北京郵電大學

网络空间安全学院

《计算机组成与系统结构》实验报告

姓名王何佳学号2023211603班级2023211804邮箱624772990@qq.com任课教师苑洁

实验 1. 运算器组成实验

一、实验目的

- 1. 熟悉逻辑测试笔的使用方法。
- 2. 熟悉 TEC-8 模型计算机的节拍脉冲 T1、T2、T3;
- 3. 熟悉双端口通用寄存器组的读写操作;
- 4. 熟悉运算器的数据传送通路;
- 5. 验证 74LS181 的加、减、与、或功能;
- 6. 按给定的数据,完成几种指定的算术、逻辑运算运算。

二、实验内容

1. 实验电路图

双端口寄存器组由 EPM7064 芯片构成,包含四个 8 位寄存器 R0、R1、R2、R3,以及两个 4 选 1 选择器 A 和 B 和一个 2-4 译码器。选择器 A 和 B 根据 RD1、RD0 和 RS1、RS0 的值从寄存器中选择数据送往 ALU 的 A 和 B 端口。译码器根据 RD1、RD0 的值产生信号 LR0-LR3,指示被写的寄存器。DRW 信号控制写入操作,将数据总线 DBUS 上的数据写入指定寄存器。数据开关 SD7~SD0 通过 74LS244 驱动器 SWD 送往 DBUS,用于设置寄存器值。ALU 由 74LS181 等芯片构成,完成算术逻辑运算,并将结果和标志位保存。加法和减法影响 C 和 Z 标志,而与、或操作只影响 Z 标志。

2. 实验任务

对以下七组数据进行加、减、与、或四种运算。

- ①A=F0H, B=10H ②A=10H, B=F0H ③A=03H, B=05H ④A=0AH, B=0AH
- ⑤A=FFH, B=AAH ⑥A=55H, B=AAH ⑦A=C5H, B=61H

(1) 设置加、减、与、或实验模式

按复位按钮 CLR,使 TEC-8 实验系统复位。指示灯μA5~μA0 显示 00H。将操作模式开关设置为 SWC=1、SWB=0、SWA=1,准备进入加、减、与、或实验。按一次 QD 按钮,产生一组节拍脉冲信号 T1、T2、T3,进入加、减、与、或实验。

(2) 设置数 A

指示灯μA5~μA0 显示 OBH。在数据开关 SD7~SD0 上设置数 A。在数据总线 DBUS 指示 D7~D0 上可以看到数据设置的正确不正确,发现错误需及时改正。设置数据正确后,按 一次 QD 按钮,将 SD7~SD0 上的数据写入 R0,进入下一步。

(3) 设置数 B

指示灯μA5~μA0 显示 15H。这时 R0 已经写入,在指示灯 B7~B0 上可以观察到 R0 的值。 在数据开关 SD7~SD0 上设置数 B。设置数据正确后,按一次 QD 按钮,将 SD7~SD0 上的 数据写入 R1,进入下一步。

(4) 进行加法运算

指示灯μA5~μA0显示 16H。指示灯 A7~A0显示被加数 A(R0),指示灯 B7~B0显示加数 B(R1),D7~D0 指示灯显示运算结果 A+B。按一次 QD 按钮,进入下一步。

(5) 进行减法运算

指示灯 μ A5~ μ A0 显示 17H。这时指示灯 C(红色)显示加法运算得到的进位 C,指示灯 Z(绿色)显示加法运算得到的结果为 0 信号。指示灯 A7~A0 显示被减数 A(R0),指示灯 B7~B0

显示减数 B(R1), 指示灯 D7~D0 显示运算结果 A-B。按一次 QD 按钮, 进入下一步。

(6) 进行与运算

指示灯 μ A5~ μ A0 显示 18H。这时指示灯 C(红色)显示减法运算得到的进位 C,指示灯 Z(绿色)显示减法运算得到的结果为 0 信号。指示灯 A7~A0 显示数 A(R0),指示灯 B7~B0 显示数 B(R1),指示灯 D7~D0 显示运算结果 A and B。按一次 QD 按钮,进入下一步。

(7) 进行或运算

指示灯μA5~μA0 显示 19H。这时指示灯 Z(绿色)显示与运算得到的结果为 0 信号。指示灯 C 保持不变。指示 A7~A0 显示数 A(RO),指示灯 B7~B0 显示数 B(R1),指示灯 D7~D0 显示运算结果 A or B。按一次 QD 按钮,进入下一步。

(8) 结束运算

指示灯 μ A5~ μ A0 显示 00H。这时指示灯 Z(绿色)显示或运算得到的结果为 0 信号。指示灯 C 保持不变。

按照上述步骤,对要求的7组数据进行运算。

三、实验过程(独立方式)

1. 按下图接线。

K15	K14	K13	K12	K11	K10	К9	K8	K7	К6	K5	K4	К3	K2	K1	КО
M	S0	S1	S2	S3	CIN	ABUS	LDC	LDZ	RD1	RDO	DRW	SBUS	RS1	RS0	MBUS

2. 初始化 A, B 的值

置R₀为 FOH (左图)

K15	K14	K13	K12	K11	K10	K9	K8	K7	K6	K5	K4	K3	K2	K1	K0
											1	1			

置R₁为 10H (右图)

K15	K14	K13	K12	K11	K10	K9	K8	K7	K6	K5	K4	K3	K2	K1	K0
										1	1	1			

3. 计算 $R_0 + R_1$, (M=0,S3-S0=1001)

K15	K14	K13	K12	K11	K10	K9	K8	K7	K6	K5	K4	K3	K2	K1	K0
	1			1	1	1	1	1						1	

得到结果 00000000,即 00H。C=1,Z=1。

4. 计算 $R_0 - R_1$, (M=0, S3-S0=0110)

K15	K14	K13	K12	K11	K10	K9	K8	K7	K6	K5	K4	K3	K2	K1	K0
		1	1			1	1	1						1	

得到结果 11100000,即 E0H。C=1,Z=0。

5. 计算R₀&R₁, (M=1,S3-S0=1011)

K15	K14	K13	K12	K11	K10	K9	K8	K7	K6	K5	K4	K3	K2	K1	K0
1	1	1		1		1		1						1	

得到结果 00010000, 即 10H; Z=0。

6. 计算 $R_0|R_1$, (M=1,S3-S0=1110)

K15	K14	K13	K12	K11	K10	K9	K8	K7	K6	K5	K4	K3	K2	K1	K0
1		1	1	1		1		1						1	

得到结果 **11110000**,即 F0H。**Z=0**。

7. 改变 A, B 的值, 重复上述步骤。

第二组(A=10H, B=F0H):

第三组(A=03H, B=05H):

第四组(A=OAH, B=OAH):

第五组(A=FFH, B=AAH):

第六组(A=55H, B=AAH):

第七组(A=C5H,B=61H):

8. 记录整理数据

运算器组成实验结果数据表如下:

实验	数据				Ś	实验	结果				
数A	数B	加			减			与		或	
致A.	女(D	数据结果	C	Z	数据结果	C	Z	数据结果	Z	数据结果	Z
FOH.	10H	00H	1	1	ЕОН	1	0	10H	0	F0H	0
10H	FOH	00H	1	1	20H	0	0	10H	0	FOH	0
03H	05H	08H	0	0	FEH	0	0	01H	0	07H	0
OAH	OAH	14H	0	0	00H	1	1	OAH	0	OAH	0
FFH	AAH	A9H	1	0	55H	1	0	AAH	0	FFH	0
55H	AAH	FFH	0	0	ABH	0	0	00H	1	FFH	0
C5H	61H	26H	1	0	64H	1	0	41H	0	E5H	0

四、可探索和研究的问题

1. ALU 具有记忆功能吗?如果有,如何设计?

典型的 ALU 通常是无记忆功能的,因为它在执行完每一轮操作后不会保留之前的数据。 然而,通过增加寄存器或锁存器,可以让 ALU 在一定程度上具备"记忆"能力,即能够 暂存计算结果或标志位。

设计:在 ALU 外部添加一个累加寄存器,存储上一次的计算结果,并在下一次计算中将此值作为输入。这种设计可以实现类似于累积求和、增量计算等需求。此外,ALU 可以通过标志寄存器来保存上一轮运算的标志位(如进位 C、零标志 Z等),这些标志信息在后续运算中可以被调用,以实现更复杂的逻辑判断。

2. 为什么在 ALU 的 A 端口和 B 端口的数据确定后,在数据总线 DBUS 上能够直接观测运算的数据结果,而标志结果却在下一步才能观测到?

这是因为 ALU 在数据传输的过程中遵循一定的时序逻辑。ALU 直接对输入数据进行的操作,数据传送到 DBUS 总线上时,ALU 已经完成了简单的算术或逻辑运算输出到数据总线。然而,标志结果的生成涉及进位、溢出等复杂逻辑计算,通常需要经过额外的时钟周期进行判定。

五、实验思考与心得

实验过程中,我学会了如何使用 TEC-8 实验系统进行复位、设置数据以及进行各种运算,这些步骤让我更加熟悉实验设备的操作方法。同时,我也意识到了在实验过程中

细心的重要性,因为任何数据设置的错误都可能导致错误的运算结果。通过观察指示灯的变化,我能够直观地看到每一步操作的结果,这对于理解数据如何在电路中流动和处理非常有帮助。此外,这个实验也让我认识到了进位和结果为 0 信号在运算中的作用,这对于理解更复杂的数字电路和计算机运算原理至关重要。总的来说,这次实验不仅加深了我对数字逻辑运算的理解,也提高了我的实践操作能力。