Medical Image Processing for Diagnostic Applications

Basic Principles of Tomography

Online Course – Unit 27 Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Tomography

Projection

Summary

Take Home Messages
Further Readings

Basic Principles of Tomography

from several projections to a virtual slice

τόμος ['tomos] \rightarrow slice

Figure 1: Single chest phantom projection

Figure 2: Slice view (click for video)

Basic Principles of Tomography

Idea: Observe the object of interest from multiple sides:

Figure 3: Multiple scan views (click for video)

Basic Principles of Tomography

patiennts consisting of 4 pixels

Solve the puzzle:

- ullet Usually, the problem size in CT is $512 \times 512 \times 512 = 134217728$.
- How can this problem be solved?

this are to many unknowns:(the matrix would be squared:(

$$x_1 + x_3 = 7$$
 $x_1 = 3$
 $x_2 + x_4 = 2$ \Rightarrow $x_2 = 2$
 $x_1 + x_2 = 5$ $x_3 = 4$
 $x_3 + x_4 = 4$ $x_4 = 0$

write as matrix clac pseudo inverse solution

A describes how the rays pass throu the patients

Topics

Tomography

Projection

Summary

Take Home Messages
Further Readings

Projection: X-ray Attenuation

Figure 4: Beer–Lambert law: $I = I_0 e^{-(\int f(x,y) dI)}$

-> "p"
"line integra
image"

(Unit 27 | 7)

Projection: Physical Observations

Figure 5: Observed projection signal (click for video)

Projection: Physical Observations

line integral domain

Figure 6: Line integral data (click for video)

Projection Formation

Figure 7: Slice by slice projection (left), projection ray scheme (right)

Projection: Mathematical Formulation

s linear index theta rotation of system

$$p(s,\theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \delta(x \cos \theta + y \sin \theta - s) dx dy$$
this is a line function

delta function is one where the line touches a pixel we get the summed intensity over the line

Figure 8: Parallel beam geometry (Zeng, 2009)

Projection: Example Point Object

Figure 9: Intensity profile of a point object (Zeng, 2009)

Topics

Tomography

Projection

Summary

Take Home Messages Further Readings

Take Home Messages

- Tomography is looking through an object from several angles and recombining the projection views back to a 3-D volume of the object.
- 3-D data is usually represented as a stack of slices.
- The Beer-Lambert law describes the attenuation of X-rays on their path through an object.
- A single projection can be regarded as the integral of projections of every point inside the object.

Further Readings

Students learning about reconstruction should have a look at one of the following books:

- Gengsheng Lawrence Zeng. Medical Image Reconstruction A Conceptual Tutorial. Springer-Verlag Berlin Heidelberg, 2010. DOI: 10.1007/978-3-642-05368-9
- Avinash C. Kak and Malcolm Slaney. Principles of Computerized Tomographic Imaging. Classics in Applied Mathematics. Accessed: 21. November 2016. Society of Industrial and Applied Mathematics, 2001. DOI: 10.1137/1.9780898719277. URL: http://www.slaney.org/pct/
- Thorsten Buzug. Computed Tomography: From Photon Statistics to Modern Cone-Beam CT. Springer Berlin Heidelberg, 2008. DOI: 10.1007/978-3-540-39408-2
- Willi A. Kalender. Computed Tomography: Fundamentals, System Technology, Image Quality, Applications. 3rd ed. Publicis Publishing, July 2011