11.	4. A point starts from rest and moves along a circular path with a constant tangential acceleration. After one rotation, the ratio of its radial acceleration to its tangential acceleration will be equal to			
	(a) 1	(b) 2π	(c) $\frac{1}{2}\pi$	(d) 4π
12.	2. A particle is moving on a circular path of 10 m radius. At any instant of time, its speed is 5 ms ⁻¹ and the speed is increasing at a rate of 2 ms ⁻² . At this instant, the magnitude of the net acceleration will be (a) 3.2 ms ⁻² (b) 2 ms ⁻² (c) 2.5 ms ⁻² (d) 4.3 ms ⁻²			
13. A point on the rim of a flywheel has a peripheral speed of 10 ms ⁻¹ at an instant when it is decreasing at the rate of 60 ms ⁻² . If the magnitude of the total acceleration of the point at this instant is 100 ms ⁻² , the radius of the flywheel is (a) 1.25 m (b) 12.5 m (c) 25 m (d) 2.5 m				

angular velocity $\omega = a - bt$, where a and b are positive constants and *t* is time. The magnitude of the acceleration of the particle after time $\frac{2a}{h}$ is (a) $\frac{a}{a}$ (b) a^2R (c) $R(a^2 + b)$ (d) $R\sqrt{a^4 + b^2}$ **15.** The distance of a particle moving on a circle of radius 12 m

14. A particle moves in a circular path of radius R with an

measured from a fixed point on the circle is given by $s = 2t^3$ (in metre). The ratio of its tangential to centripetal acceleration at t = 2s is

(a) 1:1 (b) 1:2 (c) 2:1 (d) 3:1 **16.** A body is moving on a circle of radius 80 m with a speed

(a) 45°

(c) 135°

20 m/s which is decreasing at the rate 5 ms^{-2} at an instant. The angle made by its acceleration with its velocity is

(b) 90°

(d) 0°