L39 : Exemples de résolutions d'équations

(méthodes exactes, méthodes approchées)

Prérequis : Notion de dérivée, définition de la fonction $x \mapsto \exp(x)$.

1 Équations polynomiales de degré 2 et plus

Définition : [...].

Théorème : $(\Delta, \alpha, \beta, \text{ solution(s)})$ en fonction de Δ , ne pas traiter $\Delta < 0$).

Applications:

- 1. 1ère spé Barbazo p76exo110 : trajectoire d'un solide (avec tan).
- 2. Autour de l'équation $24x^3 26x^2 + 9x 1 = 0$.

Question préliminaire : Montrer que $\forall x \leq 0, P(x) < 0$.

- 1. En sachant que $\frac{1}{2}$ est solution, résoudre l'équation (Tle expertes ou approfondissement de Tle ens spécialité).
- 2. Proposition : Si $\frac{p}{q}$ (sous forme irréductible) est racine de $P=a_nX^n+\cdots+a_1X+a_0$ alors $p\mid a_0$ et $q\mid a_n$ (approfondissement écrit dans le BOO en Tle exp). Résoudre l'équation en sachant cela.
- 3. TVI.
- 4. Corollaire (admis) : [Polynôme de degré impair (non constant) admet une racine réelle].

Application à la résolution de $24x^3-26x^2+9x-1=0$: on admet qu'au moins une racine est absolument inférieure égale à 24+26+9+1=60 (voir développement sur majoration racine polynôme). Utiliser l'encadrement alors obtenu pour les méthodes de résolutions approchées qui suivent (cela permet de se donner des bornes de recherches).

Méthode approchée n°1 : par balayage (expliquer le concept, implé Python, rq attention donne première solution, inconvénient très approximatif).

Méthode approchée n°2 : par dichotomie (même rqs, attention converge vers UNE solution).

3. Autour de $x^2 - 2 = 0$.

Méthode approchée n°3 : de Newton (c.f. développement associé).

2 Équations différentielles

Définition : [...].

Théorème : Solutions de y' = ay ($x \mapsto Ce^{ax}$).

Théorème: Solutions de y' = ay + b $(x \mapsto Ce^{ax} - \frac{b}{a})$.

Théorème : Solutions de y' = ay + f ($x \mapsto Ce^{ax} + g(x)$ où g sol part).

Exemple: Exercice bidon.

Application: Étude de $y' = y^2$. (à faire : changer si tirs pas trouvé de rédaction d'ici là)

Méthode approchée : Méthode d'Euler à travers un exercice (dans Barbazo Tle spé) et application à $y' = y^2$.

1