lab 7 Sydney Ackermann PID: A69036053

Machine learning k clustering

Before we get into clustering methods, let's make some sample data to cluster where we know what the answer should be.

To help with this I will use the rnorm() function

```
hist(rnorm(150000, mean=c(-3,3)))
```

Histogram of rnorm(150000, mean = c(-3, 3))

Histogram of c(rnorm(n, mean = 3), rnorm(n, mean = -3)

c(rnorm(n, mean = 3), rnorm(n, mean = -3))

```
n=30
x<-(c(rnorm(n,mean=3), rnorm(n, mean=-3)))
#x
y<-(c(rnorm(n,mean=-3), rnorm(n, mean=3))) # rev(x)
#y
z<-cbind(x,y) # combine the vectors column bind (row bind would combine them row wise)
z</pre>
```

x y
[1,] 4.4087499 -4.2856292
[2,] 1.5246857 -2.0311461
[3,] 1.1851252 -2.6030461
[4,] 2.6367669 -2.9052083
[5,] 2.9937040 -1.7426570
[6,] 1.7773005 -3.7417790
[7,] 2.6766973 -3.2048384
[8,] 3.3916602 -1.3462065
[9,] 1.3460344 -2.7853556
[10,] 2.9117636 -1.2376231
[11,] -0.2687086 -4.1452693
[12,] 2.2874230 -2.8640880
[13,] 3.1644225 -3.5385161
[14,] 2.7025201 -1.8576656

- [15,] 3.8295178 -3.4937674
- [16,] 3.2704286 -1.4559323
- [17,] 2.2126681 -2.3438381
- [18,] 4.7826002 -4.5610931
- [19,] 3.9320692 -2.7078747
- [20,] 0.8949868 -2.8573251
- [21,] 2.4380749 -1.8635495
- [22,] 2.2848051 -3.1013474
- [23,] 2.7732775 -3.6365750
- [24,] 1.4122218 -3.0435078
- [25,] 1.8052072 -4.5090654
- [26,] 2.3813252 -4.9626136 [27,] 3.8911910 -1.5213390
- [28,] 3.0845696 -2.6105923
- [29,] 3.0864345 -4.4570592
- [30,] 2.7160519 -2.2167725
- [31,] -1.6097295 1.0331562
- [32,] -2.8809051 3.5629736
- [33,] -2.1898539 2.8305954
- [34,] -4.1151208 2.2089779
- [35,] -2.3148087 5.9769022
- [36,] -2.8309873 3.5533797
- [37,] -1.7144122 1.9496342
- [38,] -4.4142121 3.2931217
- [39,] -4.5097750 4.3652389
- [40,] -3.9554990 2.3012151
- [41,] -3.7771510 2.5306567
- [42,] -2.1806397 2.6380379
- [43,] -2.0459893 2.0011866
- [44,] -4.0814395 3.1437014
- [45,] -4.4923117 3.8989030
- [46,] -3.9998971 4.2559232
- [47,] -4.7474307 0.5628564
- [48,] -2.3278477 1.9258201
- [49,] -5.3006988 2.8883488
- [50,] -5.7510664 2.1155522
- [51,] -2.2414756 3.6974435
- [52,] -1.8845330 3.9539593
- [53,] -3.5927613 3.2870878
- [54,] -4.6415945 1.9530856
- [55,] -4.5461229 3.6759716
- [56,] -3.9914670 4.5712670
- [57,] -3.4011066 3.0985748

```
[58,] -2.9456509 2.5881825
[59,] -4.2378817 3.1829415
[60,] -2.9904607 4.7603648
```

plot(z)

k-means clustering

The function in base R for k-clustering is called kmeans().

```
km <- kmeans(z, centers=2)
#n=30 so its telling us there are 30 points in each group
# clustering vector is like a membership vector - tells us which cluster each point is close
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

Clustering vector:

```
Within cluster sum of squares by cluster:
[1] 66.23869 75.70259
(between_SS / total_SS = 88.4 %)
```

Available components:

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"
```

Q: print out the cluster membership vector

```
km$cluster
```

Plot with clustering result

```
#plot(z, col= 1)
#plot(z, col= c("red", "blue"))
#plot(z, col= c(1,2))
# set color equal to the cluster membership vector:
plot(z, col= km$cluster)
```


plot(z, col= km\$cluster)
points(km\$centers, col="blue", pch=15, cex=2) # cex makes point bigger if larger than 1, pch


```
# in ggplot you have to add layers. here it just does it automatically
# always have to specify number of clusters
```

Q: Can you cluster our data in z into four clusters please?

```
km4 <- kmeans(z, centers=4)
plot(z, col= km4$cluster)
points(km4$centers, col="blue", pch=15, cex=2)</pre>
```



```
# This is stochastic so it will be different every time
# kmeans will impose a structure (clustering) on your data even if its not there because you
```

Hierarchical clustering The main function to do hierarchical clustering in base R is called hclust().

Unlike kmeans(). I can not just pass in my data as input, I first need a distance matrix (distance between each points (60x60 and zeros down the diagonal)).

```
d<-dist(z) # make the distance matrix
hc<- hclust(d)
hc</pre>
```

Call:

hclust(d = d)

Cluster method : complete
Distance : euclidean

Number of objects: 60

bottom up - start with 60 clusters and then merge them untill we've stuck everything into
or top down clustering

There is a specific hclust plot() method...

plot(hc)

Cluster Dendrogram

d hclust (*, "complete")

plot(hc)
abline(h=10, col="red") # adds line where the cluster number shows because the distance betw

Cluster Dendrogram

d hclust (*, "complete")

To get my clustering result (i.e., membership vector). I can "cut" my tree at a given height. To do this I will use the cutree()

```
grps \leftarrow cutree(hc, h=10) # this is our new vector of hierarchial clustering results grps
```

Principle component analysis (PCA)

Principal component analysis (PCA) is a well established "multivariate statistical technique" used to reduce the dimensionality of a complex data set to a more manageable number (typically 2D or 3D). This method is particularly useful for highlighting strong paterns and relationships in large datasets (i.e. revealing major similarities and differences) that are otherwise hard to visualize. As we will see again and again in this course PCA is often used to make all sorts of bioinformatics data easy to explore and visualize.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names=1) # make the columns the row names with =1
dim(x)</pre>
```

[1] 17 4

#View(x) always comment it unless you are looking at it
head(x)

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))

pairs(x, col=rainbow(10), pch=16)

PCA to the rescue

The main function to do PCA in base R is called prcomp().

Note that I need to take the transpose of this particular data as that is what the precomp() help page was asking for.

X

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139
Fresh_potatoes	720	874	566	1033
Fresh_Veg	253	265	171	143
Other_Veg	488	570	418	355
Processed_potatoes	198	203	220	187
Processed_Veg	360	365	337	334
Fresh_fruit	1102	1137	957	674
Cereals	1472	1582	1462	1494
Beverages	57	73	53	47

Soft_drinks	1374	1256	1572	1506
Alcoholic_drinks	375	475	458	135
Confectionery	54	64	62	41

 $\mbox{\tt\#}$ want to switch columns and rowes so its accepted into PCA

t(x) # transpose

	Cheese	Carcass_	meat	Other	_meat	Fish	Fats_and	_oils	Sugars
England	105		245		685	147		193	156
Wales	103		227		803	160		235	175
Scotland	103		242		750	122		184	147
N.Ireland	66		267		586	93		209	139
	Fresh_p	potatoes	Fres	h_Veg	Other	_Veg	Processed	d_potat	toes
England		720)	253		488			198
Wales		874	<u> </u>	265		570			203
Scotland		566	3	171		418			220
N.Ireland		1033	3	143		355			187
	Process	sed_Veg	Fresh	_fruit	Cere	als 1	Beverages	Soft_d	drinks
England		360		1103	2 :	1472	57		1374
Wales		365		113	7 :	1582	73		1256
Scotland		337		95	7 :	1462	53		1572
N.Ireland		334		674	1 :	1494	47		1506
Alcoholic_drinks Confectionery									
England		3	375		54				
Wales		4	175		64				
Scotland		4	158		62				
N.Ireland		1	.35		41				

pca<- prcomp(t(x))</pre>

summary(pca) # pc1 captures 67% of the variation in the data. pc2 captures 29% of the data

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	2.921e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

(67+29=96, therefore,)96% of the varience was captured in 2 dimensions

Lets see what is inside our result object pca that we just calculated:

attributes(pca)

pca\$x

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -9.152022e-15
Wales -240.52915 -224.646925 -56.475555 5.560040e-13
Scotland -91.86934 286.081786 -44.415495 -6.638419e-13
N.Ireland 477.39164 -58.901862 -4.877895 1.329771e-13
```

To make our main result figure, called a "PC plot" (or "score plot" or "coordination plot" or "PC1 vs PC2 plot").

```
plot(pca$x[,1], pca$x[,2], col=c("black", "red", "blue", "darkgreen"), pch=16,
# pch fills in the dots

abline(h=0) # average
abline(v=0)
```


From here we can see that Ireland is off on it's own. The major axis of variance. Give more weight to PC1 because it captures more of the variance. If two points are far apart on PC1 then thats saying there is a major feature in this data. ireland is the main difference.

Variable loadings plot

Can give us insight on how the original variables (the foods) contribute to our new PC axis

```
## Lets focus on PC1 as it accounts for > 90% of variance
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```


PC1 -> COMPARING TWO COUNTRIES

pca\$rotations

NULL