

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт	радиотехнических и телекоммуникационных систем
Кафедра	электротехнических систем

ОТЧЕТ по лабораторным работам

Отчет выполнил		З.С. Кутьин
	подпись, дата	инициалы и фамилия
Группа <u>БББО-05-20</u>	шифр	20Б0797
Номер варианта 97		

Лабораторная работа	Выпо	лнена	Офор	млена	Защищена	
Л/р №1. Исследование линейных электрических цепей постоянного тока	18.09.21	Rom	11.12.21	Mous	11.12.21	Mon
Л/р №2. Исследование линейных электрических цепей переменного тока	16.10.21	Thomas	11.12.21	Hans	11.12.21	Nous
Л/р №3. Исследование переходных процессов	13.11.21	Hous	11.12.21	Kayo	11.12.21	Mayor

СОДЕРЖАНИЕ

ЛАБОРАТОРНАЯ	РАБОТА	№1.	ИССЛЕДОВАНИН	Е ЛИНЕЙНЫХ
ЭЛЕКТРИЧЕСКИХ	цепей пос	СТОЯН	ного тока	3
1.1 Исследование прост	ой электрическ	ой цепи с	последовательно соедине	нными резисторами 3
1.2 Исследование элект	рической цепи с	с паралле.	льно соединёнными резис	горами 4
1.3 Исследование элект	рической цепи с	со смеша	нным соединением резисто	оров б
1.4 Исследование парам	иетров активног	о двухпол	пюсника	7
ЛАБОРАТОРНАЯ	РАБОТА	№2.	ИССЛЕДОВАНИВ	Е ЛИНЕЙНЫХ
ЭЛЕКТРИЧЕСКИХ	цепей пен	PEMEH	НОГО ТОКА	10
2.1 Исследование прост	ейших электрич	неских це	пей синусоидального тока	с одним из реальных
элементов: резистором,	катушкой инду	ктивност	и, конденсатором	10
2.2 Исследование после	едовательного со	оединени	я резистора, катушки инду	ктивности и батареи
конденсаторов				14
2.3 Исследование парал	лельного соеди	нения рез	вистора, катушки индуктив	вности и батареи
конденсаторов				16
2.4 Исследование услов	вия возникновен	ия резона	анса напряжений в электри	
последовательно соеди	ненными катуш	кой индуг	ктивности и батареей конд	денсаторов 19
ЛАБОРАТОРНАЯ	РАБОТА	№3.	ИССЛЕДОВАНИЕ	ПЕРЕХОДНЫХ
процессов	•••••	•••••		22
3.1 Исследование RC-ц	епей			24
3.2 Исследование RL-ц	епи			26
3.3 Исследование RLC-	цепи			28

ЛАБОРАТОРНАЯ РАБОТА №1. ИССЛЕДОВАНИЕ ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

Цель работы — опытное исследование свойств линейной электрической цепи, приобретение практических навыков сборки простых электрических цепей постоянного тока, исследование активных двухполюсников, практическое подтверждение законов Ома и Кирхгофа.

Лабораторная работа выполнена с использованием области изучения постоянного тока и генератора постоянного напряжения универсального лабораторного стенда. Область изучения постоянного тока включает в себя один вольтметр, три амперметра, три постоянных резистора с номиналом 100 Ом, один переменный резистор, сопротивление которого может достигать 150 Ом.

Объектами данной лабораторной работы являются различные схемы с резистивными элементами. Резистор, или резистивный элемент, в электротехнике рассматривается как идеализированный элемент, характеризующий свойство реальных элементов электрической цепи необратимо преобразовывать энергию электрического тока в другие виды энергии. Падение напряжение на концах резистивного элемента пропорционально протекающему через него току (формула 1):

$$U = I \cdot R. \tag{1}$$

1.1 Исследование простой электрической цепи с последовательно соединенными резисторами

Для исследования простой электрической цепи с последовательно соединенными резисторами использовалась схема, представленная на рисунке 1. При сборе схемы использовались: источник ЭДС, постоянный резистор с номиналом 100 Ом, переменный резистор, сопротивление которого выставляется произвольным образом и определяется расчетами, амперметр и вольтметр. При последовательном соединении элементов в цепи протекает один ток. Суммарное падение напряжение на

резисторах R1 и R2 равно ЭДС источника E (100 B).

В процессе исследования измерялись значения тока I, протекающего в цепи, напряжения источника ЭДС, падение напряжений на резисторах R1 и R2. Также были проведены расчеты сопротивлений R1, R2 и эквивалентного (суммарного) сопротивления Rэ. Результаты измерений и расчетов приведены в таблице 1.1.

Рисунок 1.1 – Принципиальная схема для исследования простой электрической цепи с последовательно соединенными резисторами

Таблица 1.1 – Результаты исследования простой электрической цепи с последовательно соединенными резисторами

	Результаты	измерений	Резу	льтаты расч	етов	
I, A	U, B	U_{R1}, B	R _Э , Ом	R ₁ , Ом	R ₂ , Ом	
0,6	100	60	40	166,67	100	66,67

1.2 Исследование электрической цепи с параллельно соединёнными резисторами

Для исследования простой электрической цепи с параллельно соединенными

резисторами использовалась схема, представленная на рисунке 2. При сборе схемы использовались: источник ЭДС, постоянный резистор с номиналом 100 Ом, переменный резистор, сопротивление которого выставляется произвольным образом и определяется расчетами, три амперметра и вольтметр.

При параллельном соединении элементов падение напряжения на каждом резисторе равны между собой и напряжению источника ЭДС. В полученной цепи протекает три тока: ток I_{R1} в ветви с резистором R1, I_{R2} ток в ветви с резистором R2 и суммарный ток I. В процессе исследования измерялись данные токи, а также межузловое напряжение U. Также были проведены расчеты сопротивлений R1, R2 и эквивалентного (суммарного) сопротивления R3. Результаты измерений и расчетов приведены в таблице 1.2.

Рисунок 1.2 — Принципиальная схема для исследования простой электрической цепи с параллельно соединенными резисторами

Таблица 1.2 – Результаты исследования простой электрической цепи с параллельно соединенными резисторами

Результаты измерений Результаты расчетов
--

U, B	I, A	I_{R1}, A	$I_{R1}, A \qquad I_{R2}, A$		R ₁ , Ом	R ₂ , Ом	
30	0,8	0,3	0,5	100	60	37,5	

1.3 Исследование электрической цепи со смешанным соединением резисторов

Смешанным соединением участков электрической цепи называется сочетание последовательных и параллельных соединений. Для исследования простой электрической цепи со смешанным соединением использовалась схема, представленная на рисунке 3. При сборе схемы использовались: источник ЭДС, два постоянных резистора с номиналом 100 Ом, переменный резистор, сопротивление которого выставляется произвольным образом и определяется расчетами, три амперметра и вольтметр.

Рисунок 1.3 – Принципиальная схема для исследования простой электрической цепи со смешанным соединением

Один постоянный резистор (R_2) и переменный резистор (R_3) были соединены параллельно. В каждой ветви производилось измерение тока с помощью амперметров и межузлового напряжения U_{23} с помощью вольтметра. Постоянный резистор R_1 был включен последовательно с параллельным соединением резисторов R_2 и R_3 . В полученной ветви измерялся ток I_1 и падение напряжения на резисторе R_1 (U_1).

Сумма токов, протекающих через резисторы R_2 и R_3 равна току I_1 . Сумма падений напряжения на резисторе R_1 и на параллельно соединенных резисторах R_2 и R_3 равна ЭДС источника E. Также были проведены расчеты сопротивлений R_1 , R_2 и эквивалентного (суммарного) сопротивления R_3 . Результаты измерений и расчетов приведены в таблице 1.3.

Таблица 1.3 – Результаты исследования простой электрической цепи со смешанным соединением

Результаты измерений					Р	езультатн	ы расчето	В	
U, B	U, B I, A U_1, B U_{23}, B I_2, A I_3, A						R ₂ , Ом	R ₃ , Ом	R _э , Ом
100	0,7	70	30	0,25	0,45	100	120	67	143

1.4 Исследование параметров активного двухполюсника

Для получения параметров электрической схемы в ряде случаев ее можно представить в виде активного двухполюсника. Для получения параметров проводят опыты, связанные с режимами работы активного двухполюсника: согласованным, холостого хода и короткого замыкания.

Режим холостого хода – режим электрической цепи, в котором сопротивление нагрузки значительно превышает внутреннее сопротивление источника. Говоря о режиме холостого хода, обычно, подразумевают работу без нагрузки, что, в случае электрических цепей, соответствует бесконечно большому сопротивлению или

разрыву цепи. Режиму холостого хода соответствует максимум напряжения и равенство нулю тока.

Режим короткого замыкания — режим электрической цепи, в котором сопротивление нагрузки значительно ниже внутреннего сопротивления источника Режиму короткого замыкания соответствует минимум напряжения и большое значение тока (фактически ток ограничен внутренним сопротивлением источника).

Для определения напряжения холостого хода и измерения тока короткого замыкания использовалась схема, представленная на рисунке 1.4.

Рисунок 1.4 – Принципиальная схема для исследования параметров активного двухполюсника

Для электрической цепи, соответствующей заданному варианту, напряжение холостого хода U_{xx} равно:

$$U_{\rm xx} = 30 \; {\rm B}.$$

Для электрической цепи, соответствующей заданному варианту, ток короткого замыкания I_{κ_3} равен:

$$I_{\text{K3}} = 350 \text{ MA}.$$

Полученные значения напряжения холостого хода и тока короткого замыкания позволяют получить значение входного сопротивления цепи, которое рассчитывается по формуле (1.1):

$$R_{\text{BX pac4}} = \frac{U_{\text{xx}}}{I_{\text{K3}}} = \frac{30}{0.35} = 86 \text{ Om.}$$
 (1.1)

ЛАБОРАТОРНАЯ РАБОТА №2. ИССЛЕДОВАНИЕ ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПЕРЕМЕННОГО ТОКА

В электрических цепях переменного тока токи и напряжения меняются во времени и могут иметь синусоидальную гармоническую форму или периодическую несинусоидальную форму. Поэтому электрические цепи переменного тока разделяют на цепи синусоидального тока и цепи несинусоидального тока.

Цель работы — приобретение практических навыков сборки цепей синусоидального тока, состоящих из резистора, катушки индуктивности и конденсатора, измерений в них токов, напряжений, мощностей, вычисления комплексных сопротивлений по экспериментальным данным и овладение методикой построения векторных диаграмм.

Лабораторная работа выполнена с использованием области изучения переменного тока, генератора переменного напряжения универсального лабораторного стенда, измерительного комплекта К505 и внешнего вольтметра.

Лабораторная работа включает в себя четыре раздела: изучение простейших электрических цепей с одним из реальных элементов, изучение электрических цепей с последовательным соединением емкостных и индуктивных элементов, изучение электрических цепей с параллельным соединением емкостных и индуктивных элементов исследование явления резонанса.

2.1 Исследование простейших электрических цепей синусоидального тока с одним из реальных элементов: резистором, катушкой индуктивности, конденсатором

Исследование простейших электрических цепей синусоидального тока с одним из реальных элементов: резистором, катушкой индуктивности, конденсатором, производились путем подключения к генератору переменного тока и измерительному комплекту К505 одного из элементов и снятия выходных характеристик. Общая

монтажная схема изображена на рисунке 2.1. На рисунке 2.2 изображены принципиальные электрические схемы.

Рисунок 2.1 – Монтажная схема электрической цепи при исследовании простейших цепей с одним элементом

Рисунок 2.2 – Принципиальные электрические схемы при исследовании простейших цепей с одним элементом

Каждый элемент подключался по очереди, после чего с измерительного комплекта К505 снимались показания тока, напряжения и мощности. Результаты измерения приведены в таблице 2.1. Также расчетным путем были получены параметры реальных элементов цепи переменного тока, занесенные в таблицу 2.2 и таблицу 2.3.

Таблица 2.1 – Результаты измерений										
	U			I				P		
Элемент	В/де	дел	В	А/дел	дел	A	Вт/дел	дел	Вт	
Резистор	0,5	100	50	0,01	48	0,48	0,5	49	24,5	
Катушка индуктивности	0,5	100	50	0,025	54	1,35	1,25	30	37,5	
Конденсатор ($C = 40 \text{ мк}\Phi$)	0,5	100	50	0,01	60,5	6,05	0,5	2	1	
Конденсатор (С = 200 мкФ)	0,5	100	50	0,05	62	8,1	2,5	1,5	3,75	

Таблица 2.2 – Г	Таблица 2.2 – Параметры реальных элементов цепи переменного тока											
Элемент	Z	φ	<u>Z</u>	R	X	<u>Y</u>	<u>S</u>					
	Ом	град	Ом	Ом	Ом	См	BA					
Резистор	104,17	0,00	104,17	102,04	20,94	0,01	24,00					
Катушка индуктивности	37,04	56,28	$37,04 * e^{i*56,28}$	20,58	30,80	0.03 * $e^{-i*56.28}$	67,50 * $e^{i*56,28}$					
Конденсатор (С = 40 мкФ)	8,26	-89,86	$8,26 * e^{-i*89,86}$	0,03	8,26	0,12 * $e^{i*89,86}$	$302,50 * e^{-i*89,86}$					
Конденсатор (С = 200 мкФ)	6,17	-89,51	$6,17 * e^{-i*89,51}$	0,06	6,17	0,16 * $e^{i*89,51}$	405,00 * $e^{-i*89,51}$					

Таблица 2.3 – Комплексные	Таблица 2.3 – Комплексные сопротивления и проводимости элементов в алгебраической форме										
	<u>Z</u>	<u>Y</u>									
Общая формула	$\underline{Z} = R + j(X_L - X_C) = R + jX$	$\underline{Y} = G + jB = \frac{1}{Z}\cos\cos\varphi - j\frac{1}{Z}$ $\sin\sin\varphi$									
Резистор	104,17	0,01									
Катушка индуктивности	20,56 + 30,8j	0,016 - 0,024 <i>j</i>									
Конденсатор (С = 40 мкФ)	0,02 + 8,26j	0,0003 + 0,12j									
Конденсатор (С = 200 мкФ)	0,05 - 6,17j	0,0097 + 0,12j									

На рисунке 2.3 приведены векторные диаграммы тока и напряжения.

Рисунок 2.3 – Векторные диаграммы тока и напряжения для каждого элемента

2.2 Исследование последовательного соединения резистора, катушки индуктивности и батареи конденсаторов

Исследование последовательного соединения резистора, катушки индуктивности и конденсатора, производились путем подключения к генератору переменного тока и измерительному комплекту К505 цепи из последовательно соединенных элементов и снятия выходных характеристик. Общая монтажная схема изображена на рисунке 2.4. На рисунке 2.5 изображена принципиальная электрическая схема.

Рисунок 2.4 — Монтажная схема электрической цепи при исследовании последовательно соединенных элементов

Рисунок 2.5 — Принципиальная электрическая схема цепи при исследовании последовательно соединенных элементов

Измерения проводились при двух значениях емкости: 40 мкФ и 200 мкФ. Результаты измерения приведены в таблице 2.4. Также расчетным путем было получено полное комплексное сопротивление для обоих случаев, значения которого занесены в таблицу 2.5.

Таблица 2	Таблица 2.4 – Результаты измерения при последовательном соединении элементов											
Емкост		$egin{array}{ c c c c c c c c c c c c c c c c c c c$							$U_{\rm C}$			
ь конд.	В/дел	дел	В	А/дел	А/дел дел А Вт/дел дел Вт В В В						В	
40 мкФ	0,5	100	50	0,005	78	0,39	0,25	72	18	34	15	31,5

200 мкФ	0,5	100	50	0,005	84	0,43	0,25	86	21,5	38	15	6,9
---------	-----	-----	----	-------	----	------	------	----	------	----	----	-----

Таблица 2.5 – Расчет полного комплексного сопротивления										
Емкость конд.	Zэ	φ	<u> Zэ</u> (показ. ф.)	<u>Zэ</u> (алгебр. ф.)						
Формула	$\frac{U}{I}$ arccos arccos $\frac{P}{UI}$		$Ze^{j\phi}$	$R+jX = \underline{Z}_{R.} + \underline{Z}_{L} + \underline{Z}_{C}$						
40 мкФ	128,21	22,63	$128,21 * e^{-j*22,63}$	87,18 - 42,31j						
200 мкФ	116,28	0	116,28	88,37 + 18,84j						

На рисунке 2.6 приведены векторные диаграммы тока и напряжения для обоих случаев.

Рисунок 2.3 — Векторные диаграммы тока и напряжения для конденсаторов с емкостью 40 мкФ (слева) и емкостью 200 мкФ (справа)

2.3 Исследование параллельного соединения резистора, катушки индуктивности и батареи конденсаторов

Исследование параллельного соединения резистора, катушки индуктивности и конденсатора, производились путем подключения к генератору переменного тока и измерительному комплекту К505 цепи из трех параллельно соединенных ветвей,

каждая из которых содержала отдельный базовый элемент, и снятия выходных характеристик. Общая монтажная схема изображена на рисунке 2.4.

Измерения проводились только при значении емкости C = 200 мкФ. Результаты измерения приведены в таблице 2.6. Также расчетным путем была получена полная комплексная проводимость, значение которой занесено в таблицу 2.7. На рисунке 2.5 изображена принципиальная электрическая схема.

Рисунок 2.4 — Монтажная схема электрической цепи при исследовании последовательно соединенных элементов

Таблица	Таблица 2.6 – Результаты измерения при параллельном соединении элементов											
U				I		I_R	I_{L}	I_{C}	P			
В/дел	дел	В	А/дел	дел	A	A	A	A	Вт/дел	дел	Вт	
0,2	75	15	0,01	65	0,65	0,05	0,3	0,7	0,2	33	6,6	

Таблица 2.7 – Расчет полной комплексной проводимости										
Емкость конд.	Үэ	φ	<u> Үэ</u> (показ. ф.)	<u> Үэ</u> (алгебр. ф.)						
Формула	$\frac{I}{U}$	$arccos \ arccos \ \frac{P}{UI}$	$Ye^{j\varphi}$	$G+jB = \underline{Y}_{R.} + \underline{Y}_{L} + \underline{Y}_{C}$						
С = 200 мкФ	0,043	47,42	$0.043 * e^{j*47,42}$	0,02+0,031j						

Рисунок 2.5 — Принципиальная электрическая схема цепи при исследовании последовательно соединенных элементов

На рисунке 2.6 приведена векторная диаграмма тока и напряжения для конденсатора с емкостью 200 мкФ при параллельном соединении элементов.

Рисунок 2.6 — Векторная диаграмма тока и напряжения для конденсатора с емкостью 200 мк Φ

2.4 Исследование условия возникновения резонанса напряжений в электрической цепи с последовательно соединенными катушкой индуктивности и батареей конденсаторов

Резонанс — явление в электрической (магнитной) цепи, содержащей участки индуктивного и емкостного характера, при котором разность фаз электрического (магнитного) напряжения и тока на входе цепи равна нулю. В электрических цепях переменного тока различают резонанс напряжений (возможен в цепях с последовательным соединением элементов R, L и C) и резонанс токов (возможен в цепях с параллельным соединением элементов R, L и C). Согласно определению, при резонансе $\phi = 0$, в этом случае падения напряжения на катушке индуктивности и на конденсаторе равны.

Исследование условия возникновения резонанса напряжений в электрической цепи с последовательно соединенными катушкой индуктивности и батареей конденсаторов проводится путем подключения к генератору переменного тока и измерительному комплекту К505 цепи последовательно соединенных индуктивности и конденсатора, емкость которого может изменяться с помощью переключателя, и снятия выходных характеристик. Общая монтажная схема изображена на рисунке 2.7. На рисунке 2.8 изображена принципиальная электрическая схема.

Рисунок 2.7 — Монтажная схема электрической цепи при исследовании явления резонанса

Рисунок 2.8 — Принципиальная электрическая схема цепи при исследовании последовательно соединенных элементов

Измерения проводились только при изменении значения емкости в диапазоне от 40 мкФ до 200 мкФ. Результаты измерения и расчетов приведены в таблице 2.8.

Таблица 2	Таблица 2.8 – Результаты измерения при последовательном соединении элементов												
	Результаты измерений											Результаты расчетов	
Емкость конд.	U			UL	Uc		I			Р			<u>Zэ</u>
	В/ дел	дел	В			А/ дел	дел	A	Вт/ дел	дел	Вт		Ом
40 мкФ	0,2	100	20	12,1	28	0,00 5	65	0,325	0,1	38	3,8	0,2	100
60 мкФ	0,2	100	20	21,5	32	0,01	58	0,58	0,2	44	8,8	0,2	100
80 мкФ	0,2	100	20	28,4	32	0,01	77	0,77	0,2	72	14,4	0,2	100
100 мкФ	0,2	100	20	34,1	31	0,02 5	36	0,9	0,5	37	18,5	0,2	100
120 мкФ	0,2	100	20	34,3	26	0,02 5	36	0,9	0,5	37	18,5	0,2	100
140 мкФ	0,2	100	20	32,7	22	0,02 5	35	0,875	0,5	34	17	0,2	100

160 мкФ	0,2	100	20	31,1	18	0,02 5	32	0,8	0,5	31	15,5	0,2	100
180 мкФ	0,2	100	20	28	15	0,01	76	0,76	0,2	67	13,4	0,2	100
200 мкФ	0,2	100	20	27,2	14	0,01	73	0,73	0,2	63	12,6	0,2	100
С _{рез} = 100 мкФ	0,2	100	20	34,1	31	0,02 5	36	0,9	0,5	37	18,5	0,2	100

На рисунке 2.9 приведены векторные диаграммы тока и напряжения для случаев до резонанса, в момент резонанса и после резонанса.

Рисунок 2.3 — Векторные диаграммы тока и напряжения до резонанса (слева), в момент резонанса (в центре) и после резонанса (справа)

ЛАБОРАТОРНАЯ РАБОТА №3. ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ

Электромагнитные процессы, возникающие в электрической цепи при переходе от одного установившегося режима к другому, называются переходными. Согласно ГОСТ Р 52002 — 2003 «Переходной процесс (ПП)— электромагнитный процесс, возникающий в электрической цепи при переходе от одного установившегося режима к другому».

В установившемся режиме напряжения и токи на всех участках электрической цепи остаются неизменными в течение сколь угодно большого промежутка времени. В понятия неизменных напряжений и токов в данном случае включаются не только постоянные, но и синусоидальные напряжения и токи с постоянными амплитудой и частотой.

Для перехода от одного установившегося режима к другому требуется некоторый переходный период, в течение которого изменяются величины токов и напряжений в электрической цепи. С большей или меньшей скоростью эти величины приходят в соответствие с условиями нового режима.

Переходные процессы могут происходить во многих электротехнических устройствах не только в начале или в конце их работы, когда включается или выключается источник питания, но и при возникновении аварийных ситуаций, когда происходит обрыв или короткое замыкание части электрической цепи. В ряде электротехнических устройств и особенно часто в устройствах промышленной электроники переходные процессы являются основными процессами их работы.

Переходные процессы возникают в цепях, содержащих индуктивные катушки и конденсаторы. Это связано с тем, что данные элементы обладают способностью накапливать и отдавать энергию соответственного магнитного и электрических полей. Возникновение переходных процессов объясняется тем, что индуктивные катушки и конденсаторы являются инерционными элементами, то есть изменение энергии электрического или магнитного поля в них не может происходить мгновенно.

Токи и напряжения при переходном процессе могут значительно отличаться как

от токов и напряжений в установившемся режиме, так и от их номинальных значений. Исследование переходных процессов имеет большое значение для энергетических (возможны перегрузки при включении или отключении потребителей), импульсных (влияние переходных процессов на форму импульса) и других цепей.

В связи с этим целью работы является экспериментальное определение длительности переходных процессов в RC, RL, RLC –цепях, а также изучение форм сигналов при протекании переходного процесса. Работа выполнена в пакете моделирования электрических цепей Tina-TI.

Цепи первого порядка состояли из нагрузки (сопротивление R), реактивного элемента (катушка индуктивности L или конденсатор C), источника прямоугольных импульсов и двух вольтметров (один вольтметр устанавливался на вход, другой — на выход схемы). Цепь второго порядка состояла из резистора R, катушки индуктивности L, конденсатора C, дополнительного сопротивления $R_{доп}$, четырех вольтметров (измерялось падение напряжения на всех элементах схемы, кроме $R_{доп}$) и генератора прямоугольных импульсов. Схемы исследуемых цепей приведены в соответствующих разделах.

Перед началом работы была проведена настройка генератора прямоугольных импульсов: форма сигнала (квадрат), амплитуда (500 мВ), DC уровень (500 мВ), частота (изначальная частота составляла **5** кГц, в зависимости от варианта могла измениться). На рисунке 3.1 приведены стандартные настройки генератора.

Рисунок 3.1 – Стандартные настройки генератора прямоугольных импульсов

Измерения в лабораторной работе производились с помощью виртуального осциллографа. Временная развертка выбиралась в соответствии с частотой следования входных импульсов таким образом, чтобы на осциллограмме отображалось порядка 4-5 периодов. Пример настройки осциллографа для частоты 5 кГц приведен на рисунке 3.2.

Рисунок 3.2 – Стандартные настройки осциллографа

3.1 Исследование RC-цепей

На рисунке 3.3 изображены дифференцирующая (A) и интегрирующая (Б) RCцепи, которые исследуются в данной работе. Номиналы сопротивления и емкости выбираются в соответствии с вариантом.

Рисунок 3.3 – Дифференцирующая (A) и интегрирующая (Б) RC-цепи На рисунках 3.4 и 3.5 показаны результаты моделирования дифференцирующей и интегрирующей RC-цепей соответственно.

Рисунок 3.4 — Результат моделирования дифференцирующей RC-цепи

Рисунок 3.5 — Результат моделирования интегрирующей RC-цепи

По графикам, представленным на рисунках 3.4 и 3.5, были получены экспериментальные значения времени переходного процесса при достижении сигнала трубки точности 5 %. Также по формуле (3.1) было рассчитано теоретическая длительность переходного процесса RC-цепей первого порядка:

$$T_C = 3 \cdot R \cdot C. \tag{3.1}$$

3.2 Исследование RL-цепи

На рисунке 3.6 изображены дифференцирующая (А) и интегрирующая (Б) RLцепи, которые исследуются в данной работе. Номиналы сопротивления и индуктивности выбираются в соответствии с вариантом.

Рисунок 3.6 – Интегрирующая (A) и дифференцирующая (Б) RL-цепи

На рисунках 3.7 и 3.8 показаны результаты моделирования интегрирующей и дифференцирующей RL-цепей соответственно.

Рисунок 3.7 – Результат моделирования интегрирующей RL-цепи

Рисунок 3.8 — Результат моделирования дифференцирующей RL-цепи

По графикам, представленным на рисунках 3.7 и 3.8, были получены экспериментальные значения времени переходного процесса при достижении

сигнала трубки точности 5 %. Также по формуле (3.2) было рассчитано теоретическая длительность переходного процесса RC-цепей первого порядка:

$$T_L = 3 \cdot \frac{L}{R} \quad . \tag{3.2}$$

Экспериментальные и расчётные значения длительности переходного процесса для цепей первого порядка представлены в таблице 3.1.

Таблица 3.1 – Длительность переходного процесса

		Длительность переходного процесса									
Звено	первого	интегрирующей	дифференцирующей	расчетная							
порядка:		цепи	цепи	расченная							
RC-цепь		85,08	84,31	93,81							
RL-цепь		28,43	28,68	32,034							

3.3 Исследование RLC-цепи

На рисунке 3.9 изображена RLC-цепь, которая исследуется в данной работе. Номиналы сопротивления, индуктивности и емкости выбираются в соответствии с вариантом. На рисунке 3.10 показан результат моделирования RLC-цепи.

Рисунок 3.9 – Исследуемая цепь второго порядка (RLC-цепь)

Рисунок 3.10 — Результат моделирования интегрирующей RLC-цепи

Для определения теоретической длительности переходного процесса T_{RLC} и добротности Q последовательной RCL-цепи (звена второго порядка) используются формулы (3.3.) и (3.4) соответственно:

$$T_{RLC} = 3 \cdot \frac{2L}{R} \quad , \tag{3.3}$$

$$Q = \frac{1}{2} \cdot \frac{2L}{R} \frac{1}{\sqrt{L \cdot C}} \quad (3.4)$$

Для исследуемой RLC-цепи были рассчитаны теоретическое время переходного процесса и добротность и получены для них следующие значения:

$$T_{RLC} = 0,064$$
 мкс, $Q = 0,00058$.