SONY

1.0 cm (Type 0.39) Active Matrix Color OLED Panel

ECX334AF

Description

The ECX334AF is a 1.0 cm (type 0.39) diagonal, 1024 (RGB) × 768 dots active matrix color OLED panel module using single-crystal silicon transistors. This panel incorporates panel driver and logic driver, and realizes small size, light weight and high definition.

(Applications: View finders, head mounted displays, very small monitors, etc.)

Features

- ◆ Small-size, high-definition-type 0.39 XGA display dots 1024 (RGB) × 768 = 2.38M dots
- High contrast
- Wide color reproduction range
- ◆ High-speed response
- ◆ Thin type and light weight
- Power-saving function
- ◆ Up/down and/or right/left inverse display function
- Orbit supported
- ◆ Input interface that supports parallel RGB 24-bit and YCbCr 16-bit input

Element Structure

Active matrix color OLED display element with on-chip driver using single-crystal silicon transistors

SONY

ECX334AF

Block Diagram

Details of T-Con

Pin Assignment

Pin Description

Pin No. (connector side)	Symbol	Туре	Pin Description	Equivalent circuit		
1	TEST	Input	GND			
2	VCCP	Power supply	VCCP power supply			
3	VDD2	Power supply	10V power supply			
4	VSS	Power supply	GND			
5	VSS	Power supply	GND			
6	Vcath	Power supply	EL cathode power supply			
7	VSS	Power supply	GND			
8	VDD1	Power supply	1.8V power supply			
9	MCLK	Input	Clock	*1		
10	XHD	Input	Horizontal sync signal (negative polarity)	*1		
11	XVD	Input	Vertical sync signal (negative polarity)	*1		
12	XCLR	Input	System reset	*2		
13	Rin7/ GND	Input	(RGB input mode) Digital R signal/ (YCbCr input mode) GND	*1		
14	Rin6/ GND	Input	(RGB input mode) Digital R signal/ (YCbCr input mode) GND	*1		
15	Rin5/ GND	Input	(RGB input mode) Digital R signal/ (YCbCr input mode) GND	*1		
16	Rin4/ GND	Innut (
17	Rin3/ GND	Input	(RGB input mode) Digital R signal/ (YCbCr input mode) GND	*1		
18	Rin2/	Input	(RGB input mode) Digital R signal/	*1		

Pin No. (connector	Symbol	Туре	Pin Description	Equivale circuit
side)	CND		(VChCr imput mode) CND	000
	GND Din 1/		(YCbCr input mode) GND	
19	Rin1/ GND	Input	(RGB input mode) Digital R signal/	*1
	Rin0/		(YCbCr input mode) GND (RGB input mode) Digital R signal/	
20	GND	Input	(YCbCr input mode) GND	*1
	Gin7/		(RGB input mode) Digital G signal/	
21	Yin7	Input	(YCbCr input mode) Digital luminance signal	*1
	Gin6/		(RGB input mode) Digital G signal/	
22	Yin6	Input	(YCbCr input mode) Digital luminance signal	*1
	Gin5/		(RGB input mode) Digital G signal/	
23	Yin5	Input	(YCbCr input mode) Digital luminance signal	*1
	Gin4/		(RGB input mode) Digital G signal/	
24	Yin4	Input	(YCbCr input mode) Digital luminance signal	*1
	Gin3/		(RGB input mode) Digital G signal/	
25	Yin3	Input	(YCbCr input mode) Digital luminance signal	*1
	Gin2/	1.	(RGB input mode) Digital G signal/	
26	Yin2	Input	(YCbCr input mode) Digital luminance signal	*1
	Gin1/		(RGB input mode) Digital G signal/	
27	Yin1	Input	(YCbCr input mode) Digital luminance signal	*1
	Gin0/	1.	(RGB input mode) Digital G signal/	
28	Yin0	Input	(YCbCr input mode) Digital luminance signal	*1
		Power		
29	VDD 1	supply	1.8V power supply	
		Power		
30	VSS	supply	GND	
	Bin7/		(RGB input mode) Digital B signal/	
31	CbCrin7	Input	(YCbCr input mode) Digital luminance signal	*1
	Bin6/		(RGB input mode) Digital B signal/	
32	CbCrin6	Input	(YCbCr input mode) Digital luminance signal	*1
	Bin5/		(RGB input mode) Digital B signal/	
33	CbCrin5	Input	(YCbCr input mode) Digital luminance signal	*1
	Bin4/		(RGB input mode) Digital B signal/	
34	CbCrin4	Input	(YCbCr input mode) Digital luminance signal	*1
	Bin3/		(RGB input mode) Digital B signal/	
35	CbCrin3	Input	(YCbCr input mode) Digital luminance signal	*1
	Bin2/		(RGB input mode) Digital B signal/	
36	CbCrin2	Input	(YCbCr input mode) Digital luminance signal	*1
	Bin1/		(RGB input mode) Digital B signal/	
37	CbCrin1	Input	(YCbCr input mode) Digital luminance signal	*1
	Bin0/	1.	(RGB input mode) Digital B signal/	
38	CbCrin0	Input	(YCbCr input mode) Digital luminance signal	*1
	TEST	1.		
39	(SCAN_MODE)	Input	Test pin (connect to GND)	*3
40	TEST (TEN)	Input	Test pin (connect to VDD1)	*2
41	TEST(PSCNT)	Input	Test pin (connect to GND)	*2
			Serial communication	
42	XCS	Input	Chip select	*2
			Serial communication	
43	XSCK	Input	Serial clock	*2
		1.	Serial communication	
	SI	Input	Data input	*2
44				i
44 45	so	Output	Serial communication Data output	*4

Pin No. (connector side)	Symbol	Туре	Pin Description	Equivalent circuit
47	TEST (VFUSE)	Power supply	Test pin (connect to GND)	*5
48	VSS	Power supply	GND	
49	VDD1	Power supply	1.8V power supply	
50	VCAL	Output	Correction voltage output in temperature compensation circuit	*6
51	TEST	Output	Test pin	*6
52	TEST	Output	Test pin	*6
53	VG255	Output	Gamma top reference voltage (255 gray scale)	*6
54	VG0	Output	Gamma bottom reference voltage (0 gray scale)	*6
55	VOFS	Power supply	Vofs voltage	*6
56	Vcath	Power supply	EL cathode power supply	
57	VSS	Power supply	GND	
58	VSS	Power supply	GND	
59	VDD2	Power supply	10V power supply	
60	VCCP	Power supply	VCCP power supply	
61	VSS	Power	GND	

Equivalent Circuit

*1 Pin No. 9,10,11 & RGB Data

VDD1

*2(Schmitt)

Pin No. 12,40,41,42,43 & 44

*3(Schmitt)

Pin No. 39

*4

Pin No. 45 & 46

VDD1-

*5

Pin No. 47

6

Absolute Maximum Ratings

Item	Symbol	Min.	Maximum Ratings	Unit
1.8V power supply	VDD1	-0.3	2.0	V
10V power supply	VDD2	-0.3	12.0	V
EL cathode voltage	Vcath	-0.3	0.3	٧
Logic input voltage	Vi	-0.3	VDD1+ 0.3	٧
Storage temperature	Tpnl	-30	+80	°C

Recommended Operating Conditions

Item	Symbol	Min.	Тур.	Max.	Unit
1.8V power supply	VDD1	1.62	1.8	1.98	V
10V power supply	VDD2	9,7	10.0	10.3	V
EL cathode voltage	Vcath	-0.3	0	0.3	V
Operating temperature range	Tpnl	-10		70	°C

Electrical Characteristics

1. DC Characteristics

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
High level input voltage	VIH		0.7VDD1		VDD1	V
Low level input voltage	VIL		0		0.3VDD1	V
High level input voltage	Vt+	Schmitt input	0.7VDD1		VDD1	V
Low level input voltage	Vt-	Schmitt input	0		0.3VDD1	V
Vt+ - Vt-	Vhys	Schmitt input		0.50		V
Logic high level output voltage	VOH		VDD1-0.4			V
Logic low level output voltage	VOL				0.4	V

2. AC Characteristics

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Clock pulse cycle	t_CLK		18.3	18.5		ns
Clock duty	t_CLK_duty	All mode (54 MHz) common	40	50	60	%
Data setup time	st_Data	Vi = 1.62 to 1.98 V	2.5			ns
Data hold time	hd_Data	Vi = 1.62 to 1.98 V	1.8			ns
Control pulse setup time	st_PLS	Vi = 1.62 to 1.98 V	2.5			ns
Control pulse hold time	hd_PLS	Vi = 1.62 to 1.98 V	1.8			ns
XSCK frequency	f_SCLK			0.8	2.5	MHz
XCS setup time	st_XCS		0.4			μs
XCS hold time	hd_XCS		0.2			μs
SI setup time	st_SI		0.2			μs
SI hold time	hd_SI		0.2			μs

3. Power Consumption

Itom	Cymbol	Conditions		Unit		
Item	Symbol	Conditions	300cd/m ²	200cd/m ²	Standby	Unit
VDD1 power consumption	DIDD1	Tool = 40°C	1	1	0	mW
VDD2 power consumption	DIDD2	Tpnl = 40°C	235	195	2	mW
Total	DITTL	(*)	246	206	2	mW

^{*:} All white raster display, clock frequency=54MHz, frame rate=60Hz

Power Supply Sequence

Be sure to follow the power supply sequences noted below to prevent panel damage due to abnormal currents to the panel internal circuits.

1. Sequence Diagram

Serial Se	tting①	Serial Se	etting@	Serial Se	etting(3)		Serial Se	tting4	Serial Serial	tting⑤		Serial Se	tting⑥	Serial Se	etting(7)	5	Serial Se	etting®
Address	Data (Hex)	Address	Data (Hex)	Address	Data (Hex)		Address	Data (Hex)	Address	Data (Hex)		Address	Data (Hex)	Address	Data (Hex)	А	ddress	Data (Hex)
		0x00	0F(*1)														0x00	0E(*2)
0x03	A0													0x03	20			
0x04	5F			0x04	1F													
0x53	02											0x53	00					
0x5B	4F						0x5B	04	0x5B	00								
0x5C	4D						0x5C	04	0x5C	00								
*1:YCbCr	(BT601)I	nput : 8F	_			•			•		•	•		•	•		•	

^{*2:}YCbCr(BT601)Input : 8E

2. Power On Sequence

- 1. Set XCLR to low and turn on 1.8V power supply, then the panel is initialized.
- 2. 1.8V power supply turned on and allocate more than 1.0msec period and then Set XCLR to high. It turns out Power-Save (PS) mode ON.
- 3. Turned Power-Save mode and allocate more than 10msec period and then perform the serial setting ①
- 4. Set Power-Saving mode OFF (serial setting 2).
- 5. Perform the serial setting ③ later than 4V(Vertical) after serial setting ② completion.
- 7. Perform the serial setting ⑤ later than 2V(Vertical) after serial setting ④ completion.
- 8. Perform the serial setting ⑤ after serial setting ⑤ completion.
- 9. Perform the serial setting ⑦ later than 1V(Vertical) after the serial setting ⑥ completion.

Highly recommend that register reflesh would be done in V-blanking period after power on sequence. Minimum interval is 1V period, which is sum of FP and Vsync, BP. Recommended format is burst mode.

SONY ECX334AF

3. Power Off Sequence

- 1. Perform serial setting (Power-Save ON) in normal operation period.
- 2. After Power-Save ON, allocate more than 3V(Vertical) period and then set XCLR to low and turn off 10V power supply.
- 3. Turn off 1.8V power supply.
- * No restriction for sequential order for "1.8V power supply off" and "XCLR to low", whichever OK.
- * 1.8V power supply should be turn off after "XCLR to low".
- * After setting (8), allocate more than 3V(Vertical) period and then XVD, XHD, Data, MCLK can be turn off.

SONY ECX334AF

Description of Functions

1. Tcon Block

1.1. Serial I/F Transfer Timing

♦Write

Serial communication (normal / burst transfer, LSB first) is supported for write operation.

Timing is shown below.

Write access normal transfer (LSB First)

Write access burst transfer (LSB First)

◆ Read

Serial communication (normal transfer, LSB first) is supported for read operation.

Set RD_ON(0x80) to 1, and then perform 2 times serial communication.

1st: Write the address of read data on RD_ADDR (0x81).

2nd: Read data is output from SO (pin no.45) after data access.

Timing is shown below

Read access normal transfer (LSB First)

1.3. Register Map

	Addr.	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0			
0	+0x00	RGB_YCB	YCB_DEC	0	0	DWN	RGT	MCLKPOL	PS0			
1	+0x01	VCAL_MON	CALSI	EL[1:0]	YCB_P	0	0	0	0			
2	+0x02	1	1	0			ORBIT_H[4:0]					
3	+0x03	TMPEN	T_SLOPE	DITHER_ON			ORBIT_V[4:0]					
4	+0x04	0	LDOEXT	0	1	1	1	1	1			
5	+0x05	0	0	0	0	1		UMINANCE[2:	01			
6	+0x06	0	0	0	0	0	0	0	0			
7	+0x07	0	0	0	0	0	0	0	0			
8	+0x08	0	0	0	0	0	OTPCALDAC_REGDIS	0	OTPDG_REGDIS			
9	+0x09	0	1	0	1	0	1	1	0			
Α	+0x0A	0	0	0	<u>-</u>		RGAMMA32[4:		-			
В	+0x0B	0	0	0			RGAMMA64[4:					
С	+0x0C	0	0	0			RGAMMA128[4					
D	+0x0D	0	0	0			RGAMMA256[4					
E	+0x0E	0	0	0			GGAMMA32[4:		•			
F	+0x0F	0	0	0			GGAMMA64[4:					
10	+0x10	0	0	0			BGAMMA32[4:					
11	+0x11	0	0	0			BGAMMA64[4:	_				
12	+0x12	0	0	0			3GAMMA128[4	-				
13	+0x13	0	0	0			3GAMMA256[4					
14	+0x14	U	U	U	CON		DOANNINAZ30[4	.0]				
15	+0x14 +0x15	CONT[8]			CON	RCONT[6:0]						
16	+0x16	0										
17	+0x10 +0x17	0		GCONT[6:0]								
18	+0x17 +0x18	0		BCONT[6:0]								
19	+0x16 +0x19	0		BRT[7:0]								
1A	+0x19 +0x1A	0				RBRT[6:0] GBRT[6:0]						
1B	+0x1A +0x1B	0				BBRT[6:0]						
1C	+0x1C	0	0	0		BBK1[0.0]	LDOSEL[4:0]					
1D	+0x1C +0x1D	0	0	0	CALDA	\C[7·0]	LDO3LL[4.0]					
1E	+0x1E	0	1	0	0	0	0	0	0			
1F	+0x1E	0	0	0	1	0	0	0	1			
20	+0x11	0	0	0	H_ACT		U	0	<u>'</u>			
21	+0x20	H ACT U[8]	0	V_ACT		_0[7.0]		H ACT D[10:8	1			
22	+0x21 +0x22	TI_ACT_U[0]	0	V_ACT	_D[9.6] H_ACT		l l	1_AC1_D[10.0	ני			
23	+0x22 +0x23				V_ACT							
24	+0x24				V_ACT V_ACT							
25	+0x24 +0x25	0	0	0	0	_D[7.0] 0	0	0	0			
26	+0x25 +0x26	0	0	0	0	0	0	0	0			
27	+0x20 +0x27	0	0	0	0	0	0	0	0			
28	+0x27 +0x28	0		DE_D[10:8]	0	0	0	DE_U[10:8]	0			
29	+0x28 +0x29	- 0		טב_ט[10.0]	DE_U		<u> </u>	DL_0[10.0]				
29 2A	+0x29 +0x2A											
2B		1					0	0	0			
		0	0	0	- ()							
-	+0x2B	0	0	0	0	0						
2C	+0x2B +0x2C	0	0	0	0	0	0	0	0			
2C 2D	+0x2B +0x2C +0x2D				0 _D[9:8]	0		0				
2C 2D 2E	+0x2B +0x2C +0x2D +0x2E	0	0	0	0 _D[9:8] WSST1	0 0 _U[7:0]	0	0	0			
2C 2D 2E 2F	+0x2B +0x2C +0x2D +0x2E +0x2F	0	0	0 WSST1	0 _D[9:8] WSST1	0 0 _U[7:0] _D[7:0]	0	0 WSST1	0 _U[9:8]			
2C 2D 2E 2F 30	+0x2B +0x2C +0x2D +0x2E +0x2E +0x30	0	0	0	0 _D[9:8] WSST1 WSST1 _D[9:8]	0 0 _U[7:0] _D[7:0]	0	0 WSST1	0			
2C 2D 2E 2F 30 31	+0x2B +0x2C +0x2D +0x2E +0x2F +0x30 +0x31	0	0	0 WSST1	0 _D[9:8] WSST1 WSST1 _D[9:8]	0 0 _U[7:0] _D[7:0] 0	0	0 WSST1	0 _U[9:8]			
2C 2D 2E 2F 30 31 32	+0x2B +0x2C +0x2D +0x2E +0x2F +0x30 +0x31 +0x32	0	0	0 WSST1	0 _D[9:8] WSST1 WSST1 _D[9:8] WSST2	0 0 _U[7:0] _D[7:0] 0 2_U[7:0] D[7:0]	0	0 WSST1	0 _U[9:8]			
2C 2D 2E 2F 30 31 32 33	+0x2B +0x2C +0x2D +0x2E +0x2F +0x30 +0x31 +0x32 +0x33	0	0	0 WSST1	0 _D[9:8] WSST1 WSST1 _D[9:8] WSST2 WSST2	0 0 _U[7:0] _D[7:0] 0 2_U[7:0] 2_D[7:0] _U[7:0]	0	0 WSST1	0 _U[9:8]			
2C 2D 2E 2F 30 31 32 33 34	+0x2B +0x2C +0x2D +0x2E +0x2F +0x30 +0x31 +0x32 +0x33 +0x34	0 0	0 0	0 WSST1 WSST2	0 _D[9:8] WSST1 WSST1 _D[9:8] WSST2 WSST2 WSEN1 WSEN1	0 0 _U[7:0] _D[7:0] 0 2_U[7:0] 2_D[7:0] _U[7:0] _W[7:0]	0 0	0 WSST2	0 _U[9:8] 2_U[9:8]			
2C 2D 2E 2F 30 31 32 33 34 35	+0x2B +0x2C +0x2D +0x2E +0x2F +0x30 +0x31 +0x32 +0x33 +0x34 +0x35	0	0	0 WSST1	0 _D[9:8] WSST1 WSST1 _D[9:8] WSST2 WSST2 WSEN1 WSEN1	0 0 _U[7:0] _D[7:0] 0 !_U[7:0] !_D[7:0] _U[7:0] _W[7:0] 0	0 0	0 WSST1	0 _U[9:8] 2_U[9:8]			
2C 2D 2E 2F 30 31 32 33 34	+0x2B +0x2C +0x2D +0x2E +0x2F +0x30 +0x31 +0x32 +0x33 +0x34	0 0	0 0	0 WSST1 WSST2	0 _D[9:8] WSST1 WSST1 _D[9:8] WSST2 WSST2 WSEN1 WSEN1	0 0 _U[7:0] _D[7:0] 0 2 _U[7:0] 2 _D[7:0] _U[7:0] W[7:0] 0 2 _U[7:0]	0 0	0 WSST2	0 _U[9:8] 2_U[9:8]			

ECX334AF

38	+0x38		WSEN3_U[7:0]									
39	+0x39					3_0[7:0] 3_W[7:0]						
3A	+0x3A											
3B	+0x3B	0	0	0	0	0		DSEN W[10:8	1			
3C	+0x3C		U	DSEN_W[7:0]								
3D	+0x3D	0	0	VCK	W[9:8]	0	0	VCK	U[9:8]			
3E	+0x3E		U	VOI		U[7:0]	U	VOI	0[0.0]			
3F	+0x3F					W[7:0]						
40	+0x40	0	0	0	0	0	0	SIGSELR	EF_U[9:8]			
41	+0x41		Ü	U	-	EF_U[7:0]	Ü	OIGGEER	_0[0.0]			
42	+0x42					EF W[7:0]						
43	+0x43	0	0	0	0	[_vv[r.o]	SIGSELO	ES III3:01				
44	+0x44		U	U		L FS_W[7:0]	GIGGLEG	1 0_0[0.0]				
45	+0x45	0	0	SGISEI	W[9:8]	<u> </u>	SIGSEL	U[3:0]				
46	+0x46		Ü	COICE		W[7:0]	CIGGE	0[0:0]				
47	+0x47	0	0	0	0	0	0	SELRE	F U[9:8]			
48	+0x48		J	· ·		F_U[7:0]		OLLI (L.	_0[0.0]			
49	+0x49					=_W[7:0]						
4A	+0x4A					 S_U[7:0]						
4B	+0x4B					S_W[7:0]						
4C	+0x4C	0	0	SFL		0	0	SFI	UI9·81			
4D	+0x4D		0 0 SEL_W[9:8] 0 0 SEL_U[9:8] SEL_U[7:0]									
4E	+0x4E		SEL_W[7:0]									
4F	+0x4F	0	0	0	0	0	0	0	0			
50	+0x50	0	0	0	0	0	0	0	0			
51	+0x51	0	0	0	0	0	0	0	0			
52	+0x52	0	0	0	0	0	0	0	0			
53	+0x53	120MODE	0	0	0	0	0	0	0			
54	+0x54	1	1	1	0	0	1	1	1			
55	+0x55	0	0	0	0	0	0	0	0			
56	+0x56	0	0	0	0	0	0	0	0			
57	+0x57	0	0	0	0	0	0	0	0			
58	+0x58	0	0	0	0	0	0	0	0			
59	+0x59	0	0	0	0	0	0	0	0			
5A	+0x5A	0	0	0	0	0	0	0	0			
5B	+0x5B	0	0	0	0	0	0	0	0			
5C	+0x5C	0	0	0	0	0	0	0	0			
5D	+0x5D	0	0	0	0	0	0	0	0			
5E	+0x5E	0	0	0	0	0	0	0	0			
5F	+0x5F	0	0	0	0	0	0	0	0			
60	+0x60	0	0	0	0	0	0	0	0			
61	+0x61	0	0	0	0	0	0	0	0			
62	+0x62	0	0	0	0	0	0	0	0			
63	+0x63	0	0	0	0	0	0	0	0			
64	+0x64	0	0	0	0	0	0	0	0			
65	+0x65	0	0	0	0	0	0	0	0			
66	+0x66	0	0	0	0	0	0	0	0			
67	+0x67	0	0	1	1	0	0	0	0			
80	+0x80	0	0	0	0	0	0	0	RD_ON			
81	0x81				RD_AD	DR[7:0]						

ECX334AF

1.4. Description of Registers

Register name	Number of	V	Function
	bits	sync	
			Power Save Mode
PS0	1		0: Power Save on
			1: Power Save off
MCLKPOL	4		MCLK polarity switching
MICLAPOL	1		Negative polarity Positive polarity
			0: Left scan
RGT	1		1: Right scan
DWN	1		0: Upper scan
DVVIV	'		1: Lower scan
VOD DE0	4		YCbCr/YPbPr conversion switching
YCB_DEC	1		0: YCbCr (conforms to BT601)
			1: YPbPr (conforms to BT709) RGB/YCbCr input format selection
RGB_YCB	1		0: RGB
	-		1: YCbCr/YPbPr
			YCbCr/YPbPr input pattern switching
YCB_P	1	0	0: Cb/Pb First (Mode A)
			1: Cr/Pr First (Mode B)
			VCAL output selection
CALSEL	2		01: V1 output
			10: V2 output
			11: VOUT attenuate output (VGAM4 × 0.25[V]) Temperature sensing circuit monitoring
VCAL_MON	1		0: Invalid
· · · · · · <u> </u>			1: Valid
			Horizontal orbit adjustment
ORBIT_H	5	0	-10 to 0 to +10,
			Default: 0x00
ORBIT V	5	0	Vertical orbit adjustment
ORDII_V	5	O	-10 to 0 to +10, Default: 0x00
			Dithering On/Off
DITHERON	1		0: Dithering Off
			1: Dithering On
			LDO external / internal selection
LDOEXT	1		0: Internal (normally fixed to 0)
			1: External
LUMINANCE	3		Luminance and white chromaticity preset mode selection
			White chromaticity adjustment
OTPDG_REGDIS	1		0: Preset mode valid
			1: Preset mode invalid (CONT/BRT adjustment)
			Luminance adjustment
OTPCALDAC_REGDIS	1		0: Preset mode valid
BB0444400	_		1: Preset mode invalid (CALDAC adjustment)
DRGAMMA32	5		Red 32 gray scale chromaticity adjustment
DRGAMMA64	5		Red 64 gray scale chromaticity adjustment
DRGAMMA128	5		Red 128 gray scale chromaticity adjustment
DRGAMMA256	5		Red 256 gray scale chromaticity adjustment
DGGAMMA32	5	_	Green 32 gray scale chromaticity adjustment
DGGAMMA64	5		Green 64 gray scale chromaticity adjustment
		1	1

Register name	Number of	V	Function
	bits	sync	
DBGAMMA32	5		Blue 32 gray scale chromaticity adjustment
DBGAMMA64	5		Blue 64 gray scale chromaticity adjustment
DBGAMMA128	5		Blue 128 gray scale chromaticity adjustment
DBGAMMA256	5		Blue 256 gray scale chromaticity adjustment
CONT	9		Contrast adjustment
RCONT	7		R sub-contrast adjustment
GCONT	7		G sub-contrast adjustment
BCONT	7		B sub-contrast adjustment
BRT	8		Brightness adjustment
RBRT	7		R sub-brightness adjustment
GBRT	7		G sub-brightness adjustment
BBRT	7		B sub-brightness adjustment
LDOSEL	5		LDO output voltage adjustment
CALDAC	8		Luminance adjustment setting 7mV/step
H_ACT_U	8		Input signal exchange position
H_ACT_D	11		Input signal exchange position
V_ACT_U	8		Input signal exchange position
V_ACT_D	10		Input signal exchange position
DE_U	11		Timing setting register
DE_D	11		Timing setting register
WSST1_U	10		Timing setting register
WSST1_D	10		Timing setting register
WSST2_U	10		Timing setting register
WSST2_D	10		Timing setting register
WSEN1_U	8		Timing setting register
WSEN1_W	8		Timing setting register
WSEN2_U	11		Timing setting register
WSEN2_W	8		Timing setting register
WSEN3_U	8		Timing setting register
WSEN3_W	8		Timing setting register
DESN_U	8		Timing setting register
DSEN_W	11		Timing setting register
VCK_U	10		Timing setting register
VCK_W	10		Timing setting register
SIGSELREF_U	10		Timing setting register

Register name	Number of	V	Function
	bits	sync	
SIGSELREF_W	8		Timing setting register
SIGSELOFS_U	4		Timing setting register
SIGSELOFS_W	8		Timing setting register
SIGSEL_U	4		Timing setting register
SIGSEL_W	10		Timing setting register
SELREF_U	10		Timing setting register
SELREF_W	8		Timing setting register
SELOFS_U	8		Timing setting register
SELOFS_W	8		Timing setting register
SEL_U	10		Timing setting register
SEL_W	10		Timing setting register
120MODE	1		120Hz mode
RD_ON	1		Register read 0: Invalid 1: Valid
RD_ADDR	8		Register read address setting

2. Video Signal Transfer Format

Set the registers appropriately for the video signal transfer format according to the table below.

◆Register Settings

Address	Register name	Number of bits	Function
0x00h	RGB_YCB	1	Selection of RGB / YCbCr (YPbPr) format 0: RGB (default) 1: YCbCr and YPbPr
0x00h	YCB_DEC	1	Selection of YCbCr / YPbPr conversion 0: YCbCr (BT. 601) (default) 1: YPbPr (BT. 709)
0x01h	YCB_P	1	Selection of YCbCr (YPbPr) input pattern 0: Cb and Pb first (default) 1: Cr and Pr first

◆Register settings for each video signal transfer formats when YCB_DEC=0.

*Cb and Cr are replaced by Pb and Pr respectively when YCB_DEC=1.

Register S	Setting	Video simplement format
RGB_YCB	YCB_P	Video signal transfer format
0	_	XHD Pin#13-20 R0 R1 R2 R3 R4 R5 R1021 R1022 R1023 Pin#21-28 G0 G1 G2 G3 G4 G5 G1021 G1022 G1023 Pin#31-38 B0 B1 B2 B3 B4 B5 B1021 B1022 B1023 (Data act) (Data act) Calculation Calculation
1	0	XHD Pin#13-20 GND Pin#21-28 Y0 Y1 Y2 Y3 Y4 Y5
	1	XHD Pir#13-20 GND Pir#21-28 Y0 Y1 Y2 Y3 Y4 Y5

SONY ECX334AF

3. Input Signal Format and Timing Settings

Set the panel timing in accordance with the input signal format.

◆Register Settings

Address	Register name	Bits	Function
0x20h	H_ACT_U		Timing setting registers.
			Should be set appropriately for the input signal data format.
0x4Eh	SEL_W		Setting values are separately presented.

◆Panel Display Modes and Input Supported Formats

Panel Display Mode		①4:3 59.94Hz Frame Rate	②16:9 59.94Hz Frame Rate	
		4:3 1024(H) X 768(V)	16:9 1024(H) X 576(V)	
		88	88	
Input Support	ed Format	Active 832 7 10tal	Active 828 St.0 Into Into Into Into Into Into Into Into	
		48 1024 20	127	
		1024 20 1092 H_Total	1024 20 1092 H_Total	
H		1024	1024	
Active	V	768	576	
Takal	Н	1092	1092	
Total	V	825	825	
FP	Н	20	20	
FF	V	19	211	
SYNC	Н	16	16	
STNC	V	6	6	
BP	Н	32	32	
DF	V	32	32	
BP+SYNC	Н	48	48	
DETOTING	V	38	38	
fv	Hz	59.94	59.94	
Th	μs	20.2	20.2	
Clock MHz		54	54	

		③4:3 50Hz Frame Rate	④16:9 59.94Hz Frame Rate	
Panel Displ	ay Mode	4:3 1024(H) X 768(V)	16:9 1024(H) X 576(V)	
Input Support	ted Format	Active 900 981 7. Lossi	Active 880 800 T_V	
		1024 128 1200 H_Total	1024 1200 H_Total	
A ative		1024	1024	
Active	V	768	576	
Total	Н	1200	1200	
Iotai	V	900	900	
FP	Н	128	128	
r r	V	94	286	
SYNC	Н	16	16	
01110	V	6	6	
ВР	Н	32	32	
	V	32	32	
BP+SYNC	Н	48	48	
2. 311.3	V	38	38	
fv	Hz	50	50	
Th	μs	22.2	22.2	
Clock	MHz	54	54	

		⑤4:3 119.88Hz Frame Rate	⑥16:9 119.88Hz Frame Rate	
Panel Displ	ay mode	4:3 1024(H) X 384(V)	16:9 1024(H) X 288(V)	
Input Support	ted Format	Active	Active 88 7 1024 54 1126 H_Total	
A sali sa	Н	1024	1024	
Active	V	384	288	
Total	Н	1126	1126	
Total	V	400	400	
FP	Н	54	54	
11	V	4	100	
SYNC	Н	16	16	
STIVE	V	1	1	
BP	Н	32	32	
DI.	V	11	11	
BP+SYNC	Н	48	48	
DI STINC	V	12	12	
fv	Hz	119.88	119.88	
Th	μs 20.9		20.9	
Clock	MHz	53.99	53.99	

4. 120Hz mode

In order to reduce latency and to alleviate motion-blur effect, there is 120Hz mode in this panel module. With this 120Hz mode, it is available to display as 120Hz refresh rate. In this case, vertical resolution should be half of full scan lines because writing 2line simultaneously with same data. Please refer input format ⑤ and ⑥ in table below.

◆Register setting

Address	Register	Bit	Function
0x53h	120MODE	1	120Hz mode 0: Off 1: On

◆Input format and display image

5. Up/down and/or Right/left Inversion Function

Up/down and right/left inverse display of the panel are set by the registers RGT and DWN, respectively.

◆Register Settings

Address	Register name	Number of	Function
Address		bits	
0x00h	RGT	1	0: Left scan 1: Right scan
0x00h	DWN	1	0: Upper scan 1: Lower scan

6. Luminance Temperature Compensation Function

Organic EL panels have characteristics such that the luminance changes according to the temperature.

This product has a function that compensates the temperature dependence of the panel luminance.

◆Method of Checking the Panel Temperature

The temperature sensor output voltage can be output from VCAL (output pin 50).

Set the register VCAL_MON to 1: valid, set the register CALSEL as noted above, and read the V1 and V2 outputs. The temperature can be calculated by subtracting V1 from V2.

◆Register Settings

Address	Register name	Number of bits	Function
0x01h	VCAL_MON	1	Temperature sensor monitoring 0: Invalid 1: Valid
0x01h	CALSEL[1:0]	2	VCAL output selection 01: V1 output 10: V2 output 11: VOUT attenuate output (TBD)

7. Luminance Adjustment Function

This function adjusts the gamma top voltage according to the register CALDAC setting to adjust the luminance.

◆Register Settings

Address	Register name	Number of bits	Function
0×1Dh	CALDAC[7:0]	8	Luminance adjustment setting value: 1 to 255 (in decimal notation)

8. White Balance Adjustment Function

8.1. Contrast/Sub-contrast

This function sets the contrast (gain) of the input signal. RGB simultaneous adjustment and R, G and B separate adjustment can be set.

◆ Register Settings

Address	Register name	Number of bits	Function
0x14h, 0x15h	CONT	9	To RGB input signal, × 0 × 1 (Default) × 1.99
0x15h	RCONT	7	Sets R relative to CONT to × 0.75 × 1 (Default) × 1.24
0x16h	GCONT	7	Sets G relative to CONT to × 0.75 × 1 (Default) × 1.24
0x17h	BCONT	7	Sets B relative to CONT to ×0.75 × 1 (Default) ×1.24

◆Contrast Adjustment

R, G and B are adjusted simultaneously relative to the input signal using the register CONT. The setting value is 0 to 511 (decimal notation).

CONT setting value	0	 128	 256 (Default)	 384	 511
Gain (to input)	× 0	 × 0.5	 × 1	 × 1.5	 × 1.99

◆Sub Contrast Adjustment

R, G and B are adjusted separately using the registers RCONT, GCONT and BCONT, respectively.

The R, G and B gains can be set separately relative to the main CONT setting. The setting range is 0 to 127 (decimal notation).

R/G/BCONT setting value	0	 32	 64 (Default)	 96	 127
Gain (to CONT)	× 0.75	 × 0.875	 × 1	 × 1.125	 × 1.24

SONY ECX334AF

8.2. Bright/Sub Bright

This sets the brightness level of the input signal. RGB simultaneous adjustment and R, G and B separate adjustment can be set.

◆Register Settings

Address	Register name	Number of bits	Function
0x18h	BRT	8	To RGB input signal, -64 0 (Default) +63 gradations
0x19h	RBRT	7	Sets R relative to BRT to -32 0 (Default) +31 gradations
0x1Ah	GBRT	7	Sets G relative to BRT to -32 0 (Default) +31 gradations
0x1Bh	BBRT	7	Sets B relative to BRT to -32 0 (Default) +31 gradations

◆Brightness Adjustment

R, G and B are adjusted simultaneously relative to the input signal using register BRT. The setting value is 0 to 255 (decimal notation).

BRT setting value	0	 64	 128(Default)	 192	 255
Output gradations (to input)	-64	 -32	 0	 +32	 +63

♦Sub Brightness Adjustment

R, G and B are adjusted separately using registers RBRT, GBRT and BBRT, respectively.

The R, G and B adjustments can be set separately relative to the main BRT setting. The setting range is 0 to 127 (decimal notation).

R/G/BBRT setting value	0		32	 64(Default)	 96	 127
Output gradations (to BRT)	-32	:	-16	 0	 +16	 +31

9. Luminance and White Balance Preset Mode

This product has 2 luminance and white balance preset modes.

By selecting the mode according to the register LUMINANCE, the luminance and the white chromaticity are adjusted to preset value.

◆Register Settings

Address	Register name	Number of bits	Function
0x08h	OTPCALDAC_REGDIS	1	Luminance adjustment 0: Preset mode valid 1: Preset mode invalid (CALDAC adjustment)
0x08h	OTPDG_REGDIS	1	White chromaticity adjustment 0: Preset mode valid 1: Preset mode invalid (CONT/BRT adjustment)
0x05h	LUMINANCE[2:0]	3	Luminance and white chromaticity preset mode selection 0: 200cd/m², (0.31,0.31) 3: 300cd/m², (0.31,0.31)

10. Dithering Function

This function expresses simulated gradations between the original gradations by using FRC.

This is used to interpolate gradations that decrease due to contrast or brightness adjustment.

◆Register Settings

Address	Register name	Number of bits	Function
0x03h	DITHERON	1	Dithering processing 0: Off 1: On

10.1. FRC (Frame Rate Control)

Simulated colors are expressed making use of frame rate and image lag effect of human eyes. When two colors are switching alternately in high-speed, it looks an intermediate color for human eyes. Three simulated colors can be added to original colors by changing data in 4-frame cycle making use of this property (2 bit FRC).

FRC simulated color image when noticing arbitral one pixel is shown below.

11. Orbit Function

The image data start position can be changed. This enables reducing of the noticeability of local drops in luminance.

◆Register Settings

A	Address	Register name	Number of bits	Function
	0x02h	ORBIT_H[4:0]	5	Horizontal orbit adjustment -10 to 0 to +10, Default: 0
	0x03h	ORBIT_V[4:0]	5	Vertical orbit adjustment -10 to 0 to +10, Default: 0

11.1. Horizontal Display Position Shift

The display start position is changed by the register ORBIT_H. The variable range is ± 10 pixels.

ORBIT_H setting value	-10	 -1	0 (Default)	1	 10
Number of pixels shifted	Leftward	 Leftward	Center	Rightward	 Rightward
	10-pixel	1-pixel		1-pixel	10-pixel

11.2. Vertical Display Position Shift

The display start position is changed by the register ORBIT_V. The variable range is \pm 10 pixels.

ORBIT_V setting value	-10	 -1	0 (Default)	1	 10
Number of pivels shifted	Upward	 Upward	Center	Downward	 Downward
Number of pixels shifted	10-pixels	1-pixel		1-pixel	10-pixel

Pixel Array

Optical Characteristics

1. Optical Characteristics

Item		Symbol	Measurement Method	Min.	Тур.	Max.	Unit
Luminanaa	Mode 0	L0	1	170	200	230	Cd/m ²
Luminance	Mode 3	L3	1	255	300	345	Cd/m ²
Contra	ıst	CR	1	10,000	_	_	
	W	х	1	0.298	0.310	0.322	CIE
	(L0 & L3)	у	1	0.298	0.310	0.322	CIE
	R	х	1	0.635	0.655	0.675	CIE
Chromoticity		у	1	0.310	0.330	0.350	CIE
Chromaticity	G	х	1	0.255	0.275	0.295	CIE
	G	у	1	0.625	0.645	0.665	CIE
	_	х	1	0.127	0.147	0.167	CIE
	В	у	1	0.045	0.065	0.085	CIE

Drive conditions:

OTPDG_REGDIS=0, OTPCALDAC_REGDIS=0, LUMINANCE=0 (Mode 0), 3 (Mode 3)

2. Measurement System • Measurement Method 1

The luminance and chromaticity are measured in Measurement System A shown below.

Measurement temperature: Tpnl = 40°C

Measurement point: One point on the screen center All white display: All RGB signal data is set to High. All black display: All RGB signal data is set to Low.

Luminance and chromaticity: Measure the luminance and chromaticity in all white display in Measurement System A. Contrast: Measure the luminance in all white display (@ Mode3: 300cd/m²) and all black display in Measurement System A, and substitute them into the formula below.

Contrast = Luminance in all white display/Luminance in all black display

Package Outline (Nagasaki 200mm wafer)

(Unit: mm)

Package Outline (Kumamoto 300mm wafer)

Tentative

(Unit: mm)

No	Description
1	FPC
2	Stiffener
3	Reinforcing material
4	Outside frame

Recommended Items

1. Peripheral Circuits

The recommended peripheral circuits for the panel pins are shown below.

Regarding power supply capacitor connections, mount an approximately 2.2 μ F to 10 μ F capacitor for each power supply. Insufficient capacitance may affect the picture quality.

FCX33444

External capacitor characteristics: Class 2 B characteristics: Temperature range: -25 to $+85^\circ$ C Reference temperature: 20° C Rate of capacitance change, temperature coefficient: $\pm 10\%$

61 VSS VCCP 60 59 VDD2 VDD2 58 VSS 57 VSS \mathcal{H} 56 Vcath 55 VOFS 1uF 54 VGO 1uF 53 VG255 1uF 52 TEST 51 TEST 50 49 VDD1 48 VSS 开 47 TEST (VFUSE) 46 TEST (DDEN) DC/DC Enable 45 SO 0 44 SI 3-Wire Serial Control 43 XSCK 0 42 XCS 0 41 TEST (PSCNT) VDD1 40 TEN TEST (SCAN MODE) 39 38 Bin0 / CBCRin0 37 Bin1 / CBCRin1 0 Bin2 / CBCRin2 36 0 35 Bin3 / CBCRin3 0 Blue/CbCr Video Data Input 34 Bin4 / CBCRin4 -0 33 Bin5 / CBCRin5 0 32 Bin6 / CBCRin6 0 31 Bin7 / CBCRin7 0 30 29 VDD1 VDD1 28 Gin0 / Yin0 0 声息 27 Gin1 / Yin1 0 26 Gin2 / Yin2 0 25 Gin3 / Yin3 0 Green/Y Video Data Input 24 Gin4 / Yin4 0 23 Gin5 / Yin5 0 22 Gin6 / Yin6 0 21 Gin7 / Yin7 0 20 RinO / GND -0 19 Rin1 / GND O 18 Rin2 / GND 0 17 Rin3 / GND Red Video Data Input /GND 16 Rin4 / GND 0 15 Rin5 / GND 0 14 Rin6 / GND O 13 Rin7 / GND 0 12 XCLR 0 Reset Input 11 XVD 0 Vertical Sync Input 10 XHD 0 Horizontal Sync Input 9 MCLK Master Clock Input 0 8 VDD1 VDD1 7 VSS 一声 🗄 6 Vcath 5 VSS 4 VSS

VDD2

VCCP TEST

3

2

2. Suppression of the Panel Temperature

Organic EL panel temperatures rise due to power consumption (heat generation) by the EL emissive layer and the silicon drive board. A rise in the panel temperature may affect the drop in luminance over time.

The rise in panel temperature can be suppressed by establishing a thermal connection between the rear surface (silicon board surface) of the panel and metal (chassis, frame, etc.) in the panel mount area.

Notes on Handling

1. Static charge prevention

Be sure to take the following protective measures. Organic EL panels are easily damaged by static charges.

- (1) Use non-chargeable gloves, use bare hands.
- (2) Use a wrist strap when handling.
- (3) Do not touch any electrodes of the panel.
- (4) Wear non-chargeable clothes and conductive shoes.
- (5) Install grounded conductive mats on the working floor and working table.
- (6) Keep the panel away from any charged materials.

2. Protection from dust and dirt

- (1) Operate in a clean environment.
- (2) Do not touch the panel surface. The surface is easily scratched. When cleaning, use a clean-room wiper with isopropyl alcohol. Be careful not to leave stains on the surface.
- (3) Use ionized air to blow dust off the panel surface.

3. Others

- (1) Do not hold the flexible board or twist or bend it because the flexible board connection block is easily affected by twisting.
- (2) The minimum fold radius of the flexible board is 1 mm.
- (3) Do not drop the panel.
- (4) Do not twist or bend the panel.
- (5) Keep the panel away from heat sources.
- (6) Do not dampen the panel with water or other solvents.
- (7) Do not store or use the panel (module) at high temperatures or high humidity, as this may affect the characteristics.
- (8) When disposing of this panel, handle it as industrial waste and comply with related regulations.
- (9) Do not store or use the panel in reactive chemical substance (including alcohol) environments, as this may affect the performance.
- (10) This panel is delivered packed in a degassed aluminum laminated bag.
 When storing this panel after unsealing the bag, put it into the aluminum laminated bag again and seal it with tape with the opening folded after inserting desiccants.