# apstone-project-2-loan-defaulters

#### March 30, 2023

```
[64]: import pandas as pd
     import numpy as np
     import os
     import re
     import datetime as dt
     import matplotlib.pyplot as plt
     import seaborn as sns
     import scipy.stats as stats
     %matplotlib inline
     ****Importing and Inspecting Data set****
 [2]: data= pd.read_excel("loan data.xlsx")
 [3]:
     data.head()
 [3]:
        UniqueID
                  disbursed_amount
                                    asset_cost
                                                  ltv
                                                       branch_id
                                                                 supplier_id \
          420825
                             50578
                                         58400
                                                89.55
                                                              67
                                                                        22807
     1
          417566
                             53278
                                         61360 89.63
                                                              67
                                                                        22807
     2
          539055
                             52378
                                         60300 88.39
                                                              67
                                                                        22807
     3
          529269
                             46349
                                         61500 76.42
                                                              67
                                                                        22807
     4
          563215
                             43594
                                         78256 57.50
                                                              67
                                                                        22744
        1441
     0
                     45
                                               1984-01-01
                                                                Salaried
     1
                     45
                                       1497
                                               1985-08-24
                                                            Self employed
     2
                     45
                                       1495
                                               1977-12-09
                                                            Self employed ...
                                                                Salaried ...
     3
                     45
                                       1502
                                               1988-06-01
     4
                     86
                                       1499
                                               1994-07-14
                                                            Self employed ...
       SEC.SANCTIONED.AMOUNT
                              SEC.DISBURSED.AMOUNT
                                                    PRIMARY.INSTAL.AMT
     0
                           0
                                                 0
                           0
                                                 0
                                                                    0
     1
     2
                           0
                                                 0
                                                                     0
     3
                           0
                                                 0
                                                                    0
     4
                           0
                                                 0
                                                                    0
```

SEC.INSTAL.AMT NEW.ACCTS.IN.LAST.SIX.MONTHS \

```
0
                     0
                                                    0
                                                    0
     1
                     0
                                                    0
     2
                     0
     3
                     0
                                                    0
     4
                     0
                                                    0
                                             AVERAGE.ACCT.AGE \
        DELINQUENT.ACCTS.IN.LAST.SIX.MONTHS
     0
                                                     Oyrs Omon
     1
                                           0
                                                     Oyrs Omon
     2
                                           0
                                                     Oyrs Omon
     3
                                           0
                                                     Oyrs Omon
     4
                                                     Oyrs Omon
        CREDIT.HISTORY.LENGTH NO.OF_INQUIRIES
                                                 loan_default
     0
                    Oyrs Omon
                                              0
     1
                    Oyrs Omon
                                              0
                                                            0
     2
                    Oyrs Omon
                                              1
                                                            1
     3
                    Oyrs Omon
                                              0
                                                            0
                                              0
     4
                    Oyrs Omon
                                                            0
     [5 rows x 41 columns]
[4]: data.columns
[4]: Index(['UniqueID', 'disbursed_amount', 'asset_cost', 'ltv', 'branch_id',
            'supplier_id', 'manufacturer_id', 'Current_pincode_ID', 'Date.of.Birth',
            'Employment.Type', 'DisbursalDate', 'State_ID', 'Employee_code_ID',
            'MobileNo_Avl_Flag', 'Aadhar_flag', 'PAN_flag', 'VoterID_flag',
            'Driving_flag', 'Passport_flag', 'PERFORM_CNS.SCORE',
            'PERFORM_CNS.SCORE.DESCRIPTION', 'PRI.NO.OF.ACCTS', 'PRI.ACTIVE.ACCTS',
            'PRI.OVERDUE.ACCTS', 'PRI.CURRENT.BALANCE', 'PRI.SANCTIONED.AMOUNT',
            'PRI.DISBURSED.AMOUNT', 'SEC.NO.OF.ACCTS', 'SEC.ACTIVE.ACCTS',
            'SEC.OVERDUE.ACCTS', 'SEC.CURRENT.BALANCE', 'SEC.SANCTIONED.AMOUNT',
            'SEC.DISBURSED.AMOUNT', 'PRIMARY.INSTAL.AMT', 'SEC.INSTAL.AMT',
            'NEW.ACCTS.IN.LAST.SIX.MONTHS', 'DELINQUENT.ACCTS.IN.LAST.SIX.MONTHS',
            'AVERAGE.ACCT.AGE', 'CREDIT.HISTORY.LENGTH', 'NO.OF_INQUIRIES',
            'loan_default'],
           dtype='object')
[5]: data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 233154 entries, 0 to 233153
    Data columns (total 41 columns):
         Column
                                               Non-Null Count
                                                                 Dtype
    --- -----
                                               _____
         UniqueID
                                               233154 non-null int64
```

```
disbursed_amount
                                          233154 non-null
                                                           int64
 1
 2
    asset_cost
                                          233154 non-null
                                                          int64
 3
    ltv
                                          233154 non-null
                                                          float64
 4
                                          233154 non-null
                                                           int64
    branch_id
 5
    supplier id
                                          233154 non-null
                                                          int64
 6
    manufacturer_id
                                          233154 non-null
                                                          int64
 7
    Current pincode ID
                                          233154 non-null int64
    Date.of.Birth
                                          233154 non-null
                                                           datetime64[ns]
    Employment.Type
                                          225493 non-null object
                                                          datetime64[ns]
 10 DisbursalDate
                                          233154 non-null
 11 State_ID
                                          233154 non-null
                                                          int64
 12 Employee_code_ID
                                          233154 non-null int64
 13 MobileNo_Avl_Flag
                                          233154 non-null int64
 14 Aadhar_flag
                                          233154 non-null
                                                          int64
 15 PAN_flag
                                          233154 non-null
                                                          int64
                                          233154 non-null
 16 VoterID_flag
                                                          int64
 17
    Driving_flag
                                          233154 non-null
                                                          int64
 18 Passport_flag
                                          233154 non-null int64
                                                         int64
 19 PERFORM_CNS.SCORE
                                          233154 non-null
 20 PERFORM CNS.SCORE.DESCRIPTION
                                          233154 non-null object
 21 PRI.NO.OF.ACCTS
                                          233154 non-null
                                                           int64
22 PRI.ACTIVE.ACCTS
                                          233154 non-null
                                                          int64
 23 PRI.OVERDUE.ACCTS
                                          233154 non-null int64
 24 PRI.CURRENT.BALANCE
                                          233154 non-null int64
 25 PRI.SANCTIONED.AMOUNT
                                          233154 non-null int64
 26 PRI.DISBURSED.AMOUNT
                                          233154 non-null int64
    SEC.NO.OF.ACCTS
                                          233154 non-null int64
 28
    SEC.ACTIVE.ACCTS
                                          233154 non-null
                                                          int64
 29
    SEC.OVERDUE.ACCTS
                                          233154 non-null
                                                          int64
    SEC.CURRENT.BALANCE
                                         233154 non-null
                                                          int64
    SEC.SANCTIONED.AMOUNT
                                          233154 non-null
                                                          int64
    SEC.DISBURSED.AMOUNT
                                          233154 non-null
                                                          int64
 33 PRIMARY.INSTAL.AMT
                                          233154 non-null
                                                          int64
 34 SEC.INSTAL.AMT
                                          233154 non-null int64
    NEW.ACCTS.IN.LAST.SIX.MONTHS
                                          233154 non-null int64
 36 DELINQUENT.ACCTS.IN.LAST.SIX.MONTHS 233154 non-null
                                                           int64
    AVERAGE.ACCT.AGE
                                          233154 non-null object
 38 CREDIT.HISTORY.LENGTH
                                          233154 non-null object
 39 NO.OF_INQUIRIES
                                          233154 non-null int64
 40 loan default
                                         233154 non-null int64
dtypes: datetime64[ns](2), float64(1), int64(34), object(4)
memory usage: 72.9+ MB
```

#### Checking Null Values

#### [6]: data.isnull().sum()

| [6]· | UniqueID                            | 0    |
|------|-------------------------------------|------|
| [0]. | disbursed_amount                    | 0    |
|      | asset_cost                          | 0    |
|      | ltv                                 | 0    |
|      | branch_id                           | 0    |
|      | supplier_id                         | 0    |
|      | manufacturer_id                     | 0    |
|      | Current_pincode_ID                  | 0    |
|      | Date.of.Birth                       | 0    |
|      | Employment.Type                     | 7661 |
|      | DisbursalDate                       | 0    |
|      | State_ID                            | 0    |
|      | Employee_code_ID                    | 0    |
|      | MobileNo_Avl_Flag                   | 0    |
|      | Aadhar_flag                         | 0    |
|      | PAN_flag                            | 0    |
|      | VoterID flag                        | 0    |
|      | Driving_flag                        | 0    |
|      | Passport_flag                       | 0    |
|      | PERFORM_CNS.SCORE                   | 0    |
|      | PERFORM_CNS.SCORE.DESCRIPTION       | 0    |
|      | PRI.NO.OF.ACCTS                     | 0    |
|      | PRI.ACTIVE.ACCTS                    | 0    |
|      | PRI.OVERDUE.ACCTS                   | 0    |
|      | PRI.CURRENT.BALANCE                 | 0    |
|      | PRI.SANCTIONED.AMOUNT               | 0    |
|      | PRI.DISBURSED.AMOUNT                | 0    |
|      | SEC.NO.OF.ACCTS                     | 0    |
|      | SEC.ACTIVE.ACCTS                    | 0    |
|      | SEC.OVERDUE.ACCTS                   | 0    |
|      | SEC.CURRENT.BALANCE                 | 0    |
|      | SEC.SANCTIONED.AMOUNT               | 0    |
|      | SEC. DISBURSED. AMOUNT              | 0    |
|      | PRIMARY.INSTAL.AMT                  | 0    |
|      | SEC.INSTAL.AMT                      | 0    |
|      | NEW.ACCTS.IN.LAST.SIX.MONTHS        | 0    |
|      | DELINQUENT.ACCTS.IN.LAST.SIX.MONTHS | 0    |
|      | AVERAGE . ACCT . AGE                | 0    |
|      | CREDIT.HISTORY.LENGTH               | 0    |
|      | NO.OF_INQUIRIES                     | 0    |
|      | loan_default                        | 0    |
|      | dtype: int64                        | U    |
|      | arsher inroa                        |      |

Missing values found in Employement type column only. As it is catagorial data, fill the missing values with Mode value using pandas.

```
[8]: data['Employment.Type'].fillna(data['Employment.Type'].mode()[0], inplace=True)
```

## [9]: data.isnull().sum()

| [Q]· | UniqueID                            | 0 |  |  |
|------|-------------------------------------|---|--|--|
| [0]. | disbursed_amount                    | 0 |  |  |
|      | asset_cost                          | 0 |  |  |
|      | ltv                                 | 0 |  |  |
|      | branch_id                           | 0 |  |  |
|      | supplier_id                         | 0 |  |  |
|      | manufacturer_id                     | 0 |  |  |
|      | Current_pincode_ID                  | 0 |  |  |
|      | Date.of.Birth                       | 0 |  |  |
|      | Employment. Type                    | 0 |  |  |
|      | DisbursalDate                       | 0 |  |  |
|      | State_ID                            | 0 |  |  |
|      | Employee_code_ID                    | 0 |  |  |
|      | MobileNo_Avl_Flag                   | 0 |  |  |
|      | Aadhar_flag                         | 0 |  |  |
|      | PAN_flag                            | 0 |  |  |
|      | VoterID_flag                        | 0 |  |  |
|      | Driving_flag                        | 0 |  |  |
|      | Passport_flag                       | 0 |  |  |
|      | PERFORM_CNS.SCORE                   | 0 |  |  |
|      | PERFORM_CNS.SCORE.DESCRIPTION       | 0 |  |  |
|      | PRI.NO.OF.ACCTS                     | 0 |  |  |
|      | PRI.ACTIVE.ACCTS                    | 0 |  |  |
|      | PRI.OVERDUE.ACCTS                   | 0 |  |  |
|      | PRI.CURRENT.BALANCE                 | 0 |  |  |
|      | PRI.SANCTIONED.AMOUNT               | 0 |  |  |
|      | PRI.DISBURSED.AMOUNT                | 0 |  |  |
|      | SEC.NO.OF.ACCTS                     | 0 |  |  |
|      | SEC.ACTIVE.ACCTS                    | 0 |  |  |
|      | SEC.OVERDUE.ACCTS                   | 0 |  |  |
|      | SEC.CURRENT.BALANCE                 | 0 |  |  |
|      | SEC.SANCTIONED.AMOUNT               | 0 |  |  |
|      | SEC.DISBURSED.AMOUNT                | 0 |  |  |
|      | PRIMARY.INSTAL.AMT                  | 0 |  |  |
|      | SEC.INSTAL.AMT                      | 0 |  |  |
|      | NEW.ACCTS.IN.LAST.SIX.MONTHS        | 0 |  |  |
|      | DELINQUENT.ACCTS.IN.LAST.SIX.MONTHS | 0 |  |  |
|      | AVERAGE.ACCT.AGE                    | 0 |  |  |
|      | CREDIT.HISTORY.LENGTH               | 0 |  |  |
|      | NO.OF_INQUIRIES                     | 0 |  |  |
|      | loan_default                        | 0 |  |  |
|      | dtype: int64                        |   |  |  |

## [10]: data.shape

[10]: (233154, 41)

## [11]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 233154 entries, 0 to 233153
Data columns (total 41 columns):

| #  | Column                        | Non-Null Count  | Dtype          |
|----|-------------------------------|-----------------|----------------|
| 0  | UniqueID                      | 233154 non-null | int64          |
| 1  | disbursed_amount              | 233154 non-null | int64          |
| 2  | asset_cost                    | 233154 non-null | int64          |
| 3  | ltv                           | 233154 non-null | float64        |
| 4  | branch_id                     | 233154 non-null | int64          |
| 5  | supplier_id                   | 233154 non-null | int64          |
| 6  | manufacturer_id               | 233154 non-null | int64          |
| 7  | Current_pincode_ID            | 233154 non-null | int64          |
| 8  | Date.of.Birth                 | 233154 non-null | datetime64[ns] |
| 9  | Employment.Type               | 233154 non-null | object         |
| 10 | DisbursalDate                 | 233154 non-null | datetime64[ns] |
| 11 | State_ID                      | 233154 non-null | int64          |
| 12 | Employee_code_ID              | 233154 non-null | int64          |
| 13 | MobileNo_Avl_Flag             | 233154 non-null | int64          |
| 14 | Aadhar_flag                   | 233154 non-null | int64          |
| 15 | PAN_flag                      | 233154 non-null | int64          |
| 16 | VoterID_flag                  | 233154 non-null | int64          |
| 17 | Driving_flag                  | 233154 non-null | int64          |
| 18 | Passport_flag                 | 233154 non-null | int64          |
| 19 | PERFORM_CNS.SCORE             | 233154 non-null | int64          |
| 20 | PERFORM_CNS.SCORE.DESCRIPTION | 233154 non-null | object         |
| 21 | PRI.NO.OF.ACCTS               | 233154 non-null | int64          |
| 22 | PRI.ACTIVE.ACCTS              | 233154 non-null | int64          |
| 23 | PRI.OVERDUE.ACCTS             | 233154 non-null | int64          |
| 24 | PRI.CURRENT.BALANCE           | 233154 non-null | int64          |
| 25 | PRI.SANCTIONED.AMOUNT         | 233154 non-null | int64          |
| 26 | PRI.DISBURSED.AMOUNT          | 233154 non-null | int64          |
| 27 | SEC.NO.OF.ACCTS               | 233154 non-null | int64          |
| 28 | SEC.ACTIVE.ACCTS              | 233154 non-null | int64          |
| 29 | SEC.OVERDUE.ACCTS             | 233154 non-null | int64          |
| 30 | SEC.CURRENT.BALANCE           | 233154 non-null | int64          |
| 31 | SEC.SANCTIONED.AMOUNT         | 233154 non-null | int64          |
| 32 | SEC.DISBURSED.AMOUNT          | 233154 non-null | int64          |
| 33 | PRIMARY.INSTAL.AMT            | 233154 non-null | int64          |
| 34 | SEC.INSTAL.AMT                | 233154 non-null | int64          |
| 35 | NEW.ACCTS.IN.LAST.SIX.MONTHS  | 233154 non-null | int64          |

```
36 DELINQUENT.ACCTS.IN.LAST.SIX.MONTHS 233154 non-null int64
37 AVERAGE.ACCT.AGE 233154 non-null object
38 CREDIT.HISTORY.LENGTH 233154 non-null object
39 NO.OF_INQUIRIES 233154 non-null int64
40 loan_default 233154 non-null int64
dtypes: datetime64[ns](2), float64(1), int64(34), object(4)
memory usage: 72.9+ MB
```

## [12]: data.dtypes

| [12]: | UniqueID                            | int64          |
|-------|-------------------------------------|----------------|
|       | disbursed_amount                    | int64          |
|       | asset_cost                          | int64          |
|       | ltv                                 | float64        |
|       | branch_id                           | int64          |
|       | supplier_id                         | int64          |
|       | manufacturer_id                     | int64          |
|       | Current_pincode_ID                  | int64          |
|       | Date.of.Birth                       | datetime64[ns] |
|       | Employment.Type                     | object         |
|       | DisbursalDate                       | datetime64[ns] |
|       | State_ID                            | int64          |
|       | Employee_code_ID                    | int64          |
|       | MobileNo_Avl_Flag                   | int64          |
|       | Aadhar_flag                         | int64          |
|       | PAN_flag                            | int64          |
|       | VoterID_flag                        | int64          |
|       | Driving_flag                        | int64          |
|       | Passport_flag                       | int64          |
|       | PERFORM_CNS.SCORE                   | int64          |
|       | PERFORM_CNS.SCORE.DESCRIPTION       | object         |
|       | PRI.NO.OF.ACCTS                     | int64          |
|       | PRI.ACTIVE.ACCTS                    | int64          |
|       | PRI.OVERDUE.ACCTS                   | int64          |
|       | PRI.CURRENT.BALANCE                 | int64          |
|       | PRI.SANCTIONED.AMOUNT               | int64          |
|       | PRI.DISBURSED.AMOUNT                | int64          |
|       | SEC.NO.OF.ACCTS                     | int64          |
|       | SEC.ACTIVE.ACCTS                    | int64          |
|       | SEC.OVERDUE.ACCTS                   | int64          |
|       | SEC.CURRENT.BALANCE                 | int64          |
|       | SEC.SANCTIONED.AMOUNT               | int64          |
|       | SEC.DISBURSED.AMOUNT                | int64          |
|       | PRIMARY.INSTAL.AMT                  | int64          |
|       | SEC.INSTAL.AMT                      | int64          |
|       | NEW.ACCTS.IN.LAST.SIX.MONTHS        | int64          |
|       | DELINQUENT.ACCTS.IN.LAST.SIX.MONTHS | int64          |
|       |                                     |                |

AVERAGE.ACCT.AGE object CREDIT.HISTORY.LENGTH object NO.OF\_INQUIRIES int64 loan\_default int64

dtype: object

## 0.0.1 Performing EDA

| [13]: | data.describe() |                |                  |                |                     |   |
|-------|-----------------|----------------|------------------|----------------|---------------------|---|
| [13]: |                 | UniqueID       | disbursed_amount | asset_cost     | ltv \               |   |
|       | count           | 233154.000000  | 233154.000000    | _              |                     |   |
|       | mean            | 535917.573376  | 54356.993528     |                |                     |   |
|       | std             | 68315.693711   | 12971.314171     | 1.894478e+04   |                     |   |
|       | min             | 417428.000000  | 13320.000000     |                |                     |   |
|       | 25%             | 476786.250000  | 47145.000000     |                |                     |   |
|       | 50%             | 535978.500000  | 53803.000000     | 7.094600e+04   |                     |   |
|       | 75%             | 595039.750000  | 60413.000000     | 7.920175e+04   |                     |   |
|       | max             | 671084.000000  | 990572.000000    | 1.628992e+06   | 95.000000           |   |
|       |                 | branch_id      | supplier_id mag  | anufacturer_id | Current_pincode_ID  | \ |
|       | count           | 233154.000000  | 233154.000000    | 233154.000000  | 233154.000000       |   |
|       | mean            | 72.936094      | 19638.635035     | 69.028054      | 3396.880247         |   |
|       | std             | 69.834995      | 3491.949566      | 22.141304      | 2238.147502         |   |
|       | min             | 1.000000       | 10524.000000     | 45.000000      | 1.000000            |   |
|       | 25%             | 14.000000      | 16535.000000     | 48.000000      | 1511.000000         |   |
|       | 50%             | 61.000000      | 20333.000000     | 86.000000      | 2970.000000         |   |
|       | 75%             | 130.000000     | 23000.000000     | 86.000000      | 5677.000000         |   |
|       | max             | 261.000000     | 24803.000000     | 156.000000     | 7345.000000         |   |
|       |                 | State_ID       | Employee_code_ID | SEC.OVERD      | UE.ACCTS \          |   |
|       | count           | 233154.000000  | 233154.000000    | 23315          | 4.000000            |   |
|       | mean            | 7.262243       | 1549.477148      | •••            | 0.007244            |   |
|       | std             | 4.482230       | 975.261278       |                | 0.111079            |   |
|       | min             | 1.000000       | 1.000000         |                | 0.00000             |   |
|       | 25%             | 4.000000       | 713.000000       |                | 0.00000             |   |
|       | 50%             | 6.000000       | 1451.000000      |                | 0.00000             |   |
|       | 75%             | 10.000000      | 2362.000000      |                | 0.00000             |   |
|       | max             | 22.000000      | 3795.000000      | •••            | 8.000000            |   |
|       |                 | SEC.CURRENT.BA | LANCE SEC.SANCTI | ONED.AMOUNT S  | EC.DISBURSED.AMOUNT | \ |
|       | count           | 2.33154        | 0e+05 2          | .331540e+05    | 2.331540e+05        |   |
|       | mean            | 5.42779        | 3e+03 7          | .295923e+03    | 7.179998e+03        |   |
|       | std             | 1.70237        |                  | .831560e+05    | 1.825925e+05        |   |
|       | min             | -5.74647       |                  | .000000e+00    | 0.00000e+00         |   |
|       | 25%             | 0.00000        | 0e+00 0          | .000000e+00    | 0.00000e+00         |   |
|       | 50%             | 0.00000        | 0e+00 0          | .000000e+00    | 0.000000e+00        |   |

| 75%   | 0.000000e+00        | 0.000            | 000e+00 C         | 0.000000e+00   |
|-------|---------------------|------------------|-------------------|----------------|
| max   | 3.603285e+07        | 3.000            | 000e+07 3         | 3.000000e+07   |
|       |                     |                  |                   |                |
|       | PRIMARY.INSTAL.AMT  | SEC.INSTAL.AMT   | NEW.ACCTS.IN.LAST | T.SIX.MONTHS \ |
| count | 2.331540e+05        | 2.331540e+05     | 23                | 33154.000000   |
| mean  | 1.310548e+04        | 3.232684e+02     |                   | 0.381833       |
| std   | 1.513679e+05        | 1.555369e+04     |                   | 0.955107       |
| min   | 0.000000e+00        | 0.000000e+00     |                   | 0.00000        |
| 25%   | 0.000000e+00        | 0.000000e+00     |                   | 0.00000        |
| 50%   | 0.000000e+00        | 0.000000e+00     |                   | 0.00000        |
| 75%   | 1.999000e+03        | 0.000000e+00     |                   | 0.00000        |
| max   | 2.564281e+07        | 4.170901e+06     |                   | 35.000000      |
|       |                     |                  |                   |                |
|       | DELINQUENT.ACCTS.IN | .LAST.SIX.MONTHS | NO.OF_INQUIRIES   | loan_default   |
| count |                     | 233154.000000    | 233154.000000     | 233154.000000  |
| mean  |                     | 0.097481         | 0.206615          | 0.217071       |
| std   |                     | 0.384439         | 0.706498          | 0.412252       |
| min   |                     | 0.000000         | 0.000000          | 0.000000       |
| 25%   |                     | 0.000000         | 0.000000          | 0.000000       |
| 50%   |                     | 0.000000         | 0.000000          | 0.000000       |
| 75%   |                     | 0.000000         | 0.000000          | 0.000000       |
| max   |                     | 20.000000        | 36.000000         | 1.000000       |
|       |                     |                  |                   |                |

[8 rows x 35 columns]

## Checking the overall distribution of variables

```
[20]: sns.countplot(data["loan_default"])
```

/usr/local/lib/python3.7/site-packages/seaborn/\_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

[20]: <AxesSubplot:xlabel='loan\_default', ylabel='count'>













## Finding the different types of employment given in the data

```
[19]: data['Employment.Type'].value_counts()
```

[19]: Self employed 135296 Salaried 97858

Name: Employment.Type, dtype: int64

### Pie Chart

```
[21]: labels = ['Self employed', 'Salaried']
sizes = data['Employment.Type'].value_counts()

fig1, ax1 = plt.subplots()
ax1.pie(sizes, labels=labels, autopct='%1.1f%%', shadow=True)
ax1.axis('equal')
plt.show()
```



% of self employed customer only who have defaulted: 22.69

Bar Chart to draw the employment vs loan default

```
[32]: sns.countplot(x='Employment.Type',hue='loan_default',data=data)
plt.title('Employment Bar Graph')
```

[32]: Text(0.5, 1.0, 'Employment Bar Graph')



```
[34]: loan=pd.crosstab(data['Employment.Type'],data['loan_default'])
      loan
[34]: loan_default
                            0
                                   1
      Employment.Type
      Salaried
                        77948
                              19910
      Self employed
                       104595 30701
[35]: loan.groupby(['Employment.Type']).sum().plot(kind='pie', subplots=True, shadow_

¬= True,startangle=90,
      figsize=(15,10), autopct='%1.1f%%')
```

[35]: array([<AxesSubplot:ylabel='0'>, <AxesSubplot:ylabel='1'>], dtype=object)



## Distribution of age w.r.t. to defaulters and non-defaulters

```
[37]: data['age'] = pd.DatetimeIndex(data['DisbursalDate']).year - pd.

DatetimeIndex(data['Date.of.Birth']).year
```

```
[41]: data['age'].plot.hist()
   plt.title('Age Histogram')
```

[41]: Text(0.5, 1.0, 'Age Histogram')



## [42]: data.age.describe()

```
[42]: count
               233154.000000
                   34.100946
      mean
      std
                    9.805992
      min
                   18.000000
      25%
                   26.000000
      50%
                   32.000000
      75%
                   41.000000
                   69.000000
      max
      Name: age, dtype: float64
```

## [43]: sns.distplot(data["age"],bins=5)

/usr/local/lib/python3.7/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

[43]: <AxesSubplot:xlabel='age', ylabel='Density'>



```
[44]: sns.boxplot(x='loan_default', y='age',data=data)
plt.title('Age BoxPlot')
```

[44]: Text(0.5, 1.0, 'Age BoxPlot')



### Finding the type of ID was presented by most of the customers for proof

```
[45]: data["MobileNo_Avl_Flag"].value_counts()
[45]: 1
           233154
      Name: MobileNo_Avl_Flag, dtype: int64
[46]: data["Aadhar_flag"].value_counts()
[46]: 1
           195924
      0
            37230
      Name: Aadhar_flag, dtype: int64
[47]: data["PAN_flag"].value_counts()
[47]: 0
           215533
      1
            17621
      Name: PAN_flag, dtype: int64
```

```
[48]: data["VoterID_flag"].value_counts()
[48]: 0
           199360
      1
            33794
      Name: VoterID_flag, dtype: int64
[49]: data["Passport flag"].value counts()
[49]: 0
           232658
              496
      Name: Passport_flag, dtype: int64
       ->most of the users given Aadhar as their ID
     Credit bureau score distribution
[53]: data["PERFORM_CNS.SCORE"].describe()
[53]: count
               233154.000000
      mean
                  289.462994
      std
                  338.374779
      min
                    0.000000
      25%
                    0.00000
      50%
                    0.000000
      75%
                  678.000000
     max
                  890.000000
      Name: PERFORM_CNS.SCORE, dtype: float64
     Distribution for defaulters vs non-defaulters
[55]: non_default = data[data['loan_default'] == 0]['PERFORM_CNS.SCORE']
      default = data[data['loan_default']==1]['PERFORM_CNS.SCORE']
[56]: pd.DataFrame([non_default.describe(), default.describe()],
       →index=['non_defaulters','defaulters'])
[56]:
                         count
                                      mean
                                                    std
                                                         {\tt min}
                                                              25%
                                                                    50%
                                                                            75%
                                                                                   max
      non_defaulters 182543.0
                                299.784270
                                             342.883794
                                                         0.0
                                                              0.0
                                                                   15.0 690.0
                                                                                 890.0
                       50611.0
      defaulters
                                252.236372
                                             318.826242
                                                         0.0
                                                              0.0
                                                                     0.0 610.0 879.0
[66]: sns.distplot( a = non_default, color='blue', label = 'Non Defaulter')
      sns.distplot(a = default, color='red', label = 'Defaulter')
      plt.legend()
      plt.show()
     /usr/local/lib/python3.7/site-packages/seaborn/distributions.py:2619:
     FutureWarning: `distplot` is a deprecated function and will be removed in a
     future version. Please adapt your code to use either `displot` (a figure-level
```

function with similar flexibility) or `histplot` (an axes-level function for

#### histograms).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)



\*\*\*\*Finding whether there is difference between the sanctioned and disbursed amount of primary and secondary loans(T-test)\*\*\*\*

#### For Primary accounts

[70]: \_,p\_value=stats.ttest\_rel(a=data["PRI.SANCTIONED.AMOUNT"],b=data["PRI.DISBURSED.

AMOUNT"])

## [71]: print(p\_value)

#### 0.07550682707997997

[72]: if p\_value<0.05:
 print("Rejected, There is significant difference between primary loan
 ⇔sanctioned and disbursed")
 else:

```
print("Accepted, There is no significant difference between primary loan \sqcup \negsanctioned and disbursed")
```

Accepted, There is no significant difference between primary loan sanctioned and disbursed

```
[73]: data["pri_diff_sanc_dis"]=data["PRI.SANCTIONED.AMOUNT"]-data["PRI.DISBURSED.
```

```
[74]: data["pri_diff_sanc_dis"].sum()
```

[74]: 102111349

```
[88]: data['PRI.NO.OF.ACCTS'].plot(kind='hist')
plt.figure(figsize=(5,2))
plt.show()
```



<Figure size 360x144 with 0 Axes>

```
[81]: pri_non_default = data[data['loan_default'] == 0]['PRI.NO.OF.ACCTS']
pri_default = data[data['loan_default'] == 1]['PRI.NO.OF.ACCTS']
```

```
[82]: pd.DataFrame([pri_non_default.describe(), pri_default.describe()], u

→index=['non_defaulters','defaulters'])
```

```
[82]: count mean std min 25% 50% 75% max non_defaulters 182543.0 2.538038 5.261142 0.0 0.0 1.0 3.0 354.0 defaulters 50611.0 2.089328 5.040134 0.0 0.0 0.0 2.0 453.0
```

Checking the correlation between primary and loan deafult vairable

```
[87]: sns.heatmap(data[['PRI.NO.OF.ACCTS','loan_default']].corr(),annot=True) plt.show()
```



difference between the sanctioned and disbursed amount of primary loans

```
[89]: pri_acct_loan_amt = ['PRI.SANCTIONED.AMOUNT', 'PRI.DISBURSED.AMOUNT']

[90]: count = 1
    plt.figure(figsize=(20,10))
    for i in pri_acct_loan_amt:
        plt.subplot(2,2,count)
        sns.distplot(data[i])
        count += 1
    plt.show()
```

/usr/local/lib/python3.7/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)





#### For Secondary accounts

```
[75]: __,p_value=stats.ttest_rel(a=data["SEC.SANCTIONED.AMOUNT"],b=data["SEC.DISBURSED.

AMOUNT"])
```

[76]: print(p\_value)

### 2.8873358771164625e-30

```
[77]: if p_value<0.05:
    print("Rejected, There is significant difference between secondary loan
    ⇔sanctioned and disbursed")
else:
    print("Accepted, There is no significant difference between secondary loan
    ⇔sanctioned and disbursed")
```

Rejected, There is significant difference between secondary loan sanctioned and disbursed

```
[78]: data["sec_diff_sanc_dis"]=data["SEC.SANCTIONED.AMOUNT"]-data["SEC.DISBURSED.
```

```
[79]: data["sec_diff_sanc_dis"].sum()
```

[79]: 27028488

```
[85]: data['SEC.NO.OF.ACCTS'].plot(kind='hist')
plt.show()
```



 $Checking \ the \ correlation \ between \ secondary \ and \ loan \ deafult \ vairable$ 

plt.show()

```
[83]: sec_non_default = data[data['loan_default']==0]['SEC.NO.OF.ACCTS']
      sec_default = data[data['loan_default']==1]['SEC.NO.OF.ACCTS']
[84]: pd.DataFrame([sec_non_default.describe(), sec_default.describe()],__

→index=['non_defaulters', 'defaulters'])
[84]:
                                                         25%
                                                              50%
                         count
                                    mean
                                               std min
                                                                   75%
                                                                         max
     non_defaulters
                      182543.0
                                0.061848
                                          0.651657
                                                    0.0
                                                         0.0
                                                              0.0
                                                                   0.0
                                                                        52.0
      defaulters
                       50611.0 0.049100
                                          0.527358
                                                   0.0 0.0 0.0 0.0
                                                                        38.0
[86]: sns.heatmap(data[['SEC.NO.OF.ACCTS', 'loan_default']].corr(),annot=True)
```



difference between the sanctioned and disbursed amount of secondary loans

```
[91]: sec_acct_loan_amt =['SEC.SANCTIONED.AMOUNT', 'SEC.DISBURSED.AMOUNT']

[92]: count=1
   plt.figure(figsize=(20,10))
   for i in sec_acct_loan_amt:
        plt.subplot(2,2,count)
        sns.distplot(data[i])
        count+=1
   plt.show()
```

/usr/local/lib/python3.7/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)





## customer who make higher no. of enquiries end up being higher risk candidates

| [94]: |    | counts | (%) | Percent_Of_Data |
|-------|----|--------|-----|-----------------|
|       | 0  | 201961 |     | 86.621289       |
|       | 1  | 22285  |     | 9.558060        |
|       | 2  | 5409   |     | 2.319926        |
|       | 3  | 1767   |     | 0.757868        |
|       | 4  | 760    |     | 0.325965        |
|       | 5  | 343    |     | 0.147113        |
|       | 6  | 239    |     | 0.102507        |
|       | 7  | 135    |     | 0.057902        |
|       | 8  | 105    |     | 0.045035        |
|       | 9  | 44     |     | 0.018872        |
|       | 10 | 34     |     | 0.014583        |
|       | 11 | 15     |     | 0.006434        |
|       | 12 | 14     |     | 0.006005        |
|       | 14 | 8      |     | 0.003431        |
|       | 15 | 7      |     | 0.003002        |
|       | 13 | 6      |     | 0.002573        |
|       | 19 | 6      |     | 0.002573        |
|       | 17 | 4      |     | 0.001716        |
|       | 18 | 4      |     | 0.001716        |
|       | 16 | 3      |     | 0.001287        |
|       | 28 | 1      |     | 0.000429        |
|       | 20 | 1      |     | 0.000429        |
|       | 22 | 1      |     | 0.000429        |
|       | 23 | 1      |     | 0.000429        |
|       | 36 | 1      |     | 0.000429        |

```
[95]: no_of_loan_inquiries = pd.crosstab(index=data['NO.OF_INQUIRIES'],__

columns=data['loan_default'])

no_of_loan_inquiries['pct_default'] = (no_of_loan_inquiries[1]/

no_of_loan_inquiries.sum(axis=1))*100

no_of_loan_inquiries
```

| [95]: | loan_default<br>NO.OF_INQUIRIES | 0      | 1     | pct_default |
|-------|---------------------------------|--------|-------|-------------|
|       | 0                               | 159404 | 42557 | 21.071890   |
|       | 1                               | 16844  | 5441  | 24.415526   |
|       | 2                               | 3918   | 1491  | 27.565169   |
|       | 3                               | 1250   | 517   | 29.258630   |
|       | 4                               | 526    | 234   | 30.789474   |
|       | 5                               | 212    | 131   | 38.192420   |
|       | 6                               | 148    | 91    | 38.075314   |
|       | 7                               | 80     | 55    | 40.740741   |
|       | 8                               | 61     | 44    | 41.904762   |
|       | 9                               | 30     | 14    | 31.818182   |
|       | 10                              | 23     | 11    | 32.352941   |
|       | 11                              | 8      | 7     | 46.666667   |
|       | 12                              | 10     | 4     | 28.571429   |
|       | 13                              | 2      | 4     | 66.666667   |
|       | 14                              | 6      | 2     | 25.000000   |
|       | 15                              | 3      | 4     | 57.142857   |
|       | 16                              | 3      | 0     | 0.000000    |
|       | 17                              | 4      | 0     | 0.000000    |
|       | 18                              | 2      | 2     | 50.000000   |
|       | 19                              | 4      | 2     | 33.333333   |
|       | 20                              | 1      | 0     | 0.000000    |
|       | 22                              | 1      | 0     | 0.000000    |
|       | 23                              | 1      | 0     | 0.000000    |
|       | 28                              | 1      | 0     | 0.000000    |
|       | 36                              | 1      | 0     | 0.000000    |

credit history, i.e. new loans in last six months, loans defaulted in last six months, time since first loan, etc., a significant factor in estimating probability

```
[96]: def duration(dur):
    yrs = int(dur.split(' ')[0].replace('yrs',''))
    mon = int(dur.split(' ')[1].replace('mon',''))
    return yrs*12+mon
[97]: data['CREDIT.HISTORY.LENGTH'] =data['CREDIT.HISTORY.LENGTH'].apply(duration)
```

```
[98]: data['CREDIT.HISTORY.LENGTH'].describe()
```

```
16.252404
      mean
      std
                   28.581255
      min
                     0.000000
      25%
                     0.000000
      50%
                     0.000000
      75%
                    24.000000
      max
                   468.000000
      Name: CREDIT.HISTORY.LENGTH, dtype: float64
[99]: credit_non_default = data[data['loan_default'] == 0]['CREDIT.HISTORY.LENGTH']
      credit_default = data[data['loan_default'] == 1]['CREDIT.HISTORY.LENGTH']
[100]: pd.DataFrame([credit_non_default.describe(), credit_default.describe()],

→index=['non_defaulters','defaulters'])
[100]:
                          count
                                      mean
                                                  std min
                                                            25%
                                                                 50%
                                                                       75%
                                                                              max
                                            29.342245
      non_defaulters 182543.0 16.886377
                                                                      24.0 449.0
                                                       0.0
                                                            0.0
                                                                 0.0
      defaulters
                        50611.0 13.965798 25.519395
                                                      0.0
                                                           0.0
                                                                0.0
                                                                      21.0
                                                                            468.0
[101]: sns.distplot(data['CREDIT.HISTORY.LENGTH'])
      plt.show()
```

/usr/local/lib/python3.7/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

233154.000000

[98]: count



```
[102]:
            counts (%) Percent_Of_Data
            181494
                               77.842971
       0
             32099
                               13.767295
       1
       2
             11015
                                4.724345
       3
              4458
                                1.912041
       4
              1957
                                0.839359
       5
               964
                                0.413461
       6
               480
                                0.205873
       7
               302
                                0.129528
       8
               147
                                0.063048
                79
                                0.033883
       10
                55
                                0.023590
                31
                                0.013296
       11
       12
                20
                                0.008578
       13
                15
                                0.006434
       14
                11
                                0.004718
                 6
       16
                                0.002573
```

```
17
                6
                               0.002573
       20
                3
                               0.001287
                2
                               0.000858
       15
                2
       18
                               0.000858
                2
       19
                               0.000858
       23
                2
                               0.000858
       28
                               0.000429
                1
       21
                1
                               0.000429
       22
                1
                               0.000429
       35
                1
                               0.000429
[103]: | delinquent_acct_counts = data['DELINQUENT.ACCTS.IN.LAST.SIX.MONTHS'].
        ⇔value_counts()
       delinquent_acct_counts_percent = data['DELINQUENT.ACCTS.IN.LAST.SIX.MONTHS'].
        →value_counts(normalize=True)*100
       pd.DataFrame({'counts':delinquent_acct_counts,'delinquent_acct_counts':
        →delinquent_acct_counts_percent})
[103]:
           counts delinquent_acct_counts
       0
           214959
                                 92.196145
       1
            14941
                                  6.408211
       2
             2470
                                  1.059386
       3
              537
                                  0.230320
       4
              138
                                  0.059188
       5
               58
                                  0.024876
       6
               20
                                  0.008578
       7
               13
                                  0.005576
       8
                7
                                  0.003002
       12
                3
                                  0.001287
       11
                3
                                  0.001287
                2
       10
                                  0.000858
       9
                2
                                  0.000858
       20
                1
                                  0.000429
[106]: plt.figure(figsize=(12,8))
       sns.heatmap(data.corr())
```

[106]: <AxesSubplot:>



From the correlation heatmap, Primary and secondary accounts, credit history, that is new loans in last six months, loans defaulted in last six months, time since first loan, are not a significant factor in estimating probability of loan defaulters

#### 0.0.2 Model Building And Performing Prediction

```
[107]: X=data.iloc[:
        4, [0,1,2,4,5,6,7,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,39]
       y=data.iloc[:,40]
[108]:
      X.head()
「108]:
          UniqueID
                     disbursed_amount
                                        asset_cost
                                                     branch_id
                                                                supplier_id
       0
            420825
                                 50578
                                             58400
                                                            67
                                                                       22807
            417566
                                 53278
                                             61360
                                                            67
                                                                       22807
       1
            539055
       2
                                 52378
                                             60300
                                                            67
                                                                       22807
```

manufacturer\_id Current\_pincode\_ID Employee\_code\_ID MobileNo\_Avl\_Flag \

```
1
                         45
                                            1497
                                                                1998
                                                                                        1
       2
                         45
                                            1495
                                                                1998
                                                                                        1
       3
                         45
                                            1502
                                                                1998
                                                                                        1
       4
                                            1499
                                                                1998
                                                                                        1
                            SEC.ACTIVE.ACCTS SEC.OVERDUE.ACCTS
                                                                   SEC.CURRENT.BALANCE
          Aadhar_flag
       0
                                                                 0
                     1
       1
                     1
                                            0
                                                                 0
                                                                                        0
       2
                     1
                                            0
                                                                 0
                                                                                        0
       3
                                            0
                                                                 0
                                                                                        0
          SEC.SANCTIONED.AMOUNT
                                   SEC.DISBURSED.AMOUNT PRIMARY.INSTAL.AMT
       0
                                0
                                                        0
                                                        0
                                                                              0
       1
                                0
       2
                                0
                                                        0
                                                                              0
       3
                                0
                                                                              0
                                                        0
       4
                                0
                                                        0
                                                                              0
          SEC.INSTAL.AMT
                           NEW.ACCTS.IN.LAST.SIX.MONTHS
       0
       1
                        0
                                                         0
       2
                         0
                                                         0
       3
                         0
                                                         0
          DELINQUENT.ACCTS.IN.LAST.SIX.MONTHS NO.OF_INQUIRIES
       0
                                                                  0
                                               0
       1
                                               0
                                                                  0
       2
                                               0
                                                                  1
       3
                                               0
                                                                  0
       4
                                                                  0
       [5 rows x 32 columns]
[110]: X.shape
[110]: (233154, 32)
[111]: y.shape
[111]: (233154,)
      train test split
[121]: from sklearn.model_selection import train_test_split
```

```
[112]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3,_u
        →random_state =42)
[113]: print("X_train size: ", X_train.shape)
       print("X_test size: ", X_test.shape)
      X_train size: (163207, 32)
      X_test size: (69947, 32)
[114]: def evaluate_model(y_test, y_pred):
           print("Confusion Matrix: \n", metrics.confusion_matrix(y_test, y_pred))
           print("Accuracy: ",metrics.accuracy_score(y_test, y_pred))
           print("Precision: ",metrics.precision_score(y_test, y_pred))
           print("Recall: ",metrics.recall_score(y_test, y_pred))
           print("f1 score: ",metrics.f1_score(y_test, y_pred))
           print("roc_auc_score: ",metrics.roc_auc_score(y_test, y_pred))
      Scaling data before model training and testing
[116]: from sklearn.preprocessing import StandardScaler
[117]: scaler = StandardScaler()
       X_train = scaler.fit_transform(X_train)
       X_test = scaler.transform(X_test)
      Performing Logistic Regression
[118]: from sklearn.linear_model import LogisticRegression
       from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
       from sklearn import metrics
[119]: params = \{'C': [0.1, 0.5, 1, 5]\}
       lr = LogisticRegression()
       grid = GridSearchCV(estimator=lr, param_grid=params)
       grid.fit(X_train, y_train)
       y_pred = grid.predict(X_test)
       evaluate_model(y_test, y_pred)
      /usr/local/lib/python3.7/site-packages/sklearn/linear_model/_logistic.py:818:
      ConvergenceWarning: lbfgs failed to converge (status=1):
      STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
      Increase the number of iterations (max iter) or scale the data as shown in:
          https://scikit-learn.org/stable/modules/preprocessing.html
      Please also refer to the documentation for alternative solver options:
          https://scikit-learn.org/stable/modules/linear_model.html#logistic-
      regression
```

```
extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
      /usr/local/lib/python3.7/site-packages/sklearn/linear_model/_logistic.py:818:
      ConvergenceWarning: lbfgs failed to converge (status=1):
      STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
      Increase the number of iterations (max_iter) or scale the data as shown in:
          https://scikit-learn.org/stable/modules/preprocessing.html
      Please also refer to the documentation for alternative solver options:
          https://scikit-learn.org/stable/modules/linear_model.html#logistic-
      regression
        extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
      /usr/local/lib/python3.7/site-packages/sklearn/linear_model/_logistic.py:818:
      ConvergenceWarning: lbfgs failed to converge (status=1):
      STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
      Increase the number of iterations (max_iter) or scale the data as shown in:
          https://scikit-learn.org/stable/modules/preprocessing.html
      Please also refer to the documentation for alternative solver options:
          https://scikit-learn.org/stable/modules/linear_model.html#logistic-
      regression
        extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
      Confusion Matrix:
       [[54926 126]
       Γ14831
                 6411
      Accuracy: 0.7861666690494231
      Precision: 0.3368421052631579
      Recall: 0.004296743873783149
      f1 score: 0.008485250248591316
      roc_auc_score: 0.5010039993437069
[120]: from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
       print('Accuracy score: ',accuracy_score(y_test,y_pred))
       print('Precision score: ',precision_score(y_test,y_pred))
       print('Precision score: ',precision_score(y_test,y_pred))
       print('Recall score: ',recall_score(y_test,y_pred))
       print('F1 score: ',f1_score(y_test,y_pred))
      Accuracy score: 0.7861666690494231
      Precision score: 0.3368421052631579
      Precision score: 0.3368421052631579
      Recall score: 0.004296743873783149
      F1 score: 0.008485250248591316
      —>So, the accuracy for the logistic regression model is- 78%
      Exporting trained data set for visualisation in Tableau
[122]: data.to_excel('D:\PGDA\Projects\loan.xlsx', index= False)
```

# 0.1 Dashboaring

 $https://public.tableau.com/views/CapstoneProject-2LoanDefaulter/Dashboard1?:language=en-US\&:display\_count=n\&:origin=viz\_share\_link$