Dans tout ce cours, G = (S, A) désigne un graphe non-orienté pondéré par $p : A \to \mathbb{R}$.

I Arbre couvrant de poids minimum

Définition: Arbre couvrant

On dit que T = (S', A') est un arbre couvrant de G si :

- T est un sous-graphe de G, c'est-à-dire : $S' \subset S$ et $A' \subset A$.
- T est un arbre.
- T contient tous les sommets de G: S' = S.

On définit le poids p(T) de T comme la somme des poids des arêtes de T.

Définition : Arbre couvrant de poids minimum

Un arbre couvrant dont le poids est le plus petit possible est appelé un arbre couvrant de poids minimum.

Exercice 1.

Donner un graphe qui possède plusieurs arbres couvrants de poids minimum.

Lemme

Tout graphe connexe possède un arbre couvrant de poids minimum.

Preuve:

II Algorithme de Kruskal

Algorithme de Kruskal

Entrée : Un graphe connexe G = (S, A)

Sortie : Un arbre couvrant de poids minimum ${\cal T}$

Trier les arêtes de A par poids croissant.

 $T \leftarrow \text{arbre vide (aucune arête)}.$

Pour chaque arête e par poids croissant :

Si T + e est acyclique : $\bot T \leftarrow T + e$

 $\stackrel{\vdash}{\mathbf{Renvoyer}} T$

Remarques:

- S'il y a plusieurs arêtes de même poids, l'algorithme de Kruskal les choisit dans un ordre quelconque.
- L'algorithme de Kruskal est un algorithme glouton.
- « T est acyclique » est un invariant de boucle. Une variante (« Kruskal inversé ») consiste à partir de T = G et à retirer les arêtes par ordre décroissant de poids, tout en conservant la connexité comme invariant.

Exemple : les arêtes ajoutées à T pour le graphe ci-dessous sont, dans l'ordre : ______

Exemple d'application de l'algorithme de Kruskal

Théorème L'algorithme de	e Kruskal renvoie un arbre couvrant de poids minimum.	
$\underline{\underline{\text{Preuve}}} \; \heartsuit :$		

Exercice 2.

- 1. Peut-on adapter l'algorithme de Kruskal pour trouver un arbre couvrant de poids maximum ?
- 2. De façon similaire, peut-on adapter un algorithme de plus courts chemins (par exemple Dijkstra) pour trouver des chemins de poids maximum ?
- 3. Soit $e \in A$. Peut-on adapter l'algorithme de Kruskal pour trouver un arbre couvrant de poids minimum contenant e?

III Implémentation naïve

On suppose G implémenté par une liste d'adjacence g: (int*float) list array telle que g. (i) est la liste des couples (j,p) tels que $\{i,j\}$ est une arête de poids p.

La fonction suivante renvoie la liste des arêtes du graphe g, où une arête $\{u,v\}$ de poids p est représentée par le couple (u,v,p):

Pour chaque arête $\{u, v\}$, déterminer si l'ajout de cette arête créé un cycle revient à savoir si u et v sont dans la même composante connexe de l'arbre T en construction.

Exercice 3. Écrire une fonction chemin g u v qui détermine s'il y a un chemin de u à v dans g.							

On suppose l'existence d'une fonction tri: ('a*'a*float) $\texttt{list} \rightarrow (\texttt{'a*'a*float})$ list qui trie une liste d'arêtes par ordre croissant de poids, en complexité $O(p \log(p)) = O(p \log(n))$ (par exemple par tri fusion).

 $\underline{\mathrm{Remarque}}: \texttt{g} \ | \texttt{> aretes} \ | \texttt{> tri} \ | \texttt{> aux} \ \mathrm{est} \ \mathrm{\acute{e}quivalent} \ \mathrm{\grave{a}} \ \mathrm{aux} \ (\mathtt{tri} \ (\mathtt{aretes} \ \mathtt{g}))$

Complexité: __

IV Union-Find

La structure Union-Find (unir et trouver) permet de représenter une partition d'un ensemble E = [0, n-1] comme réunion disjointe de sous-ensembles (classes).

A chaque élément de E est associé un représentant, qui est l'élément de sa classe.

Opérations sur une structure d'Union-Find :

- \bullet Création : créer une structure Union-Find avec n éléments, chaque élément étant seul dans sa classe.
- Find : trouver le représentant de la classe d'un élément.

• Union : fusionner les classes de deux éléments.

Chaque classe est représentée par un arbre, enraciné en le représentant.

Par exemple, la forêt suivante est une représentation possible de la partition $\{\{1,3,4\},\{2\},\{0,5\}\}$:

On la représente par un tableau uf tel que uf.(i) est le père de i dans l'arbre (uf.(i) = i si i est le représentant de sa classe). Sur l'exemple ci-dessus, uf = [|0; 3; 2; 3; 3; 0|].

Pour réaliser l'union des classes de x et y, on cherche leurs représentants r_x et r_y et choisit, par exemple, r_x comme père de r_y .

Exercice 4.

- 1. Écrire une fonction create n qui crée une structure Union-Find avec n éléments.
- 2. Écrire une fonction find uf i qui renvoie le représentant de la classe de i.
- 3. Écrire une fonction union uf i j qui fusionne les classes de i et j.
- 4. Quelles sont les complexités des fonctions précédentes ?

Application	ďU	nion-F	ind	à.	Kruska	ıΙ	;
-------------	----	--------	-----	----	--------	----	---

- Chaque classe correspond à une composante connexe dans T.
- Si u et v sont dans la même classe (find t u = find t v) alors l'ajout de l'arête $\{u, v\}$ à T créerait un cycle.
- Sinon, ajouter l'arête à T et fusionner les classes de u et v: union t u v).

```
let kruskal g =
  let n = Array.length g in
  let t = Array.make n [] in
  let uf = create n in
  let rec aux = function
  | [] -> t
  | (u, v, p)::q ->
    if find uf u <> find uf v then (
        union uf u v;
        ajout_arete t u v p
    );
    aux q in
  g |> aretes |> tri |> aux
```

Complexité:

V Améliorations d'Union-Find

On peut améliorer la structure d'Union-Find en utilisant l'heuristique de l'union par rang et la compression de chemin :

Exemple: appel de find uf 6 avec compression de chemin

- Union par rang : dans union, on attache l'arbre de hauteur la plus petite à celui de hauteur la plus grande.
- Compression de chemin : dans find, on attache directement chaque nœud rencontré à la racine.

On ajoute un tableau h tel que h. (i) est la hauteur de l'arbre enraciné en i.

```
type uf = {t : int array; h : int array}

let create n = (* O(n) *)
    {t = Array.init n (fun i -> i); h = Array.make n 0}

let union uf x y = (* O(1) *)
    let rx = find uf x in
    let ry = find uf y in
    if rx <> ry then (
        if uf.h.(rx) < uf.h.(ry) then uf.t.(rx) <- ry
        else if uf.h.(rx) > uf.h.(ry) then uf.t.(ry) <- rx
        else (
            uf.t.(ry) <- rx;
            uf.h.(rx) <- uf.h.(rx) + 1
        )
    )
}</pre>
```

Théorème

Dans une structure d'Union-Find avec union par rang, la hauteur h d'un arbre à k nœuds vérifie $h \le \log_2(k)$ (dit autrement : $k \ge 2^h$).

 $\underline{\text{Preuve}}$:

let rec find uf i =
 if uf.t.(i) = i then i
 else (
 let r = find uf uf.t.(i) in
 uf.t.(i) <- r;
 r
)</pre>

Théorème : (admis)

Avec union par rang et compression de chemin, la complexité amortie de union et find est en $O(\alpha(n))$, où α est une fonction à croissance tellement lente qu'on peut la considérer comme constante.

Ne pas confondre :

- Complexité en moyenne : on moyenne la complexité sur toutes les entrées possibles.
- Complexité amortie : complexité dans le pire cas d'une suite de n opérations, divisé par n.

Théorème

Avec union par rang et compression de chemin, la complexité amortie de l'algorithme de Kruskal est en $O(p \log(n))$.