Sensing Technologies and Mathematics for Geomatics

GEO1001.2020 MSc Geomatics Delft University of Technology

Homework 1

Louise Spekking (4256778)

The data used in this analysis is data from five Kestrel 5400 sensors placed in the town of Rijsenhout, The Netherlands over the a period from June 10th to July 17th ...[?]

1. Compute mean statistics (mean, variance and standard deviation for each of the sensors variables), what do you observe from the results?.

some intro text

Table 1: Means calculated for each measurement per sensor.

Variable	Sensor A	Sensor B	Sensor C	Sensor D	Sensor E
Wind Direction, True	209.406	183.412	183.589	198.337	223.965
Wind Speed	1.290	1.242	1.371	1.582	0.596
Crosswind Speed	0.965	0.836	0.963	1.211	0.439
Headwind Speed	0.164	-0.130	-0.263	0301	0.195
Temperature	17.969	18.065	17.913	17.996	18.354
Globe Temperature	21.545	21.799	21.587	21.359	21.176
Wind Chill	17.838	17.946	17.773	17.835	18.294
Relative Humidity	78.185	77.878	77.963	77.942	76.793
Heat Stress Index	17.900	18.004	17.828	17.921	18.386
Dew Point	13.553	13.531	13.458	13.509	13.559
Psychro Wet Bulb Temperature	15.271	15.296	15.197	15.260	15.407
Station Pressure	1016.168	1016.657	1016.689	1016.728	1016.166
Barometric Pressure	1016.128	1016.616	1016.651	1016.689	1016.128
Altitude	-25.987	-30.058	-30.338	-30.653	-25.961
Station Pressure	137.317	135.581	129.623	132.411	150.840
NA Wet Bulb Temperature	15.981	15.997	15.934	15.916	15.937
WBGT	17.254	17.322	17.225	17.177	17.186
TWL	301.393	299.452	301.900	305.255	284.115
Wind Direction, Mag	208.905	183.217	183.084	198.826	223.987

Table 2: Standard deviations calculated for each measurement per sensor.

Variable	Sensor A	Sensor B	Sensor C	Sensor D	$Sensor\ E$
Wind Direction, True	100.523	99.866	87.751	90.17	96.46
Wind Speed	1.118	1.141	1.196	1.319	0.715
Crosswind Speed	0.962	0.937	1.021	1.205	0.562
Headwind Speed	1.017	1.121	1.127	1.11	0.565
Temperature	3.982	4.077	4.012	4.012	4.363
Globe Temperature	8.256	8.125	8.241	7.822	7.949
Wind Chill	4.032	4.127	4.066	4.068	4.374
Relative Humidity	19.387	20.21	19.351	19.741	20.158
Heat Stress Index	3.872	3.928	3.918	3.887	4.297
Dew Point	3.118	3.104	3.175	3.173	3.069
Psychro Wet Bulb Temperature	2.635	2.601	2.69	2.654	2.645
Station Pressure	6.201	6.069	6.138	5.914	6.239
Barometric Pressure	6.201	6.067	6.137	5.911	6.239
Altitude	51.6	50.445	51.063	49.181	51.877
Density Altitude	162.786	163.867	164.243	162.805	172.345
NA Wet Bulb Temperature	3.164	3.131	3.237	3.16	3.071
WBGT	4.016	3.979	4.067	3.937	3.935
TWL	28.538	28.102	27.681	24.815	35.908
Wind Direction, Mag	100.507	99.857	87.758	90.178	96.251

Table 3: Variance deviations calculated for each measurement per sensor.

Variable	$Sensor\ A$	$Sensor\ B$	$Sensor\ C$	Sensor D	$Sensor\ E$
Direction, True	10108.94	9977.218	7703.363	8133.89	9308.285
Wind Speed	1.251	1.302	1.431	1.74	0.511
Crosswind Speed	0.927	0.879	1.043	1.452	0.316
Headwind Speed	1.035	1.257	1.272	1.233	0.319
Temperature	15.864	16.629	16.105	16.106	19.043
Globe Temperature	68.191	66.049	67.941	61.202	63.216
Wind Chill	16.264	17.036	16.541	16.557	19.137
Relative Humidity	376.01	408.623	374.623	389.856	406.494
Heat Stress Index	14.997	15.439	15.356	15.118	18.475
Dew Point	9.723	9.637	10.084	10.072	9.423
Psychro Wet Bulb Temperature	6.944	6.77	7.239	7.044	6.997
Station Pressure	38.471	36.842	37.691	34.988	38.94
Barometric Pressure	38.468	36.829	37.676	34.952	38.935
Altitude	2663.641	2545.708	2608.535	2419.724	2692.353
Density Altitude	26510.044	26863.31	26986.603	26516.126	29714.928
NA Wet Bulb Temperature	10.012	9.809	10.48	9.987	9.432
WBGT	16.135	15.835	16.547	15.507	15.49
TWL	814.767	790.069	766.534	616.01	1289.913
Direction, Mag	10105.677	9975.447	7704.62	8135.316	9268.008

Please type your answer here.

2. Create 1 plot that contains histograms for the 5 sensors Temperature values. Compare histograms with 5 and 50 bins, why is the number of bins important?

In figure 1 two histograms of the temperature measurements are shown. When comparing the two histograms the importance of the number of bins can be observed. Details about the distribution of the data points are better visible in the histogram with 50 bins, however in the histogram with 5 bins many nuances of the distribution are lost. TO calculate the number of bins needed to plo

Rice's law $\sqrt[3]{2746} * 2$

Figure 1: Histograms of temperature measurements by all 5 sensors with 5 and 50 bins.

Please type your answer here.

If you have code put it here

3. Create 1 plot where frequency poligons for the 5 sensors Temperature values overlap in different colors with a legend.

some text and image

Figure 2: Frequency polygon with 27 bins of the temperature measured by all 5 sensors.

4. Generate 3 plots that include the 5 sensors boxplot for: Wind Speed, Wind Direction and Temperature.

Figure 3: Boxplots chowing data distribution for wind speed, wind direction and temperature.

5. Plot PMF, PDF and CDF for the 5 sensors Temperature values in independent plots (or subplots). Describe the behaviour of the distributions, are they all similar? what about their tails?

PMF PDF en CDF plots

6. For the Wind Speed values, plot the pdf and the kernel density estimation. Comment the differences

PDF en KDE image and some text

7. Compute the correlations between all the sensors for the variables: Temperature, Wet Bulb Globe, Crosswind Speed. Perform correlation between sensors with the same variable, not between two different variables; for example, correlate Temperature time series between sensor A and B. Use Pearson's and Spearmann's rank coefficients. Make a scatter plot with both coefficients with the 3 variables.

Figure 4: Scatterplot of Spearman and Pearson correlations between sensors dislayed on x-axis.

GEO1001: Homework 1

- 8. What can you say about the sensors' correlations? When analysing the
- 9. If we told you that that the sensors are located as follows, hypothesize which location would you assign to each sensor and reason your hypothesis using the correlations. where will the sensors be located
- 10. Plot the CDF for all the sensors and for variables Temperature and Wind Speed, then compute the 95% confidence intervals for variables Temperature and Wind Speed for all the sensors and save them in a table (txt or csv form).

CDFs and tables

11. Test the hypothesis: the time series for Temperature and Wind Speed are the same for sensors:

tabel met correlaties

12. What could you conclude from the p-values?
p is low so null must go

13. Bonus:

Your "employer" wants to estimate the day of maximum and minimum potential energy consumption due to air conditioning usage. To hypothesize regarding those days, you are asked to identify the hottest and coolest day of the measurement time series provided. How would you do that? Reason and program the python routine that would allow you to identify those days

Code van bonus question en info

Variable	Sensor A	Sensor B	Sensor C	Sensor D	Sensor E
Wind Direction, True	209.406	183.412	183.589	198.337	223.965
Wind Speed	1.290	1.242	1.371	1.582	0.596
Crosswind Speed	0.965	0.836	0.963	1.211	0.439
Headwind Speed	0.164	-0.130	-0.263	0301	0.195
Temperature	17.969	18.065	17.913	17.996	18.354
Globe Temperature	21.545	21.799	21.587	21.359	21.176
Wind Chill	17.838	17.946	17.773	17.835	18.294
Relative Humidity	78.185	77.878	77.963	77.942	76.793
Heat Stress Index	17.900	18.004	17.828	17.921	18.386
Dew Point	13.553	13.531	13.458	13.509	13.559
Psychro Wet Bulb Temperature	15.271	15.296	15.197	15.260	15.407
Station Pressure	1016.168	1016.657	1016.689	1016.728	1016.166
Barometric Pressure	1016.128	1016.616	1016.651	1016.689	1016.128
Altitude	-25.987	-30.058	-30.338	-30.653	-25.961
Station Pressure	137.317	135.581	129.623	132.411	150.840
NA Wet Bulb Temperature	15.981	15.997	15.934	15.916	15.937
WBGT	17.254	17.322	17.225	17.177	17.186
TWL	301.393	299.452	301.900	305.255	284.115
Wind Direction, Mag	208.905	183.217	183.084	198.826	223.987

Table 4: Measures of central tendency and variability.