VEŽBE IZ ALGEBRE

Arsić Dunja, Čolić Oravec Jelena, Erić Mirjana, Janjoš Aleksandar, Kiss Maria, Matić Zagorka, Prokić dr Ivan

Katedra za matematiku Fakultet tehničkih nauka

Novi Sad, 2020.

Relacije

Definicija 1. *Binarna relacija* ρ *skupa A je bilo koji skup uređenih parova čije su koordinate iz A, tj. bilo koji podskup od A*².

Primer 1. Za svaki neprazan skup A važi da su $\emptyset \subseteq A^2$ i $A^2 \subseteq A^2$ binarne relacije (prazna i puna relacija).

Primer 2. Poznate relacije u geomeriji su paralelnost, ortogonalnost, podudarnost, sličnost.

Neka je $\rho \subseteq A^2$. Relacija ρ je:

- (R) *refleksivna* ako i samo ako $(\forall x \in A) (x,x) \in \rho$
- (S) *simetrična* ako i samo ako $(\forall x, y \in A) (x, y) \in \rho \Rightarrow (y, x) \in \rho$
- (A) *antisimetrična* ako i samo ako $(\forall x, y \in A) \Big((x, y) \in \rho \land (y, x) \in \rho \Big) \Rightarrow x = y$ ako i samo ako $(\forall x, y \in A) \Big((x, y) \in \rho \land x \neq y \Big) \Rightarrow (y, x) \notin \rho$
- (T) *tranzitivna* ako i samo ako $(\forall x, y, z \in A) \Big((x, y) \in \rho \land (y, z) \in \rho \Big) \Rightarrow (x, z) \in \rho$
- (F) *funkcija* ako i samo ako $(\forall x, y, z \in A) \Big((x, y) \in \rho \land (x, z) \in \rho \Big) \Rightarrow y = z$

Zadatak 1. *Ispitati koje osobine imaju sledeće relacije skupa* $A = \{1, 2, 3, 4, 5\}$:

$$\begin{array}{llll} \rho_1 = \{(1,1),(1,2),(3,4),(2,3)\}, & R & S & \underline{A} & T & F \\ \rho_2 = \{(1,1),(2,2)\}, & R & \underline{S} & \underline{A} & \underline{T} & \underline{F} \\ \rho_3 = \{(4,5),(3,4),(5,3),(4,3),(3,3),(4,4)\}, & R & S & A & T & F \\ \rho_4 = \emptyset, & R & \underline{S} & \underline{A} & \underline{T} & \underline{F} \\ \rho_5 = A^2. & \underline{R} & \underline{S} & A & \underline{T} & F \end{array}$$

Rešenje:

Podvučena slova označavaju svojstvo koje dotična relacija ima.

- ρ_1 (R) Pošto $(2,2) \notin \rho_1$, ρ_1 nije refleksivna.
 - (S) Ne važi jer $(1,2) \in \rho_1$ i $(2,1) \notin \rho_1$.
 - (A) Jeste jer za sve $(x,y) \in \rho_1$ sa $x \neq y$ redom utvrđujemo da $(y,x) \notin \rho_1$.
 - (T) Nije jer $(1,2) \in \rho_1$, $(2,3) \in \rho_1$ i $(1,3) \notin \rho_1$.
 - (F) Nije ni funkcija jer za 1 imamo $(1,2) \in \rho_1$ i $(1,1) \in \rho_1$.
- ρ_2 (R) nije refleksivna jer $(3,3) \notin \rho_2$.

Preostale četiri osobine, (S), (A), (T) i (F), sigurno ima jer u relaciji nema parova $(x,y) \in \rho_2$ sa $x \neq y$, te ne može da postoji ni jedna smetnja za te četiri osobine.

- ρ_3 (R) Nije jer $(1,1) \notin \rho_3$.
 - (S) Nije jer $(4,5) \in \rho_3$ i $(5,4) \notin \rho_3$.
 - (A) Nije jer sadrži parove $(4,3) \in \rho_3$ i $(3,4) \in \rho_3$.
 - (T) Ne važi jer $(3,4) \in \rho_3$, $(4,5) \in \rho_3$, ali $(3,5) \notin \rho_3$.
 - (F) Nije ni funkcija jer imamo $(4,5) \in \rho_3$ i $(4,4) \in \rho_3$
- ρ_4 (R) Ne važi, pošto ne sadrži niti jedan uređen par.
 - Za (S), (A), (T) i (F) iskaz $(x,y) \in \emptyset$ je uvek netačan, što nam u definicijama ostalih osobina daje tačne implikacije, pa ρ_4 zadovoljava te osobine.

- ρ_5 (R), (S) i (T) jesu zadovoljeni, jer relacija sadrži sve uređene parove elemenata iz A.
 - (A) Nije jer $(1,2) \in \rho_5$ i $(2,1) \in \rho_5$.
 - (F) Nije jer imamo $(1,1) \in \rho_5$ i $(1,2) \in \rho_5$.

U geometrijskoj interpretaciji $\rho \subseteq \mathbb{R}^2$ je:

- *refleksivna* ako i samo je prava y = x podskup grafika od ρ ;
- *simetrična* ako i samo ako je grafik od ρ osno simetričan u odnosu na pravu y = x;
- antisimetrična ako i samo ako ne postoji par tačaka koje pripadaju grafiku od ρ i simetrične su u odnosu na pravu y = x;
- *funkcija* ako i samo ako prave paralelne sa *y*-osom seku grafik od ρ u najviše jednoj tački.
- ★ Za tranzitivnost ne postoji geometrijska interpretacija što se tiče relacija na skupu realnih brojeva.

Zadatak 2. *Ispitati koje osobine imaju sledeće relacije skupa* \mathbb{R} :

```
\rho_1 = \{(x, x^2) | x \in \mathbb{R} \},\
                                                                                                                                        R S A T
\rho_2 = \{(x, -x) | x \in \mathbb{R}\},\
                                                                                                                                        R \quad \underline{S} \quad A \quad T
                                                                                                                                        R \subseteq S A T
\rho_3 = \{(x, y) | max\{x, y\} = 1, x, y \in \mathbb{R}\},\
                                                                                                                                       R \overline{S} \underline{A} T
                                                                                                                                                                     <u>F</u>
\rho_4 = \{(x, 2x) | x \in \mathbb{R}\},\
                                                                                                                                       R \quad \underline{S} \quad A \quad \underline{T} \quad F
\rho_5 = \{(x, y) | x \cdot y > 0, x, y \in \mathbb{R} \},\
                                                                                                                                       R \stackrel{\frown}{S} A T
\rho_6 = \{(x, y) | x + y = 1, x, y \in \mathbb{R}\},\
                                                                                                                                       R \quad \underline{S}
                                                                                                                                                   A \quad \underline{T}
\rho_7 = \mathbb{N}^2,
                                                                                                                                              S
                                                                                                                                                             T
\rho_8 = \rho_5 \cup \{(0,0)\}.
                                                                                                                                        R
```

Rešenje: Podvučena slova označavaju svojstvo koje dotična relacija ima. Osobine ovih relacija možemo ispitivati posmatrajući njihove grafike i geometrijske interpretacije. Isprekidanom linijom označavaćemo ključnu pravu x = y.

- ρ₁ predstavlja kvadratnu funkciju.
 - (R) Nije, pošto seče pravu x = y u samo dve tačke (0,0) i (1,1).
 - (S) Nije, jer grafik kvadratne funkcije nije simetričan u odnosu na pravu x = y.
 - (A) Jeste, jer nema simetričnih tačaka u odnosu na pravu x = y koje pripadaju grafiku ρ_1 .
 - (T) Nije, jer (2,4), $(4,16) \in \rho_1$, a $(2,16) \notin \rho_1$.

(F) Jeste funkcija.

- ρ_2 Grafik relacije je prava y = -x.
 - (R) Nije refleksivna, pošto pravu x = y seče samo u tački (0,0).
 - (S) Važi, grafik je u potpunosti simetričan u odnosu na pravu y = x (za svaku tačku (x, -x)simetričan par je (-x,x)).
 - (A) Ne važi pošto su tačke grafika $(x, -x) \in \rho_2$ simetrične sa $(-x, x) \in \rho_2$ u odnosu na pravu y = x.
 - (T) Nije zadovoljena, jer imamo $(1,-1),(-1,1) \in \rho_2$, ali $(1,1) \notin \rho_2$.
 - (F) Jeste funkcija.
- ρ_3 Grafik relacije sadrži delove dve prave. Prvi deo je prava y=1 za sve $x\in(-\infty,1]$, odnosno sve tačke oblika $(x, 1), x \in (-\infty, 1]$, a drugi deo je prava x = 1 za sve $y \in (-\infty, 1]$, odnosno sve tačke oblika $(1, y), y \in (-\infty, 1]$.
 - (R) Nije, pošto seče pravu y = x samo u tački (1,1).
 - (S) Važi, grafik je simetričan u odnosu na y = x (ako (x,y) pripada x = 1, onda (y,x)pripada y = 1 i obratno).
 - (A) Pošto je grafik simetričan u odnosu na y = x, ne važi.
 - (T) Pošto $(0,1),(1,0) \in \rho_3$, a $(0,0) \notin \rho_3$ relacija nije tranzitivna.
 - (F) Relacija ρ_3 nije ni funkcija, jer sadrži deo prave x = 1, a to je prava paralelna y-osi.

- $ρ_4$ je linearna funkcija, tj. grafik je prava y = 2x.
 - (R) Ne važi, pošto pravu y = x seče u samo jednoj tački.
 - (S) Ne važi. Na primer, $(1,2) \in \rho_4$, a $(2,1) \notin \rho_4$.
 - (A) Zadovoljava, što se vidi na grafiku i odnosu sa pravom y = x.

- (T) Nije, jer $(1,2), (2,4) \in \rho_4$, ali $(1,4) \notin \rho_4$.
- (F) Jeste funkcija.
- Orafik relacije obuhvata sve tačke prvog i trećeg kvadranta, pošto su to tačke sa koordinatama istog znaka, čiji je proizvod pozitivan.
 - (R) Ne važi, jer prvi i treći kvadrant sadrže sve tačke prave y = x osim koordinatnog početka.
 - (S) i (A) ako (x, y) pripada prvom ili trećem kvadrantu, onda i (y, x) pripada istom kvandrantu, pa jeste simetrična ali nije antisimetrična.
 - (T) Važi, jer ako $(x,y), (y,z) \in \rho_5$ tada su x,y i z realni brojevi istog znaka, pa $(x,z) \in \rho_5$.
 - (F) Nije funkcija, jer bilo koja prava paralelna y-osi, osim nje same, seče prvi ili treći kvadrant u beskonačno mnogo tačaka.
- $\underline{\rho_6}$ je još jedna linearna funkcija, prava y=1-x, ali kao i $\underline{\rho_2}$ ima negativan vodeći član. Njen grafik ispunjava iste uslove, pa osobine refleksivnosti, simetričnosti, antisimetričnosti i funkcije nije potrebno detaljnije objašnjavati.
 - (T) Ne zadovoljava jer $(1,0), (0,1) \in \rho_6$, ali $(1,1) \notin \rho_6$.

- ρ₇ Grafik obuhvata sve tačke čije su koordinate prirodni brojevi.
 - (R) Nije zadovoljena, jer grafik ne sadrži celu pravu y = x, npr. $(\sqrt{2}, \sqrt{2}) \notin \rho_7$.
 - (S) i (A) grafik relacije ρ_7 je simetričan u odnosu na pravu y = x, pa je relacija simetrična i nije antisimetrična (tačke prvog kvadratna sa prirodnim koordinatama).
 - (T) Zadovoljava, jer ako $(x,y),(y,z) \in \rho_7$ sledi da su x,y i z prirodni brojevi, pa je očigledno da $(x,z) \in \rho_7$.
 - (F) Nije, jer bilo koja prava x = n za $n \in \mathbb{N}$ sadrži beskonačno mnogo tačaka relacije ρ_7 .
- ρ_8 ima isti grafik kao i relacija ρ_5 uz dodatak koordinatnog početka.
 - (R) Sada cela prava y = x pripada grafiku ρ_8 , pa refleksivnost važi.
 - (S), (A), (T) i (F) Pošto je koordinatni početak tačka prave y = x, njegovim dodavanjem ne narušavamo niti jednu preostalu osobinu relacije ρ_5 , pa je ρ_8 simetrična i tranzitivna, a nije antisimetrična i funkcija.

Relacija ekvivalencije

Definicija 2. Za relaciju $\rho \subseteq A^2$ kažemo da je **relacija ekvivalencije** ako je refleksivna, simetrična i tranzitivna (RST).

 \star Relacija ekvivalencije ρ definisana na skupu A vrši particiju (razbijanje) skupa A, tj. jednoznačno određuje neke neprazne podskupove skupa A od kojih su svaka 2 disjunktna, a njihova unija je ceo skup A. Ovi podskupovi se nazivaju **klase ekvivalencije**, a jednoj klasi pripadaju svi oni elementi koji su međusobno u relaciji. Skup svih klasa ekvivalencije relacije ρ na skupu A naziva se **faktor skup** i označava se sa A/ρ .

Zadatak 3. *Dokazati da je* $\rho = \{(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(2,1),(3,4),(4,3)\}$ *relacija ekvivalencije skupa A* = $\{1,2,3,4,5\}$ *i napisati particiju koja joj odgovara.*

Rešenje: Relacija ρ je refleksivna pošto imamo sve uređene parove oblika (x,x), $x \in A$. Simetričnost je zadovoljena je imamo dva para simetričnih uređenih parova (3,4), (4,3) i (1,2), (2,1). Tranzitivnost se jednostavno dokazuje direktnom proverom.

Ako sa C_x označimo klasu ekvivalencije koja sadrži $x \in A$, onda imamo

$$C_1 = C_2 = \{1, 2\}, \quad C_3 = C_4 = \{3, 4\} \quad i \quad C_5 = \{5\}.$$

Prema tome, particija koja odgovara relaciji p je

$$A/\rho = \{C_1, C_3, C_5\} = \{\{1, 2\}, \{3, 4\}, \{5\}\}.$$

Zadatak 4. *Za particiju* $A_1 = \{1,2,3\}, A_2 = \{4,5\}, A_3 = \{6\}$ *skupa* $A = \{1,2,3,4,5,6\}$ *napisati relaciju ekvivalencije* $\rho \subseteq A$ *čiji je faktor skup* $A/\rho = \{A_1,A_2,A_3\}.$

Rešenje: Elementi koji pripadaju jednoj klasi ekvivalencije su svi međusobno u relaciji, te je stoga tražena relacija ekvivalencije

$$\rho = A_1^2 \cup A_2^2 \cup A_3^2,$$

odnosno

$$\rho = \{(1,1), (2,2), (3,3)(1,2), (2,1), (1,3), (3,1), (2,3), (3,2), (4,4), (5,5), (4,5), (5,4), (6,6)\}.$$

Zadatak 5. Napisati sve relacije ekvivalencije na skupu $A = \{1, 2, 3\}$.

Rešenje: Da bismo odredili sve relacije ekvivalencije na skupu A potrebno je naći sve particije ovog skupa, koje će predstavljati faktor skupove za tražene relacije.

Moguće particije skupa A su:

$${\{1\},\{2\},\{3\}\}, \{\{1,2\},\{3\}\}, \{\{1,3\},\{2\}\}, \{\{2,3\},\{1\}\}, \{\{1,2,3\}\},}$$

a odgovarajuće relacije nalazimo kao u prethodnom zadatku.

Relacija poretka

Definicija 3. Za relaciju $\rho \subseteq A^2$ kažemo da je **relacija poretka** ako je refleksivna, antisimetrična i tranzitivna (RAT). Uređeni par (A, ρ) naziva se **parcijalno uređen skup**.

- \bigstar Za parcijalno uređen skup (A, ρ) i $a \in A$ važi
 - a je **minimalni element** skupa ako i samo ako niko nije u relaciji sa njim osim njega samog. $\left[\neg(\exists x \in A)(x \rho \, a \land x \neq a)\right]$
 - a je **maksimalni element** skupa ako i samo ako on nije u relaciji ni sa kim osim sa sobom. $\left[\neg(\exists x \in A)(a \rho x \land x \neq a)\right]$
 - a je **najmanji element** ako i samo ako je on u relaciji sa svakim elementom. $\left[(\forall x \in A) \, a \, \rho \, x \right]$
 - a je **najveći element** ako i samo ako je svaki element u relaciji sa njim. $\left[(\forall x \in A) x \rho a \right]$
- ★ Ukoliko postoji najmanji (najveći) element, tada je on ujedno i jedinstveni minimalni (maksimalni), dok obrnuto ne važi.
- \bigstar Haseov dijagram za parcijalno uređen skup (A, ρ) crtamo poštujući sledeća pravila:
 - ako je $a \rho b$ za $a, b \in A$ i $a \neq b$ tada je tačka b iznad a;
 - ako postoji $c \in A$ tako da je $a \rho c$ i $c \rho b$ onda ne postoji duž između a i b, u suprotnom postoji;
 - ako a \(\phi \) tada ne postoji duž koja spaja a i b i ne postoji rastuća putanja od a do b;
 - a i b su u relaciji ako i samo ako postoji rastuća putanja od a do b.

Zadatak 6. Na skupu $A = \{1, 2, 3, 4, 5\}$ data je binarna relacija

$$\rho = \{(1,1),(1,2),(1,3),(1,4),(1,5),(2,2),(3,3),(3,4),(3,5),(4,4),(5,5)\}.$$

Dokazati da je ρ relacija poretka, nacrtati Haseov dijagram uređenog skupa (A, ρ) i odrediti minimalni, maksimalni, najmanji i najveći element.

Rešenje: Jednostavno se direktnom proverom dokazuje da je ρ relacija poretka na skupu A.

MIN: 1

MAX: 2,4,5

Najmanji: 1

Najveći: /

★ Relacija ≤ (manje ili jednako) je relacija poretka na skupu prirodnih brojeva N jer

- (R) $(\forall a \in \mathbb{N}) \ a \leq a$
- (A) $(\forall a, b \in \mathbb{N})$ $a \le b \land b \le a \Rightarrow a = b$
- (T) $(\forall a, b, c \in \mathbb{N})$ $a < b \land b < c \Rightarrow a < c$

Zadatak 7. Nacrtati Haseov dijagram parcijalno uređenog skupa (\mathbb{N}, \leq) i naći minimalne, maksimalne, najmanji i najveći element.

★ Relacija | (deli) je takođe jedna relacija poretka na skupu N, definisana sa

$$m|n \Leftrightarrow (\exists k \in \mathbb{N}) \ n = k \cdot m.$$

Uzmimo proizvoljne $a, b, c \in \mathbb{N}$:

- (R) a|a jer je $a \cdot 1 = a$
- (A) Neka a|b i b|a. Tada po definiciji relacije | postoje $k,l \in \mathbb{N}$ takvi da $b=k\cdot a$ i $a=l\cdot b$, odakle zaključujemo da je $b=k\cdot l\cdot b$, pa je iz $k\cdot l=1$ jasno da kao prirodni brojevi i k i l moraju biti 1, što daje a=b.
- (T) Neka a|b i b|c. Tada po definiciji relacije | postoje $k,l \in \mathbb{N}$ takvi da $b=k\cdot a$ i $c=l\cdot b$, odakle je $c=l\cdot k\cdot a$, pa za $n=k\cdot l$ imamo da $c=n\cdot a$, odnosno da a|c.

Zadatak 8. Nacrtati Haseov dijagram parcijalno uređenog skupa $(\mathbb{N}, |)$ i naći minimalne, maksimalne, najmanji i najveći element.

 \bigstar Relacija \subset (podskup) je relacija poretka na partitivnom skupu nekog skupa $A \neq \emptyset$ jer

- (R) $(\forall X \in P(A)) X \subseteq X$
- (A) $(\forall X, Y \in P(A)) X \subseteq Y \land Y \subseteq X \Rightarrow X = Y$
- (T) $(\forall X, Y, Z \in P(A)) X \subseteq Y \land Y \subseteq Z \Rightarrow X \subseteq Z$

Zadatak 9. Za skup $A = \{1,2,3\}$ odrediti minimalni, maksimalni, najmanji i najveći element, i nacrtati Haseov dijagram sledećih parcijalno uređenih skupova

- a) $(P(A),\subseteq)$
- b) $(P(A) \setminus \{A\}, \subseteq)$
- c) $(P(A) \setminus \{\emptyset, A, \{1,2\}, \{1,3\}\}, \subseteq)$

Rešenje:

a) Za troelementni skup A njegov partitivni skup je

$$P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.$$

MIN: 0

MAX: $\{1,2,3\} = A$

Najmanji: 0

Najveći: $\{1, 2, 3\} = A$

b) $P(A) \setminus \{A\} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}.$

MIN: 0

MAX: $\{1,2\},\{1,3\},\{2,3\}$

Najmanji: 0

Najveći: /

c) $P(A) \setminus \{\emptyset, A, \{1, 2\}, \{1, 3\}\} = \{\{1\}, \{2\}, \{3\}, \{2, 3\}\}.$

MIN: $\{1\}, \{2\}, \{3\}$

MAX: $\{1\}, \{2,3\}$

Najmanji: /

{1}•

Najveći: /

Zadatak 10. Za relaciju | i sledeće podskupove A skupa $\mathbb N$ nacrtati Haseov dijagram i odrediti najveći, najmanji, maksimalne i minimalne elemente:

a)
$$A = \mathbb{N} \setminus \{1\}$$

e)
$$A = \mathbb{N}_{100} = \{ n \in \mathbb{N} | n \le 100 \}$$

b)
$$A = D_{42} = \{1, 2, 3, 6, 7, 14, 21, 42\}$$
 (delitelji broja 42)

$$f) A = \mathbb{N}_{100} \setminus \{1\}$$

c)
$$A = D_{42} \setminus \{1\}$$

g)
$$A = \mathbb{N}_{2^n} = \{2^n | n \in \mathbb{N}\}$$

d)
$$A = D_{42} \setminus \{1, 42\}$$

h)
$$A = \mathbb{N}_{2^n} \cup \{5, 10\}$$

Rešenje:

a)
$$(\mathbb{N} \setminus \{1\}, |)$$

MIN: svi prosti brojevi

Najmanji: /

MAX: /

Najveći: /

b)
$$(D_{42}, |)$$

MIN: 1

MAX: 42

Najmanji: 1

Najveći: 42

c)
$$(D_{42} \setminus \{1\}, |)$$

MIN: 2, 3, 7

MAX: 42

Najmanji: /

Najveći: 42

- d) $(D_{42} \setminus \{1,42\}, |)$
 - MIN: 2,3,7
 - MAX: 6,7,21
 - Najmanji: /
 - Najveći: /
- e) $(N_{100}, |)$
 - MIN: 1
 - MAX: 51,52,53,...,100
 - Najmanji: 1
 - Najveći: /
- f) $(\mathbb{N}_{100} \setminus \{1\}, |)$
 - MIN: svi prosti brojevi < 100.
 - MAX: 51,52,53,...,100
 - Najmanji: /
 - Najveći: /
- g) $(\mathbb{N}_{2^n},|)$
 - MIN: 2
 - MAX: /
 - Najmanji: 2
 - Najveći: /
- h) $(\mathbb{N}_{2^n} \cup \{5,10\}, |)$
 - MIN: 2,5
 - MAX: 10
 - Najmanji: /
 - Najveći: /

