Math 102 — Lab 8

Throughout this lab we consider a subset of the vector space of all 3×3 matrices defined as follows:

$$G = \{ A \in \mathcal{M}_{3,3}(\mathbb{R}) : AA^T = I \}$$

1. Use the determinant operation to prove that every matrix in G is invertible.

[5]

Clues: A is invertible z=> det(A) +0

. det(XY) = det(X) · det(Y)

. det(AT) = det(A)

. det(T) = 1

- 2. If $A \in G$ compute A^{-1} .

 [2]

 Clue: Multiply both sides of the equation $AA^{T} = I$ on the left by A^{-1} .
 - 3. What does the identity $AA^T = I$ tell us about the row vectors of A? [3]

Clue, Vectors $\vec{a}_i,...,\vec{a}_n$ are orthonormal if $\vec{a}_i \cdot \vec{a}_j = 0$ if $i \neq j$ and $\vec{a}_i \cdot \vec{a}_i = 1$.