High Dimensional Probability Notes

Nong Minh $\mathrm{Hieu^1}$

 1 School of Physical and Mathematical Sciences, Nanyang Technological University (NTU - Singapore)

Contents

1	Random variables			
	1.1	Basic inequalities	2	
	1.2	Limit Theorems	4	
		1.2.1 Weak Law of Large Numbers	4	
		1.2.2 Strong Law of Large Numbers	6	
		1.2.3 Central Limit Theorem	8	
	1.3	Convergence of Random Variables	8	
B List of Definitions 9				
В	3 Important Theorems			
C	C Important Corollaries			
D	D Important Propositions			
E	References			

1 Random variables

1.1 Basic inequalities

First, we revisit the definition of a random variable as well as some basic inequalities that we learned in introductory statistics.

Definition 1.1 (Random variable).

Let $(\Omega, \Sigma, \mathbb{P})$ be a probability space. A random variable X is defined as a mapping from the sample space Ω to \mathbb{R} :

$$X: \Omega \to \mathbb{R} \tag{1}$$

 Σ is the σ -algebra containing the possible events (collection of subsets of Ω) and \mathbb{P} is a probability measure that assigns events with probabilities:

$$\mathbb{P}: \Sigma \to [0, 1] \tag{2}$$

For a given probability space $(\Omega, \Sigma, \mathbb{P})$ and a random variable $X : \Omega \to \mathbb{R}$, we will use the following basic notations throughout this note:

• $||X||_{L^p}$ - The p^{th} root of the p^{th} moment of the random variable X.

$$||X||_{L^p} = (\mathbb{E}|X|^p)^{1/p}, \ p \in (0, \infty)$$
 (3)

$$||X||_{L^{\infty}} = \operatorname{ess\,sup}|X| \tag{4}$$

• $L^p(\Omega, \Sigma, \mathbb{P})$ - The space of random variables X satisfying:

$$L^{p}(\Omega, \Sigma, \mathbb{P}) = \left\{ X : \Omega \to \mathbb{R} \middle| \|X\|_{L^{p}} < \infty \right\}$$
 (5)

Some basic inequalities and identities:

• 1. Jensen's Inequality - For a random variable X and a convex function $\varphi : \mathbb{R} \to \mathbb{R}$, we have:

$$\varphi(\mathbb{E}X) \leqslant \mathbb{E}\varphi(X) \tag{6}$$

• 2. Monotonicity of L^p norm - For a random variable X:

$$||X||_{L^p} \leqslant ||X||_{L^q}, \ 0 \leqslant p \leqslant q \leqslant \infty. \tag{7}$$

• 3. Minkowski's Inequality - For $1 \le p \le \infty$ and two random variables X, Y in $L^p(\Omega, \Sigma, \mathbb{P})$ space:

$$||X + Y||_{L^p} \leqslant ||X||_{L^p} + ||Y||_{L^p}. \tag{8}$$

• 4. Holder's Inequality - For $p, q \in [1, \infty]$ such that 1/p + 1/q = 1. Then, for random variables $X \in L^p(\Omega, \Sigma, \mathbb{P})$ and $Y \in L^q(\Omega, \Sigma, \mathbb{P})$, we have:

$$|\mathbb{E}XY| \leqslant ||X||_{L^p} \cdot ||Y||_{L^q}. \tag{9}$$

• 5. Markov's Inequality - For a non-negative random variable X and t > 0, we have:

$$\mathbb{P}(X \geqslant t) \leqslant \frac{\mathbb{E}X}{t}.\tag{10}$$

We can also generalize Markov's Inequality for p^{th} moment:

$$\mathbb{P}(|X| \ge t) \le \frac{\mathbb{E}[|X|^p]}{t^p}, \forall t > 0, k \in [2, \infty). \tag{11}$$

• 6. Chebyshev's Inequality - For a random variable X with mean μ and variance σ^2 . Then, for any t > 0, we have:

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}.\tag{12}$$

• 7. Integral Identity - Let X be a non-negative random variable, we have:

$$\mathbb{E}X = \int_0^\infty \mathbb{P}(X > t)dt. \tag{13}$$

Exercises

Exercise 1.1.1: Generalized Integral Identity

Let X be a random variable (not necessarily non-negative). Prove the following identity:

$$\mathbb{E}X = \int_0^\infty \mathbb{P}(X > t)dt - \int_{-\infty}^0 \mathbb{P}(X < t)dt. \tag{14}$$

Solution (Exercise 1.1.1).

For $x \in \mathbb{R}$, using the basic integral indentity, we have:

$$|x| = \int_0^\infty \mathbf{1}\{t < |x|\}dt$$

We consider the following cases:

• When $x < 0 \implies x = -|x|$:

$$x = -\int_0^\infty \mathbf{1}\{t < |x|\}dt = -\int_0^\infty \mathbf{1}\{t < -x\}dt = -\int_0^\infty \mathbf{1}\{-t > x\}dt = -\int_{-\infty}^0 \mathbf{1}\{t > x\}dt.$$

• When $x \ge 0 \implies x = |x|$:

$$x = \int_0^\infty \mathbf{1}\{t < |x|\}dt = \int_0^\infty \mathbf{1}\{t < x\}dt.$$

Therefore, for $x \in \mathbb{R}$, we can write:

$$x = \int_0^\infty \mathbf{1}\{t < x\}dt - \int_{-\infty}^0 \mathbf{1}\{t > x\}dt.$$

Therefore, for a random variable X not necessarily non-negative, we have:

$$\begin{split} \mathbb{E}X &= \mathbb{E}\Bigg[\int_0^\infty \mathbf{1}\{t < X\}dt - \int_{-\infty}^0 \mathbf{1}\{t > X\}dt\Bigg] \\ &= \mathbb{E}\int_0^\infty \mathbf{1}\{t < X\}dt - \mathbb{E}\int_{-\infty}^0 \mathbf{1}\{t > X\}dt \\ &= \int_0^\infty \mathbb{E}\mathbf{1}\{t < X\}dt - \int_{-\infty}^0 \mathbb{E}\mathbf{1}\{t > X\}dt \\ &= \int_0^\infty \mathbb{P}(t < X)dt - \int_{-\infty}^0 \mathbb{P}(t > X)dt. \end{split}$$

Π,

Exercise 1.1.2: p^{th} -moments via tails

Let X be a random variable and $p \in (0, \infty)$. Show that:

$$\mathbb{E}|X|^p = \int_0^\infty pt^{p-1}\mathbb{P}(|X| > t)dt. \tag{15}$$

Π.

Solution (Exercise 1.1.2).

Let X be a random variable that is not necessarily non-negative. Using the integral identity, we have:

$$\mathbb{E}|X|^p = \int_0^\infty \mathbb{P}(u < |X|^p) du.$$

Let $t^p = u \implies pt^{p-1}dt = du$. Since we integrate u from $0 \to \infty$, we also integrate t from $0 \to \infty$ when changing the variables. Hence, we have:

$$\mathbb{E}|X|^{p} = \int_{0}^{\infty} \mathbb{P}(t^{p} < |X|^{p})pt^{p-1}dt = \int_{0}^{\infty} \mathbb{P}(t < |X|)pt^{p-1}dt.$$

Hence, we obtained the desired identity.

1.2 Limit Theorems

1.2.1 Weak Law of Large Numbers

Theorem 1.1: Weak Law of Large Numbers (WLLN

Let X_1, \ldots, X_N be *i.i.d* random variables with mean μ . Consider the sum:

$$S_N = X_1 + \cdots + X_N$$

Then, the sample mean converges to μ in probability $(S_N/N \xrightarrow{p} \mu)$:

$$\lim_{N \to \infty} \mathbb{P}\Big(|S_N/N - \mu| > \epsilon\Big) = 0, \ \forall \epsilon > 0$$
 (16)

Proof (Weak Law of Large Numbers (WLLN)).

We split the proof into two sections corresponding to the assumptions of finite variance and non-finite variance.

1. Finite variance case: Suppose that $\operatorname{Var} X_i = \sigma^2 < \infty$ for all $1 \le i \le N$. Let $\bar{X} = S_N/N$. Then, \bar{X} is a random variable with the following mean and variance:

$$\mathbb{E}\bar{X} = \mu \quad and \quad \text{Var}\bar{X} = \frac{\sigma^2}{N}.$$

Hence, by the Chebyshev's inequality, we have:

$$\mathbb{P}(|S_N/N - \mu| > \epsilon) = \mathbb{P}(|\bar{X} - \mu| > \epsilon) \leqslant \frac{\sigma^2}{N\epsilon^2}.$$

Therefore, we have:

$$\lim_{N \to \infty} \mathbb{P}\Big(|S_N/N - \mu| > \epsilon\Big) \leqslant \lim_{N \to \infty} \frac{\sigma^2}{N\epsilon^2} = 0.$$

Hence, we have $\lim_{N\to\infty} \mathbb{P}(|S_N/N - \mu| > \epsilon) = 0$ and we obtained (WLLN).

2. Non-finite variance case: In this case, we rely on the Levy Continuity Theorem (LCT), which relies on the convergence of the characteristic function. For $n \ge 1$, define the sequence of random variable $Y_n = S_n/n$. Hence, we have:

$$\varphi_{Y_n}(t) = \varphi_{S_n/n}(t)$$

$$= \varphi_{S_n}(t/n)$$

$$= \prod_{i=1}^n \varphi_{X_i}(t/n) = \left[\varphi_X(t/n)\right]^n,$$

Where $X = X_1 = \cdots = X_n$. By Taylor's expansion, we have:

$$\varphi_X(t/n) = 1 + \frac{it\mathbb{E}[X]}{n} + \mathcal{O}(1/n^2) = 1 + \frac{it\mu}{n} + \mathcal{O}(1/n^2).$$

Hence, we have:

$$\lim_{n\to\infty}\varphi_{Y_n}(t)=\lim_{n\to\infty}\left(1+\frac{it\mu}{n}+\mathcal{O}(1/n^2)\right)^n=e^{it\mu}.$$

Therefore, by (**LCT**), we have $Y_n \xrightarrow{p} \mu$.

Remark 1.1 (Taylor expansion of Moment Generating and Characteristic Functions). ______ Given a random variable X. For reference, the following are the Taylor expansions of the Moment Generating Function $M_X(t)$ and the Characteristic Function $\varphi_X(t)$:

$$M_X(t) = \mathbb{E}[e^{tX}] = 1 + \sum_{n=1}^{\infty} \frac{t^n}{n!} \mathbb{E}[X^n],$$

$$\varphi_X(t) = \mathbb{E}[e^{itX}] = 1 + \sum_{n=1}^{\infty} \frac{(it)^n}{n!} \mathbb{E}[X^n].$$
(17)

For the sake of my laziness, here are the Taylor expansion for the first three terms of both the MGF and the CF:

$$M_X(t) = 1 + t\mathbb{E}[X] + \frac{t^2}{2}\mathbb{E}[X^2] + \mathcal{O}(t^3),$$

$$\varphi_X(t) = 1 + it\mathbb{E}[X] - \frac{t^2}{2}\mathbb{E}[X^2] + \mathcal{O}(t^3).$$
(18)

□.

Theorem 1.2: Levy Continuity Theorem

Let X_1, X_2, \ldots be *i.i.d* random variables. Then:

$$\forall t \in \mathbb{R} : \lim_{n \to \infty} \varphi_{X_n}(t) = \varphi_X(t) \iff X_n \stackrel{d}{\to} X, \tag{19}$$

for some random variable X. In a special case where X=c for some $c\in\mathbb{R}$, we have:

$$\forall t \in \mathbb{R} : \lim_{n \to \infty} \varphi_{X_n}(t) = e^{itc} \iff X_n \xrightarrow{p} c.$$
 (20)

Proof (Levy Continuity Theorem (**LCT**)).

The proof for (LCT) can be found in Gut 2004, Section 9.1, Theorem 9.1 and Collorary 9.1 $\,$ $\,$

1.2.2 Strong Law of Large Numbers

Theorem 1.3: Strong Law of Large Numbers

Let X_1, \ldots, X_N be *i.i.d* random variables with mean μ . Consider the sum:

$$S_N = X_1 + \cdots + X_N$$

Then, the sample mean converges to μ almost surely $(S_N/N \xrightarrow{a.s} \mu)$:

$$\mathbb{P}\left(\limsup_{N\to\infty}|S_N/N-\mu|>\epsilon\right)=0,\ \forall\epsilon>0$$
(21)

Proof (Strong Law of Large Numbers (SLLN)).

For the sake of simplicity, we will present the proof for (SLLN) with an additional assumption that $\mathbb{E}[|X_n|^4] < \infty$, $\forall n \geq 1$. The proof for the general case of (SLLN) (also called the Kolmogorov Strong Law) can be found in Gut 2004, Section 6, Theorem 6.1. For convenience, we assume the following:

- 1. $\mathbb{E}[|X_n|^4] = K < \infty$.
- 2. $\mathbb{E}[X_n] = 0$. For non-zero mean case, we can set $Y_n = X_n \mu$ and repeat the same arguments made below.

We aim to prove that $\mathbb{P}\Big(\limsup_{N\to\infty}|S_N/N|>\epsilon\Big)=0$ for any $\epsilon>0$. Firstly, use the Multinomial formula to expand $\mathbb{E}[S_n]$. The expansion will contain the terms in the following forms:

$$X_i^2, X_i^3 X_i, X_i^2 X_i^2, X_i^2 X_i X_i X_k, X_i X_i X_k X_\ell,$$

where i, j, k, ℓ are distinct indices. By independence, we have:

$$\mathbb{E}[X_i^3 X_i] = \mathbb{E}[X_i^2 X_i X_k] = \mathbb{E}[X_i X_l X_k X_\ell] = 0.$$

As a result, we have the following remaining terms by the Multinomial formula:

$$\begin{split} \mathbb{E}[S_n^4] &= \sum_{i=1}^n \mathbb{E}[X_i^4] + \binom{4}{2} \sum_{1 \leqslant i < j \leqslant n} \mathbb{E}[X_i^2 X_j^2] \\ &= \sum_{i=1}^n \mathbb{E}[X_i^4] + 6 \sum_{1 \leqslant i < j \leqslant n} \mathbb{E}[X_i^2 X_j^2] \\ &= nK + 3n(n-1)\mathbb{E}[X_i^2 X_j^2]. \end{split}$$

By independence, we have $\mathbb{E}[X_i^2 X_j^2] = \mathbb{E}[X_i^2] \mathbb{E}[X_j^2]$ and for any $1 \le i \le n$. Furthermore, we have $\mathbb{E}[X_i^2] = \text{Var}(X_i) + \mu^2 = \sigma^2 + \mu^2$. Therefore:

$$\mathbb{E}[S_n^4] = nK + 3n(n-1)(\sigma^2 + \mu^2) < nK + 3n^2(\sigma^2 + \mu^2).$$

Applying Markov's Inequality with the fourth moment, we have:

$$\begin{split} \mathbb{P}(|S_n/n| \geqslant \epsilon) &= \mathbb{P}(|S_n| \geqslant n\epsilon) \\ &\leqslant \frac{\mathbb{E}[S_n^4]}{n^4 \epsilon^4} \\ &< \frac{K}{n^3 \epsilon^4} + \frac{3(\sigma^2 + \mu^2)}{n^2}. \end{split}$$

Therefore, we have:

$$\sum_{n=1}^{\infty} \mathbb{P}(|S_n/n| \ge \epsilon) < \frac{K}{\epsilon^4} \sum_{n=1}^{\infty} n^{-3} + 3(\sigma^2 + \mu^2) \sum_{n=1}^{\infty} n^{-2} < \infty$$
 (22)

Finally, by the Borel-Cantelli Lemma (BCL), we have:

$$\mathbb{P}\left(\limsup_{n\to\infty}|S_n/n|\geqslant\epsilon\right)=0,\quad\forall\epsilon>0.$$

□.

Theorem 1.4: Borel-Cantelli Lemma

1. First Borel-Cantelli Lemma: Given a probability space $(X, \mathcal{S}, \mathbb{P})$ and a sequence $\{A_n\}_{n=1}^{\infty} \subset \mathcal{S}$. If $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$, we have:

$$\mathbb{P}\left(\limsup_{n\to\infty} A_n\right) = 0. \tag{23}$$

2. Second Borel-Cantelli Lemma: On the other hand, if $\sum_{n=1}^{\infty} \mathbb{P}(E_n) = \infty$, we have:

$$\mathbb{P}\left(\limsup_{n\to\infty} A_n\right) = 1. \tag{24}$$

Proof (Borel-Cantelli Lemma (BCL)).

We focus on proving the first Borel-Cantelli lemma. We define another sequence of S-measurable sets $\{B_n\}_{n=1}^{\infty}$ such that:

$$B_n = \bigcup_{k=n}^{\infty} A_n.$$

Hence, we have $B_{\ell+1} \subset B_{\ell}$ for every $\ell \geqslant 1$. In other words, B_n is a decreasing sequence of S-measurable sets. By continuity of measure, we have:

$$\mathbb{P}\left(\lim_{n\to\infty} B_n\right) = \lim_{n\to\infty} \mathbb{P}(B_n)$$

$$= \lim_{n\to\infty} \sum_{k=n}^{\infty} \mathbb{P}(A_n) \quad (By \ additivity)$$

$$= \sum_{i=1}^{\infty} \mathbb{P}(A_i) - \lim_{n\to\infty} \sum_{k=1}^{n} \mathbb{P}(A_n)$$

$$= 0.$$

Furthermore, we have:

$$\mathbb{P}\Big(\lim_{n\to\infty}B_n\Big)=\mathbb{P}\bigg(\lim_{n\to\infty}\bigcup_{k=n}^{\infty}\bigg)=\mathbb{P}\bigg(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_n\bigg)=\mathbb{P}\bigg(\limsup_{n\to\infty}A_n\bigg).$$

Hence proved the first Borel-Cantelli Lemma. To prove the second Borel-Cantelli Lemma, we prove the following:

$$1 - \mathbb{P}\left(\limsup_{n \to \infty} A_n\right) = \mathbb{P}\left(\left\{\limsup_{n \to \infty} A_n\right\}^c\right)$$
$$= \mathbb{P}\left(\liminf_{n \to \infty} A_n^c\right) = 0.$$

1.2.3 Central Limit Theorem

Theorem 1.5: Central Limit Theorem

Let $X_1, \ldots X_n$ be a sequence of *i.i.d* random variables with expected value μ and finite variance σ^2 . Then, we have:

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1) \quad as \quad n \to \infty, \tag{25}$$

where $\bar{X}_n = S_n/n$ and $\mathcal{N}(0,1)$ is the standard normal distribution.

Proof (Central Limit Theorem (CLT)).

We prove this via the Characteristic Function. Let $\bar{Z}_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}$, notice that:

$$\bar{Z}_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{X_i - \mu}{\sigma},$$

Let $Z_i = X_i - \mu$ for $1 \le i \le n$ and suppose $Z = Z_1 = \cdots = Z_n$, we have:

$$\varphi_{\bar{Z}_n}(t) = \varphi_{\sum_{i=1}^n Z_i} \left(\frac{t}{\sqrt{n}} \right) = \left[\varphi_Z \left(\frac{t}{\sqrt{n}} \right) \right]^n$$

$$= \left[1 + \frac{it \mathbb{E}[Z]}{\sqrt{n}} - \frac{t^2}{2n} \mathbb{E}[Z^2] + \mathcal{O}(1/n) \right]^n \quad (Taylor's Expansion)$$

$$= \left[1 - \frac{t^2}{2n} + \mathcal{O}(1/n) \right]^n.$$

The final equality comes from the fact that $\mathbb{E}[Z] = 0$ and $\mathbb{E}[Z^2] = \mathbb{E}[Z]^2 + \text{Var}(Z) = 1$. Finally, we have:

$$\lim_{n\to\infty} \varphi_{\bar{Z}_n}(t) = \lim_{n\to\infty} \left[1 - \frac{t^2}{2n} + \mathcal{O}(1/n)\right]^n = e^{-t^2/2}.$$

Since $e^{-t^2/2}$ is the Characteristic Function of the standard normal distribution, by (LCT), we have $\bar{Z}_n \xrightarrow{d} \mathcal{N}(0,1)$.

1.3 Convergence of Random Variables

B L	ist of Definitions				
1.1	Definition (Random variable)				
B Important Theorems					
	Weak Law of Large Numbers (WLLN)				
1.2	Levy Continuity Theorem (LCT)				
	Strong Law of Large Numbers (SLLN)				
1.4	Borel-Cantelli Lemma (BCL)				
1.5	Central Limit Theorem (CLT)				

- C Important Corollaries
- D Important Propositions

E References

References

Durrett, Rick (2010). Probability: Theory and Examples. 4th. USA: Cambridge University Press. ISBN: 0521765390.

Gut, Allan (2004). A Graduate Course in Probability. Graduate Text in Mathematics. undefinedinlar, Erhan (2011). Probability and Stochastics. Springer New York. ISBN: 9780387878591. DOI: 10.1007/978-0-387-87859-1. URL: http://dx.doi.org/10.1007/978-0-387-87859-1.

Wikipedia (2023). Vitali set — Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/w/index.php?title=Vitali%20set&oldid=1187241923. [Online; accessed 24-December-2023].