COMP3721 Tutorial 10

CSE, HKUST

R.E. Languages

Q1. We know that the class of recursively enumerable languages is not closed under complementation. Show that it is closed under union and intersection.

R.E. Languages

Q1. We know that the class of recursively enumerable languages is not closed under complementation. Show that it is closed under union and intersection.

Union: If L_1 and L_2 are recursively enumerable languages then there exists two Turing machines M_1 and M_2 that semi-decide L_1 and L_2 , respectively. Let M be the 2-tape Turing machine that operates as follows:

- (i) Copy the input string w from the first tape to the second tape.
- (ii) Simulate M_1 on the first tape and M_2 on the second tape alternatively (i.e. do one step of M_1 on first tape, then one step of M_2 on second tape, and so on). If M_1 or M_2 halts, then M halts.

We claim M semi-decides $L_1 \cup L_2$.

R.E. Languages

Q1. We know that the class of recursively enumerable languages is not closed under complementation. Show that it is closed under union and intersection.

Intersection: If L_1 and L_2 are recursively enumerable languages then there exists two Turing machines M_1 and M_2 that semi-decide L_1 and L_2 , respectively. Let M be the Turing machine that operates as follows:

- (i) Simulate M_1 on the string w.
- (ii) If M_1 halts, then simulate M_2 on the string w.
- (iii) If M2 halts, then M halts.

We claim M semi-decides $L_1 \cap L_2$.

Q2. Write regular expression for

 $L = \{w : w \text{ has at least two non-consecutive b's}\}.$

Q2. Write regular expression for

 $L = \{w : w \text{ has at least two non-consecutive b's}\}.$

Solution: L can be written as $L=L'\{a\}L'$ where L' is the language that contains at least one b. It is easy to obtain that $R(L')=(a\cup b)^*b(a\cup b)^*$. Then we have $R(L)=(a\cup b)^*b(a\cup b)^*a(a\cup b)^*b(a\cup b)^*$

Q3. Let L_1 be a regular language on $\Sigma,$ and let L_2 be an arbitrary language on $\Sigma.$ We define

$$\frac{L_1}{L_2} = \{w \in \Sigma^* : wv \in L_1 \text{ for some } v \in L_2\}.$$

Show that $\frac{L_1}{L_2}$ is regular.

Q3. Let L_1 be a regular language on Σ , and let L_2 be an arbitrary language on Σ . We define

$$\frac{L_1}{L_2} = \{ w \in \Sigma^* : wv \in L_1 \text{ for some } v \in L_2 \}.$$

Show that $\frac{L_1}{L_2}$ is regular.

Solution: Since L_1 is regular, there is some DFA $M=(K,\Sigma,\delta,s,F)$ that accepts L_1 . Now we construct a DFA $M'=(K,\Sigma,\delta,s,F')$ by defining

$$F' = \{q \in K \colon (q,y) \vdash_M^* (f,e) \text{ for some string } y \in L_2 \text{ and } f \in F\}$$

We claim that M' accepts $\frac{L_1}{L_2}$ and hence $\frac{L_1}{L_2}$ is regular. To see this, consider any string w. $w\in \frac{L_1}{L_2}$, if and only if $wv\in L_1$ for some $v\in L_2$, if and only if $(s,wv)\vdash_M^*(q,v)\vdash_M^*(f,e)$ for some $v\in L_2$ and some $f\in F$, if and only if $(s,w)\vdash_{M'}^*(q,e)$ for some $q\in F'$, if and only if w is accepted by M'.

Q4. Write a context-free grammar that generates the following language.

$$L=\{a^nb^m:m=2n\geq 0 \text{ or } m=n\geq 0\}$$

Q4. Write a context-free grammar that generates the following language.

$$L=\{a^nb^m:m=2n\geq 0 \text{ or } m=n\geq 0\}$$

Solution: Note that L can be written as

$$L=\{a^nb^n:n\geq 0\}\cup\{a^nb^{2n}:n\geq 0\}$$

We define the grammar $G = (V, \sigma, R, S)$ that generates L as follows.

- (i) $\Sigma = \{a, b\}.$
- (ii) $V = \Sigma \cup \{S, A, B\}$ where nonterminal S stands for strings in L, A stands for strings of the form a^nb^n , and B stands for strings of the form a^nb^{2n} .
- (iii) $R = \{S \rightarrow A, S \rightarrow B, A \rightarrow aAb, A \rightarrow e, B \rightarrow aBbb, B \rightarrow e\}.$