# Discrete Random Variable and Discrete Probability Distribution Dr. Mamatha. H.R

**Professor** 

Department of Computer Science and Engineering PES University

Bangalore

Course material created using various Internet resources and text book

#### Descriptive and Inferential Statistics

Statistics can be broken into two basic types:

• Descriptive Statistics:

We have already learnt this topic

Inferential Statistics

Methods that making decisions or predictions about a population based on sampled data.

**Probability** 

#### Why Learn Probability?

- Nothing in life is certain. In everything we do, we gauge the chances of successful outcomes, from business to medicine to the weather
- A probability provides a quantitative description of the chances or likelihoods associated with various outcomes
- It provides a bridge between descriptive and inferential statistics



#### Probabilistic vs Statistical Reasoning

- Suppose I know exactly the proportions of car makes in Bangalore. Then I can find the probability that the first car I see in the street is a Ford. This is probabilistic reasoning as I know the population and predict the sample
- Now suppose that I do not know the proportions of car makes in Bangalore, but would like to estimate them. I observe a random sample of cars in the street and then I have an estimate of the proportions of the population. This is statistical reasoning

#### I. Experiments and the Sample Space

- 1. Experiments, events, mutually exclusive events, simple events
  - 2. The sample space

#### II. Probabilities

- 1. Relative frequency definition of probability
- 2. Properties of probabilities
  - a. Each probability lies between 0 and 1.
  - b. Sum of all simple-event probabilities equals

1.

3. P(A), the sum of the probabilities for all simple events in A

#### **III. Counting Rules**

- 1. mn Rule; extended mn Rule
- 2. Permutation  $\frac{n!}{(n-r)!}$
- 3. Combination  $\frac{C^n}{n!} = \frac{n!}{(n-r)!}$

#### IV. Event Relations

- 1. Unions and intersections
- 2. Events
  - a. Disjoint or mutually exclusive: P(A)

$$\cap B$$
) = 0

b. Complementary: 
$$P(A) = 1 - P(AC)$$

3. Conditional probability:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- 4. Independent and dependent events
- 5. Additive Rule of Probability:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

6. Multiplicative Rule of Probability:

$$P(A \cap B) = P(A)P(B|A)$$

- 7. Law of Total Probability
- 8. Bayes' Rule



#### Random Variables

- A quantitative variable x is a **random variable** if the value that it assumes, corresponding to the outcome of an experiment is a chance or random event.
- Random variables can be discrete or continuous.

#### • Examples:

- $\sqrt{x}$  = SAT score for a randomly selected student
- $\checkmark x$  = number of people in a room at a randomly selected time of day
- $\checkmark x$  = number on the upper face of a randomly tossed die

**CSF** 

#### Random Variables

Definition: A random variable assigns a numerical value to each outcome in a sample space.

Definition: A random variable is **discrete** if its possible values form a discrete set.

This means that if the possible values are arranged in order, there is a gap between each value and the next one. The set of possible values may be infinite; for example, the set of all integers is a discrete set.

**CSE** 

C

#### Discrete Random variable

- Takes on one of a finite (or at least countable)
   number of different values.
- -X = 1 if heads, 0 if tails
- Y = 1 if male, 0 if female (phone survey)
- Z = # of spots on face of thrown die

10

#### Continuous Random variable

- Takes on one in an infinite range of different values
- W = % GDP grows (shrinks?) this year
- V = hours until light bulb fails

11

What is the probability that a continuous r.v. takes on a specific value? E.g. Prob(X\_light\_bulb\_fails = 3.14159265 hrs) = ??

However, ranges of values can have non-zero probability.

E.g. Prob(3 hrs <= X\_light\_bulb\_fails <= 4 hrs) = 0.1

Ranges of values have a probability

#### **Probability Mass Function**

The description of the possible values of *X* and the probabilities of each has a name: the probability mass function.

Definition: The **probability mass function** (pmf) of a discrete random variable X is the function p(x) = P(X = x). The probability mass function is sometimes called the **probability distribution**.

Dr Mamatha H R

The probability distribution is a complete probabilistic description of a random variable.

All other statistical concepts (expectation, variance, etc) are derived from it.

Once we know the probability distribution of a random variable, we know everything we can learn about it from statistics.

## Probability Distributions for Discrete Random Variables

The probability distribution for a discrete random variable x resembles the relative frequency distributions. It is a graph, table or formula that gives the possible values of x and the probability p(x) associated with each value.

We must have 
$$0 \le p(x) \le 1$$
 and  $\sum p(x) = 1$ 

CSE

#### Example

Toss a fair coin three times and define x = number of heads.



| ннн |     | <u>X</u> |
|-----|-----|----------|
|     | 1/8 | 3        |
| ННТ | 1/8 | 2        |
| нтн | 1/8 | 2        |
| THH | 1/8 | 2        |
| нтт | 1/8 | 1        |
|     | 1/8 | 1        |
| THT | 1/8 | 1        |
| TTH | 1/8 | 0        |
| TTT |     |          |

| P(x = 0) = | 1/8 |
|------------|-----|
| P(x = 1) = | 3/8 |
| P(x=2) =   | 3/8 |
| P(x = 3) = | 1/8 |

| X | p(x) |
|---|------|
| 0 | 1/8  |
| 1 | 3/8  |
| 2 | 3/8  |
| 3 | 1/8  |





CSE 17

Dr Mamatha H R

#### Example

Toss two dice and define x = sum of two dice.





|    | X  | p(x) |
|----|----|------|
|    | 2  | 1/36 |
|    | 3  | 2/36 |
|    | 4  | 3/36 |
|    | 5  | 4/36 |
|    | 6  | 5/36 |
|    | 7  | 6/36 |
|    | 8  | 5/36 |
|    | 9  | 4/36 |
|    | 10 | 3/36 |
|    | 11 | 2/36 |
| 18 | 12 | 1/36 |

Probability distributions can be used to describe the population, just as we described samples.

- -Shape: Symmetric, skewed, mound-shaped...
- -Outliers: unusual or unlikely measurements
- -Center and spread: mean and standard deviation. A population mean is called  $\mu$  and a population standard deviation is called  $\sigma$ .

CSE

#### The probability function

– May be tabular:

$$X = \begin{cases} 1 & w.p. & 1/2 \\ 2 & w.p. & 1/3 \end{cases}$$

$$\begin{cases} 3 & w.p. & 1/6 \end{cases}$$

20

#### The probability function

– May be graphical:



#### The probability function

– May be formulaic:

$$P(X=x) = \frac{4-x}{6}$$
 for x = 1,2,3

#### Probability Distribution: Fair

$$X = \begin{cases} 1 & w.p. & 1/6 \\ 2 & w.p. & 1/6 \\ 3 & w.p. & 1/6 \\ 4 & w.p. & 1/6 \\ 5 & w.p. & 1/6 \\ 6 & w.p. & 1/6 \end{cases}$$







The probability function, properties

$$P_X(x) \ge 0$$
 for each  $x$ 

$$\sum_{x} P_X(x) = 1$$

#### **Cumulative Distribution Function**

 The probability mass function specifies the probability that a random variable is equal to a given value.

 A function called the cumulative distribution function (cdf) specifies the probability that a random variable is less than or equal to a given value.

The cumulative distribution function of the random variable X is the function  $F(x) = P(X \le x)$ .

Dr Mamatha H R

## Cumulative Probability Distribution

The relationship between the cdf and the probability function:

$$F_X(x) = P(X \le x) = \sum_{y \le x} P_X(X = y)$$

$$P_X(x) = P(X = x) = 1/6$$

## Cumulative Probability Distribution

#### Die-throwing

$$F_X(x) = P(X \le x) = \sum_{y \le x} P_X(X = y)$$

tabular

$$F_X(x) = \begin{cases} 0 & x < 1 \\ 1/6 & 1 \le x < 2 \\ 2/6 & 2 \le x < 3 \\ 3/6 & 3 \le x < 4 \\ 4/6 & 4 \le x < 5 \\ 5/6 & 5 \le x < 6 \\ 6/6 & x \ge 6 \end{cases}$$



graphical



### **Cumulative Probability Distribution**

## The cumulative distribution function

– May be formulaic (die-throwing):

$$P(X \le x) = \frac{floor(\min(\max(x,0),6))}{6}$$

CSE Dr Mamatha H R

### **Cumulative Probability Distribution**

#### The cdf, properties

$$0 \le F_X(x) \le 1$$
 for each  $x$ 

$$F_X(x)$$
 is non-decreasing

$$F_X(x)$$
 is continuous from the right

$$\lim_{x \to -\infty} F(x) = 0, \quad \lim_{x \to +\infty} F(x) = 1.$$

#### **Example CDFs**



CSE Dr Mamatha H R

#### Mean for Discrete Random Variables

- Let X be a discrete random variable with probability mass function p(x) = P(X = x)
- The **mean** of X is given by  $\mu_X = \sum_{x} xP(X=x)$

where the sum is over all possible values of X.

The mean of X is sometimes called the expectation, or expected value, of X and may also be denoted by E(X) or by  $\mu$ .

CSE

#### Variance for Discrete Random Variables

- Let X be a discrete random variable with probability mass function p(x) = P(X = x)
- The **variance** of *X* is given by

$$\sigma_X^2 = \sum_{x} (x - \mu_X)^2 P(X = x)$$
$$= \sum_{x} x^2 P(X = x) - \mu_X^2.$$

- The variance of X may also be denoted by V(X) or by  $\sigma 2$ .
- The standard deviation is the square root of the variance:

  CSE

  32

Dr Mamatha H R

#### The Probability Histogram

- When the possible values of a discrete random variable are evenly spaced, the probability mass function can be represented by a histogram, with rectangles centered at the possible values of the random variable.
- The area of the rectangle centered at a value x is equal to P(X = x).
- Such a histogram is called a **probability histogram**, because the areas represent probabilities.

## The Mean and Standard Deviation

Let x be a discrete random variable with probability distribution p(x). Then the mean, variance and standard deviation of x are given as

$$Mean: \mu = \sum xp(x)$$

Variance: 
$$\sigma^2 = \sum (x - \mu)^2 p(x)$$

Standard deviation : 
$$\sigma = \sqrt{\sigma^2}$$

CSE

## Example



Toss a fair coin 3 times and record *x* the number of heads.

| X | p(x) | xp(x) | $(x-\mu)2p(x)$   |
|---|------|-------|------------------|
| 0 | 1/8  | 0     | (-<br>1.5)2(1/8) |
| 1 | 3/8  | 3/8   | (-<br>0.5)2(3/8) |
| 2 | 3/8  | 6/8   | (0.5)2(3/8)      |
| 3 | 1/8  | 3/8   | (1.5)2(1/8)      |

$$\mu = \sum xp(x) = \frac{12}{8} = 1.5$$

$$\sigma^2 = \sum (x - \mu)^2 p(x)$$

$$\sigma^2 = .28125 + .09375 + .09375 + .28125 = .75$$

$$\sigma = \sqrt{.75} = .866$$

**CSF** 

## Example



The probability distribution for *x* the number of heads in tossing 3 fair coins.



## V. Discrete Random Variables and Probability Distributions

- 1. Random variables, discrete and continuous
- 2. Properties of probability distributions  $0 \le p(x) \le 1$  and  $\sum p(x) = 1$
- 3. Mean or expected value of a discrete random variable: Mean:  $\mu = \sum xp(x)$
- 4. Variance and standard deviation of a discrete random variable: Variance:  $\sigma^2 = \sum (x-\mu)^2 p(x)$ Standard deviation:  $\sigma = \sqrt{\sigma^2}$