

INTERNATIONAL QUALIFICATIONS

Please write clearly in	Please write clearly in block capitals.				
Centre number	Candidate number				
Surname	·				
Forename(s)					
Candidate signature					
	I declare this is my own work.				

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM05) Unit FM2 Mechanics

Thursday 13 June 2024 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- The **final** answer to questions requiring the use of calculators should be given to two significant figures, unless stated otherwise.
- Unless stated otherwise, the acceleration due to gravity, g, should be taken as 9.8 m s⁻²

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
TOTAL		

		Answer all questions in the spaces provided.	
1		A ball of mass 0.3 kg falls vertically from rest.	
		It hits a horizontal surface and rebounds to a height of 0.4 metres above the s	urface.
1	(a)	Calculate the speed at which the ball leaves the horizontal surface.	[2 marks]
		Answer	
1	(b)	The impulse exerted on the ball by the surface has magnitude 3.24 N s	
		Find the coefficient of restitution between the ball and the surface.	[4 marks]
		Answer	

2	A light elastic string has modulus of elasticity 300 newtons and natural leng	th 2 metres.
	One end of the string is attached to a fixed point.	
	The other end of the string is attached to a particle of mass 6 kg	
	The particle is released from rest 2.5 metres vertically below the fixed point	
2 (a)	Find the magnitude and direction of the initial acceleration of the particle.	[3 marks]
	Magnitude	
	Direction	
2 (b)	Direction Use an energy method to find the maximum speed of the particle in the subs motion.	
2 (b)	Use an energy method to find the maximum speed of the particle in the subs	equent
2 (b)	Use an energy method to find the maximum speed of the particle in the subs	equent
2 (b)	Use an energy method to find the maximum speed of the particle in the subs	equent
2 (b)	Use an energy method to find the maximum speed of the particle in the subs	equent
2 (b)	Use an energy method to find the maximum speed of the particle in the subs	equent
2 (b)	Use an energy method to find the maximum speed of the particle in the subs	equent
2 (b)	Use an energy method to find the maximum speed of the particle in the subs	equent

Turn over ▶

Do not write outside the box

3		A particle of mass 2 kg is initially at rest at the point O on a rough horizontal surface.		
		A horizontal force of magnitude F newtons and constant direction starts to act particle.	on the	
		When the displacement of the particle from $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
		$F = 10e^{-0.1x}$		
		The particle passes through the point A which is 5 metres from O		
3	(a)	Find the work done by the force F as the particle moves from $$ O to the point $$ I	4 [3 marks]	
		Answer		
3	(b)	The coefficient of friction between the particle and the surface is 0.2		
3	(b) (i)	Find the speed of the particle at A	[3 marks]	
		Answer		

3	(b) (ii)	ii) The particle comes to rest when the displacement from O is d metres.		
		Use a change of sign numerical method to verify that $d = 23$ correct to the nearest integer.		
			[4 marks]	

10

Turn over for the next question

4		A particle of mass 2 kg moves on a straight horizontal line.	
		As the particle moves it experiences a resistance force of magnitude $(v^2 - 9)$ where v m s ⁻¹ is the velocity of the particle.	newtons,
		At the point O the particle has a velocity of 10 m s ⁻¹	
4	(a)	Find the velocity of the particle when its displacement from $\ensuremath{\mathcal{O}}$ is x metres.	
		Give your answer in the form $v = \sqrt{a + be^{-x}}$ where a and b are integers.	[6 marks]
		Answer	

4 (b) On the axes below sketch a graph to show how the velocity of the particle varies with its displacement from *O*

[2 marks]

4 (c) On the axes below sketch a graph to show how the acceleration of the particle varies with its displacement from *O*

[3 marks]

11

Turn over ▶

5 A plane is inclined at an angle of 30° to the horizontal.

A ball is projected up the plane from a point X on the plane.

The ball hits the plane for the first time at a point Y as shown in the diagram.

The line XY is a line of greatest slope of the plane.

Give your values to the nearest integer.

The distance between the points X and Y is 4 metres.

The initial velocity of the ball is 10 m s⁻¹ at an angle $\,\alpha^{\circ}\,$ above the plane, where $\,\alpha$ < 60

By using the components of the ball's motion parallel and perpendicular to the plane, find the possible values of $\ \alpha$

[8 marks]	•	·
		-

Do not write outside the box Answer ____

Turn over ▶

8

6		I wo spheres A and B are moving on a smooth norizontal surface.	
		The two spheres collide.	
		Sphere A has mass 2 kg and velocity $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ m s ⁻¹ before the collision.	
		Sphere <i>B</i> has mass 3 kg and velocity $\begin{bmatrix} -1 \\ 5 \end{bmatrix}$ m s ⁻¹ before the collision.	
		After the collision sphere A has velocity $\begin{bmatrix} 0.4 \\ 3 \end{bmatrix}$ m s ⁻¹	
6	(a)	Find the magnitude of the impulse exerted on <i>A</i> during the collision.	[3 marks]
		Answer	
6	(b)	Find the velocity of sphere <i>B</i> after the collision.	[3 marks]

		l I	
			Do not write outside the box
		Answer	
6	(c)	Explain why the vector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is parallel to the line of centres during the collision. [2 marks]	
6	(d)	Find the coefficient of restitution between the two spheres. [2 marks]	

Answer

Turn over ▶

10

Two springs are attached to a sphere of mass *m* kg which rests on a smooth horizontal surface.

The other end of one spring is attached to the fixed point *A* and the other end of the second string is attached to a fixed point *B*The points *A* and *B* are a distance 3*a* metres apart.

Both springs have natural length *a* metres.

The spring attached to *A* has stiffness *k* N m⁻¹ and the spring attached to *B* has stiffness 2*k* N m⁻¹

The diagram shows the springs and the sphere.

A B

Show that the extension of the spring attached to *A* is $\frac{2a}{3}$ metres when the system is in equilibrium.

[3 marks]

1	[3 marks]

7	(b)	The sphere is pulled a distance of $\frac{a}{10}$ metres from the equilibrium position to and released from rest.	wards <i>B</i>
7	(b) (i)	Show that the sphere moves with simple harmonic motion.	[5 marks]
7	(b) (ii)	The period of the motion is π seconds.	
		Express k in terms of m	[2 marks]
		Answer	
		Question 7 continues on the next page	

7	(b) (iii)	The point C is $\frac{a}{20}$ metres from the equilibrium position.
		Hence, find the speed of the sphere at <i>C</i>
		Give your answer in an exact form in terms of $\it a$ [3 marks]
		Answer

Do not write outside the box

	Answer		
Т	urn over for th	e next question	

Turn over ▶

10
A smooth hemisphere with centre O has its base fixed to a horizontal surface.
A particle is released from rest at a point <i>A</i> on the curved surface of the hemisphere.
The particle passes through the point B and leaves the hemisphere at the point C
At $\it B$ the angle between the radius $\it OB$ and the vertical is $\it heta^\circ$
At B the magnitude of the normal reaction force exerted on the particle is half of the maximum experienced by the particle as it moves from A to C
At C the angle between the radius OC and the horizontal is 30°
The diagram shows the hemisphere and the points A , B and C
Find $\cos heta^\circ$
Give your answer as a fraction. [10 marks]

Do not write outside the box

	0
Answer	-
END OF QUESTIONS	
LITE OF WOLUTION	1

10

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqa.com
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

