Esercitazione 4 - Linguaggi e Complessità

03-05-2019

Antonio Cruciani antonio.cruciani@alumni.uniroma2.eu

Funzioni Time e Space constructible

Definizione:

Una funzione $f: \mathbb{N} \to \mathbb{N}$ è **time-constructible** se esiste una macchina di Turing T di tipo trasduttore che, dato in input un intero n in unario (1^n) scrive sul nastro di output f(n) in unario $(1^{f(n)})$ in $dtime(T, n) \in O(f(n))$.

Esercizi a lezione

Esercizio 1:

Dimostrare $f(n) = n^n$ è una funzione time-constructible

Esercizio 2:

Dimostrare che per ogni $k \in \mathbb{N}$ costante, 2^{n^k} è una funzione time-constructible.

Esercizi per casa

Esercizio 1:

Per ognuna delle seguenti affermazioni si dimostri, si confuti o si mostri che sono dei problemi aperti:

- 1) Se $L_1, L_2 \in \mathbf{coNP} \implies L_1 \cap L_2 \in \mathbf{coNP}$
- 2) Se $L \in \mathbf{NP}$, $L_1 \subsetneq L$, $e L_1 \in \mathbf{coNP} \implies L L_1 \in NP$
- 3) Se $L \in \mathbf{NPC} \implies \{xx : x \in L\} \in \mathbf{NPC}$
- 4 Se $L_1, L_2 \in \mathbf{NP} \cap \mathbf{coNP} \Rightarrow L_1 \oplus L_2 \in \mathbf{NP} \cap \mathbf{coNP}$. Dove $L_1 \oplus L_2 = \{x : x \ \hat{e} \ esattamente \ in \ uno \ dei \ due\}$

Esercizio 2:

Dimostrare che per ogni $k \in \mathbb{N}$ costante e per ogni (k+1)-pla $\langle a_0, a_2, \dots a_k \rangle$ di costanti tali che $\forall 0 \leq i \leq k[a_i \in \mathbb{N}], f(n) = \sum_{i=0}^k a_i n_i$ è una funzione time-constructible.

Esercizio 3:

Sia f(n) un funzione time-constructible. Si dimostri che $2^{f(n)}$ è anch'essa time-constructibile.

Soluzioni esercizi a lezione

Esercizio 1:

Claim: $f(n) = n^n$ è una funzione time-constructible.

Proof:

Forniamo una macchina di Turing che calcola f(n), per comodità utilizzeremo il linguaggio $Pascal\ Minimo$.

Legenda:

- i è la variabile che indica il numero della fase
- h è la variabile che indica la posizione della testina sul nastro n_1
- n_j indica il nastro j
- con l'operazione $n_i \leftarrow n_j$ copia n_j su n_i
- l'operatore + tra n_i e n_j indica la concatenazione tra n_i e n_j

Forniamo, ora, lo pseudocodice dell'algoritmo.

```
Algorithm 1 Calcola n^n
```

```
1: n_1 \leftarrow n
 2: n_3 \leftarrow n_1
 3: n_4 \leftarrow n_1
 4: i \leftarrow 2
 5: while (i \leq n_4) do Begin
          n_2 \leftarrow n_3
          h \leftarrow 1
 7:
          while (h \le n_4) do Begin
 8:
                n_3 \leftarrow n_3 + n_2
 9:
                h \leftarrow h + 1
10:
          i \leftarrow i + 1
11:
12: Output(n_3)
```

Mostriamo che tale macchina di Turing opera in tempo (n^n) .

Calcoliamo il numero di passi di T.

Le istruzioni prima del ciclo **while** richiedono n passi (scrittura simultanea sui nastri) e ne occorrono n per riavvolgere il nastro n_4 (per eseguire l'istruzione $i \leftarrow 2$).

L'i-esima iterazione del ciclo while esterno richiede:

- controllo condizione del while in 1 passo
- $n_2 \leftarrow n_3$ richiede n^{i-1} passi
- riavvolgimento n_2 in altrettanti passi
- riavvolgimento di n_1 $(h \leftarrow 1)$ in n passi

Il ciclo **while** intero richiede (effettua per n volte):

- controllo della condizione in 1 passo
- $n_3 \leftarrow n_3 + n_2$ viene concatenata in n^{i-1} passi il valore di $n_3(n^{i-1})$ contenuto in n_2
- riavvolgimento di n_2 in n^{i-1} passi

In definitiva l'algoritmo impiega:

$$2n + \sum_{i=2}^{n} [2n^{i-1} + n + n(1 + n^{i-1} + n^{i-1}) + 1] =$$

$$2n + 2n(n-1) + n - 1 + 2\sum_{i=2}^{n} n^{i} + 2\sum_{i=2}^{n} n^{i-1}$$

$$\leq 2n^{2} + n + 4\sum_{i=2}^{n} n^{i}$$

utilizziamo il risultato noto delle serie geometriche:

$$\sum_{k=m}^{n} x^{k} = \frac{x^{m} - x^{n+1}}{1 - x}$$

Ottenendo:

$$2n^{2} + n + 4\sum_{i=2}^{n} n^{i} = 2n^{2} + n + 4\frac{n^{2} - n^{n+1}}{1 - n}$$

$$\leq 2n^{2} + n + 4\frac{n^{n+1}}{\frac{n}{2}} =$$

$$= 2n^{2} + n + 8n^{n} \sim \mathbf{O}(n^{n})$$

E questo conclude la nostra analisi. Abbiamo dimostrato che $f(n) = n^n$ è una funzione time-constructible.

Esercizio 2:

Claim: $\forall k \in \mathbb{N}$ costante, $f(n) = 2^{n^k}$ è una funzione time-constructible. **Proof:**

Forniamo una macchina di Turing che calcola f(n), per comodità utilizzeremo il linguaggio $Pascal\ Minimo$.

Legenda:

- n_i è il nastro i-esimo, semi-infinito dove le celle di n_i sono numerate a partire dalla posizione 1
- La variabile i_i corrisponde alla posizione della testina sul nastro n_i .
- L'operatore + applicato sui nastri $(n_j + n_h)$ indica l'operazione di concatenazione.
- L'operatore + applicato alle testine $(i_j + 1)$ indica lo spostamento a destra della testina.
- La subroutine CALCOLA POTENZA K-ESIMA (n_i, n_j) scrive su n_j il valore corrispondente al valore di n_i elevato alla k.

Forniamo, ora, lo pseudocodice dell'algoritmo.

```
Algorithm 2 Calcola 2^{n^k}
```

```
1: n_1 \leftarrow n

2: CALCOLA POTENZA K-ESIMA (n_1, n_2)

3: n_3 \leftarrow 2 (in unario, ovvero 1^2)

4: i_2 \leftarrow 2

5: while (i_2 \leq n_2) do Begin

6: n_4 \leftarrow n_3

7: n_3 \leftarrow n_3 + n_4

8: i_2 \leftarrow i_2 + 1

9: Output(n_3)
```

Mostriamo che tale macchina di Turing opera in tempo $O(2^{n^k})$. La subroutine Calcola Potenza k-esima (n_1, n_2) richiede tempo $O(n^k)$. Procediamo con l'analisi del ciclo **while**: all'inizio della generica iterazione i il nastro n_3 contiene il valore 2^{i-1} il quale viene copiato su n_4 e poi concatenato al valore stesso di n_3 ottenendo così il valore 2^i . L'operazione i-esima richiede quindi tempo $2^{i-1} + 2^i$.

Osserviamo esplicitamente che $2 \le i \le n^k$.

$$\Rightarrow \sum_{i=2}^{n^k} \left(2^{i-1} + 2^i \right) = \sum_{i=2}^{n^k} 2^{i-1} + \sum_{i=2}^{n^k} 2^i = \frac{1}{2} \sum_{i=2}^{n^k} 2^i + \sum_{i=2}^{n^k} 2^i = \sum_{i=2}^{n^k} 2^i (\frac{1}{2} + 1) = \sum_{i=2}^{n^k} 2^i (\frac{3}{2})$$

utilizziamo il risultato noto delle serie geometriche:

$$\sum_{k=m}^{n} x^k = \frac{x^m - x^{n+1}}{1 - x}$$

ottenendo:

$$\sum_{i=2}^{n^k} 2^i (\frac{3}{2}) = \frac{3}{2} (-4 + 2^{n^k + 1}) = 3(2^{n^k} - 2) \sim \mathcal{O}(2^{n^k})$$

E questo conclude la nostra analisi. Abbiamo dimostrato che $f(n) = 2^{n^k}$ per ogni $k \in \mathbb{N}$ costante è una funzione time-constructible.

Soluzioni esercizi per casa

Esercizio 1:

1)

Vero, poiché
$$L_1^c, L_2^c \in \mathbf{NP} \Rightarrow L_1^c \cup L_2^c \in \mathbf{NP} \Rightarrow L_1 \cap L_2 = (L_1^c \cup L_2^c)^c \in \mathbf{coNP}$$

2)

Vero, poiché $L_1 \in \mathbf{coNP} \Rightarrow L_1^c \in \mathbf{NP}$ e poiché \mathbf{NP} è chiusa per l'operazione di intersezione, $L - L_1 = L \cap L_1^c \in \mathbf{NP}$

3)

Vero, poiché $\{xx:x\in L\}$ è chiaramente in **NP**. Per prima cosa controlla che l'input sia della forma xx poi esegui la NDTM che accetta L su x. D'altra parte, possiamo esibire una riduzione da L, duplicando semplicemente l'input, quindi $\{xx:x\in L\}\in \mathbf{NPC}$.

4)

Osserviamo che l'operatore \oplus può essere definito come segue:

$$A \oplus B = (A \cap B^c) \cup (A^c \cap B).$$

Osserviamo esplicitamente che:

$$L_1^c, L_2^c \in \mathbf{NP} \cup \mathbf{coNP} \Rightarrow L_1 \oplus L_2 = (L_1 \cap L_2^c) \cup (L_1^c \cap L_2)$$
 osserviamo che $L_1 \cap L_2^c, L_1^c \cap L_2 \in \mathbf{NP} \cap \mathbf{coNP} \Rightarrow L_1 \oplus L_2 \in \mathbf{NP} \cap \mathbf{coNP}$

Esercizio 2:

Claim: $\forall k \in \mathbb{N} \land \forall \langle a_0, a_2, \dots a_k \rangle$ tali che $\forall 0 \leq i \leq k[a_i \in \mathbb{N}]$, costanti , $f(n) = \sum_{i=0}^k a_i \ n_i$ è una funzione time-constructible.

Proof:

Forniamo una macchina di Turing che calcola f(n), per comodità utilizzeremo il linguaggio $Pascal\ Minimo$.

Osserviamo esplicitamente che i valori $k, a_0, \dots a_k$ sono costanti, quindi possiamo codificarli negli stati della macchina di Turing che deve calcolare la funzione senza utilizzare i nastri.

Legenda:

- Con istruzioni del tipo $n_2 \leftarrow a_0$ ci riferiamo alla seguente sequenza di istruzioni della macchina di Turing:
 - 1. se nello stato $q_{a_0,0}$ la testina su n_2 legge un \square allora scrive 1, si sposta a destra di una posizione ed entra nello stato $q_{a_0,1}$
 - 2. se nello stato $q_{a_0,1}$ la testina su n_2 legge un \square allora scrive 1, si sposta a destra di una posizione ed entra nello stato $q_{a_0,2}$

- 3. ...
- 4. se nello stato q_{a_0,a_0-1} la testina su n_2 legge un \square allora scrive 1, si sposta a destra di una posizione ed entra nello stato q_{a_0,a_0}
- n_i è il nastro i-esimo, semi-infinito dove le celle di n_i sono numerate a partire dalla posizione 1
- La variabile i corrisponde all'insieme di stati necessari a calcolare il monomio $a_i n^i$. L'istruzione $i \leftarrow i+1$ indica il passaggio del calcolo del monomio $a_{i+1} n^{i+1}$ (ovvero la transizione degli stati).
- La variabile j serve per enumerare gli stati $q_{a_i,0} \dots q_{a_i,a_i}$, l'istruzione $j \leftarrow j+1$ indica il passaggio della macchina dallo stato $q_{a_i,j+1}$
- L'operatore + applicato sui nastri $(n_j + n_h)$ indica l'operazione di concatenazione.
- La subroutine CALCOLA POTENZA I-ESIMA (n_h, n_j, i) scrive su n_j il valore corrispondente al valore di n_h elevato alla i.

Forniamo, ora, lo pseudocodice dell'algoritmo.

```
Algorithm 3 Calcola f(n) = \sum_{i=0}^{k} a_i n_i
```

```
1: n_1 \leftarrow n
 2: n_2 \leftarrow a_0
 3: i \leftarrow 1
 4: while (i \le k) do Begin
         Calcola Potenza i-esima (n_2, n_3, i)
 5:
         i \leftarrow 1
 6:
         while (j \leq a_i) do Begin
 7:
              n_2 \leftarrow n_2 + n_3
 8:
              j \leftarrow j + 1
 9:
         i \leftarrow i + 1
10:
11: Output(n_2)
```

Mostriamo che tale macchina di Turing opera in tempo $O(n^k)$. Una generica invocazione i della subroutine CALCOLA POTENZA I-ESIMA (n_2, n_3, i) richiede tempo $t_i n^i$ per un opportuno t_i . Procediamo con l'analisi del ciclo **while** interno: in questo ciclo viene effettuata la concatenazione del nastro n_2 ed n_3 , questa operazione richiede tempo $a_i n^i$. Il ciclo **while** esterno richiede quindi:

$$\sum_{i=1}^{k} (t_i + a_i) n^i = \sum_{i=1}^{k} (t_i + a_i) \sum_{i=1}^{k} n^i \sim O(n^k)$$

E questo conclude la nostra analisi. Abbiamo dimostrato che $f(n) = \sum_{i=0}^k a_i \ n_i$, $\forall k \in \mathbb{N} \land \forall \langle a_0, a_2, \dots a_k \rangle$ tali che $\forall 0 \leq i \leq k[a_i \in \mathbb{N}]$, costanti è una funzione time-constructible.

Esercizio 3:

Claim: $2^{f(n)}$ è una funzione time-constructible.

Proof:

Forniamo una macchina di Turing che calcola $2^{f(n)}$, per comodità utilizzeremo il linguaggio $Pascal\ Minimo$.

Legenda:

- n_i è il nastro i-esimo, semi-infinito dove le celle di n_i sono numerate a partire dalla posizione 1
- La variabile i corrisponde alla posizione della testina sul nastro n_2 .
- L'operatore + applicato sui nastri $(n_j + n_h)$ indica l'operazione di concatenazione.
- L'operatore + applicato alle testine (i + 1) indica lo spostamento a destra della testina (in questo caso sul nastro n_2).

Segue lo pseudocodice:

Algorithm 4 Calcola $2^{f(n)}$

```
1: n_1 \leftarrow n

2: n_2 \leftarrow f(n_1)

3: n_4 \leftarrow 1

4: i \leftarrow 1

5: while (i \leq n_2) do Begin

6: n_3 \leftarrow n_4

7: n_4 \leftarrow n_4 + n_3

8: i \leftarrow i + 1

9: Output(n_4)
```

Mostriamo che tale macchina di Turing opera in tempo $O(2^{f(n)})$.

Al passo 2 il calcolo di f(n) richiede tempo O(f(n)), poiché f(n) è una funzione time-constructible. L'istruzione 3 richiede un numero costante di passi e l'istruzione 4 posiziona la testina sul primo carattere a sinistra di n_2 in O(f(n)) passi. Il ciclo **while** viene ripetuto esattamente f(n) volte e alla generica iterazione i il contenuto di n_4 viene copiato su n_3 , in n_4 passi, e poi il contenuto di n_3 viene concatenato al contenuto di n_4 in n_3 passi riposizionando la testina su n_4 sul suo primo carattere in $2n_3$ passi, spostando, infine, la testina su n_2 di una posizione. Osserviamo che nella

i-esima iterazione viene calcolato il valore 2^i . Analizziamo la complessità computazionale dell'algoritmo:

$$O(f(n)) + \sum_{i=1}^{f(n)} (2^2 \cdot 2^{i-1} + 1) = O(f(n)) + f(n) + 2\sum_{i=1}^{f(n)} 2^i = O(f(n)) + 2\left(\frac{2 - 2^{f(n) + 1}}{1 - 2}\right)$$

$$= O(f(n)) + 2(2^{f(n) + 1} - 2) = O(f(n)) + 4 \cdot 2^{f(n)} - 4 \sim O(2^{f(n)})$$

E quindi $2^{f(n)}$ è una funzione time-constructible.