Generalized weights of convolutional codes

Elisa Gorla joint w/ Flavio Salizzoni

Institut de mathématiques, Université de Neuchâtel

Kloster Irsee, August 31, 2022

Convolutional codes

An (n, k, δ) convolutional code C is a non-zero $\mathbb{F}_q[x]$ -submodule of rank k of $\mathbb{F}_q[x]^n$.

A **codeword** is a vector $c(x) = (p_1(x), \dots, p_n(x)) \in \mathcal{C}, \ p_i(x) \in \mathbb{F}_q[x].$

CONVOLUTIONAL CODES

An (n, k, δ) convolutional code C is a non-zero $\mathbb{F}_q[x]$ -submodule of rank k of $\mathbb{F}_q[x]^n$.

A **codeword** is a vector $c(x) = (p_1(x), \dots, p_n(x)) \in C$, $p_i(x) \in \mathbb{F}_q[x]$.

If $g_1(x), \ldots, g_k(x)$ is a basis of C, then a **generator matrix** for C is

$$G(x) = \begin{pmatrix} g_1(x) \\ \vdots \\ g_k(x) \end{pmatrix}.$$

Assume $\deg(g_1(x)) \ge \deg(g_2(x)) \ge \ldots \deg(g_k(x))$.

The **internal degree** δ is the largest degree of a maximal minor of G(x).

Convolutional codes

CONVOLUTIONAL CODES

An (n, k, δ) convolutional code C is a non-zero $\mathbb{F}_q[x]$ -submodule of rank k of $\mathbb{F}_q[x]^n$.

A **codeword** is a vector $c(x) = (p_1(x), \dots, p_n(x)) \in C$, $p_i(x) \in \mathbb{F}_q[x]$.

If $g_1(x), \ldots, g_k(x)$ is a basis of C, then a **generator matrix** for C is

$$G(x) = \begin{pmatrix} g_1(x) \\ \vdots \\ g_k(x) \end{pmatrix}.$$

Assume $\deg(g_1(x)) \ge \deg(g_2(x)) \ge \ldots \deg(g_k(x))$.

The **internal degree** δ is the largest degree of a maximal minor of G(x).

 \mathcal{C} is **non-catastrophic** if G(x) has a right inverse with entries in $\mathbb{F}_q[x]$.

Definition

Convolutional codes

0

The **support** of $p(x) = \sum_{i=0}^{d} a_i x^i$ is $supp(p(x)) = \{x^j \mid a_j \neq 0\}$.

The **support** of $c(x) = (p_1(x), \dots, p_n(x)) \in \mathbb{F}_q[x]^n$, $p_i = \sum_{i=0}^{\deg(p_i)} a_{ij} x^j$, is

$$supp(c(x)) = \{(\underbrace{0, \dots, 0}_{i, 1}, x^{j}, \underbrace{0, \dots, 0}_{n, i}) \mid a_{ij} \neq 0\}.$$

The **weight** of c(x) is wt(c(x)) = |supp(c(x))|.

SUPPORT AND WEIGHT

Definition

Convolutional codes

The **support** of $p(x) = \sum_{i=0}^{d} a_j x^j$ is $supp(p(x)) = \{x^j \mid a_j \neq 0\}$.

The **support** of $c(x)=(p_1(x),\ldots,p_n(x))\in \mathbb{F}_q[x]^n$, $p_i=\sum_{j=0}^{\deg(p_i)}a_{ij}x^j$, is

$$\operatorname{supp}(c(x)) = \{(\underbrace{0,\ldots,0}_{i},x^{j},\underbrace{0,\ldots,0}_{i}) \mid a_{ij} \neq 0\}.$$

The **weight** of c(x) is wt(c(x)) = |supp(c(x))|.

$$c(x)=(0,1,1+x^2)\in \mathbb{F}_2[x]^3$$
 has $\mathrm{supp}(c(x))=\{(0,1,0),(0,0,1),(0,0,x^2)\}$ and $\mathrm{wt}(c(x))=3$.

SUPPORT AND WEIGHT

Definition

Convolutional codes

The **support** of $p(x) = \sum_{i=0}^{d} a_i x^i$ is $supp(p(x)) = \{x^j \mid a_j \neq 0\}$.

The **support** of $c(x)=(p_1(x),\ldots,p_n(x))\in \mathbb{F}_q[x]^n$, $p_i=\sum_{j=0}^{\deg(p_i)}a_{ij}x^j$, is

$$\operatorname{supp}(c(x)) = \{(\underbrace{0,\ldots,0}_{i-1},x^{J},\underbrace{0,\ldots,0}_{n-i}) \mid a_{ij} \neq 0\}.$$

The **weight** of c(x) is wt(c(x)) = |supp(c(x))|.

The **free distance** (or minimum distance) of $\ensuremath{\mathcal{C}}$ is

$$\mathsf{d}_{\mathsf{free}}(\mathcal{C}) = \mathsf{min}\{\mathsf{wt}(c(x)) \mid c(x) \in \mathcal{C} \setminus \{0\}\}.$$

$$c(x) = (0, 1, 1 + x^2) \in \mathbb{F}_2[x]^3$$
 has $supp(c(x)) = \{(0, 1, 0), (0, 0, 1), (0, 0, x^2)\}$ and $wt(c(x)) = 3$.

SUPPORT AND WEIGHT

Definition

Convolutional codes

The **support** of $p(x) = \sum_{i=0}^{d} a_i x^i$ is $supp(p(x)) = \{x^j \mid a_j \neq 0\}$.

The **support** of $c(x)=(p_1(x),\ldots,p_n(x))\in \mathbb{F}_q[x]^n$, $p_i=\sum_{j=0}^{\deg(p_i)}a_{ij}x^j$, is

$$\operatorname{supp}(c(x)) = \{(\underbrace{0,\ldots,0}_{i-1},x^{J},\underbrace{0,\ldots,0}_{n-i}) \mid a_{ij} \neq 0\}.$$

The **weight** of c(x) is wt(c(x)) = |supp(c(x))|.

The **free distance** (or minimum distance) of $\ensuremath{\mathcal{C}}$ is

$$\mathsf{d}_{\mathsf{free}}(\mathcal{C}) = \mathsf{min}\{\mathsf{wt}(c(x)) \mid c(x) \in \mathcal{C} \setminus \{0\}\}.$$

$$c(x) = (0, 1, 1 + x^2) \in \mathbb{F}_2[x]^3$$
 has $supp(c(x)) = \{(0, 1, 0), (0, 0, 1), (0, 0, x^2)\}$ and $wt(c(x)) = 3$.

Optimal anticodes

GENERALIZED HAMMING WEIGHTS

Definition

A linear block code is a linear subspace $C \subseteq \mathbb{F}_q^n$.

The **Hamming support** of $c = (c_1, \ldots, c_n)$ is $supp(c) = \{i \mid c_i \neq 0\}$.

This coincides with the support of c regarded as an element of $\mathbb{F}_q[x]^n$. The **Hamming support** of $D \subseteq C$ is $\text{supp}(D) = \bigcup_{c(x) \in D} \text{supp}(c(x))$.

GENERALIZED HAMMING WEIGHTS

Definition

A linear block code is a linear subspace $C \subseteq \mathbb{F}_q^n$.

The **Hamming support** of $c = (c_1, \ldots, c_n)$ is $supp(c) = \{i \mid c_i \neq 0\}$.

This coincides with the support of c regarded as an element of $\mathbb{F}_q[x]^n$. The **Hamming support** of $D \subseteq C$ is $\text{supp}(D) = \bigcup_{c(x) \in D} \text{supp}(c(x))$.

Definition (Helleseth, Kløve, Mykkeltveit)

The r-th generalized (Hamming) weight of $C \subseteq \mathbb{F}_q^n$ is

 $d_r^H(C) := \min\{|\operatorname{supp}(D)| : D \subseteq C, \dim(D) = r\}, \ 1 \le r \le \dim(C).$

GENERALIZED HAMMING WEIGHTS

Definition

Convolutional codes

A **linear block code** is a linear subspace $C \subseteq \mathbb{F}_q^n$.

The **Hamming support** of $c = (c_1, ..., c_n)$ is $supp(c) = \{i \mid c_i \neq 0\}$.

This coincides with the support of c regarded as an element of $\mathbb{F}_q[x]^n$. The **Hamming support** of $D \subseteq C$ is $\text{supp}(D) = \bigcup_{c(x) \in D} \text{supp}(c(x))$.

Definition (Helleseth, Kløve, Mykkeltveit)

The r-th generalized (Hamming) weight of $C \subseteq \mathbb{F}_a^n$ is

$$d_r^H(C) := \min\{|\operatorname{supp}(D)| : D \subseteq C, \dim(D) = r\}, \ 1 \le r \le \dim(C).$$

Generalized weights are invariants of codes, they sometimes allow us to distinguish nonequivalent codes. They measure worst-case security drops of a linear coding scheme for a wire-tap channel.

Optimal anticodes

GENERALIZED HAMMING WTS OF CONV'L CODES

 \mathcal{C} an (n, k, δ) convolutional code.

Convolutional codes

The **support** of $D \subseteq \mathcal{C}$ is $supp(D) = \bigcup_{c(x) \in D} supp(c(x))$.

Definition (Rosenthal, York)

The r-th generalized Hamming weight of C, $r \ge 1$

$$d_r^H(\mathcal{C}) = \min\{|\operatorname{supp}(D)| : D \subseteq \mathcal{C} \text{ an } \mathbb{F}_q\text{-linear subspace}, \dim(D) = r\}.$$

They amount to regarding $C \subseteq \mathbb{F}_q[x]^n$ as a linear block code of infinite dimension and considering its generalized Hamming weights.

GENERALIZED HAMMING WTS OF CONV'L CODES

 \mathcal{C} an (n, k, δ) convolutional code.

The **support** of $D \subseteq \mathcal{C}$ is $supp(D) = \bigcup_{c(x) \in D} supp(c(x))$.

Definition (Rosenthal, York)

The r-th generalized Hamming weight of C, r > 1

$$d_r^H(\mathcal{C}) = \min\{|\operatorname{supp}(D)| : D \subseteq \mathcal{C} \text{ an } \mathbb{F}_q\text{-linear subspace}, \dim(D) = r\}.$$

They amount to regarding $\mathcal{C} \subseteq \mathbb{F}_q[x]^n$ as a linear block code of infinite dimension and considering its generalized Hamming weights.

Properties (Wei - Rosenthal, York):

- $d_1^H(\mathcal{C}) = d_{free}(\mathcal{C}),$
- $d_r^H(C) < d_{r+1}^H(C)$ for $r \ge 1$.

EXAMPLE

$$C = \langle (1,0,0), (0,1,1+x) \rangle_{\mathbb{F}_q[x]}$$
 has

- $D_1 = \langle (1,0,0) \rangle_{\mathbb{F}_q}$, $\operatorname{supp}(D_1) = \{(1,0,0)\} \rightsquigarrow d_1^H(\mathcal{C}) = 1$
- $D_2 = \langle (1,0,0), (x,0,0) \rangle_{\mathbb{F}_q}$, $\operatorname{supp}(D_2) = \{(1,0,0), (x,0,0,0)\} \rightsquigarrow d_2^H(\mathcal{C}) = 2$
- $D_r = \langle (x^i, 0, 0) : 0 \le i \le r 1 \rangle_{\mathbb{F}_q},$ $\operatorname{supp}(D_r) = \{(1, 0, 0), (x, 0, 0), \dots, (x^{r-1}, 0, 0)\} \rightsquigarrow d_r^H(\mathcal{C}) = r$

Convolutional codes

Example

$$C = \langle (1,0,0), (0,1,1+x) \rangle_{\mathbb{F}_q[x]}$$
 has

- $D_1 = \langle (1,0,0) \rangle_{\mathbb{F}_q}$, $supp(D_1) = \{(1,0,0)\} \rightsquigarrow d_1^H(\mathcal{C}) = 1$
- $D_2 = \langle (1,0,0), (x,0,0) \rangle_{\mathbb{F}_q}$, $\operatorname{supp}(D_2) = \{(1,0,0), (x,0,0,)\} \rightsquigarrow d_2^H(\mathcal{C}) = 2$
- $D_r = \langle (x^i, 0, 0) : 0 \le i \le r 1 \rangle_{\mathbb{F}_q},$ $\operatorname{supp}(D_r) = \{(1, 0, 0), (x, 0, 0), \dots, (x^{r-1}, 0, 0)\} \rightsquigarrow d_r^H(\mathcal{C}) = r$

Remark

If a convolutional code \mathcal{C} has $d_1^H(\mathcal{C}) = 1$, then $d_r^H(\mathcal{C}) = r$, for all $r \geq 1$.

Generalized weights of convolutional codes

 \mathcal{C} an (n, k, δ) convolutional code

Naive definition

The r-th generalized weight of C, $1 \le r \le k = \text{rk}(C)$

$$d_r(\mathcal{C}) = \min\{|\sup(\mathcal{D})| : \mathcal{D} \subseteq \mathcal{C} \text{ is a submodule of } \operatorname{rk}(\mathcal{D}) = r\}.$$

The **support** of $U \subseteq \mathcal{C}$ is $supp(U) = \bigcup_{c(x) \in U} supp(c(x))$.

GENERALIZED WEIGHTS OF CONVOLUTIONAL CODES

 \mathcal{C} an (n, k, δ) convolutional code

Naive definition

The r-th **generalized weight** of C, $1 \le r \le k = \text{rk}(C)$

$$d_r(\mathcal{C}) = \min\{|\sup(\mathcal{D})| : \mathcal{D} \subseteq \mathcal{C} \text{ is a submodule of } \operatorname{rk}(\mathcal{D}) = r\}.$$

The **support** of $U \subseteq \mathcal{C}$ is $supp(U) = \bigcup_{c(x) \in U} supp(c(x))$.

Rmk: If $\mathcal{D} \subseteq \mathcal{C}$ is a submodule, then $supp(\mathcal{D})$ has infinite cardinality.

Generalized weights of convolutional codes

 \mathcal{C} an (n, k, δ) convolutional code

Naive definition

The r-th generalized weight of C, $1 \le r \le k = \text{rk}(C)$

$$d_r(\mathcal{C}) = \min\{|\operatorname{supp}(\mathcal{D})| \ : \ \mathcal{D} \subseteq \mathcal{C} \text{ is a submodule of } \operatorname{rk}(\mathcal{D}) = r\}.$$

The support of $U \subseteq \mathcal{C}$ is supp $(U) = \bigcup_{c(x) \in U} \text{supp}(c(x))$.

Rmk: If $\mathcal{D} \subseteq \mathcal{C}$ is a submodule, then $supp(\mathcal{D})$ has infinite cardinality.

Definition

The **weight** of C is

$$\operatorname{wt}(\mathcal{C}) = \min\{|\operatorname{supp}(\{g_1, \dots, g_k\})| : g_1, \dots, g_k \text{ are a basis of } \mathcal{C}\}.$$

Generalized weights of convolutional codes

 \mathcal{C} an (n, k, δ) convolutional code

Definition (G., Salizzoni)

The r-th **generalized weight** of C, $1 \le r \le \text{rk}(C)$

$$d_r(\mathcal{C}) = \min\{\operatorname{wt}(\mathcal{D}) \mid \mathcal{D} \subseteq \mathcal{C} \text{ is a submodule of } \operatorname{rk}(\mathcal{D}) = r\}.$$

The **support** of $U \subseteq \mathcal{C}$ is $supp(U) = \bigcup_{c(x) \in U} supp(c(x))$.

Rmk: If $\mathcal{D} \subseteq \mathcal{C}$ is a submodule, then $supp(\mathcal{D})$ has infinite cardinality.

Definition

Convolutional codes

The **weight** of C is

$$\operatorname{wt}(\mathcal{C}) = \min\{|\operatorname{supp}(\{g_1, \dots, g_k\})| : g_1, \dots, g_k \text{ are a basis of } \mathcal{C}\}.$$

Example

$$C_1 = \langle (1,0,0), (0,1,1+x) \rangle_{\mathbb{F}_q[x]}$$
 has

- $supp(1,0,0) \cup supp(0,1,1+x) = \{(1,0,0),(0,1,0),(0,0,1),(0,0,x)\}$ and $wt(C_1) = 4 \implies d_2(C_1) = 4$,

• $supp(1,0,0) = \{(1,0,0)\}$ and $wt(\langle (1,0,0)\rangle_{\mathbb{F}_q[x]}) = 1 \rightsquigarrow d_1(\mathcal{C}_1) = 1$,

• $d_r^H(\mathcal{C}_1) = r$ for all r > 1.

Example

$$C_1 = \langle (1,0,0), (0,1,1+x) \rangle_{\mathbb{F}_q[x]}$$
 has

- $supp(1,0,0) = \{(1,0,0)\}$ and $wt(\langle (1,0,0)\rangle_{\mathbb{F}_q[x]}) = 1 \rightsquigarrow d_1(\mathcal{C}_1) = 1$,
- $supp(1,0,0) \cup supp(0,1,1+x) = \{(1,0,0),(0,1,0),(0,0,1),(0,0,x)\}$ and $wt(C_1) = 4 \implies d_2(C_1) = 4$,
- $d_r^H(\mathcal{C}_1) = r$ for all r > 1.

$$\mathcal{C}_2 = \langle (1,0,0), (0,1,0) \rangle_{\mathbb{F}_q[x]}$$
 has

- $d_1(\mathcal{C}_2) = 1$ and $d_2(\mathcal{C}_2) = 2$,
- $d_r^H(\mathcal{C}_1) = r$ for all $r \geq 1$.

• $supp(1,0,0) = \{(1,0,0)\}\ and \ wt(\langle (1,0,0)\rangle_{\mathbb{F}_{\sigma}[X]}) = 1 \quad \rightsquigarrow \quad d_1(\mathcal{C}_1) = 1,$

Example

$$C_1 = \langle (1,0,0), (0,1,1+x) \rangle_{\mathbb{F}_q[x]}$$
 has

...

- $supp(1,0,0) \cup supp(0,1,1+x) = \{(1,0,0),(0,1,0),(0,0,1),(0,0,x)\}$ and $wt(C_1) = 4 \rightsquigarrow d_2(C_1) = 4$,
- $d_r^H(\mathcal{C}_1) = r$ for all r > 1.

Example

$$\mathcal{C}_2 = \langle (1,0,0), (0,1,0) \rangle_{\mathbb{F}_a[x]}$$
 has

- $d_1(C_2) = 1$ and $d_2(C_2) = 2$,
- $d_r^H(\mathcal{C}_1) = r$ for all r > 1.

 C_1 and C_2 can be distinguished by looking at d_1, d_2 , but not d_1^H, d_2^H .

GENERALIZED WEIGHTS OF LINEAR BLOCK CODES

$$C \subseteq \mathbb{F}_q^n$$
 linear block code

$$\mathcal{C} = \mathcal{C} \otimes_{\mathbb{F}_q} \mathbb{F}_q[x] \subseteq \mathbb{F}_q[x]^n$$
 is a convolutional code with $\operatorname{rk}(\mathcal{C}) = \dim(\mathcal{C})$

Theorem (G., Salizzoni)

$$d_r(\mathcal{C}) = d_r^H(\mathcal{C}) \text{ for } 1 \leq r \leq \dim(\mathcal{C})$$

GENERALIZED WEIGHTS OF LINEAR BLOCK CODES

$$C \subseteq \mathbb{F}_q^n$$
 linear block code

$$\mathcal{C}=\mathcal{C}\otimes_{\mathbb{F}_q}\mathbb{F}_q[x]\subseteq\mathbb{F}_q[x]^n$$
 is a convolutional code with $\operatorname{rk}(\mathcal{C})=\dim(\mathcal{C})$

Theorem (G., Salizzoni)

$$d_r(\mathcal{C}) = d_r^H(\mathcal{C}) \text{ for } 1 \leq r \leq \dim(\mathcal{C})$$

Example

Convolutional codes

$$C = \langle (1,0,0), (0,1,1) \rangle_{\mathbb{F}_q} \subseteq \mathbb{F}_q^3 \text{ has } \mathcal{C} = \langle (1,0,0), (0,1,1) \rangle_{\mathbb{F}_q[x]} \subseteq \mathbb{F}_q[x]^3$$
 and

•
$$d_1(C) = d_1^H(C) = 1$$
 and $d_2(C) = d_2^H(C) = 3$,

•
$$d_r^H(\mathcal{C}) = r$$
 for all $r > 1$.

In particular, $d_2^H(C) \neq d_2^H(C)$.

Convolutional codes

$$\mathcal{D} \subseteq \mathcal{C} \subseteq \mathbb{F}_q[x]^n$$
 convolutional codes, $\operatorname{rk}(\mathcal{C}) = k$

- $d_1(\mathcal{C}) = d_{free}(\mathcal{C})$,
- $d_1(\mathcal{C}) < d_2(\mathcal{C}) < \ldots < d_k(\mathcal{C})$,
- $d_r(\mathcal{D}) \geq d_r(\mathcal{C})$ for $1 \leq r \leq \operatorname{rk}(\mathcal{D})$,
- $d_k(\mathcal{C}) \leq n(\deg(g_1(x)) + 1)$,
- $d_r(\mathcal{C}) \leq n(\deg(g_1(x)) + 1) k + r$ for $1 \leq r \leq k$,
- isometric codes have the same generalized weights.

Definition

 $\mathcal{C}, \mathcal{D} \subseteq \mathbb{F}_q[x]^n$ convolutional codes are **isometric** if there is an isomorphism of $\mathbb{F}_q[x]$ -modules $\varphi: \mathcal{C} \to \mathcal{D}$ such that $\operatorname{wt}(c(x)) = \operatorname{wt}(\varphi(c(x)))$ for all $c(x) \in \mathcal{C}$.

DUALITY

Definition

The **dual** of $C \subseteq \mathbb{F}_q[x]^n$ is

$$\mathcal{C}^{\perp} = \{d(x) \in \mathbb{F}_q[x]^n \mid d(x) \cdot c(x) = 0 \text{ for all } c(x) \in \mathcal{C}\}.$$

DUALITY

Convolutional codes

Definition

The **dual** of $C \subseteq \mathbb{F}_q[x]^n$ is

$$\mathcal{C}^{\perp} = \{d(x) \in \mathbb{F}_q[x]^n \mid d(x) \cdot c(x) = 0 \text{ for all } c(x) \in \mathcal{C}\}.$$

 $\mathcal{C} \subseteq (\mathcal{C}^{\perp})^{\perp}$. If \mathcal{C} is non-catastrophic, then $(\mathcal{C}^{\perp})^{\perp} = \mathcal{C}$.

Do the generalized weights of C determine those of C^{\perp} ?

Convolutional codes

Definition

The **dual** of $C \subseteq \mathbb{F}_q[x]^n$ is

$$\mathcal{C}^{\perp} = \{d(x) \in \mathbb{F}_q[x]^n \mid d(x) \cdot c(x) = 0 \text{ for all } c(x) \in \mathcal{C}\}.$$

$$\mathcal{C}\subseteq (\mathcal{C}^\perp)^\perp$$
. If \mathcal{C} is non-catastrophic, then $(\mathcal{C}^\perp)^\perp=\mathcal{C}$.

Do the generalized weights of C determine those of C^{\perp} ?

$$\mathcal{C}_1 = \langle (1+x,1+x,1,0) \rangle_{\mathbb{F}_q[x]}, \mathcal{C}_2 = \langle (1+x,1,1,1) \rangle_{\mathbb{F}_q[x]}$$
 have $d_1(\mathcal{C}_1) = d_1(\mathcal{C}_2) = 5$, but $d_1(\mathcal{C}_1^{\perp}) = 1$ and $d_1(\mathcal{C}_2^{\perp}) = 2$.

DUALITY

Definition

Convolutional codes

The **dual** of $C \subseteq \mathbb{F}_q[x]^n$ is

$$\mathcal{C}^{\perp} = \{d(x) \in \mathbb{F}_a[x]^n \mid d(x) \cdot c(x) = 0 \text{ for all } c(x) \in \mathcal{C}\}.$$

$$\mathcal{C}\subseteq (\mathcal{C}^\perp)^\perp.$$
 If \mathcal{C} is non-catastrophic, then $(\mathcal{C}^\perp)^\perp=\mathcal{C}.$

Do the generalized weights of C determine those of C^{\perp} ? Example

 $C_1 = \langle (1+x, 1+x, 1, 0) \rangle_{\mathbb{F}_q[x]}, C_2 = \langle (1+x, 1, 1, 1) \rangle_{\mathbb{F}_q[x]}$ have $d_1(\mathcal{C}_1) = d_1(\mathcal{C}_2) = 5$, but $d_1(\mathcal{C}_1^{\perp}) = 1$ and $d_1(\mathcal{C}_2^{\perp}) = 2$.

Proposition (G., Salizzoni)

 $C \subseteq \mathbb{F}_q^n$ linear block code, $C = C \otimes_{\mathbb{F}_q} \mathbb{F}_q[x] \subseteq \mathbb{F}_q[x]^n$.

The generalized weights of C determine those of C^{\perp} .

The reverse code

Definition

The **reverse** of $c(x) \in \mathbb{F}_q[x]^n \setminus \{0\}$ is $rev(c(x)) = x^{deg(c(x))} c(\frac{1}{x})$.

$$c(x) = (x^2 + 2x + 3, 1, 2x + 1) \in \mathbb{F}_5[x]^3$$
, $\deg(c(x)) = 2$ and

$$rev(c(x)) = x^2 \left(\frac{1}{x^2} + \frac{2}{x} + 3, 1, \frac{2}{x} + 1 \right) = (1 + 2x + 3x^2, x^2, 2x + x^2).$$

THE REVERSE CODE

Definition

Convolutional codes

The **reverse** of $c(x) \in \mathbb{F}_q[x]^n \setminus \{0\}$ is $rev(c(x)) = x^{\deg(c(x))} c\left(\frac{1}{x}\right)$.

The **reverse code** of $C \subseteq \mathbb{F}_q[x]^n$ is

$$\operatorname{rev}(\mathcal{C}) = \langle \operatorname{rev}(c(x)) \mid c(x) \in \mathcal{C} \setminus \{0\} \rangle_{\mathbb{F}_{a}[x]}.$$

$$c(x) = (x^2 + 2x + 3, 1, 2x + 1) \in \mathbb{F}_5[x]^3$$
, $\deg(c(x)) = 2$ and

$$rev(c(x)) = x^2 \left(\frac{1}{x^2} + \frac{2}{x} + 3, 1, \frac{2}{x} + 1 \right) = (1 + 2x + 3x^2, x^2, 2x + x^2).$$

THE REVERSE CODE

Definition

The **reverse** of $c(x) \in \mathbb{F}_q[x]^n \setminus \{0\}$ is $rev(c(x)) = x^{deg(c(x))}c(\frac{1}{x})$.

The **reverse code** of
$$C \subseteq \mathbb{F}_q[x]^n$$
 is

$$\mathsf{rev}(\mathcal{C}) = \langle \mathsf{rev}(c(x)) \mid c(x) \in \mathcal{C} \setminus \{0\} \rangle_{\mathbb{F}_{\sigma}[x]}.$$

Example

$$c(x)=(x^2+2x+3,1,2x+1)\in \mathbb{F}_5[x]^3,\ \deg(c(x))=2\ \text{and}$$

$$\operatorname{rev}(c(x))=x^2\left(\frac{1}{x^2}+\frac{2}{x}+3,1,\frac{2}{x}+1\right)=(1+2x+3x^2,x^2,2x+x^2).$$

Theorem (G., Salizzoni)

$$d_r(\mathcal{C}) = d_r(\operatorname{rev}(\mathcal{C})) \text{ for } 1 \le r \le \operatorname{rk}(\mathcal{C})$$

MDS CONVOLUTIONAL CODES

 \mathcal{C} an (n, k, δ) convolutional code

Theorem (Singleton bound – Rosenthal, Smarandache)

$$\mathsf{d}_{\mathsf{free}}(\mathcal{C}) \leq (n-k)\left(\left\lfloor \frac{\delta}{k} \right\rfloor + 1\right) + \delta + 1.$$

Definition

A Maximum Distance Separable (MDS) code is a code that meets the Singleton bound.

MDS CONVOLUTIONAL CODES

 \mathcal{C} an (n, k, δ) convolutional code

Theorem (Singleton bound – Rosenthal, Smarandache)

 $\mathsf{d}_{\mathsf{free}}(\mathcal{C}) \leq (n-k) \left(\left| \frac{\delta}{k} \right| + 1 \right) + \delta + 1.$

Definition

A Maximum Distance Separable (MDS) code is a code that meets the Singleton bound.

Theorem (G., Salizzoni)

Let C be an (n, k, δ) MDS convolutional code, 1 < r < k.

- If k = n, then $d_r(C) = \delta + r$.
- If $k \mid \delta$, then $d_r(\mathcal{C}) = (n-k)(\frac{\delta}{k}+1) + \delta + r$.
- If $k \nmid \delta$, then $d_r(\mathcal{C}) \leq (n-k)\left(\left|\frac{\delta}{k}\right|+2\right)+\delta+r$.

000

EXAMPLE

Convolutional codes

Let n = 3, k = 2, $\delta = 1$. If C is MDS, then

- $d_1(C) = d_{free}(C) = 3$,
- $4 = d_1(\mathcal{C}) + 1 \le d_2(\mathcal{C}) \le (n k) (\left| \frac{\delta}{k} \right| + 2) + \delta + k = 5.$

Convolutional codes

Let n = 3, k = 2, $\delta = 1$. If C is MDS, then

- $d_1(C) = d_{free}(C) = 3$,
- $4 = d_1(\mathcal{C}) + 1 < d_2(\mathcal{C}) < (n-k)(|\frac{\delta}{L}| + 2) + \delta + k = 5.$

Consider the two (3,2,1) MDS convolutional codes:

$$C_1 = \langle (2x, x+1, x+1), (1, 1, 2) \rangle_{\mathbb{F}_q[x]}$$
$$C_2 = \langle (2x, x+1, 0), (1, 1, 2) \rangle_{\mathbb{F}_q[x]}$$

EXAMPLE

Convolutional codes

Let n = 3, k = 2, $\delta = 1$. If C is MDS, then

- $d_1(C) = d_{free}(C) = 3$,
- $4 = d_1(\mathcal{C}) + 1 < d_2(\mathcal{C}) < (n-k)(|\frac{\delta}{L}| + 2) + \delta + k = 5.$

Consider the two (3, 2, 1) MDS convolutional codes:

$$C_1 = \langle (2x, x+1, x+1), (1, 1, 2) \rangle_{\mathbb{F}_q[x]}$$

$$C_2 = \langle (2x, x+1, 0), (1, 1, 2) \rangle_{\mathbb{F}_q[x]}$$

- $d_1(\mathcal{C}_1) = d_1(\mathcal{C}_2) = 3$,
- $d_2(\mathcal{C}_1) = 5$, while $d_2(\mathcal{C}_2) = 4$.

A (SOMETIMES) TIGHTER BOUND

$$\mathcal{C} \subseteq \mathbb{F}_q[x]^n \leadsto \mathcal{C}[0] = \{c(0) \mid c(x) \in \mathcal{C}\} \subseteq \mathbb{F}_q^n$$
 linear block code

Theorem (G., Salizzoni)

 \mathcal{C} an (n, k, δ) MDS convolutional code, $\delta = k \lceil \frac{\delta}{k} \rceil - a$ with 0 < a < k.

Then

Convolutional codes

$$d_r(\mathcal{C}) = (n-k)\left(\left|\frac{\delta}{k}\right| + 1\right) + \delta + r \text{ for } 1 \leq r \leq a$$

and

$$d_{a+r}(\mathcal{C}) \leq (n-k) \left(\left\lfloor \frac{\delta}{k} \right\rfloor + 1 \right) + \delta + a + \min \left\{ d_r^H(\mathcal{C}[0]), d_r^H(\text{rev}(\mathcal{C})[0]) \right\}$$

for 1 < r < k - a.

$$\mathcal{C} \subseteq \mathbb{F}_q[x]^n \leadsto \mathcal{C}[0] = \{c(0) \mid c(x) \in \mathcal{C}\} \subseteq \mathbb{F}_q^n \text{ linear block code}$$

Theorem (G., Salizzoni)

 \mathcal{C} an (n, k, δ) MDS convolutional code, $\delta = k \lceil \frac{\delta}{\iota} \rceil - a$ with 0 < a < k. Then

$$d_r(\mathcal{C}) = (n-k)\left(\left|\frac{\delta}{k}\right| + 1\right) + \delta + r \ \textit{for} \ 1 \leq r \leq a$$

and

Convolutional codes

$$d_{a+r}(\mathcal{C}) \leq (n-k) \left(\left\lfloor \frac{\delta}{k} \right\rfloor + 1 \right) + \delta + a + \min \left\{ d_r^H(\mathcal{C}[0]), d_r^H(\text{rev}(\mathcal{C})[0]) \right\}$$

for 1 < r < k - a.

Question: Can this bound be improved?

Anticode bound

Definition

 ${\mathcal C}$ an (n,k,δ) convolutional code, $D\subseteq {\mathcal C}$ an ${\mathbb F}_q$ -linear subspace

$$\mathsf{maxwt}(D) = \mathsf{max}\{\mathsf{wt}(d(x)) \mid d(x) \in D\}$$

ANTICODE BOUND

Definition

 \mathcal{C} an (n, k, δ) convolutional code, $D \subseteq \mathcal{C}$ an \mathbb{F}_q -linear subspace

$$\mathsf{maxwt}(D) = \mathsf{max}\{\mathsf{wt}(d(x)) \mid d(x) \in D\}$$

$$\mathsf{maxwt}(\mathcal{C}) = \mathsf{min}\{\mathsf{maxwt}(D) \mid \mathsf{dim}(D) = \mathsf{rk}(D \otimes_{\mathbb{F}_q} \mathbb{F}_q[x]) = k\}$$

Anticode bound

Definition

Convolutional codes

 \mathcal{C} an (n, k, δ) convolutional code, $D \subseteq \mathcal{C}$ an \mathbb{F}_q -linear subspace

$$\mathsf{maxwt}(D) = \mathsf{max}\{\mathsf{wt}(d(x)) \mid d(x) \in D\}$$

$$\mathsf{maxwt}(\mathcal{C}) = \mathsf{min}\{\mathsf{maxwt}(D) \mid \mathsf{dim}(D) = \mathsf{rk}(D \otimes_{\mathbb{F}_q} \mathbb{F}_q[x]) = k\}$$

Example

$$C = \langle (1,1,0), (0,1,1) \rangle_{\mathbb{F}_2[x]} \subseteq \mathbb{F}_2[x]^3,$$

$$D_1 = \langle (1,1,0), (0,1,1) \rangle_{\mathbb{F}_2}$$
, $D_2 = \langle (1,1,0), (0,x,x) \rangle_{\mathbb{F}_2}$
have $\mathsf{maxwt}(D_1) = 2$ and $\mathsf{maxwt}(D_2) = 4$.

Optimal anticodes

•ooo

ANTICODE BOUND

Definition

Convolutional codes

 \mathcal{C} an (n, k, δ) convolutional code, $D \subseteq \mathcal{C}$ an \mathbb{F}_q -linear subspace

$$\mathsf{maxwt}(D) = \mathsf{max}\{\mathsf{wt}(d(x)) \mid d(x) \in D\}$$

$$\mathsf{maxwt}(\mathcal{C}) = \mathsf{min}\{\mathsf{maxwt}(D) \mid \mathsf{dim}(D) = \mathsf{rk}(D \otimes_{\mathbb{F}_q} \mathbb{F}_q[x]) = k\}$$

Example

$$C = \langle (1,1,0), (0,1,1) \rangle_{\mathbb{F}_2[x]} \subseteq \mathbb{F}_2[x]^3,$$

$$D_1 = \langle (1,1,0), (0,1,1) \rangle_{\mathbb{F}_2}, \ D_2 = \langle (1,1,0), (0,x,x) \rangle_{\mathbb{F}_2}$$

have $maxwt(D_1) = 2$ and $maxwt(D_2) = 4$.

Theorem (Anticode bound - G., Salizzoni)

$$rk(C) \leq maxwt(C)$$

OPTIMAL ANTICODES

Definition

An **optimal anticode** is a code that meets the anticode bound.

Definition

Convolutional codes

An optimal anticode is a code that meets the anticode bound.

Example

$$\mathcal{C} = \langle (1,1,0), (0,1,1) \rangle_{\mathbb{F}_2[x]} \subseteq \mathbb{F}_2[x]^3$$
 is an optimal anticode, since $C = \langle (1,1,0), (0,1,1) \rangle_{\mathbb{F}_2}$ has $\dim(C) = \max (C) = 2$ and $C \otimes_{\mathbb{F}_2} \mathbb{F}_2[x] = \mathcal{C}$.

Definition

Convolutional codes

An **optimal anticode** is a code that meets the anticode bound.

Example

$$\mathcal{C} = \langle (1,1,0), (0,1,1) \rangle_{\mathbb{F}_2[x]} \subseteq \mathbb{F}_2[x]^3$$
 is an optimal anticode, since $C = \langle (1,1,0), (0,1,1) \rangle_{\mathbb{F}_2}$ has $\dim(C) = \max (C) = 2$ and $C \otimes_{\mathbb{F}_2} \mathbb{F}_2[x] = \mathcal{C}$.

Theorem (G., Salizzoni)

 \mathcal{C} an (n, k, δ) convolutional code.

- If $d_r(\mathcal{C}) = r$ for $1 \le r \le k$, then \mathcal{C} is an optimal anticode.
- If C is an optimal anticode and $q \neq 2$, then $d_r(C) = r$ for $1 \leq r \leq k$.

Definition

Convolutional codes

An **optimal anticode** is a code that meets the anticode bound.

Example

$$\mathcal{C}=\langle (1,1,0),(0,1,1) \rangle_{\mathbb{F}_2[x]} \subseteq \mathbb{F}_2[x]^3$$
 is an optimal anticode, since $C=\langle (1,1,0),(0,1,1) \rangle_{\mathbb{F}_2}$ has $\dim(C)=\max(C)=2$ and $C\otimes_{\mathbb{F}_2}\mathbb{F}_2[x]=\mathcal{C}$. However, $d_1(\mathcal{C})=2$, $d_2(\mathcal{C})=3$.

Theorem (G., Salizzoni)

 \mathcal{C} an (n, k, δ) convolutional code.

- If $d_r(\mathcal{C}) = r$ for $1 \le r \le k$, then \mathcal{C} is an optimal anticode.
- If C is an optimal anticode and $q \neq 2$, then $d_r(C) = r$ for $1 \leq r \leq k$.

ELEMENTARY OPTIMAL ANTICODES

Example

A code in $\mathbb{F}_q[x]^n$ with basis elements of the form $(0,\ldots,0,x^j,0,\ldots,0)$ is an optimal anticode, which we call **elementary optimal anticode**.

Example

Convolutional codes

A code in $\mathbb{F}_a[x]^n$ with basis elements of the form $(0,\ldots,0,x^j,0,\ldots,0)$ is an optimal anticode, which we call elementary optimal anticode.

Example

 $\mathcal{C} = \langle (1,x), (x,0) \rangle_{\mathbb{F}_q[x]}$ is an optimal anticode, but not an elementary optimal anticode.

$$\mathcal{C} \supseteq \langle (0, x^2), (x, 0) \rangle_{\mathbb{F}_q[x]}$$
 an elementary optimal anticode.

Example

Convolutional codes

A code in $\mathbb{F}_{a}[x]^{n}$ with basis elements of the form $(0,\ldots,0,x^{j},0,\ldots,0)$ is an optimal anticode, which we call elementary optimal anticode.

Example

 $\mathcal{C} = \langle (1,x), (x,0) \rangle_{\mathbb{F}_q[x]}$ is an optimal anticode, but not an elementary optimal anticode.

 $\mathcal{C} \supseteq \langle (0, x^2), (x, 0) \rangle_{\mathbb{F}_q[x]}$ an elementary optimal anticode.

Theorem (G., Salizzoni)

 \mathcal{C} an (n, k, δ) convolutional code. \mathcal{C} is an optimal anticode if and only if there exists an elementary optimal anticode $A \subseteq C$ s.t. rk(A) = k.

DUALITY

Theorem (G., Salizzoni)

Let $q \neq 2$. The dual code of an optimal anticode is an elementary optimal anticode generated by vectors of the standard basis of \mathbb{F}_q^n .

DUALITY

Convolutional codes

Theorem (G., Salizzoni)

Let $q \neq 2$. The dual code of an optimal anticode is an elementary optimal anticode generated by vectors of the standard basis of \mathbb{F}_q^n .

Example

$$\mathcal{C} = \langle (1,1,0), (0,1,1) \rangle_{\mathbb{F}_2[x]} \subseteq \mathbb{F}_2[x]^3$$
 is an optimal anticode, while $\mathcal{C}^{\perp} = \langle (1,1,1) \rangle_{\mathbb{F}_2[x]} \subseteq \mathbb{F}_2[x]^3$ is not an optimal anticode.

Convolutional codes

Theorem (G., Salizzoni)

Let $q \neq 2$. The dual code of an optimal anticode is an elementary optimal anticode generated by vectors of the standard basis of \mathbb{F}_q^n .

Example

 $\mathcal{C}=\langle (1,1,0),(0,1,1) \rangle_{\mathbb{F}_2[x]} \subseteq \mathbb{F}_2[x]^3$ is an optimal anticode, while $\mathcal{C}^{\perp} = \langle (1,1,1) \rangle_{\mathbb{F}_2[x]} \subseteq \mathbb{F}_2[x]^3$ is not an optimal anticode.

Theorem (G., Salizzoni)

 $C \subseteq \mathbb{F}_q^n$ a linear block code, $C = C \otimes_{\mathbb{F}_q} \mathbb{F}_q[x] \subseteq \mathbb{F}_q[x]^n$.

C is an optimal anticode if and only if C is an optimal anticode.

The pathologies for q=2 come directly from linear block codes.

DUALITY

Convolutional codes

Theorem (G., Salizzoni)

Let $q \neq 2$. The dual code of an optimal anticode is an elementary optimal anticode generated by vectors of the standard basis of \mathbb{F}_q^n .

Example

 $\mathcal{C} = \langle (1,1,0), (0,1,1) \rangle_{\mathbb{F}_2[x]} \subseteq \mathbb{F}_2[x]^3$ is an optimal anticode, while $\mathcal{C}^\perp = \langle (1,1,1) \rangle_{\mathbb{F}_2[x]} \subseteq \mathbb{F}_2[x]^3$ is not an optimal anticode.

Theorem (G., Salizzoni)

 $C \subseteq \mathbb{F}_q^n$ a linear block code, $C = C \otimes_{\mathbb{F}_q} \mathbb{F}_q[x] \subseteq \mathbb{F}_q[x]^n$. C is an optimal anticode if and only if C is an optimal anticode.

The pathologies for q = 2 come directly from linear block codes.

Thank you for your attention!