Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчет по лабораторной работе №8

по дисциплине "Математическая статистика"

Выполнил студент Группы 3630102/80101

шао Цзяци

Проверил доцент, к.ф.-м.н.

Баженов Александр Николаевич

Содержание

1. Постановка задачи		
2.	Теория	3
	2.1. Величины дисперсионного анализа	3
	2.2. Ход работы	3
3.	Реализация	4
4.	Результаты	4
5.	Обсуждение	6

Список иллюстраций

1	График входного сигнала	4
2	Гистограмма входного сигнала	5
3	График разделения сигнала на однородной области	5

Список таблиц

1 Характеристика выделенных областей .	
--	--

1. Постановка задачи

Провести дисперсионный анализ с применением критерия Фишера по данным регистраторов для одного сигнала. Определить области однородности сигнала, переходные области, шум/фон. Длина сигнала 1024.

2. Теория

2.1. Величины дисперсионного анализа

1) Внутригрупповая дисперсия

$$s_{IntraGroup}^2 = \frac{1}{k} \sum_{i=1}^k s_i^2 = \frac{1}{k} \sum_{i=1}^k \frac{\sum_{j=1}^n (x_{ij} - X_{cp})^2}{k - 1}$$
 (1)

где, X_{cp} - среднее для части выборки, k - количество частей выборки, n - количество элементов в рассматриваемой части выборки.

Внутригрупповая дисперсия является дисперсией совокупности и рассматривается как среднее значение выборочных дисперсий.

2) Межсгрупповая дисперсия

$$s_{InterGroup}^2 = k \frac{\sum_{i=1}^k (X_{i_{cp}-X_{cp}}^2)}{k-1}$$
 (2)

где, $X_{i_{cp}}$ - среднее значение для подвыборок, X_{cp} - среднее значение этих средних значений подвыборок.

3) Значение критерия Фишера

$$F = \frac{s_{InterGroup}^2}{s_{IntraGroup}^2} \tag{3}$$

2.2. Ход работы

- 1) Извлечь сигнал из исходных данных в файле wave_ampl.txt. Так как сигнал имеет длину 1024, выбрать начальный индекс, кратный 1024.
- 2) Построить гистограмму со столбцами:
 - фон столбец с наибольшим значением
 - сигнал второй по величине столбец после фона.
 - переходы столбцы с малыми значениями.
- 3) Устранить явные выбросы, т.е. сгладить сигнал, используя медианный фильтр с переназначением выброса как среднего арифметического его соседней.
- 4) Разделить сигнал на области: сигнал, фон и переходные процессы.
- 5) Определить тип области по критерию Фишера:
 - если значение критерия Фишера велико, то эта область переходных процессов.
 - если значение критерия Фишера находится вблизи 1, то эти области однородны.

3. Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования python в среде разработки Pycharm с дополнительными библиотеками.

- scipy
- numpy
- matplotlib
- math

Исходный код лабораторной работы размещен в Github-репозитории. URL: https://github.com/Shaots/shaoMathStatistic/tree/master/Lab8

4. Результаты

Рис. 1. График входного сигнала

Рис. 2. Гистограмма входного сигнала

Рис. 3. График разделения сигнала на однородной области

Область	тип	количество разбиений	Критерий Фишера
[0, 250]	Фон	k = 5	F = 0.15357118278559775
[250, 317]	Переход	k = 4	F = 17.179199289792713
[317, 741]	Сигнал	k = 4	F = 0.07696489423193234
[741, 808]	Переход	k = 4	F = 17.19853462816614
[808, 1023]	Фон	k = 5	F = 1.09127750809482

Таблица 1. Характеристика выделенных областей

5. Обсуждение

- 1) Для входных данных сигнала были получены следующие области однородности: фон (слева и справа) и сигнал, эти области однородны так как значения критерия Фишера находится вблизи 1
- 2) На переходах значения критерия Фишера много больше 1, следовательно, эти области неоднородны