

Software Engineering WS 18/19

Implementation of an Euclidean Color Filter in .Net Standard2.0

Lecturer: Mr. Damir Dobric Student: Sven Eisenbach

Professor: Prof. Dr. Andreas Pech Matr. Nr: 1092541

Contents

- 1. Euclidean color filter overview
- RGB-Colors and Euclidean distance
- ❖ What does the Euclidean filter do?

- 2. Architecture of the Project
- 3. Implementation

Euclidean color filter overview

RGB-Colors and Euclidean distance

- The RGB value is represented 3 dimensional
- VS use 8 bits per color channel by default
- 2^8 bit \rightarrow each value ranges from 0 .. 255
- White \rightarrow 255,255,255; Black \rightarrow 0,0,0

- Euclidean distance describes the distance between two Points
- Since the RGB-values are 3 dimensional →

$$d(p,q) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + (q_3 - p_3)^2}$$

- Example:
$$d = \sqrt{(101 - 220)^2 + (90 - 200)^2 + (58 - 51)^2} = 162,2$$

- Special cases of points

OF APPLIED SCIENCES

Euclidean color filter overview

What does the Euclidean Filter do?

FRANKFURT UNIVERSITY OF APPLIED SCIENCES

- Two parameters to specify: Color center and float radius
- Loops through all pixel of an image
- Calculates the Euclidean distance between the RGB value of the pixel and the specified center value
- If the the Euclidean distance is within the radius
- → Pixel keeps its RGB value
- If the Euclidean distance is bigger than the radius
- → Pixel is set to color Black.

```
float distance = CalcDistance.ComputeEuclideanDistance(color, Center);

if (distance <= Radius)
{
    GetAndSetPixels.SetPixel(result, i, j, color);
}
else
{
    GetAndSetPixels.SetPixel(result, i, j, Color.Black);
}</pre>
```

If/else statement for filtering

Euclidean color filter overview

Example

Original image (before running the algorithm)

Filtered image (after running the algorithm)

Architecture of the Project

The main architecture of the progream

Overview of the classes which are necessary for the filter

Implementation

Code explanation...

Thank you for your attention!

Do you have any questions?