EEEN20060 Communication Systems

Physical Layer - Introduction

Brian Mulkeen

UCD School of Electrical,
Electronic and Communications
Engineering

Scoil na hInnealtóireachta Leictrí, Leictreonaí agus Cumarsáide UCD

Electric Telegraph

- Electromagnetic
 Telegraph
 - Cooke & Wheatstone, 1837
 - 5 needles, deflect left or right in combinations
 - 5 wires, each with two directions of current (or none)
 - 6th wire as return path for current, or use earth

Early Communication Systems

1795, linked London to Portsmouth, 108 km in 15 minutes

- Telegraph Systems
 - designed to send messages text
 - various codes used to represent letters
- · Early systems optical

- flags or shapes on tall structure or hill
- viewed from far away
- message re-transmitted as necessary (note!) ²

One-Wire Telegraph

EXPLANATION OF ALPHABET

THE LONG STROKES REPRESENT POINTING THE NEEDLE TO THE RIGHT, THE SHORT STROKES TO THE LEFT; THUS A / IS MADE BY POINTING THE NEEDLE DICK LEFT AND ONCE RIGHT; C / \ IS MADE RIGHT, LEFT, RIGHT, LEFT, F \ LEFT, LEFT, RIGHT, LEFT, THENT, RIGHT

One needle

UCD DUBLIN

- use sequence of left and right deflections to represent letters
- one wire, two directions of current, earth return
- machine can send or receive, one at a time

5

Longer Distances

- Weaker signals
 - longer wires, higher resistance, more leakage
 - not enough current to operate receiver
- Use relay(s) along the way
 - detect signal while still strong enough
 - use to control switch to send new signal...
 - using battery at relay location

- Undersea cables more difficult
 - finally achieved transatlantic cable in 1866

Coding

Н 00110 00001 00001 10100 00100 10000 10100 01010

- Example info. is text min. 27 symbols
 - not easy to send 27 different electrical signals
 - difficult to distinguish signals at receiver...
- Can change representation re-code
 - use a smaller (or larger) set of signals
 - to suit the characteristics of the channel
- Example text, 27 symbols
 - map each symbol to group of 5 binary symbols
 - transmit binary symbols (usually in sequence)

 - reverse mapping at receiver...

Problems on the Channel

channel Transmitter

Receiver

- Signal is attenuated (weakened) along channel
 - receiver only gets a fraction of the tx power
- Signal is delayed along the channel
 - finite speed of propagation
 - radio waves 3×10^8 m/s, cable $\sim 2 \times 10^8$ m/s
- Signal is *distorted* by the channel
 - different frequency components in the signal
 - attenuated by different factors
 - delayed by different times

UCD DUBLIN

- these differences change the shape of the signal

- Thermal noise example
 - resistor 100 k Ω , at room temperature, 290 K
 - measurement BW 1 MHz, $V_{\rm rms} \sim$ 40 μV
- Small noise voltages
 - significant for small signals, wide BW
- Shot noise

$$I_{rms} = \sqrt{2qI_{DC}B}$$

- occurs in electronic devices when current flows
- due to quantised nature of charge
- random noise current, Gaussian pdf, white
- e.g. diode at 10 mA, BW 1 MHz, $I_{\rm rms} \sim 57$ nA
- but if flows through 1 k Ω , $V_{\rm rms} \sim 57 \,\mu{\rm V}$

- Thermal noise
 - due to random motion of electrons in resistors (or any resistive circuit elements)
 - random voltage, zero mean, Gaussian pdf
 - covers (almost) all frequencies white noise
 - effect depends on bandwidth of system
 - rms voltage:

$$V_{rms} = \sqrt{4kTRB}$$

• $R = \text{resistance}(\Omega)$

- T = absolute temperature (K)
- B = bandwidth of measurement (Hz)
- $k = \text{Boltzmann's constant} \approx 1.38 \times 10^{-23} \text{ J/K}$

- in receiver usually dominant
- Interference may be added to the signal

- unwanted, but not really random
- often leakage from another system
- in cable, *crosstalk* from another pair of wires ¹⁷

19

Main Channel Parameters

- Bandwidth B
 - range of frequencies that channel can carry
 - for cable, not well defined, no clear limit
 - attenuation increases with frequency
 - design decision:
 - what range of freq. will we use?
 - how much attenuation can we tolerate?
 - for radio, often set by regulation / allocation
- Signal-to-Noise Ratio SNR, S/N
 - ratio of signal power to noise power at receiver
 - analogue system, determines quality of signals
 - music quality, want > 60 dB (ratio 10⁶)
 - telephone quality, accept 30 dB or less (ratio 10³)
 - see later for digital system

18

rough sketches, show delay & distortion only...

note received signal shape depends on neighbours ...

• What electrical signals to use?

UCD DUBLIN

- need two one to represent 1, one for 0
- Want to choose signals that will
 - survive the damage caused by the channel
 - be easy to distinguish at receiver
 - even with distortion, noise, interference
 - fit in available time interval (usually)
 - have reasonable average power

Received Signal...

voltage expected if signal for 1 sent

voltage expected if signal for 0 sent

• This view called "eye diagram"

- use oscilloscope to view received signal

- trigger so that bit intervals line up

- signals from many intervals overlaid...

- note signal influenced by neighbouring bits...

- Channel must pass at least fundamental freq.
 - if not, only DC component gets through
 - no information. . .
 - so need channel bandwidth ≥ ½ bit rate
 - if no harmonics passed, get sinusoidal output...
- So for binary signals, as in example
 - absolute maximum bit rate = $2 \times bandwidth$
 - theoretical maximum...
 - many practical systems limited to $\sim 1 \times \text{bandwidth}$

26

More Complicated Signals y \(x_4 \) x_2 \) x_1 \) x_4 \) x_3 \) x_2 \) x_2 \) x_3 x_1 \) represents 00 x_2 \) represents 01 x_3 \) represents 11 x_4 \) represents 10 • Channel bandwidth limits signalling rate - rate at which new signals are sent - same as bit rate for binary signals • Can use larger set of signals - 4 in example - now each signal can carry 2 bits - in general, for n bits, need 2n different signals • But harder to distinguish at receiver - need better S/N

Connectors

- Originally 25-pin D connector
 - many signals rarely used
 - now mostly 9-pin connector (or USB emulation)
- Gender
 - standards specify male connector for DTE
 - Data Terminal Equipment
 - source or destination of data e.g. computer

- female connector for DCE
 - Data Communication Equipment
 - used to communicate e.g. modem

34

Voltage Levels	
Transmitter sends	
Receiver accepts — — —	
	-20 V -10 V 0 V +10 V +20 V
•	 Binary system – voltage either high or low one wire for each signal voltage measured relative to common ground
•	 At output high voltage in range +5 V to +15 V low voltage in range -5 V to -15 V
A THE UCD DUBLIN	 At input must recognise > +3 V as high, < -3 V as low voltages close to zero not valid

Parity Check Bit

11000101 → 011000101

 $10100111 \rightarrow$ 110100111

- Simple way to detect errors option here
- Add one extra parity bit to group
 - sent after data bits, before STOP bit
- Two versions:
 - even parity make number of 1s even
 - odd parity make number of 1s odd
 - stop bit not included in count

• Can detect one bit error (or odd number)

Standards specify:

- Connector and pin assignment
- Voltage levels for 1 and 0
- Grouping of bits, order of transmission
 - would normally be link-layer issue...
- Bit rates choose from standard set
 - also mechanism for timing recovery at RX
- Optional error detecting mechanism
 - choose odd, even, or no parity
- Standard often called RS-232 (from USA)
 - international standards (from ITU)
 - V.28 specifies voltages, signal characteristics
 - V.24 specifies names and meanings of signals 40

Example

- Sending characters G a t
 - 7-bit data, ASCII code, even parity
- Note upward transition at every START bit
 - either from idle or STOP bit
 - receiver uses this to re-start timing
 - receiver needs to know bit rate
 - but need only be accurate enough to stay in step for one group of bits... (10 bits in this example)
 - standard rates 300, 600, 1200, 2400, . . . bit/s