ISOM 2700: Operations Management Session 7.1. Demand forecasting

Huijun Chen
Dept. of ISOM, HKUST

Course Roadmap

2

Revenue Management

 Revenue management is the application of disciplined analytics that predict consumer behavior and optimize capacity and price to maximize revenue

Revenue Management in a Bird's-Eye View

Sell the Right product to the Right customer at the Right price and the Right time

⇒ improve the net revenue while matching supply and demand⇒ by changing the price or capacity allocation to different customer segmentation

Example: ride-hailing industry

Uber and lyft

- With their dynamic pricing model Uber and Lyft raise the price when there is high demand and not enough drivers.
- Passengers will pay higher rates, the price of a ride can even jump 50 percent or more.

Example: Uber's dynamic pricing system

• Demand forecast factors: the global news events, weather, historical data, holidays, time, traffic...

Why revenue management works?

When dynamic pricing backfires?

- A vending machine with temperaturescanning capability was introduced, charging variable price depending on the weather
- "Charge higher price for more thirsty customers"
- Result: Failure
 - Angry Coke drinkers denounced the idea
 - -The company's stock dove from \$37 to \$18 in 5 months.
 - Pepsi gleefully accused its rival of exploiting customers

When dynamic pricing backfires?

• Uber and Lyft: Following a mass shooting at a subway station in Sunset Park, Brooklyn on April 12. people attempting to avoid public transit by hailing an Uber or a Lyft were met with an infuriating, if unsurprising, result.

Learning objective

- Introduction of revenue management
- Demand forecasting
 - -Qualitative and quantitative method
 - Accuracy metrics
- Revenue management with capacity control
 - Airline industry
 - -Hotel industry
- Revenue management with price control

Demand Management

- Demand management is a process for optimizing the customer demand with available capacity to maximize a company's profit
 - Revenue: How much to sell and at what price?
 - Cost: How much capacity to maintain and at what cost?

- Common approaches and tactics
 - Take a passive role to forecast and respond to customer demand
 - Take an active role to influence or prioritize customer demand

Forecasting is Essential to Supply Chain Planning

Why forecasting?

Video

Strategic Forecasts

 Medium- and Long-term forecasts used to make decisions related to strategy and estimating aggregate demand

Tactical Forecasts

 Short-term forecasts used as input for making day-to-day decisions related to meeting demand

Principles of Demand Forecasting

- Forecasting is only forecasting
 - -Not perfect
- The longer the forecast horizon, the worse the forecast
- Aggregate forecasts are more accurate
- Good forecasts do not always require the use of complex forecasting models
 - -"Simplicity is the ultimate sophistication" *Leonardo da Vinci*

Forecasting framework

FIGURE 13.2 Forecasting Framework

Forecasting Methods

- Qualitative Forecasting Methods
 - Market research
 - Historical analogy
 - Panel consensus
 - Delphi method
- Quantitative techniques for forecasting
 - -Simple and weighted moving averages
 - -Exponential smoothing
 - -Linear regression
- Measuring forecast accuracy

Qualitative Forecasting Methods (1)

Market research

-Sets out to collect data in a variety of ways (surveys, interviews, etc.) to test hypothesis about the market

-Typically used to forecast long-range and new-

product sales

Qualitative Forecasting Methods (2)

Historical analogy

- -Ties what is being forecast to an existing product (such as complementary product, substitutable product)
- Important in planning new products where a forecast may be derived by using the history of a similar product

Qualitative Forecasting Methods (3) and (4)

Panel consensus

- -Free open exchange at meetings
- -The idea is that discussion by the group will produce better forecasts than any one individual
- -Participants may be executives, salespeople or customers

Delphi method

- Experts respond to questions
- A moderator compiles results and formulates a new questionnaire which is submitted to the group (perhaps with new set of questions)
- There is a learning process for the group as it receives new information and there is no influence of group pressure or dominating individuals

Qualitative Forecasting Methods

Pros and Cons

- Advantage of qualitative forecasting methods
 - -Does not require extensive historical data
- Disadvantage of qualitative forecasting methods
 - -Subjective

When to use?

- -When historical data are scarce or not available at all
- Use expert and/or customers opinion to predict future events subjectively
- -Example: sales of new product, environment and technology change over the long term

Qualitative method: time series

- Decomposition of time series
 - -Trend
 - -Seasonality
 - -Random variation (noise)
- Assumption: past=> future
- Method
 - -Moving (weighted) averages
 - -Exponential Smoothing

Components of demand: Trend + Random Variation

Components of demand: Trend+ Seasonality

Components of demand: Random Variation

Time series decomposition

Simple Moving Average

Week	Demand
1	650
2	678
3	720
4	785
5	859
6	920
7	850
8	758
9	892
10	920
11	789
12	844

$$F_{t} = \frac{A_{t-1} + A_{t-2} + A_{t-3} + ... + A_{t-n}}{n}$$

Question: What are the 3-week and 6-week moving average forecasts for demand week 13?

How to choose n?

Weighted Moving Average

• A weighted moving average allows any weights to be placed on each element.

• Model:
$$F_{t} = w_{1}A_{t-1} + w_{2}A_{t-2} + ... + w_{n}A_{t-n}$$

$$\sum_{i=1}^{n} w_{i} = 1$$

- Choosing weights:
 - Most recent data with higher weighting
 - If the data are seasonal, weights should reflect this appropriately
 - Experience and trial and error

Example

• Question: Given the weekly demand and weights, what is the forecast for the 4th period or Week 4?

Week	Demand
1	650
2	678
3	720
4	

Weights: t-1 0.5 t-2 0.3 t-3 0.2

Note that the weights place more emphasis on the most recent data, that is time period "t-1"

Simple vs. Weighted Moving Average

• Simple Moving Average

- -A forecast based on average past demand
- -Assign equal importance to each component

Weighted Moving Average

 A forecast made with past data where more recent data are usually given more significance than older data

Major Drawback for both methods

 Need to continually carry a large amount of historical data

Exponential Smoothing

• Model:

$$F_{t} = F_{t-1} + \alpha (A_{t-1} - F_{t-1})$$

Where:

 F_t = Demand Forcast for the coming time period

 F_{t-1} = Demand forecast in the past time period

 A_{t-1} = Actual demand in the past time period α = Alpha smoothing constant

- Data
 - The most recent forecast
 - The most recent demand
 - A smoothing constant α

Example

• Assume that the last month's forecast was 1050 units

• It turns out that 1000 units were actually demanded

• Assume smoothing constant α =0.05

• Forecast for this month:

Effect of a

Does Exponential Smoothing use Distant Data?

$$\begin{split} F_{t} &= F_{t-1} + \alpha (A_{t-1} - F_{t-1}) \\ &= (1 - \alpha) F_{t-1} + \alpha A_{t-1} \\ &= (1 - \alpha) [(1 - \alpha) F_{t-2} + \alpha A_{t-2}] + \alpha A_{t-1} \\ &= (1 - \alpha)^{2} F_{t-2} + \alpha (1 - \alpha) A_{t-2} + \alpha A_{t-1} \\ &= (1 - \alpha)^{3} F_{t-3} + \alpha (1 - \alpha)^{2} A_{t-3} + \alpha (1 - \alpha) A_{t-2} + \alpha A_{t-1} \end{split}$$

α	Past period	Two periods ago	Three periods ago
0.1	0.1	0.09	0.081
0.5	0.5	0.25	0.125
0.9	0.9	0.09	0.009

Question for student

Given the following sales data, use a simple exponential smoothing model with $\alpha = 0.4$ to update the forecasts. (Assume that the actual sales for month 2 is observed only after making a forecast for that month.)

What is the forecast sales figure (round to the nearest integer) for month 3?

a. 550

b. 555

c. 560

d. 565

e. 570

Month	1	2	3
Actual sales	534	576	
Forecast sales	560		

Qualitative method: linear regression

- Regression: $y \sim f(x)$
- Linear regression: y = a + bx
 - −Use x to predict y
 - -Based on observable data
 - -How to estimate a, b
- Using data (x_i, y_i)
 - -Plot scatter plot to check linear assumption
 - -Get the linear regression estimation
 - Interpret the coefficient as well as the goodness of fit

Example: Credit Analysis

• A bank wants to know whether the credit amount is higher for new customers or for old customers

Duration of credit (months): Xi	Credit amount: Yi
6	1169
48	5951
12	2096
42	7882
24	4870
36	9055
24	2835
30	5234

Simple Linear Regression

- Regression
 - -identifies the relationship as a function between two or more correlated variables.
- Linear Regression: assumes that past data and future projections fall around a straight line

- -Causal relationship forecasting
- -Time series forecasting

Simple Linear Regression Analysis

- -There are *n* data points: $\{(x_i, y_i): i = 1,...,n\}$
- -Minimize square error

$$Y = a + bx$$

$$\min_{a,b} \sum_{i=1}^{n} (Actual - Forecast)^{2}$$

or
$$\min_{a,b} \sum_{i=1}^{n} [y_i - Y_i]^2 = \sum_{i=1}^{n} [y_i - (a + bx_i)]^2$$

Least Squares Method

• The least squares method **determines the parameters** *a* **and** *b* such that **the sum of the squared errors is minimized**

Sum of squared errors =
$$(y_1 - Y_1)^2 + (y_2 - Y_2)^2 + \dots + (y_{12} - Y_{12})^2$$

 Y_i – value of the dependent variable computed with the regression equation

 y_i – dependent variable value at each data point

Least Squares Method

• Optimal Coefficients **a*** and **b*** that minimize the sum of the squared errors:

$$b^* = \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x} \, \bar{y}}{\sum_{i=1}^{n} x_i^2 - n\bar{x}^2}$$
$$a^* = \bar{y} - b^* \bar{x}$$

- $n \text{ data points: } \{(x_i, y_i): i = 1,...,n\}$
- \bar{x} : average of x_i
- \bar{y} : average of y_i

Example: Credit Analysis (continued)

We can also perform multi-variable linear regression: Credit Amount = $a + b_1(Duration) + b_2(Salary) + b_3(Age)...$

Discussion

• Advantages of Linear Regression

• Disadvantages of Linear Regression

Question for student

An operations management professor wants to use the number of hours a student studies for an operations management final exam (X) to predict the final exam score (Y). Which of the following models should be used?

- a. Simple Moving average method
- b. Linear regression model
- c. Multivariate linear regression model
- d. Weighted moving average method
- e. Exponential smoothing

Measuring Forecast Accuracy

You are a marketing analyst for McDonalds and have the following sales forecasts (\$M) using two methods.

Month	Actual Demand	Method 1 Forecast	Method 2 Forecast	
1	100	60	100	
2	100	130	100	
3	200	200	150	
4	200	270	200	
5	400	340	250	

Measuring Forecast Accuracy

- Forecast error is the difference between the actual value and the predicted value
 - Error = Actual Forecast

Measures the average magnitude of forecast errors

- Mean absolute deviation (MAD)
 - MAD = $\sum_{i=1}^{n} |Actual Forecast| / n$

Measures the bias of the forecast

- Tracking signal: ratio of cumulative error and MAD
 - $TS = \sum_{i=1}^{n} (Actual Forecast) / MAD^n$

Method 1: Tracking signal

Month	Actual	Forecast	Error	∑ Error	MAD	∑(Error)	TS
1	100	60					
2	100	130					
3	200	200					
4	200	270					
5	400	340					

Error = Actual - Forecast

 $MAD = \sum |Error| / n$

 $TS = \sum (Error) / MAD$

Method 1: Tracking signal

Month	Actual	Forecast	Error	Σ Error	MAD	Σ(Error)	TS
1	100	60	40	40	40	40	1.00
2	100	130	-30	70	35	10	0.29
3	200	200	0	70	23	10	0.43
4	200	270	-70	140	35	-60	-1.71
5	400	340	60	200	40	0	0.00

Error = Actual – Forecast

 $MAD = \sum |Error| / n$

 $TS = \sum (Error) / MAD$

Method 2: Tracking signal

Month	Actual	Forecast	Error	∑ Error	MAD	\sum (Error)	TS
1	100	100					
2	100	100					
3	200	150					
4	200	200					
5	400	250					

Error = Actual - Forecast

 $MAD = \sum |Error| / n$

 $TS = \sum (Error) / MAD$

Interpreting tracking signals

Forecasting process

Summary

- Demand forecasting
 - -Why?
- Qualitative forecasting
- Quantitative forecasting method
 - -Simple and weighted averages, exponential smoothing
 - -Linear regression
 - -Accuracy measures