

TEORÍA DE CONTROL Técnicas clásicas de Control III - Diseño de controladores discretos

Grado de Robótica Curso 2021-2022

Objetivos

- Discretización de controladores PID.
- Deseño de controladores por asignación de polos.
- Reguladores de tiempo mínimo.

INTRODUCCIÓN

Tipos de controladores:

- **Controladores analógicos**: implementados con elementos que modifican la respuesta frecuencial de un sistema (AOs, resistencias, condensadores, ...)
- Controladores digitales: implementados con microprocesadores, microcontroladores, DSP, FPGA,... Necesitan conversores A.D. y D.A.

CONTROLADOR	VENTAJAS	DESVENTAJAS
ANALÓGICO	Elevado ancho de banda.Elevada resoluciónFácil de diseñar?	Envejecimiento de componentesDerivas con la temperatura
DIGITAL	 Diseño programable Implementación de algoritmos complejos. Fácilmente ampliable. 	 Difícil de diseñar? Puede necesitar procesadores potentes. Puede generar problemas numéricos.

INTRODUCCIÓN

Pasos de diseño de un sistema de control:

- 1. Obtención del modelo del sistema a controlar (o no...)
- 2. Diseño del controlador para obtener el comportamiento deseado.

El diseño de controles digitales implica la conversión a la forma discreta:

- Diseño analógico y conversión a forma discreta para su implementación.
- Diseño discreto directo, entonces es necesario obtener el modelo de la planta en forma discreta (transformada Z).

Tres técnicas para convertir un sistema analógico en discreto:

- Mantenedor de orden cero (ZOH).
- Correspondencia polos-ceros.
- Transformación bilineal.

DISCRETIZACIÓN - MANTENEDOR DE ORDEN CERO

Esta técnica asume que el controlador tiene una entrada con un mantenedor de orden cero

$$D(z) = (1 - z^{-1}) \times Z \left[\frac{D(s)}{s} \right]$$

DISCRETIZACIÓN - CORRESPONDENCIA POLO-CERO

Los polos y ceros "s_i" de D(s) se mapean como polos y ceros de D(z) de acuerdo con:

$$z_i = e^{s_i T}$$
 T = periodo de muestreo

Si D(s) tiene más polos que ceros se añaden ceros en z=-1 en el numerador para igualar el número de polos y ceros.

La ganancia se escoge adecuadamente para que se cumpla:

$$D(z)\big|_{z=1} = D(s)\big|_{s=0}$$

DISCRETIZACIÓN - CORRESPONDENCIA POLO-CERO

Los polos y ceros s_i de D(s) se mapean como polos y ceros de D(z) de acuerdo con:

$$z_i = e^{s_i T}$$
 $T = \text{periodo de muestreo}$

Si D(s) tiene más polos que ceros se añaden ceros en z=-1 en el numerador para igualar el número de polos y ceros.

La ganancia se escoge adecuadamente para que se cumpla:

$$D(z)\Big|_{z=1} = D(s)\Big|_{s=0}$$

DISCRETIZACIÓN - TRANSFORMACIÓN BILINEAL

También de Tustin o trapezoidal. Utiliza la siguiente relación:

$$s = \frac{2}{T} \frac{(z-1)}{z+1}$$
 $T = \text{periodo de muestreo}$

para transformar del dominio "s" al dominio "z".

INTRODUCCIÓN

$$U(s) = K_p E(s) + K_i \frac{E(s)}{s} + K_d s E(s) \qquad U(z) = K_p E(z) + K_d s E(s)$$

$$U(z) = K_p E(z) + D_I(z)E(z) + D_D(z)E(z)$$

Varias formas de implementar $D_I(z)$

INTRODUCCIÓN

Dos técnicas de implementación del control PID digital:

- Aproximación rectangular: El diseño se realiza en el dominio analógico y a continuación se transfiere al dominio discreto. Es fácil de implementar y produce buenos resultados
- **Aproximación trapezoidal**: El diseño se realiza en el dominio discreto directamente utilizando técnicas de ubicación de polos.

APROXIMACIÓN RECTANGULAR DEL PID

Término proporcional

$$K_p e(t) \to \frac{K_p e(n)}{n}$$

<u>Término integral</u>

$$K_i \int e(t)dt \to \frac{K_i T}{n} \sum_{\eta} \frac{e(\eta)}{n}$$

Término derivativo

Si T es suficientemente pequeño se aproxima por

$$K_d \frac{de(t)}{dt} \to \frac{K_d}{T} \frac{e(n) - e(n-1)}{T}$$

Si se conoce e(n + 1) se puede obtener una mejor aproximación de la derivada:

$$K_d \frac{de(t)}{dt} \to \frac{K_d}{T} \frac{e(n+1) - e(n)}{T}$$

Algoritmo de posición:
$$u(n) = K_p e(n) + K_i T \sum_{\eta} e(\eta) + K_d \frac{e(n) - e(n-1)}{T}$$

APROXIMACIÓN RECTANGULAR DEL PID

Algoritmo de posición:
$$u(n) = K_p e(n) + K_i T \sum_{\eta} e(\eta) + K_d \frac{e(n) - e(n-1)}{T}$$

Inconveniente: en el caso de malfuncionamiento del sistema digital que calcula u(n)se podría generar una salida donde u(n) = 0

<u>Algoritmo de velocidad</u>: $\Delta u(n) = u(n) - u(n-2)$

- Es el algoritmo que se emplea habitualmente
- El sistema de control calcula incrementos o correcciones sobre la señal de control.
- Presenta mejor comportamiento en el arranque y frente a cambios bruscos de la señal de entrada.

$$u(n-2) = K_p e(n-2) + K_i T \sum_{n=0}^{n-2} e_n + K_d \frac{e(n-1) - e(n-2)}{T}$$

$$u(n) = u(n-2) + K_p[e(n) - e(n-2)] + K_i T \left[\sum_{\eta}^{n} e_{\eta} - \sum_{\eta}^{n-2} e_{\eta} \right] + K_d \frac{e(n) - 2e(n-1) + e(n-2)}{T}$$

$$u(n) = u(n-2) + K_1 e(n) + K_2 e(n-1) + K_3 e(n-2)$$

$$u(n) = u(n-2) + K_1 e(n) + K_2 e(n-1) + K_3 e(n-2)$$

$$K_1 = K_p + \frac{K_d}{T} + K_i T \quad , \quad K_2 = K_i T - \frac{2K_d}{T} \quad , \quad K_3 = \frac{K_d}{T} - K_p$$

APROXIMACIÓN RECTANGULAR DEL PID

$$u(n) = u(n-2) + K_1 e(n) + K_2 e(n-1) + K_3 e(n-2)$$

APROXIMACIÓN TRAPEZOIDAL DEL PID

Se utiliza cuando se requiere mayor precisión en la conversión a forma discreta.

La integral se determina con la suma de trapezoides:

$$\frac{T}{2}[e(n) + e(n+1)]$$

Función de transferencia del término integral:

$$u(n) = u(n-1) + K_I \frac{T}{2} [e(n) + e(n-1)]$$

$$U(z)(1-z^{-1})=K_I\frac{T}{2}(1+z^{-1})E(z)$$

$$D_I(z) = \frac{U(z)}{E(z)} = K_I \frac{T}{2} \frac{1+z^{-1}}{1-z^{-1}}$$

$$u(n) = K_p e(n) + K_i T \sum_{\eta} e(\eta) + K_d \frac{e(\eta) - e(\eta - 1)}{T}$$

$$U(z) = K_p E(z) + K_l \frac{T}{2} \frac{1 + z^{-1}}{1 - z^{-1}} E(z) + \frac{K_d}{T} (1 - z^{-1}) E(z) \rightarrow D(z) = \frac{U(z)}{E(z)} = K_p + K_l \frac{T}{2} \frac{1 + z^{-1}}{1 - z^{-1}} + \frac{K_d}{T} (1 - z^{-1})$$

$$D(z) = \frac{(2TK_P + K_I T^2 + 2K_D) + (K_I T^2 - 2TK_P - 4K_D)z^{-1} + 2K_D z^{-2}}{2T(1 - z^{-1})}$$

APROXIMACIÓN TRAPEZOIDAL DEL PID

$$u(n) = u(n-1) + K_1 e(n) + K_2 e(n-1) + K_3 e(n-2)$$

DIAGRAMA DE BLOQUES DE UN CONTROLADOR DIGITAL

Expresión general de la función de transferencia del controlador digital

$$D(z) = \frac{E_2(z)}{E_1(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p}}$$

ELEMENTOS PARA REALIZAR UN CONTROLADOR DIGITAL

$$D(z) = \frac{E_2(z)}{E_1(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p}}$$

Elementos de retardo

Sumadores c.a.2

Multiplicadores c.a.2

ESTRUCTURAS DE IMPLEMENTACIÓN

- Programación directa: implementa la ecuación en diferencias
- Programación estándar: reduce el número de registros a utilizar
- Programación en serie
- Programación en paralelo
- Programación en escalera

La función de transferencia se descompone en funciones de primer y segundo orden para disminuir los errores de truncado de coeficientes

PROGRAMACIÓN DIRECTA

$$D(z) = \frac{E_2(z)}{E_1(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p}}$$

$$E_2(z) [a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p}] = E_1(z) [b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}]$$

$$\text{Transformada "z" inversa}$$

$$a_0 \cdot e_2(n) + \sum_{i=1}^p a_i e_2(n-i) = \sum_{i=0}^m b_i e_1(n-i)$$
Salida actual $e_2(n) = \frac{1}{a_0} \sum_{i=0}^m b_i e_1(n-i) - \frac{1}{a_0} \sum_{i=1}^p a_i e_2(n-i)$
Entradas Salidas anteriores

PROGRAMACIÓN DIRECTA

PROGRAMACIÓN ESTÁNDAR

$$D(z) = \frac{E_2(z)}{E_1(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p}} = \frac{E_2(z)}{H(z)} \frac{H(z)}{E_1(z)}$$

$$\frac{E_2(z)}{H(z)} = b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}$$

$$\frac{E_2(z)}{H(z)} = b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m} \qquad \frac{H(z)}{E_1(z)} = \frac{1}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p}}$$

Transformada "z" inversa

$$E_{2}(z) = [b_{0} + b_{1}z^{-1} + b_{2}z^{-2} + \dots + b_{m}z^{-m}] \cdot H(z) \qquad \Longrightarrow e_{2}(n) = \sum_{i=0}^{m} b_{i}h(n-i)$$

$$H(z) = \frac{1}{a_0} E_1(z) - \frac{1}{a_0} \left[a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p} \right] \cdot H(z) \Rightarrow h(n) = \frac{1}{a_0} e_1(n) - \frac{1}{a_0} \sum_{i=1}^p a_i h(n-i)$$

PROGRAMACIÓN ESTÁNDAR

Recursos utilizados:

- P elementos de retraso "Z-1"
- P+M+2 multiplicadores
- P+M+1 sumadores

PROGRAMACIÓN ESTÁNDAR

FUENTES DE ERROR

La precisión en la implementación de controles digitales es importante para obtener un buen resultado.

Hay tres fuentes de error que afectan a la precisión:

- El error de cuantificación de los ADC
- Redondeo en las operaciones aritméticas
- Truncamiento de los coeficientes a_i y b_i ⇒ este error aumenta al aumentar el orden de la función de transferencia ⇒ un pequeño error en los coeficientes de un filtro de orden elevado provoca un gran error en la ubicación de polos y ceros

Este error se puede reducir matemáticamente descomponiendo las funciones de transferencia de orden elevado en combinaciones de funciones de primer y segundo orden

PROGRAMACIÓN SERIE

La función de transferencia se descompone en un producto de funciones sencillas de primer o segundo orden

$$D(z) = \frac{E_2(z)}{E_1(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p}} = D_1(z) \cdot D_2(z) \cdot \dots D_r(z) = \prod_{k=1}^r D_k(z)$$

$$e_1(n) \longrightarrow D_1(z) \longrightarrow D_2(z) \longrightarrow D_r(z) \longrightarrow e_2(n)$$

Las funciones de transferencia $D_i(z)$ dependen de los polos y ceros de D(z):

Polo y cero reales
$$D_i(z) = \frac{1 + b_i z^{-1}}{1 + a_i z^{-1}}$$

Polo y cero reales
$$D_{i}(z) = \frac{1 + b_{i}z^{-1}}{1 + a_{i}z^{-1}}$$
Polos y ceros complejo conjugados
$$D_{i}(z) = \frac{1 + e_{i}z^{-1} + f_{i}z^{-2}}{1 + c_{i}z^{-1} + d_{i}z^{-2}}$$

PROGRAMACIÓN SERIE: CEROS Y POLOS REALES

Polo y cero reales $\frac{Y(z)}{X(z)} = \frac{1 + b_i z^{-1}}{1 + a_i z^{-1}}$

PROGRAMACIÓN SERIE: CEROS Y POLOS COMPLEJO CONJUGADOS

Polos y ceros complejo conjugados
$$\frac{Y(z)}{X(z)} = \frac{1 + e_i z^{-1} + f_i z^{-2}}{1 + c_i z^{-1} + d_i z^{-2}}$$

PROGRAMACIÓN PARALELO

La función de transferencia se descompone en suma de fracciones parciales de primer y segundo orden:

$$D(z) = \frac{E_2(z)}{E_1(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p}} = A + D_1(z) + D_2(z) + \dots + D_q(z)$$

$$= A + \sum_{i=1}^{j} D_i(z) + \sum_{i=j+1}^{q} D_i(z) = A + \left[\sum_{i=1}^{j} \frac{b_i}{1 + a_i z^{-1}} \right] + \left[\sum_{i=j+1}^{q} \frac{e_i + f_i z^{-1}}{1 + c_i z^{-1} + d_i z^{-2}} \right]$$

Polos reales

Polos complejos

PROGRAMACIÓN PARALELO: CEROS Y POLOS REALES

Polos reales $\frac{Y(z)}{X(z)} = \frac{b_i}{1 + a_i z^{-1}}$

PROGRAMACIÓN PARALELO: CEROS Y POLOS COMPLEJO CONJUGADOS

CONTROLADOR DIGITAL: RFAI 17ACIÓN

PROGRAMACIÓN EN ESCALERA

$$D_{i}^{(B)}(z) = \frac{1}{B_{i}z + G_{i}^{(A)}(z)} \quad con \quad i = 1, 2, ..., p - 1$$

$$D_{i}^{(A)}(z) = \frac{1}{A_{i} + G_{i+1}^{(B)}(z)} \quad con \quad i = 1, 2, ..., p - 1$$

$$D_{p}^{(B)}(z) = \frac{1}{B_{p}z + \frac{1}{A}}$$

con
$$i = 1, 2, ..., p-1$$

con
$$i = 1, 2, ..., p -$$

$$D(z) = A_0 + \frac{1}{B_1 z + \frac{1}{A_1 + \frac{1}{B_2 z + \frac{1}{A_1 + \frac{1}{B_2 z + \frac{1}{A_1 + +$$

$$A_{p-1} \frac{1}{B_p z + \frac{1}{A}}$$

Toma 6. Cistama Digitalas da Control on Tiamna Discusta

63

PROGRAMACIÓN EN ESCALERA: EJEMPLO

$$D(z) = A_0 + \frac{1}{B_1 z + \frac{1}{A_1 + \frac{1}{B_2 z + \frac{1}{A_2}}}}$$

$$p=2$$

$$D_p^{(B)}(z) = \frac{1}{B_p z + \frac{1}{A_p}}$$

$$D_{p}^{(B)}(z) = \frac{1}{B_{p}z + \frac{1}{A_{p}}}$$

$$D(z) = A_0 + \frac{1}{B_1 z + \frac{1}{A_1 + D_2^{(B)}(z)}} = A_0 + \frac{1}{B_1 z + D_1^{(A)}(z)} = A_0 + D_1^{(B)}(z)$$

 $D_i^{(B)}(z)$ se puede escribir como:

$$D_i^{(B)}(z) = \frac{Y(z)}{X(z)} = \frac{1}{B_i z + D_i^{(A)}(z)} \qquad X_i(z) - D_i^{(A)} Y_i(z) = B_i z Y_i(z)$$

PROGRAMACIÓN EN ESCALERA: EJEMPLO

$$X_i(z) - D_i^{(A)}Y_i(z) = B_i z Y_i(z)$$

PROGRAMACIÓN EN ESCALERA: EJEMPLO

 $D_i^{(A)}(z)$ se puede escribir como:

$$D_{i}^{(A)}(z) = \frac{Y(z)}{X(z)} = \frac{1}{A_{i} + D_{i+1}^{(B)}(z)} \qquad X_{i}(z) - D_{i+1}^{(B)}Y_{i}(z) = A_{i}Y_{i}(z)$$

PROGRAMACIÓN EN ESCALERA: EJEMPLO

PROGRAMACIÓN EN ESCALERA: EJEMPLO

Combinación de los diagramas de bloques

