Übersicht über die Algebraischen Strukturen aus der Vorlesung "Mathematische Methoden für Informatiker II"

Klaus-Rudolf Kladny

Gruppentheorie:

1. Halbgruppe (S, *)

Eigenschaften:

- 1. Existenz einer Menge S (darf auch leer sein)
- 2. Existenz einer zweistelligen Operation:

$$*: S \times S \rightarrow S, (a,b) \mapsto a * b$$

3. Assoziativität bezüglich *:

$$\forall a, b, c \in S : a * (b * c) = (a * b) * c$$

4. Abgeschlossenheit bezüglich *:

$$\forall a, b \in S : (a * b) \in S$$

Unterhalbgruppe

Eine Unterhalbgruppe (U,*) einer Halbgruppe (S,*) ist eine Halbgruppe mit folgenden Eigenschaften:

- 1. $U \subseteq S$ und $U \neq \emptyset$
- $2. \ a,b \in U \Rightarrow (a*b) \in U$

2. Monoid (S, *, e)

Eigenschaften:

- 1. Es gelten alle Eigenschaften für Halbgruppen
- 2. Existenz eines neutralen Elements e:

$$\forall a \in S : e * a = a * e = a$$

3. Gruppe (S, *, e)

Eigenschaften:

- 1. Es gelten alle Eigenschaften für Monoide
- 2. Es existieren inverse Elemente:

$$\forall a \in S : \exists! a^{-1} : a * a^{-1} = a^{-1} * a = e$$

Beispiele für Gruppen:

Permutationsgruppen, Automorphismengruppen, Faktorgruppen, Menge der ganzen Zahlen mit der Addition $(\mathbb{Z}, +)$

3.1 Abelsche Gruppe (S, *, e)

Eigenschaften:

- 1. Es gelten alle Eigenschaften für Gruppen
- 2. Kommutativität bezüglich \ast :

$$\forall a, b \in S : a * b = b * a$$

2

3.2 Zyklische Gruppe (S, *, e)

Eigenschaften:

- 1. Es gelten alle Eigenschaften für Gruppen
- 2. Es existiert ein Element, welches mit · die gesamte Gruppe erzeugt. (erzeugendes Element)

Bemerkung zu zyklischen Gruppen:

Sei im Algemeinen n die Kardinalität der Gruppe

- 1. Es gibt zu jedem $n \in \mathbb{N}$ bis auf Isomorphie genau eine zyklische Gruppe mit dieser Kardinalität.
- 2. Die Gruppe hat $\phi(n)$ erzeugende Elemente.
- 3. Jede zyklische Gruppe ist abelsch (kommutativ bzgl. ·).
- 4. Das direkte Produkt zweier zyklischer Gruppen ist zyklisch, gdw. die Kardinalitäten der Gruppen teilerfremd sind.
- 5. Es gibt immer mindestens ein Element, welches mit \cdot die gesamte Gruppe alleine erzeugt.
- 6. Zu jedem Teiler t von n existiert genau eine Untergruppe. Sei a ein erzeugendes Element der gesamten Gruppe. Dann wird die Untergruppe der Ordung t vom Element $a^{n/t}$ erzeugt.

Untergruppe

Eine Untergruppe (U, *) einer Gruppe (S, *) mit dem neutralen Element e ist eine Gruppe mit folgenden Eigenschaften:

- 1. $U \subseteq S$ und $U \neq \emptyset$
- $2. e \in U$
- 3. $a, b \in U \Rightarrow (a * b) \in U$
- 4. $a \in S \Rightarrow a^{-1} \in U$ (Muss nur in nicht endlichen Gruppen gezeigt werden)

Satz von Lagrange:

$$|S| = [S:U] \cdot |U|$$

Folgerung: Die Mächtigkeit jeder Untergruppe teilt die Mächtigkeit der Gruppe.

Ringtheorie:

1. Halbring (auch: Semiring) $(H, +, \cdot)$

Eigenschaften:

- 1. Existenz einer nichtleeren (!) Menge H
- 2. Existenz zweier zweistelliger Operationen:

$$+: H \times H \to H, (a, b) \mapsto a + b$$

 $\cdot: H \times H \to H, (a, b) \mapsto a \cdot b$

- 3. (H, +) ist eine kommutative Halbgruppe.
- 4. (H, \cdot) ist eine Halbgruppe.
- 5. Es gelten die Distributivgesetze:

$$\forall a, b, c \in H : (a+b) \cdot c = a \cdot c + b \cdot c$$

$$\forall a,b,c \in H : c \cdot (a+b) = c \cdot a + c \cdot b$$

2. Ring $(H, +, \cdot)$

Eigenschaften:

- 1. Es gelten alle Eigenschaften für Halbringe.
- 2. (H, +) ist eine abelsche Gruppe.
 - (a) Das neutrale Element wird als Nullelement 0 bezeichnet

3.1 kommutativer Ring $(H, +, \cdot)$

Eigenschaften:

- 1. Es gelten alle Eigenschaften für Ringe
- 2. (H, \cdot) ist eine kommutative Halbgruppe

3.2 euklidischer Ring $(H, +, \cdot)$

Eigenschaften:

- 1. Es gelten alle Eigenschaften für Ringe
- 2. $\forall a, b \in H \setminus \{0\}$: Es kann ein größter gemeinsamer Teiler ggT(a, b) mit dem euklidischen Algorithmus bestimmt werden.

3.3 Integritätsring $(H, +, \cdot)$

Eigenschaften:

- 1. Es gelten alle Eigenschaften für kommutative (!) Ringe.
- 2. Es gibt ein neutrales Element bezüglich der Multiplikation, welches als Einselement 1 bezeichnet wird.
- 3. Es existieren keine Nullteiler:

(Erinnerung)

 $a \in H \ ist \ Null teiler \Leftrightarrow \exists b \in H : a \cdot b = 0$

3.3.1 Polynomring $(R[x], +, \cdot)$

Eigenschaften:

- 1. $(R, +, \cdot)$ ist ein Ring.
- 2. Er ist ein nicht endlicher Integritätsring, also kein Körper.

3.4 Körper $(H, +, \cdot)$

Eigenschaften:

- 1. Es gelten alle Eigenschaften für kommutative (!) Ringe
- 2. Es gibt ein neutrales Element bezüglich der Multiplikation, welches als Einselement 1 bezeichnet wird.
- 3. (H, \cdot) ist eine Gruppe

Unterring:

Ein Unterring $(U, +, \cdot)$ eines Rings $(H, +, \cdot)$ ist ein Ring mit folgenden Eigenschaften:

- 1. $U \subseteq S$ und $U \neq \emptyset$
- 2. (a) $a, b \in U \Rightarrow (a+b) \in U$
 - (b) $a, b \in U \Rightarrow (a \cdot b) \in U$
- 3. $a \in U \Rightarrow a^{-1} \in U$ (Dies muss nur in nicht endlichen Ringen gezeigt werden)

Zusammenhang zwischen Integritätsring und Körper:

Jeder Körper ist ein Integritätsring und jeder endliche Integritätsring ist ein Körper.

3.4.1 Endlicher Körper (auch: Galoiskörper) $(H, +, \cdot)$

Eigenschaften:

- 1. Es gelten alle Eigenschaften für Körper
- 2. Die Anzahl der Elemente ist endlich und sogar eine Primzahlpotenz

Multiplikative Gruppe:

Ist die Gruppe, welche aus allen Elementen des Körpers mit Ausnahme des Nullelements mit \cdot entsteht.

Bemerkung zu endlichen Körpern:

- 1. Es gibt zu jeder Primpotenz bis auf Isomorphie genau einen endlichen Körper.
- 2. Es gibt immer ein primitives Element, welches mit \cdot den gesamten Körper bis auf das Nullelement alleine erzeugt.

3.4.1.1 Endlicher Polynomkörper $(K[x]/f(x), +, \cdot)$

Eigenschaften:

- 1. Es gelten alle Eigenschaften von endlichen Körpern.
- 2. f(x) ist ein irreduzibles Polynom. Also $\nexists g(x), h(x) \in K[p]/f(x): g(x) \cdot h(x) = f(x)$

Zusätzliche Eigenschaft:

Ist x ein Erzeuger (*Primitives Element* genannt) der multiplikativen Gruppe $K[p]/f(x) \setminus \{0\}$, so wird f(x) als *Primitives Polynom* bezeichnet.

Bemerkung zu endlichen Polynomkörpern:

Sei im Allgemeinen p die Primzahl und k der Grad des irreduziblen Polynoms f(x)

- 1. Der Körper besteht aus p^k Elementen.
- 2. Die multiplikative Gruppe des Körpers besteht aus p^k-1 Elementen, da die 0 nicht darin vorkommt.