Zadanie 1. (2 pkt)

W poniższych wyrażeniach podkreśl wolne wystąpienia zmiennych. Dla każdego związanego wystąpienia zmiennej, narysuj strzałkę od tego wystąpienia do wystąpienia wiążącego je.

```
let f x =
  let x = x
  and y = x + y in
  f x y z

ocaml

fun f x ->
  let x = x + y in
  let z = x + y in
  fun y -> g x y z

ocaml

let rec f x =
  let g y = x + y in
  if g x > g y
  then g (f x) else h y
```

Zadanie 2. (3 pkt)

Dla poniższych wyrażeń w języku OCaml podaj ich (najogólniejszy) typ, lub napisz "BRAK TYPU", gdy wyrażenie nie posiada typu (nie typuje się).

Zadanie 3. (3 pkt)

Zaimplementuj funkcje, których działanie jest opisane słownie poniżej, używając funkcji (List.fold_left) lub (List.fold_right). Dla każdego z rozwiązywanych problemów postaraj się wybrać lepszą z tych dwóch funkcji (umożliwiającą prostszą lub efektywniejszą implementację).

• Oblicz iloczyn wartości funkcji dla argumentów z pewnej listy liczb całkowitych.

```
let product f xs =
```

• Odwróć kolejność elementów w liście wejściowej.

```
let reverse xs =
```

• Dla zadanej listy wejściowej utwórz nową listę zawierającą wartości zadanej funkcji f zaaplikowanej do wszystkich elementów listy wejściowej w oryginalnej kolejności.

```
ocaml
let map f xs = _____
```

Zadanie 4. (2 pkt)

Rozważ poniższą gramatykę języka poprawnie sparowanych nawiasów, w której S to symbol startowy (i jedyny symbol nieterminalny), nawiasy () to symbole terminalne, a ε oznacza słowo puste:

```
S \rightarrow (S) S \rightarrow SS S \rightarrow \varepsilon
```

Gramatyka ta jest niejednoznaczna. Podaj słowo, które ma przynajmniej dwa drzewa wyprowadzenia z tej gramatyki i narysuj te drzewa:

Zadanie 5. (4 pkt)

Założmy, że chcemy zaimplementować interpreter języka z funkcjami wyższego rzędu, mutowanym stanem i wyjątkami używając (metacyklicznie) funkcji wyższego rzędu, i stanu, ale nie używając wyjątków. Zaproponuj typ reprezentujący wartości w takim interpreterze.

Zadanie 6. (5 pkt)

Rozważmy problem budowy kompletnego drzewa BST z listy posortowanej. Drzewo binarne jest kompletne, jeśli na każdym k-tym poziomie drzewa za wyjątkiem ostatniego zawiera ono wszystkie 2^k węzłów. Liczba wierzchołków na ostatnim poziomie musi być mniejsza lub równa 2^k (jeśli drzewo ma 2^n - 1 elementów dla pewnego n, liczba ta wynosi 2^(n-1)). Przykładowo, drzewo o elementach z elementów [1; 2; 3; 4] może wyglądać następująco:

```
3
/\
2 4
/
```

Przyjmijmy następujący typ drzew:

```
ocaml

type 'a tree = Leaf | Node of 'a tree * 'a * 'a tree
```

Zaimplementuj funkcję typu (int list -> int tree), która dla zadanej posortowanej listy skonstruuje kompletne drzewo binarne. (W przypadku wątpliwości, wystarczy zapewnić, że funkcja będzie działać poprawnie dla list długości postaci 2^n - 1.) Konieczne będzie zdefiniowanie rekurencyjnej funkcji pomocniczej.

```
ocaml
let list_to_complete_tree xs =
```

Napisz (jednym słowem) czy Twoja definicja generuje nieużytki: _____

Zadanie 7. (6 pkt)

Rozważmy drzewa binarne zdefiniowane tak, jak w zadaniu 6. Sformułuj zasadę indukcji dla tego typu danych.

Zadanie 8. (6 pkt)

Rozważmy typowany język z rekurencyjnymi funkcjami wyższego rzędu oraz tablicami, którego składnię abstrakcyjną opisujemy następującym typem danych.

```
ocaml
type var = string
type expr =
 Unit
 Num of int
         of var
 Var
        of expr * expr
 Seq
        of var * tp * expr
 Fun
 App
         of expr * expr
 Fix of var * tp * tp * var * expr
 ArrayNew of expr * expr
 ArrayGet of expr * expr
 ArraySet of expr * expr * expr
```

Konstrukcja (Fix(f, tp1, tp2, x, body)) tworzy anonimową funkcję rekurencyjną gdzie tp1 oraz tp2 to odpowiednio typ argumentu i wartości, zmienne f oraz x reprezentują odpowiednio całą funkcję oraz jej argument i są związane w ciele funkcji (body). Konstrukcje (ArrayNew(len, v)) tworzy nową tablicę długości len, wypełnioną początkowo wartościami v. Konstrukcje (ArrayGet(arr, i)) oraz (ArraySet(arr, i)) oznaczają odpowiednio odczytanie i zapisanie i-tego elementu tablicy arr.

Uzupełnij poniższą definicję typów w tym języku.

```
type tp =
    | TUnit
    | TInt
    | TArrow of tp * tp
    | _____
```

Następnie uzupełnij poniższą implementację wyprowadzania typów.

```
let rec infer_type env e =
  match e with
  | Unit -> TUnit
  | Num _ -> TInt
  | Var x -> Env.lookup env x
  | Seq(e1, e2) ->
      check_type env e1 TUnit;
      infer_type env e2
  | Fun(x, tp, body) ->
      TArrow(tp, infer_type (Env.add env x tp) body)
  | App(e1, e2) ->
```

Zadanie 9. (4 pkt)

Poniżej znajduje się definicja prostego języka wyrażeń arytmetycznych w postaci odwrotnej notacji polskiej wraz ze stosową maszyną obliczającą wartość wyrażenia.

```
ocaml
type op = Add | Sub
type cmd = Int of int
        Op of op
type prog = cmd list
let eval_op (op : op) : int -> int -> int =
 match op with
  Add -> (+)
  Sub -> (-)
let rec eval_vm (p : prog) (stack : int list) : int =
 match p, stack with
  [], [k] -> k
  Int k :: p, s -> eval_vm p (k :: s)
  Op op :: p, e2 :: e1 :: s -> eval_vm p (eval_op op e1 e2 :: s)
let eval (p : prog) : int =
  eval_vm p []
```

Zaimplementuj funkcję calc_stack_length: prog -> int), która oblicza, jak dużo przestrzeni kompilator musiałby zarezerwować na stos, żeby obliczyć wartość wyrażenia używając semantyki zadanej przez maszynę (innymi słowy, dla dowolnego programu p, wartością calc_stack_length p) jest

maksymalna liczba elementów, które znalazły się jednocześnie na stosie maszyny podczas obliczania wartości programu p).

Przykładowo, wartością wyrażenia (calc_stack_length [Int 4; Int 3; Op Add; Int 5; Op Sub] jest 2. Możesz założyć, że argument zawsze jest poprawnym programem.

```
ocaml
let rec calc_stack_length p =
```