Rechnernetze und verteilte Systeme (BSRvS II)

- Aufgaben
- Virtual Circuit und Datagramm
- Router-Aufbau
- Routingalgorithmen
- Internet-Protokoll IP V4, IP V6
- DHCP und NAT
- Routing im Internet
- Multicast und Broadcast
- Mobile Netze

Prof. Dr. Heiko Krumm
FB Informatik, LS IV, AG RvS
Universität Dortmund

- Computernetze und das Internet
- Anwendung
- Transport
- Vermittlung
- Verbindung
- Multimedia
- Sicherheit
- Netzmanagement
- Middleware
- Verteilte Algorithmen

Vermittlungsschicht (Network Layer)

Aufgabe der Vermittlungsschicht

Nachrichtenweiterleitung

basierend darauf, dass mögliche Pfade des Netzes ermittelt wurden und in Weiterleitungstabellen hinterlegt sind.

Aufgabe der Anwendung "Routingtabellen-Pflege"

- Netzerkundung
- Pfadermittlung
- Aktualisierung bei Ausfällen,
 Reparaturen, Überlastsituationen

Vermittlungsschicht (Network Layer)

Bilde ein Netz aus Transitknoten und Teilstrecken, so dass Nachrichten zwischen beliebigen Punkten ausgetauscht werden können

Modelle / Paradigmen:

- Virtueller Kanal
 Verbindung, z.B. ATM
- Datagramm
 einzelne Pakete, Store and
 Forward, z.B. IP

Virtueller Kanal (ATM) versus Datagramm-Dienst

- 2-Wege-Handshake bei Host: Signalisierungnachrichten
- 1. Initiate call
- 2. Incoming call from network
- 3. Accept/acknowledge call (target host)
- 4. Acknowledgement received by initiating host

Nur Paketsenden u. Empfangen

Virtueller Kanal (ATM) - Vorteile

Kontext um für Menge von Pakettransfers gemeinsam Ressourcen zu reservieren und Konfigurationseinstellungen so durchzuführen, dass

- Echtzeitgarantien
- Mindestdurchsatz
- Verzögerungszeit-Grenzen
- begrenzte Variation der Verzögerungszeit (Jitter)

leichter realisiert werden können.

Interner Aufbau eines Routers

- ♦ Zwei Hauptfunktionen eines Routers:
 - Vermittle IP-Pakete: IP-Weiterleitung
 - Pflege Routingtabellen per RIP/OSPF/BGP

Input Port Funktionen

Dezentralisiertes Switching

- Auf Basis der Zieladresse wird der zugehörige Ausgang aus der Routingtabelle gelesen
- ◆ Ziel: Bearbeitung der eingehenden Pakete entsprechend der Geschwindigkeit der Eingangsleitung
- ◆ Zwischenspeicherung (Queuing): Wenn Datagramme schneller ankommen, als sie den Router verlassen können

Switching Fabric – Vermittlung: 3 Typen

Output Port Funktionen

Pufferung von Datagrammen

wenn diese schneller aus Fabric ankommen, als sie über Ausgabeleitung übertragen werden können

Scheduling zur Auswahl von zu übertragenden Paketen ist notwendig

Routing-Algorithmen

- ◆ Pfadermittlung im Netz:

 Vom *First Hop Router* auf Sendeseite (*Default Router* des Senders)

 zum *Destination Router* des Empfängers
- ◆ Graphentheorie: ,, Kürzeste Wege "-Algorithmen

Routing-Algorithmen

♦ Global

je Kante Kantenverlauf und Kosten global bekannt

Problem: Skalierbarkeit

Jeder Router kennt nur die Kanten zu seinen Nachbarn

♦ Statisch

Kantenverlauf und Kosten ändern sich nicht (bzw. kaum)

♦ Dynamisch

Kanten verschwinden, kommen dazu; Kosten ändern sich Problem: Schleifenbildung durch dynamische Suche

◆ Im Internet: Link State (dyn. global) ↔ Dist. Vector (dyn. dezent.)

Link-State: Dijkstra-Algorithmus

Gegeben:

K Knotenmenge eines gegebenen Graphen

c(i,j) Verbindungskosten von Knoten i nach j

$$c(i,j) \begin{cases} \text{Kosten} & \text{von } v_i \to v_j \text{ (der Kante)} \\ \infty & \text{falls von } v_i \text{ nach } v_j \text{ keine Kante} \end{cases}$$

- D(o) Kosten des (ermittelten) Pfades vom Sender zum derzeitigen Ziel o (hat unter allen Pfaden die geringsten Kosten).
- N Menge der Knoten, bei denen ein Pfad mit geringsten Kosten vom Sender bekannt ist.

Link-State: Dijkstra-Algorithmus

```
initialisation:
1
     N = \{v_0\}
     for all nodes v
3
         if v adjacent to v_0
4
            then D(v) = c(v_0, v)
5
            else D(v) = \infty
6
8
     loop
         find w not in N such that D(w) is a minimum
9
10
         add w to N
         for all v adjacent to w and not in N
11
              /* update D(v) */
12
             D(v) = min(D(v), D(w)+c(w,v))
13
14
     until all nodes are in N
```


Link-State: Dijkstra-Algorithmus

Der Algorithmus berechnet einen Weg von einem Sender v_0 zu jedem Ziel v mit minimalen Kosten in $O(n^2)$ Schritten (n = Knotenanzahl).

Der Algorithmus setzt konstante Kosten voraus. In der Praxis unterliegen die Kosten jedoch während des Betriebs Veränderungen.

Der Algorithmus soll hier nicht vertieft behandelt werden: Typischer Stoff für DAP II.

Der nachfolgende Distance Vector Algorithmus hat dagegen eine andere Beschaffenheit:

Es ist ein verteilter Algorithmus.

Distance Vector: Dezentrales Routing

Ziel

Jeder Knoten schickt ein Paket über den direkten Nachbarn, über den die geringsten Kosten entstehen.

Dazu könnte, wenn sich die Kosten nicht ändern, eine **Distanz-Tabelle** verwendet werden.

D	E()	st to d	estina B	tion via D
ation	Α	1	15	12
	В	8	8	(5)
destinatio	С	9	9	4
	D	10	11	2

Distance Vector: Algorithmus

```
Der Algorithmus kommt zum Stillstand,
1
     initialisation:
2
     for all adjacent node v
         D^{x}(*,v) = \infty /* * = alle Zeilen */
3
4
         D^{x}(X,v) = c(X,v)
                                                nicht.
5
     for all destinations, y
6
          send minwD(y,w) to each neighbour
7
     loop
8
         wait (until I see a link cost change to neighbour V
9
                or until I receive an update fom neighbour V)
         if (c(X,V)) changes by d)
10
11
               for all destinations y
                   D^{x}(y,V) = D^{x}(y,V) + d
12
         else if (update received from V wrt destination y)
13
14
               for singe destination y
15
                   D^{x}(Y,V) = c(X,V) = c(X,V) + newval
          if (we have a new min_wD(Y,w) for any destination Y)
16
17
               send new value of minwD(Y,w) to all neighbours
```

wenn keine Änderungen mehr eintreten. Netzveränderungen können zu Problemen führen: Algorithmus stoppt

Distance Vector: Algorithmus - Beispiel

Distance Vector: Algorithmus - Beispiel

Änderung der Verbindungsleitungskosten

Gute Neuigkeiten verbreiten sich schnell.

Distance Vector: Algorithmus - Beispiel

Schlechte Neuigkeiten verbreiten sich langsam.

Leitungsvermittlungsalgorithmen

Bei leitungsvermittelnden Algorithmen (verbindungsorientiert) sind z. B. Kapazitäten und benutzte Kanäle bekannt.

Algorithmen

- ◆ **Dijkstra** minimale Anzahl Hops (shortest path in terms of hops)
- ◆ Least Loaded Path (LLP) am wenigsten benutzte Kanäle
- ♦ Maximum Free Circuit (MFC) jeweils größte Anzahl freier Kanäle

Hierarchisches Routing

Autonome Teilsysteme (AS)

♦ Inter-AS Routing Inter-AS **♦** Intra-AS Routing routing between A and B Host A.c. Host Intra-AS routing within AS B

Intra-AS routing

within AS A

Internet-Protokoll: IP V4

- Verbindungsloser Datagramm–Dienst
- Nachrichten werden im Store-and-Forward-Prinzip von der Quelle zum Ziel weitergeleitet
 - vgl.: Brief oder Postpaket-Transport
- Nachrichten (Nutzdaten, d.h. die PDUs der Transportprotokolle) werden in IP-Pakete (so heißen die PDUs des IP-Protokolls) verpackt.
- ◆ Nachrichten werden u.U. segmentiert und in einer Serie von IP-Paketen hinterlegt.
- Jedes IP-Paket wird separat weitergeleitet.
- **♦** Keine Reihenfolgentreue
- **♦ Keine Garantie maximaler Latenz**
- Keine Verlustfreiheit

Komponenten der IP-Schicht

IP v 4: Adressen

- ◆ 32-Bit Adressen, als 4 Byte—Gruppen
- ◆ 193.32.216.9 == 11000001 00100000 11011000 00001001
- Wenige große Netze mit sehr vielen Hosts: Class A
- "Viele"kleine Netze mit höchstens 256 Hosts: Class C
- Multicast-Adressen: Vorbereitungsphase reserviert Adresse

IP: Adressen

◆ Eine Adresse je Netz-Interface des Knotens

IP: Adressen

- Bei mehreren
 Routern:
 Verbindung von
 Schnittstellen
 zwischen Routern ist
 beidseitig im selben
 Subnetz
- Im Beispiel:6 Subnetze

IP: Interclass Domain Routing

beliebige Länge der Netzwerkadresse: z.B.: a.b.c.d/21

Adresszuweisung für Organisationen durch ISP:

ISP-Block 200.23.16.0/20 (20 Bits für Netzwerkadresse) in 8 gleiche Teile:

- ! jede Organisation hat 23 Netzwerk-Bits:
- ISP-Block 11001000 00010111 00010000 00000000 200.23.16.0/20
- Organisation 0 11001000 00010111 00010000 00000000 200.23.16.0/23
- Organisation 1 11001000 00010111 00010010 00000000 200.23.18.0/23
- Organisation 2 11001000 00010111 00010100 00000000 200.23.20.0/23

— ...

IP: Routingtabellen

IP: Interdomain-Routing - Routenaggregation

IP: IP v4 - Paketformat

Version	Header– Länge	Type of Service (TOS)	Datagramm-Länge (Bytes)				
16-Bit-Identifizierer			Flags	13-Bit-Fragmentierungs Offset			
Time-	To-Live (L)	Höherschichtiges Protokoll		Header-Prüfsumme			
32-Bit-IP-Quelladresse							
32-Bit-IP-Zieladresse							
Optionen (falls zutreffend)							
Daten							
32 Bit							

IP: Fragmentierung und Reassemblierung

IP: Fragmentierung und Reassemblierung

Example 4 8 1

- □ 4000 byte datagram
- MTU = 1500 bytes

One large datagram becomes several smaller datagrams

IP v 6: Neue Version des IP

- → Hauptproblem: IP v4: Adressenmangel, 32-Bit Adressen
 → IP v6: 128 Bit Adressen "Jedes Sandkorn der Erde adressierbar"
- ◆ Trotzdem "schlankere" Header: Zusatzheader-Konzept
 - Header: 40 Byte, Unfragmentiert
 - Zusatzheader: z.B. zur Verschlüsselung

Priorität

Flusslabel: Id für ausgehandelten Verkehr

Next Hdr:

Zusatzheader

IP v 6: Neue Version des IP

- ♦ Weitere Änderungen von IP v6:
 - Keine Prüfsumme in Header (schnelle Verarbeitung)
 - IPsec ,,IP-Security"VPN-Technik

Übergang von IP v4 nach IP v6: Läuft seit Jahren!

- ◆ 2 Möglichkeiten zum gleichzeitigen Betrieb beider Protokolle
 - Dual Stack
 Neue Router können auch IP v4
 - Tunneling
 IP v6 Pakete werden, um IP v4 Netz zu durchlaufen in IP v4 Pakete eingepackt

IP v 6: Dual Stack

- Routers B and E have dual v6 and v4 stacks
- Flow label info lost after translation at B

IP v 6: Tunneling

ICMP Internet Control Message Protocol

- used by hosts, routers, gateways to communication network-level information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

Туре	Code	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

DHCP: Dynamic Host Configuration Protocol

- Lokales Netz:
 Hosts kommen dazu, Hosts werden entfernt
 Jeder Host braucht eine IP-Adresse → Administrationsaufwand
- ◆ WLAN- und ISP-Strukturen: Viele potentielle Hosts

Dynamische Adresszuweisung

DHCP Server verteilt Adressen

Host tritt bei Netzbeitritt als DHCP Client auf

DHCP: Dynamic Host Configuration Protocol

NAT: Network Adress Translation

- "Zu wenig IP-Adressen" (z.B. ISP weist eine einzige Adresse zu)
- ◆ Im öffentl. Internet soll man Hosts des Innennetzes nicht kennen

NAT: Network Adress Translation

- NAT ist eine Notlösung und verursacht selbst Probleme.
 - Portnummern sollen Anwendungsprozesse adressieren und nicht Hosts!
 - Es gibt Protokolle, wo mehrere Verbindungen im Zusammenhang benutzt werden und Portnummern innerhalb von APDUs ausgetauscht werden (z.B. FTP, VoIP): Hier muss NAT in APDUs reinschauen und dort Portnummern umsetzen.
- Nicht sichtbare Hosts sind noch lange nicht geschützt!

Internet: Routingtabellen-Pflege

- Internet: Netz aus autonomen Subnetzen (AS)
- ◆ A] Routing im AS
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First Protocol
 - EIGRP: Enhanced Interior Gateway Routing Protocol
- ◆ B] Routing zwischen AS / Inter-Domain-Routing

A] RIP

Destination Network	Next Router	Num. of hops to dest.
W	A	2
у	В	2
z	В	7
×	·	1

Routing table in D

Distanzvektor-Protokoll

- Hop-Anzahl als Weglänge, Begrenzung auf 15 Hops
- Austausch von Routing-Tabellen alle 30 Sekunden
- Maximale Zahl der Einträge: 25
- Austauschnachrichten zwischen Nachbarn (Hopzahl: 1) werden als Advertisements bezeichnet.

RIP

Dest	Next	hops
W	-	-
×	-	-
Z	С	4

Advertisement von Router A

Destination Network	Next Router	Num. of hops to dest.
W	A	2
у	В	2
z	В	7
×		1

Routing table in D

Destination Network	Next Router	Num. of hops to dest.
w	Α	2
у	В	2
ž	BA	× 5
×		1

Routing table in D

A] OSPF

- Link-State-Protokoll
- Aufbau einer Darstellung der Gesamt-Topologie durch Kommunikation mit allen Routern
- ◆ Zentrale Ausführung des Dijkstra-Algorithmus um eine vollständige Kostentabelle pro Router zu bestimmen
- Besonderheiten:
 - Authentifizierung von Routern (Sicherheit)
 - Bei mehreren Pfaden mit gleichen Kosten: Verkehr zwischen A und B über verschiedene Pfade (parallel)
 - Unterschiedliche Kanten-/Verbindungskosten (z.B. höhere Kosten für zeitkritischen Verkehr) (variable Pfadermittlung)
 - Unterstützung von Multi-/Broadcast
 - Unterstützung von hierarchischen Netzstrukturen (verschiedene Rollen für Router)

Hierarchische Netzstrukturen

B] Inter-AS Routing im Internet: BGP

- ◆ BGP (Border Gateway Protocol): the de facto standard
- **♦ Path Vector** protocol:
 - similar to Distance Vector protocol
 - each Border Gateway broadcasts to neighbors (peers) entire path (i.e, sequence of ASs) to destination: Advertisements and Withdrawels
 - E.g., Gateway X may send its path to dest. Z: Path (X,Z) = X,Y1,Y2,Y3,...,Z

Inter-AS Routing im Internet: BGP

- ◆ A,B,C are provider networks
- ◆ X,W,Y are customers (of provider networks)
- X is dual-homed: attached to two networks
 - X does not want to route from B via X to C
 - .. so X will not advertise to B a route to C

Multicast-Routing

 Gruppen-Kommuikation: Senden an alle Mitglieder einer Empfänger-Gruppe

- für Software-Verteilung
- für Konferenz-Übertragung
- für Telekonferenzen

Grundidee:

- Spannbaum vom Sender zu Empfängern bestimmen
- Router als Baum-Zwischenknoten duplizieren die Pakete
- Großes Problem: Zuverlässiger Broadcast so genannte Quittungsimplosion

Multicast-Routing: IP-Gruppen-Adressen

- Ziel-Adresse ist Gruppen-Adresse
- Problem: Adresse und Empfängermenge müssen vorher vereinbart werden: Internet Group Management Protocol (IGMP) plus Wide Area Multicast Routing

Multicast-Routing: IGMP

- ◆ a) Router frägt "seine" Hosts, ob sie an Gruppe beteiligt sind
- b) Host sagt seinem Router, dass er an Gruppe beteiligt sein möchte

Multicast-Routing: Wide Area Multicast Routing

A) Je Sender ein Multicast-Baum

B) Gemeinsamer Gruppen-Baum

Multicast-Routing: Wide Area Multicast Routing

- DVMRP (Distance Vector Multicast Routing Protocol
 - source-based tree
- MOSPF (Multicast Open Shortest Path First)
 - source-based tree
- CBT (Core-Based Trees)
- PIM (Protocol Independent Multicast)
 - Sparse Mode (similar in spirit to CBT)
 - Dense Mode (similar in spirit to DVMRP)
 - no assumption about underlying unicast routing protocol

Mobile Netze

Home Network

Heimatnetz der mobilen Station (e.g., 128.119.40/24)

Permanent Address

Adresse im Heimnetz, unter der die mobile Station immer erreichbar sein soll, z.B., 128.119.40.186

Home Agent

Einheit, die Funktionen für die mobile Station ausführt, wenn dieses nicht im Heimnetz ist

wide area network

Mobile Netze

Mobile Netze

- Problem: Wo ist mobile Station momentan?
- ◆ Lösung A:

Routing Algorithmus soll das Problem lösen: Router verteilen den Aufenthaltsort mobiler Stationen mit dem üblichen Austausch von Routing-Informationen,

- Routing-Tabellen zeigen an, wo sich eine mobile Station befindet
- Keine Änderungen am Endsystem notwendig

Lösung B:

Endsysteme sollen das Problem lösen, Routing bleibt unverändert:

- indirektes Routing: Kommunikation f
 ür die mobile Station l
 äuft
 über den Home Agent, der die Pakete weiterleitet
- Direktes Routing: Kommunikationspartner erhält vom Home Agent die aktuelle Adresse der mobilen Station und kommuniziert direkt

Mobile Netze: Registrierung

Resultat:

- Foreign Agent kennt die mobile Station
- Home Agent weiß, wo sich die mobile Station befindet

Mobile Netze: Direktes Routing

Mobile Netze: Indirektes Routing

Mobile IP: RFC 3220

- Hat viele der vorgestellten Eigenschaften:
 - Home Agents, Foreign Agents, Foreign Agent Registration, Care-of-Addresses, Encapsulation (Packet-within-Packet)
- Standardkomponenten:
 - Agent Discovery
 - Registration with Home Agent
 - Indirect Routing of Datagrams
- benutzt ICMP Nachrichten für Advertisements und Registrations
 - ICMP Nachrichten Typ 9

Mobile IP: RFC 3220

