Homework 4. Resolution. Resolution Refutation.

Rushikesh Khamkar

October 30, 2022

1. State the soundness and completeness results about resolution, T-resolution, A-resolution, SLD-resolution. (Make sure what "formula" your result is talking about.)

Solution:

Name	Soundness Results	Completeness Results
Resolution \Rightarrow S : set of	If there is a resolution	If S is unsatisfiable, then there
clauses	$refutation ext{ of } S, ext{ then } S ext{ is }$	is a resolution refutation of S .
	unsatisfiable.	
T-resolution \Rightarrow T -	If $\square \in RT(S)$, then S is unsat-	If S is unsatisfiable, then $\square \in$
resolutions are resolutions in	isfiable.	RT(S).
which neither parent clause is		
a tautology. $RT(S) = closure$		
of S under T -resolutions.		
\mathcal{A} -resolution $\Rightarrow \mathcal{A}$: As-	For any \mathcal{A} and S , if $\square \in$	For any \mathcal{A} and S , if $S \in UN$ -
signment and S : Formula	$RA(S)$, then $S \in UNSAT$.	SAT, then $\square \in RA(S)$.
RA(S) = closure of S under		
\mathcal{A} -resolution.		
SLD-resolution \Rightarrow <i>P</i> is	If there is a SLD-resolution	If $P \cup \{G\} \in \text{UNSAT and } R \text{ is}$
PROLOG Program and $\{G\}$	refutation of $P \cup \{G\}$	any selection rule, then there
is Goal clause and $S = P \cup$		is a SLD-resolution refutation
$\{G\}$ is Set of Horn clauses		of $P \cup \{G\}$ via R .
which contain at most one		
positive literal.		

2. Let $S = \{\{A, \neg B, C\}, \{B, C\}, \{\neg A, C\}, \{B, \neg C\}, \{\neg B\}\}$. What is S^B ? What is S^B ?

Solution:

$$S: \{\{A, \neg B, C\}, \{B, C\}, \{\neg A, C\}, \{B, \neg C\}, \{\neg B\}\}\}$$

$$S^B: \{\{A, C\}, \{\neg A, C\}, \{\Box\}\}\}$$

$$S^{\neg B}: \{\{C\}, \{\neg A, C\}, \{\neg C\}\}\}$$

3. Follow our proof methods, prove the following.

If P is a PROLOG program and $G = \{\neg q_1, \dots, \neg q_n\}$ a goal clause, then every q_i $(i \in 1..n)$ is a consequence of P if and only if $P \cup \{G\}$ is unsatisfiable.

You may use the following definition of consequence in your proof: a literal l is a consequence of a formula S if for every assignment A that satisfies S, A satisfies l, i.e., $l \in A$.

Solution:

Steps	Proof	Reason
a.	Assume, Assignment \mathcal{A} for which	
	$\mathcal{A}(P)$ is true	
b.	The goal clause G consists of neg-	-Given $G = {\neg q_1, \dots, \neg q_n}$ a goal
	ative literals	clause.
c.	$\neg q_i$ and q_i will be true for all $i > 0$	-By (b).
	$, i \leq n.$	
d.	All q_i are facts from the $prolog$ pro-	-By (a) and (b).
	gram P . Thus it is a consequence	
	of $\mathcal{A}(P)$ is true.	
e.	$P \cup \{G\}$ is unsatisfiable.	Given every q_i $(i \in 1n)$ is a
		consequence of P if and only if
		$P \cup \{G\}$ is unsatisfiable.
f.	\mathcal{A} satisfies $P(\mathcal{A} \vdash P)$ and makes	-By (e).
	$G=False$ as $q_i=True$ which and	
	its negation $\neg q_i = False$, which im-	
	plies $G=False$.	
g.	P is a $PROLOG$ program.	-Given
h.	Every q_i $(i \in 1n)$ is a consequence	-By (f) and (g)
	of P if and only if $P \cup \{G\}$ is un-	
	satisfiable.	

QED

4. Consider a PROLOG program P and a conjunction of propositional letters $p_1, ..., p_n$. To prove that $p_1, ..., p_n$ is a consequence of P, what is the set of clauses that the resolution refutations (discussed in class) are based on? Explain why these methods works.

Solution:

Method: A task that yields G false and satisfies P is taken into consideration. The approach taken by PROLOG to demonstrate that $p_1...p_n$ is a result of P is to formulate a goal clause $G = \neg p1...$ and add the goal clause to the program P to confirm the set $P \cup \{G\}$ of the horn clause is unsatisfiable.

Why these methods works: Let us consider that the resulting set $P \cup \{G\}$ of horn clauses is unsatisfiable. All $\neg p_i$ must be false for G to be false, which implies that p_i is true. Taking this into account, we can state that the propositional letter is true in PROLOG P, demonstrating the consequence relationship between the propositional letters and P. As a result of our assumption that P will be true in the event that $P \cup \{G\}$, we know that the assignment \mathcal{A} on P p_i is true. If the assignment satisfies the program clause, then every propositional letter is also true.

5. Consider a PROLOG program P:

$$\{p:-s,t. p:-q. q. q:-r. r. r:-w. r. s. t:-w.\}$$

(1) Draw an SLD-tree for goal $\neg p$ in terms of P.

Solution:

(2) What is an SLD resolution refutation of $P \cup \{\{\neg p\}\}\}$?

Solution:

A SLD resolution refutation of $P \cup \{\{\neg p\}\}\$ via the selection rule R is an LD resolution proof of

- $< G_0(\neg p), C_0(p: \neg s, \neg t) >,$
- $\langle G_1(\neg p), C_1(p:q) \rangle,$
- $< G_2(\neg s, \neg t), C_2(s) >,$
- $< G_3(\neg q), C_3(q:r) >,$
- $< G_4(\neg q), C_4(q) >,$
- $< G_5(\neg r), C_5(r:\neg w)>,$

 $< G_6(\neg r), C_6(r) >$ with $G_0 = \neg p$ and $G_n + 1$ in which $R(G_i)$ is the literal resolved at the (i+1) step in the proof.