Bus protocols, local and geographic arbitration

Prof. S.Meenatchi

Buses

- There are a number of possible interconnection systems
- Single and multiple BUS structures are most common
- e.g. Control/Address/Data bus (PC)
- e.g. Unibus (DEC-PDP)

What is a Bus?

- A communication pathway connecting two or more devices
- Usually broadcast
- Often grouped
 - —A number of channels in one bus
 - —e.g. 32 bit data bus is 32 separate single bit channels
- Power lines may not be shown

Data Bus

- Carries data
 - —Remember that there is no difference between "data" and "instruction" at this level
- Width is a key determinant of performance
 - -8, 16, 32, 64 bit

Address bus

- Identify the source or destination of data
- e.g. CPU needs to read an instruction (data) from a given location in memory
- Bus width determines maximum memory capacity of system
 - —e.g. 8080 has 16 bit address bus giving 64k address space

Control Bus

- Control and timing information
 - —Memory read/write signal
 - —Interrupt request
 - —Clock signals

Bus Interconnection Scheme

Big and Yellow?

- What do buses look like?
 - —Parallel lines on circuit boards
 - —Ribbon cables
 - —Strip connectors on mother boards
 - -e.g. PCI
 - —Sets of wires

Physical Realization of Bus Architecture

Single Bus Problems

- Lots of devices on one bus leads to:
 - —Propagation delays
 - Long data paths mean that co-ordination of bus use can adversely affect performance
 - If aggregate data transfer approaches bus capacity
- Most systems use multiple buses to overcome these problems

Traditional (ISA) (with cache)

High Performance Bus

Bus Types

- Dedicated
 - —Separate data & address lines
- Multiplexed
 - —Shared lines
 - —Address valid or data valid control line
 - —Advantage fewer lines
 - —Disadvantages
 - More complex control
 - Ultimate performance

Bus Arbitration

- More than one module controlling the bus
- e.g. CPU and DMA controller
- Only one module may control bus at one time
- Arbitration may be centralised or distributed

Centralised or Distributed Arbitration

- Centralised
 - —Single hardware device controlling bus access
 - Bus Controller
 - Arbiter
 - —May be part of CPU or separate
- Distributed
 - —Each module may claim the bus
 - —Control logic on all modules