CS 207: Discrete Structures

Abstract algebra and Number theory

— Modular arithmetic and cryptography

Lecture 40 Nov 2 2014

Recap: Abstract algebra

Topics covered till now: Summary

- ▶ Definition of an abstract group; basic properties
- ► Examples:
 - ► Invertible matrices
 - ► Symmetries of a regular polygon
 - Permutation groups
 - Graph automorphisms
 - $(\mathbb{Z},+), (\mathbb{Z}_n,+n), (\mathbb{Z}_p,\times_p), \ldots$
- ▶ Abelian groups, Cyclic groups
- ▶ Group Isomorphisms and subgroups of a group.
- ▶ Order of a group and order of an element.
- ▶ Lagrange's theorem; corollaries and some applications

Recap: Abstract algebra

Topics covered till now: Summary

- ▶ Definition of an abstract group; basic properties
- ► Examples:
 - ▶ Invertible matrices
 - ► Symmetries of a regular polygon
 - Permutation groups
 - Graph automorphisms
 - $(\mathbb{Z},+), (\mathbb{Z}_n,+n), (\mathbb{Z}_p,\times_p), \ldots$
- ▶ Abelian groups, Cyclic groups
- ▶ Group Isomorphisms and subgroups of a group.
- ▶ Order of a group and order of an element.
- ▶ Lagrange's theorem; corollaries and some applications

Today: Applications to number theory and cryptography.

Definition

For integers a, b and positive integer m, if m|(a-b), then we say that a is congruent to b modulo m, denoted $a \equiv b \mod m$.

Definition

For integers a, b and positive integer m, if m|(a-b), then we say that a is congruent to b modulo m, denoted $a \equiv b \mod m$.

i.e., a & b may not be same, but modulo m, they are the same:

Definition

For integers a, b and positive integer m, if m|(a-b), then we say that a is congruent to b modulo m, denoted $a \equiv b \mod m$.

i.e., a & b may not be same, but modulo m, they are the same:

Formally, $a \equiv b \mod m$ iff $a \mod m = b \mod m$.

Definition

For integers a, b and positive integer m, if m|(a-b), then we say that a is congruent to b modulo m, denoted $a \equiv b \mod m$.

- Formally, $a \equiv b \mod m$ iff $a \mod m = b \mod m$.
- ▶ What other properties does this "congruence" have?

Definition

For integers a, b and positive integer m, if m|(a - b), then we say that a is congruent to b modulo m, denoted $a \equiv b \mod m$.

- Formally, $a \equiv b \mod m$ iff $a \mod m = b \mod m$.
- ▶ What other properties does this "congruence" have?
 - ► Equivalence?
 - ▶ If $a \equiv b \mod m$, $c \equiv d \mod m$, then $a + c \equiv b + d \mod m$ and $ac \equiv bd \mod m$.
 - $ightharpoonup c \equiv ab \mod m \text{ iff } c \equiv (a(b \mod m)) \mod m$

Definition

For integers a, b and positive integer m, if m|(a-b), then we say that a is congruent to b modulo m, denoted $a \equiv b \mod m$.

- Formally, $a \equiv b \mod m$ iff $a \mod m = b \mod m$.
- ▶ What other properties does this "congruence" have?
 - ► Equivalence?
 - ▶ If $a \equiv b \mod m$, $c \equiv d \mod m$, then $a + c \equiv b + d \mod m$ and $ac \equiv bd \mod m$.
 - $c \equiv ab \mod m$ iff $c \equiv (a(b \mod m)) \mod m$ iff $c \equiv (a \mod m)(b \mod m) \mod m$.
 - ► Corollary: Modular exponentiation is easy!
 - $\blacktriangleright \text{ What is } 5^{15} \mod 23?$

Definition

For integers a, b and positive integer m, if m|(a-b), then we say that a is congruent to b modulo m, denoted $a \equiv b \mod m$.

- Formally, $a \equiv b \mod m$ iff $a \mod m = b \mod m$.
- ▶ What other properties does this "congruence" have?
 - ► Equivalence?
 - ▶ If $a \equiv b \mod m$, $c \equiv d \mod m$, then $a + c \equiv b + d \mod m$ and $ac \equiv bd \mod m$.
 - $c \equiv ab \mod m$ iff $c \equiv (a(b \mod m)) \mod m$ iff $c \equiv (a \mod m)(b \mod m) \mod m$.
 - ► Corollary: Modular exponentiation is easy!
 - $\blacktriangleright \text{ What is } 5^{15} \mod 23?$
 - $ightharpoonup = (5 \mod 23)(5^2 \mod 23)(5^4 \mod 23)(5^8 \mod 23) \mod 23 = (5 \cdot 2 \cdot 4 \cdot 16) \mod 23 = 65 \mod 23 = 19.$

Definition

For integers a, b and positive integer m, if m|(a-b), then we say that a is congruent to b modulo m, denoted $a \equiv b \mod m$.

- Formally, $a \equiv b \mod m$ iff $a \mod m = b \mod m$.
- ▶ What other properties does this "congruence" have?
 - ► Equivalence?
 - ▶ If $a \equiv b \mod m$, $c \equiv d \mod m$, then $a + c \equiv b + d \mod m$ and $ac \equiv bd \mod m$.
 - $c \equiv ab \mod m \text{ iff } c \equiv (a(b \mod m)) \mod m$
 - ▶ Corollary: Modular exponentiation is easy!
 - $\blacktriangleright \text{ What is } 5^{15} \mod 23?$
 - $ightharpoonup = (5 \mod 23)(5^2 \mod 23)(5^4 \mod 23)(5^8 \mod 23)$ $\mod 23 = (5 \cdot 2 \cdot 4 \cdot 16) \mod 23 = 65 \mod 23 = 19.$
 - ▶ What is the worst case no. of steps?

Definition

For integers a, b and positive integer m, if m|(a-b), then we say that a is congruent to b modulo m, denoted $a \equiv b \mod m$.

i.e., a & b may not be same, but modulo m, they are the same:

- Formally, $a \equiv b \mod m$ iff $a \mod m = b \mod m$.
- ▶ What other properties does this "congruence" have?
 - ► Equivalence?
 - ▶ If $a \equiv b \mod m$, $c \equiv d \mod m$, then $a + c \equiv b + d \mod m$ and $ac \equiv bd \mod m$.
 - $c \equiv ab \mod m \text{ iff } c \equiv (a(b \mod m)) \mod m$

A math application: Fermat's little theorem

For any prime p, if gcd(a,p) = 1, then $p|(a^{p-1} - 1)$.

Definition

For integers a, b and positive integer m, if m|(a-b), then we say that a is congruent to b modulo m, denoted $a \equiv b \mod m$.

i.e., a & b may not be same, but modulo m, they are the same:

- Formally, $a \equiv b \mod m$ iff $a \mod m = b \mod m$.
- ▶ What other properties does this "congruence" have?
 - ► Equivalence?
 - ▶ If $a \equiv b \mod m$, $c \equiv d \mod m$, then $a + c \equiv b + d \mod m$ and $ac \equiv bd \mod m$.
 - $ightharpoonup c \equiv ab \mod m \text{ iff } c \equiv (a(b \mod m)) \mod m$

A math application: Fermat's little theorem

- For any prime p, if gcd(a,p) = 1, then $p|(a^{p-1} 1)$.
- ▶ For any prime p, if gcd(a,p) = 1, then $a^{p-1} \equiv 1 \mod p$.

Definition

For integers a, b and positive integer m, if m|(a-b), then we say that a is congruent to b modulo m, denoted $a \equiv b \mod m$.

i.e., a & b may not be same, but modulo m, they are the same:

- Formally, $a \equiv b \mod m$ iff $a \mod m = b \mod m$.
- ▶ What other properties does this "congruence" have?
 - ► Equivalence?
 - ▶ If $a \equiv b \mod m$, $c \equiv d \mod m$, then $a + c \equiv b + d \mod m$ and $ac \equiv bd \mod m$.
 - $c \equiv ab \mod m \text{ iff } c \equiv (a(b \mod m)) \mod m$

A math application: Fermat's little theorem

- For any prime p, if gcd(a, p) = 1, then $p|(a^{p-1} 1)$.
- ▶ For any prime p, if gcd(a, p) = 1, then $a^{p-1} \equiv 1 \mod p$.

Modular arithmetic has vast applications including in hashing, generation of pseudorandom numbers, cryptography...

Sharing secrets in plain sight!

- ▶ Suppose two of you want to share a secret...
- ▶ But you can only shout messages.. can you still get something private?
- ▶ which others will not be able to figure out at once?

Start by choosing a prime 13, a generator for $(\mathbb{Z}_{13} \setminus \{0\}, \times_{13})=6$.

Start by choosing a prime 13, a generator for $(\mathbb{Z}_{13} \setminus \{0\}, \times_{13})=6$.

ightharpoonup A and B pick two secret numbers from 1 to 13, say a, b.

Start by choosing a prime 13, a generator for $(\mathbb{Z}_{13} \setminus \{0\}, \times_{13})=6$.

- \blacktriangleright A and B pick two secret numbers from 1 to 13, say a, b.
- $A \text{ computes } 6^a \mod 13 = M.$

Start by choosing a prime 13, a generator for $(\mathbb{Z}_{13} \setminus \{0\}, \times_{13})=6$.

- ▶ A and B pick two secret numbers from 1 to 13, say a, b.
- $A \text{ computes } 6^a \mod 13 = M.$
- ▶ B computes $6^b \mod 13 = N$.

Start by choosing a prime 13, a generator for $(\mathbb{Z}_{13} \setminus \{0\}, \times_{13})=6$.

- \blacktriangleright A and B pick two secret numbers from 1 to 13, say a, b.
- $A \text{ computes } 6^a \mod 13 = M.$
- ▶ $B \text{ computes } 6^b \mod 13 = N.$
- ightharpoonup Shout/send M and N over.

Start by choosing a prime 13, a generator for $(\mathbb{Z}_{13} \setminus \{0\}, \times_{13})=6$.

- \triangleright A and B pick two secret numbers from 1 to 13, say a, b.
- $A \text{ computes } 6^a \mod 13 = M.$
- ▶ B computes $6^b \mod 13 = N$.
- \triangleright Shout/send M and N over.
- $A \text{ computes } N^a \mod 13 = s.$

Start by choosing a prime 13, a generator for $(\mathbb{Z}_{13} \setminus \{0\}, \times_{13})=6$.

- \blacktriangleright A and B pick two secret numbers from 1 to 13, say a, b.
- $A \text{ computes } 6^a \mod 13 = M.$
- ▶ B computes $6^b \mod 13 = N$.
- \triangleright Shout/send M and N over.
- A computes $N^a \mod 13 = s$.
- ▶ B computes $M^b \mod 13 = t$.

Start by choosing a prime 13, a generator for $(\mathbb{Z}_{13} \setminus \{0\}, \times_{13})=6$.

- \blacktriangleright A and B pick two secret numbers from 1 to 13, say a, b.
- $A \text{ computes } 6^a \mod 13 = M.$
- ▶ $B \text{ computes } 6^b \mod 13 = N.$
- ightharpoonup Shout/send M and N over.
- $A \text{ computes } N^a \mod 13 = s.$
- ▶ B computes $M^b \mod 13 = t$.
- ightharpoonup s = t!

Start by choosing a prime 13, a generator for $(\mathbb{Z}_{13} \setminus \{0\}, \times_{13})=6$.

- \triangleright A and B pick two secret numbers from 1 to 13, say a, b.
- $A \text{ computes } 6^a \mod 13 = M.$
- ▶ B computes $6^b \mod 13 = N$.
- ightharpoonup Shout/send M and N over.
- A computes $N^a \mod 13 = s$.
- ▶ B computes $M^b \mod 13 = t$.
- ightharpoonup s = t!

Why does this work?

▶ Because $M^b \mod 13 = 6^{ab} \mod 13 = N^a \mod 13$.

Start by choosing a prime 13, a generator for $(\mathbb{Z}_{13} \setminus \{0\}, \times_{13})=6$.

- \blacktriangleright A and B pick two secret numbers from 1 to 13, say a, b.
- $A \text{ computes } 6^a \mod 13 = M.$
- ▶ B computes $6^b \mod 13 = N$.
- ightharpoonup Shout/send M and N over.
- $A \text{ computes } N^a \mod 13 = s.$
- ▶ B computes $M^b \mod 13 = t$.
- ightharpoonup s = t!

Why does this work?

- ▶ Because $M^b \mod 13 = 6^{ab} \mod 13 = N^a \mod 13$.
- And computing this from just 6, 13, $6^a \mod 13$ and $6^b \mod 13$ is hard without knowing a and b.

- 1. Choose a prime p and a generator g from $(\mathbb{Z}_p \setminus \{0\}, \times_p)$.
- 2. Alice fixes a private key α and Bob fixes β .
- 3. Alice computes $M = g^{\alpha} \mod p$ and shouts/sends it.
- 4. Bob computes $N = g^{\beta} \mod p$ and sends/shouts it.
- 5. Alice computes $M^{\alpha} \mod p$ and Bob computes $N^{\beta} \mod p$.

- 1. Choose a prime p and a generator g from $(\mathbb{Z}_p \setminus \{0\}, \times_p)$.
- 2. Alice fixes a private key α and Bob fixes β .
- 3. Alice computes $M = g^{\alpha} \mod p$ and shouts/sends it.
- 4. Bob computes $N = g^{\beta} \mod p$ and sends/shouts it.
- 5. Alice computes $M^{\alpha} \mod p$ and Bob computes $N^{\beta} \mod p$.

- 1. Choose a prime p and a generator g from $(\mathbb{Z}_p \setminus \{0\}, \times_p)$.
- 2. Alice fixes a private key α and Bob fixes β .
- 3. Alice computes $M = g^{\alpha} \mod p$ and shouts/sends it.
- 4. Bob computes $N = g^{\beta} \mod p$ and sends/shouts it.
- 5. Alice computes $M^{\alpha} \mod p$ and Bob computes $N^{\beta} \mod p$.

Shared Key: $g^{\alpha\beta} \mod p$

▶ Others know $p, g, g^{\alpha} \mod p, g^{\beta} \mod p$.

- 1. Choose a prime p and a generator g from $(\mathbb{Z}_p \setminus \{0\}, \times_p)$.
- 2. Alice fixes a private key α and Bob fixes β .
- 3. Alice computes $M = g^{\alpha} \mod p$ and shouts/sends it.
- 4. Bob computes $N = g^{\beta} \mod p$ and sends/shouts it.
- 5. Alice computes $M^{\alpha} \mod p$ and Bob computes $N^{\beta} \mod p$.

- ▶ Others know $p, g, g^{\alpha} \mod p, g^{\beta} \mod p$.
- ▶ But computing $g^{\alpha\beta} \mod p$ from ONLY this info, without knowing a and b is hard!!

- 1. Choose a prime p and a generator g from $(\mathbb{Z}_p \setminus \{0\}, \times_p)$.
- 2. Alice fixes a private key α and Bob fixes β .
- 3. Alice computes $M = g^{\alpha} \mod p$ and shouts/sends it.
- 4. Bob computes $N = g^{\beta} \mod p$ and sends/shouts it.
- 5. Alice computes $M^{\alpha} \mod p$ and Bob computes $N^{\beta} \mod p$.

Shared Key: $g^{\alpha\beta} \mod p$

- ▶ Others know $p, g, g^{\alpha} \mod p, g^{\beta} \mod p$.
- ▶ But computing $g^{\alpha\beta} \mod p$ from ONLY this info, without knowing a and b is hard!! How hard?

- 1. Choose a prime p and a generator g from $(\mathbb{Z}_p \setminus \{0\}, \times_p)$.
- 2. Alice fixes a private key α and Bob fixes β .
- 3. Alice computes $M = g^{\alpha} \mod p$ and shouts/sends it.
- 4. Bob computes $N = g^{\beta} \mod p$ and sends/shouts it.
- 5. Alice computes $M^{\alpha} \mod p$ and Bob computes $N^{\beta} \mod p$.

- ▶ Others know $p, g, g^{\alpha} \mod p, g^{\beta} \mod p$.
- ▶ But computing $g^{\alpha\beta} \mod p$ from ONLY this info, without knowing a and b is hard!! How hard?
- ▶ Does there exist a poly-time (in size of digits) algorithm?

- 1. Choose a prime p and a generator g from $(\mathbb{Z}_p \setminus \{0\}, \times_p)$.
- 2. Alice fixes a private key α and Bob fixes β .
- 3. Alice computes $M = g^{\alpha} \mod p$ and shouts/sends it.
- 4. Bob computes $N = g^{\beta} \mod p$ and sends/shouts it.
- 5. Alice computes $M^{\alpha} \mod p$ and Bob computes $N^{\beta} \mod p$.

- ▶ Others know $p, g, g^{\alpha} \mod p, g^{\beta} \mod p$.
- ▶ But computing $g^{\alpha\beta} \mod p$ from ONLY this info, without knowing a and b is hard!! How hard?
- ▶ Does there exist a poly-time (in size of digits) algorithm?
- ► This is called the Diffie-Hellman problem. Still open...

- 1. Choose a prime p and a generator g from $(\mathbb{Z}_p \setminus \{0\}, \times_p)$.
- 2. Alice fixes a private key α and Bob fixes β .
- 3. Alice computes $M = g^{\alpha} \mod p$ and shouts/sends it.
- 4. Bob computes $N = g^{\beta} \mod p$ and sends/shouts it.
- 5. Alice computes $M^{\alpha} \mod p$ and Bob computes $N^{\beta} \mod p$.

- ▶ Others know $p, g, g^{\alpha} \mod p, g^{\beta} \mod p$.
- ▶ But computing $g^{\alpha\beta} \mod p$ from ONLY this info, without knowing a and b is hard!! How hard?
- ▶ Does there exist a poly-time (in size of digits) algorithm?
- ► This is called the Diffie-Hellman problem. Still open...
- ▶ In practice, choose large primes with ~ 300 digits.

More generally...

Start with any finite cyclic group G and generator $g \in G$

- 1. Alice picks a random $a \in \mathbb{N}$ and sends g^a to Bob.
- 2. Bob picks a random $b \in \mathbb{N}$ and sends g^b to Alice.
- 3. Alice computes $(g^b)^a$ and Bob computes $(g^a)^b$.
- 4. Shared key is g^{ab} .
- ▶ Of course, we know modular logarithm we could do it!
- ▶ i.e., if $g^a = g'$ and g and g' are given, what is a?
- ► Called the discrete logarithm problem and it is also open!
- ▶ What is a naive algorithm? Why does it not work?
- ▶ But there exists a quantum algorithm which runs in poly time!

- 1. Alice picks a random $a \in \mathbb{N}$ and sends g^a to Bob.
- 2. Bob picks a random $b \in \mathbb{N}$ and sends g^b to Alice.
- 3. Alice computes $(g^b)^a$ and Bob computes $(g^a)^b$.
- 4. Shared key is g^{ab} .

- 1. Alice picks a random $a \in \mathbb{N}$ and sends g^a to Bob.
- 2. Bob picks a random $b \in \mathbb{N}$ and sends g^b to Alice.
- 3. Alice computes $(g^b)^a$ and Bob computes $(g^a)^b$.
- 4. Shared key is g^{ab} .
- ▶ Alice encrypts message m as mg^{ab} and sends it.

- 1. Alice picks a random $a \in \mathbb{N}$ and sends g^a to Bob.
- 2. Bob picks a random $b \in \mathbb{N}$ and sends g^b to Alice.
- 3. Alice computes $(g^b)^a$ and Bob computes $(g^a)^b$.
- 4. Shared key is g^{ab} .
- ▶ Alice encrypts message m as mg^{ab} and sends it.
- ▶ So to decrypt it Bob needs to compute $(g^{ab})^{-1}$.

- 1. Alice picks a random $a \in \mathbb{N}$ and sends g^a to Bob.
- 2. Bob picks a random $b \in \mathbb{N}$ and sends g^b to Alice.
- 3. Alice computes $(g^b)^a$ and Bob computes $(g^a)^b$.
- 4. Shared key is g^{ab} .
- ▶ Alice encrypts message m as mg^{ab} and sends it.
- ▶ So to decrypt it Bob needs to compute $(g^{ab})^{-1}$.
- ightharpoonup So Bob computes:

- 1. Alice picks a random $a \in \mathbb{N}$ and sends g^a to Bob.
- 2. Bob picks a random $b \in \mathbb{N}$ and sends g^b to Alice.
- 3. Alice computes $(g^b)^a$ and Bob computes $(g^a)^b$.
- 4. Shared key is g^{ab} .
- ▶ Alice encrypts message m as mg^{ab} and sends it.
- ▶ So to decrypt it Bob needs to compute $(g^{ab})^{-1}$.
- So Bob computes: $(g^a)^{|G|-b} =$

Start with any finite cyclic group G and generator $g \in G$

- 1. Alice picks a random $a \in \mathbb{N}$ and sends g^a to Bob.
- 2. Bob picks a random $b \in \mathbb{N}$ and sends g^b to Alice.
- 3. Alice computes $(g^b)^a$ and Bob computes $(g^a)^b$.
- 4. Shared key is g^{ab} .
- ▶ Alice encrypts message m as mg^{ab} and sends it.
- ▶ So to decrypt it Bob needs to compute $(g^{ab})^{-1}$.
- ▶ So Bob computes: $(g^a)^{|G|-b} = g^{a|G|-ab} = (g^{|G|})^a(g^{-ab}) = e^a(g^{-ab}) = (g^{ab})^{-1}$ Application of Lagrange's theorem!

- 1. Alice picks a random $a \in \mathbb{N}$ and sends g^a to Bob.
- 2. Bob picks a random $b \in \mathbb{N}$ and sends g^b to Alice.
- 3. Alice computes $(g^b)^a$ and Bob computes $(g^a)^b$.
- 4. Shared key is g^{ab} .
- ▶ Alice encrypts message m as mg^{ab} and sends it.
- ▶ So to decrypt it Bob needs to compute $(g^{ab})^{-1}$.
- ▶ So Bob computes: $(g^a)^{|G|-b} = g^{a|G|-ab} = (g^{|G|})^a(g^{-ab}) = e^a(g^{-ab}) = (g^{ab})^{-1}$ Application of Lagrange's theorem!
- ► Then *Bob* just applies this on msg received.

Start with any finite cyclic group G and generator $g \in G$

- 1. Alice picks a random $a \in \mathbb{N}$ and sends g^a to Bob.
- 2. Bob picks a random $b \in \mathbb{N}$ and sends g^b to Alice.
- 3. Alice computes $(g^b)^a$ and Bob computes $(g^a)^b$.
- 4. Shared key is g^{ab} .
- ▶ Alice encrypts message m as mg^{ab} and sends it.
- ▶ So to decrypt it Bob needs to compute $(g^{ab})^{-1}$.
- ▶ So Bob computes: $(g^a)^{|G|-b} = g^{a|G|-ab} = (g^{|G|})^a(g^{-ab}) = e^a(g^{-ab}) = (g^{ab})^{-1}$ Application of Lagrange's theorem!
- ▶ Then *Bob* just applies this on msg received.
- ► That is, $mg^{ab}(g^{ab})^{-1} = m \cdot e = m$.

Diffie-Hellman Key Exchange protocol

- ▶ This was discovered by Diffie & Hellman in 1976.
- ► Considered to be first cryptographic protocol.
- ▶ Variants of this are still used everywhere!
 - ▶ Digital signatures for Sony Playstations.
 - ▶ GNU Privacy guard, PGP (pretty good privacy)...
- ▶ Which cyclic group?
- ▶ Replace $(\mathbb{Z}_p \setminus \{0\}, \times_p)$ by cyclic group of points of elliptic curves.
 - Elliptic Curve Diffie-HellmanCyptography.