Lab Assignment 3 PB HLTH 250C: Advanced Epidemiologic Methods

Katherine Rose Wolf March 10, 2020

Question One

Using the R code provided, complete Table 1 using the posterior samples of the odds ratios. (20 points)

Table 1: Posterior median and 95% credible intervals for odds ratios from logistic regression model of overweight status on smoking, controlling for age, sex, and education level.

or everweignt status on smoking, controlling for age, sex, and education level.	ina education	level.	
Variable	Vague prior	Vague prior Informative Prior 1 ^a Informative Prior 2 ^b	Informative Prior 2^b
Current smoker (versus not)			
Age (per year increase)			
Male sex (versus female)			
High school education (versus < high school education)			
Some college (versus < high school education)			
College plus (versus < high school education)			

^aPrior mean for OR of current smoking = 2, prior variance = 1000. ^bPrior mean for OR of current smoking = 2, prior variance = 0.08.

Question Two

Using the parameterization for Informative Prior 1, calculate the prior 95% interval for the smoking OR. *Hint: Calculate the interval on the scale of the log-OR* (β) *and transform the limits.* In *one or two sentences* describe how this compares to the prior interval for Informative Prior 2 stated in the instructions above. (10 points)

Let β_s denote the normal prior for the log odds ratio comparing the odds (risk) of overweight (body mass index > 25) in a smoker to that in a nonsmoker. The parameterization for β_s given for Informative Prior 1 states that β_s is normally distributed, i.e., $\beta_s \sim N(\mu_s, \sigma_s^2)$, such that the odds ratio e^{β_s} , or the natural exponentiation of the mean of the log-OR, is 2, i.e., $e^{E[\beta_s]} = e^{\mu_s} = 2$, and β_s has a variance of 1000, i.e., $\sigma_s^2 = 1000$.

To get the mean of the log-OR, then, we take the natural logarithm of the natural exponentiation of the mean of the log-OR, i.e., $\mu_s = \log e^{\mu_s} = \log(2)$.

To get the standard deviation of β_s , σ_s , we take the square root of the variance σ_s^2 , i.e., $\sigma_s = \sqrt{\sigma_s^2} = \sqrt{1000}$.

Then we can calculate the prior 95% interval for the log-OR by taking 1.96 standard deviations above and below the mean:

Upper bound on prior 95% interval for β_s : $\mu_s + 1.96\sigma_s = \log(2) + 1.96\sqrt{1000} = 62.6737893$

Lower bound on prior 95% interval for β_s : $\mu_s - 1.96\sigma_s = \log(2) - 1.96\sqrt{1000} = -61.287495$

To get the prior 95% interval for the OR, e^{β_s} , then, we exponentiate the prior 95% interval for β_s :

Upper bound on prior 95% interval for e^{β_s} : $e^{\mu_s + 1.96\sigma_s} = e^{\log(2) + 1.96\sqrt{1000}} = 1.6553158 \times 10^{27}$

Upper bound on prior 95% interval for e^{β_s} : $e^{\mu_s-1.96\sigma_s}=e^{\log(2)-1.96\sqrt{1000}}=0$

Thus the prior estimate for e^{β_s} and 95% prior interval are $0.6931(1.6553 \times 10^{27}, 2.4165 \times 10^{-27})$.

R code