Insights Into Employee Reviews

Beneficiaries of this study: Employers

Adding staff?

Going public?

Canning the CEO?

Beneficiaries of this study: Potential Employees

Companies Used for Model: Seattle Organizations Hiring Data Analytics Professionals

Industry Examples:

Education & Schools

Internet & Tech

Health Care & Hospitals

Information Used for Model:

Top Contributor to Company Reviews: CEO

Other Top Contributors to Company Reviews: Year Founded and Company Benefits

Model accounts for 18% of Variation in Company Ratings

On average, the model is 0.25 stars from the true rating

Example of Model Prediction:

Model Prediction:

CEO Rating: 66%

Benefits Rating: 3.5 Stars

Year Founded: 1938

Prediction: 3.3 Stars Baseline Prediction: 3.8 Stars

(simple average of ratings)

Summary

Good Review Factors According to Model:

- Good CEO
- Good Benefits
- Newer Companies

Appendix

```
y=df mvp['Reviews clean']
   Xf=df_mvp[['Benefit_Rating_clean', 'Founded_clean', 'CEO_Reviews_clean']]
   # # Split the data into training and test sets
   Xf_train, Xf_test, yf_train, yf_test = train_test_split(Xf, y, test_size=0.3,random_state = 5)
   Xf train
    lassof.fit(Xf_train, yf_train)
    lassof.score(Xf_test,yf_test)
    print(lassof.score(Xf_test, yf_test))
0.4536729687730386
                                                                      1 1-((1-.45*.45)*(134)/(131))
                                                                     0.18423664122137406
    mean_absolute_error(y_test, lassol.predict(X_test))
0.2500201163859286
                                                                          np.mean(y_train)
                                                                     3.7563829787234027
    mean_absolute_error(y_test, ybaseline)
```

0.36909704203424953

Heat Map on Raw Data

Necessary Data Samples

135 companies