Predicting Presence of Pneumonia from Images of X-Rays

Presented by Sam Oliver

Outline

- 1. Business Problem
- 2. Data
- 3. Methods
- 4. Model Results
- 5. Conclusions & Further Recommendations
- 6. Appendix

Business Problem

- Stakeholder: angel investor for startup
- Predict presence of pneumonia from x-rays

Comply with FDA standards

Seek Funding

Create Software Diagnostic Tool

Partner with Medical Practitioners

Data

- 5,800 x-rays
- Bacterial and viral pneumonia

Methods

- Deep Learning
- Convolutional Neural Networks

Deep Learning Neural Network

Model Results

- Common x-ray performance metrics:
 - Sensitivity, specificity, PPV, F1

Metric Type	Goal Value*	Baseline Value	Final Model Value
Sensitivity	0.720	0.959	0.877
Specificity	0.973	0.632	0.939
PPV	0.682	0.813	0.970
F1	0.435	0.880	0.920

Legend: <10% worse than standard >=10% worse than standard

>=10% worse than standard >=10% better than standard

Conclusions & Further Recommendations

Improve the Model and Create the Product

Appendix

Evaluation standard sources:

- IBM radiology resident success metrics include sensitivity, specificity, and positive predictive value:
 - https://www.ibm.com/blogs/research/2020/11/ai-x-rays-for-radiologists/
- Stanford University Andrew Ng and others cite F1 score as their evaluation metric used in their CheXNet algorithm
 - https://arxiv.org/pdf/1711.05225.pdf

Dataset Source:

https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia