

Geometric Range Search

Range Tree: Optimization

Fractional Cascading

Junhui DENG

deng@tsinghua.edu.cn

Merge/Split

- ***** Let v be an internal node in the x-tree with v_L/v_R its left/right child resp.
- ❖ Let A_v be the y-list for v and A_L/A_R be the y-lists for its children
- ❖ Assuming no duplicate y -coordinates, we have
 - A_{ν} is the disjoint union of A_{L} and A_{R} , and hence
 - A_v can be obtained by merging A_l and A_R (in linear time)

Structure

❖ For each item in A_v,

we store two pointers to

the item of

equal or larger value

in A_L and A_R resp.

❖ When there is no such item,
the pointer is NULL

Fractional Cascading

 \odot For any y-query with q_v ,

once we know its entry in A_v ,

we can determine its entry

in either A_L or A_R

in |O(1)| additional time

