

Public Key Cryptography

Killian O'Brien

6G6Z0024 Applied Cryptography 2024/25

Lecture Week 07 – Wed 13 November 2024

Introduction and initial promise

- Reading: <u>Stallings, Chapter 9, Public-key cryptography and RSA</u>
- Symmetric ciphers, such as DES, and then AES, can provide excellent security, but rely on the distribution of *secret keys* between the parties.
 - How are these secret keys to be distributed in a secure and efficient way?
- Public-key cryptography, an asymmetric approach (different keys for encryption and decryption) solves this by using two keys,
 - o a **public key** (which does not need to be kept secret) to encrypt messages,
 - o and a **private key** (which must be kept secret, but which only the receiver needs) to decrypt messages.
- Public-key cryptography promises and enables something, which seems almost paradoxical. Suppose that
 - two parties, Alice and Bob, wish to communicate,
 - they have never met or communicated before, and do not have any access to pre-arranged secret keys,
 - **ALL** their communications can be intercepted and inspected by the eavesdropper, Eve,
 - o nevertheless, using public-key techniques, Alice and Bob can exchange some initial unencrypted communications, and then pass into secure encrypted communication,
 - even though **ALL** their initial unencrypted communications were intercepted, read and understood by Eve.

Discovery

- Discovered by Whitefield Diffie and Martin Hellman at Stanford University in 1976.
- Though in 1997, UK government declassified material revealing that James Ellis, Clifford Cocks and Martin Williamson, working at GCHQ, made the same discoveries earlier in the 1970s.
- Two problems are solved by these methods
 - o encrypted communications without the need for secretly pre-arranged keys,
 - o digital signatures enabling the cryptographic proof that a message was authored by the claimed author.

Basic principles / requirements

- A pair of related keys
 are generated by the
 user Alice, a public key
 PU_a, and a private key,
 PR_a.
- The public key is published for all to see.
- The private key is kept private and secure.
- Messages can be encrypted using this public key, and communicated to Alice.
- The messages can be decrypted by Alice using her private key.
- Details of the public key, encryption and decryption algorithms are all public.

The eavesdropper's/cryptanalsyt's task

• The cryptanalyst intercepts encrypted message Y and attempts to form estimates of the original plaintext X or the private key PR_b .

Outline of a digital signature approach

- Using keys of both sender and recipient can enable **authenticated** and encrypted communication.
- The receiver Bob is assured that only the holder of the private key corresponding to Alice's public key could have authored this message X.
- Alternatively, the middle encryption step can be skipped, and Alice can simply publish the encrypted message Y, which anyone can decrypt with her public key PU_a . Any such receiver is assured that only the holder of the private key corresponding to Alice's public key could have authored this message X.

Firming up the requirements (Stallings, pg. 294)

- It is computationally easy for a party B to generate keys pairs PU_b and PR_b .
- It is computationally easy for a sender A, with the public key PU_b and plaintext M, to generate the corresponding ciphertext

$$C = E(PU_b, M).$$

ullet It is computationally easy for the receiver B to decrypt C using PR_b , to recover M as

$$M = D(PR_b, C) = D(PR_b, E(PU_b, M)).$$

- ullet It is computationally infeasible for an adversary, knowing the public key PU_b , to determine the private key PR_b .
- It is computationally infeasible for an adversary, knowing the public key PU_b and ciphertext C, to recover the original message M.

While not essential, the following useful property is possessed by the RSA implementation of public-key cryptography.

• The two keys can be applied in either order, i.e.

$$M=Dig(PR_b,E(PU_b,M)ig)=Dig(PU_b,E(PR_b,M)ig).$$

This is all very nice to describe, but what exactly is the technology that can enable such a scheme?

The RSA system

- Discovered in 1978 at MIT by Ron Rivest, Ade Shamir and Len Adleman.
- It remains one of the most widely used general purpose public-key schemes.
- It deals with messages, or message blocks, encoded as integers in the range 0 to n-1, for some suitably large n.
- Typicall size for n might be 1024 bits, or around 309 decimal digits.
- RSA makes use of exponentials in modular arithmetic.
- The message M is an integer in the range $0 \leq M \leq n-1$.
- ullet The receiver chooses integers e and d, with the property that

$$ed \equiv 1 \pmod{\phi(n)},$$

i.e. e and d are multiplicative inverses of each other modulo the Euler totient function value $\phi(n)$.

- The public key is PU=(e,n), the private key is PR=(d,n).
- ullet The plaintext M is encrypted as

$$C = (M^e \mod n).$$

ullet The ciphertext C is decrypted as

$$(C^d \bmod n) = ((M^e)^d \bmod n) = (M^{ed} \bmod n) = (M^1 \bmod n) = M.$$

• The security comes from the fact that computing $\phi(n)$ from n is **hard**.

RSA procedure

• Figure on the right, from Stallings, outlines the procedure.

Key Generation by Alice

Select p, q p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate $d \equiv e^{-1} \pmod{\phi(n)}$

Public key $PU = \{e, n\}$

Private key $PR = \{d, n\}$

Encryption by Bob with Alice's Public Key

Plaintext: M < n

Ciphertext: $C = M^e \mod n$

Decryption by Alice with Alice's Private Key

Ciphertext: C

Plaintext: $M = C^d \mod n$

Figure 9.5 The RSA Algorithm

A small n example

- Extract from Stallings pg. 298, shows the calculations for an example based on a small n. Remember a typical size for n from real usage is circa 309 decimal digits.
- The Euler totient function value $\phi(n)$, when n=pq, for distinct primes p and q, is given by

$$\phi(n) = \phi(pq) = (p-1) \cdot (q-1).$$

- The reason that computing $\phi(n)$ from n is **hard** is that factoring n into the product $p\cdot q$ is hard. Given such a large n there is no easy way to discover its prime factors.
 - \circ the best known algorithms for factoring integers will take a **long** time to factor n, given any realistic amount of computing power available.

- 1. Select two prime numbers, p = 17 and q = 11.
- **2.** Calculate $n = pq = 17 \times 11 = 187$.
- 3. Calculate $\phi(n) = (p-1)(q-1) = 16 \times 10 = 160$.
- **4.** Select e such that e is relatively prime to $\phi(n) = 160$ and less than $\phi(n)$; we choose e = 7.
- 5. Determine d such that $de \equiv 1 \pmod{160}$ and d < 160. The correct value is d = 23, because $23 \times 7 = 161 = (1 \times 160) + 1$; d can be calculated using the extended Euclid's algorithm (Chapter 2).

The resulting keys are public key $PU = \{7, 187\}$ and private key $PR = \{23, 187\}$. The example shows the use of these keys for a plaintext input of M = 88. For encryption, we need to calculate $C = 88^7 \mod 187$. Exploiting the properties of modular arithmetic, we can do this as follows.

```
88<sup>7</sup> mod 187 = [(88<sup>4</sup> mod 187) × (88<sup>2</sup> mod 187)
× (88<sup>1</sup> mod 187] mod 187

88<sup>1</sup> mod 187 = 88

88<sup>2</sup> mod 187 = 7744 mod 187 = 77

88<sup>4</sup> mod 187 = 59,969,536 mod 187 = 132

88<sup>7</sup> mod 187 = (88 × 77 × 132) mod 187 = 894,432 mod 187 = 11
```

For decryption, we calculate $M = 11^{23} \mod 187$:

```
11^{23} \mod 187 = [(11^1 \mod 187) \times (11^2 \mod 187) \times (11^4 \mod 187) \times (11^8 \mod 187) \times (11^8 \mod 187)] \times (11^8 \mod 187)] \mod 187
11^1 \mod 187 = 11
11^2 \mod 187 = 121
11^4 \mod 187 = 14,641 \mod 187 = 55
11^8 \mod 187 = 214,358,881 \mod 187 = 33
11^{23} \mod 187 = (11 \times 121 \times 55 \times 33 \times 33) \mod 187
= 79,720,245 \mod 187 = 88
```

Modular arithmetic reminder

- RSA involves using c,d that are multiplicative inverses of each other modulo $\phi(n)$.
- Multiplicative inverses are found using the extended Euclidean algorithm
 - If a is coprime to a modulus m, i.e. (a,m) = 1,
 - \circ Run the extended Euclidean algorithm to find integer coefficients x,y satisfying

$$xa + ym = 1$$
.

Then the inverse is given by

$$a^{-1} \bmod m = (x \bmod m),$$

because

$$xa = 1 - ym \equiv 1 \pmod{m}$$
.

Factorization and the choice of p, q

- Factorization of large n is computationally hard
 - even when using advanced *number field sieve* factoring algorithms.
- But computational power increases and theoretical advancements should be expected to continue.
- The counter to both these possibilities is to increase the size of n, to make factoring harder.
- Recent advice from standards agencies
 - NIST 2015 recommends key lengths of 2048 bits or longer.
 - EU Agency for Network ad Information Security 2014 recommends 3072 bits for future developments.
- Other guidance on choice of p, q is
 - $\circ p$ and q should be of similar digit length. So for a 1024-bit key, they should be chosen in the range

$$10^{75} \le p, q \le 10^{100}$$
.

- \circ both p-1 and q-1 should contain a large prime factor
- $\circ \gcd(p-1,q-1)$ should be small.
- However finding large primes is computationally hard, similar to factoring.
 - o In practice, for choosing such large primes, probabilistic prime tests, such as the Miller-Rabin test, need to be used.
 - This test allows one to choose an integer which is *probably* a prime.
 - But this probability can be made arbitrarily close to 1, i.e. as near certain as one would like. (See chapter 2 of Stallings for details on Miller-Rabin test)