

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Deployment of AI-Enabled Automated Solution at AWS Cloud

Name of the Presenter

SRN: Gaurav Karki

Date: 27th Aug 2022

M.Tech in Artificial Intelligence

Capstone Project Presentation Year: II

race.reva.edu.in

Agenda

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

01	Introduction				
	Background Current status Why this study				
വാ	Literature Review				

02 Literature Review

Seminal works | Summary | Research Gap

03 Problem Statement

Technical/Functional Problem

07 Software Design

Software | Hardware

High Level | Low Level Design Diagrams

Project Methodology

06 Resources Specification

Conceptual Framework | Research Design

04 Project Objectives

Primary & Secondary Objectives | Expected Outcome

08 Implementation

Demo | Application | Use cases

09 Testing and Validation

Test Results | Learnings

10 Analysis and Results

Key Findings | Insights

12 Suggestions and Conclusion

Insights | Next Step | Future Scope

13 Annexure

References | Publications | Plagiarism Score

Introduction

Background | Current status | Why this topic

Machine Learning Ops(MLOps)

MLOps helps enterprises improve AI ROI by automating and scaling the machine learning lifecycle.

AWS Cloud Service

Approved by AICTE, New Delhi

Using cloud services allows you to create and deliver ML models without developing MLOPs solutions.

Approved by AICTE, New Delhi

Introduction

Background | Current status | Why this topic

ML Hierarchy

MLOps

Plateform Automation

Data Automation

DevOps

Figure: ML Engineering Hierarchy of Needs

Source: https://www.smartsheet.com/content/utilization-management

Challenges with MLOps

- Complexities with Data
- Engineering and Deployment
- Integration Risks

Reason

Manual Process

Opportunity

AWS cloud service for MLOps

Approved by AICTE, New Delhi

Literature Review

Seminal works | Summary | Research Gap

Title	Author & Year	Journal/Source		Major Insights	Research Gap
Measuring progress in improving prior authorization	American Medical Association 2021	https://www.ama- assn.org/system/files/ prior-authorization- reform-progress- update.pdf	•	84% of physicians say the prior authorization burden is "high" or "extremely high".	Streamlining PA Process
CAQH Index Report	The Council for Affordable Quality Healthcare 2020	https://www.caqh.org/ sites/default/files/expl orations/index/2020- caqh-index.pdf	•	Physicians do 40 PAs every week on average. PA takes 20 minutes to accomplish manually. Automating PA might save \$417 million yearly.	Use of Automation

Approved by AICTE, New Delhi

Literature Review

Seminal works | Summary | Research Gap

Title	Author & Year	Journal/Source	Major Insights	Research Gap
Why Should You Use MLOps? - Amazon SageMaker.	AWS 2022	https://docs.aws.amazo • n.com/sagemaker/lates t/dg/sagemaker- projects-why.html	AWS provide inbuilt services and cloud platform	Development is required
Rule-based prediction of medical claims	J. Wojtusiak, C. Ngufor, J. Shiver, and R. Ewald 2011	Proceedings - 10th International Conference on Machine Learning and Applications, ICMLA 2011	Attributional techniques can predict claim discrepancies.	Fraud detection differs from claims rework review.
A text similarity approach for precedence retrieval from legal documents	Thenmozhi, D Kannan, C Aravindan 2022	ceur-ws.org •	Word embedding such as word2vec captures document semantics.	Semantics information at sentence level

Established as per the section 2(f) of the UGC Act, 1956,

Problem Statement

Technical | Functional

Technical

Approved by AICTE, New Delhi

- To find text similarity in the patient's clinical history with the insurer's guidelines to approve a PA claim.
- To deploy ML model using ASW Lambda

Functional

- To streamline the PA process to prevent delays in patient treatment and decrease costs for insurers and providers.
- Many ML projects fail to meet their objectives because automating and operationalizing ML solutions is so challenging

Established as per the section 2(f) of the UGC Act, 1956,

Project Objectives

Primary & Secondary Objectives | Expected Outcome

Objective

Approved by AICTE, New Delhi

- To develop an AI-enabled solution, consisting of a text similarity model based on NLP and decisions based on semantic analysis, to make utilization management a streamlined and collaborative process.
- To deploy solution from the previous study using the cloud service AWS and examines the possibility for automating and operationalizing manual ML operations

Sub-Objective

- Automate PA to improve autodecisions and prioritize clinical evaluations.
- To expedite patient care while increasing member satisfaction.
- Unlocking unstructured data to contextualize permission requests can improve insurers' administrative efficiency and provider experience.
- Monitoring and logging

Established as per the section 2(f) of the UGC Act, 1956,
Approved by AICTE, New Delhi

Project Methodology

Conceptual Framework | Research Design

Conceptual Framework

Process Id & HCPCS Code

LCDs Criterions

Lexicons

Text Analysis Workflow

Project Methodology

Conceptual Framework | Research Design

Conceptual Framework

Approved by AICTE, New Delhi

Figure No. Maturity Model

Established as per the section 2(f) of the UGC Act, 1956,

Resource Specifications

Software | Hardware | Others

Data Resources

Approved by AICTE, New Delhi

Process

Powered Mobility Devices

Guidelines

Local Coverage Determination, which are decisions made by a Medicare Administrative Contractor (MAC).

PA Case

Powered Mobility Devices

Technical Resources

- Python environment with required libraries like NLTK, Pandas, Tensorflow, Scipy etc.
- Semantic Textual Similarity (STS) benchmark data for evaluation.
- Pre-trained model Universal Sentence Encoder
- AWS CLI
- AWS management console

High | Low Level Designs

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Proposed AI-Enabled PA Process

Provider Submits PA Request PA Automation Engine Registered Nurses (RN's) Decision

Automation Engine Process

High | Low Level Designs

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Process Verification

Rules and Lexicon Identification

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi High | Low Level Designs

High | Low Level Designs

AWS MLOps Design Overview

Approved by AICTE, New Delhi

Figure No. Deployment Process with Each AWS Service Connection

Established as per the section 2(f) of the UGC Act, 1956,

Approved by AICTE, New Delhi

Implementation

Demo | Application | Use cases

DEMO

REVA Academy for Corporate Excellence

Testing and Validation

Test Results | Learnings

Testing for TF_IDF Technique

Approved by AICTE, New Delhi

Testing for Universal Sentence Encoder Technique

Rule	Total	Top matching sentence from PA text	Highest	Rule	Total	Top matching sentence from PA text	Highest
nam	no. of		score	nam	no. of		score
е	Matche			е	Matches		
	S			Α	7	he limited in his ability to participate in all	0.72
A	5	he limited in his ability to participate in all	0.491431			mobility related activities of daily living in	
		mobility related activities of daily living in				the home setting	
		the home setting		В	5	he la unable to safely or effectively use cane	0.70
В	6	he la unable to safely or effectively use cane	0.2933			or walker for the distance needed in the	
		or walker for the distance needed in the				home due to fatigue joint pain and	
		home due to fatigue joint pain and numbness				numbness in rle	
С	9	he is unable to self-propel an optimally	0.3841	С	8	he is unable to self-propel an optimally	0.71
		configures manual wheelchair due to upper				configures manual wheelchair due to upper	
		extremity weakness and arthritic hand pain				extremity weakness and arthritic hand pain	

Testing and Validation

Test Results | Learnings

Testing for Universal Sentence Encoder

Approved by AICTE, New Delhi

2022-08-26T20:24:33.032+05:30	loading Universal sentence encoder
2022-08-26T20:24:34.965+05:30	2022-08-26 14:54:34.965469: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could
2022-08-26T20:24:34.965+05:30	2022-08-26 14:54:34.965509: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to …
2022-08-26T20:24:34.965+05:30	2022-08-26 14:54:34.965537: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel dri…
2022-08-26T20:24:34.965+05:30	2022-08-26 14:54:34.965914: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow
2022-08-26T20:24:34.965+05:30	To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-08-26T20:24:39.261+05:30	START RequestId: 50dcd3fd-d3d2-4c98-8218-460ae8962bac Version: \$LATEST
2022-08-26T20:24:39.331+05:30	OpenBLAS WARNING - could not determine the L2 cache size on this system, assuming 256k
2022-08-26T20:24:39.921+05:30	2022-08-26 14:54:39.921591: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could
2022-08-26T20:24:39.921+05:30	2022-08-26 14:54:39.921628: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cud
2022-08-26T20:24:41.376+05:30	loading Universal sentence encoder
2022-08-26T20:24:43.052+05:30	2022-08-26 14:54:43.052533: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could
2022-08-26T20:24:43.052+05:30	2022-08-26 14:54:43.052576: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to …
2022-08-26T20:24:43.052+05:30	2022-08-26 14:54:43.052601: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel dri…
2022-08-26T20:24:43.052+05:30	2022-08-26 14:54:43.052852: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow …
2022-08-26T20:24:43.052+05:30	To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-08-26T20:24:56.038+05:30	done
2022-08-26T20:24:56.257+05:30	processing file:
2022-08-26T20:24:56.257+05:30	performing ocr
2022-08-26T20:24:56.276+05:30	applying process rules
2022-08-26T20:25:04.365+05:30	Put Complete
2022-08-26T20:25:04.369+05:30	END RequestId: 50dcd3fd-d3d2-4c98-8218-460ae8962bac

Figure CloudWatch Logs

Analysis and Results

Key Findings | Insights

Results for TF_IDF Technique

Approved by AICTE, New Delhi

Pearson correlation coefficient = 0.2340 **p-value** = 1.015e⁻¹⁹

Testing for Universal Sentence Encoder Technique

Pearson correlation coefficient = 0.83 **p-value** = 0

Analysis and Results

Key Findings | Insights

Results from CloudWatch Logs

Approved by AICTE, New Delhi

Suggestions and Conclusion

Insights | Next Step | Future Scope

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Insights

- The previous section shows that USE's techniques are superior to TF IDF's.
- Sentence embedding approaches represent whole sentences as vectors. This helps the machine recognize context, intention, and other complexities.
- Fewer denied claims, lower costs, more effective treatments, real information, and more efficient resource use benefit the healthcare business.

Next Step

- As this study only examines a powered wheel chair process, it is necessary to validate this method with a more intricate procedure.
- The second step for insurers is to ask employees about their prior authorization experiences.

Future Scope

- This study motivates us to solve this problem by approaching it as a classification problem.
- Termination Policy API response consistent will not go for loop
- Python Profiling –
 Performance can get increase from less resources

References

Bibliography | Webliography

- [1] T. M. Wickizer and D. Lessler, "Utilization management: Issues, effects, and future prospects," *Annu. Rev. Public Health*, vol. 23, pp. 233–254, 2002, doi: 10.1146/ANNUREV.PUBLHEALTH.23.100901.140529.
- [3] A. Medical Association, "Prior Authorization Physician Survey Update | AMA," 2022, Accessed: Aug. 10, 2022. [Online]. Available: https://www.ama-assn.org/system/files/prior-.
- "Most physicians had little relief from prior authorization as COVID cases soared | American Medical Association." https://www.ama-assn.org/press-center/press-releases/most-physicians-had-little-relief-prior-authorization-covid-cases (accessed Aug. 10, 2022).
- [5] "Electronic Prior Authorizations Impact Quality, Provider Burden." https://healthpayerintelligence.com/news/electronic-prior-authorizations-impact-quality-provider-burden (accessed Aug. 10, 2022).
- [6] M. Kumar, R. Ghani, and Z. S. Mei, "Data mining to predict and prevent errors in health insurance claims processing," *Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.*, pp. 65–73, 2010, doi: 10.1145/1835804.1835816.
- [7] J. Wojtusiak, C. Ngufor, J. Shiver, and R. Ewald, "Rule-based prediction of medical claims' payments: A method and initial application to medicaid data," *Proc. 10th Int. Conf. Mach. Learn. Appl. ICMLA 2011*, vol. 2, pp. 162–167, 2011, doi: 10.1109/ICMLA.2011.126.
- [8] D. Thenmozhi, K. Kannan, C. A.-F. (Working Notes), and undefined 2017, "A text similarity approach for precedence retrieval from legal documents.," ceur-ws.org, Accessed: Aug. 10, 2022. [Online]. Available: http://ceur-ws.org/Vol-2036/T3-9.pdf.

Annexure

Bengaluru, India

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Deployment of AI-Enabled Automated Solution at AWS Cloud ORIGINALITY REPORT 2_% 6% PUBLICATIONS STUDENT PAPERS SIMILARITY INDEX INTERNET SOURCES PRIMARY SOURCES www.oreilly.com arxiv.org 1_% Internet Source Submitted to National College of Ireland 1_% docs.aws.amazon.com 1% Vinay Khedekar, Yun Tian. "Multi-Tenant Big <1% Data Analytics on AWS Cloud Platform", 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), 2020 Publication hub.apitree.com <1% Internet Source Seyedehnafiseh Mirniaharikandehei, Joshua VanOsdol, Morteza Heidari, Gopichandh Danala et al. "Developing a Quantitative Ultrasound Image Feature Analysis Scheme to

Publications | Conferences

Bengaluru, India

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

