Multi-label Classification on Networked Data

Han Xiao

Department of Computer Science Aalto University

September 2017

overview

- ▶ goal: multi-label classification of posts on QA-sites
- ▶ ingredient 1: deep learning for supervised learning
- ▶ **ingredient 2**: graph embedding learning for under supervised learning
- both requires convex optimization techniques

motivation 1

- goal: learn a automatic question tagger
- example: stackoverflow questions
- tags: python, java, android, ios, ...

motivation 2

- posts and users are linked in a network
 - user post/likes/comment posts
- ► can we leverage *network information* for tagging purpose?

multi-label classification

- ▶ given *n* pairs of feature vectors and label vectors, $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$, where $\mathbf{x}_i \in \mathbb{R}^D$ and $\mathbf{y}_i \in \{0, 1\}^L$
- ▶ learn a function $f: \mathbb{R}^D \to \{0,1\}^L$ that minimizes some error function
- our problem can be modeled as such

multi-label classification: CNN-based approach

loss function: softmax is replaced by sigmoid

¹Kim, Yoon. "Convolutional neural networks for sentence classification." EMNLP (2014).

graph embedding

- ▶ given G = (V, E), $V = \{1, ..., n\}$, $E \subseteq V \times V$
- ▶ learn a function $f: V \to \mathbb{R}^d$
- f(v) is the embedding for node v
- demonstrated to improve clustering, classification performance in general

example: DeepWalk ²

- idea borrowed from word2vec (a word predicts its context/surrounding word)
- here, think of a node as a word
- a node predicts its "context" nodes
- context nodes are collected by random walk

²Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learning of social representations." KDD, 2014.

model & architecture

training objective: $\mathcal{L} = \mathcal{L}_s + \mathcal{L}_u$

model: unsupervised term \mathcal{L}_u

- essentially deepwalk
- given $\{(i, c)\}$ pairs, learn a model that miminimizes:

$$\mathcal{L}_{u} = -\mathsf{E}_{(i,c)}\log\mathsf{Pr}(\mathbf{e}_{c}\mid\mathbf{e}_{i})$$

$$= -\mathsf{E}_{(i,c)}\log\frac{\mathbf{e}_{c}^{T}\mathbf{e}_{i}}{\sum\limits_{c'}\mathbf{e}_{c'}^{T}\mathbf{e}_{i}}$$

(i, c) pairs collected from random walk

model: supervised term \mathcal{L}_s

▶ given $\{(\mathbf{x}_i, \mathbf{e}_i, \mathbf{y}_i)\}_{i=1}^L$ triplets, learn a model that miminimizes:

$$\mathcal{L}_s = \frac{1}{L} \sum_{i=1}^K \log p(\mathbf{y}_i \mid \mathbf{x}_i, \mathbf{e}_i)$$

model similar to KimCNN (using sigmoid instead of softmax)

training

lacktriangle alternating update of \mathcal{L}_u and \mathcal{L}_s

optimizer: ADAM

experiment: datasets & evaluation

▶ 3 sites from stackexchange.com:

	data science	emacs	software engineering
#instances	5145	4536	10336
#labels	327	618	1344
avg #labels per	2.7	2.0	2.6

- question network contruction: two questions are linked they are linked to at least one common user
- ► train/dev/test ratio: 80%/10%/10%
- evaluation: precision@k, $k = \{1, 3, 5\}$

methods

- fastxml: tf-idf features
- cnn: sigmoid loss function
- ▶ cnn + deepwalk

results: data science

	fastxml	cnn	cnn+deepwalk
p@1	0.26	0.53	0.57
p@3	0.17	0.37	0.38
p@5	0.15	0.29	0.28

results: emacs

	fastxml	cnn	cnn+deepwalk
p@1	0.21	0.58	0.56
p@3	0.10	0.30	0.30
p@5	0.07	0.20	0.20

results: software engineering

	fastxml	cnn	cnn+deepwalk
p@1	0.06	0.41	0.43
p@3	0.06	0.26	0.25
p@5	0.05	0.18	0.18

train/dev curve

Figure: percision@1 for emacs

conclusion

- I'm suprised at CNN's performance
- ▶ also suprised that network embedding does not help much
- possible reasons: improper network construction, formulation, training, etc

future plan

- try different ways of learning network embedding
- understand how graph embedding can help
- design scalable methods for classification (especially when label space is large)