## Holographic strange correlators

Xiangdong Zeng

September 16, 2020

#### Outline

- Motivation & background
  - AdS/CFT correspondence
  - · Topological orders
- Ongoing works
  - Build up 2D tensor network from strange correlators
  - Use tensor network to calculate CFT data (e.g. central charge)
- Further research
  - Extract more data from the tensor network
  - Coarse graining and holographic tensor network
  - · Understand strange correlators via integrable system

#### Motivation: AdS/CFT

- Duality between a gravity theory in AdS<sub>d+1</sub> spacetime (bulk) and a CFT<sub>d</sub> (boundary)
- Ryu–Takayanagi formula:

$$S_A = \frac{\text{Area}(\gamma_A)}{4G^{(d+1)}}$$

- MERA tensor network
  - Coarse-graining via isometries & disentanglers
  - Discretized version of AdS geometry & RT formula





Image credit: arXiv 0905.0932, 1106.1082

## Background: topological orders

- Phase transition beyond Landau's theory
  - Ground state degeneracy: topological protected
  - Long-range entanglement: can't be built with direct product state + local unitary transformation
- String-net models
  - · Oriented edges on hexagonal lattice
  - Hamiltonian:  $H = -\sum_{v} A_{v} \sum_{p} B_{p}$  (v: vertices, p: plaquettes)
- Mathematical framework: modular tensor category
  - Fusion rules:  $a \otimes b = \sum_{c} N_{ab}^{c} c$ • F-moves:  $(a \otimes b) \otimes c = a \otimes (b \otimes c)$   $\Longrightarrow$   $m = \sum_{l} (F_{l}^{ijk})_{mn}$  i j k $m = \sum_{l} (F_{l}^{ijk})_{mn}$
  - · Coherent condition: pentagon equations



Image credit: arXiv 2007.10562

## Build up tensor network from strange correlators

- Ground state of string-net can be described by a tensor network
  - Vertices: *F*-symbols
  - Virtual bonds: summed over (black)
  - Physical bonds: left uncontracted (red)
- Strange correlators
  - Inner product between the string-net ground state and direct product state
  - In tensor network: fix all physical bonds to certain labels
  - Result in a 2D network, whose trace (or contraction) gives the partition function



Image credit: arXiv 0809.2393

## Extact CFT data: iTEBD algorithm (1)

- Motivation: simulate the (imaginary-) time evolution of  $|\psi\rangle$  by applying  $U=\mathrm{e}^{-\mathrm{i}tH}$  or  $U=\mathrm{e}^{-\tau H}$
- The contraction of 2D tensor network can be understood as repeatedly applying MPO on an MPS
- Steps:
  - Written the translationally symmetric 1D system as infinite MPS
  - Canonicalization: maintain the iMPS in its canonical form to reduce truncation error
  - SVD truncation: keep virtual dimension unchanged & discard insignificant data



Image credit: arXiv 1512.03846, 0711.3960

#### Extact CFT data: iTEBD algorithm (2)

- Build up square lattice from honeycomb lattice by joining triangle tensors
- Von Neumann entropy vs correlation length:

$$S_A \sim \frac{c}{6} \log \xi$$

where 
$$S_A = \sum_i \lambda_i^2 \log \lambda_i^2$$
,  $\xi = -1/\log |\lambda_2/\lambda_1|$ 

- Results:
  - Fibonacci:  $c = 0.783 \pm 0.009$  (exact: 4/5)
  - Ising:  $c = 0.481 \pm 0.013$  (exact: 1/2)
- · Technical details:
  - Written with a Mathematica TN library
  - · Eigensystems solved by Arnoldi method





Code: github.com/stone-zeng/research

## Extact CFT data: exact diagonalization

- Transfer matrix: one layer in the network
- Eigenvalues of the transfer matrix:

$$\tilde{\lambda}_{\alpha} \sim \exp\left[\frac{2\pi}{n}\left(\frac{c}{12} - \Delta_{\alpha}\right) + \frac{2\pi i}{n}s_{\alpha}\right]$$

- Conformal spectrum: scaling dimensions  $\Delta_{\alpha}$  vs conformal spins  $s_{\alpha}$
- Tube algebra basis elements  $(\mathcal{T}^c_{ab})$  are used to separate different topological sectors in the spectrum



# Coarse-graining

- CFT viewpoint: allow us to diagonalize much larger lattice, so we can obtain more accurate data for infinite descendant fields
- Holographic viewpoint: the coarse-graining procedure builds up a holographic network
  - Bulk-boundary propagator:

$$G_{\Delta}(z, \boldsymbol{x}_1, \boldsymbol{x}_2) = \frac{z^{\Delta}}{\left[(\boldsymbol{x}_1 - \boldsymbol{x}_2)^2 + z^2\right]^{\Delta}}$$

 Strange correlators give certain boundary conditions in *p*-adic AdS/CFT



#### Why strange correlators?

- In the height models, one need to assign an energy gain for some specific fusion channels to make it integrable, such that the Boltzmann weights satisfy the Yang-Baxter equation
- This is the same as what we do with a strange correlator



Image credit: arXiv 2008.02292

#### Summary

- Strange correlators can give the partition function for string-net models in the form of a 2D tensor network
- Numerical methods, such as iTEBD and exact diagonalization can be used to extract CFT data from the above tensor network
- Coarse-graining procedure can be viewed as a holographic tensor network, where we can explicitly calculate the bulk-boundary propagator
- The reason why strange correlators are successful is closely related to the integrable systems

