CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

Course	Number	Sections
Mathematics	205	All
Examination	Date	Pages
Final	December 2012	2
Instructors:		Course Examiners
A. Boyarsky, J. Brody		A. Atoyan & H. Proppe
U. Mgbemena, T. Hughes		
Special	Only calculators approved by the	
Instructions:	Department are allowed.	
	For full marks show all your work.	

[10] 1. (a) Sketch a graph of the function

$$f(x) = \begin{cases} -\sqrt{4 - x^2} & \text{for } |x| \le 2\\ |x - 3| - 1 & \text{for } 2 < x \end{cases}$$

on the interval $-2 \le x \le 4$ and calculate the definite integral $\int_{0}^{x} f(x) dx$ in terms of signed area (do not antidifferentiate).

- (b) Find the derivative F'(x) of the function $F(x) = \int_{-3}^{1} \sqrt{1+t} \cos(\pi t) dt$, and use it to determine whether F(x) is increasing or decreasing at x = 1.
- [10] 2. Find the antiderivative F(x) of the function f(x) that satisfies the given condition:

(a)
$$f(x) = \frac{5^x}{5^x + 1}$$
, $F(0) = 1$.

(a)
$$f(x) = \frac{5^x}{5^x + 1}$$
, $F(0) = 1$. (b) $f(x) = \frac{\sec^2 x}{(1 + \tan x)^3}$, $F\left(\frac{\pi}{4}\right) = 0$.

[16] 3. Find the following indefinite integrals:

(a)
$$\int \frac{\ln x}{x^2} dx$$

(a)
$$\int \frac{\ln x}{x^2} dx$$
 (b) $\int \frac{x}{x^2 - 2x - 3} dx$ (c) $\int (1 - e^x)^2 dx$.

$$(c) \int (1-e^x)^2 dx$$

[11] 4. Evaluate the following definite integrals (give the exact answers):

(a)
$$\int_{1}^{\varepsilon} \frac{1}{x(1+\ln^2 x)} dx$$
 (b) $\int_{0}^{\pi/2} x^2 \cos(2x) dx$

$$\text{(b)} \quad \int\limits_0^{\pi/2} x^2 \cos(2x) \ dx$$

[8] Evaluate the given improper integral or show that it diverges:

(a)
$$\int_{0}^{\infty} \frac{x}{1+x^2} dx$$
 (b)
$$\int_{0}^{4} \frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} dx$$

- Sketch the curves $y = x(x^2 2)$ and y = 2x, and find the area [15] **6.** enclosed by these curves.
 - (b) Find the volume of a solid obtained by rotating the region bounded by the curve $y = (2 - \sqrt{2x})$ and the lines y = 0 and x = 0 about the x-axis.
 - Find the average value of $f(x) = \sin^2 x$ on the interval $[0, \pi]$.

7. Find the limit of the sequence $\{a_n\}$ at $n \to \infty$ or prove that it does not exist:

(a)
$$a_n = \frac{n \cos^2(n)}{\sqrt{1+4n^3}}$$
 (b) $a_n = \frac{(2^n+1)^2}{e^n}$

Determine whether the series is divergent or convergent, and if convergent, [15] then absolutely or conditionally:

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{4+n^2}$$
 (b) $\sum_{n=0}^{\infty} (-1)^n e^{-n} 2^{n+3}$ (c) $\sum_{n=2}^{\infty} \frac{1}{n \ln^3(n)}$

9. (a) Find the radius of convergence and the interval of convergence of the series [9]

$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{n \, 3^n}$$

(b) Find the Maclaurin series for $f(x) = x \cos(x^2)$. (Hint: start with the series for cos(t), then replace t with x^2 .)

It is known that on any given interval [0, a] the average value of [5] Bonus Question. some continuous function f(x) is equal to the square of the interval's length, i.e. a^2 . Is this information sufficient to find f(x)? Find the function f if it is, otherwise explain why it is insufficient.