Class 07 - Machine Learning pt. 1

Gabriella Tanoto (A18024184)

Table of contents

Clustering	1
K-Means	
Iierarchical Clustering	7
Dimentional Reduction	10
PCA (Principal Component Analysis)	10

Today, we are exploring unsupervised machine learning starting with *clustering* and *dimentionality* reduction!

Clustering

Let's make a data where we know what the answer should be, just to get used to the function and see if it works! The rnorm() function will help us.

```
hist(rnorm(250, 23, 30))
```

Histogram of rnorm(250, 23, 30)

Return 30 numbers centered at -3

```
c(rnorm(30, -3), rnorm(30, 3))
 [1] -4.0797131 -3.5476526 -3.1922873 -4.1022650 -4.2324042 -3.6388201
 [7] -2.4319615 -3.8168936 -2.7561134 -2.0412102 -1.9956784 -2.3478639
[13] -2.8236184 -2.5283182 -1.3910000 -4.1933143 -2.4627504 -1.5830252
[19] -3.2765972 -1.6849563 -4.7363680 -4.2450875 -1.8810337 -3.3309069
[25] -3.5508715 -2.8031507 -3.6959825 -2.5737699 -1.9705357 -3.5507087
[31]
      3.2403781
                 2.9805515
                            2.2193983 3.5606173 3.0731060
                                                             0.7973581
[37]
      1.9818087
                 2.1090681
                            3.0134149 2.6475173 2.3470285
                                                              2.5749775
                 4.6307863
                            3.7558047 1.3426547
[43]
      4.1863120
                                                   2.8307374
                                                              3.5322329
[49]
      1.4553030
                 3.8268165
                            3.2864105 2.7038179 2.0309688 2.5900813
[55]
      3.4647259
                 2.0870814
                            1.7962168 1.5778262 2.1993344 2.4358626
#same as:
tmp \leftarrow tmp \leftarrow c(rnorm(30, -3), rnorm(30, 3))
x <- cbind(x=tmp, y=rev(tmp))</pre>
```

Now, make this into a Plot:

plot(x)

K-Means

Main functuion in "base R" for K-mean clustering is called kmeans ()

km <- kmeans(x, centers=2) #centers refers to how many groups we want it to give us.
 #clustering vector is which cluster each of the points are at (i.e., cluster 1 or 2).
km</pre>

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

Clustering vector:

Within cluster sum of squares by cluster:
[1] 53.43509 53.43509
(between_SS / total_SS = 90.9 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

The kmeans() function returns a list of 9 components. We can see the attributes from attributes() function!

#Look at the attributes of the Km:
attributes(km)

\$names

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

\$class

[1] "kmeans"

Q1. How many points are in each cluster?

km\$size

[1] 30 30

Q2. Cluster assignment/mamber vector?

km\$cluster

#cluster: It's telling us which pints belong to which clusters.

Q3. Cluster Centers?

km\$centers

x y 1 2.757616 -3.200589 2 -3.200589 2.757616

Q4. Make a plot of our kmeans() results, with cluster assignment different colors, and centers blue.

plot(x, col=km\$cluster) + points(km\$centers, col="blue", pch=19)

integer(0)

Q5. Run k-means again on x, but with 4 groups cluster, and plot the same result fig as above.

```
km4 <- kmeans(x, centers= 4)
km4</pre>
```

```
K-means clustering with 4 clusters of sizes 30, 14, 10, 6
```

Cluster means:

```
x y
1 2.757616 -3.200589
2 -3.217223 2.082186
3 -2.285045 3.459460
```

4 -4.687682 3.163877

Clustering vector:

Within cluster sum of squares by cluster: [1] 53.435090 7.974641 9.564389 1.938290

(between_SS / total_SS = 93.8 %)

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"

```
#Plotting km4
plot(x, col= km4$cluster) + points(km4$centers, col="blue", pch=19)
```


integer(0)

Key point - **BE WARY**:

Kmeans is super popular because it's easy to understand, but it can be **self-fulfilling and MISUSED**. One big limitation is: it can impose a clustering pattern even if natural grouping doesn't exist.

We can just cluster anything into what we think it is, when we determine the centers. Say, even though it's only 2 clusters, we put in 4 and it still gives out a result.

Hierarchical Clustering

Main function in base R is hclust().

You can't just pass the dataset as is into hclust(). We have to make a *distance matrix* (dissimilarity distance) first. But this makes it more flexible (doesn't have to be Euclidean distances only like the kmeans()). Flexible as in we can do sequence alignments too!

```
d <- dist(x)
hc <- hclust(d)
hc #not very useful without plotting it.</pre>
```

Call:

hclust(d = d)

Cluster method : complete
Distance : euclidean

Number of objects: 60

The results of hclust() doesn't have very useful print method, but it has special plot() method. Will give out a "dendrogram" or a "tree diagram".

```
plot(hc) + #each labels here #each labels here is just the data label.
  abline(h=8, col = "#E74C3C")
```

Cluster Dendrogram

d hclust (*, "complete")

integer(0)

hclust() is a bottom-up clustering method.

To get our main cluster assignment (membership vector), we need to cut our tree.

```
groups <- cutree(hc, h=8)
groups</pre>
```

We can see the attributes of groups by using table()

```
table(groups)
```

Plotting the same one (Q4) where we determine the colors of the clusters:

Hierarchical clusterng is distinct, in that the dendogram (tree figure) can reveal the *potential groupings* in our data, unlike K-means.

Dimentional Reduction

PCA (Principal Component Analysis)

PC is a common and useful dimentionality reduction technique used in many fields, particularly Bioinformatics. It basically lines that are of *best fit* for our data. So these PC lines are better at representind the data points compared to any of the original axes.

PC's capture the "spread" of the data. The PC1 axis will capture the most variation, followed by the PC2, etc.

Objectives of PC:

- Reduce dimentionality
- Choose most useful characters

Basically like a filter!

Analyzing the UK food data:

Importing the File:

```
url <- "https://tinyurl.com/UK-foods"
uk <- read.csv(url, row.names = 1) #this row.names is a function that sets the first column
head(uk, 6)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Now, let's try plotting them.

Barplot

```
barplot(as.matrix(uk), beside=T, col=rainbow(nrow(uk)))
```


Stacked barplot

barplot(as.matrix(uk), beside=F, col=rainbow(nrow(uk)))

Pairs Plot Now a more useful plot!

pairs(uk, col=rainbow(10), pch=16)

PCA to the Rescue!

The main function in R for PCA: prcomp()

t(uk) #transposing the data, so we have the columns as the food type.

	Cheese	Carcass_	meat	Other	_meat	Fish	Fats_and	d_oils	Sugars
England	105		245		685	147		193	156
Wales	103		227		803	160		235	175
Scotland	103		242		750	122		184	147
N.Ireland	66		267		586	93		209	139
	Fresh_p	potatoes	Fresh	n_Veg	Other	_Veg	Processe	ed_pota	toes
England		720)	253		488			198
Wales		874	Ļ	265		570			203
Scotland		566	3	171		418			220
N.Ireland		1033	3	143		355			187
	Process	sed Veg	Fresh	fruit	Cerea	als 1	Beverages	Soft	drinks

England	360	1102	1472	57	1374
Wales	365	1137	1582	73	1256
Scotland	337	957	1462	53	1572
N.Ireland	334	674	1494	47	1506
	Alcoholic_drinks	Confection	ery		
England	375		54		
Wales	475		64		
Scotland	458		62		
N.Ireland	135		41		

```
pca <- prcomp(t(uk))
summary(pca)</pre>
```

Importance of components:

 PC1
 PC2
 PC3
 PC4

 Standard deviation
 324.1502
 212.7478
 73.87622
 3.176e-14

 Proportion of Variance
 0.6744
 0.2905
 0.03503
 0.000e+00

 Cumulative Proportion
 0.6744
 0.9650
 1.00000
 1.000e+00

PC1 is the one that will catch most variation. This makes sense, since **67**% of Proportion of Variance is captured by PC1, and 29% is captured by the PC2.

The prcomp() function returns a list of object of our results with 5 attributes/components.

attributes (pca)

\$names

[1] "sdev" "rotation" "center" "scale" "x"

\$class

[1] "prcomp"

head(pca\$x)

	PC1	PC2	PC3	PC4
England	-144.99315	-2.532999	105.768945	-4.894696e-14
Wales	-240.52915	-224.646925	-56.475555	5.700024e-13
Scotland	-91.86934	286.081786	-44.415495	-7.460785e-13
N.Ireland	477.39164	-58.901862	-4.877895	2.321303e-13

The two main results in here are: pca\$x and pca\$rotation. The pca\$x contains scores of fata on the new PC axis – we use these to make the "PCA plot"

```
library(ggrepel)

#make a plot of pca$x of PC1 v PC2
ggplot(pca$x)+
  aes (PC1, PC2, label= rownames(pca$x))+
  geom_point()+
  geom_text_repel()
```


This plot mainly shows that Ireland consumes quite different foods than England, Wales, and Scotland. The PC1 shows highest variation, while the PC2 shows the second highest.

The second major result is contained in the pca\$rotation object or component. Let's plot to see what PCA is picking up.

```
PC1 PC2 PC3 PC4
Cheese -0.05695538 0.01601285 0.02394295 -0.694538519
```

Each factor (the food) contribution to the PC1 (the new axis!):

```
ggplot(pca$rotation)+
  aes(PC1, rownames(pca$rotation))+
  geom_col()
```


This second plot shows how much each of the food types contribute to the PC; how much they affect the variance!

UNDERSTANDING THE TWO PLOTS:

Combined with the previous plot (L: Ireland, R: England, Wales, and Scots), the two shows that Ireland eats more fresh potatoes and soft drinks, but the Fresh fruit adn alcoholic drinks are less consumed there.