Thème: Mouvements et interactions

P7 : modélisation d'une action mécanique sur un système

Bilan cours

→ Je dois savoir

Savoir	Savoir-faire	Exercices/ Activités associés
		En autonomie
		Facultatif
Modélisation d'une action par une force.	Modéliser l'action d'un système extérieur sur le système étudié par une force. Représenter	Activité 1 : manuel p154
	une force par un vecteur ayant une norme, une direction, un sens.	Exercices : 14 ,17p 163
Principe des actions réciproques (troisième loi de Newton).	Exploiter le principe des actions réciproques.	28p165
	Distinguer actions à distance et actions de contact. Identifier les actions modélisées par	22 p164
Caractéristiques d'une force. Exemples de	des forces dont les expressions mathématiques sont connues a priori. Utiliser	36p168
forces :	l'expression vectorielle de la force d'interaction gravitationnelle.	Activité 2
- force d'interaction gravitationnelle ;	Utiliser l'expression vectorielle du poids d'un	23p164
- poids ;	objet, approché par la force d'interaction gravitationnelle s'exerçant sur cet objet à la surface d'une planète.	
- force exercée par un support et	surface d'une planete.	
par un fil.	Représenter qualitativement la force modélisant l'action d'un support dans des cas simples relevant de la statique.	
Expression vectorielle de la force de gravitation :		BILAN:
		30-32 p166-167
SCAN ME		40p169 (vers la 1ere spé)
Lien: https://drive.google.com/file/d/1grwBJ9IUfG6qC_Nf2lywnfpfOVO0UTSG/view?usp=sharing		

→ Actions mécaniques et forces

<u>les actions mécaniques et le diagramme objet-interactions</u>

En mécanique, lorsqu'un objet agit sur un autre objet, on parle d'action mécanique. L'objet qui agit est appelé le donneur, celui qui reçoit le receveur.

Il existe deux grandes familles d'actions mécaniques :

L'action mécanique de contact lorsqu'il y a contact entre le donneur et le receveur **(flèche pleine)**;

L'action mécanique à distance lorsqu'il n'y a pas contact entre le donneur et le receveur **(flèche discontinue)**

On représente ces actions mécaniques grâce à un diagramme objetinteraction

Effet d'une action mécanique sur le receveur

Les effets d'une action mécanique d'un donneur sur un receveur peuvent être :

- -La mise en mouvement du receveur ;
- -La modification de la trajectoire et/ou de la vitesse du receveur ;
- -La déformation du receveur.

Caractéristiques d'une force

L'action mécanique n'est pas directement saisissable et mesurable. Pour pouvoir l'étudier, on la modélise par une grandeur appelée « force ».

Cette force a 4 caractéristiques, c'est-à-dire 4 informations servant à la décrire :

un point d'application :

- -Pour une **action mécanique de contact**, le point d'application de la force sera le point de contact entre le donneur et le receveur ; s'il s'agit d'une surface de contact alors le point d'application de la force sera le centre de cette surface ;
- -Pour une **action mécanique à distance**, le point d'application de la force sera le centre de gravité du receveur.
 - une droite d'action (ou direction);
 - un sens d'action (de Vers);
 - une intensité qui se note $F_{donneur/receveur}$, se mesure à l'aide d'un dynamomètre et s'exprime en newton

Représentation d'une force

On la représente par un segment fléché (ou vecteur) et on la note :

origine: point d'application de la force

 $\overrightarrow{F}_{\text{donneur/receveur}} \quad | \quad \text{direction: } \overrightarrow{\text{direction de la force}}$

sens: sens de la force

longueur : proportionnelle à l'intensité de la force (avec échelle adaptée)

→ exemples de forces

La force d'interaction gravitationnelle \vec{F}

Deux corps A et B, dont les masses m_A et m_B sont régulièrement reparties autour de leurs centres C_A et C_B distants de d, exercent l'un sur l'autre des actions attractives.

L'action attractive exercée par le corps A sur le corps B est modélisée par une force notée $\mathbf{F}_{\mathsf{A/B}}$ de caractéristiques :

direction: la droite passant par CA et CB;

sens : de B vers A ;

intensité : donné par la formule ci-dessous (expression scalaire) :

« C'EST DES MATHS »:

Expression vectorielle de la force de gravitation :

$$\overrightarrow{\mathbf{F}_{A/B}} = \overrightarrow{\mathbf{F}_{B/A}} = - \frac{G \times m_A \times m_B}{d^2} \overrightarrow{u_{AB}}$$

Avec $\overline{u_{AB}}$ vecteur unitaire, de norme 1, orienté de A vers B (voir schéma ci-dessus)

Le poids \overrightarrow{P}

Le poids d'un corps à la surface d'un astre (par exemple la Terre) résulte de la force d'attraction exercée par cet astre sur ce corps . . Il est noté \vec{P} et a pour caractéristiques :

direction : droite reliant le centre du système au centre de l'astre ;

sens : du centre du système au centre de l'astre.

intensité : $P = m \times g$

Avec : m = la masse du système, en kg

g : l'accélération de pesanteur, qui dépend de l'astre sur lequel on se trouve en N /kg. (plus de précisions dans votre manuel p159-160) .

Modélisation

<u>La réaction du support \vec{R} </u>: on appelle la réaction du support, la force qui modélise l'action du support sur

le système d'étude. Elle est notée \vec{R} et a pour caractéristiques :

- -direction : perpendiculaire au sol
- -sens : vers le haut
- -point d'application : point de contact entre le support et le receveur.
- -intensité : proportionnelle à la valeur de la réaction R.

Ex : un objet posé sur un support (ex : table) ne tombe pas car le support exerce une force de contact qui compense son poids.

- -direction : celle du fil
- -sens : du système vers le fil
- -point d'application : point de contact entre le système et le fil
- -intensité : proportionnel à la valeur de la tension T.

Réalité Modélisation

Réalité Modélisation

Réalité S

Modélisation

<u>Les forces de frottements</u> $\hat{\mathbf{f}}$: tout corps en mouvement est soumis à des forces de frottements qui sont des forces de contact <u>qui s'opposent au déplacement de l'objet</u>. Elles peuvent être exercées soit par le solide, soit par le fluide (liquide ou gaz) avec lequel le corps est en contact.

→ Principe des actions réciproques (ou 3ème loi de Newton)

Quel que soit le référentiel, si système A exerce une action mécanique sur un système B, notée $\overline{F_{A/B}}$, alors le système B exerce <u>réciproquement et simultanément</u> une action mécanique sur le système A, notée $\overline{F_{A/B}}$, de même direction, de même intensité, mais de sens opposé.

