

Normalisation – Part 1 BCNF

Schema Design

- A driving force for the study of dependencies has been schema design.
- The goal of schema design is to select the most appropriate schema for a particular database application.
- The choice of a schema is guided by semantic information about the application data provided by users and captured by dependencies.
- A common approach starts with a universal relation and applies decomposition to create new relations that satisfy certain normal forms (i.e. normalization).

Normal Forms

Normal forms	Test criteria	
1NF ↓ 2NF ↓ 3NF	weak ↓	BCNF 3NF 2NF 1NF
⊎ BCNF 	strong	

Note that:

- 1NF is not based on any constraints.
- 2NF, 3NF and BCNF are based on keys and functional dependencies.
- 4NF and 5NF are based on other constraints (will not be covered).

Normalisation

- Decomposing a relation into smaller relations in a certain normal form
 - Each normal form reduces certain kind of data redundancy.
 - Each normal form does not have certain types of (undesirable) dependencies.
- What normal forms will we learn?
 - Boyce-Codd normal form (BCNF)
 - 2 Third normal form (3NF)

BCNF - Definition

- A relation schema R is in **BCNF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey**.
- When a relation schema is in BCNF, all data redundancy based on functional dependency are removed.
 - Note: this does not necessarily mean a good design.

Do not represent the same fact twice (within a relation)!

- Consider the relation schema TEACH with the following FDs:
 - {StudentID, CourseName} → {Instructor};
 - {Instructor} → {CourseName}.

TEACH				
StudentID	CourseName	Instructor		
u123456	Operating Systems	Jane		
u234567	Operating Systems	Jane		
u234567	Databases	Mark		

Is TEACH in BCNF?

Not in BCNF because of {Instructor} → {CourseName}.

Algorithm for a BCNF-decomposition

Input: a relation schema R' and a set Σ of FDs on R'.

Output: a set S of relation schemas in BCNF, each having a set of FDs

- Start with $S = \{R'\}$;
- Do the following for each $R \in \mathcal{S}$ iteratively until no changes on \mathcal{S} :
 - Find a (non-trivial) FD X → Y on R that violates BCNF, if any;
 - Replace R in S by two relation schemas XY and (R-Y) and project the FDs to these two relation schemas.

- Consider TEACH with the following FDs again:
 - $\bullet \ \, \{ StudentID, CourseName \} \rightarrow \{ Instructor \}; \\$
 - {Instructor} \rightarrow {CourseName}.

TEACH				
StudentID	CourseName	Instructor		
u123456	Operating Systems	Jane		
u234567	Operating Systems	Jane		
u234567	Databases	Mark		

Can we normalise TEACH into BCNF?

- Consider TEACH with the following FDs again:
 - {StudentID,CourseName} → {Instructor};
 - {Instructor} \rightarrow {CourseName}.

TEACH

StudentID	CourseName	Instructor
u123456	Operating Systems	Jane
u234567	Operating Systems	Jane
u234567	Databases	Mark

• Replace TEACH with R_1 and R_2 :

Instructor
Jane
Mark

R_2				
StudentID	Instructor			
u123456	Jane			
u234567	Jane			
u234567	Mark			

- Consider the relation schema TEACH with the following FDs:
 - $\bullet \ \, \{ StudentID, CourseName \} \rightarrow \{ Instructor \}; \\$
 - $\{Instructor\} \rightarrow \{CourseName\}.$

TEACH

StudentID CourseName		Instructor
100450	On a westing at Countries	lana
u123456	Operating Systems	Jane
u234567	Operating Systems	Jane
u20-1007	Operating Cystems	banc
u234567	Databases	Mark

,	_	
r	1	1

, · · l	
CourseName	Instructor
Operating Systems	Jane
Databases	Mark

					R	2
. .	٠,	_	-	ŧΙ		Г

StudentID	Instructor	
u123456	Jane	
u234567	Jane	
u234567	Mark	

Does this decomposition preserve all FDs on TEACH?

- Consider the relation schema TEACH with the following FDs:
 - {StudentID,CourseName} → {Instructor}; Lost!
 - {Instructor} \rightarrow {CourseName}.

TEACH

StudentID	CourseName	Instructor
u123456	Operating Systems	Jane
u234567	Operating Systems	Jane
u234567	Databases	Mark

R₁ me Instruc

CourseName	Instructor
Operating Systems	Jane
Databases	Mark

R_2		
StudentID	Instructor	
u123456	Jane	
u234567	Jane	
u234567	Mark	

• No. We only have {Instructor} \rightarrow {CourseName} on R_1 .

Two Properties

- We need to consider the following properties when decomposing a relation:
 - **1** Lossless join "capture the same data"

To disallow the possibility of generating spurious tuples when a NATURAL JOIN operation is applied to the relations after decomposition.

Dependency preservation – "capture the same meta-data"

To ensure that each functional dependency can be inferred from functional dependencies after decomposition.

Two Properties

Facts

- (1) There exists an algorithm that can generate **a lossless** decomposition into BCNF.
- (2) However, a BCNF-decomposition that is both lossless and dependency-preserving does not always exist.

Does there exist a less restrictive normal form such that a lossless and dependency preserving decomposition can always be found?