简介

提出了一种新的在测量方法来衡量target和exemplar的距离,获取多个具有代表性的exemplar。这个方法不需要训练,而且比较effcient,不会降低太多速度。

本文的主要目的在于讨论如何提取exemplar来最大化追踪的准确性。

作者认为提取好的exemplar可以有效解决遮挡、明暗变化、运动模糊和形状变化等问题。

作者提出两个模块,Long-term module(LTM)和short-term module(STM),其中LTM主要代表物体在不同环境下(光线,形状等),用于物体长期追踪和re-detect。

STM的作用主要是利用短期的特征进行追踪。

Long-term Module

这个模块的目的是存储一些代表性的exemplar,能够最大化追踪物体的多样性。 首先作者比较多样性是在卷积后的隐空间进行比较,也就是Siamese网络所提取的特征空间。

Allocation Strategy

从数学的角度,LTM的目的是最大化超平行体的体积 $\Gamma(f_i,...,f_n)$ 。其中的特征向量 f_i 代表对应的 template T_i 。

其中 71 代表template在特征空间交叉相关的conv kernel。

因为孪生网络实际是在特征空间里通过卷积来衡量template kernel f 和当前search image区域的相似性。

因此作者认为如果要衡量两个template T1和T2的相似性,可以计算 $f_1 * f_2$,对于内存中所有的 template,可以构造出一个Gram矩阵:

$$G(f_1, \dots, f_n) = \begin{bmatrix} f_1 \star f_1 & f_1 \star f_2 & \dots & f_1 \star f_n \\ \vdots & \vdots & \ddots & \vdots \\ f_n \star f_1 & f_n \star f_2 & \dots & f_n \star f_n \end{bmatrix}$$
(1)

gram矩阵的行列式可以代表基于 $f_1,...,f_n$ 的超平形体的体积 Γ 。

$$\max_{f_1, f_2, \dots, f_n} \Gamma(f_1, \dots, f_n) \propto \max_{f_1, f_2, \dots, f_n} |G(f_1, f_2, \dots, f_n)|$$
 (2)

如果某个template替换了memory当中的一个template导致体积更大,那么将这个template当成一个basis vector of the feature space,代表追踪物体在当前embeddiing space的流形。

lower bound

这个策略可能会导致后期LTM都是一些和target无关的物体,所以需要有一个分数的下线。这个 lower bound是候选template T_C 和gt的template T_C ,因此需要满足条件 $f_C*f_C * f_C * f_$

1. 动态的lower bound,主要是考虑到短时间物体外表变化引入一个diversity measure γ 给 STM,因此有 $f_C * f_1 > l \cdot G_{11} - \gamma$

2. ensemble lower bound。 bound是静态的,但是相似性的计算会用内存中所有的template进行计算。这样valid template满足 $f_{C}*f_{1:n}>I\cdot diag(G)$

Template Masking

在计算特征的相似性之前,会对feature vector f; 计算一下tapered cosine window来减少背景的影响。

Short-term Module

这个模块的作用主要是处理突然的运动变化和遮挡(abrupt movements and partial occlussion)。 这个模块的元素以队列的方式储存,总容量为一个固定值 *Kst*

这个模块元素的判别标准如果直接沿用LTM的判别标准效果并不好,会有非常大的波动,而且没有一个normalize的标准。

因此其多样性的计算标准为:

$$\gamma = 1 - \frac{2}{N(N+1)G_{st,max}} \sum_{i < j}^{N} G_{st,ij}$$

计算Gram矩阵的上三角之后然后根据其最大值进行normalize。这样得到的 γ 取值范围为[0-1]。越接近1那么越能代表STM元素的多样性(diverse)。

Inference Strategy

为了得到精确的bounding box, 主要有两个模块:

- 1. Modulation module用于平衡STM和LTM的信息。
- 2. ST-LT Switch。 默认情况下是一直用STM模块的template去做追踪但是因为STM模块的templat经常变化很容易导致drift。因此作者会计算IoU(STM, LTM),如果这个值小于一个阈值就认为STM的结果产生了较大的偏移,因为作者认为LTM更加稳定。

Implementation Details

为了使得内存更新更快运行速度更快采取了两个策略:

- 1. parallelization: 首先内存更新的时候需要计算每个template和内存元素的相似性来构造gram矩阵。由于这个计算其实是2D conv,所以是可以在GPU里进行并行计算的
- 2. dilation: 由于相邻帧之间的template相似性其实是很高,所以没必要每一帧都计算,可以设置一个间隔值dilation,文章中dilation=10,每隔10帧更新一次STM和LTM。

实验

实验主要为了证明以下四点:

1. Gram矩阵的行列式在同一个seq上是否能逐渐增加直到收敛

- 2. THOR对本身tracker影响的速度如何
- 3. THOR是能提高tracker的performance
- 4. 每个模块对于最后performace的影响

作者用了一些sota的tracker和一些之前的tracker即你想那个了实验,具体的,超参数也比较多,具体可以看原文。

Gram矩阵能否收敛

	R	1	R5		
	$ G_{norm} $	AUC	$ G_{norm} $	AUC	
surfer	0.0812	0.6169	0.1441	0.6562	
car24	0.5983	0.8299	0.6258	0.8312	
$\operatorname{blurCar}$	0.2680	0.8125	0.4273	0.8141	
box	0.8377	0.5837	1.0286	0.7542	

Figure 3: **Proof of Concept.** Left: Convergence of the Gram determinant after repetitively re-running the tracker with THOR. Right: Gram determinant and area under curve evaluated (AUC) at the end of first and last runs (R_1 and R_5) of the experiment.

速度和精度

		VOT2018			OTB2015			
Tracker	Lower Bound	Accuracy ↑	${\bf Robustness} \Downarrow$	EAO \uparrow	Speed (FPS) \Uparrow	$\mathrm{AUC} \uparrow$	Precision \uparrow	Speed (FPS) \uparrow
SiamFC	_	0.5194	0.6696	0.1955	219	0.5736	0.6962	214
THOR-SiamFC	dynamic	0.4977	0.4448	0.2562	99	0.5990	0.7347	97
THOR-SiamFC	ensemble	0.4846	0.3746	0.2672	69	0.5971	0.7291	80
SiamRPN	_	0.5858	0.3371	0.3223	133	0.6335	0.7674	137
THOR-SiamRPN	dynamic	0.5818	0.2341	0.4160	112	0.6477	0.7906	106
THOR-SiamRPN	ensemble	0.5563	0.2248	0.3971	105	0.6407	0.7867	110
SiamMask	_	0.6096	0.2810	0.3804	95	0.6204	0.7683	97
THOR-SiamMask	dynamic	0.5891	0.2388	0.3846	60	0.6397	0.7900	78
THOR-SiamMask	ensemble	0.5903	0.2013	0.4104	70	0.6319	0.7929	66

Table 1: **Tracking benchmarks.** The attained performances of the trackers on VOT2018 and OTB2015. The main metric for ranking trackers is EAO (expected average overlay) on VOT2018, and AUC (area under curve) on OTB2015.

ablation study

	lower bound		
	dynamic	ensemble	
Mean of $ G_{norm} \uparrow$	0.0261	0.25164	