AMS-205B WINTER 2016 TAKE-HOME FINAL EXAM

Due electronically on Tuesday, March 15 at 8:00 am. Email a single .pdf with your answers to abel@soe.ucsc.edu. We will meet to discuss the exam in our regular classroom that same day between 9:30 and 10:15 am.

(1) Consider data consisting of pairs (Y_i, X_i) for i = 1, ..., n arising from a non-linear regression model

$$Y_i = \alpha + \beta \cos(\omega X_i + \delta) + \epsilon_i,$$
 $\epsilon_i \sim N(0, \sigma^2),$

where α , β , ω , δ and σ^2 are all unknown parameters.

- (a) Show that the expression for the maximum likelihood estimator for $(\alpha, \beta, \omega, \delta, \sigma^2)$ is not available in closed form, and write an algorithm (in your favorite language) to find the value of the estimate for a given sample. Apply your algorithm to the dataset contained in the file orbits.txt and report your point estimates.
- (b) Construct approximate confidence intervals for δ and ω by inverting a Wald-like test based on a normal approximation for the distribution of their maximum likelihood estimators.
- (c) Construct an algorithm to construct bootstrapped 95% confidence intervals for δ and ω and apply it to the data in orbits.txt. Report your estimates and compare them with the approximation you derived before.
- (d) If you were asked to test H_0 : $\delta = 0$ versus H_a : $\delta \neq 0$, what would be your conclusion in this case?
- (2) Consider two random samples X_1, \ldots, X_n and Y_1, \ldots, Y_n , where each observation corresponds to the lifetime (in years) of a certain electronic component produced at two different manufacturing plants. For the purpose of this problem we will assume that the lifetimes are exponentially distributed with means λ_1 and λ_2 , respectively, and that we are interested in testing whether the lifetime of the components produced in the first plant is longer than that corresponding to components from the second plant, i.e., $H_0: \lambda_1 \leq \lambda_2$ versus $H_a: \lambda_1 > \lambda_2$.
 - (a) Derive the likelihood ratio test along with formulas for the exact and the asymptotic *p*-values.
 - (b) Derive a Wald test based on the statistic $T = \bar{X} \bar{Y}$ and a formula for the corresponding p-value.

(c) Describe how you would implement a permutation test for this problem and how to compute a *p*-value for it.

Now, consider the data contained in the file lifetime.txt, where the first column corresponds to the X_i s and the second to the Y_i s. For this data, compute the four p-values you derived before for this dataset. What conclusions do you draw in this case? Do they all agree? Discuss.

(3) Consider a random sample $X_1, \ldots, X_n \sim \mathsf{N}(\theta, \sigma^2)$ where both θ and σ^2 are unknown. We are interested in testing $H_0: \theta = \theta_0$ versus $H_a: \theta > \theta_0$ using a test that rejects H_0 if the statistic

$$T = \frac{\sqrt{n}(\bar{X} - \theta_0)}{S}$$

is small.

- (a) Derive an exact expression for the power function.
- (b) Derive an approximate expression for the power function assuming that T follows a standard normal distribution under the null hypotheses.
- (c) Graph both of these functions for n=10, n=100 and n=1000 assuming a level $\alpha=0.1$ for the test. Discuss.
- (d) Is this the uniformly most powerful test for this problem?

Assume now that you plan to carry out an experiment that will allow you to collect a random sample that will be used to test these hypotheses. What is the smallest sample size you should collect if you are want to run a level 0.05 test and be able to detect an increase in the mean (with respect to θ_0) equivalent to two times the true standard deviation of the data with probability 0.8?