Processus discrets

Prepartiel

Exercice 1. On considère deux v.a. X, Y telles que

$$\mathbb{E}[f(X)|Y] = f(Y).$$

Pour tout fonction f mesurable et bornée. Montrer que X=Y p.s.

Exercice 2. Soit $X \sim \mathcal{U}([0,1])$ et $Y = \min(X, 1/2)$. Calculer $\mathbb{E}[X|Y]$.

Exercice 3. Soient X, Y deux v.a. telles que $\mathbb{E}[X] = \mathbb{E}[Y] = 0$ et telles que $Z = X + \beta Y$ est indépendante de Y pour un quelque $\beta \in \mathbb{R}$. Montrer que $\mathbb{E}[X|Y] = -\beta Y$.

Exercice 4. Soit $(X_n)_{n\geqslant 0}$ une suite des v.a.. Pour n fixé on considère deux v.a. Y,Z telles que $Y\in\sigma(X_0,\ldots,X_n)$ et $Z\in\sigma(X_n,X_{n+1},\ldots)$. Montrer que les deux égalités suivantes sont équivalentes:

- i. $\mathbb{E}[Z|X_0,...,X_k] = \mathbb{E}[Z|X_k]$ pour tout $0 \le k \le n$;
- ii. $\mathbb{E}[YZ|X_n] = \mathbb{E}[Y|X_n] \mathbb{E}[Z|X_n]$.

Exercice 5. Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov avec espace d'états \mathcal{M} discret.

a) Montrer que si $\mathcal{A} \subseteq \mathcal{M}$ est un ensemble fermé pour la chaîne alors

$$x \in \mathcal{A} \Rightarrow \mathbb{P}_x(\forall n \geqslant 0 : X_n \in \mathcal{A}) = 1.$$

b) Soit $N_x = \sum_{n \ge 1} 1_{X_n = x}$ et $T_x = \inf\{n \ge 1 : X_n = x\}$. Montrer que

$$\mathbb{P}_x(N_x = k) = \mathbb{P}_x(T_x < +\infty)^k.$$

- c) Soit $Y_n = (X_n, X_{n+1}, X_{n+2})$. Montrer que la suite $(Y_n)_{n \ge 0}$ à valeurs dans \mathcal{M}^3 est une chaîne de Markov et donner sa matrice de transition $Q: \mathcal{M}^3 \times \mathcal{M}^3 \to [0, 1]$.
- d) En supposant que $\pi \in \Pi(\mathcal{M})$ est une probabilité invariante pour P déterminer une probabilité invariante $\mu \in \Pi(\mathcal{M}^3)$ pour Q.

Exercice 6. Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov homogène avec espace d'états $\{1, 2, 3\}$ et matrice de transition

$$\left(\begin{array}{ccc}
0 & 1 & 0 \\
1/2 & 1/2 & 0 \\
1/3 & 1/3 & 1/3
\end{array}\right)$$

- a) Déterminer les classes de communication;
- b) Soit $T = \inf\{n \ge 1 : X_n \in \{1, 2\}\}$. Calculer $\mathbb{P}_3(T = k)$ pour tout $k \ge 1$;
- c) Déterminer toutes les probabilités invariantes de P;

Exercice 7. Dans deux pièces il y a un souris et un chat. Soit $X_n \in \{1, 2\}$ la position du chat à l'instant n et $Y_n \in \{1, 2\}$ la position du souris à l'instant n. On suppose que $(X_n)_{n \geqslant 0}$ et $(Y_n)_{n \geqslant 0}$ sont des chaînes de Markov sur $\{1, 2\}$ de matrices de transition

$$\left(\begin{array}{cc} 0.2 & 0.8 \\ 0.8 & 0.2 \end{array}\right) \qquad \left(\begin{array}{cc} 0.3 & 0.7 \\ 0.6 & 0.4 \end{array}\right).$$

À l'instant initial le souris est dans la pièce 1 et le chat dans la pièce 2. S'ils se trouvent dans la même pièce alors le chat mange le souris. Calculer le temps moyen de survie du souris $\mathbb{E}[T]$ où $T = \inf\{n \geqslant 0 : X_n = Y_n\}$.

Exercice 8. Soit $(Z_n)_{n\geqslant 0}$ une suite iid telle que $\mathbb{P}(Z_1=k)=p\ (1-p)^k$ pour $k\geqslant 0$. Soit $X_n=\max\ (Z_0,...,Z_n)$. Montrer que $(X_n)_{n\geqslant 0}$ est une chaîne de Markov sur \mathbb{N} et donner sa matrice de transition.