Data-Science 1 correlatie en regressie

06/04/2023

Inhoud

- voorbeelden en causaliteit
- correlatie
 - Pearson
 - rangcorrelatie
- regressie
 - lineaire regressie
 - niet-lineaire regressie

Voorbeelden

Correlatie

- verbanden zoeken tussen 2 variabelen (bivariate analyse)
 - als de ene var stijgt, dan stijgt ook de andere
 - als de ene var stijgt, dan daalt de andere
- soms is er een "causaal" verband
 - "onafhankelijke variabele" = oorzaak
 - "afhankelijke variabele" = gevolg

Opletten met causaliteit!

- er is een verband tussen
 - het succes van twitter en de grootte van de Griekse staatsschuld
 - verkoop van ijsjes en de hoeveelheid zakkenrollers
 - de bevolkingsgrootte en het aantal zwaarddragers (https://speld.nl/2013/12/11/steeds-minder-mensenmet-zwaard-op-zak)

Zwaarddragers

Piraten

Global Average Temperature vs. Number of Pirates

Internet exploder

Happiness

Statistics class

Meer?

- http://tylervigen.com/spurious-correlations
- "the more things you study, the more likely it is that you're going to 'discover' one of them is statistically significant"
- probleem in big-data: als je lang genoeg zoekt, zal je wel ergens een correlatie vinden...

Voorbeeld voor deze les

- is er een verband tussen het aantal connecties op LinkedIn en het inkomen?
- data in linkedIn.csv (2064 observaties)

loon	connecties
3252	304
2968	216
2976	159
•••	•••

Scatterplot (zie ook code)

Probleem met scatterplot

- hoe groot is dit verband?
- soms overlappen punten elkaar op de grafiek: moeilijk te zien

Pearson

Z-scores

- stel: 2 variabelen x en y
- zet eerst om naar Z-scores

$$z_i = \frac{x_i - \overline{x}}{S_x}$$

- gevolg?
- in python: zie code

Correlatiecoëfficiënt Pearson

 vermenigvuldig beide reeksen Z-scores met elkaar en neem het gemiddelde

$$r_{xy} = \frac{1}{n} \sum_{i=1}^{n} z_{x_i} \cdot z_{y_i}$$

- resultaat: tussen -1 en 1
- in python: zie code

Resultaat

waarde van r_{xy}

- correlatie r_{xy} ligt altijd tussen -1 en 1
- als r_{xy} < 0 dan spreekt met van een negatief verband
- als $r_{xy} = 0$ dan is er geen verband
- als $r_{xv} > 0$ dan spreekt men van een positief verband

Interpretatie

- afhankelijk van de context
 - chemie: verband temperatuur en snelheid van een reactie
 - hoge correlatie verwacht (>0,99)
 - sociale wetenschappen: verband gezinssituatie en geluksgevoel
 - moeilijk om hoge correlatie te vinden (>0,4)
 - informatica: verband netwerktraffiek en aantal aanvallen van hackers
 - beetje tussenin (>0,6)

Afspraken

correlatie	betekenis	
0	geen enkel lineair verband	
0 tot 0,2	nauwelijks lineair verband	
0,2 tot 0,4	zwak lineair verband	
0,4 tot 0,6	redelijk lineair verband	
0.6 tot 0.8	sterk lineair verband	
0,8 tot 1	zeer sterk lineair verband	

Rangcorrelatie

Meetniveau's

- vanaf welk niveau kan je correlatie berekenen?
- wat als de variabelen ordinaal zijn?
- voorbeeld: zet linkedIn om naar ordinaal
 - connecties: "weinig", "matig", "gemiddeld", "meer", "veel", "extreem veel"
 - loon: "klein", "modaal", "groot", "extreem"

Rangnummers

- zet ordinale variabele om naar rangnummers
 - kleinste waarde krijgt waarde 1
 - grootste waarde krijgt waarde n
 - als er dubbels zijn: krijgen dezelfde waarde (meestal gemiddelde van alle rank-nummers)
- in python: zie code

Spearman

- deze gebruikt de formule van Pearson op de rangnummers
 - probleem?
- functie in python: zie code

Kendall: principe

- zet score=0
- kijk naar alle combinaties x_i en x_i
 - als $x_i > x_i$ en $y_i > y_i$, dan score++
 - als $x_i < x_i$ en $y_i < y_i$, dan score++
 - als $x_i > x_i$ en $y_i < y_i$, dan score--
 - als $x_i < x_i$ en $y_i > y_i$, dan score--
- deel score door het aantal mogelijke combinaties

Kendall (simple)

	X	У
0	klein	middel
1	middel	groot
2	groot	enorm
3	enorm	groot

$$\Rightarrow corr = \frac{1+1+1+1+0-1}{6} = 0,5$$

in Python: zie code

(lineaire) Regressie

Regressie

- stel: er is een hoge correlatie
- dus...: punten liggen dicht tegen een lijn
- welke lijn? --> regressie
- de lijn laat toe om voorspellingen te maken
 - volgorde van de variabelen is nu wel belangrijk: onafhankelijke en afhankelijke variabelen (x en y)

Lineaire regressie

- "lineair" = rechte lijn
- vergelijking: y = a + b * x
- gevraagd: wat is a en b zodat de lijn zo goed mogelijk door de punten gaat?
- als we a en b kennen, kunnen we meten hoe goed de lijn door de punten gaat met:

```
se = math.sqrt((((a+b*x)-y)**2).mean())
```

doet je dit aan iets denken?

Op zoek naar a en b...

Waarden van a en b

• oplossing:
$$b = r_{xy} \cdot \frac{s_y}{s_x} \qquad a = \overline{y} - b \cdot \overline{x}$$

- a = "intercept" (hoogte van de lijn)
- b = "slope" of "richtingscoëfficiënt"
- in python: zie code

Verklaarde variantie

• de waarde van s_e kan ook geschreven worden als:

$$s_e = s_y \sqrt{1 - r_{xy}^2}$$

• na kwadrateren geeft dit: $s_e^2 = s_y^2 (1 - r_{xy}^2)$

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTITUTIONS ON IT.

- als R² gelijk is aan 0, dan is de variantie op de fout gelijk aan de variantie op de ywaarden. De y-waarden kunnen dan totaal niet voorspeld worden door het model.
- als de R² gelijk is aan 1, dan is er geen variantie op de fout. De y-waarden worden dan perfect voorspeld door het model.
- algemeen: R² geeft aan in hoeverre het model de waarde van y kan voorspellen
- men noemt dit: "de verklaarde variantie"
- in python: zie code

Niet-lineaire regressie

Niet-lineaire regressie

• soms kan je geen recht lijn door de punten tekenen, maar wel een andere:

- kwadratisch: $y = a + b \cdot x + c \cdot x^2$

- kubisch: $y=a+b\cdot x+c\cdot x^2+d\cdot x^3$

- exponentieel: $v = e^{a+b \cdot x}$

- logaritmisch: $y = a + b \cdot \log(x)$

- ...

• zoek telkens a, b, c, d zodat s_e zo klein mogelijk is

correlatie en regressie in python

zie code

Oefeningen

Oefeningen huiswerk

- wat is de Pearson correlatie tussen schoenmaat en lengte?
- wat betekent deze waarde?
- is er een verschil als je de uitschieters eerst verwijdert? Hoe doe je dit?
- kan je ook de Kendall correlatie berekenen? Wat is de waarde?
- heeft het zin om een regressielijn te bepalen?
- zijn er nog andere correlaties te vinden in de enquête? Hint: gebruik de methode corr() van het hele dataframe.
- Kijk eens naar de correlatie tussen opwarming en zakgeld. Wat betekent dat?
 Heeft het zin om hier een regressielijn te bepalen?

Oefeningen huiswerk

- bereken een lineaire regressie die de schoenmaat voorspelt adh van de lengte
 - verwijder eerst de uitschieters
 - wat is de vergelijking van de rechte?
- welke schoenmaat voorspel je voor iemand van 180cm groot?
- wat is de gemiddelde fout op de voorspelling? Is dit veel of weinig?
- wat is de verklaarde variantie? Wat betekent dit?

Oefeningen

- Samenhang
 - Sociale media vs punten
 - Batterijen
 - Stress
 - Smartphones