Input W.S.S. random process to a LTI system

- We have seen that a random process is actually a collection of signals, instead of a single or unique signal.
- To apply a random process as input to a LTI system, we mean that each signal in this collection serves as input, and we obtain a collection of output signals.
- We want to characterize the output collection of signals.
 What are their ensemble properties?

Mean of the output process

- Consider a linear system with the impulse response h[n].
- If x[n] is a stationary random signal with mean m_x , then the output y[n] is also a stationary random signal with mean m_v equaling to

$$m_{y}[n] = \varepsilon \{y[n]\} = \sum_{k=-\infty}^{\infty} h[k] \varepsilon \{x[n-k]\} = \sum_{k=-\infty}^{\infty} h[k] m_{x}[n-k]$$

$$m_{y} = m_{x} \sum_{k=-\infty}^{\infty} h[k] = H(e^{j0}) m_{x}$$

Stationary and LTI System

• If x[n] is a real and stationary random signal, the autocorrelation sequence of the output process is

$$\phi_{yy}[n, n+m] = \varepsilon \{y[n]y[n+m]\}$$

$$= \varepsilon \left\{ \sum_{k=-\infty}^{\infty} \sum_{r=-\infty}^{\infty} h[k]h[r]x[n-k]x[n+m-r] \right\}$$

$$= \sum_{k=-\infty}^{\infty} h[k] \sum_{r=-\infty}^{\infty} h[r]\varepsilon \{x[n-k]x[n+m-r]\}$$

• Since x[n] is stationary, $\varepsilon\{x[n-k]x[n+m-r]\}$ depends only on the time difference m+k-r.

Stationary and LTI System (continue)

Therefore,
$$\varphi_{yy} [n, n+m]$$

$$= \sum_{k=-\infty}^{\infty} h[k] \sum_{r=-\infty}^{\infty} h[r] \varphi_{xx} [m+k-r]$$

$$\equiv \varphi_{yy} [m]$$

Hence, the autocorrelation of the output signal is also stationary.

 Generally, for a LTI system having a wide-sense stationary input, the output is also wide-sense stationary.

Power Density Spectrum and LTI System

• Furthermore, by substituting l = r - k in the above,

$$\varphi_{yy}[m] = \sum_{l=-\infty}^{\infty} \varphi_{xx}[m-l] \sum_{k=-\infty}^{\infty} h[k]h[l+k]$$

$$=\sum_{l=-\infty}^{\infty}\varphi_{xx}[m-l]c_{hh}(l)$$

where

$$c_{hh}[l] = \sum_{k=-\infty}^{\infty} h[k]h[l+k]$$

i.e., $c_{hh}[l]$ is defined as the autocorrelation of the impulse response

• $c_{hh}[l]$ is called a deterministic autocorrelation sequence of the system.

Power Density Spectrum and LTI System

 $\bullet \text{ Hence, } \varphi_{yy}[m] = \sum_{l=-\infty}^{\infty} \varphi_{xx}[m-l]c_{hh}(l)$

- That is, the autocorrelation sequence of the output random signal is the **convolution** of $c_{hh}[l]$ and the autocorrelation sequence of the input random signal.
- So, in the DTFT domain,

$$\Phi_{yy}(e^{jw}) = C_{hh}(e^{jw})\Phi_{xx}(e^{jw})$$

where $C_{hh}(e^{jw})$ is defined as the DTFT of $c_{hh}[l]$.

What is on earth $C_{hh}(e^{jw})$?

• For real $c_{hh}[l]$,

$$c_{hh} \begin{bmatrix} l \end{bmatrix} = h \begin{bmatrix} l \end{bmatrix} * h \begin{bmatrix} -l \end{bmatrix} \longleftarrow a[n] \text{ and } b[n] \text{ is the convolution of } a[n] \text{ and } b[n] \text{ is the convolution of } a[n] \text{ and } b[n] \text{ is the convolution of } a[n] \text{ and } b[n] \text{ is the convolution of } a[n] \text{ and } b[n] \text{ is the convolution of } a[n] \text{ and } b[n] \text{ is the convolution of } a[n] \text{ and } b[n] \text{ is the convolution of } a[n] \text{ and } b[n] \text{ is the convolution of } a[n] \text{ and } b[n] \text{ is the convolution of } a[n] \text{ and } b[n] \text{ is the convolution of } a[n] \text{ and } b[n] \text{ is the convolution of } a[n] \text{ and } b[n] \text{ is the convolution of } a[n] \text{ and } b[n] \text{ is the convolution of } a[n] \text{ and } b[n] \text{ is the convolution of } a[n] \text{ and } b[n] \text{ is the convolution of } a[n] \text{ and } b[n] \text{ is the convolution of } a[n] \text{ and } b[n] \text{ is the convolution of } a[n] \text{ and } b[n] \text{ is the convolution of } a[n] \text{ and } b[n] \text{ and } b[n$$

Cross correlation of

So

$$C_{hh}(e^{jw}) = |H(e^{jw})|^2$$

 $C_{hh}(e^{jw})$ is equal to the magnitude square of the frequency response

Power Density Spectrum and LTI System (continue)

We then have the relation of the input and the output power spectra (in terms of autocorrelation) as follows:

$$\Phi_{yy}(e^{jw}) = |H(e^{jw})|^2 \Phi_{xx}(e^{jw})$$

Power Density Spectrum and LTI System (continue)

In sum: when input a W.S.S. random process with the autocorrelation $\varphi_{\chi\chi}[n]$ to an LTI system of impulse response h[n]:

$$\varphi_{yy}[m] = \sum_{l=-\infty}^{\infty} \varphi_{xx}[m-l]c_{hh}(l)$$
 Time domain response

$$\Phi_{yy}(e^{jw}) = |H(e^{jw})|^2 \Phi_{xx}(e^{jw})$$
 Frequency domain response

Power Density Property

- We have seen that $P_{\chi\chi}(\omega) = \Phi_{\chi\chi}(e^{jw})$ can be viewed as "density."
- **Property**: The area over a band of frequencies, $w_a < /w / < w_b$, is proportional to the power of the signal in that band.
- To understand this, consider an ideal band-pass filter. Let $H_{bp}(e^{jw})$ be the frequency response of the ideal band pass filter for the band $w_a < /w / < w_b$.
- Also, note that ideal band pass filter is an LTI system.

$$H_{bp}\left(e^{jw}\right) = \begin{cases} 1 & w_a < |w| < w_b \\ 0 & \text{otherwise} \end{cases}$$

Power Density Property

Consider the power of the output random signal y when the ideal band-pass filter is applied:

$$\varphi_{yy}[0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{yy}(e^{jw}) dw$$

$$= \frac{1}{2\pi} \int_{-w_b}^{-w_a} \Phi_{xx}(e^{jw}) dw + \frac{1}{2\pi} \int_{w_a}^{w_b} \Phi_{xx}(e^{jw}) dw$$

is just equivalent to the power of the random signal x in the band $w_a < |w| < w_b$. (up to a scale factor $1/2\pi$)

■ When w_a and w_b are getting closer so that $w_a \approx w_b$, we can image that the power degenerates to the "power density."

Review of white noise

 The power spectral density (i.e., DTFT of the autocorrelation) of a white noise is a constant

$$\Phi_{\chi\chi}(e^{j\omega}) = \sigma_{\chi}^2$$
, for all ω

Modeling random signals by white signal

- White noise is useful in the representation of random signals whose power spectra are not constant in the frequency domain.
 - A stationary random signal y[n] with the power spectral density $\phi_{yy}(e^{jw})$ below can be modeled as the output of an LTI system with a white-noise input.

$$\Phi_{yy}\left(e^{jw}\right) = \left|H\left(e^{jw}\right)^2\sigma_x^2\right|$$

That is, we can model a "colored signal" source as the output of an LTI system of the white signal input.

Time Averages

• For any single sample sequence x[n], define their time average to be

$$\langle x[n] \rangle = \lim_{L \to \infty} \frac{1}{2L+1} \sum_{n=-L}^{L} x[n]$$

Defined by averaging all time indices for an arbitrary instance of the random process

Similarly, time-average autocorrelation is

$$\left\langle x[n+m]x[n]^*\right\rangle = \lim_{L\to\infty} \frac{1}{2L+1} \sum_{n=-L}^{L} x[n+m]x^*[n]$$

Ergodic Process

- Note that the above time average is defined for a deterministic signal sampled from the random process.
- A stationary random process for which time averages equal ensemble averages is called an ergodic process:

$$\langle x[n] \rangle = m_{x}$$

$$\langle x[n+m]x[n]^{*} \rangle = \phi_{xx}[m]$$

Ergodic Process (continue)

It is common to assume that a given sequence is a sample sequence of an ergodic random process, so that averages can be computed from only a single sequence.

■ In practice, we cannot compute with the limits, but instead the finite-sum quantities for approximation

$$\hat{m}_{x} = \frac{1}{L} \sum_{n=0}^{L-1} x[n]$$

$$\sigma_{x}^{2} = \frac{1}{L} \sum_{n=0}^{L-1} (x[n] - \hat{m}_{x})^{2}$$

$$\langle x[n+m]x^{*}[n] \rangle_{L} = \frac{1}{L} \sum_{n=0}^{L-1} x[n+m]x^{*}[n]$$

Power Spectral Density Estimation from Deterministic Signal

 When the ergodic property is available, we can realize more nature about the power density spectrum.

- Suppose we sample a deterministic signal y from the random process x.
- Remember the autocorrelation sequence defined for a deterministic signal is

$$r_{yy}[l] = \sum_{n=-\infty}^{\infty} y[n]y[n-l]$$

Power Spectral Density Estimation from Deterministic Signal

Applying the ergodic property:

- By the ergodic property, we can use the autocorrelation of an arbitrary signal y sampled from the signal source (random process x) to estimate the autocorrelation of the random process x.
- So, we can also use the DTFT of y's autocorrelation sequence, $r_{yy}[l]$ to estimate $P_{xx}(w)$, where $P_{xx}(w)$ is the DTFT of the autocorrelation of the random process x.
- Remember that the DTFT of $r_{yy}[l]$ is the squared magnitude of the DTFT of y.

$$DTFT(r_{yy}) = |Y(e^{jw})|^2$$

Power Spectral Density and Squared Magnitude of DTFT

- Hence, the power spectral density $P_{xx}(w)$ of a random process x is equal to the squared magnitude spectrum of any of its instance y when the ergodic assumption is hold.
- So, we can use a sample sequence (or a set of sample sequences) to estimate the power spectrum of a random signal.
- Computing the DTFT magnitude square of the sample sequence(s) then estimates the power spectrum.

Power Spectral Density and Squared Magnitude of DTFT

■ Like the deterministic case, we cannot perform integration in $[-\infty,\infty]$, and so can use only a finite range [-T,T] instead. Window functions (such as Hamming, Kaiser) are also used.

Thus, the power spectrum estimation process is the same as the spectrogram estimation process of a deterministic signal.

Power Spectral Density and Squared Magnitude of DTFT

- Note that the power spectral density is the squared magnitude frequency response.
- power spectral density does not contain phase information (phase is zero) and is always real and positive.