PHYS 661 - Quantum Mechanics II

Modern Quantum Mechanics by J. J. Sakurai

Student: Ralph Razzouk

Homework 6

Problem 1 - 1D δ -potential Revisited

Consider the 3D attractive potential $V(r) = \begin{cases} -V_0, & r < a, \\ 0, & r > a. \end{cases}$

- (a) Solve the s-wave $(\ell = 0)$ Schrodinger equation exactly and find the scattering phase shift $\delta_0(k)$ as a function of momentum $k = \sqrt{\frac{2m}{\hbar^2}E}$, V_0 , and a. (It will be a complicated expression, no need to simplify it.) Find an equation for k such that the phase shift vanishes $\delta_0(k) = 0$ (no need to solve the equation).
- (b) Find the equation for bound state energies E in terms of V_0 and a (no need to solve the equation).
- (c) Give your best effort to verify Levinson's theorem, that the number of bound states is given by $N_b = \frac{1}{\pi} [\delta(E \to 0) \delta(E \to \infty)].$

Solution. (a) For the s-wave $(\ell=0)$ in a spherically symmetric potential, we work with the radial Schrdinger equation

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2 u(R)}{\mathrm{d}r^2} + V(r)u(r) = Eu(r),$$

with the given potential

$$V(r) = \begin{cases} -V_0, & r < a, \\ 0, & r > a. \end{cases}$$

The solution can be split into two regions

• For r > a, the radial wave function has the general form

$$u(r) = \frac{\sin(kr + \delta_0)}{\sqrt{kr}}.$$

• For r < a, we seek a solution satisfying the boundary conditions. The phase shift $\delta_0(k)$ is determined by the matching condition at r = a, which gives

$$\tan(\delta_0) = \frac{k \cot(ka) - \frac{mV_0}{\hbar^2}}{\frac{mV_0}{\hbar^2} ka \cot(ka) - k}.$$

An equation for zero phase shift $(\delta_0 = 0)$ is

$$\cot(ka) = \frac{mV_0}{\hbar^2 k}.$$

(b) For bound states, we seek solutions with E < 0. The condition for bound states is determined by

$$\tan(k'a) = -\frac{\hbar^2 m k'}{mV_0}, \text{ where } k' = \sqrt{-\frac{2mE}{\hbar^2}}.$$

Rearranging, the bound state energy condition becomes

$$\cot(k'a) = -\frac{mV_0}{\hbar^2 k'}.$$

(c) Levinson's theorem states that the number of bound states N_b is related to the phase shift at zero and infinite energy by

$$N_b = \frac{1}{\pi} \left[\delta(E \to 0) - \delta(E \to \infty) \right].$$

From our previous calculations

- At $E \to 0$, $\delta_0 \approx \frac{mV_0 a}{\hbar^2}$.
- At $E \to \infty$, $\delta_0 \to \frac{\pi}{2}$.

Thus, $N_b = \frac{1}{\pi} \left[\frac{mV_0 a}{\hbar^2} - \frac{\pi}{2} \right]$. The number of bound states depends on the potential strength V_0 , range a, and reduced mass m.

Problem 2 - Three Angular Momenta

Consider three angular momentum operators $\mathbf{S}, \mathbf{L}, \mathbf{I}$ in the $S=1, L=2, I=\frac{1}{2}$, representations, respectively. Consider also the operator $Q=a\mathbf{S}\cdot\mathbf{L}+b(\mathbf{S}+\mathbf{L})\cdot\mathbf{I}$ where a,b are scalars.

- (a) What is the dimension of the matrix Q? Show that the terms proportional to a, b in Q commute with each other.
- (b) Write Q in a block-diagonal form, in terms of a maximum set of commuting observables.

Solution. First, let's calculate the matrix dimension

- S: S = 1 representation \rightarrow dimension 2S + 1 = 3.
- L: L = 2 representation \rightarrow dimension 2L + 1 = 5.
- I: $I = \frac{1}{2}$ representation \rightarrow dimension 2I + 1 = 2.

The total matrix dimension is then $3 \times 5 \times 2 = 30$.

To show the terms commute, we'll examine $\mathbf{S} \cdot \mathbf{L}$ and $(\mathbf{S} + \mathbf{L}) \cdot \mathbf{I}$. We have

$$[\mathbf{S} \cdot \mathbf{L}, (\mathbf{S} + \mathbf{L}) \cdot \mathbf{I}] = 0$$

by the commutation relations of angular momentum operators given by

$$[\mathbf{S} \cdot \mathbf{L}, \mathbf{S}_i] = [\mathbf{S} \cdot \mathbf{L}, \mathbf{L}_i] = 0,$$
$$[\mathbf{S} \cdot \mathbf{L}, \mathbf{I}_i] = 0.$$

The maximum set of commuting observables includes the total angular momentum squared \mathbf{J}^2 , the z component of total angular momentum \mathbf{J}_z , \mathbf{I}^2 , and \mathbf{I}_z . The total angular momentum is $\mathbf{J} = \mathbf{S} + \mathbf{L}$. The block-diagonal form will be

$$Q = \bigoplus_{J,M_J,I,M_I} a(\mathbf{S} \cdot \mathbf{L})_{J,M_J} + b(\mathbf{S} + \mathbf{L})_z \cdot \mathbf{I}_z$$

Each block corresponds to a specific set of quantum numbers

$$J = |L - S|, |L - S| + 1, \dots, L + S$$
 $M_J = -J, -J + 1, \dots, J$
 $I = \frac{1}{2}$
 $M_I = \pm \frac{1}{2}$

Problem 3 - Some Properties of Rotation Generators

- (a) Let L_x , L_y , and L_z denote the components of the angular momentum operator. Show that if and operator O satisfies $[O, L_x] = [O, L_y] = 0$, then $[O, L_z] = 0$.
- (b) Let $\sigma = (\sigma_x, \sigma_y, \sigma_z)$ denote the Pauli matrices, I the 2×2 identity matrix, and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$. Show that

$$(\mathbf{a} \cdot \boldsymbol{\sigma})(\mathbf{b} \cdot \boldsymbol{\sigma}) = \mathbf{a} \cdot \mathbf{b} \mathbb{I} + i(\mathbf{a} \times \mathbf{b}) \cdot \boldsymbol{\sigma}.$$

(c) We know that any complex 2×2 matrix M_2 can be written in terms of $I, \sigma_x, \sigma_y, \sigma_z$ as a linear combination $M_2 = a_0 \mathbb{I} + \mathbf{a} \cdot \boldsymbol{\sigma}$. Show that any complex 3×3 matrix M_3 can be written in terms of I_3, S_x, S_y, S_z where I_3 denotes the 3×3 identity matrix and S_x, S_y, S_z the spin-1 matrices, but that in this case M_3 will not be a linear function of S_x, S_y, S_z . (Hint: Investigate the anticommutators $\{S_i, S_j\}$.) The spin 1 matrices are [in units $\hbar = 1$]

$$S_x = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad S_y = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad S_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Solution. (a) Let's prove that if $[O, L_x] = [O, L_y] = 0$, then $[O, L_z] = 0$.

Recall the angular momentum commutation relations:

$$\begin{split} [L_x,L_y] &= \mathrm{i} L_z, \\ [L_y,L_z] &= \mathrm{i} L_x, \\ [L_z,L_x] &= \mathrm{i} L_y. \end{split}$$

Assume $[O, L_x] = [O, L_y] = 0$. Consider the commutator $[O, L_z]$. We'll prove this is zero by contradiction.

Expand the commutator using the given conditions and the commutation relations

$$\begin{split} [O,L_z] &= [O,L_xL_x^{-1}L_zL_xL_x^{-1}] \\ &= [O,L_x]L_x^{-1}L_zL_xL_x^{-1} + L_x[O,L_x^{-1}]L_zL_xL_x^{-1} + L_xL_x^{-1}[O,L_z]L_xL_x^{-1} \\ &= 0 \cdot L_z + L_x \cdot 0 \cdot L_xL_x^{-1} + L_xL_x^{-1} \cdot 0 \cdot L_xL_x^{-1} \\ &= 0 \end{split}$$

Therefore, $[O, L_z] = 0$.

(b) For any ordinary vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$, we have

$$(\mathbf{a} \cdot \boldsymbol{\sigma}) (\mathbf{b} \cdot \boldsymbol{\sigma}) = \sum_{j} \sigma_{j} a_{j} \sum_{k} \sigma_{k} b_{k}$$

$$= \sum_{j} \sum_{k} \sigma_{j} \sigma_{k} a_{j} b_{k}$$

$$= \sum_{j} \sum_{k} \left(\delta_{jk} + i \sum_{l} \epsilon_{jkl} \sigma_{l} \right) a_{j} b_{k}$$

$$= \sum_{j} \sum_{k} \delta_{jk} a_{j} b_{k} + i \sum_{j} \sum_{k} \sum_{l} \epsilon_{jkl} \sigma_{l} a_{j} b_{k}$$

$$= \sum_{j} a_{j} b_{j} + i \sum_{l} \sigma_{l} \left(\sum_{j} \sum_{k} \epsilon_{jkl} a_{j} b_{k} \right)$$

$$= (\mathbf{a} \cdot \mathbf{b}) + i \sum_{l} \sigma_{l} (\mathbf{a} \times \mathbf{b})$$

$$= (\mathbf{a} \cdot \mathbf{b}) \mathbb{I} + i \boldsymbol{\sigma} \cdot (\mathbf{a} \times \mathbf{b}).$$

Therefore,

$$(\mathbf{a} \cdot \boldsymbol{\sigma})(\mathbf{b} \cdot \boldsymbol{\sigma}) = (\mathbf{a} \cdot \mathbf{b}) \mathbb{I} + i \boldsymbol{\sigma} \cdot (\mathbf{a} \times \mathbf{b}).$$

(c) Calculating the anticommutators of the spin-1 matrices, we have

$$\begin{split} \{S_x, S_y\} &= S_x S_y + S_y S_x = \mathrm{i} S_z, \\ \{S_y, S_z\} &= S_y S_z + S_z S_y = \mathrm{i} S_x, \\ \{S_z, S_x\} &= S_z S_x + S_x S_z = \mathrm{i} S_y. \end{split}$$

Calculating the squares of these matrices, we have

$$S_x^2 = S_y^2 = S_z^2 = 2\mathbb{I}_3 - \frac{1}{3}(S_x^2 + S_y^2 + S_z^2)$$

Consider a general 3×3 complex matrix M_3 . We can write it as

$$M_3 = a_0 \mathbb{I}_3 + a_x S_x + a_y S_y + a_z S_z + b_x S_x^2 + b_y S_y^2 + b_z S_z^2 + c_{xy} \{S_x, S_y\} + c_{yz} \{S_y, S_z\} + c_{zx} \{S_z, S_x\},$$

where a_0 , a_x , a_y , a_z , b_x , b_y , b_z , c_{xy} , c_{yz} , and c_{zx} are complex coefficients.

We can now rewrite the previous as

$$M_3 = a_0 \mathbb{I}_3 + a_x S_x + a_y S_y + a_z S_z + (b_x + b_y + b_z) \left(2\mathbb{I}_3 - \frac{1}{3} (S_x^2 + S_y^2 + S_z^2) \right) + \mathrm{i}(c_{xy} S_z + c_{yz} S_x + c_{zx} S_y)$$

This can be further simplified to

$$M_3 = (a_0 + 2(b_x + b_y + b_z))I_3 + (a_x - ic_{yz})S_x + (a_y - ic_{zx})S_y + (a_z - ic_{xy})S_z - \frac{1}{3}(b_x + b_y + b_z)(S_x^2 + S_y^2 + S_z^2)$$

This expression shows that any 3×3 complex matrix can indeed be written in terms of \mathbb{I}_3 , S_x , S_y , and S_z . However, it's not a linear function of S_x , S_y , and S_z because of the presence of the squared terms S_x^2 , S_y^2 , and S_z^2 .