Wiederholung Grundbegriffe am Bsp. Regression

Grundbegriffe

- überwachtes Lernen (Eingabe, Ausgabe, Modell)
- Modellselektion via parametrisierte Funktion (Bsp: Polynom)
- Parameteroptimierung (Minimierung quadratischer Fehler)
- Overfitting, Regularisierung

=> Achtung Annahme! (inductive bias)

Wiederholung Szenario: Überwachtes Lernen

(Trainings-)
Daten

Datenmodell = parametrisierte Funktion (Modellselektion)

Grundbegriffe der probabilistischen Modellierung

Lernziele:

- Modell von Unsicherheit: (normalverteilte) Störung/Rauschen
- Grundbegriffe prob. Modellierung (Likelihood, predictive distribution)
- Grundbegriffe: Bayes Ansatz, Modellierung der Parameterverteilung, inkrementelles Bayes'sches Lernen

(Mathem.) Voraussetzungen:

■ (multi-dim.) Normalverteilung, Ableitungen, bedingte W.-keiten

Vorgehen:

- "triviales" Funktionsbeispiel: sin() + Rauschen
- Ansatz (weiterhin): Summe von Polynomen
- nach: Bishop, Kap 1.

Probabilistic modeling

Probabilistic modeling

Im Beispiel:

■ Datenerzeugung: Funktionswert + Gaußsches Rauschen

$$sin(2\pi x) + \mathcal{N}(0,\sigma^2)$$

- ullet Gaußsches Rauschen ist definiert durch Mittelwert + Varianz σ^2
- Ziel: finde Modell für die Daten und die Unsicherheit (das Rauschen)
- konkrete Annahme: Rauschen ist gaußverteilt, Mittelwert = 0
 - dann: wähle Datenmodell wie vorher
 - ullet und addiere Gaußschen Term: $t=y(\omega,x_n)+N(0,\sigma^2)$
 - ullet schätze Modellparameter und σ^2
- Generalisierung: mache wahrscheinlichkeitsbasierte Vorhersage für neue Eingaben

Daten mit Unsicherheit

modelliere Daten durch W.-keiten

Daten mit Unsicherheit

Probabilistische Modellierung: der Likelihood

Modellierung durch Likelihood

- für gegebenes parameterisches Datenmodell y(w,x)
- Likelihood = bedingte Wahrscheinlichkeit, eine Ausgabe t bei gegebenen Parametern w, β und Eingabe x₀ zu erhalten:

$$p(t|x_0,\omega,\beta)$$

■ diese W.-keit ist nach Annahme graußverteilt mit Mittelwert im Modell und Varianz $\, \beta^{-1} = \sigma^2 \,$ (1-dim. Fall):

$$p(t|x_0,\omega,\beta) = N(t|y(\omega,x_0),\sigma^2)$$

- \blacksquare β heißt auch Präzision
- multidimensional:

$$p(\vec{t}|\vec{x}_0,\omega,\Sigma^{-1}) = N\left(\vec{t}|\vec{y}(\omega,x_0),\Sigma^{-1}\right)$$

Stochastisches Datenmodell

von der Messung zur Wahrscheinlichkeitsverteilung

- ullet für gegebenes parameterisches Datenmodell $y(x, ec{\omega})$
- und gegebene Sollausgaben (*targets*) *t*

$$t = y(x, \vec{\omega}) + N(0, \beta^{-1})$$

$$\Leftrightarrow t - y(x, \vec{\omega}) \sim N(0, \beta^{-1})$$

$$\Leftrightarrow t \sim N(y(x, \vec{w}), \beta^{-1})$$

■ Datenmodell: Normalverteilung um das Modell $y(x, \vec{\omega})$ mit Eingabe x und Parametern $\vec{\omega}$

Probabilistische Modellierung: der Data-Likelihood

Likelihood für alle Daten (Data-Likelihood)

- Annahme: Daten unabhängig voneinander erzeugt
- dann gemeinsame Verteilung = Produkt der einzelnen Likelihoods:

$$L(\mathbf{w}) = P(T|X, \mathbf{w})$$

$$= \prod_{n=1}^{N} N(t_n | y(x_n, \mathbf{w}), \beta^{-1})$$

$$= \prod_{n=1}^{N} \frac{1}{N} e^{-\frac{(t_n - y(x_n, \mathbf{w}))^2}{2\sigma^2}}$$

where $L(\vec{\omega})$ denotes the likelihood and \mathcal{N} is a the normalization constant

Maximum Likelihood

Parameteroptimierung

- Data-likelihood ist ein "stochastisches Datenmodell"
- L(w) ist Funktion *aller* Parameter des Datenmodells und von β
- Parameteroptimierung = Maximierung des Likelihood
- maximiert Wahrscheinlichkeit, die gemessenen Ausgaben zu beobachten, gegeben die Modellparameter und gegebene Eingaben

Vorgehen

- ullet bilde den negativen log-Likelihood $-\log L(\omega)$
- dadurch wird Produkt zur Summe
- ullet dann finde argmin $-\log L(\omega)$
- führt wieder auf Minimierung des quadratischen Fehlers! (Übung)
- ullet wir erhalten die optimalen Parameter ω_{ML}, eta_{ML}

Maximum Likelihood

maximise
$$L(\mathbf{w})$$

$$\Leftrightarrow$$
 minimize $-logL(\mathbf{w})$

Then

$$\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\underbrace{\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi)}_{\beta E(\mathbf{w})}$$

Determine \mathbf{w}_{ML} by minimizing sum-of-squares error, $E(\mathbf{w})$.

$$\frac{1}{\beta_{\text{ML}}} = \frac{1}{N} \sum_{n=1}^{N} \{ y(x_n, \mathbf{w}_{\text{ML}}) - t_n \}^2$$

Rechnung Tafel

Generalisierung durch Max-Likelihood Parameter

Anwendung auf "neue" Daten

- verwende die ω_{ML}, β_{ML} Parameter
- dann ist die optimale Output-Verteilung

$$p(t|x, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}\left(t|y(x, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1}\right)$$

die wahrscheinlichste Ausgabe für neues x ?

Mittelwert
$$y(\omega_{ML}, x)$$

- aber: auch zufälliges Generieren von Ausgabe mit maximum Likelihood Verteilung möglich (sampling, generative Modell)
- ullet eta_{ML} gibt eine Konfidenz an

Generalisierung durch Max-Likelihood Parameter

$$p(t|x, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}\left(t|y(x, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1}\right)$$

wie vorher: polynomial (linear) model, M = 9

■ Was zeigt die Schattierung ? 1-sigma (std. deviation)

Predictive Distribution

$$p(t|x, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}\left(t|y(x, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1}\right)$$

Zwischenfazit: Max-Likelihood als statistischer Ansatz

zugrundeliegende Annahmen:

- es gibt nur einen Datensatz
- es gibt einen "wahren, idealen" Satz Modellparameter
- ullet ω_{ML}, eta_{ML} sind "gute" Approximationen
- Modellierung der Unsicherheit durch Störung resultiert in Verteilung
- aber: Daten sind endlich und zufällig
- ullet damit sind ω_{ML}, eta_{ML} ebenfalls datenabhängig zufällig
- Unsicherheit in der Wahl des Datensatzes ist (noch) NICHT modelliert

[mögliche Verbesserung:

- Wiederholung des Experimentes => neuer Datensatz => neue "beste" Parameter
- dann z.B. Mittelung über mehrere Experimente (später)

Vollständiger Bayes'scher Ansatz

Interpretiere W-keiten als Wissen/Unsicherheit über Parameter

- Annahme: es gibt nur "einen" Datensatz, der unvollständig bekannt ist
- verwende wieder stochastische Datenmodell
- wenn neue/weitere Daten gemessen werden, dann ändert sich das Wissen/die Unsicherheit über die Parameter
- ullet modelliere initiale Unsicherheit über die Parameter als $P(\omega)$
- ullet $P(\omega)$ ist die a-priori W.-keit bevor Daten beobachtet werden
- modelliere den Likelihood wie vorher
- dann berechne die a-posteriori Wahrscheinlichkeit mit der Bayes-Formel:

$$P(w|D) = \frac{P(D|w)P(w)}{P(D)}$$

A-posteriori Wahrscheinlichkeit

$$p(\mathbf{w}|\mathbf{x},\mathbf{t},\alpha,\beta) \propto p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta)p(\mathbf{w}|\alpha)$$

a-posteriori W.-keit likelihood x prior (updated knowledge)

linke Seite:
Gaussfunktion,
(explizite Formel bekannt)

rechte Seite:
Produkt von
Gaussfunktionen

■ hier: initiale Unsicherheit abhängig von "Hyperparameter" α (Hyperparameter: Parameter, der Verteilung von Parametern steuert)

Der Posterior

 $P(\mathbf{w}|D)$ heißt a-posteriori Verteilung oder einfach: "posterior"

Die a-posteriori Verteilung drückt das Wissen/ die Unsicherheit über die Modellparameter aus, nachdem die Daten beobachtet wurden, welche selbst nur unter Unsicherheit beobachtet werden und damit durch stochastisches Datenmodell approximiert werden.

Generalisierung/Anwendung auf "neue" Daten

Maximum a-posteriori Parameter

- bilde $w_{MAP} = \operatorname{argmax}_w P(\omega|D)$
- dann generalisiere durch:

$$t_{new} = y(x_{new}, \mathbf{w}_{MAP})$$

- dies entspricht dem Mittelwert der posterior-Verteilung denn diese ist wiederum eine Gaussverteilung
- möglich wäre auch "Ziehen" eines Parameters w' aus der posterior-Verteilung: $w' \sim p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta)$

und Generalisierung durch $y(x_{new}, w')$

Maximum A-Posteriori Parameter

maximise
$$P(\mathbf{w}|D)$$

$$\Leftrightarrow$$
 minimize $-logP(\mathbf{w}|D)$

Then minimize:

$$\beta \widetilde{E}(\mathbf{w}) = \frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

Determine $\mathbf{w}_{\mathrm{MAP}}$ by minimizing regularized sum-of-squares error, $\widetilde{E}(\mathbf{w})$.

- wir sehen: Max-a-posteriori für gaußverteiltes stochastisches
 Datenmodell ist äquivalent zu Fehlerminimierung + Regularisierung
- Overfitting ist "automatisch" verhindert

Max-Likelihood Berechnungen:

Woher kommt der Regularisierungsterm $\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}$?

■ aus der Vornahme für den Prior (Achtung: induktiver Bias!)

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}\right\}$$

$$p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) \propto p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta)p(\mathbf{w}|\alpha)$$

■ dann logarithmieren ... (Rechnung Tafel)

Predictive Distribution

Vollständige Berücksichtigung von Unsicherheit

- bekannt: Data-Likelihood und Parameter posterior
- integriere über alle mögliche Parameter gewichtet mit ihrer Wahrscheinlichkeit:

$$p(t|x, \mathbf{x}, \mathbf{t}) = \int p(t|x, \mathbf{w}) p(\mathbf{w}|\mathbf{x}, \mathbf{t}) \, d\mathbf{w} = \mathcal{N}\left(t|m(x), s^2(x)\right)$$

- diese W.-keit kann für lineare Modelle ebenfalls explizit berechnet werden und ist gaußverteilt (d.h. $m(x), s^2(x)$ sind bekannt => später)
- dann generalisiere durch Ziehen aus°

$$P(t_{new}|x_{new}, X, T) (= p(t|x, \mathbf{x}, \mathbf{t}) \text{ in Bishop notation})$$

■ diese Verteilung heißt "predictive distribution"

(° i.e. ziehe zufällig aus der Verteilung P(t|x,X,T))

Predictive Distribution vs. Maximum Likelihood

$$p(t|x, \mathbf{x}, \mathbf{t}) = \mathcal{N}\left(t|m(x), s^2(x)\right) \qquad p(t|x, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}\left(t|y(x, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1}\right)$$

der volle Bayes'sche Ansatz zeigt mehr Unsicherheit, da die Unsicherheit in den Parametern auch modelliert ist!

Take home:

Unsicherheit

- Rauschen/Unsicherheit in Daten ~ Normalverteilung
- Bilde Likelihood und Data-Likelihood
- Minimierung von -log L(w) => maximum Likelihood Parameter
- Generalisierung durch Predictive Distribution:
 - ullet wahrscheinlichster Wert (Mittelwert) $y(\omega_{ML},x)$
 - Konfidenz gegeben durch die Präzision (Inverse der Varianz der Verteilung)

Bayes'scher Ansatz:

- interpretiere W-keiten als Unsicherheiten
- Modellierung wir vorher
- zusätzlich: a-priori Annahme über Parameter (prior)
- Inferenzschritt auf P(wID) => max posterior

