ME 146 Project 2: Solar Hybrid Power

Table of Contents

Introduction	2
PV Cell Performance	
Thermoelectric Module Performance	3
Design Task Documentation	5
Task 1	5
Task 2	
Task 3	8
Task 4	10
Task 5(a) & (b)	12
Task 6(a)	15
Task 6(b)	16
Appendix A: Program Flowchart	18
Appendix B: Program 6(a) Table Results	19
Appendix C: MATLAB Scripts	21
Task1.m	21
Task2.m	22
Task3Bisection.m	24
Task4Bisection.m	26
Task5.m	30
Task6a.m	35
Task6a_Results.m	39
Task6b.m	42

Introduction

Figure 1: Hybrid Power System Schematic

The purpose of this project is to analyze the performance of a hybrid power system as shown in Figure 1. This power system consists of a concentrating photovoltaic (PV) system that also captures waste heat from the PV cell to produce power. The back of the PV cell is bonded to the hot side of the thermoelectric module.

PV Cell Performance

The PV cell is governed by the following equations:

Equation 1

$$\frac{P''}{\phi} = \frac{\pi^4 k_B T_{source}}{2.404(15)}$$
; where $P'' = r_c I_D$

Equation 2

$$\frac{\phi_g}{\phi} = 0.416 \int_X^\infty \frac{x^2}{e^{x-1}} dx$$
; where $X = \frac{q_e V_g}{k_B T_{source}}$

Equation 3

$$V_L=rac{k_BT_{pv}}{q_e} \ln\left[rac{I_v-I_L}{I_0}+1
ight]-I_LR_s$$
; where $I_v=\phi_gq_eA_{pv}$ and $A_{pv}=L_yL_z$

The relevant variables, constants, and assumptions are set:

- Boltzmann constant: $k_B = 1.3807 * 10^{-23} \text{ J/K}$
- Fundamental charge of an electron: $q_e = 1.602 * 10^{-19}$ C
- Concentration ratio: $r_c = 15$
- Unconcentrated direct solar intensity: $I_D = 1080 \text{ W/m}^2$
- Temperature of source of radiation (the sun): $T_{source} = 6000 \text{ K}$
- $V_g = 1.1 \text{ V}$
- Y-length of PV cell: $L_v = 10 \text{ cm} = 0.1 \text{m}$
- Z-length of PV cell: $L_z = 10$ cm = 0.1m
- Area of PV cell: A_{pv}

These equations are implemented in Tasks 1 and 2.

Thermoelectric Module Performance

The thermoelectric module is governed by the following equations:

Equation 4: Relationship between TH and Tpv

$$T_H = T_{pv} - \dot{Q}_{pv}/\Lambda_{cont}$$

Equation 5: Heat Transfer to Liquid Interface

$$\frac{\dot{Q}_C}{A_{pv}} = \left[\frac{k_{w,eff}}{t_w} + U_{ev}\right] (T_C - T_{sat})$$

Equation 6: Single Pair Electrical Resistance & Heat Conductance

$$R = \frac{\iota_A \rho_A}{A_A} + \frac{\iota_B \rho_B}{A_B}, \qquad \Lambda = \frac{A_A \lambda_A}{\iota_A} + \frac{A_B \lambda_B}{\iota_B}$$

Equation 7: Total Battery Electrical Resistance & Thermal Conductance

$$R_{batt} = nR$$
, $\Lambda_{batt} = n\Lambda$

Equation 8: Voltage across the Load

$$V_L = n\alpha(T_H - T_C) - R_{hatt}I_L$$

Equation 9: Heat Rate from TH Source

$$P_{H} = \dot{Q}_{pv} = \dot{Q}_{H} = n\alpha I T_{H} + \Lambda_{batt} (T_{H} - T_{C}) - \frac{1}{2} I^{2} R_{batt}$$

Equation 10: Power Output

$$\dot{W} = \frac{n^2 \alpha^2 (T_H - T_C)^2 R_{L,te}}{\left(R_{L,te} + R_{batt}\right)^2}$$

Equation 11: Efficiency

$$\eta = \frac{\dot{W}}{\dot{Q}_H} = \left[\frac{T_H - T_C}{T_H}\right] \left[\frac{(1+m)^2}{m} (ZT_H)^{-1} + 1 + \frac{1}{2m} \left(1 + \frac{T_C}{T_H}\right)\right]^{-1}; \text{ where } m = \frac{R_{L,te}}{nR}$$

Equation 12: Figure of Merit

$$Z = \frac{\alpha^2}{R\Lambda}$$

Equation 13: Minimum RA Value

$$(R\Lambda)_{\min} = \left[(\lambda_A \rho_A)^{1/2} + (\lambda_B \rho_B)^{1/2} \right]^2$$

Equation 14: "m" Value that Maximizes Efficiency

$$m_{\text{max_eff}} = \sqrt{1 + 0.5(T_H + T_C)Z}$$

The relevant variables, constants, and assumptions are set as necessary:

- Thermal conductance between PV cell and thermoelectric module: $\Lambda_{cont}=300~{
 m K}$
- Average Seebeck coefficient over temperature range of interest: $\alpha = 0.0017 \text{ V/K}$
- Electric resistivity of arm A: $\rho_A = 0.0020 \ \Omega \ cm$
- Electric resistivity of arm B: $\rho_B = 0.0030~\Omega~{\rm cm}$
- Thermal conductivity of arm A: $\lambda_A = 0.032 \text{ W/(cm K)}$
- Thermal conductivity of arm B: $\lambda_B = 0.021 \text{ W/(cm K)}$
- Thermal conductivity of the nickel wick: k_{w.eff}
- Wick thickness: t_w
- Conductance: U_{ev}
- Saturation temperature of liquid oxygen at atmospheric pressure: T_{sat}
- Temperature of wall in contact with wick: T_C
- Temperature of heat input: T_H
- Number of thermoelectric material pairs in battery: n

Design Task Documentation

Task 1

Figure 2: Observed Open-circuit Voltage over Temperature

Task Description

In Task 1, the aim is to use data points from Figure 2 to determine a linear curve-fit to open circuit voltage V_{OC} such that $V_{OC} = \hat{A}T_{pv} + \hat{B}$, T_{pv} in K.

Assumptions/Idealizations

Hand measurements of data points is sufficient as the points are not given to us.

Algorithm Summary

- 1. Manually interpret the figure for data. Perform linear regression to get $\hat{A}=-0.0021, \hat{B}=$ 1.0183 such that (1): $V_{OC} = -0.0021T_{pv} + 1.0183$.
- 2. Using Eq. [3], set $I_L=0$ to get (2): $V_{OC}=\frac{k_BT_{pv}}{q_e}\ln\left[\frac{l_v}{l_0}+1\right]$.

 3. Equate (1) and (2) and solve for the ratio of $\frac{l_0}{l_v}$ as a function of temperature.

Results

Figure 3: Linear Fit

Figure 4: IO/Iv Ratio over Temperature

The resulting curve of linear fit for the Figure 2 data points is: $V_{OC}=-0.0021T_{pv}+1.0183$. The curve is plotted along with the data points in Figure 3. Meanwhile, Figure 4 displays the IO/IV ratio along a temperature range of 20°C to 80°C.

Task 2

Task Description

Compute PV cell power (as a function of $R_{L,pv}$ and parameters in Equations [1] to [3]) and efficiency.

Assumptions/Idealization

- Efficiency is given by: $\eta = V_L I_L / (P'' A_{pv})$
- Operating point is V_L and I_L that satisfies both equation [3] and Ohm's Law $V_L = I_L R_{L,pv}$
- Y-length of PV cell: $L_v = 10 \text{ cm} = 0.1 \text{m}$
- Z-length of PV cell: $L_z = 10 \text{ cm} = 0.1 \text{m}$
- Area of PV cell: $A_{nv} = 0.01 \text{ m}^2$
- $R_{L,pv} = 0.0070 \,\Omega$
- $R_s = 0$
- $V_q = 1.1 \text{ V}$
- $T_{pv} = 20,80 \, ^{\circ}\text{C}$
- Power is given by: $P = V_L I_L$

Algorithm Summary

- 1. Implement Task 1 code to get ratio of $\frac{I_0}{I_n}$
- 2. Initialize constants
- 3. Solve [1] for ϕ
- 4. Solve [2] for ϕ_q and find I_v ($I_v = \phi_q q_e A_{pv}$)
- 5. Set V_L of [3] equal to $I_L R_{L,pv}$ such that $\frac{k_B T_{pv}}{q_e} \ln \left[\frac{I_v I_L}{I_0} + 1 \right] I_L R_S = I_L R_{L,pv}$. Solve for I_L .
- 6. Using I_L , solve for V_L . Ohm's Law or Equation [3] can be used; I used Equation [3]. Having both V_L and I_L means that the operating point at both T_{pv} values can be found.
- 7. Calculate power for both operating points using $P = V_L I_L$.
- 8. Calculate efficiency for both operating points using $\eta = V_L I_L/(P''A_{pv})$.

Results

At 20°C, the power output of the PV cell is 18.3461 W, while the efficiency is 0.11325. The operating point is at a current of 51.1945 A and voltage of 0.35836 V. Meanwhile, at 80°C, the power output is 8.7168 W and the efficiency is 0.053807. The operating point is at a current of 35.2881 A and a voltage of 0.24702 V. The operating points are reflected in Figure 5 below.

Figure 5: Load Voltage over Load Current

Task 3

Task Description

In Task 3, the objective is to iteratively implement the thermoelectric module governing equations to determine:

- Temperature of wall in contact with wick (cold side) T_C
- Power output of the module \dot{W}
- Heat input \dot{Q}_H
- Heat transfer out at cold side \dot{Q}_C
- Current to the load I_L
- Voltage across the load V_L

Assumptions/Idealizations

- Thermal conductance between PV cell and thermoelectric module: $\Lambda_{cont}=300~{
 m K}$
- Average Seebeck coefficient over temperature range of interest: $\alpha = 0.0017 \text{ V/K}$
- Electric resistivity of arm A: $\rho_A = 0.0020~\Omega~{\rm cm}$
- Electric resistivity of arm B: $\rho_B=0.0030~\Omega~{\rm cm}$
- Thermal conductivity of arm A: $\lambda_A = 0.032 \text{ W/(cm K)}$

- Thermal conductivity of arm B: $\lambda_B = 0.021 \text{ W/(cm K)}$
- Thermal conductivity of the nickel wick: $k_{w.eff} = 6.5 \text{ W/mK}$
- Wick thickness: $t_w = 4.0 \text{ mm} = 0.004 \text{ m}$
- Conductance: $U_{ev} = 25 \text{ W/m}^2 \text{K}$
- Saturation temperature of liquid oxygen at atmospheric pressure: $T_{sat} = 95.0 \text{ K}$
- Temperature of heat input: $T_H = 50^{\circ}\text{C} = 323 \text{ K}$
- Number of thermoelectric material pairs in battery: n = 12
- Resistance across the load: $R_{L,te} = 0.10 \,\Omega$
- Area of PV cell: $A_{pv} = 0.01 \text{ m}^2$
- T_C test range from 90 to 120 K
- Error tolerance is 1 e⁻⁵

Algorithm Summary

- 1. Set up the program by initialize constants and compute $(R\Lambda)_{\min}$ and Z using Equations [13] and [12], respectively.
- 2. Begin iteration to compute the values of T_C and \dot{Q}_H . This is accomplished by implementing the bisection root-finding method with a while loop.
 - a. T_C is initialized as an array of 3 elements: [90 0 120]. This is the initial guess of the range. Elements 1 and 3 will serve as the upper and lower bound values while element 2 is calculated as the midpoint of 1 and 3. All equations that involve T_C make calculations for all 3 elements using the "." operator. As a result, calculated parameters will have arrays in the form of [X Y Z], which correspond to the bound and midpoint values of the initial T_C .
 - b. Calculate m_{\max_eff} , R, and Λ . m_{\max_eff} can be found using Equation [14], while R and Λ can be found by:

i.
$$R = \frac{R_{L,te}}{n*m_{\text{max_}eff}}$$

ii.
$$\Lambda = (\Lambda R)_{\min}$$

- c. Use Equation [5] to solve for \dot{Q}_C . This value is noted as $\left(\dot{Q}_C\right)_{hoil}$.
- d. Use Equation [11] to solve for efficiency η .
- e. Use Equation [10] to solve for \dot{W} . R_{batt} can be found for this equation using Equation [7].
- f. Compute heat input \dot{Q}_H and heat rejection \dot{Q}_C , noted as $\left(\dot{Q}_C\right)_{TE}$, using:

i.
$$\dot{Q}_H = \dot{W}/\eta$$

ii.
$$\left(\dot{Q}_{C}\right)_{TF}=\dot{Q}_{H}-\dot{W}$$

- g. Compute the error $E_{\dot{Q}_C} = \left| \left(\dot{Q}_C \right)_{TE} \left(\dot{Q}_C \right)_{hoil} \right|$.
- h. After performing calculations with initial lower bound, midpoint, and upper bound values of T_C , the errors are calculated for temperatures at those three points $E_{\dot{Q}_C} = [E_{\dot{Q}_C1} \ E_{\dot{Q}_C2} \ E_{\dot{Q}_C3}]$. The T_C range is then tightened. If $(E_{\dot{Q}_C1} * E_{\dot{Q}_C2}) < 0$, the current midpoint becomes the new upper bound as element 3 in the T_C array. Otherwise, the current midpoint becomes the new lower bound as element 1.

- i. For all calculated parameters in the loop, the midpoint value (2^{nd} in the array) is always selected as our result value. Therefore, if the 2^{nd} value in the $E_{\dot{Q}_C}$ array is less than the tolerance value of $1~{\rm e}^{-5}$, this means that the T_C range has converged to a point that satisfies Equations [5], [10], and [11]. The resulting 2^{nd} values for T_C , \dot{W} , \dot{Q}_H , \dot{Q}_C , η are saved. Λ_{batt} is also found using Equation [7].
- 3. The \dot{Q}_H value is used to solve for I (which is I_L) using Equation [9]. The resulting I_L value is used in Equation [8] to compute V_L .

Results

The results of the program are as follows:

- $T_C = 108.9727$
- Power output of the module W = 80.7323 K
- $\dot{Q}_H = 311.2822 \text{ W}$
- $\dot{Q}_C = 230.55 \,\text{W}$
- Current to the load $I_L = 28.4134 \text{ A}$
- Voltage across the load $V_L = 2.8413 \text{ V}$

Task 4

Task Description

Task 2 finds power and performance of PV cell, while Task 3 finds power and performance for the thermoelectric (TE) module. Combine the programs from Tasks 2 and 3 in a new program to determine the following:

- PV Cell and TE Module
 - \circ Load voltage V_L
 - \circ Load current I_L
 - o Power output P_L , \dot{W} respectively
 - o Efficiency η_{PV} , η_{TE}
- Hybrid System (seen in Figure 1)
 - o Operating point T_{pv} value
 - Total power output
 - Overall efficiency

Assumptions/Idealizations

- Apply previous conditions from Tasks 2 and 3 with some changes:
 - o T_{pv} is now initially guessed as a range from [170 0 230].
 - o $T_{sat} = 90.2 \text{ K}$
- $\Lambda_{cont} = 300 \text{ W/K}$
- Waste heat transfer rate: $\dot{Q}_{pv} = P''A_{pv} V_LI_L$
- T_H is not constant. Instead: $T_H = T_{pv} \dot{Q}_{pv}/\Lambda_{cont}$.
- Error tolerance is 1 e⁻⁵

Algorithm Summary

- 1. To find the T_{pv} value, the bisection method must be implemented (as seen in Task 3). As a result, T_{pv} will be initialized as an array of 3 values $[T_{pv,1} \quad T_{pv,2} \quad T_{pv,3}]$. Because the Task 3 program is also implemented here, Task 4 performs a nested bisection method (using nested while loops). Other assumed constants also initialized.
- 2. The Task 2 program is implemented. The while loop for finding T_{pv} begins before the power calculations so that PV cell operating points V_L and I_L are found for all T_{pv} values. To perform element-by-element operations, the "." operator is used extensively.
- 3. Taking the second value of the T_{pv} array, T_H is computed by $T_H = T_{pv,2} \dot{Q}_{pv}/\Lambda_{cont}$.
- 4. The Task 3 program is implemented. Before starting the nested while loop for T_C , T_C is initialized as [90 0 120] such that T_C is reset with every iteration of T_{pv} . The T_C array converges due to the bisection method and the resulting 2nd values for T_C , \dot{W} , \dot{Q}_H , \dot{Q}_C , η_{TE} , and Λ_{batt} are saved.
- 5. Error $E_{\dot{Q}}$ is computed as $E_{\dot{Q}} = \left| \dot{Q}_{pv} \dot{Q}_H \right|$. Recall that $E_{\dot{Q}}$ is an array of 3 values such that $E_{\dot{Q}} = \left[E_{\dot{Q}1} \ E_{\dot{Q}2} \ E_{\dot{Q}3} \right]$. The T_{pv} range is tightened: If $\left(E_{\dot{Q}1} * E_{\dot{Q}2} \right) < 0$, or $\left(E_{\dot{Q}1} * E_{\dot{Q}2} \right) > 0$ while $E_{\dot{Q}1} < 0$, then the midpoint is set as the new upper bound. However, if $\left(E_{\dot{Q}1} * E_{\dot{Q}2} \right) > 0$ while $E_{\dot{Q}1} > 0$, then the midpoint becomes the new lower bound. The midpoint values for \dot{Q}_{pv} , η_{PV} , V_L , I_L , T_{pv} , and PV cell power output P_L are saved.
- 6. After the error $E_{\hat{Q}}$ converges, equations [8] and [9] are solved for V_L and I_L of the TE module to verify the operating point found for the PV cell.
- 7. Total power P_{tot} and efficiency η_{tot} for the hybrid power system are found:
 - a. $P_{tot} = P_L + \dot{W}$
 - b. $\eta_{tot} = P_{tot}/(P''A_{pv})$

Results

This program gave the following results:

PV Cell

- Load voltage: $V_L = 0.45092 \text{ V}$
- Load current: $I_L = 64.4175 \text{ A}$
- Power output: $P_L = 29.0473 \text{ W}$
- Efficiency: $\eta_{PV} = 0.1793$

The load voltage and load current for the operating point was validated by the TE module calculations. *TE Module*

- Power output: $\dot{W} = 23.1581 \,\mathrm{W}$
- Efficiency: $\eta_{TE} = 0.17418$

Hybrid System

- Operating point T_{pv} value: $T_{pv} = 216.6275 \text{ K}$
- Total power output: $P_{tot} = 52.2054 \text{ W}$
- Overall efficiency: $\eta_{tot} = 0.32226$

Figure 6 below demonstrates the convergence of \dot{Q}_{pv} and \dot{Q}_H (error $E_{\dot{Q}}$ goes to 0 as \dot{Q} curves intersect) at $T_{pv}=216.6275$ K.

Figure 6: Convergence of Heat Transfer Rates

Task 5(a) & (b)

Task Description

In Task 5, the hybrid power system program built in Task 4 is put to the test.

- a. Iterate over a constant $r_c = 15$ and I_D ranging from 720 to 1080 W/m².
- b. Iterate over a constant $I_D = 1080 \text{ W/m}^2$ and r_c ranging from 10 to 18.

For tests (a) and (b), determine and plot the variation of PV efficiency, TE module efficiency, total system efficiency, and power output.

Assumptions/Idealizations

• Carry over all assumptions from Task 4. However, for parts (a) and (b), adjust r_c and I_D values as described in the Task Description.

Power System Analysis

The program for Task 4 was kept mostly intact, with a few changes:

• The entirety of Task 4, other than initialized r_c and I_D values and linearly-spaced arrays, was put into a for-loop that iterated along the length of whichever variable array was being tested. More plotting sections were added to adequately capture the change in performance due to changes in r_c and I_D .

Results

Part 5(a)

Figure 7: Efficiency Variation over ID

Figure 8: Power Variation over ID

For a variation of I_D from 720 to $1080~{\rm W/m^2}$, PV cell efficiency ranges from 0.120 to 0.179 and TE module efficiency ranges from 0.143 to 0.174. Total system efficiency η_{tot} ranges from 0.246 to 0.322, while total power P_{tot} ranges from 26.560 to 52.205 W. All data points are tabulated below in Table 1.

In Figure 7, it is seen that as I_D increases, efficiency of the PV cell, TE module, and overall system increases almost linearly with very slight concavity. As a result, maximum efficiencies for the modules and for the system is found at the maximum I_D value.

This continual upward trend in efficiencies is paralleled by a direct relationship between power output and I_D as shown in Figure 8. I_D must be maximized in order to maximize the power output.

Table 1: Results of ID Variation

ID	720	760	800	840	880	920	960	1000	1040	1080
PV Eff.	0.120243	0.126923	0.133604	0.140284	0.146963	0.15364	0.160307	0.166932	0.173396	0.179304
TE Eff.	0.142863	0.147009	0.150958	0.154724	0.158319	0.161753	0.165036	0.168182	0.171206	0.174183
Total										
Eff.	0.245928	0.255273	0.264393	0.273303	0.282015	0.290541	0.298887	0.307039	0.314905	0.322256
Total										
Power	26.56022	29.10118	31.7272	34.43613	37.22597	40.09468	43.03971	46.05588	49.12514	52.20541

Part 5(b)

Figure 9: Efficiency Variation over rc

Figure 10: Power Variation over rc

For a variation of r_c from 10 to 18, PV cell efficiency ranges from 0.120 to 0.185 and TE module efficiency ranges from 0.143 to 0.194. Total system efficiency η_{tot} ranges from 0.246 to 0.332, while total power P_{tot} ranges from 26.560 W to 63.680 W. All data points are tabulated in Table 2.

As r_c increases, PV cell efficiency hits a peak at $r_c=16$. Total system efficiency peaks at $r_c=17$, only slightly higher than 16. In contrast, TE module efficiency increases nearly linearly, as does the total power output (despite the drop-off towards the higher r_c values).

It is seen that despite the decrease in total system efficiency after peaking, the power output continues to increase. Therefore, if the goal of a hybrid power system is to purely maximize power output and r_c is of no concern, r_c maximized at $r_c = 18$.

Table 2: Results of rc Variation

rc	10	11	12	13	14	15	16	17	18
PV Eff.	0.120243	0.132268	0.144291	0.156309	0.168244	0.179304	0.184837	0.178849	0.165746
TE Eff.	0.142863	0.150184	0.156901	0.163083	0.168797	0.174183	0.179857	0.186625	0.193995
Total Eff.	0.245928	0.262587	0.278553	0.293901	0.308642	0.322256	0.331449	0.332096	0.327574
Total									
Power	26.56022	31.19529	36.10045	41.26372	46.66666	52.20541	57.27445	60.97287	63.68043

Task 6(a)

Task Description

Using the program, values of r_c and n must be recommended to provide the best design of a system according to these design priorities:

- Maximize power output P_{tot} ; must be between 20 to 50 W
- Maximize system efficiency η_{tot}
- Minimize concentration ratio r_c
- Minimize PV cell operating temperature T_{pv}

Power System Analysis

Figure 11: Performance Plots at rc = 14

Figure 9 above charts the variation in power P_{tot} , efficiency η_{tot} , and temperature T_{pv} over a range of n from 10 to 18. This range was loosely based around the previously given n=12. 10 was selected as a lower bound because as n kept decreasing, T_{pv} was increasing too much. 18 was selected as an upper bound because P_{tot} kept decreasing.

At the middle of this range, for n=14, efficiency was plotted in the top left over the r_c range from 10 to 18. Given that given priorities were to minimize r_c while also maximizing η_{tot} , $r_c=14$ was a balanced choice. It is lower than the r_c value of 15 used in previous tasks, and it also boasted a healthy system efficiency of $\eta_{tot}=0.284$.

With the r_c value selected, the remaining plots must be analyzed to select the best n value. Criteria for T_{pv} and P_{tot} must be defined. Because P_{tot} should be maximized as a key performance parameter of a power system, a $P_{tot} > 40$ W is desirable. Additionally, a minimal $T_{pv} < 200$ K is also desirable. Looking at n=13:

• $P_{tot} = 44.68913 \text{ W}$

• $T_{pv} = 198.2065 \text{ K}$

However, T_{pv} is a little too close to 200 K. Looking at n=14:

- $P_{tot} = 42.9461 \,\mathrm{W}$
- $T_{nv} = 187.1328 \text{ K}$

This value of T_{pv} is better, and P_{tot} is a comfortable ~43 W. Therefore, it is recommended to design the hybrid power system with $r_c = 14$, n = 14. Further data is available in Appendix B.

Task 6(b)

Task Description

Modify the program from Task 4 to eliminate the PV cell and deliver the solar energy directly to the TE module. Determine the following:

- Operating point hot side temperature T_H
- Operating point cold side temperature T_C
- System efficiency η_{tot}
- Power output P_{tot}

Assumptions/Idealizations

- Because the PV cell is eliminated \dot{Q}_{pv} is instead modeled as \dot{Q}_{sun}
- $\dot{Q}_{sun} = 0.95 * P'' * A_{pv} = 0.95 * r_c * I_D * A_{pv}$, a constant value
- Because the power system only consists of the TE module, $\eta_{tot} = \eta_{TE}$ and $P_{tot} = \dot{W}$.

Algorithm Summary

The algorithm is the same as Task 4 except for a few changes due to modified assumptions:

- $T_H = T_{pv,2} \dot{Q}_{sun}/\Lambda_{cont}$
- Error $E_{\dot{Q}}$ is computed as $E_{\dot{Q}} = \left|\dot{Q}_{sun} \dot{Q}_{H}\right|$
- $P_{tot} = \dot{W}$
- $\eta_{tot} = \eta_{TE}$

Results

Figure 12: Heat Transfer Rate Convergence for Modified System

Figure 12 shows the convergence of the heat transfer rates of \dot{Q}_{sun} and $\dot{Q}_{H,te}$. T_{pv} converges to 231.1398 K. This result is not relevant due to the removal of the PV cell; however, it can be used to find the temperature T_H of the hot side of the TE module.

This value is utilized in the bisection method to converge upon a cold side $T_{\mathcal{C}}$ value. The $T_{\mathcal{C}}$ bisection method provides the following results:

- $T_H = 230.6268 \text{ K}$
- $T_C = 97.7673 \text{ K}$
- $P_{tot} = 29.0402 \text{ W}$
- $\eta_{tot} = 0.1887$

There is a significant drop in system power and efficiency. Recall the full hybrid power system results:

- $T_H = 216.1843 \text{ K}$
- $o T_C = 96.8542 \text{ K}$
- o Total power output: $P_{tot} = 52.2054 \text{ W}$
- Overall efficiency: $\eta_{tot} = 0.32226$

Removing the PV cell decreases efficiency by 41.44% (loss of 0.1336 efficiency value) and decreases the power output by 44.37% (loss of 23.1652 W). Meanwhile, T_H also drops by 6.26% (14.4425 K) and T_C drops by 0.93% (0.9131 K).

Appendix A: Program Flowchart

Flow chart for Task 4. The programs from Tasks 2 and 3 are implemented (with Task 1 code built into Task 2).

Appendix B: Program 6(a) Table Results

n = 10

rc	10	11	12	13	14	15	16	17	18
PV Eff.	0.1202	0.1323	0.1442	0.1553	0.1607	0.1545	0.1386	0.1246	0.1064
TE Eff.	0.1787	0.1869	0.1944	0.2014	0.2086	0.2161	0.2257	0.2326	0.2427
Total Eff.	0.2774	0.2945	0.3106	0.3254	0.3357	0.3361	0.3331	0.3253	0.3233
Total									
Power	29.9642	34.9824	40.2548	45.6916	50.7637	54.4531	57.5559	59.7338	62.8491
T_pv	217.8808	225.8618	233.3652	240.5334	248.0469	256.25	267.0532	275	287.1887

n = 11

rc	10	11	12	13	14	15	16	17	18
PV Eff.	0.1202	0.1323	0.1443	0.1562	0.1674	0.1735	0.1694	0.1543	0.1383
TE Eff.	0.1594	0.1672	0.1743	0.1809	0.187	0.1932	0.1991	0.2085	0.2167
Total Eff.	0.2605	0.2774	0.2935	0.3088	0.3231	0.3332	0.3327	0.3303	0.3251
Total									
Power	28.1343	32.9501	38.0318	43.3607	48.8504	53.9765	57.4861	60.6372	63.191
T_pv	201.3451	208.4714	215.1734	221.492	227.5416	233.9063	240	250	259.1296

n = 12

rc	10	11	12	13	14	15	16	17	18
PV Eff.	0.1202	0.1323	0.1443	0.1563	0.1682	0.1793	0.1848	0.1788	0.1693
TE Eff.	0.1429	0.1502	0.1569	0.1631	0.1688	0.1742	0.1799	0.1866	0.1912
Total Eff.	0.2459	0.2626	0.2786	0.2939	0.3086	0.3223	0.3314	0.3321	0.3245
Total									
Power	26.5602	31.1953	36.1005	41.2637	46.6667	52.2054	57.2727	60.9728	63.083
T_pv	187.9248	194.3355	200.3729	206.0656	211.446	216.6275	222.1973	229.018	233.75

n = 13

rc	10	11	12	13	14	15	16	17	18
PV Eff.	0.120243	0.132268	0.144292	0.156315	0.16833	0.180221	0.190872	0.194766	0.187532
TE Eff.	0.128544	0.135419	0.141747	0.147585	0.152985	0.158002	0.162801	0.168079	0.174428
Total Eff.	0.233331	0.249775	0.265585	0.280831	0.295563	0.309748	0.322599	0.330109	0.329249
Total									
Power	25.19971	29.67327	34.41988	39.42865	44.68913	50.17912	55.74504	60.60801	64.00609
T_pv	176.8802	182.684	188.1577	193.3248	198.2065	202.8323	207.3425	212.4011	218.6262

n = 14

rc	10	11	12	13	14	15	16	17	18
PV Eff.	0.1202	0.1323	0.1443	0.1563	0.1683	0.1803	0.1921	0.2018	0.2029
TE Eff.	0.1161	0.1226	0.1285	0.134	0.1391	0.1439	0.1483	0.1526	0.1577

Total Eff.	0.2224	0.2386	0.2543	0.2694	0.284	0.2983	0.3119	0.3237	0.3286
Total									
Power	24.0184	28.3475	32.9518	37.821	42.9461	48.3169	53.899	59.4229	63.8815
T_pv	167.6819	172.9659	177.9562	182.6727	187.1328	191.3529	195.3672	199.3864	204.1656
n = 15									
rc	10	11	12	13	14	15	16	17	18
PV Eff.	0.1202	0.1323	0.1443	0.1563	0.1683	0.1804	0.1923	0.2038	0.2115
TE Eff.	0.1053	0.1113	0.1169	0.1221	0.1269	0.1314	0.1355	0.1395	0.1436
Total Eff.	0.2129	0.2289	0.2443	0.2593	0.2739	0.288	0.3018	0.3149	0.3247
Total									
Power	22.988	27.1878	31.6642	36.4077	41.4097	46.6622	52.1534	57.8127	63.1251
T_pv	159.9415	164.7767	169.3491	173.6756	177.771	181.6484	185.3226	188.8478	192.5763
n = 16									
rc	10	11	12	13	14	15	16	17	18
PV Eff.	0.1202	0.1323	0.1443	0.1563	0.1683	0.1804	0.1924	0.2043	0.215
TE Eff.	0.0958	0.1014	0.1067	0.1116	0.1161	0.1203	0.1243	0.128	0.1315
Total Eff.	0.2045	0.2203	0.2356	0.2504	0.2649	0.279	0.2927	0.3061	0.3182

22	_	1	7
11	=	- 1	•

Total Power

T_pv

22.0862

153.3684

26.1694

157.8134

30.5307

162.0218

n-1									
rc	10	11	12	13	14	15	16	17	18
PV Eff.	0.1202	0.1323	0.1443	0.1563	0.1683	0.1804	0.1924	0.2044	0.216
TE Eff.	0.0904	0.0927	0.0976	0.1022	0.1065	0.1105	0.1142	0.1177	0.121
Total Eff.	0.2035	0.2127	0.2278	0.2426	0.2569	0.2709	0.2846	0.298	0.3109
Total									
Power	21.974	25.2717	29.5293	34.0568	38.8465	43.8915	49.1855	54.7192	60.437
T_pv	150	151.8448	155.7343	159.4226	162.9206	166.2379	169.3832	172.3662	175.2221

35.1608

166.0083

40.0513

169.7856

45.1952

173.3648

50.5849

176.7564

61.8623

183.1436

56.1994

179.9784

n = 18

rc	10	11	12	13	14	15	16	17	18
PV Eff.	0.1205	0.1323	0.1443	0.1563	0.1683	0.1804	0.1924	0.2044	0.2163
TE Eff.	0.0801	0.085	0.0896	0.094	0.098	0.1018	0.1053	0.1086	0.1117
Total Eff.	0.1909	0.206	0.221	0.2356	0.2498	0.2638	0.2774	0.2908	0.3038
Total									
Power	20.6186	24.4775	28.6415	33.0762	37.7744	42.7296	47.9358	53.387	59.0631
T_pv	142.8893	146.6921	150.3006	153.7258	156.9772	160.063	162.991	165.7681	168.4083

Appendix C: MATLAB Scripts

Task1.m

```
%% Data Input & Linear Curve Fit
data = [28.85, 0.379; 30.492, 0.3737; 43.279, 0.3526; 50.49, 0.3316;...
   60.65, 0.311];
x = data(:,1)+273.15; %convert oC to K
y = data(:,2);
X = [ones(length(x), 1), x];
b = X \setminus y;
T pv = linspace(20+273.15,100+273.15,81);
%% Plot Fit
Voc = @(t) b(2).*t + b(1);
plot(T_pv, Voc(T_pv));
hold on;
plot(x,y,'o');
xlabel("Temperature [K]");
ylabel("V o c [V]");
title("Linear Fit");
%% Plot IO IV
kb = 1.3807*10^-23; %[J/K]
qe = 1.602*10^-19; %[C]
%For Kelvin
I0_{IV} = @(t) (exp(Voc(t).*qe./(kb.*t))-1).^-1;
figure;
plot(T_pv, I0_IV(T_pv));
xlabel("Temperature [K]");
ylabel("I_0/I_V Ratio");
title("I0\ IV Ratio over Temp.");
```

Task2.m

```
%% Task 2 Problem Statement
% Compute power delivered by the PV cell. Compute PV cell conversion
\mbox{\%} efficiency. Finally, determine power output. Use the curve fit for IO_IV
% as found in Task 1 to accomplish this.
%% IO IV Curve (Task 1)
% Data Input & Linear Curve Fit
data = [28.85, 0.379; 30.492, 0.3737; 43.279, 0.3526; 50.49, 0.3316;...
    60.65, 0.311];
x = data(:,1)+273.15; %convert oC to K
y = data(:,2);
X = [ones(length(x), 1), x];
b = X \setminus y;
T pv = linspace(20+273.15,100+273.15,81);
% Plot Fit
Voc = @(t) b(2).*t + b(1);
%For Kelvin
kb = 1.3807*10^-23; %[J/K]
qe = 1.602*10^-19; %[C]
I0_{IV} = @(t) (exp(Voc(t).*qe./(kb.*t))-1).^-1;
%% Initializing Constants
pressure = 163; %[kPa]
rc = 15; %concentration ratio, unitless
I d = 1080; %[W/m^2]
P = rc*I d; %[W/m^2]
L x = 0.1; %[m]
L_y = 0.1; %[m]
A = L x*L y;
Vg = 1.1; %[V]
T source=6000; %Temperature of the sun (source)
%% Eq. 14.16: Solving for phi
phi = @(T \text{ source}) (pi^4*kb*T \text{ source}./(2.404*15*P)).^{-1};
% Accepts constant or array of source temperature.
% Returns constant phi value or array of phi vals.
%% Eq. 14.25: Solving for phi g
sigma = @(x) x.^2./(exp(x)-1);
X = qe*Vq./(kb.*T source);
integ = integral(sigma, X, Inf);
phi i = phi(T source);
phi g = phi i*0.416*integ;
IV = phi g.*qe*A;
%% P = IV
RL = 0.0070; % [Ohm]
fg = 2.65*10^14; %265 [THz]
RS = 0;
TK1 = 20+273; %K
TK2 = 80+273; %K
```

```
syms IL
eqn1 = kb*TK1/qe*log(I0 IV(TK1).^-1-I0 IV(TK1).^-1*IL/IV+1) == IL*RL;
IL op1 = double(solve(eqn1,IL));
eqn2 = kb*TK2/qe*log(I0 IV(TK2).^-1-I0 IV(TK2).^-1*IL/IV+1) == IL*RL;
IL op2 = double(solve(eqn2,IL));
VL = @(IL, t) kb*t/qe*log(IO_IV(t).^-1-IO_IV(t).^-1.*IL./IV+1);
VL op1 = VL(IL op1,TK1);
VL op2 = VL(IL op2,TK2);
%% Plot Resistor and PV - Operating Point
IL arr = linspace(0, IV, ceil(IV)*10);
plot(IL_arr, IL_arr*RL); %Resistor
hold on;
plot(IL arr, VL(IL arr, TK1)); %At operating temp. 1
plot(IL arr, VL(IL arr, TK2)); %At operating temp. 2
xlabel("I L [A]");
ylabel("V L [V]");
%title("VL over IL Performance");
legend("Resistor","PV Cell @ 20 ^oC", "PV Cell @ 80 ^oC","Location","northwest");
%% Power and Efficiency Results
P1 = IL op1*VL op1;
eff1 = P1/(P*A);
P2 = IL_op2*VL_op2;
eff2 = \overline{P2}/(P*A);
fprintf("At 20 oC...\n" ...
           Power = " + P1 + " W \n" ...
    + "
           Operating point: IL = " + IL op1 + " A , VL = " + VL op1 + " V \n"...
   + "
          Efficiency = " + eff1 + "\n^{-1};
fprintf("At 80 oC...\n" ...
    + "
          Power = " + P2 + " W \setminus n" ...
    + "
           Operating point: IL = " + IL_{op2} + " A , VL = " + VL_{op2} + " V \n"...
    + "
           Efficiency = " + eff2 + "\n");
```

Task3Bisection.m

```
%% Task 3 Problem Statement
% Assume: n = 12, R L,te = 0.10 ohms, TH = 50 oC. All necessary constants
            given.
% Find: TC, power output of the module Wdot, QHdot, QCdot, current to the
            load IL, voltage across the load VL
tic
%% Assumed Constants and Initial Calcs
tol = 1e-5;
a = 0.0017; %[V/K], mean Seebeck coefficient
pA = 0.0020; %[ohm*cm]
pB = 0.0030; %[ohm*cm]
1A = 0.032; %[W/(cm*K)]
1B = 0.021; %[W/(cm*K)]
A pv = 0.01; %[m<sup>2</sup>]
k = 6.5; %[W/(mK)]
Tsat = 95.0; %[K]
Uev = 25; %[W/(m^2*K)]
tw = 0.004; %[m], 4 mm
RA min = (sqrt(lA*pA) + sqrt(lB*pB))^2;
Z = a^2/RA min;
n = 12; %12 thermoelectric pairs
R lte = 0.10; %[ohms]
\overline{TH} = 50 + 273.15; %[K]
%% TC and QHdot Computation
error = [1000 1000 1000]; %initialize error
TC = [90 0 120]; %LB Midpoint UB
while abs(error(2))>tol || (error(1)*error(3)<0)</pre>
    midpoint = (TC(1)+TC(3))/2;
    TC(2) = midpoint;
    m \max Eff = sqrt(1+0.5.*(TH+TC).*Z);
    R = R lte./(n.*m maxEff);
    A = RA_min./R;
    % (ii) Computing QC_boil
    QC boil = (k \text{ wEff/tw} + \text{Uev}) * (TC-Tsat) *A \text{ pv; } %[W]
    % (iii) Compute efficiency using Eq. 11
    eff = (TH-TC)./TH.*((1+m maxEff).^2./(m maxEff.*Z*TH) + 1 +
1./(2*m maxEff).*(1+TC./TH)).^-1;
    % (iv) Computer power output Wdot using Eq. 10
    R \text{ batt} = n*R;
    \overline{\text{Wdot}} = (\text{n}^2 \cdot \text{a}^2. \cdot (\text{TH-TC}).^2. \cdot \text{R lte})./(\text{R lte+R batt}).^2; %[W]
    % (v) Compute heat input and rejection
    QH = Wdot./eff; %[W]
    QC TE = QH - Wdot; %[W]
    % (vi) Computer error - run if statement to find optimal TC and QH for
            minimal error
    error = QC_TE-QC_boil;
    if error(1)*error(2)<0</pre>
        TC(3) = TC(2);
    else
        TC(1) = TC(2);
```

```
error result = error(2);
TC result = TC(2);
QH_result = QH(2);
QC_result = QC_boil(2);
A_batt = n*A(2);
\overline{Wdot}_{result} = \overline{Wdot(2)};
eff_result = eff(2);
%% IL and VL Computation
% Use Eqs. (8) and (9)
syms IL
heatRateEqn = QH result == n*a*IL*TH + A batt*(TH-TC result)-0.5*IL^2*R batt(2);
%We get 2 roots for IL because heatRateEqn is 2nd order eqn
IL result = double(solve(heatRateEqn, IL));
%Solve for VL using both IL roots
%Select true VL and IL based on most reasonable VL_result
VL_result = n*a*(TH-TC_result)-R_batt(2)*IL_result;
VL_true = VL_result(1); %[V]
IL_true = IL_result(1); %[A]
%% Results
fprintf("TC = " + TC result + " K \n" ...
    + "Power output of module Wdot = " + Wdot_result + " W \n" ...
    + "Heat rate QH = " + QH_result + " W \n" ...
    + "Contact surface heat rate QC = " + QC result + " W \n" ...
    + "Current to the load IL = " + IL_true + " A \n" ...
    + "Voltage across the load VL = " + VL true + " V \setminus n \setminus n" ...
    + "Error in QC = " + error result + "n");
  toc
```

end

Task4Bisection.m

```
%% Task 4 Problem Statement
\mbox{\ensuremath{\,\%}} Task 2 finds power and performance of PV cell
% Task 3 finds power and params for TE module
% Combine programs from Task 2 and 3 in order to determine operating point
% and performance for HYBRID system (PV + TE).
tic;
tol = 1e-5;
%% Initialize Constants
T pv = [170, 0, 230];
ID = 1080; %[W/m^2]
a = 0.0017; %[V/K], from Task 3
1A = 0.032; %[W/(cm K)], from Task 3
1B = 0.021; %[W/(cm K)], from Task 3
pA = 0.0020; %[ohm cm], from Task 3
pB = 0.0030; %[ohm cm], from Task 3
A cont = 300; %[W/K]
Rs = 0; %[ohm]
Vq = 1.1; %[V]
rc = 15; %unitless
Ly = 0.1; %[m] from 10 cm
Lz = 0.1; %[m] from 10 cm
A pv = Ly*Lz; %[m^2]
RL pv = 0.0070; %[ohm]
RL te = 0.10; %[ohm]
T source=6000; %Temperature of the sun (source)
P = rc*ID; %[W/m^2]
Tsat = 90.2; %[K]
n = 12; %unitless
Uev = 25; %[W/(m^2*K)]
tw = 0.004; %[m], 4 mm
k wEff = 6.5; % [W/(mK)]
%% IO IV Curve (Task 1 for PV Cell Task 2)
% Data Input & Linear Curve Fit
data = [28.85, 0.379; 30.492, 0.3737; 43.279, 0.3526; 50.49, 0.3316;...
    60.65, 0.311];
x = data(:,1) + 273.15; %convert oC to K
y = data(:,2);
X = [ones(length(x), 1), x];
b = X \setminus y;
% Plot Fit
Voc = @(t) b(2).*t + b(1);
%For Kelvin
kb = 1.3807*10^{-23}; %[J/K]
qe = 1.602*10^-19; %[C]
IO IV = @(t) (exp(Voc(t).*qe./(kb.*t))-1).^-1;
%% Step 2: Task 2 (PV Cell Analysis)
phi = @(T_source) (pi^4*kb*T_source./(2.404*15*P)).^-1;
sigma = @(x) x.^2./(exp(x)-1);
X = qe*Vg./(kb.*T source);
integ = integral(sigma, X, Inf);
phi i = phi(T source);
phi g = phi i*0.416*integ;
IV = phi_g.*qe*A_pv;
i = 1;
errorEQ = [1000 1000 1000];
```

```
while abs(errorEQ(2))>tol || (errorEQ(1)*errorEQ(3)<0)</pre>
    midT pv = (T pv(1)+T pv(3))/2;
    T pv(2) = midT pv;
    syms IL
    eqn1 = kb.*T pv(1)./qe.*log(I0 IV(T pv(1)).^-1-I0 IV(T pv(1)).^-1.*IL./IV+1) == 
IL.*RL pv;
    eqn2 = kb.*T pv(2)./qe.*log(I0 IV(T pv(2)).^-1-I0 IV(T pv(2)).^-1.*IL./IV+1) ==
IL.*RL pv;
    eqn3 = kb.*T pv(3)./qe.*log(I0 IV(T pv(3)).^-1-I0 IV(T pv(3)).^-1.*IL./IV+1) ==
IL.*RL pv;
    IL op(1) = double(solve(eqn1, IL));
    IL op(2) = double(solve(eqn2, IL));
    IL op(3) = double(solve(eqn3, IL));
   VL = @(IL, t) kb*t/qe.*log(I0 IV(t).^-1-I0 IV(t).^-1.*IL./IV+1);
   VL op = VL(IL op, T pv);
    PL = IL op.*VL op; %DELIVERABLE: POWER OUTPUT
   eff pv = PL/(P*A pv);
    Q pv = P*A pv-PL; %DELIVERABLE: WASTE HEAT TRANSFER RATE
    Qplot(i) = Q_pv(2);
%% Step 3: Task 3 (TE Module Analysis)
    TH = T_pv(2) - Q_pv/A_cont;
   RA_min = (sqrt(lA*pA) + sqrt(lB*pB))^2;
    Z = a^2/RA min;
   error = [1000 1000 1000]; %initialize error
   TC = [90 0 120]; %LB Midpoint UB
    while abs(error(2))>tol || (error(1)*error(2)<0)</pre>
        midTC = (TC(1) + TC(3))/2;
        TC(2) = midTC;
        m \max Eff = sqrt(1+0.5.*(TH+TC).*Z);
        R = RL te./(n.*m maxEff);
        A = RA min./R;
        % (ii) Computing QC boil
        QC_boil = (k_wEff/tw + Uev) * (TC-Tsat) *A_pv; % [W]
        % (iii) Compute efficiency using Eq. 11
        eff = (TH-TC)./TH.*((1+m maxEff).^2./(m maxEff.*Z.*TH) + 1 +
1./(2*m maxEff).*(1+TC./TH)).^-1;
        % (iv) Computer power output Wdot using Eq. 10
        R batt = n*R;
        Wdot = (n^2*a^2.*(TH-TC).^2.*RL te)./(RL te+R batt).^2; %[W]
        % (v) Compute heat input and rejection
        QH = Wdot./eff; %[W]
        QC TE = QH - Wdot; %[W]
        % (vi) Computer error - run if statement to find optimal TC and QH for
              minimal error
        error = QC TE-QC boil;
        if error(1)*error(2)<0
            TC(3) = TC(2);
        elseif error(1)*error(2)>0 && error(1)>0
            TC(1) = TC(2);
```

```
elseif error(1) *error(2) > 0 && error(1) < 0</pre>
             TC(3) = TC(2);
        end
    end
    error result = error(2);
    TC_result = TC(2);
    QH_result = QH(2);
    QC_result = QC boil(2);
    A batt = n*A(2);
    Wdot result = Wdot(2);
    eff result = eff(2);
    QHplot(i) = QH result;
%% Step 4: Compute Error EQ
% Power, Operating Point, PV cell efficiency
    errorEQ = Q pv-QH;% result;
    if errorEQ(1) *errorEQ(2) <0</pre>
        T pv(3) = T pv(2);
    elseif errorEQ(1) *errorEQ(2) > 0 && errorEQ(1) > 0
        T_pv(1) = T_pv(2);
    elseif errorEQ(1) *errorEQ(2) > 0 && errorEQ(1) < 0</pre>
        T_pv(3) = T_pv(2);
    PL result = PL(2);
    Q pv result = Q pv(2);
    eff_pv_result = eff_pv(2);
    errorEQ_result = errorEQ(2);
    IL pv result = IL op(2);
    VL pv result = VL op(2);
    T pv final = T pv(2);
    T pvplot(i) = T pv final;
    i = i + 1;
end
syms IL te
heatRateEqn = QH result == n*a*IL te*TH(2) + A batt*(TH(2)-TC result)-
0.5*IL te^2*R batt(2);
IL_result = double(solve(heatRateEqn, IL_te));
VL result = n*a*(TH(2)-TC result)-R batt(2)*IL result;
VL true = VL result(1); %[V]
IL true = IL result(1); %[A]
%% Plots
%Error plot
plot(T_pvplot, Qplot)
hold on;
plot(T_pvplot, QHplot);
\label{legend} \mbox{legend("Q_p_v","Q_H_,_t_e",'Location','southeast');}
xlabel("T_p_v [K]");
ylabel("Heat Transfer [W]");
%% Results
P tot = PL_result + Wdot_result;
eff tot = \overline{P} tot/(P*A pv);
fprintf("PV Cell Results: \n" ...
           Operating Point: VL = " + VL pv result + " V, IL = " + IL pv result + " A
   + "
\n" ...
           Operating Point Temperature: T pv = " + T pv(2) + " K \n" ...
```

```
+ " Power = " + PL_result + " W \n" ...
+ " Efficiency = " + eff_pv_result + "\n \n");

fprintf("Thermoelectric Module Results: \n" ...
+ " Operating Point: VL = " + VL_op(2) + " V, IL = " + IL_op(2) + " A \n" ...
+ " Power Output: Wdot = " + Wdot_result + " W \n" ...
+ " Efficiency = " + eff_result + "\n \n");

fprintf("Combined power output of hybrid device: \n" ...
+ " Total Power Output = " + (P_tot) + " W \n" ...
+ " Efficiency = " + eff_tot + "\n \n");

toc; %Find program runtime
```

Task5.m

```
%% Task 5 Problem Statement
% a) Iterate over a range of ID from [720, 1080]
% b) Iterate over a range of rc from [10, 18]
tic;
tol = 1e-5;
%% Initialize Constants
results = [];
ID_range = linspace(720, 1080, 10);
rc_range = linspace(10, 18, 9);
% Iterate over 10 points for 5(a), 9 points for 5(b)
for h=1:10
T_pv = [170, 0, 240];
% 5(a)
ID = ID_range(h); %[W/m^2]
rc = 15; %unitless
% 5(b)
% ID = 1080;
% rc = rc range(h);
a = 0.0017; %[V/K], from Task 3
1A = 0.032; %[W/(cm K)], from Task 3
lB = 0.021; %[W/(cm K)], from Task 3
pA = 0.0020; %[ohm cm], from Task 3
pB = 0.0030; %[ohm cm], from Task 3
A cont = 300; %[W/K]
Rs = 0; %[ohm]
Vg = 1.1; %[V]
Ly = 0.1; %[m] from 10 cm
Lz = 0.1; %[m] from 10 cm
A pv = Ly*Lz; %[m^2]
^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} ^{-} 
RL pv = 0.0070; %[ohm]
RL te = 0.10; %[ohm]
T source=6000; %Temperature of the sun (source)
P = rc*ID; %[W/m^2]
Tsat = 90.2; %[K]
n = 12; %unitless
Uev = 25; %[W/(m<sup>2</sup>*K)]
tw = 0.004; %[m], 4 mm
k \text{ wEff} = 6.5; % [W/(mK)]
%% IO IV Curve (Task 1 for PV Cell Task 2)
% Data Input & Linear Curve Fit
data = [28.85, 0.379; 30.492, 0.3737; 43.279, 0.3526; 50.49, 0.3316;...
        60.65, 0.311];
x = data(:,1)+273.15; %convert oC to K
y = data(:,2);
X = [ones(length(x), 1), x];
b = X \setminus y;
% Plot Fit
Voc = @(t) b(2).*t + b(1);
%For Kelvin
kb = 1.3807*10^-23; %[J/K]
qe = 1.602*10^-19; %[C]
I0_{IV} = @(t) (exp(Voc(t).*qe./(kb.*t))-1).^-1;
%% Step 2: Task 2 (PV Cell Analysis)
```

```
phi = @(T \text{ source}) (pi^4*kb*T \text{ source.}/(2.404*15*P)).^-1;
sigma = @(x) x.^2./(exp(x)-1);
X = qe*Vg./(kb.*T source);
integ = integral(sigma, X, Inf);
phi i = phi(T source);
phi g = phi i *0.416*integ;
IV = phi_g.*qe*A_pv;
i = 1;
errorEQ = [1000 1000 1000];
while abs(errorEQ(2))>tol || (errorEQ(1)*errorEQ(3)<0)</pre>
    midT pv = (T pv(1)+T pv(3))/2;
    T pv(2) = midT pv;
    syms IL
    eqn1 = kb.*T pv(1)./qe.*log(I0 IV(T pv(1)).^-1-I0 IV(T pv(1)).^-1.*IL./IV+1) == 
    eqn2 = kb.*T pv(2)./qe.*log(I0 IV(T pv(2)).^-1-I0 IV(T pv(2)).^-1.*IL./IV+1) ==
IL.*RL pv;
    eqn3 = kb.*T pv(3)./qe.*log(I0 IV(T pv(3)).^-1-I0 IV(T pv(3)).^-1.*IL./IV+1) ==
IL.*RL pv;
    IL op(1) = double(solve(eqn1, IL));
    IL op(2) = double(solve(eqn2, IL));
    IL op(3) = double(solve(eqn3, IL));
    VL = @(IL, t) kb*t/qe.*log(I0 IV(t).^-1-I0 IV(t).^-1.*IL./IV+1);
    VL op = VL(IL op, T pv);
    PL = IL op.*VL op; %DELIVERABLE: POWER OUTPUT
    eff pv = PL/(P*A_pv);
    Q_pv = P*A_pv-PL; %DELIVERABLE: WASTE HEAT TRANSFER RATE
    Qplot(i) = Q pv(2);
%% Step 3: Task 3 (TE Module Analysis)
    TH = T_pv(2) - Q_pv/A_cont;
    RA min = (sqrt(lA*pA) + sqrt(lB*pB))^2;
    z = a^2/RA_min;
    error = [1000 1000 1000]; %initialize error
    TC = [90 0 120]; %LB Midpoint UB
    while abs(error(2))>tol || (error(1)*error(2)<0)</pre>
        midTC = (TC(1) + TC(3))/2;
        TC(2) = midTC;
        m \max Eff = sqrt(1+0.5.*(TH+TC).*Z);
        R = RL_{te.}/(n.*m_{maxEff});
        A = RA_min./R;
        % (ii) Computing QC boil
        QC boil = (k \text{ wEff/tw} + \text{Uev}) * (TC-Tsat) *A pv; %[W]
        % (iii) Compute efficiency using Eq. 11
        eff = (TH-TC)./TH.*((1+m_maxEff).^2./(m_maxEff.*Z.*TH) + 1 +
1./(2*m maxEff).*(1+TC./TH)).^-1;
        % (iv) Computer power output Wdot using Eq. 10
        R batt = n*R;
        Wdot = (n^2*a^2.*(TH-TC).^2.*RL te)./(RL te+R batt).^2; %[W]
        % (v) Compute heat input and rejection
        QH = Wdot./eff; %[W]
```

```
QC_TE = QH - Wdot; %[W]
        % (vi) Computer error - run if statement to find optimal TC and QH for
              minimal error
        error = QC TE-QC boil;
        if error(1)*error(2)<0</pre>
            TC(3) = TC(2);
            TC(1) = TC(2);
        end
    end
    error result = error(2);
    TC result = TC(2);
    QH result = QH(2);
    QC result = QC boil(2);
    A batt = n*A(2);
    Wdot result = Wdot(2);
    eff_result = eff(2);
    QHplot(i) = QH result;
%% Step 4: Compute Error EQ
% Power, Operating Point, PV cell efficiency
    errorEQ = Q pv-QH;% result;
    if errorEQ(1)*errorEQ(2)<0</pre>
        T pv(3) = T pv(2);
    elseif errorEQ(1) *errorEQ(2) > 0 && errorEQ(1) > 0
        T_pv(1) = T_pv(2);
    elseif errorEQ(1) *errorEQ(2) > 0 && errorEQ(1) < 0</pre>
        T_pv(3) = T_pv(2);
    end
    PL result = PL(2);
    Q pv result = Q pv(2);
    eff_pv_result = eff_pv(2);
    errorEQ_result = errorEQ(2);
    IL_pv_result = IL_op(2);
    VL_pv_result = VL_op(2);
T_pv_final = T_pv(2);
    T pvplot(i) = T pv final;
    i = i + 1;
    if i>=90
        break
    end
end
syms IL te
heatRateEqn = QH_result == n*a*IL_te*TH(2) + A_batt*(TH(2)-TC_result)-
0.5*IL_te^2*R_batt(2);
IL result = double(solve(heatRateEqn, IL te));
VL result = n*a*(TH(2)-TC result)-R batt(2)*IL result;
VL true = VL result(1); %[V]
IL_true = IL_result(1); %[A]
%% Results
P tot = PL result + Wdot result;
eff tot = P tot/(P*A pv);
col = [ID; eff_pv_result; eff_result; eff_tot; P_tot];
disp(ID);
```

```
% col = [rc; eff pv result; eff result; eff tot; P tot];
% disp(rc);
results = [results col];
end
%% Plotting 5(a): Variation in ID
results ID = [720  760 800 840 880 920 960 1000
                                                1040
0.120243207 \ \ 0.126923381 \ \ 0.133603536 \ \ 0.140283589 \ \ 0.146963128 \ \ 0.153640291 \ \ 0.160307132
0.166931865 0.173396299 0.179304313;...
0.142863119\ 0.147008975\ 0.150958348\ 0.154724322\ 0.15831879\ 0.161752576\ 0.165036272
0.168182356 0.171205564 0.174183114;...
0.245927994\ 0.255273475\ 0.264393325\ 0.273302617\ 0.282014897\ 0.290541145\ 0.298886905
0.307039218 0.314904727 0.322255628;...
26.5602234 29.10117612 31.72719905 34.43612979 37.22596642 40.09467807 43.03971426
46.05588263 49.12513744 52.20541181];
subplot(3,1,1);
plot(results(1,:),results(2,:));
ylabel("PV Eff.");
title ("Component & Total Efficiency over ID (720 to 1080)");
subplot(3,1,2);
plot(results(1,:), results(3,:));
ylabel("TE Eff.");
subplot(3,1,3);
plot(results(1,:), results(4,:));
xlabel("ID [W/m^2]");
ylabel("Total Eff.");
figure;
plot(results(1,:), results(5,:));
xlabel("ID [W/m^2]");
ylabel("Total Power [W]");
title("Total Power over ID (720 to 1080)");
%% Plotting 5(b): Variation in rc
% results rc = [10  11  12  13  14  15  16  17  18;...
% 0.12024<del>3</del>207
             0.132267509 0.144291435 0.156309166 0.16824432 0.179304313
0.184836665 0.178849182 0.165745873;...
0.179856849 0.186624746 0.193995284;...
0.332096236 0.327574222;...
              31.19529139 36.10044822 41.26372385 46.66665708 52.20541181
% 26.5602234
57.27444937 60.97286891 63.68042874];
% subplot(3,1,1);
% plot(results(1,:), results(2,:));
% ylabel("PV Eff.");
% title("Component & Total Efficiency over rc (10 to 18)");
% subplot(3,1,2);
% plot(results(1,:), results(3,:));
% ylabel("TE Eff.");
% subplot(3,1,3);
% plot(results(1,:), results(4,:));
% xlabel("rc");
% ylabel("Total Eff.");
% figure;
```

```
% plot(results(1,:),results(5,:));
% xlabel("rc");
% ylabel("Total Power [W]");
% title("Total Power over rc (10 to 18)");
```

toc; %Find program runtime

Task6a.m

```
%% Task 6(a) Problem Statement
% a) Iterate over a range of rc and n to recommend system parameters.
tol = 1e-5;
%% Initialize Constants
results = [];
ID_range = linspace(720, 1080, 10);
rc_range = linspace(10, 18, 9);
% Iterate over 10 points for both 5(a) and 5(b)
for h=1:length(rc range)
T pv = [200, 0, 300];
% 5(a)
% ID = ID range(h); %[W/m^2]
% rc = 15; %unitless
% 5(b)
ID = 1080;
rc = rc range(h);
n = 10; %unitless
a = 0.0017; %[V/K], from Task 3
1A = 0.032; %[W/(cm K)], from Task 3
1B = 0.021; %[W/(cm K)], from Task 3
pA = 0.0020; %[ohm cm], from Task 3
pB = 0.0030; %[ohm cm], from Task 3
A cont = 300; %[W/K]
Rs = 0; %[ohm]
Vg = 1.1; %[V]
Ly = 0.1; %[m] from 10 cm
Lz = 0.1; %[m] from 10 cm
A pv = Ly*Lz; %[m^2]
Tw in = 0.004; %[m] from 4 mm, Task 3
RL pv = 0.0070; %[ohm]
RL te = 0.10; %[ohm]
T source=6000; %Temperature of the sun (source)
P = rc*ID; %[W/m^2]
Tsat = 90.2; %[K]
Uev = 25; %[W/(m<sup>2</sup>*K)]
tw = 0.004; %[m], 4 mm
k \text{ wEff} = 6.5; % [W/(mK)]
%% IO IV Curve (Task 1 for PV Cell Task 2)
% Data Input & Linear Curve Fit
data = [28.85, 0.379; 30.492, 0.3737; 43.279, 0.3526; 50.49, 0.3316;...
    60.65, 0.311];
x = data(:,1)+273.15; %convert oC to K
y = data(:,2);
X = [ones(length(x), 1), x];
b = X \setminus y;
% Plot Fit
Voc = @(t) b(2).*t + b(1);
%For Kelvin
kb = 1.3807*10^-23; %[J/K]
qe = 1.602*10^-19; %[C]
I0_{IV} = @(t) (exp(Voc(t).*qe./(kb.*t))-1).^-1;
%% Step 2: Task 2 (PV Cell Analysis)
```

```
phi = @(T source) (pi^4*kb*T source./(2.404*15*P)).^-1;
sigma = @(x) x.^2./(exp(x)-1);
X = qe*Vg./(kb.*T source);
integ = integral(sigma, X, Inf);
phi i = phi(T source);
phi g = phi i*0.416*integ;
IV = phi_g.*qe*A_pv;
i = 1;
errorEQ = [1000 1000 1000];
while abs(errorEQ(2))>tol || (errorEQ(1)*errorEQ(3)<0)</pre>
    midT_pv = (T_pv(1) + T_pv(3))/2;
    T pv(2) = midT pv;
    syms IL
    eqn1 = kb.*T pv(1)./qe.*log(I0 IV(T pv(1)).^-1-I0 IV(T pv(1)).^-1.*IL./IV+1) == 
IL.*RL pv;
    eqn2 = kb.*T pv(2)./qe.*log(I0 IV(T pv(2)).^-1-I0 IV(T pv(2)).^-1.*IL./IV+1) ==
IL.*RL pv;
    eqn3 = kb.*T pv(3)./qe.*log(I0 IV(T pv(3)).^-1-I0 IV(T pv(3)).^-1.*IL./IV+1) ==
IL.*RL pv;
    IL_op(1) = double(solve(eqn1,IL));
    IL op(2) = double(solve(eqn2, IL));
    IL op(3) = double(solve(eqn3, IL));
    VL = @(IL, t) kb*t/qe.*log(I0 IV(t).^-1-I0 IV(t).^-1.*IL./IV+1);
    VL op = VL(IL op, T pv);
    PL = IL op.*VL op; %DELIVERABLE: POWER OUTPUT
    %powerPlot(i) = PL;
    eff pv = PL/(P*A pv);
    Q_pv = P*A_pv-PL; %DELIVERABLE: WASTE HEAT TRANSFER RATE
    Qplot(i) = Q_pv(2);
%% Step 3: Task \frac{1}{3} (TE Module Analysis)
    TH = T_pv(2) - Q_pv/A_cont;
    RA_min = (sqrt(lA*pA) + sqrt(lB*pB))^2;
    Z = a^2/RA min;
    error = [1000 1000 1000]; %initialize error
    TC = [90 0 120]; %LB Midpoint UB
    \dot{1}=1;
    while abs(error(2))>tol || (error(1)*error(2)<0)</pre>
        midTC = (TC(1) + TC(3))/2;
        TC(2) = midTC;
        m \max Eff = sqrt(1+0.5.*(TH+TC).*Z);
        R = RL_{te.}/(n.*m_{maxEff});
        A = RA_min./R;
        % (ii) Computing QC boil
        QC boil = (k wEff/tw + Uev)*(TC-Tsat)*A pv; %[W]
        % (iii) Compute efficiency using Eq. 11
        eff = (TH-TC)./TH.*((1+m maxEff).^2./(m maxEff.*Z.*TH) + 1 +
1./(2*m maxEff).*(1+TC./TH)).^-1;
        % (iv) Computer power output Wdot using Eq. 10
        R \text{ batt} = n*R;
        Wdot = (n^2*a^2.*(TH-TC).^2.*RL te)./(RL te+R batt).^2; %[W]
        % (v) Compute heat input and rejection
```

```
QH = Wdot./eff; %[W]
        QC TE = QH - Wdot; %[W]
        % (vi) Computer error - run if statement to find optimal TC and QH for
        % minimal error
        error = QC TE-QC boil;
        if error(1)*error(2)<0</pre>
            TC(3) = TC(2);
            TC(1) = TC(2);
        end
        j=j+1;
        if j>80
            break;
   end
   error result = error(2);
   TC result = TC(2);
    QH_result = QH(2);
   QC_result = QC_boil(2);
    A batt = n*A(2);
    Wdot result = Wdot(2);
    eff result = eff(2);
    QHplot(i) = QH result;
%% Step 4: Compute Error EQ
% Power, Operating Point, PV cell efficiency
    errorEQ = Q pv-QH;% result;
    if errorEQ(1)*errorEQ(2)<0</pre>
        T \text{ pv}(3) = T \text{ pv}(2);
    elseif errorEQ(1) *errorEQ(2) > 0 && errorEQ(1) > 0
       T pv(1) = T pv(2);
    elseif errorEQ(1) *errorEQ(2) > 0 && errorEQ(1) < 0</pre>
        T_pv(3) = T_pv(2);
    end
    PL result = PL(2);
    Q pv result = Q pv(2);
    eff_pv_result = eff_pv(2);
    errorEQ_result = errorEQ(2);
    IL pv result = IL op(2);
    VL pv result = VL op(2);
    T pv final = T pv(2);
   T pvplot(i) = T pv final;
    i = i +1;
    if i>90
        break;
    end
fprintf("Error and ErrorEQ has converged to 0 \n" +...
    "Error = " + error(2) + "\n" + ...
    "ErrorEQ = " + errorEQ(2) + "\n");
syms IL te
heatRateEqn = QH_result == n*a*IL_te*TH(2) + A_batt*(TH(2)-TC_result)-
0.5*IL te^2*R batt(2);
%We get 2 roots for IL because heatRateEgn is 2nd order egn
IL result = double(solve(heatRateEqn, IL te));
%Solve for VL using both IL roots
%Select true VL and IL based on most reasonable VL result
```

```
VL_result = n*a*(TH(2)-TC_result)-R_batt(2)*IL_result;
VL_true = VL_result(1); %[V]
IL_true = IL_result(1); %[A]

%% Results
P_tot = PL_result + Wdot_result;
eff_tot = P_tot/(P*A_pv);

col = [rc; eff_pv_result; eff_result; eff_tot; P_tot; T_pv_final];
disp(rc);
results = [results col];
end
toc; %Find program runtime
```

Task6a_Results.m

	%% Results for Task6a % ErrorEQ > 1e-5 for rc = 14, 15, 16, 17, 18 n 10 = [10.0000 11.0000 12.0000 13.0000 14.0000 15.0000 16.0000											
$ \begin{array}{cccc} & n_10 = & [10.0000 \\ & 17.0000 & 18.0000; \end{array} $	11.0000	12.0000	13.0000	14.0000	15.0000	16.0000						
0.1202 0.1323		0.1553	0.1607	0.1545	0.1386	0.1246						
0.1064; 0.1787 0.1869	0.1944	0.2014	0.2086	0.2161	0.2257	0.2326						
0.2427; 0.2774 0.2945	0.3106	0.3254	0.3357	0.3361	0.3331	0.3253						
0.3233; 29.9642 34.9824 62.8491;	40.2548	45.6916	50.7637	54.4531	57.5559	59.7338						
217.8808 225.8618 287.1887];	233.3652	240.5334	248.0469	256.2500	267.0532	275.0000						
% ErrorEQ > 1e-5 for n_11 = [10.0000 17.0000 18.0000; .	11.0000			14.0000	15.0000	16.0000						
0.1202 0.1323 0.1383;		0.1562	0.1674	0.1735	0.1694	0.1543						
0.1594 0.1672 0.2167;	0.1743	0.1809	0.1870	0.1932	0.1991	0.2085						
0.2605 0.2774	0.2935	0.3088	0.3231	0.3332	0.3327	0.3303						
0.3251; 28.1343 32.9501 63.1910;	38.0318	43.3607	48.8504	53.9765	57.4861	60.6372						
201.3451 208.4714 259.1296];	215.1734	221.4920	227.5416	233.9063	240.0000	250.0000						
% ErrorEQ > 1e-5 for	rc = 16.	17. 18										
	11.0000	12.0000	13.0000	14.0000	15.0000	16.0000						
0.1202 0.1323 0.1693;		0.1563	0.1682	0.1793	0.1848	0.1788						
0.1429 0.1502 0.1912;	0.1569	0.1631	0.1688	0.1742	0.1799	0.1866						
	0.2786	0.2939	0.3086	0.3223	0.3314	0.3321						
0.3245; 26.5602 31.1953	36.1005	41.2637	46.6667	52.2054	57.2727	60.9728						
0.3245;												
0.3245; 26.5602 31.1953 63.0830; 187.9248 194.3355 233.7500]; n_13 = [10.0000 11	200.3729	206.0656	211.4460	216.6275	222.1973	229.0180	0000					
0.3245; 26.5602 31.1953 63.0830; 187.9248 194.3355 233.7500]; n_13 = [10.0000 11 18.0000;	200.3729	206.0656	211.4460	216.6275 .0000 15	222.1973	229.0180	0000					
0.3245; 26.5602 31.1953 63.0830; 187.9248 194.3355 233.7500]; n_13 = [10.0000 11 18.0000; 0.1202 0.1323 0.18755;	200.3729 .0000 12 0.1443	206.0656 .0000 13 0.1563	211.4460 .0000 14	216.6275 .0000 15 0.1802	222.1973 .0000 16	229.0180 .0000 17. 0.1948	0000					
0.3245; 26.5602 31.1953 63.0830; 187.9248 194.3355 233.7500]; n_13 = [10.0000 11 18.0000; 0.1202 0.1323 0.18755; 0.1285 0.1354 0.1744;	200.3729 .0000 12 0.1443 0.1417	206.0656 .0000 13 0.1563 0.1476	211.4460 .0000 14 0.1683 0.1530	216.6275 .0000 15 0.1802 0.1580	222.1973 .0000 16 0.1909 0.1628	229.0180 .0000 17. 0.1948 0.1681	0000					
0.3245; 26.5602 31.1953 63.0830; 187.9248 194.3355 233.7500]; n_13 = [10.0000 11 18.0000; 0.1202 0.1323 0.18755; 0.1285 0.1354 0.1744; 0.2333 0.2498 0.3292;	200.3729 .0000 12 0.1443 0.1417 0.2656	206.0656 .0000 13 0.1563 0.1476 0.2808	211.4460 .0000 14 0.1683 0.1530 0.2956	216.6275 .0000 15 0.1802 0.1580 0.3097	222.1973 .0000 16. 0.1909 0.1628 0.3226	229.0180 .0000 17. 0.1948 0.1681 0.3301	0000					
0.3245; 26.5602 31.1953 63.0830; 187.9248 194.3355 233.7500]; n_13 = [10.0000 11 18.0000; 0.1202 0.1323 0.18755; 0.1285 0.1354 0.1744; 0.2333 0.2498	200.3729 .0000 12 0.1443 0.1417 0.2656 34.4199	206.0656 .0000 13 0.1563 0.1476 0.2808 39.4287	211.4460 .0000 14 0.1683 0.1530 0.2956 44.6891	216.6275 .0000 15 0.1802 0.1580 0.3097 50.1791	222.1973 .0000 16. 0.1909 0.1628 0.3226 55.7450	229.0180 .0000 17. 0.1948 0.1681 0.3301 60.6080	0000					
0.3245; 26.5602 31.1953 63.0830; 187.9248 194.3355 233.7500]; n_13 = [10.0000 11 18.0000; 0.1202 0.1323 0.18755; 0.1285 0.1354 0.1744; 0.2333 0.2498 0.3292; 25.1997 29.6733 64.0061;	200.3729 .0000 12 0.1443 0.1417 0.2656 34.4199	206.0656 .0000 13 0.1563 0.1476 0.2808 39.4287	211.4460 .0000 14 0.1683 0.1530 0.2956 44.6891	216.6275 .0000 15 0.1802 0.1580 0.3097 50.1791	222.1973 .0000 16. 0.1909 0.1628 0.3226 55.7450	229.0180 .0000 17. 0.1948 0.1681 0.3301 60.6080	0000					
0.3245; 26.5602 31.1953 63.0830; 187.9248 194.3355 233.7500]; n_13 = [10.0000 11 18.0000; 0.1202 0.1323 0.18755; 0.1285 0.1354 0.1744; 0.2333 0.2498 0.3292; 25.1997 29.6733 64.0061; 176.8802 182.6840	200.3729 .0000 12	206.0656 .0000 13	211.4460 .0000 14 .0.1683 0.1530 0.2956 44.6891 198.2065	216.6275 .0000 15 0.1802 0.1580 0.3097 50.1791 202.8323	222.1973 .0000 16. 0.1909 0.1628 0.3226 55.7450 207.3425	229.0180 .0000 17. 0.1948 0.1681 0.3301 60.6080	0000					

0.1161 0.1577;	0.1226	0.1285	0.1340	0.1391	0.1439	0.1483	0.1526					
	0.2386	0.2543	0.2694	0.2840	0.2983	0.3119	0.3237					
24.0184	28.3475	32.9518	37.8210	42.9461	48.3169	53.8990	59.4229					
63.8815; 167.6819 204.1656];		177.9562	182.6727	187.1328	191.3529	195.3672	199.3864					
%ErrorEQ is above 1e-5 for rc = 10												
	10.0000	11.0000		13.0000	14.0000	15.0000	16.0000					
		0.1443	0.1563	0.1683	0.1804	0.1923	0.2038					
0.1053 0.1436;	0.1113	0.1169	0.1221	0.1269	0.1314	0.1355	0.1395					
	0.2289	0.2443	0.2593	0.2739	0.2880	0.3018	0.3149					
22.9880		31.6642	36.4077	41.4097	46.6622	52.1534	57.8127					
63.1251; 159.9415 192.5763];		169.3491	173.6756	177.7710	181.6484	185.3226	188.8478					
			1.0									
%ErrorEQ is n_16 = [17.0000 1		11.0000		13.0000	14.0000	15.0000	16.0000					
		0.1443	0.1563	0.1683	0.1804	0.1924	0.2043					
	0.1014	0.1067	0.1116	0.1161	0.1203	0.1243	0.1280					
	0.2203	0.2356	0.2504	0.2649	0.2790	0.2927	0.3061					
22.0862		30.5307	35.1608	40.0513	45.1952	50.5849	56.1994					
61.8623; 153.3684 183.1436];		162.0218	166.0083	169.7856	173.3648	176.7564	179.9784					
° E	-b 1-	F	- 10 17									
%ErrorEQ is n_17 = [17.0000 1		11.0000		13.0000	14.0000	15.0000	16.0000					
		0.1443	0.1563	0.1683	0.1804	0.1924	0.2044					
	0.0927	0.0976	0.1022	0.1065	0.1105	0.1142	0.1177					
0.2035	0.2127	0.2278	0.2426	0.2569	0.2709	0.2846	0.2980					
		29.5293	34.0568	38.8465	43.8915	49.1855	54.7192					
60.4370; 150.0000 175.2221];		155.7343	159.4226	162.9206	166.2379	169.3832	172.3662					
,,												
%ErrorEQ is n_18 = [1	0.0000	11.0000		13.0000	14.0000	15.0000	16.0000					
17.0000 1 0.1205		0.1443	0.1563	0.1683	0.1804	0.1924	0.2044					
	0.0850	0.0896	0.0940	0.0980	0.1018	0.1053	0.1086					
	0.2060	0.2210	0.2356	0.2498	0.2638	0.2774	0.2908					
0.3038; 20.6186 59.0631;		28.6415	33.0762	37.7744	42.7296	47.9358	53.3870					

```
142.8893 146.6921 150.3006 153.7258 156.9772 160.0630 162.9910 165.7681
168.4083];
nVec = linspace(10, 18, 9);
rcSelect14 = [n 14(4,1);...
    n_14(4,2);...
    n_14(4,3);...
    n_14(4,4);...
    n_14(4,5);...
    n 14(4,6);...
    n_14(4,7);...
    n 14(4,8);...
    n_14(4,9)];
effVec = [n 10(4,5);...
    n 11(4, \overline{5});...
    n 12(4,5);...
    n 13(4,5);...
    n 14(4,5);...
    n_15(4,5);...
    n_16(4,5);...
    n_17(4,5);...
    n_18(4,5)];
powerVec = [n \ 10(5,5);...
    n 11(5,5);...
    n 12(5,5);...
    n_13(5,5);...
    n_14(5,5);...
    n 15(5,5);...
    n 16(5,5);...
    n 17(5,5);...
    n 18(5,5);
T_pvVec = [n_10(6,5);...
    n_11(6,5);...
    n_12(6,5);...
    n_13(6,5);...
    n_14(6,5);...
    n 15(6,5);...
    n_16(6,5);...
    n_17(6,5);...
    n_18(6,5)];
%% Plot Results
subplot(2,2,1);
plot(nVec,rcSelect14);
title("Efficiency at n = 14 over r_c");
xlabel("r_c");
subplot(2,2,2);
plot(nVec,effVec);
title("Efficiency");
xlabel("n");
subplot(2,2,3);
plot(nVec,powerVec);
title("Power [W]");
xlabel("n");
subplot(2,2,4);
plot(nVec, T pvVec);
title("T_p_v [K]");
xlabel("n");
```

Task6b.m

```
%% Task 6(b) Problem Statement
% Modify the program for Task 4 to eliminate the PV cell and deliver the
% solar energy directly to the TE module. This means that in calculating
% errorEQ, Q_pv is instead Q_sun! Q_sun = 0.95*P"*A_pv = 0.95*rc*ID*A_pv
tic;
tol = 1e-5;
%% Initialize Constants
T pv = [160, 0, 240];
ID = 1080; %[W/m^2]
a = 0.0017; %[V/K], from Task 3
lA = 0.032; %[W/(cm K)], from Task 3 lB = 0.021; %[W/(cm K)], from Task 3
pA = 0.0020; %[ohm cm], from Task 3
pB = 0.0030; %[ohm cm], from Task 3
A cont = 300; %[W/K]
Rs = 0; %[ohm]
Vq = 1.1; %[V]
rc = 15; %unitless
Ly = 0.1; %[m] from 10 cm
Lz = 0.1; %[m] from 10 cm
A pv = Ly*Lz; %[m^2]
RL pv = 0.0070; %[ohm]
RL_te = 0.10; %[ohm]
T source=6000; %Temperature of the sun (source)
P = rc*ID; %[W/m^2]
Tsat = 90.2; %[K]
n = 12; %unitless
Uev = 25; %[W/(m<sup>2</sup>*K)]
tw = 0.004; %[m], 4 mm
k wEff = 6.5; % [W/(mK)]
%% IO IV Curve (Task 1 for PV Cell Task 2)
% Data Input & Linear Curve Fit
data = [28.85, 0.379; 30.492, 0.3737; 43.279, 0.3526; 50.49, 0.3316;...
    60.65, 0.311];
x = data(:,1) + 273.15; %convert oC to K
y = data(:,2);
X = [ones(length(x), 1), x];
b = X \setminus y;
% Plot Fit
Voc = @(t) b(2).*t + b(1);
%For Kelvin
kb = 1.3807*10^{-23}; %[J/K]
qe = 1.602*10^{-19}; %[C]
I0_{IV} = @(t) (exp(Voc(t).*qe./(kb.*t))-1).^-1;
%% Step 2: Task 2 (PV Cell Analysis)
phi = @(T \text{ source}) (pi^4*kb*T \text{ source.}/(2.404*15*P)).^{-1};
sigma = @(x) x.^2./(exp(x)-1);
X = qe*Vg./(kb.*T_source);
integ = integral(sigma, X, Inf);
phi i = phi(T source);
phi g = phi i*0.416*integ;
IV = phi g.*qe*A pv;
i = 1;
errorEQ = [1000 1000 1000];
```

```
while abs(errorEQ(2))>tol || (errorEQ(1)*errorEQ(3)<0)</pre>
    midT pv = (T pv(1)+T pv(3))/2;
    T pv(2) = midT pv;
    syms IL
    eqn1 = kb.*T pv(1)./qe.*log(I0 IV(T pv(1)).^-1-I0 IV(T pv(1)).^-1.*IL./IV+1) == 
IL.*RL pv;
    eqn2 = kb.*T pv(2)./qe.*log(I0 IV(T pv(2)).^-1-I0 IV(T pv(2)).^-1.*IL./IV+1) ==
IL.*RL pv;
    eqn3 = kb.*T pv(3)./qe.*log(I0 IV(T pv(3)).^-1-I0 IV(T pv(3)).^-1.*IL./IV+1) ==
IL.*RL pv;
    IL op(1) = double(solve(eqn1, IL));
    IL op(2) = double(solve(eqn2, IL));
    IL op(3) = double(solve(eqn3, IL));
   VL = @(IL, t) kb*t/qe.*log(I0 IV(t).^-1-I0 IV(t).^-1.*IL./IV+1);
   VL op = VL(IL op, T pv);
    PL = IL op.*VL op; %DELIVERABLE: POWER OUTPUT
   eff pv = PL/(P*A pv);
    Q sun = 0.95*rc*ID*A pv;%P*A pv-PL; %Q sun now acts as Q pv
    \overline{Qplot(i)} = Q sun;
%% Step 3: Task 3 (TE Module Analysis)
    TH = T pv(2) - Q_sun/A_cont;
   RA_min = (sqrt(lA*pA) + sqrt(lB*pB))^2;
    Z = a^2/RA min;
   error = [1000 1000 1000]; %initialize error
   TC = [90 0 120]; %LB Midpoint UB
    while abs(error(2))>tol || (error(1)*error(2)<0)</pre>
        midTC = (TC(1) + TC(3))/2;
        TC(2) = midTC;
        m \max Eff = sqrt(1+0.5.*(TH+TC).*Z);
        R = RL te./(n.*m maxEff);
        A = RA min./R;
        % (ii) Computing QC boil
        QC boil = (k \text{ wEff/tw} + \text{Uev}) * (TC-Tsat) *A \text{ pv}; %[W]
        % (iii) Compute efficiency using Eq. 11
        eff = (TH-TC)./TH.*((1+m maxEff).^2./(m maxEff.*Z.*TH) + 1 +
1./(2*m maxEff).*(1+TC./TH)).^-1;
        % (iv) Computer power output Wdot using Eq. 10
        R batt = n*R;
        Wdot = (n^2*a^2.*(TH-TC).^2.*RL te)./(RL te+R batt).^2; %[W]
        % (v) Compute heat input and rejection
        QH = Wdot./eff; %[W]
        QC TE = QH - Wdot; %[W]
        % (vi) Computer error - run if statement to find optimal TC and QH for
               minimal error
        error = QC TE-QC boil;
        if error(1)*error(2)<0
            TC(3) = TC(2);
        elseif error(1)*error(2)>0 && error(1)>0
            TC(1) = TC(2);
```

```
elseif error(1) *error(2) > 0 && error(1) < 0</pre>
             TC(3) = TC(2);
        end
    end
    error result = error(2);
    TC_result = TC(2);
    QH_result = QH(2);
    QC_result = QC_boil(2);
    A batt = n*A(2);
    Wdot result = Wdot(2);
    eff_result = eff(2);
    QHplot(i) = QH result;
%% Step 4: Compute Error EQ
% Power, Operating Point, PV cell efficiency
    errorEQ = Q sun-QH;% result;
    if errorEQ(1) *errorEQ(2) <0</pre>
        T pv(3) = T pv(2);
    elseif errorEQ(1) *errorEQ(2) > 0 && errorEQ(1) > 0
        T_pv(1) = T_pv(2);
    elseif errorEQ(1) *errorEQ(2) > 0 && errorEQ(1) < 0</pre>
        T_pv(3) = T_pv(2);
    PL result = PL(2);
    Q_pv_result = Q sun;
    eff_pv_result = eff_pv(2);
    errorEQ_result = errorEQ(2);
    IL pv result = IL op(2);
    VL pv result = VL op(2);
    T pv final = T pv(2);
    TH result = TH;
    T pvplot(i) = T pv final;
    i = i +1;
end
syms IL te
heatRateEqn = QH result == n*a*IL te*TH + A batt*(TH-TC result)-0.5*IL te^2*R batt(2);
IL result = double(solve(heatRateEqn, IL te));
VL_result = n*a*(TH-TC_result)-R_batt(2)*IL_result;
VL true = VL result(1); %[V]
IL true = IL result(1); %[A]
%% Plots
%Error plot
plot(T_pvplot, Qplot)
hold on;
plot(T_pvplot, QHplot);
legend("Q_{sun}", "Q_{H,te}", 'Location', 'southeast');
xlabel("T_{pv} [K]");
ylabel("Heat Transfer [W]");
%% Results
P tot = PL result + Wdot result;
eff_tot = P_tot/(P*A_pv);
fprintf("PV Cell Results: \n" ...
    + "
           Operating Point: VL = " + VL pv result + " V, IL = " + IL pv result + " A
\n" ...
   + "
           Operating Point Temperature: T_pv = " + T_pv(2) + " K \n" \dots
    + "
           Power = " + PL result + " \overline{W} \setminus n" ...
```