Observing the First Galaxies Part II: Galaxy Properties & Implications

Dunlop 2012

Presented by Ned Molter

Stellar Masses (5.1)

- Why are they useful?
 - Time integral of past star formation activity
 - Enable comparisons with galaxy formation models
- Hard to derive from UV data only
 - IMF is dominated by short-lived massive stars -> depends strongly on recent SF
 - Dust extinction is large
- Best stellar mass constraints are from near-IR
 - Not practical until JWST
 - Any photometry at wavelengths > 400 nm is helpful to reduce uncertainty
 - Spitzer IRAC rest-frame optical must assume SFR

Stellar Masses ctd. (5.1)

- Multi-band SED fitting is the best way to estimate currently, but:
 - 1. Requires combining HST and Spitzer (order of mag. different resolution)
 - 2. Depends somewhat on your population synthesis model
 - 3. Significant degeneracies between age, metallicity, and extinction
 - 4. Difficult to disentangle stellar and nebular/ISM emission
 - 5. Must assume an IMF, since low-mass stars are not detected
- IMF is not that big an issue, though
 - Can still compare with theory usefully despite factor of ~1.8 difference
 - Specific star formation rate (sSFR = SFR/M_stars) is relatively unaffected

$$M_{star} \propto L_{1500}^{1.7}$$

- Apply above relation derived for z ~ 4 to higher z
- Theoretical models predict steeper slopes (more low mass galaxies)
- All points assume same M-L relation
- Constant SFR is assumed

<u>Left panel</u> – Perform SED fitting over a wide range of metallicities, SFHs, reddenings, choose best fitting model for each point; get mass, SFR from that <u>Right panel</u> – Force constant SFR, then do the same thing <u>Dashed lines</u> – relation for model galaxies with constant SFR, reddening

Star formation histories (5.2)

- Since sSFR is roughly constant, is SFR increasing exponentially?
 - Not all galaxies grow the same, but basically, yes must be something close
 - This is confirmed by most data from z = 8 to z = 3
 - Consistent with the latest hydro simulations
 - However, these want sSFR to increase with z, tracking halo mass accretion rate
 - Need more feedback
- Hard to say basically anything else about SFHs without high-res spectroscopy
 - Probably episodic, different by galaxy
 - Degeneracies from nebular emission, dust, metallicity

Ultraviolet Slopes (5.3)

- Extremely low metallicity, dust free, high-z galaxies are expected to be much bluer than anything at z < 6.5
- \bullet Can constrain this using rest frame UV photometric continuum slopes parameterized by power law index β
- β ~ -2 for the bluest galaxies at z = 3-4
- $\beta \sim -3$ is possible for young, low metallicity populations if:
 - 1. Population is very young, i.e. t < 30 Myr
 - 2. Completely free of dust extinction
 - 3. No contamination from nebular continuum
- Important implications for reionization β is related to UV escape fraction
- For brightest galaxies, $\beta \sim -1.5$ at $z \sim 3-4$ but $\beta \sim -2$ at $z \sim 6$
 - Interpreted as changing extinction

** Interpreting moderate β values like those observed is not straightforward

Sizes & Morphologies (5.4)

Size evolution of Lyman break galaxies with redshift. Effect of HST's selection bias for galaxies with high surface brightness isn't fully understood – need more data and JWST

Clustering (5.5)

- Clustering measurement -> estimate
 DM halo occupation fraction
- At z ~ 5, observations are limited severely by small number statistics
- Best observations are in Subaru images, and they do detect clustering
 - Lyman alpha emitters -> correlation length
 3-7 Mpc -> log(M_halo) ~ 10-11
 - Lyman break galaxies -> correlation length
 6-10 Mpc -> log(M_halo) ~ 11.5-12
 - Difference makes sense LBGs are rarer and more massive

Cosmic Star Formation History (6.1)

- UV luminosity function -> comoving UV luminosity density -> star formation density over cosmic time
- This measurement requires several extrapolations
 - Galaxy luminosity function extrapolated to low luminosities
 - Stellar mass function extrapolated to low masses
 - Mass/time dependence of dust must be accounted for
 - Selection effects highly dust-obscured galaxies may not be detectable
- Alternatively, differentiate the stellar mass density over cosmic time
- Reasonable but imperfect agreement dust extinction at high redshift may be necessary

Reionization (6.2)

- At what z, if at all, can the galaxy population reionize the Universe?
- Need sustained Lyman continuum photons, λ < 91.2 nm
- Hard to constrain because these photons are absorbed by hydrogen (as they reionize the Universe...)
- Guess their abundance by observing UV luminosity density at longer λ
 - Estimate rate of ionizing photons per star formation rate
 - Estimate escape fraction
 - Estimate clumpiness of IGM
- Ly- α emission as probe of IGM ionization state
 - Luminosity function of Ly- α emitting galaxies (LAEs) may evolve
 - Ly- α escape fraction should evolve with ionization state
 - Shape of lines should evolve
 - Clustering of LAEs should increase with redshift

Proposal is UDF12 imaging program with Hubble

Future Prospects – JWST (7)

