CPE301 - SPRING 2019

Design Assignment 6

Student Name: Ricky Perez Student #: 5002297620

Student Email: perezr1@unlv.nevada.edu

Primary Github address: https://github.com/RickyPerez79/submission_da

Directory: DA6

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

- MPU6050
- Atmega328p

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

```
* DA6.c
* Created 4/30/19
* Author : perezr1
#define F CPU 1600000UL
#include <avr/io.h>
#include <util/delay.h>
#include <inttypes.h>
#include <stdlib.h>
#include <stdio.h>
#include "MPU6050_res_define.h"
#include "I2C_Master_H_file.h"
#include "USART_RS232_H_file.h"
/************* Variables for acceleration and gyro **********************/
float Acc_x,Acc_y,Acc_z,Gyro_x,Gyro_y,Gyro_z;
/*********************************/nitialize MPU6050*****************************
void MPU6050 Init()
                                                                  //
Gyro initialization function
     _delay_ms(150);
     // Power up time >100ms
     I2C Start Wait(0xD0);
                                                                  //
Start with device write address
     I2C_Write(SMPLRT_DIV);
                                                                  //
Write to sample rate register
     I2C Write(0x07);
                                                                  //
1KHz sample rate
     I2C_Stop();
     I2C_Start_Wait(0xD0);
     I2C Write(PWR MGMT 1);
                                                                  //
Write to power management register
     I2C_Write(0x01);
                                                                  // X
axis gyroscope reference frequency
     I2C_Stop();
     I2C_Start_Wait(0xD0);
     I2C Write(CONFIG);
                                                                  //
Write to Configuration register
     I2C_Write(0x00);
                                                                  // Fs
= 8KHz
     I2C_Stop();
```

```
I2C Start Wait(0xD0);
      I2C_Write(GYRO_CONFIG);
                                                                                 //
Write to Gyro configuration register
      I2C_Write(0x18);
                                                                                 //
Full scale range +/- 2000 degree/C
      I2C Stop();
      I2C Start Wait(0xD0);
      I2C_Write(INT_ENABLE);
                                                                                //
Write to interrupt enable register
      I2C Write(0x01);
      I2C Stop();
void MPU_Start_Loc()
{
      I2C_Start_Wait(0xD0);
                                                                                // I2C
start with device write address
      I2C_Write(ACCEL_XOUT_H);
                                                                          // Write
start location address from where to read
      I2C_Repeated_Start(0xD1);
                                                                          // I2C start
with device read address
}
void Read RawValue()
      MPU_Start_Loc();
                                                                                 //
Read Gyro values
      Acc_x = (((int)I2C_Read_Ack()<<8) | (int)I2C_Read_Ack());</pre>
      Acc_y = (((int)I2C_Read_Ack()<<8) | (int)I2C_Read_Ack());</pre>
      Acc_z = (((int)I2C_Read_Ack()<<8) | (int)I2C_Read_Ack());</pre>
      Gyro_x = (((int)I2C_Read_Ack()<<8) | (int)I2C_Read_Ack());</pre>
      Gyro_y = (((int)I2C_Read_Ack()<<8) | (int)I2C_Read_Ack());</pre>
      Gyro_z = (((int)I2C_Read_Ack()<<8) | (int)I2C_Read_Nack());</pre>
      I2C_Stop();
}
int main()
{
      char buffer[20], float_[10];
      float X_a,Y_a,Z_a;
      float X_g=0,Y_g=0,Z_g=0;
      I2C_Init();
      // Initialize I2C
      MPU6050_Init();
      // Initialize MPU6050
      USART Init(9600);
                                // Initialize USART with 9600 baud rate
      while(1)
      {
             Read RawValue();
             // Acceleration
             X_a = Acc_x/16384.0;
                                  // Divide raw value by sensitivity scale factor
to get real values
             Y_a = Acc_y/16384.0;
```

```
Z_a = Acc_z/16384.0;
               // Gyro
               X_g = Gyro_x/16.4;
               Y_g = Gyro_y/16.4;
               Z_g = Gyro_z/16.4;
               dtostrf( X_a, 3, 2, float_ );
                                                // Take values in buffer to send all
parameters over USART
               sprintf(buffer," Ax = %s g\t",float_);
               USART_SendString(buffer);
               dtostrf( Y_a, 3, 2, float_ );
sprintf(buffer," Ay = %s g\t",float_);
               USART_SendString(buffer);
               dtostrf( Z_a, 3, 2, float_ );
               sprintf(buffer," Az = %s g\t",float_);
               USART_SendString(buffer);
               dtostrf( X_g, 3, 2, float_ );
sprintf(buffer," Gx = %s%c/s\t",float_,0xF8);
               USART_SendString(buffer);
               dtostrf( Y_g, 3, 2, float_ );
               sprintf(buffer," Gy = %s%c/s\t",float_,0xF8);
               USART_SendString(buffer);
               dtostrf( Z_g, 3, 2, float_ );
               sprintf(buffer," Gz = %s%c/s\r\n",float_,0xF8);
               USART_SendString(buffer);
               _delay_ms(1000);
       }
}
```

3. SCHEMATICS

fritzing

4. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

5. SCREENSHOT OF EACH DEMO (BOARD SETUP)

6. VIDEO LINKS OF EACH DEMO

https://youtu.be/DppTeAGKsx0

7. GITHUB LINK OF THIS DA

https://github.com/RickyPerez79/submission_da

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work". ${\sf RICKY\ PEREZ}$