18.781 PROBLEM SET 4.1

JOHN WANG

1. Problem 1

Problem 1.1. Show that the only cube root of 1 modulo 1024 is 1.

Solution We want to solve the equation $x^3 \equiv 1 \pmod{1024}$. We will use Hansel's lemma and note that $1024 = 2^{10}$. Thus, we can find solutions to $f(x) = x^3 - 1$ in the congruence $f(x) \equiv 0 \pmod{2}$ and lift solutions to $f(x) \equiv 0 \pmod{1024}$. We see that $a_1 = 1$ is the only solution to $f(x) \equiv 0 \pmod{2}$ by inspection. Thus, we find that $f'(a) = 3(1)^2 \equiv 1 \pmod{2}$. Thus, we see that $\overline{f'(a)} = 1 \pmod{2}$. Using Hansel's lemma, we get:

(1.1)
$$a_2 \equiv a_1 - f(a_1)\overline{f'(a)} \pmod{2^2}$$

(1.2) $\equiv 1 - (0)(1) \pmod{2^2}$
(1.3) $\equiv 1 \pmod{2^2}$
(1.4) $a_3 \equiv 1 - (0)(1) \pmod{2^3}$
(1.5) $\equiv 1 \pmod{2^3}$
(1.6) \vdots

It is clear that $f(a_i) \equiv 0 \pmod{2^i}$ for all i by induction. Therefore, since $a_{i+1} \equiv a_i - f(a_i)\overline{f'(a)}$ (mod 2^i) $\equiv a_i \pmod{2^i}$ for all i, we know that $a_i \equiv 1 \pmod{2^i}$ for all i. By Hansel's lemma, there are no other solutions, so $x = 1 \pmod{1024}$ is the only solution to $f(x) \equiv 0 \pmod{1024}$. \square

Problem 1.2. Find all the cube roots of -3 modulo 1024.

Solution We want to solve $f(x) \equiv 0 \pmod{1024} \equiv 0 \pmod{2^{10}}$ where $f(x) \equiv x^3 - 3$. First, we note that there is no solution for $f(x) \equiv 0 \pmod{2}$ and small powers of 2. A solution of $a_1 = 5$ occurs for $f(x) \equiv -3 \pmod{8}$. Using Hansel's lemma, we see that $a_2 \equiv 5 - (5^3 + 3)3 \pmod{16} \equiv -379 \pmod{16} \equiv 5 \pmod{16}$. If we keep going, we get:

There are no other solutions to $f(x) \equiv 0 \pmod{1024}$, thus the only solution is $x = 645 \pmod{1024}$. \square

Problem 1.3. Solve $x^5 + x^4 + 1 \equiv 0 \pmod{3^4}$.

Solution First, note that Hansel's lemma fails since $f(x) = x^5 + x^4 + 1$ and $f'(x) = 5x^4 + 4x^3$. This means, since $a_1 = 1$ for $f(x) \pmod{3}$, we have $f'(a_1) = 5 + 4 = 9 \equiv 0 \pmod{3}$. However, we can use the construction of Hansel's lemma to attempt to proceed. We see that we must find t such that $f(a+3t) \equiv 0 \pmod{3^3}$. By the proof of Hansel's lemma, we know that a unique t occurs when $f(a) + 3tf'(a) \equiv 0 \pmod{3^2}$. Since we have already seen that $f'(a_1) = 0$, we have $f(a) \equiv 0 \pmod{3^2}$. However, since $f(a) = (1)^5 + (1)^4 + 1 = 3 \not\equiv 0 \pmod{3^2}$, we cannot have any solutions to $f(x) \pmod{3^2}$. The same logic follows for $f(x) \pmod{3^3}$ and $f(x) \pmod{3^4}$. There there are no solutions to the congruence. \square

1

2 JOHN WANG

2. Problem 2

Problem 2.1. Write a gp program to implement Pollard rho. Use it to find a prime factor of $2^{1231} - 1$.

Solution The Pollard rho algorithm implemented in gp uses a helper function f(x, n) which just computes $f(x, n) = x^2 + 1 \pmod{n}$. The entire code is given below:

Using this algorithm on $2^{1231} - 1$, we obtain a prime factor of p = 531,793. \square

3. Problem 3

Problem 3.1. Suppose that N = pq is the product of two primes. Suppose in addition to knowing N, we also know $M = \phi(N)$. Describe how you would obtain p and q from this information.

Solution First, we know that $\phi(N) = \phi(p)\phi(q)$ because p and q are prime factors of N. Moreover, since p,q are primes, we know that $\phi(p) = p-1$ and $\phi(q) = q-1$. Thus, we see that $M = \phi(N) = (p-1)(q-1) = pq-p-q+1 = N-p-q+1$. From this, we see that p=N-M-q+1. Since pq=N, we see that the following is true:

$$(3.1) N = pq = (N - M - q + 1)q$$

 $0 = q^2 + q(M-N) + N - 1$

This is a quadratic in q, which can be solved using the quadratic formula:

(3.3)
$$q = \frac{-(M-N) \pm \sqrt{(M-N)^2 - 4(N-1)}}{2}$$

Then, we can use q to figure out p by using p = N/q. However, notice that p will simply be the other solution of the quadratic since p and q are symmetric so their quadratic equations will be the same.

Problem 3.2. Use the above method to factor the number:

- $(3.4) \qquad N = 27606985387162255149739023449107931668458716142620601169954803000803329$ which is a product of two primes given that:
- $\phi(N) = 27606985387162255149739023449107761527112996396559656119259509106409476$

Solution We will run the above algorithm. Solving the equation, we obtain:

$$q = 162259276829213363391578010288127$$

$$(3.7) p = 170141183460469231731687303715884105727$$

A check check using gp shows that both p and q are prime numbers, and that pq = N. \square

4. Problem 4

Problem 4.1. Suppose that $f(x) \equiv 0 \pmod{p^j}$ and that $f'(a) \not\equiv 0 \pmod{p}$. Let $\overline{f'(a)}$ be an integer chosen so that $f'(a)\overline{f'(a)} \equiv 1 \pmod{p^{2j}}$ and set $b = a - f(a)\overline{f'(a)}$. Show that $f(b) \equiv 0 \pmod{p^{2j}}$.

Solution First, we will use a small lemma, which is very close to the lemma proven in class:

Lemma 4.1. If
$$j \ge 1$$
 then $f(a + tp^j) = f(a) + tp^j f'(a) \pmod{p^{2j}}$.

Proof. We will use a Taylor expansion about a to find that:

$$(4.2) f(a+tp^j) = f(a) + tp^j f'(a) + (tp^j)^2 \frac{f''(a)}{2!} + \dots$$

$$= f(a) + tp^{j} f'(a) \pmod{2^{2j}}$$

The second line follows because $f''(a)/2! = (k)(k-1)a^{k-2}/2 = {k \choose 2}a^{k-2} \in \mathbb{Z}$. Moreover, each term $f^{(r)}(a)/r!$ is an integer because $f^{(r)}(a)/r! = {k \choose r}a^{k-r}$ using the logic from above. Therefore, we see that all these terms are integers, and that $p^{2j}, p^{3j}, p^{4j}, \ldots$ are all divisible by p^{2j} . Therefore, the terms:

$$(4.4) (tp^{j})^{2} \frac{f''(a)}{2!} + (tp^{j})^{3} \frac{f'''(a)}{3!} + \dots \equiv 0 \pmod{2^{j}}$$

This completes the proof of the lemma.

Now that we have this result, we want to find a t such that $0 \equiv f(a) + tp^j f'(a) \pmod{p^{2j}}$. Rearranging terms, we can solve for t and we find that $t \equiv -\frac{f(a)}{p^j} \overline{f'(a)} \pmod{2j}$. We know that this is an integer because $f(a) \equiv 0 \pmod{p^j}$ so that $p^j | f(a)$ and so $\frac{f(a)}{p^j}$ is an integer. Moreover, we see the following with this result:

$$(4.5) a+tp^j=a+\frac{f(a)}{p^j}\overline{f'(a)}p^j=a+f(a)\overline{f'(a)}=b$$

Thus, we have shown that b satisfies $f(b) \equiv 0 \pmod{p^{2j}}$. \square

5. PROBLEM 5

Problem 5.1. Let p be a prime. Let $\sigma_1, \sigma_2, \ldots, \sigma_{p-1}$ be the elementary symmetric polynomials in $1, 2, \ldots, p-1$ as in class (i.e. σ_k is the sum of products of k of these numbers). We showed that $(-1)^{p-1}\sigma_{p-1} = (p-1)! \equiv -1 \pmod{p}$. Show that $\sigma_1, \ldots, \sigma_{p-2}$ are all congruent to $0 \pmod{p}$.

Solution We showed in class that the following congruence must hold:

$$(5.1) (x-1)(x-2)\dots(x-(p-1)) \equiv x^{p-1} - 1 \pmod{p}$$

However, we also showed in class that if we have a product $f(x) = (x - \alpha_1) \dots (x - \alpha_p)$ where $\alpha_i \in \{1, 2, \dots, p-1\}$, then we have $f(x) = x^{p-1} - \sigma_1 x^{p-2} + \sigma_2 x^{p-3} + \dots + (-1)^{p-1} \sigma_{p-1}$. Thus, the following congruence must hold:

(5.2)
$$x^{p-1} - \sigma_1 x^{p-2} + \sigma_2 x^{p-3} + \ldots + (-1)^{p-1} \sigma_{p-1} \equiv x^{p-1} - 1 \pmod{p}$$

Since we know that the constant term on the left hand side is $(-1)^{p-1}\sigma_{p-1} \equiv -1 \pmod{p}$, we can subtract $x^{p-1} - 1$ from both sides. Using this observation, we obtain:

$$(5.3) -\sigma_1 x^{p-2} + \sigma_2 x^{p-3} + \ldots + (-1)^{p-2} \sigma_{p-2} x \equiv 0 \pmod{p}$$

However, each one of these terms is a different power of x. Since this congruence must hold for all x, we know that the coefficients on each of the x^i terms must be equivalent to $0 \pmod{p}$. This shows that $\sigma_1, \ldots, \sigma_{p-2}$ are all congruent to $0 \pmod{p}$. \square

Problem 5.2. For $p \geq 5$, show that $\sigma_{p-2} \equiv 0 \pmod{p^2}$.

Solution As we noted before, we know that the following equation holds from lecture:

$$(5.4) (x-1)(x-2)\dots(x-(p-1)) = x^{p-1} - \sigma_1 x^{p-2} + \dots + \sigma_{p-1}$$

Now, we let x = p, and we find the following:

$$(5.5) (p-1)(p-2)\dots(p-(p-1)) = p^{p-1} - \sigma_1 p^{p-2} + \dots + \sigma_{p-1}$$

$$(5.6) (p-1)! = p^{p-1} - \sigma_1 p^{p-2} + \ldots + \sigma_{p-1}$$

4 JOHN WANG

Since we know that $(-1)^{p-1}\sigma_{p-1} = (p-1)!$ from lecture and from the statement of the problem, we see that we can rearrange the above expression and cancel out σ_{p-1} (since $(-1)^{p-1} = 1$ as p-1 is even). This gives:

(5.7)
$$0 = -\sigma_1 p^{p-2} + \sigma_2 p^{p-3} + \dots - \sigma_{p-3} p^2 + \sigma_{p-2} p^{p-3} + \dots$$

(5.8)

Since $\sigma_i \in \mathbb{Z}$, if we take everything modulo p^2 , we notice that $p^2|p^i$ for all $i \geq 2$. These two facts imply that $(-1)^i \sigma_{i+1} p^i \equiv 0 \pmod{p^2}$ for all i > 2. This implies that:

(5.9)
$$\sigma_{p-2} \equiv 0 \pmod{p^2}$$

This completes the proof. \Box

6. Problem 6

Problem 6.1. Let p be a prime, and g a primitive root modulo p. Show that $1, g, g^2, \ldots, g^{p-2}$ are all the nonzero residue classes mod p.

Solution First, since g is a primitive root modulo p, we know that $ord_p(g) = p-1$. Therefore, we see that p-1 is the lowest power k>0 such that $g^k \equiv 1 \pmod{p}$. If we can show that $1,g,g^2,\ldots,g^{p-2}$ are all distinct modulo p, then we know that they constitute all the non-zero residue classes modulo p. Suppose not. Then there exist integers i and j such that $0 \le i \ne j \le p-2$ such that $g^i \equiv g^j \pmod{p}$. Without loss of generality, assume that i>j. We see that this implies $g^{i-j} \equiv 1 \pmod{p}$ using division by the greatest common divisor. However, we know that i-j < p-1. However, we know that $ord_p(g) = p-1$, which is a contradiction because i-j is a smaller power which satisfies $g^k \equiv 1 \pmod{p}$. \square

Problem 6.2. For a positive integer k, let $S_k = 1^k + 2^k + \ldots + (p-1)^k$. Compute the value of S_k modulo p in closed form as a function of k.

Solution First, we note that if $k \equiv p-1 \pmod p$, then we must have $i^k \equiv i^{\phi(p)} \equiv 1 \pmod p$ for all $i \in \{1, 2, \dots, p-1\}$ using Euler's Theorem. Since there are p-1 of these terms in the sum, we find that $S_{p-1} \equiv p-1 \pmod p$.

Now suppose that k is not a multiple of p-1. Then let g be a primitive root of modulo p, which we know exists because p is prime. Using the result that we have proven above, we know that $1, g, g^2, \ldots, g^{p-2}$ are all the nonzero residue classes modulo p. Thus, we know that the above set is just a reordering of $1, 2, 3, \ldots, p-1$. This means we can write:

(6.1)
$$\sum_{i=1}^{p-1} i^k \equiv \sum_{i=1}^{p-1} (g^i)^k \pmod{p}$$

$$(6.2) \equiv \sum_{i=1}^{p-1} (g^k)^i \pmod{p}$$

(6.3)
$$\equiv \frac{g^k((g^k)^{p-1} - 1)}{g^k - 1} \pmod{p}$$

Where the last line comes from the expression for a finite geometric series. However, since we know that $(g^k)^{p-1} \equiv 1 \pmod{p}$ by Fermat's Little Theorem, we know that the entire sum comes out to zero. Moreover, we know that the denominator is not zero because $p-1 \nmid k$ by assumption, so that $g^k \not\equiv 1 \pmod{p}$. This shows that $S_k = 0$ for all k such that $p-1 \nmid k$. We then have the following formula:

(6.4)
$$S_k \equiv \begin{cases} p-1 \pmod{p} & \text{if } k \equiv 0 \pmod{p} \\ 0 \pmod{p} & \text{otherwise} \end{cases}$$