Magnetization Reversal of Nanomagnets

Consider a simple case with an ellipsoid nanomagnet made of $Fe_{20}Ni_{80}$ (permalloy) with polar axis a and equatorial axis b (for example, a = 100 nm and b = 30 nm). This is a single domain system where all spins are aligned in the same direction by exchange interaction.

- 1. With a mangetic field applied with an angle θ to the long axis, find out how M depends on H for a few discrete θ values (0° , 30° , 45° , 60° , 90° , and 18°). Describe in detail how the plots are generated. (Hint: wirte down the total energy of the nanomagnet and find out the relationship of cos ϕ and H by setting 1^{st} and 2^{nd} derivitive of total energy to zero)
- 2. Plot the MH curve of an ensemble of 300 such nanomagnets fixed in space. What are the features of the hysteresis loop?