AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (currently amended): A silver halide photographic material which comprises at least one sensitizing methine dye represented by the following formula (I):

$$\begin{array}{c}
Y \\
N \\
R
\end{array}$$

$$\begin{array}{c}
(I) \\
(M)_{m}
\end{array}$$

wherein Y represents a furan ring, and Y may further be condensed with other 5- or 6-membered carbocyclic ring or heterocyclic ring, or may have a substituent; the bond between two carbon atoms in which Y is condensed may be a single bond or a double bond; Z represents an oxazole ring, a thiazole ring, an imidazole ring, selenazole ring, a 2-pyridine ring or a 4-pyridine ring, and Z may further be condensed with other 5- or 6-membered carbocyclic ring or heterocyclic ring; R represents a substituted or unsubstituted alkyl group, aryl group, or heterocyclic group; D represents a group necessary to form a sensitizing methine dye; L¹ and L² each represents a methine group; p represents 0 or 1; M represents a counter ion; and m represents a number of 0 or higher necessary to neutralize the charge in the molecule.

Claim 2. (currently amended): A silver halide photographic material which comprises at least one <u>sensitizing</u> methine dye represented by the following formula (I):

AMENDMENT UNDER 37 C.F.R. §1.114 Application No. 09/931,309

wherein Y represents an atomic group necessary to form a 5- or 6-membered unsaturated heterocyclic ring, and Y may further be condensed with other 5- or 6-membered carbocyclic ring or heterocyclic ring, or may have a substituent; the bond between two carbon atoms in which Y is condensed may be a single bond or a double bond; Z represents an atomic group necessary to form a 5- or 6-membered nitrogen-containing heterocyclic ring, and Z may further be condensed with other 5- or 6-membered carbocyclic ring or heterocyclic ring; R represents a substituted or unsubstituted alkyl group, aryl group, or heterocyclic group; D represents a group necessary to form a sensitizing methine dye; L¹ and L² each represents a methine group; p represents 0 or 1; M represents a counter ion; and m represents a number of 0 or higher necessary to neutralize the charge in the molecule; wherein the condensed ring containing Y and Z in the sensitizing methine dye represented by formula (I) is selected from the following Y-1 to Y-26, provided that Y-1 to Y-3 and Y-6 to Y-26 may further be condensed with other 5- or 6-membered carbocylic or heterocyclic ring, or may have a substituent:

AMENDMENT UNDER 37 C.F.R. §1.114 Application No. 09/931,309

Claim 3. (canceled).

Claim 4. (currently amended): The silver halide photographic material as claimed in claim 1, wherein the methine dye represented by formula (I) is represented by the following formula (XX):

wherein Y⁵¹ represents a furan ring which may be condensed with other 5- or 6-membered carbocyclic or heterocyclic ring or may have a substituent, and two carbon atoms to which Y⁵¹ is condensed may be bonded by a single bond or a double bond; X⁵¹ represents an oxygen atom, a sulfur atom, a selenium atom; or a nitrogen atom and X⁵² each represents an oxygen atom, a sulfur atom, a selenium atom, a tellurium atom or a nitrogen atom; Y⁵² represents an atomic group necessary to form a benzene ring or a 5- or 6-membered unsaturated heterocyclic ring, which may further be condensed with other 5- or 6-membered carbocyclic or heterocyclic ring or may have a substituent, and two carbon atoms to which Y⁵² is condensed may be bonded by a single bond or a double bond; R⁵¹ and R⁵² each represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group; L⁵¹, L⁵² and L⁵³ each represents a methine group; n⁵¹ represents 0, 1, 2, 3 or 4; M⁵¹

represents a counter ion; and m⁵¹ represents a number of 0 or higher necessary to neutralize the charge in the molecule.

Claim 5. (canceled).

Claim 6. (currently amended): [[The]] A silver halide photographic material as claimed in claim 5, wherein the which comprises at least one methine dye represented by formula (XXX) is represented by the following formula (XXXI) or (XXXII):

$$V^{61} = V^{61} + V^{62} = V^{62} + V^{62} + V^{62} = V^{62} + V^{62} + V^{62} = V^{62} + V^{62} + V^{62} + V^{62} = V^{62} + V$$

$$V^{61} = V^{61} + V^{62} = V^{62} + V^{62}$$

$$V^{61} = V^{62} + V^{62} + V^{62}$$

$$V^{61} = V^{62} + V^{62} +$$

wherein L⁶¹, L⁶² and L⁶³ each represents a methine group; V⁶¹ represents a halogen atom; X⁶¹

X⁶², Y⁶², R⁶⁴, R⁶², L⁶⁴, L⁶², L⁶³, n⁶⁴, M⁶⁴ and m⁶⁴ each has the same meaning as defined in

formula (XXX) in claim 5 represents an oxygen atom, a sulfur atom, or a nitrogen atom; X⁶²

represents an oxygen atom, a sulfur atom, a selenium atom, a nitrogen atom, or a carbon atom;

Y⁶² represents an atomic group necessary to form a benzene ring or a 5- or 6-membered

unsaturated heterocyclic ring, which may be condensed with other 5- or 6-membered carbocyclic

or heterocyclic ring or may have a substituent, and two carbon atoms to which Y⁶² is condensed may be bonded by a single bond or a double bond; R⁶¹ and R⁶² each represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group; n⁶¹ represents 0 or 1; M⁶¹ represents a counter ion; and m⁶¹ represents a number of 0 or higher necessary to neutralize the charge in the molecule.

Claim 7. (original): The silver halide photographic material as claimed in claim 6, wherein the methine dye represented by formula (XXXI) or (XXXII) is represented by the following formula (XXXIa) or (XXXIIa):

$$V^{85} = CH + V^{81} V^{82} V^{83}$$

$$(XXXIa)$$

$$(M^{81})m^{81}$$

$$V^{85} = V^{81} = CH + V^{82} + V^{82}$$

$$(XXXIIa)$$

$$(M^{81}) m^{81}$$

wherein V^{85} represents a halogen atom; X^{81} and X^{82} each represents an oxygen atom or a sulfur atom; R^{81} and R^{82} each represents an alkyl group substituted with an acid radical; V^{81} , V^{82} , V^{83} and V^{84} each represents a hydrogen atom or a substituent; M^{81} represents a counter ion; and m^{81} represents a number of 0 or higher necessary to neutralize the charge in the molecule.

Claim 8. (original): The silver halide photographic material as claimed in claim 7, wherein in the methine dye represented by formula (XXXIa) or (XXXIIa), at least either R⁸¹ or R⁸² represents an alkyl group substituted with a carboxyl group or an alkanesulfonylcarbamoyl group, and the other represents an alkyl group substituted with a sulfo group.

Claim 9. (original): The silver halide photographic material as claimed in claim 6, wherein the methine dye represented by formula (XXXI) or (XXXII) is represented by the following formula (XXXIb) or (XXXIIb):

$$V^{95} = CH - C : CH - V^{92}$$

$$V^{95} = CH - C : CH - V^{92}$$

$$V^{95} = CH - C : CH - V^{92}$$

$$V^{95} = CH - C : CH - V^{92}$$

$$V^{95} = CH - C : CH - V^{92}$$

$$V^{95} = CH - C : CH - V^{92}$$

$$V^{95} = CH - C : CH - V^{92}$$

$$V^{95} = CH - C : CH - V^{92}$$

$$V^{95} = CH - C : CH - V^{92}$$

$$V^{95} = CH - C : CH - V^{92}$$

$$V^{95} = CH - C : CH - V^{92}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{93}$$

$$V^{95} = CH - C : CH - V^{95}$$

$$V^{95} = CH - C : CH - V^{95}$$

$$V^{95} = CH - C : CH - V^{95}$$

$$V^{95} = CH - C : CH - V^{95}$$

$$V^{95} = X^{91} \qquad A^{91} \qquad X^{92} \qquad V^{92} \qquad (XXXIIb)$$

$$R^{91} \qquad (M^{91})_{m^{91}} \qquad R^{92} \qquad V^{94}$$

wherein V⁹⁵ represents a halogen atom; X⁹¹ and X⁹² each represents an oxygen atom or a sulfur atom; R⁹¹ and R⁹² each represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group; A⁹¹ represents a methyl group, an ethyl group or a propyl group; V⁹¹, V⁹², V⁹³ and V⁹⁴ each represents a hydrogen atom or a substituent; M⁹¹ represents a counter ion; and m⁹¹ represents a number of 0 or higher necessary to neutralize the charge in the molecule.

Claim 10. (withdrawn): A methine dye represented by formula (XXXIa), (XXXIIa), (XXXIIb) or (XXXIIb).

Claim 11. (currently amended): A silver halide photographic material which comprises at least one <u>sensitizing</u> methine dye represented by the following formula (I):

$$\begin{array}{c}
Y \\
N \\
+ L^{1} = L^{2})_{p} \\
R \\
(M)_{m}
\end{array}$$

wherein Y represents a pyrrole ring, and Y may further be condensed with other 5- or 6-membered carbocyclic ring or heterocyclic ring, or may have a substituent; the bond between two carbon atoms in which Y is condensed may be a single bond or a double bond; Z represents an atomic group necessary to form a 5- or 6-membered nitrogen-containing heterocyclic ring, an oxazole ring, a thiazole ring, an imidazole ring, a 2-pyridine ring or a 4-pyridine ring, and Z may further be condensed with other 5- or 6-membered carbocyclic ring or heterocyclic ring; R represents a substituted or unsubstituted alkyl group, aryl group, or heterocyclic group; D represents a group necessary to form a sensitizing methine dye; L¹ and L² each represents a methine group; p represents 0 or 1; M represents a counter ion; and m represents a number of 0 or higher necessary to neutralize the charge in the molecule.

Claim 12. (currently amended): The silver halide photographic material as claimed in claim 11, wherein Z represents an oxazole ring, a selenazole ring, a thiazole ring, an imidazole ring, a 2-pyridine ring or a 4-pyridine ring.

Claim 13. (currently amended): The silver halide photographic material as claimed in claim 11, wherein the methine dye represented by formula (I) is represented by the following formula (XX):

wherein Y⁵¹ represents a pyrrole ring which may be condensed with other 5- or 6-membered carbocyclic or heterocyclic ring or may have a substituent, and two carbon atoms to which Y⁵¹ is condensed may be bonded by a single bond or a double bond; X⁵¹ and X⁵² each represents an oxygen atom, a sulfur atom, a selenium atom, or a nitrogen atom, or a carbon atom; Y⁵² represents an atomic group necessary to form a benzene ring or a 5- or 6-membered unsaturated heterocyclic ring, which may further be condensed with other 5- or 6-membered carbocyclic or heterocyclic ring or may have a substituent, and two carbon atoms to which Y⁵² is condensed may be bonded by a single bond or a double bond; R⁵¹ and R⁵² each represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group; L⁵¹, L⁵² and L⁵³ each represents a methine group; n⁵¹ represents 0, 1, 2, 3 or 4; M⁵¹ represents a counter ion; and m⁵¹ represents a number of 0 or higher necessary to neutralize the charge in the molecule.