Sprawozdanie 2

Tranzystor Unipolarny

Maciej Mionskowski

Celem ćwiczeń było zapoznanie się z zasadą działania tranzystorów unipolarnych.

1 Napięcie progowe tranzystora unipolarnego

1.1 Cel

Celem ćwiczenia było wyznaczenie wartości napięcia progowego U_t tranzystora unipolarnego. W tym celu podłączyłem generator sygnału trójkątnego wolno narastającego.

Rysunek 1: Obwód, który posłużył do wyznaczenia napięcia progowego.

$$U_T = 2.3069V$$

Rysunek 2: Pomiar napięcia na bramce i na resystorze w układzie na rysunku 1

Rysunek 3: Analiza transient korelacji napięcia na wyjściu generatora (na bramce) U_{gs} do napięcia na rezystorze.

Z powyższej analizy wynika, że tranzystor posiada napięcie progowe wynoszące $\sim 0.72V$. Rozbieżności w powyższych danych spowodowane są błędem pomiarowym polegającym na: niewłaściwym ustawieniu kursorów, a także niedokładności programu MultiSim.

2 Tranzystor unipolarny w układzie wzmacniacza sygnałów zmiennych

2.1 Cel

Celem ćwiczenia było wyznaczenie wartości rezystora, tak aby układ pracował optymalnie. Doświadczenie wykonałem doświadczalnie poprzez zastosowanie potencjometrów, analizy transient i oscyloskopa. Ponadto należało pokazać i poznać zasadę działania takiego układu jako wzmacniacza sygnału zmiennego.

Rysunek 4: Prosty obwód z tranzystorem NMOS do eksperymentalnego wyznaczenia rezystancji R

Rysunek 5: Pomiary napięcia i rezystancji wykonane w celu wyznaczenia rezystancji zastępczej.

Rysunek 6: Pomiary punktu pracy i napięcia na bramce wykonane w obwodzie po zastąpieniu potencjometrów rezystorem o rezystancji zastępczej R_z

Tablica 1: Wartości zmierzone w obwodzie na rysunku 4

U_{DD}	R_D	U_{GS}	U_{DS}	I_D	(U_{DS},I_{D})	k_u	g_m
12V	100Ω	3.629V	6.003V	61mA	6.003V, 61mA	$\frac{1}{2}$	16.8mS

Rysunek 7: Obwód z podłączonym generatorem prądu zmiennego.

Rysunek 8: Pomiar wzmocnienia sygnału wejściowego. Należy zwrócić uwagę na skalę (wartości na dole)

Tranzystor w układzie polaryzacyjnym może być użyty jako wzmacniacz sygnału zmiennego. Doświadczalne wyznaczanie rezystancji zastępczej jest dość efektywnym sposobem osiągnięcia tego samego rezultatu mniejszym nakładem kognitywnym. Wartości w tabeli zgadzają się z informacjami teoretycznymi przekazanymi na wykładzie. Optymalne wartości pracy tranzystora wyznaczają wzory: $U_{wy} = \frac{1}{2}U_{DD}, I_D = \frac{U_{DD}-U_{wy}}{R_D}$.

3 Tranzystor unipolarny CMOS jako klucz przełączający

3.1 Cel

Celem ćwiczenia było poznanie zasady działania tranzystora unipolarnego CMOS jako klucza przełączającego oraz zmierzenie czasów włączenia i wyłączenia tranzystora.

Rysunek 9: Prosty obwód z tranzystorem unipolarnym użytym jako klucz.

4 Klucz przełączający - wstęp do układów logicznych

4.1 Cel

Celem ćwiczenia było zapoznanie się z zasadą działania układów logicznych (stan niski, wysoki). Pomiar napięć, poznanie różnic między tranzystorami P i N.

Rysunek 10: Klucz przełączający z tranzystorem PMOS, stan włączony

Rysunek 11: Klucz przełączający z tranzystorem PMOS, stan wyłączony

Tablica 2: Tabela prawdy dla klucza przełączającego z tranzystorem PMOS

Sygnał na bramce tranzystora	stan tranzystora PMOS
1	wyłączony
0	włączony

Rysunek 12: Klucz przełączający z tranzystorem NMOS, stan włączony

Rysunek 13: Klucz przełączający z tranzystorem NMOS, stan wyłączony

Tablica 3: Tabela prawdy dla klucza przełączającego z tranzystorem NMOS

Sygnał na bramce tranzystora	stan tranzystora NMOS
1	włączony
0	wyłączony

Tranzystor może być użyty jako klucz przełączający. Podanie sygnału wysokiego na bramkę tranzystora NMOS aktywuje klucz, analogicznie podanie sygnału niskiego na bramkę tranzystora PMOS również aktywuje/zamyka klucz.

5 Inwerter logiczny CMOS - NOT

5.1 Cel

Celem doświadczenia było zapoznanie z zasadą działania inwertera logicznego CMOS - NOT.

5.2 Analiza

Rysunek 14: Inwerter CMOS

Rysunek 15: Zależność stanu logicznego wyjścia od wejścia w bramce NOT

Tablica 4: Tabela prawdy dla inwertera logicznego NOT

Wejście	Wyjście	Q1	Q2
1	0	1	0
0	1	0	1

5.3 Wniosek

Inwerter logiczny CMOS - NOT odwraca stan sygnału. Jest to bardzo prosta bramka logiczna, za pomocą której można budować inne bramki. Do budowy stosujemy dwa komplementarne tranzystory tak aby w zależności od sygnału wejściowego raz jeden był otwarty, a raz drugi.

6 Bramka NAND w technologii CMOS

6.1 Cel

Celem doświadczenia było zapoznanie z budowią i zasadą działania bramki NAND.

6.2 Analiza

Rysunek 16: Bramka NAND - 2 tranzystory PMOS połączone równolegle i 2 NMOS połączone szeregowo

Tablica 5: Tabela prawdy dla bramki NAND

S1	S2	Wyjście	Q2	Q3	Q1	Q4
1	1	0	0	0	1	1
0	1	1	1	0	0	1
1	0	1	0	1	1	0
0	0	1	1	1	0	0

6.3 Wniosek

Bramka logiczna NAND - NOT AND (analogiczna do koniunkcji w logice klasycznej) działa na zasadzie "połączenia"
funkcji 'i' i 'lub'. W jednym momencie włączone są jedynie dwa tranzystory, powoduje to, że prąd nie może płynąć bezpośrednio od V_{DD} do masy.

7 Bramka AND w technologii CMOS

7.1 Cel

Celem doświadczenia było zapoznanie z budową i zasadą działania bramki AND.

7.2 Analiza

Rysunek 17: Bramka AND - 2 tranzystory PMOS połączone równoleg
le i 2 NMOS połączone szeregowo + 2 na inwerter

Tablica 6: Tabela prawdy dla bramki AND - 2 tranzystory PMOS połączone równolegle i 2 NMOS połączone szeregowo + 2 komplementarne na inweter

S1	S2	Wyjście	Q2	Q3	Q1	Q4	Q5	Q6
1	1	1	0	0	1	1	1	0
0	1	0	1	0	0	1	0	1
1	0	0	0	1	1	0	0	1
0	0	0	1	1	0	0	0	1

7.3 Wniosek

Bramka logiczna AND lub w tym przypadku NOT NAND działa na zasadzie "połączenia"
bramek 'i', 'lub' i negacji W jednym momencie włączone są jedynie dwa tranzystory (wykluczając inwerter), powoduje to, że prąd nie może płynąć bezpośrednio od V_{DD} do masy.

8 Bramka NOR w technologii CMOS

8.1 Cel

Celem doświadczenia było zapoznanie z budową i zasadą działania bramki NOR.

8.2 Analiza

Rysunek 18: Bramka NOR - 2 tranzystory NMOS połączone równolegle i 2 PMOS połączone szeregowo

Tablica 7: Tabela prawdy dla bramki NOR

S1	S2	Wyjście	Q3	Q2	Q1	Q4
1	1	0	0	0	1	1
0	1	0	1	0	1	0
1	0	0	0	1	0	1
0	0	1	1	1	0	0

8.3 Wniosek

Bramka logiczna NOR - NOT OR jest analogiczna do negacji alternatywy w logice klasycznej. W jednym momencie włączone są jedynie dwa tranzystory, powoduje to, że prąd nie może płynąć bezpośrednio od V_{DD} do masy.

9 Bramka OR w technologii CMOS

9.1 Cel

Celem doświadczenia było zapoznanie z budową i zasadą działania bramki OR.

9.2 Analiza

Rysunek 19: Bramka OR - 2 tranzystory NMOS połączone równolegle i 2 PMOS połączone szeregowo + 2 na inwerter

Tablica 8: Tabela prawdy dla bramki OR

S1	S2	Wyjście	Q2	Q3	Q1	Q4	Q5	Q6
1	1	1	0	0	1	1	1	0
0	1	1	1	0	1	0	1	0
1	0	1	0	1	0	1	1	0
0	0	0	1	1	0	0	0	1

9.3 Wniosek

Bramka logiczna OR, lub w tym przypadku NOT NOR jest analogiczna do alternatywy w logice klasycznej. W jednym momencie włączone są jedynie dwa tranzystory (wykluczając inwerter), powoduje to, że prąd nie może płynąć bezpośrednio od V_{DD} do masy.