Objective:

This exercise will work with functions:

- Function definitions:
 - Value arguments
 - o Reference arguments
 - o Return values
- Function calls
 - o Passing value arguments
 - o Passing reference arguments

Description:

- 1. The user will enter three numbers (integers):
 - o Two numbers to use in a math operation
 - o A number that indicates which math operation to perform.
 - o A variable will be declared to hold the result of the math operation
 - i. This will get the return value from the function
 - o In the case of division, a float result must be expected. A float variable will be defined float div
 - i. If the operation selected is DIVIDE, the function will return the result to the address of this variable.

Calling a Function:

2. These values and the address of the float variable will be passed to a function:

```
result = math op(num1, num2, operation, &div);
```

Define a Function:

3. A function (ie math op()) will be defined to receive the three integer values and the address of div

```
int math op(int a, int b, int c, float *d)
```

Note: The function allusion should be placed at the top of the source file.

```
int math_op(int, int, int, float *)
```

- The function will perform this logic:
 - i. The function will have a variable to hold the answer of the math

int answer switch (c)

int num1, num2

int operation

int result

ii. Determine which operation is to be performed.

• If it is Add, Subtract, or Multiply, the return value will be set accordingly. case 1: (or 2, 3)

a. answer = a+b //(or: a-b, a*b)

• If the operation is Divide

case 4:

a. if the 2nd number is 0

if (b == 0)i. set the return value to -98 and do not divide

b. if the 2nd number is not 0:

i. set the return value to -97 answer = -97.

ii. divide a/b

iii. have the result placed in the float address argument.

*d = (float)a / b.

answer = -98.

- If the operation is not 1,2,3, or 4
 - a. Set the return value as -99 to indicate an invalid operation number was entered. answer = -99.

Return Value:

4. The value of answer will be returned by the function:

return answer.

else

Process the Returned Value:

5. When the function is completed the main() function will check the return values for error codes.

o If a -99 is returned, the error was an invalid operation. Print a message indicating the error.

Print a message indicating the error.

o If a -98 is returned, the error was a divide by zero.

o If a -97 is returned, the calculation result will be in the float variable div. Print the result (div) using %.2f

Otherwise, the return value is the proper integer calculation result.

Print the result (result) using %d.

Write comments:

- o Your final code should include comments:
 - i. A heading comment for the source file (Name, Purpose, Author, Date)
 - ii. A heading for each function (main () and math_op()
 - Document, arguments and return values
 - iii. Logic comments that indicate the logic of the actions
 - These are not to explain the statements, but to give an idea of the purpose of the action.

When completed

- o Create a video of your program running to show the results generated.
 - The video does not have to explain the **code line by line**,
 - It would be good to **mention**:
 - the statement calling the function (Note the arguments passed by value and by reference)
 - the function definition (Note the variables received as values and as a pointer)
 - the function logic.
 - a. Determining the operation to perform
 - b. Using the float address for the division result.
 - c. Setting the error codes.
 - handling the error codes returned by the function.
- Upload your c source file