Math 69: Logic Winter '23

Homework assigned February 10, 2023

Prof. Marcia Groszek Student: Amittai Siavava

For this assignment, \mathcal{L} is the language of first-order logic with equality, countably many constant symbols, $c_0, c_1, \ldots, c_n, \ldots$, and no other predicate, constant, or function symbols. We will find all the complete theories of \mathcal{L} . This is a single problem in five parts. You may use completeness, soundness, and compactness.

If $\mathfrak A$ is a structure for $\mathcal L$, define an equivalence relation on the set $C = \{c_0, c_1, \ldots, c_n, \ldots\}$ of constant symbols of $\mathcal L$ by

$$c_m \equiv_{\mathfrak{A}} c_n \iff c_m^{\mathfrak{A}} = c_n^{\mathfrak{A}},$$

That is, two constant symbols are equivalent if and only if they name the same element of \mathfrak{A} .

Suppose that $\mathfrak A$ and $\mathfrak B$ are structures such that $\equiv_{\mathfrak A}$ is the same as $\equiv_{\mathfrak B}$. Then two constant symbols name the same element in $\mathfrak A$ if and only if they name the same element in $\mathfrak B$.

Let \equiv be any equivalence relation on C. Then there is a structure $\mathfrak A$ for $\mathcal L$ such that $\equiv_{\mathfrak A}$ is the same relation as \equiv . Namely, let the universe of the structure be the set of equivalence classes of constant symbols, and let each constant symbol name its own equivalence class:

$$|\mathfrak{A}| = C/\equiv$$
, and $c_n^{\mathfrak{A}} = [c_n].$

The most complicated part of this is the notation. The relation \equiv on C specifies whether constants c_n and c_m are to refer to the same element of a structure or to different elements. Therefore, as long as \equiv actually is an equivalence relation, you can create a structure obeying those rules.

Problem 1.

Show that if $\mathfrak A$ is any finite structure for $\mathcal L$, there is a countable structure $\mathfrak B$ such that $\mathfrak B$ is elementarily equivalent to $\mathfrak A$, and in $\mathfrak B$, infinitely many elements are not named by constant symbols. In other words, we have that

$$\left\{b \in |\mathfrak{B}| \mid \forall n \left(b \neq c_n^{\mathfrak{B}}\right)\right\}$$

is infinite. (Hint: Use compactness.)

Compactness Theorem: If $\Gamma \vDash \varphi$, then for some finite $\Gamma_0 \subseteq \Gamma$, $\Gamma_0 \vDash \varphi$.

(In other words, a set Γ has a model iff every finite subset has a model)

Problem 2.

Show that if $\mathfrak A$ and $\mathfrak B$ are countable structures for $\mathcal L$ in which infinitely many elements sre not named by constant symbols, and $\equiv_{\mathfrak A}$ is the same relation as $\equiv_{\mathfrak B}$, then $\mathfrak A$ is isomorphic to $\mathfrak B$.

Problem 3.

Suppose $\mathfrak A$ and $\mathfrak B$ are two structures for $\mathcal L$, each of which is countable (or possibly finite). Which of the following conditions conditions imply which others? In each case, either explain or give a counter-example.

- (i) $\mathfrak A$ is isomorphic to $\mathfrak B$.
- (ii) ${\mathfrak A}$ is elementarily equivalent to ${\mathfrak B}.$
- (iii) $\equiv_{\mathfrak{A}}$ is the same relation as $\equiv_{\mathfrak{B}}$.

Problem 4.

Suppose \equiv is an equivalence relation on C. Define

$$\Sigma_{\equiv} = \left\{ c_n = c_m \mid c_m \equiv c_n \right\} \cup \left\{ c_n \neq c_m \mid c_n \not\equiv c_m \right\}.$$

Show that if \equiv has infinitely many equivalence classes, then $Cn\Sigma_{\equiv}$ is a complete theory.

Suggestion: Explain why $\mathfrak A$ is a model of $Cn\Sigma_{\equiv}$ if and only if $\Xi_{\mathfrak B}$ is the same relation as Ξ . Then use (2) and (3) to show that if $\mathfrak A$ and $\mathfrak B$ are any two models for $Cn\Sigma_{\equiv}$, then there are structures $\mathfrak A^*$ and $\mathfrak B^*$ elementarily equivalent to $\mathfrak A$ and $\mathfrak B$ such that $\mathfrak A^*$ and $\mathfrak B^*$ are isomorphic.

Problem 5.

Suppose \equiv is an equivalence relation on C with finitely many equivalence classes. Describe all the complete (consistent) theories of T with the property that $Cn\Sigma_{\equiv}\subset T$, by saying what sentences you need to add to Σ_{\equiv} to produce the set of axioms for T.

Hint: Consider the possible ways to get finite or infinite countable models of $Cn\Sigma_{\equiv}$ that are not isomorphic. Then consider whether these non-isomorphic structures have different theories.

Since every complete theory of $\mathcal L$ contains some $Cn\Sigma_{\equiv}$ (because every structure for fL satisfies some Σ_{\equiv}), problems (4) and (5) together describe all the complete theories of $\mathcal L$.