Lecture 4

Inverse; Determinant; Orthogonal tensor; Rotation tensor

11-18 August, 2021

Review of L3

I. Principal values and principal vectors:

$$\mathbf{A} \cdot \hat{\mathbf{v}} = \lambda \hat{\mathbf{v}}, \quad \left| \dot{\hat{\mathbf{v}}} \right| = 1$$

- 1. Find $\{\lambda, [\hat{\mathbf{v}}]_{\mathscr{E}}\}$ for $[A]_{\mathscr{E}}$ in any $\{\mathscr{E}, O, \hat{\mathbf{e}}_i\}$
- 2. A is diagonal in principal CS $\{\mathcal{P}, C, \hat{\mathbf{v}}_i\}$.
- II. Symmetric tensor: $S = S^T$.
 - 1. S_i are real and $\hat{\mathbf{v}}_i$ are orthogonal.
 - 2. Principal CS $\{\mathcal{P}, C, \hat{\mathbf{v}}_i\}$ is Cartesian.

3.
$$S = \sum_{i=1}^{3} S_i \hat{\mathbf{v}}_i \otimes \hat{\mathbf{v}}_i \text{ and } [S]_{\mathscr{P}} = \begin{bmatrix} S_1 & 0 & 0 \\ 0 & S_2 & 0 \\ 0 & 0 & S_3 \end{bmatrix}$$

S is <u>always</u> diagonalizable; <u>stretch</u> by S_i along $\hat{\mathbf{v}}_i$

III. Skew-symmetric tensor:
$$W = -W^T$$

1. Axial vector:
$$\mathbf{ax}(\mathbf{W}) =: \mathbf{w} = -\frac{1}{2} \epsilon_{ijk} W_{jk} \hat{\mathbf{E}}_i$$

2. $\mathbf{W} \cdot \mathbf{a} = \mathbf{w} \times \mathbf{a}$ for all \mathbf{a} .

3.
$$\operatorname{asym}(\mathbf{w}) =: \mathbf{W} = -\epsilon_{ijk} w_i \left(\hat{\mathbf{E}}_j \otimes \hat{\mathbf{E}}_k\right)$$

Inverse, Determinant

- I. **Definition**: A^{-1} is the <u>inverse</u> of A if $A \cdot A^{-1} = A^{-1} \cdot A = 1$ (identity tensor)
 - 1. Independent of CS.
 - 2. To find A^{-1} , pick *any* convenient CS $\{\mathscr{P}, P, \hat{\mathbf{e}}_i\}$ and use $[A^{-1}]_{\mathscr{P}} = ([A]_{\mathscr{P}})^{-1}$.
 - 3. A has *no* zero principal value $\Longrightarrow A^{-1}$
- II. **Definition**: <u>Determinant</u> of A is found by $\det(A) = \det([A]_{\mathscr{P}})$ in any CS $\{\mathscr{P}, P, \hat{\mathbf{e}}_i\}$ of our choice.
 - 1. det (A) is independent of CS.
- III. **Properties**: λ_i are principal values of A.
 - 1. λ_i^{-1} are principal values of A^{-1} .
 - 2. $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$.
 - 3. $(A^T)^{-1} = (A^{-1})^T = A^{-T}$.
 - 4. det (A) = $\prod_{i=1}^{3} \lambda_i$.
 - 5. $\det (A^{-1}) = (\det A)^{-1}$.
 - 6. $\det(A \cdot B) = (\det A)(\det B)$.

Orthogonal tensor

I. **Definition**: Q is <u>orthogonal</u> if for <u>all</u> \mathbf{a} $|\mathbf{Q} \cdot \mathbf{a}| = |\mathbf{a}|$

Q preserves *length* of **a**, but not direction.

- II. **Properties**: λ_i are principal values of Q.
 - 1. $Q^{-1} = Q^T$.
 - 2. $|\lambda_i| = 1$, with $\lambda_3 = \pm 1$, $\lambda_{1,2} = a \pm i b$.
 - 3. One real principal vector $\hat{\mathbf{e}}_3$ for λ_3 .
 - 4. Relative orientation: For all **a** and **b**:
 - i. $(\mathbf{Q} \cdot \mathbf{a}) \cdot (\mathbf{Q} \cdot \mathbf{b}) = \mathbf{a} \cdot \mathbf{b}$.
 - ii. Plane normal to \hat{e}_3 is invariant under Q

Q either rotates objects about $\hat{\mathbf{e}}_3$ or reflects them about invariant plane.

iii.
$$(\mathbf{Q} \cdot \mathbf{a}) \times (\mathbf{Q} \cdot \mathbf{b}) = \lambda_3 \mathbf{Q} \cdot (\mathbf{a} \times \mathbf{b})$$
.

- 5. $\det(Q) = \lambda_3(a^2 + b^2) = \lambda_3 = \pm 1$.
 - i. $det(Q) = -1 \Longrightarrow Q$ inverts volumes.

Rotation tensor

- I. **Definition**: An *orthogonal* tensor R with det(R) = +1 is called a <u>rotation</u> tensor.
 - 1. $det(R) = +1 \Leftrightarrow \underline{real} \text{ principal value } +1$
 - 2. $det(R) = +1: \underline{no}$ volume inversion.
- II. **Properties**: λ_i are principal values of R.
 - 1. $R^{-1} = R^T$, as R is orthogonal.
 - 2. $(\mathbf{R} \cdot \mathbf{a}) \cdot (\mathbf{R} \cdot \mathbf{b}) = \mathbf{a} \cdot \mathbf{b}$ for <u>all</u> \mathbf{a} and \mathbf{b} .
 - 3. $|\lambda_i| = 1$, with $\lambda_3 = +1$, $\lambda_{1,2} = a \pm i b$.
 - i. Rotation angle = $arg(\lambda_2) = arctan(b/a)$
 - 4. One real principal vector $\hat{\mathbf{e}}_3$ for $\lambda_3 = +1$:
 - i. Plane normal to $\hat{\mathbf{e}}_3$ is <u>invariant</u> under R
 - ii. *Axis of rotation* is along $\hat{\mathbf{e}}_3$.
 - 5. $(R \cdot a) \times (R \cdot b) = +R \cdot (a \times b)$ for all a, b
- III. Example

You are <u>all</u> smart. You need this (tensor) algebra!