SOLUBILIDAD

• Solubilidad. Efecto del ión común

- La 25 ℃ el producto de solubilidad del Ba(IO₃)₂ es 6,5·10⁻¹⁰. Calcula:
 - a) Las concentraciones molares de los iones yodato y bario.
 - b) La masa de yodato de bario que si puede disolver en 200 cm³ de agua.
 - c) La solubilidad de la citada sal, en g/dm³, en una disolución de concentración 0,1 mol/dm³ de KIO₃ a 25 °C considerando que esta sal si encuentra totalmente disociado.

Problema tipo basado en A.B.A.U. jun. 19

Rta.: a) $s = [Ba^{2+}] = 5.5 \cdot 10^{-4} \text{ mol/dm}^3$; $[(IO_3)^-] = 1.1 \cdot 10^{-3} \text{ mol/dm}^3$; b) m = 0.053 g; c) $s' = 3.2 \cdot 10^{-5} \text{ g/dm}^3$.

Datos Cifras significativas: 2

Producto de solubilidad del Ba $(IO_3)_2$ $K_s = 6.5 \cdot 10^{-10}$

Concentración de la disolución del KIO_3 [KIO_3] = 0,10 mol/dm³

Masa molar del yodato de bario $M(Ba(IO_3)_2) = 487 \text{ g/mol}$

Incógnitas

Solubilidad (mol/dm³) del Ba(IO₃)₂ en agua sa

Concentraciones (mol/dm³) de los iones [IO₃], [Ba²+]

Solubilidad (g/dm³) del Ba(IO₃)₂ en KIO₃ 0,1 mol/dm³ s'

Ecuaciones

Produto de solubilidad del equilibrio: $B_bA_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$ $K_s = [A^{\alpha-}]^a \cdot [B^{\beta+}]^b$

Solución:

a) El equilibrio de solubilidad es:

$$Ba(IO_3)_2(s) \rightleftharpoons Ba^{2+}(aq) + 2 IO_3^{-}(aq)$$

		Ba(IO ₃) ₂	1	Ba ²⁺	2 IO ₃	
Concentración en el equilibrio	[X] _e			s	2 s	mol/dm³

La constante de equilibrio K_s es:

$$K_s = [Ba^{2+}]_e \cdot [IO_3^-]_e^2 = s (2 s)^2 = 4 s^3 = 6.5 \cdot 10^{-10}$$

La solubilidad del yodato de bario en agua vale:

$$s_a = \sqrt[3]{\frac{K_s}{4}} = \sqrt[3]{\frac{6.5 \cdot 10^{-10}}{4}} = 5.5 \cdot 10^{-4} \text{ mol Ba} (IO_3)_2 / \text{dm}^3 D$$

Las concentraciones de los iones valen:

$$[Ba^{2+}]_e = s = 5,5 \cdot 10^{-4} \text{ mol/dm}^3$$

 $[(IO_3)^-] = 2 \ s = 1,1 \cdot 10^{-3} \text{ mol/dm}^3$

b) En 200 cm³ de agua se disolverán:

$$n=200 \text{ cm}^{3} \text{ D} \frac{1 \text{ dm}^{3}}{10^{3} \text{ cm}^{3}} \frac{5.5 \cdot 10^{-4} \text{ mol Ba} (\text{IO}_{3})_{2}}{1 \text{ dm}^{3} \text{ D}} \frac{487 \text{ g mol Ba} (\text{IO}_{3})_{2}}{1 \text{ mol Ba} (\text{IO}_{3})_{2}} = 0,053 \text{ g Ba} (\text{IO}_{3})_{2}$$

c) El yodato de potasio está totalmente disociado.

$$KIO_3(s) \longrightarrow K^+(aq) + IO_3^-(aq)$$

$$[IO_3^-] = [KIO_3] = 0.10 \text{ mol } IO_3^-/dm^3 D$$

Cuando se disuelve el yodato de bario en la disolución de yodato de potasio, que ya contiene iones yodato, las concentraciones son:

		Ba(IO ₃) ₂	=	Ba ²⁺	2 IO ₃	
Concentración inicial	[X] ₀			0	0,10	mol/dm³
Concentración que reacciona o si forma	[X] _r	S _b	\rightarrow	S_{b}	2 s _b	mol/dm³
Concentración en el equilibrio	[X] _e			S _b	$0.10 + 2 s_b$	mol/dm³

La constante de equilibrio K_s es:

$$K_s = [Ba^{2+}]_e \cdot [IO_3^-]_e^2 = s_b \cdot (0.10 + 2 s_b)^2 = 6.5 \cdot 10^{-10}$$

En primera aproximación, podemos considerar despreciable s_b frente a 0,1, ($s_b \ll 0,1$). Entonces:

$$s_b \cdot 0.10^2 \approx 6.5 \cdot 10^{-10}$$

 $s_b = \frac{6.5 \cdot 10^{-10}}{0.10^2} = 6.5 \cdot 10^{-8} \text{ mol/dm}^3$

Se ve que ese valor es despreciable frente a 0,10.

La concentración en g/dm³ es:

$$s' = \frac{6.5 \cdot 10^{-8} \text{ mol}}{1 \text{ dm}^3} \cdot \frac{487 \text{ g Ba} (IO_3)_2}{1 \text{ mol Ba} (IO_3)_2} = 3.2 \cdot 10^{-5} \text{ g/dm}^3$$

La mayor parte de las respuestas puede calcularse con la hoja de cálculo Quimica (es)

Cuando esté en el índice, mantenga pulsada la tecla « 🍲 » (mayúsculas) mientras hace clic en la celda:

Equilibrio de solubilidad

del capítulo:

Equilibrio químico Solub Equilibrio de solubilidad

Escriba las fórmulas químicas en las celdas blancas con borde verde, los datos en las celdas blancas con borde azul, y pulse en las celdas de color salmón para elegir entre las opciones que se presentan.

DATOS											
Compuesto poco soluble:	Ba(IO3)2	Producto de solubilidad	6,50E-10 K _s								

Verá los resultados siguientes:

Para los apartados b) y c), escriba, en DATOS:

		Volumen		Concentración
Ion/compuesto soluble:	KIO3	200	cm ³	0,1 mol/dm³

Elija ahora «g» a la derecha de «Solubilidad», «200 cm³» a la derecha de «En agua», y «1 dm³» a la derecha de «En D(KIO₃)». El resultado que aparece es:

cha de «En D(Rio3)».	Di resultado que apa	iccc cs.		
	Solubilidad	mol	g	en
	En agua	$1,09 \cdot 10^{-4}$	0,0532	200 cm ³
	En D(KIO ₃)	$6,50 \cdot 10^{-8}$	$3,17 \cdot 10^{-5}$	1 dm³

Precipitación

- 1. El producto de solubilidad del yoduro de plata es 8,3·10⁻¹⁷. Calcula:
 - a) La solubilidad del yoduro de plata expresada en g·dm⁻³
 - b) La masa de yoduro de sodio que si debe añadir la 100 cm³ de disolución de concentración 0,005 mol/dm³ de nitrato de plata para iniciar la precipitación del yoduro de plata.

(P.A.U. set. 10)

Rta.: a) $s = 2.1 \cdot 10^{-6} \text{ g/dm}^3$; b) $m = 2.5 \cdot 10^{-13} \text{ g NaI}$.

Datos Cifras significativas: 2

Producto de solubilidad del AgI $K_s = 8.3 \cdot 10^{-17}$

Volumen disolución de AgNO₃ $V_1 = 100 \text{ cm}^3 = 0,100 \text{ dm}^3$

Concentración de la disolución de $AgNO_3$ [AgNO₃] = 0,0050 mol/dm³

Masas molares: yoduro de plata M(AgI) = 235 g/mol

yoduro de sodio M(NaI) = 150 g/mol

Incógnitas

Solubilidad del yoduro de plata s

Masa de yoduro de sodio para iniciar la precipitación m(NaI)

Ecuaciones

Cantidad (número de moles) n = m / M

Concentración molar (mol/dm³) s = n / V = s' / M

Producto de solubilidad del equilibrio: $B_bA_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$ $K_s = [A^{\alpha-}]^a \cdot [B^{\beta+}]^b$

Solución:

a) El equilibrio de solubilidad es:

$$AgI(s) \rightleftharpoons Ag^{+}(aq) + I^{-}(aq)$$

Se llama *s* a la solubilidad, que es la concentración de sólido que se disuelve y, de acuerdo con la estequiometría, se deduce la concentración de los iones formados.

		AgI	#	Ag+	I-	
Concentración en el equilibrio	[X] _e			s	s	mol/dm³

La constante de equilibrio K_s es:

$$K_s = [Ag^+]_e \cdot [I^-]_e = s \cdot s = s^2 = 8.3 \cdot 10^{-17}$$

Se calcula la solubilidad:

$$s = \sqrt{K_s} = \sqrt{8.3 \cdot 10^{-17}} = 9.1 \cdot 10^{-9} \text{ mol AgI/dm}^3 \text{ D}$$

$$s'=9.1 \cdot 10^{-9} \text{ mol AgI/dm}^3 \text{ D} \frac{235 \text{ g AgI}}{1 \text{ mol AgI}} = 2.1 \cdot 10^{-6} \text{ g/dm}^3 \text{ D}$$

b) El AgNO₃ está totalmente disociado en la disolución:

$$AgNO_3(s) \rightarrow Ag^+(aq) + NO_3^-(aq)$$

La concentración del ion plata es:

$$[Ag^{+}] = [AgNO_{3}] = 0,0050 = 5,0\cdot10^{-3} \text{ mol/dm}^{3}$$

Se formará precipitado cuando $Q = [Ag^+] \cdot [I^-] \ge K_s$

$$[I^{-}] \ge \frac{K_s}{[Ag^{+}]} = \frac{8.3 \cdot 10^{-17}}{5.0 \cdot 10^{-3}} = 1.7 \cdot 10^{-14} \text{ mol/dm}^3$$

Cuando se disuelva el yoduro de sodio, se disociará totalmente:

$$NaI(s) \rightarrow I^{-}(aq) + Na^{+}(aq)$$

La concentración de yoduro de sodio será:

$$[NaI] = [I^{-}] = 1,7 \cdot 10^{-14} \text{ mol/dm}^{3}$$

Se calcula la masa de yoduro de sodio necesaria para preparar 100 cm³ de disolución de esa concentración:

$$m(\text{NaI}) = 0,100 \text{ dm}^3 \text{ D} \frac{1,7 \cdot 10^{-14} \text{ mol NaI}}{1 \text{ dm}^3 \text{ D}} \frac{150 \text{ g NaI}}{1 \text{ mol NaI}} = 2,5 \cdot 10^{-13} \text{ g NaI}$$

La mayor parte de las respuestas puede calcularse con la hoja de cálculo Quimica (es)

Cuando esté en el índice, mantenga pulsada la tecla « 🌣 » (mayúsculas) mientras hace clic en la celda:

Equilibrio de solubilidad

del capítulo:

Equilibrio químico Solub Equilibrio de solubilidad

Escriba las fórmulas químicas en las celdas blancas con borde verde, los datos en las celdas blancas con borde azul y pulse en las celdas de color salmón para elegir entre las opciones que se presentan

porue azui, y puise en las celuas de color sa	annon para elegii entre las opciones que se presentan.									
	D A T O S									
Compuesto poco soluble: AgI	Producto de solubilidad 8,30E-17 K _s									

Verá los resultados sig	guientes:									
RESULTADOS										
	Cifras significativas:									
	AgI(s	AgI(s)		Ag+(aq)	+	I-(aq)				
	$K_s = 8,30.1$	$K_s = 8,30 \cdot 10^{-17}$		S		S	$= s^2$			
	Solubilidad	mol/dm³			g/dm³	_				
	En agua	9,11·10 ⁻⁹		$2,14\cdot10^{-6}$						
En	1 L D(AgNO ₃)	1,66·10 ⁻¹⁴		$3,90 \cdot 10^{-12}$						

Para el apartado b), en DATOS escriba:

		Volumen		Concentración	
Ion/compuesto soluble:	AgNO3	100	cm³	0,005	mol/dm³
2º ion/compuesto soluble:	NaI				

En RESULTADOS, elija «Masa». Verá los resultados siguientes:

Precipitación			
Para que precipite AgI			
Masa	<i>m</i> =	$2,49\cdot 10^{-13}~{ m g~NaI}$	

- El producto de solubilidad del cloruro de plomo(II) es 1,6·10⁻⁵ a 298 K.
 - a) Determina la solubilidad del cloruro de plomo(II) expresada en mol/dm³.
 - b) Se mezclan 200 cm³ de una disolución de concentración 1,0·10-3 mol/dm³ de Pb(NO₃)₂ y 200 cm³ de una disolución de HCl de pH = 3,00. Suponiendo que los volúmenes son aditivos indica si precipitará cloruro de plomo(II).

(P.A.U. set. 12

 $K_{\rm s} = 1.6 \cdot 10^{-5}$

Rta.: a) $s = 0.016 \text{ mol/dm}^3$; b) No.

Datos Cifras significativas: 2

Producto de solubilidad del PbCl₂

Datos Cifras significativas: 2

Volumen disolución de Pb(NO₃)₂ $V_1 = 200 \text{ cm}^3 = 0,20 \text{ dm}^3$

Concentración de la disolución del $Pb(NO_3)_2$ [$Pb(NO_3)_2$]₀ = 1,0·10⁻³ mol/dm³

Volumen disolución de HCl $V_2 = 200 \text{ cm}^3 = 0,20 \text{ dm}^3$

pH de la disolución de HCl pH = 3,0

Incógnitas

Solubilidad del PbCl₂ s
Si se formará precipitado O

Ecuaciones

Concentración molar (mol/dm³) s = n / V = s' / M

 $pH = -log[H^{+}]$

Producto de solubilidad del equilibrio: $B_bA_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$ $K_s = [A^{\alpha-}]^a \cdot [B^{\beta+}]^b$

Solución:

a) El equilibrio de solubilidad es:

$$PbCl_2(s) \rightleftharpoons Pb^{2+}(aq) + 2 Cl^{-}(aq)$$

Se llama s a la solubilidad, que es la concentración de sólido que se disuelve y, de acuerdo con la estequiometría, se deduce la concentración de los iones formados.

		PbCl ₂	\rightleftharpoons	Pb ²⁺	2 Cl-	
Concentración en el equilibrio	[X] _e			s	2 s	mol/dm³

La constante de equilibrio es:

$$K_s = [Pb^{2+}]_s \cdot [Cl^{-}]_s^2 = s \cdot (2 s)^2 = 4 s^3 = 1.6 \cdot 10^{-5}$$

Se calcula la solubilidad:

$$s = \sqrt[3]{\frac{1.6 \cdot 10^{-5}}{4}} = 0.016 \text{ mol/dm}^3$$

b) El nitrato de plomo(II) disuelto está totalmente disociado.

$$Pb(NO_3)_2(s) \rightarrow Pb^{2+}(aq) + 2 (NO_3)^{-}(aq)$$

La concentración inicial del ion Pb²+ es:

$$[Pb^{2+}]_0 = [Pb(NO_3)_2]_0 = 1,0 \cdot 10^{-3} \text{ mol/dm}^3$$

La ionización del HCl disuelto es:

$$HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$$

La concentración inicial de iones Cl- es la misma que la de iones H+, que se calcula a partir del pH:

$$[H^+] = 10^{-pH} = 10^{-3.0} = 1.0 \cdot 10^{-3} \text{ mol/dm}^3$$

$$[Cl^{-}]_{0} = [H^{+}]_{0} = 1,0 \cdot 10^{-3} \text{ mol/dm}^{3}$$

Al mezclar ambas disoluciones, se diluyen. Como los volúmenes se consideran aditivos, el volumen de la mezcla es la suma de los volúmenes de cada disolución y las nuevas concentraciones son:

$$[Pb^{2+}] = \frac{n(Pb^{2+})}{V_T} = \frac{0.20[dm^3] \cdot 1.0 \cdot 10^{-3} [mol \ Pb^{2+}/dm^3]}{0.40[dm^3]} = 5.0 \cdot 10^{-4} mol \ Pb^{2+}/dm^3$$

$$[Cl^{-}] = \frac{n(Cl^{-})}{V_{T}} = \frac{0.20 \,\mathrm{dm}^{3} \cdot 1.0 \,\mathrm{time} \, 10^{-3} \,\mathrm{mol} \,\, Cl^{-}/\mathrm{dm}^{3}}{0.40 \,\mathrm{dm}^{3}} = 5.0 \cdot 10^{-4} \,\mathrm{mol} \,\, Cl^{-}/\mathrm{dm}^{3}$$

Se formará precipitado si $Q = [Pb^{2+}] \cdot [Cl^{-}]^{2} > K_{s}$

$$Q = \left[\text{Pb}^{2+} \right] \cdot \left[\text{Cl}^{-} \right]^{2} = 5.0 \cdot 10^{-4} \cdot \left(5.0 \cdot 10^{-4} \right)^{2} = 1.3 \cdot 10^{-10} < 1.6 \cdot 10^{-5}$$

Por tanto, no se forma precipitado.

La mayor parte de las respuestas puede calcularse con la hoja de cálculo Quimica (es)

Cuando esté en el índice, mantenga pulsada la tecla «♠» (mayúsculas) mientras hace clic en la celda:

Equilibrio de solubilidad

del capítulo:

Equilibrio químico Solub Equilibrio de solubilidad

Escriba las fórmulas químicas en las celdas blancas con borde verde, los datos en las celdas blancas con borde azul, y pulse en las celdas de color salmón para elegir entre las opciones que se presentan.

borde azul, y pulse en las celdas de color salmón para elegir entre las opciones que se presentan.										
DATOS										
Compuesto poco soluble: PbCl2 Producto de solubilidad 1,60E-05 K _s										
Verá los resultados siguientes:										
RESULTADOS										
Cifras significativas: 3										
P	$bCl_2(s)$	\rightleftharpoons	Pb ²⁺ (a	aq)	+	2 Cl ⁻ (aq)				
$K_s = 1$,	60.10-5	=	=	S		$(2 \text{ s})^2$	$=4 s^3$			
Solubilidad	mo	l/dm³			g/dm³	pН	I			
En agua	0	,0159		4,41						
Para el apartado b), en DATOS escriba:										
		Volu	men		(Concentración				
Ión/compuesto soluble:	Pb(NO3)2	200		cm³		1,00E-03	mol/dm³			
2º ión/ compuesto soluble:	HCl	200		cm³		3	рН			
Verá los resultados siguientes:										
Precipitación N	o									

Precipitación No
$$[Pb^{2+}]^2 \cdot [Cl^{-}]^2 = 5,00 \cdot 10^{-4} \cdot (5,00 \cdot 10^{-4})^2 \qquad < K_s = 1,60 \cdot 10^{-5}$$

- 3. Se disponen de una disolución que contiene una concentración de Cd²+ de 1,1 mg/dm³. Se quiere eliminar parte del Cd²+ precipitándolo con un hidróxido, en forma de Cd(OH)₂. Calcula:
 - a) El pH necesario para iniciar la precipitación.
 - b) La concentración de Cd^{2+} , en mg/dm^3 , cuando el pH es igual a 12. $K_s(Cd(OH)_2) = 1,2 \cdot 10^{-14}$.

Rta.: la) pH = 9,5; b) $[Cd^{2+}]_b = 1,3\cdot10^{-5} \text{ mg/dm}^3$.

(P.A.U. jun. 16)

Datos	Cifras significativas: 2
Producto de solubilidad del Cd(OH)₂	$K_{\rm s} = 1.2 \cdot 10^{-14}$
Concentración de ion cadmio	$[Cd^{2+}] = 1.1 \text{ mg/dm}^3$
Masa atómica: Cd	M(Cd) = 112 g/mol
pH para calcular la [Cd²+] en el apartado b	$pH_b = 12$
Incógnitas	
pH necesario para iniciar la precipitación	pН
Concentración de ion cadmio a pH = 12	$[Cd^{2+}]_b$

Ecuaciones

Concentración molar (mol/dm³) s = n / V = s' / M

 $pH = -log[H^+]$

 $pOH = -log[OH^{-}]$

Producto iónico del agua $K_{\rm w} = [{\rm H^+}]_{\rm e} \cdot [{\rm OH^-}]_{\rm e} = 1,00 \cdot 10^{-14}$ ${\rm p}K_{\rm w} = {\rm pH} + {\rm pOH} = 14,00$

Producto de solubilidad del equilibrio: $B_bA_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$ $K_s = [A^{\alpha-}]^a \cdot [B^{\beta+}]^b$

Solución:

a) El equilibrio de solubilidad del Cd(OH)₂ es:

$$Cd(OH)_2(s) \rightleftharpoons Cd(OH)_2(aq) \rightarrow Cd^{2+}(aq) + 2OH^{-}(aq)$$

La constante de equilibrio K_s de solubilidad en función de las concentraciones es:

$$K_{\rm s} = [\mathrm{Cd}^{2+}]_{\rm e} \cdot [\mathrm{OH}^{-}]_{\rm e}^{2}$$

El Cd(OH)₂ precipitará cuando el producto de las concentraciones sea mayor o igual a su producto de solubilidad.

$$Q = [Cd^{2+}] \cdot [OH^{-}]^{2} > K_{s}$$

Se calcula la concentración de ion cadmio:

$$[Cd^{2+}] = \frac{1.1 \text{ mg}}{1 \text{ dm}^3} \frac{1 \text{ g}}{10^3 \text{ mg}} \frac{1 \text{ mol } Cd^{2+}}{112 \text{ g } Cd^{2+}} = 9.8 \cdot 10^{-6} \text{ mol/dm}^3$$

Suponiendo que esta concentración no varía al añadirle una disolución que contenga iones hidróxido, la concentración de iones hidróxido necesaria para que comience a precipitar hidróxido de cadmio es:

$$[OH^{-}] = \sqrt{\frac{K_s}{[Cd^{2+}]}} = \sqrt{\frac{1,20 \cdot 10^{-14}}{9,8 \cdot 10^{-6}}} = 3,5 \cdot 10^{-5} \text{ mol/dm}^{3}$$

Se calculan el pOH y el pH:

$$pOH = -log[OH^{-}] = -log(3,5 \cdot 10^{-5}) = 4,5$$

$$pH = 14,0 - pOH = 14,0 - 4,5 = 9,5$$

b) Cuando el pH = 12, el pOH = 14 – 12 = 2, y la concentración de iones hidróxido vale:

$$[OH^{-}]_{b} = 10^{-pOH} = 10^{-2} = 0,010 \text{ mol/dm}^{3}$$

La concentración de iones cadmio se calcula a partir del producto de solubilidad:

$$[Cd^{2+}]_b = \frac{K_s}{[OH^{-}]^2} = \frac{1,20 \cdot 10^{-14}}{0,010^2} = 1,20 \cdot 10^{-10} \text{ mol/dm}^3$$

$$\left[\mathrm{Cd}^{2+}\right]_{b} = \frac{1,20 \cdot 10^{-10} \text{ mol}}{1 \text{ dm}^{3}} \frac{112 \text{ g Cd}^{2+}}{1 \text{ mol Cd}^{2+}} \frac{10^{3} \text{ mg}}{1 \text{ g}} = 1,3 \cdot 10^{-5} \text{ mg/dm}^{3}$$

La mayor parte de las respuestas puede calcularse con la hoja de cálculo <u>Quimica (es)</u>
Cuando esté en el índice, mantenga pulsada la tecla « � » (mayúsculas) mientras hace clic en la celda:

<u>Equilibrio de solubilidad</u>

del capítulo:

Equilibrio químico Solub Equilibrio de solubilidad

Escriba las fórmulas químicas en las celdas blancas con borde verde, los datos en las celdas blancas con borde azul, y pulse en las celdas de color salmón para elegir entre las opciones que se presentan.

DATOS							
Compuesto poco soluble:	Cd(OH)2	Producto de solubilidad		1,20E-14	Ks		
2º compuesto poco soluble:		solubilidad					
			Volumen		Concentración		
Ion/compuesto soluble:	Cd^{2+}				1,10E-03	g/dm³	
2° ion/compuesto soluble:	OH-						
Soluto en la disolución que se añade:							
En RESULTADOS elija pH. Verá los re	sultados si	guie	ntes:				

En RESULTADOS elija «Concentración final de Cd²+»

Precipitación Sí $1,20\cdot10^{-14}$ $[Cd^{2+}] \cdot [(OH)^{-}]^{2} = 9,79 \cdot 10^{-6} \cdot (0,0100)^{2}$ $> K_s =$ Concentración final de Cd²+ $[Cd^{2+}]_e =$ $1,20\cdot10^{-10} \text{ mol/L} =$ $1,35 \cdot 10^{-8} \text{ g/dm}^3$

Cuestiones y problemas de las Pruebas de evaluación de Bachillerato para el acceso a la Universidad (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.

Algunos cálculos se hicieron con una hoja de cálculo de LibreOffice del mismo autor.

Algunas ecuaciones y las fórmulas orgánicas se construyeron con la extensión CLC09 de Charles Lalanne-Cassou.

La traducción al/desde el gallego se realizó con la ayuda de *traducindote*, de Óscar Hermida López.

Se procuró seguir las recomendaciones del Centro Español de Metrología (CEM).

Se consultó al Copilot de Microsoft Edge y se tuvieron en cuenta algunas de sus respuestas en las cuestiones.

Actualizado:16/03/24

Sumario

SOLUBILIDAD

Solu	bilidad. Efecto del ión comúnbilidad. Efecto del ión común	1
	La 25 °C el producto de solubilidad del Ba(IO ₃) ₂ es 6,5·10 ⁻¹⁰ . Calcula:	
	a) Las concentraciones molares de los iones yodato y bario	
	b) La masa de yodato de bario que si puede disolver en 200 cm³ de agua	
	c) La solubilidad de la citada sal, en g/dm³, en una disolución de concentración 0,1 mol/dm³ de	
	KIO₃ a 25 °C considerando que esta sal si encuentra totalmente disociado	
Preci	ipitación	3
1.	El producto de solubilidad del yoduro de plata es 8,3·10 ⁻¹⁷ . Calcula:	3
	a) La solubilidad del yoduro de plata expresada en g·dm ⁻³	
	b) La masa de yoduro de sodio que si debe añadir la 100 cm³ de disolución de concentración	
	0,005 mol/dm³ de nitrato de plata para iniciar la precipitación del yoduro de plata	· • • • •
2.	El producto de solubilidad del cloruro de plomo(II) es 1,6·10 ⁻⁵ a 298 K	4
	a) Determina la solubilidad del cloruro de plomo(II) expresada en mol/dm³	
	b) Se mezclan 200 cm³ de una disolución de concentración 1,0·10 ⁻³ mol/dm³ de Pb(NO ₃) ₂ y 200 cm	n³
	de una disolución de HCl de pH = 3,00. Suponiendo que los volúmenes son aditivos indica si	
	precipitará cloruro de plomo(II)	
3.	Se disponen de una disolución que contiene una concentración de Cd²+ de 1,1 mg/dm³. Se quiere	
	eliminar parte del Cd ²⁺ precipitándolo con un hidróxido, en forma de Cd(OH) ₂ . Calcula:	6
	a) El pH necesario para iniciar la precipitación	
	b) La concentración de Cd²+, en mg/dm³, cuando el pH es igual a 12	