

CASE STUDIES

ANALYSIS OF A DIABETES HEALTH INDICATORS DATA SET

06/09/2023

Fanny LATRON (65998) Elsa DOYEN (65990) Thomas SIMON (65931)

AGENDA

01

Context

02

Content of the data set

03

Data mining

04

Correlations

05

Conclusion

TRA

CONTEXT

DIABETES IN THE U.S

A SNAPSHOT

37 Million

37 million people have diabetes

DIABETES

That's about 1 in every 10 people

1 in 5 people don't know they have it

kaggle

Diabetes_012	HighBP	HighChol	CholCheck	ВМІ	Smoker	Stroke	HeartDiseaseorAttack	PhysActivity	Fruits	Veggies	HvyAlcoholConsump	AnyHealthcare	NoDocbcCost	GenHith	MentHith	PhysHith	DiffWalk	Sex	Age	Education	Income
0.0	1.0	1.0	1.0	40.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	5.0	18.0	15.0	1.0	0.0	9.0	4.0	3.0
0.0	0.0	0.0	0.0	25.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	3.0	0.0	0.0	0.0	0.0	7.0	6.0	1.0
0.0	1.0	1.0	1.0	28.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	1.0	5.0	30.0	30.0	1.0	0.0	9.0	4.0	8.0
0.0	1.0	0.0	1.0	27.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	1.0	0.0	2.0	0.0	0.0	0.0	0.0	11.0	3.0	6.0
0.0	1.0	1.0	1.0	24.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	1.0	0.0	2.0	3.0	0.0	0.0	0.0	11.0	5.0	4.0
0.0	1.0	1.0	1.0	25.0	1.0	0.0	0.0	1.0	1.0	1.0	0.0	1.0	0.0	2.0	0.0	2.0	0.0	1.0	10.0	6.0	8.0
0.0	1.0	0.0	1.0	30.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	3.0	0.0	14.0	0.0	0.0	9.0	6.0	7.0
0.0	1.0	1.0	1.0	25.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0	3.0	0.0	0.0	1.0	0.0	11.0	4.0	4.0

Cleaned by Alex Teboul

21 feature variables and 253 680 survey responses

Variables:

Categorical:

- HighBP
- HighChol
- CholCheck
- Smoker
- Stroke
- HeartDiseaseorAttack
- PhysActivity
- Fruits
- Veggies

- HvyAlcoholConsump
- AnyHealthcare
- NoDocbcCost
- DiffWalk
- Sex
- GenHlth
- Age
- Education
- Income

Numerical:

- MentHlth
- PhysHlth
- BMI

Response variable

No missing!

```
na_counts <- colSums(is.na(data))</pre>
print(na_counts)
                                                                                                HighBP
                                  HighChol
                                                      CholCheck
                                                                                 BMI
                                    Stroke HeartDiseaseorAttack
                                                                        PhysActivity
               Smoker
               Fruits
                                              HvyAlcoholConsump
                                                                       AnyHealthcare
                                   Veggies
                                                                            PhysHlth
          NoDocbcCost
                                   GenHlth
                                                       MentHlth
             DiffWalk
                                                                           Education
                                       Sex
                                                            Age
                                   diabete
               Income
                    0
```


TRA

DATA MINING

Variables proportional to diabetes rate

Variables proportional to diabetes rate

Variables inversely proportional to diabetes rate

Cramer's V correlation matrix

Variables with the highest Cramer's V with the target variable "diabete"

Var1 <chr></chr>	Var2 <chr></chr>	cramer_v <dbl></dbl>
diabete	GenHlth	0.30624079
HighBP	diabete	0.27032321
DiffWalk	diabete	0.22214043
HighChol	diabete	0.21027872
diabete	Age	0.19391780

Correlation matrix with numerical variables

CONCLUSION

- mainly categorical variables
- no significant correlation between the variables, so no redundant variables
- some variables have more weight in the explanation of the variable to be explained: GenHlth, HighBP, DiffWalk, HighChol, Age
- possibility of adding a column (for example, individuals with a family member suffering from diabetes)

Thanks!