

OVERVIEW

- NBA Classification Modeling Analysis:
 - Background
 - Approach
 - Modeling
 - Key Takeaways

BACKGROUND

- Background:
 - The data set used came from Kaggle.com and ranges from 1950 until 2017
 - The data includes 50 different NBA stats along with each players height and weight
 - Different classification machine learning modeling techniques were used to try and correctly identify an NBA players position based off their physical traits and game stats.
 - Due to the NBA shifting into a position-less basketball style of play, I thought it would be interesting to apply statistical python code to solve this problem.
 - The data set was divided into 4 different time periods due to the historical change in the style of play in the NBA

APPROACH OSEMN FRAMEWORK

MODELING

- Four different modeling techniques were used:
 - K-Nearest Neighbor (KNN)
 - Adaboost
 - Random Forest
 - Support Vector Machine (SVM)

MODELING KNN

Reference Key (left to right):

- 1. 1950-1956
- 2. 1956-1980
- 3. 1980-1998
- 4. 1999-2017

MODELING

ADABOOST

Reference Key (left to right):

- 1. 1950-1956
- 2. 1956-1980
- 3. 1980-1998
- 4. 1999-2017

Accuracy	is :5	55.21%			
-		precision	recall	f1-score	support
	1	0.28	0.53	0.36	15
	2 3	0.52 0.60	0.58 0.48	0.55 0.53	55 63
	4 5	0.76 0.66	0.41 0.85	0.53 0.74	32 27
micro macro	avg	0.55 0.56	0.55 0.57	0.55 0.54	192 192
weighted	avg	0.59	0.55	0.55	192

	Accuracy is :	66.37%			
•		precision	recall	f1-score	support
	1	0.71	0.96	0.82	319
	2	0.65	0.50	0.56	309
	3	0.70	0.48	0.57	304
	4	0.65	0.47	0.55	350
	5	0.62	0.92	0.74	306
	micro avg	0.66	0.66	0.66	1588
	macro avg	0.67	0.67	0.65	1588
	weighted avg	0.67	0.66	0.65	1588

2.	Accuracy	is:	60.0% precision	recall	f1-score	support
		1	0.55	0.66	0.60	117
		2	0.59	0.56	0.57	167
		3	0.74	0.58	0.65	184
		4	0.49	0.41	0.45	154
		5	0.61	0.82	0.70	153
	micro	avg	0.60	0.60	0.60	775
	macro	avg	0.60	0.60	0.59	775
	weighted	avg	0.60	0.60	0.60	775

Accuracy	is:	64.02% precision	recall	f1-score	support
	1 2	0.67 0.61	0.96 0.38	0.79 0.47	467 404
	3	0.69	0.54	0.61	407
	4	0.59	0.29	0.38	419
	5	0.61	0.96	0.75	443
micro	avg	0.64	0.64	0.64	2140
macro		0.63	0.63	0.60	2140
weighted		0.63	0.64	0.61	2140

NOTE:

 The Adaboost model was the worst performing model out of the four selected modeling techniques.

MODELING

RANDOM FOREST

Reference Key (left to right):

- 1950-1956
- 1956-1980
- 1980-1998
- 1999-2017

Random Forest performed the best out of the four modeling techniques used.

MODELING SVM

Reference Key (left to right):

- 1. 1950-1956
- 2. 1956-1980
- 3. 1980-1998
- 4. 1999-2017

Accuracy	is :	67.19%			
		precision	recall	f1-score	support
	1	0.70	0.35	0.47	20
	2	0.53	0.73	0.62	44
	3	0.72	0.61	0.66	67
	4	0.66	0.78	0.71	32
	5	0.89	0.83	0.86	29
micro	avg	0.67	0.67	0.67	192
macro	avg	0.70	0.66	0.66	192
weighted	avg	0.69	0.67	0.67	192

	Accuracy	is :	76.76%			
•			precision	recall	f1-score	support
		1	0.87	0.86	0.87	324
		2	0.71	0.71	0.71	316
		3	0.68	0.67	0.68	303
		4	0.70	0.78	0.74	339
		5	0.89	0.81	0.85	306
	micro	avg	0.77	0.77	0.77	1588
	macro	avg	0.77	0.77	0.77	1588
	weighted	avg	0.77	0.77	0.77	1588

		5	0.85	0.79	0.82	145
	micro macro	_	0.70 0.71	0.70 0.71	0.70 0.71	775 775
	weighted	avg	0.71	0.70	0.71	775
1	Accuracy	is :7:	5.89%			
	-					
4.			precision	recall	f1-score	support
4.		1	precision 0.86	recall 0.91	f1-score 0.88	support 455
4.						
4.		1	0.86	0.91	0.88	455
4.		1 2	0.86 0.73	0.91 0.67	0.88 0.70	455 443
4.		1 2 3	0.86 0.73 0.65	0.91 0.67 0.69	0.88 0.70 0.67	455 443 387

0.76

0.76

Accuracy is :70.45%

macro avg weighted avg precision

0.71

0.70

0.70

0.59

recall f1-score

0.71

0.71

0.68

0.62

0.76

0.76

108

171

191

160

2140

2140

0.71

0.73

0.66

0.66

0.76

0.76

NOTE:

• SVM performed the second best out of the four modeling techniques used.

DECISION TO REDUCE CLASSES OF POSITIONS

- To improve the models, the number of positions was reduced to three as follows:
 - PG (1)
 - SG/SF (2)
 - PF/C (3)
- As expected with a reduction in the number of possible classifications, all metrics improved significantly

DECISION TO REDUCE CLASSES OF POSITIONS

- A Random Forest model was used to classify the new data
 - The accuracy score jumped almost 20 percentage points to 94%
 - The model predicted the 3 position, Center/Power Forward at 100 percent across all metrics
 - The hardest position to classify was the 1, Point Guard.
- Note: The top three features are:
 - 3PAr: 3 Point Attempt Rate
 - TS%: True Shooting Percentage
 - eFG%: Effective Field Goal Percentage

KEY TAKEAWAYS

- In the current day and age, we see a basketball floor spread with Power Forward's playing Center and vice versa.
 - This was apparent in the last model when the classes were reduced from 5 to 3.
- The Center and Point Guard positions were classified accurately the most compared to any other position amongst all models
 - A further deep dive into these positions is needed
- Random Forest and Support Vector Machine models performed the best.
 - Both models could be tuned a bit more to get even more accurate results for the 5-position classification.
- The results improved over the eras of basketball due to the availability of new statistics.

