RES \rightarrow NFA \rightarrow DFA \rightarrow Optimized DFA

Nondeterministic

1.

2.

Deterministic

- 1. no ε arc
- 2. unique labeling

f: transition function

 $f(s_i, a) s_i$: current state, a: input

is unique

NFA → DFA Conversion

(Start) ϵ -closure(S) where S is a set of state:

a set of state reachable from a state in S using only $\epsilon\text{-arcs}$

(Method) S_0 : the start state of NFA

$$S = \{S_0\} \cup \epsilon\text{-closure}(S_0)$$

Repeat until no new set of states are generated for each input.

- 1. find all states reachable from the states in S using the input.
- 2. new $S = S' \cup \epsilon$ -closure(S')

 $RE:(a \mid b)^*abb$

NFA

 ϵ -closure(0) = {0, 1, 2, 4, 7} = A

	a	b
$A = \{0, 1, 2, 4, 7\}$	$\{1, 2, 3, 4, 6, 7, 8\} = B$	$\{1, 2, 4, 5, 6, 7\} = C$
B =	$\{1, 2, 3, 4, 6, 7, 8\} = B$	$\{1, 2, 4, 5, 6, 7, 9\} = D$
C	$\{1, 2, 3, 4, 6, 7, 8\} = B$	$\{1, 2, 4, 5, 6, 7\} = C$
D	$\{1, 2, 3, 4, 6, 7, 8\} = B$	$\{1, 2, 4, 5, 6, 7, 10\} = E$
Е	$\{1, 2, 3, 4, 6, 7, 8\} = B$	$\{1, 2, 4, 5, 6, 7\} = C$

DFA

	a	b
A	В	C
В	В	D
C	В	C
D	В	E
Е	В	C

Minimum state partitioning method

non-final state \leftrightarrow final state

$$P_1 = \{A, B, C, D\}$$

$$P_2 = \{E\}$$

	a	b
$\overline{P_1}$	P_1	P ₁
\mathbf{P}_1	\mathbf{P}_1	\mathbf{P}_1
\mathbf{P}_1	\mathbf{P}_1	\mathbf{P}_1
P_1	\mathbf{P}_1	P_2
P_2	\mathbf{P}_1	P_1

$$P_{11} = \{A, B, C\}$$

$$P_{12} = \{D\}$$

	a	b
P ₁₁	P_{11}	P ₁₁
P_{11}	P_{11}	P_{12}
P_{11}	P_{11}	P_{11}
P_{12}	P_{11}	P_2
P_2	P_{11}	P_{11}

$$P_{111} = \{A,\,C\}$$

$$P_{112}=\{B\}$$

	a	b
P ₁₁₁	P ₁₁₂	P_{111}
P_{112}	P_{112}	P_{12} the
P_{111}	P_{112}	P_{111}
P_{12}	P_{112}	P_2
P_2	P_{112}	P_{111}

they are the same(equivalent)

	a	b
A	В	A
В	В	D
D	В	E
E	В	A