DocumentClassHierarchy 1.0

Generated by Doxygen 1.8.6

Wed Nov 2 2016 19:37:35

Contents

Chapter 1

Namespace Index

1	.1	Namespace	List

Here is a list of all namespaces with brief descriptions:

pcm	??
pcp	??
srvm	??

2 Namespace Index

Chapter 2

Class Index

2.1 Class List

riele ale tile classes,	Su	uc	ıs,	un	1011	3 6	טווג	 ıcı	ia	003	> VV	/1111	DII	CI	uc.	301	ıμι	IUI	ıs.								
pcm::PCManager																											??
pcp::PCPrimitive																											??

Class Index

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

src/obj_segmentation.cpp
src/ransac_segmentation.cpp
src/point_cloud_library/pc_manager.cpp
src/point_cloud_library/pc_manager.h
src/point_cloud_library/pc_primitive.cpp
src/point_cloud_library/pc_primitive.h
src/point_cloud_library/srv_manager.h
src/segmentation_services/arm_filter_srv.cpp
src/segmentation_services/cluster_segmentation_srv.cpp
src/segmentation_services/cone_segmentation_srv.cpp
src/segmentation_services/cylinder_segmentation_srv.cpp
src/segmentation_services/deep_filter_srv.cpp
src/segmentation_services/plane_segmentation_srv.cpp
src/segmentation_services/sphere_segmentation_srv.cpp
src/segmentation_services/supports_segmentation_srv.cpp

6 File Index

Chapter 4

Namespace Documentation

4.1 pcm Namespace Reference

Classes

class PCManager

Functions

```
    static search::KdTree
    PointXYZ >::Ptr tree (new search::KdTree
    PointXYZ >())
```

Variables

- static NormalEstimation
 PointXYZ, Normal > ne
- static VoxelGrid< PointXYZ > sor

4.1.1 Function Documentation

```
4.1.1.1 static search::KdTree < PointXYZ >::Ptr pcm::tree ( new search::KdTree < PointXYZ > () ) [static]
```

Referenced by clusterize(), and pcm::PCManager::estimateNormal().

4.1.2 Variable Documentation

```
4.1.2.1 NormalEstimation < PointXYZ, Normal > pcm::ne [static]
```

Definition at line 24 of file pc_manager.cpp.

Referenced by pcm::PCManager::estimateNormal().

```
4.1.2.2 VoxelGrid < PointXYZ > pcm::sor [static]
```

Definition at line 27 of file pc_manager.cpp.

Referenced by pcm::PCManager::downSampling().

4.2 pcp Namespace Reference

Classes

· class PCPrimitive

4.3 srvm Namespace Reference

Functions

- const vector< float > DEFAULT_SERVICE_VEC_PARAMETER_REQUEST (DEFAULT_SERVICE_AR-RAY_PARAMETER_REQUEST, DEFAULT_SERVICE_ARRAY_PARAMETER_REQUEST+sizeof(DEFAU-LT_SERVICE_ARRAY_PARAMETER_REQUEST)/sizeof(float))
- string getStringParameter (string input, const string defaultValue)
- string getStringPtrParameter (char *input, const string defaultValue)
- bool getBoolParameter (string input, const bool defaultValue)
- bool getBoolPtrParameter (char *input, const bool defaultValue)
- string getPathParameter (string input, const string defaultValue)
- string getPathPtrParameter (char *input, const string defaultValue)
- float getServiceFloatParameter (float input, const float defaultValue)
- int getServiceIntParameter (int input, const int defaultValue)
- string getServiceStringParameter (string input, const string defaultValue)
- vector< float > getService3DArrayParameter (vector< float > input, const vector< float > defaultValue)
- vector< float > get3DArray (const float values[])
- vector < float > getService3DArrayParameter (vector < float > input, const float defaultValue[])
- string getFlagValueToPrint (bool flag)
- string getArrayToPrint (vector< float > arr)

Variables

- const string SRV_NAME_DEEP_FILTER = "deep_filter_srv"
- const string SRV_NAME_SUPPORT_FILTER = "support_segmentation_srv"
- const string SRV_NAME_CUSTER_FILTER = "cluster_Segmentation_srv"
- const string SRV_NAME_ARM_FILTER = "arm_filter_srv"
- const string SRV NAME RANSAC SPHERE FILTER = "sphere segmentation srv"
- const string SRV_NAME_RANSAC_CYLINDER_FILTER = "cylinder_segmentation_srv"
- const string SRV_NAME_RANSAC_CONE_FILTER = "cone_segmentation_srv"
- const string SRV_NAME_RANSAC_PLANE_FILTER = "plane_segmentation_srv"
- const string PARAM NAME INPUT CLOUD REFERENCE FRAME = "/pitt/ref frame/input cloud"
- const string PARAM NAME OUTPUT CLOUD REFERENCE FRAME = "/pitt/ref frame/output cloud"
- const string PARAM_NAME_DEEP_SRV_Z_THRESHOLD = "/pitt/service/deep_filter/z_threshold"
- const string PARAM_NAME_ARM_SRV_MIN_FOREARM_BOX = "/pitt/srv/arm_filter/min_forearm_box"
- const string PARAM_NAME_ARM_SRV_MAX_FOREARM_BOX = "/pitt/srv/arm_filter/max_forearm_box"
- const string PARAM_NAME_ARM_SRV_MIN_ELBOW_BOX = "/pitt/srv/arm_filter/min_elbow_box"
- const string PARAM_NAME_ARM_SRV_MAX_ELBOW_BOX = "/pitt/srv/arm_filter/max_elbow_box"
- const string PARAM_NAME_CLUSTER_TOLERANCE = "/pitt/srv/cluster_segmentation/tolerance"
- const string PARAM_NAME_CLUSTER_MIN_RATE = "/pitt/srv/cluster_segmentation/min_rate"
- const string PARAM_NAME_CLUSTER_MAX_RATE = "/pitt/srv/cluster_segmentation/max_rate"
- const string PARAM_NAME_CLUSTER_MIN_INPUT_SIZE = "/pitt/srv/cluster_segmentation/min_input_size"
- const string PARAM_NAME_SPHERE_NORMAL_DISTANCE_WEIGHT = "/pitt/srv/sphere_segmentation/normaldistance_weight"
- const string PARAM NAME SPHERE DISTANCE TH = "/pitt/srv/sphere segmentation/distance th"

- const string PARAM_NAME_SPHERE_MAX_ITERATION_LIMIT = "/pitt/srv/sphere_segmentation/max_iter-limit"
- const string PARAM_NAME_SPHERE_MIN_RADIUS_LIMIT = "/pitt/srv/sphere_segmentation/min_radius_limit"
- const string PARAM_NAME_SPHERE_MAX_RADIUS_LIMIT = "/pitt/srv/sphere_segmentation/max_radius_limit"
- const string PARAM NAME SPHERE EPS ANGLE TH = "/pitt/srv/sphere segmentation/eps angle th"
- const string PARAM_NAME_SPHERE_MIN_OPENING_ANGLE_DEGREE = "/pitt/srv/sphere_segmentation/minopening angle deg"
- const string PARAM_NAME_SPHERE_MAX_OPENING_ANGLE_DEGREE = "/pitt/srv/sphere_segmentation/max-_opening_angle_deg"
- const string PARAM_NAME_SPHERE_MIN_INLIERS = "/pitt/srv/sphere_segmentation/min_inliers"
- const string PARAM_NAME_CYLINDER_NORMAL_DISTANCE_WEIGHT = "/pitt/srv/cylinder_segmentation/normal-distance weight"
- const string PARAM_NAME_CYLINDER_DISTANCE_TH = "/pitt/srv/cylinder_segmentation/distance_th"
- const string PARAM_NAME_CYLINDER_MAX_ITERATION_LIMIT = "/pitt/srv/cylinder_segmentation/max_iter limit"
- const string PARAM_NAME_CYLINDER_MIN_RADIUS_LIMIT = "/pitt/srv/cylinder_segmentation/min_-radius limit"
- const string PARAM_NAME_CYLINDER_MAX_RADIUS_LIMIT = "/pitt/srv/cylinder_segmentation/max_-radius limit"
- const string PARAM_NAME_CYLINDER_EPS_ANGLE_TH = "/pitt/srv/cylinder_segmentation/eps_angle_th"
- const string PARAM_NAME_CYLINDER_MIN_OPENING_ANGLE_DEGREE = "/pitt/srv/cylinder_segmentation/min_opening_angle_deg"
- const string PARAM_NAME_CYLINDER_MAX_OPENING_ANGLE_DEGREE = "/pitt/srv/cylinder_segmentation/max_opening_angle_deg"
- const string PARAM_NAME_CYLINDER_MIN_INLIERS = "/pitt/srv/cylinder_segmentation/min_inliers"
- const string PARAM_NAME_CONE_NORMAL_DISTANCE_WEIGHT = "/pitt/srv/cone_segmentation/normal-distance weight"
- const string PARAM_NAME_CONE_DISTANCE_TH = "/pitt/srv/cone_segmentation/distance_th"
- const string PARAM_NAME_CONE_MAX_ITERATION_LIMIT = "/pitt/srv/cone_segmentation/max_iter_limit"
- const string PARAM NAME CONE MIN RADIUS LIMIT = "/pitt/srv/cone segmentation/min radius limit"
- const string PARAM NAME CONE MAX RADIUS LIMIT = "/pitt/srv/cone segmentation/max radius limit"
- const string PARAM NAME CONE EPS ANGLE TH = "/pitt/srv/cone segmentation/eps angle th"
- const string PARAM_NAME_CONE_MIN_OPENING_ANGLE_DEGREE = "/pitt/srv/cone_segmentation/min-_opening_angle_deg"
- const string PARAM_NAME_CONE_MAX_OPENING_ANGLE_DEGREE = "/pitt/srv/cone_segmentation/max_opening_angle_deg"
- const string PARAM NAME CONE MIN INLIERS = "/pitt/srv/cone segmentation/min inliers"
- const string PARAM_NAME_PLANE_NORMAL_DISTANCE_WEIGHT = "/pitt/srv/plane_segmentation/normal_distance_weight"
- const string PARAM_NAME_PLANE_DISTANCE_TH = "/pitt/srv/plane_segmentation/distance_th"
- const string PARAM_NAME_PLANE_MAX_ITERATION_LIMIT = "/pitt/srv/plane_segmentation/max_iter_limit"
- const string PARAM NAME PLANE EPS ANGLE TH = "/pitt/srv/plane segmentation/eps angle th"
- const string PARAM_NAME_PLANE_MIN_OPENING_ANGLE_DEGREE = "/pitt/srv/plane_segmentation/min-_opening_angle_deg"
- const string PARAM_NAME_PLANE_MAX_OPENING_ANGLE_DEGREE = "/pitt/srv/plane_segmentation/max-opening_angle_deg"
- const string PARAM NAME PLANE MIN INLIERS = "/pitt/srv/plane segmentation/min inliers"
- const string PARAM_NAME_MIN_ITERATIVE_CLOUD_PERCENTAGE = "/pitt/srv/supports_segmentation/miniter cloud percent"
- const string PARAM_NAME_MIN_ITERATIVE_SUPPORT_PERCENTAGE = "/pitt/srv/supports_segmentation/min-_iter_support_percent"

- const string PARAM_NAME_HORIZONTAL_VARIANCE_THRESHOLD = "/pitt/srv/supports_segmentation/horizontal-_variance_th"
- const string PARAM_NAME_RANSAC_IN_SHAPE_DISTANCE_POINT_THRESHOLD = "/pitt/srv/supports_segmentation/in_shape_distance_th"
- const string PARAM_NAME_RANSAC_MODEL_NORMAL_DISTANCE_WEIGHT = "/pitt/srv/supports_-segmentation/normal_distance_weight"
- const string PARAM_NAME_RANSAC_MAX_ITERATION_THRESHOLD = "/pitt/srv/supports_segmentation/max_iter"
- const string PARAM NAME HORIZONTAL AXIS = "/pitt/srv/supports segmentation/horizontal axis"
- const string PARAM_NAME_SUPPORT_EDGE_REMOVE_OFFSET = "/pitt/srv/supports_segmentation/edge-remove offset"
- const string DEFAULT_PARAM_INPUT_CLOUD_REFERENCE_FRAME = "/camera_depth_optical_frame"
- const string DEFAULT_PARAM_OUTPUT_CLOUD_REFERENCE_FRAME = "/world"
- const string DEFAULT_INPUT_PARAM_RAW_CLOUD_TOPIC = "/camera/depth/points"
- const string DEFAULT_INPUT_PARAM_CENTROID_LOG_FILE = ""
- const bool DEFAULT INPUT PARAM SHOW ORIGINAL CLOUD = false
- const bool DEFAULT INPUT PARAM SHOW SUPPORTS = false
- const bool DEFAULT_INPUT_PARAM_SHOW_OBJECT_ON_SUPPORT = false
- · const bool DEFAULT INPUT PARAM SHOW CLUSTERS = false
- const string DEFAULT_PARAM_ARM_SRV_CAMERA_FRAME = "/camera_depth_optical_frame"
- const string DEFAULT_PARAM_ARM_SRV_RIGHT_FOREARM_FRAME = "/right_lower_forearm"
- const string DEFAULT PARAM ARM SRV LEFT FOREARM FRAME = "/left lower forearm"
- const string DEFAULT PARAM ARM SRV RIGHT ELBOW FRAME = "/right lower elbow"
- const string DEFAULT_PARAM_ARM_SRV_LEFT_ELBOW_FRAME = "/left_lower_elbow"
- const bool DEFAULT_PARAM_ARM_SRV_SHOW_CLOUDS = false
- const string TOPIC_OUT_NAME_OBJECT_PERCEPTION = "obj_segmentation/ClusterOutput"
- const int DEFAULT_SERVICE_PARAMETER_REQUEST = -1
- const float DEFAULT SERVICE PARAMETER REQUEST F = -1.0f
- const float DEFAULT SERVICE ARRAY PARAMETER REQUEST [1] = {-1}
- const float DEFAULT TF WAIT SECONDS = 2.0f
- const string DEFAULT_SYMBOL = "."

4.3.1 Function Documentation

4.3.1.1 const vector < float > srvm::DEFAULT_SERVICE_VEC_PARAMETER_REQUEST (DEFAULT_SERVICE_ARRAY_PARAMETER_REQUEST+ sizeofDEFAULT_SERVICE_ARRAY_PARAMETER_REQUEST)/sizeof(float)

Referenced by callArmFilter(), and callSupportFilter().

4.3.1.2 vector< float> srvm::get3DArray (const float values[])

Definition at line 181 of file srv_manager.h.

Referenced by getService3DArrayParameter().

4.3.1.3 string srvm::getArrayToPrint (vector < float > arr)

Definition at line 196 of file srv manager.h.

Referenced by filter().

4.3.1.4 bool srvm::getBoolParameter (string input, const bool defaultValue)

Definition at line 139 of file srv_manager.h.

References DEFAULT_SYMBOL.

Referenced by getBoolPtrParameter().

4.3.1.5 bool srvm::getBoolPtrParameter (char * input, const bool defaultValue)

Definition at line 144 of file srv_manager.h.

References getBoolParameter().

Referenced by main().

Here is the call graph for this function:

4.3.1.6 string srvm::getFlagValueToPrint (bool flag)

Definition at line 191 of file srv_manager.h.

Referenced by main().

4.3.1.7 string srvm::getPathParameter (string input, const string defaultValue)

Definition at line 149 of file srv_manager.h.

 $References\ DEFAULT_SYMBOL,\ and\ pcm::PCManager::getFomrattedData().$

Referenced by getPathPtrParameter().

Here is the call graph for this function:

4.3.1.8 string srvm::getPathPtrParameter (char * input, const string defaultValue)

Definition at line 158 of file srv_manager.h.

References getPathParameter().

Referenced by main().

Here is the call graph for this function:

4.3.1.9 vector<float> srvm::getService3DArrayParameter (vector< float> input, const vector< float> defaultValue)

Definition at line 176 of file srv manager.h.

Referenced by filter(), and initializeInputParameters().

4.3.1.10 vector<float> srvm::getService3DArrayParameter (vector< float > input, const float defaultValue[])

Definition at line 185 of file srv manager.h.

References get3DArray().

Here is the call graph for this function:

4.3.1.11 float srvm::getServiceFloatParameter (float input, const float defaultValue)

Definition at line 163 of file srv_manager.h.

Referenced by deepFiltering(), and initializeInputParameters().

4.3.1.12 int srvm::getServiceIntParameter (int input, const int defaultValue)

Definition at line 168 of file srv_manager.h.

Referenced by initializeInputParameters().

4.3.1.13 string srvm::getServiceStringParameter (string input, const string defaultValue)

Definition at line 173 of file srv_manager.h.

References getStringParameter().

Here is the call graph for this function:

4.3.1.14 string srvm::getStringParameter (string input, const string defaultValue)

Definition at line 129 of file srv_manager.h.

References DEFAULT_SYMBOL.

Referenced by getServiceStringParameter(), getStringPtrParameter(), and main().

4.3.1.15 string srvm::getStringPtrParameter (char * input, const string defaultValue)

Definition at line 134 of file srv_manager.h.

References getStringParameter().

Referenced by main().

Here is the call graph for this function:

4.3.2 Variable Documentation

4.3.2.1 const string srvm::DEFAULT_INPUT_PARAM_CENTROID_LOG_FILE = ""

Definition at line 101 of file srv manager.h.

Referenced by main().

4.3.2.2 const string srvm::DEFAULT_INPUT_PARAM_RAW_CLOUD_TOPIC = "/camera/depth/points"

Definition at line 100 of file srv_manager.h.

Referenced by main().

4.3.2.3 const bool srvm::DEFAULT_INPUT_PARAM_SHOW_CLUSTERS = false

Definition at line 105 of file srv_manager.h.

Referenced by main().

4.3.2.4 const bool srvm::DEFAULT_INPUT_PARAM_SHOW_OBJECT_ON_SUPPORT = false Definition at line 104 of file srv_manager.h. Referenced by main(). 4.3.2.5 const bool srvm::DEFAULT_INPUT_PARAM_SHOW_ORIGINAL_CLOUD = false Definition at line 102 of file srv_manager.h. Referenced by main(). 4.3.2.6 const bool srvm::DEFAULT_INPUT_PARAM_SHOW_SUPPORTS = false Definition at line 103 of file srv_manager.h. Referenced by main(). 4.3.2.7 const string srvm::DEFAULT_PARAM_ARM_SRV_CAMERA_FRAME = "/camera_depth_optical_frame" Definition at line 106 of file srv_manager.h. Referenced by main(). 4.3.2.8 const string srvm::DEFAULT_PARAM_ARM_SRV_LEFT_ELBOW_FRAME = "/left_lower_elbow" Definition at line 110 of file srv manager.h. Referenced by main(). 4.3.2.9 const string srvm::DEFAULT_PARAM_ARM_SRV_LEFT_FOREARM_FRAME = "/left_lower_forearm" Definition at line 108 of file srv manager.h. Referenced by main(). 4.3.2.10 const string srvm::DEFAULT_PARAM_ARM_SRV_RIGHT_ELBOW_FRAME = "/right_lower_elbow" Definition at line 109 of file srv_manager.h. Referenced by main(). 4.3.2.11 const string srvm::DEFAULT_PARAM_ARM_SRV_RIGHT_FOREARM_FRAME = "/right_lower_forearm" Definition at line 107 of file srv_manager.h. Referenced by main().

4.3.2.12 const bool srvm::DEFAULT_PARAM_ARM_SRV_SHOW_CLOUDS = false

Definition at line 111 of file srv_manager.h.

Referenced by main().

4.3.2.13 const string srvm::DEFAULT_PARAM_INPUT_CLOUD_REFERENCE_FRAME = "/camera_depth_optical_frame" Definition at line 98 of file srv_manager.h. Referenced by main(). 4.3.2.14 const string srvm::DEFAULT_PARAM_OUTPUT_CLOUD_REFERENCE_FRAME = "/world" Definition at line 99 of file srv_manager.h. Referenced by main(). 4.3.2.15 const float srvm::DEFAULT_SERVICE_ARRAY_PARAMETER_REQUEST[1] = {-1} Definition at line 120 of file srv manager.h. 4.3.2.16 const int srvm::DEFAULT_SERVICE_PARAMETER_REQUEST = -1 Definition at line 118 of file srv_manager.h. Referenced by callSupportFilter(). 4.3.2.17 const float srvm::DEFAULT_SERVICE_PARAMETER_REQUEST_F = -1.0f Definition at line 119 of file srv_manager.h. Referenced by callDeepFilter(), and callSupportFilter(). 4.3.2.18 const string srvm::DEFAULT_SYMBOL = "." Definition at line 127 of file srv manager.h. Referenced by getBoolParameter(), getPathParameter(), and getStringParameter(). 4.3.2.19 const float srvm::DEFAULT_TF_WAIT_SECONDS = 2.0f Definition at line 125 of file srv_manager.h. Referenced by main(). 4.3.2.20 const string srvm::PARAM_NAME_ARM_SRV_MAX_ELBOW_BOX = "/pitt/srv/arm_filter/max_elbow_box" Definition at line 42 of file srv_manager.h. Referenced by callArmFilter(). 4.3.2.21 const string srvm::PARAM_NAME_ARM_SRV_MAX_FOREARM_BOX = "/pitt/srv/arm_filter/max_forearm_box" Definition at line 40 of file srv_manager.h. Referenced by callArmFilter().

4.3.2.22 const string srvm::PARAM_NAME_ARM_SRV_MIN_ELBOW_BOX = "/pitt/srv/arm_filter/min_elbow_box" Definition at line 41 of file srv manager.h. Referenced by callArmFilter(). 4.3.2.23 const string srvm::PARAM_NAME_ARM_SRV_MIN_FOREARM_BOX = "/pitt/srv/arm_filter/min_forearm_box" Definition at line 39 of file srv_manager.h. Referenced by callArmFilter(). 4.3.2.24 const string srvm::PARAM_NAME_CLUSTER_MAX_RATE = "/pitt/srv/cluster_segmentation/max_rate" Definition at line 46 of file srv manager.h. Referenced by clusterize(). 4.3.2.25 const string srvm::PARAM_NAME_CLUSTER_MIN_INPUT_SIZE = "/pitt/srv/cluster_segmentation/min_input_size" Definition at line 47 of file srv_manager.h. 4.3.2.26 const string srvm::PARAM_NAME_CLUSTER_MIN_RATE = "/pitt/srv/cluster_segmentation/min_rate" Definition at line 45 of file srv_manager.h. Referenced by clusterize(). 4.3.2.27 const string srvm::PARAM_NAME_CLUSTER_TOLERANCE = "/pitt/srv/cluster_segmentation/tolerance" Definition at line 44 of file srv manager.h. Referenced by clusterize(). 4.3.2.28 const string srvm::PARAM_NAME_CONE_DISTANCE_TH = "/pitt/srv/cone_segmentation/distance_th" Definition at line 70 of file srv_manager.h. Referenced by ransacConeDetaction(). 4.3.2.29 const string srvm::PARAM_NAME_CONE_EPS_ANGLE_TH = "/pitt/srv/cone_segmentation/eps_angle_th" Definition at line 74 of file srv_manager.h. Referenced by ransacConeDetaction().

4.3.2.30 const string srvm::PARAM_NAME_CONE_MAX_ITERATION_LIMIT = "/pitt/srv/cone_segmentation/max_iter_limit"

Definition at line 71 of file srv_manager.h.

Referenced by ransacConeDetaction().

4.3.2.31 const string srvm::PARAM_NAME_CONE_MAX_OPENING_ANGLE_DEGREE = "/pitt/srv/cone_segmentation/max_opening_angle_deg"

Definition at line 76 of file srv_manager.h.

Referenced by ransacConeDetaction().

4.3.2.32 const string srvm::PARAM_NAME_CONE_MAX_RADIUS_LIMIT = "/pitt/srv/cone_segmentation/max_radius_limit"

Definition at line 73 of file srv_manager.h.

Referenced by ransacConeDetaction().

4.3.2.33 const string srvm::PARAM_NAME_CONE_MIN_INLIERS = "/pitt/srv/cone_segmentation/min_inliers"

Definition at line 77 of file srv_manager.h.

Referenced by callRansacConeSegmentation().

4.3.2.34 const string srvm::PARAM_NAME_CONE_MIN_OPENING_ANGLE_DEGREE = "/pitt/srv/cone_segmentation/min_opening_angle_deg"

Definition at line 75 of file srv_manager.h.

Referenced by ransacConeDetaction().

4.3.2.35 const string srvm::PARAM NAME CONE MIN RADIUS LIMIT = "/pitt/srv/cone segmentation/min radius limit"

Definition at line 72 of file srv_manager.h.

Referenced by ransacConeDetaction().

4.3.2.36 const string srvm::PARAM_NAME_CONE_NORMAL_DISTANCE_WEIGHT = "/pitt/srv/cone_segmentation/normal_distance_weight"

Definition at line 69 of file srv_manager.h.

Referenced by ransacConeDetaction().

4.3.2.37 const string srvm::PARAM_NAME_CYLINDER_DISTANCE_TH = "/pitt/srv/cylinder_segmentation/distance_th"

Definition at line 60 of file srv_manager.h.

Referenced by ransacCylinderDetaction().

4.3.2.38 const string srvm::PARAM_NAME_CYLINDER_EPS_ANGLE_TH = "/pitt/srv/cylinder_segmentation/eps_angle_th"

Definition at line 64 of file srv manager.h.

Referenced by ransacCylinderDetaction().

4.3.2.39 const string srvm::PARAM_NAME_CYLINDER_MAX_ITERATION_LIMIT = "/pitt/srv/cylinder_segmentation/max_iter_limit"

Definition at line 61 of file srv_manager.h.

Referenced by ransacCylinderDetaction().

4.3.2.40 const string srvm::PARAM_NAME_CYLINDER_MAX_OPENING_ANGLE_DEGREE =
"/pitt/srv/cylinder segmentation/max_opening_angle_deg"

Definition at line 66 of file srv_manager.h.

Referenced by ransacCylinderDetaction().

4.3.2.41 const string srvm::PARAM_NAME_CYLINDER_MAX_RADIUS_LIMIT = "/pitt/srv/cylinder_segmentation/max_radius_limit"

Definition at line 63 of file srv manager.h.

Referenced by ransacCylinderDetaction().

4.3.2.42 const string srvm::PARAM_NAME_CYLINDER_MIN_INLIERS = "/pitt/srv/cylinder_segmentation/min_inliers"

Definition at line 67 of file srv manager.h.

Referenced by callRansacCylinderSegmentation().

4.3.2.43 const string srvm::PARAM_NAME_CYLINDER_MIN_OPENING_ANGLE_DEGREE = "/pitt/srv/cylinder_segmentation/min_opening_angle_deg"

Definition at line 65 of file srv_manager.h.

Referenced by ransacCylinderDetaction().

4.3.2.44 const string srvm::PARAM_NAME_CYLINDER_MIN_RADIUS_LIMIT = "/pitt/srv/cylinder_segmentation/min_radius_limit"

Definition at line 62 of file srv_manager.h.

Referenced by ransacCylinderDetaction().

4.3.2.45 const string srvm::PARAM_NAME_CYLINDER_NORMAL_DISTANCE_WEIGHT = "/pitt/srv/cylinder_-segmentation/normal_distance_weight"

Definition at line 59 of file srv_manager.h.

Referenced by ransacCylinderDetaction().

4.3.2.46 const string srvm::PARAM_NAME_DEEP_SRV_Z_THRESHOLD = "/pitt/service/deep_filter/z_threshold"

Definition at line 37 of file srv_manager.h.

Referenced by callDeepFilter().

4.3.2.47 const string srvm::PARAM_NAME_HORIZONTAL_AXIS = "/pitt/srv/supports_segmentation/horizontal_axis"

Definition at line 94 of file srv_manager.h.

Referenced by callSupportFilter().

4.3.2.48 const string srvm::PARAM_NAME_HORIZONTAL_VARIANCE_THRESHOLD = "/pitt/srv/supports_segmentation/horizontal_variance_th"

Definition at line 90 of file srv_manager.h.

Referenced by callSupportFilter().

4.3.2.49 const string srvm::PARAM NAME INPUT CLOUD REFERENCE FRAME = "/pitt/ref frame/input cloud"

Definition at line 35 of file srv_manager.h.

Referenced by main().

4.3.2.50 const string srvm::PARAM_NAME_MIN_ITERATIVE_CLOUD_PERCENTAGE = "/pitt/srv/supports_segmentation/min_iter_cloud_percent"

Definition at line 88 of file srv manager.h.

Referenced by callSupportFilter().

4.3.2.51 const string srvm::PARAM_NAME_MIN_ITERATIVE_SUPPORT_PERCENTAGE = "/pitt/srv/supports_segmentation/min_iter_support_percent"

Definition at line 89 of file srv_manager.h.

Referenced by callSupportFilter().

4.3.2.52 const string srvm::PARAM_NAME_OUTPUT_CLOUD_REFERENCE_FRAME = "/pitt/ref_frame/output_cloud"

Definition at line 36 of file srv manager.h.

Referenced by main().

4.3.2.53 const string srvm::PARAM_NAME_PLANE_DISTANCE_TH = "/pitt/srv/plane_segmentation/distance_th"

Definition at line 80 of file srv_manager.h.

Referenced by ransacPlaneDetaction().

4.3.2.54 const string srvm::PARAM_NAME_PLANE_EPS_ANGLE_TH = "/pitt/srv/plane_segmentation/eps_angle_th"

Definition at line 82 of file srv_manager.h.

Referenced by ransacPlaneDetaction().

4.3.2.55 const string srvm::PARAM_NAME_PLANE_MAX_ITERATION_LIMIT = "/pitt/srv/plane_segmentation/max_iter_limit"

Definition at line 81 of file srv_manager.h.

Referenced by ransacPlaneDetaction().

4.3.2.56 const string srvm::PARAM_NAME_PLANE_MAX_OPENING_ANGLE_DEGREE = "/pitt/srv/plane_segmentation/max_opening_angle_deg"

Definition at line 84 of file srv_manager.h.

Referenced by ransacPlaneDetaction().

4.3.2.57 const string srvm::PARAM_NAME_PLANE_MIN_INLIERS = "/pitt/srv/plane_segmentation/min_inliers"

Definition at line 85 of file srv_manager.h.

Referenced by callRansacPlaneSegmentation().

4.3.2.58 const string srvm::PARAM_NAME_PLANE_MIN_OPENING_ANGLE_DEGREE = "/pitt/srv/plane_segmentation/min_opening_angle_deg"

Definition at line 83 of file srv_manager.h.

Referenced by ransacPlaneDetaction().

4.3.2.59 const string srvm::PARAM_NAME_PLANE_NORMAL_DISTANCE_WEIGHT = "/pitt/srv/plane_segmentation/normal_distance_weight"

Definition at line 79 of file srv manager.h.

Referenced by ransacPlaneDetaction().

4.3.2.60 const string srvm::PARAM_NAME_RANSAC_IN_SHAPE_DISTANCE_POINT_THRESHOLD = "/pitt/srv/supports_segmentation/in_shape_distance_th"

Definition at line 91 of file srv_manager.h.

Referenced by callSupportFilter().

4.3.2.61 const string srvm::PARAM_NAME_RANSAC_MAX_ITERATION_THRESHOLD = "/pitt/srv/supports_segmentation/max_iter"

Definition at line 93 of file srv_manager.h.

Referenced by callSupportFilter().

4.3.2.62 const string srvm::PARAM_NAME_RANSAC_MODEL_NORMAL_DISTANCE_WEIGHT =
"/pitt/srv/supports_segmentation/normal_distance_weight"

Definition at line 92 of file srv_manager.h.

Referenced by callSupportFilter().

4.3.2.63 const string srvm::PARAM_NAME_SPHERE_DISTANCE_TH = "/pitt/srv/sphere_segmentation/distance_th"

Definition at line 50 of file srv_manager.h.

Referenced by ransacSphereDetection().

4.3.2.64 const string srvm::PARAM_NAME_SPHERE_EPS_ANGLE_TH = "/pitt/srv/sphere_segmentation/eps_angle_th"

Definition at line 54 of file srv_manager.h.

Referenced by ransacSphereDetection().

4.3.2.65 const string srvm::PARAM_NAME_SPHERE_MAX_ITERATION_LIMIT = "/pitt/srv/sphere_segmentation/max_iter_limit"

Definition at line 51 of file srv_manager.h.

Referenced by ransacSphereDetection().

4.3.2.66 const string srvm::PARAM_NAME_SPHERE_MAX_OPENING_ANGLE_DEGREE = "/pitt/srv/sphere_segmentation/max_opening_angle_deg"

Definition at line 56 of file srv_manager.h.

Referenced by ransacSphereDetection().

4.3.2.67 const string srvm::PARAM_NAME_SPHERE_MAX_RADIUS_LIMIT = "/pitt/srv/sphere_segmentation/max_radius_limit"

Definition at line 53 of file srv manager.h.

Referenced by ransacSphereDetection().

4.3.2.68 const string srvm::PARAM_NAME_SPHERE_MIN_INLIERS = "/pitt/srv/sphere_segmentation/min_inliers"

Definition at line 57 of file srv manager.h.

Referenced by callRansacSphereSegmentation().

4.3.2.69 const string srvm::PARAM_NAME_SPHERE_MIN_OPENING_ANGLE_DEGREE = "/pitt/srv/sphere_segmentation/min_opening_angle_deg"

Definition at line 55 of file srv_manager.h.

Referenced by ransacSphereDetection().

4.3.2.70 const string srvm::PARAM_NAME_SPHERE_MIN_RADIUS_LIMIT = "/pitt/srv/sphere_segmentation/min_radius_limit"

Definition at line 52 of file srv manager.h.

Referenced by ransacSphereDetection().

4.3.2.71 const string srvm::PARAM_NAME_SPHERE_NORMAL_DISTANCE_WEIGHT = "/pitt/srv/sphere_segmentation/normal_distance_weight"

Definition at line 49 of file srv manager.h.

Referenced by ransacSphereDetection().

4.3.2.72 const string srvm::PARAM_NAME_SUPPORT_EDGE_REMOVE_OFFSET = "/pitt/srv/supports_segmentation/edge_remove_offset"

Definition at line 95 of file srv_manager.h.

Referenced by callSupportFilter().

4.3.2.73 const string srvm::SRV_NAME_ARM_FILTER = "arm_filter_srv"

Definition at line 28 of file srv_manager.h.

Referenced by callArmFilter(), and main().

4.3.2.74 const string srvm::SRV_NAME_CUSTER_FILTER = "cluster_Segmentation_srv"

Definition at line 27 of file srv_manager.h.

Referenced by callClusterSegmentation(), and main().

4.3.2.75 const string srvm::SRV_NAME_DEEP_FILTER = "deep_filter_srv"

Definition at line 25 of file srv_manager.h.

Referenced by callDeepFilter(), and main().

4.3.2.76 const string srvm::SRV_NAME_RANSAC_CONE_FILTER = "cone_segmentation_srv"

Definition at line 31 of file srv_manager.h.

Referenced by callRansacConeSegmentation(), and main().

4.3.2.77 const string srvm::SRV_NAME_RANSAC_CYLINDER_FILTER = "cylinder_segmentation_srv"

Definition at line 30 of file srv manager.h.

Referenced by callRansacCylinderSegmentation(), and main().

4.3.2.78 const string srvm::SRV_NAME_RANSAC_PLANE_FILTER = "plane_segmentation_srv"

Definition at line 32 of file srv manager.h.

Referenced by callRansacPlaneSegmentation(), and main().

4.3.2.79 const string srvm::SRV_NAME_RANSAC_SPHERE_FILTER = "sphere_segmentation_srv"

Definition at line 29 of file srv manager.h.

Referenced by callRansacSphereSegmentation(), and main().

4.3.2.80 const string srvm::SRV_NAME_SUPPORT_FILTER = "support_segmentation_srv"

Definition at line 26 of file srv manager.h.

Referenced by callSupportFilter(), and main().

4.3.2.81 const string srvm::TOPIC_OUT_NAME_OBJECT_PERCEPTION = "obj_segmentation/ClusterOutput"

Definition at line 115 of file srv manager.h.

Referenced by main().

Chapter 5

Class Documentation

5.1 pcm::PCManager Class Reference

```
#include <pc_manager.h>
```

Public Member Functions

- PCManager ()
- PCManager (bool visualizationFlag)
- virtual ∼PCManager ()
- vector< PCLCloudPtr > getCloudFromIdx (PrimitiveIdxPtr indices)
- void visualize ()
- PCPrimitivePtr getPrimitiveShape (int idx)
- int addPrimitiveShape (string shapeName, PCLCloudPtr cloud, PCLNormalPtr norms, bool visualFlag)
- int clearPtimitiveShape ()
- PCLCloudPtr getOriginalCloud ()
- PointCloud2 getOriginalCloudRosMsg ()
- PCLNormalPtr getOriginalNormal ()
- PointCloud2 getOriginalNormalRosMsg ()
- bool getVisualizationFlag ()
- PCLVisualizer getVisor ()
- void setOriginalCloud (PCLCloudPtr cloud)
- void setOriginalCloud (PCLCloudPtr cloud, int normSearch, float downSpanX, float downSpanY, float downSpanZ)
- void setOriginalCloud (PointCloud2Ptr cloud)
- void setOriginalCloud (PointCloud2Ptr cloud, int normSearch, float downSpanX, float downSpanY, float downSpanZ)
- void setVisualizationFlag (bool flag)

Static Public Member Functions

- static PCLCloudPtr copyCloud (PCLCloudPtr input)
- static PCLNormalPtr copyNormals (PCLNormalPtr input)
- static ModelCoefficients::Ptr copyCoefficients (ModelCoefficients::Ptr input)
- static PCLCloudPtr downSampling (PCLCloudPtr input)
- static PCLCloudPtr downSampling (PCLCloudPtr input, float span)
- static PCLCloudPtr downSampling (PCLCloudPtr input, float spanX, float spanY, float spanZ)
- static PCLNormalPtr estimateNormal (PCLCloudPtr input)
- static PCLNormalPtr estimateNormal (PCLCloudPtr input, int search)

24 Class Documentation

- static PointCloud2 cloudToRosMsg (PCLCloudPtr input)
- static PCLCloudPtr cloudForRosMsg (PointCloud2 input)
- static PCLCloudPtr cloudForRosMsg (PointCloud2Ptr input)
- static PointCloud2 normToRosMsg (PCLNormalPtr input)
- static PCLNormalPtr normForRosMsg (PointCloud2 input)
- static vector< int > inlierToVectorMsg (PointIndices::Ptr inliers)
- static vector< float > coefficientToVectorMsg (ModelCoefficients::Ptr coefficients)
- static PCLVisualizer createVisor (string title)
- static void updateVisor (PCLVisualizer viewer, PCLCloudPtr cloud, int R, int G, int B, string name)
- static void updateVisor (PCLVisualizer viewer, PCLCloudPtr cloud, string name)
- static void updateVisor (PCLVisualizer viewer, PCLCloudPtr cloud, PCLNormalPtr normals, int R, int G, int B, string name)
- static void updateVisor (PCLVisualizer viewer, PCLCloudPtr cloud, PCLNormalPtr normals, string name)
- static void updateVisor (PCLVisualizer viewer, PointXYZ point, int R, int G, int B, string name)
- static void updateVisor (PCLVisualizer viewer, PointXYZ point, string name)
- static void clearVisor (PCLVisualizer viewer)
- static vector < PCLCloudPtr > getCloudFromIdx (PCLCloudPtr originalCloud, PrimitiveIdxPtr indices)
- static string getFomrattedData ()
- static bool writeToFile (string txt, string filePath, bool append)

Static Public Attributes

- static const bool DEFAULT_VISUALIZATION_FLAG = false
- static const int VISUALIZER POINT SIZE = 3
- static const int VISUALIZER_POINT_SIZE_BIG = 10
- static const string DEFAULT_CLOUD_NAME_SUFFIX = "_cloud"
- static const string DEFAULT_NORM_NAME_SUFFIX = "_normal"
- static const string DEFAULT ORIGINAL CLOUD VIEWER NAME = "original"
- static const int DEFAULT NORM LEVEL = 5
- static const float DEFAULT NORM SCALE = 0.02f
- static const string DEFAULT_VISUALIZER_TITLE = "PointCloud manager"
- static const int DEFAULT NORM SEARCH = 50
- static const float DEFAULT_DOWSEAMPLIG_RATE = 0.01f

Private Member Functions

· void initialize (bool visualizationFlag)

Private Attributes

- · PCLCloudPtr originalCloud
- · PCLNormalPtr originalNorms
- · PCLVisualizer visor
- · bool visualizationFlag
- vector< PCPrimitivePtr > primitiveList

5.1.1 Detailed Description

Definition at line 27 of file pc_manager.h.

5.1.2 Constructor & Destructor Documentation

5.1.2.1 pcm::PCManager::PCManager ()

Definition at line 243 of file pc manager.cpp.

References DEFAULT_VISUALIZATION_FLAG, and initialize().

Here is the call graph for this function:

5.1.2.2 pcm::PCManager::PCManager (bool visualizationFlag)

Definition at line 246 of file pc_manager.cpp.

References initialize().

Here is the call graph for this function:

5.1.2.3 pcm::PCManager::~PCManager() [virtual]

Definition at line 251 of file pc_manager.cpp.

5.1.3 Member Function Documentation

- 5.1.3.1 int pcm::PCManager::addPrimitiveShape (string *shapeName*, PCLCloudPtr *cloud*, PCLNormalPtr *norms*, bool *visualFlag*)
- 5.1.3.2 int pcm::PCManager::clearPtimitiveShape ()
- **5.1.3.3 void pcm::PCManager::clearVisor (PCLVisualizer** *viewer*) [static]

Definition at line 175 of file pc_manager.cpp.

5.1.3.4 PCLCloudPtr pcm::PCManager::cloudForRosMsg (PointCloud2 input) [static]

Definition at line 90 of file pc_manager.cpp.

 $Referenced\ by\ clusterize(),\ ransacConeDetaction(),\ ransacCylinderDetaction(),\ ransacPlaneDetaction(),\ ransacPlane$

26 Class Documentation

```
5.1.3.5 PCLCloudPtr pcm::PCManager::cloudForRosMsg ( PointCloud2Ptr input ) [static]
Definition at line 85 of file pc_manager.cpp.
5.1.3.6 PointCloud2 pcm::PCManager::cloudToRosMsg ( PCLCloudPtr input ) [static]
Definition at line 80 of file pc_manager.cpp.
Referenced by getOriginalCloudRosMsg().
5.1.3.7 vector < float > pcm::PCManager::coefficientToVectorMsg ( ModelCoefficients::Ptr coefficients ) [static]
Definition at line 112 of file pc manager.cpp.
Referenced by ransacConeDetaction(), ransacCylinderDetaction(), ransacPlaneDetaction(), and ransacSphere-
Detection().
5.1.3.8 PCLCloudPtr pcm::PCManager::copyCloud ( PCLCloudPtr input ) [static]
Definition at line 30 of file pc_manager.cpp.
5.1.3.9 ModelCoefficients::Ptr pcm::PCManager::copyCoefficients ( ModelCoefficients::Ptr input ) [static]
Definition at line 49 of file pc_manager.cpp.
5.1.3.10 PCLNormalPtr pcm::PCManager::copyNormals( PCLNormalPtr input ) [static]
Definition at line 43 of file pc_manager.cpp.
5.1.3.11 PCLVisualizer pcm::PCManager::createVisor ( string title ) [static]
Definition at line 131 of file pc manager.cpp.
Referenced by initialize(), main(), and setVisualizationFlag().
5.1.3.12 PCLCloudPtr pcm::PCManager::downSampling ( PCLCloudPtr input ) [static]
Definition at line 55 of file pc_manager.cpp.
References DEFAULT DOWSEAMPLIG RATE.
Referenced by downSampling(), and setOriginalCloud().
5.1.3.13 PCLCloudPtr pcm::PCManager::downSampling ( PCLCloudPtr input, float span ) [static]
Definition at line 58 of file pc_manager.cpp.
References downSampling().
```

Here is the call graph for this function:

5.1.3.14 PCLCloudPtr pcm::PCManager::downSampling (PCLCloudPtr input, float spanX, float spanY, float spanZ) [static]

Definition at line 61 of file pc_manager.cpp.

References pcm::sor.

5.1.3.15 PCLNormalPtr pcm::PCManager::estimateNormal(PCLCloudPtr input) [static]

Definition at line 68 of file pc_manager.cpp.

References DEFAULT_NORM_SEARCH.

Referenced by setOriginalCloud().

5.1.3.16 PCLNormalPtr pcm::PCManager::estimateNormal (PCLCloudPtr input, int search) [static]

Definition at line 71 of file pc_manager.cpp.

References pcm::ne, and pcm::tree().

Here is the call graph for this function:

5.1.3.17 vector < PCLCloudPtr > pcm::PCManager::getCloudFromldx (PCLCloudPtr originalCloud, PrimitiveldxPtr indices) [static]

Definition at line 181 of file pc_manager.cpp.

Referenced by getCloudFromIdx().

5.1.3.18 vector < PCLCloudPtr > pcm::PCManager::getCloudFromldx (PrimitiveIdxPtr indices)

Definition at line 235 of file pc_manager.cpp.

28 Class Documentation

References getCloudFromIdx(), and originalCloud.

Here is the call graph for this function:

5.1.3.19 string pcm::PCManager::getFomrattedData() [static]

Definition at line 121 of file pc_manager.cpp.

Referenced by srvm::getPathParameter().

5.1.3.20 PCLCloudPtr pcm::PCManager::getOriginalCloud ()

Definition at line 289 of file pc manager.cpp.

References originalCloud.

5.1.3.21 PointCloud2 pcm::PCManager::getOriginalCloudRosMsg ()

Definition at line 292 of file pc_manager.cpp.

References cloudToRosMsg(), and originalCloud.

Here is the call graph for this function:

5.1.3.22 PCLNormalPtr pcm::PCManager::getOriginalNormal()

Definition at line 296 of file pc_manager.cpp.

References originalNorms.

5.1.3.23 PointCloud2 pcm::PCManager::getOriginalNormalRosMsg ()

Definition at line 299 of file pc_manager.cpp.

References normToRosMsg(), and originalNorms.

Here is the call graph for this function:

5.1.3.24 PCPrimitivePtr pcm::PCManager::getPrimitiveShape (int idx)

5.1.3.25 PCLVisualizer pcm::PCManager::getVisor()

Definition at line 306 of file pc_manager.cpp.

References visor.

5.1.3.26 bool pcm::PCManager::getVisualizationFlag ()

Definition at line 303 of file pc_manager.cpp.

References visualizationFlag.

5.1.3.27 void pcm::PCManager::initialize (bool *visualizationFlag* **)** [private]

Definition at line 347 of file pc_manager.cpp.

References createVisor(), DEFAULT_VISUALIZER_TITLE, visor, and visualizationFlag.

Referenced by PCManager().

Here is the call graph for this function:

5.1.3.28 vector < int > pcm::PCManager::inlierToVectorMsg (PointIndices::Ptr inliers) [static]

Definition at line 105 of file pc_manager.cpp.

Referenced by ransacConeDetaction(), ransacCylinderDetaction(), ransacPlaneDetaction(), and ransacSphere-Detection().

5.1.3.29 PCLNormalPtr pcm::PCManager::normForRosMsg (PointCloud2 input) [static]

Definition at line 100 of file pc_manager.cpp.

30 Class Documentation

Referenced by ransacConeDetaction(), ransacCylinderDetaction(), ransacPlaneDetaction(), and ransacSphere-Detection().

5.1.3.30 PointCloud2 pcm::PCManager::normToRosMsg(PCLNormalPtr input) [static]

Definition at line 95 of file pc manager.cpp.

Referenced by getOriginalNormalRosMsg().

5.1.3.31 void pcm::PCManager::setOriginalCloud (PCLCloudPtr cloud)

Definition at line 312 of file pc_manager.cpp.

References DEFAULT DOWSEAMPLIG RATE, and DEFAULT NORM SEARCH.

Referenced by setOriginalCloud().

5.1.3.32 void pcm::PCManager::setOriginalCloud (PCLCloudPtr cloud, int normSearch, float downSpanX, float downSpanX) float downSpanZ)

Definition at line 315 of file pc_manager.cpp.

References downSampling(), estimateNormal(), originalCloud, and originalNorms.

Here is the call graph for this function:

5.1.3.33 void pcm::PCManager::setOriginalCloud (PointCloud2Ptr cloud)

Definition at line 323 of file pc_manager.cpp.

References DEFAULT_DOWSEAMPLIG_RATE, DEFAULT_NORM_SEARCH, and setOriginalCloud().

Here is the call graph for this function:

5.1.3.34 void pcm::PCManager::setOriginalCloud (PointCloud2Ptr cloud, int normSearch, float downSpanX, float downSpanX) float downSpanZ)

Definition at line 326 of file pc_manager.cpp.

References cloudForRosMsg(), and setOriginalCloud().

Here is the call graph for this function:

5.1.3.35 void pcm::PCManager::setVisualizationFlag (bool flag)

Definition at line 330 of file pc_manager.cpp.

References createVisor(), DEFAULT_VISUALIZER_TITLE, visor, and visualizationFlag.

Here is the call graph for this function:

5.1.3.36 void pcm::PCManager::updateVisor (PCLVisualizer *viewer*, PCLCloudPtr *cloud*, int *R*, int *G*, int *B*, string *name*) [static]

Definition at line 152 of file pc_manager.cpp.

References VISUALIZER POINT SIZE.

Referenced by ransacConeDetaction(), ransacCylinderDetaction(), and updateVisor().

5.1.3.37 void pcm::PCManager::updateVisor (PCLVisualizer viewer, PCLCloudPtr cloud, string name) [static]

Definition at line 159 of file pc_manager.cpp.

References updateVisor().

32 Class Documentation

Here is the call graph for this function:

5.1.3.38 void pcm::PCManager::updateVisor (PCLVisualizer *viewer*, PCLCloudPtr *cloud*, PCLNormalPtr *normals*, int *R*, int *G*, int *B*, string *name*) [static]

Definition at line 163 of file pc_manager.cpp.

References DEFAULT_NORM_LEVEL, DEFAULT_NORM_NAME_SUFFIX, DEFAULT_NORM_SCALE, and VIS-UALIZER_POINT_SIZE.

5.1.3.39 void pcm::PCManager::updateVisor (PCLVisualizer *viewer*, PCLCloudPtr *cloud*, PCLNormalPtr *normals*, string *name*) [static]

Definition at line 172 of file pc_manager.cpp.

References updateVisor().

Here is the call graph for this function:

5.1.3.40 void pcm::PCManager::updateVisor (PCLVisualizer *viewer*, PointXYZ *point*, int *R*, int *G*, int *B*, string *name*) [static]

Definition at line 139 of file pc_manager.cpp.

References VISUALIZER_POINT_SIZE_BIG.

5.1.3.41 void pcm::PCManager::updateVisor (PCLVisualizer viewer, PointXYZ point, string name) [static]

Definition at line 148 of file pc_manager.cpp.

References updateVisor().

Here is the call graph for this function:

```
pcm::PCManager::updateVisor pcm::PCManager::updateVisor
```

```
5.1.3.42 void pcm::PCManager::visualize ( )
```

5.1.3.43 bool pcm::PCManager::writeToFile (string txt, string filePath, bool append) [static]

Definition at line 215 of file pc_manager.cpp.

5.1.4 Member Data Documentation

5.1.4.1 const string pcm::PCManager::DEFAULT_CLOUD_NAME_SUFFIX = "_cloud" [static]

Definition at line 112 of file pc_manager.h.

5.1.4.2 const float pcm::PCManager::DEFAULT_DOWSEAMPLIG_RATE = 0.01f [static]

Definition at line 120 of file pc_manager.h.

Referenced by downSampling(), and setOriginalCloud().

5.1.4.3 const int pcm::PCManager::DEFAULT_NORM_LEVEL = 5 [static]

Definition at line 115 of file pc_manager.h.

Referenced by updateVisor().

5.1.4.4 const string pcm::PCManager::DEFAULT_NORM_NAME_SUFFIX = "_normal" [static]

Definition at line 113 of file pc_manager.h.

Referenced by updateVisor().

5.1.4.5 const float pcm::PCManager::DEFAULT_NORM_SCALE = 0.02f [static]

Definition at line 116 of file pc_manager.h.

Referenced by updateVisor().

5.1.4.6 const int pcm::PCManager::DEFAULT_NORM_SEARCH = 50 [static]

Definition at line 119 of file pc_manager.h.

Referenced by estimateNormal(), and setOriginalCloud().

34 Class Documentation

5.1.4.7 const string pcm::PCManager::DEFAULT_ORIGINAL_CLOUD_VIEWER_NAME = "original" Definition at line 114 of file pc_manager.h. **5.1.4.8** const bool pcm::PCManager::DEFAULT_VISUALIZATION_FLAG = false [static] Definition at line 109 of file pc manager.h. Referenced by PCManager(). 5.1.4.9 const string pcm::PCManager::DEFAULT_VISUALIZER_TITLE = "PointCloud manager" [static] Definition at line 117 of file pc manager.h. Referenced by initialize(), and setVisualizationFlag(). **5.1.4.10 PCLCloudPtr pcm::PCManager::originalCloud** [private] Definition at line 29 of file pc_manager.h. Referenced by getCloudFromIdx(), getOriginalCloud(), getOriginalCloudRosMsg(), and setOriginalCloud(). **5.1.4.11 PCLNormalPtr pcm::PCManager::originalNorms** [private] Definition at line 30 of file pc_manager.h. Referenced by getOriginalNormal(), getOriginalNormalRosMsg(), and setOriginalCloud(). **5.1.4.12** vector< PCPrimitivePtr> pcm::PCManager::primitiveList [private] Definition at line 35 of file pc_manager.h. **5.1.4.13 PCLVisualizer pcm::PCManager::visor** [private] Definition at line 32 of file pc manager.h. Referenced by getVisor(), initialize(), and setVisualizationFlag(). **5.1.4.14** bool pcm::PCManager::visualizationFlag [private] Definition at line 33 of file pc_manager.h. Referenced by getVisualizationFlag(), initialize(), and setVisualizationFlag(). **5.1.4.15** const int pcm::PCManager::VISUALIZER_POINT_SIZE = 3 [static] Definition at line 110 of file pc manager.h. Referenced by updateVisor(). **5.1.4.16** const int pcm::PCManager::VISUALIZER_POINT_SIZE_BIG = 10 [static] Definition at line 111 of file pc_manager.h. Referenced by updateVisor().

The documentation for this class was generated from the following files:

- src/point_cloud_library/pc_manager.h
- src/point_cloud_library/pc_manager.cpp

5.2 pcp::PCPrimitive Class Reference

```
#include <pc_primitive.h>
```

Public Member Functions

- PCPrimitive (string shapename, int shapeMapidx, bool visualFlag, PCLCloudPtr cloud, PCLNormalPtr norms)
- virtual ∼PCPrimitive ()
- string getShapeName ()
- string getVisualizationName ()
- bool getVisualizationFlag ()
- int getShapeMapidx ()
- PCLCloud getPrimitiveCloud ()
- PCLNormal getPrimitiveNormal ()

Static Public Attributes

- static const string DEFAULT_SHAPE_NAME_PLANE = "plane"
- static const string DEFAULT_SHAPE_NAME_CLUSTER = "cluster"
- static const string DEFAULT_VISUALIZATION_NAME_SEPARATOR = "-"

Private Member Functions

- string getVisualizationNameFromTag (int idx)
- ModelCoefficients copyCoefficients (ModelCoefficients::Ptr input)

Private Attributes

- · string shapeName
- string visualizationName
- · bool visualizationFlag
- int shapeMapIdx
- · PCLCloud primitiveCloud
- · PCLNormal primitiveNormals
- ModelCoefficients primitiveCoefficients

5.2.1 Detailed Description

Definition at line 27 of file pc_primitive.h.

36 Class Documentation

5.2.2 Constructor & Destructor Documentation

5.2.2.1 pcp::PCPrimitive::PCPrimitive (string shapename, int shapeMapidx, bool visualFlag, PCLCloudPtr cloud, PCLNormalPtr norms)

Definition at line 17 of file pc_primitive.cpp.

References getVisualizationNameFromTag(), primitiveCloud, primitiveNormals, shapeMapIdx, shapeName, visualizationFlag, and visualizationName.

Here is the call graph for this function:

5.2.2.2 pcp::PCPrimitive::~PCPrimitive() [virtual]

Definition at line 26 of file pc primitive.cpp.

5.2.3 Member Function Documentation

5.2.3.1 ModelCoefficients pcp::PCPrimitive::copyCoefficients (ModelCoefficients::Ptr input) [private]

Definition at line 64 of file pc_primitive.cpp.

5.2.3.2 PCLCloud pcp::PCPrimitive::getPrimitiveCloud ()

Definition at line 88 of file pc_primitive.cpp.

References primitiveCloud.

5.2.3.3 PCLNormal pcp::PCPrimitive::getPrimitiveNormal ()

Definition at line 91 of file pc_primitive.cpp.

References primitiveNormals.

5.2.3.4 int pcp::PCPrimitive::getShapeMapidx ()

Definition at line 82 of file pc_primitive.cpp.

References shapeMapIdx.

5.2.3.5 string pcp::PCPrimitive::getShapeName ()

Definition at line 73 of file pc_primitive.cpp.

References shapeName.

Referenced by getVisualizationNameFromTag().

5.2.3.6 bool pcp::PCPrimitive::getVisualizationFlag ()

Definition at line 79 of file pc_primitive.cpp.

References visualizationFlag.

5.2.3.7 string pcp::PCPrimitive::getVisualizationName ()

Definition at line 76 of file pc_primitive.cpp.

References visualizationName.

5.2.3.8 string pcp::PCPrimitive::getVisualizationNameFromTag (int idx) [private]

Definition at line 35 of file pc_primitive.cpp.

References DEFAULT VISUALIZATION NAME SEPARATOR, and getShapeName().

Referenced by PCPrimitive().

Here is the call graph for this function:

5.2.4 Member Data Documentation

5.2.4.1 const string pcp::PCPrimitive::DEFAULT_SHAPE_NAME_CLUSTER = "cluster" [static]

Definition at line 74 of file pc_primitive.h.

5.2.4.2 const string pcp::PCPrimitive::DEFAULT_SHAPE_NAME_PLANE = "plane" [static]

Definition at line 73 of file pc_primitive.h.

5.2.4.3 const string pcp::PCPrimitive::DEFAULT_VISUALIZATION_NAME_SEPARATOR = "-" [static]

Definition at line 76 of file pc_primitive.h.

Referenced by getVisualizationNameFromTag().

5.2.4.4 PCLCloud pcp::PCPrimitive::primitiveCloud [private]

Definition at line 37 of file pc_primitive.h.

Referenced by getPrimitiveCloud(), and PCPrimitive().

5.2.4.5 ModelCoefficients pcp::PCPrimitive::primitiveCoefficients [private]

Definition at line 39 of file pc_primitive.h.

38 Class Documentation

5.2.4.6 PCLNormal pcp::PCPrimitive::primitiveNormals [private]

Definition at line 38 of file pc_primitive.h.

Referenced by getPrimitiveNormal(), and PCPrimitive().

5.2.4.7 int pcp::PCPrimitive::shapeMapIdx [private]

Definition at line 34 of file pc_primitive.h.

Referenced by getShapeMapidx(), and PCPrimitive().

5.2.4.8 string pcp::PCPrimitive::shapeName [private]

Definition at line 30 of file pc_primitive.h.

Referenced by getShapeName(), and PCPrimitive().

5.2.4.9 bool pcp::PCPrimitive::visualizationFlag [private]

Definition at line 32 of file pc_primitive.h.

Referenced by getVisualizationFlag(), and PCPrimitive().

5.2.4.10 string pcp::PCPrimitive::visualizationName [private]

Definition at line 31 of file pc_primitive.h.

Referenced by getVisualizationName(), and PCPrimitive().

The documentation for this class was generated from the following files:

- src/point_cloud_library/pc_primitive.h
- src/point_cloud_library/pc_primitive.cpp

5.3 vector3d Struct Reference

Public Attributes

- float x
- float y
- float z

5.3.1 Detailed Description

Definition at line 34 of file cone_segmentation_srv.cpp.

5.3.2 Member Data Documentation

5.3.2.1 float vector3d::x

Definition at line 35 of file cone_segmentation_srv.cpp.

Referenced by getNormalizeAxesDirectionVector(), getPointOnAxes(), getVectorBetweenPoints(), ransacCone-Detaction(), and ransacCylinderDetaction().

5.3.2.2 float vector3d::y

Definition at line 36 of file cone_segmentation_srv.cpp.

Referenced by getNormalizeAxesDirectionVector(), getPointOnAxes(), getVectorBetweenPoints(), ransacCone-Detaction(), and ransacCylinderDetaction().

5.3.2.3 float vector3d::z

Definition at line 37 of file cone_segmentation_srv.cpp.

Referenced by getNormalizeAxesDirectionVector(), getPointOnAxes(), getVectorBetweenPoints(), ransacCone-Detaction(), and ransacCylinderDetaction().

The documentation for this struct was generated from the following files:

- src/segmentation_services/cone_segmentation_srv.cpp
- src/segmentation_services/cylinder_segmentation_srv.cpp

40 **Class Documentation**

Chapter 6

File Documentation

6.1 src/obj_segmentation.cpp File Reference

```
#include <pcl_ros/point_cloud.h>
#include <std_msgs/Float64.h>
#include <pcl/common/transforms.h>
#include <eigen3/Eigen/Dense>
#include <eigen3/Eigen/Core>
#include <math.h>
#include <tf/transform listener.h>
#include <tf/tf.h>
#include "pitt_msgs/DeepFilter.h"
#include "pitt_msgs/SupportSegmentation.h"
#include "pitt_msgs/ClusterSegmentation.h"
#include "pitt_msgs/ArmFilter.h"
#include "pitt_msgs/Support.h"
#include "pitt_msgs/InliersCluster.h"
#include "pitt_msgs/ClustersOutput.h"
#include "point_cloud_library/pc_manager.h"
#include "point_cloud_library/srv_manager.h"
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/format.hpp>
Include dependency graph for obj_segmentation.cpp:
```


Typedefs

- typedef boost::shared_ptr
 vector< Support >> InlierSupportsPtr
- typedef vector< Support > InlierSupports
- typedef boost::shared_ptr
 vector< InliersCluster >> InlierClusterPtr
- typedef vector< InliersCluster > InlierClusters

Functions

- · void visSpin ()
- bool callDeepFilter (PCLCloudPtr &cloud)

BBBB.

- bool callArmFilter (PCLCloudPtr &cloud)
- InlierSupportsPtr callSupportFilter (PCLCloudPtr inputCloud, PCLNormalPtr normal)
- InlierClusterPtr callClusterSegmentation (PCLCloudPtr cloud)
- · void depthAcquisition (const PointCloud2Ptr &input)
- int main (int argc, char **argv)

Variables

- ros::NodeHandle * nh_ptr = NULL
- · bool inputShowSupportClouds
- · bool inputShowOriginalCloud
- · bool inputShowClusterClouds
- bool inputShowObjectOnSupport
- · string centroidLogFilePath
- string log_str_depth = "Loading..."
- string log_str_supp = "Loading..."
- long scanId = 0
- static const int MIN_POINT_IN_ORIGINAL_CLOUD = 30
- pcm::PCManager * manager = new pcm::PCManager(false)
- · boost::shared ptr
 - < visualization::PCLVisualizer > vis
- Publisher clusterPub
- boost::thread vis_thread
- boost::mutex vis_mutex
- Eigen::Matrix4f pclTransform

6.1.1 Typedef Documentation

6.1.1.1 typedef boost::shared_ptr< vector< InliersCluster>>> InlierClusterPtr

Definition at line 40 of file obj_segmentation.cpp.

 ${\it 6.1.1.2} \quad type def \ vector {< \ ln liers Cluster} {> \ ln lier Clusters}$

Definition at line 41 of file obj segmentation.cpp.

6.1.1.3 typedef vector < Support > InlierSupports

Definition at line 39 of file obj_segmentation.cpp.

6.1.1.4 typedef boost::shared_ptr< vector< Support> > InlierSupportsPtr

Definition at line 38 of file obj_segmentation.cpp.

6.1.2 Function Documentation

6.1.2.1 bool callArmFilter (PCLCloudPtr & cloud)

Definition at line 112 of file obj segmentation.cpp.

References srvm::DEFAULT_SERVICE_VEC_PARAMETER_REQUEST(), nh_ptr, srvm::PARAM_NAME_ARM_SRV_MAX_ELBOW_BOX, srvm::PARAM_NAME_ARM_SRV_MAX_FOREARM_BOX, srvm::PARAM_NAME_ARM_SRV_MIN_ELBOW_BOX, srvm::PARAM_NAME_ARM_SRV_MIN_FOREARM_BOX, and srvm::SRV_NAME_ARM_FILTER.

Referenced by depthAcquisition().

Here is the call graph for this function:

6.1.2.2 InlierClusterPtr callClusterSegmentation (PCLCloudPtr cloud)

Definition at line 214 of file obj_segmentation.cpp.

References nh_ptr, and srvm::SRV_NAME_CUSTER_FILTER.

Referenced by depthAcquisition().

6.1.2.3 bool callDeepFilter (PCLCloudPtr & cloud)

BBBB.

AAAAA

Parameters

cloud	

Returns

Definition at line 79 of file obj_segmentation.cpp.

References srvm::DEFAULT_SERVICE_PARAMETER_REQUEST_F, inputShowClusterClouds, inputShowObject-OnSupport, inputShowOriginalCloud, inputShowSupportClouds, log_str_depth, nh_ptr, srvm::PARAM_NAME_DE-EP_SRV_Z_THRESHOLD, srvm::SRV_NAME_DEEP_FILTER, vis, and vis_mutex.

Referenced by depthAcquisition().

6.1.2.4 InlierSupportsPtr callSupportFilter (PCLCloudPtr inputCloud, PCLNormalPtr normal)

Definition at line 147 of file obj_segmentation.cpp.

References srvm::DEFAULT_SERVICE_PARAMETER_REQUEST, srvm::DEFAULT_SERVICE_PARAMETER_REQUEST_F, srvm::DEFAULT_SERVICE_VEC_PARAMETER_REQUEST(), horizontalAxis, inputShowCluster-Clouds, inputShowObjectOnSupport, inputShowOriginalCloud, inputShowSupportClouds, log_str_supp, nh_ptr, srvm::PARAM_NAME_HORIZONTAL_AXIS, srvm::PARAM_NAME_HORIZONTAL_VARIANCE_THRESHOLD, srvm::PARAM_NAME_MIN_ITERATIVE_CLOUD_PERCENTAGE, srvm::PARAM_NAME_MIN_ITERATIVE_SUPPORT_PERCENTAGE, srvm::PARAM_NAME_RANSAC_IN_SHAPE_DISTANCE_POINT_THRESHOLD, srvm::PARAM_NAME_RANSAC_MAX_ITERATION_THRESHOLD, srvm::PARAM_NAME_RANSAC_MODEL_NORMAL_DISTANCE_WEIGHT, srvm::PARAM_NAME_SUPPORT_EDGE_REMOVE_OFFSET, srvm::SRV_NAME_SUPPORT_FILTER, vis, and vis mutex.

Referenced by depthAcquisition().

Here is the call graph for this function:

6.1.2.5 void depthAcquisition (const PointCloud2Ptr & input)

Definition at line 234 of file obj segmentation.cpp.

 $References\ callArmFilter(),\ callClusterSegmentation(),\ callDeepFilter(),\ callSupportFilter(),\ centroidFileLog,\ centroidLogFilePath,\ clusterPub,\ inputShowClusterClouds,\ inputShowObjectOnSupport,\ inputShowOriginalCloud,\ inputShowSupportClouds,\ MIN_POINT_IN_ORIGINAL_CLOUD,\ pclTransform,\ scanld,\ vis,\ and\ vis_mutex.$

Referenced by main().

Here is the call graph for this function:

6.1.2.6 int main (int argc, char ** argv)

This method implements the main node loop and it spins as soon as a new data is available in the input topic. Particularly, the input topic can be specified through its name into the parameter

Parameters

argc	
argv	

Returns

Definition at line 337 of file obj segmentation.cpp.

References centroidLogFilePath, clusterPub, srvm::DEFAULT_INPUT_PARAM_CENTROID_LOG_FILE, srvm::DEFAULT_INPUT_PARAM_RAW_CLOUD_TOPIC, srvm::DEFAULT_INPUT_PARAM_SHOW_CLUSTERS, srvm::DEFAULT_INPUT_PARAM_SHOW_OBJECT_ON_SUPPORT, srvm::DEFAULT_INPUT_PARAM_SHOW_ORIGINAL_CLOUD, srvm::DEFAULT_INPUT_PARAM_SHOW_SUPPORTS, srvm::DEFAULT_PARAM_INPUT_CLOUD_REFERENCE_FRAME, srvm::DEFAULT_TPARAM_OUTPUT_CLOUD_REFERENCE_FRAME, srvm::DEFAULT_TF_WAIT_SECONDS, depthAcquisition(), srvm::getBoolPtrParameter(), srvm::getFlagValue-ToPrint(), srvm::getPathPtrParameter(), srvm::getStringParameter(), srvm::getStringPtrParameter(), inputShow-ClusterClouds, inputShowObjectOnSupport, inputShowOriginalCloud, inputShowSupportClouds, log_str_depth, log_str_supp, nh_ptr, srvm::PARAM_NAME_INPUT_CLOUD_REFERENCE_FRAME, srvm::PARAM_NAME_OUTPUT_CLOUD_REFERENCE_FRAME, pclTransform, srvm::TOPIC_OUT_NAME_OBJECT_PERCEPTION, vis, vis_thread, and visSpin().

Here is the call graph for this function:

6.1.2.7 void visSpin ()

Definition at line 64 of file obj_segmentation.cpp.

References vis, and vis_mutex.

Referenced by main().

6.1.3 Variable Documentation

6.1.3.1 string centroidLogFilePath

Definition at line 45 of file obj_segmentation.cpp.

Referenced by depthAcquisition(), and main().

6.1.3.2 Publisher clusterPub

Definition at line 60 of file obj_segmentation.cpp.

Referenced by depthAcquisition(), and main().

6.1.3.3 bool inputShowClusterClouds

Definition at line 44 of file obj_segmentation.cpp.

Referenced by callDeepFilter(), callSupportFilter(), depthAcquisition(), and main().

6.1.3.4 bool inputShowObjectOnSupport

Definition at line 44 of file obj_segmentation.cpp.

Referenced by callDeepFilter(), callSupportFilter(), depthAcquisition(), and main().

6.1.3.5 bool inputShowOriginalCloud

Definition at line 44 of file obj_segmentation.cpp.

Referenced by callDeepFilter(), callSupportFilter(), depthAcquisition(), and main().

6.1.3.6 bool inputShowSupportClouds

Definition at line 44 of file obj_segmentation.cpp.

Referenced by callDeepFilter(), callSupportFilter(), depthAcquisition(), and main().

6.1.3.7 string log_str_depth = "Loading..."

Definition at line 48 of file obj_segmentation.cpp.

Referenced by callDeepFilter(), and main().

6.1.3.8 string log_str_supp = "Loading..."

Definition at line 49 of file obj_segmentation.cpp.

Referenced by callSupportFilter(), and main().

6.1.3.9 pcm::PCManager* manager = new pcm::PCManager(false)

Definition at line 58 of file obj_segmentation.cpp.

6.1.3.10 const int MIN_POINT_IN_ORIGINAL_CLOUD = 30 [static]

Definition at line 55 of file obj_segmentation.cpp.

Referenced by depthAcquisition().

6.1.3.11 ros::NodeHandle* nh_ptr = NULL

Definition at line 36 of file obj_segmentation.cpp.

Referenced by callArmFilter(), callClusterSegmentation(), callDeepFilter(), callSupportFilter(), and main().

6.1.3.12 Eigen::Matrix4f pclTransform

Definition at line 232 of file obj_segmentation.cpp.

Referenced by depthAcquisition(), and main().

6.1.3.13 long scanld = 0

Definition at line 52 of file obj_segmentation.cpp.

Referenced by depthAcquisition().

6.1.3.14 boost::shared_ptr< visualization::PCLVisualizer> vis

Definition at line 59 of file obj_segmentation.cpp.

Referenced by callDeepFilter(), callSupportFilter(), depthAcquisition(), main(), and visSpin().

6.1.3.15 boost::mutex vis_mutex

Definition at line 62 of file obj_segmentation.cpp.

Referenced by callDeepFilter(), callSupportFilter(), depthAcquisition(), and visSpin().

6.1.3.16 boost::thread vis_thread

Definition at line 61 of file obj_segmentation.cpp.

Referenced by main().

6.2 src/point_cloud_library/pc_manager.cpp File Reference

#include "../point_cloud_library/pc_manager.h"
Include dependency graph for pc_manager.cpp:

Namespaces

• pcm

Functions

static search::KdTree
 PointXYZ >::Ptr pcm::tree (new search::KdTree
 PointXYZ >())

Variables

- static NormalEstimationPointXYZ, Normal > pcm::ne
- static VoxelGrid< PointXYZ > pcm::sor

6.3 src/point_cloud_library/pc_manager.h File Reference

```
#include <pcl_ros/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/features/normal_3d.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <std_msgs/String.h>
#include <math.h>
#include "../point_cloud_library/pc_primitive.h"
Include dependency graph for pc_manager.h:
```


This graph shows which files directly or indirectly include this file:

Classes

· class pcm::PCManager

Namespaces

• pcm

Typedefs

typedef boost::shared_ptr

< pcp::PCPrimitive > PCPrimitivePtr

· typedef boost::shared_ptr

< visualization::PCLVisualizer > PCLVisualizer

6.3.1 Typedef Documentation

6.3.1.1 typedef boost::shared_ptr< visualization::PCLVisualizer> PCLVisualizer

Definition at line 23 of file pc_manager.h.

6.3.1.2 typedef boost::shared_ptr< pcp::PCPrimitive> PCPrimitivePtr

Definition at line 22 of file pc manager.h.

6.4 src/point_cloud_library/pc_primitive.cpp File Reference

#include "../point_cloud_library/pc_primitive.h"
Include dependency graph for pc_primitive.cpp:

Namespaces

• pcp

6.5 src/point_cloud_library/pc_primitive.h File Reference

```
#include <vector>
#include <pcl_ros/point_cloud.h>
#include <std_msgs/String.h>
```

Include dependency graph for pc_primitive.h:

This graph shows which files directly or indirectly include this file:

Classes

· class pcp::PCPrimitive

Namespaces

• pcp

Typedefs

- typedef std::vector< int > PrimitiveIdx
- typedef boost::shared_ptr
 - < std::vector< int >> PrimitiveIdxPtr
- typedef pcl::PointCloud
 - < pcl::PointXYZ > PCLCloud
- · typedef pcl::PointCloud
 - < pcl::PointXYZ >::Ptr PCLCloudPtr
- typedef pcl::PointCloud
 - < pcl::Normal > PCLNormal
- typedef pcl::PointCloud
 - < pcl::Normal >::Ptr PCLNormalPtr

6.5.1 Typedef Documentation

6.5.1.1 typedef pcl::PointCloud< pcl::PointXYZ> PCLCloud

Definition at line 20 of file pc_primitive.h.

6.5.1.2 typedef pcl::PointCloud< pcl::PointXYZ>::Ptr PCLCloudPtr

Definition at line 21 of file pc_primitive.h.

6.5.1.3 typedef pcl::PointCloud< pcl::Normal> PCLNormal

Definition at line 22 of file pc_primitive.h.

6.5.1.4 typedef pcl::PointCloud< pcl::Normal>::Ptr PCLNormalPtr

Definition at line 23 of file pc_primitive.h.

6.5.1.5 typedef std::vector< int> Primitiveldx

Definition at line 18 of file pc_primitive.h.

6.5.1.6 typedef boost::shared_ptr< std::vector< int>> PrimitiveIdxPtr

Definition at line 19 of file pc_primitive.h.

6.6 src/point_cloud_library/srv_manager.h File Reference

```
#include <std_msgs/String.h>
#include "../point_cloud_library/pc_manager.h"
Include dependency graph for srv_manager.h:
```


This graph shows which files directly or indirectly include this file:

Namespaces

• srvm

Functions

 const vector < float > srvm::DEFAULT_SERVICE_VEC_PARAMETER_REQUEST (DEFAULT_SERVICE_-ARRAY_PARAMETER_REQUEST, DEFAULT_SERVICE_ARRAY_PARAMETER_REQUEST+sizeof(DEF-AULT_SERVICE_ARRAY_PARAMETER_REQUEST)/sizeof(float))

- string srvm::getStringParameter (string input, const string defaultValue)
- string srvm::getStringPtrParameter (char *input, const string defaultValue)
- bool srvm::getBoolParameter (string input, const bool defaultValue)
- bool srvm::getBoolPtrParameter (char *input, const bool defaultValue)
- string srvm::getPathParameter (string input, const string defaultValue)
- string srvm::getPathPtrParameter (char *input, const string defaultValue)
- float srvm::getServiceFloatParameter (float input, const float defaultValue)
- int srvm::getServiceIntParameter (int input, const int defaultValue)
- string srvm::getServiceStringParameter (string input, const string defaultValue)
- vector< float > srvm::getService3DArrayParameter (vector< float > input, const vector< float > default-Value)
- vector< float > srvm::get3DArray (const float values[])
- vector< float > srvm::getService3DArrayParameter (vector< float > input, const float defaultValue[])
- string srvm::getFlagValueToPrint (bool flag)
- string srvm::getArrayToPrint (vector< float > arr)

Variables

- const string srvm::SRV_NAME_DEEP_FILTER = "deep_filter_srv"
- const string srvm::SRV_NAME_SUPPORT_FILTER = "support_segmentation_srv"
- const string srvm::SRV_NAME_CUSTER_FILTER = "cluster_Segmentation_srv"
- const string srvm::SRV_NAME_ARM_FILTER = "arm_filter_srv"
- const string srvm::SRV_NAME_RANSAC_SPHERE_FILTER = "sphere_segmentation_srv"
- const string srvm::SRV_NAME_RANSAC_CYLINDER_FILTER = "cylinder_segmentation_srv"
- const string srvm::SRV_NAME_RANSAC_CONE_FILTER = "cone_segmentation_srv"
- const string srvm::SRV_NAME_RANSAC_PLANE_FILTER = "plane_segmentation_srv"
- const string srvm::PARAM_NAME_INPUT_CLOUD_REFERENCE_FRAME = "/pitt/ref_frame/input_cloud"
- const string srvm::PARAM_NAME_OUTPUT_CLOUD_REFERENCE_FRAME = "/pitt/ref_frame/output_cloud"
- const string srvm::PARAM NAME DEEP SRV Z THRESHOLD = "/pitt/service/deep filter/z threshold"
- const string srvm::PARAM_NAME_ARM_SRV_MIN_FOREARM_BOX = "/pitt/srv/arm_filter/min_forearm_-box"
- const string srvm::PARAM_NAME_ARM_SRV_MAX_FOREARM_BOX = "/pitt/srv/arm_filter/max_forearm_-box"
- const string srvm::PARAM_NAME_ARM_SRV_MIN_ELBOW_BOX = "/pitt/srv/arm_filter/min_elbow_box"
- const string srvm::PARAM_NAME_ARM_SRV_MAX_ELBOW_BOX = "/pitt/srv/arm_filter/max_elbow_box"
- const string srvm::PARAM_NAME_CLUSTER_TOLERANCE = "/pitt/srv/cluster_segmentation/tolerance"
- const string srvm::PARAM_NAME_CLUSTER_MIN_RATE = "/pitt/srv/cluster_segmentation/min_rate"
- const string srvm::PARAM_NAME_CLUSTER_MAX_RATE = "/pitt/srv/cluster_segmentation/max_rate"
- const string srvm::PARAM_NAME_CLUSTER_MIN_INPUT_SIZE = "/pitt/srv/cluster_segmentation/min_-input_size"
- const string srvm::PARAM_NAME_SPHERE_NORMAL_DISTANCE_WEIGHT = "/pitt/srv/sphere_-segmentation/normal_distance_weight"
- const string srvm::PARAM_NAME_SPHERE_DISTANCE_TH = "/pitt/srv/sphere_segmentation/distance_th"
- const string srvm::PARAM_NAME_SPHERE_MAX_ITERATION_LIMIT = "/pitt/srv/sphere_segmentation/max_iter_limit"
- const string srvm::PARAM_NAME_SPHERE_MIN_RADIUS_LIMIT = "/pitt/srv/sphere_segmentation/min_radius limit"
- const string srvm::PARAM_NAME_SPHERE_MAX_RADIUS_LIMIT = "/pitt/srv/sphere_segmentation/max_radius limit"

- const string srvm::PARAM_NAME_SPHERE_EPS_ANGLE_TH = "/pitt/srv/sphere_segmentation/eps_-angle th"
- const string srvm::PARAM_NAME_SPHERE_MIN_OPENING_ANGLE_DEGREE = "/pitt/srv/sphere_-segmentation/min_opening_angle_deg"
- const string srvm::PARAM_NAME_SPHERE_MAX_OPENING_ANGLE_DEGREE = "/pitt/srv/sphere_-segmentation/max_opening_angle_deg"
- const string srvm::PARAM NAME SPHERE MIN INLIERS = "/pitt/srv/sphere segmentation/min inliers"
- const string srvm::PARAM_NAME_CYLINDER_NORMAL_DISTANCE_WEIGHT = "/pitt/srv/cylinder_segmentation/normal_distance_weight"
- const string srvm::PARAM_NAME_CYLINDER_DISTANCE_TH = "/pitt/srv/cylinder_segmentation/distance-th"
- const string srvm::PARAM_NAME_CYLINDER_MAX_ITERATION_LIMIT = "/pitt/srv/cylinder_segmentation/max-_iter_limit"
- const string srvm::PARAM_NAME_CYLINDER_MIN_RADIUS_LIMIT = "/pitt/srv/cylinder_segmentation/min-_radius_limit"
- const string srvm::PARAM_NAME_CYLINDER_MAX_RADIUS_LIMIT = "/pitt/srv/cylinder_segmentation/max-radius limit"
- const string srvm::PARAM_NAME_CYLINDER_EPS_ANGLE_TH = "/pitt/srv/cylinder_segmentation/eps_-angle th"
- const string srvm::PARAM_NAME_CYLINDER_MIN_OPENING_ANGLE_DEGREE = "/pitt/srv/cylinder_-segmentation/min_opening_angle_deg"
- const string srvm::PARAM_NAME_CYLINDER_MAX_OPENING_ANGLE_DEGREE = "/pitt/srv/cylinder_-segmentation/max_opening_angle_deg"
- const string srvm::PARAM NAME CYLINDER MIN INLIERS = "/pitt/srv/cylinder segmentation/min inliers"
- const string srvm::PARAM_NAME_CONE_NORMAL_DISTANCE_WEIGHT = "/pitt/srv/cone_segmentation/normal-distance weight"
- const string srvm::PARAM NAME CONE DISTANCE TH = "/pitt/srv/cone segmentation/distance th"
- const string srvm::PARAM_NAME_CONE_MAX_ITERATION_LIMIT = "/pitt/srv/cone_segmentation/max_iter limit"
- const string srvm::PARAM_NAME_CONE_MIN_RADIUS_LIMIT = "/pitt/srv/cone_segmentation/min_radius-limit"
- const string srvm::PARAM_NAME_CONE_MAX_RADIUS_LIMIT = "/pitt/srv/cone_segmentation/max_-radius limit"
- const string srvm::PARAM NAME CONE EPS ANGLE TH = "/pitt/srv/cone segmentation/eps angle th"
- const string srvm::PARAM_NAME_CONE_MIN_OPENING_ANGLE_DEGREE = "/pitt/srv/cone_segmentation/min_opening_angle_deg"
- const string srvm::PARAM_NAME_CONE_MAX_OPENING_ANGLE_DEGREE = "/pitt/srv/cone_segmentation/max_opening_angle_deg"
- const string srvm::PARAM NAME CONE MIN INLIERS = "/pitt/srv/cone segmentation/min inliers"
- const string srvm::PARAM_NAME_PLANE_NORMAL_DISTANCE_WEIGHT = "/pitt/srv/plane_segmentation/normal-distance weight"
- const string srvm::PARAM NAME PLANE DISTANCE TH = "/pitt/srv/plane segmentation/distance th"
- const string srvm::PARAM_NAME_PLANE_MAX_ITERATION_LIMIT = "/pitt/srv/plane_segmentation/max_-iter_limit"
- const string srvm::PARAM_NAME_PLANE_EPS_ANGLE_TH = "/pitt/srv/plane_segmentation/eps_angle_th"
- const string srvm::PARAM_NAME_PLANE_MIN_OPENING_ANGLE_DEGREE = "/pitt/srv/plane_-segmentation/min_opening_angle_deg"
- const string srvm::PARAM_NAME_PLANE_MAX_OPENING_ANGLE_DEGREE = "/pitt/srv/plane_-segmentation/max_opening_angle_deg"
- const string srvm::PARAM NAME PLANE MIN INLIERS = "/pitt/srv/plane segmentation/min inliers"
- const string srvm::PARAM_NAME_MIN_ITERATIVE_CLOUD_PERCENTAGE = "/pitt/srv/supports_segmentation/min iter cloud percent"
- const string srvm::PARAM_NAME_MIN_ITERATIVE_SUPPORT_PERCENTAGE = "/pitt/srv/supports_-segmentation/min_iter_support_percent"
- const string srvm::PARAM_NAME_HORIZONTAL_VARIANCE_THRESHOLD = "/pitt/srv/supports_-segmentation/horizontal_variance_th"

• const string srvm::PARAM_NAME_RANSAC_IN_SHAPE_DISTANCE_POINT_THRESHOLD = "/pitt/srv/supports_segmentation/in_shape_distance_th"

- const string srvm::PARAM_NAME_RANSAC_MODEL_NORMAL_DISTANCE_WEIGHT = "/pitt/srv/supports_segmentation/normal_distance_weight"
- const string srvm::PARAM_NAME_RANSAC_MAX_ITERATION_THRESHOLD = "/pitt/srv/supports_-segmentation/max iter"
- const string srvm::PARAM NAME HORIZONTAL AXIS = "/pitt/srv/supports segmentation/horizontal axis"
- const string srvm::PARAM_NAME_SUPPORT_EDGE_REMOVE_OFFSET = "/pitt/srv/supports_segmentation/edge_remove_offset"
- const string srvm::DEFAULT_PARAM_INPUT_CLOUD_REFERENCE_FRAME = "/camera_depth_optical_frame"
- const string srvm::DEFAULT PARAM OUTPUT CLOUD REFERENCE FRAME = "/world"
- const string srvm::DEFAULT INPUT PARAM RAW CLOUD TOPIC = "/camera/depth/points"
- const string srvm::DEFAULT_INPUT_PARAM_CENTROID_LOG_FILE = ""
- const bool srvm::DEFAULT INPUT PARAM SHOW ORIGINAL CLOUD = false
- const bool srvm::DEFAULT INPUT PARAM SHOW SUPPORTS = false
- const bool srvm::DEFAULT_INPUT_PARAM_SHOW_OBJECT_ON_SUPPORT = false
- const bool srvm::DEFAULT INPUT PARAM SHOW CLUSTERS = false
- const string srvm::DEFAULT PARAM ARM SRV CAMERA FRAME = "/camera depth optical frame"
- const string srvm::DEFAULT PARAM ARM SRV RIGHT FOREARM FRAME = "/right lower forearm"
- const string srvm::DEFAULT PARAM ARM SRV LEFT FOREARM FRAME = "/left lower forearm"
- const string srvm::DEFAULT_PARAM_ARM_SRV_RIGHT_ELBOW_FRAME = "/right_lower_elbow"
- const string srvm::DEFAULT PARAM ARM SRV LEFT ELBOW FRAME = "/left lower elbow"
- const bool srvm::DEFAULT PARAM ARM SRV SHOW CLOUDS = false
- const string srvm::TOPIC_OUT_NAME_OBJECT_PERCEPTION = "obj_segmentation/ClusterOutput"
- const int srvm::DEFAULT SERVICE PARAMETER REQUEST = -1
- const float srvm::DEFAULT_SERVICE_PARAMETER_REQUEST_F = -1.0f
- const float srvm::DEFAULT_SERVICE_ARRAY_PARAMETER_REQUEST [1] = {-1}
- const float srvm::DEFAULT_TF_WAIT_SECONDS = 2.0f
- const string srvm::DEFAULT SYMBOL = "."

6.7 src/ransac segmentation.cpp File Reference

```
#include "pitt_msgs/ClustersOutput.h"
#include "pitt_msgs/InliersCluster.h"
#include "pitt_msgs/PrimitiveSegmentation.h"
#include "pitt_msgs/TrackedShapes.h"
#include "pitt_msgs/TrackedShape.h"
#include "point_cloud_library/pc_manager.h"
#include "point_cloud_library/srv_manager.h"
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/format.hpp>
```

Include dependency graph for ransac_segmentation.cpp:

Typedefs

- typedef vector< InliersCluster > InliersClusters
- typedef boost::shared_ptr
 - < InliersClusters > InliersClustersPtr
- · typedef boost::shared ptr
 - < PrimitiveSegmentation > PrimitiveSegmentationPtr

Functions

- void visSpin ()
- bool callRansacSphereSegmentation (PCLCloudPtr cloud, PCLNormalPtr norm, PrimitiveSegmentationPtr &out)
- void printSphereInfo (PrimitiveSegmentationPtr info, int idx)
- bool callRansacCylinderSegmentation (PCLCloudPtr cloud, PCLNormalPtr norm, PrimitiveSegmentationPtr &out)
- void printCylinderInfo (PrimitiveSegmentationPtr info, int idx)
- bool callRansacConeSegmentation (PCLCloudPtr cloud, PCLNormalPtr norm, PrimitiveSegmentationPtr &out)
- void printConeInfo (PrimitiveSegmentationPtr info, int idx)
- bool callRansacPlaneSegmentation (PCLCloudPtr cloud, PCLNormalPtr norm, PrimitiveSegmentationPtr &out)
- · void printPlaneInfo (PrimitiveSegmentationPtr info, int idx)
- string returnPrimitiveNameFromTag (int primitiveTag)
- void clustersAcquisition (const ClustersOutputConstPtr &clusterObj)
- int main (int argc, char **argv)

Variables

- ros::NodeHandle * nh_ptr = NULL
- · boost::shared_ptr
 - < visualization::PCLVisualizer > vis
- · boost::thread vis thread
- boost::mutex vis mutex
- Publisher pub
- static const int DEFAULT_SPHERE_MIN_INLIERS = 40
- static const int DEFAULT CYLINDER MIN INLIERS = 40
- static const int DEFAULT_CONE_MIN_INLIERS = 40
- static const int DEFAULT PLANE MIN INLIERS = 40
- static const float DEFAULT_CONE_OVER_CYLINDER_PRIORITY = 0.9f
- static const bool DEFAULT_SHOW_PRIMITIVE = false
- static bool SHOW PRIMITIVE
- static const int TXT_UNKNOWN_SHAPE_TAG = 0
- static const int TXT_PLANE_SHAPE_TAG = 1
- static const int TXT_SPHERE_SHAPE_TAG = 2
- static const int TXT_CONE_SHAPE_TAG = 3
- static const int TXT_CYLINDER_SHAPE_TAG = 4
- · int sphereMinInliers
- · int cylinderMinInliers
- · int coneMinInliers
- · int planeMinInliers
- · int coneOverCylinderPriority
- · string centroidFileLog

6.7.1 Typedef Documentation

6.7.1.1 typedef vector < InliersCluster > InliersClusters

Definition at line 20 of file ransac_segmentation.cpp.

6.7.1.2 typedef boost::shared_ptr< InliersClusters> InliersClustersPtr

Definition at line 21 of file ransac_segmentation.cpp.

6.7.1.3 typedef boost::shared_ptr< PrimitiveSegmentation> PrimitiveSegmentationPtr

Definition at line 22 of file ransac_segmentation.cpp.

6.7.2 Function Documentation

6.7.2.1 bool callRansacConeSegmentation (PCLCloudPtr cloud, PCLNormalPtr norm, PrimitiveSegmentationPtr & out)

Definition at line 135 of file ransac_segmentation.cpp.

References coneMinInliers, DEFAULT_CONE_MIN_INLIERS, nh_ptr, srvm::PARAM_NAME_CONE_MIN_INLIERS, and srvm::SRV_NAME_RANSAC_CONE_FILTER.

Referenced by clustersAcquisition().

6.7.2.2 bool callRansacCylinderSegmentation (PCLCloudPtr cloud, PCLNormalPtr norm, PrimitiveSegmentationPtr & out)

Definition at line 96 of file ransac segmentation.cpp.

References cylinderMinInliers, DEFAULT_CYLINDER_MIN_INLIERS, nh_ptr, srvm::PARAM_NAME_CYLINDER_MIN_INLIERS, and srvm::SRV_NAME_RANSAC_CYLINDER_FILTER.

Referenced by clustersAcquisition().

6.7.2.3 bool callRansacPlaneSegmentation (PCLCloudPtr *cloud*, PCLNormalPtr *norm*, PrimitiveSegmentationPtr & *out*)

Definition at line 175 of file ransac_segmentation.cpp.

References DEFAULT_PLANE_MIN_INLIERS, nh_ptr, srvm::PARAM_NAME_PLANE_MIN_INLIERS, planeMin-Inliers, and srvm::SRV NAME RANSAC PLANE FILTER.

Referenced by clustersAcquisition().

6.7.2.4 bool callRansacSphereSegmentation (PCLCloudPtr cloud, PCLNormalPtr norm, PrimitiveSegmentationPtr & out)

Definition at line 58 of file ransac segmentation.cpp.

References DEFAULT_SPHERE_MIN_INLIERS, nh_ptr, srvm::PARAM_NAME_SPHERE_MIN_INLIERS, sphere-MinInliers, and srvm::SRV_NAME_RANSAC_SPHERE_FILTER.

Referenced by clustersAcquisition().

6.7.2.5 void clustersAcquisition (const ClustersOutputConstPtr & clusterObj)

Definition at line 223 of file ransac_segmentation.cpp.

References callRansacConeSegmentation(), callRansacCylinderSegmentation(), callRansacPlaneSegmentation(), callRansacSphereSegmentation(), coneMinInliers, cylinderMinInliers, DEFAULT_CONE_OVER_CYLINDER_PRIORITY, planeMinInliers, pub, returnPrimitiveNameFromTag(), SHOW_PRIMITIVE, sphereMinInliers, TXT_CONE_SHAPE_TAG, TXT_CYLINDER_SHAPE_TAG, TXT_PLANE_SHAPE_TAG, TXT_SPHERE_SHAPE_TAG, TXT_UNKNOWN_SHAPE_TAG, vis, and vis_mutex.

Referenced by main().

Here is the call graph for this function:

6.7.2.6 int main (int argc, char ** argv)

Definition at line 347 of file ransac_segmentation.cpp.

References centroidFileLog, clustersAcquisition(), DEFAULT_CONE_MIN_INLIERS, DEFAULT_CONE_OVER_C-YLINDER_PRIORITY, DEFAULT_CYLINDER_MIN_INLIERS, DEFAULT_PLANE_MIN_INLIERS, DEFAULT_SHOW_PRIMITIVE, DEFAULT_SPHERE_MIN_INLIERS, srvm::getBoolPtrParameter(), nh_ptr, pub, SHOW_PRIMITIVE, vis, vis_thread, and visSpin().

Here is the call graph for this function:

6.7.2.7 void printConeInfo (PrimitiveSegmentationPtr info, int idx)

Definition at line 161 of file ransac_segmentation.cpp.

6.7.2.8 void printCylinderInfo (PrimitiveSegmentationPtr info, int idx)

Definition at line 122 of file ransac_segmentation.cpp.

6.7.2.9 void printPlaneInfo (PrimitiveSegmentationPtr info, int idx)

Definition at line 201 of file ransac_segmentation.cpp.

6.7.2.10 void printSphereInfo (PrimitiveSegmentationPtr info, int idx)

Definition at line 86 of file ransac_segmentation.cpp.

6.7.2.11 string returnPrimitiveNameFromTag (int primitiveTag)

Definition at line 210 of file ransac_segmentation.cpp.

References TXT_CONE_SHAPE_TAG, TXT_CYLINDER_SHAPE_TAG, TXT_PLANE_SHAPE_TAG, TXT_SPHE-RE_SHAPE_TAG, and TXT_UNKNOWN_SHAPE_TAG.

Referenced by clustersAcquisition().

6.7.2.12 void visSpin ()

Definition at line 50 of file ransac_segmentation.cpp.

References vis, and vis_mutex.

Referenced by main().

6.7.3 Variable Documentation

6.7.3.1 string centroidFileLog

Definition at line 222 of file ransac_segmentation.cpp.

Referenced by depthAcquisition(), and main().

6.7.3.2 int coneMinInliers

Definition at line 48 of file ransac_segmentation.cpp.

Referenced by callRansacConeSegmentation(), and clustersAcquisition().

6.7.3.3 int coneOverCylinderPriority

Definition at line 48 of file ransac_segmentation.cpp.

6.7.3.4 int cylinderMinInliers

Definition at line 48 of file ransac_segmentation.cpp.

Referenced by callRansacCylinderSegmentation(), and clustersAcquisition().

6.7.3.5 const int DEFAULT_CONE_MIN_INLIERS = 40 [static]

Definition at line 34 of file ransac_segmentation.cpp.

Referenced by callRansacConeSegmentation(), and main().

6.7.3.6 const float DEFAULT_CONE_OVER_CYLINDER_PRIORITY = 0.9f [static]

Definition at line 37 of file ransac segmentation.cpp.

Referenced by clustersAcquisition(), and main().

6.7.3.7 const int DEFAULT_CYLINDER_MIN_INLIERS = 40 [static]

Definition at line 33 of file ransac_segmentation.cpp.

Referenced by callRansacCylinderSegmentation(), and main().

6.7.3.8 const int DEFAULT_PLANE_MIN_INLIERS = 40 [static]

Definition at line 35 of file ransac_segmentation.cpp.

Referenced by callRansacPlaneSegmentation(), and main().

6.7.3.9 const bool DEFAULT_SHOW_PRIMITIVE = false [static]

Definition at line 39 of file ransac_segmentation.cpp.

Referenced by main().

6.7.3.10 const int DEFAULT_SPHERE_MIN_INLIERS = 40 [static]

Definition at line 32 of file ransac_segmentation.cpp.

Referenced by callRansacSphereSegmentation(), and main().

6.7.3.11 ros::NodeHandle* nh_ptr = NULL

Definition at line 24 of file ransac segmentation.cpp.

 $Referenced \ by \ call Ransac Cone Segmentation (), \ call Ransac Cylinder Segmentation (), \ call Ransac Plane Segmentation (), \ call Ransac Sphere Segmentation (), \ and \ main ().$

6.7.3.12 int planeMinInliers

Definition at line 48 of file ransac_segmentation.cpp.

Referenced by callRansacPlaneSegmentation(), and clustersAcquisition().

6.7.3.13 Publisher pub

Definition at line 30 of file ransac_segmentation.cpp.

Referenced by clustersAcquisition(), and main().

6.7.3.14 bool SHOW_PRIMITIVE [static]

Definition at line 40 of file ransac_segmentation.cpp.

Referenced by clustersAcquisition(), and main().

6.7.3.15 int sphereMinInliers

Definition at line 48 of file ransac_segmentation.cpp.

Referenced by callRansacSphereSegmentation(), and clustersAcquisition().

6.7.3.16 const int TXT_CONE_SHAPE_TAG = 3 [static]

Definition at line 45 of file ransac_segmentation.cpp.

Referenced by clustersAcquisition(), and returnPrimitiveNameFromTag().

6.7.3.17 const int TXT_CYLINDER_SHAPE_TAG = 4 [static]

Definition at line 46 of file ransac_segmentation.cpp.

Referenced by clustersAcquisition(), and returnPrimitiveNameFromTag().

6.7.3.18 const int TXT_PLANE_SHAPE_TAG = 1 [static]

Definition at line 43 of file ransac_segmentation.cpp.

Referenced by clustersAcquisition(), and returnPrimitiveNameFromTag().

```
6.7.3.19 const int TXT_SPHERE_SHAPE_TAG = 2 [static]
```

Definition at line 44 of file ransac_segmentation.cpp.

Referenced by clustersAcquisition(), and returnPrimitiveNameFromTag().

```
6.7.3.20 const int TXT_UNKNOWN_SHAPE_TAG = 0 [static]
```

Definition at line 42 of file ransac_segmentation.cpp.

Referenced by clustersAcquisition(), and returnPrimitiveNameFromTag().

6.7.3.21 boost::shared_ptr< visualization::PCLVisualizer> vis

Definition at line 26 of file ransac_segmentation.cpp.

Referenced by clustersAcquisition(), main(), and visSpin().

6.7.3.22 boost::mutex vis_mutex

Definition at line 28 of file ransac segmentation.cpp.

Referenced by clustersAcquisition(), and visSpin().

6.7.3.23 boost::thread vis_thread

Definition at line 27 of file ransac_segmentation.cpp.

Referenced by main().

6.8 src/segmentation_services/arm_filter_srv.cpp File Reference

```
#include <ros/ros.h>
#include <tf/transform_listener.h>
#include <tf/transform_broadcaster.h>
#include <sensor_msgs/PointCloud2.h>
#include <pcl_conversions/pcl_conversions.h>
#include <pcl_ros/point_cloud.h>
#include <pcl_ros/filters/crop_box.h>
#include "../point_cloud_library/pc_manager.h"
#include "../point_cloud_library/srv_manager.h"
#include <pitt_msgs/ArmFilter.h>
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
Include dependency graph for arm_filter_srv.cpp:
```


Functions

- PCLCloudPtr inputCloud (new PCLCloud)
- PCLCloudPtr outputCloud1 (new PCLCloud)
- PCLCloudPtr outputCloud2 (new PCLCloud)
- PCLCloudPtr outputCloud3 (new PCLCloud)
- PCLCloudPtr outputCloud4 (new PCLCloud)
- void visSpin ()
- PCLCloudPtr armFiltering (PCLCloudPtr original, Vector4f minValues, Vector4f maxValues, Stamped-Transform frame)
- Vector4f generateBoxVector (vector< float > vec)
- bool filter (ArmFilterRequest &input, ArmFilterResponse &output)
- int main (int argc, char **argv)

Variables

- const float DEFAULT_PARAM_ARM_SRV_MIN_FOREARM_BOX [] = { -0.040f, -0.120f, -0.190f}
- const float DEFAULT_PARAM_ARM_SRV_MAX_FOREARM_BOX [] = { 0.340f, 0.120f, 0.105f}
- const float DEFAULT_PARAM_ARM_SRV_MIN_ELBOW_BOX [] = { -0.090f, -0.135f, -0.160f}
- const float DEFAULT PARAM ARM SRV MAX ELBOW BOX [] = { 0.440f, 0.135f, 0.110f}
- const Duration WAIT_FOR_TF_TIME_OUT = Duration(srvm::DEFAULT_TF_WAIT_SECONDS)
- StampedTransform leftForearmCameraTansf
- StampedTransform rightForearmCameraTansf
- StampedTransform leftElbowCameraTansf
- StampedTransform rightElbowCameraTansf
- bool tfError = false
- · bool showClouds
- · boost::shared ptr
 - < visualization::PCLVisualizer > vis
- · boost::thread vis thread
- boost::mutex vis_mutex
- string log_str_depth = "Loading..."

6.8.1 Function Documentation

6.8.1.1 PCLCloudPtr armFiltering (PCLCloudPtr *original*, Vector4f *minValues*, Vector4f *maxValues*, StampedTransform *frame*)

Definition at line 66 of file arm_filter_srv.cpp.

Referenced by filter().

6.8.1.2 bool filter (ArmFilterRequest & input, ArmFilterResponse & output)

Definition at line 112 of file arm_filter_srv.cpp.

References armFiltering(), DEFAULT_PARAM_ARM_SRV_MAX_ELBOW_BOX, DEFAULT_PARAM_ARM_SRV_MAX_FOREARM_BOX, DEFAULT_PARAM_ARM_SRV_MIN_ELBOW_BOX, DEFAULT_PARAM_ARM_SRV_MIN_FOREARM_BOX, generateBoxVector(), srvm::getArrayToPrint(), srvm::getService3DArrayParameter(), inputCloud(), leftElbowCameraTansf, leftForearmCameraTansf, log_str_depth, outputCloud1(), outputCloud2(), outputCloud3(), outputCloud4(), rightElbowCameraTansf, rightForearmCameraTansf, showClouds, tfError, vis, and vis_mutex.

Referenced by main().

Here is the call graph for this function:

6.8.1.3 Vector4f generateBoxVector (vector< float > vec)

Definition at line 105 of file arm_filter_srv.cpp.

Referenced by filter().

6.8.1.4 PCLCloudPtr inputCloud (new PCLCloud)

Referenced by filter().

6.8.1.5 int main (int argc, char ** argv)

Definition at line 183 of file arm_filter_srv.cpp.

References srvm::DEFAULT_PARAM_ARM_SRV_CAMERA_FRAME, srvm::DEFAULT_PARAM_ARM_SRV_L-EFT_ELBOW_FRAME, srvm::DEFAULT_PARAM_ARM_SRV_LEFT_FOREARM_FRAME, srvm::DEFAULT_PARAM_ARM_SRV_RIGHT_ELBOW_FRAME, srvm::DEFAULT_PARAM_ARM_SRV_RIGHT_FOREARM_FRAME,

srvm::DEFAULT_PARAM_ARM_SRV_SHOW_CLOUDS, filter(), srvm::getBoolPtrParameter(), srvm::getString-PtrParameter(), leftElbowCameraTansf, leftForearmCameraTansf, log_str_depth, rightElbowCameraTansf, rightForearmCameraTansf, showClouds, srvm::SRV_NAME_ARM_FILTER, tfError, vis, vis_thread, visSpin(), and WAIT_FOR_TF_TIME_OUT.

Here is the call graph for this function:

6.8.1.6 PCLCloudPtr outputCloud1 (new PCLCloud)

Referenced by filter().

6.8.1.7 PCLCloudPtr outputCloud2 (new PCLCloud)

Referenced by filter().

6.8.1.8 PCLCloudPtr outputCloud3 (new PCLCloud)

Referenced by filter().

6.8.1.9 PCLCloudPtr outputCloud4 (new PCLCloud)

Referenced by filter().

```
6.8.1.10 void visSpin ( )
Definition at line 57 of file arm_filter_srv.cpp.
References vis, and vis mutex.
Referenced by main().
6.8.2 Variable Documentation
6.8.2.1 const float DEFAULT_PARAM_ARM_SRV_MAX_ELBOW_BOX[] = { 0.440f, 0.135f, 0.110f}
Definition at line 35 of file arm_filter_srv.cpp.
Referenced by filter().
6.8.2.2 const float DEFAULT_PARAM_ARM_SRV_MAX_FOREARM_BOX[] = { 0.340f, 0.120f, 0.105f}
Definition at line 33 of file arm_filter_srv.cpp.
Referenced by filter().
6.8.2.3 const float DEFAULT_PARAM_ARM_SRV_MIN_ELBOW_BOX[] = { -0.090f, -0.135f, -0.160f}
Definition at line 34 of file arm_filter_srv.cpp.
Referenced by filter().
6.8.2.4 const float DEFAULT_PARAM_ARM_SRV_MIN_FOREARM_BOX[] = { -0.040f, -0.120f, -0.190f}
Definition at line 32 of file arm filter srv.cpp.
Referenced by filter().
6.8.2.5 StampedTransform leftElbowCameraTansf
Definition at line 40 of file arm_filter_srv.cpp.
Referenced by filter(), and main().
6.8.2.6 StampedTransform leftForearmCameraTansf
Definition at line 40 of file arm filter srv.cpp.
Referenced by filter(), and main().
6.8.2.7 string log_str_depth = "Loading..."
Definition at line 49 of file arm_filter_srv.cpp.
Referenced by filter(), and main().
6.8.2.8 StampedTransform rightElbowCameraTansf
Definition at line 40 of file arm_filter_srv.cpp.
```

Referenced by filter(), and main().

6.8.2.9 StampedTransform rightForearmCameraTansf

Definition at line 40 of file arm_filter_srv.cpp.

Referenced by filter(), and main().

6.8.2.10 bool showClouds

Definition at line 44 of file arm filter srv.cpp.

Referenced by filter(), and main().

6.8.2.11 bool tfError = false

Definition at line 43 of file arm_filter_srv.cpp.

Referenced by filter(), and main().

6.8.2.12 boost::shared_ptr< visualization::PCLVisualizer> vis

Definition at line 46 of file arm_filter_srv.cpp.

Referenced by filter(), main(), and visSpin().

6.8.2.13 boost::mutex vis mutex

Definition at line 48 of file arm filter srv.cpp.

Referenced by filter(), and visSpin().

6.8.2.14 boost::thread vis_thread

Definition at line 47 of file arm_filter_srv.cpp.

Referenced by main().

6.8.2.15 const Duration WAIT_FOR_TF_TIME_OUT = Duration(srvm::DEFAULT_TF_WAIT_SECONDS)

Definition at line 37 of file arm_filter_srv.cpp.

Referenced by main().

6.9 src/segmentation_services/cluster_segmentation_srv.cpp File Reference

```
#include "ros/ros.h"
#include <iostream>
#include "pitt_msgs/ClusterSegmentation.h"
#include "pitt_msgs/InliersCluster.h"
#include <pcl_ros/point_cloud.h>
#include <pcl/segmentation/extract_clusters.h>
#include <std_msgs/String.h>
#include <pcl_conversions/pcl_conversions.h>
#include "../point_cloud_library/pc_manager.h"
#include "../point_cloud_library/srv_manager.h"
```

Include dependency graph for cluster_segmentation_srv.cpp:

Functions

- bool clusterize (ClusterSegmentation::Request &req, ClusterSegmentation::Response &res)
- int main (int argc, char **argv)

Variables

- ros::NodeHandle * nh_ptr = NULL
- const double CLUSTER_TOLERANCE_DEFAULT = 0.03
- const double CLUSTER MIN RATE DEFAULT = 0.01
- const double CLUSTER_MAX_RATE_DEFAULT = 0.99
- const int CLUSTER_MIN_INPUT_SIZE_DEFAULT = 30

6.9.1 Function Documentation

6.9.1.1 bool clusterize (ClusterSegmentation::Request & req, ClusterSegmentation::Response & res)

Definition at line 38 of file cluster_segmentation_srv.cpp.

References pcm::PCManager::cloudForRosMsg(), CLUSTER_MAX_RATE_DEFAULT, CLUSTER_MIN_INPUT_-SIZE_DEFAULT, CLUSTER_MIN_RATE_DEFAULT, CLUSTER_TOLERANCE_DEFAULT, nh_ptr, srvm::PARAM_NAME_CLUSTER_MIN_RATE, srvm::PARAM_NAME_CLUSTER_MIN_RATE, srvm::PARAM_NAME_CLUSTER_TOLERANCE, and pcm::tree().

Referenced by main().

Here is the call graph for this function:

6.9.1.2 int main (int argc, char ** argv)

Definition at line 114 of file cluster_segmentation_srv.cpp.

References clusterize(), nh_ptr, and srvm::SRV_NAME_CUSTER_FILTER.

Here is the call graph for this function:

6.9.2 Variable Documentation

6.9.2.1 const double CLUSTER_MAX_RATE_DEFAULT = 0.99

Definition at line 34 of file cluster_segmentation_srv.cpp. Referenced by clusterize().

6.9.2.2 const int CLUSTER_MIN_INPUT_SIZE_DEFAULT = 30

Definition at line 35 of file cluster_segmentation_srv.cpp. Referenced by clusterize().

6.9.2.3 const double CLUSTER_MIN_RATE_DEFAULT = 0.01

Definition at line 33 of file cluster_segmentation_srv.cpp. Referenced by clusterize().

6.9.2.4 const double CLUSTER_TOLERANCE_DEFAULT = 0.03

Definition at line 32 of file cluster_segmentation_srv.cpp. Referenced by clusterize().

6.9.2.5 ros::NodeHandle* nh_ptr = NULL

Definition at line 29 of file cluster_segmentation_srv.cpp. Referenced by clusterize(), and main().

6.10 src/segmentation_services/cone_segmentation_srv.cpp File Reference

#include "ros/ros.h"

```
#include <pcl_ros/point_cloud.h>
#include <pcl/segmentation/sac_segmentation.h>
#include "pitt_msgs/PrimitiveSegmentation.h"
#include "../point_cloud_library/pc_manager.h"
#include "../point_cloud_library/srv_manager.h"
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/format.hpp>
```

Include dependency graph for cone_segmentation_srv.cpp:

Classes

struct vector3d

Functions

- void visSpin ()
- vector3d getNormalizeAxesDirectionVector (ModelCoefficients::Ptr coefficients)
- vector3d getPointOnAxes (ModelCoefficients::Ptr coefficients, vector3d direction, float t)
- vector3d getVectorBetweenPoints (vector3d p1, vector3d p2)
- bool ransacConeDetaction (PrimitiveSegmentation::Request &req, PrimitiveSegmentation::Response &res)
- int main (int argc, char **argv)

Variables

- ros::NodeHandle * nh_ptr = NULL
- static const double CONE_NORMAL_DISTANCE_WEIGTH = 0.0006
- static const double CONE_DISTANCE_TH = 0.0055
- static const double CONE MIN RADIUS LIMIT = 0.001
- static const double CONE_MAX_RADIUS_LIMIT = 0.500
- static const int CONE_MAX_ITERATION_LIMIT = 1000
- static const double CONE EPS ANGLE TH = 0.4
- static const double CONE_MIN_OPENING_ANGLE_DEGREE = 10.0
- static const double CONE MAX OPENING ANGLE DEGREE = 170.0
- const bool VISUALIZE_RESULT = false
- · boost::shared ptr
 - < visualization::PCLVisualizer > vis
- boost::thread vis_thread
- boost::mutex vis mutex

6.10.1 Function Documentation

6.10.1.1 vector3d getNormalizeAxesDirectionVector (ModelCoefficients::Ptr coefficients)

Definition at line 54 of file cone_segmentation_srv.cpp.

References vector3d::x, vector3d::y, and vector3d::z.

Referenced by ransacConeDetaction().

6.10.1.2 vector3d getPointOnAxes (ModelCoefficients::Ptr coefficients, vector3d direction, float t)

Definition at line 65 of file cone_segmentation_srv.cpp.

References vector3d::x, vector3d::y, and vector3d::z.

Referenced by ransacConeDetaction().

6.10.1.3 vector3d getVectorBetweenPoints (vector3d p1, vector3d p2)

Definition at line 74 of file cone_segmentation_srv.cpp.

References vector3d::x, vector3d::y, and vector3d::z.

Referenced by ransacConeDetaction().

6.10.1.4 int main (int argc, char ** argv)

Definition at line 220 of file cone_segmentation_srv.cpp.

References pcm::PCManager::createVisor(), nh_ptr, ransacConeDetaction(), srvm::SRV_NAME_RANSAC_CON-E FILTER, vis, vis thread, visSpin(), and VISUALIZE RESULT.

Here is the call graph for this function:

6.10.1.5 bool ransacConeDetaction (PrimitiveSegmentation::Request & req, PrimitiveSegmentation::Response & res)

Definition at line 83 of file cone_segmentation_srv.cpp.

References pcm::PCManager::cloudForRosMsg(), pcm::PCManager::coefficientToVectorMsg(), CONE_DISTANC-E_TH, CONE_EPS_ANGLE_TH, CONE_MAX_ITERATION_LIMIT, CONE_MAX_OPENING_ANGLE_DEGREE, CONE_MAX_RADIUS_LIMIT, CONE_MIN_OPENING_ANGLE_DEGREE, CONE_MIN_RADIUS_LIMIT, CONE_NORMAL_DISTANCE_WEIGTH, getNormalizeAxesDirectionVector(), getPointOnAxes(), getVectorBetween-Points(), pcm::PCManager::inlierToVectorMsg(), nh_ptr, pcm::PCManager::normForRosMsg(), srvm::PARAM_N-AME_CONE_DISTANCE_TH, srvm::PARAM_NAME_CONE_EPS_ANGLE_TH, srvm::PARAM_NAME_CONE_MAX_ITERATION_LIMIT, srvm::PARAM_NAME_CONE_MAX_OPENING_ANGLE_DEGREE, srvm::PARAM_NAME_CONE_MAX_RADIUS_LIMIT, srvm::PARAM_NAME_CONE_MIN_OPENING_ANGLE_DEGREE, srvm::PARAM_NAME_CONE_MIN_OPENING_ANGLE_DEGREE, srvm::PARAM_NAME_CONE_MIN_RADIUS_LIMIT, srvm::PARAM_NAME_CONE_NORMAL_DISTANCE_WEIGHT, seg, pcm::PCManager::updateVisor(), vis, vis_mutex, VISUALIZE_RESULT, vector3d::x, vector3d::y, and vector3d::z.

Referenced by main().

Here is the call graph for this function:

6.10.1.6 void visSpin ()

Definition at line 46 of file cone_segmentation_srv.cpp.

References vis, and vis_mutex.

Referenced by main().

```
6.10.2 Variable Documentation
6.10.2.1 const double CONE_DISTANCE_TH = 0.0055 [static]
Definition at line 25 of file cone_segmentation_srv.cpp.
Referenced by ransacConeDetaction().
6.10.2.2 const double CONE_EPS_ANGLE_TH = 0.4 [static]
Definition at line 29 of file cone_segmentation_srv.cpp.
Referenced by ransacConeDetaction().
6.10.2.3 const int CONE_MAX_ITERATION_LIMIT = 1000 [static]
Definition at line 28 of file cone_segmentation_srv.cpp.
Referenced by ransacConeDetaction().
6.10.2.4 const double CONE_MAX_OPENING_ANGLE_DEGREE = 170.0 [static]
Definition at line 31 of file cone_segmentation_srv.cpp.
Referenced by ransacConeDetaction().
6.10.2.5 const double CONE_MAX_RADIUS_LIMIT = 0.500 [static]
Definition at line 27 of file cone_segmentation_srv.cpp.
Referenced by ransacConeDetaction().
6.10.2.6 const double CONE_MIN_OPENING_ANGLE_DEGREE = 10.0 [static]
Definition at line 30 of file cone_segmentation_srv.cpp.
Referenced by ransacConeDetaction().
6.10.2.7 const double CONE_MIN_RADIUS_LIMIT = 0.001 [static]
Definition at line 26 of file cone_segmentation_srv.cpp.
Referenced by ransacConeDetaction().
6.10.2.8 const double CONE_NORMAL_DISTANCE_WEIGTH = 0.0006 [static]
Definition at line 24 of file cone_segmentation_srv.cpp.
Referenced by ransacConeDetaction().
6.10.2.9 ros::NodeHandle* nh_ptr = NULL
Definition at line 21 of file cone_segmentation_srv.cpp.
```

Referenced by main(), and ransacConeDetaction().

6.10.2.10 boost::shared_ptr< visualization::PCLVisualizer> vis

Definition at line 42 of file cone_segmentation_srv.cpp.

Referenced by main(), ransacConeDetaction(), and visSpin().

6.10.2.11 boost::mutex vis_mutex

Definition at line 44 of file cone_segmentation_srv.cpp.

Referenced by ransacConeDetaction(), and visSpin().

6.10.2.12 boost::thread vis_thread

Definition at line 43 of file cone_segmentation_srv.cpp.

Referenced by main().

6.10.2.13 const bool VISUALIZE_RESULT = false

Definition at line 41 of file cone_segmentation_srv.cpp.

Referenced by main(), and ransacConeDetaction().

6.11 src/segmentation_services/cylinder_segmentation_srv.cpp File Reference

```
#include "ros/ros.h"
#include <pcl_ros/point_cloud.h>
#include <pcl/segmentation/sac_segmentation.h>
#include "pitt_msgs/PrimitiveSegmentation.h"
#include "../point_cloud_library/pc_manager.h"
#include "../point_cloud_library/srv_manager.h"
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/format.hpp>
```

Include dependency graph for cylinder_segmentation_srv.cpp:

Classes

struct vector3d

Functions

void visSpin ()

- vector3d getNormalizeAxesDirectionVector (ModelCoefficients::Ptr coefficients)
- vector3d getPointOnAxes (ModelCoefficients::Ptr coefficients, vector3d direction, float t)
- vector3d getVectorBetweenPoints (vector3d p1, vector3d p2)
- bool ransacCylinderDetaction (PrimitiveSegmentation::Request &req, PrimitiveSegmentation::Response &res)
- int main (int argc, char **argv)

Variables

- ros::NodeHandle * nh_ptr = NULL
- static const double CYLINDER NORMAL DISTANCE WEIGTH = 0.001
- static const double CYLINDER_DISTANCE_TH = 0.008
- static const double CYLINDER MIN RADIUS LIMIT = 0.005
- static const double CYLINDER_MAX_RADIUS_LIMIT = 0.500
- static const int CYLINDER_MAX_ITERATION_LIMIT = 1000
- static const double CYLINDER EPS ANGLE TH = 0.0001
- static const double CYLINDER_MIN_OPENING_ANGLE_DEGREE = 50.0
- static const double CYLINDER MAX OPENING ANGLE DEGREE = 180.0
- const bool VISUALIZE_RESULT = false
- · boost::shared ptr
 - < visualization::PCLVisualizer > vis
- · boost::thread vis thread
- boost::mutex vis_mutex

6.11.1 Function Documentation

6.11.1.1 vector3d getNormalizeAxesDirectionVector (ModelCoefficients::Ptr coefficients)

Definition at line 53 of file cylinder segmentation srv.cpp.

References vector3d::x, vector3d::y, and vector3d::z.

Referenced by ransacCylinderDetaction().

6.11.1.2 vector3d getPointOnAxes (ModelCoefficients::Ptr coefficients, vector3d direction, float t)

Definition at line 64 of file cylinder_segmentation_srv.cpp.

References vector3d::x, vector3d::y, and vector3d::z.

Referenced by ransacCylinderDetaction().

6.11.1.3 vector3d getVectorBetweenPoints (vector3d p1, vector3d p2)

Definition at line 73 of file cylinder_segmentation_srv.cpp.

References vector3d::x, vector3d::y, and vector3d::z.

Referenced by ransacCylinderDetaction().

6.11.1.4 int main (int *argc*, char ** *argv*)

Definition at line 220 of file cylinder_segmentation_srv.cpp.

References pcm::PCManager::createVisor(), nh_ptr, ransacCylinderDetaction(), srvm::SRV_NAME_RANSAC_CY-LINDER_FILTER, vis, vis_thread, visSpin(), and VISUALIZE_RESULT.

Here is the call graph for this function:

6.11.1.5 bool ransacCylinderDetaction (PrimitiveSegmentation::Reguest & reg, PrimitiveSegmentation::Response & res)

Definition at line 82 of file cylinder_segmentation_srv.cpp.

References pcm::PCManager::cloudForRosMsg(), pcm::PCManager::coefficientToVectorMsg(), CYLINDER_DIST-ANCE_TH, CYLINDER_EPS_ANGLE_TH, CYLINDER_MAX_ITERATION_LIMIT, CYLINDER_MAX_OPENING_-ANGLE_DEGREE, CYLINDER_MAX_RADIUS_LIMIT, CYLINDER_MIN_OPENING_ANGLE_DEGREE, CYLIND-ER_MIN_RADIUS_LIMIT, CYLINDER_NORMAL_DISTANCE_WEIGTH, getNormalizeAxesDirectionVector(), get-PointOnAxes(), getVectorBetweenPoints(), pcm::PCManager::inlierToVectorMsg(), nh_ptr, pcm::PCManager::norm-ForRosMsg(), srvm::PARAM_NAME_CYLINDER_DISTANCE_TH, srvm::PARAM_NAME_CYLINDER_EPS_ANGLE_TH, srvm::PARAM_NAME_CYLINDER_MAX_ITERATION_LIMIT, srvm::PARAM_NAME_CYLINDER_MAX_OPENING_ANGLE_DEGREE, srvm::PARAM_NAME_CYLINDER_MAX_RADIUS_LIMIT, srvm::PARAM_NAME_CYLINDER_MIN_OPENING_ANGLE_DEGREE, srvm::PARAM_NAME_CYLINDER_MIN_RADIUS_LIMIT, srvm::PARAM_NAME_CYLINDER_NORMAL_DISTANCE_WEIGHT, seg, pcm::PCManager::updateVisor(), vis, vis_mutex, VISUALIZE_RESULT, vector3d::x, vector3d::y, and vector3d::z.

Referenced by main().

Here is the call graph for this function:

6.11.1.6 void visSpin ()

Definition at line 45 of file cylinder_segmentation_srv.cpp.

References vis, and vis_mutex.

Referenced by main().

6.11.2 Variable Documentation

6.11.2.1 const double CYLINDER_DISTANCE_TH = 0.008 [static]

Definition at line 24 of file cylinder_segmentation_srv.cpp.

Referenced by ransacCylinderDetaction().

6.11.2.2 const double CYLINDER_EPS_ANGLE_TH = 0.0001 [static]

Definition at line 28 of file cylinder_segmentation_srv.cpp.

Referenced by ransacCylinderDetaction().

```
6.11.2.3 const int CYLINDER_MAX_ITERATION_LIMIT = 1000 [static]
Definition at line 27 of file cylinder_segmentation_srv.cpp.
Referenced by ransacCylinderDetaction().
6.11.2.4 const double CYLINDER_MAX_OPENING_ANGLE_DEGREE = 180.0 [static]
Definition at line 30 of file cylinder_segmentation_srv.cpp.
Referenced by ransacCylinderDetaction().
6.11.2.5 const double CYLINDER_MAX_RADIUS_LIMIT = 0.500 [static]
Definition at line 26 of file cylinder_segmentation_srv.cpp.
Referenced by ransacCylinderDetaction().
6.11.2.6 const double CYLINDER_MIN_OPENING_ANGLE_DEGREE = 50.0 [static]
Definition at line 29 of file cylinder_segmentation_srv.cpp.
Referenced by ransacCylinderDetaction().
6.11.2.7 const double CYLINDER_MIN_RADIUS_LIMIT = 0.005 [static]
Definition at line 25 of file cylinder segmentation srv.cpp.
Referenced by ransacCylinderDetaction().
6.11.2.8 const double CYLINDER_NORMAL_DISTANCE_WEIGTH = 0.001 [static]
Definition at line 23 of file cylinder_segmentation_srv.cpp.
Referenced by ransacCylinderDetaction().
6.11.2.9 ros::NodeHandle* nh_ptr = NULL
Definition at line 20 of file cylinder_segmentation_srv.cpp.
Referenced by main(), and ransacCylinderDetaction().
6.11.2.10 boost::shared_ptr< visualization::PCLVisualizer> vis
Definition at line 41 of file cylinder_segmentation_srv.cpp.
Referenced by main(), ransacCylinderDetaction(), and visSpin().
6.11.2.11 boost::mutex vis_mutex
```

Definition at line 43 of file cylinder_segmentation_srv.cpp. Referenced by ransacCylinderDetaction(), and visSpin().

6.11.2.12 boost::thread vis_thread

Definition at line 42 of file cylinder_segmentation_srv.cpp.

Referenced by main().

6.11.2.13 const bool VISUALIZE_RESULT = false

Definition at line 40 of file cylinder segmentation srv.cpp.

Referenced by main(), and ransacCylinderDetaction().

6.12 src/segmentation_services/deep_filter_srv.cpp File Reference

```
#include "ros/ros.h"
#include <iostream>
#include "pitt_msgs/DeepFilter.h"
#include "../point_cloud_library/pc_manager.h"
#include "../point_cloud_library/srv_manager.h"
Include dependency graph for deep_filter_srv.cpp:
```


Functions

- bool deepFiltering (DeepFilter::Request &req, DeepFilter::Response &res)
- int main (int argc, char **argv)

Variables

• const float DEFAULT_PARAM_DEEP_SRV_Z_THRESHOLD = 3.000f

6.12.1 Function Documentation

6.12.1.1 bool deepFiltering (DeepFilter::Request & reg, DeepFilter::Response & res)

Definition at line 27 of file deep_filter_srv.cpp.

References DEFAULT_PARAM_DEEP_SRV_Z_THRESHOLD, and srvm::getServiceFloatParameter(). Referenced by main().

Here is the call graph for this function:

6.12.1.2 int main (int argc, char ** argv)

Definition at line 59 of file deep_filter_srv.cpp.

References deepFiltering(), and srvm::SRV_NAME_DEEP_FILTER.

Here is the call graph for this function:

6.12.2 Variable Documentation

6.12.2.1 const float DEFAULT_PARAM_DEEP_SRV_Z_THRESHOLD = 3.000f

Definition at line 20 of file deep_filter_srv.cpp.

Referenced by deepFiltering().

6.13 src/segmentation_services/plane_segmentation_srv.cpp File Reference

```
#include "ros/ros.h"
#include <pcl_ros/point_cloud.h>
#include <pcl/segmentation/sac_segmentation.h>
#include "pitt_msgs/PrimitiveSegmentation.h"
#include "../point_cloud_library/pc_manager.h"
#include "../point_cloud_library/srv_manager.h"
```

Include dependency graph for plane_segmentation_srv.cpp:

Functions

- bool ransacPlaneDetaction (PrimitiveSegmentation::Request &req, PrimitiveSegmentation::Response &res)
- int main (int argc, char **argv)

Variables

- ros::NodeHandle * nh ptr = NULL
- static const double PLANE NORMAL DISTANCE WEIGTH = 0.001
- static const double PLANE_DISTANCE_TH = 0.007
- static const int PLANE_MAX_ITERATION_LIMIT = 1000
- static const double PLANE_EPS_ANGLE_TH = 0.0
- static const double PLANE_MIN_OPENING_ANGLE_DEGREE = 0.0
- static const double PLANE MAX OPENING ANGLE DEGREE = 10.0

6.13.1 Function Documentation

6.13.1.1 int main (int argc, char ** argv)

Definition at line 78 of file plane_segmentation_srv.cpp.

References nh_ptr, ransacPlaneDetaction(), and srvm::SRV_NAME_RANSAC_PLANE_FILTER.

Here is the call graph for this function:

6.13.1.2 bool ransacPlaneDetaction (PrimitiveSegmentation::Request & req, PrimitiveSegmentation::Response & res)

Definition at line 27 of file plane segmentation srv.cpp.

References pcm::PCManager::cloudForRosMsg(), pcm::PCManager::coefficientToVectorMsg(), pcm::PCManager::inlierToVectorMsg(), nh_ptr, pcm::PCManager::normForRosMsg(), srvm::PARAM_NAME_PLANE_DISTANCE_TH, srvm::PARAM_NAME_PLANE_EPS_ANGLE_TH, srvm::PARAM_NAME_PLANE_MAX_ITERATION_LIMIT, srvm::PARAM_NAME_PLANE_MAX_OPENING_ANGLE_DEGREE, srvm::PARAM_NAME_PLANE_MIN_OPENING_ANGLE_DEGREE, srvm::PARAM_NAME_PLANE_MIN_OPENING_ANGLE_DEGREE, srvm::PARAM_NAME_PLANE_DISTANCE_TH, PLANE_EPS_ANGLE_TH, PLANE_MAX_ITERATION_LIMIT, PLANE_MAX_OPENING_ANGLE_DEGREE, PLANE_MIN_OPENING_ANGLE_DEGREE, PLANE_NORMAL_DISTANCE_WEIGTH, and seg.

Referenced by main().

Here is the call graph for this function:

6.13.2 Variable Documentation

6.13.2.1 ros::NodeHandle* nh_ptr = NULL

Definition at line 16 of file plane_segmentation_srv.cpp.

Referenced by main(), and ransacPlaneDetaction().

6.13.2.2 const double PLANE_DISTANCE_TH = 0.007 [static]

Definition at line 20 of file plane segmentation srv.cpp.

Referenced by ransacPlaneDetaction().

6.13.2.3 const double PLANE_EPS_ANGLE_TH = 0.0 [static]

Definition at line 22 of file plane_segmentation_srv.cpp.

Referenced by ransacPlaneDetaction().

```
6.13.2.4 const int PLANE_MAX_ITERATION_LIMIT = 1000 [static]
```

Definition at line 21 of file plane_segmentation_srv.cpp.

Referenced by ransacPlaneDetaction().

```
6.13.2.5 const double PLANE_MAX_OPENING_ANGLE_DEGREE = 10.0 [static]
```

Definition at line 24 of file plane_segmentation_srv.cpp.

Referenced by ransacPlaneDetaction().

```
6.13.2.6 const double PLANE_MIN_OPENING_ANGLE_DEGREE = 0.0 [static]
```

Definition at line 23 of file plane_segmentation_srv.cpp.

Referenced by ransacPlaneDetaction().

```
6.13.2.7 const double PLANE_NORMAL_DISTANCE_WEIGTH = 0.001 [static]
```

Definition at line 19 of file plane_segmentation_srv.cpp.

Referenced by ransacPlaneDetaction().

6.14 src/segmentation_services/sphere_segmentation_srv.cpp File Reference

```
#include "ros/ros.h"
#include <pcl_ros/point_cloud.h>
#include <pcl/segmentation/sac_segmentation.h>
#include "pitt_msgs/PrimitiveSegmentation.h"
#include "../point_cloud_library/pc_manager.h"
#include "../point_cloud_library/srv_manager.h"
Include dependency graph for sphere segmentation srv.cpp:
```


Functions

- bool ransacSphereDetection (PrimitiveSegmentation::Request &req, PrimitiveSegmentation::Response &res)
- int main (int argc, char **argv)

Variables

- ros::NodeHandle * nh_ptr = NULL
- static const double SPHERE NORMAL DISTANCE WEIGTH = 0.001
- static const double SPHERE DISTANCE TH = 0.007
- static const double SPHERE_MIN_RADIUS_LIMIT = 0.005
- static const double SPHERE MAX RADIUS LIMIT = 0.500
- static const int SPHERE_MAX_ITERATION_LIMIT = 1000
- static const double SPHERE EPS ANGLE TH = 0.0
- static const double SPHERE MIN OPENING ANGLE DEGREE = 100.0
- static const double SPHERE MAX OPENING ANGLE DEGREE = 180.0

6.14.1 Function Documentation

6.14.1.1 int main (int argc, char ** argv)

Definition at line 100 of file sphere_segmentation_srv.cpp.

References nh ptr, ransacSphereDetection(), and srvm::SRV NAME RANSAC SPHERE FILTER.

Here is the call graph for this function:

6.14.1.2 bool ransacSphereDetection (PrimitiveSegmentation::Request & req, PrimitiveSegmentation::Response & res)

Definition at line 29 of file sphere_segmentation_srv.cpp.

References pcm::PCManager::cloudForRosMsg(), pcm::PCManager::coefficientToVectorMsg(), pcm::PCManager::inlierToVectorMsg(), nh_ptr, pcm::PCManager::normForRosMsg(), srvm::PARAM_NAME_SPHERE_DISTANCE_TH, srvm::PARAM_NAME_SPHERE_EPS_ANGLE_TH, srvm::PARAM_NAME_SPHERE_MAX_ITERATION_LIMIT, srvm::PARAM_NAME_SPHERE_MAX_OPENING_ANGLE_DEGREE, srvm::PARAM_NAME_SPHERE_MAX_X_RADIUS_LIMIT, srvm::PARAM_NAME_SPHERE_MIN_OPENING_ANGLE_DEGREE, srvm::PARAM_NAME_SPHERE_MIN_RADIUS_LIMIT, srvm::PARAM_NAME_SPHERE_NORMAL_DISTANCE_WEIGHT, seg, SPHERE_DISTANCE_TH, SPHERE_EPS_ANGLE_TH, SPHERE_MAX_ITERATION_LIMIT, SPHERE_MAX_OPENING_ANGLE_DEGREE, SPHERE_MIN_OPENING_ANGLE_DEGREE, SPHERE_MIN_RADIUS_LIMIT, and SPHERE_NORMAL_DISTANCE_WEIGTH.

Referenced by main().

Here is the call graph for this function:

6.14.2 Variable Documentation

6.14.2.1 ros::NodeHandle* nh_ptr = NULL

Definition at line 16 of file sphere_segmentation_srv.cpp.

Referenced by main(), and ransacSphereDetection().

6.14.2.2 const double SPHERE_DISTANCE_TH = 0.007 [static]

Definition at line 20 of file sphere_segmentation_srv.cpp.

Referenced by ransacSphereDetection().

6.14.2.3 const double SPHERE_EPS_ANGLE_TH = 0.0 [static]

Definition at line 24 of file sphere_segmentation_srv.cpp.

Referenced by ransacSphereDetection().

6.14.2.4 const int SPHERE_MAX_ITERATION_LIMIT = 1000 [static]

Definition at line 23 of file sphere_segmentation_srv.cpp.

Referenced by ransacSphereDetection().

6.14.2.5 const double SPHERE_MAX_OPENING_ANGLE_DEGREE = 180.0 [static]

Definition at line 26 of file sphere_segmentation_srv.cpp.

Referenced by ransacSphereDetection().

6.14.2.6 const double SPHERE_MAX_RADIUS_LIMIT = 0.500 [static]

Definition at line 22 of file sphere_segmentation_srv.cpp.

Referenced by ransacSphereDetection().

```
6.14.2.7 const double SPHERE_MIN_OPENING_ANGLE_DEGREE = 100.0 [static]
```

Definition at line 25 of file sphere_segmentation_srv.cpp.

Referenced by ransacSphereDetection().

```
6.14.2.8 const double SPHERE_MIN_RADIUS_LIMIT = 0.005 [static]
```

Definition at line 21 of file sphere_segmentation_srv.cpp.

Referenced by ransacSphereDetection().

```
6.14.2.9 const double SPHERE_NORMAL_DISTANCE_WEIGTH = 0.001 [static]
```

Definition at line 19 of file sphere_segmentation_srv.cpp.

Referenced by ransacSphereDetection().

6.15 src/segmentation_services/supports_segmentation_srv.cpp File Reference

```
#include "ros/ros.h"
#include <iostream>
#include 'math.h"
#include <pcl_ros/point_cloud.h>
#include <std_msgs/String.h>
#include <pcl/segmentation/sac_segmentation.h>
#include 'pcl/filters/extract_indices.h>
#include "pitt_msgs/SupportSegmentation.h"
#include "pitt_msgs/Support.h"
#include "../point_cloud_library/pc_manager.h"
#include "../point_cloud_library/srv_manager.h"
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
```

Include dependency graph for supports_segmentation_srv.cpp:

Functions

- void initializeInputParameters (SupportSegmentation::Request &req)
- void ransacPlaneSegmentator (PCLCloudPtr inputCloud, PCLNormalPtr normals, PointIndices::Ptr &inlier-Output, ModelCoefficients::Ptr &coefficientOutput)
- ExtractIndices< PointXYZ > extract (true)
- · void removePlaneInliner (PCLCloudPtr inputCloud, PointIndices::Ptr &removeIndex, PCLCloudPtr output)

- bool valueBelongsToArray (int value, PointIndices::Ptr inliers)
- PrimitiveldxPtr createNewIdxMap (PrimitiveldxPtr previousInliersMap, PointIndices::Ptr inliers, int level)
- bool isHorizontalPlane (PCLNormalPtr normal, ModelCoefficients::Ptr coefficients, vector< float > referimentAxis)
- PCLCloudPtr getPointOnPlane (PCLCloudPtr plane, PrimitiveIdxPtr inlierIdx, int mapLevel)
- bool findSupports (SupportSegmentation::Request &req, SupportSegmentation::Response &res)
- int main (int argc, char **argv)

Variables

- const float DEFAULT_PARAM_SUPPORT_SRV_MIN_ITERATIVE_CLOUD_PERCENTAGE = 0.030f
- const float DEFAULT_PARAM_SUPPORT_SRV_MIN_ITERATIVE_SUPPORT_PERCENTAGE = 0.030f
- const float DEFAULT_PARAM_SUPPORT_SRV_VARIANCE_THRESHOLD_FOR_HORIZONTAL = 0.09f
- const float DEFAULT_PARAM_SUPPORT_SRV_RANSAC_DISTANCE_POINT_IN_SHAPE_THRESHOLD
 = 0.02f
- const float DEFAULT_PARAM_SUPPORT_SRV_RANSAC_MODEL_NORMAL_DISTANCE_WEIGHT = 0.-9f
- const int DEFAULT_PARAM_SUPPORT_SRV_RANSAC_MAX_ITERATION_THRESHOLD = 10
- const float DEFAULT_PARAM_SUPPORT_SRV_HORIZONTAL_AXIS [3] = { 0.0f, 0.0f, -1.0f}
- const float DEFAULT_PARAM_SUPPORT_SRV_SUPPORT_EDGE_REMOVE_OFFSET [] = { 0.02, 0.02, 0.005}
- · float minIterativeCloudPercentage
- · float minPlanePercentageSize
- float minVarianceThForHorizontal
- float maxVarianceThForHorizontal
- float ransacThDistancePointShape
- · float ransacNormalDistanceWeigth
- vector< float > horizontalAxis
- vector< float > supportEdgeRemoveOffset
- int ransacMaxIteration
- · PCLVisualizer vis
- · PCLCloudPtr originalCloud
- · PCLNormalPtr originalNorms
- · boost::thread vis thread
- boost::mutex vis_mutex
- SACSegmentationFromNormals
 PointXYZ, Normal > seg
- const double inf = std::numeric_limits<double>::infinity()
- const double neg inf = -std::numeric limits<double>::infinity()

6.15.1 Function Documentation

6.15.1.1 PrimitiveldxPtr createNewldxMap (PrimitiveldxPtr previousInliersMap, PointIndices::Ptr inliers, int level)

Definition at line 139 of file supports_segmentation_srv.cpp.

References valueBelongsToArray().

Referenced by findSupports().

Here is the call graph for this function:

6.15.1.2 ExtractIndices< PointXYZ> extract (true)

Referenced by removePlaneInliner().

6.15.1.3 bool findSupports (SupportSegmentation::Request & req, SupportSegmentation::Response & res)

Definition at line 241 of file supports_segmentation_srv.cpp.

References createNewIdxMap(), getPointOnPlane(), horizontalAxis, initializeInputParameters(), isHorizontal-Plane(), maxVarianceThForHorizontal, minIterativeCloudPercentage, minPlanePercentageSize, minVarianceThForHorizontal, originalCloud, originalNorms, ransacMaxIteration, ransacNormalDistanceWeigth, ransacPlane-Segmentator(), ransacThDistancePointShape, removePlaneInliner(), and supportEdgeRemoveOffset.

Referenced by main().

Here is the call graph for this function:

6.15.1.4 PCLCloudPtr getPointOnPlane (PCLCloudPtr plane, PrimitiveIdxPtr inlierIdx, int mapLevel)

Definition at line 187 of file supports_segmentation_srv.cpp.

References inf, neg_inf, originalCloud, supportEdgeRemoveOffset, and valueBelongsToArray().

Referenced by findSupports().

Here is the call graph for this function:

6.15.1.5 void initializeInputParameters (SupportSegmentation::Request & req)

Definition at line 70 of file supports segmentation srv.cpp.

References DEFAULT_PARAM_SUPPORT_SRV_HORIZONTAL_AXIS, DEFAULT_PARAM_SUPPORT_SRV_MIN_ITERATIVE_CLOUD_PERCENTAGE, DEFAULT_PARAM_SUPPORT_SRV_MIN_ITERATIVE_SUPPORT_PERCENTAGE, DEFAULT_PARAM_SUPPORT_SRV_RANSAC_DISTANCE_POINT_IN_SHAPE_THRESHOLD, DEFAULT_PARAM_SUPPORT_SRV_RANSAC_MAX_ITERATION_THRESHOLD, DEFAULT_PARAM_SUPPORT_SRV_SUPPORT_SRV_RANSAC_MODEL_NORMAL_DISTANCE_WEIGHT, DEFAULT_PARAM_SUPPORT_SRV_SUPPORT_SRV_VARIANCE_THRESHOLD_FOR_HORIZONTAL, srvm::getService3DArrayParameter(), srvm::getServiceFloatParameter(), srvm::getServiceInt-Parameter(), horizontalAxis, maxVarianceThForHorizontal, minIterativeCloudPercentage, minPlanePercentage-Size, minVarianceThForHorizontal, ransacMaxIteration, ransacNormalDistanceWeigth, ransacThDistancePoint-Shape, and supportEdgeRemoveOffset.

Referenced by findSupports().

Here is the call graph for this function:

6.15.1.6 bool isHorizontalPlane (PCLNormalPtr normal, ModelCoefficients::Ptr coefficients, vector< float > referimentAxis

Definition at line 161 of file supports_segmentation_srv.cpp.

References maxVarianceThForHorizontal, and minVarianceThForHorizontal.

Referenced by findSupports().

6.15.1.7 int main (int *argc*, char ** *argv*)

Definition at line 363 of file supports_segmentation_srv.cpp.

References findSupports(), and srvm::SRV_NAME_SUPPORT_FILTER.

Here is the call graph for this function:

6.15.1.8 void ransacPlaneSegmentator (PCLCloudPtr inputCloud, PCLNormalPtr normals, PointIndices::Ptr & inlierOutput, ModelCoefficients::Ptr & coefficientOutput)

Definition at line 90 of file supports_segmentation_srv.cpp.

 $References\ ransac Max Iteration,\ ransac Normal Distance Weigth,\ ransac Th Distance Point Shape,\ and\ seg.$

Referenced by findSupports().

6.15.1.9 void removePlaneInliner (PCLCloudPtr inputCloud, PointIndices::Ptr & removeIndex, PCLCloudPtr output)

Definition at line 115 of file supports_segmentation_srv.cpp.

References extract().

Referenced by findSupports().

Here is the call graph for this function:

6.15.1.10 bool valueBelongsToArray (int value, PointIndices::Ptr inliers)

Definition at line 131 of file supports_segmentation_srv.cpp.

Referenced by createNewIdxMap(), and getPointOnPlane().

6.15.2 Variable Documentation

6.15.2.1 const float DEFAULT_PARAM_SUPPORT_SRV_HORIZONTAL_AXIS[3] = { 0.0f, 0.0f, -1.0f}

Definition at line 38 of file supports_segmentation_srv.cpp.

Referenced by initializeInputParameters().

6.15.2.2 const float DEFAULT_PARAM_SUPPORT_SRV_MIN_ITERATIVE_CLOUD_PERCENTAGE = 0.030f

Definition at line 30 of file supports_segmentation_srv.cpp.

Referenced by initializeInputParameters().

6.15.2.3 const float DEFAULT PARAM SUPPORT SRV MIN ITERATIVE SUPPORT PERCENTAGE = 0.030f

Definition at line 31 of file supports_segmentation_srv.cpp.

Referenced by initializeInputParameters().

6.15.2.4 const float DEFAULT_PARAM_SUPPORT_SRV_RANSAC_DISTANCE_POINT_IN_SHAPE_THRESHOLD = 0.02f

Definition at line 35 of file supports_segmentation_srv.cpp.

Referenced by initializeInputParameters().

6.15.2.5 const int DEFAULT_PARAM_SUPPORT_SRV_RANSAC_MAX_ITERATION_THRESHOLD = 10

Definition at line 37 of file supports_segmentation_srv.cpp.

Referenced by initializeInputParameters().

 $6.15.2.6 \quad const float \ DEFAULT_PARAM_SUPPORT_SRV_RANSAC_MODEL_NORMAL_DISTANCE_WEIGHT = 0.9f$

Definition at line 36 of file supports_segmentation_srv.cpp.

Referenced by initializeInputParameters().

6.15.2.7 const float DEFAULT_PARAM_SUPPORT_SRV_SUPPORT_EDGE_REMOVE_OFFSET[] = { 0.02, 0.02, 0.005}

Definition at line 39 of file supports_segmentation_srv.cpp.

Referenced by initializeInputParameters().

6.15.2.8 const float DEFAULT_PARAM_SUPPORT_SRV_VARIANCE_THRESHOLD_FOR_HORIZONTAL = 0.09f

Definition at line 33 of file supports_segmentation_srv.cpp.

Referenced by initializeInputParameters().

6.15.2.9 vector < float > horizontal Axis

Definition at line 46 of file supports_segmentation_srv.cpp.

 $Referenced \ by \ call Support Filter(), \ find Supports(), \ and \ initialize Input Parameters().$

6.15.2.10 const double inf = std::numeric_limits<double>::infinity()

Definition at line 184 of file supports_segmentation_srv.cpp.

Referenced by getPointOnPlane().

6.15.2.11 float maxVarianceThForHorizontal

Definition at line 44 of file supports_segmentation_srv.cpp.

Referenced by findSupports(), initializeInputParameters(), and isHorizontalPlane().

6.15.2.12 float minIterativeCloudPercentage

Definition at line 44 of file supports_segmentation_srv.cpp.

Referenced by findSupports(), and initializeInputParameters().

6.15.2.13 float minPlanePercentageSize

Definition at line 44 of file supports_segmentation_srv.cpp.

Referenced by findSupports(), and initializeInputParameters().

6.15.2.14 float minVarianceThForHorizontal

Definition at line 44 of file supports_segmentation_srv.cpp.

Referenced by findSupports(), initializeInputParameters(), and isHorizontalPlane().

6.15.2.15 const double neg_inf = -std::numeric_limits < double >::infinity()

Definition at line 185 of file supports_segmentation_srv.cpp.

Referenced by getPointOnPlane().

6.15.2.16 PCLCloudPtr originalCloud

Definition at line 51 of file supports_segmentation_srv.cpp.

Referenced by findSupports(), and getPointOnPlane().

6.15.2.17 PCLNormalPtr originalNorms

Definition at line 52 of file supports_segmentation_srv.cpp.

Referenced by findSupports().

6.15.2.18 int ransacMaxIteration

Definition at line 47 of file supports_segmentation_srv.cpp.

 $Referenced \ by \ find Supports(), \ initialize Input Parameters(), \ and \ ransac Plane Segmentator().$

6.15.2.19 float ransacNormalDistanceWeigth

Definition at line 44 of file supports_segmentation_srv.cpp.

Referenced by findSupports(), initializeInputParameters(), and ransacPlaneSegmentator().

6.15.2.20 float ransacThDistancePointShape

Definition at line 44 of file supports_segmentation_srv.cpp.

Referenced by findSupports(), initializeInputParameters(), and ransacPlaneSegmentator().

6.15.2.21 SACSegmentationFromNormals < PointXYZ, Normal > seg

Definition at line 89 of file supports_segmentation_srv.cpp.

Referenced by ransacConeDetaction(), ransacCylinderDetaction(), ransacPlaneDetaction(), ransacPlaneDetaction(), ransacPlaneDetaction().

6.15.2.22 vector<float> supportEdgeRemoveOffset

Definition at line 46 of file supports_segmentation_srv.cpp.

Referenced by findSupports(), getPointOnPlane(), and initializeInputParameters().

6.15.2.23 PCLVisualizer vis

Definition at line 50 of file supports segmentation srv.cpp.

6.15.2.24 boost::mutex vis_mutex

Definition at line 54 of file supports_segmentation_srv.cpp.

6.15.2.25 boost::thread vis_thread

Definition at line 53 of file supports_segmentation_srv.cpp.