ACM 100b

Basic aspects of boundary value problems

Dan Meiron

Caltech

February 3, 2014

Boundary value problems vs initial value problems

- So far we have explored linear ODE's but we have focused on the initial value problems.
- That is we looked at equations of the form

$$\frac{d\boldsymbol{x}}{dz}=A(z)\boldsymbol{x}$$

where A is an $n \times n$ matrix

• In order to consider some unique solution we applied n conditions at some initial point typically taken to be z = 0:

$$\boldsymbol{x}(z=0)=\boldsymbol{x}_0.$$

• Under these conditions, we showed the existence and uniqueness of solutions provided A(z) obeyed various mild smoothness criteria.

Boundary value problems vs initial value problems

In many applications, we are asked to solve the same ODE

$$\frac{d\mathbf{x}}{dz}=A(z)\mathbf{x},$$

- But we want the solution over some fixed domain $z_0 < z < z_1$ rather than some neighborhood of z_0
- Most importantly not all n conditions are given at $z = z_0$.
- Instead, some are applied at $z = z_0$ and some at $z = z_1$.
- Of course, for any hope of uniqueness in the linear case we must have a total of n such conditions.
- Such problems are called boundary value problems in contrast to the initial value problems we have studied up till now.
- In the cases we will study we will write the system as an n'th order ODE where n is typically 2
- But the theory we will present holds for the system as well.

Existence and uniqueness is harder to prove

- The theory of existence and uniqueness for boundary value problems is considerably more complicated.
- This is to be expected because many of the guarantees we had for initial value problems are not present for boundary value problems.
- Consider a simple example of a second order homogeneous ODE

$$y'' + p(z)y' + q(z)y = 0$$
 $z_0 \le z \le z_1$

Suppose we know the general solution:

$$y(z) = c_1 y_1(z) + c_2 y_2(z).$$

- We'll assume that the coefficient functions are nice and smooth for any z
- So we can be assured the functions $y_1(z)$ and $y_2(z)$ are also similarly nice and smooth in the region $z_0 \le z \le z_1$.

An example

Suppose we ask for a solution subject to the following conditions:

$$y(z = z_0) = a,$$
 $y(z = z_1) = b.$

- This is different from what we have done previously
- We are now asking that the solution satisfy two conditions as before.
- But they both involve the value of the solution at the two boundary end points.
- Plugging these conditions in, we get a 2 × 2 system to solve for c₁ and c₂:

$$c_1y_1(z_0) + c_2y_2(z_0) = a,$$

 $c_1y_1(z_1) + c_2y_2(z_1) = b.$

 Whether this system has a solution depends on the values the solutions take on at the boundary.

Example cont'd

Now consider solving this 2 × 2 linear system:

$$c_1y_1(z_0) + c_2y_2(z_0) = a,$$

 $c_1y_1(z_1) + c_2y_2(z_1) = b.$

- For example, suppose neither a or b are zero.
- In that case we will have a solution as long as

$$\begin{vmatrix} y_1(z_0) & y_2(z_0) \\ y_1(z_1) & y_2(z_1) \end{vmatrix} \neq 0,$$

- In turn this clearly depends on what happens at the boundary and the values the solutions take on there.
- Suppose, on the other hand we had a = b = 0.
- Then, in general, we would expect the trivial solution y(z) = 0
- This is because if the above determinant did not vanish, we would have to take $c_1 = c_2 = 0$ which is just the trivial solution

Boundary value problems depend on global information

On the other hand, it might be that in some cases we did get that

$$\begin{vmatrix} y_1(z_0) & y_2(z_0) \\ y_1(z_1) & y_2(z_1) \end{vmatrix} = 0.$$

- This might happen depending on the equation and the locations of the boundary
- In that case we would get nontrivial solutions but they would not be unique.
- We see then that such problems are harder to analyze.
- They seem to depend on matrices such as

$$\begin{pmatrix} y_1(z_0) & y_2(z_0) \\ y_1(z_1) & y_2(z_1). \end{pmatrix}$$

which are really about *global information* as regards the solution.

Much more is known about linear IVP's

- In contrast, linear initial value problems depend on the Wronskian determinant.
- For example for a second order ODE initial value problem

$$y'' + p(z)y' + q(z)y = 0 \qquad z \ge z_0$$

the Wronskian is given by

$$W(z) = \begin{vmatrix} y_1(z_0) & y_2(z_0) \\ y'_1(z_0) & y'_2(z_0) \end{vmatrix} = 0.$$

- Abel's theorem guarantees that this never vanishes as long as the matrix coefficients of a linear system are smooth.
- Boundary value problems (BVP) turn up in many applications and we will explore quite a few of these in ACM 100c.

