SRN							

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE18CS251

END SEMESTER ASSESSMENT (ESA)

UE18CS251- Design and Analysis of Algorithms

Time: 3 Hrs **Answer All Questions** Max Marks: 100

Tin	ne: 3	3 Hrs	Α	nswer All Que	estions		Max Marks:	100		
1.	a)	Define <i>O</i> , Ω and	Θ notations.					6		
	b)	Write algorithm to solve the tower of Hanoi problem and derive its efficiency.								
	c)	Write algorithm	for selection sort	and derive its	efficiency.			8		
2.	a)	Write the algori	thm for Quick sor	t and derive th	e efficiency for	the best case.		8		
	b)	Write an algori	thm to find the songuer c) Decrease	smallest elem	ent in an arra		ng a) Brute force			
	c)	_	ithm for finding to			DFS. For the ab	ove DAG find the	6		
3.	a)	maximum heap delete_max(H[1 { T=H[1]; H[1]=H[n]	rithm heapify inn]) n-1]) // re creates		n below to do	elete the large	st element in the	e 6		
	b)	<- <- 4 1	two permutations <- <- 3 2 two permutations	-> 5	_			6		
	c)	Construct a RED	BLACK tree by ins	serting the follo	owing numbers	s in sequence : 2	2,1,4,5,9,3,6,7	8		
4.	a)		Moore's algorith		h for the p	pattern AT_TH	AT in the tex	t 10		
	b)		on for the followir Inction. (Fill the ta	•		olem using dyna	ımic programming	g 10		
		Item	1	2	3	4	C			
		Weight	2	1	3	2	Capacity			
							W=5			

SRN							

5	а	Construct a Maximum spanning tree using Prims algorithm for the above given graph. (Hint: Negate all the edges and apply Prims algorithm.)	10
	b	Explain in brief the following design strategies a) Greedy Technique b) Backtracking c) Branch and Bound	10