Recurrences • The substitution method • The recursion tree method • The master method

The substitution method: an example

We'd like to solve $T(n) = 3T(\lfloor n/4 \rfloor) + n$.

We guess $T(n) \in O(n)$.

We prove by induction that there exists a constant c such that $T(n) \le cn$ for sufficiently large n.

$$T(n) = n + 3T(\lfloor n/4 \rfloor)$$

$$\leq n + 3 * c * \lfloor n/4 \rfloor$$

$$\leq (1 + 3c/4)n$$

$$\leq cn, when c \geq 4$$

The substitution method: subtleties

We'd like to solve $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$.

We guess $T(n) \in O(n)$.

We try to prove by induction that there exists a constant c such that $T(n) \le cn$ for sufficiently large n.

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

$$\leq c * \lfloor n/2 \rfloor + c * \lceil n/2 \rceil + 1$$

$$= cn + 1$$

We really need to show that $T(n) \leq cn$.

The trick

We'd like to solve $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$.

We guess $T(n) \in O(n)$.

We prove by induction that there exists a constant c, b such that $T(n) \le cn - b$ for sufficiently large n.

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

$$\leq c * \lfloor n/2 \rfloor - b + c * \lceil n/2 \rceil - b + 1$$

$$= cn - b - (b - 1)$$

$$< cn - b \text{ when } b > 1$$

The recursion-tree method

- The method
 - Draw a recursion tree where each node represents the cost of a single subproblem
 - Sum the cost of each level to get per-level cost
 - Sum all per-level costs to get the total cost
- Applications
 - Can be used to find a good guess. Complete by using the substitution method. Can be a bit sloppy when constructing the tree.
 - Can serve as a direct proof. Need to be strict when draw the tree.

The recursion-tree method: an example

We'd like to solve $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$.

We instead draw a tree for $T(n) = 3T(n/4) + cn^2$.

Some sloppiness we use here

- ullet assume n is an exact power of 4 to remove the floor function
- replace $\Theta(n^2)$ by cn^2

Constructing the recursion tree

Constructing the recursion tree

Total : $O(n^2)$

The sum of per-level costs results below:

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + (\frac{3}{16})^{2}cn^{2} + \dots + (\frac{3}{16})^{\log_{4}n - 1}cn^{2} + 3^{\log_{4}n}\Theta(1)$$

$$= \sum_{i=0}^{\log_{4}n - 1} (\frac{3}{16})^{i}cn^{2} + \Theta(n^{\log_{4}3})$$

$$< \sum_{i=0}^{\infty} (\frac{3}{16})^{i}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \frac{1}{1 - 3/16}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= O(n^{2})$$

Recursion tree for T(n) = T(n/3)+T(2n/3)+cn

This is not a complete binary tree There are fewer than $2^{\log_{3/2} n} = n^{\frac{\log_{3/2} n}{2}} \in w(n \log n)$ leaves

Master Theorem: a simple version

Let $T: N \to R^+$ be an eventually non-decreasing function such that

$$T(n) = lT(n/b) + cn^k, n > n_0$$

when n/n_0 is an exact power of b. The constants $n_0, l \ge 1, b \ge 2$, and $k \ge 0$ are all integers. c is a positive real number.

We have

$$T(n) \in \begin{cases} \Theta(n^k) & if \quad k > \log_b l \\ \Theta(n^k \log n) & if \quad k = \log_b l \\ \Theta(n^{\log_b l}) & if \quad k < \log_b l \end{cases}$$

Asymptotic recurrences

Consider a function $T: N \to R^+$ such that

$$T(n) = lT(n/b) + f(n)$$

for all sufficiently large n, where $l \ge 1$ and $b \ge 2$ are constants, and $f(n) \in \Theta(n^k)$ for some $k \ge 0$. We conclude that

$$T(n) \in \begin{cases} \Theta(n^k) & if \quad k > \log_b l \\ \Theta(n^k \log n) & if \quad k = \log_b l \\ \Theta(n^{\log_b l}) & if \quad k < \log_b l \end{cases}$$

Master Theorem

Let $l \ge 1$ and b > 1 be constants, let f(n) be a function, and T(n) be defined on the non-negative integers n by the recurrence

$$T(n) = lT(n/b) + f(n),$$

where we interpret n/b be either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. The T(n) can be bound asymptotically as follows.

- 1. If $f(n) = O(n^{\log_b l \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b l})$.
- 2. If $f(n) = \Theta(n^{\log_b l})$, then $T(n) = \Theta(n^{\log_b l} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b l + \epsilon})$ for some constant $\epsilon > 0$, and if $lf(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Examples

$$T(n) = T(n/3) + 1.$$

$$T(n) = T(n/3) + n.$$

$$T(n) = 9T(n/3) + n.$$

$$T(n) = 3T(n/4) + nlgn.$$

Change variables

Consider the recurrence $T(n) = 2T(\sqrt{n}) + lgn$.

Let $n = 2^m$, then $T(2^m) = 2T(2^{m/2}) + m$

Let S(m) denote $T(2^m)$, then S(m) = 2S(m/2) + m

Using the master method, $S(m) \in \Theta(mlgm)$ So $T(n) \in \Theta(lgnlglgn)$.

Range transformations

Consider the following recurrence where n is a power of 2.

$$T(n) = \begin{cases} 1/3, & n = 1\\ nT^2(n/2) & otherwise \end{cases}$$

Let t_i denote $T(2^i)$.

$$t_i = T(2^i) = 2^i T^2(2^{i-1}) = 2^i t_{i-1}^2$$

Let u_i denote lgt_i .

$$u_i = lgt_i = lg(2^i t_{i-1}^2) = i + 2lgt_{i-1} = i + 2u_{i-1}$$

We solve this equation using recursion tree.