1	TACTAAAGGG AACAAAAGCT	GGAGCTCCAC CGCGGTGGCG GCCGCTCTAG AACTAGTGGA					
	ATGATTTCCC TTGTTTTCGA	CCTCGAGGTG GCGCCACCGC CGGCGAGATC TTGATCACCT					
	5' UTR						
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
		CGGCACGAGG AACTTTCTGC CTCGTTTTTT TGCTCCTACT					
		GCCGTGCTCC TTGAAAGACG GAGCAAAAAA ACGAGGATGA					
	5' UTR	SEQ ID NO: 3					
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
		M S O E I V O S G O T Y					
	GTTTTCTCT TCCAGTTTCT	ACCATGTCGC AAGAAATTGT TCAATCAGGA CAAACCTACA					
	CAAAAAGAGA AGGTCAAAGA	TGGTACAGCG TTCTTTAACA AGTTAGTCCT GTTTGGATGT					
	SEQ ID NO: 3						
	~~~~~~~~~~~~~~						
		G T V V D L S G E D N K S					
		GGCACAGTTG TTGACCTTTC GGGCGAAGAC AACAAATCTA					
	AGTAGTGATT GCGGTTTAGG	CCGTGTCAAC AACTGGAAAG CCCGCTTCTG TTGTTTAGAT					
	IIGFPKH	G G T N O R W T L N W T G					
		GGAGGAACAA ATCAGAGGTG GACCCTCAAC TGGACAGGGA					
	AATAACCTAA AGGGTTCGTA	CCTCCTTGTT TAGTCTCCAC CTGGGAGTTG ACCTGTCCCT	-				
		SEQ ID NO: 5					
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
		V S S E M Y L G L N G S P					
		GTTTCTTCTG AAATGTATCT TGGCCTGAAT GGCTCGCCGT					
		CAAAGAAGAC TTTACATAGA ACCGGACTTA CCGAGCGGCA					
	Telemeera minageanaa	SEQ ID NO: 4 (partial)					
	~~~~	*************					
	SEQ ID NO: 5						
		SEQ ID NO: 6 (partial)					
	C D C M V 7 V	**************************************					
		A V T T P V E ·W R I W H  A GCCGTGACCA CCCCTGTTGA GTGGCGCATC TGGCACGA 4	118				
		CGGCACTGGT GGGGACAACT CACCGCGTAG ACCGTGCT	10				
	CCICOLLO IIII ONCONI						

## START ~~~ M S TA CTETTTTCT CTTCCAGTTT CTACCATGTC

M S Q E I GCCTCGTTTT TTTGCTCCTA CTGTTTTTCT CTTCCAGTTT CTACCATGTC GCAAGAAATT CGGAGCAAAA AAACGAGGAT GACAAAAAGA GAAGGTCAAA GATGGTACAG CGTTCTTTAA

5' UTR

- V Q S G Q T Y I I T N A K S G T V V D L
  GTTCAATCAG GACAAACCTA CATCATCACT AACGCCAAAT CCGGCACAGT TGTTGACCTT
  CAAGTTAGTC CTGTTTGGAT GTAGTAGTGA TTGCGGTTTA GGCCGTGTCA ACAACTGGAA
- S G E D N K S I I G F P K H G G T N Q R

  121 TCGGGCGAAG ACAACAAATC TATTATTGGA TTTCCCAAGC ATGGAGGAAC AAATCAGAGG
  AGCCCGCTTC TGTTGTTTAG ATAATAACCT AAAGGGTTCG TACCTCCTTG TTTAGTCTCC
- W T L N W T G K S W

  181 TGGACCCTCA ACTGGACAGG GAAGAGTTGG A 211
  ACCTGGGAGT TGACCTGTCC CTTCTCAACC T

V D L S G E D N K S I I G F P K H G G 1 TTGTTGACCT TTCGGGCGAA GACAACAAAT CTATTATTGG ATTTCCCAAG CATGGAGGAA AACAACTGGA AAGCCCGCTT CTGTTGTTTA GATAATAACC TAAAGGGTTC GTACCTCCTT TNQR WIL N W T G K S W T F R S V S 61 CAAATCAGAG GTGGACCCTC AACTGGACAG GGAAGAGTTG GACTTTCCGC TCCGTTTCTT GTTTAGTCTC CACCTGGGAG TTGACCTGTC CCTTCTCAAC CTGAAAGGCG AGGCAAAGAA SEMY LGL NGS PSDG TKL V A V 121 CTGAAATGTA TCTTGGCCTG AATGGCTCGC CGTCTGATGG AACAAAACTG GTAGCCGTGA GACTITACAT AGAACCGGAC TTACCGAGCG GCAGACTACC TTGTTTTGAC CATCGGCACT TTPV EWHIWH DEVD PST YRI 181 CCACCCCTGT TGAGTGGCAC ATCTGGCACG ACGAAGTTGA CCCTTCAACT TATCGTATCT GGTGGGGACA ACTCACCGTG TAGACCGTGC TGCTTCAACT GGGAAGTTGA ATAGCATAGA A/G polymorphism F V P F T T F N M D L Y A O G S A A P G 241 TTGTACCTTT CACCACATTC AACATGGACC TCTACGCCCA RGGTAGTGCC GCCCCTGGTA AACATGGAAA GTGGTGTAAG TTGTACCTGG AGATGCGGGT YCCATCACGG CGGGGACCAT T/C polymorphism T P I T T W Y T W K GIHQ TWR FEL 301 CGCCTATCAC AACTTGGTAT ACATGGAAGG GYATCCACCA AACGTGGAGG TTTGAACTAG GCGGATAGTG TTGAACCATA TGTACCTTCC CRTAGGTGGT TTGCACCTCC AAACTTGATC T/G polymorphism STOP ~~~ 3' UTR 361 CTTAGGKTCA GGTTTCGGAT GTAATTTGTG TGTGTAAATC TTCTTGGACC ATGTTGTGCT GAATCCMAGT CCAAAGCCTA CATTAAACAC ACACATTTAG AAGAACCTGG TACAACACGA 3' UTR 421 TTTATTGTAC TCCGCTTGTT ATCATTATAC CCACCTATGT TGCAACATCT TTTTGGATCC AAATAACATG AGGCGAACAA TAGTAATATG GGTGGATACA ACGTTGTAGA AAAACCTAGG PolyA tail ~~~~~~~~~ 3' UTR 481 CAAAAAAAA AAA 493 GTTTTTTTT TTT

## 4/6

START

M S Q E I V Q S G Q T Y I I 1 TCTCTTCCAG TTTCTACCAT GTCGCAAGAA ATTGTTCAAT CAGGACAAAC CTACATCATC AGAGAAGGTC AAAGATGGTA CAGCGTTCTT TAACAAGTTA GTCCTGTTTG GATGTAGTAG

T N A K S G T V V D L S G E D N K S I I
61 ACTAACGCCA AATCCGGCAC AGTTGTTGAC CTTTCGGGCG AAGACAACAA ATCTATTATT
TGATTGCGGT TTAGGCCGTG TCAACAACTG GAAAGCCCGC TTCTGTTGTT TAGATAATAA

G F P K H G G T N Q R W T L N W T G K S

121 GGATTTCCCA AGCATGGAGG AACAAATCAG AGGTGGACCC TCAACTGGAC AGGGAAGAGT
CCTAAAGGGT TCGTACCTCC TTGTTTAGTC TCCACCTGGG AGTTGACCTG TCCCTTCTCA

W T F R S V S S E M Y L G L N G S P S D

181 TGGACTTTCC GCTCCGTTTC TTCTGAAATG TATCTTGGCC TGAATGGCTC GCCGTCTGAT
ACCTGAAAGG CGAGGCAAAG AAGACTTTAC ATAGAACCGG ACTTACCGAG CGGCAGACTA

G T K L V A V T T P V E W H I W H D E V 241 GGAACAAAAC TGGTAGCCGT GACCACCCCT GTTGAGTGGC ACATCTGGCA CGACGAAGTT CCTTGTTTTG ACCATCGGCA CTGGTGGGGA CAACTCACCG TGTAGACCGT GCTGCTTCAA

D P S T Y R I F V P F T T F N M D L Y A
301 GACCCTTCAA CTTATCGTAT CTTTGTACCT TTCACCACAT TCAACATGGA CCTCTACGCC
CTGGGAAGTT GAATAGCATA GAAACATGGA AAGTGGTGTA AGTTGTACCT GGAGATGCGG

A/G polymorphism

C/T polymorphism

Q G S A A P G T P I T T W Y T W K G I H
361 CAAGGTAGTG CCGCCCCTGG TACGCCTATC ACAACTTGGT ATACATGGAA GGGCATCCAC
GTTCCATCAC GGCGGGGACC ATGCGGATAG TGTTGAACCA TATGTACCTT CCCGTAGGTG

G/T polymorphism

STOP

Q T W R F E L A *

421 CAAACGTGGA GGTTTGAACT AGCTTAGGGT CAGGTTTCGG ATGTAATTTG T 491 GTTTGCACCT CCAAACTTGA TCGAATCCCA GTCCAAAGCC TACATTAAAC A



WO 2005/012340

5/6

		START							
	exon 1								
1	TCTCTTCCAG TTTCTAG	CCAT GTCGCAAGAA	I V Q S	G Q T	CTACATCATC				
		exon 1							
	~~~~~~~~~~~~~~~~~~	***************			intron				
61	T N A K S C ACTAACGCCA AATCCGC TGATTGCGGT TTAGGCC	GCAC AGTTGTTGAC	CTTTCGGGCG A	AGACAACAA A	ATCTAGTAAG				
	~~~~~~~~	intron	_						
121	TCGTTTTTAG TCCCATC	GTTT TTTTTTGTCA	ааааааатт а						
		exon 2							
	intron 1		~~~	intron 2					
181		K H G G T AGCA TGGAGGAACA ICGT ACCTCCTTGT	AATCAGAGGG T	AGGTCTAGA A	ATGCACCTC TTACGTGGAG				
				exon 3					
	intro			~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
241	GTTAATATTG GTTTTTA	ATTG ACATTCATGA	W T ACAGTGGACC C	L N W T TCAACTGGA C AGTTGACCT G	CAGGGAAGAG				
		exon :	•						
301	W T F R S TTGGACTTTC CGCTCCC	V S S E M STTT CTTCTGAAAT	Y L G :	L N G S TGAATGGCT C	P S D				
		exon :	3						
- 361			TGTTGAGTGG C	ACATCTGGC A	CGACGAAGT				

6/6

	*************				THICTON 3								
	S TTCA	T Y ACTTAT	CGGT	GAGTC	СССТА	AATAT	TACT	T GCI	TGT	GGTT	CAT	АСТА	ATA
intr						exor							
CGTCGT'	TCGA	AGTATO	F TTTG	V P	F T TTCAC	T CACAT	F N	M C ATO	D GAC	L CTCT	Y ACG	A (	) G AGGG
					exon 4	-							
	A CGCC		T ACGC	P I CTATC	T T ACAAC	W TTGGT	Y T	W A TGO	K SAAG	G GGTA	I TCC	H (	) T AAAC
		•					tron						
~~~~~	xon 4	. ~ ~ ~ ~ ~	~	~~~~	~~~~	~~~~	~~~~	~~~~	~~~	~~~		~~~	-~~
W R GTGGAG CACCTC	GTTT												
in	tron	4	S	TOP									
ATCACG TAGTGC		GTTCTA CAAGAT									70	06)
			F	IG.	6	CONT	"D						