1. (10 points) Let $\Omega = \{\omega_1, \dots, \omega_N\}$ be a finite sample space and suppose $\mathbb{P}(\{\omega\}) > 0$ for all $\omega \in \Omega$. Consider X a real-valued random variable on (Ω, \mathbb{P}) and $f \colon \mathbb{R} \longrightarrow \mathbb{R}$ a function. Prove that X and Y = f(X) are independent if and only if f(X) is a constant random variable.

Hint: Examine the conditional probability $\mathbb{P}(Y=y|X=x)$ when y=f(x). Also, remember that an event with probability 0 or 1 is always independent from all other events.

Note: You can choose to prove a more general result: remove the condition $\mathbb{P}(\{\omega\}) > 0$ for all ω . The equivalent condition for $X \perp f(X)$ becomes "there exists $c \in \mathbb{R}$ such that $\mathbb{P}(f(X) = c) = 1$ ", i.e., f(X) is almost surely constant.

2. (10 points) Let $X \sim \text{Geometric}(p)$ and $Y \sim \text{Geometric}(q)$ be two independent random variables, where 0 < p, q < 1.

Note: We use the convention (in the notes) that the geometric distribution is supported on $\{1, 2, 3, \ldots\}$. See https://en.wikipedia.org/wiki/Geometric_distribution for the other convention where the distribution is supported on $\{0, 1, 2, \ldots\}$.

- (a) (4 points) Compute $\mathbb{P}(X > Y)$.
- (b) (6 points) Assume p = q. For $k \in \{1, 2, ...\}$, derive an explicit expression for

$$\mathbb{P}(X \ge kY).$$

Hint: Decompose the event based on the different values Y can take.

