Restricted Boltzmann Machine A Probabilistic Graphical Model course's project

école normale supérieure paris – saclay —

Chaïmaa Kadaoui, Othman Sbai, Xi Shen

DEFINITION

A Restricted Boltzman Machine is an undirected graph which can be decomposed in two layers.

It is restricted because no connection between nodes of the same layer is supposed. The matrix W characterizes the connections between the two layers. For simplification, we suppose that the variables \mathbf{x} and \mathbf{h} are binary.

ENERGY AND PROBABILITY

We introduce the two bias vectors c and b to define the energy of this graph:

$$E(x,h) = -h^{\top}Wx - c^{\top}x - b^{\top}h$$

We can write the joint probability of \mathbf{x} and \mathbf{h} as:

$$p(x,h) = \exp(-E(x,h))/Z$$

Z is the partition parameter which can be computed by calculating all the possibles values of ${\bf x}$ and ${\bf h}$. In practice, this parameter is intractable.

Inference We can prove that given \mathbf{x} , h_j follows a Bernoulli:

$$p(h_j = 1|x) = sigm(b_j + W_{j.}x)$$

 $W_{j.}$ is the j-th row of W and sigm defines the sigmoid function.

CONTRASTIVE DIVERGENCE

To train the RBM with our data $\mathbf{x}^{(t)}$, we would like to minimize the average loss: $\frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)})) = \frac{1}{T} \sum_{t} -\log p(\mathbf{x}^{(t)})$ We will apply a stochastic gradient descent. We derive each term of the sum with respect to our model parameter θ as follow (where \mathbb{E}_h and $\mathbb{E}_{x,h}$ are expectations of h and (x,h) respectively):

$$\frac{\partial -\log p(\mathbf{x}^{(t)})}{\partial \theta} = \mathbb{E}_h \left[\frac{\partial E(\mathbf{x}^{(t)}, h)}{\partial \theta} | \mathbf{x}^{(t)} \right] - \mathbb{E}_{x, h} \left[\frac{\partial E(\mathbf{x}, h)}{\partial \theta} \right]$$

The first term is called the *positive phase* and the second term the *negative phase*. Because of the difficulty to compute the seconde term, we will use an algorithm called *Contrastive Divergence*. The key points of the algorithm are:

- We estimate the expectation $\mathbb{E}_{x,h}$ by sampling a single point $\tilde{\mathbf{x}}$.
- To do so, we use Gibbs sampling in chain (we apply it k times).
- We initialize our Gibbs sampling with $\mathbf{x}^{(t)}$.

RESULTS

We implemented the algorithm and applied it to the MNIST dataset.

INTERPRETATION

REFERENCES

- [1] Hinton G. A practical guide to training restricted Boltzmann machines[J]. Momentum, 2010, 9(1): 926.
- [2] Fischer A. Training restricted boltzmann machines[J]. KI-Künstliche Intelligenz, 2015, 29(4): 441-444.
- [3] Bengio, Y., Delalleau, O. Justifying and generalizing contrastive divergence. Neural Computation 21(6), 1601n621 (2009)