Laboratório 3 - Expansão da Rede Local com o Cisco Packet Tracer					
Universidade Federal do Pará					
Curso	Ciênd	cia da Computação	Disciplina	Lab. de Rede de Computadores	
Data	03/04/2019		Equipe		
Integrantes					

Sumário

Objetivo	1
Criando uma LAN expandida	1
DHCP	2
Web	3
DNS	3
Exercícios	5

Objetivo

Neste laboratório faremos uma expansão da nossa rede local através dos cascateamento de switches e a utilização de equipamentos como repeater e bridge. Adicionaremos à nossa topologia um servidor que implementará alguns serviços de rede como DHCP, Web e DNS.

Criando uma LAN expandida

Cascatear switches é nada mais do que ligar um em alguma porta do outro. Ao fazer isso aumentamos a capacidade da nossa LAN em atender terminais. Geralmente há um rack que acomoda os diversos equipamentos. O simulador nos permite fazer uma visualização de como ficaria o arranjo físico deste tipo de organização. Vejamos:

- 1. Coloque três (03) switches 2950, um em cima do outro, conecte-os entre si com o cabo apropriado, de cima para baixo, usando sempre a última porta disponível e renomeie-os para Switch-A, Switch-B e Switch-C. **Responda a atividade A01**.
- 2. Em cada switch, conecte 3 terminais genéricos com os nomes PC-XY, em que X é a letra do switch e Y o número da porta conectada. Selecione-os e clique em *New Cluster* na barra de ferramentas da visualização lógica da topologia.
- 3. Pressione Shift+P clique em **NAVIGATION** e *Rack* para conferir uma visualização física dos switches cascateados. Pressione Shift+L para voltar a visualização lógica.

O modo de visualização física permite construir topologia enfatizando a localização espacial dos equipamentos em vários níveis de granularidade diferente. É uma ótima ferramenta para apresentar um projeto de topologia de rede.

- 4. Continue a construir a topologia conectando a última porta disponível do Switch-B em um Repeater (um hub de duas portas) e este em outro switch 2950 que deve ser renomeado para Switch D e ter terminais conectados às portas iniciais e renomeados conforme elas: PC-D1 e PC-D2.
- 5. Repita o passo 4, utilizando uma bridge em vez do Repeater e use E para o novo switch
- 6. Neste último switch conecte 3 terminais PC-E1, PC-E2 e PC-E3, mais um servidor Serv-E4, nas portas 1, 2,3 e 4; respectivamente, Figura 01.

Ao fim da construção da topologia, devemos ter um cenário semelhante ao mostrado abaixo:

Figura 01 – Organização da rede.

7. Olhando a topologia acima faça as atividades de A02 até A4.

DHCP

Quando um rede se torna demasiadamente grande, torna-se inviável a configuração manual de todos os clientes da rede. Para isso, temos o protocolo DHCP para prover esta configuração de maneira dinâmica. Vamos agora configurar nosso servidor para que ofereça este serviço:

- 8. Coloque em modo de simulação e filtre para exibir somente mensagens DHCP.
- 9. Abra o servidor e clique na aba *Services*. Na guia DHCP realizaremos as configurações necessárias para colocar o serviços em operação:
 - a. Configure um endereço de IP privado classe B para o servidor;
 - b. Em Start IP Address o primeiro IP do range de endereços que será distribuído;
 - c. Em Subnet Mask, a máscara correspondente.
 - d. Em Maximum numer of user, o número máximo coloque 20.
 - e. Marque ON e salve as configuração.
- 10. Abra o terminal PC-E1 e em IP Configuration na aba Desktop mude para DHCP e observe os PDUs trocados entre o terminal e o servidor a cada evento, sempre passando o mouse por cima do terminal a cada passo da simulação, para conferir se um IP foi atribuído a ele. Faça isso até que o terminal receba seu endereço.
- 11. Clique em *Back* no painel de simulação para voltar evento a evento e observe o conteúdo dos PDUs que saem e entram no terminal e no servidor.
- 12. Faça as atividades de A05 até A10.
- 13. Mude para o modo de temo real e coloque todos as máquinas para usar DHCP em suas configurações de IP. Feito isso, faça alguns testes de conectividade.

Web

Podemos configurar uma páginas web para que os terminais da rede possam acessá-la via navegador disponibilizado pelo simulador, através do IP configurado no servidor que hospeda o serviço web. Para configurá-lo devemos proceder de forma similar ao DHCP. Mas vamos apenas ligar o serviço na guia HTTP – caso esteja desligado. Já existe uma página pré-configurada. Você pode alterá-la, caso saiba e deseje editar o código HTML presente.

- 14. Com o serviço ligado, volte para o modo de simulação e filtre para exibir apenas mensagens HTTP.
- 15. Em terminal qualquer terminal, abra o Web Browser disponível na aba desktop e no campo URL digite o IP do servidor em que o serviço de web está ativo.
- 16. Acompanhe o conteúdo dos PDUs trocados e faça as atividades de A11 e A12.

18. Figura 02 - Serviço HTTP/HTTPS.

DNS

Até então quando nos referimos há algum host, seja atrás de um comando *ping* ou acessando algum serviço o web, necessitamos utilizar o valor do endereço IP. No entanto, diferentemente

do computador, é custoso para o ser humana lidar com várias cadeias de números, mas fácil seria para nós, trabalharmos com nomes que fizessem algum sentido.

O simulador nos oferece a possibilidade de implementar um serviços de DNS simplificado, onde nosso servidor contém um arquivo no qual armazenamos registros que fazem a indexação entre nome e endereço IP. Para implementar o serviço, proceda de forma análoga aos tópicos anteriores para acessar a guia de configuração do DNS.

- 19. Insira o nome <u>www.labredes.com</u>, o endereço IP do servidor e clique em *On* e *Add*, Figura 03.
- 20. No DHCP, indique o IP no valor de DNS Server e execute *ipcofig /renew* nos PCs, Figura 04.
- 21. Em modo de simulação, filtre para eventos DNS e analise o pacote a cada captura.
- 22. Responda as atividades A13 e A14.

Figura 03 - Serviço DNS.

Figura 04 – Serviço DHCP após inclusão do servidor de DNS.

Exercícios

- A01 Qual a diferença entre cabos par trançado direto e cruzado?
- A02 Explique o que é um Repeater, em que camada opera e para o que é comumente usado.
- A03 Explique o que é uma bridge, em que camada opera e para o que é comumente usada.
- A04 Quantos domínio de colisão e broadcast podem ser observados na topologia?
- A05 Quantos eventos ocorreram desde a solicitação DHCP arte a obtenção do endereço?
- A06 O protocolo DCHP pertence a qual camada do modelo TCP/IP?
- A07 No primeiro evento, quais os destinos indicados enlace e de rede?
- A08 Qual o protocolo de transporte e portas utilizadas pelo DHCP nessa simulação?
- A09 Explique o funcionamento do DHCP.
- A10 Transcreva os conteúdos das mensagens HTTP enviada ao servidor e recebida dele.
- A10 Segundo a versão do HTTP, que tipo de conexão foi utilizada? Como ela funciona?
- A10 Qual o protocolo de transporte e portas utilizadas pelo DNS?
- A13 Explique a diferença entre DNS autoritativo e recursivo. O da simulação seria qual?