D. C. MOTORS

PART V: THE SERIES MOTOR

OBJECTIVES

student will:

- Draw the necessary connections between given symbothat will complete a schematic diagram of a series motor circuit.
 - Select, from a list of statements, the reason why series motors are widely used.
 - Complete a statement about the factor that limits armature current in a series motor which is supplied with a constant applied voltage.

Select, from a list of statements, the reason why

- a series motor must always be connected to a load.

 Select, from a list of statements, the relationshi between torque and armature current in a series motor, and the effect on torque when armature current is doubled.
- change of load on a series motor.

 Complete a statement that identifies the series

Complete a chart showing the effects caused by a

- motor generally used in D. C. actuators.
- Draw the necessary connections between given symbothat will complete a schematic diagram of a split-field series motor.
- Draw the connections necessary to complete a diagrof a lab machine that may be used for series motor experiments.

RECOMMENDED READING TIME 45 MINUTES

Ι.	ine field colls. consisting of a
	few turns of heavy wire, are con-
	nected in series with a rotating
	ermeture through e set of carbon
	brushes.
	The field coils of a series motor are
	made of a turns of heavy
	wire connected in series with the
	through a set of carbon
	*
2.	The series field is represented on a
	schematic diagram by the symbol,
	which is connected in series with the
	armature, commutator, and brushes, rep-
	resented by the symbol — . The
	power source that will be used through-
	out this program is a generator, rep-
	resented by the symbol (GEN) .
	The symbol for the series field is
	, which is connected
	series with, which is the
	for the, including

 The schematic diagram below shows the electrical connections of a series motor.

If power is applied to a motor, wired as shown above, it will operate as a

4. Complete the schematic diagram of a series motor shown below by drawing the missing symbol.

The symbol required above is the symbol for the

GEN es field	by drawing the symbols for the particle source and the armature.
GEN .	6. The series motor field and armate windings must carry the full lost current because the field and armate windings and the load are all coding.

Draw the necessary connections be

the symbols below to complete a

schematic diagram of a series mo

GEN

1	
ı	
•	
!	

7.

circuit.

es

	8.	The series motor is widely used because it has HIGH STARTING TORQUE and rapid acceleration. The motor widely used because of its high starting torque and acceleration is the motor.
	9.	An installation requiring a motor with high starting torque would use series motor. The series motor is used in installations that require high
g torque	10.	Select, from the list of statements below, the reason that the series more is widely used. Circle the letter in front of the answer of your choice. a. Series motors have good speed control and do not overheat. b. Series motors have high starting cemf and constant speed. c. Series motors have high starting

torque and rapid acceleration.

t 11. The heavy wire used in the construction
of both the field and armature winding
motor has very little resistance. Since there
few turns of this heavy wire in the field and
ndings, the internal resistance of the series
ry low. When voltage is applied to a series
low internal resistance will allow high current
h the field and armature windings. Before the
gins to turn, the only thing that will oppose
w is the low resistance of the field and armature
hus, current flow will be maximum at start.
ture begins to turn, a cemf is induced into the
ndings which opposes the applied voltage and,
opposes the current flow from the power source.
duced into the armature windings lights the
w in a series motor.
motor has very internal resistance.
ne current flow in a series motor will be
imum because there is no induced cemf to

S

the applied voltage.

w through a series motor that

tage is limited by the amount

o the armature windings.

m,oppose		applied voltage, the cemf induced
		into the rotating armature will opp
		the Eapp and the current through th
	l.	field and armature windings will de
	1	crease. When the current through t
		windings of a series motor decrease
		the flux field produced by this
		current will decrease.
		The cemf, induced into the rotating
		armature windings, limits the amoun
		through the field ar
		armature windings.
~ ~ ~	h	
t		The decrease in current flow through
		the field and armature windings,
		caused by the induced cemf, will de
		crease the field.
	13.	In a series motor with a constant
		applied voltage the current flow
		through the field and armature
		windings is limited by the amount
		of

12. In a series motor, with a constant

- 15. A decrease in the current flow thro the armature and field windings can field strength (β) to weaken and results in speed incressing. As the

torque.

As the armature begins to turn, the

cemf induced into it causes the Ia

Torque developed by a series motor

decreases when the armature begins

turn because cemf induced causes the

armature current to

torque required by the load.

Continue on next page.

A decrease in armature current cau

field strength to increase/decress

to decrease, thus decreasing the

armature speed continues to increas cemf increases, snd, as a result, the field strength weakens even more.

8e

se

The weakening field strength, as sp increases, gives the series motor feature of rapid acceleration to the point where it is producing only t

7

	A decrease in field strength results
	in a speed <u>increase/decrease</u> . This. (circle one)
	in turn, causes cemf to increase and
	limit the current to
	the value needed to develop the torq
	required by the load.
 -	
se	A series motor accelerates rapidly
re	to the point where it is producing t
	required by the load.
	16. The series motor produces or develop
	the torque required by the load to
	which it is connected. The torque
	developed by a series motor is propo
	tional to armature current squared,
	$(I_a)^2$. At the moment of start, torq
	is maximum because armature current
	at its maximum value.
	At start, maximum armature current
	in a series motor causes torque to
:	be, because torque
	developed by a series motor is pro-
	portional to the
	squared.
	8

a load attached, it will accelerate
rapidly. With no load attached, the
only torque required is that needed
to turn the armature. The speed at
which cemf would be of sufficient
value to control Ia is in excess of
design speed. The rapid acceleration
of a series motor with no load on it
will continue until the bearings
burn out, or the armature windings
are thrown out of their slots, thus
destroying the motor. For this reason
A SERIES MOTOR MUST NEVER BE STARTED
WITHOUT A LOAD ATTACHED.
The torque produced by a series motor
is proportional to
current squared.
If a series motor is started without a
load attached, it will
rapidly to the point where it will
itself.
A series motor may sometimes be/must
never be started with no load attached.

17. If a series motor is started without

Ъе	18.	Select, from the list of statements below, the reason that a series motor must always be connected to a load. Circle the letter in front of the answer of your choice.
		a. The series motor must always be connected to a load so that it will not build up excessive counterelectromotive force.
		b. The series motor must always be connected to a load so that it will not build up excessive speed and destroy itself.
		c. The series motor must always be connected to a load so that it will not build up an excessive amount of armature current.
ect.	19.	The torque developed in a series motor is proportional to the square of the armature current.

armature current.

In a series motor, the torque developed is proportional to the ______ of the armature current.

20.	A series motor, carrying 2 amperes of
	armature current, will develop a def-
	inite amount of torque to carry a
	load. If the load is increased to
	where it takes four times the original
	amount of torque to carry the load,
	the armature current would increase
	to only 4 amperes. The fact that
	torque in a series motor is propor-
	tional to I _a ² enables a relatively
	small change in armature current to
	correct for large changes in load.
	Doubling the armature current in a
	series motor will result in the motor
	developing four times as-much torque.
	Large changes in the load on a series

motor will cause only

small change in

the torque developed will be times the original value.

If the I_a of a series motor is doubled,

ure	21.	The torque developed by a series mo		
		is to the square of		
		armature current.		
rtional	22.	The torque developed by a series mo		
		will increase to four times the ori		
		inal value if the armature current		
) !	•		
ed	23.	Select, from the list of statements		
		below, the relationship between tor		
armature c	urrent	in a series motor and the effect on		
s torque wh	en the	Ia is doubled. Circle the letter i		
nt of the a	nswer (of your choice.		
Torque in a	serie	es motor is proportional to the squa		
of the arm	ature o	current; thus, doubling the Ia would		
		e of four times the amount of torque		
being deve	loped.			
Torque in a	serie	es motor is proportional to the squa		
		oltage; thus, doubling the I _a would h		
		amount of torque being developed.		
Torque in a series motor is proportional to the arma				
current divided by the applied voltage; thus, doublin				
Would doub!	e the	amount of torque being developed.		

	motor will cause less cemf to be induced. When the cemf decreases and the applied voltage (E_{app}) is constitute effective voltage (E_{eff}) will increase because $E_{eff} = E_{app}$ - cemf. With constant E_{app} , a decrease in the second constant E_{app} , and E_{app} and E_{app} .
	speed of a series motor will cause
	cemf induced to and Eeff to
a se	27. When the effective voltage increase the armature current will increase. Since the same current flows through the series field coil, the strength of the field (β) must also increase An increase in E _{eff} will cause I _a the, which, in turn, will cause the strength of the series field (β) to

26. A decrease in the speed of a series

14

28.	Load, torque (T), effective voltage
	(E_{eff}) , armature current (I_a) , and
	field strength in a series motor are
	all directly proportional. If the
	load on a series motor increases, T,
	$E_{ ext{eff}}$, $I_{ ext{a}}$, and eta will all increase.
	A decrease of the load on a series
	motor being supplied with a constant
	E_{app} will cause T, E_{eff} , I_a , and β to
	because they are direct-
	ly proportional.

changes that occur within the series
the load is increased or decreased. Notice, in
selow, that the proportional items vary in the same
The arrows up () indicate an increase and the
(), decrease.

29. A chart may be used to indicate the

						بسعت سنيوس	
	LOAD	SPEED	cemf	Eeff	Ia	β	T
nt	INCREA SE	4	+	4	4	4	A
nt	DE CREA SE	4	4	1	V	V	•

NO RESPONSE REQUIRED

load is decreased. Draw an arrow in the appropriate boxes, up () to indicate increase and down () to indicate decrease. I_a LOAD SPEED T cemf $E_{\scriptsize{\texttt{eff}}}$ β qqs

crease in the cemf induced. Complete the chart below

to show the effect on torque, speed, and I_a when the

	_			<u> </u>	4		4	
Your c	completed	chart i	n frame	30	should	look	like	th
chart	shown be	low. If	your o	char	t does	not a	gree,	ma i
any co	rrection	s necess	ary bei	fore	contin	uing v	with	thi

frame.		hown below rections n	•				-	
E_{app} LOAD SPEED cemf E_{eff} I_{a} β	frame.		_					
	Зарр	LOAD	SPEED	cemf	Eeff	Ia	β	T
ONSTANT DECREASE		DECREA SE	•		1	-	Į.	1

16

ontinue this frame on the next page.

onstant DECREASE

(Con tá .) A	s 10ac	decreas	ses, les	s torq	ue is	requi	ire
As torq	u e d	ecreas	ses, spe	ed will	increa	se and	d cemf	
increas	€.	Since	E _{eff} is	equal t	o E _{app}	minus	s the	ce
the E _{ef}	f wi	ll dec	rease be	ecause o	f the	increa	se in	1 (
This de	crea	se i.n	E _{eff} cau	ıses arm	ature (curre	nt (I _a	(
decreas	e an	d, sir	nce I _a at	lso flow	s thro	ıgh tl	ne ser	iε
field c	oils	, fiel	d streng	gth (β)	will d	decrea	ase.	
If the	10a	d on a	series	motor is	incre	ased,	torq	ue
must		المسائد يجاذب	, whi	ch will	cause	the s	peed a	an
cemf to	0		•	E _{eff wi}	11			<u>_</u> ,
			ase in b					
ease		22	Complete	to the e	hout h	10.1	to obc	~
ease		24.	Complet					
ea se β		III		ge in th Efect T,				
<u> </u>		ı		Draw a				
hoxes.	เมา	(A)	to indica					
indica		•		- 00	C		V	•
app	L	DAD	SPEED	cemf	E _{eff}	I _a	β	
CONSTANT	INCE	REA SE					4	
CONSTANT	DECE	REA SE				,	1	
	L		<u> </u>	<u> </u>			_	
						and open particular the		

chart shown below. If your chart does not agree we the chart below, return to frame 24 and redo the pagram from that point.

Your completed chart in frame 32 should look like

app	LOAD	SPEED	cemf	^E eff	Ia	β	T
NSTA NT	INCREASE	ł		•	1	P	1
nsta nt	DE CREASE	1	1	ł			Į.
. The p	rimary use	of the	series	motor	in av	iatio	n is

starters for aircraft engines. The series motor i used because it is able to supply the high torque necessary for engine starting.

Many actuators for such devices as bomb-bay doors, cockpit canopies, and wing flaps also use a series

must start under full mechanical load. The motor erally used is the SPLIT-FIELD, D.C. SERIES motor, which is easily reversed.

motor. The series motor is used because these dev

The motor generally used in aircraft actuators for such things as cockpit canopies, bomb-bay doors, a wing flaps is the ______

D. C. series motor.

35. The feature that makes the split-field series motor easily reversible is two separate seta of oppositely wound field coils.

Current flow through one coil will cause rotation in one direction, and when the current is switched to the other coil, the direction of rotation will reverse.

The split-field series motor is easily
because it is construc-
ted with two sets of oppositely wound
•

The split-field series motor is used

36.

position to the other, polarity of flux field produced will reverse.

This will cause the direction of armature rotation to reverse.

The two separate, oppositely wound field coils give the split-field

t-field

t-fleld

37.

38.

motor the feature of being easily

The motor generally used in D. C.

The schematic diagram below shows

proper connection of a split-field

series motor.

actuators is the

series motor.

CCV

39. Draw the necessary symbols to complete the schematic diagram below to show the correct connection of a split-field series motor circuit.

The major difference between the standard series motor and the split-field series motor is the two oppositely wound

40. Draw the necessary connections between the symbols below that will complete a schematic diagram of a split-field series motor circuit.

3	TART			V 0-	0-0 6			
	OFF ON							
	The c	coils	used f	or serie	s moto	c exp eri n	nents	will
	those	e cont	ain i ng	the few	est tu	rns, becau	1 8 e a	serie

motor field coil is made up of a

of wire.

be

S

tur

 ${\tt TROL}$

42. To make a clearer diagram, all parts unused in series motor experiments have been left off the diagram shown all instructions carefully and use the

low all instructions carefully and use the
"to check the polarity of the connections and
on of rotation. Draw in lines to indicate the
connections. NOTE: Instructions are given below the drawing.

ut (jack No. 1) to the lower left field coil
o. 2) so the face of the left pole piece has
polarity.
jumper wire from the upper left field coil
o. 3) to the right field coil (jack No. 4) so the
the right pole piece has a south polarity.

jumper from the right field coil (jack No. 5) to ative brush (jack No. 6) so as to give the motor clockwise rotation.

jumper from the positive brush (jack No. 7) to

jumper from the positive brush (jack No. 7) to itive side of the 28-VDC input (jack No. 8).

A should match the connections shown on the diagram below.

NOTE ROTATION IS COUNTERCLOCKWITH COUNTERCLOCKWI

The connections you have just drawn on the diagram

so that it will not build up excessive ______ and destroy itself.

c. Torque in a series motor is proportional to the square of the ______ current.

Ъ.

The series motor must always be connected to a

d. If the armature current in a series motor is do

the torque will increase to ______ time the original amount developed.

ue c. armature Answers for frame 43 d d. four

lete the diagram below to show a lab machine ected to perform series motor experiments. Draw he connections between the jacks necessary to lete the diagram and set up the magnetic polarities

'n.

to frame 43 to check the accuracy of your ing.

HAVE COMPLETED THE INSTRUCTIONAL PORTION OF

PROGRAM; A SELF-TEST BEGINS ON THE NEXT PAGE.

SELF-TEST

for

THE SERIES MOTOR

elow that will complete a schematic diagram of a eries motor circuit.

١,

elect, from the list of statements below, the reasonable series motors are widely used. Circle the letter of the four choice.

. Series motors have excellent speed control and a not subject to overheating.

Series motors are constant-speed motors and have

- high starting cemf.
- e. Series motors have high starting torque and rapid acceleration.

The armature current flowing through a series mo
that has a constant voltage applied is limited by
amount ofinduced into the armature

Select, from the list of statements below, the reason that a series motor must always be connected to a load. Circle the letter in front of the answ of your choice.

The series motor must always be connected to a load so that when it is started, it will not build up excessive counterelectromotive force.

a.

- The series motor must always be connected to a b. load so that when it is started, it will not build up excessive speed and destroy itself.
- c. The series motor must always be connected to a load so that when it is started, it will not build up excessive armature current.

Select, from the list of statementa below, the relationship between torque and armature current in a series motor and the effect on torque when the armature current is doubled. Circle the letter

in front of the answer of your choice.

b.

a. Torque in a series motor is proportional to
the square of the armsture current; thus, doublir
the armsture current would cause an increase of
four times the amount of torque being developed.

Torque in a series motor is proportional to

doubling the armature current would have no

the square of the applied voltage; thua.

effect on the amount of torque being developed.

e. Torque in a series motor is proportional to
the armature current divided by the applied
voltage; thus, doubling the armature current

would double the amount of torque being developed

plete the chart below to show how a change in the d will affect torque, cemf, and I_a of a series or. In the appropriate boxes, draw an arrow up to indicate increase or down () to indicate rease.

	LOAD	SPEED	cemf	E _{eff}	I _a	β	T
ANT	INCREA SE	1		4		4	
A NT	DE CREA SE	A		4		↓	

motor generally used in D.C. actuators is the series motor.

w the necessary connections between the symbols ow that will complete a schematic diagram of a it-field series motor circuit.

Complete the diagram below to show a lab machine connected to perform series motor experiments. Draw the connections between the jacks necessary to complethe diagram and set up the magnetic polarities shown.

END OF TEST.