Assignment 2

The *binary choice* and its application on an example will be examined in this analysis. In statistics, the (binary) logistic model (or logit model) is a statistical model that models the probability of one event (out of two alternatives) taking place by having the log-odds (the logarithm of the odds) for the event be a linear combination of one or more independent variables ("predictors"). The CarBin data will be used, which are in wide format, which contains the following information:

- 1. Choice: choice of a vehicle among 2 propositions
- 2. College: college education
- 3. Hsg2: size of household greater than 2
- 4. Coml5: commute lower than 5 miles a day
- 5. Pricez: price divided by log
- 6. Typez: body type, one of regcar (regular car), sportuv (sport utility vehicle), sportcar, stwagon (station wagon), truck, van, for each alternative z (1 or 2)
- 7. rangez: hundreds of miles vehicle can travel between refuelings/rechargings
- 8. accelz: acceleration, tens of seconds required to reach 30 mph from stop
- 9. speedz: highest attainable speed in hundreds of mph
- 10. pollutez: tailpipe emissions as fraction of those for new gas vehicle
- 11. sizez: 0 for a mini, 1 for a subcompact, 2 for a compact and 3 for a mid–size or large vehicle
- 12. costz: cost per mile of travel (tens of cents): home recharging for electric
- 13. vehicle, station refueling otherwise.

What we can see is that the data frame is unlabeled because our options are supplied as numbers 1 and 2 without any explanation as to what these two numbers mean. Following that, we'll estimate a model containing demographics and all alternative-specific characteristics having generic parameters. We used the price, range, speed, cost, station, pollution, accel, and some variable dummies we constructed as generic parameters in the model (typetvan, typestwagon, typetruck, typesportuv, size0, size1, size2) and as alternative specific parameters, the hsg2, coml5, and college variables.

Coefficients	Estimate	Pr(> z)
Intercept	-1.35122429	5.11E-10
Price	-0.19040515	0.0076982
Range	0.00439735	4.44E-16
Speed	0.00452134	0.0385467
Cost	-0.05386259	0.0054712
Accel	-0.05999582	0.0350559
Typewagon	-0.39971949	0.0326645
Typetruck	-0.47815884	0.0005424
Hsg2:2	0.61173305	5.33E-05

Table 1.Formula 1 -Coefficient estimation

Table 1 shows the statistically significant coefficients and shows which have a negative association and which have a positive link depending on their sign. Choice 1 has been used as a reference level in this case. Then a model with demographics and some alternative-specific characteristics with alternative-specific parameters will be estimated.

Coefficients	Estimate	Pr (> z)
Price	-0.18648958	0.009235
Range	0.00435723	1.11E-15
Cost	-0.05363336	0.0054487
Typestwagon	-0.40925557	0.02795
Typetruck	-0.48328019	0.0004925
Hsg2:2	0.60323945	6.71E-05
Accel:2	-0.13088251	0.0062611

Table 2.Formula 2-Coefficient estimation

Table 2 provides the statistically significant rates and illustrates which have a negative and which have a positive association based on their sign, with Choice 1 serving as a reference level. However, there are some distinctions between this model and the previous one. Some generic characteristics in formula 2 have been relocated to alternative specifics. These characteristics are speed, pollution, and acceleration.

Then we'll compare Model 2 to Model 1. This will be accomplished through the use of the Likelihood Ratio Test.

Model	LogLik	Chisq	Pr(Chisq)
1	-667.79		
2	-666.97	1.6536	< 2.2e-16

Table 3.Likelihood Ratio Test

The logL of model 1 is -667.79 and the logL of model 2 is -666.97. The test statistic is twice the difference in lnL: 2*(667.79-666.97) =1.6536. So therefore we compare 1.6536 with the critical value of chi-squared. The null hypothesis is that the model 1 is the "true" model, with a large test statistic we reject null hypothesis. In this case we reject null hypothesis because P-value< 2.2e-16. Is not the expected outcome because the data is unlabeled so it is assumed that no alternative specific parameters need to be created.

Attribute	WTP	
Intercept	-7.309545	
Range	0.02288451	
Speed	0.02377382	
Cost	-0.2815401	
Station	1.64237	
Pollute	0.7731793	
Accel	-0.3160867	
Typevan	0.2062025	
Typestwagon	-1.970342	
Ttypetruck	-2.629901	
Typesportuv	-1.529233	
Typesportcar	-2.494176	
Size0	-1.732076	
Size1	-1.275185	
Size2	0.007772812	

Table 4 .WTP for each attribute

The Willingness To-Pay for each attribute is shown in table 4. Willingness to pay, sometimes abbreviated as WTP, is the maximum price a customer is willing to pay for a product or service. When the value is positive, the respondent is willing to pay the amount indicated for each attribute, however when the price is negative is the opposite.

Minimum	Median	Mean	Maximum
-3.2466	-0.8214	-0.856	-0.1522

Table 5.Welfare Effect

What is shown in table 5 is those with the shift in pollute and price, it is as if -0.8560 (mean) was taken from the respondents.

Code

```
library("mlogit")
library("dfidx")
library("Formula")
library("lmtest")
car= read.csv("CarBin.csv", header=TRUE,sep = ';')
carbin<-dfidx(car, varying = 5:22,sep = ",
        choice = "choice",
        idnames=c("chid","alt")
        )
table(carbin$size)
carbin$size0=ifelse(carbin$size==0,1,0)
carbin$size1=ifelse(carbin$size==1,1,0)
carbin$size2=ifelse(carbin$size==2,1,0)
carbin$size3=ifelse(carbin$size==3,1,0)
carbin$typeregcar=ifelse(carbin$type=="regcar",1,0)
carbin$typesportuv=ifelse(carbin$type=="sportuv",1,0)
carbin$typestwagon=ifelse(carbin$type=="stwagon",1,0)
carbin$typetruck=ifelse(carbin$type=="truck",1,0)
carbin$typetvan=ifelse(carbin$type=="van",1,0)
carbin$typesportcar=ifelse(carbin$type=="sportcar",1,0)
myformula1=Formula(choice ~ price+range+speed+cost+station+pollute+accel
           +typetvan+typestwagon+typetruck+typesportuv+size0+size1+typesportcar
           +size2|hsg2+coml5+college|0)
myformula2=Formula(choice~price+range+cost+station+typesportcar
```

```
+typetvan+typestwagon+typetruck+typesportuv+size0+size1
           +size2|hsg2+coml5+college+speed+pollute+accel)
ml.tm1=mlogit(myformula1,carbin,reflevel ="1")
ml.tm2=mlogit(myformula2,carbin,reflevel ="1")
ml.tm1
summary(ml.tm1)
summary(ml.tm2)
lrtest(ml.tm2,ml.tm1)
-coef(ml.tm1)[1]/coef(ml.tm1)[2]
-coef(ml.tm1)[3]/coef(ml.tm1)[2]
-coef(ml.tm1)[4]/coef(ml.tm1)[2]
-coef(ml.tm1)[5]/coef(ml.tm1)[2]
-coef(ml.tm1)[6]/coef(ml.tm1)[2]
-coef(ml.tm1)[7]/coef(ml.tm1)[2]
-coef(ml.tm1)[8]/coef(ml.tm1)[2]
-coef(ml.tm1)[9]/coef(ml.tm1)[2]
-coef(ml.tm1)[10]/coef(ml.tm1)[2]
-coef(ml.tm1)[11]/coef(ml.tm1)[2]
-coef(ml.tm1)[12]/coef(ml.tm1)[2]
-coef(ml.tm1)[13]/coef(ml.tm1)[2]
-coef(ml.tm1)[14]/coef(ml.tm1)[2]
-coef(ml.tm1)[15]/coef(ml.tm1)[2]
-coef(ml.tm1)[16]/coef(ml.tm1)[2]
carbin2=carbin
carbin2$pollute=carbin$pollute*0.8
```

carbin2\$price=carbin2\$price*1.2

```
ivbefore=logsum(ml.tm1)
ivafter=logsum(ml.tm1,data=carbin2)
surplus=-(ivafter-ivbefore)/coef(ml.tm1)["price"]
summary(surplus)
```