

CRISP-DM

Cross-industry standard process for data mining

Process monitoring: Fault diagnosis and process optimization

Sand and Terwiesch, 2013. Closing the loops: An industrial perspective on the present and future impact of control. Euro J. Control. 19, 341-350.

Automation hierarchy

Case studies: Open access - Iron ore flotation

- Key performance indicators:
 - Impurity (silica content) in product; product rate; value in product (iron content); reagent use
- Disturbances:
 - Feed flow, feed density, feed composition
- Decisions:
 - Air flow, froth depth, reagent addition

Case studies: Open access - Iron ore flotation

- Key performance indicators:
 - Impurity (silica content) in product; product rate; value in product (iron content); reagent use

Process data generation

Process plant online and offline data

Online data

Physical property sensors

(~ seconds)

E.g., volume flow rate, temperature, density, pressure Image data

(~ seconds)

E.g., ore on conveyor belt, flotation froth

Data blind spots

Plant feed properties:

Feed grade, feed mineralization Determines plant-wide performance; typically, least available data! Liberation properties:
Grinding output: particle size
distribution, flotation feed grade,
flotation feed liberation; typically, lowfrequency and/or low accuracy

Offline data

Laboratory data

(~ hours)

E.g., metal content, particle size distribution

Image data

(~ days)

E.g., microscopic grain size and colour

Text data

(~ days)

E.g., maintenance logs, reports

Mine planning data

(~ days)

E.g., modelled ore properties

Steyn and Sandrock, 2021. Causal model of an industrial platinum flotation circuit. Con Eng Prac. 109, 104736.

Process data generation

Control system data generation

I/O: input/output (sensors and final elements)

PLC:
programmable
logic controller
(electronic, local
focus, custom
programs)

DCS: distributed control system (electronic, network, built-in control functions)

Cloud access: Remote monitoring and diagnosis

Process data properties

Dynamic

- Plant does not operate at fixed values
- Random and systematic disturbances

Time-varying

 Gradual changes in process parameters, e.g., due to degradation

Batch vs continuous

• Batch process = recipe executed over time

Multimode

 Switching between recipes changes distribution of data

Process data properties

Discrete/discontinuous

• Equipment switched on/off causing step changes

Nonlinear

 Chemical and physical laws cause nonlinear relationships

High dimensionality

 Tens/hundreds/thousands of variables

Multi-rate sampling

 Sampling frequency of measurements differ (seconds to days)

Kumar and Flores-Cerrillo (2025) – Machine Learning in Python for Process Systems Engineering. Achieve operational excellence using process data.

Process data challenges

Data retrieval and contextualization

Quantity vs quality

Industrial data comes in many formats from many sources, with additional context in terms of process layout and control system configuration

Hidden calculations: Not all data are direct measurements

В	С	D
Name	ObjectType	exdesc
PROCESS_YIELD	PIPoint	if 'FEED'>7000 then 100 * 'SIDEDRAW' / 'FEED' else 0

Process data challenges

Data retrieval and contextualization

Quantity vs quality

Data quantity:

1 measurement per second from one sensor = 32 million measurements per year Data quality:

Continuous processes aim to operate at steady-state:

"data-rich but information poor"

Select appropriate operating regime for intended business use

Figure 7a: Categories of operating data in one variable.

Figure 7b: Histogram of operating regimes from Fig. 8a.

Lim, Elnawawi, Rippon, O'Connor, Gopulani (2023) – Data quality over quantity: Pitfalls and guidelines for process analytics. IFAC World Congress 2023.

Data ingestion

- Various storage platforms and formats for process data
- Data historian collects, stores, and makes accessible data from various sources

Data ingestion

- CSV (comma-separated values) file is a common format (including as intermediary)
 - Delimited (comma, space, semicolon, etc., ...)
 - Plain text

Plain text: No special/proprietary program required to open it

Data visualization: Principles

Industrial processes produce large data sets

Data visualization aids humans to recognize patterns

Interesting patterns:

- Outliers
- Relationships
- Potential features
- Clusters/groups
- Noise levels
- Missing data prevalence

Period 2 Period

Period 1

Time series plots

Purpose:

Assess dynamic behaviour of process Identify outliers

Construction:

X-axis: Time

Y-axis: Values of one or more variables

Interpretation:

Visual narrative of process changes Identify seasonality/periodicity Identify spikes/outliers Identify trends

Assess noise levels

Distribution plots: Histograms

Purpose:

Assess spread and operating modes of process

Construction:

X-axis: Value ranges of one variable

Y-axis: Frequency of occurrence of value range

Interpretation:

Visual summary of process variability Indicate spread, symmetry Indicate grouping, extreme values

Distribution plots: Box-and-whisker plots

Purpose:

Assess spread of process

Construction:

X-axis: Categorical indicator / group

Y-axis: Distribution statistics (5-number summary)

Interpretation:

Visual summary of process variability Indicate spread, symmetry Indicate grouping, extreme values

Distribution plots: Box-and-whisker plots

Purpose:

Assess spread of process

Construction:

X-axis: Categorical indicator / group

Y-axis: Distribution statistics (5-number summary)

Interpretation:

Visual summary of process variability Indicate spread, symmetry Indicate grouping, extreme values

- 0.25

- 0.00

-0.75

Data visualization

Relationship plots: Correlation heatmap

Purpose:

Assess relationships between many variables Highlight pairs for further investigation

Construction:

X-axis: (multiple) Selection of variables

Y-axis: (multiple) Selection of variables

Interpretation:

Succinct visual summary of pairwise variable relationships

Note: Correlation is not equal to causation!

Identify correspondence (none, positive, negative)

Relationship plots: Scatter plots

Purpose:

Assess relationship between variables

Construction:

X-axis: Variable 1 Y-axis: Variable 2

Interpretation:

Visual summary of pairwise variable relationship

Note: Correlation is not equal to causation!

Identify correspondence (none, positive, negative)

Identify linearity

Identify groups/clusters

Relationship plots: Pair plots

Purpose:

Assess relationships between many variables

Construction:

X-axis: (multiple) Variable 1 to final Y-axis: (multiple) Variable 1 to final

Interpretation:

Visual summary of pairwise variable relationships
Note: Correlation is not equal to causation!
Identify correspondence (none, positive, negative)
Identify linearity
Identify groups/clusters

Diagonal plots = often histograms

Data cleaning

Context of data cleaning

Data preprocessing

 Get right data in the right form

Data cleaning

- De-noising
- Variable selection
- Outlier handling
- Missing data handling

Data transformation

- Centering and scaling
- Feature extraction
- Feature engineering

Model training

 Estimate model parameters

Model evaluation

Check model's generalization

Model tuning

 Adjust model hyperparameters

Iterative

Regularization
Training/validation/testing data
K-fold cross validation
Model interpretation

Machine Learning in Python for Process Systems Engineering

Outliers

Definition

Observations that do not show consistent behaviour with rest of data set from a statistical perspective

Causes

Sensor malfunction
Inappropriate missing data
handling

Outliers

Definition

Observations that do not show consistent behaviour with rest of data set from a statistical perspective

Causes

Sensor malfunction Inappropriate missing data handling

Missing data

Definition

Entries in data set that have no connection with the real state of the process

Causes

Sensor failure
Fault in process unit
Outlier removal
Sampling rate

Noise

Definition

True process signal contaminated with high frequency noise

Causes

Electronic interference Vibrations Optical interference

Time misalignment

Definition

Batch-to-batch mismatch of data OR cause-effect mismatch of continuous data

Causes

Varying batch durations
Transport delays
Process unit residence time
Instrumentation delay

Process delays

33

Outlier detection

- Knowledge-based outlier detection
- Statistical outlier detection

Knowledge-based outlier detection

Process knowledge provides insight in terms of minimum and maximum allowable values

E.g., negative values for flow not possible E.g., if goal is to model behaviour of process unit under <u>acceptable operating conditions</u>, then extreme operating conditions can be considered as outliers

Statistical outlier detection

Univariate detection: 3σ rule

Given:

- Measurement observation x_k
- Sample mean \bar{x} (approximation of μ)
- Sample standard deviation (approximation of σ)

Rule:

If
$$|x_k - \bar{x}| > 3s$$

Then x_k is an **outlier**

Missing data

- A data point is missing if no value is reported for a specific time stamp for a specific variable
- Understanding the cause of missing data (random or not) is important

One variable with missing values (e.g., single sensor failure)

Y₁ Y₂ Y₃ Y₄ Y₅

Associated variables with missing values for same time stamps (e.g., fault in process unit)

Irregular missing values (e.g., outlier removal, sensor malfunction)

One variable with regular patter of missing values (e.g., multi-rate sampling)

Missing data

Missing data handling and imputation

- Sensor measurements are subject to high frequency noise
- Filtering aims to remove high frequency noise while preserving low frequency signal

Rolling window noise removal

Rolling window noise removal

Rolling window noise removal

40

Noise removal

Moving average filter

$$y_j = \frac{\sum_{i=0}^{N-1} x_{j-i}}{N}$$

Exponentially weighted moving average filter

$$y_j = \alpha x_j + (1 - \alpha) y_{j-1}$$

Savitzky-Golay filter

$$y_{j} = \sum_{i=\frac{1-m}{2}}^{\frac{m-1}{2}} C_{i} y_{j+i}$$

E.g.:
$$m = 5$$
: $C_i = -\frac{3}{35}, \frac{12}{35}, \frac{17}{35}, \frac{12}{35}, -\frac{3}{35}$

Savitzky-Golay filter (Wikipedia)

Resampling

Addressing mismatch in sampling frequencies

- To model relationship between variables, their sampling frequency should be similar
- Some <u>easy-to-measure</u> properties are available at high frequency (e.g., flow measurements at second intervals)
- Some <u>hard-to-measure</u> properties are available at low frequency (e.g., assays at day intervals)

+27 21 851 3123

info@stonethree.com

24 Gardner Williams Avenue

Paardevlei Somerset West

South Africa 7130

www.stonethree.com

