L. Vandenberghe ECE236C (Spring 2019)

9. Dual decomposition

- dual methods
- dual decomposition
- network utility maximization
- network flow optimization

Dual methods

primal: minimize
$$f(x) + g(Ax)$$

dual: maximize
$$-g^*(z) - f^*(-A^T z)$$

reasons why dual problem may be easier to solve by first-order methods:

- dual problem is unconstrained or has simple constraints (for example, $z \ge 0$)
- dual objective is differentiable or has a simple nondifferentiable term
- decomposition: exploit separable structure

(Sub-)gradients of conjugate function

assume $f: \mathbf{R}^n \to \mathbf{R}$ is closed and convex with conjugate

$$f^*(y) = \sup_{x} (y^T x - f(x))$$

- f^* is subdifferentiable on (at least) int dom f^* (page 2.4)
- maximizers in the definition of $f^*(y)$ are subgradients at y (page 5.15)

$$y \in \partial f(x) \iff y^T x - f(x) = f^*(y) \iff x \in \partial f^*(y)$$

- if f is strictly convex, maximizer is unique (hence, equal to $\nabla f^*(y)$) if it exists
- ullet if f is strongly convex, then conjugate is defined for all y and differentiable with

$$\|\nabla f^*(y) - \nabla f^*(y')\| \le \frac{1}{\mu} \|y - y'\|_*$$
 for all y, y'

(μ is strong convexity constant of f with respect to $\|\cdot\|$); see page 5.19

Outline

- methods
- dual decomposition
- network utility maximization
- network flow optimization

Equality constraints

Primal and dual problems

primal: minimize f(x)

subject to Ax = b

dual: maximize $-b^T z - f^*(-A^T z)$

Dual gradient ascent algorithm (assuming dom $f^* = \mathbf{R}^n$)

$$\hat{x} = \underset{x}{\operatorname{argmin}} (f(x) + z^{T} A x)$$

$$z^{+} = z + t(A\hat{x} - b)$$

- step one computes a subgradient $\hat{x} \in \partial f^*(-A^Tz)$
- step two computes a subgradient $b A\hat{x}$ of $b^Tz + f^*(-A^Tz)$ at z

of interest if calculation of \hat{x} is inexpensive (for example, f is separable)

Dual decomposition

Convex problem with separable objective

minimize
$$f_1(x_1) + f_2(x_2)$$

subject to $A_1x_1 + A_2x_2 \le b$

constraint is *complicating* or *coupling* constraint

Dual problem

maximize
$$-f_1^*(-A_1^Tz) - f_2^*(-A_2^Tz) - b^Tz$$

subject to $z \ge 0$

can be solved by (sub-)gradient projection if $z \ge 0$ is the only constraint

Dual subgradient projection

Subproblem: to calculate $f_j^*(-A_j^Tz)$ and a (sub-)gradient for it,

minimize (over
$$x_j$$
) $f_j(x_j) + z^T A_j x_j$

- optimal value is $-f_j^*(-A_j^Tz)$
- minimizer \hat{x}_j is in $\partial f_j^*(-A_j^Tz)$

Dual subgradient projection method

$$\hat{x}_j = \underset{x_j}{\operatorname{argmin}} (f_j(x_j) + z^T A_j x_j) \text{ for } j = 1, 2$$

$$z^+ = (z + t(A_1 \hat{x}_1 + A_2 \hat{x}_2 - b))_+$$

- minimization problems over x_1 , x_2 are independent
- z-update is projected subgradient step $(u_+ = \max\{u, 0\})$ elementwise)

Interpretation as price coordination

• p = 2 units in a system; unit j chooses decision variable x_j

• constraints are limits on shared resources; z_i is price of resource i

Dual update: depends on slacks $s = b - A_1x_1 - A_2x_2$

$$z^+ = (z - ts)_+$$

- increases price z_i if resource is over-utilized ($s_i < 0$)
- decreases price z_i if resource is under-utilized ($s_i > 0$)
- never lets prices get negative

Distributed architecture: central node sets prices z, peripheral node j sets x_j

Example

Quadratic optimization problem

minimize
$$\sum_{j=1}^{r} (\frac{1}{2} x_j^T P_j x_j + q_j^T x_j)$$
 subject to
$$B_j x_j \leq d_j, \quad j=1,\ldots,r$$

$$\sum_{j=1}^{r} A_j x_j \leq b$$

- without last inequality, problem would separate into r independent QPs
- we assume $P_i > 0$

Formulation for dual decomposition

minimize
$$\sum_{j=1}^{r} f_j(x_j)$$

subject to
$$\sum_{j=1}^{r} A_j x_j \le b$$

where $f_j(x_j) = (1/2)x_j^T P_j x_j + q_j^T x_j$ with domain $\{x_j \mid B_j x_j \leq d_j\}$

Dual problem

maximize
$$-b^T z - \sum_{j=1}^r f_j^*(-A_j^T z)$$

subject to $z \ge 0$

• gradient of $h(z) = \sum_j f_j^*(-A_j^T z)$ is Lipschitz continuous (since $P_j > 0$):

$$\|\nabla h(z) - \nabla h(z')\|_2 \le \frac{\|A\|_2^2}{\min_j \lambda_{\min}(P_j)} \|z - z'\|_2$$

where $A = [A_1 \cdots A_r]$

 $\bullet \;$ function value of $-f_j^*(-A_j^Tz)$ is optimal value of QP

minimize (over
$$x_j$$
) $(1/2)x_j^T P x_j + (q_j + A_j^T z)^T x_j$
subject to $B_j x_j \le d_j$

• optimal solution \hat{x}_j is gradient $\hat{x}_j = \nabla f_j^*(-A_j^T z)$

Numerical example

- 10 subproblems (r = 10), each with 100 variables and 100 constraints
- 10 coupling constraints
- projected gradient descent and FISTA, with the same fixed step size

Outline

- dual methods
- dual decomposition
- network utility maximization
- network flow optimization

Network utility maximization

Network flows

- *n* flows, with fixed routes, in a network with *m* links
- variable $x_j \ge 0$ denotes the rate of flow j
- flow utility is $U_j: \mathbf{R} \to \mathbf{R}$, concave, increasing

Capacity constraints

- traffic y_i on link i is sum of flows passing through it
- y = Rx, where R is the routing matrix

$$R_{ij} = \begin{cases} 1 & \text{flow } j \text{ passes over link } i \\ 0 & \text{otherwise} \end{cases}$$

• link capacity constraint: $y \le c$

Dual network utility maximization problem

primal: maximize
$$\sum_{j=1}^{n} U_j(x_j)$$
 subject to $Rx \leq c$

dual: minimize
$$c^Tz + \sum\limits_{j=1}^n (-U_j)^*(-r_j^Tz)$$
 subject to $z \geq 0$

- r_j is column j of R
- dual variable z_i is price (per unit flow) for using link i
- $r_j^T z$ is the sum of prices along route j

(Sub-)gradients of dual function

Dual objective

$$f(z) = c^{T}z + \sum_{j=1}^{n} (-U_{j})^{*}(-r_{j}^{T}z)$$
$$= c^{T}z + \sum_{j=1}^{n} \sup_{x_{j}} \left(U_{j}(x_{j}) - (r_{j}^{T}z)x_{j} \right)$$

Subgradient

$$c - R\hat{x} \in \partial f(z)$$
 where $\hat{x}_j = \underset{x_j}{\operatorname{argmax}} \left(U_j(x_j) - (r_j^T z) x_j \right)$

- $r_i^T z$ is the sum of link prices along route j
- $c R\hat{x}$ is vector of link capacity margins for flow \hat{x}
- ullet if U_i is strictly concave, this is a gradient

Dual decomposition algorithm

given initial link price vector z > 0 (e.g., z = 1), repeat:

- 1. sum link prices along each route: calculate $\lambda_j = r_j^T z$ for $j = 1, \ldots, n$
- 2. optimize flows (separately) using flow prices

$$\hat{x}_j = \underset{x_j}{\operatorname{argmax}} (U_j(x_j) - \lambda_j x_j), \quad j = 1, \dots, n$$

- 3. calculate link capacity margins $s = c R\hat{x}$
- 4. update link prices using projected (sub-)gradient step with step t

$$z := (z - ts)_+$$

Decentralized:

- to find λ_j , \hat{x}_j source j only needs to know the prices on its route
- to update s_i , z_i , link i only needs to know the flows that pass through it

Outline

- dual methods
- dual decomposition
- network utility maximization
- network flow optimization

Single commodity network flow

Network

- connected, directed graph with *n* links/arcs, *m* nodes
- node-arc incidence matrix $A \in \mathbf{R}^{m \times n}$ is

$$A_{ij} = \begin{cases} 1 & \text{arc } j \text{ enters node } i \\ -1 & \text{arc } j \text{ leaves node } i \\ 0 & \text{otherwise} \end{cases}$$

Flow vector and external sources

- variable x_j denotes flow (traffic) on arc j
- b_i is external demand (or supply) of flow at node i (satisfies $\mathbf{1}^T b = 0$)
- flow conservation: Ax = b

Network flow optimization problem

minimize
$$\phi(x) = \sum_{j=1}^{n} \phi_j(x_j)$$

subject to $Ax = b$

- ullet ϕ is a separable sum of convex functions
- dual decomposition yields decentralized solution method

Dual problem (a_j is jth column of A)

maximize
$$-b^T z - \sum_{j=1}^n \phi_j^*(-a_j^T z)$$

- dual variable z_i can be interpreted as potential at node i
- $y_j = -a_j^T z$ is the potential difference across arc j (potential at start node minus potential at end node)

(Sub-)gradients of dual function

Negative dual objective

$$f(z) = b^T z + \sum_{j=1}^{n} \phi_j^*(-a_j^T z)$$

Subgradient

$$b - A\hat{x} \in \partial f(z)$$
 where $\hat{x}_j = \operatorname{argmin} \left(\phi_j(x_j) + (a_j^T z) x_j \right)$

- this is a gradient if the functions ϕ_i are strictly convex
- if ϕ_j is differentiable, $\phi_j'(\hat{x}_j) = -a_j^T z$

Dual decomposition network flow algorithm

given initial potential vector z, repeat

1. determine link flows from potential differences $y = -A^Tz$

$$\hat{x}_j = \underset{x_j}{\operatorname{argmin}} (\phi_j(x_j) - y_j x_j), \quad j = 1, \dots, n$$

- 2. compute flow residual at each node: $s := b A\hat{x}$
- 3. update node potentials using (sub-)gradient step with step size *t*

$$z := z - ts$$

Decentralized:

- flow is calculated from potential difference across arc
- node potential is updated from its own flow surplus

Electrical network interpretation

network flow optimality conditions (with differentiable ϕ_i)

$$Ax = b,$$
 $y + A^{T}z = 0,$ $y_{j} = \phi'_{j}(x_{j}),$ $j = 1,...,n$

network with node incidence matrix A, nonlinear resistors in branches

Kirchhoff current law (KCL): Ax = b

 x_j is the current flow in branch j; b_i is external current extracted at node i

Kirchhoff voltage law (KVL): $y + A^T z = 0$

 z_j is node potential; $y_j = -a_j^T z$ is jth branch voltage

Current-voltage characterics: $y_j = \phi'_j(x_j)$

for example, $\phi_j(x_j) = R_j x_j^2/2$ for linear resistor R_j

current and potentials in circuit are optimal flows and dual variables

Example: minimum queueing delay

Flow cost function and conjugate ($c_j > 0$ is link capacity):

$$\phi_j(x_j) = \frac{x_j}{c_j - x_j}, \qquad \phi_j^*(y_j) = \begin{cases} \left(\sqrt{c_j y_j} - 1\right)^2 & y_j > 1/c_j \\ 0 & y_j \le 1/c_j \end{cases}$$

with dom $\phi_j = [0, c_j)$

• ϕ_i is differentiable except at $x_i = 0$

$$\partial \phi_j(0) = (-\infty, 0], \qquad \phi'_j(x_j) = \frac{c_j}{(c_j - x_j)^2} \quad (0 < x_j < c_j)$$

• ϕ_j^* is differentiable

$$\phi_j^{*'}(y_j) = \begin{cases} 0 & y_j \le 1/c_j \\ c_j - \sqrt{c_j/y_j} & y_j > 1/c_j \end{cases}$$

Flow cost function, conjugate, and their subdifferentials $(c_j=1)$

References

- S. Boyd, *Lecture slides and notes for EE364b, Convex Optimization II*, lectures and notes on decomposition.
- M. Chiang, S.H. Low, A.R. Calderbank, J.C. Doyle, Layering as optimization decomposition: A
 mathematical theory of network architectures, Proceedings IEEE (2007).
- D.P. Bertsekas and J.N. Tsitsiklis, *Parallel and Distributed Computation: Numerical Methods* (1989).
- D.P. Bertsekas, Network Optimization. Continuous and Discrete Models (1998).
- L.S. Lasdon, Optimization Theory for Large Systems (1970).