

# Série C - session 2000 : exercice 1 - corrigé

ABC triangle isocèle et rectangle en A. On note par : I le milieu du segment [BC];  $r_B$  la rotation de centre B et d'angle  $\frac{\pi}{2}$ ;  $r_C$  la rotation de centre C et d'angle  $\frac{\pi}{2}$ ; t la translation de vecteur  $\overrightarrow{BC}$ :

- t la translation de vecteur  $\overrightarrow{BC}$ ;  $q = t \circ r_B$  et  $f = r_C \circ q$ .
- 1. Méthode complexe :  $R = (A; \overrightarrow{AB}, \overrightarrow{AC})$  repère orthonormé
- a. Détermination de  $z_A$ ,  $z_B$ ,  $z_C$  et  $z_I$  affixes respectives de A, B, C et I:  $z_A$  = 0  $z_B$  = 1,  $z_C$  = i et  $z_I$  =  $\frac{1}{2}$  +  $\frac{1}{2}$ i

# b. Expression complexe de f.

On note T,  $R_B$  et  $R_C$  les applications complexes associées respectivement aux transformations affines t,  $r_B$ , et  $r_C$ 

- Expression complexe de  $r_B$ : z' = iz + 1 i
- Expression complexe de t: z' = z 1 + i
- Expression complexe de  $r_c$ : z' = iz + 1 + i

Par conséquent, l'expression complexe de f est :

$$z' = (R_C \circ T \circ R_B) (z)$$
  
 $= (R_C \circ T) [R_B (z)]$   
 $= (R_C \circ T) [iz + 1 + i]$   
 $= R_C [T (iz + 1 + i)]$   
 $= R_C [iz + 1 - i - 1 + i]$   
 $= R_C (iz)$   
 $= i (iz) + 1 + i$   
 $= -z + 1 + i$ 

Il s'ensuit que f: z' = -z + 1 - i

#### c. Nature de f.

L'expression complexe de f est de la forme z' = az + b avec a = -1 qui est un nombre réel. Ainsi, f est une homothétie.

Eléments caractéristiques de f.

- Le rapport de f est k = -1
- Le centre de f est le point d'affixe z vérifiant z = z + 1 i. Ainsi, z =  $\frac{1}{2} + \frac{1}{2}i$ .

Par conséquent, le centre de f n'est autre que le point I.

## 2. Méthode géométrique :

### a. Caractérisation de g en décomposant t et r<sub>B</sub> en deux symétries orthogonales.

Soient: - (D) la droite passant par B telle que (D) $\perp$ BC

- (  $\delta$  ) la droite telle que (  $\delta$  ) est le transformé de ( D ) par la translation de vecteur  $\overrightarrow{v} = \frac{1}{2} \overrightarrow{BC} \text{ . Donc, } \delta \text{ = (IB )}.$ 

Par conséquent, t =  $S_\delta$  o  $S_D$  où  $S_\delta$  est la réflexion d'axe (  $\delta$  ) et  $S_D$  est la réflexion d'axe ( D ).

Soit ( 
$$\delta'$$
 ) la droite passant par B telle que ( $\delta'$ , D ) =  $\frac{\pi}{2}$   $\times \frac{1}{2} = \frac{\pi}{4}$ .

Donc 
$$(\delta') = (AB)$$
.

Par conséquent,  $r_B = S_D$  o  $S_{\delta}$ 

Il s'ensuit que g = t o  $r_B$  =  $S_\delta$  o  $S_D$  o  $S_D$  o  $S_{\square}'$  =  $S_\delta$  o  $S_{\delta'}$ 

De plus, ( $\delta \cap \delta'$ ) = A, par conséquent g est la rotation de centre A et d'angle

$$\theta = 2 (\delta', \delta) = 2 (\delta', D) = \frac{\pi}{2}$$



# b. Caractérisation de f en décomposant g et $r_c$ en deux symétries orthogonales.

g étant la rotation de centre A et d'angle  $\frac{\pi}{2}$  et  $r_{\mathcal{C}}$  la rotation de centre C et d'angle  $\frac{\pi}{2}$  .

Soient : - (
$$D_1$$
) la droite ( $AC$ )

- (  $\delta_1$  ) la droite passant par  ${\cal C}$  telle que

$$(D_1, \delta_1) = \frac{\pi}{2} \times \frac{1}{2} = \frac{\pi}{4}$$
. Donc  $\delta_1 = (BC)$ . Ainsi,  $r_C = S_{\delta 1}$  o  $S_{D1}$  où  $S_{\delta 1}$  et  $S_{D1}$  sont les réflexions

d'axes respectives (  $\delta_1$  ) et (  $D_1$  ).Donc (  $\delta'$  ) = ( AB ) .

Soit (  $\delta_{{\scriptscriptstyle I}}{}'$  ) la droite passant par A telle que

$$(\delta_1', D_1) = \frac{\pi}{2} \times \frac{1}{2} = \frac{\pi}{4}$$
. Donc  $(\delta_1') = \delta$ . Ainsi,  $g = S_{D1}$  o  $S_{\delta I'}$  où  $S_{\delta I'}$  est la réflexion d'axe  $\delta_1'$ .

Il s'ensuit que  $f=r_{\mathcal{C}}$  o  $g=S_{\delta 1}$  o  $S_{\Delta 1}$  o  $S_{\delta 1}$  o  $S_{\delta 1'}=S_{\delta 1}$  o  $S_{\delta 1'}$ 

De plus (  $\delta_{i}$  ' )  $\cap$  (  $\delta_{i}$  ) = I, par conséquent, f est la rotation de centre I et d'angle

2 ( 
$$\delta_1$$
',  $\delta_1$ ) = 2 ( BC , IA ) =  $\pi$  .

- 3. S la similitude plane indirecte de centre A avec S (B) = I.
  - a. Détermination du rapport de S.

Le rapport de S est 
$$k = \frac{AI}{AB}$$
. Or  $2 AI^2 = AB^2$ , donc,  $2 AI = \sqrt{2} AB$ . Il s'ensuit que  $k = \frac{\sqrt{2}}{2}$ .

b. (C) le cercle de centre A et passant par B et  $[AI) \cap (C) = B'$ . Montrons qu'il existe une symétrie orthogonale  $\sigma$  d'axe ( $\Delta$ ) qui transforme B en B'.

Du fait que B et B' appartiennent au cercle (C) alors le triangle ABB' est isocèle. Par conséquent, la hauteur issue du point A n'est autre que la médiatrice du segment [BB'].

Soit  $\sigma$  la symétrie orthogonale par rapport à la droite ( $\Delta$ ), avec ( $\Delta$ ) la hauteur du triangle ABB' issue de A, alors,  $\sigma$  (B) = B'.

#### Déterminons alors l'axe de 5.

On a AB' = AB, donc 
$$\frac{AI}{AB'} = \frac{AI}{AB} = \frac{\sqrt{2}}{2}$$
. Par conséquent,  $AI = \frac{\sqrt{2}}{2}AB' = \frac{\sqrt{2}}{2}A\sigma(B)$ .

Il s'ensuit que l'axe de S n'est autre que l'axe de  $\sigma$  ; donc, c'est la hauteur du triangle ABB' issue du point A