Introduction on Information Security

Chapter 4 – Access Control

Riccardo Spolaor, Ph.D

rspolaor@sdu.edu.cn

Shandong University, School of Computer Science and Technology

Access Control

- "The prevention of unauthorized use of a resource, including the prevention of use of a resource in an unauthorized manner"
- central element of computer security
- assume have users and groups
 - authenticate to system
 - assigned access rights to certain resources on system

Access Control Principles

Introduction to information security

Riccardo Spolaor

3/20

Access Control Policies

Introduction to information security

Riccardo Spolaor

4/20

Access Control Requirements

- > reliable input
- > fine and coarse specifications
- ➤ least privilege
- separation of duty
- > open and closed policies
- > policy combinations, conflict resolution
- administrative policies

Access Control Elements

- > subject entity that can access objects
 - a process representing user/application
 - often have 3 classes: owner, group, world
- > object access controlled resource
 - e.g. files, directories, records, programs etc
 - number/type depend on environment
- > access right How a subject accesses an object
 - e.g. read, write, execute, delete, create, search

Introduction to information security

Riccardo Spolaor

6/20

Discretionary Access Control

- > often provided using an access matrix
 - lists subjects in one dimension (rows)
 - lists objects in the other dimension (columns)
 - each entry specifies access rights of the specified subject to that object
- access matrix is often sparse
- can decompose by either row or column

Access Control Structures

Access Control Model

OBJECTS

		subjects			files		processes		disk drives	
		$\mathbf{S_1}$	S_2	S ₃	$\mathbf{F_1}$	$\mathbf{F_1}$	\mathbf{P}_1	P_2	$\mathbf{D_1}$	D ₂
	\mathbf{S}_1	control	owner	owner control	read *	read owner	wakeup	wakeup	seek	owner
SUBJECTS	S_2		control		write *	execute			owner	seek *
	S_3			control		write	stop			

* - copy flag set

Access Control Function

10/20

Protection Domains

- > set of objects with associated access rights
- ➤in access matrix view, each row defines a protection domain
 - but not necessarily just a user
 - may be a limited subset of user's rights
 - applied to a more restricted process
- may be static or dynamic

UNIX File Concepts

- UNIX files administered using inodes
 - control structure with key info on file
 - attributes, permissions of a single file
 - may have several names for same inode
 - have inode table / list for all files on a disk
 - copied to memory when disk mounted
- > directories form a hierarchical tree
 - may contain files or other directories
 - are a file of names and inode numbers

UNIX File Access Control

Introduction to information security

Riccardo Spolaor 13/2

UNIX File Access Control

- "set user ID"(SetUID) or "set group ID"(SetGID)
 - system temporarily uses rights of the file owner / group in addition to the real user's rights when making access control decisions
 - enables privileged programs to access files / resources not generally accessible
- > sticky bit
 - on directory limits rename/move/delete to owner
- superuser
 - is exempt from usual access control restrictions

Introduction to information security

Riccardo Spolaor

14/20

UNIX Access Control Lists

- > modern UNIX systems support ACLs
- can specify any number of additional users / groups and associated rwx permissions
- > ACLs are optional extensions to std perms
- > group perms also set max ACL perms
- > when access is required
 - select most appropriate ACL
 - owner, named users, owning / named groups, others
 - check if have sufficient permissions for access

Introduction to information security

Riccardo Spolaor

15/20

Role-Based Access Control

Introduction to information security

Riccardo Spolaor

16/20

Role-Based Access Control

	OBJECTS										
	\mathbf{R}_{1}	R ₂	\mathbf{R}_n	$\mathbf{F_1}$	$\mathbf{F_1}$	\mathbf{P}_{1}	P ₂	$\mathbf{D_1}$	$\mathbf{D_2}$		
\mathbf{R}_1	control	owner	owner control	read *	read owner	wakeup	wakeup	seek	owner		
\mathbf{R}_2		control		write *	execute			owner	seek *		
:											
R _n			control		write	stop					

Riccardo Spolaor 17/20

(a) Relationship among RBAC models

Role hierarchy User Permission assignment \boldsymbol{U} R assignment **Permissions** Users Roles roles user Sessions **Constraints**

Role-Based Access Control

(b) RBAC models

Introduction to information security

Riccardo Spolaor

18/20

NIST RBAC Model

SSD = static separation of duty DSD = dynamic separation of duty

Introduction to information security

Riccardo Spolaor

19/20

Summary

- > introduced access control principles
 - subjects, objects, access rights
- discretionary access controls
 - access matrix, access control lists (ACLs), capability tickets
 - UNIX traditional and ACL mechanisms
- role-based access control

20/20