Word Accuracy and Dynamic Time Warping to Assess Intelligibility Deficits in Patients with Parkinson's Disease

Juan Camilo Vásquez Correa, Juan Rafael Orozco Arroyave, and Elmar Nöth

Department of Electronics and Telecommunication Engineering, University of Antioquia UdeA. Pattern recognition Lab. Friedrich Alexander Universität. Erlangen-Nürnberg.

jcamilo.vasquez@udea.edu.co

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

TECHNISCHE FAKULTÄT

Outline

Introduction
Methodology
Experimental framework
Results
Conclusion

Introduction: Parkinson's Disease

- Second most prevalent neurological disorder worldwide
- Affects about 2% of people older than 65 years
- Patients develop several motor and non-motor impairments
- Speech impairments are one of the earliest manifestations

Introduction: Parkinson's Speech

- Reduced Loudness
- Monotonic
- Imprecise articulation

- Accelerated/slowed
- ▶ Repetitive phenomenon
- Hoarse voice

Hypokinetic dysarthria

Healthy Person

Parkinson's Patient

Introduction: Speech Features

Phonation

Articulation

Prosody

Intelligibility

Introduction: Phonation

Phonation

Articulation

Prosody

Intelligibility

Capability of the speaker to make the vocal folds vibrate

- Jitter
- Shimmer
- Long term perturbation measures

Introduction: Articulation

Phonation

Articulation

Prosody

Intelligibility

Modification of the position, stress, and shape of limbs to produce the speech

- Formant frequency
- Vowel Space Area
- Energy of Onset/Offset

Introduction: Prosody

Phonation

Articulation

Prosody

Intelligibility

Variation of loudness, pitch, and timing to produce natural speech

- Fundamental frequency
- Energy
- Speech rate

Introduction: Intelligibility

Phonation

Articulation

Prosody

Intelligibility

Capability of a person to be understood by other person or by a system.

Introduction: Proposed features

Two novel features are proposed to analyze the intelligibility deficits of patients with PD.

- Word Accuracy
- Similitude Dynamic Time Warping

Methodology

Methodology: Automatic Speech Recognition¹

- Google API for ASR
- Spanish from Colombia

¹www.google.com/intl/es/chrome/demos/speech.html - 3 >

Methodology: Feature Extraction²

Word Accuracy (WA)

$$WA = \frac{\# words \ correctly \ recognized}{\# \ of \ total \ words} \tag{1}$$

²https://github.com/jcvasquezc/intelligibility

Methodology: Feature Extraction³

Dynamic Time Warping

$$sDTW = \frac{1}{1 + DTW_distance}$$
 (2)

https://github.com/jcvasquezc/intelligibility

Methodology: Feature Extraction⁴

Table: Example of the intelligibility features for four sentences

Original String	Predicted String	WA	sDTW
Mi casa tiene tres cuartos	Ricardo tiene tres cuartos	0.60	0.70
Omar, que vive cerca, trajo miel	Omar vive cerca dragón bien	0.50	0.38
Rosita Niño que pinta bien donó sus cuadros ayer	Recital Niño que pinta bien todos los juegos ayer	0.44	0.39
Luisa Rey compra el colchón duro que tanto le gusta	Luisa Rey comprar un colchón duro que tanto la lluvia	0.60	0.57

⁴https://github.com/jcvasquezc/intelligibidity= * * * * * *

Methodology: Classification

- Support vector machine (SVM)
- Gaussian kernel
- $C \in \{10^{-5}, 10^{-4}, \dots 10^4\}$
- Leave one subject out cross-validation

Methodology: Regression

- Support vector regressor (SVR)
- Linear kernel
- $C \in \{10^{-5}, 10^{-4}, \dots 10^4\}$
- $ightharpoonup arepsilon \in \{10^{-4}, 10^{-3}, \dots, 10, 20\}$
- Leave one subject out cross-validation

Experimental framework: Database⁵

PC-GITA database

- ▶ 50 patients, 50 healthy controls
- balanced in age and gender
- recorded in a soundproof-booth
- six sentences and read text

⁵J. R. Orozco-Arroyave et al. "New spanish speech corpus database for the analysis of people suffering from Parkinson's disease." In: 9th Language Resources and Evaluation Conference, (LREC). 2014, pp. 4342–347.

Experimental framework: Experiments

- Classification of 50 PD vs. 50 HC
- Regression to predict the neurological state of 50 PD patients
- Individual tasks
- Combination of tasks (Early fusion)

Task	Accuracy	AUC
sentence 1	78%	0.67
sentence 2	61%	0.64
sentence 3	63%	0.63
sentence 4	64%	0.67
sentence 5	82%	0.82
sentence 6	62%	0.65
read text	75%	0.79
all sentences	88%	0.96
all sentences + read text	92%	0.98

Task	Accuracy	AUC
sentence 1	78%	0.67
sentence 2	61%	0.64
sentence 3	63%	0.63
sentence 4	64%	0.67
sentence 5	82%	0.82
sentence 6	62%	0.65
read text	75%	0.79
all sentences	88%	0.96
all sentences + read text	92%	0.98

Task	Accuracy	AUC
sentence 1	78%	0.67
sentence 2	61%	0.64
sentence 3	63%	0.63
sentence 4	64%	0.67
sentence 5	82%	0.82
sentence 6	62%	0.65
read text	75%	0.79
all sentences	88%	0.96
all sentences + read text	92%	0.98

Results: Regression

Table: Spearman correlation coefficient (ρ) between the real and the predicted UPDRS

Task	ρ
sentence 1	0.20
sentence 2	0.02
sentence 3	0.16
sentence 4	-0.40
sentence 5	-0.07
sentence 6	0.23
read text	0.19
all sentences	-0.12
all sentences + read text	0.01

Results: Regression

Table: Spearman correlation coefficient (ρ) between the real and predicted UPDRS

Task	ρ
sentence 1	0.20
sentence 2	0.02
sentence 3	0.16
sentence 4	-0.40
sentence 5	-0.07
sentence 6	0.23
read text	0.19
all sentences	-0.12
all sentences + read text	0.01

- ► Two novel features are proposed to evaluate the intelligibility deficits in PD patients.
- ► Classification and regression experiments are performed.
- The proposed features are highly accurate to classify PD patients from HC speakers.
- ► The proposed features are not able to predict the UPDRS score of the patients by themselves.
- ► Combination of the proposed features with other features that analyze other dimensions such as phonation, articulation, and prosody might be performed.

- ► Two novel features are proposed to evaluate the intelligibility deficits in PD patients.
- Classification and regression experiments are performed.
- The proposed features are highly accurate to classify PD patients from HC speakers.
- ➤ The proposed features are not able to predict the UPDRS score of the patients by themselves.
- Combination of the proposed features with other features that analyze other dimensions such as phonation, articulation, and prosody might be performed.

- Two novel features are proposed to evaluate the intelligibility deficits in PD patients.
- Classification and regression experiments are performed.
- ► The proposed features are highly accurate to classify PD patients from HC speakers.
- ➤ The proposed features are not able to predict the UPDRS score of the patients by themselves.
- Combination of the proposed features with other features that analyze other dimensions such as phonation, articulation, and prosody might be performed.

- Two novel features are proposed to evaluate the intelligibility deficits in PD patients.
- Classification and regression experiments are performed.
- The proposed features are highly accurate to classify PD patients from HC speakers.
- ► The proposed features are not able to predict the UPDRS score of the patients by themselves.
- Combination of the proposed features with other features that analyze other dimensions such as phonation, articulation, and prosody might be performed.

- Two novel features are proposed to evaluate the intelligibility deficits in PD patients.
- Classification and regression experiments are performed.
- The proposed features are highly accurate to classify PD patients from HC speakers.
- ► The proposed features are not able to predict the UPDRS score of the patients by themselves.
- Combination of the proposed features with other features that analyze other dimensions such as phonation, articulation, and prosody might be performed.

jcamilo.vasquez@udea.edu.co

Word Accuracy and Dynamic Time Warping to Assess Intelligibility Deficits in Patients with Parkinson's Disease

Juan Camilo Vásquez Correa, Juan Rafael Orozco Arroyave, and Elmar Nöth

Department of Electronics and Telecommunication Engineering, University of Antioquia UdeA. Pattern recognition Lab. Friedrich Alexander Universität. Erlangen-Nürnberg.

jcamilo.vasquez@udea.edu.co

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

TECHNISCHE FAKULTÄT