

Physical Layer

- ▶ PDU: Bit
- Electrical or Optical implementation that carries data
- ► Ethernet, Token Ring, Wifi, Bluetooth, etc

Data Link Layer

- ▶ PDU: Frame
- ► Handles local communication

Ethernet

- ► Has pieces of Layer 1 and Layer 2
- ▶ 802.3 is the IEEE working group
- Primary LAN technology

Ethernet PHY

- ▶ Layer 1 piece of Ethernet
- Defines Electical Format
 - ▶ 10Base2 Thin Coax
 - ▶ 10Base5 Thick Coax
 - ▶ 10BaseT Twisted Pair
 - ▶ 100BaseT 100mbps
 - ▶ 1000BaseT, 10GBaseT, etc all Twisted Pair
 - XBaseFX/LX/SX/ZX Ethernet over Fiber

Ethernet Layer 1

- ► Broadcast Medium
- Every frame is seen by everyone
- Various devices such as switches limit this

CSMA/CD

- Carrier Sense Multi Access with Collision Detect
- ▶ Listen before you transmit
- ▶ When gap transmit and listen
- ▶ If garbage, back off random time and try again

Collision Domain

- ▶ Hosts that all receive broadcasts electrically
- Switches limit broadcast domain

Full vs Half Duplex

- ▶ With half one transmitter at a time
- ▶ With full both can only 2 stations possible

Layer 2 - Ethernet

- PDU: Frame
- Address 6 byte MAC address
- ► Format:
 - 6 Byte Dest Mac
 - ▶ 6 Byte Src Mac
 - Optional 4 byte tag
 - 2 Byte type (Or size then type)
 - Pay load

Devices

- Repeater extends reach
- ► Hub just connects multiple twisted pair dumb and half duplex
- Bridge joins two collision domains
- Switch is a multi port bridge
 - ► Each port collision domain
 - ► Usually full duplex

Layer 3

- ▶ PDU is packet
- Address 4 byte IP address
- Dotted quad
- ► Each network has a network and a mask
- Mask decides if address is local

ARP

- Used to Map layer 3 to Layer 2
- ▶ Sent to broadcast asking who has an IP
- Response is Unicast with answer

IPv4

- Connectionless
- ► Best effort
- Addresses allocated by IANA

Classes

- ► A = 0-127 (128 networks, 2²⁴ hosts)
- ► B = 128-191 (16384 netwirks, 2¹⁶ hosts)
- ► C = 193-223 (2^21 networks, 256 hosts)
- ► D = 224-239 (Multicast)
- ► E = 240-255 (Experimental)
- Can be combined or split if classless

RFC1918 Space

- ▶ Private use
- **▶** 10.0.0.0/8
- ► 172.16.0.0/12
- ► 192.168.0.0/16

IPV4 Header

Figure 1: IPV4 Header

Subnets

- Written as dotted quad or CIDR mask
- ▶ 1 is care bit or network address
- ▶ 0 is host addresses
- Binary AND to determine if local

CIDR

- Classless Inter-Domain Routing
- Uses VLSM
 - Variable Length Subnet Mask

VLSM

- Split network and host at any boundary
- ▶ We can combine adjacent networks or split big ones
- Use Tree method to split networks if needed

Layer 4

- ► TCP
- ► UDP
- ► ICMP

TCP

- Transport Control Protocol
- ▶ PDU: Segment
- Connection Oriented
- Stream Oriented
- ► Reliable
 - ▶ In Order Deliery
 - ► Error Handling

TCP Header

Figure 2: TCP Header

TCP connections

- 3 way handshake to connect
- 4 way handshake to disconnect
- ► Each packet gets ACK
- Scaling controls ACK with no reply

UDP

- PDU: Datagram
- User Datagram Protocol
- Connectionless
- ▶ Unreliable
- Used by services that need low latency

UDP Header

Figure 3: UDP Header

ICMP

- ► Intenret Control Message Protocol
- Error handling
- ► Also used for Ping/Traceroute

ICNP Header

	ICMP Header Format																																
Offsets	Octet	0								1								2								3							
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
0	0	Туре								Code							Checksum																
4	32																F	Rest	of H	eade	r												

Figure 4: ICMP Header

Layer 5 - Session

- ▶ Not much to talk about
- ► Handles Persistence
- ▶ Not present in TCP/IP Model

Layer 6 - Presentation

- Again boring
- ► Handles data conversion
- Also not in TCP/IP Model

Layer 7 - Application

- ▶ What we care about if not network people
- Carries user data
- Many Protocols

BOOTP

- Used to get IP address from ARP
- Opposite of ARP kinda
- Static mappings
- ► Simple request/reply

DHCP

- Extends BOOTP to add dynamic pools
- Supports passing other options
 - Discover
 - Offer
 - Request
 - Acknowledge

DNS

- Domain name system
- Maps hosts to IP and vice versa
- Many hosts to one IP
- ▶ One IP to one hostname
- ▶ Hierachal also a tree

DNS (contd)

- ► A record = Answer Hostname
- ▶ NS Record = Name Server Delegation
- CNAME Record = Alias
- ▶ PTR record = Pointer Reverse

Internetworks

- Link many local networks
- ► Internet large example
- Changing as time goes on

Router

- Links multiple layer 2 networks
- ► Moves packets at layer 3

Route table

- Contains destination network
- Mask
- Next Hop IP
- Metric

Routing

- Most specific match wins
- ▶ On tie metric breaks it
- Metric varies by protocol
- ▶ Default Gateway (0.0.0.0/0) = Where packets go if not known

Questions

Next Session

- Review game/session
 - Lucas will have exam so will likely give good review
- Exam 2 weeks from today