Econometria I

Lista de Exercícios 1

PIMES/UFPE

Problemas conceituais

- 1. Defina cada um dos pressupostos abaixo e determine a consequência de não serem satisfeitos:
 - a. Posto cheio
 - b. Linearidade
 - c. Exogeneidade das variáveis dependentes
 - d. Homocesdasticidade e não-autocorelação
 - e. Distribuição normal
- 2. Encontre matricialmente o estimador de mínimos quadrados (MQO) da regressão

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

3. Abaixo definimos o modelo de regresão simples como

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

- a. Mostre que este modelo pode ser escrito equivalentemente em forma matricial como $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$.
- b. Escreva a expressão para b, o estimador de MQO, em termos matriciais. Verifique que esta forma é equivalente às expressões

$$\hat{\alpha} = \bar{y} - \hat{\beta}$$

e

$$\hat{\beta} = \frac{\frac{1}{n} \sum_{i=1}^{n} x_i y_i - \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right) \left(\frac{1}{n} \sum_{i=1}^{n} y_i\right)}{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right)^2}$$

4. Defina e prove o teorema de Frisch-Waugh (1933)-Lovell (1963).

- 5. Na regressão de mínimos quadrados de \mathbf{y} em uma constante e \mathbf{X} , para calcular os coeficientes de regressão em \mathbf{X} , podemos primeiro transformar \mathbf{y} em desvios da média $\bar{\mathbf{y}}$ e, da mesma forma, transformar cada coluna de \mathbf{X} em desvios da respectiva média da coluna; segundo, regredir o y transformado no X transformado sem uma constante. Se apenas transformarmos \mathbf{y} , obtemos o mesmo resultado? E se transformarmos apenas \mathbf{X} ?
- 6. Considere o modelo $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$ A partir das definições $SST = \sum_{i=1}^{n} (y_i \bar{y})^2$, $SSR = \sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$ e $SSE = \mathbf{e}'\mathbf{e} = \sum_{i=1}^{n} e_i^2$, responda as seguintes questões:
 - a. Prove que SST = SSR + SSE.
 - b. Suponha que a variável z é adicionada ao modelo. Mostre como podemos comparar o \mathbb{R}^2 da primeira regresão com o da segunda.

Problemas práticos

Considere a seguinte base de dados:

$$\mathbf{X} = \begin{bmatrix} 1 & 4 & 2 \\ 1 & 7 & 6 \\ 1 & 2 & 9 \\ 1 & 1 & 4 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} 6 \\ 11 \\ 4 \\ 3 \end{bmatrix}$$

- 1. Calcule as seguintes quantidades:
 - a. X'X
 - b. $(X'X)^{-1}$
 - c. $\mathbf{b} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$
 - d. O vetor de resíduos, e
 - e. O vetor $\hat{\mathbf{y}}$
 - f. A matrix "geradora de resíduos", M
 - g. My
 - h. A matrix de projeção, P
 - i. **Py**
- $2.\,$ Defina a seguinte partição da matrix ${\bf X}$ conforme abaixo e calcule as seguintes quantidades:

$$\mathbf{X}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{X}_2 = \begin{bmatrix} 4 & 2 \\ 7 & 6 \\ 2 & 9 \\ 1 & 4 \end{bmatrix}$$

- a. M_1y
- b. $\mathbf{y}'\mathbf{M}_1\mathbf{y}$
- c. R^2