Mathematical Logic

Lecture 5, Monday May 8, 2023 Ari Feiglin

When we have a well-formed formula φ and we write $\varphi(x_1,\ldots,x_n)$ this means that x_1,\ldots,x_n occur in φ as free occurrences.

Definition 5.0.1:

Given a term t, it is collision-free for the variable x in a formula φ , if no free occurrences of x in φ lies within the scope of any quantifier $\forall y$ where y is a variable of t.

What this means is that if we were to substitute x with t, we may have changed the meaning of the formula as we have swapped an independent occurrence of x in φ to some term dependent on y. So for example if t = f(x, y) and we have $\varphi = \exists y P(x, y)$, then t is not free for x since the occurrence of x in φ is free, and within the domain of a quantifier on $y \in \text{var } t$. But t is collision-free for y since every occurrence of y is bound. Equivalently if the substitution of a free occurrence of a variable x with t results in a new bounded occurrence of some variable y, then t is not free of x.

Note then that a variable-free term (a constant, or a function of constants) is collision-free of every variable in any formula. If a variable x is bound in φ (all of its occurrences are bound), then t is free of x in φ . And so term t is collision-free for any variable in φ if none of the variables of t are bound in φ . If φ contains no free occurrences of variables in t, then t is collision-free with every variable.

Definition 5.0.2:

Let \mathcal{L} be a first order language, an interpretation of \mathcal{L} , \mathcal{M} , consists of

- A non-empty set \mathcal{D} the domain of interpretation,
- For every predicate letter A_i^n of \mathcal{L} , an n-ary relation $(A_i^n)^{\mathcal{M}} \subseteq \mathcal{D}^n$,
- For every function letter f_j^n of \mathcal{L} , an *n*-ary function $(f_j^n)^{\mathcal{M}} : \mathcal{D}^n \longrightarrow \mathcal{D}$,
- For every constant letter c_i , some constant $(c_i)^{\mathcal{M}} \in \mathcal{D}$.

Definition 5.0.3:

A formula φ which has no free variables is a sentence or closed formula.

Definition 5.0.4:

Given an interpretation \mathcal{M} and a valuation function $w \colon \text{Var} \longrightarrow \mathcal{D}$ (or a sequence s in $\mathcal{D}^{\mathbb{N}}$ since Var is countable), we now define what the valuation of a term t is, t^w , recursively:

- If t is a variable t = x then $t^w = x^w = w(x)$.
- If t is a constant t = c then $t^w = c^{\mathcal{M}}$.
- Otherwise $t = f(t_1, \dots, t_n)$ for terms t_i so $t^w = f^{\mathcal{M}}(t_1^w, \dots, t_n^w)$.

Given an atomic formula φ , we say that \mathcal{M} satisfies φ if:

- If $\varphi = A(t_1, \dots, t_n)$ for terms t_i , then \mathcal{M} satisfies φ if $A^{\mathcal{M}}(t_1^w, \dots, t_n^w)$.
- If $\varphi = t = s$ for terms t and s, then \mathcal{M} satisfies φ if $t^{\mathcal{M}} = s^{\mathcal{M}}$.

And given a general formula φ

- If $\varphi = \neg \alpha$ then \mathcal{M} satisfies φ if it does not satisfy α .
- If $\varphi = \alpha \wedge \beta$ then \mathcal{M} satisfies φ if \mathcal{M} satisfies both α and β .
- If $\varphi = \forall x \alpha$ for variable x, \mathcal{M} satisfies φ if for every $a \in \mathcal{D}$ when we define \mathcal{M}_x^a to have the valuation function w' where

$$w'(v) = \begin{cases} w(v) & v \neq x \\ a & v = x \end{cases}$$

 \mathcal{M}_x^a satisfies α . That is \mathcal{M} satisfies $\forall x\alpha$, if when we swap the value of w(x) with any value in \mathcal{D} , α is satisfied.

w satisfies a formula φ is denoted by $(\mathcal{M}, w) \vDash \varphi$. And \mathcal{M} satisfies a formula φ (alternatively φ is true for \mathcal{M}) if for every valuation function w, $(\mathcal{M}, w) \vDash \varphi$, this is denote $\mathcal{M} \vDash \varphi$. A formula φ is false for \mathcal{M} if there is no valuation w which satisfies φ .

An interpretation \mathcal{M} models a set Γ of formulas if every formula of Γ is true for \mathcal{M} .

Definition 5.0.5:

We now define what a first order theory is. Like any formal theory it has

(1) Axioms: these are split into logical and proper axioms. Logical axioms include all the axioms of predicate calculus, as well as

$$(\forall x \varphi(x)) \to \varphi(t)$$

Meaning that φ is a formula which contains x as a free variable, and it is true for every x, then it is true if we replace x with any term t. And the last logical axiom is

$$(\forall x(\varphi \to \psi)) \to (\varphi \to \forall x\psi)$$

if φ contains no free occurrences of x.

The second class of proper axioms are specific to each first order theory.

- (2) Rules of inference:
 - (i) Modus ponens: if φ and $\varphi \to \psi$ then ψ .
 - (ii) Generalization: if φ then $\forall x \varphi$ for any variable x.

An interpretation models a first order theory if it satisfies all the axioms (logical and proper), and the rules of inference.

Example 5.0.6:

We define a partial order theory, which just has one predicate letter A(x, y) which will be written as x < y. The proper axioms are:

- $(1) \quad (\forall x) \neg (x < x)$
- (2) $(\forall x, y, z)(x < y \land y < z \rightarrow x < z)$

Any model of this theory is called a partial order structure.

Example 5.0.7:

The group theory has a binary predicate symbol =, a binary operation symbol \cdot , and a constant e. We take the predicate symbol = instead of using the first order symbol =, so we need extra axioms regarding = as well as the normal axioms of group theory

- (1) $(\forall x, y, z)((xy)z = x(yz))$
- $(2) \quad (\forall x)(ex = xe = x)$
- (3) $(\forall x)(\exists y)(xy = yx = e)$
- $(4) \quad (\forall x)(x=x)$
- (5) $(\forall x)(\forall y)(x = y \rightarrow y = x)$
- (6) $(\forall x, y, z)(x = y \land y = z \rightarrow x = z)$
- (7) $(\forall x, y, z)(x = y \rightarrow (xz = yz \land zx = zy))$

Definition 5.0.8:

If φ is a formula in a first order language, φ is logically valid if φ is true for any interpretation. φ is satisfiable if there exists an interpretation where φ is true. And φ is contradictory if it is false under any interpretation.

A set of formulas Γ is satisfiable if it has a model.