# Bias-Variance Trade-off

Natasha Balac, Ph.D.

## Bias and Variance

- No "best classifier" in general
  - Necessity for exploring a variety of methods
- How to evaluate if the learning algorithm "matches" the classification problem
- Bias: measures the quality of the match
  - High-bias implies poor match
  - Error rate of a particular learning algorithm
- Variance: measures the specificity of the match
  - High-variance implies a weak match
  - Comes from a particular data set used
- Bias and variance are not independent of each other

### Bias Variance Dilemma

- Procedures with increased flexibility to adapt to training data have lower bias, but higher variance
  - Large number of parameters
  - Fits well and have low bias, but high variance
- Inflexible procedures have higher bias, but lower variance
  - Fewer number of parameters
  - May not fit well to data: have high bias, but low variance
- A large amount of training data generally helps improve performance of estimation if the model is sufficiently general to represent the target function

## Model Loss (Error)

Squared loss of model on test case i:

$$\left(Learn(x_i, D) - Truth(x_i)\right)^2$$

• Expected prediction error:

$$\langle (Learn(x,D) - Truth(x))^2 \rangle_D$$

# Bias/Variance Decomposition

$$\langle (L(x,D) - T(x))^2 \rangle_D = Noise^2 + Bias^2 + Variance$$

 $Noise^2$  = lower bound on performance

 $Bias^2$  = (expected error due to model mismatch)

*Variance* = variation due to train sample and randomization

### Bias

- Low bias
  - linear regression applied to linear data
  - 2nd degree polynomial applied to quadratic data
  - ANN with many hidden units trained to completion
- High bias
  - constant function
  - linear regression applied to non-linear data
  - ANN with few hidden units applied to non-linear data

### Variance

- Low variance
  - constant function
  - model independent of training data
  - model depends on stable measures of data
    - mean
    - median
- High variance
  - high degree polynomial
  - ANN with many hidden units trained to completion

### Sources of Variance in Supervised Learning

- noise in targets or input attributes
- bias (model mismatch)
- training sample
- randomness in learning algorithm
  - neural net weight initialization
- randomized subsetting of train set:
  - cross validation, train and early stopping set

### Bias/Variance Tradeoff

- (bias<sup>2</sup>+variance) is what counts for prediction
- Often:
  - low bias => high variance
  - low variance => high bias
- Tradeoff:
  - bias² vs. variance

## Bias-Variance Trade-off

- Model too simple: does not fit the data well
  - A biased solution

- Model too complex: small changes to the data, solution changes a lot
  - A high-variance soluJon





# Complexity of the model



Typically the bias is a decreasing function of the complexity

while variance is an increasing function of the complexity

# Bias/Variance Tradeoff



Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

# Reduce Variance Without Increasing Bias

Averaging reduces variance:

$$Var(\overline{X}) = \frac{Var(X)}{N}$$

- Average models to reduce model variance
- One problem:
  - only one train set
  - where do multiple models come from?

### Bias Variance Dilemma

- Bias/Variance considerations recommend that we gather as much prior information about the problem as possible to find a best match for the classifier, and as large a dataset as possible to reduce the variance
- We can virtually never get zero bias and zero variance

Questions? Thank you!

### Bias-Variance Dilemma Example



#### Col 1:

Poor fixed linear model; High bias, zero variance

### Col 2:

Slightly better fixed linear model; Lower (but high) bias, zero variance.

### Col 3:

Learned cubic model; Low bias, moderate variance.

### Col 4:

Learned linear model; Intermediate bias and variance.

# Title and Content Layout with List

- Click to edit Master text styles
  - Second level
    - Third level
      - Fourth level
        - Fifth level

# Title and Content Layout with Chart



# Two Content Layout with Table

|         | Group A | Group B |
|---------|---------|---------|
| Class 1 | 82      | 85      |
| Class 2 | 76      | 88      |
| Class 3 | 84      | 90      |

- First bullet point here
- Second bullet point here
- Third bullet point here

# Two Content Layout with SmartArt

- First bullet point here
- Second bullet point here
- Third bullet point here

