Lab 6 Assessment

Due 6 Nov at 6:00

Points 4

Questions 4

Available 25 Oct at 6:00 - 6 Nov at 6:00

Time limit None

Allowed attempts 3

This quiz was locked 6 Nov at 6:00.

Attempt history

	Attempt	Time	Score
LATEST	Attempt 1	9,551 minutes	4 out of 4

(!) Answers will be shown after your last attempt

Score for this attempt: 4 out of 4

Submitted 5 Nov at 14:57

This attempt took 9,551 minutes.

Question 1	1 / 1 pts
Find a value of x for which the following vectors are linearly depter [2 -2 4], [4 -6 7], [-2 2 x]	pendent?
O 3	
-4	
O -7/2	
○ -7/3	

Question 2	1 / 1 pts
True or false: The columns of any 4x5 matrix are linearly dependent	dent.
True	
○ False	

Question 3 1 / 1 pts

With T defined by $T(\mathbf{x}) = A\mathbf{x}$, find a vector \mathbf{x} whose image under T is \mathbf{b} .

$$A = [1 \ 0 \ -2; -2 \ 1 \ 6; 3 \ -2 \ -5], \ \mathbf{b} = [-1; 7; -3]$$

- [3;1;2]
- [3;1;1]
- [1;1;1]
- None of the above

Question 4 1 / 1 pts

How many rows and columns must a matrix A have in order to define a mapping from R^5 into R^7 by the rule $T(\mathbf{x}) = A\mathbf{x}$?

- 7 rows, 5 columns
- 5 rows, 7 columns

5 rows, 4 columns		
4 rows, 2 columns		

Quiz score: 4 out of 4