# Politechnika Wrocławska

# Projektowanie algorytmów i metody sztucznej inteligencji

Autor: Piotr Kuboń 252871

Kod grupy: E12-99c

Prowadzący: Mgr inż. Marta Emirsajłow

**Data zajęć**: 10.05.2021

### 1. Wprowadzenie

Pomiary wykonano dla mniejszych liczb wierzchołków. Spowodowane jest to faktem pojawiania się błędów systemu przy alokacji pamięci o znacznym rozmiarze.

Celem projektu była zaimplementowanie grafów, czyli zbioru wierzchołków, które mogą być połączone krawędziami oraz implementacja algorytmu szukania najkrótszej ścieżki w grafie. W celu realizacji projektu zostały zmierzone czasy szukania ścieżek w 100 grafach, a następnie wyniki zostały uśrednione. Rozpatrzone zostały przypadki grafów:

- O różnym rozmiarze (liczbie wierzchołków): 10, 50, 100, 200, 300
- O różnej gęstości: 25%, 50%, 75%, 100%
- O różnych reprezentacjach: macierz sąsiedztwa oraz lista sąsiedztwa Badania przeprowadzono przy użyciu algorytmu Dijkstra.

### 2. Opis algorytmu Dijkstry

Pierwszym krokiem algorytmu jest ustawienie wartości etykiety długości ścieżki dla każdego wierzchołka na nieskończoność (czyli w programie wybrać liczbę bardzo dużą), natomiast etykieta długości ścieżki wierzchołka startowego powinna zostać ustawiona na 0. Następnym krokiem jest wyciągnięcie ze zbioru wierzchołka o najmniejszej wartości dystansu (etykiecie ścieżki), czyli przy pierwszym wykonaniu jest to wierzchołek startowy. W informatyce do przeprowadzenia sortowania dystansu wierzchołków zaleca się korzystanie z kolejki priorytetowej o budowie kopca, która jest w stanie znacznie zwiększyć efektywność algorytmu. Kolejnym krokiem jest porównanie ścieżki dla wszystkich sąsiadów danego wierzchołka oraz ewentualne przypisanie nowych wartości dystansu, gdy znaleziono krótszą ścieżkę. Zaleca się stosowanie kopca, jednak z przyczyn dostępności opracowań, algorytm zaimplementowano bez jego użycia.

W przypadku zastosowania przeszukiwania liniowego złożoność może sięgnąć  $O(|V| \ 2)$ , natomiast w przypadku zastosowania kolejki priorytetowej o budowie kopca, zmniejsza się ona do  $O(|E| + |V| \log |V|)$ .

## 3. Prezentacja wyników

Uśredniony czas podano w milisekundach.

Algorytm z grafem zaimplementowanym w postaci macierzy.

| Gęstość grafu | Liczba wierzchołków |          |          |          |         |  |
|---------------|---------------------|----------|----------|----------|---------|--|
|               | 10                  | 50       | 100      | 200      | 300     |  |
| 25%           | 0,002326            | 0,038014 | 0,140635 | 0,600173 | 1,39678 |  |
| 50%           | 0,002524            | 0,038144 | 0,136837 | 0,666    | 1,40733 |  |
| 75%           | 0,0022              | 0,042973 | 0,140602 | 0,572854 | 1,36856 |  |
| 100%          | 0,002614            | 0,037338 | 0,13346  | 0,5832   | 1,32832 |  |

Algorytm z grafem zaimplementowanym w postaci listy.

| Gęstość grafu | Liczba wierzchołków |          |          |          |         |  |  |
|---------------|---------------------|----------|----------|----------|---------|--|--|
|               | 10                  | 50       | 100      | 200      | 300     |  |  |
| 25%           | 0,00337             | 0,061562 | 0,266461 | 1,00216  | 2,28488 |  |  |
| 50%           | 0,003201            | 0,064863 | 0,258    | 0,958443 | 2,20667 |  |  |
| 75%           | 0,003963            | 0,066    | 0,2462   | 0,939866 | 2,144   |  |  |
| 100%          | 0,003442            | 0,062635 | 0,239824 | 0,93065  | 2,13514 |  |  |

# 3.1. Wykresy

Wykres algorytmu z grafem zaimplementowanym w postaci macierzy.



Wykres algorytmu z grafem zaimplementowanym w postaci listy.



# Kolorem czerwonym oznaczono implementacje w postaci listy, natomiast kolorem niebieskim w postaci macierzy.

Wykres algorytmów dla gęstości grafu wynoszącej 100%



Wykres algorytmów dla gęstości grafu wynoszącej 75%



## Wykres algorytmów dla gęstości grafu wynoszącej 50%



## Wykres algorytmów dla gęstości grafu wynoszącej 25%



#### 4. Wnioski

- Algorytm poprawnie znajduje najkrótsze ścieżki do wierzchołków końcowych.
- Wpływ na czas realizacji zadania ma zarówno ilość wierzchołków, jak i wypełnienie, przy czym istotnym parametrem jest ilość wierzchołków.
- Implementacja grafu w postaci listy znacząco, bo prawie dwukrotnie wydłuża czas pracy programu. Spowodowane to może być działaniem na masywniejszych obiektach od tablic typu int, jak również licznymi iteracjami listy w celu dojścia do odpowiedniego elementu.

## 5. Biografia

- <a href="https://www.youtube.com/watch?v=EFg3u">https://www.youtube.com/watch?v=EFg3u</a> <a href="E6eHU">E6eHU</a>
- <a href="https://pl.wikipedia.org/wiki/Algorytm">https://pl.wikipedia.org/wiki/Algorytm</a> Dijkstry
- <a href="https://stackoverflow.com/">https://stackoverflow.com/</a>

•