МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Южно-Уральский государственный университет (национальный исследовательский университет)»

Высшая школа электроники и компьютерных наук
Кафедра системного программирования

Разработка интеллектуальной системы автоматизированной обработки обращений граждан

Рецензент:

Руководитель отдела машинного обучения компании «Интерсвязь» Ю.В. Дмитрин

Научный руководитель: Профессор кафедры СП, д.ф.-м.н., доцент Р.Ж. Алеев

Автор:

студент группы КЭ-220 А.В. Витомсков

АКТУАЛЬНОСТЬ

- С развитием информационной культуры граждан растет число обращений в социальные службы.
- Часто обращения проходят по длинной цепочке различных инстанций.
- Высока вероятность увеличения времени на рассмотрение обращений
- Эти факторы часто приводят к утере обращений
- Имеющиеся технические решения слабо готовы к реализации полного цикла работы с обращениями граждан
- Нужны новые современные системы, построенные на основе машинного обучения

ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЯ

Цель:

Разработка интеллектуальной системы автоматизированной обработки обращений граждан.

Задачи:

- 1. Осуществить поиск и анализ существующих решений.
- 2. Предобработать данные.
- 3. Исследовать различные векторные модели для работы с текстом: статистические и нейросетевые.
- 4. Выбрать метрики качества.
- 5. Сравнить полученные результаты.
- 6. Разработать приложение, реализующее АРІ для работы с моделью.
- 7. Выполнить тестирование.

ОБЗОР АНАЛОГОВ

Классификатор обращений граждан (авторы Кварацхелия А.Г., Рахимов Д.Ф., Мангушева А.Р.).

Выводятся топ 3 возможных варианта темы обращения, категории обращения и исполнителей

Примененные модели – Word2Vec с вычислением расстояния между документами и затем метод k-ближайших соседей.

Метрики качества модели приведены в таблице.

Условие – попадание в Топ-3	Категории	Исполнители	Темы
1-е место	1076 (60.2%)	1127 (63.0%)	792 (44.3%)
2-е и 3-е место	411 (23.0%)	357 (20.0%)	80 (15.7%)
Не попало в Топ-3	301 (16.8%)	304 (17.0%)	716 (40.0%)

Функциональные требования

- 1. Поддержка многопользовательского режима.
- 2. Система должна предоставлять интерфейс для загрузки текста обращений граждан.
- 3. Система должна для каждого обращения рассчитывать следующие результаты классификации.
- 4. Система должна предоставлять интерфейс для просмотра обращений граждан.

Нефункциональные требования

- 1. Система должна иметь возможность запуска на Linux сервере.
- 2. Система должна быть реализована с помощью языка Python.
- 3. Система должна хранить обращения граждан в базе данных.

Диаграмма вариантов использования системы

Диаграмма развертывания системы

Диаграмма деятельности для обработки запросов REST сервером (для варианта использования

Схема базы данных REST-сервера

Диаграмма состояний объекта интерфейса

пользователя

Эксперименты проводились с использованием:

- GPU NVIDIA Quadro P5000 16 Gb GDDR5X;
- язык программирования python версии 3.6.9.

Этапы реализации:

- предобработка данных;
- задача определения категории обращения: обучение статистических и нейросетевых моделей;
- задача определения подкатегории обращения: обучение иерархической тематической модели на основе аддитивной регуляризации;
- разработка REST-сервиса классификации обращений;
- разработка интерфейса пользователя;
- контейнеризация сервиса.

Алгоритм предобработки данных

Результаты обучения статистических моделей

Статистическая модель	accuracy	precision (weighted)	recall (weighted)	F1 (weighted)	MCC
Логистическая регрессия	0.810	0.812	0.810	0.805	0.729
Градиентный бустинг	0.778	0.780	0.778	0.775	0.784
Метод опорных векторов	0.740	0.732	0.740	0.716	0.617
Деревья решений	0.728	0.728	0.728	0.716	0.603

Результаты обучения нейросетевых моделей

Нейросетевая модель	accuracy	precision (weighted)	recall (weighted)	F1 (weighted)	MCC
Трансформер BERT	0.853	0.846	0.853	0.845	0.789
Сверточная нейронная сеть	0.819	0.809	0.819	0.812	0.738
Рекуррентная нейронная сеть LSTM	0.764	0.758	0.764	0.760	0.667

13/15

Алгоритм построения модели для определения подкатегории обращения

ОСНОВНЫЕ РЕЗУЛЬТАТЫ

- 1. Осуществлен поиск и анализ существующих решений.
- 2. Предобработан исходный набор данных.
- 3. Исследованы различные векторные модели для работы с текстом: статистические и нейросетевые.
- 4. Выбраны метрики качества.
- 5. Выполнено сравнение полученных результатов.
- 6. Разработано приложение, реализующее API для работы с моделью и прототип пользовательского интерфейса на фреймворке Streamlit.
- 7. Выполнено тестирование приложения.

ОБЩИЙ ВИД ИНТЕРФЕЙСА ПОЛЬЗОВАТЕЛЯ

Разработанная система развернута в docker-контейнере на AWS EC2 URL: http://ec2-34-204-198-255.compute-1.amazonaws.com:8080/

СПАСИБО ЗА ВНИМАНИЕ!