Dig-In:

Limits of the form nonzero over zero

What can be said about limits that have the form nonzero over zero?

Let's cut to the chase:

Definition 1. A limit

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

is said to be of the form $\frac{\#}{0}$ if

$$\lim_{x \to a} f(x) = k \qquad and \qquad \lim_{x \to a} g(x) = 0.$$

where k is some nonzero constant.

Question 1 Which of the following limits are of the form $\frac{\#}{9}$?

Select All Correct Answers:

(a)
$$\lim_{x \to -1} \frac{1}{(x+1)^2} \checkmark$$

(b)
$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x - 2}$$

(c)
$$\lim_{x \to 0} \frac{\sin(x)}{x}$$

(d)
$$\lim_{x \to 2} \frac{x^2 - 3x - 2}{x - 2} \checkmark$$

(e)
$$\lim_{x \to 1} \frac{e^x}{\ln(x)} \checkmark$$

In our next example, let's see what is going on with limits of the form $\frac{\#}{0}$.

Example 1. Consider the function

$$f(x) = \frac{1}{(x+1)^2}.$$

Use a table of values to investigate $\lim_{x\to -1} \frac{1}{(x+1)^2}$.

Learning outcomes: Calculate limits of the form number over zero. Identify determinate and indeterminate forms. Distinguish between determinate and indeterminate forms. Author(s):

Explanation. Fill in the table below:

x	$(x+1)^2$	$f(x) = \frac{1}{(x+1)^2}$
-1.1	0.01	100
-1.01	0.0001	10000
-1.001	0.000001	1000000
-1.0001	0.00000001	100000000
-0.9	0.01	100
-0.99	0.0001	10000
-0.999	0.000001	1000000
-0.9999	0.00000001	100000000

What does the table tell us about

$$\lim_{x \to -1} \frac{1}{(x+1)^2}?$$

It appears that the limit does not exist, since the expression

$$\frac{1}{(x+1)^2}$$

becomes larger and larger as x approaches -1. So,

$$\lim_{x \to -1} \frac{1}{(x+1)^2} \quad is of the form \ \#$$

as

$$\lim_{x \to -1} 1 = 1 \qquad and \qquad \lim_{x \to -1} (x+1)^2 = 0.$$

Moreover, as x approaches -1:

- The numerator is positive.
- The denominator approaches zero and is positive.

Hence, the expression

$$\frac{1}{(x+1)^2}$$

will become arbitrarily large as x approaches -1. We can see this in the graph of f.

We are now ready for our next definition.

Definition 2. If f(x) grows arbitrarily large as x approaches a, we write

$$\lim_{x \to a} f(x) = \infty$$

and say that the limit of f(x) is **infinity** as x goes to a.

If |f(x)| grows arbitrarily large as x approaches a and f(x) is negative, we write

$$\lim_{x \to a} f(x) = -\infty$$

and say that the limit of f(x) is negative infinity as x goes to a.

Note: Saying "the limit is equal to infinity" describes more precisely the behavior of the function f near a, than just saying "the limit does not exist".

Let's consider a few more examples.

Example 2. Compute:

$$\lim_{x \to -2} \frac{e^x}{(x+2)^4}$$

Explanation. First let's look at the form of this limit. We do this by taking the limits of both the numerator and denominator:

$$\lim_{x \to -2} e^x = \left[\frac{1}{e^2} \right] \quad and \lim_{x \to -2} ((x+2)^4) = 0.$$

So, this limit is of the form $\frac{\#}{0}$. This form is **determinate**, since it implies that the limit does not exist.

But, we can do better than that! As x approaches -2:

- The numerator is a (positive √/ negative) number.
- The denominator is (positive √/ negative) and is approaching zero.

This means that

$$\lim_{x \to -2} \frac{e^x}{(x+2)^4} = \infty.$$

Example 3. Compute:

$$\lim_{x \to 3^+} \frac{x^2 - 9x + 14}{x^2 - 5x + 6}$$

Explanation. First let's look at the form of this limit, which we do by taking the limits of both the numerator and denominator.

$$\lim_{x \to 3^{+}} \left(x^{2} - 9x + 14 \right) = \boxed{-4} \qquad and \lim_{x \to 3^{+}} \left(x^{2} - 5x + 6 \right) = 0$$

This limit is of the form $\frac{\#}{\mathbf{o}}$. Next, we should factor the numerator and denominator to see if we can simplify the problem at all.

$$\lim_{x \to 3^{+}} \frac{x^{2} - 9x + 14}{x^{2} - 5x + 6} = \lim_{x \to 3^{+}} \frac{\cancel{(x-2)}(x-7)}{\cancel{(x-2)}(x-3)}$$
$$= \lim_{x \to 3^{+}} \frac{x - 7}{x - 3}$$

Canceling a factor of x-2 in the numerator and denominator means we can more easily check the behavior of this limit. As x approaches 3 from the right:

- The numerator is a (positive/negative \checkmark) number.
- The denominator is (positive √/ negative) and approaching zero.

This means that

$$\lim_{x \to 3^+} \frac{x^2 - 9x + 14}{x^2 - 5x + 6} = -\infty.$$

Here is our final example.

Example 4. Compute:

$$\lim_{x \to 3} \frac{x^2 - 9x + 14}{x^2 - 5x + 6}$$

Explanation. We've already considered part of this example, but now we consider the two-sided limit. We already know that

$$\lim_{x \to 3} \frac{x^2 - 9x + 14}{x^2 - 5x + 6} = \lim_{x \to 3} \frac{x - 7}{x - 3},$$

and that this limit is of the form $\frac{\#}{0}$. We also know that as x approaches 3 from the right,

- The numerator is a negative number.
- The denominator is positive and approaching zero.

Hence our function is approaching $-\infty$ from the right. As x approaches 3 from the left,

- The numerator is negative.
- The denominator is negative and approaching zero.

Hence our function is approaching ∞ from the left. This means

$$\lim_{x \to 3} \frac{x^2 - 9x + 14}{x^2 - 5x + 6} = \boxed{DNE}.$$

We can confirm our results of the previous two examples by looking at the graph of $y = \frac{x^2 - 9x + 14}{x^2 - 5x + 6}$:

Graph of
$$\frac{x^2 - 9x + 14}{x^2 - 5x + 6}$$

Some people worry that the mathematicians are passing into mysticism when we talk about infinity and negative infinity. However, when we write

$$\lim_{x \to a} f(x) = \infty$$
 and $\lim_{x \to a} g(x) = -\infty$

all we mean is that as x approaches a, f(x) becomes arbitrarily large and |g(x)| becomes arbitrarily large, with g(x) taking negative values.