WO 2004/020582

PCT/US2003/026075

1/23

SEQ ID NO:1

FIG. 1A

BEST AVAILABLE COPY

Same in grand

2/23

		200000000000000000000000000000000000000
3	1539	CTTCCCGATGCCAGCTGGGCTCTTGGACTCCCCTCTTCCTCAAGGGTAGATGAGAGGAAC
4	992	CTTCCCGATGCCAGCTGGGCTCTTGGACTCCCCTCTTCCTCAAGGGTAGATGAGAGGAAC
2	595	TGCCAACTGAGACCTGCCCCTCGGG
1		
consensus	1561	······
3	1599	GAGCACAGAGGTT -GGCTGTGGGTCCTGGGTACCACCTTCTGAGCCTCAGTTTCCTCATC
4	1052	GAGCACAGAGGTT-GGCTGTGGGTCCTGGGTACCACCTTCTGAGCCTCAGTTTCCTCATC
2	625	S-SC-CGGAGGTCACGCTGCTCCCGAGACCTGCTGGGCTTCAGTGAC-TCGGC
1		
consensus	1621	
3	1658	IGTAAAGTGGGGA-GAAAAGTCTGTTT-GCCTCAGGAGTGTG-AGGACTACACTAGTGA
4	1111	TOTA A ACTOGOGA -GA AAAGTCTGTTT -GCCTCAGGAGTGTG AGGACTACACTAGTGA
2	675	TATAGOATCGCCGTGAGAACCCCGTCTCGCCCAACCCTCTCTCAGAACCCGG-TAGCCG
ī		
consensus	1681	
3	1714	AAGCGCCTGGCGGCAGCCGGCGATGCCCAATAAATGTGTGTTTTGCTGTTTGTT
4	1167	AAGCGCCTGGCGGCAGCCGGCGATGCCCAATAAATGTGTGTTTTGCTGTTTGTT
5	734	AAGRGACTGGRGGGGGA
1		
consensus	1741	
Comsenans	1/41	***************************************

FIG. 1B (continued)

SEO ID NO:2

FIG. 2A

SEO ID NO:3

MMILTPRPRLTLPEVGTLQVWNAVDSGHCLQTYSVHSEAVRAERWSPCGRRILSGGFDFALHLTDLETGTQVFSG QSDFRVTTLKFHPKEHNVFLCGGFSSEINRXDMRTGKVVKGYKATIQQTLDILFLQEGSEFLSSTDASTRDSADR TIIAWDFRTAAKISNQIFHERYTCPSLALHPREPVFLAQTNGNYLALFSSVWPYRMSRRRRYEGHKVEGYAVGCE CSPCGDLLVTGSADGRVLMFSFRTASRACALQGHTQACLGTSYHPVLPSVLGTCSWGGDIKIWH

FIG. 2B

PCT/US2003/026075

Exon 1 SEQ ID NO:4

ATGACAGGCTGGGTGGCGCGCGCGCGCGCGCGCCGCGTCCCTCGTGGT
ACAGGTGCCCAGAGAACAGACAGCCCGGTTCCGAGCTGGATCCTCGGGGC
GCGCGCCGGGGCGTCAACCGAAGGCCCCGGCGCACCTCGGCATCCCTC
CCTCGCTCCCGGCGCAGTGACCACCCCCTCCTCACTTACCGGCGCCCCC
ACTTCGGCCCCACCAGTCAGCACCCCCCAAGTTCAGCCACCGGTACCTCTT
GGGCGTCCGTGGAAACACCAGCCGGTGGAATAACTTCCG

Exon 2 SEQ ID NO:5

GAAGTCACCTTTGTGTGACTGTATGGCCTCGCTGGTGGCATATGATGATT CTGACTCCGAGACCGAGGCTGACCCTGCCAGAAGTGGGGACGCTGCAG

Exon 3 SEQ ID NO:6

CTGCCTGTCTTAAGCCACTAAAACCTGCCTGG GACGTCCTCAAACCTTCTCATGATCAAAGCACATTTGAAAGCACAGCTGG AAATGCCAGCTCTTCTCAGAGGAAAAGGGGTGAGGACTGTGTGCTTCCCT ATATCCCCAAGAGGCTAAGGCAGCTGCAAGCGCTGAATCCAGAAGCAG

Exon 4 SEQ ID NO:7

TGTCTGAGTTCATCCAGCCATATTTGA
ACAGTCAGTACAGAGAGACTACGGTCCCCAAGAAAGTGCTTTTCCACCTT
CGAGGCCACAGGGGCCCGGTCAACAGCATTCAGTGGTGTCCAGTCTTTTG
CAAGAGCCACATGCTTCTCTCTGCTTCCATGGACAAAACCTTCAAG

Exon 5 SEQ ID NO:8

TTCTGCCGTGAACATGGCTATGCA
GGCACCTCTGTGGATCCCGACACAGGCTCCTTTGGGATGGACCCAG

Exon 6 SEQ ID NO:9

GAATCC
CAGAACGAAGGCCTGGCCTGGGCCTTCCTGGCCATGGCTCCTCAGTCCT
CTGGGCACCACAAAGGCTTTTTCCCAGGAAGAACGCCTTGCCTCACT
TGTAGCTGGGGTTGCCTGGGAG

SEQ ID NO:10

ggcacgagggagggaggtgagagtgattagtgggagaagaaaagcaggcccaggaccaagccctggggactg gggacatcctcggtgaccctgtggagcattgagccatgccagctctgtgcctggtgctgttgctggtttcaagggc gggccgcccggtgggctccctgtggccggcgcatcctcagtggtggctttgacttcgcgctgcacctaacagacc a caa cat ctttttat g t g g a g g ctt ca g ctct g a a a g g a tata a g g a ct g g caa g g t g a t g a g a a g g ct g g a c g g c a a g g t g a t g a g a c g g c a agctacaaggcgaccatccagcagaccttggacatcctgttcctccgggaaggctccgagttcctgagcagcacag acgcttccacccgggactcagctgaccgcaccattattgcctgggatttccggacctctgccaaaatctccaacc agattttccacqaqaqqttcacctgcccagcctcgccttgcacccgagagagcccgtgttcctggcacagacca atggcaactacctggcccttttctccactgtgtggccctaccggatgagcagacggcggctatgaagggcaca aggtggagggctactcagtgggctgcgagtgctccccaggcggtgacttgctggtgacgggcagcgccgatggcc ccacctaccaccccgtgctgccctccgtcctcgccacctgctcctggggaggggacatgaagatctggcactgag ctttttgtcactgaaccttcccgatgccagctgggctcttggactcccctcttcctcaagggtagatgagaggaa cgagcacagaggttggctgtgggtcctgggtaccaccttctgagcctcagtttcctcatctgtaaagtggggaga aaagtctgtttgcctcaggagtgtgaggactacactagtgaaagcgcctggcgggcagccggcgatgcccaataa atgtgtgttttgctgtttgttaaaaaaaaaaaaaaaa

FIG. 3A

SEO ID NO:11

MPALCLVLCWFQGLLGEVWNAVDSGHCLQTYSLHTEAVRAARWAPCGRRILSGGFDFALHLTDLETGTQLFSGRS DFRITTLKFHPKDHNIFLCGGFSSEMKAWDIRTGKVMRSYKATIQQTLDILFLREGSEFLSSTDASTRDSADRTI IAWDFRTSAKISNQIFHERFTCPSLALHPREPVFLAQTNGNYLALFSTVWPYRMSRRRRYEGHKVEGYSVGCECS PGGDLLVTGSADGRVLMYSFRTASRACTLQGHTQACVGTTYHPVLPSVLATCSWGGDMKIWH

FIG. 3B

M H consensus	1 1 1	GCACGAGGACCAAGACCTTCCGTGT-GTGTGT-GTGTGTGTGAAGTCAC GCCACGAGGAGAGAGAAAAGCACGCCCAGGACC
M H consensus	61	CTTTGTGTGACTGTATGCCCTCGCTGGTGGCATATGATG-ATTCTGAC AAGCCCTG-GGGACTGGGGACATCCTCGGTGACCCTGTGAGCAT-TGAGCCATGCCAGC
M H consensus	95 119 121	TCCGAGACCGAGGCTGACCCTGCCAGAAGTGGGGACCCTGCAGGTGTGGAATGCTGTGGA TCTGTGCCTGGTGCTGGTGGTTTCAAGGGCTGTTGGGACAGGTATGGAACGCCGTGGA
M H consensus	155 179 181	CTCGGGACACTGCCTGCAGACCTACTCTGTGCACAGTGAGGCAGTAAGGGCTGAACGGTGCCGGGGCACTGCAGACCTACTCCCTGCACACAGAGGCAGTGCGGGCCGCCGGTG
M H consensus	215 239 241	GTCTCCCTGTGGCCGCCGCATCCTCAGTGGTGGCTTCGACTTTGCCCTGCACCTAACAGA GCCTCCCTGTGGCCGCGCATCCTCAGTGGTGGCTTTGACTTCGCGCTGCACCTAACAGA
M H consensus	275 299 301	
M H consensus	335 359 361	ATTTCATCCAAAAGACACAACGTCTTTTTATGTGGCGGCTTCAGCTCTGAAATCAACAGATCCATCC
M H consensus	419 421	GNGGGACATGAGGACTGGCAAGGTGGTGAAAGGCTACAAGGCCACCATCCAGCAGACCTTTGGGGATATAAGGACTGGCAAGGTGATGAGAAGCTACAAGGCGACCATCCAGCAGACCTT
M H Consensus	455 479 481	GGACAT CTCTTCCTCCAGGAGGGCTCCGAGTTTCTTAGCAGTACGGACGCATCCACCCG GGACAT CCTGTTCCTCCGGGAAGGCTCCGAGTTCCTGAGCAGCACAGACGCTTCCACCCG
M H consensus	539 541	GGACTCTGCTGACCGAACCATTATCGCCTGGGATTTCCGGACCGCTGCCAAGATCTCCAAGGACTCACCACACCACCACCACCACACACCACCACACACCAC
M H consensus	599 601	CCAGATTTTCCACGAGAGGTTCACCTGCCCAGCCTCGCCTTGCACCCGAGAGAGCCCGT
M H consensus	659 661	GTTCCTTGCACAAACCAATGGCAACTACCTGGCTCTTTTCCTCTGTGTGGCCCTATCGGTTCCTCTGGGCACAACCAATGGCAACTACCTGGCCCTTTTCTCCACTGTTGGCCCTACCG
M H consensus	719 721	GATGAGCAGACGG <mark>AGACGCTAC</mark> GAAGGTCACAAGGTGGAAGGCTACGCGGTGGGCTGTGA GATGAGCAGACGGCGGCGCTATGAAGGGCACAAGGTGGAGGGCTACTCAGTGGGCTGCGA

FIG. 4A (continued)

M H consensus	1 1 1	MMILTPRPRLTLPEVGTLOVWNAVDSGHCLOTYSVHSEAVRAERWSPCGRRILSGGFDFAMPALCLVLCWFQGLLGEVWNAVDSGHCLQTYSLHTEAVRAARWAPCGRRILSGGFDFA
M H consensus	61 59 61	LHLTDLETGTQVFSGOSDFRYTTLKFHPKEHNVFLCGGFSSETNRXDMRTGKVVKGYKAT LHLTDLETGTQUFSGRSDFRITTLKFHPKDHNTFLCGGFSSEMKAWDDRTGKVMRSYKAT
M H consensus	121 119 121	IQQTLDILFLOEGSEFLSSTDASTRDSADRTIIAWDFRTAAKISNQIFHERYTCPSLALH IQQTLDILFLORGSEFLSSTDASTRDSADRTIIAWDFRTSAKISNQIFHERFTCPSLALH
M H consensus	181 179 181	PREPVFLAQTNGNYLALFSSVWPYRMSRRRRYEGHKVEGYAVGCECSPGDLLVTGSADG PREPVFLAQTNGNYLALFSSVWPYRMSRRRRYEGHKVEGYSVGCECSPGDLLVTGSADG
M H consensus	241 239 241	RVLMESFRTASRACALQGHTQACLGTSYHPVLPSVLGTCSWGGDTKIWH RVLMYSFRTASRACTLQGHTQACWGTTYHPVLPSVLATCSWGGDMKIWH

FIG. 4B

position chr14:100297347-100312946 size 15600, pixel width 1500 [jump] 1603E201 | 1605E201 | 1605E201 | 1603E201 |

FIG.6A

FIG. 6B

Schitz e. d. (1999) Prox. Abri Acad. Sci. (Tat 96, 2837-3864 Lennik e. d. (2003) Abribis Acid. Iso 39, 212-244

A rchitecture

M odular S imple

R escarch

T ool

HOME! LITERATURE! ABOUT! GLOSSARY! WHATS NEW! EFEDBACK

Currently there are too many SMART jobs running.

Your job is no. I in the queve.

Your sequence was 100% identical to aptrembliQUBIKSIQUBIKS, displaying precalculated results.

8

Mouse ever danain / undefined region to see the limits; click as it to go to further amounts at rights/like to save what protein as PNC inage Transmentater segments as predicted by the <u>Thillablic</u> pregram (""), celled cell regions detreated by the <u>Celled</u> pregram (""") and Segments of low compositional complexity, determined by the <u>EEC</u> pregram (""")

Architecture analysis

Display all proteins with similar domain <u>organisation.</u> Display all proteins with similar domain <u>composition</u>.

The SIAART digram show represses a stances of the results shown below. Denatics with corres less eignificant dan established crub B are not above to the diagram. Features are also not shown to the shown below the stances of the stances of the printing of the stances of the stances of the printing of the stances of the s

Confidently predicted domains, repeats, motifs and features:

- Address of the last of the l	end E-value	17	63 4.30e-05	105 1.40€+00	154 1.90c+02	244 3.30e-01	200
	begtu	-	≈	8	8	æ	5,72
	name	signal peptide	MD40	WD40	WD40	WD40	UNCUR

possible models considered, only significant TM-segments used

the number of TM-helices the models differ in

STRONGLY prefered model: N-terminus inside score total orientation transmembrane helices, strong

score from

510 1210

score total transmembrane helices, alternative model strong

812

score orientation 812 o-i length to 25 from

FIG.6C

FIG. 8C

Emicion)	rs13065 NP 078791.1 unclassified	rs13492 NP 078791.1 unclassified	rs13065 AAH03641.1 unclassified	rs13492 AAH03641.1 unclassified
Protein	NP 078791.	NP 078791.	AAH03641	AAH03641.
	rs13065	rs13492	rs13065	rs13492
in i	minus strand	minus strand	minus strand	minus
Nundeoutte Position	806	1192	806	1192
Mindleoting accession	NM 024515.1 908		BC003641.1	
Accression Others	NCBI RefSeq		GenBank mRNA	

FIG. 10

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.