이차전지 화성공정 최적화를 통한 불량률 Zero화

데이터분석 C4팀

고다영, 김우영, 송준희, 신하나, 이현희, 장수명, 전현지

CONTENTS

- 1 추진배경
- 2 현상 및 개선 기회
- 3 분석 계획
- **4** 분석 결과
- 5 개선안 및 적용방안
- 6 Learned Lesson

제조 공정

이차전지

방전된 이후에도 충전을 통해 **재사용이 가능**한 전지 경량화·소형화가 가능한 <u>리튬이온 배터리</u>가 대표적이다.

화성공정

배터리 활성화, 안정화 이후 결함을 검사하는 공정

- ▶ 배터리 품질에 영향을 미치는 데이터가 수집된다.
- ▶ 평균 13.4일간 진행된다.

화성공정 프로세스

Aging

SEI층* 안정화, 자연방전을 통한 불량품 선별

Formation

배터리를 충전시켜 SEI를 형성하는 단계

IR / OCV**

내부 저항과 회로 전압을 측정하여 전지 품질 평가

Grading & Charging

품질에 따른 등급 부여 및 전력 충전

특성 측정

전지 내부저항, 용량 등의 특성 측정

설비구조 공정 진행 단위 1 cell 1 tray = 25 cells 1 LOT = 40 trays

^{*} SEI: Solid Electrolyte Interphase ** IR / OCV: Inner Resistance / Open Circuit Voltage

1. <u>추진배경</u>

리튬 이온 배터리 시장이 빠르게 성장하면서 요구되는 품질 수준 역시 높아지고 있는 상황이다. 그러나 현재 자사의 배터리 불량률은 3.5%로 급증하였으며 막대한 품질 비용 발생이 우려되므로 <u>시급한 개선 방안이 필요하다</u>.

리튬 이온 배터리 수급 전망

화성공정 불량률 급증

배터리 불량으로 인한 품질 이슈 증가

HOME > 업계정책

LG, "GM과 볼트 EV 배터리 리콜 합의"...1.4조원 배상

LG와 GM간의 배터리 리콜 관련 비용 협상이 최종 타결됐다.

LG에너지솔루션은 12일 입장문을 통해 "당사와 LG전자, 제너럴모터스(GM) 등 3사간의 리콜 관련 합의가 종결됐다"며 "리콜 비용은 1조4000억원으로 예상되며 LG에너지솔루션과 LG전자가 7000억원색을 분담할 예정"이라고 설명했다.

2. 현상 및 개선 기회

불량률 급증으로 인한 문제를 해결하기 위해 3년 내 불량률 Zero화를 목표로 KPI를 설정하였다.

불량률 급증으로 인한 문제			
생산성 저하	납기 지연	고객 불만 증가	신뢰도 저하

성과 지표 선정					
KPI	KPI 가중치	현수준	목표수준		
NPI 기당시	연구군	'23년	'24년	'25년	
<mark>불량률</mark> (%)	70%	3.50	2.30	0.90	0.00
품질 기회비용 (억원)	30%	27.57	18.11	7.09	0.00

1) 불량률(%): (불량품 수량 ÷ 생산 수량) × 100 2) 품질 기회비용(억 원) = 불량 cell 개수 x cell당 가격

3. 분석 계획 – 잠재원인 도출

불량률 급증에 영향을 미치는 잠재원인을 중요도와 분석가능성 측면에서 5건 선정하였다.

잠재원인	중요도	분석가 능 성	합계	선정
Aging 시간	9	9	18	0
충/방전 온도	9	9	18	0
Fitted Capacitor의 기준 불확실	3	3	6	
설비 유의차(열, 연, 단)	9	9	18	0
배터리 전기적 특성 측정의 오류 (전류, 전압, 용량, 임피던스)	9	9	18	0
공정시간 증가에 따른 용량 감소	9	9	18	0
작업 스킬 부 족	1	3	3	
제품 두께	3	9	12	

9점 척도: 1(약), 3(중), 9(강)

3. 분석 계획

목적	데이터 분석 계획			
	분석 방법	분석 단위	분석 내용	
변수의 분포와 구조 파악	Histogram Box Plot / Line Plot	불량 판정*	온도, 전압, 전류 등 연속형 변수의 데이터 분포와 구조 파악	
설비 유의차 분석	Heatmap	불량 판정	설비 유의차와 불량 판정 간의 관계 시각화	
		불량률**	설비 유의차와 불량률 간의 관계 시각화	
	ANOVA	불량률	설비 별 불량률 차이가 유의한지 알아보기 위해 분석	
	Chi-squared	불량 판정	설비 별 불량 빈도 차이가 유의한지 알아보기 위해 분석	
영향 인자 도출	Logistic Regression / Decision Tree Random Forest / Gradient Boosting	불량률	분류모델을 이용해 불량률에 영향을 미치는 핵심인자 도출	
		불량 판정	분류모델을 이용해 불량 판정에 영향을 미치는 핵심인자 도출	
최적 작업 조건 도출	Decision Tree / Random Forest Gradient Boosting	불량 판정	다양한 모델을 활용해 불량 빈도를 최소화하는 최적 작업 조건 도출	
모델을 이용한 불량률 예측	Logistic Regression / Decision Tree Random Forest / Gradient Boosting Neural Net	불량 판정	최적 작업 조건 적용 후 불량률 예측	

*불량 판정 : cell의 양품 또는 불량 여부 **불량률(tray 기준, %) : (불량 cell 수 ÷ 전체 cell 수) × 100

4. 분석 결과 – 데이터 정제

2021-12-01 ~ 12-17 까지 화성공정에서 LOT 45개에 대한 데이터를 수집했다.

(1) 결측치 처리 출하 전 공정에서 결측치 97개 (0.21%)가 확인되었으며, 그 중 14개를 제거했다. 출하 전 공정 프로세스 출하 Aging ──→ OCV 측정 ──→ 불량 판정 불량 판정 받은 배터리 : '불량' 혹은 '.' 기입 ▶ 온점으로 잘못 양품 판정 14개 결측치(.) 기입되어 제거 97개 불량 판정 83개 * 불량 판정: OCV 〈 기준값

4. 분석 결과 – 설비 유의차 확인

Formation 단계 중 설비의 22열 등 가장자리 부근에서 높은 불량률이 나타나는 것을 확인하였다. 통계적 검정을 실시한 결과, 설비 위치에 따른 불량 편차가 유의하였다.

가설 1 : 설비의 열에 따라 불량 발생 빈도 차이가 있다.

Chi-squared 검정 결과, p-value (0.001

따라서, 설비의 열에 따른 불량 발생 빈도 차이는 <u>유의미</u>하다.

가설 2 : 설비의 열에 따라 불량률에 차이가 있다.

<u>ANOVA 검정 결과, p-value (0.001</u>

따라서, 설비의 열에 따른 불량률 차이는 유의미하다.

구조물 하단에 배기구가 위치하여 대류에 방해를 받아 온도 변화에 민감한 불량의 원인이 된다.

[참고논문] 강율호, 이준현 and 이진경. (2020). ESS용 Rack 내부의 공기유동에 따른 배터리 열관리에 관한 해석적 연구. 동력시스템공학회지, 24(2), 37-44.

온도 변화가 불량에 영향을 준다는 사실은 아래 논문의 연구 결과로도 확인된다.

[참고논문] 장경민 and 김광선. (2017). 급격한 온도 변화에 따른 리튬 이온 배터리의 전해질 내 염 농도 분포 특성. 반도체디스플레이기술학회지, 16(1), 11-15.

4. 분석 결과 - 핵심인자 도출

설비 유의차를 발생시키는 원인을 찾은 결과, **온도가 불량 여부에 가장 중요한 영향**을 미치는 것으로 확인하였다.

Bad	Good
불량 cell 303개	불량 cell 34개
불량률 17.26%	불량률 1.81%

온도에 따른 최대 용량을 싸이클 수에 따라 나타낸 그래프이다. 모두 동일한 형태로 **온도**의 영향을 받고 있다.

[참고논문] Shuai Ma, (2018), Temperature effect and thermal impact in lithium-ion batteries: A review, Progress in Natural Science: Materials International, 653-666.

4. 분석 결과 – 최적조건 도출 및 시뮬레이션 결과

Formation 각 단계에서 불량률을 최소화하는 최적 온도 조건을 도출하였다. 도출한 최적 온도로 시뮬레이션한 결과 불량률이 1.76%p 감소하였다.

온도 구간 별 불량률 비교			
Formation 충전 1단계			
온도 조건	26.55℃ 이하	26.55 ~ 30.25℃	30.25℃ 이상
불량률	8.82% (683/7,741)	1.59% (532/33,290)	9.15% (86/940)

5. 개선안 및 적용 방안 – 열선 설치

Formation에서 불량률이 높게 측정된 열과 단에 열선을 설치하여 온도 조건을 최적화한다.

불량률이 2.0%p 감소하여, 품질 기회비용 15.8 억 원 절감 효과를 기대할 수 있다.

열선 설치

품질 기회비용 계산식

예상 품질기회비용

1) 기존 불량수 36,753개 - 개선 불량수 5,751개

2) 배터리 1kWh당 가격 = 150달러, cell 1개 용량= 0.5kWh, 1달러 = 1,300원

5. 개선안 및 적용 방안 – 제약 조건 하 최적화

Formation 최적 조건에서 벗어나 불량 발생 확률이 높은 cell을, Power Charging 단계에서 설비의 위치를 조절하여 불량 발생 확률 감소를 기대할 수 있다.

설비 위치에 따른 불량률 감소

	최적 조건이 아닌 Formation	Power Charging에서 온도 조절
공정 조건	27.10 ~ 29.00 ℃ 이외의 범위	27.10 ~ 30.25℃
불량률	6.51% (969/14,879)	3.11% (462/14,879)

5. 개선안 및 적용 방안 - I 관리도

Formation 단계에서 3시그마 수준의 관리 한계선 이내로 I 관리도를 만들었다. 전·후 관리도를 비교하여 개선 효과를 입증하고, 추후 공정의 안정성을 모니터링 할 수 있다.

5. 개선안 및 적용 방안 - Pilot 계획

	내용
목적	- 개선안 실제 적용을 통한 개선 결과 검증 - 도출된 개선안 중 불량이 최소화되는 최적안을 선정하고, 추가 개선 사항을 도출 - 확대 적용에 필요한 비용을 예측 및 확보하고, 확대 적용함
Pilot 적용 개요	- 적용 대상 : 화성공정 중 충 • 방전공정 (LOT 5개) - 적용 프로세스: 전체 프로세스 5개 중 2개 (Formation, Power Charging) - 적용 일정 : 2022년 12월 01일 ~ 2022년 12월 14일 (14일) 2022년 12월 18일 ~ 2022년 12월 31일 (14일)
현업 요청 사항	- 공강장 : 공정 설비에 개선안 적용 협조 요청 - 공정 엔지니어 : 개선안에 명시된 최적 온도 조정 요청

