دورة سنة 2004 الاستثنائية

امتحانات شهادة الثانوية العامة فرع العلوم العامة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

عدد المسائل: ستة مسابقة في الرياضيات الاسم: المدة: 4 ساعات الرقم:

> ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. يستطيع المرشح الاجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I- (2points)

Dans l'espace rapporté à un repère orthonormé direct $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$,

on donne la droite (d) définie par : $\begin{cases} x = t+1 \\ y = -t+2 \\ z = 2t \end{cases}$ (t est un paramètre réel)

et le plan (P) d'équation x - y - 2z - 5 = 0.

- 1) Déterminer les coordonnées de E, point d'intersection de (d) et (P).
- 2) a- Ecrire une équation du plan (Q) perpendiculaire en E à (d).
 b- Donner un système d'équations paramétriques de la droite (D) contenue dans (P) et perpendiculaire en E à (d).
- 3) I(2; 1; 2) est un point de (d). Déterminer les coordonnées de J symétrique de I par rapport à (D).

II-(3,5 points)

Dans le plan rapporté à un repère orthonormé (O; i, j), on donne la conique (C_m) d'équation : $2mx^2 + (m+1)y^2 - 8(m-1)x - 2m - 1 = 0$ où m est un paramètre réel différent de -1.

- 1) Pour quelle valeur de m la conique (C_m) est-elle une parabole ? Déterminer alors son sommet, son foyer et sa directrice.
- 2) Dans cette question on prend m = 2.
 - a- Déterminer la nature, le centre et les sommets de l'axe focal de (C₂).
 - b- La conique (C_2) coupe l'axe des ordonnées aux points G et L; écrire des équations des tangentes à (C_2) en ces points.
 - c- Calculer l'aire du domaine limité par (C_2) et son cercle principal .

- 3) Soit f la fonction donnée par $f(x) = \sqrt{\frac{3}{2} x^2}$ et (T) sa courbe représentative dans le repère (O; i, j).
 - a- Démontrer que (T) est une partie d'une courbe(C_m) ; déterminer dans ce cas la nature et les éléments de (C_m) .
 - b- On désigne par (D) le domaine limité par (T) et l'axe des abscisses. Calculer le volume du solide de révolution engendré par la rotation de (D) autour de l'axe des abscisses.

III- (2,5 points)

Dans un plan orienté on donne un triangle direct ABC rectangle en A et tel que

AB = 2cm et
$$(\overrightarrow{BC}; \overrightarrow{BA}) = \frac{\pi}{3} (2\pi)$$
.

Soit S la similitude directe qui transforme A en B et B en C.

1) Déterminer le rapport et l'angle de S.

- 3) Le point O étant le milieu de [AB] , on considère le repère orthonormé direct (O; u, v) tel que u = OB.
 - a- Donner la forme complexe de S.
 - b- Déterminer l'affixe du point W centre de ${\bf S}$.
 - c- Soit \mathbf{S}^{-1} la transformation réciproque de \mathbf{S} . Donner la forme complexe de \mathbf{S}^{-1} .

IV- (2 points)

Le plan complexe est muni d'un repère orthonormé direct (O; u, v). On désigne par A, B et C trois points de ce plan d'affixes respectives a, b et c.

1) Montrer que si le triangle ABC est rectangle en B alors le complexe $\frac{c-b}{a-b}$ est imaginaire pur .

- 2) Dans cette question, on suppose que a = z, $b = z^2$ et $c = z^4$ où z est un complexe quelconque.
 - a- Résoudre l'équation $z^4 z = 0$.
 - b-Pour quelles valeurs de z les points A, B et C sont-ils distincts deux à deux?
 - c- Démontrer que si le triangle ABC est rectangle en B, alors le point A d'affixe z = x + iy décrit une conique dont on déterminera l'équation et la nature .

V-(3 points)

Une urne contient **neuf** boules:

trois blanches numérotées de 1 à 3 **trois** noires numérotées de 1 à 3 **trois** rouges numérotées de 1 à 3.

On tire simultanément et au hasard deux boules de l'urne.

Soit les événements suivants :

A : "Les deux boules tirées portent des numéros impairs".

B: "Les deux boules tirées sont de même couleur".

C: "Les deux boules tirées sont de couleurs différentes".

D : "Les deux boules tirées sont de couleurs différentes et portent des numéros impairs ".

- 1) Calculer les probabilités suivantes : P(A), P(B), $P(A \cap B)$ et P(A/B). Les événements A et B sont-ils indépendants ?
- 2) a- Calculer P(C) et démontrer que P(D) = $\frac{1}{3}$.
 - b- Les deux boules tirées sont de couleurs différentes, quelle est la probabilité qu'elles portent des numéros impairs ?
- 3) Soit X la variable aléatoire ,(X ≥ 0) , égale à la valeur absolue de la différence entre les deux numéros portés par les deux boules tirées . Déterminer la loi de probabilité de X et calculer l'espérance mathématique E(X).

VI- (7 points)

Soit f_n la fonction définie sur IR par $f_n(x) = \frac{2e^{nx}}{1 + e^x} - 1$, où n est un entier naturel,

et (C_n) sa courbe représentative dans un repère orthonormé $(O;\ i\ ,\ j\)$. Unité 2 cm.

A- Dans cette partie on prend n = 1

1) Calculer $\lim_{x \to +\infty} f_1(x)$ et $\lim_{x \to -\infty} f_1(x)$.

- 2) Calculer $f'_1(x)$ et dresser le tableau de variations de f_1 .
- 3) a- Démontrer que O est un point d'inflexion de (C_1) . b- Ecrire une équation de la tangente (d) en O à (C_1) .
- 4) Tracer (d) et (C_1) .
- $\begin{tabular}{l} \textbf{B-} Soit (C_0) la courbe représentative de la fonction f_0 , correspondant à $n=0$, \\ & \to \to \\ & dans le même repère $(O;\ i\ ,\ j\)$. \\ \end{tabular}$
 - 1) Démontrer que la courbe (C_0) est symétrique de la courbe (C_1) par rapport à l'axe des ordonnées .
 - 2) Démontrer que (C_0) est symétrique de (C_1) par rapport à l'axe des abscisses.
 - 3) Calculer, en cm^2 , l'aire du domaine limité par les courbes (C_1) , (C_0) et les droites d'équations x=0 et x=1.
- C- Soit la suite (U_n) définie par $U_n = \int_0^1 f_n(x) dx$.
 - 1) Démontrer que $U_{n+1} + U_n = 2 \frac{e^n n 1}{n}$
 - 2) Calculer $\lim_{n \to +\infty} (U_{n+1} + U_n)$ et en déduire que la suite (U_n) ne peut pas être convergente .