Assignment: MATH 3490 Numerical Analysis

Instructor: Dr. Puneet Rana

Deadline: Nov 18, 2021

UNIT 6-7: AS1 Initial Value Problem for Ordinary Differential Equations (30 Points) *Note: All questions are of equal marks*

Question 1: Which of the following statements are **TRUE**?

- (i) The differential equation $2y' + x^2y = 2x + 3$, y(0) = 5 is linear.
- (ii) A differential equation is considered to be ordinary if it has one dependent variable.
- (iii) The exact of ordinary equation, $2y' + 3y = e^{-x}$, y(0) = 1 is $y(x) = e^{-x}$.
- (iv) The initial value problem, $y' = y t \cos ty$, $0 \le t \le 2$, y(0) = 2 has a unique solution.

Question 2: Given $3y' + 5y^2 = \sin x$, y(0.3) = 5 and using a step size of h = 0.3, the value of y(0.9) using Euler's method (correct to three decimal places)?

Question 3: Euler's method can be derived by using the first two terms of the Taylor series of writing the value of y_{i+1} , that is the value of y at x_{i+1} , in terms of y_i and all the derivatives of y at x_i . If $h = x_{i+1} - x_i$, then write down the explicit expression for y_{i+1} if the first three terms of the Taylor series are chosen for the ordinary differential equation, $3y' + 2y = e^{-4x}$, y(0) = 7.

Question 4: Given the initial-value problem $\frac{dy}{dt} = \frac{1}{t^2} - \frac{y}{t} - y^2$, $1 \le t \le 2$, y(1) = -1, with exact solution y(t) = -1/t. Use Taylor's method of order two with h = 0.05 to approximate the solution and compare it with the actual values at y(1.1).

Question 5: Given $3y' + 5\sqrt{y} = e^{0.1x}$, y(0.3) = 5 and using a step size of h = 0.3, the best estimate of y'(0.6) using the Runge-Kutta 2^{nd} order midpoint method (Correct to two decimal places)?

Question 6: Use the Modified Euler method to approximate the solutions to following initial-value problems and compare the results to the actual values:

$$\frac{dy}{dt} = \frac{y^2}{1+t}$$
, $1 \le t \le 2$, $y(1) = \frac{-1}{\ln 2}$ with $h = 0.1$; actual solution $y(t) = \frac{-1}{\ln(t+1)}$.

Question 7: Show that the Midpoint method and the Modified Euler method give the same approximations to the initial-value problem, y' = -y + t + 1, $0 \le t \le 1$, y(0) = 1 for any choice of h. Why is this true? What is the relationship between these methods?

Question 8: In numerical methods, as h is decreased the calculation takes longer but is more accurate. However, decreasing h too much could cause significant errors. Why does this occur?

Question 9: Use the Runge-Kutta Fehlberg Algorithm with tolerance $TOL = 10^{-4}$ to approximate the solution to the following initial-value problems, $y' = \sin t + e^{-t}$, $0 \le t \le 1$, y(0) = 0 with hmax = 0.25 and hmin = 0.02.

Question 10: Use all the Adams-Bashforth methods to approximate the solutions to the initial-value problems: y' = 1 + y/t, $1 \le t \le 2$, y(1) = 2 with h = 0.2; actual solution, $y(t) = t \ln t + 2t$. Use exact starting values and compare the results to the actual values.