ΤΗΛ 415 - Στατιστική Επεξεργασία Σήματος για Τηλ/νίες Εαρινό Εξάμηνο 2020

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

Εργασία 1 30 Μαρτίου 2020

Αριθμός Ομάδας Εργασίας:		
Pakana.		
Επώνυμο:		
Ονομα:		
AM:		
Επώνυμο:		
Ονομα:		
AM:		

1. Υπολογίστε γρήγορα το γινόμενο ΑΒ όπου

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 3 & 3 & 3 \\ 1 & 0 & 0 & 3 & 3 & 3 \\ 1 & 2 & 2 & 0 & 0 & 0 \end{bmatrix} \quad \text{i.e.} \quad \mathbf{B} = \begin{bmatrix} -1 & -1 \\ 0 & 0 \\ 0 & 0 \\ -1 & -2 \\ -1 & -2 \\ -1 & -2 \end{bmatrix}.$$

Επιβεβαιώστε στο matlab το αποτέλεσμα.

- α) Δίνεται ο πίνακας $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$. Βρείτε τον αντίστροφό του και επιβεβαιώστε ότι $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$ θεωρητικά και στο matlab. β) Δίνεται ο πίνακας $\mathbf{B} = \begin{bmatrix} \mathbf{C} & \mathbf{C} \\ \mathbf{C} & 2\mathbf{C} \end{bmatrix}$ όπου ο \mathbf{C} είναι αντιστρέψιμος πίνακας. Προσπαθήστε να
- βρείτε τον αντίστροφό του και επιβεβαιώστε ότι $\mathbf{B}\mathbf{B}^{-1}=\mathbf{I}$ θεωρητικά και στο $\mathrm{matlab}.$

3. An oi πίναχες \mathbf{A} , \mathbf{B} , και $\mathbf{A} + \mathbf{B}$ είναι αντιστρέψιμοι, δείξτε ότι

$$\mathbf{A}(\mathbf{A} + \mathbf{B})^{-1}\mathbf{B} = \mathbf{B}(\mathbf{A} + \mathbf{B})^{-1}\mathbf{A} = \left(\mathbf{A}^{-1} + \mathbf{B}^{-1}\right)^{-1}.$$

Επιβεβαιώστε το παραπάνω στο matlab.

- **4.** Έστω αντιστρέψιμος $n \times n$ πίναχας **A** με γνωστό αντίστροφο πίναχα \mathbf{A}^{-1} . "Πειράζουμε" το (i,j) στοιχείο του ${\bf A}$ και το μεταβάλλουμε σε $A'_{ij} \neq A_{ij}$. Έστω ${\bf B}$ ο νέος πίνακας που προκύπτει. Να υπολογιστεί ο ${\bf B}^{-1}$ ως συνάρτηση του ${\bf A}^{-1}$ και των στοιχείων A_{ij} και A'_{ij} . Επιβεβαιώστε στο matlab.
- 5. Έστω $m \times n$ πίνακας ${\bf A}$. Δείξτε ότι ${
 m rank}({\bf A})=1$ αν και μόνο αν υπάρχουν μη-μηδενικά διανύσματα $\mathbf{u}_{m \times 1}$ και $\mathbf{v}_{n \times 1}$ τέτοια ώστε $\mathbf{A} = \mathbf{u}\mathbf{v}^T$.
- 6. Έστω $m \times n$ πίναχες $\mathbf{A} = \mathbf{u_1}\mathbf{v_1}^T$ και $\mathbf{B} = \mathbf{u_2}\mathbf{v_2}^T$. Τα $m \times 1$ διανύσματα $\mathbf{u_1}$ και $\mathbf{u_2}$ είναι γραμμικά ανεξάρτητα. Ομοίως, γραμμικά ανεξάρτητα είναι και τα $n \times 1$ διανύσματα $\mathbf{v_1}$ και $\mathbf{v_2}$. Δ είξτε ότι η ανισότητα $\mathrm{rank}(\mathbf{A}+\mathbf{B}) \leq \mathrm{rank}(\mathbf{A}) + \mathrm{rank}(\mathbf{B})$ επιτυγχάνεται με ισότητα. Ποιος είναι ο μέγιστος αριθμός τέτοιων πινάχων που μπορούμε να προσθέσουμε έτσι ώστε η ισότητα να διατηρείται; Επιβεβαιώστε στο matlab.
- 7. Δίνεται ο πίναχας $\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 2 \\ 1 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix}$. Βρείτε στο matlab όλες τις πιθανές λύσεις της $\mathbf{A}\mathbf{x} = \mathbf{b}$

και της $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ και επιβεβαιώστε για κάποιες από αυτές, όταν α) $\mathbf{b} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$, $\beta) \mathbf{b} = \begin{bmatrix} 2 & 0 & 2 & 0 \end{bmatrix}^T, \gamma) \mathbf{b} = \begin{bmatrix} 0 & 2 & 2 & 0 \end{bmatrix}^T.$

8. Σας δίνονται πειραματικές μετρήσεις $x(t), t \in \{t_1, t_2, \dots, t_N\}$, και θέλετε να τις μοντελοποιήσετε βάσει της $x(t) = at^2 + bt + c + n(t)$, όπου το n(t) αναπαριστά θόρυβο μέτρησης. α) Εκφράστε το πρόβλημα της εκτίμησης των a, b, και c ως ένα πρόβλημα ελαχίστων τετραγώνων (least-squares / LS) της μορφής $\min_{\mathbf{f}} \|\mathbf{x} - \mathbf{A}\mathbf{f}\|$ όπου $\mathbf{f} = [a\ b\ c]^T$ είναι το διάνυσμα των άγνωστων παραμέτρων.

- β) Γράψτε τον τύπο που περιγράφει όλες τις λύσεις LS.
- γ) Γράψτε κώδικα ΜΑΤΙΑΒ που υπολογίζει μία λύση LS.
- δ) Γράψτε κώδικα ΜΑΤΙΑΒ που παράγει τυχαία μία λύση LS βάσει αυτής που υπολογίσατε στο (γ) και του τύπου στο (β).
- ε) Επιβεβαιώστε ότι οι λύσεις στα (γ) και (δ) οδηγούν στο ίδιο τετραγωνικό σφάλμα.
- στ) Πότε η λύση στο (γ) είναι μοναδική;