Belonging, violence, and natural resource governance: experimental evidence from Mali and Niger*

Alma Bezares Calderon, † Simon Mercer, †Ifeoluwa M. Olawole, †
Matthew K. Ribar‡

August 27, 2025

Abstract

Effective and inclusive natural resource governance is crucial for conflict resolution, economic growth, and climate resilience, but is complicated by environmental degradation and the presence of non-state armed groups in the Sahel. African governments and donor organizations have alternatively implemented both communityled and state-led natural resource governance interventions, but it is unclear what governance strategies will be successful in the face of these challenges. We use a survey experiment of 3,607 rural household heads in Mali and Niger to understand what factors drive the perceived effectiveness of natural resource governance systems. We show that (1) respondents consistently believe that a community-led natural resource governance system would be more effective, more equitable, and more resilient to climate than either the status quo or a state-led system; (2) that members of local ethnic outgroups have greater confidence in community-led and state-led regimes relative to the status quo; and (3) exposure to violence reduces confidence in these proposed system. By illustrating both individual and community-level factors that drive confidence in different natural resource governance regimes, this research expands the body of evidence concerning institution-building and land governance. The institutional pluralism which characterizes rural institutions in much of Africa means that building trust and support for natural resource governance is crucial to its success; consequently, these results have important implications for both designing and targeting governance interventions.

Word Count: 9,205 (including references)

^{*[}Add acknowledgement text from FCDO here.]

[†]Mercy Corps

Department of Political Science, Washington University in Saint Louis. mribar@wustl.edu.

Climate variability, environmental degradation, and reduced access to natural resources pose obstacles to natural resource governance in Sahelian countries such as Mali and Niger. These challenges compound fragile security situtations, heighten competition over water and arable land, and strain pre-existing conflict-resolution mechanisms, in so doing leading to more conflict and violence. In response, international donors and African governments commonly incorporate community-led structures into their natural resource governance programs (Deininger and Goyal 2024). Such initiatives are predicated on the idea that local and inclusive governance fosters higher levels of trust, legitimacy, and cooperation (Ostrom 2015). However, it is unclear if such natural resource governance structures are capable of coping with these unprecedented pressures. What kind of institutions could improve natural resource management, resolve conflicts, and boost climate resilience in the face of unprecedented resource strain and ongoing intercommunal violence?

This paper explore the effectiveness of different natural resource governance regimes through a vignette survey experiment administered in-person to 3,607 respondents in rural Mali and Niger.¹ We presented respondents with one of three descriptions of a hypothetical natural resource governance system. One treatment condition descried a "community-based" natural resource system in which communities would make decisions about resource use. A second treatment condition described a "state-led" or centralized natural resource governance regime, in which state officials make decisions about resource use. A third vignette, the control condition, asked respondents to consider the status quo land governance regime. After the vignette was introduced, participants responded to a set of five questions that measure expectations of the assigned system to their capacity to manage conflict, fairly allocate natural resources, and increase climate resilience.

We show three key results.² First, respondents consistently believe that a hypothet-

^{1.} We surveyed 2,081 respondents across the Koulikoro, Koutiala, San, and Ségou regions of Mali and 1,526 respondents across the Maradi and Tahoua regions of Niger.

^{2.} All regressions include village-level fixed effects for two reasons. First, our survey experiment was embedded in a monitoring and evaluation effort for a stabilization and conflict resolution program; our fixed effects absorb exposure to this program. Second, we are interested in how the experimental treatment shifts preferences for natural resource governance, rather than how a village's conditions shift preferences for natural resource governance.

ical locally-led natural resource governance regime would be more effective than either a state-led natural resource governance system or the status quo. While respondents believe that a state-led system will be slightly more effective than the status quo for a limited number of outcomes, they consistently prefer a a locally led-system. Second, based on existing qualitative research, we hypothesized that members of the local outgroup (i.e. allochthones) would prefer a state-led natural resource governance system over a locally-led one. Using a respondents' physical distance from the village centroid to measure in-group versus outgroup status, we show that the marginal effect of being treated with either vignette is increasing in distance from the village centroid. These results suggest that (1) members of the local out-group are less content with the status quo, but that they would nevertheless perceive a locally-led natural resource governance system to be more effective and more equitable. Finally, we hypothesized that exposure to violence would decrease respondents' confidence in a hypothetical state-led natural resource governance due to the erosion in the state's monopoly on violence. We find small or null effects for the state-led natural resource governance treatment at all levels of exposure to violence. However, exposure to violence erodes respondents' confidence in the community-led natural resource governance.

Households in Africa often have multiple fora to which they could present a dispute (Lust 2022); this means that natural resource governance exists in a state of institutional pluralism. Identifying what factors drive households' perceptions of how effective natural resource governance institutions will be is critical to understanding how such institutions may or may not contribute to economic growth or peacebuilding. Existing research suggests that households in the developing world may perceive informal institutions to be more just or less burdensome (Acemoglu et al. 2020; Chaara, Falisse, and Moriceau 2022; Winters and Conroy-Krutz 2021). Institutional pluralism is particularly relevant for natural resource governance because of the overlapping normative regimes through which land is governed. Lund (2008) notes that creating new institutions often simply adds another layer to these overlapping regimes, rather than simplifying them. Consequently, effective natural resource governance is partially a self-fulfilling prophecy: respondents will use formal governance if they perceive it to be more effective, and continue to use informal governance if they perceive informal governance to be more effective.

Informal natural resource governance in West Africa often excludes relative new-comers and pastoralist groups from village governance (Delville and Moalic 2019; Boone 2018). The descendants of the first settlers of the village, called autochthones, generally dominate village governance. The village politics surrounding who belongs creates heterogeneous returns to participating in village land governance. Low-status members of the in-group or members of the out-group are likely to be dissatisfied with land governance (Funjika and Honig 2024). In addition, our research shows how exposure to conflict can condition the perceived effectiveness of natural resource governance. Particularly in the Sahel, however, these institutions are under increasing strain due to ongoing conflict (McGuirk and Nunn 2025). Because many conflicts in the Sahel have their origin in disputes over access to natural resource, the presence of such conflicts signals the state's inability to manage natural resources. Our research expands the body of evidence concerning effective natural resource governance by exploring if and when rural households think different natural resource governance systems will be effective.

More broadly, our research explores the interplay between local institutions, economic development, and peacebuilding (Callen, Weigel, and Yuchtman 2024). A variety of research explores how institutions can drive growth and reduce conflict at the country level (Acemoglu, Johnson, and Robinson 2001; North, Wallis, and Weingast 2009). Less is known about the local, often informal, institutions which provide natural resource governance in much of the developing world where the state is scarce. Recent literature has shown that strengthening local institutions ability to resolve disputes led to positive outcomes (Hartman, Blair, and Blattman 2021; Christensen et al. 2024; Ribar et al. 2025). Our research suggests potential scope conditions for such interventions by illustrating the conditions under which rural households believe that improved institutions would be effective.

The paper proceeds in four parts. The next section overviews the important of natural resource governance for sustainable peacebuilding and economic growth. The following section explores outlines how we expect both belonging and violence to condition preferences for natural resource governance. The third section overviews our research design and survey measures. Section four shows our results. Section five concludes the paper.

I Context: land governance in the Sahel

Land tenure security and effective natural resource governance is critical to both economic growth and sustainable peacebuilding in rural Africa. Land tenure security conditions households' ability to make investments: households are unlikely to fertilize their parcels, build irrigation, or plant trees if they are unclear if they will reap the benefits (Goldstein and Udry 2008; Besley and Ghatak 2010). Secure land tenure helps minimize the outbreak of natural resource disputes by clarifying boundaries and proving easier access to conflict resolution institutions. Effective natural resource governance is also crucial for climate resilience: secure land tenure can help reduce deforestation and encourage conservation (Deininger and Goyal 2024, 183–217).

According to the 2021 wave of the Living Standards Measurement Survey (LSMS), only three percent of households in Mali and five percent of households in Niger possessed a formal land title for at least one of their agricultural parcels. In Niger, Land Commissions (Commissions Foncières) operate at the department level (ADM2), but are understaffed and under resourced. In addition, land commissions are not empowered to resolve land disputes; they can only issue titles for undisputed land (Hughes 2014, 13). Governance is similar in Mali: the country launched a new framework for land governance in 2000, the Loi Domaniale et Foncière, but in practice the state remains scarce in practice.

Absent formal land governance, most land in Mali and Niger is held via customary, or informal, land tenure. Figure 1 illustrates the institutional pluralism; it shows respondents' answers to "If you have a dispute about land, livestock, or a business transaction, who would you approach to resolve the dispute." The overwhelming majority of respondents (2,861) said that they would approach a village or community elders. However, of the 3,607 respondents, 45 percent selected two or more responses and 13.5 percent selected three or more answers.

In both Mali and Niger, customary access to land is predicated on the 'right of the axe,' or land rights awarded through descent from the original settlers of the village (Hughes 2014). These customary land rights distinguish the autochthones, or descendants of the original settlers of the village, from allochthones, or more recent arrivals.

Figure 1. Institutional pluralism in Mali and Niger

This figure shows responses to "If you have a dispute about land, livestock, or a business transaction, who would you approach to resolve the dispute" from the author's survey in Mali and Niger.

More recent arrivals to the village are generally granted long-term use rights to land, rather than land ownership. Many allochthones stay in villages for generations while paying ceremonial rents for land. Tensions often emerge as to the extent that these rents are actually ceremonial—particularly when the following generations of allochthones 'inherit' the parcels. Ethnic groups that are predominantly herders rather than farmers—such as Tuaregs and Peulhs (Fulanis)—are almost always considered allochthones. However, while most Fulani and Tuaregs are considered allochthones, many other ethnicities could also be considered allochthones outside of their own village. Most Tuaregs and Fulani are allochthones, but that does not imply that most allochthones are Tuaregs and Fulani.³

The absence of natural resource governance can also allow conflict to fester. Many

^{3.} This paragraph describes autochthony/allochthony in Mali and Niger, not overall. These groups could be considered autochthones in other locations. Peulhs, for example, are the ethnic majority in Guinea.

conflicts in sub-Saharan Africa have their genesis in competition over resources. In Mali, Benjaminsen and Ba (2024) narrate how a conflict over access to riparian pastures in Mali led to Katiba Macina, a local offshoot of Al Qaeda, intervening on behalf of herders. Likewise, land tenure conflicts contributed to the outbreak of recent conflicts in both Côte d'Ivoire and the Democratic Republic of the Congo (Boone 2014; Autesserre 2010). Such conflicts are likely to increase in both severity and frequency in the Sahel, as climate change and desertification make access to water more scarce and shrink the pool of arable land.

Ongoing violence persists in both Mali and Niger, as the state has been unable to conclusively defeat insurgent actors. The porosity of borders in the Sahel means that the same violent groups—chiefly Jama'at Nusrat al-Islam wal-Muslimin (JNIM) and the Islamic State in the Greater Sahara (ISGS)—operate in a broad theater encompassing both countries, as well as Burkina Faso.

2 Belonging, violence, and natural resource governance

Given the challengers presented by the status quo of natural resource governance, policy-makers and international donors have come up with a variety of potential interventions to improve natural resource governance in rural Africa. Many African governments have taken land tenure into their own hands and implemented state-led natural resource governance. For example, a top-down effort from Rwanda led to approximately 11.5 million parcels of land being registered between 2011 and 2013 (Deininger and Goyal 2024, 60). Natural resource governance in Rwanda is handled by the National Land Authority, based in Kigali. Ali, Deininger, and Duponchel Ali, Deininger, and Duponchel 2017) show that this process had positive effects on both gender equality and access to credit, although they raise concerns about the long-term sustainability of such a process. The Liberia Land Authority provides a more recent example of such a state-led natural resource governance program; it advertises itself as a 'one-stop shop' for land titling issues.

Other initiatives have emphasized the need for locally-led natural resource governance programs. Such programs date back to the late 1980s, when the World Bank and other donors piloted the Plans Fonciers Rurale (PFR) programs in Côte d'Ivoire, Benin, and Burkina Faso (Delville and Moalic 2019). More recently, Hartman, Blair, and Blattman (2021) show that introducing alternative dispute resolution in Liberia led to a decrease in violence driven by land disputes. In Niger, layering conflict resolution training on top of a livelihoods program for youth decreased both support for violence in treated villages and the count of violent incidents (Ribar et al. 2025). These programs suggest that community-led natural resource governance programs may suffice to protect property rights and mitigate conflicts even when state capacity is low.

To summarize, natural resource governance is under-provided in both Mali and Niger. Nevertheless, effective natural resource governance is key for economic growth, conflict resolution, and climate resilience. Given the problems associated with the status quo, it seems likely that households will perceive any alternative to the status quo to be a more effective form of natural resource governance. With this background in mind, we hypothesize that:

H.1a Households will prefer either community-based natural resource governance or state-led natural resource governance to the status quo.

Respondents' discontent when the status quo does not imply ambivalence between the alternatives. Winters and Conroy-Krutz (2021, 2) argue that "[c]itizens might assess that informal institutions, which are typically rooted in traditional authority and customs, have significant legitimacy and are well-tailored to local contexts. Formal institutions, on the other hand, rely on rules and procedures often developed in distant power centers and rooted in Western legal traditions, and might therefore seem foreign or even illegitimate." Using a survey experiment in Mali, they show that respondents think that a formal institution would produce a less fair result (albeit one more in accordance with the formal laws of Mali), and more likely to require a payment.

These dynamics are not unique to Mali. In Burundi, a legal aid program increased the uptake of state justice institutions, particularly among members of marginalized communities. However, the program did not make participants less likely to use local, informal fora and did not increase participants' trust in formal justice. Funjika and Honig (2024) show that individual status within both formal and informal justice institutions conditions the perceptions of conflict resolution institutions. Nevertheless, they show

that respondents are most likely to take their disputes to a customary forum even when a state-led or statutory forum is available. These results suggestive a pervasive distrust of state conflict resolution and natural resource governance institutions. Even if both state-led and community-led natural resource governance schemes to be improvements on the status quo, we hypothesize that:

H.ib Households will prefer community-based natural resource governance to state-led natural resource governance.

The ethnic heterogeneity which characterizes many villages in West Africa further complicates natural resource governance. Existing natural resource governance institutions often do not benefit populations equally, with members of the customary in-group benefiting more than the customary out-group (Funjika and Honig 2024. Differential returns to participating in local institutions can shift both the confidence in these institutions and the eventual up-take of these institutions. For example, Acemoglu et al (Acemoglu et al. 2020) show heterogeneous up-take of state courts in Pakistan by caste.⁴

Villages in Mali and Niger are rarely homogenous; rather, they are split between "natives" and "strangers." Natives, more formally called autochthones, descend from the initial settlers in the area and usually hold some customary claim over a village's land.⁵ Outsiders, or allochthones, are descendants of later settlers, and are generally of a different ethnicity than the autochthones. Colin, Kouamé, and Soro Colin, Kouamé, and Soro 2007, 34 note that this system "perpetuates a patronage relationship between autochthons [sic] and strangers (in the sense of 'non locals'), to whom rights in land are extended... The migrant owes his tuteur a perennial gratitude (transferred to his heirs), expressed through gifts of agricultural products, contributions to his tuteur's expenses at times of funerals, and so forth"

This distinction between allochthones and autochthones is the prevailing cleavage in natural resource governance in much of Africa. Africans leverage claims of autochthony to control access to land or resources (or to prevent somebody else from accessing land

^{4.} However, they do not show heterogenous effects by caste for their intervention, which provided households within information about the effectiveness of state courts)

^{5.} Scholars often use the term *terroir* to denote the area controlled by a given village. For more detail see: Bassett, Blanc-Pamard, and Boutrais (2007).

or resources). When land became more scarce, autochthones began to rely more heavily on their customary claims to land. Berry (2009, 40) notes that "intersecting tensions over eligibility for land access... contributed to a resurgence of appeals to 'tradition' and historical precedent to validate claims to land and citizenship. The presence of valuable cash crops (such as cotton in Mali and Niger) may exacerbate the disputes. As land becomes more variable, ethnicity can become increasingly salient as a rural landowners use it to leverage access to resources (Pengl, Roessler, and Rueda 2022). Claims of autochthony are not restricted to accessing land; in the Central African Republic, non-Muslim traders claimed to be 'true Central Africans' in order to chase Muslim vendors from their coveted market stall positions (Vlavonou 2023).

The relationship between autochthone and allochthone is also not always constant over time. In Cote d'Ivoire, for example, allochthones have begun to outnumber autochthones in certain areas, due to large influxes of migrants encouraged during the presidency of Félix Houphuët-Boigny (Boone et al. 2021). These demographic changes can happen both at the regional level, but also at the village level, as allochthonous settlements occasionally eclipse their "hosts village" in size or economic prominence. Consequently, when chiefs in Côte d'Ivoire are able to capture village-level natural resource governance, they generally exclude allochthones from access to formal property rights (Ribar 2025).

Autochthones tend to dominate village politics, leaving allochthones in a "subaltern social position" (Delville and Moalic 2019, 332). In Mali and Niger, chiefs are generally descendants of the initial settlers of the land (Hughes 2014). Weak state capacity in many peripheral areas can also cement the role of these elites: where early state interventions created inequality which benefited the autochthone elite, the inequalities are more likely to persist where the state does not subsequently intervene or provide services (Nathan 2023). Autochthones are in power now because they were in power before. Even today, rural allochthone settlements depend administratively on main villages (also called 'administrative villages') populated by allochthones. These dynamics mean that allochthones may perceive these local institutions to be biased against them. In other words, an allochthone in rural Mali or Niger may prefer the ineffective governance of

a scarce state to a local governance that is biased against them.⁶ This divide will be particularly salient when it comes to land governance. For this reason, we hypothesize that:

H.2a Allochthonous households will have higher support for state-led natural resource governance, relative to autochthonous households.

H.2b Autochthonous households will have higher support for community natural resource governance relative to allochthonous households.

Beyond questions of 'who belongs,' we also expect that exposure to violence will reduce the perceived effectiveness of state-led natural resource governance. The role of violence in decreasing the perception of state capacity is well established. In Afghanistan, households who are exposed to greater levels of violence view the police (who may enforce property rights) as less effective and less procedurally just (Deglow and Sundberg 2021). Gates and Justesen (2020) show that a an unexpected rebel attack in Mali halfway through a public opinion survey decreased trust in the president, although this effect did not extent to all government offices. The negative relationship between exposure to violence and trust in institutions is likely to be even stronger when it comes to property rights. Enforcing property rights necessarily requires the capacity to exclude non-rights holders from the property. Without a monopoly on violence, landholders may reasonably doubt that the state has such a capacity.

The presence of these natural resource conflicts and land disputes has been a key enabling factor for the spread of violence across the Sahel (Raleigh, Nsaibia, and Dowd 2021). Across Africa, decreased rainfall within areas traditionally used by pastoralist communities leads to increased pressure on land and water in neighboring areas inhabited by farming communities, leading to increased conflict (McGuirk and Nunn 2025).

^{6.} On the other hand, African states are not passive bystanders when it comes to autochthony—rather, they have often promulgated policies which support autochthones access to land to shore up electoral support (Berry 2009; Boone et al. 2021).

^{7.} In contrast, Harding and Nwokolo (2024) show an increase in general political trust following unexpected attacks by Boko Haram in Nigeria. Unlike Harding and Nwokolo, however, we do not study a one-off set of attacks but rather a long-term pattern of violence. Our study also explores perceptions of state capacity, rather than political trust per se.

Armed groups in the Sahel often intervene in local natural resource conflicts. For example, JNIM escalated a conflict over pastoralist access to riparian pastures in Mali (Benjaminsen and Ba 2024); where state-led natural resource governance institutions began to extract rents from pastoralists, JNIM intervened on behalf of a population JNIM perceived to be its constituents. Rural citizens in Mali and Niger are not viewing the state's inability to reduce violence and then extrapolating an inability to enforce property rights. Rather, the violence directly reveals the state's incapacity to provide effective natural resource governance. Consequently, we hypothesize that:

H.3 Households with greater exposure to violence will have lower support of state-led natural resource governance, relative to households with less exposure to violence.

3 Research design and methodology

3.1 Sampling and survey implementation

To explore these hypotheses, we administered a survey experiment to 1,776 respondents in rural Mali and 1,746 in rural Niger. We collected data in the Koulikoro, Koutiali, San, and Ségou regions of Mali, as well as the Tahoua and Maradi regions of Niger. Figure 2 shows the regions in which sampling took place, as well as the specific villages in which we collected data.

Our survey takes place within a broader Foreign and Commonwealth Development Office (FCDO)-funded program, titled "Justice and Stability in the Sahel" (JASS). Because we want to use this survey experiment to estimate preferences for natural resource governance, rather than the effect of JASS, we use village fixed effects in all regressions to absorb effects of the JASS project. The firm which administered this survey calculated sample sizes to ensure adequate coverage of a series of monitoring and evaluation indicators for the broader JASS program, rather than for the survey experiment specifically. However, in our pre-analysis plan we show minimum detectable effects of 0.237 and 0.315 standard deviations of the outcome variable, which is below the magnitude of the effects we find in tables 2 and 3.

Figure 2. Locations of surveyed villages in Mali and Niger

This figure shows the villages in which we implemented the field experiment. There were 24 villages in Niger and 56 in Mali.

This broader context influenced the sample selection procedure by which we selected villages. The firm hired to implement this evaluation did not survey within communes where less than ten villages received the JASS treatment. [For Ife/Alma: add a paragraph here describing (1) how JASS was targeted and (2) how the control villages were selected.]

Within sampled villages, enumerators conducted a random walk to select households in which to administer the survey. Enumerators then administered an informed consent statement before beginning the survey. Because of this idiosyncratic sampling strategy, we do not weight our survey results. We consider these results to indicative of the population to whom the survey was administered, rather than of the broader population of Mali and Niger. [Add text about why that's actually okay.]

3.2 Survey measures

We use a vignette survey design, in which we presented respondents with one of three vignettes. Respondents randomly received the community treatment with probability

0.25, the centralized treatment with probability 0.25, and the control condition with probability 0.5. The three treatments are:

- I. Community treatment: As you know, communities are facing challenges in managing natural resources (e.g., water, forests, land) due to the impacts of climate change, such as droughts, floods, and soil degradation. Imagine that to address these challenges, your community has established a community-based natural resource governance system. Under this system, local stakeholders, including farmers, community leaders, landowners, and resource users, meet regularly to make decisions about resource management. These meetings are inclusive, and decisions are made by consensus. The system emphasizes cooperation, and conflicts are addressed through local mediation and dialogue. External organizations, such as NGOs, provide support by offering training on sustainable practices and climate adaptation strategies, but the community makes the decisions about resource use.
- 2. Centralized treatment: As you know, communities are facing challenges in managing natural resources (e.g., water, forests, land) due to the impacts of climate change, such as droughts, floods, and soil degradation. Imagine that to address these challenges, your community has established a centralized, government-controlled natural resource governance system. Under this system, decisions about resource management (e.g., water allocation, forest use, land management) are made by government agencies at the national or regional level. The government sets regulations and policies for how resources are used and enforces them with support from law enforcement. Local communities have little input in the decision-making process, though they may receive financial incentives or technical support from the government to help adapt to climate change. Conflicts over natural resources are resolved through legal channels or government-appointed arbitrators, rather than community dialogue.
- 3. Control: As you know, communities are facing challenges in managing natural resources (e.g., water, forests, land) due to the impacts of climate change, such as

droughts, floods, and soil degradation. Imagine that your community continues to manage natural resources in the same way it has been doing for years.

After respondents received one of three treatments, respondents then answered five questions. These outcome variables include:

- 1. Do you think there would be an increase in resilience to climate-related challenges (e.g., droughts, floods, land degradation) within the community? [yes/no]
- 2. Do you think the system will reduce conflicts over natural resources (e.g., water, land, forests) in the community? [yes/no]
- 3. To what extent do you trust that land-related issues will be managed fairly and transparently? [Not at all/a little/neutral/somewhat/completely]
- 4. Do you believe that the resolution of conflicts/disputes will be equitable? [yes/no]
- 5. Do you believe that the authorities will voice concerns and make decisions that benefit all members of the community? [yes/no]

To test hypotheses 2.a and 2.b, we also need to identify whether a a respondent is an autochthone or an allochthone. We pre-registered two measures to capture autochthony. First, we ask if respondents their status within the village: whether they were a "host," or if they had moved to the village, returned to the village, or were a refugee. We code hosts as autochthones and all other respondents as allochthones. We also measure allochthony through ethnicity—specifically, by coding Peulh/Fulani and Tuareg respondents as allochthones. This coding reflects these ethnicities' status in Mali and Niger as herders who often transit between villages and are treated as outsiders. However, both strategies to capture the allochthone/autochthone divide leave us underpowered to detect differences. When asking respondents directly if they are a host or a more recent arrival, only 69 respondents report being an allochthone. Similarly, only 282 respondents are either Peulh/Fulani or Tuareg.

^{8.} Hosts or tutors is a common way to refer to the original settlers of the land, who in the conventional narrative then permit later arrivals, or allochthones, to settle.

To overcome these challenges, we code a third measure of allochthony: distance measured between the village's centroid and the respondent's dwelling. In other words, this measure captures how far a respondent lives from the center point of the village. Initial arrivals to a village—the autochthones—generally create a central settlement. They farm around this central point, creating a band of farmland surrounding the village. Later arrivals—allochthones—often settle in hamlets outside of these initial bands of farmland, where land remains available (Delville and Moalic 2019). Villages may also settle allochthones strategically on the outskirts of their territories to shore up territorial claims (Delville and Moalic 2019; Ribar 2025, 33). While distance to the village centroid is a proxy for allochthony, the variation it provides allows us to better explore H2.a and H2.b. To avoid our results being driven by outliers or GPS errors, we winsorize these results to be within the 5th and 9th percentiles. We then take the inverse hyperbolic sine of the distance measure to normalize it (Bellemare and Wichman 2020).

For hypothesis 3, we need to capture households' exposure to violence. First, we use responses to "To your knowledge, have there been any violent confrontations or conflicts in your community in the last six months?" We will use this question as a binary indicator where one indicates yes and zero indicates no. However, we also expect this question to be vulnerable to either social desirability bias or a general unwillingness to discuss violence. As a result, we will also also use the count of ACLED events within a 25 kilometer radius of the village as a measure of exposure to violence. We exclude ACLED events which are coded as protests and events where the primary actor is government forces, as these do not match our theoretical explanations of an incomplete monopoly on violence. We calculate these statistics for the one year prior to the survey, but appendix A.2 shows these results calculated using two and three year pre-treatment periods, as well as versions calculated using 10 kilometer radii. Following Bellamare and Wichman (2020), we use an inverse hyperbolic sine transformation to normalize these data. We did not specify such a transformation in the pre-analysis plan; however, table A.2 shows that results are substantively identical with and without this transformation.

For control variables, we include sex, age, age squared, and a set of binary indicators for the respondent participating in any specific JASS intervention. Table I shows the balance between the difference treatment groups. The table shows that the groups are

balanced on all characteristics except for participating in peace initiatives as part of JASS. With 38 *t*-statistics in table 1, this imbalance is consistent with a successful randomization, and is not a cause for concern.

Table 1. All three treatment groups are balanced across control variables

	Co	ontrol	Loc	al-led Trea	tment	Stat	e-led Trea	tment
	Mean	Std.Err.	Mean	Std.Err.	T-score	Mean	Std.Err.	T-score
Age	42.7I	15.06	42.66	14.19	-0.09	42.76	14.25	0.09
Sex (male)	0.58	0.49	0.61	0.49	1.78	0.58	0.49	O.II
Ethnicity								
Bambara	0.25	0.43	0.26	0.44	0.67	0.26	0.44	0.56
Haoussa	0.40	0.49	0.37	0.48	-1.34	0.39	0.49	-0.44
Mandé	0.04	0.19	0.03	0.17	-I.O2	0.03	0.17	-o . 76
Minianka/Sénoufo	0.14	0.35	0.16	0.37	1.50	0.15	0.36	0.89
Other	0.04	0.19	0.04	0.19	0.23	0.04	0.20	0.57
Peulh	0.03	0.17	0.04	0.21	1.69	0.04	0.19	0.61
Soninké	0.06	0.25	0.05	0.22	-1.35	0.05	0.23	-1.07
Touareg	0.05	0.21	0.04	0.20	-0.34	0.04	0.19	-0.94
Participation in JASS act	ivities							
Awareness	0.39	0.49	0.37	0.48	-1.38	0.38	0.48	-0.85
Capacity building	0.20	0.40	0.19	0.39	-o . 76	0.22	0.41	0.90
Infrastructure	0.12	0.33	0.09	0.29	-2.24	0.12	0.33	-0.03
Peace initiatives	0.20	0.40	0.19	0.39	-I.IO	0.22	0.41	0.77
Non-farm livelihoods	0.13	0.34	0.12	0.32	-1.25	0.14	0.35	0.58
Agriculture	0.25	0.43	0.23	0.42	-I.OO	0.25	0.44	0.42
Resource management	O.IO	0.31	O.IO	0.30	-0.14	0.13	0.34	2.00
Climate resilience	O.IO	0.30	O.II	0.31	0.31	O.IO	0.30	-0.48
Advocacy	0.03	0.18	0.02	0.15	-1.38	0.03	0.18	0.03

Note: This table shows the balance of control variables across the three treatment groups from the JASS endline survey. T-scores are calculated using the control group as a baseline.

3.3 Estimation strategy

We use a series of linear probability models (i.e. ordinary least squares) to estimate these results. All regressions include village fixed effects, with standard errors clustered at the village level. To test hypothesis one, we estimate equations of the form

$$y_{iv} = \beta_1 \tau_i + \beta_2 X_i + \gamma_v + \epsilon_i$$

where y denotes the outcome variable, τ_i denotes the treatment status, X_i is a vector of controls, γ denotes village-level fixed effects, i indexes individual observations and v indexes villages. Here, β_1 captures the coefficient of interest: the effect of assignment into the treatment vignettes on the outcome variables. To test hypotheses two and three, we will estimate equations of the form

$$y_{iv} = \beta_1 \tau_i + \beta_2 \tau_i \cdot M_i + \beta_3 X_i + \gamma_v + \epsilon_i$$

where M represents the variable by which we hypothesized to find heterogeneous preferences for natural resource governance and all other terms remain the same. In this case, our outcomes of interest are β_1 , the coefficient on the treatment indicator, and β_2 , the coefficient on the interaction variable. Figures A2 and A4 in the body of the paper show the marginal effects of treatment by the interacting variables, but appendix A shows the full regression tables.

Ultimately, our survey design permits us to observe only some of the underlying variation that distinguishes households; more variation likely remains unobserved. Following Oster (Oster 2019), we conduct additional sensitivity analysis to calculate the proportion of unobserved variation relative to observed variation which would be necessary to render our results statistically insignificant. This measure, conventionally referred to as δ , captures how robust these results are to unobserved variation which could otherwise render them null. Tables 2 and 3 contain these measures for each outcome variable, for both treatment indicators (the community-led treatment and the state-led treatment). These values are consistently above the conventional threshold of oen for all significant results.

4 Results

Table 2 shows the effect of being treated with the two descriptions of natural resource governance vignettes on the four binary outcome measures. A positive coefficient equates to increased support for the hypothetical governance regime. Table 2 shows results which are both clear and consistent. Contra H.111, we see minimal responses to the state-led treatment. Respondents think that a state-led natural resource governance regime will

Table 2. Respondents prefer local natural resource governance over the status quo

	Resil	ience	Reduce	conflicts	Equi	itable	Benefit all members	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Local treatment	0.180***	0.184***	0.223***	0.226***	0.195***	0.198***	0.185***	0.188***
	(0.023)	(0.023)	(0.022)	(0.022)	(0.019)	(0.019)	(0.021)	(0.021)
State-led treatment	0.015	0.009	0.036*	0.033	0.035*	0.031*	0.044*	0.040*
	(0.018)	(0.018)	(0.018)	(0.017)	(0.015)	(0.015)	(0.017)	(0.016)
Demographic controls		X		X		X		X
Village FEs	\mathbf{X}	\mathbf{X}	\mathbf{X}	X	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}
Mean of outcome	0.728	0.728	0.767	0.767	0.797	0.797	0.802	0.802
δ (local)	1.379	1.872	2.387	2.849	1.765	2.127	1.745	2.122
δ (state)	0.507	0.136	0.753	0.513	1.171	0.643	1.721	0.987
Num.Obs.	3385	3385	3455	3455	3470	3470	3320	3320
R ₂	0.136	0.160	0.179	0.191	0.164	0.182	0.178	0.203

Note: The dependent variables in this model are 'Do you think there would be an increase in resilience to climate-related challenges' (columns 1-2), 'Do you think the system will reduce conflicts over natural resources (e.g., water, land, forests) in the community?' (columns 3-4), 'Do you believe that the resolution of conflicts/disputes will be equitable?' (columns 5-6), and 'Do you believe that the authorities will voice concerns and make decisions that benefit all members of the community?' (columns 7-8). The independent variable is which vignette treatment respondents received. Control variables include age, age squared, sex, and which (if any) JASS activities the respondent participated. All regressions use OLS with village type fixed effects and survey weights. Standard errors are clustered at the village level.

be 0.09 standard deviations more equitable and 0.11 standard deviations more likely to benefit all members of the community. However, respondents did not believe that a state-led system would be more resilient or would reduce conflicts.

In contrast, table 2 provides strong evidence that respondents prefer natural resource governance in which local institutions play a strong role, compared to either the status quo or (contra H.1a) state-led natural resource governance. Respondents think that a community-led natural resource governance regime would be superior across all measures. Respondents were 0.4 standard deviations more likey to agree that "there would be an increase in resilience to climate-related challenges" (an increase of approximately 25 percent relative to the mean); 0.52 standard deviations more likely to agree that "the system will reduce conflicts over natural resources" (an increase of 28 percent relative to the mean); 0.48 standard deviations more likely to agree that "the resolution of conflicts/disputes will be equitable?" (an increase of 25 percent relative to the mean); and 0.46 standard deviations more likely to agree that "the authorities will voice concerns and make decisions that benefit all members of the community" (an increase of 23 percent relative to the means). These effects are both statistically and substantively significant.

Table 3. Respondents prefer local natural resource governance over the status quo

	(1)	(2)
Local treatment	0.541***	0.547***
	(0.062)	(0.064)
State-led treatment	0.036	0.029
	(0.055)	(0.054)
Demographic controls		X
Village FEs	X	X
Mean of outcome	4.016	4.016
δ (local)	1.421	1.611
δ (state)	1.679	0.61
Num.Obs.	3565	3565
R ₂	0.160	0.171

Note:

The dependent variables in this model is 'To what extent do you trust that land-related issues will be managed fairly and transparently?' The independent variable is which vignette treatment respondents received. Control variables include age, age squared, sex, and which (if any) JASS activities the respondent participated. All regressions use OLS with village type fixed effects and survey weights. Standard errors are clustered at the village level.

The statistically significant results in this table have δ values well above the conventional threshold of one, suggesting that the results are robust to the presence of unobserved error.

Table 3 shows similar results to table 2, but uses the likert outcome. Respondents who received the local governance vignette had 0.39 standard deviations more trust that "land related issues will be managed fairly and transparently." This effect represents an 0.13 percent increase over the baseline level of 4.016. In contrast, presenting respondents with the state-led treatment had no effect on trust in the land governance system, relative to the status quo. In summary, respondents clearly expressed greater confidence in a hypothetical system of locally managed land administration, relative to both existing land

^{9.} Table AII in the appendix shows similar results analyzing this outcome variable using an ordinal logit.

Figure 3. Heterogenous treatment effects by household distance to village centroid

This figure shows the marginal effect of treatment with the state-led and community-led natural resource governance vignettes, expressed as standard deviations of each outcome variable, broken out by distance to the village centroid. All regressions use OLS with village fixed effects. Standard errors are clustered at the village level.

administration and a hypothetical state-managed system of land management. Respondents believe that a community-led natural resource governance system would be more resilient, more equitable, and would reduce more conflict.

Beyond this confidence, however, we are also interested in the relationship between other characteristics and respondents' preferences for natural resource governance. Hypothesis two suggests that allochthones, as opposed to autochthones, or the 'sons of the soil,' are more likely to distrust a locally managed natural resource governance system because of a history of discrimination.

Figure 3 shows the marginal effect of being treated by one of the two alternative

vignettes, broken out by respondent's distance to the village centroid. Based on existing research, we would expect allochthones to be located further from the village centroid, either due to exclusion or profession. If H2.A is correct, we would expect the marginal effect of being treated with the 'state-led' vignette to increase with distance to the village centroid. Similarly, if H2.B is correct, then we would expect the marginal effect of being treated with the 'local-led' vignette to decrease with the respondent's distance to the village centroid.

Figure 3 shows that support for the state-led treatment does indeed increase with distance to the village centroid. Because settlement patterns generally lead to autochthones occupying the center of the village and allochthones occupying the outskirts, respondents with high distance to the village centroid are more likely to be autochthones. Among respondents who were closest to the village centroid, the marginal effect of being treated with the 'state-led' vignette was statistically indistinguishable from zero. In contrast, for respondents furthest from the village centroid (those most likely to be allochthones), the marginal effect of being treated with the state-led treatment was an increase of 0.25 to 0.44 standard deviations.

However, contra H2.B, figure 3 also shows that the marginal effects of being treated with the 'local-led' vignette increase with distance to the village centroid. In other words, allochthones express greater support for a hypothetically locally led natural resource governance system. Even among respondents who were furthest from the village centroid, respondents expressed greater confidence in the locally led natural resource governance system than in the state-led natural resource governance system.¹¹

Finally, we are also interested in how exposure to violence affects confidence in these proposed natural resource governance regimes. Figure 4 shows the marginal effects of being treated with the state-led and locally-led vignettes, broken out by exposure to violent incidents. If H₃.A were correct, we would expect to see the marginal effects of being treated with the 'state-led' vignette to be lesser among respondents who had greater exposure to violence. Figure 4 does indeed provide support for this hypothesis.

^{10.} Table A1 in the appendix shows these results in greater detail.

II. One potential explanation is that these slopes merely reflect allochthones deep-seated distrust of existing systems. However, table AI shows that distance to the village centroid is not a statistically significant predictor of these outcomes.

Figure 4. Heterogenous treatment effects by exposure to ACLED events

This figure shows the marginal effect of treatment with the state-led and community-led natural resource governance vignettes, expressed as standard deviations of each outcome variable, and broken out by exposure to violent events status. All regressions use OLS with village fixed effects. Standard errors are clustered at the village level.

However, the marginal effect of the 'state-led' treatment is not statistically significant in much of figure 4, suggesting that H₃.A encounters floor effects. There may be a negative relationship between confidence in state-led natural resource governance and exposure to conflict but it is difficult to detect because confidence in state-led natural resource governance is quite low.

The stronger story shown in figure 4—which we did not hypothesize—is that confidence in locally-led natural resource governance is also decreasing in exposure to violence. Where respondents have been exposed to zero ACLED events, the marginal effect of being treated with the local-led treatment is a 0.46 to 0.60 standard deviation increase in the confidence variables. In contrast, where exposure to violence is high, the

marginal effect of being exposed to the state-led treatment is statistically distinguishable from zero. In other words, being exposed to violence decreases confidence in all hypothetical natural resource governance arrangements, not just state-led natural resource governance.¹² At the highest levels of exposure to violence, respondents did not believe that either proposed natural resource governance regime would be an improvement relative to the status quo.

5 Discussion and Conclusion

Natural resource governance is essential for conflict resolution, economic growth, and climate resilience. However, low state capacity, security challenges, and shrinking resource pools have made natural resource governance difficult in countries like Mali and Niger. In response, both donors and African governments have attempted to expand the provision of natural resource governance, either by expanding the provision of formal property rights (Deininger and Goyal 2024) or by instituting community-led conflict resolution institutions (Hartman, Blair, and Blattman 2021; Christensen et al. 2024; Ribar et al. 2025). The community-led interventions in particular are predicated on the idea that local and inclusive governance fosters higher levels of trust, legitimacy, and cooperation (Ostrom 2015). For natural resource governance to be successful, constituents have to have confidence in the system; where constituents have multiple options for conflict resolution institutions, they will not use natural resource governance that they do not feel would be effective. Within this challenging environment, what kinds of institutions do citizens believe could improve natural resource management, resolve conflicts, and boost climate resilience?

We explore this question through a survey experiment which we administered to 2,081 respondents across the Koulikoro, Koutiala, San, and Ségou regions of Mali and 1,526 respondents across the Maradi and Tahoua regions of Niger. In the experiment we randomly assigned respondents to receive a description of a community-led natural resource

^{12.} In our current specifications, we cannot show the relationship between exposure to violence and the control condition of the vignette experiment, because the village fixed effects absorb the un-interacted effect of violence.

governance regime, a state-led natural resource governance regime, or their status quo. We then asked respondents how effective the system would be at reducing conflicts, how equitable it would be, and the extent to which it would increase climate resilience within the community.

This paper makes three conclusions. First, across sub-groups, respondents overwhelmingly prefer a community-led natural resource governance over a state-led natural resource governance regime or the status quo. These results are stark: relative to the status quo, bring presented with the community-led treatment increased confidence in the proposed system by 0.4 to 0.52 standard deviations—increases of 23 percent to 28 percent over the mean. These results align with a growing movement within natural resource governance policy to empower communities to monitor their own property rights and adjudicate their own disputes (Ribar et al. 2025; Hartman, Blair, and Blattman 2021; Christensen et al. 2024).

Second—and contrary to much existing literature—this paper shows that these preferences are similar among both local-in groups (autochthones) and local out-groups (allochthones). Respondents located further from the village centroid, i.e. those more likely to belong to the out-groups, has increased confidence in both the community-led and state-led natural resource governance regimes, relative to the status quo. Existing literature suggests that households' position within local hierarchies will affect their confidence in the various institutions to which they could bring a conflict, thereby affecting their choice of forum (Funjika and Honig 2024; Winters and Conroy-Krutz 2021; Acemoglu et al. 2020). Third, we show that exposure to violence decreases confidence in both community-led and state-led natural resource governance regimes. These findings align with our theoretical expectations that exposure to violence signals the state's inability to enforce property rights: violent incidents show respondents that the state lacks a monopoly on violence. Within a context in which access to natural resources forms the core of many conflicts (Benjaminsen and Ba 2024; Raleigh, Nsaibia, and Dowd 2021; Hansen 2024), exposure to violence also directly shows that the state has failed to resolve natural resource conflicts in the past.

Conflict resolution and natural resource governance are core state services. In areas where weak states make providing such services difficult, recent efforts have been made

to provide these services "from the bottom up." Previous research has identified reasons for cautions with such interventions. Community-led natural resource governance opens space for the capture of land tenure institutions by existing elites and decisions which are biased against households with low-status in these institutions, such as ethnic out-groups (Ribar 2025). Boone Boone 2014, 329 notes that "[s]ocial hierarchy, cleavage, and exclusion within these local arenas are often defined by control over agricultural land and labor, and access to water and pressure." Despite these potential downsides, the respondents in our survey most at risk of being excluded from natural resource government, i.e. the allochthones, are actually more supportive of community-led natural resource governance. What explains these puzzling results?

One potential explanation is that respondents within the groups which are likely to be excluded think that norms of formal property rights will nevertheless pervade community-led natural resource governance. Aldashev et al. Aldashev et al. 2012, 798 refer to this mechanism as a magnet effect:, by which "the formal law can actually pull custom in its direction, thereby causing a progressive evolution of the prevailing mores." Alternatively, property rights provided by these community-led institutions may suffice to make respondents feel confident in their landholding (Ferree et al. 2023). Regardless, these results suggest that community-based natural resource governance may be effective even in the presence of ethnic heterogeneity and the presence of discriminatory customary institutions.

References

Acemoglu, Daron, Ali Cheema, Asim I Khwaja, and James A. Robinson. 2020. "Trust in State and Nonstate Actors: Evidence from Dispute Resolution in Pakistan." *Journal of Political Economy* 128 (8): 3090–3147.

Acemoglu, Daron, Simon Johnson, and James A. Robinson. 2001. "The Colonial Origins of Comparative Development: An Empirical Investigation." *American Economic Review* 91 (5): 1369–1401.

- Aldashev, Gani, Imane Chaara, Jean-Philippe Platteau, and Zaki Wahhaj. 2012. "Formal Law as a Magnet to Reform Custom." *Economic Development and Cultural Change* 60 (4): 795–828.
- Ali, Daniel Ayalew, Klaus Deininger, and Marguerite Duponchel. 2017. "New Ways to Assess and Enhance Land Registry Sustainability: Evidence from Rwanda." World Development 99:377–394.
- Autesserre, Séverine. 2010. The Trouble with the Congo: Local Violence and the Failure of International Peacebuilding. New York: Cambridge University Press.
- Bassett, Thomas J., Chantal Blanc-Pamard, and Jean Boutrais. 2007. "Constructing Locality: The terroir Approach in West Africa." *Africa: Journal of the International African Institute* 77 (I): 104–129.
- Bellemare, Marc F., and Casey J. Wichman. 2020. "Elasticities and the Inverse Hyperbolic Sine Transformation." Oxford Bulletin of Economics and Statistics 82 (1): 50–61.
- Benjaminsen, Tor A., and Boubacar Ba. 2024. "A moral economy of pastoralists? Understanding the 'jihadist' insurgency in Mali." *Political Geography* 113:1–10.
- Berry, Sara. 2009. "Property, Authority and Citizenship: Land Claims, Politics and the Dynamics of Social Division in West Africa." *Development and Change* 40 (1): 23–45.
- Besley, Timothy, and Maitreesh Ghatak. 2010. "Property Rights and Economic Development." In *Handbook of Development Economics*, edited by Dani Rodrik and Mark Rosenzweig, 5:4525–4595. Amsterdam: Elsevier.
- Boone, Catherine. 2014. Property and Political Order in Africa: Land Rights and the Structure of Politics. Cambridge University Press.
- ———. 2018. "Shifting visions of property under competing political regimes: changing uses of Côte d'Ivoire's 1998 Land Law." *The Journal of Modern African Studies* 56 (2): 189–216.

- Boone, Catherine, Arsene Brice Bado, Aristide Mah Dion, and Zibo Irigo. 2021. "Push, pull and push-back to land certification: regional dynamics in pilot certification projects in Côte d'Ivoire." *The Journal of Modern African Studies* 59 (3): 247–272.
- Callen, Michael, Jonathan L Weigel, and Noam Yuchtman. 2024. "Experiments About Institutions." *Annual Review of Economics* 16:105–131.
- Chaara, Imane, Jean-Benoît Falisse, and Julien Moriceau. 2022. "Does legal aid improve access to justice in 'fragile' settings? Evidence from Burundi." *Journal of Peace Research* 59 (6): 810–827.
- Christensen, Darin, Alexandra Hartman, Cyrus Samii, and Alessandro Toppeta. 2024. "Interest-based Negotiation over Natural Resources: Experimental Evidence from Liberia." *Working Paper*.
- Colin, Jean-Philippe, Georges Kouamé, and Débégnoun Soro. 2007. "Outside the autochthon-migrant configuration: access to land, land conflicts and inter-ethnic relationships in a former pioneer area of lower Côte d'Ivoire." *The Journal of Modern African Studies* 45 (1): 33–59.
- Deglow, Annekatrin, and Ralph Sundberg. 2021. "Local Conflict Intensity and Public Perceptions of the Police: Evidence from Afghanistan." *The Journal of Politics* 83 (4): 1337–1352.
- Deininger, Klaus, and Aparajita Goyal. 2024. Land Policies for Resilient and Equitable Growth in Africa. Washington, DC: World Bank Group.
- Delville, Philippe Lavigne, and Anne-Claire Moalic. 2019. "Territorialities, spatial inequalities and the formalization of land rights in Central Benin." *Africa* 89 (2): 329–352.
- Ferree, Karen E., Lauren Honig, Ellen Lust, and Melanie L. Phillips. 2023. "Land and Legibility: When Do Citizens Expect Secure Property Rights in Weak States?" American Political Science Review 117 (1): 42–58.

- Funjika, Patricia, and Lauren Honig. 2024. "Customary Courts, State Institutions, or Opting Out: Patterns of Forum Pluralism in Three African Countries." World Development 195:107113.
- Gates, Scott, and Mogens K. Justesen. 2020. "Political Trust, Shocks, and Accountability: Quasi-experimental Evidence from a Rebel Attack." *Journal of Conflict Resolution* 64 (9): 1693–1723.
- Goldstein, Markus, and Christopher Udry. 2008. "The Profits of Power: Land Rights and Agricultural Investment in Ghana." *Journal of Political Economy* 116 (6): 981–1022.
- Hansen, Eva. 2024. "Farmer-herder relations, land governance and the national conflict in Mali." *The Journal of Peasant Studies* 51, no. 4 (June): 1046–1071.
- Harding, Robin, and Arinze Nwokolo. 2024. "Terrorism, Trust, and Identity: Evidence from a Natural Experiment in Nigeria." *American Journal of Political Science* 68 (3): 942–957.
- Hartman, Alexandra C., Robert A. Blair, and Christopher Blattman. 2021. "Engineering Informal Institutions: Long-Run Impacts of Alternative Dispute Resolution on Violence and Property Rights in Liberia." *The Journal of Politics* 83 (1): 381–389.
- Hughes, Oliver. 2014. Literature Review of Land Tenure in Niger, Burkina Faso, and Mali: Context and Opportunities. Technical report. Catholic Relief Services.
- Lund, Christian. 2008. Local Politics and the Dynamics of Property in Africa. New York: Cambridge University Press.
- Lust, Ellen. 2022. Everyday Choices: the Role of Competing Authorities and Social Institutions in Politics and Development. Cambridge Elements. New York: Cambridge University Press.
- McGuirk, Eoin F, and Nathan Nunn. 2025. "Transhumant Pastoralism, Climate Change, and Conflict in Africa." *Review of Economic Studies* 92 (1): 404–441. Accessed June 12, 2025.

- Nathan, Noah. 2023. The Scarce State: Inequality and Political Power in the Hinterland. Cambridge University Press.
- North, Douglass C, John Joseph Wallis, and Barry R Weingast. 2009. Violence and Social Orders: A Conceptual Framework for Interpreting Recorded Human History. New York: Cambridge University Press.
- Oster, Emily. 2019. "Unobservable Selection and Coefficient Stability: Theory and Evidence." *Journal of Business & Economic Statistics* 37 (2): 187–204.
- Ostrom, Elinor. 2015. Governing the commons: the evolution of institutions for collective action. Cambridge: Cambridge University Press.
- Pengl, Yannick I., Philip Roessler, and Valeria Rueda. 2022. "Cash Crops, Print Technologies, and the Politicization of Ethnicity in Africa." *American Political Science Review* 116 (1): 181–199.
- Raleigh, Clionadh, Héni Nsaibia, and Caitriona Dowd. 2021. "The Sahel crisis since 2012." *African Affairs* 120 (478): 123–143.
- Ribar, Matthew K. 2025. "Land, Power, and Property Rights: The Political Economy of Land Titling in West Africa." *Working Paper*.
- Ribar, Matthew K., Kathryn M. Lance, Ryan Sheely, and Ifeoluwa M. Olawole. 2025. "Getting to Youths: Development Programming, Conflict Resolution, and Violence in Niger." *Working Paper*.
- Vlavonou, Gino. 2023. Belonging, Identity, and Conflict in the Central African Republic. Madison, WI: University of Wisconsin Press.
- Winters, Matthew S., and Jeffrey Conroy-Krutz. 2021. "Preferences for traditional and formal sector justice institutions to address land disputes in rural Mali." World Development 142:105452.

Appendices

Table of Contents

A	Add	itional specifications	31
	A. 1	Tables for marginal effects plots	31
	A.2	All ACLED specifications	37
	A. 3	Alternative measure of autochthony	42
	A.4	Ordinal logits	44

A Additional specifications

A.1 Tables for marginal effects plots

Table A1. Households further from village centroids are more responsive to treatment

	Resilience	Reduce conflicts	Fairly	Equitable	Benefit all members
	(1)	(2)	(3)	(4)	(5)
Local treatment	0.168***	0.206***	0.500***	0.181***	0.156***
	(0.036)	(0.029)	(0.085)	(0.023)	(0.029)
State-led treatment	-0.012	0.014	0.002	0.020	0.029
	(0.028)	(0.026)	(0.089)	(0.022)	(0.024)
Distance	-0.023	-0.012	0.201*	0.024	0.018
	(0.035)	(0.034)	(0.090)	(0.031)	(0.032)
Local * Distance	0.033	0.049**	0.123*	0.040**	0.044**
	(0.025)	(0.017)	(0.061)	(0.014)	(0.015)
State * Distance	0.034	0.046**	0.092	0.031**	0.036**
	(0.018)	(0.014)	(0.054)	(0.011)	(0.012)
Demographic controls	X	X	X	X	X
Village FEs	\mathbf{X}	\mathbf{X}	\mathbf{X}	X	X
Mean of outcome	0.726	0.764	4.007	0.795	0.8
Num.Obs.	2837	2872	2934	2875	2762
R ₂	0.168	0.200	0.190	0.192	0.220

Note: The dependent variables in this model are 'Do you think there would be an increase in resilience to climate-related challenges' (column 1), 'Do you think the system will reduce conflicts over natural resources (e.g., water, land, forests) in the community?' (column 2), 'To what extent do you trust that land-related issues will be managed fairly and transparently?' (column 3), 'Do you believe that the resolution of conflicts/disputes will be equitable?' (column 4), and 'Do you believe that the authorities will voice concerns and make decisions that benefit all members of the community?' (column 5). The independent variable is which vignette treatment respondents received. This table measures allochthony using the distance to the village centroid (in meters, using the inverse hyperbolic sine transformation to normalize). Control variables include age, age squared, sex, and which (if any) JASS activities the respondent participated. All regressions use OLS with village type fixed effects. Standard errors are clustered at the village level.

Table A2. Self-reported autochthones prefer local governance, but power is too low

	Resilience	Reduce conflicts	Fairly	Equitable	Benefit all members
	(1)	(2)	(3)	(4)	(5)
Local treatment	0.177***	0.222***	0.526***	0.191***	0.181***
	(0.023)	(0.023)	(0.065)	(0.019)	(0.021)
State-led treatment	0.009	0.032	0.037	0.030	0.039*
	(0.018)	(0.017)	(0.054)	(0.015)	(0.016)
Local * Allochthone	0.514***	0.428***	1.360***	0.513***	0.448***
	(0.121)	(0.115)	(0.293)	(0.114)	(0.116)
State * Allochthone	0.235	0.183	-0.028	0.178	0.142
	(0.143)	(0.160)	(0.337)	(0.154)	(0.132)
Demographic controls	X	X	X	X	X
Village FEs	X	\mathbf{X}	X	X	X
Mean of outcome	0.726	0.764	4.007	0.795	0.8
Num.Obs.	3310	3378	3489	3393	3243
R ₂	0.170	0.192	0.176	0.190	0.212

Note: The dependent variables in this model are 'Do you think there would be an increase in resilience to climate-related challenges' (column 1), 'Do you think the system will reduce conflicts over natural resources (e.g., water, land, forests) in the community?' (column 2), 'To what extent do you trust that land-related issues will be managed fairly and transparently?' (column 3), 'Do you believe that the resolution of conflicts/disputes will be equitable?' (column 4), and 'Do you believe that the authorities will voice concerns and make decisions that benefit all members of the community?' (column 5). The independent variable is which vignette treatment respondents received. Allochthony is self-reported using by asking if the respondent is a host/autochthone or if they have moved, returned, or are a refugee. 70 respondents identified as allochthones; 3,617 did not. Control variables include age, age squared, sex, and which (if any) JASS activities the respondent participated. All regressions use OLS with village type fixed effects. Standard errors are clustered at the village level.

Table A3. No heterogenous effects among herding/allochthonous ethnicities

	Resilience	Reduce conflicts	Fairly	Equitable	Benefit all members
	(1)	(2)	(3)	(4)	(5)
Local treatment	0.190***	0.237***	0.560***	0.203***	0.194***
	(0.024)	(0.023)	(0.068)	(0.019)	(0.021)
State-led treatment	0.015	0.043*	0.051	0.035*	0.042*
	(0.020)	(0.018)	(0.059)	(0.016)	(0.017)
Local * Allochthone	-0.049	-0.094	-0.108	-0.039	-0.060
	(0.070)	(0.068)	(0.126)	(0.052)	(0.068)
State * Allochthone	-0.003	-0.095	-0.140	-0.017	0.010
	(0.060)	(0.050)	(0.162)	(0.042)	(0.034)
Demographic controls	X	X	X	X	X
Village FEs	X	\mathbf{X}	\mathbf{X}	X	X
Mean of outcome	0.726	0.764	4.007	0.795	0.8
Num.Obs.	3310	3378	3489	3393	3243
R ₂	0.154	0.185	0.170	0.178	0.201

Note: The dependent variables in this model are 'Do you think there would be an increase in resilience to climate-related challenges' (column 1), 'Do you think the system will reduce conflicts over natural resources (e.g., water, land, forests) in the community?' (column 2), 'To what extent do you trust that land-related issues will be managed fairly and transparently?' (column 3), 'Do you believe that the resolution of conflicts/disputes will be equitable?' (column 4), and 'Do you believe that the authorities will voice concerns and make decisions that benefit all members of the community?' (column 5). The independent variable is which vignette treatment respondents received. This table measures allochthony using the herding ethnicities (Tuareg and Peulh); 298 respondents reported belonging to these ethnicities and 3398 did not. 70 respondents identified as allochthones; 3,617 did not. Control variables include age, age squared, sex, and which (if any) JASS activities the respondent participated. All regressions use OLS with village type fixed effects. Standard errors are clustered at the village level.

Table A4. Exposure to ACLED events is associated with a smaller effect for the 'local governance' treatment

	Resilience	Reduce conflicts	Fairly	Equitable	Benefit all members
	(1)	(2)	(3)	(4)	(5)
Local treatment	0.212***	0.292***	0.709***	0.251***	0.241***
	(0.031)	(0.026)	(0.080)	(0.021)	(0.024)
State-led treatment	0.004	0.052*	0.039	0.041*	0.055*
	(0.021)	(0.022)	(0.064)	(0.020)	(0.022)
Local * Violent events	-0.028	-0.066***	-0.159***	-0.053***	-0.053***
	(0.015)	(0.010)	(0.041)	(0.009)	(0.011)
State * Violent events	0.006	-0.019*	-0.009	-0.010	-0.016
	(0.014)	(0.009)	(0.036)	(0.010)	(0.010)
Demographic controls	X	X	X	X	X
Village FEs	\mathbf{X}	X	X	X	X
Mean of outcome	0.728	0.767	4.016	0.797	0.802
Num.Obs.	3369	3439	3547	3454	3304
R ₂	0.158	0.195	0.173	0.184	0.205

Note: The dependent variables in this model are 'Do you think there would be an increase in resilience to climate-related challenges' (column 1), 'Do you think the system will reduce conflicts over natural resources (e.g., water, land, forests) in the community?' (column 2), 'To what extent do you trust that land-related issues will be managed fairly and transparently?' (column 3), 'Do you believe that the resolution of conflicts/disputes will be equitable?' (column 4), and 'Do you believe that the authorities will voice concerns and make decisions that benefit all members of the community?' (column 5). The independent variable is the treatment vignette that respondents received. This table counts violent incidents as the sum of ACLED events in the year before the survey within 25 kilometers of the village centroid, regularized using the inverse hyperbolic sine transformation. Control variables include age, age squared, sex, and which (if any) JASS activities the respondent participated. All regressions use OLS with village type fixed effects and survey weights. Standard errors are clustered at the village level.

Table A5. Self-reported exposure to violence is not associated with heterogenous treatment effects

	Resilience	Reduce conflicts	Fairly	Equitable	Benefit all members
	(1)	(2)	(3)	(4)	(5)
Local treatment	0.204***	0.229***	0.562***	0.204***	0.200***
	(0.020)	(0.022)	(0.068)	(0.020)	(0.022)
State-led treatment	0.031	0.028	0.018	0.031	0.042*
	(0.018)	(0.018)	(0.065)	(0.018)	(0.017)
Local * Violence	-0.041	-0.024	-0.102	-0.041	-0.071
	(0.039)	(0.048)	(0.159)	(0.039)	(0.043)
State * Violence	-0.001	0.034	0.071	-0.001	-0.012
	(0.050)	(0.055)	(0.166)	(0.050)	(0.044)
Demographic controls	X	X	X	X	X
Village FEs	X	X	X	X	X
Mean of outcome	0.797	0.767	4.016	0.797	0.802
Num.Obs.	3470	3455	3565	3470	3320
R ₂	0.182	0.191	0.171	0.182	0.205

Note: The dependent variables in this model are 'Do you think there would be an increase in resilience to climate-related challenges' (column 1), 'Do you think the system will reduce conflicts over natural resources (e.g., water, land, forests) in the community?' (column 2), 'To what extent do you trust that land-related issues will be managed fairly and transparently?' (column 3), 'Do you believe that the resolution of conflicts/disputes will be equitable?' (column 4), and 'Do you believe that the authorities will voice concerns and make decisions that benefit all members of the community?' (column 5). The independent variable is the treatment vignette that respondents received. This table counts violent incidents as the sum of ACLED events in the year before the survey within 25 kilometers of the village centroid, regularized using the inverse hyperbolic sine transformation. Control variables include age, age squared, sex, and which (if any) JASS activities the respondent participated. All regressions use OLS with village type fixed effects and survey weights. Standard errors are clustered at the village level.

Table A6. Interaction coefficients are stable across ACLED specifications for responses to 'Do you think there would be an increase in resilience to climate-related challenges (e.g., droughts, floods, land degradation) within the community?'

		Violence * Local			V	iolence * S	tate
Period	Radius	Coef.	Std.Err.	T-score	Coef.	Std.Err.	T-score
No transforma	tion						
Three years	10 Km.	-0.002	0.000	-4.886	0.000	0.001	0.355
Two years	ю Km.	-0.003	0.001	-4.673	0.000	0.001	0.414
One year	ю Km.	-0.009	0.002	-4.823	0.000	0.001	-0.252
Three years	25 Km.	-0.001	0.000	-2.530	0.000	0.000	0.903
Two years	25 Km.	-0.001	0.001	-2.289	0.001	0.001	0.950
One year	25 Km.	-0.004	0.001	-2.516	0.002	0.002	0.862
Inverse hyperk	oolic sine t	ransform	ation				
Three years	10 Km.	-0.029	0.013	-2.286	0.005	0.014	0.339
Two years	10 Km.	-0.030	0.014	-2.223	0.005	0.015	0.366
One year	ю Km.	-0.044	0.016	-2.758	0.000	0.017	0.016
Three years	25 Km.	-0.023	0.012	-1.930	0.005	O.OII	0.435
Two years	25 Km.	-0.025	0.012	-2.029	0.005	0.012	0.410
One year	25 Km.	-0.028	0.015	-1.957	0.006	0.014	0.389

A.2 All ACLED specifications

Table A7. Interaction coefficients are stable across ACLED specifications for responses to 'Do you think the system will reduce conflicts over natural resources (e.g., water, land, forests) in the community?'

		Violence * Local			V	iolence * St	ate
Period	Radius	Coef.	Std.Err.	T-score	Coef.	Std.Err.	T-score
No transforma	tion						
Three years	ю Km.	-0.004	0.001	-5.849	-0.001	0.000	-2.134
Two years	ю Km.	-0.005	0.001	-5.667	-0.001	0.000	-2.180
One year	ю Km.	-0.012	0.002	-5.394	-0.003	0.001	-2.124
Three years	25 Km.	-0.002	0.000	-9.075	0.000	0.000	-2.383
Two years	25 Km.	-0.003	0.000	-9.169	-0.001	0.000	-2.332
One year	25 Km.	-0.007	0.001	-8.784	-0.001	0.001	-2.384
Inverse hyperk	olic sine t	ransform	ation				
Three years	ю Km.	-0.055	0.010	-5.551	-0.016	0.009	-1.789
Two years	ю Km.	-0.058	O.OII	-5.510	-0.018	0.009	-1.922
One year	ю Km.	-0.070	0.013	-5.208	-0.022	0.012	-1.878
Three years	25 Km.	-0.056	0.008	-6.670	-0.020	0.008	-2.501
Two years	25 Km.	-0.059	0.009	-6.827	-0.018	0.008	-2.282
One year	25 Km.	-0.066	0.010	-6.486	-0.019	0.009	-2.102

Table A8. Interaction coefficients are stable across ACLED specifications for responses to 'To what extent do you trust that land-related issues will be managed fairly and transparently?'

		Violence * Local			V	iolence * St	ate
Period	Radius	Coef.	Std.Err.	T-score	Coef.	Std.Err.	T-score
No transforma	tion						
Three years	ю Km.	-O.OIO	0.003	-2.884	-0.003	0.003	-0.943
Two years	10 Km.	-0.015	0.005	-2.824	-0.004	0.005	-0.935
One year	10 Km.	-0.034	0.012	-2.732	-0.013	0.013	-0.973
Three years	25 Km.	-0.005	0.001	-4.443	-0.001	0.001	-0.808
Two years	25 Km.	-0.008	0.002	-4.778	-0.001	0.002	-0.718
One year	25 Km.	-O.O2I	0.005	-4.481	-0.003	0.004	-0.773
Inverse hyperb	olic sine t	ransform	ation				
Three years	10 Km.	-0.162	0.038	-4.221	-0.045	0.037	-I . 220
Two years	10 Km.	-0.176	0.042	-4.168	-0.055	0.041	-1.332
One year	10 Km.	-0.218	0.056	-3.874	-0.084	0.057	-1.465
Three years	25 Km.	-0.128	0.030	-4.193	-O.OII	0.029	-0.376
Two years	25 Km.	-0.136	0.033	-4.081	-0.006	0.030	-0.189
One year	25 Km.	-0.159	0.041	-3.922	-0.009	0.036	-0.235

Table A9. Interaction coefficients are stable across ACLED specifications for responses to 'Do you believe that the resolution of conflicts/disputes will be equitable?'

		Violence * Local		Violence * State			
Period	Radius	Coef.	Std.Err.	T-score	Coef.	Std.Err.	T-score
No transformation							
Three years	ю Km.	-0.003	0.001	-5.889	0.000	0.000	-1.165
Two years	ю Km.	-0.005	0.001	-5.693	-0.001	0.000	-1.159
One year	ю Km.	-O.OII	0.002	-5.202	-0.002	0.001	-1.815
Three years	25 Km.	-0.002	0.000	-9.439	0.000	0.000	-0.450
Two years	25 Km.	-0.002	0.000	-9.423	0.000	0.000	-0.355
One year	25 Km.	-0.006	0.001	-9.293	0.000	0.001	-0.549
Inverse hyperbolic sine transformation							
Three years	10 Km.	-0.045	0.009	-4.805	-0.007	0.009	-0.763
Two years	ю Km.	-0.049	0.010	-4.891	-0.009	0.010	-0.904
One year	ю Km.	-0.063	0.013	-4.918	-0.014	0.012	-1.243
Three years	25 Km.	-0.044	0.008	-5.759	-0.009	0.008	-I.IIO
Two years	25 Km.	-0.047	0.008	-5.894	-0.009	0.008	-1.037
One year	25 Km.	-0.053	0.009	-5.677	-0.010	0.010	-1.083

Table A10. Interaction coefficients are stable across ACLED specifications for responses to 'QER.6Do you believe that the authorities will voice concerns and make decisions that benefit all members of the community?'

		Violence * Local		Violence * State			
Period	Radius	Coef.	Std.Err.	T-score	Coef.	Std.Err.	T-score
No transformation							
Three years	ю Km.	-0.003	0.001	-5.603	-0.001	0.000	-2.191
Two years	ю Km.	-0.004	0.001	-5.445	-0.001	0.001	-2.192
One year	ю Km.	-O.OII	0.002	-4.803	-0.003	0.001	-2.410
Three years	25 Km.	-0.001	0.000	-5.949	0.000	0.000	-1.500
Two years	25 Km.	-0.002	0.000	-5.495	0.000	0.000	-1.362
One year	25 Km.	-0.005	0.001	-5.990	-0.001	0.001	-1.481
Inverse hyperbolic sine transformation							
Three years	ю Km.	-0.045	0.010	-4.625	-O.OII	0.009	-1.308
Two years	ю Km.	-0.049	0.010	-4.816	-0.013	0.009	-1.439
One year	ю Km.	-0.066	0.013	-5.086	-0.019	O.OII	-1.738
Three years	25 Km.	-0.045	0.009	-5.009	-0.017	0.008	-2.244
Two years	25 Km.	-0.047	0.009	-5.117	-0.016	0.008	-1.910
One year	25 Km.	-0.053	0.011	-4.890	-0.016	0.010	-1.617

A.3 Alternative measure of autochthony

Figure A1. Heterogenous treatment effects by autochthony

This figure shows the marginal effect of treatment with the state-led and community-led natural resource governance vignettes, expressed as standard deviations of each outcome variable, and broken out by allochthony status. In the bottom panels, self-reported allochthony is measured by whether the respondent said they had moved/returned to the village or a refugee (n = 70); otherwise the respondent is an autochthone (n = 3,617). In the top panels, Tuareg and Peulh respondents are marked as allochthones (n = 289); all other respondents are marked as autochthones (n = 3,398).

A.4 Ordinal logits

Table A11. Respondents prefer local natural resource governance over the status quo

	(1)	(2)
Local treatment	0.860***	0.875***
	(0.089)	(0.089)
State-led treatment	0.059	0.055
	(0.081)	(0.081)
Demographic controls		X
Village FEs	X	X
Num.Obs.	3489	3489
Mean of outcome	NA	NA

Note:

The dependent variables in this model is 'To what extent do you trust that land-related issues will be managed fairly and transparently?' The independent variable is which vignette treatment respondents received. Control variables include age, age squared, sex, and which (if any) JASS activities the respondent participated. All regressions use ordinal logits with village type fixed effects.