

invention.

What is claimed is:

1. A method of fabricating a titanium disilicide film in
the manufacture of an integrated circuit comprising:

providing a semiconductor substrate having silicon
regions to be silicided;

5 depositing a titanium layer overlying said silicon
regions to be silicided;

subjecting said substrate to a first annealing
whereby said titanium is transformed to phase C40
titanium disilicide where it overlies said silicon
10 regions and wherein said titanium not overlying said
silicon regions is unreacted;

subjecting said substrate to a second annealing
whereby phase C54 titanium disilicide is grown overlying
said phase C40 titanium disilicide and whereby said
15 phase C40 titanium disilicide is transformed to phase
C54 titanium disilicide; and

removing said unreacted titanium layer to complete
formation of said titanium disilicide film in the
manufacture of said integrated circuit.

2. The method according to Claim 1 wherein said silicon
regions to be silicided comprise gate electrodes and
associated source and drain regions.

3. The method according to Claim 1 wherein said titanium layer is sputter deposited to a thickness of between about 100 and 500 Angstroms.
4. The method according to Claim 1 wherein said first annealing is a laser annealing using a laser having a wavelength of 1.06 nm and energy between about 0.5 and 1.5 Joules/cm².
5. The method according to Claim 1 wherein said first annealing is a laser annealing using an Excimer laser having a wavelength of 248 nm and energy between about 0.1 and 1.2 Joules/cm².
6. The method according to Claim 1 wherein said second annealing is a rapid thermal annealing performed at a temperature of between about 550 and 860 °C for 0.5 to 2 minutes.
7. The method according to Claim 1 wherein said second annealing is a furnace annealing performed at a temperature of between about 500 and 750 °C for 5 to 60 minutes.

8. A method of fabricating a titanium disilicide film in the manufacture of an integrated circuit comprising:

 providing a semiconductor substrate having silicon regions to be silicided;

5 depositing a titanium layer overlying said silicon regions to be silicided;

 subjecting said substrate to a laser annealing whereby said titanium is transformed to phase C40 titanium disilicide where it overlies said silicon
10 regions and wherein said titanium not overlying said silicon regions is unreacted;

 subjecting said substrate to a low temperature annealing whereby said phase C40 titanium disilicide is grown overlying said phase C40 titanium disilicide and
15 whereby said phase C40 titanium disilicide is transformed to phase C54 titanium disilicide; and

 removing said unreacted titanium layer to complete formation of said titanium disilicide film in the manufacture of said integrated circuit.

9. The method according to Claim 8 wherein said silicon regions to be silicided comprise gate electrodes and associated source and drain regions.

10. The method according to Claim 8 wherein said titanium layer is sputter deposited to a thickness of between about 100 and 500 Angstroms.
11. The method according to Claim 8 wherein said laser annealing uses a laser having a wavelength of 1.06 nm and energy between about 0.5 and 1.5 Joules/cm².
12. The method according to Claim 8 wherein said laser annealing uses an Excimer laser having a wavelength of 248 nm and energy between about 0.1 and 1.2 Joules/cm².
13. The method according to Claim 8 wherein said low temperature annealing is a rapid thermal annealing performed at a temperature of between about 550 and 860 °C for 0.5 to 2 minutes.
14. The method according to Claim 8 wherein said low temperature annealing is a furnace annealing performed at a temperature of between about 500 and 750 °C for 5 to 60 minutes.
15. A method of fabricating a titanium disilicide film in the manufacture of an integrated circuit comprising:
providing a semiconductor substrate having silicon

regions to be silicided;

5 depositing a titanium layer overlying said silicon
regions to be silicided;

 subjecting said substrate to a first annealing
whereby said titanium is transformed to phase C40
titanium disilicide where it overlies said silicon
10 regions and wherein said titanium not overlying said
silicon regions is unreacted;

 subjecting said substrate to a second annealing at
a temperature of less than 700 °C whereby said phase C40
titanium disilicide is transformed to phase C54 titanium
15 disilicide; and

 removing said unreacted titanium disilicide to
complete formation of said titanium disilicide film in
the manufacture of said integrated circuit.

16. The method according to Claim 15 wherein said
silicon regions to be silicided comprise gate electrodes
and associated source and drain regions.

17. The method according to Claim 15 wherein said
titanium layer is sputter deposited to a thickness of
between about 100 and 500 Angstroms.

18. The method according to Claim 15 wherein said first annealing is a laser annealing using a laser having a wavelength of 1.06 nm and energy between about 0.5 and 1.5 Joules/cm².

19. The method according to Claim 15 wherein said first annealing is a laser annealing using an Excimer laser having a wavelength of 248 nm and energy between about 0.1 and 1.2 Joules/cm².

20. The method according to Claim 15 wherein said second annealing is a rapid thermal annealing performed at a temperature of between about 550 and 860 °C for 0.5 to 2 minutes.

21. The method according to Claim 15 wherein said second annealing is a furnace annealing performed at a temperature of between about 500 and 750 °C for 5 to 60 minutes.