

St Catherine's School

Year: 12

Subject: Extension I Mathematics

Time allowed: 2 hours

(plus 5 mins reading time)

Date: August 2002

Exam number:

Directions to candidates:

- All questions are to be attempted.
- All questions are of equal value.
- All necessary working must be shown in every question.
- Full marks may not be awarded for careless or badly arranged work.
- Approved calculators and geometrical instruments are required.
- Each section should be started on a new booklet.
- Hand in your work in 3 bundles:

Section A Questions 1 and 2.

Section B Questions. 3 and 4

Section C Questions. 5, 6 and 7.

TEACHER'S USE ONLY Total Marks			
Ā			
В			
C			
TO	OTAL		

Section A

Question 1

- a) Use the table of standard integrals to find the exact value of $\int_{0}^{1} \frac{dx}{\sqrt{4-x^2}}$
- (b) Find $d/dx \sin^{-1} \sqrt{1-x}$
- c) Evaluate $\sum_{n=3}^{7} (3n-1)$
- Let A be the point (-6,2) and let B be the point (4,7). Find the coordinates of the point P, which divides the interval AB externally in the ratio 3:2.
- e) Is x-2 a factor of $x^3 + 3x 14$? Give reason for your answer.
- e) Is x-2 a factor of x + 3x + 14. Give reasonable 3

 Use the substitution $u = x^2 1$ to evaluate $3 \int_{1}^{2} x \sqrt{x^2 1} \ dx$

Question 2

- Let $f(x) = 2x^2 + x$. Use the definition $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$ to find the derivative of y = f(x).
- b) (i) Find $\int \frac{e^{2x}}{3+e^{2x}} dx$
 - ii) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^{2}(\frac{1}{2}x) dx$
- c) i) Write down the expansion of tan(A+B)

 Very all the street 105° in simplest surd form.
 - ii) Hence find the value of tan 105° in simplest surd form.
- d) Solve for x; $\frac{4}{5-x} \ge 1$

Section B (Start a new booklet) Question 3

Write the expansion of $(2x - y)^5$ a)

2

Find the term independent of x in the binomial expansion $(x^2 + \frac{2}{x})^6$ b)

3

- The function $f(x) = x 2\sin x$ has a zero near x = 1.7. Use one application of Newton's method to find a second approximation to the zero. Write your answer correct to three significant c) 3 figures.
- A smooth piece of ice is projected up a smooth inclined (sloping) surface. Its distance x in d) metres up the surface is at time t seconds is $x = 6t - t^2$. 4
 - Find velocity, v, and acceleration, \ddot{x} . i)

- In which direction is the ice moving and in which direction is acceleration when t=2
- Use your answer from (ii) to explain whether the piece of ice is increasing in speed or decreasing in speed when t=2.
- Find when and where the piece of ice is stationary. iv)

Ouestion 4

i) a)

- Given that $x^2 + 4x + 13 \equiv (x + a)^2 + b^2$, find the values of a and b. Use the result of (i) to find $\int_{-2}^{1} \frac{1}{x^2 + 4x + 13} dx$ 2 (ii)
- The volume, V, of a sphere of radius r mm is increasing at a constant rate of 200 mm³ per **b**) second. 4
 - Find $\frac{dr}{dt}$ when r = 50. i)
 - Determine the rate of increase of the surface area, S of the sphere when the radius is 50 ii) mm.

$$\left(V = \frac{4}{3}\pi r^3 \qquad S = 4\pi r^2\right)$$

A particle, whose displacement is x, moves in simple harmonic motion. (c) Find x as a function t if:

5

 $\ddot{x} = -16x$ and $x = \sqrt{3}$ and $\dot{x} = 12$ when t = 0.

Section C (Start a new booklet) Ouestion 5

a) $P(2p, p^2)$ and $Q(2q, q^2)$ are two points on the parabola $x^2 = 4y$. The variable chord PQ is such that it is always parallel to the line y = x.

(i) Find the gradient of PQ and hence show that p+q=2

Given that the equation of the *normal* at P is $x + py = 2p + p^3$. Write down the equation of the *normal* at Q, and hence find the coordinates of the point of intersection R, of these normals.

Prove that the locus of R is the straight line x-2y+12=0.

b) A garden sprinkler is positioned at the centre of a large, flat lawn. Water droplets are projected from the sprinkler at a fixed speed of 20ms and at an angle, ϑ , above the horizontal. The acceleration due to gravity is $10 \, ms^{-2}$.

i) Use integration to show that the horizontal displacement x metres and the vertical displacement y metres of the water droplets is after time t seconds are given by

 $x = 20t\cos\theta$ and $y = 20t\sin\theta - 5t^2$

ii) Show that the horizontal range, R, of the water droplets is given by $R = 40 \sin 2\theta$.

The garden sprinkler rotates in a circle to water the lawn. If the angle of projection varies between 15° and 45° above the horizontal, find the exact area of that part of the lawn that can be watered in this way.

Question 6

The acceleration of an object is given by $a = 12e^{2x}$ m/s/s. If the object leaves the origin with a velocity of $2\sqrt{3}$ m/s and its velocity is always positive, find the displacement when the velocity is 5m/s, correct to two decimal places.

b) i) Find the general solution to the equation $\sin 2x = 2\sin^2 x$.

ii) Show that if $0 < x < \frac{\pi}{4}$, then $\sin 2x > 2\sin^2 x$

iii) Find the area enclosed between the curves $y = \sin 2x$ and $y = 2\sin^2 x$ for $0 \le x \le \frac{\pi}{4}$

Please turn over for question 7

3

2

2

Question 7

- In a flock of 1000 chickens, the number P, infected with a disease at time t years is given by a) $P = \frac{1000}{1 + ke^{-1000t}}$ where k is a constant.
 - Show that, eventually, all the chickens will be infected.
 - Suppose that when time t = 0, exactly one chicken was infected. After how many days i) ii) will 500 chickens be infected?
- A particle is moving in a straight line. After time, t seconds it has displacement x metre from a fixed point O on the line, velocity, $v ms^{-1}$ given by $v = \frac{1-x^2}{2}$ and acceleration, $a ms^{-2}$. Initially b) the particle is at O. 1
 - Find an expression for acceleration in terms of x. i)
 - Show that $\frac{2}{1-x^2} = \frac{1}{1+x} + \frac{1}{1-x}$ and hence find an expression for x in terms of t. 3 ii)
 - Describe the initial conditions for displacement, velocity and acceleration and hence describe the motion of the particle, explaining whether it moves to the left or the right of 3iii) O and whether it slows down or speeds up.
 - What is the limiting position of the particle? iv)

End of examination

ı

Question ' $\frac{dx}{\sqrt{4-x^2}} = \left[\frac{\sin^{-1}\left(\frac{x}{2}\right)}{2}\right]_{0}^{1} = \frac{\pi}{6} = 0$ $= \sin^{-1}\frac{1}{2} - \sin^{-1}\frac{1}{2} = 0$ $= \frac{\pi}{6} = 0$

67

 $\frac{d}{dx} \sin^{2} \sqrt{1-x} = \frac{1-x}{4x} = \frac{1-x$

let y = 81 n u

dy = 1 - 12

 $\frac{dy}{dx} = \frac{du}{dx} \times \frac{dy}{du}$ $= \frac{1}{2\sqrt{1-x^2}} \times \frac{1}{\sqrt{1-(1-x)^2}}$

 $\frac{1}{2\sqrt{1-x^{4}}} \times \frac{1}{\sqrt{1+x^{4}}} \qquad (2)$

 $\sum_{n=3}^{7} (3n-1) = 8 + 11 + 14 + 17 + 2$

a) A(6,2) B(4,7) M: n = -3:2 $x = \frac{m \times_2 + n \times'}{m + n}$ $y = \frac{m \cdot 2 + n \cdot y}{m + n}$ $= \frac{3(4) - 2(-6)}{3 - 2}$ $= \frac{3(7) - 2(2)}{3 - 1}$ = 24

ic. (14.17)

e) If (x-2) is a factor of $x^3+3x-14=0$ Hen when x=2 $x^3+3x-14=0$ $P(2)=(2)^3+3(2)-14$ =8+6-14 (2)

(2-2) is a factor by The factor theorem

 $f) = \int_{3}^{2} x \sqrt{x^{2}-1} dx \qquad u = x^{2}-1$ $= \int_{3}^{3} u^{\frac{1}{2}} du \qquad du = 2x dx$ $= \int_{3}^{3} \left(\frac{1}{3}u^{\frac{1}{2}}\right)^{3} (1 + 1) dx$ $= \int_{3}^{3} \left(\frac{1}{3}u^{\frac{1}{2}}\right)^{3} dx$

 $= \sqrt{2}$ $= \sqrt{2}$ = 363

Questron Two

(a) $f(x) = 2x^{2} + x$ $f(x+h) = 2(x+h)^{2} + (x+h)$ $= 2(x^{2} + 2xh + 2h^{2}) + (x+h)$ $= 2x^{2} + 4xh + 2h^{2} + x+h$

f'(n) = lim fluth) - flx

100 -6

= lim 2x2+2x4+2x2+x+4 - (

= 1 in L(4x + 2x + 1)

- un 4x+2h+1

= 42+1

(b) i) $\int \frac{e^{2\pi}}{3+e^{2\pi}} dx$

= 1 ln (3+e2x) +

 $\int_{0}^{2} \sin^{2}\left(\frac{1}{2}x\right) dx$ $= \int_{0}^{2} \left[1 - \cos x\right] dx$ $= \int_{0}^{2} \left[x - \sin x\right]_{0}^{\frac{\pi}{2}}$ $= \int_{0}^{2} \left[\frac{\pi}{2} - 1\right]$

ei) tan(A+B) = tan A + tan B 1 - tan A tan B

= tan(60145°)
= tan(60145°)
= tanbo + tan 45
1 - tan 60. tan 45

 $\frac{4}{5-y} >_{y} 1 = -2-\sqrt{3}$

 $4(5-x) >, 25-10x+x^{2}$ $20-4x >, 25-10x+x^{2}$ $0 >, x^{2}-6x+5$ 0 >, (x-5)(x-1)

15nØ5

METHOD TWO Critical Points Method.

4 ≥ 1

Solve equality 4 = 5 - 2 4 = 5 - 2Test $5 \le x < 5$

page 1

Question 3

(2x-y) =
$$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{3} + \frac{1}{2}$$

$$T_{k+1} = {}^{n}C_{k} \left(\frac{2}{x}\right)^{k} \left(x^{2}\right)^{n-k}$$

$$= {}^{c}C_{k} \left(\frac{2}{x}\right)^{k} \left(x^{2}\right)^{l-k}$$

$$= {}^{c}C_{k} \left(2^{k}\right) \left(x^{-k}\right) \left(x^{2}\right)^{l2-2k}$$

$$= {}^{c}C_{k} \left(2^{k}\right) \left(x^{-k}\right) \left(x^{2}\right)^{l2-2k}$$

$$= {}^{c}C_{k} \left(2^{k}\right) \left(x^{-k}\right) \left(x^{2}\right)^{l2-2k}$$

$$\frac{T_{5} = c_{4} \left(\frac{2}{x}\right)^{4} \cdot \left(x^{2}\right)^{2}}{= 15 \cdot \frac{16}{x^{4}} \cdot x^{4}}$$

$$= 15 \cdot x \cdot 16 \quad \forall$$

$$f(x)=x-2\sin x$$
 has a root rear 1.7
 $f'(x)=1-2\cos x$

$$x = 1.7 - \frac{f(1.7)}{f'(1.7)}$$

(3)

=
$$1.7 + \frac{1.64 - -}{0.99 - ...}$$
 if in degrees!

$$= 3.34 \times 1.93$$

$$= 1.93 (354)$$

$$= 1.03 (354)$$

3d)
$$x = 6t - t^{2}$$

i) $x = 6 - 2t$
(i) $x = -2$

(i) 8 lat when
$$x = 0$$
 $0 = 6-2t$
 $6 = 2t$
 $t = 3$
 $x = 6(3) - (3)^{2}$
 $= 18-1$

... 1(e 15 stations)

page 4


```
· 160 a = "lax ( 2 v2)
       d/ax (2v2) = 12e2n
           \frac{1}{2}v^2 = 6e^{2x} + c
       Wen x=0 v=213
          (2/3)2 = 12 e 40 +c
             12 = 12e26)+c
               12 = 12 +0
             v = \pm \sqrt{12}e^{2n}
             ms vo (brite-84 R3b, voo) 2 x = 1 12
            - V = 2/3e2x
                   = 2/3 ex (200p)
           When V=5 had x
              log (5/2) = 2x
                     x = \frac{1}{2} \log_2 \left( \frac{E}{25} \right) or \frac{1}{2} \log_2 \frac{5\sqrt{3}}{6}
                       = 0.18 (2dp)
```

66/1) Sin2x = 25m2x 6-05x5#		$\frac{f(b)(i)}{v = \frac{1}{2}(1 - x^2)}$
	austroi 7	$\frac{dv}{dx} = -x \therefore a = v \frac{dv}{dx} = \frac{x^3}{2}$
25 inx 65x= 2517x	$A) P = \frac{1000}{1 + kc} A $	
25117 COSK - 251117 =0	1722 3 1000	(0) (11)
2Sink (COSX- SINX) =0	i) lim 1000 t>∞ 1+ke 1000t	$\frac{1}{1+x} + \frac{1}{1-x} = \frac{(1-x)+(1+x)}{(1+x)(1-x)} =$
SIN X =0 UT COSX -SIN X =0	t>0 1+ke-1000t	
Cosx = Smx		$\frac{dx}{dt} = \frac{1 - x^2}{2} \implies \frac{dt}{dx} = \frac{2}{1 - x^2}$
(2) 1 = tank	sinie hm = -1000t =	$\frac{dt}{dx} = \frac{1}{1+x} + \frac{1}{1-x}$
	t »d	
The general solution is		$t = \ln(1+x) - \ln(1-x) + c$ when $t = 0, x = 0 : c = 0$
X = 7m + (-1)^(0) , 17 + F	then ini 1000 1+ ke-1000t	
= n T	t 32 Trke	$\therefore t = \ln \frac{1+x}{1-x} \qquad \textcircled{1}$
7	= 1000	$\frac{1+x}{1-x}=e'$
	(1) 1+0	$1-x$ $1+x=e^t-xe^t$
ii) if $0 < x < \pi$ Then	= 1006	x(e'+1)=e'-1
5112K > 25112 K		
sider 5122 - 2512 x > 0	ii $\lambda = 0$ $P = 1$	$\therefore x = \frac{e^{t} - 1}{e^{t} + 1} = \frac{1 - e^{-t}}{1 + e^{-t}} $
= 2sin x 60sa - 2sin x > 0	$\frac{\overline{n}}{at} = 0 \overline{P} = 1$ (b) (iii)	
= 25mx (cosx - sin x)	P = 1000 1+keo	
	1 = 1000	$v = \frac{1}{2} \left(1 - x^2\right)$
Ance Sinx 30 by O(x C)	1+K	<u>-</u> '.
and Acos x > sin x for 0 < x < TT	.: K=999	$ \begin{pmatrix} -1 & 0 & 1 \\ \end{pmatrix}$
The state of the s		- 1 - 1 - 1 - 1
then 2511 x (CO5 x - 5112) > 0	$P = \frac{1000}{1 + 999e^{-1000t}}$	_ a
Gr O(X (#		$a = \frac{1}{2} x (x^2 - 1)$
21 0 (~) 7	when P=500	- /
there are the state of the stat	500 = 1met	- 0 1 x
there are other possible methods	1 + 999'e	
pii) Brea = { " your - y lower dr	2 = 1+ 999 e-loot	
O True	== 999e-1000E = +	Initially the particle is at O, moving right at speed of
= 5th Sin 2x - 2sin x dx	e-1000t = 1-	$0.5 \mathrm{ms}^{-1}$ and slowing down (since ν and a have opposite signs for $0 < x < 1$).
(3) = (sin2x - (1-cos2x) dx	(2) $-1000t = l_n(qqq)$	The particle continues to move right while slowing
	t = 2.5 days	down for $x < 1$. As $t \to \infty$, $x \to \frac{1-0}{1+0} = 1$.
$= \left[-\frac{1}{2} \cos 2x - x + \frac{1}{2} \sin 2x \right]^{\frac{1}{4}}$		Its limiting position is 1 m to the right of O .
= [-# +=] -[-=] = 1-# mu.		