Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

 $\begin{tabular}{ll} \textbf{Reaction scoring formula:} & TUNNEL_COEF*FGI_COEF*STEP*20+1000\\ 0000*(CONFLICT+NON_SELECTIVITY+FILTERS+PROTECT)\\ \end{tabular}$

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 56.25

Figure 1: Outline of path 1

2.1.1 Grignard-Type Reaction

Substrates:

- $1. \ phenyltrimethylsilylaethinylketon$
- 2. Allylmagnesium bromide solution available at Sigma-Aldrich

Products:

1. C=CCC(O)(C#C[Si](C)(C)C)c1ccccc1

 $\textbf{Typical conditions:} \ \operatorname{Mg} \ \mathrm{or} \ \operatorname{Li.ether}$

Protections: none

Reference: 10.1021/j0010494y or 10.1016/j.steroids.2015.09.009 or

10.1021/jo061349t or 10.1021/ja056165v (SI page 19)

Retrosynthesis ID: 25134

2.1.2 Alkylation of tertiary alcohols

Substrates:

1. Chlorallylene - available at Sigma-Aldrich

2. C=CCC(O)(C#C[Si](C)(C)C)c1ccccc1

Products:

1. C=CCOC(C#C[Si](C)(C)C)(CC=C)c1ccccc1

 ${\bf Typical\ conditions:}\ {\rm K2CO3.acetone.heat}$

Protections: none

Reference: 10.1016/S0022-1139(00)85021-6 and

2.1.3 Desilylation of terminal triple bond

Substrates:

 $1. \ C{=}CCOC(C\#C[Si](C)(C)C)(CC{=}C)c1ccccc1$

Products:

 $1. \ C\#CC(CC=C)(OCC=C)c1ccccc1$

Typical conditions: NaOMe. MeOH

Protections: none

Reference: DOI: 10.1021/jf00052a037

Retrosynthesis ID: 2248

2.2 Path 2

Score: 70.31

Figure 2: Outline of path 2

2.2.1 Keto-Enol Tautomerism

Substrates:

 $1. \ (1-ally loxy-1-methoxy methyl-but-3-enyl)-benzene\\$

Products:

1. C=CCOC(=C(O)OC)c1ccccc1

Typical conditions: solvent

Protections: none

Reference: 10.1021/jo8012385 10.1021/ja01065a003

Retrosynthesis ID: 8720

2.2.2 Enolate O-Alkylation

Substrates:

 $1. \ C{=}CCOC({=}C(O)OC)c1ccccc1\\$

2. Allyl bromide - available at Sigma-Aldrich

Products:

1. C=CCOC(OC)=C(OCC=C)c1ccccc1

Typical conditions: Cs2CO3.DMF

Protections: none

Reference: 10.1016/j.bmcl.2012.05.070 and 10.1039/b612336h

Retrosynthesis ID: 14841

2.2.3 Claisen Rearrangement

Substrates:

 $1. \ C{=}CCOC(OC){=}C(OCC{=}C)c1ccccc1\\$

Products:

1. 2-allyloxy-2-phenyl-pent-4-enoic acid methyl ester

 ${\bf Typical\ conditions:\ heat}$

Protections: none

Reference: DOI: 10.1021/ja00206a017 and 10.1016/S0022-1139(98)00313-3

2.2.4 Aldehyde Formation

Substrates:

1. 2-allyloxy-2-phenyl-pent-4-enoic acid methyl ester

Products:

1. rac-2-allyloxy-2-phenylpent-4-enal

Typical conditions: DIBAL.solvent e.g. DCM

Protections: none

Reference: 10.1039/C39940000483 and 10.1039/C3CC47867J and 10.1021/j000222a054 and 10.1021/ja9934908 and 10.1021/j0902426z

Retrosynthesis ID: 28551

2.2.5 Corey-Fuchs reaction

Substrates:

 $1. \ \ rac\text{-}2\text{-}allyloxy\text{-}2\text{-}phenylpent\text{-}4\text{-}enal}$

2. Tetrabromomethane - available at Sigma-Aldrich

Products:

1. C#CC(CC=C)(OCC=C)c1ccccc1

 $\textbf{Typical conditions:} \ PPh 3. Bu Li. CBr 4$

Protections: none

Reference: 10.1002/ejoc.200601137 and 10.1016/S0040-4039(01)94157-7

Retrosynthesis ID: 10912

2.3 Path 3

Score: 87.89

Figure 3: Outline of path 3

2.3.1 Grignard-Type Reaction

Substrates:

- $1. \ phenyltrimethylsilylaethinylketon$
- 2. Allylmagnesium bromide solution available at Sigma-Aldrich

Products:

1. C=CCC(O)(C#C[Si](C)(C)C)c1ccccc1

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1021/jo010494y or 10.1016/j.steroids.2015.09.009 or

10.1021/jo061349t or 10.1021/ja056165v (SI page 19)

Retrosynthesis ID: 25134

${\bf 2.3.2} \quad {\bf Reaction\ of\ alpha-bromo\ carbonyl\ compounds\ with\ alcohols\ or\ phenols}$

Substrates:

1. C=CCC(O)(C#C[Si](C)(C)C)c1ccccc1

2. Methyl bromoacetate - available at Sigma-Aldrich

Products:

1. C=CCC(C#C[Si](C)(C)C)(OCC(=O)OC)c1ccccc1

Typical conditions: NaOH.EtOH

Protections: none

Reference: 10.1021/jm070511x AND 10.1021/op1002038 AND

10.1007/BF00758669 AND 10.1021/ja01117a054

2.3.3 Aldehyde Formation

Substrates:

 $1. \ C{=}CCC(C\#C[Si](C)(C)C)(OCC(=O)OC)c1ccccc1$

Products:

 $1. \ C{=}CCC(C\#C[Si](C)(C)C)(OCC{=}O)c1ccccc1$

Typical conditions: DIBAL.solvent e.g. DCM

Protections: none

Reference: 10.1039/C39940000483 and 10.1039/C3CC47867J and 10.1021/j000222a054 and 10.1021/ja9934908 and 10.1021/j0902426z

Retrosynthesis ID: 28551

2.3.4 Tebbe Olefination

Substrates:

1. C=CCC(C#C[Si](C)(C)C)(OCC=O)c1ccccc1

Products:

1. C=CCOC(C#C[Si](C)(C)C)(CC=C)c1ccccc1

Typical conditions: Cp2TiCl2.AlMe3.toluene

Protections: none

Reference: 10.1016/j.tet.2007.03.015 and 10.1002/9780470638859.conrr617

Retrosynthesis ID: 11714

2.3.5 Desilylation of terminal triple bond

Substrates:

1. C=CCOC(C#C[Si](C)(C)C)(CC=C)c1ccccc1

Products:

1. C#CC(CC=C)(OCC=C)c1ccccc1

 ${\bf Typical\ conditions:\ NaOMe.\ MeOH}$

Protections: none

Reference: DOI: 10.1021/jf00052a037

Retrosynthesis ID: 2248

2.4 Path 4

Score: 90.31

Figure 4: Outline of path 4

2.4.1 Suzuki coupling of alkyl-9-BBNs with vinyl bromides

Substrates:

- 1. b-bromo-cis-cinnamic acid methyl ester
- 2. 9-allyl-9-bora-bicyclo[3.3.1]nonane

Products:

1. C=CCC(=CC(=O)OC)c1ccccc1

Typical conditions: Pd catalyst.base.solvent

Protections: none

Reference: 10.1021/ja00183a048 and 10.1039/b707338k and 10.1016/j.tet.2015.05.039 and 10.1021/jo991064z and 10.1021/ol060290+ and 10.1246/bcsj.65.2863

2.4.2 Addition of alcohols or phenols to Michael acceptors

Substrates:

- $1. \ C{=}CCC(=CC(=O)OC)c1ccccc1$
- 2. 2-Propen-1-ol available at Sigma-Aldrich

Products:

1. C=CCOC(CC=C)(CC(=O)OC)c1ccccc1

Typical conditions: cat.Na.DMF

Protections: none

Reference: 10.1016/S0957-4166(97)00479-5 AND 10.1016/S0040-4020(98)00817-5 AND 10.1021/np970346w AND 10.1021/ol049820x

Retrosynthesis ID: 20266

2.4.3 Aldehyde Formation

Substrates:

 $1. \ C{=}CCOC(CC{=}C)(CC({=}O)OC)c1ccccc1$

Products:

1. C=CCOC(CC=C)(CC=O)c1ccccc1

Typical conditions: DIBAL.solvent e.g. DCM

Protections: none

Reference: 10.1039/C39940000483 and 10.1039/C3CC47867J and

10.1021/jo00222a054 and 10.1021/ja9934908 and 10.1021/jo902426z

Retrosynthesis ID: 28551

2.4.4 Synthesis of alkynes from aldehydes

Substrates:

 $1. \ C{=}CCOC(CC{=}C)(CC{=}O)c1ccccc1$

Products:

1. C#CC(CC=C)(OCC=C)c1ccccc1

Typical conditions: P1-base.DMF

Protections: none

Reference: 10.1055/s-0028-1087919

Retrosynthesis ID: 15028

2.5 Path 5

Score: 90.31

Figure 5: Outline of path 5

2.5.1 HWE/Wittig Olefination

Substrates:

1. 1-phenylbut-3-en-1-one - available at Sigma-Aldrich

2. Methyl bromoacetate - available at Sigma-Aldrich

Products:

1. C=CCC(=CC(=O)OC)c1ccccc1

Typical conditions: 1.PPh3 or trialkylphosphite.2.base.aldehyde

Protections: none

Reference: 10.1002/anie.200705005 and 10.1021/ol052106a and

10.1021/jo00075a064 and 10.1021/ol3027297

2.5.2 Addition of alcohols or phenols to Michael acceptors

Substrates:

- $1. \ C{=}CCC(=CC(=O)OC)c1ccccc1$
- 2. 2-Propen-1-ol available at Sigma-Aldrich

Products:

1. C=CCOC(CC=C)(CC(=O)OC)c1ccccc1

Typical conditions: cat.Na.DMF

Protections: none

Reference: 10.1016/S0957-4166(97)00479-5 AND 10.1016/S0040-4020(98)00817-5 AND 10.1021/np970346w AND 10.1021/ol049820x

Retrosynthesis ID: 20266

2.5.3 Aldehyde Formation

Substrates:

 $1. \ C{=}CCOC(CC{=}C)(CC({=}O)OC)c1ccccc1$

Products:

1. C=CCOC(CC=C)(CC=O)c1ccccc1

 $\textbf{Typical conditions:} \ \, \textbf{DIBAL.solvent e.g.} \ \, \textbf{DCM}$

Protections: none

Reference: 10.1039/C39940000483 and 10.1039/C3CC47867J and

10.1021/jo00222a054 and 10.1021/ja9934908 and 10.1021/jo902426z

Retrosynthesis ID: 28551

2.5.4 Synthesis of alkynes from aldehydes

Substrates:

 $1. \ C{=}CCOC(CC{=}C)(CC{=}O)c1ccccc1$

Products:

1. C#CC(CC=C)(OCC=C)c1ccccc1

Typical conditions: P1-base.DMF

Protections: none

Reference: 10.1055/s-0028-1087919