Computer Architecture and Operating Systems

First year, Computer Science

Prof. dr. Henri Luchian

Lect. dr. Vlad Rădulescu

- examination
 - two written tests course
 - one for each half of the semester
 - one practical test laboratory
 - assembly language
- in order to be accepted to the written tests
 - be present at the laboratory classes
 - any student may be absent at most twice during each half of the semester

Contents: First Half of the Semester

- I. Introduction
- II. Combinational circuits and Boole functions
- III. Sequential circuits and automata
- IV. Internal representations
- V. Computer architecture and organization

I. Introduction

I.1. Evolution

How Do We Define Computing?

- what operations can be performed?
- evolution
 - abacus: addition
 - toothed wheels (Leibniz, Pascal): addition, multiplication
 - Babbage: external instructions, branch computing
 - von Neumann: memorized program; execution as a sequence of instructions; memory hierarchies
 - parallel computing, quantum computing, etc.

Universal Computing Machines

- a universal computing machine can behave like any particular computing machine
 - so it can solve any problem that a particular computing machine can solve
- example the computer
 - depending on the program it executes, it solves problems like: matrix computation, graphic design, desktop publishing, etc.

Short History (1)

- positional writing of numbers
 - Indians, Arabs
- Boole algebra
 - George Boole, 1854
- the incompleteness theorem
 - Kurt Gödel, 1935
- the link between Boole algebra and circuits
 - Claude Shannon, 1938

Short History (2)

- The "Neumannian" computer
 - John von Neumann, 1946
- the transistor
 - Shockley, Brittain, Bardeen, 1947
- integrated circuits

I.2. Empirical Laws

Empirical Laws

- in any field of science, the laws depend (one way or another) on experiments or on real world observations
- reproductibility leads to the idea of empirical laws: they are true in most cases, according to observations

Empirical Laws in Computer Science

- the "90:10" law (Donald Knuth)
 - 90% of the execution time of a program is used for 10% of the instructions
- Amdahl's law
 - highest efficiency in improving a system (either concrete or abstract) is achieved when the most intensively used subsystem is optimized
- locality laws spatial, temporal

Amdahl's Law (1)

- consider a system (hardware or software) and one of its components
- that component works a certain percentage f_a of the system's total work time
- and it is improved, such that if gets to work a times faster than before
- how much times faster does the system as a whole become?

Amdahl's Law (2)

$$A(a, f_a) = \frac{1}{(1 - f_a) + \frac{f_a}{a}}$$

- highest increase of the overall speed
 - better improvement of the component (a)
 - improving the components with the highest weight in the system's work time (f_a)
 - i.e., the most intensely used ones

Temporal Locality

- if a memory location is accessed at a certain moment, it will very likely be accessed again in the near future
- examples
 - variables are used repeatedly in a program
 - program loops instructions are repeated

Spatial Locality

- if a memory location is accessed at a certain moment, the neighboring locations will very likely be accessed again in the near future
- examples
 - walking through arrays
 - the execution of instruction sequences their codes are stored at consecutive memory addresses

Physical Order and Logical Order

- instructions to be executed are stored in memory in the physical order
- they are read from memory and executed
 - the rule: in the same order they are memorized
 - exception: jumping over several instructions
- the result is the logical order of instructions
 - may differ from one run to another
 - an instruction can be executed 0, 1, 2, ... times

II. Combinational Circuits and Boole Functions

Analogical Signal vs. Digital Signal

- analogical signal continuous
 - if it can have values a and b, then it can also have any value in [a,b]
- digital signal discrete
 - can only have a few distinct levels (values)
 - computer 2-level digital signal (0 and 1)
 - there are also other computing systems apart from PCs

Types of Circuits

- combinational circuits
 - the output values depend only on the input values
 - the same input values always yield the same output values
- sequential circuits
 - beside the inputs, the output values also depend on the state of the circuit
 - which evolves through time

Truth tables

- how to describe how a combinational circuit works?
- apply each possible combination of input values
- and observe the output values for each such combination
- together, these relationships (input-output) make a truth table

Circuits and Boole Functions

- each truth table has a corresponding Boole function
 - so each combinational circuit has a corresponding Boole function

	inputs		outputs					
\mathbf{I}_1	•••	I_n	O_1	•••	O_{m}			
0	00	0	?	??	?			
0	00	1	?	??	?			
			•••	•••	•••			
1	11	1	?	??	?			

II.1. Boole Functions

Algebraic Structure

- a non-void set B, containing at least two elements: $a, b, a \neq b$
- the set of binary operations { + , · }
- one unary operation { }
- closure: $a+b \in B$ $a \cdot b \in B$ $\bar{a} \in B$

Boole Functions

- $B = \{0,1\}$
- $f: B^n \to B^m$
 - function: *n* variables, *m* values
 - circuit: *n* inputs, *m* outputs
- there are $(2^m)^{2^n}$ such distinct functions
 - -n = 1, m = 1: 4 unary functions of one value
 - -n = 2, m = 1: 16 2-variable Boole functions of one value

Truth Tables

a	$f_0(a)$	$f_1(a)$	$f_2(a)$	$f_3(a)$
0	0	0	1	1
1	0	1	0	1
	= 0	= a	$=\bar{a}$	= 1

a	b	$ F_0 $	F_1	F_2	F ₃	F_4	F ₅	F_6	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	$ F_{15} $
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Axioms and Theorems in Boole Algebra (1)

identity	X + 0 = X	$X \cdot 1 = X$
constants	X + 1 = 1	$\mathbf{X} \cdot 0 = 0$
idempotence	X + X = X	$X \cdot X = X$
involution	$\overline{\overline{X}} = X$	
complementarity	$X + \overline{X} = 1$	$X \cdot \overline{X} = 0$
commutativity	X + Y = Y + X	$X \cdot Y = Y \cdot X$
associativity	(X + Y) + Z = X + (Y + Z)	$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$
distributivity	$X \cdot (Y+Z) = (X \cdot Y) + (X \cdot Z)$	$X+(Y\cdot Z)=(X+Y)\cdot (X+Z)$

Axioms and Theorems in Boole Algebra (2)

unification	$X \cdot Y + X \cdot \overline{Y} = X$	$(X+Y)\cdot(X+\overline{Y})=X$				
absorption	$(X + X \cdot Y = X)$ $(X + \overline{Y}) \cdot Y = X \cdot Y$	$ (X \cdot (X + Y) = X (X \cdot \overline{Y}) + Y = X + Y $				
De Morgan laws	$\overline{X+Y+\ldots} = \overline{X} \cdot \overline{Y} \cdot \ldots$	$\overline{X \cdot Y \cdot \dots} = \overline{X} + \overline{Y} + \dots$				
generalization (duality) $\overline{f(X_1,,X_n,0,1,+,\cdot)} = f(\overline{X_1},,\overline{X_n},1,0,\cdot,+)$						

The Computer - Elementary Operations

- in today's computers, elementary operations are the operations of Boole logic
 - which simulate (among others) the elementary arithmetic operations in base 2
- a combinational circuit actually implements a Boole function
 - how do we get the expression of the Boole function from the truth table?

Normal Forms

- disjunctive normal form (DNF)
 - for each row that yields value 1 on output –
 conjunction term (·)
 - contains each variable: negated if the variable is 0 on that row, not negated if the variable is 1
 - these terms connected through disjunction (+)
- conjunctive normal form (CNF): dual
- example: $F_9(x, y) = \overline{x} \cdot \overline{y} + x \cdot y = (x + \overline{y}) \cdot (\overline{x} + y)$

II.2. Logic Diagrams

The Alphabet of Logic Diagrams

- logic gates are the implementations of some Boole functions
- so the behavior of each gate can be described by a truth table
 - corresponding to the Boole function associated with the gate
- elementary gates: AND, OR, NOT
- other gates: NAND, NOR, XOR, NXOR

The Alphabet of Logic Diagrams

A	NOT
0	1
1	0

A	В	AND	OR	NAND	NOR	XOR	NXOR
0	0	0	0	1	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	1	0	0	0	1

Gate Symbols

associative binary operations can be extended operations with a finite number of operands

Minimal Set of Generators

- set of generators set of gate types which can implement any Boole function
 - minimal set of generators set of generators
 with the minimal number of gate types
- it is possible with 3 (NOT, AND, OR)
 - normal forms (disjunctive, conjunctive)
 - also possible with (NOT + AND, NOT + OR)
 - minimal 1 (NAND, NOR)

Homework

- prove that the following sets of gate types are sets of generators
 - -NOT + AND
 - -NOT + OR
 - NAND
 - NOR

II.3. Circuit Implementation Through Boole Functions

Defining Boole Functions

- can be defined in several ways
 - truth table
 - expressions variables and logical operations
 - graphic representation
 - sigma-notation (Σ)
- in the end, we need to have a Boole expression
 - which allows a gate implementation

Σ -notation(1)

- example "majority of k inputs"
 - function value: 1 if most input variables have value 1, 0 otherwise
 - for 3 variables: $f(x_1, x_2, x_3) = \Sigma(3, 5, 6, 7)$
- Σ-notation corresponds to the disjunctive normal form
 - each number in the brackets is a conjunction term
 - $-\Sigma$ denotes the disjunction of terms

Σ -notation(2)

- how many variables are necessary?
 - the lowest power of 2 that is equal to or greater than the highest number in the brackets
 - for our example: $2^2 < 7 < 2^3 \rightarrow n = 3$
- the term corresponding to a number
 - all variables, connected through conjunction
 - each variable is negated if assigned to a bit with value 0; not negated for 1
 - example: $3_{(10)} = 011_{(2)} \rightarrow \overline{x}_1 \cdot x_2 \cdot x_3$

Minimization (1)

• the disjunctive normal form of the function majority of 3

$$f(A,B,C) = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

- large number of elementary gates
- a simpler equivalent expression (the same
 Boole function) would make the circuit
 - faster
 - cheaper
 - more reliable

Minimization (2)

- how to get a simpler expression from the disjunctive normal form?
 - equivalent rewriting
 - use the laws and axioms of Boole algebra
 - perfect induction
 - Veitch-Karnaugh method
 - Quine-McCluskey method
 - hybridization (combine the above methods)

Minimization - Algebraic Rewriting

same example

$$f = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$
(idempotence)
$$= \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C + A \cdot B \cdot C + A \cdot B \cdot C$$
(unification)
$$= B \cdot C + A \cdot C + A \cdot B$$

difficult for complex expressions

Homework

- find the disjunctive normal form and study minimization through algebraic rewriting for the function "odd"
 - the function value is: 1 for an odd number of inputs with value 1; 0 otherwise