

Nr. 482 439

PATENTSCHRIFT

Nr. 482 4

SCHWEIZERISCHE EIDGENOSSENSCHAFT
EIDGENÖSSISCHES AMT FÜR GEISTIGES EIGENTUM

Internationale Klassifikation:	A 61 b 19/00
	G 02 b 21/24
Gesuchsnummer:	2422/68
Anmeldungsdatum:	20. Februar 1968, 24 Uhr
Patent erteilt:	13. Dezember 1969
Patentschrift veröffentlicht:	30. Januar 1970

SWITZERLAND
CP 117
C 133

HAUPTPATENT

Contraves AG, Zürich
Beobachtungseinrichtung

Dr. Hans R. Voellmy, Zürich, ist als Erfinder genannt worden

1

Gegenstand vorliegender Erfindung ist eine Beobachtungseinrichtung mit einer optischen Beobachtungsvorrichtung und einem zu deren Einstellung dienenden verstellbaren Stativ. Derartige Einrichtungen werden von Gehirnchirurgen zur Ausführung von Eingriffen, beispielsweise zum Schliessen beschädigter Blutgefässer, benötigt, weil die zu behandelnden Organteile und die verwendeten Instrumente so kleine Dimensionen haben, dass sie nur in entsprechender optischer Vergrösserung – vorzugsweise stereoskopisch – beobachtbar sind. Bei bekannten Einrichtungen dieser Art ist die Beobachtungsvorrichtung, z.B. ein Binokular-Mikroskop, kardanisch an einem selbst höhenverstellbaren Gelenkgestell so befestigt, dass es in alle Punkte jeder Einstellungs ebene verstellbar und jeweils auf den gewünschten Objektorientierbar ist. Dabei setzt aber die Verstellung voraus, dass der betreffende Chirurg die Operation unterbricht und unter Gebrauch seiner Hände die gewünschte Verstellung herbeiführt. Außerdem muss nach der neuen Orientierung des Beobachtungsgerätes praktisch immer auch die optische Scharfstellung wieder eingestellt werden. Derartige Neueinstellungen sind zeitraubend, und es wäre wünschbar, dass sie ohne Gebrauch der Hände durch den Chirurgen bewerkstelligt werden könnten.

Die erfindungsgemässen Einrichtung ist dadurch gekennzeichnet, dass mit der Beobachtungsvorrichtung eine Kopfstütze mechanisch verbunden ist und dass in dieser Kopfstütze Steuerorgane für steuerbare Antriebs einheiten von Stativteilen derart angeordnet sind, dass in Abhängigkeit davon, welche Steuerorgane unter Wirkung entsprechender Kopfbewegungen des Beobachters relativ zur Kopfstütze betätigt werden, die davon gesteuerten Antriebsseinheiten Bewegungen der Beobachtungsvorrichtung in entsprechenden Richtungen auslösen. Mit Vorteil wird vorgesehen, dass der Beobachtungsort, auf den die Beobachtungsvorrichtung eingesetzt ist, in mindestens einer Richtung relativ zu einem feststehenden Stativteil translatorisch verstellbar ist und dass die Beobachtungsvorrichtung jeder dieser wählba

2

ren Einstellungen durch Kopfbewegungen des Beobachters relativ zu der damit verbundenen Kopfstütze um jeweils eingestellte Objektiv als Drehzentrum in mindestens einer Drehrichtung schwenkbar ist. Dadurch wird dem Beobachter ermöglicht, die Operationsstelle lediglich durch entsprechende Kopfverstellung aus einer anderen, günstigeren Blickrichtung zu betrachten, wodurch die Scharfstellung aufrechterhalten bleibt, weil ja die Schwenkung der Beobachtungsvorrichtung um einen festen Objektor (Operationsstelle) als Drehzentrum erfolgt.

Damit an der Beobachtungsvorrichtung andere Instanzen zum Objektor einstellbar sind, ist mit Vorteil ein Geräteträger vorgesehen, an welchem die Beobachtungsvorrichtung zusammen mit der Kopfstütze zur optischen Scharfstellung auf den Objektor in der Beobachtungserichtung, d.h. in Richtung der optischen Achs verstellbar ist, um zwei je auf den Objektor gerichtete, winklig zueinander orientierte Drehachsen verschwenbar ist.

Bei einer einfachen, aber nicht allen Anforderungen genügenden Ausführungsform der erfindungsgemässen Einrichtung kann der Geräteträger um ein auf den Objektor gerichtetes Drehlager in einem Winkelarm schwenkbar sein, und der Winkelarm kann um ebenfalls auf den Objektor gerichtetes Drehlager seinesseits in einem in mindestens einer Richtung translatorisch verstellbaren Ständerteil schwenkbar sein.

In einer bevorzugten Ausführungsform wird abe der Geräteträger einen Seitenteil eines Gelenkparallelogrammes bilden, stets auf eine den jeweiligen Objektor definierende offene Ecke des Parallelogrammes gerichtet bleiben und in der Parallelogrammebene um diese offene Parallelogrammecke schwenkbar sein. Mit grossem Vorteil ist vorzusehen, dass zur wahlweisen Freigabe von Schwenkbewegungen der Beobachtungsvorrichtung um einen eingestellten Objektor einerseits oder zur Freigabe von translatorischen Verstellbewegungen dieses Objektorseits anderseits entsprechende Feststellorgane gelöst werden können. Die reinen Schwenkbewegungen de-

Ref. CK

482 439

3

Geräteträgers bzw. der Beobachtungsvorrichtung um zwei sich im eingestellten Objektorum kreuzende Drehachsen sind gegebenenfalls, sofern geeignete Gewichtsausgleichmechanismen vorgesehen werden, ohne besondere Schwierigkeiten auch direkt durch die Einwirkungen des Kopfes auf die Kopfstütze erzeugbar. Hingegen ist das nicht so einfach für die Erzeugung der zur Einstellung eines anderen Objektorum notwendigen translatorischen Verschiebebewegungen des Geräteträgers. Dazu sind zweckmässigerweise entsprechende Antriebsmotoren und zugeordnete Steuerorgane in der Kopfstütze vorzusehen. Die Verstellung des Objektorum kann durch Verschiebebewegungen von Stativteilen in drei Richtungen oder durch Verdrehungen von Stativteilen in mindestens zwei Richtungen, kombiniert mit einer Bewegung in der jeweiligen Beobachtungsrichtung erfolgen.

Ausführungsbeispiele des Erfindungsgegenstandes sind in der Zeichnung dargestellt. Es zeigen:

Fig. 1 einen Aufriß durch einen Teil einer ersten Ausführungsvorm.

Fig. 2 einen Aufriß durch eine vervollkommen, bevorzugte Ausführungsvorm in halbschematischer Darstellung,

Fig. 3 einen Teilgrundriss nach der Linie III-III von Fig. 1,

Fig. 4 ein elektrisches Prinzipschema für die Steuerung der Motoren von Fig. 2.

Gemäß Fig. 1 ist ein Maschinenteil 1 in nicht dargestellter Weise in mindestens einer der schematisch eingezeichneten Koordinatenrichtungen X, Y, Z relativ zu einem feststehenden Stativsockel translatorisch verschiebbar. In einem mit dem Ständerteil 1 verbundenen Drehlager 2 ist ein Winkelarm 3 um die Achse A₁ drehbar gelagert. Am freien Ende des Winkelarmes 3 ist ein Drehlager 4 für den Tragkörper 5 einer Beobachtungsvorrichtung 6 eingesetzt, so dass der Körper 5 samt dem Beobachtungsgerät 6 um die Drehachse A₁ drehbar ist. Die Drehachsen A₁ des Winkelarmes 3 bzw. A₂ des Tragkörpers 5 kreuzen sich im Punkt 0, der den Objektorum bildet. Am Tragkörper 5 ist eine Führungsschiene 7 derart befestigt, dass in einer Führungsnut dieser Schiene 7 ein Binokular-Mikroskop 7 als Beobachtungsgerät und eine damit durch einen gemeinsamen Träger 60 verbundene Kopfstütze 8 in Richtung des Pfeiles P₁, d. h. in Richtung von und zum Objektorum O verschiebbar ist, was in an sich bekannter Weise über einen Zahntangentialtrieb mit einem Einstellrad 70 erfolgen kann. Das Binokular-Mikroskop 6 bleibt also bei Verdrehungen des Tragkörpers 5 um die Achse A₁ und des Winkelarmes 3 um die Achse A₂ stets auf den Objektorum O gerichtet und scharf eingestellt. Die Kopfstütze 8 gestattet das Hineinstecken des Kopfes des Beobachters in die entsprechend gestaltete Wölbung und die Auslösung der gewünschten Drehbewegung des Binokular-Mikroskopes um den eingestellten Objektorum O als Drehzentrum direkt durch Übertragung entsprechender Kopfbewegungen vom Kopf auf die Kopfstütze 8 und die Schiene 7 auf den Körper 5. Damit ist es also einem Chirurgen möglich, ohne Gebrauch der Hände die Blickrichtung auf die Operationsstelle im Ort O zu verstehen.

In der bevorzugten Ausführungsform nach den Fig. 2-4 ist mit 10 ein feststehender Stativsockel bezeichnet, in welchem ein Schlitten 11 mit Hilfe einer Schraubspindel 12 in Richtung der Koordinatenachse X translatorisch verschiebbar ist. Der Motor 13 und ein selbsthemmendes Getriebe 130 dienen zum Antrieb der Schraubspindel 12. Sofern der Motor 13 nicht arbeitet, werden

4

Verschiebebewegungen des Schlittens 11 in Richtung durch das selbsthemmende Getriebe 130 blockiert. Auf ein selbsthemmendes Getriebe 130 kann verzichtet werden, sofern als Motor ein sogenannter Bremsmotor verwendet wird, der Drehbewegungen seiner Abtriebsachse nur in eingeschaltetem Zustand zulässt. Generell wird im folgenden ein Bewegungsantrieb mit der Eigenschaft, die davon beherrschte Bewegung nur gewollt zuzulassen, als steuerbare Antriebseinheit bezeichnet. Sie könnte auch hydraulischer oder pneumatischer Art sein. In einer Führungsnut des Schlittens 11 ist ein zweiter Schlitten 14 mit Hilfe einer weiteren steuerbaren Antriebseinheit 15 in Richtung der Y-Richtung hin- und herverschiebbar. Der Schlitten 14 trägt ein vertikales Führungsröhr 16, in welchem mit Hilfe einer dritten steuerbaren Antriebseinheit 17 eine Zahntange 18 in Z-Richtung vertikal auf- und abverstellbar ist.

Am oberen Ende der Zahntange 18 ist ein Lagerblock 19 mit Drehlagern 20 für eine darin drehbare Welle 21 befestigt. Zur Drehung der Welle 21 um ihre Achse B, d. h. zur Veränderung des Drehwinkels B, dient eine steuerbare Antriebseinheit mit einem Motor 22, einem selbsthemmenden Vorgelege 220 und einem Zahnrädergetriebe 221. Die Welle 21 bildet zusammen mit zwei Verlängerungen 211, 212 eine Seite eines Gelenkparallelogrammes, zu welchem die dazu parallelen Gestängeteile 23, 24 und die quer dazu orientierten, unter sich ebenfalls parallelen Gestängeteile 25, 26 gehören, die Gegengewichte 250, 260 tragen. Zur Veränderung des Parallelogrammwinkels zwischen den gelenkig verbundenen Gestängeteilen 21 und 25 dient eine steuerbare Antriebseinheit 27.

Gemäß dem Grundriss nach Fig. 3 sind die rechten Enden der Gestängeteile 23, 24 als Gabeln ausgebildet, welche über paarweise aufeinander ausgerichtete Verbindungsgelenke 230, 240 mit einem Halbzylindermantel 29 gelenkig verbunden sind, der also eine zu den Parallelogrammstäben 25, 26 parallele Parallelogrammseite bildet. Die Verbindungsebene C-C der Gelenke 240 und 230 schneidet die Schwenkachse B der Welle 21 bzw. der Parallelogrammseite im Objektorum O, der als offene Ecke des Gelenkparallelogrammes 21-23-24-25-26-29 zu bezeichnen ist.

Mit dem Halbzylindermantel 29 ist, parallel zur Ebene C durch die Gelenke 230-240, als eigentlicher Tragkörper für das Binokular-Mikroskop 31 und die damit verbundene Kopfstütze 32 eine Führungstange 30 fest verbunden, in welcher das Binokulargerät mittels eines Einstellräddchens 33 in Richtung zum Objektorum O zwecks optischer Scharfeinstellung verschoben werden kann. In der heimförmigen Kopfstütze 32 sind Schalter S₁, S₂, S₃, S₄ angeordnet, deren Bau- und Wirkungsweise in bezug auf Fig. 4 genauer erläutert wird. Vorläufig sei nur erwähnt, dass sie dazu bestimmt sind, unter der Einwirkung von Kopfbewegungen des Beobachters bzw. des Chirurgen entweder Verschwenkbewegungen des Binokular-Mikroskopes 31 um die Achse B und in der schwenkbaren Ebene C um den Objektorum O als Drehzentrum oder translatorische Verschiebungen des Objektorum O in einer oder mehreren der Richtungen X, Y, Z an den entsprechenden steuerbaren Antriebseinheiten auszulösen.

Mit 40 ist ein Operationstisch auf einem Sockel 41 bezeichnet. Auf dem Operationstisch ist ein Patient 42 dargestellt, an welchem eine Gehirnoperation an der Stelle O ausgeführt werden soll. Auf diese Stelle O wird das Binokular-Mikroskop 31 eingestellt. Ein Pedalschalt-

ter SP ist am Boden angeordnet und in den Fig. 2, 3 und 4 gezeichnet. Sein Schaltarm kann mit dem Fuss des Beobachters in eine wählbare von drei Stellungen D, F, T (Fig. 1, 4) eingestellt werden. In der Grundstellung F des Schalters SP sperrt er sämtliche Verstellbewegungen des Binokular-Mikroskopes 31. In der Stellung D lässt er Drehbewegungen des Binokular-Mikroskopes um den eingesetzten Objektor O zu, sperrt aber alle Translationsbewegungen. In der Stellung T sperrt er alle Drehbewegungen des Binokular-Mikroskopes 31 um den Objektor O, gibt aber die translatorischen Bewegungen des Lagerblockes 19 und damit des Objektor O in X-, Y- und Z-Richtung frei.

In Fig. 4 sind drei Motoren, M_x, M_y, M_z, zur Beherrschung der translatorischen Verschiebung der Zahnstange 18 bzw. des Lagerblockes 19 für die Welle 21 des Gelenkparallelogrammes von Fig. 2 in den X- bzw. Y- bzw. Z-Richtungen und zwei Motoren M und M' zur Beherrschung der Drehbewegungen des Binokular-Mikroskopes 31 um den eingesetzten Objektor O gezeichnet. Zur Steuerung dieser Motoren dienen gemäß Fig. 4 vier an der Kopfstütze 31 befestigte Schalter S₁, S₂, S₃, S₄ und der Pedalschalter SP mit den drei Stellungen D, F, T.

An ein Wechselstromnetz ist die Primärwicklung U eines Übertragers U angeschlossen. An den Ausgangsklemmen seiner gegen Erde symmetrischen Sekundärwicklung U, entstehen zueinander gegenphasige Wechselspannungen V bzw. R. Wenn der Pedalschalter SP in der dargestellten Ruhelage ist, kann keiner der Motoren durch Anlegen der Spannung V oder R in Betrieb gesetzt werden, weil ihre Stromwege zum Mittelabgriff der Wicklung U unterbrochen bleiben. In der Stellung T des Schalters SP sind die drei Translationsmotoren M_x, M_y, M_z mit ihren Ausgängen an den geerdeten Mittelabgriff der Wicklung U, angeschlossen und in der Stellung D die Ausgänge der beiden Drehmotoren M und M'. Die Schalter S weisen je eine einen achsial beweglichen Druckstift überdeckende Gummihaube H auf, damit durch die grössere oder kleinere Andruckkraft des Kopfes gegen einen Schalter der Kopfstütze 32 der betreffende Schalter aus der dargestellten Schaltstellung umgeschaltet werden kann. Die Schalter S₁ und S₂ sind einfache Ein- und Ausschalter. Wenn der Kopf nach rechts zur Betätigung des Schalters S₁ gedrückt wird, werden die V-Eingänge der Motoren M_x und M' an die Spannung V (Vorwärtslauf) angeschlossen, laufen aber nur effektiv vorwärts, sofern die Motorausgänge an den Mittelabgriff der Wicklung U, angeschlossen sind. Umgekehrt bewirkt ein Drücken des Kopfes nach links die Betätigung des Schalters S₂, d. h. die Anschaltung der r-Eingänge der betreffenden Motoren M_x bzw. M_y an die Spannung R (Rückwärtlauf).

Die Schalter S₃ und S₄ sind doppelpolige Umschalter, die unter Einfluss einer mittleren Andruckkraft in der gezeichneten Aus-Stellung verbleiben, bei Grösserwerden der Anpresskraft die eine Spannung V an die V-Eingänge der gesteuerten Motoren anlegen und bei Kleinerwerden der Anpresskraft die gegenphasige Spannung R an die r-Eingänge der gesteuerten Motoren anlegen. Es ist leicht einzusehen, dass der Schalter S₃, der von der Unterseite der den Schädel des Beobachters übergreifenden Wölbung der Kopfstütze 32 absteht, den Motor M_z für die Vertikalbewegung (Z-Richtung) des Lagerblockes 19 für die Welle 21 des Gelenkparallelogrammes beherrscht. Der Schalter S₄ ist gemäß Fig. 2 an der Innenseite der an der Stirn des Beobachters anliegenden Kopfstützenwölbung angeordnet, in Fig. 4 aber zur deut-

lichen Darstellung der Schaltfunktion umgeklappt dargestellt.

- Selbstverständlich sind vielerlei andere in den Rahmen der Erfindung fallende Möglichkeiten zur Realisierung der gestellten Ziele denkbar. So kann es z. B. vorteilhaft sein, für die Drehbewegungen des Beobachtungsgerätes in der Kopfstütze 32 an Stelle von Schaltern für Ja-Nein bzw. Vorwärts-Stillstands-Rückwärtssteuerung einen Analog-Steuergrossengeber für Servomotoren vorzusehen oder z. B. für die Drehbewegungen besondere Steuerorgane in der Kopfstütze anzurufen.

PATENTANSPRUCH

Beobachtungseinrichtung mit einer optischen Beobachtungsvorrichtung und einem zu deren Einstellung dienenden versetzbaren Stativ, dadurch gekennzeichnet, dass mit der Beobachtungsvorrichtung eine Kopfstütze mechanisch verbunden ist und dass in dieser Kopfstütze Steuerorgane für steuerbare Antriebeinheiten von Stativteilen derart angeordnet sind, dass in Abhängigkeit davon, welche Steuerorgane unter Wirkung entsprechender Kopfbewegungen des Beobachters relativ zur Kopfstütze betätigt werden, die davon gesteuerten Antriebeinheiten Bewegungen der Beobachtungsvorrichtung in entsprechenden Richtungen auslösen.

UNTERANSPRUCHE

1. Einrichtung nach Patentanspruch, vorzugsweise mit einem Binokular-Mikroskop als Beobachtungsvorrichtung, dadurch gekennzeichnet, dass der Objektor (O), auf den die Beobachtungsvorrichtung (8, 31) eingestellt ist, in mindestens einer Richtung (X, Y, Z) relativ zu einem feststehenden Stativteil (10) translatorisch versetbar ist und dass die Beobachtungsvorrichtung (8, 31) in jeder dieser wählbaren Einstellungen durch Kopfbewegungen des Beobachters relativ zu der dadurch verbundenen Kopfstütze (8, 31) um den jeweils eingesetzten Objektor (O) als Drehzentrum in mindestens einer Drehrichtung schwenkbar ist.
2. Einrichtung nach Unteranspruch 1, dadurch gekennzeichnet, dass ein Geräteträger (5, 30), an welchem die Beobachtungsvorrichtung (6, 31) zusammen mit der Kopfstütze (8, 32) zur optischen Scharfstellung auf den Objektor (O) in der Beobachtungsrichtung versetbar ist, um zwei je auf den Objektor (O) gerichtete, winklig zueinander orientierte Drehachsen (A₁, A₂) verschwenbar ist.

3. Einrichtung nach Unteranspruch 1, dadurch gekennzeichnet, dass der Geräteträger um ein auf den Objektor (O) gerichtetes erstes Drehlager (2) in einem Winkelarm (3) schwenkbar ist und dass der Winkelarm (3) um ein ebenfalls auf den Objektor (O) gerichtetes zweites Drehlager (4) in einem nach mindestens einer Richtung (X, Y, Z) translatorisch versetzbaren Ständerteil (1) schwenkbar ist.

4. Einrichtung nach Unteranspruch 2, dadurch gekennzeichnet, dass der Geräteträger (23, 30) einen versetzbaren Seitenteil (29) eines Gelenkparallelogrammes (212, 23, 24, 25, 26, 29) und stets auf eine den jeweiligen Objektor (O) definierende, offene Ecke dieses Parallelogrammes gerichtet bleibt und in der Parallelogrammebene um diese offene Ecke des Parallelogrammes schwenkbar ist.

5. Einrichtung nach Unteranspruch 4, dadurch gekennzeichnet, dass die Parallelogrammebene um eine ebenfalls stets auf die genannte offene Ecke (Objektor

482439

2 Blätter Nr. 1

482 439

2 Blätter Nr. 2 =

FIG. 2

FIG. 4

606
131

O) gerichtete und einen Seitenwinkel des Gelenkparallelogrammes bildende Achse (21) in Lagern eines Stativteiles (19) schwenkbar ist.

6. Einrichtung nach einem der Unteransprüche 2 bis 5, dadurch gekennzeichnet, dass zur wahlweisen Frei-

gabe von Schenkelpbewegungen der Beobachtungsvorrichtung (6, 31) um einen eingestellten Objektor (O) einerseits oder zur Freigabe von translatorischen Verstellbewegungen dieses Objektor (O) anderseits entsprechende Feststellorgane gelöst werden können.

Contraves AG