FINAL PROJECT SUBMISSION

Michael Achoki

1. BUSINESS UNDERSTANDING

Problem Statement

Syriatel Telecommunications company is a Syria Based tele-company that is facing a problem of losing customers, this action is known as churning. The company is conscerned by this and would like to know if the rate of churning would increase on the future. Not only does this project help them know that but also know how to better their relationship with their users to maintain a high rate of retention and even a high attraction of new clients.

Objectives

- 1. Find out why customers are churning.
- 2. Develop a model that will accurately predict future rate of churning.
- 3. Find a probable solution to reduce churning.

Success Metric

- 1. Develop a roburts prediciton model with a recall score of 0.7 .80
- 2. Be able to identify features that significantly contribute to churning.
- 3. Provide possible solutions to the telecom company that will help reduce churning.

2. DATA UNDERSTANDING

Here's a summary of the columns:

- state: The state of the customer.
- account length: The length of the account in days or months.
- area code: The area code of the customer's phone number.
- phone number: The phone number of the customer.
- international plan: Whether the customer has an international plan or not.
- voice mail plan: Whether the customer has a voicemail plan or not.
- number vmail messages: The number of voicemail messages the customer has.
- total day minutes: Total minutes of day calls.
- total day calls: Total number of day calls.
- total day charge: Total charge for the day calls.
- total eve minutes: Total minutes of evening calls.
- total eve calls: Total number of evening calls.

- total eve charge: Total charge for the evening calls.
- total night minutes: Total minutes of night calls.
- total night calls: Total number of night calls.
- total night charge: Total charge for the night calls.
- total intl minutes: Total minutes of international calls.
- total intl calls: Total number of international calls.
- total intl charge: Total charge for the international calls.
- customer service calls: Number of times the customer called customer service.
- churn: Whether the customer churned or not (True/False).

```
# Importing necessary modules and packages
#for data analysis and manipulation
import pandas as pd
import numpy as np
#For plotting
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
# Set visualization style
sns.set style("darkgrid")
# Display plots in the notebook
%matplotlib inline
#Modelling and supervised learning
from sklearn.preprocessing import MinMaxScaler
from sklearn.model selection import train test split, cross val score
from sklearn.metrics import accuracy_score, f1_score, recall_score,
precision_score, roc_curve, roc_auc_score, classification_report,
confusion matrix
from sklearn.linear model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
from sklearn.datasets import make classification
from imblearn.over sampling import SMOTE, SMOTENC
#Model tuning
from sklearn.model selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
# Filter warnings
import warnings
warnings.filterwarnings("ignore")
```

```
#loading data
data = pd.read csv("telecom.csv")
data.head()
  state
         account length area code phone number international plan \
0
     KS
                     128
                                 415
                                          382-4657
1
     0H
                     107
                                 415
                                          371-7191
                                                                     no
2
     NJ
                     137
                                 415
                                          358-1921
                                                                     no
3
     0H
                      84
                                 408
                                          375-9999
                                                                    yes
4
     0K
                       75
                                 415
                                          330-6626
                                                                    yes
  voice mail plan number vmail messages total day minutes total day
calls \
                                         25
                                                          265.1
               yes
110
                                                          161.6
                                         26
1
               yes
123
                                          0
                                                          243.4
2
                no
114
3
                                                          299.4
                no
71
                                                          166.7
4
                no
113
   total day charge
                            total eve calls total eve charge \
0
               45.07
                                          99
                                                          16.78
1
               27.47
                                         103
                                                          16.62
                       . . .
2
               41.38
                                         110
                                                          10.30
                       . . .
3
               50.90
                                          88
                                                           5.26
4
               28.34
                                         122
                                                          12.61
   total night minutes
                          total night calls total night charge \
0
                  244.7
                                          91
                                                             11.01
1
                  254.4
                                         103
                                                             11.45
2
                                                              7.32
                  162.6
                                         104
3
                  196.9
                                          89
                                                              8.86
4
                  186.9
                                         121
                                                              8.41
   total intl minutes
                        total intl calls
                                            total intl charge \
0
                  10.0
                                                          2.70
                                         3
1
                  13.7
                                                          3.70
2
                  12.2
                                         5
                                                          3.29
3
                                         7
                   6.6
                                                          1.78
4
                  10.1
                                         3
                                                          2.73
   customer service calls
                             churn
0
                             False
                          1
1
                          1
                             False
2
                          0
                             False
3
                          2
                             False
```

```
4
                           False
[5 rows x 21 columns]
#General stats of the data
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3333 entries, 0 to 3332
Data columns (total 21 columns):
     Column
                              Non-Null Count
                                              Dtype
     -----
- - -
 0
                             3333 non-null
                                              object
     state
 1
     account length
                              3333 non-null
                                              int64
 2
     area code
                             3333 non-null
                                              int64
 3
     phone number
                             3333 non-null
                                              object
 4
     international plan
                             3333 non-null
                                              object
 5
                                              object
     voice mail plan
                             3333 non-null
                                              int64
 6
     number vmail messages
                             3333 non-null
 7
     total day minutes
                             3333 non-null
                                              float64
 8
     total day calls
                             3333 non-null
                                              int64
 9
                                              float64
     total day charge
                             3333 non-null
                                              float64
    total eve minutes
                             3333 non-null
 10
 11
    total eve calls
                             3333 non-null
                                              int64
 12 total eve charge
                             3333 non-null
                                              float64
 13
    total night minutes
                             3333 non-null
                                              float64
 14 total night calls
                             3333 non-null
                                              int64
 15
    total night charge
                             3333 non-null
                                              float64
    total intl minutes
                             3333 non-null
                                              float64
 16
    total intl calls
 17
                             3333 non-null
                                              int64
 18
    total intl charge
                             3333 non-null
                                              float64
 19
    customer service calls
                             3333 non-null
                                              int64
                                              bool
 20
                             3333 non-null
     churn
dtypes: bool(1), float64(8), int64(8), object(4)
memory usage: 524.2+ KB
```

From the above result we can see we have one Boolean column = churning, four object data type column = state, international plan, voice mail plan and phone number and the rest as interger types of data either int64 or float64

```
data.describe()
       account length
                        area code
                                    number vmail messages total day
minutes \
          3333.000000 3333.000000
count
                                              3333.000000
3333.000000
                        437.182418
                                                 8.099010
           101.064806
mean
179,775098
                                                13.688365
std
            39.822106
                        42.371290
54.467389
```

min	1.000000	408.000000	0.00000	
0.000000 25%	74.000000	408.000000	0.00000	
143.700000 50%	101.000000	415.000000	0.000000	
179.400000 75%	127.000000	510.000000	20.000000	
216.400000 max	243.000000	510.000000	51.000000	
350.800000		habat day abasas	habat and other	
calls \	-	•	total eve minutes	total eve
count 3333.000000	3333.000000	3333.000000	3333.000000	
mean 100.114311	100.435644	30.562307	200.980348	
std	20.069084	9.259435	50.713844	
19.922625 min	0.000000	0.000000	0.000000	
0.000000 25%	87.000000	24.430000	166.600000	
87.000000 50%	101.000000	30.500000	201.400000	
100.000000 75%	114.000000	36.790000	235.300000	
114.000000	165.000000	59.640000	363.700000	
max 170.000000	103.000000	39.040000	303.700000	
tota count mean std min 25% 50% 75% max	al eve charge 3333.000000 17.083540 4.310668 0.000000 14.160000 17.120000 20.000000 30.910000	total night minu 3333.000 200.872 50.573 23.200 167.000 201.200 235.300 395.000	037 100.1077 847 19.5686 000 33.0006 000 87.0006 000 100.0006 000 113.0006	000 711 609 000 000 000
tota count mean std min 25% 50% 75% max	al night char 3333.0000 9.0393 2.2758 1.0400 7.5200 9.05000 10.5900	3333.00 25 10.23 73 2.79 90 0.00 90 8.50 90 10.30 90 12.10	0000 3333.0006 7294 4.4794 1840 2.4612 0000 0.0006 0000 3.0006 0000 4.0006 0000 6.0006	000 148 214 000 000 000

3. DATA PREPARATION

3.1 Data preprocessing

```
# finding duplicates and missing values
duplicated = data.duplicated().sum()
missing values = data.isna().sum()
#Display the total number of duplicate values and missing values
print("Duplicated values are:", duplicated)
print("Missing values are:\n", missing_values)
Duplicated values are: 0
Missing values are:
                              0
 state
                             0
account length
                             0
area code
phone number
                             0
international plan
                             0
voice mail plan
                             0
number vmail messages
                             0
total day minutes
                             0
                             0
total day calls
total day charge
                             0
total eve minutes
                             0
total eve calls
                             0
total eve charge
                             0
total night minutes
                             0
total night calls
                             0
total night charge
                             0
total intl minutes
                             0
                            0
total intl calls
total intl charge
                            0
customer service calls
                            0
                             0
churn
dtype: int64
```

```
# Converting string-based categorical values to integer-based
categorical representations
intl_plan = {'yes': 1, 'no': 0}
vm plan = {'yes': 1, 'no': 0}
churn_status = {True: 1, False: 0}
#Display the replacement of each column
data['international plan'].replace(intl plan, inplace=True)
data['voice mail plan'].replace(vm_plan, inplace=True)
data['churn'].replace(churn status, inplace=True)
data.sample(15)
     state account length area code phone number international plan
1382
        GA
                        125
                                   415
                                            380-6342
                                                                        0
619
        KS
                        110
                                            383-1657
                                                                        1
                                   415
119
        ID
                         97
                                   408
                                            328-3266
                                                                        0
188
        WY
                        164
                                   510
                                            373-4819
                                                                        0
1984
        TN
                        112
                                   415
                                            339-6477
                                                                        0
                                                                        0
2453
        ΗI
                        134
                                   415
                                            342-9394
1623
                        130
                                   408
                                                                        0
        ME
                                            387-6031
        TN
                        105
                                   408
                                                                        0
1134
                                            353-8849
3190
        ID
                        103
                                   415
                                            346-5992
                                                                        0
210
        LA
                         99
                                   415
                                            411-2284
                                                                        0
2190
        NC
                         88
                                   408
                                            414-4037
                                                                        0
1264
        TN
                         72
                                   408
                                            348-2009
                                                                        0
1105
        NJ
                        135
                                   510
                                            401-8735
                                                                        0
732
        IN
                         48
                                   510
                                            342-6696
                                                                        0
                                                                        1
3214
        0K
                        149
                                   510
                                            365-9079
      voice mail plan number vmail messages
                                                total day minutes \
1382
                     1
                                            39
                                                             236.1
619
                     0
                                             0
                                                             293.3
119
                     0
                                             0
                                                             239.8
```

188 1984 2453 1623 1134 3190 210 2190 1264 1105 732 3214	0 0 1 0 0 0 0 1 0 1	0 0 38 0 0 0 0 27 0 28 0	160.6 272.5 214.4 176.3 206.2 174.7 241.1 93.4 147.0 201.4 300.4 180.9
1382 619 119 188 1984 2453 1623 1134 3190 210 2190 1264 1105 732 3214	total day calls to 107	otal day charge 40.14 49.86 40.77 27.30 46.33 36.45 29.97 35.05 40.99 40.99 15.88 24.99 34.24 51.07	total eve calls \ 110 90 111 126 94 57 104 138 56 98 92 103 117 103 83
1382 619 119 188 1984 2453 1623 1134 3190 210 2190 1264 1105 732 3214	total eve charge 24.58 16.02 18.26 13.87 19.22 17.99 17.09 21.79 12.58 13.23 21.42 13.80 20.95 11.32 16.57	total night minutes 175.4 266.9 143.3 187.1 159.1 165.0 161.9 117.1 168.2 188.2 189.0 162.9 154.8 197.4 197.8	total night calls \ 107 91 81 112 94 79 123 91 109 109 104 80 131 94 109
1382 619	total night charge 7.89 12.01	9.1	total intl calls \ 4 4

119 188 1984 2453 1623 1134 3190 210 2190 1264 1105 732 3214	6.45 8.42 7.16 7.43 7.29 5.27 7.57 8.47 8.50 7.33 6.97 8.88 8.90	8.7 9.0 16.4 10.0 11.3 9.0 15.8 11.6 10.9 10.5 12.9 7.2 8.8	5 3 5 8 5 3 3 10 1 4 4 4 5
total i 1382 619 119 188 1984 2453 1623 1134 3190 210 2190 1264 1105 732 3214	ntl charge custo 2.46 3.92 2.35 2.43 4.43 2.70 3.05 2.43 4.27 3.13 2.94 2.84 3.48 1.94 2.38	omer service calls ch 2 0 2 1 3 1 1 1 6 1 1 1 2 2	nurn 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0
[15 rows x 21	. columns]		
	ninutes, charges a		
<pre>eve charge' data['total_c calls'] + dat data['total_m</pre>	+ data['total nig calls'] = round(da ca['total night ca ninutes'] = round(data['total day charght charge'] + data['total day calls'] lls'] + data['total iotal iotal day minutotal day minutotal day minutotal day minutotal day minutotal day minutotal	total intl charge']) + data['total eve intl calls']) tes'] + data['total
	<pre>total_charges', ,'total_minutes']</pre>].sample(10))	
total_c 189 497 2319	66.0 2	ls total_minutes 614 660.0 889 657.0 817 715.0	

2303		32.0				_					
1471 643 1320 221 3112 3272		61.0 74.0 59.0 57.0 49.0 83.0		275 291 307 345 291 262 355		6 7 5 5 4 7	99. 19. 34. 45. 96. 92.	0 0 0 0 0			
#Displ		random ent (<mark>10</mark>)	ries to) con	firm	chang	es				
\ \	state	account le	ngth a	area	code	phone	nu	mber	interr	national	plan
1881	NE		76		415	3	34-	6519			0
895	MD		106		415	3	43-	2350			0
2244	KS		148		510	4	15 -	4051			0
3207	DC		93		408	3	45 -	1994			0
1471	ОН		75		415	3	40 -	9803			0
1503	WV		57		415	4	19-	6418			1
439	MI		81		415	4	-80	3384			0
2598	TN		196		415	3	40-	8291			0
1441	NC		172		408	3	31-	5962			0
1146	WA		161		415	3	78-	8137			0
1881 895 2244 3207 1471 1503 439 2598 1441 1146	voice	mail plan 0 0 0 1 0 1 0 0	number	r vma	il me	2	0 0 0 2 0 7 0	total	day mi	nutes 272.7 165.3 239.3 306.2 150.6 236.5 153.5 133.1 274.9 151.6	\
1881 895 2244 3207	total	day calls 97 118 84 123	total	day	charg 46.3 28.1 40.6 52.6	36 .0 .8		total	night	calls 105 93 104 107	\

1471 1503 439 2598 1441 1146		99 94 99 80 102 117		25.60 40.21 26.10 22.63 46.73 25.77				104 117 86 96 123 68
1881 895 2244 3207 1471 1503 439 2598 1441 1146	total night	charge 10.60 8.42 10.47 10.81 7.14 10.65 8.93 9.97 11.03 10.11	total i	ntl min	7.7 8.5 10.9 11.7 8.1 12.2 6.3 10.3 8.8 4.0	tot	al intl	calls \ 2 3 3 2 5 3 2 8 2 5
	total intl o		customer	servi		ls	churn	total_charges
\ 1881		2.08				0	1	79.0
895		2.30				2	0	57.0
2244		2.94				1	0	71.0
3207		3.16				0	0	82.0
1471		2.19				0	0	61.0
1503		3.29				2	0	68.0
439		1.70				2	0	54.0
2598		2.78				1	0	53.0
1441		2.38				1	0	76.0
1146		1.08				1	0	56.0
1881 895 2244 3207 1471 1503 439	total_calls 299 315 276 315 291 308 289	total_	minutes 752.0 571.0 678.0 748.0 619.0 648.0 556.0					

```
2598 304 572.0
1441 345 715.0
1146 277 600.0
[10 rows x 24 columns]
```

3.2 Create a copy of data

```
import pandas as pd
# Assuming 'data' is your DataFrame
data_copy = data.copy()
# Specify the columns to drop
columns_to_drop = ['phone number','total day minutes', 'total eve
minutes', 'total night minutes', 'total intl minutes', 'total day
calls', 'total eve calls', 'total night calls', 'total intl calls', 'total day charge', 'total eve charge', 'total night charge',
'total intl charge']
# Use the drop method with the 'columns' parameter
data copy = data copy.drop(columns=columns to drop)
# Print a sample of the modified DataFrame
data copy.sample(10)
      state account length area code international plan voice mail
plan \
2028
         SD
                                                                    0
                             93
                                         510
1435
         ΙL
                             89
                                         415
                                                                    1
1
2863
                             28
                                         415
         ME
                                                                    0
900
         VA
                             72
                                         510
                                                                    1
2163
         KS
                            119
                                         415
                                                                    0
569
         NC
                            133
                                         408
                                                                    1
1
475
         AR
                             74
                                         510
                                                                    0
171
         NH
                             64
                                         408
                                                                    0
3161
         NV
                                                                    0
                            148
                                         510
1342
         ΑK
                             52
                                         415
                                                                    0
       number vmail messages customer service calls churn
```

	_charges \				
2028		0	1	1	
85.0				_	
1435		19	0	1	
50.0		0	2	0	
2863 70.0		0	3	0	
900		29	0	0	
47.0		29	U	U	
2163		0	1	0	
74.0		-		-	
569		32	2	1	
72.0					
475		0	3	0	
53.0		27	2	0	
171 56.0		27	2	0	
3161		0	2	0	
69.0		· ·	_	ŭ	
1342		24	2	Θ	
54.0					
2020	total_calls	total_minutes 792.0			
2028 1435	312 364	792.0 509.0			
2863	307	694.0			
900	299	504.0			
2163	307	717.0			
569	348	670.0			
475	242	594.0			
171	280	527.0			
3161	348	712.0			
1342	280	535.0			

3.3 Univariate Analysis

```
# Churn distribution among subscribers
#Setting size figure
plt.figure(figsize=(6, 5))
#Creating a countplot using seaborn
ax = sns.countplot(x='churn', data=data, palette='viridis')
#Calc the total number of data points
total = len(data['churn'])

#Adding percentage annotation for each bar
for p in ax.patches:
    percentage = '{:.1f}%'.format(100 * p.get_height() / total)
    x = p.get_x() + p.get_width() / 2
    y = p.get_height()
    ax.annotate(percentage, (x, y), ha='center', va='bottom')
```

```
#Set title for plot
plt.title("Churn Distribution Among Subscribers")
plt.show()
```

Churn Distribution Among Subscribers


```
{"tracegroupgap":0},"template":{"data":{"bar":[{"error_x":
{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":
{"color":"#E5ECF6","width":0.5}},"type":"bar"}],"barpolar":[{"marker":
{"line":{"color":"#E5ECF6","width":0.5}},"type":"barpolar"}],"carpet":
[{"aaxis":
{"endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "min
orgridcolor": "white", "startlinecolor": "#2a3f5f"}, "baxis":
{"endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "min
orgridcolor": "white", "startlinecolor": "#2a3f5f"}, "type": "carpet"}], "ch
oropleth":[{"colorbar":
{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0,"#0d0887"],[0.11111111111111111,"#46039f"],
[0.2222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
[1, "#f0f921"]], "type": "contour"}], "contourcarpet": [{"colorbar":
{"outlinewidth": 0, "ticks": ""}, "type": "contourcarpet"}], "heatmap":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0, "#0d0887"], [0.1111111111111111, "#46039f"],
[0.2222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
[0.444444444444444, "#bd3786"], [0.55555555555556, "#d8576b"],
[1, "#f0f921"]], "type": "heatmap"}], "heatmapgl": [{"colorbar":
{"outlinewidth":0,"ticks":""},"colorscale":[[0,"#0d0887"],
[0.111111111111111, "#46039f"], [0.222222222222222, "#7201a8"],
[0.7777777777778, "#fb9f3a"], [0.888888888888888, "#fdca26"],
[1, "#f0f921"]], "type": "heatmapgl"}], "histogram": [{"marker":
{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"histogram"}],"histogram2d":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0, "#0d0887"], [0.1111111111111111, "#46039f"],
[0.2222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
[0.444444444444444, "#bd3786"], [0.55555555555556, "#d8576b"],
[0.666666666666666, "#ed7953"], [0.77777777777778, "#fb9f3a"],
[1, "#f0f921"]], "type": "histogram2d"}], "histogram2dcontour":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0,"#0d0887"],[0.1111111111111111,"#46039f"],
[0.22222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
[0.444444444444444, "#bd3786"], [0.55555555555556, "#d8576b"],
[0.666666666666666, "#ed7953"], [0.7777777777778, "#fb9f3a"],
[1, "#f0f921"]], "type": "histogram2dcontour"}], "mesh3d": [{"colorbar":
{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":
```

```
{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":
[{"automargin":true,"type":"pie"}],"scatter":[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scatter"}],"scatter3d":
[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":
{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":
[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":
[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":
[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":
[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar"
:[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl
":[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterterna
ry":[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0, "#0d0887"], [0.1111111111111111, "#46039f"],
[0.2222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
[0.444444444444444, "#bd3786"], [0.55555555555556, "#d8576b"],
[0.666666666666666, "#ed7953"], [0.77777777777778, "#fb9f3a"],
[1, "#f0f921"]], "type": "surface"}], "table": [{"cells": {"fill":
{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":
{"color":"#C8D4E3"},"line":
{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":
{"arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1}, "coloraxis":
{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":
[[0, "#8e0152"], [0.1, "#c51b7d"], [0.2, "#de77ae"], [0.3, "#f1b6da"],
[0.4, "#fde0ef"], [0.5, "#f7f7f7"], [0.6, "#e6f5d0"], [0.7, "#b8e186"],
[0.8, "#7fbc41"], [0.9, "#4d9221"], [1, "#276419"]], "sequential":
[[0,"#0d0887"],[0.1111111111111111,"#46039f"],
[0.2222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
[0.666666666666666, "#ed7953"], [0.7777777777778, "#fb9f3a"],
[0.888888888888888, "#fdca26"], [1, "#f0f921"]], "sequentialminus":
[[0,"#0d0887"],[0.11111111111111111,"#46039f"],
[0.2222222222222, "#7201a8"], [0.333333333333333, "#9c179e"],
["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":
{"bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlake
s":true, "showland":true, "subunitcolor": "white"}, "hoverlabel":
```

```
{"align":"left"},"hovermode":"closest","mapbox":
{"style":"light"}, "paper bgcolor": "white", "plot bgcolor": "#E5ECF6", "po
lar":{"angularaxis":
{ "gridcolor": "white", "linecolor": "white", "ticks": ""}, "bgcolor": "#E5ECF
6", "radialaxis":
{"gridcolor": "white", "linecolor": "white", "ticks": ""}}, "scene":
{"xaxis":
{"backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "lineco
lor":"white", "showbackground":true, "ticks":"", "zerolinecolor":"white"}
, "yaxis":
{"backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "lineco
lor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}
, "zaxis":
{"backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "lineco
lor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}
}, "shapedefaults":{"line":{"color":"#2a3f5f"}}, "ternary":{"aaxis":
{"gridcolor": "white", "linecolor": "white", "ticks": ""}, "baxis":
{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF
6","caxis":
{"gridcolor": "white", "linecolor": "white", "ticks": ""}}, "title":
{"x":5.0e-2}, "xaxis":
{"automargin":true, "gridcolor": "white", "linecolor": "white", "ticks": "",
"title":
{"standoff": 15}, "zerolinecolor": "white", "zerolinewidth": 2}, "yaxis":
{"automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "",
"title":
{"standoff": 15}, "zerolinecolor": "white", "zerolinewidth": 2}}}, "title":
{"text": "Distribution of Area Code Feature"}}}
```

3.4 Bivariate analysis

```
# Churn vs States

# Set figure size
plt.figure(figsize=(16, 6))

# Create a bar plot
sns.countplot(x='state', hue='churn', data=data_copy,
palette='viridis')

# Add titles and labels
plt.title('Churn Distribution Across States')
plt.xlabel('State')
plt.ylabel('Count')

# Show the plot
plt.show()
```

```
# Calculate the total number of churns for each state
state_churn_counts = data.groupby('state')['churn'].sum()
# Find the top 5 states with the highest churn counts
top_5_states =
state_churn_counts.sort_values(ascending=False).head(5).index
# Set figure size
plt.figure(figsize=(16, 6))
# Create a bar plot for the top 5 states
sns.countplot(x='state', hue='churn',
data=data[data['state'].isin(top_5_states)], palette='viridis')
# Add titles and labels
plt.title('Churn Distribution Across Top 5 States')
plt.xlabel('State')
plt.ylabel('Count')
# Show the plot
plt.show()
```

```
# Create a figure and axis
plt.figure(figsize=(10, 5))

# Plot the stacked bar plot
sns.histplot(data=data_copy, x='total_minutes', hue='churn',
multiple='stack', binwidth=50, palette='viridis')

# Add labels and title
plt.xlabel('Total Minutes')
plt.ylabel('Count')
plt.title('Total Minutes vs Churn Distribution')

# Show the plot
plt.show()
```



```
#Calculate the correlation matrix using the corr() method
correlation_matrix = data_copy.corr()

plt.figure(figsize=(15, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='Reds')
plt.title('Correlation Matrix')
plt.show()
```


Multicollinearity occurs when two or more features in the dataset are highly correlated with each other, which can cause issues during modeling such as instability, overfitting, or inaccurate coefficient estimates.

4. MODELLING

```
#Onehote encoding for our categorcial features
data_copy = pd.get_dummies(data_copy, columns=['state', 'area code'],
drop first=True)
#Display 10 samples
data_copy.sample(10)
      account length
                        international plan
                                            voice mail plan
362
                   39
                                                             1
                  135
                                          0
                                                             0
2611
                                          0
3068
                   78
                                                             1
2934
                   24
                                          0
                                                             0
2198
                  127
                                          0
                                                             0
2214
                                          0
                                                             0
                   90
                   55
                                          0
                                                             1
82
3046
                  110
                                          0
                                                             0
                                          0
                                                             0
2587
                  105
3094
                   91
                                          0
                                                             0
```

number vmai	.l messages cu	stomer servi	ice calls	churn	
_charges \					
	36		1	Θ	
	0		0	0	
	-		_	_	
	21		2	0	
	2		2	-	
	O		2	1	
	Θ		A	0	
	O .		U	U	
	0		1	0	
	25		3	0	
	0		1	O	
	9		1	U	
	0		3	0	
	-			-	
	0		1	0	
total calls	total minute	s state Al	c†:	ate TX s	tate IIT
	cocac_minate	5 State_AL	500	1CC_17. 3	ca cc_01
	608.	0 0		0	Θ
					_
282	529.	0 0		0	0
				U	U
257					
257				0	9
257 226	517.	0 0			
226	517.	0 0 0		0 0	0 0
	517.	0 0 0		0	0
226 348	517. 5 527. 8 548.	00000		0 0 0	0 0 0
226	517. 5 527. 8 548.	00000		0 0	0 0
226 348 355	517. 527. 548. 6625.	0 0 0 0 0 0		0 0 0	0 0 0
226 348 355 310	517.0 527.0 548.0 625.0 488.0	0 0 0 0 0 0		0 0 0	0 0 0
226 348 355	517.0 527.0 548.0 625.0 488.0	9 9 9 9 9		0 0 0	0 0 0
226 348 355 310 251	517.0 527.0 548.0 625.0 488.0 402.0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		0 0 0 0	000000
226 348 355 310	517.0 527.0 548.0 625.0 488.0 402.0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		0 0 0 0	0 0 0 0
226 348 355 310 251 362	517.0 527.0 548.0 625.0 488.0 402.0 641.0	0 0 0 0 0 0 0 0 0 0		0 0 0 0 0	0 0 0 0 0
226 348 355 310 251	517.0 527.0 548.0 625.0 488.0 402.0 641.0	0 0 0 0 0 0 0 0 0 0		0 0 0 0	000000
226 348 355 310 251 362 251	517.6 527.6 548.6 625.6 488.6 402.6 641.6	0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0	0 0 0 0 0 0
226 348 355 310 251 362 251	517.0 527.0 548.0 625.0 488.0 402.0 641.0	0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0	0 0 0 0 0 0
226 348 355 310 251 362 251	517.6 527.6 548.6 625.6 488.6 402.6 641.6	0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0	0 0 0 0 0
	_VA \370	0 0 0 25 0 0 0 total_calls total_minute VA \ 370 608.	0 21 0 0 0 25 0 0 total_calls total_minutes state_AL_VA \ 370 608.0 0	0 0 2 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 21 2 0 0 2 1 0 0 0 0 0 0 0 0 1 0 1 0 25 3 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

2611							
2934	2611	0	0	0	0	0	0
2198	3068	0	Θ	0	0	0	1
2214 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2934	0	0	0	0	0	0
82	2198	0	0	0	0	0	1
3046 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2214	0	0	0	0	0	1
2587 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	82	0	0	0	0	0	0
area code_510 area code_510 362 2611 1 3068 0 2934 0 2198 0 2214 0 82 0 3046 1 2587 1 3094 0 [10 rows x 61 columns] #Scale the transform the data to avoid any interference from outliers scaler = MinMaxScaler() #iterate over the numerical columns in the data_copy set a scale of -1 to 1 def scaling(columns): return scaler.fit_transform(data_copy[columns].values.reshape(-1,1)) for i in data_copy.select_dtypes(include=[np.number]).columns: data_copy[i] = scaling(i) # Display 10 samples data_copy.sample(10) account length international plan voice mail plan \ 2742 0.595041 0.0 1.0 2742 0.595041 0.0 0.0 0.0	3046	0	0	0	0	0	0
area code_510 362	2587	0	0	0	0	0	0
362	3094	0	0	0	0	0	1
<pre>#Scale the transform the data to avoid any interference from outliers scaler = MinMaxScaler() #iterate over the numerical columns in the data_copy set a scale of -1 to 1 def scaling(columns): return scaler.fit_transform(data_copy[columns].values.reshape(- 1,1)) for i in data_copy.select_dtypes(include=[np.number]).columns: data_copy[i] = scaling(i) # Display 10 samples data_copy.sample(10) account length international plan voice mail plan \ 2742 0.595041</pre>	3068 2934 2198 2214 82 3046 2587 3094	0 0 0 0 1 1 0					
<pre>to 1 def scaling(columns): return scaler.fit_transform(data_copy[columns].values.reshape(- 1,1)) for i in data_copy.select_dtypes(include=[np.number]).columns: data_copy[i] = scaling(i) # Display 10 samples data_copy.sample(10) account length international plan voice mail plan \ 2742 0.595041 0.0</pre>	#Scale t	he transform	the data t	o avoid any	v interfere	ence from outli	ers
2742 0.595041 0.0 1.0 281 0.330579 0.0 0.0	<pre>to 1 def scal retu 1,1)) for i in data # Displa</pre>	<pre>ing(columns): rn scaler.fit data_copy.se _copy[i] = sca y 10 samples</pre>	_transform lect_dtype	(data_copy[[columns].\	values.reshape(
	2742 281	0.595041 0.330579	internati	0.0	voice mail	1.0	

2658 2112 2323 2739 2636 1460 115	0.4132 0.6157 0.1239 0.4132 0.4256 0.3264 0.1446	92 67 23 20 46	0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 1.0 0.0 0.0	
	number vmail charges \	messages c	ustomer serv	rice calls	churn	
2742 0.63013	27	0.607843		0.222222	0.0	
281		0.000000		0.222222	0.0	
0.54794 1508 0.53424		0.000000		0.333333	0.0	
2658		0.000000		0.000000	0.0	
0.61643 2112		0.000000		0.444444	1.0	
0.39726 2323	50	0.000000		0.111111	0.0	
0.46575	3			•		
2739		0.176471		0.000000	0.0	
0.42465 2636	08	0.000000		0.222222	0.0	
0.45205	55					
1460 0.47945	: າ	0.000000		0.333333	0.0	
	02	0 022520		0 000000	1 0	
115	10	0.823529		0.000000	1.0	
0.60274	10					
t state V	cotal_calls /A \	total_minut	es state_AL	st	ate_TX	state_UT
2742 0.0	0.604444	0.6688	85 0.0		0.0	0.0
281	0.386667	0.5474	21 0.0		0.0	0.0
0.0						
1508 0.0	0.426667	0.6688	85 0.0		0.0	0.0
2658	0.551111	0.4658	90 0.0	1	0.0	0.0
0.0	0.551111	0.4030	90 0.0	• • • •	0.0	0.0
2112 0.0	0.364444	0.3910	15 0.0		0.0	0.0
2323	0.293333	0.4908	49 0.0		0.0	0.0
0.0	0 522222	0.0000	70 0 0		0 0	0 0
2739	0.533333	0.3926	79 0.0		0.0	0.0
0.0	0 20222	0 4625	62 0 0		0 0	0.0
2636	0.262222	0.4625	62 0.0		0.0	0.0
0.0						

1460	0.6000	99 9	.435940	0.0 .	0.0	0.0
0.0 115 0.0	0.6755	56 0	.542429	0.0 .	0.0	0.0
\	state_VT	state_WA	state_WI	state_WV	state_WY area	code_415
2742	0.0	0.0	0.0	1.0	0.0	0.0
281	0.0	0.0	0.0	0.0	0.0	1.0
1508	0.0	0.0	0.0	0.0	0.0	0.0
2658	0.0	0.0	0.0	0.0	0.0	1.0
2112	0.0	0.0	0.0	0.0	0.0	1.0
2323	0.0	0.0	0.0	0.0	0.0	0.0
2739	0.0	0.0	0.0	0.0	1.0	0.0
2636	0.0	0.0	0.0	0.0	0.0	0.0
1460	0.0	0.0	0.0	0.0	0.0	1.0
115	0.0	0.0	0.0	0.0	0.0	0.0
2742 281 1508 2658 2112 2323 2739 2636 1460 115	area code	_510 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0				
[10 r	ows x 61 c	olumns]				

4.1 train test split

```
#Defining X(independent variables) and y(target variable)
X = data_copy.drop("churn", axis=1)
y = data_copy["churn"]
#train test split
X_train, X_test, y_train, y_test = train_test_split(X,y,
test_size=0.25, random_state=42)
```

4.2 SMOTE/SMOTENC technique

```
#SMOTE to fix the class imbalancemnt found during the decison tree
classification

#instantiate SMOTENC

smote = SMOTENC(categorical_features = [1,2], random_state = 123)
resampled_X_train, resampled_y_train =
smote.fit_resample(X_train,y_train)
```

4.3 Logistic Regression

```
#logistic regression
logreg =LogisticRegression(random_state=42)
#fit the model
logreg.fit(resampled X train, resampled y train)
#predict on the labels
y pred log = logreg.predict(X test)
def plot confusion matrix(y true, y pred, classes):
    #plots confusion matrix
    cm = confusion matrix(y true, y pred)
    plt.figure()
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=classes, yticklabels=classes)
    plt.xlabel('Predicted label')
    plt.ylabel('True label')
    plt.show()
plot confusion matrix(y test, y pred log, [0,1])
```


<pre>print(classif</pre>	ication_repor	t(y_test	,y_pred_log	1))
	precision	recall	f1-score	support
0.0 1.0	0.94 0.36	0.78 0.72	0.85 0.48	709 125
accuracy macro avg weighted avg	0.65 0.85	0.75 0.77	0.77 0.67 0.79	834 834 834

The classification report of the logistic regression model in summary:

- The recall score was .78(78%), means it was only able to identify 78% 'No Churn' correctly and .72(72%) for 'Churn instances
- Had an ccuracy of 77% which is not enough so hence we try another type of model.

```
#Feature Importance in the logistics Regression

importance_logreg = logreg.coef_[0]
Feature_names = resampled_X_train.columns
Feature_importances = pd.Series(importance_logreg,index=Feature_names)
Feature_importances = Feature_importances.sort_values(ascending=False)
plt.figure(figsize=(10,6))
top_features = Feature_importances[:10] #selecting the top 10
top_features.sort_values().plot(kind='barh')
plt.xlabel('Importance')
plt.ylabel('Features')
```

```
plt.title('TOP 10 Feature Importances')
plt.xlim(0, max(top_features)*1.1) #setting nthe xlim to the max
importance vakue
plt.show()
```


4.3 Decision Tree Classification

```
#Decision Tree

#create the decision tree
clf = DecisionTreeClassifier(random_state=42)

#Train the classifier on the training data
clf.fit(resampled_X_train, resampled_y_train)

#Make predicitons on the testing data
y_pred = clf.predict(X_test)

#Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy:{accuracy:.2f}")

#Dsiplay the classification report and confusion matrix
print('\nClassfication_report(y_test, y_pred))

print(classification_report(y_test, y_pred))

print("\nConfusion Matrix:")
print(confusion_matrix(y_test, y_pred))
```

```
# Calculate the confusion matrix
cm = confusion matrix(y test, y pred)
# Create a DataFrame from the confusion matrix for better
visualization
conf matrix df = pd.DataFrame(cm, index=['No Churn',
'Churn'],columns=['No Churn', 'Churn'])
# Plot the heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(conf matrix df, annot=True, fmt="d", cmap="Blues",
cbar=False)
plt.title('Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()
Accuracy:0.88
Classfication Report:
              precision
                           recall f1-score
                                              support
         0.0
                   0.95
                             0.91
                                       0.93
                                                   709
         1.0
                   0.59
                             0.75
                                       0.66
                                                   125
                                        0.88
                                                   834
    accuracy
                             0.83
                                                   834
                   0.77
                                        0.80
   macro avq
weighted avg
                   0.90
                             0.88
                                       0.89
                                                   834
Confusion Matrix:
[[644 65]
 [ 31 94]]
```


Classification report of Decision Tree in summary:

- The model performs well in predicting 'No Churn' instances, with high precision and recall.
- For 'Churn' predictions, precision is lower, indicating a higher rate of false positives, but recall is still reasonable.
- The model has an overall accuracy of 88%, suggesting good overall performance.

```
#Feature Importance in the Decision Tree

column_names = list(resampled_X_train.columns)
importances = clf.feature_importances_[0:10]
indices = np.argsort(importances)

plt.figure(figsize=(15,5))
plt.title('Feature Importances')
plt.barh(range(len(indices)), importances[indices], align= 'center')
plt.yticks(range(len(indices)), [column_names[i] for i in indices])
plt.xlabel('Relative Importance')
plt.show()
```


4.4 Random Tree Classifier

```
#Random forest classifier
#Instantiate the classifier
rf = RandomForestClassifier(random_state=42)
#Fit on the training data
rf.fit(resampled_X_train,resampled_y_train)
RandomForestClassifier(random_state=42)
#predict on the test data
y_pred_rf = rf.predict(X_test)
#rf confusion matrix
plot_confusion_matrix(y_test, y_pred_rf,[0,1])
```


precision recall f1-score support 0.0 0.95 0.97 0.96 709 1.0 0.83 0.72 0.77 125 accuracy 0.89 0.85 0.87 834 weighted avg 0.93 0.94 0.93 834	<pre>print(classification_report(y_test, y_pred_rf))</pre>					
1.0 0.83 0.72 0.77 125 accuracy 0.94 834 macro avg 0.89 0.85 0.87 834		precision	recall	f1-score	support	
macro avg 0.89 0.85 0.87 834						
	macro avg			0.87	834	

Classification report of Random Tree Classifier in summary:

- The model performs well, with high precision for both classes.
- 'No Churn' instances are well-identified with high recall (97%), and precision is also high (95%).
- For 'Churn' predictions, recall is 72%, indicating that the model identified 72% of the actual 'Churn' instances. Precision for - 'Churn' is also high at 83%.
- The overall accuracy is 94%, suggesting good overall performance.

```
column_names = list(resampled_X_train.columns)
importances = rf.feature_importances_[0:10]
indices = np.argsort(importances)

plt.figure(figsize=(15,5))
plt.title('Feature Importances')
plt.barh(range(len(indices)),importances[indices], align= 'center')
plt.yticks(range(len(indices)), [column_names[i] for i in indices])
plt.xlabel('Relative Importance')
plt.show()
```


5. EVALUATION

In this section I will be able to evaluate models on the recall score and ROC_AUC, which in turn I;ll be able to know which model was the best and later tuning it for better performance.

5.1 Recall Score

This is a measure of how many positive instances the model correctly indetifies. The higher the recall score the better the model.

```
np.random.seed(42)
classifiers = [LogisticRegression(),
               DecisionTreeClassifier(),
               RandomForestClassifier()1
# Define a result table as a DataFrame
result table = pd.DataFrame(columns=['classifiers', 'recall'])
# Train the models and record the results
for cls in classifiers:
    model = cls.fit(resampled X train, resampled y train)
    y_pred = model.predict(X_test)
    recall = recall_score(y_test, y_pred)
    result table = result table.append({'classifiers':
cls.__class__._name__,
                                         'recall': recall},
ignore index=True)
# Set name of the classifiers as index labels
result_table.set_index('classifiers', inplace=True)
result table
                        recall
classifiers
LogisticRegression
                         0.720
DecisionTreeClassifier
                         0.752
RandomForestClassifier
                         0.720
np.random.seed(42)
classifiers = [LogisticRegression(),
               DecisionTreeClassifier(),
               RandomForestClassifier()1
# Define a result table as a DataFrame
result table = pd.DataFrame(columns=['classifiers',
'fpr', 'tpr', 'auc'])
```

```
# Train the models and record the results
for cls in classifiers:
    model = cls.fit(resampled X train, resampled y train)
    yproba = model.predict proba(X test)[::,1]
    fpr, tpr, _ = roc_curve(y_test, yproba)
    auc = roc auc score(y test, yproba)
    result table =
result table.append({'classifiers':cls.__class__.__name__,
                                         'fpr':fpr,
                                         'tpr':tpr,
                                         'auc':auc}, ignore index=True)
# Set name of the classifiers as index labels
result table.set index('classifiers', inplace=True)
fig = plt.figure(figsize=(8,6))
for i in result table.index:
    plt.plot(result table.loc[i]['fpr'],
             result table.loc[i]['tpr'],
             label="{}, AUC={:.3f}".format(i, result table.loc[i]
['auc']))
plt.plot([0,1], [0,1], color='orange', linestyle='--')
plt.xticks(np.arange(0.0, 1.1, step=0.1))
plt.xlabel("False Positive Rate", fontsize=15)
plt.yticks(np.arange(0.0, 1.1, step=0.1))
plt.ylabel("True Positive Rate", fontsize=15)
plt.title('ROC Curve Analysis', fontsize=15)
plt.legend(prop={'size':13}, loc='lower right')
plt.show()
```


- The ROC curve shows that the RandomForestClassifier has the best performance among our three models with a score of 0.921 and LogisticRgression with the lowest performance with a score of 0.812.
- The ROC curve essential show us the trade-off between the (TPR) true positive rate and (FPR) false positive rate for our binary classifiers.
- TPR = those positive instances correctly classified as such
- FPR = those negatives instances incorrectly classifies as positives

5.2 Model Tuning

As seen from out evaluation section the RandomForestClassification hadd the best performance among the three. To improve the performance of the model we have to carry out model tuning by use of GridSearch.

```
#Tuning RandomForestClassification
#Define the grid
param_grid = {
```

```
"n estimators": [50, 100],
    "max depth": [15, 20, 35],
    "min_samples_split":[5, 10, 15],
    "min samples leaf":[2, 4, 10],
    "criterion": ['entropy', 'gini']
}
#Create a RandomForestClassifier instance
rf classifier = RandomForestClassifier(random state=42)
grid search = GridSearchCV(estimator=rf classifier,
param grid=param grid, scoring="recall", cv=5, n jobs=-1)
grid search.fit(resampled X train, resampled y train)
best params = grid search.best params
best rf classifier = grid search.best estimator
#Evaluate
y pred grid = best rf classifier.predict(X test)
#Display the best parameters
print("Best Parameters:", best params)
#Display the classification report
print("\nClassification Report:")
print(classification report(y test, y pred grid))
Best Parameters: {'criterion': 'entropy', 'max_depth': 35,
'min samples leaf': 2, 'min samples split': 15, 'n estimators': 100}
Classification Report:
                            recall f1-score
              precision
                                               support
                             0.97
         0.0
                   0.96
                                        0.96
                                                   709
         1.0
                   0.81
                              0.74
                                        0.78
                                                   125
                                        0.94
                                                   834
    accuracy
                   0.88
                             0.86
                                        0.87
                                                   834
   macro avg
weighted avg
                   0.93
                              0.94
                                        0.93
                                                   834
```

classification_report of RandomForestClassifier after tuning:

- The model performs well, with high precision for both classes.
- 'No Churn' instances are well-identified with high recall (97%), and precision is also high (95%).
- For 'Churn' predictions, recall is 72%, indicating that the model identified 72% of the actual 'Churn' instances. This as close as to the 0.8 recall score we needed to make our model effective.
- The model iwth a recall score can be called Pretty Good model.
- Precision for 'Churn' is also high at 83%.
- The overall accuracy is 94%, suggesting good overall performance.

```
#Confusion matrix
plot_confusion_matrix(y_test, y_pred_grid,[0,1])
```



```
# Get the predicted probabilities for the positive class
y_prob_grid = best_rf_classifier.predict_proba(X_test)[:, 1]

# Compute the false positive rate, true positive rate, and thresholds
fpr, tpr, thresholds = roc_curve(y_test, y_prob_grid)

# Compute the AUC score
auc_score = roc_auc_score(y_test, y_prob_grid)

# Plot the ROC curve
plt.plot(fpr, tpr, label='ROC Curve (AUC = {:.2f})'.format(auc_score))
plt.plot([0, 1], [0, 1], 'k--') # Diagonal line for random classifier
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend()
plt.show()
```


For 'Churn' predictions, recall is 74% indicating that the model identified 74% of the actual 'Churn' instances. This as close as to the 0.8 recall score we needed to make our model effective.

• The model with this recall score can be called Pretty Good model.

```
# Assuming you have a tuned RandomForestClassifier stored in
`tuned rf classifier`
# Get feature importances
feature importances = best rf classifier.feature importances
# Create a DataFrame with feature names and their importances
feature importance df = pd.DataFrame({'Feature': X train.columns,
'Importance': feature importances})
# Sort the DataFrame by importance in descending order
top_features = feature_importance_df.sort_values(by='Importance',
ascending=False).head(10)
# Print or visualize the top 10 features
print(top_features)
import matplotlib.pyplot as plt
import seaborn as sns
# Set figure size
plt.figure(figsize=(10, 6))
# Create a bar plot of the top 10 features
```

```
sns.barplot(x='Importance', y='Feature', data=top features,
palette='viridis')
# Add titles and labels
plt.title('Top 10 Features Importance')
plt.xlabel('Importance')
plt.ylabel('Feature')
# Show the plot
plt.show()
                    Feature
                             Importance
4
    customer service calls
                               0.218844
5
             total charges
                               0.204155
7
             total_minutes
                               0.095880
3
     number vmail messages
                               0.082754
2
           voice mail plan
                               0.074110
0
            account length
                               0.047124
6
               total calls
                               0.045037
        internationa plan
1
                               0.029042
59
             area code 510
                               0.026658
             area code 415
58
                               0.021068
```


6. CONCLUSION

• As our recall score for our model was .74 as good as it is a predictive model, more time is neede for further engineering to help improve this score.

6.1 Reccomendations

For SyriaTel to improve on customer retention they need to deploy the machine learning model to get realtime predicitions. Realtime continuous monitoring ensure the model is always learning and improving with time. With use of feature importance on can leverage it to provide insight on how to target service improvements and personalize retention efforts.

A few ways into which SyriaTel can reduce Churning rate is by:

- Focusing on retention programss in area code 415 and 510 as these have the highest churning rate.
- Improve on quality customer service call:
- By having responsive customer support. Provide quick and effective customer support. Resolve issues promptly and ensure that customers feel heard and valued.
- Encourage and act upon customer feedback. Use surveys, reviews, and feedback forms to understand customer satisfaction and areas for improvement.
- Competitive Pricing on plans: Regularly review and adjust pricing strategies on different plans to remain competitive in the market. Consider offering flexible pricing plans that cater to different customer needs.