Analýza dat: lineární regrese, detekce shluků

Radek Pelánek

IV122

Úvodní poznámky

- princip "simulovaná data"
- rozbor dvou konkrétních technik
 - lineární regrese
 - detekce shluků (k-means)
- průběžně ilustrace obecných principů z analýzy dat, pravděpodobnosti, strojového učení, ...

Simulovaná data – jednoduchý příklad

- ullet zvolíme parametry μ, σ , počet dat n
- simulovaná data = vygenerujeme n bodů z normálního rozdělení s průměrem μ a směrodatnou odchylkou σ
- ullet na základě dat odhadneme parametry m,s

Simulovaná data – jednoduchý příklad

- zvolíme parametry μ, σ , počet dat n
- simulovaná data = vygenerujeme n bodů z normálního rozdělení s průměrem μ a směrodatnou odchylkou σ
- na základě dat odhadneme parametry m, s

co z toho:

- ujasnění metod pro odhad parametrů
- kontrola implementace
- intuitivní vhled do vztahu mezi *n* a přesností odhadnutých parametrů
- u složitějších modelů i "přidané" výsledky, které nelze (snadno) získat analyticky

Reálná data: délka života, porodnost

Google Public Data / World Bank

Reálná data: Old Faithful

Zdroj: Wikipedia

Simulovaná data: generování

Simulovaná data: vstup pro analýzu

Simulovaná data

též "syntetická" data

- zvolíme "správné řešení"
- vygenerujeme data: "správné řešení" + náhodný šum
- náhodný šum ~ normální rozdělení (většinou)
- algoritmu pro analýzu dat dáme pouze vygenerovaná data
- výsledek algoritmu můžeme porovnat se správným řešením

užitečný přístup z mnoha hledisek: pochopení, ladění implementace, nastavení parametrů

Simulovaná data: lineární regrese

Lineární regrese

Simulovaná data: Detekce shluků

Úkol

- k dispozici data pro lineární regresi a detekci shluků
- zkuste najít "co nejlepší" přímku / rozdělení na shluky
 - o to znamená "co nejlepší"?
 - jak hledat?
- zkuste vymyslet ...
 žádný Google, Wikipedie, studijní materiály

Která přímka je nejlepší?

- hledáme co nejlepší přímku ax + b
- minimalizace "sumy čtverců chyb" (sum of squared error)

$$SSE = \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

proč zrovna tato funkce?

Která přímka je nejlepší?

- hledáme co nejlepší přímku ax + b
- minimalizace "sumy čtverců chyb" (sum of squared error)

$$SSE = \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

- proč zrovna tato funkce?
- pragmaticky: dobře se s tím pracuje
- teoreticky: nejlepší vysvětlení dat při předpokladu normálního šumu

Normální rozdělení

Wikipedia

Normální rozdělení

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- μ průměr
- σ standardní odchylka

Metoda maximální věrohodnosti

maximum likelihood estimation

• jaká je věrohodnost (likelihood) dat, pokud jsou generována přímkou ax + b?

$$L = \prod_{i} p(x_i, y_i) = \prod \mathcal{N}(ax_i + b, \sigma^2)(y_i)$$

- hledáme a, b tak, abychom maximalizovali
- vezmeme logaritmus (monotónní operace, zachovává maximum)
- maximalizovat L je to stejné jako minimalizovat sumu čtverců:

$$SSE = \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

Jak najít přímku minimalizující SSE?

- analytické řešení "vzorečkem" ideální řešení, tady funguje, u složitějších problémů však nikoliv
- pro ilustraci:
 - "grid search" hrubá síla
 - gradient descent postupné vylepšování

Grid search

8 hodnot b, 7 hodnot a; stupeň šedi \sim SSE

Analytické řešení

$$SSE = \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

- hledáme minimum vzhledem k a, b
- parciální derivace musí být 0

$$\frac{SSE}{\partial a} = 2\sum_{i=1}^{n} -y_i x_i + a x_i^2 + x_i b = 0$$
$$\frac{SSE}{\partial b} = 2\sum_{i=1}^{n} -y_i + a x_i + b = 0$$

Analytické řešení

Po algebraických úpravách dostaneme:

$$a = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2} = r_{xy} \frac{s_y}{s_x}$$
$$b = \bar{y} - a\bar{x}$$

 r_{xy} – korelační koeficient s_x, s_y – standardní odchylka x, y

Metoda největšího spádu

gradient descent

- "hladová" metoda
 - začneme s iniciálním odhadem parametrů
 - iterativně zlepšujeme
- snažíme se o co největší lokální zlepšení = úprava hodnot parametrů ve směru spádu (gradient)
- parametr "learning rate": velikost skoku ve směru gradientu
 - příliš malý pomalé
 - příliš velký nestabilní (nekonverguje)

Gradient descent: intuice

Wikipedia

Gradient descent pro lineární regresi

$$SSE = \frac{1}{2} \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

gradient:

$$\frac{SSE}{\partial a} = -\sum_{i=1}^{n} x_i (y_i - (ax_i + b))$$
$$\frac{SSE}{\partial b} = -\sum_{i=1}^{n} (y_i - (ax_i + b))$$

Gradient descent demo

Detekce shluků (clustering)

Cíl shlukování

shlukování obecně:

- minimalizovat vzdálenosti v rámci shluku
- maximalizovat vzdálenosti mezi shluky

konkrétně např: minimalizace sum čtverců vzdáleností od středů shluků

Normalizace

klíčový praktický krok: normalizace (standardizace)

- potřebujeme data dostat na stejnou "škálu", jinak bude dominovat jedna dimenze
- z-skóre
 - odečíst průměr
 - podělit standardní odchylkou

Význam normalizace

Old Faithful data

Detekce shluků – simulovaná data

Algoritmus k-means

- vyber k "středů shluků"
- opakuj:
 - každý bod přiřaď do toho shluku, jehož střed je nejblíž
 - aktualizuj polohu středů těžiště bodů přiřazených do shluku

http://www.naftaliharris.com/blog/visualizing-k-means-clustering/

Algoritmus k-means: ukázka

Algoritmus k-means – poznámky

- hladová metoda
- lokální optima
- role inicializace
- opakované spuštění