Mesures et Opérateurs

4 janvier 2015

Table des matières

Ι	Opérateurs	2
1	Définitions et résultats préliminaires	2
3	Opérateurs non-bornés 2.1 Définitions et propositions	3 3 6 6 6
4		
5	5.1 Opérateurs maximaux monotones	17 19 19 20 21
Η	Mesures	22
1	1.1 σ-algèbre ou tribu 1.2 Mesures	
2	2.1 Fonctions mesurables	28 28 29 30

Première partie

Opérateurs

1 Définitions et résultats préliminaires

⇒ Théorème: du graphe fermé

Soient E et F deux espaces de Banach. Soit T un opérateur linéaire de E dans F. On suppose que le graphe de T est fermé dans $E \times F$. Alors T est continue.

⇔ Lemme: de Baire

Soit X un espace métrique complet. Soit $(X_n)_{n\geq 1}$ une suite de fermés. On suppose que

$$\forall n \ge 1, \ \widehat{X_n} = \emptyset$$

Alors

$$\widehat{\bigcup_{i=1}^{\infty} X_i} = \emptyset$$

Démonstration:

On pose $O_n = X_n^C$ le complémentaire de X_n , de sorte que O_n est un ouvert dense. Il s'agit de montrer que $G = \bigcap_{i=1}^{\infty} O_i$ est dense dans X.

Soit ω un ouvert non vide de X. On va prouver que $\omega \cap G \neq \emptyset$.

On choisit $x_0 \in \omega$ et $r_0 > 0$ arbitraires tels que

$$\overline{B(x_0,r_0)}\subset\omega$$

On choisit ensuite $x_1 \in B(x_0, r_0) \cap O_1$ et $r_1 > 0$ tels que :

$$\left\{ \begin{array}{c} \overline{B(x_1,r_1)} \subset B(x_0,r_0) \cap O_1 \\ 0 < r_1 < \frac{r_0}{2} \end{array} \right.$$

Ceci est possible car O_1 est ouvert et dense. Ainsi de sute, on construit par récurrence deux suites (x_n) et (r_n) telles que :

$$\left\{\begin{array}{c} \overline{B(x_{n+1},r_{n+1})} \subset B(x_n,r_n) \cap O_{n+1} \\ 0 < r_{n+1} < \frac{r_n}{2} \end{array}\right.$$

Il en résulte que la suite (x_n) est de Cauchy. Soit $x_n \to l$. Comme $x_{n+p} \in B(x_n, r_n)$ pour tous $n, p \ge 0$, on obtient à la limite (quand $p \to +\infty$):

$$l \in \overline{B(x_n, r_n)} \ \forall n \ge 0$$

En particulier, $l \in \omega \cap G$.

🔩 Définition: Orthogonal d'un ev

Soit X un espace de Banach.

Si $M \subset X$ est un sev, on pose

$$M^{\perp} = \{ f \in X'; \langle f, x \rangle = 0 \ \forall x \in M \}$$

$$N^{\perp} = \{ x \in X; \langle f, x \rangle = 0 \ \forall f \in N \}$$

 M^{\perp} (resp. $N^{\perp})$ est l'orthogonal de M (resp. N), qui est un sev fermé de X' (resp. X).

1 Proposition:

Soit $M \subset X$ un sev. On a alors

$$\left(M^{\perp}\right)^{\perp} = \overline{M} \tag{1}$$

Soit $N \subset X'$ un sev. On a alors

$$\left(N^{\perp}\right)^{\perp} \supset \overline{N} \tag{2}$$

1 Proposition:

Soient G et L deux sous-espaces fermés de X. On a :

$$G \cap L = (G^{\perp} + L^{\perp})^{\perp}$$

$$G^{\perp} \cap L^{\perp} = (G + L)^{\perp}$$
(3)

$$G^{\perp} \cap L^{\perp} = (G + L)^{\perp} \tag{4}$$

⇒ Théorème:

Soient G et L deux sous-espaces fermés de X. Les propriétés suivantes sont équivalentes :

$$G + L$$
 est fermé dans X (5)

$$G^{\perp} + L^{\perp}$$
 est fermé dans X (6)

$$G + L = \left(G^{\perp} + L^{\perp}\right)^{\perp} \tag{7}$$

$$G^{\perp} + L^{\perp} = (G \cap L)^{\perp} \tag{8}$$

2 Opérateurs non-bornés

2.1 Définitions et propositions

Soient E et F deux espaces de banach. On appelle opérateur linéaire non borné de E dans F toute application linéaire

$$A:D(A)\subset E\to F$$

définie sur un sous-espace vectoriel $D(A) \subset E$ à valeur dans F. D(A) est le domaine de A. On dit que A est borné s'il existe une constante $c \geq 0$ telle que

$$||Au|| \le c||u|| \ \forall u \in D(A)$$

(Oui, avec cette définition, un opérateur non borné peut être... Borné)

🛂 Définition: Graphe, Image et Noyau

On appelle Graphe de A l'ensemble

$$G(A) = \bigcup_{u \in D(A)} [u, Au] \subset E \times F$$

On appelle Image de A l'ensemble

$$R(A) = \bigcup_{u \in D(A)} Au \subset F$$

On appelle Noyau de A l'ensemble

$$N(A) = \{u \in D(A); Au = 0\} \subset E$$

🔥 Définition: fermé

On dit qu'un opérateur A est fermé si G(A) est fermé dans $E \times F$.

IRemarque:

- 1. Pour prouver qu'un opérateur A est fermé, on procède en général de la manière suivante : on prend une suite (u_n) dans D(A) telle que $u_n \to u$ dans E et $Au_n \to f$ dans F. Il s'agit ensuite de vérifier que
 - (a) $u \in D(A)$
 - (b) f = Au
- 2. Si A est fermé, alors N(A) est fermé.

🔩 Définition: Adjoint

Soit $A: D(A) \subset E \to F$ un opérateur linéaire à domaine dense. L'opérateur $A^*: D(A^*) \subset F' \to E'$, appelé adjoint de A, est l'unique opérateur vérifiant :

$$\langle v, Au \rangle_{F'F} = \langle A^*v, u \rangle_{E'E} \qquad \forall u \in D(A), \ v \in D(A^*)$$

L'existence et l'unicité de cet opérateur vient principalement du théorème de Hahn-Banach dans sa forme analytique. On pose:

$$D(A^*) = \{ v \in F'; \ \exists c \ge 0; |\langle v, Au \rangle| \le c ||u|| \ \forall u \in D(A) \}$$

Il est clair que $D(A^*)$ est un sous-espace vectoriel de F'. On va maintenant définir A^*v pour $v \in D(A^*)$. On considère l'application $g:D(A)\to\mathbb{R}$ définie pour $v\in D(A^*)$ par

$$g(u) = \langle v, Au \rangle_{F'F}$$

On a

$$|g(u)| \le c||u|| \forall u \in E$$

On peut alors appliquer le théorème de Hahn-Banach : on sait que g peut être prolongée en une application linéaire $f: E \to \mathbb{R}$ telle que

$$|f(u)| \le c||u|| \ \forall u \in E$$

Par suite, $f \in E'$. On remarquera que le prolongement de g est unique puisque f est continue sur E et que D(A)est dense. On pose enfin:

$$A^*v = f$$

1 Proposition:

Soit $A:D(A)\subset E\to F$ un opérateur non borné à domaine dense. Alors A^* est fermé.

Démonstration:

Soit $(v_n) \subset D(A^*)$ telle que $v_n \to v$ dans F' et $A^*v_n \to f$ dans E'. Il s'agit de prouver que $v \in D(A^*)$ et $A^*v = f$.

$$\langle v_n, Au \rangle = \langle A^*v_n, u \rangle \ \forall u \in D(A)$$

D'où à la limite, il vient :

$$\langle v, Au \rangle = \langle A^*v, u \rangle$$

Par conséquent, $v \in D(A^*)$ par définition du domaine et $A^*v = f$.

⇔ Corollaire:

Soit $A:D(A)\subset E\to F$ un opérateur non borné, fermé, avec $\overline{D(A)}=E$ (dense). Alors on a :

- 1. $N(A) = R(A^*)^{\perp}$ 2. $N(A^*) = R(A)^{\perp}$ 3. $N(A)^{\perp} \supset \overline{R(A^*)}$

Démonstration:

On peut très facilement vérifier les égalités suivantes :

$$N(A) \times \{0\} = G(A) \cap (E \times \{0\}) \tag{9}$$

$$E \times R(A) = G(A) + (E \times \{0\}) \tag{10}$$

$$\{0\} \times N(A^*) = G(A)^{\perp} \cap (E \times \{0\})^{\perp} \tag{11}$$

$$R(A^*) \times F' = G(A)^{\perp} + (E \times \{0\})^{\perp}$$
 (12)

En utilisant (3), on a donc directement:

$$R(A^*)^{\perp} \times \{0\} = (R(A^*) \times F')^{\perp}$$

$$= (G(A)^{\perp} + (E \times \{0\})^{\perp})^{\perp}$$

$$= G(A) \cap (E \times \{0\})$$

$$= N(A) \times \{0\}$$

D'où le premier résultat.

Pour le deuxième, on fait de même :

$$\{0\} \times R(A)^{\perp} = (G(A) + (E \times \{0\}))^{\perp}$$
$$= G(A)^{\perp} \cap (E \times \{0\})^{\perp}$$
$$= \{0\} \times N(A^*)$$

Pour les deux derniers résultats, on utilise les deux premiers avec (1) et (2).

2.2 Opérateurs bornés

2.2.1 Opérateurs à image fermée

⇔ Théorème:

Soit $A:D(A)\subset E\to F$ un opérateur non-borné, fermé, avec le support de A dense dans E. Les propriétés suivantes sont équivalentes :

- 1. R(A) est fermé
- 2. $R(A^*)$ est fermé
- 3. $R(A) = N(A^*)^{\perp}$
- 4. $R(A^*) = N(A)^{\perp}$

Démonstration:

- $(1) \Leftrightarrow G(A) + (E \times \{0\})$ fermé dans X (10)
- $(2) \Leftrightarrow G(A)^{\perp} + (E \times \{0\})^{\perp}$ fermé dans X' (12)
- (3) $\Leftrightarrow G(A) + (E \times \{0\}) = (G(A)^{\perp} \cap (E \times \{0\})^{\perp})^{\perp}$ (10) et (11)
- $(4) \Leftrightarrow (G(A) \cap (E \times \{0\})^{\perp} = G(A)^{\perp} + (E \times \{0\})^{\perp}$ (9) et (12)

La conclusion nous vient directement du théorème (5)-(8).

2.2.2 Opérateurs bornés

⇔ Théorème:

Soit $A:D(A)\subset E\to F$ un opérateur non-borné, fermé, avec son domaine dense dans E. Les propriétés suivantes sont équivalentes :

- 1. D(A) = E
- 2. A est borné
- 3. $D(A^*) = F'$
- 4. A^* est borné

Dans ces conditions, on a:

$$||A||_{\mathcal{L}(E,F)} = ||A^*||_{\mathcal{L}(F',E')}$$

Démonstration:

- $(1) \Rightarrow (2)$: il suffit d'applquer le théorème du graphe fermé.
- $(2) \Rightarrow (3)$: par définition de $D(A^*)$ donnée après la définition de A^*
- $(3) \Rightarrow (4)$: On applique la proposition précédente sur une caractérisation de A^* fermée et à l'aide du théorème du graphe fermé.
- $(4) \Rightarrow (1)$: Plus délicat. Notons d'abord que $D(A^*)$ est fermé. En effet, soit $(v_n) \subset D(A^*)$ avec $v_n \to v$ dans F'. On

$$||A^*(v_n - v_m)|| \le c||v_n - v_m||$$

Par conséquent, (A^*v_n) converge vers une limite f. Comme A^* est fermé, $v \in D(A^*)$ et $A^*v = f$. Dans l'espace $X = E \times F$, on considère les sous-espaces G = G(A) et $L = \{0\} \times F$ de sorte que

$$G + L = D(A) \times F$$
 et $G^{\perp} + L^{\perp} = E' \times D(A^*)$

Par conséquent, $G^{\perp} + L^{\perp}$ est fermé dans X'. Le théorème (5)-(8) permet de conclure que G + L est fermé, donc que D(A) est fermé. Comme $\overline{D(A)} = E$, on en déduite que D(A) = E.

Prouvons maintenant que $||A||_{\mathcal{L}(E,F)} = ||A^*||_{\mathcal{L}(F',E')}$. On a :

$$\langle v, Au \rangle = \langle A^*v, u \rangle \ \forall u \in E, \ \forall v \in F'$$

Donc

$$|\langle v, Au \rangle| \le ||A^*|| ||v|| ||u||$$

et

$$\|Au\|=\sup_{\|v\|\leq 1}|\langle v,Au\rangle|\leq \|A^*\|\|u\|$$

Par suite, $||A|| \le ||A^*||$. Inversement, on a :

$$||A^*v|| = \sup_{||u|| \le 1} |\langle A^*v, u \rangle| = \sup_{||u|| \le 1} |\langle v, Au \rangle| \le ||A|| ||v||$$

Par conséquent, $||A^*|| \le ||A||$.

Topologie faible 3

Soit E un espace de Banach, E' son dual. Pour $f \in E'$, on définit $\phi_f : E \to \mathbb{R}$ tel que $\phi_f(x) = \langle f, x \rangle$. On définit ainsi une famille $(\phi_f)_{f \in E'}$ d'applications de E dans \mathbb{R} .

La topologie faible $\sigma(E, E')$ sur E est la topologie la moins fine sur E rendant continues toutes les applications $(\phi_f)_{f\in E'}$ continues, ie la topologie sur E avec un nombre minimal d'ouvert rendant les ϕ_f continues. On note par \rightarrow la convergence pour la topologie faible.

1 Proposition:

- Soit $(x_n)_n$ une suite de E. On a : 1. $x_n \rightharpoonup x \Leftrightarrow \forall f \in E', \ \langle f, x_n \rangle \rightarrow \langle f, x \rangle$ 2. Si $x_n \rightarrow x$, alors $x_n \rightharpoonup x$
- 3. Si $x_n \rightharpoonup x$ alors $||x_n||$ est bornée et $||x|| \le \liminf ||x_n||$
- 4. Si $x_n \rightharpoonup x$ et si $f_n \to f$ dans E', alors $\langle f_n, x_n \rangle \to \langle f, x \rangle$.

Démonstration : 1. Admis

- 2. Résulte de (1), puisque $|\langle f, x_n \rangle \langle f, x \rangle| \le ||f|| ||x_n x||$
- 3. On utilise pour cela le corollaire du théorème de Banach-Steinhaus suivant :

Corollaire : Soit G un espace de Banach et soit B un sous-ensemble de G. On suppose que pour tout $f \in G'$, l'ensemble $f(B) = \bigcup_{x \in B} \langle f, x \rangle$ est borné. Alors B est borné.

Il suffit donc de vérifier que pour chaque $f \in E'$, l'ensemble $(\langle f, x_n \rangle)_n$ est borné. Or, pour chaque $f \in E'$, la suite $\langle f, x_n \rangle$ converge vers $\langle f, x \rangle$ (en particulier, elle est bornée). Soit $f \in E'$, on a :

$$|\langle f, x_n \rangle \le ||f|| ||x_n||$$

et à la limite :

$$|\langle f, x \rangle \le ||f|| \liminf ||x_n||$$

Par conséquent :

$$\|x\| = \sup_{\|f\| \le 1} |\langle f, x \rangle| \le \liminf \|x_n\|$$

4. On a:

$$|\langle f_n, x_n \rangle - \langle f, x \rangle| \le |\langle f_n - f, x_n \rangle| + |\langle f, x_n - x \rangle| \le ||f_n - f|| ||x|| + |\langle f, x_n - x \rangle|$$

On conclut grâce à (1) et (3).

1 Proposition:

Lorsque E est de dimension finie, la topologie faible $\sigma(E, E')$ et la topologie usuelle conïncident. En particulier, une suite (x_n) converge faiblement si et seulement si elle converge fortement.

4 Opérateurs compacts

4.1 Définitions

Soient E et F deux espaces de Banach. On désigne par B_E la boule unité centrée à l'origine, ie

$$B_E = \{ x \in E; \ ||x|| \le 1 \}$$

et par $\mathcal{L}(E,F)$ l'espace des opérateurs linéaires continues de E dans F muni de la norme

$$\forall f \in \mathcal{L}(E, F), \ \|f\|_{\mathcal{L}(E, F)} = \sup_{\|x\| \neq 0} \frac{\|f(x)\|_F}{\|x\|_E}$$

♣ Définition: Opérateur compact

On dit qu'un opérateur $T \in \mathcal{L}(E, F)$ est compact si l'image de la boule unité par T est relativement compact pour la topologie forte, ie :

$$\overline{T\left(\left\{x\in E;\ \|x\|\leq 1\right\}\right)}\subset F\ \mathrm{compact}$$

On désigne par $\mathcal{H}(E,F)$ l'ensemble des opérateurs compacts de E dans F, et $\mathcal{H}(E)=\mathcal{H}(E,E)$.

⇔ Théorème:

 $\mathscr{H}(E,F)$ est un sous-espace vectoriel fermé de $\mathscr{L}(E,F)$ (pour la norme $\|\bullet\|_{\mathscr{L}(E,F)}$).

Démonstration:

Il est clair que la somme de deux opérateurs compacts est un opérateur compact.

Supposons que $(T_n) \subset \mathcal{H}(E,F)$, $T \in \mathcal{L}(E,F)$, et $||T_n - T||_{\mathcal{L}(E,F)} \to 0$. Montrons que $T \in \mathcal{H}(E,F)$. Comme F est complet, il suffit de vérifier que pour tout $\varepsilon > 0$, $T(B_E)$ peut être recouvert par un nombre fini de boules $B(f_i,\varepsilon)$ dans F.

Pour n assez grand, on a $||T_n - T||_{\mathcal{L}(E,F)} < \frac{\varepsilon}{2}$. Comme $T_n(B_E)$ est relativement compact, on a pour I fini

$$T_n(B_E) \subset \bigcup_{i \in I} B\left(f_i, \frac{\varepsilon}{2}\right)$$

Donc par force,

$$T(B_E) \subset \bigcup_{i \in I} B(f_i, \varepsilon)$$

🔩 Définition: Rang fini

On dit qu'un opérateur $T \in \mathcal{L}(E,F)$ est de rang fini si $R(T) < \infty$

Il est clair qu'un opérateur continu de rang fini est compact (car les compacts dans un espace de dimension finie sont les sous-espaces fermés bornés).

\Rightarrow Corollaire:

Soit (T_n) une suite d'opérateurs de rangs finis de E dans F et soit $T \in \mathcal{L}(E,F)$ tels que $||T_n - T||_{\mathcal{L}(E,F)} \to 0$. Alors $T \in \mathcal{H}(E,F)$.

1 Proposition:

Soient E, F et G trois espaces de Banach. Si $T \in \mathcal{L}(E,F)$ et $S \in \mathcal{H}(F,G)$ (ou $T \in \mathcal{H}(E,F)$ et $S \in \mathcal{L}(F,G)$), alors $S \circ T \in \mathcal{H}(E,G)$.

⇔ Théorème: Schauder

Si $T \in \mathcal{H}(E, F)$, alors $T^* \in \mathcal{H}(F', E')$, et réciproquement.

Démonstration:

On aura pour cela besoin du théorème d'Ascoli :

Théorème : Soit K un espace métrique compact et soit \mathcal{H} un sous-ensemble borné de $\mathcal{C}(K)$, l'ensemble des fonctions continues sur K.

On suppose que \mathcal{H} est uniformément équicontinu, ie :

$$\forall \varepsilon > 0, \exists \delta > 0; \ d(x_1, x_2) < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon \ \forall f \in \mathcal{H}$$

Alors \mathcal{H} est relativement compact dans $\mathcal{C}(K)$.

Montrons que $T^*(B_{F'})$ est relativement compact dans E'. Soit (v_n) une suite de $B_{F'}$. Montrons que l'on peut extraire une sous-suite telle que $T^*(v_{n_k})$ converge. Soit $K = \overline{T(B_E)}$ (métrique compact) et soit $\mathcal{H} \subset \mathcal{C}(K)$ défini par :

$$\mathcal{H} = \{ \phi_n : x \in K \to \langle v_n, x \rangle; \ n = 1, 2, \dots \}$$

Par le théorème d'Ascoli, on peut extraire une sous-suite notée ϕ_{n_k} qui converge dans $\mathcal{C}(K)$ vers une fonction $\phi \in \mathcal{C}(K)$. En particulier :

$$\sup_{u \in B_E} |\langle v_{n_k}, Tu \rangle - \phi(Tu)| \xrightarrow[k \to +\infty]{} 0$$

Donc

$$\sup_{u \in B_E} |\langle v_{n_k}, Tu \rangle - \langle v_{n_l}, Tu \rangle| \xrightarrow[k,l \to +\infty]{} 0$$

ie

$$||T^*v_{n_k} - T^*v_{n_l}||_{E'} \xrightarrow[k,l \to +\infty]{} 0$$

Par conséquent, $T^*v_{n_k}$ converge dans E'.

Réciproquement, supposons que $T^* \in \mathcal{H}(F', E')$. D'après ce qui précède, $T^{**} \in \mathcal{H}(E'', F'')$ et en particulier, $T^{**}(B_E)$ est relativement compact dans F''. Or, $T(B_E) = T^{**}(B_E)$ et F fermé dans F''. Par conséquent, $T(B_E)$ est relativement compact dans F.

4.2 Théorie de Riesz-Fredholm

⇔ Lemme: de Riesz

Soit E un e.v.n. et soit $M\subset E$ un sous-espace fermé tel que $M\neq E$. Alors

$$\forall \varepsilon > 0 \ \exists u \in E; \ \|u\| = 1 \ \text{et} \ d(u, M) \ge 1 - \varepsilon$$

Démonstration:

Soit $v \in E \setminus M$. Comme M est fermé, alors d = d(v, M) > 0. On choisit $m_0 \in M$ tel que

$$d \le ||v - m_0|| \le \frac{d}{1 - \varepsilon}$$

Alors

$$u = \frac{v - m_0}{\|v - m_0\|}$$

répond à la question. En effet, si $m \in M$, on a :

$$||u - m|| = \left| \frac{v - m_0}{||v - m_0||} - m \right| \ge 1 - \varepsilon$$

puisque

$$m_0 + ||v - m_0|| m \in M$$

⇔ Théorème: Riesz

Soit E un e.v.n. tel que B_E soit compact. Alors E est de dimension finie.

Démonstration:

Raisonnons par l'absurde. Si E est de dimension infinie, il existe une suite (E_n) de sous-espaces de dimension finie tels que $E_{n-1} \subsetneq E_n$. Grâce au lemme ptécédent, on peut construire une suite (u_n) avec $u_n \in E_n$, $||u_n|| = 1$ et $d(u_n, E_{n-1}) \ge \frac{1}{2}$. En particulier, $||u_n - u_m|| \ge \frac{1}{2}$ pour m < n. Donc la suite (u_n) n'admet aucune sous-suite convergente - ce qui est contraire à l'hypothèse B_E compact.

⇔ Théorème: Alternative de Fredholm

Soit $T \in \mathcal{H}(E)$. Alors :

- 1. N(I-T) est de dimension finie
- 2. R(I-T) est fermé, et plus précisément

$$R(I-T) = N(I-T^*)^{\perp}$$

- 3. $N(I-T) = \{0\} \Leftrightarrow R(I-T) = E$
- 4 dim $N(I-T) = \dim N(I-T^*)$

Démonstration : 1. Soit $E_1 = N(I-T)$. Alors $B_{E_1} \subset T(B_E)$ et donc B_{E_1} est compact. D'après le théorème de Riesz précédent, E_1 est de dimension finie.

2. Soit $f_n = u_n - Tu_n \to f$. Il faut montrer que $f \in R(I-T)$. Posons $d_n = d(u_n, N(I-T))$. Comme N(I-T) est de dimension finie, il existe $(v_n) \subset N(I-T)$ tel que $d_n = ||u_n - v_n||$. On a :

$$f_n = (u_n - v_n) - T(u_n - v_n) \tag{13}$$

Montrons que $||u_n - v_n||$ reste borné. Raisonnons par l'absurde et supposons qu'il existe une sous-suite telle que $||u_{n_k} - v_{n_k}|| \to \infty$. En posant

$$w_n = \frac{u_n - v_n}{\|u_n - v_n\|}$$

on aurait grâce à (13) $w_{n_k} - T(w_{n_k}) \to 0$. En extrayant une sous-sous-suite (encore notée (w_{n_k}) pour simplifier) on peut supposer que $Tw_{n_k} \to z$. Donc $w_{n_k} \to z$ et $z \in N(I-T)$. D'autre part :

$$d(w_n, N(I-T)) = \frac{d(u_n, N(I-T))}{\|u_n - v_n\|} = 1$$

puisque $v_n \in N(I-T)$. À la limite on obtient d(z, N(I-T)) = 1 - ce qui est absurde, vu que $z \in N(I-T)$. Par conséquent, $||u_n - v_n||$ reste borné et comme T est compact, on peut extraire une sous-suite telle que $T(u_{n_k} - v_{n_k}) \to l$.

On déduit de (13) que $u_{n_k} - v_{n_k} \to f + l$; posant g = f + l, on a g - Tg = f, ie $f \in R(I - T)$. On a donc montré que l'opérateur I - T est à image fermée. On peut alors appliquer un théorème précédent sur la fermeture de l'ensemble image, et en conclure :

$$R(I-T) = N(I-T^*)^{\perp}$$
 et $R(I-T^*) = N(I-T)^{\perp}$

3. Prouvons d'abord l'implication \Rightarrow .

Raisonnons par l'absurde et supposons que

$$E_1 = R(I - T) \neq E$$

 E_1 est un espace de Banach et $T(E_1) \subset E_1$. Donc $T_{|E_1} \in \mathcal{H}(E_1)$ et $E_2 = (I-T)(E_1)$ est un sous-espace fermé de E_1 . De plus, $E_2 \neq E_1$ (puisque (I-T) injectif). En posant $E_n = (I-T)^n(E)$, on obtient ainsi une suite strictement décroissant de sous-espaces fermés. D'après le lemme de Riesz, il existe une suite (u_n) telle que $u_n \in E_n$, $||u_n|| = 1$ et $d(u_n, E_{n+1}) \geq \frac{1}{2}$. On a :

$$Tu_n - Tu_m = -(u_n - Tu_n) + (u_m - Tu_m) + (u_n - u_m)$$

Notons que si n > m, $E_{n+1} \subset E_n \subset E_{m+1} \subset E_m$ et par conséquent :

$$-(u_n - Tu_n) + (u_m - Tu_m) + u_n \in E_{m+1}$$

Donc $||Tu_n - Tu_m|| \ge \frac{1}{2}$ - ce qui est absurde puisque T est compact. Donc R(I - T) = E.

Inversement, supposons que R(I-T)=E. Alors par corollaire précédent, $N(I-T^*)=R(I-T)^{\perp}=\{0\}$. Puisque $T^*\in \mathscr{H}(E')$, on peut appliquer ce qui précède à T^* et conclure que $R(I-T^*)=E'$. Or, par le même corollaire, $N(I-T)=R(I-T^*)^{\perp}=\{0\}$.

4. Soit $d = \dim N(I - T)$ et $d^* = \dim N(I - T^*)$. On va d'abord montrer que $d^* \le d$. Raisons par l'absurde et supposons que $d < d^*$. Comme N(I - T) est de dimension finie, il admet un supplémentaire topologique dans E; il exuste donc un projecteur continue P de E sur N(I - T).

D'autre part, $R(I-T) = N(I-T)^{\perp}$ est de codomension finie d^* et par conséquent, R(I-T) admet dans E un supplémentaire topologique, noté F de dimension d^* . Comme $d < d^*$, il existe une application linéaire $\Lambda: N(I-T) \to F$ qui est injective et non surjective. Posons $S = T + (\Lambda \circ P)$; alors $R \in \mathcal{H}(E)$ puisque $\Lambda \circ P$ est de rang fini.

Montrons que $N(I - S) = \{0\}$. En effet, si

$$0 = u - Su = (u - Tu) - (\Lambda \circ Pu)$$

alors

$$u - Tu = 0$$
 et $\Lambda \circ Pu = 0$

ie $u \in N(I-T)$ et $\Lambda u = 0$, donc u = 0

En appliquant (3) à l'opérateur S, on voit que R(I-S)=E. Ceci est absurde puisqu'il existe $f\in F$, $f\notin R(\Lambda)$; l'équation u-Su=f n'admet pas de solution.

Par conséquent, on a prouvé que $d^* \leq d$. En appliquant ce résultat à T^* , on voit que

$$\dim N(I - T^{**}) \le \dim N(I - T^*) \le \dim N(I - T)$$

Or, $N(I-T^{**})\supset N(I-T)$ - ce qui permet de conclure que $d=d^*$.

iRemarque:

- 1. L'Alternative de Fredholm concerne la résulution de l'équation u Tu = f. Elle exprime que :
 - Ou bien pour tout $f \in E$, l'équation u Tu = f admet une solution unique
 - Ou bien l'équation homogène u Tu = 0 admet n solutions linéairement indépendantes et dans ce cas, l'équation non homogène u Tu = f est résoluble si et seulement si f vérifie n conditions d'orthogonalité (i.e. $f \in N(I T^*)^{\perp}$).
- 2. La propriété (3) est familière en dimension finie. Si dim $E < \infty$, un opérateur linéaire de E dans lui-même est injectif si et seulement s'il est surjectif.

4.3 Spectre d'un opérateur - Décomposition spéctrale

4.3.1 Spectre d'un opérateur compact

🛂 Définition: Ensemble résolvant, spectre, espace propre

Soit $T \in \mathcal{L}(E)$

L'ensemble résolvant est

$$\rho(T) = \{\lambda \in \mathbb{R}; (T - \lambda I) \text{ est bijectif de } E \text{ dans } E\}$$

Le spectre $\sigma(T)$ est le complémentaire de l'ensemble résolvant

$$\sigma(T) = \mathbb{R} \backslash \rho(T)$$

On dit que λ est valeur propre - et on note $\lambda \in VP(T)$ - si

$$N(T - \lambda I) \neq \{0\}$$

 $N(T - \lambda I)$ est l'espace propre associé à λ .

Remarque : Il est clair que $VP(T) \subset \sigma(T)$. En général, l'inclusion est stricte (sauf bien sûr en dimension finie). Il peut exister λ tel que

$$N(T - \lambda I) = \{0\} \text{ et } R(T - \lambda I) \neq E$$

(un tel λ appartient au spectre mais n'est pas valeur propre).

Par exemple, prenons dans $E = l^2$, $Tu = (0, u_1, u_2, ...)$ où $u = (u_1, u_2, ...)$ (T est appelé le shift à droite). Alors $0 \in \sigma(T)$ et $0 \notin VP(T)$.

i Proposition:

Le spectre $\sigma(T)$ est un ensemble compact et

$$\sigma(T) \subset [-\|T\|, +\|T\|]$$

Démonstration:

Soit $\lambda \in \mathbb{R}$ avec $|\lambda| > ||T||$. Montrons que $T - \lambda I$ est bijectif - ce qui prouvera $\sigma(T) \subset [-||T||, +||T||]$.

Étant donné $f \in E$, l'équation $Tu - \lambda u = f$ admet une solution unique car elle s'écrit $u = \frac{1}{\lambda}(Tu - f)$ et on peut lui appliquer le théorème du point fixe de Banach (en effet, il est simple de vérifier que l'application $u \mapsto \frac{1}{\lambda}(Tu - f)$ définit une contraction : il suffit de majorer par $\frac{||T||}{\lambda}$).

Montrons maintenant que $\rho(T)$ est ouvert - ainsi $\sigma(T)$ sera par complémentaire fermé, et donc compact. Soit $\lambda_0 \in \rho(T)$. Étant donnés $\lambda \in \mathbb{R}$ (voisin de λ_0) et $f \in E$, on cherche à résoudre :

$$Tu - \lambda u = f \tag{14}$$

Or, on peut réécrire (14) $Tu - \lambda_0 u = f + (\lambda - \lambda_0)u$, ie :

$$u = (T - \lambda_0 I)^{-1} [f + (\lambda - \lambda_0) u] \tag{15}$$

En appliquant à nouveau le théorème du point fixe de Banach, on voit que (15) possède une solution unique si

$$|\lambda - \lambda_0| \|(T - \lambda_0 I)^{-1}\| < 1$$

On définit donc une boule ouverte autour de λ_0 incluse dans $\rho(T)$. Donc $\rho(T)$ est un ouvert.

⇔ Théorème:

Soit $T \in \mathcal{H}(E)$ avec dim $E = +\infty$. Alors on a :

- 1. $0 \in \sigma(T)$
- 2. $\sigma(T)\setminus\{0\} = VP(T)\setminus\{0\}$
- 3. l'une des situations suivantes :
 - ou bien $\sigma(T) = 0$
 - ou bien $\sigma(T)\setminus\{0\}$ est fini
 - ou bien $\sigma(T)\setminus\{0\}$ est une suite qui tend vers 0

Démonstration : 1. Supposons que $0 \notin \sigma(T)$. Alors T est bijectif et $I = T \circ T^{-1}$ est compact. Donc B_E est compact et par force, dim $E < \infty$ par le théorème de Riesz précédent.

- 2. Soit $\lambda \in \sigma(T)$, $\lambda \neq 0$. Montrons que $\lambda \in VP(T)$. Raisonnons par l'absurde et supposons que $N(T-\lambda I) = \{0\}$. Alors d'après l'alternative de Fredholm, on sait que $R(T-\lambda I) = E$, et donc $\lambda \in \rho(T)$ ce qui est absurde.
- 3. On va avoir besoin du lemme suivant :

⇔ Lemme:

Soit $(\lambda_n)_{n\geq 1}\subset \sigma(T)\backslash\{0\}$ une suite de réels tous distincts telle que

$$\lambda_n \to \lambda$$

Alors $\lambda = 0$.

On sait que $\lambda_n \in VP(T)$; soit $e_n \neq 0$ tel que $(T - \lambda_n)e_n = 0$. Soit $E_n = vect\{e_1, ..., e_n\}$. Montrons que $\forall n \ E_n \subsetneq E_{n+1}$.

Il suffit de vérifier que, pour tout n, les vecteurs $e_1, ..., e_n$ sont linéairement indépendants. Raisonnons par récurrence sur n. Admettons le résultat à l'ordre n et supposons que $e_{n+1} = \sum_{i=1}^{n} \alpha_i e_i$. Alors :

$$Te_{n+1} = \sum_{i=1}^{n} \alpha_i \lambda_i e_i = \sum_{i=1}^{n} \alpha_i \lambda_{n+1} e_i$$

Par suite, $\alpha_i(\lambda_i - \lambda_{n+1}) = 0$ pour tout i = 1, 2, ..., n, et donc $\alpha_i = 0$ pour tout i = 1, ..., n - ce qui est absurde. Donc $E_n \subsetneq E_{n+1}$ pour tout n.

D'autre part, il est clair que $(T - \lambda_n)E_n \subset E_{n-1}$. En appliquant le lemme de Riesez, on construit une suite $(u_n)_{n\geq 1}$ telle que $u_n \in E_n$, $||u_n|| = 1$ et $d(u_n, E_{n-1}) \geq \frac{1}{2}$ pour $n \geq 2$. Soient $2 \leq m < n$ de sorte que

$$E_{m-1} \subset E_m \subset E_{n-1} \subset E_n$$

On a:

$$\left\| \frac{Tu_n}{\lambda_n} - \frac{Tu_m}{\lambda_m} \right\| = \left\| \frac{Tu_n - \lambda_n u_n}{\lambda_n} - \frac{Tu_m - \lambda_m u_m}{\lambda_m} + u_n - u_m \right\| \ge d(u_n, E_{n-1}) \ge \frac{1}{2}$$

Si $\lambda_n \to \lambda$, on aboutit à une contradiction, puisque (Tu_n) admet une sous-suite convergente.

Retour à la démonstration du théorème : Pour tout entier $n \geq 1$, l'ensemble

$$\sigma(T) \cap \{\lambda \in \mathbb{R}, |\lambda| \ge \frac{1}{n}\}$$

est vide ou fini (s'il contenait une infinité de points distincts, on aurait un point d'accumulation - puisque $\sigma(T)$ est compact - et on aboutirait à une contradiction avec le lemme démontré précédemment). Lorsque $\sigma(T)\setminus\{0\}$ contient une infinité de points distincts, on peut donc les ranger en une suite qui tend vers 0.

4.3.2 Décomposition spectrale des opérateurs autoadjoints

On suppose dans la suite que E=H est un espace de Hilbert et que $T\in \mathcal{L}(H)$. En identifiant H et H' (grâce au théorème de représentation de Riesz), on peut considérer que $T^*\in \mathcal{L}(H)$.

♦ Définition: Autoadjoint

On dit qu'un opérateur $T \in \mathcal{L}(H)$ est autoadjoint si $T^* = T$, ie

$$(Tu, v) = (u, Tv) \ \forall u, v \in H$$

1 Proposition:

Soit $T\in \mathscr{L}(H)$ un opérateur autoadjoint. On pose :

$$m = \inf_{u \in H, |u|=1} (Tu, u) \text{ et } M = \sup_{u \in H, |u|=1} (Tu, u)$$

Alors $\sigma(T) \subset [m, M]$, avec $m \in \sigma(T)$ et $M \in \sigma(T)$.

Démonstration:

Soit $\lambda > M$; montrons que $\lambda \in \rho(T)$. On a :

$$(Tu, u) \le M|u|^2 \ \forall u \in H$$

et par conséquent

$$(\lambda u - Tu, u) \ge (\lambda - M)|u|^2 = \alpha |u|^2 \ \forall u \in H \text{ avec } \alpha > 0$$

Appliquant le théorème de Lax-Milgram, on voit que $\lambda I - T$ est bijectif. Montrons que $M \in \sigma(T)$. La forme a(u, v) = (Mu - Tu, v) est bilinéaire, symétrique et

$$a(v,v) \ge 0 \ \forall v \in H$$

Appliquant l'inégalité de Cauchy-Schwarz à la forme a(u, v), il vient :

$$|(Mu - Tu, v)| \le (Mu - Tu, u)^{\frac{1}{2}} (Mv - Tv, v)^{\frac{1}{2}} \ \forall u, v \in H$$

(Il faut m'expliquer où est CS là...?)

D'où il résulte en particulier

$$|Mu - Tu| \le C(Mu - Tu, u)^{\frac{1}{2}} \ \forall u \in H$$

$$\tag{16}$$

Soit (u_n) une suite telle que $|u_n|=1$ et $(Tu_n,u_n)\to M$. Grâce à (16), on voit que $|Mu_n-Tu_n|\to 0$ et donc $M\in\sigma(T)$ (car si $M\in\rho(T)$, alors $u_n=(MI-T)^{-1}(Mu_n-Tu_n)\to 0$) Les propriétés de m s'obtiennent en remplaçant T par -T

⇔ Corollaire:

Soit $T \in \mathcal{L}(H)$ un opérateur autoadjoint tel que $\sigma(T) = \{0\}$. Alors T = 0.

Démonstration:

D'après la proposition précédente, on sait que

$$(Tu, u) = 0 \ \forall u \in H$$

Il en résulte que :

$$2(Tu, v) = (T(u+v), u+v) - (Tu, u) - (Tv, v) = 0 \ \forall u, v \in H$$

Donc T=0

⇒ Théorème: Diagonalisation

On suppose que H est séparable. Soit T un opérateur autoadjoint compact. Alors H admet une base hilbertienne formée de vecteurs propres de T.

Démonstration:

Soit $(\lambda_n)_{n\geq 1}$ la suite des valeurs propres distincte de T, excepté 0; on note $\lambda_0=0$. On pose $E_0=N(T)$ et $E_n=N(T-\lambda_n I)$; rappelons que

$$0 \le dim E_0 \le \infty$$
 et que $0 < dim E_n < \infty$

Montrons d'abord que H est comme hilbertienne des $(E_n)_{n\geq 0}$:

1. Les $(E_n)_{n>0}$ sont deux à deux orthogonaux. En effet, si $u \in E_m$ et $v \in E_n$ avec $m \neq n$ alors

$$Tu = \lambda_m u$$
 et $Tv = \lambda_n v$

et

$$(Tu, v) = \lambda_m(u, v) = (u, Tv) = \lambda_n(u, v)$$

Donc (u, v) = 0

2. Soit F l'espace vectoriel engendré par les $(E_n)_{n\geq 0}$. Vérifions que F est dense dans H. Il est claire que $T(F) \subset F$. Il s'en suit que $T(F^{\perp}) \subset F^{\perp}$; en effet, si $u \in F^{\perp}$ et $v \in F$, alors (Tu, v) = (u, Tv) = 0. L'opérateur $T_0 = T|_F$ est autoadjoint compact. D'autre part, $\sigma(T_0) = \{0\}$; en effet, si

$$\lambda \in \sigma(T_0) \setminus \{0\}, \text{ alors } \lambda \in VP(T_0)$$

et donc il existe $u \in F^{\perp}$, $u \neq 0$ tel que $T_0 u = \lambda u$. Par conséquent, λ est l'une des valeurs propres λ_n de T et $u \in F^{\perp} \cap E_n$. Donc u = 0, ce qui est absurde.

Il résulte du corollaire précédent que $T_0 = 0$; par suite

$$F^{\perp} \subset N(T) \subset F \text{ et } F^{\perp} = \{0\}$$

Donc F est dense dans H.

Enfin, on choisit dans chaque E_n une base hilbertienne. La réunion de ces bases est une base hilbertienne de H formée de vecteurs propres de T.

5 Théorème de Hille-Yosida

5.1 Opérateurs maximaux monotones

Dans toute la suite, H désigne un espace de Hilbert.

❖ Définition: Maximal et monotone

Soit $A:D(A)\subset H\to H$ un opérateur linéaire non-borné. On dit que A est monotone (ou accrétif ou dissipatif) si

$$(Av, v) \ge 0 \ \forall v \in D(A)$$

A est maximal monotone si de plus, R(I + A) = H, ie

$$\forall f \in H, \exists u \in D(A); u + Au = f$$

1 Proposition:

Soit A un opérateur maximal monotone. Alors :

- 1. D(A) est dense dans H
- 2. A est fermé
- 3. Pour tout $\lambda > 0$, $(I + \lambda A)$ est bijectif de D(A) sur H, et $(I + \lambda A)^{-1}$ est un opérateur borné de norme $\|(I + \lambda A)^{-1}\|_{\mathcal{L}(H)} \le 1$

Démonstration : 1. Soit $f \in H$ tel que (f, v) = 0 pour tout $v \in D(A)$. Vérifions que f = 0. En effet, il existe $v_0 \in D(A)$ tel que $v_0 + Av_0 = f$. On a :

$$0 = (f, v_0) = |v_0|^2 + (Av_0, v_0) \ge |v_0|^2$$

Donc $v_0 = 0$ et par suite f = 0.

2. Notons d'abord que pour tout $f \in H$ il existe $u \in D(A)$ unique tel que u + Au = f. En effet, si \tilde{U} désigne une autre solution, alors on a $(u - \tilde{u}) + A(u - \tilde{u}) = 0$. Prenant le produit scalaire avec $(u - \tilde{u})$ et appliquant la monotonie de A, on voit que $u - \tilde{u} = 0$.

D'autre part, on a $|u|^2 + (Au, u) = (f, u)$ et par suite, $|u| \le |f|$. L'opérateur $f \mapsto u$ noté $(I + A)^{-1}$ est donc un opérateur linéaire borné de H dans H et $\|(I + A)^{-1}\|_{\mathscr{L}(H)} \le 1$.

Montrons que A est fermé. Soit $(u_n) \subset D(A)$ une suite telle que $u_n \to u$ et $Au_n \to f$. Il faut vérifier que $u \in D(A)$ et que Au = f. On a $u_n + Au_n \to u + f$ et donc

$$u_n = (I+A)^{-1}(u_n + Au_n) \to (I+A)^{-1}(u+f)$$

Par conséquent, $u = (I+1)^{-1}(u+f)$, ie $u \in D(A)$ et u + Au = f.

3. Supposons que pour un certain $\lambda_0 > 0$, on ait $R(I + \lambda_0 A) = H$. On va montrer que pour tout $\lambda > \frac{\lambda_0}{2}$, on a $R(I + \lambda A) = H$.

Commençons par notrer que pour tout $f \in H$ il existe $u \in D(A)$ unique tel que $u + \lambda_0 A u = f$; l'opérateur $f \mapsto u$ est noté $(I + \lambda_0 A)^{-1}$ et l'on a $\|(I + \lambda_0 A)^{-1}\|_{\mathcal{L}(H)} \leq 1$. On cherche à résoudre l'équation

$$u + \lambda A u = f \text{ avec } \lambda > 0$$

On réécrit l'équation sous la forme

$$u + \lambda_0 A u = \frac{\lambda_0}{\lambda} f + \left(1 - \frac{\lambda_0}{\lambda}\right) u$$

Ou encore:

$$u = (I + \lambda_0 A)^{-1} \left[\frac{\lambda_0}{\lambda} f + \left(1 - \frac{\lambda_0}{\lambda} \right) u \right]$$
 (17)

On voit alors que si $\left|1-\frac{\lambda_0}{\lambda}\right|<1$, ie $\lambda>\frac{\lambda_0}{2}$, alors (17) admet une solution grâce au théorème du point fixe de Banach.

Si A est maximal monotone, alors I + A est surjectif. D'après ce qui précède, $I + \lambda A$ est surjectif pour $\lambda > \frac{1}{2}$ donc aussi pour $\lambda > \frac{1}{4}$, etc. Par récurrence on voit que $I + \lambda A$ est surjectif pour tout $\lambda > 0$.

🔩 Définition: Résolvante et régularisée

Soit A un opérateur maximal monotone. On pose, pour tout $\lambda > 0$,

$$J_{\lambda} = (I + \lambda A)^{-1} \text{ et } A_{\lambda} = \frac{1}{\lambda}(I - J_{\lambda})$$

 J_{λ} est la résolvante de A et A_{λ} est la régularisée Yosida de A.

On retiendra que $||J_{\lambda}||_{\mathcal{L}(H)} \leq 1$.

1 Proposition:

Soit A un opérateur maximal monotone. On a :

- 1. $A_{\lambda}v = A(J_{\lambda}v) \ \forall v \in H \ \text{et} \ \forall \lambda > 0$
- 2. $A_{\lambda}v = A(J_{\lambda}v) \ \forall v \in D(A) \ \text{et} \ \forall \lambda > 0$
- 3. $|A_{\lambda}v| \leq |Av| \ \forall v \in D(A) \text{ et } \forall \lambda > 0$ 4. $\lim_{\lambda \to 0} J_{\lambda}v = v \ \forall v \in H$ 5. $\lim_{\lambda \to 0} J_{\lambda}v = v \ \forall v \in D(A)$ 6. $(A_{\lambda}v, v) \geq 0 \ \forall v \in H, \ \forall \lambda > 0$

- 7. $|A_{\lambda}v| \leq \frac{1}{\lambda}|v| \ \forall v \in H, \ \forall \lambda > 0$

Démonstration:

- 1. Équivaut à $v = (J_{\lambda}v) + \lambda A(J_{\lambda}v)$, qui résulte de la définition de J_{λ}
- 2. On a:

$$Av = \frac{1}{\lambda}[(I + \lambda A)v - v] = \frac{1}{\lambda}(I + \lambda A)(v - J_{\lambda}v)$$

et donc

$$J_{\lambda}Av = \frac{1}{\lambda}(v - J_{\lambda}v)$$

- 3. Résulte de 2)
- 4. Supposons d'abord que $v \in D(A)$. Alors

$$|v - J_{\lambda}v| = \lambda |A_{\lambda}v| \le \lambda |Av|$$

Donc $\lim_{\lambda \to 0} J_{\lambda} v = v$.

Passons au cas général. Soit $v \in H$ et soit $\varepsilon > 0$. Comme $\overline{D(A)} = H$, il existe $v_1 \in D(A)$ tel que $|v - v_1| \le \varepsilon$. On a:

$$|J_{\lambda}v - v| \leq |J_{\lambda}v - J_{\lambda}v_{1}| + |J_{\lambda}v_{1} - v_{1}| + |v_{1} - v|$$

$$\leq 2|v - v_{1}| + |J_{\lambda}v_{1} - v_{1}|$$

$$\leq 2\varepsilon + |J_{\lambda}v_{1} - v_{1}|$$

Par conséquent

$$\limsup_{\lambda \to 0} |J_{\lambda}v - v| \le 2\varepsilon \ \forall \varepsilon > 0$$

et donc

$$\lim_{\lambda \to 0} |J_{\lambda}v - v| = 0$$

- 5. Appliquer 2. et 4.
- 6. On a

$$(A_{\lambda}v, v) = (A_{\lambda}v, v - J_{\lambda}v) + (A_{\lambda}v, J_{\lambda}v)$$

= $\lambda |A_{\lambda}v|^2 + (A_{\lambda}(J_{\lambda}v), J_{\lambda}v)$

Donc

$$(A_{\lambda}v, v) \ge \lambda |A_{\lambda}v|^2 \ge 0$$

7. Viens de la dernière inégalité et de Cauchy-Schwarz.

5.2 Problème d'évolution

5.2.1 Existence et unicité

On s'intéresse au problème général suivant :

$$\begin{cases} \frac{du}{dt} + Au &= 0 & \sup[0, +\infty[\\ u(0) &= u_0 \end{cases}$$
 (PbEv)

On rappelle le résultat classique suivant :

⇔ Théorème: Cauchy-Lipschitz-Picard

Soit E un espace de Banach et soit $F:E\to E$ une application telle que

$$||Fu - Fv|| \le L||u - v|| \ \forall u, v \in E \ (L \ge 0)$$

Alors pour tout $u_0 \in E$, il existe $u \in \mathscr{C}^1([0,\infty[;E)$ unique telle que

$$\begin{cases} \frac{du}{dt} = Fu & \text{sur } [0, +\infty[\\ u(0) = u_0 \end{cases}$$
 (CLP)

Théorème: Hille-Yosida

Soit A un opérateur maximal monotone dans un espace de Hilbert H. Alors pour tout $u_0 \in D(A)$, il existe une fonction

$$u \in \mathscr{C}^1([0, +\infty[; H) \cap \mathscr{C}([0, +\infty[; D(A))$$

unique vérifiant (PbEv). De plus, on a

$$|u(t) \le |u_0|$$
 et $\left| \frac{du}{dt}(t) \right| = |Au(t)| \le |Au_0| \ \forall t \ge 0$

iRemarque:

- 1. Soit $t \geq 0$; on considère l'application linéaire $S_A(t): u_0 \mapsto u(t)$ de D(A) dans D(A) où u(t) est la solution de (PbEv). Étant donné que $|S_A(t)u_0| \leq |u_0|$, on peut prolonger $S_A(t)$ par continuité et densité en un opérateur linéaire continue de H dans lui-même, qu'on désigne toujours par $S_A(t)$. On vérifie facilement que $S_A(t)$ possède les propriétés suivantes :
 - (a) Pour chaque $t \geq 0$, $S_A(t): H \to H$ est un opéarateur linéaire continue et $S_A(t)_{\mathcal{L}(H)} \leq 1$
 - (b) $S_A(t_1 + t_2) = S_A(t_1) \circ S_A(t_2) \ \forall t_1, t_2 \ge 0 \ \text{et} \ S_A(0) = Id$
 - (c) $\lim_{t\to 0^+} |S_A(t)u_0 u_0| = 0 \ \forall u_0 \in H$

Une famille $\{S(T)\}_{t\geq 0}$ d'opérateurs de $\mathcal{L}(H)$ définie pour chaque valeur du paramètre $t\geq 0$ et vérifiant ces trois points est par définition un semi-groupe continu de contractions.

On montre qu'inversement, étant donné un semi-groupe continu de contractions S(t), il existe un opérateur A maximal monotone unique tel que $S(T) = S_A(t)$ pour tout $t \ge 0$.

On étabilit ainsi une correspondance bijective entre les opérateurs maximaux monotones et les semigroupes continus de contraction.

2. Soit A un opérateur maximal monotone et soit $\lambda \in \mathbb{R}$. La résolution de l'équation

$$\left\{ \begin{array}{lll} \frac{du}{dt} + Au + \lambda u & = & 0 & \sup \left[0, + \infty \right[\\ u(0) = u_0 & \end{array} \right.$$

se ramène très simplement à la résolution de (PbEv) grâce à l'artifice classique suivant. On pose

$$v(t) = e^{\lambda t} u(t)$$

Alors v vérifie

$$\begin{cases}
\frac{dv}{dt} + Av = 0 & \sup[0, +\infty[\\ v(0) = u_0
\end{cases}$$
(18)

5.2.2 Régularité

♦ Définition:

On définit par récurrence l'espace

$$D(A^k) = \{v \in D(A^{k-1}); Av \in D(A^{k-1})\}, k \text{ entier } \ge 2$$

On vérifie aisément que $D(A^k)$ est un espace de Hilbert pour le produit scalaire

$$(u,v)_{D(A^k)} = \sum_{j=0}^k (A^j u, A^j v)$$

⇔ Théorème:

On suppose que $u_0 \in D(A^k)$ avec $k \ge 2$. Alors la solution u du problème (PbEv) vérifie de plus :

$$u \in \mathcal{C}^{k-j}([0, +\infty[; D(A^j)) \text{ pour } j = 0, 1, ..., k$$

5.2.3 Dans les espaces de Banach

Soit E un espace de Banach.

🔩 Définition: m-accrétif

Soit $A:D(A)\subset E\to E$ un opérateur linéaire non-borné. On dit que A est m-accrétif si $\overline{D(A)}=E$ et si pour tout $\lambda>0,\ I+\lambda A$ est bijectif de D(A) sur E, avec $\|(I+\lambda A)^{-1}\|_{\mathscr{L}(E)}\leq 1$

⇔ Théorème: Hille-Yosida dans les espaces de Banach

Soit A un opérateur m-accrétif dans E. Alors pour tout $u_0 \in D(A)$, il existe une fonction

$$u \in \mathcal{C}^1([0, +\infty[; H) \cap \mathcal{C}([0, +\infty[; D(A))$$

unique vérifiant (PbEv). De plus, on a

$$|u(t) \le |u_0|$$
 et $\left| \frac{du}{dt}(t) \right| = |Au(t)| \le |Au_0| \ \forall t \ge 0$

⇔ Théorème:

On suppose que A est m-accrétif. Alors pour tout $u_0 \in D(A)$, la solution u de (PbEv) est donnée par la formule exponentielle

$$u(t) = \lim_{n \to +\infty} \left[\left(I + \frac{t}{n} A \right)^{-1} \right]^n u_0$$

Deuxième partie

Mesures

1 Mesures - premières propriétés

1.1 σ -algèbre ou tribu

🛂 Définition: Tribu

Une algèbre $\mathcal A$ est un ensemble de parties d'un espace Ω telle que :

- 1. Ω et $\emptyset \in \mathcal{A}$
- 2. Si $A, B \in \mathcal{A}$, alors $A \cap B$, $A \cup B$ et $A \setminus B \in \mathcal{A}$

 \mathcal{A} est une σ -algèbre ou tribu si pour tout suite $A_n \in \mathcal{A}$, on a $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$

♦ Définition: Espace mesurable

Un espace mesurable (Ω, \mathcal{A}) est un ensemble Ω munie d'une tribu \mathcal{A} .

Exemples de tribus :

- 1. $\mathcal{A} = \{\emptyset, \Omega\}$
- 2. $\mathcal{A} = 2^{\Omega} = \mathcal{P}(\Omega)$ l'ensemble de toutes les parties de Ω
- 3. Si $(A_i)_{i\in I}$ est une famille quelconque indexée sur un ensemble I (fini ou infini, dénombrable ou non), alors $A = \bigcap_{i\in I} A_i$ est une tribu.

♦ Définition:

Si \mathcal{C} est un ensemble quelconque de parties de Ω , on pose :

$$\sigma(\mathcal{C}) = \bigcap_{\mathcal{A}\sigma-algbrede\Omega,\ \mathcal{C}\subset A} \mathcal{A}$$

 $\sigma(\mathcal{C})$ est une σ -algèbre de Ω , appelée σ -algèbre engendrée par \mathcal{C} . C'est la plus petite tribu au sens de l'inclusion contenant \mathcal{C} .

1.2 Mesures

🔩 Définition:

Soit μ une fonction définie sur une classe \mathcal{A} de partie de Ω à valeur dans \mathbb{R} ou $[0, +\infty]$.

1. μ est additive si pour tout suite finie d'ensembles $A_1,...,A_n \in \mathcal{A}$ deux à deux disjoints, on a

$$\mu\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mu(A_i)$$

2. μ est σ -additive si pour tout suite d'ensembles $(A_i)_{i\in\mathbb{N}^*}\subset\mathcal{A}$ deux à deux disjoints, on a

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)$$

1 Proposition:

Soit μ une fonction définie sur une classe \mathcal{A} de partie de Ω à valeur dans $[0, +\infty]$

1. Si μ est additive ou σ -additive, alors μ est monotone, ie :

$$\forall A, B \in \mathcal{A}, \ A \subset B \Rightarrow \mu(A) \leq \mu(B)$$

2. Si μ est additive, alors μ est sous-additive, ie pour toute suite finie d'ensembles $A_1,...,A_n \in \mathcal{A}$, on a :

$$\mu\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} \mu(A_i)$$

3. Si μ est σ -additive, alors μ est σ -sous-additive, ie pour toute suite d'ensembles $(A_i)_{i\in\mathbb{N}^*}\subset\mathcal{A}$, on a :

$$\mu\left(\bigcup_{i=1}^{\infty}A_{i}\right)\leq\sum_{i=1}^{\infty}\mu(A_{i})$$

1 Proposition:

Soit μ une fonction σ -additive réelle (en excluant un des infinis au moins) ou positive, définie sur une σ -algèbre \mathcal{A} (avec $\mu(\emptyset) = 0$).

1. Continuité à gauche : si $A_1 \subset A_2 \subset ...$ est une suite croissante de \mathcal{A} , alors

$$\lim_{n \to +\infty} \mu(A_n) = \mu\left(\bigcup_{i=1}^{\infty} A_i\right)$$

2. Continuité à droite : si $A_1 \supset A_2 \supset ...$ est une suite décroissante de \mathcal{A} telle que $\bigcap_{i=1}^{\infty} A_i = \emptyset$ et telle que l'un des A_n soit de mesure finie, alors

$$\lim_{n \to +\infty} \mu(A_n) = 0$$

Contre-exemple dans le cas où la mesure de tout A_n n'est pas finie : On prend dans $\mathbb{R}: A_n = [n, +\infty[$. On a pour tout $n \mu(A_n) = +\infty$. Alors $\bigcap_n A_n = \emptyset$, et

$$\mu\left(\bigcap_{n} A_{n}\right) = 0$$

Donc

$$\mu(A_n) \not\to \mu\left(\bigcap_n A_n\right)$$

♦ Définition:

Soit A une tribu sur un ensemble Ω :

- 1. Une mesure réelle μ sur \mathcal{A} est une fonction σ -additive telle que $\mu: \mathcal{A} \to \mathbb{R}$
- 2. Une mesure positive μ sur \mathcal{A} est une fonction σ -additive telle que $\mu: \mathcal{A} \to [0, +\infty]$ et telle que $\mu(\emptyset) = 0$ On dit que μ est σ -finie si de plus, on a

$$\Omega = \bigcup_{i=1}^{\infty} \Omega_i \text{ avec } \Omega_n \in \mathcal{A} \text{ et } \mu(\Omega_i) < \infty$$

♦ Définition:

Un espace mesuré $(\Omega, \mathcal{A}, \mu)$ est un ensemble Ω munie d'une σ -algèbre \mathcal{A} et d'une mesure μ positive définie sur \mathcal{A} . Si $\mu(\Omega) = 1$, alors $(\Omega, \mathcal{A}, \mu)$ est appelé un espace probabilisé.

♦ Définition:

Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré.

- 1. Une partie N de Ω est dite négligeable lorsqu'il existe un $A \in \mathcal{A}$ contenant N et de mesure nulle.
- 2. μ est une mesure complète lorsque tout ensemble négligeable pour μ appartient à la tribu \mathcal{A} .

♦ Définition:

Soit μ une fonction positive définie sur une partie \mathcal{A} d'un ensemble Ω . On appelle mesure extérieure la fonction définie pour tout sous-ensemble A de Ω par :

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu(A_n); \ A_n \in \mathcal{A}, \ A \subset \bigcup_{i=1}^{\infty} A_i \right\}$$

i Propriété: de la mesure extérieure

- 1. μ^* est monotone
- 2. μ^* est σ -sous-additive

Remarque: En général, μ^* n'est pas additive.

♦ Définition:

Soit μ une fonction positive définie sur une partie $\mathcal A$ d'un ensemble Ω . Un sous-ensemble A de Ω est dit μ -mesurable si :

$$\forall \varepsilon > 0, \ \exists A_{\varepsilon} \in \mathcal{A} \text{ tel que } \mu^*(A\Delta A_{\varepsilon}) < \varepsilon$$

où
$$A\Delta A_{\varepsilon}=(A\cup A_{\varepsilon})\backslash (A\cap A_{\varepsilon})$$

On note \mathcal{A}_{μ} la classe des ensembles μ -mesurable.

⇔ Théorème:

Soit μ une fonction réelle positive, σ -additive, définie sur une algèbre \mathcal{A} . Alors :

- 1. On a $\mathcal{A} \subset \sigma(\mathcal{A}) \subset \mathcal{A}_{\mu}$ et la mesure extérieure μ^* coïncide avec μ sur \mathcal{A}
- 2. La famille d'ensemble \mathcal{A}_{μ} est une $\sigma\text{-algèbre}$ sur Ω
- 3. La restriction de μ^* à \mathcal{A}_{μ} est σ -additive et est une mesure complète
- 4. La fonction μ^* est l'unique extension positive σ -additive à $\sigma(\mathcal{A})$ (et aussi à \mathcal{A}_{μ}).

i Proposition:

Soit μ une fonction réelle σ -additive, définie sur une algèbre \mathcal{A} et $A\subset\Omega$. Alors il y a équivalence des propositions :

- 1. A est μ -mesurable $(A \in \mathcal{A}_{\mu})$
- 2. $\forall \varepsilon > 0, \exists A_{\varepsilon} \in \mathcal{A} \text{ tel que } \mu^*(A\Delta A_{\varepsilon}) < \varepsilon)$
- 3. Il existe deux ensembles mesurables $A', A'' \in \sigma(A)$ tels que

$$A' \subset A \subset A''$$
 tels que $\mu^*(A'' \backslash A') = 0$

- 4. $\mu^*(A) + \mu^*(\Omega \backslash A) = \mu^*(\Omega)$
- 5. Pour tout $E \subset \Omega$,

$$\mu^*(E \cap A) + \mu^*(E \backslash A) = \mu^*(E)$$

1.3 Décomposition de Hahn

Définition:

Soit $A \in \mathcal{A}$. On dit que $A \geq 0$ si $\forall B \subset A, B \in \mathcal{A}, \mu(B) \geq 0$.

→ Théorème: Décomposition de Hahn

Soit μ une mesure σ -additive à valeurs réelles définie sur un espace mesurable (Ω, \mathcal{A}) . Alors il existe des ensembles disjoints Ω^+ et Ω^- de \mathcal{A} tels que $\Omega^+ \cup \Omega^- = \Omega$ et tels que pour tout $A \in \mathcal{A}$, on a

$$\mu(A \cap \Omega^+) \ge 0 \text{ et } \mu(A \cap \Omega^-) \le 0$$

Démonstration:

On suppose que μ ne prend pas comme valeur $-\infty$ (sinon, il suffirait de faire le raisonnement avec $-\mu$). On commence par le lemme suivant :

Lemme : On suppose que $D \in \mathcal{A}$ est tel que $\mu(D) \leq 0$. Alors il existe $A \subset D$, $A \leq 0$, tel que $\mu(A) \leq \mu(D)$. En effet, définissons $A_0 = D$. En considérant que pour un certain entier n, $A_n \subset D$ a été construit, on pose

$$t_n = \sup\{\mu(B); B \in \mathcal{A}, B \subset A_n\}$$

Ce supremum pourrait être a priori infini. Puisque B pourrait éventuellement être l'ensemble vide, et que $\mu(\emptyset) = 0$, on a $t_n \geq 0$. Par définition de t_n , il existe $B_n \subset A_n \in \mathcal{A}$ tel que

$$\mu(B_n) \ge \min\left\{1, \frac{t_n}{2}\right\}$$

On pose $A_{n+1} = A_n \backslash B_n$ pour terminer cette phase de construction. Soit

$$A = D \setminus \bigcup_{n=0}^{\infty} B_n$$

Puisque les ensembles $(B_n)_{n\geq 0}$ sont des ensembles disjoints de D, il résulte de la σ -additivité de la mesure signée μ que

$$\mu(A) = \mu(D) - \sum_{n=0}^{\infty} \mu(B_n) \le \mu(D) - \sum_{n=0}^{\infty} \min\left\{1, \frac{t_n}{2}\right\}$$

Cela montre que $\mu(A) \leq \mu(D)$.

Supposons par l'absurde que A n'est pas un ensemble négatif (ie $\neg (A \le 0)$). Il existe donc $B \in \mathcal{A}$, sous-ensemble de A, tel que $\mu(B) > 0$. Alors $t_n \ge \mu(B)$ pour tout n, et donc la série à droite de l'égalité doit diverger. Cela implique que $\mu(A) = -\infty$, ce qui est exclu. Donc A doit être un ensemble négatif, ie $A \le 0$.

Construction de la décomposition : Soit $\Omega_0^- = \emptyset$. Constructivement, pour Ω_n^- donné, on définit

$$s_n = \inf\{\mu(D); D \in \mathcal{A}, D \subset \Omega \setminus \Omega_n^-\}$$

Cet infimum pourrait a priori être $-\infty$. Puisque l'ensemble vide est un D possible dans la définition de l'infimum, et que $\mu(\emptyset) = 0$, on a $s_n \leq 0$. Donc il existe $D_n \in \mathcal{A}$, $D_n \subset \Omega \setminus \Omega_n^-$ et

$$\mu(D_n) \le \max\left\{\frac{s_n}{2}, -1\right\} \le 0$$

D'après le lemme précédent, il existe $A_n \subset D_n$, $A_n \leq 0$ tel que $\mu(A_n) \leq \mu(D_n)$. On définit $\Omega_{n+1}^- = \Omega_n^- \cup A_n$ pour terminer la phase de construction. Soit

$$\Omega^- = \bigcup_{n=0}^{\infty} A_n$$

Puisque les $(A_n)_{n>0}$ sont disjoints, on a pour tout $B \subset \Omega^-$ dans \mathcal{A} que

$$\mu(B) = \sum_{n=0}^{\infty} \mu(B \cap A_n)$$

par la σ -additivité de μ . En particulier, cela montre que $\Omega^- \leq 0$.

Soit $\Omega^+ = \Omega \setminus \Omega^-$. Si Ω^+ n'était pas un ensemble positif (ie $\neg(\Omega^+ \ge 0)$), il existerait un sous-ensemble $D \subset \Omega^+$ dans \mathcal{A} tel que $\mu(D) < 0$. Alors $s_n \le \mu(D)$ pour tout n et

$$\mu(\Omega^{-}) = \sum_{n=0}^{\infty} \mu(A_n) \le \sum_{n=0}^{\infty} \max\left\{\frac{s_n}{2}, -1\right\} = -\infty$$

ce qui est exclu. Donc $\Omega^+ \geq 0$.

Preuve de l'unicité : Supposons que $(\tilde{\Omega}^-, \tilde{\Omega}^+)$ soit une autre décomposition de Hahn de Ω . Alors $\Omega^+ \cap \tilde{\Omega}^- \geq 0$ et aussi ≤ 0 . Donc tout sous-ensemble mesurable de cet ensemble sera de mesure nulle. On peut appliquer le même raisonnement à $\Omega^- \cap \tilde{\Omega}^+ \geq 0$. Or

$$(\Omega^{+}\Delta\tilde{\Omega}^{+}) \cup (\Omega^{-}\Delta\tilde{\Omega}^{-}) = (\Omega^{+}\cap\tilde{\Omega}^{-}) \cup (\Omega^{-}\cap\tilde{\Omega}^{+})$$

Cela complète donc la démonstration.

⇔ Corollaire:

Sous les hypothèses du théorème précédent, on pose pour tout $A \in \mathcal{A}$

$$\mu^{-}(A) = -\mu(A \cap \Omega^{-}) \text{ et } \mu^{+}(A) = \mu(A \cap \Omega^{+})$$

1. μ^+ et μ^- sont des mesures positives à valeurs réelles, σ -additives et on a l'égalité pour tout $A \in \mathcal{A}$

$$\mu(A) = \mu^{+}(A) - \mu^{-}(A)$$

2. L'enseble des valeurs de μ est borné :

$$\forall A \in \mathcal{A}, \ |\mu(A)| \le M = \max\{\mu^+(\Omega), \mu^-(\Omega)\}\$$

♦ Définition:

Les mesures μ^+ et μ^- sont appelées la partie positive et négative de μ . La mesure

$$|\mu| = \mu^+ + \mu^-$$

est appelée la variation totale de μ .

La quantité

$$\|\mu\| = |\mu|(\Omega) = \mu^{+}(\Omega) + \mu^{-}(\Omega)$$

est appelée la norme en variation de μ .

IRemarque:

- 1. La décomposition $\mu=\mu^+-\mu^-$ est appelée la décomposition de Jordan ou de Hahn-Jordan de μ
- 2. On peut définir les mesures μ^+ et μ^- par la formule

$$\mu^{+}(A) = \sup\{\mu(B); B \subset A, B \in \mathcal{A}\}\$$

$$\mu^{-}(A) = \sup\{-\mu(B); B \subset A, B \in \mathcal{A}\}\$$

3. On a $\|\mu\| \le 2 \sup\{|\mu(A)|; A \in \mathcal{A}\} \le 2\|\mu\|$

2 Fonctions mesurables, intégrale de Lebesgue

Dnas tout ce qui suit, $(\Omega, \mathcal{A}, \mu)$ est un espace mesuré.

2.1Fonctions mesurables

Une fonction mesurable sur Ω est une fonction $f:\Omega\to\mathbb{R}$ telle que l'image réciproque de tout borélien de \mathbb{R} est mesurable. On a les mêmes définition pour une fonction à valeur dans \mathbb{R} , \mathbb{R} ou \mathbb{R}^N . Dans le cas de \mathbb{R} , c'est équivalent à :

$$\forall c \in \mathbb{R}, \{x \in \Omega; f(x) < c\} \in \mathcal{A}$$

I Propriété:

On a les propriétés suivantes :

- Si f est mesurable et ϕ continue, alors $\phi(f)$ est mesurable.
- Si g est mesurable et $g(x) \neq 0 \ \forall x \in \Omega$, alors $^1/_g$ est mesurable.
- Si f et g sont mesurables, alors f+g, fg, $\max(f,g)$ et $\min(f,g)$ sont mesurables. Si (f_n) sont mesurables, alors $\sup_{n\geq 0} f_n$, $\inf_{n\geq 0} f_n$, $\lim\sup_{n\to +\infty} f_n$ et $\liminf_{n\to +\infty} f_n$ sont mesurables.
- Sin $f_n(x) \to f(x)$ pour presque tout $x \in \Omega$, alors $f = \lim_{n \to +\infty} f_n$ est mesurable.

Soit A une partie de Ω . La fonction indicatrice ou fonction caractéristique de A et est notée 1_A est la fonction

$$1_A(x) = \begin{cases} 0 & \text{si} \quad x \notin A \\ 1 & \text{si} \quad x \in A \end{cases}$$

 $\mathbf{1}_A$ est mesurable si et seulement si A est mesurable et on pose

$$\mu(A) = \int_{\Omega} 1_A d\mu$$

♦ Définition:

Une fonction étagée s est définie par :

$$s = \sum_{k} a_k 1_{A_k}$$

où les ensembles A_k sont mesurables et $a_k\in\mathbb{C}.$ On définit alors l'intégrale de s par :

$$\int_{\Omega} s d\mu = \sum_{k} a_{k} \mu(A_{k})$$

Intégrale de Lebesgue

♦ Définition:

Si f une fonction positive mesurable définie sur $\Omega.$ On pose :

$$\int_{\Omega} f d\mu = \sup_{s \ tage, \ s \le f} \int_{\Omega} s d\mu$$

♦ Définition:

Soit f une fonction mesurable définie sur Ω à valeurs dans \mathbb{R} ou \mathbb{C} .

- On dit que f est intégrable si $\int_{\Omega} |f| d\mu < \infty$ Si f est à valeurs réelles, on pose $f = f^+ f^-$ et

$$\int_{\Omega} f d\mu = \int_{\Omega} f^{+} d\mu - \int_{\Omega} f^{-} d\mu$$

— Si f est à valeurs complexes et f=g+ih avec g et h à valeurs réelles,

$$\int_{\Omega}fd\mu=\int_{\Omega}gd\mu+i\int_{\Omega}hd\mu$$

I Propriété:

- Si f et g sont des fonctions intégrables et a et b sont des nombres complexes, alors af + bg est intégrable et $\int (af + bg)d\mu = a \int fd\mu + b \int gd\mu$
- Si $f \leq g$ aors $\int f d\mu \leq \int g d\mu$
- Deux fonctions qui diffèrent seulement sur un ensemble de mesure μ nulle ont la même intégrale : si $\mu(\{f(x) \neq g(x)\}) = 0$, alors f est intégrable si et seulement si g est intégrable, et dans ce cas, $\int f d\mu =$

☼ Théorème: Convergence monotone

Soit (f_n) une suite de fonctions mesurables positives telles que pour tout $n, f_n \leq f_{n+1}$. On pose $f = f_n$ $\lim_{n\to+\infty} f_n$. Alors on a

$$0 \le \lim_{n \to \infty} \int f_n d\mu = \int d\mu \le \infty$$

⇔ Lemme: de Fatou

Soit $(f_n)_n$ une suite de fonctions mesurables positives. On pose $f = \liminf_{n \to +\infty} f_n$. On a alors

$$0 \le \int f d\mu \le \liminf_{n \to +\infty} f_n d\mu \le \infty$$

☼ Théorème: convergence dominée

Soit $(f_n)_n$ une suite fonctions mesurables. On suppose que :

- 1. $f_n(x) \xrightarrow[n \to +\infty]{} f(x)$ p.p.
- 2. $\exists g$ intégrable telle que pour tout n,

$$|f_n(x)| \le g(x)$$
 p.p.

Alors f est intégrable et

$$\lim_{n \to +\infty} \int f_n d\mu = \int f d\mu$$

2.3 Inégalités

Inégalité de convexité Soit f une fonction convexe, $(x_1, ..., x_n)$ une famille de réels dans l'intervalle de définition de f, $(\lambda_1, ..., \lambda_n)$ une famille de réels de l'intervalle [0, 1] tels que :

$$\sum_{i=1}^{n} \lambda_i = 1$$

Alors on a:

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i f(x_i)$$

Inégalité de Young Pour $1 \le p,q \le \infty,\, \frac{1}{p} + \frac{1}{q} + 1,\, a,b \ge 0,\, \varepsilon > 0$:

$$2ab \le a^2 + b^2$$

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

$$ab \le \frac{(\varepsilon a)^p}{p} + \frac{b^q}{q\varepsilon^q}$$

Inégalité de Jensen Si $\mu(\Omega)=1, g$ est une fonction à valeurs réelles intégrable et si ϕ est une fonction convexe réelle mesurable, alors :

$$\phi\left(\int_{\Omega} g d\mu\right) \leq \int_{\Omega} \phi \circ g d\mu$$

Inégalité de Cauchy-Schwarz

— Dans $(E, \langle \bullet, \bullet \rangle)$, espace préhilbertien réelle ou complexe :

$$\langle x, y \rangle \le ||x|| ||y||$$

De plus, les deux membres sont égaux si et seulement si x et y sont linéairement indépendants

— Dans
$$\mathbb{C}^n$$
:

$$\left| \sum_{i=1}^{n} x_i y_i \right| \le \left(\sum_{i=1}^{n} x_i^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} y_i^2 \right)^{\frac{1}{2}}$$

— Dans
$$L^2(\Omega)$$
:

$$\left| \int f \bar{g} \right| \le \left(\int |f|^2 \right)^{\frac{1}{2}} \left(\int |g|^2 \right)^{\frac{1}{2}}$$

Et le reste, j'ai la flemme.