Statistical Learning: Least Squares

Jesse Gronsbell

Department of Statistical Sciences, University of Toronto

Part I: Least Squares Estimation

Now matter what you call it, this is what you do

Goal of statistical learning

Use data to estimate a statistical model to capture the behavior of a process so that future **predictions** can be made

Goal of statistical learning

Use data to estimate a statistical model to capture the behavior of a process so that future **predictions** can be made

Goal of statistical learning

Use data to estimate a statistical model to capture the behavior of a process so that future **predictions** can be made

1. **Process**: The problem you are interested in modeling

ex. Can we predict ice cream sales from daily temperature?

- Process: The problem you are interested in modeling
 ex. Can we predict ice cream sales from daily temperature?
- 2. <u>Data</u>: Samples of both the outcome(s) and the covariate(s)

ex. samples of (x,y) = (temp, sales) from an ice cream truck in Summer 2021

- Process: The problem you are interested in modeling
 ex. Can we predict ice cream sales from daily temperature?
- 2. <u>Data</u>: Samples of both the outcome(s) and the covariate(s)ex. samples of (x,y) = (temp, sales) from an ice cream truck in Summer 2021
- 3. Model: A function that takes in an x and outputs a value of y

ex. A linear model: expected sales = 10 + 5*temp

sales

- Process: The problem you are interested in modeling
 ex. Can we predict ice cream sales from daily temperature?
- 2. <u>Data</u>: Samples of both the outcome(s) and the covariate(s)ex. samples of (x,y) = (temp, sales) from an ice cream truck in Summer 2021
- 3. <u>Model</u>: A function that takes in an x and outputs a value of yex. A linear model: expected sales = 10 + 5*temp

We'll focus on different types of models and how to estimate them!

But first... the data matrix in mathematical notation

But first... the data matrix in mathematical notation

But first... the data matrix in mathematical notation

Visualizing the ice cream data matrix

Visualizing the ice cream data matrix

Looking ahead: Getting images into a data matrix

Back to the ice cream example!

Model estimation: finding reasonable parameter values

<u>Problem</u>: Use the data on sales and temperature to estimate the unknown parameters m and b in the linear model, expected sales = m*temperature + b

Model estimation: finding reasonable parameter values

<u>Problem</u>: Use the data on sales and temperature to estimate the unknown parameters m and b in the linear model, expected sales = m*temperature + b

One solution: Minimize the overall distance between the data and the linear model (i.e. *the error*)

Solution: Least Squares (LS) estimation

Find **m** and **b** so that the sum of the errors is as small as possible:

$$\sum_{i=1}^{n} [y_i - (mx_i + b)]^2 = [y_1 - (mx_1 + b)]^2 + [y_2 - (mx_2 + b)]^2 + ... + [y_n - (mx_n + b)]^2$$

But optimization isn't always easy!

There are simple scenarios:)

And others not so much:(

Next time

• How do we actually compute or estimate m and b?

More on least squares

• Linear and logistic regression