PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2002018754 A

(43) Date of publication of application: 22.01.02

(51) Int. CI

B25J 13/00

B25J 9/22 B25J 13/08

G05B 19/4155

(21) Application number: 2000208915

(71) Applicant:

TOYOTA CENTRAL RES & DEV

LAB INC

(22) Date of filing: 10.07.00

(72) Inventor:

NAITO TAKASHI NOMURA HIDEKI

(54) ROBOT DEVICE AND ITS CONTROL METHOD

(57) Abstract:

PROBLEM TO BE SOLVED: To save labor for troublesome teaching work and calibration and allow easy work for objects, as predetermined.

SOLUTION: In teaching work, a robot controller 5 stores a position Pd of a gripper 3 in the state of gripping the object 11 and further stores any position (Ps) after the object 11 is released. In clamping work, the robot controller 5 makes the gripper 3 follow the object 11 being carried, go to the object 11 in accordance with the positions Ps, Pd and grip the object 11.

COPYRIGHT: (C)2002, JPO

·(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-18754 (P2002-18754A)

(43)公開日 平成14年1月22日(2002.1.22)

(51) Int.Cl.7	酸別配号	ΡI	ァーマコート*(参考)			
B25J 1	3/00	B 2 5 J	13/00 A 3 F 0 5 9			
1	9/22		9/22 Z 5 H 2 6 9			
1	3/08	1	13/08 A			
G05B 1	9/4155	C05B	19/4155 S			
		審查請求	R 未請求 請求項の数4 OL (全 12 頁)			
(21)出顧番号	特顧2000-208915(P2000	-208915) (71)出顧人	000003609			
			株式会社豊田中央研究所			
(22) 出顧日	平成12年7月10日(2000.7	. 10)	爱知県愛知郡長久手町大字長湫字横道41祖			
			地の1			
		(72)発明者	内藤 貴志			
		J	愛知県愛知郡長久手町大字長湫字横道41番			
			地の1 株式会社豊田中央研究所内			
		(72)発明者	野村 秀樹			
	•		爱知県愛知郡長久手町大字長湫字横道41番			
			地の1 株式会社豊田中央研究所内			
		(74)代理人	100079049			
			弁理士 中島 淳 (外1名)			
			最終頁に続く			

(54) 【発明の名称】 ロポット装置及びその制御方法

(57)【要約】

【課題】 煩雑な教授作業やキャリブレーションを行う手間を省き、対象物に容易に所定の作業を行わせる。 【解決手段】 教示作業において、ロボットコントローラ5は、対象物11を把持した状態のグリッパ3の位置(Pd)を記憶し、さらに、対象物11をリリースした後の任意の位置(Ps)を記憶する。把持作業においては、ロボットコントローラ5は、搬送されている対象物11に対してグリッパ3を追従させ、位置Ps, Pdに基づいてグリッパ3を対象物11に持っていき、対象物11を把持する。

【特許請求の範囲】

【請求項1】 相対的に運動する対象物を把持するロボット装置において、

前記対象物を把持する把持機構を有し、前記把持機構が 移動可能に構成された把持手段と

前記把持手段の把持機構と共に移動可能に固定され、対象物を撮像する撮像手段と、

前記撮像手段が撮像した対象物の画像から1以上の特徴 量の座標を抽出する特徴量抽出手段と、

前記把持機構に前記対象物を把持させたときの把持機構の位置を第1の手先位置として記憶し、前記対象物を開放させて前記撮像手段が対象物を撮像することができる範囲内において前記把持機構を移動させたときの前記把持機構の位置を第2の手先位置として記憶し、前記第2の手先位置において前記撮像手段が撮像して前記特徴量抽出手段が抽出した前記対象物の各特徴量の座標を記憶する記憶手段と、

前記第2の手先位置から前記1の手先位置まで移動する ための移動行列を算出する算出手段と、

前記特徴量抽出手段によって抽出される運動中の対象物の各特徴量の座標が、前記記憶手段に記憶されている各特徴量の座標に一致するように前記把持手段を移動させることで、前記運動中の対象物に前記把持機構を追従させる制御をする追従制御手段と、

前記把持機構が運動中の対象物に追従している際に、前 記算出手段が算出した移動行列に基づいて前記把持機構 を前記運動中の対象物に近付け、前記対象物を把持させ るように前記把持手段を制御する把持制御手段と、 を備えたロボット装置。

【請求項2】 前記記憶手段は、

前記追従制御手段によって前記把持機構が前記運動中の 対象物に対して所定距離を隔てながら追従している際 に、前記特徴量抽出手段が抽出した前記対象物の各特徴 量の座標を新たに記憶し、

前記追従制御手段が新たに記憶された各特徴量の座標を 用いて、前記第2の手先位置から前記把持機構を対象物 に完全に追従させたときの前記把持機構の位置を新たな 第2の手先位置として記憶する請求項1記載のロボット 装置。

【請求項3】 移動可能に構成された把持機構で相対的 に運動する対象物を把持するロボット装置の制御方法に おいて

前記把持機構に前記対象物を把持させたときの把持機構 の位置を第1の手先位置として記憶し、

前記対象物を開放させて、対象物を撮像することができる範囲内において前記把持機構を移動させたときの前記 把持機構の位置を第2の手先位置として記憶し、

前記第2の手先位置において前記対象物を撮像し、

前記撮像した対象物の画像から1以上の特徴量の座標を 抽出し、 前記抽出した各特徴量の座標を記憶し、

前記第2の手先位置から前記1の手先位置まで移動する ための移動行列を算出し、

前記把持機構と共に移動可能に固定された状態で、運動中の対象物を撮像し、

前記撮像した運動中の対象物の画像から1以上の特徴量 の座標を抽出し、

前記抽出された運動中の対象物の各特徴量の座標が、前 記記憶されている各特徴量の座標に一致するように前記 把持機構を移動させることで、前記運動中の対象物に前 記把持機構を追従させ、

前記把持機構が運動中の対象物に追従している際に、前 記算出した移動行列に基づいて前記把持機構を前記運動 中の対象物に近付け、前記把持機構に前記対象物を把持 させるロボット装置の制御方法。

【請求項4】 前記運動中の対象物に前記把持機構を追 従させ、

前記把持機構が前記運動中の対象物に対して所定距離を 隔てながら追従している際に、前記把持機構と共に移動 可能に固定された状態で、運動中の対象物を撮像し、

前記撮像した運動中の対象物の画像から1以上の特徴量 の座標を抽出し、

前記抽出した前記対象物の各特徴量の座標を新たに記憶し、

前記新たに記憶された各特徴量の座標を用いて、前記第 2の手先位置から対象物に前記把持機構が完全に追従す るように前記把持機構を移動させ、

完全に追従した際に、前記把持機構の位置を新たな第2 の手先位置として記憶する請求項3記載のロボット装置 の制御方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ロボット装置及び その制御方法に係り、特に、運動中の物体を把持するロボット装置及びその制御方法に関する。

[0002]

【従来の技術】ロボットを利用して対象物に作業(例えば物体の把持)を行う場合、対象物の位置、姿勢などの情報をセンサにより取得して、そのセンサ情報をもとに作業する例が数多く実用化されている。このような装置構成としては、大別して、一般的に次の2つの方式がある。

【0003】例えば特開平8-63214号公報に記載されているように、コンベア上を搬送される対象物を固定されたカメラで撮像し、得られた画像から対象物の位置、姿勢を検出してその情報をロボットに送信するものがある。このロボットは、対象物の位置情報から把持などの作業を行っている。

【0004】また、ロボットの手先にカメラなどのセンサを取り付け、前述のようにカメラからの画像から対象

の位置姿勢を検出して、その情報に基づいて移動する対 象物に追従して把持などの作業を行うものもある。

[0005]

【発明が解決しようとする課題】しかし、前者のようにロボットと別に設置したカメラを用いて対象物の把持などの作業を実現する場合、ロボットとカメラの設置位置を予め正確に求めておく作業が必要になる。また、カメラの焦点距離やレンズひずみ係数などを予め算出しておくカメラキャリブレーションを行う必要がある。

【0006】加えて、特開平8-63214号公報などにおける例では、一般的にカメラの光軸がコンベア平面に垂直に、さらに画面中の×軸あるいはy軸がコンベアの搬送方向に平行になるように設置しておく必要がある。また、対象物がベルトコンベアなどで動いているため、カメラからの画像により検出した対象物の位置姿勢情報に加えてコンベアの速度情報などを別の手段(例えばコンベアのエンコーダ)により検出し、両者の情報に基づいてロボットへの指令値を生成する必要がある。さらに、カメラとロボットの設置位置情報、対象物の位置情報、コンベアの速度情報からロボットが対象物を把持する際の軌道を生成しなければならない。したがって、教示作業、軌道生成のための処理手順が非常に煩雑になるなどの問題がある。

【0007】このような問題は、従来技術におけるロボ ットの手先にカメラを設置した後者の例についても同じ ことがいえる。つまり、カメラからの画像から検出した 対象物の位置姿勢情報に基づいてロボットの手先に取り 付けたグリッパなどで対象物を把持する場合、カメラか ら得られた対象物の位置姿勢情報をロボットの基準座標 系からみた位置姿勢情報に変換する必要があり、ロボッ ト手先とカメラとの位置関係を予め精密に求めておく、 いわゆるハンドアイキャリブレーションが必要となる。 特に、ロボット手先にカメラなどのセンサを設置した場 合、作業中の誤作動などによりロボット手先とカメラ位 置関係が変化することが頻繁にあり、その場合はキャリ ブレーション作業を再度行う必要がある。また、前者の 例と同様に対象物が動いている場合、ロボット基準座標 からみた対象物の位置姿勢情報は刻々と変化するため、 把持を行うための軌道生成が非常に複雑となる。

【0008】さらに、従来では、前者及び後者の方法とも、構成装置(コンベアの設置状況や搬送速度、あるいはカメラとロボットの設置位置関係)や把持すべき対象物の形状が変わらなくても、使用するロボット及びセンサが変わる毎に、前述の高精度なキャリブレーション、煩雑な教示作業を行う必要があった。

【0009】本発明は、上述した問題点を解消するために提案されたものであり、煩雑な教授作業やキャリブレーションを行う手間を省き、対象物に容易に所定の作業を行わせることができるロボット装置及びその制御方法を提供することを目的とする。

[0010]

【課題を解決するための手段】請求項1記載の発明は、 対象物を把持する把持機構を有し、前記把持機構が移動 可能に構成された把持手段と、前記把持手段の把持機構 と共に移動可能に固定され、対象物を撮像する撮像手段 と、前記撮像手段が撮像した対象物の画像から1以上の 特徴量の座標を抽出する特徴量抽出手段と、前記把持機 構に前記対象物を把持させたときの把持機構の位置を第 1の手先位置として記憶し、前記対象物を開放させて前 記撮像手段が対象物を撮像することができる範囲内にお いて前記把持機構を移動させたときの前記把持機構の位 置を第2の手先位置として記憶し、前記第2の手先位置 において前記撮像手段が撮像して前記特徴量抽出手段が 抽出した前記対象物の各特徴量の座標を記憶する記憶手 段と、前記第2の手先位置から前記1の手先位置まで移 動するための移動行列を算出する算出手段と、前記特徴 量抽出手段によって抽出される運動中の対象物の各特徴 量の座標が、前記記憶手段に記憶されている各特徴量の 座標に一致するように前記把持手段を移動させること で、前記運動中の対象物に前記把持機構を追従させる制 御をする追従制御手段と、前記把持機構が運動中の対象 物に追従している際に、前記算出手段が算出した移動行 列に基づいて前記把持機構を前記運動中の対象物に近付 け、前記対象物を把持させるように前記把持手段を制御 する把持制御手段と、を備えたものである。

【0011】請求項1記載のロボット装置は、当該ロボット装置に対して相対的に運動する対象物を把持するものである。したがって、前記ロボット装置が固定され前記対象物が運動する場合に限らず、前記ロボット装置が運動し前記対象物が固定されている場合や、前記ロボット装置と前記対象物がそれぞれ異なる速度で運動している場合も適用することができる。さらに、前記対象物は、前記ロボット装置に対して相対的に等速直線運動、等速円運動、等加速度直線運動していてもよいが、相対的に静止していてもよい。

【0012】最初に、オペレータは、教示作業として、次の2つのことを行う必要がある。第1に、把持機構を第1の手先位置に移動させ、ここで対象物を把持させる。第2に、把持機構から対象物をリリースさせ、撮像手段が対象物を撮像することができる範囲内において把持機構を第2の手先位置まで移動させる。このような教示作業を行い、第1及び第2の手先位置を記憶手段に記憶させる。さらに、第2の手先位置において、撮像手段が撮像した画像から抽出される1以上の特徴量の座標も記憶手段に記憶させる。撮像手段は、把持機構のセンサとなるものであり、把持手段と共に移動するように固定されている。また、第2の手先位置から第1の手先位置まで移動するための移動行列が算出される。

【0013】このような教示作業が完了すると、運動中の対象物を把持する把持作業を行うことができる。把持

機構は、運動中の対象物の各特徴量の座標が、前記記憶 手段に記憶されている各特徴量の座標に一致するように 移動される。すなわち、把持機構が運動中の対象物を追 従するように、いわゆるビジュアルサーボが行われる。 このときの対象物と把持機構の相対的な位置関係は、教 示作業時の対象物と把持機構の相対的な位置関係と同じ である。前記把持機構が運動中の対象物に追従すると、 前記算出手段が算出した第1の移動行列に基づいて前記 把持機構を前記運動中の対象物に近付け、そして前記対 象物を把持させる。

【0014】ビジュアルサーボを行っている場合では、 運動中の対象物に把持機構が完全に追従していることが 望ましい。しかし、運動中の対象物に所定距離を隔てな がら把持機構が追従することがある。このような場合 は、請求項2に記載されるような再教示作業が行われる のが好ましい。具体的には、前記記憶手段は、前記追従 制御手段によって前記把持機構が前記運動中の対象物に 対して所定距離を隔てながら追従している際に、前記特 徴量抽出手段が抽出した前記対象物の各特徴量の座標を 新たに記憶し、前記追従制御手段が新たに記憶された各 特徴量の座標を用いて、前記第2の手先位置から前記把 持機構を対象物に完全に追従させたときの前記把持機構 の位置を新たな第2の手先位置として記憶すればよい。 【0015】請求項3記載の発明は、移動可能に構成さ れた把持機構で対象物を把持するロボット装置の制御方 法であり、前記把持機構に前記対象物を把持させたとき の把持機構の位置を第1の手先位置として記憶し、前記 対象物を開放させて、対象物を撮像することができる範 囲内において前記把持機構を移動させたときの前記把持 機構の位置を第2の手先位置として記憶し、前記第2の 手先位置において前記対象物を撮像し、前記撮像した対 象物の画像から1以上の特徴量の座標を抽出し、前記抽 出した各特徴量の座標を記憶し、前記第2の手先位置か ら前記1の手先位置まで移動するための移動行列を算出 し、前記把持機構と共に移動可能に固定された状態で、 運動中の対象物を撮像し、前記撮像した運動中の対象物 の画像から1以上の特徴量の座標を抽出し、前記抽出さ れた運動中の対象物の各特徴量の座標が、前記記憶され ている各特徴量の座標に一致するように前記把持機構を 移動させることで、前記運動中の対象物に前記把持機構 を追従させ、前記把持機構が運動中の対象物に追従して いる際に、前記算出した移動行列に基づいて前記把持機 構を前記運動中の対象物に近付け、前記把持機構に前記 対象物を把持させるものである。

【0016】この発明は、請求項1に記載されたロボット装置を制御するための方法であり、オペレータは、教示作業として上述した2つのことを行うだけでよい。すなわち、オペレータが2つの簡単な教示作業を行うだけで、運動している対象物に把持機構を追従させて、その対象物を把持することができる。

【0017】ビジュアルサーボを行っている場合では、 運動中の対象物に把持機構が完全に追従していることが 望ましい。しかし、運動中の対象物に所定距離を隔てな がら把持機構が追従することがある。このような場合 は、請求項4に記載されるような再教示作業が行われる のが好ましい。具体的には、前記運動中の対象物に前記 把持機構を追従させ、前記把持機構が前記運動中の対象 物に対して所定距離を隔てながら追従している際に、前 記把持機構と共に移動可能に固定された状態で、運動中 の対象物を撮像し、前記撮像した運動中の対象物の画像 から1以上の特徴量の座標を抽出し、前記抽出した前記 対象物の各特徴量の座標を新たに記憶し、前記新たに記 憶された各特徴量の座標を用いて、前記第2の手先位置 から対象物に前記把持機構が完全に追従するように前記 把持機構を移動させ、完全に追従した際に、前記把持機 構の位置を新たな第2の手先位置として記憶すればよ

[0018]

【発明の実施の形態】以下、本発明の実施の形態について図面を参照しながら詳細に説明する。

【0019】(第1の実施の形態)図1に示すように、本実施の形態に係るロボット装置は、固定された状態で、コンベア10で搬送されている対象物11を把持するものである。なお、本発明は、このような実施の形態に限定されるものではなく、対象物11がロボット装置に対して相対的に運動していれば適用することができる。すなわち、ロボット装置が運動し対象物11が静止している場合や、ロボット装置と対象物11が静止している場合や、ロボット装置と対象物11が異なる速度で運動している場合であってもよい。さらに、第2及び第3の実施の形態でも同様である。

【0020】ロボット装置は、対象物11を撮像するCCDカメラ1と、CCDカメラ1が撮像した画像から特徴量を抽出するセンサコントローラ2と、対象物11を把持するグリッパ3と、グリッパ3を3次元方向に移動させるロボットアーム4と、座標変換や軌道生成等を行い、図示しないサーボ回路、アンプなどを有し、グリッパ3やロボットアーム4の動作を制御するロボットコントローラ5とを備えている。

【0021】CCDカメラ1は、ロボットアーム4の先端であるグリッパ3の近傍に固着されている。ロボットコントローラ5は、センサコントローラ2で得られた画像特徴量Fiに基づいて、誤差ベクトルE(t)や速度指令値ベクトルV(t)を算出し、これらの値に従ってロボットアーム4の移動や、グリッパ3による対象物11の把持を制御する。なお、コンベア10は、対象物11を一定の速度で搬送する。

【0022】このような構成のロボット装置は、搬送されている対象物11を実際に把持する前に、対象物11 を把持するための教示作業が行われる。

【0023】(教示作業)最初に、オペレータは、ロボ

ット装置に対象物11を把持させてロボット手先位置Pを教示する。なお、グリッパ3などの把持機構及び対象物11の形状によって、把持すべき位置が制限される場合がある。また、後の処理(例えば、対象物11に他の部品を組み付けたり、部品箱に投入すること)のために、把持すべき位置を予め規定しておくこともある。

【0024】ここでは、対象物11は、例えば図2に示

すように、7角柱状に形成され、7つの側面111~117を備えている。対象物11の上面118には、図示しない部品を取り付けるための6つの組み付け穴(例えばねじ穴)が形成されている。なお、対象物11の下面119には、このような組み付け穴は形成されていない。対象物11の把持される部分は、把持されたときの安定性を考慮して、7つの側面のうち相対する側面111、115、または側面113、116であることが好ましい。なお、本実施の形態では上記の形状の対象物11を用いたが、本発明はこの形状に限定されるものではなく、対象物11は他の形状であってもよい。そして、数示作業は、具体的には図3に示すステップST1からステップST6の処理に従って行われる。

【0025】ステップST1において、オペレータは、 図示しないティーチングペンダントなどを用いてグリッ パ3が対象物11の側面111,115または側面11 3,116を把持するようにして、ステップST2に移 行する。

【0026】ステップST2において、ロボットコントローラ5は、図4に示すようにグリッパ3が対象物11を把持した状態で、ロボット基準座標系におけるグリッパ3の位置、すなわちロボット手先位置Pdを記憶して、ステップST3に移行する。ここにいう「位置」は、姿勢を含む6自由度のパラメータで表される。以下同様に、姿勢を含む6自由度のパラメータを「位置」という。

【0027】ステップST3において、ロボットコントローラ5は、グリッパ3が把持した対象物11をリリースさせ、そして、任意の位置にグリッパ3を移動させ、ステップST4に移行する。

【0028】グリッパ3が移動する位置は、CCDカメラ1の視野範囲内であることを要する。すなわち、CCDカメラ1で撮像した画像から対象物11の特徴量が抽出されるような位置である。具体的には、対象物11がCCDカメラ1の視野内に収まっていない位置や、CCDカメラ1が対象物11を真横から撮像する位置などではなく、抽出すべき特徴量が好適に画像から得られるような位置である。

【0029】ステップST4において、ロボットコントローラ5は、図5に示すように現在のロボット基準座標系でのグリッパ3の位置、すなわちロボット手先位置Psを記憶し、ステップST5に移行する。

【0030】ここで、ロボット手先位置PsからPdに変

換するための位置姿勢変換行列を P_0 とすると、以下の式が成り立つ。

 $[0031]Ps \cdot P_0 = Pd$

 $\therefore P_0 = P s^{-1} \cdot Pd$

ロボットコントローラ5は、このとき位置姿勢変換行列 P_0 を算出し、これを記憶する。なお、ロボットコントローラ5は、後述する把持作業の際に、位置姿勢変換行列 P_0 を算出してもよい。

【0032】ステップST5において、CCDカメラ1は、ロボット手先位置Psにおいて対象物11を撮像し、この画像をセンサコントローラ2に供給する。センサコントローラ2は、CCDカメラ1からの画像に基づいて画像特徴量を抽出して、ステップST6に移行する。ここで、CCDカメラ1は、例えば図6に示すような対象物11の画像を得る。

【0033】ステップST6において、センサコントローラ2は、対象物11の上面118に加工されている6つの組み付け穴を画像特徴量Fi($i=1\sim6$)として抽出し、各画像特徴量Fiの中心位置の座標値(Xi, Yi)記憶して、数示作業の処理を終了する。

【0034】なお、画像中の組み付け穴の中心位置の計測方法としては、二値化画像処理やエッジ処理などの公知の手法を用いればよい。また、ここでは組み付け穴の中心位置を画像特徴量Fiとしたが、線分端点、コーナ、二値化画像の孤立領域の面積重心など、他の画像特徴量を用いてもよい。さらに、教示時は、オペレータが画像特徴量Fiをマウスやキーボード等の図示しない入力手段により人為的に定義してもよい。

【0035】(把持作業)ロボット装置は、教示作業が終了すると、その作業の際に記憶した画像特徴量Fiの座標や、ロボット手先位置Pd、Psを用いて、搬送中の対象物11を把持する。この把持作業では、図7に示すステップST11からステップST18までの処理が実行される。

【0036】ステップST11において、CCDカメラ1は、図8に示すように、対象物11の搬送領域、すなわちコンベア10上を撮像し、ステップST12に移行する。

【0037】ステップST12において、センサコントローラ2は、対象物11を検出したかを判定する。対象物11を検出し、その画像から特徴量を抽出するためには、対象物11全体がCCDカメラ1の視野の範囲内に入ることが必要である。ここでは、対象物11の検出のために画像の輝度が用いられる。例えば、対象物11がコンベア10の上流にあってCCDカメラ1の視野範囲内にないときは、CCDカメラ1で得られる画像の輝度はほとんど変化しない。一方、対象物11がコンベアにより搬送されCCDカメラ1の視野範囲内に入ると、その輝度は変化する。そこで、センサコントローラ2は、画像中の適当な位置に図示しないウィンドウを設け、そ

のウィンドウ内の輝度が所定の閾値以上の場合は対象物 11が視野範囲内にあると判定し、輝度が所定の閾値未 満の場合はその視野の範囲内にないと判定する。そし て、センサコントローラ2が対象物11を検出したとき はステップST13に移行し、検出しなかったときはス テップST11に戻る。

【0038】ステップST13において、センサコント ローラ2は、CCDカメラ1が撮像した画像から時刻T における画像特徴量 fi(t)(i=1, 2···)を抽 出して、ステップST14に移行する。ここで、図9 は、把持作業の実行時において撮像した画像を示す図で ある。把持作業時には、時刻もに撮像された画像から画 像特徴量fi(t)を抽出する必要がある。しかし、何 らかの原因で本来抽出すべきでない例えば画像特徴量 f 3(t)が抽出されることがある。そこで、特徴量 f 1 (t)~f7(t)が、図6に示すF1~F6のいずれ に対応しているのかを求める対応点探索を行う必要があ る。

【0039】この対応点探索は、さまざまな方法が提案 され、例えば"ロボットビジョン"(谷内田正彦著、昭 晃堂、1990) に記載されている動的計画法や最大派 閥法など、いわゆる照合法により行うことができる。な お、一旦、f1~f7の中からF1~F6に対応するも のが得られれば、次の画像特徴量は容易に求めることが

【0040】具体的には、ステップST13からステッ プST16までの繰り返し処理のサイクルタイムを At とすると、時刻もの次の時刻(t+ムt)における画像

$$3(t) = \begin{cases} x_1(t) - x_1 \\ y_1(t) - y_1 \\ x_2(t) - x_2 \\ y_2(t) - y_2 \\ \vdots \\ x_N(t) - x_N \\ y_n(t) - y_N \end{cases}$$

【0046】(xi, yi)および(xi(t), yi (t))は、画素値で表される(Xi, Yi)および(X i(t)、Yi(t))を、それぞれカメラ座標系での値 に変換したものである。また、Nは画像特徴量の個数を 表す。

$$\Xi(t)=L^{T+}e(t)$$

【0049】ここで、L^{T+}は、画像特徴量F, F(t) から求められる画像ヤコピアンLIの疑似逆行列であ

【0050】また、センサコントローラ2は、11E (t) $| \ | \ | < \varepsilon$ の判定基準を満たしたときに、運動する 対象物11に追従したと判定する。 εは、オペレータに 特徴量fi(t+Δt)は先の画像中での画像特徴量fi (t)の近傍から抽出すればよい。これにより、特徴量 抽出の安定性が増し、かつ、計算処理の負担を軽減する ことができる。

【0041】ステップST14において、センサコント ローラ2は、時刻tにおける誤差ベクトルE(t)が十 分小さいか、具体的には $| | E(t) | | < \epsilon$ の判定基 準を満たすかを判定し、十分小さいときはステップST 17に移行し、十分小さくないときはステップST15 に移行する。

【0042】ここでは、現在のCCDカメラ1の画像か ら抽出された画像特徴量fi(t)と上述したステップ ST6で記憶された画像特徴量Fiとに基づいて、誤差 ベクトルE(t)を求める。

【0043】本発明では、文献B. Espiauら、A New Appr oach to Visual Servoing in Robotics, IEEE Trans, Rob otics and Automation, 8(3), 313-326, 1992や、文献F.Be nsalhab, Real Time Visual Tracking using the Gene ralized Likelihood Ratio Test, Int. Conf. Automation, Robotics and Computer Vision, 1379-1383, 1994に記載 されている手法に基づいて、誤差ベクトルE(t)と、 後述する速度指令値ベクトルV(t)とを算出する。

【0044】教示時の画像特徴量Fi=(Xi, Yi)お よび時刻tで撮像した画像から得られた画像特徴量fi (t)=(Xi(t), Yi(t))を用いて、特徴量偏 差ベクトルe(t)を以下の式(1)で求める。

[0045]

【数1】

· · · (1)

【0047】上記特徴量偏差ベクトルe(t)を用いて 誤差ベクトルE(t)は、式(2)で表される。 [0048]

【数2】

· · · (2)

よって予め与えられるスカラー量である。あるいは、 $E = (E1 E2 E3 E4 E5 E6)^{T}$ と表せば、式(3)に示す判定基準を用いてもよい。 [0051]

【数3】

maxEi< ε

【0052】ステップST15において、ロボットコントローラ5は、速度指令値ベクトルV(t)を算出し、ステップST16に移行する。なお、速度指令値ベクトルVは、ロボット手先位置Pの並進速度(t_x , t_y , t_z) および回転速度(ω_x , ω_y , ω_z) を含んだものであり、

$$V(t+\Delta t)=-\lambda L^{T+}\Theta(t)-\widehat{T^{0}(t)}$$

【0054】なお、入は速度ゲインである。式(4)の 右辺の最右項は、対象物11の運動速度の推定値であ り、式(5)から求められる。

$$\widehat{\Gamma^0(t)} = \frac{E(t) - E(t - \Delta t)}{\Delta t}$$

【0056】ロボットコントローラ5は、以上のようにして、誤差ベクトルE(t)及び速度指令値ベクトルV(t)を算出する。

【0057】ステップST16において、ロボットコントローラ5は、算出された速度指令値ベクトルV(t)に基づいて、軌道生成、関節角速度・角加速度を生成し、これらに従ってロボットアーム4を制御し、ステップST13に戻る。

【0058】ステップST14でE(t)が十分に小さいと判定したときのステップST17において、ロボットコントローラ5は、グリッパ3が対象物11に追従したと判定して、対象物11に対してアプローチを開始する。なお、以下の説明では、図7に示すフローチャートの処理を行うことによってグリッパ3を対象物に追従させることをビジュアルサーボという。

【0059】ここで、ステップST14に移行した時刻を時刻 t_1 とすると、例えば図10に示すように、速度指令値ベクトルは V_{actual} (t_1)、ロボット手先位置の位置ベクトルはP(t_1)となる。

【0060】時刻 t_1 においては、ロボット手先位置Pは対象物11に追従しているため、そのときの速度指令値ベクトル V_{actual} (t_1)は対象物11の速度ベクトルに等しい。したがって、ロボットコントローラ5は、手先位置P(t_1)から P_0 分だけ移動するための速度パターンに、上述した速度指令値ベクトルV

actual (t_1) を重畳させた速度パターンを生成する。なお、 P_0 は、教示作業で示した位置姿勢変換行列である。また、 P_0 分だけ移動するための速度パターンは、例えば台形速度パターンなど従来の手法により算出することができる。

【0061】また、ロボットコントローラ5は、 P_0 分相対移動するのに時間 T_0 を要するとして、以下の式に従って P_a を算出する。

[0062]

 $P_a = P(t_1) + P_0 + V_{actual}(t_1) \cdot T_0$

· · · (3)

 $V=(t, t, t, \omega, \omega, \omega, \omega_z)^T$ と表される。そして、時刻($t+\Delta t$)における速度指令値ベクトル $V(t+\Delta t)$ は、式(4) から求められる。

【0053】 【数4】

【0055】 【数5】

そして、ロボットコントローラ5は、算出した P_a に基づいてロボットアーム4を制御する。これにより、図11に示すように、手先位置 $P(t_1)$ から対象物11を把持すべき位置 P_a にロボット手先(グリッパ3)を移動させることができる。このようなアプローチが終了すると、ステップST18に移行する。

【0063】ステップST18において、ロボットコントローラ5は、対象物11をグリッパ3で把持して、処理を終了する。

【0064】以上のように、ロボット装置は、教示作業時におけるロボット手先位置Ps, Pdを記憶し、ビジュアルサーボによって搬送中の対象物11に追従し、そしてロボット手先位置Ps, Pdを用いて対象物11の把持作業を行うことができる。これにより、ロボット装置は、搬送中の対象物11の姿勢位置に拘束されることなく、また、コンベア10を止めることなく、搬送中の対象物11を容易に把持することができる。

【0065】また、上記ロボット装置は、その設置位置、CCDカメラ1、グリッパ3及び対象物11相互間の位置関係を予め求めておく作業が不要なので、例えばCCDカメラ1の設置条件が変化した場合であっても、上述したような単純な教示作業のみで、搬送中の対象物11を把持することができる。さらに、同じ作業を異なるロボット装置、CCDカメラ1、グリッパ3で実現しようとした場合や、把持すべき対象物11が異なる場合であっても、同様に、単純な教示作業のみでよい。

【0066】これにより、オペレータは、従来の教示作業、プログラミングにおける負荷を大幅に軽減することができる。さらに、CCDカメラ1、グリッパ3及び対象物11に変更が生じても、柔軟に対応することができる

【0067】なお、上述した実施の形態では、ロボット 装置は、コンベア10によって搬送されている対象物1 1を把持することを例に挙げて説明したが、静止してい る対象物11を把持する場合も同様にすることができ る。なお、教示作業は、上述した説明と同様である。 【0068】把持作業では、図7に示すステップST1 4において、誤差ベクトルE(t)が十分に小さくなっ たときは、速度指令値ベクトルV(t)はゼロになり、 同様に、実際のロボット手先位置の速度V actual(t₁)もゼロになる。

【0069】したがって、ステップST17において、ロボットコントローラ5は、現在のロボット手先位置P (t_1)と、教示時における位置の変化分 P_0 のみを用いて対象物11を把持することができる。すなわち、把持すべき位置 P_0 は、以下の式により求められる。

 $[0070]P_a=P(t_1)+P_0$

そして、ロボットコントローラ5は、算出したPaに基づいてロボットアーム4を制御し、グリッパ3により静止している対象物11の把持を行うことができる。

【0071】(第2の実施の形態)つぎに、本発明の第2の実施の形態について説明する。なお、第1の実施の形態と同じ部位には同じ符号を付し、また、重複する説明についてはその記載を省略する。

【0072】第1の実施の形態では、搬送中の対象物とロボット手先位置Pとの相対的な位置関係が、教示作業時のそれらの相対的な位置関係とほぼ同じになる完全追従状態について説明した。これに対して、第2の実施の

形態では、完全追従状態でない場合にロボット装置が対象物を把持することについて説明する。

【0073】ここで、追従状態とは、相対位置関係を一定に保った状態と定義する。例えば、対象物が速度Voで運動している場合では、ロボット手先位置Pが速度Voで運動している状態である。次に、追従状態として、「完全追従状態」と「不完全追従状態」の2つを定義する。

【0074】「完全追従状態」とは、ロボット手先位置 Pと対象物との相対的な位置関係が一定値 P_0 のままで一定時間継続している状態、すなわち数示作業時のそれらの相対的な位置関係と同じになっている状態をいう。「不完全追従状態」とは、ロボット手先位置Pと対象物との相対的な位置関係が一定値 P'_0 ($\neq P_0$) のままで一定時間継続している状態、すなわちロボット手先位置 Pと対象物との間で相対的な位置の変化はないが、数示作業時の相対的な位置関係と異なる状態をいう。これらの2つの状態について、画像誤差、ロボット手先位置 P、ロボット手先位置 P、ロボット手先位置 P、ロボット手先位置 Pの速度、ロボット手先位置 Pの速度の状態を表 1 に示す。

【0075】 ·【表1】

	完全追従状態			不完全追従状態				
運動	画像	手先			画像			
	既差	位置	速度	加速度	誤差	位置	速度	加速度
静止	微小	一定	0	0	一定	一定	0	0
等速直線	微小	_	一定	0	一定		一定	0
等速円	微小	. —	一定	一定	一定		一定	一定
等加速度直線	微小	-	_	一定	一定			— <u>作</u> 一定

【0076】「完全追従状態」では、ロボット手先位置 Pと対象物の相対的な位置関係はPoであり、しかも、 ロボット手先位置Pは対象物と同じ速度で移動する。こ のため接近動作は、追従運動Vを維持しつつ、接近移動 Poの移動を行うことで、把持作業を行うことができ る。

【0077】一方、「不完全追従状態」でも、ロボット手先位置Pは対象物と同じ速度で移動している。ただし、ロボット手先位置Pと対象物との相対的な位置関係P'0は、教示作業時の位置関係P0とは異なる。例えば図12(A)に示すように、追従開始時の対象物11の初期画像は、目標画像に一致していない。なお、このときは、早く追従状態になるようにするため、ロボット手先位置Psの速度は、図13に示すように、大きくなっている。図12(B)に示すように、追従状態の対象物11の画像は、目標画像に対して所定のずれを維持した状態になっている。このときのロボット手先位置Psの

速度は、図13に示すように、 V_{actual} (t_1) になっている。

【0078】そこで、相対位置関係P'₀を教示することができれば、図12(C)に示すように、「完全追従状態」と全く同一の効果を得ることができる。なお、「不完全追従状態」における位置関係P'₀は、対象物の運動速度の変化やビジュアルサーボのゲインの変更等で変化する可能があり、その度に再教示が必要である。本実施の形態では、「不完全追従状態」にも対応することができるように、再教示作業が行われる。

【0079】(再教示作業及び把持作業) 再教示作業では、最初に、ビジュアルサーボを用いて、対象物の追従が行われる。そして、ロボットコントローラ5は、このとき対象物の画像特徴量F'iを抽出して、各画像特徴量F'iの座標を記憶する。なお、画像特徴量F'iの抽出処理は、図3に示すステップST6の処理と同様である。

【0080】つぎに、図3に示すステップST1からステップST3までの処理が行われ、グリッパ3は任意の位置(ロボット手先位置Ps)に移動させられる。ロボットコントローラ5は、さらに、画像特徴量Fi'を用いてビジュアルサーボを行い、追従状態に到達したグリッパ3の位置をロボット手先位置P'sとする。そして、ロボットコントローラ5は、追従状態における位置姿勢変換行列P' $_0$ (=P' $_8$ ⁻¹Pd)を算出し、この位置姿勢変換行列P' $_0$ を記憶する。

【0081】把持作業では、第1の実施の形態と同様に、図7に示すステップST11からステップST18までの処理を行う。このとき、第1の実施の形態で求めた画像特徴量Fi及び位置姿勢変換Poに代えて、画像特徴量F'i及び位置姿勢変換業列P'oを用いればよい。【0082】以上のように、第2の実施の形態に係るロボット装置によれば、ロボット手先位置Pが対象物11に完全に追従していなくても、複雑な調整をすることなく上述した簡単な教示作業を行うだけで、対象物11を把持することができるようになる。

【0083】(第3の実施の形態)第1及び第2の実施の形態では、一例として静止運動、等速直線運動の場合を示したが、本発明を用いれば等加速度直線運動あるいは等速円運動まで拡大することができる。そして、この把持作業でも、第1の実施の形態と同様に、図7に示すステップST11からステップST17までの処理が行われる。

【0084】具体的には、等加速度直線運動の場合、ロボットコントローラ5は、誤差ベクトルE(t)が十分に小さくなった時刻 t_1 において、ロボット手先位置Pは対象物11に対して相対的に P_0 あるいは P'_0 の位置に制御されたと判定し、この時刻 t_1 でのV

actual (t_1) と、手先加速度 acc_{actual} (t_1) から生成される速度成分 $V_{estimate}$ (t) と、 P_0 あるいは P'_0 より生成される速度指令値とを重ね合わせた速度指令値を生成し、時刻 t_1 でのロボット手先位置P (t_1) から対象物11に接近し、グリッパ3により対象物11の把持を行う。

【0085】すなわち、ロボットコントローラ5は、図14に示すように、追従状態になったときのロボット手先位置Psから P_0 分だけグリッパ3を移動するように制御する。なお、ロボットコントローラ5は、このとき P_0 分相対移動するのに時間 T_0 を要するとして、以下の式に従って P_a を算出する。

【0086】 【数6】

$$P_{a} = P(t_{1}) + P_{0} + V_{actual}(t_{1}) \cdot T_{0}' + \int_{0}^{T_{0}'} V_{estimate}(t) dt$$

【0087】なお、上述した実施の形態では、対象物を 把持する場合を例に挙げて説明したが、本発明はこれに 限定されるものではない。例えば、対象物11に部品の 取り付け等を行う場合であっても同様にして適用することができる。

[0088]

【発明の効果】本発明に係るロボット装置及びその制御方法によれば、オペレータは、教示作業として、次の2つのことを行うだけでよい。第1に、把持機構を第1の手先位置に移動させ、ここで対象物を把持させる。第2に、把持機構から対象物をリリースさせ、撮像範囲内において把持機構を第2の手先位置まで移動させる。このとき記憶される第1及び第2の手先位置や、第2の手先位置における対象物の特徴量の座標は、対象物を追従してこれを把持するために用いられる。すなわち、オペレータは簡単な教示作業を行うだけで、ロボット装置に運動中の対象物を把持させることができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態に係るロボット装置 の構成を示す図である。

【図2】ロボット装置によって把持される対象物の外観斜視図である。

【図3】ロボット装置の教示作業における処理内容を示すフローチャートである。

【図4】教示作業において、対象物を把持した状態のロボット手先位置Pdを示す概略的な構成を示す図である。

【図5】教示作業において、対象物をリリースしたときのロボット手先位置Psを示す概略的な構成を示す図である。

【図6】教示作業におけるカメラの撮像画像を示す図である。

【図7】ロボット装置の把持作業における処理内容を示すフローチャートである。

【図8】把持作業において、カメラが対象物を搬送する コンベア上を撮像していることを説明するための図であ る。

【図9】把持作業におけるカメラの撮像画像を示す図で ある。

【図10】時刻 t_1 におけるロボット手先位置 $P(t_1)$ 及び速度指令値ベクトル $V_{actual}(t_1)$ を説明するための図である。

【図11】対象物を把持するときの状態を説明する図である。

【図12】第2の実施の形態に係るロボット装置において初期状態、追従状態、再教示時の対象物の画像を示す図である。

【図13】ロボット手先位置Pの速度指令値ベクトルV (t)を説明する図である。

【図14】本発明の第3の実施の形態に係るロボット装置が搬送中の対象物を把持した状態を説明する図である。

【符号の説明】 1 カメラ 2 センサコントローラ ロボット コントローラ 【図3】 開始 静止した対象物

- 3 グリッパ
- 4 ロボットアーム
- 5 ロボットコントローラ

フロントページの続き

Fターム(参考) 3F059 BC07 BC09 CA05 DA02 DA05 DAO8 DBO4 DBO9 DDO1 DEO2

FA01 FA03 FA05 FA10 FB01 FB16 FB22 FC04 FC13 FC14

5H269 AB21 AB33 CC09 EE10 JJ09