Build Regression Model based on data_per_zipcode

As seen during our collinearity analysis it seems that zipcode might affect the property price.

Build Regression Model based on data_per_zipcode to predict property price

As seen during our collinearity analysis it seems that zipcode might affect the property price.

So the question is How does that work?.

Table of Contents

- 1. EDA dataset per zipcode
- 2. Scale and normalise variables
- 3. Building the model
- 4. Conclusion

Prep-work

```
In [1]: # Import useful librairies and set auto reload
import pandas as pd
import numpy as np
import housing_data as hd
import seaborn as sns
import matplotlib.pyplot as plt
import pickle
from statsmodels.formula.api import ols
%load_ext autoreload
%autoreload 2
```

##EDA dataset per zipcode

In [2]: # Load dataset
 data = hd.load_housing_data(with_cat_columns=False)
 data.head()

Out[2]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view
0	7129300520	2014- 10-13	221900.0	3	1.00	1180	5650	1.0	False	0.0
1	6414100192	2014- 12-09	538000.0	3	2.25	2570	7242	2.0	False	0.0
2	5631500400	2015- 02-25	180000.0	2	1.00	770	10000	1.0	False	0.0
3	2487200875	2014- 12-09	604000.0	4	3.00	1960	5000	1.0	False	0.0
4	1954400510	2015- 02-18	510000.0	3	2.00	1680	8080	1.0	False	0.0

5 rows × 21 columns

```
In [3]: # Plot property count per zipcode
g = sns.factorplot("zipcode", data=data, aspect=1.5, kind="count", color="b
g.set_xticklabels(rotation=30)
```

/Users/flatironstudentaccount/anaconda3/lib/python3.7/site-packages/seabo rn/categorical.py:3666: UserWarning: The `factorplot` function has been r enamed to `catplot`. The original name will be removed in a future releas e. Please update your code. Note that the default `kind` in `factorplot` (`'point'`) has changed `'strip'` in `catplot`. warnings.warn(msg)

Out[3]: <seaborn.axisgrid.FacetGrid at 0x1c25e29048>

5/23/2019

It looks like we got enough data per zipcode.

Display price against sqft_living

```
In [4]: # Split dataset in two group of zipcode for display purpose.
    zipcodes = data['zipcode'].unique()
    zipcodes.sort()
    zipcodes_median = zipcodes[(len(zipcodes) // 2): (len(zipcodes) // 2) + 1][
    data_set1 = data.loc[data['zipcode'] <= zipcodes_median]
    data_set2 = data.loc[data['zipcode'] > zipcodes_median]
```

```
Conclusion: The plots seem to be linear. Let's validate this hypothesis by building a model on a
```

Scale and normalise variables

specific zipcode.

```
In [6]: # Scale Variables data
log_sqft_living = np.log(data['sqft_living'])
scaled_sqft_living = (log_sqft_living-min(log_sqft_living))/(max(log_sqft_l
data_fin = pd.DataFrame([])
data_fin['sqft_living'] = scaled_sqft_living

scaled_data = data.drop(['sqft_living'], axis=1)
scaled_data = pd.concat([scaled_data, data_fin], axis=1)
```

Building the model

We are now going to try to run a simple Regression against our dataset

```
# Get sample data from specific zipcode
 In [9]:
           zipcode = 98072
           data per zipcode = scaled_data.loc[scaled_data['zipcode'] == zipcode]
 In [8]: # Build formula
           # Notes that we are especting a corrolation between sqft living and price s
           formula = 'price ~ sqft living'
In [10]:
           # Run simple prediction
           model = ols(formula=formula, data=data_per_zipcode).fit()
           model.summary()
Out[10]:
           OLS Regression Results
                                                                0.584
               Dep. Variable:
                                       price
                                                  R-squared:
                     Model:
                                        OLS
                                               Adj. R-squared:
                                                                0.582
                    Method:
                                Least Squares
                                                   F-statistic:
                                                                380.3
                       Date: Wed, 08 May 2019
                                             Prob (F-statistic): 1.59e-53
                                     16:17:35
                                                              -3621.7
                      Time:
                                              Log-Likelihood:
            No. Observations:
                                        273
                                                                7247.
                                                        AIC:
                                        271
                                                                7255.
                Df Residuals:
                                                        BIC:
                   Df Model:
                                          1
             Covariance Type:
                                   nonrobust
                            coef
                                   std err
                                                  P>|t|
                                                           [0.025
                                                                   0.975]
             Intercept -2.444e+05 4.26e+04
                                          -5.734 0.000 -3.28e+05 -1.6e+05
                       1.636e+06 8.39e+04 19.501 0.000
                                                        1.47e+06
                                                                  1.8e+06
            sqft_living
                                                     1.839
                 Omnibus: 77.482
                                    Durbin-Watson:
            Prob(Omnibus):
                           0.000
                                                   220.083
                                  Jarque-Bera (JB):
                    Skew:
                            1.262
                                         Prob(JB): 1.62e-48
                 Kurtosis:
                            6.603
                                        Cond. No.
                                                      12.4
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Observations: The Adj. R-squared is pretty low and our variables coef p-values are low. This doesn't look good.

5/23/2019 5model-per-zipcode

Conclusion

We saw that the model built based on zipcode proximity is not really accurate We need to come up with a more precise model.