Явище електромагнітної індукції

Лекції з електрики та магнетизму

Пономаренко С. М.

Зміст

- 1. Явище електромагнітної індукції Вихрове електричне поле
- 2. Явище самоіндукції Перехідні процеси в колі з індуктивністю
- 3. Взаємна індукція Принцип роботи трансформаторів
- 4. Енергія магнітного поля

Явище електромагнітної індукції

Явище електромагнітної індукції (Фарадей)

У 1831 р. Фарадеєм було зроблено одне з найбільш фундаментальних відкриттів в електродинаміці — явище електромагнітної індукції. Воно полягає в тому, що в замкненому провідному контурі при зміні магнітного потоку, охопленого цим контуром, виникає електричний струм — його назвали індукційним.

Досліди Фарадея

Закон електромагнітної індукції

4

Електрорішійна сила (EPC), що виникає в контурі пропорційна швидкості зміни магнітного потоку, що пронизує площу, охоплену даним контуро:

$$\mathcal{E}_{\text{ind}} = -\frac{1}{c} \frac{d\Phi}{dt} = -\frac{1}{c} \frac{d}{dt} \iint_{S} .$$

Правило Ленца

Індукований струм має такий напрямок, щоб за допомогою створюваного ним магнітного поля перешкоджати зміні магнітного потоку, тобто щоб послабити дію причини, яка збуджує цей струм.

Струми Фуко

5

Струми Фуко — вихрові індукційні струми, які виникають у провіднику під час зміни магнітного потоку через поверхню провідника.

Струми Фуко, як і індукційні струми в лінійних провідниках, підпорядковані правилу Ленца: їх магнітне поле направлене так, щоб протидіяти змінам магнітного потоку, що індукували ці струми.

Вихрове електричне поле

Оскільки магнітний потік дорівнює $\Phi=\iint\limits_{S} \vec{B}\cdot d\vec{S}$, а EPC індукції $\mathscr{E}=\oint\limits_{S} \vec{E}\cdot d\vec{\ell}$, то із закону індукції випливає:

$$\oint\limits_{L} \vec{E} \cdot d\vec{\ell} = \iint\limits_{S} \vec{B} \cdot d\vec{S}.$$

Скориставшись теоремою Стокса, останнє інтегральне рівняння можна переписати у диференціальній формі:

$$\operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}.$$

Вихрове електричне поле

$$\operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}.$$

Згідно Максвеллу явище електромагнітної індукції полягає в тому, що будь-яке змінне магнітне поле збуджує в просторі електричне поле; провідники для цього не потрібні. Індукційні ж струми збуджуються в провідниках індукованим електричним полем.

На відміну від електростатики, де $\operatorname{rot} \vec{E} = 0$, у випадку змінного в чаі магнітного поля $\operatorname{rot} \vec{E} \neq 0$. Це означає, що індуковане електричне поле, індукується (виникає) за рахунок зміни магнітного поля і не є потенційним, а вихровим.

Скористаємося законом електромагнічної індукції. Підставимо сюди вираз для магнітного поля через векторний потенціал $\vec{B} = \operatorname{rot} \vec{A}$:

$$\operatorname{rot}\left(\vec{E} + \frac{\partial \vec{A}}{\partial t}\right) = 0$$

Рівність нулю ротора деякого векторного поля означає, що це поле потенційне і може бути представлене як градієнт скалярної функції. Таким чином, отримуємо

$$\vec{E} = -\vec{\nabla}\varphi - \frac{\partial \vec{A}}{\partial t}$$

У окремому випадку постійних у часі полів приходимо до відомої рівності: $\vec{E} = -\vec{\nabla} \varphi$, звідки видно, що введена тут функція φ збігається зі скалярним потенціалом.

Явище самоіндукції

Зміна струму в контурі викликає зміну магнітного поля, що створює змінний магнітний потік через цей же контур і, як наслідок, EPC індукції. Це явище називають самоіндукцією.

Якщо в просторі, де розташований контур зі струмом I, немає феромагнетиків, поле \vec{B} , а отже, і повний магнітний потік Φ через контур будуть пропорційні силі струму I:

$$\Phi = \frac{1}{c}LI$$

Коефіцієнт L називається індуктивністю контуру.

Явище самоіндукції

Зміна струму в контурі викликає зміну магнітного поля, що створює змінний магнітний потік через цей же контур і, як наслідок, EPC індукції. Це явище називають самоіндукцією.

При зміні сили струму в контурі згідно закону Фарадея виникає ЕРС самоіндукції:

$$\mathscr{E}_{\mathsf{si}} = -L \frac{dI}{dt}$$

Тут знак мінус показує, що $\mathscr E$ завжди спрямована так, щоб перешкоджати зміні сили струму відповідно до правила Ленца. Ця ЕРС прагне зберегти струм незмінним: вона протидіє струму, коли він збільшується, і підтримує струм, коли він зменшується.

Коефіцієнт L називається індуктивністю контуру.

Приклади розрахунку індуктивності

Одиницею індуктивності в системі СГС є сантиметр: $[L] = {\sf cm}.$ Це означає, що індуктивність є геометричною характеристикою.

Перехідні процеси в колі з індуктивністю

Встановлення струму в LR-контурі

Закон Ома для кола $\mathscr{E}+\mathscr{E}_{\rm si}=IR$. Враховуючи що $\mathscr{E}_{\rm si}=-LdI/dt$, закон набуде вигляду

$$L\frac{dI}{dt} + IR = \mathscr{E}.$$

Після інтегрування ми отримаємо:

$$I(t) = \frac{\mathscr{E}}{R} \left(1 - e^{-\frac{R}{L}t} \right),\,$$

де $\tau = \frac{L}{R}$ — називають часом релаксації.

10

Перехідні процеси в колі з індуктивністю

Екстраструми при розмиканні

Спочатку ключ S замкнутий. Тоді через опір R і через котушку індуктивності L тече струм:

$$I_0 = \mathscr{E}/r$$
.

Після розмикання ключа (відключення ЕРС) магнітне поле почне убувати. Це збудить електрорушійну $\mathscr{E}_{\rm si}$ силу та індукційний струм I у контурі. Такий струм називається екстраструмом розмикання. По закону Ома:

$$I(R+r) = -L\frac{dI}{dt}.$$

Після інтегрування ми отримаємо: $I(t) = I_0 e^{-\frac{R+r}{L}t}$.

Якщо $R\gg r$, то $\mathscr{E}_{\rm si}=\frac{R}{r}\mathscr{E}e^{-\frac{R}{L}t}$. При розмиканні ця величина може значно перевершити ЕРС батареї, тобто може статись пробій, що спостерігається під час вимкнення струму в колах з великими індуктивностями.

11

Взаємна індукція

Нехай два нерухомих контури 1 і 2 розташовані близько один до одного. Якщо в контурі 1 тече струм I_1 , він створює через контур 2 магнітний потік Φ_2 , пропорційний струму I_1 :

$$\Phi_2 = \frac{1}{c} L_{21} I_1$$

Аналогічно, якщо в контурі 2 тече струм I_2 , то він створює через контур 1 магнітний потік:

$$\Phi_1 = \frac{1}{c} L_{12} I_2.$$

Коефіцієнти пропорційності L_{12} і L_{21} називають коефіцієнтами взаємної індуктивністю контурів.

Теорема взаємності

Теоремою взаємності стверджує, що коефіцієнтами взаємної індуктивністю контурів однаков:

$$L_{12} = L_{21}.$$

Завдяки цій теоремі можна не робити різниці між L_{12} і L_{21} і просто говорити про взаємну індуктивність двох контурів.

Практичне застосування

Практичне застосування теореми взаємності полягає у тому, що якщо по контурам течуть однакові струми I, то

$$\Phi_1 = \Phi_2$$

Ця обставина нерідко дає змогу сильно спрощувати вирішення питання про знаходження, наприклад, магнітних потоків.

Задачі на застосування теореми взаємності

Задача 1

Два тонкі колові провідники, осі яких співпадають, лежать в одній площині. Радіус зовнішнього провідника R_1 внутрішнього R_2 ($R_2 \ll R_1$). Знайдіть магнітний потік, що пронизує площу зовнішнього провідника, якщо по внутрішньому провіднику тече струм I.

Задача 2

Магнітний диполь з моментом p_m обертається з частотою ω навколо осі, яка проходить через його центр і перпендикулярна магнітному моменту (див. рис.). Знайти струм в плоскому нерухомому кільці радіусом a з опором R, яке знаходиться на відстані $l\gg a$ від диполя. Нормаль \vec{n} до площини кільця перпендикулярна осі обертання диполя. Самоїндукцією рамки знехтувати.

Трансформатор

Енергія магнітного поля

Провідник зі струмом створює магнітне поле, яке з'являється та зникає разом зі струмом. Магнітне поле є носієм енергії, що дорівнює роботі струму на його створення. Розглянемо роботу, яку виконує джерело при замиканні ключа в колі по переміщенню заряду dq = Idt:

$$\delta A = \mathcal{E} dq = I^2 R dt - \mathcal{E}_{si} I dt =$$

$$= \underbrace{I^2 R dt}_{\text{Теплота}} + \underbrace{\frac{1}{c^2} L I d I}_{\text{Енергія Магнітного поля}}$$

Енергія магнітного поля:
$$W = \frac{1}{c^2} \int_{0}^{I} LIdI = \frac{1}{c^2} \frac{LI^2}{2}$$
.

Енергія магнітного поля

Енергію магнітного поля визначається через характеристики поля.

Розглянемо однорідне магнітне поле всередині довгого соленоїда.

Індуктивність соленоїда:

$$L = \frac{4\pi\mu N^2 S}{l}.$$

Магнітне поле в середині соленоїда:

$$B = \frac{4\pi\mu NI}{cl}$$

Енергія магнітного поля:

$$W = \frac{1}{c^2} \frac{LI^2}{2} = \frac{1}{c^2} \frac{(4\pi\mu NI)^2 Sl}{8\pi\mu l^2} = \frac{B^2}{8\pi\mu} V = \frac{BH}{8\pi} V.$$

15

Енергія магнітного поля

Енергію магнітного поля визначається через характеристики поля.

Розглянемо однорідне магнітне поле всередині довгого соленоїда.

Індуктивність соленоїда:

$$L = \frac{4\pi\mu N^2 S}{l}.$$

Магнітне поле в середині соленоїда:

$$B = \frac{4\pi\mu NI}{cl}$$

Густина енергії магнітного поля:

$$w = \frac{BH}{8\pi}.$$

Магнітна енергія зосереджена в об'ємі соленоїда — в тій області простору, де присутнє магнітне поле.