# Highly parallel auto-differentiate system for deep learning

Zeliang Zhang

#### Overview

- Background & Related work
- Optimized primitives using GPU Tensor Cores
- High performance neural network training w/o BP
- Evaluations
- Future work

## Background & Related work

- Pattern: Big model, Big data, Big time
- Acceleration: CPU/GPU/TPU/NPU
- Optimization: Chain-rule based backpropagation

But in fact, chain rule is not the only way to get the gradient.......









#### Optimized primitives using GPU tensor cores

#### "Primitives" in NN:

- Convolutional layer
- Fully connected layer
- Element-wise activation
- Hadamard product

Matrix multiplications



#### Optimized primitives using GPU tensor cores







What we need to do is just to accelerate the matrix multiplications

### Neural network training w/o BP



## High performance neural network training w/o BP

$$f(H^{(l)},A) = \sigma \left( \widehat{D}^{-0.5} \widehat{A} \widehat{D}^{-0.5} H^{(l)} W^{(l)} \right)$$

$$\widehat{D} = \operatorname{diag}(A), \widehat{A} = A + I$$

$$f(H^{(l)},A) = \sigma \left( \widehat{D}^{-0.5} \widehat{A} \widehat{D}^{-0.5} H^{(l)} W^{(l)} + Z^{(l)} \right)$$

Forward:

Backward:

$$(h_{t}, c_{t}) = \varphi(u_{t}, v_{t}), \quad u_{t} = \theta^{hh} h_{t-1} + b^{hh} + z_{t}^{hh}, \quad v_{t} = \theta^{xh} x_{t} + b^{xh} + z_{t}^{xh}$$

$$z_{t}^{hh} = (\Sigma^{hh})^{-\frac{1}{2}} \varepsilon_{t}^{hh}, \varepsilon_{t}^{hh} \sim N(0, I), \quad z_{t}^{xh} = (\Sigma^{xh})^{-\frac{1}{2}} \varepsilon_{t}^{xh}, \varepsilon_{t}^{xh} \sim N(0, I)$$

$$\nabla_{\theta^{hh}} \mathbb{E} \left[ L(h, c; \omega) \right] = \mathbb{E} \left[ L(h, c; \omega) \sum_{t=1}^{T} (\Sigma^{hh})^{-\frac{1}{2}} \varepsilon_t^{hh} h_t^{\top} \right]$$
$$\nabla_{\theta^{xh}} \mathbb{E} \left[ L(h, c; \omega) \right] = \mathbb{E} \left[ L(h, c; \omega) \sum_{t=1}^{T} (\Sigma^{xh})^{-\frac{1}{2}} \varepsilon_t^{xh} x_t^{\top} \right]$$

## Problems & Challenges



#### Solutions for variance reduction



Layer-wise perturbation

$$I = \frac{1}{N} \sum_{i=1}^{N} g(\mathbf{X}_{i}) = \frac{1}{N} \sum_{i=1}^{N} G_{i}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \frac{G_{2i-1} + G_{2i}}{2} = \frac{1}{n} \sum_{i=1}^{n} H_{i}$$

$$G_{i} = g(\mathbf{X}_{i}) \text{ and } H_{i} = \frac{G_{2i-1} + G_{2i}}{2}$$

$$\sigma_{h}^{2} = \text{Var}(H_{i})$$

$$= \frac{1}{4} (\sigma_{g}^{2} + \sigma_{g}^{2} + 2\text{Cov}(H_{2i-1}, H_{2i}))$$

$$= \frac{1}{2} (\sigma_{g}^{2} + \text{Cov}(G_{2i-1}, G_{2i})).$$

**Antithetic Variable** 

## **Implementations**



#### **Evaluations**

| Model | Meth<br>od | Acc. | Time/epoch |
|-------|------------|------|------------|
| MLP   | BP         | 99.5 | 1 min 17 s |
|       | LR-F       | 92.2 | 3 min 09 s |
|       | LR-L       | 92.2 | 3 min 45 s |
|       | LR-M       | 99.5 | 58 s       |

| Model | Meth<br>od | Acc. | Time/epoch |
|-------|------------|------|------------|
| RNN   | BP         | 88.3 | 3 min 15 s |
|       | LR-F       | 84.2 | 4 min 35 s |
|       | LR-L       | 84.3 | 5 min 27 s |
|       | LR-M       | 88.4 | 2 min 20 s |

| Model | Meth<br>od | Acc. | Time/epoch |
|-------|------------|------|------------|
| GCN   | BP         | 80.4 | 1 min 51 s |
|       | LR-F       | 75.6 | 3 min 23 s |
|       | LR-L       | 75.2 | 4 min 19 s |
|       | LR-M       | 78.8 | 1 min 43 s |

Results on MNIST dataset

Results on Ag-News dataset

Results on Cora dataset

#### Limitations & Future work

Improvement for the pure layer-wise parallel strategy

Fine-grained parallelism design

Better suitable data structure

. . .

