

침해사고 분석대응 전문가

리눅스 침해사고 분석

ADT캡스|인포섹

Top-CERT

강사: 이 화목 책임

(leehwamock@sk.com)

목 차

1. Introduction

> Threat, Risk, Vulnerability

2. Getting Started

- Basic Considerations
- > Viewpoint
- Case Study

3. Linux 침해사고 분석

- Overview
- Collecting Artifacts
- Artifacts Analysis
- Memory Analysis
- ➤ Linux File Recovery

1. Introduction – Threat, Risk, Vulnerability

☐ Threat(위협)

- ▶ a potential cause of an incident that may result in harm to a system or organization
- ▶ 시스템이나 조직에 피해(손해)를 가할 수 있는 사고의 잠재적 원인

□ Vulnerability(취약점)

- ▶ a weakness of an asset (resource) or a group of assets that can be exploited by one or more threats
- ▶ 하나 이상의 위협에 의해 악용될 수 있는 자산(자원)의 또는 자산 그룹의 약점

□ Risk(위험)

- ▶ potential for loss, damage, or destruction of an asset as a result of a threat exploiting a vulnerability
- ▶ 취약점을 이용한 위협의 결과로 인한 자산의 손실, 손상, 파괴의 가능성

1. Introduction – Threat, Risk, Vulnerability (Cont.)

Risk

- business disruption
- financial losses
- loss of privacy
- damage to reputation
- loss of confidence
- legal penalties
- impaired growth
- · loss of life

Threats

- angry employees
- dishonest employees
- criminals
- governments
- terrorists
- the press
- competitors
- hackers
- nature

Vulnerabilities

- software bugs
- broken processes
- ineffective controls
- hardware flaws
- business change
- legacy systems
- Inadequate BCP
- human error

Information Security Risks, Threats and Vulnerabilities © simplicable.com

목 차

1. Introduction

> Threat, Risk, Vulnerability

2. Getting Started

- Basic Considerations
- Viewpoint
- Case Study

3. Linux 침해사고 분석

- Overview
- Collecting Artifacts
- Artifacts Analysis
- Memory Analysis
- ➤ Linux File Recovery

□ Prerequisite Knowledge and Skills

□ Download Tools

- ► Windows Sysinternals

 https://docs.microsoft.com/en-us/sysinternals/
- ► NirSoft
 http://www.nirsoft.net/
- ▶ Digital Forensic Research Center(고려대학교) http://forensic.korea.ac.kr/

☐ Interview

□ Backup

□ 자료 수집

항목	설명	
사고 이력 확인	최초 사고 징후 확인 날짜 및 시간	
	특이사항 및 조치사항 확인	
서비스 개요 및 현황 확인	서비스 개요 정보 수집 - 서비스 관리조직/담당, 서비스개요, 주요자산 등	
	관리적 보호수준 확인 - 사고대응절차, 자산관리, 접근통제, 암호화 등	
환경설정 확인	로그 위치 및 홈 디렉토리 확인	
	새로 추가된 가상 사이트 및 디렉토리 확인	
	방화벽 정책 설정 확인	
	운영되고 있는 사이트들 확인	
웹구조 파악	네트워크/웹 방화벽 적용여부 확인	
	네트워크 전체 구조 확인(구조도)	
	운영 중인 서버 및 역할 확인 (DB서버 등)	
	DB연결, 공유 연결 등 확인	

□ 자료 수집 (Cont.)

항목	설명	
로그수집	WEB로그(accesslog, errorlog)	
	WAS로그(accesslog, errorlog)	
	OS로그	
	보안장비(FW, IDS, IPS, WAF, etc.) 로그	
DB 점검	DB사용자 확인(관리자 확인 필요) - 엔터프라이즈 관리자, SA 계정 패스워드 확인	
	최근 생성된 DB테이블 확인 - SQL Injection 도구 사용 시그니쳐 : D99_Tmp 등	
	안정적인 버전 사용여부	
웹쉘 점검	점검 웹쉘 시그니쳐 점검(정규표현식 포함), 웹쉘 파일명으로 검색	
시스템 정보 확인	운영체제	
	어플리케이션	
	프레임워크	
	시간	

□ TimeLine

- ▶ 침해사고분석 측면에서의 효용
 - 분석할 로그의 양을 한정시킴과 동시에 침해 관련 이벤트를 발견할 확률을 높임
 - √ 특정 침해 이벤트에서 획득한 시간 정보를 기준으로 시간 값이 있는 다른 로그를 분석
 - √ 시스템 level의 로그 뿐만 아니라 보안장비에서 발생한 이벤트 등
 시간 값을 갖고 있는 모든 로그를 대상으로 함
 - 침해 시나리오 재구성에 따른 논리적 근거 획득
 - √ 침해 관련 시점을 확정 지어 이와 관련된 모든 이벤트를 시간순으로 재구성
 - √ 침해 흐름을 직관적으로 이해하기 위한 근거가 됨

☐ TimeLine (Cont.)

- ▶ 적용 사례
 - 침해 시점, 특히 취약점을 이용한 최초 침해 시점의 이벤트는 시스템 권한을 획득하거나 백도어를 설치하기까지 제한적인 시간동안 이뤄짐
 - 분석 기준 시점 획득의 예
 - √ 침해와 관련된 증상이 최초로 발생한 시간
 - √ 위와 관련하여 보안장비 이벤트가 탐지된 시간
 - √ 시스템에서 발견된 악성코드의 파일 생성 시간
 - √ 백신 등에서 다수의 악성코드가 탐지된 시간
 - √ 확인되지 않은 시스템 계정이 생성된 시간, 첫 로그온 시간

- ☐ TimeLine (Cont.)
 - ▶ 시간 값을 갖고 있는 데이터의 종류
 - 파일의 MAC time
 - 웹 로그
 - 시스템 로그
 - 윈도우 이벤트 로그
 - 윈도우 레지스트리
 - √ 계정별 최종 로그인 시간, 최근 실행된 파일 내역, network drive 연결 시간, USB 연결 시간 등
 - √ 특정 레지스트리 키 값의 마지막 수정 시간
 - 인터넷 히스토리
 - 프리패치
 - AV 이벤트 로그
 - 기타(보안 장비 로그 등)

2. Getting Started – Viewpoint

2. Getting Started - Viewpoint (Cont.)

□ 시스템에 어떻게 들어왔는가?

▶ Viewpoint

- 내부 관점에서 볼 것인가 외부 관점에서 볼 것인가
- 내부-외부 관점, 내부-내부 관점에서 어떤 취약 포인트들이 있는가
- 최근 발생한 보안 위협(보안 이벤트)과 취약 포인트와의 교집합엔 무엇이 있나
- 침해 관련 증상이 처음 발생한 시점 이전 수일간 발생한 이벤트/로그 중 특이사항이 있는가
- 해당 서버에서의 사용자 행위가 존재하는가
- 이전에 침해사고를 당한 적이 있는가, 있었다면 당시에 발견된 취약점은 언제 패치 되었는가

- 웹 (어플리케이션) 취약점
- 시스템 취약점
- 사회공학 기법

2. Getting Started - Viewpoint (Cont.)

□ 들어와서 어떤 행위를 했는가?

▶ Viewpoint

- 최초 침해 event 전후로 시스템 로그상 특이사항이 있는가
- 위 시점 전후로 파일 개체가 새로 생성되거나 변경된 이력이 있는가
- 확인되지 않은 시스템 계정이 생성되어 있다면, 해당 계정으로 무슨 행위를 했는가
- 시스템 로그 등이 변조되거나 삭제된 흔적이 있는가
- 공격자가 키로거나 백도어를 설치했는가

- 시스템 계정 생성
- 백도어, 루트킷 설치
- 시스템 파일 변조
- 악성코드 재실행 수단 확보
- 로그 훼손 및 삭제, Anti-Forensic

2. Getting Started – Viewpoint (Cont.)

□ 무엇으로 어떤 증상을 유발했는가?

▶ Viewpoint

- 시스템에서 악성코드가 발견되었는가
- 발견된 악성코드의 기능은 무엇인가, 악성코드로 무엇을 할 수 있는가
- 위 악성코드가 실행된 흔적이 있는가
- 위에서 확인된 내용과 침해 증상이 직간접적으로 관련이 있는가
- 악성코드가 아닌 일반 툴이나 내부명령어 등으로 동일한 증상을 재현할 수 있는가
- 증상이 최초로 발생한 시점은 언제인가
- 동일한 증상이 다수 발생했다면 매 시기마다 공통적으로 발견되는 특징이 있는가, 그 특징은 어디서 유래하는가

- DB (개인/기밀정보) 유출
- 과도한 트래픽 발생, DDOS 공격 등으로 인한 서비스 지연/중단
- 페이지 위/변조, 악성코드 삽입
- 기타 침해 이벤트

2. Getting Started - Viewpoint (Cont.)

□ 추가적인 피해 가능성은 없는가?

▶ Viewpoint

- 네트워크 구성상 조사 대상 서버와 인접한 시스템에는 어떤 것들이 있는가
- 침해 증상이 발생한 시점 전후로 관련 시스템에서 발견된 특이 이벤트/로그가 있는가
- 악성코드 이슈라면 관련 시스템에 동일한 악성코드가 설치 되어 있지는 않은가
- 관련 시스템에서 동일한 증상이 발생한 적이 있는가
- 조사 대상 서버와 동일한 취약점을 가진 시스템이 있는가
- 조사 대상 서버가 해킹 경유지로 사용된 정황은 없는가

- 피해 시스템 경유지로 악용
- 내/외부 시스템 공격지로 악용

2. Getting Started – Case Study

□ 사고분석사례 A

< 시스템에 **어떻게** 들어왔는가

- Apache-tomcat 관리자 페이지
- war 형태로 웹쉘 업로드

→ 들어와서 **어떤 행위**를 했는가

- 시스템 계정 생성
- 시스템 백도어 설치
- 키로거 등 추가 악성코드 설치

∼ 무엇으로 어떤 증상을 유발했는가

- Syn flood tool로 다수의 트래픽 발생
- 위 트래픽으로 인한 네트워크 장애 발생 > 웹서비스 가용성 침해

← 추가적인 **피해 가능성**은 없는가

• 공유폴더가 설정된 타 시스템에 웹쉘 업로드

2. Getting Started – Case Study (Cont.)

□ 사고분석사례 B

✓ 시스템에 **어떻게** 들어왔는가

─ 들어와서 **어떤 행위**를 했는가

─ 무엇으로 어떤 증상을 유발했는가

← 추가적인 **피해 가능성**은 없는가

- PC 자산관리 솔루션 Default 계정 사용
- Client Program을 통해 외부에서 접속
- 악성코드 설치
- DB 서버 접근

- 악성코드를 사용한 서버 정보 유출
- 정상 DB Client를 사용하여 Database 접속 및 개인정보 약 42만건, 기업 내부정보 유출
- 내부 시스템에 악성코드 전파
- 악성코드 유포지로 사용

2. Getting Started - Case Study (Cont.)

□ 사고분석사례 C

→ 시스템에 **어떻게** 들어왔는가

- 원격데스크톱 Brute-forcing
- 작업을 목적으로 취약한 임시 암호로 변경한 시점에 공격 성공

→ 들어와서 **어떤 행위**를 했는가

- 시스템 백도어 설치
- 시스템 계정 생성
- VMware 및 OS, BF Tool 설치
- 생성 계정 및 이벤트 로그 삭제

─ 무엇으로 어떤 증상을 유발했는가

- AntiVirus가 정상적으로 동작하지 않음
- 관리자가 설치하지 않은 임의의 프로그램(VMware)이 확인됨

← 추가적인 **피해 가능성**은 없는가

- 외부 임의 IP로 RD Brute-forcing
- 모두 실패한 것으로 확인

2. Getting Started - Case Study (Cont.)

□ 사고분석사례 D

< │ 시스템에 **어떻게** 들어왔는가

─ 들어와서 **어떤 행위**를 했는가

─ 무엇으로 어떤 증상을 유발했는가

← 추가적인 **피해 가능성**은 없는가

- 웹 어플리케이션 취약점 (struts)
- 웹 소스 코드 취약점
- 웹쉘 업로드

• 업로드 한 웹쉘 1000회 이상 호출

• 웹쉘을 통하여 주기적 DB 유출

• 유출된 DB 정보가 사용된 정황

• 특이사항 없음

목 차

1. Introduction

> Threat, Risk, Vulnerability

2. Getting Started

- Basic Considerations
- Viewpoint
- Case Study

3. Linux 침해사고 분석

- Overview
- Collecting Artifacts
- Artifacts Analysis
- Memory Analysis
- ➤ Linux File Recovery

3. Linux 침해사고분석 – Overview

☐ Linux Directory

Directory		용도
/	Root	모든 파일과 디렉토리는 "/" 에서 시작, root user 만이 쓰기 권한을 가짐
/bin	User binaries	모든 사용자가 사용하는 명령어(ex ; ps, ls, ping, grep 등) 저장
/sbin	System Binaries	관리자가 시스템 유지를 위해 사용하는 명령어 (ex ; iptables, reboot, ifconfig 등) 저장
/etc	Configuration Files	모든 프로그램에서 필요로 하는 설정 파일
/dev	Device Files	터미널 디바이스, USB 등 시스템에 붙이는 장치 파일들을 저장
/proc	Process Information	프로세스, 시스템 자원 등을 가상의 파일시스템으로 저장(pid, uptime 등)
/var	Variable Files	각종 로그 파일 , 메일 임시 저장
/tmp	Temporary Files	임시 파일 공간
/usr	User Programs	프로그램 설치 공간으로 관련 명령어 , 라이브러리 위치
/home	Home Directories	시스템 계정 사용자들의 홈 디렉토리
/boot	Boot Loader Files	커널을 포함하는 부팅 시 필요한 파일 저장 위치
/lib	System Libraries	라이브러리가 저장 되는 공간으로 대부분 공유 라이브러리 위치
/opt	Optional add-on Applications	개별 판매자의 add-on 어플리케이션을 포함
/mnt	Mount Directory	외부 장치 mount 공간

3. Linux 침해사고분석 - Overview (Cont.)

- □ Windows / Linux 차이점
 - ▶ Different file system(다른 파일 시스템)
 - 파일 삭제 시 주요 메타데이터가 와이핑(ext3, ext4)
 - 파일의 생성시간이 존재하지 않음(ext4 이전)
 - LVM 등 논리적인 볼륨을 구성 가능

√ LVM : 여러 개의 하드디스크를 합쳐서 한 개의 파일시스템으로 사용하거나 합쳐진 것을 다시 여러 개로 나누어 파일 시스템 구성이 가능하게 하는 기술

- ▶ No Registry(레지스트리가 존재하지 않음)
 - 운영체제 / 어플리케이션의 실시간 정보 관리를 위한 특별한 구조가 미존재
 - 시스템 정보를 산재된 자료로부터 수집하여야 함
- ▶ Files/data are mostly plain text(텍스트 기반의 파일 데이터)
 - 자체 내장 명령어를 조합하여 문자열 검색/필터 만으로 많은 작업 수행 가능

3. Linux 침해사고분석 – Overview (Cont.)

□ Overview

범주	세부 범주	개요	
증거수집	memory dump	시스템 메모리 덤프 수집	
	Physical dump	거자 메뷔 던ㅠ 스지	
	Network dump	저장 매체 덤프 수집 지전 임경 Dump file 항요 형태로 소지	
	Mount dump	직접, 원격, Dump file 활용 형태로 수집	
	Process information		
	Network information		
	Open files	Linux command 활용을 통한 정보 수집	
	Loaded modules	LIMUX COMMINANO 결용을 중인 경도 구입	
	Scheduled task		
	Temporary directory		

3. Linux 침해사고분석 – Overview (Cont.)

☐ Overview (Cont.)

범주	세부 범주	개요	
증거분석	Process information		
	Network information	수집된 정보를 통한 Analysis Methodology	
	Open files		
	Loaded modules		
	침해사고조사 / 시스템 분석 시 확인 파일	침해사고조사 / 시스템 분석 시 확인해야 할 파일	
	ROOTKIT 점검	Rootkit Detection Methodology	
	LOG 분석	Linux Log Analysis Methodology	
	의심파일 분석	Suspicious File Analysis Methodology	
	Memory Dump 분석	수집된 Memory Dump 분석	

3. Linux 침해사고분석 – Collecting Artifacts

- □ 수집 순서
 - ▶ 휘발성 증거 수집 후 비휘발성 증거 수집
 - Memory → Storage Dump
 - 대부분의 휘발성 정보는 Memory Dump에서 획득 가능
 - 실제 분석은 획득한 Data(Memory/Storage Dump 등)뿐만 아니라 Live 시스템 점검과 병행하여 진행하는 것이 좋음

- □ 휘발성 증거 수집
 - ▶ 시스템 정보
 - 시스템 시간
 - 임시 데이터
 - 실행중인 파일 관련 정보
 - 부모/자식 프로세스
 - 연관 정보
 - 현재 로그인한 계정 정보
 - 콘솔 명령어
 - 메모리
 - 캐시
 - 로드된 모듈

- ▶ 네트워크 정보
 - ARP 테이블
 - 통신 관련 정보
 - IP, DNS 설정 정보
 - 통신중인 프로그램
 - 네트워크 환경
 - 라우팅 테이블
 - 원격 사용자 정보
 - 사용중인 외부 자원
 - 원격 접근 파일

☐ Memory Dump

- ▶ fmem Tool을 이용한 Memory Dump 수행
 - 전체 물리메모리에 접근할 수 있는 가상의 /dev/fmem 장치 파일을 생성
 - fmem 사용법

```
# wget http://hysteria.cz/niekt0/fmem/fmem_current.tgz
# tar -xvf fmem_current.tgz
# cd fmem*
# make
# ./run.sh
# dd if=/dev/fmem of=[output file] bs=[block size] count=[count]
# rmmod fmem
```

- ☐ Memory Dump (Cont.)
 - ▶ fmem Tool을 이용한 Memory Dump 수행 (Cont.)
 - fmem 예제 (1/2)

```
[root@localhost tmp] # wget http://hysteria.cz/niekt0/fmem/fmem current.tgz
--2018-10-10 13:14:39-- http://hysteria.cz/niekt0/fmem/fmem current.tgz
Resolving hysteria.cz... 77.78.111.10, 2001:1528:162:20::10
Connecting to hysteria.cz|77.78.111.10|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 12566 (12K) [application/x-gzip]
Saving to: `fmem current.tgz'
100%[=======] 12,566 --.-K/s in 0s
2018-10-10 13:14:40 (545 MB/s) - `fmem current.tgz' saved [12566/12566]
[root@localhost tmp] # tar -xvf fmem current.tgz
fmem 1.6-0/
fmem 1.6-0/debug.h
fmem 1.6-0/README
fmem 1.6-0/ChangeLog
fmem 1.6-0/COPYING
fmem 1.6-0/AUTHORS
fmem 1.6-0/TODO
fmem 1.6-0/run.sh
fmem 1.6-0/1km.c
fmem 1.6-0/Makefile
[root@localhost tmp]# cd fmem*
```

- ☐ Memory Dump (Cont.)
 - ▶ fmem Tool을 이용한 Memory Dump 수행 (Cont.)
 - fmem 예제 (2/2)

```
[root@localhost fmem 1.6-0]# make
rm -f *.o *.ko *.mod.c Module.symvers Module.markers modules.order \.*.o.cmd \.*.ko.cmd \.*.o.d
rm -rf \.tmp versions
make -C /lib/modules/`uname -r`/build SUBDIRS=`pwd` modules
make[1]: Entering directory `/usr/src/kernels/2.6.32-696.23.1.el6.x86 64'
  CC [M] /tmp/fmem 1.6-0/lkm.o
 LD [M] /tmp/fmem 1.6-0/fmem.o
  Building modules, stage 2.
 MODPOST 1 modules
         /tmp/fmem 1.6-0/fmem.mod.o
 LD [M] /tmp/fmem 1.6-0/fmem.ko.unsigned
  NO SIGN [M] /tmp/fmem 1.6-0/fmem.ko
make[1]: Leaving directory `/usr/src/kernels/2.6.32-696.23.1.el6.x86 64'
[root@localhost fmem 1.6-0]# ./run.sh
Module: insmod fmem.ko al=0xffffffff81089700 : OK
Device: /dev/fmem
----Memory areas: -----
reg00: base=0x0000000000 ( 0MB), size= 2048MB, count=1: write-back
reg01: base=0x080000000 ( 2048MB), size= 1024MB, count=1: write-back
!!! Don't forget add "count=" to dd !!!
[root@localhost fmem 1.6-0] # dd if=/dev/fmem of=/tmp/fmem.mem
dd: reading `/dev/fmem': 잘못된 주소
2094952+0 records in
2094952+0 records out
1072615424 bytes (1.1 GB) copied, 13.4778 s, 79.6 MB/s
[root@localhost fmem 1.6-0] # 1s -1 /tmp/fmem.mem
-rw-r--r-. 1 root root 1072615424 2018-10-10 13:15 /tmp/fmem.mem
[root@localhost fmem 1.6-0] # rmmod fmem
```

- ☐ Memory Dump (Cont.)
 - ▶ LiME Tool을 이용한 Memory Dump 수행
 - fmem 과 동일하게 Kernel Module로 동작
 - 네트워크 전송 가능
 - lime 사용법

```
# git clone https://github.com/504ensicsLabs/LiME
# cd LiME/src/
# make
Local 저장 # insmod lime-*.ko path=[output path]/[output file] format=lime
Network 전송 # insmod lime-*.ko path=tcp:[port number] format=lime
# rmmod lime
```

Network 수신(Network 전송 시)

nc [victim ip] [victim port] > [output file]

- ☐ Memory Dump (Cont.)
 - ▶ LiME Tool을 이용한 Memory Dump 수행 (Cont.)
 - LiME 예제 Local 저장

```
[root@localhost tmp]# git clone https://github.com/504ensicsLabs/LiME
Initialized empty Git repository in /tmp/LiME/.git/
remote: Enumerating objects: 242, done.
Receiving objects: 100% (242/242), 1.58 MiB | 541 KiB/s, done.
remote: Total 242 (delta 0), reused 0 (delta 0), pack-reused 242
Resolving deltas: 100% (119/119), done.
[root@localhost tmp] # cd LiME/src/
[root@localhost src]# make
make -C /lib/modules/2.6.32-696.23.1.el6.x86 64/build M="/tmp/LiME/src" modules
make[1]: Entering directory `/usr/src/kernels/2.6.32-696.23.1.el6.x86 64'
 CC [M] /tmp/LiME/src/tcp.o
 CC [M] /tmp/LiME/src/disk.o
 CC [M] /tmp/LiME/src/main.o
 CC [M] /tmp/LiME/src/hash.o
 LD [M] /tmp/LiME/src/lime.o
 Building modules, stage 2.
 MODPOST 1 modules
 CC
         /tmp/LiME/src/lime.mod.o
 LD [M] /tmp/LiME/src/lime.ko.unsigned
 NO SIGN [M] /tmp/LiME/src/lime.ko
make[1]: Leaving directory `/usr/src/kernels/2.6.32-696.23.1.el6.x86 64'
strip --strip-unneeded lime.ko
mv lime.ko lime-2.6.32-696.23.1.e16.x86 64.ko
[root@localhost src] # insmod lime-*.ko path=/tmp/mem.mem format=lime
[root@localhost src] # ls -1 /tmp/mem.mem
-r--r-- 1 root root 1073148000 2018-10-10 10:44 /tmp/mem.mem
[root@localhost src] # rmmod lime
```


- ☐ Memory Dump (Cont.)
 - ▶ LiME Tool을 이용한 Memory Dump 수행 (Cont.)
 - LiME 예제 Network 전송 (1/2)

[피해 PC/서버]

```
[root@localhost tmp] # git clone https://github.com/504ensicsLabs/LiME
Initialized empty Git repository in /tmp/LiME/.git/
remote: Enumerating objects: 242, done.
Receiving objects: 100% (242/242), 1.58 MiB | 541 KiB/s, done.
remote: Total 242 (delta 0), reused 0 (delta 0), pack-reused 242
Resolving deltas: 100% (119/119), done.
[root@localhost tmp] # cd LiME/src/
[root@localhost src]# make
make -C /lib/modules/2.6.32-696.23.1.el6.x86 64/build M="/tmp/LiME/src" modules
make[1]: Entering directory `/usr/src/kernels/2.6.32-696.23.1.el6.x86 64'
  CC [M] /tmp/LiME/src/tcp.o
        /tmp/LiME/src/disk.o
  CC [M]
  CC [M] /tmp/LiME/src/main.o
  CC [M]
        /tmp/LiME/src/hash.o
  LD [M] /tmp/LiME/src/lime.o
  Building modules, stage 2.
  MODPOST 1 modules
  CC
          /tmp/LiME/src/lime.mod.o
  LD [M] /tmp/LiME/src/lime.ko.unsigned
  NO SIGN [M] /tmp/LiME/src/lime.ko
make[1]: Leaving directory `/usr/src/kernels/2.6.32-696.23.1.el6.x86 64'
strip --strip-unneeded lime.ko
mv lime.ko lime-2.6.32-696.23.1.el6.x86 64.ko
[root@localhost src] # insmod lime-*.ko path=tcp:55555 format=lime
```

- 조사용 PC에서 파일 수신 (다음 장 참조) -

- ☐ Memory Dump (Cont.)
 - ▶ LiME Tool을 이용한 Memory Dump 수행 (Cont.)
 - LiME 예제 Network 전송 (2/2)

[조사용 PC]

F:\>nc 192.168.223.170 55555 > 192.168.223.170.mem.mem

☐ Storage Dump

- ▶ 시스템 Shutdown 할 수 없는 경우 Live 상태에서 DD Tool을 사용하여 Dump 수행
- ▶ Mount 상태 확인
 - fdisk -l 명령어를 통해 현재 Mount 된 Disk&Partition 정보 확인

```
Disk /dev/sda 10.7 GB, 10737418240 bytes
255 heads, 63 sectors/track, 1305 cylinders, total 20971520 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00095ab7
  Device Boot
                                          Blocks
                                                   Id System
                                  End
                    Start
/dev/sda1
                                                   83 Linux
                     2048
                             18874367
                                          9436160
                                                   5 Extended
/dev/sda2
                 18876414
                             20969471
                                          1046529
/dev/sda5
                                                   82 Linux swap / Solaris
                 18876416
                                          1046528
                             20969471
```

- Dump 시 Disk를 대상으로 진행
- ▶ Local(USB 등) 저장
 - dd if=[Disk] of=[save path]/[save file name]

☐ Storage Dump(Cont.)

- ▶ Netcat tool을 사용해서 Network로 Dump 저장
 - Dump 송/수신 시스템 모두 Netcat tool 설치 필요

[Dump 수신(분석) 시스템]

- 임의의 Port를 열고, 저장될 파일명 지정

nc -lp [Port] > [File Name]

예제:

F:₩nc -lp 55555 > 192.168.223.170.Disk.dump

[Dump 송신(피해) 시스템]

- Dump 하고자 하는 Disk 선택 후 전송

dd if=[Disk] | nc [Target IP] [Port]

예제 :

dd if=/dev/sda | nc 192.168.223.1 55555

□ Process Information

- ▶ 명령어의 수행 결과를 Redirection 하여 Text로 저장
 - ex) # command [option] > [output file]
- ▶ Process List

ps axf

▶ Process Directory

Is -aIR /proc

명령어	옵션	설명			
ps	-a	다른 사용자들의 실행 프로세스 출력			
	-X	다른 터미널에서 실행한 프로세스 출력			
	-f	Full Format 자세히 출력			

명령어	옵션	설명			
ls	-a	all 모든 정보 출력			
	-1	자세히 출력			
	-R	하위 디렉토리 포함 출력			

☐ Network Information

- ▶ 명령어의 수행 결과를 Redirection 하여 Text로 저장
 - ex) # command [option] > [output file]
- ► Network Connection # netstat -antup
- ► ARP Cache Table # arp -e -v
- ► Routing Cache
 # route -C
- NIC Promiscuous# ifconfig

명령어	옵션	설명				
	-a	모든 소켓 보기				
	-n	Hostname 없이 IP 주소 형식으로 출력				
netstat	-t	TCP 연결만 출력				
	-u	UDP 연결만 출력				
	-р	Program name 및 PID(Process ID) 출력				

명령어	옵션	설명			
arp	-e	ARP 캐시테이블에 저장되어 있는 모든 호스트정보를 출력			
	-V	자세한 모드로 결과를 출력 할 때 사용			

명령어	옵션	설명			
route	-C	FIB(Forwarding Information Base) 대신 Cache 출력			

- □ Open Files & Loaded Modules Information
 - ▶ 명령어의 수행 결과를 Redirection 하여 Text로 저장
 - ex) # command [option] > [output file]
 - ► List of Open Files # Isof -i -n -P
 - ► Loaded Modules

Ismod

명령어	옵션	설명			
Isof	7	설정한 네트워크(Internet) 소켓에 대한 정보를 출력하며 프로토콜, 서비스, 호스트 및 IP에 대해 출력			
	-n	호스트이름 대신에 IP address를 출력			
	-P	/etc/services에 등록되어 있는 이름 대신 포트 번호로 출력			

☐ Scheduled Task

- ▶ 특정 프로세스나 네트워크 커넥션 정보를 관리자가 쉽게 눈치 채지 못하게 하기 위해 스케쥴을 걸어서 특정 명령을 실행 함
- ▶ 공격자가 시스템 장악 이후 주기적인 데몬 생성, 명령어 실행을 위해 빈번히 사용 됨
- ▶ 악의적인 목적에 의해 생성된 스케쥴 확인
- ▶ at은 한번만 실행, crontab은 주기적인 실행

☐ Scheduled Task (Cont.)

Crontab

- 현재 login 한 사용자의 Schedule 표시
- -u 옵션으로 다른 계정의 스케쥴을 볼 수 있음
- 예시

```
[root@localhost ~]# crontab -l
30 * * * * /opt/metasploit3/bin/msfupdate > /var/log/msfupdate.log 2>&1
```

```
[root@localhost ~]# crontab -u demantos -l
0 0 * * * /tmp/../rtips/rootkit_/1x/back
0 6 * * * kill -9 `ps -ef | grep demantos | awk '$NF ~ /crond/ {print $2}`
```

- /etc 디렉토리에 시스템에서 사용되는 스케줄 작업들도 존재

[root@localhost ~]# ls -ld /etc/cron*
drwxr-xr-x. 2 root root 4096 2018-04-02 19:53 /etc/cron.d
drwxr-xr-x. 2 root root 4096 2018-04-02 19:54 /etc/cron.daily
-rw-r--r-. 1 root root 0 2011-07-19 13:55 /etc/cron.deny
drwxr-xr-x. 2 root root 4096 2018-04-02 19:51 /etc/cron.hourly
drwxr-xr-x. 2 root root 4096 2018-04-02 19:53 /etc/cron.monthly
drwxr-xr-x. 2 root root 4096 2011-09-27 10:33 /etc/cron.weekly
-rw-r--r-. 1 root root 457 2011-09-27 10:33 /etc/crontab

☐ Scheduled Task (Cont.)

- ► Crontab (Cont.)
 - 구조

항목	설명				
Field 1	minute 0 ~ 59				
Field 2	hour 0 ~ 23				
Field 3	day 1 ~ 31				
Field 4	month 1 ~ 12				
Field 5	weekday 0 ~ 7 (0, 7은 일요일을 의미 1 : 월요일 2 : 화요일)				
Field 6	command, permmit				

- ☐ Temporary Directory
 - ▶ 악의적인 목적에 의해 업로드 되거나 사용되었던 File 흔적 확인 및 채증
 - ▶ 누구나 파일 생성이 가능한 Sticky bit 권한의 Temporary Directories
 - /tmp
 - /var/tmp
 - /dev/shm
 - ▶ 웹을 통해 공격할 경우 웹 권한(보통 nobody, apache, www 등)을 갖기 때문에 다른 디렉토리에 파일을 생성할 수 없지만 Sticky bit가 설정된 디렉토리에는 파일 생성 가능
 - ▶ "..."이나 ".. "와 같은 이름을 가진 디렉토리 생성시 Is → 명령만으로는 구분이 힘드므로
 -al 옵션을 사용해서 파일 목록의 처음부분을 주의 깊게 살펴 볼 것

3. Linux 침해사고분석 – Artifact Analysis

□ 점검 항목

항목	설명		
	사용하지 않는 IP대역이나 비정상적인 행위를 하는 로그를 점검		
	lastlog 최근 로그인 기록에서 불법적으로 접근한 사용자를 탐지		
	acct, pacct 사용자의 명령로그를 점검		
	sulog 불법적인 su 접근 사용자를 탐지		
	wtmp 사용자의 로그인 시간 및 로그아웃 시간을 점검		
로그파일 조사 	btmp 계정접속 실패 기록		
	message 모든 데몬의 시스템 로그를 점검		
	Xferlog 에서 ftp 접속 기록을 점검		
	웹서버(access-log, errorlog) 등의 주요서비스 로그파일을 점검		
	log 파일의 변조 유무 탐지		

□ 점검 항목 (Cont.)

항목	설명			
	MD5등의 checksum값을 이용하여 시스템 주요 파일의 변조 여부를 조사			
파일시스템	redhat linux: #rpm V –a			
무결성 점검	sun: http://sunsolve.sun.com/pub-cgi/show.pl?target=content/content7 에서 finger print 제공			
	chkrootkit 과 같은 루트킷 탐지 프로그램을 사용하여 점검			
	시스템 주요 바이너리 변조 확인			
루트킷 점검	시스템 라이브러리 변조 확인			
	커널 변조 확인			
	패킷 스니퍼 점검			
새로운 setuid/setgid 프로그램	주기적으로 setuid/setgid 프로그램을 주기적으로 확인하여 새로 추가된 파일이 있는지 점검			
	setuid 점검 # find / -user root -perm -4000 print			
	setgid 점검 # find / -group wheel -perm -2000 -print			

□ 점검 항목 (Cont.)

항목	설명			
	inetd.conf, rc.sysinit, crontab 등의 시스템 주요 설정 파일의 설정 점검			
	inetd.conf 에서 불법적으로 추가된 설정 점검			
주요 설정	rc.sysinit 파일에 백도어관련 실행파일 설정이 있는지 점검			
파일	crontab 에서 관리목적 이외의 명령 스케줄이 포함되어 있는지 점검			
	/etc/rc?.d 폴더 내 시스템 시작 시 실행 파일 점검			
	추가되거나 변경된 서비스 조사			
	/etc/passwd ,shadow 파일을 점검			
	사용자 홈디렉토리의 .history, .rhosts, .forward를 점검			
	불법적으로 추가된 계정 점검			
계정 점검	권한이 상승된 계정 점검 (ex: uid가 0로 설정된 계정)			
	.rhosts 파일에 불법적인 접근 서버 및 사용자 점검			
	.forward 파일에 시스템 명령어 사용 점검			
	.history 사용자 명령 기록에서 불법적인 접근 점검			

□ 점검 항목 (Cont.)

항목	설명			
	비정상적인 포트나 일반적인 접속이 아닌 접속자의 IP및 서비스 포트를 점검			
열린 포트	netstat 를 통한 접속자의 IP및 접속 포트 등의 네트웍 정보 점검			
탐지	nmap을 통한 열린 포트 점검 ex) nmap P0 p1-65535 xxx.xxx.xxx.xxx			
	Isof를 통한 열린 포트 탐지하여 정상상태와 비교			
	ps를 이용하여 현재 실행중인 프로세스들의 이상 유무를 판별			
프로세스 탐지	불법적인 프로세스 동작 여부 점검 (ex: 2개 이상의 inetd)			
	이상한 이름의 프로세스 조사 (ex: exploit.sh)			
sniffing 탐지	ifconfig나 chkrootkit을 이용 네트웍 스니핑 탐지			
보안패치 점검	새로운 보안 패치가 존재하는지 점검			

☐ MAC TIME 분석

- ▶ 침해사고분석 시 가장 중요한 부분은 시간으로 MAC Time에 대한 이해가 필요
- ▶ atime (access time)
 - 파일 접근 시간
 - write, read, access 할 때 마다 업데이트 되며, CLI, system process 에 의해 수행 될 수 있음
- ▶ mtime (modify time)
 - 파일 내용 수정 시간
 - 파일의 권한 변경으로는 update 되지 않음. 파일 내용 변경 추적에 용의 함
- ▶ ctime (change time)
 - 파일 속성이 변경 된 시간
 - 소유권, 액세스 권한 또는 파일 수정 시 업데이트
 - 파일의 상태 정보의 최종 수정 시간, 아이 노드의 데이터가 변경이 될 때마다 update

☐ MAC TIME 분석 (Cont.)

▶ 파일 시간 속성

```
[root@localhost mac]# date
2018. 10. 10. (수) 17:29:52 KST
                                                   // 현재 날짜 확인
[root@localhost mac]# touch test1
                                                   // 파일 생성
[root@localhost mac]# stat test1
                                                   // 생성 파일 정보 확인
 File: `test1'
 Size: 0
                       Blocks: 0
                                IO Block: 4096 일반 빈 파일
Device: fd00h/64768d Inode: 930378
                                        Links: 1
Access: (0644/-rw-r--r--) Uid: ( 0/ root) Gid: (
                                                0/ root)
Access: 2018-10-10 17:29:56.752265874 +0900
                                                   // atime, ctime, mtime 동일
Modify: 2018-10-10 17:29:56.752265874 +0900
Change: 2018-10-10 17:29:56.752265874 +0900
[root@localhost mac]# cat > test1
                                                   // 파일 내용 추가
test1
^7
[3]+ Stopped
                       cat > test1
[root@localhost mac]# stat test1
                                                   // 파일 내용 수정으로 mtime, ctime 변경
 File: `test1'
                       Blocks: 8 IO Block: 4096 일반 파일
 Size: 6
Device: fd00h/64768d Inode: 930378
                                        Links: 1
Access: (0644/-rw-r--r--) Uid: ( 0/ root) Gid: (
                                                     root)
Access: 2018-10-10 17:29:56.752265874 +0900
Modify: 2018-10-10 17:30:08.250249102 +0900
Change: 2018-10-10 17:30:08.250249102 +0900
```


☐ MAC TIME 분석 (Cont.)

▶ 파일 시간 속성 (Cont.)

```
[root@localhost mac]# vi test1
                                                   // 파일 내용 수정(사이즈 동일)
                                                   // File Open 및 내용 수정으로 atime, mtime, ctime 변경
[root@localhost mac]# stat test1
 File: `test1'
                                IO Block: 4096 일반 파일
 Size: 6
                       Blocks: 8
Device: fd00h/64768d Inode: 930378
                                       Links: 1
Access: (0644/-rw-r--r--) Uid: ( 0/ root) Gid: (
                                                    root)
Access: 2018-10-10 17:30:25.689826681 +0900
Modify: 2018-10-10 17:30:33.588919997 +0900
Change: 2018-10-10 17:30:33.589920263 +0900
[root@localhost mac]# chmod 600 test1
                                                   // 파일 권한 변경
[root@localhost mac]# stat test1
                                                   // 파일 속성 변경으로 ctime만 변경
 File: `test1'
                                IO Block: 4096 일반 파일
 Size: 6
                       Blocks: 8
Device: fd00h/64768d Inode: 930378
                                       Links: 1
Access: (0600/-rw-----) Uid: ( 0/ root) Gid: (
                                                     root)
Access: 2018-10-10 17:30:25.689826681 +0900
Modify: 2018-10-10 17:30:33.588919997 +0900
Change: 2018-10-10 17:31:00.329092563 +0900
```


☐ MAC TIME 분석 (Cont.)

▶ 파일 시간 속성 (Cont.)

```
[root@localhost mac]# touch -t 201810080000 test1
                                                  // touch 로 강제 시간 변경
[root@localhost mac]# stat test1
                                                  // 강제 변경한 시간이 ctime에 기록
 File: `test1'
                                IO Block: 4096 일반 파일
 Size: 6
                      Blocks: 8
Device: fd00h/64768d Inode: 930378
                                       Links: 1
Access: (0600/-rw-----) Uid: ( 0/ root) Gid: (
                                                    root)
Access: 2018-10-08 00:00:00.000000000 +0900
Modify: 2018-10-08 00:00:00.000000000 +0900
Change: 2018-10-10 17:31:52.775492240 +0900
[root@localhost mac]# mv test1 test2
                                                  // 파일명 변경
[root@localhost mac]# stat test2
                                                  // 파일 속성만 변경되어 ctime만 변경
 File: `test2'
                                IO Block: 4096 일반 파일
 Size: 6
                      Blocks: 8
Device: fd00h/64768d Inode: 930378
                                       Links: 1
Access: (0600/-rw-----) Uid: ( 0/ root) Gid: (
                                                    root)
Access: 2018-10-08 00:00:00.000000000 +0900
Modify: 2018-10-08 00:00:00.000000000 +0900
Change: 2018-10-10 17:32:08.374398221 +0900
```

☐ MAC TIME 분석 (Cont.)

▶ File Systems and Time Stamping

File System	Access Time	Change Time	Modify Time	Creation Time
ext2	0	0	0	Х
ext3	0	0	0	Х
ext4	0	0	0	0
ntfs	0	0	0	0

▶ Update Example

Command	Access Time	Modify Time	Change Time	
mv	-	-	update	
ср	update	-	-	
touch	update	update	update	
redirection	-	update	update	
change owner	-	-	update	

- ☐ MAC TIME 분석 (Cont.)
 - **▶** File Creation Time
 - ext4의 경우 Creation Time이 있으나 stat 명령어로 확인 불가

```
[root@localhost tmp]# stat /tmp/fmem.mem
File: `/tmp/fmem.mem'
Size: 1072615424 Blocks: 2094960 IO Block: 4096 일반 파일
Device: fd00h/64768d Inode: 935151 Links: 1
Access: (0644/-rw-r--r--) Uid: ( 0/ root) Gid: ( 0/ root)
Access: 2018-10-10 13:15:33.174073671 +0900
Modify: 2018-10-10 13:15:46.649202704 +0900
Change: 2018-10-10 13:15:46.649202704 +0900
```

- System debugger 사용으로 확인 가능

```
[root@localhost tmp] # debugfs -R 'stat /tmp/fmem.mem' /dev/mapper/VolGroup-lv root
debugfs 1.41.12 (17-May-2010)
Inode: 935151
               Type: regular
                                 Mode: 0644
                                               Flags: 0x80000
Generation: 1865285449
                       Version: 0x00000000:00000001
User:
             Group:
                         0 Size: 1072615424
File ACL: 0
              Directory ACL: 0
          Blockcount: 2094960
Links: 1
Fragment: Address: 0
                        Number: 0
                                      Size: 0
ctime: 0x5bbd7cf2:9ac83040 -- Wed Oct 10 13:15:46 2018
atime: 0x5bbd7ce5:29809dlc -- Wed Oct 10 13:15:33 2018
mtime: 0x5bbd7cf2:9ac83040 -- Wed Oct 10 13:15:46 2018
crtime: 0x5bbd7ce5:29809dlc -- Wed Oct 10 13:15:33 2018
Size of extra inode fields: 28
```

- 명령어

√ # debugsfs –R 'stat [file]' /dev/[partition]

□ 시간 기반의 검색

► Is

- list 명령어인 Is의 경우 옵션으로 시간 검색이 가능함
- c 옵션 change time, u 옵션 access time, 옵션이 없을 경우 modify time 표시

Is -tl : mtime(생성, 내용변경 시간) 조회 Is -ul : atime(최종 접근시간) 조회 Is -cl : ctime(i-node 변경시간) 조회

▶ find

- ndays 옵션으로 number를 기준으로 수정된 파일을 검색 할 수 있음 √ # find [PATH] -ndays [+/-]number -print

```
# find / -atime -ndays -ls: ndays 이전 시점부터 현재까지 access된 모든 파일을 검색
# find / -mtime -ndays -ls: ndays 이전 시점부터 현재까지 변경된 모든 파일을 검색
# find / -ctime -ndays -ls: ndays 이전 시점부터 현재까지 inode 변경된 모든 파일을 검색
# find . -mtime 0 -print: 오늘 생성, 혹은 내용 수정된 파일 찾기
# find . -mtime 1 -print: 어제 생성, 혹은 내용 수정된 파일 찾기
# find . -mtime -3 -print: (오늘을 빼고) 3일내에 생성, 혹은 내용 수정된 파일 찾기
# find . -mtime +3 -print: 생성, 혹은 내용 수정된지 3일이 넘는 파일 찾기
# find . -mtime +5 -mtime -12 -print: 생성, 혹은 내용 수정된지 5일은 넘고 12일은 안되는 파일 찾기
# find . -type f -atime -2 -print: 2일내에 접근한 적이 있는 파일 찾기
# find /dev -type f -ls (/dev 디렉토리는 device에 관련된 많은 파일들이 존재)
# find / -name ".*" -print -xdev | cat -v 또는 find / -name ".." -print -xdev 등의 명령으로 침입자가 숨겨둔 파일 검색
# find / -perm -4000 -user root -print 또는 find / -perm -2000 -group root -print 등의 명령으로 침입자가 시스템 숨겨둔 백도어(backdoor) 파일을 검색
```


- □ Process Information 분석
 - **▶** Process List
 - ps 명령어는 다양한 옵션을 가지고 있으므로 다양한 결과를 도출할 수 있음
 - 좌측 그림 적색칸 안에서 5436은 PID(ProcessID), 2405는 PPID(ParentPID)를 의미
 - 좌측 그림에서는 부모 프로세스를 찾아 가야 하는 단점이 있지만 우측 그림은 트리 구조
 - 현재 실행 중인 프로세스 중 의심스러운 프로세스가 있는지 확인

```
1 0 Mar17 ?
                                      00:00:00 /usr/lib/zeitgeist/zeit
test
         2246
                1 0 Mar17 ?
                                      00:00:01 zeitgeist-datahub
test
         2248
              2207 0 Mar17 ?
                                      00:00:00 gnome-pty-helper
               2207 0 Mar17 pts/2
                                     00:00:00 bash
test
test
              2245 0 Mar17 ?
                                      00:00:00 /bin/cat
                                      00:00:01 telepathy-indicator
test
              1928 0 Mar17 ?
test
         2339
                 1 0 Mar17 ?
                                      00:00:00 /usr/lib/unity-lens-mus
test
         2359
                 1 0 Mar17 ?
                                      00:00:00 /usr/lib/telepathy/miss
test
         2363
                 1 0 Mar17 ?
                                      00:00:00 /usr/lib/gnome-online-
test
                 1 0 Mar17 ?
                                      00:00:00 /usr/bin/python /usr/l
test
              1928 0 Mar17 ?
                                      00:00:06 gnome-screensaver
root
              2250 0 Mar17 pts/2
                                     00:00:00 su -
               2397 0 Mar17 pts/2
                                      00:00:00 -su
              1928 0 Mar17 ?
                                      00:00:03 update-notifier
               1928 0 Mar17 ?
                                      00:00:00 /usr/lib/deja-dup/deja
         2523
                                      00:00:00 /usr/bin/python /usr/l
         2890
                                      00:00:00 /usr/bin/python /usr/l
         3535
               317 0 Mar17 ?
                                      00:00:00 /sbin/udevd --daemon
test
         4454 2207 0 01:06 pts/3
                                      00:00:00 bash
root
         4509
              4454 0 01:07 pts/3
                                      00:00:00 su -
root
         4517
               4509 0 01:07 pts/3
                                      00:00:00 -su
root
         4935
                 1 0 02:06 ?
                                      00:00:00 ./ishd -i 65535 -t 0 -
         4936 4935 0 02:06 ?
root
                                      00:00:00 sh -c /bin/sh
         4937 4936 0 02:06 ?
                                      00:00:00 /bin/sh
root
root
         5436
              2405 0 03:24 pts/2
                                      00:00:00 ./attack -l -p 666
                                      ບບ:ບບ:ບບ /usr/lib/cups/notifier
         0813
               540 0 0/:40 /
         9483
                                      00:00:00 [flush-8:0]
                 2 0 17:36 ?
root
root
         9495
                 2 0 17:38 ?
                                      00:00:00 [kworker/0:0]
root
                 2 0 17:43 ?
                                      00:00:00 [kworker/0:2]
```

```
[ ps -ef ]
```

```
0:00 acpid
 841 ?
              Ss
                     0:00 cron
 842 ?
                     0:00 atd
 846 ?
              Ssl
                     0:00 whoopsie
 950 ?
              Ssl
                     0:00 lightdm
 994 tty7
              Ss+
                     2:30 \_ Xorg
1831 ?
                           \_ lightdm
                     0:00
1928 ?
              Ssl
                     0:01
                               \_ gnome-session
1963 ?
                     0:00
                                     _ ssh-agent
1979 ?
                     0:09
                                      gnome-settings-
1994 ?
              sl
                     3:58
                                     compiz
2112 ?
                     0:00
2113 ?
                                           \_ gtk-window-deco
                     0:05
2206 ?
                     0:00
2207 ?
              s١
                     0:18
                                             anome-terminal
2248 ?
                     0:00
                                                \_ gnome-pty-helpe
2250 pts/2
                     0:00
                                                \ bash
2397 pts/2
                     0:00
                                                   \_ su
2405 pts/2
                                                       \ bash
                     0:00
5436 pts/2
                     0:00
                                                           \_ attack
4454 pts/3
                                               \_ bash
              Ss
                     0:00
4509 pts/3
                     0:00
                                                   \_ su
4517 pts/3
                     0:00
                                                        \ bash
9584 pts/3
                     0:00
2013 ?
              sl
                     0:05
                                      nautilus
2014 ?
                                      bluetooth-apple
                     0:01
2015 ?
              sl
                     0:01
                                      nm-applet
2018 ?
                     0:01
                                    \_ gnome-fallback-
                                     polkit-gnome-au
2028 ?
                     0:01
```

[ps axfc]

- □ Process Information 분석 (Cont.)
 - **▶** Process Directory
 - /proc directory는 process, memory 등 시스템 실시간 데이터에 대한 정보가 파일 형태로 저장된 가상 파일 시스템
 - Disk에 저장 되지 않고 Kernel에 의해 메모리에 적재 됨
 - 좌측 그림의 숫자로 된 directory는 process number이고, 우측 그림은 directory 내부이며 실행 된 실제 경로 등의 확인 가능

```
1979 2118 2386 528
                                         modules
                            bus
                                         mounts
     1986 2137 24 533
                            cmdline
     1988 2140 2405 540
     199 2141 2467 543
                            cpuinfo
     1994 2143 25 550
                            crypto
                                         pagetypeinfo
11140 2 2145 2518 6
                            devices
11380 2005 2185 2523 61
                            diskstats
                                         sched debug
     2007 2187
11422 2009 2197 27 665
1162 2012 22 2890 6813
                           driver
11641 2013 2206 3
                                         slabinfo
                            execdomains
     2014 2207 312
     2015 2209 317 730
                            filesystems
                                         stat
     2027 2213 3535 8
                            interrupts
          2215 38 801
                                         sysrq-trigger
     2030 2229 39
                            ioports
     2034 2245 40 818
                                         timer list
1616 2037 2246 436 821
                            kallsyms
                                         timer_stats
     2042 2248 4454 837
                            kcore
     2044 2250 4509 841
                            key-users
     2060 2252 4517 842
                            kmsq
     2063 226 484 846
                            kpagecount
     2068 227 4935 9
                            kpageflags
                                         vmallocinfo
               4936 950
                           latency_stats vmstat
```

[/proc]

```
-xr-xr-x 8 root root 0 Mar 18 18:38
 --xr-xr-x 167 root root 0 Mar 17 21:08 ..
           2 root root 0 Mar 18 18:41 attr
           1 root root 0 Mar 18 18:41 autogroup
           1 root root 0 Mar 18 18:41 auxv
           1 root root 0 Mar 18 18:41 cgroup
           1 root root 0 Mar 18 18:41 clear_refs
           1 root root 0 Mar 18 18:38 cmdline
           1 root root 0 Mar 18 18:41 comm
           1 root root 0 Mar 18 18:41 coredump_filter
r--r--r-- 1 root root 0 Mar 18 18:41 cpuset
lrwxrwxrwx 1 root root 0 Mar 18 18:41 cwd -> /test
            1 root root 0 Mar 18 18:41 environ
            1 root root 0 Mar 18 18:41 exe -> /test/attack
            2 root root 0 Mar 18 18:38 fd
            2 root root 0 Mar 18 18:41 fdinfo
            1 root root 0 Mar 18 18:41 io
           1 root root 0 Mar 18 18:41 latency
            1 root root 0 Mar 18 18:41 limits
           1 root root 0 Mar 18 18:41 maps
            1 root root 0 Mar 18 18:41 mem
            1 root root 0 Mar 18 18:41 mountinfo
           1 root root 0 Mar 18 18:41 mounts
           1 root root 0 Mar 18 18:41 mountstats
```

[/proc 하위 Directory]

□ Network Information 분석

- **▶** Network Connection
 - netstat 명령을 이용하여 비정상 접속이 있는지를 확인
 - netstat 명령 옵션 중 p 옵션은 해당 소켓의 PID와 프로그램 이름을 출력

 √ 이 정보를 통해 /proc 디렉토리에서 좀 더 많은 정보 획득 가능
 - 'netstat –antup' 명령어를 이용한 분석

Active	Active Internet connections (servers and established)							
Proto R	ecv-Q Se	nd-Q Local Address	Foreign Address	State	PID/Program name			
tcp	0	0 127.0.0.1:53	0.0.0.0:*	LISTEN	1087/dnsmasq			
tcp	0	0 127.0.0.1:631	0.0.0.0:*	LISTEN	540/cupsd			
tcp	0	0 0.0.0.0:666	0.0.0.0:*	LISTEN	5436/attack			
тср	1	0 192.168.100.164:4	/090 91.189.89.144:80	CLOSE_WAT1	2187/ubuntu-geoip-p			
tcp6	0	0 ::1:631	:::*	LISTEN	540/cupsd			
udp	0	0 0.0.0.0:5353	0.0.0.0:*		528/avahi-daemon: r			
udp	0	0 0.0.0.0:56657	0.0.0.0:*		528/avahi-daemon: r			
udp	0	0 127.0.0.1:53	0.0.0.0:*		1087/dnsmasq			
udp	0	0 0.0.0.0:68	0.0.0.0:*		700/dhclient			
udp6	0	0 :::56545	:::*		528/avahi-daemon: r			
udp6	0	0 :::5353	:::*		528/avahi-daemon: r			

- □ Network Information 분석 (Cont.)
 - ► ARP Cache Table
 - ARP Cache 테이블에는 해당 시스템과 연결되었던 내부 시스템의 IP와 MAC address가 저장되고 이를 통해 어떤 시스템과 통신 했는지 확인이 가능
 - 또는 ARP Cache 테이블 결과 중 서로 다른 IP에서 동일한 MAC address가 있는지 확인
 - 'arp -e -v' 명령어를 이용한 점검

Address	HWtype	HWaddress	Flags Mask	Iface
192.168.100.2	ether	00:50:56:fa:40:4a	С	eth0
192.168.100.11	ether	00:0c:29:b8:5e:15	С	eth0
192.168.100.254	ether	00:50:56:e7:5e:2c	С	eth0

- □ Network Information 분석 (Cont.)
 - **▶** Routing Cache
 - route 명령어를 이용하여 Use 항목을 통해 사용 빈도를 유추 해 볼 수 있음.
 - 특정 IP에서 너무 많은 사용이 있었을 경우 스캐닝성 공격을 의심 할 수 있음
 - 'route -c' 명령어를 이용한 점검

Kernel IP routing cache							
Source	Destination	Gateway	Flags	Metric	Ref	Use	Iface
192.168.100.1	192.168.100.255	192.168.100.255	ibl	0	0	1183	lo
192.168.100.254	ubuntu.local	ubuntu.local	il	0	0	0	lo
ubuntu.local	mistletoe.canon	192.168.100.2		0	1	2	eth0
ubuntu.local	192.168.100.254	192.168.100.254		0	0	0	eth0
192.168.100.2	ubuntu.local	ubuntu.local	il	0	0	0	lo
192.168.100.1	192.168.100.255	192.168.100.255	ibl	0	0	1183	lo
192.168.100.254	ubuntu.local	ubuntu.local	il	0	0	0	lo
ubuntu.local	mistletoe.canon	192.168.100.2		0	1	2	eth0
ubuntu.local	gremlin.canonic	192.168.100.2		0	0	0	eth0
kns.kornet.net	ubuntu.local	ubuntu.local	ι	0	0	6	lo

- □ Network Information 분석 (Cont.)
 - **▶** NIC Promiscuous
 - NIC(Network Interface Card)가 sniffing mode로 동작하는지 확인
 - NIC는 자신에게만 오는 패킷만 수신하지만 Promiscuous mode(sniffing mode) 시다른 NIC로 가는 패킷도 수신 함
 - 'ifconfig –a'명령어를 이용한 점검

```
eth0 Link encap:Ethernet HWaddr 00:0c:29:47:ff:c4
inet addr:192.168.100.100 Bcast:192.168.100.105 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fe47:ffc4/64 Scope:Link
UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1
RX packets:4831591 errors:0 dropped:0 overruns:0 frame:0
TX packets:9590292 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:339142071 (339.1 MB) TX bytes:3723774968 (3.7 GB)
Interrupt:19 Base address:0x2024
```


- □ Open Files & Loaded Modules Information 분석
 - **▶** List of Open Files
 - 현재 Open 되어 있는 File 의 목록. 특정 process 가 사용하고 있는 File 을 확인 할 수 있음
 - 'Isof'명령어를 이용한 점검

```
lsof: WARNING: can't stat() fuse.gvfs-fuse-daemon file system /home/test/.gvfs
      Output information may be incomplete.
                                            DEVICE SIZE/OFF
COMMAND
           PID
                   USER
                          FD
                                   TYPE
                                                                   NODE NAME
init
             1
                                    DIR
                                               8,1
                                                        4096
                                                                      2 /
                      0
                         cwd
init
                                    DIR
                                                        4096
                                                                      2 /
                         rtd
                                               8,1
init
                         txt
                                               8,1
                                                      194528
                                                                     77 /sbin/init
init
                                    REG
                                               8,1
                                                       47040
                                                                 134730 /lib/i386-linux-gnu/libnss_files-2.15.so
                         mem
init
                                    REG
                                               8,1
                                                       42652
                                                                 134734 /lib/i386-linux-gnu/libnss_nis-2.15.so
                         mem
init
                                                                 134724 /lib/i386-linux-gnu/libnsl-2.15.so
                         mem
                                    REG
                                               8,1
                                                       92016
init
                         mem
                                    REG
                                               8,1
                                                       30520
                                                                 134726 /lib/i386-linux-qnu/libnss compat-2.15.sd
init
                                    REG
                         mem
                                               8,1 1713640
                                                                 134679 /lib/i386-linux-gnu/libc-2.15.so
init
                         mem
                                    REG
                                               8,1
                                                       30684
                                                                 134765 /lib/i386-linux-gnu/librt-2.15.so
init
                                    REG
                                                      124663
                                                                 134759 /lib/i386-linux-gnu/libpthread-2.15.so
init
                      0 mem
                                               8,1
                                                      292132
                                                                 134691 /lib/i386-linux-qnu/libdbus-1.so.3.5.8
```

[Isof]

```
9148
           root
                 cwd
                            DIR
                                        8,1
                                                 4096
                                                          131354 /test
9148
                  rtd
                            DIR
                                        8,1
                                                 4096
                                                               2 /
           root
                                                          131606 /test/attack
9148
                            REG
           root
                  txt
                                        8,1
                                               22080
9148
                            REG
                                        8,1
                                               47040
                                                          134730 /lib/i386-linux-gnu/libnss files-2.15.so
           root
                 mem
                                                          134679 /lib/i386-linux-gnu/libc-2.15.so
9148
                            REG
                                             1713640
           root
                 mem
9148
                            REG
                                              134344
                                                          134659 /lib/i386-linux-gnu/ld-2.15.so
                                        8.1
           root
9148
           root
                                      136,2
                                                                5 /dev/pts/2
9148
                   1u
                            CHR
                                      136,2
                                                  0t0
                                                               5 /dev/pts/2
           root
                                                               5 /dev/pts/2
9148
           root
                    2u
                            CHR
                                      136,2
                                                  0t0
9148
                           IPv4
                                      90110
                                                             TCP *:5020 (LISTEN)
           root
```

[Isof에서 grep attack 결과]

- □ Open Files & Loaded Modules Information 분석 (Cont.)
 - ▶ Loaded Modules
 - 악성 module도 정상적인 module name으로 로드 된 경우가 많음
 - 정상적인 module의 경우 대부분 /lib/modules/[kernel version] 하위 directory 에 존재 함

```
Module
                       Size Used by
vmhgfs
                      53736 0
vsock
                       39001 0
acpiphp
                      23535 0
vmwafx
                      102138 2
                      65344 1 vmwgfx
                     197692 4 VMWqfx,ttm
snd_ens1371
                      24819 2
                      15060 1 snd_ens1371
lgameport
snd_ac97_codec
                     106082 1 snd ens1371
ac97 bus
                      12642 1 snd ac97_codec
snd_pcm
                      80845 2 snd ens1371, snd ac97 codec
snd seq midi
                      13132 0
snd rawmidi
                      25424 2 snd ens1371,snd seg midi
snd seg midi event
                      14475 1 snd seg midi
snd_seq
                      51567 2 snd seq midi, snd seq midi event
snd_timer
                      28931 2 snd_pcm,snd_seq
snd_seq_device
                      14172 3 snd seg midi, snd rawmidi, snd seg
psmouse
                      72846 0
iovdev
                      62064 11 snd ens1371, snd ac97 codec, snd pci
awmidi,snd seq,snd timer,snd seq device
vmw_balloon
                      12700 0
serio raw
                      13027 0
bnep
                      17830 2
rfcomm
                      38139 0
bluetooth
                      158438 10 bnep,rfcomm
```

```
root@ubuntu:~# modinfo ttm
filename:
                /lib/modules/3.2.0-23-generic-pae/kernel/drivers/gpu/drm/
ttm/ttm.ko
license:
                GPL and additional rights
description:
                TTM memory manager subsystem (for DRM device)
author:
                Thomas Hellstrom, Jerome Glisse
srcversion:
                576484675D37456C29D23D7
depends:
                drm
intree:
vermadic:
                3.2.0-23-generic-pae SMP mod unload modversions 686
```

[Ismod]

[modinfo [module name]]

- □ 침해사고조사 / 시스템 분석 시 확인 파일
 - Account File
 - /etc/passwd, /etc/shadow, /etc/group
 - 의도하지 않은, 또는 알 수 없는 user 의 생성
 - root 계정 이외에 uid 또는 gid가 0 인 계정
 - /bin/bash 또는 /bin/sh 등 쉘 사용이 가능한 계정
 - /etc/shadow 파일에 패스워드가 설정된 계정 중 시스템 계정 존재 확인

```
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh
proxy:x:13:13:proxy:/bin:/bin/sh
www-data:x:33:33:www-data:/var/www:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh
list:x:38:38:Mailing List Manager:/var/list:/bin/sh
irc:x:39:39:ircd:/var/run/ircd:/bin/sh
```

[/etc/passwd]

```
root:$6$PVRV7L2N$KGKHc49Jfytel1Ke3WVTS1LFtkfWPBuAdzGjzgA6p9ZCBEQt9
820:0:99999:7:::
daemon:*:15453:0:99999:7:::
bin:*:15453:0:99999:7:::
sys:*:15453:0:99999:7:::
sync:*:15453:0:99999:7:::
games:*:15453:0:99999:7:::
man:*:15453:0:99999:7:::
lp:*:15453:0:99999:7:::
mail:*:15453:0:99999:7:::
news:*:15453:0:99999:7:::
uucp:*:15453:0:99999:7:::
proxy:*:15453:0:99999:7:::
www-data:*:15453:0:99999:7:::
backup:*:15453:0:99999:7:::
list:*:15453:0:99999:7:::
```

[/etc/shadow]

- □ 침해사고조사 / 시스템 분석 시 확인 파일 (Cont.)
 - **▶** Startup Script
 - 부팅 시 기본으로 설정된 run level directory 확인
 - 보통의 경우 run level 3(text mode)의 경우가 많음
 - 관리자가 특별히 setting 하지 않는 경우 파일의 생성 시간은 대부분 동일
 - 각 file 앞 K는 Kill을 S는 Start 를 의미
 - 대문자만 정상 동작, 소문자는 정상 동작 하지 않음
 - 보통 관리자들이 추가로 실행할 서비스들을 rc.local 파일에 등록

```
drwxr-xr-x 2 root root 4096 9월
                                   2013 /etc/rc0.d
drwxr-xr-x 2 root root 4096
                                 3 2013 /etc/rc1.d
drwxr-xr-x 2 root root 4096 9월
                                   2013 /etc/rc2.d
drwxr-xr-x 2 root root 4096
                                   2013 /etc/rc3.d
drwxr-xr-x 2 root root 4096
                                   2013 /etc/rc4.d
drwxr-xr-x 2 root root 4096
                                   2013 /etc/rc5.d
drwxr-xr-x 2 root root 4096 9월
                                   2013 /etc/rc6.d
-rwxr-xr-x 1 root root 306 4월 23 2012 /etc/rc.local
drwxr-xr-x 2 root root 4096 11월
                               1 2012 /etc/rcS.d
```

```
9월 11 2012 SkOkerneloops -> ../init.d/kerneloops
lrwxrwxrwx 1 root root
                              9월 11 2012 SZOspeech-dispatcher -> ../init.d/speech-dispatcher
lrwxrwxrwx
            1 root root
lrwxrwxrwx
                                  3 2013 S20uml-utilities -> ../init.d/uml-utilities
                              9월 11 2012 S:Opulseaudio -> ../init.d/pulseaudio
lrwxrwxrwx
lrwxrwxrwx
            1 root root
                                 11 2012 S: 0rsync -> ../init.d/rsync
                              9월 11 2012 SiOsaned -> ../init.d/saned
lrwxrwxrwx
            1 root root
                              9월 11 2012 S'Odns-clean -> ../init.d/dns-clean
lrwxrwxrwx 1 root root
                              9월 11 2012 S70pppd-dns -> ../init.d/pppd-dns
lrwxrwxrwx 1 root root
                              9월 11 2012 S7'5sudo -> ../init.d/sudo
                              1월 30 2013 Staolserver4 -> ../init.d/aolserver4
                          17 12월 6 2012 Sylapache2 -> ../init.d/apache2
                              9월 11 2012 Sigacpi-support -> ../init.d/acpi-support
                             9월 11 2012 Siggrub-common -> ../init.d/grub-common
                             9월 11 2012 Sigondemand -> ../init.d/ondemand
lrwxrwxrwx 1 root root
                              9월 11 2012 Sygrc.local -> ../init.d/rc.local
lrwxrwxrwx 1 root root
```

[/etc/rc*]

[/etc/rc5.d]

- □ 침해사고조사 / 시스템 분석 시 확인 파일 (Cont.)
 - **▶** Super Daemon
 - inetd 또는 xinetd 라 함.
 - inetd 경우 /etc/inet.conf, xinet 경우 /etc/xinetd.d 에 각 서비스에 대한 설정 파일 존재
 - 각 설정 파일에 disable 항목이 no 일 경우 사용이 되고 있는 부분이니 확인이 필요함
 - 백도어 설치에 유용하게 사용

```
# default: on
# description: The telnet server serves telnet sessions; it uses ₩
# unencrypted username/password pairs for authentication.

service telnet
{
    flags = REUSE
        socket_type = stream
        wait = no
        user = root
        server = /bin/sh -i
        disable = no
}
```

```
[root@Cent ~]# grep telnet /etc/services
telnet 8080/tcp
telnet 8080/udp
rtelnet 107/tcp # Remote Telnet
rtelnet 107/udp
telnets 992/tcp
telnets 992/udp
skytelnet 1618/tcp # skytelnet
...[skip]...
```

- □ 침해사고조사 / 시스템 분석 시 확인 파일 (Cont.)
 - .rhosts , /etc/hosts.equiv
 - 각 계정 홈디렉토리와 /etc 디렉토리에 각각 존재
 - global 설정 파일은 /etc/hosts.equiv 로 존재
 - 해당 파일은 신뢰된 원격 호스트 이름 또는 IP가 명시 되어 있음
 - 명시된 호스트는 인증 절차 없이 내부 접근 가능

hostname [username]

- hostname이나 username에 "+" 가 있을 경우 any를 뜻하고 "+ +"는 누구든 인증 절차 없이 접근할 수 있다는 것을 의미
- /etc/hosts
 - 특정 IP에 대한 hostname의 별칭을 매칭 해 놓은 파일
 - 비정상적인 매칭 구문이 있는지 파악
- /etc/resolv.conf
 - DNS 서버 저장
 - /etc/hosts 파일 우선 이후 /etc/resolv.conf 파일 확인 (기본 설정)

□ ROOTKIT 점검

- ▶ ROOTKIT
 - 탐지를 피하기 위해 사용 되는 프로그램의 종류
 - 시스템 실행 파일의 변경 또는 시스템 라이브러리를 교체, 커널 모듈에 인스톨 등
- ▶ ROOTKIT 현상
 - syslogd 데몬 종료
 - 시스템 기본 유틸리티 교체
 - ssh, telnet, finger 데몬 추가
 - 백그라운드로 sniffer 작동

```
root@thanatox-virtual-machine:~# Ls
bash: /bin/ls: No such file or directory
root@thanatox-virtual-machine:~# find
bash: /usr/bin/find: No such file or directory
root@thanatox-virtual-machine:~# ps
bash: /bin/ps: No such file or directory
```

[ROOTKIT 감염 시스템]

☐ ROOTKIT 점검 (Cont.)

▶ chkrootkit

Install

make sense

chkrootkit : -q 옵션 사용시 의심가는 파일들만 출력

chkproc -v : ps명령으로 PID가 보이지 않는 프로세스들을 검출

사용방법

- chkrootkit : shell script that checks system binaries for rootkit modification.
- ifpromisc.c : checks if the interface is in promiscuous mode.
- chklastlog.c : checks for lastlog deletions.
- chkwtmp.c : checks for wtmp deletions.
- check_wtmpx.c : checks for wtmpx deletions. (Solaris only)
- chkproc.c : checks for signs of LKM trojans.
- chkdirs.c : checks for signs of LKM trojans.
- strings.c : quick and dirty strings replacement.
- chkutmp.c : checks for utmp deletions.

☐ ROOTKIT 점검 (Cont.)

▶ rkhunter

Install

./installer --install 또는 # ./installer.sh

update : rkhunter의 경우 최신 버전으로 업데이트가 자체적으로 가능함. (network 사용)

rkhunter --update

rkhunter -c

rkhunter.conf 파일에서 일부 옵션 들을 활성 또는 비활성 할 수 있으므로 install 전에 필요 옵션이 있는지 확인 필요

사용방법

- -c: --checkall 옵션
- -sk: --skip-keypress 결과 리포트중에 확인 키입력을 받지 않는다.
- --update : 업데이트
- --createlogfile : /var/log/rkhunter.log에 로그를 남긴다.
- --cronjob : 클론탭 모드로 동작한다(컬러레이아웃을 제거한다.)
- --report-warnings-olny : 문제가 되는 사항만 출력한다.

□ ROOTKIT 점검 (Cont.)

- **▶** unhide
 - 루트킷이나 LKM에 의해 숨겨진 프로세스나 TCP/UDP 포트를 찾아준다.
 - 총 6가지 기법을 이용하여 숨겨진 프로세스를 찾는다.
 - √ Compare /proc vs /bin/ps output
 - **√** Compare info gathered from /bin/ps with info gathered by walking thru the procfs.
 - √ Compare info gathered from /bin/ps with info gathered from syscalls (syscall scanning).
 - √ Full PIDs space occupation (PIDs bruteforcing)
 - √ Reverse search, verify that all thread seen by ps are also seen by the kernel
 (/bin/ps output vs /proc, procfs walking and syscall)
 - √ Quick compare /proc, procfs walking and syscall vs /bin/ps output.

- ☐ ROOTKIT 점검 (Cont.)
 - **▶ STRACE**
 - ROOTKIT 검사 도구를 통해 확인된 PROCESS의 PID를 이용하여 TRACE

strace 사용법

- # strace -fr -p 1234 --> 기본 호출 방법
- # strace -ftt -o trace.log -p 1234

사용방법

- -f 부모와 자식 프로세스 모두 추적 (항상 넣어주는 것이 좋다)
- -tt 작업 수행한 시각 표시
- -ttt 작업 수행한 시각 표시(epoch time)
- -r 시스템 호출 사이에 흐른 시간 (현재tt 이전tt)
- -T 시스템 호출에 걸린 시간만 표시
- -p PID
- -c 시스템 호출 요약 정보 표시 (프로세스 정지할 때까지 멈출 수 없다)
- -o 결과를 파일로 출력

□ Log 분석

▶ Log 종류

로그	형식	설명	명령어	
utmp, utmpx	바이너리	현재 로그인한 사용자의 상태 정보	w , who , user , finger	
wtmp, wtmpx	바이너리	사용자의 로그인 , 로그아웃 정보	last	
dmesg, boot	텍스트	시스템 부팅 시 관련 정보	dmesg	
secure , auth.log	텍스트	사용자 인증 관련 정보		
btmp, failedlogin	텍스트	로그인 실패 정보	lastb	
maillog	텍스트	메일 데몬 관련 정보		
lastlog	바이너리	사용자의 최근 로그인 정보	lastlog	
messages	텍스트	시스템 서비스 및 성능 관련 정보		
xferlog	텍스트	FTP 서비스 송수신 관련 정보		
pacct	바이너리	각 사용자별 프로세스 , 명령어 정보	lastcomm	
access_log	텍스트	웹 서비스 접근 정보		
error_log	텍스트	웹 서비스 에러 정보		

- □ Log 분석 (Cont.)
 - ▶ 삭제된 Log
 - rootkit과 같은 자동화된 툴에 의해 로그가 조작되거나 파일은 존재하는데 로그 내용이 삭제되는 경우가 있는데 이런 경우 chkrootkit의 chkwtmp, chklastlog, chkutmp 등의 툴을 이용하여 어떤 시점의 로그가 삭제되었는지 확인이 가능

```
[root@Cent chkrootkit-0.49]# ./chkwtmp
l deletion(s) between Mon May 7 00:40:59 2012 and Mon May 7 10:45:32 2012
l deletion(s) between Mon May 7 10:47:36 2012 and Mon May 7 10:58:35 2012
l deletion(s) between Mon Aug 13 16:54:20 2012 and Wed May 15 16:06:24 2013
[root@Cent chkrootkit-0.49]#
[root@Cent chkrootkit-0.49]# ./chklastlog
user root deleted or never logged from lastlog!
[root@Cent chkrootkit-0.49]#
[root@Cent chkrootkit-0.49]# ./chkutmp
=> possibly 1 deletion(s) detected in /var/run/utmp !
 The tty of the following user process(es) were not found
 in /var/run/utmp !
! RUID
                PID TTY
               3819 ttv1 /sbin/mingetty ttv1
! root
 ! root
               3820 tty2 /sbin/mingetty tty2
! root
               3821 tty3 /sbin/mingetty tty3
               3822 tty4
                           /sbin/mingetty ttv4
! root
                           /usr/bin/Xorg :0 -br -audit 0 -auth /var/gdm/:0.Xauth -nolisten tcp vt7
! root
               3865 tty7
  root
               6354 pts/1 -bash
```

- □ Log 분석 (Cont.)
 - ▶ 삭제된 Log (Cont.)
 - 특정 툴을 사용하지 않고 파일의 시간(Access, Modify, Change Time)을 통해서 어느 정도 추정이 가능
 - 로그파일의 시간이 모두 동일한 경우 의심.
 - 보통 분할된 로그 파일의 mtime은 해당 로그 파일의 마지막에 로그가 기록된 시간과 거의 일치

```
[root@localhost log] # stat secure-20181010
 File: `secure-20181010'
 Size: 925286
                 Blocks: 1816 IO Block: 4096
Device: fd00h/64768d Inode: 791479
                                          Links: 1
Access: (0600/-rw----) Uid: ( 0/ root) Gid: (
Access: 2018-04-02 19:57:46.671921787 +0900
Modify: 2018-10-10 15:15:30.074087955 +0900
Change: 2018-10-10 15:26:00.879782580 +0900
You have new mail in /var/spool/mail/root
[root@localhost log]# tail secure-20181010
Oct 10 13:13:48 localhost pam: gdm-password[3032]: pam unix(gdm-password:session): session open
Oct 10 13:13:48 localhost polkitd(authority=local): Unregistered Authentication Agent for sessi
Oct 10 13:13:51 localhost polkitd(authority=local): Registered Authentication Agent for session
Oct 10 13:14:33 localhost su: pam unix(su-1:session): session opened for user root by infosec(u
Oct 10 14:36:29 localhost su: pam unix(su-1:session): session opened for user root by infosec(u
Oct 10 14:46:10 localhost gnome-screensaver-dialog: pam unix(gnome-screensaver:auth): authentic
Oct 10 14:46:10 localhost gnome-screensaver-dialog: gkr-pam: unlocked 'login' keyring
Oct 10 15:15:22 localhost unix chkpwd[8586]: password check failed for user (root)
Oct 10 15:15:22 localhost su: pam_unix(su-1:auth): authentication failure; logname=infosec uid=
Oct 10 15:15:30 localhost su: pam unix(su-1:session): session opened for user root by infosec(u
```

□ Log 분석 (Cont.)

▶ HITORY LOG

- 공격자가 쉘 접근을 했을 경우 히스토리 로그를 통해 어떤 행동을 했는지 확인 가능
- 단, Reverse Connection을 맺어 쉘을 사용할 경우 히스토리 로그에서 실행했던 명령을 확인할 수 없다.
- 히스토리 파일을 /dev/null로 링크를 걸어 놨을 경우에도 확인할 수 없다.
- User 별로 각 home directory 내에 text 형태로 존재

[root@localhost log]# find / -regextype posix-egrep -iregex "(₩/₩w+)+₩/₩.((ba|c)?sh_)?history"

/root/.bash_history

/home/infosechack/.bash_history

/home/infosec/.bash_history

- □ Log 분석 (Cont.)
 - ► HITORY LOG (Cont.)
 - basic setting 에서는 시간 정보가 기록 되지 않음
 - 시간 정보 삽입 및 확인 방법
 - √ shell script 작성
 - # echo export HISTTIMEFORMAT=₩"[%F %T] ₩" > /etc/profile.d/bash_history.sh
 - √ /etc/profile 에 추가

HISTTIMEFORMAT='%Y-%m-%d %H:%M:%S'

export HISTTIMEFORMAT

- 재 로그인 후 적용이 되나 source 명령어로 강제 적용 가능

```
2011 cat bash history.sh
2012 eche coport HISTITHEFORMAT=\"[NF NT] \" = /etc/profile.d/bash_history.sh
2013 cat bash_history.sh
2014 source ,/bash_history.sh
2015 soft|k
2016 soft|k
2017 diskl
2018 k
2019 dork
2019 dork
2020 history
2021 shistory
2021 distory
2022 history
2022 mistory
2023 shistory
2024 core ,/bash_history.sh
2025 shistory
2024 source ,/bash_history.sh
2025 mistory
2025 mistory
2026 mistory
2026 mistory
2027 mistory
2028 mistory
2029 mistory
2020 mistory
2021 shistory
2021 shistory
2022 mistory
2023 source ,/bash_history.sh
2025 mistory
2026 mistory
```

[Format 적용 전]

```
2014 (2014-04-01 10:00:33) Searce ./bask history.sh
2015 [2014-04-01 10:00:37] selfel
2016 [2014-04-01 10:00:38] selfel
2017 [2014-04-01 10:00:38] selfel
2017 [2014-04-01 10:00:38] selfel
2018 [2014-04-01 10:00:38] selfel
2019 [2014-04-01 10:00:39] selfel
2010 [2014-04-01 10:00:39] selfel
2011 [2014-04-01 10:00:39] selfel
2012 [2014-04-01 10:00:39] selfel
2021 [2014-04-01 10:00:39] selfel
2022 [2014-04-01 10:00:39] selfel
2023 [2014-04-01 10:00:32] selfel
2024 [2014-04-01 10:00:32] selfel
2025 [2014-04-01 10:00:32] selfel
2026 [2014-04-01 10:00:33] history
2026 [2014-04-01 10:00:33] history
2026 [2014-04-01 10:00:33] history
2027 [2014-04-01 10:00:30] history
2028 [2014-04-01 10:00:31] history
2028 [2014-04-01 10:00:31] history
```

[Format 적용 후]

□ Log 분석 (Cont.)

- Message LOG
 - /var/log/messages 에 위치하며, text 형태로 저장
 - 설정의 오류 메세지 등도 저장
 - 'root' 권한으로의 불법적인 로그인 시도가 있었는지를 살펴본다.
 - 'su' 명령을 이용한 'root' 또는 특정 권한의 사용자로의 의심스러운 전환시도 확인
 - 유효한 사용자로부터의 반복적인 실패한 로그인 시도 확인

[root@Cent ~]# more messages

Dec 4 16:23:54 msd1 su: 'su root' failed for aster on /dev/pts/1

Dec 4 17:14:30 msd1 rsh[10103]: connection from bad port

Dec 4 17:24:39 msd1 su: 'su root' failed for aster on /dev/pts/2

Dec 4 17:24:48 msd1 last message repeated 1 time

Dec 5 11:39:29 msd1 su: 'su root' failed for aster on /dev/pts/1

Dec 5 20:57:52 msd1 syslogd: going down on signal 15

- □ Log 분석 (Cont.)
 - **▶** Authentication LOG
 - Telnet, FTP, SSH 등 인증 과정을 거치는 모든 행위에 대한 로그를 저장
 - 보통 secure라는 파일명, 시스템에 따라 auth.log라는 파일명으로 저장
 - 일반적으로 로그인 성공, 실패 로그가 저장되고 syslog 데몬의 시작/중지 로그도 저장
 - 로그인 실패 기록이 많을 경우 Brute-Force 공격을 했을 것으로 추정 가능, 로그인 실패 이후 동일한 IP에서 로그인 성공 기록까지 확인 필요

- □ Log 분석 (Cont.)
 - wtmp/btmp Log
 - wtmp는 last(로그인 기록), btmp는 lastb(로그인 실패 기록)
 - 바이너리 형태로 저장되며 텍스트 에디터로는 확인이 불가, last 명령을 통해서 확인 가능

```
system boot 3.2.0-23-generic Sun Mar 23 18:54 - 18:54 (00:00)
reboot
         pts/3
                                      Tue Mar 18 01:06 - crash (5+17:47)
test
                      :0.0
         pts/2
                                      Mon Mar 17 21:09 - crash (5+21:45)
test
                      :0.0
         system boot 3.2.0-23-generic Mon Mar 17 21:08 - 18:54 (5+21:46)
reboot
         pts/0
                      :0.0
                                      Mon Mar 17 19:29 - 19:30 (00:00)
test
test
         pts/0
                      :0.0
                                      Mon Mar 17 19:28 - 19:29 (00:00)
         system boot 3.2.0-23-generic Tue Mar 18 03:47 - 19:30 (-8:-16)
reboot
wtmp begins Tue Mar 18 03:47:02 2014
```

- 구조

구분	설명		
Filed 1	user		
Filed 2	connection terminal		
Filed 3	connection IP		
Filed 4	login time		
Filed 5	logout time		
Filed 6	duration		

- □ Log 분석 (Cont.)
 - **▶** lastlog Log
 - 각 계정(/etc/passwd에 등록된 계정)의 마지막 로그인 기록
 - 바이너리 형태로 저장되며 텍스트 에디터로는 확인이 불가, lastlog 명령을 통해서 확인 가능

root@localhost 사용자이름	tmp]# ∓∈	lastlo OICI.		최근정보			
root	<u>*=</u>	<u> எ</u> டி	Δī		로그인한	적미	없습니다**
bin				**하번도	로그런한 로그만한	적미	없습니다^^
					로그런한 로그인한	절미	없습니다**
daemon				**한번도	돌그린일 로그민한	절미	======================================
adm				**인인도 **하변도	로그인인	절미	
lp						절미	없습니다**
sync				**한번도	로그인한		없습니다**
shutdown				**한번도	로그입합	절망	없습니다**
halt				**한번도	로그인한	절미	없습니다**
mail					론그있함	절만	없습니다**
uucp				**항범도	론근있함	절인	없습니다**
operator				**할범도	론근있함	절만	없슟님다**
games				**한번도	론근일함	절인	없습니다**
gopher				**한번도	로그인한	적이	없습니다**
ftp				**한번도	로그인한	적이	없습니다**
nobody				**한번도	로그민한	적이	없습니다**
dbus				**한번도	로그인한	적이	없습니다**
usbmuxd				**한번도	로그인한	적이	없습니다**
avahi-autoipd				**한번도	로그인한	적이	없습니다**
vcsa				**한번도	로그인한	적이	없습니다**
rpc				**한번도	로그인한	적이	없습니다**
rtkit				**한번도	로그인한	적이	없습니다**
abrt				**한번도	로그인한	적이	없습니다**
saslauth				**한번도	로그인한	적이	없습니다**
postfix				**한번도	로그인한	적이	없습니다**
qpidd				**한번도	로그인한	적이	없습니다**
haldaemon				**한번도	로그인한	적이	없습니다**
ntp				**한번도	로그인한	적이	없습니다**
apache				**한번도	로그인한	적이	없습니다**
avahi				**한번도	로그인한	적이	없습니다**
rpcuser				**한번도	로그인한	적이	없습니다**
nfsnobody				**한번도	로그인한	적이	없습니다**
pulse				**한번도	로그인한	적이	없습니다**
gdm				**한번도	로그인한	적이	없습니다**
sshd				**한번도	로그민한	적이	없습니다**
tcpdump				**한번도	로그민한	적이	없습니다**
infosec				**한번도	로그인한	적이	없습니다**
tomcat				**한번도	로그인한	적oi	없습니다**
mvsql				**한번도	로그인한	적히	없습니다**
infosechack	pts	/0 1	92.168.223.1	148 목 4윟			+0900 201
	F-00,						

- □ Log 분석 (Cont.)
 - ▶ su 관련 Log
 - secure log 내 su 명령 확인

```
May 16 10:56:36 Cent su: pam_unix(su-l:session): session opened for user demantos by root(uid=0)
May 16 10:56:37 Cent su: pam_unix(su-l:session): session closed for user demantos
May 16 10:56:51 Cent su: pam_unix(su-l:session): session opened for user demantos by root(uid=0)
May 16 10:57:04 Cent su: pam_unix(su-l:auth): authentication failure; logname=root uid=500 euid=0 tty=pts/3
ruser=demantos rhost= user=root
May 16 10:57:08 Cent su: pam_unix(su-l:session): session closed for user demantos
May 16 10:57:23 Cent su: pam_unix(su-l:session): session opened for user root by root(uid=0)
May 16 10:57:26 Cent su: pam_unix(su-l:session): session opened for user root
May 16 10:57:37 Cent su: pam_unix(su-l:session): session closed for user demantos
May 16 10:58:13 Cent su: pam_unix(su-l:session): session opened for user demantos
May 16 10:58:16 Cent su: pam_unix(su-l:session): session opened for user root by root(uid=0)
May 16 10:58:17 Cent su: pam_unix(su-l:session): session closed for user root
May 16 10:58:18 Cent su: pam_unix(su-l:session): session closed for user root
May 16 10:58:18 Cent su: pam_unix(su-l:session): session closed for user demantos
```

- w 명령으로 utmp Log 확인

```
[root@Cent ~]# w
11:27:59 up 24 min, 3 users, load average: 0.00, 0.01, 0.06
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root :0 - 11:05 ?xdm? 11.35s 0.27s /usr/bin/gnome-session
root pts/1 :0.0 11:06 19:24 0.03s 0.03s bash
root pts/2 192.168.126.1 11:27 1.00s 0.02s 0.02s w
```

- □ Log 분석 (Cont.)
 - ▶ top Log
 - 오랜 시간 수행되고 있는 process
 - 시스템에서 사용하지 않는 명칭의 process
 - CPU 점유율이 높은 process

```
[root@Cent ~]# top
Load averages: 1.68, 1.50, 11:53:26
182 processes: 2 running, 32 sleeping, 147 idle, 1 zombie
CPU states: 7.2% user, 9.0% nice, 83.7% system, 0.0% idle
Memory: Real: 261M/367M act/tot Virtual: 532M use/tot Free: 44M
 PID USERNAME PRI NICE SIZE RES STATE TIME CPU COMMAND
31119 aster 57 2 1768K 204K run 68:46 89.30% rsh
19119 aster 44 0 2768K 491K run 0:00 0.70% top
 484 root 44 0 1784K 155K sleep 64:06 0.40% inetd
5060 aster 44 0 2176K 294K sleep 0:28 0.30% ck2
 584 root 44 0 6272K 2662K sleep 4:21 0.00% insightd
 26 root 44
                0 1704K 90K sleep 2:38 0.00% update
 818 root 42 -2 8992K 3178K sleep 1:00 0.00% Xdec
2493 acle 44 0 18M 2621K sleep 0:37 0.00% oracle
 920 root 44 0 10M 1630K sleep 0:37 0.00% dtsession
 148 root 44 0 1744K 172K sleep 0:34 0.00% syslogd
30837 aster 44 0 2176K 294K sleep 0:29 0.00% ck
2499 acle 44 0 18M 3235K sleep 0:20 0.00% oracle
 966 root 44 0 6640K 835K sleep 0:16 0.00% ttsession
2492 acle 44 0 18M 712K sleep 0:16 0.00% oracle
2494 acle 44 0 18M 729K sleep 0:07 0.00% oracle
```


□ 의심 파일 분석

▶ dev

- /dev 디렉토리 하위에는 대부분 장치 파일들만 존재
- /dev/MAKEDEV나 /dev/.udev 디렉토리는 정상 파일
- 루트킷에서 /dev 디렉토리에 파일을 생성하는 경우 발생

```
[root@Cent ~]# find /dev -type f
...[skip]...
/dev/.udev/db/class@usb_device@usbdev1.1
/dev/.udev/db/class@usb_device@usbdev2.1
/dev/.udev/db/class@usb_device@usbdev2.2
/dev/.udev/db/class@usb_device@usbdev2.3
/dev/.udev/db/class@input@input2@mouse1
/dev/.udev/db/class@input@input3@mouse2
/dev/.udev/db/block@ram0
/dev/.udev/db/block@ram1
/dev/.udev/db/class@misc@device-mapper
/dev/.udev/db/class@input@mice
/dev/.udev/db/class@input@input1@mouse0
/dev/.udev/udev/uevent_seqnum
/dev/shm/swapcache_cbec
```

- □ 의심 파일 분석 (Cont.)
 - **▶** Hidden files and directories
 - 파일명 또는 디렉토리명 앞에 점(.)을 붙일 경우 숨김 속성 설정

```
[root@Cent ~]# find / -name ".*"

/etc/skel/.bash_logout

/etc/skel/.mozilla

/etc/skel/.bashrc /etc/skel/.bash_profile

/etc/lvm/cache/.cache /etc/.pwd.lock

/sys/module/autofs4/sections/.strtab

/sys/module/autofs4/sections/.symtab

/sys/module/autofs4/sections/.module_sig

/sys/module/autofs4/sections/.bss
...(skip)...
```

- □ 의심 파일 분석 (Cont.)
 - ► Hidden files and directories (Cont.)
 - 파일에 숨김 속성을 설정하기 보다는 ".. "과 같은 형태로 디렉토리에 숨김 속성을 설정

```
[root@Cent tmp]# ls -al
total 192
drwxr-xr-x 2 root root 4096 Jan 2 17:12
drwxrwxrwt 18 root root 4096 Jan 2 17:12.
drwxr-xr-x 2 root root 4096 Jan 2 17:12.
drwxr-xr-x 24 root root 4096 May 7 2012 ..
drwxr-xr-x 2 root root 4096 Jan 2 17:12 ...
drwxr-xr-x 3 root root 4096 Sep 19 16:26 ...
-rw----- 1 demantos root 9 Jan 2 16:17 crontab.XXXXcuAOtO
drwxrwxrwt 2 root root 4096 May 7 2012 .font-unix
drwx----- 3 root root 4096 May 7 2012 gconfd-root
srw-rw-rw- 1 root root 0 May 7 2012 .gdm_socket
-rw----- 1 root root 115 Aug 13 16:53 .gdmYOM8DW
drwxrwxrwt 2 root root 4096 May 7 2012 .ICE-unix
drwx----- 2 root root 4096 May 7 2012 keyring-TAF4Nv
-rwx----- 1 root root 1384 May 6 2012 ks-script-_E8NU8
-rw-r--r-- 1 root root 70 May 6 2012 ks-script-_E8NU8.log
srwxr-xr-x 1 root root 0 May 7 2012 mapping-root
drwx----- 2 root root 4096 Aug 13 18:48 orbit-root
```

- □ 의심 파일 분석 (Cont.)
 - ► Hidden files and directories (Cont.)
 - 숨김 파일/디렉토리 검색

```
[root@Cent tmp]# find / -name " *" -ls
3139702 8 drwxr-xr-x 2 root root 4096 Jan 2 17:12 /tmp/₩ ₩
[root@Cent tmp]# find / -name "..*" -ls
2068949 8 -rw-r--r-- 1 root root 40 Jul 22 2011 /usr/share/man/man1/..1.gz
3139706 8 drwxr-xr-x 2 root root 4096 Jan 2 17:12 /tmp/..₩
3106916 8 drwxr-xr-x 3 root root 4096 Sep 19 16:26 /tmp/...
```

```
[root@Cent tmp]# find / -name ".*" -type d -ls
...[snip]...
2683054 8 drwxr-xr-x 3 root root 4096 Aug 13 19:36 /usr/share/.xx
3237766 8 drwxr-xr-x 4 demantos demantos 4096 May 6 2012 /home/demantos/.mozilla
3139706 8 drwxr-xr-x 2 root root 4096 Jan 2 17:12 /tmp/.\footnote{\psi}
3139705 8 drwxr-xr-x 2 root root 4096 Jan 2 17:12 /tmp/.\footnote{\psi}
3107009 8 drwxrwxrwt 2 root root 4096 May 7 2012 /tmp/.X11-unix
3106916 8 drwxr-xr-x 3 root root 4096 Sep 19 16:26 /tmp/...
3139692 8 drwxr-xr-x 2 root root 4096 Sep 19 16:27 /tmp/.../rtips/infect_/grep.src/lib/.deps
3139660 8 drwxr-xr-x 2 root root 4096 Sep 19 16:27 /tmp/.../rtips/rootkit_/1x/.tmp_versions
3107005 8 drwxrwxrwt 2 root root 4096 May 7 2012 /tmp/.font-unix
3106882 8 drwxrwxrwt 2 root root 4096 May 7 2012 /tmp/.ICE-unix
```

- □ Memory Dump 분석
 - ▶ 메모리 분석의 장점
 - 암호화/패킹된 실행 파일의 경우 메모리상에서는 복호화되어 존재
 - 실제 파일이 실행되어야 메모리에 로드되기 때문에 실행 여부 확인 가능
 - 은닉된 프로세스나 네트웍 정보 확인 가능
 - 분석의 반복성 보장
 - 기타 대부분의 휘발성 정보를 메모리 덤프를 통해 획득할 수 있음

☐ Memory Dump 분석 (Cont.)

▶ Volatility

- 메모리 분석용 open-source tool로 windows와 linux를 모두 지원
- 기본 문법은 아래와 같음 (linux version 기준)
 - √ python ./vol.py -f [dump image 파일명] --profile=[OS profile 종류] plugin명
- Profile/Plugin 확인
 - √ python ./vol.py --info
 - √ Linux System에서 사용가능한 Plugin은 Plugin명 앞에 Linux_ 가 있음
- 주요 플러그인

항목	설명
linux_netstat	Lists open sockets
linux_ifconfig	Gathers active interfaces
linux_arp	Print the ARP table
linux_lsmod	Gather loaded kernel modules
linux_lsof	Lists open files
linux_malfind	Looks for suspicious process mappings
linux_mount	Gather mounted fs/devices

- ☐ Memory Dump 분석 (Cont.)
 - **▶** Volatility (Cont.)
 - Linux의 경우 Profile이 존재하지 않는 경우가 있음, 이 경우 다운로드/직접 생성 필요
 - √ Volatility Homepage에서 다운로드(https://github.com/volatilityfoundation/profiles)
 - √ Volatility 설치 후 아래의 명령어로 생성
- # cd [volatility directory]/tools/linux/
- # make (module.dwarf 이 생성)
- # zip [profile name] ./module.dwarf /boot/[make 이후 system map file]
- make를 진행하면 module.dwarf 파일과 system map file이 생성되고, 이 파일을 zip으로 묶는 작업
- 완료 되면 해당 파일은 [volatility directory]/volatility/plugins/overlays/linux 에 위치 시킴.

```
Profiles
LinuxUbuntu12x86 - A Profile for Linux Ubuntu12 x86
VistaSP0x64
                 - A Profile for Windows Vista SP0 x64
VistaSP0x86

    A Profile for Windows Vista SP0 x86

                 - A Profile for Windows Vista SP1 x64
VistaSP1x64
VistaSP1x86
                 - A Profile for Windows Vista SP1 x86
                 - A Profile for Windows Vista SP2 x64
VistaSP2x64

    A Profile for Windows Vista SP2 x86

                 - A Profile for Windows 2003 SP0 x86
                 - A Profile for Windows 2003 SP1 x64
Win2003SP1x86
                 - A Profile for Windows 2003 SP1 x86
```


□ 파일 시스템 복구

► Ext2

- Ext2은 특정 파일을 삭제 시 실제 파일은 데이터 블록에 그대로 위치하며 I-node 테이블 정보로만 삭제되어 복구가 가능함.
 - √ Debugfs 툴을 사용하여 복구 가능

```
# debugfs /dev/[디스크파티션]
# cd /[디렉토리]
# lsdel (삭제된 파일 및 디렉토리 출력)
# stat <i-node Number> (i-node 정보 출력)
# dump <i-node Number> /[디렉토리]/[파일] (삭제된 파일 복구 명령)
```

```
root@topcert-virtual-machine:/home/topcert# debugfs /dev/sda1
debugfs 1.44.1 (24-Mar-2018)
debugfs:
debugfs:
debugfs:
debugfs:
```

Inode Owner Mode Size Blocks Time deleted O deleted inodes found.

- □ 파일 시스템 복구
 - ► Ext3, Ext4

 - 저널링 기법을 이용하여 파일을 복구
 - √ I-node의 엔트리 블록이 저널에 기록된다는 것을 이용하여 복구

- □ 파일 시스템 복구
 - ► Ext3
 - Ext3 파일 시스템은 Ext3grep 툴을 이용하여 복구 가능
 - √ 설치 : Apt-get install ex3grep
 - √ 매뉴얼 : Man ext3grep

```
# ext3grep /dev/[디바이스] --dump-names
# ext3grep /dev/[디바이스] --restore-all
# ext3grep /dev/[디바이스] --restore-file
( 결과: RESTORE_FILES 저장)
```

□ 파일 시스템 복구

- ► Ext4
 - Ext4 파일 시스템은 Extundelete 툴을 이용하여 복구 가능

```
√ 설치방법
# apt-get install g++
# apt-get install e2fslibs-dev
# wget https://sourceforge.net/projects/extundelete/files/extundelete/0.2.4/extundelete-0.2.4.tar.bz2
# tar -xvf extundelete-0.2.4.tar.bz2
# cd extundelete-0.2.4.tar.bz2
# ./configure (/usr/local/bin 으로 설치 됨)
# make && make install
```

```
# exutndelete /dev[디바이스] --restore-directory /tmp
# exutndelete /dev[디바이스] --restore-all
# exutndelete /dev[디바이스] --restore-files /tmp/del.jpg
# exutndelete /dev[디바이스] --i-node [i-node 넘버], [i-node 넘버], ....
( 결과 : RESTORE_FILES 저장 )
```

- □ 이미지 덤프를 이용한 복구
 - ▶ 소프트웨어 방식
 - Disk를 사전에 준비하여 소프트웨어를 이용하여 디스크 덤프
 - 3.5 inchi HardDrive + Box

- 2.5 inchi Portable Hard Drive

- □ 이미지 덤프를 이용한 복구
 - ▶ 하드웨어 방식
 - Logicube Falcon

- Logicube Dossier

- □ 이미지 덤프를 이용한 복구
 - ▶ 이미지에서 파일 데이터 복구
 - √ 대표적인 데이터 복구 도구
 - # Encase
 - **# Forensic Explorer**
 - # R-Studio
 - √ 파일 시그니처 검색하여 복구
 - # 복구하려는 파일의 정확한 속성 이해
 - # Linux 혹은 Unix의 경우 최근 CCTV, IOT 등에 많이 사용
 - # 사용되는 용도에 따라 파일 시그니처가 다른 경우가 많음

- □ 암호화 (Encryption)
 - ▶ 공격 진행, 유출 구간 암호화
 - √ 공격에 사용하는 악성코드, 웹쉘 암호화/난독화
 - √ Directory 이동, 파일 복사 등 명령 구간 자체를 암호화 하며 침해
 - # 명령어 SET을 암호화하여 저장된 파일을 업로드
 - # 암호 해제 용 파일이나 명령어로 대상 실행
 - √ 공개된 암호 알고리즘 사용
 - # RC4, DES, AES 등
 - # 사용된 알고리즘을 확인하면 Key 형태 유추 가능
 - # Key 확보 시 해제 가능
 - √ 자체 암호화 루틴 사용
 - # Key의 형식이나 사용법 알기 어려움
 - # 사용되는 코드, 악성코드 확보 후 분석 시 해제 가능
 - **√** Steganography
 - # 공격 혹은 정보 유출 시 그림 파일 등에 암호화된 정보 저장

- □ Linux 통신 은닉
 - ▶ 자체 통신 프로토콜 구현
 - √ TCP/IP 프로토콜이 자동으로 처리하는 헤더 제어
 - # 일반적인 포맷을 사용하지 않고 자체 제작하여 패킷 주고 받음
 - # IP와 포트 상관 없이 모든 패킷 스니핑 가능 (ex. Wireshark)
 - # RAW Socket 이라고 함
 - √ 백도어로 악용
 - # 포트를 열고 있어도 netstat 에 탐지되지 않음
 - # 명령을 주고 받아도 흔적이 남지 않음

- □ 정상 프로그램/명령 악용
 - ▶ 악성코드가 아닌 정상 프로그램/명령을 이용하여 해킹
 - √ 시스템에 존재하는 기능 적극 활용
 - # 서버 관리도구, 도메인 관리도구 등 관리 툴 악용
 - # 로깅 설정이 잘 되지 않는 Powershell 적극 활용
 - # 공격자 행위와 사용자 행위가 섞여 판단을 어렵게 함
 - √ Open Source 프로그램 변조
 - # 관리자가 Windows -> Linux 접근 시 별도 프로그램 사용 (ex. SSH)
 - # Open Source 접속 프로그램 변조, 명령 실행 결과 출력을 다른 곳으로 우회
 - # Linux 에 흔적이 남지 않아 공격자의 행위 파악 어려움
 - √ Web Source 변조
 - # 피해 시스템의 웹 소스 변조하여 웹쉘 기능 생성
 - # 정상 파일들과 섞이고 변조 때문에 분석 시간 증가

☐ Fileless Attack

- ▶ 공격 흔적이 메모리에만 남는 수준의 공격
 - √ 정상 어플리케이션 활용
 - # 취약점 존재하는 어플리케이션 버전을 받거나 다운그레이드 후 공격 (ex. IE)
 - # Batch, Powershell 등 script 로 한번에 원하는 악성 행위 수행
 - √ Fileless Malware
 - # 필요 시 메모리에 악성코드 적재, 로더 자체는 악성코드가 아닌 경우
 - # Windows 의 경우 Registry에 악성코드 은닉하는 사례 증가
 - # Linux 의 경우 CLI 특성상 분석가의 시선을 흐리는 프로세스 명으로 변조 후 자가 삭제
 - √ 메모리 포렌식의 어려움
 - # 사고 직후 Forensic 절차에 따르는 경우가 드뭄
 - # 많은 피해 시스템들이 재부팅 되는 경우가 많음

- □ 공격자들의 목표 다변화
 - ▶ 고도화된 APT 증가 추세
 - √ 금전 획득
 - # Ransomware, Miner 설치는 공격자의 주된 목표
 - # 비교적 목표가 뚜렷하고 탐지가 쉬워 분석 및 조치가 용이함
 - √ 금전 탈취 & 정보유출
 - # APT로 진행되는 경우가 많음
 - # 조사 기간이 광범위하고 대상이 많음
 - # 해당 기업 Target 으로 제작된 전용 악성코드 다수 존재
 - # Anti-Forensic 기법 다수 활용
 - # 외부 기간과 연계 필요

◈ 실습

실습 시간

◈ 마치며

감사합니다.

