

Design for Manufacturability (DFM)

黃稚存 Chih-Tsun Huang

cthuang@cs.nthu.edu.tw

聲明

 本課程之內容(包括但不限於教材、影片、圖片、檔案資料等), 僅供修課學生個人合理使用,非經授課教師同意,不得以任何 形式轉載、重製、散布、公開播送、出版或發行本影片內容 (例如將課程內容放置公開平台上,如 Facebook, Instagram, YouTube, Twitter, Google Drive, Dropbox 等等)。如有侵權行 為,需自負法律責任。

Lec19 CS5120 CT 2024

Design for Manufacturability (DFM)

- Consider the following issues to increase manufacturing yield
 - Crosstalk/Signal Integrity (SI)
 - Gate oxide integrity
 - Antenna fixing
 - Via resistance and reliability
 - Extra contacts
 - Metal erosion
 - Metal slotting
 - Metal liftoff
 - Metal slotting
 - Metal over-etching
 - Metal fill

SI/Crosstalk Problem

SI: signal integrity

 Crosstalk problem are getting more serious in 0.25um and below More Serios $R \propto \frac{PL}{A} \Rightarrow \frac{P \times 0.7L}{0.7h \times 0.7W} = 1.4R$ 製程版編後

for:

Smaller pitches

Greater height/width ratio

Higher design frequency

SI/Crosstalk Problem

Delay problem

Aggressor

Aggressor

Original signal

Impacted signal

/ Original signal

Impacted signal

Noise problem

cross tak

SI/Crosstalk Prevention

Placement solution

- Insert buffer in lines
- Upsize driver
- Congestion optimization

Routing solution

- Limit length of parallel nets
- Wider routing grid
- Shield special nets

Antenna Effect

- In a chip manufacturing process, metal is initially deposited so it covers the entire chip.
- Then, the unneeded portions of the metal are removed by etching, typically in plasma (charged particles).
- The exposed metal collect charge from plasma and form voltage potential.
- If the voltage potential across the gate oxide becomes large enough, the current can damage the gate oxide.

Process Antenna Problem

Process antenna problem may destroy the circuit after a period of time

CMP Process

- Chemical Mechanical Polishing (CMP) process
- Metal erosion
 - Metal is mechanically softer than dielectric
 - Dishing
 - Erosion
 - Maximum metal density per layer
 - Rule to minimize erosion

Step1 CMP (For Dielectric Layer) Etching section for Metal layer Step2 Metal Deposition Step3 Step4 , CMP (For Metal Layer)

Dielectric

http://www.vlsi-expert.com/2015/08/dishing-and-erosion-cmp.html

Dishing and Erosion

CS5120 CT 2024 11

Metal Liftoff

- Conductor and dielectric with different coefficients of thermal expansion
 - Metal can lift off with time
 - Wider metal are more vulnerable

- Maximum metal density per layer
 - Rule to minimize metal liftoff

Metal Slotting or Wire Grouping for Wide Metal Wires

- Reduce the metal density
- Primarily used for power and ground traces
 - Any others if wide enough
- Different slotting parameters layer by layer

Metal Over-Etching

A narrow metal wire separated from other metal

More vulnerable for over-etching

- Solution: metal fill
 - Limit the antenna fixing

Dummy Metal meta fil

- Why add dummy
 - Meet minimize metal density rule
 - Prevent over etching
 - Prevent sagging in local area
 - Improve yield
 - Reduce on chip variation
- Better connect dummy metal to VSS
- Side effect 可能增加 antema effect
 - Introduce parasitic to signal line

DFM - Post-Layout Correction

- Optical-proximity-correction (OPC)
- Reticle-enhancement technology (RET)

https://www.spiedigitallibrary.org/journals/journal-of-micro-nanopatterning-materials-and-metrology/volume-15/issue-02/021009/Optical-proximity-correction-with-hierarchical-Bayes-model/10.1117/1.JMM.15.2.021009.full?SSO=1

https://en.wikipedia.org/wiki/Optical_proximity_correction

Summary

- Design is not only for its functionality
- Design for test
- Design for manufacturability
- Design for reliability
- Design for quality

...