

Motivation of the study

Different confinement measures around the world

By 1pm on GMT on 17 March only the UK and Belarus had held off implementing full or partial closures

Guardian graphic. Information correct as of 17 March at 13:00 GMT $\,$

Source: https://www.theguardian.com/world/2020/mar/12/how-do-coronavirus-containment-measures-vary-across-europe

Aim of the study

AM

What is the actual effects on the virus spreading?

- Simulating the effect of mobility restriction policies on the epidemic spreading
- Dynamic simulation through agent-based model (ABM)
- Case study: Italy
- Based on a Risk Model proposed by Pluchino et al., 2021
- Scenario analysis
- Suggestion of possible policy measures

Model background

Infection disease

Kermack, W. O., & McKendrick, A. G. (1927).

A CONTRIBUTION TO THE MATHEMATICAL THEORY OF EPIDEMICS.

SIR MODEL

Model background

- SIR model are unable to represent the complexity of human behavior
- Agent-based model (ABM) to simulate complex systems

COMPLEX SYSTEMS

AGENT-BASED MODELS

Methodology

A RISK APPROACH TO COVID-19 OUTBREAK IN ITALY

scientific reports

Explore content > About the journal > Publish with us >

nature > scientific reports > articles > article

Article Open Access | Published: 05 March 2021

A novel methodology for epidemic risk assessment of COVID-19 outbreak

A. Pluchino , A. E. Biondo, N. Giuffrida, G. Inturri, V. Latora, R. Le Moli, A. Rapisarda, G. Russo & C. Zappalà

Scientific Reports 11, Article number: 5304 (2021) Cite this article

5361 Accesses | 7 Citations | 23 Altmetric | Metrics

- 1 An Author Correction to this article was published on 28 July 2021
- i This article has been updated

Methodology

CRICHTON'S RISK TRIANGLE

Related to the potential of Likelihood being an epidemic spreading infected once exposed No. of Party **AIR POLLUTION MOBILITY INDEX AVERAGE WINTER TEMPERATURE** HOUSING CONCENTRATION **AGE OF POPULATION HEALTHCARE DENSITY RISK Exposure** Measure of the resources exposed

TOTAL POPULATION

A-PRIORI RISK MAP

STATIC MODEL VS. DYNAMIC MODEL

Pluchino et al., 2021

Methodology

Multi-agent programming language for simulating and modelling complex systems (Wilensky, 1999)

Agents setup

Two type of agents

Scale 1:1000

1 individual agent \rightarrow 991 real individuals

SIR Epidemic Dynamics

no

Immune

Implementation of mobility restrictions

MOBILITY DYNAMICS

Under-60
$$\rightarrow$$
 9/10
Over-60 \rightarrow 4/5

- Radius $1 = 2 \text{ km} \cdot \text{Mobility Index}$
- Radius $2 = 8 \text{ km} \cdot \text{Mobility Index}$
- Radius 3 = 40 km · Mobility Index
- Radius $4 = 50 \text{ km} \cdot \text{Mobility Index}$

Under-60 \rightarrow 1/10 Over-60 \rightarrow 1/5

Make a trip by plane

Mobility data: 7th March, 2020 – 25th June, 2020

- Reduction in percentage of air flights¹
- Reduction of the dimension of the mobility radius²
- Reduction of the number of trips³

¹https://www.eurocontrol.int/Economics/DailyTrafficVariation-States.html ²https://covid19mm.github.io/in-progress/2020/03/13/first-report-assessment.html ³https://www.google.com/covid19/mobility/

Simulations: initial conditions

Preliminary Simulations	Starting date	Final date	Lethality	Virulence
1	07/09/2019			
2	21/09/2019			
3	14/12/2019		0.000	
4	28/12/2019	05/07/0000		0.0005
5	11/01/2020	25/06/2020	0,022	0,0035
6	25/01/2020			
7	08/02/2020			
8	22/02/2020			

Unexpected detection of SARS-CoV-2 antibodies in the prepandemic period in Italy

Giovanni Apolone^{1*}, Emanuele Montomoli^{2,3*}, Alessandro Manenti^{3,4}, Mattia Boeri¹, Federica Sabia¹, Inesa Hyseni⁴, Livia Mazzini^{2,4}, Donata Martinuzzi⁴, Laura Cantone⁵, Gianluca Milanese⁶, Stefano Sestini¹, Paola Suatoni¹, Alfonso Marchianò¹, Valentina Bollati⁵, Gabriella Sozzi¹ and Ugo Pastorino¹

SARS-CoV-2 seroprevalence trends in healthy blood donors during the COVID-19 Milan outbreak

Luca Valenti, MD^{3,2*}, Annalisa Bergna, BS^{3,4*}, Serena Pelusi, MD^{3,2}, Federica Facciotti, PhD⁵, Alessia Lai, BS, PhD^{3,4}, Maciej Tarkowski, BS, PhD^{3,4}, Alessandra Berzuini, MD², Flavio Caprioli, MD, PhD^{3,6}, Luigi Santoro, MSc², Guido Baselli, PhD², Carla della Ventura, BS^{3,4}, Elisa Erba, MSc², Silvano Bosari, MD, PhD^{3,7}, Massimo Galli, MD^{3,4}, Gianguglielmo Zehender, BS, PhD^{3,4*}, Daniele Prati, MD^{2,4*}.

One in 20 Milanese was already positive before February

"Un milanese su 20 era già positivo prima di febbraio"

Il risultato di uno studio del Policlinico di Milano sui donatori di sangue pubblicato in anteprima (pre-print) su medRxiv

HuffPost

Source: https://www.huffingtonpost.it/entry/un-milanese-su-20-era-gia-positivoprima-di-febbraio_it_5ec5221ac5b61e26b0d9f101

Results for the Status Quo with Total Lockdown

Risk index zone	Parameter	ZONE 1	ZONE 2	ZONE 3
Scenario M	mobility index			
Scenario H	hazard	No mobility	50% of mobility	Total mobility
Scenario V	vulnerability	restriction	restriction	restriction
Scenario RI	risk index			

Regions	mobility index	Zone	hazard	Zone	vulnerability	zone	risk index	Zone
Abruzzo	0,15	1	0,33	1	0,06	1	0,04	1
Basilicata	0,03	1	0,23	1	0,01	1	0,01	1
Calabria	0,37	2	0,37	2	0,05	1	0,03	1
Campania	0,24	1	0,26	1	0,25	2	0,11	2
Emilia Romagna	0,81	3	0,69	3	0,23	2	0,27	2
Friuli Venezia Giulia	0,81	3	0,77	3	0,07	1	0,09	1
Lazio	0,53	2	0,50	2	0,23	2	0,19	2
Liguria	0,48	2	0,58	2	0,08	1	0,08	1
Lombardia	1,00	3	0,94	3	0,62	3	1,00	3
Marche	0,60	2	0,33	1	0,07	1	0,04	1
Molise	0,00	1	0,44	2	0,01	1	0,01	1
Piemonte	0,59	2	0,58	2	0,29	2	0,29	2
Puglia	0,29	1	0,45	2	0,11	2	0,09	1
Sardegna	0,29	1	0,60	2	0,04	1	0,04	1
Sicilia	0,54	2	0,53	2	0,09	1	0,08	1
Toscana	0,74	3	0,46	2	0,17	2	0,14	2
Trentino Alto Adige	0,66	2	0,74	3	0,04	1	0,05	1
Umbria	0,55	2	0,42	2	0,04	1	0,03	1
Valle d'Aosta	0,64	2	0,73	3	0,01	1	0,01	1
Veneto	0,95	3	0,69	3	0,27	2	0,32	2

Pluchino et al., 2021

Simulations with Differentiated Restrictions

INFECTED - STATUS QUO (SQ)

SCENARIO	Number	Number of region for each zone			ement of with respect tus Quo
	Zone 1	Zone 2	Zone 3	Total	Lombardy
М	6	9	5	+22%	+30%
Н	4	10	6	+17%	+25%
V	12	7	1	+22%	+30%
RI	13	6	1	+21%	+28%

Simulations with Differentiated Restrictions

DEATHS - STATUS QUO (SQ)

SCENARIO	Number	of region zone	% increment of deaths with respect to Status Quo		
	Zone 1	Zone 2	Zone 3	Total	Lombardy
М	6	9	5	+28%	+31%
Н	4	10	6	+30%	+30%
V	12	7	1	+18%	+20%
RI	13	6	1	+26%	+30%

Conclusions

Results:

- The model is capable of dynamic reproducing the impact of mobility restrictions on COVID-19 spreading in Italy
- The model allows to simulate different scenario beyond the status quo one
- Localized restrictions according to an a-priori risk index

Next steps:

Simulation of the second waves including new mobility restrictions imposed and vaccination

