Лабораторна робота №4

Тема: Програмування циклічних алгоритмів.

Мета: Навчитися знаходити алгоритмічні та програмні розв'язки до задач, які потребують застосування однотипних повторюваних операцій. Навчитися будувати блок-схеми розв'язків задач, які мають циклічну структуру. Опанувати конструктивні особливості програмування циклічних алгоритмів із застосуванням операторів циклів різного виду на прикладі мов програмування високого рівня C++ та Python.

Завдання:

Перший) вибрати варіант відповідно порядкового номера в журналі; **Другий)** для кожного завдання побудувати блок-схему алгоритму; **Третій)** по кожному завданню розробити програму мовою C++ або Python; **Четвертий)** протестувати розроблені програми; **П'ятий)** скласти звіт до виконання лабораторної роботи.

Індивідуальні завдання "Обчислення суми ряду"

No	Варіанти завдань				
вар.	•				
1	Ввести натуральне число n і дійсне число x , обчислити $s=1+x+\frac{x^2}{2}+\frac{x^3}{3}+=\sum_{i=0}^n\frac{x^i}{i}$				
2	Ввести натуральне число n та обчислити $s = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = \sum_{i=1}^{n} \frac{(-1)^{i+1}}{2i-1}$				
3	Ввести два натуральні числа n та m ($n < m$), вивести всі кратні 4 числа від n до m та обчислити їхню суму				
	Ввести ціле число n і дійсне x , обчислити				
4	$s = \cos(x) + \frac{\cos(2x)}{2} + \frac{\cos(3x)}{3} + \dots = \sum_{i=1}^{n} \frac{\cos(ix)}{i}$				
5	Ввести ціле число n і дійсне число a , обчислити $s = 1 - a + a^2 - a^3 + = \sum_{i=0}^{n} (-a)^i$				
6	Ввести натуральне число n та обчислити $s = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + = \sum_{i=1}^{n} \frac{1}{i}$				
7	Ввести двозначне число N , вивести всі непарні числа від 1 до N та обчислити їхню суму				
8	Ввести два натуральні числа n та m ($n < m$), обчислити $s = \sum_{i=n}^m i$				
9	Ввести ціле число n і дійсне x , обчислити $s = -\frac{1}{x} + \frac{3}{x^2} - \frac{5}{x^3} - \dots = \sum_{i=1}^n \frac{(-1)^i(2i-1)}{x^i}$				
10	Ввести двозначне число N , вивести всі кратні 3 числа від 1 до N та обчислити їхню суму				
11	Ввести ціле число n і дійсне число x , обчислити $s = -x + \frac{x^3}{2} - \frac{x^5}{3} + = \sum_{i=1}^{n} \frac{(-1)^i x^{2i-1}}{i}$				
	Ввести ціле число n і дійсне число x , обчислити				
12	$s = \cos(x) + \cos(3x^3) + \dots = \sum_{i=1}^{n} \cos((2i-1)x^{2i-1})$				
13	Ввести ціле число n і дійсне число x , обчислити $s = \frac{1}{2} + \frac{x^2}{5} + \frac{x^3}{8} + = \sum_{i=1}^{n} \frac{x^{i-1}}{3i-1}$				
14	Ввести два натуральні числа n та m ($n < m$), вивести всі парні числа від n до m та обчислити їхню суму				
15	Ввести ціле число n і дійсне x , обчислити $s=1-\frac{2}{x^2}+\frac{3}{x^4}=\sum_{i=1}^n\frac{(-1)^{i+1}i}{x^{2i}}$				
	Ввести ціле число n і дійсне x , обчислити				
16	$s = \sin(x) + \frac{\sin^2(x)}{4} + \frac{\sin^3(x)}{7} + \dots = \sum_{i=1}^n \frac{\sin^i(x)}{3i - 2}$				

№ вар.	Варіанти завдань				
17	Ввести ціле число n і дійсне число x , обчислити $s = x - \frac{x^3}{3} + \frac{x^5}{5} = \sum_{i=0}^{n} \frac{(-1)^{i-1}x^{2i+1}}{2i+1}$				
18	Ввести двозначне число N , вивести всі парні числа від 1 до N та обчислити їхню суму				
19	Ввести ціле число n і дійсне число x , обчислити $s = (x+1) + \frac{(x+2)^3}{4} + \frac{(x+3)^5}{9} = \sum_{i=1}^{n} \frac{(x+i)^{2i-1}}{i^2}$				
20	Ввести двозначне число N , вивести всі кратні 3 числа від 1 до N та обчислити їхню суму				
21	Ввести ціле число n і дійсне x , обчислити $s = \sin(1-x) + \frac{\sin(2-x)}{4} + \frac{\sin(3-x)}{9} + \dots = \sum_{i=1}^{n} \frac{\sin(i-x)}{i^2}$				
22	Ввести ціле число n і дійсне число x , обчислити $s = \frac{1}{(x+1)} - \frac{3}{(x+2)^2} + \frac{5}{(x+3)^3} - \dots = \sum_{i=1}^{n} (-1)^{i+1} \frac{2i-1}{(x+i)^i}$				
23	Ввести ціле число n і дійсне число x , обчислити $s=-1+\frac{x}{2}+\frac{x^2}{7}+\frac{x^3}{14}=\sum_{i=1}^n\frac{x^{i-1}}{i^2-2}$				
24	Ввести натуральне число N до 10 , вивести всі степені числа 2 від 1 до N та обчислити їхню суму				
25	Ввести ціле число n і дійсне x , обчислити				
26	Ввести ціле число n і дійсне x , обчислити $s = \frac{4}{x} + \frac{9}{2x^3} + \frac{16}{3x^5} + = \sum_{i=1}^{n} \frac{(i+1)^2}{ix^{2i-1}}$				
27	Ввести натуральне число n (до 10) і дійсне x , вивести всі степені числа x від 1 до n та обчислити суму цих чисел				
28	Ввести ціле число n і дійсне x , обчислити $s = \frac{1}{2} + \frac{\sin(x)}{3} + \frac{\sin^2(x)}{4} + = \sum_{i=0}^{n} \frac{\sin^i(x)}{i+2}$				
29	Ввести ціле число n і дійсне x , обчислити $s = \frac{x}{2} + \frac{x^3}{12} + \frac{x^5}{30} \dots = \sum_{i=1}^n \frac{x^{2i-1}}{2i(2i-1)}$				
30	Ввести ціле число n і дійсне x , обчислити $s = 2 + \frac{3x}{9} + \frac{4x^2}{25} + \frac{5x^3}{49} \dots = \sum_{i=1}^{n} \frac{(i+1)x^{i-1}}{(2i-1)^2}$				

Індивідуальні завдання "Дослідження функцій на певному проміжку (табулювання)"

№ вар.	Функція $y = f(x)$	Функція $z = f(x)$	Проміжок дослідження
1	$\sin(x)/x^2$	$\cos(x)/x$	$x \in [0,5;11], h = 0,3$
2	arctg(x+3,1)	e ^x	$x \in [-6; 1], h = 0,2$
3	$e^{3(x-0.6)}$	arcsin(x)	$x \in [-1; 1], h = 0.05$
4	$\sqrt{\left \sin(x+\pi/4)\right }$	$\sin x^2 + \cos x$	$x \in [-4; 10], h = 0,4$
5	$tg\sqrt{x}$	$x/(x-3)^2$	$x \in [4,5; 18,5], h = 0,4$
6	$1/e^x$	$\lg(x/2+0,1)$	$x \in [0; 7], h = 0,2$
7	$tg(x/3)\cdot\sin(x-1,2)$	$2.5\sin(x/2)$	$x \in [-2; 5], h = 0,2$
8	1/x	$(x/3)^2$	$x \in [0,5;4], h = 0,1$
9	$\cos(1.5x)\cdot\lg(2.5x)$	$e^{\frac{1}{\sqrt{x}}}\sin(x)$	$x \in [3,5; 10,5], h = 0,2$
10	$\cos(x)/x$ e^x	$\cos(x/2)$	$x \in [0,3;7,3], h = 0,2$
11	e ^x	$1.5\cos(x-\pi/4\cdot e^x)$	$x \in [-6; 1], h = 0,2$
12	$\arcsin(x)$	$\cos(1/(x+\pi/3))$	$x \in [-1; 1], h = 0.05$
13	$\sin^2(x)\cdot\cos(x-\pi)$	$\cos(x)/x$	$x \in [0,5;11], h = 0,3$
14	$\sin x^2 + \cos x$	$\frac{\sin x}{\lg(x^2+2)}$	$x \in [-4; 10], h = 0,4$
15	$x/(x-3)^2$	$ \cos(x/3) $	$x \in [4,5; 18,5], h = 0,4$
16	$\lg(x/2+0,1)$	$\cos((x+2\pi)e^x)$	$x \in [0; 7], h = 0,2$
17	$2.5\sin(x/2)$	$\sin(x)/\ln(x+4)$	$x \in [-2; 5], h = 0,2$
18	$(x/3)^{2}$	$\cos(x+\pi/3)+1.8$	$x \in [0,5;4], h = 0,1$
19	$e^{\frac{1}{\sqrt{x}}}\sin(x)$	$ tg\sqrt{x}\cdot\sin\left(x-\frac{\pi}{2}\right) $	$x \in [3,5; 10,5], h = 0,2$
20	$\cos(x/2)$	$\sin(x + \pi/2) \cdot \cos(1/x)$	$x \in [0,3;7,3], h = 0,2$
21	$\sin^2(x)\cdot\cos(x-\pi)$	$\sin(x)/x^2$	$x \in [0,5;11], h = 0,3$
22	$1.5\cos(x-\pi/4\cdot e^x)$	arctg(x+3,1)	$x \in [-6; 1], h = 0,2$
23	$\cos(1/(x+\pi/3))$	$e^{3(x-0.6)}$	$x \in [-1; 1], h = 0.05$
24	$\frac{\sin x}{\lg(x^2+2)}$	$\sqrt{\left \sin(x+\pi/2)\right }$	$x \in [-4; 10], h = 0,4$
25	$ \cos(x/3) $	$tg\sqrt{x}$	$x \in [4,5; 18,5], h = 0,4$
26	$\cos((x+2\pi)e^x)$	1/e ^x	$x \in [0; 7], h = 0.2$
27	$tg(x/3) \cdot \sin(x-1,2)$	$\sin(x)/\ln(x+4)$	$x \in [-2; 5], h = 0,2$
28	1/x	$\cos(x + \pi/3) + 1.8$	$x \in [0,5;4], h = 0,1$
29	$\cos(1,5x)\cdot\lg(2,5x)$	$ tg\sqrt{x}\cdot\sin(x-\pi/2) $	$x \in [3,5; 10,5], h = 0,2$
30	$\cos(x)/x$	$\sin(x + \pi/2) \cdot \cos(1/x)$	$x \in [0,3;7,3], h = 0,2$

Вимоги до звіту:

- 1) Титульний аркуш;
- 2) Мета та постановка задачі;
- 3) Необхідні теоретичні відомості
- 4) Завдання;
- 5) Блок-схеми алгоритмів задач;
- 6) Реалізація (код програм);
- 7) Тестування програм;
- 8) Висновки до роботи.