Duração: 90 minutos

$2^{\rm o}$ Teste de Análise Matemática EE

Nome:	Nr.:	Curso:
Em cada uma das perguntas seguintes, assin corresponde	=	eta no quadrado
1. Se a taxa de variação instantânea da função $z=f(x,y)$ é -5 , significa que:	(1, -1) no ponto $(1, -1)$ na	direção do vector $\vec{u}=(1,0)$
$ f_y'(1,-1) = -5; $ $ f_z'(1,-1) = -5; $	$\int f'_x(1,-1) = -5;$	$ f_y'(1,0) = -5. $
2. Considere a função $z=f(x,y)$ tal que $f_x'(2,3)$ existe da recta tangente à curva obtida pela interseção do g		$f'_x(2,3)$ representa o declive
	ao $z = f(2,3);$	Plano $2x + 3y = f(2,3)$.
3. Considere uma função $z = f(x, y)$ definida em \mathbb{R}^2 . Quadratura Se f admite derivadas parciais no ponto (x_0, y_0) então f é contíque Se f admite derivadas direccionais no ponto (x_0, y_0) renciável em (x_0, y_0) ;	ão f é diferenciável en ínua em (x_0, y_0) ;	$(x_0, y_0);$
Se $\overrightarrow{\nabla} f(x_0, y_0) = (0, 0)$ então f é diferenciável em (x_0, y_0)	. 40)	
4. Considere uma função $z = f(x, y)$ diferenciável em (Considere uma os pontos (x, y) pertencentes a uma vizint	(0,0), com $f(0,0) = 0$	
$\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{\sqrt{x^2+y^2}} = 0;$ $\lim_{(x,y)\to(0,0)} (f(x,y) - 2x - 3y) = 0;$		
$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-3x-2y}{\sqrt{x^2+y^2}} = 0;$		
$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-2x-3y}{\sqrt{x^2+y^2}} = 0.$		
5. Considere uma função $z=f(x,y)$ diferenciável em (a Então:	$(x_0, y_0), \text{ com } \overrightarrow{\nabla} f(x_0, y_0)$	$f_{0}(0) = (0,0) e f_{x^{2}}''(x_{0}, y_{0}) = 0.$
$f(x_0, y_0)$ é máximo local de f ;		
$f(x_0, y_0)$ é mínimo local de f ;		
(x_0, y_0) é ponto de sela de f ;		
Nada se pode concluir sobre o ponto (x_0, y_0) .		
6. Seja $f(x,y)$ diferenciável em $(-1,1)$ e considere um ve de f na direção do vector \vec{u} é dada por:	ector $\vec{u} = (2, -3)$. A t	axa de variação instantânea
	$1,1) + \frac{2}{\sqrt{13}}f_y'(-1,1);$	
7. Seja $f(x,y)$ diferenciável em (x_0,y_0) . O plano tange horizontal se		no ponto $(x_0, y_0, f(x_0, y_0))$ é
$\overrightarrow{\nabla} f(x_0, y_0)$ não existe; $\overrightarrow{\nabla} f(x_0, y_0) = (0, 0)$	0);	
$\overrightarrow{\nabla} f(x_0, y_0) = (1, 0); \qquad \overrightarrow{\nabla} f(x_0, y_0) = (0, 1)$).	

Em cada uma das perguntas seguintes, responda sem apresentar cálculos.

1. Seja f definida em \mathbb{R}^2 que admite derivadas parciais contínuas até à ordem 2 em (0,0), com f(0,0)=1, $f'_x(0,0)=-2$, $f'_y(0,0)=3$, $f''_{x^2}(0,0)=-1$, $f''_{xy}(0,0)=\frac{1}{3}$ e $f''_{y^2}(0,0)=4$.

(a) O diferencial de f no ponto (0,0) é dado por:

(b) A equação do plano tangente ao gráfico de f no ponto (0,0,f(0,0)) é:

(c) O polinómio de grau 2 que melhor se aproxima à função f para (x,y) pertencente a uma vizinhança de (0,0) é:

GRUPO III

Apresente todos os cálculos efetuados.

1. Considere a relação $z=2t+3x+\sin y$, onde $x=\frac{t}{u}$ e $y=t^2u$. Sem determinar a função composta, determine

(a)
$$\frac{\partial z}{\partial t}$$

(b)
$$\frac{\partial^2 z}{\partial u \partial t}$$

2. A área de um triângulo é dado por $A=\frac{1}{2}ab\cos C$, onde a,b são os comprimentos de dois lados do triângulo e C é a medida do ângulo entre os lados referidos. Considere $a=20,\ b=16$ e $C=\frac{\pi}{3}$ radianos. Usando diferenciais, determine o valor aproximado da variação da área do triângulo se ambos os comprimentos a e b forem aumentados em 0,01, mantendo o ângulo C constante.

3. Seja $h(x, y) = 2 \exp(xy) + \exp(xy)$	x^2) a função que representa	a altura de uma montan	ha na posição (x, y) .

(a) Determine a derivada direccional de h no ponto P=(0,2) na direção do vector \vec{u} que faz com o semi - eixo positivo OX um ângulo de $\frac{\pi}{4}$ radianos.

(b) Qual a direção (a partir do ponto P) se deve caminhar, de modo a escalar a montanha mais rapidamente? Qual é a taxa de variação de h nessa direção? Justifique adequadamente a sua resposta.

(c) Qual a direção, a partir do ponto P, segundo a qual a altura da montanha não se altera? Justifique adequadamente.

- 4. Considere a função $f(x,y) = 3xy^2 + x^3 3x$.
 - (a) Determine os pontos críticos de f.

(b) Classifique os pontos críticos verificando se são extremantes de \boldsymbol{f}