과목 I

[데이터 모델과 SQL]

제1장 정규화

[정규화]

- -엔터티를 분해하는 과정
- -중복을 제거하고 데이터 모델의 독립성을 확보
- -이상현상을 줄이기 위한 설계 기법
- -논리 데이터 모델링 수행 시점
- -실질적으로는 제3정규화까지만 수행하긴 함

[이상현상]

-정규화를 하지않아 발생하는 현상 (삽입이상, 갱신이상, 삭제이상)

[제1정규화]

- 원자성을 갖도록 테이블을 분해하는 단계
- 하나의 행과 컬럼의 값이 반드시 1개만 행을 분리하는 단계

주문 목록

제품번호	제품명	재고수량	주문번호	고객번호	주소	주문수량
1001	모니터	2000	A345 D347	100 200	서울 부산	150 300
1007	마우스	9000	A210 A345 B230	300 100 200	광주 서울 부산	600 400 700
1201	키보드	2100	D347	200	부산	300

제품

	시I 급	
제품번호	제품명	재고수량
1001	모니터	2000
1007	마우스	9000
1201	키보드	2100

제품주문

주문번호	제품번호	고객번호	주소	주문수량
A345	1001	100	서울	150
D347	1001	200	부산	300
A210	1007	300	광주	600
A345	1007	100	서울	400
B230	1007	200	부산	700
D347	1201	200	부산	300

[제2정규화]

- 완전 함수 종속을 만들도록 (부분적 함수 종속 제거)
- 기본키를 구성하는 모든 컬럼의 값이 다른 컬럼을 결정짓는 상태
- PK가 2개 이상일 떄 발생, PK의 일부와 종속되는 관계가 있다면 분리

제품주문

주문번호	제품번호	고객번호	주소	주문수랑
A345	1001	100	서울	150
D347	1001	200	부산	300
A210	1007	300	광주	600
A345	1007	100	서울	400
B230	1007	200	부산	700
D347	1201	200	부산	300

주문목록

	1	1
주문번호	제품번호	주문수량
A345	1001	150
D347	1001	300
A210	1007	600
A345	1007	400
B230	1007	700
D347	1201	300

주문

주문번호	고객번호	주소
A345	100	서울
D347	200	부산
A210	300	광주
B230	200	부산

[제3정규화]

- 이행적 종속 함수 제거
- 이행적 종속 : A->B, B->C의 관계가 성립할 때 A->C가 성립

주문

주문번호	고객번호	주소
A345	100	서울
D347	200	부산
A210	300	광주
B230	200	부산

주문

주문번호	고객번호	
A345	100	
D347	200	
A210	300	
B230	200	

고객

주소		
서울		
부산		
광주		

[BCNF]

모든 결정자가 후보키가 되도록 테이블을 분해 (결정자 이면서 후보키가 아닌 것을 제거)

수강 교수

<u>학</u> 번	과목명	담당교수
171746	데이터베이스	홍길동
171747	네트워크	유관순
171748	인공지능	윤봉길
171749	데이터베이스	홍길동
171747	데이터베이스	이순신
171749	네트워크	유관순

수강

담당교수		
홍길동		
유관순		
윤봉길		
흥길동		
이순신		
유관순		

교수

담당교수	과목명
홍길동	데이터베이스
이순신	데이터베이스
윤봉길	인공지능
유관순	네트워크

[제4정규화]

다치 종속 제거

여러 컬럼이 하나의 컬럼을 종속시키는 경우 분해

[제5정규화]

조인 종속성 이용

[반정규화]

- JOIN이 너무 잦아져서 만든 테이블
- 수행 케이스
- 1. 정규화에 충실해 수행 속도가 느려지는 경우
- 2. 다량의 범위를 자주 처리해야하는 경우
- 3. 특정 범위의 데이터만 자주 처리하는 경우
- 4. 요약/집계 정보가 자주 요구되는 경우

제2장 관계와 조인의 이해

[관계]

- 엔티티의 인스턴스 사이의 논리적인 연관성
- 관계를 맺는 다는 것은 부모의 식별자를 자식에 상속하고 상속된 속성을 조인키로 활용
- **관계의 종류**
- 1. 존재 관계 : 엔티티 간의 상태를 의미
- 2. 행위 관계: 엔티티 간의 어떤 행위가 있는 것을 의미

[계층형 데이터 모델]

- 자기 자신끼리 관계가 발생 (셀프 JOIN) ex) 같은 엔티티 내의 사원번호와 상위관계자번호

[상호배타적 관계]

- 두 테이블 중 하나만 가능한 관계

제3장 모델이 표현하는 트랜잭션의 이해

[트랜잭션]

- 하나의 연속적인 업무 단위
- 트랜잭션에 의한 관계는 필수적인 관계 형태를 가짐

모두 성공하거나 모두 취소 되어야함

주의

- 1. A 고객 잔액 차감과 B 고객 잔액 가산이 서로 독립적이면 안됨
- 2. 부분 COMMIT 불가

[필수적, 선택적 관계와 ERD] 0명 이상, 1명이상 IE 표기법

- 원을 사용하여 구분
- 필수적 관계는 원을 그리지 않는다.
- 선택적 관계는 원을 그린다.

Barker 표기법

- 실선과 점선으로 구분
- 필수적 관계는 실선으로 표기
- 선택적 관계는 점선으로 표기

제4장 NULL 속성의 이해

[NULL]

- 아직 정해지지 않은 값
- 0과 빈문자와는 다른 의미

[NULL의 특성]

- 1. NULL이 포함된 연산의 결과는 NULL NVL(값1, 값2)를 이용
- 2. 집계함수는 NULL을 제외한 연산 결과를 리턴
- * sum, avg, min, max등의 함수는 항상 NULL을 무시한다.

주의 - 평균 연산

AVG(COMM)과 SUM(COMM)/COUNT(COMM)은 값이 다름

NULL의 ERD 표기법

- IE 표기법은 NULL 허용여부를 알수 없음
- Barker 표기법은 동그라미 앞에 표시

제5장 본질식별자 VS 인조식별자

[본질식별자 VS 인조식별자]

본질식별자

- 업무에 의해 만들어지는 식별자 (꼭 만들어지는 식별자)

인조식별자는

- 꼭 필요하지 않지만 관리의 편이성 등의 이유로 인위적으로 만들어지는 식별자
- **인조식별자의 단점**
- 1. 중복 데이터 발생 가능성 -> 데이터 품질 저하
- 2. 불필요한 인덱스 생성 -> 저장공간 낭비 및 DML 성능 저하

인덱스는 원래 조회 성능을 향상시키기 위한 객체 인덱스는 DML시 INDEX SPLIT 현상으로 인해 성능이 저하됨