Trager Joswig-Jones

EDUCATION

2021 - PRESENT Ph.D. Student, Electrical Engineering

University of Washington, Seattle

Advisor : Dr. Brian Johnson

2017 – 2021 B.S., Electrical Engineering

University of Washington, Seattle

GPA: 3.94 | Concentration: Power Electronics & Drives, Sustainable Power Systems

T.A. EE 457: Electrical Energy Distribution Systems
 Grader EE 456: Computer-Aided Design in Power Systems
 Grader EE 455: Power System Dynamics and Protection
 Grader EE 457: Electrical Energy Distribution Systems
 SPRING 2021
 Grader EE 457: Electrical Energy Distribution Systems

PUBLICATIONS

PREPRINTS

[1] **T. Joswig-Jones**, K. Baker, A. S. Zamzam, "OPF-Learn: An Open-Source Framework for Creating Representative AC Optimal Power Flow Datasets", accepted at *North American Innovative Smart Grid Technologies (ISGT) Conference; arXiv preprint*: 2111.01228.

RESEARCH EXPERIENCE

2021 – Present

Graduate Research Assistant

University of Washington

Washington Power Electronics Lab, Professor Brian Johnson

SUMMER 2021

NREL SULI Intern

NATIONAL RENEWABLE ENERGY LABORATORY

Power System Engineering Center, Energy Systems Control and Optimization Group

 Developed a Python & Julia software package¹ to efficiently create datasets for training and benchmarking machine learning approaches to AC optimal power flow.

2020 - 2021

Undergraduate Research Assistant

University of Washington

Renewable Energy Analysis Lab, Professor Daniel Kirschen

• Researched the impacts of energy storage dispatch assumptions on resource adequacy assessment using the NREL Probabilistic Resource Adequacy Suite.

Professional Experience

SUMMER 2020

Electrical Hardware EXCEL Intern

General Motors

Engineering Product Development, Electrification Calibration Group

Adapted the hybrid powermoding test suite for a vehicle program with a new serial architecture by
partially automating the process to identify potentially unsafe operations in vehicle controls.

SUMMER 2019

Product Engineering Intern

MICRON TECHNOLOGY, INC.

DRAM Quality Assurance Engineering Group

 Created a Python plotting application that can visualize trends over multiple sets of test data, pulled from a database, to facilitate the identification of premature dynamic random access memory (DRAM) device failures and errors in test flows. Trager Joswig-Jones Curriculum Vitæ

SUMMER 2018

R&D Engineering Intern

SCHWEITZER ENGINEERING LABORATORIES

- Implemented a black-box global optimization algorithm in Python to identify sine wave functions
 through signal processing and evaluate the algorithm's potential for use in a digital relay element.
- Reviewed the software review specifications for a digital relay element and coded this software for testing with a TI digital signal processor.

ACTIVITIES

2018 - 2021

Propulsion System Integration Lead

UW ECOCAR

Department of Energy Advanced Technology Vehicle Competition series

- Led a group of 25 members on the design and integration of the team's hybridized powertrain for a Chevrolet Blazer by delegating projects, and managing the integration timeline.
- Co-authored a technical paper describing the teams hybrid design and integration plans, which
 received third place in the competition.

Honors

Grainger Endowment Ph.D. Fellowship - UW	2021
GSFEI Top Scholar Recruitment Award - UW	2021
Grainger Foundation Power Engineering Endowed Scholarship - UW	2020
Electrical Energy Industrial Consortium Scholarship Recipient - UW	2019
Eagle Scout - BSA	2016

SKILLS

Programming: Proficient in Python, Julia, and MATLAB.

Working knowledge in Rust, Java, and C/C++

Software: PLECS, Altium Designer, Multisim, Excel

Hardware: HV Harness Construction, PCB Assembly, MCU Integration

PROJECTS

SPRING 2021

E-Bike Power Electronics System

EE 453

Designed the power electronics hardware and controls for an E-bike to convert power from a 24V battery to control a BLDC motor. This included creating electrical schematics, fabricating a PCB, developing digital signal processor controls, and testing the integrated control system.

SPRING 2020

Power System Design Plans

EE 456

Planned the design of a collector system for a 120 MW wind farm, created a 7-Year transmission reinforcement plan for a hypothetical utility company, and created a plan for the expansion of the Total Transfer Capacity of the interconnection of power system networks in a modified Western United State power system for the Sustainable Power Systems capstone course, EE 456.

WINTER 2020

Python Fault Analysis Script

EE 455

Wrote a Python script that was capable of determining fault currents for a given power system network and fault description.

SPRING 2020

Python Power Flow Solver

EE 454

Developed a program in Python that was capable of solving the power flow of a given power system network using the Newton-Raphson method

Page 2

¹OPFLearn.jl GitHub Repository