Data Structure

Linked List

Shin Hong

Apr 21, 2020

Chapter 4. Linked List

Array vs. Linked List

- An array stores successive data objects are located fixed distance apart in a continuous memory region
 - Pros: random access to a certain index is possible
 - Cons: changing the index of an object (by insertion and by deletion) possibly results in moves of many objects
- A **linked list** stores each element with a pointer (memory address) of the successor to form a chain of elements
 - Pros: insertion or deletion of a specific element can be done without moving other elements
 - Cons: an element at an index can be accessed only through its precessor

Linked List

Data Structure

Singly Linked List

	data		link
1	HAT		15
2			
3	CAT		4
4	EAT		9
5			
6			
7	WAT		0
8	BAT		3
9	FAT		1
10			
11	VAT		7
	•		•
			•
			. •
	3 4 5 6 7 8 9 10	1 HAT 2	1 HAT 2

Linked List

Data Structure

2020-04-24

Polynomials (1/2)

- Use a linked list to represent a polynomial in one variable
 - Polynomial: $A(x)=a_{m-1}x^{e_{m-1}}+a_{m-2}x^{e_{m-2}}+...+a_0x^{e_0}$ where a_i are non-zero coefficients and e_i are positive exponents
 - A term is a pair of a coefficient and a exponent
 - Represent A(x) as a list of terms in the ascending order of exponents
 - Examples:

$$a = 3x^{14} + 2x^{8} + 1$$

$$3 \quad 14 \quad 2 \quad 8 \quad 1 \quad 0 \quad 0$$

$$b = 8x^{14} - 3x^{10} + 10x^6$$

Linked List

Data Structure

Polynomials (2/2)

- Define arithmetic operation as linked list manipulation
 - add
 - merge two ordered lists
 - add coefficients for two terms of the same exponent
 - multiplication
 - multipy two terms by creating a new term with the multiplication of the two coefficients and the addition of the two exponents
 - add the multiplications of all pairs of terms of two polynomials

Linked List

Data Structure

Doubly Linked List

- Each node has two links, one in the forward direction and the oether in the backward directions
 - we can go back and forth easily along a linked list
 - take a constant amount of time for removing a node or inserting a new node after a node
- A header node can be used for ensuring link invariants
 node == node->left->right == node->right->left

Linked List

Data Structure

2020-04-24