COMPLEX - Cours 10 Classes de complexité probabilistes

Damien Vergnaud

Sorbonne Université – CNRS

Table des matières

- Définitions
 - Rappels
 - Machines de Turing probabilistes
- $oxed{2}$ Classe de complexité \mathcal{BPP}
 - Définition
 - ullet Réduction de l'erreur et classe \mathcal{PP}
- $oxed{3}$ Classes de complexité \mathcal{RP} , $\mathit{co} \mathcal{RP}$ et \mathcal{ZPP}
 - Classes de complexité \mathcal{RP} et $co \mathcal{RP}$
 - ullet Classe de complexité \mathcal{ZPP}
- Conclusion

Une **machine de Turing** est un quintuplet $(Q, \Gamma, q_0, q_n, \delta)$ où :

- $Q = \{q_0, \dots, q_n\}$ est un ensemble fini d'états
- Γ est l'alphabet de travail des symboles de la bande avec \square un symbole particulier (dit blanc), $\square \in \Gamma$
- q₀ est l'état initial
- q_n est l'état acceptant
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{\lhd, \rhd\}$ est la fonction de *transition*

5/34

- Nous supposons que $\mathcal M$ s'arrête sur tout $x \in \Sigma^*$ (avec $\Sigma \subset \Gamma$)
 - \mathcal{M} arrive dans une configuration avec l'état q_n $\rightsquigarrow \mathcal{M}(x) = 1$
 - \mathcal{M} arrive dans une configuration sans transition possible $\rightsquigarrow \mathcal{M}(x) = 0$

La classe \mathcal{DTIME}

Soit Σ un alphabet fini. Soit $T = \mathbb{N} \to \mathbb{N}$. Un langage $\mathcal{L} \subseteq \Sigma^*$ appartient à la classe $\mathcal{DTIME}(T)$ si et seulement si il existe une machine de Turing \mathcal{M} telle que

- ullet \mathcal{M} termine toute exécution sur $x\in \Sigma^*$ en temps au plus T(|x|)
- Pour tout $x \in \mathcal{L}$, nous avons $\mathcal{M}(x) = 1$
- Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons $\mathcal{M}(x) = 0$

- Nous supposons que $\mathcal M$ s'arrête sur tout $x \in \Sigma^*$ (avec $\Sigma \subset \Gamma$)
 - \mathcal{M} arrive dans une configuration avec l'état q_n $\rightsquigarrow \mathcal{M}(x) = 1$
 - \mathcal{M} arrive dans une configuration sans transition possible $\rightsquigarrow \mathcal{M}(x) = 0$

La classe \mathcal{P}

$$\mathcal{P} = \bigcup_{k \in \mathbb{N}} \mathcal{DTIME}(n \longmapsto n^k)$$

Une **machine de Turing non-déterministe** est un sextuplet $(Q, \Gamma, q_0, q_n, \delta_0, \delta_1)$ où :

- $Q = \{q_0, \dots, q_n\}$ est un ensemble fini d'états
- Γ est l'alphabet de travail des symboles de la bande avec \square un symbole particulier (dit blanc), $\square \in \Gamma$
- q₀ est l'état initial
- q_n est l'état acceptant
- $\delta_0: Q \times \Gamma \to Q \times \Gamma \times \{ \lhd, \rhd \}$ et $\delta_1: Q \times \Gamma \to Q \times \Gamma \times \{ \lhd, \rhd \}$ sont les deux fonctions de *transition*

8/34

8/34

- Nous supposons que \mathcal{M} s'arrête sur tout $x \in \Sigma^*$ (avec $\Sigma \subset \Gamma$) (pour tous les choix de fonctions de transition)
 - \mathcal{M} arrive ≥ 1 fois dans une configuration avec l'état q_n $\rightsquigarrow \mathcal{M}(x) = 1$
 - \mathcal{M} n'arrive jamais dans une configuration avec l'état q_n $\rightsquigarrow \mathcal{M}(x) = 0$

La classe \mathcal{NTIME}

Soit Σ un alphabet fini. Soit $T = \mathbb{N} \to \mathbb{N}$.

Un langage $\mathcal{L} \subseteq \Sigma^*$ appartient à la classe $\mathcal{NTIME}(T)$ si et seulement si il existe une machine de Turing \mathcal{M} telle que

- \mathcal{M} termine toute exécution sur $x \in \Sigma^*$ en temps au plus T(|x|)
- Pour tout $x \in \mathcal{L}$, nous avons $\mathcal{M}(x) = 1$
- Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons $\mathcal{M}(x) = 0$

- Nous supposons que \mathcal{M} s'arrête sur tout $x \in \Sigma^*$ (avec $\Sigma \subset \Gamma$) (pour tous les choix de fonctions de transition)
 - \mathcal{M} arrive ≥ 1 fois dans une configuration avec l'état q_n $\rightsquigarrow \mathcal{M}(x) = 1$
 - \mathcal{M} n'arrive jamais dans une configuration avec l'état q_n $\rightsquigarrow \mathcal{M}(x) = 0$

La classe \mathcal{NP}

$$\mathcal{NP} = \bigcup_{k \in \mathbb{N}} \mathcal{NTIME}(n \longmapsto n^k)$$

- Nous supposons que \mathcal{M} s'arrête sur tout $x \in \Sigma^*$ (avec $\Sigma \subset \Gamma$) (pour tous les choix de fonctions de transition)
 - \mathcal{M} arrive ≥ 1 fois dans une configuration avec l'état q_n $\rightsquigarrow \mathcal{M}(x) = 1$
 - \mathcal{M} n'arrive jamais dans une configuration avec l'état q_n $\rightsquigarrow \mathcal{M}(x) = 0$

La classe \mathcal{NP}

$$\mathcal{NP} = \bigcup_{k \in \mathbb{N}} \mathcal{NTIME}(n \longmapsto n^k)$$

La classe
$$co - \mathcal{NP}$$

$$\mathcal{L} \in \mathrm{co} - \mathcal{NP} \iff \Sigma^* \setminus \mathcal{L} \in \mathcal{NP}$$

Une **machine de Turing non-déterministe** est un sextuplet $(Q, \Gamma, q_0, q_n, \delta_0, \delta_1)$ où :

- $Q = \{q_0, \dots, q_n\}$ est un ensemble fini d'états
- Γ est l'alphabet de travail des symboles de la bande avec \square un symbole particulier (dit blanc), $\square \in \Gamma$
- q₀ est l'état initial
- q_n est l'état acceptant
- $\delta_0: Q \times \Gamma \to Q \times \Gamma \times \{ \lhd, \rhd \}$ et $\delta_1: Q \times \Gamma \to Q \times \Gamma \times \{ \lhd, \rhd \}$ sont les deux fonctions de *transition*

Une **machine de Turing probabiliste** est un sextuplet $(Q, \Gamma, q_0, q_n, \delta_0, \delta_1)$ où :

- $Q = \{q_0, \dots, q_n\}$ est un ensemble fini d'états
- Γ est l'alphabet de travail des symboles de la bande avec \square un symbole particulier (dit blanc), $\square \in \Gamma$
- q₀ est l'état initial
- q_n est l'état acceptant
- $\delta_0: Q \times \Gamma \to Q \times \Gamma \times \{\lhd, \rhd\}$ et $\delta_1: Q \times \Gamma \to Q \times \Gamma \times \{\lhd, \rhd\}$ sont les deux fonctions de *transition*

- La définition syntaxique est identique à celle des machines non-déterministes
- La différence vient de l'interprétation du graphe des exécutions de la machine
 - Nous ne regardons plus si il existe un chemin menant à l'état acceptant
 - Nous regardons la proportion de ces chemins
- Plus précisément, nous interprétons le graphe comme :

À chaque étape de calcul \mathcal{M} exécute l'une des deux fonctions de transition δ_0 et δ_1 (tiré uniformément aléatoirement)

- La définition syntaxique est identique à celle des machines non-déterministes
- La différence vient de l'interprétation du graphe des exécutions de la machine
 - Nous ne regardons plus si il existe un chemin menant à l'état acceptant
 - Nous regardons la proportion de ces chemins
- Plus précisément, nous interprétons le graphe comme :

À chaque étape de calcul \mathcal{M} exécute l'une des deux fonctions de transition δ_0 et δ_1 (tiré uniformément aléatoirement)

- La définition syntaxique est identique à celle des machines non-déterministes
- La différence vient de l'interprétation du graphe des exécutions de la machine
 - Nous ne regardons plus si il existe un chemin menant à l'état acceptant
 - Nous regardons la proportion de ces chemins
- Plus précisément, nous interprétons le graphe comme :

À chaque étape de calcul $\mathcal M$ exécute l'une des deux fonctions de transition δ_0 et δ_1 (tiré uniformément aléatoirement)

$$Pr(\mathcal{M} \text{ accepte}) = \frac{1}{8} + \frac{1}{32} + \frac{1}{16} + \frac{1}{8} = \frac{11}{32}$$

13 / 34

Dec. 7 2023 COMPLEX - 9 Damien Vergnaud

Définition de l'acceptation

- ullet Nous ne pouvons plus dire qu'une machine de Turing probabiliste ${\mathcal M}$ accepte ou rejette un mot
- Nous définissons donc une variable aléatoire

$$\mathcal{M}(x) = \begin{cases} 1 & \text{si } \mathcal{M} \text{ s'arrête en son \'etat acceptant sur } x \\ 0 & \text{sinon} \end{cases}$$

sur l'expérience aléatoire consistant à exécuter $\mathcal M$ en tirant uniformément aléatoirement une des deux fonctions de transition à chaque étape de calcul.

Définition de l'acceptation

- ullet Nous ne pouvons plus dire qu'une machine de Turing probabiliste ${\mathcal M}$ accepte ou rejette un mot
- Nous définissons donc une variable aléatoire

$$\mathcal{M}(x) = \left\{ egin{array}{ll} 1 & ext{si } \mathcal{M} ext{ s'arrête en son \'etat acceptant sur } x \ 0 & ext{sinon} \end{array}
ight.$$

sur l'expérience aléatoire consistant à exécuter \mathcal{M} en tirant uniformément aléatoirement une des deux fonctions de transition à chaque étape de calcul.

Table des matières

- Définitions
 - Rappels
 - Machines de Turing probabilistes
- $oxed{2}$ Classe de complexité \mathcal{BPP}
 - Définition
 - ullet Réduction de l'erreur et classe \mathcal{PP}
- - Classes de complexité \mathcal{RP} et $co \mathcal{RP}$
 - ullet Classe de complexité \mathcal{ZPP}
- 4 Conclusion

La classe \mathcal{BPP}

La classe \mathcal{BPTIME}

Soit Σ un alphabet fini. Soit $T = \mathbb{N} \to \mathbb{N}$. Un langage $\mathcal{L} \subseteq \Sigma^*$ appartient à la classe $\mathcal{BPTIME}(T)$ si et seulement si il existe une machine de Turing probabiliste \mathcal{M} telle que

- \mathcal{M} termine toute exécution sur une entrée $x \in \Sigma^*$ en temps au plus T(|x|) (pour tous les tirages aléatoires)
- Pour tout $x \in \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 1] \geq \frac{2}{3}$
- Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 0] \ge \frac{2}{3}$

La classe *B*アア

$$\mathcal{BPP} = \bigcup_{k \in \mathbb{N}} \mathcal{BPTIME}(n \longmapsto n^k)$$

La classe \mathcal{BPP}

La classe \mathcal{BPTIME}

Soit Σ un alphabet fini. Soit $T = \mathbb{N} \to \mathbb{N}$.

Un langage $\mathcal{L} \subseteq \Sigma^*$ appartient à la classe $\mathcal{BPTIME}(T)$ si et seulement si il existe une machine de Turing probabiliste \mathcal{M} telle que

- \mathcal{M} termine toute exécution sur une entrée $x \in \Sigma^*$ en temps au plus T(|x|) (pour tous les tirages aléatoires)
- Pour tout $x \in \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 1] \ge \frac{2}{3}$
- Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 0] \ge \frac{2}{3}$

La classe \mathcal{BPP}

$$\mathcal{BPP} = \bigcup_{k \in \mathbb{N}} \mathcal{BPTIME}(n \longmapsto n^k)$$

La classe \mathcal{BPP}

Soit Σ un alphabet fini.

Un langage $\mathcal{L} \subseteq \Sigma^*$ appartient à la classe \mathcal{BPP} si et seulement si il existe un entier k et une machine de Turing probabiliste \mathcal{M} telle que

- \mathcal{M} termine toute exécution sur une entrée $x \in \Sigma^*$ en temps au plus $O(|x|^k)$ (pour tous les tirages aléatoires)
- Pour tout $x \in \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 1] \geq \frac{2}{3}$
- Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 0] \ge \frac{2}{3}$

◆□▶◆□▶◆壹▶◆壹▶ 壹 める◆

17/34

La classe \mathcal{BPP}

Soit Σ un alphabet fini.

Un langage $\mathcal{L} \subseteq \Sigma^*$ appartient à la classe \mathcal{BPP} si et seulement si il existe un entier k et une machine de Turing probabiliste \mathcal{M} telle que

- \mathcal{M} termine toute exécution sur une entrée $x \in \Sigma^*$ en temps au plus $O(|x|^k)$ (pour tous les tirages aléatoires)
- Pour tout $x \in \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 1] \geq \frac{3}{4}$
- Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 0] \ge \frac{3}{4}$

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めなぐ

17/34

Dec. 7 2023 COMPLEX - 9 Damien Vergnaud

Vote majoritaire 2 (ou plus) parmi 3

(50) (50)								
Exécution 1	1	1	1	1	0	0	0	0
Exécution 2	1	1	0	0	1	1	0	0
Exécution 3	1	0	1	0	1	0	1	0
Résultat	1	1	1	0	1	0	0	0

$$f(p) = p^3 + 3p^2 \cdot (1-p)$$
 et $\max f(p) = f\left(\frac{1}{3}\right) = \frac{7}{27} > \frac{1}{4}$

4 D > 4 D > 4 E > 4 E > 9 Q @

Vote majoritaire 3 (ou plus) parmi 5

$$g(p) = p^{5} + 4 \cdot p^{4} \cdot (1 - p) + 5 \cdot p^{3} \cdot (1 - p)^{2}$$

$$\max g(p) = g\left(\frac{1}{3}\right) = \frac{33}{243} < \frac{1}{4}$$

$$y$$

$$1/4$$

$$33/243$$

$$p$$

$$1/3$$

La classe \mathcal{BPP}

Soit Σ un alphabet fini.

Un langage $\mathcal{L} \subseteq \Sigma^*$ appartient à la classe \mathcal{BPP} si et seulement si il existe un entier k et une machine de Turing probabiliste \mathcal{M} telle que

- \mathcal{M} termine toute exécution sur une entrée $x \in \Sigma^*$ en temps au plus $O(|x|^k)$ (pour tous les tirages aléatoires)
- Pour tout $x \in \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 1] \geq \frac{2}{3}$
- Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 0] \ge \frac{2}{3}$

19 / 34

La classe \mathcal{BPP}

Soit Σ un alphabet fini.

Un langage $\mathcal{L} \subseteq \Sigma^*$ appartient à la classe \mathcal{BPP} si et seulement si il existe un entier k et une machine de Turing probabiliste \mathcal{M} telle que

- \mathcal{M} termine toute exécution sur une entrée $x \in \Sigma^*$ en temps au plus $O(|x|^k)$ (pour tous les tirages aléatoires)
- Pour tout $x \in \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 1] \ge \frac{3}{4}$
- Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 0] \ge \frac{3}{4}$

19 / 34

Dec. 7 2023 COMPLEX - 9 Damien Vergnaud

La classe \mathcal{BPP}

Soit Σ un alphabet fini.

Un langage $\mathcal{L} \subseteq \Sigma^*$ appartient à la classe \mathcal{BPP} si et seulement si il existe un entier k et une machine de Turing probabiliste \mathcal{M} telle que

- \mathcal{M} termine toute exécution sur une entrée $x \in \Sigma^*$ en temps au plus $O(|x|^k)$ (pour tous les tirages aléatoires)
- Pour tout $x \in \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 1] \ge \frac{4}{5}$
- Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 0] \ge \frac{4}{5}$

19 / 34

Dec. 7 2023 COMPLEX - 9 Damien Vergnaud

La classe \mathcal{BPP}

Soit Σ un alphabet fini.

Un langage $\mathcal{L} \subseteq \Sigma^*$ appartient à la classe \mathcal{BPP} si et seulement si il existe un entier k et une machine de Turing probabiliste \mathcal{M} telle que

- \mathcal{M} termine toute exécution sur une entrée $x \in \Sigma^*$ en temps au plus $O(|x|^k)$ (pour tous les tirages aléatoires)
- Pour tout $x \in \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 1] \ge \frac{1}{2} + \varepsilon$
- Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 0] \geq \frac{1}{2} + \varepsilon$

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

La classe \mathcal{BPP}

Soit Σ un alphabet fini.

Un langage $\mathcal{L} \subseteq \Sigma^*$ appartient à la classe \mathcal{BPP} si et seulement si il existe un entier k et une machine de Turing probabiliste \mathcal{M} telle que

- \mathcal{M} termine toute exécution sur une entrée $x \in \Sigma^*$ en temps au plus $O(|x|^k)$ (pour tous les tirages aléatoires)
- ullet Pour tout $x\in\mathcal{L}$, nous avons $\Pr[\mathcal{M}(x)=1]\geq 1-rac{1}{2^{|x|^c}}$
- Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 0] \geq 1 \frac{1}{2^{|x|^c}}$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Réduction de l'erreur

La classe \mathcal{BPP}

Soit Σ un alphabet fini.

Un langage $\mathcal{L} \subseteq \Sigma^*$ appartient à la classe \mathcal{BPP} si et seulement si il existe un entier k et une machine de Turing probabiliste \mathcal{M} telle que

- \mathcal{M} termine toute exécution sur une entrée $x \in \Sigma^*$ en temps au plus $O(|x|^k)$ (pour tous les tirages aléatoires)
- Pour tout $x \in \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 1] \ge \frac{1}{2} + \frac{1}{|x|^c}$
- Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 0] \ge \frac{1}{2} + \frac{1}{|x|^c}$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Dec. 7 2023 COMPLEX - 9 Damien Vergnaud 19 / 34

Réduction de l'erreur

La classe \mathcal{BPP}

Soit Σ un alphabet fini.

Un langage $\mathcal{L} \subseteq \Sigma^*$ appartient à la classe \mathcal{BPP} si et seulement si il existe un entier k et une machine de Turing probabiliste \mathcal{M} telle que

- \mathcal{M} termine toute exécution sur une entrée $x \in \Sigma^*$ en temps au plus $O(|x|^k)$ (pour tous les tirages aléatoires)
- Pour tout $x \in \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 1] \geq \frac{1}{2} + \frac{1}{|x|^c}$
- Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 0] \ge \frac{1}{2} + \frac{1}{|x|^c}$

cf. le TD (via l'inégalité de Chernoff)

19 / 34

Dec. 7 2023 COMPLEX - 9 Damien Vergnaud

Classe de complexité \mathcal{PP}

La classe \mathcal{PP}

Soit Σ un alphabet fini. Un langage $\mathcal{L} \subseteq \Sigma^*$ appartient à la classe \mathcal{PP} si et seulement si il existe un entier k et une machine de Turing probabiliste \mathcal{M} telle que

- \mathcal{M} termine toute exécution sur une entrée $x \in \Sigma^*$ en temps au plus $O(|x|^k)$ (pour tous les tirages aléatoires)
- Pour tout $x \in \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 1] > \frac{1}{2}$
- Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 0] > \frac{1}{2}$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Proposition

$\mathcal{NP} \subseteq \mathcal{PP}$

Démonstration. Il suffit de montrer que SAT $\in \mathcal{PP}$

- Soit Φ une formule booléenne en n variables x_1, \ldots, x_n
- Nous construisons une machine de Turing probabiliste de la façon suivante :
 - $(y_1,\ldots,y_n) \stackrel{\triangleright}{\longleftarrow} \{0,1\}^n$
 - Si $\Phi(y_1,\ldots,y_n)=1$ alors retourner Satisfiable
 - Sinon $i \stackrel{:}{\longleftarrow} \{1, \dots, 2^{n+1}\}$
 - si $i \le 2^n 1$ alors retourner SATISFIABLE
 - sinon retourner NON_SATISFIABLE

Démonstration (fin).

 Si Φ n'est pas satisfiable, l'algorithme retourne NON_SATISFIABLE avec probabilité

$$\frac{\#\{2^n,\ldots,2^{n+1}\}}{\#\{1,\ldots,2^{n+1}\}} = \frac{2^n+1}{2^{n+1}} = \frac{1}{2} + \frac{1}{2^{n+1}} > \frac{1}{2}.$$

• Si Φ est satisfiable, il y a $t \geq 1$ assignation(s) \vec{y} telles que $\Phi(\vec{y}) = 1$. L'algorithme retourne SATISFIABLE avec probabilité

$$\frac{t}{2^{n}} + \frac{2^{n} - t}{2^{n}} \cdot \frac{\#\{1, \dots, 2^{n} - 1\}}{\#\{1, \dots, 2^{n+1}\}} = \frac{t}{2^{n}} + \frac{2^{n} - t}{2^{n}} \cdot \frac{2^{n} - 1}{2^{n+1}}$$

$$= \frac{1}{2} - \frac{t}{2^{n+1}} - \frac{1}{2^{n+1}} + \frac{t}{2^{n}2^{n+1}} + \frac{t}{2^{n}} > \frac{1}{2}$$

22 / 34

Dec. 7 2023 COMPLEX - 9 Damien Vergnaud

Démonstration (fin).

 Si Φ n'est pas satisfiable, l'algorithme retourne NON_SATISFIABLE avec probabilité

$$\frac{\#\{2^n,\ldots,2^{n+1}\}}{\#\{1,\ldots,2^{n+1}\}} = \frac{2^n+1}{2^{n+1}} = \frac{1}{2} + \frac{1}{2^{n+1}} > \frac{1}{2}.$$

• Si Φ est satisfiable, il y a $t \geq 1$ assignation(s) \vec{y} telles que $\Phi(\vec{y}) = 1$. L'algorithme retourne SATISFIABLE avec probabilité

$$\frac{t}{2^{n}} + \frac{2^{n} - t}{2^{n}} \cdot \frac{\#\{1, \dots, 2^{n} - 1\}}{\#\{1, \dots, 2^{n+1}\}} = \frac{t}{2^{n}} + \frac{2^{n} - t}{2^{n}} \cdot \frac{2^{n} - 1}{2^{n+1}}$$

$$= \frac{1}{2} - \frac{t}{2^{n+1}} - \frac{1}{2^{n+1}} + \frac{t}{2^{n}2^{n+1}} + \frac{t}{2^{n}} > \frac{1}{2}$$

4□▶ 4□▶ 4□▶ 4□▶ □ 90

Dec. 7 2023 COMPLEX - 9 Damien Vergnaud 22 / 34

Démonstration (fin).

 Si Φ n'est pas satisfiable, l'algorithme retourne NON_SATISFIABLE avec probabilité

$$\frac{\#\{2^n,\ldots,2^{n+1}\}}{\#\{1,\ldots,2^{n+1}\}} = \frac{2^n+1}{2^{n+1}} = \frac{1}{2} + \frac{1}{2^{n+1}} > \frac{1}{2}.$$

• Si Φ est satisfiable, il y a $t \geq 1$ assignation(s) \vec{y} telles que $\Phi(\vec{y}) = 1$. L'algorithme retourne SATISFIABLE avec probabilité

$$\frac{t}{2^{n}} + \frac{2^{n} - t}{2^{n}} \cdot \frac{\#\{1, \dots, 2^{n} - 1\}}{\#\{1, \dots, 2^{n+1}\}} = \frac{t}{2^{n}} + \frac{2^{n} - t}{2^{n}} \cdot \frac{2^{n} - 1}{2^{n+1}}$$

$$= \frac{1}{2} - \frac{t}{2^{n+1}} - \frac{1}{2^{n+1}} + \frac{t}{2^{n}2^{n+1}} + \frac{t}{2^{n}} > \frac{1}{2}$$

22 / 34

Dec. 7 2023 COMPLEX - 9 Damien Vergnaud

Table des matières

- Définitions
 - Rappels
 - Machines de Turing probabilistes
- igorplus 2 Classe de complexité \mathcal{BPP}
 - Définition
 - ullet Réduction de l'erreur et classe \mathcal{PP}
- 3 Classes de complexité \mathcal{RP} , $co \mathcal{RP}$ et \mathcal{ZPP}
 - Classes de complexité \mathcal{RP} et $co-\mathcal{RP}$
 - ullet Classe de complexité \mathcal{ZPP}
- 4 Conclusion

La classe \mathcal{RTIME}

Soit Σ un alphabet fini. Soit $T = \mathbb{N} \to \mathbb{N}$. Un langage $\mathcal{L} \subseteq \Sigma^*$ appartient à la classe $\mathcal{RTIME}(T)$ si et seulement si il existe une machine de Turing probabiliste \mathcal{M} telle que

- \mathcal{M} termine toute exécution sur une entrée $x \in \Sigma^*$ en temps au plus T(|x|) (pour tous les tirages aléatoires)
- Pour tout $x \in \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 1] \geq \frac{2}{3}$
- Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 0] = 1$

La classe \mathcal{RP}

$$\mathcal{RP} = \bigcup_{k \in \mathbb{N}} \mathcal{RTIME}(n \longmapsto n^k)$$

La classe \mathcal{RTIME}

Soit Σ un alphabet fini. Soit $T = \mathbb{N} \to \mathbb{N}$.

Un langage $\mathcal{L} \subseteq \Sigma^*$ appartient à la classe $\mathcal{RTIME}(T)$ si et seulement si il existe une machine de Turing probabiliste \mathcal{M} telle que

- \mathcal{M} termine toute exécution sur une entrée $x \in \Sigma^*$ en temps au plus T(|x|) (pour tous les tirages aléatoires)
- Pour tout $x \in \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 1] \geq \frac{2}{3}$
- Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 0] = 1$

La classe \mathcal{RP}

$$\mathcal{RP} = \bigcup_{k \in \mathbb{N}} \mathcal{RTIME}(n \longmapsto n^k)$$

La classe \mathcal{ZPP}

Soit Σ un alphabet fini. Un langage $\mathcal{L} \subseteq \Sigma^*$ appartient à la classe \mathcal{ZPP} si et seulement si il existe un entier k et une machine de Turing probabiliste \mathcal{M} telle que

- \mathcal{M} termine toute exécution sur une entrée $x \in \Sigma^*$ en temps espéré $O(|x|^k)$
- Pour tout $x \in \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 1] = 1$
- Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 0] = 1$

Algorithme de type Las Vegas

$$\mathcal{ZPP} = \mathcal{RP} \cap co - \mathcal{RP}$$

Démonstration.

• Montrons que $\mathcal{ZPP} \subseteq \mathcal{RP}$.

$$\mathcal{ZPP} = \mathcal{RP} \cap co - \mathcal{RP}$$

Démonstration.

• Montrons que $\mathcal{ZPP} \subseteq \mathcal{RP}$.

Soit \mathcal{L} un langage de \mathcal{ZPP} . Par définition, il existe $T: \mathbb{N} \to \mathbb{N}$ avec $T(n) = O(n^k)$ pour un entier k et une machine de Turing probabiliste \mathcal{M} telle que

- $\mathcal M$ termine toute exécution sur une entrée $x \in \Sigma^*$ en temps espéré $\mathcal T(|x|)$
- Pour tout $x \in \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 1] = 1$
- Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons $\Pr[\mathcal{M}(x) = 0] = 1$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

Dec. 7 2023 COMPLEX - 9 Damien Vergnaud 26 / 34

Démonstration (suite).

- Nous avons construisons une machine \mathcal{M}' qui sur l'entrée x
 - exécute $\mathcal M$ sur l'entrée x pour au plus $3 \cdot T(|x|)$ étapes
 - ${\mathcal M}$ s'arrête dans son état acceptant $\leadsto {\mathcal M}'$ se place dans son état acceptant
 - ${\cal M}$ s'arrête dans un état non-acceptant $\leadsto {\cal M}'$ s'arrête dans un état non-acceptant
 - \mathcal{M} ne s'est pas arrêté au bout de $3 \cdot T(|x|)$ étapes $\rightsquigarrow \mathcal{M}'$ s'arrête dans un état non-acceptant.
- $x \notin \mathcal{L} \leadsto \mathcal{M}$ ne renvoie jamais $1 \leadsto \mathcal{M}'$ ne renvoie jamais $1 \leadsto \Pr[\mathcal{M}'(x) = 0] = 1$
- $x \in \mathcal{L} \leadsto \mathcal{M}'$ renvoie 0 seulement si \mathcal{M} ne s'est pas arrêté au bout de $3 \cdot T(|x|)$ étapes.

Quelle probabilité?

4□ > 4ⓓ > 4틸 > 4틸 > □

Démonstration (suite).

- Nous avons construisons une machine \mathcal{M}' qui sur l'entrée x
 - exécute $\mathcal M$ sur l'entrée x pour au plus $3 \cdot T(|x|)$ étapes
 - ${\mathcal M}$ s'arrête dans son état acceptant $\leadsto {\mathcal M}'$ se place dans son état acceptant
 - ${\cal M}$ s'arrête dans un état non-acceptant $\leadsto {\cal M}'$ s'arrête dans un état non-acceptant
 - \mathcal{M} ne s'est pas arrêté au bout de $3 \cdot T(|x|)$ étapes $\rightsquigarrow \mathcal{M}'$ s'arrête dans un état non-acceptant.
- $x \notin \mathcal{L} \leadsto \mathcal{M}$ ne renvoie jamais $1 \leadsto \mathcal{M}'$ ne renvoie jamais $1 \leadsto \Pr[\mathcal{M}'(x) = 0] = 1$
- $x \in \mathcal{L} \leadsto \mathcal{M}'$ renvoie 0 seulement si \mathcal{M} ne s'est pas arrêté au bout de $3 \cdot T(|x|)$ étapes.

Quelle probabilité?

Démonstration (suite).

- Nous avons construisons une machine \mathcal{M}' qui sur l'entrée x
 - exécute $\mathcal M$ sur l'entrée x pour au plus $3 \cdot T(|x|)$ étapes
 - ${\mathcal M}$ s'arrête dans son état acceptant $\leadsto {\mathcal M}'$ se place dans son état acceptant
 - ${\cal M}$ s'arrête dans un état non-acceptant $\leadsto {\cal M}'$ s'arrête dans un état non-acceptant
 - \mathcal{M} ne s'est pas arrêté au bout de $3 \cdot T(|x|)$ étapes $\rightsquigarrow \mathcal{M}'$ s'arrête dans un état non-acceptant.
- $x \notin \mathcal{L} \leadsto \mathcal{M}$ ne renvoie jamais $1 \leadsto \mathcal{M}'$ ne renvoie jamais $1 \leadsto \Pr[\mathcal{M}'(x) = 0] = 1$
- $x \in \mathcal{L} \leadsto \mathcal{M}'$ renvoie 0 seulement si \mathcal{M} ne s'est pas arrêté au bout de $3 \cdot \mathcal{T}(|x|)$ étapes.

Quelle probabilité?

Inégalité de Markov – Rappel

Inégalité de Markov

Soit Z une variable aléatoire réelle positive.

$$\forall a > 0, \qquad \Pr(Z \geqslant a) \leqslant \frac{\mathbb{E}(Z)}{a}.$$

Application.

- Z= variable aléatoire du temps de ${\cal M}$ sur l'entrée x
- $\mathbb{E}(Z) \le T(|x|) \rightsquigarrow \Pr(Z \geqslant 3T(|x|)) \le \Pr(Z \geqslant 3 \cdot \mathbb{E}(Z)) \leqslant \frac{1}{3}$

4□ > 4□ > 4 = > 4 = > = 90

Démonstration (suite).

- Nous avons construis une machine \mathcal{M}' avec dans le pire des cas $O(T(|x|)) = O(n^k)$ étapes (+ simulation du compteur)
- $x \notin \mathcal{L} \leadsto \mathcal{M}$ ne renvoie jamais $1 \leadsto \mathcal{M}'$ ne renvoie jamais $1 \leadsto \Pr[\mathcal{M}'(x) = 0] = 1$
- $x \in \mathcal{L} \leadsto \mathcal{M}'$ renvoie 0 seulement si \mathcal{M} ne s'est pas arrêté au bout de $3 \cdot \mathcal{T}(|x|)$ étapes.

$$\rightsquigarrow \Pr[\mathcal{M}'(x) = 1] \ge 2/3$$

Donc $\mathcal{L} \in \mathcal{RP}$ et $\mathcal{ZPP} \subset \mathcal{RP}$.

Démonstration (suite).

- Nous avons construis une machine \mathcal{M}' avec dans le pire des cas $O(T(|x|)) = O(n^k)$ étapes (+ simulation du compteur)
- $x \notin \mathcal{L} \leadsto \mathcal{M}$ ne renvoie jamais $1 \leadsto \mathcal{M}'$ ne renvoie jamais $1 \leadsto \Pr[\mathcal{M}'(x) = 0] = 1$
- $x \in \mathcal{L} \leadsto \mathcal{M}'$ renvoie 0 seulement si \mathcal{M} ne s'est pas arrêté au bout de $3 \cdot T(|x|)$ étapes.

 $\rightsquigarrow \Pr[\mathcal{M}'(x) = 1] \ge 2/3$

Donc $\mathcal{L} \in \mathcal{RP}$ et $\mathcal{ZPP} \subset \mathcal{RP}$.

Démonstration (suite).

- Nous avons construis une machine \mathcal{M}' avec dans le pire des cas $O(T(|x|)) = O(n^k)$ étapes (+ simulation du compteur)
- $x \notin \mathcal{L} \leadsto \mathcal{M}$ ne renvoie jamais $1 \leadsto \mathcal{M}'$ ne renvoie jamais $1 \leadsto \Pr[\mathcal{M}'(x) = 0] = 1$
- $x \in \mathcal{L} \leadsto \mathcal{M}'$ renvoie 0 seulement si \mathcal{M} ne s'est pas arrêté au bout de $3 \cdot T(|x|)$ étapes.
 - $\rightsquigarrow \Pr[\mathcal{M}'(x) = 1] \ge 2/3$

Donc $\mathcal{L} \in \mathcal{RP}$ et $\mathcal{ZPP} \subset \mathcal{RP}$.

Démonstration (suite).

- De même $\mathcal{ZPP} \subset co \mathcal{RP}$ et $\mathcal{ZPP} \subset \mathcal{RP} \cap co \mathcal{RP}$.
- Réciproquement, montrons que $\mathcal{RP} \cap co \mathcal{RP} \subset \mathcal{ZPP}$. Soit $\mathcal{L} \in \mathcal{RP} \cap co - \mathcal{RP}$. Il existe deux machines de Turing probabilistes polynomiales \mathcal{M} et \mathcal{M}' telles que
 - Pour tout $x \in \mathcal{L}$, nous avons

$$\Pr[\mathcal{M}(x) = 1] \ge \frac{2}{3}$$
 et $\Pr[\mathcal{M}'(x) = 1] = 1$

• Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons

$$\Pr[\mathcal{M}(x) = 0] = 1 \text{ et } \Pr[\mathcal{M}'(x) = 0] \ge \frac{2}{3}$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Démonstration (suite).

- De même $\mathcal{ZPP} \subset co \mathcal{RP}$ et $\mathcal{ZPP} \subset \mathcal{RP} \cap co \mathcal{RP}$.
- Réciproquement, montrons que $\mathcal{RP} \cap co \mathcal{RP} \subset \mathcal{ZPP}$. Soit $\mathcal{L} \in \mathcal{RP} \cap co - \mathcal{RP}$. Il existe deux machines de Turing probabilistes polynomiales \mathcal{M} et \mathcal{M}' telles que
 - Pour tout $x \in \mathcal{L}$, nous avons

$$\Pr[\mathcal{M}(x) = 1] \ge \frac{2}{3}$$
 et $\Pr[\mathcal{M}'(x) = 1] = 1$

• Pour tout $x \in \Sigma^* \setminus \mathcal{L}$, nous avons

$$\Pr[\mathcal{M}(x) = 0] = 1 \text{ et } \Pr[\mathcal{M}'(x) = 0] \ge \frac{2}{3}$$

Démonstration (suite).

- Si $\mathcal{M}(x) = 1$, alors $x \in \mathcal{L}$
- Si $\mathcal{M}'(x) = 0$, alors $x \notin \mathcal{L}$
- Si $\mathcal{M}(x) = 0$ et $\mathcal{M}'(x) = 1$, alors on ne peut rien déterminer de façon certaine mais ça n'arrive pas trop souvent . . .
- ullet On construit donc une machine \mathcal{M}'' qui
 - exécute $\mathcal M$ sur x, si $\mathcal M(x)=1$ alors $\mathcal M''$ accepte
 - exécute \mathcal{M}' sur x, si $\mathcal{M}'(x) = 0$ alors \mathcal{M}'' rejette
 - sinon \mathcal{M}'' recommence (avec probabilité $\leq 1/3$)
- M" ne se trompe jamais et s'exécute en temps espéré polynomial (la boucle est répétée en moyenne moins de 3/2 fois)

4 D > 4 B > 4 E > 4 E > 9 Q C

Table des matières

- Définitions
 - Rappels
 - Machines de Turing probabilistes
- $oxed{2}$ Classe de complexité \mathcal{BPP}
 - Définition
 - ullet Réduction de l'erreur et classe \mathcal{PP}
- \bigcirc Classes de complexité \mathcal{RP} , $co-\mathcal{RP}$ et \mathcal{ZPP}
 - Classes de complexité \mathcal{RP} et $co \mathcal{RP}$
 - ullet Classe de complexité \mathcal{ZPP}
- 4 Conclusion

Classes de complexité probabilistes

Classe	$\mathcal{M}(x)=1 x\in\mathcal{L}$	$\mathcal{M}(x) = 0 x \notin \mathcal{L}$	temps
\mathcal{P}	1	1	pire cas
ZPP	1	1	espéré
\mathcal{RP}	≥ 2/3	1	pire cas
$co-\mathcal{RP}$	1	≥ 2/3	pire cas
\mathcal{BPP}	$\geq 2/3$	$\geq 2/3$	pire cas
\mathcal{NP}	> 0	1	non dét.
$co-\mathcal{NP}$	1	> 0	non dét.
PP	> 1/2	> 1/2	pire cas

Classes de complexité probabilistes

Classes de complexité probabilistes

