A = $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 7 & 9 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -3 & -6 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0$ Ex 1) Does the linear system Ax = 0 have non-trivial solutions when

Find a formula for all solutions.

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + X_3 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$
There are non-trivial solutions.

 $A = \begin{pmatrix} 123 \\ 456 \\ 579 \end{pmatrix} \text{ and } b = \begin{pmatrix} -7 \\ 5 \\ K \end{pmatrix} \quad \begin{pmatrix} A | b \end{pmatrix} \sim \begin{pmatrix} 12 & 3 & -7 \\ 0-3-6 & 33 \\ 0-3-6 & 35+K \end{pmatrix} \sim \begin{pmatrix} 12 & 3 & -7 \\ 0 & 12 & -11 \\ 0 & 0 & 0 & K+2 \end{pmatrix}$ Ex 2) Fill in the missing value so that the linear system Ax = b with

is consistent. Find a formula for all solutions in this case.

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 15 \\ -11 \\ 0 \end{pmatrix} + \chi_{3} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

 $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 15 \\ -11 \\ 0 \end{pmatrix} + \chi_3 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & -7 \\ 0 & 1 & 2 & -11 \\ 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 1 & 2 & -11 \\ 0 & 1 & 2 & -11 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ Ex 3) Explain what it means about the vectors a_1, a_2 , and a_3 if $a_1x_1 + a_2x_2 + a_3x_3 = 0$ has a non-trivial solution for the weights x_i .

It means there are not really 3 different vectors!

Vectors. You do not need all 3 vectors!