IN THE CLAIMS

Kindly amend the claims to read as follows.

1. (currently amended) Compound of formula

(1)
$$\begin{bmatrix} R_1 & OH & O & A \\ R_2 & & & \\ \end{bmatrix}_{n_1}$$
, wherein

R₁ and R₂ independently from each other are; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; or C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking <u>nitrogen</u>nitogen atom form a 5- or 6-membered heterocyclic ring;

n₁ is a number from 1 to 4;

when $n_1 = 1$,

R₃ is a saturated or unsaturated heterocyclic radical; hydroxy-C₁-C₅alkyl; cyclohexyl-optionally-substituted with one or more C₁-C₅alkyl; or phenyl optionally-substituted with a heterocyclic-radical, aminocarbonyl or C₁-C₅alkylcarboxy;

when n₁ is 2,

 R_3 is an alkylen-, cycloalkylene, alkenylene or phenylene radical which is optionally substituted by a carbonyl- or carboxy group; or a radical of formula $-cH_2-c\equiv c-cH_2-\cdot$; or R_3 together with A forms

a bivalent radical of the formula (1a)
$$-A = \begin{pmatrix} CH_2 \end{pmatrix}_{n_2} A = 0$$
; wherein

n₂ is a number from 1 to 3;

when n₁ is 3,

R₃ is an alkantriyl radical;

when n₁ is 4,

R₃ is an alkantetrayl radical;

A is -O-; or $-N(R_5)$ -; and

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl.

10/537,940 - 2 - HU/1-22812/A/PCT

2. (previously presented) Compound according to claim 1, wherein

R₁ and R₂ independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; or C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

n₁ is a number from 1 to 4;

when n₁ is 1,

R₃ is a saturated or unsaturated heterocyclic radical; hydroxy-C₁-C₅alkyl; or Cyclohexyl substituted with one or more C₁-C₅alkyl;

when n₁ is 2,

R₃ is an alkylen-, cycloalkylen- or alkenylene radical which is optionally interrupted by a carbonyl- or carboxy group;

when n₁ is 3,

R₃ is an alkantriyl radical;

when n₁ is 4,

R₃ is an alkantetrayl radical;

A is -O-; or $-N(R_5)$ -; and

 R_5 is hydrogen; C_1 - C_5 alkyl; or hydroxy- C_1 - C_5 alkyl.

3. (previously presented) Compound according to claim 1, wherein

R₁ and R₂ are C₁-C₂₀alkyl.

4. (previously presented) Compound according to claim 1, wherein

 R_1 and R_2 independently from each other are C_1 - C_5 alkyl.

5. (currently amended) Compound according to claim 1, wherein

 R_1 and R_2 in formula (1) have the same definition.

6. (cancelled)

10/537,940 - 3 - HU/1-22812/A/PCT

7. (previously presented) Compound according to claim 1, wherein if n_1 is 1,

R₃ is a saturated heterocyclic radical.

8. (original) Compound according to claim 7, wherein

R₃ is a monocyclic radical of 5, 6 or 7 ring members with one or more hetero atoms.

9. (currently amended) Compound according to claim 8, wherein

R₃ is morpholinyl; piperazinyl; piperidyl; pyrazolidinyl; imadazolidinyl; or pyrrolidinyl.

10. (currently amended) Compound according to claim 16, wherein

R₃ is an unsaturated heterocyclic radical.

11. (original) Compound according to claim 10, wherein

R₃ a polycyclic radical.

12. (previously presented) Compound according to claim 1, wherein

 R_3 is a radical of formula (1a)

$$R_s$$
 , and

 R_5 is polycyclic heteroaromatic radical with one or 2 heteroatoms.

13. (original) Compound according to claim 12, wherein

R₃ is a radical of formula (1b)

$$R_{\epsilon}$$
 , whereir

R₆ is hydrogen; or C₁-C₅alkyl.

14. (previously presented) Compound according to claim 1, wherein, if n_1 is 2,

R₃ is a C₁-C₁₂alkylene radical.

15. (original) Compound according to claim 14, wherein

 R_3 is a radical of formula $*-CH_2-(CH_2)_m-CH_2-*$; $*-CH_2-*$;

r is 0 or 1; and

q = is a number from 0 to 5.

16. (previously presented) Compound according to claim 1, wherein, when n_1 is 3;

 R_3 is a radical of formula (1a) \star -CH₂-CH-(CH₂)_p-CH₂- \star or (1b) \star -CH₂-CH and

p is a number from 0 to 3; and

 R_1 , R_2 and A are defined as in formula (1).

17. (previously presented) Compound according to claim 1, wherein, when n_1 is 4,

 R_1 , R_2 and A are defined as in formula (1).

18. (original) Compound according to claim 1, which corresponds to formula

(2)
$$R_1$$
 R_2 N Wherein

R₁ and R₂ independently from each other are hydrogen; or C₁-C₅alkyl;

A is -NH; or -O-; and

R₃ is a saturated or unsaturated heterocyclic radical.

19. (original) Compound according to claim 1, which corresponds to formula

(3)
$$R_1$$
 R_2 R_3 R_4 , wherein

R₁ and R₂ independently from each other are hydrogen; or C₁-C₅alkyl;

A is -NH; or -O-; and

 R_3 is a C_1 - C_{12} alkylene radical.

10/537,940 - 6 - HU/1-22812/A/PCT

20. (original) Compound according to claim 1, which corresponds to formula

(4)
$$R_1$$
, wherein R_1 , R_2

R₁ and R₂ independently from each other are hydrogen; or C₁-C₅alkyl;

A is -NH; or -O-; and

$$R_3$$
 is *-CH₂—CH-(CH₂)_p-CH₂-* or *-CH₂—CH -; and

p is a number from 0 to 3.

10/537,940 - 7 - HU/1-22812/A/PCT

21. (original) Compound according to claim 1, which corresponds to formula

(5)
$$R_1$$
 R_1 R_2 R_1 R_2 R_1 R_2 R_2 R_1 R_2

 R_1 , R_2 and A are defined as in formula (1).

22. (currently amended) A process for the preparation of the compounds of formula (1), which comprises, <u>dehydratingdehydratisating</u>

(6b)
$$R_1 \sim N$$
 and

(b) reacting the anhydride with the compound of formula $(6c_1)$ H-N(R₅)-R₃ or $(6c_2)$ H-O-R₃ to the compound of formula

(1')
$$\begin{bmatrix} R_1 & O & A \\ R_2 & R_3 \\ R_2 & R_3 \end{bmatrix}$$
, wherein

R₁ and R₂ independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; or C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

 n_1 is 1 to 4;

if n₁ is 1,

R₃ is hydrogen; C₁-C₂₀alkyl; hydroxy-C₁-C₅alkyl; C₂-C₂₀alkenyl; C₃-C₁₀-cyclohexyl not substituted or substituted with one or more C₁-C₅alkyl; (Y-O)_pZ; C₆-C₁₀aryl; or a saturated or unsaturated heterocyclic radical;

Y is C₁-C₁₂alkylen;

Z is C₁-C₅alkyl;

p is a number from 1 to 20;

if n₁ is 2,

R₃ is a alkylen-, cycloalkylen- or alkenylene radical which is optionally interrupted by carbonyl- or carboxy group;

if n₁ is 3,

R₃ is an alkantriyl radical;

if n₁ is 4,

R₃ is a alkantetrayl radical;

A is -O-; or $-N(R_5)$ -;

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl; and

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl.

10/537,940 - 9 - HU/1-22812/A/PCT

23. (currently amended) Process according to claim 22, wherein the process refers to compounds of formula

(7)
$$R_2$$
 N R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1

 R_1 and R_2 independently from each other are C_1 - C_{12} alkyl; and R_5 is hydrogen; C_1 - C_{12} alkylalklyl; or C_3 - C_6 -cycloalkyl.

24. (canceled)

25. (canceled)

- **26.** (original) A cosmetic preparation comprising at least one or more compounds of formula (1) according to claim 1 with cosmetically acceptable carriers or adjuvants.
- 27. (previously presented) Compounds of formula

 R_1 ' and R_2 " independently from each other are hydrogen; C_1 - C_{20} alkyl; C_2 - C_{20} alkenyl; C_3 - C_{10} -cycloalkyl; or C_3 - C_{10} cycloalkenyl; or R_1 and R_2 together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring.

28. (canceled)

29. (previously presented) UV-Absorber-dispersion, comprising

10/537,940 - 10 - HU/1-22812/A/PCT

(a) a micronised UV absorber of formula

(1')
$$\begin{bmatrix} R_1 & OH & O & A \\ R_2 & N & A \end{bmatrix} R_3$$
, wherein

R₁ and R₂ independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; or C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

when n₁ is 1,

R₃ is hydrogen; C₁-C₂₀alkyl; hydroxy-C₁-C₅alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cyclohexyl not substituted or substituted with one or more C₁-C₅alkyl; (Y-O)_pZ; C₆-C₁₀aryl; or a saturated or unsaturated heterocyclic radical;

Y C₁-C₁₂alkylen;

Z C₁-C₅alkyl;

p is a number from 1 to 20;

when n₁ is 2,

R₃ is a alkylen-, cycloalkylen- or alkenylen- radical optionally interrupted by a carbonyl- or carboxy group;

if n₁ is,

R₃ is an alkantriyl radical;

if n₁ is 4,

R₃ is an alkantetrayl radical;

A is -O-; or $-N(R_5)$ -; and

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl;

having a particle size from 0.02 to 2 µm, and

(b) a suitable dispersing agent.

30. (previously presented) A cosmetic preparation according to claim **26**, wherein the compounds of formula (1) are present in micronized form.

10/537,940 - 11 - HU/1-22812/A/PCT