

Fakultät für Mathematik und Physik Institut für Angewandte Mathematik

Diplomarbeit

Ein hierarchischer Fehlerschätzer für Hindernisprobleme

von Cornelius Rüther Matr.-Nr.: 2517350

21. Oktober 2014

Erstprüfer: Prof. Dr. Gerhard Starke Zweitprüfer: Prof. Dr. Peter Wriggers

Inhaltsverzeichnis

A	bbild	lungsv	erzeichnis	iv
Ta	abell	enverz	eichnis	\mathbf{v}
1	Ein	leitung		6
2	Grı	ındlag	en	7
	2.1	Hilber	rträume	7
	2.2	Variat	tionsformulierung	9
	2.3	Finite	Elemente Methode	18
		2.3.1	A priori Fehlerabschätzung	25
	2.4	Adapt	tive Verfeinerungsstrategien	28
		2.4.1	A posteriori Fehlerschätzer	28
		2.4.2	Verfeinerung des Netzes	29
	2.5	Einfül	hrung in die Strukturmechanik	29
3	Var	iations	sungleichungen	30
	3.1	Ein H	indernisproblem	30
		3.1.1	Variationsformulierung für das Hindernisproblem	30
		3.1.2	Existenz und Eindeutigkeit der Lösung	33
		3.1.3	Lösung des Hindernisproblems mittels FEM	36
	3.2	Konta	aktprobleme	42
		3.2.1	Mathematische Modellierung eines Kontaktproblems .	42
		3.2.2	Variationsformulierung des Signorini-Kontaktproblems	47
		3.2.3	Lösung des Kontaktproblems mittels FEM	50
4	Ein	hierai	rchischer Fehlerschätzer für Hindernisprobleme	51
	4.1	Herlei	tung eines a posteriori hierarchischen Fehlerschätzers .	51
		4.1.1	Diskretisierung	51
		4.1.2	Lokaler Anteil des Fehlerschätzers	59
		4.1.3	Oszillationsterme	64
		4.1.4	Zuverlässigkeit des Fehlerschätzers	67
		4.1.5	Effektivität des Fehlerschätzers	68
	12	Fin a	dentiver Algerithmus	70

In halts verzeichn is

	 4.3 Erfüllung einer Saturationseigenschaft	70 70
5	Implementierung des Fehlerschätzers in Matlab	71
6	Validierung 6.1 Numerisches Beispiel zum Hindernisproblem	72 72 72
7	Zusammenfassung und Ausblick	7 3
Li	teraturverzeichnis	74
\mathbf{A}	FunktionalanalysisA.1 Sobolev-RäumeA.2 OptimalitätskriterienA.3 Konvergenzbegriffe	77 77 79 79
В	OptimierungB.1 Quadratische ProgrammierungB.2 Active Set-Methode für konvexe QPsB.3 Algorithmus	81 81 82 86
\mathbf{C}	Tensorrechnung	87
D	Quellcode D.1 Implementierung des Fehlerschätzers für das Hindernisproblem	88
\mathbf{In}	dex	88

Abbildungsverzeichnis

2.1	Zulässige und unzulässige Triangulierung (mit hängendem Knoten) 21
2.2	Beispiele quasiuniformer Zerlegungen
2.3	Dreiecke für nodale Basen (linear, quadratisch, kubisch) 23
2.4	Triangulierung von $\Omega = [-1, 1]^2$ in 8 Courant-Elemente 23
2.5	Referenzelement \widetilde{T} für ein allgemeines Dreieck $T \in \mathcal{T}_h$ 25
3.1	Ein Hindernisproblem mit Hindernis ψ , konstanter Streckenlast f und Lösung u 31
3.2	Körper \mathcal{B}^1 und \mathcal{B}^2 mit Randbezeichnungen 43
3.3	Kontaktformulierung zwischen zwei Körpern 44
4.1	Beispiel eines affinen Hindernisses ψ mit $v \in \mathcal{A}_{\mathcal{Q}}$ in \mathbb{R} 55
4.2	Dreiecke T_1 und T_2 mit Einheitsnormalen n 61
4.3	Darstellung von ω_p (grau) und \mathcal{E}_p (abgehende Kanten von p) für ein beliebiges ϕ_p 62

Tabellenverzeichnis

2.1	Ableitungen	der nodalen	Basisfunktion	ϕ_5					2	4

Kapitel 1

Einleitung

- \bullet Thema (worum geht es?) \to Fehlerabschätzung \to analytische Lösung oftmals nicht bekannt und damit Fehlerschätzer interessant
- \rightarrow in FEM soll Lösung genauer mit weniger Rechenzeit sein, daraus folgt Anwendung adaptiver Verfahren mit verschiedenen Fehlerschätzern
- Lücke zum neuen (Kontaktproblematik) füllen in dieser Arbeit
- \rightarrow Übertragung unseres Fehlerschätzers auf Kontaktprobleme, wie und warum?! \rightarrow möglicher Grund: Hindernisprobleme beinhalten Kontaktbereiche (später für Kapitel 4 interessant)

wichtig: Vorgehen einer adaptiven Verfeinerungsstrategie mit "solve \rightarrow estimate \rightarrow " umschreiben

• Struktur der Arbeit

Kapitel 2

Grundlagen

In diesem Kapitel wollen wir uns mit grundlegender Theorie beschäftigen, die nicht im Anhang aufgeführt ist, zum Verständnis von den darauffolgenden Kapiteln jedoch notwendig ist.

Dieses Kapitel basiert auf [Bra13], [Sta08], [Ste12b], [Wal11], [Alt12].

2.1 Hilberträume

• benötigen in den Variationsformulierungen immer wieder Hilberträume, daher werden Eigenschaften dieser hier nochmal eingeführt

•

- **Definition 2.1.** Ein *Hilbertraum* ist ein reeller oder komplexer Vektorraum H mit Skalarprodukt $(\cdot,\cdot)_H$, der vollständig bzgl. der durch das Skalarprodukt induzierten Norm, $\|v\|_H^2 := (v,v)_H$ für alle $v \in H$, ist, d.h. in dem jede Cauchy-Folge konvergiert.
- Es sei in diesem Kapitel H ein reeller Hlbertraum mit Skalarprodukt $(\cdot,\cdot)_H$ und der dazu induzierten Norm $\|v\|_H^2 = (v,v)_H$ für alle $v \in H$.

•

Bemerkung. Für alle $v,w\in H$ gilt die Cauchy-Schwarz'sche Ungleichung

$$(v, w)_H < ||v||_H ||w||_H$$
.

•

Satz 2.2 (Approximationssatz). Es sei $\emptyset \neq M \subset H$ konvex und abgeschlossen. Dann existiert für alle $v \in H$ ein $m_v \in M$ mit

$$||v - m_v|| = \operatorname{dist}(v, M) := \inf_{w \in M} ||v - w||.$$

Wir nennen $P_M: H \to M$ mit $v \mapsto m_v$ die Projektionen auf M.

Beweis. Der Beweis ist in [Wal11] Kapitel 7.1 Satz 7.2 zu finden. \square

Satz 2.3 (Charakterisierung der Projektionen). $\emptyset \neq M \subset H$ sei abgeschlossen und konvex und $v \in H$. Dann gilt:

$$m_0 = P_M(v) \iff (m - m_0, v - m_0)_H \le 0$$

 $f\ddot{u}r$ alle $m \in M$.

Beweis. Es sei o.B.d.A. $0 \in M$ und $m_0 = 0$.

"⇒" Wegen $0 = P_M(x)$ muss $||v - tm||_H \ge ||v||_H$ für $m \in M$ und $0 \le t \le 1$ sein. Dann ist

$$||v||_H^2 \le ||v||_H^2 - 2t(v,m)_H + t^2 ||m||_H^2 \implies 0 \le -2t(v,m)_H + \underbrace{t^2 ||m||_H^2}_{>0}.$$

Damit ist $2(v, m)_H \leq 0$.

 $, \Leftarrow$ " Für alle $m \in M$ ist $(v, m)_H \leq 0$. Es folgt

$$||v||_H^2 \le ||v||_H^2 + ||m||^2 - 2(v, m)_H = ||v - m||_H^2$$

Wegen $0 \in M$ ist $dist(v, M) = ||v||_H^2$ und damit $0 = P_M(v)$.

Satz 2.4. Es sei $\emptyset \neq M \subset H$ konvex und abgeschlossen. Dann gilt:

$$||P_M(v) - P_M(w)||_H < ||v - w||_H \quad \forall v, w \in H.$$

Beweis. Da $P_M(v), P_M(w) \in M$ für alle $v, w \in H$ ist, folgt aus Satz 2.3

$$(P_M(w) - P_M(v), v - P_M(v))_H \le 0, (2.1)$$

$$(P_M(v) - P_M(w), w - P_M(w))_H < 0. (2.2)$$

Addieren wir (2.1) und (2.2), so erhalten wir

$$0 \ge (P_M(w) - P_M(v), v - P_M(v))_H + (P_M(v) - P_M(w), w - P_M(w))_H$$

$$= (P_M(w) - P_M(v), v - w + P_M(w) - P_M(v))_H$$

$$= \|P_M(w) - P_M(v)\|_H^2 - (P_M(w) - P_M(v), w - v)_H$$

$$\stackrel{\text{CS}}{\ge} \|P_M(w) - P_M(v)\|_H^2 - \|P_M(w) - P_M(v)\|_H \|w - v\|_H.$$

Nach Umstellen der Ungleichung folgt die Behauptung.

•

Definition 2.5. Es sei $\emptyset \neq M \subset H$ und wir definieren das *orthogonale Komplement* von M durch

$$M^{\perp} := \{ v \in H \mid v \perp M \} := \{ v \in H \mid (v, m)_H = 0 \ \forall \ m \in M \}.$$

•

Satz 2.6. Es sei M ein abgeschlossener Untervektorraum von H. Dann ist

$$H = M \oplus M^{\perp}$$
.

d.h. jedes $v \in M$ hat eine eindeutige Zerlegung $v = v_M + v_{M^{\perp}}$ mit $v_M \in M$ und $v_{M^{\perp}} \in M^{\perp}$.

Beweis. Der Beweis findet sich in [Wal11] Kapitel 7.1 Theorem 7.6. \square

•

Korollar 2.7. Es sei $\emptyset \neq M \subset H$ ein Untervektorraum. Dann ist $\overline{M} = H$ genau dann, wenn $M^{\perp} = \{0\}$ ist.

Beweis. Man kann zeigen, dass $\overline{\text{span}\,M} = (M^\perp)^\perp =: M^{\perp\perp}$ ist und dann unter Verwendung von Satz 2.6 die Behauptung folgern. Den kompletten Beweis können wir in [Wal11] Kapitel 7.1 Korollar 7.7 (iii) einsehen.

2.2 Variations formulierung

Stichpunkte für die Formulierung:

- Betrachte als Modellproblem Ausrenkung $u:\Omega\to\mathbb{R}$ einer in $\Omega\subset\mathbb{R}^d$ eingespannten Membran unter Kraft f
- mathematisch beschrieben wird dies durch das Dirichlet-Problem

$$-\Delta u = f \text{ in } \Omega,$$

$$u = g \text{ auf } \partial\Omega,$$
(2.3)

- in der Praxis d = 2, 3 übliche Dimensionen
- Richtiger Punkt:

Notation. der Einfachheit halber sei im Folgenden d=2 und $\Omega \subset \mathbb{R}^2$ ein durch ein Polygonzug berandetes Gebiet, den Rand $\partial\Omega$ bezeichnen wir mit Γ .

- allgemeiner berandete Gebiete können durch polygonale beliebig genau approximiert werden
- Transformation: Sei $u_0: \Omega \to \mathbb{R}$ eine zulässige Funktion, d.h. deren Regularität für (2.3) ausreichend ist, und für die $u_0 = g$ auf Γ gilt. Dann gilt für $\tilde{u} = u u_0$

$$-\Delta \tilde{u} = \tilde{f} \text{ in } \Omega,$$

$$\tilde{u} = 0 \text{ auf } \Gamma$$
(2.4)

 $\min \, \tilde{f} = f - \Delta u_0.$

- \Rightarrow wir beschränken uns auf das homogene Dirichlet-Problem (2.4), d.h. sei $g \equiv 0$ in (2.3)
- Sei im Folgenden $H_0^1(\Omega)$ wie in Bemerkung A.8 der Raum der schwach differenzierbaren Funktionen, die am Rand Γ verschwinden im Sinne der Spur.
- für $v \in H_0^1(\Omega)$ gilt dann mit (2.3)

$$\int_{\Omega} -\Delta u \cdot v \, dx = \int_{\Omega} f v \, dx \, .$$

Betrachte also (2.3) im Mittel über das ganze Gebiet Ω . Durch Anwenden der 1. Green'schen Formel (bzw. Satz von Gauß) ergibt sich

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx - \underbrace{\int_{\Gamma} v \partial_{\nu} u \, ds}_{=0, \text{ da } v|_{\Gamma}=0} = \int_{\Omega} f v \, dx$$

$$\iff \int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx \qquad (2.5)$$

• kurz geschrieben ist (2.5) mit der Notation aus Satz A.5 (b)

$$(\nabla u, \nabla v)_0 = (f, v)_0.$$

• wir definieren die Bilinearform $a:(H_0^1(\Omega))^2\to\mathbb{R}, a(u,v):=(\nabla u,\nabla v)_0$ und $(f,v):=(f,v)_0.$

Definition 2.8. Eine Funktion $u \in H_0^1(\Omega)$ heißt schwache Lösung vom homogenen Dirichlet-Problem

$$-\Delta u = f \text{ in } \Omega,$$

$$u = 0 \text{ auf } \Gamma,$$
(DP)

wenn die Gleichung

$$a(u,v) = (f,v) \quad \forall v \in H_0^1(\Omega)$$
 (2.6)

gilt.

2. Grundlagen

- \bullet Wir betrachten im folgenden alle Hilberträume über \mathbb{R} .
- Frage nach der Existenz und Eindeutigkeit einer schwachen Lösung für (DP) ⇒ hierfür wird ein Hilbertraum benötigt (nachher im Beweis ersichtlich) → Lösung liefert der Satz von Lax-Milgram.
- zuvor noch eine Definition.

Definition 2.9. Sei H ein Hilbertraum. Die Bilinearform $a: H \times H \to \mathbb{R}$ heißt stetig, falls mit einem c > 0

$$|a(u,v)| \le c ||u||_H ||v||_H \quad \forall u, v \in H$$

gilt. Sie heißt H-elliptisch (oder kurz elliptisch oder koerziv), falls es ein $\alpha>0$ gibt, so dass

$$a(v, v) \ge \alpha \|v\|_H^2 \quad \forall v \in H$$

gilt.

- Bevor Existenz der Lösung gezeigt, betrachte Funktional $J(v)=\frac{1}{2}a(v,v)-F(v)$ genauer

•

Lemma 2.10. Es sei H ein Hilbertraum. Das Funktional

$$J: H \to \mathbb{R} \,, \quad J(v) := \frac{1}{2}a(v, v) - F(v) \,,$$

wobei $a: H \times H \to \mathbb{R}$ eine stetige bilineare koerzive und $F: H \to \mathbb{R}$ eine lineare Abbildung ist, ist konvex.

Beweis. Es seien $u, v \in H$, dann gilt $u + t(v - u) = (1 - t)u + tv \in H$ (dies gilt auch, wenn wir den Satz auf eine konvexe Teilmenge $M \subset H$

beschränken). Damit folgt mit $t \in [0, 1]$

$$\begin{split} J((1-t)u+tv) &= \frac{1}{2}a((1-t)u+tv,(1-t)u+tv) - F((1-t)u+tv) \\ &= (1-t)J(u)+tJ(v)+\frac{1}{2}a((1-t)u+tv,(1-t)u+tv) \\ &-\frac{1}{2}(1-t)a(u,u)-\frac{1}{2}t\,a(v,v) \\ &= (1-t)J(u)+tJ(v)+\frac{1}{2}a(u,u)+t\,a(u,v-u) \\ &+\frac{t^2}{2}a(v-u,v-u)-\frac{1}{2}(1-t)\,a(u,u)-\frac{1}{2}t\,a(v,v) \\ &= (1-t)J(u)+tJ(v)+\frac{t^2}{2}a(v-u,v-u) \\ &+t\,a(u,v)-\frac{1}{2}t\,a(u,u)-\frac{1}{2}t\,a(v,v) \\ &= -\frac{1}{2}t\,a(v-u,v-u) \\ &= (1-t)J(u)+tJ(v)-\frac{1}{2}\underbrace{t\,(1-t)}_{\geq 0}\underbrace{a(v-u,v-u)}_{\geq \alpha\|v-u\|_H^2\geq 0} \\ &\leq (1-t)J(u)+tJ(v)\,. \end{split}$$

Daraus folgt die Behauptung.

Lemma 2.11. Sei H ein Hilbertraum. Das Funktional $J: H \to \mathbb{R}$, $J(v) = \frac{1}{2}a(v,v) - F(v)$ aus Lemma 2.10 ist Gâteaux-differenzierbar (s. Definition A.9).

Beweis. Wir rechnen einfach nach, dass der Grenzwert des Differenzenquotienten existiert und verwenden dabei die Bilinearität von a und Linearität von F. Seien $u, v \in H$, dann gilt

$$\mathcal{D}_{v}J(u) = \lim_{t \to 0} \frac{J(u+tv) - J(u)}{t}$$

$$= \lim_{t \to 0} \frac{J(u) + t(a(u,v) - F(v)) + \frac{t^{2}}{2}a(v,v) - J(u)}{t}$$

$$= \lim_{t \to 0} (a(u,v) - F(v)) + \frac{t}{2}a(v,v)$$

$$= a(u,v) - F(v) < \infty.$$

da a und F jeweils stetig sind und daher durch $||u||_H$, $||v||_H$ beschränkt sind. Damit folgt die Behauptung.

Theorem 2.12. (Lax-Milgram) Es sei H ein Hilbertraum und $a: H \times H \to \mathbb{R}$ eine symmetrische, in H stetige, koerzive Bilinearform. Weiter sei $F: H \to \mathbb{R}$ ein stetiges lineares Funktional, d.h.

$$|F(v)| \le c ||v||_H \quad \forall v \in H$$

 $mit\ einer\ Konstante\ c>0.\ Dann\ gibt\ es\ eine\ eindeutige\ Lösung\ u\in H,$ für die

$$a(u, v) = F(v) \quad \forall v \in H.$$

gilt. Diese minimiert den Ausdruck

$$J(v) = \frac{1}{2}a(v,v) - F(v)$$

unter allen $v \in H$.

Beweis. (i) Zunächst zeigen wir die Äquivalenz der beiden oberen Probleme.

"⇒" Es sei $u \in H$, so dass $a(u,v) = F(v) \, \forall \, v \in H$. Für t > 0 und $v \in H$ gilt dann

$$\begin{split} J(u+tv) &= \frac{1}{2}a(u+tv,u+tv) - F(u+tv) \\ &= \frac{1}{2}a(u,u) + t\,a(u,v) + \frac{t^2}{2}a(v,v) - F(u) - t\,F(v) \\ &= \frac{1}{2}a(u,u) - F(u) + t\,\underbrace{(a(u,v) - F(v))}_{=0}) + \frac{t^2}{2}\underbrace{a(v,v)}_{\geq 0, \, \text{da } a} \\ &> \frac{1}{2}a(u,u) - F(u) = J(u) \,, \end{split}$$

also ist $u = \arg\min_{v \in H} J(v)$.

" \Leftarrow " Es sei $u \in H$ das Minimum von dem Problem

$$\min_{v \in H} J(v) = \frac{1}{2}a(v, v) - F(v).$$

Da $J:H\to\mathbb{R}$ nach Lemma 2.10 ein konvexes Funktional ist und J nach Lemma 2.11 Gâteaux-differenzierbar, gilt mit Satz A.10 für alle $v\in H$

$$0 = \mathcal{D}_v J(u) = \frac{d}{dt} J(u + tv) \Big|_{t=0}$$

$$= \frac{d}{dt} (J(u) + t (a(u, v) - F(v)) + \frac{t^2}{2} a(v, v)) \Big|_{t=0}$$

$$= a(u, v) - F(v) + t a(v, v) \Big|_{t=0} = a(u, v) - F(v)$$

(ii) Eindeutigkeit: Es seien $u, \tilde{u} \in H$ Lösungen der Variationsungleichung, d.h.

$$a(u, v) = F(v) \wedge a(\tilde{u}, v) = F(v) \quad \forall v \in H.$$

Damit folgt durch Subtraktion der beiden Gleichungen für alle $v \in H$

$$a(u,v) = a(\tilde{u},v) \Longleftrightarrow a(u-\tilde{u},v) = 0. \tag{2.7}$$

Da H ein Vektorraum ist, gilt auch $u - \tilde{u} \in H$. Ersetzen wir also in (2.7) $v = u - \tilde{u}$, dann ergibt sich

$$0 = a(u - \tilde{u}, u - \tilde{u}) \stackrel{a \text{ koerziv}}{\geq} \underbrace{\alpha}_{>0} \|u - \tilde{u}\|_{H}^{2} \geq 0 \Longrightarrow \|u - \tilde{u}\|_{H}^{2} = 0,$$

also folgt $u = \tilde{u}$.

(iii) Existenz: Die Existenz einer Lösung weisen wir über das Funktional nach.

$$\begin{split} J(v) &= \frac{1}{2}a(v,v) - F(v) \sum_{\substack{F \text{ linear}}}^{a \text{ koerziv}} \frac{1}{2}\alpha \|v\|_H^2 - c\|v\|_H \\ &= \frac{1}{2}\alpha \left(\|v\|_H^2 - \frac{2c}{\alpha} \|v\|_H \right) = \frac{1}{2}\alpha \left(\|v\|_H - \frac{c}{\alpha} \right)^2 - \frac{c^2}{2\alpha} \\ &\geq -\frac{c^2}{2\alpha} \end{split}$$

Folglich ist J nach unten beschränkt. Sei $\eta := \inf\{J(v) \mid v \in H\}$ und $(v_n)_{n \in \mathbb{N}}$ eine Folge mit $J(v_n) \to \eta$ für $n \to \infty$. Dann folgt mit der Koerzivität von a

$$\alpha \|v_{n} - v_{m}\|_{H}^{2} \leq a(v_{n} - v_{m}, v_{n} - v_{m})$$

$$= a(v_{n}, v_{n}) + a(v_{m}, v_{m}) - a(v_{n}, v_{m}) - a(v_{m}, v_{n})$$

$$= 2a(v_{n}, v_{n}) + 2a(v_{m}, v_{m}) - a(v_{n}, v_{n} + v_{m}) - a(v_{m}, v_{n} + v_{m})$$

$$= -a(v_{n} + v_{m}, v_{n} + v_{m})$$

$$= 2a(v_{n}, v_{n}) - 4F(v_{n}) + 2a(v_{m}, v_{m}) - 4F(v_{m})$$

$$- a(v_{n} + v_{m}, v_{n} + v_{m}) + 4F(v_{n} + v_{m})$$

$$= 4J(v_{n}) + 4J(v_{m}) - 4a\left(\frac{v_{n} + v_{m}}{2}, \frac{v_{n} + v_{m}}{2}\right) + 8F\left(\frac{v_{n} + v_{m}}{2}\right)$$

$$= 4J(v_{n}) + 4J(v_{m}) - 8J\left(\frac{v_{n} + v_{m}}{2}\right)$$

$$\leq 4J(v_{n}) + 4J(v_{m}) - 8\eta \xrightarrow{r_{m} \to \infty} 4\eta + 4\eta - 8\eta = 0,$$

d.h. $(v_n)_{n\in\mathbb{N}}$ ist eine Cauchy-Folge. Da H ein Hilbertraum ist, gilt somit: $\exists\,u\in H: v_n\xrightarrow[n\to\infty]{}u$ mit $J(u)=\eta.$

•

Satz 2.13. (Poincaré-Friedrich-Ungleichung) Es sei Ω in einem d-dimensionalen Würfel der Kantenlänge s>0 enthalten. Dann gilt

$$||v||_0 \le s||\nabla v||_0 \quad \forall v \in H_0^1(\Omega),$$

wobei $\|\cdot\|_0$ die durch das Skalarprodukt $(\cdot,\cdot)_0$ induzierte Norm ist.

Beweis. Der Beweis ist in [Bra13] Kapitel II, §1 Sobolev-Räume, Satz 1.5 oder [Sta08] Satz 1.5 zu finden. □

- Greifen wieder die Frage auf, ob das Problem (2.6) mit $a:(H_0^1(\Omega))^2 \to \mathbb{R}, a(u,v) = (\nabla u, \nabla v)_0$ und $F:H_0^1(\Omega) \to \mathbb{R}, F(v) := (f,v)$ eine eindeutige Lösung hat.
- Kann nun mit Theorem 2.12 beantwortet werden. Es seien $u, v \in H_0^1(\Omega)$, dann gilt

$$a(v,v) = \int_{\Omega} \nabla v \nabla v \, dx = \|\nabla v\|_{0}^{2}$$

$$\geq \frac{s^{2} + 1}{(1+s)^{2}} \|\nabla v\|_{0}^{2} \stackrel{\text{Satz 2.13}}{\geq} \frac{1}{(1+s)^{2}} (\|v\|_{0}^{2} + \|\nabla v\|_{0}^{2})$$

$$= \frac{1}{(1+s)^{2}} \|v\|_{1}^{2}.$$

Damit ist a mit $\alpha := \frac{1}{(1+s)^2}$ koerziv. Weiter rechnen wir nach:

$$|a(u,v)| = \left| \int_{\Omega} \nabla u \nabla v \, dx \right| \le \sum_{i=1}^{d} \int_{\Omega} |\partial_{i}u| |\partial_{i}v| \, dx$$

$$\stackrel{\text{CS}}{\le} \sum_{i=1}^{d} \left(\int_{\Omega} |\partial_{i}u|^{2} \, dx \right)^{\frac{1}{2}} \left(\int_{\Omega} |\partial_{i}v|^{2} \, dx \right)^{\frac{1}{2}}$$

$$\le \left(\sum_{i=1}^{d} \int_{\Omega} |\partial_{i}u|^{2} \, dx \right)^{\frac{1}{2}} \left(\sum_{i=1}^{d} \int_{\Omega} |\partial_{i}v|^{2} \, dx \right)^{\frac{1}{2}}$$

$$\le \left(\int_{\Omega} |\nabla u|^{2} \, dx + \int_{\Omega} u^{2} \, dx \right)^{\frac{1}{2}} \left(\int_{\Omega} |\nabla v|^{2} \, dx + \int_{\Omega} v^{2} \, dx \right)^{\frac{1}{2}}$$

$$= ||u||_{1} \, ||v||_{1},$$

d.h. a ist stetig mit c := 1. Die Symmetrie von a ist trivial, also bleibt nur noch die Stetigkeit von F zu zeigen. Es sei $v \in H_0^1(\Omega)$, dann gilt

$$|F(v)| = |(f, v)| = \left| \int_{\Omega} f v \, dx \right| \stackrel{\text{CS}}{\leq} \left(\int_{\Omega} |f|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{\Omega} |v|^2 \, dx \right)^{\frac{1}{2}}$$

$$\leq c \left(\int_{\Omega} |\nabla v|^2 + |v|^2 \, dx \right)^{\frac{1}{2}} = c \, ||v||_1$$

mit $0 < c := \int_{\Omega} |f|^2 dx < \infty$, wenn $f \in L_2(\Omega)$ ist. Damit ist F ein stetiges lineares Funktional und somit existiert nach Theorem 2.12 eine eindeutige Lösung $u \in H_0^1(\Omega)$ für die schwache Formulierung des homogenen Dirichlet-Problems.

• Weiter minimiert die Lösung $u \in H_0^1(\Omega)$ das Funktional

$$J(v) = \frac{1}{2} \int_{\Omega} \nabla v \nabla v \, dx - \int_{\Omega} f v \, dx \,,$$

welches die gespeicherte Energie der durch die Kraft f belasteten Membran Ω beschreibt.

Bemerkung. Die Stetigkeit vom Funktional F zeigt, welche Eigenschaft die Kraft f aus dem Dirichlet-Problem wenigstens quadratisch integrierbar sein muss, damit es eine schwache Lösung geben kann.

Bemerkung. (a) Mit H' bezeichnen wir den Dualraum zu einem Hilbertraum H.

- (b) Den Dualraum zu $H^1(\Omega)$ bezeichnen wir mit $H^{-1}(\Omega)$.
- Hier noch eine Folgerung aus dem Satz von Lax-Milgram:

Satz 2.14 (Riesz'scher Darstellungssatz). Es sei H ein Hilbertraum mit einem Skalarprodukt $(\cdot, \cdot)_H$. Es sei $F \in H'$, dann existiert genau ein $u \in H$, so dass

$$(u, v)_H = F(v) \quad \forall v \in H.$$

Beweis. Dies ist eine direkte Folgerung aus dem Theorem 2.12. Die Abbildung $(\cdot,\cdot)_H: H\times H\to \mathbb{R}$ ist als Skalarprodukt bilinear, symmetrisch und positiv definit, damit auch bzgl. der auf H durch das Skalarprodukt induzierten Norm $\|v\|_H:=\sqrt{(v,v)_H}$, koerziv. F ist als Element des Dualraumes H' eine lineare stetige Abbildung $F:H\to \mathbb{R}$ und damit folgt mit $a(\cdot,\cdot):=(\cdot,\cdot)_H$ aus dem Theorem von Lax-Milgram die Behauptung.

Korollar 2.15. Es sei H ein Hilbertraum mit Skalarprodukt $(\cdot, \cdot)_H$ und $a: H \times H \to \mathbb{R}$ eine stetige koerzive Bilinearform. Dann existiert genau ein linearer Operator $A: H \to H$, so dass gilt:

$$a(u, v) = (Au, v)_H \quad \forall u, v \in H.$$

Beweis. Es sei $u \in H$ fest, dann ist $L: H \to \mathbb{R}, L(v) := a(u, v)$ eine lineare Abbildung, die stetig ist, da

$$|L(v)| = |a(u,v)| \stackrel{\text{stetig}}{\leq} c ||u||_H ||v||_H = \tilde{c} ||v||_H$$

mit $0 < \tilde{c} := c ||u||_H$ gilt. Damit folgt nach dem Darstellungssatz von Riesz, dass es ein eindeutiges $l \in H$ gibt, so dass

$$a(u, v) = L(v) = (l, v)_H \quad \forall v \in H$$

gilt. Da $u \in H$ jedoch beliebig ist, bleibt zu zeigen, dass es ein eindeutiges $A: H \to H$ gibt, so dass Au = l ist.

Wir zeigen zunächst mithilfe der Bilinearform a, dass A linear ist. Es gilt für $\lambda, \mu \in \mathbb{R}$ und $u, v \in H$

$$(A(\lambda u + \mu v), w)_H = a(\lambda u + \mu v, w) = \lambda a(u, w) + \mu a(v, w)$$
$$= \lambda (Au, w)_H + \mu (Av, w)_H$$
$$= (\lambda Au + \mu Av, w)_H$$

für alle $w \in H$. Weiter gilt

$$||Au||_H^2 = (Au, Au)_H = a(u, Au) \stackrel{\text{stetig}}{\leq} c ||u||_H ||Au||_H,$$

d.h. $||Au||_H \le c ||u||_H$ und damit ist nach [Wer11] Satz II.1.2 der Operator A stetig.

Betrachten wir den Kern von A, so ergibt sich

$$\ker A := \{ v \in H \mid Av = 0 \} = \{ 0 \}, \tag{2.8}$$

denn

$$\alpha \|v\|_H^2 \overset{\text{koerziv}}{\leq} a(v,v) = (Av,v)_H \overset{\text{CS}}{\leq} \|Av\|_H \|v\|_H$$

und damit gilt $||Av||_H \ge \alpha ||v||_H$, d.h. $Av = 0 \Leftrightarrow v = 0$. Dies impliziert, dass A injektiv ist, denn mit $v_1, v_2 \in H$, $Av_1 = Av_2$ folgt

$$0 = Av_1 - Av_2 = A(v_1 - v_2) \stackrel{(2.8)}{\Longrightarrow} v_1 = v_2$$
.

Weiter betrachten wir das Bild von A, d.h.

$$\operatorname{im} A := \{ v \in H \mid \exists u \in H : Au = v \} \subset H.$$

Sei $(v_n)_{n\in\mathbb{N}}$ eine Folge mit $v_k \in \operatorname{im} A$ für alle $k \in \mathbb{N}$. Dann folgt, dass für jedes v_k ein $u_k \in H$ existiert mit $Au_k = v_k$. Es gelte, dass $Au_k = v_k \to v \in H$ geht, dann folgt

$$\alpha \|u_n - u_m\|_H \le \|A(u_n - u_m)\|_H = \|Au_n - Au_m\|_H$$

= $\|v_n - v_m\|_H \xrightarrow[n, m \to \infty]{} 0$,

d.h. $(u_n)_{n\in\mathbb{N}}\subset H$ ist eine Cauchy-Folge und konvergiert daher in H. Also existiert ein $u\in H$ mit $u_n\to u$. Mit der Stetigkeit von A folgt dann

$$v_n = Au_n \xrightarrow[n \to \infty]{} Au = v ,$$

d.h. $v \in \operatorname{im} A$ und damit ist im A abgeschlossen. Wir betrachten nun ein $v \in H$ mit $v \perp \operatorname{im} A \subset H$, dann gilt

$$(Au, v)_H = 0 \quad \forall u \in H.$$

Damit folgt mit $u = v \in H$ oben eingesetzt

$$0 = (Av, v)_H = a(v, v) \ge \alpha ||v||_H^2 \implies v = 0.$$

Also besteht der zu im A orthogonale Raum nur aus dem Nullelement und mit Korollar 2.7 gilt dann im $A = \overline{\text{im } A} = H$. Damit ist A bijektiv.

Es seien nun $0 \neq l \in H$ sowie $A_1, A_2 \in \mathcal{L}(H, H)$ zwei lineare Operatoren mit $A_1u = l$ und $A_2u = l$, die nach der obigen Weise konstruiert sind. Dann gilt

$$0 = A_1 u - A_2 u = (A_1 - A_2)u \implies A_1 = A_2,$$

da $u \neq 0$ und die Summe zweier bijektiver linearer Operatoren wieder bijektiv ist, also ist ein so konstruierter Operator eindeutig.

2.3 Finite Elemente Methode

- \bullet FEM \to einleitend ansprechen, dass analytische nicht immer lösbar
- Unter FEM verstehen wir das Galerkin-Verfahren
- Galerkin-Verfahren bedeutet, wir wollen die Variationsgleichung

$$a(u,v) = F(v) \quad \forall v \in H \tag{2.9}$$

auf einem endlich dimensionalen Unterraum $V_h \subset H$ lösen, d.h. finde $u_h \in V_h$, so dass

$$a(u_h, v_h) = F(v_h) \quad \forall v_h \in V_h. \tag{2.10}$$

Satz 2.16. Das "Galerkin-Problem" hat eine eindeutige Lösung.

da V_h als Unterraum von H auch ein Hilbertraum ist und die Eigenschaften von a, F weiterhin erfüllt sind, gilt auch hier der Satz von Lax-Milgram, was die Eindeutigkeit und Existenz einer Lösung sichert.

• ist $\mathcal{B}_h \coloneqq \{\phi_1, \dots, \phi_N\}$ eine Basis von V_h , dann gilt für $u_h \in V_h$:

$$\exists ! \; \boldsymbol{\mu} \in \mathbb{R}^N : u_h(x) = \sum_{i=1}^N \mu_i \, \phi_i(x) \,. \tag{2.11}$$

• da $F(\cdot)$, $a(u,\cdot)$ linear sind und alle $v_h \in V_h$ analog zu oben darstellbar sind, ist (2.10) äquivalent zum Problem

$$a(u_h, \phi_i) = F(\phi_i) \quad \forall i = 1, \dots, N,$$

mit $u_h = \sum \mu_i \, \phi_i$ eingesetzt ergibt sich

$$a(u_h, \phi_i) = a\Big(\sum_{j=1}^{N} \mu_j \, \phi_j, \phi_i\Big) = \sum_{j=1}^{N} \mu_j \, a(\phi_j, \phi_i),$$

also

$$\sum_{j=1}^{N} \mu_j a(\phi_j, \phi_i) = F(\phi_i) \quad \forall i = 1, \dots, N.$$

Damit ergibt sich das LGS

$$A\boldsymbol{\mu} = \boldsymbol{f}$$

mit $A = [a(\phi_j, \phi_i)]_{i,j=1}^N, \boldsymbol{\mu} = [\mu_i]_{i=1}^N$ und $\boldsymbol{f} = [F(\phi_i)]_{i=1}^N$.

Bemerkung 2.17. Ist die Bilinearform a symmetrisch, so ist es auch die Matrix A, denn

$$a_{ij} = a(\phi_i, \phi_j) = a(\phi_j, \phi_i) = a_{ji}.$$

Außerdem folgt aus der Koerzivität von a, dass mit $0 \neq v \in \mathbb{R}^N$ gilt

$$v^{T}Av = \sum_{i,j=1}^{N} v_{i}a_{ij}v_{j} = \sum_{i=1}^{N} v_{i} \sum_{j=1}^{N} a(\phi_{i}, \phi_{j}) v_{j}$$

$$= \sum_{i=1}^{N} v_{i} a(\phi_{i}, \sum_{j=1}^{N} v_{j}\phi_{j}) = a(\sum_{i=1}^{N} v_{i}\phi_{i}, \sum_{j=1}^{N} v_{j}\phi_{j})$$

$$= a(v_{h}, v_{h}) \ge \alpha ||v_{h}||_{H}^{2} > 0,$$

da $v_h \neq 0$ wegen $v \neq 0$. Damit ist A also positiv definit.

 \bullet in Ingenieurwissenschaften, insbesondere bei kontinuumsmechanischen Problemen, wird A als Steifigkeitsmatrix bezeichnet.

- um eine Basis \mathcal{B}_h bzgl. V_h beschreiben zu können, muss das Gebiet Ω in endliche Elemente zerlegt werden. V_h wird dann bzgl. einer Zerlegung \mathcal{T}_h beschrieben.
- betrachte im weiteren (wie oben schon angesprochen) Ω als zweidimensionales Gebiet, das mit einem Polygonzug berandet ist.
- \bullet eine gebräuchliche Zerlegung \mathcal{T}_h kann durch Dreiecke oder auch Vierecke geschehen. Wir wollen hier nur Zerlegungen durch Dreiecke betrachten
- hierfür führen wir den Begriff der Triangulierung ein (vgl. [Bra13] Seite 58 oder [Sta08] Seite 19)

Definition 2.18 (Triangulierung). Es sei $\Omega \subset \mathbb{R}^2$ ein durch einen Polygonzug berandetes Gebiet. Dann heißt eine Zerlegung aus Dreiecken

$$\mathcal{T} = \{T_1, T_2, \dots, T_M\}$$

Triangulierung, wenn gilt:

- (a) Für alle Dreiecke $T \in \mathcal{T}$ gilt: T ist abgeschlossen.
- (b) Ganz Ω wird durch alle Dreiecke aus \mathcal{T} überdeckt, d.h. $\bar{\Omega} = \bigcup_{T \in \mathcal{T}} T$.
- (c) Der Schnitt zweier Dreiecke $T_i \cap T_j$ mit $i \neq j$ überlappt sich nicht, d.h. $\operatorname{int}(T_i) \cap \operatorname{int}(T_j) = \emptyset$.

Wir nennen eine Triangulierung konform oder zulässig, wenn zusätzlich gilt:

(d) Für jede Kante k eines Dreiecks $T \in \mathcal{T}$ gilt entweder $k \subset \partial \Omega$ oder $k \subset \widetilde{T}$ für ein weiteres Dreieck $\widetilde{T} \in \mathcal{T}$.

Der Radius des Umkreis eines Dreieckes T wird mit h bezeichnet und beschreibt die Größe eines Dreiecks. Wenn jedes Dreieck $T \in \mathcal{T}$ höchstens einen Radius von h hat, so schreiben wir \mathcal{T}_h statt \mathcal{T} .

Skizze von einer zulässigen und einer nicht zulässigen Triangulierung (hierbei eine Skizze mit hängenden Knoten machen)

•

Bemerkung 2.19. natürlich auch im \mathbb{R}^3 analog mit Tetraedern definierbar

• vgl. wieder [Bra13] Seite 58

Abbildung 2.1: Zulässige und unzulässige Triangulierung (mit hängendem Knoten)

Definition 2.20 ((quasi-) uniforme Zerlegung). Eine Familie von Zerlegungen $\{\mathcal{T}_h\}$ heißt *quasi-uniform*, wenn es eine Zahl $\kappa > 0$ gibt, so dass jedes $T \in \mathcal{T}_h$ einen Kreis vom Radius

$$\rho_T \ge \frac{h_T}{\kappa}$$

enthält, wobei h_T der Radius des Dreiecks T ist.

Eine Familie von Zerlegungen $\{\mathcal{T}_h\}$ heißt uniform, wenn es eine Zahl $\kappa > 0$ gibt, so dass jedes $T \in \mathcal{T}_h$ einen Kreis vom Radius

$$\rho_T \ge \frac{h}{\kappa}$$

enthält, wobei $h := \max_{T \in \mathcal{T}_h} h_T$ ist.

Skizze Beispiele für eine quasiuniforme Zerlegung (vgl. [Bra13] Seite 59) \rightarrow hier noch was zur Erklärung schreiben, wie im Braess

Abbildung 2.2: Beispiele quasiuniformer Zerlegungen

Bemerkung 2.21. Wie man leicht sehen kann, ist jede uniforme Zerlegung auch quasi-uniform. Umgekehrt gilt dies nicht (s. Abbildung oben).

Allerdings lassen uniforme Zerlegungen keine lokalen Verfeinerungen zu. Da dies für adaptive Verfeinerungsstrategien allerdings ausschlaggebend ist, gehen wir im Folgenden immer von einer quasi-uniformen Zerlegung \mathcal{T}_h aus.

- $\bullet\,$ nun wollen wir uns Gedanken über unseren Ansatzraum V_h machen.
- hierfür gibt es viele Möglichkeiten, vergleiche hierzu auch [Bra13] Kapitel II, §5, Tabelle 2, durch Konstruktion der Elemente
- wir wollen uns weitestgehend aber nur auf ein Element konzentrieren

• zuvor hierfür ein wichtiges Resultat; sei noch bemerkt, dass eine Fkt. u auf Ω bei gegebener Zerlegung eine Eigenschaft stückweise hat, wenn sie auf jedem Element diese Eigenschaft besitzt.

Satz 2.22. Sei $k \geq 1$ und $\Omega \subset \mathbb{R}^2$ ein polygonales Gebiet. Eine stückweise beliebig oft differenzierbare Funktion $v : \bar{\Omega} \to \mathbb{R}$ liegt in $H^k(\Omega)$ genau dann, wenn $v \in C^{k-1}(\bar{\Omega})$ ist.

Beweis. Der Beweis ist in [Bra13] Kapitel II, §5, Satz 5.2 zu finden. □

• dies rechtfertigt, dass für unser Modellproblem (2.6), welches für $u, v \in H_0^1(\Omega)$ gestellt ist, auf einer Triangulierung \mathcal{T}_h ein Ansatzraum mit stetigen Funktionen $v \in C^0(\Omega)$ verwendet werden kann, also

$$V_h := \{ v \in C^0(\Omega) \mid v \mid_T \in \mathcal{P}_m \text{ für } T \in \mathcal{T}_h, v \mid_{\partial \Omega} = 0 \},$$

wobei \mathcal{P}_m der Raum der Polynome vom Grad m ist.

• wie diesen Raum V_h aufspannen? \to die einfachste Möglichkeit solch einen Raum aufzuspannen sind nodale Basisfunktionen

Definition 2.23 (nodale Basisfunktion). Zu einem Finiten Element Raum V_h und einer gegebenen Zerlegung \mathcal{T}_h sei eine Menge von Punkten P bekannt mit |P| = N. Die Menge $\mathcal{B}_h = \{\phi_1, \dots, \phi_N\}$ mit $\phi_i \in \mathcal{P}_m, i = 1, \dots, N$, heißt nodale Basis (oder Lagrange-Basis), wenn

$$\phi_i(x_j) = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

für alle $\phi_i \in \mathcal{B}_h$ und $x_j \in P$ gilt.

 \bullet folgende Bemerkung erklärt die Anordnung der in der letzten Definition beschriebenen PunkteP

Bemerkung 2.24. Sei $m \geq 0$. In einem Dreieck T seien auf m+1 Linien $l=1+2+\ldots+(m+1)$ Punkte z_1,\ldots,z_l angeordnet (s. Skizze). Dann gibt es zu jedem $C^0(T)$ genau ein Polynom p vom Grad m mit der Eigenschaft

$$p(z_i) = f(z_i) \quad \forall i = 1, \dots, m.$$

Beweis. Der Beweis steht in [Bra13] Kapitel II, §5, Bemerkung 5.4.

Skizze Dreiecke für die nodalen Basen (linear, quadratisch, kubisch).

• damit lässt sich für V_h mit einem beliebigen Polynomgrad m eine eindeutige nodale Basis finden, die den Raum aufspannt.

Abbildung 2.3: Dreiecke für nodale Basen (linear, quadratisch, kubisch)

• im weiteren wollen wir lineare Ansatzfunktionen verwenden. Wir bezeichnen, sofern nicht anders beschrieben, also im Folgenden S_h mit

$$S_h := \{ v \in C^0(\Omega) \mid v \mid_T \in \mathcal{P}_1 \text{ für } T \in \mathcal{T}_h, v \mid_{\partial \Omega} = 0 \}.$$

- das Galerkin-Verfahren mit dem Ansatzraum \mathcal{S}_h wird Finite-Elemente-Methode genannt
- Beispiel, um zu sehen, dass auch für kleine Gitter der Rechenaufwand sehr hoch werden kann.

Beispiel 2.25. Wir betrachten unser Variationsproblem (2.10) auf $\Omega = [-1, 1]^2$ mit S_h wie oben eingeführt als den Raum der linearen Ansatzfunktionen auf einer Zerlegung \mathcal{T}_h wie unten aufgeführt.

<u>Skizze:</u> mit 8 Courant-Elementen, wie auf in http://www.math.uni-hamburg.de/home/struckmeier/numpde06/Kap2.pdf auf Seite 95

Abbildung 2.4: Triangulierung von $\Omega = [-1, 1]^2$ in 8 Courant-Elemente

Wir stellen für die nodale Basisfunktion ϕ_5 die Einträge in der Steifig-

keitsmatrix auf. Man rechnet leicht nach, dass

$$\phi_5(x,y) = \begin{cases} 1 - x - y, & \text{auf I} \\ 1 + x, & \text{auf III} \\ 1 - y, & \text{auf IV} \\ 1 + x + y, & \text{auf VI} \\ 1 + y, & \text{auf VIII} \\ 1 - x, & \text{auf VIII} \\ 0, & \text{sonst} \end{cases}$$

ist und damit ergeben sich folgende Ableitungen.

	I	II	III	IV	V	VI	VII	VIII
$\partial_x \phi_5$	-1	0	1	0	0	1	0	-1
$\partial_y \phi_5$	-1	0	0	-1	0	1	1	0

Tabelle 2.1: Ableitungen der nodalen Basisfunktion ϕ_5 .

Damit rechnen wir nach, dass gilt

$$a(\phi_5, \phi_5) = \int_{\Omega} \nabla \phi_5 \nabla \phi_5 \, dx dy$$

$$= \int_{\text{IU...UVIII}} \underbrace{(\partial_x \phi_5)^2}_{\geq 0} + \underbrace{(\partial_y \phi_5)^2}_{\geq 0} \, dx dy$$

$$= 2 \int_{\text{IUIIIUIV}} (\partial_x \phi_5)^2 + (\partial_y \phi_5)^2 \, dx dy$$

$$= 2 \left(\int_{\text{IUII}} \underbrace{(\partial_x \phi_5)^2}_{=1} \, dx dy + \int_{\text{IUIV}} \underbrace{(\partial_y \phi_5)^2}_{=1} \, dx dy \right)$$

$$= 2(A(\text{I}) + A(\text{III}) + A(\text{I}) + A(\text{IV}))$$

$$= 8 \cdot A(\text{I}) = 8 \cdot \frac{1}{2} = 4,$$

wobei verwendet wurde, dass die Dreiecke kongruent zueinander sind. Analog können wir auch die übrigen acht nodalen Basisfunktionen aufstellen und damit die Einträge der Steifigkeitsmatrix

$$a(\phi_5, \phi_2) = a(\phi_5, \phi_4) = a(\phi_5, \phi_6) = a(\phi_5, \phi_8) = -1,$$

 $a(\phi_5, \phi_1) = a(\phi_5, \phi_3) = a(\phi_5, \phi_7) = a(\phi_5, \phi_9) = 0$

berechnen. Damit ist der Einteil der Basisfunktion ϕ_5 an der Steifigkeitsmatrix A von der Form

$$\widetilde{A} = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{pmatrix} .$$

Hierbei müssen die Einträge aus \widetilde{A} in die Matrix $A \in \mathbb{R}^{9\times 9}$ an die richtige Stelle zugeordnet werden, wie durch die Formel $a_{ij} = a(\phi_i, \phi_j)$ beschrieben wird. Dabei nennen wir \widetilde{A} lokale Steifigkeitsmatrix bzgl. des Knoten 5.

Dieses Vorgehen müssten wir noch für die übrigen Basisfunktion analog durchführen, um die vollständige Steifigkeitsmatrix A zu erhalten. Dies soll hier aber nicht weiter ausgeführt werden.

- wie man schön erkennt, ist das Vorgehen aus dem obigen Beispiel sehr aufwendig. → außerdem ist es schwer dieses zu verallgemeinern, damit man es gut implementieren kann, da die Ansatzfunktionen auf das Gitter bezogen von individueller Form sind.
- Abhilfe durch local-global node ordering zur Effizienzsteigerung (Erklärung):
- hierbei ist die Idee die lokale Steifigkeitsmatrix für ein Element durch Transformation auf ein Referenzelement zu berechnen und somit die Berechnung von lokalen Steifigkeitsmatrizen zu verallgemeinern

Skizze vom Referenzelement (Stephan NPDE Seite 13)

Abbildung 2.5: Referenzelement \widetilde{T} für ein allgemeines Dreieck $T \in \mathcal{T}_h$

 Dann die Herleitung von der lokalen Steifigkeitsmatrix (Stephan NPDE Seite 13+14)

2.3.1 A priori Fehlerabschätzung

• man kann zeigen, dass der Fehler von h zwischen u_h und u (exakte Lösung) abhängt \Rightarrow Netzverfeinerung führt zur Konvergenz

Lemma 2.26. Durch $\|\cdot\|_E : H_0^1(\Omega) \to \mathbb{R}, \|v\|_E := (a(v,v))^{\frac{1}{2}}$ mit einer stetigen koerziven Bilinearform a wird eine Norm auf $H_0^1(\Omega)$ definiert.

Beweis. Aus der Stetigkeit und Koerzivität von a folgt direkt

$$\alpha \|v\|_1^2 \le \underbrace{a(v,v)}_{=\|v\|_E^2} \le c \|v\|_1^2.$$
 (2.12)

Damit ist $\|\cdot\|_E$ nach oben und unten durch die Norm auf $H^1(\Omega)$ beschränkt und somit eine zu dieser äquivalente Norm.

Bemerkung. (a) Die Norm $\|\cdot\|_E$ bezeichnen wir als Energie-Norm. Sie gibt für die von uns später in der Strukturmechanik betrachtete Bilinearform die Verzerrungsenergie eines Kontinuums an.

(b) Für die Bilinearform

$$a(u,v) = \int_{\Omega} \nabla u \nabla v \, dx$$

mit $u, v \in H_0^1(\Omega)$ gilt dann $||\cdot||_E = |\cdot|_1$ (s. Bemerkung A.6).

• Galerkin ist Bestapproximation

Satz 2.27. Die Galerkin-Approximation u_h ist die beste Approximation von u bzgl. der Energie-Norm, also

$$||u - u_h||_E = \inf_{v \in V_h} ||u - v||_E.$$

Beweis. Zunächst betrachten wir die exakte und approximierte Variationsgleichung (2.9) und (2.10), d.h.

$$a(u,v) = F(v) \quad \forall v \in H, \qquad (2.13)$$

$$a(u_h, v_h) = F(v_h) \quad \forall v_h \in V_h. \tag{2.14}$$

Da $V_h \subset H$ ist, gilt (2.13) auch für alle $v_h \in V_h$. Ersetzen wir dies in (2.13) und subtrahieren (2.13) und (2.14), so erhalten wir

$$a(u - u_h, v_h) = 0 \quad \forall v_h \in V_h. \tag{2.15}$$

Damit rechnen wir für ein beliebiges $v \in V_h$ einfach nach:

$$||u - u_h||_E^2 = a(u - u_h, u - u_h)$$

$$= a(u - u_h, u - v + v - u_h)$$

$$= a(u - u_h, u - v) + a(u - u_h, \underbrace{v - u_h}_{\in V_h})$$

$$= a(u - u_h, u - v)$$

$$\stackrel{\text{CS}}{\leq} ||u - u_h||_E ||u - v||_E$$

und damit folgt nach Division $||u - u_h||_E \le ||u - v||_E$, was zu zeigen war.

Bemerkung. Die Gleichung (2.15) drückt aus, dass die Verbindung $u-u_h$ orthogonal zum Raum V_h steht und wird daher auch Galerkin-Orthogonalität genannt.

Satz 2.28 (Céa). Der Fehler der Galerkin-Approximation u_h hat in der H^1 -Norm die Eigenschaft

$$||u - u_h||_1 \le \tilde{c} \inf_{v \in V_h} ||u - v||_1.$$

Beweis. Aus (2.12) und Satz 2.27 folgt

$$||u - u_h||_1 \le \left(\frac{1}{\alpha}\right)^{\frac{1}{2}} ||u - u_h||_E \le \left(\frac{1}{\alpha}\right)^{\frac{1}{2}} ||u - v||_E \le \left(\frac{c}{\alpha}\right)^{\frac{1}{2}} ||u - v||_1.$$

Damit folgt die Behauptung mit $\tilde{c} := \sqrt{\frac{c}{\alpha}}$.

• vgl. [Bra13] Satz 6.4

Theorem 2.29 (Approximationssatz). Es sei $k \geq 2$ und \mathcal{T}_h eine quasi-uniforme Triangulierung von Ω . Dann gilt für die Interpolation I_h auf die stetigen, stückweise durch Polynome vom Grad k-1 gegebenen Funktionen mit einer von Ω , κ und k abhängigen Kontanten c die a priori Fehlerabschätzung

$$||u - I_h u||_m \le ch^{k-m} |u|_k$$

 $f\ddot{u}r\ u\in H^k(\Omega)\ und\ 0\leq m\leq k.$

Beweis. Für den Beweis würden wir noch weitere Ausführungen über affine Transformationen benötigen, die wir hier nicht weiter aufführen wollen. Der komplette Beweis ist in [Bra13] auf Seite 75ff einzusehen.

• für k=2 (lineare Polynome) und m=1 (Norm in H^1) gilt dann

$$||u - I_h u||_1 \le ch|u|_2$$

für $u \in H^2(\Omega)$.

Korollar 2.30. Für lineare C^0 -Elemente gilt bzgl. der Galerkin-Approximation u_h die a priori Fehlerschätzung für unser Modellproblem (DP)

$$||u-u_h||_1 \leq \tilde{c}h|u|_2.$$

Beweis. Mit Theorem 2.29 und Satz 2.28 folgt

$$||u - u_h||_1 \le \left(\frac{c_1}{\alpha}\right)^{\frac{1}{2}} \inf_{v \in V_h} ||u - v||_1$$

$$\le \left(\frac{c_1}{\alpha}\right)^{\frac{1}{2}} ||u - I_h u||_1$$

$$\le \left(\frac{c_1}{\alpha}\right)^{\frac{1}{2}} c_2 h|u|_2.$$

Mit $u \in H^2(\Omega)$ und $\tilde{c} := \left(\frac{c_1}{\alpha}\right)^{\frac{1}{2}} c_2$ folgt dann die Behauptung.

- ⇒ Überleitung zu adaptiven Verfahren
- durch Verfeinerung des Netzes (Verkleinerung von h) wird der Fehler zwischen der exakten Lösung u und der Galerkin-Approximation u_h linear kleiner \Rightarrow verfeinere das Netz hinreichend weit, um möglichst genaues Ergebnis zu erhalten

2.4 Adaptive Verfeinerungsstrategien

- durch Netzverfeinerung erhält das numerische Problem mehr Informationen (mehr Punkte werden betrachtet)
- ⇒ größeres LGS, also langsamer zu Lösen; dies ist nicht vorteilhaft
- Abhilfe: wir verfeinern nur Dreiecke bzw. Knoten, die einen großen lokalen Anteil am Gesamtfehler haben, d.h. an Stellen, wo der Fehler groß ist, erhöhen wir den Informationsgrad (mehr Punkte), um den Fehler zu Verfeinern
- die zu verfeinernden Knoten werden abhängig von der aktuellen Verfeinerung berechnet, d.h. adaptiv

2.4.1 A posteriori Fehlerschätzer

- für die zu verfeinernden Knoten muss der Fehler zwischen der Approximation u_h und der (nicht unbedingt bekannten) exakten Lösung u abschätzen
- hierfür a posteriori Schätzer zu benutzen \rightarrow ein Fehlerschätzer, der den Fehler im Schritt n+1 durch den Fehler im Schritt n abschätzt.

- es gibt verschiedene Arten von Fehlerschätzern (vgl. [Bra13] Kapitel III, §8, Seite 176)
 - (a) Residuale Schätzer
 - (b) Schätzung über ein lokales Neumann-Problem
 - (c) Schätzung über ein lokales Dirichlet-Problem
 - (d) Schätzung durch Mitteilung
 - (e) Hierarchische Schätzer
- wir wollen in dieser Arbeit nur hierarchische Schätzer betrachten
- daher: Idee von hierarchischem Schätzer erklären

2.4.2 Verfeinerung des Netzes

- \bullet wie kann ein Element verfeinert werden \to Algorithmus, damit auch auch die Triangulierung konform bzw. zulässig bleibt
- \Rightarrow Regeln für die Zulässigkeit nötig: vgl. [Bra
13] Seite 96 unten Punkt 8.1 oder [Sta
08]

2.5 Einführung in die Strukturmechanik

- Beschreibung der Kinematik: Referenz- bzw. Ausgangskonfiguration, Deformationsgradient, Verzerrungsmaße (Konti-Buch)
- Lineararisierung der Verzerrungsmaße für unseren Fall (kleine Deformationen) mittels "Taylor" (siehe auch Gateaux-Ableitung Seite 24 Konti Skript):

$$oldsymbol{arepsilon} = rac{1}{2}(
abla oldsymbol{u} +
abla^T oldsymbol{u})$$

- Kinetik: Kräftegleichgewicht und äußere Kontaktlast
- Konzepte für ebene Spannungs- bzw. Verzerrungszustände (siehe hierfür auch FEM 1 Skript von Wriggers \rightarrow [Wri09])
- Konstitutive Modelle (vor allem Materialgesetze) ⇒ Hier vor allem Hooke:

$$\sigma = C\varepsilon = 2\mu\varepsilon + \lambda(\operatorname{tr}\varepsilon)\boldsymbol{I}$$
,

wobei λ,μ die Lamé-Konstanten sind (Materialabhängige Parameter). \Rightarrow Hier noch mal den Zusammengang von Konstanten zu E,ν aufzeigen.

• falls Tensorrechnungen konkret benötigt werden, können diese im Anhang dargelegt werden

Kapitel 3

Variationsungleichungen

Dieses Kapitel basiert auf [KO88], [Sta11], [Ste12b], [Ste12a], [Wri01], [Wri06], [HHNL80], [Glo08], [Fal74].

3.1 Ein Hindernisproblem

• Hindernisproblem: Auslenkung u einer Membran Ω unter Krafteinwirkung f, wobei die Membran durch ein Hindernis ψ behindert wird. Mathematische modelliert bedeutet dies:

$$\min_{v \in K} J(v) = \frac{1}{2}a(v, v) - (f, v) \tag{3.1}$$

mit $K := \{ v \in H_0^1(\Omega) \mid v \ge \psi \text{ fast "überall in } \Omega \}.$

- J gibt wieder die in der Membran gespeicherte Energie an.
- wobei jetzt die Lösung nicht auf ganz $H_0^1(\Omega)$ gesucht ist, sondern in einer Teilmenge $K \subset H_0^1(\Omega)$.
- wir können auch hier eine Variationsformulierung, die äquivalent zu (3.1) ist, herleiten
- zu Beginn noch eine Skizze von einem Hindernisproblem

3.1.1 Variationsformulierung für das Hindernisproblem

 \bullet zeigen zunächst, dass K konvex und abgeschlossen ist.

Lemma 3.1. Die Menge $K = \{v \in H_0^1(\Omega) \mid v \geq \psi \text{ fast "überall in } \Omega\}$ ist eine konvexe abgeschlossene Teilmenge von $H_0^1(\Omega)$.

Beweis. (i) Es seien $u, v \in K$, d.h. $u \ge \psi$ und $v \ge \psi$ fast überall in Ω . Dann gilt für $t \in [0, 1]$

$$(1-t)u + tv \ge (1-t)\psi + t\psi = \psi,$$

Abbildung 3.1: Ein Hindernisproblem mit Hindernis $\psi,$ konstanter Streckenlast f und Lösung u

somit ist $(1-t)u + tv \in K$, also K konvex.

(ii) Es sei $(v_n)_{n\in\mathbb{N}}\subset K$ eine konvergente Folge mit $v_n\to v$ für $n\to\infty$. Da $H^1_0(\Omega)$ ein abgeschlossener Unterraum von $H^1(\Omega)$ (vgl. auch [Wal11] Bemerkung 6.7) ist, folgt direkt $v\in H^1_0(\Omega)$. Da weiter $v_n\geq \psi$ für alle $n\in\mathbb{N}$ gilt, folgt aus dem Spursatz (vgl. [Bra13] Kapitel II, §3, Satz 3.1), dass auch $v\geq \psi$ fast überall in Ω gilt und damit ist $v\in K$, d.h. K ist abgeschlossen.

Satz 3.2. Es sei $K = \{v \in H_0^1(\Omega) \mid v \geq \psi \text{ fast "überall in } \Omega\}$. Das Minimierungsproblem

$$\min_{v \in K} J(v) = \frac{1}{2}a(v, v) - (f, v) \tag{3.2}$$

ist äquivalent zur Variationsungleichung: Finde $u \in K$, so dass

$$a(u, v - u) \ge (f, v - u) \quad \forall v \in K. \tag{3.3}$$

Beweis. Aus Lemma 2.10 folgt, dass J konvex ist und damit gilt mit Satz A.10, dass $u \in K$ genau dann eine Lösung von (3.2) ist, wenn

$$\mathcal{D}_{v-u}J(u) \ge 0 \quad \forall \, v \in K \tag{3.4}$$

gilt. Analog zu der berechneten Gâteaux-Ableitung von J in Lemma 2.11, gilt

$$\mathcal{D}_{v-u}J(u) = \frac{d}{dt}J(u + t(v - u))\Big|_{t=0} = a(u, v - u) - (f, v - u)$$

und damit folgt mit (3.4) die Behauptung.

Bemerkung 3.3. Wie man mit Satz A.10 sehen kann, gilt analog zu Satz 3.2 auch allgemeiner: Es sei $K \subset H$ eine konvexe Teilmenge eines Hilbertraumes H. Dann ist

$$\min_{v \in K} J(v) = \frac{1}{2}a(v, v) - F(v)$$

äquivalent zur Variationsungleichung: Finde $u \in K$, so dass

$$a(u, v - u) \ge F(v - u) \quad \forall v \in K$$
,

wobei $F: H \to \mathbb{R}$ eine lineare stetige Abbildung ist.

• auch für das Hindernisproblem gibt es analog zum homogenen Dirichlet-Problem (2.2) eine äquivalente starke Formulierung

•

Satz 3.4 (Starke Formulierung des Hindernisproblems). Jede Lösung $u \in H^2(\Omega) \cap H^1_0(\Omega)$ des Problems

$$-\Delta u - f \ge 0$$

$$u - \psi \ge 0$$

$$(u - \psi)(-\Delta u - f) = 0$$
(3.5)

 $mit \ \psi \in H^1(\Omega)$ erfüllt die Variationsungleichung (3.3). Umgekehrt ist jede Lösung $u \in H^2(\Omega) \cap K$ von (3.3) auch eine Lösung von (3.5).

Beweis. " \Rightarrow " Sei $u \in H^2(\Omega) \cap H^1_0(\Omega)$ eine Lösung von (3.5), dann gilt für ein beliebiges $v \in K$

$$\int_{\Omega} (-\Delta u - f)(v - u) \, dx = \underbrace{-\int_{\Omega} \Delta u(v - u) \, dx}_{\text{Green } \int_{\Omega} \nabla u \nabla (v - u) \, dx} - \int_{\Omega} f(v - u) \, dx$$

$$= \int_{\Gamma} \underbrace{(v - u)}_{=0} \partial_{\nu} u \, ds$$

$$= \int_{\Omega} \nabla u \nabla (v - u) \, dx - \int_{\Omega} f(v - u)$$

$$= a(u, v - u) - (f, v - u).$$

Mit $\Omega_0 := \{x \in \Omega \mid u = \psi\}$ folgt, dass $-\Delta u = f$ auf $\Omega_1 := \Omega \setminus \bar{\Omega}_0$ gelten muss.

$$\implies \int_{\Omega = \Omega_0 \cup \Omega_1} \underbrace{(-\Delta u - f)}_{=0 \text{ auf } \Omega_1} (v - u) \, dx = \int_{\Omega_0} \underbrace{(-\Delta u - f)}_{\geq 0} \underbrace{(v - \psi)}_{\geq 0} \, dx \geq 0$$

Damit ist u eine Lösung von (3.3)

$$a(u, v - u) \ge (f, v - u) \quad \forall v \in K$$
.

"

"Es sei $u \in H^2(\Omega) \cap K$ Lösung von (3.3). Weiter sei $v \in K$ beliebig, dann gilt

$$0 \leq a(u, v - u) - (f, v - u)$$

$$= \int_{\Omega} \nabla u \nabla (v - u) \, dx - \int_{\Omega} f(v - u) \, dx$$

$$\stackrel{\text{Green}}{=} \int_{\Omega} -\Delta u (v - u) \, dx - \int_{\Omega} f(v - u) \, dx$$

$$= \int_{\Omega} (-\Delta u - f)(v - u) \, dx.$$
(3.6)

Wir nehmen an, dass $-\Delta u - f < 0$ in einem Ball $B_{r_0} := B_{r_0}(x_0) \subset \Omega$ mit Radius r_0 um $x_0 \in \Omega$ gilt. Sei weiter $\chi \in C^{\infty}(\Omega)$ mit $\chi = 0$ auf $\Omega \setminus \bar{B}_{r_0}, \rho(r) := \left(1 - \frac{r}{r_0}\right)^2 \chi > 0$ und $v := u + \rho(r) \in K$, da $u \in K$ und $\rho(r) > 0$. Dann gilt

$$\int_{\Omega} (-\Delta u - f)(v - u) dx = \int_{B_{r_0}} \underbrace{(-\Delta u - f)}_{<0} \underbrace{\rho(r)}_{>0} dx < 0,$$

was im Widerspruch zu (3.6) steht. Also muss $-\Delta u - f \ge 0$ gelten.

Nun nehmen wir an, dass $-\Delta u - f > 0$ und $u > \psi$ fast überall in einem Ball B_{r_0} gilt. Wir betrachten $v := u + \varepsilon \rho(r)(\psi - u) \in K$ mit $0 < \varepsilon \le 1$, dann folgt

$$\int_{\Omega} (-\Delta u - f)(v - u) \, dx = \varepsilon \int_{B_{r_0}} \underbrace{(-\Delta u - f)}_{>0} \underbrace{\rho(r)}_{>0} \underbrace{(\psi - u)}_{<0} \, dx < 0,$$

was wiederum im Widerspruch zu (3.6) steht. Damit muss $u = \psi$ gelten, wenn $-\Delta u = f$ ist. Es folgt, dass $u \in H^2(\Omega) \cap K$ eine Lösung von (3.5) ist.

3.1.2 Existenz und Eindeutigkeit der Lösung

• für die Existenz und Eindeutigkeit der Lösung des Problems betrachten wir zunächst wieder das allgemeine reelle quadratische Funktional $J: H \to \mathbb{R}, J(v) = \frac{1}{2}a(v,v) - F(v)$.

•

Voraussetzung 3.5. Sei H ein reeller Hilbertraum mit Skalarprodukt $(\cdot, \cdot)_H$ und der damit induzierten Norm $\|\cdot\|_H$. Mit H' bezeichnen wir den Dualraum zu H. Weiter sei vorausgesetzt:

- (a) $a: H \times H \to \mathbb{R}$ ist eine stetige koerzive Bilinearform,
- (b) $F: H \to \mathbb{R}$ ist ein stetiges lineares Funktional,
- (c) $K \neq \emptyset$ ist eine abgeschlossene konvexe Teilmenge von H.

Theorem 3.6 (Existenz und Eindeutigkeit). Unter den obigen Voraussetzungen hat die Variationsungleichung, finde $u \in K$, so dass

$$a(u, v - u) \ge F(v - u) \quad \forall v \in K$$
 (3.7)

ist, genau eine Lösung.

Beweis. (i) Eindeutigkeit: Es seien $u_1, u_2 \in K$ zwei Lösungen der Variationsungleichung (3.7), d.h.

$$a(u_1, v - u_1) \ge F(v - u_1) \quad \forall v \in K, \tag{3.8}$$

$$a(u_2, v - u_2) \ge F(v - u_2) \quad \forall v \in K.$$
 (3.9)

Addieren wir (3.8) und (3.9) miteinander und setzen zuvor $v = u_2$ in (3.8) und $v = u_1$ in (3.9), so erhalten wir

$$0 \le a(u_1, u_2 - u_1) - F(u_2 - u_1) + a(u_2, u_1 - u_2) \underbrace{-F(u_1 - u_2)}_{=F(u_2 - u_1)}$$

$$= a(u_1, u_2 - u_1) - a(u_2, u_2 - u_1) = -a(u_2 - u_1, u_2 - u_1)$$

$$\le -\alpha \|u_2 - u_1\|_H^2.$$

Also gilt $||u_2 - u_1||_H^2 \le 0 \Rightarrow ||u_2 - u_1||_H^2 = 0$ und damit folgt $u_1 = u_2$.

(ii) Existenz: Aus dem Darstellungssatz von Riesz bzw. das Korollar 2.15 folgt, dass ein $A \in \mathcal{L}(H,H), l \in H$ existiert, so dass

$$a(u, v) = (Au, v)_H \quad \forall u, v \in H,$$

 $F(v) = (l, v)_H \quad \forall v \in H.$

Damit gilt

$$F(v-u) - a(u, v-u) = (l, v-u)_H - (Au, v-u)_H$$

= $(l - Au, v - u)_H \le 0$.

Durch Multiplikation mit $\varrho > 0$ und Addition der Null erhalten wir das äquivalente Problem: Finde $u \in K$, so dass

$$(u - \varrho(Au - l) - u, v - u)_H \le 0 \quad \forall v \in K.$$
 (3.10)

Nach Satz 2.3 ist u damit das Bild der Projektion von $u - \varrho(Au - l)$ auf K, d.h.

$$u = P_K(u - \varrho(Au - l)).$$

Es bleibt zu zeigen, dass $W_\varrho: H \to K, W_\varrho(v) \coloneqq P_K(v-\varrho(Av-l))$ einen Fixpunkt besitzt. Mit Anwendung von Satz 2.4 und der Koerzivität von a rechnen wir nach, dass

$$||W_{\varrho}(v_{1}) - W_{\varrho}(v_{2})||_{H}^{2} = ||P_{K}(v_{1} - \varrho(Av_{1} - l)) - P_{K}(v_{2} - \varrho(Av_{2} - l))||_{H}^{2}$$

$$\leq ||v_{1} - \varrho(Av_{1} - l) - (v_{2} - \varrho(Av_{2} - l))||_{H}^{2}$$

$$= ||(v_{1} - v_{2}) - \varrho A(v_{1} - v_{2})||_{H}^{2}$$

$$= ||v_{1} - v_{2}||_{H}^{2} + \varrho^{2} ||A(v_{1} - v_{2})||_{H}^{2}$$

$$- \varrho (A(v_{1} - v_{2}), v_{1} - v_{2})_{H} - \varrho (v_{1} - v_{2}, A(v_{1} - v_{2}))_{H}$$

$$= 2\varrho (A(v_{1} - v_{2}), v_{1} - v_{2})_{H} = 2\varrho a(v_{1} - v_{2}, v_{1} - v_{2})$$

$$\leq ||v_{1} - v_{2}||_{H}^{2} + \varrho^{2} ||A||^{2} ||v_{1} - v_{2}||_{H}^{2} - 2\varrho \alpha ||v_{1} - v_{2}||_{H}^{2}$$

$$= (1 - 2\varrho \alpha + \varrho^{2} ||A||^{2}) ||v_{1} - v_{2}||_{H}^{2}$$

mit $\|A\|:=\sup_{v\in H}\frac{\|Av\|_H}{\|v\|_H}$. Also ist die Abbildung W_ϱ eine Kontraktion, wenn gilt

$$1 - 2\varrho\alpha + \varrho^2 \|A\|^2 < 1 \implies 0 < \varrho < \frac{2\alpha}{\|A\|^2}$$

Nach dem Banach'scher Fixpunktsatz (vgl. [Sto99] Satz 5.2.3) existiert für solch ein ϱ ein $u \in H$ mit $u = W_{\varrho}(u) = P_K(u - \varrho(Au - l))$.

Insgesamt gibt es also für das Problem (3.7) genau eine Lösung. \square

Korollar 3.7. Das Problem (3.1) hat eine eindeutige Lösung.

Beweis. Da laut Lemma 3.1 die Menge

$$K = \{ v \in H_0^1(\Omega) \mid v \ge \psi \text{ fast "überall in } \Omega \}$$

abgeschlossen und konvex ist, F(v) = (f, v) ein stetiges lineares Funktional und

$$a(u,v) = \int_{\Omega} \nabla u \nabla v \, dx$$

stetig bilinear und koerziv, sind die Voraussetzungen für Theorem 3.6 erfüllt. Damit hat das Problem, finde $u \in K$, so dass

$$a(u, v - u) \ge (f, v - u) \quad \forall v \in K, \tag{3.11}$$

genau eine Lösung. Nach Satz 3.2 ist (3.1) äquivalent zu (3.11) und damit folgt die Behauptung.

•

Bemerkung 3.8. Insbesondere hat auch das Problem (3.5) nach Satz 3.4 und Theorem 3.6 eine eindeutige Lösung, wenn $u \in H^2(\Omega) \cap H^1_0(\Omega)$ ist.

3.1.3 Lösung des Hindernisproblems mittels FEM

• zur Lösung mittels FEM betrachten wir die Variationsungleichung (3.11) bzgl. eines endlich dimensionalen Unterraum

$$K_h := \{ v_h \in \mathcal{S}_h \mid v_h(p) \ge \psi(p) \, \forall \, p \in \mathcal{N} \cap \Omega \},$$

wobei $\mathcal N$ die Knotenmenge bzgl. der Triangulierung $\mathcal T_h$ bezeichne.

• damit ist (3.11) in diskreter Form: Finde $u_h \in K_h$, so dass

$$a(u_h, v_h - u_h) \ge (f, v_h - u_h) \quad \forall v_h \in K_h. \tag{3.12}$$

• vgl. [Wer11] Kapitel 4 Satz 7.15.

Satz 3.9 (Fixpunktsatz von Brouwer). Es sei $K \neq \emptyset$ eine kompakte konvexe Teilmenge eines endlich dimensionalen normierten Raumes H und $F: K \to K$ sei stetig. Dann besitzt F einen Fixpunkt $v \in K$.

Beweis. Der Beweis ist in [Wer11] Kapitel 4 Satz 7.15 zu finden. \Box

•

Theorem 3.10 (Existenz und Eindeutigkeit). Das Problem (3.12) hat eine eindeutige Lösung $u_h \in K_h$.

Beweis. Der Beweis ist analog zu Theorem 3.6 zu führen. Wir ersetzen lediglich H durch V_h und K durch K_h und verwenden im endlich dimensionalen Raum V_h den Fixpunktsatz von Brouwer.

- Bemerkung. In Kapitel 2.2 von [Sta08] sind die Argumente bzgl. der Existenz und Eindeutigkeit einer Lösung von (3.11) für den endlich dimensionalen Fall K_h auch noch einmal im Einzelnen aufgeführt.
- Es sei $\mathcal{B}_h = \{\phi_1, \dots, \phi_N\}$ eine modale Basis von \mathcal{S}_h , d.h. analog zu (2.11) können wir u_h und v_h mit Koordinaten $\mu_i, \nu_i, i = 1, \dots, N$ bzgl. \mathcal{B}_h ausdrücken. Dann schreiben wir (3.12) als

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \mu_i a(\phi_i, \phi_j) (\nu_j - \mu_j) \ge \sum_{j=1}^{N} (f, \phi_j) (\nu_j - \mu_j)$$

$$\Rightarrow \qquad \qquad \boldsymbol{\mu}^T A(\boldsymbol{\nu} - \boldsymbol{\mu}) \ge \boldsymbol{f}^T (\boldsymbol{\nu} - \boldsymbol{\mu})$$

mit
$$A = [a(\phi_j, \phi_i)]_{i,j=1}^N$$
, $\boldsymbol{\mu} = [\mu_i]_{i=1}^N$, $\boldsymbol{\nu} = [\nu_i]_{i=1}^N$ und $\boldsymbol{f} = [(f, \phi_i)]_{i=1}^N$.

• Die Menge K_h ist bzgl. S_h äquivalent zu

$$K_{\mathcal{S}} := \{ \boldsymbol{\nu} \in \mathbb{R}^N \mid \nu_i \ge \psi(p_i), p_i \in \mathcal{N} \cap \Omega, i = 1, \dots, N \}.$$
 (3.13)

Im Folgenden schreiben wir $\psi := [\psi(p_i)]_{i=1}^N$ mit $p_i \in \mathcal{N} \cap \Omega$.

Bemerkung. $K_{\mathcal{S}}$ ist analog zu K konvex und abgeschlossen.

• Damit erhalten wir aus (3.12) die diskrete Variationsungleichung: Finde $\mu \in K_{\mathcal{S}}$, so dass

$$(A\boldsymbol{\mu} - \boldsymbol{f})^T (\boldsymbol{\nu} - \boldsymbol{\mu}) \ge 0 \quad \forall \, \boldsymbol{\nu} \in K_{\mathcal{S}}.$$
 (3.14)

Satz 3.11. Das Problem (3.14) ist äquivalent zum linearen Komplementaritätsproblem: Bestimme $\mu \in K_{\mathcal{S}}$, so dass

$$A\boldsymbol{\mu} - \boldsymbol{f} \ge \boldsymbol{0}$$
 und $(A\boldsymbol{\mu} - \boldsymbol{f})^T (\boldsymbol{\mu} - \boldsymbol{\psi}) = 0$ (3.15)

gilt.

Beweis. " \Rightarrow " Sei $\mu \in K_S$ Lösung von (3.14). Wir setzen $\nu = \mu + e_i \ge \psi$ mit einem beliebigen $i \in \{1, ..., N\}$, wobei e_i den i-te Einheitsvektor bezeichne. Dann gilt

$$0 \le (A\boldsymbol{\mu} - \boldsymbol{f})^T (\boldsymbol{\nu} - \boldsymbol{\mu}) = (A\boldsymbol{\mu} - \boldsymbol{f})^T \boldsymbol{e}_i = (A\boldsymbol{\mu} - \boldsymbol{f})_i.$$

Da *i* beliebig war, folgt $A\mu - f \geq 0$.

Wir nun nehmen an, dass ein $i \in \{1, ..., N\}$ existiert, so dass $(A\boldsymbol{\mu} - \boldsymbol{f})_i(\boldsymbol{\mu} - \boldsymbol{\psi})_i > 0$ ist. Weiter wählen wir

$$\boldsymbol{\nu} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_{i-1} \\ 0 \\ \mu_{i+1} \\ \vdots \\ \mu_N \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \psi_i \\ 0 \\ \vdots \\ 0 \end{pmatrix} \ge \boldsymbol{\psi}$$

und damit folgt

$$0 > (A\boldsymbol{\mu} - \boldsymbol{f})_i(\boldsymbol{\psi} - \boldsymbol{\mu})_i = (A\boldsymbol{\mu} - \boldsymbol{f})^T(\boldsymbol{\nu} - \boldsymbol{\mu}) \ge 0,$$

was im Widerspruch zu (3.14) steht, daraus folgt die Behauptung.

" \Leftarrow " Es sei $\mu \in K_S$ Lösung von (3.15). Dann rechnen wir nach, dass für ein beliebiges $\nu \in K_S$ gilt

$$(A\boldsymbol{\mu} - \boldsymbol{f})^{T}(\boldsymbol{\nu} - \boldsymbol{\mu}) = (A\boldsymbol{\mu} - \boldsymbol{f})^{T}(\boldsymbol{\nu} - \boldsymbol{\psi} + \boldsymbol{\psi} - \boldsymbol{\mu})$$

$$= \underbrace{(A\boldsymbol{\mu} - \boldsymbol{f})^{T}}_{\geq 0} \underbrace{(\boldsymbol{\nu} - \boldsymbol{\psi})}_{\geq 0} - \underbrace{(A\boldsymbol{\mu} - \boldsymbol{f})^{T}(\boldsymbol{\mu} - \boldsymbol{\psi})}_{=0}$$

$$> 0.$$

• das Problem (3.14) ist äquivalent zu einem quadratischen Optimierungsproblem

Satz 3.12 (Äquivalenz zu quadratischem Programm). Das Problem (3.14) ist äquivalent zum quadratischen Programm

$$\min_{\boldsymbol{\nu} \in \mathbb{R}^N} J(\boldsymbol{\nu}) = \frac{1}{2} \boldsymbol{\nu}^T A \boldsymbol{\nu} - \boldsymbol{f}^T \boldsymbol{\nu} \quad s.t. \quad \boldsymbol{\nu} \ge \boldsymbol{\psi}.$$
 (3.16)

Beweis. Wir zeigen zunächst die Äquivalenz von (3.15) zu (3.16) und dann folgt mit Satz 3.11 die Behauptung.

"⇒" Es sei $\mu \in \mathbb{R}^N$ Lösung vom Problem (3.15). Dann folgt mit einem beliebigen $\nu \in K_S$

$$J(\boldsymbol{\nu}) - J(\boldsymbol{\mu}) = \frac{1}{2} \boldsymbol{\nu}^T A \boldsymbol{\nu} - \boldsymbol{f}^T \boldsymbol{\nu} - \frac{1}{2} \boldsymbol{\mu}^T A \boldsymbol{\mu} + \boldsymbol{f}^T \boldsymbol{\mu}$$

$$= \frac{1}{2} \underbrace{(\boldsymbol{\nu} - \boldsymbol{\mu})^T A (\boldsymbol{\nu} - \boldsymbol{\mu})}_{\geq 0 \text{ wegen Bem. 2.17}} + \boldsymbol{\mu}^T A \boldsymbol{\nu} - \boldsymbol{\mu}^T A \boldsymbol{\mu} - \boldsymbol{f}^T (\boldsymbol{\nu} - \boldsymbol{\mu})$$

$$\geq (A \boldsymbol{\mu} - \boldsymbol{f})^T (\boldsymbol{\nu} - \boldsymbol{\psi} + \boldsymbol{\psi} - \boldsymbol{\mu})$$

$$= \underbrace{(A \boldsymbol{\mu} - \boldsymbol{f})^T (\boldsymbol{\nu} - \boldsymbol{\psi})}_{\geq 0} - \underbrace{(A \boldsymbol{\mu} - \boldsymbol{f})^T (\boldsymbol{\mu} - \boldsymbol{\psi})}_{\geq 0}$$

$$\geq 0.$$

Somit ist $\mu \in K_{\mathcal{S}}$ auch Lösung des quadratischen Programms (3.16). " \Leftarrow " Sei $\mu \in K_{\mathcal{S}}$ Lösung von (3.16), dann gelten nach [NW06] Kapitel 12, Theorem 12.1 für die Lagrange-Funktion

$$\mathcal{L}(\boldsymbol{\nu}, \boldsymbol{\lambda}) = J(\boldsymbol{\nu}) - \boldsymbol{\lambda}^T(\boldsymbol{\nu} - \boldsymbol{\psi})$$

die Karush-Kuhn-Tucker Bedingungen für den Optimalpunkt (μ, λ^*)

$$\nabla_{\nu} \mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\lambda}^*) = \nabla J(\boldsymbol{\mu}) - \boldsymbol{\lambda}^* = A\boldsymbol{\mu} - \boldsymbol{f} - \boldsymbol{\lambda}^* \stackrel{!}{=} \boldsymbol{0}, \qquad (3.17)$$

$$\mu - \psi \ge 0, \tag{3.18}$$

$$\lambda^* > \mathbf{0} \,, \tag{3.19}$$

$$\lambda_i^*(\mu_i - \psi_i) = 0 \qquad \forall i = 1, \dots, N.$$
 (3.20)

Mit (3.17) gilt also $\lambda^* = A\mu - f$ und daher folgt aus (3.19)

$$A\boldsymbol{\mu} - \boldsymbol{f} \geq \mathbf{0}$$
.

Aus (3.20) folgt wegen $(A\boldsymbol{\mu} - \boldsymbol{f})_i(\mu_i - \psi_i) = 0$ für alle $i = 1, \dots, N$ direkt

$$(A\boldsymbol{\mu} - \boldsymbol{f})^T (\boldsymbol{\mu} - \boldsymbol{\psi}) = 0.$$

Also ist $\mu \in K_{\mathcal{S}}$ auch Lösung von (3.15).

•

Bemerkung 3.13. Analog zu Satz 3.11 und 3.12 können wir auch zeigen, dass das quadratische Programm

$$\min_{\boldsymbol{\nu} \in \mathbb{R}^N} J(\boldsymbol{\nu}) = \frac{1}{2} \boldsymbol{\nu}^T A \boldsymbol{\nu} - \boldsymbol{f}^T \boldsymbol{\nu} \quad \text{s.t.} \quad B \boldsymbol{\nu} \ge \boldsymbol{\psi}$$
 (3.21)

mit $B \in \mathbb{R}^{M \times N}$ äquivalent ist zur Variationsungleichung: Finde $\mu \in \mathbb{R}^N$ mit $B\mu \geq \psi$, so dass

$$(A\boldsymbol{\mu} - \boldsymbol{f})^T (\boldsymbol{\nu} - \boldsymbol{\mu}) \ge 0 \quad \forall \, \boldsymbol{\nu} \in \mathbb{R}^N \text{ mit } B\boldsymbol{\nu} \ge \boldsymbol{\psi}.$$
 (3.22)

•

Bemerkung 3.14. Die quadratischen Programme (3.16) und (3.21) hat mit den Voraussetzungen aus Bemerkung 2.17 eine globale Lösung μ , wenn diese die KKT-Bedingungen (B.3) erfüllt (vgl. Theorem B.1).

- mit dem im Anhang B.2 vorgestellten Active-Set-Algorithmus kann ein solches quadratisches Programm gelöst werden
- es bleibt noch zu prüfen, ob sich die Lösung der Variationsungleichung für Netzverfeinerung an die exakte Lösung konvergiert

•

Voraussetzung 3.15. Gegeben sei ein Parameter $h \to 0$. Weiter seien $(V_h)_h$ eine Familie aus abgeschlossenen Teilmengen von einem Hilbertraum $H, \emptyset \neq K \subset H$ eine konvexe abgeschlossene Teilmenge und $(K_h)_h$ eine Familie von abgeschlossenen konvexen nichtleeren Teilmengen von H, so dass $K_h \subset V_h$ für alle h.

Dabei sei K_h eine Approximation von K im folgenden Sinne:

(i) wenn $(v_h)_h$ eine in V beschränkte Folge mit $v_h \in K_h$ ist, dann folgt $v_h \to v \in K$,

(ii) es existiert ein $W \subset V$ mit $\overline{W} = K$ and ein $I_h : W \to K_h$, so dass

$$\lim_{h \to 0} I_h v = v$$

stark in V für alle $v \in W$ konvergiert.

• Konvergenz von u_h gegen die exakte Lösung u.

Theorem 3.16 (a priori Konvergenz). Mit den obigen Voraussetzungen für K und $(K_h)_h$ gilt für die Lösungen u von (3.7) und u_h vom approximierten Problem: Finde $u_h \in K_h$, so dass

$$a(u_h, v_h - u_h) \ge F(v_h - u_h) \quad \forall v_h \in K_h,$$
 (3.23)

der Zusammenhang

$$\lim_{h \to 0} ||u_h - u||_H = 0.$$

Beweis. (i) Abschätzung von u_h : Es sei u_h Lösung von (3.23), dann gilt nach einer Umformung für alle $v_h \in K_h$

$$a(u_{h}, u_{h}) \leq a(u_{h}, v_{h}) - F(v_{h} - u_{h})$$

$$= (Au_{h}, v_{h})_{H} - (f, v_{h} - u_{h})_{H}$$

$$\leq \underbrace{\|Au_{h}\|_{H}}_{\leq \|A\|\|u_{h}\|_{H}} \|v_{h}\|_{H} + \|f\|_{H} \underbrace{\|v_{h} - u_{h}\|_{H}}_{\leq \|v_{h}\|_{H} + \|u_{h}\|_{H}}$$

$$\leq \|A\| \|u_{h}\|_{H} \|v_{h}\|_{H} + \|f\|_{H} (\|v_{h}\|_{H} + \|u_{h}\|_{H}).$$

Zusammen mit der Koerzivität folgt dann

$$\alpha \|u_h\|_H^2 < \|A\| \|u_h\|_H \|v_h\|_H + \|f\|_H (\|v_h\|_H + \|u_h\|_H). \tag{3.24}$$

Wähle ein festes $v_0 \in W$, sodass $I_h v_0 = v_h \in K_h$ gilt. Aus Voraussetzungen (ii) folgt dann

$$\lim_{h \to 0} I_h v_0 = v_0$$

und daher muss v_h beschränkt sein, d.h. es existiert ein $m\in\mathbb{R}$: $\|v_h\|_H\leq m$ für alle h. Zusammen mit (3.24) gilt dann

$$||u_h||_H^2 \le \frac{1}{\alpha} (m ||A|| ||u_h||_H + ||f||_H (m + ||u_h||_H))$$

$$= \underbrace{\left(\frac{m}{\alpha} ||A|| + ||f||_H\right)}_{=:c_1} ||u_h||_H + \underbrace{\frac{m}{\alpha} ||f||_H}_{=:c_2}$$

$$= c_1 ||u_h||_H + c_2$$

und damit können wir durch quadratischer Ergänzung folgern, dass es ein $c \in \mathbb{R}$ gibt mit $||u_h|| \leq c$ für alle h, d.h. $(u_h)_h$ ist gleichmäßig beschränkt.

(ii) schwache Konvergenz: Da $(u_h)_h$ in H gleichmäßig beschränkt ist, folgt mit Bemerkung A.13 (b), dass es eine schwach konvergente Teilfolge $(u_{h_j})_{h_j} \in K_{h_j}$ mit einem Grenzwert u^* in H gibt, d.h.

$$u_{h_i} \rightharpoonup u^* \in H$$
.

Mit den Voraussetzungen (i) für $(K_h)_h$ folgt direkt $u^* \in K$, außerdem ist u^* nach Bemerkung A.13 (e) eindeutig.

Wir zeigen nun, dass u^* eine Lösung von (3.7) ist. Für die oben betrachtete Teilfolge gilt

$$a(u_{h_i}, v_{h_i} - u_{h_i}) \ge F(v_{h_i} - u_{h_i}) \quad \forall v_{h_i} \in K_{h_i}.$$
 (3.25)

Sei $v \in W$ mit $v_{h_j} = I_{h_j}v$. Dann gilt $v_{h_j} = I_{h_j}v \to v \in W$ für $h_j \to 0$. Mit (3.25) folgt

$$a(u_{h_{j}}, u_{h_{j}}) \leq a(u_{h_{j}}, v_{h_{j}}) - F(v_{h_{j}} - u_{h_{j}})$$

$$= a(u_{h_{j}}, I_{h_{j}}v) - F(v_{h_{j}} - u_{h_{j}})$$

$$\implies \lim_{h_{j} \to 0} \inf a(u_{h_{j}}, u_{h_{j}}) \leq a(u^{*}, v) - F(v - u^{*}).$$
(3.26)

Weiter schätzen wir durch Bemerkung A.13 (f) nach unten ab

$$\liminf_{h_j \to 0} a(u_{h_j}, u_{h_j}) = \liminf_{h_j \to 0} ||u_{h_j}||_H^2 \ge ||u^*||_H^2 = a(u^*, u^*).$$
 (3.27)

Insgesamt folgt also mit (3.26) und (3.27)

$$a(u^*, u^*) \le \liminf_{h_i \to 0} a(u_{h_i}, u_{h_i}) \le a(u^*, v) - F(v - u^*)$$

und damit nach Umformung

$$a(u^*, v - u^*) \ge F(v - u^*) \quad \forall v \in W.$$

Da W dicht in K liegt, d.h. $\overline{W} = K$, und a, F stetig sind, erhalten wir

$$a(u^*, v - u^*) \ge F(v - u^*) \quad \forall v \in K$$

mit $u^* \in K$, also ist $u^* =: u$ Lösung von (3.7). Da u ein Häufungspunkt von $(u_h)_h$ bzgl. der schwachen Topologie von H ist, konvergiert auch die Folge $(u_h)_h$ schwach gegen u.

(iii) starke Konvergenz: Aus der Koerzivität von a folgt

$$0 \le \alpha \|u_h - u\|_H^2 \le a(u_h - u, u_h - u) \le a(u_h, u_h) - a(u_h, u) - a(u, u_h) + a(u, u),$$
(3.28)

wobei u_h Lösung vom approximierten Problem (3.23) und u Lösung vom exakten Problem (3.7) ist. Es sei $v \in W$ mit $I_h v = v_h \in K_h$, dann folgt aus (3.23)

$$a(u_h, u_h) \le a(u_h, I_h v) - F(I_h v - u_h) \quad \forall v \in W.$$
 (3.29)

Da $u_h \rightharpoonup u$ in H und $I_h v \rightarrow v$ in H für $h \rightarrow 0$, folgt aus (3.28) und (3.29) unter Verwendung von Voraussetzungen (ii)

$$0 \le \alpha \lim_{h \to 0} ||u_h - u||_H^2 \le a(u, v - u) - F(v - u) \quad \forall v \in W.$$
 (3.30)

Da a und F stetig sind und W dicht in K liegt, gilt (3.30) auch für alle $v \in K$. Setzen wir dann also v = u in (3.30), dann folgt die Behauptung $\lim_{h\to 0} ||u_h - u||_H^2 = 0$.

- \bullet Überlegung: Inwiefern hält unser K_h diese Voraussetzungen ein.
- Es lässt sich folglich auch eine a priori Abschätzung für den Fehler von u und u_h machen. Die Herleitung ist detailliert in [Fal74] wiederzufinden.

Theorem 3.17 (a priori Fehlerabschätzung). Es seien u und u_h die Lösungen von (3.7) und (3.23). Dann existiert eine Konstante $C := C(\Omega, f, \psi)$ unabhängig von u, so dass

$$||u_h - u||_1 \le Ch.$$

Beweis. Vgl. [Fal74].

- damit führt die Netzverfeinerung also zur exakten Lösung der Variationsungleichung
- inwiefern adaptive Netzverfeinerung hier sinnvoll ist, wollen wir in Kapitel 4 betrachten

3.2 Kontaktprobleme

3.2.1 Mathematische Modellierung eines Kontaktproblems

-

Voraussetzung 3.18. Wir treffen folgende Annahmen für unser Kontaktmodell:

- (a) Die in Kontakt stehenden Körper sind beschränkt.
- (b) Es liegen kleine Deformationen und linear elastische Materialien vor.

- (c) Wir betrachten ein konstantes Temperaturfeld, d.h. thermodynamische Prozesse werden ausgeschlossen.
- (d) Zu Beginn, also in der Ausgangskonfiguration, gilt für die Spannung und Verzerrung:

$$\sigma=0$$
, $\varepsilon=0$.

- (e) Wir gehen von einem reibungslosen Kontakt aus. Dieses Kontakt-problem wird als Signorini-Kontakt-Problem bezeichnet.
- (f) Wir gehen von ebenen Problemen aus, d.h. $\Omega \subset \mathbb{R}^2$. Im \mathbb{R}^3 sind alle Resultate analog.
- zur Herleitung der starken Kontaktformulierung wollen wir zwei Körper $\mathcal{B}^1, \mathcal{B}^2$ betrachten, welche durch zwei beschränkte Gebiete Ω^1, Ω^2 mathematisch beschrieben werden können
- diese Voraussetzung lässt sich noch weiter verallgemeinern (s. [CSW99])
- \bullet die Ränder Γ^i von $\Omega^i, i=1,2,$ lassen sich in drei disjunkte Teile unterteilen
 - Γ_u^i : Der *Dirichlet-Rand*, oder auch *Verschiebungsrand*, auf dem die Werte von der Verschiebung u vorgegeben sind.
 - Γ_{σ}^{i} : Der *Neumann-Rand*, oder auch *Spannungsrand*, auf dem die Oberflächenlast bzw. -spannung \bar{t} vorgegeben ist.
 - Γ_c^i : Der Kontaktrand, auf dem die Kontaktbedingungen definiert sind.

Skizze: zwei Körper, deren Randunterteilung zu erkennen ist.

Abbildung 3.2: Körper \mathcal{B}^1 und \mathcal{B}^2 mit Randbezeichnungen

• zur Kontaktkinematik:

- für die Formulierung der Kontaktbedingungen werden den Körpern die "Werte" master und slave zugeordnet.
- slave ist dabei die Menge an Punkten, die überprüft werden, ob sie in die master-Fläche eindringen.
- ullet Zuordnung ist irrelevant ightarrow kein Unterschied für das Ergebnis
- o.B.d.A. sei \mathcal{B}^1 slave
- wir wollen zunächst die Kontaktkinematik etwas allgemeiner als in [Wri01] oder [Wri06] beschrieben einführen

Skizze: Skizze mit zwei Körpern (nichtglatter Rand!!) und den Bezeichnungen $\chi(X)$ und $n_c(X)$.

Abbildung 3.3: Kontaktformulierung zwischen zwei Körpern

• für gegebenen Punkt $X \in \Omega^1$, bzw. $X \in \Gamma^1_c$, in der Ausgangskonfiguration ist $\bar{X} := \chi(X)$ derjenige Punkt aus Γ^2 , der minimalsten Abstand zu X hat, d.h.

$$\|\boldsymbol{X} - \bar{\boldsymbol{X}}\| = \min\{\|\boldsymbol{X} - \boldsymbol{Y}\| \mid \boldsymbol{Y} \in \Gamma^2\},$$

also ist $\chi:\Gamma^1_c\cup\Gamma^2_c\to\Gamma^1\cup\Gamma^2$ eine Abbildung der kleinsten Distanz

• damit definieren wir entsprechend die kritische Richtung mit Länge 1 als

$$n_c(X) := \frac{\chi(X) - X}{\|\chi(X) - X\|}, \qquad (3.31)$$

wobei im Falle $X = \chi(X)$, d.h. im Falle des Kontaktes, eine beliebige normierte Richtung gesetzt wird.

 \bullet Bem.: \bar{X} ist daher kritischer Punkt, da er wegen des kleinsten Abstandes zu X der wohlmöglich nächste Punkt ist, der in Kontakt tritt

Vorteil: diese Formulierung bzgl. der kritischen Richtung kann auch verwendet werden, wenn der Rand der Körper nicht hinreichend glatt ist.

ullet in den Koordinaten der Momentankonfiguration gilt $m{x} = m{X} + m{u}$ für das Verschiebungsfeld $m{u}$ und damit ergibt sich die Nichtdurchdringungsbedingung

$$(\bar{\boldsymbol{x}} - \boldsymbol{x}) \, \boldsymbol{n}_c(\boldsymbol{X}) \ge 0 \,, \tag{3.32}$$

wobei $\bar{\boldsymbol{x}} \coloneqq \bar{\boldsymbol{X}} + u(\bar{\boldsymbol{X}})$ ist.

- das bedeutet, dass die Verbindung der Punkte in der Momantankonfiguration mit der kritischen Richtung einen Winkel $\alpha \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ einschließen muss, ansonsten läge \bar{x} "hinter" x, d.h. \mathcal{B}^1 wäre in \mathcal{B}^2 eingedrungen.
- aus (3.32) folgt

$$0 \leq (\bar{\boldsymbol{x}} - \boldsymbol{x}) \, \boldsymbol{n}_c(\boldsymbol{X}) = (\bar{\boldsymbol{X}} + u(\bar{\boldsymbol{X}}) - \boldsymbol{X} - u(\boldsymbol{X})) \, \boldsymbol{n}_c(\boldsymbol{X})$$

$$= \underbrace{(\bar{\boldsymbol{X}} - \boldsymbol{X}) \frac{\bar{\boldsymbol{X}} - \boldsymbol{X}}{\|\bar{\boldsymbol{X}} - \boldsymbol{X}\|}}_{=\|\bar{\boldsymbol{X}} - \boldsymbol{X}\| = :g} + (u(\bar{\boldsymbol{X}})) \, \boldsymbol{n}_c(\boldsymbol{X})$$

$$= g + (u(\chi(\boldsymbol{X})) - u(\boldsymbol{X})) \, \boldsymbol{n}_c(\boldsymbol{X}).$$

damit erhalten wir die Nichtdurchdringungsbedingung bzgl. der Ausgangskonfiguration

- da wir kleine Deformationen vorausgesetzt haben, gilt unter anderem $X \approx x, \nabla_X \approx \nabla_x$ (vgl. [Alt12] S. 122f). Daher schreiben wir im folgenden immer x statt X.
- damit schreibt sich die Nichtdurchdringungsbedingung als

$$(\boldsymbol{u} \circ \chi - \boldsymbol{u}) \cdot \boldsymbol{n}_c + g \ge 0 \quad \forall \, \boldsymbol{x} \in \Gamma_c,$$
 (3.33)

wobei $\Gamma_c := \Gamma_c^1 \cup \Gamma_c^2$ ist.

- im Folgenden wollen wir der Einfachheit halber wir davon ausgehen, dass die Ränder Γ^i hinreichend glatt sind \Rightarrow (3.33) gilt auch für n_c als Einheitsnormale von \mathcal{B}^1
- weiter wollen wir $\boldsymbol{u}(\bar{\boldsymbol{x}}) \equiv \boldsymbol{0}$ annehmen, d.h. falls \mathcal{B}^2 ein Verschiebungsfeld ungleich Null hat, können wir \boldsymbol{u} bzgl. $\Omega = \Omega^1 \cup \Omega^2$ auch als Relativverschiebung interpretieren

Hinweis: Wähle später für die feste Ebene im Beispiel \mathcal{B}^1 zur Vereinfachung der Darstellung

• damit reduziert sich (3.33) auf

$$\boldsymbol{u} \cdot \boldsymbol{n} - g \le 0 \quad \forall \, x \in \Gamma_c \,, \tag{3.34}$$

wobei wir auch $u_n := \boldsymbol{u} \cdot \boldsymbol{n}$ im Folgenden schreiben werden.

• weiter muss auf dem Kontaktrand Γ_c die Normalkraft eine Druckkraft sein oder es herrscht Kräftegleichgewicht, d.h. für die Spannung in Normalenrichtung $\sigma_n := \mathbf{n} \cdot (\boldsymbol{\sigma} \cdot \mathbf{n})$ gilt

$$\sigma_n \le 0 \text{ auf } \Gamma_c.$$
 (3.35)

• wie oben schon angedeutet gilt: wenn die Kontaktbedingung nicht aktiv ist (d.h. nicht die Gleichheit gilt), so muss Kräftegleichgewicht herrschen, d.h. in (3.35) gilt die Gleichheit. Zusammen erhält man die Komplementaritätsbedingung

$$(u_n - g) \sigma_n = 0 \quad \text{auf } \Gamma_c \tag{3.36}$$

• laut Voraussetzung (e) betrachten wir Signorini-Kontakt und damit muss die Tangentialkraft auf dem Kontaktrand gleich Null sein, d.h.

$$\sigma_t := \sigma \cdot n - \sigma_n n = 0 \text{ auf } \Gamma_c.$$
 (3.37)

- materialunabhängige Gleichungen:
- wie in Kapitel 2.5 eingeführt, gelten auch hier die Gleichung des Kräftegleichgewichts. Da wir laut Voraussetzung (b) von kleinen Deformationen ausgehen, gilt

$$\operatorname{div} \boldsymbol{\sigma} + \bar{\boldsymbol{b}} = \boldsymbol{0}. \tag{3.38}$$

• weiter gilt nach dem *Cauchy-Theorem* (vgl. auch [Wri06] S. 38), dass die Spannung in Normalenrichtung auf der Oberfläche Γ von Ω gleich der von außen angebrachten Spannung \bar{t} ist, d.h.

$$\boldsymbol{\sigma} \cdot \boldsymbol{n} = \bar{\boldsymbol{t}} \quad \text{auf } \Gamma_{\sigma} \,, \tag{3.39}$$

also auf dem Neumann-Rand.

- konstitutive Gleichungen:
- da wir laut Voraussetzung (b) von einem linear elastischen Material und kleinen Deformationen ausgehen, gilt ein linearer Zusammenhang bzgl. der Spannung $\boldsymbol{\sigma}$ und Verzerrung $\boldsymbol{\varepsilon}$, d.h. das Hooke'sche-Gesetz ($\boldsymbol{\sigma} = \lambda \operatorname{tr} \boldsymbol{\varepsilon} \cdot \boldsymbol{I} + 2\mu \boldsymbol{\varepsilon}$, wobei λ, μ die Lamé Konstanten sind) und wir können wir den linearisierten Verzerrungstensor $\boldsymbol{\varepsilon}$ verwenden, d.h. mit einem 4 stufigem Materialtensor $\mathcal{C} = (c_{ijkl})$ gilt

$$\boldsymbol{\sigma} - \mathcal{C} : \boldsymbol{\varepsilon} = \mathbf{0} \quad \text{in } \Omega \,, \tag{3.40}$$

wobei $\mathcal{C}: \boldsymbol{\varepsilon}$ das doppelt verjüngende Skalarprodukt beschreibt.

• zusammengefasst mit (3.34) bis (3.40) beschreiben wir also das Signorini-Kontakt-Problem in der starken Formulierung:

$$\operatorname{div} \boldsymbol{\sigma} + \bar{\boldsymbol{b}} = \boldsymbol{0} \quad \text{in } \Omega \tag{3.41a}$$

$$\boldsymbol{\sigma} - \mathcal{C} : \boldsymbol{\varepsilon} = \mathbf{0} \quad \text{in } \Omega \tag{3.41b}$$

$$\boldsymbol{\sigma} \cdot \boldsymbol{n} = \bar{\boldsymbol{t}} \quad \text{auf } \Gamma_{\sigma} \tag{3.41c}$$

$$\mathbf{u} = \mathbf{0} \quad \text{auf } \Gamma_u \tag{3.41d}$$

$$u_n - g \le 0$$

$$\left\{ \begin{array}{l}
 \sigma_n \leq 0 \\
 (u_n - g) \, \sigma_n = 0
 \end{array} \right\} \text{ auf } \Gamma_c$$

$$\left\{ \begin{array}{l}
 \sigma_t = 0 \\
 \end{array} \right\}$$

• was ändert sich, wenn wir Reibung betrachten

Bemerkung 3.19. Ein Kontaktmodell mit $\sigma_t \neq 0$ ist das Modell mit Tresca-Reibung. Für dieses Problem wird die letzte Bedingung aus (3.41e) durch die Bedingungen

$$\|\boldsymbol{\sigma}_t\| \le \mathfrak{F}, \quad \boldsymbol{\sigma}_t \boldsymbol{u}_t + \mathfrak{F} \|\boldsymbol{u}_t\| = 0$$
 (3.42)

mit $u_t := u - u_n n$, dem tangentialen Anteil des Verschiebungsfeldes u, ersetzt. Hierbei ist $\mathcal{F} \geq 0$ eine Schranke für die Reibung. Gilt $\|\sigma_t\| < \mathcal{F}$, so folgt aus der zweiten Gleichung von (3.42), dass $u_t = 0$ ist. Also kann $u_t \neq 0$ nur gelten, wenn $\|\sigma_t\| = \mathcal{F}$ ist.

Mit $\mathcal{F} := \mu \sigma_n$ erhalten wir das Reibungsgesetz von Coulomb, wobei μ den aus der Mechanik bekannten Reibungskoeffizienten darstellt.

Da die Herleitung der zu diesem Problem äquivalenten Variationsungleichung zusätzliche mathematische Resultate erfordert, werden wir uns in der weiteren Herleitung auf das Signorini-Kontakt-Problem beziehen.

3.2.2 Variationsformulierung des Signorini-Kontaktproblems

- Sei $\Omega \subset \mathbb{R}^2$ (Voraussetzung (f))
- wir betrachten das Signorini-Kontakt-Problem (3.41)
- Es seien $H^1_{\Gamma_u}(\Omega) := \{ \boldsymbol{v} \in (H^1(\Omega))^2 \mid \boldsymbol{v} = \boldsymbol{0} \text{ auf } \Gamma_u \}$ und $\mathcal{K} := \{ \boldsymbol{v} \in H^1_{\Gamma_u}(\Omega) \mid v_n g \leq 0 \text{ auf } \Gamma_c \} \Rightarrow \mathcal{K} \text{ ist analog zu Lemma 3.1 konvex}$
- weiter seien $u, v \in K$, wobei u die Lösung des Signorini-Kontaktproblems darstellt und v (häufig in den Ingenieurswissenschaften als *virtuelle Verschiebung* bezeichnet) eine beliebige Testfunktion ist. Dann gilt

 $\boldsymbol{w} = \boldsymbol{v} - \boldsymbol{u} \in (H^1_{\Gamma_u}(\Omega))^2$ eine Testfunktion, die wir mit (3.41a) multiplizieren und über Ω integrieren.

$$0 = \int_{\Omega} (\operatorname{div} \boldsymbol{\sigma} + \bar{\boldsymbol{b}}) \cdot \boldsymbol{w} \, d\Omega = \int_{\Omega} \operatorname{div} \boldsymbol{\sigma} \cdot \boldsymbol{w} + \bar{\boldsymbol{b}} \cdot \boldsymbol{w} \, d\Omega$$

$$= \int_{\Omega} \operatorname{div} (\boldsymbol{w} \cdot \boldsymbol{\sigma}) - \operatorname{grad} \boldsymbol{w} : \boldsymbol{\sigma} + \bar{\boldsymbol{b}} \cdot \boldsymbol{w} \, d\Omega$$

$$= \int_{\Gamma} \underbrace{\boldsymbol{w} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n}}_{=\boldsymbol{w} \cdot ||\boldsymbol{n}||^{2} \cdot (\boldsymbol{\sigma} \cdot \boldsymbol{n})} \, d\Gamma - \int_{\Omega} \underbrace{\frac{1}{2} (\operatorname{grad} \boldsymbol{w} + \operatorname{grad}^{T} \boldsymbol{w})}_{=\boldsymbol{\varepsilon}(\boldsymbol{w})} : \boldsymbol{\sigma} \, d\Omega + \int_{\Omega} \bar{\boldsymbol{b}} \cdot \boldsymbol{w} \, d\Omega$$

$$= \int_{\Gamma_{c}} w_{n} \, \sigma_{n} \, d\Gamma + \int_{\Gamma_{\sigma}} \bar{\boldsymbol{t}} \cdot \boldsymbol{w} \, d\Gamma - \int_{\Omega} \boldsymbol{\sigma} : \boldsymbol{\varepsilon}(\boldsymbol{w}) \, d\Omega + \int_{\Omega} \bar{\boldsymbol{b}} \cdot \boldsymbol{w} \, d\Omega$$

$$(3.43)$$

(zweite Zeile ist Produktregel für die Divergenz, dritte Zeile Gauß, vierte Zeile die Aufteilung von $\Gamma = \Gamma_u \cup \Gamma_\sigma \cup \Gamma_c$, wobei $\boldsymbol{w} = \boldsymbol{0}$ auf Γ_u und $\boldsymbol{\sigma}\boldsymbol{n} = \bar{\boldsymbol{t}}$ auf Γ_σ).

• betrachte das Integral über Γ_c , dann gilt für den Integranden

$$w_n \, \sigma_n = (v_n - u_n) \, \sigma_n \overset{\text{"+0"}}{=} (v_n - g + g - u_n) \, \sigma_n$$

$$= (v_n - g) \, \sigma_n - \underbrace{(u_n - g) \, \sigma_n}_{=0 \text{ auf } \Gamma_c}$$

$$= \underbrace{(v_n - g)}_{<0} \underbrace{\sigma_n}_{<0} \ge 0$$

• damit ist das Integral ≥ 0 und aus (3.43) folgt

$$0 \ge \int_{\Gamma_{\sigma}} \bar{\boldsymbol{t}} \cdot \boldsymbol{w} \, d\Gamma - \int_{\Omega} \boldsymbol{\sigma} : \boldsymbol{\varepsilon}(\boldsymbol{w}) \, d\Omega + \int_{\Omega} \bar{\boldsymbol{b}} \cdot \boldsymbol{w} \, d\Omega$$

$$\iff \int_{\Omega} \boldsymbol{\sigma}(\boldsymbol{u}) : \boldsymbol{\varepsilon}(\boldsymbol{v} - \boldsymbol{u}) \, d\Omega \ge \int_{\Omega} \bar{\boldsymbol{b}} \cdot (\boldsymbol{v} - \boldsymbol{u}) \, d\Omega + \int_{\Gamma_{\sigma}} \bar{\boldsymbol{t}} \cdot (\boldsymbol{v} - \boldsymbol{u}) \, d\Gamma$$
(3.44)

- mit (3.41b) kann die Spannung aus (3.44) bzgl. der Verzerrung mit $\sigma = \mathcal{C} : \varepsilon$ ausgedrückt werden
- mit der Bilinearform $a:H^1_{\Gamma_u}\times H^1_{\Gamma_u}\to\mathbb{R}$ und Linearform $F:H^1_{\Gamma_u}\to\mathbb{R}$ mit

$$\begin{split} a(\boldsymbol{u}, \boldsymbol{v}) &\coloneqq \int_{\Omega} \boldsymbol{\varepsilon}(\boldsymbol{u}) : \mathcal{C} : \boldsymbol{\varepsilon}(\boldsymbol{v}) \, d\Omega \,, \\ F(\boldsymbol{v}) &\coloneqq \int_{\Omega} \bar{\boldsymbol{b}} \cdot \boldsymbol{v} \, d\Omega + \int_{\Gamma_{\sigma}} \bar{\boldsymbol{t}} \cdot \boldsymbol{v} \, d\Gamma \end{split}$$

Theorem 3.20.

lässt sich (3.44) in der altbekannten Form: Finde $u \in \mathcal{K}$, so dass gilt

$$a(\boldsymbol{u}, \boldsymbol{v} - \boldsymbol{u}) \ge F(\boldsymbol{v} - \boldsymbol{u}) \quad \forall \, \boldsymbol{v} \in \mathcal{K}.$$
 (3.45)

noch zu zeigen: Kornsche Ungleichung (vgl. [Bra13]) auch für $a(\cdot,\cdot)$ unter der Bedingung, dass $\max \|C_{ijkl}\| \leq M$ für ein $M \geq 0$ ist. \Rightarrow damit folgt die Koerzivität von a. Und noch Stetigkeit zeigen

- vgl. [KO88] S. 112, zeige: $|F(v)| \leq C(\|\bar{\boldsymbol{b}}\|_0 + \|\bar{\boldsymbol{t}}\|_{0,\Gamma_c}) \|v\|_1$, also mit $\bar{\boldsymbol{b}} \in (L^2(\Omega))^2$ und $\bar{\boldsymbol{t}} \in (L^2(\Gamma_c))^2$.
- ullet als letztes: K ist analog zu Lemma 3.1 abgeschlossen und konvex.
- also hat das Problem (3.45) eine eindeutige Lösung. als Theorem

Beweis. \Box

Theorem 3.21. Es sei $\mathbf{v}: \Omega \to \mathbb{R}^2$ und K wie oben definiert. Die Variationsungleichung (3.45) ist äquivalent zum Minimierungsproblem:

$$\min_{\boldsymbol{v} \in K} J(\boldsymbol{v}) = \frac{1}{2} a(\boldsymbol{v}, \boldsymbol{v}) - F(\boldsymbol{v})$$
(3.46)

 $Beweis.\,$ zeige die Voraussetzungen von Satz A.10, also Konvexität von Jz.B.

Bemerkung 3.22. für das Kontaktproblem mit Tresca-Reibung gibt es ein analoges Funktional. dieses aufführen‼ dieses ist nicht G-differenzierbar ⇒ anders herleiten. dies führt auf eine sogenannte Variationsungleichung 2. Art (vgl. [Ste12a])

$$a(\boldsymbol{u}, \boldsymbol{v} - \boldsymbol{u}) + j(\boldsymbol{v}) - j(\boldsymbol{u}) \ge F(\boldsymbol{v} - \boldsymbol{u})$$

mit dem Reibungsfunktional j.

3.2.3 Lösung des Kontaktproblems mittels FEM

• betrachte analog zu S_h den Raum der linearen mehrdimensionalen Ansatzfunktionen bzgl. einer quasi-uniformen Triangulierung T_h

$$\mathcal{S}_h := \{ \boldsymbol{v} \in (C^0(\Omega))^2 \mid \boldsymbol{v}|_T \in \mathcal{P}_1^2 \text{ für } T \in \mathcal{T}_h, \boldsymbol{v}|_{\Gamma_u} = \boldsymbol{0} \} \subset H^1_{\Gamma_u}(\Omega)$$
(3.47)

• mit einer Basis $\mathcal{B}_h := \{\psi_1, \dots, \psi_N\}$ von \mathcal{S}_h lässt sich jedes Element $\boldsymbol{v}_h \in \mathcal{S}_h$ als Linearkombination schreiben

$$\boldsymbol{v}_h(\bar{x}) = \sum_{i=1}^N x_i \, \boldsymbol{\psi}_i(\bar{x}) \quad \forall \, \bar{x} \in \Omega$$
 (3.48)

für genau ein $(x_1, \ldots, x_N)^T =: \boldsymbol{x} \in \mathbb{R}^N$.

• betrachten wir analog zu oben (3.45) diskret, so ergibt sich: Finde $u_h \in S_h$, so dass

$$a(\boldsymbol{u}_h, \boldsymbol{v}_h - \boldsymbol{u}_h) \ge F(\boldsymbol{v}_h - \boldsymbol{u}_h) \quad \forall \, \boldsymbol{v}_h \in K_h \,.$$
 (3.49)

mit $\mathcal{K}_h := \{ \boldsymbol{v}_h \in \mathcal{S}_h \mid \boldsymbol{v}_h(\bar{x}_i) \cdot \boldsymbol{n} - g(\bar{x}_i) \leq 0 \text{ mit } \bar{x}_i \in \mathcal{N} \cap \Gamma_c \}, \text{ d.h. die punktuelle Form (der Nebenbedingung) von } \mathcal{K}.$

• analog zu K_S können wir auch hier bzgl. einer Basis \mathcal{B}_h die Menge \mathcal{K}_h äquivalent durch den Koordinatenvektor $\boldsymbol{x} \in \mathbb{R}^N$ ausdrücken, d.h.

$$\mathcal{K}_{\mathcal{S}} := \left\{ \boldsymbol{x} \in \mathbb{R}^{N} \mid \sum_{j=1}^{N} x_{j} \, \boldsymbol{\psi}_{j}(\bar{x}_{i}) \cdot \boldsymbol{n} - g(x_{i}) \geq 0 \text{ für } \bar{x}_{i} \in \mathcal{N} \cap \Gamma_{c} \right\}$$

$$= \left\{ \boldsymbol{x} \in \mathbb{R}^{N} \mid B\boldsymbol{x} \geq \boldsymbol{c}, B = [-\boldsymbol{\psi}_{j}(\bar{x}_{i}) \cdot \boldsymbol{n}(\bar{x}_{i})]_{\bar{x}_{i} \in \mathcal{N} \cap \Gamma_{c}, 1 \leq j \leq N}, \boldsymbol{c} = [-g(\bar{x}_{i})]_{\bar{x}_{i} \in \mathcal{N} \cap \Gamma_{c}} \right\}$$

• damit ist das diskrete Problem: Finde $x^* \in \mathcal{K}_{S}$, so dass

$$(A\boldsymbol{x}^* - \boldsymbol{b})^T (\boldsymbol{x} - \boldsymbol{x}^*) \ge 0 \quad \forall \boldsymbol{x} \in \mathcal{K}_{\mathcal{S}},$$
 (3.50)

wobei

$$A = \left[\int_{\Omega} \boldsymbol{\varepsilon}(\boldsymbol{\psi}_j) : \mathcal{C} : \boldsymbol{\varepsilon}(\boldsymbol{\psi}_i) \, d\Omega \right]_{1 \leq i,j \leq N}, \, \boldsymbol{b} = \left[\int_{\Omega} \bar{\boldsymbol{b}} \cdot \boldsymbol{\psi}_i \, d\Omega + \int_{\Gamma_N} \bar{\boldsymbol{t}} \cdot \boldsymbol{\psi}_i \, ds \right]_{1 \leq i \leq N}$$

• Aus Bemerkung 3.13 folgt, dass die Variationsungleichung (3.50) äquivalent zu folgendem quadratischen Programm ist:

$$\min_{\boldsymbol{x} \in \mathbb{R}^N} \frac{1}{2} \boldsymbol{x}^T A \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x} \text{ s.t. } B \boldsymbol{x} \ge \boldsymbol{c},$$

d.h. Lösbarkeit des quadratischen Programms sollte auch gezeigt sein (vgl. Vug Skript oder auch nichtlineare Optimierung).

Kapitel 4

Ein hierarchischer Fehlerschätzer für Hindernisprobleme

 \bullet Vergleich Hindernisprobleme zu Kontaktproblemen \to warum gerade dieser Fehlerschätzer bei Hindernis- bzw. Kontaktproblemen

Dieses Kapitel basiert größtenteils auf [ZVKG11].

4.1 Herleitung eines a posteriori hierarchischen Fehlerschätzers

- der Einfachheit halber gehen wir von folgendem Sachverhalt aus
 Voraussetzung 4.1. Das Hindernis wird durch eine stückweise lineare stetige Funktion ψ beschrieben.
- nicht nichtstetige oder auch glatte Hindernisse sind analoge Aussagen, aber schwerer, beweisbar

4.1.1 Diskretisierung

• \mathcal{B}_h sei eine nodale Basis bzgl. einer quasi-uniformen Triangulierung \mathcal{T}_h für \mathcal{S}_h (s. auch Kapitel 2), K_h wie in Kapitel 3.1.3

$$K_h = \{ v_h \in \mathcal{S}_h \mid v_h(p) \ge \psi(p) \, \forall \, p \in \mathcal{N} \cap \Omega \},$$

wobei $\mathcal N$ wieder die Menge der Knoten von $\mathcal T_h$ darstellt.

• betrachte wieder die diskrete Variationsungleichung (3.12): Finde $u_h \in K_h$ mit

$$a(u_h, v_h - u_h) \ge (f, v_h - u_h) \quad \forall v_h \in K_h.$$

• oder äquivalent die Minimierung des Funktionals $J(v) = \frac{1}{2}a(v,v) - (f,v)$ über K_h , d.h.

$$u_h \in K_h: \quad J(u_h) \le J(v_h) \quad \forall v_h \in K_h$$
 (4.1)

- wegen der Voraussetzung, dass ψ stückweise linear ist, gilt $K_h \subset K$, da die linearen Ansatzfunktionen nicht nur punktuell, sondern auch kontinuierlich die Nebenbedingung erfüllen
- damit ist (3.12) eine konforme FEM → nichtkonforme wollen wir hier nicht betrachten (s. bel. stetige Hindernisse)
- wir wollen einen a posteriori Fehlerschätzer für den Fehler bzgl. der Funktionswerte der Funktionale $J(u), J(u_h)$ herleiten. Hierbei gilt $J(u_h) J(u) \geq 0$, denn aus den beiden Minimierungsproblemen über K und K_h folgt

$$J(u) \le J(v) \, \forall \, v \in K$$
, $J(u_h) \le J(v_h) \, \forall \, v_h \in K_h$.

Da $K_h \subset K$ gilt, folgt auch $J(u) \leq J(v_h)$ für alle $v_h \in K_h$. Setze $v_h = u_h$, so gilt

$$J(u) \le J(u_h) \Longleftrightarrow J(u_h) - J(u) \ge 0$$

Bemerkung 4.2. Gilt $\psi = -\infty$, d.h. ist kein Hindernis vorhanden, so folgt

 $J(u_h) - J(u) = \frac{1}{2}a(u_h, u_h) - (f, u_h) - \left(\frac{1}{2}a(u, u) - (f, u)\right)$ $= \frac{1}{2}a(u_h, u_h) - (f, u_h) - \frac{1}{2}a(u, u) + (f, u)$ = 0 $+ (a(u, u - u_h) - (f, u - u_h))$ $= (f, u) - (f, u_h)$ $= \frac{1}{2}a(u_h, u_h) - \frac{1}{2}a(u, u) + a(u, u - u_h)$ $= \frac{1}{2}a(u_h, u_h) - \frac{1}{2}a(u, u) + a(u, u) - a(u, u_h)$ $= \frac{1}{2}(a(u_h, u_h) + a(u, u) - 2a(u, u_h))$ $= \frac{1}{2}a(u_h - u, u_h - u) = \frac{1}{2}||u_h - u||_E^2.$

Ist nun ein $\psi > -\infty$ gegeben, dann addieren wir im zweiten Schritt nicht mehr Null, sondern es gilt für den Term

$$a(u, u - u_h) - (f, u - u_h) \le 0$$

und damit gilt $J(u_h) - J(u) \ge \frac{1}{2} ||u_h - u||_E^2$, d.h. eine obere Schranke des Fehlers im Funktional schätzt auch den Fehler zwischen exakter und approximierter Lösung in der Energienorm ab.

- Herleitung eines hierarchischen a posteriori Fehlerschätzers:
 - Notation. Um im Folgenden den hierarchischen Split leichter beschreiben zu können, schreiben wir für die Galerkin-Lösung u_h die Notation $u_{\mathcal{S}}$, um auszudrücken, dass diese im linearen Ansatzraum \mathcal{S}_h liegt. Analog sind die im Weiteren übrigen verwendeten Indizes zu verstehen.
- $\bullet\,$ wir führen Fehlerfunktion $e=u-u_{\mathcal{S}}$ ein
- weiter sei $\mathcal{I}(v) = \frac{1}{2}a(v,v) \rho_{\mathcal{S}}(v)$ mit $\rho_{\mathcal{S}}(v) = (f,v) a(u_{\mathcal{S}},v), v \in H_0^1(\Omega)$.

•

Bemerkung 4.3. (a) Die Linearform $\rho_{\mathcal{S}}$ stellt das Residuum der Variationsgleichung (d.h. ohne Hindernis) dar.

(b) Nach dem Darstellungssatz von Riesz existiert ein $v^* \in H_0^1(\Omega)$, so dass

$$(v^*, v)_1 = \rho_{\mathcal{S}}(v) \quad \forall v \in H_0^1(\Omega)$$

ist. Wir können also v^* als Lagrange-Multiplikator bzgl. der Nebenbedingung $v \geq \psi$ interpretieren.

• neues Minimierungsproblem, jetzt für den Fehler e.

Satz 4.4 (Lösung des Defektproblems). Mit den obigen Bezeichnungen löst die Fehlerfunktion e folgendes Defektproblem:

$$e \in \mathcal{A}: \quad \mathcal{I}(e) \le \mathcal{I}(v) \quad \forall v \in \mathcal{A},$$
 (4.2)

wobei $\mathcal{A} := \{ v \in H_0^1(\Omega) \mid v \ge \psi - u_{\mathcal{S}} \} = -u_{\mathcal{S}} + K.$

Beweis. Es sei u die Lösung von (3.2) und $u_{\mathcal{S}}$ die Lösung von (4.1). Dann gilt

$$u \in K: J(u) \le J(\tilde{v}) \forall \tilde{v} \in K (*)$$

$$\iff u \in K: J(u) - J(u_{\mathcal{S}}) \le J(\tilde{v}) - J(u_{\mathcal{S}}) \forall \tilde{v} \in K.$$

Wir rechnen für die linke Seite nach, dass gilt

$$J(u) - J(u_{\mathcal{S}}) = \frac{1}{2}a(u, u) - (f, u) - \left(\frac{1}{2}a(u_{\mathcal{S}}, u_{\mathcal{S}}) - (f, u_{\mathcal{S}})\right)$$

$$= \frac{1}{2}a(u, u) + \frac{1}{2}a(u_{\mathcal{S}}, u_{\mathcal{S}}) - a(u_{\mathcal{S}}, u_{\mathcal{S}}) - (f, u - u_{\mathcal{S}})$$

$$= \frac{1}{2}a(u, u) + \frac{1}{2}a(u_{\mathcal{S}}, u_{\mathcal{S}}) - a(u_{\mathcal{S}}, u) - ((f, u - u_{\mathcal{S}}) - a(u_{\mathcal{S}}, u - u_{\mathcal{S}}))$$

$$= \frac{1}{2}a(u - u_{\mathcal{S}}, u - u_{\mathcal{S}}) - \rho_{\mathcal{S}}(u - u_{\mathcal{S}})$$

$$= \frac{1}{2}a(e, e) - \rho_{\mathcal{S}}(e) = \mathcal{I}(e).$$

Analog gilt für die rechte Seite $J(\tilde{v}) - J(u_S) = \mathcal{I}(\tilde{v} - u_S)$. Mit $v := \tilde{v} - u_S$ gilt $v \in \mathcal{A}$ und damit ist (*) äquivalent zu: Finde $e \in \mathcal{A}$, so dass

$$\mathcal{I}(e) \le \mathcal{I}(v) \quad \forall v \in \mathcal{A}.$$

Korollar 4.5. Das Problem (4.2) ist äquivalent zur Variationsungleichung: Finde $e \in \mathcal{A}$ mit

$$a(e, v - e) \ge \rho_{\mathcal{S}}(v - e) \quad \forall v \in \mathcal{A}.$$
 (4.3)

Beweis. Analog zu Lemma 3.1 lässt sich zeigen, dass \mathcal{A} abgeschlossen und konvex ist. Mit Satz A.10 folgt dann die Behauptung.

- da ψ stückweise linear ist, liegt $0 \in \mathcal{A}$, d.h. das "gewünschte" Ergebnis für e liegt im betrachteten Raum
 - Bemerkung. Wir werden noch zeigen, dass $\rho_{\mathcal{S}}$ eine Schlüsselgröße für die a posteriori Abschätzung darstellt.
- a posteriori Schätzer in 2 Schritten
 - (i) diskreditiere (4.3) bzgl. einer Erweiterung von S_h (hier quadratische Funktionen), so dass e hinreichend genau approximiert wird.
 - (ii) Aufteilung des neuen Raumes, sodass (4.3) lokal in der Erweiterung exakt gelöst werden kann
- als Erweiterung von S_h betrachten wir einen Raum Q_h mit $S_h \subset Q_h$.
- hier bietet sich an: $Q_h := \{v \in C^0(\Omega) \mid v \mid_T \in \mathcal{P}_2 \text{ für } T \in \mathcal{T}_h, v \mid_{\partial\Omega} = 0\}$, also der Raum der quadratischen Spline über einer quasi-uniformen Zerlegung \mathcal{T}_h .

- damit definiere $\mathcal{N}_{\mathcal{Q}} := \mathcal{N} \cup \{x_E \mid E \in \mathcal{E}\}$, wobei x_E den Mittelpunkt der Kante E darstellt und \mathcal{E} somit die Menge aller Kanten ist.
- \bullet damit ergibt sich ${\mathcal A}$ über ${\mathcal Q}$ diskret als

$$\mathcal{A}_{\mathcal{Q}} := \{ v \in \mathcal{Q}_h \mid v(p) \ge \psi(p) - u_{\mathcal{S}}(p) \,\forall \, p \in \mathcal{N}_{\mathcal{Q}} \cap \Omega \}$$
 (4.4)

• im Bezug zu (4.4) ergibt sich dann das diskrete Defektproblem

$$e_{\mathcal{O}} \in \mathcal{A}_{\mathcal{O}}: \quad a(e_{\mathcal{O}}, v - e_{\mathcal{O}}) \ge \rho_{\mathcal{S}}(v - e_{\mathcal{O}}) \quad \forall v \in \mathcal{A}_{\mathcal{O}}$$
 (4.5)

•

Bemerkung 4.6. Im Allgemeinen gilt hierbei nicht $\mathcal{A}_{\mathcal{Q}} \subset \mathcal{A}$. So kann man sich anschaulich eine quadratische Funktion $v_{\mathcal{Q}} \in \mathcal{A}_{\mathcal{Q}}$ vorstellen, die allerdings zwischen den übereinstimmenden Werten aufgrund ihrer Krümmung das lineare Hindernis aus \mathcal{A} durchdringt.

Abbildung 4.1: Beispiel eines affinen Hindernisses ψ mit $v \in \mathcal{A}_{\mathcal{Q}}$ in \mathbb{R}

• hierarchische Aufteilung von \mathcal{Q}_h durch $\mathcal{Q}_h = \mathcal{S}_h \oplus \mathcal{V}_h$, wobei $\mathcal{V}_h := \{\phi_E \mid E \in \mathcal{E}\}$ ist und ϕ_E die Bubble-Funktion mit

$$\phi_E(p) = \delta_{x_E,p} = \begin{cases} 1, & p = x_E \\ 0, & \text{sonst} \end{cases}$$

ist

•

Beispiel 4.7. allgemeine Skizze und die drei bubble Funktionen auf einem Referenzdreieck

•

Satz 4.8. Mit den oben verwendeten Notationen gilt $Q_h = S_h \oplus V_h$.

Beweis. Wir zeigen, dass $\mathcal{Q}_h = \mathcal{S}_h \oplus \mathcal{V}_h$ auf dem Referenzdreieck gilt und damit gilt es auch für beliebige Dreiecke $T \in \mathcal{T}_h$, da ein allgemeines Dreieck T aus dem Referenzelement \tilde{T} durch affine Transformation hervorgeht.

Auf dem Referenzelement \tilde{T} ist $\{\phi_1, \phi_2, \phi_3\}$ eine Basis von \mathcal{S}_h mit

$$\phi_1(\xi, \eta) = 1 - \xi - \eta$$
, $\phi_2(\xi, \eta) = \xi$, $\phi_3(\xi, \eta) = \eta$

und $\{\phi_4, \phi_5, \phi_6\}$ eine Basis von \mathcal{V}_h mit

$$\phi_1(\xi, \eta) = 4\xi(1 - \xi - \eta), \quad \phi_2(\xi, \eta) = 4\xi\eta, \quad \phi_3(\xi, \eta) = 4\eta(1 - \xi - \eta).$$

Damit ist $\{\phi_1, \ldots, \phi_6\}$ ein Erzeugendensystem von \mathcal{Q}_h , da jedes Element

$$a_0 + a_1 \xi + a_2 \eta + a_3 \xi^2 + a_4 \xi \eta + a_5 \eta^2 \in \mathcal{Q}_h$$

als Linearkombination aus den Funktionen beschrieben werden kann $(\phi_1 \text{ bis } \phi_6 \text{ enthalten alle vorkommenden Summanden eines Polynom 2. Grades). Außerdem ist leicht nachzurechnen, dass die Funktionen <math>\phi_i, i = 1, \ldots, 6$, linear unabhängig sind und damit gilt

$$Q_h = \operatorname{span}\{\phi_1, \dots, \phi_6\}.$$

Aus der linearen Unabhängigkeit folgt damit auch $S_h \cap V_h = \{0\}$ gilt und damit die Behauptung.

- daher kann jedes Element $v_{\mathcal{Q}} \in \mathcal{Q}_h$ als $v_{\mathcal{Q}} = v_{\mathcal{S}} + v_{\mathcal{V}}$ mit $v_{\mathcal{S}} \in \mathcal{S}_h, v_{\mathcal{V}} \in \mathcal{V}_h$ geschrieben werden
- aus diesem Grund führen wir folgende Bilinearform ein:

$$a_{\mathcal{Q}}(v, w) := a(v_{\mathcal{S}}, w_{\mathcal{S}}) + \sum_{E \in \mathcal{E}} u_{\mathcal{V}}(x_E) w_{\mathcal{V}}(x_E) a(\phi_E, \phi_E) \quad \forall v, w \in \mathcal{Q}_h,$$

welche aufgrund der Eigenschaften der direkten Summe von \mathcal{S}_h und \mathcal{V}_h wohldefiniert ist.

- dabei ergibt sich $a_{\mathcal{Q}}$ durch Entkopplung von \mathcal{S}_h und \mathcal{V}_h und anschließender "Diagonalisierung" auf \mathcal{V}
- sinnvoll $a_{\mathcal{Q}}$ so einzuführen, denn:

Satz 4.9. Die zu a_Q assoziierte Energienorm

$$||v||_{\mathcal{Q}} := a_{\mathcal{Q}}(v, v)^{\frac{1}{2}}, \quad v \in \mathcal{Q}_h$$

ist äquivalent zur Energienorm $\|\cdot\|_E$, d.h. es gibt Konstanten c_1, c_2 (die insbesondere nur von der Quasi-Uniformität von \mathcal{T}_h abhängen), so dass

$$c_1 \|v\|_E \le \|v\|_{\mathcal{O}} \le c_2 \|v\|_E \,, \quad \forall \, v \in \mathcal{Q}_h \,.$$

Beweis. Die Aussage folgt aus Theorem 4.1 bzw. Bemerkung 4.3 in [HK92] zusammen mit dem Lemma auf Seite 14 in [DLY89].

• daher führen wir die approximierte Energie

$$\mathcal{I}_{\mathcal{Q}}(v) := \frac{1}{2} a_{\mathcal{Q}}(v, v) - \rho_{\mathcal{S}}(v), \quad v \in \mathcal{Q}_h$$
 (4.6)

ein.

- das damit verbundene Defektproblem ist allerdings noch durch die Nebenbedingung aus $\mathcal{A}_{\mathcal{Q}}$ mit \mathcal{S}_h gekoppelt und daher noch nicht alleine auf die Raumerweiterung \mathcal{V}_h bezogen.
- Als Abhilfe ignorieren wir einfach die linearen Beiträge in $\mathcal{A}_{\mathcal{Q}}$ und führen eine echte Teilmenge

$$\mathcal{A}_{\mathcal{V}} := \{ v \in \mathcal{V} \mid v(x_E) \ge \psi(x_E) - u_{\mathcal{S}}(x_E) \, \forall \, E \in \mathcal{E} \}$$
 (4.7)

von $\mathcal{A}_{\mathcal{Q}}$ ein.

• zusammen mit (4.6) und (4.7) erhalten wir das lokale diskrete Defektproblem

$$\varepsilon_{\mathcal{V}} \in \mathcal{A}_{\mathcal{V}}: \quad \mathcal{I}_{\mathcal{Q}}(\varepsilon_{\mathcal{V}}) \le \mathcal{I}_{\mathcal{Q}}(v) \quad \forall v \in \mathcal{A}_{\mathcal{V}}$$
 (4.8)

bzw. die dazu äquivalente Variationsungleichung

$$\varepsilon_{\mathcal{V}} \in \mathcal{A}_{\mathcal{V}}: \quad a_{\mathcal{O}}(\varepsilon_{\mathcal{V}}, v - \varepsilon_{\mathcal{V}}) > \rho_{\mathcal{S}}(v - \varepsilon_{\mathcal{V}}) \quad \forall v \in \mathcal{A}_{\mathcal{V}}.$$
 (4.9)

•

- Bemerkung 4.10. (a) Da ψ stetig stückweise linear ist und somit $u_{\mathcal{S}} \geq \psi$ gilt, folgt $0 \in \mathcal{A}_{\mathcal{V}}$. Damit ist auch hier die gewünschte Lösung für $\varepsilon_{\mathcal{V}}$ in $\mathcal{A}_{\mathcal{V}}$ enthalten
- (b) Auch für $\mathcal{A}_{\mathcal{V}}$ lässt sich mit analogem Vorgehen zu Lemma 3.1 die Konvexität zeigen.

•

Lemma 4.11. Das Energiefunktional $\mathcal{I}_{\mathcal{Q}}$ ist konvex.

Beweis. Da a eine stetige koerzive Bilinearform, werden aufgrund der Konstruktion von $a_{\mathcal{Q}}$ diese Eigenschaften auch auf $a_{\mathcal{Q}}$ übertragen. Weiterhin ist leicht zu überprüfen, dass $\rho_{\mathcal{S}}$ eine stetige Linearform ist. Dann folgt aus Lemma 2.10 direkt die Behauptung.

• Lösung des lokalen Defektproblems

Satz 4.12. Die Lösung von (4.8) bzw. (4.9) ist explizit gegeben durch

$$\varepsilon_{\mathcal{V}}(x_E) = \frac{\max\{-d_E, \rho_E\}}{\|\phi_E\|} \tag{4.10}$$

wobei

$$d_E = (u_S(x_E) - \psi(x_E)) \|\phi_E\| \ge 0, \quad \rho_E = \frac{\rho_S(\phi_E)}{\|\phi_E\|}.$$
 (4.11)

Beweis. Es sei $M = |\mathcal{E}|$ die Anzahl der Kanten. Zunächst berechnen wir zur besseren Übersicht $\varepsilon_{\mathcal{V}}(x_E)$ konkret, d.h.

$$\varepsilon_{\mathcal{V}}(x_{E}) = \frac{\max\{-d_{E}, \rho_{E}\}}{\|\phi_{E}\|}
= \frac{\max\{(\psi(x_{E}) - u_{\mathcal{S}}(x_{E}))\|\phi_{E}\|, \frac{\rho_{\mathcal{S}}(\phi_{E})}{\|\phi_{E}\|}\}}{\|\phi_{E}\|}
= \max\{\psi(x_{E}) - u_{\mathcal{S}}(x_{E}), \frac{\rho_{\mathcal{S}}(\phi_{E})}{\|\phi_{E}\|^{2}}\}
= \max\{\psi(x_{E}) - u_{\mathcal{S}}(x_{E}), \frac{1}{\|\phi_{E}\|^{2}}((f, \phi_{E}) - a(u_{\mathcal{S}}, \phi_{E}))\}.$$
(4.12)

Da $\varepsilon_{\mathcal{V}} = \sum_{E \in \mathcal{E}} \varepsilon_{\mathcal{V}}(x_E) \phi_E$ ist, können wir (4.8) bzgl. der Basis $\{\phi_E \mid E \in \mathcal{E}\}$ von \mathcal{V}_h diskret schreiben als

$$\min \frac{1}{2} \mathbf{v}^T D \mathbf{v} - \mathbf{g}^T \mathbf{v}$$
 s.t. $\mathbf{v} \ge \mathbf{\psi} - \mathbf{u}_{\mathcal{S}}$,

wobei $\mathbf{v} = [\varepsilon_{\mathcal{V}}(x_{E_i})]_{1 \leq i \leq M}, D = \operatorname{diag}(a(\phi_{E_1}, \phi_{E_1}), \dots, a(\phi_{E_M}, \phi_{E_M})), \mathbf{g} = [(f, \phi_{E_i}) - a(u_{\mathcal{S}}, \phi_{E_i})]_{1 \leq i \leq M}, \mathbf{\psi} = [\psi(x_{E_i})]_{1 \leq i \leq M} \text{ und } \mathbf{u}_{\mathcal{S}} = [u_{\mathcal{S}}(x_{E_i})]_{1 \leq i \leq M}.$ Da $\mathcal{A}_{\mathcal{V}}$ und $\mathcal{I}_{\mathcal{Q}}$ konvex sind, existiert ein Minimum $\mathbf{v}^* \in \mathcal{A}_{\mathcal{V}}$ von $\mathcal{I}_{\mathcal{Q}}$, das die KKT-Bedingungen erfüllt. Damit gilt

$$D\mathbf{v} - \mathbf{g} - \lambda = \mathbf{0}, \tag{4.13a}$$

$$\lambda \ge 0, \tag{4.13b}$$

$$v \ge \psi - u_{\mathcal{S}} \,, \tag{4.13c}$$

$$\lambda_i (\mathbf{v} - \boldsymbol{\psi} + \boldsymbol{u}_{\mathcal{S}})_i = 0 \quad \forall i = 1, \dots, M.$$
 (4.13d)

Es sei $k \in \{1, \dots, M\}$ beliebig

<u>Fall 1:</u> Gilt $\lambda_k = 0$, so folgt aus (4.13a)

$$\varepsilon_{\mathcal{V}}(x_{E_k}) = v_k = \frac{g_k}{a(\phi_{E_k}, \phi_{E_k})} = \frac{1}{\|\phi_{E_k}\|^2} ((f, \phi_{E_k}) - a(u_{\mathcal{S}}, \phi_{E_k})).$$

<u>Fall 2:</u> Gilt $\lambda_k \neq 0$, dann folgt wegen (4.13d)

$$\varepsilon_{\mathcal{V}}(x_{E_k}) = v_k = (\boldsymbol{\psi} - \boldsymbol{u}_{\mathcal{S}})_k = \psi(x_{E_k}) - u_{\mathcal{S}}(x_{E_k}).$$

Insgesamt folgt mit (4.13c) und (4.12) die Behauptung.

• wir wollen im weiteren den a posteriori Fehlerschätzer

$$-\mathcal{I}_{\mathcal{Q}}(\varepsilon_{\mathcal{V}}) = -\frac{1}{2}a_{\mathcal{Q}}(\varepsilon_{\mathcal{V}}, \varepsilon_{\mathcal{V}}) + \rho_{\mathcal{S}}(\varepsilon_{\mathcal{V}})$$

betrachten und werden zeigen, dass er äquivalent zu $J(u_s) - J(u)$ ist (vgl. Kapitel 4.1.4 und 4.1.5)

• zunächst aber Einführung des lokalen Anteils des Fehlerschätzers $-\mathcal{I}_{\mathcal{Q}}(\varepsilon_{\mathcal{V}})$

4.1.2 Lokaler Anteil des Fehlerschätzers

•

Notation. (a) Wir schreiben im Folgenden " \lesssim " statt " $\leq C$ ", wenn die Konstante C nur von der Quasi-Uniformität von \mathcal{T}_h abhängt.

- (b) Weiter schreiben wir " $A \approx B$ " für " $A \lesssim B$ " und " $B \lesssim A$ ".
- \bullet zunächst zeigen wir ein paar Eigenschaften von der Fehlerfunktion $e=u-u_{\mathcal{S}}$

•

Lemma 4.13. Die Fehlerfunktion $e = u - u_S$ erfüllt die Ungleichungen

$$\frac{1}{2} \|e\|^2 \le \frac{1}{2} \rho_{\mathcal{S}}(e) \le -\mathcal{I}(e) \le \rho_{\mathcal{S}}(e). \tag{4.14}$$

Beweis. Wir erinnern uns, dass

$$-\mathcal{I}(e) := -\frac{1}{2} \underbrace{a(e, e)}_{\geq 0} + \rho_{\mathcal{S}}(e) \leq \rho_{\mathcal{S}}(e),$$

da a koerziv ist. Dann gilt weiter

$$\begin{split} -\mathcal{I}(e) &= -\frac{1}{2}a(e,e) + \rho_{\mathcal{S}}(e) \\ &= -\frac{1}{2}a(u-u_{\mathcal{S}},e) + \rho_{\mathcal{S}}(e) \\ &= -\frac{1}{2}a(u,e)\underbrace{\frac{1}{2}a(u_{\mathcal{S}},e) - \frac{1}{2}(f,e)}_{=-\frac{1}{2}\rho_{\mathcal{S}}(e)} + \frac{1}{2}(f,e) + \rho_{\mathcal{S}}(e) \\ &= -\frac{1}{2}\underbrace{(a(u,u-u_{\mathcal{S}}) - (f,u-u_{\mathcal{S}}))}_{<0} + \frac{1}{2}\rho_{\mathcal{S}}(e) \geq \frac{1}{2}\rho_{\mathcal{S}}(e) \;. \end{split}$$

Es bleibt also die erste Ungleichung von (4.14) zu zeigen. Wir rechnen nach, dass

$$\frac{1}{2}\rho_{\mathcal{S}}(e) = \frac{1}{2}(f, e) - \frac{1}{2}a(u_{\mathcal{S}}, e)$$

$$= \frac{1}{2}(\underbrace{(f, u - u_{\mathcal{S}}) - a(u, u - u_{\mathcal{S}})}_{\geq 0} + a(u - u_{\mathcal{S}}, e))$$

$$\geq \frac{1}{2}a(u - u_{\mathcal{S}}, e) = \frac{1}{2}a(e, e) = \frac{1}{2}\|e\|^{2}$$

gilt, womit (4.14) insgesamt bewiesen ist.

•

Korollar 4.14. Für die Lösungen $e_{\mathcal{O}}, \varepsilon_{\mathcal{V}}$ von (4.5) und (4.9) gilt

$$\frac{1}{2} \|e_{\mathcal{Q}}\|^2 \le \frac{1}{2} \rho_{\mathcal{S}}(e_{\mathcal{Q}}) \le -\mathcal{I}(e_{\mathcal{Q}}) \le \rho_{\mathcal{S}}(e_{\mathcal{Q}}), \tag{4.15}$$

$$\frac{1}{2} \|\varepsilon_{\mathcal{V}}\|_{\mathcal{Q}}^2 \le \frac{1}{2} \rho_{\mathcal{S}}(\varepsilon_{\mathcal{V}}) \le -\mathcal{I}_{\mathcal{Q}}(\varepsilon_{\mathcal{V}}) \le \rho_{\mathcal{S}}(\varepsilon_{\mathcal{V}}). \tag{4.16}$$

Beweis. Da $e_{\mathcal{Q}}$ und $\varepsilon_{\mathcal{V}}$ Lösungen der Variationsungleichungen (4.5) und (4.9) sind, folgt die Behauptung analog zum Beweis von Lemma 4.13.

- wegen (4.16) ist $\rho_{\mathcal{S}}(\varepsilon_{\mathcal{V}})$ äquivalent zum Fehlerschätzer $-\mathcal{I}_{\mathcal{Q}}(\varepsilon_{\mathcal{V}})$ und kann daher als Indikator für $-\mathcal{I}_{\mathcal{Q}}(\varepsilon_{\mathcal{V}})$ verwendet werden (verkleinern wir $\rho_{\mathcal{S}}$, so wird auch $-\mathcal{I}_{\mathcal{Q}}$ kleiner)
- in Kapitel 4.1.4 und 4.1.5 werden wir die Äquivalenz von $-\mathcal{I}_{\mathcal{Q}}(\varepsilon_{\mathcal{V}})$ zum exakten Fehler in den Funktionalen $J(u_{\mathcal{S}}) J(u) = -\mathcal{I}(e)$ zeigen
- damit folgt auch aus Lemma 4.13, dass der Fehler $J(u_S)-J(u)$ äquivalent zu $\rho_S(e)$ ist \Rightarrow daher betrachten wir ein paar weitere Eigenschaften von ρ_S .
- nun zu den lokalen Anteilen von $\rho_{\mathcal{S}}(\varepsilon_{\mathcal{V}})$:
- es sei $u_{\mathcal{S}}$ die Lösung von (3.12), dann auf jedem $T \in \mathcal{T}_h$ die Gleichung $\Delta u_{\mathcal{S}} = 0$, da $u_{\mathcal{S}}$ auf jedem T linear ist.

• dann gilt mit $\Omega = \bigcup_{T \in \mathcal{T}_h} T$ für alle $v \in H^1(\Omega)$

$$\rho_{\mathcal{S}}(v) = (f, v) - a(u_{\mathcal{S}}, v) = \int_{\Omega} f v \, d\Omega - \int_{\Omega} \nabla u_{\mathcal{S}} \nabla v \, d\Omega
= \int_{\Omega} f v \, d\Omega - \sum_{T \in \mathcal{T}_h} \int_{T} \nabla u_{\mathcal{S}} \nabla v \, dT
= \int_{\Omega} f v \, d\Omega - \sum_{T \in \mathcal{T}_h} \left(\int_{\partial T} v \partial_{\boldsymbol{n}} u_{\mathcal{S}} \, d\Gamma - \int_{T} \underbrace{\Delta u_{\mathcal{S}}}_{=0} v \, dT \right)
= \int_{\Omega} f v \, d\Omega - \sum_{T \in \mathcal{T}_h} \int_{\partial T} v \partial_{\boldsymbol{n}} u_{\mathcal{S}} \, d\Gamma ,$$
(4.17)

wobei im vorletzten Schritt die 1. Green'sche Formel angewendet wurde und dn die äußere Einheitsnormale von T ist.

• Betrachten wir zwei beliebige Dreiecke T_1, T_2 wie in Abbildung 4.1.2, wobei n hierbei die Einheitsnormale, die von T_1 nach T_2 zeigt, bezeichnet, so können wir die Summe aus (4.17) bzgl. der Menge der Kanten \mathcal{E} darstellen, da der Rand $\partial T = E_1 \cup E_2 \cup E_3$ für jedes T disjunkt in seine Kantenstücke aufgeteilt werden kann.

Dabei sei E nun die Kante, die T_1 und T_2 zugleich enthalten, d.h. n steht rechtwinklig auf E. Dann gilt, dass die Richtungsableitung $\partial_n u_{\mathcal{S}}|_{T_2}$ negativ ist bzgl. (4.17) wegen der negativen Orientierung von n bzgl. T_2 .

Abbildung 4.2: Dreiecke T_1 und T_2 mit Einheitsnormalen \boldsymbol{n}

Hiermit ergibt sich aus (4.17)

$$\rho_{\mathcal{S}}(v) = \int_{\Omega} f v \, d\Omega - \sum_{T \in \mathcal{T}_h} \int_{\partial T} v \partial_{\boldsymbol{n}} u_{\mathcal{S}} \, d\Gamma
= \int_{\Omega} f v \, d\Omega - \sum_{E \in \mathcal{E}} \int_{E} v \, (\underbrace{\partial_{\boldsymbol{n}} u_{\mathcal{S}}|_{T_1} - \partial_{\boldsymbol{n}} u_{\mathcal{S}}|_{T_2}}_{=:-j_E}) \, d\Gamma
= \int_{\Omega} f v \, d\Omega + \sum_{E \in \mathcal{E}} \int_{E} j_E v \, d\Gamma .$$
(4.18)

• da für die nodalen Basisfunktionen $\{\phi_p \mid p \in \mathcal{N} \cap \Omega\}$ gilt

$$\sum_{p \in \mathcal{N}} \phi_p = 1 \text{ auf ganz } \Omega,$$

sodass wir $\rho_{\mathcal{S}}$ wie folgt in lokale Anteile aufteilen können:

$$\rho_p(v) := \rho_{\mathcal{S}}(v\phi_p), \quad v \in H^1(\Omega). \tag{4.19}$$

Lemma 4.15. Für ρ_p gilt

$$\rho_p(v) = \int_{\omega_p} f v \phi_p \, d\Omega + \sum_{E \in \mathcal{E}_p} \int_E j_E v \phi_p \, d\Gamma \,, \quad v \in H^1(\Omega)$$

 $mit\ \omega_p := \operatorname{supp} \phi_p\ und\ \mathcal{E}_p := \{E \in \mathcal{E} \mid E \ni p\},\ d.h.\ die\ Menge\ der\ Kanten,\ in\ denen\ p\ enthalten\ ist.$

Beweis. Wir rechnen einfach mit der Definition (4.19) und (4.18) nach, dass für ein beliebiges $v \in H^1(\Omega)$ gilt

$$\begin{split} \rho_p(v) &= \rho_{\mathcal{S}}(v\phi_p) = \int_{\Omega} fv\phi_p \, d\Omega + \sum_{E \in \mathcal{E}} \int_E j_E v\phi_p \, d\Gamma \\ &= \int_{\omega_p} fv\phi_p \, d\Omega + \sum_{E \in \mathcal{E}_p} \int_E j_E v\phi_p \, d\Gamma \,, \end{split}$$

da $\phi_p \equiv 0$ auf $\mathcal{O} := \overline{\Omega \setminus \omega_p}$ und damit auch auf $\mathcal{F} := \mathcal{E} \setminus \mathcal{E}_p$, da $\mathcal{F} \subset \mathcal{O}$.

Abbildung 4.3: Darstellung von ω_p (grau) und \mathcal{E}_p (abgehende Kanten von p) für ein beliebiges ϕ_p

•

Korollar 4.16. Der Indikator $\rho_{\mathcal{S}}$ lässt sich schreiben als

$$\rho_{\mathcal{S}} = \sum_{p \in \mathcal{N}} \rho_p \,.$$

Beweis. Die Behauptung folgt direkt aus Lemma 4.15 zusammen mit

$$\Omega = \bigcup_{p \in \mathcal{N}} \omega_p$$
, $\mathcal{E} = \bigcup_{p \in \mathcal{N}} \mathcal{E}_p$ und $\sum_{p \in \mathcal{N}} \phi_p = 1$

durch einfaches Nachrechnen

• im unbeschränkten Fall gilt $\rho_{\mathcal{S}}=0 \Leftrightarrow e=0$, denn zu $\rho_{\mathcal{S}}=0$ ist äquivalent

$$a(e, v) = \rho_{\mathcal{S}}(v) = 0 \quad \forall v \in \mathcal{V}.$$

Da $e \in \mathcal{V}$ ist, folgt wegen der Galerkin-Orthogonalität, dass e = 0 sein muss. Die Umkehrung gilt analog.

- bei Variationsungleichungen gilt dies im allgemeinen nicht.
- aber: aus Lemma 4.13 folgt allgemeiner, falls $\rho_{\mathcal{S}}(v) \leq 0$ für alle $v \in \mathcal{A}$ gilt

$$\frac{1}{2}||e||^2 \le \rho_{\mathcal{S}}(e) \le 0 \implies ||e|| = 0 \implies e = 0,$$

wodurch $\rho_{\mathcal{S}} = 0$ folgt, dass e = 0 ist.

• es gilt, ist $u_{\mathcal{S}}$ die Lösung von (3.12), so gilt für alle $p \in \mathcal{N} \cap \Omega$, dass $v = u_{\mathcal{S}} + \phi_p \geq \psi$, d.h. $v \in K_h$.

Damit folgt mit Einsetzen von v in (3.12)

$$a(u_{\mathcal{S}}, u_{\mathcal{S}} + \phi_p - u_{\mathcal{S}}) \ge (f, u_{\mathcal{S}} + \phi_p - u_{\mathcal{S}})$$

$$\iff 0 \ge (f, \phi_p) - a(u_{\mathcal{S}}, \phi_p) = \rho_{\mathcal{S}}(\phi_p)$$
(4.20)

dies bedeutet, dass die lineare Approximation des Fehlers e gleich Null ist.

• falls an einem Punkt p kein Kontakt zwischen $u_{\mathcal{S}}$ und ψ vorliegt, also $u_{\mathcal{S}}(p) > \psi(p)$ ist, dann können wir ein $\alpha > 0$ hinreichend klein wählen, sodass $v = u_{\mathcal{S}} - \alpha \phi_p \in K_h$ liegt. Dann folgt analog durch Einsetzen von v in (3.12)

$$0 \ge (f, -\alpha\phi_p) - a(u_{\mathcal{S}}, -\alpha\phi_p)$$

$$\iff 0 \le (f, \phi_p) - a(u_{\mathcal{S}}, \phi_p) = \rho_{\mathcal{S}}(\phi_p) \le 0$$
(4.20)

und damit gilt $\rho_{\mathcal{S}}(\phi_p) = 0$

• zusammen ergeben sich die Bedingungen

$$\rho_{\mathcal{S}}(\phi_p) \le 0, \quad \psi(p) - u_{\mathcal{S}}(p) \le 0, \quad \rho_{\mathcal{S}}(\phi_p)(\psi(p) - u_{\mathcal{S}}(p)) = 0 \quad (4.21)$$

dies berechtigt zur Definition von Kontakt- und Nichtkontaktpunkten
 Definition 4.17. Wir definieren die Mengen von Kontaktpunkten N⁰ und Nichtkontaktpunkten N⁺ durch

$$\mathcal{N}^0 := \{ p \in \mathcal{N} \cap \Omega \mid u_{\mathcal{S}}(p) = \psi(p) \}, \quad \mathcal{N}^+ := \{ p \in \mathcal{N} \cap \Omega \mid u_{\mathcal{S}}(p) > \psi(p) \}.$$

•

Bemerkung 4.18. Die Bedingungen (4.21) können wir auch auf den lokalen Anteil ρ_p übertragen, damit ergibt sich für alle $p \in \mathcal{N} \cap \Omega$

$$\rho_p(1) \le 0, \tag{4.22a}$$

$$u_{\mathcal{S}}(p) > \psi(p) \Longrightarrow \rho_p(1) = 0,$$
 (4.22b)

denn $\rho_p(1) = \rho_{\mathcal{S}}(\phi_p)$.

• damit ist also die Approximation von e über S_h gleich Null, wenn die lokalen Anteile (im Vektor später) kleiner gleich Null sind

4.1.3 Oszillationsterme

- in Kapitel 4.1.4 werden wir zeigen, dass $-\mathcal{I}_{\mathcal{Q}}(\varepsilon_{\mathcal{V}})$ eine obere Schranke von $-\mathcal{I}(e)$ bis auf Terme höherer Ordnung bereitstellen, d.h. Terme, die nicht in \mathcal{V} enthalten sind \to Oszillationsterme (hier eingeführt)
- man kann in den numerischen Beispielen später sehen, dass (wie auch in der Theorie) eine Verkleinerung der Oszillation auch eine Verringerung des Fehlers mit sich bringt ⇒ wir führen die Oszillationsterme ein (auch ohne präzise Beweise)
- die Oszillation ist in zwei Teile kaufteilbar

$$\operatorname{osc}(u_{\mathcal{S}}, \psi, f) := \operatorname{osc}_{1}(u_{\mathcal{S}}, \psi) + \operatorname{osc}_{2}(u_{\mathcal{S}}, \psi, f) \tag{4.23}$$

(später vielleicht mit Wurzeln anders)

- \bullet im unbeschränkten Fall ist die Oszillation nur von f abhängig (s. [MNS00]) und dort wird daher von "Daten-Oszillation" gesprochen
- osc₁ ist ein Maß für die Oszillation zwischen Hindernis ψ und der Galerkin-Lösung $u_{\mathcal{S}}$, d.h.

$$\operatorname{osc}_{1}(u_{\mathcal{S}}, \psi) := \left(\sum_{p \in \mathcal{N}^{0+}} \|\nabla(\psi - u_{\mathcal{S}})\|_{0, \omega_{p}}^{2} \right)^{\frac{1}{2}}, \tag{4.24}$$

wobei $\mathcal{N}^{0+} := \{ p \in \mathcal{N}^0 \mid u_{\mathcal{S}} > \psi \text{ in } \omega_p \setminus \{p\} \}$, also die Megne der isolierten Kontaktknoten, d.h. $u_{\mathcal{S}}$ ist in ω_p nur mit p in Kontakt

- anschaulich: da $\psi, u_{\mathcal{S}}$ linear, gilt: je größer die Differenz zwischen ψ und $u_{\mathcal{S}}$, umso größer die Differenz $\nabla(\psi u_{\mathcal{S}})$, d.h. auch osc₁
- das kontinuierliche Gegenstück zu \mathcal{N}^{0+} ist die Menge der *isolierten Kontaktpunkte* x_c , die aufgrund von $u-\psi>0$ für alle $x\in\mathcal{U}(x_c,\varepsilon)\subset\Omega$ mit $u(x_c)=\psi(x_c)$ alle strikten Minima $x_c\in\Omega$ enthält $\Rightarrow (\nabla u-\nabla\psi)=0$ für alle isolierten Kontaktpunkte, wenn u,ψ hinreichend glatt sind
- da laut Theorem ?? $u_h \to u$ für $h \to 0$ geht, folgt: wenn ein isolierter Kontaktknoten $p \in \mathcal{N}^{0+}$ bei Verfeinerung bestehen bleibt, so hat die exakte Lösung u einen korrespondierenden Kontaktpunkt \tilde{p} , dann gilt

$$\bigcup_{p \in \mathcal{N}^{0+}} \omega_p \xrightarrow[h \to 0]{} \tilde{p}$$

- damit gilt osc₁ hat wenigstens den Grad vom Fehler e (warum?)
- wegen oben (mit dem hinreichend glatten u, ψ) verschwindet osc₁ für $h \to 0$
- osc₂ ist über zwei Mengen definiert:

$$\mathcal{N}^{++} := \{ p \in \mathcal{N}^+ \mid \rho_E \ge -d_E \,\forall \, E \in \mathcal{E}_p \}$$
 (4.25)

d.h. alle Punkte ohne Kontakt, in denen der Fehler $\varepsilon_{\mathcal{V}}$ nicht in Kontakt mit $\mathcal{A}_{\mathcal{V}}$ steht (wie in Beweis von Satz ?? ersichtlich)

$$\mathcal{N}^{0-} := \{ p \in \mathcal{N}^0 \mid u_{\mathcal{S}} = \psi, f \le 0 \text{ auf } \omega_p, j_E \le 0 \,\forall \, E \in \mathcal{E}_p \}$$
 (4.26)

d.h. voller Kontakt (s. auch [SV07] Gleichung (2.11)) mit Last f auf Druck und negativem Normalenfluss j_E

• aus der Nebenbedingung von \mathcal{N}^{0-} folgt

$$0 \ge f + \sum_{E \in \mathcal{E}_p} j_E$$

durch Multiplikation mit geeigneten Testfunktionen v und multiplizieren über ω_p ergibt

$$0 \ge \int_{\omega_p} f v \, d\Omega + \sum_{E \in \mathcal{E}_p} \int_E j_E v \, d\Gamma$$
$$= \int_{\omega_p} f v \, d\Omega - \int_{\omega_p} \underbrace{\nabla u_{\mathcal{S}}}_{-\nabla ab} \nabla v \, d\Omega$$

und damit gilt

$$\int_{\omega_p} \nabla \psi \nabla v \, d\Omega \ge \int_{\omega_p} f v \, d\Omega \tag{4.27}$$

es gilt also laut Satz 3.4, dass $-\Delta \psi - f \ge 0$ auf ω_p im distributionellem Sinne (vgl. auch [Wal11] Kapitel 3)

dies ist laut Satz 3.4 auch notwendig, damit $u = \psi$ auf ω_p ist

• damit ergibt sich osc_2 als

$$\operatorname{osc}_{2}(u_{\mathcal{S}}, \psi, f) := \left(\sum_{p \in \mathcal{N}^{++}} h_{p}^{2} \|f - \bar{f}_{p}\|_{0, \omega_{p}}^{2} + \sum_{p \in \mathcal{N} \setminus (\mathcal{N}^{0} - \cup \mathcal{N}^{++})} h_{p}^{2} \|f\|_{0, \omega_{p}}^{2} \right)^{\frac{1}{2}}$$

$$(4.28)$$

wobei $h_p := \max_{E \in \mathcal{E}_p} |E|$ für jedes $p \in \mathcal{N}$ (h_p ist ein Maß für den Durchmesser von ω_p) und \bar{f}_p den Mittelwert von f über ω_p bezeichne, d.h.

$$\bar{f}_p = \frac{1}{|\omega_p|} \int_{\omega_p} f \, d\Omega \tag{4.29}$$

• anschaulich: damit kann man die Summanden der ersten Summe als Varianz der Last f auf ω_p interpretieren

 $\mathcal{N}\setminus(\mathcal{N}^{0-}\cup\mathcal{N}^{++})$ ist die Menge von Punkten, die keinen vollen Kontakt und in der $\varepsilon_{\mathcal{V}}$ keinen Kontakt mit $\mathcal{A}_{\mathcal{V}}$ hat

- Beachte: Im Term osc_2 fehlen nur die Punkte, die vollen Kontakt haben, d.h. wir betrachten also wirklich nur die Punkte außerhalb des Hindernisses!! (genauer noch: $\mathcal{N} \setminus (\mathcal{N}^{0-} \cup \mathcal{N}^{++})$ sind nur die Randpunkte!)
- damit enthält osc₂ nur Anteile aus Knoten, ohne vollen Kontakt
- Bem.: die Oszillationsterme können leicht berechnet werden (siehe hierfür auch Kapitel 5)
- im unbeschränkten Fall, also $\psi = -\infty$, ist $\varepsilon_{\mathcal{V}}$ nicht im Kontakt mit dem Hindernis für alle Punkte aus \mathcal{N} , also gilt $\mathcal{N}^{++} = \mathcal{N}$.
- damit wird (??) (osc₂) zu

$$\operatorname{osc}_{2}(u_{\mathcal{S}}, \psi, f) = \left(\sum_{p \in \mathcal{N} \cap \Omega} h_{p}^{2} \|f - \bar{f}_{p}\|_{0, \omega_{p}}^{2} + \sum_{p \in \mathcal{N} \cap \partial \Omega} h_{p}^{2} \|f\|_{0, \omega_{p}}^{2} \right)^{\frac{1}{2}}$$

$$(4.30)$$

- damit ist (4.28) eine Verallgemeinerung von (4.30): wenn der Teil ohne Kontakt also bekannt wäre, dann wäre der beschränkte Fall auf dieser Menge äquivalent zu einem unbeschränkten Dirichtlet-Problem
- WICHTIG: Noch einmal in [Zha07] schauen, ob dies in Verbindung des letzten Absatzes im Mainpaper verwendet werden kann!!!

4.1.4 Zuverlässigkeit des Fehlerschätzers

 wir wollen in diesem Kapitel eine obere Schranke des Fehlers im Energiefunktional, die vom hierarchischen Fehlerschätzer abhängt, herleiten.

•

• folgendes Lemma ist zentral, um die obere Schranke von $J(u_S) - J(u)$ bzgl. $-\mathcal{I}_{\mathcal{Q}}(\varepsilon_{\mathcal{V}})$ zu zeigen

Lemma 4.19. Es sei Voraussetzung 4.1 erfüllt. Dann gilt

$$\rho_{\mathcal{S}}(e) \lesssim \sum_{E \in \mathcal{E}} \eta_E |\rho_E| + \operatorname{osc}(u_{\mathcal{S}}, \psi, f)^2$$
(4.31)

 $mit \ \rho_E \ wie \ in \ (4.11), \ \operatorname{osc}(u_{\mathcal{S}}, \psi, f) \ wie \ in \ (4.23) \ und \ \eta_E = |\varepsilon_{\mathcal{V}}(x_E)| \ ||\phi_E||.$

Beweis.
$$\Box$$

• Theorem für obere Schranke des Fehlerschätzers:

Theorem 4.20. Es sei Voraussetzung 4.1 für ψ erfüllt. Dann ist der hierarchische Fehlerschätzer $-\mathcal{I}_{\mathcal{Q}}(\varepsilon_{\mathcal{V}})$ eine obere Schranke für den Fehler im Energiefunktional bis auf Addition von Oszillationstermen und einer Konstante C, die nur von der Quasi-Uniformität von \mathcal{T}_h abhängt, d.h.

$$J(u_{\mathcal{S}}) - J(u) \lesssim -\mathcal{I}_{\mathcal{Q}}(\varepsilon_{\mathcal{V}}) + \operatorname{osc}(u_{\mathcal{S}}, \psi, f)^{2}$$
. (4.32)

Beweis. Die Aussage folgt direkt durch Lemma 4.13 und 4.19, denn

$$J(u_{\mathcal{S}}) - J(u) = -\mathcal{I}(e) \le \rho_{\mathcal{S}}(e)$$

$$\lesssim \sum_{E \in \mathcal{E}} \eta_E |\rho_E| + \operatorname{osc}(u_{\mathcal{S}}, \psi, f)^2$$

$$\leq 2 \cdot (-\mathcal{I}_{\mathcal{Q}}(\varepsilon_{\mathcal{V}})) + \operatorname{osc}(u_{\mathcal{S}}, \psi, f)^2$$

$$\leq 2 \cdot (-\mathcal{I}_{\mathcal{O}}(\varepsilon_{\mathcal{V}}) + \operatorname{osc}(u_{\mathcal{S}}, \psi, f)^2)$$

und damit folgt die Behauptung.

- an dieser Abschätzung können wir sehen, dass es sinnvoll ist, nicht nur den hierarchischen Fehlerschätzer $-\mathcal{I}_{\mathcal{Q}}(\varepsilon_{\mathcal{V}})$ zum Abschätzen des Fehlers zu verwenden, sondern auch die Oszillationsterme (diese sollten von Verfeinerungsschritt zum Verfeinerungsschritt kleiner werden, sonst ist die Verringerung im exakten Fehler nicht gesichert)
- damit nachher eine Abschätzung analog zu [MNS00] Lemma 3.8 (wäre schön, wenn diese noch gezeigt werden würde....)

Lemma 4.21. Es sei $0 < \gamma < 1$ ein Parameter, der die Reduktion der Größe des Dreiecks bei Verfeinerung wiedergibt. Weiter sei $0 < \hat{\theta} < 1$ gegeben und eine Menge an Punkten $\hat{\mathcal{N}} \subset \mathcal{N}$, die die zu verfeinernden Dreiecke anzeigen, gegeben, so dass

$$\operatorname{osc}(u_{\mathcal{S}}, \psi, f, \hat{\mathcal{N}}) \ge \hat{\theta} \operatorname{osc}(u_{\mathcal{S}}, \psi, f, \mathcal{N}).$$

Dann existiert ein $\hat{\alpha} \in (0,1)$, so dass

$$\operatorname{osc}(u_{\mathcal{S}}, \psi, f, \tilde{\mathcal{N}}) \le \hat{\alpha} \operatorname{osc}(u_{\mathcal{S}}, \psi, f, \mathcal{N}), \tag{4.33}$$

wobei $\tilde{\mathcal{N}}$ die Menge an Punkten nach Verfeinerung der Triangulierung \mathcal{T}_h bzgl. der Punkte $\hat{\mathcal{N}}$ ist.

Hierfür vllt eine äquivalente Darstellung von osc₂ bzgl. der Dreiecke und dann das Lemma nur auf osc₂ beziehen.

4.1.5 Effektivität des Fehlerschätzers

• wir zeigen, dass der hierarchische Fehlerschätzer $-\mathcal{I}_{\mathcal{Q}}(\varepsilon_{\mathcal{V}})$ ist auch eine untere Schranke für $-\mathcal{I}(e) = J(u_{\mathcal{S}}) - J(u)$

•

Theorem 4.22. Das Hindernis ψ sei stückweise linear und stetig. Dann ist der hierarchische a posteriori Fehlerschätzer $\mathcal{I}_{\mathcal{Q}}(\varepsilon_{\mathcal{V}})$ auch eine untere Schranke für den Fehler im Energiefunktional im Sinne von

$$-\mathcal{I}_{\mathcal{Q}}(\varepsilon_{\mathcal{V}}) \le 6(J(u_{\mathcal{S}}) - J(u)). \tag{4.34}$$

Beweis. Zunächst folgt mit (4.16)

$$-\mathcal{I}_{\mathcal{Q}}(\varepsilon_{\mathcal{V}}) \leq \rho_{\mathcal{S}}(\varepsilon_{\mathcal{V}}) = \rho_{\mathcal{S}}\left(\sum_{E \in \mathcal{E}} \varepsilon_{\mathcal{V}}(x_E)\phi_E\right)$$
$$= \sum_{E \in \mathcal{E}} \varepsilon_{\mathcal{V}}(x_E)\rho_{\mathcal{S}}(\phi_E)$$
$$= \sum_{E \in \mathcal{E}} \eta_E |\rho_E| \tag{4.35}$$

mit $\eta_E = |\varepsilon_{\mathcal{V}}(x_E)| \cdot ||\phi_E||$ und $\rho_E = \frac{\rho_{\mathcal{S}}(\phi_E)}{||\phi_E||}$, wobei man zeigen kann, dass $\operatorname{sign}(\varepsilon_{\mathcal{V}}(x_E)) = \operatorname{sign}(\rho_{\mathcal{S}}(\phi_E))$ gilt. Weiter sollte man erwähnen, dass (4.35) äquivalent ist zu [SV07] Gleichung (2.16).

Das weitere Vorgehen ist ähnlich zum Beweis von Theorem 3.2 aus [SV07]. Es sei

$$\varphi = \frac{1}{3} \sum_{E \in \mathcal{E}} \beta_E \phi_E$$

eine Linearkombination aus Bubble-Funktionen. Dann lässt sich $u_{\mathcal{S}} + \varphi$ auf jedem $T \in \mathcal{T}_h$ durch eine Konvexkombination aus $v_E := u_{\mathcal{S}} + \beta_E \phi_E, E \in \mathcal{E}$ schreiben, d.h.

$$(u_{\mathcal{S}} + \varphi)\Big|_T = \frac{1}{3} \sum_{E \in \mathcal{E}, E \subset T} v_E\Big|_T.$$

Da $\mathbb{R}^2 \ni x \mapsto \frac{1}{2}|x|^2$ konvex ist, rechnen wir mit den obigen Bezeichnungen schnell nach, dass gilt

$$J(u_{\mathcal{S}} + \varphi) = \int_{\Omega} \frac{1}{2} |\nabla(u_{\mathcal{S}} + \varphi)|^2 - f(u_{\mathcal{S}} + \varphi) d\Omega$$

$$= \sum_{T \in \mathcal{T}_h} \int_{T} \frac{1}{2} |\nabla(u_{\mathcal{S}} + \varphi)|_{T}|^2 - f(u_{\mathcal{S}} + \varphi)|_{T} d\Omega$$

$$= \sum_{T \in \mathcal{T}_h} \int_{T} \frac{1}{2} |\left(\frac{1}{3} \sum_{E \in \mathcal{E}, E \subset T} |\nabla v_{E}|_{T}\right)|^2 - f\left(\frac{1}{3} \sum_{E \in \mathcal{E}, E \subset T} |v_{E}|_{T}\right) d\Omega$$

$$\leq \frac{1}{3} \sum_{E \in \mathcal{E}, E \subset T} \sum_{T \in \mathcal{T}_h} \int_{T} \frac{1}{2} |\nabla v_{E}|_{T}|^2 - fv_{E}|_{T} d\Omega.$$

Da wir drei Kanten pro Dreieck T haben, gilt analog die Gleichung

$$J(u_{\mathcal{S}}) = \frac{1}{3} \sum_{E \in \mathcal{E}, E \subset T} \sum_{T \in \mathcal{T}_b} \int_T \frac{1}{2} |\nabla u_{\mathcal{S}}|^2 - f u_{\mathcal{S}} d\Omega.$$

Durch Subtraktion der letzten beiden Terme und einigen Umformungen ergibt sich dann

$$J(u_{\mathcal{S}}) - J(u_{\mathcal{S}} + \varphi) \ge \frac{1}{3} \sum_{E \in \mathcal{E}} (J(u_{\mathcal{S}}) - J(u_{\mathcal{S}} + \beta_E \phi_E)). \tag{4.36}$$

Wir rechnen nach, dass für alle $E \in \mathcal{E}$

$$J(u_{\mathcal{S}} + \beta_E \phi_E) = \frac{1}{2} a(u_{\mathcal{S}} + \beta_E \phi_E, u_{\mathcal{S}} + \beta_E \phi_E) - (f, u_{\mathcal{S}} + \beta_E \phi_E)$$
$$= J(u_{\mathcal{S}}) + \frac{1}{2} a(\beta_E \phi_E, \beta_E \phi_E) - ((f, \beta_E \phi_E) - a(u_{\mathcal{S}}, \beta_E \phi_E))$$
$$= J(u_{\mathcal{S}}) + \mathcal{I}(\beta_E \phi_E)$$

gilt. Damit ist das Minimieren von $J(u_S + \beta_E \phi_E)$, so dass $\beta_E \ge -d_E$, mit d_E wie oben definiert, äquivalent ist zum Problem:

$$\min_{\beta_E \ge -d_E} \mathcal{I}(\beta_E \phi_E) \,,$$

was den nächsten Schritt legitimiert. Wir setzen nun $\beta_E = \varepsilon_{\mathcal{V}}(x_E)$, dann gilt, dass $u_{\mathcal{S}} + \beta_E \phi_E \in K$ ist für alle $E \in \mathcal{E}$ und damit aufgrund der Konvexität von K auch $u_{\mathcal{S}} + \varphi \in \mathcal{K}$. Damit folgt insgesamt

$$\begin{split} J(u_{\mathcal{S}}) - J(u) &\geq J(u_{\mathcal{S}}) - J(u_{\mathcal{S}} + \varphi) \\ &\geq \frac{1}{3} \sum_{E \in \mathcal{E}} (J(u_{\mathcal{S}}) - J(u_{\mathcal{S}} + \beta_E \phi_E)) = \frac{1}{3} \sum_{E \in \mathcal{E}} -\mathcal{I}(\beta_E \phi_E) \\ &= \frac{1}{3} \sum_{E \in \mathcal{E}} \left(\rho_{\mathcal{S}}(\beta_E \phi_E) - \frac{1}{2} a(\beta_E \phi_E, \beta_E \phi_E) \right) \\ &= \frac{1}{3} \sum_{E \in \mathcal{E}} \left(\beta_E \, \rho_{\mathcal{S}}(\phi_E) - \frac{1}{2} \beta_E^2 a(\phi_E, \phi_E) \right) \\ &\geq \frac{1}{3} \sum_{E \in \mathcal{E}} \left(\frac{\max\{-d_E, \rho_E\}}{\|\phi_E\|} \, \rho_{\mathcal{S}}(\phi_E) - \frac{1}{2} \frac{\max\{-d_E, \rho_E\}^2}{\|\phi_E\|^2} \|\phi_E\|^2 \right) \\ &= \frac{1}{3} \sum_{E \in \mathcal{E}} \left(\underbrace{\max\{-d_E, \rho_E\} \rho_E}_{=\eta_E \mid \rho_E|} - \frac{1}{2} \underbrace{\max\{-d_E, \rho_E\}^2}_{\geq \eta_E \mid \rho_E|} \right) \\ &\geq \frac{1}{3} \sum_{E \in \mathcal{E}} \frac{1}{2} \eta_E \, |\rho_E| = \frac{1}{6} \sum_{E \in \mathcal{E}} \eta_E \, |\rho_E| \, . \end{split}$$

Zusammen mit (4.35) folgt dann die Behauptung.

- 4.2 Ein adaptiver Algorithmus
- 4.3 Erfüllung einer Saturationseigenschaft
- 4.4 Übertragung des Fehlerschätzers auf Kontaktprobleme

•

Kapitel 5

Implementierung des Fehlerschätzers in Matlab

- Grundlegender Aufbau des Programms
- Gründe warum wo was.
- Warum Verwendung von Sparse, IPM und large scale?
- Berechnung der einzelnen lokalen Element-Steifigkeitsmatrizen bzw. Element-Vektoren (siehe hierfür auch die Berechnung für den Vektor ρ_S hier ist die Berechnung durch lokalen Vektoren auch schneller gemacht worden).
- Anmerkungen: Wie verfeinert refinemesh in Matlab eigentlich? (siehe auch Bachelorarbeit von Christina)
- dokumentierter Quellcode ist im Anhang zu finden

Kapitel 6

Validierung

- \bullet numerisches Beispiel (Problemstellung) \rightarrow vielleicht mit Kontakt und nur Hindernis
- \bullet Vergleich mit Analytischer Lösung?! (Tabelle mit Ergebnissen) \to Ergebnisse diskutieren

6.1 Numerisches Beispiel zum Hindernisproblem

• numerisches Beispiel aus [SV07] oder auch [BCH07]

6.2 Numerisches Beispiel zum Kontaktproblem

Kapitel 7

Zusammenfassung und Ausblick

- kurz einleiten, worum es ging (Einleitung in einem Absatz zusammenfassen)
- Was ist rausgekommen?!
- Ausblick: Was ist noch offen geblieben, was kann man noch machen... In dieser Arbeit linearisierte Verzerrung verwendet; kann verallgemeinert werden durch allgemeine Verzerrungstensoren (bzgl. der jeweiligen Konfiguration).

Literaturverzeichnis

- [Alt12] Altenbach, Holm: Kontinuumsmechanik. 2. Auflage. Springer, 2012
- [BCH05] BARTELS, S.; CARSTENSEN, C.; HECHT, A.: 2D isoparametric FEM in MATLAB / Humboldt-Universität, Berlin. 2005. Forschungsbericht
- [BCH07] Braess, D.; Carstensen, C.; Hoppe, R.: Convergence analysis of a conforming adaptive finite element method for an obstacle problem. In: *Numerische Mathematik* 107 (2007), S. 455–471
- [Bra05] Braess, Dietrich: A Posteriori Error Estimators for Obstacle Problems – Another Look / Faculty of Mathematics, Ruhr-University. 2005. – Forschungsbericht
- [Bra13] Braess, Dietrich: Finite Elemente Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. 5. Auflage. Springer-Verlag, 2013
- [CSW99] Carstensen, C.; Scherf, O.; Wriggers, P.: Adaptive finite elements for elastic bodies in contact. In: *SIAM J. Sci. Comput.* 20 (1999), Nr. 5, S. 1605–1626
- [DLY89] DEUFLHARD, P.; LEINEN, P.; YSERENTANT, H.: Concepts of an Adaptive Hierarchical Finite Element Code. In: *Impact of* Computing in Science and Engineering 1 (1989), S. 3–35
- [Fal74] Falk, Richard S.: Error estimates for the approximation of a class of variational inequalities. In: *Math. Comp.* 28 (1974), S. 963–971
- [Glo08] GLOWINSKI, Roland: Numerical methods for nonlinear variational problems. Reprint. Springer, 2008
- [GRT09] GÖPFERT, A.; RIEDRICH, T.; TAMMER, C.: Angewandte Funktionalanalysis. Vieweg und Teubner, 2009

- [HH80] HASLINGER, J.; HLAVÁCEK, I.: Contact between elastic bodies. I. Continuous problems. In: *Apl. Mat.* 25 (1980), S. 324–347
- [HHNL80] HLAVÁCEK, I.; HASLINGER, J.; NECAS, J.; LOVÍSEK, J.: Solution of Variational Inequalities in Mechanics. 9. Auflage. Springer, 1980
- [HK92] HOPPE, R.; KORNHUBER, R.: Adaptive Multilevel-Methods for Obstacle Problems. In: *Preprint SC 91-16* (1992), April
- [Joh92] JOHNSON, Claes: Adaptive finite element methods for the obstacle problem. In: *Math. Models Methods Appl. Sci.* 2 (1992), Nr. 4, S. 483–487
- [KO88] KIKUCHI, N.; ODEN, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, 1988
- [KZ11] KORNHUBER, Ralf; ZOU, Qingsong: Efficient and reliable hierarchical error estimates for the discretization error of elliptic obstacle problems. In: *Mathematics of Computation* 80 (2011), Nr. 273, S. 69–88
- [MNS00] MORIN, P.; NOCHETTO, R.H.; SIEBERT, K.G.: Data Oscillation and convergence of adaptive FEM. In: SIAM J. Numer. Anal. 38 (2000), Nr. 2, S. 466–488
- [NW06] NOCEDAL, Jorge; WRIGHT, Stephen J.: Numerical Optimization. 2. ed. New York, NY: Springer, 2006
- [QSS02] QUARTERONI, A.; SACCO, R.; SALERI, F.: Numerische Mathematik 2. 1. Auflage. Springer, 2002
- [Rud91] RUDIN, Walter: Functional Analysis. 2. Auflage. McGraw-Hill, 1991
- [Sta08] Starke, Gerhard: Numerik partieller Differentialgleichungen / IFAM Universität Hannover. 2008. Vorlesungsskript
- [Sta11] Starke, Gerhard: Variationsungleichungen / IFAM Universität Hannover. 2011. Vorlesungsskript
- [Ste12a] Stephan, Ernst P.: Contact Problems Numerical Analysis and Implementation / IFAM Universität Hannover. 2012. Vorlesungsskript
- [Ste12b] Stephan, Ernst P.: Numerik partieller Differentialgleichungen I / IFAM Universität Hannover. 2012. Vorlesungsskript

- [Sto99] Stoer, Josef: Numerische Mathematik I. 8. Auflage. Springer, 1999
- [SV07] SIEBERT, K.G.; VEESER, A.: A Unilaterally Constrained Quadratic Minimization with Adaptive Finite Elements. In: *SIAM J. Optim.* 18 (2007), Nr. 1, S. 260–289
- [Wal11] Walker, Christoph: Partielle Differentialgleichungen / IFAM Universität Hannover. 2011. Vorlesungsskript
- [Wer11] Werner, Dirk: Funktionalanalysis. 7. Auflage. Springer, 2011
- [Wri01] Wriggers, Peter: Nichtlineare Finite-Element-Methoden. 5. Auflage. Springer, 2001
- [Wri06] WRIGGERS, Peter: Computional Contact Mechanics. 2. Auflage. Springer, 2006
- [Wri09] WRIGGERS, Peter: Finite-Elemente-Methode / IKM Universität Hannover. 2009. Vorlesungsskript
- [Zha07] Zhang, Yongmin: Convergence of free boundaries in discrete obstacle problems. In: *Numerische Mathematik* (2007), Nr. 106, S. 157–164
- [Zou11] Zou, Qingsong: Efficient and reliable hierarchical error estimates for an elliptic obstacle problem. In: Applied Numerical Mathematics 61 (2011), S. 344–355
- [ZVKG11] ZOU, Q.; VEESER, A.; KORNHUBER, R.; GRÄSER, C.: Hierarchical error estimates for the energy functional in obstacle problems. In: *Numerische Mathematik* (2011), Nr. 117, S. 653–677

Anhang A

Funktionalanalysis

A.1 Sobolev-Räume

Sei im Weiteren $\emptyset \neq \Omega \subset \mathbb{R}^n$. Wir definieren den Sobolev-Raum allgemein wie folgt (vgl. [Bra13] Kaptitel II, §2 und [Wal11] Kapitel 6).

Definition A.1. Seien $1 \le p \le \infty$ und $m \in \mathbb{N}$. Die Menge

$$W_p^m(\Omega) := \left(\{ u \in L_p(\Omega) \mid \partial^{\alpha} u \in L_p(\Omega) \, \forall \, |a| \le m \}, \| \cdot \|_{W_p^m} \right)$$

heißt Sobolev-Raum der Ordnung m. Dabei ist

$$||u||_{W_p^m} := ||u||_{W_p^m(\Omega)} := \left(\sum_{|\alpha| \le m} ||\partial^{\alpha} u||_{L_p}^p\right)^{\frac{1}{p}},$$

wenn $1 \le p < \infty$. Im Fall $p = \infty$ ist $||u||_{W_p^m} := \max_{|\alpha| \le m} ||\partial^{\alpha} u||_{\infty}$.

Weiterhin bezeichne $L_p(\Omega)$ den Lebesgue-Raum, d.h. den Raum der messbaren Funktionen, deren p-te Potenz Lebesgue-integrierbar über Ω ist, d.h.

$$L_p(\Omega) := (\{u : \Omega \to \mathbb{R} \mid f \text{ messbar}, \|\cdot\|_{L_p} < \infty\}, \|\cdot\|_{L_p}),$$

wobei $||u||_{L_p} := ||u||_{L_p(\Omega)} = ||u||_{W_p^0}$.

Definition A.2. Der Raum

$$\mathcal{D}(\Omega) := C_c^{\infty}(\Omega) = \{ \varphi \in C^{\infty}(\Omega) \mid \operatorname{supp}(\varphi) \subset \subset \Omega \}$$

heißt der Raum der Testfunktionen, wobei $K\subset\subset\Omega:\Leftrightarrow \bar K\subset\Omega$ kompakt.

Bemerkung A.3. Seien $u \in W_p^m(\Omega)$, $\varphi \in \mathcal{D}(\Omega)$ und $\alpha \in \mathbb{N}^n$ mit $|\alpha| \leq m$. Dann bezeichnen wir $v = \partial^{\alpha} u$ als schwache Ableitung von u, wenn gilt

$$\int_{\Omega} v \cdot \varphi \, dx = (-1)^{|\alpha|} \int_{\Omega} u \cdot \partial^{\alpha} \varphi \, dx \, .$$

Beispiel A.4. Es sei $\Omega = (-1,1) \subset \mathbb{R}$ und $u(x) = |x| \in L_2(\Omega)$. Betrachten wir $v(x) = \operatorname{sign}(x)$, so ergibt sich für $\varphi \in \mathcal{D}(\Omega)$

$$\int_{\Omega} v \cdot \varphi \, dx = \int_{-1}^{0} -1 \cdot \varphi(x) \, dx + \int_{0}^{1} 1 \cdot \varphi(x) \, dx$$
$$= -x\varphi(x) \Big|_{-1}^{0} - \int_{-1}^{0} -x\varphi'(x) \, dx + x\varphi(x) \Big|_{0}^{1} - \int_{0}^{1} x\varphi'(x) \, dx$$
$$= -\int_{-1}^{1} |x| \varphi'(x) \, dx = (-1)^{1} \int_{\Omega} u \cdot \varphi' \, dx \,,$$

da $\varphi(-1) = \varphi(1) = 0$. Also ist $v = \partial u$ und somit $u \in W_2^1(\Omega)$. Analog kann man nachrechnen, dass

$$\int_{\Omega} v \cdot \varphi' \, dx = -2\varphi(0)$$

ist und somit u nicht zweimal schwach ableitbar ist, d.h. $u \notin W_2^2(\Omega)$.

Wir wollen in der Theorie der Finiten Elemente Methode vor allem Sobolev-Räume über dem Raum $L_2(\Omega)$ betrachten, daher ist folgender Satz essentiell.

Satz A.5. Es seien $1 \le p \le \infty$ und $m \in \mathbb{N}$. Dann gilt:

- (a) $W_p^m(\Omega)$ ist ein Banachraum.
- (b) $H^m(\Omega) := W_2^m(\Omega)$ ist ein Hilbertraum mit Skalarprodukt

$$(u,v)_m := (u,v)_{H^m(\Omega)} := \sum_{|\alpha| \le m} (\partial^{\alpha} u, \partial^{\alpha} v)_0 \quad \forall u, v \in H^m(\Omega),$$

wobei

$$(u,v)_0 := (u,v)_{L_2(\Omega)} := \int_{\Omega} uv \, dx.$$

Bemerkung A.6. (a) Die Norm auf $H^m(\Omega)$ ergibt sich analog zur Norm des allgemeinen Sobolev-Raumes durch das Skalarprodukt, d.h. $||u||_m := ||u||_{H^m(\Omega)} := ||u||_{W_2^m}$.

(b) Analog dazu definieren wir die Halbnorm $|\cdot|_m$ auf H^m wie folgt:

$$|u|_m := |u|_{H^m(\Omega)} := \left(\sum_{|\alpha|=m} \|\partial^{\alpha} u\|_{L_2}^2\right)^{\frac{1}{2}}.$$

Definition A.7. Der Raum $H_0^m(\Omega)$ ist die Vervollständigung von $\mathcal{D}(\Omega)$ bzgl. der Norm $\|\cdot\|_m$.

Bemerkung A.8. Die Funktionen $u \in H_0^m(\Omega)$ können als die Funktionen $u \in H^m(\Omega)$ mit u = 0 auf $\partial \Omega$ aufgefasst werden.

A.2 Optimalitätskriterien

Zunächst definieren wir einen verallgemeinerten Begriff der Richtungsableitung, der auch auf unendlich dimensionalen Vektorräumen existiert.

Definition A.9. Es seien V ein Vektorraum, $M \subset V$ und W ein normierter Raum, sowie $F: M \to W$ eine Abbildung, $x_0 \in M$ und $v \in V$. Dann heißt F Gâteaux-differenzierbar (bzw. in Richtung v an der Stelle x_0 differenzierbar), falls es ein $\varepsilon > 0$ mit $[x_0 - \varepsilon v, x_0 + \varepsilon v] \subset M$ gibt und der Grenzwert

$$\mathcal{D}_v F(x_0) := \frac{d}{dt} F(x_0 + tv) \Big|_{t=0} := \lim_{t \to 0} \frac{F(x_0 + tv) - F(x_0)}{t}$$
(A.1)

in W existiert. $\mathcal{D}_v F(x_0)$ heißt dann Gâteaux-Ableitung von F an der Stelle x_0 in Richtung v.

Falls wir nur $[x_0, x_0 + \varepsilon v] \subset M$ voraussetzen, so können wir in (A.1) $\lim_{t\to 0}$ durch $\lim_{t\to +0}$ ersetzen. Dann nennen wir (A.1) die rechtsseitige Gâteaux-Ableitung und bezeichnen diese mit $\mathcal{D}_v^+F(x_0)$.

Für die Variationsrechnung sind folgende zwei Sätze für uns von besonderer Bedeutung.

Satz A.10. (Charakterisierungssatz der konvexen Optimierung) Es seien $M \subset V$ eine konvexe Menge, V ein Vektorraum und $F: M \to \mathbb{R}$ ein konvexes Funktional. Dann gilt für $x_0, x \in M$:

 x_0 ist Lösung von $\min_{x \in M} F(x)$ genau dann, wenn für alle $x \in M$ gilt

$$\mathcal{D}_{x-x_0}^+ F(x_0) \ge 0.$$

Beweis. Siehe [GRT09], Kapitel 3.3.3, Satz 3.34.

Satz A.11. Es sei $U \subset V$ ein (Unter-)Vektorraum, V ein Vektorraum und $F: U \to \mathbb{R}$ eine Gâteaux-differenzierbare konvexe Funktion. Dann ist $x_0 \in U$ genau dann Lösung von $\min_{x \in U} F(x)$, wenn für alle $u \in U$ gilt

$$\mathfrak{D}_u F(x_0) = 0.$$

Beweis. Siehe [GRT09], Kapitel 3.3.3, Satz 3.35.

A.3 Konvergenzbegriffe

Definition A.12. Es sei $m \in \mathbb{N}, 1 \leq p < \infty, 1 = \frac{1}{p} + \frac{1}{p'}$.

(a) Eine Folge (u_j) in L_p konvergiert schwach gegen $u \in L_p(\Omega)$

$$:\iff u_i \rightharpoonup u \text{ in } L_p(\Omega)$$

$$:\iff \forall\,v\in L_{p'}(\Omega):\int_\Omega u_jv\,\mathrm{d}x\longrightarrow \int_\Omega uv\,\mathrm{d}x\text{ in }\mathbb{K}\,.$$

(b) Eine Folge $(u_j) \in W_p^m(\Omega)$ konvergiert schwach gegen $u \in W_p^m(\Omega)$ $:\iff u_j \rightharpoonup u \text{ in } W_p^m(\Omega)$ $:\iff \partial^{\alpha} u_i \rightharpoonup \partial^{\alpha} u \text{ in } L_p(\Omega) \,\forall \, |\alpha| \leq m.$ Bemerkung A.13. Sei $1 \le p < \infty, m \in \mathbb{N}$, dann ist: (a) Ist $u_j \to u$ in $W_p^m(\Omega)$, dann folgt $u_j \rightharpoonup u$ in $W_p^m(\Omega)$, d.h. "starke Konvergenz ist stärker als schwache Konvergenz". Beweis. $\forall v \in L_{p'}(\Omega), |\alpha| \leq m \text{ gilt}$ $\left| \int_{\Omega} (\partial^{\alpha} u_{j} - \partial^{\alpha} u) v \, \mathrm{d}x \right| \leq_{\text{H\"{o}lder}} \|v\|_{L_{p'}(\Omega)} \|\partial^{\alpha} u_{j} - \partial^{\alpha} u\|_{L_{p}(\Omega)} \longrightarrow 0.$ (b) Sei $1 beschränkt (bzgl. <math>\|\cdot\|_{W_p^m}$), dann folgt, dass eine Teilfolge $(u_{j'})$ und ein $u \in W_p^m(\Omega)$ existiert, so dass $u_{j'} \rightharpoonup u$ in $W_p^m(\Omega)$, d.h. "beschränkte Folgen sind relativ schwach kompakt". Beweis. Vgl. [Rud91]. (c) Es sei $M \subset W_p^m(\Omega)$ konvex und abgeschlossen (bzgl. $\|\cdot\|_{W_p^m}$), sowie $(u_j) \subset M$ mit $u_j \rightharpoonup u$ in $W_p^m(\Omega)$, dann ist $u \in M$, d.h. "abgeschlossene konvexe Mengen sind schwach abgeschlossen" (Theorem von Mazun; ohne Beweis, vgl. [Rud91]). (d) Es sei $u_j \rightharpoonup u$ in $W_m^p(\Omega)$, dann folgt (u_j) ist beschränkt in $W_p^m(\Omega)$ (bzgl. $\|\cdot\|_{W_p^m}$), d.h. "schwach konvergente Folgen sind beschränkt". Beweis. Theorem von Mackey, vgl. [Rud91]. (e) $u_j \rightharpoonup u$ in $W_p^m(\Omega), u_j \rightharpoonup v$ in $W_p^m(\Omega)$, dann gilt u = v, d.h. "Grenzwerte von schwach konvergenten Folgen sind eindeutig". Beweis. Aus dem Hauptsatz der Variationsrechnung folgt die Behaup-(f) Sei $u_j \rightharpoonup u$ in $W_p^m(\Omega)$, dann folgt $||u||_{W_p^m(\Omega)} \leq \liminf ||u_j||_{W_p^m(\Omega)}$. **Theorem A.14.** In einem reflexiven Raum V, d.h. der Bidualraum V'' ist isomorph zu V, besitzt jede beschränkte Folge $(v_n)_{n\in\mathbb{N}}$ eine schwach konvergente Teilfolge (v_{n_i}) .

Beweis. Der Beweis befindet sich in [Wer11] Kapitel III, Theorem 3.7.

Beweis. Dies folgt aus dem Darstellungssatz von Riesz (Satz 2.14).

Bemerkung A.15. Jeder Hilbertraum H ist reflexiv.

Anhang B

Optimierung

B.1 Quadratische Programmierung

Um im folgenden die Idee des Algorithmus zu verstehen, führen wir zunächst grundlegende Begriffe ein. Ein quadratisches Problem mit Gleichungs- und Ungleichungsnebenbedingungen ist von der Form

$$\min_{\boldsymbol{x}} \quad q(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T G \boldsymbol{x} + \boldsymbol{x}^T \boldsymbol{c}$$
s.t. $\boldsymbol{a}_i^T \boldsymbol{x} = b_i, \quad i \in \mathcal{E},$

$$\boldsymbol{a}_i^T \boldsymbol{x} \ge b_i, \quad i \in \mathcal{I},$$
(B.1)

wobei \mathcal{E} und \mathcal{I} die Indexmengen der Gleichungs- und Ungleichungsnebenbedingungen darstellen und $\boldsymbol{c}, \boldsymbol{x}, \boldsymbol{a}_i \in \mathbb{R}^n, b_i \in \mathbb{R}, i \in \mathcal{E} \cup \mathcal{I}$, sowie G eine symmetrische $(n \times n)$ -Matrix ist, welche die Hesse-Matrix des Problems darstellt. Damit ist die Hesse-Matrix konstant und daher das Problem konvex, wenn G positiv semidefinit ist. (Ist G positiv definit, so nennen wir das Problem strikt konvex. Wenn G indefinit ist, ist (B.1) "nicht konvex".)

Da sonst das quadratische Problem (und damit der Active-Set Algorithmus) zu kompliziert wird, betrachten wir hier nur den konvexen Fall. Für diesen Fall können wir leicht zeigen, dass eine Lösung x^* , die die Bedingungen 1. Ordnung erfüllt, auch globale Lösung des Problems ist (s. Theorem ??). Anschaulich kann es im indefiniten Fall mehrere optimale Punkte geben, die voneinander getrennt liegen, d.h. die Menge der optimalen Punkte ist nicht zusammenhängend, wodurch das Auffinden des globalen Minimums erschwert wird.

Die notwendigen Bedingungen 1. Ordnung sind die KKT-Bedingungen und können hier angewendet werden, da die Restriktionen und die Zielfunktion stetig differenzierbar sind. Die Lagrangefunktion \mathcal{L} für das quadratische Problem ist

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = \frac{1}{2} \boldsymbol{x}^T G \boldsymbol{x} + \boldsymbol{x}^T \boldsymbol{c} - \sum_{i \in \mathcal{I} \cup \mathcal{E}} \lambda_i (\boldsymbol{a}_i^T \boldsymbol{x} - b_i).$$
 (B.2)

Damit ergeben sich – vgl. [NW06], Theorem 12.1 – mit der Menge der aktiven Nebenbedingungen $\mathcal{A}(\boldsymbol{x}^*) = \{i \in \mathcal{E} \cup \mathcal{I} : \boldsymbol{a}_i^T \boldsymbol{x}^* = b_i\}$ die KKT-Bedingungen

$$\nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*) = G\boldsymbol{x}^* + \boldsymbol{c} - \sum_{i \in \mathcal{A}(\boldsymbol{x}^*)} \lambda_i^* \boldsymbol{a}_i = 0,$$

$$\boldsymbol{a}_i^T \boldsymbol{x}^* = b_i, \quad \forall i \in \mathcal{A}(\boldsymbol{x}^*),$$

$$\boldsymbol{a}_i^T \boldsymbol{x}^* \ge b_i, \quad \forall i \in \mathcal{I} \setminus \mathcal{A}(\boldsymbol{x}^*),$$

$$\lambda_i^* \ge 0, \quad \forall i \in \mathcal{I} \cap \mathcal{A}(\boldsymbol{x}^*).$$
(B.3)

Hierbei ist x^* Lösung von (B.1) und erfüllt die LICQ-Bedingung; λ^* ist dazugehöriger optimaler Lagrange-Multiplikator. In (B.3) wird die Komplementaritätsbedingung $\lambda_i^* c_i(x^*) = 0$ impliziert durch $\lambda_i^* = 0 \,\forall i \notin \mathcal{A}(x^*)$.

Theorem B.1. Wenn x^* die Bedingungen (B.3) erfüllt mit λ_i^* , $i \in \mathcal{A}(x^*)$ und G ist positiv semidefinit, dann ist x^* eine globale Lösung von (B.1).

Beweis. Wenn \boldsymbol{x} ein beliebiger weiterer zulässiger Punkt für (1.1) ist, gelten die Restriktionen $\boldsymbol{a}_i^T \boldsymbol{x} = b_i, i \in \mathcal{E}$, sowie $\boldsymbol{a}_i^T \boldsymbol{x} \geq b_i, i \in \mathcal{I} \cap \mathcal{A}(\boldsymbol{x}^*)$ für \boldsymbol{x} und damit gilt zusammen mit der ersten Bedingung von (B.3), dass

$$(\boldsymbol{x} - \boldsymbol{x}^*)^T (G\boldsymbol{x}^* + \boldsymbol{c}) = \sum_{i \in \mathcal{E}} \underbrace{\lambda_i^* \boldsymbol{a}_i^T (\boldsymbol{x} - \boldsymbol{x}^*)}_{>0} + \sum_{i \in \mathcal{A}(\boldsymbol{x}^*) \cap \mathcal{I}} \underbrace{\lambda_i^* \boldsymbol{a}_i^T (\boldsymbol{x} - \boldsymbol{x}^*)}_{>0} \ge 0.$$

Dann drücken wir $q(\boldsymbol{x})$ durch $q(\boldsymbol{x}^*)$ aus und wenden die obere Ungleichung sowie die positive Semidefinitheit für G an, um zu zeigen, dass $q(\boldsymbol{x}) \geq q(\boldsymbol{x}^*)$ ist. Damit ist \boldsymbol{x}^* globale Lösung des quadratischen Problems.

Daher ist im positiv semidefiniten Fall gesichert, dass ein optimaler Punkt auch gleichzeitig globale Lösung ist.

B.2 Active Set-Methode für konvexe QPs

Wenn wir eine Lösung x^* für das Problem (B.1) kennen, so ist auch die Menge der aktiven Nebenbedingungen $\mathcal{A}(x^*)$ bekannt und wir können (B.1) vereinfachen zum Optimierungsproblem

$$\min_{\boldsymbol{x}} \quad q(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T G \boldsymbol{x} + \boldsymbol{x}^T \boldsymbol{c}, \quad \text{s.t.} \quad \boldsymbol{a}_i^T \boldsymbol{x} = b_i, \quad i \in \mathcal{A}(\boldsymbol{x}^*).$$
 (B.4)

Dieses könnten wir dann beispielsweise mit direkten Verfahren wie der Schur-Komplement-Methode oder der Nullraum-Methode lösen. Natürlich ist die optimale Lösung zu Beginn noch nicht bekannt und damit auch nicht die aktiven Restriktionen. Jedoch können wir diese Idee für die Active-Set-Methode verwenden.

Das Hauptziel der Active-Set-Methode ist, die Menge der aktiven Restriktionen bzgl. der optimalen Lösung zu finden, wobei wir hier die primale

Variante betrachten wollen, in der die Approximierte x_k zulässig bzgl. des primalen Problems ist.

Die Grundidee ist, ein quadratisches Teilproblem zu lösen, bei dem wir bestimmte Nebenbedingungen aus Problem (B.1) bzgl. \mathcal{I} als aktiv annehmen. Die dadurch beschriebene Indexmenge der aktiven Restriktionen für \boldsymbol{x}_k im k-ten Schritt heißt working set und kann wie folgt beschrieben werden

$$\mathcal{W}_k = \{i \mid \boldsymbol{a}_i^T \boldsymbol{x}_k = b_i, i \in \mathcal{E} \cup \mathcal{J}, \mathcal{J} \subset \mathcal{I}\}.$$

Hierbei muss vorausgesetzt werden, dass die Nebenbedingungen in W_k die LICQ-Bedingung erfüllen, selbst wenn diese bezogen auf alle Nebenbedingungen an der Stelle x_k nicht erfüllt wird.

Wir betrachten nun den k-ten Schritt mit der Approximierten \boldsymbol{x}_k und dem working set \mathcal{W}_k . Wir berechnen die neue Iterierte \boldsymbol{x}_{k+1} , indem wir eine Richtung \boldsymbol{p} finden, in der wir unter den Nebenbedingungen \mathcal{W}_k die Funktion q minimieren. Hierfür betrachten wir $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{p}$ und setzen \boldsymbol{x}_{k+1} in q ein:

$$q(\boldsymbol{x}_{k+1}) = q(\boldsymbol{x}_k + \boldsymbol{p}) = \frac{1}{2} (\boldsymbol{x}_k + \boldsymbol{p})^T G(\boldsymbol{x}_k + \boldsymbol{p}) + (\boldsymbol{x}_k + \boldsymbol{p})^T \boldsymbol{c}$$

$$= \frac{1}{2} \boldsymbol{x}_k^T G \boldsymbol{x}_k + \underbrace{\boldsymbol{x}_k^T G \boldsymbol{p}}_{\text{da } G \text{ symm.}} + \frac{1}{2} \boldsymbol{p}^T G \boldsymbol{p} + \boldsymbol{x}_k^T \boldsymbol{c} + \boldsymbol{p}^T \boldsymbol{c}$$

$$= \frac{1}{2} \boldsymbol{p}^T G \boldsymbol{p} + \boldsymbol{g}_k^T \boldsymbol{p} + \rho_k,$$

wobei $\mathbf{g}_k = G\mathbf{x}_k + \mathbf{c}$ und $\rho_k = \frac{1}{2}\mathbf{x}_k^TG\mathbf{x}_k + \mathbf{x}_k^T\mathbf{c}$. Da wir den Parameter \mathbf{p} so wählen wollen, so dass $q(\mathbf{x}_{k+1})$ minimal wird, ist der Term ρ_k bzgl. des Problems konstant und kann somit für die Lösung jenes weggelassen werden. Da weiterhin auch \mathbf{x}_{k+1} die aktiven Nebenbedingungen \mathcal{W}_k erfüllen soll, gilt

$$\boldsymbol{a}_i^T \boldsymbol{p} = \boldsymbol{a}_i^T (\boldsymbol{x}_{k+1} - \boldsymbol{x}_k) = \underbrace{\boldsymbol{a}_i^T \boldsymbol{x}_{k+1}}_{=b_i} - \underbrace{\boldsymbol{a}_i^T \boldsymbol{x}_k}_{=b_i} = 0 \quad \forall \, i \in \mathcal{W}_k \,.$$

Zusammengefasst müssen wir also im k-ten Schritt das Teilproblem

$$\min_{\mathbf{p}} \quad \frac{1}{2} \mathbf{p}^T G \mathbf{p} + \mathbf{g}_k^T \mathbf{p},
\text{s.t.} \quad \mathbf{a}_i^T \mathbf{p} = 0, \quad \forall i \in \mathcal{W}_k$$
(B.5)

lösen. Die Lösung im k-ten Schritt von (B.5) bezeichnen wir mit \boldsymbol{p}_k . Umgekehrt gilt damit, analog zur obigen Rechnung, natürlich auch, dass für alle $i \in \mathcal{W}_k$ die Restriktion aktiv bleibt für $\boldsymbol{x}_k + \alpha \boldsymbol{p}_k$ mit beliebigem α . Da G positiv definit ist, kann (B.5) nun – wie schon bei (B.4) erwähnt – mit Schur-Komplement-Methode oder Nullraum-Methode gelöst werden.

Wie wir schon wissen, ist die neue Iterierte $x_{k+1} = x_k + p_k$ bzgl. W_k immer noch zulässig. Nun müssen wir jedoch feststellen, ob diese Iterierte

auch alle übrigen Restriktionen mit $i \notin \mathcal{W}_k$ erfüllt. Ist dies der Fall, so setzen wir $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{p}_k$, ansonsten suchen wir das größtmögliche $\alpha_k \in [0, 1]$, so dass

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k$$

zulässig bleibt. Hierfür betrachten wir zwei Fälle.

<u>Fall 1:</u> Gilt für ein $i \notin \mathcal{W}_k$, dass $\boldsymbol{a}_i^T \boldsymbol{p}_k \geq 0$ ist, so folgt

$$oldsymbol{a}_i^T(oldsymbol{x}_k + lpha_k oldsymbol{p}_k) = oldsymbol{a}_i^T oldsymbol{x}_k + \underbrace{lpha_k oldsymbol{a}_i^T oldsymbol{p}_k}_{>0} \geq oldsymbol{a}_i^T oldsymbol{x}_k \geq b_i \,,$$

da $\alpha_k \geq 0$, d.h. für diese Nebenbedingungen müssen wir für die Wahl von α_k nichts beachten.

<u>Fall 2:</u> Existiert ein $i \notin \mathcal{W}_k$, für das $\boldsymbol{a}_i^T \boldsymbol{p}_k < 0$ ist, so gilt

$$\mathbf{a}_{i}^{T}(\mathbf{x}_{k} + \alpha_{k}\mathbf{p}_{k}) \geq b_{i}$$

$$\iff \mathbf{a}_{i}^{T}\mathbf{x}_{k} + \alpha_{k}\mathbf{a}_{i}^{T}\mathbf{p}_{k} \geq b_{i}$$

$$\iff \alpha_{k}\underbrace{\mathbf{a}_{i}^{T}\mathbf{p}_{k}}_{<0} \geq b_{i} - \mathbf{a}_{i}^{T}\mathbf{x}_{k}$$

$$\iff \alpha_{k} \leq \frac{b_{i} - \mathbf{a}_{i}^{T}\mathbf{x}_{k}}{\mathbf{a}_{i}^{T}\mathbf{p}_{k}}.$$
(B.6)

Damit folgt mit (B.6) und den vorherigen Überlegungen, dass zusammengefasst

$$\alpha_k = \min \left\{ 1, \min_{i \notin \mathcal{W}_k, \boldsymbol{a}_i^T \boldsymbol{p}_k < 0} \frac{b_i - \boldsymbol{a}_i^T \boldsymbol{x}_k}{\boldsymbol{a}_i^T \boldsymbol{p}_k} \right\}$$
(B.7)

gilt. Eine Restriktion $i \notin \mathcal{W}_k$, für die das Minimum für α_k angenommen wird, nennen wir blocking constraint; diese muss nicht eindeutig sein, da wir beispielsweise anschaulich auch von einer Ecke geblockt werden können. Ist $\alpha_k = 1$, so werden alle Restriktion außerhalb vom working set mit dem Schritt $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{p}_k$ erfüllt, d.h. es gibt keine blocking constraint. Gibt es eine Nebenbedingung $j \notin \mathcal{W}_k$, die aktiv ist, obwohl sie nicht zum working set gehört, so gilt

$$egin{aligned} & lpha_k = \min \left\{ 1, \min_{i
otin \mathcal{W}_k, oldsymbol{a}_i^T oldsymbol{p}_k < 0} rac{b_i - oldsymbol{a}_i^T oldsymbol{x}_k}{oldsymbol{a}_i^T oldsymbol{p}_k}
ight\} \ & = \min \left\{ 1, rac{b_j - oldsymbol{a}_j^T oldsymbol{p}_k}{oldsymbol{a}_j^T oldsymbol{p}_k}
ight\} = 0 \,. \end{aligned}$$

Es sei $j \notin \mathcal{W}_k$ nun ein Index einer blocking constraint. Dann ist

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k + lpha_k oldsymbol{p}_k = oldsymbol{x}_k + rac{b_j - oldsymbol{a}_j^T oldsymbol{x}_k}{oldsymbol{a}_j^T oldsymbol{p}_k} oldsymbol{p}_k \,.$$

Setzen wir x_{k+1} in die j-te Restriktion ein, so erhalten wir

$$egin{aligned} oldsymbol{a}_j^T oldsymbol{x}_{k+1} &= oldsymbol{a}_j^T oldsymbol{x}_k + rac{b_j - oldsymbol{a}_j^T oldsymbol{x}_k}{oldsymbol{a}_j^T oldsymbol{p}_k} oldsymbol{p}_k &= oldsymbol{a}_j^T oldsymbol{x}_k + rac{b_j - oldsymbol{a}_j^T oldsymbol{x}_k}{oldsymbol{a}_j^T oldsymbol{p}_k} \cdot oldsymbol{g}_j^T oldsymbol{p}_k \ &= oldsymbol{a}_j^T oldsymbol{x}_k + b_j - oldsymbol{a}_j^T oldsymbol{x}_k = b_j \ , \end{aligned}$$

d.h. die blocking constraint ist für die neue Iterierte x_{k+1} nach Konstruktion aktiv. Daher setzen wir als neues working set $\mathcal{W}_{k+1} = \mathcal{W}_k \cup \{j\}$.

Das oben beschriebene Vorgehen wiederholen wir so lange, bis wir das working set $\hat{\mathcal{W}}$ mit dem Minimum des quadratischen Problems \hat{x} gefunden haben. Dies ist leicht zu erkennen, da wir (B.1) auf \mathcal{W}_k nicht weiter minimieren können, sobald es keinen Schritt p gibt, in dessen Richtung wir q verringern können, d.h. wenn p = 0 die Lösung für das Teilproblem (B.5) ist. Dann ist der optimale Punkt \hat{x} bzgl. des working sets $\hat{\mathcal{W}} \subset \mathcal{A}(\hat{x})$ gefunden.

Wir müssen jetzt überprüfen, ob \hat{x} die KKT-Bedingungen erfüllt. Wir wissen, dass für p = 0 die KKT-Bedingungen für (B.5)

$$\begin{pmatrix} G & A^T \\ A & 0 \end{pmatrix} \cdot \begin{pmatrix} -\boldsymbol{p} \\ \hat{\boldsymbol{\lambda}} \end{pmatrix} = \begin{pmatrix} \hat{\boldsymbol{g}} \\ \hat{\boldsymbol{h}} \end{pmatrix}$$

mit $\hat{\boldsymbol{g}} = \boldsymbol{c} + G\hat{\boldsymbol{x}}, \boldsymbol{h} = A\hat{\boldsymbol{x}} + \boldsymbol{b}$ und $\boldsymbol{p} = \boldsymbol{0}$ erfüllt. Daraus folgt

$$A^T \hat{\lambda} = \hat{g} \iff \sum_{i \in \hat{\mathcal{W}}} a_i \hat{\lambda}_i = G\hat{x} + c,$$

 $\mathbf{0} = \hat{h} \iff A\hat{x} = b.$

wobei A die Gradienten \boldsymbol{a}_i^T der aktiven Restriktionen $\hat{\mathcal{W}}$ zeilenweise enthält. Damit werden die ersten beiden KKT-Bedingungen aus (B.3) erfüllt. Da die Schrittlänge α_k mit (B.6) so gewählt ist, dass die übrigen Restriktionen erfüllt bleiben, gilt auch die dritte Bedingung aus (B.3). Es bleibt zu überprüfen, ob die Lagrange-Multiplikatoren $\hat{\lambda}_i \geq 0$ sind.

Gilt $\hat{\lambda}_i \geq 0$ für alle $i \in \hat{\mathcal{W}} \cap \mathcal{I}$, so sind alle KKT-Bedingungen erfüllt und damit $\boldsymbol{x}^* = \hat{\boldsymbol{x}}$. Existiert allerdings ein $j \in \hat{\mathcal{W}} \cap \mathcal{I}$, so dass $\hat{\lambda}_j < 0$ ist, so können wir den Wert von q noch weiter verringern, indem wir die j-te Restriktion wegfallen lassen (vlg. [NW06], Kapitel 12.3). Dies zeigt das folgende Theorem.

Theorem B.2. Der Punkt \hat{x} erfülle die notwendigen Bedingungen 1. Ordnung für das Teilproblem (B.5) auf \hat{W} . Weiter seien die Gradienten a_i , $i \in$

 \hat{W} , linear unabhängig (LICQ) und es gebe einen Index $j \in W$ mit $\hat{\lambda}_j < 0$. Es sei p die Lösung vom Teilproblem (B.5) ohne die Restriktion j, d.h.

$$\min_{\boldsymbol{p}} \quad \frac{1}{2} \boldsymbol{p}^T G \boldsymbol{p} + (G \hat{\boldsymbol{x}} + \boldsymbol{c})^T \boldsymbol{p},$$
s.t. $\boldsymbol{a}_i^T \boldsymbol{p} = 0, \quad \forall i \in \hat{\mathcal{W}} \setminus \{j\}.$

Dann ist p eine zulässige Richtung für die Nebenbedingung j, d.h. $\mathbf{a}_{j}^{T}\mathbf{p} \geq 0$. Weiterhin gilt sogar $\mathbf{a}_{j}^{T}\mathbf{p} > 0$ und p ist eine Abstiegsrichtung für q, wenn \mathbf{p} die hinreichenden Bedingungen 2. Ordnung erfüllt.

Da wir zeigen können, dass der erzielte Abstieg für q durch das Weglassen einer Nebenbedingung mit negativem Lagrange-Multiplikator λ_i proportional zu $|\lambda_i|$ ist, eliminieren wir gerade die Restriktion mit kleinstem Langrange-Multiplikator. Es kann allerdings sein, dass der folgende zu berechnende Schritt \boldsymbol{p} aufgrund einer blocking constraint kurz ist, wodurch nicht garantiert ist, dass q den größtmöglichen Abstieg erfährt.

B.3 Algorithmus

Algorithm B.3.1 Active-Set-Methode für konvexe quadratische Probleme Gegeben sei ein zulässiger Startpunkt x_0 für (B.1) und definiere W_0 z.B. mit allen aktiven Restriktionen bzgl. x_0 .

```
for k = 0,1,2,... do
     Löse (B.5) zur Berechnung von p_k;
     if p_k = 0 then
           Berechne die Lagrange-Multiplikatoren mittels (2.5a)
               und setze \mathcal{W} = \mathcal{W}_k;
           if \hat{\lambda}_i \geq 0 \,\forall \, i \in \hat{\mathcal{W}} \cap \mathcal{I} then
                 stop mit der Lösung x^* = \hat{x};
                 j \leftarrow \arg\min_{j \in \mathcal{W}_k \cap \mathcal{I}} \ddot{\lambda}_j;
                 \boldsymbol{x}_{k+1} \leftarrow \boldsymbol{x}_k, \mathcal{W}_{k+1} \leftarrow W_k \setminus \{j\};
     else (p_k \neq 0)
           Berechne \alpha_k mit (B.7);
           \boldsymbol{x}_{k+1} \leftarrow \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k;
           if \alpha_k < 1 (blocking constraint existiert) then
                 Bestimme blocking constraint j und setze W_{k+1} \leftarrow W_k \cup \{j\}
           else
                 \mathcal{W}_{k+1} \leftarrow \mathcal{W}_k
           end if
     end if
end for
```

Anhang C

Tensorrechnung

hier auch ein paar Integralsätzer???

Anhang D

Quellcode

D.1 Implementierung des Fehlerschätzers für das Hindernisproblem

Index

Active-Set-Algorithmus, 39	Nichtdurchdringungsbedingung, 44
Approximationssatz, 7	Nichtkontaktpunkte, 62
D.W. 4	nodale Basis, 22
Bilinearform	nodale Basisfunktion, 22
elliptisch, 11	
koerziv, 11	orthogonales Komplement, 9
stetig, 11	Dain aané Eniaduich Hamlaichung 15
Bubble-Funktion, 54	Poincaré-Friedrich-Ungleichung, 15 Projektionen, 7
Cauchy-Schwarz'sche Ungleichung, 7	
Cauchy-Theorem, 45	quadratisches Programm, 38
Coulomb-Reibung, 46	Randbedingungen
Courant-Elemente, 23	Dirichlet, 43
	Kontakt, 43
Dirichlet-Problem, 9	Neumann, 43
homogenes, 10	Raum der Testfunktionen, 69
Energie Norm 25	· · · · · · · · · · · · · · · · · · ·
Energie-Norm, 25	reflexiver Raum, 72
Fixpunktsatz von Brouwer, 36	Riesz'scher Darstellungssatz, 16
Câteaux Ablaitung 71	schwache Ableitung, 69
Gâteaux-Ableitung, 71	schwache Lösung, 10
rechtsseitig, 71	Signorini-Kontakt, 42, 45–47
Gâteaux-differenzierbar, 71	Sobolev-Raum, 69
Galerkin-Approximation, 25, 26	Spannungsrand, 43
Galerkin-Orthogonalität, 26	Traces Deiburg 46
Hilbertraum, 7	Tresca-Reibung, 46 Triangulierung, 20
homogenen Dirichlet-Problem, 10	konform, 20
Hooke'sche-Gesetz, 46	quasi-uniform, 21, 27
	uniform, 21
Kontaktpunkte, 62	,
Kontaktrand, 45	zulässig, 20
I D	Verschiebungsrand, 43
Lagrange-Basis, 22	virtuelle Verschiebung, 47
Lebesgue-Raum, 69	0,
lineares Komplementaritätsproblem,	
37	