POMDPs.jl

A unified framework for solving MDPs and POMDPs

What is an MDP?

A **Markov Decision Process** is a sequential decision making problem with

- A fully observable state
- Stochastic transitions based on the state and action
- Rewards based on the state and action

The goal is to find a **policy** that maps each **state to an action** that maximizes the expected sum of rewards.

0.41	0.74	0.96	1.18	1.48	1.7	1.98	2.11	2.39	2.09
0.74	1.04	1.27	1.52	1.81	2.15	2.47	2.58	3.02	2.69
0.86	1.18	1.45	1.76	2.15	2.55	2.97	3	3.69	3.32
0.84	1.11	1.31	1.55	2.45	3.01	3.56	4.1	4.53	4.04
0.91	1.2	1.09	-3	2.48	3.53	4.21	4.93	5.5	4.88
1.1	1.46	1.79	2.24	3.42	4.2	4.97	5.85	6.68	5.84
1.06	1.41	1.7	2.14	3.89	4.9	5.85	6.92	8.15	6.94
0.92	1.18	0.7	-7.39	3.43	5.39	6.67	8.15	10	8.19
_		_	_		_				
1.09	1.45	1.75	2.18	3.89	4.88	5.84	6.92	8.15	6.94
1.07	1.56	2.05	2.65	3.38	4.11	4.92	5.83	6.68	5.82

What is a POMDP?

A Partially Observable Markov Decision Process is an MDP with

- States that are not directly observable
- Observations determined stochastically by the state and action

The goal is to find a **policy** that maps an **action-observation history** or **belief** to an action that optimizes the expected reward.

But What is a POMDP?

Answer: Almost everything

- Autonomous driving
- Aircraft collision avoidance
- Home assistance
- Medical treatment
- SLAM planning
- Reinforcement learning
- Disaster relief planning

What is POMDPs.jl?

An interface for research collaboration and education.

Challenge: Wide variety of problems and solvers

Problems can range from black-box simulators with continuous state and action spaces to small discrete problems with distribution tables.

Solvers can take a variety of forms

Two Interface Options Explicit and Generative

Explicit

Explicit definition of transition and observation probability distributions

```
dist = transition(pomdp, s, a)
prob_s = pdf(dist, s)
sp = rand(rng, dist)
```


Generative

Generative model similar to OpenAl gym

