Klausur Lineare Algebra

für Informatik

Sommersemester 2023

Aufgabe 1 (3 Punkte). Es sei

$$A = \begin{pmatrix} 3 & 3 & 2 \\ 3 & 4 & 4 \\ 9 & 8 & 4 \end{pmatrix} \quad \text{und} \quad b = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}.$$

Bestimmen Sie mit Hilfe des Gaußschen Algorithmus sämtliche $x \in \mathbb{R}^3$ mit Ax = b.

Aufgabe 2 (3 Punkte). Bestimmen Sie die Inverse der Matrix

$$A = \left(\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 6 & 3 \\ 2 & 8 & 5 \end{array}\right)$$

mit Hilfe des Gaußschen Algorithmus.

Aufgabe 3 (3 Punkte). Sei

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right).$$

Zeigen Sie, dass

$$A^{n} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \frac{1+(-1)^{n}}{2} & \frac{1-(-1)^{n}}{2}\\ 0 & \frac{1-(-1)^{n}}{2} & \frac{1+(-1)^{n}}{2} \end{pmatrix}$$

für alle $n \in \mathbb{N}$ gilt.

Beachten Sie die Rückseite.

Aufgabe 4 (2 Punkte). Berechnen Sie die folgende Determinante:

$$\begin{vmatrix} 3 & -1 & -2 \\ 1 & 2 & 4 \\ 2 & 3 & 2 \end{vmatrix}$$

Aufgabe 5 (3 Punkte). Bestimmen Sie sämtliche Eigenwerte der Matrix

$$A = \left(\begin{array}{ccc} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 3 & 0 \end{array}\right).$$

Aufgabe 6 (3 Punkte). Seien $n \in \mathbb{N}$, $v \in \mathbb{R}^n$ und sei A eine reelle $n \times n$ -Matrix. Es gelte $A^2v \neq 0$ aber $A^3v = 0$.

Zeigen Sie, dass dann die drei Vektoren $v,\,Av$ und A^2v linear unabhängig sind.

Aufgabe 7 (3 Punkte). Sei V ein reeller Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und induzierter Norm $\|\cdot\|$. Seien $v, w \in V$. Zeigen Sie:

$$v\perp w \ \Leftrightarrow \ \|v+w\|=\|v-w\|$$