Natural Language Processing:

Assignment 5: Qu' bopbe' paqvam

Jordan Boyd-Graber

Out: **16. September 2014**Due: **10. October 2014**

Introduction

As always, check out the Github repository with the course homework templates:

git://github.com/ezubaric/cl1-hw.git

The code for this homework is in the hw5 directory.

1 Tagging and Tag Sets (10 points)

1.1 When taggers go bad (5 points)

Consider the following sentences:

- 1. British Left Waffles on Falkland Islands
- 2. Teacher Strikes Idle Kids
- 3. Clinton Wins Budget; More Lies Ahead
- 4. Juvenile Court to Try Shooting Defendant

Choose one of these sentences and tag it in two different (but plausible) ways.

1.2 Exploring the tag set (5 points)

There are 265 distinct words in the Brown Corpus having exactly four possible tags (assuming nothing is done to normalize the word forms).

- 1. Create a table with the integers 1...10 in one column, and the number of distinct words in the corpus having $\{1,...,10\}$ distinct tags.
- 2. For the word with the greatest number of distinct tags, print out sentences from the corpus containing the word, one for each possible tag.

2 Viterbi Algorithm (30 Points)

Consider the following sentences written in Klingon. For each sentence, the part of speech of each "word" has been given (for ease of translation, some prefixes/suffixes have been treated as words), along with a translation. Using these training sentences, we're going to build a hidden Markov model to predict the part of speech of an unknown sentence using the Viterbi algorithm. Do not use log probabilities (you can later, though).

N	P	RO	V	N	·		PRO	
pa'Daq	g	hah	taH	tera	n'nga	an	e',	
room (insid	e) h	e	is	hun	nan		of	
The human is in the room								
V		N		V		N		
ja'chuqmeH	- -	roj	Hom	neI	Ι	tera	a'ngar	1
in order to	parley	tru	ce	wa	nt	hur	nan	
The enemy commander wants a truce in order to parley								
N	V	N	COI	ΝJ	N		V	N
tera'ngan	qIp	puq	$^{\prime}\mathrm{eg}$		puc	1	qIp	tera'ngan
human	bit	child	and		chil	d	bit	child
The child	bit th	e hum	an, ar	nd th	e hu	uma	n bit	the child

2.1 Emission Probability (10 points)

Compute the frequencies of each part of speech in the table below for nouns and verbs. We'll use a smoothing factor of 0.1 (as discussed in class) to make sure that no event is impossible; add this number to all of your observations. Two parts of speech have already been done for you. After you've done this, compute the emission probabilities in a similar table.

	NOUN	VERB	CONJ	PRO
'e			0.1	1.1
'eg			1.1	0.1
ghaH			0.1	1.1
ja'chuqmeH			0.1	0.1
legh			0.1	0.1
neH			0.1	0.1
pa'Daq			0.1	0.1
puq			0.1	0.1
qIp			0.1	0.1
rojHom			0.1	0.1
taH			0.1	0.1
tera'ngan			0.1	0.1
yaS		·	0.1	0.1

2.2 Start and Transition Probability (5 points)

Now, for each part of speech, total the number of times it transitioned to each other part of speech. Again, use a smoothing factor of 0.1. After you've done this, compute the start and transition probabilities.

	NOUN	VERB	CONJ	PRO
START				
N			1.1	2.1
V			0.1	0.1
CONJ			0.1	0.1
PRO			0.1	0.1

2.3 Viterbi Decoding (15 points)

Now consider the following sentence: "tera'ngan legh yaS".

- 1. Compute the probability of the sequence NOUN, VERB, NOUN.
- 2. Create the decoding matrix of this sentence $\ln \delta_n(z)$ (word positions are columns, rows are parts of speech). Only provide log probabilities, and only use base 2.

POS	n=1	n = 2	n = 3
z = N			
z = V			
z = CONJ			
z = PRO			

- 3. What is the most likely sequence of parts of speech?
- 4. Let's compare this to the probability of your previous answer.
 - (a) How does this compare to the sequence NOUN, VERB, NOUN?
 - (b) Which is more plausible linguistically?
 - (c) Does an HMM model encode the intuition that you used to answer the previous question?
- 5. (For fun, not for credit) What do you think this sentence means? What word is the subject of the sentence?