Skriftlig eksamen på Økonomistudiet Sommeren 2018

DYNAMISKE MODELLER

Onsdag den 15. august 2018

3 timers skriftlig prøve med hjælpemidler. Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller cas-værktøjer.

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet for at blive registeret som syg.

I den forbindelse skal du udfylde en blanket.

Derefter afleverer du en blank besvarelse i systemet og forlader eksamen.

Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitets Økonomiske Institut

$2.~{\rm arsprøve}~2018~{ m S-2DM}~{ m ex}$

Skriftlig eksamen i Dynamiske Modeller Onsdag den 15. august 2018

Opgavesæt bestående af 3 sider med i alt 4 opgaver.

Løsningstid: 3 timer

Alle sædvanlige hjælpemidler må benyttes, dog ikke medbragte lommeregnere eller nogen form for cas-værktøjer.

Opgave 1. Vi betragter fjerdegradspolynomiet $P: \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P(z) = z^4 + z^3 + 2z^2 + z + 1.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^4x}{dt^4} + \frac{d^3x}{dt^3} + 2\frac{d^2x}{dt^2} + \frac{dx}{dt} + x = 0,$$

og

$$(**) \frac{d^4x}{dt^4} + \frac{d^3x}{dt^3} + 2\frac{d^2x}{dt^2} + \frac{dx}{dt} + x = 12e^t + t^2.$$

- (1) Udregn tallene P(2i) og $\sqrt{P(2i)}$.
- (2) Vis, at betingelsen

$$\forall z \in \mathbf{C} : P(z) = (z^2 + 1)(z^2 + z + 1)$$

er opfyldt.

- (3) Bestem samtlige rødder i polynomiet P.
- (4) Bestem den fuldstændige løsning til differentialligningen (*).

(5) Bestem den fuldstændige løsning til differentialligningen (**).

For ethvert $s \in \mathbf{R}$ betragter vi den homogene, lineære differentialligning

$$(***) \frac{d^4x}{dt^4} + \frac{d^3x}{dt^3} + s\frac{d^2x}{dt^2} + \frac{dx}{dt} + x = 0.$$

(6) Opstil Routh-Hurwitz matricen $A_4(s)$ for differentialligningen (***), og bestem de $s \in \mathbf{R}$, hvor (***) er globalt asymptotisk stabil.

Opgave 2. Vi betragter vektorfunktionen $f: \mathbb{R}^2 \to \mathbb{R}^2$, som er givet ved forskriften

$$\forall (x_1, x_2) \in \mathbf{R}^2 : f(x_1, x_2) = (x_1^2 + x_1 x_2, x_1 + x_2^2).$$

- (1) Bestem Jacobimatricen $Df(x_1, x_2)$ for vektorfunktionen f i et vilkårligt punkt $(x_1, x_2) \in \mathbf{R}$, og vis, at Jacobimatricen Df(1, 1) er regulær.
- (2) Angiv differentialet df(1,1) for vektorfunktionen f ud fra punktet (1,1).
- (3) Godtgør, at der findes åbne omegne V og W af (1,1) og f(1,1), så restriktionen af f til omegnen V er en bijektiv afbildning af V på W.
- (4) Løs ligningen

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = f(1,1) + df(1,1)$$

med hensyn til $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

Lad (v_k) være en punktfølge på mængden

$$K = \{(x_1, x_2) \in \mathbf{R}^2 \mid 0 \le x_1 \le 5 \land -1 \le x_2 \le 7\}.$$

(5) Vis, at punktfølgen $(f(v_k))$ har en konvergent delfølge $(f(v_{k_p}))$, som har et grænsepunkt $g \in f(K)$.

Opgave 3. Vi betragter systemet

$$\tau = \{\emptyset, \mathbf{C}, G(r) \mid r > 0\},\$$

hvor $G(r) = \{ z \in \mathbb{C} \mid |z| < r \} \text{ for } r > 0.$

- (1) Vis, at systemet τ er en topologi på mængden C.
- (2) Bestem systemet κ af alle afsluttede mængder i den ovenfor anførte topologi.

Vi betragter mængden

$$M = \{ z \in \mathbf{C} \mid \operatorname{Re} z > 0 \}.$$

(3) Bestem systemet τ_M bestående af alle mængder, der er åbne relativt til M.

Opgave 4. Vi betragter integralet

$$I(x) = \int_0^1 (x^2 + xe^t + \dot{x}^2) dt,$$

hvor x(0) = 0 og $x(1) = \frac{5}{4}e$.

- (1) Vis, at dette variationsproblem er et minimumsproblem.
- (2) Løs dette variationsproblem.