Precalculus

§ Geometric-text problems leading to polynomial systems, part 1

Todor Miley

2019

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

$$|EF| = |AH| = 20 m, |BC| = y m,$$

$$_{20}|AB|=|DC|=2x\ m,\ |DE|=3x\ m;$$
 fencing length, excluding wall, is 130 m; area of *HBCG* is

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

$$|EF| = |AH| = 20 m, |BC| = y m,$$

$$_{20}|AB|=|DC|=2x$$
 m, $|DE|=3x$ m; fencing length, excluding wall, is 130 m; area of $HBCG$ is

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

$$|EF| = |AH| = 20 \text{ m}, |BC| = \text{y m},$$

 $|AB| = |DC| = 2\text{x m}, |DE| = 3\text{x m}; \text{ fencing}$

length, excluding wall, is 130 m; area of *HBCG* is 3 times that of *DEFG*. Find the length |*HF*|.

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

$$|EF| = |AH| = 20 m, |BC| = y m,$$

 $|AB| = |DC| = 2x \, m$, $|DE| = 3x \, m$; fencing length, excluding wall, is 130 m; area of *HBCG* is

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

$$|EF| = |AH| = 20 m, |BC| = y m,$$

length, excluding wall, is 130 m; area of HBCG is

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

$$|EF| = |AH| = 20 m, |BC| = y m,$$

$$_{20}$$
 $|AB| = |DC| = 2x m$, $|DE| = 3x m$; fencing length, excluding wall, is 130 m; area of *HBCG* is

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

$$|EF| = |AH| = 20 m, |BC| = y m,$$

 $_{20}|AB| = |DC| = 2x m$, |DE| = 3x m; fencing length, excluding wall, is 130 m; area of *HBCG* is

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$

 $|BC| = y \text{ m},$
 $|BC| =$

3 times that of *DEFG*. Find the length |HF|.

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

$$|EF| = |AH| = 20 \text{ m}, |BC| = \text{y m},$$

 $_{20}|AB| = |DC| = 2\text{x m}, |DE| = 3\text{x m}; \text{ fencing}$

length, excluding wall, is 130 m; area of *HBCG* is 3 times that of *DEFG*. Find the length |*HF*|.

$$Area(HBCG) = 3 \cdot Area(DEFH)$$

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$
 $|AB| = |DC| = 2x \text{ m}, |DE| = 3x \text{ m}; \text{ fencing length, excluding wall, is 130 m; area of } HBCG \text{ is } 3 \text{ times that of } DEFG.$ Find the length $|HF|$.

$$Area(HBCG) = 3 \cdot Area(DEFH)$$

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$

$$|AB| = |DC| = 2x \text{ m}, |DE| = 3x \text{ m}; \text{ fencing}$$
length, excluding wall, is 130 m; area of *HBCG* is

3 times that of *DEFG*. Find the length |*HF*|.

$$Area(HBCG) = 3 \cdot Area(DEFH)$$

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$

 $_{20}|AB| = |DC| = 2x \text{ m}, |DE| = 3x \text{ m}; \text{ fencing}$

length, excluding wall, is 130 m; area of HBCG is 3 times that of DEFG. Find the length |HF|.

Fence length =
$$130m$$

2y + 2 · 2x + 2 · 3x + 20 = 130

$$Area(HBCG) = 3 \cdot Area(DEFH)$$

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

$$|EF| = |AH| = 20 m, |BC| = y m,$$

 $_{20}|AB| = |DC| = 2x m$, |DE| = 3x m; fencing length, excluding wall, is 130 m; area of *HBCG* is 3 times that of *DEFG*. Find the length |HF|.

$$2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$$

$$Area(HBCG) = 3 \cdot Area(DEFH)$$

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

$$|EF| = |AH| = 20 m, |BC| = y m,$$

 $_{20}|AB| = |DC| = 2x m$, |DE| = 3x m; fencing length, excluding wall, is 130 m; area of *HBCG* is 3 times that of *DEFG*. Find the length |HF|.

Fence length =
$$130m$$

2 $y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$

$$Area(HBCG) = 3 \cdot Area(DEFH)$$

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$

 $_{20}|AB| = |DC| = 2x m$, |DE| = 3x m; fencing length, excluding wall, is 130 m; area of *HBCG* is 3 times that of *DEFG*. Find the length |HF|.

Fence length =
$$130m$$

2y + 2 · 2x + $\frac{2}{3}$ · $\frac{3x}{4}$ + 20 = 130

$$Area(HBCG) = 3 \cdot Area(DEFH)$$

2019

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

$$|EF| = |AH| = 20 m, |BC| = y m,$$

 $_{20}|AB| = |DC| = 2x \, m, \, |DE| = 3x \, m;$ fencing length, excluding wall, is 130 m; area of *HBCG* is 3 times that of *DEFG*. Find the length |HF|.

Fence length =
$$130m$$

2y + 2 · 2x + 2 · 3x + $\frac{20}{20}$ = 130

$$Area(HBCG) = 3 \cdot Area(DEFH)$$

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

$$|EF| = |AH| = 20 \text{ m}, |BC| = \text{y m},$$

 $_{20}|AB| = |DC| = 2\text{x m}, |DE| = 3\text{x m}; \text{ fencing}$

length, excluding wall, is 130 m; area of *HBCG* is 3 times that of *DEFG*. Find the length |*HF*|.

Fence length =
$$130m$$

 $2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$
 $10x + 2y = 110$

$$Area(HBCG) = 3 \cdot Area(DEFH)$$

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

$$|EF| = |AH| = 20 m, |BC| = y m,$$

 $_{20}|AB| = |DC| = 2x \, m, \, |DE| = 3x \, m;$ fencing length, excluding wall, is 130 m; area of *HBCG* is 3 times that of *DEFG*. Find the length |HF|.

Fence length =
$$130m$$

 $2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$
 $10x + 2y = 110$

$$Area(HBCG) = 3 \cdot Area(DEFH)$$

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$

$$|20|AB| = |DC| = 2x \text{ m}, |DE| = 3x \text{ m}; \text{ fencing}$$

$$|ER = |BR = |B$$

Fence length =
$$130m$$

 $2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$
 $10x + 2y = 110$ | Div. by 2
 $5x + y = 55$

$$Area(HBCG) = 3 \cdot Area(DEFH)$$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$
 $|AB| = |DC| = 2x \text{ m}, |DE| = 3x \text{ m}; \text{ fencing length, excluding wall, is 130 m; area of } HBCG \text{ is } 3 \text{ times that of } DEFG. Find the length } |HF|.$

Fence length =
$$130m$$

 $2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$
 $10x + 2y = 110$ | Div. by 2
 $5x + y = 55$
 $y = 55 - 5x$
 $Area(HBCG) = 3 \cdot Area(DEFH)$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$
 $|AB| = |DC| = 2x \text{ m}, |DE| = 3x \text{ m}; fencing length, excluding wall, is 130 m; area of $|AB| = 3$ times that of $|AB| = 3$ find the length $|AB$$

Fence length =
$$130m$$

 $2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$
 $10x + 2y = 110$ | Div. by 2
 $5x + y = 55$
 $y = 55 - 5x$
 $Area(HBCG) = 3 \cdot Area(DEFH)$
 $y \cdot (2x + 20) = 3 \cdot 3x \cdot 20$

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$
 $|AB| = |DC| = 2x \text{ m}, |DE| = 3x \text{ m}; fencing length, excluding wall, is 130 m; area of $|AB| = 3$ times that of $|AB| = 3$ find the length $|AB| = 3$ times that of $|AB| = 3$ find the length $|AB| = 3$ times that of $|AB| = 3$ times that $|AB| = 3$ times $|AB| = 3$ times that $|AB| = 3$ ti$

Fence length =
$$130m$$

 $2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$
 $10x + 2y = 110$ | Div. by 2
 $5x + y = 55$
 $y = 55 - 5x$
 $Area(HBCG) = 3 \cdot Area(DEFH)$
 $y \cdot (2x + 20) = 3 \cdot 3x \cdot 20$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$
 $|AB| = |DC| = 2x \text{ m}, |DE| = 3x \text{ m}; \text{ fencing}$
 $|BC| = |BC| = |BC| = |BC|$
 $|BC| = |BC|$

Fence length =
$$130m$$

 $2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$
 $10x + 2y = 110$ | Div. by 2
 $5x + y = 55$
 $y = 55 - 5x$
 $Area(HBCG) = 3 \cdot Area(DEFH)$
 $y \cdot (2x + 20) = 3 \cdot 3x \cdot 20$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \ m$$
, $|BC| = y \ m$, $|AB| = |DC| = 2x \ m$, $|DE| = 3x \ m$; fencing length, excluding wall, is 130 m; area of $|AB| = |AB| = |AB| = 130 \ m$; area of $|AB| = 130 \ m$; are $|AB| = 130 \ m$; and $|AB| = 130 \ m$; area of $|AB| = 130 \ m$; are $|AB| = 130 \ m$; are $|AB| = 130 \ m$; and $|AB| = 130 \ m$; are $|AB| = 130 \ m$; and $|AB| = 130 \ m$; are $|AB| = 130 \ m$; and $|AB| = 130 \ m$; are $|AB| = 130 \ m$; and $|AB| = 130 \ m$; are $|AB| = 130 \ m$; and $|AB| = 130 \ m$; are $|AB| = 130 \ m$; and $|AB| = 130 \ m$; are $|AB| = 130 \ m$; and $|AB| = 130 \ m$; are $|AB| = 130 \ m$; and $|AB| = 130 \ m$; are $|AB| = 130 \ m$; and $|AB| = 130 \ m$; and $|AB| = 130 \ m$; are $|AB| = 130 \ m$; and $|AB| =$

Fence length =
$$130m$$

 $2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$
 $10x + 2y = 110$ | Div. by 2
 $5x + y = 55$
 $y = 55 - 5x$
 $Area(HBCG) = 3 \cdot Area(DEFH)$
 $y \cdot (2x + 20) = 3 \cdot 3x \cdot 20$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \ m$$
, $|BC| = y \ m$, $|AB| = |DC| = 2x \ m$, $|DE| = 3x \ m$; fencing length, excluding wall, is 130 m; area of $|AB| = 3x \ m$ times that of $|AB| = 3x \ m$ find the length $|AB| = 3x \ m$.

Fence length =
$$130m$$

 $2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$
 $10x + 2y = 110$ | Div. by 2
 $5x + y = 55$
 $y = 55 - 5x$
 $Area(HBCG) = 3 \cdot Area(DEFH)$
 $y \cdot (2x + 20) = 3 \cdot 3x \cdot 20$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \ m$$
, $|BC| = y \ m$, $|AB| = |DC| = 2x \ m$, $|DE| = 3x \ m$; fencing length, excluding wall, is 130 m; area of $|AB| = 3x \ m$ is 3 times that of $|AB| = 3x \ m$.

Fence length =
$$130m$$

 $2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$
 $10x + 2y = 110$ | Div. by 2
 $5x + y = 55$
 $y = 55 - 5x$
 $Area(HBCG) = 3 \cdot Area(DEFH)$
 $y \cdot (2x + 20) = 3 \cdot 3x \cdot 20$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

Fence length =
$$130m$$

 $2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$
 $10x + 2y = 110$ | Div. by 2
 $5x + y = 55$
 $y = 55 - 5x$
 $Area(HBCG) = 3 \cdot Area(DEFH)$
 $y \cdot (2x + 20) = 3 \cdot 3x \cdot 20$
 $(55 - 5x)(2x + 20) - 180x = 0$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$
 $|AB| = |DC| = 2x \text{ m}, |DE| = 3x \text{ m}; \text{ fencing length, excluding wall, is 130 m; area of } HBCG \text{ is } 3 \text{ times that of } DEFG. Find the length } |HF|.$

Fence length =
$$130m$$

 $2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$
 $10x + 2y = 110$ | Div. by 2
 $5x + y = 55$
 $y = 55 - 5x$
 $Area(HBCG) = 3 \cdot Area(DEFH)$
 $y \cdot (2x + 20) = 3 \cdot 3x \cdot 20$
 $(55 - 5x)(2x + 20) - 180x = 0$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \ m$$
, $|BC| = y \ m$, $|AB| = |DC| = 2x \ m$, $|DE| = 3x \ m$; fencing length, excluding wall, is 130 m; area of $|AB| = 3$ times that of $|AB| = 3$. Find the length $|AB| = 3$.

Fence length =
$$130m$$

 $2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$
 $10x + 2y = 110$ | Div. by 2
 $5x + y = 55$
 $y = 55 - 5x$
 $Area(HBCG) = 3 \cdot Area(DEFH)$
 $y \cdot (2x + 20) = 3 \cdot 3x \cdot 20$
 $(55 - 5x)(2x + 20) - 180x = 0$
 $110x + 1100 - 10x^2 - 100x - 180x = 0$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \ m$$
, $|BC| = y \ m$, $|AB| = |DC| = 2x \ m$, $|DE| = 3x \ m$; fencing length, excluding wall, is 130 m; area of $|AB| = 3$ times that of $|AB| = 3$. Find the length $|AB| = 3$.

Fence length =
$$130m$$

 $2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$
 $10x + 2y = 110$ | Div. by 2
 $5x + y = 55$
 $y = 55 - 5x$
 $Area(HBCG) = 3 \cdot Area(DEFH)$
 $y \cdot (2x + 20) = 3 \cdot 3x \cdot 20$
 $(55 - 5x)(2x + 20) - 180x = 0$
 $110x + 1100 - 10x^2 - 100x - 180x = 0$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$
 $|AB| = |DC| = 2x \text{ m}, |DE| = 3x \text{ m}; \text{ fencing length, excluding wall, is 130 m; area of } HBCG \text{ is } 3 \text{ times that of } DEFG. \text{ Find the length } |HF|.$

Fence length =
$$130m$$

 $2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$
 $10x + 2y = 110$ | Div. by 2
 $5x + y = 55$
 $y = 55 - 5x$
 $Area(HBCG) = 3 \cdot Area(DEFH)$
 $y \cdot (2x + 20) = 3 \cdot 3x \cdot 20$
 $(55 - 5x)(2x + 20) - 180x = 0$
 $110x + 1100 - 10x^2 - 100x - 180x = 0$

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$

$$|BF| = |DC| = 2x \text{ m}, |DE| = 3x \text{ m}; \text{ fencing}$$

$$|BF| = |BF| = |BF| = 3x \text{ m}; \text{ fencing}$$

$$|BF| = |BF| = 3x \text{ m}; \text{ fencing}$$

$$|BF| = |BF| = 3x \text{ m}; \text{ fencing}$$

$$|BF| = |BF| = 3x \text{ m}; \text{ fencing}$$

$$|BF| = |BF| = 3x \text{ m}; \text{ fencing}$$

$$|BF| = |BF| = 3x \text{ m}; \text{ fencing}$$

$$|BF| = |BF| = 3x \text{ m}; \text{ fencing}$$

$$|BF| = |BF| = 3x \text{ m}; \text{ fencing}$$

$$|BF| = |BF| = 3x \text{ m}; \text{ fencing}$$

$$|BF| = |BF| = 3x \text{ m}; \text{ fencing}$$

Fence length =
$$130m$$

 $2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$
 $10x + 2y = 110$ | Div. by 2
 $5x + y = 55$
 $y = 55 - 5x$
 $Area(HBCG) = 3 \cdot Area(DEFH)$
 $y \cdot (2x + 20) = 3 \cdot 3x \cdot 20$
 $(55 - 5x)(2x + 20) - 180x = 0$
 $110x + 1100 - 10x^2 - 100x - 180x = 0$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \, m$$
, $|BC| = y \, m$, $|BC| = |BC| = 2x \, m$, $|BC| = 3x \, m$; fencing length, excluding wall, is 130 m; area of $|BCG|$ is 3 times that of $|BEG|$. Find the length $|BE|$.

Fence length =
$$130m$$

 $2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$
 $10x + 2y = 110$ | Div. by 2
 $5x + y = 55$
 $y = 55 - 5x$
 $Area(HBCG) = 3 \cdot Area(DEFH)$
 $y \cdot (2x + 20) = 3 \cdot 3x \cdot 20$
 $(55 - 5x)(2x + 20) - 180x = 0$
 $110x + 1100 - 10x^2 - 100x - 180x = 0$
 $-10x^2 - 170x + 1100 = 0$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$
 $|AB| = |DC| = 2x \text{ m}, |DE| = 3x \text{ m}; \text{ fencing length, excluding wall, is 130 m; area of } HBCG \text{ is } 3 \text{ times that of } DEFG. \text{ Find the length } |HF|.$

Fence length =
$$130m$$

 $2y + 2 \cdot 2x + 2 \cdot 3x + 20 = 130$
 $10x + 2y = 110$ | Div. by 2
 $5x + y = 55$
 $y = 55 - 5x$
 $Area(HBCG) = 3 \cdot Area(DEFH)$
 $y \cdot (2x + 20) = 3 \cdot 3x \cdot 20$
 $(55 - 5x)(2x + 20) - 180x = 0$
 $110x + 1100 - 10x^2 - 100x - 180x = 0$
 $-10x^2 - 170x + 1100 = 0$

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$

$$|AB| = |DC| = 2x \text{ m}, |DE| = 3x \text{ m}; \text{ fencing}$$
length, excluding wall, is 130 m; area of *HBCG* is
$$|E| = 3 \text{ times that of } DEFG. \text{ Find the length } |HF|.$$

$$y = 55 - 5x$$
$$-10x^2 - 170x + 1100 = 0$$

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$

$$|AB| = |DC| = 2x \text{ m}, |DE| = 3x \text{ m}; \text{ fencing}$$

$$|ERROR = |BRR = |B$$

$$y = 55 - 5x$$

 $-10x^2 - 170x + 1100 = 0$ | Div. by -10
 $x^2 + 17x - 110 = 0$

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$

 $|BC| = |BC| = 2x \text{ m}, |BC| = 3x \text{ m}; \text{ fencing}$
 $|BC| = 3x \text{ m}; \text{ fencing}$

$$y = 55 - 5x$$

 $-10x^2 - 170x + 1100 = 0$ | Div. by -10
 $x^2 + 17x - 110 = 0$
 $(x + ?)(x + ?) = 0$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$
 $|AB| = |DC| = 2x \text{ m}, |DE| = 3x \text{ m}; fencing length, excluding wall, is 130 m; area of $|AB| = 3$ times that of $|AB| = 3$ find the length $|AB| = 3$ times that of $|AB| = 3$ find the length $|AB| = 3$ times that of $|AB| = 3$ times that $|AB| = 3$ times $|AB| = 3$ times that $|AB| = 3$ times th$

$$y = 55 - 5x$$

 $-10x^2 - 170x + 1100 = 0$ | Div. by -10
 $x^2 + 17x - 110 = 0$
 $(x - 5)(x + 22) = 0$

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$
 $|BC| = |BC| = 2x \text{ m}, |BC| = 3x \text{ m};$ fencing length, excluding wall, is 130 m; area of $|BCG|$ is 3 times that of $|BEFG|$. Find the length $|BF|$.

$$y = 55 - 5x$$
 $-10x^2 - 170x + 1100 = 0$ | Div. by -10
 $x^2 + 17x - 110 = 0$
 $(x -5)(x + 22) = 0$
 $x = 5 \text{ or } x = -22$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$

$$|B| = |BC| = 2x \text{ m}, |BE| = 3x \text{ m}; \text{ fencing}$$

$$|B| = |B| = |B| = 3x \text{ m}; \text{ area of } B| = 3x \text{ m}$$

$$y = 55 - 5x$$

 $-10x^2 - 170x + 1100 = 0$ | Div. by -10
 $x^2 + 17x - 110 = 0$
 $(x -5)(x + 22) = 0$
 $x = 5 \text{ or } x = -22$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$

$$|BC| = |BC| = 2x \text{ m}, |DE| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 2x \text{ m}, |BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$y = 55 - 5x$$

 $-10x^2 - 170x + 1100 = 0$ | Div. by -10
 $x^2 + 17x - 110 = 0$
 $(x -5)(x + 22) = 0$
 $x = 5 \text{ or } x = 22$ | $x > 0$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$

$$|AB| = |DC| = 2x \text{ m}, |DE| = 3x \text{ m}; \text{ fencing}$$

$$|ERC| = |BRC| = |BRC|$$

$$y = 55 - 5x$$

$$-10x^{2} - 170x + 1100 = 0$$

$$x^{2} + 17x - 110 = 0$$

$$(x -5)(x + 22) = 0$$

$$x = 5 \text{ or } x = 22$$

$$y = 55 - 5x$$
| Div. by - 10

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$

$$|BC| = |BC| = 2x \text{ m}, |DE| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 2x \text{ m}, |BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$y = 55 - 5x$$

$$-10x^{2} - 170x + 1100 = 0$$

$$x^{2} + 17x - 110 = 0$$

$$(x -5)(x + 22) = 0$$

$$x = 5 \text{ or } x = 22$$

$$y = 55 - 5x$$

$$= 55 - 5 \cdot 5$$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$

$$|BC| = |BC| = 2x \text{ m}, |DE| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 2x \text{ m}, |BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$y = 55 - 5x$$

$$-10x^{2} - 170x + 1100 = 0$$

$$x^{2} + 17x - 110 = 0$$

$$(x -5)(x + 22) = 0$$

$$x = 5 \text{ or } x = 22$$

$$y = 55 - 5x$$

$$= 55 - 5 \cdot 5 = 30$$

A field is enclosed by a wall AH and fencing at the rest of the boundary, as depicted. Given:

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$

$$|BC| = |BC| = 2x \text{ m}, |DE| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 2x \text{ m}, |BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ fencing}$$

$$y = 55 - 5x$$

$$-10x^{2} - 170x + 1100 = 0 | Div. by - 10$$

$$x^{2} + 17x - 110 = 0$$

$$(x -5)(x + 22) = 0$$

$$x = 5 \text{ or } x = 22 | x > 0$$

$$y = 55 - 5x$$

$$= 55 - 5 \cdot 5 = 30$$

$$|HF| = (y + 3x)m$$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$

$$|BC| = |BC| = 2x \text{ m}, |DE| = 3x \text{ m}; \text{ fencing}$$

$$|BC| = |BC| = 2x \text{ m}, |BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$|BC| = |BC| = 3x \text{ m}; \text{ area of } BCG \text{ is}$$

$$y = 55 - 5x$$

$$-10x^{2} - 170x + 1100 = 0$$

$$x^{2} + 17x - 110 = 0$$

$$(x -5)(x + 22) = 0$$

$$x = 5 \text{ or } x = 22$$

$$y = 55 - 5x$$

$$= 55 - 5 \cdot 5 = 30$$

$$|HF| = (y + 3x)m$$

$$= (30 + 3 \cdot 5)m$$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$
 $|AB| = |DC| = 2x \text{ m}, |DE| = 3x \text{ m}; fencing length, excluding wall, is 130 m; area of $ABCG$ is 3 times that of $ABCG$. Find the length $ABCG$ is$

$$y = 55 - 5x$$

$$-10x^{2} - 170x + 1100 = 0$$

$$x^{2} + 17x - 110 = 0$$

$$(x -5)(x + 22) = 0$$

$$x = 5 \text{ or } x = 22 \qquad | x > 0$$

$$y = 55 - 5x$$

$$= 55 - 5 \cdot 5 = 30$$

$$|HF| = (y + 3x)m$$

$$= (30 + 3 \cdot 5)m$$

$$= 45m$$

the rest of the boundary, as depicted. Given:
$$|EF| = |AH| = 20 \text{ m}, |BC| = y \text{ m},$$
 $|AB| = |DC| = 2x \text{ m}, |DE| = 3x \text{ m}; fencing length, excluding wall, is 130 m; area of $|AB| = 3$ times that of $|AB| = 3$ find the length $|AB$$

$$y = 55 - 5x$$

$$-10x^{2} - 170x + 1100 = 0$$

$$x^{2} + 17x - 110 = 0$$

$$(x -5)(x + 22) = 0$$

$$x = 5 \text{ or } x = 22$$

$$y = 55 - 5x$$

$$= 55 - 5 \cdot 5 = 30$$

$$|HF| = (y + 3x)m$$

$$= (30 + 3 \cdot 5)m$$

$$= 45m$$