TD 3: MÉTHODES DE VOTE EN PYTHON

Réalisé par : Riccardo Figliozzi, Giovanni Ivan Indiveri, Chloé Patras

1. Écrire une fonction MajorityRule qui retourne le résultat d'un vote à la majorité simple, entre deux candidats.

Les données (candidatsTestEgalite.csv) utilisées dans les exemples suivants sont :

	Électeur	Candidat	1	Candidat	2	Candidat	3
0	Marie		1		2		3
1	Daniel		1		3		2
2	Nicole		2		3		1
3	Stephane		2		3		1
4	Dominique		2		1		3
5	Claire		2		1		3

On compare deux à deux les candidats. Celui qui a un plus grand nombre de meilleurs votes (ici la note de 3) est celui qui gagne par la règle de majorité.

Exemples d'exécution avec chacun des candidats :

```
MajorityRule('Candidat 1','Candidat 2')
```

Candidat élu : Candidat 2

En effet le Candidat 1 n'a aucun 3 alors que le Candidat 2 en a 3

```
MajorityRule('Candidat 1','Candidat 3')
```

Candidat élu : Candidat 3

En effet le Candidat 1 n'a aucun 3 alors que le Candidat 2 en a 3 également

```
MajorityRule('Candidat 2','Candidat 3')
```

Égalité

lci nous avons une égalité car aucun des candidats ne gagne par majorité.

2. Écrire une fonction VoteUnTour qui retourne le résultat d'une élection à un tour.

→ Les données (CandidatTest.csv) utilisées dans cet exemple suivant est :

	Électeur	Candidat	1	Candidat	2	Candidat	3
0	Marie		1		2		3
1	Daniel		1		2		3
2	Nicole		3		2		1
3	Stephane		2		3		1
4	Dominique		2		1		3
5	Claire		2		1		3

Le résultat avec ces données est le suivant :

Le candidat avec le plus grand nombre de meilleurs votes (ici la note de 3) est celui qui gagne, c'est-à-dire le Candidat 3 dans ce cas.

→ Les données (candidatsTestEgalite.csv) utilisées dans l'exemple suivant est :

	Électeur	Candidat	1	Candidat	2	Candidat	3
0	Marie		1		2		3
1	Daniel		1		3		2
2	Nicole		2		3		1
3	Stephane		2		3		1
4	Dominique		2		1		3
5	Claire		2		1		3

Le résultat avec ces données est le suivant :

VoteUnTour()

Candidats ex aequo: ['Candidat 3', 'Candidat 2']

Candidat élu au sort : Candidat 2

Dans le cas d'une égalité dans le vote à un tour, nous choisissons un candidat au hasard parmi ceux qui sont à égalité.

- 3. Écrire une fonction VoteDeuxTour qui retourne le résultat d'une élection à deux tours.
- → Les données (candidatsTest2.csv) utilisées dans l'exemple suivant est :

	Électeur	Candidat	1	Candidat	2	Candidat	3
0	Marie		1		2		3
1	Daniel		1		2		3
2	Nicole		3		2		1
3	Stephane		2		3		1
4	Dominique		2		1		3
5	Claire		2		1		3

Le résultat avec ces données est le suivant :

VoteDeuxTour()
Candidat élu au premier tour: Candidat 3

Dans ce cas, le candidat 3 gagne par majorité dès le premier tour, ce qui implique que le deuxième tour n'est pas nécessaire.

→ Les données (candidatsTest.csv) utilisées dans l'exemple suivant est :

	Électeur	Candidat	1	Candidat	2	Candidat	3
0	Marie		1		2		3
1	Daniel		1		3		2
2	Nicole		3		2		1
3	Stephane		2		3		1
4	Dominique		2		1		3
5	Claire		2		1		3

Le résultat avec ces données est le suivant :

VoteDeuxTour()

Candidats au deuxième tour: ['Candidat 3', 'Candidat 2']

Candidat élu au deuxième tour: Candidat 2

En effet ici nous avons le Candidat 3 et le Candidat 2 qui sont élus pour aller au deuxième tour. Le gagnant est le Candidat 2.

- 4. Écrire une fonction VoteCondorcet qui retourne le résultat d'une élection selon la méthode dite de vainqueur de Condorcet.
- → Les données (candidatsTest.csv) utilisées dans l'exemple suivant est :

	Électeur	Candidat	1	Candidat	2	Candidat	3
0	Marie		1		2		3
1	Daniel		1		2		3
2	Nicole		3		2		1
3	Stephane		2		3		1
4	Dominique		2		1		3
5	Claire		2		1		3

Le résultat avec ces données est le suivant :

```
VoteCondorcet()

cand1: Candidat 1
cand2: Candidat 2
Parité
cand1: Candidat 1
cand2: Candidat 3
Win cand2 Candidat 3
cand1: Candidat 1
Parité
cand1: Candidat 1
Parité
cand1: Candidat 2
cand2: Candidat 3
Win cand2 Candidat 3
Win cand2 Candidat 3
Win cand2 Candidat 3
cand1: Candidat 3
cand1: Candidat 3
cand1: Candidat 3
cand2: Candidat 1
Win cand1 Candidat 3
cand2: Candidat 3
cand1: Candidat 3
cand1: Candidat 3
cand1: Candidat 3
cand1: Candidat 3
Candidat 6u avec Condorcet: Candidat 3
```

Nous pouvons ici constater qu'il n'y a que le Candidat 3 qui gagne deux à deux contre les autres candidats.

→ Les données (candidatsTestEgalite.csv) utilisées dans l'exemple suivant est :

	Electeur	Candidat 1	Candidat 2	Candidat 3
0	Marie	1	2	3
1	Daniel	1	3	2
2	Nicole	2	3	1
3	Stephane	2	3	1
4	Dominique	2	1	3
5	Claire	2	1	3

Le résultat avec ces données est le suivant :

```
VoteCondorcet()

cand1: Candidat 1
cand2: Candidat 2
Win cand2 Candidat 2
cand1: Candidat 2
cand2: Candidat 1
Win cand1 Candidat 2
cand2: Candidat 2
cand2: Candidat 3
Parité
cand1: Candidat 3
cand2: Candidat 1
Win cand1 Candidat 3
cand2: Candidat 3
cand2: Candidat 3
cand2: Candidat 2
Parité
Candidat 4
Candidat 5
Candidat 6
Candidat 6
Candidat 7
Candidat 7
Candidat 8
Cand1: Candidat 8
Cand1: Candidat 9
Candidat 6
Candidat 7
Ca
```

Nous avons ici un cas où aucun candidat ne l'emporte avec la règle de vote de Condorcet. En effet, aucun des candidats ne gagnent face aux deux autres candidats.

5. Écrire une fonction VoteBorda qui retourne le résultat d'une élection selon la méthode de Borda.

Les données (candidatsTest.csv) utilisées dans l'exemple suivant est :

	Électeur	Candidat	1	Candidat	2	Candidat	
0	Marie		1		2		100
1	Daniel		1		2		1.1
2	Nicole		3		2		100
3	Stephane	Stephane	2	2			1
4 Do	Dominique		2		1		17.4
5	Claire		2		1		3

Le résultat avec ces données est le suivant :

VoteBorda()

Candidat élu avec Borda: Candidat 3

Les données (candidatsTestEgalite.csv) utilisées dans l'exemple suivant est :

	Électeur	Candidat 1	Candidat 2	Candidat 3
0	Marie	1	2	3
1	Daniel	1	3	2
2	Nicole	2	3	1
3	Stephane	2	3	1
4	Dominique	2	1	3
5	Claire	2	1	3

Le résultat avec ces données est le suivant :

VoteBorda()

Égalité, pas de candidat élu avec Borda

6. En utilisant les fonctions implémentées ci-dessus, déterminer un exemple d'élection avec n ≥ 30 et m ≥ 4 tels que les vainqueurs issus des méthodes de vote à un tour, du vote à deux tours, des votes selon la règles de Condorcet et Borda sont tous les quatre différents.

Les données (dataFinal.csv) utilisées dans l'exemple suivant est :

	Électeur	Candidat 1	Candidat 2	Candidat 3	Candidat 4	15	Pallino	1	2	4	3
0	Marie Dubois	2	3	1	4	16	David	4	2	1	3
1	Daniel Petit	2	4	1	3						
2	Nicole	2	3	4	1	17	Qui	1	2	3	4
3	Stephane	2	4	1	3	18	Quo	4	3	1	2
4	Dominique	2	4	1	3	19	Qua	2	3	4	1
5	Corinne	1			2	20	Gaston	3	2	1	4
6	Martin	2			3	21	Pluto	4	3	1	2
7		3			1	22	Donald	3	2	1	4
20	Bernard					23	Silvio	1	3	4	2
8	Thomas	2			4	24	Peppe	4	2	1	3
9	Robert	4	2	1	3	24	reppe		2	1	3
10	Durand	3	4	1	2	25	Gigi	4	3	1	2
11	Pippo	2	3	1	4	26	Ciccio	4	3	1	2
12	Simon	2	4	1	3	27	Laurent	3	2	4	1
13	Michel	4	2	1	3	28	Girard	3	1	4	2
14	Pinco	1	2	4	3	29	Axel	3	1	2	4

Dans ce csv, il y a 30 votants et 4 candidats

Le résultat avec ces données est le suivant :

```
SuperVote()

Candidat élu au premier tour: Candidat 3

Candidat élu au deuxième tour: Candidat 1

Candidat élu avec Condorcet: Candidat 2

Candidat élu avec Borda: Candidat 4
```

Ces résultats nous montrent que chaque méthode d'élection nous donne un vainqueur différent.