# 1.2 Propositions 命题

Logic is a system based on propositions.

A sentence that is either true or false, but not both, is called a proposition.

Truth Value of a proposition

True: T

False: F

## 1.2 Propositions

Logic is a system based on propositions.

A sentence that is either true or false, but not both, is called a **proposition**.

We use variables, such as p, q and r, to represent propositions.

We will also use the notation

$$p: 1+1=3$$

to define p to be the proposition 1+1=3.

## 1.2 Propositions

**Definition 1.2.1** Let p and q be propositions.

The conjunction ( $\Rightarrow \mathbb{R}$ ) of p and q, denote  $p \land q$ , is the proposition p and q.

The disjunction (析取) of p and q, denote  $p \lor q$ , is the proposition p or q.

**Example:** If p: It is raining, and q: It is cold, then

*p* ∧ *q*: ?

p V q: ?

## 1.2 Propositions

**Definition 1.2.9** The negation of p, denote  $\neg p$ , is the proposition not p.

**Example:** Tim is a boy.

# Logic Operators: Exclusive-Or (异或)

| p | q  | $p \lor q$ |
|---|----|------------|
| Т | ТТ |            |
| Т | F  | Т          |
| F | Т  | Т          |
| F | F  | F          |

| $\boldsymbol{p}$ | $\boldsymbol{q}$ | $m{p}\oplusm{q}$ |
|------------------|------------------|------------------|
| T                | Т                | F                |
| Т                | F                | Т                |
| F                | Т                | Т                |
| F                | F                | F                |

# 1.3 Conditional Propositions and Logical Equivalence

Definition 1.3.1 A conditional proposition (条件命题) is of the form

"If p then q"

In symbols:  $p \rightarrow q$ .

# 1.3 Conditional Propositions and Logical Equivalence

Definition 1.3.1 A conditional proposition (条件命题) is of the form

"If p then q"

In symbols:  $p \rightarrow q$ .

| p | q | p  ightarrow q |
|---|---|----------------|
| Т | Т | Т              |
| Т | F | F              |
| F | T | Т              |
| F | F | Т              |

A conditional proposition that is true because the hypothesis is false is said to be true by default (默认为真) or vacuously true (空虚真).

# 1.3 Conditional Propositions and Logical Equivalence

Your parents say: "If your got at least 85 in the this course, then I will buy you a gift."

#### When is the above sentence false?

- It is false when you get an 85 but your parents do not buy you a gift.
- In particular, it is not false if your score is below 85.

| p | q | $p \rightarrow q$ |
|---|---|-------------------|
| Т | Т | Т                 |
| T | F | F                 |
| F | T | Т                 |
| F | F | Т                 |

$$\wedge$$
 ::= AND  $\vee$  ::= OR  $\neg$  ::= NOT

$$\rightarrow ::= IMPLIES$$

# **Logic Operators**

 $\wedge$  ::= AND  $\vee$  ::= OR  $\neg$  ::= NOT  $\rightarrow$  ::= IMPLIES

# Operator Precedence 操作符的优先级

# **Logic Operators**

```
\wedge ::= AND \vee ::= OR \neg ::= NOT \rightarrow ::= IMPLIES
```

# Operator Precedence 操作符的优先级

```
In the absence of parentheses, we first evaluate \neg, then \land, then \lor, and then \rightarrow.
```

Example:  $p \lor q \rightarrow \neg r$ 

| p | $oldsymbol{q}$ | r | Output |
|---|----------------|---|--------|
| T | Т              | Т | F      |
| T | Т              | F | Т      |
| T | F              | Т | Т      |
| Т | F              | F | F      |
| F | Т              | Т | Т      |
| F | Т              | F | Т      |
| F | F              | Т | Т      |
| F | F              | F | F      |

| p | q | $m{p}\oplusm{q}$ |
|---|---|------------------|
| Т | Т | F                |
| Т | F | Т                |
| F | T | Т                |
| F | F | F                |

| p | q | $m{p}\oplusm{q}$ |
|---|---|------------------|
| Т | Т | F                |
| Т | F | Т                |
| F | Т | Т                |
| F | F | F                |

$$(p \land \neg q) \lor (\neg p \land q)$$
$$\neg (p \land q) \land \neg (\neg p \land \neg q)$$
$$\vdots$$

| p | $p \mid q \mid p \oplus q$ |   |
|---|----------------------------|---|
| Т | Т                          | F |
| Т | F                          | Т |
| F | Т                          | Т |
| F | F                          | F |

$$(p \land \neg q) \lor (\neg p \land q)$$
$$\neg (p \land q) \land \neg (\neg p \land \neg q)$$

Idea 1: Look at the true rows

| p | $p \mid q \mid p \oplus$ |   |
|---|--------------------------|---|
| Т | Т                        | F |
| Т | F                        | Т |
| F | Т                        | Т |
| F | F                        | F |

$$(p \land \neg q) \lor (\neg p \land q)$$

$$\neg (p \land q) \land \neg (\neg p \land \neg q)$$

Idea 2: Look at the false rows

| p | $\boldsymbol{q}$ | r | Output |
|---|------------------|---|--------|
| Т | Т                | Т | F      |
| Т | Т                | F | Т      |
| Т | F                | Т | Т      |
| Т | F                | F | F      |
| F | Т                | Т | Т      |
| F | Т                | F | Т      |
| F | F                | Т | Т      |
| F | F                | F | F      |

Idea 1:

| p | q | r | Output | Idea 1:                                |
|---|---|---|--------|----------------------------------------|
| Т | Т | Т | F      |                                        |
| Т | Т | F | Т      | $(p \wedge q \wedge \neg r)$           |
| Т | F | Т | Т      | $\vee (p \wedge \neg q \wedge r)$      |
| Т | F | F | F      |                                        |
| F | Т | T | Т      | $\lor (\neg p \land q \land r)$        |
| F | Т | F | Т      | $\vee (\neg p \wedge q \wedge \neg r)$ |
| F | F | Т | Т      | $\vee (\neg p \wedge \neg q \wedge r)$ |
| F | F | F | F      |                                        |

| p | $\boldsymbol{q}$ | r | Output |
|---|------------------|---|--------|
| Т | Т                | Т | F      |
| Т | Т                | F | Т      |
| Т | F                | Т | Т      |
| Т | F                | F | F      |
| F | Т                | Т | Т      |
| F | Т                | F | Т      |
| F | F                | Т | Т      |
| F | F                | F | F      |

Idea 2:

| p | $\boldsymbol{q}$ | r | Output |
|---|------------------|---|--------|
| Т | Т                | Т | F      |
| Т | Т                | F | Т      |
| Т | F                | Т | Т      |
| Т | F                | F | F      |
| F | Т                | Т | Т      |
| F | Т                | F | Т      |
| F | F                | Т | Т      |
| F | F                | F | F      |

#### Idea 2:

$$\neg (p \land q \land r)$$

$$\wedge \neg (p \wedge \neg q \wedge \neg r)$$

$$\wedge \neg (\neg p \wedge \neg q \wedge \neg r)$$

$$p \rightarrow q \equiv ?$$

| p | q | p 	o q |
|---|---|--------|
| Т | Т | Т      |
| Т | F | F      |
| F | Т | Т      |
| F | F | Т      |

Idea 1: Idea 2:

### **Example 1.3.13**

Which proposition is logically equivalent to the negation of  $p \rightarrow q$ ?

### **Example 1.3.13**

Show that the negation of  $p \to q$  is logically equivalent to  $p \land \neg q$ .

## De Morgan's Laws for Logic

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

Statement: Tom is in the football team and the basketball team.

Negation: Tom is not in the football team or not in the basketball team.

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Statement: The number 6 is divisible by 2 or 5.

Negation: The number 6 is not divisible by 2 and not divisible by 5.

## De Morgan's Laws for Logic

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

**Truth Table** 

The converse of  $p \rightarrow q$  is  $q \rightarrow p$ .

Are these two propositions logically equivalent?

The converse of  $p \rightarrow q$  is  $q \rightarrow p$ .

| p | q | $m{p}  ightarrow m{q}$ | $m{q} 	o m{p}$ |
|---|---|------------------------|----------------|
| Т | Т | Т                      | Т              |
| Т | F | F                      | Т              |
| F | Т | Т                      | F              |
| F | F | Т                      | Т              |

Are these two propositions logically equivalent?

#### Example 1.3.7

Write the conditional proposition, *If Jerry receives a scholarship, then he will go to college,* and its converse symbolically and in words.

Also, assuming that Jerry does not receive a scholarship, but wins the lottery and goes to college anyway, find the truth value of the original proposition and its converse.

#### Example 1.3.7

Write the conditional proposition,

If Jerry receives a scholarship, then he will go to college, and its converse symbolically and in words.

Solution: Let p: Jerry receives a scholarship, and q: Jerry goes to college. The given proposition can be written symbolically as  $p \rightarrow q$ . The coverse of the proposition is

If Jerry goes to college, then he receives a scholarship.

The converse can be written as  $q \rightarrow p$ .

Also, assuming that Jerry does not receive a scholarship, but wins the lottery and goes to college anyway, find the truth value of the original proposition and its converse.

The original proposition is true and its converse is false.

#### **Definition 1.3.8**

If p and q are propositions, the proposition p if and only if q, is called a biconditional proposition and is denoted  $p \leftrightarrow q.$ 

#### **Definition 1.3.8**

If p and q are propositions, the proposition p if and only if q,

is called a biconditional proposition and is denoted

 $p \longleftrightarrow q$ .

| p | $\boldsymbol{q}$ | $p \leftrightarrow q$ |
|---|------------------|-----------------------|
| Т | Т                |                       |
| Т | F                |                       |
| F | Т                |                       |
| F | F                |                       |

#### **Definition 1.3.8**

If p and q are propositions, the proposition p if and only if q,

is called a biconditional proposition and is denoted

 $p \longleftrightarrow q$ .

| p | q | $p \leftrightarrow q$ |
|---|---|-----------------------|
| Т | T | Т                     |
| Т | F | F                     |
| F | T | F                     |
| F | F | Т                     |

#### **Definition 1.3.8**

If p and q are propositions, the proposition p if and only if q,

is called a biconditional proposition and is denoted

 $p \longleftrightarrow q$ .

| p | q | $p \leftrightarrow q$ |
|---|---|-----------------------|
| Т | Т | Т                     |
| Т | F | F                     |
| F | Т | F                     |
| F | F | Т                     |

$$\leftrightarrow ::= IFF$$

# **Contrapositive (Transposition) Proposition**

逆否命题 (转换命题)

#### **Definition 1.3.16**

The contrapositive (or transposition) of the conditional proposition  $p \to q$  is the proposition  $q \to p$ .

# **Contrapositive (Transposition) Proposition**

逆否命题 (转换命题)

#### **Definition 1.3.16**

The contrapositive (or transposition) of the conditional proposition  $p \rightarrow q$  is the proposition  $q \rightarrow p$ .

The conditional proposition  $p \to q$  and its contrapositive  $q \to p$  are logically equivalent.

### **Proof by Truth Table**

If p, then q.
If  $\neg q$ , then  $\neg p$ .

| p | $\boldsymbol{q}$ | p 	o q |
|---|------------------|--------|
| Т | T                | Т      |
| Т | F                | F      |
| F | T                | Т      |
| F | F                | Т      |

| $\neg q$ | $\neg p$ | $\neg q \rightarrow \neg p$ |
|----------|----------|-----------------------------|
| F        | F        | Т                           |
| Т        | F        | F                           |
| F        | Т        | Т                           |
| Т        | Т        | Т                           |

#### **Propositional Equivalent**

$$\neg (\neg A) \equiv A$$
 $A \lor A \equiv A$ 
 $A \land A \equiv A$ 
 $(A \land B) \land C \equiv A \land (B \land C)$ 
 $(A \lor B) \lor C \equiv A \lor (B \lor C)$ 
 $A \lor B \equiv B \lor A$ 
 $A \land B \equiv B \land A$ 

$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$
  
 $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$   
 $\neg (A \vee B) \equiv \neg A \wedge \neg B$   
 $\neg (A \wedge B) \equiv \neg A \vee \neg B$   
 $A \wedge (A \vee B) \equiv A$   
 $A \vee (A \wedge B) \equiv A$   
 $A \wedge T \equiv ?$   
 $A \vee F \equiv ?$ 

$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$
  
 $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$   
 $\neg (A \vee B) \equiv \neg A \wedge \neg B$   
 $\neg (A \wedge B) \equiv \neg A \vee \neg B$   
 $A \wedge (A \vee B) \equiv A$   
 $A \vee (A \wedge B) \equiv A$   
 $A \vee (A \wedge B) \equiv A$   
 $A \wedge T \equiv A$   
 $A \vee F \equiv A$ 

$$A \wedge F \equiv ?$$
 $A \vee T \equiv ?$ 
 $A \vee (\neg A) \equiv ?$ 
 $A \wedge (\neg A) \equiv ?$ 
 $A \wedge (\neg A) \equiv ?$ 
 $A \rightarrow B \equiv \neg A \vee B$ 
 $A \leftrightarrow B \equiv (A \rightarrow B) \wedge (B \rightarrow A)$ 
 $A \leftrightarrow B \equiv (A \wedge B) \vee (\neg A \wedge \neg B) ?$  Use Truth table to prove it?

$$A \wedge F \equiv F$$
 $A \vee T \equiv T$ 
 $A \vee (\neg A) \equiv T$ 
 $A \wedge (\neg A) \equiv F$ 
 $A \rightarrow B \equiv \neg A \vee B$ 
 $A \leftrightarrow B \equiv (A \rightarrow B) \wedge (B \rightarrow A)$ 
 $A \leftrightarrow B \equiv (A \wedge B) \vee (\neg A \wedge \neg B)$  Idea 1

$$A \rightarrow B \equiv \neg B \rightarrow \neg A$$
  
 $A \leftrightarrow B \equiv \neg A \leftrightarrow \neg B$  ?  
 $(A \rightarrow B) \land (A \rightarrow \neg B) \equiv \neg A$ 

$$A \rightarrow B \equiv \neg B \rightarrow \neg A$$
  
 $A \leftrightarrow B \equiv \neg A \leftrightarrow \neg B$   
 $(A \rightarrow B) \land (A \rightarrow \neg B) \equiv \neg A$ 

$$A \rightarrow B \equiv \neg B \rightarrow \neg A$$
  
 $A \leftrightarrow B \equiv \neg A \leftrightarrow \neg B$   
 $(A \rightarrow B) \land (A \rightarrow \neg B) \equiv \neg A$ 

**1** Use truth table.

$$A \rightarrow B \equiv \neg B \rightarrow \neg A$$
  
 $A \leftrightarrow B \equiv \neg A \leftrightarrow \neg B$   
 $(A \rightarrow B) \land (A \rightarrow \neg B) \equiv \neg A$ 

2 Simplify.

# **Simplifying Statement**

$$\neg(\neg p \land q) \land (p \lor q)$$

A tautology is a statement that is always true.

$$p \lor \neg p$$
$$(p \land q) \lor (\neg q \land p) \lor (\neg p \land \neg q) \lor (\neg p \land q)$$

Described A compound proposition is called tautology if and only if it is true for all possible truth values of its propositional variables.

🔊 It contains only T (Truth) in last column of its truth table.

Is proposition  $p \rightarrow (p \lor q)$  a tautology?

Show that  $(p \land q) \rightarrow (p \lor q)$  is a tautology.

A contradiction is a statement that is always false. (negation of a tautology)

$$p \land \neg p$$
$$(p \lor q) \land (\neg q \lor p) \land (\neg p \lor \neg q) \land (\neg p \lor q)$$

⊗ A compound proposition is called contradiction if and only if it is false
for all possible truth values of its propositional variables.

🔊 It contains only F (False) in last column of its truth table.

# **Contingency**

⊗ A compound proposition is called contingency if and only if it is neither a tautology nor a contradiction.

🔊 It contains both T (True) and F (False) in last column of its truth table.

# Contingency

$$((p \land r) \lor (q \land r)) \land (\neg(p \lor q) \lor r)$$

- (A) It is a tautology.
- (B) It is a contradiction.
- (C) It is not sure.

Solution: (C)

⊗ A compound proposition is called contingency if and only if it is neither
a tautology nor a contradiction.

🔊 It contains both T (True) and F (False) in last column of its truth table.

# If, Only-If

- You will succeed if you work hand.
- You will succeed only if you work hard.

r if s means "if s then r"
We also say r is a necessary condition for s.

r only if s means "if r then s"
We also say r is a sufficient condition for s.

# Math vs Language

Parent: if you don't clean your room, then you can't watch a DVD.



This sentence says  $\neg C \rightarrow \neg D$ 

So 
$$C \leftrightarrow D$$

In real life it also means C o D

## Math vs Language

Parent: if you don't clean your room, then you can't watch a DVD.



This sentence says  $\neg C \rightarrow \neg D$ 

So 
$$C \leftrightarrow D$$

In real life it also means  $C \rightarrow D$ 

Mathematician: if a number x greater than 2 is not an odd number, then x is not a prime number.

This sentence says  $\neg O \rightarrow \neg P$ 

But of course it doesn't mean  $O \rightarrow P$ 

## **Problem-Solving Tips**

- In formal logic, "if" and "if and only if" are quite different. The conditional proposition p → q (if p then q) is true except when p is true and q is false. On the other hand, the biconditional proposition p ↔ q (p if and only if q) is true precisely when p and q are both true or both false.
- To determine whether propositions P and Q, made up of the propositions p<sub>1</sub>,..., p<sub>n</sub>, are logically equivalent, write the truth tables for P and Q. If all of the entries for P and Q are always both true or both false, then P and Q are equivalent. If some entry is true for one of P or Q and false for the other, then P and Q are not equivalent.
- De Morgan's laws for logic

$$\neg (p \lor q) \equiv \neg p \land \neg q, \qquad \neg (p \land q) \equiv \neg p \lor \neg q$$

give formulas for negating "or" ( $\vee$ ) and negating "and" ( $\wedge$ ). Roughly speaking, negating "or" results in "and," and negating "and" results in "or."

## **Problem-Solving Tips**

Example 1.3.13 states a very important equivalence

$$\neg (p \to q) \equiv p \land \neg q,$$

which we will meet throughout this book. This equivalence shows that the negation of the conditional proposition can be written using the "and" ( $\land$ ) operator. Notice that there is no conditional operator on the right-hand side of the equation.