

cycloalkyl, C₂-C₁₀ alkenyl, and C₂-C₁₀ alkynyl, wherein n is 0, 1, 2, or 3, and the (CH₂)_nAr, (CH₂)_nheteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR⁴R⁵, N^{+(O)}R⁴R⁵, N^{+(O)}R⁴R⁵R⁶Y⁻, alkyl, phenyl, substituted phenyl, (CH₂)_nheteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, aldehyde, nitrile, nitro, heteroaryloxy,

C(O)T(CH₂)_mQR⁴, NH(C(O)T(CH₂)_mQR⁴, T(CH₂)_mC(O)NR⁴R⁵, or T(CH₂)_mCO₂R⁴ wherein each m is independently 1-6, T is O, S, NR⁴, N^{+(O)}R⁴, N^{+(O)}R⁴R⁶Y⁻, or CR⁴R⁵, and Q is O, S, NR⁵, N^{+(O)}R⁵ or N^{+(O)}R⁵R⁶Y⁻;

and additionally alkyl, alkenyl and alkynyl can be further substituted with one to three cycloalkyl groups,

when the dotted line is present, R³ is absent; otherwise R³ has the meanings of R², wherein R² is as defined above, as well as OH, NR⁴R⁵, COOR⁴, OR⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, T(CH₂)_mQR⁴,

wherein T and Q are as defined above;

R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, substituted alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, N(C₁-C₆alkyl)₁ or 2, (CH₂)_nAr, C₃-C₁₀ cycloalkyl, heterocyclyl, and heteroaryl, or R⁴ and R⁵ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R⁴ and R⁵ together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH,

OR^4 , NR^4R^5 , $(CH_2)_mOR^4$, $(CH_2)_mNR^4R^5$, $T-(CH_2)_mQR_4$,
 $CO-T-(CH_2)_mQR^4$, $NH(CO)T(CH_2)_mQR^4$, $T-(CH_2)_mCO_2R^4$, or
 $T(CH_2)_mCONR^4R^5$;

R^6 is alkyl;

R^8 and R^9 independently are H, NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, COR^4 ,
 CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , CN or nitro;

when the dotted line is absent, R^9 can additionally
be = NOH ,

= NOalkyl , =NOalkenyl, =NOalkynyl or =NOcycloalkyl;
and

Y is a halo counter-ion;

with the proviso that: (a) when R^8 and R^9 are both hydrogen, W is NH, R^1 is hydrogen and X is NR^{10} , then R^{10} is neither unsubstituted (C_1-C_{10}) alkyl, unsubstituted (C_1-C_{10}) alkenyl nor unsubstituted (C_1-C_{10}) alkynyl;

(b) when R^8 or R^9 is NR^4R^5 , $N^+(O)R^4R^5$, or $N^+R^4R^5R^6Y^-$, then one or more of R^4 , R^5 and R^6 must be, independent of the nitrogen to which said one or more R^4 , R^5 and R^6 are attached, heterocyclic or heteroaryl; and

(c) when R^8 or R^9 is COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 or PO_3R^4 , then one or more of R^4 , R^5 and R^6 must be, independent of the nitrogen to which said one or more R^4 , R^5 and R^6 are attached, $(CH_2)_naryl$ wherein n is zero, 1, 2 or 3, heterocyclic or heteroaryl;

(d) when X is S and W is NH, then at least one of R1, R2, R3, R8 and R9 is other than H or C_1-C_3 alkyl

55. A compound of Claim 54, wherein W is NH, and R^8 and R^9 both are hydrogen.

56. A compound of Claim 55 having the formula

wherein:

R^1 and R^2 independently are hydrogen, $\text{C}_1\text{-}\text{C}_{10}$ alkyl, $(\text{CH}_2)_n\text{Ar}$, $(\text{CH}_2)_n$ heteroaryl, $\text{C}_3\text{-}\text{C}_{10}$ cycloalkyl, or $(\text{CH}_2)_n$ heterocyclyl, wherein n is 0, 1, 2 or 3, and the $(\text{CH}_2)_n\text{Ar}$, $(\text{CH}_2)_n$ heteroaryl, alkyl, cycloalkyl and $(\text{CH}_2)_n$ heterocyclyl groups are optionally substituted by up to 5 groups selected from NR^4R^5 , $\text{N}^+(\text{O})\text{R}^4\text{R}^5$, $\text{N}^+\text{R}^4\text{R}^5\text{R}^6\text{Y}^-$, alkyl, phenyl, substituted phenyl, $(\text{CH}_2)_n$ heteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR^4 , CO_2R^4 , CONR^4R^5 , $\text{SO}_2\text{NR}^4\text{R}^5$, SO_3R^4 , PO_3R^4 , aldehyde, nitrile, nitro, heteroaryloxy, $\text{T}(\text{CH}_2)_m\text{QR}^4$,

$\text{C}(\text{O})\text{T}(\text{CH}_2)_m\text{QR}^4$,

$\text{NHC}(\text{O})\text{T}(\text{CH}_2)_m\text{QR}^4$, $\text{T}(\text{CH}_2)_m\text{C}(\text{O})\text{NR}^4\text{NR}^5$, or $\text{T}(\text{CH}_2)_m\text{CO}_2\text{R}^4$ wherein each m is independently 1-6, T is O, S, NR^4 , $\text{N}^+(\text{O})\text{R}^4$, $\text{N}^+\text{R}^4\text{R}^5\text{R}^6\text{Y}^-$, or CR^4R^5 , and Q is O, S, NR^5 , $\text{N}^+(\text{O})\text{R}^5$, or $\text{N}^+\text{R}^5\text{R}^6\text{Y}^-$;

R^3 has the meanings of R^2 , wherein R^2 is as defined above, as well as OH, NR^4R^5 , COOR^4 , OR^4 , CONR^4R^5 , $\text{SO}_2\text{NR}^4\text{R}^5$, SO_3R^4 , PO_3R^4 ,

wherein T and Q are as defined above;

R^4 and R^5 are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, substituted alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, N(C₁-C₆alkyl)₁ or 2, (CH₂)_nAr, C₃-C₁₀ cycloalkyl, heterocyclyl, and heteroaryl, or R^4 and R^5 together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R^4 and R^5 together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR⁴, NR⁴R⁵, (CH₂)_mOR⁴, (CH₂)_mNR⁴R⁵, T-(CH₂)_mQR⁴, CO-T-(CH₂)_mQR⁴, NH(CO)T(CH₂)_mQR⁴, T-(CH₂)_mCO₂R⁴, or T(CH₂)_mCONR⁴R⁵;

R^6 is alkyl; and

Y is a halo counter-ion.

57. A compound of Claim 54 wherein W is S, SO, or SO₂.

58. A pharmaceutical formulation comprising a compound of compound of Formula I

I

or a pharmaceutically acceptable salt thereof,
wherein:

the dotted line represents an optional double bond;

W is NH, S, SO, or SO₂;

X is either O, S, or NR¹⁰;

R¹, R², and R¹⁰ are independently selected from the group consisting of H, (CH₂)_nAr, COR⁴, (CH₂)_nheteroaryl, (CH₂)_nheterocyclyl, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, and C₂-C₁₀ alkynyl, wherein n is 0, 1, 2, or 3, and the (CH₂)_nAr, (CH₂)_nheteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups

are optionally substituted by up to 5 groups selected from NR⁴R⁵, N^{+(O)}R⁴R⁵, N⁺R⁴R⁵R⁶Y, alkyl, phenyl, substituted phenyl, (CH₂)_nheteroaryl, hydroxy,

alkoxy, phenoxy, thiol, thioalkyl, halo, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, aldehyde, nitrile, nitro,

heteroaryloxy,
T(CH₂)_mQR⁴,

(Handwritten note: 1-6)
 $\text{C}(\text{O})\text{T}(\text{CH}_2)_m\text{QR}^4$, $\text{NHC}(\text{O})\text{T}(\text{CH}_2)_m\text{QR}^4$, $\text{T}(\text{CH}_2)_m\text{C}(\text{O})\text{NR}^4\text{NR}^5$, or
 $\text{T}(\text{CH}_2)_m\text{CO}_2\text{R}^4$ wherein each m is independently 1-6, T is O, S, NR⁴,
 $\text{N}^+(\text{O})\text{R}^4$, N⁺R⁴R⁶Y⁻, or CR⁴R⁵, and Q is O, S, NR⁵, N^{+(O)}R⁵ or N⁺R⁵R⁶Y⁻;

and additionally alkyl, alkenyl and alkynyl can be further substituted with one to three cycloalkyl groups,

when the dotted line is present, R³ is absent;

otherwise R³ has the meanings of R², wherein R² is as defined above, as well as OH, NR⁴R⁵, COOR⁴, OR⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴,

wherein T and Q are as defined above;

R⁴ and R⁵ are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, substituted alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, N(C₁-C₆alkyl)₁ or 2, (CH₂)_nAr, C₃-C₁₀ cycloalkyl, heterocyclyl, and heteroaryl, or R⁴ and R⁵ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally

contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R⁴ and R⁵ together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR⁴R⁵, (CH₂)_mOR⁴, (CH₂)_mNR⁴R⁵, T-(CH₂)_mQR₄, CO-T-(CH₂)_mQR⁴, NH(CO)T(CH₂)_mQR⁴, T-(CH₂)_mCO₂R⁴, or T(CH₂)_mCONR⁴R⁵;

R⁶ is alkyl;

R⁸ and R⁹ independently are H, NR⁴R⁵, N^{+(O)}R⁴R⁵, N⁺R⁴R⁵R⁶Y⁻, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, CN or nitro;

when the dotted line is absent, R⁹ can additionally be = NOH,

= NOalkyl, =NOalkenyl, =NOalkynyl or =NOcycloalkyl;

and

Y is a halo counter-ion;

with the proviso that: (a) when R⁸ and R⁹ are both hydrogen, W is NH, R¹ is hydrogen and X is NR¹⁰, then R¹⁰ is neither unsubstituted (C₁-C₁₀) alkyl, unsubstituted (C₁-C₁₀) alkenyl nor unsubstituted (C₁-C₁₀) alkynyl; and

(b) when R⁸ or R⁹ is NR⁴R⁵, N^{+(O)}R⁴R⁵, N⁺R⁴R⁵R⁶Y⁻, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴ or PO₃R⁴, then one or more of R⁴, R⁵ and R⁶ must be, independent of the nitrogen to which said one or more of R⁴, R⁵ and R⁶ is attached, (CH₂)_naryl wherein n is zero, 1, 2, or 3, heterocyclic or heteroaryl;

(c) when X is S and W is NH, then at least one of R₁, R₂, R₃, R₈ and R₉ is other than H or C₁-C₃ alkyl;

in combination with a pharmaceutically acceptable carrier, diluent, or excipient.

59. A pharmaceutical formulation comprising a compound of Claim 56 in combination with a pharmaceutically acceptable carrier, diluent or excipient. - -