# Semiconductor Manufacturing Technology

Michael Quirk & Julian Serda
© October 2001 by Prentice Hall

Chapter 3

Device Technologies

### **Objectives**

After studying the material in this chapter, you will be able to:

- 1. Identify differences between analog and digital devices and passive and active components. Explain the effects of parasitic structures in passive components.
- 2. Describe the PN junction, why it is important, and explain reverse and forward biasing.
- 3. State the characteristics of bipolar technology and the bipolar junction transistor in terms of function, biasing, structure and applications.
- 4. Explain the basic characteristics of CMOS technology, including the field effect transistor, biasing and the CMOS inverter.
- 5. Explain the difference between enhancement and depletion mode MOSFETs.
- 6. Explain the effects of parasitic transistors and the implications for CMOS latchup.
- 7. Give examples of IC products and state some applications of each.

### Circuit Types

- Analog Circuits
  - Radio transceivers, audio, automotive ignition
- Digital Circuits
  - Computer, calculator, "high" or "low"

### Components on Printed Circuit Board



Photo 3.1 4/38

### Passive Component Structures

An active element is capable of generating energy while a passive element is not.

- IC Resistor Structures (R)
  - Parasitic Resistor Structures
- IC Capacitor Structures (C)
  - Parasitic Capacitance Structures
- IC Inductor Structures (L)

### Examples of Resistor Structures in ICs



Figure 3.1 6/38

# Cross Section of Parasitic Resistances in a Transistor



- It reduces the operational performance of IC devices.
- Higher density comes higher resistance.

Figure 3.2 7/38

### Examples of Capacitors Structures in ICs





Figure 3.3 8/38

### Parasitic Capacitance in Transistors







Field effect transistor

• Parasitic capacitance may create instability in circuits, even short-circuit paths for AC signals where they are not need.

Figure 3.4 9/38

### Integrated-Circuit Inductor



Fig. 5 (a) Schematic view of a spiral inductor on a silicon substrate. (b) Perspective view along A-A'. (c) An equivalent circuit model for an integrated inductor.

### **Active Component Structures**

- Used to control current direction and amplify small signal
- The pn Junction Diode
- The Bipolar Junction Transistor
- Schottky Diode
- Bipolar IC Technology
- CMOS IC Technology
- Enhancement and Depletion-Mode MOSFETs

# Basic Symbol and Structure of the pn Junction Diode



Figure 3.5 12/38

### Open-Circuit Condition of a pn Junction Diode



Figure 3.6 13/38

#### Reverse-Biased PN Junction Diode



Figure 3.7 14/38

#### Forward-Biased PN Junction Diode



Figure 3.8 15/38

# Forward and Reverse Electrical Characteristics of a Silicon Diode



Figure 3.9 16/38

### Two Types of Bipolar Transistors



• The emitter arrows indicate the direction of hole or current.

### NPN Transistor Biasing Circuit



Figure 3.11 18/38

### PNP transistor biasing circuit



Figure 3.12 19/38

#### Cross Section of an NPN BJT



Figure 3.13 20/38

# Schematic Symbol and Structural Cross Section of the Schottky Diode



- The forward junction voltage drop  $0.3\sim0.5$  V is nearly half that of pn-junction  $0.6\sim0.8$ V.
- It formed when metal is brought in contact with lightly doped n-type semiconductor materials.
- Faster switching than pn diode, no minority.

Figure 3.14 21/38

### Bipolar Logic Families

- It has fast speeds, durability, and power-controlling ability
- The biggest drawback is high power consumption

| Table 3.1 Bipolar Logic Families    |                   |  |  |  |
|-------------------------------------|-------------------|--|--|--|
| Bipolar Logic Family                | Abbreviation      |  |  |  |
| Direct-Coupled Transistor Logic     | DCTL <sup>1</sup> |  |  |  |
| Resistor-Transistor Logic           | $RTL^2$           |  |  |  |
| Resistor-Capacitor-Transistor Logic | RCTL <sup>3</sup> |  |  |  |
| Diode-Transistor Logic              | DTL <sup>4</sup>  |  |  |  |
| Transistor-Transistor Logic*        | $TTL^5$           |  |  |  |
| Schottky TTL Logic*                 | STTL <sup>6</sup> |  |  |  |
| Emitter-Coupled Logic*              | ECL <sup>7</sup>  |  |  |  |

<sup>&</sup>lt;sup>1</sup> G. Deboo and C. Burrous, *Integrated Circuits and Semiconductor Devices: Theory and Application*, 2<sup>nd</sup> edition, McGraw-Hill, New York, NY, 1977, p. 192.

<sup>&</sup>lt;sup>2</sup> G. Deboo and C. Burrous, ibid.

<sup>&</sup>lt;sup>3</sup> G. Deboo and C. Burrous, ibid.

<sup>&</sup>lt;sup>4</sup> G. Deboo and C. Burrous, ibid.

<sup>&</sup>lt;sup>5</sup> G. Deboo and C. Burrous, ibid.

<sup>&</sup>lt;sup>6</sup> A. Sedra, K. Smith, *Microelectronic Circuits*, Oxford University Press, 1998, p. 1187.

<sup>&</sup>lt;sup>7</sup> A. Sedra, K. Smith, *Microelectronic Circuits*, Oxford University Press, 1998, p. 1196.

#### BJT vs. MOSFET

- FET is a voltage-amplifying device, BJT is a current-amplifying device
- Greatest advantage: low voltage and low power operation
- BJT requires input current to turn on, FET as a result of electric field created by gate voltage- thus the name field-effect transistor
- It has infinite R<sub>in</sub> and moderate gain make it an excellent device for use in instrumentation and communications.

### CMOS IC Technology

- The Field Effect Transistor (less power)
  - MOSFETs
    - nMOSFET
    - pMOSFET
  - Biasing the nMOSFET
  - Biasing the pMOSFET
- CMOS Technology
- BiCMOS Technology
- Enhancement and Depletion-Mode

### Two Types of MOSFETs







Figure 3.15 25/38

### Biasing Circuit for an NMOS Transistor



Figure 3.16 26/38

#### NMOS Transistor in Conduction Mode



Figure 3.17 27/38

# Example of Characteristics Curves of an N-channel MOSFET



Figure 3.18

### Biasing Circuit for a P-Channel MOSFET



Figure 3.19 29/38

#### PMOS Transistor in Conduction Mode



Figure 3.20 30/38

#### Schematic of a CMOS Inverter



Figure 3.21

### Top View of CMOS Inverter



Figure 3.22 32/38

### Cross-section of CMOS Inverter



Figure 3.23 33/38

# BiCMOS Chips used in the Control of a Simple Heating System

- BiCMOS technology makes use of the best feature of both CMOS and bipolar technology.
- BiCMOS incorporates the low-power, high-density CMOS with high current drive capability of BJT.



Figure 3.24 34/38

### Simple BiCMOS Inverter



Redrawn from H. Lin, J. Ho, R. Iyer, and K. Kwong, "Complementary MOS-Bipolar Transistor Structure," *IEEE Transactions Electron Devices*, ED-16, 11 Nov. 1969, p. 945 - 951.

Figure 3.25 35/38

# Comparison of Enhancement and Depletion Mode MOSFETs

| MOSFET | Mode        | Standby   | V <sub>GG</sub> Switching | Physical Structure                     |
|--------|-------------|-----------|---------------------------|----------------------------------------|
| Type   |             | Condition | Requirements              |                                        |
| nMOS   | Enhancement | Off       | +                         | Source Drain  p-type silicon substrate |
| nMOS   | Depletion   | On        | -                         |                                        |
| pMOS   | Enhancement | Off       | -                         | Gate Source Drain  p+ p+ p+            |
| pMOS   | Depletion   | On        | +                         | Gate Source Drain  p p p               |

Figure 3.26 36/38

### Latchup in CMOS Devices



Parasitic Junction Transistors within a CMOS Structure

Figure 3.27 37/38

### **Integrated Circuit Products**

- Linear IC Products
  - Operational Amplifier
  - Voltage Regulator
  - Stepper Motor Driver
- Digital IC Products
  - Volatile Memory
    - RAM
    - DRAM
    - SRAM
    - MPU or CPU

- Digital IC Products (continued)
  - Nonvolatile Memory
    - ROM
    - PROM
    - EPROM
    - EEPROM
    - ASIC
    - PLD
    - PAL
    - PLA
    - MPGA
    - FPGA