UNIVERSITY OF LONDON IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

EXAMINATIONS 2004

BEng Honours Degree in Computing Part I
MEng Honours Degrees in Computing Part I
for Internal Students of the Imperial College of Science, Technology and Medicine

This paper is also taken for the relevant examinations for the Associateship of the City and Guilds of London Institute

PAPER C112

HARDWARE

Tuesday 11 May 2004, 10:00 Duration: 90 minutes (Reading time 5 minutes)

Answer THREE questions

Paper contains 4 questions Calculators required

1. Computer Arithmetic

a A half adder is defined by the following truth table

A	В	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1

Design a combinatorial logic circuit with inputs A and B and outputs S and C.

- b A full adder has additionally a carry in. Show how two half adders and one *OR* gate can be connected to make a full adder.
- Negative numbers are often represented by their two's complement. This is found by flipping each bit of an n bit number and incrementing the result. Design an n-bit two's complement circuit using n half adders and any other gates you require.
- d Using four AND gates and two half adders design a two bit multiplier with inputs A1 A0 and B1 B0 and outputs O3 O2 O1 and O0.
- e Show how to connect up four of your two bit multipliers designed in part c to make a four bit multiplier.

The five parts carry equal marks

2. Sequential Circuit Design

A counter is to work in four modes determined by two input bits as follows. When the input is (0,0) the counter goes through the sequence 0,1,2,3,0,1,2,3. When the input is (0,1) the counter goes through the sequence 0,2,3,0,2,3. When the input is (1,0) the counter goes through the sequence 0,2,1,0,2,1. When the input is (1,1) the counter goes through the sequence 1,2,1,2,1,2.

- a. Draw the state transition diagram (using the Moore finite machine model) that corresponds to the above specification
- b. Compile a state transition table in the following format using dont-cares wherever possible:

Input		Current State		Next State	
I1	I0	Q1	Q0	D1	D0
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1				
0	1				
0	1				
0	1				
1	0				
1	0				
1	0				
1	0				
1	1				
1	1				
1	1				
1	1				

- c. Draw Karnaugh maps for D0 and D1 and determine the minimum form of the Boolean equations for D0 and D1 to implement the counter.
- d. Explain what will happen to you circuit in the following circumstances:
 - (i) The circuit is in state 3 and the input changes to (1.0)
 - (ii) The circuit is in stat 3 and the input changes to (1,1)
 - (iii) The circuit is in state 0 and the input changes to (1,1)

The four parts carry equal marks.

3. The Manual Processor

An 8-bit manual processor has the following block diagram.

The functions of the various components are defined by the following tables:

Shifter:

SHIRCI.			
Function Select	Shift	Carry in	Function
000	unchanged	1	unchanged
001	left	0	arithmetic/logical shift left
010	right	1	?
011	right	0	logical shift right
100	unchanged	data bit 7	unchanged
101	left	CY in	left shift with carry
110	right	data bit 7	arithmetic right shift
111	right	CY in	right shift with carry

ALU:

Selection Bits	000	001	010	011	100	101	110	111
Result	0	B mi A	A mi B	A pl B	A xor B	A+B	A.B	-1

The processor goes through a fixed cycle of five states in which the following clock gates are applied:

State	Clock
1	CLKIR
2	CLKA
3	CLKB and CLKC
4	CLKIR
5	CLKRES and CLKC

The following two instructions are to be designed for use with the processor:

SUB: which will subtract the first number on the *data in* lines from the second, and place the result on the *data out* lines during state 5.

INC: which will take a number from the *data in* lines, increment it and place the result on the *data out* lines during state 5.

a. Determine the register transfers that will be carried out during each state of the processor cycle, by constructing a table in the following form.

	S	SUB	INC		
State	Source	Destination	Source	Destination	
1	DataIn	IR			
2			.,,,,,	3	
etc.					

b. Find the contents of the instruction register in states 2 to 5 of the processor cycle for both the SUB and INC instructions. This will be determined by the *data in* lines in states 1 and 4 and will contain don't care values.

The two parts carry equal marks.

4. Registers

a. The D-type latch has the following circuit. The inputs to the circuit, as a function of time are shown below can be treated as changing between 0 and 1.

Calculate the value of Q at the times t1, t2, t3 and t4 shown in the diagram.

- b. Show how two D-type latches of the type shown in part a may be connected together, with other gates if required, to form an edge triggered D-Q flip flop.
- c. Show, with a suitable diagram, how D-Q flip flops may be connected to form a serial to parallel converter.
- d. Give an example where serial to parallel conversion is used in digital computer systems. Explain briefly why it is necessary.
- e. As part of a hardware design it is necessary to have a four bit register which will carry out two different functions. These are serial load (with most significant bit arriving last) and rotate left. Draw a diagram showing the complete circuit of this register. You may use the following components in your design:

D-Q flip flops AND gates OR gates INVERTER gates

The five parts carry, respectively, 20%,20%,15%,15%,30% of the marks.