Dr. Andreas Stein

Dr. Francesca Bartolucci

Series 5

Throughout this exercise sheet, let $T \in (0, +\infty)$, let $(\Omega, \mathcal{F}, P, \mathbb{F}_{t \in [0,T]})$ be a stochastic basis, and let $W \colon [0,T] \times \Omega \to \mathbb{R}$ be a one-dimensional standard $(\Omega, \mathcal{F}, P, \mathbb{F}_{t \in [0,T]})$ -Brownian motion.

1. Let $\xi \in \mathbb{R}$, let $\mu : \mathbb{R} \to \mathbb{R}$ be globally Lipschitz continuous and let $\sigma \in C^1(\mathbb{R}; \mathbb{R})$. Consider the one-dimensional SDE

$$dX_t = \mu(X_t)dt + \sigma(X_t)dW_t, \quad t \in [0, T], \quad X_0 = \xi.$$

(i) Let $M, N \in \mathbb{N}$. Write a MATLAB function Milstein1D $(T, \xi, \mu, \sigma, \sigma', W)$ with inputs $T \in (0, +\infty)$, $\xi \in \mathbb{R}$, $\mu \colon \mathbb{R}^M \to \mathbb{R}^M$, $\sigma \colon \mathbb{R}^M \to \mathbb{R}^M$, $\sigma' \colon \mathbb{R}^M \to \mathbb{R}^M$, and $W \in \mathbb{R}^{(N+1)\times M}$, which returns M realizations $Y_N^N(\omega_i)$, $i = 1, 2, \ldots, M$, of the Milstein approximation Y_N^N of X_T . Note that μ , σ and σ' are function handles, and $W \in \mathbb{R}^{(N+1)\times M}$ is a realization of M independent one-dimensional Brownian motions at the equally spaced time points $\{n\Delta t : n = 0, \ldots, N\}$, i.e.

$$W^{:,i} = (W_0, W_{\Delta t}, W_{2\Delta t}, \dots, W_{(N-1)\Delta t}, W_{N\Delta t})(\omega_i)$$

for i = 1, 2, ..., M.

Hint: You may modify the solution EulerMaruyama.m from Series 4.

(ii) Investigate the strong error of the Milstein scheme for the one-dimensional SDE

$$dX_t = X_t dt + \log(1 + X_t^2) dW_t, \quad t \in [0, 1], \quad X_0 = 1.$$
(1)

by using $M=10^5$ and $N=N_\ell=10\cdot 2^\ell$ for $\ell\in\{0,1,\ldots,4\}$. To this end, for every $\ell\in\{0,1,\ldots,4\}$ generate M realizations $Y_{N_\ell}^{N_\ell}(\omega_i),\ i=1,\ldots,M,$ of the Milstein approximation $Y_{N_\ell}^{N_\ell}$ of X_T . Then, for every $\ell\in\{0,1,\ldots,4\}$ compute Monte Carlo approximations

$$\mathbb{E}[|Y_{N_{\ell}}^{N_{\ell}} - X_T|] \approx \frac{1}{M} \sum_{i=1}^{M} |Y_{N_{\ell}}^{N_{\ell}}(\omega_i) - X_T|$$

and

$$\mathbb{E}[|Y_{N_{\ell}}^{N_{\ell}} - X_{T}|^{2}]^{\frac{1}{2}} \approx \left(\frac{1}{M} \sum_{i=1}^{M} |Y_{N_{\ell}}^{N_{\ell}}(\omega_{i}) - X_{T}|\right)^{\frac{1}{2}}.$$

Report on the experimental rates of strong convergence in L^1 and L^2 . Use as an approximation of the exact solution a numerical solution of the SDE on level $\ell = 7$.

Hint: You may use the template Milstein_SDE.m.

(iii) Repeat item (ii) for the SDE

$$dX_t = X_t dt + \sin(1 + X_t^2) dW_t, \quad t \in [0, T], \quad X_0 = 1.$$
 (2)

Comment on the results.

2. Let $a, b, \sigma_v > 0$ and $v_0 \ge 0$. Consider the Cox-Ingersoll-Ross process, given as solution to the SDE

$$dV_t = a(b - V_t)dt + \sigma_v \sqrt{V_t}dW_t, \quad V_0 = v_0, \quad t \in [0, T].$$
(3)

- (i) Apply the Yamada-Watanabe theorem to prove that the Cox-Ingersoll-Ross process is the unique (up to indistinguishability) solution to the SDE (3).
- (ii) Let $N \in \mathbb{N}$. Assume [0,T] is discretized by a uniform temporal mesh with N+1 nodes, i.e. with time step size $\Delta t = T/N$. The *drift-implicit Milstein scheme* for the stochastic process V with step size Δt and initial value $V_0^N = V_0 > 0$ is given for $n = 0, \ldots, N-1$ by

$$V_{n+1}^{N} = V_{n}^{N} + a(b - V_{n+1}^{N})\Delta t + \sigma_{v}\sqrt{V_{n}^{N}}(W_{t_{n+1}} - W_{t_{n}}) + \frac{\sigma_{v}^{2}}{4}((W_{t_{n+1}} - W_{t_{n}})^{2} - \Delta t).$$

Show that if $4ab \ge \sigma_{\mathbf{v}}^2$, then $P(V_n^N > 0) = 1$ for all $n \in \{0, \dots, N\}$.

- (iii) Write a Matlab function DriftImplicitMilstein($T, N, v_0, a, b, \sigma_v$) with input $T \in (0, +\infty), N \in \mathbb{N}, v_0, a, b, \sigma_v > 0$ and output a realization of the drift-implicit Milstein scheme $\{V_0^N, V_1^N, \dots, V_N^N\}$ for the Cox-Ingersoll-Ross process V. Then, plot a sample path of the stochastic process V with the choices $T = 1, N = 10^3, v_0 = 0.5, a = 2, b = 0.5$ and $\sigma_v = 0.25$.
- **3.** [Proposition 3.6.6 in the lecture notes] Let $d, N \in \mathbb{N}$, $\mu \in \mathcal{M}(\mathcal{B}(\mathbb{R}^d), \mathcal{B}(\mathbb{R}^d))$, $\sigma = (\sigma_j)_{j \in \{1,...,m\}} \in C^1(\mathbb{R}^d, \mathbb{R}^{d \times m})$, $\xi \in \mathcal{M}(\mathbb{F}_0, \mathcal{B}(\mathbb{R}^d))$, let $Y^N : \{0, 1, ..., N\} \times \Omega \to \mathbb{R}^d$ be the Milstein approximation for the SDE

$$dX_t = \mu(X_t) dt + \sigma(X_t) dW_t, \qquad t \in [0, T], \qquad X_0 = \xi,$$

with time step size $\Delta t = T/N$, and assume for all $x \in \mathbb{R}^d$, $i, j \in \{1, 2, \dots, m\}$ that

$$(\sigma_i)'(x) \, \sigma_j(x) = (\sigma_j)'(x) \, \sigma_i(x).$$

Prove that for all $n \in \{0, 1, ..., N-1\}$ it holds P-a.s. that

$$Y_{n+1}^{N} = Y_{n}^{N} + \mu(Y_{n}^{N}) \Delta t + \sigma(Y_{n}^{N}) \left(W_{t_{n+1}} - W_{t_{n}} \right) - \frac{\Delta t}{2} \sum_{i=1}^{m} (\sigma_{i})'(Y_{n}^{N}) \sigma_{i}(Y_{n}^{N})$$

$$+ \frac{1}{2} \sum_{i,j=1}^{m} (\sigma_{i})'(Y_{n}^{N}) \sigma_{j}(Y_{n}^{N}) \left(W_{t_{n+1}}^{(i)} - W_{t_{n}}^{(i)} \right) \left(W_{t_{n+1}}^{(j)} - W_{t_{n}}^{(j)} \right), \qquad Y_{0}^{N} = \xi.$$

Hint: Use Itô's formula to achieve explicit expressions for the iterated integrals

$$\int_{t_0}^t W_s^{(1)} dW_s^{(1)} \quad \text{and} \quad \int_{t_0}^t W_s^{(1)} dW_s^{(2)} + \int_{t_0}^t W_s^{(2)} dW_s^{(1)}, \tag{4}$$

where $(W^{(1)},W^{(2)})\colon [0,T]\times\Omega\to\mathbb{R}^2$ is a 2-dimensional standard $(\Omega,\mathcal{F},P,\mathbb{F}_{t\in[0,T]})$ -Brownian motion, and where $t,t_0\in[0,T]$.

Due: 16:00 o'clock, Monday, 31st October 2022

Webpage: https://moodle-app2.let.ethz.ch/course/view.php?id=17423

Organisation: Francesca Bartolucci, HG G 53.2