Лабораторная работа 3.5.1. Изучение плазмы газового разряда в неоне.

Балдин Виктор

28 сентября 2024 г.

Теория

Плазма

Из-за теплового движения в плазме электроны могут смещаться относительно ионов и образовывать неоднородности. В этих неоднородностях возникает электрическое поле, которое стремится восстановить баланс, из-за чего происходят колебания с частотой

$$w_p = \sqrt{\frac{4\pi n_e e^2}{m_e}}$$

За характерное время колебаний электроны за счет теплового движения смещаются на

$$r_D \sim \frac{v_e}{w_p} = \sqrt{\frac{kT_e}{4\pi n_e e^2}}$$

 r_D - дебаевский радиус, k - константа Больцмана.

Если поместить в плазму пробную (допустим, положительную) частицу, то электроны будут скапливаться около этой частицы, экранируя её поле. Потенциал точечного заряда будет иметь в плазме следующий вид:

$$\varphi(r) = \frac{q}{r}e^{-\frac{r}{r_D}}$$

где $r_D=\sqrt{\frac{kT_e}{4\pi ne^2}}$ — радиус Дебая в случае равновесной плазмы. Если температуры электронов и ионов сильно отличаются, то следует определять отдельно величину радиуса экранирования для электронов и для ионов. Итоговый радиус будет

$$r_D = (r_{De}^{-2} + r_{Di}^{-2})^{-1/2}$$

То есть если $T_i \ll T_e$, то $r_D \approx r_{Di}$

Одиночный зонд

При внесении в плазму уединённого проводника — sonda — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
(1)

где $\langle v_e \rangle$ и $\langle v_i \rangle$ — средние скорости электронов и ионов, S — площадь зонда, n — плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновестного напряжения $-U_f$ — *плавающего потенциала*.

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока $I_{\rm eh}$ — электронный ток насыщения, а минимальное $I_{\rm ih}$ — ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{iH} = 0.4neS\sqrt{\frac{2kT_e}{m_i}}. (2)$$

Электронный ток насыщения можно определить по тепловому движению:

$$I_{e\text{\tiny H}} = \frac{n_e S}{4} \sqrt{\frac{8kT}{\pi m_e}}$$

Двойной зонд

Двойной зонд — система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U=U_2-U_1=\Delta U_2-\Delta U_1$. Через первый электрод

$$I_1 = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS\langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right). \tag{3}$$

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{4}$$

Из (7) и (8) с учётом последовательного соединение зондов ($I_1=-I_2=I$):

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{iH}} \right)$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{i\text{H}}} \right)$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, \quad I = I_{iH} th \frac{eU}{2kT_e} + AU.$$
 (5)

Зависимость выглядит примерно так. С учетом 5 можно выразить асимптоты графика:

$$I = I_{i\text{Hac}} + AU, \ I = -I_{i\text{Hac}} + AU \tag{6}$$

Наклон в нуле принимает вид:

$$\frac{dI}{dU} = I_{i\text{Hac}} \frac{e}{2kT_e} + A \tag{7}$$

Описание установки

Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и *геттерный* узел – стеклянный баллон, на внутреннюю повехность которого напылена газопоглощающая плёнка (*геттер*). Трубка наполнена изотопом неона ²2Ne при давлении 2 мм рт. ст. Катод и один из анодом (I и II) с помощью переключателя Π_1 подключается через балластный резистор R_6 (≈ 450 кОм) к регулируемому ВИП с выкодным напряжением до 5 кВ.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке — цифровым вольтметром V_1 , подключённым к трубке черезе высокоомный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находятся двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяеься с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 . Для измерения зондового тока используется мультиметр A_2 .

Ход работы

Измеряем напряжение зажигания в лампе: $U_{\text{заж}} = 99 \pm 5 \text{ B}.$

Снимаем ВАХ газового разряда. Результаты представлены в таблице.

Построим ВАХ и определим максимальное дифференциальное сопротивление разряда $R_{\text{диф}} = \frac{dU}{dI}$. Оно будет соответствовать участку с минимальным (по модулю) наклоном графика I(U):

В схеме напряжение снимается с делителя напряжений с коэффициентом 10, поэтому $R_{\rm диф}=-1.7\pm0.6$ кОм. Наш график соответствует участку поднормального тлеющего разряда (см. приложение к лабораторной работе).

С помощью вольтмертра V_2 и амперметра A_2 снимем ВАХ двойного зонда $I_2=f(U_2)$ при фиксированного токе разряда I_p в трубке в диапозоне $-25 \div 25$ В, процессе измерений меняя полярность зонда при нулевом токе. Измерения проведём для $I_p=4.0$ мА, $I_p=3.0$ мА и $I_p=2.3$ мА.

Видно, что чем меньше ток, тем менее крутая кривая получается. Проанализируем графики по отдельности, чтобы найти их наклон в начале и пересечение асимптот с осью ординат. Данные будем заносить в таблицу. Ионный ток насыщения определим через асимптоты, затем по наклону кривой в точке U=0 найдем концентрацию электронов в плазме.

По данным таблицы видно что $N_D\gg 1\Rightarrow$ плазму можно с хорошей точностью считать идеальной.

Рис. 1: ВАХ газового разряда в неоне

Рис. 2: Зондовые характеристики

I_p , мА	$T_e, 10^3 \text{ K}$	$n_e, 10^{-14} \text{ m}^{-3}$	$\omega_p,10^8\mathrm{pag/c}$	$r_{D_e}, 10^{-4} \text{ M}$	$r_D, 10^{-4} \text{ M}$	N_D	α , 10^{-7}
4.0	3.1 ± 0.8	1.4 ± 0.3	6.7 ± 0.8	10 ± 2	1.0 ± 0.1	605 ± 68	5.2 ± 1.2
3.0	3.1 ± 0.8	1.0 ± 0.2	5.7 ± 0.7	12 ± 3	1.2 ± 0.1	707 ± 81	3.8 ± 0.9
2.3	3.3 ± 0.8	0.8 ± 0.2	4.9 ± 0.6	14 ± 3	1.4 ± 0.2	819 ± 94	2.8 ± 0.7

Построим графики $T_e(I_p)$ и $n(I_p)$: Очевидно, что из-за больших погрешностей эксперимента судить о характере $T_e(I_p)$ невозможно, но зависимость $n(I_p)$ возрастает при повышении тока, потому что больше молекул газа ионизируется, так как выше электрическое поле, выше скорость электронов и больше столкновений.

Рис. 3: Зависимость $T_e(I_p)$

Рис. 4: Зависимость $n(I_p)$

Вывод

В данной лабораторной работе мы исследовали состояние плазмы в тлеющем газовом разряде с помощью двойного зонда. Полученные результаты сходятся с указанными в лабораторной работе по порядку. Плазму в тлеющем разряде можно с хорошей точностью назвать идеальной, так как $N_D\gg 1$.