

Keeping it Small: Agentic Workflows with SLMs on K8S

Frank Fan - Senior Container Solution Architect, AWS

- Address challenges of Agentic workload
- Multi-agent workflows
- 03 Implementation on k8s
- Key takeaways

What is a Gen AI Agent

Intelligent, autonomous systems

Access to enterprise data

Plan, reason, and act

Ability to use tools

... it leads to challenges

Complexity
Coding gets
complicated

- Complex prompts to limit hallucinations
- Fragile, hard to maintain

Accuracy
Agent gets
confused

- Calling wrong tools
- Passing wrong arguments
- Inconsistent responses

Cost
Agent gets slower and more expensive

- Frontier models needed
- Prompt sizes grow
- Agents retry steps

Hints to improve cost, performance and accuracy

- Shorter prompts
- Smaller LLMs

- Control over workflow
- Concise prompts / context

- Cost effective chipsets
- Fast Chipsets

Task Decomposition Technique

Al Chips Choice

Agent & workflows

I am an "agent" specializing in a task or just to coordinate (again specialized!)

Why Small Language Model?

Resource

Speed

Customize

Frugal Architecture Design Patterns

Task Decomposition

Using Small and Large LLMs Frugally

Cascaded LLM

RLAIF with Large LLMs

TeacherStudent
LLM
Large LLM
Supervised Reinforcement Learning

Small LLM

Workflow: Routing

Example – Routing

Why self-host Language Model on K8S

Data privacy and security

Connecting to data sources

Customizing

Accessing multiple models and newer versions

Running Agentic workload on K8S

Workflow: Evaluator-optimizer

LiteLLM

Observability - Langfuse

Implementation on K8S

Key Takeaways

- Choice of Language Models
- Deploy models on AWS Trainium , Inferentia and Graviton
- Multi-agent workflow patterns
- Improve user experience Centralized Security and observability

Data on EKS project

- Gen Al patterns
- laC templates
- Best practices
- Engage with us on GitHub

Reference patterns for gen AI on EKS

Multi-tenant JupyterHub platform

End-end generative AI orchestration platform

High performance inference platform on EKS (NVIDIA Triton with vLLM)

Async inference with Stable Diffusion on EKS

Inference of Llama-3-8B with RayServe/vLLM on EKS

Llama2 distributed pretraining on Trn1 with RayTrain

