Statistik Übung Aufgabe 15

X Y	0	2	4	y	P(Y = y)	y * P(Y = y)	y^2	$y^2 * P(Y = y)$
-1	$\frac{8}{32}$	$\frac{1}{32}$	$\frac{1}{32}$	-1	$\frac{10}{32}$	$-\frac{10}{32}$	1	$\frac{10}{32}$
0	$\frac{4}{32}$	$\frac{5}{32}$	0	0	$\frac{9}{32}$	0	0	0
2	$\frac{4}{32}$	$\frac{8}{32}$	$\frac{1}{32}$	2	$\frac{13}{32}$	$\frac{26}{32}$	4	$\frac{52}{32}$
x	0	2	4		∇ = 32	$E(Y) = \frac{16}{32}$		$E(Y^2) = \frac{62}{32}$
P(X = x)	$\frac{16}{32}$	$\frac{14}{32}$	$\frac{2}{32}$		$\sum = \frac{32}{32}$	$E(T) - \frac{1}{32}$		$E(I) - \frac{1}{32}$
x * P(X = x)	0	$\frac{28}{32}$	$\frac{8}{32}$	E(Z)	$X) = \frac{36}{32}$			
x^2	0	4	16					
$x^2 * P(X = x)$	0	$\frac{56}{32}$	$\frac{32}{32}$	E(Z)	$(X^2) = \frac{88}{32}$			

Z = min(X, Y)	-1	0	2	Σ
P(Z = z)	$\frac{10}{32}$	$\frac{13}{32}$	$\frac{9}{32}$	$\frac{32}{32}$
z * P(Z = z)	$-\frac{10}{32}$	0	$\frac{18}{32}$	$E(Z) = \frac{8}{32}$
Z^2	1	0	4	
$z^2 * P(Z = z)$	$\frac{10}{32}$	0	$\frac{36}{32}$	$E(Z^2) = \frac{46}{32}$

ZY = w	0	1	4	Σ
Urbilder	${Y = 0} \cup {Y = 2 \land X = 0}$	$\{Y = -1\}$	$\{Y = 2 \land X \neq 0\}$	Ω
P(ZY = w)	$\frac{13}{32}$	$\frac{10}{32}$	$\frac{9}{32}$	$\frac{32}{32}$
w * P(ZY = w)	0	$\frac{10}{32}$	$\frac{36}{32}$	$E(ZY) = \frac{46}{32}$

$$E(X) = \frac{36}{32} = \frac{9}{8} = 1,125 \qquad Var(X) = \frac{88}{32} - (\frac{36}{32})^2 = 1,484375 \approx 1,5$$

$$E(Y) = \frac{16}{32} = \frac{1}{2} = 0,5 \qquad Var(Y) = \frac{62}{32} - (\frac{1}{2})^2 = 1,6875 \approx 1,7$$

$$E(Z) = \frac{8}{32} = \frac{1}{4} = 0,25 \qquad Var(Z) = \frac{46}{32} - (\frac{1}{4})^2 = 1,375$$

$$CoVar(Z,Y) = E(ZY) - E(Z)E(Y) = \frac{46}{32} - \frac{1*1}{4*2} = 1,3125$$

Statistik Übung Aufgabe 16

X	kein	gering	mittel	groß	Σ
Ulme	8	6	5	1	20
Kiefer	7	10	3	0	20
Fichte	2	6	15	8	31
Σ	17	22	23	9	71
Ulme	40%	30%	25%	5%	100%

X und Y sind nicht unabhängig, weil

$$P(X = \text{Kiefer}, Y = \text{groß}) = 0 \neq \frac{20*9}{71*71} = P(X = \text{Kiefer}) * P(Y = \text{groß})$$

Statistik Übung A<u>ufgabe 17</u>

Sei X die Anzahl der gezogenen gelben Karten und Y der Auszahlungsbetrag des Spielers.

X	0	1	2	3	Σ
$7^3 * P(X = x)$	120	180	42	1	343
Y	0	2	5	100	
y * P(Y = y)	0	$\frac{360}{343}$	$\frac{210}{343}$	$\frac{100}{343}$	$E(Y) = \frac{670}{343} \approx 1,95$

Mit einer Teilnahmegebühr von **2,95** Euro macht die Bank im Schnitt pro Spiel einen Euro Gewinn.

Statistik Übung Aufgabe Ü 3.1

Sei W das Ergebnis des in der Aufgabe beschriebenen Experiments.

W	1	2	3	4	5	6	Σ
P(W = w)	$\frac{5}{18}$	$\frac{5}{18}$	$\frac{5}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{18}{18}$

.....

Statistik Übung Aufgabe Ü 3.2

Die 6 Plätze in Fahrtrichtung auf 5 Personen verteilen: 6!/1! = 720 Möglichkeiten Die 6 Plätze gegen Fahrtrichtung auf 4 Personen verteilen: 6!/2! = 360 Möglichkeiten Die übrigen 3 Plätze auf die übrigen 3 Personen verteilen: 3! = 6 Möglichkeiten Insgesamt gibt es 720 * 360 * 6 = 1.555.200 Möglichkeiten, die Gruppe zu verteilen Sieht man sich nur die Abteile an:

Wir betrachten nur Abteil 1, weil alle, die nicht dort sitzen, sind automatisch in Abteil 2.

Sei F_{VW} die Menge der 5 Personen, die nur vorwärts fahren wollen.

Sei ${\cal F}_{RW}$ die Menge der 4 Personen, die nur rückwärts fahren wollen.

Sei F_F die Menge der 3 Personen, denen die Richtung egal ist.

Zu den 3 Mengen seien $F^1_{VW},\,F^1_{RW}$ und F^1_F die Teilmengen, die in Abteil 1 sitzen.

$\#F^1_{VW}$	$\#F^1_{RW}$	$\#F_F^1$	Möglichkeiten	
2	1	3	10 * 4 * 1 =	40
2	2	2	10 * 6 * 3 =	180
2	3	1	10 * 4 * 3 =	120
3	1	2	10 * 4 * 3 =	120
3	2	1	10 * 6 * 3 =	180
3	3	0	10 * 4 * 1 =	40
		Σ		680