Model comparision between LDA and QDA

Yamuna Dhungana

We wish to predict whether a given stock will issue a dividend this year ("Yes" or "No") based on X, last year's percent profit. We examine a large number of companies and discover that the mean value of X for companies that issued a dividend was $\overline{X}=10$, while the mean for those that didn't was $\overline{X}=0$. In addition, the variance of X for these two sets of companies was $\sigma 2=36$. Finally,80% of companies issued dividends. Assuming that X follows a normal distribution, predict the probability that a company will issue a dividend this year given that its percentage profit was X=4 last year. Hint: Recall that the density function for a normal random variable is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

. You will need to use Bayes' theorem.

$$\pi_{YES} = 0.8$$

$$\pi_{NO} = 0.2$$

$$\mu_{YES} = 10$$

$$\mu_{N0} = 0$$

$$\sigma^2 = 36$$

pluging the given values to the density function here, π_k is 0.8 and 0.2 and divident is Yes and No. So, using the density function to calculate $f_k(x)$

$$f_k(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

we get,

$$\begin{split} f_{yes}(x) &= 0.0402 \\ f_{No}(x) &= 0.0532 \end{split}$$

using the equation of Bayes Theorem

$$P_{(divident=K|X=x)} = \frac{\pi_k f_k(x)}{\sum_{l=1}^k \pi_l f_l(x)}$$

again, plunging the value we calculated earlier in the above equation.

$$P_{yes}(4) = \frac{0.8 \times 0.04032}{0.8 \times 0.0402 + 0.2 \times 0.0532} = 0.75186$$

Using the same logic

```
## Types prediction
## 1 Dividend 0.7519
## 2 Non-Dividend 0.2481
```

According to my analysis, 75.19% of the companies are expected to declare dividends this year, while 24.81% are not expected to do so.

We proceed to construct a model using the selected predictors from the previous assignment and fit this model using the MclustDA function from the mclust library. The same training and test sets employed previously are used in this process.

```
## Gaussian finite mixture model for classification
##
##
  MclustDA model summary:
##
##
    log-likelihood
                     n df
                                   BIC
##
         -4393.443 245 215 -9969.657
##
                    % Model G
##
  Classes
             n
##
         0 125 51.02
                        EEV 3
         1 120 48.98
##
                        EEV 4
##
##
  Training confusion matrix:
        Predicted
##
## Class
           0
##
       0 115 10
           2 118
##
       1
## Classification error = 0.049
## Brier score
                         = 0.0497
```

Table 1: Best model selected by BIC

Model names	BIC
EEV	-9969.65745670221
EEV	-9969.65745670221

Similar to the prior analysis, I partitioned the dataset into training and test sets, maintaining a 70-30 ratio. I proceeded to fit the MclustDA model. Consistent with the previous approach, the response variable was binary-coded MPG (indicating whether it's greater than or equal to the median MPG). I used the same predictors as in the previous analysis, selecting them based on their correlation with 'mpg01.'

The Bayesian Information Criterion (BIC) for this model is calculated as -10568.327944618. This model exhibits an ellipsoidal shape, equal volume, and equal shape with either 3 or 4 groups.

Table 2: Mclust model accuracy measures

	Mclust train set	Mclust test set
accuracy	95.10	88.44
TPR	98.33	89.47
TNR	92.00	87.32

I employed the identical function used in previous assignments (homework 3 and 4) to determine the test accuracies of the model. The accuracy results for both the training and testing models are displayed in Table-2.

```
By Specifing modelType = "EDDA" and run MclustDA again.
  -----
## Gaussian finite mixture model for classification
##
##
  EDDA model summary:
##
##
   log-likelihood
                              BIC
                   n df
        -5525.729 245 70 -11436.55
##
##
##
  Classes
                  % Model G
            n
##
        0 125 51.02
                     VVV 1
##
        1 120 48.98
                     VVV 1
##
##
  Training confusion matrix:
##
       Predicted
## Class
          0
              1
##
      0 112 13
##
          6 114
      1
## Classification error = 0.0776
## Brier score
                      = 0.0652
```

Table 3: Best model selected by BIC with EDDA

Model names	BIC
$\overline{\text{VVV}}$	-11436.5461952401
VVV	-11436.5461952401

When fitting the MclustDA model using the EDDA model type, the Bayesian Information Criterion (BIC) is calculated as -11500.33. This particular model is labeled as ellipsoidal, featuring varying volume, shape, and orientation (VVV), and consists of a single group.

Table 4: Mclust with EDDA model accuracy measures

	Mclust:EDDA train set	Mclust:EDDA test set
accuracy	92.24	90.48
TPR TNR	95.00	89.47 91.55
TNR	89.60	91.55

The Model accuracies are reported in the table-4

Table 5: Mclust models accuracy measures

	Mclust train set	Mclust test set	Mclust:EDDA train set	Mclust:EDDA test set
accuracy	95.10	88.44	92.24	90.48
TPR	98.33	89.47	95.00	89.47
TNR	92.00	87.32	89.60	91.55

Table 6: Logreg Accuracy measures

	Logreg.model Train set	Logreg.model Test set
accuracy	90.20	88.44
TPR	93.33	89.47
TNR	87.20	87.32

Table 7: LDA model Accuracy measures

	LDA.model Train set	LDA.model Test set
accuracy	91.43	89.80
TPR	95.83	93.42
TNR	87.20	85.92

Table 8: QDA model Accuracy measures

	QDA.model Train set	QDA.model Test set
accuracy	90.61	88.44
TPR	91.67	88.16
TNR	89.60	88.73

In our previous assignments, we conducted several classification methods, including Logistic Regression, Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis (QDA). In this assignment, we extended our analysis to include MclustDA with the EDDA model type. Our evaluation, as depicted in tables 5, 6, 7, and 8, indicates that MclustDA outperforms the other models in terms of accuracy. Conversely, LDA and QDA exhibit lower accuracy rates. Furthermore, MclustDA demonstrates superior True Positive Rate (TPR) and True Negative Rate (TNR) performance when compared to the other models.

We begin by creating a fresh set of variables derived from the original model variables. Subsequently, we construct a new model using the MclustDA function and repeat the process steps i to iii. We anticipate that these newly engineered variables will lead to an enhancement in error rates when compared to the previous models.

```
Gaussian finite mixture model for classification
##
##
## MclustDA model summary:
##
##
    log-likelihood
                      n df
                                  BIC
##
         -5014.757 245 90 -10524.63
##
##
  Classes
                    % Model G
             n
         0 125 51.02
##
                        VVV 5
##
         1 120 48.98
                        VEV 5
##
```

```
## Training confusion matrix:
##
       Predicted
## Class
          0
##
      0 109 16
      1 13 107
## Classification error = 0.1184
## Brier score
                     = 0.0861
## -----
## Gaussian finite mixture model for classification
##
## MclustDA model summary:
##
  log-likelihood n df
        -6371.577 245 35 -12935.7
##
##
## Classes n
                 % Model G
        0 125 51.02 VVE 3
        1 120 48.98
                    EVV 4
##
##
## Training confusion matrix:
       Predicted
##
## Class
        0 1
##
      0 107 18
##
      1
         7 113
## Classification error = 0.102
## Brier score
```

Table 9: Best model selected by BIC with two models

Model1:model names	Model1:BIC	MOdel2:model names	MOdel2:BIC
VVV	-10524.6280312072	VVE	-12935.6971844703
VEV	-10524.6280312072	EVV	-12935.6971844703

Table 10: MclustDA:Accuracy measures for two models

	Mod1.mclustDA train	mod1.mclustDA test	Mod2.mclustDA train	Mod2.mclustDA test
	set	set	set	set
accuracy	88.16	89.12	89.80	87.07
TPR	89.17	86.84	94.17	85.53
TNR	87.20	91.55	85.60	88.73

```
## ------
## Gaussian finite mixture model for classification
## ------
##
## EDDA model summary:
##
## log-likelihood n df BIC
## -5619.77 245 18 -11338.56
##
```

```
## Classes n
                  % Model G
##
        0 125 51.02
                      VVV 1
         1 120 48.98
##
                      VVV 1
##
## Training confusion matrix:
       Predicted
##
## Class
          0
       0 98 27
##
##
       1
          6 114
## Classification error = 0.1347
## Brier score
                       = 0.105
## Gaussian finite mixture model for classification
##
## EDDA model summary:
##
   log-likelihood n df
         -6447.904 245 10 -12950.82
##
##
                  % Model G
## Classes n
        0 125 51.02
                      VVV 1
##
##
         1 120 48.98
                      VVV 1
##
## Training confusion matrix:
##
       Predicted
## Class
         0 1
##
       0 99 26
       1
          7 113
## Classification error = 0.1347
## Brier score
                       = 0.1021
```

Table 11: Best model selected by BIC with two models using EDDA

Model1:model names	Model1:BIC	MOdel2:model names	MOdel2:BIC
VVV	-11338.5626652424	VVV	-12950.8195845287
VVV	-11338.5626652424	VVV	-12950.8195845287

Table 12: MclustDA with EDDA: Accuracy measures for two models $\,$

	Mod1.edda train set	mod1.edda test set	Mod2.edda train set	mod2.edda test set
accuracy	86.53	85.03	86.53	82.99
TPR	95.00	90.79	94.17	86.84
TNR	78.40	78.87	79.20	78.87

```
##
## Call:
## glm(formula = formula1, family = binomial, data = newdata.train)
##
## Coefficients:
```

```
##
                      Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                     1.779e+01 7.712e+00
                                            2.307
                                                    0.0211 *
                                                    0.0565 .
## weight
                    -4.909e-03 2.574e-03 -1.907
                    -8.413e-02 8.291e-02 -1.015
                                                    0.3102
## horsepower
## weight:horsepower 1.496e-05 2.702e-05
                                            0.554
                                                    0.5798
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 339.54 on 244 degrees of freedom
## Residual deviance: 132.82 on 241 degrees of freedom
## AIC: 140.82
##
## Number of Fisher Scoring iterations: 8
## Call:
## glm(formula = formula2, family = binomial, data = newdata.train)
##
## Coefficients:
##
                                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                    1.249e+01 9.198e+00
                                                          1.358
                                                                   0.1744
## poly(weight, 2, raw = TRUE)1
                                    1.212e-03 8.038e-03
                                                         0.151
                                                                   0.8802
## poly(weight, 2, raw = TRUE)2
                                   -8.611e-07 1.442e-06 -0.597
                                                                   0.5505
## poly(horsepower, 2, raw = TRUE)1 -1.458e-01 7.987e-02 -1.825
                                                                   0.0679 .
## poly(horsepower, 2, raw = TRUE)2 5.289e-04 3.686e-04
                                                          1.435
                                                                   0.1513
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 339.54 on 244 degrees of freedom
##
## Residual deviance: 131.85 on 240 degrees of freedom
## AIC: 141.85
##
## Number of Fisher Scoring iterations: 8
```

Table 13: Logistic regression: Accuracy measures for two models

	mod1.Logreg Train set	mod1.Logreg Test set	mod2.Logreg Train set	mod2.Logreg Test set
accuracy	87.35	89.80	87.76	89.12
TPR	87.50	85.53	88.33	85.53
TNR	87.20	94.37	87.20	92.96

Table 14: LDA: Accuracy measures for two models

	LDA.mod1 Train set	LDA.mod1 Test set	LDA.mod2 Train set	LDA.mod1 Test set
accuracy	87.76	89.80	88.16	89.80
TPR	87.50	85.53	87.50	85.53
TNR	88.00	94.37	88.80	94.37

Table 15: QDA: Accuracy measures for two models

	LDA.mod1 Train set	QDA.mod1 Test set	QDA.mod2 Trainset	QDA.mod1 Test set
accuracy	86.53	85.03	84.90	83.67
TPR	95.00	90.79	96.67	90.79
TNR	78.40	78.87	73.60	76.06

In prior analyses, I identified that the variables 'cylinders,' 'weight,' 'displacement,' and 'horsepower' were strongly associated with the 'mpg01' variable. However, when conducting logistic regression, I found that the p-values for 'weight' and 'horsepower' were statistically significant. Consequently, I opted to focus on these two variables for interactions and polynomial transformations.

I created an interaction term, mpg01 ~ weight + horsepower + horsepower:weight, and a polynomial term, mpg01 ~ poly(weight, 2, raw = TRUE) + poly(horsepower, 2, raw = TRUE). Subsequently, I fitted models using MclustDA, MclustDA with EDDA, Logistic Regression, Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis (QDA) with these variables.

From the MclustDA and MclustDA with EDDA models, the Bayesian Information Criterion (BIC) values are presented in Table-9 and Table-11. Model-1 exhibited a higher BIC than the second model and is considered a better fit. The model names for Model-1 are 'ellipsoidal, equal volume and equal shape (EEV)' and 'ellipsoidal, equal shape (VEV).' In contrast, the model names for the second model are 'ellipsoidal, equal orientation (new models in mclust version $\geq 5.0.0$) (VVE)' and 'ellipsoidal, equal orientation (new models in mclust version $\geq 5.0.0$) (VEE).'

For MclustDA with EDDA, Model-1 also outperforms the second model with a higher BIC. Both models share the model name 'ellipsoidal, varying volume, shape, and orientation (VVV).'

I proceeded to fit all the models with the same interaction and polynomial terms, and calculated accuracy measures. The accuracy of these models is presented in the table. The accuracy varies from 89.9% to 82.99%. The MclustDA model achieves the highest accuracy. Notably, the introduction of these new variables did not lead to an improvement in model accuracy.