© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°17

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

Soit (T_n) la suite de polynômes de $\mathbb{R}[X]$ définie par $T_0=1,\,T_1=X$ et pour tout $n\in\mathbb{N}$

$$T_{n+2} = 2XT_{n+1} - T_n$$

Partie I – Étude de la suite (T_n)

- **1.** Déterminer les polynômes T_2 et T_3 .
- **2.** Déterminer le degré, la parité et le coefficient dominant de T_n pour $n \in \mathbb{N}$.
- **3.** Soit $n \in \mathbb{N}$. Montrer que la famille $(T_0, ..., T_n)$ est une base de $\mathbb{R}_n[X]$.
- **4.** Montrer que pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}$,

$$T_n(\cos x) = \cos nx$$

5. Soit $n \in \mathbb{N}^*$. Montrer que les racines de T_n sont exactement les réels $\cos(x_k)$ avec $x_k = \frac{(2k-1)\pi}{2n}$ pour $k \in [1, n]$.

Dans toute la suite, n désigne un entier naturel non nul.

Partie II – Étude d'un produit scalaire sur $\mathbb{R}[X]$

On associe à tout couple (P, Q) de polynômes de $\mathbb{R}[X]$ l'intégrale suivante :

$$\langle P, Q \rangle = \int_0^{\pi} P(\cos x) Q(\cos x) dx$$

On confondra polynôme et fonction polynomiale associée.

- 1. Montrer que l'application $(P, Q) \mapsto \langle P, Q \rangle$ définit une produit scalaire sur $\mathbb{R}[X]$. Dans toute la suite, $\mathbb{R}[X]$ est muni du produit scalaire $\langle ., . \rangle$.
- **2.** Montrer que la famille $(T_0, ..., T_n)$ est une base orthogonale de $\mathbb{R}_n[X]$.
- **3.** Justifier que T_n est orthogonal à $\mathbb{R}_{n-1}[X]$.

Partie III – Calcul exact d'une intégrale

© Laurent Garcin MP Dumont d'Urville

On associe à tout polynôme P de $\mathbb{R}[X]$ l'intégale et la somme suivantes :

$$I(P) = \int_0^{\pi} P(\cos x) dx$$

$$S_n(P) = \frac{\pi}{n} \sum_{k=1}^{n} P(\cos x_k)$$

- **1. a.** Montrer que $I(T_p) = S_n(T_p)$ pour tout $p \in [0, n-1]$.
 - **b.** En déduire que pour tout $P \in \mathbb{R}_{n-1}[X]$, $I(P) = S_n(P)$.
- 2. Soit $P \in \mathbb{R}_{2n-1}[X]$. On note respectivement Q et R le quotient et le reste de la division euclidienne de P par T_n .
 - **a.** Montrer que $Q \in \mathbb{R}_{n-1}[X]$.
 - **b.** En déduire que I(P) = I(R).
 - **c.** En déduire que $I(P) = S_n(P)$.
- **3.** A-t-on toujours $I(P) = S_n(P)$ lorsque deg $P \ge 2n$?

Partie IV – Calcul approché d'une intégrale

A toute fonction f continue sur [-1,1], on associe l'intégrale et la somme suivantes :

$$I(f) = \int_0^{\pi} f(\cos x) dx$$

$$S_n(f) = \frac{\pi}{n} \sum_{k=1}^{n} f(\cos x_k)$$

1. Montrer que $\lim_{n \to +\infty} S_n(f) = I(f)$. On pourra remarquer (après l'avoir justifié) que

$$S_n(f) = \frac{\pi}{n} \left(\sum_{k=1}^{2n} f\left(\cos\frac{k\pi}{2n}\right) - \sum_{k=1}^{n} f\left(\cos\frac{k\pi}{n}\right) \right)$$

- **2.** Soit $a \in \mathbb{R}_+^* \setminus \{1\}$. On définit une application f par $f(t) = \ln(a^2 2at + 1)$.
 - **a.** Montrer que f est continue sur [-1, 1].
 - **b.** Écrire la décomposition en facteurs irréductibles de $X^{2n} + 1$ dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ à l'aide des réels x_1, \dots, x_n .
 - **c.** En déduire que $S_n(f) = \frac{\pi}{n} \ln (a^{2n} + 1)$.
 - **d.** En déduire la valeur de I(f) suivant les valeurs de a.
 - e. Donner un équivalent de $S_n(f) I(f)$ lorsque n tend vers $+\infty$. On distinguera deux cas suivant les valeurs de a.