METODY NUMERYCZNE – LABORATORIUM

Zadanie 1 – Rozwiązywanie układu N równań liniowych z N niewiadomymi metodą Jacobiego

Opis rozwiązania

Metoda Jacobiego to iteracyjna metoda rozwiązywania układów równań liniowych Ax=b, szczególnie skuteczna, gdy macierz A jest dominująca diagonalnie.

Wzór na obliczenie nowego przybliżenia wektora x:

251601

$$x_{i}^{(k+1)} = \frac{1}{a_{ii}} \left(b_{i} - \sum_{j \neq i} A_{ij} x_{j}^{(k)} \right)$$

został przekształcony jako:

$$x^{(k+1)} = D^{T}(b - (A - D)x^{(k)})$$

Gdzie: D - macierz zawierająca wyłącznie elementy na głównej przekatnej A.

Kroki algorytmu:

- 1. Wczytanie macierzy A i b z pliku
- 2. Sprawdzenie czy macierz A jest dominująca diagonalnie i ewentualnie powiadomienie użytkownika
- 3. Sprawdzenie czy układ równań jest sprzeczny lub nieoznaczony, ewentualne powiadomienie użytkownika i zakończenie programu
- 4. Pobranie od użytkownika początkowego przybliżenia x, dokładności ε oraz maksymalnej liczby iteracji
- 5. Iteracja:
 - a) Obliczenie przybliżenia $x^{(k+1)}$
 - b) Sprawdzenie warunku zbieżności $\max |x^{(k+1)} x^{(k)}| < \epsilon$
 - c) Jeśli spełniony zakończenie iteracji i wypisanie rozwiązania
 - d) W przeciwnym razie kontynuacja do osiągnięcia maksymalnej liczby iteracji

Wyniki

Układ równań 4

$$\begin{array}{l} 0.5x_1 - 0.0625x_2 + 0.1875x_3 + 0.0625x_4 = 1.5 \\ -0.0625x_1 + 0.5x_2 + 0x_3 + 0x_4 = -1.625 \\ 0.1875x_1 + 0x_2 + 0.125x_3 + 0.25x_4 = 1 \\ 0.0625x_1 + 0x_2 + 0.125x_3 + 0.25x_4 = 0.4375 \end{array}$$

Dokładne rozwiązanie	Obliczone dla 10 iteracji	Obliczone dla dokładności 0.000001
$x_1 = 2$	2.06754603	1.99999979
$x_2 = -3$	-3.01162869	-2.99999996
$x_3 = 1.5$	1.58792733	1.49999971
$x_4 = 0.5$	0.58967368	0.49999972

Układ równań 8

$$10x_1 - 5x_2 + 1x_3 = 3$$

$$4x_1 - 7x_2 + 2x_3 = -4$$

$$5x_1 + 1x_2 + 4x_3 = 19$$

Dokładne rozwiązanie	Obliczone dla 10 iteracji	Obliczone dla dokładności 0.000001
$x_1 = 1$	2.06754603	0.99999971
$x_2 = 2$	1.90531164	2.00000036
$x_3 = 3$	3.09645306	2.9999964

Układ równań 10

$$1x_1 + 0.2x_2 + 0.3x_3 = 1.5$$

 $0.1x_1 + 1x_2 - 0.3x_3 = 0.8$
 $-0.1x_1 - 0.2x_2 + 1x_3 = 0.7$

ĺ	Dokładne rozwiązanie	Obliczone dla 10 iteracji	Obliczone dla dokładności 0.000001
ĺ	$x_1 = 1$	0.99999675	0.9999984
ĺ	$x_2 = 1$	1.0000035	1.00000018
ĺ	$x_2 = 1$	0.9999975	0.99999999

Wnioski

- Zalety:
 Prosta implementacja i przejrzysty algorytm.
 Dobrze sprawdza się dla macierzy dominujących diagonalnie.

Wady:

- Może nie zbiegać się, jeśli macierz nie spełnia odpowiednich warunków.