Universidad de San Carlos de Guatemala Escuela de Ciencias Físicas y Matemáticas Curso: Laboratorio de Instrumentación

Profesor: Wendy Miranda

Parcial 2

I. PROBLEMA 1

Para este problema se tienen los siguientes datos: Ganancia de voltaje $A_v=-25$, corriente máxima por los resistores $I=10\mu A$ y el voltaje de entrada $V_I\in[-25,25]mV$. Dada la corriente máxima y el voltaje de entrada podemos encontrar las resistencias mostradas en la figura 1, sabiendo que la corriente es la misma en ambas

$$R_1 = \frac{V_I}{I} = \boxed{2.5k\Omega,}$$

$$R_2 = |-R_1 A_v| = \boxed{62.5k\Omega.}$$

Figura 1. Problema 1.

Además, teniendo la ecuación $A_vV_I = V_o$ para el voltaje de salida, encontramos el rango de voltajes

$$V_o \in [-625, 625]mV.$$

II. PROBLEMA 2

Dado el voltaje de salida del circuito inversor sumador (Figura $\ref{eq:condition}$) $V_o = -3(V_{I1} + 2V_{I2} + 0.3V_{I3} + 4V_{I4})$ y que la resistencia máxima es de $400k\Omega$.

Figura 2. Problema 2.

Dado que $400k\Omega$ es la resistencia máxima, y la razón $\frac{R_F}{R_3}=0.9$ es menor a 1, tomamos $\boxed{R_3=400k\Omega}$. Con el voltaje de salida se tiene la siguiente igualdad

$$-(3V_{I1} + 6V_{I2} + 0.9V_{I3} + 12V_{I4}) =$$

$$-\left(\frac{R_F}{R_1}V_{I1} + \frac{R_F}{R_2}V_{I2} + \frac{R_F}{R_3}V_{I3} + \frac{R_F}{R_4}V_{I4}\right),$$

entonces

$$R_F = 360k\Omega,$$
 $R_1 = 120k\Omega,$ $R_2 = 60k\Omega,$ $R_4 = 30k\Omega.$

Dando valores a los voltajes de entrada

I) $V_{I1} = 0.1V$, $V_{I2} = -0.2V$, $V_{I3} = -1V$ y $V_{I4} = 0.05V$. Entonces, valuando en la ecuación dada del voltaje de salida

$$V_o = -3[(0.1) + (-0.2)(2) + (0.3)(-1) + (0.05)(4)] = 1.2V.$$

II) $V_{I1}=-0.2V,\ V_{I2}=0.3V,\ V_{I3}=1.5V$ y $V_{I4}=-0.1V.$ Entonces, valuando en la ecuación dada del voltaje de salida

$$V_o = -3[(-0.2) + (0.3)(2) + (0.3)(1.5) + (-0.1)(4)] = \boxed{-1.35V}.$$

III. PROBLEMA 3

Para el voltaje de entrada, encontramos la pendiente de la recta entre $[0,5]\mu s$ (la cual solo cambia de signo para el tramo siguiente, y ahí se cumple un ciclo)

$$m = \frac{5V - (-5V)}{5\mu s - 0} = 2 \times 10^6 V/s,$$

con esto, definimos la función periodica por tramos

$$V_I(t) = \begin{cases} (2 \times 10^6 V/s)t - 5V & \text{de} \quad 0 - 5\mu s, 10 - 15\mu s, \dots \\ (-2 \times 10^6 V/s)t + 5V & \text{de} \quad 5 - 10\mu s, 15 - 20\mu s, \dots \end{cases}$$

Entonces, dada la ecuación 9.72 del libro [1]

$$V_o(t) = -R_2 C_1 \frac{\mathrm{d}V_I(t)}{\mathrm{d}t},$$

valuando, se tiene el voltaje de salida

$$V_o(t) = -R_2 C_1 \left\{ \begin{array}{lll} 2\times 10^6 V/s & \text{de} & 0-5\mu s, \ 10-15\mu s, \ \dots \\ -2\times 10^6 V/s & \text{de} & 5-10\mu s, \ 15-20\mu s, \ \dots \end{array} \right.$$

El cuál tiene límite superior 4.4V y límite inferior -4.4V. Además, dado esto, podemos graficar dicho voltaje, el cual son trozos de función constante iniciando en el límite inferior,

Figura 3. Voltaje de salida, problema 3.

Dado el circuito

Figura 4. Problema 4.

se tiene que la ganancia de voltaje es $A_v=-\frac{Z_2}{Z_1},$ donde las impedancias son

$$Z_1 = R_1 + \frac{1}{j\omega C_1} = \frac{1 + j\omega R_1 C_1}{j\omega C_1},$$
$$Z_2 = \frac{\frac{R_2}{j\omega C_2}}{R_2 + \frac{1}{j\omega C_2}} = \frac{R_2}{1 + j\omega R_2 C_2}.$$

Con esto, encontramos la ganancia

$$A_{v} = \frac{-j\omega R_{2}C_{1}}{(1+j\omega R_{1}C_{1})(1+j\omega R_{2}C_{2})},$$

entonces, por definición $A_v rac{V_o}{V_I}$, se tiene

$$V_o = \frac{-j\omega R_2 C_1 V_I}{(1 + j\omega R_1 C_1)(1 + j\omega R_2 C_2)}$$

REFERENCIAS

[1] Neamen, D. A. (2007). Microelectronics: circuit analysis and design (Vol. 43). New York: McGraw-Hill.