NBA Player Positions

Jason Katz
Brown University
December 6, 2019
github.com/jasonk33/nba-player-positions

Recap

- Understand difference between the 5 distinct NBA positions
- This is a classification task, predicting a player's position based on their seasonal statistics
- Data was scraped from basketball-reference.com
- After preprocessing, there were 10,000 data points
- There is close to an even breakdown the positions

Cross Validation

- Split the data into 80/20 for cross validation vs holdout set
- Repeated Stratified K Fold cross validation
 - 5 folds
 - 3 repeats
 - Stratification to keep the 5 classes balanced
- Use grid search for parameter tuning

Cross Validation

- 5 different ML algorithms (tuned parameters)
 - Logistic regression (C)
 - Random forest (max_depth, min_samples_split)
 - K nearest neighbors (n neighbors)
 - Gradient boosting (max_depth, n_estimators, learning_rate)
 - Support vector machine (C, gamma)

	Cross Validation Accuracy/Log Loss	Validation Accuracy
Logistic Regression	.622 / .948	.615
Random Forest	.638 / .886	.636
K Nearest Neighbors	.635 / .921	.631
Gradient Boosting	.662 / .822	.686
Support Vector Machines	.679 / .762	.695

Baseline model (balance): 0.209

Permutation Importances (test set)

- This figure above depicts local feature importance for an example of a center, where the model predicts it correctly (values for center)
- This figure below depicts local feature importance for an example of a center, where the model predicts it correctly (values for point guard)

Outlook

- Experiment with other types of models, such as neural networks
- See if there are any other hyperparameters I could tune, possibly different types of kernels for the support vector machine model
- Acquire more data in addition to seasonal statistics, such as salary information or player details such as height and weight
- Experiment with different feature engineering to combine different stats together in different ways.