Input: Attention matrix A_{r2all} ; Index sets \mathcal{I}_p and \mathcal{I}_{np} **Parameter**: Threshold factor γ ; top-k value k

Algorithm 1: Attention Suppression Loss

Output: Suppression loss \mathcal{L}_{sup}

1: Obtain A_{prompt} and $A_{non-prompt}$ from A_{r2all} using index sets \mathcal{I}_n and \mathcal{I}_{nn}

2: $\mathbf{T}_k \leftarrow \text{TopK}(\mathbf{A}_{\text{prompt}}, k)$ 3: $\mu_{\text{non}} \leftarrow \text{Mean}(\mathbf{A}_{\text{non-prompt}})$ 4: **return** $\mathcal{L}_{sup} = Mean(ReLU(\mathbf{T}_k/\mu_{non} - \gamma))$

This loss can be implemented in a single line of Python:

loss = ReLU(TopK(A_prompt, k) / Mean(A_non_prompt) - factor).mean()