Convex Optimization Matlab Assignment-2

Apr. 7, 2017

Q1: Consider the following semidefinite program:

$$\min_{oldsymbol{Q}} \quad Trace(oldsymbol{Q})$$

s.t.
$$\boldsymbol{Q} \succeq 0$$
, $\boldsymbol{x}_1^T \boldsymbol{Q} \boldsymbol{x}_1 \geq \gamma_1$, $\boldsymbol{x}_2^T \boldsymbol{Q} \boldsymbol{x}_2 \geq \gamma_2$, $\boldsymbol{x}_3^T \boldsymbol{Q} \boldsymbol{x}_3 \geq \gamma_3$,

where $\boldsymbol{x}_1, \ \boldsymbol{x}_2, \ \boldsymbol{x}_3 \in \mathbb{R}^{n \times 1}$ are known vectors which can be generated randomly (e.g. using 'randn' function in Matlab); $\gamma_1 = 3, \ \gamma_2 = 2, \ \gamma_3 = 1$; $\boldsymbol{Q} \in \mathbb{S}^n_+$ is unknown. Find:

- (a) the optimal point and optimal value of the above semidefinite program, and
- (b) verify if the optimal point is a positive semidefinite matrix using eigen-decomposition.