Propositional Laws

Name of Law	Equation of law
De Morgan's Laws	$\neg (p \land q) \equiv \neg p \lor \neg q$
	$\neg (p \lor q) \equiv \neg p \land \neg q$
Identity laws	$p \wedge T \equiv p$
	$p \vee F \equiv p$
Domination laws	$p \vee T \equiv T$
	$p \wedge F \equiv F$
Idempotent laws	$p \lor p \equiv p$
	$p \wedge p \equiv p$
Double negation law	$\neg(\neg p) \equiv p$
Commutative laws	$p \lor q \equiv q \lor p$
	$p \wedge q \equiv q \wedge p$
Associative laws	$p \lor (q \lor r) \equiv (p \lor q) \lor r$
	$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$
Distributive law of	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
conjunction over	
disjunction	
Equivalences involving	$p \rightarrow q \equiv \neg p \lor q$
conditional	$p \rightarrow q \equiv \neg q \rightarrow \neg p$
statements and	$p \leftrightarrow q \equiv (p \rightarrow q) \land (p \rightarrow q)$
bi-conditionals	$p \longleftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$