On the Downstream Performance of Compressed Word Embeddings

NeurIPS 2019 Spotlight! Avner May, Jian Zhang, Tri Dao, Christopher Ré {avnermay, zjian, trid, chrismre}@cs.stanford.edu

arXiv: https://arxiv.org/abs/1909.01264
GitHub: https://github.com/HazyResearch/smallfry

Overview

Word embeddings:

Important for strong NLP performance

Take a lot of memory

Common solution: Compression.

Motivating question:

When does a compressed embedding perform well on downstream tasks?

Contribution:

We propose a new theoretically grounded metric to explain the downstream performance of compressed embeddings.

Motivating Observations

Our Metric: The Eigenspace Overlap Score (EOS)

Definition: Embedding matrix $X = USV^T \in \mathbb{R}^{n \times d}$, compressed embedding matrix $\tilde{X} = \tilde{U}\tilde{S}\tilde{V}^T \in \mathbb{R}^{n \times k}$. We define the *eigenspace overlap score* (EOS) between X and \tilde{X} as

$$\mathcal{E}(X, \tilde{X}) := \frac{1}{d} \| U^T \tilde{U} \|_F^2.$$

Intuition: $\operatorname{span}(U)$ determines linear regression performance.

This metric measures similarity between $\,\mathrm{span}(U)\,$ and $\,\mathrm{span}(U)\,$.

Theoretical Results

<u>Theorem 1 (informal): Generalization Bound</u>

For fixed design linear regression, if $\bar{y} \in \mathbb{R}^n$ is a random Gaussian label vector in span(U), then

$$\mathbb{E}_{\bar{y}}\left[\overline{\mathcal{R}_{\bar{y}}(\tilde{X})} - \overline{\mathcal{R}_{\bar{y}}(X)}\right] = \frac{d}{n} \cdot \left(1 - \mathcal{E}(X, \tilde{X})\right) - \frac{d - k}{n} \underline{\sigma^2}.$$
 Generalization error

The generalization performance of the compressed embedding is determined by the EOS.

Theorem 2 (informal): Bound for Uniform Quant.

Let $X \in \mathbb{R}^{n \times d}$ be a bounded embedding matrix $\left(X_{ij} \in \left[-\frac{1}{\sqrt{d}}, \frac{1}{\sqrt{d}}\right]\right)$, and let \tilde{X} be a b-bit uniform quantization of X. Then

$$\mathbb{E}\left[1-\mathcal{E}(X,\tilde{X})\right] \leq O\left(2^{-2b}\right).$$

Uniform quantization can attain high EOS at low precision.

Experiments

Correlation of EOS with Downstream Performance

Dataset	SQuAD		SST-1	
Embedding	GloVe	fastText	GloVe	fastText
PIP loss	0.32	0.37	0.32	0.40
Δ	0.34	0.58	0.39	0.57
$\Delta_{ m max}$	0.28	0.22	0.30	0.27
$1-\mathcal{E}$	0.17	0.11	0.19	0.20

Description EOS correlates well with downstream perf.

→ can use metric as a selection criterion for choosing between compressed embeddings!

Uniform Quantization Performance

Uniform quantization matches or outperforms more complex methods (in EOS and downstream performance).