INF623

2024/1

Inteligência Artificial

A8: Busca competitiva III

Plano de aula

- O jogo do Go
- Rollouts
- Estados promissores e incerteza
- ► Heurística UCB (upper confidence bound)
- Busca em árvore monte carlo (MCTS)
- ▶ AlphaGo e AlphaGo Zero

Exemplo 1: Go

Considere o tabuleiro de Go abaixo. Qual é a melhor jogada que você pode fazer?

- Fator de ramificação do Go: b > 300, $m \approx 150$
- Fator de ramificação do Xadrez: $b \approx 35$, $m \approx 80$
- Poda alpha-beta permite uma busca de no máximo 4 níveis de profundidade
- Não é suficiente!

"Move 37", AlphaGo

https://blog.google/technology/ai/what-we-learned-in-seoul-with-alphago/

Busca em árvore monte carlo: ideia geral

A busca em árvore monte carlo combina duas ideais principais:

▶ Simulação (rollout)

- ▶ Jogar múltiplas partidas a partir de um estado s usando uma estratégia rápida
- Contar o número de vitórias

Seleção (busca seletiva)

- Explorar as partes da árvore que ajudam a melhorar a decisão na raiz
- ▶ Independente da profundidade

Rollouts

Jogar múltiplas partidas a partir de um estado s usando uma estratégia rápida π e contar o número de vitórias e derrotas:

```
def rollout(s, \pi, E, U, p):

1. r = s

2. while E(r)!= True:

3. r = \pi(r)

4. return U(r, p)
```

- lacktriangle Uma estratégia rápida π bastante comum consiste em escolher jogadas aleatórias
 - ▶ Melhores estratégias ajudam, mas não devem ser muito custosas (pois tornam o rollout muito demorado)
- lacktriangle Taxa de vitórias a partir de s está correlacionada com o valor V(s)

Exemplo: rollout aleatório no jogo da velha

MCTS versão preliminar 1

- Execute N rollouts para cada filho do nó raiz e guarde as taxas de vitórias
- 2. Escolha a jogada com a melhor taxa de vitória

MCTS versão preliminar 1

- Execute N rollouts para cada filho do nó raiz e guarde as taxas de vitórias
- 2. Escolha a jogada com a melhor taxa de vitória

MCTS versão preliminar 2

- Execute N rollouts, alocando-os aos filhos mais promissores do nó raiz, e guarde as taxas de vitórias
- 2. Escolha a jogada com a melhor taxa de vitória

Como balancear estados promissores considerando incerteza?

Heurística UCB

A fórmula UCB (Upper confidence bound) formaliza o trade-off entre nós promissores e incerteza:

$$UCB(s) = \frac{U(s)}{N(s)} + C \times \sqrt{\frac{\log N(Pai(s))}{N(s)}}$$

Promissor (intensificação)

Incerteza (exploração)

- ightharpoonup N(s) número de simulações feitas no estado s
- ightharpoonup C- constante de exploração
- ightharpoonup Pai(s) pai de s

Busca em árvore monte carlo

- Repita até acabar o tempo:
 - Seleção
 (Upper confidence bounds for trees UCT)

Aplique recursivamente a UCB para escolher um um nó folha n não totalmente expandido

2. Expansão

Adicione um novo filho c a n

3. Simulação (rollout)

Execute uma simulação a partir de c

4. Backpropagation

Atualize as estatísticas de c até a raiz

lacktriangle Escolha a ação com maior N(n)

Exemplo MCTS Rollouts 20 $UCB(n) = \frac{U(n)}{N(n)} + 2 \times \sqrt{\left(\frac{\log N(s)}{N(n)}\right)}$ U(s0): N(s0): s_0 U(s1): U(s2): S_1 N(s1): N(s2): a_3 a_6 a_4 U(s3): U(s4): U(s5): U(s6): S_4 S_3 *S*₅ N(s3): N(s4):

N(s5):

N(s6):

Rollouts 20 10 0 6 14 8

Exemplo MCTS

U(s3):

N(s3):

Trailer do AlphaGo Movie

Seleção

$$PUCT(s, a) = Q(s_t, a) + c_{puct}P(s, a) \frac{\sqrt{\sum_b N_r(s, b)}}{1 + N_r(s, a)}$$

Expansão

Adiciona um filho s_l ao nó selecionado e calcula as probabilidades das ações com uma **rede neural de política lenta** $p_{\sigma}(s_l)$

Simulação

Estima o valor de s_l com uma média ponderada: $V(s_l)=(1-\lambda)v_\sigma+\lambda z_{L'}$ onde v_θ é uma **rede neural de valor** e Z_L é o resultado de um rollout com uma **rede neural de política rápida** p_π .

Backpropagation

Atualização dos valores das ações $oldsymbol{\mathcal{Q}}$

- 1. A rede neural de política rápida p_{π} e a rede neural de política lenta p_{σ} são treinadas para prever a próxima jogada de jogadores profissionais usando um dataset de posiçãojogada;
- 2. Uma nova rede neural de política p_{ρ} é inicializada com $p_{\sigma'}$ e é melhorada via aprendizado por reforço, jogando com versões anteriores de si mesma escolhidas aleatoriamente;
- 3. Um novo conjunto de dados é gerado jogando vários jogos de $p_{
 ho}$ contra si mesma (self-play);
- 4. A **rede neural de valor** v_{θ} é treinada por regressão para prever o resultado da partida (isto é, se o jogador corrente irá ganhar) usando o dataset de *self-play*.

- As **redes neurais de política** p_{π} **e** p_{σ} recebem um estado (tabuleiro) s como entrada e o processam com uma sequência de **camadas convolucionais**, e retornam uma distribuição de probabilidades dos movimentos, representado como um mapa de probabilidades no tabuleiro.
- A **rede neural de valor** v_{θ} usa camadas convolucionais similares, mas retornam um valor escalar $v_{\theta}(s)$ como previsão do resultado esperado do jogo na posição s.

AlphaGo Zero

Seleção

$$PUCT(s, a) = Q(s_t, a) + c_{puct}P(s, a) \frac{\sqrt{\sum_b N_r(s, b)}}{1 + N_r(s, a)}$$

Expansão

Adiciona um filho s_l ao nó selecionado , calcula as probabilidades das ações com uma **rede neural** $f_{\theta}(s_l)$

Backpropagation

Atualização dos valores das ações $oldsymbol{\mathcal{Q}}$

Simulação

Estima o valor de s_l com a mesma **rede neural** $f_{\theta}(s_l)$. Não executa rollout!

AlphaGo Zero

O AlphaGo Zero joga uma partida s_1, \ldots, s_T contra si mesmo e, em cada posição $s_{t'}$ MCTS α_{θ} é executado usando a **última rede neural** f_{θ} .

- lacktriangle Os movimentos são selecionados de acordo com a distribuição de visitas feito pelo MCTS, $a_t \sim \pi_t$.
- lacktriangle A utilidade z do estado terminal s_T é definida de acordo com as regras do jogo.

AlphaGo Zero

- lacktriangle A rede neural $f_{ heta}$ tem como entrada um estado (tabuleiro) $s_{t'}$ que é passado por uma sequência de camadas convolucionais, e retorna:
 - (a) Distribuição de probabilidades p_t (vetor) das ações;
 - (b) Probabilidade v_t (escalar) do jogador corrente vencer na posição s_t .
- $lackbox{0}$ Os parâmetros eta de $f_{ heta}$ são atualizados para
 - Maximizar a similaridade do vetor p_t com as probabilidades de busca π_t
 - Minimizar o erro entre o vencedor previsto $v_t\,e\,o$ vencedor real do jogo z
- Ds novos parâmetros são utilizados na próxima iteração de self-play

Próxima aula

A9: Satisfação de restrição l

Formulação de problemas de busca e algoritmos de busca sem informação: busca em largura, profundidade e custo uniforme

