Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Test 14

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	` •	
1.	$\log_3 5 \cdot \log_5 9 = \log_3 5 \cdot (2\log_5 3) = 2 =$	3 p
	$=\sqrt{2}^2$, deci numerele $\log_3 5$, $\sqrt{2}$ și $\log_5 9$ sunt termeni consecutivi ai unei progresii geometrice	2p
2.	g(-x) = f(-x) - f(-(-x)) = f(-x) - f(x) =	2p
	=-(f(x)-f(-x))=-g(x), deci funcția g este impară	3 p
3.	$3^{x} + \frac{\sqrt{3}}{3^{x}} = 1 + \sqrt{3} \Leftrightarrow 3^{2x} - (1 + \sqrt{3}) \cdot 3^{x} + \sqrt{3} = 0$	2p
	$(3^x - 1)(3^x - \sqrt{3}) = 0$, de unde obținem $x = 0$ sau $x = \frac{1}{2}$	3p
4.	$T_{k+1} = C_{20}^k \left(x^3\right)^{20-k} \left(\frac{1}{\sqrt[3]{x}}\right)^k = C_{20}^k x^{3(20-k) + \frac{-k}{3}} = C_{20}^k x^{60 - \frac{10k}{3}}, \text{ unde } k \in \{0, 1, 2, \dots, 20\}$	3p
	$60 - \frac{10k}{3} = 10 \iff k = 15$, deci $T_{16} = C_{20}^{15} x^{10}$ îl conține pe x^{10}	2p
5.	$3\overrightarrow{AG} = \overrightarrow{AG} + \overrightarrow{GB} + \overrightarrow{AG} + \overrightarrow{GC} \Leftrightarrow 3\overrightarrow{AG} = 2\overrightarrow{AG} + \overrightarrow{GB} + \overrightarrow{GC}$	2p
	$\overrightarrow{AG} - \overrightarrow{GB} - \overrightarrow{GC} = \overrightarrow{0} \Leftrightarrow \overrightarrow{AG} + \overrightarrow{BG} + \overrightarrow{CG} = \overrightarrow{0}$, deci G este centrul de greutate al $\triangle ABC$	3 p
6.	$\sin x(2\cos x - 3) - (2\cos x - 3) = 0 \Leftrightarrow (\sin x - 1)(2\cos x - 3) = 0$	2p
	Cum $2\cos x - 3 \neq 0$ și $x \in (0, \pi)$, obținem $x = \frac{\pi}{2}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	3 -1 -1	
	$\det A = \begin{vmatrix} 3 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix} = 3 + 0 + 0 - 1 - 0 - 1 =$	3 p
	=3-2=1	2 p
b)	$\det(M(m)) = (m-1)^2$, pentru orice număr real m	2p
	Dacă $m=1$, matricea $M(1)=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ are rangul 1, iar dacă $m \neq 1$, atunci $\det(M(m)) \neq 0$ și matricea $M(m)$ are rangul 3, deci, pentru orice număr real m , rangul matricei $M(m)$ este diferit de 2	3p
c)	$M(m) \cdot A = I_3 \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 2 - m & m - 1 & 0 \\ 2 - m & 0 & m - 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	3p
	Obtinem $m=2$, care convine	2p

Probă scrisă la matematică *M_mate-info*

Barem de evaluare și de notare

2.a)	$(1+i) \circ (2-i) = 1+i+2-i+(1+i)(2-i) =$	3 p
	$=3+2-i+2i-i^2=6+i$	2 p
b)	Dacă $z = a + ib$, unde a și b sunt numere reale, atunci $z \circ \overline{z} = a + ib + a - ib + (a + ib)(a - ib) =$	3 p
	$=2a+a^2+b^2$, care este număr real, pentru orice număr complex z	2 p
c)	$2z + z^2 = -2 \Leftrightarrow z^2 + 2z + 2 = 0$	2 p
	$\Delta = -4$, deci $z = -1 - i$ sau $z = -1 + i$	3 p

SUBIECTUL al III-lea

(30 de puncte)

0022	(So de pl	
1.a)	$f'(x) = \frac{x^2 + x + 1}{x^2 - x + 1} \cdot \frac{(2x - 1)(x^2 + x + 1) - (2x + 1)(x^2 - x + 1)}{(x^2 + x + 1)^2} =$	3p
	$= \frac{2x^2 - 2}{\left(x^2 + x + 1\right)\left(x^2 - x + 1\right)} = \frac{2(x - 1)(x + 1)}{\left(x^2 + x + 1\right)\left(x^2 - x + 1\right)}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \ln \frac{x^2 - x + 1}{x^2 + x + 1} = \lim_{x \to -\infty} \ln \frac{x^2 \left(1 - \frac{1}{x} + \frac{1}{x^2}\right)}{x^2 \left(1 + \frac{1}{x} + \frac{1}{x^2}\right)} = \lim_{x \to -\infty} \ln \frac{1 - \frac{1}{x} + \frac{1}{x^2}}{1 + \frac{1}{x} + \frac{1}{x^2}} = \ln 1 = 0$	3 p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $-\infty$ la graficul funcției f	2p
c)	$f(1) + f(2) + \dots + f(n) + 2\ln n = \ln \frac{1}{3} + \ln \frac{3}{7} + \ln \frac{7}{13} + \dots + \ln \frac{n^2 - n + 1}{n^2 + n + 1} + 2\ln n =$ $= \ln \left(\frac{1}{3} \cdot \frac{3}{7} \cdot \frac{7}{13} \cdot \dots \cdot \frac{n^2 - n + 1}{n^2 + n + 1} \right) + \ln \left(n^2 \right) = \ln \frac{1}{n^2 + n + 1} + \ln \left(n^2 \right) = \ln \frac{n^2}{n^2 + n + 1} , \text{ pentru orice număr natural nenul } n$	3 p
	$\lim_{n \to +\infty} (f(1) + f(2) + \dots + f(n) + 2\ln n) = \lim_{n \to +\infty} \ln \frac{n^2}{n^2 + n + 1} = \ln 1 = 0$	2 p
2.a)	$\int_{0}^{1} e^{x} f(x) dx = \int_{0}^{1} (x^{2} + 1) dx = \left(\frac{x^{3}}{3} + x\right) \Big _{0}^{1} =$	3 p
	$= \frac{1}{3} + 1 - 0 = \frac{4}{3}$	2p
b)	$\int_{0}^{1} f(-x)dx = \int_{0}^{1} (x^{2} + 1)e^{x} dx = (x^{2} + 1)e^{x} \Big _{0}^{1} - \int_{0}^{1} 2xe^{x} dx = 2e - 1 - 2(x - 1)e^{x} \Big _{0}^{1} =$	3 p
	=2e-1-0+(-2)=2e-3	2 p
c)	F este primitivă a lui $f \Rightarrow F'(x) = f(x) \Rightarrow -e^{-x}(-x^2 + ax + b) + e^{-x}(-2x + a) = e^{-x}(x^2 + 1)$, pentru orice număr real x	2p
	$x^2 - (a+2)x + a - b = x^2 + 1$, pentru orice număr real $x \Leftrightarrow a = -2$ și $b = -3$	3 p