Qn2.a Fuzzy Logic

Given the following fuzzy sets for a variable.

Find DOM in normalized form $(0\sim1)$ for the sets when a car speed equals 70. Round off the answer to 2 decimal places if necessary (Ex: 0.226->0.23, 0.1->0.1).

Answers:

	0.25	Solution:	1-(70-40)/(80-40) = 1-30/40
DOM for OSpeedLow		_	
	0.75	Solution:	(70-40)/(80-40) = 30/40
DOM for OSpeedMedium			
·	0	_	
DOM for OSpeedHigh		_	

Qn2.b Fuzzy Logic

Given:

- DOMs for sets A,B, and C:
 - \circ DOM(A) = 0.1
 - \circ DOM(B) = 0.5
 - o DOM(C) = 0.4
- Rules:
 - o IF (A AND B) OR C THEN D
 - IF A OR B OR NOT C THEN E
 - **IF** D **AND** E **THEN** F

Find: Evaluate the rules to find DOM for set F.

0.4

Answer: DOM for F

Solution:

DOM(D) = max(min(0.1, 0.5), 0.4) = 0.4

DOM(E) = max(0.1, 0.5, 1-0.4) = 0.6

DOM(F) = min(0.4, 0.6) = 0.4

Qn2.c Fuzzy Logic

Given: Sets of a variable after aggregation.

Find: Crisp rounded value after defuzzification by using centroid method. Round off the answer to 2 decimal places if necessary (Ex: 0.226->0.23, 0.1->0.1).

Answer: 55

Solution:

Set sampling step 20. Centroid is calculated by geometric decomposition

Answer is A / T = $330\ 000\ /\ 6000\ = 55$ where A = $10*1000\ +\ 30*1000\ +\ 50*1000\ +\ 70*1500\ +\ 90*1500\ =\ 90\ 000\ +\ 240\ 000\ =\ 330\ 000$ T = $1000\ +\ 1000\ +\ 1000\ +\ 1500\ +\ 1500\ =\ 6000$