

Bài 02: Số nguyên

Phạm Tuấn Sơn ptson@fit.hcmus.edu.vn

Hệ cơ số 10

- $A = 123 = 100 + 20 + 3 = 1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0$
 - Tổng quát số hệ cơ số q

$$X_{n-1}...X_1X_0 = X_{n-1} \times q^{n-1} + ... + X_1 \times q^1 + X_0 \times q^0$$

Mỗi chữ số X_i lấy từ tập X có q phần tử

- q=2, X={0,1}: hệ nhị phân (binary)
- q=8, X={0,1,2,...7}: hệ bát phân (octal)
- q=10, X={0,1,2,...9} : hệ thập phân (decimal)
- q=16, X={0,1,2,..9,A,B,..F} : hệ thập lục phân (hexadecimal)

A = 123d = 011111011b = 173o = 7Bh

Hệ nhị phân

$$X_{n-1}...X_1X_0$$
, $X=\{0,1\}$

- Được dùng nhiều trong máy tính. Tại sao ?
 - n gọi là chiều dài bit của số đó
- Bit trái nhất X_{n-1} là bit có giá trị nhất (MSB)
- Bit phải nhất X₀ là bit ít có giá trị nhất (LSB)
- Giá trị thập phân:

	1171	I	U
	Phạm vi biểu	diễn: từ	ừ 0 đến 2 ⁿ -1
•	Để chuyển đổi sar	ng hệ 1	6, chỉ cần gom
7	từng nhóm 4 bit tù	r phải s	sang trái
•	Ví dụ: A = 011110	<u>11</u> b	

 $X_{n,4} \times 2^{n-1} + ... + X_{4} \times 2^{1} + X_{0} \times 2^{0}$

000 - 0	1000 – 8
001 – 1	1001 – 9
010 - 2	1010 - A
011 – 3	1011 – B
100 - 4	1100 – C
101 – 5	1101 – D
110 – 6	1110 – E
111 – 7	1111 – F

Bits có thể biểu diễn mọi thứ!

Ký tự?

- $-26 \text{ ký tự} \Rightarrow 5 \text{ bits } (2^5 = 32)$
- Ký tự hoa/ thường + dấu
 - \Rightarrow 7 bits (in 8) ("ASCII")
- Bảng mã chuẩn cho tất cả ngôn ngữ trên thế giới
 ⇒ 8,16,32 bits ("Unicode") www.unicode.com
- Giá trị luận lý (logic)?
 - $-0 \Rightarrow$ False, $1 \Rightarrow$ True
- Màu sắc ? Ví dụ: Red (00) Green (01) Blue (11)
- Địa chỉ ? Lệnh ?
- Bộ nhớ: N bits ⇔ 2^N ô nhớ

Biểu diễn số âm

Số bù 2

- Khắc phục vấn đề có 2 biểu diễn số 0 khác nhau?
 - 0000 và 1111?
 - Lấy bù rồi cộng thêm 1
- Như số lượng dấu và số bù 1, số bắt đầu bằng 0
 là số dương, số bắt đầu bằng 1 là số âm
 - $-000000...xxx : \ge 0, 1111111...xxx : < 0$
 - 1...1111 là -1, không phải -0 (như số bù 1)
- Giá trị thập phân của biểu diễn dạng bù 2

$$X_{n-1} \times (-2^{n-1}) + X_{n-2} \times (2^{n-2}) + ... + X_1 \times 2^1 + X_0 \times 2^0$$

Phạm vi biểu diễn: từ -2^{n-1} tới $2^{n-1} - 1$

Ví dụ:
$$11010110 = -2^7 + 2^6 + 2^4 + 2^2 + 2^1 = -42$$

Ví dụ số bù 2

$$+123 = 01111011b$$

$$-123 = 10000101b$$

$$0 = 00000000b$$

$$-1 = 111111111b$$

$$-2 = 111111110b$$

$$-3 = 111111101b$$

$$-127 = 10000001b$$

$$-128 = 10000000b$$

$$-3 \rightarrow +3 \rightarrow -3$$

x:1101 b

x': 0010 b

+1: 0011 b

()': 1100 b

+1: 1101 b

Phạm vi biểu diễn số bù 2

Sign extension

- Chuyển số bù 2 từ biểu diễn n bit thành biểu diễn m bit (với m>n)
- Giá trị của các bít từ n+1 tới m là giá trị của MSB
 - -Chuyển giá trị -4 từ biểu diễn16-bit thành biểu diễn 32-bit:

```
1111 1111 1111 1100<sub>two</sub>
```

1111 1111 1111 1111 1111 1111 1111 1100_{two}

Biểu diễn Bias số N=5 bit

odometer

Biểu diễn số BCD

Quy tắc:

Biểu diễn thành từng nibble (4bit) tương ứng với số

Decimal

Decimal	BCD	Decimal	BCD
0	0000	5	0101
1	0001	6	0110
2	0010	7	0111
3	0011	8	1000
4	0100	9	1001

- Số dương +BCD → thêm một số 0 vào vào số BCD
- Số nguyên âm –BCD → số bù 10 của số +BCD.
 - Số bù 10: số bù 9 cộng thêm 1
 - Số bù 9: lấy 9 trừ cho từng số hạng trong số BCD
 - Ví dụ: $+25_{BCD} = 0000\ 0010\ 0101$ $-25_{BCD} = 1001\ 0111\ 0101$

AND, OR, NOT, XOR

1	AND	0	1	OR	0	1	XOR	0	1		0	1
	0			0	0	1	 0	0	1	NOT	1	0
	1	0	1	1	1	1	1	1	0	'		
4												

AND 11010011 OR 00000011 XOR 01100011 00000011 01100011 01100011 01100011

NOT 11010011 = 00101100

Sử dụng phép AND

- Nhận xét: bit nào and với 0 sẽ ra 0, and với 1 sẽ ra chính nó.
 - Phép and được sử dụng đế giữ lại giá trị 1 số bít, trong khi xóa tất cả các bit còn lại. Bit nào cần giữ giá trị thì and với 1, bit nào không quan tam thì and với 0. Dãy bit có vai trò này gọi là mặt nạ (mask).
 - Ví du:

'a' (61h) Mask (DFh)

'A' (41h)

0110 0001

1101 1111

– Kết quả sau khi thực hiện and:

Y nghĩa: chuyển từ ký tự thường sang ký tự hoa

Sử dụng các phép OR

- Nhận xét: bit nào or với 1 sẽ ra 1, or với 0 sẽ ra chính nó.
 - Phép or được sử dụng để bật lên 1 số bít, trong khi giữa nguyên giá trị tất cả các bit còn lại. Bit nào cần bật lên thì or với 1, bit nào không quan tâm thì or với 0.
 - Ví dụ:

1 (01h) Mask (30h)

– Kết quả sau khi thực hiện or:

'1' (31h)

Y nghĩa: chuyển từ số sang ký tự số

0000 0001

0011 0000

0100 0001

Phép dịch bit và phép quay

Input	Operation	Result
01010101	Logical right shift	00010101
(85)	(2 bits)	$(21 = 85/2^2)$
01010101	Logical left shift	10101010
(85)	(1 bit)	$(170 = 85*2^1)$
11101010	Arithmetic right shift	11111010
(-22)	(2 bits)	-6=(-22)/2 ²
11101010	Arithmetic left shift	11010100
(-22)	(1 bits)	-44=(-22)*2 ¹
10100110	Right rotate (3 bits)	11010100
10100110	Left rotate (3 bits)	00110101

Ví dụ

X shl 2 = 00100000 b = 32 d

(X shl 2) or X = 00101000 b = 40 d

Y = 01001010 b = 74 d

((Y and 0Fh) shl 4) = 10100000

((Y and F0h) shr 4) = 00000100

10100100 b = 164 d = -92d

or

Phép cộng

• n=4

$$\begin{array}{rcl}
 & 1001 & = & -7 \\
 & +0101 & = & 5 \\
 & 1110 & = & -2 \\
 & (a) (-7) + (+5)
 \end{array}$$

$$\begin{array}{rcl}
 1100 & = & -4 \\
 + 0100 & = & 4 \\
 \hline
 10000 & = & 0 \\
 \hline
 (b) (-4) + (+4)
 \end{array}$$

$$0011 = 3 + 0100 = 4 0111 = 7 (c) (+3) + (+4)$$

$$1100 = -4
+1111 = -1
11011 = -5
(d) (-4) + (-1)$$

$$0101 = 5$$

+ $0100 = 4$
 $1001 = Overflow$
(e) (+5) + (+4)

$$1001 = -7 + 1010 = -6 10011 = Overflow (f) (-7) + (-6)$$

Phép trừ

• n=4

1=4	
$\begin{array}{rcl} 0010 & = & 2 \\ +1001 & = & -7 \\ \hline 1011 & = & -5 \end{array}$	$ \begin{array}{rcl} 0101 & = & 5 \\ +1110 & = & -2 \\ \hline 10011 & = & 3 \end{array} $
(a) $M = 2 = 0010$	(b) $M = 5 = 0101$
S = 7 = 0111	S = 2 = 0010
-S = 1001	-S = 1110
$ \begin{array}{r} 1011 = -5 \\ +1110 = -2 \\ \hline 1001 = -7 \end{array} $	$\begin{array}{rcl} 0101 & = & 5 \\ + & 0010 & = & 2 \\ \hline 0111 & = & 7 \end{array}$
(c) $M = -5 = 1011$	(d) $M = 5 = 0101$
S = 2 = 0010	S = -2 = 1110
-S = 1110	-S = 0010
0111 = 7	1010 = -6
+ $0111 = 7$	+ $1100 = -4$
1110 = Overflow	10110 = Overflow
(e) $M = 7 = 0111$	(f) $M = -6 = 1010$
S = -7 = 1001	S = 4 = 0100
-S = 0111	-S = 1100

Tràn số

Tràn số xảy ra khi kết quả phép tính vượt quá độ chính xác giới hạn cho phép (của máy tính).

Dấu hiệu nhận biết tràn số đối với số không dấu:

- Nhớ ra 1 bit
- Ví dụ (số nguyên không dấu 4-bit):

+15	1111
<u>+3</u>	0011
+18	10010

- Nhưng không có chỗ để chứa cả 5 bit nên chỉ chứa kết quả 4 bit 0010,
 là +2 → sai.
- Dấu hiệu nhận biết tràn số đối với số có dấu:
 - Dương cộng dương ra kết quả âm và âm cộng âm ra kết quả dương
 - Dương cộng âm và âm cộng dương không bao giờ cho kết quả tràn số
- Một số ngôn ngữ có khả năng phát hiện tràn số (Ada), một số không
 (C)

Phép nhân – Số không dấu

Thuật toán nhân không dấu

Phép nhân – Số bù 2

1001	(-7)	1001	(-7)
\times 0011	(3)	$\times 1100$	(-4)
$\overline{11111001}$	$(-7) \times 2^0 = (-7)$	11100100	(-28)
11110010	$(-7) \times 2^1 = (-14)$	<u>11001000</u>	(-56)
$\overline{11101011}$	(-21)	10101100	(-84) ???

- Tai sao ?
 - Thừa số 2: 1100 \neq (2³ + 2²) (1100 = -2²)
- Giải pháp 1
 - Chuyển thừa số 2 thành số dương
 - Nhân theo thuật toán nhân không dấu
 - Nếu khác dấu, đổi dấu
- Giải pháp 2
 - Thuật toán Booth

Thuật toán Booth – Ý tưởng

Thuật toán Booth - Cơ sở thuật toán

- Bước 0: $A = (0 + (Q_{-1} Q_0).M)$
- Burớc 1: $A = (0 + (Q_{-1}-Q_0).M + (Q_0-Q_1).M.2)$ = $M.(Q_{-1}-Q_0 + Q_0.2-Q_1.2)$
- Bước 2: $A = (M.(Q_{-1}-Q_0 + Q_0.2-Q_1.2) + (Q_1-Q_2).M.2^2)$ = $M.(Q_{-1}-Q_0 + Q_0.2-Q_1.2 + Q_1.2^2-Q_2.2^2)$
- Bước 3:

$$A = M.(Q_{-1}-Q_0 + Q_0.2-Q_1.2 + Q_1.2^2-Q_2.2^2 + Q_2.2^3-Q_3.2^3)$$

= M.(Q_1+Q_0+Q_1.2 + Q_2.2^2-Q_3.2^3)

Bước n-1:

A = M.(Q₋₁+Q₀+Q₁.2 + Q₂.2²+Q₃.2³+...+Q_{n-2}.2ⁿ⁻²-Q_{n-1}.2ⁿ⁻¹ Vì Q₋₁=0 và Q_{n-1} chính là bit xác định dấu nên phần trong dấu ngoặc chính là Q. Vậy A = M.Q

Thuật toán Booth – Ví dụ

	Α	Q	Q ₋₁	M
Khởi đầu	0000	1101	0	0111
Bước 0: A=A-M	1001	1101	0	0111
shift	1100	1110	1	0111
Bước 1: A=A+M	0011	1110	1	0111
shift	0001	1111	0	0111
Bước 2: A=A-M	1010	1111	0	0111
shift	1101	0111	1	0111
Bước 3: shift	1110	1011	1	0111

Phép chia – Số không dấu

Thuật toán chia không dấu

A	Q	M = 0011
0000	0111	Initial value
0000 1101	1110	Shift Subtract
0000	1110	Restore
0001	1100	Shift
1110	1100	Subtract Restore
0011	1000	Shift
0000	1001	Subtract Set $Q_0 = 1$
0001	0010	Shift
1110 0001	0010	Subtract Restore

(7)/(3)

Phép chia – Số bù 2

Thực hiện như phép chia không dấu

 Nếu số chia và số bị chia khác dấu → đổi dấu thương

A	Q	M = 1101
0000	0111	Initial value
0000 1101	1110	Shift Add
0000	1110	Restore
0001 1110	1100	Shift Add
0001	1100	Restore
0011 0000	1000	Shift Add
0000	1001	Set $Q_0 = 1$
0001 1110	0010	Shift
0001	. 0010	Add Restore

(7)/(-3)

Bài tập

- Hãy trình bày phép nhân 2 số nguyên (-127) × (-5)
- Hãy trình bày phép chia 2 số nguyên (-7) / (-3)
- Phép toán trên các loại số khác: số bù 1, số bias, số BCD,...

Tham khảo

