

Mathematical Tools of Quantum Mechanics: Introduction to Hilbert Spaces

Dr. M.Eugenia Celorrio Ramirez

Vector spaces

Linear subspaces Inner product spaces

Norms and normed spaces

Inner product spaces as normed spaces Parallelogram law

Convergent sequences, Cauchy sequences, completeness Characterization of Hilbert Spaces Examples of Hilbert spaces

Vector spaces

Let $\mathbb F$ be a field and V be a set. Consider the following two operations:

$$+: V \times V \to V, \quad \cdot : \mathbb{F} \times V \to V$$

 $(u, v) \mapsto u + v \quad (\lambda, v) \mapsto \lambda \cdot v.$

Suppose that V satisfies the following:

- u + v = v + u, for every $u, v \in V$;
- u + (v + w) = (u + v) + w, for every $u, v, w \in V$;
- there exists a zero vector, 0_V such that $0_V + v = v$, for every $v \in V$;
- for every $v \in V$, there exists a vector -v such that $-v + v = 0_V$;
- $1 \cdot v = v$, for every $v \in V$;
- $\lambda \cdot (\mu v) = (\lambda \mu) \cdot v$, for every $v \in V$, $\lambda \in \mathbb{F}$;
- $\lambda \cdot (u + v) = \lambda \cdot u + \lambda \cdot v$, for every $u, v \in V$, $\lambda, \mu \in \mathbb{F}$;
- $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$, for every $v \in V$, $\lambda, \mu \in \mathbb{F}$.

Definition

Let V be a set that satisfies all of the above. Then we say that V is a \mathbb{F} -vector space or a vector space over the field \mathbb{F}

We will focus in $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .

Examples

The following are \mathbb{R} -vector spaces

- The set of \mathbb{R}^n for any $n \in \mathbb{N}$.
- The set of $M_n(\mathbb{R})$, square $n \times n$ matrices with entries on \mathbb{R} , with the usual addition and scalar multiplication.
- The set of all functions from \mathbb{R} to \mathbb{R} where the addition is

$$(f+g)(x) = f(x) + g(x) \quad (f,g:\mathbb{R} \to \mathbb{R})$$

and the scalar multiplication is

$$(\lambda f)(x) = \lambda f(x) \quad (\lambda \in \mathbb{F}, f : \mathbb{R} \to \mathbb{R})$$

Linear subspaces

Definition

Let V be a vector space and let $W \subset V$ be a subset. We say that W is a subspace of V if it satisfies the following:

- 0_V ∈ W;
- for every $\lambda \in \mathbb{F}$ and $w \in W$, $\lambda \cdot w \in W$;
- for very $w, v \in W$, $w + v \in W$,

where + and \cdot are the restriction of the addition and scalar multiplication from V to W.

Inner products

Definition

Let V be a vector space over \mathbb{C} . A mapping $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ is an *inner product* if it satisfies the following, for every $x, y, z \in V$ and $\lambda, \mu \in \mathbb{C}$:

- $\langle x, y \rangle = \overline{\langle y, x \rangle}$;
- $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$;
- $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0 \iff x = 0$.

Inner products are conjugate linear in the second variable

Take
$$x, y \in V$$
 and $\alpha \in \mathbb{C}$ $\langle x, \alpha y \rangle = \overline{\langle \alpha y, x \rangle} = \overline{\alpha} \langle y, x \rangle = \overline{\alpha} \langle x, y \rangle$. \square

Remark

A vector space with an inner product is called an *inner product space* or a *pre-Hilbert space*.

Norms and normed spaces

Definition

Let E be a vector space. A *norm* is a mapping

$$\|\cdot\|: E \to \mathbb{R}$$

that satisfies the following conditions:

- $||x|| \ge 0$ and $||x|| = 0 \iff x = 0$;
- $\|\lambda x\| = |\lambda| \|x\|$, for every $x \in E$ and $\lambda \in \mathbb{C}$;
- $||x + y|| \le ||x|| + ||y||$, for every $x, y \in E$.

A normed space is a vector space together with a norm.

Inner product spaces as normed spaces

Remark

Let $(E, \langle \cdot, \cdot \rangle)$ be an inner product space. Consider $||x|| = \sqrt{\langle x, x \rangle}$. Then $(E, ||\cdot||)$ is a normed space.

Proof

We need to verify:

- $||x|| \ge 0$ and $||x|| = 0 \iff x = 0$. Follows from the definition of inner product.
- $\|\lambda x\| = |\lambda| \|x\|$, for every $x \in E$ and $\lambda \in \mathbb{C}$.

$$\|\lambda x\|^2 = \langle \lambda x, \lambda x \rangle = \lambda \overline{\lambda} \langle x, x \rangle$$

• $||x + y|| \le ||x|| + ||y||$, for every $x, y \in E$.

Cauchy-Schwarz's Inequality

Theorem: Cauchy-Schwarz's Inequality

Let $(E, \langle \cdot, \cdot \rangle)$ be an inner product space. The, for any $x, y \in E$ we have

$$|\langle x,y\rangle| \leq ||x|| ||y||.$$

Furthermore, $|\langle x,y\rangle|=\|x\|\|y\|$ if and only if x and y are linearly dependent.

If x and y are linearly dependent, there exists $\alpha \in \mathbb{C}$ such that $x = \alpha y$, and so $||x|| ||y|| = |\alpha| ||y||^2$. Also

$$|\langle x, y \rangle| = |\langle \alpha y, y \rangle = |\alpha| |\langle y, y \rangle| = |\alpha| ||y||^2,$$

so the result holds.

$$|\langle x, y \rangle| \le ||x|| ||y|| \iff |\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y, \rangle.$$

Let's consider x,y linearly independent. (In particular $y \neq 0$). Then, for any $\alpha \in \mathbb{C}$,

$$0 < \langle x + \alpha y, x + \alpha y \rangle = \langle x, x \rangle + \alpha \langle y, x \rangle + \overline{\alpha} \langle x, y \rangle + |\alpha|^2 \langle y, y, \rangle$$
$$= \langle x, x \rangle + 2Re(\alpha \langle y, x \rangle) + |\alpha|^2 \langle y, y \rangle$$

Take
$$\alpha = -\frac{\langle x, y \rangle}{\langle y, y \rangle}$$

$$0 < \langle x, x \rangle - 2Re\left(\frac{\langle x, y \rangle}{\langle y, y \rangle} \overline{\langle x, y \rangle}\right) + \left|\frac{-\langle x, y \rangle}{\langle y, y \rangle}\right|^2 \langle y, y \rangle$$

$$= \frac{\langle x, x \rangle \langle y, y \rangle}{\langle y, y \rangle} - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle}$$

which is equivalent to $|\langle x,y\rangle|^2 < \langle x,x\rangle\langle y,y\rangle = \|x\|\|y\|$. \square

• $||x + y|| \le ||x|| + ||y||$, for every $x, y \in E$. For $x, y \in E$

$$||x + y||^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + 2Re(\langle y, x \rangle) + \langle y, y \rangle$$

$$\leq \langle x, x \rangle + 2|\langle y, x \rangle| + \langle y, y \rangle$$

$$\leq ||x|| + 2||y|| ||x|| + ||y|| = (||x|| + ||y||)^2. \quad \Box$$

Parallelogram law

Theorem: Parallelogram Law

Let E be an inner product space. Then for $x, y \in E$

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$

Convergent sequences

Reminder

Let $A \neq \emptyset$ be a set. A sequence is a list of objects of A with a defined order (a_1, a_2, \cdots) . Mathematically, it is defined as a map $f : \mathbb{N} \to A$, where $f(n) = a_n$.

Definition

A sequence (x_n) in a normed space E is said to be convergent to a limit $x \in E$ if, for every $\varepsilon > 0$, there exists a positive integer N such that for all $n \geq N$, the following inequality holds:

$$||x_n-x||<\varepsilon.$$

Cauchy sequences

Definition

A sequence (x_n) in a normed space E is said to be a Cauchy sequence if, for every $\varepsilon > 0$, there exists a positive integer N such that for all $m, n \ge N$, the following inequality holds:

$$||x_m-x_n||<\varepsilon.$$

Examples

Consider $\mathbb Q$ with the norm $|\cdot|$ and the sequence (x_n) where $x_n=10^{-n}\lfloor 10^n\pi\rfloor$. Then (x_n) is Cauchy but it is nor convergent. It would be convergent in $\mathbb R$.

Completeness

Definition

A normed space E is said complete when for every Cauchy sequence (x_n) there exists an element $x \in E$ such that $(x_n) \to x$. A complete normed space is called a Banach space.

Hilbert space

Definition: Hilbert spaces

A complete inner product space is called a *Hilbert space*.

Recap

A Hilbert space \mathcal{H} :

- is a vector space over a field $\mathbb{F}(=\mathbb{R},\mathbb{C})$;
- it has an inner product $\langle \cdot, \cdot \rangle : H \times H \mapsto \mathbb{C}$;
- it is a normed space with the norm induced by the inner product $||x|| = \sqrt{\langle x, x \rangle}$;
- it is complete.

So, every Hilbert space is a Banach space, but not the other way around.

Characterization of Hilbert Spaces

Theorem

Let $(E, \|\cdot\|)$ be a Banach space. Then E is a Hilbert space (i.e. there exists an inner product on E that induces the norm $\|\cdot\|$) if and only if $\|\cdot\|$ satisfies the parallelogram law. In this case

$$\langle x, y \rangle = \frac{1}{4} \sum_{n=0}^{3} i^{n} ||x + i^{n}y||^{2} \quad (x, y \in E)$$

defines such inner product on E.

Examples of Hilbert spaces

• \mathbb{R}^n with the standard dot product (inner product) defined in the following way: for $x, y \in \mathbb{R}^n$

$$\langle x, y \rangle = x \cdot y = \sum_{i=1}^{n} x_i y_i$$

• \mathbb{C}^n with the standard dot product (inner product) defined in the following way: for $x,y\in\mathbb{C}^n$

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \overline{y_i}$$

where $\overline{y_i}$ is the complex conjugate of y_i .

• The space $\ell^2(\mathbb{C})$ consists of sequences of complex numbers (x_1, x_2, x_3, \ldots) which are square sumable, meaning that

$$\sum_{n=1}^{\infty} |x_n|^2 < \infty,$$

with the inner product given by:

$$\langle x, y \rangle = \sum_{i=1}^{\infty} x_i \overline{y_i}$$

where $\overline{y_i}$ represents the complex conjugate of y_i .

• The space $L^2(\mathbb{R})$, which is the space of Lebegue measurable functions $f: \mathbb{R} \to \mathbb{C}$ which are square-integrable. The inner product in this space is given by:

$$\langle f, g \rangle = \int_{-\infty}^{\infty} f(x) \overline{g(x)} dx.$$

Dr M.Eugenia Celorrio Ramirez

Quantum Formalism

Thank you for your attention

Recommended Bibliography:

Megginson, R.E., An introduction to Banach space theory

Young, N., An introduction to Hilbert space

Allan, G.R. and Dales, H.G., Introduction to Banach spaces and

algebras