第一讲 赋范空间

如下空间系数域 ℙ为 ℝ 或 ℂ. 本讲乃赋范线性空间之皮毛.

1 范数

定义 1.1. 设 $E \neq \mathbb{F}$ 上的线性空间,设函数 $\|\cdot\|: E \to \mathbb{R}$ 满足如下三公理:

- (1) (正定性) $\forall x \in E$, 有 $||x|| \ge 0$, 且 ||x|| = 0 当且仅当 x = 0;
- (2) (齐次性) $\forall k \in \mathbb{F}, \forall x \in E, 有 ||kx|| = |k| \cdot ||x||;$
- (3) (三角不等式) $\forall x \in E, \forall y \in E, 有 ||x + y|| \le ||x|| + ||y||$.

则称 $\|\cdot\|$ 是 E 上的范数, 称 $(E, \|\cdot\|)$ 是赋范线性空间.

设函数 $p: E \to \mathbb{R}$ 未必满足条件: p(x) = 0 当且仅当 x = 0. 但 p 满足范数定义 1.1 中的其余条件. 则称 p 是 E 上的**半范数**, 其有**半正定性**. 范数当然是半范数.

范数 $\|\cdot\|$ 导出 E 上的距离 $d(x,y) = \|x-y\|$. 据此可研究 E 的拓扑及收敛性、连续性等问题.

引理 1.1. 范数 $\|\cdot\|$ 是 Lipschitz 常数为 1 的函数.

证明. 据三角不等式, 得 $\|x\| \le \|x-y\| + \|y\|$, 进而 $\|x\| - \|y\| \le \|x-y\|$. 同理, $\|y\| - \|x\| \le \|x-y\|$. 故

$$|||x|| - ||y||| \le ||x - y||.$$

引理 1.2. 设有 E 中的点列 $\{x_n\}$ 与 $\{y_n\}$ 满足 $\lim_{n\to\infty}x_n=x_0, \lim_{n\to\infty}y_n=y_0$. 又设有 $\mathbb F$ 中的点列 $\{k_n\}$ 满足 $\lim_{n\to\infty}k_n=k_0$. 则

- (1) $\lim_{n\to\infty} (x_n + y_n) = x_0 + y_0;$
- $(2) \lim_{n \to \infty} k_n x_n = k_0 x_0.$

引理 1.2 说明 E 中的加与数乘为连续运算.

若 $F \in (E, \|\cdot\|)$ 的线性子空间, 则 $(F, \|\cdot\|)$ 亦是赋范线性空间. 此时简称 $F \in E$ 的子空间, F 的范数继承自 E. 据引理 1.2, 易证如下结论.

1 范数

引理 1.3. 若 F 是 E 的线性子空间,则 F 的闭包亦然.

定义 1.2. 若 $(E, \|\cdot\|)$ 是完备度量空间, 则称其为 Banach 空间.

例 1.1. 记 C[a,b] 为区间 [a,b] 上 \mathbb{F} 值连续函数构成的线性空间. 在其上定义范数为: $\forall f \in C[a,b]$, $\|f\| = \max_{[a,b]} |f|$. 则易证 C[a,b] 是可分 Banach 空间. 其完备性等价于定理: 一致收敛连续函数列的极限仍连续. 而可分性能以 Weierstrass 逼近定理证得: [a,b] 上的连续函数可由多项式一致逼近, 进而由有理系数多项式一致逼近.

例 1.2. 设 $1 \le p < \infty$. 定义 $L^p[a,b]$ 上满足 $\int_{[a,b]} |f|^p < \infty$ 的 \mathbb{F} 值 Lebesgue 可测函数 f 构成的线性空间. 须知, 如前所说, $L^p[a,b]$ 中的元素是函数等价类. 两函数在 $L^p[a,b]$ 相等当且仅当两者几乎处处相等. 定义范数

$$||f|| = \left(\int_{[a,b]} |f|^p\right)^{\frac{1}{p}}.$$

则可证 $L^p[a,b]$ 是 Banach 空间, 证明今后再说. 据 Lusin 定理, $L^p[a,b]$ 中的元素可由连续函数逼近, 进而由有理系数多项式逼近. 故 $L^p[a,b]$ 可分.

例 1.3. 设 f 是 [a,b] 上的 Lebesque 可测函数. 定义 f 的本质上确界为

$$\operatorname{esssup} f = \inf_{E \subseteq [a,b], |E| = 0} \sup_{[a,b] \setminus E} f,$$

此处 |E| 是 E 的 Lebesgue 测度. 类似可定义 f 的本质下确界 essinf f. 若 $esssup|f| < \infty$, 则称 f 本质有界.

定义 $L^{\infty}[a,b]$ 为 [a,b] 上本质有界的 Lebesgue 可测函数等价类构成的线性空间,等价关系也是几乎处处相等. 定义其上的范数为 $||f||=\mathrm{esssup}|f|$. 易见, $L^{\infty}[a,b]$ 是 Banach 空间, 且 C[a,b] 是 $L^{\infty}[a,b]$ 的闭子空间. 此时 C[a,b] 本身的范数正从 $L^{\infty}[a,b]$ 而得.

须知, $L^{\infty}[a,b]$ 不可分. 设 $x \in [a,b]$, 定义 $\chi_{[a,x]}$ 为 [a,x] 的特征函数. 则 $L^{\infty}[a,b]$ 含不可数子集 $\{\chi_{[a,x]} \mid x \in [a,b]\}$, 且该子集中的元素两两距离为 1.

例 1.4. 设 $1 \le p < \infty$. 定义 l^p 为满足如下条件的 \mathbb{F} 值序列构成的线性空间:

$$l^p = \left\{ (a_1, a_2, \cdots) \middle| \sum_{n=1}^{\infty} |a_n|^p < \infty \right\}.$$

定义其上的范数为

$$\|(a_1, a_2, \cdots)\| = \left(\sum_{n=1}^{\infty} |a_n|^p < \infty\right)^{\frac{1}{p}}.$$

与赋 p-范数的 \mathbb{F}^n 类似, 易证此处 $\|\cdot\|$ 是范数且 l^p 是可分 Banach 空间, 证明留为习题.

例 1.5. 定义 l^{∞} 为有界的 \mathbb{F} 序列构成的空间. 在其上定义范数.

$$||(a_1, a_2, \cdots)|| = \sup_{n} |a_n|.$$

易证 l^{∞} 是 Banach 空间. 之前已说 l^{∞} 不可分.

例 1.6. 定义 $c_0 \subset l^{\infty}$ 为

$$c_0 = \left\{ (a_1, a_2, \cdots) \in l^{\infty} \middle| \lim_{n \to \infty} a_n = 0 \right\}.$$

显然, c_0 是 l^{∞} 的子空间. 易证其甚至为闭子空间, 故为 Banach 空间.

2 连续映射

今研究线性映射—亦称之为**线性算子**—的连续性. 设 E 是赋范线性空间, $x \in E$, r > 0. 记

$$B(x,r) = \{ y \in E \mid ||x - y|| < r \}$$

为 E 中以 x 为心, r 为半径, 的开球. 为明示其所在空间, 亦记为 $B_E(x,r)$. 易证其闭包为

$$\overline{B(x,r)} = \{ y \in E \mid ||x - y|| \le r \},$$

即为同心同半径的闭球. (须知, 一般度量空间中, 上述等号须改为 "⊆".)

引理 2.1. 设 E 与 F 是赋范线性空间, $T: E \to F$ 是线性映射. 则如下论断等价:

- (1) T 连续;
- (2) T 在 $0 \in E$ 处连续;
- (3) $\exists r_1, r_2 > 0$, 使得 $T(B_E(0, r_1)) \subseteq B_F(0, r_2)$;
- (4) $\exists L \geq 0, \forall x \in E, \ \ \ \ \ \|Tx\| \leq L\|x\|;$
- (5) L 是 Lipschitz 连续.

证明. $(1) \Rightarrow (2)$ 平凡. $(2) \Rightarrow (3)$ 据连续之定义.

 $(3) \Rightarrow (4)$: 不妨设 $x \neq 0$. 取 $r_3 \in (0, r_1)$, 则 $\overline{B_E(0, r_3)} \subseteq B_E(0, r_1)$, 进而

$$T\left(\overline{B_E(0,r_3)}\right) \subseteq T(B_E(0,r_1)) \subseteq B_F(0,r_2).$$

令 $L = r_2 r_3^{-1}$, 则 L > 0. 据 T 线性,

$$T\left(\overline{B_E(0,1)}\right) = T\left(r_3^{-1}\overline{B_E(0,r_3)}\right) = r_3^{-1}T\left(\overline{B_E(0,r_3)}\right) \subseteq r_3^{-1}B_F(0,r_2) = B_F(0,L).$$

又, $\frac{x}{\|x\|} \in \overline{B_E(0,1)}$, 故 $\|T(\frac{x}{\|x\|})\| \le L$, 亦即 $\|Tx\| \le L\|x\|$.

 $(4) \Rightarrow (5)$: $\forall x \in E, \forall y \in E,$ 据 T 线性, 得

$$||Tx - Ty|| = ||T(x - y)|| \le L||x - y||.$$

$$(5) \Rightarrow (1)$$
 平凡.

注 2.1. 易证: 可将引理 $2.1 \geq (2)$ 改为 " $\exists x_0 \in E, T$ 在 x_0 处连续". 证明留为习题.

2 连续映射

注 2.2. 引理 $2.1 \geq (3)$ 乃常用几何描述. 若将其中开球 $B_E(0,r_1)$ 或 $B_F(0,r_2)$ 换为闭球, 无质变.

自然希望引理 2.1 之 (4) 的 L 越小越好. 想当然, 此最优常数应是 $L_{\mathrm{opt}} = \sup_{x \neq 0} \frac{\|Tx\|}{\|x\|}$, 但如此算法 忽略了重要特例—E=0. 两全其美之算法则是 $L_{\mathrm{opt}} = \sup_{\|x\| \leq 1} \|Tx\|$. 当 E=0 时, 有 $L_{\mathrm{opt}}=0$. 如下定义水到渠成.

定义 2.1. 设 $T:E\to F$ 是赋范线性空间的线性映射. 定义 T 的范数为 $\|T\|=\sup_{\|x\|\leq 1}\|Tx\|$.

作为特例, 若 $f: E \to \mathbb{F}$ 是连续线性泛函, 则约定取 \mathbb{F} 上的模为范数, 因而 $||f|| = \sup_{\|x\| \le 1} |f(x)|$.

引理 2.2. 设 $T: E \to F$ 是连续线性映射. 则 $\forall x \in E$, 有 $\|Tx\| \le \|T\| \cdot \|x\|$, 且 $\|T\| = \sup_{\|x\| < 1} \|Tx\|$. 而当 $E \ne 0$ 时, 又有

$$||T|| = \sup_{x \neq 0} \frac{||Tx||}{||x||} = \sup_{||x|| = 1} ||Tx||.$$

正因 T 连续等价于 $||Tx|| \le L||x||$, 故亦称线性连续映射为线性**有界映射**. 易得如下引理.

引理 2.3. 如下映射皆为从 E 到 F 的线性映射. 则

(1) $||T|| \ge 0$, $\mathbb{L} T = 0$ 当且仅当 ||T|| = 0;

4

- (2) 若 T 有界, $k \in \mathbb{F}$, 则 kT 有界, 且 $||kT|| = |k| \cdot ||T||$.
- (3) 若 T_1 与 T_2 有界,则 $T_1 + T_2$ 亦然,且 $||T_1 + T_2|| \le ||T_1|| + ||T_2||$.

引理 2.4. 设 $T: E \to F 与 S: F \to G$ 皆线性有界,则 $ST: E \to G$ 亦然,且 $||ST|| \le ||S|| \cdot ||T||$.

下一讲将证明: 若 $\dim E$ 有限, 则以 E 为定义域的线性映射皆有界. 而若 $\dim E$ 无限, 则当然有以其为定义域的无界线性映射甚至泛函.

显然, 单点集是度量空间中的闭集. 而 $\ker T = T^{-1}(0)$, 故有如下结论.

引理 2.5. 设 $T: E \to F$ 线性有界,则 ker $T \notin E$ 的闭子空间.

问题 2.1. 反之, 若 ker T 闭, 则 $T: E \to F$ 是否有界?

一般而言, 答案为否, 但下一讲将证明: 若 $\dim F$ 有限, 如 T 是泛函, 则答案为是.

问题 2.2. 若线性映射 $T: E \to F$ 有界, 则 imT 是否 F 的闭子空间?

此答案为否. 最简之反例如下.

例 2.2. 设 $E \neq F$ 的子空间, 且 E 不闭, 则含入映射 $\iota: E \to F$ 有界, 但 $\mathrm{im}\iota$ 不闭. 此例当然正确, 固然简单, 但显然粗暴. 其定义域不完备, 有寻衅滋事之嫌, 且非自然造化, 故说服力似弱. 且看下例.

例 2.3. 含入映射 $T:C[a,b]\to L^p[a,b]$ 连续, 此处 $1\leq p<\infty$, 且两空间皆得赋默认的范数而成 Banach 空间. 已知 imT 在 $L^p[a,b]$ 中稠密. 若 imT 闭, 则 $imT=L^p[a,b]$, 矛盾! 故 imT 不闭. 此例 似浑然天成, 实为例 2.2 之改造: imT 在 $L^p[a,b]$ 中不闭, 自然不完备. 将其从 $L^p[a,b]$ 中取出, 改赋 之更强范数, 则得 Banach 空间, 且从强范至弱范的含入又必然有界. 此手法有一般性.

在泛函分析中对映射的象取闭包是常态.

3 同构

定义 3.1. 设 E 与 F 是赋范空间, $T: E \to F$ 是线性双射. 若 $T 与 T^{-1}$ 皆连续, 则称 T 为**同构**. 若 E 与 F 之间有同构映射, 则称 E 与 F 同构. 若再设上述 T 保距, 则称相应的概念为**等距同构**.

须知, 在赋范线性空间范畴中, 同构具代数与拓扑双重意义: 此处 T 不仅是线性空间的线性同构, 而且是度量空间的同胚. 易证, 空间的同构关系是等价关系. 而同构映射保收敛列、Cauchy 列、开集、闭集等. 因之有诸多明显推论, 如完备性是空间的同构不变性, 在此不赘述.

设赋 E 两个范数 $\|\cdot\|_1$ 与 $\|\cdot\|_2$. 自然可考虑恒等映射 $I:(E,\|\cdot\|_1)\to (E,\|\cdot\|_2)$ 是否同构? 故得如下定义.

定义 3.2. 设 E 有范数 $\|\cdot\|_1$ 与 $\|\cdot\|_2$. 且 $\exists C_1, C_2 > 0$, 使得 $\forall x \in E$, 有

$$C_1||x||_1 \le ||x||_2 \le C_2||x||_1.$$

则称 $\|\cdot\|_1$ 与 $\|\cdot\|_2$ 等价.

引理 3.1. $I:(E,\|\cdot\|_1) \to (E,\|\cdot\|_2)$ 是同构当且仅当 $\|\cdot\|_1$ 与 $\|\cdot\|_2$ 等价.

据此引理, 当然亦可据定义 3.2 直接算, 知范数之"等价"恰如其名, 确是逻辑上的等价关系. 如下结论则用几何刻画此关系.

引理 3.2. 设 $0 \neq E$ 有范数 $\|\cdot\|_1$ 与 $\|\cdot\|_2$. 记 $S_1 = \{x \in E \mid ||x||_1 = 1\}$ 为 E 关于 $\|\cdot\|_1$ 的单位球面. 则 $\|\cdot\|_1$ 与 $\|\cdot\|_2$ 等价当且仅当 $\|\cdot\|_2$ 在 S_1 上的上确界有限且下确界为正.

证明. 据定义 3.2, 两范数等价当且仅当: $\exists C_1, C_2 > 0$, 使得 $\forall x \neq 0$, 有

$$C_1 \|x\|_1 \le \|x\|_2 \le C_2 \|x\|_1, \quad \text{im} \quad C_1 \le \left\| \frac{x}{\|x\|_1} \right\|_2 \le C_2.$$

而当 x 遍历 $E \setminus 0$ 时, $\frac{x}{\|x\|_1}$ 遍历 S_1 . 故上述不等式又等价于

$$C_1 \le \inf_{S_1} \|\cdot\|_2 \le \sup_{S_1} \|\cdot\|_2 \le C_2.$$

因而存在如此 C_1 与 C_2 当且仅当: $\inf_{S_1} \|\cdot\|_2 > 0$ 且 $\sup_{S_2} \|\cdot\|_2 < \infty$.

注 3.1. 据上述引理之证明可知, 定义 3.2 中 C_1 的最优值(亦即最大)为 $\inf_{S_1} \|\cdot\|_2$, 而 C_2 的最优值(亦即最小)为 $\sup_{S_1} \|\cdot\|_2$.

如前所述, 若空间改其范数为另一等价范数, 则收敛性、连续性等无质变. 仅举一例, 不赘述.

引理 3.3. 设 E 有等价范数 $\|\cdot\|_1$ 与 $\|\cdot\|_2$, F 有等价范数 $\|\cdot\|_1'$ 与 $\|\cdot\|_2'$. 则 $T:(E,\|\cdot\|_1) \to (F,\|\cdot\|_1')$ 连续当且仅当 $T:(E,\|\cdot\|_2) \to (F,\|\cdot\|_2')$ 连续.

4 直和

设 E_1 与 E_2 分别有范数 $\|\cdot\|_1$ 与 $\|\cdot\|_2$. 在直和 $E_1 \oplus E_2$ 上定义范数 $\|(x_1, x_2)\| = \|x_1\|_1 + \|x_2\|_2$, 即得赋范线性空间范畴中的直和. 类似可定义多个空间的直和 $\bigoplus_{i=1}^n E_i$. 据2月16日补充题 #3, 得:

引理 4.1. $E_1 \oplus E_2$ 完备当且仅当 E_1 与 E_2 皆完备.

记 $p_i: E_1 \oplus E_2 \to E_i$ 为坐标投影, $\iota_i: E_i \to E_1 \oplus E_2$ 为坐标含入, 亦即 $\iota_1(x_1) = (x_1, 0)$, $\iota_2(x_2) = (0, x_2)$.

引理 4.2. ι_i 为保距线性映射; p_i 为有界线性映射, 且 $E_i \neq 0$ 时, 有 $||p_i|| = 1$.

投影与含入的根本用处体现于如下简单结论.

引理 **4.3.** (1) 线性映射 $\varphi: E_1 \oplus E_2 \to F$ 连续当且仅当 $\forall i, \varphi \iota_i$ 连续;

(2) 映射(无须线性) $\phi: G \to E_1 \oplus E_2$ 连续当且仅当 $\forall i, p_i \phi$ 连续.

设 E 有子空间 E_1 与 E_2 使得 $E = E_1 + E_2$ 且 $E_1 \cap E_2 = 0$. 此时可将 E_i 从 E 中取出,不顾 E_1 与 E_2 之因缘,而依上法作直和 $E_1 \oplus E_2$,此称之为两者的**外直和**. 另一面, E 自然可视为子空间 E_1 与 E_2 的直和,两子空间在 E 中有位置关系,称 E 是 E_1 与 E_2 的内直和. 在代数范畴中,内外直和仅是概念有异,实非本质不同. 而今赋范,两者"位置"则有鲜明体现. 且来比较内外直和. 定义从外直和到内直和的加法映射 $A: E_1 \oplus E_2 \to E$ 为 A(x,y) = x + y.

引理 **4.4.** $A: E_1 \oplus E_2 \to E$ 为线性双射, 且 $||A|| \le 1$.

问题 4.1. $A: E_1 \oplus E_2 \to E$ 是否同构? 亦即 A^{-1} 是否连续?

该问题答案为否. 读者或问: "为否又如何?" 于兹说一异象. 先看外直和. 在直和因子中分别取点列 $\{(x_n,0)\}\subset E_1\oplus 0$ 及 $\{(0,y_n)\}\subset 0\oplus E_2$. 则 $(x_n,0)$ 与 $(0,y_n)$ 的距离为

$$||(x_n, 0) - (0, y_n)|| = ||(x_n, -y_n)|| = ||x_n||_E + ||y_n||_E = ||(x_n, 0)|| + ||(0, y_n)||.$$

此处 $\|\cdot\|_E$ 是 E 中的范数. 若 $(x_n,0)$ 与 $(0,y_n)$ 的范数趋于无穷,亦即与原点的距离趋于无穷,则 $(x_n,0)$ 与 $(0,y_n)$ 的距离亦趋于无穷. 此事实合于我们对有限维空间的直观. 再用加法映射 A 将 $(x_n,0)$ 与 $(0,y_n)$ 搬至 E 中,而得 $\{x_n\}\subset E_1$ 及 $\{y_n\}\subset E_2$. 景象是否如前? 易证(可作读者项目选题): 若 A 非同构,则能找到点列 $\{x_n\}\subset E_1$ 及 $\{y_n\}\subset E_2$,使得其范数趋于无穷,但在 E 中的距离 $\|x_n-y_n\|_E$ 却趋于 0. 可谓: "青山隐隐孤舟微,白鹤双飞忽相见." 该异象或富诗意,实属病态,因其与我们关于有限维空间的直观相违! 鉴于此,有必要研究内外直和同构之条件.

记 $\tau_i: E_i \to E$ 为子空间含入. 据引理 4.3, A^{-1} 连续当且仅当 $\forall i, p_i A^{-1}$ 连续, 进而当且仅当 $\forall i, P_i = \tau_i p_i A^{-1}$ 连续. 易见, $P_i: E \to E$ 正是关于 E 的内直和分解的幂等算子, $\operatorname{im} P_i = E_i$, $\operatorname{ker} P_i = E_{3-i}$ (参课件《线性代数选讲》习题 #5-7). 而 $P_i = I - P_{3-i}$, 故 P_i 连续当且仅当 P_{3-i} 连续. 至此得:

命题 **4.5.** 设 $E \not\in E_1$ 与 E_2 的内直和, $P_i : E \to E$ 为幂等算子, $\operatorname{im} P_i = E_i$, $\ker P_i = E_{3-i}$. 则如下论断等价:

- (1) 加法映射 $A: E_1 \oplus E_2 \to E$ 为同构;
- (2) P₁ 与 P₂ 皆连续;
- (3) P₁ 或 P₂ 连续.

若 P_{3-i} 连续, 则 $E_i = \ker P_{3-i}$ 是 E 的闭子空间. 故得 A 是同构的必要条件:

推论 4.6. 若 $A: E_1 \oplus E_2 \rightarrow E$ 为同构, 则 E_1 与 E_2 是 E 的闭子空间.

当然, 此推论另有一证法或更快: 易见 $E_1 \oplus 0$ 是 $E_1 \oplus E_2$ 的闭子空间. 因同构保闭集, 故 $E_1 = A(E_1 \oplus 0)$ 是 E 的闭子空间.

至此读者或问: "若 E_1 与 E_2 皆是闭子空间,则 A 必是同构否?" 答案仍为否. 此反例不难觅得,可为读者项目选题. 但需温馨提醒: 两情形下无反例. 一则, E_1 或 E_2 是有限维,证明需有限维空间之范数等价定理. 二则, E 完备,证明需开映射定理,其为 Banach 空间论三大基石之一.

如下可补性问题紧相关于问题 4.1.

问题 **4.2.** 设 E_1 是 E 的闭子空间, 有否 E 的子空间 E_2 使得加法映射 $A:E_1\oplus E_2 o E$ 为同构?

显然, 若仅要求问题 4.2 中的 A 是线性空间之同构, 则必有相应的子空间 E_2 (参课件《线性代数选讲》引理 2.5), 此时称 E_2 是 E_1 的**代数补空间**. 而使本问题答案为是的 E_2 当然满足更强条件, 称其为 E_1 的**拓扑补空间**. 若 E_1 在 E 中的余维有限, 则本问题答案为是, 证明需有限维空间之范数等价定理. 若 E_1 是有限维, 答案亦为是, 证明需 Hahn-Banach 泛函延拓定理, 其为 Banach 空间论三大基石之首. 若 E 为 Banach 空间之特例—Hilbert 空间, 则答案显然为是, 取 E_2 为 E_1 的正交补即可. 正交补的存在性需著名的正交投影定理. 以上知识将在本课程中明示. 此外, 问题 4.2 之答案普遍为否. 初等反例可在 $E = l^1$ 中寻得, 然此例之构造或已超出本课程, 看官请见谅!

因问题 4.2 之答案一般为否, 故商空间益显其要!

5 商空间

设 E 是赋范空间, W 是 E 的闭子空间. 则代数商空间为 $E/W=\{x+W\mid x\in E\}$. 定义函数 $\|\cdot\|_{E/W}:E/W\to\mathbb{R}$ 为

$$||x + W||_{E/W} = \inf_{w \in W} ||x + w||_E.$$

8 5 商空间

易见, $\|x+W\|_{E/W}$ 与 x+W 的代表元选取无关, 故为良定义. 而 $\|x+W\|_{E/W}$ 的几何意义即为距离 d(x,W). 因 W 闭, 此乃关键, 得 $\|\cdot\|_{E/W}$ 正定, 亦即 $\|x+W\|_{E/W}=0$ 当且仅当 x+W=0. 进而可证: $\|\cdot\|_{E/W}$ 是 E/W 上的范数, 证明留为习题. 称 $(E/W,\|\cdot\|_{E/W})$ 为赋范空间范畴中的**商空间**.

如下重要结论之证明留为习题.

引理 5.1. 设W 是E 的闭子空间. 若E 完备, 则E/W 亦然.

记 $\pi: E \to E/W$ 为商投射.

引理 **5.2.** (1) $\forall \epsilon > 0, \forall y \in E/W, \exists x \in E, 使得 \pi x = y 且 <math>||x|| \le (1 + \epsilon)||y||$.

- (2) $\forall r > 0$, $\forall \pi \in \pi(B_E(0,r)) = B_{E/W}(0,r)$.
- (3) $\|\pi\| = 1$.

证明. (1). 若 y=0, 取 x=0 即可. 下设 $y\neq 0$. 取 $x_0\in E$ 使得 $\pi(x_0)=y$. 则 $\|y\|=\inf_{w\in W}\|x_0+w\|$. 因而 $\exists w_0\in W$,使得 $\|x_0+w_0\|\leq (1+\epsilon)\|y\|$. 令 $x=x_0+w_0$ 即可.

(2). 设 $x \in E$, 则

$$\|\pi x\| = \inf_{w \in W} \|x + w\| \le \|x + 0\| = \|x\|.$$

故 $\pi(B_E(0,r)) \subseteq B_{E/W}(0,r)$. 再据 (1), 结论得证.

引理 5.2 之 (2) 是很强结论. 其蕴含结论 (3),但反之不然. 结论 (2) 其实说明: $\pi: E \to E/W$ 是 开映射, 亦即 π 把 E 的开集映成 E/W 的开集. 熟悉点集拓扑的读者当知, 此表明 π 是拓扑意义下的商映射. 故赋范空间范畴中的商空间兼具代数与拓扑双义. 另一面, 不能将 (2) 中的开球换成闭球, 其实有 $\pi\left(\overline{B_E(0,r)}\right)\subseteq\overline{B_{E/W}(0,r)}$,但不能保证反包含. 作为补偿, 有结论 (1),其蕴含如下著名结论.

推论 **5.3** (Riesz 引理). 设 W 是 E 的真闭子空间. 则 $\forall \epsilon > 0$, $\exists x \in E$ 使得 $\|x\| = 1$ 且 $d(x,W) > 1 - \epsilon$. 证明. 因 W 闭, 知 E/W 是赋范空间. 又 $W \neq E$, 知 $E/W \neq 0$, 进而 $\exists y \in E/W$ 使得 $\|y\| = 1$. 取 $\epsilon' > 0$, 使得 $(1 + \epsilon')^{-1} > 1 - \epsilon$. 据引理 5.2 之 (1), 知 $\exists z \in E$ 使得 $\pi z = y$ 且 $\|z\| \leq (1 + \epsilon')$. 令 $x = \frac{z}{\|z\|}$. 则 $\|x\| = 1$, $d(x,W) = \|\pi x\| = \|\frac{y}{\|z\|}\| = \frac{1}{\|z\|} > 1 - \epsilon$.

引理 5.2 之 (2) 的威力体现于如下定理.

定理 5.4. 设 $T: E \to F$ 是连续线性映射, W 是 E 的闭子空间且 $\ker T \supseteq W$. 则有连续线性映射 $\bar{T}: E/W \to F$ 使下图交换.

$$E \xrightarrow{\pi} T \xrightarrow{\bar{T}} F$$

证明. 据代数同态基本定理, 存在线性映射 \bar{T} 使上图交换. 因 T 连续, 据引理 2.1, 知 $\exists L > 0$, 使得 $T(B_E(0,1)) \subseteq B_F(0,L)$. 据引理 5.2, 得

$$\bar{T}(B_{E/W}(0,1)) = \bar{T}(\pi(B_E(0,1))) = T(B_E(0,1)) \subseteq B_F(0,L).$$

再据引理 2.1, 知 \bar{T} 连续.

问题 5.1. 设 $T: E \to F$ 是连续线性映射. 则 $\bar{T}: E/\ker T \to \operatorname{im} T$ 是否同构?

代数同态基本定理说明, 在线性空间范畴中相应问题答案为是. 而在赋范线性空间范畴中, 答案却为否. 如例 2.3, 其中 $\ker T=0$ 进而 $\bar T=T$, E=C[a,b] 完备, 而 $\operatorname{im} T$ 不完备, 故 $\bar T$ 非同构. 但须指出: 若 E 与 $\operatorname{im} T$ 皆完备, 则答案为是. 此即开映射定理.

商空间 E/W 与 W 在 E 中的补空间紧相关. 设 V 是 W 在 E 中的代数补空间. (已知代数补空间必存在.) 则 $\pi|_V:V\to E/W$ 是线性双射且连续.

命题 5.5. 设 V 是 W 在 E 中的代数补空间. 则 $\pi|_V:V\to E/W$ 是同构当且仅当 V 是 W 的拓扑补空间.

证明. 已知 $\pi|_V: V \to E/W$ 是同构当且仅当 $(\pi|_V)^{-1}$ 连续. 记 $P: E \to E$ 为关于代数补的幂等算子,满足 $\operatorname{im} P = V$, $\ker P = W$. 据代数同态基本定理, 知有线性双射

$$\bar{P}: E/W \to \mathrm{im}\bar{P} = \mathrm{im}P = V$$

使得 $P = \bar{P}\pi$. 再据定理 5.4, 知 P 连续当且仅当 \bar{P} 连续. 易见(请读者自证): $\bar{P} = (\pi|_V)^{-1}$. 故 $(\pi|_V)^{-1}$ 连续当且仅当 P 连续. 据命题 4.5, 进一步当且仅当 V 是 W 的拓扑补.

据命题 5.5, 若 W 有拓扑补空间,则不用商空间亦无妨.回顾问题 4.2, 抚今追昔, 拓扑补"帝乡不可期",而商空间"人间春常在". 堪重任者,其商空间乎!

6 完备化

设 $(E, \|\cdot\|)$ 是赋范空间. 若 E 不完备, 则可将 E **完备化**, 亦即构造一 Banach 空间 \tilde{E} 及等距映射 $T: E \to \tilde{E}$ 使得 T(E) 在 \tilde{E} 中稠密. 此时可视 T 为子空间含入. 在此我们承认 E 有度量完备化 \tilde{E} , 余下工作不劳神.

须知, \tilde{E} 迄今仅有度量, 尚需线性结构与范数. 考虑 E 上的加法映射

$$A: E \oplus E \to E \subseteq \tilde{E},$$

 $(x,y) \mapsto x + y.$

易见 A 是 Lipschitz 映射. (其实为线性映射,有 Lipschitz 常数 1.) 又, $\tilde{E} \times \tilde{E}$ 为 $E \oplus E$ 的完备 化(参2月16日补充题 #4). 则 A 唯一延拓为 Lipschitz 映射 $\tilde{A}: \tilde{E} \times \tilde{E} \to \tilde{E}$ (参2月16日补充题 #9). 定义 \tilde{E} 上的加法为 $\tilde{x}+\tilde{y}=\tilde{A}(\tilde{x},\tilde{y})$. 又,固定 $k \in \mathbb{F}$,考虑数乘映射

$$M_k: E \to E \subseteq \tilde{E},$$

 $x \mapsto kx.$

6 完备化

显然 M_k 亦是 Lipschitz 映射. 其可唯一延拓为 Lipschitz 映射 $\tilde{M}_k: \tilde{E} \to \tilde{E}$. 定义 \tilde{E} 上的数乘为 $k\tilde{x} = \tilde{M}_k(\tilde{x})$. 而今检验 \tilde{E} 上的加与数乘满足线性空间八公理. 此事不难, 因 \tilde{E} 上的运算由 E 上的连续延拓而得. 如检验加法交换律: $\forall \tilde{x}, \tilde{y} \in \tilde{E}$, 取 E 中的点列 $\{x_n\}$ 及 $\{y_n\}$ 分别收敛于 \tilde{x} 与 \tilde{y} , 则

$$\tilde{x} + \tilde{y} = \tilde{A}(\tilde{x}, \tilde{y}) = \tilde{A}\left(\lim_{n \to \infty} x_n, \lim_{n \to \infty} y_n\right) = \lim_{n \to \infty} \tilde{A}(x_n, y_n) = \lim_{n \to \infty} A(x_n, y_n) = \lim_{n \to \infty} A(y_n, x_n)$$
$$= \lim_{n \to \infty} \tilde{A}(y_n, x_n) = \tilde{A}\left(\lim_{n \to \infty} y_n, \lim_{n \to \infty} x_n\right) = \tilde{A}(\tilde{y}, \tilde{x}) = \tilde{y} + \tilde{x}.$$

上式第三、七等号用了 \tilde{A} 的连续性, 第五等号用了 E 的加法的交换律. 如法炮制, 遂能证得八公理, 因而 \tilde{E} 是线性空间.

再定义 \tilde{E} 上的范数. 范数 $\|\cdot\|_E: E \to \mathbb{R}$ 虽非线性, 然仍是 Lipschitz 函数, 故可唯一连续延拓为 $\|\cdot\|_{\tilde{E}}: \tilde{E} \to \mathbb{R}$. 先证等式: $\forall \tilde{x}, \tilde{y} \in \tilde{E}, \|\tilde{x} - \tilde{y}\|_{\tilde{E}} = d_{\tilde{E}}(\tilde{x}, \tilde{y})$. 取 $\{x_n\}$ 与 $\{y_n\}$ 如上, 则

$$\|\tilde{x} - \tilde{y}\|_{\tilde{E}} = \left\|\lim_{n \to \infty} x_n - \lim_{n \to \infty} y_n\right\|_{\tilde{E}} = \left\|\lim_{n \to \infty} (x_n - y_n)\right\|_{\tilde{E}} = \lim_{n \to \infty} \|x_n - y_n\|_{\tilde{E}} = \lim_{n \to \infty} \|x_n - y_n\|_{\tilde{E}}$$
$$= \lim_{n \to \infty} d_E(x_n, y_n) = \lim_{n \to \infty} d_{\tilde{E}}(x_n, y_n) = d_{\tilde{E}}\left(\lim_{n \to \infty} x_n, \lim_{n \to \infty} y_n\right) = d_{\tilde{E}}(\tilde{x}, \tilde{y}).$$

上式第二等式用了加法 \tilde{A} 与数乘 \tilde{M}_{-1} 的连续性, 第三等号用了 $\|\cdot\|_{\tilde{E}}$ 的连续性, 第五等号是 E 上的已知关系, 第七等号用了 $d_{\tilde{E}}$ 的连续性. 等式 $\|\tilde{x}-\tilde{y}\|_{\tilde{E}}=d_{\tilde{E}}(\tilde{x},\tilde{y})$ 蕴含两事: 一则, $d_{\tilde{E}}$ 由 $\|\cdot\|_{\tilde{E}}$ 导出; 二则, $\|\cdot\|_{\tilde{E}}$ 满足正定性. 而 $\|\cdot\|_{\tilde{E}}$ 的齐次性与三角不等式亦可由 $\|\cdot\|_{E}$ 的相应性质逼近而得.

总之, 得 $(\tilde{E}, \|\cdot\|_{\tilde{E}})$ 为 Banach 空间, 其为 $(E, \|\cdot\|_{E})$ 的完备化. 度量空间完备化既有唯一性, 赋范空间从之.

例 6.1. 设 E 为取 \mathbb{F} 值的序列构成的线性空间, 此等序列满足条件: 仅有限个分量非 0. 当 $1 \le p < \infty$ 时, 在 E 上定义 p-范数

$$\|(a_1, a_2, \cdots)\|_p = \left(\sum_{n=1}^{\infty} |a_n|^p\right)^{\frac{1}{p}}.$$

则 $(E, \|\cdot\|_p)$ 不完备, 其完备化为 l^p . 定义 ∞ -范数为

$$||(a_1, a_2, \cdots)||_{\infty} = \sup_{n} |a_n|.$$

则 $(E, \|\cdot\|_p)$ 亦不完备, 其完备化为 c_0 . 此等证明留为习题.

例 6.2. 令 $C^{\infty}[a,b]$ 为 [a,b] 上光滑函数构成的线性空间. 对于整数 $0 \le k < \infty$, 定义 $C^{\infty}[a,b]$ 上的 C^k -范数为

$$||f||_{C^k} = \sum_{i=0}^k \max_{x \in [a,b]} |f^{(k)}(x)|.$$

则 $(C^{\infty}[a,b], \|\cdot\|_{C^k})$ 不完备. 其完备化为

$$C^k[a,b] = \{[a,b] \perp k$$
 阶连续可微函数 \}.

 $C^k[a,b]$ 的范数定义如上. 易证 $C^k[a,b]$ 可分. 此等证明留为习题.

7 映射空间

设 E 与 F 皆为赋范空间. 记 L(E,F) 为所有从 E 到 F 的线性映射构成的集合. 显然, L(E,F) 上有通常的加与数乘, 而成线性空间. 而 $\forall T \in L(E,F)$, 之前已定义 T 的范数 $\|T\|$. 故得函数 $\|\cdot\|: L(E,F) \to \mathbb{R}$.

引理 7.1. (1) L(E,F) 是赋范线性空间.

(2) 若 F 完备, 则 L(E, F) 亦然.

证明. (1). 仅需证映射的范数的确定义了线性空间 L(E,F) 上的范数. 此据引理 2.3 得证.

(2). 设 $\{T_n\}$ 是 L(E,F) 的 Cauchy 列. 则 $\forall x \in E$, 有

$$||T_n x - T_m x|| \le ||T_n - T_m|| ||x||,$$

故 $\{T_n x\}$ 是 F 的 Cauchy 列. 又, F 完备, 知 $\{T_n x\}$ 收敛. 定义映射 $T: E \to F$ 为 $Tx = \lim_{n \to \infty} T_n x$. 设 $x, y \in E$, 据 T_n 线性, 得

$$T(x+y) = \lim_{n \to \infty} T_n(x+y) = \lim_{n \to \infty} (T_n x + T_n y) = Tx + Ty.$$

同理, $\forall k \in \mathbb{F}$, 有 T(kx) = kTx. 故 T 线性.

再据 $\{T_n\}$ 是 Cauchy 列, 知 $\forall \epsilon > 0$, $\exists N, \forall n > N, \forall m > N, 有 <math>\|T_m - T_n\| < \epsilon$. 进而 $\forall x \in E$, 有

$$||(T - T_n)x|| = ||Tx - T_nx|| = \lim_{m \to \infty} ||T_mx - T_nx|| \le \lim_{m \to \infty} ||T_m - T_n|| ||x|| \le \epsilon ||x||.$$

故 $\forall n > N$, 有 $T - T_n$ 有界, 且 $||T - T_n|| \le \epsilon$. 因而 $T = T_n + (T - T_n)$ 有界, 且 $\{T_n\}$ 收敛于 T. \square

设 E 是赋范空间, \tilde{E} 是 E 的完备化. 设 F 是 Banach 空间. 考虑限制映射 $L(\tilde{E},F) \to L(E,F)$, 亦即 $T \mapsto T|_{E}$, 则 T 为 $T|_{E}$ 唯一决定. 反之, $\forall S \in L(E,F)$, 其可唯一延拓成 $\tilde{S} \in L(\tilde{E},F)$. 故有如下结论, 证明细节留为习题.

引理 7.2. 限制映射 $L(\tilde{E},F) \to L(E,F)$ 为等距同构.

有两类映射空间值得关注. 第一类: 取 $F = \mathbb{F}$, 记 $E^* = L(E, \mathbb{F})$. 其为 E 上有界线性泛函构成的空间, 称之为 E 的**对偶空间**. 对偶空间或是最简之映射空间. 据引理 7.1, E^* 是 Banach 空间, 哪怕 E 不完备. 而据引理 7.2 又知: 若 \tilde{E} 是 E 的完备化, 则 $\tilde{E}^* = E^*$. 故研究 E^* 时, 不妨设 E 完备.

欲研究对偶空间, 即使浅尝辄止, 亦常需 Hahn-Banach 泛函延拓定理. 且看一例. 考虑配对

$$E \times E^* \to \mathbb{F},$$

 $\langle x, x^* \rangle \mapsto x^*(x).$

据 $|\langle x, x^* \rangle| \le ||x|| ||x^*||$ 知: 固定 x, 而让 x^* 变化, 则可视 x 为 E^* 上的连续线性泛函. 因之得映射 $**: E \to E^{**}$, 亦即 $x \mapsto x^{**}$ 使得 $\forall x^* \in E^*$, $\langle x^{**}, x^* \rangle = \langle x, x^* \rangle$.

问题 7.1. 映射 $x \mapsto x^{**}$ 是否从 E 到 E^{**} 的单射? 甚至等距映射?

12 7 映射空间

问题 7.1 之答案为是, 其证明需泛函延拓定理. 再看具体空间.

例 7.1. 设 1 . 记 <math>p' > 1 满足 $\frac{1}{p} + \frac{1}{p'} = 1$. 称 p 与 p' 互为共轭指标. 设 $x = (a_1, a_2, \cdots) \in l^p$, $y = (b_1, b_2, \cdots) \in l^{p'}$. 定义配对 $\langle x, y \rangle = \sum_{n=1}^{\infty} a_n b_n$. 今证明如此配对将 $(l^p)^*$ 等同于 $l^{p'}$. 据 $H\"{o}lder$ 不等式,

$$|\langle x, y \rangle| = \left| \sum_{n=1}^{\infty} a_n b_n \right| \le \left(\sum_{n=1}^{\infty} |a_n|^p \right)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} |b_n|^{p'} \right)^{\frac{1}{p'}} = \|x\|_p \|y\|_{p'}.$$

故 y 定义了 $Ty \in (l^p)^*$, 且 $||Ty|| \le ||y||$. 显然, $T: l^{p'} \to (l^p)^*$ 是线性映射.

下证 T 保距. 固定 y. 定义序列 $z = (c_1, c_2, \cdots)$ 使得

$$c_n = \begin{cases} \overline{b_n} |b_n|^{p'-2}, & b_n \neq 0; \\ 0, & b_n = 0. \end{cases}$$

此处 $\overline{b_n}$ 是 b_n 的共轭复数. 则

$$\sum_{n=1}^{\infty} |c_n|^p = \sum_{n=1}^{\infty} |b_n|^{(p'-1)p} = \sum_{n=1}^{\infty} |b_n|^{p'} = ||y||^{p'},$$

进而 $z \in l^p$ 且 $||z|| = ||y||^{\frac{1}{p-1}}$. 又,

$$||Ty|||y||^{\frac{1}{p-1}} = ||Ty|||z|| \ge |Ty(z)| = |\langle z, y \rangle| = \sum_{n=1}^{\infty} |b_n|^{p'} = ||y||^{p'}.$$

 $||Ty|| \ge ||y||$. 综上, T 保距.

最后证 T 为满射. 设 $e_n\in l^p$ 为第 n 个分量为 1 且其余分量为 0 的元素. 设 $f\in (l^p)^*$. 定义 $b_n=f(e_n)$. 设 $x\in l^p$ 如上. 则

$$f(x) = f\left(\sum_{n=1}^{\infty} a_n e_n\right) = \sum_{n=1}^{\infty} a_n f(e_n) = \sum_{n=1}^{\infty} a_n b_n.$$

定义序列 $y=(b_1,b_2,\cdots)$, 需证 $y\in l^{p'}$. 据 y 定义 $z=(c_1,c_2,\cdots)$ 如上. 令 $z_n=(c_1,\cdots,c_n,0,0,\cdots)$. 则 $z_n\in l^p$,

$$||f||\left(\sum_{k=1}^{n}|b_{k}|^{p'}\right)^{\frac{1}{p}} = ||f|||z_{n}|| \ge |f(z_{n})| = \sum_{k=1}^{n}|b_{k}|^{p'}.$$

进而得, $\forall n$,

$$\left(\sum_{k=1}^{n} |b_k|^{p'}\right)^{\frac{1}{p'}} \le ||f||.$$

因而 $y \in l^{p'}$ 且 Ty = f, 亦即 T 为满射. 综上, $T: l^{p'} \to (l^p)^*$ 是等距同构.

据例 7.1, 当 $1 时, <math>l^p$ 与 $l^{p'}$ 互为对偶, 且问题 7.1 中的映射 $l^p \to (l^p)^{**}$ 为等距同构. 此时称 l^p 自反. 显然, 自反空间必完备.

例 7.2. 设 $x=(a_1,a_2,\cdots)\in l^1$, $y=(b_1,b_2,\cdots)\in l^\infty$. 定义配对 $\langle x,y\rangle=\sum_{n=1}^\infty a_nb_n$. 今证明据此 有 $l^\infty=(l^1)^*$. 首先,

$$|\langle x, y \rangle| = \left| \sum_{n=1}^{\infty} a_n b_n \right| \le \sum_{n=1}^{\infty} |a_n| \cdot \sup_n |b_n| = ||x||_1 ||y||_{\infty}$$

如此定义线性映射 $T: l^{\infty} \to (l^1)^*$ 满足 $||Ty|| \le ||y||$.

取 e_n 如例 7.1, 则 $e_n \in l^1$ 且 $||e_n|| = 1$. 进而 $\forall n$,

$$|b_n| = |Ty(e_n)| \le ||Ty|| ||e_n|| = ||Ty||.$$

故 $||Ty|| \ge ||y||$. 综上, T 保距.

最后证 T 是满射. 设 $f \in (l^1)^*$, 记 $b_n = f(e_n)$. 则 $|b_n| \leq ||f||$. 进而 $y = (b_1, b_2, \cdots) \in l^{\infty}$. 如例 7.1, 可证: Ty = f. 故 T 是满射.

问题 7.2. 是否 $l^1 = (l^{\infty})^*$?

该问题答案为否, 有两法证之. 法一: 已知 l^{∞} 不可分, 而 l^{1} 可分. 有结论: 若 E 不可分, 则 E^{*} 不可分. 此结论之证明再需泛函延拓定理. 法二如下.

例 7.3. 设 $x=(a_1,a_2,\cdots)\in c_0,\ y=(b_1,b_2,\cdots)\in l^1$. 定义配对 $\langle x,y\rangle=\sum_{n=1}^\infty a_nb_n$. 据此有 $l^1=(c_0)^*$. 此结论之证明留为习题.

已知 c_0 是 l^{∞} 的真闭子空间, 则 $(l^{\infty})^*$ 与 $(c_0)^*$ 是否必不同? 的确如此. 有结论: 若 W 是 E 的真闭子空间, 则 W^* 是 E^* 的商空间且 $W^* \neq E^*$. 此结论之证明仍需泛函延拓定理!

第二类值得关注的映射空间为 L(E,E). 为不致病态,设 E 完备,据引理 7.1,知 L(E,E) 是 Banach 空间. 此外 L(E,E) 上有乘法: $\forall S,T\in L(E,E)$,有 $ST\in L(E,E)$. 故 L(E,E) 又是 \mathbb{F} -代数. 且据引理 2.4,有 $\|ST\|<\|S\|\|T\|$. 将此等性质抽象化,即得 Banach 代数之概念.

定义 7.1. 设 A 是 \mathbb{F} -代数, 且为 Banach 空间. 又设 $\forall a,b \in A$, 有 $\|ab\| \le \|a\| \|b\|$. 则称 A 是 Banach 代数.

Banach 代数是泛函分析的深刻分支.即使其初等部分或已超出本课程.但本课程的算子谱论将以具体方式表现 Banach 代数抽象理论之沧海一粟.

8 基

基是研究线性空间的重要工具, 其于有限维空间极为有力. 无限维赋范空间当然有 Hamel 基, 但其未顾及空间的拓扑结构, 故并不适合分析手段. 如: 一般不能考虑 Hamel 基的无限项线性组合. 作为 Banach 空间的特例, Hilbert 空间有完美的正规基, 实为分析手段之利器. 而此外迄今则未发现广有且好用的基.

基论的一个著名的尝试是 Schauder 基. 若赋范空间 E 中有一列向量 $\{e_n\}$ 满足: $\forall x \in E$,有唯一的系数列 $\{a_n\} \subset \mathbb{F}$ 使得 $x = \sum_{n=1}^{\infty} a_n e_n$,则称 $\{e_n\}$ 是 E 的 Schauder 基. 须知,上述级数

 $\sum_{n=1}^{\infty} a_n e_n$ 一般不能随意重排. 若能随意重排, 亦即**无条件收敛**, 则称 $\{e_n\}$ 是**无条件 Schauder 基**. 显然, 若 E 有 Schauder 基,则 E 可分. 反之, 是否可分空间必有 Schauder 基? 答案为否. 一些经典的可分空间有 Schauder 基. 如: c_0 与 l^p $(1 \le p < \infty)$ 显然存在无条件 Schauder 基. 可分 Hilbert 空间的正规基当然是无条件 Schauder 基. 但一般可分空间的 Schauder 基存在性是个艰深问题.

"有则用之, 无则改之." 泛函分析的很多手法皆不用基.

习题

- 1. 设 *E* 是线性空间.
 - (1). 设 $\|\cdot\|$ 与 $\|\cdot\|'$ 皆为 E 的范数. 求证: $\|\cdot\| + \|\cdot\|'$ 亦然.
 - (2). 设 $\|\cdot\|$ 为 E 的范数, k > 0. 求证: $k\|\cdot\|$ 为 E 的范数.
- 2. 设 E 是线性空间, p 是其上的半范数. 定义 $\ker p = p^{-1}(0)$ 为 p 的核.
 - (1). 求证: 若 p 是半范数, 则 $\ker p$ 是 E 的子空间.
 - (2). 求证: 若 $p \ni p'$ 皆是半范数,则 p + p' 亦然,且 $\ker(p + p') = \ker p \cap \ker p'$.
 - (3). 求证: 若 p 是半范数, k > 0. 求证: kp 是半范数, 且 $\ker(kp) = \ker p$.
 - (4). 求证: 若 f 是线性泛函, 则 |f| 是半范数, 且 $\ker |f| = \ker f$.
- 3. 设 E 与 F 皆为线性空间, $T: E \to F$ 为线性映射, p 为 F 上的半范数. 定义 $T^*p: E \to \mathbb{R}$ 为 $T^*p(x) = p(Tx)$. 求证: T^*p 是 E 上的半范数, 且 $\ker T^*p = T^{-1} \ker p$.
- 4. 设 E 是赋范线性空间. 求证如下论断等价:
 - (1). E 可分;
 - (2). 存在 E 的可数子集 X 使得 $E = \overline{\text{span}(X)}$;
 - (3). 存在 E 的一列增子空间 $E_1 \subseteq E_2 \subseteq \cdots$,使得 $\forall n$, $\dim E_n$ 有限, 且 $E = \overline{\bigcup_{n=1}^{\infty} E_n}$.
- 5. 设 E 是赋范线性空间. 求证如下论断等价:
 - (1). E 可分;
 - (2). E 的单位球体 B(0,1) 可分;
 - (3). E 的单位球面 $S(0,1) = \{x \in E \mid ||x|| = 1\}$ 可分.
- 6. 求证: $1 \le p \le \infty$ 时, l^p 完备.
- 7. 求证: c_0 是 l^{∞} 的闭子集.
- 8. 设 $1 \le p \le \infty$, 记 $e_n \in l^p$ 为第 n 个分量为 1, 其余分量为 0 的向量. 记 F 为诸 e_n 生成的线性子空间.
 - (1). 再设 $p < \infty$. 求证: $l^p = \overline{F}$, 因而 l^p 可分.

- (3). 再设 $p = \infty$. 求证: $c_0 = \overline{F}$, 因而 c_0 可分.
- (2). 设 $x \in l^{\infty}$ 为所有分量为 1 的向量. 求证: $d(x, \overline{F}) = 1$.
- 9. 设 $T: E \to F$ 为线性映射. 求证: T 连续当且仅当 $\exists x_0 \in E, T$ 在 x_0 处连续.
- 10. 设 $T: E \to F$ 为线性映射. 求证: 若 $T(B_E(0,1)) \subseteq B_F(0,L)$, 则 $||T|| \le L$; 若 $F \ne 0$ 且 $T(B_E(0,1)) = B_F(0,L)$, 则 ||T|| = L.
- 11. 设 E 是赋范空间, p 是 E 上的半范数. 求证: p 连续当且仅当 $\exists C \geq 0$, 使得 $\forall x \in E$, $p(x) \leq C||x||$.
- 12. 证明引理 2.4.
- 13. 设 $T: E \to F$ 为线性映射. 若 dim imT 有限, 则称 T 是**有限秩映射**, 称 dim imT 为 T 的**秩**, 记 为 rankT. 设 f_i 是 E 上的线性泛函, $g_i \in F$, $1 \le i \le n$. 定义 $T: E \to F$ 为 $Tx = \sum_{i=1}^n f_i(x)g_i$.
 - (1). 求证: T 是有限秩的线性映射, 且 $\operatorname{rank} T \leq n$.
 - (2). 求证: 若诸 f; 连续, 则 T 亦然.
 - (注: 今后将证本题之逆, 亦即有限秩的(连续)线性映射必有如此表达.)
- 14. 设 X 是度量空间. 定义 $C_b(X)$ 为 X 上的**有界**连续函数构成的线性空间, 定义其上的范数为 $\|f\| = \sup |f|$. 若另有度量空间 Y, 且有连续映射 $\tau: X \to Y$. 定义映射 $\tau^\#: C_b(Y) \to C_b(X)$ 为 $\tau^\#f = f \circ \tau$. (此处 $C_b(X)$ 的下标 b 意指"有界"—"bounded". 若 X 紧, 则 $C_b(X) = C(X)$.)
 - (1). 求证: $C_b(X)$ 是 Banach 空间.
 - (2). 求证: $\tau^{\#}$ 是有界线性映射, 且 $\|\tau^{\#}\| = 1$.
 - (3). 求证: $\tau^{\#}$ 是单射当且仅当 $\tau(X)$ 在 Y 中稠密, 且此时 $\tau^{\#}$ 保距.
- 15. 设 $(a_1, a_2, \cdots) \in l^{\infty}$. 定义

$$T(b_1, b_2, \cdots) = (a_1b_1, a_2b_2, \cdots).$$

- (1). 求证: 对 $1 \le p \le \infty$, T 为 l^p 到自身的有界线性映射, 且 $||T|| = ||(a_1, a_2, \cdots)||$.
- (2). 求证: T 为单射当且仅当 $\forall n, a_n \neq 0$.
- 16. 如题 15, 取 $a_n = 2^{-n}$, 再设 $p < \infty$.
 - (1). 设 F 如题 8. 求证: $imT \supseteq F$, 因而 imT 在 l^p 中稠密.
 - (2). 求证: $\operatorname{im} T \neq l^p$, 因而 $\operatorname{im} T$ 不闭.
 - (注: 较之例 2.3, 本题优势在于定义域与上域为同一空间. 又, 若 $p = \infty$, 甚至取 $(a_1, a_2, \cdots) \in c_0$, 则亦有 imT 不闭. 待读者学得紧算子后, 则有抽象证法得一般结论.)
- 17. 设赋范空间 E 与 F 同构. 求证: 若 E 完备,则 F 亦然.

18. (1). 设 $T: E \to F$ 是赋范空间的有界线性映射. 又设 $\exists C > 0$, 使得 $\forall x \in E$, 有 $\|Tx\| \ge C\|x\|$. 求证: $T: E \to \text{im} T$ 为同构.

- (2). (闭值域定理) 设 $T: E \to F$ 是赋范空间的有界线性映射, 且设 E 完备. 又设 $\exists C > 0$, 使得 $\forall x \in E$, 有 $\|Tx\| \ge C\|x\|$. 求证: imT 完备, 因而是 F 的闭子集. (注: 对照例 2.2 与题 16, 体会 本题两条件之要害. 一则, E 完备. 二则, 常数 C > 0 且与 x 无关. 据题 15 之 (2), 知题 16 的 T 满足: $\forall x \ne 0$, $\|Tx\| > 0$. 但此不足保证闭值域.)
- 19. 设 E 上有范数 $\|\cdot\|$ 与 $\|\cdot\|'$, 且 $\exists C > 0$ 使得 $\|\cdot\|' \le C\|\cdot\|$.
 - (1). 求证: $(E, \|\cdot\|)$ 中的 Cauchy 列必是 $(E, \|\cdot\|')$ 中的 Cauchy 列.
 - (2). 求证: 若 $\{x_n\}$ 在 $(E, \|\cdot\|)$ 中收敛至 x_0 , 则在 $(E, \|\cdot\|')$ 中亦然.
 - (3). 设 $(E, \|\cdot\|)$ 的单位闭球 \overline{B} 是 $(E, \|\cdot\|')$ 的闭集,且 $(E, \|\cdot\|')$ 完备. 求证: $(E, \|\cdot\|)$ 完备. (提示: 在 $(E, \|\cdot\|')$ 中用闭集套定理证 $(E, \|\cdot\|)$ 中的 Cauchy 列按 $\|\cdot\|$ 收敛. 注: 今后将证,若 $(E, \|\cdot\|)$ 与 $(E, \|\cdot\|')$ 皆完备,则两范数等价,进而" \overline{B} 是 $(E, \|\cdot\|')$ 的闭集"实乃必要条件. 又,本题若去此条件,则有反例.)
- 20. 在 C[a,b] 上考虑 L^p 范数,记 为 $\|\cdot\|_p$, $1 \le p \le \infty$.则 $\|\cdot\|_\infty$ 即为 C[a,b] 的通常范数,因而 $(C[a,b],\|\cdot\|_\infty)$ 完备.记 $(C[a,b],\|\cdot\|_\infty)$ 的单位闭球为 \overline{B} .求证: $\forall p < \infty$, $\exists C > 0$,使得 $\|\cdot\|_p \le C\|\cdot\|_\infty$;且 \overline{B} 在中 $(C[a,b],\|\cdot\|_p)$ 闭;但 $(C[a,b],\|\cdot\|_p)$ 不完备.(注:请对照题 19之(3)与例 2.3.)
- 21. 设 W 是 E 的闭子空间. 定义 $||x+W||_{E/W} = \inf_{w \in W} ||x+w||_{E}$. 求证: $||\cdot||_{E/W}$ 是 E/W 上的范数.
- 22. 设 E 是 Banach 空间, $\{x_n\}$ 是 E 中点列满足 $\sum_{n=1}^{\infty} \|x_n\| < \infty$. 求证: $\sum_{n=1}^{\infty} x_n$ 收敛,且 $\left\|\sum_{n=1}^{\infty} x_n\right\| \le \sum_{n=1}^{\infty} \|x_n\| < \infty$. (注: 此时称 $\sum_{n=1}^{\infty} x_n$ 绝对收敛. 今后将证,该级数重排后不更其值,亦即绝对收敛 蕴含无条件收敛.)
- 23. 证明引理 5.1. (提示: 欲证 Cauchy 列收敛, 仅需证其某一子列收敛. 用题 22.)
- 24. 求证: 投射 $\pi: E \to E/W$ 是开映射, 亦即若 $U \in E$ 的开集, 则 $\pi(U) \in E/W$ 的开集.
- 25. 命题 5.5 之证明中用到结论 $\bar{P} = (\pi|_V)^{-1}$. 证明此结论.
- 26. 设 E 是赋范空间, W 是 E 的闭子空间. 又设 V_1 与 V_2 均为 W 的拓扑补. 设 P_1 与 P_2 为 E 上的幂等算子, 满足 $\operatorname{im} P_i = V_i$, $\ker P_1 = \ker P_2 = W$. 求证: $P_2|_{V_1}: V_1 \to V_2$ 与 $P_1|_{V_2}: V_2 \to V_1$ 互逆, 因而 V_1 与 V_2 同构.
- 27. 设 E 是线性空间, W 是 E 的子空间, E/W 是代数商空间, $\pi: E \to E/W$ 是商投射.
 - (1). 设 $\|\cdot\|_{E/W}$ 是 E/W 上的范数. 定义 $p = \pi^*\|\cdot\|_{E/W}$, 亦即 $p(x) = \|\pi x\|_{E/W}$. 求证: p 是 E 上的半范数, 且 $\ker p = W$.

- (2). 设 $p \in E$ 上的半范数,且 $\ker p = W$. 求证:存在 E/W 上的范数 $\|\cdot\|_{E/W}$,使得 $p = \pi^*\|\cdot\|_{E/W}$.
- 28. (1). 设 k 是非负整数. 求证: $C^{k}[a,b]$ 完备.
 - (2). 记 P[a,b] 为 [a,b] 是上多项式构成的空间. 求证: P[a,b] 在 $C^k[a,b]$ 中稠密. (据此得 $C^k[a,b]$ 可分.)
- 29. 定义映射 $T: C^k[a,b] \to \bigoplus_{i=1}^k C[a,b]$ 为 $Tf = (f^{(0)}, f^{(1)}, \cdots, f^{(k)})$.
 - (1). 求证: T 是保距线性映射.
 - (2). 以 (1) 证得 $C^{k}[a,b]$ 可分. (注: 本法的优势为易推广至多元.)
- 30. 在 $C^k[a,b]$ 上定义函数 $p_i = \max_{x \in [a,b]} |f^{(i)}(x)|, 0 \le i \le k$.
 - (1). 求证: p_i 是 $C^k[a,b]$ 上的半范数, 且 p_0 是范数.
 - (2). 求证: 当 i > 0 时, $\ker p_i = P_{i-1}[a, b]$ 为 [a, b] 上次数不超过 (i-1) 的多项式构成的空间.
- 31. 设 $X \in C^{k+1}[a,b]$ 中的有界集, $0 \le k < \infty$. 求证: $X \in C^{k}[a,b]$ 中的准紧集.
- 32. 设 $E \in C^{k+1}[a,b]$ 的子空间, $0 < k < \infty$.
 - (1). 求证: $(E, \|\cdot\|_{C^{k+1}})$ 的单位闭球是 $(E, \|\cdot\|_{C^k})$ 的闭集. (提示: 用 $f^{(k)}$ 的差商控制 $f^{(k+1)}$.)
 - (2). 设有 $0 \le l \le k$ 使得 $(E, \|\cdot\|_{C^l})$ 完备. 求证: $(E, \|\cdot\|_{C^{k+1}})$ 完备. (提示: 用题 19. 注: 今后 将知, 此时 $\dim E$ 有限.)
- 33. 证明引理 7.2.
- 34. 设 $A \in L(E_1, E), T \in L(E, F), B \in L(F, F_1).$ 定义 $A^{\#}T = TA, B_{\#}T = BT$.
 - (1). 求证: $A^{\#}$ 是从 L(E,F) 到 $L(E_1,F)$ 的线性映射, 且 $||A^{\#}|| \leq ||A||$.
 - (2). 求证: $B_{\#}$ 是从 L(E,F) 到 $L(E,F_1)$ 的线性映射, 且 $||B_{\#}|| \le ||B||$.
- 35. 设 E 是赋范空间.
 - (1). 求证: 从 \mathbb{F} 到 E 的线性映射皆连续. (下一讲有此结论之大推广: 从有限维赋范空间到赋范空间的线性映射皆连续.)
 - (2). 定义映射 $L(\mathbb{F}, E) \to E$ 为 $T \mapsto T(1)$. 求证: 此映射为等距同构.
- 36. 证明例 7.3 之结论.
- 37. 求证: Schauder 基线性无关.
- 38. 求证: 若 *E* 有 Schauder 基, 则 *E* 可分.
- 39. 求证: c_0 与 l^p $(1 \le p < \infty)$ 存在无条件 Schauder 基.