Construct an angle with the indicated measure.

9. 45

10. 135

11. $22\frac{1}{2}$

- **12.** 105
- 13. Draw a segment \overline{AB} . Construct a segment \overline{XY} whose length equals $\frac{3}{4}AB$.
- **B** 14. a. Draw an acute triangle. Construct the perpendicular bisector of each side.
 - b. Do the perpendicular bisectors intersect in one point?
 - c. Repeat parts (a) and (b) using an obtuse triangle.
 - 15. a. Draw an acute triangle. Construct the three altitudes.
 - **b.** Do the lines that contain the altitudes intersect in one point?
 - c. Repeat parts (a) and (b) using an obtuse triangle.
 - 16. a. Draw a very large acute triangle. Construct the three medians.
 - b. Do the lines that contain the medians intersect in one point?
 - c. Repeat parts (a) and (b) using an obtuse triangle.

On your paper draw figures roughly like those shown. Use them in constructing the figures described in Exercises 17-24.

- 17. A parallelogram with an n° angle and sides of lengths a and b
- 18. A rectangle with sides of lengths a and b
- 19. A square with perimeter 2a
- **20.** A rhombus with diagonals of lengths a and b
- 21. A square with diagonals of length b
- 22. A segment of length $\sqrt{a^2 + b^2}$
- 23. A square with diagonals of length $b\sqrt{2}$
- **24.** A right triangle with hypotenuse of length a and one leg of length b
- C 25. Draw a segment and let its length be s. Construct a segment whose length is $s\sqrt{3}$.
 - **26.** Draw a diagram roughly like the one shown. Without laying your straightedge across any part of the lake, construct more of \overrightarrow{RS} .

