#### **Numerical Methods for the Solution of PDEs**

Laboratory with deal.II — <u>www.dealii.org</u>

LAB 3 — Triangulation, DoFHandler, FiniteElement

Luca Heltai < luca.heltai@unipi.it>

https://luca-heltai.github.io/nmpde https://github.com/luca-heltai/nmpde





#### Aims for this module

- Gain familiarity with three core classes
  - Triangulation
  - DoFHandler
  - FiniteElement
- Create and interrogate meshes
- · Create and interrogate sparsity patterns





#### Reference material

- Main page <a href="https://dealii.org/current/doxygen/deal.ll/index.html">https://dealii.org/current/doxygen/deal.ll/index.html</a>
- Tutorials
  - Step-1 https://dealii.org/current/doxygen/deal.ll/step\_1.html
  - Step-49
     https://dealii.org/current/doxygen/deal.ll/step\_49.html
  - Step-2 https://dealii.org/current/doxygen/deal.ll/step\_2.html





### First and **BIGGEST** tip

- Program defensively
  - Program and test in debug mode
    - Additional compiler warnings
    - Add assertions
  - Perform studies in release mode





















- Describes problem geometry
  - Support for simplices, quads, hex, and mixed meshes
  - Conceptually even higher order!
  - Structured/unstructured meshes
  - Co-dimension 1 or 2 case
- Grid creation
  - Built-in basic grid generation and manipulation tools
  - Can read in grids generated with mesh generators







- Assign helper ID's
  - Materials
  - Boundaries
  - Manifolds



- Allows storage of custom data-structure attached to each cell/face
- Cells know about neighbour cells
  - Useful for DG methods





- Can enforce topologies
  - Manifolds on boundary
  - Internal manifolds
- Disadvantage
  - Cannot mix triangulation types
  - · e.g. Volumetric body with extended manifold surface





- Demonstration: Step-1, step-49
   https://www.dealii.org/current/doxygen/deal.ll/step\_1.html
   https://www.dealii.org/current/doxygen/deal.ll/step\_49.html
   http://www.math.colostate.edu/~bangerth/videos.676.5.html
   http://www.math.colostate.edu/~bangerth/videos.676.6.html
- Key points
  - deal.II headers
  - Creating a triangulation
  - Boundary topology
  - Traversing a triangulation
  - Querying geometric information
  - Manipulating a triangulation
  - Aspects of grid refinement
  - Visualising a triangulation













### Assigning degrees-of-freedom: the FiniteElement classes

- Built in Finite Elements
  - Continuous
    - Piecewise Lagrange polynomials
  - Discontinuous
    - Monomials
    - Legendre polynomials
  - Vector-valued
    - Nedelec (H<sup>Curl</sup>, C/Dc)
    - Raviart-Thomas (Hdiv, C/Dc)
- · A few more...
- Can develop finite elements from scratch
  - Specialisation for FE's derived by polynomial expansions
  - Enhanced/bubble elements







FE DGPMonomial<2>(1)













### Assigning degrees-of-freedom: the DoFHandler class

- DoFHandler assigns DoF's to grid
  - Important: separate from Triangulation!
- Unified way to access DoF's, regardless of FE used
  - e.g. Discontinuous elements: support points not necessarily at vertices
- Fast access and grid traversal
  - STL-type cell iterators
  - · Access to faces, edges through these



# Assigning degrees-of-freedom: the DoFRenumbering namespace

- Renumbering schemes
  - Cuthill McKee
  - King
  - Downwind
- Reduce bandwidth
- Collect like-components
- Induce block-structure
- Directional (fluid flow)
- MPI subdomain









### Assigning degrees-of-freedom: the FiniteElement and DoFHandler classes

- Demonstration: Step-2
   https://www.dealii.org/current/doxygen/deal.ll/step\_2.html
   http://www.math.colostate.edu/~bangerth/videos.676.9.html
- Key points
  - Choosing a Finite Element
  - Distributing degrees-of-freedom on a mesh
  - Renumbering degrees-of-freedom
  - Visualising sparsity patterns



