CSE 548: Analysis of Algorithms

Lecture 3 (Divide-and-Conquer Algorithms: **Matrix Multiplication**)

> Rezaul A. Chowdhury **Department of Computer Science SUNY Stony Brook** Fall 2019

Iterative Matrix Multiplication

$$\mathbf{z}_{ij} = \sum_{k=1}^{n} \mathbf{x}_{ik} \mathbf{y}_{kj}$$

$$\begin{bmatrix} \mathbf{z}_{11} & \mathbf{z}_{12} & \cdots & \mathbf{z}_{1n} \\ \mathbf{z}_{21} & \mathbf{z}_{22} & \cdots & \mathbf{z}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{z}_{n1} & \mathbf{z}_{n2} & \cdots & \mathbf{z}_{nn} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{11} & \mathbf{x}_{12} & \cdots & \mathbf{x}_{1n} \\ \mathbf{x}_{21} & \mathbf{x}_{22} & \cdots & \mathbf{x}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{n1} & \mathbf{x}_{n2} & \cdots & \mathbf{x}_{nn} \end{bmatrix} \times \begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} \\ \mathbf{y}_{21} & \mathbf{y}_{21} \\ \vdots \\ \mathbf{y}_{n1} & \mathbf{y}_{n2} \end{bmatrix}$$

Iter-MM (Z, X, Y) $\{X, Y, Z \text{ are } n \times n \text{ matrices.} \}$

for $j \leftarrow 1$ to n do

 $Z[i][j] \leftarrow 0$

for $k \leftarrow 1$ to n do

 $Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$

Recursive (Divide & Conquer) Matrix Multiplication

Recursive (Divide & Conquer) Matrix Multiplication

	← n/2 →	ı	
n/2	X ₁₁ Y ₁₁ + X ₁₂ Y ₂₁	X ₁₁ Y ₁₂ + X ₁₂ Y ₂₂	1
= -	X ₂₁ Y ₁₁ + X ₂₂ Y ₂₁	X ₂₁ Y ₁₂ + X ₂₂ Y ₂₂	
	- 1		-

recursive matrix products: 8 # matrix sums: 4

Rec-MM (X, Y) { X and Y are
$$n \times n$$
 matrices,
where $n = 2^k$ for integer $k \ge 0$ }

1. Let Z be a new $n \times n$ matrix

Z ← X · Y

 $Z_{11} \leftarrow Rec-MM (X_{11}, Y_{11}) + Rec-MM (X_{12}, Y_{21})$

 $Z_{12} \leftarrow Rec\text{-MM}(X_{11}, Y_{12}) + Rec\text{-MM}(X_{12}, Y_{22})$

 $Z_{21} \leftarrow Rec\text{-MM}(X_{21}, Y_{11}) + Rec\text{-MM}(X_{22}, Y_{21})$

Z₂₂ ← Rec-MM (X₂₁, Y₁₂) + Rec-MM (X₂₂, Y₂₂)

9. endif

$$T(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 8T\left(\frac{n}{2}\right) + \Theta(n^2), & \text{otherwise.} \end{cases}$$
$$= \Theta(n^3)$$

Strassen's Algorithms for Matrix Multiplication (MM)

In 1968 Volker Strassen came up with a recursive MM algorithm that runs asymptotically faster than the classical $\Theta(n^3)$ algorithm. In each level of recursion the algorithm uses:

7 recursive matrix multiplications (instead of 8), and 18 matrix additions (instead of 4).

Strassen's MM: 7 Matrix Products

	Y ₁₁	Y ₂₂	Y_{c1}	Y_{c2}	Y_{r1}	Y_{r2}	Y_{d1}
X ₁₁				P_{11}			
X ₂₂			P ₂₂				
X_{r1}		P_{r1}					
	P_{r2}						
X_{c1}					P_{c1}		
X_{c2}						P_{c2}	
X_{d1}							P_{d1}

Strassen's Matrix Multiplication

Z ₁₁	Z ₁₂		X ₁₁	X ₁₂		Υ ₁₁	Y ₁₂		X ₁₁ Y ₁₁ + X ₁₂ Y ₂₁	X ₁₁ Y ₁₂ + X ₁₂ Y ₂₂
Z ₂₁	Z ₂₂		X ₂₁	X ₂₂	^	Y ₂₁	Y ₂₂	_	$X_{21}Y_{11} + X_{22}Y_{21}$	X ₂₁ Y ₁₂ + X ₂₂ Y ₂₂

Sums:

$$\begin{array}{lll} X_{r1} = X_{11} + X_{12} & Y_{r1} = Y_{11} + Y_{12} \\ X_{r2} = X_{21} + X_{22} & Y_{r2} = Y_{21} + Y_{22} \\ X_{c1} = X_{11} - X_{21} & Y_{c1} = Y_{11} - Y_{21} \\ X_{c2} = X_{12} - X_{22} & Y_{c2} = Y_{12} - Y_{22} \\ X_{d1} = X_{11} + X_{22} & Y_{d1} = Y_{11} + Y_{22} \end{array}$$

Running Time:

Products:

 $P_{r2} = X_{r2} \cdot Y_{11}$

$$\begin{array}{ll} P_{11} = X_{11} \cdot Y_{c2} & P_{c1} = X_{c1} \cdot Y_{r1} \\ P_{22} = X_{22} \cdot Y_{c1} & P_{c2} = X_{c2} \cdot Y_{r2} \\ P_{r1} = X_{r1} \cdot Y_{22} & P_{d1} = X_{d1} \cdot Y_{d1} \end{array}$$

$$T(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 7T\left(\frac{n}{2}\right) + \Theta(n^2), & \text{otherwise.} \end{cases}$$

$$= \Theta(n^{\log_2 7}) = O(n^{2.81})$$

Deriving Strassen's Algorithm

Use the Feynman Algorithm:

Step 1: write down the problem

Step 2: thínk real hard

Step 3: write down the solution

23

Deriving Strassen's Algorithm

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \implies \begin{bmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{bmatrix} \begin{bmatrix} e \\ f \\ h \end{bmatrix} = \begin{bmatrix} p \\ r \\ q \\ s \end{bmatrix}$$

We will try to minimize the number of multiplications needed to evaluate Z using special matrix products that are easy to compute.

<u> iype</u>	Product	#IVIUITS	
(·)	$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e \\ g \end{bmatrix} = \begin{bmatrix} ae + bg \\ ce + dg \end{bmatrix}$	4	
(A)	$\begin{bmatrix} a & a \\ a & a \end{bmatrix} \begin{bmatrix} e \\ g \end{bmatrix} = \begin{bmatrix} a(e+g) \\ a(e+g) \end{bmatrix}$	1	
(B)	$\begin{bmatrix} a & a \\ -a & -a \end{bmatrix} \begin{bmatrix} e \\ g \end{bmatrix} = \begin{bmatrix} a(e+g) \\ -a(e+g) \end{bmatrix}$	1	
(C)	$\begin{bmatrix} a & 0 \\ a - b & b \end{bmatrix} \begin{bmatrix} e \\ g \end{bmatrix} = \begin{bmatrix} ae \\ ae + b(g - e) \end{bmatrix}$	2	
(D)	$\begin{bmatrix} a & b-a \\ 0 & b \end{bmatrix} \begin{bmatrix} e \\ g \end{bmatrix} = \begin{bmatrix} a(e-g)+bg \\ bg \end{bmatrix}$	2	24

Deriving Strassen's Algorithm $\left| \begin{array}{cccc} c & d & 0 & 0 \\ 0 & 0 & a & b \end{array} \right| =$ $\begin{vmatrix} b & b & 0 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix} + \begin{vmatrix} c - b \\ 0 \end{vmatrix}$ -(c-b) 0 0 -(c-b) + $\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ a-c & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & d-b & 0 & (d-c)-(d-b) \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & d-c \\ \end{bmatrix}}_{\text{Terms D (2 Mult)}} \underbrace{ \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & d-b & 0 & (d-c) \end{bmatrix}}_{\text{Terms D (2 Mult)}}$

0 0

Algorithms for Multiplying Two $n \times n$ Matrices

A recursive algorithm based on multiplying two $m \times m$ matrices using k multiplications will yield an $O(n^{\log_m k})$ algorithm. To beat Strassen's algorithm: $\log_m k < \log_2 7 \Rightarrow k < m^{\log_2 7}$. So, for a 3×3 matrix, we must have: $k < 3^{\log_2 7} < 22$. But the best known algorithm uses 23 multiplications!

Inventor	Year	Complexity
Classical	-	$\Theta(n^3)$
Volker Strassen	1968	$\Theta(n^{2.807})$
Victor Pan (multiply two 70×70 matrices using 143,640 multiplications)	1978	$\Theta(n^{2.795})$
Don Coppersmith & Shmuel Winograd (arithmetic progressions)	1990	$\Theta\!\left(n^{2.3737} ight)$
Andrew Stothers	2010	$\Theta(n^{2.3736})$
Virginia Williams	2011	$\Theta(n^{2.3727})$
Lower bound: $\Omega(n^2)$ (why?)		26

