A NO + VO MOD1

1) Del seguente circuito si calcoli la funzione di trasferimento e si traccino i diagrammi di Bode (ampiezza e fase) indicando la posizione di eventuali poli e zeri. Si assuma l' OPAMP ideale e in alto guadagno. Esplicitare i passaggi.

2) Sempre assumendo l' OPAMP ideale, si calcoli l' impedenza di ingresso del circuito nei due casi di OPAMP in alto guadagno e in saturazione. Esplicitare i passaggi.

1) Del seguente circuito si disegni la carattetristica statica V_{OUT} - I_{IN} per $I_{IN} \in [-1mA..1mA]$. Esplicitare i passaggi.

D NO + VO MOD2

1) Si progetti la rete PDN del gate rappresentato in figura in modo che al nodo F sia realizzata la funzione logica

$$F = \overline{(\overline{ACD}) + AC + ABC} \cdot CLK + \overline{CLK}$$

Parametri tecnologici:

 $R_{RIF P} = 10 \text{ K}\Omega$ $R_{RIF N} = 5 \text{ K}\Omega$ $Cox = 3 \text{ fF/}\mu\text{m}^2$ $Lmin = 0.35\mu\text{m}$ Vcc = 3.3V

- 2) Si dimensionino i transistori della rete PDN ed M_e in modo che sia $t_{pHLmax} = 85$ ps. Si ottimizzi il dimensionamento considerando tutti i casi. Si consideri che l' inverter collegato al nodo F ha i transistori così dimensionati: $S_p=150$, $S_N=60$
- 3) Si dimensioni M_P in modo che $t_{pLH} \le 95$ ps

