

 w_1

 w_1

2.009

GF	R	C 2 C 1 Top 100 words		GF/TF
w_1	w_2	•••	w_{100}	
w ;	2	v	<i>w</i> ₁₀₀	
w_2	•••	<i>w</i> ₁₀	<u>o</u>	
w_2	•••	w_{100}		
$\begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$		[3.075] : : 8.624]		Tra
[0.014] : 7.693]		$\begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$		

GF/TR VOC embeddings

C_1	w_{1}^{1}	w_{2}^{1}	•••	w_{100}^1
C_2	w_{1}^{2}	w_{2}^{2}	•••	w_{100}^2
C_3	w_{1}^{3}	w_{2}^{3}	•••	w_{100}^3

:

 $C_N \qquad w_1^N \qquad w_2^N \qquad \cdots \qquad w_{100}^N$

It may be the case that $w_i^x = w_j^y$

Train set

$$d_j^2 =$$

GF/TR VOC embeddings

C_1	w_{1}^{1}	w_{2}^{1}	•••	w_{100}^1
C_2	w_{1}^{2}	w_{2}^{2}	•••	w_{100}^2
C_3	w_1^3	w_{2}^{3}	•••	w_{100}^3

:

$$C_N \qquad w_1^N \qquad w_2^N \qquad \cdots \qquad w_{100}^N$$

$$V_x = \{w_v^x\}, v = 1, 2, ..., 100$$

Test set

$$d_{j} = \left(w_{1}^{j}, w_{2}^{j}, \dots, w_{k}^{j}\right)$$

$$d_{j}^{V_{x}} = \left\{w \in d_{j} \mid w \in V_{1} \cup V_{2} \dots \cup V_{N}\right\}$$

$$C_{i} = \left\{V_{x} \mid w_{i}^{x} \in d_{j}^{V_{x}}\right\}; i = 1, 2, \dots, p = \left|d_{j}^{V_{x}}\right|.$$

$$\alpha_{i} = \frac{\exp(-|\mathcal{C}_{i}|)}{\sum_{i=1}^{p} \exp(-|\mathcal{C}_{i}|)}$$

$$w'_i = \alpha_i w_i^x$$
 , $i = 1, 2, ..., p$; $w_i^x \in d_j^{V_x}$

$$R(d_j) = (w'_1, w'_2, w'_3, ..., w'_p)$$

Ordenados por valor decreciente de lpha

Dos enfoques posibles:

- 1. Rellenar/truncar $R(d_i)$
- 2. PCA $(R(d_j))$

