Яндекс Лицей

Урок Рекурсия

Рекурсия

- (1) Факториал и число сочетаний
- 2 Определение рекурсии, принцип работы
- 3 Опасность использования рекурсивных алгоритмов или что может пойти не так
- 4 Красота требует жертв?
- 5 Несколько рекурсивных веток. Деревья
- 6 Бонус. Решаем судоку

Аннотация

Сегодня мы познакомимся с понятием рекурсии, покажем ее связь с уже известными нам конструкциями (циклами и функциями). Разберем наиболее часто встречающиеся ошибки и классические примеры.

1. Факториал и число сочетаний

Задача на сочетания — простейшая комбинаторная задача на сочетания без повторений: сколькими способами можно из данных n предметов выбрать некоторые k предметов, если порядок их выбора не важен?

Ответом на эту задачу является величина:

$$\operatorname{c}_n^k = rac{n!}{k!*(n-k)!}$$

называемая числом сочетаний из n элементов по k.

Запись n! обозначает произведение $1 \cdot 2 \cdot 3 \cdot ... \cdot n$, называемое факториалом числа n (мы уже неоднократно сталкивались с данным понятием), при этом считается, что 0! = 1. Приведем «красивое» математическое определение факториала:

$$n! = \left\{ egin{array}{l} 1, n = 0 \ 1*2*3*\ldots*(n-1)*n, n > 0 \end{array}
ight.$$

Давайте напишем функцию, вычисляющую факториал числа n классическим способом, и проверим ее работу.

```
# Вычисление факториала
def factorial(number):
    result = 1
    for index in range(2, number + 1):
        result *= index
    return result

for i in range(10):
    print(i, factorial(i))
```

Обратите внимание на красивый способ вычисления факториала в стиле языка Python:

```
from functools import reduce

def cool_factorial(number):
    return reduce(lambda x, y: x * y, range(2, number + 1), 1)

for i in range(10):
    print(i, cool_factorial(i))
```

2. Определение рекурсии, принцип работы

Однако задачу вычисления факториала можно решить иначе. В математике очень часто для упрощения вычислений исходную задачу сводят к более простым.

Рекурсия

В итоге можно прийти к тому, что будет вызвана первоначальная задача, но в несколько упрощенной форме. Такой прием называется рекурсией (от лат. recurcio — «возвращение»).

Итак, **рекурсия** в программировании — прием, когда функция может вызывать сама себя прямо либо косвенно (через другую функцию, при этом обе функции являются рекурсивными).

Давайте еще раз посмотрим на определение факториала и обратим внимание на выделенный жирным фрагмент:

$$n! = \left\{ egin{aligned} 1, n = 0 \ 1 & 2 & 3 & \dots & (\mathbf{n-1}) & n, n > 0 \end{aligned}
ight.$$

Можно увидеть, что $1 \cdot 2 \cdot 3 \cdot ... \cdot (n-1)$, не что иное, как факториал числа n-1. Поэтому определение факториала можно записать в сокращенном виде:

$$n! = \left\{ egin{array}{l} 1, n = 0 \ (n-1)! * n, n > 0 \end{array}
ight.$$

Вернемся к нашей задаче и рассмотрим функцию вычисления факториала с несколько другой стороны, постараемся применить рекурсию. Известно, что 0! = 1, 1! = 1. А как вычислить величину n! для большого n? Если бы мы могли вычислить величину n - 1. Но как

вычислить (n-1)!? Если бы мы вычислили (n-2)!, мы сможем вычислить и $(n-1)! = (n-1) \cdot (n-2)!$. А как вычислить (n-2)!? Если бы... В конце концов, мы дойдем до величины 0!, которая равна 1. Таким образом, для вычисления факториала мы можем использовать значение факториала для меньшего числа.

Давайте напишем соответствующую функцию:

```
# Рекурсивное вычисление факториала
def rec_factorial(number):
    if number == 0:
        return 1
    else:
        return number * rec_factorial(number - 1)
```

Логическая сложность рекурсивных функций заключается в изменении параметров и особенностях получения промежуточных результатов при последовательном обращении подпрограммы к себе. Выполняется две серии шагов. Первая серия — шаги рекурсивного погружения подпрограмм в себя до тех пор, пока выбранный параметр не достигнет граничного значения (**глубина рекурсии**). Вторая серия — шаги рекурсивного выхода до тех пор, пока значение выбранного параметра не достигнет начального. Она, как правило, и обеспечивает получение промежуточных и конечных результатов.

Вот так работает рекурсивная функция вычисления факториала:

Рекурсивное решение: факториал числа 5

В общем случае рекурсия тяготеет к <u>декларативному</u> стилю программированию. Если в двух словах: когда мы пишем императивную функцию (как делали все время до этого), отвечаем на вопрос, **как** достигнуть необходимого результата, а когда создаем декларативную — на вопрос, **что** такое наш результат.

Поэтому в **любой** рекурсивной функции должно быть как минимум **две** ветки развития «сюжета»:

- 1. Основная.
- 2. Точка выхода.

Сама функция при этом получается **декларативной**: она повторяет практически один в один определение факториала.

3. Опасность использования рекурсивных алгоритмов или что может пойти не так

Важно!

Наиболее распространенной ошибкой при использовании рекурсии является бесконечная рекурсия, когда цепочка вызовов функций никогда не завершается и продолжается, пока не кончится свободная память в компьютере.

Определим две наиболее распространенные причины для бесконечной рекурсии на примере некорректно написанной функции нахождения факториала числа.

```
def rec_factorial(number):
    return number * rec_factorial(number - 1)

def rec_factorial(number):
    if number == 0:
        return 1
    else:
        return number * rec_factorial(number)
```

Итак, при разработке рекурсивной функции необходимо прежде всего оформлять условия завершения рекурсия когда-либо завершит работу.

Важно!

Еще одна проблема, связанная с использованием рекурсивных функций, — нетривиальность задачи оценки сложности и эффективности алгоритма. Сложность этих алгоритмов зависит не только от сложности внутренних циклов, но и от количества итераций рекурсии. Рекурсивная процедура может выглядеть достаточно простой, но она может серьезно усложнить программу, многократно вызывая себя.

4. Красота требует жертв?

Напишем функцию перевода числа из десятичной системы счисления в двоичную (а на самом деле и в любую другую позиционную систему).

Для начала вспомним базовый алгоритм перевода:

Шаг 1. Разделить число на основание системы счисления, в которую осуществляется перевод (в нашем случае — два). Записать остаток.

Шаг 2. Если результат деления больше двух или равен двум, продолжать делить его на два до тех пор, пока результат деления не станет равен единице.

Шаг 3. Выписать результат последнего деления и все остатки от деления в обратном порядке в одну строку.

Рассмотрим на примере перевода числа 136 в двоичную систему счисления:

 $136_{10} = 10001000_2$

Декларативное описание этой функции звучит так:

- 1. Если число **a** больше единицы, напечатаем перевод в двоичную систему числа, равного целой части от деления **a** на два.
- 2. В противном случае напечатаем остаток от деления а на два.

С помощью рекурсии реализовать этот алгоритм можно очень красивым и лаконичным кодом.

```
def bin(a):
    if a > 1:
        bin(a // 2)
    print(a % 2, end="")
```

Теперь напишем функцию, которая вычисляет НОД (наибольший общий делитель) пары чисел А и В.

Определение:

- 1. Если число b равно 0, вернем число a.
- 2. В противном случае вернем значение функции (рекурсия) от числа **b** и остатка от деления числа **a** на число **b**.

```
def gcd(a, b):
    if b == 0:
        return a
    else:
```

```
return gcd(b, a % b)
print(gcd(16, 24))
```

И последний пример: функция, которая удаляет из строки s все вхождения символа e.

```
def del_all_e(s, e):
    if not s:
        return s
    elif e == s[0]:
        return del_all_e(s[1:], e)
    else:
        return s[0] + del_all_e(s[1:], e)
```

5. Несколько рекурсивных веток. Деревья

Рассмотрим в качестве примера функцию, вычисляющую числа Фибоначчи.

Числа Фибоначчи — ряд чисел: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89..., в котором два первых элемента равны 1, а каждый следующий — сумме двух предыдущих. Удивительно, что отношение двух соседних чисел Фибоначчи стремится к числу золотого сечения: 1,6180339887.

Составим рекурсивное определение этих чисел и сразу запишем его в виде функции:

```
def rec_fib(n):
    if 0 < n <= 2:
        return 1
    else:
        return rec_fib(n - 1) + rec_fib(n - 2)</pre>
```

Это удивительно, но программа почти слово в слово совпадает с определением чисел Фибоначчи!

Однако в этом примере мы столкнулись с новым типом рекурсии, в котором функция порождает целых **две** рекурсивные ветки. Неявно во время выполнения программы мы обходим дерево в глубину. Проиллюстрируем это на примере fib(6):

Важно понимать, что экземпляры функции выполняются не параллельно, а в детерминированной (то есть определенной) последовательности: сначала левое поддерево, а потом все правое поддерево из любой вершины.

Интересно и то, что дерево очень быстро разрастается при росте номера числа Фибоначчи, что влечет замедление программы и трату памяти.

Кстати, следующее число Фибоначчи вычисляется ровно в золотое сечение раз медленнее, чем предыдущее. Таким образом, fib(500) будет получено уже после того, как исчезнет Солнечная система.

Следующий пример демонстрирует этот факт. Запустите его и убедитесь:

```
from time import time

for i in range(30, 35):
    s = time()
    print(i, rec_fib(i), "%.03f" % (time() - s))
```

А теперь запустите простой императивный вариант:

```
from time import time

def fib(n):
    a, b = 1, 1
    for _ in range(n - 2):
        a, b = b, a + b
    return b

for i in range(30, 35):
    s = time()
```

```
print(i, fib(i), "%.03f" % (time() - s))
```

Второй вариант работает существенно быстрее.

А все потому, что в рекурсивном случае мы много раз вычисляем одно и то же число Фибоначчи. Никакого **кеширования** (запоминания предыдущих вычислений) не происходит. Кстати, оптимизации типа кеширования присутствуют по умолчанию в функциональных языках (LISP, Haskell). В Python включать такой функционал надо вручную.

В следующем примере запоминаются последние 1000 вызовов функции fib.

```
from time import time
from functools import lru_cache

@lru_cache(maxsize=1000)
def rec_fib(n):
    if 0 < n <= 2:
        return 1
    else:
        return rec_fib(n - 1) + rec_fib(n - 2)

for i in range(30, 35):
    s = time()
    print(i, rec_fib(i), "%.03f" % (time() - s))</pre>
```

Ну вот, теперь все работает быстро.

Перейдем к главному выводу.

Важно!

Рекурсивный метод обеспечивает удобный обход списка, дерева или графа, при этом контролируя перемещение по элементам и возвращение к предыдущим состояниям. Этим можно пользоваться во многих математических и прикладных задачах.

6. Бонус. Решаем судоку

7	8		4			1	2	
6				7	5			9
			6		1		7	8
		7		4		2	6	
		1		5		9	3	
9		4		6				5

	7		3			1	2
1	2			7	4		
	4	9	2	6			7

Вы уже могли сталкиваться с этой задачей раньше. Вспомните, как мы ее решали? Попробуем теперь предложить иной способ.

Предположим, что нам нужно сделать программу, которая разгадывает судоку. Пусть поле моделируется списком списков с целыми числами:

```
field = [
      [0,0,0,0,0,0,0,0],
      [0,1,0,0,2,0,0,3,0],
      [0,0,0,0,0,0,0,0],
      [0,4,0,0,5,0,0,6,0],
      [0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0],
      [0,7,0,0,8,0,0,0,0],
      [0,7,0,0,8,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0],
      [0,0,0,0,0,0,0],
       [0,0,0,0,0,0],
      [0,0,0,0,0,0],
      [0,0,0,0,0,0],
       [0,0,0,0,0,0],
      [0,0,0,0,0],
      [0,0,0,0,0],
      [0,0,0,0,0],
      [0,0,0,0,0],
      [0,0,0,0],
      [0,0,0,0],
      [0,0,0,0],
      [0,0,0],
      [0,0,0],
      [0,0,0],
      [0,0,0],
      [0,0,0],
      [0,0,0],
      [0,0,0],
      [0,0,0],
      [0,0,0],
      [0,0,0],
      [0,0,0],
      [0,0,0],
      [0,0,0],
      [0,0,0],
      [0,0,0],
      [0,0],
      [0,0],
      [0,0],
      [0,0],
      [0,0],
      [0,0],
```

Сформулируем рекурсивный алгоритм решения судоку.

- Если на поле судоку нет пустых клеток, оно уже решено и надо просто вернуть поле в качестве решения
- Если есть пустые клетки, надо вычислить какую-либо пустую клетку, для которой количество возможных вариантов минимально. Попробовать по очереди проверять эти варианты, и, если будет найдено решение, вернуть его

Сама функция будет не сильно больше данного описания:

```
from pprint import pprint
from copy import deepcopy
from random import shuffle
from time import clock
.....
Для всех клеток на основе ограничений
возвращает список возможных чисел, например:
(0, 0, \{2, 3, 4, 5, 6, 7, 8, 9\})
(0, 1, \{2, 3, 5, 6, 8, 9\})
(0, 2, \{2, 3, 4, 5, 6, 7, 8, 9\})
(0, 3, \{1, 3, 4, 5, 6, 7, 8, 9\})
(0, 4, \{1, 3, 4, 6, 7, 9\})
(0, 5, \{1, 3, 4, 5, 6, 7, 8, 9\})
(0, 6, \{1, 2, 4, 5, 6, 7, 8, 9\})
(0, 7, \{1, 2, 4, 5, 7, 8\})
(0, 8, \{1, 2, 4, 5, 6, 7, 8, 9\})
(1, 0, \{4, 5, 6, 7, 8, 9\})
```

```
def get_variants(sudoku):
   variants = []
   for i, row in enumerate(sudoku):
        for j, value in enumerate(row):
            if not value:
                # значения в строке
                row_values = set(row)
                # значения в столбце
                column_values = set([sudoku[k][j] for k in range(9)])
                # в каком квадрате 3х3 находится клетка?
                # Координаты этого квадрата
                sq_y = i // 3
                sq_x = j // 3
                square3x3_values = set([
                    sudoku[m][n]
                    for m in range(sq_y * 3, sq_y * 3 + 3)
                    for n in range(sq_x * 3, sq_x * 3 + 3)
                1)
                exists = row_values | column_values | square3x3_values
                # какие значения остались?
                values = set(range(1, 10)) - exists
                variants.append((i, j, values))
   return variants
def solve(sudoku):
   # Если судоку заполнено, это ответ
   if all([k for row in sudoku for k in row]):
        return sudoku
   # Иначе посмотрим все варианты
   variants = get_variants(sudoku)
   # Выберем тот, у которого меньше всего возможностей.
   x, y, values = min(variants, key=lambda x: len(x[2]))
   # Попробуем все по очереди
   for v in values:
       # deepcopy создает полную копию списка с учетом всех вложенностей
       new_sudoku = deepcopy(sudoku)
       new_sudoku[x][y] = v
       # Если оно решилось, возвратим ответ.
        s = solve(new_sudoku)
       if s:
           return s
   return None
```

s = clock()

А вот еще один пример рекурсивного решения задачи. Он гораздо короче, но в нем есть питоновские штуки.

```
from random import shuffle
from copy import deepcopy
from pprint import pprint
def make assumptions(sudoku):
    for i, row in enumerate(sudoku):
        for j, value in enumerate(row):
            if not value:
                values = set(row) \
                         set([sudoku[k][j] for k in range(9)]) \
                         | set([sudoku[m][n] for m in range((i // 3) * 3, (i // 3) * 3 + 3)
                                for n in range((j // 3) * 3, (j // 3) * 3 + 3)])
                yield i, j, list(set(range(1, 10)) - values)
def solve(sudoku):
    if all([k for row in sudoku for k in row]):
        return sudoku
    assumptions = list(make_assumptions(sudoku))
    shuffle(assumptions)
    x, y, values = min(assumptions, key=lambda x: len(x[2]))
    for v in values:
        new_sudoku = deepcopy(sudoku)
        new_sudoku[x][y] = v
        s = solve(new_sudoku)
        if s:
            return s
    return None
pprint(solve(field))
```

программ.

Попробуйте сравнить эти программы с императивным вариантом (без использования рекурсии).

С рекурсией вы еще встретитесь много раз. Помните: это **не панацея**, но позволяет элегантно и эффективно решать широкий круг задач.

А пока — все, переходите к задачам!

Справка

Исключительное право на учебную программу и все сопутствующие ей учебные материалы, доступные в рамках сервиса, принадлежат АНО ДПО «Образовательные технологии Яндекса». Воспроизведение, копирование, распространение и иное использование программы и материалов допустимо только с предварительного письменного согласия АНО ДПО «Образовательные технологии Яндекса». Пользовательское соглашение.

© 2018 - 2024 ООО «Яндекс»