Métodos Numéricos 24 de julio de 2020

Recuperatorio Primer Parcial

 □ Completar apellido en las hojas y numerarlas □ Enviar fotos claras y legibles de la resolución del examen □ Justificar todas las respuestas 		Nombre y Apellido Yulita Federico			
		Ej. 1	Ej. 2	Ej. 3	Nota

- 1. Sean $n \in \mathbb{N}$, $n \geq 1$, $A \in \mathbb{R}^{n \times n}$ inversible, $v, w \in \mathbb{R}^n$ y $d \in \mathbb{R}$. Definimos $B \in \mathbb{R}^{(n+1) \times (n+1)}$ como $B = \begin{pmatrix} A & v \\ w^t & d \end{pmatrix}$. Sea $x_v \in \mathbb{R}^n$ la solución de Ax = v.
 - (a) Probar que B es inversible si y sólo si $d w^t x_v \neq 0$. (15 puntos)
 - (b) Supongamos que B es inversible. Sean $b \in \mathbb{R}^n$ y $c \in \mathbb{R}$. Notamos x_b al vector de \mathbb{R}^n tal que $Ax_b = b$. Mostrar que la solución de $Bx = \begin{pmatrix} b \\ c \end{pmatrix}$ está dada por $x = \begin{pmatrix} y \\ z \end{pmatrix}$ con $y = x_b z x_v$ y $z = \frac{c w^t x_b}{d w^t x_v}$. (20 puntos)
- 2. Determinar si las siguientes afirmaciones son verdaderas o falsas, demostrando o dando un contraejemplo: (15 puntos cada ítem)
 - (a) La matriz $\begin{pmatrix} aI & aP \\ -aP^t & aI \end{pmatrix}$ es definida positiva para todo $a \in \mathbb{R}$ no nulo, siendo I la matriz identidad y P una matriz de permutación, ambas de $n \times n$.
 - (b) Sea $u \in \mathbb{R}^n, u \neq 0$ y $A = uu^t$. Si $B(t) = (1 t)I + tA^tA$, entonces B(t) es definida positiva para todo $0 \leq t \leq 1$.
- 3. Se define la matriz $H_n \in \mathbb{R}^{n \times n}$, para cualquier n potencia de 2, de forma inductiva de la siguiente manera:

$$H_n = \frac{1}{\sqrt{2}} \begin{pmatrix} H_{n/2} & H_{n/2} \\ H_{n/2} & -H_{n/2} \end{pmatrix}$$

siendo $H_1 = [1]$.

- (a) Probar que la matriz H_n es ortogonal para cualquier n potencia de 2. (15 puntos)
- (b) Determinar si H_2 es una matriz de Givens, una matriz de Householder, o ninguna de las anteriores. Justificar en cada caso, especificando qué rotación se realiza si es de Givens, o respecto de qué recta refleja si es de Householder. (20 puntos)