MNN. Xiremed Roers. Com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

0625 PHYSICS

0625/31

Paper 31 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2010	0625	31

Notes about Mark Scheme Symbols and Other Matters

B marks are independent marks, which do not depend on any other marks. For a B mark to be scored, the point to which it refers must actually be seen in the candidate's answer.

M marks are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers **must** be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.

C marks are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, provided subsequent working gives evidence that they must have known it e.g. if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows he knew the equation, then the C mark is scored.

A marks are accuracy or answer marks which either depend on an M mark, or which are one of the ways which allow a C mark to be scored.

c.a.o. means "correct answer only".

e.c.f. means "error carried forward". This indicates that if a candidate has made an earlier mistake and has carried his incorrect value forward to subsequent stages of working, he may be given marks indicated by e.c.f. provided his subsequent working is correct, bearing in mind his earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but **only** applies to marks annotated "e.c.f."

e.e.o.o. means "each error or omission".

brackets () around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets e.g. 10 (J) means that the mark is scored for 10, regardless of the unit given.

	. age e		IGCSE – May/June 2010	0625	31	
			1003E - May/Julie 2010	0025	JI	
1	(a)	constant	es / braking / decelerating) / steady / nothing) all 3 s / accelerate)		B1	
	(b)	OR any	time in any form, symbols, numbers or words area under graph used or stated OR 24 (s) seen or used in correct context		C1 C1 A1	
	(c)	rate of cl	nange of speed OR gradient of graph OR 18/12		C1	
		18 (m/s) 1.5 m/s ²	OR 12 (s) seen or used in correct context		C1 A1	
	(d)		adient / slope OR equal speed changes in equal tir aph symmetrical	mes OR	B1	[8]
2	(a)	½mv² O 405 000	R $\frac{1}{2} \times 900 \times 30^2$ J		C1 A1	
	(b)		istance OR 2000 x 30 OR 60 kJ		C1 A1	
	(c)	60 000 V	V OR 60 000 J/s OR 60kW OR 60 kJ/s ecf from	(b)	B1	
	(d)	chemica	I		B1	
	(e)		nergy loss / heat / sound / inefficiency / energy used y of increase in P.E. Ignore work done against aga		B1	[7]
3	(a)		ment re-written to include force in first gap and <u>inversional</u> to mass in second gap. NOT indirectly proportion		B1	
	(b)	F = ma	OR in words in any correct arrangement		B1	
	(c)	` '	ing OR continues as before OR same / constant e / constant speed & direction OR no acceleration	velocity OR	B1	
		` '	of retardation. Ignore stop. Ignore brakes. Ignore gosite direction	oes in	B1	
		` '	es in (arc of a) circle or curve OR deflected OR tonges direction	urns OR	B1	[5]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 3

	Pa	Page 4		Mark Scheme: Teachers' version IGCSE – May/June 2010	Syllabus 0625	Paper 31	
4	(a)	ma	tt blad	•	0023	B1	
	(b)	(i) L down and R up, equal amounts (by eye)				B1	
		(ii) on black side or on left (more) energy / heat absorbed OR greater temp rise OR heats up quicker				B1	
			on b	plack side or on left greater expansion of air / greater	pressure of air	B1	[4]
5	(a)	_	e <u>rgy</u> / te / pł	<u>heat</u> required to change state / phase / any example hase	e of change of	M1	
				change in temperature / at a specified temperature gy to break bonds between molecules /atoms		A1 M1	
				change in K.E.		A1	
	(b)	any	time	or range of time between 1.6 (min) and 14.0 (min)	inclusive [no UP]	B1	
	(c)	turns substance to gas / vapour OR causes evaporation OR escape from liquid				C1	
		energy to break bonds/separate molecules/overcome intermolecular forces Ignore move faster / PE increases				A1	
	(d)	(i) Pt/2×4/2000×4/2×240/2000×240/8/8000/480/480000 480 000 J OR 480 kJ				C1 A1	
		(ii) (θ =) 43 (°C) seen anywhere Q = mcθ OR 480000 = m x 1760 × 43 in any form ecf. from (i) 6.34 kg or 6.3 kg ecf.		C1 C1 A1	[10]		
6	(a)	(i)	sam	ne / unchanged / nothing		B1	
		(ii)	redu	uced / slows down		B1	
		(iii)	redu	uced		B1	
	(b)	v =	fλ in	any form or in words [not numbers]			
	(~)	OR $f = 1/T$ in any form or in words [not numbers] $0.12 = f \times 0.08$ OR $T = 0.08 / 0.12$				B1 C1	
		1.5 Hz / cycles per sec / c.p.s. / per s			A1		
		[only 2 marks if B1 mark above not scored]				ΑI	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2010	0625	31

(c)

(ignore length of waves) waves bending in correct direction (be generous) A and B correct by eye, straight and parallel C and D parallel to A and B by eye

M1 **A1 A1**

B1

B1

[9]

- 7 (a) idea of light travelling (much) faster than sound
 - **(b) (i)** 4.0 (min) **B1**
 - (ii) always a (measurable) time difference / never zero time difference Ignore time would be less В1
 - C1 (iii) distance/time in any form, symbols, words, numbers OR 1200/3.6 333.3 m/s to 2 or more sig figs Α1
 - (iv) idea of light travelling instantaneously OR no wind OR idea of lightning at ground level OR no obstruction to sound Ignore echoes

(c)

	light waves	sound waves
longitudinal		√
transverse	✓	
electromagnetic	✓	
mechanical		✓

-1 e.e.o.o. i.e. 1 mark subtracted from $\underline{3}$ for each error or omission

B3 [9]

1 age o			IGCSE – May/June 2010	0625	31		
8	(a)	(i)		$I_2 = V_1/V_2$ in any form, symbols, words or numb turns) [possible unit penalty]	-	C1 A1	
		(ii)	men	tion of magnetic / electromagnetic field			
				nge of flux linkage / magnetism) field lines being cut	any 3	B1 x 3	
			Indu	ced current / emf / voltage)		
				er coils in secondary so smaller emf / voltage arger current			
		(iii)	eddy mag	in either coil / wires / currents in core / heat in core netic leakage from core nd from core/coil	any 1	B1	
	(b)	(i)	12 V	′ <u>d.c</u> . OR low <u>d.c</u> .voltage		B1	
		(ii)	diod	e OR rectifier [Ignore extras unless wrong]		B1	
	(c)			${\rm I}_2$ in any form, or words or numbers er in = power out or equivalent		C1	
		8 A				A1	[10]
9	(a)			er – field / magnetism / flux inger – current / charge flow (NOT electron flow))) both	В1	
	(b)	(i)		h OR contact OR <u>sliding</u> connector ring OR commutator NOT slip ring		B1 B1	
		(ii)		kwise OR right side down OR left side up OF gure NOT turn to the right	R correct arrows	B1	
		(iii)	more	e current / more voltage / "stronger battery" / mo e turns on coil / more coils nger magnet Ignore bigger magnets)		
			close	er magnet / magnetic poles e magnets) any	y 2 B1, B1	
			iron	_)	[6]	

Mark Scheme: Teachers' version

Syllabus

Paper

Page 6

	Page 7		Mark Scheme: Teachers' version	Syllabus	Paper	
			IGCSE – May/June 2010	0625	31	
10	(a)	proton number OR atomic number OR (number of) protons / electrons OR position in periodic table OR chemical properties		B1		
	(b)	•	umber) OR nucleon number OR (number of) neut mber of) protons <u>plus</u> (number of) neutrons	rons / nucleons	В1	
	(c)	OR	s (number) OR nucleon number OR (number of) r (number of) protons <u>plus</u> (number of) neutrons		B1	
		 (ii) proton number OR atomic number OR (number of) neutrons OR (number of) protons / neutrons / electrons OR position in periodic table OR chemical properties OR a neutron changes into a proton 		B1	[4]	
11	(a)	(i) 4 Ω			B1	
		` '	• •	numbers	C1 C1 A1	
	(b)	$R = \rho L/A$	A OR R \propto L/A OR R \propto L and R \propto 1/A or 1/d ² or	1/r ²	C1	
		$R_2 = (0.4)$	$A_1 ext{ OR } A_2 = 0.25A_1$ $A_2 = 0.25A_1$ $A_3 = 0.375 ext{ OR } (3/2) \times R_1$ $A_4 = 0.375 ext{ OR } 37.5 ext{ } \%$		C1 C1 A1	
			A OR R \propto L/A OR R \propto L and R \propto 1/A or 1/d ² or	1/r ²	C1	
		Resistan	ice of thinner wire with same length as thicker wire =	= 4 × 4 = 16 Ω	C1	
		Actual re	esistance of thinner wire = 1.8 /0.3 = 6.0 Ω		C1	
		Ratio: L	of thinner wire / L of thicker wire = 6.0 / 16 = 3/8 = 0	.375 = 37.5 %	A1	[8]