# Combining Flavor Taggers

How Best to Combine the Taggers?

P. Gutierrez—University of Oklahoma

#### Where We Stand

- □ At present we have three taggers
  - $\diamond$  SLT  $\equiv$  Single Lepton Tag
  - $\diamond$  STT  $\equiv$  Same Side Tag
  - $\Diamond$  JETQ  $\equiv$  Jet Charge
- $\Box$  The questions we wish to answer is how best to combine the taggers to minimize the error on  $\Delta m$

 $D\emptyset$  Slide-2 Mixing Meeting

# How to Combine Tagger Significance

 $\square$  Reminder, we want to maximize is  $\epsilon D^2$  or minimize the error on  $\Delta m$ .

$$\sigma \propto \frac{1}{\sqrt{N\epsilon D^2}}$$
 or  $S \equiv \text{Significance} \propto \sqrt{N\epsilon D^2}$ 

$$\epsilon = \frac{\text{tagged}}{\text{total sample}}$$
  $D = \frac{\text{Correct tags - Wrong tags}}{\text{Total tagged}}$ 

 $\square$  Recall, error for *n* independent measurements is given by

$$\frac{1}{\sigma^2} = \sum_{i=1}^{n} \frac{1}{\sigma_i^2} \propto S^2$$

 $\square$  Therefore, if n taggers are independently used, then  $S^2 \propto \sum_{i=1}^{n} \epsilon_i D_i^2$ 

# Approach to study

□ Use toy Monte Carlo to generate a sample of events

 $\square$  Start with  $\epsilon \& D$  given by Christos

| Tag  | $\epsilon$ | D     |
|------|------------|-------|
| SLT  | 5.2%       | 42.0% |
| SST  | 83.3%      | 14.4% |
| JETQ | 51.1%      | 13.7% |

### **Taggers**

- □ Considered 3 tagging methods
  - ♦ 1 measurement use tag with largest dilution

| $\epsilon$ | D     | $\epsilon D^2$ |
|------------|-------|----------------|
| 92.2%      | 15.9% | 2.3%           |

- $\diamond$  3 independent measurements
  - $\circ$  tag1 = SLT
  - $\circ$  tag2 = SST if not tagged by SLT
  - $\circ$  tag3 = JETQ if not tagged by either SLT or SST

| Tag  | $\epsilon$ | D     | $\epsilon D^2$ |
|------|------------|-------|----------------|
| tag1 | 5.2%       | 42%   | 0.91%          |
| tag2 | 79.0%      | 14.4% | 1.65%          |
| tag3 | 8.1%       | 13.6% | 0.15%          |
| Sum  |            |       | 2.71%          |

#### Taggers—cont.

- ♦ Make five independent measurements
  - 1. tag1 = SLT; Exclude these from remaining tags
  - 2. if SST = JETQ then tag2 = SST
  - 3. if  $SST \neq JETQ$  then tag3 = SST
  - 4. if only SST tag4 = SST
  - 5. if only JETQ tag5 = JETQ

| Tag  | $\epsilon$ | D     | $\epsilon D^2$ |
|------|------------|-------|----------------|
| tag1 | 5.2%       | 42%   | 0.91%          |
| tag2 | 20.6%      | 27.8% | 1.59%          |
| tag3 | 19.7%      | -0.6% | 0.00%          |
| tag4 | 38.7%      | 14.4% | 0.80%          |
| tag5 | 8.1%       | 13.6% | 0.15%          |
| Sum  |            |       | 3.45%          |

#### A Sanity Check

- $\square$  Generated 10K events with previously given  $\epsilon$  and D
- □ Fit lifetime distributions using an unbinned Likelihood function
  - $\diamond$  Fit for Lifetime, Resolution,  $\Delta m$ , and Mistag Rate

$$L^{\text{U/M}} = (1 - \alpha) \int e^{-(t - t')/2\sigma^2} e^{-t/\tau} [1 \pm \cos(\Delta m)] dt' + \alpha \int e^{-(t - t')/2\sigma^2} e^{-t/\tau} [1 \mp \cos(\Delta m)] dt'$$

□ Initial parameters

$$\diamond \tau = 1.5 \text{ ps}$$

$$\diamond \ \sigma = .5 \text{ ps}$$

$$\Diamond \Delta m = 0.51 \text{ ps}^{-1}$$

♦ Dilutions as given earlier

### **Examples of Fits**

□ Lifetime distribution of mixed and unmixed sample for SLT and (SLT\*SST\*JETQ) Combined tags



# Comparison of errors and $\epsilon D^2$

Compare errors of  $\Delta m$  for single measurement  $\epsilon D^2 = 2.3\%$  and combine 5 measurments  $\epsilon D^2 = 3.45\%$ 

#### Errors

| Tag        | Error $(ps^{-1})$ | $\epsilon D^2$ |
|------------|-------------------|----------------|
| Single Tag | 0.051             | 0.023          |
|            |                   |                |
| 1          | 0.0665            | 0.91%          |
| 2          | 0.0623            | 1.59%          |
| 4          | 0.0945            | 0.80%          |
| 5          | 0.1857            | 0.15%          |
| Total      | 0.0400            | 3.45%          |

#### Ratios

$$\Box \ \sigma_1/\sigma_5 = 0.784$$

$$\Box \sigma_{1}/\sigma_{5} = 0.784$$

$$\Box \sqrt{\epsilon_{5}D_{5}^{2}/\epsilon_{1}D_{1}^{2}} = 0.824$$

 $\square$  Recal<u>culate  $\epsilon$  & D for 10K sam-</u> ple  $\sqrt{\epsilon_5 D_5^2 / \epsilon_1 D_1^2} = 0.786$ 

### **Summary and Conclusions**

- $\square$  Quantity to maximize is  $\epsilon D^2$ 
  - $\diamond$  The significance is  $\propto \sqrt{N \epsilon D^2}$
  - $\diamond$   $\epsilon D^2$  add for combined measurements
- $\Box$  The effect of any new tagger can be easily calculated once  $\epsilon$  and D are known
- □ Current study shows combining 5(4) taggers yields improvement over a single tagger