

- 1. Базовая задача. Два тела привели в тепловое взаимодействие. Масса, удельная теплоемкость и температура каждого тела известна. Найти установившуюся температуру. Рассмотреть случай с большим количеством тел. Случай, когда дана полная теплоемкость тела.
- 2. На какую высоту можно поднять гирю массой M=16 кг, если для этого использовать всю энергию, выделившуюся при остывании стакана чая массой m=200 г от $t_1=100\,^{\circ}C$ до $t_2=20\,^{\circ}C$?
- 3. В калориметре смешали две жидкости с начальными температурами t_1 и t_2 и удельными теплоемкостями c_1 и c_2 . В результате разность между начальной температурой одной из жидкостей и установившейся температурой t смеси оказалась вдвое меньше разности начальных температур жидкостей. Найдите отношение масс жидкостей.
- 4. Брусок, нагретый до $t_1 = 100\,^{\circ}C$, опускают в калориметр с водой. При этом ее температура повышается от $t_2 = 30\,^{\circ}C$ до $t_3 = 40\,^{\circ}C$. Какой станет температура воды в калориметре, если, не вынимая первого бруска, в нее опустить еще один такой же брусок, нагретый до $70\,^{\circ}C$?
- 5. В лаборатории по работе с одарёнными детьми экспериментатор Глюк обнаружил два одинаковых теплоизолированных сосуда. В каждый из них было налито одинаковое количество неизвестной жидкости. В первый сосуд он налил почти доверху из стоящего рядом кувшина воды и насыпал немного разогретых металлических опилок. Сосуд оказался заполненным доверху. После установления теплового равновесия температура в сосуде увеличилась на $\Delta t_1 = 2$ °C, а опилки остыли на $\Delta t_2 = 60$ °C. Затем он проделал опыт со вторым сосудом. В него Глюк насыпал опилок в 10 раз больше, чем в первом опыте, и сосуд вновь оказался заполненным. Ко времени установления теплового равновесия температура в сосуде повысилась на столько же градусов, на сколько понизилась температура опилок. Определите удельную теплоёмкость опилок, если их плотность $\rho_{\rm M} = 1,72~{\rm г/cm}^3$, а удельная теплоёмкость воды $c_{\rm B} = 4,20~{\rm Дж/(r\cdot °C)}$.
- 6. В калориметр, содержащий $m_{\rm B}=1.5~{\rm kr}$ воды при температуре $t_{\rm B}=20~{\rm ^{\circ}C}$ положили $m_{\rm A}=1.0~{\rm kr}$ льда, имеющего температуру $t_{\rm A}=-10~{\rm ^{\circ}C}$. Какая температура θ установится в калориметре? Решить эту же задачу для $m_{\rm A}=0.1~{\rm kr}$; $m_{\rm A}=8.0~{\rm kr}$.
- 7. Плоская льдинка плавает в сосуде с водой. Вся система находится при температуре $t_0 = 0$ °C. Минимальная масса груза, который необходимо положить на льдинку, чтобы она полностью погрузилась в воду, равна $m_1 = 100$ г. Если эту льдинку охладить до температуры t_1 и снова положить в тот же сосуд с водой, по-прежнему находящимися при температуре t_0 , то после установления теплового равновесия для полного погружения льдинки в воду на нее необходимо положить груз массой $m_2 = 110$ г. До какой температуры t_1 охладили льдинку?

- 8. Смесь, состоящую из $m_{\pi} = 5.0~\rm kr$ льда и $m_{\rm B} = 15~\rm kr$ воды при общей температуре t = 0°C, нужно нагреть до температуры $\theta = 80$ °C, пропуская водяной пар с температурой $t_2 = 100$ °C. Определите необходимую массу пара m_{π} .
- 9. Горячий суп, налитый доверху в большую тарелку, охлаждается до температуры, при которой его можно есть, за время t=20 мин. Через какое время можно будет есть суп с той же начальной температурой, если разлить его по 8 маленьким тарелкам, которые также заполнены доверху и подобны большой?
- 10. В некотором доме стенки, крыша и пол изготовлены из полностью теплоизолирующих материалов. Теплопроводящими являются только двери. В комнате установлена печь (см. рис.), выделяющая постоянную мощность Р. Если дверь между комнатой и прихожей открыта, а на улицу закрыта, то по всему дому

устанавливается температура $T=8\,^{\circ}$ С. Какая температура установится в комнате и прихожей, если закрыть обе двери? Температура воздуха на улице $T_0=-10\,^{\circ}$ С.