Wireless Links

- Wireless communication supports point-to-multipoint communication
- Communication between non-base (client) nodes is routed via the base station
- Three levels of mobility for clients
 - No mobility: the receiver must be in a fix location to receive a directional transmission from the base station (initial version of WiMAX)
 - Mobility is within the range of a base (Bluetooth)
 - Mobility between bases (Cell phones and Wi-Fi)

M<

1

Wireless Links

Mesh or Ad-hoc network

- Nodes are peers
 - Messages may be forwarded via a chain of peer nodes
 - Multiple paths are available

A wireless ad-hoc or mesh network

M<

IEEE 802.11

- Also known as Wi-Fi
- Like its Ethernet and token ring siblings, 802.11 is designed for use in a limited geographical area (homes, office buildings, campuses)
 - Primary challenge is to mediate access to a shared communication medium – in this case, signals propagating through space
- 802.11 supports additional features
 - power management and
 - security mechanisms
 - Support of lower bit rates allows for redundancy to handle noisy environments

M<

IEEE 802.11

- Original 802.11 standard defined two radio-based physical layer standard
 - One using the frequency hopping
 - Over 79 1-MHz-wide frequency bandwidths
 - Second using direct sequence
 - Using 11-bit chipping sequence
 - Both standards run in the 2.4-GHz and provide up to 2 Mbps

MK ROEGA LAUFANN

IEEE 802.11

- Then physical layer standard 802.11b was added
 - Using a variant of direct sequence 802.11b provides up to 11 Mbps
 - Uses license-exempt 2.4-GHz band
- Then came 802.11a which delivers up to 54 Mbps using OFDM (Orthogonal FDM)
 - 802.11a runs on license-exempt 5-GHz band less interference
 - Almost limited to line of sight due to signal absorption
- Then came 802.11g which is backward compatible with 802.11b
 - Uses 2.4 GHz band, OFDM and delivers up to 54 Mbps
- Most recent standard is 802.11n which delivers up to 600 Mbps
 - Uses multiple antennas MIMO (multiple input multiple output)

/|<

IEEE 802.11 – Collision Avoidance

- Consider the situation in the following figure where each of four nodes is able to send and receive signals that reach just the nodes to its immediate left and right
 - For example, B can exchange frames with A and C, but it cannot reach D
 - C can reach B and D but not A

Example of a wireless network

M<

IEEE 802.11 – Collision Avoidance

- Suppose both A and C want to communicate with B and so they each send it a frame.
 - A and C are unaware of each other since their signals do not carry that far
 - These two frames collide with each other at B
 - But unlike an Ethernet, neither A nor C is aware of this collision
 - A and C are said to hidden nodes with respect to each other see next slide

M<

7

IEEE 802.11 – Collision Avoidance

The "Hidden Node" Problem. Although A and C are hidden from each other, their signals can collide at B. (B's reach is not shown.)

M<

IEEE 802.11 - Collision Avoidance

- Another problem called exposed node problem occurs
 - Suppose B is sending to A. Node C is aware of this communication because it hears B's transmission.
 - It would be a mistake for C to conclude that it cannot transmit to anyone just because it can hear B's transmission.
 - Suppose C wants to transmit to node D.
 - This is not a problem since C's transmission to D will not interfere with A's ability to receive from B.

M<

9

IEEE 802.11 – Collision Avoidance

Exposed Node Problem. Although B and C are exposed to each other's signals, there is no interference if B transmits to A while C transmits to D. (A and D's reaches are not shown.)

M<

IEEE 802.11 – Collision Avoidance

- 802.11 addresses these two problems with an algorithm called Multiple Access with Collision Avoidance (MACA).
 - Sender and receiver exchange control frames with each other before the sender actually transmits any data.
 - This exchange informs all nearby nodes that a transmission is about to begin
 - Sender transmits a Request to Send (RTS) frame to the receiver.
 - Includes a field that indicates how long the sender wants to hold the medium
 - Includes length of the data frame to be transmitted
 - Receiver replies with a Clear to Send (CTS) frame
 - This frame echoes the length field back to the sender

M<

IEEE 802.11 – Collision Avoidance

- Any node that sees the CTS frame knows that
 - it is close to the receiver, therefore
 - cannot transmit for the period of time it takes to send a frame of the specified length
- Any node that sees the RTS frame but not the CTS frame
 - is not close enough to the receiver to interfere with it, and
 - so is free to transmit to a node other than the node originating the RTS

M<

IEEE 802.11 - Collision Avoidance

- Using ACK in MACA
 - Proposed in MACAW: MACA for Wireless LANs
- Receiver sends an ACK to the sender after successfully receiving a frame
- All nodes must wait for this ACK before trying to transmit

VI<

IEEE 802.11 – Collision Avoidance

- 802.11 does not support collision detection
- If two or more nodes detect an idle link and try to transmit an RTS frame at the same time
 - Their RTS frame will collide with each other
 - So the senders realize the collision has happened when they do not receive the CTS frame after a period of time
 - In this case, they each wait a random amount of time before trying again.
 - The amount of time a given node delays is defined by the same exponential backoff algorithm used on the Ethernet.

M<

- 802.11 is suitable for an ad-hoc configuration of nodes that may or may not be able to communicate with all other nodes.
- Nodes are free to move around
- The set of directly reachable nodes may change over time

M< 15

IEEE 802.11 – Distribution System

- To deal with this mobility and partial connectivity,
 - 802.11 defines additional structures on a set of nodes
 - Instead of all nodes being created equal, some nodes are allowed to roam
 - Some nodes are connected to a wired network infrastructure
 - they are called *Access Points* (AP) and they are connected to each other by a so-called *distribution system*

M<

- Criapter 2
- Following figure illustrates a distribution system that connects three access points, each of which services the nodes in the same region
- Each of these regions is analogous to a cell in a cellular phone system with the APIs playing the same role as a base station
- The distribution network runs at the link layer of the ISO architecture
- Distribution network could be ethernet

Access points connected to a distribution network

M<

17

IEEE 802.11 – Distribution System

- Although two nodes can communicate directly with each other if they are within reach of each other, the idea behind this configuration is
 - Each nodes associates itself with one access point
 - For node A to communicate with node E, A first sends a frame to its AP-1 which forwards the frame across the distribution system to AP-3, which finally transmits the frame to E

Access points connected to a distribution network

M<

- How do the nodes select their access points
- How does it work when nodes move from one cell to another
- The technique for <u>nodes selecting an AP</u> is called active scanning
 - The node sends a Probe frame
 - All APs within reach reply with a Probe Response frame
 - The node selects one of the access points and sends that AP an Association Request frame
 - The AP replies with an Association Response frame
- A node engages the active scanning protocol whenever
 - it joins the network
 - when it becomes unhappy with its current AP
 - Current AP signal has weakened due to the node moving away from it
 - Whenever a node acquires a new AP, the new AP notifies the old AP of the change via the distribution system

19

IEEE 802.11 – Distribution System

- Active scanning node is actively searching for an access point
- Passive scanning
 - performed by access points
 - AP's periodically send Beacon Frames
 - AP's advertise their capabilities in Beacon Frames
 - Nodes can decide to change AP's based on Beacon Frames

M<

- Consider the situation shown in the following figure when node C moves from the cell serviced by AP-1 to the cell serviced by AP-2.
- As it moves, it sends Probe frames, which eventually result in Probe Responses from AP-2.
- At some point, C prefers AP-2 over AP-1, and so it associates itself with that access point.
 - This is called active scanning since the node is actively searching for an access point

Node Mobility

M<

21

IEEE 802.11 – Distribution System

- APs also periodically send a Beacon frame that advertises the capabilities of the access point; these include the transmission rate supported by the AP
 - This is called passive scanning
 - A node can change to this AP based on the Beacon frame simply by sending it an Association Request frame back to the access point.

Node Mobility

M<

IEEE 802.11 - Frame Format

Chapter 2

- Source and Destinations addresses: each 48 bits
- Data: up to 2312 bytes
- CRC: 32 bit
- Control field: 16 bits
 - Contains three subfields (of interest)
 - 6 bit Type field: indicates whether the frame is an RTS or CTS frame or being used by the scanning algorithm
 - A pair of 1 bit fields : called ToDS and FromDS

Frame Format

M< 23

IEEE 802.11 - Frame Format

Cilabiei

- Frame contains four addresses
- How these addresses are interpreted depends on the settings of the ToDS and FromDS bits in the frame's Control field
- This is to account for the possibility that the frame had to be forwarded across the distribution system which would mean that,
 - the original sender is not necessarily the same as the most recent transmitting node
- Same is true for the destination address
- Simplest case when one node is sending directly to another,
 - both the DS bits are 0,
 - Addr1 identifies the target node, and
 - Addr2 identifies the source node

M<

IEEE 802.11 - Frame Format

Citablei 2

- Most complex case
 - Both DS bits are set to 1
 - Indicates that the message went from a wireless node onto the distribution system, and then from the distribution system to another wireless node
 - Addr1 identifies the ultimate destination,
 - Addr2 identifies the immediate sender (the one that forwarded the frame from the distribution system to the ultimate destination)
 - Addr3 identifies the intermediate destination (the one that accepted the frame from a wireless node and forwarded across the distribution system)
 - Addr4 identifies the original source
- Addr1: E, Addr2: AP-3, Addr3: AP-1, Addr4: A (A is sending to E)

M<

25

Bluetooth (IEEE 802.15.1)

- Used for very short range communication between mobile phones, PDAs, notebook computers and other personal or peripheral devices
- Operates in the license-exempt band at 2.45 GHz
- Has a range of only 10 m
- Communication devices typically belong to one individual or group
 - Sometimes categorized as Personal Area Network (PAN)
- Power consumption is low

M<

Bluetooth (IEEE 802.15.1)

- Version 2.0 provides speeds up to 2.1 Mbps
- Version 2.0 uses frequency hopping 79 channels
- Stays on one frequency for 625 uS
- Version 4.0 provides speeds up to 24 Mbps
- Version 4.0 uses frequency hopping 40 channels

<u>//</u>

Bluetooth

- Bluetooth is specified by an industry consortium called the Bluetooth Special Interest Group
- It specifies an entire suite of protocols, going beyond the link layer to define application protocols, which it calls profiles, for a range of applications
 - There is a profile for synchronizing a PDA with personal computer
 - Another profile gives a mobile computer access to a wired LAN
- The basic Bluetooth network configuration is called a piconet
 - Consists of a master device and up to seven slave devices
 - Any communication is between the master and a slave
 - The slaves do not communicate directly with each other
 - A slave can be parked: set to an inactive, low-power state

M<

ZigBee

- ZigBee is a new technology that competes with Bluetooth
- Devised by the ZigBee alliance and standardized as IEEE 802.15.4
- It is designed for situations
 - where the bandwidth requirements are low and
 - power consumption must be very low to give very long battery life
 good for sensors
 - 10-100 meters with line of site
- Transfer rate is 250 kbps
- It is also intended to be simpler and cheaper than Bluetooth, making it financially feasible to incorporate in cheaper devices such as a wall switch that wirelessly communicates with a ceiling-mounted fan

M< 30

Summary

- We introduced the many and varied type of links that are used to connect users to existing networks, and to construct large networks from scratch.
- We looked at the five key issues that must be addressed so that two or more nodes connected by some medium can exchange messages with each other
 - Encoding
 - Framing
 - Error Detecting
 - Reliability
 - Multiple Access Links
 - Ethernet
 - Wireless 802.11, Bluetooth

