Challenges of In-space Additive Manufacturing

Michael Waid

NASA Johnson Space Center

JOURNEY TO MARS INTERNATIONAL SPACE STATION SPACE LAUNCH SYSTEM (SLS) ORBITERS LANDERS MARS TRANSFER SPACECRAFT IN-SPACE HABITAT COMMERCIAL **CARGO AND CREW**

Case for In-space Manufacturing

- Logistics Supportability
 - Limited mass and volume allocation
 - Limited or no re-supply capability
 - Mars Tranist missions will have no re-supply
 - Mars and Lunar surface missions have limited re-supply capability and cargo vehicle arrival durations are in extended time periods.
- Failure Tolerance
 - Sparing for diverse mechanisms and tools
 - Structural damage at different locations and structural configurations/geometry
 - Designing and developing doublers for all possible damages and locations is not feasible.
 - Custom structural doubler manufacturing on the ground and re-supplying to the spacecraft is not an option.

Why Additive Manufacturing (AM)?

- Minimized Material Usage
- Reduced Material Removal
- Generic Feedstock
- Complex Geometries
- Reduced Part Count

System trade required for cost-benefit

Trade Flexibility, Mass, Volume, Power, Crew time, data, reliability, etc.

Fly repair kits and spares for as many situations as possible

Fly flexible additive mfg/repair system + generic feedstock

Historical - In-space Manufacturing (Metallic)

In-space Welding

- Long History of Space Welding Development for Repair and Joining
- Safety concerns for space shuttle experiment due to manual operation by crew member in fabric space suit
- Prior to capable Extravehicular Robotics (EVR) and additive manufacturing

Year	Activity	Country	Process	Vehicle	Images	Outcome
1969	Vulcan, Self-contained experiment	Russia	EB, Arc	Soyuz 6	1	First demonstration of on-orbit welding.
1973	M551 Materials Melting, Self- contained experiment	US/MSFC	EB	Skylab I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Demonstrated metallurgy of 2219-T87 welds in microgravity.
1984	First Manual Electron On-orbit Manual Weld	Russia/ Ukraine	ЕВ	Salyut 7		Demonstrated concept and challenges of maintaining control during welding in a space suit.
1989	On-orbit Electron Beam Welding Experiment Definition	US (MSFC/ Martin Marietta)	EB	Ground Demo only		Demonstrated on-orbit repair concept, weld schedule, and 2219-T87 metallurgy utilizing beam deflection.
1990s	International Space Welding Experiment	US (MSFC)/ Ukraine (Paton Weld Institute)	EB	Space Shuttle (Not Flown)		Demonstrated safety challenges associated with manual EVA welding.

EBF³ C9 Reduced Gravity Aircraft Testing

- Electron Beam Freeform Fabrication (EBF³) developed by NASA LaRC
- Electron Beam, Wire Feeder, and positioning system deposit near-net-shape material in vacuum

 Demonstrated that surface tension enables deposition of melt pool in microgravity

K. Taminger, Langley Research Center

Historical – Part Additive Manufacturing and Certification Pathfinder (2011)

Receptacle - Coarse Alignment Guide

- Receptacle used on last shuttle flight
- Additive part fabricated concurrent to flight part (as flight, not flown)
- Electron Beam Freeform Fabrication
- Point certification to pathfind certification process

Challenges – Additive Manufacturing (AM)

- Structural Certification Approach
- Process-dependent Material Allowables (process control)
 - Properties dependent on process and location in part
 - Many process variables
- Defects
 - Porosity
 - Line defects
- Tolerances, Finish Machining, and Residual Stresses
- Non-destructive Evaluation
 - Rough surfaces
 - Complex Geometries
- Design for Manufacturability

Application - Exploration AM Sparing Concept

- System design incorporates component-level sparing
- Original design accommodates use of AM for sparing
 - Original parts are fabricated with AM or
 - AM part/material listed as acceptable alternate
- Before mission, certification of AM part on the ground
- On-demand AM of parts as needed
- On-orbit process control and acceptance testing for verification

Application - Habitable Module Pressure Wall Repair

Scenario: Micrometeoroid Orbital Debris Penetrates Module Pressure Wall. Structural doubler required.

ISS Module

Damage

Repair Options:

- 1) Custom doubler machined and welded over damage
- 2) Doubler additively deposited directly over damage

Machined Doublers over damage

Doubler Robotic Welding or Additive Deposition Concept

Note: SPDM shown does not have resolution for additive, but other EVR could be used.

Robotic Additive Deposition Repair Testing

Material

K. Taminger, Langley Research Center

Development Recommendations

- Develop AM process control and 'allowable' approach
- Perform additional AM part and repair demonstrations
- International Space Station AM experiment to further study metal deposition and develop material properties in microgravity/space environment
- Perform system trade studies to evaluate cost-benefit
- Develop system concept for exploration manufacturing/repair system
 - Autonomous Operation and Data Architecture
 - Space robotics
 - System Packaging
 - Reduced Mass/Volume/Power
 - Integrated Finish Machining
 - Integrated Dimensional and Non-Destructive Evaluation
 - Fixtures and Assembly
 - Quality and Inventory Management
 - Crew Safety and Health