Statistics 185 - Introduction to Dimension Reduction Course Introduction and Overview

Instructor: Alex Young

Tuesday September 3

Examples of High-Dimensional data

Ubiquitous in the modern data-driven economy

- Static Images
 - Handwritten digits, signature
 - Medical images
- Movies/Audio/Signals
- Genetic data
 - Personalized medicine
 - Genotype/phenotype connections
- Textual data
 - Spam detection
- Patient and consumer data
 - Who is likely to buy (or die)?

What is high-dimensional?

Depends on the number of samples?

Consider the d-dimensional box $[0,1]^d$ divided into bins by cutting 10 slabs in each direction.

НННННН

Figure: $1D \rightarrow 10$ bins

Figure: 2D \rightarrow 100 bins

What is high-dimensional?

Depends on the number of samples?

Consider the d-dimensional box $[0,1]^d$ divided into bins by cutting 10 slabs in each direction.

Figure: $1D \rightarrow 10$ bins

Figure: 2D \rightarrow 100 bins

Exponential in the number of samples

- \bullet If we want to make one observation in each bin, we need 10^d samples.
- \bullet A 19 imes 19 pixel image translates to **one** 19²-dimensional datum.
 - Need 10³⁸¹ samples
 - Estimated 10⁸² atoms in the universe!
- Assumes uniform distribution but the idea generalizes.

Curse of Dimensionality (Bellman)

- ullet High dimension o sparse data
 - Need exponentially increasing (in dimension samples), otherwise ...

Curse of Dimensionality (Bellman)

- $\bullet \ \ \mathsf{High} \ \ \mathsf{dimension} \ \to \ \mathsf{sparse} \ \ \mathsf{data}$
 - Need exponentially increasing (in dimension samples), otherwise ...
 - $\bullet \ \mathsf{Model} + \mathsf{High\text{-}dimensional} \ \mathsf{data} = \mathsf{Overfitting} \ \mathsf{(often)}$

Curse of Dimensionality (Bellman)

- $\bullet \ \ \mathsf{High} \ \ \mathsf{dimension} \ \to \ \mathsf{sparse} \ \ \mathsf{data}$
 - Need exponentially increasing (in dimension samples), otherwise ...
 - Model + High-dimensional data = Overfitting (often)
- Model + Reduced dimensions = Generalizability (hopefully)

Curse of Dimensionality (Bellman)

- ullet High dimension o sparse data
 - Need exponentially increasing (in dimension samples), otherwise ...
 - Model + High-dimensional data = Overfitting (often)
- Model + Reduced dimensions = Generalizability (hopefully)

Reasons for Dimension Reduction

Feature extraction or selection

Curse of Dimensionality (Bellman)

- ullet High dimension o sparse data
 - Need exponentially increasing (in dimension samples), otherwise ...
 - Model + High-dimensional data = Overfitting (often)
- Model + Reduced dimensions = Generalizability (hopefully)

- Feature extraction or selection
- Learn geometric features from data that cannot be visualized

Curse of Dimensionality (Bellman)

- ullet High dimension o sparse data
 - Need exponentially increasing (in dimension samples), otherwise ...
 - Model + High-dimensional data = Overfitting (often)
- Model + Reduced dimensions = Generalizability (hopefully)

- Feature extraction or selection
- Learn geometric features from data that cannot be visualized
- Data compression

Curse of Dimensionality (Bellman)

- ullet High dimension o sparse data
 - Need exponentially increasing (in dimension samples), otherwise ...
 - Model + High-dimensional data = Overfitting (often)
- Model + Reduced dimensions = Generalizability (hopefully)

- Feature extraction or selection
- Learn geometric features from data that cannot be visualized
- Data compression
- Reduced computation cost

Curse of Dimensionality (Bellman)

- ullet High dimension o sparse data
 - Need exponentially increasing (in dimension samples), otherwise ...
 - Model + High-dimensional data = Overfitting (often)
- Model + Reduced dimensions = Generalizability (hopefully)

- Feature extraction or selection
- Learn geometric features from data that cannot be visualized
- Data compression
- Reduced computation cost
- Removal of redundant information

Example - Nonnegative Matrix Factorization

Figure: Image taken from *Elements of Statistical Learning* by Hastie, Tibshirani, and Friedman, originally from Lee and Seung (1999)

Example - Vector Quantization /k-means

Figure: Image taken from *Elements of Statistical Learning* by Hastie, Tibshirani, and Friedman, originally from Lee and Seung (1999)

Example - Principal Component Analysis

Figure: Image taken from *Elements of Statistical Learning* by Hastie, Tibshirani, and Friedman, originally from Lee and Seung (1999)

Example - Principal Component Analysis

$$\hat{f}(\lambda) = \bar{x} + \lambda_1 v_1 + \lambda_2 v_2
= + \lambda_1 \cdot + \lambda_2 \cdot \quad (14.55)$$

Figure: Images and equation taken from *Elements of Statistical Learning* by Hastie, Tibshirani, and Friedman

Hierarchical Clustering

Figure: Image taken from Modern Multivariate Statistical Techniques by Izenman

Hierarchical Clustering

Figure: Image of Hierarchical Clustering for tumor microarray data taken from *Elements of Statistical Learning* by Hastie, Tibshirani, and Friedman

Spectral Clustering

Figure: Image taken from *Elements of Statistical Learning* by Hastie, Tibshirani, and Friedman

Taxonomy of Dimension Reduction (by Convexity)

Image from dimRed and coRanking—Unifying Dimensionality Reduction in R by Guido Kraemer, Markus Reichstein, and Miguel D. Mahecha

Taxonomy of Dimension Reduction (by Linearity)

Image from *Dimensionality Reduction: A Comparative Review* by Laurens van der Maaten, Eric Postmam, and H. Jaap Van Den Herik

Instructor: Alex Young Stat 185 - Overview Tuesday September 3

Recent trends in Dimension Reduction Research

- Google Scholar results for 'Dimension Reduction' search
 - 2017 88,000 articles
 - 2018 72,700 articles
 - 2019 40,000 articles
- Expanded into more specialized subfields, i.e. manifold learning

Recent trends in Dimension Reduction Research

- Google Scholar results for 'Dimension Reduction' search
 - 2017 88,000 articles
 - 2018 72,700 articles
 - 2019 40,000 articles
- Expanded into more specialized subfields, i.e. manifold learning

An Enormous and Active Field

- Many missing topics from previous slides
 - Specialized (variants of existing) algorithms being developed for specific needs
 - Primary focus of listed techniques is on continuous data
 - Graphical and/or discrete data receiving increased interest
- Implementation for massive datasets drives parallel research in computation
 - Messy landscape of competing codes, packages, and applications

14 / 22

Instructor: Alex Young Stat 185 - Overview Tuesday September 3

An introduction to the field

- Cannot give an exhaustive summary
 - Field is still evolving → ever-expanding list of topics
 - Best computational tool(s) is a topic of much debate
 - Computation alone can miss important insight
- High-dimensional geometry can be challenging counterintuitive weird
 - Cannot directly visualize to detect patterns in data
 - Different techniques \rightarrow different behaviors/goals \rightarrow different insights
 - Manifold Learning, Clustering/Grouping, Classification, etc

An introduction to the field

- Cannot give an exhaustive summary
 - ullet Field is still evolving o ever-expanding list of topics
 - Best computational tool(s) is a topic of much debate
 - Computation alone can miss important insight
- High-dimensional geometry can be challenging counterintuitive weird
 - Cannot directly visualize to detect patterns in data
 - $\bullet \ \, \mathsf{Different} \,\, \mathsf{techniques} \, \to \, \mathsf{different} \,\, \mathsf{behaviors/goals} \, \to \, \mathsf{different} \,\, \mathsf{insights} \\$
 - Manifold Learning, Clustering/Grouping, Classification, etc

Goal: Learn to critique

- Demonstrate the practice of using careful analysis to explore (classic) techniques with the aim of learning:
 - What behavior(s) they aim to capture
 - Their strengths, weaknesses, limitations, and challenges
 - When they will work and when they are likely to fail

Instructor: Alex Young Stat 185 - Overview Tuesday September 3 15 / 22

$\mathsf{Data} \to \mathsf{Vectors}$

- Observe d variables from N subjects, i.e. N vectors in \mathbb{R}^d
- Mean → vector; Covariance → Matrix
 - Multivariate probability/statistics

$\mathsf{Data} \to \mathsf{Vectors}$

- Observe d variables from N subjects, i.e. N vectors in \mathbb{R}^d
- Mean \rightarrow vector; Covariance \rightarrow Matrix
 - Multivariate probability/statistics

What does the cloud of data points look like?

- If we could view the points, are they concentrated on/near some shape of lower dimension?
 - ullet e.g. Observations in \mathbb{R}^3 near a smooth curve/line
 - ullet e.g. Observations in \mathbb{R}^{381} near a 71-dimensional affine subspace?
- If we cannot visualize, how can we make sense of the geometric features?
 - Linear algebra

Central Assumption

• There is some lower dimensional structure inherent to the data!

Central Assumption

• There is some lower dimensional structure inherent to the data!

Goal: Minimal 'information' loss

- Replace observation in \mathbb{R}^d with compressed representation in \mathbb{R}^k where $k \ll d$
- Different notions of 'information', but maximization/minimization is common aim
 - Optimization, Multivariable Calculus

$$w^* = \arg\max_{\|w\|=1} \|Xw\|$$

$$(W^*,H^*) = \arg\max\sum\sum\sum[x_{ij}\log(WH)_{ij} - (WH)_{ij}]$$

Instructor: Alex Young

Course Overview

Tentative Schedule

The proposed schedule could changed depending upon a myriad of factors.

Week	Date	Topic	Date	Topic
1	9/3	Course Overview (HW#1 out)	9/5	Review: Multivar. Stats.
2	9/10	PCA I (HW#1 due)	9/12	PCA II
3	9/17	PCA III (HW#2 out)	9/19	CCA I
4	9/24	CCA II (HW#2 due)	9/26	NMF I (HW#3 out)
5	10/1	NMF II	10/3	NMF III (HW#3 due)
6	10/8	MDS I (HW#4 out)	10/10	MDS II
7	10/15	MDS III (HW#4 due)	10/17	Midterm (MT coding out)
8	10/22	ISOMAP	10/24	LLE (MT coding due)
9	10/29	Probability Review(HW#5 out)	10/31	Johnson-Lindenstrauss
10	11/5	Compressed Sensing (HW#5 due)	11/7	Hierarchical Clustering (HW#6 out)
11	11/12	Center-based clustering	11/14	Spectral Clustering (HW#6 due)
12	11/19	Spectral Clustering (HW#7 out)	11/21	Kernel Methods
13	11/26	Google PageRank (HW#7 due)	11/28	Thanksgiving: No class
14	12/3	Variational Autoencoder	12/4	Fall Reading Period: No class
Final Exam Period	12/	Term Papers Due		

Course Layout - Assignments/Grading

Homework (40%)

- 7 total assignments, lowest score dropped
 - Homework #1 available on Canvas (due next Tuesday)
- Each assignment will include some (guided) coding portions in R
 - Experience in R a plus but not required
 - Interface through RStudio
- RMarkdown files, complete and submit through Canvas as pdf/html
 - Write answers in Markdown (similar to LATEX)
 - Good preparation for writing/formatting term paper (more on this shortly)
- Encouraged to work together, but must submit solutions written in your own words

Course Layout - Assignments/Grading

Midterm (20%)

- Written portion (10%)
 - In-class on Thursday October 17th
 - To cover PCA through MDS (see calendar)
 - Similar content to homework sets.
 - Detailed discussion on layout/content of the exam on Tuesday October 15th
- Coding portion (10%)
 - Released Thursday October 17th; Due Thursday October 24th
 - RMarkdown file similar to homework
 - No collaboration allowed but Office Hours encouraged!

Course Layout - Assignments/Grading

Term Paper (40%)

- Review the formulation, goals, and limitations of a dimension reduction technique with (at least) one real data application
 - Optional: extension to different setting, rigorous proof of mathematical/statistical properties
- Select topic by November 10th (via email)
 - Recommended topics in syllabus
 - Some examples: Diffusion Maps, MVU, ICA, t-SNE and Spherelets
 - Students welcome to propose their own topics too
 - No more than two students per topic preferably
- RMarkdown and LATEX templates will be available on Canvas
- All mathematical expressions must be appropriately typeset
 - "f_x(x) = int f(x,y) dy = d/dx F(x)" not acceptable
- Due Saturday December 14th at 2:00 PM (final exam time)
 - Office hours will be added during reading period to discuss papers
 - Submit via canvas as pdf/html

Final thought - textbooks

Course notes will be sufficient but ...

Freely available e-references

- Foundations of Data Science by Blum, Hopcroft, Kannan
- The Elements of Statistical Learning by Hastie, Tibrishani, Friedman
- Modern Multivariate Statistical Analysis by Izenman
- Links to each reference in syllabus on Canvas