

EDITED BY HWAIYU GENG



# INTERNET OF THINGS AND DATA ANALYTICS HANDBOOK

# INTERNET OF THINGS AND DATA ANALYTICS HANDBOOK

### **Edited by**

#### **HWAIYU GENG**

Amica Research Palo Alto, CA, USA



Copyright © 2017 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

#### Library of Congress Cataloging-in-Publication Data

Names: Geng, Hwaiyu, editor.

Title: Internet of things and data analytics handbook / edited by Hwaiyu Geng.

Description: Hoboken, New Jersey: John Wiley & Sons, 2017. | Includes bibliographical references and index.

Identifiers: LCCN 2016039867| ISBN 9781119173649 (cloth) | ISBN 9781119173625 (epub) | ISBN 9781119173632 (Adobe PDF)

 $Subjects: LCSH: Internet\ of\ things.\ |\ Data\ mining.\ |\ Cooperating\ objects\ (Computer\ systems)\ |\ Big\ data.$ 

Classification: LCC TK5105.8857 .I58 2017 | DDC 004.67/8–dc23

Cover image: Pitju/gettyimages; Oleksiy Mark/gettyimages; Maxiphoto/gettyimage

Set in 10/12pt Times by SPi Global, Pondicherry, India

LC record available at https://lccn.loc.gov/2016039867

Printed in the United States of America

## **CONTENTS**

| Li | st of ( | Contributors                                                                            | XIX   |
|----|---------|-----------------------------------------------------------------------------------------|-------|
| Fo | rewo    | rd                                                                                      | xxiii |
| Te | chnic   | al Advisory Board Members                                                               | xxvi  |
| Pr | eface   |                                                                                         | xxvii |
| A  | knov    | vledgments                                                                              | xxix  |
| Al | out t   | he Companion Website                                                                    | xxxi  |
| PA | ART I   | INTERNET OF THINGS                                                                      | 1     |
| 1  | and     | rnet of Things and Data Analytics in the Cloud with Innovation Sustainability  iyu Geng | 3     |
|    | 1.1     | Introduction                                                                            | 3     |
|    | 1.2     | The IoT and the Fourth Industrial Revolution                                            | 4     |
|    | 1.3     | Internet of Things Technology                                                           | 6     |
|    | 1.4     | Standards and Protocols                                                                 | 11    |
|    | 1.5     | IoT Ecosystem                                                                           | 11    |
|    | 1.6     | Definition of Big Data                                                                  | 13    |
|    | 1.7     | IoT, Data Analytics, and Cloud Computing                                                | 18    |
|    | 1.8     | Creativity, Invention, Innovation, and Disruptive Innovation                            | 18    |
|    | 1.9     | Polya's "How to Solve it"                                                               | 20    |
|    | 1.10    | Business Plan and Business Model                                                        | 20    |
|    | 1.11    | Conclusion and Future Perspectives                                                      | 23    |
|    | Refe    | prences                                                                                 | 24    |
|    | Furt    | her Reading                                                                             | 25    |
|    | Usef    | ful Websites                                                                            | 27    |

vi CONTENTS

| 2 | Digital Services and Sustainable Solutions                                                      | 29        |  |  |
|---|-------------------------------------------------------------------------------------------------|-----------|--|--|
|   | Rikke Gram-Hansen                                                                               |           |  |  |
|   | 2.1 Introduction                                                                                | 29        |  |  |
|   | 2.2 Why IoT is not Just "Nice to Have"                                                          | 30        |  |  |
|   | 2.3 Services in a Digital Revolution                                                            | 32        |  |  |
|   | 2.4 Mobile Digital Services and the Human Sensor                                                | 32        |  |  |
|   | 2.5 Not Just Another App                                                                        | 33        |  |  |
|   | 2.6 The Hidden Life of Things                                                                   | 34        |  |  |
|   | 2.7 The Umbrellas are not what they Seem                                                        | 35        |  |  |
|   | <ul><li>2.8 Interacting with the Invisible</li><li>2.9 Society as Open Source</li></ul>         | 36<br>36  |  |  |
|   | 2.10 Learn from your Hackers                                                                    | 37        |  |  |
|   | 2.11 Ensuring High-Quality Services to Citizens                                                 | 37        |  |  |
|   | 2.12 Government as a Platform                                                                   | 38        |  |  |
|   | 2.13 Conclusion                                                                                 | 38        |  |  |
|   | References                                                                                      | 39        |  |  |
| 3 | The Industrial Internet of Things (IIoT): Applications and Ta                                   | xonomy 41 |  |  |
|   | 3.1 Introduction to the IIoT                                                                    | 41        |  |  |
|   | 3.2 Some Examples of IIoT Applications                                                          | 43        |  |  |
|   | 3.3 Toward a Taxonomy of the IIoT                                                               | 52        |  |  |
|   | 3.4 Standards and Protocols for Connectivity                                                    | 66        |  |  |
|   | 3.5 Connectivity Architecture for the IIoT                                                      | 73        |  |  |
|   | 3.6 Data-Centricity Makes DDS Different                                                         | 79        |  |  |
|   | 3.7 The Future of the IIoT                                                                      | 80        |  |  |
|   | References                                                                                      | 81        |  |  |
| 4 | Strategic Planning for Smarter Cities                                                           | 83        |  |  |
|   | Jonathan Reichental                                                                             | 02        |  |  |
|   | 4.1 Introduction                                                                                | 83<br>84  |  |  |
|   | <ul><li>4.2 What is a Smart City?</li><li>4.3 Smart Cities and the Internet of Things</li></ul> | 85        |  |  |
|   | 4.4 Why Strategic Planning Matters                                                              | 86        |  |  |
|   | 4.5 Beginning the Journey: First Things First                                                   | 87        |  |  |
|   | 4.6 From Vision to Objectives to Execution                                                      | 89        |  |  |
|   | 4.7 Pulling it all Together                                                                     | 91        |  |  |
|   | References                                                                                      | 92        |  |  |
| 5 | Next-Generation Learning: Smart Medical Team Training                                           | 95        |  |  |
|   | Brenda Bannan, Shane Gallagher and Bridget Lewis                                                |           |  |  |
|   | 5.1 Introduction                                                                                | 95        |  |  |
|   | 5.2 Learning, Analytics, and Internet of Things                                                 | 96        |  |  |

| CO | NTENTS                                                         | vii |
|----|----------------------------------------------------------------|-----|
|    | 5.3 IoT Learning Design Process                                | 98  |
|    | 5.4 Conclusion                                                 | 103 |
|    | References                                                     | 104 |
|    | Further Reading                                                | 104 |
| 6  | The Brain-Computer Interface in the Internet of Things         | 107 |
|    | Jim McKeeth                                                    |     |
|    | 6.1 Introduction                                               | 107 |
|    | 6.2 The Science Behind Reading the Brain                       | 109 |
|    | 6.3 The Science of Writing to the Brain                        | 112 |
|    | 6.4 The Human Connectome Project                               | 113 |
|    | 6.5 Consumer Electroencephalography Devices                    | 113 |
|    | 6.6 Summary                                                    | 115 |
|    | References                                                     | 116 |
| 7  | IoT Innovation Pulse                                           | 119 |
|    | John Mattison                                                  |     |
|    | 7.1 The Convergence of Exponential Technologies                |     |
|    | as a Driver of Innovation                                      | 119 |
|    | 7.2 Six Dimensions of the Plecosystem                          | 119 |
|    | 7.3 Five Principles of the Plecosystem                         | 120 |
|    | 7.4 The Biologic Organism Analogy for the IoT                  | 121 |
|    | 7.5 Components for Innovation with the Organismal Analog       | 122 |
|    | 7.6 Spinozan Value Trade-Offs                                  | 123 |
|    | 7.7 Human IoT Sensor Networks                                  | 123 |
|    | 7.8 Role of the IoT in Social Networks                         | 124 |
|    | 7.9 Security and Cyberthreat Resilience                        | 124 |
|    | 7.10 IoT Optimization for Sustainability of our Planet         | 124 |
|    | 7.11 Maintenance of Complex IoT Networks                       | 125 |
|    | 7.12 The Accordion Model of Learning as a Source of Innovation | 126 |
|    | 7.13 Summary                                                   | 126 |
|    | References                                                     | 127 |
|    | Further Reading                                                | 127 |
| DA | ART II INTERNET OF THINGS TECHNOLOGIES                         | 120 |
| PA | ART II INTERNET OF THINGS TECHNOLOGIES                         | 129 |
| 8  | Internet of Things Open-Source Systems                         | 131 |
|    | Scott Amyx                                                     |     |
|    | 8.1 Introduction                                               | 131 |
|    | 8.2 Background of Open Source                                  | 131 |
|    | 8.3 Drivers for Open Source                                    | 132 |
|    | 8.4 Benefits of Using Open Source                              | 132 |
|    | 8.5 IoT Open-Source Consortiums and Projects                   | 134 |

| VIII  | CONTENTS |
|-------|----------|
| Y 111 | CONTENTS |

|    | 8.6 Finding the Right Open-Source Project for the J                                | Job 137            |
|----|------------------------------------------------------------------------------------|--------------------|
|    | 8.7 Conclusion                                                                     | 143                |
|    | Glossary                                                                           | 143                |
|    | References                                                                         | 144                |
|    | Further Reading                                                                    | 146                |
| 9  | MEMS: An Enabling Technology for the Internet of<br>Michael A. Huff                | f Things (IoT) 147 |
|    | 9.1 The Ability to Sense, Actuate, and Control                                     | 148                |
|    | 9.2 What are MEMS?                                                                 | 150                |
|    | 9.3 MEMS as an Enabling Technology for the IoT                                     | 153                |
|    | 9.4 MEMS Manufacturing Techniques                                                  | 155                |
|    | 9.5 Examples of MEMS Sensors                                                       | 158                |
|    | 9.6 Example of MEMS Actuator                                                       | 163                |
|    | 9.7 The Future of MEMS for the IoT                                                 | 163                |
|    | 9.8 Conclusion                                                                     | 165                |
|    | References                                                                         | 165                |
|    | Other Information                                                                  | 166                |
| 10 | Electro-Optical Infrared Sensor Technologies                                       |                    |
|    | for the Internet of Things                                                         | 167                |
|    | Venkataraman Sundareswaran, Henry Yuan, Kai Song,<br>Joseph Kimchi and Jih-Fen Lei |                    |
|    | 10.1 Introduction                                                                  | 167                |
|    | 10.2 Sensor Anatomy and Technologies                                               | 169                |
|    | 10.3 Design Considerations                                                         | 176                |
|    | 10.4 Applications                                                                  | 179                |
|    | 10.5 Conclusion                                                                    | 184                |
|    | References                                                                         | 185                |
|    | Further Reading                                                                    | 185                |
| 11 | I IPv6 for IoT and Gateway                                                         | 187                |
|    | Geoff Mulligan                                                                     |                    |
|    | 11.1 Introduction                                                                  | 187                |
|    | 11.2 IP: The Internet Protocol                                                     | 187                |
|    | 11.3 IPv6: The Next Internet Protocol                                              | 189                |
|    | 11.4 6LoWPAN: IP for IoT                                                           | 191                |
|    | 11.5 Gateways: A Bad Choice                                                        | 192                |
|    | 11.6 Example IoT Systems                                                           | 192                |
|    | 11.7 An IoT Data Model                                                             | 194                |
|    | 11.8 The Problem of Data Ownership                                                 | 194                |
|    | 11.9 Managing the Life of an IoT Device                                            | 195                |
|    | 11.10 Conclusion: Looking forward                                                  | 195                |
|    | Further Reading                                                                    | 196                |
|    |                                                                                    |                    |

CONTENTS ix

| 12 | Wireless Sensor Networks                                         | 197 |
|----|------------------------------------------------------------------|-----|
|    | David Y. Fong                                                    |     |
|    | 12.1 Introduction                                                | 197 |
|    | 12.2 Characteristics of Wireless Sensor Networks                 | 198 |
|    | 12.3 Distributed Computing                                       | 201 |
|    | 12.4 Parallel Computing                                          | 202 |
|    | 12.5 Self-Organizing Networks                                    | 205 |
|    | 12.6 Operating Systems for Sensor Networks                       | 206 |
|    | 12.7 Web of Things (WoT)                                         | 207 |
|    | 12.8 Wireless Sensor Network Architecture                        | 208 |
|    | 12.9 Modularizing the Wireless Sensor Nodes                      | 209 |
|    | 12.10 Conclusion                                                 | 210 |
|    | References                                                       | 210 |
|    | Further Reading                                                  | 213 |
| 13 | <b>Networking Protocols and Standards for Internet of Things</b> | 215 |
|    | Tara Salman and Raj Jain                                         |     |
|    | 13.1 Introduction                                                | 215 |
|    | 13.2 IoT Data Link Protocols                                     | 218 |
|    | 13.3 Network Layer Routing Protocols                             | 224 |
|    | 13.4 Network Layer Encapsulation Protocols                       | 225 |
|    | 13.5 Session Layer Protocols                                     | 227 |
|    | 13.6 IoT Management Protocols                                    | 232 |
|    | 13.7 Security in IoT Protocols                                   | 233 |
|    | 13.8 IoT Challenges                                              | 234 |
|    | 13.9 Summary                                                     | 235 |
|    | References                                                       | 235 |
| 14 | IoT Architecture                                                 | 239 |
|    | Shyam Varan Nath                                                 |     |
|    | 14.1 Introduction                                                | 239 |
|    | 14.2 Architectural Approaches                                    | 239 |
|    | 14.3 Business Markitecture                                       | 242 |
|    | 14.4 Functional Architecture                                     | 243 |
|    | 14.5 Application Architecture                                    | 243 |
|    | 14.6 Data and Analytics Architecture                             | 246 |
|    | 14.7 Technology Architecture                                     | 246 |
|    | 14.8 Security and Governance                                     | 248 |
|    | References                                                       | 249 |
| 15 | A Designer's Guide to the Internet of Wearable Things            | 251 |
|    | David Hindman and Peter Burnham                                  |     |
|    | 15.1 Introduction                                                | 251 |
|    | 15.2 Interface Glanceability                                     | 252 |

| X | CONTENTS |
|---|----------|
|   |          |

|    | 15.3 The Right Data at the Right Time                                                                                              | 254        |
|----|------------------------------------------------------------------------------------------------------------------------------------|------------|
|    | 15.4 Consistency Across Channels                                                                                                   | 255        |
|    | 15.5 From Public to Personal                                                                                                       | 260        |
|    | 15.6 Nonvisual UI                                                                                                                  | 262        |
|    | 15.7 Emerging Patterns                                                                                                             | 264        |
|    | 15.8 Conclusion                                                                                                                    | 265        |
|    | References                                                                                                                         | 266        |
|    | Further Reading                                                                                                                    | 266        |
| 16 | Beacon Technology with IoT and Big Data                                                                                            | 267        |
|    | Nick Stein and Stephanie Urbanski                                                                                                  |            |
|    | 16.1 Introduction to Beacons                                                                                                       | 267        |
|    | 16.2 What is Beacon Technology                                                                                                     | 269        |
|    | 16.3 Beacon and BLE Interaction                                                                                                    | 270        |
|    | 16.4 Where Beacon Technology can be Applied/Used                                                                                   | 271        |
|    | 16.5 Big Data and Beacons                                                                                                          | 273        |
|    | 16.6 San Francisco International Airport (SFO)                                                                                     | 274        |
|    | 16.7 Future Trends and Conclusion                                                                                                  | 280        |
|    | References                                                                                                                         | 281        |
| 17 | SCADA Fundamentals and Applications in the IoT                                                                                     | 283        |
|    | Rich Hunzinger                                                                                                                     |            |
|    | 17.1 Introduction                                                                                                                  | 283        |
|    | 17.2 What Exactly is SCADA?                                                                                                        | 285        |
|    | 17.3 Why is SCADA the Right Foundation for an IoT Platform?                                                                        | 287        |
|    | 17.4 Case Study: Algae Lab Systems                                                                                                 | 290        |
|    | 17.5 The Future of SCADA and the Potential of the IoT                                                                              | 290        |
|    | References                                                                                                                         | 293        |
|    | Further Reading                                                                                                                    | 293        |
| PA | RT III DATA ANALYTICS TECHNOLOGIES                                                                                                 | 295        |
| 18 | Data Analysis and Machine Learning Effort in Healthcare:                                                                           |            |
|    | Organization, Limitations, and Development of an Approach                                                                          | 297        |
|    | Oleg Roderick, Nicholas Marko, David Sanchez and Arun Aryasomajula                                                                 |            |
|    |                                                                                                                                    | 207        |
|    | 18.1 Introduction                                                                                                                  | 297        |
|    | 18.2 Data Science Problems in Healthcare                                                                                           | 298        |
|    | 18.3 Qualifications and Personnel in Data Science                                                                                  | 306        |
|    | 18.4 Data Acquisition and Transformation                                                                                           | 310<br>316 |
|    | <ul><li>18.5 Basic Principles of Machine Learning</li><li>18.6 Case Study: Prediction of Rare Events on Nonspecific Data</li></ul> | 316        |
|    | 18.7 Final Remarks                                                                                                                 | 321        |
|    | References                                                                                                                         | 324<br>325 |
|    | 13010101000                                                                                                                        | . 1 4 1    |

CONTENTS xi

| 19 | Data Analytics and Predictive Analytics in the Era of Big Data | 329 |
|----|----------------------------------------------------------------|-----|
|    | Amy Shi-Nash and David R. Hardoon                              |     |
|    | 19.1 Data Analytics and Predictive Analytics                   | 329 |
|    | 19.2 Big Data and Impact to Analytics                          | 334 |
|    | 19.3 Conclusion                                                | 343 |
|    | References                                                     | 344 |
| 20 | Strategy Development and Big Data Analytics                    | 347 |
|    | Neil Fraser                                                    |     |
|    | 20.1 Introduction                                              | 347 |
|    | 20.2 Maximizing the Influence of Internal Inputs               |     |
|    | for Strategy Development                                       | 348 |
|    | 20.3 A Higher Education Case Study                             | 352 |
|    | 20.4 Maximizing the Influence of External Inputs               |     |
|    | for Strategy Development                                       | 356 |
|    | 20.5 Conclusion                                                | 363 |
|    | References                                                     | 363 |
|    | Further Reading                                                | 364 |
| 21 | Risk Modeling and Data Science                                 | 365 |
|    | Joshua Frank                                                   |     |
|    | 21.1 Introduction                                              | 365 |
|    | 21.2 What is Risk Modeling                                     | 365 |
|    | 21.3 The Role of Data Science in Risk Management               | 366 |
|    | 21.4 How to Prepare and Validate Risk Model                    | 367 |
|    | 21.5 Tips and Lessons Learned                                  | 374 |
|    | 21.6 Future Trends and Conclusion                              | 380 |
|    | References                                                     | 381 |
| 22 | Hadoop Technology                                              | 383 |
|    | Scott Shaw                                                     |     |
|    | 22.1 Introduction                                              | 383 |
|    | 22.2 What is Hadoop Technology and Application?                | 384 |
|    | 22.3 Why Hadoop?                                               | 386 |
|    | 22.4 Hadoop Architecture                                       | 388 |
|    | 22.5 HDFS: What and how to use it                              | 391 |
|    | 22.6 YARN: What and how to use it                              | 392 |
|    | 22.7 Mapreduce: What and how to use it                         | 394 |
|    | 22.8 Apache: What and how to use it                            | 395 |
|    | 22.9 Future Trend and Conclusion                               | 396 |
|    | References                                                     | 397 |

xii CONTENTS

| 23 | Secur  | ity of IoT Data: Context, Depth, and Breadth Across Hadoop | 399 |
|----|--------|------------------------------------------------------------|-----|
|    | Pratik | Verma                                                      |     |
|    | 23.1   | Introduction                                               | 399 |
|    | 23.2   | IoT Data in Hadoop                                         | 402 |
|    | 23.3   | Security in IoT Platforms Built on Hadoop                  | 402 |
|    | 23.4   | Architectural Considerations for Implementing              |     |
|    |        | Security in Hadoop                                         | 403 |
|    | 23.5   | Breadth of Control                                         | 403 |
|    | 23.6   | <b>3</b>                                                   | 404 |
|    | 23.7   | •                                                          | 404 |
|    | 23.8   | Conclusion                                                 | 405 |
|    | Refere | ences                                                      | 406 |
| PA | RT IV  | SMART EVERYTHING                                           | 407 |
| 24 | Conn   | ected Vehicle                                              | 409 |
|    | Adrian | Pearmine                                                   |     |
|    | 24.1   |                                                            | 409 |
|    | 24.2   | , ,                                                        | 410 |
|    | 24.3   | Connected Vehicles from the Department                     |     |
|    |        | of Transportation Perspective                              | 413 |
|    | 24.4   | Policy Issues Around DSRC                                  | 414 |
|    | 24.5   | Alternative forms of V2X Communications                    | 414 |
|    | 24.6   | DOT Connected Vehicle Applications                         | 415 |
|    | 24.7   | Other Connected Vehicle Applications                       | 418 |
|    | 24.8   | Migration Path from Connected and Automated                |     |
|    |        | to Fully Autonomous Vehicles                               | 419 |
|    | 24.9   | Autonomous Vehicle Adoption Predictions                    | 419 |
|    | 24.10  | Market Growth for Connected and Autonomous                 |     |
|    |        | Vehicle Technology                                         | 422 |
|    | 24.11  | Connected Vehicles in the Smart City                       | 423 |
|    | 24.12  | Issues not Discussed in this Chapter                       | 423 |
|    | 24.13  | Conclusion                                                 | 425 |
|    | Refere | ences                                                      | 426 |
| 25 | In-Ve  | hicle Health and Wellness: An Insider Story                | 427 |
|    |        | a Mitra, Craig Simonds, Yifan Chen<br>ary Strumolo         |     |
|    | 25.1   | Introduction                                               | 427 |
|    | 25.2   | Health and Wellness Enabler Technologies inside the Car    | 429 |
|    | 25.3   | Health and Wellness as Automotive Features                 | 435 |
|    | 25.4   | Top Challenges for Health and Wellness                     | 440 |
|    | 25.5   | Summary and Future Directions                              | 444 |
|    | Refere | •                                                          | 444 |

| xiii |
|------|
|      |

| 26 | <b>Industrial Internet</b>                             | 447 |
|----|--------------------------------------------------------|-----|
|    | David Bartlett                                         |     |
|    | 26.1 Introduction (History, Why, and Benefits)         | 447 |
|    | 26.2 Definitions of Components and Fundamentals        | 777 |
|    | of Industrial Internet                                 | 448 |
|    | 26.3 Application in Healthcare                         | 450 |
|    | 26.4 Application in Energy                             | 451 |
|    | 26.5 Application in Transport/Aviation and Others      | 453 |
|    | 26.6 Conclusion and Future Development                 | 454 |
|    | Further Reading                                        | 455 |
| 27 | Smart City Architecture and Planning: Evolving Systems |     |
|    | through IoT                                            | 457 |
|    | Dominique Davison and Ashley Z. Hand                   |     |
|    | 27.1 Introduction                                      | 457 |
|    | 27.2 Cities and the Advent of Open Data                | 459 |
|    | 27.3 Buildings in Smarter Cities                       | 460 |
|    | 27.4 The Trifecta of Technology                        | 461 |
|    | 27.5 Emerging Solutions: Understanding Systems         | 462 |
|    | 27.6 Conclusion                                        | 464 |
|    | References                                             | 465 |
|    | Further Reading                                        | 465 |
| 28 | Nonrevenue Water                                       | 467 |
|    | Kenneth Thompson, Brian Skeens and Jennifer Liggett    |     |
|    | 28.1 Introduction and Background                       | 467 |
|    | 28.2 NRW Anatomy                                       | 467 |
|    | 28.3 Economy and Conservation                          | 468 |
|    | 28.4 Best Practice Standard Water Balance              | 469 |
|    | 28.5 NRW Control and Audit                             | 469 |
|    | 28.6 Lessons Learned                                   | 472 |
|    | 28.7 Case Studies                                      | 473 |
|    | 28.8 The Future of Nonrevenue Water Reduction          | 479 |
|    | 28.9 Conclusion                                        | 479 |
|    | References                                             | 480 |
| 29 | IoT and Smart Infrastructure                           | 481 |
|    | George Lu and Y.J. Yang                                |     |
|    | 29.1 Introduction                                      | 481 |
|    | 29.2 Engineering Decisions                             | 482 |
|    | 29.3 Conclusion                                        | 492 |
|    | References                                             | 493 |
|    | Further Reading                                        | 493 |

xiv CONTENTS

| 30 | Internet of Things and Smart Grid Standardization  Girish Ghatikar                                                            | 495        |
|----|-------------------------------------------------------------------------------------------------------------------------------|------------|
|    | 30.1 Introduction and Background 30.2 Digital Energy Accelerated by the Internet of Things                                    | 495<br>497 |
|    | 30.3 Smart Grid Power Systems and Standards                                                                                   | 500        |
|    | 30.4 Leveraging IoTs and Smart Grid Standards                                                                                 | 503        |
|    | 30.5 Conclusions and Recommendations                                                                                          | 510        |
|    | References                                                                                                                    | 510        |
| 31 | IoT Revolution in Oil and Gas Industry                                                                                        | 513        |
|    | Satyam Priyadarshy                                                                                                            |            |
|    | 31.1 Introduction                                                                                                             | 513        |
|    | 31.2 What is IoT Revolution in Oil and Gas Industry?                                                                          | 515        |
|    | 31.3 Case Study                                                                                                               | 516        |
|    | 31.4 Conclusion                                                                                                               | 519        |
|    | References                                                                                                                    | 520        |
| 32 | <b>Modernizing the Mining Industry with the Internet of Things</b> <i>Rafael Laskier</i>                                      | 521        |
|    | 32.1 Introduction                                                                                                             | 521        |
|    | 32.2 How IoT will Impact the Mining Industry                                                                                  | 523        |
|    | 32.3 Case Study                                                                                                               | 535        |
|    | 32.4 Conclusion                                                                                                               | 541        |
|    | Further Reading                                                                                                               | 542        |
| 33 | Internet of Things (IoT)-Based Cyber-Physical Frameworks                                                                      |            |
|    | for Advanced Manufacturing and Medicine                                                                                       | 545        |
|    | J. Cecil                                                                                                                      |            |
|    | 33.1 Introduction                                                                                                             | 545        |
|    | 33.2 Manufacturing and Medical Application Contexts                                                                           | 546        |
|    | <ul><li>33.3 Overview of IoT-Based Cyber–Physical Framework</li><li>33.4 Case Studies in Manufacturing and Medicine</li></ul> | 548<br>548 |
|    | 33.5 Conclusion: Challenges, Road Map for the Future                                                                          | 556        |
|    | Acknowledgments                                                                                                               | 558        |
|    | References                                                                                                                    | 559        |
| PA | RT V IoT/DATA ANALYTICS CASE STUDIES                                                                                          | 563        |
| 34 | <b>Defragmenting Intelligent Transportation: A Practical Case Study</b> <i>Alan Carlton, Rafael Cepeda and Tim Gammons</i>    | 565        |
|    | 34.1 Introduction                                                                                                             | 565        |
|    | 34.2 The Transport Industry and Some Lessons from the Past                                                                    | 566        |

CONTENTS xv

|    | 34.3 The Transport Industry: A Long Road Traveled         | 567        |
|----|-----------------------------------------------------------|------------|
|    | 34.4 The Transport Industry: Current Status and Outlook   | 570        |
|    | 34.5 Use Case: oneTRANSPORT—a Solution to Today's         | 570        |
|    | Transport Fragmentation 34.6 oneTRANSPORT: Business Model | 572<br>575 |
|    | 34.7 Conclusion                                           | 578        |
|    |                                                           | 579        |
|    | Acknowledgment<br>References                              | 580        |
|    | References                                                | 360        |
| 35 | Connected and Autonomous Vehicles                         | 581        |
|    | Levent Guvenc, Bilin Aksun Guvenc and Mumin Tolga Emirler |            |
|    | 35.1 Brief History of Automated and Connected Driving     | 581        |
|    | 35.2 Automated Driving Technology                         | 583        |
|    | 35.3 Connected Vehicle Technology and the CV Pilots       | 587        |
|    | 35.4 Automated Truck Convoys                              | 589        |
|    | 35.5 On-Demand Automated Shuttles for a Smart City        | 590        |
|    | 35.6 A Unified Design Approach                            | 591        |
|    | 35.7 Acronym and Description                              | 592        |
|    | References                                                | 594        |
| 36 | Transit Hub: A Smart Decision Support System for Public   |            |
| 50 | Transit Operations                                        | 597        |
|    | Shashank Shekhar, Fangzhou Sun, Abhishek Dubey,           | 631        |
|    | Aniruddha Gokhale, Himanshu Neema, Martin Lehofer         |            |
|    | and Dan Freudberg                                         |            |
|    | 36.1 Introduction                                         | 597        |
|    | 36.2 Challenges                                           | 600        |
|    | 36.3 Integrated Sensors                                   | 600        |
|    | 36.4 Transit Hub System with Mobile Apps and Smart Kiosks | 601        |
|    | 36.5 Conclusion                                           | 610        |
|    | Acknowledgments                                           | 611        |
|    | References                                                | 611        |
| 37 | Smart Home Services Using the Internet of Things          | 613        |
|    | Gene Wang and Danielle Song                               |            |
|    | 37.1 Introduction                                         | 613        |
|    | 37.2 What Matters?                                        | 613        |
|    | 37.3 IoT for the Masses                                   | 614        |
|    | 37.4 Lifestyle Security Examples                          | 615        |
|    | 37.5 Market Size                                          | 617        |
|    | 37.6 Characteristics of an Ideal System                   | 619        |
|    | 37.7 IoT Technology                                       | 624        |
|    | 37.8 Conclusion                                           | 630        |

xvi CONTENTS

| 38 | Emoti  | onal Insights via Wearables                                                           | 631 |
|----|--------|---------------------------------------------------------------------------------------|-----|
|    | Gawair | n Morrison                                                                            |     |
|    | 38.1   | Introduction                                                                          | 631 |
|    | 38.2   | Measuring Emotions: What are they?                                                    | 632 |
|    | 38.3   | Measuring Emotions: How does it Work?                                                 | 632 |
|    | 38.4   | Leaders in Emotional Understanding                                                    | 633 |
|    | 38.5   | The Physiology of Emotion                                                             | 635 |
|    | 38.6   | Why Bother Measuring Emotions?                                                        | 636 |
|    | 38.7   | Use Case 1                                                                            | 636 |
|    | 38.8   | Use Case 2                                                                            | 637 |
|    | 38.9   | Use Case 3                                                                            | 640 |
|    | 38.10  | Conclusion                                                                            | 640 |
|    | Furthe | r Reading                                                                             | 641 |
| 39 | -      | gle Platform Approach for the Management                                              |     |
|    |        | ergency in Complex Environments such ge Events, Digital Cities, and Networked Regions | 643 |
|    |        | sco Valdevies                                                                         |     |
|    | 39.1   | Introduction                                                                          | 643 |
|    | 39.2   | Resilient City: Selex ES Safety and Security Approach                                 | 645 |
|    | 39.3   | City Operating System: People, Place, and Organization                                |     |
|    |        | Protection                                                                            | 646 |
|    | 39.4   | Cyber Security: Knowledge Protection                                                  | 650 |
|    | 39.5   | Intelligence                                                                          | 651 |
|    | 39.6   | A Scalable Solution for Large Events, Digital Cities,                                 |     |
|    |        | and Networked Regions                                                                 | 652 |
|    | 39.7   | Selex ES Relevant Experiences in Security and Safety                                  |     |
|    |        | Management in Complex Situations                                                      | 652 |
|    | 39.8   | Conclusion                                                                            | 657 |
|    | Appen  | dix 39.A How Build the Proposition                                                    | 657 |
|    | Appen  | dix 39.B Details about Revision of the Initiative                                     | 658 |
|    | Refere | nce                                                                                   | 663 |
| 40 | Struct | ural Health Monitoring                                                                | 665 |
|    |        | Lu and Y.J. Yang                                                                      |     |
|    | 40.1   | Introduction                                                                          | 665 |
|    | 40.2   | Requirement                                                                           | 666 |
|    | 40.3   | Engineering Decisions                                                                 | 667 |
|    | 40.4   | Implementation                                                                        | 669 |
|    | 40.5   | Conclusion                                                                            | 671 |
|    | Refere | nces                                                                                  | 673 |
|    | Furthe | r Reading                                                                             | 674 |

| CONTENTS | xvii |
|----------|------|
|----------|------|

| <b>41 Home Healthcare and Remote Patient Monitoring</b> <i>Karthi Jeyabalan</i> | 675        |
|---------------------------------------------------------------------------------|------------|
| 41.1 Introduction 41.2 What the Case Study is About                             | 675<br>676 |
| 41.3 Who are the Parties in the Case Study                                      | 677        |
| 41.4 Limitation, Business Case, and Technology Approach                         | 678        |
| 41.5 Setup and Workflow Plan                                                    | 678        |
| 41.6 What are the Success Stories in the Case Study                             | 679        |
| 41.7 What Lessons Learned to be Improved                                        | 681        |
| Further Reading                                                                 | 682        |
| PART VI CLOUD, LEGAL, INNOVATION,                                               |            |
| AND BUSINESS MODELS                                                             | 683        |
| 42 Internet of Things and Cloud Computing                                       | 685        |
| James Osborne                                                                   |            |
| 42.1 Introduction                                                               | 685        |
| 42.2 What is Cloud Computing?                                                   | 687        |
| 42.3 Cloud Computing and IoT                                                    | 688        |
| 42.4 Common IoT Application Scenarios                                           | 690        |
| 42.5 Cloud Security and IoT                                                     | 693        |
| 42.6 Cloud Computing and Makers                                                 | 695        |
| 42.7 An Example Scenario                                                        | 696        |
| 42.8 Conclusion References                                                      | 697<br>697 |
| References                                                                      | 097        |
| 43 Privacy and Security Legal Issues Francoise Gilbert                          | 699        |
| 43.1 Unique Characteristics                                                     | 699        |
| 43.2 Privacy Issues                                                             | 701        |
| 43.3 Data Minimization                                                          | 704        |
| 43.4 Deidentification                                                           | 708        |
| 43.5 Data Security 43.6 Profiling Issues                                        | 710<br>714 |
| 43.7 Research and Analytics                                                     | 714        |
| 43.8 IoT and DA Abroad                                                          | 713        |
| References                                                                      | 717        |
| <b>44 IoT and Innovation</b> William Kao                                        | 719        |
| 44.1 Introduction                                                               | 719        |
| 44.2 What is Innovation?                                                        | 719        |

| xviii | CONTENTS |
|-------|----------|
| XVIII | CONTENTS |

| 44.3 Why is Innovation Important? Drivers and Benefits         | 724 |
|----------------------------------------------------------------|-----|
| 44.4 How: The Innovation Process                               | 725 |
| 44.5 Who does the Innovation? Good Innovator Skills            | 727 |
| 44.6 When: In a Product Cycle when does Innovation Takes Part? | 729 |
| 44.7 Where: Innovation Areas in IoT                            | 730 |
| 44.8 Conclusion                                                | 732 |
| References                                                     | 733 |
| Further Reading                                                | 734 |
| 45 Internet of Things Business Models                          | 735 |
| Hubert C.Y. Chan                                               |     |
| 45.1 Introduction                                              | 735 |
| 45.2 IoT Business Model Framework Review                       | 736 |
| 45.3 Framework Development                                     | 740 |
| 45.4 Case Studies                                              | 743 |
| 45.5 Discussion and Summary                                    | 755 |
| 45.6 Limitations and Future Research                           | 756 |
| References                                                     | 756 |
| Index                                                          | 759 |

## LIST OF CONTRIBUTORS

Scott Amyx, Amyx McKinsey, San Francisco, CA, USA

**Arun Aryasomajula,** Division of Analytics Research and Clinical Informatics, Department of Data Science, Geisinger Health System, Danville, PA, USA

Brenda Bannan, Ph.D., George Mason University, Fairfax, VA, USA

David Bartlett, General Electric, San Ramon, CA, USA

Peter Burnham, FJORD, San Francisco, CA, USA

Alan Carlton, InterDigital Europe Ltd, London, UK

**J. Cecil, Ph.D.,** Co-Director, Computer Science Department, Center for Cyber Physical Systems, Oklahoma State University, Stillwater, OK, USA

Rafael Cepeda, Ph.D., InterDigital Europe Ltd, London, UK

Hubert C.Y. Chan, DBA, The Hong Kong Polytechnic University, Hong Kong, China

Yifan Chen, Ph.D., Ford Research and Advanced Engineering, Dearborn, MI, USA

**Dominique Davison, AIA,** DRAW Architecture+Urban Design, Kansas City, MO, USA

**Abhishek Dubey, Ph.D.,** Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

Mumin Tolga Emirler, Ph.D., Ohio State University, Columbus, OH, USA

David Y. Fong, Ph.D., CITS Group, San Jose, CA, USA

Joshua Frank, Ph.D., Intuit Inc., Woodland Hills, CA, USA

Neil Fraser, Ph.D., Macquarie University, Sydney, New South Wales, Australia

Dan Freudberg, Nashville Metropolitan Transport Authority, Nashville, TN, USA

Shane Gallagher, Ph.D., Advanced Distributed Learning, Alexandria, VA, USA

Tim Gammons, ARUP, London, UK

Hwaiyu Geng, P.E., Amica Research, Palo Alto, CA, USA

**Girish Ghatikar,** Greenlots, San Francisco, CA, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Francoise Gilbert, J.D., Greenberg Traurig LLP, Silicon Valley, East Palo Alto, CA, USA

**Aniruddha Gokhale,** Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

Rikke Gram-Hansen, Copenhagen Solutions Lab, City of Copenhagen, Copenhagen, Denmark

Bilin Aksun Guvenc, Ph.D., Ohio State University, Columbus, OH, USA

Levent Guvenc, Ph.D., Ohio State University, Columbus, OH, USA

Ashley Z. Hand, AIA, CityFi, Los Angeles, CA, USA

David R. Hardoon, Ph.D., Azendian, Singapore, Singapore

David Hindman, FJORD, San Francisco, CA, USA

**Michael A. Huff, Ph.D.,** MEMS and Nanotechnology Exchange (MNX), Corporation for National Research Initiatives, Reston, VA, USA

Rich Hunzinger, B-Scada, Inc., Crystal River, FL, USA

**Raj Jain, Ph.D.,** Department of Computer Science Engineering, Washington University, St. Louis, MO, USA

Karthi Jeyabalan, University of Utah, Salt Lake City, UT, USA

William Kao, Ph.D., Department of Engineering and Technology, University of California, Santa Cruz, CA, USA

Joseph Kimchi, Teledyne Judson Technologies, Montgomeryville, PA, USA

Rafael Laskier, Vale, Rio de Janeiro, Brazil

Martin Lehofer, Siemens Corporate Technology, Princeton, NJ, USA

Jih-Fen Lei, Ph.D., Teledyne Judson Technologies, Montgomeryville, PA, USA

Bridget Lewis, George Mason University, Fairfax, VA, USA

Jennifer Liggett, CH2M, Englewood, CO, USA

George Lu, Ph.D., goodXense, Inc., Edison, NJ, USA

**Nicholas Marko, Ph.D.,** Division of Analytics Research and Clinical Informatics, Department of Data Science, Geisinger Health System, Danville, PA, USA

**John Mattison, M.D.,** Singularity University, Moffett Field, CA, USA; Kaiser Permanente, Pasadena, CA, USA

Jim McKeeth, Embarcadero Technologies, Austin, TX, USA

Pramita Mitra, Ph.D., Ford Research and Advanced Engineering, Dearborn, MI, USA

Gawain Morrison, Sensum, Belfast, UK

Geoff Mulligan, IPSO Alliance, Colorado Springs, CO, USA

Shyam Varan Nath, M.B.A., M.S., Director, IoT at GE Digital, San Ramon, CA, USA

**Himanshu Neema,** Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

James Osborne, Microsoft, Redmond, WA, USA

Adrian Pearmine, DKS Associates, Portland, OR, USA

Satyam Priyadarshy, Ph.D., HALLIBURTON Landmark, Houston, TX, USA

Jonathan Reichental, Ph.D., Palo Alto, CA, USA

**Oleg Roderick, Ph.D.,** Division of Analytics Research and Clinical Informatics, Department of Data Science, Geisinger Health System, Danville, PA, USA

**Tara Salman,** Department of Computer Science Engineering, Washington University, St. Louis, MO, USA

**David Sanchez,** Division of Analytics Research and Clinical Informatics, Department of Data Science, Geisinger Health System, Danville, PA, USA

Stan Schneider, Ph.D., Real-Time Innovations, Inc., Sunnyvale, CA, USA

Scott Shaw, Hortonworks, Inc., Santa Clara, CA, USA

**Shashank Shekhar,** Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

Amy Shi-Nash, Ph.D., Singtel, DataSpark, Singapore, Singapore

Craig Simonds, Ph.D., Ford Research and Advanced Engineering, Dearborn, MI, USA

Brian Skeens, CH2M, Englewood, CO, USA

**Danielle Song,** University of California, Berkeley, CA, USA

Kai Song, Ph.D., Teledyne Judson Technologies, Montgomeryville, PA, USA

Nick Stein, Indoo.rs GmbH, Brunn am Gebirge, Austria

Gary Strumolo, Ph.D., Ford Research and Advanced Engineering, Dearborn, MI, USA

**Fangzhou Sun,** Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

**Venkataraman Sundareswaran, Ph.D.,** Teledyne Judson Technologies, Montgomeryville, PA, USA

Kenneth Thompson, CH2M, Englewood, CO, USA

Stephanie Urbanski, Indoo.rs Inc., Palo Alto, CA, USA

Francesco Valdevies, Selex ES Company, Genova, Italy

Pratik Verma, Ph.D., DB Research Inc., Hopkins, MN, USA

Gene Wang, People Power Company, Redwood City, CA, USA

Y.J. Yang, goodXense, Inc., Edison, NJ, USA

Henry Yuan, Ph.D., Teledyne Judson Technologies, Montgomeryville, PA, USA

## **FOREWORD**

It has been almost 2 years since I met Mr. Hwaiyu Geng for the first time at the SmartAmerica Expo in Washington D.C., a program I established with Geoff Mulligan when we were serving as White House Presidential Innovation Fellows. I still have a vivid memory of Mr. Geng then, as he was one of the few in the audience who sat through more than 8 h of presentations, from 24 teams, without pausing for lunch. At the event, I could see his deep passion for the new technologies—Internet of things (IoT) and cyber–physical systems (CPS)—and his desire to understand how they can help improve everyone's quality of life. Now, I am glad to see his passion for IoT and CPS bear fruit through this book.

IoT is an emerging concept and enabler that has the potential to completely reshape the future of industry. To be exact, IoT is not a completely new concept. It has been around for decades, as can be found in many traditional centralized building-control systems dating back to the 1980s. However, its significance was rediscovered with the emergence of big data analytics, low-cost sensors, and ubiquitous connectivity powered by many modern-age communication technologies. Most importantly, businesses started to realize that new revenue models can be created by adding the IoT concept to their existing product lines, an approach that has fueled the adoption of IoT technologies.

Many people think IoT means "connecting devices." Connectivity is just one piece of the puzzle that defines IoT, which has four layers:

1. At the bottom is the "Hardware" layer, which contains sensors, actuators, chips, and radios—the physical objects that we can touch and feel. Some of the objects are physically small, but others are large, such as cars and airplanes.

xxiv FOREWORD

On top of the Hardware layer is the "Communications" layer, which enables the hardware objects to be connected via wireless or wired communication technologies. It is sometimes misunderstood that IoT is just about these two layers. This is not true.

- 3. On top of the Communications layer is the "Data Analytics" layer, where the data collected from the bottom two layers are put together and analyzed to extract actionable and useful information. It should be noted that the Data Analytics layer does not necessarily mean big data analytics. For example, the Data Analytics can be a simple sensor data feed into the PID control loop implemented on an 8-bit microcontroller.
- 4. Finally, there is the "Service" layer on top of the Data Analytics layer, which makes decisions based on the information provided by the Data Analytics layer and takes appropriate actions. The Service layer may include humans as part of the decision process, creating a "human-in-the-loop" system.

It is important to note that the most significant business value of an IoT system is produced at the Service layer where the action is taken. It is quite obvious from the customer's perspective, but it is not widely understood by most of the companies trying to jump into the new wave of IoT phenomena. As more hardware devices become available and connected, the value created by the hardware devices at the bottom layer will continuously decrease as they become gradually commoditized. This is especially true when the cost to manufacture such devices keeps dropping with the growth of the volume. Therefore, the businesses that rely on manufacturing and selling the hardware devices that do not carry a lot of intelligence will likely suffer more. On the other hand, the concentration of the value at the upper layers, such as Data Analytics and Service, will create new lucrative opportunities for the companies that work on extracting useful information from available data sets and monetizing actions based on it.

In this new era of IoT, every company is challenged to come up with new business models while still not only relying on their legacy product lines but also adding new IoT concepts. This is a painful process that requires numerous instances of trial and error, probably including some failures. Moreover, the business models created and validated by a company may not be readily transferred or duplicated by other companies. For example, a new business model created by a jet engine manufacturer using IoT may not be easily adopted by a consumer electronics company. This is a real challenge for many fast followers in the industry, but it is a tremendous opportunity for market leaders who are willing to embrace the new reality and are capable of making investments to create new business cases.

For IoT to be broadly spread, it is important to apply the concept to many applications at scale in our everyday life. Using these advanced technologies, our communities and cities can be made more intelligent, secure, and resilient. The Hardware and Communications layers can serve as part of the city infrastructure, and the Data Analytics and Service layers can provide optimal and synergistic services to the residents. IoT can create tangible benefits to the cities and communities, leading to sustainable smart cities.

FOREWORD xxv

The "smart city" concept, by definition, involves many different sectors, including water management, emergency response, public safety, healthcare, energy, transportation, smart home, and even smart manufacturing. Cities strive to coordinate many independent divisions to offer the maximum efficiency and highest quality of service to the residents. However, many smart city solutions are still isolated, fragmented, and built to be a one-off implementation, lacking interoperability, scalability, and replicability. Due to this issue, many communities and cities do not enjoy the level of affordability and sustainability they deserve.

To address this issue, it is important to catalyze the development of new kinds of standards-based, replicable, and interoperable smart city models based on multi-stakeholder involvement and collaboration, so that the cities can leverage each other's investments and the technology providers can create economies of scale. The Global City Teams Challenge (GCTC), a program I lead at the National Institute of Standards and Technology (NIST), is an attempt to encourage just such a transformation of the smart city landscape.

One of the essential elements in the success of IoT and smart city deployment is collaboration and integration among diverse sectors. The value of IoT can be maximized when seemingly unrelated sectors (e.g., healthcare and transportation) get connected and new services are invented using the unique combination of different sectors and businesses. In that sense, successful next-generation IoT and smart city solutions will likely stem from a broad understanding of diverse vertical applications, as well as a fundamental understanding of the cross-sector technical issues.

With over 40 participating authors covering various sectors and applications of IoT, this handbook can provide an overview of many issues and solutions in the complicated IoT playing field. I believe such an interdisciplinary approach is critical in helping readers and the developer community to understand numerous practical issues in IoT and smart cities, and as you examine the contributions of the various authors, I hope you will come to agree with me.

Sokwoo Rhee, Ph.D.
Associate Director of Cyber-Physical Systems Program
National Institute of Standards and Technology
Gaithersburg, MD, USA
February 2016

## TECHNICAL ADVISORY BOARD MEMBERS

Yihlin Chan, Ph.D., OSHA (Retired), Salt Lake City, UT, USA

David Fong, Ph.D., CITS Group, San Jose, CA, USA

Amy Geng, M.D., Park Family Fund, Founder, Los Altos Hills, CA, USA

Hwaiyu Geng, P.E., Founder and Principal, Amica Research, Palo Alto, CA, USA

**Raj Jain, Ph.D.,** Fellow of IEEE, Fellow of ACM, Fellow of AAAS, Washington University, St. Louis, MO, USA

**Jonathan Koomey, Ph.D.,** Research Fellow, Steyer-Taylor Center for Energy Policy and Finance, Stanford University, Stanford, CA, USA

Stuart MacMillan, Ph.D., Stanford University, Stanford, CA, USA

John Mattison, M.D., Kaiser Permanente, SCAL, CA, USA

Geoff Mulligan, Founder and CEO, IPSO Alliance, Denver, CO, USA

Jonathan Reichental, Ph.D., CTO, the City of Palo Alto, Palo Alto, CA, USA

**Sokwoo Rhee, Ph.D.,** Associate Director of Cyber-Physical Systems, National Institute of Standards and Technology, Gaithersburg, MD, USA

Stan Schneider, Ph.D., CEO, Real-Time Innovations, Inc., Sunnyvale, CA, USA

Amy Shi-Nash, Ph.D., Singtel DataSpark, Singapore

### **PREFACE**

Designing and implementing a sustainable Internet of Things and data analytics (IoT/DA) project requires core knowledge on a myriad of topics, including invention and innovation, strategic planning, state-of-the-art technologies, security and privacy, business plan, and more. For any successful project, we must consider the following:

- What are the goals?
- What are the givens?
- What are the constraints?
- What are the unknowns?
- Which are the feasible solutions?
- How is the solution validated?

How does one apply technical and business knowledge to optimize a business plan that considers emerging technologies, availability, scalability, sustainability, agility, resilience, best practices, and rapid time to value? Our challenges might include:

- To invent something beneficial
- To design and build using green infrastructure
- To apply best practices to reduce power consumption
- To apply IT technologies, wireless, networks, and cloud
- To prepare a strategic business plan

**xxviii** PREFACE

And this list of challenges is not comprehensive. A good understanding of IoT/DA technologies and their anatomy, taxonomy, ecosystem, and business model will enable one to plan, design, and implement IoT/DA projects successfully.

The goal of this handbook is to provide readers with essential knowledge needed to implement an IoT/DA project. This handbook embraces both conventional and emerging technologies, as well as best practices that are being evolved in the IoT/DA industry. By applying the information encompassed in the handbook, we can accelerate the pace of invention and innovation.

This handbook covers the following IoT/DA topics:

- · Business model and strategic planning
- · IoT and Industrial IoT
- · Data analytics, machine learning, and risk modeling
- Architecture, open source system, security, and privacy
- · Microelectromechanical systems and sensor technologies
- Wireless networks and networking protocol
- · Wearable designs
- · Beacon technology
- · Hadoop technology

*IoT/DA Handbook* is specifically designed to provide technical knowledge for those who are IoT makers and those who are responsible for the design and implementation of IoT/DA projects. It is also useful for IoT/DA decision makers who are responsible for strategic planning. The following professionals and managers will find this handbook to be a useful and enlightening resource:

- · C-level executives
- IoT makers and entrepreneurs
- IoT/DA managers and directors
- IoT/DA project managers
- IoT/DA consultants
- · Information technology and infrastructure managers
- Network communication engineers and managers

*IoT/DA Handbook* is prepared by more than 80 world-class professionals from nine countries around the world. It covers the breadth and depth of IoT/DA planning, designing, and implementation and is certain to be the most comprehensive single-source guide ever published in its field.

HWAIYU GENG, P.E. PALO ALTO, CALIFORNIA, USA