0.1 Cascade Reconstruction

Our motivation for studying ΞK^{\pm} systems is to hopefully better understand the striking difference in the ΛK^{+} and ΛK^{-} data at low k^{*} (Figure ??).

The reconstruction of Ξ particles is one step above V0 reconstruction. V0 particles are topologically reconstructed by searching for the charged daughters' tracks into which they decay. With Ξ particles, we search for the V0 particle and charged daughter into which the Ξ decays. In the case of Ξ^- , we search for the Λ (V0) and π^- (track) daughters. We will refer to this π as the "bachelor π ".

The following cuts were used to select good Ξ^- ($\bar{\Xi}^+$) candidates:

- 1. V0 Daughter Reconstruction
 - (a) V0 Daughter Particle Cuts
 - i. Cuts Common to Both Daughters
 - A. $|\eta| < 0.8$
 - B. SetTPCnclsDaughters(80)
 - C. SetStatusDaughters(AliESDtrack::kTPCrefic)
 - D. SetMaxDcaV0Daughters(0.4)
 - ii. Pion Specific Daughter Cuts
 - A. $p_T > 0.16$
 - B. DCA to prim vertex > 0.3
 - iii. Proton Specific Daughter Cuts
 - A. $p_T > 0.5(p) [0.3(\bar{p})] \text{ GeV/}c$
 - B. DCA to prim vertex > 0.1
 - (b) V0 Cuts
 - i. $|\eta| < 0.8$
 - ii. $p_T > 0.4 \text{ GeV/}c$
 - iii. $|m_{inv} m_{PDG}| < 3.8 \text{ MeV}$
 - iv. DCA to prim. vertex > 0.2 cm
 - v. Cosine of pointing angle to Ξ decay vertex > 0.9993
 - vi. OnFlyStatus = false
 - vii. Decay Length < 60 cm
 - viii. The misidentification cuts described in Section ?? are utilized
- 2. Bachelor π Cuts
 - (a) $|\eta| < 0.8$
 - (b) $p_T < 100 \text{ GeV/}c$
 - (c) DCA to prim vertex > 0.1 cm
 - (d) SetTPCnclsDaughters(70)
 - (e) SetStatusDaughters(AliESDtrack::kTPCrefic)
- 3. Ξ Cuts
 - (a) $|\eta| < 0.8$
 - (b) $0.8 < p_T < 100 \text{ GeV/}c$

- (c) $|m_{inv} m_{PDG}| < 3.0 \text{ MeV}$
- (d) DCA to prim. vertex < 0.3 cm
- (e) Cosine of pointing angle > 0.9992
- 4. Shared Daughter Cut for ∑ Collection
 - Iterate through Ξ collection to ensure that no daughter is used in more than one Ξ candidate

Fig. 1: ≡ Reconstruction

The purity of our Ξ and $\bar{\Xi}$ collections are calculated just as those of our V0 collections ??. Figure 2, which is used to calculate the purity, shows the m_{inv} distribution of our $\Xi(\bar{\Xi})$ candidates just before the final m_{inv} cut. Currently, we have Purity(Ξ^-) $\approx 90\%$ and Purity($\bar{\Xi}^+$) $\approx 92\%$.

Fig. 2: $\Xi^-(\bar{\Xi}^+)$ Purity 0-10%: Purity(Ξ^-) $\approx 90\%$ and Purity($\bar{\Xi}^+$) $\approx 92\%$.