Examenul de bacalaureat național 2016 Proba E. c) Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{1}{3} - \frac{1}{4} = \frac{1}{12}$	3p
	$\frac{1}{12}:\frac{1}{12}=1$	2p
2.	$x_1 + x_2 = 5$, $x_1 x_2 = 6$	2p
	$4(x_1 + x_2) - 3x_1x_2 = 4 \cdot 5 - 3 \cdot 6 = 2$	3p
3.	x-1=4	3p
	x = 5, care verifică ecuația	2p
4.	$p-10\% \cdot p = 90$, unde p este prețul obiectului înainte de ieftinire	3p
	p = 100 de lei	2p
5.	$AB = \sqrt{(3-5)^2 + (1-1)^2} =$	3p
	=2	2p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{4}{5}\right)^2 = \frac{9}{25}$	3p
	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\sin x = \frac{3}{5}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} = 2 \cdot 2 - 3 \cdot 3 =$	3p
	=4-9=-5	2p
b)	$A \cdot B = \begin{pmatrix} 2x+3 & 2+3x \\ 3x+2 & 3+2x \end{pmatrix}$	2p
	$B \cdot A = \begin{pmatrix} 2x+3 & 3x+2 \\ 2+3x & 3+2x \end{pmatrix} = A \cdot B$, pentru orice număr real x	3p
c)	$A \cdot A = \begin{pmatrix} 13 & 12 \\ 12 & 13 \end{pmatrix}, \ A + B = \begin{pmatrix} 2+x & 4 \\ 4 & 2+x \end{pmatrix}$	2p
	$A \cdot A - 3(A+B) = I_2 \Leftrightarrow \begin{pmatrix} 13 - 3(2+x) & 12 - 12 \\ 12 - 12 & 13 - 3(2+x) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \text{ de unde obținem } x = 2$	3 p
2.a)	$1*(-3) = \frac{1}{3} \cdot 1 \cdot (-3) + 1 + (-3) =$	3p
	=-1+1+(-3)=-3	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

b)	$x * y = \frac{1}{3}xy + x + y + 3 - 3 = \frac{1}{3}(xy + 3x + 3y + 9) - 3 =$	3p
	$= \frac{1}{3}(x(y+3)+3(y+3))-3 = \frac{1}{3}(x+3)(y+3)-3$, pentru orice numere reale x şi y	2p
c)	$\left[\frac{1}{3}(x+3)\left(\frac{1}{x}+3\right)-3=-3 \Leftrightarrow (x+3)\left(\frac{1}{x}+3\right)=0\right]$	3 p
	$x = -3 \text{ sau } x = -\frac{1}{3}$	2 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 3x^2 - 3 =$	3p
	$=3(x^2-1)=3(x-1)(x+1), x \in \mathbb{R}$	2p
b)	$\lim_{x \to 0} \frac{f(x) + 3x}{x} = \lim_{x \to 0} \frac{x^3}{x} =$	2 p
	$= \lim_{x \to 0} x^2 = 0$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = -1 \text{ sau } x = 1$	2p
	$x \in [-1,1] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $[-1,1]$	1p
	$x \in [1, +\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[1, +\infty)$	1p
	Cum $f(1) = -2$, obţinem $f(x) \ge -2$, pentru orice $x \in [-1, +\infty)$	1p
2.a)	$\int_{0}^{1} (f(x) - x - 1) dx = \int_{0}^{1} (x^{4} + x + 1 - x - 1) dx = \int_{0}^{1} x^{4} dx =$	2 p
	$=\frac{x^5}{5}\bigg _0^1 = \frac{1}{5} - 0 = \frac{1}{5}$	3 p
b)	$\int_{1}^{e} (f(x) - x^{4} - 1) \ln x dx = \int_{1}^{e} x \ln x dx = \frac{x^{2}}{2} \ln x \bigg _{1}^{e} - \int_{1}^{e} \frac{x^{2}}{2} \cdot \frac{1}{x} dx =$	3 p
	$= \frac{e^2}{2} - \frac{1}{2} \int_{1}^{e} x dx = \frac{e^2}{2} - \frac{e^2}{4} + \frac{1}{4} = \frac{e^2 + 1}{4}$	2p
c)	$\mathcal{A} = \int_{0}^{1} f(x) dx = \int_{0}^{1} (x^{4} + x + 1) dx = \frac{x^{5}}{5} \left \frac{1}{0} + \frac{x^{2}}{2} \right \frac{1}{0} + x \left \frac{1}{0} \right =$	3 p
	$=\frac{1}{5}+\frac{1}{2}+1=\frac{17}{10}$	2 p