Fundamentos de Sistemas Operacionais

Prof. Me. Paulo Sérgio Germano

Conteúdo

- História dos Sistemas Operacionais
- Revisão de Organização de Computadores
- Conceitos Básicos
- Escalonamento de processos
- Comunicação entre processos
- Threads
- Gerência de Memória
- Gerência de E/S
- Sistemas de Arquivos
- Segurança

O que é um Computador?

Computador é uma <u>máquina</u> capaz de variados tipos de tratamento automático de informações ou <u>processamento de dados</u>. (Wikipédia)

A estrutura básica dos computadores foi idealizada por John von Neumannn e pode ser vista no diagrama abaixo:

Primeiros computadores

Programação em painéis, através de fios.
 Exigia grande conhecimento do hardware e de sua <u>linguagem de máquina</u>

Unidades (equipamentos) de entrada

Unidades (equipamentos) de Saída

Montagem de um PC

Estrutura de uma CPU

Motherboard (Placa Mãe)

O que é um sistema Operacional?

• O sistema operacional é a porção de software que roda no modo kernel (núcleo), ou modo supervisor, com o objetivo de proteger o hardware da ação direta do usuário final, mantendo a integridade dos processos, e facilitando a interface usuário máquina.

Estrutura de um Sistema Computacional

Algumas tarefas do Sistema Operacional (S.O.)

- Interpretador de Comandos: traduz comandos para instruções que o processador entende.
- Gerenciar Usuários: guarda as tarefas de um usuário separadas daquelas dos outros.
- Gerenciar Tarefas: guarda as operações de uma tarefa separadas daquelas dos outros.
- Gerenciar Recursos: gerencia o uso de recursos de hardware entre usuários e tarefas usando-os a qualquer ponto do tempo.
- Gerenciar Arquivos: cria, deleta, enter, muda arquivos e gerencia acesso para arquivos.
- User Interface (GUI Grafic User Interface): gerencia acesso do usuário para o interpretador de comandos e o gerente de arquivos.

Principais áreas de Atuação do Sistema Operacional

Tipos de Sistemas Operacionais

 O surgimento dos diversos tipos de SO está Intimamente relacionado com a evolução do hardware e das aplicações por ele suportadas

Sistemas Monoprogramáveis/Monotarefa

Processador, memória e periféricos dedicados a execução de um único programa (**na memória**).

Sistemas Multiprogramáveis/Multitarefa

Vários programas dividem os recursos (processador, memória e periféricos) Na memória podem existir vários programas

Sistema Monoprogramável X Multiprogramável

- Um programa na memória principal por vez.
- UCP totalmente dedicada ao programa
- <u>Desperdício</u> na utilização da UCP (ex: quando programa faz uma leitura no disco)
- Subutilização da memória principal (apenas um programa).

Sistema Monoprogramável X Multiprogramável

- Vários programas na memória principal CONCORRENDO pela utilização da UCP.
- CPU totalmente dedicada aos vários programas
- Menos desperdício na utilização da UCP
- =>Existem vários programas se revezando para utilização da UCP
- =>Quando um programa solicita uma operação de E/S, outros poderão utilizar a UCP
- Melhor uso da memória principal.

Sistemas Multiprogramáveis/Multitarefa

- Programas submetidos são armazenados em fitas/discos onde são executado sequencialmente
- -A UCP pode processar sequencialmente cada job, diminuindo o tempo de execução dos jobs e o tempo de transição entre eles
- Programas (Jobs) normalmente não exige iteração com usuário
- Programas envolvendo cálculos numéricos, compilações, etc.

Sistemas Multiprogramáveis/multitarefa

- <u>Processador Compartilhado</u>:
- => Vários programas sendo executados pela divisão do tempo do processador em intervalos **Time-Slace** (fatia de tempo).
- => Programa não concluído no **Time-Slace** é substituído por outro.
- Memória e periféricos são também compartilhados
- Impressão de que todo sistema dedicado ao programa.
- Permite a interação com o usuário
- Implementação complexa

Sistemas Multiprogramáveis/multitarefa

- <u>Processador Compartilhado</u>:
- => Vários programas sendo executados pela divisão do tempo do processador em intervalos **Time-Slace** (fatia de tempo).
- => Programa não concluído no **Time-Slace** é substituído por outro.
- Memória e periféricos são também compartilhados

- Impressão de que todo sistema dedicado ao programa.
- Permite a interação com o usuário
- Implementação complexa

Sistemas Multiprogramáveis/multitarefa

- Semelhantes em implementação ao sistema de tempo compartilhado
- Diferença: tempo de resposta exigido no processamento.
- Idéia de "Time-Slice" não existe:
- O programa detém o processador (UCP) o tempo que for necessário, ou até que apareça outro programa mais prioritário (este controle é feito pela aplicação e não pelo Sistema operacional)
- Monitoramente de refinarias, controle de tráfego aéreo, de usinas (aplicações onde o tempo de resposta é fundamental)

Sistemas com múltiplos processadores

- Duas ou mais UCPs (processadores) trabalhando em conjunto
- -<u>Vantagem</u>: => vários programas sendo executados ao mesmo tempo (em cada processador).
 - => Um programa dividido em partes para execução simultânea em mais de um processador

Sistemas Fortemente Acoplados

- SFA = Sistemas multiprocessadores
- Várias CPUs compartilhando única memória e dispositivos E/S sendo **gerenciados por um único sistema operacional**
- <u>Desvantagem</u>: => problema de concorrência (disputa) é introduzido (vários processadores tentando acessar a mesma área de memória)

Sistemas Fortemente Acoplados

Assimétricos

UCP Master

UCP Slave

Organização Assimétrica

Organização Mestre/Escravo

Dispositivos de E/S

S.O. Usuários

USuários

- <u>Vantagem</u>: organização simples de implementar
- Desvantagem 1:
- => Não utiliza o hardware com eficiência.
 - Somente o <u>processador mestre</u> pode executar serviços do sistema operacional (por exemplo operações E/S)
 - •O <u>Processador escravo</u> deve fazer requisição ao <u>processador mestre</u> (ineficiência caso escravo execute muitas operações E/S)
- Desvantagem 2:
- Pode ocorrer falha do processador mestre

Sistemas Fortemente Acoplados Simétricos

- <u>Vantagem</u>:

- => Um programa pode ser executado por qualquer processador ou por vários processadores ao mesmo tempo (paralelismo)
 - => Quando um processador falha o sistema continua a funcionar

- Desvantagem:

- => Acessos simultâneos às mesmas áreas de memória: solução a cargo do hardware e do sistema operacional.
- => Implementação bastante complexa

Sistemas Fracamente Acoplados

Distribuídos

Sistemas Operacionais de Rede

Permitem que uma estação compartilhe seus recursos como impressora, diretório com as demais estações da rede.

Sistemas Distribuídos

O <u>sistema (operacional) distribuído</u> esconde os detalhes das estações individuais e passa a tratá-los como um conjunto único, como se fosse um <u>sistema fortemente acoplado simétrico</u>

Permite que uma aplicação seja dividida em partes sendo cada uma executada em estações diferentes

Sistemas Operacionais de Rede

Permitem que uma estação compartilhe seus recursos como impressora, diretório com as demais estações da rede.

Sistemas Distribuídos

O <u>sistema (operacional) distribuído</u> esconde os detalhes das estações individuais e passa a tratá-los como um conjunto único, como se fosse um <u>sistema fortemente acoplado simétrico</u>

Permite que uma aplicação seja dividida em partes sendo cada uma executada em estações diferentes

Alguns dos Sistemas Operacionais Atuais

Referências Bibliográficas

- TANENBAUM, Andrew S., BOSS, Herbert. **Sistemas Operacionais Modernos**, Pearson 4^a ed., 2016.
- SILBERSCHATZ, A., GALVIN, P.B., GAGNE, G. Fundamentos de Sistemas Operacionais, Ed. LTC, 8^a ed., 2011
- DEITEL, H.M.; DEITEL, P.J.; CHOFFNES, D.R. **Sistemas Operacionais**. Prentice Hall, Tradução da 3ª ed., 2005
- Link para o livro "Advanced Linux Programming" http://richard.esplins.org/static/downloads/linux_book.pdf