Assignmentsss #X

Jane Doe CSCE 433: Formal Languages and Automata

January 24, 2016

Question 1. Mathematical Symbols

This is an example of an answer to a homework question. In your answer, you may incorporate a variety of mathematical symbols:

• Fractions: $\frac{2}{3}$, $\frac{n}{10}$, $\frac{x^2+x+5}{x-10}$

• Binomial coefficients: $\binom{5}{2} = 10$

• Subscripts and superscripts: $t_0,\,t^2,\,t_0^{\frac{2}{3}},$

• Greek letters: α , β , δ , γ , λ , π .

• Summations: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Question 2. Proving Gauss's Formula by Mathematical Induction

This is another example of a question. In this case, it's a multi-part question.

(a) Consider Gauss's formula:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \tag{1}$$

(b)

Proof. We will prove equation 1 by mathematical induction.

• <u>Base case</u>: If n = 1, then $1 = \frac{1(2)}{2} = 1$. Base case holds.

- Inductive hypothesis: Assume the equation holds for $2 \le n \le k$.
- Inductive step: For n = k + 1, we have

$$\begin{split} \sum_{i=1}^{k+1} i &= (k+1) + \sum_{i=1}^{k} i \\ &= (k+1) + \frac{k(k+1)}{2} \quad \text{(by inductive hypothesis)} \\ &= \frac{2k+2+k(k+1)}{2} \\ &= \frac{k^2+3k+2}{2} \\ &= \frac{(k+1)(k+2)}{2} \end{split}$$

The last line shows that for n=k+1, Gauss' formula still holds! We've shown that the formula holds for n=1. And, we've shown that if it holds for n=k, it must hold for n=k+1. Therefore, the equation must hold for all n. \square

Question 3. Constructing DFA's

(a) Design a DFA to accept the language $L = \{w : w \text{ is a binary string containing the substring } 01\}.$

Figure 1: A DFA M that accepts the language L. The diagram was drawn using the automata library for the tikz package.

- (b) The formal specification of DFA $M=(Q,\Sigma,\delta,q,F)$, where
 - $Q = \{q_0, q_1, q_2\},\$
 - $\Sigma = \{0, 1\},$

- $\bullet \ q=q_0,$
- $F = \{q_2\}$, and
- δ is defined as follows.

	0	1
q_0	q_1	q_0
q_1	q_1	q_2
q_2	q_2	q_2

(c) You may hand-draw your figures as long as they are readable and in a format (e.g., pdf, jpg) that LATEX can handle.

Figure 2: A hand-drawn DFA included into $\mbox{\sc IAT}_{\mbox{\sc E}}\mbox{\sc X}$ as a JPG image.