Spatial Transcriptomics session

Introduction

Kévin LEBRIGAND, PhD Institut de Pharmacologie Moléculaire et Cellulaire Université Côte d'Azur, CNRS, France.

- lebrigand@ipmc.cnrs.fr
- @kevinlebrigand
- @ @kevinlebrigand@genomic.social

Academics labs scientific priorities

Twitter survey a few weeks ago

20 years of transcriptomics

Driven by microfluidics technological developments

Early 2000's: DNA microarray

- Large-scale transcriptome
- Oligonucleotide probe tilling
- Fluorochrome signal analysis
- Bulk resolution

Cost: 4k€ 20 samples 25k genes **0,5M matrix**

Late 2000's: RNA sequencing

- Whole transcriptome
- Next Generation Sequencing
- Full-transcript coverage
- · Bulk resolution

Cost : 4k€ 20 samples 50k genes 1M matrix

Mid 2010's: Single-cell

- Whole transcriptome
- Microfluidics + NGS
- 3p-end gene signal (UMI)
- Sensitivity (6%)
- Single-cell / state resolution

Cost : 4k€ 5k cells 50k genes 250M matrix

2020's : Spatial

- 500-1000 gene targets
- Imaging analysis
- Multiplexing FiSH (single molecule)
- Sensitivity (30-80%)
- Sub-cellular resolution

Cost: 4k€ 250k cells 1k genes 250M matrix

+ Spatial dimension

Spatial transcriptomics

Timeline

- Section 1. Technologies based on microdissected gene expression
- Section 2. In situ hybridization technologies
- Section 3. In situ sequencing technologies
- Section 4. In situ capturing technologies

Spatial transcriptomics (2019-2022)

Visium is widely adopted by academics

But is not the ideal readout for spatial biology (Akoya credit rough caricature)

Spatial transcriptomics imaging (2023)

No more sequencing for true single-cell resolution

- Lower gene targets (from whole transcriptome to 500-1,000 genes)
- Higher sensitivity (from <10% to 30-80%)
- Same imaging area range (from 40 to 16-100mm2)
- Higher resolution (from 55 µm to subcellular)

Spatial transcriptomics session

Spatial Transcriptomics		
9h15-9h25	Introduction to the transcriptomic session	K. Lebrigand (IPMC, Valbonne)
9h25-9h40	"Xenium: High Performance In Situ Made Fast	A. Castro (10x Genomics)
	and Easy"	
9h40-9h55	« The Hyperion Imaging System™ to explore	S. Thambirajah (Standard BioTools)
	Complex Biological Systems – Applications	A. Meghraoui (AMKbiotech)
	presented by AMK BIOTECH »	
9h55-10h25	« Multiplexed Spatial profiling of adult Skeletal	Lorenzo Giordani (Centre de Recherche
	Muscle »	en Myologie, Paris)
Coffee break & stands		
11h-11h15	« Single Cell Spatially Resolved Transcriptomic	M. Ploquin (Vizgen)
	Imaging with MERSCOPE »	
11h15-11h45	Single-cell to Spatial isoform transcriptomics	K. Lebrigand (IPMC, Valbonne)