COLEÇÃO SABER ELETRÔNICA

CIRCUITOS & INFORMAÇÕES

VOLUME I

NEWTON C. BRAGA

150 circuitos e mais de 200 informações

SCÃO SABER ELETRÔNICA

CIRCUITOS & INFORMAÇÕES VOLUME I

Editora Saber Ltda. Av. Guilherme Cotching, 608 – 19 andar São Paulo – Brasil

Copyright by EDITORA SABER LTDA. - 1.987 -3ª Edição

É vedada a reprodução total ou parcial dos artigos deste livro, sob pena de sanções legais, salvo mediante autorização por escrito da Editora.

APRESENTAÇÃO

No projeto, reparação ou montagem de qualquer aparelho eletrônico, são necessários conhecimentos e informações de diversos tipos, que nem sempre são disponíveis fácil e imediatamente. Do mesmo modo, os que trabalham com a eletrônica ou a tem como hobby, precisam de sugestões constantes sobre configurações, circuitos e projetos já desenvolvidos, para a elaboração de seus próprios projetos com mais segurança e facilidade.

Ter em mãos todas as informações para a elaboração de projetos ou todos os circuitos básicos, é um problema de dimensões só avaliadas por quem já tentou solucioná-lo.

A Editora Saber, visando sua entrada no setor de publicações técnicas didáticas, começa justamente com um trabalho que, pela nossa longa experiência no contacto com os leitores da Revista Saber Eletrônica, julgamos faltar: um verdadeiro manual (de consulta permanente), com circuitos e informações que são absolutamente necessários a todos que praticam eletrônica conscientemente.

É claro que não podemos nos vangloriar de ter colocado neste fivro todas as informações que existem. Na verdade, não podemos ter esta pretensão, pois elas seriam infinitas e o espaço disponível não daria para tal. No entanto, como estamos constantemente, pela natureza de nosso trabalho, reunindo circuitos e informações, na data da saída deste primeiro volume, o segundo já estará pronto, com novos circuitos e informações, e assim por diante, na busca de tudo que possa ser útil aos leitores que praticam eletrônica.

O conteúdo deste trabalho visa os praticantes de eletrônica de todos os níveis. Acreditamos que os estudantes terão seu aproveitamento máximo, com uma grande quantidade de circuitos fórmulas, fatos e informações que não conhecem; mas os técnicos avançados e engenheiros não poderão dizer que não o aproveitarão. Neste trabalho, estes poderão encontrar aquele dado importante sobre um componente, um circuito ou um cálculo que sua memória pode se negar a fornecer no momento exato que eles mais precisarem.

Os circuitos são do tipo básico, comprovados pela própria experimentação ou pela sua consagração, na sua maioria montados pelo próprio autor ao longo de sua experiência no projeto e publicação de artigos técnicos. São circuitos que podem ser usados independentemente, ou como parte de projetos mais complexos. Partindo das idéias básicas destes circuitos, os leitores poderão ter uma economia de tempo considerável na busca de uma configuração que atenda suas necessidades. São 150 circuitos selecionados, neste primeiro volume, com as mais diversas características e finalidades.

As informações são divididas em quatro categorias.

Em primeiro lugar temos informações sobre as características dos componentes mais comuns no nosso mercado. São diodos, transistores e circuitos integrados de diversos fabricantes. São dadas características como os limites operacionais, pinagem, equivalências, enfim o básico para a elaboração de um projeto ou a busca de um equivalente.

Em segundo lugar temos tabelas e códigos. São tabelas sobre características de circuitos, relações entre grandezas usadas em eletrônica, conversões de unidades, todas de grande utilidade na elaboração de projetos ou quando se deseja encon-

trar um valor fixo para um cálculo. Os códigos referem-se à leitura de valores de componentes, muito importante para os iniciantes, estudantes e técnicos.

Temos em terceiro lugar as fórmulas, absolutamente necessárias aos estudantes que precisam de seu conhecimento imediato, principalmente nas vésperas de provas ou para a elaboração de trabalhos, ou que desejam fazer seus projetos e precisam de valores não dados nos diagramas básicos. Neste primeiro volume começamos com uma sequência das fórmulas mais usadas e, na maioria das vezes, acompanhadas de exemplos de aplicação.

Finalmente, temos informações diversas, tais como curvas típicas de componentes, curvas especiais de radiações diversas, comprimentos de onda e frequências das faixas de telecomunicações, macetes para a utilização de componentes, técnicas para testes e reparação, simbologia, pontes de medida, filtros, características de circuitos digitais, multiplicadores de tensão, etc.

Enfim, a finalidade deste livro é ser uma fonte permanente de consulta, um trabalho que acreditamos será compensado pela facilidade que levará a todos que praticam eletrônica. E, a nossa maior satisfação será encontrar este livro na bancada de cada estudante, técnico ou engenheiro, ajudando-o da forma mais completa possível, pois isso significará que nosso objetivo foi atingido.

E, se as informações que o leitor espera ainda não foram encontradas neste primeiro volume, não foi falha nossa, pois, como dissémos, nosso trabalho continua na sua reunião, e elas certamente estarão presentes no segundo ou num terceiro volume.

Newton C. Braga Maio — 1985

ÍNDICE

Circuitos		Gerador de barras para TV (BF494)	102
Acionador seletivo (BC548)	61	Gerador de tons para rádio controle	
Alarmes com SCRs (MCR106/TIC106)	23	(BC548)	104
Alarme integrado de luz (741)	58	lluminação de emergência	83
Alarme de temperatura (SCR/BC548)	114	Interruptor de toque I (MCR 106)	- 10
Alarme de umidade (SCR/BC548)	115	Interruptor crepuscular (MCR106)	10
Alarme de baixa corrente -		Interruptor de toque II (MCR106)	16
60 µA (SCR/BC548)	116	Interruptor temporizado (MCR106)	21
Alarme com o 741	152	Interruptor noturno (MCR106)	68
Alarme de umidade (741)	153	Interruptor de onda completa com SCR	118
Amplificador TBA820L (2,2W)	26	Interruptor SCR (liga/desliga)	119
Amplificador de 5W (BD135/BD136)	38	Interruptor SCR (somente liga)	120
Amplificador AM-FM (BF494)	52	Inversor de pequena potência	24
Amplificador de 3V (BC548)	67	Jogo da velocidade (SCR)	32
Amplificador 741 (1-100 ganho)	132	Lâmpada mágica (MCR106)	129
Amplificador TBA810S	139	Leds em CA	74
Biestável com o 741	135	Leds rítmicos (MCR106/TIC106)	127
Biestável 741 - sem fonte simétrica	136	Limitador de ruídos para fones	157
Casador de impedâncias (BC548)	53	Luz rítmica (MCR106)	22
Contador até 99 (7490)	125	Luz rítmica de 12V (2N3055)	29
Contador até 10 com o 4017	99	Luz estroboscópica (xenônio)	51
Conversor de 12V para 6V ou		Medidor de intensidade de campo	80
9V (2N3055)	47	Metrônomo (BC557)	111
Conversor tensão/frequência (2N2646)	47	Micro transmissor de FM (BF494)	45
Conversor analógico-digital (2N2646)	140	Micro rádio	56
Controle següencial por relê (4017)	78	Micro amplificador (BC548)	84
Cronômetro neon	110	Mini buzzer (2N2646)	29
Detetor de umidade (SCR)	14	Mini temporizador (MCR106)	73
Detetor de prioridade (MCR106)	124	Mixer-mic (741)	57
Detetor de mentiras (BC548)	131	Móbile rítmico (MCR106)	126
Dimmer com SCR	19	Monoestável (BC548)	148
Dimmer com Triac	20	Multivibrador em áudio (BC548)	40
Disparo de SCRs por CMOS	95	Nervo teste com choque	122
Duas potências com Triac	92	Órgão eletrônico simples (2N2646)	76
Eletroscópio (MPF102)	72	Oscilador multi-usos (BC547/BC548)	27
Eliminador de pilhas (BD/TIP)	36	Oscilador UJT (2N2646)	41
Estabilizador paralelo (2N3055)	12	Oscilador duplo T (BC548)	46
Etapa de áudio simples (I)		Oscilador de relaxação com 741	60
(TIP/2N3055)	29	Oscilador de relaxação com SCR	63
Etapa de áudio simples (II) (BC548)	37	Oscilador de áudio (BC548/BC558)	65
Etapa de 2 transistores (75 dB)	144	Oscilador RF (BF494)	69
Etapa de 2 transistores (2M)	145	Oscilador 1 kHz (BC548)	71
Etapa FET (2N3819)	149	Oscilador 600 kHz (BF494)	82
Filtro contra interferências	17	Oscilador TTL de áudio	96
Fonte de 12V x 2A (2N3055)	43	Oscilador de relaxação modulado	
Fonte de M.A.T. (MCR106)	79	(2N2646)	112
Fonte sem transformador	93	Oscilador disparado (7400)	123
Fonte de 1000V (BD135)	100	Oscilador ultra-sônico (BC548)	130
Foto oscilador I (2N2646)	25	Oscilador 1 kHz (741)	133
Foto multivibrador (BC548)	84	Oscilador 500 Hz - 5 kHz (741)	134
Foto oscilador II (BC548/BC558)	89	Oscilador para praticar	
Fotômetro simples (LDR)	101	telegrafia (741)	137
Gerador de ruído branco (BC548)	50	Oscilador de potência (741/BD135/6)	138

Oscilador dente de serra (2N2646)	150	Associação de pilhas	151
Oscilador sensível à luz (741)	151	Auto indução de uma bobina	
Pequeno inversor (2N3055)	87	(núcleo de ar)	113
Pisca-pisca/Semáforo (BC548)	12	Cálculo de proteção de fontes	33
Pisca-pisca (7400)	54	Cálculo de tempo para o unijunção	62
Pisca-pisca símples (BC548/BC558)	66	Capacitores em paralelo e em série	16
Pisca-pisca de potência (2N3055)	106	Circuito RLC paralelo	140
Pisca-led (2N2646)	108	Circuito RC paralelo	141
Pisca-neon	109	Circuito RC série	142
Pirógrafo (TIC226)	105	Comprimento de onda x frequência	95
Ponte de capacitâncias	98	Conversão de temperaturas	70
Pré para microfone dinâmico (BC548)	156	Decibels	127
Proteção para fontes (SCR)	33	Efeito Joule (dissipação de potência	
Pulsador fluorescente (MCR106)	34	em forma de calor)	22
Pulsador de potência (MCR106)	128	Filtro passa baixas	17
Pulsador com SCR (MCR106)	142	Filtro acionador seletivo	61
Rádio de 3 transistores (BC548/BD135)	14	Filtros passa baixas e passa altas	117
Rádio sensível com 3 transistores		Freqüência do multivibrador astável	9
(BC548)	31	Freqüência de um circuito LC paralelo	13
Receptor de rádio controle (BF/BC)	77	Freqüência do oscilador unijunção	30
Reed switch em controle de potência		Freqüência x período	44
(MCR106)	39	Freqüência do duplo T	46
Reforçador de sinais (BF494)	158	Freqüência do astável 555	49
Relaxação com dois transistores		Funções trigonométricas	64
(BC548/BC558)	94	Impedâncias (RL e RC)	53
Relê eletrônico (BC548)	81	Indutâncias pequenas	120
Relê de luz (BC548)	44	Lei de Ohm	34
Relê driver (1 transistor - ganho 100)	146	Lei de Coulomb	107
Relê driver (2 transistores)	147	Oscilador de relaxação (neon)	106
Reostato (2N3055)	155	Ponte de Wheatstone	79
Sensível interruptor de toque (SCR)	70	Ponte de Wien	98
Seqüenciador para 6 ou 12V (MCR106)	64	Resistores em paralelo e em série	15
Simples estroboscópio (MCR106)	18	Resistência de um condutor homogêneo	
Simples detetor de mentiras (BC548)	154	de secção constante	27
Simples etapa amplificadora (BC548)	143	RLC - impedâncias e defasagens (I)	87
Sintonizador AM (BC548)	91	RLC - impedâncias e defasagens (II)	88
Sirene simples (1 tom) (BC548/2N3055)	9	Reatâncias indutiva e capacitiva	123
Sirene de dois tons (555)	49	·	
Sirene 7400	97	Componentes	
Sismógrafo (MCR106)	86	·	
Som remoto	121	741 - amplificador operacional	57
Temporizador (2N2646)	62	4001 ou CD4001	99
Termômetro eletrônico (BC548)	103	7400	54
Timer 10 minutos (2N2646)	113	7402	55
Timer 1 hora (BC548/MCR106)	141	7404	96
Transmissor para rádio controle (BF494)	3 5	7410	97
Transmissor de rádio controle (BF494)	40	7420	102
Transmissor de FM com eletreto (BF494)	59	7430	108
Transmissor de rádio controle modulado		7442	109
(BC/BF)	75	7486 °	110
Transmissor AM (BC548)	90	7490	115
Transmissor de ondas curtas (BF494)	107	1N4001 a 1N4007	11
Triac + UJT = controle de potência	117	1N4148 e 1N914	44
TV oscilador (BF494)	88	1N5411 e 40583 - Diacs	105
VU de leds (BD135/BC548)	55	1N43, 1N34, 1N34A etc diodos	150
		2N2646	25
Fórmulas		2N3055	28
· Ormalas		2SB370 - 2SD170	148
Alfa x Beta	116	4017 ou CD4017	78
And A Doid	1.757		, 5

AA119 - AAZ18 - diodos de germânio	41	Reatâncias capacitivas x freqüências	93
BA218, BA219 etc.	103	Série galvânica	69
BC547, BC548, BC546, BC549, BC550	31	Som - frequências e comprimentos	•
BC327 - BC328	89	de onda	121
BC337 - BC338	90	Série tribo-elétrica	144
BD135, BD137, BD139, TiP29	24	Tabela de resistividade	28
BD138, BD140, BD136	65	Unidades e abreviaturas	42
BD331	133	Unidades usadas em fotometria e	
BD332	134	radiometria	101
BD433	135	Valores padrão de resistores	38
BD434	136	Velocidade do som em alguns materiais	129
BF245 - BF410 - Fets de canal N	149	Velocidade do som em líquidos	130
BF494	35	Alfabeto fonético internacional	50
BZX79 - diodo zener	43	Antenas de rádio	£ 58
MPF102	72	Características do seguidor de tensão	59
MCR106	32	Características das subfamílias TTL	118
TIP31	30	Características dos operacionais	
TIC106	39	(termos)	153
TIP30	66	Circuitos retificadores	83
TIC226	92	Constantes físicas	74
TIP41	125	Curva característica do diodo zener	12
TIP42	126	Curva típica de impedância de um	
TBA810	139	alto-falante	122
TBA820	147	Dobradores e triplicadores de tensão	85
NTC (B8 320, TD11, TD6, TD5)	114	Efeitos fisiológicos da corrente	
Pré-amplificadores integrados	132	elétrica	111
		Especificações e freqüências das	
Tabelas e Códigos		subfamílias TTL	119
•		Espectro de algumas fontes emissoras	18
Canais de TV e suas freqüências	51	Espectro de lâmpadas de carvão	124
Capacitores de poliéster metalizado	71	Faixa de áudio	26
Circuitos lógicos	63	Fonte simples/fonte simétrica para AO	60
Código Morse	48	Frequências de rádio controle	40
Código europeu de semicondutores	56	Mono-estável 555	104
Código SINFO	138	Multiplicador de tensão	100
Comprimento máximo de fios (som)	145	Medidas de corrente e tensão em	
Constantes de tempo RC	21	resistores	143
Conversão de capacitâncias e de		Padrão de irradiação de um	
correntes	36	transmissor RC	75
Conversão binário x decimal	68	Prova de diodos	131
Corrente de fusão de fios	73	Prova de transformadores	155
Constantes dielétricas	81	Prova de eletrolíticos	137
Corrente máxima num resistor para		Prova de transistores (com multímetro)	152
50% de sua dissipação	91	Prova de fones	157
Correntes de motores elétricos	146	Quadruplicadores de tensão	86
Equivalência de integrados		Símbolos eletrônicos (I)	76
(741, MC1310, LM104)	128	Símbolos eletrônicos (II)	77
Freqüências de radiodifusão e TV	45	Terminais de um potenciômetro	
Leitura de capacitores cerâmicos	112	(ligações)	20
Nomes de faixas de radiocomunicações	47	Terminais de um relê (RU 101006/12)	23
Potências de 10 - prefixos	37	Termos ingleses para características	
Ponto de fusão de ligas, metais e		de pulsos	67
outras substâncias	94	Teste de zeners	154
Resistores (código de cores)	19	Tipos de capacitores	156
Resistividade de alguns materiais	80	Valores em senóides	52
Rigidez dielétrica em kV/cm	82		

SIRENE SIMPLES (1 TOM)

A tonalidade desta sirene é determinada por C1 e C2 que podem ter seus valores alterados. A potência de saída para 12V é da ordem de 2W com alto-falante de 4 ohms. O transistor Q4 deve ser montado em dissipador e R5 deve ser aumentado se for notado excessivo aquecimento de Q3 ou Q4.

Um interruptor de pressão pode ser usado entre o circuito e a fonte de alimentação para que a sirene seja usada como buzina eletrônica. Esta sirene serve também para alarmes.

INTERRUPTOR CREPUSCULAR_

O SCR dispara acendendo L1 quando a luz deixa de incidir no LDR. O resistor R4 pode ser necessário nos casos em que o SCR permanecer constantemente ligado, como por exemplo com o TIC106. Seu valor estará entre 470R e 1k.

Se a lâmpada for de até 40W o SCR não precisará de dissipador, mas se sua potência for maior, este elemento deve ser usado. P1 serve para ajustar a sensibilidade do circuito.

Lembramos que o controle da carga é em meia onda e que este circuito pode causar interferência em receptores de rádio próximos.

INTERRUPTOR DE TOQUE

C1 tem uma tensão de trabalho de 250V se a rede for de 110V e de 350V se a rede for de 220V. S1 é um interruptor de pressão que rearma o circuito.

O resistor R2 deve ser usado nos circuitos em que o SCR tender ao disparo sozinho, como por exemplo o TIC106. Seu valor estará entre 470R e 2k2.

O elemento sensível pode ser uma vareta de metal de até 40cm ou então uma placa de metal de 20×20 cm ou menor. O cabo de ligação do elemento sensível ao SCR deve ser curto. Para lâmpadas até 40W o SCR não precisa de dissipador. Para cargas maiores o SCR deve ser montado em dissipador.

Se com o toque o circuito não disparar, inverta a tomada.

				COF	RRENTE
_		V _{RRM}	V _{ef}	meia onda	onda completa
	1N4001	50	25	0,6	1,25
	1N4002	100	50	0,6	1,25
	1N4003	200	100	0,6	1,25
	1N4004	400	200	0,6	1,25
	1N4005	600	300	0,6	1,25
	1N4006	800	400	0,6	1,25
	1N4007	1 000	500	0,6	1,25
			ı		ı

V_{RRM} = tensão inversa de pico máxima

V_{ef} = tensão máxima em circuito retificador de meia onda com carga capacitiva

ESTABILIZADOR PARALELO_

O transistor deve ser montado em dissipador de calor e o diodo zener deve ser de tipo para 400mW ou 1W. Outras tensões de saída e de entrada podem ser obtidas com alterações nos valores dos componentes.

PISCA-PISCA / SEMÁFORO_____

A frequência deste circuito é determinada pelos capacitores C1 e C2. Para uma operação rápida, como pisca-pisca, seus valores podem ficar entre $22\mu F$ e $220\mu F$. Para operação lenta, como semáforo, os valores ficarão entre $470\mu F$ e $1000\mu F$.

As lâmpadas são do tipo Philips 7121D ou qualquer tipo de 6V X 50mA.

FREQUÊNCIA PARA C1 = C2 = $100 \,\mu\text{F}$ - EXEMPLO DE CÁLCULO

$$f = \frac{1}{1,38 \times R \times C}$$
R1 = R2 = R = 15 × 10³
C1 = C2 = C = 100 × 10⁻⁶

$$f = \frac{1}{1,38 \times 15 \times 10^{3} \times 100 \times 10^{-6}}$$

$$f = \frac{1}{2070 \times 10^{-3}} = \frac{1}{2.07}$$

f = 0,48 Hz ou aproximadamente 1 piscada a cada 2 segundos

FREQUÊNCIA DE UM CIRCUITO LC PARALELO

$$f = \frac{1}{2\pi\sqrt{L \times C}}$$

$$\pi = 3.14$$
L em Henries
$$C \text{ em Farads}$$

$$F \text{ em Hertz}$$

RÁDIO DE 3 TRANSISTORES.

Este rádio tem excelente sensibilidade para as estações locais. A antena deve ter de 2 a 15m dependendo da potência das estações locais. R2 pode ser substituído por um potenciômetro de mesmo valor que atuará como controle de volume. Para D1 pode ser usado qualquer diodo de uso geral de germânio ou mesmo silício. Q3 eventualmente precisará de um pequeno dissipador de calor.

DETECTOR DE UMIDADE.

Este circuito dispara uma lâmpada ou cigarra quando gotas de água umidecem o sensor. Pode ser usado como detector de chuva, vazamentos, umidade, etc. R3 será necessário para determinados SCRs que precisam de uma polarização que os mantenha na condição de não disparo. Seu valor situa-se entre 470R e 2k2 para os SCRs do tipo TIC106. Os outros SCRs não precisam deste elemento. P1 é o ajuste de sensibilidade. Para rearmar o circuito deve-se retirar o sensor e substituí-lo por um seco.

RESISTORES EM PARALELO

$$\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2}$$

RESISTORES EM SÉRIE

INTERRUPTOR DE TOQUE.

(11)

Um toque no elemento sensível e o SCR dispara acionando uma lâmpada ou buzzer de baixa tensão. O circuito pode ser alimentado com 6 ou 9V devendo L1 ou o buzzer ter a tensão correspondente com 2V a menos de queda no SCR.

O sensor é uma vareta de metal de 20cm ou uma placa de 20 X 20cm de metal, ligada por fio de não mais de 1m ao SCR. R2 cujo valor estará entre 470R e 2k2 deverá ser usado com SCRs do tipo TIC106 ou quando sem toque o mesmo ficar permanentemente ligado. S1 rearma o circuito.

FILTRO CONTRA INTERFERÊNCIAS.

A comutação rápida de SCRs e triacs em aparelhos eletrônicos causa interferências em rádios e TV. Com este filtro a interferência que se propaga pela rede de alimentação pode ser reduzida. O fio de L1 e L2 deve ter espessura compatível com a corrente do aparelho interferido ou interferente.

SIMPLES ESTROBOSCÓPIO.

Piscadas lentas, de uma em cada 10 ou 15 segundos até algumas por segundo, podem ser conseguidas com este circuito. R3 pode eventualmente ser reduzido se o SCR negar-se a disparar. E, para os tipos como o TIC106 que precisam de polarização adicional, deve-se usar para R4 um resistor entre 470R e 2k2. Para cargas até 40W o SCR não precisará de dissipador. Para mais, um bom dissipador deve ser empregado. P1 ajusta a velocidade das piscadas.

DIMMER COM SCR _

Com este circuito controla-se o brilho de uma lâmpada de 0 até aproximadamente 50% do máximo (meia onda). R2 deve ser usado com o TIC106 se a lâmpada permanecer acesa "direto". Para potências até 40W o SCR não precisará de dissipador. Um filtro deve ser intercalado entre o circuito e a rede se houver interferências em rádios e TV.

Cor	1º anel	2º anel	3º anei	4º ane
Preto		0	x 1	
Marrom	1	1	×10	1%
Vermelho	2	2	x 100	2%
Laranja	3	3	x 1 000	3%
Amarelo	4	4	× 10 000	4%
Verde	5	5	× 100 000	_
Azul	6	6	×1000000	_
Violeta	7	7		_
Cinza	8	8		_
Branco	9	9	·	
Prata	_		× 0,01	10%
Ouro		_	x 0,1	5%
444				

DIMMER COM TRIAC _

Este controle opera em onda completa suportando cargas que dependem dos triacs usados. Para os tipos indicados até 400W em lâmpadas podem ser controlados. Os triacs devem ser montados em dissipadores de calor. L1 consiste em aproximadamente 40 voltas de fio 16 ou 18 num bastão de ferrite de 1cm de diâmetro.

INTERRUPTOR TEMPORIZADO.

A lâmpada L1 permanecerá acesa por um intervalo de tempo fixado por R1 e C1. O capacitor C1 deve ter uma tensão de trabalho de 250V ou mais para a rede de 110V e de 350V ou mais para a rede de 220V. R2 será necessário no caso dos SCRs do tipo T1C106, ficando seu valor entre 1k e 22k. O SCR deve ser dotado de dissipador de calor se L1 for de mais de 40W.

CONSTANTES DE TEMPO RC

TEMPO	CAPACITÂNCIA (MICROFARADS)							
(SEGUNDOS)	0,1	0,2	0,3	0,4	0,5			
0,1	1,0M	500k	333k	250k	200k			
0,2	2,0M	1,0M	666k	500 k	400k			
0,5	5,0M	2,5M	1,67M	1,25M	1,0M			
1,0	10M	5,0M	3,33M	2,50M	2,0M			
1,5	15M	7,5M	5,0M	3,75M	3,0M			
2,0	20M	10M	6,66M	5,0M	4,0M			
3,0	30M	15M	10M	7,5M	6,0M			

EX.: para obter uma constante de tempo de 3 segundos ∞ m um capacitor de $0.2\,\mu\text{F}$ ou 200 nF precisamos de um resistor de 15M.

LUZ RÎTMICA.

A lâmpada L1 piscara no ritmo da música de um sistema de som. O circuito tem sua entrada ligada às saídas do aparelho de som. R1 depende da potência do aparelho de som segundo a tabela:

até 10W - 47R X 1W
de 10 a 30W - 100R X 1W
de 30W a 50W - 220R X 1W
de 50W a 100W - 470R X 1W
mais de 100W - 1k X 1/2W

R3 deve ser usado no caso dos SCRs TIC106. T1 é um transformador de saída para rádios a válvula. O SCR deve ser montado em dissipador de calor para potências acima de 40W.

EFEITO JOULE (DISSIPAÇÃO DE POTÊNCIA EM FORMA DE CALOR)

P = potência dissipada (Watts)

R = resistência (Ohms)

V = tensão (Volts)

I = corrente (Ampères)

$$P = \frac{V^2}{R}$$
 $P =$

$$P = R \times I^2$$

ALARMES COM SCRs...

O primeiro circuito dispara um relê quando qualquer um dos elementos sensores (fios finos) é interrompido. O segundo circuito dispara quando os interruptores sao fechados. O relê deve ser de acordo com a tensão de alimentação que ficará entre 9 e 12V. Para o segundo circuito pode ser necessário um resistor de 1k entre a comporta e o catodo do SCR para mantê-lo desligado na posição de espera.

INVERSOR DE PEQUENA POTÊNCIA.

Este circuito fornece uma alta tensão entre 200 e 400V (dependendo das características do transformador e do ajuste de P1) sob regime de muito baixa corrente (baixa potência total). A alimentação pode ser feita com pilhas sob tensão de 3 ou 6V. O rendimento do circuito é ajustado em P1.

			BD135 - BD137 - BD139					
C 				NPN-SOT32 DRIVER, SAÍDA DE ÁUDIO, TV				ÁUDIO, TV
	BD1	35	BD	137				
V _{CBO máx}	4!	5	(60		100	,	Volts
V _{CEO máx}	1	5	(60		80		Volts
P _{TOT máx}	8	3		8		8	'	Watts
h _{FE}	250 250	-	ı	40 60		40 160	I '	mín máx
I _{C máx}	· ·	1		1		1		Ampère
B	TIP29 NPN - SILÍCIO AMPLIFICAÇÃO DE POTÊNCIA, COMUTAC.					. COMUTAÇÃO		
	TIP29	TIP	29A	TIP	29B	TIP29	9C	
V _{CBO máx}	40	60		80)	100)	Volts
V _{CEO máx}	40	60		8	O °	100)	Volts
P _{TOT máx}	30	30		30	0	30)	Watts
h _{FE}	15 7 5	'	5 75	1! 7!	_	15 75		mín máx
¹ C máx	1		1		1	1		Ampère

FOTO-OSCILADOR.

(1)

A tonalidade do som emitido por este oscilador depende da quantidade de luz incidente no LDR e do valor de capacitor C1 que pode estar entre 33nF e 220nF. A alimentação do circuito é de 6 a 9V. Em lugar de R1 pode ser usado um potenciômetro de 100k para ajuste de funcionamento.

2N2646

INVÓLUCRO TO – 18

Tensão inversa de emissor (máx)	30 V
V _{BB} (máx)	35V
Corrente de pico de emissor (máx)	2A
Corrente eficaz de emissor (máx)	50 mA
Dissipação máxima	300 mW
η (relação intrínseca)	0,56 a 0,75
R _{BB} (resistência entre bases)	4,7 a 9,1 k Ω

AMPLIFICADOR TBA820L (ATÉ 2,2W)

7 BAONES

Este amplificador, dependendo da tensão de alimentação, pode fornecer potências entre 300mW e 2,2W. A alimentação pode ficar entre 4,5V e 12V sendo as potências dadas pela tabela:

12V - 2,2W 9V - 1,3W 6V - 580mW 4.5V - 300mW

OSCILADOR MULTI-USOS.

Este oscilador produz um sinal de boa potência para excitar um alto-falante. Sua operação na faixa de áudio tem a frequência ajustada por P1 e na dependência de C2. A alimentação deve ser feita com tensões entre 3 e 6V e o transformador é de saída para transistores com impedância de primário entre 200 e 1 000 ohms.

RESISTÊNCIA DE UM CONDUTOR HOMOGÊNEO DE SECÇÃO CONSTANTE

R = resistência total (Ohms)

 $\ell = comprimento (m)$

r = raio (mm)

D = diâmetro (mm)

S = secção transversal (mm²)

 $\rho = resistividade$

$$R = \rho \frac{\ell}{S}$$

TABELA DE ρ

Alumínio	0,029
Antimônio	0,417
Bronze	0,067
Chumbo	0,22
Cobre puro	0.162
Constantan	0.5
Estanho	0.115
Grafite	13
Ferro puro	0,096
Latão	0,067
Mercúrio	0.96
Nicromo	1.1
Níquel	0,087
Ouro	0.024
Prata	0.0158
Tungstênio	0.055
Zinco	0.056
2.1100	0,030

2N3055

NPN DE SILÍCIO DE ALTA POTÊNCIA

V _{CEO}	100V
I _{C máx}	15A
P _{TOT} (máx) · · · · · · · · · · · · · · · · · · ·	115W
h _{FE}	20-70
ff	> 800 kHz

ETAPA DE AUDIO SIMPLES.

(1)

Esta etapa de áudio pode fornecer potências de algumas dezenas de miliwatts com 3V de alimentação, até 1 ou 2W com alimentação de 12V. Para tensões até 6V podem ser usados para Q2 transistores de média potência, como o TIP29 ou BD135. Para tensões de 9 ou 12V transistores mais potentes com dissipador, como o TIP31 ou 2N3055, devem ser usados.

MINI-BUZZER.

Este circuito pode ser usado como alarme experimental de baixa potência ou como um "espanta mosquitos". A frequência é ajustada em P1 e a cápsula excitada pode ser um fone ou microfone de cristal. C1 determina a frequência média de operação.

LUZ RÍTMICA DE 12V.

Este circuito pode ser usado no carro com lâmpadas de até um total de 2A. C1 tem valores entre 100pF e 22nF e determina a resposta do circuito em função de graves e agudos. R1 é de 47 ohms para potências até 10W, de 100 ohms para potências até 25W e de 220 ohms para potências maiores. P1 faz o ajuste de sensibilidade do circuito. Q2 deve ser montado num bom dissipador de calor.

CÁLCULO DA FREQUÊNCIA DO OSCILADOR UNIJUNÇÃO

$$f = \frac{1}{R \cdot C}$$
 (independe de V_{BB})*

f = frequência (Hz)

R = resistência (Ohms)

C = capacitância (Farads)

* Uma variação de V_{BB} de 10% causa uma variação de 1% em f

RÁDIO SENSIVEL DE 3 TRANSISTORES.

Este rádio capta as estações locais sem a necessidade de antena externa. O fone deve ser de cristal e P1 funciona como controle de volume. A bobina consiste em 70 voltas de fio esmaltado 28 AWG a partir de (1), uma tomada (2) e mais 20 voltas de fio até o ponto (3). O bastão deve ter pelo menos 12cm de comprimento e 1cm de diâmetro. O variável é do tipo comum para ondas médias.

JOGO DA VELOCIDADE

Quem é o mais rápido? Este circuito utiliza lâmpadas de 6V X 50mA para detectar a velocidade de acionamento de S1 ou S2. Para alguns SCRs, como TIC106, pode ser necessário o uso de R3 e R4 que terão valores em torno de 1k. S1 e S2 são interruptores de pressão e S3 é um interruptor simples.

PROTEÇÃO DE FONTES_

Quando a corrente de carga ultrapassa certo valor o relê desliga a fonte e ao mesmo tempo acende a lâmpada L1 de alerta. Para rearmar basta pressionar S1. O relê deve ter bobina de acordo com a tensão da fonte e R1 é fixado pela corrente de disparo segundo a seguinte tabela de valores aproximados:

100mA - 6,8 ohms 200mA - 3,3 ohms 300mA - 2,2 ohms 500mA - 1,3 ohms 1A - 0,68 ohms 2A - 0,33 ohms

CÁLCULO DE R1

$$R1 = \frac{V}{I}$$

V = 0.6V - tensão de disparo do SCRI = corrente de disparo

$$R1 = \frac{0.6}{I}$$

PULSADOR FLUORESCENTE

A frequência das piscadas depende tanto dos valores de R1 e C1 como do ajuste de P1. Para SCRs como o T1C106 pode ser necessário o uso de R3 que terá valores entre 1k e 47k. T1 é um transformador de força com primário de 220V e secundário de 6-0-6V e corrente entre 100 e 250mA. A lâmpada é de pequena potência, mas mesmo fluorescentes velhas de 15 a 60W devem funcionar neste circuito.

TRANSMISSOR PARA RÁDIO CONTROLE

Este circuito modulado em tom opera em torno de 27MHz. L1 consta de 7 espiras de fio 24AWG em forma de 1cm de diâmetro sem núcleo. Cv é um trimer comum. A frequência de modulação é determinada por C4 e C5 que podem ser comutados num sistema de diversos canais. O alcance é da ordem de 50m com uma antena telescópica de 50cm.

	BF494
C a B	TRANSISTOR NPN DE SILÍCIO PARA RF
000 (11107)	
1 _{C (máx)}	
h _{FE} (típico) · · · · · · · · · · · · · · · · · · ·	

ELIMINADOR DE PILHAS.

O transformador tem um secundário de 6 + 6V para tensões de saída de 6V, 9 + 9V para tensões de 9V e 12 + 12V para tensões de 12V. O zener é de acordo com a tensão desejada. O transistor deve ser montado num irradiador de calor. A corrente do transformador pode ficar entre 150mA e 500mA conforme o consumo do rádio ou gravador alimentado.

CONVERSÃO DE CAPACITÂNCIAS

$$1 \mu F = 1 000 nF = 1 000 000 pF$$

 $1 nF = 1 000 pF = 0,001 \mu F$
 $1 pF = 0,001 nF = 0,000 001 \mu F$

CONVERSÃO DE CORRENTES

$$1A = 1\,000$$
mA = $1\,000\,000$ μ A
 1 mA = $1\,000$ μ A = $0,001$ A
 1 μ A = $0,001$ mA = $0,000\,001$ A

ETAPA DE ÁUDIO SIMPLES.

 (Π)

Este amplificador que fornece algumas dezenas de miliwatts pode ser usado como etapa de áudio de rádios experimentais de AM, FM e VHF. O transformador T1 é do tipo saída para transistores com impedância de primário entre 200 ohms e 1k. R2 determina o ganho da etapa impulsora, podendo variar entre 2k2 e 10k conforme a intensidade do sinal disponível na entrada, para que não haja distorção.

	VALOR	PREFIXO	SIMBOLO
10 ¹²	1 000 000 000 000	Tera	Т
10 ⁹	1 000 000 000	Giga	G
10 ⁶	1 000 000	Mega	M
10 ³	1 000	Quilo	k
10 ²	100	Hecto	h
10 ¹	10	Deca	da
10 ⁻¹	0,1	Deci	d
10-2	0,01	Centi	С
10^{-3}	0,001	Mili	m
10 ⁻⁶	0,000 001	Micro	μ
10 ⁻⁹	0,000 000 001	Nano	n
10 ⁻¹²	0,000 000 000 001	Pico	р

AMPLIFICADOR DE 5W _

Este amplificador pode servir para um sistema econômico de alta fidelidade. Um transformador de $12 + 12V \times 500$ mA servirá para a fonte com uma retificação de onda completa. Os transistores de saída devem ser montados em dissipador de calor. A sensibilidade do amplificador para saída máxima é de 400mV e sua corrente de repouso é de 25mA.

VALORES PADRÃO DE RESISTORES

1,0 — 5% — 10% — 20%	3,3 - 5% - 10% - 20%
1,1 — 5%	3,6 - 5%
1,2 - 5% - 10%	3,9 - 5% - 10%
1,3 - 5%	4.3 - 5%
1,5 - 5% - 10% - 20%	4,7 - 5% - 10% - 20%
1.6 - 5%	5,1 - 5%
1,8 - 5% - 10%	5,6 - 5% - 10%
2,0 - 5%	6,2 - 5%
2,2 - 5% - 10% - 20%	6,8 - 5% - 10% - 20%
2,4 - 5%	7,5 — 5%
2,7 - 5% - 10%	8,2 — 5% — 10%
3,0 — 5%	9,1 — 5%

REED-SWITCH EM CONTROLE DE POTÊNCIA

Os reed-switches suportam correntes de algumas centenas de miliampères apenas. Com um SCR cargas maiores podem ser controladas. Para cargas de mais de 1A o SCR deve ser montado em dissipador. Para SCRs como o TIC106 um resistor de 1k deve ser ligado entre o catodo e a comporta.

TRANSMISSOR DE RÁDIO CONTROLE.

Este transmissor sem modulação (portadora pura ou CW) tem alcance da ordem de 50m usando uma antena de 60cm de comprimento. L1 consta de 7 espiras de fio 26 AWG com tomada central. Cv é um trimer comum onde se ajusta a frequência. O diâmetro da bobina é da ordem de 1cm e ela não usa núcleo de ferrite.

MULTIVIBRADOR EM ÁUDIO

Este circuito pode ser usado em música eletrônica produzindo sinais de 220 ou 440Hz. Os transistores são comuns e o ajuste de frequência é feito tanto em função de P1 como pela troca dos capacitores. A forma de onda se aproxima da retangular.

DIODOS DE GERMÂNIO

	I _F (mA)	V _{RRM} (V)	V _{R (V)}	USO
AA119	35	45	30	Detetor de AM-discriminador FM e TV
AAZ18	180	20	20	Uso geral e comutação
0A70	50	22,5	15	Detetor de vídeo
0A95	50	115	90	Uso geral
AA113	25	65	60	Detetor AM/FM
AA116	45	30	20	Detetor AM/FM
AA117	500	115	75	Uso geral
1N34	15	60	60	Uso geral
1N60	40	50	50	Uso geral

OSCILADOR UJT_

Este oscilador de relaxação pode operar na faixa de frequência que vai dos 0,01Hz até perto de 10kHz, servindo para uma infinidade de aplicações práticas. Temos 3 formas de ondas disponíveis e os capacitores usados podem ter valores entre 10nF e 1000μF. Maior capacitor implicará numa menor frequência de operação. Para a faixa de médios o capacitor C poderá ser de 47nF.

UNIDADES E ABREVIATURAS

Tensão: Volt - V

quilovolt - kV milivolt - mV microvolt - μV Frequência: Hertz - Hz

quilohertz – kHz megahertz – MHz

Corrente: Ampère - A

miliampère – mA

microampère – μA

Capacitância: Farad - F

 $\begin{array}{ll} \text{microfarad} & -\mu \text{F} \\ \text{nanofarad} & -\text{nF} & \checkmark \end{array}$

 $\mathsf{picofarad} - \mathsf{pF}$

Indutância: henry - H

milihenry – mH microhenry – μ H

Resistência: ohm – Ω

 $\begin{array}{ll} \text{quilohm} - \mathbf{k}\Omega \\ \text{megohm} - \text{M}\Omega \end{array}$

Potência: Watt - W

miliwatt – mW microwatt – μ W quilowatt – kW

FONTE 12V imes 2A $_$

Com esta fonte você pode alimentar rádios e toca-fitas de carro. O transistor Q1 deve ser montado num dissipador de calor. O transformador deve ter um enrolamento primário de acordo com a rede local e secundário de 12 + 12V com corrente de 2A.

BZX79 - DIODO ZENER DE 400 mW

tipo	tensão (V)	corrente (mA)	tipo	tensão (V)	corrente (mA)
BZX79 C4V7	4,7	10	BZX79 C20	20	5
BZX79 C5V1	5,1	10	BZX79 C22	22	5
BZX79 C5V6	5,6	10	BZX79 C24	24	5
BZX79 C6V2	6,2	10	BZX79 C27	27	2
BZX79 C6V8	6,8	10	BZX79 C30	30	2
BZX79 C7V5	7,5	10	BZX79 C33	33	2
BZX79 C8V2	8,2	10	BZX79 C36	36	2
BZX79 C9V1	9,1	10	BZX79 C39	39	2
BZX79 C10	10	10	BZX79 C43	43	2
BZX79 C11	11	5	BZX79 C47	47	2
BZX79 C12	12	5	BZX79 C51	51	2
BZX79 C13	13	5	BZX79 C56	56	2
BZX79 C15	15	5	BZX79 C62	62	2
BZX79 C16	16	5	BZX79 C68	68	2
BZX79 C1B	18	5	BZX79 C75	75	2

RELÉ DE LUZ

Quando um feixe de luz incide no LDR o relê é acionado. A sensibilidade do circuito é ajustada em P1. Com a ligação do LDR nos pontos A e B e do potenciômetro ao + da alimentação teremos a inversão de função do circuito com um alarme de corte de luz. Este circuito pode ser usado em alarmes e brinquedos.

1N4148 - DIODO DE SILÍCIO DE USO GERAL	

1N914 – DIODO DE SILÍCIO DE USO GERAL	
V _R	75V
I _F	 10 mA

MICRO TRANSMISSOR DE FM.

Este transmissor tem um alcance de aproximadamente 50m e caracteriza-se por usar como microfone um alto-falante comum de 8 ohms X 5cm. A antena tem 15cm e o transformador T1 é do tipo saída para transistores com impedância entre 200 e 1 000 ohms. L1 tem 3 espiras de fio 26 AWG em forma de 1cm, sem núcleo. O capacitor Cv é um trimer comum.

FREQUÊNCIAS DE RADIODIFUSÃO E TV

	Faixa de frequências	Número de canais	Largura de cada canal
Rádio AM (ondas médias)	535-1 605MHz	107	10 kHz
Rádio FM	88-108MHz	100	200 kHz
TV VHF (canais baixos)	54-88MHz	12	6 MHz
TV VHF (canais altos)	174-216MHz		6 MHz
TV UHF	470-890MHz	70	6 MHz

OSCILADOR DUPLO T_

Este oscilador produz um sinal senoidal cuja frequência depende dos valores dos componentes do duplo T. Estes componentes tem valores que devem manter a seguinte relação: C1 = C2 = C3/2 e R1 = R2 = 2Rx. O trim-pot P1 faz o ajuste fino do ponto de oscilação. Para os valores indicados a frequência estará em torno de 1kHz.

CONVERSOR 12V PARA 6 OU 9V_

Este circuito pode ser usado no carro com cargas de até 2A. O transistor Q1 deve ser montado em dissipador de calor e Vz é escolhido de acordo com a tensão de saída desejada. Este zener pode ser de 400mW. Os eletrolíticos têm uma tensão de trabalho de 15V ou mais. R1 é de 1/4W.

NOME DAS FAIXAS DE RADIOCOMUNICAÇÕES

	Faixa de frequências	Subdivisão métrica correspondente	Abreviação
1	3-30kHz	ondas miriamétricas	VLF
2	30 - 300 kHz	ondas quilométricas	LF
3	300-3000kHz	ondas hectométricas	MF
4	3-30 MHz	ondas decamétricas	HF
5	30-300MHz	ondas métricas	VHF
6	300-3 000MHz	ondas decimétricas	UHF
7	3-30GHz	ondas centimétricas	SHF
8	30-300GHz	ondas milimétricas	EHF
9	300-3000GHz	ondas decimilimétricas	_

CONVERSOR TENSÃO/FREQUÊNCIA-

Variações de tensão de entrada podem ser convertidas em variações da frequência de saída. P1 é o ajuste de sensibilidade e ponto de funcionamento. P2 ajusta a faixa de variação de frequências. A frequência central de operação do circuito é determinada pelo capacitor C1 cujo valor pode estar entre 22nF e 1µF.

As saídas têm duas formas de ondas possíveis, devendo ser usado um amplificador para excitar um alto-falante.

CÓDIGO MORSE

A	S
В	Τ -
C	U
D	V
Ε.	W
F	X
G	Y
н	Z
1	1
J	2
K	3
L	4
M	5
N	6
0	7
P	8
Q	9
R	0
	•

Vírgula --..Interrogação ..--..
Erro
Espere .-..

SIRENE DE 2 TONS...

Este circuito serve de base para uma sirene modulada. Sua saída deve ser ligada à uma boa etapa amplificadora ou então ao alto-falante conforme mostra o próprio circuito, caso em que a potência será pequena. Os ajustes de frequência e modulação são feitos em P2 e P1. C1 e C2 determinam as frequências de modulação e tom respectivamente.

GERADOR DE RUÍDO BRANCO.

Este circuito produz um "chiado" que lembra o ruído da chuva ou do mar, podendo ser usado em efeitos especiais. S1 modifica ligeiramente o "timbre" do som produzindo. O transistor Q1, de qualquer tipo para uso geral, funciona como "fonte de ruído térmico" neste circuito.

ALFABETO FONÉTICO INTERNACIONAL

A - Alfa

Bravo

C - Charlie

D - Delta

- Echo

F - Foxtrot

G - Golf

H - Hotel

- India

Juliet

- Kilo

Lima

M - Mike

N - November

O - Oscar

P - Papa

Q - Quebec

R - Romeo

S - Sierra

T - Tango

U - Uniform

V - Victor

W - Whiskey

X - X-ray

Y - Yankee

Z - Zulu

LUZ ESTROBOSCÓPICA

Pulsos de alta potência são produzidos por uma lâmpada de xenônio (Lx). O capacitor C1 determina a intensidade dos pulsos sendo sua tensão de trabalho de pelo menos 350V. T1 é um transformador comum usado como auto-transformador com secundário de qualquer tensão. T2 deve ser "fabricado" segundo mostra o diagrama. O ajuste da frequência das piscadas é feito em R3.

	CANAIS DE TV E SUAS FREQUÊNCIAS				
canal	faixa de frequências (MHz)	portadora de vídeo (MHz)	portadora de som (MHz)		
2	. 54-60	55,25	59,75		
3	60 - 66	61,25	65,75		
4	66-72	67,25	71,75		
5	76-82	77,25	81,75		
6	82-88	83,25	87,75		
7	174-180	175,25	179,75		
8	180-186	181,25	185,75		
9	186-192	187,25	191,75		
10	192-198	193,25	197,75		
11	198-204	199,25	203,75		
12	204-210	205,25	209,75		
13	210-216	211,25	215,75		

AMPLIFICADOR AM-FM_

Este reforçador de sinais opera numa faixa que se estende das ondas médias até FM, podendo ser usado no carro ou em qualquer tipo de rádio. Ligações curtas e diretas devem ser observadas na montagem.

CASADOR DE IMPEDÂNCIAS_

Este circuito apresenta uma impedância de entrada da ordem de 700k e uma impedância de saída entre 10 e 1 000 ohms, podendo ser usado para casar a entrada de circuitos amplificadores com microfones ou outras fontes de sinais. As ligações tanto de entrada como de saída devem ser blindadas. A amplitude máxima do sinal de entrada é de 200mV.

IMPEDÂNCIAS

CIRCUITO RL - SÉRIE

$$Z = \sqrt{X_L^2 + R^2}$$

Z = impedância em ohms

X_L = reatância indutiva em ohms

R = resistência em ohms

CIRCUITO RC - SÉRIE

$$Z = \sqrt{X_C^2 + R^2}$$

X_C = reatância capacitiva em ohms

R = resistência em ohms

Z = impedância em ohms

PISCA-PISCA 7400_

A frequência das piscadas é determinada pelos capacitores C1 e C2 cujos valores podem ficar entre $10\mu\text{F}$ e $220\mu\text{F}$. A alimentação é direta se a tensão da fonte for de 5V. Para 6V (4 pilhas) um diodo 1N4002 ou equivalente deve ser ligado em série para prover uma queda da ordem de 0,6V. Apenas metade do integrado é usado, o que significa que outro pisca-pisca semelhante pode ser "montado" entre os pinos 8 e 13.

Este circuito faz acender os leds em sequência em função da tensão de entrada. Para 12V de alimentação o número máximo de etapas de leds é de 7, para 18V podemos ter até 10 leds. A velocidade de resposta do circuito é dada pelo capacitor C1. O trim-pot ajusta o ponto de acionamento do último led.

MICRO RÁDIO_

Este rádio pode ser feito tão pequeno que cabe numa caixa de fósforos. O fone de cristal necessita do resistor de 22k. Se for usado fone magnético de alta impedância (1k ou mais) o resistor pode ser eliminado. A antena deve ser externa e ter pelo menos 15m de comprimento e a ligação à terra deve ser feita num cano de água ou esquadria metálica da janela ou porta. O capacitor Cv é um variável comum para ondas médias. A bobina L1 consta de 80 espiras de fio 28 num bastão de ferrite de 1cm de diâmetro e qualquer comprimento.

CÓDIGO E	CÓDIGO EUROPEU DE SEMICONDUTORES				
1ª letra (material)	2ª letra (tipo)	3ª letra e seguintes (código de série)			
 A – germânio B – silício C – materiais compostos como cádmio, sulfeto de cádmio ou arseneto de gánio D – materiais com barreira de energia menor que 0,6V como o antimoneto de índio R – detectores de radiação, células fotocondutoras, dispositivos de efeito Hall 	A — diodo de pequena potência, varactor ou varicap B — varicap C — transistor de áudio para pequenos sinais D — transistor de potência de áudio E — diodo tunnel F — transistor de RF de pequena potência G — diversos H — prova de campo K — gerador Hall L — transistor de potência de RF P — foto-dispositivos R — SCR de pequena potência S — transistor comutador de pequena potência Y — diodo retificador de potência	3 símbolos — componentes para uso doméstico e comercial 1 letra e 3 símbolos — componentes de uso militar, industrial e científico			

.MIXER-MIC_

Este pré-amplificador mixer para microfone usa um único integrado e possui um controle de ganho em P1. O ganho máximo no caso é de 100 vezes e mais entradas podem ser acrescentadas se necessárias.

741 - AMPLIFICADOR OPERACIONAL

Ao - ganho sem realimentação - 100dB (100 000)

Zin — impedância de entrada — $1M\Omega$

Zo - impedância de saída - 150 ohms

Vs (máx) – tensão máxima de alimentação – 18-0-18V

Vi (máx) - tensão máxima de entrada - 13-0-13V

Vo (máx) — tensão máxima de entrada — 13-0-14V

C.M.R.R. - rejeição de modo comum - 90dB

FT - frequência de transição - 1MHz

ALARME INTEGRADO DE LUZ

Este sistema emite som quando a luz deixa de incidir no LDR. O ajuste da frequência de operação é dado pelo potenciômetro P1. O capacitor C1 também tem seu valor escolhido de acordo com a frequência do som desejado. O potenciômetro P1 também permite o ajuste do ponto de disparo do alarme.

TRANSMISSOR DE FM COM ELETRETO

Este transmissor tem um alcance de 50 metros aproximadamente e opera na faixa de FM com microfone de eletreto de dois terminais. O alcance depende da tensão de alimentação que, pelas características do transistor, está limitada em 6V. A bobina L1 consta de 3 ou 4 voltas de fio esmaltado 24 ou 26 em forma de 1cm, sem núcleo, com espaçamento entre espiras de 1mm. A antena tem de 20 a 25cm de comprimento sendo ligada na segunda espira a partir do lado da alimentação. Cv é um trimer comum.

OSCILADOR DE RELAXAÇÃO COM 741_

A frequência deste oscilador é dada por P1/R1 e C1, e o ajuste de funcionamento é feito em P2. A intensidade do sinal de saída é feita através do potenciômetro P3. Para a alimentação exige-se uma fonte simétrica cuja tensão pode estar entre 6 e 12V.

ACIONADOR SELETIVO.

Dependendo dos valores de L e C este circuito aciona um relê com um sinal de áudio, podendo funcionar em circuitos de rádio controle. O potenciômetro P1 ajusta a sensibilidade do sistema em função do nível de sinal de entrada.

EXEMPLO DE CÁLCULO

$$f = 1 \text{kHz} = 10^3 \text{Hz}$$

$$C = 100 \text{nF} = 100 \times 10^{-6} = 10^{-4} \text{F}$$

$$L = ?$$

$$f = \frac{1}{2\pi\sqrt{L \cdot C}}$$

$$f \cdot 2\pi\sqrt{L \cdot C} = 1 \qquad L = \frac{1}{C \cdot 4\pi^2 \cdot f^2}$$

$$L = \frac{1}{10^{-4} \cdot 4(3,14)^2 \cdot 10^6}$$

$$L = \frac{1}{10^{-4} \cdot 4 \cdot 9,8 \cdot 10^6}$$

$$L = \frac{1}{39,2 \cdot 10^2} = 0,025 \cdot 10^{-2}$$

$$L = 0,25 \times 10^{-1} \times 10^{-2} = 0,25 \times 10^{-3} \text{ ou } 0,25 \text{mH}$$

TEMPORIZADOR.

Este temporizador permite disparar o SCR e o relê com retardos variáveis entre alguns segundos e quase uma hora. O tempo é determinado basicamente pelo valor de C1 e ajustado em P1. O relê depende da tensão de alimentação, podendo ser usados os da série RU101 de 6 ou 12V. O resistor R4 não é necessário em alguns casos, podendo se eliminado.

CÁLCULO DE TEMPO EM FUNÇÃO DE R(R1 + P1) E C1

$$T = R \cdot C$$

T = período (segundos)

R = resistência (ohms)

C = capacitância (Farads)

EX.: $R = 1M (máx) = 10^6$

 $C = 1000 \mu F = 1 \times 10^{-3}$

T = ?

 $T = R \cdot C$

 $T = 10^6 \times 10^{-3}$

 $T = 10^3 = 1000 \text{ segundos}$

OSCILADOR DE RELAXAÇÃO COM SCR_

O resistor R1 e o capacitor C1 determinam a frequência deste oscilador. O capacitor C1 em conjunto com o ajuste do trim-pot determinam a intensidade dos impulsos produzidos e também de certo modo influem na frequência. Este oscilador é recomendado para a produção de pulsos à razão de um a cada 10 minutos até frequências de algumas centenas de Hertz.

	CIRCUITOS LÓGICOS					
PORTA	SÍMBOLO	EQUAÇÃO BOOLEANA	TABELA VERDAGE			
AND (E)	A S	S = A.B	A B 5 O O O O 1 O 1 O O 1 1 1			
NAND (NE)	A	S = A.B = A + B	A B 5 O O 1 O 1 1 1 O 1 1 1 O			
OR (OU)	A	S = A + B	A B S O O O O 1 1 1 O 1 1 1 1			
NOR (NOU)	A	S = A + B	A B S O O 1 O 1 O 1 O O 1 1 O			
EXCLUSIVE OR (OU EXCLUSIVO)	A	S = AB + AB	A B S O O O O 1 1 1 O 1 1 1 O			

SEQUENCIADOR PARA 6 OU 12V_

As lâmpadas acendem em sequência e em intervalos determinados pelos ajustes dos potenciômetros e pelos valores dos capacitores. Estes capacitores podem ter valores entre $10\mu F$ e $220\mu F$. As lâmpadas são de acordo com a tensão de alimentação e a capacidade de corrente dos SCRs. A última etapa pode ter um relê em lugar da lâmpada para desligar momentaneamente a alimentação e permitir a repetição do ciclo de acendimento.

FUNÇÕES TRIGONOMÉTRICAS

$$sen^{2} A + cos^{2} A = 1$$

$$sec^{2} A - tg^{2} A = 1$$

$$cossec^{2} A - cotg^{2} A = 1$$

$$sen(A + B) = sen A cos B + cos A sen B$$

$$cos(A + B) = cos A cos B - sen A sen B$$

$$tg(A + B) = \frac{tg A + tg B}{1 - tg A tg B}$$

$$cotg(A + B) = \frac{cotg A cotg B - 1}{cotg B + cotg A}$$

$$sen(A - B) = sen A cos B - cos A sen B$$

$$cos(A - B) = cos A cos B + sen A sen B$$

$$tg(A - B) = \frac{tg A - tg B}{1 + tg A tg B}$$

$$cotg(A - B) = \frac{cotg A cotg B + 1}{cotg B - cotg A}$$

OSCILADOR DE ÁUDIO

Este oscilador produz um sinal bastante forte para excitar com bom volume um alto-falante, servindo como alarme, sirene, etc. A frequência é dada por C1 e pelo ajuste de P1. O transistor Q2 pode ser do tipo BC558 ou equivalente para tensões de alimentação até 6V. Para tensões maiores deve ser usado um transistor de maior potência como o BD136 ou TIP30.

BD136 - BD138 - BD140						
	PNP DE SILÍCIO DE MÉDIA POTÊNCIA					
INVÓLUCRO SOT – 32						
E C B	BD136	BD138	BD140			
- V _{CBO (máx)}	45	60	100	V		
−V _{CEO (máx)}	45	60	80	V		
-I _{CM (máx)}	1,5	1,5	1,5	Α		
P _{TOT} (máx)	8	8	8	w		
T _{J (máx)}	150	150	150	°C		
h _{FE}	40 250	40 160	40 160	mín m áx		
f _T (típica)	75	75	75	MHz		

PISCA PISCA SIMPLES

A frequência das piscadas é determinada pelo ajuste de P1 e pelo capacitor C2 cujo valor pode ficar entre $10\mu F$ e $220\mu F$. A lâmpada é de pequena corrente, 50mA com tensão de acordo com a alimentação. Para correntes desta ordem Q2 pode ser do tipo BC558. Para correntes um pouco maiores e tensões entre 9V e 12V o transistor deve ser de média potência como o BD136 ou TIP30.

AMPLIFICADOR 3V_

Este circuito pode ser usado como amplificador para escuta de deficientes auditivos ou como estetoscópio eletrônico. A saída é feita num fone de alta impedância ou então num fone de baixa, tendo por intermediário um transformador de saída para transistores. O microfone é de eletreto e o controle de volume é feito em P1.

INTERRUPTOR NOTURNO

Ao anoitecer, este dispositivo faz acender automaticamente a luz de sua varanda ou vitrine. As lâmpadas apagarão automaticamente ao amanhecer. A sensibilidade é controlada em P1. R3 cujo valor está entre 1k e 2k2 será usado se o SCR for do tipo TIC106. Para os outros, este resistor não será necessário. Para cargas até 40W o SCR não precisa de dissipador de calor.

CONVERSÃO	BINÁRIO X	DECIMAL
------------------	------------------	---------

0	00000000	16	00010000	32	00100000	48	00110000
1	0000001	17	00010001	33	00100001	49	00110001
2	00000010	18	00010010	34	00100010	50	00110010
3	00000011	19	00010011	35	00100011	51	00110011
4	00000100	20	00010100	36	00100100	52	00110100
5	00000101	21	00010101	37	00100101	53	00110101
6	00000110	22	00010110	38	00100110	54	00110110
7	00000111	23	00010111	39	00100111	55	00110111
8	00001000	24	00011000	40	00101000	56	00111000
9	00001001	25	00011001	41	00101001	57	00111001
10	00001010	26	00011010	42	00101010	58	00111010
11	00001011	27	00011011	43	00101011	59	00111011
12	00001100	28	00011100	44	00101100	60	00111100
13	00001101	29	00011101	45	00101101	61	00111101
14	00001110	30	00011110	46	00101110	62	00111110
15	00001111	31	00011111	47	00101111	63	00111111

OSCILADOR RF_

Este oscilador pode produzir sinais na faixa dos 27 MHz aos 150MHz, dependendo da bobina L1. A bobina será feita com fio 22 ou 24 em forma de 1cm, sem núcleo, segundo a seguinte tabela que também dá os valores de C2 correspondentes:

F (MHz)	L1	C2
27 — 54	12	47pF
54 — 100	6	22 pF
100 - 150	3	4,7pF

Cv é um variável para FM de pequena capacitância

SÉRIE GALVÂNICA

material	tensão	
Magnésio	1,5∨	
Zinco	1,03∨	
Alumínio	0,75V (*)	
Aço sem estanho	0,55∨ (*)	
Bronze	0,4V	
Cobre	0,36∨	
Níquel	0,2∨	

(*) Valor que depende da liga considerada — valor médio

SENSÍVEL INTERRUPTOR DE TOQUE.

Um toque no sensor (placa de metal de 10 X 10cm ou fio desencapado) e a lâmpada L1 acende. O relê pode também ser disparado. O ajuste de sensibilidade é feito em P1 e o resistor R4 com valor entre 1k e 2k2 será usado se o SCR for do tipo TIC106. O relê é de tipo de acordo com a tensão de alimentação, podendo ser usado os da série RU.

CONVERSÃO DE TEMPERATURAS

C = Celsius

F = Fahrenheit

K = Kelvin

R = Reamur

$$C = K - 273,16$$

$$K = C + 273,16$$

$$K = \left[\frac{5}{9} (F - 32) \right] + 273,16$$

$$F = \left[\frac{9}{5} (K - 273,16) \right] + 32$$

$$C = \frac{5}{9}(F - 32)$$

$$E = (\frac{9}{9}) + 33$$

$$F = \left(\frac{9}{5}C\right) + 32$$

$$R = \frac{4}{5}C$$

$$C = R \cdot \frac{5}{4}$$

$$K = \left(\frac{5}{4}R\right) + 273,16$$

$$R = \frac{4}{5} (K - 273,16)$$

OSCILADOR 1kHz_

Este multivibrador produz um sinal retangular de frequência aproximada a 1kHz. A precisão da frequência depende, evidentemente, da precisão dos componentes usados, podendo ser ligado em série com R3 um trim-pot de 10k para um ajuste fino de frequência se assim for necessário.

ELETROSCÓPIO_

O sensor é uma pequena esfera de metal que será aproximada dos projetos que possuam cargas elétricas a detectar. Os diodos D1 e D2 são de proteção e o ajuste do ponto de funcionamento é feito por P1. O instrumento é um VU comum de $200\mu A$.

MPF102	
TRANSISTOR DE EFEITO DE CAMPO - DE JUNÇÃO - CANAL N	
D — DRENO S E D SÃO S — FONTE INTERCAMBIÁVEIS G — GATE	
V _{ds}	25V
V _{dg}	25V
I _g	10 mA
0	310 mW
. Y _{fs (*)}	2 000 - 7 500 μs
(*) admitância	

MINI-TEMPORIZADOR_

O tempo de retardo dado por este temporizador depende de P1 e do valor de C1. A lâmpada pode ser de qualquer tipo de acordo com a tensão de alimentação, ou então pode ser usado um relê comum, sensível. O interruptor duplo de pressão rearma o circuito desligando o SCR e descarregando completamente o capacitor C1.

CORRENTE DE FUSÃO DE FIOS (AMPÈRES)

AWG	cobre	alumínio	ferro
40	1,77	1,31	0,54
38	2,50	1,85	0,77
36	3,62	2,68	1,11
34	5,12	3,79	1,57
32	7,19	5,32	2,21
30	10,2	7,58	3,15
28	14,4	10,7	4,45
26	20,5	15,2	6,31
24	29,2	21,6	8,97
22	41,2	30,5	12,7
20	58,4	43,2	17,9
18	82,9	61,4	25,5
16	117	86,8	36,0
14	166	123	51,1
12	235	174	72,3
10	333	247	102
	ı		ı

LEDs EM C.A._

Os leds não podem ficar submetidos a tensões inversas de mais de 5V. O circuito dado permite sua alimentação em C.A. Os valores de R são função do número de leds que multiplicado por 1,8 deve resultar em valor menor que a tensão de alimentação da corrente circulante. A tabela é a seguinte:

Vrms	R para 20mA	R para 50mA	nº de leds
6	100 (1/2W)	47 (2W)	3
9	180 (2W)	68 (2W)	5
12	270 (2W)	100 (2W)	7
110	2k7 (10W)	1k2 (20W)	40
220	5k6 (20W)	2k2 (40W)	80

CONSTANTES FÍSICAS

Velocidade da luz no vácuo (c) $-2997\,925,0\,\text{m/s}$ Carga elementar (e) $-1,602\,191\,7\times10^{-19}\,\text{C}$ Constante de Avogrado (N_A) $-6,022\,169\times10^{23}\,\text{mol}^{-1}$ Constante de Faraday (F) $-9,648\,670\times10^4\,\text{C/mol}$ Constante de Rydberg (R∞) $-1,097\,373\,12\times10^7\,\text{m}^{-1}$ Constante dos Gases (R) $-8,314\,34\,\text{J}\cdot\text{K}^{-1}\,\text{mol}^{-1}$ Constante gravitacional (G) $-6,673\,2\times10^{-11}\,\text{N}\cdot\text{m}^2/\text{kg}^2$

TRANSMISSOR DE RÁDIO CONTROLE MODULADO

O alcance deste transmissor chega aos 50 metros na faixa dos 27 MHz. A antena é uma vareta de metal (telescópica) de 40 a 80cm, e L1 consta de 5 espiras de fio esmaltado 22 ou 24 AWG em forma sem núcleo de 1cm de diâmetro. C3 e C4 que podem ser alterados à vontade determinam a frequência de modulação do transmissor. R3 influi também na potência, não devendo entretanto ser reduzido para menos de 470R.

ÓRGÃO ELETRÓNICO SIMPLES.

O teclado pode ter até 16 trim-pots e teclas que são afinadas independentemente. A faixa de som é determinada basicamente por C1. O transistor Q3 eventualmente deve ser montado em dissipador de calor.

RECEPTOR DE RÁDIO CONTROLE...

Este sensível receptor para sinais modulados na faixa dos 27MHz pode ser usado em sistemas de rádio controle de 1 até 4 ou 5 canais. A bobina L1 consiste em 6 espiras de fio esmaltado 22 ou 24 em forma de 1cm, sem núcleo, e a antena é telescópica de 40 a 60cm. A saída pode excitar um fone de cristal para prova de funcionamento ou uma etapa de potência para excitação de relê ou servos. XRF consta de 40 espiras de fio 32 num bastão de madeira ou outro material não metálico com 2mm de diâmetro.

CONTROLE SEQUENCIAL POR RELÉ.

A cada pulso de comando do relê K1 temos o acionamento de uma das saídas do circuito integrado CD4017. Temos então 6 canais de controle nos quais são ligados relês de acordo com a tensão de alimentação do circuito. O relê K1 tem sua tensão determinada pelo sinal.

FONTE DE M.A.T._

Este circuito permite obter uma tensão contínua entre 5 000V e 20 000V sob regime de muito baixa corrente. O ponto de funcionamento é dado por P1 e pelo valor de C1 ao qual está ligado à potência de operação. R1 também pode ser sensivelmente alterado para se otimizar o funcionamento. T1 é um fly-back comum, sendo usado seu secundário. O primário será refeito constando de 10 a 20 espiras de fio comum encapado. D3 é um retificador de alta tensão e Cx um capacitor que usa como dielétrico uma folha de vidro de 20 × 20cm. O resistor R4 pode ser necessário se o SCR usado for o TIC106.

MEDIDOR DE INTENSIDADE DE CAMPO .

Este sensível medidor de intensidade de campo usa como medidor um VC comum ou então um miliamperímetro 0-1mA. A bobina L é de acordo com a frequência que se deseja monitorar. Para a faixa dos 27MHz esta bobina consiste em 7 espiras de fio 22 ou 24 em forma de 1cm, sem núcleo. O ajuste do ponto de funcionamento é feito em P1.

RESISTIVIDADE DE ALGUNS MATERIAIS (À 20°C)
(em microhms cm ² /cm)

Prata 1,5
Cobre cru 1,8
Ouro 2,2
Alumínio 2,8
Magnésio 4,3
Zinco 5,6
Ferro 10,5
Platina 10,9
Níquel 12,3
Estanho 13,0
Chumbo 20,4
Ligas:
Bronze (1,5% Sn) 5,0
Duralumínio 5,0
Bronze Fosforoso 18,0
Niquelina (67%Cu, 33% Ni) 40,0
Constantan 50,0
Nicromo 112,0
Grafite 0,2 a 1
Constantan: 53% Cu e 47% Ni

Nicromo: 62% Ni, 15% Cr e 23% Fe

RELÉ ELETRÔNICO

Este circuito aumenta a sensibilidade de um relê comum que pode ser acionado por correntes de microampères. Transdutores ligados entre 1 e 2 acionam o relê pela diminuição da resistência. Transdutores ligados entre 2 e 3 acionam pelo aumento da resistência. P1 controla a sensibilidade e o relê usado, da série RU, depende da tensão de alimentação que pode ficar entre 6 e 12V.

CONSTANTES DIELÉTRICAS (Ar = 1)	
Ar	

OSCILADOR 600kHz_

A bobina L1 consta de 35 espiras de fio 28 AWG enroladas num bastão de ferrite de 0,8 a 1cm de diâmetro com 5 ou 6cm de comprimento. Alterações pequenas na frequência podem ser obtidas através de um núcleo móvel ou então com um variável de 210pF ligado em paralelo com a bobina.

RIGIDEZ DIELÉTRICA EM kV/cm

Amianto
Baquelite
Madeira seca
Borracha
Ebonite
Mármore
Mica
Parafina
Porcelana 50
Quartzo
Vidro

ILUMINAÇÃO DE EMERGÊNCIA_

Uma bateria de carro de 6 ou 12V é permanentemente mantida em carga lenta. Ao faltar energia, um relê é acionado, fazendo a bateria alimentar um sistema de luzes de emergência. O relê é de 6 ou 12V conforme a bateria, e o transformador é de 6 ou 12V conforme o caso, com corrente de 200 ou 500mA.

FOTO-MULTIVIBRADOR.

A frequência deste oscilador varia de acordo com a luz incidente no elemento sensível que é o LDR. A frequência média de operação é dada tanto por C1 como por C2 cujos valores ficam entre 10nF e 100nF. Para a faixa de áudio um valor em torno de 47nF é recomendado quando a frequência estará em torno de 1kHz.

.MICRO AMPLIFICADOR_

Este amplificador de pequena potência pode ser usado em rádios experimentais, seguidores de sinais, etc. T1 é um transformador de saída para transistores com primário entre 200 e 1 000 ohms de impedância. R4 pode ter seu valor entre 560R e 220R para se obter mais potência em função do transformador usado.

84

85

SISMÓGRAFO SIMPLES

Vibrações fazem o sensor fechar o circuito com o acionamento do SCR e do relê. A sensibilidade depende da flexibilidade do arame do sensor e do peso usado. O relê deve ser do tipo sensível de acordo com a tensão de alimentação. Uma vez disparado este circuito, para rearmá-lo é preciso desligar a alimentação.

PEQUENO INVERSOR

Este inversor opera com tensões entre 6 e 12V e pode acender um lâmpada fluorescente pequena, mesmo do tipo "gasto". O transformador T1 tem um primário de 110V e secundário de 6 ou 12V conforme a tensão de alimentação e corrente de 100 a 500mA. Os capacitores C1, C2 e C3 eventualmente devem ser alterados para casar as características do circuito com o transformador. Os transistores devem ser montados em dissipadores de calor.

Este circuito pode ser usado em geradores de barras, TV jogos, e em outras aplicações que envolvam a recepção de um sinal num televisor. A bobina indicada permite a captação dos sinais entre os canais 2 e 5, e o ajuste fino é feito no trimer Cv.

FOTO-OSCILADOR

(11)

A frequência deste oscilador depende da luz incidente no LDR. Tanto P1 como o valor de C1 determinam a frequência central de operação do circuito. Para tensões de alimentação até 6V, Q2 pode ser um BC557 ou BC558. Para tensões maiores deve-se usar para Q2 um transistor de média potência como o BD136 ou TIP30.

Os sinais deste transmissor podem ser captados em qualquer rádio de ondas médias a uma distância de alguns metros. A antena é telescópica e Cv é um variável comum para ondas médias. O microfone deve ser obrigatoriamente de cristal. As características de L1 determinam a frequência. Se não houver oscilação inverta os fios 3 e 4 na montagem.

SINTONIZADOR AM.

Ligado a um amplificador comum, este circuito possibilita a captação das estações de ondas médias locais. Cv é um variável comum para ondas médias. A saída para o amplificador deve ser feita com a ajuda de fio blindado.

CORRENTE MÁXIMA NUM RESISTOR PARA 50% DE SUA MÁXIMA DISSIPAÇÃO

1/8W	10 ohms	36 mA 25 mA 11 mA ,9 mA	10 ohms 220 mA 47 ohms 103 mA 100 ohms 70,7 mA 470 ohms 32 mA 1k 22 mA 4k7 10 mA
1/2W	10 ohms	72 mA 50 mA 22 mA ,8 mA	10 ohms 316 mA 47 ohms 145 mA 100 ohms 100 mA 470 ohms 46 mA 1k 31,6 mA 4k7 14,5 mA

DUAS POTENCIAS COM TRIAC_

Na posição 1 a carga recebe apenas metade dos semiciclos da alimentação. Na posição 2 a carga recebe a alimentação total. O triac deve estar de acordo com a corrente exigida pela carga e eventualmente deve ser utilizado filtro contra interferências. O triac deve ser montado em dissipador de calor.

FONTE SEM TRANSFORMADOR.

A capacidade de corrente desta fonte é determinada basicamente pelo valor de C1 (não polarizado, de poliéster ou óleo) e pelo diodo zener. Valores entre 1µF e 2,2µF permitem obter tensões entre 3 e 9V sob correntes de até 50mA. Os diodos zener devem ser de 1W de acordo com a tensão desejada. Esta fonte não apresenta isolamento da rede, o que limita suas aplicações práticas e exige cuidados no manuseio.

REATÂNCIAS CAPACITIVAS X FREQUÊNCIAS

0	Frequência				
Capacitância	60Hz	1kHz	150kHz	1,5MHz	
1nF	2,65M	159k	1,06k	106k	
10nF	265k	15,9k	106	10	
100nF	26k	1,6k	10	1	
1 <i>μ</i> F	2,6k	159	1	0,1	
10μF	260	16	0,1	0,01	

$$X_C = \frac{156166000}{f \times C}$$

f = frequência em kHz

C = capacitância em pF

RELAXAÇÃO COM 2 TRANSISTORES

Dois transistores complementares substituem um unijunção neste circuito. A frequência é dada conjuntamente pela resistência de R1 e P1 e pelo capacitor C1. Uma forma de onda dente-de-serra pode ser obtida no emissor de Q1.

PONTO DE FUSÃO DE LIGAS, METAIS E OUTRAS SUBSTÂNCIAS (°C)

ol metílico - 97 ol etílico - 114 o 850 o 1063 ganês 1250 geleno 80 gel 1450 o 1520 no 1750 na 1770 gstênio 3300
o (i)

DISPARO DE SCRs POR CMOS.

O disparo de um SCR pode ser feito com o circuito dado a partir dos níveis lógicos de um integrado CMOS como o 4017. R2 tem valor proporcional à tensão na faixa dada e R4 será necessário se o SCR for do tipo TIC106. Seu valor estará entre 1k e 2k2 provavelmente. Dependendo da carga o SCR deve ser dotado de dissipador de calor. Veja que o negativo comum ao circuito de alta e baixa tensão deve ser mantido.

COMPRIMENTO DE ONDA X FREQUÊNCIA

 $\lambda = \text{comprimento de onda (m)}$

V = velocidade (m/s)

f = frequência (Hz)

$$V = \lambda \cdot f$$

 $V = 300\,000\,000$ m/s — para ondas de rádio

V = 340 m/s - para o som no ar

OSCILADOR TTL DE AUDIO_

A frequência deste oscilador é determinada por C1 e C2 que para a faixa de áudio pode ter os valores do diagrama. A alimentação é feita com 5V e o circuito usa apenas duas das 4 portas NAND do 7 400. Outro oscilador idêntico pode ser montado com as outras duas portas deste integrado.

SIRENE 7400_

A frequência básica é determinada por C2 e a modulação por C1. A etapa de potência formada por Q1 pode ter alimentação independente, com o negativo comum, de maior tensão (até 9V) para maior potência de áudio. Neste caso Q1 deve ser dotado de dissipador de calor.

PONTE DE CAPACITÂNCIAS

Este circuito indica nulo no instrumento quando Cref é igual a Cx. O ajuste do ponto de equilíbrio da ponte por meio de P1 permite saber qual é a relação existente entre Cx e Cref para o caso de serem diferentes. O transformador tem um enrolamento primário de acordo com a rede local e secundário de 6 \pm 6 ou 12 \pm 100mA ou mais. M1 é um VU comum de 0-200 μ A.

CONTADOR ATÉ 10 COM O 4017_

Os leds acendem conforme a sucessão de impulsos aplicados à entrada no pino 14. A alimentação pode ser feita com tensões entre 6 e 9V. A comutação ocorre quando a entrada é levada momentaneamente ao potencial 0 (nível LO).

FONTE DE 1000V_

Este simples inversor com multiplicador de tensão pode fornecer até perto de 1 000V sob regime de muito baixa corrente. A tensão de alimentação é de 6V e 6V é a tensão do secundário de T1 cujo primário deve ter uma saída de 220V. Os capacitores de C5 até C8 devem ter tensões de trabalho de pelo menos 400V. A corrente de secundário de T1 pode ficar entre 100 e 250mA.

FOTÔMETRO SIMPLES...

O ajuste de funcionamento é feito em P1 no qual pode ser colocada uma escala de acordo com a finalidade do aparelho (escala de abertura, ASA, etc.). O instrumento M1 é um VU-meter comum de 0-200µA se bem que um miliamperímetro de 0-1mA possa ser usado com a redução de R1 para 470R.

UNIDADES USADAS EM FOTOMETRIA E RADIOMETRIA

Medida	Radiométrica	Fotométrica	Uso
emissão total	potência: watts	lumens	luz de lâmpadas
emissão num ângu- lo sólido de uma fonte puntual	intensidade: watts/ estéreo-radiano	intensidade lumino- sa: candela = lumen/ estéreo-radiano	estrelas
emissão total rece- bida	potência: watts	lumens	detectores
emissão por unida- de de área	irradiância: W/m²	iluminância: lumen/ m² = metro-candela	detectores

GERADOR DE BARRAS PARA TV.

A separação das barras é determinada por P1 e também por C1 que pode ser alterado segundo à vontade do montador. A bobina L1 tem 4 espiras de fio 22 ou 24 AWG em forma, sem núcleo, de 1cm de diâmetro para captação nos canais baixos. O ajuste do canal é feito em Cv que é um trimer comum. O aparelho não precisa de antena nem de conexão ao televisor, bastando sua aproximação.

TERMÔMETRO ELETRÔNICO_

O sensor deste termômetro simples é um diodo BA315 cuja resistência no sentido inverso diminui com o aumento da temperatura. O nulo da escala ou ajuste de escala é feito em P1. O instrumento é um VU comum. Pode ser usado um miliamper(metro de 0-1mA com a redução de R1 para 10k e de R2 para 330R.

DIODOS DE SILÍCIO

Tipo	I _{F (mA)}	V _{RRM (V)}	Aplicações
BA218	75	50	uso geral
BA219	100	100	uso geral
BAX16	200	150	comutação
BY126	1 000	650	retificação
BY127	1 000	1 250	retificação
BY176	2 500	15000	retificação MAT
BYX55/600	1 200	600	retificação
BYX38	6 000	300	retificação
		600	
		900	
		1 200	
BYX42	10A	300	retificação
		600	
		900	
		1 200	

GERADOR DE TONS PARA RÁDIO CONTROLE

A frequência de cada canal é ajustada num dos trim-pots. A frequência média é determinada pelos capacitores C1 e C2. Mais canais podem ser usados desde que as frequências selecionadas não sejam harmônicas.

.PIRÓGRAFO_

O transformador T1 com primário de 110V ou 220V e secundário de 12V ou 6V para 2A é modificado. O secundário é retirado e em seu lugar são enroladas de 10 a 15 espiras de fio 12 esmaltado. A intensidade da corrente na ponta é determinada pelo ajuste de P1. A ponta é feita com arame grosso e o seu fio de ligação deve ser grosso e curto, apresentando baixa resistência.

PISCA-PISCA DE POTÊNCIA.

Este circuito pode ser usado no carro, em sinalização, com lâmpadas de boa potência. O transistor Q3 deve ser montado em dissipador de calor. P1 permite o ajuste da frequência, a qual tem sua faixa determinada por C1 e C2.

TRANSMISSOR DE ONDAS CURTAS

Este transmissor tem um alcance entre 15 e 50 metros dependendo da faixa de operação. L1 tem 40 espiras para a faixa de 3,5MHz, 20 espiras para a faixa dos 7MHz e 10 espiras para a faixa dos 14MHz. O núcleo da bobina é um bastão de ferrite de 1cm de diâmetro e 5cm de comprimento. O fio é 28 AWG. O capacitor Cv é um trimer comum e a antena é telescópica de 30 a 80 cm de comprimento. Na modulação temos um transformador de saída para transistores com primário de 200 a 1 000 ohms e o microfone é um alto-falante comum.

LEI DE COULOMB

$$F = \frac{1}{4\pi \, \epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{d^2}$$

 Q_1 , Q_2 = cargas em Coulombs d = distância em metros

$$\frac{1}{4\pi\,\varepsilon_0} = 9 \times 10^9 \, \frac{\text{N} \cdot \text{m}^2}{\text{C}^2} \, \text{(constante)}$$

.PISCA-LED_

A intensidade das piscadas do led é determinada basicamente pelo valor de C1. A frequência ajustada em P1 também depende de C1. Os pulsos são de curta duração, conforme a descarga do capacitor, e são de boa intensidade.

PISCA-NEON

A alimentação deve ser feita com tensão acima de 80V e a frequência é controlada em P1. O capacitor C1 determina em conjunto com P1 a faixa de frequências de operação. Com valores baixos de C1 este circuito produz sinais na faixa de áudio.

7442 - DECODIFICADOR TTL

Uma entrada 1 = LO
2 = LO
3 = HI
4 = HI
4 = HI

Corrente por unidade — 28mA Corrente máxima por saída — 16mA Entrada 1001 faz todas saídas HI

.CRONÔMETRO NEON_

Na posição 1 o capacitor C1 carrega-se. Na posição 2 temos a descarga em tempo que depende do ajuste de R3. Este tempo é monitorado pela lâmpada NE-1 que permanece acesa até que sua tensão de manutenção seja atingida. Conforme a rede e o valor de C1 teremos faixas de tempo diferentes que podem ser marcadas numa escala de R3.

METRONOMO...

A frequência deste metrônomo é controlada em P1 e depende também do valor de C3 que poderá ficar entre $10\mu F$ e $470\mu F$. O transformador T1 é de saída para transistores com impedância de primário entre 200 e 1000 ohms. O alto-falante é comum, de 8 ohms.

EFEITOS FISIOLÓGICOS DA CORRENTE ELÉTRICA

1mA – limiar da sensação 8mA – sensação desagradável

10mA — sensação de pânico

20mA – paralisia muscular

40mA — perturbações na respiração 70mA — dificuldade extrema em respirar

90mA - fibrilação ventricular

100mA - morte

.OSCILADOR DE RELAXAÇÃO MODULADO_

A frequência de modulação é dada por C1 e seu controle por P1. A profundidade de modulação é dada por P2. P3 controla a tonalidade do som, a qual também depende de C4. As duas saídas possíveis deste circuito são mostradas com formas de onda dente-de-serra.

TIMER 10 MINUTOS...

Este timer permite obter intervalos de tempo até 10 minutos dependendo da qualidade do capacitor C1 que deve ter um mínimo de fugas. O ajuste do tempo é feito em P1. Para rearmar o circuito é preciso desligar momentaneamente a fonte de alimentação e se um novo ciclo tiver de começar em seguida será conveniente curto-circuitar os terminais de C1 para descarregá-lo completamente. O relê tem uma bobina de acordo com a tensão da fonte de alimentação.

AUTO INDUÇÃO DE UMA BOBINA (NÚCLEO DE AR)

$$L = 1,257 \frac{n^2 s}{10^8 \cdot \ell}$$

L = auto indução em H

 $\ell=$ comprimento da bobina em cm

S =área abrangida por uma espira (cm²)

n = número de espiras

ALARME DE TEMPERATURA_

O sensor é um NTC que à temperatura ambiente deve ter uma resistência entre 20k e 100k. O ajuste de sensibilidade é feito em P1. O relê tem bobina de acordo com a tensão de alimentação.

CARACTERÍSTICAS DE NTCs ASPECTO

tipo	resistência à 25°C (ohms)	dissipação (W)
B8 320 01A/4E	4	1
B8 320 01A/50E	50	1
B8 320 01A/130E	130	1
B8 320 01A/500E	500	1
B8 320 01A/1k3	1 300	1
TD11-A004	4	1
TD6-A050	50	1/2
TD5-A113	130	1/2
TD5-A150	500	1/2
TD5-C213	1 300	1/2

ALARME DE UMIDADE_

O sensor deste alarme pode ser duas varetas que serão enterradas num vaso ou jardim ou então duas telas separadas por um pedaço de tecido ou papel poroso com um pouco de sal. Se o SCR tender a disparar sozinho isso se deve a eventuais fugas no transistor Q1 que deve ser trocado. O relê tem bobina de acordo com a tensão de alimentação.

.ALARME DE BAIXA CORRENTE (60µA)_

A corrente de repouso deste circuito depende do transistor e está em torno de 60µA para os casos comuns. A abertura de qualquer dos interruptores S1, S2 ou S3 faz o relê disparar. O relê tem sua bobina de acordo com a tensão de alimentação.

ALFA X BETA

$$\beta = \frac{\alpha}{1 - \alpha}$$

$$\alpha = 1 - \frac{1}{(\beta + 1)}$$

$$\alpha = \frac{\text{Variação da corrente de coletor}}{\text{Variação da corrente de emissor}} = \frac{\Delta I_{C}}{\Delta I_{E}}$$

$$\beta = \frac{\text{Variação da corrente de coletor}}{\text{Variação da corrente de base}} = \frac{\Delta I_C}{\Delta I_B}$$

$$\alpha < 1$$
 $\beta > 1$

TRIAC + UJT = CONTROLE DE POTÊNCIA-

Este circuito permite o controle de cargas de potência a partir de baixas tensões contínuas. A faixa de controle é dada por P1 e também por C2. O transformador T1 deve ser construído conforme mostra a figura. O triac deve ser de acordo com a potência da carga e possuir um dissipador de calor. C1 e R1 serão necessários se a carga controlada for indutiva.

INTERRUPTOR DE ONDA COMPLETA COM SCR

O fechamento de S1 permite a aplicação de toda a potência da rede em L1 que tem por limite, para o SCR indicado, 440W. Os SCRs devem ser dotados de dissipadores de calor. A corrente em S1 tem sua intensidade dada por R2.

CARACTERÍSTICAS DAS SUB-FAMÍLIAS TTL

sub-família	corrente de saída	corrente de entrada
Normal	16mA	1,6mA
Low-Power	3,6mA	0,18mA
High-Power	20mA	2,0mA
Schottky Low-Power	20mA	2,0mA
Schottky	8mA	0,4mA

CORRENTES POR FUNÇÃO - TTL NORMAL

Cada porta 8m	ıΑ
Cada Hex Inverter	ıΑ
Portas mais complexas	ıΑ
Cada Dual flip-flop	ıA

INTERRUPTOR SCR (LIGA E DESLIGA).

Neste circuito, S1 pode ser um reed switch ou um micro-switch, pois a corrente de controle é muito baixa. Um interruptor de pressão também pode ser usado, já que basta a corrente momentaneamente para acionar L1 ou o relê e manter o circuito ativado. Para desligá-lo deve-se pressionar S2. O relê deve ter bobina de acordo com a tensão de alimentação.

ESPECIFICAÇÕES DAS SUB-FAMÍLIAS TTL

Normal	7400
High-Power	74H00
Low-Power	74L00
Schottky	74S00
Low-Power Schottcky	74LS00

FREQUÊNCIAS DE OPERAÇÃO DAS SUB-FAMÍLIAS TTL

Normal	35MHz
High-Power	50MHz
Low-Power	3MHz
Schottky	125MHz
Low-Power	45MHz

LINTERRUPTOR SCR (SOMENTE LIGA)

Um toque em S1 e o circuito é ativado assim permanecendo indefinidamente. S1 pode ser de baixa corrente e o relê, se usado, deve ter tensão de acordo com a fonte. Para desativar o circuito é preciso desligar momentaneamente a alimentação.

INDUTÂNCIAS PEQUENAS

$$L = \frac{R^2 \times n^2}{9R + 25\ell}$$

 $L = indutância em \mu H$

R = raio de uma espira em polegadas

 $\ell = \text{comprimento em cm}$

n = número de espiras

Ex.: 8 espiras em \emptyset $\frac{1}{2}$ polegada e comprimento 2 cm

 $L = 0.076 \mu H$

SOM REMOTO_

Para se evitar perdas de potências nas linhas de baixa impedância este recurso pode ser usado até 5W. Os transformadores são de saída para válvulas 6V6 ou 6AQ5 e o potenciômetro funciona como controle remoto de volume. O fio pode ser paralelo com até 100 metros de comprimento.

SOM - FREQUÊNCIAS E COMPRIMENTO DE ONDA

frequência (Hz)	comp. em metros	frequência (Hz)	comp. em metros
10	34	2 000	0,17
20	17	3 000	0,11
40	8,5	4 000	0,085
60	5,7	5 000	0,068
80	4,25	6 000	0,055
100	3,4	7 000	0,048
200	1,7.	9 000	0,038
300	1,13	10 000	0,034
400	0,85	11 000	0,031
600	0,57	13 000	0,026
900	0,38	16 000	0,021
1 000	0,34	18 000	0,018
1 200	0,28	20 000	0,017
1 400	0,24	30 000	0,011
1 500	0,23	40 000	0,008

NERVO TESTE COM CHOQUE _

Quando a argola encosta no arame tortuoso uma alta tensão é induzida no secundário do transformador. A pilha deve ser grande ou média, e o transformador é de saída para rádios a válvula 6AQ5 ou 6V6. Transformadores de $110 \times 6V$ com correntes de 100mA podem também ser usados.

OSCILADOR DISPARADO_

Só há sinal de saída neste circuito quando S1 for mantido pressionado. A frequência do sinal obtido no pino 6 depende do valor do capacitor C1 que pode estar entre 100nF e $10\mu F$ para a faixa de áudio. A alimentação deve ser feita com tensão de 5V.

REATÂNCIA INDUTIVA

$$X_L = 2\pi f \cdot L$$

 X_L = reatância em Ohms

 $\pi = 3,14$

f = frequência em Hz

L = indutância em H

REATÂNCIA CAPACITIVA

$$X_C = \frac{1}{2\pi f \cdot C}$$

X_C = reatância em Ohms

 $\pi = 3,14$

f = frequência em Hz

C = capacitância em F

DETECTOR DE PRIORIDADE.

O LDR que for iluminado em primeiro lugar faz acender a lâmpada correspondente, inibindo o disparo da outra lâmpada. O ajuste da sensibilidade é feito em P1 e P2. As lâmpadas devem ter tensões de acordo com a fonte de alimentação. Para os SCRs do tipo TIC106 deve-se enventualmente ligar um resistor de 1k entre o catodo e a comporta para evitar o disparo sozinho.

CONTADOR ATÉ 99_

As saídas deste circuito são em BCD, devendo portanto ser decodificadas para aplicação em display. A alimentação deve ser feita com 5V e da saída do segundo 7490 pode-se excitar um terceiro com a contagem estendida para 999.

MÓBILE RÍTMICO...

Ligado na saída de um amplificador este aparelho faz um boneco articulado dançar ao ritmo da música. L é o enrolamento de um transformador de 110 \times 6V até 500mA, sem núcleo, e o núcleo móvel preso ao boneco por uma mola é um bastão de ferrite ou mesmo um parafuso. T1 é um transformador de saída para válvulas invertido e R1 tem seu valor determinado pela potência do amplificador segundo a tabela: até 20W - 47 ohms \times 1W; 20 a 50W - 100 ohms; mais de 50W - 220 ohms.

O resistor R3 de 1k será necessário para o caso do SCR TIC106.

LEDs RÍTMICOS_

T1 é um transformador de saída para válvulas 6AQ5 ou 6V6, mas pode ser usado um transformador de 110V \times 6V \times 150mA. R1 e R3 são dados pelas tabelas, enquanto R4 é necessário somente se o SCR for do tipo TIC106.

potência de entrada	R1
até 5W	22R × 1W
5 a 10W	47R × 1W
10 a 25W	68R × 1W
25 a 50W	100R × 2W
50 a 100W	220R × 2W

	R3	
	110V	220 V
até 6 leds	2k2 × 10W	4k7 × 10W
6 a 15 leds	1k8 × 10W	3k $9 imes 10$ W
15 a 30 leds	$1k5 \times 10W$	2k $7 imes 10$ W

DECIBEL

 $dB = 10 \log \frac{P1}{P2}$

P1 = potência de saída (W)

dB = ganho em dB

P2 = potência de entrada

log = logaritmo decimal

PULSADOR DE POTÉNCIA.

Este circuito produz o som de uma metralhadora cuja velocidade e a intensidade é controlada em P1. O valor de R1 também pode ser alterado para modificar o intervalo entre os pulsos e sua intensidade. Este componente não deve ser reduzido, entretanto.

INTEGRADOS - EQUIVALÊNCIAS

741 — amplificador operacional — CA3056, 3741, L141, LH101, LM741, MC1539, 1741, MCH1439, MIC741, N5741, PA424, 7741, RM741, S5741, SN72741, TAA221, TBA221, TOA1741, 1748, UA741, UC4741, ZLD741

MC1310 - decod. FM - CA3090, MC1310

LM104 — regulador de tensão — LM204, LM304, SFC2104, SFC2204, SFC2304

LÁMPADA MÁGICA_

A luz de um fósforo no LDR faz a lâmpada acender e assim se manter. A lâmpada L1 pode ter de 40 a 100W. Para lâmpadas até 40W o SCR não precisa de dissipador. O resistor R3 deverá ser usado apenas se o SCR for do tipo TIC106. P1 é um ajuste de sensibilidade do circuito.

VELOCIDADE DO SOM EM ALGUNS METAIS E MATERIAIS (ONDAS LONGITUDINAIS) (m/s)

(,,,,,

-1...../-:-

aluminio	5 080
cobre	3710
ebonite	1 570
vidro 3 500 a	5 300
gelo	3 280
ferro	5 170
mármore 4 000 a	6 000
níquel	4 785
porcelana	4884
tungstênio	4310
zinco	3810

OSCILADOR ULTRA-SÔNICO.

Este oscilador produz um sinal em torno de 18kHz que pode ser reproduzido por um tweeter comum. O transformador é de saída para transistores com primário de 200 a 1 000 ohms. O falante FTE é um tweeter comum, de 8 ohms. A frequência do circuito depende de C1 e C2.

VELOCIDADE DO SOM EM LÍQUIDOS

líquido	temperatura (°C)	velocidade (m/s)
acetona	2 0	1 192
benzeno	20	1 326
álcool etílico	20	1 180
glicerina	20	1 923
mercúrio	20	1 451
álcool metílico	20	1 123
água comum	25	1 497
água do mar	17	1 510 a 1 550 (*)
água pesada	25	1 399
gasolina	34	1 250

(*) depende da salinidade

DETECTOR DE MENTIRAS.

Pequenas variações da resitência da pele podem ser detectadas com este aparelho. O potenciômetro P1 ajusta a sensibilidade, enquanto P2 ajusta o fundo de escala de M1 que é um VU comum. O sensor consiste em duas placas de metal sobre as quais o "interrogado" apoia as mãos.

.AMPLIFICADOR 741 (1 a 100 – GANHO)

O ganho deste amplificador de tensões contínuas é fixado por P1. A fonte deve ser simétrica de 9 + 9V e a tensão de entrada não deve nunca superar este valor. Este circuito por sua alta impedância de entrada (normalmente 1M) pode ser usado em instrumentação.

PRÉ-AMPLIFICADORES INTEGRADOS

	Amplificadores	faixa de te	nsões (V)	resist. de	corrente
	quantidade	mín	máx	entrada (ΚΩ)	quiescente (mA)
CA3052	4	2	16	90	26
LM381	2	9	40	100	10
LM382	2	9	40	100	10
LM387	2	9	30	100	10
LM1303	2	± 4,5	± 15	25	15

OSCILADOR 1 kHz_

A frequência deste circuito é dada pelo duplo T. Os capacitores C1, C2 e C3 devem manter a seguinte relação: C1 = C2 = C3/2. A frequência é dada pela fórmula e a alimentação deve ser simétrica. P1 ajusta a intensidade do sinal de saída e P2 o ponto de oscilação.

BD33	 :1
TRANSISTOR DARLINGTO	N NPN DE SILÍCIO
B C E	INVÓLUCRO SOT – 82
VCEO 60 V IC 6A PTOT 60 W hFE à 3A >750 fT 7MHz	Complementar BD332

.OSCILADOR 500Hz - 5kHz...

A frequência deste oscilador é determinada por C1 e ajustada em P1. A fonte deve ser simétrica e a impedância de saída do circuito é da ordem de 50 ohms. A forma de onda do circuito é retangular.

BD332 TRANSISTOR DARLINGTON PNP DE SILÍCIO				
	INVÓLUCRO SOT – 82			
V _{CEO} 60 V I _C 60 W h _{FE} à 3A	Complementar BD331			

BIESTĀVEL COM O 741...

Ao se pressionar S2 o relê é acionado e ao se pressionar S1 é desligado. O relê deve ser de 12V se a fonte for de 6+6V e de 18V se a fonte for de 9+9V. A fonte deve ser simétrica para esta aplicação.

BIESTÁVEL 741 – SEM FONTE SIMÉTRICA

Ao se pressionar S1 o relê é acionado e ao se pressionar S2 ele é desativado. A fonte é simples e o relê é de acordo com a tensão. Pode-se fazer funcionar a mesma versão com tensões de 9V. O diodo em paralelo com o relê é de silício para uso geral como o 1N4148.

BD434	
TRANSISTOR PNP DE SILÍCIO DE POTÊNCIA	
E C B	
V _{CEO}	

OSCILADOR PARA PRATICAR TELEGRAFIA

Este oscilador produz um sinal agradável entre as frequências de 400Hz e aproximadamente 5kHz. O ajuste de frequência é feito em P1 e esta faixa pode ser sensivelmente alterada pela troca de valor de C1. O manipulador em lugar de ser intercalado entre a fonte de alimentação e o circuito também pode ser ligado em série com o pontenciômetro P1.

OSCILADOR DE POTÉNCIA.

Este circuito fornece alguns watts de som a um alto-falante de 8 ohms. Os transistores de saída devem ser montados em dissipador. A frequência é ajustada em P1 e depende também do valor de C1. O oscilador entra em operação ao se pressionar S1.

	CODIGO SINFO						
	S (QSA)	l (QRM)	N (QRN)	F (QSB)	O (QRK)		
•	5 Excelente 4 Boa 3 Regular 2 Pobre 1 Muito ruim	5 Nenhuma 4 Leve 3 Moderada 2 Forte 1 Extrema	5 Nenhum 4 Leve 3 Moderado 2 Forte 1 Extremo	5 Nenhum 4 Leve 3 Moderado 2 Forte 1 Extremo	5 Excelente 4 Bom 3 Regular 2 Ruim 1 Muito ruim		

QSA - S - intensidade de sinal

QRM - I - interferências

QRN - N - ruídos

QSB - F - fading (distúrbios de propagação)

QRK - O - mérito final

AMPLIFICADOR TBA810S_

Este amplificador fornece potência de 1 a 8W conforme a tensão de alimentação, podendo ser usado em diversas aplicações. O circuito integrado deve ser dotado de um bom dissipador de calor e a impedância do alto-falante pode ser de 4 ou 8 ohms.

TBA810				
Faixa de tensões de alimentação	4 a 20 V			
Potência de saída para carga de 4 ohms	6W			
Impedância de entrada	5M			
Proteção de saída	sim			
Corrente quiescente	12mA			
Distorção harmônica em 1kHz com 14,4V e 2,5W	0,3%			

CONVERSOR ANALÓGICO – DIGITAL.

A frequência de saída depende da tensão de entrada neste circuito. A frequência central de operação é determinada por C1 e ajustada em P1. O resistor R1 tem seu valor dado pela faixa de variação do sinal de entrada. Para variações até 1V o resistor pode ser de 1k.

TIMER UMA HORA

O relê será desarmado depois de até 1 hora de pressionado o interruptor S1 de partida. Este tempo é determinado por C2 e pelo ajuste de P1. O relê deve ser de 12V do tipo sensível. Tempos maiores estão condicionados à existência de fugas no capacitor eletrolítico C2 que deve ser de boa qualidade.

PULSADOR COM SCR_

A lâmpada L1 de até 3A de corrente pulsa numa frequência determinada pelo capacitor C3 e pelo ajuste de P1. O SCR ligado à lâmpada deve ser dotado de dissipador de calor se a lâmpada exigir mais de 500mA de corrente. A lâmpada tem tensão de acordo com a alimentação.

SIMPLES ETAPA AMPLIFICADORA_

Este circuito de baixa potência tem um ganho de 46dB e pode ser usado em etapas de entrada de amplificadores.

ETAPA DE 2 TRANSISTORES

75 dE

Esta etapa de dois transistores apresenta um ganho de 75dB. O bom funcionamento do circuito depende do ganho individual dos transistores e também de seu nível de ruído. R1 permite modificar a impedância e o ganho do circuito.

GANHO=75dB Zent=3K9 ZSAÍOA=4K7 FAIXA: 40 A 30KHZ

SÉRIE TRIBO-ELÉTRICA

Amianto
Pele de coelho
Vidro
Mica
Nylon
Lã
Pele de gato
Seda
Papel
Madeira

Âmbar

Enxofre

Amianto + Vidro

Amianto + Vidro
Vidro + Papel

Vidro + Papel -

ETAPA DE 2 TRANSISTORES

Esta etapa de 2 transistores apresenta uma impedância de até 2M de entrada. Sua saída é de baixa impedância e os transistores devem ser selecionados, principalmente Q1 que deve ser de alto ganho e baixo nível de ruído.

COMPRIMENTO MÁXIMO DE FIOS PARA 5% DE PERDA EM APARELHOS DE SOM

fio	4 ohms	8 ohms	16 ohms
14	40m	83m	150m
16	25m	50m	100m
18	16m	33m	66m
20	8m	16m	33m
22	5m	10m	20m

RELÉ DRIVER (1 TRANSISTOR – GANHO 100)_

Este circuito permite aumentar em 100 vezes a sensibilidade de um relê. O valor de R2 é determinado pela resistência ôhmica da bobina do relê, situando-se normalmente entre 10k e 100k para os tipos comuns. O transistor usado deve ter um ganho mínimo de 100.

НР	110V	220V
1/2	4,6	2,3
3/4	6,6	3,3
1	8,6	4,3
1,5	12,6	6,3
2	16,4	8,2
3	24	12
5	40	20
7,5	58	29
10	76	38
15	112	56
20	148	74
25	184	92
30	220	110
40	292	146
50	360	180
	I	I

RELÉ DRIVER (2 TRANSISTORES)_

Um sinal de apenas $0.7V \times 50\mu A$ pode disparar o relê com este circuito multiplicador de sensibilidade. O relê tem sua tensão de operação de acordo com a fonte e os transistores usados devem ser de boa qualidade.

TBA820	
	AMPLIFICADOR DE ÁUDIO INTEGRADO
Faixa de tensões de alimentação	

MONOESTÁVEL_

Para um pulso de disparo de curta duração e variação positiva obtém-se na saída deste circuito um impulso retangular de 5 segundos de duração. O tempo de duração deste impulso pode ser alterado pela troca de C1.

ETAPA FET_

Esta etapa apresenta uma impedância de entrada de 2M. O potênciômetro P1 deve ser ajustado para se obter uma queda de tensão da ordem de 5,6V sobre o resistor R1.

OSCILADOR DENTE-DE-SERRA_

Este oscilador produz um sinal dente-de-serra de boa intensidade. A frequência do sinal é determinada por C1 e ajustada por P1. A linearidade do sinal depende do transistor Q2. A faixa de frequência para os valores dados é de 50Hz a 6kHz.

CARACTERISTICAS DE DIODOS

tipo	V	mA	equivalente
1N34	60	50	0A81
1N34A	60	50	0A81
1N35	60	50	0A81
1N48	70	40	0A81
1N54	35	40	0A79
1N58	100	40	0A81
1N63	100	40	0A81
1N67	80	35	0A81
1N70	100	30	0A81
1N81	40	40	0A79
1N90	60	30	0A81
1N95	60	30	0A81

OSCILADOR SENSIVEL À LUZ

A frequência deste oscilador depende da intensidade da luz incidente no LDR. A fonte de alimentação deve ser simétrica e o resistor R4 evita uma sobrecarga na saída do circuito integrado. C1 determina a faixa de frequência de operação do circuito.

ALARME COM O 741_

Este circuito dispara quando a luz deixa de incidir no LDR. A sensibilidade é ajustada no potenciômetro P1 que pode ter valores entre 10k e 100k. Para uma atuação positiva, ou seja, quando a luz incide, basta trocar de posição o LDR com P1 e R1. O relê é do tipo sensível RU101012 com bobina para 12V.

ALARME DE UMIDADE_

Este circuito dispara com a ação de umidade no sensor. O relê é de 12V RU101012 ou equivalente, com pelo menos 200 ohms de resistência de bobina.

CARACTERISTICAS DOS OPERACIONAIS (TERMOS)

- Ganho sem realimentação (Ao) "Open-loop voltage gain" é o ganho máximo de tensão de um amplificador operacional, podendo ser expresso em dB ou no número de vezes em que a tensão é amplificada. Valores entre 100 000 ou 100dB são comuns.
- Impedância de entrada (Zs) "Input impedance" é a impedância relativa aos terminais de entrada, expressa somente em termos de resistência.
- Impedância de saída (Zs) "Output impedance" é a impedância de saída expressa em termos de resistência.
- Rejeição de modo comum (cmrr) "Common mode rejection" um amplificador operacional ideal fornece uma saída que é proporcional à diferença entre dois sinais aplicados em sua entrada. Se sinais iguais são aplicados em suas entradas simultaneamente, ou seja, de modo comum, sua saída deve ser zero. Na prática, sinais iguais não cancelam totalmente a saída, sendo esta capacidade de rejeição justamente expressa em termos de dB.

Frequência de transição — "Transition frequency" — é a frequência máxima em que teoricamente o amplificador pode ainda funcionar.

SIMPLES DETECTOR DE MENTIRAS_

O sensor consiste em duas placas metálicas nas quais o interrogado apoia as mãos ou os dedos. O ajuste do ponto de funcionamento é feito em R4. O instrumento é um VU comum de baixo custo. O transistor deve ser de boa qualidade, não apresentando fugas em excesso.

REOSTATO_

A tensão sobre uma carga de até alguns ampères de corrente de consumo pode ser regulada em P1, um potenciômetro de pequena dissipação, comum. Otransistor deve ser montado em dissipador de calor apropriado e R1 é um resistor de 1W.

PRÉ PARA MICROFONE DINÂMICO

Este circuito permite usar microfones dinâmicos de impedância relativamente baixa em conjunto com amplificadores comuns que necessitam de um sinal de major intensidade em sua entrada.

LIMITADOR DE RUÍDO PARA FONES.

Na recepção de ondas curtas ou de estações com alto nível de ruídos este circuito é excelente. O potenciômetro P1 ajusta o nível de áudio. O fone pode ser de baixa impedância se a saída do receptor for de baixa impedância. Para receptores com saída de alta impedância, deve-se aumentar o valor de R1 e R2 para 220R e P1 deve ser de 1k.

REFORÇADOR DE SINAIS_

Este circuito pode ser usado para reforçar sinais da faixa de AM, ondas curtas e até mesmo FM. As ligações devem ser curtas e feitas com fio blindado na entrada e saída do circuito. Os capacitores são todos cerâmicos.

BIOGRAFIA

Newton C. Braga, nascido em São Paulo — SP, à 6 de novembro de 1946, iniciou cedo suas atividades no campo da eletrônica. Com apenas 11 anos de idade já elaborou uma série inédita de projetos de eletrônica que foram posteriormente publicados na forma de seção na revista Eletrônica Popular, do Rio de Janeiro. Por influência dos pais, mal terminava o curso colegial e já lecionava em escolas preparatórias aos vestibulares, tendo sido fundador de uma delas no município de Guarulhos. Posteriormente ingressou na USP, tendo cursado o Instituto de Física e a Escola Politécnica. Já, nesta época, mesmo como estudante, escrevia artigos técnicos de eletrônica para diversas publicações como a revista Monitor e o jornal a Eletrônica em Foco.

Foi professor de eletrônica do Colégio Objetivo e realizou pesquisas no campo da Bio-eletrônica na Escola Paulista de Medicina. Participou também de importantes associações de pesquisas, como a APEX, onde trabalhos sobre eletrônica, parapsicologia e outras ciências foram estudados e analisados.

Teve diversos trabalhos publicados no exterior, como por exemplo uma colaboração constante no boletim da CBC (Canadiam Broadcasting Co.).

Em 1976 foi convidado a participar de uma nova publicação. Desde então, tem sido diretor técnico da Revista Saber Eletrônica, com a divulgação, neste órgão, da maioria dos trabalhos de sua autoria. Além desta publicação, também tem a autoria de outro periódico desta mesma editora, a revista Experiências e Brincadeiras com Eletrônica Junior, e colabora com a revista Rádio e Eletrônica.

CIRCUITOS & INFORMAÇÕES

Tudo que você precisa saber para fazer projetos e montagens eletrônicas:

- 150 circuitos completos
- informações técnicas e componentes
- tabelas
- fórmulas e cálculos
- equivalências
- pinagens
- códigos
- unidades elétricas e conversões
- idéias práticas e informações úteis
- simbologias
- usos de instrumentos
- eletrônica digital

Um livro de consulta permanente, que não deve faltar em sua bancada. Em suas mãos, as informações imediatas que você tanto precisa.

Para o hobista, estudante, técnico e engenheiro.