$$I$$
. Ур. с разделяющимися переменными $f(y)\cdot dy=g(x)\cdot dx o \int f(y)\,dy=\int g(x)\,dx$

•
$$y'=f(ax+by+c)\Rightarrow$$
 замена $y(x)=\dfrac{z(x)-ax-c}{b},$ $y'(x)=\dfrac{z'(x)-a}{b},$ $z(x)=ax+by(x)+c$

II. Однородные уравнения M(x,y)dx + N(x,y)dy = 0

M и N — однор. одной и той же степени, т.е. $M(kx,ky)=k^n\cdot M(x,y),\ mo\ же\ для\ N$

Замена
$$y(x) = t(x) \cdot x$$
, $y' = t'x + t$, $t(x) = \frac{y(x)}{x}$

•
$$y' = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right) \leftarrow l_1 \leftarrow l_2 \Rightarrow (x_0, y_0) = l_1 \cap l_2,$$
 Замена $x = u + x_0, \ y = v + y_0$

• $y(x) = z^m(x), z = y^{-m}$

III. Линейные ур. I порядка y' + a(x)y = b(x)

- \bigcirc Однородное $y' + a(x)y = 0 \rightarrow (pew.) y_1 = y = c \cdot ... \forall c$
- (II) Метод вариации постоянной. Реш. в виде $y = c(x)y_1(x)$

$$y' + a(x)y = c'y_1 + cy'_1 + acy_1 = b \rightarrow c'y_1 = b \rightarrow c = \int b(x)dx/y_1(x)$$

- Ур. Бернулли $y'+a(x)y=b(x)y^{\alpha}\to y^{-\alpha}y'+a(x)y^{1-\alpha}=b(x)$ $z(x)=y^{1-\alpha},\ z'(x)=y^{-\alpha}y'(1-\alpha)\ (\text{не забудь }y=0)$
- Интегрируемые комбинации $ydy = \frac{1}{2}\,dy^2 \qquad \frac{1}{y}\,dy = d\ln|y| \qquad xdy + ydx = d(xy)$
- Ур. Рикатти $y' + a(x)y + b(x)y^2 = c(x)$ Если $y_1(x)$ — частное реш., замена $y(x) = y_1(x) + z(x)$ Частное решение можно искать в виде $y_1 = cx^{\alpha}$, $ce^{\alpha x}$, $ax^2 + bx + c$, ax + b

IV. Ур. в полных дифференциалах

$$M(x,y)dx+N(x,y)dy=0$$
 — УПД, если $\dfrac{\partial M}{\partial y}\equiv\dfrac{\partial N}{\partial x}$

$$\exists F: \begin{cases} \frac{\partial F}{\partial x} = M(x,y) \to F(x,y) = \int M(x,y) dx + c(y) \\ \frac{\partial F}{\partial y} = N(x,y) \to \left(\int M(x,y) dx + c(y)\right)_y' = N(x,y) \end{cases}$$

Отсюда найдём $c(y) = \int c_y' dy = \ldots + c_1 \quad \forall c_1$ $dF = 0 \Leftrightarrow (omsem) \ F = C \quad \forall C$ $(константа \ c_1 \ exodum \ e \ C)$

- Выделение полного дифференциала $d(xy), d(\frac{x}{y}), d(\ln|x|)$

Ур. І порядка, не разреш. отн. производной

$$F(x, y, y') = 0$$

- 1 Разрешить отн. производной. Возможен метод решения относительно x(y), а не y(x) :)
- 2 F(x,y,y') разрешено отн. $y:\ y=f(x,y')$ Пусть $p=y'=\dfrac{dy}{dx} o pdx=dy=\dfrac{\partial f}{\partial x}dx+\dfrac{\partial f}{\partial p}dp o M(x,p)dx+N(x,p)dp=0$, обычное уравнение. Можно найти явное p=p(x), а можно x=x(p) тогда ответ $\begin{cases} x=x(p) \\ y=f(x(p),p) \end{cases}$
- ③ F(x,y,y'): x = f(y,y')Анал.: $p = y', \frac{dy}{p} = dx = df(y,p) = \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial p} dp \rightarrow \dots$
- (4) Нахождение особых решений
 - 0. Решить исходное уравнение
 - 1. p-дискриминантные кривые: $\begin{cases} F(x,y,p) = 0 \\ \partial F / \partial p = 0 \end{cases}$ (p=y')

Избавляемся от p в системе, ее решения — $y = y_1(x,c)$

- 2. y_1 является решением исх. ур.?
- 3. y_1 особое? $\forall x_0 \exists \text{ реш. } y_2(x) : \begin{cases} y_1(x_0) = y_2(x_0) \\ y_1'(x_0) = y_2'(x_0) \end{cases}$ То есть в любой своей точке особое решение должно касаться другого решения системы.

Ур. допускающие пониж. порядка производной

- $y^{(n)} = f(x) \to y^{(n-1)} = \int f(x)dx \to \dots$
- (ж): $F(x,y^{(k)},\dots y^{(n)})=0 \;\Rightarrow\;$ замена $y^{(k)}_{(x)}=z(x)$
- $(x): F(y, y^{(1)}, \dots y^{(n)}) = 0$ Замена $y' = p(y(x)), \quad y'' = p'_y \cdot y'_x = p'p$ (не забудь $p'_y = \frac{dp}{dy} - dy = 0$)
- Однородное по $y, y', \dots y^{(n)} \Rightarrow$ замена y' = yz(x) y сократятся если ур. однородное
- Выделение интегрируемых комбинаций $\frac{y^{(n)}}{y^{(n-1)}} = \left(\ln \left| \right. y^{(n-1)} \right| \right)'$

Это — шпаргалка, не учебник. Учебник — Филиппов Семинарист — Елена Александровна Павельева ♡ https://github.com/lizzardhub/difurry

→ обозначает переходы между формулами

 \bigcirc Характеристич. уравнение: $\exists y = e^{\lambda x}$, находим λ

/	r r Jr	
	корень λ	функции ФСР
	\mathbb{R} кратности k	$y_1(x) = e^{\lambda x}, \dots y_k(x) = x^{k-1}e^{\lambda x}$
	\mathbb{C} кратности k	$y_1(x) = e^{ax} \cos bx \dots$
	$(k$ пар $\lambda = a \pm ib)$	$y_k(x) = x^{k-1}e^{ax}\cos bx,$
		$y_{k+1}(x) = e^{ax} \sin bx \dots$
		$y_{2k}(x) = x^{k-1}e^{ax}\sin bx$

 $y_{ ext{ogh}}(x) = c_1 y_1(x) + \ldots + c_n y_n(x) \quad \forall c_1, \ldots, c_n$

- (II) Неодн. уравнение. $y_{\text{общ}}(x) = y_{\text{однор}} + y_{\text{частное}}(x)$
 - 1. Первый специальный вид: $f(x) = P_k(x)e^{\gamma x} \Rightarrow$ $\Rightarrow y_{\text{\tiny q}}(x) = x^s R_k(x)e^{\gamma x}$ s = кратность γ в решениях хар. уравнения
 - s= кратность γ в решениях хар. уравнения R_k- неизвестный многочлен k-ой степени
 - 2. Второй: $f(x) = (P_k(x)\cos\beta x + R_m(x)\sin\beta x) \cdot e^{\alpha x} \Rightarrow$ $\Rightarrow y_{\mathfrak{q}}(x) = x^s(Q_n(x)\cos\beta x + T_n(x)\sin\beta x) \cdot e^{\alpha x}$ $n = max(k,m), s = \text{кратность } \gamma = \alpha + i\beta$ (либо $\alpha - i\beta$, их кратности равны)

f(x) — сумма 1 и 2 спец. видов $\Rightarrow y_{ ext{\tiny Ч}}(x) = \sum y_{ ext{спец}}$

Общий вид пр. части. **Метод вар. постоянных** Возможно a_0,\dots,a_{n-1} — функции от x, т.е. не const! I $y_{\text{одн}}(x)=c_1y_1(x)+\dots+c_ny_n(x) \ \forall c_1,\dots c_n$ II $\exists y(x)=c_1(x)y_1(x)+\dots+c_n(x)y_n(x) \to (naxodum\ \phi ynkuuu\ c_1,c_2,\dots c_n\ -\ unmerpupyem)$

$$\begin{cases} c'_1 y_1 + \dots + c'_n y_n = 0 \\ c'_1 y'_1 + \dots + c'_n y'_n = 0 \\ \dots \\ c'_1 y_1^{(n-2)} + \dots + c'_n y_n^{(n-2)} = 0 \\ c'_1 y_1^{(n-1)} + \dots + c'_n y_n^{(n-1)} = f(x) \end{cases}$$

• Ур. Эйлера

$$x^{n}y^{(n)} + a_{n-1}x^{n-1}y^{(n-1)} + \ldots + a_{1}xy' + a_{0}y = f(x)$$

Замена: $x = \begin{cases} e^t, & x > 0 \\ -e^t, & x < 0 \end{cases}$, $t = \ln(x)$, y(x) = Y(t(x)).

Тогда
$$y'=Y_t'\cdot\frac{1}{x}\Rightarrow \underline{xy'=Y'}$$

$$y''=\left(Y'\cdot\frac{1}{x}\right)'=Y''\frac{1}{x^2}-Y'\frac{1}{x^2}\Rightarrow \underline{x^2y''=Y''-Y'}$$

Получили новое уравнение Y(t). Правая часть спец. вида \Rightarrow рассматриваем x>0 и x<0, решаем отн. t. Иначе вар. постоянных.

II'. Линейные однор. ур. с переменными coeff $a_n(x)y^{(n)}+\ldots a_1(x)y'+a_0(x)y=f(x)$

 $y_1(x)$ — решение, возможно, вида $e^{\alpha x}$ или многочлен (его степень надо найти). Другое решение y(x) найти по

формуле Остроградского-Лиувилля

$$\begin{vmatrix} y_1(x) \ y(x) \\ y_1'(x) \ y'(x) \end{vmatrix} = ce^{-\int \frac{a_{n-1}(x)}{a_n(x)} dx} \quad \forall c$$

 $\overrightarrow{III'}$. Линейные системы \overrightarrow{I} $\overrightarrow{\overline{Y}}' = A \overrightarrow{\overline{Y}}$ – однородные

$$\exists \overline{Y} = \overline{\alpha}e^{\lambda t} \to \overline{Y}' = \overline{\alpha}\lambda e^{\lambda t} \Rightarrow (A - \lambda E)\overline{\alpha} = 0 \Rightarrow |A - \lambda E| = 0$$

Находим собств. значения λ и с. векторы $\overline{\alpha}$.

- 1) Нельзя оставлять $\mathbb C$ собств. значения! Делать так: (Аналогично обычным однородным линейным ур., только кратные c.s. имеют разные c.s.) $\lambda = \alpha \pm i\beta \Rightarrow \overline{Y} = \overline{\alpha} \cdot (\cos\beta t + i\sin\beta t)e^{\alpha t} = \overline{\alpha}_1 + i\overline{\alpha}_2 \Rightarrow \overline{Y}_{\text{одн}} = c_1\overline{\alpha}_1 + c_2\overline{\alpha}_2 \quad \forall c_1, c_2$
- 2) Если кол-во с. векторов меньше кратности с. значения: Допустим кратность λ равна 3

$$\overline{Y} = (\overline{\alpha}t^2 + \overline{\beta}t + \overline{\gamma})e^{\lambda t} \to \overline{Y}' = (\overline{\alpha}2t + \overline{\beta})e^{\lambda t} + (\overline{\alpha}t^2 + \overline{\beta}t + \gamma)\lambda e^{\lambda t} = (\lambda \overline{\alpha}t^2 + (2\overline{\alpha} + \lambda \overline{\beta})t + (\overline{\beta} + \lambda \overline{\gamma}))e^{\lambda t}, \ A\overline{Y} = A\overline{\alpha}t^2 + A\overline{\beta}t + A\overline{\gamma}$$

$$\Box B = A - \lambda E. \ \overline{Y}' = A\overline{Y} \Rightarrow \begin{cases} B\overline{\alpha} = \overline{0} \\ B\overline{\beta} = 2\overline{\alpha} \to B^3\overline{\gamma} = \overline{0} \to \dots \\ B\overline{\gamma} = \overline{\beta} \end{cases}$$

Так находим все решения — наборы $\{\overline{\alpha}, \overline{\beta}, \overline{\gamma}\}.$

Общее решение однородного уравнения $\overline{Y}_{\text{одн}} = c_1 \overline{\alpha}_1 e^{\lambda_1 t} + \ldots + c_n \overline{\alpha}_n e^{\lambda_n t} \quad \forall c_1, \ldots c_n$

$$\widehat{\mathrm{II}})$$
 $\overline{Y}' = A\overline{Y} + \overline{F}$ — неоднородные

- 1. Первый спец. вид. Если $\overline{F} = \overline{P_m}(t) \cdot e^{\gamma t} = \begin{pmatrix} P_{m1}(t) \\ \dots \\ P_{mn}(t) \end{pmatrix} e^{\gamma t},$ $m = \max(m_1, \dots, m_n) \Rightarrow \overline{Y_q} = \overline{Q}_{m+s}(t)e^{\gamma t}$ $(s = \text{кратность } \gamma)$
- 2. Второй спец. вид. $\overline{F} = (\overline{P_m}(t)\cos\beta t + \overline{Q_l}(t)\sin\beta t) \cdot e^{\alpha t}$ $\Rightarrow \overline{Y_q} = (\overline{R}_{k+s}(t)\cos\beta t + \overline{T}_{k+S}(t)\sin\beta t) \cdot e^{\alpha t}$ k = max(m,l) $(s = \text{кратность } \gamma)$

 \overline{F} — сумма специальных видов \Rightarrow $\overline{Y_{\mathbf{q}}} = \sum y_{\mathrm{спец}}$