PROBLEMA NP-COMPLETE: SUDOKU

ÍNDICE

- 1. DESCRIPCIÓN
- 2. EXPRESIÓN MATEMÁTICA
- 3. DEMOSTRACIÓN NP-COMPLETITUD
 - 3.1. DEMOSTRACIÓN DE PERTENENCIA A NP
 - 3.2. DEMOSTRACIÓN DE PERTENENCIA A NP-COMPLETE
- 4. BIBLIOGRAFÍA

1. DESCRIPCIÓN

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

El problema del cual voy a hacer la demostración de np-completitud es el de la resolución de sudokus.

Los sudokus son una especia de puzzle en el cual se tiene un tablero de n^2*n^2 con bloques de n*n, en el caso mas habitual siendo n=3. En cada una de las casillas debe introducirse un numero desde el 1 hasta el n^2.

Se trata desde el punto de vista matematico de un problema de satisfacción de restricciones. Dichas restricciones para la resolución de un sudoku son las siguientes:

- Un número no puede estar repetido en una misma columna.
- Un número no puede estar repetido en la misma fila.
- Un número no puede estar repetido en un mismo bloque.

Al principio el sudoku está parcialmente relleno de forma que solo existe una posible solución al mismo, y habiendo en cada etapa al menos una casilla con una unica posibilidad.

2. EXPRESIÓN MATEMÁTICA

El sudoku puede interpertarse como un conjunto de elementos en el que cada uno está definido por sus coordenadas x e y de tal forma que podemos implementar las restricciones de la siguiente manera:

- x=x' misma columna
- y=y' misma fila
- (x%n=x'%n) e (y%n=y'%n) siendo % el resto de la división x/n e y/n, indica que estan en el mism bloque.

3. DEMOSTRACIÓN DE NP-COMPLETITUD

3.1 Demostración de pertenencia a np

Para demostrar que este problema pertenece a los np-completos primero demostraremos que

pertenece al grupo de los problemas np. Para esto simplemente demostraremos que se puede saber si un determinado tablero es correcto en tiempo polinomico.

```
For( i=0; i< n^2; i++)
                                                                 O(n^2)*O(n^2)*O(n^2)
For( j=0; j< n \land 2; j++)
                                                                 O(n^2)*O(n^2)
       a=Tablero[i][j]
       For( b=0; b<n^2;b++)
                                                                 O(n^2)
              if(b!=i && a=Tablero[b][j])
                     return false:
       For( c=0; c< n^2; c++)
                                                                 O(n^2)
              if(c!=i && a=Tablero[i][c])
                     return false:
       For( d=n*i%n; d<(n*i%n)+1;d++)
                                                                 O(n)*O(n)
              For( e=n*i%n; e<(n*i%n)+1;e++)
                                                                 O(n)
                      if(d!=i && e!=j && a=Tablero[d][e])
                             return false:
```

Esta funcion tiene un orden de rango $O(n^6)$, el cual a pesar de ser bastante elevado sigue siendo polinomico.

3.2 Demostración de pertenencia a np-complete

Para demostrar que este problema es np completo demostraremos que se puede reducir a uno de tipo SAT. Para simplificarlo supondremos que n=2. De esta forma disponemos de un tablero 4x4 en el cual se situaran numeros del 1 al 4 y dividido en 4 bloques de 2x2.

3		4
4	1	
1		2
	4	1

Las entradas al problema son 16 numero codificados cada uno con dos variable booleanas que nos indicaran los numeros presentes en cada casilla del tablero siendo x1,x2 los correspondientes a la primera casilla, x3,x4 los correspondientes a la segunda etc hasta llegar a x32. Las casillas serán recorridas primero por filas y después por columnas para este orden.

La formula SAT correspondiente para la verificación de este tablero seria como la siguiente:

• Las casillas perteneciente a la misma fila,columna o bloque, por ejemplo la primer y la segunda deben verificar una formula similar a la que sigue: siendo x1,x2 y x3,x4 los números

$$((\neg(x1\&x2))\&(x1+x2))+((\neg(x3\&x4))\&(x3+x4))$$

Eso indica que al menos uno de ambos lado tiene que ser distinto (operación or del centro), y para que esto se cumpla al menos uno tiene que ser 1 (operación or laterales) y no deben

serlo ambos (¬ junto con &)

• Todas estas formulas iran a para a un unico &, ya que todas deben de hacerse ciertas al mismo tiempo

De esta forma hemos podido reducir el problema del sudoku a uno de tipo SAT demostrando así su pertenencia al grupo de los np-complete.

4. BIBLIOGRAFÍA

Wikipedia: https://en.wikipedia.org/wiki/Mathematics_of_Sudoku

<u>Valverde Rebaza Jorge Carlos Escuela de Informática Universidad Nacional de Trujillo Perú:</u> http://mdereg1-fercarpetass.googlecode.com/svn/trunk/Programaci%C3%B3nPaper/IO/Libros%20y%20Manuales/paper/sudoku%2520is%2520NP.pdf