Base Graphics (part 2)

Graphics

Gaston Sanchez

CC BY-NC-SA 4.0

R Coding Compendium

About

In this slides we cover the base graphics system: "graphics" packages

Base Graphics

Base Graphics in R

Traditional Graphics

- R "graphics" follows a static, "painting on canvas" model.
- Graphics elements are drawn, and remain visible until painted over.
- ► For dynamic and/or interactive graphics, R is limited.

Traditional Graphics in R

In the traditional model, we create a plot by first calling a high-level function that creates a complete plot, and then we call low-level functions to add more output if necessary

head(mtcars)

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

simple scatter-plot plot(mtcars\$mpg, mtcars\$hp)

Simple Scatterplot


```
# 'xlim' and 'ylim'
plot(mtcars$mpg, mtcars$hp, xlim = c(10, 35), ylim = c(50, 400))
```



```
# using 'type' (e.g. lines)
plot(mtcars$mpg, mtcars$hp, type = "1")
```



```
# character expansion 'cex', and point character 'pch'
plot(mtcars$mpg, mtcars$hp, cex = 1.5, pch = 1)
```


Point symbols (pch) available in R

O 1	<u>^</u> 2	+ 3	× 4	♦ 5
▽	⊠	*	⇔	⊕
6	7	8	9	10
☆	⊞	⊠	△	■
11	12	13	14	15
•	▲	♦	•	•
16	17	18	19	20
O	□	♦ 23	△	▽
21	22		24	25

```
# 'pch' can be any character
plot(mtcars$mpg, mtcars$hp, pch = "@")
```



```
# 'pch' symbols will be recycled
plot(mtcars$mpg, mtcars$hp, pch = 1:25)
```



```
# color argument 'col'
plot(mtcars$mpg, mtcars$hp, pch = 19, col = "blue", cex = 1.2)
```


Coloring Point Symbols

- the col argument can be used to color symbols
- symbols 21 through 25 can additionally have their interiors filled by using the bg (background) argument

Coloring Point Symbols


```
# using plot()
plot(mtcars$mpg,
    mtcars$hp,
    xlim = c(10, 35),
    ylim = c(50, 400),
    xlab = "miles per gallon",
    ylab = "horsepower",
     main = "Simple Scatterplot",
     sub = "data matcars",
    pch = 1:25,
     cex = 1.2,
    col = "blue")
```

Simple Scatterplot

Low-Level Functions

High and Low level functions

- Usually we call a high-level function
- Most times we change the default arguments
- ► Then we call low-level functions

```
# simple scatter-plot
plot(mtcars$mpg, mtcars$hp)

# adding text
text(mtcars$mpg, mtcars$hp, labels = rownames(mtcars))

# dummy legend
legend("topright", legend = "a legend")

# graphic title
title("Miles Per Galon -vs- Horsepower")
```

Miles Per Galon -vs- Horsepower


```
# simple scatter-plot
plot(mtcars$mpg, mtcars$hp, type = "n",
     xlab = "miles per gallon", ylab = "horsepower")
# grid lines
abline(v = seq(from = 10, to = 30, by = 5), col = 'gray')
abline(h = seq(from = 50, to = 300, by = 50), col = 'gray')
# plot points
points(mtcars$mpg, mtcars$hp, pch = 19, col = "blue")
# plot text
text(mtcars$mpg, mtcars$hp, labels = rownames(mtcars),
     pos = 4, col = "gray50")
# graphic title
title("Miles Per Galon -vs- Horsepower")
```

Miles Per Galon -vs- Horsepower

Low-level functions

High-level graphics of a single variable

Function	Description	
points()	points	
lines()	connected line segments	
abline()	straight lines across a plot	
segments()	disconnected line segments	
arrows()	arrows	
rect()	rectangles	
<pre>polygon()</pre>	polygons	
text()	text	
symbols()	various symbols	
legend()	legends	

```
plot(mtcars$mpg, mtcars$hp, type = "n")
points(mtcars$mpg, mtcars$hp)
```


Line Graph Options

Line Graph Example

Drawing Line Segments

```
n <- 11
theta <- seq(0, 2 * pi, length = n + 1)[1:n]
x <- sin(theta)
y <- cos(theta)
v1 <- rep(1:n, n)
v2 <- rep(1:n, rep(n, n))

plot(x, y, type = 'n')
segments(x[v1], y[v1], x[v2], y[v2])</pre>
```


Drawing Polygons

```
mpg_dens <- density(mtcars$mpg)

plot(mpg_dens, main = "Kernel Density Curve")
polygon(mpg_dens, col = 'gray')</pre>
```

Kernel Density Curve

Drawing Text


```
# adding a legend
plot(mtcars$mpg, mtcars$hp)
legend("topright", legend = "A legend")
```


Donation

If you find any value and usefulness in this set of slides, please consider making a one-time donation in any amount (via paypal). Your support really matters.

Donate

https://www.paypal.com/donate?business=ZF6U7K5MW25W2¤cy_code=USD