EE901 PROBABILITY AND RANDOM PROCESSES

MODULE 5 FUNCTIONS OF RANDOM VARIABLES

Abhishek Gupta

ELECTRICAL ENGINEERING IIT KANPUR

1

Function of a Random Variable

- Random variables take different values each time the experiment is performed.
- Consider a physical system (for example, a machine) which gives a random output X. Suppose it is an electric current.
- · Its random output results from a random experiment going inside the machine.
- Every value of X corresponds to one outcome.
- So X is a random variable. Underlying probability space is $(\Omega, \mathcal{F}, \mathbb{P})$.

2

Function of a Random Variable

- We may be interested in the power of the output signal $Y = X^2$ or any other function of X.
- What is Y?
- $\it Y$ also takes many values. One corresponding to each value of $\it X$ and hence, each outcome.
- Is Y a random variable? If yes, what is its distribution?

Transformation of Discrete Random Variables

4

Example: DRV with Two Values

Consider a RV X which takes two values a and b with probability p_a and p_b

$$\begin{split} X \colon \Omega \to \mathbb{R} \\ X(\omega) &= \begin{cases} a & \text{if } \omega \in E_a \\ b & \text{if } \omega \in E_b \end{cases} \end{split}$$

5

Example: DRV with Two Values

Example: DRV with Two Value:

7

Transformation of a RV

Consider a RV XLet a function g be defined on the range of X

 $g:\mathcal{R}(X)\to\mathbb{R}$ What is g(X)?

Whenever we perform the experiment, we look at the output g(X).

8

Transformation of a RV

Consider a RV XLet a function g be defined on the range of X

 $g:\mathcal{R}(X)\to\mathbb{R}$ What is g(X)?

Whenever we perform the experiment, we look at the output g(X).

Let Y = g(X)Then, for each ω $Y(\omega) = g(X(\omega))$

Transformation of a RV

Consider a RV X
Let a function g be defined on the range of X

 $g:\mathcal{R}(X)\to\mathbb{R}$

Let Y = g(X)Then for each ω

 $Y(\omega) = g(X(\omega))$

g(X) is a random variable.

10

Distribution of a Function of RV

Y = g(X) is a random variable.

What will be its distribution?

11

Example: DRV with Two Values

13

14

- Consider a RV $\it X$ which takes two values $\it a$ and \emph{b} with probability $\emph{p}_\emph{a}$ and $\emph{p}_\emph{b}$
- If the experiment is repeated N times,
- Approximately
 - $N_a = N p_a$ times, the outcome is a
 - $N_b = N p_b$ times, the outcome is b.
- Average is

	N
$aN_a + bN_b$	$\frac{Np_aa + Np_bb}{N} = ap_a + bp_b$
	$N = ap_a + op_b$

a b a b a b a a a b a b a b a a

Frequency Interpretation and Expectation

- * Consider a RV \it{X} which takes two values \it{a} and \it{b} with probability \it{p}_a and \it{p}_b
- If the experiment is repeated N times,
- Approximately
 - $N_a = N p_a$ times, the outcome is a^2
 - $N_b = N p_b$ times, the outcome is b^2 .
- Average is

$$\begin{split} &\frac{a^2+a^2+\dots N_a \text{ times } +b^2+b^2+\dots N_b \text{ times}}{N} \\ &=\frac{a^2N_a+b^2N_b}{N} = \frac{Np_aa^2+Np_bb^2}{N} = a^2p_a+b^2p_b \end{split}$$

a b a b a b a a a a b a b a b a a

 $a^2 \ b^2 \ a^2 \ b^2 \ a^2 \ b^2 \ a^2 \ b^2 \ a^2 \ a^2 \ a^2 \ b^2 \ a^2 \ b^2 \ a^2 \ b^2 \ a^2 \ b^2$

16

Expectation

For a DRV X $\mathbb{E}[X] = \sum p_X(x_i)x_i$

For a DRV X and a function g

 $\mathbb{E}[g(X)] = \sum_{i} p_X(x_i)g(x_i)$

Let Y = a(X)

What if we consider PMF of Y directly to compute $\mathbb{E}[Y]$

17

Expectation

For a DRV Y and a function g

$$\mathbb{E}[Y] = \sum_i p_Y(y_i) \; y_i$$

Y takes the same number of values Corresponding to each x_i , there is a point where probability of Y, $p_Y(y_i)$, is concentrated

$$y_i = g(x_i)$$

$$p_Y(y) = \begin{cases} g(x_1) & \text{with probability } p_1 \\ g(x_2) & \text{with probability } p_2 \end{cases}$$

Expectation			- t DD/
EXPECTATIO	n ot Fi	Inction	

For a DRV Y and a function g

$$p_{Y}(y) = \begin{cases} g(x_{1}) & \text{with probability } p_{1} \\ g(x_{2}) & \text{with probability } p_{2} \\ \vdots & \vdots \\ y_{i} & p_{X}(x_{i}) \end{cases}$$

$$\mathbb{E}[Y] = \sum_{i} p_{Y}(y_{i}) y_{i}$$
$$= \sum_{i} p_{X}(x_{i}) g(x_{i})$$

 $= \mathbb{E}[g(X)]$

 $y_1 = g(x_1)$ $y_2 = g(x_2)$ $y_4 = g(x_4)$ $y_3 = g(x_5)$ What happens when function g does not map to unique values?

19

- Consider a discrete random variable \emph{X} with PMF

$$\mathbf{p}_{X}(x) = \begin{cases} 1/3 & \text{for } x = -1\\ 1/3 & \text{for } x = 0\\ 1/3 & \text{for } x = 1 \end{cases}$$

• Let $Y = X^2$

20

Example

$$\begin{split} \mathbb{P}[Y=0] &= \mathbb{P}[X^2=0] = \mathbb{P}[X=0] = \frac{1}{3} \\ \mathbb{P}[Y=1] &= \mathbb{P}[X^2=1] = \mathbb{P}[X=+1, \text{ or } X=-1] \\ &= \mathbb{P}\left[\{\omega: X(\omega)=1\} \cup \{\omega: X(\omega)=-1\}\right] = \mathbb{P}\left[E_1 \cup E_2\right] \end{split}$$

Events E_1 and E_2 are disjoint,

$$\begin{split} &= \mathbb{P}\big[\{\omega: X(\omega)=1\}\big] + \mathbb{P}\big[\{\omega: X(\omega)=-1\}\big] \\ &= \frac{1}{3} + \frac{1}{3} = \frac{2}{3}. \end{split}$$

22

Example

$$\mathbb{P}[Y = 0] = \frac{1}{3}$$
 $\mathbb{P}[Y = 1] = \frac{2}{3}$.

CDF

23

Distribution of a Function of DRV

Distribution of a Function of DRV		
	_	
	-	
	-	
	-	
	-	
	_	
25	_	
Expectation of a Function of DRV		
	_	
	-	
	_	
	_	
	_	
26		
	_	
	-	
	-	
	-	
	_	
	_	