Chapter 1

On *-Semi-Homogeneous Integral Domains

D. D. Anderson and Muhammad Zafrullah

Abstract Let \star be a finite character star-operation defined on an integral domain D. A nonzero finitely generated ideal of D is \star -homogeneous if it is contained in a unique maximal \star -ideal. And D is called a \star -semi-homogeneous (\star -SH) domain if every proper nonzero principal ideal of D is a \star -product of \star -homogeneous ideals. Then D is a \star -semi-homogeneous domain if and only if the intersection $D = \bigcap D_P$ is independent and locally finite where \star -Max(D) is the set of max- $P \in \star$ -Max(D)

imal \star -ideals of D. The \star -SH domains include h-local domains, weakly Krull domains, Krull domains, generalized Krull domains, and independent rings of Krull type. We show that by modifying the definition of a \star -homogeneous ideal we get a theory of each of these special cases of \star -SH domains.

1.1 Introduction

Many important types of integral domains have a representation of the form $D = \bigcap_{P \in \mathscr{F}} D_P$ where \mathscr{F} is a set of prime ideals of D that is (1) independent, that is, two distinct elements of \mathscr{F} do not contain a common nonzero prime ideal and (2) has finite character (or is locally finite), that is, each nonzero element of D is contained in at most finitely many elements of \mathscr{F} . These domains called \mathscr{F} -IFC domains were the subject of [10]. Suppose that D is an \mathscr{F} -IFC domain. If $\mathscr{F} = \operatorname{Max}(D)$, the set of maximal ideals of D, we get the h-local domains of Matlis [20] while if $\mathscr{F} = X^{(1)}(D)$, the set of height-one prime ideals of D, we get weakly Krull domains

The University of Iowa, Department of Mathematics, Iowa City, Iowa, 52242-1419 e-mail: dan-anderson@uiowa.edu

Muhammad Zafrullah

Idaho State University, Department of Mathematics, Pocatello, ID 83209 e-mail: mzafrul-lah@usa.net

D.D. Anderson

[5]. We can further put conditions on D_P for $P \in \mathscr{F}$. If each D_P is a valuation domain we get the independent rings of Krull type (IRKT) of Griffin [15], generalized Krull domains if further $\mathscr{F} = X^{(1)}(D)$, and finally Krull domains when each D_P is a DVR.

Now in [10] we began with a representation $D = \bigcap_{P \in \mathscr{F}} D_P$ and its induced star-

operation $\star_{\mathscr{F}}$ given by $A^{\star_{\mathscr{F}}} = \bigcap_{P \in \mathscr{F}} AD_P$ for a nonzero fractional ideal A of D. (Needed

results about star-operations are reviewed in Section 1.2.) We showed that D is an \mathscr{F} -IFC domain if and only if each nonzero proper principal ideal of D (or equivalently, each nonzero proper ideal A of D with $A = A^{\star \mathscr{F}}$) has a representation of the form $A = (I_1 \cdots I_n)^{\star \mathscr{F}}$ where each I_i is contained in a unique element of \mathscr{F} . In this paper we change the point of view. We begin with an integral domain D and \star a finite character star-operation on D so $D = \bigcap_{P \in \star -\operatorname{Max}(D)} \operatorname{Den}_{F \in \star -\operatorname{Max}(D)}$ where \star -Max(D) is the

set of maximal \star -ideals of D. We define a nonzero finitely generated ideal I of D to be \star -homogeneous if I is contained in a unique element of \star -Max(D) and D to be a \star -semi-homogeneous (\star -SH) domain if each proper nonzero principal ideal Dx of D has a representation $Dx = (I_1 \cdots I_n)^{\star}$ where I_i is \star -homogeneous. We show (Theorem 4) that D is a \star -SH domain if and only if D is a \star -Max(D)-IFC domain, that is, the representation $D = \bigcap_{P \in \star$ -Max $(D)}$ is independent and of finite character. In

this case each nonzero finitely generated ideal I with $I^* \neq D$ has a representation $I^* = (I_1 \cdots I_n)^*$ where each I_i is a \star -homogeneous ideal (Theorem 6). We also show that for any domain D if a proper \star -ideal I has a representation as a \star -product of \star -homogeneous ideals, then I has a representation $I = (J_1 \cdots J_n)^*$ where J_1, \ldots, J_n are pairwise \star -comaximal \star -homogeneous ideals and that this representation is unique in the sense that if $I = (K_1 \cdots K_m)^*$ where K_1, \ldots, K_m are pairwise \star -comaximal \star -homogeneous ideals of D, then n = m and after re-ordering $J_i^* = K_i^*$ for $i = 1, \ldots, n$.

Our approach in this paper is to add additional conditions to the definition of a \star -homogeneous ideal I (such as for each \star -homogeneous ideal $J \supseteq I$ (or perhaps just for I itself) J^{\star} is \star -invertible or principal, or some $(J^n)^{\star}$ is principal) to get a " \star - β -homogeneous ideal". We then say that a \star - β -homogeneous ideal I has type 1 (resp., type 2) if $\sqrt{I} = M(I)$ where M(I) is the unique \star -maximal ideal containing I (resp., $I^{\star} = (M(I)^n)^{\star}$ for some $n \ge 1$). We define D to be a " \star - β -SH domain" (resp., \star - β -SH domain of type i, i = 1, 2) if each proper nonzero principal ideal of D is a \star -product of \star - β -homogeneous ideals (resp., \star - β -homogeneous ideals of type i, i = 1, 2). For example, we call the \star -homogeneous ideal I \star -super-homogeneous if for each \star -homogeneous ideal $J \supseteq I$, J is \star -invertible. We show (Theorem 10) that D is a \star -super-SH domain if and only if D is an \star -IRKT, that is, $D = \bigcap D_P$ is $P \in \star$ -Max(D)

independent and of finite character and each D_P is a valuation domain. As a second example, we show (Theorem 7) that D is a \star -SH domain of type 1 if and only if D is a \star -weakly Krull domain, that is, D is weakly Krull and \star -Max $(D) = X^{(1)}(D)$.

So here we define a class of integral domains by requiring that each proper nonzero principal ideal is a \star -product of a certain kind of \star -homogeneous ideal. As a bonus we get that if I is a finitely generated nonzero ideal with $I^{\star} \neq D$, then I^{\star} is actually a \star -product of this kind of \star -homogeneous ideal. Moreover, if a proper

*-ideal I is a *-product of this kind of *-homogeneous ideal, we can write I as a *-product of pairwise *-comaximal *-homogeneous ideals of that kind and this representation is unique in the sense previously mentioned. Also within this class of *- β -SH domains, by slightly changing the definition of a *- β -homogeneous ideal, we get *- β -SH domains with trivial or torsion *-class group $C\ell_*(D)$.

Of course we can also vary the star-operation. Two important star-operations are are the d-operation $A \to A_d = A$ and the t-operation $A \to A_t = \bigcup \{J_v | J \subseteq I \text{ is a nonzero finitely generated ideal} \}$ where $J_v = (J^{-1})^{-1}$. A d-SH domain is just an h-local domain while t-SH domains (not called that) were the subject of [7]. By varying the kind of \star -homogeneous ideal (and possibly adding a type) and varying the star-operation we get a whole host of various important integral domains including h-local domains, weakly Krull domains, Krull domains, Dedekind domains, generalized Krull domains, independent rings of Krull and these classes of domains that have trivial or torsion \star -class group.

1.2 Star-operations and \mathscr{F} -IFC-domains

Let D be an integral domain with quotient field K. Let F(D) (resp., f(D)) be the set of nonzero (resp., nonzero finitely generated) fractional ideals of D. A staroperation \star on D is a closure operation on F(D) that satisfies $D^{\star} = D$ and $(xA)^{\star} =$ xA^* for $A \in F(D)$ and $x \in K^* := K \setminus \{0\}$. With \star we can associate a new star-operation \star_s given by $A \to A^{\star_s} := \bigcup \{B^{\star} | B \subseteq A, B \in f(D)\}$ for $A \in F(D)$. We say that \star has finite character if $\star = \star_s$. Three important star-operations are the d-operation $A \to A_d := A$, the *v-operation* $A \to A_v := (A^{-1})^{-1} = \bigcap \{Dx | Dx \supseteq A, x \in K^*\}$ where $A^{-1} = \{x \in A : x \in K^*\}$ $K|xA \subseteq D$, and the *t*-operation $t := v_s$. Here d and t have finite character. A fractional ideal $A \in F(D)$ is a \star -ideal (resp., finite type \star -ideal) if $A = A^{\star}$ (resp., $A = A_1^{\star}$ for some $A_1 \in f(D)$). If \star has finite character and A^{\star} has finite type, then $A^{\star} = A_1^{\star}$ for some $A_1 \in f(D)$ with $A_1 \subseteq A$. A fractional ideal $A \in F(D)$ is \star -invertible if there exists a $B \in F(D)$ with $(AB)^* = D$; in this case we can take $B = A^{-1}$. For any \star invertible $A \in F(D)$, $A^* = A_{\nu}$. If \star has finite character and A is \star -invertible, then A^* is a finite type *-ideal and $A^* = A_t$. Given two fractional ideals $A, B \in F(D)$, $(AB)^*$ is their *-product. Note that $(AB)^* = (A^*B)^* = (A^*B^*)^*$. Given two staroperations \star_1 and \star_2 on D, we write $\star_1 \leq \star_2$ if $A^{\star_1} \subseteq A^{\star_2}$ for all $A \in F(D)$. So $\star_1 \leq \star_2 \Leftrightarrow A^{\star_1 \star_2} = A^{\star_2} \Leftrightarrow A^{\star_2 \star_1} = A^{\star_2}$ for all $A \in F(D)$. For any finite character star-operation \star on D we have $d \leq \star \leq t$. For an introduction to star-operations, the reader is referred to [14, Section 32]. For a more detailed treatment see [16] and [18].

Suppose that \star is a finite character star-operation on D. Then a proper \star -ideal is contained in a maximal \star -ideal and a maximal \star -ideal is prime. We denote the set of maximal \star -ideals of D by \star -Max(D), the set of maximal ideals of D by Max(D), and the set of height-one prime ideals of D by $X^{(1)}(D)$. We have $D = \bigcap_{P \in \star$ -Max(D)

Let \mathscr{F} be a nonempty collection of nonzero prime ideals of D. We say that \mathscr{F} is a *defining family of primes for* D if $D = \bigcap_{P \in \mathscr{F}} D_P$. So for a finite character star-operation \star on D, \star -Max(D) is a defining family of primes for D. We say that the intersection $D = \bigcap_{P \in \mathscr{F}} D_P$, or the set \mathscr{F} of prime ideals itself, is of *finite character*, or is *locally finite*, if each nonzero element of D is in at most finitely many $P \in \mathscr{F}$. This is equivalent to each nonzero element of D (or of K) being a unit in almost all D_P , $P \in \mathscr{F}$. We will say that the finite character star-operation \star is *locally finite* if $D = \bigcap_{K} D_{K}$ is locally finite. The defining family of primes \mathscr{F} is *independent* if

for distinct $P,Q \in \mathscr{F}$, there does not exist a nonzero prime ideal m with $m \subseteq P \cap Q$. This is equivalent to $D_PD_Q = K$ [10, Lemma 4.1]. If \mathscr{F} is independent, then \mathscr{F} is an anti-chain. We say that a finite character star-operation \star is *independent* if \star -Max(D) is independent. Note that if two prime \star -ideals contain a nonzero prime ideal, they actually contain a (nonzero) prime \star -ideal. Indeed, if P is a nonzero prime ideal and $0 \neq x \in P$, we can shrink P to a prime ideal P' minimal over Dx, and P' is a prime \star -ideal. For a finite character star-operation \star on D, we call D a \star -h-local domain if \star is independent and locally finite, that is, each proper principal ideal is contained in only finitely many maximal \star -ideals and each prime \star -ideal is contained in a unique maximal \star -ideal. For the case of $\star = d$, we just get the h-local domains of Matlis [20]. We say that D is a \mathscr{F} -IFC domain if \mathscr{F} is an independent, finite character defining family of prime ideals for D. Thus for a finite character star-operation \star on D, D being a \star -h-local domain is the same thing as D being a \mathscr{F} -IFC domain for $\mathscr{F} = \star$ -Max(D).

Suppose that \mathscr{F} is a defining family of primes for D. Then the operation $A \longrightarrow A^{\star\mathscr{F}} := \bigcap_{P \in \mathscr{F}} AD_P$ is a star-operation on D which has finite character if \mathscr{F} is locally finite

[2, Theorem 1]. (However, $\star_{\mathscr{F}}$ may have finite character without \mathscr{F} being locally finite.) Moreover, $A^{\star_{\mathscr{F}}}D_P = AD_P$ for $A \in F(D)$ and $P \in \mathscr{F}$. Thus if D is a \mathscr{F} -IFC domain, $\star_{\mathscr{F}}$ has finite character and $\star_{\mathscr{F}}$ -Max $(D) = \mathscr{F}$. In the case where \star is a finite character star-operation on D and $\mathscr{F} = \star$ -Max(D), $\star_{\mathscr{F}} = \star_w$ where \star_w is the star-operation defined by $A \to A^{\star_w} := \{x \in K | xJ \subseteq A \text{ for some } J \in f(D) \text{ with } J^{\star} = D\} = \bigcap_{P \in \star \text{-Max}(D)} \text{ for } A \in F(D)$. Here \star_w has finite character, $\star_w \leq \star$, and $(A \cap B)^{\star_w} = A^{\star_w} := A^{\star_w} :=$

 $A^{\star_w} \cap B^{\star_w}$ for $A, B \in F(D)$. Also, \star -Max $(D) = \star_w$ -Max(D) and hence $A \in F(D)$ is \star -invertible if and only if it is \star_w -invertible. Moreover, for a \star -invertible (or \star_w -invertible) ideal $A \in F(D)$, $A^{\star} = A^{\star_w} = A_t = A_v$. For results on the \star_w -operation see [4].

We have the following result relating \star and \star_w .

Theorem 1. Let \star_1 and \star_2 be two finite character star-operations on an integral domain D. Then the following conditions are equivalent.

```
1. \star_{1w} = \star_{2w}.

2. \star_1- Max(D) = \star_2- Max(D).

3. A^{\star_1} = D \Leftrightarrow A^{\star_2} = D \text{ for } A \in F(D).

4. A^{\star_1} = D \Leftrightarrow A^{\star_2} = D \text{ for } A \in f(D).
```

5. $P^{\star_{1w}} = P^{\star_{2w}}$ for each nonzero prime ideal P of D.

```
Proof. (1) \Rightarrow (2) \star_1\text{-Max}(D) = \star_{1w}\text{-Max}(D) = \star_{2w}\text{-Max}(D) = \star_2\text{-Max}(D). (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1) \Rightarrow (5) Clear. (5) \Rightarrow (2) We have \star_{1w}\text{-Max}(D) = \star_{2w}\text{-Max}(D) and hence as in (1) \Rightarrow (2) we have \star_1\text{-Max}(D) = \star_2\text{-Max}(D).
```

We next briefly review some of the material from [10] concerning \mathscr{F} -IFC domains. So let D be an integral domain and \mathscr{F} a defining family of primes for D. For an ideal A of D let $m(A) = \{P \in \mathscr{F} | A \subseteq P\}$ and call A unidirectional if |m(A)| = 1. Suppose that A is unidirectional. If P is the unique element of \mathscr{F} containing A, we say that A is unidirectional pointing to P. The following theorem sums up some of the results from [10].

Theorem 2. Let \mathscr{F} be a defining family of prime ideals for the integral domain D and let $\star_{\mathscr{F}}$ be the star-operation given by $A^{\star_{\mathscr{F}}} = \bigcap_{P \subset \mathscr{F}} AD_P$ for $A \in F(D)$.

- 1. If A is unidirectional pointing to $P \in \mathscr{F}$, then $A^{\star_{\mathscr{F}}} = AD_P \cap D$. Conversely, suppose that \mathscr{F} is independent. Let $P \in \mathscr{F}$. Then for a nonzero ideal $A \subseteq P$, $AD_P \cap D$ is unidirectional pointing to P.
- 2. Two nonzero ideals A and B of D are $\star_{\mathscr{F}}$ -comaximal (i.e., $(A+B)^{\star_{\mathscr{F}}}=D$) if and only if $m(A)\cap m(B)=\emptyset$.
- 3. If $a \star_{\mathscr{F}}$ -ideal A of D is expressible as a finite $\star_{\mathscr{F}}$ -product of unidirectional ideals, then A is uniquely expressible (up to order) as $a \star_{\mathscr{F}}$ -product of pairwise $\star_{\mathscr{F}}$ -comaximal unidirectional $\star_{\mathscr{F}}$ -ideals.
- 4. The following conditions are equivalent.
 - a. \mathcal{F} is an independent defining family of finite character, i.e., D is a \mathcal{F} -IFC domain.
 - b. Every proper integral $\star_{\mathscr{F}}$ -ideal of D is (uniquely) expressible as a finite $\star_{\mathscr{F}}$ -product of (pairwise $\star_{\mathscr{F}}$ -comaximal) unidirectional ($\star_{\mathscr{F}}$ -) ideals.
 - c. Every proper integral principal ideal of D is (uniquely) expressible as a finite ★ℱ-product of (pairwise ★ℱ-comaximal) unidirectional (★ℱ-) ideals.
 - d. Every nonzero prime ideal of D contains a nonzero element x such that Dx is (uniquely) expressible as a finite $\star_{\mathscr{F}}$ -product of (pairwise $\star_{\mathscr{F}}$ -comaximal) unidirectional ($\star_{\mathscr{F}}$ -) ideals.

Proof. (1) [10, Lemma 2.3], (2) Clear, (3) [10, Lemma 2.6], (4) Combine [10, Proposition 2.7] and [10, Theorem 2.1].

1.3 ★-homogeneous Ideals

For \mathscr{F} -IFC domains we considered $\star_{\mathscr{F}}$ -product representations of $\star_{\mathscr{F}}$ -ideals. In this paper we change our point of view. We begin with a finite character star-operation \star on the integral domain D and consider \star -product representations of \star -ideals. We make the following fundamental definition.

Definition 1. Let \star be finite character star-operation on the integral domain D. An ideal I of D is \star -homogeneous if I is a nonzero finitely generated ideal and I is contained in a unique maximal \star -ideal.

Suppose that I is a \star -homogeneous ideal of D. If P is the unique maximal \star -ideal containing I we say that I is P- \star -homogeneous. We will often denote the unique maximal \star -ideal containing I by M(I). We say that two \star -homogeneous ideals I and J are similar, denoted $I \sim J$, if M(I) = M(J).

Suppose that \star is a finite character star-operation on the integral domain D. So $D = \bigcap_{P \in \star - \operatorname{Max}(D)} D_P$, that is, $\star - \operatorname{Max}(D)$ is a defining family of primes for D and hence

for $\mathscr{F} = \star \operatorname{-Max}(D)$, the star-operation $\star_{\mathscr{F}}$ given by $A \longrightarrow A^{\star_{\mathscr{F}}} = \bigcap_{P \subset \mathscr{F}} AD_P$ is just the

 \star_w -operation. So $\star_{\mathscr{F}} = \star_w$ is a finite character star-operation on D and $\star_w \leq \star$, that is, $A^{\star_w} \subseteq A^{\star}$ for all $A \in F(D)$. Note that I is P- \star -homogeneous if and only if I is a finitely generated unidirectional ideal pointing to P.

The next two propositions give some results concerning *-homogeneous ideals.

Proposition 1. Let D be an integral domain, I a nonzero finitely generated ideal of D, and \star a finite character star-operation on D.

- 1. Suppose that $I^* \neq D$. Then I is \star -homogeneous if and only if for (finitely generated) ideals J and K of D with $J, K \supseteq I$ and $J^*, K^* \neq D$, we have $(J + K)^* \neq D$.
- 2. For $I \star$ -homogeneous, $M(I) = \{x \in D | (I,x)^{\star} \neq D\}$.
- 3. If I is \star -homogeneous, $I^{\star}D_{M(I)} \cap D = I^{\star}$.
- 4. If I is \star -homogeneous and A_1, \ldots, A_n are pairwise \star -comaximal ideals of D with $A_1 \cdots A_n \subseteq I^{\star}$, then some $A_i \subseteq I^{\star}$.
- *Proof.* 1. First note that since \star has finite character, if there are ideals $J, K \supseteq I$ with $J^{\star}, K^{\star} \neq D$, but $(J+K)^{\star} = D$, then there are finitely generated ideals J and K with this property. (\Rightarrow) Suppose that I is \star -homogeneous. If $J, K \supseteq I$ with $J^{\star}, K^{\star} \neq D$, then necessarily $J, K \subseteq M(I)$, so $(J+K)^{\star} \neq D$. (\Leftarrow) Let M_1 and M_2 be maximal \star -ideals containing I. Then $(M_1+M_2)^{\star} \neq D$, so $M_1=M_2$. Hence I is \star -homogeneous.
- 2. Here M(I) is the unique maximal \star -ideal containing I. If $x \in M(I)$, then $(I,x) \subseteq M(I)$ and hence $(I,x)^* \neq D$. Conversely, if $(I,x)^* \neq D$, then (I,x) is contained in a maximal \star -ideal P that also contains I, so P = M(I). Hence $x \in (I,x) \subseteq M(I)$.
- 3. Clearly $I^*D_{M(I)} \cap D \supseteq I^*$. Let $x \in I^*D_{M(I)} \cap D$, so x = i/s where $i \in I^*$ and $s \notin M(I)$. So $xs \in I^*$. Now $s \notin M(I)$ implies $(I, s)^* = D$, so $Dx = (Ix, sx)^* \subseteq I^*$.
- 4. By induction it suffices to do the case n=2. So suppose that A and B are \star -comaximal ideals of D with $AB \subseteq I^{\star}$. We cannot have both $A, B \subseteq M(I)$, so say $B \not\subseteq M(I)$. Then $A \subseteq AD_{M(I)} \cap D = ABD_{M(I)} \cap D \subseteq I^{\star}D_{M(I)} \cap D = I^{\star}$.

Proposition 2. Let \star be a finite character star-operation on the integral domain D. For \star -homogeneous ideals I and J of D, the following are equivalent.

1. $I \sim J$.

- 2. $(I+J)^* \neq D$.
- 3. IJ is ★-homogeneous.

If (1), (2), or (3) holds, then $IJ \sim I \sim J$. Thus if I_1, \ldots, I_n are \star -homogeneous ideals of D with I_1, \ldots, I_n all similar, then $I_1 \cdots I_n$ is \star -homogeneous and $I_1 \cdots I_n \sim I_1 \sim \cdots \sim I_n$.

Proof. (1) \Rightarrow (2) $I,J \subseteq M(I) = M(J) \Rightarrow I+J \subseteq M(J)$ and hence $(I+J)^* \neq D$. (2) \Rightarrow (1) Now $(I+J)^* \neq D$ implies I+J is contained in a maximal \star -ideal P. But since $I,J \subseteq P$ we must have M(I) = P and M(J) = P, so M(I) = M(J). (1) \Rightarrow (3) IJ is finitely generated and $(IJ)^* \neq D$. Let P be a maximal \star -ideal containing IJ. Since P is prime, we have, say $I \subseteq P$. So P = M(I). So IJ is \star -homogeneous with M(IJ) = M(I). (3) \Rightarrow (1) Suppose that $I \not\sim J$, so M(I) and M(J) are two distinct maximal \star -ideals containing IJ, a contradiction.

The last statement is now immediate.

We next give a uniqueness result for \star -products of \star -homogeneous ideals. Compare with Theorem 2(3) ([10, Lemma 2.6]).

Theorem 3. Let D be an integral domain and \star a finite character star-operation on D. Let I be an ideal of D. If I is a \star -product of \star -homogeneous ideals of D, then I is uniquely expressible (up to order) as a \star -product of pairwise \star -comaximal \star -ideals $(J_1^\star \cdots J_s^\star)^\star$ where each J_i is \star -homogeneous.

Proof. Suppose $I = (I_1 \cdots I_n)^*$ where I_i is \star -homogeneous. Let $M(I_{i_1}), \ldots, M(I_{i_s})$ be the distinct maximal \star -ideals among $M(I_1), \ldots, M(I_n)$. For $1 \leq \ell \leq s$, put $J_\ell := \prod \{I_j | I_j \sim I_{i_\ell}\}$. So J_1, \ldots, J_s are \star -homogeneous ideals of D that are pairwise \star -comaximal and $I = (J_1 \cdots J_s)^* = (J_1^* \cdots J_s^*)^*$. Suppose that we have another representation $I = (K_1 \cdots K_t)^* = (K_1^* \cdots K_t^*)^*$ where K_1, \ldots, K_t are pairwise \star -comaximal \star -homogeneous ideals of D. Now $K_1 \cdots K_t \subseteq (J_1 \cdots J_s)^* \subseteq J_1^*$, so by Proposition 1, some $K_i \subseteq J_1^*$. Reordering, we can take i = 1, so $K_1 \subseteq J_1^*$. Reversing the roles of the J_i 's and K_i 's, we have some $J_i \subseteq K_1^* \subseteq J_1^*$. By \star -comaximality, i = 1, so $J_1 \subseteq K_1^*$ and hence $J_1^* = K_1^*$. Continuing we see that each J_i matches up to a K_j with $K_i^* = K_j^*$. Thus $S_i = I_i$ and after re-ordering $J_i^* = K_i^*$ for $i = 1, \ldots, s$.

We next define \star -SH domains. We will see that a \star -SH domain is the same thing as a \star -h-local domain.

Definition 2. Let D be an integral domain and \star a finite character star-operation on D. Then D is a \star -semi-homogeneous (\star -SH) domain if every proper nonzero principal ideal of D is a finite \star -product of \star -homogeneous ideals of D.

So by Theorem 3, D is a \star -SH domain if and only if each proper nonzero principal ideal Dx of D has a unique representation (up to order) as a finite \star -product of pairwise \star -comaximal \star -ideals $Dx = (J_1^{\star} \cdots J_s^{\star})^{\star} (= (J_1 \cdots J_s)^{\star})$ where J_i is \star -homogeneous. We next use our results from [10] to get some characterizations of \star -SH domains.

Theorem 4. Let D be an integral domain and \star a finite character star-operation on D. Then the following are equivalent.

- 1. D is a \star -SH domain.
- 2. *D* is $a \star \text{Max}(D)$ -IFC domain, that is, *D* is $a \star h$ -local domain.
- 3. D is a \star_w -SH domain.

Proof. (1)⇔(3) Since *-Max(D) = *_w-Max(D), an ideal is *-homogeneous if and only if it is *_w-homogeneous. Let x be a nonzero nonunit of D. Now in a representation $Dx = (I_1 \cdots I_n)^*$ (resp., $Dx = (J_1 \cdots J_m)^{*_w}$) where each I_i (resp., J_i) is *-invertible (resp., *_w-homogeneous), $I_1 \cdots I_n$ (resp., $J_1 \cdots J_m$) is *-invertible (resp., *_w-invertible). But an ideal I is *-invertible if and only if it is *_w-invertible and in this case $I^* = I_t = I^{*_w}$. Thus $Dx = (I_1 \cdots I_n)^{*_w}$ (resp., $(J_1 \cdots J_m)^*$). So Dx is a *-product of *-homogeneous ideals if and only if it is a *_w-product of *_w-homogeneous ideals. (2)⇔(3) Let $\mathscr{F} = *$ -Max(D), so *_{\$\varphi\$} = *_w. By [10, Proposition 2.7], D is a \$\varphi\$-IFC domain if and only if for each nonzero nonunit $x \in D$, Dx is a *_{\varphi} = *_w-product of unidirectional ideals. Now a *_w-homogeneous ideal is unidirectional. And if $Dx = (I_1 \cdots I_n)^{*_w}$ where each I_i is unidirectional, then I_i is *_w-invertible and hence $I_i^{*_w} = (I_i')^{*_w}$ for some finitely generated ideal $I_i' \subseteq I_i$. So I_i' is *_w-homogeneous and $Dx = (I_1' \cdots I_n')^{*_w}$.

Theorem 5. Let D be an integral domain and \star a finite character star-operation on D. Then the following are equivalent.

- 1. D is a \star -SH domain.
- 2. \star is locally finite and independent.
- 3. Every nonzero prime ideal of D contains a nonzero element x such that Dx is a *-product of *-homogeneous ideals.
- Every nonzero prime ideal of D contains a ⋆-invertible ⋆-homogeneous ideal of D.
- 5. For $P \in \star\text{-Max}(D)$ and $0 \neq x \in P$, $xD_P \cap D = I^*$ for some $\star\text{-invertible } P\text{-}\star\text{-homogeneous ideal } I$.
- 6. \star is independent and if A is a nonzero ideal of D with AD_P finitely generated for each $P \in \star$ -Max(D), then A^{\star} is a finite type \star -ideal.

Proof. $(1)\Leftrightarrow(2)$ Theorem 4.

Note that for each i, $2 \le i \le 5$, (i) is equivalent to (i') where (i') is (i) with \star replaced by \star_w . By [10, Theorem 3.3], (2')-(5') are equivalent and hence (2)-(5) are equivalent.

(2) \Rightarrow (6) Now by hypothesis, \star is independent and by [10, Theorem 3.3] A^{\star_W} is a finite type \star_W -ideal. Hence A^\star is a finite type \star -ideal. (6) \Rightarrow (5) Let $P \in \star$ -Max(D) and $0 \neq x \in P$. Put $A:=xD_P \cap D$. Let $Q \in \star$ -Max(D)\{P}. Since \star is independent, $D_PD_Q = K$, the quotient field of D. Thus $AD_Q = (xD_P \cap D)D_Q = xD_PD_Q \cap D_Q = xK \cap D_Q = D_Q$. So P is the only maximal \star -ideal containing A. Since AD_M is finitely generated for each $M \in \star$ -Max(D), $A^\star = A_1^\star$ for some finitely generated ideal A_1 of D. Moreover, since \star has finite character we can take $A_1 \subseteq A$. Since P is the only

maximal \star -ideal containing A, the same is true for A_1 and $A_2 := (A_1, x)$. So A_2 is P- \star -homogeneous. Also, $AD_Q = D_Q = A_2D_Q$ for $Q \in \star$ - $\operatorname{Max}(D) \setminus \{P\}$ and $AD_P = xD_P \subseteq A_2D_P$, so $AD_P = A_2D_P$. Hence $A = AD_P \cap D = \bigcap_{Q \in \star -\operatorname{Max}(D)} A_2D_Q = \bigcap_{Q \in \star -\operatorname{Max}(D)} A_2D_Q = A_2^{\star w}$. As $A_2 = A_2^{\star w} = A_2^{\star w}$. In the proof of (5) \Rightarrow (4) of [10, Theorem 3.3], $A_2 = A_2^{\star w} = A_2^{\star w}$. Thus $A_2 = A_2^{\star w} = A_2^{\star w}$.

We next note that in a \star -SH domain every proper finite type \star -ideal is a \star -product of \star -homogeneous ideals.

Theorem 6. Let D be a \star -SH domain and I a nonzero finitely generated ideal of D with $I^{\star} \neq D$. Then I^{\star} is uniquely expressible (up to order) as a \star -product $(J_1^{\star} \cdots J_n^{\star})^{\star}$ of pairwise \star -comaximal \star -ideals $J_1^{\star}, \ldots, J_n^{\star}$ where each J_i is \star -homogeneous.

Proof. Since D is a \star -SH domain, \star is locally finite by Theorem 5. Let M_1, \ldots, M_n be the maximal \star -ideals contained I and put I_i := $ID_{M_i} \cap D$. So $I^{\star_w} = I_1 \cap \cdots \cap I_n$ and hence $I^\star = (I_1 \cap \cdots \cap I_n)^\star$. Since \star is independent (Theorem 5) Theorem 2 gives that M_i is the unique maximal \star -ideal containing I_i . So I_1, \ldots, I_n are pairwise \star -comaximal and thus $(I_1 \cap \cdots \cap I_n)^\star = (I_1 \cdots I_n)^\star$. By Theorem 5, I_i^\star has \star -finite type, so $I_i^\star = J_i^\star$ where J_i is \star -homogeneous. Now J_1, \ldots, J_n are pairwise \star -comaximal \star -homogeneous ideals with $I^\star = (J_1^\star \cdots J_n^\star)^\star$. Uniqueness follows from Theorem 3.

In [5] an integral domain D was defined to be *weakly Krull* if $D = \bigcap_{P \in X^{(1)}(D)} D_P$ and the intersection is locally finite. Thus D is weakly Krull if D is a \mathscr{F} -IFC domain for $\mathscr{F} = X^{(1)}(D)$. We generalize this definition as follows.

Definition 3. Let D be an integral domain and \star a finite character star-operation on D. Then D is a \star -weakly Krull domain (\star -WKD) if D is a \star -h-local domain for which $X^{(1)}(D) = \star$ -Max(D).

Thus D is a \star -WKD if and only if D is weakly Krull and $X^{(1)}(D) = \star$ -Max(D). Note that for D weakly Krull, t-Max $(D) = X^{(1)}(D)$. Thus a weakly Krull domain is the same thing as a t-WKD. At the other extreme, D is a d-WKD if and only if dim D=1 and each nonzero element of D is in at most finitely many maximal ideals. If \star_1 and \star_2 be two finite character star-operations on D with $\star_1 \leq \star_2$, then D a \star_1 -WKD implies that D is a \star_2 -WKD. Evidently D is a \star -WKD if and only if it is a \star_w -WKD.

To give our characterization of ★-weakly Krull domains we need the following definition.

Definition 4. Let D be an integral domain and \star a finite character star-operation on D. Then a \star -homogeneous ideal I of D has $type\ 1$ if $M(I) = \sqrt{I^{\star}}$. And D is a $type\ 1$ \star -SH domain if each nonzero proper principal ideal of D is a \star -product of type 1 \star -homogeneous ideals.

It is easy to see that a \star -homogeneous ideal I has type 1 if and only if for each \star -homogeneous ideal $A \supseteq I$, there exists an $n \ge 1$ with $A^n \subseteq I^{\star}$.

Theorem 7. Let D be an integral domain and \star a finite character star-operation on D. Then the following are equivalent.

- 1. D is a ★-weakly Krull domain.
- 2. *D* is a \star -h-local domain and each \star -homogeneous ideal has type 1.
- 3. Every proper principal ideal of D is a *-product of type 1 *-homogeneous ideals, that is, D is a type 1 *-SH domain.
- 4. If I is a nonzero finitely generated ideal of D with $I^* \neq D$, then I^* is a \star -product of type $1 \star$ -homogeneous ideals.

Proof. (1) \Rightarrow (2) By definition a \star -weakly Krull domain is \star -h-local. Let I be a \star -homogeneous ideal of D. Since \star -Max $(D) = X^{(1)}(D)$, M(I) is a minimal prime over I^{\star} and as any prime ideal minimal over I^{\star} is a \star -ideal, M(I) is the unique prime ideal minimal over I^{\star} . Hence $M(I) = \sqrt{I^{\star}}$, so I has type 1.

 $(2)\Rightarrow(3)$ Clear since in a \star -h-local domain every proper principal ideal is a \star -product of \star -homogeneous ideals (Theorem 4).

 $(3)\Rightarrow(1)$ Certainly (3) gives that D is a \star -SH domain and hence \star -h-local (Theorem 4). We show \star -Max $(D)=X^{(1)}(D)$. Let M be a maximal \star -ideal. Suppose that there exists a nonzero prime ideal $Q\subsetneq M$. Let $0\neq x\in Q$. Shrinking Q to a prime ideal minimal over Dx we can assume that Q is a \star -ideal. Now $Dx=(I_1\cdots I_n)^\star$ where each I_i is a type 1 \star -homogeneous ideal. Now $I_1\cdots I_n\subseteq Q$, so some $I_i\subseteq Q$ and hence $I_i^\star\subseteq Q$. But $M(I_i)=\sqrt{I_i^\star}\subseteq Q\subsetneq M$, a contradiction. Thus \star -Max $(D)\subseteq X^{(1)}(D)$ and hence we have equality since each height-one prime ideal is a \star -ideal.

 $(4)\Rightarrow(3)$ Clear. $(2)\Rightarrow(4)$ This follows from Theorem 6 since a \star -h-local domain is a \star -SH domain.

Invoking Theorem 3 we see that in a \star -weakly Krull domain a nonzero finitely generated ideal I with $I^{\star} \neq D$ has a unique representation (up to order) $I^{\star} = (J_1^{\star} \cdots J_n^{\star})^{\star}$ where J_1, \ldots, J_n are pairwise \star -comaximal type 1 \star -homogeneous ideals.

Now a Krull domain is a weakly Krull domain (or equivalently, a t-WKD) in which D_P is a DVR for each $P \in X^{(1)}(D)$. With this in mind we make the following definition.

Definition 5. Let D be an integral domain and \star a finite character star-operation on D. Then D is a \star -Krull domain if D is a \star -weakly Krull domain and D_P is a DVR for each $P \in \star$ -Max(D).

Evidently D is a \star -Krull domain if and only if D is a Krull domain and \star -Max $(D) = X^{(1)}(D)$. Thus a Krull domain is the same thing as a t-Krull domain. At the other extreme, a d-Krull domain is a Dedekind domain. If \star_1 and \star_2 are finite character star-operations on D with $\star_1 \leq \star_2$, then $D \star_1$ -Krull implies that D is \star_2 -Krull.

Our characterization of *-Krull domains requires the following definition.

Definition 6. Let D be an integral domain and \star a finite character star-operation on D. A \star -homogeneous ideal I of D has $type\ 2$ if $I^{\star} = (M(I)^n)^{\star}$ for some $n \ge 1$. And D is a $type\ 2 \star$ -SH domain if each nonzero proper principal ideal of D is a \star -product of type 2 \star -homogeneous ideals.

Theorem 8. Let D be an integral domain and \star a finite character star-operation on D. Then the following conditions are equivalent.

- 1. D is a ★-Krull domain.
- 2. Every proper \star -ideal of D is a \star -product of prime \star -ideals of D.
- 3. Every proper principal ideal of D is a \star -product of prime \star -ideals of D.
- 4. Every proper \star -ideal of D is a \star -product of type 2 \star -homogeneous ideals of D.
- 5. Every proper principal ideal of D is a \star -product of type 2 \star -homogeneous ideals of D, that is, D is a type 2 \star -SH domain.

Proof. (1)
$$\Rightarrow$$
(4) D is \star -Krull, so D is a Krull domain and \star -Max $(D) = X^{(1)}(D)$. For $A \in F(D)$, $A^{\star_w} = \bigcap_{P \in X^{(1)}(D)} AD_P = A_t$, so $A^{\star_w} = A^{\star} = A_t$. Let $P \in X^{(1)}(D)$. Choose

$$x \in P \setminus P^2$$
. Let Q_1, \dots, Q_n be the other height-one primes containing x and choose $y \in P \setminus (Q_1 \cup \dots \cup Q_n)$. So $(x,y)^* = (x,y)^{*_w} = \bigcap_{Q \in X^{(1)}(D)} (x,y) D_Q = P$. Put $H(P) := (x,y)$, so

H(P) is a type 2 \star -homogeneous ideal. Let A be a proper \star -ideal of D. Then $A = \bigcap AD_P = P_1^{(n_1)} \cap \cdots \cap P_s^{(n_s)}$ where P_1, \ldots, P_s are the height-one primes containing $P \in X^{(1)}(D)$

$$A \text{ and } P_i^{(n_i)} = P_i^{n_i} D_{P_i} \cap D. \text{ But } P_1^{(n_1)} \cap \cdots \cap P_s^{(n_s)} = (P_1^{n_1} \cdots P_s^{n_s})_t = (P_1^{n_1} \cdots P_s^{n_s})^* = ((H(P_1)^*)^{n_1} \cdots (H(P_s)^*)^{n_s})^* = (H(P_1)^{n_1} \cdots H(P_s)^{n_s})^*.$$

 $(4) \Rightarrow (2) \Rightarrow (3), (4) \Rightarrow (5) \Rightarrow (3)$ Clear.

(3)⇒(1) Let x be a nonzero nonunit of D. So $Dx = (P_1 \cdots P_n)^*$ where P_i is a prime \star -ideal of D. Then P_i is \star -invertible so $P_i = H(P_i)^*$ where $H(P_i)$ is a finitely generated ideal contained in P_i . Thus $H(P_i)$ is a type 2 \star -homogeneous ideal and hence a type 1 \star -homogeneous ideal. So each proper principal ideal of D is a \star -product of type 1 \star -homogeneous ideals. By Theorem 7, D is a \star -WKD. Let $P \in X^{(1)}(D)$; we need to show that D_P is a DVR. Let $0 \neq x \in P$, so $Dx = (P_1 \cdots P_n)^*$ where P_i is a prime \star -ideal which is \star -invertible. Now some $P_i \subseteq P$ and hence $P_i = P$, so P is \star -invertible. Thus $(PP^{-1}) \not\subset P$, so $PP^{-1}D_P = D_P$ and hence PD_P is invertible and therefore principal. Since ht P = 1, D_P is a DVR.

Once again we can invoke Theorem 3 to get the appropriate uniqueness result for pairwise \star -comaximal type 2 \star -homogeneous ideals in Theorem 8. We leave it to the reader to show that in a \star -Krull domain if $(P_1 \cdots P_n)^{\star} = (Q_1 \cdots Q_m)^{\star}$ where the P_i 's and Q_i 's are maximal \star -ideals, then n = m and after reordering $P_i = Q_i$ for each i.

The notion of a Krull domain can be generalized in a number of ways. We have already defined \star -Krull domains and \star -weakly Krull domains. An integral domain D is an *independent ring of Krull type* (*IRKT*) [15] if D is a \mathscr{F} -IFC domain for some defining family \mathscr{F} of primes where D_P is a valuation domain for each $P \in \mathscr{F}$. For a finite character star-operation \star on P, we call D a \star -independent ring of Krull type (\star -IRKT) if D is a \mathscr{F} -IFC domain for $\mathscr{F} = \star$ -Max(D), that is, D is \star -h-local, and for each $P \in \star$ -Max(D), D_P is a valuation domain. Thus D is a \star -IRKT if and only if D is an IRKT where $\mathscr{F} = \star$ -Max(D). A d-IRKT is just a finite character, independent Prüfer domain. At the other extreme, a t-IRKT is just an IRKT. If \star_1 and \star_2 are

finite character star-operations on D with $\star_1 \leq \star_2$ and D is a \star_1 -IRKT, then D is a \star_2 -IRKT, see Proposition 3 below. Recall that D is a $P \star MD$ if each nonzero finitely generated ideal of D is \star -invertible, or equivalently, D_M is a valuation domain for each $M \in \star$ -Max(D). Thus a \star -IRKT is a $P \star MD$. In fact, D is a \star -IRKT if and only if D is a \star -h-local $P \star MD$. A P v MD is usually defined to be a v-domain (each nonzero finitely generated ideal of D is v-invertible) in which A^{-1} is a finite type v-ideal for each nonzero finitely generated ideal A of D. Thus a P v MD is just a P t MD and a $P \star MD$ is a P v MD. Of course a P d MD is just a P v MD and a P t MD.

The integral domain D is a generalized Krull domain (GKD) if $D = \bigcap_{P \in X^{(1)}(D)} D_P$

is locally finite and for each $P \in X^{(1)}(D)$, D_P is a valuation domain, that is, D is weakly Krull and for each $P \in X^{(1)}(D)$, D_P is a valuation domain. Let \star be a finite character star-operation on D. We call D a \star -generalized Krull domain (\star -GKD) if $D = \bigcap_{P \in X^{(1)}(D)}$ locally finite, \star -Max $(D) = X^{(1)}(D)$, and D_P is a valuation domain for $P \in X^{(1)}(D)$

each $P \in X^{(1)}(D)$, or equivalently, D is \star -weakly Krull and for each $P \in X^{(1)}(D)$, D_P is a valuation domain, that is, D is a \star -GKD if and only if D is a GKD and \star -Max(D) = $X^{(1)}(D)$. So D is a d-GKD if and only if D is a one-dimensional finite character Prüfer domain. At the other extreme, a t-GKD is just a GKD. If \star_1 and \star_2 are two finite character star-operations on D with $\star_1 \leq \star_2$, then D a \star_1 -GKD implies that D is a \star_2 -GKD.

Proposition 3. Let D be an integral domain and \star_1 and \star_2 be finite character star-operations on D with $\star_1 \leq \star_2$. If D is a \star_1 -IRKT, then D is a \star_2 -IRKT.

Proof. Let $P \in \star_2$ -Max(D). Then $P^{\star_1} \subseteq P^{\star_2} = P$, so $P^{\star_1} \neq D$ and hence P is contained in a maximal \star_1 -ideal Q. Moreover, Q is unique since \star_1 is independent. Also, D_Q is a valuation domain and hence so is $D_P = (D_Q)_{P_Q}$. Note that \star_2 is independent. Suppose that m is a nonzero prime ideal with $m \subseteq M_1, M_2$, two maximal \star_2 -ideals. Then M_i is contained in a maximal \star_1 -ideal M_i' . Since $m \subseteq M_1' \cap M_2'$, $M_1' = M_2'$ as \star_1 is independent. But then $M_1, M_2 \subseteq M_1'$ and $D_{M_1'}$ is a valuation domain. So M_1 and M_2 are comparable. Here $M_1 = M_2$. So \star_2 is independent. We next show that \star_2 is locally finite. Suppose some $0 \neq x \in D$ is contained in an infinite number of maximal \star_2 -ideals $\{Q_n\}_{n=1}^{\infty}$. Now each Q_n is contained in a maximal \star_1 -ideal P_n . Now if $P_n = P_m$, then Q_n and Q_m are comparable since D_{P_n} is a valuation domain, so $Q_n = Q_m$. Thus x is contained in infinitely many maximal \star_1 -ideals, a contradiction.

The following diagram gives the various implications between the different generalizations of Krull domains.

To characterize \star -IRKTs using \star -homogeneous ideals we need the following definition.

Definition 7. Let D be an integral domain and \star a finite character star-operation on D. A \star -homogeneous ideal I of D is \star -super-homogeneous if each \star -homogeneous ideal containing I is \star -invertible. The \star -super-homogeneous ideal I has type I (resp., $type\ 2$) if I has type 1 as a \star -homogeneous ideal, that is, $\sqrt{I^{\star}} = M(I)$ (resp., $I^{\star} = (M(I)^n)^{\star}$ for some $n \geq 1$). The domain D is a \star -super-SH domain (resp., type I \star -super-SH domain, type I \star -super-SH domain ideal of I is a \star -product of \star -super-homogeneous ideals (resp., of type 1, of type 2).

Note that if I is \star -super-homogeneous, then each finitely generated ideal containing I is \star -invertible. Now by [17, Theorem 1.11] a product of similar \star -super-homogeneous ideals is again \star -super-homogeneous. Thus the proof of Theorem 3 gives the corresponding uniqueness result for \star -products of \star -super-homogeneous ideals.

Theorem 9. Let \star be a finite character star-operation on the integral domain D and let J_1, \ldots, J_n be a set of \star -super-homogeneous ideals of D. Then the \star -product $(J_1 \cdots J_n)^{\star}$ can be expressed uniquely, up to order, as a \star -product of pairwise \star -comaximal \star -super-homogeneous ideals.

We next give several characterizations of ★-IRKTs.

Theorem 10. Let D be an integral domain and \star a finite character star-operation on D. Then the following conditions are equivalent.

- 1. D is a \star -IRKT.
- 3. D is \star -h-local and every \star -homogeneous ideal is \star -super-homogeneous.
- 4. Every proper nonzero principal ideal is a \star -product of \star -super-homogeneous ideals, that is, D is a \star -super-SH domain.
- 5. If I is a nonzero finitely generated ideal with $I^* \neq D$, then I^* is a \star -product of \star -super-homogeneous ideals.

Proof. (1) \Rightarrow (2),(3) Let I be a \star -homogeneous ideal of D and let $J \supseteq I$ be a finitely generated ideal of D. Then JD_P is principal for each $P \in \star$ -Max(D) since D_P is

a valuation domain. Thus J is \star -invertible. (2) \Rightarrow (1) Let $P \in \star$ -Max(D). We need to show that D_P is a valuation domain. It suffices to show that for $x, y \in P \setminus \{0\}$, $(x,y)D_P$ is principal. Let $A=(x,y)D_P\cap D$. By Theorem 5, A^* is a finite type \star ideal. So $A^* = A_1^*$ where $A_1 \subseteq A$ is finitely generated. Now P is the unique maximal \star -ideal containing A and hence the unique maximal \star -ideal containing A_1 . So by hypothesis A_1 , and hence A, is \star -invertible. So $(x,y)D_P = AD_P$ is principal. (3) \Rightarrow (4) This is immediate since for a \star -h-local domain each proper nonzero principal ideal is a \star -product of \star -homogeneous ideal by Theorem 4. (4) \Rightarrow (1) Every proper nonzero principal ideal of D is a \star -product of \star -homogeneous ideals, so by Theorem 4, D is \star -h-local. Let $P \in \star$ -Max(D). We need that D_P is a valuation domain. Let $0 \neq x \in P$, so $Dx = (I_1 \cdots I_n)^*$ where I_i is \star -super-homogeneous. Let $I = \prod \{I_i | I_i \text{ is } P \text{ } \star\text{-homogeneous} \}$. Then $xD_P \cap D = I^{\star}$. By [17, Theorem 1.11], I is \star -super-homogeneous. Let $0 \neq y \in P$. Then again $yD_P \cap D = J^*$ for some \star super-homogeneous ideal J of D. But by [17, Theorem 1.11] for two $P-\star$ -superhomogeneous ideals I and J of D, I^* and J^* are comparable. Thus $xD_P \cap D$ and $vD_P \cap D$ are comparable, so D_P is a valuation domain. (5) \Rightarrow (4) Clear. (1) \Rightarrow (5) Let I be a nonzero finitely generated ideal of D with $I^* \neq D$. By (1) \Rightarrow (3) it is enough to show I^* is a *-product of *-homogeneous ideals. But this follows from Theorem 6.

Using Theorems 9 and 10 we get the following result.

Proposition 4. Let D be an integral domain and \star a finite character star-operation on D. Suppose that D is a \star -IRKT. Let $a,b \in D^*$ with $(a,b)^* \neq D$. Then $(a,b)^* = (I_1 \cdots I_n)^*$ where I_1, \ldots, I_n are pairwise \star -comaximal \star -super-homogeneous ideals of D containing (a,b) such that $(a,b)D_{M(I_i)} = I_iD_{M(I_i)} = aD_{M(I_i)}$ or $bD_{M(I_i)}$.

Proof. Now by Theorems 9 and 10 $(a,b)^* = (I_1 \cdots I_n)^*$ where I_1, \dots, I_n are pairwise \star -comaximal \star -super-homogeneous ideals of D. Put $I_i' = I_i + (a,b)$. Then $M(I_i') = M(I_i)$, each I_i' is a \star -super-homogeneous ideal, and $I_i' \supseteq (a,b)$. Now $I_1 \cdots I_n \subseteq I_1' \cdots I_n' = (I_1 + (a,b)) \cdots (I_n + (a,b)) \subseteq I_1 \cdots I_n + (a,b)$, so $(I_1' \cdots I_n')^* = (I_1 \cdots I_n)^*$. Thus we can replace I_i by I_i' and hence assume that $(a,b) \subseteq I_i$. Since (a,b) and $I_1 \cdots I_n$ are \star -invertible we have $(a,b)^{\star_w} = (a,b)^* = (I_1 \cdots I_n)^* = (I_1 \cdots I_n)^{\star_w}$. So $(a,b)D_{M(I_i)} = (a,b)^{\star_w}D_{M(I_i)} = (I_1 \cdots I_n)^{\star_w}D_{M(I_i)} = I_1 \cdots I_nD_{M(I_i)} = I_iD_{M(I_i)}$. Now $D_{M(I_i)}$ is a valuation domain, so either $(a,b)D_{M(I_i)} = aD_{M(I_i)}$ or $(a,b)D_{M(I_i)} = bD_{M(I_i)}$.

Using Theorem 10 we get several characterizations of ★-GKDs.

Theorem 11. Let D be an integral domain and \star a finite character star-operation on D. Then the following are equivalent.

- 1. D is a \star -GKD.
- 2. D is a \star -IRKT and a \star -WKD.
- 3. D is a \star -IRKT and every \star -super-homogeneous ideal has type 1.
- 4. D is a \star -WKD and every \star -homogeneous ideal is \star -invertible.
- 5. D is *-h-local and every *-homogeneous ideal is *-super-homogeneous and has type 1.

- 6. Every proper nonzero principal ideal of D is a \star -product of \star -super-homogeneous ideals of type 1, that is, D is a type 1 \star -super-SH domain.
- 7. If I is a nonzero finitely generated ideal of D with $I^* \neq D$, then I^* is a \star -product of type 1 \star -super-homogeneous ideals.

Proof. (1) \Leftrightarrow (2) Clear. (2) \Leftrightarrow (3) First note that by Theorem 10, for a \star -IRKT the notions of \star -homogeneous and \star -super-homogeneous coincide. Then use Theorem 7. (2) \Leftrightarrow (4) Theorem 10. (4) \Leftrightarrow (5) \Leftrightarrow (6) Combine Theorems 7 and 10. (7) \Rightarrow (6) Clear. (5) \Rightarrow (7) Theorem 6.

Once again we can invoke Theorem 3 to get the appropriate uniqueness result for pairwise \star -comaximal type 1 \star -super-homogeneous ideals in Theorem 10.

By Theorem 8 D is a \star -Krull domain if and only if D is a type 2 \star -SH domain. Now in a \star -Krull domain a nonzero finitely generated ideal I is \star -homogeneous if and only if $I^{\star} = P^{(n)}$ for some $P \in X^1(D)$ and $n \ge 1$. Hence I is \star -homogeneous if and only if it is a type 2 \star -super homogeneous ideal. Thus a type 2 \star -super-SH domain is the same thing as a \star -Krull domain and if I is a nonzero finitely generated ideal of D with $I^{\star} \ne D$, I^{\star} is a \star -product of type 2 \star -super-homogeneous ideals.

Let \star be a finite character star-operation on the integral domain D. We define D to be \star -Bezout if for $a,b \in D^*$, $(a,b)^*$ is principal. It easily follows that D is \star -Bezout if and only if A^* is principal for each nonzero finitely generated (fractional) ideal A of D. If \star_1 and \star_2 are finite character star-operations on D, then $D\star_1$ -Bezout implies that D is \star_2 -Bezout. A d-Bezout domain is just a Bezout domain while a t-Bezout domain is a GCD domain. We also define D to be a \star -Prüfer domain if for $a,b \in D^*$, $(a,b)^*$ is invertible. Using [19, Exercise 22, page 43], it is easy to see that D is \star -Prüfer if and only if A^* is invertible for each nonzero finitely generated (fractional) ideal A of D. Again if $\star_1 \leq \star_2$ are finite character star-operations on D, then $D\star_1$ -Prüfer implies that D is \star_2 -Prüfer. A d-Prüfer domain is just a Prüfer domain while a t-Prüfer domain is a generalized GCD domain (GGCD domain). GGCD domains were introduced in [1] and studied in more detail in [3]. We have \star -Bezout $\Rightarrow \star$ -Prüfer \Rightarrow P \star MD.

Storch [21] defined a Krull domain D to be almost factorial if for $a,b \in D^*$ there exists an $n = n(a,b) \ge 1$ with $a^nD \cap b^nD$ principal. The second author initiated a general theory of almost factoriality in [22]. There he defined an integral domain D to be an almost GCD domain (AGCD domain) if for $a,b \in D^*$, there exists an $n = n(a,b) \ge 1$ with $a^nD \cap b^nD$ principal, or equivalently, $(a^n,b^n)_v$ $(=(a^n,b^n)_t)$ principal. This investigation was continued in [9]. In that paper an integral domain D was defined to be an almost Bezout domain (AB domain) (resp., almost Prüfer domain (AP domain)) if for $a,b \in D^*$, there exists an $n = n(a,b) \ge 1$ with (a^n,b^n) principal (resp., invertible). It was shown that D is almost Bezout (resp., almost Prüfer) if and only if for $a_1, \ldots, a_s \in D^*$; there exists an $n = n(a_1, \ldots, a_s) \ge 1$ with (a_1^n, \ldots, a_s^n) principal (resp., invertible). Briefly mentioned in [9] was the notion of an almost generalized GCD domain (AGGCD domain). Here D is a AGGCD domain if for $a,b \in D^*$ there exists an $n = n(a,b) \ge 1$ with $a^nD \cap b^nD$ invertible, or equivalently, $(a^n,b^n)_v$ (= $(a^n,b^n)_v$) is invertible.

With the definitions in the previous two paragraphs in mind, we make the following definitions. Let D be an integral domain and \star a finite character star-operation on D. We say the D is a \star -almost Bezout domain (resp., \star -almost Prüfer domain, almost $P\star MD$) if for $a,b\in D^*$, there exists an $n=n(a,b)\geq 1$ with $(a^n,b^n)^*$ principal (resp., invertible, \star -invertible). (More generally, we could call D a \star_2 -almost $P\star_1 MD$ if $(a^n,b^n)^{\star_2}$ is \star_1 -invertible.) If $\star_1\leq \star_2$ are finite character star-operations on D, then $D\star_1$ -almost Bezout (resp., \star_1 -almost Prüfer, almost $P\star_1 MD$) implies D is \star_2 -almost Bezout (resp., \star_2 -almost Prüfer, almost $P\star_2 MD$). A d-almost Bezout domain (resp., d-almost Prüfer domain) is just an almost Bezout domain (resp., almost Prüfer domain), while a t-almost Bezout domain (resp., t-almost Prüfer domain) is just an AGCD domain (resp., AGGCD domain).

We mention two useful results from [9]. First, let \star be a finite character star-operation on D. Let $\{a_{\alpha}\} \subseteq D^*$ and $n \ge 1$. If $(\{a_{\alpha}\})$ is \star -invertible, then $(\{a_{\alpha}^n\})^* = ((\{a_{\alpha}\})^n)^*$. In particular, $(\{a_{\alpha}^n\})$ is also \star -invertible. This is stated for the case $\star = t$ in [9, Lemma 3.3]. The proof carries over mutatis mutandis for a general finite character star-operation \star . Next, for an integral domain D, the following conditions are equivalent [9, Theorem 6.8]: (1) D is n-root closed (i.e., for $x \in K$ with $x^n \in D$, $x \in D$, (2) for $\{a_{\alpha}\} \subseteq D^*$, $(\{a_{\alpha}^n\})_t = ((\{a_{\alpha}\})^n)_t$, (3) for $\{a_{\alpha}\} \subseteq D^*$, $(\{a_{\alpha}^n\})_v = ((\{a_{\alpha}\})^n)_v$, and (4) for $a,b \in D^*$, $(a^n,b^n)_t = ((a,b)^n)_t$. Thus if D is integrally closed, $(\{a_{\alpha}^n\})_t = ((\{a_{\alpha}\})^n)_t$ for all $\{a_{\alpha}\} \subseteq D^*$ and $n \ge 1$.

Using the first mentioned result of the previous paragraph, the proof of [9, Lemma 4.3] can easily be modified to show that for an integral domain D and finite character star-operation \star on D, if D is \star -almost Bezout (resp., \star -almost Prüfer, almost P \star MD) and $a_1,\ldots,a_s\in D^*$, then there exits an $n=n(a_1,\ldots,a_s)\geq 1$ with $(a_1^n,\ldots,a_s^n)^\star$ principal (resp., invertible, \star -invertible). Thus for D integrally closed, D is \star -almost Bezout (resp., \star -almost Prüfer, almost P \star MD) if and only if for A a nonzero finitely generated (fractional) ideal of D, there exists an $n=n(A)\geq 1$ with $(A^n)^\star$ principal (resp., invertible, \star -invertible). The implication (\Leftarrow) does not require that D be integrally closed. Indeed, if $(A^n)^\star$ is \star -invertible, A is \star -invertible and hence for $A=(a,b), (a^n,b^n)^\star=((a,b)^n)^\star$. Conversely, suppose that D is integrally closed and let $A=(a_1,\ldots,a_s)$. Then for some $n\geq 1$, (a_1^n,\ldots,a_s^n) is \star -invertible and hence $(a_1^n,\ldots,a_s^n)^\star=(a_1^n,\ldots,a_s^n)_t$. Thus $(A^n)_t \supseteq (a_1^n,\ldots,a_s^n)^\star=(a_1^n,\ldots,a_s^n)_t=(A^n)_t$.

Let \star be a finite character star-operation on D. The set \star -Inv(D) of \star -invertible fractional \star -ideals forms a group under the \star -product $I\star J:=(IJ)^\star$ with subgroup Princ(D), the set of nonzero principal fractional ideals of D. The quotient group $C\ell_\star(D):=\star$ -Inv(D)/Princ(D) is called the \star -class group of D, see [11]. For $\star=d$, we have the usual class group C(D), while for $\star=t$, we have the t-class group introduced by Bouvier [12] and further studied in [13]. For a Krull domain, $C\ell_t(D)$ is just the usual divisor class group. Suppose that $\star_1 \leq \star_2$ are finite character star-operations on D. Then we have natural inclusions $C(D) \subseteq C\ell_{\star_1}(D) \subseteq C\ell_{\star_2}(D) \subseteq C\ell_t(D)$. Let Inv(D) be the subgroup of \star -Inv(D) consisting of invertible ideals of D. The group $LC\ell_\star(D):=\star$ -Inv(D)/Inv(D) is called the local \star -class group of D.

Proposition 5. Suppose that D is a \star -IRKT. Then the following conditions are equivalent.

- 1. D is ★-almost Bezout (resp., ★-almost Prüfer).
- 2. $C\ell_{\star}(D)$ is torsion (resp., $LC\ell_{\star}(D)$ is torsion).
- 3. For each \star -super-homogeneous ideal A of D, there exists a natural number n = n(A) with $(A^n)^{\star}$ principal (resp., invertible).
- 4. D is an AGCD (resp., AGGCD domain).
- 5. $C\ell_t(D)$ is torsion (resp., $LC\ell_{\star}(D)$ is torsion).

Proof. We do the \star -almost Bezout case, the \star -almost Prüfer case is similar. Now D being a \star -IRKT is integrally closed. Hence D is \star -almost Bezout if and only if for each nonzero finitely generated ideal A of D, $(A^n)^\star$ is principal for some $n \geq 1$. Also, each nonzero finitely generated ideal of D is \star -invertible. So $(1) \Rightarrow (2) \Rightarrow (3)$. $(3) \Rightarrow (1)$ Let A be a nonzero finitely generated ideal of D. If $A^\star = D$, we can take n = n(A) = 1. So suppose that $A^\star \neq D$. Then by Theorem 10, $A^\star = (I_1 \cdots I_m)^\star$ where each I_i is \star -super-homogeneous. By hypothesis, there exists an n_i with $(I_i^{n_i})^\star$ is principal. Then for $n = n_1 \cdots n_m$, $(A^n)^\star = ((I_1^{n_1})^{n/n_1} \cdots (I_m^{n_m})^{n/n_m})^\star$ is principal. $(1) \Rightarrow (4)$ Here D is \star -almost Bezout. Since $\star \leq t$, D is t-almost Bezout, that is, an AGCD domain. $(4) \Leftrightarrow (5)$ This follows since D is integrally closed. $(5) \Rightarrow (2)$ Here $C\ell_\star(D) \subseteq C\ell_t(D)$ so $C\ell_t(D)$ torsion gives that $C\ell_\star(D)$ is torsion.

Definition 8. Let D be an integral domain and \star a finite character star-operation on D. A \star -homogeneous ideal I of D is a \star -almost factorial-homogeneous ideal (\star -af-homogeneous ideal) (resp., \star -locally almost factorial-homogeneous ideal (\star -laf-homogeneous ideal)) if for each \star -homogeneous ideal $J \supseteq I$, there exists an $n = n(J) \ge 1$ with $(J^n)^\star$ principal (resp., invertible). The integral domain D is a \star -af-SH domain (resp., \star -laf-SH domain) if for each nonzero nonunit $x \in D$, Dx is expressible as a \star -product of finitely many \star -af-homogeneous ideals (resp., \star -laf-homogeneous ideals).

Thus a \star -homogeneous ideal I is \star -af-homogeneous (resp., \star -laf-homogeneous) if and only if for each finitely generated (or equivalently, each finite type \star -ideal) $J \supseteq I$, some $(J^n)^\star$ is principal (resp., invertible). Note that a \star -af-homogeneous ideal (resp., \star -laf-homogeneous ideal) is actually \star -super-homogeneous. In the spirit of Theorems 3 and 9 we have the following uniqueness result for \star -products of \star -af-homogeneous ideals (resp., \star -laf-homogeneous ideals).

Theorem 12. Let D by an integral domain and \star a finite character star-operation on D. Let I be an ideal of D. If I is a \star -product of \star -af-homogeneous ideals (resp., \star -laf-homogeneous ideals) of D, then I is uniquely expressible (up to order) as a \star -product of pairwise \star -comaximal \star -ideals $(J_1^{\star} \cdots J_s^{\star})^{\star}$ where each J_i is \star -af-homogeneous (resp., \star -laf-homogeneous).

Proof. We do the \star -af-homogeneous case, the \star -laf-homogeneous case is similar. The uniqueness of the product $(J_1^{\star}\cdots J_s^{\star})^{\star}$ follows from Theorem 3. To show the existence of the product, the proof of Theorem 3 shows that it suffices to prove that the product IJ of two similar \star -af-homogeneous ideals I and J is again \star -af-homogeneous. Of course IJ is \star -homogeneous. Let $C \supseteq IJ$ be \star -homogeneous ideal of D. Then E:=C+I is \star -homogeneous. So there exists a n > 1 with $(E^n)^{\star}$ principal.

Thus E is \star -invertible. So $(CE^{-1} + IE^{-1})^* = D$ where $C \subseteq CE^{-1} \subseteq D$ and $I \subseteq IE^{-1} \subseteq D$. Thus $(CE^{-1})^* = D$ or $(IE^{-1})^* = D$. In the first case, $C^* = E^*$ and hence $(C^n)^* = (E^n)^*$ is principal. So we can assume that $(IE^{-1})^* = D$. Then $I^* = E^* \supseteq C \supseteq IJ$ so $D \supseteq (CI^{-1})^* \supseteq J^*$. Choose a finitely generated ideal $L \supseteq J$ with $(CI^{-1})^* = L^*$. So there exists an $m \ge 1$ with $(L^m)^*$ principal. So $((CI^{-1})^m)^*$ is principal. Choose C with $(I^n)^*$ principal. Then $(C^{mn})^* = (((CI^{-1})^m)^n(I^n)^m)^*$ is principal.

We next give a characterization of AGCD *-IRKTs (resp., AGGCD *-IRKTs) using *-af-homogeneous ideals (resp., *-laf-homogeneous ideals). Of course we could enlarge the list of equivalences via Proposition 5.

Theorem 13. Let D be an integral domain and \star a finite character star-operation on D. Then the following conditions are equivalent.

- 1. D is a \star -af-SH domain (resp., \star -laf-SH-domain).
- 2. If I is a nonzero finitely generated ideal of D with $I^* \neq D$, then I^* is a \star -product of \star -af-homogeneous ideals (resp., \star -laf-homogeneous ideals).
- 3. D is an AGCD *-IRKT (resp., AGGCD *-IRKT).
- 4. D is an ★-SH domain and every ★-homogeneous ideal is ★-af-homogeneous (resp., ★-laf-homogeneous).
- 5. D is $a \star$ -IRKT with $C\ell_{\star}(D)$ torsion (resp., $LC\ell_{\star}(D)$ torsion) (equivalently, $C\ell_{t}(D)$ torsion (resp., $LC\ell_{t}(D)$ torsion)).
- 6. D is \star -h-local and for each \star -homogeneous ideal I of D there exists an $n \geq 1$ with $(I^n)^{\star}$ principal (resp., invertible).

Proof. We do the *-af-homogeneous case, the *-laf-homogeneous case is similar. (3) \Rightarrow (2) By Theorem 10 I^* is a \star -product of \star -super-homogeneous ideals. By Proposition 5 $C\ell_{\star}(D)$ is torsion. Hence each \star -super-homogeneous ideal is a \star af-homogeneous ideal. So I^* is a \star -product of \star -af-homogeneous ideals. (2) \Rightarrow (1) Clear. (1) \Rightarrow (3) Since a \star -af-homogeneous ideal is \star -super-homogeneous, D is an *-IRKT by Theorem 10. It remains to show that D is an AGCD domain. Let a be a nonzero nonunit of D. So $Da = (I_1 \cdots I_n)^*$ where I_i is \star -af-homogeneous (and hence \star -super-homogeneous). By Theorem 12 we can take I_1, \ldots, I_n to be pairwise \star -comaximal. Now for each i, i = 1, ..., n, there exists an $n_i \ge 1$ with $(I_i^{n_i})^{\star}$ principal. Hence for a suitable $m \ge 1$ $Da^m = Da_1 \cdots Da_n$ where Da_i is \star -super-homogeneous and Da_1, \ldots, Da_n are pairwise \star -comaximal. Thus $Da_1 \cdots Da_n = Da_1 \cap \cdots \cap Da_n$. Let a, b be nonzero nonunits of D. By the previous remarks, there is an $m \ge 1$ with $Da^m = Da_1 \cdots Da_n = Da_1 \cap \cdots \cap Da_n$ and $Db^m = Db_1 \cdots Db_n = Db_1 \cap \cdots \cap Db_n$ where either Da_i and Db_i are similar \star -super-homogeneous ideals of D or exactly one of Da_i , Db_i is a \star -super-homogeneous ideal and the other is D, and Da_1, \ldots, Da_n (resp., Db_1, \ldots, Db_n) are pairwise \star -comaximal. Now if Da_i and Db_i are both *-super-homogeneous ideals, being similar, they are comparable [17, Theorem 1.11]. Thus in either case $Da_i \cap Db_i$ is a principal \star -super-homogeneous ideal. Thus $Da^m \cap Db^m = (Da_1 \cap Db_1) \cap \cdots \cap (Da_n \cap Db_n) = (Da_1 \cap Db_1) \cdots (Da_n \cap Db_n)$ is principal. So D is an AGCD. (4) \Rightarrow (1) Clear. (2) \Rightarrow (4) Let I be a \star -homogeneous ideal of D. Then $I^* = (I_1 \cdots I_n)^*$ where I_n is *-af-homogeneous. Of course I_1, \dots, I_n must be similar. By the proof of Theorem 12 a product of similar *-af-homogeneous

ideals is again \star -af-homogeneous. Thus $I_1 \cdots I_n$ and hence I is \star -af-homogeneous. (3) \Leftrightarrow (5) Proposition 5. (6) \Leftrightarrow (3) Combine Theorem 10 and Proposition 5.

Recall that we defined a \star -homogeneous ideal I to be of type 1 (resp., type 2) if $M(I) = \sqrt{I^{\star}}$ (resp., $I^{\star} = (M(I)^n)^{\star}$ for some $n \geq 1$). Thus by a \star -af-homogeneous ideal of type 1 (resp., type 2), we mean a \star -af-homogeneous ideal that is type 1 (resp., type 2) as a \star -homogeneous ideal. And by a \star -af-SH domain of type 1 (resp., type 2) we mean an integral domain in which each proper nonzero principal ideal is a \star -product of \star -af-homogeneous ideals of type 1 (resp., type 2). Of course we have the analogous definitions for \star -laf-homogeneous ideals. The next two theorems characterize these domains. Again we can invoke Theorem 3 to get the appropriate uniqueness results.

Theorem 14. Let D be an integral domain and \star a finite character star-operation on D. Then the following are equivalent.

- 1. D is a \star -af-SH domain of type 1 (resp., \star -laf-SH domain of type 1).
- 2. D is an AGCD \star -GKD (resp., AGGCD \star -GKD).
- 3. D is a ★-SH domain and each ★-homogeneous ideal is a ★-af-homogeneous ideal (resp., ★-laf-homogeneous ideal) of type 1.
- 4. If I is a nonzero finitely generated ideal of D with $I^* \neq D$, then I^* is a \star -product of \star -af-homogeneous ideals (resp., \star -laf-homogeneous ideals) of type 1.
- 5. D is a \star -GKD with $C\ell_{\star}(D)$ torsion (resp., $LC\ell_{\star}(D)$ torsion) or equivalently $C\ell_{t}(D)$ torsion (resp., $LC\ell_{t}(D)$ torsion).

Proof. We do the \star -af-homogeneous case, the \star -laf-homogeneous case is similar. (1) \Rightarrow (2) By Theorem 11 D is a \star -GKD since a \star -af-homogeneous ideal is \star -super-homogeneous. And by Theorem 13 D is an AGCD domain. (2) \Rightarrow (1) By Theorem 11 every nonzero proper principal ideal of D is a \star -product of \star -super-homogeneous ideals of type 1. Now a \star -GKD is a \star -IRKT and hence by Theorem 13 each \star -super-homogeneous ideal is \star -af-homogeneous. (3) \Rightarrow (1) Clear. (1) \Rightarrow (3) This follows from Theorem 13 once we observe that a product of similar type 1 \star -af-homogeneous ideals is again a \star -af-homogeneous ideal of type 1. (4) \Rightarrow (1) Clear. (3) \Rightarrow (4) Theorem 6 (2) \Leftrightarrow (5) Proposition 5.

Theorem 15. Let D by an integral domain and \star a finite character star-operation on D. Then the following conditions are equivalent.

- 1. D is a \star -af-SH domain (resp., \star -laf-homogeneous-SH domain) of type 2.
- 2. D is an AGCD ★-Krull domain (resp., AGGCD ★-Krull domain).
- 3. D is a *-SH domain and each *-homogeneous ideal is a *-af-homogeneous ideal (resp., *-laf-homogeneous ideal) of type 2.
- 4. If I is a nonzero finitely generated ideal D with $I^* \neq D$, then I^* is a \star -product of \star -af-homogeneous ideals (resp., \star -laf-homogeneous ideals) of type 2.
- 5. D is a \star -Krull domain with $C\ell_{\star}(D)$ torsion or equivalently $C\ell(D)$ torsion (resp., $LC\ell_{\star}(D)$ torsion or equivalently $LC\ell(D)$ torsion).

Proof. We do the *-af-homogeneous case, the *-laf-homogeneous case is similar. $(1)\Rightarrow(2)$ By Theorem 8 D is *-Krull. And since a *-af-SH domain of type 2 is certainly a *-af-SH domain of type 1, Theorem 14 gives that D is an AGCD domain. $(2)\Rightarrow(1)$ By Theorem 8 each proper nonzero principal ideal of D is a *-product of *-homogeneous ideals of type 2. Now a *-Krull domain is certainly a *-GKD, so by Theorem 14 each *-homogeneous ideal is actually *-af-homogeneous. So each proper nonzero principal ideal of D is a *-product of *-af-homogeneous ideals of type 2. $(3)\Rightarrow(1)$ Clear. $(1)\Rightarrow(3)$ This follows from Theorem 13 once we observe that a product of similar type 2 *-af-homogeneous ideals is again a *-af-homogeneous ideal of type 2. $(4)\Rightarrow(1)$ Clear. $(3)\Rightarrow(4)$ Theorem 6. $(2)\Leftrightarrow(5)$ Proposition 5.

To give GCD domain and GGCD domain versions of Theorems 13–15 we need the following definitions.

Definition 9. Let D be an integral domain and \star a finite character star-operation on D. An ideal I of D is \star -factorial $(\star$ -f)-homogeneous (resp., \star -locally factorial $(\star$ -lf)-homogeneous) if I if \star -homogeneous and for each \star -homogeneous ideal $J \supseteq I, J^{\star}$ is principal (resp., invertible). We say the D is a \star -f-SH domain (resp., \star -lf-SH domain) if each nonzero proper principal ideal of D is a \star -product of \star -lf-homogeneous ideals (resp., \star -lf-homogeneous ideals).

Let D be an integral domain and \star a finite character star-operation on D. Let I be a nonzero ideal of D. Then we have $I \star f$ -homogeneous (resp., $\star f$ -lfhomogeneous) $\Rightarrow I$ is \star -af-homogeneous (resp., \star -laf-homogeneous) $\Rightarrow I$ is \star super-homogeneous $\Rightarrow I$ is \star -homogeneous. Thus D a \star -f-SH domain $\Rightarrow D$ is a \star -af-SH domain \Rightarrow D is a \star -super-SH domain \Rightarrow D is a SH domain with similar implications for the "locally" case. Also, $I \star$ -f-homogeneous (resp., \star -afhomogeneous) $\Rightarrow I$ is \star -lf-homogeneous (resp., \star -laf-homogeneous). So D a \star f-SH domain (resp., \star -af-SH domain) $\Rightarrow D$ is a \star -lf-SH domain (resp., \star -laf-SH domain). We have also shown that a product of similar *-af-homogeneous (resp., *-laf-homogeneous, *-super-homogeneous, *-homogeneous) ideals is again *-afhomogeneous (resp., *-laf-homogeneous, *-super-homogeneous, *-homogeneous). Using this we showed that if an ideal I of D is a \star -product of \star -af-homogeneous (resp, \star -laf-homogeneous, \star -super-homogeneous, \star -homogeneous) ideals, then I is uniquely expressible (up to order) as a ★-product of pairwise ★-comaximal ★-ideals $(J_1^{\star}\cdots J_s^{\star})^{\star}$ where each J_i is \star -af-homogeneous (resp., \star -laf-homogeneous, \star -superhomogeneous, *-homogeneous). Not surprisingly we have an analogous result for *-f-homogeneous ideals and *-lf-homogeneous ideals.

Theorem 16. Let D be an integral domain and \star a finite character star-operation on D.

- 1. If I and J are similar *-f-homogeneous ideals (resp., *-lf-homogeneous ideals) of D, then IJ is *-f-homogeneous (resp., *-lf-homogeneous).
- 2. Let I be an ideal of D that is a \star -product of \star -f-homogeneous ideals (resp., \star -lf-homogeneous ideals). Then I^{\star} is uniquely expressible (up to order) as a \star -product of pairwise \star -comaximal \star -ideals $(J_1^{\star}\cdots J_s^{\star})^{\star}$ where each J_i is \star -f-homogeneous (resp., \star -lf-homogeneous).

Proof. We do the *-f-homogeneous case, the *-lf-homogeneous case is similar. Once we prove (1), the proof of (2) is similar to the proofs of the *-af-homogeneous, *-super-homogeneous and *-homogeneous cases (Theorem 12, 9, and 3, respectively). So let *I* and *J* be similar *-f-homogeneous ideals. Let $C \supseteq IJ$ be a *-homogeneous ideal. We need to show that C^* is principal. Since *I* and *J* are *-super-homogeneous, so is their product *IJ*. Thus I^*, J^* , and C^* are comparable [17, Theorem 1.11]. If $C^* \supseteq I^*$, then $C+I \supseteq I$ is *-homogeneous and hence $C^* = (C+I)^*$ is principal. Likewise C^* is principal when $C^* \supseteq J^*$. Thus without loss of generality we may assume that $I^* \supseteq J^* \supseteq C^* \supseteq C \supseteq IJ$. Now $D \supseteq I^*I^{-1} \supseteq C^*I^{-1} \supseteq J^*$ where $I^{-1} = (I^*)^{-1}$ is principal. So $CI^{-1} + J \supseteq J$ is *-homogeneous and hence $(CI^{-1} + J)^*$ is principal. But $(CI^{-1} + J)^* = (CI^{-1})^* = C^*I^{-1}$ and hence C^* is principal since I^{-1} is.

We next give a characterization of GCD (resp., GGCD) *-IRKTs using *-f-homogeneous ideals (resp., *-lf-homogeneous ideals).

Theorem 17. Let D be an integral domain and \star a finite character star-operation on D. The the following conditions are equivalent.

- 1. D is a \star -f-SH domain (resp., \star -lf-SH domain).
- 2. If I is a nonzero finitely generated ideal of D with $I^* \neq D$, then I^* is a \star -product of \star -f-homogeneous ideals (resp., \star -lf-homogeneous ideals).
- 3. D is a GCD (resp., GGCD) *-IRKT.
- 4. D is a ★-Bezout (resp., ★-Prüfer) ★-IRKT.
- 5. D is a \star -SH domain and every \star -homogeneous ideal of D is \star -f-homogeneous (resp., \star -lf-homogeneous).
- 6. D is a \star -IRKT with $C\ell_{\star}(D) = 0$, or equivalently, $C\ell_{t}(D) = 0$ (resp., $LC\ell_{\star}(D) = 0$, or equivalently, $LC\ell_{t}(D) = 0$).

Proof. We do the *-f-homogeneous case, the *-lf-homogeneous case is similar. $(5)\Rightarrow (4)$ Since a \star -f-homogeneous ideal is \star -af-homogeneous, Theorem 13 gives that D is an AGCD \star -IRKT. Let I be a nonzero finitely generated ideal of D with $I^* \neq D$. By Theorem 13 I^* is a *-product of *-af-homogeneous ideals each of which is *-f-homogeneous by hypothesis and hence principal. Thus for each nonzero finitely generated ideal I of D, I^* is principal. So D is \star -Bezout. (4) \Rightarrow (3) A \star -Bezout domain is a GCD domain. (3) \Rightarrow (2) Let I be a nonzero finitely generated ideal of D with $I^* \neq D$. Since D is an AGCD *-IRKT, I^* is a *-product of *-af-homogeneous ideals. But since D is a GCD domain, $C\ell_t(D) = 0$; so $C\ell_{\star}(D) \subseteq C\ell_t(D)$ gives each *-invertible ideal is principal. Thus a *-af-homogeneous ideal is *-f-homogeneous. $(2)\Rightarrow(1)$ Clear. $(1)\Rightarrow(3)$ In the proof of $(1)\Rightarrow(3)$ of Theorem 13 we can take m=1and get that $Da \cap Db$ is principal. Thus D is a GCD domain. (3) \Rightarrow (4) D a GCD domain gives $C\ell_t(D) = 0$ and hence $C\ell_{\star}(D) = 0$. So D is \star -Bezout. (4) \Rightarrow (5) A \star -IRKT is a \star -SH domain. Let I be a \star -homogeneous ideal. If $J \supseteq I$ is \star -homogeneous, then J^* is principal since D is \star -Bezout. Thus I is \star -f-homogeneous. (3) \Rightarrow (6) This follows since $C\ell_t(D) = 0$ for D a GCD domain. (6) \Rightarrow (4) Suppose that $C\ell_t(D) = 0$. Let I be a nonzero finitely generated ideal of D. By Theorem 10 I is \star -invertible. Since $C\ell_{\star}(D) = 0$, I^{\star} is principal. So D is \star -Bezout.

Combining Theorem 17 with previous results we have the following two theorems.

Theorem 18. Let D be an integral domain and \star a finite character star-operation on D. Then the following are equivalent.

- 1. D is a \star -f-SH domain of type 1 (resp., type 2).
- 2. D is a GCD *-GKD (resp., GCD *-Krull domain, or equivalently a UFD *-Krull domain, or UFD *-GKD).
- 3. D is a \star -GKD (resp., \star -Krull domain) with $C\ell_{\star}(D)=0$, or equivalently, $C\ell_{t}(D)=0$

Proof. For the type 1 (resp., type 2) equivalences just combine Theorem 17 and Theorem 11 (resp., Theorem 8).

Recall that an integral domain D is *locally factorial* if D_M is a UFD for each maximal ideal M of D. And D is called a π -domain if each proper nonzero principal ideal of D is a product of (necessarily invertible) prime ideals. For an integral domain D the following are equivalent: (1) D is a π -domain, (2) D is a locally factorial Krull domain, and (3) D is a Krull domain with $LC\ell(D) = 0$ [1, Theorem 1].

Theorem 19. Let D be an integral domain and \star a finite character star-operation on D. Then the following conditions are equivalent.

- 1. D is a \star -lf-SH domain of type 1 (resp., type 2).
- 2. D is a GGCD *-GKD (resp., GGCD *-Krull domain, or equivalently a locally factorial *-Krull domain, or locally factorial *-GKD).
- 3. D is a \star -GKD (resp., \star -Krull domain) with $LC\ell_{\star}(D) = 0$, or equivalently, $LC\ell_{t}(D) = 0$.

Proof. For the type 1 (resp., type 2) equivalence just combine Theorem 17 and Theorem 11 (resp., Theorem 8).

We next wish to characterize \star -SH domains with $C\ell_{\star}(D)=0$ or $C\ell_{\star}(D)$ torsion (resp., $LC\ell_{\star}(D)=0$ or $LC\ell_{\star}(D)$ torsion). For this we need to define yet more types of \star -homogeneous ideals.

Definition 10. Let D be an integral domain and \star a finite character star-operation on D. An ideal of I of D is \star -weakly factorial-(\star -wf-) homogeneous (resp., \star -almost weakly factorial-(\star -awf-) homogeneous, \star -weakly locally factorial (\star -wlf-) homogeneous, \star -weakly almost locally factorial (\star -walf-) homogeneous) if (1) I is \star -homogeneous and (2) if I is \star -invertible, then I^{\star} is principal (resp., $(I^n)^{\star}$ is principal for some $n \geq 1$, I^{\star} is invertible, (I^n) * is invertible for some $n \geq 1$). And D is called a \star -wf-SH domain (resp., \star -awf-SH domain, \star -wlf-SH domain, \star -walf-SH domain) if each proper nonzero principal ideal of D is a \star -product of \star -wf-homogeneous (resp., \star -awf-homogeneous, \star -wlf-homogeneous) ideals.

Theorem 20. Let D be an integral domain and \star a finite character star-operation on D. Then the following conditions are equivalent.

- 1. D is an ★-wf-SH domain (resp., ★-awf-SH domain).
- 2. If I is a nonzero finitely generated ideal of D with $I^* \neq D$, then I^* is a \star -product of \star -wf-homogeneous (resp., \star -awf-homogeneous) ideals.
- 3. D is a \star -SH domain with $C\ell_{\star}(D) = 0$ (resp., $C\ell_{\star}(D)$ torsion).

Proof. We do the case for $C\ell_{\star}(D)=0$, the $C\ell_{\star}(D)$ torsion case is similar. (3)⇒(2) Since D is an \star -SH domain, by Theorem 6 $I^{\star}=(I_1\cdots I_n)^{\star}$ where I_i is \star -homogeneous. Now if I_i is \star -invertible, then I_i^{\star} is principal. Thus I_i is \star -wf-homogeneous. (2)⇒(1) Clear. (1)⇒(3) It suffices to show that if A is a finitely generated nonzero \star -invertible integral ideal with $A^{\star} \neq D$, then A^{\star} is principal. As in the proof of Theorem 6, $A^{\star}=((AD_{M_1}\cap D)\cdots(AD_{M_n}\cap D))^{\star}$ where M_1,\ldots,M_n are the maximal \star -ideals containing A. Now $AD_{M_i}\cap D$ is \star -invertible, so $AD_{M_i}\cap D=(AD_{M_i}\cap D)^{\star_w}=(AD_{M_i}\cap D)^{\star}$. Hence $AD_{M_i}\cap D$ is a \star -invertible \star -ideal. So $(AD_{M_i}\cap D)_{M_i}=a_iD_{M_i}$ for some $a_i\in D$. Now by hypothesis $Da_i=(I_1\cdots I_s)^{\star}$ where each I_j is \star -wf-homogeneous. Hence $I_j^{\star}=Dx_j$ for some $x_j\in D$. So $Da_i=Dx_1\cdots Dx_s$ where Dx_j is \star -homogeneous. By combining similar factors we can assume that Dx_1,\ldots,Dx_s are pairwise \star -comaximal. Now some $M(Dx_j)=M_i$. By Proposition 1 $x_jD_{M_i}\cap D=x_jD$. Now $a_iD_{M_i}=x_jD_{M_i}$ and hence $AD_{M_i}\cap D=a_iD_{M_i}\cap D=x_jD$. So A^{\star} is principal.

We have a companion theorem for the "locally" case. The proof is left to the reader.

Theorem 21. Let D be an integral domain and \star a finite character star-operation on D. Then the following conditions are equivalent.

- 1. D is a \star -wlf-SH domain (resp., \star -walf-SH domain).
- 2. If I is a nonzero finitely generated ideal with $I^* \neq D$ then I^* is a \star -product of \star -wlf-homogeneous (resp., \star -walf-homogeneous) ideals.
- 3. D is a \star -SH domain with $LC\ell_{\star}(D) = 0$, (resp., $LC\ell_{\star}(D)$ torsion).

Let D be an integral domain and \star a finite character star-operation on D. It is evident that a \star -product of similar \star -wf-homogeneous (resp., \star -awf-homogeneous) ideals is again \star -wf-homogeneous (resp., \star -awf-homogeneous). Thus if an ideal is a \star -product of \star -wf-homogeneous (resp., \star -awf-homogeneous) ideals, it is a \star -product of pairwise \star -comaximal \star -wf-homogeneous (resp., \star -awf-homogeneous) ideals. Similar results hold for the "locally" case. Let us call an element $x \in D$ \star -homogeneous if Dx is \star -homogeneous. We have the following element-wise characterization of \star -SH domains with $C\ell_{\star}(D)=0$ or torsion.

Theorem 22. Let D be an integral domain and \star a finite character star-operation on D. Then the following conditions are equivalent.

- 1. D is a \star -SH domain with $C\ell_{\star}(D) = 0$ (resp., $C\ell_{\star}(D)$ torsion).
- 2. For each nonzero nonunit $x \in D$, x (resp., x^n for some $n = n(x) \ge 1$) is a product of \star -homogeneous elements.
- 3. For each nonzero nonunit $x \in D$, x (resp., x^n for some $n = n(x) \ge 1$) can be written uniquely up to order as a product of pairwise \star -comaximal \star -homogeneous elements.

Proof. For both cases it is clear that $(2)\Leftrightarrow(3)$ and $(1)\Rightarrow(2)$. And it is immediate from Theorem 20 that if each nonzero nonunit of D is a product of \star -homogeneous elements, then D is a \star -SH domain with $C\ell_{\star}(D)=0$. So suppose that D is an integral domain with the property that for each nonzero nonunit x, some power of x is a product of \star -homogeneous elements. Let x be a nonzero nonunit of D. Then some x^n is a product of \star -homogeneous elements. Thus x^n , and hence x, is contained in only finitely many maximal \star -ideals. So \star is locally finite. Suppose that M_1 and M_2 are distinct maximal \star -ideals and there is a nonzero prime ideal $P \subseteq M_1 \cap M_2$. Let $0 \neq x \in P$. So some x^n is a product of \star -homogeneous elements. Thus P contains a \star -homogeneous element which is absurd since $P \subseteq M_1 \cap M_2$. So \star is independent. By Theorem 4, D is an \star -SH domain. Let A be a nonzero finitely generated integral \star -invertible ideal of D with $A^* \neq D$. It suffices to show that for some $n \geq 1$, $(A^n)^*$ is principal. But this follows from an easy modification of the proof of $(1) \Rightarrow (3)$ of Theorem 20.

We note that the notions of type $2 \star -f-SH$ domain (resp., type $2 \star -af-SH$ domain) and type 2 *-wf-SH domain (resp., type 2 *-waf-SH domain) coincide, they are both equivalent to being \star -Krull with $C\ell_{\star}(D) = 0$ (resp., $C\ell_{\star}(D)$ torsion). Also, the notions of type 2 *-lf-SH domain (resp., type 2 *-laf-SH domain) and type 2 *wlf-SH domain (resp., type 2 *-walf-SH domain) coincide, they are both equivalent to being \star -Krull with $LC\ell_{\star}(D) = 0$ (resp., $LC\ell_{\star}(D)$ torsion). However, this is not the case for type 1. Now a type 1 *-f-SH domain (resp., type 1 *-af-SH domain) is a \star -GKD with $C\ell_{\star}(D) = 0$ (resp., $C\ell_{\star}(D)$ torsion). And a type 1 \star -wf-SH domain (resp., type 1 \star -waf-SH domain) is a \star -weakly Krull domain with $C\ell_{\star}(D) = 0$ (resp., $C\ell_{\star}(D)$ torsion). Finally a type 1 \star -lf-SH domain (resp., type 1 \star -wlf-SH domain) is a \star -GKD with $LC\ell_{\star}(D) = 0$ (resp., \star -weakly Krull domain with $LC\ell_{\star}(D) = 0$) and a type 1 *-laf-SH domain (resp., type 1 *-walf-SH domain) is a *-GKD domain (resp., \star -Krull domain) with $LC\ell_{\star}(D)$ torsion. An integral domain is weakly factorial [6] if each nonzero nonunit is a product of primary elements. An integral domain D is weakly factorial if and only if D is weakly Krull and $C\ell_t(D) = 0$ [8, Theorem]. Also, the following are equivalent: (1) D is a weakly factorial GCD domain, (2) D is a weakly factorial GKD, and (3) D is a GCD GKD [6, Theorem 20]. For a Noetherian domain D, D is integrally closed weakly factorial if and only if D is factorial. For any field K, $K[[X^2, X^3]]$ is weakly factorial but not factorial and hence is a type 1 \star -wf-SH domain, but not a type 1 \star -f-SH domain (for $K[[X^2, X^3]], d = t$).

References

- 1. Anderson, D. D.: π -domains, overrings, and divisorial ideals. Glasgow Math. J. **19**, 199-203 (1978)
- Anderson, D. D.: Star-operations induced by overrings. Comm. Algebra. 16, 2535–2553 (1988)
- Anderson, D. D., Anderson, D. F.: Generalized GCD domains. Comment. Math. Univ. St. Pauli. 27 215–221 (1979)

- Anderson, D. D., Cook, S. J.: Two star operations and their induced lattices. Comm. Algebra. 28, 2461–2476 (2000)
- Anderson, D. D., Houston E. G., Zafrullah, M.: t-linked extensions, the t-class group, and Nagata's theorem. J. Pure Appl. Algebra. 86, 109–124 (1993)
- Anderson, D. D., Mahaney, L. A.: On primary factorization. J. Pure Appl. Alg. 54, 141–154 (1988)
- Anderson, D. D., Mott, J. L., Zafrullah, M.: Finite character representations of integral domains. Boll. Un. Mat. Ital. B(7)6, 613–630 (1992)
- Anderson, D. D., Zafrullah, M.: Weakly factorial domains and groups of divisibility. Proc. Amer. Math. Soc. 109 907–913 (1990)
- 9. Anderson, D. D., Zafrullah, M.: Almost Bezout domains. J. Algebra. 142, 285–309 (1991)
- Anderson, D. D., Zafrullah, M.: Independent locally-finite intersections of localizations. Houston J. Math. 25, 109–124 (1999)
- 11. Anderson, D. F.: A general theory of class groups. Comm. Algebra. 16, 805-847 (1988)
- Bouvier, A.: Le groupe de classes d'un anneau integre. 107 erne Congres National des Societe Savantes. Brest, France, Fasc. IV, 85–92 (1982)
- Bouvier, A., Zafrullah, M.: On some class groups of an integral domain. Bull. Soc. Math. Greece. 29, 45–49 (1988)
- 14. Gilmer, R.: Multiplicative Ideal Theory. Marcel Dekker, New York, (1972)
- 15. Griffin, M.: Rings of Krull type. J. Reine Angew. Math. 229, 1–27 (1968)
- Halter-Koch, F.: Ideal Systems An Introduction to Multiplicative Ideal Theory. Marcel Dekker, New York (1998)
- 17. Houston, E. G., Zafrullah, M.: * Super potent domains. J. Comm. Algebra, to appear
- 18. Jaffard, P.: Les Systèmes d' Ideáux. Dunod, Paris (1962)
- Kaplansky, I.: Commutative Rings (revised edition). Polygonal Publishing, Washington, NJ. (1994)
- 20. Matlis, E.: Torsion-free Modules. The University of Chicago Press, Chicago (1972)
- Storch, U.: Fastfaktorielle Ringe. Schritenreiche Math. Inst. Univ. Munster. Vol. 36, Munster (1967)
- 22. Zafrullah, M.: A general theory of almost factoriality. Manuscripta Math. 51, 29-62 (1985)