Predicting Tomorrow's Gold Price Direction

University of Colorado at Boulder

DTSA 5509: Intro to Machine Learning: Supervised Learning

Final Project, Nov 2024

Contents

- Dataset
- Models
 - Logistic Regression
 - KNN
 - Decision Tree
 - Random Forest
 - SVM
 - Logistic Regression, with P hacking
- Results
- Rooms for Improvements

Response Variable

Source:

https://www.investing.com/

Asia stocks drop on geopolitical tensions, Nikkei hit by strong inflation print

Investing.com- Most Asian stocks fell on Friday as an edented risk appetite, while Japan's Nikkei dropped as to The U.S. Thanksgiving holiday left Asian markets with edged higher in Asia ...

Predictors

- Brent Oil Futures
- Natural Gas
- Dow Jones
- Nasdaq 100
- Nikkei 225
- S&P 500

- EUR/USD
- GBP/USD
- USD/JPY
- US Holidays

Source:

https://www.investing.com/commodities/gold-historical-data

Gold Futures - Feb 25 (GCG5)

Real-time derived
Currency in USD

2,684.30 +22.80 (+0.86%)

(Real-time Data · 23:54:30

Dataset Predictors

- Brent Oil Futures
- Natural Gas
- Dow Jones
- Nasdaq 100
- Nikkei 225
- S&P 500

- EUR/USD
- GBP/USD
- USD/JPY
- US Holidays

Source:

https://www.generalblue.com/calendar/usa/us-holidays-2020#download_or_print

2020 United States List of Holidays

The free printable **United States 2020 holidays list** is available in PDF, Word, or Excel format. The PDF format works best for those who like to print the list of holidays, while the MS Word and Excel holidays list 2020 can be easily modified or customized with notes, size or color changes. Download or print list of holidays now.

Need a calendar for United States? United States Calendars with Holidays

Learn more about the stories, practices, traditions and origins behind each holiday in the list below.

DayWednesday
Monday

United States Holidays for 2020

Holiday Name	Date
New Year's Day	January 01, 2020
Martin Luther King Jr. Day	January 20, 2020
Valentine's Day	February 14, 2020
Washington's Birthday	February 17, 2020
St. Patrick's Day	March 17, 2020
Easter Sunday	April 12, 2020
Tax Day	April 15, 2020
Administrative Professionals Day	April 22, 2020

Shape – One Commodity

Month	Day	Year	Gold_Price_Avg	Gold_Price_Ope	Gold_Price_High	Gold_Price_Low	Gold_Vol. (M)	Gold_PriceChang
4	1	2,020	1,584.10	1,581.70	1,605.00	1,574.80	0.35	-0.33%
5	1	2,020	1,700.90	1,693.50	1,714.40	1,676.00	168.02	0.40%
6	1	2,020	1,743.30	1,743.00	1,752.70	1,730.50	0.71	0.02%
7	1	2,020	1,779.90	1,798.90	1,807.70	1,767.90	263.25	-1.14%
9	1	2,020	1,970.80	1,965.90	1,992.50	1,961.20	10.95	0.02%
10	1	2,020	1,912.30	1,888.00	1,913.90	1,886.00	0.75	1.11%
12	. 1	2,020	1,816.60	1,777.50	1,818.30	1,776.40	1.66	2.17%
1	. 2	2,020	1,528.10	1,521.00	1,534.00	1,519.70	270.55	0.33%
3	2	2,020	1,594.80	1,592.80	1,612.10	1,576.30	443.53	1.79%
4	. 2	2,020	1,630.70	1,599.00	1,635.80	1,590.50	0.44	2.94%
6	2	2,020	1,728.90	1,743.50	1,750.00	1,724.10	0.69	-0.83%
7	2	2,020	1,790.00	1,779.00	1,791.70	1,766.30	186.31	0.57%
9	2	2,020	1,936.90	1,967.90	1,972.40	1,931.50	10.84	-1.72%
10	2	2,020	1,903.80	1,907.00	1,919.00	1,893.00	0.81	-0.44%
11	. 2	2,020	1,892.50	1,877.00	1,897.10	1,873.30	164.94	0.67%
12	. 2	2,020	1,827.60	1,814.60	1,833.00	1,808.10	1.75	0.61%
1	. 3	2,020	1,552.40	1,531.70	1,556.60	1,530.40	436.74	1.59%
2	. 3	2,020	1,579.50	1,594.60	1,595.10	1,570.50	1.60	-0.34%
3	3	2,020	1,644.40	1,586.00	1,650.50	1,585.90	466.53	3.11%
4	3	2,020	1,637.60	1,629.70	1,642.00	1,616.50	0.51	0.42%
6	3	2,020	1,701.00	1,729.70	1,729.80	1,686.90	1.72	-1.61%
7	3	2,020	1,793.50	1,787.90	1,799.00	1,779.20	184.65	0.20%
8	3	2,020	1,969.50	1,979.70	1,992.10	1,958.50	2.82	0.08%
9	3	2,020	1,930.20	1,941.80	1,948.40	1,919.70	8.94	-0.35%
11	. 3	2,020	1,910.40	1,896.40	1,912.20	1,887.60	171.37	0.95%
12	3	2,020	1,838.40	1,830.50	1,844.00	1,824.00	1.37	0.59%
2	4	2,020	1,552.70	1,579.50	1,580.70	1,550.00	1.88	-1.70%
3	4	2,020	1,643.00	1,640.10	1,654.30	1,632.60	313.34	-0.09%
5	4	2,020	1,713.30	1,711.20	1,726.00	1,700.30	148.73	0.73%

Date Range

Jan 02 2020 to Nov 21 2024

Approximately

1260

rows

Dataset Shape – US Holidays

2020 United States List of Holidays

The free printable **United States 2020 holidays list** is available in PDF, Word, or Excel format. The PDF format works best for those who like to print the list of holidays, while the MS Word and Excel holidays list 2020 can be easily modified or customized with notes, size or color changes. Download or print list of holidays now.

Need a calendar for United States? United States Calendars with Holidays

Other Years Available 2020 🕶

Learn more about the stories, practices, traditions and origins behind each holiday in the list below.

United States Holidays for 2020

Holiday Name	Date	Day
New Year's Day	January 01, 2020	Wednesday
Martin Luther King Jr. Day	January 20, 2020	Monday
Valentine's Day	February 14, 2020	Friday
Washington's Birthday	February 17, 2020	Monday
St. Patrick's Day	March 17, 2020	Tuesday
Easter Sunday	April 12, 2020	Sunday
Tax Day	April 15, 2020	Wednesday
Administrative Professionals Dav	April 22. 2020	Wednesdav

Date	Holiday
January 1, 2020	New Year's Day
January 20, 2020	Martin Luther King Jr. Day
February 14, 2020	Valentine's Day
February 17, 2020	Washington's Birthday
March 17, 2020	St. Patrick's Day
April 12, 2020	Easter Sunday
April 15, 2020	Tax Day
April 22, 2020	Administrative Professionals
May 10, 2020	Mother's Day
May 10, 2020	Memorial Day
June 21, 2020	Father's Day
July 3, 2020	Independence Day (substitu
July 4, 2020	Independence Day
September 7, 2020	Labor Day
October 12, 2020	Columbus Day
October 31, 2020	Halloween
November 3, 2020	Election Day
November 11, 2020	Veterans Day
November 26, 2020	Thanksgiving Day
November 27, 2020	Day after Thanksgiving Day
December 24, 2020	Christmas Eve
December 25, 2020	Christmas Day
December 31, 2020	New Year's Eve
January 1, 2021	New Year's Day
January 18, 2021	Martin Luther King Jr. Day
February 14, 2021	Valentine's Day
February 15, 2021	Washington's Birthday
March 17, 2021	St. Patrick's Day
April 4, 2021	Easter Sunday

Preprocessing – Collating to Build Dataset

Month Day	y	/ear	Date	US_Holiday?	Day_of_Week Gold	d_Price_Av	Gold_Vol.	Gold_PriceCha Bre	ntOil_Price	BrentOil_Vol.	NatGas_Price_Na	tGas_Vol.	EurUSD_Price	GBPUSD_Pric U	SDJPY_PriceS	S&P_Price_Av N	lasdaq_Price_N	lasdaq_Vol.	DowJones_Price	DowJones_Vol N	ikkei_Price_/	Nikkei_Vol.
4	1	2,020	4/1/2020	regularDay	4.00	1,584.10	350	-0.33%	28.04	180520	1.712	59130	1.0962	1.2376	107.15	2,470.50	7,486.29	261150000	20,943.51	508310000	18,065.41	1060000000
5	1	2,020	5/1/2020	regularDay	6.00	1,700.90	168020	0.40%	28.07	107670	2.134	73910	1.0983	1.2502	106.93	2,830.70	8,718.18	221880000	23,723.69	421590000	19,619.35	866440000
6	1	2,020	6/1/2020	regularDay	2.00	1,743.30	710	0.02%	38.43	124700	1.871	58660	1.1134	1.2492	107.58	3,055.70	9,598.89	163310000	25,475.02	341220000	22,062.39	721660000
7	1	2,020	7/1/2020	regularDay	4.00	1,779.90	263250	-1.14%	42.11	122360	1.721	76380	1.125	1.247	107.46	3,115.90	10,279.25	167520000	25,734.97	373980000	22,121.73	673600000
9	1	2,020	9/1/2020	regularDay	3.00	1,970.80	10950	0.02%	46	138080	2.901	120380	1.191	1.3381	105.95	3,526.70	12,292.86	228040000	28,645.66	428660000	23,138.07	595680000
10	1	2,020	10/1/2020	regularDay	5.00	1,912.30	750	1.11%	41.44	123190	3.062	91070	1.1747	1.2889	105.5	3,380.80	11,583.20	191860000	27,816.90	375650000	23,185.12	0
12	1	2,020	12/1/2020	regularDay	3.00	1,816.60	1660	2.17%	47.4	120980	2.868	39750	1.207	1.3415	104.3	3,662.40	12,455.33	227090000	29,823.92	435440000	26,787.54	732390000
1	2	2,020	1/2/2020	DayAfterHolida	5.00	1,528.10	270550	0.33%	65.56	81190	2.093	73010	1.117	1.3144	108.57	3,257.80	8,872.22	152650000	28,868.80	254290000	#N/A	#N/A
3	2	2,020	3/2/2020	regularDay	2.00	1,594.80	443530	1.79%	51.75	256950	1.797	94820	1.1132	1.275	108.3	3,090.20	8,877.98	350570000	26,703.32	637200000	21,344.08	1240000000
4	2	2,020	4/2/2020	regularDay	5.00	1,630.70	440	2.94%	32.1	266630	1.672	70800	1.0856	1.2392	107.9	2,526.90	7,635.66	248650000	21,413.44	534670000	17,818.72	1070000000
6	2	2,020	6/2/2020	regularDay	3.00	1,728.90	690	-0.83%	39.66	137540	1.876	41600	1.1169	1.2549	108.66	3,080.80	9,657.31	196140000	25,742.65	355240000	22,325.61	778910000
7	2	2,020	7/2/2020	DayBeforeHoli	5.00	1,790.00	186310	0.57%	43.19	88820	1.785	62060	1.1238	1.2466	107.48	3,130.00	10,341.89	167920000	25,827.36	350290000	22,145.96	735690000
9	2	2,020	9/2/2020	regularDay	4.00	1,936.90	10840	-1.72%	44.87	184150	2.931	151060	1.1853	1.3352	106.18	3,580.80	12,420.54	273590000	29,100.50	542540000	23,247.15	526370000
10	. າ	2 020	10/2/2020	roaularDay	6 00	1 000 00	010	0.440/	20.04	120040	2 004	05430	4 4740	4 2024	105 22	3 340 40	11 255 60	204600000	27 602 04	205020000	33 030 00	063030000

Preprocessing – Collating to Build Dataset

Month Day	Year	Date US_Holiday	Day_of_Week	Gold_Price_Av C	iold_Vol.	Gold_PriceChaB	entOil_Price B	RentOil_Val.	NatGas_Price_	NatGas_Vol.	EurUSO_Price	GBPUSD_Pric U	ISDJPY_PriceS	&P_Price_AvI	Nasdaq_Price_I	Nasdaq_Vol.	DowJones_Prick	DowJones_Vol1	ákkei_Price_//	Nikkei_Vol.
4	1 2,0	20 4/1/2020 regularDay	4.00	1,584.10	350	-0.33%	28.04	180520	1.712	59130	1.0962	1.2376	107.15	2,470.50	7,485.29	261150000	20,943.51	508310000	18,065.41	1050000000
5	1 2,0	0 5/1/2020 regularDay	6.00	1,700.90	168020	0.40%	28.07	107670	2.134	73910	1.0983	1.2502	106.93	2,830.70	8,718.18	221880000	23,723.69	421590000	19,619.35	866440000
6	1 2,0	0 6/1/2020 regularDay	2.00	1,743.30	710	0.02%	38.43	124700	1,871	58660	1.1134	1.2492	107.58	3,055.70	9,598.89	163310000	25,475.02	341220000	22,062.39	721660000
7	1 2,0	20 7/1/2020 regularDay	4.00	1,779.90	263250	-1.14%	42.11	122350	1.721	76380	1.125	1.247	107.46	3,115.90	10,279.25	167520000	25,734.97	373980000	22,121.73	673600000
9	1 2,0	20 9/1/2020 regularDay	3.00	1,970.80	10950	0.02%	46	138080	2.901	120380	1.191	1.3381	105.95	3,526.70	12,292.86	228040000	28,645.66	428650000	23,138.07	595680000
10	1 2,0	20 10/1/2020 regularDay	5.00	1,912.30	750	1.11%	41.44	123190	3.062	91070	1.1747	1.2889	105.5	3,380.80	11,583.20	191850000	27,816.90	375650000	23,185.12	0
12	1 2,0	20 12/1/2020 regularDay	3.00	1,816.60	1660	2.17%	47.4	120980	2.868	39750	1.207	1.3415	104.3	3,662.40	12,455.33	227090000	29,823.92	435440000	26,787.54	732390000
1	2,0	20 1/2/2020 DayAfterHoli	da 5.00	1,528.10	270650	0.33%	65.56	81190	2.093	73010	1.117	1.3144	108,57	3,257.80	8,872.22	152650000	28,868.80	254290000	#N/A	#N/A
3	2 2,0	20 3/2/2020 regularDay	2.00	1,594.80	443530	1.79%	61.76	256950	1.797	94820	1.1132	1.276	108.3	3,090.20	8,877.98	350570000	26,703.32	637200000	21,344.08	1240000000
4	2 2,0	20 4/2/2020 regularDay	5.00	1,630.70	440	2.94%	32.1	266630	1.672	70800	1.0856	1.2392	107.9	2,526.90	7,635.66	248650000	21,413.44	534670000	17,818.72	1070000000
6	2 2,0	20 6/2/2020 regularDay	3.00	1,728.90	690	-0.83%	39.66	137540	1.876	41600	1.1169	1.2549	108.66	3,080.80	9,657.31	195140000	25,742.65	355240000	22,325.61	778910000
7	2 2,0	7/2/2020 DayBeforeHi	slic 5.00	1,790.00	186310	0.57%	43.19	88820	1.785	62060	1.1238	1.2466	107.48	3,130.00	10,341.89	167920000	25,827.36	350290000	22,145.96	735690000
9	2 2,0	0 9/2/2020 regularDay	4.00	1,936.90	10840	-1.72%	44.87	184150	2.931	151060	1.1853	1.3352	106.18	3,580.80	12,420.54	273590000	29,100.50	542540000	23,247.15	526370000
10	2.00	00 1072/2020	0.00	4 602 60	947	0.4467	99.04	195940	2.601	96490	4 4749	1.0001	105.99	9 949 46	11 500 00	201605050	97 699 64	905990000	22,050,00	969999999

Preprocessing – Next Day's Gold Price Direction

First thing's first, the raw master dataset does not include next days' gold price change direction; the author needs to create that.

```
# Turning d+1 daily gold price percentage change to daily gold price change direction
gold_df["Gold_PriceChange_D+1"] = gold_df["Gold_PriceChange"].shift(-1)
## https://www.geeksforgeeks.org/create-a-new-column-in-pandas-dataframe-based-on-the-existing-column gold_df['Gold_Price_D+1_Direction'] = np.where(gold_df['Gold_PriceChange_D+1'] > 0, 1, 0)

| |
```


Preprocessing – Day of Week and Holidays

The next low hanging fruit in preprocessing seems to be converting day-of-week & holidays into dummy variables.

```
n [5]: M def dow(value):
               if value == 1:
                   return "Sun"
               elif value == 2:
                   return "Mon"
               elif value == 3:
                   return "Tue"
               elif value == 4:
                   return "Wed"
               elif value == 5:
                   return "Thu"
               elif value == 6:
                   return "Fri"
               elif value == 7:
                   return "Sat"
           gold_df['dow spelled'] = gold_df['Day of Week'].map(dow)
           # Turning categorical data, day of week and holiday, into dummies
           ## https://www.geeksforgeeks.org/how-to-convert-categorical-data-to-binary-data-in-python/
           holiday_df = pd.get_dummies(gold_df['US_Holiday?'])
           dow df = pd.get dummies(gold df['dow spelled'])
```


Preprocessing – Lag Data

The author suspects tomorrow's price is not only related to today's price & volume, but also the past several days. Here I create columns of shifted past days data to be included in building the model.

```
# https://www.statology.org/pandas-lag/#:~:text=You%20can%20use%20the%20shift,lagged%20values%20of%
   gold df["Gold Price Avg D-1"] = gold df["Gold Price Avg"].shift(1)
   gold df["Gold Price Avg D-2"] = gold df["Gold Price Avg"].shift(2)
   gold df["Gold Price Avg D-3"] = gold df["Gold Price Avg"].shift(3)
   gold df["Gold Price Avg D-4"] = gold df["Gold Price Avg"].shift(4)
   gold df["Gold Price Avg D-5"] = gold df["Gold Price Avg"].shift(5)
   gold_df["Gold_Vol._D-1"] = gold_df["Gold_Vol."].shift(1)
   gold df["Gold Vol. D-2"] = gold df["Gold Vol."].shift(2)
   gold_df["Gold_Vol._D-3"] = gold_df["Gold_Vol."].shift(3)
   gold_df["Gold_Vol._D-4"] = gold_df["Gold_Vol."].shift(4)
   gold df["Gold Vol. D-5"] = gold df["Gold Vol."].shift(5)
   gold df["BrentOil Price Avg D-1"] = gold df["BrentOil Price Avg"].shift(1)
   gold df["BrentOil Price Avg D-2"] = gold df["BrentOil Price Avg"].shift(2)
   gold_df["BrentOil_Price_Avg_D-3"] = gold_df["BrentOil_Price_Avg"].shift(3)
   gold_df["BrentOil_Price_Avg_D-4"] = gold_df["BrentOil_Price_Avg"].shift(4)
   gold df["BrentOil Price Avg D-5"] = gold df["BrentOil Price Avg"].shift(5)
   gold df["BrentOil Vol. D-1"] = gold df["BrentOil Vol."].shift(1)
   gold_df["BrentOil_Vol._D-2"] = gold_df["BrentOil_Vol."].shift(2)
   gold df["BrentOil Vol. D-3"] = gold df["BrentOil Vol."].shift(3)
   gold_df["BrentOil_Vol._D-4"] = gold_df["BrentOil_Vol."].shift(4)
   gold_df["BrentOil_Vol._D-5"] = gold_df["BrentOil_Vol."].shift(5)
   gold df["NatGas Price Avg D-1"] = gold df["NatGas Price Avg"].shift(1)
   gold df["NatGas Price Avg D-2"] = gold df["NatGas Price Avg"].shift(2)
   gold df["NatGas Price Avg D-3"] = gold df["NatGas Price Avg"].shift(3)
   gold df["NatGas Price Avg D-4"] = gold df["NatGas Price Avg"].shift(4)
   gold_df["NatGas_Price_Avg_D-5"] = gold_df["NatGas_Price_Avg"].shift(5)
   gold df["NatGas Vol. D-1"] = gold df["NatGas Vol."].shift(1)
   gold df["NatGas Vol. D-2"] = gold df["NatGas Vol."].shift(2)
   gold df["NatGas Vol. D-3"] = gold df["NatGas Vol."].shift(3)
   gold df["NatGas Vol. D-4"] = gold df["NatGas Vol."].shift(4)
   gold df["NatGas Vol. D-5"] = gold df["NatGas Vol."].shift(5)
   gold df["EurUSD Price Avg D-1"] = gold df["EurUSD Price Avg"].shift(1)
   gold dff"Euglich Doice Aug D 2"] - gold dff"Euglich Doice Aug"] chift(2)
```


Preprocessing, Cleaning – Dropping Redundant Columns

Dropping out redundant columns as they have been turned to dummy variables. Also, dropping out dummy variables to allow sufficient degree of freedoms and avoid multicollinearities.

Preprocessing

Let's see how the data looks like now:

Processed_gold_df

[8]:

Month Day Year Gold_Price_Avg Gold_Vol. BrentOil_Price_Avg BrentOil_Vol. NatGas_Price_Avg NatGas_Vol. EurUSD_Price_Avg ... Nikkei_Vol._

	Month	Day	Year	Gold_Price_Avg	Gold_Vol.	BrentOil_Price_Avg	BrentOil_Vol.	NatGas_Price_Avg	NatGas_Vol.	EurUSD_Price_Avg	 Nikkei_Vol
7	1	2	2020	1528.1	270550.0	65.56	81190.0	2.093	73010.0	1.1170	 N
16	1	3	2020	1552.4	436740.0	67.76	202660.0	2.112	61290.0	1.1158	 N:
41	1	6	2020	1568.8	558970.0	68.07	152510.0	2.134	79910.0	1.1193	 N-
50	1	7	2020	1574.3	435870.0	67.57	142790.0	2.153	82700.0	1.1151	 N-
59	1	8	2020	1560.2	813410.0	64.79	270030.0	2.134	170260.0	1.1103	 N-
1162	11	15	2024	2570.1	179890.0	71.04	307470.0	2.823	181090.0	1.0541	 1.630000e+
1174	11	18	2024	2614.6	195290.0	73.30	333850.0	2.973	188340.0	1.0599	 1.500000e+
1177	11	19	2024	2631.0	202240.0	73.31	354130.0	2.998	211930.0	1.0595	
1180	11	20	2024	2651.7	182010.0	72.81	260510.0	3.193	225690.0	1.0543	1
1183	11	21	2024	2670.7	0.0	73.62	0.0	3.356	0.0	1.0542	

1263 rows × 107 columns

Resulting Columns

```
list(Processed gold df.columns)
 ['Month',
  'Day',
  'Year',
  'Gold Price Avg',
  'Gold Vol.',
  'BrentOil Price Avg',
  'BrentOil Vol.',
  'NatGas Price Avg',
  'NatGas Vol.',
  'EurUSD Price Avg',
  'GBPUSD_Price_Avg',
  'USDJPY Price Avg',
  'S&P Price Avg',
  'Nasdaq Price Avg',
  'Nasdaq Vol.',
  'DowJones Price Avg',
  'DowJones Vol.',
  'Nikkei Price Avg',
  'Nikkei Vol.'.
  'Gold Price D+1 Direction',
  'Gold Price Avg D-1',
  'Gold Price Avg D-2',
  'Gold Price Avg D-3',
  'Gold Price Avg D-4',
  'Gold Price Avg D-5',
  'Gold Vol. D-1',
  'Gold Vol. D-2',
  'Gold Vol. D-3',
  'Gold Vol. D-4',
  'Gold Vol. D-5',
  'BrentOil Price Avg D-1',
  'BrentOil Price Avg D-2',
  'BrentOil Price Avg D-3',
  'BrentOil Price Avg_D-4',
  'BrentOil Price Avg D-5'.
```

```
'BrentOil Vol. D-1',
'BrentOil Vol. D-2',
'BrentOil Vol. D-3',
'BrentOil Vol. D-4',
'BrentOil Vol. D-5',
'NatGas Price Avg D-1',
'NatGas_Price_Avg_D-2',
'NatGas Price Avg D-3',
'NatGas_Price_Avg_D-4',
'NatGas_Price_Avg_D-5',
'NatGas Vol. D-1',
'NatGas Vol. D-2',
'NatGas_Vol._D-3',
'NatGas Vol. D-4',
'NatGas Vol. D-5',
'EurUSD Price Avg D-1',
'EurUSD Price Avg D-2',
'EurUSD Price Avg D-3',
'EurUSD Price Avg D-4',
'EurUSD Price Avg D-5',
'GBPUSD Price Avg D-1',
'GBPUSD Price Avg D-2',
'GBPUSD Price Avg D-3',
'GBPUSD Price Avg_D-4',
'GBPUSD Price Avg D-5',
'USDJPY Price Avg D-1',
'USDJPY Price Avg D-2',
'USDJPY_Price_Avg_D-3',
'USDJPY Price Avg D-4',
'USDJPY Price Avg D-5',
'S&P Price Avg D-1',
'S&P Price Avg D-2',
'S&P Price Avg D-3',
'S&P Price Avg D-4',
'S&P Price Avg D-5',
'Nasdaq Price_Avg_D-1',
'Nasdaq Price Avg D-2',
'Nasdaq Price Avg D-3',
'Nasdaq Price Avg D-4',
'Nasdaq Price Avg D-5',
```

```
'DowJones Price Avg D-1',
'DowJones Price Avg D-2',
'DowJones Price Avg D-3',
'DowJones Price Avg D-4',
'DowJones Price Avg D-5',
'DowJones Vol. D-1'.
'DowJones Vol. D-2',
'DowJones_Vol._D-3',
'DowJones Vol. D-4',
'DowJones Vol. D-5',
'Nikkei Price Avg D-1',
'Nikkei Price Avg D-2',
'Nikkei Price Avg D-3',
'Nikkei Price Avg D-4',
'Nikkei_Price_Avg_D-5',
'Nikkei Vol. D-1',
'Nikkei Vol. D-2',
'Nikkei_Vol._D-3',
'Nikkei Vol. D-4',
'Nikkei Vol. D-5',
'DayAfterHoliday',
'DayBeforeHoliday',
'Holiday',
'Mon',
'Thu',
'Tue'
'Wed'1
```


Correlation Matrix

Dataset has

107

columns

Correlation Matrix - Correlation between Response & each Predictors

```
# https://www.geeksforgeeks.org/python-dictionary/
  potential significant predictors = []
  corr_dict = {}
  predictors_corr = Processed_gold_df.corr()['Gold_Price_D+1_Direction']
  for features idx in range(0, len(Processed gold df.columns )):
      corr_magn = abs(predictors_corr[features_idx])
      corr_dict[features_idx] = corr_magn
  # https://www.geeksforgeeks.org/how-to-sort-a-dictionary-by-value-in-python/
  # https://www.geeksforgeeks.org/python-sorted-function/
  sorted corr_dict = dict(sorted(corr_dict.items(), key = lambda item: item[1], reverse = True))
  for key_idx in range(1, 21):
      potential_significant_predictors.append(Processed_gold_df.columns[list(sorted_corr_dict.keys())[key_idx]])
      cur predictor = Processed gold df.columns[list(sorted corr dict.keys())[key idx]]
      cur_magnitude = list(sorted_corr_dict.values())[key_idx]
      print(cur_predictor, " :", cur_magnitude)
  Holiday : 0.09343113114048412
  BrentOil_Price_Avg_D-4 : 0.046923571584731934
  NatGas Vol. : 0.04686017465023451
  BrentOil Price Avg D-1 : 0.04614732470332546
  DowJones_Vol._D-4 : 0.04592757708562616
  BrentOil_Price_Avg_D-5 : 0.04565373059195448
  BrentOil_Price_Avg_D-2 : 0.04536080230278412
  BrentOil Price Avg D-3 : 0.04398866441766228
  NatGas Price Avg D-1 : 0.04381668387406184
  BrentOil_Price_Avg : 0.04221902213518596
  NatGas_Price_Avg_D-2 : 0.041802682749530404
  NatGas Price Avg : 0.04174057168618509
  NatGas Price Avg D-3 : 0.03898571086243888
  BrentOil_Vol._D-3 : 0.03799187077581839
  NatGas Price Avg D-4 : 0.03797592991211697
  NatGas Price Avg D-5 : 0.03509820472177668
  DowJones_Vol._D-5 : 0.034932646190208104
  Gold_Vol. : 0.033744617250401
  Day : 0.030074742626925874
  BrentOil Vol. : 0.030030573224653266
```


Correlation Matrix between the More Significant Predictors

Since the highlighted predictors seem to highly correlate with each other, we only need to include one in the model with the hope that it would also represent the others.

Checking for NAs

Let's use VIF to further avoid multicollinearity. For starters, let's pick the ones that do not correlate with one another while prioritizing ones that have high correlations with the response variable.

```
potential_significant_predictors = ['Holiday', 'NatGas_Vol.', 'BrentOil_Price_Avg', 'DowJones_Vol._D-4', 'NatGas_Price_Avg',
     x signi df = pd.DataFrame(data = Processed gold df, columns = potential significant predictors)
     len(x_signi_df) - x_signi_df.describe().loc['count']
16]: Holiday
                            0.0
     NatGas_Vol.
                            0.0
     BrentOil Price Avg
                            0.0
     DowJones Vol. D-4
                           36.0
     NatGas Price Avg
                            0.0
     Gold Vol.
                            0.0
                            0.0
     Day
     BrentOil Vol.
                            0.0
     Name: count, dtype: float64
```

Since out of 1263 rows, there are only 36 rows that has NA values, these rows are dropped; 36 rows is arguably not a lot to lose any sleep on, at the same time, they could cause calculations & models to malfunction.

Variation Inflation Factors VIF results

All 8 *significant* predictors

	feature	VIF
0	Holiday	1.151311
1	NatGas_Vol.	5.766440
2	BrentOil_Price_Avg	19.458267
3	DowJones_VolD-4	8.436561
4	NatGas_Price_Avg	9.121030
5	Gold_Vol.	1.734557
6	Day	5.587290
7	BrentOil_Vol.	11.407500

Without BrentOil_Vol

,		
	feature	VIF
0	Holiday	1.121965
1	NatGas_Vol.	5.615108
2	BrentOil_Price_Avg	15.535491
3	DowJones_VolD-4	7.974094
4	NatGas_Price_Avg	8.450883
5	Gold_Vol.	1.726774
6	Day	4.440582

Without BrentOil Price

	feature	VIF
0	Holiday	1.127874
1	NatGas_Vol.	5.522673
2	DowJones_VolD-4	8.294477
3	NatGas_Price_Avg	3.777801
4	Gold_Vol.	1.730858
5	Day	5.542320
6	BrentOil Vol.	9.107754

As AnalyticsVidhya.com explained, "VIF exceeding 5 or 10 indicates high multicollinearity between independent variable and the others".

Variation Inflation Factors VIF results

All 8 *significant* predictors

	feature	VIF
0	Holiday	1.151311
1	NatGas_Vol.	5.766440
2	BrentOil_Price_Avg	19.458267
3	DowJones_VolD-4	8.436561
4	NatGas_Price_Avg	9.121030
5	Gold_Vol.	1.734557
6	Day	5.587290
7	BrentOil_Vol.	11.407500

Without BrentOil_Vol

	feature	VIF
0	Holiday	1.121965
1	NatGas_Vol.	5.615108
2	BrentOil_Price_Avg	15.535491
3	DowJones_VolD-4	7.974094
4	NatGas_Price_Avg	8.450883
5	Gold_Vol.	1.726774
6	Day	4.440582

Without BrentOil_Price

	feature	VIF
0	Holiday	1.127874
1	NatGas_Vol.	5.522673
2	DowJones_VolD-4	8.294477
3	NatGas_Price_Avg	3.777801
4	Gold_Vol.	1.730858
5	Day	5.542320
6	BrentOil_Vol.	9.107754

Without BrentOil_Price Without BrentOil_Vol

	feature	VIF
0	Holiday	1.114697
1	NatGas_Vol.	5.055551
2	DowJones_VolD-4	7.391046
3	NatGas_Price_Avg	3.717591
4	Gold_Vol.	1.714140
5	Day	4.350121

As AnalyticsVidhya.com explained, "VIF exceeding 5 or 10 indicates high multicollinearity between independent variable and the others".

Standardizing Predictors

```
potential_significant_predictors = ['Holiday', 'NatGas_Vol.', 'DowJones_Vol._D-4', 'NatGas_Price_Avg', 'Gold_Vol.', 'Day']
x_signi_df = pd.DataFrame(data = Processed_gold_df, columns = potential_significant_predictors)

object = StandardScaler()
x_signi_df_scale = object.fit_transform(x_signi_df)
y_df = Processed_gold_df['Gold_Price_D+1_Direction']

x_arr = np.asarray(x_signi_df_scale)
y_arr = np.asarray(y_df)
```


Checking for Imbalances

```
M sum(y_df)/len(y_df)
```

5]: 0.5352335708630246

Models

- Logistic Regression
- KNN
- Decision Tree
- Random Forest
- SVM
- Logistic Regression, with P hacking

Models

Logistic Regression

```
Logistic Regression
```

```
: M LogReg = LogisticRegression(random_state = 2)
      LogReg.fit(x_train, y_train)
      logreg_acc = LogReg.score(x_test, y_test)
      print(logreg_acc)
      0.5059288537549407
y_train_pred_proba = LogReg.predict_proba(x_train)[::,1]
      y_test_pred_proba = LogReg.predict_proba(x_test)[::,1]
      auc_train = metrics.roc_auc_score(y_train, y_train_pred_proba)
      auc test = metrics.roc auc score(y test, y test pred proba)
      print("auc_train: ", auc_train)
      print("auc_test: ", auc_test)
      auc_train: 0.5581134814440798
      auc_test: 0.5511520160280491
|: N
      ypred_logreg = []
      for j in range(0, len(y test pred proba)):
          if y test pred proba[j] > 0.5:
              ypred_logreg.append(1)
          elif y_test_pred_proba[j] < 0.5:
              ypred_logreg.append(0)
      ypred_logreg = np.array(ypred_logreg)
      confusion_matrix(y_test, ypred_logreg)
      print(classification_report(y_test, ypred_logreg))
                    precision
                                 recall f1-score support
               0.0
                          0.43
                                   0.11
                                             0.17
                                                        121
                                   0.87
                                             0.65
                                                        132
                                                        253
           accuracy
                                             0.51
          macro avg
                          0.47
                                   0.49
                                             0.41
                                                        253
       weighted avg
                         0.48
                                   0.51
                                             0.42
                                                        253
```

```
'C' : np.logspace(-4,4,20),
      'solver': ['lbfgs', 'newton-cg', 'liblinear', 'sag', 'saga'],
      'max_iter' : [1, 10, 100,1000]
  clf_logreg = GridSearchCV(LogReg, param_grid = param_grid_logreg, cv = 3, verbose=True,n_jobs=-1)
  clf_logreg.fit(x_train, y_train)
  Fitting 3 folds for each of 1600 candidates, totalling 4800 fits
  [Parallel(n_jobs=-1)]: Using backend LokyBackend with 32 concurrent workers.
  [Parallel(n_jobs=-1)]: Done 136 tasks
                                           | elapsed: 37.1s
  [Parallel(n_jobs=-1)]: Done 386 tasks
                                             elansed: 39.1s
  [Parallel(n_jobs=-1)]: Done 736 tasks
                                            elapsed: 41.9s
  [Parallel(n_jobs=-1)]: Done 1186 tasks
                                            elapsed: 45.5s
  [Parallel(n_jobs=-1)]: Done 1736 tasks
                                            | elapsed: 49.9s
  [Parallel(n_jobs=-1)]: Done 2386 tasks
                                            elapsed: 55.5s
  [Parallel(n_jobs=-1)]: Done 3136 tasks
                                            | elapsed: 1.0min
  [Parallel(n_jobs=-1)]: Done 3986 tasks
                                            elapsed: 1.1min
  [Parallel(n_jobs=-1)]: Done 4800 out of 4800 | elapsed: 1.3min finished
  GridSearchCV(cv=3, error_score=nan,
              estimator=LogisticRegression(C=1.0, class_weight=None, dual=False,
                                          fit_intercept=True,
                                          intercept_scaling=1, l1_ratio=None,
                                          max iter=100, multi class='auto',
                                          n jobs=None, penalty='12',
                                          random_state=2, solver='lbfgs',
                                          tol=0.0001, verbose=0.
                                          warm_start=False),
              iid='deprecated', n_jobs=-1,
              param_grid=[{'C': array([1.00000000e-04, 2.63665...
        2.33572147e-01, 6.15848211e-01, 1.62377674e+00, 4.28133240e+00,
        1.12883789e+01, 2.97635144e+01, 7.84759970e+01, 2.06913808e+02,
        5.45559478e+02, 1.43844989e+03, 3.79269019e+03, 1.00000000e+04]),
                           'max_iter': [1, 10, 100, 1000],
                           'penalty': ['11', '12', 'elasticnet', 'none'],
                            'solver': ['lbfgs', 'newton-cg', 'liblinear', 'sag',
                                      'saga']}],
               pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
              scoring=None, verbose=True)
print("best score: ", clf logreg.best score )
 print("best param: ", clf_logreg.best_params_)
  best score: 0.5693208044840093
  best param: {'C': 0.004832930238571752, 'max_iter': 1, 'penalty': '12', 'solver': 'saga'}
| LogReg_V2 = LogisticRegression(C =0.004832930238571752, max_iter = 1, penalty = '12', solver = 'saga', random_state = 3).fit
 y_train_pred_proba_v2 = LogReg_V2.predict_proba(x_train)[::,1]
  y_test_pred_proba_v2 = LogReg_V2.predict_proba(x_test)[::,1]
  auc_train_v2 = metrics.roc_auc_score(y_train, y_train_pred_proba_v2)
  auc_test_v2 = metrics.roc_auc_score(y_test, y_test_pred_proba_v2)
  print("auc_train: ", auc_train)
  print("auc_test: ", auc_test)
  auc_train: 0.5581134814440798
  auc_test: 0.5511520160280491
```


Models

Logistic Regression, with P hacking

The plan is to start with all initial predictors, fit them into a logistic regression model with train data, throw away all the ones with insignificant p values, repeat these steps until all the lasting predictors have significant p values. Standard 0.05 is used as significance level.

Logistic regression summaries, including p values, are easier to see using statsmodels than sklearn.

Data Re-Exploration: Imputing Nas with Median Values

5.0, 1.0, 2.0, 3.0,

```
M list(len(Processed gold df) - x df.describe().loc['count'])
: [0.0,
  0.0,
  0.0,
  0.0.
  0.0.
  0.0,
  0.0.
                                                      It seems that there are columns with sizeable NAs, let's broadly impute them with median values
  0.0,
  0.0,
  0.0,
                                                        M features = Processed_gold_df.columns
  0.0,
  0.0.
                                                           imputer = SimpleImputer(strategy = 'median')
  32.0,
                                                           Processed gold df[features] = pd.DataFrame(imputer.fit transform(Processed gold df[features]), columns = features)
  31.0,
  33.0,
  31.0,
                                                           x p df = Processed gold df.drop(['Gold Price D+1 Direction'], axis = 1)
  32.0,
  76.0,
  76.0,
                                                           object = StandardScaler()
  1.0,
  2.0,
                                                           x p df scale = object.fit transform(x p df)
  3.0,
                                                          v p df = Processed gold df['Gold Price D+1 Direction']
  4.0,
  5.0,
  1.0,
                                                           \#x p arr = np.asarray(x p df scale)
  2.0,
                                                           \#y p arr = np.asarray(y p df)
  3.0,
  4.0,
  5.0,
                                                           x p train, x p test, y p train, y p test = train test split(x p df scale, y p df, random state = 5, test size = 0.20, shuff]
  1.0,
  2.0,
  3.0,
  4.0,
  5.0.
  1.0,
  2.0,
  3.0,
  4.0,
  5.0,
  1.0,
  2.0,
  3.0,
  4.0,
```

Fitting into a Logistic Regression Model: Iteration 1

random.seed(6)

LogReg_p_1 = sm.Logit(y_p_train, x_p_train).fit()
LogReg_p_1.summary()

Optimization terminated successfully.

Current function value: 0.644352

Logit Regression Results

Iterations 7

Dep. Variable:	${\sf Gold_Price_D+1_Direction}$	No. Observations:	1010
Model:	Logit	Df Residuals:	904
Method:	MLE	Df Model:	105
Date:	Fri, 06 Dec 2024	Pseudo R-squ.:	0.06678
Time:	05:51:43	Log-Likelihood:	-650.80
converged:	True	LL-Null:	-697.37
Covariance Type:	nonrobust	LLR p-value:	0.7896

	coef	std err	Z	P> z	[0.025	0.975]
x1	-0.0724	0.163	-0.443	0.658	-0.392	0.248
x2	0.0304	0.100	0.304	0.761	-0.166	0.227
x 3	-0.2931	0.522	-0.561	0.574	-1.316	0.730
x4	-1.7673	1.032	-1.713	0.087	-3.789	0.254
x5	-0.2436	0.142	-1.718	0.086	-0.521	0.034
x6	0.9593	0.810	1.185	0.236	-0.628	2.546
x7	0.0312	0.118	0.265	0.791	-0.200	0.263
x 8	0.8819	0.705	1.251	0.211	-0.500	2.264
x9	-0.0431	0.097	-0.443	0.658	-0.234	0.148
x10	2.0335	1.216	1.672	0.095	-0.350	4.417
x11	0.2490	0.997	0.250	0.803	-1.705	2.203
x12	4.4391	1.972	2.251	0.024	0.574	8.304
x13	4.4560	3.410	1.307	0.191	-2.228	11.140
x14	-3.0678	1.930	-1.589	0.112	-6.852	0.716
x15	-0.1913	0.156	-1.224	0.221	-0.497	0.115
x16	-1.4331	1.808	-0.793	0.428	-4.976	2.110
x17	0.1224	0.177	0.693	0.488	-0.224	0.469
x18	-0.2899	0.277	-1.045	0.296	-0.833	0.254
x19	0.1786	0.128	1.397	0.162	-0.072	0.429
x20	1.5692	1.261	1.244	0.214	-0.903	4.042
x21	1.0914	1.160	0.941	0.347	-1.182	3.364
x22	-0.9464	1.153	-0.821	0.412	-3.208	1.313
x23	1.1230	1.250	0.898	0.369	-1.328	3.574
x24	-1.4126	0.995	-1.419	0.156	-3.384	0.538

x25	0.3081	0.171	1.805	0.071	-0.026	0.643
x26	0.0604	0.165	0.365	0.715	-0.264	0.385
x27	-0.2869	0.181	-1.589	0.112	-0.641	0.067
x28	0.2351	0.167	1.405	0.160	-0.093	0.563
x29	-0.0601	0.137	-0.438	0.661	-0.329	0.209
x30	-1.6797	1.117	-1.504	0.132	-3.868	0.509
x31	0.2818	1.151	0.245	0.807	-1.975	2.538
x32	1.5245	1.148	1.328	0.184	-0.725	3.774
x33	-1.9393	1.156	-1.678	0.093	-4.204	0.326
x34	0.6491	0.800	0.811	0.417	-0.919	2.218
x35	-0.0612	0.124	-0.494	0.621	-0.304	0.181
x36	-0.0309	0.129	-0.240	0.810	-0.283	0.222
x37	0.0109	0.127	0.085	0.932	-0.239	0.261
x38	-0.1396	0.126	-1.110	0.267	-0.386	0.107
x39	0.0907	0.109	0.831	0.406	-0.123	0.305
x40	-1.5041	0.925	-1.626	0.104	-3.317	0.309
x41	-0.4946	0.957	-0.517	0.605	-2.370	1.381
x42	0.0788	0.973	0.079	0.937	-1.830	1.983
x43	0.2738	0.979	0.280	0.780	-1.644	2.192
x44	0.7134	0.736	0.970	0.332	-0.728	2.155
x45	-0.0829	0.110	-0.756	0.450	-0.298	0.132
x46	0.0111	0.113	0.098	0.922	-0.210	0.232
x47	0.1290	0.111	1.165	0.244	-0.088	0.346
x48	0.0080	0.111	0.072	0.942	-0.209	0.225
x49	-0.1329	0.097	-1.369	0.171	-0.323	0.057
x50	-2.0355	1.678	-1.213	0.225	-5.324	1.253
x51	-0.6485	1.648	-0.393	0.694	-3.879	2.582
x52	1.7708	1.676	1.056	0.291	-1.514	5.056
x53	0.8635	1.670	0.517	0.605	-2.410	4.137
x54	-1.1192	1.242	-0.901	0.367	-3.553	1.315
x55	-1.4047	1.389	-1.011	0.312	-4.128	1.318

XJ6	-0.0174	1.040	-0.013	0.880	-2.000	2.010
x57	0.6267	1.362	0.460	0.645	-2.043	3.297
x58	-0.9011	1.376	-0.655	0.513	-3.599	1.796
x59	0.8144	0.987	0.826	0.409	-1.119	2.748
x60	-3.9018	2.458	-1.587	0.112	-8.720	0.916
x61	-0.7761	2.094	-0.371	0.711	-4.880	3.328
x62	1.3683	2.106	0.650	0.516	-2.759	5.496
x63	0.7202	2.457	0.293	0.769	-4.095	5.536
x64	-1.3251	1.986	-0.667	0.505	-5.217	2.567
x65	5.5306					
x66	-1.2038	3.798	-0.317	0.751	-8.647	6.239
x67	2.0096	4.241	0.474	0.636	-6.303	10.322
x68	-8.1163	4.085	-1.987	0.047	-16.123	-0.109
x69	1.1915	3.365	0.354	0.723	-5.405	7.788
x70	-2.2305	2.031	-1.098	0.272	-6.212	1.751
x71	0.1156					
x72	-0.5564	2.370	-0.235	0.814	-5.202	4.089
x73	4.8475	2.312	2.097	0.036		
x74	-1.0231	1.883	-0.543	0.587	-4.713	2.667
x75	0.0619	0.159	0.389	0.697		
x76	0.1778	0.158	1.128	0.259	-0.131	0.487
x77	-0.1096	0.160	-0.684	0.494	-0.423	0.204
x78	0.0488	0.160	0.308	0.760	-0.264	0.382
	-0.1827					0.142
x80	-2.9566	2.120	-1.395	0.163	-7.112	1.198
x81	1.3597				-2.724	5.443
x82	-1.1028	2.187	-0.504	0.614	-5.389	3.183
	3.4618					
x84	-0.4764	1.757	-0.271	0.788	-3.921	2.968
	-0.1773					
x86	-0.0473	0.183	-0.258	0.797	-0.407	0.312
x87	0.0109	0.189	0.058	0.954	-0.359	0.381

x56 -0.0174 1.343 -0.013 0.990 -2.650 2.616

x88	0.1366	0.179	0.761	0.446	-0.215	0.488
x89	0.1197	0.181	0.662	0.508	-0.234	0.474
x90	0.0439	0.310	0.142	0.887	-0.563	0.651
x91	-0.0633	0.317	-0.199	0.842	-0.685	0.559
x92	-0.3506	0.283	-1.238	0.216	-0.906	0.205
x93	0.0914	0.263	0.347	0.728	-0.424	0.607
x94	0.2360	0.264	0.893	0.372	-0.282	0.754
x95	-0.0643	0.135	-0.475	0.635	-0.329	0.201
x96	-0.0156	0.140	-0.111	0.911	-0.290	0.259
x97	0.2441	0.143	1.712	0.087	-0.035	0.524
x98	-0.3077	0.134	-2.302	0.021	-0.570	-0.046
x99	0.0481	0.118	0.409	0.683	-0.182	0.278
x100	0.0255	0.078	0.325	0.745	-0.128	0.179
x101	0.0236	0.069	0.339	0.734	-0.113	0.160
x102	-0.1215	0.075	-1.613	0.107	-0.269	0.026
x103	-0.0803	0.099	-0.809	0.418	-0.275	0.114
x104	0.0012	0.098	0.012	0.990	-0.191	0.193
x105	-0.0500	0.102	-0.492	0.623	-0.249	0.149
x106	0.0071	0.101	0.070	0.944	-0.191	0.205

Fitting into a Logistic Regression Model: Iteration 1

```
x88 0.1366 0.179 0.761 0.446 -0.215 0.488
                                                           x25 0.3081 0.171 1.805 0.071 -0.026 0.643
                                                                                                                x56 -0.0174 1.343 -0.013 0.990 -2.850 2.818
                                                                                                                                                                            x89 0.1197 0.181 0.662 0.508 -0.234 0.474
                                                           x26 0.0804 0.185 0.385 0.715 -0.284 0.385
logReg.p_1 = sm.logit(y_p_train, x_p_train).fit()
logReg.p_1.summarv()
                                                                                                                  x57 0.8287 1.382 0.480 0.845 -2.043 3.297
                                                                                                                                                                            x90 0.0439 0.310 0.142 0.887 -0.563 0.651
                                                           x27 -0.2869 0.181 -1.589 0.112 -0.641 0.067
                                                                                                                  *58 -0.9011 1.378 -0.855 0.512 -3.599 1.798
                                                                                                                                                                            x91 -0.0033 0.317 -0.199 0.842 -0.685 0.559
                                                                                                                   ¥59 0.8144 0.987 0.826 0.409 -1.119 2.748
                                                           x28 0.2351 0.167 1.405 0.160 -0.093 0.563
                                                                                                                                                                            x92 -0.3506 0.283 -1.238 0.216 -0.906 0.205
                                                                                                                   x60 -3.9018 2.458 -1.587 0.112 -8.720 0.918
                                                                                                                                                                            x92 0.0014 0.263 0.347 0.728 .0.424 0.607
                                                           x30 -1.8797 1.117 -1.504 0.132 -3.888 0.509
                                                                                                                   x61 -0.7781 2.094 -0.371 0.711 -4.880 3.328
                                                                                                                                                                            x94 0.2360 0.264 0.893 0.372 -0.282 0.764
                                                                                                                   x62 1.3883 2.108 0.850 0.518 -2.759 5.498
 Den Variable: Gold Price Cult Director: No Observations: 1010
                                                           x31 0 2818 1 151 0 245 0 807 -1 975 2 538
                                                                                                                                                                            x95 -0.0843 0.135 -0.475 0.835 -0.329 0.201
     Model: Logit Df Residuals: 904
Method: MLE Df Model: 105
                                                                                                                   x63 0.7202 2.457 0.293 0.769 -4.095 5.538
                                                           x32 1.5245 1.148 1.328 0.184 -0.725 3.774
                                                                                                                   x64 -1.3251 1.988 -0.887 0.505 -5.217 2.587
                                                                                                                                                                            x96 -0.0156 0.140 -0.111 0.911 -0.290 0.259
      Date: Fri. 00 Dec 2024 Pseudo R-squ: 0.00078
Time: 00.51143 Log-Likelihood: -050.80
                                                           x33 -1.9393 1.156 -1.678 0.093 -4.204 0.326
                                                                                                                                                                            x97 0.2441 0.143 1.712 0.087 -0.035 0.524
                                                                                                                   x65 5.5306 3.782 1.462 0.144 -1.882 12.943
                                                           x34 0.6491 0.800 0.811 0.417 -0.919 2.218
                                                                                                                                                                            ¥98 -0.3077 0.134 -2.302 0.021 -0.570 -0.048
                                                                                                                 x66 -1.2038 3.798 -0.317 0.751 -8.847 6.239
                                                           x35 -0.0812 0.124 -0.494 0.821 -0.304 0.181
                                                                                                                                                                            x99 0.0481 0.118 0.409 0.883 -0.182 0.278
                                                           x36 -0.0309 0.129 -0.240 0.810 -0.283 0.222
                                                                                                                                                                            x100 0.0255 0.078 0.325 0.745 -0.128 0.179
                                                                                                                   x68 -8.1163 4.085 -1.987 0.047 -18.123 -0.109
                                                           x37 0.0109 0.127 0.085 0.932 -0.239 0.261
                                                                                                                                                                            x101 0.0236 0.069 0.339 0.734 -0.113 0.160
                                                                                                                                                                            x102 -0.1215 0.075 -1.613 0.107 -0.269 0.026
 #2 0.0304 0.100 0.304 0.761 -0.166 0.227
                                                                                                                  x70 -2.2305 2.031 -1.098 0.272 -6.212 1.751
                                                           x39 0.0907 0.109 0.831 0.408 -0.123 0.305
                                                                                                                                                                            ¥103 -0.0803 0.099 -0.809 0.418 -0.275 0.114
 a4 -17672 1032 -1713 0087 -3.789 0.254
                                                                                                                                                                            VIDE 0.0012 0.008 0.012 0.000 J. 101 0.103
                                                          x40 -1.5041 0.925 -1.628 0.104 -3.317 0.309
                                                                                                                                                                            x105 -0.0500 0.102 -0.492 0.823 -0.249 0.149
                                                           x41 -0.4946 0.957 -0.517 0.605 -2.370 1.381
 #6 0.9593 0.810 1.185 0.236 -0.828 2.546
                                                                                                                                                                            x106 0.0071 0.101 0.070 0.944 -0.191 0.205
                                                          x42 0.0788 0.973 0.079 0.937 -1.830 1.983
 #8 0.8819 0.705 1.281 0.211 -0.500 2.264
                                                           x43 0.2738 0.979 0.280 0.780 -1.644 2.192
                                                                                                                   x75 0.0619 0.159 0.389 0.697 -0.250 0.374
#9 -0.0431 0.007 -0.443 0.858 -0.234 0.148
#10 2.0335 1.216 1.872 0.095 -0.350 4.417
                                                         x44 0.7134 0.736 0.970 0.332 -0.728 2.155
                                                                                                                 x76 0.1778 0.158 1.128 0.259 -0.131 0.487
                                                          x45 _0.0829 0.110 _0.768 0.450 _0.298 0.132
                                                                                                                   x77 -0.1098 0.180 -0.884 0.494 -0.423 0.204
#12 4.4391 1.972 2.251 0.024 0.574 8.304
#13 4.4500 3.410 1.307 0.191 -2.228 11.140
                                                           x46 0.0111 0.113 0.098 0.922 -0.210 0.232
                                                                                                                  x78 0.0488 0.160 0.306 0.760 -0.264 0.382
                                                                                                                   x79 -0.1827 0.158 -1.045 0.298 -0.488 0.142
                                                           x47 0.1290 0.111 1.185 0.244 -0.088 0.348
                                                       x48 0.0080 0.111 0.072 0.942 -0.209 0.225
                                                                                                                  x80 -2.9588 2.120 -1.395 0.183 -7.112 1.198
#15 -0 1913 0.158 -1.224 0.221 -0.497 0.115
 #16 -1.4331 1.808 -0.793 0.428 -4.976 2.110
                                                                                                                   x81 1.3597 2.083 0.853 0.514 -2.724 5.443
                                                          x49 -0.1329 0.097 -1.369 0.171 -0.323 0.057
 #17 0.1224 0.177 0.893 0.482 -0.224 0.469
                                                                                                                  x82 -1 1028 2 187 -0 504 0 614 -5 389 3 183
                                                          x50 -2.0355 1.678 -1.213 0.225 -5.324 1.253
x18 -0.2899 0.277 -1.045 0.295 -0.833 0.254
                                                                                                                   ¥83 3.4818 2.087 1.850 0.007 _0.820 7.553
                                                           x51 -0.8485 1.848 -0.393 0.894 -3.879 2.582
x19 0.1786 0.128 1.397 0.162 -0.072 0.429
                                                                                                                 x84 -0.4784 1.757 -0.271 0.786 -3.921 2.988
#20 15692 1261 1244 0214 0300 4.042
                                                          x52 1.7708 1.676 1.056 0.291 -1.514 5.056
                                                                                                                   x85 -0.1773 0.191 -0.928 0.354 -0.552 0.197
                                                       x53 0.8835 1.870 0.517 0.805 -2.410 4.137
                                                                                                                 x86 -0.0473 0.183 -0.258 0.797 -0.407 0.312
#22 -0.9464 1.163 -0.821 0.412 -3.206 1.313
                                                        x54 -1.1192 1.242 -0.901 0.387 -3.553 1.315
                                                                                                                  x87 0.0109 0.189 0.058 0.954 -0.359 0.381
x24 -1.4128 0.995 -1.419 0.155 -3.584 0.538
                                                           x55 -1.4047 1.389 -1.011 0.312 -4.128 1.318
```

```
#https://www.statology.org/statsmodels-linear-regression-p-value/
for predictors_idx in range(0, len(x_p_df.columns)):
    if LogReg_p_1.pvalues[predictors_idx] < 0.05:
        signi_pred_p_1.append(x_p_df.columns[predictors_idx])

print(signi_pred_p_1)

['USDJPY_Price_Avg', 'S&P_Price_Avg_D-4', 'Nasdaq_Price_Avg_D-4', 'Nikkei_Vol._D-4']</pre>
```


Fitting into a Logistic Regression Model: Iteration 2

```
M signi_pred_p_1 = []
#https://www.statology.org/statsmodels-linear-regression-p-value/
for predictors_idx in range(0, len(x_p_df.columns)):
    if LogReg_p_1.pvalues[predictors_idx] < 0.05:
        signi_pred_p_1.append(x_p_df.columns[predictors|idx])
print(signi_pred_p_1)
['USDJPY_Price_Avg', 'S&P_Price_Avg_D-4', 'Nasdaq_Price_Avg_D-4', 'Nikkei_Vol._D-4']</pre>
```

Logit Regression Results

1010	servations:	No. O	Direction	e_D+1_l	iold_Price	able: G	Dep. Vari	- 1
1006	f Residuals:	D	Logit			odel:	M	
3	Df Model:	MLE Df Model:			thod:	Met		
-0.002624	udo R-squ.:	Pse	Fri, 06 Dec 2024			Date:		
-699.20	-Likelihood:	Log	05:52:14			Time:		
-897.37	LL-Null:		True			rged:	conve	
1.000	.LR p-value:	L	nonrobust		Covariance Type:		Cov	
		0.975]	[0.025	P> z	Z	std err	coef	
		0.111	-0.249	0.451	-0.754	0.092	-0.0691	x1

Fitting into a Logistic Regression Model: Iteration 2

```
#https://www.statology.org/statsmodels-linear-regression-p-value/
for predictors_idx in range(0, len(x_p_df.columns)):
    if LogReg_p_1.pvalues[predictors_idx] < 0.05:
        signi_pred_p_1.append(x_p_df.columns[predictors_idx])

print(signi_pred_p_1)

['USDJPY_Price_Avg', 'S&P_Price_Avg_D-4', 'Nasdaq_Price_Avg_D-4', 'Nikkei_Vol._D-4']</pre>
```

Logit Regression Results

Dep. Variable:	Gold_Price_D+1_Direction	No. Observations:	1010
Model:	Logit	Df Residuals:	1006
Method:	MLE	Df Model:	3
Date:	Fri, 06 Dec 2024	Pseudo R-squ.:	-0.002624
Time:	05:52:14	Log-Likelihood:	-699.20
converged:	True	LL-Null:	-697.37
Covariance Type:	nonrobust	LLR p-value:	1.000

	coef	std err	Z	P> z	[0.025	0.975]
x1	-0.0691	0.092	-0.754	0.451	-0.249	0.111
x2	0.0958	0.337	0.284	0.776	-0.565	0.756
x3	-0.0485	0.321	-0.151	0.880	-0.679	0.581
x4	-0.0527	0.075	-0.699	0.484	-0.201	0.095

None of the predictors is significant

Model	AUC	Accuracy	Precision	Recall	F1 score
Logistic Regression	0.551	0.506	0.520	0.870	0.650
Logistic Regression, Hyperparameter tuned	0.551	0.522	0.520	0.900	0.660
Decision Tree	0.505	0.522	0.530	0.870	0.660
Decision Tree, Hyperparameter tuned	0.505	0.522	0.530	0.870	0.660
Random Forest		0.530	0.530	1.000	0.690
Random Forest, Hyperparameter tuned		0.530	0.530	1.000	0.690
KNN, BallPark	-	0.553	0.550	0.650	0.600
KNN, SKLearn	0.526	0.553	0.550	0.580	0.560
SVM		0.522	0.520	1.000	0.690
SVM, Hyperparameter tuned	0.500	0.534	0.530	0.970	0.680
Logistic Regression, with a backing		_			

Model	AUC	Accuracy	Precision	Recall	F1 score
Logistic Regression	0.551	0.506	0.520	0.870	0.650
Logistic Regression, Hyperparameter tuned	0.551	0.522	0.520	0.900	0.660
Decision Tree	0.505	0.522	0.530	0.870	0.660
Decision Tree, Hyperparameter tuned	0.505	0.522	0.530	0.870	0.660
Random Forest		0.530	0.530	1.000	0.690
Random Forest, Hyperparameter tuned		0.530	0.530	1.000	0.690
KNN, BallPark	-	0.553	0.550	0.650	0.600
KNN, SKLearn	0.526	0.553	0.550	0.580	0.560
SVM		0.522	0.520	1.000	0.690
SVM, Hyperparameter tuned	0.500	0.534	0.530	0.970	0.680
Logistic Regression, with p hacking		-			

Area Under Curve AUC

The probability that the model, if given a randomly chosen positive and negative sample, will rank the positive higher than the negative.

Source

Model	AUC	Accuracy	Precision	Recall	F1 score
Logistic Regression	0.551	0.506	0.520	0.870	0.650
Logistic Regression, Hyperparameter tuned	0.551	0.522	0.520	0.900	0.660
Decision Tree	0.505	0.522	0.530	0.870	0.660
Decision Tree, Hyperparameter tuned	0.505	0.522	0.530	0.870	0.660
Random Forest		0.530	0.530	1.000	0.690
Random Forest, Hyperparameter tuned		0.530	0.530	1.000	0.690
KNN, BallPark	-	0.553	0.550	0.650	0.600
KNN, SKLearn	0.526	0.553	0.550	0.580	0.560
SVM		0.522	0.520	1.000	0.690
SVM, Hyperparameter tuned	0.500	0.534	0.530	0.970	0.680
Logistic Regression, with p hacking		-			

0.5352335708630246

Area Under Curve AUC

The probability that the model, if given a randomly chosen positive and negative sample, will rank the positive higher than the negative.

Source

Model	AUC	Accuracy	Precision	Recall	F1 score
Logistic Regression	0.551	0.506	0.520	0.870	0.650
Logistic Regression, Hyperparameter tuned	0.551	0.522	0.520	0.900	0.660
Decision Tree	0.505	0.522	0.530	0.870	0.660
Decision Tree, Hyperparameter tuned	0.505	0.522	0.530	0.870	0.660
Random Forest		0.530	0.530	1.000	0.690
Random Forest, Hyperparameter tuned		0.530	0.530	1.000	0.690
KNN, BallPark	-	0.553	0.550	0.650	0.600
KNN, SKLearn	0.526	0.553	0.550	0.580	0.560
SVM		0.522	0.520	1.000	0.690
SVM, Hyperparameter tuned	0.500	0.534	0.530	0.970	0.680
Logistic Regression, with p hacking		-			

Accuracy

The proportion of all classification that were correct whether positive or negative.

Source

Model	AUC	Accuracy	Precision	Recall	F1 score
Logistic Regression	0.551	0.506	0.520	0.870	0.650
Logistic Regression, Hyperparameter tuned	0.551	0.522	0.520	0.900	0.660
Decision Tree	0.505	0.522	0.530	0.870	0.660
Decision Tree, Hyperparameter tuned	0.505	0.522	0.530	0.870	0.660
Random Forest		0.530	0.530	1.000	0.690
Random Forest, Hyperparameter tuned		0.530	0.530	1.000	0.690
KNN, BallPark	-	0.553	0.550	0.650	0.600
KNN, SKLearn	0.526	0.553	0.550	0.580	0.560
SVM		0.522	0.520	1.000	0.690
SVM, Hyperparameter tuned	0.500	0.534	0.530	0.970	0.680
Logistic Regression, with p hacking		-			

Recall, True Positive Rate

The proportion of all actual positives that were correctly classified as positives.

Comments

This metric is almost useless in trading.

Instead of the probability of positive prediction given actual positive value as indicated by recall, the reverse is more desirable - the probability of actual positive given positive prediction

Source

Model	AUC	Accuracy	Precision	Recall	F1 score
Logistic Regression	0.551	0.506	0.520	0.870	0.650
Logistic Regression, Hyperparameter tuned	0.551	0.522	0.520	0.900	0.660
Decision Tree	0.505	0.522	0.530	0.870	0.660
Decision Tree, Hyperparameter tuned	0.505	0.522	0.530	0.870	0.660
Random Forest		0.530	0.530	1.000	0.690
Random Forest, Hyperparameter tuned		0.530	0.530	1.000	0.690
KNN, BallPark	-	0.553	0.550	0.650	0.600
KNN, SKLearn	0.526	0.553	0.550	0.580	0.560
SVM		0.522	0.520	1.000	0.690
SVM, Hyperparameter tuned	0.500	0.534	0.530	0.970	0.680
Logistic Regression, with p hacking		-			

Precision

The proportion of all the models' positive classifications that are actually positive.

Source

Model	AUC	Accuracy	Precision	Recall	F1 score
Logistic Regression	0.551	0.506	0.520	0.870	0.650
Logistic Regression, Hyperparameter tuned	0.551	0.522	0.520	0.900	0.660
Decision Tree	0.505	0.522	0.530	0.870	0.660
Decision Tree, Hyperparameter tuned	0.505	0.522	0.530	0.870	0.660
Random Forest		0.530	0.530	1.000	0.690
Random Forest, Hyperparameter tuned		0.530	0.530	1.000	0.690
KNN, BallPark	-	0.553	0.550	0.650	0.600
KNN, SKLearn	0.526	0.553	0.550	0.580	0.560
SVM		0.522	0.520	1.000	0.690
SVM, Hyperparameter tuned	0.500	0.534	0.530	0.970	0.680
Logistic Regression, with p hacking		-			

F1 Score

The harmonic mean (a kind of average) of precision and recall.

Comments

This metric is normally used in datasets that are imbalanced.

Also, since traders are not usually interested in recall, we can ignore this metric

Source

Conclusions

Model	AUC	Accuracy	Precision	Recall	F1 score
Logistic Regression	0.551	0.506	0.520	0.870	0.650
Logistic Regression, Hyperparameter tuned	0.551	0.522	0.520	0.900	0.660
Decision Tree	0.505	0.522	0.530	0.870	0.660
Decision Tree, Hyperparameter tuned	0.505	0.522	0.530	0.870	0.660
Random Forest		0.530	0.530	1.000	0.690
Random Forest, Hyperparameter tuned		0.530	0.530	1.000	0.690
KNN, BallPark	-	0.553	0.550	0.650	0.600
KNN, SKLearn	0.526	0.553	0.550	0.580	0.560
SVM		0.522	0.520	1.000	0.690
SVM, Hyperparameter tuned	0.500	0.534	0.530	0.970	0.680
Logistic Regression, with p hacking		-			

• The result is depressing

Conclusions

Model	AUC	Accuracy	Precision	Recall	F1 score
Logistic Regression	0.551	0.506	0.520	0.870	0.650
Logistic Regression, Hyperparameter tuned	0.551	0.522	0.520	0.900	0.660
Decision Tree	0.505	0.522	0.530	0.870	0.660
Decision Tree, Hyperparameter tuned	0.505	0.522	0.530	0.870	0.660
Random Forest		0.530	0.530	1.000	0.690
Random Forest, Hyperparameter tuned		0.530	0.530	1.000	0.690
KNN, BallPark	-	0.553	0.550	0.650	0.600
KNN, SKLearn	0.526	0.553	0.550	0.580	0.560
SVM		0.522	0.520	1.000	0.690
SVM, Hyperparameter tuned	0.500	0.534	0.530	0.970	0.680
Logistic Regression, with p hacking		-			

- The result is depressing
- Even when doing LogReg with p hacking, none of the predictors seem to be significant

Conclusions

Model	AUC	Accuracy	Precision	Recall	F1 score
Logistic Regression	0.551	0.506	0.520	0.870	0.650
Logistic Regression, Hyperparameter tuned	0.551	0.522	0.520	0.900	0.660
Decision Tree	0.505	0.522	0.530	0.870	0.660
Decision Tree, Hyperparameter tuned	0.505	0.522	0.530	0.870	0.660
Random Forest		0.530	0.530	1.000	0.690
Random Forest, Hyperparameter tuned		0.530	0.530	1.000	0.690
KNN, BallPark	-	0.553	0.550	0.650	0.600
KNN, SKLearn	0.526	0.553	0.550	0.580	0.560
SVM		0.522	0.520	1.000	0.690
SVM, Hyperparameter tuned	0.500	0.534	0.530	0.970	0.680
Logistic Regression, with p hacking		-			

- The result is depressing
- Even when doing LogReg with p hacking, none of the predictors seem to be significant:
 - Not enough predictors
 - Wrong predictors

Rooms for Improvements

Image Source:

https://www.investing.com/etfs/etfs---physical-gold?cid=47101

https://www.investing.com/etfs/etfs---physical-gold-historical-data?cid=47101

Thank you

