

# Doodle Recognition and Generation through Neural Networks

Lydia Xu (leediaxu@stanford.edu), Vera Xu (veraxrl@stanford.edu), Ying Chen (yingchen107@stanford.edu)

Video link: https://youtu.be/bsYS2xgKWgQ

# What we are solving?

Can we recognize the "bee" in the below human-drawed doodles?













- Classification for sketch drawings or doodles has been a popular and challenging task in Computer Vision
- Applied the state-of-the-art neural models to the Google Quick, **Draw!** Dataset with image-based models for the doodle recognition task.
- Employed data augmentation and MobileNet comparison
- Explored RNN-based generative model for generation

### **Motivation**

- Build an educational tool for kids to learn how to draw
- Create a classification tool to understand graphic symbols or logographic characters (such as Chinese characters)

## Data

- Google Quick, Draw! Dataset
  - o 50 millions real-user drawing collected
  - 340 label categories (e.g. bee, apple, river, etc.)
  - O Data format: Nx3 stroke vector



- Stroke-based vs image-based
  - O We transformed origin dataset into image-based model since sequential strokes doesn't provide much additional insights above the completed drawing
- Stream process for loading large size data
  - O We split the data into 100 shards, each shard contains 340 categories as whole information.
  - o 90 shards for training, 5 shards for validation and 5 shards for testing

# Approach

- CNN-based architecture with categorical cross-entropy loss and ReLU activation layers (Figure 1 and Table 1)
- Data Augmentation: flip horizontally and random zoom (0.8-1.2). Selectively augment only 50% of the training data.



Figure 1. Convoluted Neural Network Architecture Diagram

| Layer (type)                   | Output Shape        | Param #  |
|--------------------------------|---------------------|----------|
| conv2d (Conv2D)                | (None, 78, 78, 64)  | 640      |
| max_pooling2d (MaxPooling2D)   | (None, 39, 39, 64)  | 0        |
| dropout (Dropout)              | (None, 39, 39, 64)  | 0        |
| conv2d_1 (Conv2D)              | (None, 37, 37, 128) | 73856    |
| max_pooling2d_1 (MaxPooling2D) | (None, 18, 18, 128) | 0        |
| $dropout_{-1}$ (Dropout)       | (None, 18, 18, 128) | 0        |
| flatten (Flatten)              | (None, 41472)       | 0        |
| dense (Dense)                  | (None, 1024)        | 42468352 |
| dropout_2 (Dropout)            | (None, 1024)        | 0        |
| dense_1 (Dense)                | (None, 340)         | 348500   |

Table 1. Convoluted Neural Network Architecture Table

- Keras MobileNet: a model using depth-wise separable convolutions to reduce computation and enhance efficiency. Using deeper and more complicated neural networks.
- Stretch goal: RNN-based generative model Magenta sketchrnn to generate drawings based on pre-trained models.

Figure 2. Depth-wise Separable Convolution



Table 2. MobileNet Model Architecture Table

|                                                                  | •                                    |                            |
|------------------------------------------------------------------|--------------------------------------|----------------------------|
| Type / Stride                                                    | Filter Shape                         | Input Size                 |
| Conv / s2                                                        | $3 \times 3 \times 3 \times 32$      | $224 \times 224 \times 3$  |
| Conv dw / s1                                                     | $3 \times 3 \times 32 \text{ dw}$    | $112 \times 112 \times 32$ |
| Conv / s1                                                        | $1 \times 1 \times 32 \times 64$     | $112 \times 112 \times 32$ |
| Conv dw / s2                                                     | $3 \times 3 \times 64 \text{ dw}$    | $112 \times 112 \times 64$ |
| Conv / s1                                                        | $1 \times 1 \times 64 \times 128$    | $56 \times 56 \times 64$   |
| Conv dw / s1                                                     | $3 \times 3 \times 128 \text{ dw}$   | $56 \times 56 \times 128$  |
| Conv / s1                                                        | $1 \times 1 \times 128 \times 128$   | $56 \times 56 \times 128$  |
| Conv dw / s2                                                     | $3 \times 3 \times 128 \text{ dw}$   | $56 \times 56 \times 128$  |
| Conv / s1                                                        | $1 \times 1 \times 128 \times 256$   | $28 \times 28 \times 128$  |
| Conv dw / s1                                                     | $3 \times 3 \times 256 \text{ dw}$   | $28 \times 28 \times 256$  |
| Conv / s1                                                        | $1 \times 1 \times 256 \times 256$   | $28 \times 28 \times 256$  |
| Conv dw / s2                                                     | $3 \times 3 \times 256 \text{ dw}$   | $28 \times 28 \times 256$  |
| Conv / s1                                                        | $1 \times 1 \times 256 \times 512$   | $14 \times 14 \times 256$  |
| $5 \times \frac{\text{Conv dw / s1}}{5 \times \text{Conv do 1}}$ | $3 \times 3 \times 512 \text{ dw}$   | $14 \times 14 \times 512$  |
| Conv / s1                                                        | $1 \times 1 \times 512 \times 512$   | $14 \times 14 \times 512$  |
| Conv dw / s2                                                     | $3 \times 3 \times 512 \text{ dw}$   | $14 \times 14 \times 512$  |
| Conv / s1                                                        | $1 \times 1 \times 512 \times 1024$  | $7 \times 7 \times 512$    |
| Conv dw / s2                                                     | $3 \times 3 \times 1024 \text{ dw}$  | $7 \times 7 \times 1024$   |
| Conv / s1                                                        | $1 \times 1 \times 1024 \times 1024$ | $7 \times 7 \times 1024$   |
| Avg Pool / s1                                                    | Pool $7 \times 7$                    | $7 \times 7 \times 1024$   |
| FC/s1                                                            | $1024 \times 1000$                   | $1 \times 1 \times 1024$   |
| Softmax / s1                                                     | Classifier                           | $1 \times 1 \times 1000$   |

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. ArXiv, abs/1704.04861

# **Result and Analysis**

Table 3. Accuracy for Different CNN-models

|           | Test Loss | Test Accuracy | Top_3_Accuracy |
|-----------|-----------|---------------|----------------|
| Baseline  | 1.888     | 55%           | N/A            |
| CNN       | 1.899     | 56.94%        | 75.54%         |
| MobileNet | 0.6995    | 81.59%        | 93.17%         |

- Vanilla CNN model beats the baseline by 1.7% after fine tuning with an accuracy of 56.77%.
- MobileNet reaches a high accuracy of 81.59%, beating the baseline by 26.59%.
- Introducing "Top 3 Accuracy" as a metrics because many categories look alike or they are hard to learn. For example, it is hard to distinguish between duck and swan:



- Stroke-based model doesn't out-perform image-based model.
- Data Augmentation improved accuracy slightly by less than 1%.
- Different optimizers, image sizes and number of CNN layers have different effect on the results.





#### **Conclusion**

- Complicated CNN models after fine tuning can be very good at doodle classification (MobileNet for example).
- It is hard to achieve perfect accuracy scores as many humangenerated drawings are strongly subjective. Even other human cannot distinguish between different categories.
- Image-based CNN models perform comparatively to baseline's stroke-based RNN models
- Future Work: doodle generation based on trained models