YouroQNet

Quantum Text Classification with Context Memory

Team: QwQ

Reporter: Armit

Text Classification in a Quantum Manner

- what the problem is
 - NLP sentiment comprehension
 - the dataset just holy shit
- how current methods work
 - TextCNN, TextRNN, BERT
 - QNLP, QSANN
- nevertheless our contributions
 - heuristic k-gram tokenizer
 - YouroQNet
 - computational analysis

1abel,text 6,好戏开锣了 6,可是她其实爱着他。 6,总之就是很像我觉得有胡子更像知道宋山木为啥一直留胡子吗?因为没胡子的宋山木确实很像强奸犯。(被抗 6,豪犀利啊。孩子他妈。 6,好心大了,所有的大事都小了。【禅语悟道】心小了,所有的小事就大了;心大了,所有的大事都小了。大多 6,"你说哪个?强哥结婚了,你没机会了哇!强哥你结婚了啊~我老婆是狮子座 狮子:不顾形象的家长处女: 6,我焦急地凝望南方已五千年!夜色有些宁静也有些冷清,寒风吹过我的神智突然好清醒,此时真希望这只是一 6,300+600+1200+是什么时候开始流行的哇塞~ 北京的书啥时候来啊~ 2010~ 2011年秋冬潮流专刊今日上市了 6,一起度过我们在一起的第一个生日吧!亲口对他说一句生日快乐。温州昆明巡演订票,捐橙子方法请见另。个人 6,看球了看球了。看这种比赛就是纯欣赏了,反正普级了多半也要被魔兽给兽兽掉。 6,"等我找到男朋友,我第一件事就是抽他俩嘴巴。"众惊,忙问缘由。"我得问问,这些年你tmd 躲哪去了!" 6,与元稿子了,我终于可以把老师从黑名里里放出来了,力家科字总是当月给福费!力家科字是本儿菲请杂志

ambiguous example, wrong label and informal pragmatics

PCA & TSNE over word-level TF-IDF

kgram tokenizer

这/是/一/个/例/子 $\log p = -50.4$ 这是/一个/例子 $\log p = -46.4$ 这是/一个/例/子 $\log p = -39.0$

.

word embedding

aligner

(split or pad to model length)

loss

(binary cross entroy)

$$= y \log(x) + (1 - y) \log(1 - x)$$
$$x \in [0,1], y \in \{0,1\}$$

Text Classification

Read the circuit:

- $|p_i\rangle$ is current context, $|q_i\rangle$ is buffer for incoming data
- param ψ_i is for ansatz, θ_i is from word embed
- initialize context with H gate
- bias context via a SEC (Strong Entangle Circuit)
- repeat k times for sequence comprehension
 - load data via a SEC
 - write to context via a CMC (CRot Multi Circuit)
 - digest context via a SEC
 - read from context via a CMC
- prob measure on context qubits

Content Table

- Entropy-based Heuristic k-gram Tokenizer
- YouroQNet for Quantum Sequence Classification
- Computational Analysis over Simple QCircuits

Entropy-based Heuristic k-gram Tokenizer

- why tokenizing
 - not necessary, even not work on small datasets
 - reduce input length for limited qubits
- from fixed n-gram to adaptive k-gram
 - build several n-gram vocabs from the corpus
 - word presence probability
 - tokenize corpus by longest match
 - bidirectional beam search
 - recollect all tokenized words as new vocab
 - can be iterative if needed

这是一个例子

(candidate n-gram words)

这/是/一/个/例/子

这是/是一/一个/<u>个例</u>/例子 这是一/是一个/一个例/个例子 这是一个/是一个例/一个例子

(recollected k-gram words)

Tokenizer: concrete example

- processing pipeline
 - text normalization
 - make char and 2/3/4/5-gram vocab
 - filter Chinese words for n-gram
 - truncate size by min_freq=3
 - calculate word presence probability
 - tokenize the corpus with merged vocabs
 - build trie tree for longest match
 - bi-directional beam search with n_beam=3
 - gather all tokenized tokens
 - truncate size by min_freq=5
 - maximize $p(W) = \prod_i p(w_i)$
 - p(这)p(是)p(一)p(个例)p(子)
 - p(这是)p(一个)p(例)p(子)

```
s = R_DEADCHAR.sub('', s)
s = R_CJK_PERIOD.sub('.', s)
s = R_CJK_PUASE.sub(',', s)
s = wchar_to_char(s)
s = s.lower()
s = R_WHITESPACE.sub(' ', s)
s = R_NUMBER.sub('0', s)
s = try_concat(s)
s = fold_triple(s)
```

text norm

```
n vocab
         n_vocab
n-gram
                    trunc.
           3345
 char
          34363
                     4438
2-gram
3-gram
          48720
                     1264
4-gram
          45478
                     238
5-gram
          38812
                      44
k-gram
           4934
                     2713
k-gram+
           6376
                     2899
```

n/k-gram vocabs size

n-gram vocabs

Tokenizer: interactive demo

```
C;¥Windows¥System32¥cmd.exe - conda activate q - python.exe vis_tokenizer.py —
-> py vis tokenizer.py
input a sentence: 这是一个例子
-39.0381 这是 一个 例 子
-43.8461 这 是 一个 例 子
-50.386] 这是一个例子
input a sentence: 这是另一个例子
[-52.893] 这 是 另 一个 例 子
[-53.912] 这 是 另一 个 例 子
'-59.433] 这是另一个例子
input a sentence: 好多例子啊
-39.4471 好多 例 子 啊
[-44.754] 好 多 例 子 啊
'-56.207] 好多例子啊
input a sentence: 南京市长江大桥
-49.046] 南京 市 长 江 大 桥
[-58.014] 南京 市 长 江 大 桥
input a sentence: 微博新闻有什么好看的
[-42.166] 微博 新闻 有 什么 好看 的
[-46.414] 微博 新闻 有 什么 好 看 的
input a sentence: 半自动分词器
-46.861] 半 自 动 分 词 器
-56.745] 半 自 动 分 词 器
input a sentence: 如果有更多的数据就好了
[-54.971] 如果 有 更多 的 数据 就 好 了
-60.052] 如果 有 更 多 的 数据 就 好 了
-67.515] 如 果 有 更 多 的 数据 就 好 了
input a sentence: _
```

```
C: Windows ¥ System 32 ¥ cmd. exe - conda activate q - python. exe vis_tokenizer.py
-> py vis tokenizer.py
input a sentence: 如果有标点符号,
[-81.634] 如果 有 标 点 符 号 ,会 怎么 样 呢?
[-81.651] 如果 有 标 点 符 号
[-87.659] 如果 有 标 点 符
[-103.860] 甚至 : 有 一 些 神秘 空
[-113.051] 甚至 : 有 一 些 神秘 空 格
input a sentence: 全角符号。,会变成ASCII码的版本
[-121.670] 全 角 符 号 . , 会 变 成 as c i i 码 的 版本
[-128.043] 全 角 符 号 . , 会 变 成 as c i i 码 的 版 本
input a sentence: 当然,英文 iphone会被拆得很奇怪
[-105.886] 当 然 , 英 文 ip hone 会 被 拆 得
[-106.820] 当 然 ,英 文 i phone 会 被 拆
[-107.658] 当然 ,英 文 i p hone 会 被
[-113.868] 当 然 , 英 文 i p hone 会
input a sentence: 这就是关于我的一切 :)
[-59.600] 这 就是 关于 我 的 一 切 : )
[-65.409] 这 就 是 关于 我 的 一 切:)
[-65.785] 这 就是 关 于 我 的 一 切:)
input a sentence: _
```

Content Table

- Entropy-based Heuristic k-gram Tokenizer
- YouroQNet for Quantum Sequence Classification
- Computational Analysis over Simple QCircuits

YouroQNet for Quantum Sequence Classification

- YouroQNet :=
 - pure variational quantum circuit
 - representation learning
 - style-transfer scheme
- what is for
 - sequence classification
 - feature abstraction

YouroQNet general architecture

YouroQNet: minimal concrete example

• pure variational quantum circuit

YouroQNet learns semantical word representation

- YouroQNet :=
 - pure variational quantum circuit
 - representation learning
 - implicit convolutional
 - implicit recurrent
 - style-transfer scheme

Train the word embedding θ_j whose channels are partially temporally dependent.

YouroQNet differs contextual invariants from variants

- YouroQNet :=
 - pure variational quantum circuit
 - representation learning
 - implicit convolutional
 - implicit recurrent
 - style-transfer scheme

Train ψ_i and θ_j alternatively alike the EM algorithm.

Note that ψ_i is constant to all inputs, corresponding to contextual invariant (syntactical) transforms, while θ_j builds up a (semantical) variant context.

YouroQNet is implicitly convolutional

- YouroQNet :=
 - pure variational quantum circuit
 - representation learning
 - implicit convolutional
 - implicit recurrent
 - style-transfer scheme

Breaking down long sentences with the aligner, a YouroQNet is like a single Conv1d filter that slides along the sentence then applies an AvgPooling.

YouroQNet could be recurrent if needed

- YouroQNet :=
 - pure variational quantum circuit
 - representation learning
 - implicit convolutional
 - implicit recurrent
 - style-transfer scheme

The ancilla $|p_i\rangle$ is like a state memory, when ψ_i is shared across all repeatable parts of the circuit, it simulates an RNN.

YouroQNet follows a style-transfer scheme

- YouroQNet :=
 - pure variational quantum circuit
 - representation learning
 - implicit convolutional
 - implicit recurrent
 - style-transfer scheme

The ancilla $|p_i\rangle$ is the blank canvas, we gradually extract useful info from $|q_j\rangle$ and transfer onto it, through steps.

YouroQNet: metric evaluation & comparation

F1 score	Youro QNet	Text DNN	Text CNN	Text RNN	TF-IDF					FastText word2vec				
					kNN	GBDT	Bayes	SVM	MLP	kNN	GBDT	Bayes	SVM	MLP
Joy	0.018	0.349	0.321	0.287	0.338	0.214	0.357	0.374	0.41	0.361	0.413	0.430	0.458	0.455
Angry	0.342	0.294	0.175	0.32	0.327	0.356	0.300	0.336	0.291	0.347	0.333	0.375	0.393	0.370
Sad	0.22	0.306	0.321	0.283	0.175	0.169	0.274	0.349	0.306	0.310	0.24	0.171	0.328	0.225
Hate	0.273	0.187	0.275	0.318	0.271	0.259	0.308	0.24	0.313	0.179	0.289	0.306	0.314	0.290
Avg.	0.213	0.284	0.273	0.302	0.278	0.25	0.31	0.325	0.33	0.3	0.319	0.321	0.373	0.335

YouroQNet - mini: toy verification in details

- toy model config
 - 3+1 qubits, 1 repeat, [RY]-CNOT-[RY]
- embedding analysis
 - manually bias the dataset
 - embed highlights the minority
 - it learns TF-IDF successfully!!

```
words = {

# positive (leading to class 0)
'爱', '喜欢',

# negative (leading to class 1)
'恨', '讨厌',

# neutral
'啊', '我', '你', '苹果', '西瓜',

}
```

vocab

```
train data = [
                    baised data = [
  (0, '我爱你'),
                      (0, '我你'),
     '我喜欢苹果'),
                          '你啊'),
     '苹果啊喜欢'),
     '你爱西瓜'),
                          "西瓜苹果")
     '你讨厌我'),
                      (0, '你西瓜'),
     "讨厌西瓜苹果")
     '你讨厌苹果'),
  (1, '我恨啊恨'),
   baised data
                             pos = 0
                             neg = 1
```


train data

YouroQNet: QNN is fragile | symmetric, periodical, finite-valued

- parameter initialization
 - uniform

normal

- embedding normalization
 - $\pm pi/2$

• ± pi

- gradient method
 - param shift X
 - finite diff
- loss not decay or quickly overfit
 - tune rand seed
 - kill & retry

good & bad loss curves

Content Table

- Entropy-based Heuristic k-gram Tokenizer
- YouroQNet for Quantum Sequence Classification
- Computational Analysis over Common QCircuits

Rethink on QCricuit

- Conceptual model in meme
 - Balancer / 3D Clock
 - Map-Reduce
- But what's the mathematical model?
 - Single qubit rotation (superposition)
 - Multi-qubit entanglement

https://leimao.github.io/blog/Qubit-Bloch-Sphere/

XYZ - RotCiruit

• numerical XOR!!


```
# the single-qubit data encoder:
                                                              入力
# - 1 qubit
                                                              0.5\cos(x)\cos(y) + 0.5
  - 1~3 param
                                                              3Dプロット
  - rotate with RX/RY/RZ
# - no entangle
# circuit: c0
                       c1
                                               c2
# q_0: |0>-RX(tht0) -RY(tht1) -
                                           RZ(tht2)
# coeffs on:
# |0\rangle: ( I*\sin(\theta_0/2)*\sin(\theta_1/2) + \cos(\theta_0/2)*\cos(\theta_1/2))*\exp(-I*\theta_2/2)
# |1\rangle: (-I*\sin(\theta \theta/2)*\cos(\theta 1/2) + \sin(\theta 1/2)*\cos(\theta \theta/2))*\exp(I*\theta 2/2)
# probs on:
# |0\rangle: 0.5*\cos(\theta \ 0)*\cos(\theta \ 1) + 0.5
# |1\rangle: -0.5*\cos(\theta \ \theta)*\cos(\theta \ 1) + 0.5
```

YouroQNet - mini

• combinational sum with trigonometric activation!!

```
# the YouroQNet toy (binary):
# - 4 qubits
# - 11 param (tht=3, psi=8)
# - rotate with RY
# - entangle with CNOT / CRY
# circuit: c0 c1 c2
                                             c3
                                                            c5
                                                                                 с6
                                                   c4
                                                                                               c7
                                                                                                            c8
                                                                                                                          c9
                                                                                                                                       c10
# q 0: |+>-RY(psi0)
                                                                                             |RY(psi4)| - |RY(psi5)|
                                                                                                                      -RY(psi6) - RY(psi7)
# q 1: |0>-RY(tht0)|
                                            CNOT - RY(psi1)
# q_2: |0>-RY(tht1)|-CNOT|
                                                                  RY(psi2)
# q 3: |0>-RY(tht2)|
                                    CNOT
                                                                               RY(psi3)
# coeff \alpha on component \alpha|0000\rangle (eqv. matrix cell of qc[0, 0]):
# - \sin(\theta_0/2)*\sin(\theta_1/2)*\sin(\theta_2/2) * \sin(\psi_0/2 + pi/4) * \cos(\psi_1/2 + \psi_2/2)*\cos(\psi_3/2)
                                                                                                             sin(\psi 4/2)
                                                                                                              sin(\psi_4/2)
# + \sin(\theta_0/2) * \sin(\theta_1/2) * \cos(\theta_2/2) * \sin(\psi_0/2 + pi/4) * \sin(\psi_1/2 + \psi_2/2) * \sin(\psi_3/2)
                                                                                                                            +\psi_{-}5/2 + \cdots
                                                                                                             sin(\psi_4/2)
# + \cos(\theta_0/2)*\cos(\theta_1/2)*\sin(\theta_2/2) * \sin(\psi_0/2 + pi/4) * \sin(\psi_1/2 + \psi_2/2)*\cos(\psi_3/2)
# - \cos(\theta_0/2)*\cos(\theta_1/2)*\cos(\theta_2/2) * \sin(\psi_0/2 + pi/4) * \cos(\psi_1/2 + \psi_2/2)*\sin(\psi_3/2)
                                                                                                             sin(\psi 4/2)
 + \sin(\theta \ \theta/2) * \sin(\theta \ 1/2) * \sin(\theta \ 2/2) * \cos(\psi \ \theta/2 + pi/4)
```

YouroQNet - mini: learned function value space

• weird generalization...

Value space of a learned YouroQNet-mini (input is word embedding θ)

Content Table

- Entropy-based Heuristic k-gram Tokenizer
- YouroQNet for Quantum Sequence Classification
- Computational Analysis over Simple QCircuits

```
maximize p(W) = \prod_i p(w_i)
• p(\dot{z})p(\dot{z})p(\dot{z})p(\dot{z})p(\dot{z})p(\dot{z})p(\dot{z})
• p(\dot{z}\dot{z})p(\dot{z}\dot{z})p(\dot{z}\dot{z})p(\dot{z}\dot{z})p(\dot{z}\dot{z})
• ...
```


Thanks for your watching~

YouroQNet

熔炉ネットと言うのは、虚仮威し全て裏技を繋ぐもん

Team: QwQ

Reporter: Armit