Компьютерное Зрение Лекция №2, осень 2022

Обработка сигналов

Мотивация к обработке изображений

De-noising

Super-resolution

Мотивация к обработке изображений

План лекции

- Представление изображения в частотной области.
 Преобразование Фурье
- Системы и фильтры
- Свертки

- Изображения обычно цифровые (дискретные):
 - Пример 2D пространства на регулярной сетке
- Представлено в виде матрицы целочисленных значений

			m			P	ix	
	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
	10	58	197	46	46	0	0	48
n]	176	135	5	188	191	68	0	49
•	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

Декартовые координаты

$$f[n,m] = \begin{bmatrix} \ddots & & \vdots & & \\ & f[-1,1] & f[0,1] & f[1,1] & \\ & \dots & f[-1,0] & \underline{f[0,0]} & f[1,0] & \dots \\ & & f[-1,-1] & f[0,-1] & f[1,-1] & \\ & & \vdots & & \ddots \end{bmatrix}$$

Изображение как функция f от \mathbb{R}^2 до \mathbb{R}^M :

- f(x, y) дает интенсивность в позиции (x, y)
- Определяется через прямоугольник, с конечным диапазоном:

 $f: [a,b] \times [c,d] \rightarrow [0,255]$

Ряд Фурье

Периодический сигнал может быть представлен в виде суммы

Ряд и преобразование Фурье

Ряд Фурье́ — представление функции f с периодом au в виде ряда

$$f(x) = rac{a_0}{2} + \sum_{k=1}^{+\infty} A_k \cos igg(k rac{2\pi}{ au} x + heta_k igg)$$

Этот ряд может быть также записан в виде

$$f(x) = \sum_{k=-\infty}^{+\infty} \hat{f}_k e^{ikrac{2\pi}{ au}x},$$

где

 A_k — амплитуда k-го гармонического колебания,

$$k \frac{2\pi}{ au} = k \omega$$
 — круговая частота гармонического колебания,

 $heta_k$ — начальная фаза k-го колебания,

$$\hat{f}_{\,k} - k$$
-я комплексная амплитуда

Преобразование Фурье

Прямое
$$\hat{f}(\omega) = rac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{\infty}f(x)e^{-ix\omega}\,dx.$$

Обратное
$$f(x) = rac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{\infty} \hat{f}\left(\omega
ight) e^{ix\omega} \, d\omega$$

Преобразование Фурье для двумерного случая

Прямое преобразование

$$F(k,l) = \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} f(p,q) e^{-2i\pi(\frac{kp}{N} + \frac{lq}{N})}$$

Обратное преобразование

$$f(p,q) = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} F(k,l) e^{-2i\pi(\frac{kp}{N} + \frac{lq}{N})}$$

Преобразования Фурье для изображений

«Высокие» частоты: область <u>с сильными и частыми</u> перепадами значений пикселей

Преобразования Фурье для изображений

«Низкие» частоты: области <u>с слабыми и редкими</u> перепадами значений пикселей

Интерпретация спектра изображения

План лекции

• Представление изображения в частотной области. Преобразование Фурье

- Системы и фильтры
- Свертки

Системы и фильтры

Фильтрация — формирование нового изображения, значения пикселей которого трансформируются из исходных значений пикселей.

Мотивация:

- Выделить полезную информацию
- Изменить или улучшить свойства полезных признаков на изображении

Интуитивное понимание систем

Мы рассмотрим линейные системы как вид функции, которая применяется к изображениями, как двумерным функциям.

Преобразование изображения или его умножение на константу оставляет семантическое содержание нетронутым – можно выделить некоторые закономерности.

Кстати говоря...

Нейронные сети и, в частности, сверточные нейронные сети — это тип системы или нелинейная система, содержащая несколько отдельных линейных подсистем.

(подробнее об этом в другом курсе)

Системы и фильтры

Определим **систему** как единицу, которая преобразует входную функцию f[n,m] в выходную (или ответную) функцию g[n,m], где (n,m) являются независимыми переменными.

В случае изображений (n,m) представляет пространственное положение на изображении.

$$f[n,m] \rightarrow \boxed{\text{System } \mathcal{S} } \rightarrow g[n,m]$$

$$f[n,m] = \begin{bmatrix} & \ddots & & & \vdots & & \\ & f[-1,1] & f[0,1] & f[1,1] & & \\ & & & f[-1,0] & \underline{f[0,0]} & f[1,0] & \dots \\ & & & & f[-1,-1] & f[0,-1] & f[1,-1] & & \\ & & & & \vdots & & \ddots \end{bmatrix}$$

2D DS moving average over a 3 × 3 window of neighborhood

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]$$

Ī	h						
1	1	1	1				
$\frac{1}{2}$	1	1	1				
9	1	1	1				

f[n,m]

 g[n,m]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Подводя итог:

- Данный фильтр "Заменяет" каждый пиксель средним значением по окрестностям.
- Достигается эффект сглаживания (осреднение резких переходов значений пикселей).

		h	
1	1	1	1
— Т	1	1	1
9	1	1	1

Пример фильтра №2: Пороговое правило

$$g[n, m] = \begin{cases} 1, & f[n, m] > 100 \\ 0, & \text{otherwise.} \end{cases}$$

План лекции

- Представление изображения в частотной области. Преобразование Фурье
- Системы и фильтры
- Свертки

Импульсная функция

Рассмотрим специальную функцию:

- равна 1, в точке [0,0].
- равна 0, во всех остальных точках

	? h[0,0]	

$$\delta_2 \xrightarrow{S} h[n,m]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k,m-l]$$

	1/9 h[0,0]	? h[0,1]	

$$\delta_2 \xrightarrow{S} h[n,m]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k,m-l]$$

	1/9 h[0,0]	1/9 h[0,1]	
		? h[1,1]	

$$\delta_2 \xrightarrow{S} h[n,m]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k,m-l]$$

	1/9 h[0,0]	1/9 h[0,1]	
		1/9 h[1,1]	

$$\delta_2 \xrightarrow{S} h[n,m]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k,m-l]$$

	1/9 h[0,0]	1/9 h[0,1]	? h[0,2]
		1/9 h[1,1]	

$$\delta_2 \xrightarrow{S} h[n,m]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k,m-l]$$

Импульсный отклик от фильтра размытия

	1/9 h[0,0]	1/9 h[0,1]	O h[0,2]
		1/9 h[1,1]	

$$\delta_2 \xrightarrow{S} h[n,m]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k,m-l]$$

Импульсный отклик от фильтра размытия

0	0	0	0	0
0	1/9 h[-1,-1]	1/9	1/9	0
0	1/9	1/9 h[0,0]	1/9 h[0,1]	O h[0,2]
0	1/9	1/9	1/9 h[1,1]	0
0	0	0	0	0

$$\delta_2 \xrightarrow{S} g[n,m]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k,m-l]$$

Фильтр размытия через импульсные функции

$$h[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_{2}[n-k, m-l]$$

$$= \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$= \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

		h	
1	1	1	1
<u> </u>	1	1	1
9	1	1	1

2D свёртка очень похожа на 1D.

Основное отличие состоит в том, что теперь нам приходится проводить итерации по 2 осям вместо 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

2D свёртка очень похожа на 1D.

Основное отличие состоит в том, что теперь нам приходится проводить итерации по 2 осям вместо 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

2D свёртка очень похожа на 1D.

Основное отличие состоит в том, что теперь нам приходится проводить итерации по 2 осям вместо 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

2D свёртка очень похожа на 1D.

Основное отличие состоит в том, что теперь нам приходится проводить итерации по 2 осям вместо 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

2D свёртка очень похожа на 1D.

Основное отличие состоит в том, что теперь нам приходится проводить итерации по 2 осям вместо 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

2D свёртка очень похожа на 1D.

Основное отличие состоит в том, что теперь нам приходится проводить итерации по 2 осям вместо 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

$$y[0,0] = x[-1,-1] \cdot h[1,1] + x[0,-1] \cdot h[0,1] + x[1,-1] \cdot h[-1,1]$$

$$+ x[-1,0] \cdot h[1,0] + x[0,0] \cdot h[0,0] + x[1,0] \cdot h[-1,0]$$

$$+ x[-1,1] \cdot h[1,-1] + x[0,1] \cdot h[0,-1] + x[1,1] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 + 2 \cdot 0 + 0 \cdot (-1) + 4 \cdot (-2) + 5 \cdot (-1) = -13$$

-13	-20	-17
-18	-24	-18
13	20	17

Output

$$y[1,0] = x[0,-1] \cdot h[1,1] + x[1,-1] \cdot h[0,1] + x[2,-1] \cdot h[-1,1]$$

$$+ x[0,0] \cdot h[1,0] + x[1,0] \cdot h[0,0] + x[2,0] \cdot h[-1,0]$$

$$+ x[0,1] \cdot h[1,-1] + x[1,1] \cdot h[0,-1] + x[2,1] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 0 + 4 \cdot (-1) + 5 \cdot (-2) + 6 \cdot (-1) = -20$$

Output

 $y[2,0] = x[1,-1] \cdot h[1,1] + x[2,-1] \cdot h[0,1] + x[3,-1] \cdot h[-1,1]$ $+ x[1,0] \cdot h[1,0] + x[2,0] \cdot h[0,0] + x[3,0] \cdot h[-1,0]$ $+ x[1,1] \cdot h[1,-1] + x[2,1] \cdot h[0,-1] + x[3,1] \cdot h[-1,-1]$ $= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 2 \cdot 0 + 3 \cdot 0 + 0 \cdot 0 + 5 \cdot (-1) + 6 \cdot (-2) + 0 \cdot (-1) = -17$

Output

$$y[0,1] = x[-1,0] \cdot h[1,1] + x[0,0] \cdot h[0,1] + x[1,0] \cdot h[-1,1]$$

$$+ x[-1,1] \cdot h[1,0] + x[0,1] \cdot h[0,0] + x[1,1] \cdot h[-1,0]$$

$$+ x[-1,2] \cdot h[1,-1] + x[0,2] \cdot h[0,-1] + x[1,2] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 1 \cdot 2 + 2 \cdot 1 + 0 \cdot 0 + 4 \cdot 0 + 5 \cdot 0 + 0 \cdot (-1) + 7 \cdot (-2) + 8 \cdot (-1) = -18$$

Output

Что отнимает размытость?

Пример двумерной свертки — фильтр резкости

Фильтр резкости: подчеркивает разность со средним местным значениями пикселей

Краевой эффект

- Компьютер будет вызывать только конечные сигналы.
- Что происходит на краю?

- нулевой паддинг
- повторение на краях
- отзеркаливание

Кросс-корреляция

Кросс-корреляция двух 2D сигналов f[n,m] и h[n,m].

$$f[n,m]**h[n,m] = \sum_k \sum_l f[k,l] h[n-k,m-l]$$

- Эквивалент свертывания без переворачивания
- Измерения "сходства" между f и h.

Свертка vs кросс-корреляция

- <u>Свертка</u> это интеграл, выражающий величину перекрытия одной функции при ее смещении по другой.
 - свертка это операция фильтрации
- <u>Корреляция</u> сравнивает **сходство** двух **наборов данных**. Корреляция рассчитывает меру сходства двух входных сигналов при их смещении друг от друга. Результат корреляции достигает максимума в тот момент, когда два сигнала совпадают наилучшим образом.
 - корреляция является мерой сходства двух сигналов.

Итоги

- Рассмотрено частотное представление изображения
- Показаны методы фильтрации в пространственной и частотной областях
- Изучено понятие свертки и кросс-корреляции