Signatures without RO

Anonymous Submission

No Institute Given

1 Preliminaries

Definition 1 (3-round Tag-based Identification Scheme). A 3-round identification (ID) scheme is defined as $ID := (IGen, P = (P_1, P_2), ChSet, V)$.

- The probabilistic generation algorithm IGen takes the public parameter 1^k as input and returns a public key and secret key (pk, sk). We assume that pk defines the challenge set ChSet.
- The prover algorithm $P = (P_1, P_2)$ is split into two algorithms. P_1 takes the secret key sk and a tag τ from the tag space M as the input and returns the commitment Com and a state St. P_2 takes the secret key sk, the state St and a challenge C as an input and returns a response s.
- The deterministic verifier algorithm V takes the public key pk, the tag τ , the commitment Com, the challenge C and the response s as an input and outputs a decision, 1 (acceptance) or 0 (rejection).

For correctness we require that for all $k \in \mathbb{N}$, $(pk, sk) \in \mathsf{IGen}(1^k)$, all $(Com, St) \in \mathsf{P}_1(sk, \tau)$, all $C \in \mathsf{ChSet}$ and all $s \in \mathsf{P}_2(sk, St, C)$, we have

$$V(pk, Com, C, s) = 1.$$

Prover		Verifier
$(Com, St) \stackrel{\$}{\leftarrow} P_1(sk, \tau)$	$\xrightarrow{\tau, Com} C$	$C \xleftarrow{\$} ChSet$
$s \stackrel{\$}{\leftarrow} P_2(sk,St,C)$	\xrightarrow{s}	$d \coloneqq V(pk,Com,C,s)$

Figure 1. 3-round Tag-based Identification Scheme

Definition 2 (Alternative Verification). We say the deterministic function \tilde{V} is an alternative verification for an identification scheme ID, if \tilde{V} takes the

secret key sk, the tag τ , the commitment Com, the challenge C and the response s as an input and outputs a decision, 1 (acceptance) or 0 (rejection). For correctness we require that for all $k \in \mathbb{N}$, $(pk, sk) \in \mathsf{IGen}(1^k)$, all $(Com, St) \in \mathsf{P}_1(sk, \tau)$, all $C \in \mathsf{ChSet}$ and all $s \in \mathsf{P}_2(sk, St, C)$, we have

$$\tilde{\mathsf{V}}(sk, \tau, Com, C, s) = 1.$$

Definition 3 (Alternative Impersonation). A 3-round tag based identification scheme is said to be $(t, q, \epsilon) - \mathsf{IMP}^{\bar{\mathsf{V}}}$ secure, if for all adversary \mathcal{A} running in time at most t we have

$$\Pr[q\text{-IMP-ALT}_{\mathsf{ID}}^{\tilde{\mathsf{V}}}(\mathcal{A})] = 1] \leq \epsilon.$$

```
\begin{array}{|c|c|c|}\hline \textbf{Game } q\text{-IMP-ALT}_{\text{ID}}^{\tilde{\text{V}}}(\mathcal{A})\\ \hline 01 & (sk,pk) \xleftarrow{\$} \text{IGen}\\ \hline 02 & \mathcal{Q} \leftarrow \emptyset\\ \hline 03 & \textbf{for } i \in [q]\\ \hline 04 & \tau_i \xleftarrow{\$} \mathbf{M}\\ \hline 05 & (Com_i,St_i) \xleftarrow{\$} \mathbf{P}_1(sk,\tau_i)\\ \hline 06 & C_i \xleftarrow{\$} \mathbf{ChSet}\\ \hline 07 & s_i \xleftarrow{\$} \mathbf{P}_2(sk,St_i,C_i)\\ \hline 08 & \mathcal{Q} \leftarrow \mathcal{Q} \cup (\tau_i,Com_i,C_i,s_i)\\ \hline 09 & (\tau^*,Com^*,C^*,s^*) \leftarrow \mathcal{A}(pk,\mathcal{Q})\\ \hline 10 & \textbf{if } \tilde{\text{V}}(sk,\tau^*,Com^*,C^*,s^*) = 1 \textbf{ then return } 1\\ \hline 11 & \textbf{else return } 0 \\ \hline \end{array}
```

Figure 2.

Definition 4 (Uniqueness). We say the identification scheme ID := (IGen, P, ChSet, V) is unique if for every $(sk, pk) \leftarrow$ IGen and every $(Com, St) \leftarrow$ P₁ (sk, τ) ,

$$\left|\left\{C \in \mathsf{ChSet} \mid \exists \ s : \mathsf{V}(pk, Com, C, s) = 1 \land \tilde{\mathsf{V}}(sk, Com, C, s) \neq 1\right\}\right| = 1.$$

This means there exist a (not necessarily polynomial time) function we call the uniqueness function such as f that

$$f(pk, Com) = C.$$

Definition 5 (Signature scheme). To construct a signature $Sig := (Gen, Sgn, Ver) from a 3-round tag-based identification scheme <math>ID := (IGen, P = (P_1, P_2), ChSet, V)$ we proceed as in Figure 4.

```
Gen(par):
                                                               \mathsf{Sgn}(sk,m):
01 (pk_0, sk_0) \stackrel{\$}{\leftarrow} \mathsf{IGen}
                                                               13 (sk_0, sk_1) \leftarrow sk
02 (pk_1, sk_1) \stackrel{\$}{\leftarrow} \mathsf{IGen}
                                                               14 (Com_0, St_0) \stackrel{\$}{\leftarrow} P_1(sk_0, m)
03 pk := (pk_0, pk_1)
                                                               15 (Com_1, St_1) \stackrel{\$}{\leftarrow} P_1(sk_1, m)
04 sk := (sk_0, sk_1)
                                                               16 k = H(pk, Com_0, Com_1)
05 return (sk, pk)
                                                               17 e \leftarrow \text{\$} \mathsf{ChSet}
\mathsf{Ver}(pk,\sigma,m):
                                                               18 C_0 = d + e
06 if C_0 + C_1 \neq \mathsf{H}(pk, Com_0, Com_1)
                                                               19 C_1 = -e
          then return 0
                                                               20 s_0 \stackrel{\$}{\leftarrow} P_2(sk_0, St_0, C_0)
    if V(pk_0, Com_0, C_0, s_0) = 0
                                                               21 s_1 \stackrel{\$}{\leftarrow} P_2(sk_1, St_1, C_1)
          then return 0
                                                               22 \sigma := (Com_0, C_0, s_0, Com_1, C_1, s_1)
10 if V(pk_1, Com_1, C_1, s_1) = 0
                                                               23 return \sigma
          then return 0
12 else return 1
```

Figure 3. Instantiation 1

Definition 6 (RMA security). We define the existential forgery against the random message attack (EUF-RMA) security experiment, played between a challenger and a forger \mathcal{F} .

- 1. The challenger runs Gen to generate key pair (pk, sk). The forger receives pk as input.
- 2. The challenger now chooses q random messages and signs them and returns (m_i, σ_i) to the forger where σ_i is m_i signed under sk.
- 3. The forger outputs a message m^* and signature σ^* .

 \mathcal{F} wins the game if $\operatorname{Ver}(pk, \sigma, m) = 1$, that is, σ^* is a valid signature for m^* , and $m^* \neq m_i$ for all i. We say \mathcal{F} , (t, q, ϵ) -breaks the EUF-RMA security of the signature, if \mathcal{F} runs in time t, receives at most q signed messages, and has the success probability of ϵ .

Definition 7 (Correlation Interactibilty). We say an adversary \mathcal{A} , (t, ϵ) -breaks the correlation intractability of a hash function $\mathsf{H}: \{0,1\}^{n(\lambda)} \to \{0,1\}^{m(\lambda)}$ with regards to function g if \mathcal{A} runs in time t and

$$\Pr[x \stackrel{\$}{\leftarrow} \mathcal{A}, \mathsf{H}(x) = g(x)] \ge \epsilon(\lambda).$$

We call the hash function (t, ϵ) -correlation intractable if such an adversary does not exist.

1.1 proof

Theorem 1. Let ID be a unique identification scheme and H be a (t'', ϵ'') correlation intractable hash function. Suppose there exists a (t, q, ϵ) -forger \mathcal{F}

breaking the security of $Sig_{ID,H}$ against the existential forgery under the random message attack. Then there exists an adversary that (t',q,ϵ') -breaks the $IMP^{\tilde{V}}$ security of ID with $t'\approx t$ and

 $\epsilon' \geq \frac{3}{4}\epsilon$.

This results follows from Lemma 1 and 2 and a hybrid argument.

Definition 8 (Partially valid signature). signature $\sigma = (Com_0, C_0, s_0, Com_1, C_1, s_1)$ is partially valid if $\tilde{V}(pk_0, Com_0, C_0, s_0) = 1$ or $\tilde{V}(pk_1, Com_1, C_1, s_1) = 1$ not partially valid if $\tilde{V}(pk_0, Com_0, C_0, s_0) = 0$ and $\tilde{V}(pk_1, Com_1, C_1, s_1) = 0$.

Let (m_i, σ_i) denote the *i*-th random message and it's signature. Let (m^*, σ^*) be the forgery output by \mathcal{F} .

We distinguish between Type I forger returning (m^*, σ^*) where (m^*, σ^*) is patially valid and Type II forger returning (m^*, σ^*) where (m^*, σ^*) is not partially valid.

Type I forger

Lemma 1. Let \mathcal{F} be a type I forger that (t, q, ϵ) -breaks the RMA security of the signature. Then there exists adversary \mathcal{A} that (t', q, ϵ') -breaks the $\mathsf{IMP}^{\tilde{\mathsf{V}}}$ security of the ID scheme with $t \approx t'$ and

$$\epsilon' \geq \frac{1}{2}\epsilon.$$

Game 0.

We define Game 0 as the existential unforgeability experiment with forger \mathcal{F} . By definition, we have

$$\Pr[X_0] = \epsilon.$$

Game 1.

We modify this game such that the game chooses a random bit b at the beginning. When \mathcal{F} outputs a forgery (m^*, σ^*) the game parses the signature as

$$(Com_0^*, C_0^*, s_0^*, Com_1^*, C_1^*, s_1^*)$$

and aborts if $\tilde{\mathsf{V}}(pk_b,Com_b^*,C_b^*,s_b^*)=1$. We denote this even with abort. Since the forger is of type I and outputs a partially valid signature, we have $\Pr[\mathsf{abort}] \leq \frac{1}{2}$, which implies

$$\Pr[X_1] = \Pr[X_0 \land \neg \mathsf{abort}] \ge \frac{1}{2} \Pr[X_0].$$

Game 2.

In this Game we change the way signatures are calculate. The game first signs every signature as before then changes every signature $\sigma_i = (Com_{0,i}, C_{0,i}, s_{0,i}, Com_{1,i}, C_{1,i}, s_{1,i})$ for message m_i as follows.

$$(Com_{1-b,i}, St_{1-b,i}) \xleftarrow{\$} \mathsf{P}_1(sk_{1-b}, m_i)$$

$$k_i = \mathsf{H}(pk, Com_{0,i}, Com_{1,i})$$

$$C_{1-b,i} = k_i - C_{b,i}$$

$$s_{1-b,i} \xleftarrow{\$} \mathsf{P}_2(sk_{1-b}, St_{1-b,i}, C_{1-b,i})$$

Finally the game returns the newly calculated signature σ_i to \mathcal{F} . Game 2 is perfectly indistinguishable from game 1 from the adversary's point of view. Thus we have

$$\Pr[X_2] = \Pr[X_1].$$

The Alternative Impersonation Adversary.

Now adversary \mathcal{A} simulates game 2. The \mathcal{A} receives pk_b and $(\tau_i, Com_{b,i}, S_{i,b})$ from the alternative impersonation game and proceeds to calculate the public key and signatures on message $m_i := \tau_i$ as in game 2.

It remains to show how \mathcal{A} can break the alternative impersonation from the forged signature $\sigma^* = (Com_0^*, C_0^*, s_0^*, Com_1^*, C_1^*, s_1^*)$ on message m^* output by \mathcal{F} . We know that $\tilde{\mathsf{V}}(sk_b, m^*, Com_b^*, C_b^*, s_b^*) = 1$ (by game 1). So \mathcal{A} can win the alternative impersonation game by outputing $(m^*, Com_b^*, C_b^*, s_b^*)$.

Type II forger

Lemma 2. Let \mathcal{F} be a type II forger that (t,q,ϵ) -breaks the RMA security of the signature. Then there exists adversary \mathcal{A} that (t',ϵ') -breaks the correlation intractability of the hash function H with $t \approx t'$ and

$$\epsilon' > \epsilon$$
.

The correlation intractability adversary \mathcal{A} simulates the unforgeability experiment by running IGen twice and obtaining two pairs of keys we name (sk_0, pk_0) and (sk_1, pk_1) . The adversary now return $pk := (pk_0, pk_1)$ to \mathcal{F} as the public key and also chooses random messages $m_1, ..., m_q$ and signs them with the secret key $sk := (sk_0, sk_1)$ to obtain the signatures $\sigma_1, ..., \sigma_q$ and returns the (m_i, σ_i) pairs to \mathcal{F} . This game is indistinguishable from the unforgeability game in the view of \mathcal{F} .

Breaking the hash intractability.

Eventually, \mathcal{F} returns a message and signature pair (m^*, σ^*) , from which \mathcal{A} extracts the solution that breaks the hash intractability as follows. First \mathcal{A} parses σ^* as $(Com_0^*, C_0^*, s_0^*, Com_1^*, C_1^*, s_1^*)$. We assume the signature is valid and because forger type II outputs signatures that are not partially valid, due to the uniqueness of the identification scheme we can write

$$C_0^* = f(pk_0, Com_0^*)$$

$$C_1^* = f(pk_1, Com_1^*).$$

If the forged signature is valid then

$$\mathsf{H}(pk,Com_0^*,Com_1^*) = C_0^* + C_1^* = f(pk_0,Com_0^*) + f(pk_1,Com_1^*) = g(pk,Com_0^*,Com_1^*).$$

So \mathcal{A} can (t, ϵ') break the g-correlation intractability of H where g is defined as

$$g(pk = (pk_0, pk_1), Com_0, Com_1) = f(pk_0, Com_0) + f(pk_1, Com_1).$$

Adversary \mathcal{A} succeeds at giving a solution that breaks the correlation intractability of H whenever \mathcal{F} succeeds at forging a valid signature so

$$\epsilon' \geq \epsilon$$
.

1.2 Instantiation from the q-SDH

In the following let par := (p, q, G) be a set of system parameters, where G = < g > is a cyclic group of prime order p.

Definition 9 (q-SDH). /TODO: /

We describe the identification scheme $ID := (IGen, P = (P_1, P_2), ChSet, V)$ as the following

 $\mathsf{IGen}(1^k)$: Let g be a random generator of G . The private key is $x \overset{\$}{\leftarrow} \mathbb{Z}_q$ and the public key is $y = g^x$.

$$\mathsf{P} = (\mathsf{P}_1,\mathsf{P}_2)$$

```
\mathsf{IGen}(\mathsf{par}) \colon
                                                                \mathsf{P}_1(sk,m):
01 sk \coloneqq x \xleftarrow{\$} \mathbb{Z}_p
                                                                13 St \coloneqq r \xleftarrow{\$} \mathbb{Z}_p
02 pk := y = g^x
                                                                14 h \coloneqq g^{\frac{1}{x+m}}
03 \mathsf{ChSet} \coloneqq \mathbb{Z}_p
                                                                15 u \coloneqq g^r
04 return (sk, pk)
                                                                16 \hat{u} \coloneqq h^r
                                                                17 R = (h, u, \hat{u})
V(pk, Com, C, s):
                                                                18 return (Com, St)
05 parse R := (h, u, \hat{u})
                                                                P_2(sk, St, C):
06 if u = g^s \cdot (y \cdot g^m)^{-c} \wedge \hat{u} = h^s \cdot g^{-c}
          then return 1
                                                                19 parse St = r
08 else return 0
                                                                20 return s = c \cdot (x + m) + r \mod p
\tilde{\mathsf{V}}(sk, m, Com, \cite{Com}, \cite{Com}):
09 parse R := (h, u, \hat{u}), sk = x
10 if h = g^{\frac{1}{x+m}}
          then return 1
12 else return 0
```

 $\textbf{Figure 4.} \ \, \textbf{Instantiation} \ \, 1$