Hypothesis Testing Basic Exercises Part 1

- 1. First Name
- 2. Last Name
- 3. Specify the null and alternative hypotheses for the following tests. Use = for equal, <> for not equal, <= for less than and equal, >= for greater than and equal, < for less than, > for greater than.
 - a. Test if the mean weight of cereal in a cereal box differs from 18 ounces.

b. Test if the stock price increases on more than 60% of the trading days.

c. Test if Americans get an average of less than seven hours of sleep.

- 4. Find the critical values for the following hypothesis tests. Specify whether the value is a z or t by entering the answer as "z=" or "t=."
 - a. $H0: \mu \le 4.5; HA: \mu > 4.5; \alpha = 0.05; n = 24 = ABS(T, INV(0.05, 23))$
 - b. H0: μ =4.5; HA: μ ≠4.5; α =0.05; n=24 = T. INV.2T (0.05, 23) $\frac{1}{4}$ = 2.57
 - c. $H0: p \ge 0.2$; HA: p < 0.2; $\alpha = 0.05 = NORMS, INV(0.05)$ Z * = 1.645
- 5. Calculate the test statistic for the following tests. Find the critical values for the following hypothesis tests. Specify whether the value is a z or t by entering the answer as "z=" or "t=."

a.
$$H0: \mu \le 4.5$$
; HA: $\mu > 4.5$; x-bar = 4.8; s=0.8; n=24 $t_{23} = \frac{4.8 - 4.5}{0.8 / 134} = 1.84$

b. H0: p=0.2; HA: p\neq 0.2; p-bar = 0.40; n = 30

$$Z = 0.411$$
 $Z = 0.23 - 0.2$
 $Z = 0.23 - 0.2$
 $Z = 0.23 - 0.2$

6. Consider the following hypotheses: H0: $\mu \le 210$; HA: $\mu > 210$ Approximate the p-value for this test based on the following sample information.

a. x-bar = 216, s = 26, n = 40
$$439 = \frac{316 - 310}{36/740} = 1.46$$

Enter a numeric response. 0.076 = T.DIST.RT (1.46, 39)

b. x-bar = 216, s = 26, n = 80
$$+79 = \frac{216 - 210}{36\sqrt{79}} = 2.06$$

Enter a numeric response. 0.0213 = $+79 = 2.06$

Enter a numeric response.
$$0.0213$$
 = $\pm .015 \pm .RT(2.06, 79)$
c. x-bar = 216, s = 16, n = 40 $\pm_{39} = \frac{216 - 210}{16/\sqrt{40}} = 2.37$
Enter a numeric response. 0.0114 = $\pm .015 \pm .RT(2.37, 39)$

7. Consider the following hypotheses: H0: $p \le 0.5$; HA: p > 0.5 Approximate the p-value for this test based on the following sample information.

a. p-bar = 0.55; n = 50
$$Z = \frac{0.55 - 0.5}{\sqrt{0.5)(0.5)}} = 0.71$$

Enter a numeric response. 0.2389 = 1-NORM.S.DIST(0.71,1)

b. p-bar = 0.55; n = 200

Enter a numeric response. (), 0.793

$$Z = \underbrace{0.55 - 0.5}_{200} = 1.41$$