

ISO2-2023-A04-Testing-P1

Implementation
Juan Alcázar Morales
Adrián Gómez del Moral Rodríguez Madridejos
Variable definition
Alejandro Del Hoyo Abad
Sergio Pozuelo Martín-Consuegra
Testing
Luis Eduardo Fernández-Medina Cimas
Anatoli Zournatz
Öykü Sedef Öztürk

1. Write, at least, the pseudocode of the identified method or methods.

For this exercise, it is necessary to create a class 'Persona', which will have as attributes: name, last name, nationality, education, English certification, phone number, email and birthdate. And it will initialize objects with valid states

public Persona(String name, String lastName, europeanCountries nationality, String education, boolean englishCertification, String phoneNumber, String email, Date dateOfBirth) {

```
super();
this.name = name;
this.lastName = lastName;
this.nationality = nationality;
this.education = education;
this.englishCertification = englishCertification;
this.phoneNumber = phoneNumber;
this.email = email;
this.dateOfBirth = dateOfBirth;
}
```

For the problem's semantics, we need to include methods that will help to determine if the person is of legal age and if they are European.

```
int age = (int) (ageInMillis / millisInYear);
                          return age >= 18; // Check if age is 18 or older for legal age
}
public boolean isEuropean() {
                          for (europeanCountries European: europeanCountries.values()) {
                            if (European == this.nationality) {
                              return true;
                            }
                          }
                          return false;
}
public enum europeanCountries {
                      SPAIN,
                      FRANCE,
                      GERMANY,
                      ITALY,
                      UNITED_KINGDOM,
                      PORTUGAL
}
```

2. Identify the variables that should be considered to test the method of interest.

In this case we have 2 variables that should be considered: age (from the isLegal method) and nationality

3. Identify the test values for each previously identified variables mentioned above.

	Equivalence class	Equivalent	Lightw	Heavy	Error
		class values	eight	variant	guessing
			variant		
age	(-∞, 18),	2, 27	18	17,19	$-2^{31}-1$,
	[18,+ (∞,)				$2^{31} + 1$,
					419
nationality	European	SPAIN,			NULL, ASDF
	Countries, Non	CHINA			
	European				
	Countries				

4. Calculate the maximum possible number of test cases

The maximum possible number of test cases is: 4 from nationality $x \ 8$ from age = 32 test cases.

5. Define a set of test cases to fulfill each use

The set of test cases following the format {age,nationality} will be:

- SC1: {2, SPAIN}
- SC2: {27, CHINA}
- SC3: {18, NULL}
- SC4: {17, ASDF}
- SC5: {19, CHINA}
- SC6: $\{-2^{31} 1, SPAIN\}$
- SC7: $\{2^{31} + 1, SPAIN\}$
- SC8: {419, NULL}

6. Define test suits to achieve pairwise coverage

Using Pairwise Pict Online we have generate the pairwise coverage.

The input is the following one:

nationality: SPAIN, CHINA, NULL, ASDF

The output is the following one:

```
nationality
age
419
        SPAIN
-2^31-1 SPAIN
-2^31-1 ASDF
        ASDF
17
27
        SPAIN
2^31+1 ASDF
419
        CHINA
-2^31-1 NULL
19
        CHINA
18
        SPAIN
-2^31-1 CHINA
19
        ASDF
27
        NULL
18
        NULL
27
        CHINA
18
        CHINA
        ASDF
2
2^31+1 CHINA
19
        SPAIN
18
        ASDF
419
        ASDF
2^31+1 NULL
19
        NULL
17
        NULL
419
        NULL
2
        NULL
2^31+1 SPAIN
17
        CHINA
27
        ASDF
17
        SPAIN
2
        CHINA
2
        SPAIN
```

7. For code segments that include decisions, propose a set of test cases to achieve coverage of decisions.

return age >= 18	Result
99	true
10	false

if (European == this.nationality)	Result
PORTUGAL	true
USA	false

8. For code segments that include decisions, propose a test case suite to achieve MC/DC coverage.

A=return age >= 18:

CONDITION	DECISION	DOMINANT
Α	Α	
true	true	А
false	false	Α

A=if (European == this.nationality)

CONDITION	DECISION	DOMINANT
А	Α	
true	true	Α
false	false	А

9. Comment on the results of the number of test cases obtained in sections 4, 5, and 6, as well as the execution of the oracles