Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Розрахунково-графічна робота з дисципліни «Комп'ютерна схемотехніка»

Виконав: студент ННІКІТ групи СП-225 Клокун Владислав Перевірив: Іскренко Ю. Ю.

1 Завдання

Завданням розрахунково-графічної роботи є розробка алгоритму виконання вказаної в завданні операції та синтезу функціональної схеми керуючого автомата.

Параметр	Значення
<u></u>	16
Тип операції	Додавання
Початковий код операндів	ДК
Розрядність операндів	16
КВМСМ	МДК
Структура ОБ	ЗМО
Тип автомата	Мілі
Пам'ять автомата	D
OP	P
ЛО	NAND

Табл. 1: Завдання на розрахунково-графічну роботу

З завдання на розрахунково-графічну роботу (табл. 1) видні такі характеристики цільового арифметико-логічного пристрою:

- 1. Тип арифметичної операції додавання двійкових чисел.
- 2. Початковий код подання операндів доповняльний.
- 3. Розрядність операндів 16 біт.
- 4. Код виконання операції у суматорі доповняльний модифікований.
- 5. Структура операційного блока із закріпленими мікроопераціями.
- 6. Тип керуючого блока автомат Мілі з пам'яттю на *D*-тригерах.
- 7. Схема логічної ознаки парності молодшого байту.

2 Хід роботи

2.1 Розробка алгоритму

Алгоритм додавання двійкових чисел можна словесно описати так:

1. У першому і другому машинних тактах із вхідної шини паралельним кодом записуються операнди A і B у відповідні регістри RGA і RGB. Зчитування операндів здійснюється ЦПК.

- 2. Протягом одного машинного такту виконується мікрооперація додавання.
- 3. Якщо розрядна сітка не переповнилась, результат записується у регістр *RGC*.
- 4. Якщо розрядна сітка переповнилась, результат не фіксується, і в ЦПК подається сигнал переповнення «ПП».

2.2 Побудова граф-схем

У процесі виконання розрахунково-графічної роботи за алгоритмом була розроблена мікропрограма додавання (її змістовний граф на рис. 1).

Далі отриманий на попередньому етапі змістовний граф мікропрограми був закодований і розмічений (рис. 2).

2.3 Синтез

За результатом кодування графа згідно відповідно до завдання був синтезований автомат Мілі (рис. 3).

3 синтезованого автомата Мілі видно, що максимальна кількість станів автомата L=8. Для реалізації такої кількості станів необхідно використати $n=\left\lceil \log_2 8 \right\rceil=3$ D-тригери.

Закодуємо стани автомата Мілі значеннями виходів D-тригерів за принципом кодування Грея та зобразимо це відповідним чином на рисунку.

$$\begin{split} z_1 &= \overline{Q_1 Q_2 Q_3}, \quad z_2 &= \overline{Q_1 Q_2} Q_3, \quad z_3 &= \overline{Q_1} Q_2 Q_3, \\ z_4 &= \overline{Q_1} Q_2 \overline{Q_1}, \quad z_5 &= Q_3 Q_2 \overline{Q_1}, \quad z_6 &= Q_3 Q_2 Q_1, \\ z_7 &= Q_3 \overline{Q_2} Q_1, \quad z_8 &= Q_3 \overline{Q_2} Q_1. \end{split}$$

Для наочності складемо структурну таблицю переходів автомату Мілі (табл. 2).

z_i	$k(z_i)$	z_j	$k(z_j)$	$\{x_i\}$	$\{y_i\}$	D_1	D_2	D_3
z_1	000	z_1	000	$\overline{eta_1}$	_	0	0	0
z_1	000	z_2	001	1	y_1	0	0	1
z_2	001	z_3	011	1	y_2	0	1	1
z_3^-	011	z_4	010	1	y_3	0	1	0
z_4	010	Z_5	110	1	y_4	1	1	0
Z_5	110	z_6	111	1	y_5	1	1	1
z_6	111	z_7	101	1	y_6	1	0	1
Z_7	101	z_1	000	x_1	y_9	0	0	0
z_7	101	z_8	100	$\frac{1}{x_1}$	y_7	1	0	0
z_8	100	z_1	000	1	y_8	0	0	0

Табл. 2: Структурна таблиця переходів автомата Мілі

Рис. 1: Змістовний граф мікропрограми додавання

Рис. 2: Закодований граф мікропрограми додавання

Рис. 3: Граф автомата Мілі для мікропрограми додавання

На підставі даних структурної таблиці переходів автомату Мілі записуємо системи логічних рівнянь. Для функцій збудження входів:

$$D_1 = z_4 \lor z_5 \lor z_6 \lor z_7 \overline{x_2},$$

$$D_2 = z_2 \lor z_3 \lor z_4 \lor z_5,$$

$$D_3 = z_1 \lor z_2 \lor z_5 \lor z_6.$$

Перетворимо отримані функції до заданого у завданні елементного базису NAND («І—НЕ», тут і далі позначається символом $\overline{\wedge}$):

$$D_{1} = z_{4} \lor z_{5} \lor z_{6} \lor z_{7}\overline{x_{2}} = \overline{z_{4}} \,\overline{\land}\, \overline{z_{5}} \,\overline{\land}\, \overline{z_{6}} \,\overline{\land}\, (z_{7} \,\overline{\land}\, x_{2}),$$

$$D_{2} = z_{2} \lor z_{3} \lor z_{4} \lor z_{5} = \overline{z_{2}} \,\overline{\land}\, \overline{z_{3}} \,\overline{\land}\, \overline{z_{4}} \,\overline{\land}\, \overline{z_{5}},$$

$$D_{3} = z_{1} \lor z_{2} \lor z_{5} \lor z_{6} = \overline{z_{1}} \,\overline{\land}\, \overline{z_{2}} \,\overline{\land}\, \overline{z_{5}} \,\overline{\land}\, \overline{z_{6}}.$$

Для вихідних сигналів:

$$y_1 = z_1,$$
 $y_2 = z_2,$ $y_3 = z_3,$
 $y_4 = z_4,$ $y_5 = z_5,$ $y_6 = z_6,$
 $y_7 = z_7\overline{x_1},$ $y_8 = z_8,$ $y_9 = z_7x_1.$

В результаті розробили функціональну схему керуючого автомату (рис. 4).

3 Висновок

Під час виконання даної розрахунково-графічної роботи ми навчились розробляти мікропрограми для виконання арифметично-логічних операцій, синтезувати за

Рис. 4: Функціональна схема керуючого автомата

розробленим алгоритмом відповідні керуючі автомати та реалізовувати синтезовані автомати у вигляді функціональних схем.