FRENCH SOLITAIRE

ARTIFICIAL INTELLIGENCE

	PROCURA EM PROFUNDIDADE PRIMEIRO	PROCURA GANANCIOSA	PROCURA A*
Tempo de execução	0.00115871s	0.01324868s	0.04985308s
Número de nós expandidos	30	93	42
Número de nós gerados	38	101	52

Tabela 1: Tabuleiro 5x5 (linhas x colunas).

	PROCURA EM PROFUNDIDADE PRIMEIRO	PROCURA GANANCIOSA	PROCURA A*
Tempo de execução	0.14178323s	0.02150702s	0.08331990s
Número de nós expandidos	6076	72	136
Número de nós gerados	6094	117	229

Tabela 2: Tabuleiro 4x4 (linhas x colunas).

	PROCURA EM PROFUNDIDADE PRIMEIRO	PROCURA GANANCIOSA	PROCURA A*
Tempo de execução	1.517438173s	0.15112662s	0.50763177s
Número de nós expandidos	53946	757	757
Número de nós gerados	53974	1715	1709

Tabela 3: Tabuleiro 4x5 (linhas x colunas)

	PROCURA EM PROFUNDIDADE PRIMEIRO	PROCURA GANANCIOSA	PROCURA A*
Tempo de execução	4m49167783s	2.13414907s	1.42363953s
Número de nós expandidos	7262371	6642	1431
Número de nós gerados	7262431	18700	2842

Tabela 4: Tabuleiro 4x6 (linhas x colunas).

Após uma análise cuidada das tabelas acima, é possível concluir de imediato que quantas maiores jogadas possíveis maior o número de nós gerados e expandidos em qualquer dos algoritmos. Por exemplo, olhando para os resultados do algoritmo de procura em profundidade na **Tabela 1** verifica-se que o tempo é menor quando existe um menor número de nós gerados e expandidos, causados por uma diversidade de jogadas possíveis mais pequena enquanto que na **Tabela 2**, quando existe um tabuleiro com maior flexibilidade de jogadas, maior será o tempo de execução, pois haverão mais nós gerados e alguns destes sucessivamente expandidos.

Comparativamente aos algoritmos estudados, observa-se que, embora todos encontrem soluções, existem uns mais eficientes que outros, principalmente quando a complexidade de um tabuleiro aumenta. Considera-se, pelos valores recolhidos, o algoritmo de procura gananciosa como o mais eficiente. Seguidamente o de procura A* e por fim o algoritmo de procura em profundidade primeiro. É possível comprovar isto consultando as Tabelas 1, 2 e 3. Na última tabela, **Tabela 4**, verifica-se uma maior eficiência do algoritmo de procura A* explicada pela menor quantidade nós gerados e expandidos.

Para realizar este projeto optou-se por utilizar uma heurística que avalia quantas peças existem no tabuleiro e quantas jogadas é possível concretizar de acordo com um certo estado desse mesmo tabuleiro.