10 log (253/125)
= log 5 25 + log 5 3/125
= 2 + log 5 5
= 2 + 1 d) 2 log=3 2 inverse operation e) $\log_2(\log_2(\frac{1}{16}))$ = $\log_2(\log_2(16))$ = $\log_2(-4)$ Not possible because you cannot take the log of a

) 3 1092764 LOG Test Part 1 = 3 1092764 27 1092764 = 3 1092764 64 = 3 3 109364 64 = 64 5 64 = 4 64 - 256 B) = 10948 + 32 log + 36 - 3 log + 81 = 3 log + 8 + 32 log + 36 - 34 log + 81 = 10964 B + 32 log + 36 - 32 log + 91 = 12 since 2 is in between land 6, logo 2 is in between 0 3) $\ln(a^5b^3)$ = $5\ln(a) + 3\ln(b)$ = 5(2) + 3(4)= 10+12 = 22 4) $\log_{\pi} y^{4} = m^{3}$ $4\log_{\pi} y = m^{3}$

$$5a) 2 | \log_{5}(x^{2}+7x) - \log_{5}(x^{2}+7x) = \log_{5} 8$$

$$\log_{5}(x^{2}+7x)(x^{2}+7x) \div (x^{2}+7x) = \log_{5} 8$$

$$\log_{5}(x^{2}+7x) = \log_{5} 8$$

$$\chi^{2} + 7x = 8$$

$$-1 \pm \sqrt{7^{2}-400} = 8$$

$$2(1)$$

b)
$$\log_{+} 2^{2^{*}} = \log_{+} 2^{4^{(*+)}}$$

 $2^{*} = 4^{(*+)}$
 $2^{*} = 2^{(*+)}$
 $x = 2(x+1)$
 $x = 2x + 2$
 $-x = 2$
 $x = -2$

$$109\% = 10963 = \frac{10}{53}$$
 $10^{10963 - \frac{10}{53}} = 20$
 200

c)
$$3^{x-2} = 10$$

 $3^{x} \div 3^{2} = 10$
 $3^{x} = 90$
 $109390 = 20$
 $x = 4.10$

2)
$$1870 = \frac{1}{2} \cdot 8.8(12)^{N}$$

 $425 = 12^{N}$
 $10912425 = N$
 $N = 2.44$

filtroy