Kalman-Filter

1 Introduction

1.1 Historical Development

- The filter is named after Hungarian Rudolf E. Klmn, although Thorvald Nicolai Thiele and Peter Swerling developed a similar algorithm earlier.
- Stanley F. Schmidt is credited for the first implementation of Kalman-filter to the problem of trajectory estimation for the Apollo program.

1.2 Overview

Kalman filtering, (or linear quadratic estimation (LQE)), operates recursively on streams of noisy input data to produce a statistically optimal estimate of the underlying system state.

The algorithm works in a two-step process:

- 1. Prediction step: the Kalman filter produces estimates of the current state variables $\hat{\mathbf{x}}_{k|k-1}$, along with their uncertainties $\hat{\mathbf{P}}_{k|k-1}$.
- 2. Update step: Once the outcome of the next measurement $(\hat{\mathbf{y}}_k)$ is observed, these estimates are updated $(\hat{\mathbf{x}}_{k|k})$ and $\hat{\mathbf{P}}_{k|k}$.

2 Kalman-Filter

2.1 Description

The Kalman filter model assumes the true state to be based on linear dynamic systems discretized in the time domain:

$$\mathbf{x}_k = \mathbf{F}_k \mathbf{x}_{k-1} + \mathbf{B}_k \mathbf{u}_k + \mathbf{w}_k$$

where:

- \mathbf{F}_k is the state transition model.
- \mathbf{B}_k is the control-input model.
- \mathbf{u}_k is the control vector.
- \mathbf{w}_k is the process noise of covariance \mathbf{Q}_k . $\mathbf{w}_k \sim \mathcal{N}(0, \mathbf{Q}_k)$

At time k, observation of \mathbf{x}_k is mad according to

$$\mathbf{z}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{v}_k$$

where:

- \mathbf{H}_k is the observation model
- $\mathbf{v}_k \sim \mathcal{N}(0, \mathbf{R}_k)$ is the observation noise of covariance \mathbf{R}_k .
- 1. Prediction step:

A priori state estimate A priori estimate cov.

 $\hat{\mathbf{x}}_{k|k-1} = \mathbf{F}_k \hat{\mathbf{x}}_{k-1|k-1} + \mathbf{B}_k \mathbf{u}_k$ $\mathbf{P}_{k|k-1} = \mathbf{F}_k \mathbf{P}_{k-1|k-1} \mathbf{F}_k^{\mathrm{T}} + \mathbf{Q}_k$

2. Update step:

Measurement residual Residual covariance Optimal Kalman gain A posteriori state estimate A posteriori estimate cov.

$$egin{aligned} & ilde{\mathbf{y}}_k = \mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1} \ & \mathbf{S}_k = \mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^T + \mathbf{R}_k \ & \mathbf{K}_k = \mathbf{P}_{k|k-1} \mathbf{H}_k^T \mathbf{S}_k^{-1} \ & \hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k \tilde{\mathbf{y}}_k \ & \mathbf{P}_{k|k} = (I - \mathbf{K}_k \mathbf{H}_k) \mathbf{P}_{k|k-1} \end{aligned}$$

2.2 Practical Application

- Unknown stochastic signals as input can seriously degrade the filter performance. Robust Control is then used.
- One major practical challenge is finding the covariance of the noise (\mathbf{Q}_k and \mathbf{R}_k). One of the more promising approaches is the Autocovariance Least-Squares (ALS) technique that uses the time-lagged autocovariances of routine operating data.

3 Extension

3.1 Recursive Bayesian Estimation

Recursive Bayesian estimation, also known as a Bayes filter, is a general probabilistic approach for estimating an unknown probability density function recursively over time using incoming measurements and a mathematical process model.

