Question 1:

A) 1.
$$1001011_{1} - 1\cdot 2^{7} + 0\cdot 2^{6} + 0\cdot 2^{8} + 1\cdot 2^{7} + 1\cdot 2^{3} + 0\cdot 2^{6} + 1\cdot 2^{7} + 1\cdot 2^{7}$$

- 111100101

3. 601A16 => 0110 1101 0001 10102

A = 10 +1.25 + 0.22 + 1.21 + 0.20 = 1010

D = 13 +> 1.2 + 1.2 + 0.2 + 1.2 = 1101 6 = 2 + 2 + 0 . 2 = 0110

Question 3: Convert to 8-bits two's complement

(A) 1)
$$124_{10} = 01111100$$
 year 2's comp

$$\frac{124}{-64} = \frac{60}{28} = \frac{28}{12} = \frac{12}{4} = \frac{4}{0}$$

$$\frac{2}{60} = \frac{2}{28} = \frac{12}{12} = \frac{4}{4} = \frac{2}{0}$$

$$\frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2}$$
(B) 1111100

2) $-124_{10} = 10000100$ Thir 2's comp

3)
$$109_{10} = 01101101_{\text{YBH 2's camp}}$$
 $109 \div 2 = 54R1 \quad 13 \div 2 \cdot 6R1 \quad 1 \div 2 \cdot 0R1$
 $54 \div 2 = 27R0 \quad 6 \div 2 = 3R0$
 $27 \div 2 = 13R1 \quad 3 \div 2 = 1R1$

4) $-79_{10} = 10110011_{\text{Ybir 2's comp}}$
 $79 \div 2 = 38R1 \quad 9 \div 2 = 4R1 \quad 1 \div 2 = 0R1$
 $38 \div 2 = 19R0 \quad 4 \div 2 = 2R0$
 $19 \div 2 = 9R1 \quad 2 \div 2 = 1R0$
 101001101
 11010011

$$\begin{array}{r}
1 \cdot 2^{1} + 1 \cdot 2^{2} + 1 \cdot 2^{5} + 1 \cdot 2^{6} + 1 \cdot 2^{7} \\
= 230 \\
11111111 \\
00011010 00011010 \\
1000000000 1 \cdot 2^{4} + 2^{3} + 2^{1} \\
= 26
\end{array}$$

3) 00101101 s bit 2's comp =
$$45_{10}$$

1.2° + 2° + 2° + 2° = 45
4) 10011110 olloword olloword + 10011110 olloword 2^{1} + 2^{5} + 2^{6} = 98

Grushen 4: b) £2, £23 (A) a) Exerix is an integer greater than I True True c) ExERIX is the square of an integer 3 d) (12),112) Pedra False F) {{(2333 e) {{ 21, {2, (2)}} False Palse b) {x1 \(\mathbf{L} \text{x} \) \(\mathbf{ (B) a) $x \in \{x\}$ True Truc False d) {x36 {(x3) e) # SEXJ F) & E 1x1 True True Palse (1) i. 1st is a subset of 2nd, not vice worsay (C) AEB and ASB Li. Neither is a subset of the other A= 22,33 lii. 18t is a subset of 2nd, not vice vasa B = {2,3,43 Guestion 5: B = {a,b,c,d,e, f,g,h} A= {a,b,c,d,e} a) AUB = la,b,c,d,o,f,g,h3 b) ANB . {a,b,c,d, e} c) A-B * & 3 d) B-A = Ef,g,h3 Question 6: b) (ANB) U (ANC) a) A (B-c)

a) (ANB) U (ANZ)

Question 7:

-1710 CBILC / = (AOB) II (AUC)												
				. *			, #					
A	B	C	BAC	AU(BAC)	AUB	AUC	(AUB) (AU					
1	1	1	1	ı	1	1	1					
i	i	0	0	1	!	!	1					
i	0	1	0	1 /	!	! /						
1	0	0	0	1 /	: 1		1					
ò	- !	1	1	. 1	- 1		1					
0000	ò	0	0	0	o l	ĭ	0					
	0	0	0 1	6 1	ŏ I	ÒΙ	0					
Columns for												
AU (BAC) and (AUB)A(AUC) are the same, thus the												
idantly is valid												
2 (0 12 12 (0) 1												

b) (B-A) U (C-A) = (BUC)-A

A	B	C	B-A	C-A	(B-A)UCC-A)	BUC	(BUC) - A					
000	100110	10101	00001	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1		0000					
0	0	0	0	0	\dot{o} 1	0	ò					

Columns for (B-A) U (C-A) and (BUC)-A are the same, thus the identity is valid

Question 8: Use set detinities

a) $A - B = \overline{B} - \overline{A}$ $A \cap \overline{B} = > \overline{B} \cap A$ and $\overline{B} - \overline{A} = \overline{B} \cap A$ (x-Y=XN\overline{T} (annutative railed $A - B = \overline{B} - \overline{A}$ b) $(A \cap B) \cup (A \cap \overline{B}) = A$ $A \cap (B \cup \overline{B})$ Distributive Laws $A \cap (U)$ Complement Laws $A \cap U = A$ Commence Laws A = A

() A - (B-c) = (A-B) () (A-E) A- (BNE) => AN(BNE) => (ANE) => (A-B) () (A-E) () (A-E) => (A-B) () (A-E) () (A-

4) AUC = BUC?

if A. {1,2,3} then C= E1,2,3,4,53 AUC= E42,5457 BUC= E42,545 B= £3,4,5}

Thus, AUC= C sent BUC= C but

A≠B

b) A∩C=B∩C?

if A: {1,2,33, B: £3,4,53 hom C= £33. AAC: £13, BAC: £13 AAC: C but AZB Att all elements in A are in B, vince BAC: C AUC: 8UC) and (AAC: BAC)?

Since each are false, his conclusion is also false A=B

AUC = BUC A BIC AUC | BUC Anc = Bnc

Question 10 1

$$0$$
 A_{i} and 0 A_{i}
 $i=1$
 $i=1$

 $\bigcap_{i=1}^{n} Ai = A_i \cap A_2 \cap A_3 \dots = [-1, \infty)$