Motivation

- many algorithms can be applied to unweighted trees
 - [[Spannbaumalgorithmen]]
 - [[Breadth-First Search]]
 - [[Depth-First Search]]

– ...

- does not work for weighted graphs
- useful if direct connections from A to B not possible
 - road networks
 - electrical circuits

- ...

Definition

• tree which connects all points which minimizes the total length of all edges

A minimum spanning tree of a weighted graph G=(V,E,w) is a tree T=(V,E') with $E'\subseteq E$ and with minimal total edge length among all spanning trees in G:

$$w(T) = \sum_{e \in E'} w(e)$$

- is minimized over all trees in G with vertex set V.
- ullet crossing free (planar)
 - otherwise using different edges would lead to a fewer length
- example

Algorithm Idea

• cut

A cut of a graph G = (V, E) is a partition of V into V_1, V_2 .

An edge e is called **external** for the cut (V_1,V_2) if it has one endpoint in V_1 and one in V_2 ; otherwise e is called **internal**.

Theorem: Let E' be a subset of edges of an MST of G=(V,E,w). Let (V_1,V_2) be a cut of G for which all edges of E' are internal. Then the external edge of the cut with **minimum weight** is a good edge for E'.

- proof

Proof:

Assume there is an MST T with E' and without e. $\Rightarrow e$ closes a cycle C in T.

The cycle C contains at least one edge f of the tree T that is external for the cut.

By definition of e, the weight $w(f) \geq w(e)$.

 $\Rightarrow T \setminus \{f\} \cup \{e\}$ is an MST of G.

 $\begin{array}{l} \text{If } w(f)>w(e) \text{ then} \\ T \text{ is not an MST of } G. \end{array}$

Prim's Algorithm

- greedy
- also works with negative weights

- Start with an arbitrary vertex s of G and iteratively 'grow' an MST T from s.
- Iterative step:

Choose the 'cheapest' edge with exactly one node in T.

- Cut: V₁ = vertices of T, V₂ = vertices not yet in T.
- For each vertex $v \notin T$ we maintain:
 - Priority p(v): weight of the shortest edge from v to a vertex in T (initially: ∞).
 - Nearest n(v): vertex in T realizing p(v): w(v, n(v)) is min. among neighbors of v in T (initially no vertex).
- A queue Q contains all vertices not yet in T, organized by priorities (e.g., in a min-heap; initially all vertices).
- pseudo code

Run-time-analysis:

n ... number of vertices of G m ... number of edges of G d(v) ... Degree of vertex v in G

- Initialization, construction of the heap $Q: \Theta(n)$
- n times removing the minimum from Q: $O(n \log n)$
- report MST edges: $\Theta(n)$
- Update priorities for all neighbors of v: $O(d(v) \cdot \log n)$
- \Rightarrow Alltogether:

$$O(n + n \log n + \sum_{v \in V} d(v) \log n) = O(m \log n)$$

Memory requirements: $\Theta(m+n) = \Theta(m)$

Graph + queue + priorities + nearests + constant additional

Remarks:

- MST always begins at the start vertex s and grows from there as a connected tree.
- Shrinking p(v) causes v to move up in the heap. $\Rightarrow O(\log n)$ time.
- Test for $v \in Q$ in O(1) time when bit vector is used to store which vertices are already in T.
- Runtime can be changed to $O(n^2)$. This is useful for dense graphs (see notes on Dijkstra's algorithm in the next chapter).

Kruskal's Algorithm

- greedy
- also works with negative weights
- uses [[Union Find]] data structure
 - Label the vertex set of G as $v_1, v_2, ... v_n$ (arbitrary)
 - Initially there are n disjoint sets M₁, M₂, ...M_n (each with one vertex)
 - FIND(v): returns index i if vertex v is in M_i
 - UNION(i,j): join sets M_i and M_j : $M_i = M_i \cup M_j$ (index of resulting set: minimum of i and j)
 - End of the algorithm: one component M₁ with all vertices of G.
 - Creating a 1-element set needs $\Theta(1)$ time.
 - f FIND and u UNION operations need $O(f + u \log u)$ time in total.
 - The total memory requirement of the data structure is linear in the number of initial 1-element sets.

- Start with empty edge set E'.
- Sort edge set E of G=(V,E,w) in increasing order of their weights (edges will be considered in this order): $e_1,e_2,...e_m$ with $w(e_1) < w(e_2) < ... < w(e_m)$.
- Iterative step:
 - E' forms a forest F (= set of disjoint subtrees, acyclic) in G and in the MST to be constructed.
 - Edge e that is added to E' is the shortest edge in $E \setminus E'$ that does not form a cycle with edges from E'.
- pseudo code

```
\begin{array}{l} \mathsf{KRUSKAL\text{-}MST}(\mathbf{G}) \\ \mathsf{sort} \ \mathsf{edges} \ \mathsf{by} \ \mathsf{weight:} \ \{e_1, e_2, \dots e_m\} \\ \underline{\mathbf{for}} \ i = 1 \ \underline{\mathbf{to}} \ n \ \underline{\mathbf{do}} \ M_i = \{v_i\} \ \underline{\mathbf{od}} \\ \underline{\mathbf{for}} \ k = 1 \ \underline{\mathbf{to}} \ m \ \underline{\mathbf{do}} \\ (u, v) = e_k \\ i = \mathsf{FIND}(u) \\ j = \mathsf{FIND}(v) \\ \underline{\mathbf{if}} \ i \neq j \ \underline{\mathbf{then}} \\ \mathsf{write} \ e_k \\ \mathsf{UNION}(i, j) \\ \underline{\mathbf{fi}} \\ \mathbf{od} \\ \end{array}
```

Runtime analysis:

- Sorting of the edges: $O(m \log m)$
- Initialize UNION-FIND data structure for vertices: $\Theta(n)$
- In total 2m FIND operations and n-1 UNION operations: $O(m+n\log n)$
- Extract edges + write MST edges: $\Theta(m)$
- \Rightarrow Altogether $O(m \log m)$ time.
- ⇒ Sorting of the edges dominates the runtime.

Memory requirements:

$$\Theta(n+m) = \Theta(m)$$
 in total.

_