Abstract

We present solutions to all exercises from Scott Weinstein's "Model Theory" course lectures at UPenn. These are relatively self-contained and are meant to complement Weinstein's written memoirs of our class meetings. The official reference for the course is David Marker's *Model Theory: An Introduction*.

- **1.** Let I be a countably infinite set. Let $\mathbb{D} := \langle I, E \rangle$ be a structure where E is an equivalence relation for which there is exactly one equivalence class of size k for each $k \in \mathbb{Z}_{>1}$.
 - (1) Show that the set Λ of (first-order) sentences expressing that E is an equivalence relation with exactly one equivalence class of size k for each $k \in \mathbb{Z}_{>1}$ axiomatizes \mathbb{D} , i.e., $\mathsf{Th}(\mathbb{D}) = \mathsf{Cn}(\Lambda)$ where

$$\mathsf{Cn}(\Lambda) \coloneqq \{ \varphi \in \mathsf{FO}_{\mathbb{D}} \mid \Lambda \models \varphi \} .$$

(2) Show that for every (first-order) formula $\theta(y, \overline{w})$ and every $\overline{a} \in I$, the set

$$\theta [\mathbb{D}, \bar{a}] := \{ x \in \text{dom}(\mathbb{D}) \mid \mathbb{D} \models \theta [x, \bar{a}] \}$$

is either finite or cofinite.

(1) It suffices to prove that Λ is complete. For, in this case, any two models of Λ must be elementarily equivalent.

Claim 1. Let \mathbb{E} be any model of Λ of size $\kappa \geq \omega$. There exists an elementary extension $\mathbb{E}_{\kappa} \succeq \mathbb{E}$ of size κ such that \mathbb{E}_{κ} has exactly κ equivalence classes each of size κ .

Proof. Let λ denote the cardinality of the set of all equivalence classes in dom(\mathbb{E}). Note that $\lambda \leq \kappa$. For every $\alpha, \beta \in \kappa$, adjoin to the language of \mathbb{E} a new constant symbol $c(\alpha, \beta)$. Consider the theory

$$\Delta := \Lambda \cup \{ Ec(x,y)c(x,z) \mid x,y,z \in \kappa \} \cup \{ \neg Ec(x,0)c(y,0) \mid x,y \in \kappa, \ x \neq y \}.$$

Any finite subset F of Δ is satisfiable by a suitable expansion \mathbb{E}_F of \mathbb{E} . Then there exists an ultrafilter on the family of finite subsets of Δ such that the ultraproduct

$$\prod_{F\subset\Delta}\mathbb{E}_F/\mathcal{U}$$

satisfies Δ . Moreover, its reduct \mathbb{A} to the language of \mathbb{E} is an elementary extension of \mathbb{E} . By the downward Löwenheim-Skolem theorem, there exists a structure \mathbb{E}_0 of size κ such that $\mathbb{A} \succeq \mathbb{E}_0 \succeq \mathbb{E}$.

Now, repeat our preceding construction ω times to get an increasing chain

$$\mathbb{E} \leq \mathbb{E}_0 \leq \mathbb{E}_1 \leq \mathbb{E}_2 \leq \cdots$$

of structures such that each $\operatorname{dom}(\mathbb{E}_i)$ has cardinality κ . Note that \mathbb{E}_{κ} is an elementary extension of \mathbb{E} . Further, the domain of the direct limit $\mathbb{E}_{\kappa} := \bigcup_{i \in \omega} \mathbb{E}_i$ also has cardinality κ , so that \mathbb{E}_{κ} has exactly κ equivalence classes. Finally, for any $x \in \mathbb{E}_{\kappa}$, x belongs to some \mathbb{E}_n . Hence the equivalence class [x] has size κ in \mathbb{E}_{n+1} and thus in \mathbb{E}_{κ} . It follows that every equivalence class in \mathbb{E}_{κ} has size κ .

Suppose, toward a contradiction, that there is a sentence φ in the language of $\mathbb D$ such that neither φ nor $\neg \varphi$ belongs to $\mathsf{Cn}(\Lambda)$. Then there are models $\mathbb A^1$ and $\mathbb A^2$ of Λ a such that $\mathbb A^1 \models \neg \varphi$ and $\mathbb A^2 \models \varphi$. By the Löwenheim-Skolem theorem, we may assume that both of these have size $\kappa \geq \omega$. By Claim 1, we thus have two structures $\mathbb A^1_{\kappa}$ and $\mathbb A^2_{\kappa}$ such that $\mathbb A^1_{\kappa} \models \neg \varphi$ and $\mathbb A^2_{\kappa} \models \varphi$. But it's easy to see that $\mathbb A^1_{\kappa}$ and $\mathbb A^2_{\kappa}$ must be isomorphic, which yields a contradiction.

(2) Suppose, toward a contradiction, that there exist a formula $\theta(y, w_1, \ldots, w_n)$ and an element $\bar{a} \in I$ such that $\theta[\mathbb{D}, \bar{a}]$ is both infinite and coinfinite. Adjoin to the language of \mathbb{D} new constant symbols $\bar{e} := (e_1, \ldots, e_n)$, c, and d. For each $k \in \mathbb{Z}_{\geq 1}$, let $\lambda_k(x)$ denote the formula expressing that the equivalence class of x has cardinality > k. Now, consider the theory

$$\begin{split} \Gamma \coloneqq \Lambda \cup \left\{ \lambda_k(c) \mid k \geq 1 \right\} \cup \left\{ \lambda_k(d) \mid k \geq 1 \right\} \\ \cup \left\{ \neg Ee_i c \mid 1 \leq i \leq n \right\} \\ \cup \left\{ \neg Ee_i d \mid 1 \leq i \leq n \right\} \\ \cup \left\{ \theta(c, \bar{e}), \neg \theta(d, \bar{e}) \right\} \end{split}$$

in our new language.

Let F be any finite subset of Γ . Since both θ $[\mathbb{D}, \bar{a}]$ and $\neg \theta$ $[\mathbb{D}, \bar{a}]$ are infinite by assumption, we can find an expansion of \mathbb{D} that satisfies F by interpreting \bar{e} as \bar{a} and both c and d as members of large enough equivalence classes. By the compactness theorem, it follows that there is some model \mathbb{C} of Γ , which must be infinite. Let \mathbb{C}' denote the reduct of \mathbb{C} to the language of \mathbb{D} . Thanks to the Löwenheim-Skolem theorem, we may assume that $\mathrm{dom}(\mathbb{C}')$ is countable. Thus, the equivalence classes $\left[c^{\mathbb{C}}\right]$ and $\left[d^{\mathbb{C}}\right]$ are countable. Note that $e_i^{\mathbb{C}} \notin \left[c^{\mathbb{C}}\right] \cup \left[d^{\mathbb{C}}\right]$ for each $1 \leq i \leq n$. Therefore, there is an automorphism of \mathbb{C}' sending $c^{\mathbb{C}}$ to $d^{\mathbb{C}}$ and fixing each $e_i^{\mathbb{C}}$. But this contradicts the fact that $\mathbb{C}' \models \theta \left[c^{\mathbb{C}}, \bar{e}^{\mathbb{C}}\right] \land \neg \theta \left[d^{\mathbb{C}}, \bar{e}^{\mathbb{C}}\right]$.

Definition 1 (Categoricity). For any cardinal κ , we say that a theory T is κ -categorical if any two models of T of size κ are isomorphic.

2. Show that a \mathcal{L} -structure \mathbb{A} is finite if and only if for any \mathcal{L} -structure \mathbb{B} ,

$$A \equiv B \iff A \cong B.$$

Remark. This shows that any complete theory with a finite model is κ -categorical for any cardinal κ .

 (\Longrightarrow)

It is always true that any two isomorphic structures are elementarily equivalent. Thus, it remains to show that $\mathbb{A} \equiv \mathbb{B} \implies \mathbb{A} \cong \mathbb{B}$.

First, assume that \mathcal{L} is finite. Consider the atomic diagram of \mathbb{A} , i.e., the set

$$D(A) := \{ \varphi \mid \underline{A} \models \varphi, \ \varphi \text{ is either atomic or the negation of an atomic formula} \}$$

where $\underline{\mathbb{A}}$ denotes the expansion of \mathbb{A} obtained by adjoining a constant symbol c_a for each $a \in \text{dom}(\mathbb{A})$. Since both \mathcal{L} and $\text{dom}(\mathbb{A})$ are finite, we can encode $D(\mathbb{A})$ with a single sentence ψ . Therefore, the sentence

$$\psi_{\mathbb{A}} \coloneqq \forall x \left(\bigvee_{a \in \text{dom}(\mathbb{A})} x = c_a \right) \land \psi$$

has the property that $\underline{\mathbb{B}} \models \psi_{\mathbb{A}} \Longrightarrow \mathbb{B} \cong \mathbb{A}$ for any other \mathcal{L} -structure \mathbb{B} . Now, if $\mathbb{A} \equiv \mathbb{B}$, then clearly both $\underline{\mathbb{A}}$ and $\underline{\mathbb{B}}$ satisfy $\psi_{\mathbb{A}}$, so that $\mathbb{B} \cong \mathbb{A}$.

Next, let \mathcal{L} be arbitrary and let $\mathbb{A} \equiv \mathbb{B}$. Suppose, toward a contradiction, that $\mathbb{A} \ncong \mathbb{B}$. Then for any bijection $f : \text{dom}(\mathbb{A}) \to \text{dom}(\mathbb{B})$, there is some finite sublanguage \mathcal{L}_f of \mathcal{L} such that f is *not* an isomorphism $\mathbb{A}^{\mathcal{L}_f} \to \mathbb{B}^{\mathcal{L}_f}$ of reducts to \mathcal{L}_f . Consider the language

$$\mathcal{L}' \coloneqq \bigcup_{\substack{f: \operatorname{dom}(\mathbb{A}) \to \operatorname{dom}(\mathbb{B}) \\ \operatorname{bijection}}} \mathcal{L}_f,$$

which is finite as the finite union of finite sets. Thanks to our preceding discussion, we obtain an isomorphism $g: \mathbb{A}^{\mathcal{L}'} \stackrel{\cong}{\longrightarrow} \mathbb{B}^{\mathcal{L}'}$. But $\mathcal{L}_g \subset \mathcal{L}'$ by our construction of \mathcal{L}' , and thus g induces an isomorphism $\mathbb{A}^{\mathcal{L}_g} \stackrel{\cong}{\longrightarrow} \mathbb{B}^{\mathcal{L}_g}$, contrary to our choice of \mathcal{L}_g .

 (\Longleftrightarrow)

Suppose that \mathbb{A} is infinite. We must find a structure \mathbb{B} such that $\mathbb{A} \equiv \mathbb{B}$ but $\mathbb{A} \ncong \mathbb{B}$. But this follows at once from the Löwenheim-Skolem theorem, which implies that $\mathsf{Th}(\mathbb{A})$ has a model of any infinite size.

Definition 2 (Ehrenfeucht-Fraïssé game). Suppose that \mathcal{L} is a finite language without function symbols. Let \mathbb{D} and \mathbb{E} be two \mathcal{L} -structures. Let $n \in \omega$. The *Ehrenfeucht-Fraïssé game* $\mathrm{EF}_n(\mathbb{D},\mathbb{E})$ of length n on \mathbb{D} and \mathbb{E} is a game of perfect information played as follows.

- (a) There are exactly two players, the *spoiler* and the *duplicator*.
- (b) There are exactly n rounds.
- (c) The spoiler begins round $k \leq n$ by picking an element (sometimes called a pebble) of either dom(\mathbb{D}) or dom(\mathbb{E}). Next, the duplicator picks an element of the other domain.
- (d) This yields two sequences (d_1, \ldots, d_n) and (e_1, \ldots, e_n) such that $d_i \in \text{dom}(\mathbb{D})$ and $e_i \in \text{dom}(\mathbb{E})$ for each $i = 1, \ldots, n$. If the mapping $d_i \mapsto e_i$ defines an isomorphism of finite substructures, then we say that the duplicator has won $\text{EF}_n(\mathbb{D}, \mathbb{E})$. Otherwise, we say that the spoiler has won.

Theorem 3 (Fraïssé). The duplicator has a winning strategy in $\mathrm{EF}_n(\mathbb{D},\mathbb{E})$ for each $n \in \omega$ if and only if $\mathbb{D} \equiv \mathbb{E}$.

3. Let $\mathbb{N}^* = \langle \omega, < \rangle$. Show that for any infinite cardinal κ , $\mathsf{Th}(\mathbb{N}^*)$ is not κ -categorical.

Expand the language of \mathbb{N}^* by adjoining countably many constants $\{c_i\}_{i\in\mathbb{Z}}$. Consider the theory

$$T := \mathsf{Th}(\mathbb{N}^*) \cup \{c_i > c_{i+1} \mid i \in \mathbb{Z}\}. \tag{(*)}$$

in our new language. Any finite subset of T is satisfied by an expansion of \mathbb{N}^* suitably interpreting the c_i since \mathbb{N}^* has descending chains of all finite lengths. By the compactness theorem, it follows that there is some model \mathbb{A} of T, which must be infinite. If $|\mathbb{A}| > \aleph_0$, then apply the Löwenheim-Skolem theorem to get a model \mathbb{B} of T such that $|\mathbb{B}| = \aleph_0$. Let

$$\mathbb{A}' = \begin{cases} \mathbb{B} & |\mathbb{A}| > \aleph_0 \\ \mathbb{A} & |\mathbb{A}| = \aleph_0 \end{cases}.$$

Note that $\mathbb{A}' \models T$. Since the property of being a linearly ordered set is expressible by a first-order sentence, we see that \mathbb{A}' is linearly ordered by <. Further, we see that \mathbb{A}' has an infinite descending chain, which means that \mathbb{A}' is not well-ordered by <. But $(\omega, <)$ is a well-ordered set, and thus the reduct of \mathbb{A}' to the language of \mathbb{N}^* is not isomorphic to \mathbb{N}^* . It does, however, satisfy $\mathsf{Th}(\mathbb{N}^*)$. This shows that $\mathsf{Th}(\mathbb{N}^*)$ is not \aleph_0 -categorical.

Unfortunately, it's unclear that this method can be adapted to show that $\mathsf{Th}(\mathbb{N}^*)$ is not κ -categorical when κ is uncountable. In this case, we instead shall employ two binary operations on the class of all linear orderings. Let L_1 and L_2 be linearly ordered sets.

- L_1^{op} refers to L_1 equipped with the inverse order.
- $L_1 \otimes L_2$ refers to $L_1 \times L_2$ equipped with the lexicographic order.
- $L_1 \oplus L_2$ refers to L_1 with its ordering followed by L_2 with its ordering.

Now, consider the following linearly ordered structures:

$$\mathbb{N}^* \oplus (\mathbb{Z} \otimes \kappa)$$
$$\mathbb{N}^* \oplus (\mathbb{Z} \otimes (\mathbb{Q} \oplus \kappa)),$$

both of which have cardinality κ . These orderings possess bottom elements and are discrete in the sense that both structures satisfy the sentences

$$\forall x \exists y (x < y \land \neg \exists z (x < z \land z < y))$$

$$\forall x (\exists w (w < x) \rightarrow \exists y (y < x \land \neg \exists z (y < z \land z < x))).$$
 (1)

(Informally, we can view y here as the successor/predecessor of x.) Note that, on the one hand, $\mathbb{N}^* \oplus (\mathbb{Z} \otimes \kappa)$ cannot possess an descending chain of length ω^2 , for otherwise κ , which is well-ordered, would possess an infinite descending chain. On the other hand, $\mathbb{N}^* \oplus (\mathbb{Z} \otimes (\mathbb{Q} \oplus \kappa))$ does possess such a chain since ω^* (the order type of $\mathbb{Z}_{<0}$) can be embedded in \mathbb{Q} . Therefore,

$$\mathbb{N}^* \oplus (\mathbb{Z} \otimes \kappa) \ncong \mathbb{N}^* \oplus (\mathbb{Z} \otimes (\mathbb{Q} \oplus \kappa)).$$

Claim 2. Suppose that $(\mathbb{E}, <)$ is a discrete linear ordering with a bottom element but no top element. Then $\mathbb{E} \equiv \mathbb{N}^*$.

Proof sketch. Consider the Ehrenfeucht-Fraïssé game $\mathrm{EF}_n(\mathbb{E}, \mathbb{N}^*)$. The duplicator has a winning strategy in $\mathrm{EF}_n(\mathbb{E}, \mathbb{N}^*)$ by adhering to the following rules.

- (i) If, in round m, the spoiler chooses an element of one of the structures that is connected to a previously chosen element or the bottom element by a path of successors of length $k < \infty$, then choose the corresponding element of the other structure in round m.
- (ii) Otherwise, make sure that any chosen element of $\operatorname{dom}(\mathbb{N}^*)$ is always separated by at least n+1 elements from any previously chosen element of $\operatorname{dom}(\mathbb{N}^*)$ while preserving the required order of your choices. In this case, choose first a natural number separated by more than 3^n elements from the greatest previously chosen element of $\operatorname{dom}(\mathbb{N}^*)$.

Thanks to Theorem 3, it follows that both $\mathbb{N}^* \oplus (\mathbb{Z} \otimes \kappa)$ and $\mathbb{N}^* \oplus (\mathbb{Z} \otimes (\mathbb{Q} \oplus \kappa))$ are elementarily equivalent to \mathbb{N}^* and thus models of $\mathsf{Th}(\mathbb{N}^*)$. Hence $\mathsf{Th}(\mathbb{N}^*)$ is not κ -categorical.

4. Show that any set definable over \mathbb{N}^* is either finite or cofinite.

Remark. This shows that \mathbb{N}^* is *o-minimal* in the sense that every definable set over \mathbb{N}^* is a finite union of points and intervals in ω .

Note that any set definable over \mathbb{N}^* is 0-definable because any natural number n is uniquely determined by the first-order property

$$\begin{cases} \text{``n is less than any other element''} & n=0\\ \text{``there are exactly } n-1 \text{ elements between 0 (the bottom element) and } n\text{''} & n>1 \end{cases}$$

Suppose, toward a contradiction, that there exist a formula $\theta(y)$ such that $\theta[\mathbb{N}^*]$ is both infinite and coinfinite. Consider, again, the theory (\star) . Let

$$T' = T \cup \{\theta(c_0), \neg \theta(c_1)\}.$$

Since both θ [N*] and $\neg \theta$ [N*] are infinite by assumption, we can find an expansion of N* that satisfies any finite subset of T', By the compactness theorem together with the Löwenheim-Skolem theorem, we thus can find a countable model D of T' and take its reduct C to the language of N*. Note that $(\text{dom}(\mathbb{C}), <)$ is a

countable linear ordering with an infinite descending and ascending chain χ on which both $c_0^{\mathbb{D}}$ and $c_1^{\mathbb{D}}$ lie. Moreover, this ordering is discrete in the sense of (1). Therefore, we may assume that χ has the form

$$\cdots < x_{m-1} < x_m < x_{m+1} < \cdots$$

where x_{m+1} denotes the immediate successor of x_m . There is an automorphism of \mathbb{C} mapping $c_0^{\mathbb{D}}$ to $c_1^{\mathbb{D}}$ by suitably shifting χ finitely many places to the left and fixing all elements outside χ . But this contradicts the fact that $\mathbb{C} \models \theta \ [c_0^{\mathbb{D}}] \land \neg \theta \ [c_1^{\mathbb{D}}]$.

5. Consider the theory DLO of the dense linear ordering without endpoints. For any uncountable cardinal κ , show that there are 2^{κ} many models of DLO up to isomorphism.

Remark. This shows that DLO is not κ -categorical even though it is \aleph_0 -categorical.

Consider the linear orderings

$$L_1 := \mathbb{Q} \otimes (\omega_1^{\text{op}} \oplus \omega_1)$$

$$L_2 := \mathbb{Q} \otimes (1 \oplus \omega_1^{\text{op}} \oplus \omega_1).$$

Now, by replacing each $\alpha \in \kappa$ with a choice of L_1 or L_2 , we obtain 2^{κ} many dense linear orderings $\{P_{\beta}\}_{{\beta}<2^{\kappa}}$ without endpoints such that $|P_{\beta}| = \kappa$ for ever β . It remains to show that these are pairwise non-isomorphic.

To this end, suppose that there is an isomorphism $f: P_{\beta} \xrightarrow{\cong} P_{\beta'}$. By construction, both P_{β} and $P_{\beta'}$ consist of κ -sequences

$$L_{i_0} < L_{i_1} < \dots < L_{i_{\alpha}} < \dots$$

 $L_{i'_0} < L_{i'_1} < \dots < L_{i'_{\alpha}} < \dots$

respectively, where $i_{\alpha}, i'_{\alpha} \in \{1, 2\}$ Since any isomorphism of well-ordered sets is unique, we see that the function $f \upharpoonright_{L_{i_{\alpha}}}$ is an isomorphism $L_{i_{\alpha}} \xrightarrow{\cong} L_{i'_{\alpha}}$ for any $\alpha \in \kappa$.

Claim 3. $L_1 \ncong L_2$.

Proof. On the one hand, L_1 has a suborder isomorphic to ω_1^{op} with no lower bound in L_1 . On the other hand, any such suborder of L_2 has a lower bound in L_2 . Hence there is no isomorphism from L_1 to L_2 . \square

It follows that $L_{i_{\alpha}} = L_{i'_{\alpha}}$ for every $\alpha \in \kappa$, which completes our proof.

Definition 4. Let T be a theory and let $\Gamma(\bar{x})$ be a set of formulas in free variables x_1, \ldots, x_n . We say that Γ is an n-type over T if for any finite subset $\Delta \subset \Gamma$, the expanded theory

$$T \cup \left\{ (\exists \bar{x}) \bigwedge \Delta \right\}$$

is satisfiable.

Notation. Let \mathbb{M} be an \mathcal{L} -structure and let $A \subset \text{dom}(\mathbb{M})$. Let $\mathcal{L}_A = \mathcal{L} \cup \{c_a \mid a \in A\}$ and let \mathbb{M}_A denote the \mathcal{L}_A -structure induced by \mathbb{M} . Then $\mathbb{S}_n^{\mathbb{M}}(A)$ refers to the set of all complete n-types over $\mathsf{Th}_A(\mathbb{M}) := \mathsf{Th}(\mathbb{M}_A)$.

Definition 5 (Stability). Let T be a complete theory in \mathcal{L} and let κ be an infinite cardinal. We say that T is κ -stable if whenever $\mathbb{M} \models T$, $A \subset \text{dom}(\mathbb{M})$, and $|A| = \kappa$, we have that $|\mathbb{S}_n^{\mathbb{M}}(A)| = \kappa$.

6. Let \mathbb{A} be a structure and $\theta(x,y)$ be a formula in the language of \mathbb{A} . Suppose that $B \subset \text{dom}(\mathbb{A})$ is an infinite set on which $\theta[\mathbb{A}]$ is a linear order \prec . Show that $\mathsf{Th}(\mathbb{A})$ is not ω -stable (i.e., \aleph_0 -stable).

Thanks to the axiom of dependent choice, we can find a countably infinite chain of at least one of the following two forms.

$$a_0 \prec b_0 \prec a_1 \prec b_1 \prec a_2 \prec b_2 \prec \cdots$$

 $\cdots \prec b_2 \prec a_2 \prec b_1 \prec a_1 \prec b_0 \prec a_0$

with $a_i, b_i \in B$ for each $i = 0, 1, 2, \ldots$ Without loss of generality, assume that we can find the former kind of chain and that θ has the form $x \prec y$. In this case,

$$\mathbb{A} \models \theta[a_i, b_j] \iff i \le j. \tag{*}$$

Claim 4. There exist sequences $(a_x)_{x\in 2^{\aleph_0}}$ and $(b_x)_{x\in 2^{\aleph_0}}$ along with a model \mathbb{A}' of $\mathsf{Th}(\mathbb{A})$ such that

$$\mathbb{A}' \models \theta[a_x, b_y] \iff x \le y.$$

Proof. Adjoin to the language of \mathbb{A} two new constant symbols c_x and d_y for every $x, y \in 2^{\aleph_0}$. Consider the theory

$$\Gamma \coloneqq \mathsf{Th}(\mathbb{A}) \cup \left\{ \theta(c_x, d_y) \mid x, y \in 2^{\aleph_0}, \ x \leq y \right\} \cup \left\{ \neg \theta(c_x, d_y) \mid x, y \in 2^{\aleph_0}, \ x > y \right\}.$$

in our expanded language. In light of (*), any finite subset of Γ is satisfiable by a suitable expansion of \mathbb{A} . Thus, by the compactness theorem, Γ has a model \mathbb{B} . Finally, let \mathbb{A}' denote the reduct of \mathbb{B} to the language of \mathbb{A} .

Instead of indexing the sequences (a_x) and (b_x) by $(2^{\aleph_0}, \in)$, let us index them by the set of all 2^{\aleph_0} -indexed binary strings σ under the string order <. We have that

$$\mathbb{A}' \models \theta[a_{\sigma}, b_{\sigma'}] \iff \sigma < \sigma'.$$

Consider the countably infinite subset $X := \{a_{\sigma} \mid \sigma \in 2^{\aleph_0}\}$ of dom(\mathbb{A}'). By recursion, we can build a binary tree of the form

with height ω . We call nodes of the form $\theta(a_{\sigma}, x)$ positive and those of the form $\neg \theta(a_{\sigma}, x)$ negative. Let U denote any branch of (\Cap) . Let U_p denote the set of all strings $\sigma \in 2^{\aleph_0}$ such that a_{σ} occurs in a positive node of U. Since U_p is countable, it has an upper bound in $(2^{\aleph_0}, <)$. Since $(2^{\aleph_0}, <)$ is a complete order and 2^{\aleph_0} is a limit ordinal, it follows that U_p has a supremum τ in 2^{\aleph_0} . By construction of (\Cap) , if $\theta(a_{\sigma}, x)$ is a positive node of U and $\neg \theta(a_{\sigma'}, x)$ is a negative one, then $\sigma' > \sigma$. Hence $\tau \leq \sigma'$ for any σ' occurring in a negative node of U. As a result, we see that $\mathbb{A}' \models \varphi[a_{\sigma}, b_{\tau}]$ for any node φ of U.

Therefore, every branch of (\cap) determines a unique 1-type over $\mathsf{Th}_Y(\mathbb{A}')$ where

$$Y := \{x \in X \mid x \text{ occurs in a node of } (\bigcap) \}.$$

This shows that $\left|\mathbb{S}_1^{\mathbb{A}'}(Y)\right| = 2^{\aleph_0} > \aleph_0$. But (\(\mathbb{n}\)) has exactly

$$\left| \bigcup_{n \in \omega} 2^n \right| = \aleph_0$$

many nodes, so that $|Y| = \aleph_0$. Hence $\mathsf{Th}(\mathbb{A})$ is not ω -stable.

Informally, an abstract logic L consists of a set of L-sentences together with a satisfaction relation \models_L between structures and L-sentences.

Definition 6 (Löwenheim-Skolem property). We say that L has the Löwenheim-Skolem property if any countable satisfiable L-theory has a model of size $\leq \aleph_0$.

7. Consider the extension $L(Q_0)$ of first-order logic by the generalized quantifier $\exists^{<\omega}$ signifying "there are finitely many." Formally,

$$\mathbb{A} \models (Q_0 x) \varphi(x) \iff |\{a \in \text{dom}(\mathbb{A}) \mid \mathbb{A} \models \varphi[a]\}| < \aleph_0.$$

Show that $L(Q_0)$ has the Löwenheim-Skolem property.

Without loss of generality, consider $L(Q_0)$ with $\exists^{<\omega}$ replaced by $\exists^{\infty} := \neg \exists^{<\omega}$. We have the following version of the Tarski-Vaught elementary submodel criterion.

Claim 5. Let \mathbb{B} be a structure for $L(Q_0)$ and \mathbb{A} be a submodel of \mathbb{B} . Suppose that for any formula $\varphi(\bar{x}, y)$ and any $\bar{a} \in \text{dom}(\mathbb{A})$,

$$\{b \in \operatorname{dom}(\mathbb{B}) \mid \mathbb{B} \models \varphi[\bar{a}, b]\} \neq \emptyset \implies \{b \in \operatorname{dom}(\mathbb{A}) \mid \mathbb{B} \models \varphi[\bar{a}, b]\} \neq \emptyset$$
$$|\{b \in \operatorname{dom}(\mathbb{B}) \mid \mathbb{B} \models \varphi[\bar{a}, b]\}| \geq \aleph_0 \implies |\{b \in \operatorname{dom}(\mathbb{A}) \mid \mathbb{B} \models \varphi[\bar{a}, b]\}| \geq \aleph_0$$

Then $\mathbb{A} \preceq_{L(Q_0)} \mathbb{B}$.

Proof sketch. This is easily proved by induction on the complexity of formulas just as it is for first-order logic. \Box

Now, suppose that Γ is a countable $L(Q_0)$ -theory with an infinite model \mathbb{M} . It suffices to show that for any $X \subset \text{dom}(\mathbb{M})$, there is an elementary submodel \mathbb{M}' of \mathbb{M} such that $X \subset \text{dom}(\mathbb{M}')$ and $|\mathbb{M}'| = |X| + \aleph_0$. To this end, inductively construct an ω -sequence

$$X := X_0 \subset X_1 \subset X_2 \subset \cdots$$

of subsets of dom(M) such that $|X_i| = |X| + \aleph_0$ for every $i \in \omega$ as follows. Suppose that we have already defined X_i as desired. For every formula $\varphi(\bar{x}, y)$ and any $\bar{a} \in X_i$, consider the set

$$F_{\varphi,\bar{a}} := \{b \in \text{dom}(\mathbb{M}) \mid \mathbb{M} \models \varphi[\bar{a},b]\}.$$

By the axiom of choice, we can find a set of the form

$$\widetilde{F}_{\varphi,\bar{a}} := \begin{cases} F_{\varphi,\bar{a}} & F_{\varphi,\bar{a}} \text{ is finite} \\ \text{a chosen countably infinite subset of } F_{\varphi,\bar{a}} & \text{otherwise} \end{cases}.$$

Now, let

$$X_{i+1} = X_i \cup \bigcup_{\varphi,\bar{a}} \widetilde{F}_{\varphi,\bar{a}}.$$

Since there are countably many formulas and, by induction, $|X| + \aleph_0$ many $\bar{a} \in X_i$, we deduce that X_{i+1} has cardinality $|X| + \aleph_0$.

It is easy to see that the union $\mathbb{M}' := \bigcup_{i \in \omega} X_i$ forms an elementary submodel of \mathbb{M} thanks to Claim 5. Further, we have that $|\mathbb{M}'| = |X| + \aleph_0 + \aleph_0 = |X| + \aleph_0$, as desired.

Let $X \subset \omega$. We write $\phi_e^X : W_e^X \to \{0,1\}$ for the partial function computed by the Turing machine with index e and access to an oracle for X.

Definition 7 (Computability). Let $Y \subset \omega$.

- 1. We say that Y is computable/recursive relative to X if the characteristic function χ_Y equals ϕ_e^X for some index e.
- 2. We say that Y is computably/recursively enumerable relative to X if $Y = W_e^X$ for some index e.

If $Y = \emptyset$, then we omit "relative to X."

Let \mathcal{C} denote any collection of computably enumerable sets. We say that a set $B \subset \{0,1\}^*$ of binary strings is a weak index set for \mathcal{C} if $\mathcal{C} = \{W_e \mid e \in B\}$.

8. Let REC denote the collection of all recursive sets. Show that REC has a computably enumerable weak index set.

By mapping all invalid encodings of Turing machines to a distinguished trivial Turing machine, we may assume that our binary representation scheme

$$\langle - \rangle : \{a \mid a \text{ is a TM}\} \rightarrow \{0,1\}^*$$

of Turing machines is surjective, i.e., every binary string represents a Turing machine. Therefore, we may computably enumerate all Turing machines

$$M_1 < M_2 < M_3 < \cdots$$

according to the string order <. With this in mind, construct an enumerator E that prints, for each Turing machine M_i , the binary representation of a new Turing machine M'_i given as follows.

Algorithm 1: pseudocode describing M'_i

```
Input: the binary string x
 1 run U_{\mathsf{TM}} on \langle M_i, x \rangle;
 2 if U_{TM} rejects then
       reject
 3
 4 else
        run U_{\mathsf{TM}} on \langle M_i, y \rangle for all strings y such that |y| \leq |x|;
 5
        if U_{\mathsf{TM}} halts for each such y then
             accept
 7
         else
 8
             reject
 9
10
        end
11 end
```

Here, U_{TM} denotes a universal Turing machine. It is easy to see that

$$L(M_i') = \begin{cases} L(M_i) & M_i \text{ is total} \\ \text{a finite set} & \text{otherwise} \end{cases}.$$

We claim that the language $\{\langle M_i' \rangle \mid i \in \mathbb{Z}_{\geq 1}\}$ enumerated by E is a weak index set for REC, i.e.,

$$\mathsf{REC} = \{ L(M_i') \mid i \in \mathbb{Z}_{\geq 1} \} \,.$$

Indeed, if Y is recursive, then there is some Turing machine M_k deciding it, in which case $Y = L(M_k) = L(M_k')$. Conversely, for any language of the form $L(M_k')$, M_k is either total or non-total. If it is total, then $L(M_k') = L(M_k)$ and $L(M_k)$ is recursive. If it is non-total, then $L(M_k')$ is finite and thus recursive.

Remark. We could not have used the set $S := \{D_1, D_2, D_3, \ldots\}$ of all deciders as our weak index set for Rec, for S is not computably enumerable. Indeed, suppose, toward a contradiction, that S is computably enumerable. Enumerate all binary strings

$$w_1 < w_2 < w_3 < \cdots$$
.

We now can construct a Turing machine N such that for each integer $i \ge 1$, N accepts w_i if D_i rejects it and rejects w_i if D_i accepts it. Then L(N) is a decidable language, but $N \notin S$ by construction, a contradiction.

Let T be a countable complete theory. For any $n \in \mathbb{Z}_{\geq 1}$, consider the set $S_n(T)$ of all complete n-types of T endowed with the topology generated by all sets of the form

$$[\theta(x_1,\ldots,x_n)] := \{\tau \in S_n(T) \mid \theta(\bar{x}) \in \tau\}, \quad \theta(\bar{x}) \text{ a formula in the language of } T.$$

This is known as the *n*-th Stone space of T. It is clearly Hausdorff. It is also totally disconnected in the sense that every point in $S_n(T)$ has a clopen neighborhood.

Next, consider the Boolean algebra

$$B_n(T) := \{ [\theta(x_1, \dots, x_n)] \}_{\theta(\bar{x})}$$

with meet \cap , join \cup , and complement $(-)^c$. This is isomorphic to the Boolean algebra of all equivalence classes of the form

$$\{\varphi(\bar{x}) \mid T \models \varphi \leftrightarrow \theta\}$$

with meet \land , join \lor , and complement \neg .

Theorem 8. The space $S_n(T)$ is compact.

Proof. Recall that a topological space X is compact if and only if every family $\{C_i \mid i \in I\}$ of closed sets in X with the finite intersection property satisfies $\bigcap_{i \in I} C_i \neq \emptyset$. Suppose that $U := \{\Gamma_i(\bar{x}) \mid i \in I\}$ is any family of closed sets in $S_n(T)$ with the finite intersection property. As all basic open sets in $S_n(T)$ are clopen, each n-type $\Gamma_i(\bar{x})$ has the form $[\neg \theta_i(\bar{x})]$. We see that $\{\neg \theta_i(\bar{x}) \mid i \in I\}$ is an n-type over T because U has the finite intersection property.

Claim 6. Every n-type over T is contained in a complete n-type over T.

Proof. Let $\Delta(\bar{x})$ be an *n*-type over T. Let \bar{c} be an *n*-tuple of new constant symbols added to the language of T. By definition of an *n*-type over T, the theory $T \cup \Delta(\bar{c})$ in our expanded language is finitely satisfiable. By the compactness theorem, there is some model \mathbb{M} of $T \cup \Delta(\bar{c})$. Take the reduct \mathbb{M}' of \mathbb{M} to the language of L and let $\bar{a} = \bar{c}^{\mathbb{M}}$. Then $\mathbb{M}' \models T \cup \Delta(\bar{a})$, so that

$$\Delta(\bar{x}) \subset \{\psi(\bar{x}) \mid \mathbb{M}' \models \psi(\bar{a})\},\,$$

which is a complete n-type over T.

By Claim 6, we can find a complete *n*-type τ over T that contains $\{\neg \theta_i(\bar{x}) \mid i \in I\}$. Then τ must belong to the intersection $\bigcap_{i \in I} \Gamma_i(\bar{x})$.

Remark. Our proof of Theorem 8 reveals why the compactness theorem is so named.

9. Prove that $S_n(T)$ is finite if and only if $B_n(T)$ is finite.

First, suppose that $S_n(T)$ is finite. Every element of $B_n(T)$ is a subset of $S_n(T)$, and thus

$$|B_n(T)| \le 2^{|S_n(T)|},$$

which is finite.

Conversely, suppose that $B_n(T)$ is finite. Consider the function $h: S_n(T) \to \mathcal{P}(B_n(T))$ defined by

$$\Gamma(\bar{x}) \mapsto \{ [\psi(\bar{x})] \mid \psi \in \Gamma \}.$$

If $\Gamma(\bar{x})$ and $\Gamma'(\bar{x})$ are distinct complete *n*-types over T, then there is some formula $\theta(\bar{x})$ in the language of T such that $\theta \in \Gamma$ and $\neg \theta \in \Gamma'$. Hence $h(\Gamma) \neq h(\Gamma')$, so that h is injective. This implies that

$$|S_n(T)| \le 2^{|B_n(T)|},$$

which is finite.