

TUZUJI O 7200 Pennsylvaria Aveñuë, NW Washington, DC 20037-3213

531 Rec'd PCT

23 JAN 2002 F202,293,7060

www.sughrue.com

January 23, 2002

BOX PCT

Commissioner for Patents Washington, D.C. 20231 PCT/JP00/05260 -filed August 4, 2000

Re: Application of Tatsuki SHIOTA, Masaki SUDOH, Tomonori YOKOYAMA, Yumiko MUROGA. Takashi KAMIMURA and Akinobu NAKANISHI

CYCLIC AMINE CCR3 ANTAGONIST

Assignee: TEIJIN LIMITED Our Ref: O68142

Dear Sir:

The following documents and fees are submitted herewith in connection with the above application for the purpose of entering the National stage under 35 U.S.C. § 371 and in accordance with Chapter II of the Patent Cooperation Treaty:

☑ an executed Declaration and Power of Attorney.

an English translation of the International Application.

☑ an executed Assignment and PTO 1595 form.

☑ International Search Report and PTO form 1449.

☑ Notification Concerning Submission or Transmittal of Priority Document.

It is assumed that copies of the International Application, the International Preliminary Examination Report, and any Articles 19 and 34 amendments as required by § 371(c) will be supplied directly by the International Bureau, but if further copies are needed, the undersigned can easily provide them upon request.

The Government filing fee is calculated as follows:

Total claims Independent claims Base Fee	11 -	20 3	*	x x	\$18.00 \$84.00	= \$.00 = \$.00 \$890.00

TOTAL FILING FEE
Recordation of Assignment
TOTAL FEE

\$890.00 \$ 40.00 \$930.00

Checks for the statutory filing fee of \$890.00 and Assignment recordation fee of \$40.00 are attached. You are also directed and authorized to charge or credit any difference or overpayment to Deposit Account No. 19-4880. The Commissioner is hereby authorized to charge any fees under 37 C.F.R. §§ 1.16, 1.17 and 1.492 which may be required during the entire pendency of the application to Deposit Account No. 19-4880. A duplicate copy of this transmittal letter is attached.

Priority is claimed from:

Country

Application No

Filing Date

Japan

11-220864

August 4, 1999

Respectfully submitted,

-Susan J. Musik Susan J. Mack

Registration No. 30,951

SJM/slb

SPECIFICATION

CYCLIC AMINE CCR3 ANTAGONIST

5 Technical Field

10

15

20

25

30

35

The present invention relates to a CCR3 antagonist which can be expected to have effects as a remedies and/or a prophylactics against diseases, for whose progress and maintenance the increase and tissue infiltration of eosinophils, basophils, activated T cells and the like play main rolls, for example, allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, urticaria, contact dermatitis and allergic conjunctivitis, inflammatory bowel diseases such as ulcerative colitis and Crohn disease, eosinophilia, eosinophilic gastroenteritis, eosinophilic enteropathy, eosinophilic fasciitis, eosinophilic granuloma, eosinophilic pustular folliculitis, eosinophilic pneumonia, eosinophilic leukemia and the like, or AIDS (acquired immunodeficiency syndrome) caused by the infection of HIV (human immunodeficiency virus).

Background Art

In recent years, a concept that the essential pathosis of allergic diseases such as asthma is chronic inflammation has been established, and the accumulation of eosinophils at an inflammatory region is especially thought to be one of the principal characteristics of the diseases (refer to, for example, Busse, W. W. J. Allergy Clin. Immunol., 1998, 102, S17-S22; Takao Fujisawa, Gendai Iryo, 1999, 31, 1297, and so on). For example, when an antibody against intercellular adhesion molecule 1 (ICAM-1) was administered into a simian asthmatic model, the accumulation of eosinophils was inhibited, and the manifestation of a late asthmatic response was controlled. Thereby, the importance of the eosinophils in allergic diseases was strongly suggested (Wegner, C.D. et al., Science, 1990, 247, 456).

Eotaxin was identified as a specific chemotactic factor causing the accumulation / chemotaxis of eosinophil (refer to, for example, Jose, P. J., et. al., J. Exp. Med., 1994, 179, 881; Garcia Zepda, E. A. et al., Nature Med., 1996, 2, 449; Ponath, P. D. et al., J. Clin. Invest., 1996, 97, 604; Kitaura, M. et al., J. Biol. Chem., 1996, 271, 7725, and so on). Further, it was elucidated that eotaxin bound to a CCR3 receptor expressed on eosinophil to display the action, and it is also known that chemotactic factors such as RANTES (abbreviation of

regulated upon activation normal T-cell expressed and secreted), MCP-2 (abbreviation of monocyte chemoattractant protein-2), MCP-3 (abbreviation of monocyte chemoattractant protein-3), and MCP-4 (abbreviation of monocyte chemoattractant protein-4) can exhibit the same actions as that of the eotaxin through CCR3, although the action potencies of the chemotactic factors are weaker than that of the eotaxin (refer to, for example, Kitaura, M. et al., J. Biol. Chem., 1996, 271, 7725; Daugherty, B. L. et al., J. Exp. Med., 1996, 183, 2437; Hiath, H. et at., J. Clin. Invest., 1997, 99, 178; Patel, V. P. et al., J. Exp. Med., 1997, 185, 1163; Forssmann, U. et al., J. Exp. Med. 185, 2171, 1997, and so on).

Not only an action for causing chemotaxis but also actions related to the activation of eosinophils, such as the enhancement in the expression of adhesion molecule receptor (CD11b) (refer to, for example, Tenscher, K. et al., Blood, 1996, 88, 3195, and so on), the stimulation in the production of active oxygen (refer to, for example, Elsner, J. et al., Eur. J. Immunol., 1996, 26, 1919, and so on), the stimulation in the release of EDN (abbreviation of eosinophil-derived neurotoxin) [refer to El-Shazly, et al., Int. Arch. Allergy Immunol., 1998, 117 (suppl. 1), 55], have been reported as the actions of the eotaxin on the eosinophils. It has also been reported that cotaxin has an action for stimulating the release of eosinophils and their precursor cells from bone marrow into blood (refer to, for example, Palframan, R. T. et al., Blood, 1998, 91, 2240, and so on).

Many reports show that eotaxin and CCR3 play important roles on allergic diseases such as asthma. For example, the inhibition of eosinophil infiltration with an anti-eotaxin antibody in a mouse asthma model (refer to Gonzalo, J.—A. et al., J. Clin. Invest., 1996, 98, 2332), the inhibition of eosinophil infiltration with an anti-eotaxin antiserum in a mouse dermal allergy model (refer to Teixeira, M. M. et al., J. Clin. Invest., 1997, 100, 1657), the inhibition in the formation of pulmonary granuloma with an anti-eotaxin antibody in a mouse model (refer to Ruth., J. H. et al., J. Immunol., 1998, 161, 4276), the inhibition of eosinophil infiltration in an asthma model and an interstitial keratitis model using eotaxin gene-deficient mice, respectively, (refer to Rothenberg, M. E. et al., J. Exp. Med., 1997, 185, 785), the increase in the expression of eotaxin and CCR3 in the bronchus of an asthmatic patient at a genetic level and a protein level in comparison with a healthy subject (refer to Ying, S. et at., Eur. J. Immunol., 1997, 27, 3507), and the increase in the

expression of ectaxin in the nasal subepithelium tissue of a chronic sinusitis patient (refer to Am. J. Respir. Cell Mol Biol., 1997, 17, 683), have been reported.

Additionally, since it has been reported that eotaxin is expressed in large amounts in the inflammatory regions of Crohn disease and ulcerative colitis which is an inflammatory large bowel disease (refer to Garcia-Zepda E.A. et al., Nature Med., 1996, 2, 449), it can be understood that the eotaxin also plays important roles on the diseases.

10

15

20

25

30

35

From these data, it is strongly suggested that the eotaxin accumulates and activates the eosinophils in the lesion regions through CCR3 and thereby deeply participates in the initiation progression and maintenance of diseases in which the deep participation of the eosinophils in the progresses of the lesions can be supposed, for example, allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, urticaria, contact dermatitis, and allergic conjunctivitis, inflammatory bowel diseases such as ulcerative colitis and Crohn disease, eosinophilia, eosinophilic gastroenteritis, eosinophilic enteropathy, eosinophilic fasciitis, eosinophilic granuloma, eosinophilic pustular folliculitis, eosinophilic pneumonia and eosinophilic leukemia.

Further, since they have been reported that CCR3 receptors reveal not only on eosinophils but also on basophils and Th2 lymphocytes and that the increase in the intracellular calcium ion concentrations of the cells and the chemotaxis of the cells are caused by the eotaxin, the eotaxin and the CCR3 are supposed to have relations with the initiation progression and maintenance of the diseases in which the cells participate, such as allergic diseases, also by the accumulation and activation of the cells (refer to, for example, Sallusto, F. et al., Science, 1997, 277, 2005; Gerber, B. O. et al., Current Biol., 1997, 7, 836; Sallusto, F. et at., J. Exp. Med., 1998, 187, 875; Uguccioni, M. et al., J. Clin. Invest., 1997, 100, 1137; Yamada, H. et al., Biochem Biophys. Res. Commun., 1997, 231, 365; and so on).

Thereby, a compound for inhibiting the binding of eotaxin to the CCR3, namely, a CCR3 antagonist, is supposed to be useful as a medicine for treating and/or preventing diseases such as allergic diseases and inflammatory intestinal diseases by inhibiting the action of a CCR3 ligand represented by the eotaxin on a target cell, but a medicine having such the action is now not known.

In addition, since it has been reported that HIV-1 (human

immunodeficiency virus-1) utilizes CCR3 on the infection of a host cell, a CCR3 antagonist is supposed to be useful for a medicine for treating or preventing AIDS (acquired immunodeficiency syndrome) caused by the infection of the HIV (refer to, for example, Choe, H. et at., Cell, 1996, 85, 1135; Doranz, B.J. et al., Cell, 1996, 85, 1149).

Recently, it has been reported that xanthene-9 carboxamide derivatives (refer to WO 9804554), piperazine or piperidine derivatives (refer to EP 903349; WO 0029377; WO 0031033; WO 0035449; WO 0035451; WO 0035452; WO 0035453; WO 0035454; WO 0035876; WO 0035877), pyrrolidine derivatives (refer to WO 0031032), phenylalanine derivatives (refer to WO 9955324; WO 9955330; WO 0004003; WO 0027800; WO 0027835; WO 0027843), and other low molecular compounds (refer to WO 9802151) have antagonistic activities to CCR3 receptors. However, these compounds and the compounds used in the present invention. And, the compounds used in the present invention are the same as the compounds mentioned in WO 9925686, but it is not known that these compounds have antagonistic activities to CCR3 receptors.

Disclosure of the Invention

5

10

15

20

25

30

35

Thereby, the object of the present invention is to provide low molecular compounds, which have activities to inhibit that the ligand of CCR3, such as cotaxin, binds to the CCR3 on a target cell.

Another object of the present invention is to provide a method for treating and/or preventing, with a CCR3 antagonist, such a disease that the binding of the ligand of CCR3, such eotaxin, to the CCR3 on a target cell is an etiology.

The inventors of the present invention have zealously made studies, and have consequently discovered that a cyclic amine derivative having an arylalkyl group, a pharmaceutically acceptable C_1 to C_6 alkyl addition salt thereof, or a pharmaceutically acceptable acid addition salt thereof has an activity to inhibit the binding of the ligand of CCR3, such as the ectaxin, to a target cell, and further have found that the compounds can be used as medicines for treating or preventing diseases in which the participation of CCR3 is supposed. The studies have further been continued to accomplish the present invention.

Namely, in accordance with the present invention, there is provided a

medicine, which contains, as an active ingredient, a compound represented by the following formula (I), a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C₁ to C₆ alkyl addition salt thereof, and which has a CCR3 antagonistic action,

5

10

15

20

25

30

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{k} \longrightarrow (CH_{2})_{n} - N - C \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array} (1)$$

[wherein, R1 represents a phenyl group, a C3 to C8 cycloalkyl group, or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, provided that the phenyl group or the aromatic heterocyclic group in the above-mentioned RI may be condensed with a benzene ring, or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms to form a condensed ring, further provided that the phenyl group, the C3 to C8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring may be substituted by the arbitrary number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxyl groups, carbamovl groups, C1 to C6 alkyl groups, C3 to C8 cycloalkyl groups, C2 to C6 alkenyl groups, C1 to C6 alkoxy groups, C1 to C6 alkylthio groups, C3 to C5 alkylene groups, C2 to C4 alkylenoxy groups, C1 to C3 alkylenedioxy groups, phenyl groups, phenoxy groups, phenylthio groups, benzyl groups, benzyloxy groups, benzoylamino groups, C2 to C7 alkanoyl groups, C2 to C7 alkoxycarbonyl groups, C2 to C7 alkanoyloxy groups, C2 to C7 alkanovlamino groups, C2 to C7 N-alkylcarbamoyl groups, C4 to C9 N-cycloalkylcarbamoyl groups, C1 to C6 alkylsulfonyl groups, C3 to C8 (alkoxycarbonyl)methyl groups, N-phenylcarbamoyl groups, piperidinocarbonyl groups, morpholinocarbonyl groups, 1 pyrrolidinylcarbonyl groups, divalent groups represented by the formula: ·NH(C=O)O·, divalent groups represented by the formula: -NH(C=S)O., amino groups, mono(C1 to C6 alkyl)amino groups or di(C1 to C6 alkyl)amino groups, and further provided that the substituents of the phenyl group, the C3 to C8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring may further be substituted by the arbitrary number of halogen atoms, hydroxy groups, amino groups, trifluoromethyl groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoxy groups.

 R^2 represents a hydrogen atom, a C_1 to C_6 alkyl group, a C_2 to C_7 alkoxycarbonyl group, a hydroxy group or a phenyl group, provided that the C_1 to C_6 alkyl group or the phenyl group in R^2 may be substituted by the arbitrary number of halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoxy groups, and provided that when j is 0, R^2 is not a hydroxy group.

j represents an integer of 0 to 2.

k represents an integer of 0 to 2.

m represents an integer of 2 to 4.

n represents 0 or 1.

5

10

15

20

25

30

35

 R^3 represents a hydrogen atom or a C_1 to C_6 alkyl group which may be substituted (by one or two phenyl groups which may be substituted by the same or different arbitrary numbers of halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkyl groups or C_1 to C_6 alkyl groups or C_1 to C_6 alkoxy groups, respectively).

R4 and R5, same or differently, represent a hydrogen atom; a hydroxy group, a phenyl group or a C₁ to C₆ alkyl group, respectively, and the C₁ to C₆ alkyl group in R4 and R5 may be substituted by the arbitrary number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxyl groups, carbamoyl groups, mercapto groups, guanidino groups, C3 to C8 cycloalkyl groups, C1 to C6 alkoxy groups, C1 to C6 alkylthio groups, phenyl groups (which may be substituted by the arbitrary number of halogen atoms, hydroxy groups, C₁ to C₆ alkyl groups, C₁ to C₆ alkoxy groups or benzyloxy groups), phenoxy groups, benzyloxy groups, benzyloxycarbonyl groups, C2 to C7 alkanoyl groups, C2 to C7 alkoxycarbonyl groups, C2 to C7 alkanoyloxy groups, C2 to C7 alkanovlamino groups, C2 to C7 N-alkylcarbamoyl groups, C1 to C6 alkylsulfonyl groups, amino groups, mono(C1 to C6 alkyl)amino groups, di(C1 to C6 alkyl)amino groups or aromatic heterocyclic groups (having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms) or condensed rings formed by the condensation of the aromatic heterocyclic group with a benzene ring, or R4 and R5 may together form a three to six membered cyclic hydrocarbon.

p represents 0 or 1.

a represents 0 or 1.

G represents a group represented by 'CO-, 'SO2-, 'CO-O-, 'NR7-CO-,

-CO·NR⁷·, ·NH·CO·NH·, ·NH·CS·NH·, ·NR⁷·SO₂·, ·SO₂·NR⁷·, ·NH·CO·O·, or ·O·CO·NH·, provided that R⁷ is a hydrogen atom or a C₁ to C₆ alkyl group, or R⁷ may form a C₂ to C₅ alkylene group together with R⁵.

10

15

20

25

30

35

R6 represents a phenyl group, a C3 to C8 cycloalkyl group, a C3 to C6 cycloalkenyl group, a benzyl group or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, provided that the phenyl group, the benzyl group or the aromatic heterocyclic group in the above-mentioned R6 may be condensed, to make a condensed ring, with a benzene ring or an aromatic heterocyclic group having one or three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, further provided that the phenyl group, the C₃ to C₆ cycloalkyl group, the C₃ to C₆ cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in the above mentioned R6 may be substituted by the arbitrary number of halogen atoms, hydroxy groups, mercapto groups, cyano groups, nitro groups, thiocyanato groups, carboxyl groups, carbamoyl groups, trifluoromethyl groups, C1 to C6 alkyl groups, C3 to C8 cycloalkyl groups, C2 to C6 alkenyl groups, C1 to C6 alkoxy groups, C3 to C8 cycloalkyloxy groups, C1 to C6 alkylthio groups, C1 to C3 alkylenedioxy groups, phenyl groups, phenoxy groups, phenylamino groups, benzyl groups, benzoyl groups, phenylsulfinyl groups, phenylsulfonyl groups, 3-phenylureido groups, C2 to C7 alkanoyl groups, C2 to C7 alkoxycarbonyl groups, C2 to C7 alkanoyloxy groups, C2 to C7 alkanoylamino group, C₂ to C₇ N-alkylcarbamoyl groups, C₁ to C₆ alkylsulfonyl groups, phenylcarbamoyl groups, N,N-di(C1 to C6 alkyl)sulfamoyl groups, amino groups, $mono(C_1)$ to C_6 alkyl)amino groups, $di(C_1)$ to C_6 alkyl)amino groups, benzylamino groups, C2 to C7 (alkoxycarbonyl)amino groups, C1 to C6 (alkylsulfonyl)amino groups or bis(C1 to C6 alkylsulfonyl)amino groups, and further provided that the substituents of the phenyl group, the C3 to C8 cycloalkyl group, the C3 to C8 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group, or the condensed ring may further be substituted by the arbitrary number of halogen atoms, cyano groups, hydroxy groups, amino groups, trifluoromethyl groups, C₁ to C₆ alkyl groups, C₁ to C₆ alkoxy groups, C₁ to C₆ alkylthio groups, mono(C₁ to C₆ alkyl)amino groups, or di(C₁ to C₆ alkyl)amino groups.l.

In accordance with the present invention, there is also provided a medicine which contains, as an active ingredient, the compound represented by the above mentioned formula (I), the pharmaceutically acceptable acid

addition salt thereof, or the pharmaceutically acceptable C₁ to C₆ alkyl addition salt thereof, and which is used for treating or preventing a disease concerned with CCR3.

The compound represented by the above mentioned formula (I) has an activity for inhibiting that the ligand of CCR3 receptor, such as eotaxin, binds to a target cell, and an activity for inhibiting the physiological actions of the ligand of CCR3, such as the eotaxin, on the target cell. Namely, the compound represented by the above mentioned formula (I) is a CCR3 antagonist.

Best Mode for Carrying Out the Invention

10

15

20

25

30

35

In the above mentioned formula (I), R1 represents a phenyl group, a C₃ to C₈ cycloalkyl group, or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, provided that the phenyl group or the aromatic heterocyclic group in the above mentioned R1 may be condensed with a benzene ring, or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms to form a condensed ring, further provided that the phenyl group, the C₃ to C₈ cycloalkyl group, the aromatic heterocyclic group or the condensed ring may be substituted by the arbitrary number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxyl groups, carbamoyl groups, C1 to C6 alkyl groups, C₃ to C₈ cycloalkyl groups, C₂ to C₆ alkenyl groups, C₁ to C₆ alkoxy groups, C₁ to C6 alkylthio groups, C3 to C5 alkylene groups, C2 to C4 alkylenoxy groups, C1 to C3 alkylenedioxy groups, phenyl groups, phenoxy groups, phenylthio groups, benzyl groups, benzyloxy groups, benzoylamino groups, C2 to C7 alkanoyl groups, C2 to C7 alkoxycarbonyl groups, C2 to C7 alkanoyloxy groups, C2 to C7 alkanoylamino groups, C2 to C7 N-alkylcarbamoyl groups, C4 to C9 N-cycloalkylcarbamoyl groups, C₁ to C₆ alkylsulfonyl groups, C₃ to C₈ (alkoxycarbonyl)methyl groups, N-phenylcarbamoyl groups, piperidinocarbonyl groups, morpholinocarbonyl groups, 1-pyrrolidinylcarbonyl groups, divalent groups represented by the formula: ·NH(C=O)O·, divalent groups represented by the formula: -NH(C=S)O-, amino groups, mono(C1 to C6 alkyl)amino groups or di(C1 to C6 alkyl)amino groups.

"The C₃ to C₈ cycloalkyl group" in R¹ means a cyclic alkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group or a cycloctyl group, and includes a cyclopropyl

group, a cyclopentyl group, a cyclohexyl group and the like as preferable concrete examples.

"The aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms" in R¹ means an aromatic heterocyclic group such as a thienyl group, a furyl group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, a pyridyl group, a pyrimidinyl group, a triazinyl group, a triazolyl group, an oxadiazolyl (furazanyl) group or a thiadiazolyl group, and includes a thienyl group, a furyl group, a pyrrolyl, an isoxazolyl group, a pyridyl group and the like as preferable concrete examples.

5

10

15

20

25

30

35

"The condensed ring" in R¹ means a bicyclic aromatic heterocyclic group which is formed by condensing the above mentioned benzene ring or aromatic heterocyclic group with a benzene ring or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms at an arbitrary possible position, and includes a naphthyl group, an indolyl group a benzofuranyl group, a benzothienyl group, a quinolyl group, a benzimidazolyl group, a benzoxazolyl group, a benzoxazolyl group, a benzoxadiazolyl (benzofurazanyl) group, a benzothiadiazolyl group and the like as preferable concrete examples.

A phenyl group, a thienyl group, a pyrazolyl group, an isoxazolyl group, a benzofuranyl group or an indolyl group is especially preferable as R¹.

"The halogen atom" as the substituent on the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring, in R^1 , means a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or the like.

"The C_1 to C_6 alkyl group" as the substituent of R^1 means a C_1 to C_6 straight-chain or branched alkyl group such as a methyl group, an ethyl group, a n-potyl group, a n-butyl group, a n-petyl group, a n-hexyl group, a n-hetyl group, a n-betyl group, an isopropyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an isopentyl group, an isopentyl group, a tert-pentyl group, an isohexyl group, a 2-methylpentyl group or a 1-ethylbutyl group, and includes a methyl group, an ethyl group, a propyl group, an isopropyl group and the like as preferable concrete examples.

"The C_3 to C_6 cycloalkyl group" as the substituent of R^1 is the same as the definition of "the C_3 to C_8 cycloalkyl group" in the above mentioned R^1 , and includes the same groups as preferable concrete examples.

"The C_2 to C_6 alkenyl group" as the substituent of R^1 means a C_2 to C_6 straight-chain or branched alkenyl group such as a vinyl group, an allyl group, a 1-propenyl group, a 2-butenyl group, a 3-butenyl group, a 2-methyl-1-propenyl group, a 4-pentenyl group, a 5-bexenyl group or a 4-methyl-3-pentenyl group, and includes a vinyl group, a 2-methyl-1-propenyl group and the like as preferable concrete examples.

5

10

15

20

25

30

35

"The C_1 to C_6 alkoxy group" as the substituent of R^1 means a group comprising the above mentioned C_1 to C_6 alkyl group and an oxy group, and includes a methoxy group, an ethoxy group and the like as preferable concrete examples.

"The C_1 to C_6 alkylthio group" as the substituent of R^1 means a group comprising the above-mentioned C_1 to C_6 alkyl group and a thio group, and includes a methylthio group, an ethylthio group and the like as preferable concrete examples.

"The C_3 to C_5 alkylene group" as the substituent of R^1 means a C_3 to C_5 divalent alkylene group such as a trimethylene group, a tetramethylene group, a pentamethylene group or a 1 methyltrimetylene group, and includes a trimethylene group, a tetramethylene group and the like as preferable concrete examples.

"The C₂ to C₄ alkylenoxy group" as the substituent of R¹ means a group comprising a C₂ to C₄ divalent alkylene group and an oxy group, such as an ethylenoxy group (-CH₂CH₂O-), a trimethylenoxy group (-CH₂CH₂CH₂O-) or a 1,1-dimethylethylenoxy group [-CH₂C(CH₃)₂O-], and includes an ethylenoxy group, a trimethylenoxy group and the like as preferable concrete examples.

"The C_1 to C_3 alkylenedioxy group" as the substituent of R^1 means a group comprising a C_1 to C_3 divalent alkylene group and two oxy groups, such as a methylenedioxy group (\cdot OCH₂CH₂O \cdot), an ethylenedioxy group (\cdot OCH₂CH₂O \cdot), a propylenedioxy group [\cdot OCH₂CH(CH₃)O \cdot], and includes a methylenedioxy group, an ethylenedioxy group and the like as preferable concrete examples.

"The C_2 to C_7 alkanoyl group" as the substituent of R^1 means a C_2 to C_7 straight-chain or branched alkanoyl group such as an acetyl group, a propanoyl group, a butanoyl group, a pentanoyl group, a hexanoyl group, a heptanoyl group, an isobutyryl group, a 3-methylbutanoyl group, a 2-methylbutanoyl group, a pivaloyl group, a 4-methylpentanoyl group, a

3,3-dimethylbutanoyl group or a 5-methylhexanoyl group, and includes an acetyl group and the like as preferable concrete examples.

"The C_2 to C_7 alkoxycarbonyl group" as the substituent of R^1 means a group comprising a C_1 to C_6 alkoxy group and a carbonyl group, and includes a methoxycarbonyl group, an ethoxycarbonyl group and the like as preferable concrete examples.

"The C_2 to C_7 alkanoyloxy group" as the substituent of R^1 means a group comprising a C_2 to C_7 alkanoyl group and an oxy group, and includes an acetyloxy group and the like as preferable concrete examples.

"The C_2 to C_7 alkanoylamino group" as the substituent of R^1 means a group comprising a C_2 to C_7 alkanoyl group and an amino group, and includes an acetylamino group and the like as preferable concrete examples.

10

15

20

25

30

35

"The C_2 to C_7 alkylcarbamoyl group" as the substituent of R^1 means a group comprising a C_1 to C_6 alkyl group and a carbamoyl group, and includes a N methylcarbamoyl group, a N ethylcarbamoyl group and the like as preferable concrete examples.

" The C_4 to C_9 N-cycloalkylcarbamoyl group " as the substituent of R^1 means a group comprising a C_3 to C_8 cycloalkyl group and a carbamoyl group, and includes a N-cyclopentylcarbamoyl group, a N-cyclohexylcarbamoyl group and the like as preferable concrete examples.

"The C_1 to C_6 alkylsulfonyl group" as the substituent of R^1 means a group comprising a C_1 to C_6 alkyl group and a sulfonyl group, and includes a methylsulfonyl group and the like as preferable concrete examples.

"The C_3 to C_8 (alkoxycarbonyl)methyl group" as the substituent of R^1 means a group comprising a C_2 to C_7 alkoxycarbonyl group and a methyl group, and includes a methoxycarbonylmethyl group, an ethoxycarbonylmethyl group and the like as preferable concrete examples.

"The mono(C_1 to C_6 alkyl)amino group" as the substituent of R^1 means an amino group substituted by the C_1 to C_6 alkyl group, and includes a methylamino group, an ethylamino group and the like as preferable concrete examples.

"The $di(C_1 to C_6 alkyl)$ amino group" as the substituent of R^1 means an amino group substituted by the same or different two C_1 to C_6 alkyl groups, and includes a dimethylamino group, a diethylamino group, N-ethyl-N-methylamino group and the like as preferable concrete examples.

Among the above-mentioned groups, the substituents of the phenyl

group, the C₃ to C₈ cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R¹ include halogen atoms, hydroxy groups, C₁ to C₆ alkyl groups, C₂ to C₆ alkenyl groups, C₁ to C₆ alkylthio groups, C₃ to C₅ alkylene groups, C₂ to C₄ alkylenoxy groups, methylenedioxy groups, phenyl groups, N-phenylcarbamoyl groups, amino groups and di(C₁ to C₆ alkyl)amino groups as especially preferable concrete examples. The substituents especially preferably include halogen atoms, hydroxy groups, C₁ to C₆ alkyl groups, C₁ to C₆ alkyl groups, C₁ to C₆ alkylthio groups, methylenedioxy groups and N-phenylcarbamoyl groups.

Further, the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R^1 may be substituted by the arbitrary number of halogen atoms, hydroxy groups, amino groups, trifluoromethyl groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoxy groups. The halogen atoms, the C_1 to C_6 alkyl groups and the C_1 to C_6 alkoxy groups are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R^1 , and include the same groups as preferable concrete examples.

10

15

20

25

30

35

In the formula (I), R^2 represents a hydrogen atom, a C_1 to C_6 alkyl group, a C_2 to C_7 alkoxycarbonyl group, a hydroxy group or a phenyl group, and the C_1 to C_6 alkyl group or the phenyl group in R^2 may be substituted by the arbitrary number of halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoxy groups, provided that R^2 is not the hydroxy group, when j is 0.

The C_1 to C_6 alkyl group and the C_2 to C_7 alkoxycarbonyl group in R^2 are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R^1 , and include the same groups as preferable concrete examples.

The halogen atoms, C_1 to C_6 alkyl groups and C_1 to C_6 alkoxy groups as the substituents of the C_1 to C_6 alkyl group or the phenyl group in R^2 are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R^1 , and includes the same examples, respectively, as preferable concrete examples.

Among groups, a case that \mathbb{R}^2 represents a hydrogen atom is most preferable.

In the formula (I), j represents an integer of 0 to 2. A case that j is 0 is most preferable.

In the formula (I), k represents an integer of 0 to 2, and m represents an integer of 2 to 4. Among them, the 2-substituted pyrrolidine compound in a case that k and m are 0 and 3, respectively, the 3-substituted pyrrolidine compound in a case that k and m are 1 and 2, respectively, the 3-substituted piperidine compound in a case that k and m are 1 and 3, respectively, 4-substituted piperidine compound in a case that k and m are 2 and 2, respectively, and the 3-substituted hexahydroazepine in a case that k and m are 1 and 4, respectively, are preferable. Especially preferably, the 3-substituted pyrrolidine compound in the case that k and m are 1 and 2, respectively, and the 4-substituted piperidine compound in the case that k and m are 2 and 2, respectively, are included.

In the formula (I), n represents 0 or 1.

10

15

20

25

30

35

Especially, the 3-amidopyrrolidine compound in a case that k, m and n are 1, 2 and 0, respectively, and the 4-(amidomethyl)piperidine in a case that k, m and n are 2, 2 and 1, respectively, are preferable.

In the formula (I), R^3 represents a hydrogen atom or a C_1 to C_6 alkyl group which may be substituted (by one or two phenyl groups which may be substituted by the arbitrary number of the same or different halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoxy groups).

The C₁ to C₆ alkyl group in R³ is the same as defined as the substituent of the phenyl group, the C₃ to C₈ cycloalkyl group, the aromatic heterocyclic group, or the condensed ring in the above mentioned R¹, and includes methyl group, ethyl group and propyl group as preferable concrete examples.

The halogen atoms, the C_1 to C_6 alkyl groups and the C_1 to C_6 alkoxy groups as the substituents of the phenyl group as the substituent of the C_1 to C_6 alkyl group in R^3 are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above mentioned R^1 , and includes the same examples as preferable concrete examples.

Among them, the case in which R^3 is a hydrogen atom or a non-substituted C_1 to C_6 alkyl groups, is the most favorable.

In the formula (I), R⁴ and R⁵, same or differently, represent a hydrogen atom, a hydroxy group, a phenyl group or a C₁ to C₆ alkyl group, respectively, and the C₁ to C₆ alkyl group in R⁴ and R⁵ may be substituted by

the arbitrary number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxyl groups, carbamoyl groups, mercapto groups, guanidino groups, C₃ to C₈ cycloalkyl groups, C₁ to C₆ alkoxy groups, C₁ to C₆ alkylthio groups, phenyl groups (which may be substituted by the arbitrary number of halogen atoms, hydroxy groups, C₁ to C₆ alkyl groups, C₁ to C₆ alkoxy groups or benzyloxy groups), phenoxy groups, benzyloxy groups, benzyloxycarbonyl groups, C₂ to C₇ alkanoyl groups, C₂ to C₇ alkanoylarino groups, C₂ to C₇ alkanoylarino groups, C₂ to C₇ alkylcarbamoyl groups, C₁ to C₆ alkylsulfonyl groups, amino groups, mono(C₁ to C₆ alkyl)amino group, di(C₁ to C₆ alkyl)amino group, or aromatic heterocyclic groups (having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms) or condensed rings formed by condensing the aromatic heterocyclic groups with a benzene ring, or R⁴ and R⁵ may be bound to each other to form a three to six-membered cyclic hydrocarbon.

10

15

20

25

30

35

The C_1 to C_6 alkyl group in R^4 and R^5 is the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above mentioned R^1 , and includes the same examples as preferable concrete examples.

The halogen atom, C₁ to C₆ alkoxy group, C₁ to C₆ alkylthio group, C₂ to C₇ alkanoyl group, C₂ to C₇ alkanoyl group, C₂ to C₇ alkanoyloxy group, C₂ to C₇ alkanoylamino group, C₂ to C₇ alkanoyloxy group, C₁ to C₆ alkylsulfonyl group, mono(C₁ to C₆ alkyl)amino group and di(C₁ to C₆ alkyl)amino group, as the substituents of the C₁ to C₆ alkyl group in R⁴ and R⁵, are the same as defined as the substituents of the phenyl group, the C₃ to C₈ cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above-mentioned R¹, and includes the same examples, respectively, as preferable concrete examples.

The C_3 to C_6 cycloalkyl group, and the aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen heteroatoms as the substituents of the C_1 to C_6 alkyl group in R^4 and R^5 are the same as defined in the above mentioned R^1 , and includes the same examples, respectively, as preferable concrete examples.

The halogen atom, the C_1 to C_6 alkyl group and the C_1 to C_6 alkoxy group as the substituents of the phenyl group as the substituent of the C_1 to C_6 alkyl group in \mathbb{R}^4 and \mathbb{R}^5 , are the same as defined as the substituents of the phenyl group, the C_3 to C_6 cycloalkyl group, the aromatic heterocyclic group or

the condensed ring in the above mentioned R¹, and includes the same examples, respectively, as preferable concrete examples.

The preferable concrete examples of "the three to six membered cyclic hydrocarbon" comprising R^4 , R^5 and the adjacent carbon atom includes cyclopropane, cyclobutane, cyclopentane and cyclohexane. Among the groups, the hydrogen atom and the C_1 to C_6 alkyl group are the especially preferable examples of R^4 and R^5 .

In the above-mentioned formula (I), p represents 0 or 1, and q represents 0 or 1. A case that both p and q are 0 is especially preferable.

In the above mentioned formula (I), G represents a group represented by -CO-, -SO₂-, -CO-O-, -NR⁷-CO-, -CO-NR⁷-, -NH-CO-NH-, -NH-CS-NH-, -NR⁷-SO₂-, -SO₂-NR⁷-, -NH-CO-O- or -O-CO-NH-. R⁷ represents a hydrogen atom or a C_1 to C_6 alkyl group, or R^7 may form a C_2 to C_5 alkylene group together with R^5 .

10

15

20

25

30

35

The ${^\cdot}\mathrm{CO}$, ${^\cdot}\mathrm{SO}_2$ and ${^\cdot}\mathrm{CS}$ means a carbonyl group, a sulfonyl group and a thiocarbonyl group, respectively. The especially preferable example of G includes a group represented by ${^\cdot}\mathrm{NR}^7{^\cdot}\mathrm{CO}$ and a group represented by ${^\cdot}\mathrm{NH}^7{^\cdot}\mathrm{CO}$.

The C₁ to C₆ alkyl group in R⁷ is the same as defined as the substituents of the phenyl group, the C₃ to C₈ cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above mentioned R¹, and includes the same examples as preferable concrete examples.

"The C_2 to C_5 alkylene group" comprising R^5 and R^7 means a C_2 to C_5 straight-chain or branched alkylene group such as a methylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a 1-methyltrimethylene group or a pentamethylene group, and includes an ethylene group, a trimethylene group and a tetramethylene group as the preferable concrete examples. Among the groups, R^7 includes the hydrogen atom as an especially preferable example.

In the above mentioned formula (I), R^6 represents a phenyl group, a C_3 to C_6 cycloalkyl group, a C_3 to C_6 cycloalkenyl group, a benzyl group or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, and the phenyl group, the benzyl group or the aromatic heterocyclic group in R^6 may be condensed, to make s condensed ring, with a benzene ring or an aromatic heterocyclic group having one to three atoms of oxygen sulfur, and/or nitrogen as heteroatoms. Further, the phenyl

group, the C3 to C8 cycloalkyl group, the C3 to C6 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in R6 may be substituted by the arbitrary number of halogen atoms, hydroxy groups, mercapto groups, cyano groups, nitro groups, thiocyanato groups, carboxyl groups, carbamovl groups, trifluoromethyl groups, C1 to C6 alkyl groups, C3 to Cs cycloalkyl groups, C2 to C6 alkenyl groups, C1 to C6 alkoxy groups, C3 to C8 cycloalkylthio groups, C1 to C6 alkyloxy groups, C1 to C3 alkylenedioxy groups, phenyl groups, phenoxy groups, phenylamino groups, benzyl groups, benzoyl groups, phenylsulfinyl groups, phenylsulfonyl groups, 3-phenylureido groups, C2 to C7 alkanoyl groups, C2 to C7 alkoxycarbonyl groups, C2 to C7 alkanoyloxy groups, C2 to C7 alkanovlamino groups, C2 to C7 N-alkylcarbamoyl groups, C1 to C₆ alkylsulfonyl groups, phenylcarbamoyl groups, N,N-di(C₁ to C₆ alkyl)sulfamoyl groups, amino groups, mono(C1 to C6 alkyl)amino groups, di(C1 alkyl)amino groups, benzyl amino groups. C_6 (alkoxycarbonyl)amino groups, C1 to C6 (alkylsulfonyl)amino groups or bis(C1 to C6 alkylsulfonyl)amino groups.

10

20

25

30

35

The C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen, and the condensed ring are the same as defined as the above mentioned R^1 , and includes the same examples, respectively, as preferable concrete examples.

"The C₃ to C₈ cycloalkenyl group" in R⁶ means a cyclic alkenyl group such as a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group and a cyclooctenyl group, and includes a 1-cyclopentenyl group and a 1-cyclohexenyl group as preferable concrete examples. Among the groups, R⁶ include a phenyl group, a furyl group, a thienyl group, an indolyl group and a benzofurazanyl group as especially preferable examples.

The halogen atom, the C_1 to C_6 alkyl group, the C_2 to C_6 alkenyl group, the C_1 to C_6 alkoxy group, the C_1 to C_6 alkylthio group, the C_1 to C_6 alkylenedioxy group, the C_2 to C_7 alkanoyl group, the C_2 to C_7 alkanoylamino group, the C_2 to C_7 alkanoylamino group, the C_2 to C_7 alkylcarbamoyl group, the C_1 to C_6 alkylsulfonyl group, the mono(C_1 to C_6 alkyl) amino group as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R^6 are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the cycloalkyl group, the cycloalkyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring

in the above mentioned R¹, and includes the same examples as preferable concrete examples.

The C_3 to C_8 cycloalkyl group as the substituent of R^6 is the same as defined as the C_3 to C_8 cycloalkyl group in the above-mentioned R^1 , and cludes the same examples as preferable concrete examples.

"The C_3 to C_8 cycloalkyloxy group" as the substituent of R^6 means a group comprising the above mentioned C_3 to C_8 cycloalkyl group and an oxy group, and includes a cyclopropyloxy group, a cyclopentyloxy group, a cyclohexyloxy group and the like as preferable concrete examples.

"The N,N-di(C_1 to C_6 alkyl)sulfamoyl group" as the substituent of R^6 means a sulfamoyl group substituted by two same or different above-mentioned C_1 to C_6 alkyl groups, and includes N,N-dimethylsulfamoyl group, N,N-diethylsulfamoyl group, N-ethyl·N-methylsulfamoyl group and the like as preferable concrete examples.

10

15

20

25

30

35

"The C_2 to C_7 (alkoxycarbonyl)amino group" as the substituent of R^6 means a group comprising the above mentioned C_2 to C_7 alkoxycarbonyl group and an amino group, and includes a methoxycarbonylamino group, an ethoxycarbonylamino group and the like as preferable concrete examples.

"The C_1 to C_6 (alkylsulfonyl)amino group" as the substituent of R^6 means a group comprising the above mentioned C_1 to C_6 alkylsulfonyl group, an amino group and the like, and includes a (methylsulfonyl)amino group as a preferable concrete example.

"The bis(C_1 to C_6 alkylsulfonyl)amino group" as the substituent of R^6 means an amino group substituted by two same or different C_1 to C_6 alkylsulfonyl groups, and includes a bis(methylsulfonyl)amino group and the like as a preferable concrete example.

Especially, the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the C_3 to C_8 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in R^6 include a halogen atom, a mercapto group, a nitro group, a trifluoromethyl group, a C_1 to C_6 alkyl group, a C_1 to C_6 alkoxy group, a phenyl group, a benzyloxy group, a phenylsulfinyl group, a C_2 to C_7 alkanoyl group, a C_2 to C_7 alkanoylamino group, an amino group and the like as preferable examples. The halogen atom, the nitro group, the trifluoromethyl group, the C_1 to C_6 alkoxy group, the phenylsulfinyl group and the amino group are included as especially preferable examples.

Additionally, the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the C_3 to C_8 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in R^6 may further be substituted by the arbitrary number of halogen atoms, cyano groups, hydroxy groups, amino groups, trifluoromethyl groups, C_1 to C_6 alkyl groups, C_1 to C_6 alkyl groups or di C_1 to C_6 alkylbamino groups.

The halogen atom, the C_1 to C_6 alkyl group, the C_1 to C_6 alkoxy group, the C_1 to C_6 alkylthio group, the mono(C_1 to C_6 alkyl)amino group and the di(C_1 to C_6 alkyl)amino group as the substituents of the phenyl group, the C_3 to C_8 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in R^6 are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above-mentioned R^1 , and includes the same examples as preferable concrete examples.

10

15

20

25

30

35

By making a therapeutically effective amount of the compound represented by the above mentioned formula (I), the pharmaceutically acceptable acid addition salt thereof or the pharmaceutically acceptable C_1 to C_6 alkyl addition salt thereof into a pharmaceutical composition together with a pharmaceutically acceptable carrier and/or a pharmaceutically acceptable diluent, the medicine for inhibiting that the ligand of CCR3, such as eotaxin, binds to the CCR3 on a target cell, the medicine for inhibiting the physiological actions of the ligand of the CCR3, such as the eotaxin, on the target cell, and further the medicine for treating or preventing diseases in which the CCR3 is supposed to participate, as the medicine of the present invention, can be prepared. Namely, the cyclic amine derivative represented by the general formula (I), the pharmaceutically acceptable acid addition thereof, or the pharmaceutically acceptable C_1 to C_6 alkyl addition salt thereof can be administered orally or parenterally such as intravenously, subcutaneously, intramuscularly, percutaneously or intrarectally.

The dosage form of the oral administration includes tablets, pills, granules, powders, liquids, suspensions and capsules.

The tablets can be prepared using a vehicle such as lactose, starch or crystalline cellulose, a binder such as carboxymethylcellulose, methylcellulose or polyvinylpyrrolidone, a disintegrator such as sodium alginate, sodium bicarbonate or sodium lauryl sulfate, and so on, by a conventional method.

The pills, the powders or the granules can also be prepared using the above mentioned vehicle and so on by a conventional method. The liquids or the suspensions are prepared using a glycerol ester such as tricaprylin or triacetin, an alcohol such as ethanol and so on by a conventional method. The capsules are prepared by filling capsules made from gelatin or the like with the granules, the powder, the liquids or the like.

The dosage form for subcutaneous, intramuscular or intravenous administration includes injections in the forms of aqueous or non-aqueous solutions. The aqueous solutions include, for example, isotonic sodium chloride solution or the like. The non-aqueous solutions include, for example, propylene glycol, poly(ethylene glycol), olive oil, ethyl oleate or the like. The solutions, if necessary, further contain a antiseptic, a stabilizer and so on. The injections are sterilized by suitably carrying out the filtration with a bacterial filter and the treatment by the addition of a disinfectant.

10

15

20

25

30

35

The dosage form for the percutaneous administration includes an ointment and a cream. The ointment is prepared using a fatty oil or a fat such as castor oil or olive oil, petrolatum or the like by a conventional method, and the cream is prepared using a fatty oil or an emulsifier such as di(ethylene glycol) or a sorbitan monofatty acid ester by a conventional method.

Ordinary suppositories such as gelatin soft capsules are used for intrarectal administration.

The dose of the cyclic amine derivative of the present invention, the pharmaceutically acceptable acid addition salt thereof or the pharmaceutically acceptable C₁ to C₆ alkyl addition salt thereof depends on the kind of a disease, an administration route, the age and sex of the patient and the severity of a disease, but is usually 1 to 500 mg/day/adult.

The suitable concrete examples of the cyclic amine derivative of the above mentioned formula (I) includes compounds containing substituents, respectively, shown in the following Tables 1.1 to 1.221.

In the Tables 1.1 to 1.221, "chirality" means "an absolute configuration", namely the absolute configuration of an asymmetric carbon on the ring of the cyclic amine. "R" means that an asymmetric carbon on the ring of the cyclic amine has the absolute configuration of R, and "S" means that the asymmetric carbon has the absolute configuration of S. " — " means that the compound is a racemate or does not have an asymmetric carbon on the cyclic amine.

Table 1.1

Compd. No.	R (CH ₂) -	k	m	n	chirality	['] R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
, 1	CH-2-	1	2	0	-	Н	- CH ₂ -N-C-
2	C	1	2	0	-	н	- CH ₂ -N-CH ₃
, 3	CH-CH₂-	1	2	0		н	- CH2- N- C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
4	CH-CH2-	1	2	0	-	н	- CH ₂ -N-CF ₃
5	CH-CH ₂ -	1	2	0	s	. н	- CH ₂ - N- C- CF ₃
6	CH-CH ₂ -	1	2	0	S	н	- CH ₂ -N-C
7	С⊢СН2-	1	2	0	S	.н	-CH ₂ -N-C-
8	C├ - CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
9	CH2-	1	2	0	S	н	-CH ₂ -N-C-CI
10	CH2-	1	2	0	S	н	- CH ₂ -N-C
. 11	CH-CH2-	1	2	0	S	н	- CH ₂ - N C - OCH ₃

Table 1.2

Compd.	R1 (CH2),-	k	m	n	chirality	· R³	$-(CH_2)_{p} + \frac{1}{R^5} (CH_2)_{q} - G - R^6$
12	CI-CH ₂ -	1	2	Ó	S	Н	-CH ₂ -N-C- OCH ₃
13	CH2-	1	2	0	S	н	- CH ₂ - N C CF ₃
14	СН-СН2-	1 .	2	0	S	н	- CH ₂ -N-CH ₃
15	CH2-	1	2	0	S	н	- CH ₂ -N-C-CI
16	с⊢СН₂-	1	2	0	S	н	-сн ₂ - н с — осн ₃
17	CH2-	1	2	0	S.	н	- CH ₂ -N-C
18	CH2−	1	2	0	S	н	- CH ₂ -N C-
19	СН2-	1	2	0	S	н	-CH ₂ -N-C
20	CH2-	1	2	0	S	н	-CH ₂ -N-CF ₃
21	C├	1	2	0	S	н.	- CH ₂ -N-C
22	CH-2-	1	2	0	S	н	- CH ₂ -N C

Table 1.3

Compd.	R ¹ >-(CH ₂) ₁ -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
No.	R ^e						R ⁵
23	С⊢—СН₂-	1	2	0	S	н	- CH ₂ - N- C CF ₃
24	C	1	2	0	S	н	-CH ₂ -N-C-OCF ₃
25	с⊢СН₂-	1	2	0	s	Н	-CH ₂ -N-C-CF ₃
26	CH-CH ₂ -	1	2	0	S	н.	- CH ₂ -N-C- O ₂ N
. 27	C├──	1	2	0	s .	н	- CH ₂ -N-C-NO ₂
28	C:—CH₂-	1	2	0	S	н .	- CH ₂ -N-C-NO ₂
29	CHCH ₂ -	1	2	0	R .	н	- CH ₂ -N-C-CF ₃
30	CH_CH ₂ -	1	2	0	R	Н	- CH ₂ - N C
31	CHCH ₂ -	1	2	0	R	н	- CH ₂ - H C
32	CI—CH₂-	1	2	0	R	Н	- CH ₂ -N-C-
33	C	, 1	2	. 0	R	H	- CH ₂ -N-C-CI

Table 1.4

Compd.	R ¹ (CH ₂) ₁ -	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{p}}_{\frac{1}{R^5}}(CH_2)_{\overline{q}}G^-R^6$
34	CH-CH₂-	1	2	0	R	н	- CH ₂ -N-C-OCH ₃
35	CI-CH2-	1	2	0	R	Н	-CH2-N-C-OCH3
36	CH-CH2-	1	2	0	R	н	- CH ₂ -NC-OCH ₃
37	CH-CH2-	1	2	0	R ·	н	- CH ₂ -N-C-CF ₃
38	CHCH ₂ -	1	2	0	R .	Н	-CH ₂ -N-C-CH ₃
39	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
40	CH2-	1	2	0	· R	• н	-CH ₂ -N-C
41	CH2-	1	2	0	R	Н	- CH ₂ -N-C-CI
42	CI—CH2-	. 1	2	0	R [°]	Н	- CH ₂ - N- C-
43	CH2-	1	2	0	R	Н	· -CH2-H-C-0
44	CH2-	1	2	0	R	н	- CH3- H C- CL3

Table 1.5

1 4510							
Compd. No.	R1 (CH2)j-	k	m	n	chirality	· R³	-(CH ₂) _{p 5} (CH ₂) _q G-R ⁶
45	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
46	CH-CH2-	1	2	0	R	Н	- CH₂- N C - CF3
47	C⊢	1	. 2	0	R	н	- CH ₂ -N-C-OCF ₃
48	CH2-	1	2	0	. R	н	- CH ₂ -N-CF ₃
49	C├─────────────────	1	2	0	R	н	$-CH_2-N \cdot C - \bigvee_{O_2 N}$
50	С⊢СН2-	1	2	0	R	н	- CH ₂ -N-CF ₃
51	СН2-	1	2	0	R	н	-CH ₂ -N-C-Br
52	CI—CH2-	1	2	0	R	н	- CH ₂ -N-C-
53	С⊢—СН₂-	1	2	0	R	н	- CH ₂ -N-CI
54	с⊢СН₂-	1	2	0	R	н	- CH ₂ - N- C-
55	CH-2-	1	2	0	R.	н	- CH ₂ -N-CI

Table 1.6

Table	.0						
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	· R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
56	CI—CH ₂ -	1	2	0	R	н	- СH ₂ - N-С — — Н ₃ С
57	C├───────────────────────	1	2.	0	R	н	-CH2-H2C
58	СН2-	1	2	, 0	R	н	- CH ₂ -N-C-
59	C⊢(CH₂-	1	2	0	R	н	- CH ₂ -N-C-Br
60	C⊢CH₂-	1	2	0	R	Н	-CH ₂ -N-C-
61	CH2−	1	2	0	R	н	- CH ₂ -N-C
62	C ├── CH2-	1	2	0	R	Н	- CH ₂ - N C-CH ₃
63	C⊢ CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CH ₂ CH ₃
64	CH-CH2-	1	2	0	R	Н	-CH ₂ -NCC-CN
65	CI—CH ₂ -	1	2	0	R	н	- CH ⁵ - N C -
66	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -NC

Table 1.7

Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{15} (CH_2)_{q} -G-R^6$
67	CI-CH ₂ -	1	2	0	R	Н.	-CH ₂ -N C-
68	C⊢CH₂-	1	2	0	R	н ,	- CH ₂ - N C
69	CHCH ₂ -	1	2	0	R	н	- CH ₂ -N-C
70 7	C├ - CH ₂ -	1	2	0	R	н	-CH2-N-C-
71	C ├── C H₂-	1	2	0	R	н	-СH ₂ -N-С- Н ₃ СО — ОС Н ₃
72	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N C
73	C⊢Ç, CH₂-	1	2	0	R	н	- CH ₂ - N- C
74	CI—CH₂-	1	2	0	R	Н	-CH ₂ -N-C
75	CICH ₂ -	1	2	0	R	Н .	- CH ₂ -N-C
76	CH2-	. 1	2	0	R	н.	- CH ₂ -N-C
77	C	1	2	0	R	н	- CH ₂ -N-C

Table 1.8

Comp	od.	R ¹ (CH ₂)-	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
78		СІ—⟨СН₂-	1	2	0	R	н	-CH ₂ -N-C
79		CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
80	,	C⊢-(CH ₂ -	1	2	0	R	Н .	-CH ₂ -N-C-S-3
81		СН-СН2-	1	2	0	R	н	-CH ₂ -N-C-CH ₃
82		CI-CH ₂ -	. 1	2	0	-	-сн ₃	-CH _Z -N-C-C-G
83		C├───── CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
84		CH-CH ₂ -	1	2 .	0	R	н	-CH ₂ -N-C
8.5		С⊢С СН₂-	1	2	0	-	н	-(CH ₂) ₂ -N-C-
86	i	с⊢СН₂-	.1	2	0	-	н	-(CH ₂) ₂ -N-C-NO ₂
87		CH_CH2-	1.	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
88	1	CH-CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C

Table 1.9

Compd.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{P^5}}(CH_2)^{-}_{q}G^{-R^6}$
89	С⊢СН2-	1	2	0	S	н	-(CH ₂) ₂ -∧-C Br
90	CI-CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C
91	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-C!
92	CH-CH2-	1	2	0	S	Н	-(CH ₂) ₂ -N-C-OCH ₃
93	CH-CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-OCH ₃
94	CHCH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-OCH ₃
95	CHCH_2-	1	2	0	s	н	-(CH ₂) ₂ -N-C-CF ₃
96	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CH ₃
97	CH-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-CI
98	CH-CH2-	1	2	0	S	н	-(CH ⁵) ⁵ - V- C- OCH ²
99	с⊢Сту−сн₂-	1	2	0	S	н .	-(CH ₂) ₂ -N-C-CI

Table 1.10

Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	ー(CH ₂) _{向 古} (CH ₂) _可 G-R ⁶
100	CH-CH2-	1	2		S	н	-(CH ₂) ₂ -N-C
101	CH2⁻	1	2	0	S	Н	-(CH ₂) ₂ -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
102	CH2-	1	2	0	S	н	-(CH ₂) ₂ - N-C CF ₃
103	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-CF ₃
104	с⊢ СН₂-	1	2	0	S	н′	-(CH ₂) ₂ -N-C
105	СН ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C
106	СН2-	1	2	0	s	н.	-(CH ₂) ₂ -N-C
107	CHCH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C
108	С-СН2-	1	2	0	S	Н	-(CH ₂) ₂ -N-C- H O ₂ N
109	С⊢{_Сн₂-	1	2 ·	0	S	н	-(CH ₂) ₂ -N+C-NO ₂
110	С├──СН2-	1	2	0	S	н	-(CH ₂) ₂ -N-C

Table 11

Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p \to 1}^{f_1^4}(CH_2)_{q}G^-R^6$
111	CHCH2-	1	2	0	R	н	-(CH ₂) ₂ -N-CF ₃
-112	с⊢СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
_113	C⊢√CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
114	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
115	CH2-	1	2	0	R '	н	-(CH ₂) ₂ -N-CI
116	C├ - CH₂-	1	2	0	R	Н	-(CH ³) ³ - ^H - C - OCH ³
117	C├	1	2	0	R	Н	-(CH ₂) ₂ -N-C-OCH ₃
118	С⊢С СН₂-	1	2	0	R	н	-(CH ₃) ₂ - N- C- OC H ₃
119	C:CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ - N- C- CF ₃
120	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
121	с⊢СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C

Table 1.12

Compd. No.	R ² (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p G-R
122	СН-СН2-	1	2	. 0	R	н	-(CH ₂) ₂ -N-C
123	С├-{}СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-Ci
124	CH-CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CN
125	с⊢√_сн₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
126	CH-CH2-	1	2	0	R	H	-(CH ₂) ₂ -N-C-CF ₃
127	CH-CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C- H
128	С-СН2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-F ₃
129`	CH-2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CF ₃
130	CH-CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
131	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
132	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-

Table 1.13

Compd. No.	R2 (CH ₂) _i	k	m	n	chirality	R³	$-(CH_2)_{p}\frac{R^4}{R^5}(CH_2)_{q}G^-R^6$
133	CI—CH ₂ -	1	2 .	0	R		-(CH ₂) ₂ -N-C-
134	СН2-	1	2	0	R	. н	-(CH ₂) ₂ -N-C-NO ₂
135	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
136	C├ - CH ₂ -	, 1	2	0	R.	н	-(CH ₂) ₂ -N-C-
137	CHCH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
138	C├(CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N+C-C
139	CH-CH2-	1	2	0	R .	H	-(CH ₂) ₂ -N-CI
140	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
141	CI-CH ₂ -	1	2	0.	R	н	-(CH ₂) ₂ -N-C
142	CI-CH ₂ -	1	2	0	R	н.	-(CH ₂) ₂ -N-C-C1
143	C⊢-CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N·C

Table 1.14

Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
144	CI—CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
145	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N C-CF ₃
146	C├─(1	2	0	R	Н	-(CH ₂) ₂ - № C - CH ₃
147	CH-2-	1	2	0	R	Н	-(CH ²) ³ - N C-CH ³ CH ³
148	C	1	2	0	, R ,	Н	-(CH ₂) ₂ -N C CN
149	CHCH ₂ -	1	2	0	R	•н .	-(CH ₂) ₂ -N-C-
150	C├	1	2	,0	R	н	-(CH ₂) ₂ -N-C
151	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
152	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-F
153	C├ - CH ₂ -	1.	2	0	R	н	-(CH ₂) ₂ -N-C-F
154	CH- ()- CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C

3 4

Table 1.15

Compd. No.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p}\frac{R^4}{R^5}(CH_2)_qG-R^6$
155	СI—{}СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-С- Н ₃ СО -ОСН ₃
156	C├─ੑ	1	2	0	R	н	-(CH ₂) ₂ -N-C
157	CI-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
158	С⊢-{СН₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
159	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ - N C F
160	CH-CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
161	CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-F
162	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-F-F
163	CH_CH ₂ -	1	2	0	R	н	$-(CH_2)_2-N$ C F_3
164	с⊢(сн₂-	1	2	0	R	н	-(CH ₂) ₂ -N-CF ₃ F ₃ C
165	СН-СН2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃

วันสารส์ เกา การสาน สาก เรียกเล่า ค่าใช้ (ส.ศ.)

Table 1.16

Table							
Compd. No.	R (CH ₂),-	k	m	n	chirality	R³-	$-(CH_2)_{\rho}^{\frac{R^4}{15}}(CH_2)_{q}G^{-R^6}$
166	CI-CH ₂ -	1	2	0	R	н	(5) P CF ₃
167	C ├── CH ₂ -	1	2	0	R	Н	(5) P C 8r
.168	C	1	2	0	R	Н	(S) P -C)+N-C~
169	CH-CH₂-	1	2	0	R	Н	(S) P CI -CHN-C-CI -CH3
170	C├ - CH ₂ -	1	2	0	R	н	(S) P CF3 -CH-N-C- F
171	СН ₂ -	1	2 -	0	R	н	CH3 CH3
172	CH ₂ -	1	2	0	R .	Н	-CH2-C-C
173	CH_CH ₂ -	1	2	0	R.	н	(S) P NO₂ -C++N-C- NO₂ CH₃
174	CH2-	1	2	0	R	Н	(A) CF3 -CH-N-C-CF3 CH3.
175	CHCH ₂ -	1	2	0	R	н	CH ³ O Br
176	CI—CH₂-	1	2	0	R	н	(Fi) PC CI

Table 1.17

Compd. No.	R ² (CH ₂),-	k	m	п	chirality	Ř,	一(CH ₂) _{p i} (CH ₂) _q G-R ⁶
177	CI-CH2-	1	2	0	R	н	(A) CI
178	CI-CH2-	1	2	0	R	н	(A) Q CF3
179	C:CH ₂ -	1	2	0	R	н	(E) P C-CI
180	CH-CH ₂ -	1	. 2	0	R	Н	(F) P - CH-N-C- - CH3
181	CH-CH ₂ -	1	2	0	R .	Н	(A) P P P P P P P P P P P P P P P P P P P
182	CH-2-	1	2	0	R	Н	CH ₃ O CF ₃
183	CH2-	1	2	0	R	н	CH3 0 Br
184	CI-CH ₂ -	1	2	0	R	Н	CH3 C
185	CI—CH ₂ -	1	2	0	R	н	CH3 CH3 CI
186	C	1	2	0	R	н -	СН3 О СF3
187	CI— CH₂-	1	2	0	R,	н	CH ³

Table 1.18

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	₽,	-(CH ₂) _{p 1} (CH ₂) _q G-R ⁶
188	Ç⊢(CH₂-	1	2	0	R	н	CH3 0
189	CI-CH ₂ -	1	2	0	R	н	CH3 D NO5
190	CI—CH ₂ -	1	2	0	R	н	CH2 CF3
191	CH2-	1	2	0	R	н	CH2 CH2 CH2
192	CH-CH2-	1	2	0	R	Н	-CHNC-C
193	CH2-	1	2	0	R	н	-C++N-C
194	CH-2-	1	2	0	R	Н	(F) Q CF 3 -CH N C F
195	C├ - CH ₂ -	1	2	0	·R	н	(F) P CI
196	CH2-	1	2	0	R	Н	(F) P (-C+N-C-(-) C+1-(-C+N-C-(-) C+1-(-C+N-C-
197	С⊢—СН₂-	1	2	0	R	н	CH2-S
198	CI—CH₂-	1	2	0	R	н	(5) -CH-NC-CF3

Table 1.19

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ř³	$-(CH_2)_{p}^{\frac{R_1^4}{1}^4}(CH_2)_{q}^{-}G^{-R^6}$
199	CI-CH ₂ -	1	2	0	R	н	(S) P -CH-N-C-
200	C	1	2	0	R	н	S P C C
201	CH-2-	1	2	0	· R	н	-CH-N-C
202	CHCH ₂ -	1	2	0	R	н	(5) P CF 3
203	CH_CH ₂ -	1	2	0	R	н	(S) P -CH2-C
204	CHCH ₂ -	1	2	0	R	н	CH ₂ CH ₂
205	CI	i	2	0	R	н	-CH+N-C
206	CH2-	1	2	0	R	н	(OH-)2-9-CH ₃
207	C → C H ₂ -	1	2	0	, R	н .	(CH ²) ² - S - CH ²
208	C├-{} CH₂-	1	2	0	R	н	(3) P C C C C C C C C C C C C C C C C C C
209	C├	1	2	0	R	н	(GH ₂) ₂ -G-CH ₂
	A						

Table 1.20

Compd. No.	R1 (CH2)j-	k	m	n	chirality	R³	$-(CH_2)_{p}^{\frac{1}{1}}_{H^5}^4(CH_2)_{q}^{\frac{1}{2}}G^{-R^6}$
, 210	CI—CH2-	1	2	0	R	н	(S) P -CH-N-C- -CH-N-C- (CH-2)2-S-CH ₃ F
211	CH-2-	1	2	0	R	Н	(Cd-2)2-5-Cd,
212	C-CH ₂ -	1	2	0	R	н	(CH ₂) ₂ - G-CH ₃
213	СН-СН2-	1	2	0	R	н	(OH ₂) ₂ - CH ₂
214	CH ₂ -	1	2	0	-	H	-(CH ₂) ₃ -C-
215	CH-CH2-	1	2	0	-	Н	-(CH ₂) ₃ -C
216	CH⊋-	1	2	0	-	н	-(CH ₂) ₃ -C
217	CI—CH₂-	1	2	0	-	н	-(CH ₂) ₂ -C-(CH ₃)
218	C├ - CH₂-	1	2	0	-	н	-(CH ₂) ₂ -CH ₃
219	CH-2-	1	2	0	-	н	-(CH ₂) ₂ -C-FOCH ₃
220	CICH2-	1	2	0		н	-(CH ₂) ₂ -C-CH ₃

Table 1.21

Compd.	R1 (CH2),-	k	m	n	chirality	R ³	-(CH ₂) _p (CH ₂) _q G-R ⁶
221	C├	1	2	0		н	-(CH ₂) ₂ -C-C
222	CH2-	1	2	0	-	. н	-(CH ₂) ₂ -C-CI
223	CH-CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -C-(CH ₂) ₃ CH ₃
224	CH2-	1	2	0	-	н	- CH ₂ - S
225	CH2⁻	.1	2	0	-	н	-(CH ₂) ₃ -C·N-
226	CH_CH2-	1	2	0		Н	-(CH ₂) ₃ -C·N-OCH ₃
227	CH2-	1	2	0	-	Н	-(CH ₂) ₃ -C-N-CI
228	C├─ \ CH ₂ -	1	2	0		н	-(CH ₂) ₃ -C-N-OCH ₃
229	CH-CH ₂ -	1	2	0	-	н	- CH ₃ O CH ₃ C+ CH ₃ CH ₃
230	. СН-СН2-	1	2	0	•	н	-CH ₂ -CH ₂ -C-N-F
231	CH-2-	1	2	0	-	Н	-(CH ₂) ₃ - C⋅ CH ₃

Table 1.22

Compd. $R^1 \longrightarrow (CH_2)_1 - k m n chirality R^3$ $232 $	-(CH ₂) ₃ -C-N-CH ₂
233 C⊢√CH₂- 1 2 0 - H	-(CH ₂) ₃ -C-N-CH ₂
	-(CH ₂) ₃ -C-N-CH ₃
234 C⊢√CH₂- 1 2 0 - H	•
235 C⊢— CH₂- 1 2 0 - H	- CH ₂ -
236 C⊢√ CH₂- 1 2 0 - H	-CH ₂ -N-S-CH ₃
237 C⊢√CH₂- 1 2 0 ~ H	- CH ₂ -N-C-O-CH ₂
238 C⊢————————————————————————————————————	- CH ³ CH ³ CI
239 — CH ₂ - 1 2 0 S H	
240	- CH ₂ -N-C-CF ₃
241 CI 1 2 0 S H	-CH ₂ -N-C-CF ₃
242 CH ₂ - 1 2 0 S H	-CH ₂ -N-C-CF ₃

Table 1.23

Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_q G - R^6$
243	CI -CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
244	CH ₃	1	2	0	S	н .	-сн ₂ -N-с-С-С-3
245	F_CH ₂ -	1	2	0 .	S	н	-CH2-N-C-C-C-2
246	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
247	CH2-CH2-	1	2	0	s	н	-CH ₂ -N-C-CF ₃
248	H ₃ CQ CH ₂ -	1	2	0	s	н	-CH ₂ -N-C-CF ₃
249	F ₃ C —CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
250	H ₃ C —CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
251	F-CH ₂ -	1	2	0	S ,	Н	-CH ₂ -N-C-CF ₃
252	H3CO-CH5-	1	2	0	S	н ,	-CH ₂ -N-C-CF ₃
253	H ₃ C-CH ₂ -	1	2	0	S	н	-сн ₂ -N-с-С-С-

Table 1.24

Compd.	R ¹ >-(CH ₂) -	k	m	n	chirality	R³	-(CH ₂) _{P R5} (CH ₂) _q G-R ⁶
	NO ₂	1	2	0	S	Н	- CH2-N-CF3
255	O ₂ N — CH ₂ -	1	2	0	S	Н	CH ₂ -N-C
256	02 N-CH2-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
257	CF ₃	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
258	CO ₂ CH ₂ CH ₃	1	2	0	s	н	-CH ₂ -N-C-CF ₃
259	СH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
260	CI CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
261	F ₃ C-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
262	Br CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
263	Br CH ₂ -	1	2	0	S	н	-CH2-N-C-C-C-2
264	-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃

r -	h	1	2	4

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	. H3	$-(CH_2)^{\frac{R^4}{R^5}}(CH_2)_{\overline{q}}G-R^6$
265	Вг—СН₂-	1	2	0	S	н	-CH ₂ -N-C-C-CF ₃
266	CH2-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
267	OCH ₃	1	2	0	s	, н	CH2-N-C
268	HC-C-N	1	2	0	S	н	CH ₂ -N-C-CF ₃
269	H ₃ C-\$ CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
270	H ₃ CO ₂ C —CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
271	CH2-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
272	HO-CH ₂ -	1	2	0	S	н.	-CH ₂ -N-C-CF ₃
273	CN CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
274	NC ————————————————————————————————————	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
275	NG-CH2-	1	2	0	S	н .	-CH ₂ -N-C-CF ₃

Table 1.26

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p}\frac{R^4}{15}(CH_2)_{q}G-R^6$
276	F-CH2-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
277	CH ₂ -	1	2	0	S '	н	-CH2-N-C-C-CL3
278	н₃∞₂с-{	1	2	0	S	н	-CH ₂ -N-C-CF ₃
279	F3CO-CH2-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
280	F ₃ CQ —CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
281	HO ₂ CCH ₂ -	1	2	0	S	н	-CH2-N-C-CF3
282	(H ₃ C) ₃ C-\(\bigc\)-OH ₂ -	1	2	0	s	Н	-CH ₂ -N-C-CF ₃
283	CH ₃ CH ₂ CH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
284	CH-CH-	1	2	0	S	н	-CH ₂ -N-C-C-CF ₃
285	CH₂⁻	1	2	0	R	н	-CH ₂ -N-C-CF ₃
286	CH₂-	. 1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.27

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
287	CI CH₂−	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
288	CH_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
289	CI. CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
290	CH ₃ −CH ₂ -	1	2	0	` R	н	-CH ₂ -N-C-CF ₃
291	FCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
292	CICH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
293	CI	1	2	0	R	н	-сн ₂ -N-С-СБ ₃
294	H ₃ CQ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
295	F ₃ C —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
296	H ₃ C —CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
297	F-CH ₂ -	1	2	0	R	н	-CH ⁵ -M-C-C _C -2

Table 1.28

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G^{-R^6}$
298	H3CO-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
299	H ₃ C-CH ₂ -	1	2	0	. R	Н	-CH ₂ -N-C-CF ₃
300	CHCH_2-	1	2	0	R	н	-CH2-N-C-C-3
301	O ₂ N ————————————————————————————————————	1	2	0	R	н	-CH2-N-C-C-CL3
302	O ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
303	CF ₃ -CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
304	CO ₂ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
305	CH3	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
306	CI CH ₂ -	1	2	0	R	н	CH ₂ -N-C-CF ₃
307	F ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
308	Br - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.29

, 40.0							
Compd. No.	H ¹ (CH ₂) ₁	k .	m	n	chirality	R³	-(CH ₂) _p G-R ⁶
309	8r, —CH ₂ —	1	2	0	R	н	-CH ₂ -N-CCF ₃
310	OH ₂ -	1 .	2	0	R	н	-CH ₂ -N-C-CF ₃
311	Br—CH₂−	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
312	O-CH ₂ -	1	2	0	R	H,	-CH ₂ -N-C-C-3
313	OCH ₃	1	2	0	R	н	-CH ₂ -N-C
314	40-G-H - CH2	1	2	0	R	н	-сн ₂ -N-с-С-С-Гз
315	H ₂ C-	1	2	0	R.	н	-CH ₂ -N-C-CF ₃
316	H ₃ CO ₂ C —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
317	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
318	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
319	CN CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3

4 14 - Bright Property La

全国的第三人称为"福"带出的

Table 1.30

Compd. No.	R1 (CH2) -	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
320	NC —CH ₂ -	1	2	0	·R	Н	-CH ₂ -N-C-CF ₃
321	NC-CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
322	F-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
323	Cri₂-	1 .	2	0	R	н	-CH ₂ -N-C-CF ₃
324	H ₃ CO ₂ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
325	F ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
326	F ₃ CQ —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-CF ₃
327	HO ₂ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
328	(H ₃ C) ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
329	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
330	CI-CH ₂ -	0 .	3	1		н	-CH2-N-C-

Table 1.31

Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	· R³	$-(CH_2)^{\frac{R^4}{P_1^5}}(CH_2)^{-}_{q}G-R^6$
331	СН2−СН2−	0	3	1	-	Н	- CH ₂ - N- C- CH ₃
332	C├ \ CH ₂ -	0	3	1	-	Н	- CH ² - М- С- ОСН ³
333	CH2-	0	3	1		н .	- CH ₂ - N- C-\(\big \)
334	CH2-	0	3	1	-	н	CH ₂ - N-С-СН ₃
335	CH2-	0	3	1	-	н	- CH ₂ -N-C
336	CH2-	0	3	1	-	Н	- CH ₂ -N-C-CF ₃
337	CH2-	0	3	1	-	н	- CH ₂ -N-C
338	CHCH ₂ -	0	3	. 1	-	н	-CH ₂ -N-C-
339	CHCH ₂ -	0	3	1	R	н	- CH ₂ -N-CF ₃
340	C├-{CH₂-	0	3	.1	S	н	- CH ₂ -N-C-CF ₃
341	CH ₂ -	0	3	. 1	-	н	-(CH ₂) ₂ -N-C-

Table 1.32.

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	[.] R³	$-(CH_2)_{p} \frac{\Pi^4}{R^5} (CH_2)_{q} G - R^6$
342	CH2-	0	3	1	-	Н	- CH V- C-
343	CH-CH2-	0	3	1	-	н	- C + N - C - C - C + N - C - C - C + C + C - C - C + C + C + C
344	CH2⁻	0	3	1	-	н	- CH N- C- H CH ₂ CH(CH ₃) ₂
345	CH2-	0	3	1	~	Н	-(CH ₂) ₃ -C-
346	CH2-	0	3	1	-	н	$-(CH_2)_2$ - C - CH_3
347	C├ \ CH ₂ -	0	3	1	-	н	-(CH ₂) ₂ -CH ₃
348	CH_CH ₂ -	0	3	1	-	Н	-(CH ₂) ₂ -C-CH ₃
349	СН-{	0	3	1	-	Н	-CH₂-\$
350	CH	0	3	1	-	н.	- CH ₂ -N-S
351	CH-CH ₂ -	0	3	1	-	н	-CH ₂ -N-C·O·CH ₂
352	CH2-	0	3	1		. н	- CH O C N CI

Table 1.33

$ \frac{R^3}{-(CH_2)_{\overline{P}} \frac{R^4}{R^5}} (CH_2)_{\overline{q}} G - R^4} $ H $ -CH_2 - \frac{R^2}{R^2} C - \frac{R^4}{R^4} $ H $ -CH_2 - \frac{R^4}{R^4} C - \frac{R^4}{R^4} $
•
H −CH ₂ -N-C-
H -CH ₂ -N-C-CH ₃
H -CH ₂ -N-C-N
H -CH ₂ -N-C-
H - CH ₂ -N-CF ₃
H -(CH ₂) ₂ -N-C-
H -(CH ₂) ₂ -N-C-NO ₂
H -(CH ₂) ₃ -C-
H -(CH ₂) ₃ -C-C-CH ₃
H -(CH ₂) ₃ -C-\sqrt{S}
F 1

Table 1.34

Compd.	R ¹ (CH ₂) _I -	k.	m	n	chirality	[°] R³	$-(CH_2)_{\overline{P}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
364	CI—CH ₂ -	1	3	0	-	н .	-(CH ₂) ₂ -C
365	CH2-	1	3	0	-	н .	$-(CH_2)_2$ $ CH_3$ $ CH_3$
366	CH-2-	1	3	0	-	н	-(CH ₂) ₂ -C-F-OCH ₃
367	C⊢CH₂-	1	3	0	-	н	-(CH ₂) ₂ -С-СН ₃
368	C├────────────────────────────	1	- 3	0	-	н	-(CH ₂) ₂ -C-
369	C⊢CH₂-	1	3	0	-	н	-(CH ₂) ₂ -C-CI
370	CH2-	1	3	0	-	Ĥ, "	-(CH ₂) ₂ -C-C-QCH ₂) ₃ CH ₃
371	CH2-	1	3	0	-	н	-(CH ₂) ₂ -C
372	CH2-	1	3	0		н	- CH ₂ - S - CH ₃
373	C⊢(CH²-	1	3	0	-	н `	-(CH ₂) ₂ - C- N-
374	CH2-	1	3	0	-	н	-(CH ₂) ₃ -C·N-OCH ₃

Table 1.35

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
375	с⊢СН₂-	1	3	0	-	н	-{CH ₂ } ₃ -C-N-CI
376	CH-2-	1	3	0	-	Н	-(CH ₂) ₃ -C-H
377	CH-2-	1	. 3	0	-	Н	CH ₂ -C-CH ₂ -C-N CH ₃ CH ₃ CH
378	CH2-	1	3	0	-	н	-CH ₂ -CH ₂ -C-N-F
379	CH-CH2-	1	3	0	-	н	-(CH ₂) ₃ - C- H O C- CH ₃
380	CH2-	1.	3	0	-	н	-(CH ₂) ₃ - C-N-CH ₂
381	CH-CH ₂ -	1	3	0		н	- CH ₂ -N-S-CH ₃
382	. CH-CH ₂ -	1	3	0	-	н	- CH ₂ - N- C- O- CH ₂ -
383	CH-CH ₂ -	1	3	0	-	н	- CH O C - N CI
384	CH-CH2-	2	2	0	-	н	-CH ₂ -N-C-CH ₃
385	CH2-	2	2	0	ı -	н	-CH ₂ -N-C-NO ₂

Table 1.3.6

Compd.	R1 (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p=15}^{-14}(CH_2)_{q}G-R^6$
386	CH₂-	2	2	0		н	-cH ₂ -N-C-
387,	CH₂-	2	2	0	-	н	-сн ₂ -к-с
388	—CH₂-	2	2	0	-	н	- CH ₂ -N-C- NO ₂
389	-CH ₂ -	2	2	0	- · .	н	-CH ₂ -N-C
390	€ CH ₂ -	2	2	0	-	н	-CH ₂ -N-C-CF ₃
391	—CH₂-	2	2	0	-	н	-CH ₂ -N-C-CF ₃
392	CH₂-	2	2	0	-	н	-CH ₂ -N-C
393		2	2	0	-	Н	-CH ₂ -N-C-
394	CH ₂ −	2	2	. 0	-	н	-CH ₂ -N-C-C
395	—CH₂-	2	2	0	-	н	-CH ₂ -N-C
396	CH₂-	2	2	0	-	н	-CH ₂ -N-C

Table 1.37

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
397	CH ₂ -	2	2	0	-	н	-CH2-N-C-CI
398	€ CH2-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
399	—CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C
400	—CH₂-	2	2	0		н	-(CH ₂) ₂ -N-C-NO ₂
401	CH ₂ -	2	2	0	, -	н.	-(CH ₂) ₂ -N-C
402	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-CF ₃
403		2	2	0	-	, н	-(CH ₂) ₂ -N-C-CF ₃
404	CH₂-	2	2	0	- -	н	-(CH ₂) ₂ -N-C
405	€ CH ₂ -	· 2	2	0	-	н	-(CH ₂) ₂ -N-C-
406	CH₂−	2	2	0	-	н	-(CH ₂) ₂ -N-C-
407	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-⟨

Table 1.38

Compd.	R1 (CH2)1-	k	m	n	chirality	. Ł3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
408	Сн₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C-F
409	CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C-CI
410	CH ₂ -	2	2	0	-	н	(S) P -CH-N-C- CH ₂ CH(CH ₃) ₂
. 411	—CH₂-	2	2	0	-	н	(S) II -CH-N-C- H CH ₃) ₂
412	CH₂-	2	2	0	-	Н	(5) P NO ₂ -CH-N-C- NO ₂ -CH ₂ CH(CH ₃) ₂
413	—CH₂-	2	2	0		Н	(S) -CH-N-C
414	CH₂-	2	2	0		н	(5) CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
415	CH₂-	2	2	0	-	н	(5) OCF3 -CH-N-C
416	CH₂-	2	2	0	-	Н	(S) OCF ₃ CH-N-C-CH-N-C-CH-N-C-CH-N-C-CH-N-C-CH-N-C-CH-N-N-C-CH-N-N-C-CH-N-N-C-N-N-N-C-N
417	CH₂-	2	2	0	-	н	(S) P -CH-N-C H CH ₂ CH(CH ₃) ₂
418	—CH₂-¹	2	2	0	-	н	(5) P CI -CH-N-C- CH ₂ CH(CH ₃) ₂

Table 1.39

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³ ,	-(CH ₂) p G (CH ₂) q G-R ⁶
419	— CH₂-	2	2	0	=	Н	(S) P -CH-N-C-Br CH ₂ CH(CH ₃) ₂
420	—CH₂-	2	2	0	-	Н	(S) P -CH-N-C H H CH ₂ CH(CH ₂) ₂
421		2	2	0	-	н	(S) CI -CH-N-C
422	CH ₂ −	2	2	0	-	н	(F)
423	CH₂-	2	2	0	-	н	(H) Q -CH-N-C -H H CH ₂ CH(CH ₃) ₂
424	CH ₂ -	2	2	0	- ,	н	(A) P NO ₂ -CH-N-C-
425	CH₂-	2	2	0	-	н	(F) CH-N-C
426	€ CH ₂ -	2	2	0	-	н	(F) - CH-N-C - CH ₂ CH(CH ₃) ₂
427	—CH₂-	2	2	0	-	н	(F) P CF ₃ -CH-N-C-CH ₂ CH(CH ₃) ₂ F
428	€ CH ₂ -	2	2	0	-	н	(F) OCF ₃ -CH-N-CCH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₃ CH ₂ CH ₃
429	CH₂-	2 -	2	0	-	Н	(A)
							•

Table 1.40

							₽4
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p \cdot 1}^{-1} (CH_2)_{q} G - R^6$
430	—CH₂-	2	2	0	-	н	(F) −CH−V−C− H ĈH2CH(CH3)3 CI
431	CH ₂ -	2	2	0	-	H	(<i>F</i>) P -CH-N-C
432	-CH ₂ -	2	2	0	-	н .	CH-N-CH ₃) ₂
433	. СH ₂ -	2	2	0	-	н	-CH-N-C
434	СН-СН2-	1	3	1	- -	н	-CH2-N-C-
435	CH_CH ₂ -	1	3	1	-	н	-CH ₂ -N-C
436	CH_CH2-	1	3	1	-	Н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
437	CH2-	1	3	1	-	Н	-CH ₂ -N-C
438	CH-€	1	3	1	-	Н	-CH ₂ -N-C-CF ₃
439	С⊢—СН₂-	1	3	1	-	ìн	-CH ₂ -N-C
440 .	C-CH ₂ -	1	3	1	-	н	-CH ₂ -N-C

Table 1.41

Compd. No.	R ¹ (CH ₂) ₁ -	k	m	n	chirality	[°] R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - CR^6$
441	сн—Сн2-	1	3	1	-	н	-CH ₂ -N-C-
442	C├ - CH₂-	1	3	1	-	Н	-CH ₂ -N-C-
443	C├────────────────────────────────────	1	3	1	-	· н	-CH ₂ -N-C
444	с⊢СУ-сн₂-	. 1	3	1	-	н	-CH ₂ -N-C
445	С⊢СН2-	1	3	. 1	-	н _.	-CH ⁵ -M-C-
446	с⊢{Сн₂-	1	3	1	-	H.	-(CH ₂) ₂ -N-C-
447	с⊢С}-сн₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C
448	C	1	3	1		н	-(CH ₂) ₂ -N-C-NO ₂
449	с⊢СН₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C
450	СН-СН2-	1	3	1	-	н	-(CH ₂) ₂ -N-C-CF ₃
451	с⊢—СН₂-	1	3	1	-	н.	-(CH ₂) ₂ -N-C-CF ₃

Table 1.42

Compd. No.	R ¹ (CH ₂) ₁ -	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
452	CHCH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C-
453	CH_CH2-	1	3	1	-	н	-(CH ₂) ₂ -N-C-
454	C├─────────────────	1	3	1	-	Н	-(CH ₂) ₂ -N-C-C
455	C⊢—CH₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C
456	CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C
457	CH2-	.1	3	1	-	н	-(CH ₂) ₂ -N-C-CI
458	CH2-	2	2	1	-	н	- CH ⁵ - N- C-
459	CH2-	2	2	1		н	- CH ₂ - H C CH ₃
460	CH2-	2	2	1	-	н	- CH ₂ -N-C-CH ₃
461	CH2-	2	2	1	-	Н .	- CH ₂ - N- CF ₃
462	C ⊢ C H₂-	2	2	1	-	н	- CH ₂ - N- C- H ₃ C .

Table 1.43

Compd.	R (CH ₂) ₁ -	k	m	n	chirality	[:] R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^- R^6$
463	CH2-	2	2	1	-	Н	- CH ₂ -N-C-
464	CH-CH2-	2	2	1	-	н	- CH ₂ - N-C - OCH ₃
465	CH2-	2	2	1	-	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
466	CH-2-	2	2	1	-	н	- CH ₂ -N-C
467	CH-2-	2	2	1	-,	н	-CH ₂ -N-C-Br
468	C├ - CH ₂ -	2	.2	1	-	н	-CH ₂ -N-C-N(CH ₃) ₂
469	CH2-	2	2	1 .	-	н .	-CH ₂ -N-C-OCH ₃
470	C├─ \ CH ₂ -	2	2	1	-	н .	- CH2- ¼ C-
471	CH2-	2	2	1	-	н	-CH ₂ -N-C
472	CHCH ₂ -	. 2	2	1	-	н	- CH ₂ -N-C
473	CH2-	2	2	1	-	н	- CH₂-N, C-C-CH₃

Table 1.44

Compd.	R (CH ₂),-	k	m	n	chirality	Ř³	$-(CH_2)_{p}$ $+5$ $+5$ $+5$ $+5$ $+5$ $+5$ $+5$ $+5$ $+5$ $+5$
474	CH-{	2	2	1	-	н	-CH ₂ -NC
475	C⊢ CH ₂ -	2	. 2	1	-	H	- CH ₂ - N- C- CH(CH ₃) ₂
476	CH-CH₂-	2	2	1	-	н	- CH ₂ -N-C-NO ₂
477	CH ₂ -	2	2	1	-	н	- CH ₂ -N-C
478	CH-2-	. 2	2	1	.	н	- CH ₂ - N- C- N-
479	C├ ~ CH ₂ -	2	2	1	-	Ħ.	-CH ₂ -N-C-
480	CH-€-CH2-	2	2	1	-	н	-сн ₂ -ү-с-б
481	CH2-	2	2	1	-	н	- CH2- N C- S
482	CH√CH₂-	2	. 2	1		Н	- CH ₂ -N-CH ₃
483	C├-(CH ₂ -	2	2	1	-	н	- CH ₂ -N-C- S CH ₃
484	СН-СН2-	2	2	1	-	н	- CH ₂ -N-C-N-C-N-H

Table 1.45	Table	1.45	
------------	-------	------	--

Compd.	R ² (CH ₂),	k	m	n	chirality	₽³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
485	CH_CH2-	2	2	1	-	н	- CH ₂ -N-CF ₃
486	CH-2-	2	2	1	-	Н	- CH ₂ -N-C-CN
487	C├ - CH ₂ -	2	2	1		Н	- CH ₂ - N C C
488	C├─ \ CH ₂ -	2	2	1	-	н	- CH ₂ -N: C-\(\sigma\)
489	CHCH ₂ -	2	2	1	-	н	- CH ₂ - N C CF ₃
490	CH2-	2	2	1	-	н	-CH ₂ -N-C
491	CH2-	2	. 2	1	-	Н	- CH ₂ -N-C
492	CH-CH2-	2	2	1	-	н	- CH ₂ -N-C
493	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
494	CHCH2-	2	2	1	-	н	- CH ₂ -N-C-
495	C├─ \ CH ₂ -	2	2	1	-	Н	- CH ⁵ - H C-CH ³

Table 1.46

Compd.	R (CH ₂),-	k	m	n	chirality	À³	$-(CH_2)^{\frac{R^4}{p}}_{\frac{1}{R^5}}(CH_2)_{\overline{q}}G^-R^6$
496	C├	2	2.	1	-	н	-CH ₂ -N-C
497	CH-CH ₂ -	2	2	1	-	. H	- CH ₂ -N-C CH(CH ₃) ₂
498	CH-CH2-	2	2	1	-	н	- CH ₂ -N-C-NH ₂ CF ₃
499	C├ - CH ₂ -	2	2	.1		H	- CH ₂ -N-C
500	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
501	CI—CH₂-	2	2	1	-	н	- CH ₂ -N-C
502	CI—CH ₂ -	2	2	1	-	н	- CH ₂ -N-C NO ₂
503	CH2−	2	2.	1	-	н́	- CH ₂ -N-CI
504	CHCH ₂ -	2	2	1		Н	- CH ₂ - № C OCH ₃
505	CI—CH ₂ -	2	2	1	-	н	- CH ₂ -N-C
506	CI-CH ₂ -	2	2	1	-	н	- CH ₂ - N C - 0 NO ₂

Table 1.47

Compd.	R (CH ₂) _j -	k ·	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
507	CI	2	2	1	-	н	- CH ₂ - N C O
508	CI	2	2	1	- -	Н	- CH ₂ - N- C- S
509	C├────────────────	2	2	1	-	н	- CH ₂ -N-C-(S)
510	CH-2-	2	2	1		н	-CH ₂ -N-C-CH ₃
511	CH2-	2	.2	1	-	н	-CH ₂ -N-C-(CH ₃) ₃
512	CH-CH ₂ -	2	2	1	, -	н	- CH ₂ -N-C-ChCH ₃
513	CH2-	2	2	1	- ,	н	- CH ₂ -N-C-CH ₃
514	CH2-	2	2	1	-	н	- CH ₂ -N-C-(CH ₃) ₃
515	CI—CH ₂ -	2	2	1	-	Н	- CH ₂ - N- C- CH ₂ OH
516	H ₂ N-CH ₂ -	2	2	1	-	Ή	-CH₂-N-C-CF3
517	H ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.48

Co	mpd. Vo.	R ¹ (CH ₂),-	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
5	18	NH ₂ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
5	19	()-c-N-()-cH₂-	2	2	1	-	н	CH ₂ -N-C-CF ₃
. 5	520	CI—CH₂¬	2	2	1	~	. —СН3	-CH ₂ -N-C-CF ₃
5	521	СН-СН2-	2	2	1	-	-(CH ₂) ₂ CH-	-CH2-N-C-CF3
5	522	C├──ÛH₂─	2	2	1	-	-CH ₂ CH-	-CH ₂ -N-C-CF ₃
5	523	CH_CH ₂ -	2	2	1	-	-(CH ₂) ₂ CH-	-CH2-N-C-
	524	CH2-	2	2	1	-	$-CH_2CH-$	-CH2-N-C-
	525	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
	526	CHCH ₂ -	2	2	1	-	н	-CH2-N-C-
	527	CH-CH2-	2	2	1	-	н	-CH2-N-C-\S
	528	CI—CH₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₃

Table 1.49

Compd. No.	R ¹ /(CH ₂) _i -	k	m	n	chirality	\mathbb{R}^3	$-(CH_2)_{p} \frac{\Pi^4}{\Pi^5} (CH_2)_{q} G - \Pi^6$
529	CI—CH2-	2	2	1	-	Н	-CH ₂ -N-C-\ 0
530	CH2-	2	2	1	-	н	-CH2-N-C-
531	CI-CH ₂ -	2	2	1	-	. н	-CH ₂ -N-C-S
-', 532	C⊢CH₂-	2	2	1	-	Н	-CH ₂ -N-C-CH ₃ H ₃ C
533	CHCH2-	2	2	1	us.	Н .	-CH ₂ -N-C
534	CH2-	2	2	1		н	CH ₂ -N-C NO ₂
535	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-S.
536	CH2-	2	2	1	<u>-</u>	Н	-CH ₂ -N-C
537	C:	2	2	1	-	н	-CH ₂ -N-C-C(CH ₃) ₃
538	CI—CH2-	2	2	1	-	н	-CH ₂ -N-C-O
539	CI—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃

Table 1.50

Compd.	R1 (CH2)j-	k	m	n	chirality	R³	$-(CH_2)_{p=1}^{p+4}(CH_2)_{q}G-R^6$
540	CH-2-	2	2	1	-	Н	-CH ₂ -N-C-N-C-H ₃
541	CI-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C
542	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃
543	CH2-	2	2	1	-	н	$-CH_2-N-C-$
544	СН₂-	2	2	1	-	Н	-CH ₂ -N-C-
545	CH2-	2	2	1	-	н	-CH ₂ -N-C
546	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C-CI
547	C├────────────────────────────────────	2 .	2	1	-	Н	-сн ₂ -н-с-С-С:
548	CH2-	2	2	1	-	Н	-CH ₂ -N-C-CI
549	CHCH2-	2	2	1	-	Н	-CH ₂ -N-C-
550	C ⊢ CH₂-	2	2	1	-	н	-CH2-H-C

Table 1.51

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	. H ₃	$-(CH_2)_{\overline{P}}^{\frac{R^4}{4}}(CH_2)_{\overline{q}}G^{-R^6}$
551	с⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₂ CH ₃
552	CHCH ₂ -	2	2	1	-	н	CH ₂ -N-C-CH ₂
553	CH2−	2	2	1	- 1	н	-CH ₂ -N-C-CH ₂ CF ₃
554	C	2	2	1	-	Н	-CH ₂ -N-C-N-C-N-H
555	CH-CH ₂ -	2	2	1	-	. ·	-CH ₂ -N-C-N-CI
556	CH2-	2	2	1	-	н	-CH ₂ -N-C-N-CH ₃
557	CH-CH2-	2	2	1	-	н	-(CH ₂) ₂ -N-C-
558	C├─(2	2	1	-	н	- CH N- C-
559	CH-2-	2	2	1	-	Н	-CHH CCH3 CF3
560	CI—CH ₂ -	2	2	1	-	. н	- CH
561	CI—CH ₂ -	2	2	1	-	н	- CH- X-C

Table 1.52

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	۲۹	-(CH ₂) _p ^{R⁴} (CH ₂) _q G-R ⁶
562	CI-CH ₂ -	2	2	1	=	. н	- CHN-C-
563	CI-CH ₂ -	2	2	1	-	Н	CH ² F ² C CH ³ C-CE ³
564	CH-2-	2	2	1		· H	- CH N C - OCH ₂ CH ₃
565	CH2-	2	2	1	-	н	-CH-N-C-
566	CI—CH ₂ -	2	2	1	-	. н	- CHNC-CH3
567	CH ₂ -	2	2	1	-	Н	- CH N C- CH ₃ CF ₃
-568	CHCH ₂ -	2	2	1	-	Н	-CHNC-CF3
569	CH-CH ₂ -	2	2	1	-	н	- CHN C-CF3
570	CH-2-	2	2	1	-	н	- CH- N-C
571	CI-CH ₂ -	2	2	1	-	Н	- C++ N C - O+(C+3)2
572	CH2-	2	2	1	-	н	-CHN CF3

Table 1.53

Compd. No.	R ¹ (CH ₂) _I	k	m	n	chirality	₽³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} G^- R^6$
573	CI—CH2-	2	2	1	-	н	- CH H C S
574	CI-CH2-	2	2	1	-	н	-CH-NC-S
575	CH2-	2	2	1	-		-CH ³ C(CH ³) ³
576	CICH ₂ -	2	2	1	-	Н	-CH-N-C-O SCH3
577	CI	2	2	1	-	н	-CH V C-O
578	CH2-	2	2	1	~	н	-CH-N-C-S
579	CH-2-	2	2	_. 1	-	н	-CH3 H
580	CH-CH2-	2	2	1	- '	н	-CH3 CH3
581	C├ - CH ₂ -	2	2	1	-	Н	-CHNC-S
582	C⊢√ CH₂-	2	2	1	-	н	- C+ Z C - S
583	CH-2-	2	2	1	-	Н	-CH N C - N CH3

Table 1.54

Compd. No.	R2-(CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
584	CI-CH ₂ -		2	1	-	н	- CH ³
585	CH-CH ₂ -	2	2	1	. -	, н	-CH2-CH3-CN
586	CH-CH ₂ -	2	2	1	-	н	-CHNC-CI
587	C!————————————————————————————————————	2	2	1	-	н	-CHNC-CF3
588	CH2-	2	2	1	-	н	- CH N-C-NH2
589	CI-CH ₂ -	2	2	. 1	-	н	- CH N C - C(CH3)3
590	CH-CH ₂ -	2	2	1	-	Н	-CH N-C - CH(CH ₃) ₂ CH ₃
591	CHCH ₂ -	2	2	1	-	н	-CHN C- N(CH ₃) ₂ CH ₃
592	CI-CH ₂ -	2	2	1	-	н	- CH3 CH3 - OCH3
593	C ├── CH ₂ -	2	2	1	-	H ·	-CH N C CH3OH
594	CI—CH ₂ -	2	2	. 1		н	-СH У-С -ОН

Table 1.55

Compd.	R ² (CH ₂) _j	k	m	n	chirality	'R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
595	CI	2	2	1	-	н	- CH N C - CO ₂ CH ₃
596	C├ - CH ₂ -	2	2	1	-	н	- CH N. C. C. CH ³
597	CH-CH ₂ -	2	2	1	-	н	- CH- N C- C- CH ₃
. 598	C├──────────────────────	2	2	1	-	н	- CH N C- O
599	СН ₂ -	2	2	1	-	`н	-CH N-C-N CH3 CH3
600	CH-CH ₂ -	2	2	. 1	-	Н	-CHNC-OBr
601	CHCH ₂ -	2	2	1	-	н	OCH3 CH3 CH3
602	CH-2-	2	2	1	-	Н	- C++ N C - (CH ₃)₂ - C+ N C - (CH ₃)₂ - CH ₃
603	C├ - CH₂-	2	2	1	-	н	- CH N- C - NH ₂
604	C	2	2	1	-	Н	, -CH2HH
605	CH2-	2	2	1	-	Н	-CH ³

Table 1.56

Compd.	R 1 (CH ₂)-	k	m	n	chirality	'R³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
606	C⊢CH₂-	2	2	1	-	н	-CH-N-C-
607	Ci—CH ₂ -	2	2	1	-	н	-CH-N-C-
608	CI—CH₂-	2	2	1	- '	н	-CH-N-C
609	CH2-	2	2	1	-	н	-CHNC
610	CI—CH ₂ -	2	2	1	-	н	-CH3 OF CH3
611	C├────────────────────────────	2	2	1	-,	Н	-CH-N-C-C(CH3)3
612	C├────────────────────────────────────	2	2	1	-	н	-CH-N-C
613	C├────────────────────────────────────	2	2	1	-	Н	-CH-N-C
614	C├────────────────────────────────────	2	2	1	-	н	$-CHNC \longrightarrow NCH_3$ $CH_3 F_3C$ CH_3
615	CH-CH2-	2	2	1	. .	н	-c+2
616	CH-2-	2	2	1	-	н	-CH-N-C-N

Table 1.57

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	⁻ R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G^-R^6$
617	CH-CH2-	2	2	1	**	н	-CHN-C-CF3
618	CH-CH ₂ -	2	2	1	ii.	н	-CH N C - C
619	CH-CH ₂ -	2	2	1	•	н	- CH+ N+ C- CN - CH(CH ₃) ₂
620	CH2- CH2-	2	2	1	-	н	- CH N- C- Br - CH(CH ₃) ₂
621	CH2−	2	2	1	-	Н	-CH+ № C- H CH(CH ₃) ₂
622	CH2-	2 '	2	1	-	н	- CH-N-C H CH(CH ₃) ₂
623	C├ \ CH ₂ -	2	2	1	-	н	-CH N C CH(CH ₃) ₂
624	C	2	2	1,	-	Н	- CH N C NO ₂
é25	CH2-	2	2	1	-	н	- CH N C NH ₂ - CH (CH ₃) ₂
626	CH2-	2	2	1	-	н	- CH+ N+ C- CF ₃
627	С⊢-{СН₂-	2	2	1	-	н	CH(CH ₃) ₂ CF ₃ OCH ₂ CH ₃ -CH N C C C C C C C C C C C C C C C C C C

Table 1.58

Compd.	R1 (CH2)-	k	m	n	chirality	Ř³	Ha
628	CI—CH2-	2	2	1		н	-CH-N-C
629	CH-CH ₂ -	2	2	1	-	H	-CH-N-C
630	CH2-	2	2	1	-	н	- CH N C - CH(CH ₃) ₂
631	CH2-	2	2	1	-	н	- CH; N; C- CF ₃ CH(CH ₃) ₂ CF ₃
632	C├─ \ CH ₂ -	2	2	1	-	. н	- CH; N·C - CF ₃ - CH; CH ₃) ₂ CF ₃
633	CH-2-	2	2	1	er.	Н	- CH N C - CF3 - CH N C - CF3 - CH (CH ₃) ₂ F
634	CH2-	2	2	1	-	Н	- C++ N-C - CF3 - C+ N-C - F. - C+(C+3)2
635	C├ ~ CH₂-	2	2	1		н	- CH N CH(CH ₃) ₂ - CH(CH ₃) ₂ - CH(CH ₃) ₂
636	с⊢С Сн₂-	2	2	1	-	Н	- CH N- C- CH ₃
637	CH-CH ₂ -	2	2	1	-	н	- CH N C C C C C C C C C C C C C C C C C
638	CH-2-	2	2	1	-	Н	-CH N C - CN

Table 1.59

Compd. No.	R (CH ₂) _j -	k	m	n	chirality	R3	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^{-R^6}$
639	СН-СН2-	2	2	1	-	н	-C+N-C-N(CH ₃) ₂ I H CH(CH ₃) ₂
640	CH-CH₂-	2	2	1	-	н	- CH N C - OCH3 CH(CH3)2
641	CH2-	2	2	1	-	Н	-CHNC-CO2CH3 -CH(CH3)2
642	C├ - CH ₂ -	2	2	1	- ,	Н	CH(CH ³) ⁵
643	CH-2-	2	2	1	-	н	-CH-N-C
644	C├─ \ CH ₂ -	2	2	1	-	н	- CH N C - C(CH ₃) ₃ CH(CH ₃) ₂
645	C├──CH₂-	2	2	1	-	н	- CH N C- NH ₂ CH(CH ₃) ₂
646	CH2⁻	2	2	1	-	н	- CH-N-C
647	CI—CH ₂ -	2	2	1	-	н	-CH N-C- H H C-C-CH ₃
648	CH_CH ₂ -	2	2	1	-	н	$-CH \underset{H}{\overset{\circ}{\text{CH}}} C - CH(CH_3)_2$ $-CH(CH_3)_2$
649	C├──────── CH ₂ -	2	2	1	-	н	- СН И С- ОСН(СН3)2 СН(СН3)2

Table 1.60

Compd.	R1 (CH ₂),-	k	m	n -	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^{-R^6}$
650	CI-CH ₂ -	2	2	1	-	н	- CH-N-C
651	CH-2-	2	2	1	-	Н	-CHCH3
652	CI—CH₂-	2	2	1	-	н	-CH-N-C
653	CH-CH₂-	2	2	1	-	Н	-CH-N-C
654	C CH₂-	2	2	1	-	н	- CH-NC-CH(2H3)2
655	CH-2-	2	2	1	-	н	-CH-N-C-C-CH(CH ₃) ₂
656	CH2-	2	2	1	-	н	-CH-N-C
657	CH2-	2	2	1	-	Н	-CH-N-C- CH(CH ₃) ₂
658	CH2-	2	2	1	-	Н	- CH-N-C- NH CH (CH ₃) ₂
659	CH2-	2	2	1		Н	-CHN-C-(S H NO ₂ CH(CH ₃) ₂
660	CI—CH₂-	2	2	1		н	-C++ N-C- N O

Table 1.61

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	⁻ R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
661	C	2	2	1	-	н	-CH-N-C- S H CH(CH ₃) ₂ OCH ₃
662	C	2	2	1	-	н	-CHN-C
663	C├ - CH₂-	2	2	1	-	Н	- CH-N-C- H CH(CH ₃) ₂
664	CI-CH ₂ -	2	2	1	-	Н	-CH-N-C- NO ₂
665	CH ₂ -	2	2	1	. -	н	-CH-N-CS -CH(CH-3)2
666	CI-CH ₂ -	2	2	1	-	н	-CH-N-CH ₃ -CH(CH ₃) ₂ -CH ₃ -CH ₃
667	CI—CH ₂ -	2	2	1	-	н	-CH-N-C-CH3)2
668	CH-(CH₂-	2	2	1	-	н	-CH-N-C-CH ₃
669	CI-CH ₂ -	2	2	1	-	н	-CH-N-C- CH(CH ₃) ₂ CH ₃
670	C├ - CH ₂ -	2	2	1	-	, Н	-CH-N-C
671	CHCH₂-	2	2	1	-	н	-CHNC- H CH(CH ₃) ₂ NO ₂

Table 1.62

Compd. No.	R (CH ₂) _j -	k	m	n	chirality	ÏR³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
672	C⊢√_CH₂-	2	2	1	-	н	-CH-N-C-N CH(CH ₃) ₂ H
673	CHZ-	2	2	1		н	-CHN-C- H C(CH ₃) ₂
674	CH2−	2	2	1	-	н	-CH-N-C-S CH(CH ₃) ₂
675	CH-CH ₂ -	2	2	1	-	н	-CHN-C- HC(CH ₃) ₂ CH ₃
676	CH2-	2	2	1	, <u>-</u>	Н	-CH-N-C- CH(CH ₃) ₂ H
677	CH ₂	2	2	1	-	н	-CH-N-C-N-CH(CH ₃) ₂ CH ₃
678	CH2-	2	2	. 1	-	Н	-CH-N-C- CH(CH ₃) ₂
679	CH-CH2-	2	2	1	-	Н	-CHNC-STO
680	CH-CH ₂ -	2	2	1	-	н	-CH-N-C Br
681	CH-CH2-	2	2	1	-	н	-CH-N-C-CH ₃ CH(CH ₃) ₂
682	CH-CH2-	2	2	1	-	н	-CHN-C- H CH(CH ₃) ₂ C(CH ₃) ₃

Table 1.63

Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	˳	$-(CH_2)^{\frac{R^4}{R^5}}(CH_2)_{\overline{q}}G^-R^6$
683	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-S-SCH3
684	CH-2-	2	2	1	-	Н	-CHCH ₃) ₂
685	CH₂-	2	2	1	-	н	-CHNCH ₃) ₂ SCH ₃
686	CH₂-	2	2	1	-	Н	- CH N- C- H CH ₂ CH(CH ₃) ₂
687	CI-CH ₂ -	2	2	1	-	Н	- CH+ N- C-
688	CH ₂	2	ą	1	. -	H _.	-CHNC-CF3
689	CH2~	2	2	1	-	Н	-CH V-C-
690	CH-CH ₂ -	2	2	1	-	Н	-CHWC-
691	CI-CH ₂ -	2	2	1	-	н	-CH N C- NCH3)2
√ 692	C├─ \ CH ₂ -	2	2	1		н	-CHNC-COCH3
693	CI— CH₂-	2	2	1	-	н	-CHNC

8 3

Table 1.64

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	Έ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
694	CI-CH ₂ -	2	2	1	-	н .	-CHN-C-OOCH2CH3
695	CI—CH ₂ -	2	2	1	-	н	-CHN C - ∞2CH3
696	CH2-	2	2	1	-	н	- CH N-C-CCF3
697	CH2⁻	2	2	1	-	н	-CH-N-C
698	CH2-	2	2	1	-	н	- CH N- C- N(CH ₃) ₂
699	C├────────────────────────────────────	. 2	2	1	-	н	-СН И-С-ОСН3
700	CHCH2-	2	2	1	-	н	-CHN-C-CO2CH3
701	C├ ~ CH₂-	2	2	1	-	н	-CHN-C
702	C	2	2	1	-	н	-CHN-C
703	CI-CH ₂ -	2	2	1	-	н	-CHN-C-CH(CH ₃) ₂
704	CI-CH ₂ -	2	, 2	1	-	н	-CH N-C

Table 1.65

Compd. No.	R1 (CH2),-	k	m	n	chirality	R³	-(CH ₂) p 5 (CH ₂)q G-R ⁵
705	CH2-	2	2	1	-	н	-CH-N-C- H ₃ C
706	CH2-	2	2	1	-	Н	-CH-N-C-STCH3
707	CH2-	2	2	7	-	н	-C++v-C
708	CI—CH₂-	2	2	1	-	н	-C1+N-C-S Br
709	CI————————————————————————————————————	2	2	1	~	н	-CH-N-C-S SCH3
710	CI————————————————————————————————————	2	2	1	-	н .	-CHNC-S
711	CH-CH2-	2	2	1	-	н	-CH-N-C-(CH3
712	CH-CH₂-	2	2	1	-	н	-cHN-C-S
713	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C
714	CH2-	2	2	1	-	н	-CHN-C-N
715	CH-CH ₂ -	2	2	1	-	н	-CHY C- 5

Table 1.66

Compd.	R1 (CH ₂),-	k	m,	n	chirality	R³	$-(CH_2)_{\overline{P}} \frac{\overline{H}^4}{\overline{H}^5} (CH_2)_{\overline{q}} G - R^6$
716	CH-CH2-	2	2	1	-	н .	-CHN-C-N
717	CI-CH ₂ -	2	2	1	10.	н	-CHN-C-07NO2
718	CH2-	2	2	1	-	н	-ci+n-c-\n h
719	CH-2-	2	2	1	-	н	-CHN-C-
720	CH-€	2	2	1	-	Н	-CHN-C-RT Br
721	С⊢-СН₂-	2	2	1	-	н	-CH-N-C-\N CH3
722	C ⊢ C H₂-	2	2	1	-	н	-CHN-C-CH2OH
723	CHCH ₂ -	2	2	1	-	н	-CH-N-CNH2
724	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-(CH ₃) ₃
725	CH2-	2	2	1	-	н	-c+n-c-()-c-()
726	CH2-	2	2	1	-	н	-CH-N-C-CH ₃

Table 1.67

Compd. No.	R ¹ (CH ₂) -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^4$
727	C:—CH₂-	2	2	1	-	н	-CH-V-C
728	CI—CH₂-	2	2	1	-	н	-C++N-C
729	C├───── CH ₂ -	2	2	1	-	н	-CH-N-C
730	CH ₂ -	2	2	1	-	н	-CH-N-CCI
731	CH-{	2	2	1	-	н	-CH-N-C-CH3
732	CH2-	2	2	1	-	н	-CHNC-CF3
733	CH-2-	2	2	1	-	н	-CH-N-C
734	CH-CH2-	2	2	1	-	'H	-CHN-C
735	C├ - CH ₂ -	2	2	1	-	Н	-CHN-C-S
736	CI—CH ₂ -	2	2	1	-	н	-CHN-C- H ₂ N CF ₃
737	CI-CH ₂ -	2	2	1	-	H	-c+n-c

Table 1.68

Compd.	R ¹ (CH ₂) _j -	k	m	η	chirality	Ŕ³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
738	C	2	2	1	-	н	-CH-N-C-CH3
739	. CH2-	2	2	1	-	н	-CH-N-C- NH
740	CI—CH2-	2	2	1	-	н	-CHN-C-NO2
741	C├ - CH ₂ -	2	2	1	-	н	-CHN-C-CS
742	C├	2	2	1	-	н	-CHN-C-S
743	CH2-	2	2	1	-	н	-ch-N-c-
744	C├ - CH ₂ -	2 .	2	1	-	н	-CHN-C-CH3
745	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-(CH3)3
746	C├ - CH ₂ -	2	2	1	-	н	-CHN-C-N CH3
747	C ⊢ CH₂-	2	2	1	-	н	-CHNC-CH3
748	CH2-	2	2	1	•	н	-chyc-Cs

Table 1.69

							_
Compd.	R (CH ₂),	k	m	n	chirality	Έ³	$-(CH_2)_{p=1/5}^{p+4}(CH_2)_{q}G-R^6$
749	СН2-	2	2	1	-	н	-c+-N-c
750	CH_CH2-	2	2	1	-	н	-CH-N-C
751	CH2-	2	2	1	-	н	-CH-N-C- CH ₂ OH
752	CH₂-	2	2	1		н.	-CHN-C-CF3
753	CH_CH ₂ -	2	2	1	-	н	-CH-N-C-CN CH ₂ OH
754	CH-CH ₂ -	2	2	1	-	н	, -CH-N-C- H H CH2OH
755	CH2-	2	2	1	-	н	-CH-N-C
756	CH-2-	2	2	1	-	н	-CH-N-C-NO ₂
757	CI-CH ₂ -	2	2	1	-	н	ОСН ₂ СН ₃
758	CHCH ₂ -	2	2	1	-	` н	-CH-N-C- CH ₂ OH
759	CH-2-	2	2	1	-	н	-CHNC-OCF3

Table 1.70

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{p}}_{\frac{1}{R^5}}(CH_2)^{\frac{1}{q}}G^{-R^6}$
760	CI—CH ₂ -	2	2	1	-	н	-CH-N-C-CF3
761	С⊢СН2-	2	2	1	-	н	-CH-N-C-F
762	с⊢Сту-сн₂-	2	2	1	-	н	-CH-N-C-CF3
763	CH-CH ₂ -	2	2	1	-	н	-CH-N-C- H CH ₂ OH
764	C├	2	2	1	-	н	-C-N-C-
765	CH-CH2-	2	2	1	-	н	-C-N-C-CH ₃
766	CH-2-	2	2	1	-	Н	CH ₃ P CF ₃
767	CI-CH ₂ -	2	2	1	-	н	CH3 Q CH3
768	CI—CH ₂ -	2	2	1	-	н	CH ₃ P -C-N-C- CH ₃ .
769	CH2-	2	2	1	-	н	CH ₃ P OCF ₃
770	C├ ─ CH ₂ -	2	2	1	-	н	-C-N-C-C-S-CF3

Table 1.71

	Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
•	771	CH-2-	2	2	1	. .	Н	-CH ₃ O CF ₃ -C-N-C-F
	772 :	CH-CH2-	2	2	1		н	-CH ₃ P -C-N-C-C-CF ₃ CH ₃
	773	C+	2	2	1	-	н	CH ₃ C(CH ₃) ₃
	774	С⊢С СН₂-	2	2	1	-	Н	CH ₃ P -6-N-C- CH ₃ SCH ₃
	775	CI-CH ₂ -	2	2	1	-	Н	CH ₃ O CH ₃ C(CH ₃) ₃
	776	С├-СН2-	2	2	1	-	Н	CH3 Q CH3
	777	С⊢СН₂-	2	2	1	-	Н	CH ₃ CF ₃ -C-N-C-C-CH ₃ CH ₃
	778	CH-CH ₂ -	2	2	1	-	Н	CH3 P NO2
	779	CH-CH2-	2	2	1	-	н	CH ₃
	780	CI-CH ₂ -	2	- 2	1	-	Н	CH ₃ P NO ₂
	781	С├─{	2	2	1	-	н	-C-N-C-N-H

Table 1.72

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
782	CH-CH2-	2	2	1	-	н	CH3 OCH3
783	С⊢СН2-	2	2	1	-	н	-CH ₃ OCH ₂ CH ₃ -C-N-C-
784	С⊢СН₂-	2	2	1	-	н	CH ₃ Q -C-N-C-CH ₂ CF ₃ CH ₃
785	CH-2-	2	2	7		Н	-CH3 OCH3
786	C⊢—CH₂-	2	2	1		Н	H ₂ C CH ₂
787	CH-CH ₂ -	2	2	1	- .	н	H ₂ C CH ₂
788	C├ - CH₂-	2	2	1	-	н	-C-N-C-S
789	C├ - CH₂-	2	2	1	-	н	-C-N-C-H ₃
790	CH2-	2	2	1	-	н .	H ₂ C-CH ₂
791	CI	2	2	1	-	н	-C-N-C-NO2
792	СН-СН2-	2	2	1	12	н	-C-N-C

Table 1.73

Compd, No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
793	CI—CH ₂ -	2	2	1	-	н	
794	CH2-	. 2	2	1	-	н	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\$
795	CI-CH ₂ -	2	2	1	-	н	-C-N-C
796	C├─ \ CH ₂ -	2	2	1	-	Н	H ₂ C—CH ₂
797	CH2-	2	2	1	-	н	-C-N-C-CH ₂ C(CH ₃) ₃
798	CH2-	2	2	1	-	Н	
799	СН-СН2-	2	2	1	-	. н	H ₂ C-CH ₂ CH ₃
800	CH-CH2-	2	2	, 1	-	Н	-C-N-C
801	CH-2-	2	2	1	-	н	H ₂ C—CH ₂
802	CI-CH ₂ -	2	2	1	-	. н	-C-N-C-OCH ₃
803	С⊢ СН₂-	2	2	1	-	н	H ₂ Ć-CH ₂ OCH ₂ CH ₃ H ₂ C-CH ₂

Table 1.74

Compd.	R ¹ (CH ₂) _i	k	m	n	chirality	H3	$-(CH_2)_{p}^{\frac{1}{p_1}^4}(CH_2)_{q}^{-}G^{-}R^6$
804	C	2	2	1	-	Н	CF ₃ -C-N-C-CH ₂ -CF ₃ H ₂ C-CH ₂
805	CH2-	2	2	1	-	н	H ₂ C-CH ₂ OCH ₃
806	CH2-	2	2	1	-	н	-C-N-C-Br
807	C⊢CH₂-	2	2	1	-	Н	-CH-N-C-NH ₂
808	CH-2-	2	2	1	-	Н	-CH-N-C-NH ₂
809	CH2-	2	2	1	-	Н	-CH-N-C
810	CH-2-	2	2	1	-	н .·	-CH-N-C
811	CH2-	2	2	1	-	н	-CH-N-C
812	CH2-	2	2	. 1	~	н	-CH-N-C-S SCH ₃
813	CH2-	2	2	1	-	н	-CHNC
814	CH-2-	2	2	1	-	н.	-CH-N-C

Table 1.75

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
815	CI—⟨CH2-				-	H	CF3
816	CH-2-	2	2	1	-	н	-CH-N-C-VH-2
817	CH2-	2	2	1	-	н	-CH-N-C-F (CH ₂) ₂ -C-NH ₂
818	CI—CH₂-	2	2	1	-	н	- C++N-C
819	CH-CH ₂ -	2	2	.1	-	Н	-CH-N-CN-2 CF3
820	C ⊢ CH₂-	2	2	1	-	н	-CH-N-C
821	CI-CH ₂ -	. 2	2	1	- '	Н	-CH-N-C-CI H-CH2OCH3
822	CH-CH ₂ -	2	2	1	-	н	O S SCH ₃ -CH ₂ OCH ₃
823	CH-CH ₂ -	2	2	1	-	Н	-CH-N-C-
824	CI—CH ₂ -	2	2	1	-	н	-CH-N-C-C(CH ₃) ₃
825	CH-CH ₂ -	2	2	1	-	н	-CH-N-CQ

Table 1.76

Compd.	R1 R2 (CH2)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
826	CH2-	2	2	1	-	Н	-CH-N-CCH ₃
827	CH2-	2	2	1	-	н	CH2OCH3
828	CH2-	2	2	1	-	н	-CH-N-C
829	CHCH_2-	2	2	1	· -	н .	-CH-N-C-CF ₃ -CH ₂ OCH ₃ -F
830	CH-{-}-CH ₂ -	2	2	1	-	Н	-CH-N-C-F CH ₂ OCH ₃
831	CHCH ₂ -	2	2	1		н	-CH-N-C-Br CH ₂ OCH ₃
832	CH2-	2	2	1	-	Н	-CH-N-C
833	CH2-	2	2	1	-	н	-CH-N-C-NO ₂
834	CH-CH2-	2	2	1	-	н	-CH-N-C
835	CHCH2-	2	2	1	-	н	-CH-N-C-
836	CH-CH ₂ -	2	2	1	-	н	-CH-V-C- CH3 CH3 CH3

Ta	t_ 1	-	-	.7	7
ıа	\mathbf{c}	e		. /	-/

Compd.	R ¹ (CH ₂) ₁ -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
837	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C-CF3
838	C⊢—CH₂-	2	2	1	-	Н	-CH-N-C-CH ₂ CH ₃
839	с⊢СН₂-	2	2	1	-	н	-CH-N-C-OCH ₃ -CH ₂ OCH ₃ OCH ₃
840	CH2⁻	2	2	1	-	Н	-(CH ₂) ₃ -C
841	CI-CH ₂ -	2	2	1	-	Н	-(CH ₂) ₂ -C-
842	CHCH2-	2	'2	1		н	-(CH ₂) ₂ -C-CI
843	CH2-	2	2	1	-	н	-(CH ₂) ₂ -CH ₃ H ₃ C
844	CH-CH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C-CH ₃
845	CH-CH2-	2	2	1	-	н	-(CH ₂) ₂ -C
846	C	2	2	1	-	Н	-(CH ₂) ₂ -C-(CH ₂) ₂ -O-(CH ₂)
847	C ⊢ CH₂-	2	2	1		н	-(CH ₂) ₂ -C

Table 1.78

Compd.	R1 (CH2) -	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}}^{\overline{H}^4}(CH_2)_{\overline{q}}G^{-R^6}$
848	СН2-	2	2	1	-	н	-(CH ₂) ₂ -CH ₃
849	CH-2-	2	2	1	-	н	(CH ₂) ₂ -C- H ₃ CO
850	CH ₂ −	2	2	1	-	Н	- CH ₂ - Ş- CH ₃
.851	CHCH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-N-CF ₃
852	CH-CH ₂ -	ż	2	1	=	Н	-CH ₂ -N-C-N-CF ₃
853	CHCH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-N-
. 854	CH2-	2	2	. 1	-	н	- CH ₂ -N-C-N-CH ₃
855	CI	2	2	1	-	н	- CH ₂ -N-C-N-CH ₃
856	CI	2	, 2	1	-	Н	. O C-CH ₃
857	C├─────────────────────	2	2	1	-	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
858	CH-CH ₂ -	2	. 2	1		н ,	- CH ₂ -N-C-N-OCH ₃

Table 1.79

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p G-R ⁶
859	C├ - CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-N-CI
860	C⊢√_CH₂-	2	2	1	-	н .	- CH ₂ - N C- N
861	CH2−	2	2	1	=	н	- CH ₂ -N-C N-
862	C├────────────────────────────────────	2	2	1	-	н	-CH2-N-C-N-CH3
863	C├ ─ CH₂-	2	2	1	-	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
864	С⊢{СН₂-	2	2	1	-	н	- CH ₂ -N-C-N
865	C├-{CH ₂ -	2	2	1	-	Н	-CH ₂ -N-S-CH ₃
866	CH-CH2-	2	2	1	-	Н	- CH ₂ -N-S-CF ₃
867	CH-CH2-	2	2	1	-	Н	- CH ₂ -N-S CF ₃
868	C├ - CH ₂ -	2	2	1	-	. Н	- CH ₂ - N- S- CH ₂ CH ₃
869	C ⊢ C H₂-	2	2	1	-	н	- CH ₂ - N-S - CH(CH ₃) ₂

Table 1.80

Compd. No.	R ¹ (CH ₂) _i	k	m	n	chirality	, K ₃	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
870	CH-2-	2	2	1	-	н	- CH ₂ -N-S-CH ₃
871	CH2-	2	2	1	-	н	- CH ₂ - N-S (CH ₂) ₃ CH ₃
872	С├-{}-СН₂-	2	2	1	-	н	- CH ₂ - K- S - O
873	C├	2	2	1	-	н.	- CH ₂ -N-C-O CH ₂ -
874	CH-2-	2	2	1	-	н	- ¢ H O C - N - CI
875	CH2-	2	2	. 1	-	Н	-CH ₂ -N-CF ₃
876	Br—CH ₂ -	2	2	1	-	Н	- CH ₂ -N CF ₃
877	NC-CH2-	2	2	1	-	н	- CH ₂ -N-CF ₃
878	O ₂ N-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C
879	O CH ₂ -	2	2	1	-	Н	- GH ₂ - N C-CF ₃
880	O 0 CH₂-	2	2	1	-	н	- CH ₂ - N- C- CF ₃

Table 1.81

lable	1.01				_		
Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{\rho} + (CH_2)_{\overline{q}} + G - R^6$
881	Br CH ₂	2	2	1	-	н	-CH ₂ -N-C-CF ₃
882	O-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
883	CI CH ₂ -	2	2	1	-	Н	- CH ₂ -N-CF ₃
884	₩C C- H C+5-	2	2	1	-	Н	- CH ₂ - N C - CF ₃
885	H ₃ C-\$ CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
886	F-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
887	F3C-CH2-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
888	HO-CH ₂ -	2	2	1	Ī	H	CH2-N-C-CF3
889	CH ₂ -	2	2	1	-	Н	- CH ₂ - N C- CF ₃
890	CH ₂ -	2	2	1	-	н	-CH2-N-C-CF3
891	CH_CH ₂ -	. 2	2	1	-	н	- CH ₂ - N- CF ₃

~	-	h	le.	4	.8	1

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p=1\atop R^5}^{\frac{1}{p^4}}(CH_2)_{q}^{-}G-R^6$
892	H ₃ CO -CH ₂ -	2	2	1	-	н	- CH ₂ - N C CF ₃
893	O ₂ N CH ₂ -	2	2	1	- •	н	- CH ₂ -N-CF ₃
894	H_3C CH_3 CH_2 CH_3	2	2	1	-	н	- CH ₂ -N-C-CF ₃
895	(CH ₂) ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
896 ,	CN CH ₂ -	2	2	1	=	н	- CH ₂ -N-C-CF ₃
897	HO ₂ C CH ₂ -	2	2	1	=	н	- CH ₂ -N-C-CF ₃
898	HO ₂ C-\(\bigc\)-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-CF ₃
899	OCH ₃	2	2	1	-	Н	- CH ₂ -N-CF ₃
900	H ₃ ∞ ₂ C-√ CH ₂ -	2	2	1	-	Н	- CH ₂ - N C CF ₃
901	O-CH-	2	2	1	-	н	- CH2- N C CF3
.902	O ₂ N CH ₂ -	2	2	1		н	- CH ₂ -N-C-CF ₃

Table 1.83

Compd.	R ² (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)^{-\frac{6}{q}}G-R^6$
903	H₃CO CH₂- OCH₃	2	2	. 1	-	н	- CH ₂ -N-C-CF ₃
904	HOCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
905	O ₂ N CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
906	(CH ₂) ₃ -	2	2,	1	-	н .	- CH ₂ -N-C-CF ₃
907	CH(CH ₂) ₂ -	2	2	1		н	- CH ₂ -N-C-CF ₃
908	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2	2	1	-	н	-CH ₂ -N-C-CF ₃
909	N C-CH2-	2	2	1	÷	н	- CH ₂ -N-C-CF ₃
910	CI CH₂-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
911	CI CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
912	Br CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
913	H ₃ CO-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃

Table 1.84

Compd.	R ¹ (CH ₂) _j -	k	m .	n	chirality	K3	$-(CH_2)_{p}$ $\frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
914	O-140 CH2-	2	2	1	-	н	- CH ₂ -N-CF ₃
91,5	OH - CHCH ₂ -	2	2	1	-	Н	- CH ₂ -N-CF ₃
916	N CH2-	2	2	1	-	н	- CH ₂ -N-CF ₃
917	CH ₂ -	2	2	1	-	н	- CH ₂ -N-CF ₃
918	H ₂ CO ₂ C·OH ₂ -OH ₂ -	2	2	1		н	- CH ₂ -N-C-CF ₃
919	H ₃ C-CH ₂ -	2	2	1	- .	н	- CH ₂ -N-C-
920	OCF ₃	2	2	1	-	Н	- CH ₂ - N- CF ₃
921	CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
922	D-CH₂-	2	2	1	-	н	- CH ₂ - N- C-
923	CH-CH-	2	2	1	-	, Н	- CH ₂ - N- C- CF ₃
924	H ₂ N-C	2	2	1	-	н	-CH2-N-C-CF3

104

Table 1.85

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	H3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
. 925	H ₂ N+C	2	2	1	-	Н .	-CH ₂ -N-C-CF ₃
926		2	2	1	-	н	- CH ₂ -N-C-CF ₃
927	F ₃ CQ —CH ₂ -	2	2	1	<i>-</i>	н	-CH2-N-C-CF3
	F ₃ CO-CH ₂ -					н	-CH ₂ -N-C-CF ₃
929	H ₃ CS-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
930	CH ₃	2	2	1	-	н .	CH _Z -N-C-CF ₃
931	NC —CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
932	NO ₂	2	2	1	-	н	-CH ₂ -N-C-CF ₃
933	CH-CH-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
934	CH2-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
935	O ₂ N — CH ₂ -	2	2	1		н	-CH ₂ -N-C-CF ₃

FUEL IN CHARLET FRANK.

Table 1.86

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R ³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
936	NO ₂	2	2	1	-	н	-CH ₂ -N-C-CF ₃
937	(H3C)2N-CH2-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
938	C⊢√S CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
939	O ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
940	OH CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
941	F ₃ C CH ₂ -	2	2	1	-	н .	-CH _Z -N-C-CF ₃
942	C ├── CH₂-	2	2	1	-	Н	CH(CH ₃) ₂ CF ₃
943	CH-€-	1	4	0	-	н ,	-CH ₂ -N-C-CF ₃
944	CH-CH2-	1	4	0	-	н	
945	C├─()-CH2-	1	4	0	-	. н	-CH ₂ -N-C
946	CI-CH2-	1	4	0	-	н	-(CH ₂) ₂ -N-C

Table 1.87

C	ompd. No.	R ² (CH ₂) -	k	m	n	chirality	Ř³	$-(CH_2)_{p} + (CH_2)_{q} + G - R^6$
	947	CH2-	1	4	0	-	н	-(CH ₂) ₂ -V-C-OCH ₃
	948	CH_CH2-	1	4	0	-	Н	-(CH ₂) ₃ -C-N-C1
	949	CH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₂
	950	CH-2-	0	4	1	-	Ħ.	- CH ₂ -N-C-
	951	CI—€ CH ₂ -	1	2	О	R	. н	CH ₂ -И-СС-СН ₃
	952	CH2-	1	2	0	R	н	-CH ₂ -N-C
	953	CH₂-	1	2	0	R	H	-(CH ₂) ₂ -N-C-N(CH ₃) ₂
	954	CH-2-	1	2	0	R.	н	-CH ₂ -N-C-V
	955	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-VH H ₃ C-NH
	956	CH-€7-	1	2	0	R	н	-(CH ₂) ₂ -N-C
	957	C⊢√CH2-	1	2	0	R	н	-cH ₂ -N-C-

107

Τа	ь	0	- 1	8

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	H3	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- G - R^6$	
958	СН-СН2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-OH	
959	CH-2-	1	2	0	R	н	-CH2-N-C-CH3	
960	С├-СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃	
961	CH-CH₂-	1	2	0	R	Н	-CH ₂ -N-CN-CH ₃	
962	CI—CH₂-	1	2	0	R	Н	-(CH ₂) _Z -N-C	
963	CH2-	1	2	0	R	H	-(CH ₂) ₂ -N-C	
964	CI—CH₂-	1	2	0	R	Н	-CH ₂ -N-C	
965	CH-2-	1	2	0	, R	н	-(CH ₂) ₂ -N-C	
966	CH2-	1	2	0	R	н	-CH2-N-C-CH3	
967	CI—CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-C-CH ₃	
968	C	1	2	0	R	н	-CH ₂ -N-C-NH	

108

Ta	h	lρ	1	.8	2

,	Compd. No.	R1 (CH2)-	k	m.	n	chirality	ⁱ R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
	969	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH
	970	CH2-	1	2	0	R	н	-CH ₂ -N-C
	971	CH_CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-N(CH ₃) ₂
	972	CH-2-	1	2	0	R	H	-CH ₂ -N-C-NH ₂
	973	CHCH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
	974	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NH ₂
	975	CH-(CH ₂ -	1	2	0	R	н	'-(CH ₂) ₂ -N-C-\\NH ₂
	976	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-NH
	977	CHCH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH
	978	C├-{\rightarrow} CH2-	1	2	0	R	. н	-CH ² -H-C
	979	С⊢-{СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH

109

Table 1.90

Compd.	R1 (CH2)-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
980	CH-CH2-	1	2		R	н .	-CH2-N-C-CH3
981	CI-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CH ₃
982	CH-CH₂-	1	2	0	R	. н	-CH ₂ -N-C-
983	С⊢С СН₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-(N-C)
984	CH2-	1	2	0	R	Н	CH ₂ -N-C
985	CH2-	1	2	0	R	.H.	-(CH ₂) ₂ -N-C
986	CHO-CH-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
987	CH-CH₂-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
988	CH-CH₂-	1	4	0	-	н	-CH ₂ -N-C-CF ₃
989	CH2-	1	4	0	-	н	-CH ₂ -N-C-O-CH ₂
990	CH_CH ₂ -	1	4	a) -	н	-cH_N-C-

Tahl	0	1.	9

Compd.	R ² (CH ₂)	k	m	n	chirality .	R³	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)_{q}G-R^6$
991	CH-CH2-	1	4	0	-	Н	-(CH ₂) ₂ -C-
992	CH-CH ₂ -	1	4	0	-	н	OCH ₃
993	CH-2-	1	4	0	-	н	-(CH ₂) ₂ -C-CH ₃
994	C⊢√_CH₂-	1	4	0	- '	Н	-(CH ₂) ₃ -C-
995	CH₂⁻	1	4	0	-	Н	-(CH ₂) ₃ -C-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
996	CH-CH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
997	CH-CH ₂ -	2	2	1	-	н	-CHN-C
998	CH-CH2-	2	. 2	1	-	Н	CH-N-C-(CH ₃) ₂
999	CH-CH2-	2	2	1	-	н	-CH-N-C
1000	CH-CH2-	2	2		1 -	. н	- CH N-C- OH3CH(CH3)2 OCH3
1001	CH-CH₂-	2	2 2	2	1 -	н	-CH2CH3 -CH2CH(CH3)2
							25.50

1 1 1

Table 1.92

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	\mathbb{R}^3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1002	С⊢С СН₂-	2	2	1	-	Н	OH2CH4CH3/2 OH2CH4CH3/2
1003	C	2	2	1	-	_ H [']	-CH-N-C
1004	CI-CH ₂ -	2	2	1	=	Н	OCH ₃ -CH ₂ CH(CH ₃) ₂ OCH ₃
1005	CH-2-	2	2	1	-	н	-CH2CH(CH3)2 CCH3
1006	CI-CH ₂ -	2	2	1	-	Н	OCH ₂ CH ₃ -CH ₂ CH ₂ CH ₃ -CH ₂ CH ₂ CH ₃
1007	CH2-	2	2	1	-	н	ОСН ₂ СН ₃ - СН-N-С-С-С-СН ₂ СН ₃ - ОН ₂ СН ₃ СН ₃ ОСН ₂ СН ₃
1008	CH2-	2	2	1	-	н	-C++N-C
1009	CH2-	2	2	1	-	н	- CH-N-C-NH ₂
1010	C├────────────────────────────────────	Ż	2	1	-	н	(CH3)=-C-NH3 -C+N-C-OCH3CH3
1011	C├ - CH ₂ -	2	2	1	· -,	Н	- CH-N-C
1012	CHCH2-	2	2	. 1	-	Н	- CH-H-C-
							· .

Table 1.93

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{\Pi^4}{R^5} (CH_2)_{q} G - R^6$
1013	C	2	2	1	-	н	(CH ³) ²⁻ C-NH ³ OCH ³
1014	CI—CH₂-	2	2	1	-	н	- CH-V-C- (CH3)3-C-NH3
1015	CH2-	2	2	1	-	,н	OCH ₂ CH ₃ -CH ₂ CG-NH ₂ OCH ₂ CH ₃ (CH ₂) ₂ -CG-NH ₂ OCH ₂ CH ₃
1016	CH2⁻	2	2	0	-	Н	-CH2-N-C-CF3
1017	CH ₂ −CH ₂ −	2	2	0	-	Н	-CH ₂ -N-C-
1018	C⊢————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-OCH ₂ CH ₃
1019	C├────────────────────────────────────	2	2	1	· <u>.</u>	н	-CH ₂ -N-C
1020	C├ - CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-OCH ₃
1021	с⊢—СН₂-	2	2	1	-	Н	-CH ₂ -N-C - OCH ₂ CF ₃ -CH ₂ -N-C - OCH ₂ CF ₃
1022	CH2 ⁻	2	2	1	-	н	(S) OCH3
1023	CI-CH ₂ -	2	2	1	-	Н	(S) Q CH ₂ CH ₃

Tα	b.	le	- 1	.9	4

Compd.	R (CH ₂),-	k	m ,	n	chirality	Ŕ³	-(CH ₂) р 1 (CH ₂) q G-R ⁶
1024	C ⊢ CH₂-	2	2	1	-	Н	(S) OCH ₃
1025	с⊢С СН₂-	2	2	7	-	Н	(S) P OCH ₂ CH ₃ -CH ₃ CH ₃ OCH ₂ CH ₃
1026	C⊢√-CH₂-	2	2	1	-	н	(S) P OCH ₂ CH ₃ -CH ₃ OCH ₂ CH ₃
1027	CH-2-	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH ₃ CH ₃
1028	CH2-	2	2	1	-	н	(5) P OCH ₂ CF ₃ -CH-N-C-OCH ₂ CF ₃
1029	C⊢(CH₂-	2	2	1	-	н	(S) P OCH ₂ CH ₃ -CH N-C-CH ₃ -CH ₃ .
1030	CH-€-CH2-	2	2	1		н	(S) P OCF3
1031	С⊢СН2-	2	2	1	-	Н	(S) P OCH3
1,032	C	2	2	1	-	Н	(F) OCH3
1033	CH2-	2	2	1	-	н	(F)
1034 -	CH-(CH ₂ -	2	2	1	-	Н	(F) OCH ₃

114

-	1-	1 -	-4	_	-
Та	0	ıe	- 1	. 9	-

Table .							
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1035	C⊢√ CH₂-	2	2	1	-	н	(F) OCH ₂ CH ₃ -CH-N-C
1036	CH2-	2	2	1	-	н	(A) OCH2CH3 -CH-N-C OCH2CH3 CH3 OCH2CH3
1037	CH-2-	2	2	1	÷	н	(A) OCH ₂ CH ₃ -CH-N-C-CH ₃ -CH ₃ -CH ₃
1038	CH-CH2-	2	2	1	-	Н	(Fi) −CH-N-C CH ₃ OCH ₂ CF ₃
1039	CH2-	2	2	1	-	Н.	(F) OCH ₂ CH ₃ -CH-N-C-C
1040	CH-CH ₂ -	2	2	1	-	н	(F) OCF3
1041	CH-CH2-	2	2	1	-	н	(A) Q OCH3 -CHN-CH3
1042	CH_CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1043	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1044	C├ - CH₂-	2	2	.1		н .	-CH ₂ -N-C
1045	CH2-	2	2	1		Н	-CH ₂ -N-C-

Table 1.96

1049 CH—CH ₂ - 2 2 1 - H —CH ₂ -N-C-H ₃ OCH ₃ 1050 CH—CH ₂ - 2 2 1 - H —CH ₂ -N-C-H ₃ OCH ₃ 1051 CH—CH ₂ - 2 2 1 - H —CH ₂ -CH ₃ OCH ₃ 1052 CH—CH ₂ - 2 2 1 - H —CH ₂ -CH ₃ OCH ₃ 1053 CH—CH ₂ - 2 2 1 - H —CH ₂ -CH ₃ OCH ₃ 1054 CH—CH ₂ - 2 2 1 - H —CH ₂ -CH ₃ OCH ₂ CH 1055 CH—CH ₂ - 2 2 1 - H —CH ₂ -CH ₃ CH ₃								
1047 CH CH ₂ - CH ₂ - 2 2 1 - H CH ₂ -N-C- CH ₃ - CH ₃ 1048 CH CH ₂ - 2 2 1 - H CH ₂ -N-C- CH ₃ - CCH ₃ 1049 CH CH ₂ - 2 2 1 - H CH ₂ -N-C- CH ₃ - CH ₃ 1050 CH CH ₂ - 2 2 1 - H CH ₂ -N-C- CH ₃ - CH ₃ 1051 CH CH ₂ - 2 2 1 - H CH ₃ -N-C- CH ₃ - CH	Compd. No.	R (CH ₂)-	k	m	n	chirality	. Ha	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
1048 CH CH ₂ - 2 2 1 - H - CH ₂ - CCH ₃ CCH ₃ 1049 CH - CH ₂ - 2 2 1 - H - CH ₂ - CH ₃ 1050 CH - CH ₂ - 2 2 1 - H - CH ₂ - CH ₃ 1051 CH - CH ₂ - 2 2 1 - H - CH ₂ - CH ₃ 1052 CH - CH ₂ - 2 2 1 - H - CH ₂ - CH ₃ 1053 CH - CH ₂ - 2 2 1 - H - CH ₂ - CH ₃ 1054 CH - CH ₂ - 2 2 1 - H - CH ₃ - CH ₄ - CH ₃ 1055 CH - CH ₂ - 2 2 1 - H - CH ₄ - CH ₄ - CH ₃ 1055 CH - CH ₂ - 2 2 1 - H - CH ₄ - CH	1046	CH_CH ₂ -	2	2	1	-	н	, H ₂ N U
1048 CH CH ₂ - CH ₂ - 2 2 1 - H CH ₂ -N CH ₃ CCH ₃ 1049 CH CH ₂ - 2 2 1 - H CH ₂ -N CH ₃ 1050 CH CH ₂ - 2 2 1 - H CH ₂ -N CH ₃ 1051 CH CH ₂ - 2 2 1 - H CH ₂ -N CH ₃ 1052 CH CH ₂ - 2 2 1 - H CH ₃ -N CH ₃ 1053 CH CH ₂ - 2 2 1 - H CH ₃ -N CH ₃ 1054 CH CH ₂ - 2 2 1 - H CH ₃ -N CH ₃ 1055 CH CH ₂ - 2 2 1 - H CH ₃ -N CH ₃ -N CH ₃ 1055 CH CH ₂ - 2 2 1 - H CH ₃ -N	1047	CH₂-	2	2	1	-	Н	-CH ₂ -N-CH ₃
1049 $CH_{2}^{-} - CH_{2}^{-} - 2 = 2 = 1 - H $ $CH_{2}^{-} - CH_{2}^{-} - CH_{2}^$. 1048	CH2-	2	2	ī	-	н	-CH ₂ -N-C
1051 CH ₂ CH ₂ CH ₂ - 2 2 1 - H CH ₂ CH ₃	1049	CH2-	2	2	1	-	н	-CH ₂ -N-C
1052 CH ₂ CH ₂ CH ₂ - 2 2 1 - H	1050	CH2-	2	2	1	-	Н	CH ₂ CH(CH ₃) ₂ OCH ₃
1053 CH ₂ CH ₂ - 2 2 1 - H CH ₂ CH(CH ₃) ₂ CCH ₂ CH ₃ 1054 CH ₂ - 2 2 1 - H CH ₂ CH(CH ₃) ₂ (S) Q OCH ₂ CH ₃ (S) Q OCH	1051	CH2-	2	2	1	-	н .	CH ₂ CH(CH ₃ J ₂
CH ₂ CH(CH ₃) ₂ CH ₂ CH(CH ₃) ₂ (S) P OCH ₂ CH ₃ (S) P OCH ₂ CH ₃ (CH ₂ CH(CH ₃) ₂ (S) P OCH ₂ CH ₃ (CH ₂ CH(CH ₃) ₂ (S) P OCH ₂ CH ₃ (CH ₂ CH(CH ₃) ₂ (S) P OCH ₂ CH ₃ (S)	1052	CH-2-	2	2	1	-	Н	CH ₂ CH(CH ₃) ₂ OCH ₃
CH ₂ CH(CH ₃) ₂ COH ₂ CH ₃ (S) OCH ₂ CH OCH ₃ CH OCH OCH OCH OCH OCH OCH OCH OCH OCH O	1053	CH2-	2	2	1.	-	н	$CH_2CH(CH_3)_2$
1056 CH2-CH2- 2 2 1 - H - CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-	1054	C├────────────────────────────────────	2	2	1	-	Н	CH ₂ CH(CH ₃) ₂ OCH ₂ CH ₃
1056 CH ₂ - 2 2 1 - H - CH ₂ -	1055	C├─(CH ₂ -	2	2	1	-	н	CH ₂ CH(CH ₃) ₂
	1056	CH-2-	2	2	1		н	(S) OCH ₂ CF ₃ -CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃

Table 1.97

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	K3	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1057	CH2-					Ĥ	(A) OCH2CH3 -CH-N-C-
1058	СН2-	2	2	1	-	Н	(S) Q OCH ₃ -CH-N-C- H H CH ₂ CH(CH ₃) ₂
1059	CH-€	2	2	1	-	н	(S)
1060	С⊢-{СH₂-	2	2	1	-	Н	(Fi) Q OCH ₂ CH ₃ -CH-N-C OCH ₃ + H -CH ₂ CH(CH ₃) ₂
1061	CH2-	2	2	1	-	н	OCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃
1062	CH₂-	2	2	1	-	н	(S) P CCH ₂ CH ₃ -CH-N-C- C CH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1063	CH-2-	2	2	1	-	н	(A) P OCH3 -CH-N-C-CH(CH3)2
1064	C├──────────────────────	2	2	1	-	Н	(FI) Q OCF ₃ -CH-N-C-CH(CH ₃) ₂
1065	C├	2	2	1		н	(F) OCH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₃
1066	CH-CH ₂ -	2	2	1	i -	н	(H) Q CH ₂ CH ₃
1067	CH-CH2-	2	2		1 -	н	(FI) OCH ₃ -CH ₁ N-C

1 1 7

Tэ	ь	۱۵	1	q	۶

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p=15}^{R^4}(CH_2)_{q}G^{-R^6}$
1068	CH-2-					Н	(F) Q OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1069	C├ - CH₂-	2	2	1	-	н	OCH ₂ CH ₃ OCH ₂ CH ₃ OCH ₂ CH ₃ CH ₂ CH(CH ₃) ₂ OCH ₂ CH ₃
1070	CHCH2-	2	2	1	-	Н	CH2OCH2
1071	CI—CH₂-	2	2	1	-	н.	-CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
1072	CH-CH2-	2	2	1	e -	Н	OH ₂ O CH ₂ -
1073	CH2	2	2	1	-	Н	-CH-N-C-H2-C-H2-C-H2-C-H2-C-H2-C-H2-C-H2
1074	C├ - CH ₂ -	2	2	1	-	н	- CH-N-C-13 O420 CH2
1075	C├	2	2	1	-	н	OH20 CH2
1076	CH ₂ -	2	2	1	-	Н	-CH-N-C
1077	CH-CH2-	. 2	2	1		н	-CH-N-C
1078	CI—CH ₂ -	2	2	1	-	н	-CH-NC-

Table 1.99

,							
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)^{\frac{-}{q}}G^{-R^6}$
1079	CH2-	2	2	1	-	н	-CH-20CH2
1080	C:CH ₂ -	2	2	1	-	н	OCH ₂ CH ₃
1081	CH2-	2	2	1	-	н	-CH-N-CH3 -OCH3 -OCH3
1082	CH2-	2	2	1	-	Н	(5) H (CH)
1083	CH ₂ -	. 2	2	1		Н ,	CH-N-C-
1084	CH√_CH₂-	1	2	0	R	, H	$-CH_2-N-C-$ H_2N
1085	CI-CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C-NO ₂
1086	C⊢ CH₂-	1	2	0	R	Н	-CH ₂ -N-C-\\ . H ₂ N
1087	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H
1088	CI-CH ₂ -	1	2	0	R	_. н	-CH ₂ -N-C-C
1089	CI—CH₂-	1	2	0	R	Ĥ	-CH ₂ -N-C-N-H
							1

Table 1.100

Compd. No.	R ² (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{\Pi^4}{R^5} (CH_2)_{q} - G - R^6$
1090	с⊢√}-сн₂-	1	2	0	R	Н	-CH ₂ -N-C-
1091 .	CH-CH₂-	1	2	0	R	н	-CH ₂ CH ₂ -N-C-
1092	CH2-	1	2	0	R	Н	$-CH_2CH_2-NC_2$ H_2N
1093	CH-CH ₂ -	1	. 2	0	R	Н	-CH ₂ CH ₂ -N-C-
1094	CH ₂ -	1	2	0	R	Н	-CH ₂ CH ₂ -N-C-N-H
1095	CH-2-	1	2	0	R	Н	-CH2CH2-N-C-
1096	CH-CH ₂ -	1	2	0	R	н	-CH ₂ CH ₂ -N-C-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
1097	CH2-	1	2	0	R	н	-CH2OH2-N-C-
1098	CI-CH ₂ -	1	, 2	0	R	н	-CH ₂ -N-C
1099	CH2-	1	2	0	R	н	-CH ₂ -N-C → Br
1100	CI—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

1 2 0

Table 1	.101						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	. H3	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1101	-CH-CH2-	1	2	0	R	н	-CH ₂ -N-C
1102	C├	1	2	0	R	. н	-CH ₂ -N-C
1103	H ₃ C-CH ₂ -	1	2	0	R	н	-CH₂-N-C- Br CH₃
1104	H ₃ C-CH ₂ -	1	2	О	R	н	-CH ₂ -N-C
1105	H ₃ C/————————————————————————————————————	i	2	0	R	н	-CH ₂ -N-C
- 1106	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ⁵ -H-C-CH ³
1107	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-CNO ₂
1108	CH ₃	1	2	0	R	Н	-CH ₂ -N-C
	CH ₃ CH ₂ CH ₂ -					н	-CH2-N-C-Br
	CH ₃ CH ₃ CH ₂ CH ₂					н	-CH ₂ -N-C
	03					ч	2 CH

n in the new con-

_	_	ь	10	1	1	n	2

Compd. No.	R ¹ -(CH ₂) _j -	k	m	n	chirality	K³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- \frac{G^{-R^6}}{G^{-R^6}}$
1112	CH ₃ CH ₂ - CH ₃	, 1	2	0	R	н	-CH ₂ -N-C-NO ₂
1113	CHCH2_	2	2	1	-	Н	-CH ₂ -N-C
1114	С├─{СН₂-	2	2	1	-	н	-CH ₂ -N-C-Sr
1115	С⊢СН₂-	2	2	1	-	н	-CH ₂ -N-C
1116	C├─ \ CH ₂ -	2	2	1		H	-CH ₂ -N-C
1117	C├────────────────────────────────────	2	2	1	-	н .	-CH ₂ -N-CNO ₂
1118	N-C	1	2	0	R	н	-CH ₂ -N-C
1119	H ₃ CS—CH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C-S
1120	H ₃ CQ —CH ₂ - OCH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1121	H ₃ C O ₂ N-CH ₂ -	1	2	0	R	, Н	-CH ₂ -N-C-CF ₃
1122	(H, C)2 CH-CH2-CH(CH3)	1	2	0	R	н	-CH ₂ -N-C-CF ₃

1 2 2

Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)^{-G-R^6}$
1123	CH ₂ -	1	2	0	R	Н	-CH2-N-C-CF3
1124	O ₂ N_O_CH ₂ -	1	2	0	R	н '	-CH ₂ -N-C-CF ₃
1125	CH-CH ₂ -	2	2	1	-	н	- CH- N-O-CI
1126	с⊢СН₂−	2	2	1	-	н	-CH-N-C
1127	- CH ₂ -	2	2	1	-	н	-CH-N-C-WH
1128	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C
1129	C├ \ CH ₂ -	2	2	1	-	Н	-CH-N-C-CF3
1130	C├-{}CH₂-	2	2	1	-	, H	- CH-N-C
1131	CH2-	2	2	1	-	Н	- C++ 12 C-1
1132	CH-CH2-	2	2	1	-	Н	-CH-N-C
1133	н₃со-СН₂-	1	2	0	R	н	-сн ₂ -г-С-С-С-

Table 1.103

1 2 3

Tahi	4	Ħ	0.4

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
1134	H ₃ CO CH ₂ -	1	2	0	R .	н	-сн ₂ -ү-с-
1135	CH ₂ -NO ₂					Н	-CH ₂ -N-C-CF ₃
1136	H ₃ CO	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1137	CH ₂ -					н	-CH ₂ -N-C
1138	CH₂-	1	2	0	R	Н	-CH ₂ -N-CF ₃
1139	(CH ₂) ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1140	O ₂ N —CH ₂ —	1	2	0	R	Н,	-CH ₂ -N-C-CF ₃
1141	CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1142	CH ₂ -	1	2	0	R.	н	-CH ₂ -N-C-CF ₃
1143	O-0470-O-CH7	_ 1	2	0	R	Н	-сн ₂ -N-С-СБ ₃
1144	H ₃ CO −CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-CF ₃

1 1 1

· 光元1851 (1994)

1 2 4

Table 1.105

Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _p CH ₂) _q G-R ⁶
1145	H₃CO H₃CO CH₂- NO₂	1	2	0	R	Н	- CH₂-N-C-CF3
1146	CH₂ CH₂					н	-CH ₂ -N-C-CF ₃
1147	4c-c-H	1	2	0	R	Н.	- CH ₂ -N-C-CF ₃
	CH₂-					Н	-CH ₂ -N-C-CF ₃
1149	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-OCH ₂ CH ₃
1150	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1151	CH ₃ CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-CH ₂
1152	N CH₂- CH₃	1	2	0	R	н	-CH2-N-C-NH
1153	CH ₃ CH ₂ CH ₃	1	2	. 0	R	н	-CH ₂ -N-C-(NH)-CI
1154	CH ₃ N CH ₂ - CH ₁	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃
1155	CH₃ N→CH₂-	1	2	0	R	н	-CH ₂ -N-C

于10mm出版的原本有数字形 (11)的。

Table 1.106

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	· R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
1156	CH ₃	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1157	CH ₃ CH ₂ - CH ₃	1	2	0	, R	Н	-CH ₂ -N-C-S SCH ₃
1158	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-CH
	CH ₃ CH ₂ -					н	$-CH_2-N-C H_2N$ OCH_3 OCH_3
1160	CH ₃ CH ₂ -	1	2	0	R	н	$-CH_2 - H \xrightarrow{\text{C}} H_2 N \xrightarrow{\text{Br}} Br$
1161	H ³ CO-CH ⁵ -	1	2	0	R	Н .	-CH ₂ -N-C
1162	H ₃ CO—CH ₂ —CH ₂ —	1	2	0	R	. н	-CH ₂ -N-C-CF ₃
1163	H₃CO-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1164	H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1165	CH ₂ -	1	2	0	R	н ,	-CH ₂ -N-C-CF ₃
1166	H ³ CO—CH ⁵ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

1 2 6

Table 1	1.107						
Compd.	R ¹ (CH ₂) _i -	k	m	n o	chirality	'R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1167	CHCH ₂ -	2	2	1.	-	н	-CH ₂ -N-C-
1168	CL N CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1169	H ₃ C-C-N O S-CH ₂ -	1	2	0	R	н `	-CH ₂ -N-C-CF ₃
1170	CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1171	CH₂-	1	2	. 0	R .	Н	-CH ₂ -N-C
1172	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H
1173	C€	1	2	٥.	R	н	-CH ₂ -N-C-N-H
1174	CH2-	1	2	0	R.	н	-CH ₂ -N-C
1175	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
1176	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-N-C-N-OH
1177	H ₃ C-CH ₂ -	1	2	0	R	н	-cH ₂ -N-C-N-OCH ₃

Communication

Table 1.108

1 abic							
Compd. No.	R (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1178	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-NCC$
1179	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1180	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H
1181	CH ₃ CH ₂ - CH ₃	1 .	2	0	R	Н	-CH2-N-C- CH3
1182	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH2-N-C-N-OH
1183	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-H
1184	CH ₃ CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C
1185	CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1186	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-H
1187	C	2	2	1	-	Н	-CH ₂ -N-C-C-Br
1188	ССН2-	2	2	1	-	н	-CH2-N-C-N-C-N-OH

化、溢、扩张 医外部 医养力

1 2 8

Table 1.109

Compd. No.	R (CH ₂) ₁ -	k	m	п	chirality	. H3	$-(CH_2)^{\frac{R^4}{R^5}}(CH_2)^{-\frac{6}{q}}G^{-R^5}$
1189	CH2-	2	2	. 1	-	н	-CH ₂ -N-C-N-H-OCH ₃
- , 1190	CH2−	2	2	1	-	н	-CH ₂ -N-C
1191	CH ₃ CH ₂ − CH ₃	1	2	0	R	H	-CH ₂ -N-C-CF ₃
`1192	CH ₃ CH ₃	1	2	0	R	Н	-CH ₂ -N-C-F ₃
1193	CH ₃ CH ₃	1	2	0	R	н	-CH ₂ -N-C-C-C-C-S
1194	CH ₃ CH ₂ − CH ₃					Н	-CH ₂ -N-C
1195	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1196	CH ₃ CH ₂ - CH ₃				R	Н .	-CH2-N-C-NO2
1197	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1198	CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1199	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃

1 2 9

Table 1.110

Compd.	R (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1200	CH₃ N—CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-CI
1201	CH₃ CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C
1202	CH₃ CH₂− CH₃	1	2	0	R	Ĥ	-CH ₂ -N-C-CF ₃
1203	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N$ C- \bigcirc OCF ₃
1204	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1205	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1206	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1207	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1208	H ₃ C-CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C-CI
1209	н₃С-{Сн₂-	1	2	0	R	н	-CH2-N-C-CH3
1210	H ₃ C-CH ₂ -	1	2	0	R	н	-cH₂-N-C-

1 3 0

Table 1.111

Compd.	R2 (CH ₂) _j -	k	m	п	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1211	H ₃ C-(1	2	0	R	• н	-CH ₂ -N-C
1212	H ₃ C-CH ₂ -	1	2,	0	R	Н	-CH ₂ -N-C-CF ₃
1213	C:CH2-	2	2	1	-	н	-CH ₂ -N-C-F ₃
1214	CH2-	2	2	1	~	Н	$-CH_2-N-C - F$
1215	CH2-	2	2	1	-	н	-CH ₂ -N-C-CI
1216	CH2-	2	2	1	-	н	-CH ₂ -N-C
1217	CHCH_2-	1	2	0	R	Н	-CH ₂ -N-C CF ₃
1218	СН-СН2-	1	2	0	R	Н	-CH₂-N-CH₃
1219	CHCH2-	1	2	0	R _. .	н	-CH₂-N-C-CI
1220	C	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1221	С⊢—СН₂-	1	2	0	R	н	$-CH_2-\underset{H}{\overset{\bigcap}{N}}\overset{\bigcap}{\underset{C}{\overset{\frown}{\bigvee}}}\overset{F}{\overset{F}{\overset{\frown}{\bigvee}}}$

over entre de la companie de la comp

1 3 1

Table 1.112

Compd. No.	R ¹ >-(CH ₂) _j -	k	m	n	chirality	. _{R³}	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1222	ССН2-	1	2	0	R	Н	-CH ₂ -N-C-N-CH ₃
1223	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1224	с⊢{СН₂-	1	2	0	R	. н	-CH ₂ -N-C- NO ₂
1225	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-
1226	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-F
1227	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-CI
1228	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1229	H ₃ C-CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-F-F
1230	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(N) H
1231	H ₃ C-\CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1232	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

1 3 2

Table 1.113

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}\frac{R^4}{R^5}(CH_2)_{q}G^-R^6$
1233	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C-CF3
1234	CH ₃ CH ₂ - CH ₃	1	2	0	R	н,	-CH₂-N-C-SCH3
	CH ₃					н	-CH ₂ -N-C-CH ₃
1236	CH ₃	1	2	0	R	Н	-CH ₂ -N-C-
1237	CH ₃ CH ₂ - CH ₃					Н	-CH ₂ -N-C
1238	CH ₃ CH ₂ - CH ₃					н.	-CH ₂ -N-C-N-N-H
1239	CH ₃					н	-CH ₂ -N-C-S
1240	CH ₃ CH ₂ - CH ₃	1	2	0	R	. н	-CH ₂ -N-C-
1241	C├ - CH ₂ -	2	2	1	÷	н	-CH ₂ -N-C-CF ₃
1242	C├────────────────────────────────────	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1243	CH_CH2-	2	2	1	-	н	-CH2-N-C-CI

1 3 3

Table 1.114

Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1244	ССН2-	2	2	1	-	Н	-CH ₂ -N-C
1245	CH2-	2	2	1	-	н	-CH ₂ -N-C-F
1246	C├─ \ CH ₂ -	2	2	1	=	н	-CH ₂ -N-C-N-CH ₃
1247	CH-2-	2	2	1	-	н	-CH ₂ -N-C-
1248	C├ - CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1249	C	1	2	0	R	н	-CH ₂ -N-C
1250	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
 1251	CH ₃ CH ₂ CH ₂	1	2	Ō	R	н	-CH ₂ -N-C
1252	с⊢СН₂-	1	2	0	R	. н	-CH ₂ -N-C-CH(CH ₃) ₂
1253	H ₃ C-\CH ₂ -	1	2	0	Ř	н	-CH ₂ -N-C
1254	CH₃ N—CH₂− CH₃	1	.2	0	R	н	-CH ₂ -N-C-CH(CH ₃) ₂

1 3 4

_	_	١.	4	4	4	=

14516							
Compd. No.	R ¹ (CH ₂),—	k	m	n	chirality	, R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1255	С⊢{Сн²-	1	2	0	R	н	-CH ₂ -N-C
1256	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1257	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1258	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1259	CH ₃ CH ₂ - CH ₃	. 1	2	0	R	н	$-CH_2-N$ H_2N
1260	H ₃ C-CH ₂ -	1 .	2	0	R R	н .	-CH ₂ -N-C
1261	C├ - CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C C(CH ₃) ₃
1262	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1263	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
.1264	CH2-	1	2	0	R	н	-CH ₂ -N-C
1265	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.116

Compd. No.	R ² (CH ₂),-	k	m	n c	hirality	R3	-(CH ₂) p 1 (CH ₂) p G-R ⁶
1266	CH ₃	1	2	0	R	н	-CH2-HC-HC
1267	CH2-	1	2	0	R	н	-CH ₂ -N-C-N-N-OCF ₃
1268	с⊢С-сн₂-	1	2	0	R	н	-CH ₂ -N-C-
1269	CH-2-	1	2	0	R	Н	-CH ₂ -N-C
1270	C├─ \ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1271	C├─ \ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1272	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H-OCF ₃
1273	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₃ CO
1274	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH₂-N-C
1275	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1276	H ₃ C−√CH ₂ −	1	2	0	R	н	-CH ₂ -N-C

1 3 6

 $-(CH_2)_{p}^{R^4}$ $\frac{1}{R^5}$ $\frac{(CH_2)_q}{G}G-R^6$ Compd. . Ba n chirality CH₂-R 1277 CH₂ -CH2-N-C-1278 н CH₃ -CH2-V-C-R 1279 Н CH₃
CH₂
CH₃ R 1280 Н 1281 1282 1283 1284 Н -CH2-N-C-1285 Н

the state of the state of the

1286

1287

Table 1.117

1 3 7

Table 1.118

							₽4
Compd. No.	R (CH ₂),-	k	m	n	chirality	^R 3	-(CH ₂) p G (CH ₂) q G-R ⁶
1288	HQ H ₃ CO—CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
	CH ₃					н	$-CH_{2}-N_{1}C$ OCH_{3}
1290	CH ₃	1	2	0	R	Н	$-CH_2-N - CH_3$ $+ H_2N - CH_3$
1291	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-CH ₃
1292	H ₃ C-CH ₂ -	1	2	0	R ·	H .	$-CH_2-N$ CH_3 H_2N Br
1293	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1294	H ₃ C-CH ₂ -	1	2	0	R	н .	$-CH_2-N-C$ $-F$
1295	H ³ C-CH ⁵ -	1	2	0	R	Н	-CH ₂ -N-C-(C(CH ₃) ₃
1296	H ₃ C-CH ₂ -	1	2	0	, R	Н	-CH ₂ -N-C-SSCH ₃
1297	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$
1298	H ₃ CQ H ₃ CO— CH ₂ − Br	1	2	0	R	н	-CH ₂ -N-C

Table 1.119

Compd.	R (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{R^5}}(CH_2)_{\overline{q}}G-R^6$
1299	H3CO CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1300	OCH ₃ H ₃ CO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1301	H ₃ CO OCH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1302	H ₃ C CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1303	H ₃ CO—CH ₂ —	1	2	0	R	H·	-CH ₂ -N-C-CF ₃
1304	H ₂ CQ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1305	H3CO-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1306	H₃CCH₂Q H₃CO—CH₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1307	H ₃ CO CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1308	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1309	H ₃ CO ← CH ₂ -	1	2	0	R	н	-CH₂-N-C-

Compd. No.	R ¹ (CH ₂) ₁ -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
1310	H ₃ CO HO—CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
1311	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1312	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1313	Br CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1314	O ₂ N CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1315	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1316	F ₃ C CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1317	O ₂ N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1318	C├	1	2	0	R	. н	-CH ₂ -N-C-CF ₃
1319	C ⊢ CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1320	B	1	2	0	R	н :	-CH ₂ -N-C-CF ₃

1 3 9

Table 1.120

Table 1.121

Compd.	R1 (CH2),-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1321	с⊢СН₂-	1	2	0	· R	Н	-CH2-N-C
1322	с⊢СН₂-	1	2	0	R	н	-CH ⁵ - ₩ C- CH ³
1323	С⊢-{СН₂-	1	2	0	R .	н	-CH ₂ -N-C
1324	ССН2-	1	2	0	R	н	$-CH_2-N$ - CH_3
1325	CH-CH2-	1	2	0	R	н	-CH ₂ -N-C-
1326	с⊢С≻сн₂-	1	2	0	R	н	-CH ₂ -N-C-
1327	CH-€-	1	2	0	R	н	-CH ₂ -N-C
1328	H ₃ C-CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-CBr
1329 `.	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1330	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1331	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Tabl	 1 1	2	-

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
1332	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1333	H ₃ C-CH ₂ -	1	2	0	R	н _.	-CH2-N-C
1334	H ₃ C-CH ₂ -	1	2	O	R	н	-CH ₂ -N-C-CH ₃
1335	CH ₃ CH ₂ - CH ₃	1.	2	0	R	н	-CH ₂ -N-C
1336	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1337	CH ₃ CH ₂ CH ₃	1	2	. 0	R	Н	-CH ₂ -N-C
1338	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-H ₃
1339	CH ₃ CH ₂ -	1	.2	0	R	Н	-CH ₂ -N-C-
1340	CH ₃	1	2	0	R	Н	-CH ₂ -N-C-
1341	CH ₂	1	2	0	R	. н	-CH ₂ -N-C-CH ₃
1342	CH-CH ₂ -	2	2	1	-	, н	-CH ₂ -N-C

The state of the state of the state of

Table 1.123

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
1343	С⊢—СН₂-	2	2	1	-	Н	-CH ₂ -N-C
1344	C├ - CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1345	CH2-	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1346	C├─ \ CH ₂ -	2	2	1		۲Н	-CH2-N-C
1347	C	1	2	0	R	н	-CH2-N-C-S-CH3
1348	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S-CH ₃
1349	CH ₃ CH ₂ - CH ₃	1	2	O	R	н	-CH ₂ -N-C-S-CH ₃
1350	C⊢(CH₂-	2	2	1	-	н	-CH ₂ -N-C-√S CH ₃
, 1351	C├ ~ CH₂-	1	2	0	R	н	-0+2-12 c-0+2
1352	H ₃ CCH ₂ -	1	2	0	R ·	н	, -o+2-12-04-2
1353	CH ₃ CH ₂ - CH ₃	,1	2	0	ı R	. н	-012-17 C-01,

Table 1.124

Compd. No.	R ¹ (CH ₂)	k	m	'n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
1354	С⊢{СН₂-	2	2	1	-	н	-0-12-H-C-0-12
1355	С⊢СН2-	1	2	0	R	н	-CH ₂ -N-C-CN
1356	н ₃ С-СН ₂ -	1	2	0	R '	Н	-CH ₂ -N-C-N-CN
1357	CH₃ CH₂− CH₃	1	2	0	R	н	CH ₂ -N-C
1358	с⊢Ст₂-	2	2	1	-	Н	-CH ₂ -N-C-V
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C-
1360	CH3 CH3	1	2	0	R.	н	-CH ₂ -N-C-CH ₃ CH ₃ CH ₃
1361	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1362	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH2-N-C-CH2
1363	CH3 CH3	1	2	0	R	н	-CH ⁵ -V-C-CH ³
1364	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃

144

Table 1,125

3 3 3 -CH ₂ -				R	н	-CH ₂ -N-C-
3	1	2				H ₃ C
		-	0	R	н	CH ⁵ -V-C-
}−CH ₂ −	1	2	0	R	Н	$-CH_2-N-C-$
}−СH ₂ −	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
) —сн₂–	1	2	0	, R	Н	-CH ₂ -N-C-C-C-CF ₃ F ₃ CCH ₂ O
) —сн₂-	1	2	0	R	н	-CH2-N-C-\S
) —СН₂-	1	2	0	R	н	-CH ₂ -N-C-
) CH₂-	1	2	0	R	Н	-C+2-N-C-
	1	2	0	R	Н	-CH ₂ -N-C-CI
CH2	1	2	0	R	н	-CH ₂ -N-C
	1	2	0	R	н	-CH ₂ -N-C-(S) Br
> > = = = = = = = = = = = = = = = = = =		$-CH_{2}$ 1 $-CH_{2}$ 1 $-CH_{2}$ 1 $-CH_{2}$ 1 $-CH_{2}$ 1	$-CH_{2}^{-}$ 1 2	$-CH_{2}^{-}$ 1 2 0	,	$-CH_{2}^{-}$ 1 2 0 R H

Table 1.126

Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + G^{-1}(CH_2)_{q} + G^{-1}(CH_2)_{q}$
1376	H₃CCH₂-	. 1	2	0	R	н	-CH ₂ -N-C-
1377	H ₃ C-CH ₂ -	1	2	0	R	н.	- CH 2-N-C
1378	CH ₃ CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-CI
1379	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	OCH ₂ CF ₃ -CH ₂ -N-C
1380	CH ₃ CH ₂ CH ₃	1	2	0	R .	н	-CH ₂ -N-C-S
1381	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C-
1382	CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1383	CHCH2-	2	2	1		Н	-CH ₂ -N-C-CF ₃
1384	C├─ \ CH ₂ -	2	. 2	1	-	н	-CH2-N-C-S
1385	CH_CH2-	2	2	1	-	н	-CH ₂ -N-C-
1386	CH2-	2	2	1	-	н	-0+2-M-C-

Table 1,127

Compd.	R 1 (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1387	CH ₃	1	2	0	Я	H	-CH2-N-C
1388	CH ₃ CH ₂ - CH ₃	1	2	0	R	н .	-CH ³ -N-C-N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1389	CH ₃ CH ₃	1	2	0	R	н	-CH3-H-C
1390	H ₃ C CH ₃ H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-CF ₃
1391	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF ₃
1392	H ₃ C-CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
1393	н₃ссн ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1394	O ₂ N H ₃ C—CH ₂ -	1	2	0	R	н.	-сн ₂ -N-С-СБ ₃
1395	H ₂ C=CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1396	H ₃ C-CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1397	Br. Br—CH₂-	1	2	0	R	. Н	-CH ₂ -N-C-CF ₃

1 4 7

Tab	10	4	4	2	c
	ıe	t.	. 1	~	

Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	H3	-(CH ₂) _p G-R ⁶
1398	сн-сн-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1399	CH-CH-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1400	CH-CH-CH3	1	2	0	R	Н	-CH2-N-C-CF3
1401	H₃C-{CH₂-	1	2	0	R	н	-GH ₂ -N-C-
1402	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N$ OCH_3 OCH_3 OCH_3 OCH_3
1403	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N
1404	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\(\sigma\)
1405	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N H H ₃ CS
1406	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-√CH ₃
1407	H₃C- \ _CH₂-	1	2	0	R	н	-CH ₂ -N-C- H H ₃ CCH ₂ S
1408	H ₃ C-√CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\

148

1 4016	.125						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	⁻ R³	$-(CH_2)_{p=1}^{q=1}$ $(CH_2)_{q=0}^{q=1}$ $G-R^6$
1409	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1410	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C-
1411	С├-СН₂-	1	2	0	R	н	- H ₃ C-C-NH
1412	H ₃ C-CH ₂ -	1	2	0	B	н	-CH ₂ -N-C-C-N-I
1413	CH₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-C-NH
1414	с⊢СН₂-	2	2	1	*	н	-CH ₂ -N-C-C-NH
1415	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCN
1416	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N$ C \longrightarrow SCN H_2N
~ 1417	CH ₃	1	2	0	R	Н	-CH ₂ -N-C-SCN
1418	с⊢С}-сн₂-	2	2	1	-	н	-CH ₂ -N-C-SCN
1419	C ← CH₂-	1	2	0	R	н	-CH ₂ -N-C-SH

William State

Company (4)

Table 1.130

1 4010							
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G^{-R^6}$
1420	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SH
1421	CH₃ N—CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C-SH H ₂ N
1422	C├─ \ CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SH
1423	C├ \	1	2	0	R	н	-сн ₂ - N-С-
1424	H ₃ C-CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-
1425	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1426	CH2-	2	2	1	-	н	-CH ₂ -N-C-
1427	CH2-	2	2	1	-	н	-CH ₂ -N-C-NH
1428	CH2 ⁻	2	2	1	-	. н	-CH ₂ -N-C Br (H ₃ C) ₂ N
1429	H ₆ CCH ₂ O-\	2	2	1	-	н	-CH ₂ -N-C-
1430	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

医主素电影 海

Frankling M. Ale

· 中国 医胸门 (1981)

Table 1.131

Compd. No.	R 1 (CH ₂) _j -	k	m	л	chirality	Ŕ ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1431	H ₃ CCH ₂ O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1432	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Sr
1433	H ₃ CCH ₂ O-CH ₂ -	2	2	1	-	н	-CH2-NC
1434	H3CCH 2O-CH2-	2	2	1	-	н	-CHZ-NC-MN CHZ-OCH2CH
1435	H3CCH2-CH2-	2	2	1	-	Н	$-CH_2-N$ CI H_2N
1436	(HgC)2CHCH2F	2	2	1	-	н	-CH ₂ -N-C-
1437	ңс(сн ₂) ₂ о	2	2	1	-	н	-CH ₂ -N-C-CI
1438	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
1439	(H ₆ C) ₂ CH	2	2	1	-	. н	-CH ₂ -N-C
1440	н ₂ С(СМ ₂) ₂ О	2	2	i	-	Н	-CH ₂ -N-C
1441	H ₃ CS-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

labic							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_q G - R^6$
1442	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-cH-MC
1443	(H ₆ C) ₂ CH−CH ₂ −CH ₂ −	2	2	1		Н	-CH2-12-CH2-CH2-CH(CH2)2
1444	H ₃ C(CH ₂) ₂ O-\OH ₂ -	2	2	1	-	н	-CHF-NC
1445	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-CH2-N-C
1446	(H ₀ C) ₂ CH-⟨\(\bigc\)\rightarrow CH \(\frac{1}{2}\)	2	2	1	-	н	-CH ₂ -N-C
1447	H ₃ C(CH ₂) ₂ O	2	2	1	-	н	-012-H1 012-01(013) 2CH
1448	H3CS-CH2-	2	2	1	-	н	-CH-NC-SCH
1449	. н ₃ ссн ₂ —СН ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1450	(HgC)2CH	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1451	(H3CCH2) 2N-CH2-	2	2	1	-	Н .	-CH ₂ -N-C-CF ₃
1452	HQ H₃CO—CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃

151

Table 1.133

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p ↑ (CH ₂)q G-R ⁶
1453	ңс(сн ₂) ₂ о———-он ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1454	НъССН 2О{СН2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1 455	H ₃ CQ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1456	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1457	(CH ₃) ₂ N-CH ₂ -	2	2	1	· -	н	$-CH_2-N-C-$
1458	H ₃ CQ HO—CH ₂ -	2	2	1	· -	н	$-CH_2-N$ H_2N CI
1459	(H ₃ C) ₂ N-\(\bigc\)-\(\text{CH}_2^-\)	2	2	1	-	н	$-CH_2-N$ - C H_2N Br
1460	H ₃ CO HO—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N G
1461	H ₃ CQ HO—CH ₂ -	2	2	1	-	Н	-сн ₂ - м сн ₂ оснь
1462	H ₃ CQ HO————————————————————————————————————	2	2	1	-	н	-CH ² -NCH ₂ -OH
1463	с⊷СН₂-	2	1	1	-	н	-CH ₂ -N-C-CF ₃

Charles The all the second configuration

Table 1.134

Compd. No.	R ² (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1464	с⊢СН₂-	2	1	1	-	н	-CH ₂ -N-C
1465	C├ - CH ₂ -	2	1 .	1	-	Н	-CH ₂ -N-C
1466	C├───────────────────────────	2	1	1	-	н	-CH ₂ -N-C
1467	с⊢С⊢2-	2	1	1	-	н	-CH ₂ -N-C-
1468	С├-{СН₂-	2	1	1	-	Н	-CH ₂ -N-C
1469	C├─ C H ₂ -	2	1	1	-	н	-CH ₂ -N-C
1.470	CH2-	2	1	1	-	н	-CH ₂ -N-C
1471	C⊢—CH₂-	2	1	1	-	Н	-CH2-N-C-
1472	CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1473	Br S-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1474	CH ₃	4	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.135

Compd. No.	R ¹ (CH ₂) -	k	m	n	chirality	R³	-(CH ₂) _p G-R ⁶
1475	Ch CH _T	1	2	0	R ·	н	-CH ₂ -N-C-CF ₃
1476	B S CH ₂ -	1	2	. 0	'R	н	-CH ₂ -N-C-CF ₃
1477	Br 19-CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	Br - O+2-					н	-CH₂-N-C-CF3
1479	H ₃ C-CH ₃ CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1480	CH ₃	1	2	0	R	. н	-CH ₂ -N-C-CF ₃
1481	H ₃ C CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-CF ₃
1482	Br CH2-	1	2	0	R	н	$-CH_2-N-C- \bigcirc CF_{3,}$
1.483	H ₃ C CH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C-CF ₃
1484	O S (3-cH2-	1	2.	0	R	н	-CH ₂ -N-C-CF ₃
1485	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-S-F

155

Table 1,136

Compd.	R1 (CH2) -	k	m	n	chirality	R³	$-(CH_2)_{p}\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1486	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1487	H ³ C-CH ² -	1	2	0	R	н	-CH ₂ -N-CI
1488	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-√
1489	H ₃ C-CH ₂ -	1	2	0	R	Н	-сн ₂ -N-С
1490	H ₃ C,CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
1491	H ₃ C-CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-
1492	H ₃ C-CH ₂ -					н	-CH ₂ -N-C-\ N-\ N-\ N-\ N-\ N-\ N-\ N-\ N-\ N-\ N
	CH ₃ CH ₂ − CH ₃					Н	-c+-Hc
1494	CH3 CH3	1	2	0	R	н .	-CH ₂ -N-C
1495	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ² -N-C-N - D N - CH ³ CH ³
1496	CH ₃	1	2	0	R	н .	-CH ₂ -N-C

Table 1.137

Compd. No.	R2 (CH2)-	k	m	n	chirality	R³	-(CH ₂) p 5 (CH ₂)q-G-R ⁶
1497	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ² -N-C CH ³ CH ³
1498	CH ₃	1	2	0	R	н	-CH2-N-C-✓
1499	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-√
1500	CH ₃ CH ₂ - CH ₂ -	1	2	0	R	н	-CH2-N-C-√CH3
1501	CH ₃ CH ₂ - CH ₃	1	2	0.	R	н	-CH ₂ -N-C-
1502	CH ₃	1	ż	0	R	н	-CH ₂ -N-C
1503	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1504	H ₂ N-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-CF ₃
1505	CH ₂ O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1506	С├-{Сн₂-	2	1	1		Н	-CH ₂ -N-C
1507	CH2-	2	1	1	-	. н	-CH ₂ -N-C

ng Amerikan

Table 1.138

Compd.	R ¹ (CH ₂),-	k	m	п	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1508	CHCH ₂ -						-CH ₂ -N-C
1509	C├─────────────────────	2	1	1	-	н	-CH ₂ -N-C-
1510	CH2-	2	1	1	-	Н	$-CH_2-\underset{H_2}{\overset{\square}{N}}\overset{\square}{C}\overset{\square}{\longleftrightarrow}$
1511	C├── ○ ─CH ₂ - ·	2	1	1	-	Н	-CH ₂ -N-C-S
1512	CH-CH ₂ -	2	1	7	-	н	-CH ₂ -N-C
1513	CH	2	1	1		н	- CH ₂ -N-C
1514	(H ₃ CCH ₂) ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1.515	HQ H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1516	(H3CCH5)5N-CH5-	2	2	1	-	н	$-CH_2-N-C-$ H_2N H_2N
1517	HQ H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1518	HQ H ₃ CO—CH ₂ -	2	2	1,	. -	н	-cH-NC-OCH
							•

158

Table 1.139

Compd.	R ² (CH ₂) _i	k	m	n	chirality	Rª	-(CH ₂) _P + (CH ₂) _q G-R ⁶
1519	HQ H ₃ CO————————————————————————————————————	2	2	1	-	н	-chz-NC-JOH
1520	Br—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-
1521	H₃COCH₂-	1	2	.0	R	н	-CH ₂ -N-C-
1522	CH ₂ -	1	2	0	R	н	-CH₂-N-C- Br
1523	H ₃ CO————————————————————————————————————	1	2	0	R .	н	-CH ₂ -N-C-
1524	H ₃ CQ HO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1525	8r-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S
1526	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1527	CH ₂ -	1	2	0	R	,	-CH ₂ -N-C-OCF ₃
. 1528	H ₃ CO CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1529	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH2-N-C-OCF3

Tah	10	1	1	4	0

Compd.	R (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + G^4 + G^$
1530	Br—⟨□ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1531	H₃CO-€ CH₂-	1	2	0	R	н	-CH ₂ -N-C
1532	CH ₂ -	1	,2	0	R	н	-CH ₂ -N-C-CF ₃
1533	H ₃ CQ H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1534	H ₃ CO - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1535	Br—CH₂-	1	2	0	R	Н	-CH ₂ −N-C−−F
1536	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1537	CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1538	H ₃ CQ H ₃ CO————————————————————————————————————	-1	2	0	R	н	-CH ₂ -N-C-CF ₃
1539	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1540	ВгСН2-	1	.2	0) R	н	-CH₂-N-C-←F

Tab	٥١	1	1	Δ	1

Compd.	R ¹ / _P -(CH ₂) ₁ -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1541	н₃со-СН₂-	1	2	0	R	Н	-CH ₂ -N-C
1542	CH₂-	1	2	0	R	н	-CH ₂ -N-C
1543	H ₃ CO C C H ₂	1	2	0	R	н	-CH ₂ -N-C-F
1544	H ₃ CQ HO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF
1545	CL_S_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1546	H ₃ CO F CH ₂ -	1	2	0	В.	н	-CH ₂ -N-C
1547	H ₃ CO-Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1548	H ₃ C-CH ₂ -	1	2	0	· R	н ·	-CH ₂ -N-CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃
1549	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N+C$ CH_3 CH_3
1550	H3C-CH2-	1	2	0	R	н	-042-HO-C-H-C-H-C-CH-S
1551	H3C-CH2-	.1	2	0	R	н	-CH2-H-C

161

Table 1.142

Compd. No.	R1 (CH ₂) -	k	m	n	chirality	R ^a	-(CH ₂) p 1 (CH ₂) q G-R ⁶
1552	H ₂ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-
1553	H₃C-€ CH₂-	1	2	0	R.	Н	-0+2-Ac
	H ₃ CCH ₂ -					н	-CH ₂ -N-C
1555	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N H ₃ -C-N
1556	H3C-CH2-	1	2	0	R	н	-CH ₂ -N-C-C-N H ₃ C
1557	H ₃ C-CH ₂ -	1	2	0	R,	н .	-CH ₂ -N-C-N H ₃ C
1,558	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃
1559	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-N-N H ₃ C (CH ₃) ₃
1560	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1561	H ₃ C- (CH ₂ -				R	н '	-CH ₂ -N-C CH ₃ -CH ₃ -CH ₃ -CH ₃
1562	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.143

Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1563	н₃С-{}Сн₂-	1	2	0	R	Н	-cH-Kc
1564	H ₃ C⟨	1	2	0	R	н	-cH2-12-C
1565	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1566	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-C-N-CH ₃
1567	CH₃ N CH₂− CH₃	1	2	0	R	н	-c4= #
1568	CH ₃ CH ₂ CH ₃	1	2	O	R	. н	-CHF HC-CF3
1569	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-сн _{х-11} с - N
1570	H ₃ CS-CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C
1571	H3CS-CH2-	2	2	1	-	н	-сн ₂ -р с н _N с _{н2} -scнь
1572	Cho-Cho-onz	2	2	1		н	-CH2-HCCCL2
1573	н,со	2	2	1	-	н	-CH ₂ -N-C-

Table 1 144

1 4 5 1 5							
Compd.	R ¹ (CH ₂),-	k	m	п	chirality	. R3	$-(CH_2)_{p+1}^{p+4}(CH_2)_{q}G-R^6$
1574	#0-{}-# ₆ -{}-0#-	2	2	1		Н	-CH ₂ -N-C-CF ₃
1575	сь—— Х. Ё—— сн	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1576	€N-C-€N-CH2-	2	2	1	-	н	-CH₂-N-C-CF3
1577	HO(CH) 1-N-C	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1578	H,C Q CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1579	HC-CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1580	O-N-C-√-CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1581	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C-S-NH
1582	CH√_CH2-	2	2	1	-	Ĥ	-chence
1583	C├ - CH ₂ -	1	2	0	R	н -	-CH ₂ -N-C-
1584	CH-CH2-	1	2	0) R	н	-CH ₂ -N-C

164

Table 1.145

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1585	с⊢СН₂−	1	2	0 .	R	н	-CH ₂ -N-C-S
1586	CH2-	1	2	0	R	Н	-CH ₂ -N-C-
1587	С├─{СН₂-	1	2	0	R	н	-CH ₂ -N-C-
1588	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-X-CH ₃
1589	н₃С-СН₂-	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
1590	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1591	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1592	Н ₃ С-СН ₂ -	1	2	0	R	Н	-CH2-N-C-
1593	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1594	CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1595	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-COCF ₃

Table '1.146

Compd.	R (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}^{\frac{11}{14}}(CH_2)_{q}^{-}G-R^6$
1596	CH³	1	2	0	R	н	-CH ₂ -N-C-
	CH3 CH3					н	-CH2-N-C-
1598	CH ₃					н	-CH2-N-C-
1599	CH ₃ CH ₂	1	2	0	R	н '	-CH ₂ -N-C-\ H
1600	C	2	2	1	-	н	-CH ₂ -N-CF ₃
1601	CH2-	2	2	1	-	н	-CH ₂ -N-C
1602	CH2-	2	2	1	-	н	-CH₂-N-C-
1603	CH2-	2	2	1	-	Н	-CH ₂ -N-C-
1604	C	2	2	1	-	н	-CH ₂ -N-C-
1605	сн-Сн2-	2	2	1	-	н	-CH2-N-C-
1606	CH_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃

Table 1.147

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_q - G - R^6$
1607	H ₃ C-€ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1608	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1609	CH-CH ₂ -	2	2	1	= -	н	-CH ₂ -N-C-SCF ₃
1610	CF ₃ Q N-C	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1611	CF - H C- CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1612	H'COLOH FF HC-CH-	2	2	1		н	-CH ₂ -N-C-CF ₃
1613	H ~ Co+-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1614	F3CS-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1615	F3CS-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1616	F ₃ CS-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1617	F3CS—CH2-	2	2		· -	н	-CH ₂ -N-C

Tah	l۵	1	1	4	Я

Compd.	R ¹ (CH ₂) ₁ -	k	m	л	chirality	R ³	$-(CH_2)_{p}$ $+ S$ $+ CH_2)_q$ $+ G$
1618	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1619	HQ H ₃ CO—CH ₂ -	1 .	2	0	R	н	-CH ₂ -N-C-OCF ₃
1620	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1621	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F
1622	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH₂-N-CF
1623	но-€	1	2	0	R	Н	-CH ₂ -N-C-
1624	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1625	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F ₃
1626	HO-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-SF
1627	HOCH ₂ -	1	2	0	R	Н,	-CH ₂ -N-C
1628	H ₃ CS-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.149

Compd.	R1 (CH2)-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1629	H ₃ CS-€ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1630	H ₃ C CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1631	H ₂ NCH ₂ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1632	CF_3 — CH_2 —	1	2	0	R ·	н	-CH ₂ -N-C-CF ₃
1633	H ₃ CS NC——N—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1634	(H ₀ C) ₂ CH-()-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1635	H ₃ C-CH ₂ -	1	2	0	R	н .	$-CH_2-NCC C(CH_3)_3$
1636	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C H ₃ C CH ₃
1637	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-(CH ₂) ₄ CH ₃
1638	CH₃ N CH₂− CH₁	1	2	0	R	H .	-сн ₂ - N-С-С-С(сн ₂) ₃ сн ₃
1639	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	-сн ² -Д с-осн ² сн ³

Table 1.150

CH ₃ CH ₃ CH ₃ CH ₂ 1641 CH ₂ CH ₂ CH ₃ CH ₃ 1642 CH ₃	
CH ₃ CH ₃ CH ₃ 1641 N CH ₂ - CH ₃ CH ₃ 1642 N CH ₂ - CH ₃ 1643 N CH ₂ - CH ₃ CH	4
1642 $\stackrel{\text{CH}_3}{\stackrel{\text{CH}_2}}{\stackrel{\text{CH}_2}{\stackrel{\text{CH}_2}{\stackrel{\text{CH}_2}{\stackrel{\text{CH}_2}{\stackrel{\text{CH}_2}}{\stackrel{\text{CH}_2}{\stackrel{\text{CH}_2}}{\stackrel{\text{CH}_2}{\stackrel{\text{CH}_2}{\stackrel{\text{CH}_2}}{\stackrel{\text{CH}_2}{\stackrel{\text{CH}_2}}{\stackrel{\text{CH}_2}}{\stackrel{\text{CH}_2}{\stackrel{\text{CH}_2}}{\stackrel{\text{CH}_2}{\stackrel{\text{CH}_2}}{\stackrel{\text{CH}_2}}{\stackrel{\text{CH}_2}}{\stackrel{\text{CH}_2}{\stackrel{\text{CH}_2}}}{\stackrel{\text{CH}_2}}{\stackrel{\text{CH}_2}}{\stackrel{\text{CH}_2}}}{\stackrel{\text{CH}_2}}{\stackrel{\text{CH}_2}}{\stackrel{\text{CH}_2}}{\stackrel{\text{CH}_2}}{\stackrel{\text{CH}_2}}}}}}}}}}}}}}}}}}$	N-(CH ₂) ₃ CH ₃
CH ₃ 1643 CH ₂ - 1 2 0 R H -CH ₂ -N	OCF2CHCIF
0.13	N-C-N H O ₂ N-N
CH ₁	-2-3
CH ₃	
1645 CH ₂ - 1 2 0 R H -CH ₂ -	CF3
1646 Br. CH ₂ - 1 2 0 R H -CH ₂ -	CF3
1647 H ₂ C(CH ₂) ₅ CH ₂ - 2 2 1 - H -CH ₂ -	°CF3
1648 H ₂ C(CH ₂) ₃ -CH ₂ - 1 2 0 R H -CH ₂ -1	P-C-CF3
1649 H ₂ C(CH ₂) ₂ —————————————————————————————————	N-C-CF3
1650 н ₃ с(сн ₄) ₃ ———————————————————————————————————	N-C-CF3

The program of the second

Table 1.151

Compd.	R ¹ (CH ₂),—	k	m	n	chirality	. H3	$-(CH_2)_{p}\frac{R^4}{R^5}(CH_2)_qG-R^6$
1651	H ³ C(CH ²) ³ —CH ² -	2	2	1	-	Н	-CH2-NC
1652	H ₃ C(CH ₂) ₃ —CH ₂ -	2	2	1	-	Н	$-CH_2-N$ H_2N H_2N
1653	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH2-HC-H-CH3-(CH312CH
1654	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C H ₂ N
1655	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2	2	1	-	н	-CH2-NC
1656	H ₃ C(CH ₂) ₃ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1657	H ₃ C(CH ₂) ₂ -CH ₂ -	2	2	1	-	н	-CH2-HVC
1658	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-
1659	CH-€ CH₂-	2	2	1	-	Н	-CH ₂ -N-C
1660	Br—CH2-	1	2 '	0	R	н	-CH ₂ -N-C
1661	Br-CH2-	1	2	0	R	н	-CH ₂ -N-C

171

lable i	.132						
Compd.	R ¹ (CH ₂) ₁ -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_q G - R^6$
1662	В←—СН₂-	1	2	0	R	н	-CH ₂ -N-C-F
1663	B-CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C
1664	H ₃ CS-CH ₂ -	2	2	1	-	н.	-CH ₂ -N-C
1665	н ₃ СЅ—Сн ₂ -	2	2	1	-	н .	-CH ² -M-C-OCE ³
1666	н₃СS—СН ₂ -	2	2	1	-	н	-CH ₂ -N-C-F
1667	н₃ссн ₂ —{сн ₂ -	2	2	1	-	Н	-CH ₂ -N-C-OB _r
1668	н₃ссн₂—⟨¯¯)—сн²₂-	2	2	1	-	н	$-CH_2-N+C$ H_2N
1669	н ₃ ссн ₂ —Сн ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1670	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1671	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-
1672	H ₂ CCH ₂	2	2	1	-	н	-CH ₂ -N-C-

172

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	· R³	$-(CH_2)_{\rho} \int_{0.5}^{R^4} (CH_2)_{q} G - R^6$
1673	н₃ссн₂-{-}-сн₂-					н	-CH2-HC-SBr
1674	F——CH₂-	2	2	1	-	н	-CH ₂ -N-C
1675	F-CH2-	2	2	. 1	-	н	. OF CH2-N-C-F
1676	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1677	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1678	FCH ₂ -	2	, 2	1	-	Н	-CH ₂ -N-C
1679	F-CH ₂ -	2	-2	1	-	н	-CH ₂ -N-C
1680	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C OCF ₃
1681	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1682	F—CH2-	2	2	1	-	Н	-CH ₂ -N-C
1683	— μ c — CH₂-	2	2	1	-	н	-CH ₂ -N-C-Br

173

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	· R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - R^6$
1684	O-N-C-O-cH₂-	2	2	1	-	Н	-CH ₂ -N-C
1685		2	2	1	-	Н	-CH ₂ -N-C
1686		2	2	1	-	Н	-CH ₂ -N-C
1687		2	2	1	-	Н	-CH ₂ -N-C-
1688	N C-CH2-	2	2	1	-	, .	-CH ₂ -N-C-
1689	N-C- b-CH₂-	2	2	1	-	Н	-CH ₂ -N-C OCF ₃
1690	H.c	2	2	1	-	Н	-CH ₂ -N-C
1691	_H _C	2	2	1	-	н	-CH₂-N-C-Br
1692	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OBr
1693	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1694	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

The Secretary of the Se

174

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
1695	CH ₃ −CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-
1696	CH ₃ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1697	CH ₃ −CH ₂ −	1	2	0	R	Н	-CH ₂ -N-C-
1698	H ₃ C-CH ₃ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1699	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1700	H ₃ C—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1701	H ₂ C=CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1702	H₃CO-⟨CH₂-	1	2	0	R	н	-CH ₂ -N-C
1703	CH ₂ -	1	2	0	R	н	-GH ₂ -N-G-(F ₃)
1704	но-€	1	2	0	R	н	-CH ₂ -N-C
1705	CI-CH₂-	1	2	0	R	н	-CH2-H-CK-

1 7 5

Table	1	1	5	ĥ

Compd.	R ¹ (CH ₂),—	k	m	n	chirality	. _K 3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1706	CH ₂ -	1	2	0	R	,	-CH ₂ -N-C-S
1707	H ₃ CS-€ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
1708	н₃ссн₂—⟨>-сн₂-	1	2	0	R	н	-CH ₂ -N-CF ₃
1709	(H ₃ C) ₂ CH-√CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1710	H ₃ C Br—CH ₂ -	1	2	0	R	н '	-CH ₂ -N-C-CF ₃
1711	CH ₃	1	2	0	R	н	-CH ₂ -N-C-C-CF ₃
1712	H ₃ CCH ₂ Q HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1713	H ₃ C HO—CH ₂ -	1	2	0	·R	н	-CH ₂ -N-C-CF ₃
1714	H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1715	.NCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1716	CH ₂ -	1	2	0	R	. н	-CH2-N-C-C-C-2

Table	1.1	57
-------	-----	----

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	. H3	$-(CH_2)_{p}\frac{\eta^{-4}}{H^5}(CH_2)_{q}G-R^6$
1717	H ₃ CO————————————————————————————————————	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1718	CH2-CH2-	i	2	0	Я	Н	-CH ⁵ -W-C-C-2
	€ N CH2-					н	-CH ₂ -N-C-CF ₃
1720	H ₃ C→CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	H ₃ CCH ₂ -CH ₂ -					Н	$-CH_2-NCC- F$
1722	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1723	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1724	CH ₃	1	2	. 0	Я	,	· -CH ₂ -N-C
1725	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1726	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1727	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

177

Table 1.158 $-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_q G - R^6$ R1 (CH2)-Compd. . R³ n chirality m 2 0 R Н 1728 1729 2 R н 1730 R н R н R 1732 н R 1733 Н 1734 R н R Н 1735

1736 R Н R 1737 Н R 1738 н

1 7 8

Compd.	R (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
1739	(H ₂ C) ₂ CH-(CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-F
1740	-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-(Sr
1741	H₃CS-CH₂-	1	2	0	R	Н	-CH ₂ -N-C- Br
1742	н₃ссн₂-Сн₂-	1	2	0	R	Н	-CH ₂ -N-C-
1743	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
	H ₃ C-CH ₂ -					Н	-CH ₂ -N-C-
1745	H ₃ C CH ₃ -CH ₂ -	1	2	0	R	н .	-CH₂-N-C-
1746	(H ₀ C) ₂ CH-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1747	-CH ₂ -	1	2	0	R .	н	$-CH_2-\underset{H}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset$
1748	н ₃ с̀сн ₂ —(¯)—сн ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1749	H ₃ C-CH ₃	1	2	0	R	Н	-CH ₂ -N-C-

179

Ta	h		-1	. 1	6	Λ
1 2	10	e	- 1		0	U

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{P_1^4}}(CH_2)^{-G-R^6}$
1750	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-CCF ₃
1751	H3CS-CH2-	1	2	0	R	н	-CH ₂ -N-C
1752	H3CCH2-CH2-	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1753	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	H ₃ C-CH ₂ -					н	-CH ₂ -N-C-OCF ₃
1755	H ₃ C CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-C-C-S
1756	_				R	н	-CH2-V-C-CCL3
1757	Br Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1758	H ₃ CO CH ₂ -	1	2	٠Ó	R	н	-CH ₂ -N-C-CF ₃
1759	H ₃ C-CH ₂ -	1	2	0	R	н	-01-hc-
1760	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CHN.COCH3

San at Marchael Ross and Association

~	_	h	le	-	١.٠	6	- 1

Compd. No.	R1 (CH2),-	k	m	n	chirality	. _{E3}	-(CH ₂) _р
1761	H ₃ CCH ₂ -	1	2	0	R	Н	-CH5-4-C-H-C-H-C-H-C-H-CH
1762	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-HCC-H
1763	CH₂-	2	2	0	-	Н	-CH ⁵ -N-C-OCH ⁵ CH ³
1764	CH₂-	2	2	0	-	н	-CH2CH2-N-C-
1765	, CH ₂ -	2	2	0	-	. н	(5) OCH ₂ CH ₃ -CH+N-C
1766	CH₂-	. 2	2	0	-	н	(A) P OCH ₂ CH ₃ -CH-N-C
1767	CH_CH2-	1	3	1	-	н	-CH ₂ -N-C-CH ₂ CH ₃
1768	СН2-	1	3	1	-	н	-CH2CH2-N-C-
	. N CH₂- CH₃					н	- CH2-N-C
1770	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-сн _х -й-с-
1771	CH³ CH³-	1	2	0	R _.	н	H ² C) ² C-CH ² H ² C

. .

т	а	h	l۵	1	-	6	2

Compd. R2 (CH2) k m n chirality R3 — (CH2) R5 (CH2) R6 (C								
1773 CH ₃ 1774 CH ₂ 1 2 0 R H 1775 H ₃ CO 1776 H ₃ CO 1777 CH ₂ 1 2 0 R H 1777 CH ₂ 1 2 0 R H 1777 CH ₂ 1 2 0 R H 1777 CH ₂ 1777 CH ₂ 1778 H ₃ CO 1778 H ₃ CO 1779 CH ₂ 1779 CH ₂ 1780 Br 1780 Br 1781 H ₀ 1781 H ₀ 1781 H ₀ 1781 H ₀ 1782 CH ₂ 1 2 2 1 - H 1782 CH ₃ 1783 H ₁ 1784 CH ₂ 1 2 2 1 - H 1785 CF ₃ 1786 CH ₃ 1 2 0 R 1	Compd.	R ¹ (CH ₂),-	k	m	n	chirality	·R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1774	1772	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH;-H-C
1775 HO CH ₂ 1 2 0 R H -CH ₂ N CF ₃ 1776 H ₃ CO CH ₂ 1 2 0 R H -CH ₂ N CF ₃ 1777 CH ₂ CH ₂ 2 2 1 - H -CH ₂ N CF ₃ 1778 H ₃ CO CH ₂ 2 2 1 - H -CH ₂ N CF ₃ 1779 CH ₂ 2 2 1 - H -CH ₂ N CF ₃ 1780 B CH ₂ 2 2 1 - H -CH ₂ N CF ₃ 1781 HO CH ₂ 2 2 1 - H -CH ₂ N CF ₃ 1781 HO CH ₂ 2 2 1 - H -CH ₂ N CF ₃ 1782 CF ₃ 1784 CF ₃ 1785 CF ₃ 1786 CF ₃ 1787 CH ₂ CF ₃ 1788 CH ₂ CF ₃ 1789 CF ₃ 1780 CF ₃	1773	CH ₃	1	2	0	R	H	H ₃ C - H ₃ C
1776 $H_3CO \longrightarrow CH_2$ 1 2 0 R H $-CH_2 \longrightarrow CH_2$ 1 2 0 R H $-CH_2 \longrightarrow CH_2$ 2 2 1 - H $-CH_2 \longrightarrow CH_2$ 2 2 1 - H $-CH_2 \longrightarrow CH_2$ 2 2 1 - H $-CH_2 \longrightarrow CH_2$ CF3 1779 $C \longrightarrow CH_2$ 2 2 1 - H $-CH_2 \longrightarrow CH_2$ CF3 1780 $B \longrightarrow CH_2$ 2 2 1 - H $-CH_2 \longrightarrow CH_2$ CF3 1781 $HO \longrightarrow CH_2$ 2 2 1 - H $-CH_2 \longrightarrow CH_2$ CF3	1774	CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-OCH ₃
1777 CH_{2}^{-} 2 2 1 - H $-CH_{2}^{-}$ CF_{3} 1778 $H_{3}C-CH_{2}^{-}$ 2 2 1 - H $-CH_{2}^{-}$ CF_{3}^{-} 1779 CH_{2}^{-} 2 2 1 - H $-CH_{2}^{-}$ CF_{3}^{-} 1780 $BF-CH_{2}^{-}$ 2 2 1 - H $-CH_{2}^{-}$ CF_{3}^{-} 1781 $HO-CH_{2}^{-}$ 2 2 1 - H $-CH_{2}^{-}$ CF_{3}^{-}	1775	H0- CH2-	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
1778 $H_3C-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_$	1776	H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-3
1779 CH_{2}^{-} 2 2 1 - H $-CH_{2}^{-}$ CF_{3}^{-} 1780 BF_{-} CH_{2}^{-} 2 2 1 - H $-CH_{2}^{-}$ CF_{3}^{-} 1781 HO_{-} CH_{2}^{-} 2 2 1 - H $-CH_{2}^{-}$ CF_{3}^{-} CF_{3}^{-}	1777	CI CI	2	2	1	-	н	-CH ₂ -N-C
1780 $B \leftarrow \bigcirc -CH_{2}-$ 2 2 1 - H $-CH_{2} CF_{3}$ 1781 $HO \leftarrow \bigcirc -CH_{2}-$ 2 2 1 - H $-CH_{2} HC \leftarrow \bigcirc -CH_{2} HC \leftarrow -CH_{2}-$	1778	H ₃ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1781 но—СH ₂ — 2 2 1 - H —СH ₂ —N-С—Н ₂ N	1779	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
LIST IN	1780	BrCH ₂	2	· 2	1	-	н	-CH ₂ -N-C
1782 H ₂ O=CH ₂ - CH ₂ - 2 2 1 - H -CH ₂ - CF ₃	1781	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
	1782	H ₂ C=CH-{\bigce}-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

计划为其由时

Table	1.	.1	6	3

Compd.	R1 (CH2)-	k	m	n	chirality	'R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{G}G^{-R^6}$
1783	NC-CH2-	2	2	1		Н	-CH ₂ -N-C-CF ₃
1784	CH₂-	2 .	2	1	-	н	-CH3-H-C
1785	-CH ₃ (CH ₂) ₂	2	2	1		. н	$-CH_2-N$ CF_3 H_2N
1786	CH ₂ -	2	2	1	-	н	$-CH_2-N$ CF_3 H_2N
1787 .	CH ₃ (CH ₂) ₂ —CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C
1788	H ₃ C-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
1789	H ₃ CO-CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-
1790	CH_CH2-	1	2	0	· s	н	-CH ₂ -N-C- H ₂ N
1791	CH-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C OC F ₃
1792	CH ₃	2	2	1	-	Н	-CH ₂ -N-C
1793	CH2−CH2−	2	2	1	-	н	$-CH_2-N-C$ H_2N F F

183

Tab	le.	1	1	64

Compd. No.	R2 (CH2) -	k	m	n	chirality	. H3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1794	H ₃ C	2	2	1	-	Н	-CH ₂ -N-C-F
1795	CH₂-	2	2	1	-	Н	-CH ₂ -N-C-F
1796	Br—CH ₂ -	2	2	1		н	-CH ₂ -N-C H ₂ -N-C H ₂ N
1797	HO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-F
1798	H ₃ CO-CH ₂ -	2	2	1	-	. Н	- CH ₂ -N-C
1799	H ₂ C=CH-CH ₂ -	2	2	1	-	Н	CH ₂ -N-C
1800	NC-\CH2-	2	2	1	-	н	-CH ₂ -N-C
1801	CH ₂ -	. 2	2	1	-	Н	-CH ₂ -N-C
1802	HO-CH ₂ O	1	2	0	R	Н	- CH ₂ -N-C CF ₃
1803	HO-CH ₂ - ·	1	-2	0	R	н	-CH ₂ -N-C
1804	H ₃ C(CH ₂) ₂ —————————————————————————————————	. 2	2	1	-	н	-CH ₂ -N-C

elakura, en leita

Table	1.103						
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
1805	Br—⟨	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1806	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH2-N-C-SCF3
1807	H ₃ CQ HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1808	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1809	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1810	СН₂-	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1811	ĆH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1812	H₃CS-CH₂-	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1813	H ₃ CCH ₂ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1814	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1815	H ₃ C-CH ₂ -	ï	2	0	8	н	-CH ₂ -N-C-SCF ₃

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	.B.	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1816	(CH ₃) ₂ C H-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1817	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1818	B	1	2	0	R	Н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1819	H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1820	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н.	-CH ₂ -N-C-COCHF ₂
1821	HQ	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1822	HO-(CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-COCHF ₂
1823	CH2-	1	2	0	R ·	н	-CH ₂ -N-C-OCHF ₂
1824	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1825	H₃CS-{CH₂-	1	2	C	ı R	н	- CH ₂ -N-C-OC HF ₂
1826	H ₃ GCH ₂ ————————————————————————————————————	1	2	C) R	н	-CH ₂ -N-C-OCHF ₂

Table 1 167

186

Compd. No.	R ¹ (CH ₂) ₁ -	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)^{-\frac{6}{q}}G^{-\frac{6}{p+5}}$
1827	CH2-	1	2	0	R	Н	-CH2-N-C
1828	H ₃ C-CH ₃ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCHF ₂
1829	H ₃ C — CH ₂ -	1	2	0	R	Н .	-CH2-N-C
1830	(CH3)2C H-√CH2-	1	.2	0	R	Н	- CH ₂ -N-C-OCHF ₂
1831	ВСН₂-	1	2	0	' R	н	-CH ₂ -N-C-C(CH ₃) ₃
1832	H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1833	H ₃ CQ HO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1834 .	H ₃ CO CH ₂ -	1	2	0	R	H'	-CH ₂ -N-C-(CH ₃) ₃
1835	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1836	CH ₂ -	1	2	٠ 0	R	Н	CH ⁵ N-C-(CH ²) ³
1837	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃

Table 1.168

187

Compd.	R2 (CH2)-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^6$
1838	H ₃ CS-CH ₂ -	1	2	0	R	Н	-CH2-N-C-(CH3)3
1839	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1840	-CH ₂ -	1	2	0	R	н	-CH3-HC-C(CH3)3
	H ₃ C ← CH ₂ -					: н	-CH ₂ -N-C-C(CH ₃) ₃
1842	H ₃ C — CH ₂ -	1	2	0	R	Н	- CH ₂ -N-C-С(CH ₃) ₃
1843	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1844	(CH ₃) ₃ C—CH ₂ -	1	2 ,	0	R	н	-CH ² -N-C
1845	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1846	H ₃ C — CH ₂ — CH ₂ —	1	2	0	R	н	-CH ₂ -iN-C-SCF ₃
1847	(CH ₃) ₃ C————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1848	H ₃ CQ HO—CH ₂ -	1	2	0	R	н	-CH ₂ -NC

Table 1.169

188

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ħ³	$-(CH_2)_{p}^{R^4}(CH_2)_{q}^{-G-R^6}$
1849	-CH ₂ -	1	2	0	R	н	- CH2-N-C-
1850	н₃ссн₂Сн₂-	1	2	0	R	Н	-cH2-N-c-
1851	H ₃ C-CH ₃	1	2	0	R	Н	-CH ₂ -N-C-
1852	CH ₂ -	1	2	0	R	Н .	-CH2-N-C-
1853	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1854	-CH ₂ -	1	2	0	R ,	н	-CH2-N-C-
1855	н₃ссн₂—————сн₂-	1	2	0	R	н	- CH2-N-C-
1856	H ₃ C-CH ₂ -	1	2	0	R	Н	- CH ₂ -N-C-
1857	-CH ₂ -	1	2	0	R	н	- CH ₂ -N-C
1858	BrCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1859	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

189

Compd. No.	R ¹ (CH ₂),-	k	m	'n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^6$
1860	H ₃ CQ HO— CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1861	HQ H₃CO—CH₂-	1	2	0	R 	н	-CH ₂ -N-C
1862	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C - H ₂ N - C
1863	CH2-	1	2 .	0	R	н	$-CH_2-N-C \xrightarrow{Q} H_2 N$
1864	H₃CS	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N
1865		1		0	R	Н	-CH ₂ -N-C
1866	H ₃ C CH ₃ CH ₂ CH ₂ -	1	2	0	· R	Н	$-CH_2-N$ - C - H_2 N- C - H_2 N
1867	(CH ₃) ₂ C H-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1868	(CH ₃) ₃ C————————————————————————————————————	1	2	0	R	Н	- CH ₂ -N-C
1869	BCH ₂ -	1	2	0	R	н	$-CH_2-N$ C H_2N
1870	H ₃ CO-CH ₂ -	1	2	0	R .	н	-CH2-H2N-C-

Table 1.171

190

Compd. No.	R1 (CH2)j-	k	m	п	chirality	R³	$-(CH_2)_{p} + G^4 (CH_2)_{q} - G^6$
1871	H ₃ CQ HO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1872	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1873	HO-CH ₂ -	1	2	0	R	н	$-CH_2-N^-C-\bigvee_{H_2N}$
1874	CH₂-	1	2	0	R	Н	$-CH_2-N - C - $ H_2N
1875	OH2-	1	2	0	R	н	$-CH_2-NC \longrightarrow H_2N$
1876	H3CS	1	2	0	R	Н	-CH ₂ -N-C
1877	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1878	O-CH ₂ -			0	R	Н	$-CH_2-N$ C H_2N
1879	H_3C CH_3 CH_2	1	2	0	R	Н	$-CH_2-N \stackrel{Q}{\leftarrow} \stackrel{1}{\leftarrow} \stackrel{1}$
1880	(CH ₃) ₂ C H-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1881	(CH ₃) ₃ C————————————————————————————————————	' 1 ·	2	0	R	н	-CH ₂ -N-C-

191

Compd. No.	R ¹ (CH ₂) -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^{-R^6}$
1882	B	1	2	0	R .	Н	-CH ₂ -N-C-NO ₂
1883	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1884	H ₃ CQ HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1885	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
1886	HO-€CH ₂ -	1	2	0	R	н	-CH ₂ -N-C - NO ₂
1887	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C NO 2
1888	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C NO ₂
1889	H ₃ CS-€CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
1890	H ₃ CCH ₂ —СН ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1891	CH₂-	1	. 2	0	R	н	-CH ₂ -N-C-NO ₂
1892	H ₃ C-CH ₂ -	1	2	0	R	н	CH ₂ -N-C

192

T	able	1.1	73
_			

Compd. No.	R'>-(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1893	H ₃ C CH ₃	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1894	(CH ₃) ₂ C H————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1895	(CH3)3 C-CH2-	1	2	0	R	Н	- CH ₂ -N-C
1896	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1897	H ₃ CS-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1898	н₃ссн₂—Сн₂-	1	2	0	R	н	-CH ₂ -N-C
1899	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C
1900	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃
1901	H ₃ C(CH ₂) ₂ —————————————————————————————————	1	2	0	R	н	- CH ₂ -N-C
1902	0-√CH₂-	1	2	0	R	н	-CH ₂ -N-C
1903	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

1 9 3

 $\frac{R^1}{R^2}$ $(CH_2)_j$ k m n chirality $-(CH_2)_{p}$ $\frac{\Pi^4}{ds}(CH_2)_{q}G-\Pi^6$ Compd. R٦ -CH2-N+C-1904 $-CH_2-N-C \xrightarrow{OC} GCF_3$ 1905 Н R 1906 н -CH₂-N-C-OCF₃ 1907 -CH2-N-C-S 1908 н -CH2-N-C-1909 Н -CH₂-N-C OCF₃ 1910 н 1911 н

-CH₂-N-C-1912 Н -CH₂-N-C-OCF₃ 1913 -CH2-N-C-Н

Compd.	H 1/(CH ₂) _i -	k	m	n	chirality	R³	-(CH ₂) _{P + 5} (CH ₂) _q G-R ⁶
1915	H3CCH2Q H0-CH2-	1	2	0	R	н	-CH ₂ -N-C
1916	H ₃ C HO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
. 1917	H ₃ CCH ₂ Q HO————————————————————————————————————	2	2	1	-	н	$-CH_2-\underset{H_2}{\overset{Q}{{\bigvee}}} C \xrightarrow{\overset{Q}{{\bigvee}}} CF_3$
1918	H ₃ C HO-CH ₂ -	2	2	1		н .	-CH ₂ -N-C
1919	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-3
1920	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F
1921	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1922	CH ₂ -	2	2	1	-	н	- CH ₂ -N-C
1923	Вг—СН₂-	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1924	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1925	F-CH ₂ -	2	2	1	- '	н	-CH ₂ -N-C-SCF ₃

Compd. No.	R1 (CH2),-	k	m	n	chirality	R³	$-(CH_2)_{p} + G^4 + (CH_2)_{q} - G^6$
1926	F-CH ₂ -	2	2	1	-	Н .	-CH ₂ -N-C-SCF ₃
1927	HO-CH ₂ -	2	2	1		н	-CH ₂ -N-C-SCF ₃
1928	CH ₂ -	2	2	1	=	н	-CH2-N-C-SCF3
1929	-CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-SCF ₃
1930	H ₃ C S-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1931	H ₃ CCH ₂ ————————————————————————————————————	2	2	1		Н	-CH ₂ -N-C-SCF ₃
1932	CH2−	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1933	H ₃ C-CH ₃	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1934	H ₃ C CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1935	0 ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1936	H ₃ C-CH ₂ -	2	2	1	-	. н	-CH ₂ -N-C-SCF ₃

Table 1.177

196

Compd. No.	R1 (CH2),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1937	(CH ₃) ₂ CH - CH ₂ -	2	2	1	-	н.	-CH2-N-C-SCF3
1938	Br—CH ₂ -	2	2	1		н	-CH ₂ -N-C
1939	H ₃ COCH ₂ -	2	2	1	-	н	-CH ₂ -N-C CH ₃
1940	F—CH ₂ -	2	2 ·	1		н	-CH ₂ -N-C-Sr CH ₃
1941	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1942	HO-(CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1943	CH ₂ -	2	2	1	•	н	-CH ₂ -N-C-Sr CH ₃
1944		2	2	1		н	-CH2-N-C-✓ Br
1945	H3CS-CH2-	2	2	1	٠	н	-CH ₂ -N-C
1946	н _э ссн ₂ —Сн ₂ -	2	2	1	-	Н	-CH ₂ -N-C-→Br
1947	0-CH₂-	2	2	1	-	н	-CH ₂ -N-C

Table 1.178

197

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	Я³	—(CH ₂) p 1 (CH ₂) q G−R ⁶
1948	H ₃ C-CH ₃	2	2	1	-	н	-CH ₂ -N-C
1949	H ₃ C CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1950	O ₂ N-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
1951	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Sr OBr CH ₃
1952	B	2	2	1	-	Н	-CH ₂ -N-C-Br
1953	H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C Br
1954	F-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1955	F-CH ₂ -	2	2	1	-	•	-CH ₂ -N-C
1956	но-СН ₂	2	2	1	-	Н	-CH ₂ -N-C
1957	- CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1958	CH₂-	2	2	1	-	н	-CH ₂ -N-C- PF

Table 1.179

198

Compd. No.	R R2 (CH ₂) _i -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1959	H ₃ CS-CH ₂ -	2	2	1		Н	-CH ₂ -N-C
1960	н₃ссн₂Сн₂-	2	2	1		н	-CH2-N-C
1961	CH ₂ -	2	. 2	1	-	н	-CH2-N-C-Br
1962	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1963	H_3C CH_3 CH_2	2	2	1		. н	-CH ₂ -N-C
1964	O ₂ N-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C
1965	H ₃ C-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C
1966	(CH ₃) ₂ CH−√_−CH ₂ −	2	2	1	-	н	-CH ₂ -N-C
1967	8rCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1968	H₃CO-{}-CH₂-	2	2	1	-	H	$-CH_2-N$ C H_2N
1969	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table 1.180

Compd. No.	R 1 (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5}(CH_2)_{q} - GR$
1970	CH2-	. 2	2	1	-	н	-CH ₂ -N-C
1971	CH ₂ -	2	2	1		н	-CH ₂ -N-C
1972	H₃CS	2	2	1	-	н .	-CH2-N-C-
1973	H3CCH2	2	2	1	-	н	-CH ₂ -N-C
1974	H ₃ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1975	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1976	H ₃ C-⟨}-CH ₂ -	2	2	1		,H	-CH ₂ -N-C
1977	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1978	(CH ₃) ₂ C H-CH ₂ -	2	2	1	-*	н ·	-CH ₂ -N-C
1979	-CH ₂ -	2	2	1	-	н	, -CH ₂ -N-C-F-F
1980	o-CH ₂ -	2	2	1	-	н	$-CH_2-N$ C H_2N H_2N

Compd. No.	R ¹ (CH ₂) ₁ -	k	m	n `c	hirality	Ŕ۶	$-(CH_2)_{p} + G^4 + (CH_2)_{q} - G^-R^6$
1981	0 ₂ N-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C
1982	NC	2	2	1	-	Н	-CH ₂ -N-C
1983	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	н .	CH ₂ -N-C
1984	8r—CH ₂ -	2	2	1	-	н,	$-CH_2-\underset{H_2}{\overset{Q}{\overset{Q}{{{{{{{}{{$
1985	H ₃ CO-CH ₂ -	2	2	1	-	H	$-CH_2-N-C$ H_2N
1986	HO-CH ₂ -	2	2	1	-	н	$-CH_2-N+C \longrightarrow H_2N$
1987	O-CH ₂ -	2	2	1	-	н	$-CH_2-N+C$ H_2N
1988	-CH ₂ -	2	2	1	-	н	$-\mathrm{CH_2-N-C} \underset{\mathrm{H_2N}}{\overset{\mathrm{Q}}{\longrightarrow}} \overset{\mathrm{I}}{\longrightarrow}$
1989	H3CS-CH2-	2	2	1	-	н	$-CH_2-N+C \longrightarrow H_2N$
1990	H ₃ CCH ₂ —CH ₂ -	. 2	2	1	-	н	-CH ₂ -N-C-
1991	O-CH ₂ -	2	2	1		н	-CH ₂ -N-C

Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{R^5}}(CH_2)^{\frac{1}{q}}G^-R^6$
1992	CH ₃ CH ₂ −	2	2	1	-	н	- CH ₂ -N-C
1993	O ₂ N-CH ₂ -	2	2	1		Н	$-CH_2-\underset{H_2}{N+C} \stackrel{Q}{\longleftarrow} \stackrel{I}{\longrightarrow}$
1994	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1995	NC-CH2-	2	2	. 1	=	н	-CH ₂ -N-C-
1996	(CH ₃) ₂ CH————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-
1997	H ₃ C — CH ₂ -	2 .	2	1	-	Н	-CH ₂ -N-C-
1998	Br—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
1999	H ₃ CO-CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-
2000	F—CH ₂ -	2	2	1	-	н	-CH2-N-C-
2001	HO-CH ₂ -	2	2	1	-	Н	-CH2-N-C-C
2002	CH ⁵ -	2	2	1	- -	Н	- CH2-N-C-

Table 1.183

202

Compd.	R ¹ (CH ₂) -	k	m	n	.chirality	Ŕ³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^{-R^6}$
- 2003	-CH2-	2	2	1	-	, н	-CH2-V-C-
2004	H ₃ CS-CH ₂ -	2	2	1	-	н	- CH 2-N-C-C
2005	H ₂ CCH ₂	2	2	1	-	н .	- CH ₂ -N-C
2006	H ₃ C-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CI
2007	O ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
2008	H ₃ C-CH ₂ -	2	2	1	-	Н	-CH2-N-C-
2009	NC-CH ₂ -	2	2	1		Н	-CH ₂ -N-C
2010	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-Cl
2011	H ₃ C CH ₂ -	2	2	1	-	Н	CH ² -N-C-CI
2012	B-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2013	H ₃ CO-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C

Compd No.	R1 (CH2)-	k	m	n	chirality	R³	. –(CH ₂) p 1 (CH ₂) q G−R ⁶
2014	HO-€CH2-	2	2	1	-	н	-CH2-N-C-Sp. CI
2015	CH₂-	2	2	1	-	н	-CH ₂ -N-C Br
2016	-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2017	H3CS-CH2-	2	2	1	-	н	-CH5-V-C——CI
2018	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SPr
2019	CH ₂ -	2	2	1	-	н	-CH2-N-C-S-CI
2020	H ₃ C-CH ₃	2	2	1	-	н	-CH ⁵ -N-C-→BL
2021	O2 N-CH2-	2	2	1	-	Н ,	-CH ₂ -N-C-SrCI
2022	H3C-()-CH2-	2	2	1	-	н	-CH ₂ -N-C
2023	NC-CH2-	2	2	1	-	Н	-CH2-N-C- Br
2024	(CH ₃) ₂ C H−€−−−−−−−−−	2	2	1	-	Н	-CH ₂ -N-C

204

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
2025	H ₃ C — CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
2026	F-CH ₂ -	2	2	1	-	н	CH ₂ -N-C
2027	Br-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C Br
2028	'H ₃ CO-CH ₂ -	2	2	1		н	$-CH_2-N-C-$ $H_2 N$ $H_2 N$
2029	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2030	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2031	-CH ₂ -	2	2	1	-	н .	$-CH_2-N-C$ H_2N H_2N
2032	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2033	CH ₃	2	2	1	-	н	$-CH_2-N$ C H_2N
2034	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2035	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table 1.186

Compd. No.	R ¹ (CH ₂) _j -	k	Е	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^6$
2036	NC-CH2-	2	2	1	-	н	-CH ₂ -N-C-
2037	H ₃ C — CH ₂ -	2	2	1	-	н	$-CH_2-NCC$ H_2N H_2N
2038	F-CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C
2039	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-CN
2040	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2NC-CH
2041	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-H-C-CH
2042	H ₃ C-CH ₂ -	1	, 2	0	R	н .	-CH ₂ -N-C
2043	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₂ -CH ₃
2044	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	
2045	CH₃ N CH₂- CH₃	. 1	2	0	R:	Н	-CH ₂ -N-CI
2046	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃

Table 1.187

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2047	CH ₃ CH ₂ - CH ₃					н	-CH ₂ CH ₃ CH ₃
	CH ₃					н	-CH ₂ -N-C
2049	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C-CH ₃
2050	H ₃ CSCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2051	H ₃ C -N -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2052	Br CH₂− OCH₂CH₃	2	2	1	-	Н	-CH ₂ -N-C-F
2053	H ₃ CQ CH ₂ O-CH ₂ -CH ₂ -	2	2	1	, -	Н	-CH ₂ -N-C-F
2054	H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-F
2055	H ₃ CQ CH ₂ − OH	2	2	1	-	Н	-CH ₂ -N-C-F
2056	Br_CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N F F
2057	Br H₃CO—CH₂−	2	2	1	۱ -	н	-CH _{2-N} -C

political result to a graph the constitution of the constitution o

Tal	bl	е	1	. 1	8	8

Compd. No.	R1 (CH2),-	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
20,58	H ₃ CO OCH ₃	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2059	_ O- O- CH₂-	2	2	1	-	н	-CH ₂ -N-C
2060	H ₃ CO CH ₂ -OC H ₃	2	2	1	-	н	-CH ₂ -N-C-FF
2061	CH ₃	2	2	1		н	-CH ₂ -N-C-F
2062	H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ $-F$ H_2N
2063	H ₃ CQ H ₃ C — CH ₂ —	2	2	1	-	Н	-CH ₂ -N-C
2064	Bt CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N H_2N
2065	H ₃ CCH ₂ Q H ₃ CCH ₂ O-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2066	OCH ₂ -CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-F H ₂ N
2067	(H3C}3CHCH2-CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C
2068	CI F—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table 1.189

Compd. No.	R ¹ (CH ₂) _i -	k	m	n	chirality	R ³	$-(CH_2)_{p}\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
2069	H ₃ C H ₃ CO-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C - F H ₂ N
2070	Br CH2-	2	2	1	-	н	- CH ₂ -N-C
2071	H ₃ CO-CH ₂ -OCH ₃	2	2	1	-	н	$-CH_2-N-C$ H_2N F
2072	(H ₃ C) ₂ CHO	2	2	1	-	Н .	-CH ₂ -N-C-F
2073	CH2Q	2	2	1	-	н	CH ₂ -N-C
2074	н, со-О-О-Сн,-	2	2	1	-	н	-CH ₂ -N-C
2075	H ₃ CQ —CH ₂ -	2	2	1	-	. н	-CH ₂ -N-C
2076	F-CH ₂ -	2	2	1	-	. н	-CH ₂ -N-C-F
2077	Ct CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-F H ₂ N
2078	H3C CH2Q OH CH2-	2	2	1	-	н	$-CH_2-N$ C H_2 N F F
2079	-CH ₂ Q H ₃ CO	2	2	1	-	н	$-CH_2-N-C \longrightarrow F$ H_2N

209

Table 1,190

Compd.	R1 (CH2),-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
2080	-CH2Q H3CO	2	2	1	-	Н	-CH ₂ -N-C
2081	CI HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F-F
2082	OH H₃CO-CH₂-	2	ż	1	-	́.	-CH ₂ -N-C-F H ₂ N
2083	H ₃ CQ HO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C H ₂ -N-C H ₂ N
2084	H ₃ CQ HO ← CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2085	OH H₃CO	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2086	HO-CH2-	1	2	0	R	Н	-CH ₂ -N-C
2087	(H ₃ C) ₂ N-CH ₂ -	1	2	, 0	R	н	-CH ₂ -N-C
2088	(H ₃ CCH ₂) ₂ N-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2089	F-CH ₂ -	1	2	C) R	н	-CH ₂ -N-C
2090	CH-2	- 1	2	C) R	н	-CH ₂ -N-C

2 1 0

Table 1.191

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} = \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2091	CI	2	2	1	-	Н	CH-N-C
2092	CH-2-	2	2	1	-	н	-0+-NC
2093	CI—CH₂-	2	2	1	-	н	(H) -CH-N-C-(SCH ₂ CH ₃ -CH ₂ CH ₂ SCH ₃
2094	C├─ \ CH ₂ -	Ż	2	1	-	н	CH-NCH3
2095	CH2-	2	2	1	-	н	(F) - CH N-C + C CH ₃) ₃ OCH ₂ CH ₃
2096	CH-CH ₂ -	2	2	1	-	н	CH N C CH ₂ CH ₃
2097	C├─ \ CH ₂ -	2	2	1	-	н	(R) OCH ₂ CH ₃ -CH-N-C H CH ₂ CH ₂ CH ₃
2098	CI-CH ₂ -	2	2	1	-	н	(A D OCH3CH3
2099	CH-CH ₂ -	2	2	1	-	Н	-CH-N-C-
. 2100	CH-2-	2	2	1	-	н ,	CH-NC-CH ₃
2101	CH-2-	2	2	1	-	н	(A OCH ₂ CH ₃

o Stairt a ta ai a tii dii.

211

Ta	h	-	4	. 1	O	2

Compd.	R2 (CH2)-	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2102	CI—(CH ₂ -	2	2	1	-	Н	-CH-N-C-OCH ₂ -CH ₃
2103	CH-{Z-	2	2	1	-	н	-CHN-C- H3C-CHOCH2-
2104	C	2	2	1	-	Н	() Q OCH2CH3 -CH-N-C
2105	H ₃ CQ OH CH ₂ -	.2	2	1	-	Н	-CH ₂ -N-C
2106	H ₃ C OH CH ₂ -	2	2	. 1	-	н	-CH ₂ -N-C
2107	Br CH₂-	2	2	1	-	н	-CH ₂ -N-C
2108	CH ₃	2	2	1	-	н	-CH ₂ -N-C
2109	Br O-CH2-	2	2	1	-	н	-CH ₂ -N-C
2110	H ₃ CCH ₂ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2111	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2112	B(H₃CO CH₂- H₃CO	2	2	1	-	н	-CH ₂ -N-C

do North Signification

2 1 2

Table 1.193

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + G^4 + (CH_2)_{q} - G^-R^6$
2113	H ₂ N H ₃ CO————————————————————————————————————	2	2	1	-	Н ,	-CH ₂ -N-C
2114	H ₂ N H ₃ C — CH ₂ -	2	2	1	-	н	- CH ₂ -N-C
2115	CH-CH ₂ -	.2	2	1	-	н	(F) OCH ₂ CH ₃ -C++N-CC++CC+(CH ₃) ₂
2116	G⊢CH₂-	2	2	1	-	Н	(A) OCH ₂ CH ₃ CH-N-C
2117	CH2-	2	2	1	=	н .	CH2 NH
2118	HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2119	OH HÖ-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2120	B	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2121	OC H ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
.2122	· CH_CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2123	CH ₂ -NO ₂	1	2	0	R	н	-CH ₂ -N-C

2 1 3

т	a	h	le	1	1	9	4

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p+5}^{R^4}(CH_2)_{q}^{-}G^{-}R^6$
2124	O ₂ N CI————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-CF ₃
2125	O ₂ N .	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2126	O ₂ N H ₃ C — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
.2127	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2128	H ₂ N CH ₂ -	1	2	0	R	, н	-CH2-N-C-CF3
2129	H ₂ N H ₃ C—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-3
2130	Q-N=CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2131	CH ₃ CH ₂ - CH ₃	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2132	CI—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2133	(H ₃ C) ₂ N CI————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2134	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

				-	-
Tabl	e	٦.	. 1	9	5

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^-R^6$
2135	(H ₃ C) ₂ N H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C
2136	(H ₃ C) ₂ N H ₃ C — CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C H ₂ N
2137	CH ₃	1	2	0	R	н	-CH ₂ -N-C
2138	CH ₃ CH ₂ CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF ₃
2139	H ₃ C N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2140	CH ₂ -	2	2	1	-	н	CH ₂ -N-C-F H ₂ -N
2141	H ₂ N HO—CH ₂ -					н	$-CH_2-N-C-$ H_2N H_2N
2142	CH ₂ N CH ₂ -	2	2	1	, -	н	-CH ₂ -N-C-F
2143	HW-6-CH ³ -	2	2	1	-	н	-CH ₂ -N-C-F
2144	H ₂ N H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2145	H ₂ N HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-CF ₃

Table 1.196

Compd. No	R1 (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
2146	CH ₂ -NH ₂	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
2147	H ₃ C-C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N$
2148	H ₃ C-C-NH HO-CH ₂ -	2	2	1	-	н,	-CH2-N-C-FF
2149	O ₂ N HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF ₃
2150	H ₃ C-C-NH CI-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2151	H M. Č CH²-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2152	H ₃ C-C−NH H ₃ CO−СН ₂ −СН ₂ −	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2153	H ₃ C-C-NH H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2154	H ₃ C-C-NH H ₃ CO-CH ₂ -	2	2	1	٠.	н	-CH ₂ -N-C-
2155	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H ₂ N
2156	HNG-CH2	2	2	1	-	н	-CH ₂ -N-C- H ₂ N-CF ₃

Table 1.197

Compd. No.	R ¹ (CH ₂),-	k	m	'n	chirality	R ³	$-(CH_2)_{p} + G_5 + (CH_2)_{q} - G - R^6$
2157	но(СН ₃	1	2	0	R	н	-CH ₂ -N-C-
2158	H ₃ C-NH HO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-CF ₃
2159	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2160	H ₃ C-NH HO———————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2161	H ₃ C-NH CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2162	H ₃ CO-NH H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
2163	.H ₃ C-NH .HO———————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-CF ₃
2164	CH ₃	1	2	0	R	н .	-CH ₂ -N-C
2165	[N CH2-	1	2	0	R	н ,	-CH ₂ -N-C
2166	S CH2-	1	2	0	R	н	-CH ₂ -N-C
2167	H N CH2-	1	. 2	0	R	н	-CH ₂ -N-C

For More applicate on party time con-

2 1 7

Table 1.198

	R ¹ (CH ₂) _j -				chirality	R³	$-(CH_2)_{p} + G^4 + (CH_2)_{q} - G^{-R^6}$
2168	H ₃ C'N CH ₃	1	2	0	R	н	- CH ₂ -N-C-
2169	H ₃ C-CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2170	\$ С ³ -сн _г -	1	2	0	R	н	-CH ₂ -N-C
2171	H3CH2-	1	2	0	R	н	-CH ₂ -N-C
2172	F ₃ C CH ₂	1	2	0	R	н	-CH ₂ -N-C
2173	CH ₂ - S—CH ₃	1	2	0	Ŕ	н	-CH ₂ -N-C
2174	H ₃ C CH ₃ B CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2175	OCH ₃	1	2	0	R	н	$-CH_2-\underset{H}{\text{N-C}} \stackrel{\text{Q}}{\longleftrightarrow} CF_3$
2176	H ₃ C'N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2177	H ₃ COH CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N CF_3
2178	H ₃ CO-C	1	2	0	Я	н	- CH ₂ -N-C- CF ₃

Trebut double to the file of

2 1 8

Table 1.199

Compd.	R ¹ (CH ₂) ₁ -	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
2179	н,с-ç-м,-	1	2	0	R	н	CH ₂ -N-C-CF ₃
2180	C(CH ₂) ₂ -	1	2	0	Я	н	-CH ₂ -N-C
2181	H ₃ CO N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2182	H ₃ C N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2183	Ş-N N= CH₂-	1	2	0	R	Н	$-CH_2-N$ H_2N CF_3
2184	S-N-CH2-	2	2	1	-	Н	$-CH_2-N-C$ $+CH_2-N-C$ $+CH_2-N-C$
2185	Ç-N_CH₂-	2	2	1	-	н	CH ₂ -N-C- H ₂ N
2186	CH ₂ -	2	2	1	-	н	- CH ₂ -N-C
2187	H ₂ N HO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2188	CH₂-	2	2	1	-	н	$-CH_2-N+C-$ H_2N H_2N
2189	CH ₂ -	1	2	C) R	Н	-CH ₂ -N-C

2 1 9

Table 1.200

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								D4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Compd. No.	R ² >-(CH ₂) -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2192 $\longrightarrow_{CH_{2^{-}}}$ 2 2 1 - H $\longrightarrow_{H_{2}N}$ $\longrightarrow_{H_{2}N}$ 2 2 1 - H $\longrightarrow_{H_{2}N}$ $\longrightarrow_{H_{2}N}$ 2 2 1 - H $\longrightarrow_{H_{2}N}$ $\longrightarrow_{$	2190	CH2-	2	2	1	-	н	-CH ₂ -N-C
2193	2191	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
2194 $\frac{H_2N}{H_3C} \xrightarrow{CH_2} 2$ 2 1 - H $-CH_2 \xrightarrow{NC} \xrightarrow{C}$ 2195 $\frac{H_2N}{CH_2} \xrightarrow{CH_2} 2$ 2 1 - H $-CH_2 \xrightarrow{NC} \xrightarrow{C}$ 2196 $\frac{H_3C-NH}{H_3C} \xrightarrow{CH_2} 1$ 2 0 R H $-CH_2 \xrightarrow{NC} \xrightarrow{C}$ 2197 $\frac{H_3C-NH}{H_3C} \xrightarrow{CH_2} 1$ 2 0 R H $-CH_2 \xrightarrow{NC} \xrightarrow{C}$ 2198 $\frac{H_3C-NH}{CH_2} \xrightarrow{C} 1$ 2 0 R H $-CH_2 \xrightarrow{NC} \xrightarrow{C} \xrightarrow{C}$	2192	SH CH2-	2	2	1	-	Н	-CH2-N-CL3
2195 $\xrightarrow{H_2N}$ 2 2 1 - H $\xrightarrow{CH_2-NC}$ 2 2 1 - CH ₂ - N CH ₂ - 1 2 0 R H $\xrightarrow{CH_2-NC}$ CH ₂ - 1 2 0 R H $\xrightarrow{CH_2-NC}$ CH ₂ - 1 2 0 R H $\xrightarrow{CH_2-NC}$ CH ₂ - 1 2 0 R H $\xrightarrow{CH_2-NC}$ CH ₂ - 1 2 0 R H $\xrightarrow{CH_2-NC}$ CH ₂ - 1 2 0 R H $\xrightarrow{CH_2-NC}$ CH ₂ - 1 2 0 R H $\xrightarrow{CH_2-NC}$ CH ₂ - 1 2 0 R H $\xrightarrow{CH_2-NC}$ CH ₂ - 1 2 0 R H $\xrightarrow{CH_2-NC}$ CH ₂ - 1 2 0 R H $\xrightarrow{CH_2-NC}$ CH ₂ - 1 2 0 R H $\xrightarrow{CH_2-NC}$ CH ₂ - 1 2 0 R H $\xrightarrow{CH_2-NC}$ CH ₂ - 1 2 0 R H $\xrightarrow{CH_2-NC}$ CH ₂ - 1 1 1 2 0 0 R H $\xrightarrow{CH_2-NC}$ CH ₂ - 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2193	SH CH2-	2	2	1	-	Н	-CH ₂ -N-C-F
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2194	H ₂ N CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2195		2	2	1	-	н	-CH ₂ -N-C
2198 $\xrightarrow{H_3C-NH}$ 1 2 0 R H $\xrightarrow{H_2N}$ CH ₂ 1 2 0 R $\xrightarrow{H_3C-NH}$ CH ₂ $\xrightarrow{CH_2-}$ 2 2 1 $\xrightarrow{H_3C-NH}$ H ₃ C $\xrightarrow{CH_2-}$ 2 2 1 $\xrightarrow{H_3C-NH}$ H ₄ $\xrightarrow{CH_2-NC}$ CH ₂ $\xrightarrow{CH_2-}$ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	2196	H ₃ C-NH H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2197	H₃C-NH H₃CO-CH₂-	1	2	0	R	н	-CH ₂ -N-C
$2199 \xrightarrow{\text{H}_3\text{C-NH}}_{\text{H}_3\text{C}} - \text{CH}_2 - 2 2 1 - \text{H} \qquad -\text{CH}_2 - \text{N} - \text{CH}_2 - \text{CH}_$	2198	H ₃ C-NH CH ₂ -	1	2	Ô	R	Н .	-CH ₂ -N-C-CF ₃
2200 CH2- 2 2 1 - H -CH2-N-C-	2199	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C- H ₂ N CF ₃
	2200	H₃ C-NH CH₂-CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.201

Compd.	R ¹ (CH ₂) ₁ -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2201	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2202	S H CH2	1	2	0	R	Н	$-CH_2-N$ - CF_3
2203	CH ₂ -	2	2	1	-	н	- CH ₂ -N-C
2204	CH ₃ -CH ₂ -	2	2	. 1		Н	$-CH_2-N+C H_2N$ CF_3
2205	CH-2-	2	2	1	-	н	$-CH_2-N$ C H_2 H_2 N
2206	HO-CH ₂ -	2	2	1	-	Н ,	$-CH_2 - \underset{H_2N}{\overset{O}{\vdash}} \overset{CF_3}{\overset{CF_3}{\vdash}}$
2207	HO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C \xrightarrow{F} F$
2208	CH2-CH2-	2	2	1	-	н	$-CH_2 - \underset{H_2 N}{N} \overset{CF_3}{\longleftarrow}$
2209	CHCH ₂	2	2	1	-	н	$-CH_2-N-C \longrightarrow F$
2210	CH ₂ -	1	2	C	R	н	$-CH_2-N$ CF_3 H_2N
2211	CH ₂ -	2	2	1	- 1	н	-CH ₂ -H-C-C _C ₂

221

Table 1.202

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
2212	CH ₂ -	2	2	. 1	-	H	-CH ₂ -N-C-F
2213	H ₂ N CH ₂ -	2	2	1	, -	Н	CH ₂ -N-CF ₃
2214	H ₂ N H ₃ C-CH ₂ -	2	2	1	-	н	- CH ₂ -N- C- CF ₃
2215	H ₃ C-HN CH ₂ -	1	2	0	R	Н	$-CH_2-N$ H_2 H_2 N CF_3
2216	H ₃ CCH ₂ H	1	2	0	R	Н	$-CH_2-N$ - CF_3
2217	H ₃ CO-CH ₂ -CH ₂ -	1	. 2	0	R	Н	-CH ₂ -N-CF ₃
2218	C ← CH ₂ -	1	2	- 0	R	н	-CH ₂ -N-CCF ₃ -CH ₂ -N-CCF ₃ -CN-CON-CCF ₃
2219	CH-CH2-	1	2	0	. R	н	-CH ₂ -N-CF ₃
2220	CH_CH2-	1	2	0	R	Н	-CH2-N° C-N-CH(CH3)>
2221	CH-CH₂-			0		Н	- CH5- N C-N CF3
2222	H_3C CO_2CH_3 CH_2 H_3C CH_3	1	2	0	R	H	-CH ₂ -N-C-S

r gara, che viça

Table 1.203

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2223	CH2-	1	2	0	R	Н	-CH ₂ -N-C-N-N-N-CF ₃
2224	CH_CH ₂ -	1	2	0	R	н	-CH2-N-C-N-
	CH-2-					н	-CH2-N-C-N-N
2226	H ₃ C, N=CH ₂ -CH ₂ -CH ₃	1	2	0	R	н	-CH ₂ -N-CF ₃
2227	CHCH2-	1	2	0	R ·	н	-CH ₂ -N-C-N-CH ₃) ₂
2228	CH_CH ₂ -	1	2	0	R _.	Н	CH ₂ -N-CF ₃
2229	CH ₂ -	1	2	0	R	н	$-CH_2-N$ C H_2 H_2 H_2 H_2 H_3
2230	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	CH ₂ -N-C
2231	H ₃ CO-CH ₂ -CH ₂ -	1	2	0	R	Ĥ	$-CH_2-N$ C H_2N C
2232	H ₃ C H ₃ CO CH ₂ -	1	2	O	R	н	-CH ₂ -N-C
2233	CH ₂ -	1	2	C) R	н	CH ₂ -H ₂ -N-CF ₃

Table 1.204

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q - G^{-R^6}$
2234	CH ₂ - CH ₃	1	2	0	R	Н	CH ₂ -N-C- H ₂ N
2235	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2236	F CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2237	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2238	H ₃ CO CH ₂ -	1	2	0	R	н	$-CH_2-N$ $+ C$
2239	CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C
2240	CH ₂ -CH ₃	1	2	0	R ·	н	-CH ₂ -N-C
2241	H ₃ C H ₂ -	1	2	0	. R	Н	-CH ₂ -N-C
2242	CH ₃	, 1	. 2	0	R	Н	-CH ₂ -N-C
2243	(H ₃ C) ₂ N—CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C
2244	E L Z H	1	2	0	R	н	$-CH_2-N$ H_2N CCF_3

Table 1.205

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
2245	H ₃ C N O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2246	H ₃ CCH ₂ -CH ₂ -	1	2	0	R	Ĥ	-CH ₂ -N-C
2247	(H¢)3CH N CH2-	1	2'	0	R	н	-CH ₂ -N-C
2248	CH ₂ -	1	2	0	R	н	$-CH_2-NC$ H_2N OCF_3
2249	H ₂ N H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2250	H ₂ N HO-CH ₂ -	1	2	0	R	Н	$-CH_2-N$ C H_2N C
2251	H ₂ N H ₃ C — CH ₂ -	1	2	0	R	н	$-CH_2-NC-$ H_2N
2252	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H ₂ N
2253	F CH ₂ -				-	н	CH ₂ -N-C
2254	H ₃ CQ CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
2255	H ₃ C $\stackrel{CH_2}{\longrightarrow}$	2	2	1	-	н	-CH ₂ -N-C

Table 1.206

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^-R^6$
2256	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-CF ₃
2257	H ₃ CQ CH ₂ -	2	2	1	-	н	-CH ₂ -N-CF ₃
2258	CI—CH₂-	1	2	0	R	н	(S) O CI -CH-N-C- CI CH ₃
2259	H3CS-CH2-	1	2	0	R	. н	(S) P CI
2260	CI CH₂-	1	2	0	R	н	(S) Q -CH-N-C-N- CH ₃
2261	C-CH2-	1	2	0	R	н	(S) Q -CH-N-C-N- CH ₃
2262	H ₃ CS-CH ₂ -	1	2	0	Ŗ	н	(S) P -CHN-C-N-C-N-CH3
2263	CH2-	1	2	0	S	н	(S) CH N C CI
2264	CH_CH ₂ -	1	2	0	S	н	(S) P CI -CH-N-CCI
2265	н₃сѕ-{сн₂-	1	2	0	S	н	(S) P CI
2266	CH(Z-CH2-	1	2	0	S	. н	(S) P - N - C

Table 1.207

Compd.	R1 (CH ₂) ₁ -	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{G}G^{-R^6}$
	Cl CH2−						(S) P CI - CH-N-C CI - CH ₃
2268	CI	2	2	1	-	н	(S) P CI
2269	H ₃ CS-CH ₂ -	2	2	1	-	Н	(S) P CI
2270	CI CH₂-	2	. 2	1	-	Н	(S) P -CH-N-C-N- H H H
2271	CH2-	2	2	1	-	н	(S) P -CH-N-C-N- CH ₃
2272	H₃CS-CH₂-	2	2	1	-	Н	(5) P
2273	CH ₂ -	2	2	1	-	Н	(S) 0 -CH-N-C H CH(CH ₃) ₂ CI
2274	H ₃ CS-CH ₂ -	2	2	1	-	Н	(S) P CI -CH N-C CI CH(CH ₃) ₂
2275	CH_CH2	2	2	1	-	Н	(S) 0 -CH-N-C-N- H H CH(CH ₃) ₂
2276	CH-CH ₂ -	2	2	1	ı -	Н	(S) P -CH-N-C-N- CH(CH ₃) ₂
2277	H ₃ C S−€ CH ₂ −	,2	2	1	1 -	Н	(S) P -CH+N-C-N- CH(CH ₃) ₂

227 "

Table 1.208

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
2278	CICH ₂ -	1	2	0	R	Н	(S) P CF3 -CHN-CH3 H ₂ N
2279	CI—CH₂-	1	2	0	R	Н	(S) P CF3 -CHN-C-CH3 H ₂ N
2280	CI CI—CH₂-	1	2	0	S	Н	(S) 0 -CHN-C CH ₃ H ₂ N
2281	H ₃ CS-CH ₂ -	1	2	0	S	н	(S) 0 -CHN-C- CH ₃ H ₂ N
2282	CH2-	2	2	1	-	, н	(S) O CF3 -CHN-C-CHN-CH3 H ₂ N
2283	H₃C S	2	2	1	-	н	(S) OF 3 -CHN-C - H CH ₃ H ₂ N
2284	CI-CH ₂ -	2	2	1	-	Н	$(S) \qquad \begin{matrix} NH_2 \\ CH \\ NC \end{matrix} \\ CH(CH_3)_2 \qquad CF_3 \end{matrix}$
2285	CH_CH2-	2	2	1	-	н	(S) P NH2 - CH-N-C- CF ₃
2286	H ₃ CS-CH ₂ -	2	2	1	-	Н	(S) P NH2 - CH-N-C C CF3
2287	ci→CH²-	2	2	1	-	Н	(S)
2288	H ₃ C S-CH ₂ -	2	2	1	-	Н	(S) P CI -CH-N-C CI (CH ₂) ₂ CONH ₂

THE CONTRACT OF THE PARTY OF

Table 1.209

Compd.	R1 (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2289	CL CH ₂ -	2	2	1	-	Н	(S) P -CHN-C-N- H H (CH ₂) ₂ CONH ₂
2290	CH ₂ —CH ₂ —	2	2	1	-	Н	(S) P -C++N-C- CH ₂ OH
2291	CI	2	2	1	-	Н	(S) P -C++N-C- -CH2OH
2292	H3CS-CH2-	2	2	1	-	Н	(S) P CI -CH-N-C-CI CH ₂ OH
2293	CI CI—CH ₂ −	2	2	1	-	н	(S)
2294	CI—CH₂-	2	2	1	-	н .	(S)
2295	H3C S-CH2-	2	2	1	-	н	(S) P -CH-N-C-N- H H H
2296	CI CI→CH _Z	1	2	0	R	н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
2297	H ₃ CS-CH ₂ -	1	2	0	R	н	(S) P CI -CHN-C-COCI (CH ₂) ₂ SO ₂ CH ₃
2298	, CH2-	1	2	0	R	н	(S) 0 -CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃
2299	H ₃ C S—CH ₂ -	1	2	0	R	н	(S)

Table 1.210

CH ₂) _j -	k	m	n	chirality	\mathbb{R}^3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
				S	Н	(S) P -CH-N-C-C-CI (CH ₂) ₂ SO ₂ CH ₃
CICH ₂₋	1	2	0	S	Н	(S) CI - CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
CI_CH ₂ -	1	2	0	R.	н	(S) NH ₂ CH-N-C- (CH ₂) ₂ SO ₂ CH ₃ CF ₃
CH_CH ₂ -	1	2	0	R	Н	(S) P NH ₂ - C H N- C
H ₃ CS-CH ₂ -	1	2	0	R	Н	(S) P NH ₂ -CH-N-C- H C CH ₂) ₂ SO ₂ CH ₃ CF ₃
CH ₂ -	1	2	0	S	н ,	(5) PH2 -CHN-C- H (CH ₂) ₂ SO ₂ CH ₃ CF ₃
. H ₃ CS-CH ₂ -	, 1	2	0	S	Н	(S) PH2 -C+N-C- H (CH ₂) ₂ SO ₂ CH ₃ CF ₃
_CHCH_2-	1	2	0	R	н	(S) - CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N
H3CS-CH2-	1	2	0	R.	н	(S) -CH-N-C-N- I H H (CH ₂) ₂ SO ₂ CH ₃
CICH2-	1	2	C	s S	н	(S)
CH-CH ₂ -	1	2	C	s s	н	(S) S CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N
	CH_CH ₂ - CH ₂ - CH_CH ₂ - CH ₂ -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CC	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 1.211

Table 1.	.211			
Compd.	R ¹ B ² (CH ₂) ₁ -	k m n chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2311	H ₃ CS-CH ₂ -		н	(S)
2312	H3CS-CH2-	1 2 0 R	Н	(S) O CF ₃ -CH-N-C H CH ₃ H ₂ N
2313	CL CH2-	1 2 0 R	н	(S) P CI - CH-N-C CI - CH ₃
2314	H3CS-€CH2-	1 2 0 S	Н	(S) 0 -CH-N-C-N- I H CH3
2315	CHCH ₂ -	2 2 1 -	н	(S) P CI -CH-N-C CI CH(CH ₃) ₂
2316	CHCH ₂ -	1 2 0 S	Н	(S) -CH-N-C H (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2317	CI CH ₂ -CH ₂ -	2 2 1 -	н	(S) NH2 -CHN CH2OH CF3
2318		1 2 0 R	Н	(S)
2319	CL CH ₂	2 2 1 -,	н	(S) S C C C C C C C C C
232	0 · CHCH2	- 2 2 1 -	Н	(S) -CH-N-C-N- H H H CH(CH ₃) ₂
232	1 н ₃ CS-()-С	₁₂ - 2 2 1 -	н	(S) S -CH-N-C-N- CH(CH ₃) ₂

Table 1.212

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^-R^6$
	CH ₂ -				-	н	(S) S -CH-N-C-N- H H CH(CH ₃) ₂
2323	H ₃ CS-CH ₂ -	2	2	1	-	н	(5) S -C++N-C-N- H H CH(CH ₃) ₂
2324	CL CH ₂ -	2	2	1	-	н	(S) OCF3 -CHN-C-CHN-CHN-CHN-CHN-CHN-CHN-CHN-CHN-C
2325	CICH ₂ -	1.	2	0	R	н	(5) S CH CH CH CH S
2326	CH_CH2-	1	2	0	R	н	(S) S CH3
2327	H₃CS-⟨CH₂-	1	2	0	R	н	(S) N
2328	CL_CH ₂ -	1	2	0	, S	н .	(S) N C
2329	CH2-CH2-	1	2	0	S	н	(S) S CH-N-C-N-CH-N-CH-N-CH-N-CH-N-CH-N-CH-N
2330	H ₃ CS-CH ₂ -	1	2	0	s S	н	(S) S -CH+N-C-N- CH3
2331	CH_CH2-	1	2	C) S	н	(S) O CF3
2332	CH2−CH2−	1	2		D _. R	Н	(S) P CI - CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃

Table 1.213

.213						
R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + G^4 + CH_2 = G^6$
CH ₂ -	1	2	0	R	Н	(S) P -CH-N-C-N- H H H (CH ₂) ₂ SO ₂ C H ₃
H ₃ CS-CH ₂ -	1	2	0	S	Н	(S) P CI -CI+N-C CI I H (CH ₂) ₂ SO ₂ CH ₃
CI—CH ₂ —	1	2	0	S	н.	(S) (P N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C
C├───────────	1	2	0	S	н	(S)
H ₃ CS—СН ₂ -	1	2	0	s	Н	(S) O -CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃
H ₃ CS-CH ₂ -	2	2	1	-	Н	(S) P -C++N-C-N- (CH ₂) ₂ C ONH ₂
CH_CH ₂ -	2	2	1	-	н ,	(S) P - C + N - C - NH ₂ - C + N - C - NH ₂ (CH ₂) ₂ CONH ₂ CF ₃
H ₃ CS-CH ₂ -	2	2	1	- ·	н	(S) P NH ₂ -CHN-C H CH ₂) ₂ CONH ₂ CF ₃
C	2	2		1	Н	(S) P -CH-N-C 1 H CCF ₃
H₃CS-CH₂-	. 2	2 2		1 -	н	(S) PH2 -CH+C-CH ₂ OH CF ₃
CH_CH2	2	2 2	:	1 -	. н	(S) P CI -CH-N-C-CI (CH ₂) ₂ CONH ₂
	R2-(CH ₂)-R2-(CH ₂ -CH	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R C(CH ₂) R C(CH ₂) R C(CH ₂) R C(CH ₂ R	R C(CH2) R	R C(CH2) CH2- R R R R R R R R R R R R R R R R R R R	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 1.214

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
2344	CH2−	2	2	1	-	Н	(S) P CI -CH-N-C - CI (CH ₂) ₂ C ONH ₂
2345	CHCH2-	2	2	1	-	н	(S) P - CH-N-C-N- (CH ₂) ₂ C ONH ₂
2346	CICH ₂ -	2	2	1	-	н	(S) P NH2 -CHN-C-
2347	CL————————————————————————————————————	1	2	0	S	н	(S) O O O O O O O O O O O O O O O O O O O
2348	CLCH ₂ -	1	. 2	0	R	н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
2349	F—CH ₂ -	1	2	0	R	н	(S) P -CH-N-C
2350	F—CH ₂ -	1	2	0	R	Н	$(S) \qquad \bigcap_{\substack{C \\ C \\ I \\ CH_{2})_{2} \text{SO}_{2} \text{CH}_{3}}} C^{\text{Cl}}$
2351	CH ₂ -	1	2	C	R	н	(S) P -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
2352	CI CH ₂ -	2	2	1	-	н	(S) O -CHN-C-N-C-CI CH3
2353	CICH ₂ -	2	2	1	ı -	Ħ	(S) O N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C
2354	CICH ₂ -	1	2	() R	н	(S) PCL -CH-N-C

Table 1.215

Table I	.213						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^-R^6$
2355	CICH ₂ -	. 1	2	0	R	Н	(S) CI -CH-N-C- (CH ₂) ₂ SO ₂ CH ₃
2356	CICH ₂ -	1	2	0	R	Н	(S) P CI -CH-N-C (S) CH ₃ CI
2357	CI CH2-	1	2	0	R	Н	(S) P -CHN-C-S CI (CH ₂) ₂ SO ₂ CH ₃
2358	CICH ₂ -	1	2	0	R	Н	(S) P-CH ₃ (CH ₂) ₂ SO ₂ CH ₃
2359	CI————————————————————————————————————	1	2	0	R	,	(S) P -CH-N-C-S (CH ₂) ₂ SO ₂ CH ₃
2360	CICH ₂ -	1	2	0	R	H	(S) Q -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2361	CH ₂ -	1	2	0	R	Н	. (S) P -CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃
2362	CI—CH₂-	1	2	C	R	Н	(S) P -CHN-C-N
2363	CH ₂ —CH ₂ —	2	2	1	-	Н	(S) Q CI -CH-N-C
2364	CI CH2-	2	2	1	ı -	н .	(S) PCI -CHN-C-
2365	CH_CH_	2	2 2		1 -	н .	(S) N-C C C C C C C C

Table 1.216

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} G^- R^6$
2366	CICH ₂ -	2	2	1	-	, H	(S) 0 -CH-N-C-CH3
2367	CICH ₂ -	2	2	1	-	Н	(S) O O O O O O O O O O O O O O O O O O O
2368	CICH_E	2	2	1		н	(S) P -CH-N-C- S CI CH ₃
2369	CL CH2-	2	2	1	-	Н	(S)
2370	CH2-	2	2	1	-	Н .	(S) Q -C)+N-C H H CH ₃ ,
2371	Cl CH₂−	2	2	1	-	Н	(S) P CI -CH-N-C-CI -CH ₃
2372	CH ₂ -	2	2	1	ı -	. Н	(S) P CI
2373	F—CH ₂ -	2	. 2		1 -	Н	(S) P CI
2374	F_CH ₂ -	2	2		1 -	н	(S) P CI
2375	F-CH ₂ -	. 2	2		1 -	Н	(S) P CI CH-N-C-CI
2376	F_CH ₂ -	2	2 2	!	1 -	н	(S) P CI

Table 1.217

Compd.	R ¹ (CH ₂) _j -	k	m	'n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2377	F-CH ₂ -				-	н	(S) P CI CH ₃ CH
2378	CH2-	.2	2	1	-	н	(S) P CI
2379	CLCH ₂	2	. 2	1	-	н .	(S) P -CHN-C- CH ₃ H ₂ N
2380	Ct	2	2	1		. н	(S) P -CH-N-C- CH ₃ H ₂ N
2381	CH2-CH2-	2	2	1	-	H	(S) O - CH-N-C- CH ₃ HO
2382	CL CH ₂ -	2	2	1	-	Н	(S) P -CH-N-C- OH CH ₃
2383	CICH ₂ -	2	2	1	<u>.</u> .	Н	(S) S CH ₃
2384	CI_CI CH₂−	1	2	() R	н	(S) CI - CH+N-C - CI H (CH ₂) ₂ SO ₂ CH ₃
2385	CH2−	1	2	() R	н	(S) P CI -CH-N-C-C CI (CH ₂) ₂ SO ₂ CH ₃
2386	. C1	1	2	: '	0 R	Н	(S) -CH-N-C-C-CI H (CH ₂) ₂ SO ₂ CH ₃
2387	F_CH ₂ -	•	1 2	2	0 R	н	(S) P CI -C)+-N-C

Table 1.218

Table I	.216						
Compd. No.	R1 (CH2)-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
2388	F-CH ₂ -	1	2	0	R	н	(S) Q CI -CH-N-C CI -CH ₂) ₂ SO ₂ CH ₃
2389	CH2-	1	2	0	R	н	(S) P CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2390	CI CI—CH ₂ -	1	2	0	R	н	(S) 0 NH2 -C+ N-C- (CH ₂) ₂ SO ₂ C H ₃ Br
2391	CI CH2−	1	2	0	R	Н	(S) PH2 -CH-N-C-(CH ₂) ₂ SO ₂ CH ₃ CI
2392	CI—CH ₂ —	1	2	0	R	H.	(S) Q NH2 -CHN-C- I H (CH ₂) ₂ SO ₂ CH ₃
2393	CL CH ₂ -	1	2	0	R	н	(S) \$ CH-N-C-N-CH ₂
2394	CL CH2−	2	2	1	-	н	(S) P CI -CH-N-C CI (CH ₂) ₂ SCH ₃
2395	CL . CH2−	2	2	1	í -	н	(S) P CI - CI++ N+ C CI - CH ₂ OCH ₂ Ph
2396	CICH ₂ -	2	2 2		1 -	н	(S) P CI -CH-N-C- CI (CH ₂) ₄ NH ₂
2397	CI CH₂-	2	2 2		1	н	
2398	CL CH2-	. , 4	2 2	2	1 -	н	(S) OC(CH ₃) ₃

Table 1.219

Table 1.						
Compd. No.	R ¹ (CH ₂),-	k m	n ch	urality	R ³	$-(CH_2)_p + (CH_2)_q - (CH_2)_q - (CH_2)_q$
2399	CH—CH ₂ -	2 2	1	-	Н	(5) P CI -CH-MC CI H ₂ C COCH ₂ Ph
2400	CH ₂ -	2 2	1	-	н	(S) OF CI
2401	CL CH ₂ -	2 2	1	-	н	(5) N.C. CI
2402	CI CH₂−	2 2	1	-	н	(S)
2403	F—CH ₂ -	2 2	1	-	Н	(S) P CI -CH-N-C- CI -CH ₂ OH
2404	F_CH ₂ -	2 2	: - 1	-	н	(S) - CH-N-C- H CH ₂ OH
2405	F-CH ₂ -	2 2	2 1		н	(S) P -CH-N-C-CI I H CH ₂ OH
2406	ECH ₂ -	2 2	2 1	-	Н	(S) P -CH-N-C-CI CH ₂ OH
2407	CH ₂ -	2	2 1	-	н	(S) P CI -CH-N-C-CI -CH ₂ OH
2408	н ₃ сѕо ₂ —СН ₂	- 2	2 1	-	Н	(S) P CI -CH-N-C-CI CH ₂ OH
2409	н₃со₂с-{}сн;	- 2	2 1		н	CI CH ₂ OH

Table 1.220

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
2410	CICH ₂ -	2	2	1	-	Н	(S) U C C C C C C C C C C C C C C C C C C
2411	CI—CH ₂ —	2	2	1	-	н	(S) PCL CI -CHN-C- I H CH2OH
2412	CICH ₂ -	2	2	1	-	н	(S) P -CH-N-C- CH ₂ OH
2413	CH2-	2	2	1	· -	н	(S) O - CH-N-C-N
2414		2	2	1	-	н	(S) P -CHN-C-S H CH₂OH
2415	CICH ₂ -	2	2	1	÷	Н	(S) S OCH3
2416	CI—CH ₂ -	2	2	1		Н	(S) N CH ₃ OCH ₃
2417	CH ₂ -	2	2	1	-	н	(S) S CH ₃
2418	CH ₂ -	2	2	1	ı -	Н	(S) S CH ₃ CH ₃
2419	CL CH ₂ -	2	2		1 -	Н	(S) : S CI CI CI CI CI CI CI
, 2 420	CI—CH₂-	2	2		1 -	н	(S) S CH ₃

Table 1.221

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - R^6$
2421	CICH ₂ -	2	2	1	-	н	(S) F CH ₃ .
2422	CICH ₂ -	1	2	0	R	н	(S) S OCH ₃ -CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
2423	CICH ₂ -	1	2	0	R	Н	(S) S OCH ₃
2424	CI—CH ₂ —	1	2	0	R	н ,	(S)
2425	CICH ₂	1	2	0	R	н	(S) S -CH-N-C-N-CH ₃ (CH ₂) ₂ SO ₂ CH ₃
2426	CI————————————————————————————————————	1	2	0	R	Н	(S) CI -CHN-C-N- (CH ₂) ₂ SO ₂ CH ₃
2427	CI—CH ₂ —CH ₂ —	1	2	0	R	н	(S) S -CH-N-C-N-CI H H H (CH ₂) ₂ SO ₂ CH ₃
2428	CICH ₂ -	1	2	0	R	Н	(S) S

In the present invention, the acid addition salt of the cyclic amine compound is also used. The acid includes mineral acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, and carbonic acid and organic acids such as maleic acid, citric acid, malic acid, tartaric acid, fumaric acid, methanesulfonic acid, trifluoroacetic acid and formic acid.

Further, the C₁ to C₆ alkyl addition salt of the cyclic amine compound such as 1·(4·chlorobenzyl)·1·methyl·4·[{N-(3·trifluoromethylbenzoyl)glycyl} aminomethyllpiperidinium iodide is also used in the present invention. The alkyl group includes a methyl group, an ethyl group, an n·propyl group, an n·butyl group, an n·pentyl group, an n·betyl group, an n·octyl group, an isopropyl group, an isobutyl group, a sec·butyl group, a tert·butyl group, an isopentyl group, a neopentyl group, a tert·pentyl group, a 2·methylpentyl group and a 1·ethylbutyl group as suitable examples, but includes the methyl group and the ethyl group as especially preferable concrete examples. The counter anion of the ammonium cation includes halide anions such as a fluoride ion, a chloride ion, a bromide ion and an iodide ion as suitable concrete examples.

In the present invention, the racemate and all the possible optical isomers of the compound represented by the formula (I) can be used.

The compound represented by the formula (I) can be synthesized by either of the following general preparation methods, as mentioned in WO 99/25686.

(Preparation method 1)

A preparation method by reacting 1 equivalent of a compound represented by the following formula (II)

$$\begin{array}{c}
R^{\dagger} \longrightarrow (CH_{2})_{j} - N \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - NH \\
(CH_{2})_{m} \longrightarrow (CH_{2})_{n} - NH \\
R^{3}
\end{array}$$
(II)

30

10

15

20

25

[wherein, R1, R2, R3, j, k, m, and n are the same as the definitions, respectively,

242

in the above described formula (I)],

5

10

with 0.1 to 10 equivalents of a carboxylic acid represented by the following formula (III) or a reactive derivative thereof

$$\begin{array}{c} O \\ HO - C \\ - (CH_2)_p \\ \longrightarrow \\ R^5 \\ \end{array} (CH_2)_q - G - R^6 \\ (III)$$

[wherein, R4, R5, R6, G, p, and q are the same as the definitions, respectively, in the above mentioned formula (I)], in the absence or presence of a solvent.

"The reactive derivative" of the carboxylic acid represented by the above mentioned formula (III) means a highly reactive carboxylic acid derivative usually used in the field of synthetic organic chemistry, such as an acid halide, an acid anhydride, a mixed acid anhydride or the like.

The reaction can be allowed to smoothly proceed by the suitable use of proper amounts of a dehydrating agent, such as molecular sieve; a conpling 15 reagent such as dicyclohexylcarbodiimide (DCC), N-ethyl·N-(3-dimethylaminopropyl) carbodi
imide (EDCI or WSC), carbonyldiimidazole (CDI), N-hydroxysuccinimide (HOSu), N-hydroxybenzotriazole (HOBt),

- $benzotriazol \hbox{-} 1 \hbox{-} yloxytris (pyrrolidino) phosphonium hexafluorophosphate$ 20 (PyBOP), $2 \cdot (1H\text{-benzotriazol} \cdot 1 \cdot yl) \cdot 1, 1, 3, 3 \cdot \text{tetramthyluronium}$ hexafluorophosphate (HBTU),
 - $\hbox{$2$-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU),}$ $2\hbox{-}(5\hbox{-}norbornene}\hbox{-}2,3\hbox{-}dicarboxyimido})\hbox{-}1,1,3,3\hbox{-}tetramethyluronium}$
- $tetrafluoroborate~(TNTU),~O-(N-succinimidyl)-1,1,3,3\cdot tetramethyluronium$ 25 tetrafluoroborate (TSTU) or bromotris(pyrrolidino)phosphonium hexafluorophosphate (PyBroP); and a base, for example, an inorganic base such as potassium carbonate, calcium carbonate or sodium bicarbonate, an amine such as triethylamine, diisopropylethylamine or pyridine, or a polymer supported base such as (piperidinomethyl)polystyrene, 30

243

(morpholinomethyl)polystyrene, (dimethylaminomethyl)polystyrene, poly(4-vinylpyridine) or the like.

(Preparation method 2)

5

15

20

25

A preparation method by reacting 1 equivalent of an alkylating reagent represented by the following formula (IV)

$$\begin{array}{c}
R^1 \\
 \longrightarrow (CH_2)_j \longrightarrow X
\end{array} (IV)$$

[wherein, R¹, R², and j are the same as the definitions, respectively, in the above described formula (I); X represents a halogen atom, an alkylsulfonyloxy group, or an arylsulfonyloxy group],

with 0.1 to 10 equivalents of a compound represented by the following formula (V)

$$\begin{array}{c} \text{HN} \\ \text{N} \\ \text{(CH}_2)_m \end{array} \\ \begin{array}{c} \text{O} \\ \text{CH}_2)_n - \text{N} - \text{C} \\ \text{R}^3 \end{array} \\ \text{(CH}_2)_p - \frac{\text{R}^4}{\text{R}^5} (\text{CH}_2)_q - \text{G} - \text{R}^6 \end{array} \tag{V}$$

[wherein, R³, R⁴, R⁵, R⁶, G, k, m, n, p, and q are the same as the definitions, respectively, in the above-mentioned formula (I)], in the absence or presence of a solvent.

The reaction can be allowed to smoothly proceed by the suitable use of the same base as that in the above mentioned preparation method 1. Further, in the present preparation method, the reaction can be accelerated by the coexistence of an iodide compound such as potassium iodide, sodium iodide or the like in some cases. In the above mentioned formula (IV), X represents a halogen atom, an alkylsulfonyloxy group or an arylsulfonyloxy group. The suitable examples of the halogen atoms include a chlorine atom, a bromine atom, and an iodine atom. The suitable concrete example of the alkylsulfonyloxy group includes a methylsulfonyloxy group, a trifluoromethylsulfonyloxy group and the like. The suitable concrete example of the arylsulfonyloxy group includes a tosyloxy group.

(Preparation method 3)

10

15

25

30

A preparation method by reacting 1 equivalent of an aldehyde represented by the following formula (VI)

$$\begin{array}{c}
R^{1} \\
-(CH_{2})_{j-1}-CHO
\end{array} (VI)$$

[wherein, R¹, and R² are the same as the definitions, respectively, in the above mentioned formula (I); j represents 1 or 2], or the following formula (VII)

[wherein, R^1 is the same as the definition in the above mentioned formula (I); this compound corresponds to a case that j expresses 0 in the formula (I)] with 0.1 to 10 equivalents of a compound represented by the above mentioned formula (V), in the absence or presence of a solvent.

The reaction is generally called a reductive amination reaction, and includes, as a reducing condition, a catalytic hydrogenation reaction using a catalyst containing a metal such as palladium, platinum, nickel or rhodium, a hydrogenation reaction using a borane or a complex hydride such as lithium aluminum hydride, sodium borohydride, sodium cyanoborohydride, or sodium triacetoxyborohydride and an electrolytic reduction reaction.

(Preparation method 4)

5

15

20

25

A preparation method by reacting 1 equivalent of a compound represented by the following formula (VIII)

$$\begin{array}{c} R^1 \\ \longleftarrow (CH_2)_j - N \\ R^2 \\ \end{array} \underbrace{ \begin{pmatrix} (CH_2)_k \\ - (CH_2)_m \end{pmatrix} - (CH_2)_n - N - C \\ - (CH_2)_p - H \\ R^3 \\ \end{array} \underbrace{ \begin{pmatrix} (CH_2)_q - NH \\ R^5 \end{pmatrix} }_{ } \\ (VIII) \\ \end{array}$$

[wherein, R¹, R², R³, R⁴, R⁵, R⁷, j, k, m, n, p, and q are the same as the definitions, respectively, in the above mentioned formula (I)], with 0.1 to 10 equivalents of a carboxylic acid or sulfonic acid represented by the following formula (IX) or a reactive derivative thereof

HO-A-R6 (IX)

[wherein, R⁶ is the same as the definition of R⁶ in the above-mentioned formula (I); "A" represents a carbonyl group or a sulfonyl group], in the absence or presence of a solvent.

The reactive derivative of the carboxylic acid or sulfonic acid represented by the formula (IX) means a highly reactive carboxylic acid or sulfonic acid derivative generally used in the field of synthetic organic chemistry, such as an acid halide, an acid anhydride or a mixed acid anhydride.

The reaction can be allowed to smoothly proceed by the suitable use of the same dehydrating agent, coupling reagent or base as those in the above-mentioned preparation method 1.

30 (Preparation method 5)

A preparation method by reacting 1 equivalent of a compound represented by the above-mentioned formula (VIII) with 0.1 to 10 equivalents

of an isocyanate or isothiocyanate represented by the following formula (X)

$$Z=C=N-R^6$$
 (X)

[wherein, R^6 is the same as the definition of R^6 in the above mentioned formula (I); Z represents an oxygen atom or a sulfur atom], in the absence or presence of a solvent.

(Preparation method 6)

5

10

15

20

25

30

A preparation method by reacting 1 equivalent of a compound represented by the following formula (XI)

[wherein, R¹, R², R³, R⁴, R⁵, j, k, m, n, p, and q are the same as the definitions, respectively, in the above mentioned formula (I); "A" represents a carbonyl group or a sulfonyl group],

with 0.1 to 10 equivalents of an amine represented by the following formula (XII)

[wherein, R^6 is the same as the definition of R^6 in the above mentioned formula (1)], in the absence or presence of a solvent.

The reaction can be allowed to smoothly proceed by the suitable use of the same dehydrating agent, coupling reagent or base as those in the above-mentioned preparation method 1. When the substrate supplied for the reaction in each of the above mentioned preparation methods 1 to 6 has substituents which can be thought to generally react under the reaction conditions of each preparation method in organic synthetic chemistry or affect the reaction, the objective compound can be obtained by protecting the functional groups of the substrate with known proper protecting groups, supplying the protected substrate for the reaction and then removing the protecting groups by a known method.

In addition, the compound used in the present invention can also be obtained by further converting the (single or plural) substituent(s) of the compound prepared by the above mentioned preparation method 1 to 6 by a known reaction generally used in organic synthetic chemistry, such as an alkylation reaction, an acylation reaction or a reduction reaction.

In each of the above mentioned preparation methods, a halogenated hydrocarbon such as dichloromethane or chloroform, an aromatic hydrocarbon such as benzene or toluene, an ether such as diethyl ether or tetrahydrofuran, an ester such as ethyl acetate, an aprotic polar solvent such as dimethyl formamide, dimethyl sulfoxide or acetonitrile, or an alcohol such as methanol, ethanol or isopropyl alcohol, is suitably used as a reaction solvent in response to the reaction.

In any preparation method, the reaction temperature is in the range of .78% to +150%, preferably 0% to 100%. After the reaction is completed, the objective cyclic amine compound represented by the above mentioned formula (I) can be isolated in usual isolating and purifying operations, namely the operations of concentration, filtration, extraction, solid-phase extraction, recrystallization, chromatography, and so on. Further, the isolated compound can be converted into a pharmaceutically acceptable acid addition salt or C_1 to C_6 alkyl addition salt by usual methods.

Examples

10

15

20

25

30

35

The present invention will be explained specifically hereafter on the basis of examples. However, the present invention is not limited to the examples. Compound numbers assigned to compounds in the following examples correspond to compound numbers (Compd. No.), respectively, assigned to compounds shown as suitable concrete examples in Tables 1.1 to 1.221.

[Reference Example 1]

10

15

20

25

30

35

Synthesis of (R)·1·(4·chlorobenzyl)·3·[{N-(3,4·difluorobenzoyl)} glycyl}amino]pyrrolidine (Compd. No. 69)

The compounds of the present invention were synthesized by the preparation method mentioned in WO 99/25686, and, for example, (R)-1-(4·chlorobenzyl)·3·[{N-(3,4·difluorobenzoyl)glycyl}amino] pyrrolidine of Compd. No. 69 was synthesized as follows.

1) 3-Amino-1-(4-chlorobenzyl)pyrrolidine-dihydrochloride

4-Chlorobenzyl chloride (4.15g,25.8 mmol) and i $\Pr_2\text{NEt}$ (6.67g, 51.6 mmol) were added to the DMF solution (50 mL of 3-{(tert-butoxycarbonyl)amino}pyrrolidine (4.81g, 25.8 mmol) in DMF(50ml). The reaction mixture was stirred at 70°C for 15 hours, and the solvent was then removed under reduced pressure. The residue was recrystallized (CH₃CN, 50 mL) to obtain the objective

3-{(tert-butoxy carbonyl)amino}-1-(4-chlorobenzyl) pyrrolidine (6.43 g, 80%) as the yellowish white solid.

 $^{1}\text{H-NMR(CDCl}_{3},\,300~\text{MHz})~~\delta \\ 1.37~(s,\,9\text{H}),\,1.5^{-}1.7~(br,\,1\text{H}),\,~2.1^{-}2.4~(m,\,2\text{H}),\,~2.5^{+}2.7~(m,\,2\text{H}),\,~2.83~(br,\,1\text{H}),\\ 3.57~(s,\,2\text{H}),~~4.1^{-}4.3~(br,\,1\text{H}),~~4.9^{-}5.1~(br,\,1\text{H}),~~7.15^{-}7.35~(br,\,4\text{H});~~\text{the}\\ \text{purity was determined with RPLC/MS (98\%); ESI/MS m/e 311.0 (M^++H, Cl₁₆H₂₄ClN₂O₂).}$

1M HCl-Et₂O (100 mL) was added to the CH3OH (80 mL) solution of the 3-{(tert·butoxycarbonyl)amino}·1-(4·chlorobenzyl)pyrrolidine (6.38g, 20.5 mmol) and then stirred at 25°C for 15 hours. The solvent was removed under reduced pressure to obtain the solid. The solid was recrystallized (CH₃OH/CH₃CN=1:2, 130 mL) to obtain the purified 3-amino·1-(4-chlorobenzyl)pyrrolidine·dihydrochloride (4.939g, 85%) as white powder.

¹H·NMR(d₆·DMSO, 300 MHz) δ 3.15 (br, 1H), 3.3·3·75 (br·m, 4H), 3.9 (br, 1H), 4.05 (br, 1H), 4.44 (br, 1H), 4.54 (br, 1H), 7.5·7·7 (m, 4H), 8.45 (br, 1H), 8.60 (br, 1H); the purity was determined with RPLC/MS (>99%); ESI/MS m/e 211.0 (M⁺+H, C₁₁H₁₆ClN₂).

Optically active (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine -dihydrochloride and (S)-3-amino-1-(4-chlorobenzyl)pyrrolidine-dihydrochloride were synthesized from the corresponding starting materials, respectively, by

the above-mentioned method. The products showed the same ¹H-NMR as that of the above-mentioned racemate.

5

10

20

25

30

35

2) (R)-3-{(N-tert·β utoxycarbonyl)glycyl}amino·1-(4-chlorobenzyl) pyrrolidine A mixture of

(R)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride (4.54g, 16.0 mmol), a 2M NaOH solution (80 mL), and ethyl acetate (80 mL) was stirred, and the organic layer was then separated. The aqueous layer was extracted with ethyl acetate (80 mL \times 2). The obtained organic layers were combined, dried over anhydrous sodium sulfate, filtered, and then concentrated to obtain the free (R)-3-amino-1-(4-chlorobenzyl) pyrrolidine (3.35g, 99%).

Et₃N (2.5 mL, 17.6 mmol), N-tert-butoxycarbonylglycine (2.79g, mmol), EDCI (3.07g, 16.0 mmol) and HOBt (12.16g, 16 mmol) were added to the CH₂Cl₂ (80 mL) solution of the (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine (3.35g, 16 mmol). The reaction mixture was stirred at 25℃ for 16 hours, and then mixed with a 2M NaOH solution (80 mL). The organic layer was separated, and the aqueous layer was extracted with dichloromethane (100 mL × 3). The obtained organic layers were combined, washed with water (100 mL × 2) and aqueous sodium chloride solution (100 mL), dried over anhydrous and then concentrated. The objective sodium sulfate, filtered (R)-3-{N-(tert-butoxycarbonyl)glycyl}amino-1-(4-chlorobenzyl) pyrrolidine (5.40g, 92%) was obtained by column chromatography (SiO2, ethyl acetate).

3) Synthesis of (R)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine

A 4M HCl dioxane (38 mL) solution was added to the methanol (60 mL) solution the (R)-3-{N-(tert-butoxycarbonyl)glycyl}amino-1-(4-chlorobenzyl) pyrrolidine 14.7 mmol). The solution was stirred at room temperature for 2 hours. The reaction mixture was concentrated and then mixed with a 2M NaOH solution (80 mL). The mixture was extracted with dichloromethane (80 mL × 3), and the extracts were combined, dried over anhydrous sodium concentrated. The sulfate, then (R)-3-(glycylamino)-1-(4-chlorobenzyl)pyrrolidine (3.374g, 86%) was obtained by column chromatography (SiO₂, AcOEt/EtOH/Et₃N=90/5/5).

 1 H-NMR(CDCl₃, 270 MHz) δ 1.77 (dd, J = 1.3 and 6.9 Hz, 1H), 2.20·3.39 (m, 2H), 2.53 (dd, J = 3.3 and 9.6 Hz, 1H), 2.62 (dd, J = 6.6 and 9.6

250

Hz, 1H), 2.78·2.87 (m, 1H), 3.31 (s, 2H), 3.57(s, 2H), 4.38·4.53 (br, 1H), 7.18·7.32 (m, 4H), 7.39(br, s, 1H).

4) (R)-1-(4-Chlorobenzyl)-3-[{N-(3,4-difluorobenzoyl)glycyl}amino]pyrrolidine (Compd. No. 69)

The chloroform (0.4 mL) solution of 3.4 difluorobenzovl chloride (0.060 was added to the chloroform (1.0 mL) solution of the mmol) (R)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine (0.050)mmal) and triethylamine (0.070 mmol). The reaction mixture was stirred at room temperature for 2.5 hours, and then mixed with a (aminomethyl)polystyrene resin (1.04 mmol/g, 50 mg, 50 mmol). The mixture was stirred at room The resin was washed with temperature for 12 hours, and filtered. dichloromethane (0.5 mL). The filtrate and the washings were combined and mixed with dichloromethane (4 mL). The solution was washed with a 2M NaOH aqueous solution (0.5 mL), and then concentrated to obtain the (R)-1-(4-chlorobenzyl)-3-[{N-(3,4-difluorobenzoyl)glycyl}amino]pyrrolidine (Compd. No. 69) (7.8 mg, 38%): the purity was determined with RPLC/MS (>99%); ESI/MS m/e 408.0 (M++H, C20H20ClF2N3O2).

10

15

20

25

30

35

[Example 1] Assay of the inhibitory potency of a compound against the rise in the intracellular calcium concentration of CCR3 expressing cells by eotaxin

The inhibitory potency of the compound of the present invention against the rise in the intracellular calcium concentration was assayed using K562 cells stably expressing a CCR3 receptor by the following method.

A 1 mM Fura 2 acetoxymethyl ester (Dojin Kagaku Co.) was added to a suspension obtained by suspending the CCR3 expressing K562 cells in a 10 mM HEPES containing HBSS solution, and then incubated at 37°C for 30 minutes. The suspension was excited with 340 nm and 380 nm light, and the 340/380 ratio was monitored to measure the intracellular calcium concentration. Human eotaxin $(0.5\,\mu\,\mathrm{g/ml})$ was used as an agonist, and the inhibitory potency of the compound was assayed by treating the CCR3 expressing K562 cells with the compound at five minutes before the stimulation using the eotaxin, assaying the intracellular calcium concentration of the treated CCR3 expressing K562 cells, and then calculating the inhibition potency (%) by the use of the following expression.

Inhibition rate (%) = $\{1 \cdot (A \cdot B) / (C \cdot B)\} \times 100$

10

15

20

25

30

35

(A: an intracellular calcium concentration, when the cells were treated with the compound and then stimulated with the eotaxin; B: an intracellular calcium concentration, when the cells were not stimulated with the eotaxin; C: an intracellular calcium concentration, when the cells were not treated with the compound but stimulated with the eotaxin).

When the inhibitory activities of the cyclic amine derivatives used in the present invention were assayed, for example, the following compounds showed inhibitory activities of 20% to 50%, 50% to 80%, and >80%, respectively, at a concentration of $10\,\mu$ M.

The compounds which showed the inhibitory activities of 20% to 50% at the concentration of $10\,\mu\,M^{\raisebox{-0.75pt}{:}}$

Compd. Nos. 11, 156, 234, 330, 392, 424, 481, 523, 525, 533, 558, 567, 582, 602, 613, 630, 646, 649, 701, 738, 741, 754, 767, 814, 816, 833, 839, 873, 902, 909, 945, 1002, 1159, 1170, 1258, 1315, 1352, 1357, 1407, 1417, 1448, 1472, 1504, 1508, 1531, 1558, 1562, 1569, 1661, 1670, 1686, 1719, 1751, 1756, 1769, 1775, 1783, 1797, 1802, 1803, 1815, 1834, 1841, 1846, 1883, 1887, 1889, 1892, 1913, 1924, 1928, 1960, 2006, 2013, 2035, 2052, 2083, 2113, 2127, 2136, 2189, 2320, 2321, 2323, 2327, 2330, 2334, 2336, 2338, 2345, 2394, 2394, 2398, 2398, 2400, 2400, 2406, 2406, 2407, 2407, 2409, 2409, 2420, 2421, 2421

The compounds which showed the inhibitory activities of 50% to 80% at the concentration of $10\,\mu\,\mathrm{M}$

Compd. Nos. 83, 115, 146, 150, 216, 294, 297, 322, 405, 440, 459, 461, 466, 482, 484, 487, 490, 492, 503, 526, 528, 550, 562, 570, 578, 620, 623, 659, 685, 687, 703, 716, 730, 733, 755, 770, 850, 856, 867, 876, 998, 1015, 1024, 1223, 1259, 1267, 1295, 1377, 1402, 1412, 1420, 1485, 1519, 1550, 1560, 1595, 1601, 1650, 1701, 1725, 1754, 1836, 1856, 1870, 1912, 1923, 1929, 2095, 2120, 2138, 2179, 2258, 2260, 2261, 2267, 2268, 2270, 2275, 2276, 2278, 2287, 2290, 2291, 2294, 2297, 2300, 2301, 2302, 2307, 2309, 2313, 2317, 2322, 2324, 2326, 2328, 2329, 2333, 2335, 2343, 2344, 2346, 2347, 2348, 2350, 2351, 2353, 2358, 2360, 2361, 2364, 2365, 2368, 2369, 2377, 2379, 2381, 2402, 2403, 2404, 2405, 2408, 2410, 2411, 2416, 2417, 2418

The compounds which showed the inhibitory activities of >80% at the concentration of 10 $\mu\,\mathrm{M}$:

Compd. Nos. 7, 32, 68, 169, 173, 203, 209, 215, 520, 544, 547, 851, 852, 855,

一个一个所有更好更加

874, 910, 1003, 1012, 1032, 1038, 1042, 1043, 1046, 1114, 1190, 1244, 1247, 1384, 1441, 1513, 1527, 1545, 1582, 1673, 1687, 1689, 1705, 1850, 1869, 1871, 1876, 1877, 1899, 2027, 2289, 2293, 2296, 2298, 2315, 2318, 2319, 2325, 2332, 2349, 2352, 2354, 2355, 2356, 2357, 2359, 2362, 2363, 2366, 2367, 2370, 2371, 2372, 2373, 2374, 2375, 2376, 2378, 2382, 2383, 2390, 2393, 2396, 2412, 2413, 2414, 2415, 2422, 2423, 2424, 2425, 2426, 2427, 2428

[Example 2] Assay of inhibitory potency against the binding of eotaxin to a CCR3 expressing cells membrane fraction

A cell membrane fraction prepared from human CCR3 expressing K562 cells was suspended in an assay buffer solution (25 mM HEPES, pH 7.6, 1 mM CaCl₂, 5 mM MgCl₂, 0.5% BSA) at a concentration of 0.5 mg/mL to prepare the cell membrane fraction suspension. A test compound was diluted with the assay buffer solution to prepare the test compound solution. [125]-labeled human eotaxin (Amasham Co.) was diluted with the assay buffer solution at a concentration of 1μ Ci/mL to prepare the labeled ligand solution. $25\,\mu$ L of the test compound solution and $50\,\mu$ L of the test compound solution, $25\,\mu$ L of the labeled ligand solution and $50\,\mu$ L of the cell membrane fraction suspension were sequentially injected into each well of a 96 well microplate coated with 0.5% BSA, stirred (100 μ L of the reaction solution), and then incubated at 25°C for 90 minutes.

After the reaction was finished, the reaction solution was filtered with the 96 well filter plate (Millipore Inc.) in which the filter was previously immersed in a 0.5% polyethylenimine solution, and the filter was washed with $150\,\mu\,\mathrm{L}$ of a cold washing buffer solution (assay buffer +0.5M NaCl) four times (150 $\mu\,\mathrm{L}$ of the cold washing buffer solution was added and then filtered). After the filter was dried with air, $25\,\mu\,\mathrm{L}$ of a liquid scintillator was added to each well, and the radioactivity retained in the membrane fraction on the filter was measured with a TopCounter (Packard Co.).

The inhibitory potency of the test compound against the binding of the human eotaxin to the CCR3 membrane fraction was calculated, wherein a count on the addition of 100 ng of non-labeled human eotaxin in stead of the test compound was subtracted, and a count on the non-addition of the test compound was 100%.

10

20

25

30

(A: a count, when the test compound was added; B: a count, when 100 ng of the non-labeled human eotaxin was added; C: a count, when only [125]-labeled human eotaxin was added).

When the inhibitory activities of the cyclic amine derivatives used in the present invention were assayed, the inhibitory activities of typical compounds in the present example were approximately equivalent to the inhibitory activities measured in Example 1.

Utilizability in industry

10

15

20

The medicine containing as an active ingredient the cyclic amine compound, the pharmaceutically acceptable acid addition salt thereof or the pharmaceutically acceptable C₁ to C₆ alkyl addition salt thereof, of the present invention, or the medicine for treating or preventing diseases in which CCR3 participates, has an activity for inhibiting the action of the ligand of the CCR3, such as eotaxin, to a target cell as the CCR3 antagonist. Thereby, the medicine is useful as a medicine for treating and/or preventing diseases for whose progress and maintenance the tissue infiltration of eosinophils, basophils, activated T cells and so on play main rolls, for example, allergic diseases such as bronchial asthma, allergic rhinitis, atopic dermatitis, urticaria, contact dermatitis and allergic conjunctivitis, inflammatory bowel diseases such as ulcerative colitis, Crohn disease and so on. Further, the medicine is useful as a medicine for treating and/or preventing AIDS by the HIV-1 infection inhibiting activity based on the CCR3 antagonism.

1. A pharmaceutical composition which contains, as an active ingredient, a compound represented by the following formula (I), a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 to C_6 alkyl addition salt thereof, and which has a CCR3-antagonistic activity,

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} - N - C \longrightarrow (CH_{2})_{p} \longrightarrow R^{4} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array} (1)$$

[wherein, R1 represents a phenyl group, a C3 to C8 cycloalkyl group, or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, provided that the phenyl group or the aromatic heterocyclic group in the above mentioned R1 may be condensed with a benzene ring, or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms to form a condensed ring, further provided that the phenyl group, the C3 to C8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring may be substituted by the arbitrary number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxyl groups, carbamoyl groups, C1 to C6 alkyl groups, C3 to C8 cycloalkyl groups, C2 to C6 alkenyl groups, C1 to C6 alkoxy groups, C1 to C6 alkylthio groups, C3 to C5 alkylene groups, C2 to C4 alkylenoxy groups, C1 to C3 alkylenedioxy groups, phenyl groups, phenoxy groups, phenylthio groups, benzyl groups, benzyloxy groups, benzoylamino groups, C2 to C7 alkanoyl groups, C2 to C7 alkoxycarbonyl groups, C2 to C7 alkanoyloxy groups, C2 to C7 alkanoylamino groups, C2 to C7 N-alkylcarbamoyl groups, C4 to C9 N-cycloalkylcarbamoyl groups, C1 to C6 alkylsulfonyl groups, C3 to C8 (alkoxycarbonyl)methyl groups, N-phenylcarbamoyl groups, piperidinocarbonyl groups, morpholinocarbonyl groups, 1-pyrrolidinylcarbonyl groups, divalent groups represented by the formula: -NH(C=O)O-, divalent groups represented by the formula: -NH(C=S)O-, amino groups, mono(C1 to C6 alkyl)amino groups

10

15

20

25

30

or $di(C_1$ to C_6 alkyl)amino groups, and further provided that the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring may further be substituted by the arbitrary number of halogen atoms, hydroxy groups, amino groups, trifluoromethyl groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoy groups.

 R^2 represents a hydrogen atom, a C_1 to C_6 alkyl group, a C_2 to C_7 alkoxycarbonyl group, a hydroxy group or a phenyl group, provided that the C_1 to C_6 alkyl group or the phenyl group in R^2 may be substituted by the arbitrary number of halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoxy groups, and provided that when j is 0, R^2 is not a hydroxy group.

j represents an integer of 0 to 2.

k represents an integer of 0 to 2.

m represents an integer of 2 to 4.

n represents 0 or 1.

10

15

20

25

30

35

 R^3 represents a hydrogen atom or a C_1 to C_6 alkyl group which may be substituted (by one or two phenyl groups which may be substituted by the same or different arbitrary numbers of halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoy groups, respectively).

R4 and R5, same or differently, represent a hydrogen atom, a hydroxy group, a phenyl group or a C1 to C6 alkyl group, respectively, and the C1 to C6 alkyl group in R4 and R5 may be substituted by the arbitrary number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxyl groups, carbamoyl groups, mercapto groups, guanidino groups, C3 to C8 cycloalkyl groups, C₁ to C₆ alkoxy groups, C₁ to C₆ alkylthio groups, phenyl groups (which may be substituted by the arbitrary number of halogen atoms, hydroxy groups, C1 to C6 alkyl groups, C1 to C6 alkoxy groups or benzyloxy groups), phenoxy groups, benzyloxy groups, benzyloxycarbonyl groups, C2 to C7 alkanoyl groups, C2 to C7 alkoxycarbonyl groups, C2 to C7 alkanoyloxy groups, C2 to C7 alkanovlamino groups, C₂ to C₇ N-alkylcarbamoyl groups, C₁ to C₆ alkylsulfonyl groups, amino groups, mono(C1 to C6 alkyl)amino groups, di(C1 to C6 alkyl)amino groups or aromatic heterocyclic groups (having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms) or condensed rings formed by the condensation of the aromatic heterocyclic group with a benzene ring, or R4 and R5 may together form a three to six-membered cyclic hydrocarbon.

p represents 0 or 1.

q represents 0 or 1.

10

15

20

25

30

35

G represents a group represented by $\cdot CO \cdot$, $\cdot SO_2 \cdot$, $\cdot CO \cdot O \cdot$, $\cdot NR^7 \cdot CO \cdot$, $\cdot CO \cdot NR^7 \cdot$, $\cdot NH \cdot CO \cdot NH \cdot$, $\cdot NH \cdot CS \cdot NH \cdot$, $\cdot NR^7 \cdot SO_2 \cdot$, $\cdot SO_2 \cdot NR^7 \cdot$, $\cdot NH \cdot CO \cdot O \cdot$, or $\cdot O \cdot CO \cdot NH \cdot$, provided that R^7 is a hydrogen atom or a C_1 to C_6 alkyl group, or R^7 may form a C_2 to C_5 alkylene group together with R^5 .

R6 represents a phenyl group, a C3 to C8 cycloalkyl group, a C3 to C6 cycloalkenyl group, a benzyl group or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, provided that the phenyl group, the benzyl group or the aromatic heterocyclic group in the above mentioned R6 may be condensed, to make a condensed ring, with a benzene ring or an aromatic heterocyclic group having one or three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, further provided that the phenyl group, the C₃ to C₈ cycloalkyl group, the C₃ to C₆ cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in the above mentioned R6 may be substituted by the arbitrary number of halogen atoms, hydroxy groups, mercapto groups, cyano groups, nitro groups, thiocyanato groups, carboxyl groups, carbamoyl groups, trifluoromethyl groups, C₁ to C₆ alkyl groups, C₃ to C₈ cycloalkyl groups; C₂ to C₆ alkenyl groups, C₁ to C₆ alkoxy groups, C₃ to C₈ cycloalkyloxy groups, C₁ to C₆ alkylthio groups, C₁ to C3 alkylenedioxy groups, phenyl groups, phenoxy groups, phenylamino groups, benzyl groups, benzoyl groups, phenylsulfinyl groups, phenylsulfonyl groups, 3-phenylureido groups, C_2 to C_7 alkanoyl groups, C_2 to C_7 alkoxycarbonyl groups, C2 to C7 alkanoyloxy groups, C2 to C7 alkanoylamino group, C₂ to C₇ N-alkylcarbamoyl groups, C₁ to C₆ alkylsulfonyl groups, phenylcarbamoyl groups, $N,N-di(C_1 \text{ to } C_6 \text{ alkyl})$ sulfamoyl groups, amino groups, mono(C₁ to C₆ alkyl)amino groups, di(C₁ to C₆ alkyl)amino groups, benzylamino groups, C_2 to C_7 (alkoxycarbonyl)amino groups, C_1 to C_6 (alkylsulfonyl)amino groups or bis(C_1 to C_6 alkylsulfonyl)amino groups, and further provided that the substituents of the phenyl group, the C₃ to C₈ cycloalkyl group, the C3 to C8 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group, or the condensed ring may further be substituted by the arbitrary number of halogen atoms, cyano groups, hydroxy groups, amino groups, trifluoromethyl groups, C1 to C6 alkyl groups, C1 to C6 alkoxy groups, C₁ to C₆ alkylthio groups, mono(C₁ to C₆ alkyl)amino groups, or di(C₁ to C₆ alkyl)amino groups.].

2. The pharmaceutical composition having the CCR3-antogonistic

action according to Claim 1, wherein k is 1 and m is 2 in the above mentioned formula (I).

- 3. The pharmaceutical composition having the CCR3 antogonistic action according to Claim 1, wherein k is 0 and m is 3 in the above mentioned formula (I).
- 4. The pharmaceutical composition having the CCR3 antogonistic action according to Claim 1, wherein k is 1 and m is 3 in the above mentioned formula (I).
- 5. The pharmaceutical composition having the CCR3 antogonistic action according to Claim 1, wherein k is 2 and m is 2 in the above mentioned formula (I).
- 6. The pharmaceutical composition having the CCR3 antogonistic action according to Claim 1, wherein k is 1 and m is 4 in the above mentioned formula (I).
- 7. A pharmaceutical composition which contains, as an active ingredient, the compound represented by the above mentioned formula (I), the pharmaceutically acceptable acid addition salt thereof or the pharmaceutically acceptable C₁ to C₆ alkyl addition salt thereof, and which is used for treating or preventing a disease concerned with CCR3.
- 8. The pharmaceutical composition for treating or preventing the disease according to Claim 7, wherein the disease is an allergic disease.
- 9. The pharmaceutical composition for treating or preventing the disease according to Claim 8, wherein the disease is asthma, allergic rhinitis, atopic dermatitis, urticaria, contact dermatitis, or allergic conjunctivitis.
- 10. The pharmaceutical composition for treating or preventing the disease according to Claim 7, wherein the disease is an inflammatory bowel disease.
- 11. The pharmaceutical composition for treating or preventing the disease according to Claim 7, wherein the disease is AIDS.

25

10

15

20

ABSTRACT

A medicine containing, as an active ingredient, a cyclic amine 5 derivative represented by the following formula (I),

$$\stackrel{\mbox{$R1}{ \begin{subarray}{c} \line \line$$

a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C₁ to C₆ alkyl addition salt thereof. The medicine has an action for treating or preventing diseases in which CCR3 participates, such as asthma and allergic rhinitis.

T:41

Declaration and Power of Attorney for Patent Application

特許出願宣言書および委任状

Japanese Language Declaration

私は下記発明者として以下の通り宣言します:	As a below named inventor, I hereby declare that:
私の住所、郵送先、および国籍は私の氏名の後に記載された通りです。	My residence, mailing address and citizenship are as stated nex to my name.
下記名称の発明に関し請求範囲に記載され特許出顧が されている発明内容につき、私が最初、最先かつ唯一 の発明者(下記氏名が一つのみの場合)であるか、あ るいは最初、最先か少共同発明者(下記氏名が複数の 場合)であると信じます。	I believe I am the original, first and sole inventor (if only on name is listed below) or an original, first and joint inventor (i plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the inventio entitled
	"CYCLIC AMINE CCR3 ANTAGONIST"

下記項目に x 印が付いている場合を除き、上記発明の 明細書は本書に添付されます。

□ 上記発明は米国出願番号あるいは PCT 国際出願番号 (確認番号) として 年_月_日に出願され、 年_月_日に補正されました (該当する

私は特許請求範囲を含み上述の補正で補正された前記 明細書の内容を検討し、理解していることをここに表 明します。

私は連邦規則法典第37編1条56項に定義される特許性 に肝要な情報について開示義務があることを認めま す。 the specification of which is attached hereto unless the following box is checked:

was filed on August 4, 2000
as United States Application Number or PCT
International Application Number
PCT/JP00/05260 (Conf. No.______)
and was amended on

(if applicable).

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, § 1.56.

Priority Claimed

Yes No 有り 無し

優先権の主張

Japanese Language Declaration

私は米国法典第 35 編 119 条(n)・(d)あるいは 365 条(b)に基 づき特許あるいは逸明者配書の下記外国出願、または 365 条(a)に基づき米国以外の少なくとも 1 ヶ国を指定した下 記 PCT 外国出願についての外国優先権をここに主張大彦 とともに、下記項目に、1 印を付けることにより優先権を 主張する出願以前の出願日を有する特許あるいは発明者 証書の外国出願るるいはPCT外国出願を示します。

Prior foreign application(s)

ことを認めます。

(Application No.)

(Application No.) (出願番号)

(出願番号)

I hereby claim foreign priority under Title 35, United States Code, § 119(a)-(d) or § 365(b) of any foreign application(s) Patent or inventor's certificate, or § 365(a) of any PCT International application which designated at least one country other than the United States, listed below, and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed.

外国	での先行出願・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
11-22 (Num (番号	ber)	Japan (Country) (国名)	04/August/1999 (Day/Month/Year (出願年月日)
(Num (番		(Country) (国名)	(Day/Month/Year (出願年月日)
私はたの利	米国法典第 35 編 119 条(益をここに主張します。	e)に基づき下記の米国仮特許	I hereby claim th § 119(e) of any below.
	ication No.) 顏番号)	(Filing Date) (出願日)	
	ication No.) 願番号)	(Filing Date) (出願日)	
ある 特 に 規 出願	ハは 365 条(c)に基づき米 出願の利益をここに主張 の各項目の内容が米国法 定される方法により先行	に基づき下記米国特許出願、 民国を指定する下記 PCT 国際 長し、本特許出願の特許許弱。 東第 35 編 112 冬の最初の項 米国あるいは PCT 国際特許 において連邦規則法典第 37 総数性に下腹で、生行執辞	I hereby claim the \$120 of any University of the PCT Internations listed below and claims of this appropriate the states or PCT In by the first paragacknowledge the

§ 119(é) of any United States provisional application(s) listed below.

I hereby claim the benefit under Title 35, United States Code, \$120 of any United States applications), or § 355(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal to patentability as defined in Title 37, Code of Federal Regulations, § 156 which became available between the filing date of the prior application and the national or PCT International filing date of this application.

(Status: patented, pending, abandoned)
(状態:特許成立済、係属中、放棄済)
(Status: patented, pending, abandoned)
(状態:特許成立済、係属中、放棄済)

私は本宣言書内で私自身の知識に基づいてなされたすべての陳述が真実であり、情報やよび信するところに基づいてなされたすべての陳述が真実であると信じられていることをここに宣言し、さらに放意になされた虚偽の陳遠等なには両方による処罰にあたり、またかような故意による虚偽の陳述はそれに基づく特許加麗あるいは成立特許の有効性を危うくする可能性があることを認識した上でこれらの陳述なそれたことを宣言します。

願の出願日から本特許出願の国内あるいは PCT の出願

日までの間に入手された情報について開示義務がある

(Filing Date)

(出顧日)

(Filing Date)

(出願日)

I hereby declare that all statements made herem of my own knowledge are true and that all statements made on miormation and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are pumshable by fine or imprisonment, or both, inder Section 1001 of Trite 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patient issued thereon.

Japanese Language Declaration

委任状:私は下記の米国特許商標局(USPTO) 顧客番号のもとに記載されるSUGHRUE MION 法律事務所のすべての弁護士を、同顧常番号のもとに記載される個々の弁護士は Sughnue Mion 法律事務所のみの自由裁量に基づき変更され得ることを認識した上で、本特許出願の場合された代関力る特許商場局との業務を遂行する弁護士として指名し、本特許出願に関するすべての通信が同 USPTO 顧客番号のもとに提出された住所宛に送付されることを要請します。

POWER OF ATTORNEY: I hereby appoint all attorneys of SUGHRUE MION, PLLC who are listed under the USPTO Customer Number shown below as my attorneys to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith, recognizing that the specific attorneys listed under that Customer Number may be changed from time to time at the sole discretion of Sughrue Mion, PLLC, and request that all correspondence about the application be addressed to the address filed under the same USPTO Customer Number.

電話連絡は下記へ: (名前および電話番号)

SUGHRUE MION, PLLC +1 (202) 293-7060 Direct Telephone Calls to: (name and telephone number)
SUGHRUE MION, PLLC

SUGHRUE MION, PLLC (202) 293-7060

唯一あるいは第一の発明者名	1-00	Full name of sole or first inventor Tätsuki SHIOTA
発明者の署名	日付	Inventor's signature Date
住所		Residence TOKYO, JAPAN JPX
国籍		Cittzenship Japanese
郵送先		Mailing Address c/o Teijin Limited, Tokyo Research Center 3-2, Asahıgaoka 4-chome, Hino-shi, Tokyo 191-0065 Japan
第二の共同発明者 (該当する場合)	2-00	Full name of second joint inventor, if any Masaki SUDOH
第二発明者の署名	日付	Second inventor's signature Date Musaki Suloh (2/217/2001
住所		Residence AICHI, JAPAN JPX
国籍		Citizenship Japanese
郵送先		Mailing Address 2D, Utopia-town II, 106-1, Yurakucho 7-chome, Handa-shi, Aichi 475-0837 Japan

第三条共同発明者 (該当する場合)	HI BOO	Full name of third joint inventor, if any Tomonorg YOKOYAMA
第三発明者の署名	日付	Third inventor's signature / Date Tomonoyi freeyama 12/19/200/
住所		Residence TOKYO, JAPAN JPX
国籍		Citizenship Japanese
郵送先		Mailing Address c/o Teijin Limited, Tokyo Rescarch Center 3-2, Asahigaoka 4-chome, Hino-shi, Tokyo 191-0065 Japan
第四の共同発明者(該当する場合)	400	Full name of fourth joint inventor, if any Yurmko MUROGA
第四発明者の署名	日付	Fourth inventor's signature Date Output Date 12/19/200/
住所		Residence TOKYO JAPAN JPX
国籍		Citizenship Japanese
郵送先		Mailing Address c/o Teijin Limited, Tokyo Research Center 3-2, Asahigaoka 4-chome, Hino-shi, Tokyo 191-0065 Japan
第五の共同発明者 (該当する場合)	500	Full name of fifth joint inventor, if any Takashi KAMIMURA
第五発明者の署名	日付	Fight mentor's signature Date 12/20/2001
住所		Residence TOKYO, JAPAN
国籍		Citizenship Japanese
郵送先		Mailing Address c/o Teijin Limited, Tokyo Research Center 3-2, Asahigaoka 4-chome, Hino-shi, Tokyo 191-0065 Japan
第六の共同発明者(該当する場合)	6-00	Full name of sixth joint inventor, if any Akınobu NAKANISHI
第六発明者の署名	日付	Sixth pyentor's signature Date /2/21/2001
住所		Residence TOKYO_JAPAN JPX
国籍 .		Citizenship Japanese
郵送先		Mailing Address c/o Teijin Limited, Tokyo Research Center