Report Title

Your Name here

November 8, 2017

Contents

1	Introduction			
2	Sec	ond Section	1	
	2.1	image	1	
	2.2	unordered lists	1	
	2.3	math	2	
	2.4	tables	3	
	2.5	Algorithm	3	
	2.6	Minipage	3	
	2.7	useful links	4	

1 Introduction

This is the first section.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortisfacilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdietmi nec ante. [Alur, 2015] Donec ullamcorper, felis non sodales...

2 Second Section

2.1 image

As you can see in the figure 2.6, Lorem ipsum dolor sit amet, consectetuer adiptiscing $\,$

2.2 unordered lists

- The individual entries are indicated with a black dot, a so-called bullet.
- The text in the entries may be of any length.

Figure 1: test

2.3 math

$$E = mc^2$$

Subscripts in math mode are written as a_b and superscripts are written as a^b . These can be combined an nested to write expressions such as

$$T^{i_1 i_2 \dots i_p}_{j_1 j_2 \dots j_q} = T(x^{i_1}, \dots, x^{i_p}, e_{j_1}, \dots, e_{j_q})$$

We write integrals using \int and fractions using $\frac{a}{b}$. Limits are placed on integrals using superscripts and subscripts:

$$\int_0^1 \frac{1}{e^x} = \frac{e-1}{e}$$

Lower case Greek letters are written as ω δ etc. while upper case Greek letters are written as Ω Δ .

Mathematical operators are prefixed with a backslash as $\sin(\beta)$, $\cos(\alpha)$, $\log(x)$ etc.

$$E = m (1)$$

2.4 tables

Col1	Col2	Col2	Col3
1	6	87837	787
2	7	78	5415
3	545	778	7507
4	545	18744	7560
5	88	788	6344

2.5 Algorithm

Algorithm 1 Artificial Neural Network Training Algorithm, modified from (Reed, 1999)

- 1: procedure Froward Propogation
- $\alpha^{l+1} = f(z^{l+1})$ $\alpha^{l+1} = f(z^{l+1})$
- 3:
- 4: procedure Calculate Loss Function
- $\alpha^{l+1} = f(z^{l+1})$
- 6: procedure Backpropogation
- 7:
- calculate partial derivatives of output layer $\delta_l = \frac{\partial}{\partial z_i^l} \frac{1}{2} ||h_{w,b}(x) y||^2 = -(y_i a_i^l) f'(z_i^l)$ 8:
- calculate partial derivatives of hidden layers and update weights 9:
- 10:
- 11:
- 12:
- calculate partial derivatives of hidden layer for j = l 1; j >= 2; $j - \delta_l = \frac{\partial}{\partial z_i^l} \frac{1}{2} \|h_{w,b}(x) y\|^2 = -(y_i a_i^l) f'(z_i^l)$ $\delta_l = \frac{\partial}{\partial z_i^l} \frac{1}{2} \|h_{w,b}(x) y\|^2 = -(y_i a_i^l) f'(z_i^l) p$ $\delta_l = \frac{\partial}{\partial z_i^l} \frac{1}{2} \|h_{w,b}(x) y\|^2 = -(y_i a_i^l) f'(z_i^l)$ end for 13:
- 14:

2.6 Minipage

2.7 useful links

Detect hand writing math symbols http://detexify.kirelabs.org/classify.html create latex tables online https://www.tablesgenerator.com

References

 $[{\rm Alur},\,2015]$ Alur, R. (2015). Principles of Cyber-Physical Systems. The MIT Press.