Quantum exponential Orlicz space in information geometry

Anna Jenčová Mathematical Institute, Slovak Academy of Sciences

a talk based on arxiv:math-ph/0511065 and AJ, On quantum information manifolds, in: Algebraic and Geometric Methods in Statistics, 2010

September 28, 2021

Outline

- Introduction: Information geometry
- Quantum relative entropy and perturbation of states
- Young functions and associated norms
- A quantum exponential Orlicz space
- The quantum information manifold

Introduction: Information geometry

The geometry of statistical models

Parametric statistical model: for a measure space (Ω, Σ, μ) ,

$$M = \{p_{\theta}, \; \theta \in \Theta \subseteq \mathbb{R}^n\}$$
 - a family of probability measures

Under some regularity of $\theta \mapsto p_{\theta}$: a differentiable manifold (Rao, 1945; Jeffreys, 1946)

Additional structures:

- Riemannian structure: Fisher information
- affine connections: respecting exponential families

$$\{p_{\theta} = \exp(\log p + \sum_{i} \theta_{i} u_{i} - c(\theta))\}$$

or mixture families

$$\{p_{\theta} = \sum_{i} \theta_{i} p_{i}\}$$

The geometry of statistical models

(Amari & Nagaoka)

- duality of the two connections with respect to the metric
- a family of α -connections, $\alpha \in \mathbb{R}$
- geometric structures closely related to divergence measures (relative entropy, α -divergence)
- uniqueness of the structures respecting statistical maps (Cencov, 1982)

Basic references: Amari & Nagaoka, 2000; Ay et al., 2017

Exponential statistical manifold

(Pistone & Sempi, 1995)

- ullet an infinite dimensional manifold M_p of probability measures equivalent to a given p
- exponential arc: $I \ni t \mapsto p_t := \exp(\log p + tu c_p(t))$ u a regular random variable, centered at p:

$$u \in L_{\rho} := \{u, E_{\rho}[\exp(tu)] < \infty, \ t \in I, \quad E_{\rho}[u] = 0\},$$

• parametrization: $u \mapsto [p^u] := \exp(\log p + u - c_p(u))$, for some $u \in L_\rho$ such that

$$c_p(u) = \log E_p[\exp(u)] < \infty$$
 - cumulant generating functional

• L_{ρ} is the subspace of centered elements in the exponential Orlicz space $L_{\rm exp}(\Omega, \Sigma, \rho)$, with respect to the Young function

$$\Phi(x) = \cosh(x) - 1$$

Exponential statistical manifold

A Banach manifold structure on M_p modelled on $L_{\exp}(\Omega, \Sigma, p)$:

• connected components are the maximal exponential families: all elements p_1, p_2 can be connected by an open exponential arc

$$p_t = \exp(\log p + tu - c_p(t)), \ t \in (a, b), \ p_i = p_{t_i}, \ t_1, t_2 \in (a, b)$$

- parametric models are included as submanifolds
- the geometric structures of the parametric models are induced from the exponential manifold

Quantum information geometry

Finite dimensional quantum extensions (matrix algebras)

- quantum Fisher information: a family of monotone metrics (Petz, 1996)
- exponential and mixture connections, α-connections and duality with respect to monotone metrics, divergences,...
 (Nagaoka, Hasegawa, Gibilisco & Isola, Grasselli & Streater, AJ,...)
- not so clear interpretation in statistics or information theory

Quantum exponential manifold

Relation to statistical physics motivated the construction of an infinite dimensional quantum exponential manifold:

(Labuschagne & Majewski; Streater)

- geometry of the state space induced from L_1 not suitable: every neighborhood of a state ρ contains some ρ' with $S(\rho'\|\rho)=\infty$
- $(L_{\text{exp}})_* = L \log(L+1)$: generated by states with finite (relative) entropy
- L_{exp} (extended) space of observables, $L \log(L+1)$ (restricted) space of states
- geometry closely related to state perturbation and relative entropy

I will follow an approach similar to (Streater, 2004), based on a quantum Young function obtained by state perturbation.

Quantum relative entropy and perturbation of states

Basic setting and notation

- \mathcal{M} a von Neumann algebra (σ -finite)
- \mathcal{M}_* the predual
- $\mathcal{M}^s = \{a = a^* \in \mathcal{M}\}$ self-adjoint part
- $\mathcal{M}_*^s = \{\psi(a^*) = \overline{\psi(a)}\}$ hermitian normal functionals
- \mathcal{M}_*^+ the positive cone in \mathcal{M}_*
- $\mathfrak{S}_*(\mathcal{M})$ the set of normal states

We fix a faithful normal state $\rho \in \mathfrak{S}_*(\mathcal{M})$.

Haagerup L_p -spaces and a standard form

Haagerup L_p -spaces: $L_p(\mathcal{M})$, $1 \le p \le \infty$, the norm: $\|\cdot\|_p$

• If $\mathcal{M} = B(\mathcal{H})$, can be replaced by Schatten classes:

$$S_p = \{ a \in B(\mathcal{H}), \ \operatorname{Tr} |a|^p < \infty \}, \quad \|a\|_p = (\operatorname{Tr} |a|^p)^{1/p}$$

- $\mathcal{M}\cong L_{\infty}(\mathcal{M})$, $\mathcal{M}_{*}\cong L_{1}(\mathcal{M})$: $\psi\mapsto h_{\psi}$ ("density operators")
- $L_p(\mathcal{M})^* \cong L_q(\mathcal{M}), 1/p + 1/q = 1$
- $L_2(\mathcal{M})$ a Hilbert space

Standard form:
$$(\lambda, L_2(\mathcal{M}), J, L_2(\mathcal{M})^+), \lambda : \mathcal{M} \to B(L_2(\mathcal{M}))$$

$$\lambda(a)\xi=a\xi, \quad J\xi=\xi^*, \qquad a\in\mathcal{M}, \ \xi\in L_2(\mathcal{M}).$$

 $h_{\omega}^{1/2}$ - (unique) vector representative of $\omega \in \mathcal{M}_*^+$ in $L_2(\mathcal{M})^+$.

Kosaki L_p spaces with respect to ρ

Let $\eta \in [0,1]$. The Kosaki L_p -space with respect to ρ :

$$L^\eta_p(\mathcal{M},\rho)=\{h^{\eta/q}_\rho kh^{(1-\eta)/q}_\rho,\ k\in L_p(\mathcal{M})\}\subseteq \mathcal{M}_*$$
 the norm:
$$\|h^{\eta/q}_\rho kh^{(1-\eta)/q}_\rho\|_{p,\sigma}^{(\eta)}=\|k\|_p$$

- defined by complex interpolation
- for 1 : continuous embeddings

$$\mathcal{M} \sqsubseteq L_{p'}^{\eta}(\mathcal{M}, \rho) \sqsubseteq L_{p}^{\eta}(\mathcal{M}, \rho) \sqsubseteq \mathcal{M}_{*}$$

• $L_p^{\eta}(\mathcal{M}, \rho)^* \cong L_q^{\eta}(\mathcal{M}, \rho)$, 1/p + 1/q = 1.

Symmetric L_p -spaces: $\eta = 1/2$

$$L_p(\mathcal{M}, \rho) := L_p^{1/2}(\mathcal{M}, \rho), \quad \|\cdot\|_{p,\rho} := \|\cdot\|_{p,\rho}^{(1/2)}$$

Relative entropy

For $\omega \in \mathcal{M}_*^+$, the relative modular operator: $\Delta_{\rho,h_\omega^{1/2}}$ (unbounded operator acting on $L_2(\mathcal{M})$)

Araki relative entropy:

$$S(\omega\|
ho) = -\langle \log(\Delta_{
ho,h_{\omega}^{1/2}})h_{\omega}^{1/2},h_{\omega}^{1/2}
angle$$

 in finite dimensions, this is the same as the Umegaki relative entropy:

$$S(\omega \| \rho) = \operatorname{Tr} h_{\omega} (\log h_{\omega} - \log h_{\rho})$$

Properties of the relative entropy

$$\omega \mapsto S(\omega \| \rho)$$
 is strictly convex, lower semicontinuous

Lower bound:

$$S(\omega \| \rho) \ge \omega(1) \log \omega(1)$$
, with equality iff $\omega = \lambda \rho$, $\lambda \ge 0$

Monotonicity

For a positive unital normal map $T: \mathcal{N} \to \mathcal{M}$, with preadjoint $T_*: \mathcal{M}_* \to \mathcal{N}_*$,

$$S(T_*(\omega)||T_*(\rho)) \le S(\omega||\rho), \qquad \omega \in \mathcal{M}_*^+$$

Relation to Kosaki (symmetric) L_p -spaces

The sandwiched Rényi relative entropy: for $\alpha > 1$

$$ilde{\mathcal{D}}_{lpha}(\omega\|
ho) = rac{1}{lpha-1}\lograc{\|h_{\omega}\|_{lpha,
ho}}{\omega(1)}$$

Let $h_{\omega} \in L_p(\mathcal{M}, \rho)^+ = L_p(\mathcal{M}, \rho) \cap \mathcal{M}_*^+$, p > 1.

- $\tilde{D}_{\alpha}(\omega \| \rho) < \infty$ for $\alpha \in (1, p]$
- $\alpha \mapsto \tilde{D}_{\alpha}(\omega \| \rho)$ is nondecreasing on (1, p]
- $\lim_{\alpha\downarrow 1} \tilde{D}_{\alpha}(\omega \| \rho) = \frac{S(\omega \| \rho)}{\omega(1)}$

In particular, $S(\omega \| \rho) < \infty$ for $h_{\omega} \in L_p(\mathcal{M}, \rho)^+$, p > 1.

Sets with finite relative entropy

We define

$$\begin{split} \mathcal{P}_{\rho} &:= \{ \omega \in \mathcal{M}_*^+, \ S(\omega \| \rho) < \infty \} \\ \mathcal{S}_{\rho} &:= \{ \omega \in \mathfrak{S}_*(\mathcal{M}), \ S(\omega \| \rho) < \infty \} \end{split}$$

Donald's identity: for $\omega_i \in \mathcal{M}_*^+$, $\omega = \sum_i \omega_i$

$$S(\omega \| \rho) + \sum_{i} S(\omega_{i} \| \omega) = \sum_{i} S(\omega_{i} \| \rho)$$

- ullet $\mathcal{P}_{
 ho}$ is a convex cone, face of \mathcal{M}_*^+
- S_{ρ} is a base of \mathcal{P}_{ρ} , face of $\mathfrak{S}_{*}(\mathcal{M})$
- $L_p(\mathcal{M}, \rho)^+ \subseteq \mathcal{P}_\rho$ for p > 1

Perturbation of states and relative entropy

Let $a \in \mathcal{M}^s$ and

$$c_{\rho}(a) = \sup_{\omega \in \mathfrak{S}_{*}(\mathcal{M})} \omega(a) - S(\omega \| \rho)$$

- $c_{\rho}(a) < \infty$ for all $a \in \mathcal{M}^s$,
- c_{ρ} is convex and continuous.

The perturbed state

the unique state $[\rho^a] \in \mathcal{S}_\rho$ such that the supremum is attained:

$$c_{\rho}(a) = [\rho^{a}](a) - S([\rho^{a}]||\rho).$$

Perturbation of states and relative entropy

For all $\omega \in \mathfrak{S}_*(\mathcal{M})$, we have

$$\omega(a) - S(\omega \| \rho) = c_{\rho}(a) - S(\omega \| [\rho^a])$$

- $S_{\rho} = S_{[\rho^a]}$, $\mathcal{P}_{\rho} = \mathcal{P}_{[\rho^a]}$
- $[\rho^a]$ is faithful
- In finite dimensions, we have

$$[
ho^a] = \exp(\log
ho + a - c_
ho(a)), \quad c_
ho(a) = \log \operatorname{Tr} [\exp(\log
ho + a)].$$

Quantum exponential arc: $\{[\rho^{ta}], t \in I \subseteq \mathbb{R}\}$

Young functions and associated norms

Young functions

Let X be a real vector space.

A Young function: $\Phi: X \to [0, \infty]$ such that

- 1. Φ is convex,
- 2. $\Phi(x) = \Phi(-x), \ \Phi(0) = 0,$
- 3. if $x \neq 0$, $\lim_{t\to\infty} \Phi(tx) = \infty$.

Young functions

For a Young function Φ , we put

- $C_{\Phi} := \{x \in X, \ \Phi(x) \leq 1\},$
- $L_{\Phi} := \{x \in X, \exists s > 0, \Phi(sx) < \infty\} = \operatorname{span}(\operatorname{dom}(\Phi)).$

Then L_{Φ} is a subspace, $C_{\Phi} \subset L_{\Phi}$ absolutely convex and absorbing.

The Minkowski functional of C_{Φ} defines a norm in L_{Φ} :

$$||x||_{\Phi} = \inf\{s > 0, \ x \in sC_{\Phi}\}$$

= $\inf\{s > 0, \Phi(x/s) \le 1\}$

Let B_{Φ} denote the completion of $(L_{\Phi}, \|\cdot\|_{\Phi})$.

Examples

Classical Orlicz spaces:

For (Ω,\mathcal{B},μ) a measure space, $\varphi:\mathbb{R}\to[0,\infty]$ a Young function, put

$$X=\{[f]_{\mu},f:\Omega
ightarrow\mathbb{R} ext{ measurable}\}, \ \Phi([f]_{\mu})=\int_{\Omega}arphi(|f|)d\mu.$$

Kosaki L_p^{η} -spaces:

For $\mathcal M$ a von Neumann algebra, ρ a state, $1 , <math>\eta \in [0,1]$:

$$X=\mathcal{M}^s, \quad \Phi(a)=\|h_{
ho}^{\eta/p}ah_{
ho}^{(1-\eta)/p}\|_p$$

Trunov, 1979; Kosaki, 1984

Examples

Noncommutative Orlicz spaces with respect to trace

For (\mathcal{M}, τ) semifinite, $\varphi : \mathbb{R} \to [0, \infty]$ a Young function:

$$X = \{\tau\text{-measurable operators}\}, \quad \Phi(a) = \tau(\varphi(|a|)).$$

Muratov, 1978; Dodds, Dodds & de Pagter, 1989; Kunze 1990

Noncommutative Orlicz space with respect to ρ

For (\mathcal{M}, τ) semifinite, ρ a state, $\varphi : \to [0, \infty]$ a Young function, $\eta \in [0, 1]$:

$$X = \{\tau\text{-measurable operators}\},\$$

$$\Phi(a) = \tau(\varphi(\varphi^{-1}(\rho)^{\eta}a\varphi^{-1}(\rho)^{1-\eta}))$$

Al-Rashed & Zegarlinski, 2007, 2011

The conjugate function and dual space

Further assumptions:

- (X, Y) locally convex spaces in separating duality, with corresponding weak topologies
- Φ lower semicontinuous, continuous at 0
- $dom(\Phi)$ is dense in X.

Conjugate function

$$\Phi^*(y) = \sup_{x \in X} \langle y, x \rangle - \Phi(x)$$

is a lower semicontinuous Young function on Y.

The dual space

Under the assumptions:

- $L_{\Phi} = X$, $\|\cdot\|_{\Phi}$ is continuous (on X)
- X ⊆ B_Φ
- For the Banach space dual, we have

$$B_{\Phi}^* \simeq B_{\Phi^*} = L_{\Phi^*} \sqsubseteq Y$$

• Hölder inequality:

$$|\langle y, x \rangle| \le 2||y||_{\Phi^*}||x||_{\Phi}, \qquad y \in B_{\Phi^*}, x \in B_{\Phi}.$$

A quantum exponential Orlicz space

The exponential Young function and its conjugate

The exponential Young function: put $X = \mathcal{M}^s$, $Y = \mathcal{M}^s_*$

$$\Phi_{\rho}(a) := rac{\exp(c_{
ho}(a)) + \exp(c_{
ho}(-a))}{2} - 1, \qquad a \in \mathcal{M}^{s}.$$

- Φ_{ρ} is a Young function $X \to [0, \infty)$,
- (X, Y) and Φ_{ρ} satisfy the additional assumptions.
- the conjugate function is

$$\Phi_{\rho}^{*}(v) = \frac{1}{2} \inf_{\substack{\omega_{1}, \omega_{2} \in \mathcal{M}_{*}^{+} \\ 2v = \omega_{1} - \omega_{2}}} [S(\omega_{1} \| \rho) - \omega_{1}(1) + S(\omega_{2} \| \rho) - \omega_{2}(1)] + 1$$

The quantum exponential Orlicz space

If $\mathcal M$ is commutative: $\mathcal M\cong L_\infty(\Omega,\Sigma,
ho)$ for a probability space,

$$\Phi_{
ho}(u) = \int_{\Omega} ig(\cosh(|u|) - 1ig) d
ho, \qquad u \in \mathcal{M}^{s}.$$

Then $B_{\Phi_{\rho}}$ is the closure of $L_{\infty}(\Omega, \Sigma, \rho)^s$ in $L_{\exp}(\Omega, \Sigma, \rho)$, denoted by $E_{\exp}(\Omega, \Sigma, \rho)$. We have

- $u \in E_{\mathsf{exp}}$ if and only if $\Phi_{\rho}(tu) < \infty$ for all $t \in \mathbb{R}$
- $E_{\text{exp}}^{**} = L_{\text{exp}}$.

The quantum exponential Orlicz space:

$$E_{\mathsf{exp}}(\mathcal{M}, \rho) := B_{\Phi_{\rho}}, \qquad L_{\mathsf{exp}}(\mathcal{M}, \rho) := B_{\Phi_{\rho}}^{**}$$

We will mostly work with E_{exp} .

The dual space

We know that

$$E_{\mathsf{exp}}^*(\mathcal{M}, \rho) = B_{\Phi_{\rho}}^* \simeq B_{\Phi_{\rho}^*} \sqsubseteq \mathcal{M}_*^s$$

From

$$\Phi_{\rho}^{*}(v) = \frac{1}{2} \inf_{\substack{\omega_{1}, \omega_{2} \in \mathcal{M}_{+}^{+} \\ 2v = \omega_{1} - \omega_{2}}} [S(\omega_{1} \| \rho) - \omega_{1}(1) + S(\omega_{2} \| \rho) - \omega_{2}(1)] + 1$$

we infer

- $B_{\Phi_{\rho}^*} = \mathcal{P}_{\rho} \mathcal{P}_{\rho}$, $B_{\Phi_{\rho}^*} \cap \mathcal{M}_*^+ = \mathcal{P}_{\rho}$
- The unit ball in $B_{\Phi_{\rho}^*}$:

$$egin{aligned} U_{
ho} := \{rac{1}{2}(\omega_1 - \omega_2), \; \omega_1, \omega_2 \in \mathcal{M}_*^+, \ & S(\omega_1 \|
ho) + S(\omega_2 \|
ho) \leq \omega_1(1) + \omega_2(1) \} \end{aligned}$$

Properties of the quantum exponential Orlicz space

Continuous embeddings: for p > 1

$$\mathcal{M}^{\mathfrak{s}} \sqsubseteq E_{\mathsf{exp}}(\mathcal{M}, \rho) \sqsubseteq L_{p}(\mathcal{M}, \rho)^{\mathfrak{s}} \sqsubseteq E_{\mathsf{exp}}^{*}(\mathcal{M}, \rho) \sqsubseteq \mathcal{M}_{*}^{\mathfrak{s}}$$

Alternative definition: let $K_{\rho} = \{\omega \in \mathcal{M}_{*}^{+}, S(\omega \| \rho) \leq \omega(1)\}.$

- K_{ρ} is convex and weakly compact
- $E_{\sf exp}(\mathcal{M},
 ho) \simeq A(K_
 ho)$ continuous affine functions on $K_
 ho$
- $L_{\sf exp}(\mathcal{M},
 ho) \simeq A_b(\mathcal{K}_
 ho)$ bounded affine functions on $\mathcal{K}_
 ho$

Positive unital normal maps: $T: \mathcal{N} \to \mathcal{M}$ extends to a contraction $E_{\text{exp}}(\mathcal{N}, T_* \rho) \to E_{\text{exp}}(\mathcal{M}, \rho)$.

The quantum information manifold

The quantum information manifold

Let $\mathcal{F}(\mathcal{M}) \subset \mathfrak{S}_*(\mathcal{M})$ be the set of all faithful normal states on \mathcal{M} .

A Banach manifold structure on $\mathcal{F}(\mathcal{M})$: a C^{∞} -atlas

- a family of pairs $\{U_i, e_i\}$ such that
 - $U_i \subset \mathcal{F}(\mathcal{M})$, $\cup_i U_i = \mathcal{F}(\mathcal{M})$
 - $e_i: U_i \rightarrow e_i(U_i)$ a bijection onto an open subset of a Banach space B_i
 - for all i, j, $e_i(U_i \cap U_j)$ is open in B_i
 - for all i,j, $e_je_i^{-1}:e_i(U_i\cap U_j)\to e_j(U_i\cap U_j)$ is a C^∞ -isomorphism

We will construct a C^{∞} atlas using the map $a \mapsto [\rho^a]$.

The extended functional and perturbed state

For $a \in E_{exp}(\mathcal{M}, \rho)$, put

$$c_{
ho}(a) := \sup_{\omega \in \mathcal{S}_{
ho}} \omega(a) - S(\omega \|
ho)$$

Then c_{ρ} is well defined and

- finite valued (over E_{exp})
- attained at a unique state $[
 ho^a] \in \mathcal{S}_
 ho$, faithful
- for all $a \in E_{exp}(\mathcal{M}, \rho)$:

$$\omega(a) - S(\omega \| \rho) = c_{\rho}(a) - S(\omega \| [\rho^a])$$

- $\mathcal{P}_{\rho} = \mathcal{P}_{[\rho^a]}$, $E_{\mathsf{exp}}(\mathcal{M}, \rho) \simeq E_{\mathsf{exp}}(\mathcal{M}, [\rho^a])$
- for $\lambda \in \mathbb{R}$: $[\rho^{a+\lambda}] = [\rho^a]$, $c_\rho(a+\lambda) = c_\rho(a) + \lambda$.

Subspace of centered elements

We define the subspace of centered elements:

$$E_{\mathsf{exp},0}(\mathcal{M}, \rho) = \{ a \in E_{\mathsf{exp}}(\mathcal{M}, \rho), \rho(a) = 0 \}$$

The cumulant generating functional: $ar{c}_{
ho} := c_{
ho}|_{\mathcal{E}_{\mathsf{exp},0}}$

- $\bar{c}_{\rho}(a) = S(\rho || [\rho^a])$
- $[\rho^a](a) = S([\rho^a]||\rho) + S(\rho||[\rho^a])$
- $ar{c}_{
 ho}$ is strictly convex and Gateaux differentiable
- The chain rule: for $a, b \in E_{\exp,0}(\mathcal{M}, \rho)$

$$\bar{c}_{\rho}(a+b) = \bar{c}_{\rho}(b) + \bar{c}_{[\rho^a]}(b), \quad [\rho^{a+b}] = [[\rho^a]^b]$$

• $[\rho^a] = [\rho^b]$ if and only if a = b.

Subspace of centered elements

An equivalent norm in $E_{\exp,0}(\mathcal{M},\rho)$: put

$$\Psi_{
ho}(a) = ar{c}_{
ho}(a) + ar{c}_{
ho}(-a), \quad a \in E_{\mathsf{exp},0}(\mathcal{M},
ho)$$

Then

- Ψ_{ρ} is a Young function on $E_{\exp,0}(\mathcal{M},\rho)$
- $B_{\Psi_{\rho}} \simeq E_{\exp,0}(\mathcal{M},\rho)$.

The dual space: $E^*_{\exp,0} = E^*_{\exp}|_{\{\rho\}}$, with unit ball

$$\{ [\omega_1 - \omega_2], \ S(\omega_1 \| \rho) + S(\omega_2 \| \rho) \le 1 \}$$

The map $\mathcal{S}_{\rho} \to E^*_{\mathsf{exp},0}$, $\omega \mapsto [\omega - \rho]$ is one-to-one

The C^{∞} -atlas

For $\rho \in \mathcal{F}(\mathcal{M})$, let s_{ρ} be the map $a \mapsto [\rho^a]$, $a \in \mathcal{E}_{exp,0}(\mathcal{M}, \rho)$. Put

- $U_{
 ho}=s_{
 ho}(V_{
 ho}),\ V_{
 ho}$ the open unit ball in $E_{ ext{exp},0}(\mathcal{M},
 ho)$
- ullet $e_
 ho=s_
 ho^{-1}:U_
 ho o V_
 ho$

Using the chain rule, we can show that

- $\{e_{
 ho},U_{
 ho}\}_{
 ho\in\mathcal{F}(\mathcal{M})}$ is a C^{∞} atlas on $\mathcal{F}_{
 ho}$
- connected components are of the form

$$\{[\rho^a], a \in E_{\exp,0}(\mathcal{M}, \rho)\}$$

for
$$\rho \in \mathcal{F}(\mathcal{M})$$
.

Further developments and open questions

- an extension to $L_{\text{exp}}(\mathcal{M}, \rho)$
- a description of the connected components

$$\{[\rho^a], a \in E_{exp,0}(\mathcal{M}, \rho)\}$$

a mixture manifold structure, obtained from the map

$$S_{\rho} \to E_{\exp,0}^*(\mathcal{M}, \rho), \qquad \omega \mapsto [\omega - \rho]$$

- compatibility of the two structures
- ullet the induced topologies on $\mathcal{F}(\mathcal{M})$