathcal{D}^n is a map

$$\mathcal{D}^n: \underline{x}^{m_n} \in \{0,1\}^{m_n} \mapsto \underline{u}^{(n)} = (u_1, \dots, u_n), \tag{2.8}$$

i.e. which takes us back to the original length-*n* strings of source outputs.

Now we can ask what the probability of a successful decoding is-namely,

$$\sum p(\underline{u}^{(n)}) P\left(\mathcal{D}^n(\mathcal{C}^n(\underline{u}^{(n)})) \neq \underline{u}^{(n)}\right)$$
(2.9)

is the average probability of error of the compression process. We write this as $P_{av}^{(n)}(C_n)$, where C_n denotes an encoding and decoding scheme.

Definition 2.10. C_n is a triple defined $C_n = (C^n, \mathcal{D}^n, R)$ which represents a choice of code. We say that a code is *reliable* if $P_{av}^{(n)} \to 0$ in the limit as $n \to \infty$. That is, $\forall \epsilon \in (0,1) \exists n$ such that $P_{AV}^{(n)} \le \epsilon$.

Then there is an optimal rate of data compression,

$$R_{\infty} = \inf\{R : \exists C_n(\mathcal{C}^n, \mathcal{D}^n, R) \text{s.t.} p_{AV}^{(n)}(C_n) \to 0 \text{ as } n \to \infty\}.$$
(2.11)

What Shannon's source coding thm tells us is that $R_{\infty} = H(U)$. The most we can reliably compress an iid source is the Shannon entropy.

Definition 2.12. An ϵ -typical sequence is a sequence defined as follows. Fix $\epsilon \in (0,1)$ and take an iid source with $U \sim p(u)$, $u \in J$ which gives us an output $\underline{u}^{(N)} = (u_1, \dots, u_n)$. Then if

$$2^{-n(H(U)+\epsilon)} \le p(\underline{u}^{(n)}) \le 2^{-n(H(U)-\epsilon)},\tag{2.13}$$

we say that $\underline{u}^{(n)}$ is an ϵ -typical sequence.

An ϵ -typical set is then defined to be the set $T_{\epsilon}^{(n)} = \{\underline{u}^{(n)} \in J^n \text{ such that 2.13 holds}\}$. In the asymptotic limit let us observe that

$$p(\underline{u}^{(n)}) \approx 2^{-nH(U)} \tag{2.14}$$

are almost equiprobable since ϵ gets arbitrarily small. Does this agree with our intuitive notion of a typical sequence? Yes– take a sequence $\underline{u}^{(n)}=(u_1,\ldots,u_n),u_i\in J$. Then the probability of u is

$$p(u) \approx \frac{\text{number of times } u \text{ occurs in } \underline{u}^{(u)}}{n}.$$

SO the number of times we expect to have some $u \in J$ appearing in the string $\underline{u}^{(n)}$ is simply np(u). We see that The probability of a typical sequence is then

$$p(\underline{u}^{(n)}) = \prod_{u \in J} \underbrace{p(u) \dots p(u)}_{np(u) \text{ times}}$$

$$= \prod_{u \in J} p(u)^{np(u)}$$

$$\approx \prod_{u \in J} 2^{np(u) \log p(u)}$$

$$\approx 2^{n \sum p(u) \log p(u)}$$

$$\approx 2^{-nH(U)}$$

So this agrees well with our notion of a typical sequence.⁴

⁴There is a difference between typical and high-probability– we'll investigate this further on the example sheet.

Now, typical sequences have some nice properties. $\forall \delta > 0$ and large n,

- $\circ H(U) \epsilon \le -\frac{1}{n} \log p(\underline{u}^{(n)}) \le H(u) + \epsilon$
- $\circ \ P(T_{\epsilon}^{(n)} := \sum_{\underline{u}^{(n)} \in T_{\epsilon}^{(n)}} p(\underline{\underline{u}}^{(n)}) > 1 \delta.$
- $\circ 2^{n(H(U)-\epsilon)}(1-\delta \le |T_{\epsilon}^{(n)}| \le 2^{n(H(U)+\epsilon)}$, where $|T_{\epsilon}^{(n)}|$ is the number of typical (length n) sequences.

All these properties are collectively known as the typical sequence theorem.

Since $\epsilon > 0$, we see that in the limit $\epsilon \to 0$

$$|T_{\epsilon}^{(n)}| \approx 2^{nH(U)}.\tag{2.15}$$

Now we can state Shannon's theorem formally.

- (a) (Achievability) Suppose R > H(U). Then \exists a reliable compression-decompression scheme of rate R.
- (b) (Converse) For R < H(U), any compression-decompression scheme is not reliable.

Constructive proof of (a) Let us suppose that R > H(U). We fix $\epsilon \in (0,1)$ such that $R > U(U) + \epsilon$. Then choose n large enough (i.e. the asymptotic limit) such that $T_{\epsilon}^{(n)}$ satisfies the conditions of the typical sequence theorem. Then we can write

$$|T_{\epsilon}^{(n)}| \le 2^{n(H(U)+\epsilon)} < 2^{nR}. \tag{2.16}$$

Now we divide our set of sequences J^n into the typical set T^n_{ϵ} and its complement $A^n_{\epsilon} = J^n \setminus T^n_{\epsilon}$. Let us then order the elements of our typical set, i.e. we apply some labels/indices to all the elements. Since $|T^n_{\epsilon}| < 2^{nR}$, we need at most nR bits to store all the labels of the typical sequences (i.e. the ones we always want to recover reliably).

With our encoding scheme for the typical set in hand, let us preface our encoding with a 1, i.e. a *flag bit*. So the typical set elements will be encoded as

$$\underline{u}^{(n)} \in T_{\epsilon}^{n} \mapsto 1 \underbrace{011 \dots 1}_{\lceil nR \rceil}. \tag{2.17}$$

Our codewords will be of length $\lceil nR \rceil + 1$, and we can assign the complement A^n_{ϵ} to some random codewords beginning with a 0 instead. So our rate of success when we decompress will not be exactly 1–there is some loss when we encode elements outside the typical set. However, things are not so bad. Let us take the limit as $n \to \infty$ and look at the success probability.

$$\begin{aligned} p_{av}^{(n)} &:= \sum p(\underline{u}^{(n)}) P\Big(\mathcal{D}^n(\mathcal{C}^n(\underline{u}^{(n)})) \neq \underline{u}^{(n)}\Big) \\ &= \sum_{\underline{u}^{(n)} \in T_{\epsilon}^n} p(\underline{u}^{(n)} P(\underline{u}'^{(n)} \neq \underline{u}^{(n)}) + \sum_{\underline{u}^{(n)} \in A_{\epsilon}^n} p(\underline{u}^{(n)} P(\underline{u}'^{(n)} \neq \underline{u}^{(n)}). \end{aligned}$$

But the first term is zero since we can always decode typical set elements, and the second part can be made to be arbitrarily small ($< \delta$) by the typical sequence theorem.

Lemma 2.18. Suppose we have a set S^n which has size $|S^n| = 2^{nR}$, with R < H(U). $\forall \delta > 0$, $S_n \subset J^n$ s.t. $|S^n| = 2^{nR}$ with R < H(U), we have $P(S^n) < \delta$ for n large enough.

This implies the converse, and is in the couse notes (but is useful to think on oneself).

$$2^{-n(H(U)+\epsilon)}|T_{\epsilon}^{(n)}| \leq \sum_{\underline{u}^{(n)} \in T_{\epsilon}^{(n)}} p(\underline{u}^{(n)}) < 1.$$

This leads us to conclude that $|T_{\epsilon}^{(n)}| < 2^{n(H(U)+\epsilon)}$.

 $^{^5}$ By the definition of a typical set, the probability of any typical sequence is bounded by

⁶As nR may not be an integer, we'll practically need at most $\lceil nR \rceil$ bits.