Задача А. Обход в ширину

 Имя входного файла:
 bfs.in

 Имя выходного файла:
 bfs.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Дан ориентированный граф. В нём необходимо найти расстояние от одной заданной вершины до другой.

Формат входного файла

В первой строке входного файла содержатся три натуральных числа N, S и F ($1 \leqslant S, F \leqslant N \leqslant 100$) — количество вершин в графе и номера начальной и конечной вершин соответственно. Далее в N строках задана матрица смежности графа. Если значение в j-м элементе i-й строки равно 1, то в графе есть направленное ребро из вершины i в вершину j.

Формат выходного файла

В единственной строке должно находиться минимальное расстояние от начальной вершины до конечной. Если пути не существует, выведите 0.

Примеры

bfs.in	bfs.out
5 5 3	1
0 0 1 1 0	
0 0 0 1 0	
1 0 0 0 1	
1 1 0 0 1	
0 0 1 1 0	
	1

Задача В. Поиск цикла

Имя входного файла: cycle.in
Имя выходного файла: cycle.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дан ориентированный невзвешенный граф. Необходимо определить есть ли в нём циклы. и если есть. то вывести любой из них.

Формат входного файла

В первой строке входного файла находятся два натуральных числа N и M ($1 \le N \le 100\,000$, $M \le 100\,000$) — количество вершин и рёбер в графе соответственно. Далее в M строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин соответственно.

Формат выходного файла

Если в графе нет цикла, то вывести «NO», иначе $\,-\,$ «YES» и затем перечислить все вершины в порядке обхода цикла.

Примеры

cycle.in	cycle.out
2 2	YES
1 2	1 2
2 1	
2 2	NO
1 2	
1 2	

Задача С. Максимум по минимуму

 Имя входного файла:
 maxmin.in

 Имя выходного файла:
 maxmin.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Дан ориентированный невзвешенный граф. В нём необходимо найти вершину, кратчайшее расстояние от которой до заданной максимально.

Формат входного файла

В первой строке входного файла содержатся три натуральных числа $N,\ M$ и S ($1\leqslant S\leqslant N\leqslant 5000,\ 1\leqslant M\leqslant 20\,000$) — количество вершин и рёбер в графе и номер заданной вершины соответственно. Далее в M строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин соответственно.

Формат выходного файла

Вывести одно целое число — искомое кратчайшее расстояние.

Примеры

maxmin.in	maxmin.out
3 5 3	2
1 2	
2 1	
3 1	
2 3	
3 3	

Задача D. Выход из лабиринта

 Имя входного файла:
 maze.in

 Имя выходного файла:
 maze.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Во время торнадо в Костромской области было повалено большое количество деревьев. Однажды утром, спустя пару дней после торнадо, мальчик Илья вышел прогуляться и увидел, что поваленные деревья образовали настоящий лабиринт. Вася очень обрадовался,

стал гулять и играть в лабиринте. Внезапно ему позвонил преподаватель и поинтересовался, почему он давно не видел Илью. Чтобы не получить дырку в бэйджик за самовольный выход за территорию лагеря, Илья, конечно же, хотел попасть в домик как можно скорее, но и побродить по лабиринту ему тоже очень хотелось. Помогите ему узнать, как быстро он сможет добраться до домика.

Формат входного файла

В первой строке входного файла заданы целые положительные числа N и M ($1\leqslant N,M\leqslant 1000$). В следующих N строках заданы по M символов, описывающих лабиринт. На позициях, по которым Илья может перемещаться, записан символ «0», а на позициях, которые перегорожены деревьями, записан символ «1». После описания лабиринта следуют целые числа x_1,y_1,x_2,y_2 — координаты (то есть соответствующие номера столбцов и строк) Ильи и его домика соответственно ($1\leqslant x_1,x_2\leqslant M,1\leqslant y_1,y_2\leqslant N$).

Формат выходного файла

В выходной файл выведите единственное число — длину кратчайшего пути от точки (x_1,y_1) до точки (x_2,y_2) , если Илья может добраться до дому по лабиринту, и «-1» в противном случае.

Примеры

maze.in	maze.out
4 6	7
1 0 1 1 1 0	
0 0 1 0 0 0	
1 0 1 1 0 0	
0 0 0 0 0 0	
2 1	
5 3	
4 6	-1
1 0 1 1 1 0	
0 0 1 0 0 0	
1 0 1 1 0 0	
0 0 0 1 0 0	
2 1	
5 3	
5 5	0
0 0 0 0 0	
0 1 1 1 0	
0 1 1 1 0	
0 1 1 1 0	
0 0 0 0 0	
1 3	
1 3	

Задача E. TopSort

Имя входного файла: topsort.in
Имя выходного файла: topsort.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дан ориентированный невзвешенный граф. Необходимо его топологически отсортировать

Формат входного файла

В первой строке входного файла два натуральных числа N и M ($1\leqslant N\leqslant 10^5, 1\leqslant M\leqslant 10^5$) — количество вершин и рёбер в графе соответственно. Далее в M строках перечислены рёбра графа. Каждое ребро задается парой чисел — номерами начальной и конечной вершин соответственно.

Формат выходного файла

Вывести любую топологическую сортировку графа в виде последовательности номеров вершин. Если граф невозможно топологически отсортировать, вывести -1.

Примеры

римеры		
topsort.in	topsort.out	
6 6	4 6 3 1 2 5	
1 2		
3 2		
4 2		
2 5		
6 5		
4 6		
3 3	-1	
1 2		
2 3		
3 1		