Wzory

Informacja zdarzenia A:

$$I(A) = -\log_x P(A)$$

Entropia źródła X ze zdarzeniami A_1, \ldots, A_n :

$$H(X) = \sum_{i=1}^{n} P(A_i)I(A_i)$$

Średnia długość kodu C:

$$I(\mathcal{C}) = \sum_{i=1}^n P(\mathcal{C}_i) \cdot l_i$$

Nierówność Krafta (warunek konieczny jednoznacznej dekodowalności):

$$K(\mathcal{C}) = \sum_{i=1}^{n} 2^{-l_i} \le 1$$

Współczynnik informacji kodu C:

$$\frac{1}{n}\log |\mathcal{C}|$$

2 Kod Huffmana

Znajdź dwa najrzadziej występujące elementy i połącz je w jeden element o prawdopodobieństwie p_1+p_2 . Rozróżnij je 0 lub 1. Powtórz ten krok na liście n-1 długiej aż zostanie jeden element.

Jeśli nie znamy prawdopodobieństw, to możemy drzewo tworzyć dynamicznie, traktując ilość wystąpień jako wagę, które łączymy tworząc poddrzewa.

Kod Shannon-Fano

Dla symboli a_1,\dots,a_n o prawdopodobieństwach $p_1,\dots,p_n,$ ustalmy kody długości $l_n = \lceil -\log p_i \rceil$. Następnie zdefiniujmy zmienne pomocnicze $w_1, \ldots w_n$ iako:

$$w_1 = 0, w_j = \sum_{i=1}^{j-1} 2^{l_j - l_i}$$

Jeżeli $\lceil \log w_i \rceil = l_i$ to j-te słowo kodowe jest binarną reprezentacją w_i . Jeżeli $\lceil \log w_j \rceil < l_j$ to reprezentację uzupełniamy zerami z lewej strony.

4 Kod Tunstalla

Chcemy stworzyć kod na nbitach dla a_1,\dots,a_m symboli o prawdopodobieństwach p_1,\ldots,p_m . Tworzenie kodu Tunstalla polega na iteracyjnym wyborze ze zbioru symbolu o największym prawdopodobieństwie S i łączenie go z wszystkimi innymi symbolami tworząc symbole Sa_m , nadając im prawdopodobieństwa $P \cdot p_m$. Proces ten powtarzamy aż do uzyskania kodu o długości n

5 Kodowanie Eliasa

$$n = \lfloor \log_2(x) \rfloor + 1$$

5.1

$$\gamma(x) = 0^{n-1}(x)_2$$

5.2 δ

$$\delta(x) = \gamma(n) + (x)_2$$

5.3

Na koniec umieszczane jest 0, potem kodowana jest liczba k=x. Potem ten krok jest powtarzany dla k = n - 1 gdzie n to liczba bitów z poprzedniego kroku.

$$\omega(x) = \omega(n-1) + (x)_2 + 0$$

6 Kodowanie Fibonacciego

$$f_0 = f_1 = 1$$

$$f_n = f_{n-1} + f_{n-2} : n \ge 2$$

$$x = \sum_{i=0} a_i \cdot f_i, a_i \in \{0, 1\}$$

Kodowanie arytmetyczne

• d = p - l

• $p = l + d \cdot F(j+1)$

• $l = l + d \cdot F(j)$

• d = p - l

 • Wybieramy takie j, że $F(j) \leq$ $\frac{x-l}{d} < F(j+1)$

 $\bullet \quad p = l + d \cdot F(j+1)$

• $l = l + d \cdot F(i)$

Kodowanie słownikowe

LZ77

$$(o, l, k) = C_{i-o} \cdots C_{i-o+l} k$$

8.2 LZ78

- 1. Szukaj w słowniku najdłuższy prefiks aktualnego okna, jeśli nie znajdziesz
- 2. Dodaj prefiks + znak do słownika.
- 3. Zakoduj symbol jako (i,k), gdzie i to numer prefiksu w słowniku, a k to

$$(i,k) = s(i) + k$$

8.3 LZW

Podobne do LZ78, tylko że zaczynamy ze słownikiem.

$$(i) = s(i)$$

Jeśli napotkasz symbol, którego nie ma w słowniku, ale masz jego prefiks, np.: s(5) = ab?, to ? to pierwsza litera s(5).

$9 ext{ bzip2/BWT}$

Układamy tabelę z dwoma kolumnami. Pierwsza kolumna to słowo posortowane leksykograficznie. Druga kolumna to poprzedni znak. Na podstawie tej tabeli zapisujemy ostatnią kolumnę, i numer wiersza w którym w pierwszej kolumnie znajduje się początek słowa, a w drugiej kolumnie jego koniec.

е	h					
h	0	0	1	2	3	4
11	е	е	h	1	1	0
lo	1	2	0	3	4	1
О	1					

Move To Front

Jest to transformacja zmniejszająca entropię. Zaczynamy od tabeli liter ze słowa posortowanych alfabetycznie. Następnie dla każdej litery ze słowa kodujemy jej pozycję w tabeli, a następnie przesuwamy ją na początek tabeli. W ten sposób hello to 11203

11 PPM

Dla każdego symbolu z tekstu, sprawdzamy jego kontekst, zakładając daną maksymalną długość kontekstu. Kolejno sprawdzamy drzewa kontekstowe dla długości $n,\,n-1,\,\ldots,\,0$ gdzie interesuje nas tylko to ile razy dany symbol występuje w tekście, aż dojdziemy do kontekstu $-1~\mathrm{gdzie}$ zaznaczamy tylko czy symbol występuje czy nie. Następnie na podstawie takiej serii drzew, można zbudować solidny kod, chociażby Huffmana.

			Kontekst	Symbol	Licznik	Kontekst	Symbol	Licznik
			t	ESC	1	th	ESC	1
Symbol t h i	Symbol	Licznik		h	1		i	1
	ESC	1	h	ESC	1	hi	ESC	1
	t	1		i	1		s	1
	h	1	i	ESC	1	is	ESC	1
	i	1		s	2		-	1
	8	2	8	ESC	1	S=	ESC	1
		1		-	1		i	1
			-	ESC	1	-i	ESC	1
				i	1 1		8	1 1

Kody Hamminga

Dla długości kodu $n=2^m-1$, mają liczbę bitów informacji k=n-m. Macierz parzystości, powstaje poprzez zapis binarnych reprezentacji liczb $1, \dots, n$ w postaci kolumn.

$$H_H(3) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Aby stworzyć macierz generującą, musimy potraktować ${\cal H}_H$ jako macierz równania, gdzie pierwsze k wierszy to macierz identyczności, a pozostałe to przekształcone równania z macierzy parzystości.

$$G_H(3) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$