# Analog Electronics Final Project Report

# Ankur Dhar and James Ryan Schloss December 15, 2014

### Overview

## Mechanical Design

- Motors x4
- ESC x4
- Battery
- Central control board (4x5 inches)
- TTL board x4

### Control Circuit

Accelerometer outputs voltage proportional to acceleration in X,Y,Z Thus the equilibrium position is (0,0,-g) To determine this equilibrium, we integrate the signal twice to determine to displacement, and select for the height we wish to hover at with a comparator. We also select for zero velocity in x and y with this method.

### Motor Control

These output voltages are scaled to range between 2 and 4V, thus varying the throttle of the motor.



Figure 1: 3D render of quadcopter chassis, with room for motors, battery, and requisite electronics.

# Feedback

The feedback mechanism in this case is not electrical, but connected through the orientation of the copter, and how it'll affect the output of the accelerometer.

Motors driven by 3 phase signal with the third phase shift set by back emf ESC manages this driving signal, but requires a TTL signal to control throttle Range from 4V to 2V for Duty cycle 25% to 65%

Triangle wave needs 2.5V offset, with 4V p-p

Problems and Issues

Conclusion

Characterizing Motors