ADVANCED ECONOMETRICS I

Practice Exercises (2/2)

Instructor: Joaquim J. S. Ramalho

E.mail: jjsro@iscte-iul.pt

Personal Website: http://home.iscte-iul.pt/~jjsro

Office: D5.10

Course Website: https://jjsramalho.wixsite.com/advecoi

Fénix: https://fenix.iscte-iul.pt/disciplinas/03089

Illustration 5

Aims:

- Study the determinants of the choice between 2 tomato ketchup brands: Heinz and Hunts
- In particular, investigate whether the promotional activities developed by both brands have any impact on the probability of consumers choosing one instead of the other

Sample:

- 2798 purchases made during a period of about two years in Springfield, Missouri
- Purchase data were collected automatically using an optical scanner; the shelf price of the other brand was also stored
- It was also registered if at the time of purchase the brands had ongoing promotional activities

Illustration 5

Promotional activities:

- Display only
- Newspaper feature only
- Both

Model:

$$Pr(Heinz = 1 | ...)$$

$$= G \left[\beta_0 + \beta_1 Dhei + \beta_2 Fhei + \beta_3 DFhei + \beta_4 Dhun + \beta_5 Fhun + \beta_6 DFhun + \beta_7 log \left(\frac{Phei}{Phun} \right) \right]$$

Details:

Franses and Paap (2001), ch. 4.4

. describe

	_	display		
variable name	type 	format	label 	variable label
Family	int	%8.0g		Family id
Heinz	byte	%8.0g		=1 Heinz chosen
Hunts	byte	%8.0g		=1 Hunts chosen
Phei	float	%9.0g		Heinz price (US\$/oz)
Phun	float	%9.0g		Hunts price (US\$/oz)
Dhei	byte	%8.0g		=1 if Heinz was on display
				but not featured
Dhun	byte	%8.0g		=1 if Hunts was on display
				but not featured
Fhei	byte	%8.0g		=1 if Heinz was featured but
				not on display
Fhun	byte	%8.0g		=1 if Hunts was featured but
				not on display
DFhei	byte	%8.0g		=1 if Heinz was on display
				and featured
DFhun	byte	%8.0g		=1 if Hunts was on display
				and featured

. summarize Heinz Hunts Dhei Dhun Fhei Fhun DFhei DFhun Phei Phun

Variable	Obs	Mean	Std. Dev.	Min	Max
	+				
Heinz	2798	.8902788	.3125978	0	1
Hunts	2798	.1097212	.3125978	0	1
Dhei	2798	.159757	.366446	0	1
Dhun	2798	.0353824	.1847774	0	1
Fhei	2798	.124732	.3304738	0	1
	+				
Fhun	2798	.0364546	.1874519	0	1
DFhei	2798	.0375268	.1900828	0	1
DFhun	2798	.0092924	.0959651	0	1
Phei	2798	.0348276	.0089737	.001	.061
Phun	2798	.0335547	.0053069	.003	.087

- . gen lpp=ln(Phei/Phun)
- . logit Heinz Dhei Dhun Fhei Fhun DFhei DFhun lpp

Logistic regres	sion			Numbe	r of obs	s =	2798
				LR ch	i2(7)	=	584.96
				Prob	> chi2	=	0.0000
Log likelihood	= -675.43973	3		Pseud	o R2	=	0.3022
Heinz	Coef.	Std. Err.	Z	P> z	[95%	Conf.	<pre>Interval]</pre>
+-							
Dhei	.5474406	.2427129	2.26	0.024	.071	732	1.023149
Dhun	6207141	.2449583	-2.53	0.011	-1.100	824	1406047
Fhei	.5785839	.3165889	1.83	0.068	041	919	1.199087
Fhun	9971683	.3466031	-2.88	0.004	-1.676	5498	3178388
DFhei	.4452738	.4431288	1.00	0.315	4232	2427	1.31379
DFhun	-1.940127	.4802308	-4.04	0.000	-2.881	362	9988919
lpp	-6.110695	.3858905	-15.84	0.000	-6.867	7026	-5.354363
_cons	3.27461	.1423418	23.01	0.000	2.995	625	3.553595

. estimates store logit

. probit Heinz Dhei Dhun Fhei Fhun DFhei DFhun lpp

Probit regressi	Lon			Numbe	er of obs	=	2798
					i2(7)	=	591.39
				Prob	> chi2	=	0.0000
Log likelihood	= -672.2251	6		Pseud	lo R2	=	0.3055
Heinz	Coef.	Std. Err.	Z	P> z	[95%	Conf.	<pre>Interval]</pre>
Dhei	.2768603	.1226386	2.26	0.024	.0364	931	.5172275
Dhun	3599038	.1455494	-2.47	0.013	6451	753	0746322
Fhei	.2396884	.1549172	1.55	0.122	0639	437	.5433206
Fhun	5526825	.1904251	-2.90	0.004	9259	089	1794561
DFhei	.2486314	.2282668	1.09	0.276	1987	634	.6960262
DFhun	-1.068493	.2749	-3.89	0.000	-1.607	287	5296985
lpp	-3.348536	.2094459	-15.99	0.000	-3.759	042	-2.938029
_cons	1.840782	.0723702	25.44	0.000	1.698	939	1.982625

. estimates store probit

. cloglog Heinz Dhei Dhun Fhei Fhun DFhei DFhun lpp

Complementary log-log regression					of obs	=	2798
					tcomes	=	307
				Nonzero	outcomes	=	2491
				LR chi2	(7)	=	589.99
Log likelihood	= -672.9251	7		Prob >	chi2	=	0.0000
Heinz	Coef.	Std. Err.	Z	P> z	[95% Con	nf.	Interval]
+-							
Dhei	.2088229	.0936429	2.23	0.026	.0252863	3	.3923596
Dhun	3518195	.1501518	-2.34	0.019	6461116	5	0575275
Fhei	.1227095	.1145124	1.07	0.284	1017307	7	.3471497
Fhun	4820495	.164347	-2.93	0.003	8041638	3	1599353
DFhei	.209065	.1765308	1.18	0.236	136929)	.5550589
DFhun	-1.077127	.3208661	-3.36	0.001	-1.706013	}	448241
lpp	-2.802396	.1883769	-14.88	0.000	-3.171608	}	-2.433184
_cons	1.270849	.0566031	22.45	0.000	1.159909)	1.381789

. estimates store cloglog

. estimates table logit probit cloglog, b star(0.1 0.05 0.01) Variable | logit probit cloglog Dhei | .54744056** .27686031** .20882294** Dhun | -.62071414** -.35990375** -.35181954** Fhei | .57858393* .23968844 .12270948 Fhun | -.99716835*** -.55268247*** -.48204954*** DFhei | .4452738 .24863139 .20906496 DFhun | -1.9401271*** -1.0684927*** -1.0771271*** lpp | -6.1106949*** -3.3485359*** -2.8023956*** cons | 3.2746098*** 1.8407819*** 1.2708491***

legend: * p<.1; ** p<.05; *** p<.01

Main conclusions:

- There is no clear evidence on whether the promotional activities undertaken by Heinz increase significantly the probability of consumers purchasing its ketchup
- The promotional activities made by Hunts decrease significantly the probability of consumers purchasing Heinz ketchup → clearly, because Hunts is a smaller and less known brand, it benefits a lot from promotional activities, especially when display and feature activities are held at the same time
- Increasing the relative price of Heinz ketchup decreases the probability of consumers purchasing its ketchup

. estimates restore logit . predict XBl, xb . gen XBl2=XBl^2 quietly logit Heinz Dhei Dhun Fhei Fhun DFhei DFhun lpp XB12 . test XB12 (1)[Heinz]XB12 = 0chi2(1) =9.35 The null hypothesis of a well-specified Prob > chi2 =0.0022 functional form is rejected . estimates restore probit . predict XBp, xb . gen XBp2=XBp^2 . quietly probit Heinz Dhei Dhun Fhei Fhun DFhei DFhun lpp XBp2 . test XBp2 [Heinz]XBp2 = 0(1)0.73 chi2(1) =The null hypothesis of a well-specified Prob > chi2 =0.3933 functional form cannot be rejected

- . quietly probit Heinz Dhei Dhun Fhei Fhun DFhei DFhun lpp XBp2
- . estimates store probitR
- . lrtest probit probitR

Likelihood-ratio test
(Assumption: probit nested in probitR)

The null hypothesis of a well-specified functional form is not rejected

```
. estimates restore probit
(results probit are active now)
```

. estat classification

Probit model for Heinz

		1140		
Classified	D D	~D	1	Total
+ -	2462 29	232 75		2694 104
Total	2491	307	+	2798

----- True -----

Classified + if predicted Pr(D) >= .5True D defined as Heinz != 0

(continues on the next slide)

		- <u></u>
Sensitivity	Pr(+ D)	98.84% → % 1's correctly predicted
Specificity	Pr(- ~D)	24.43% → % 0's correctly predicted
Positive predictive value	Pr(D +)	91.39%
Negative predictive value	Pr(~D -)	72.12%
False + rate for true ~D	Pr(+ ~D)	75.57%
False - rate for true D	Pr(- D)	1.16%
False + rate for classified +	Pr(~D +)	8.61%
False - rate for classified -	Pr(D -)	27.88%
Correctly classified		90.67% → % correct predictions

. summarize Phei Phun

Variable	Obs	Mean	Std. Dev.	Min	Max
Phei	+ 2798	.0348276	.0089737	.001	.061
Phun	2798	.0335547	.0053069	.003	.087

- . scalar lppm=log(0.0348276/0.0335547)
- . display normal(b[cons]+ b[lpp]*lppm)
- .9569286
- . display normal(b[cons]+b[DFhei]+b[lpp]*lppm)
- .97527763
- . display normal(b[cons]+ b[DFhun]+ b[lpp]*lppm)
- .74138217
- . display normal(b[cons]+b[DFhei]+b[DFhun]+b[lpp]*lppm)
- .81493872

	I	II	III	IV
Dhei	0	0	0	0
Fhei	0	0	0	0
DFhei	0	1	0	1
Dhun	0	0	0	0
Fhun	0	0	0	0
DFhun	0	0	1	1
Phei	3.48	3.48	3.48	3.48
Phun	3.36	3.36	3.36	3.36
$Pr(Heinz = 1 \dots)$	95.69	97.53	74.14	81.49

. margins, dydx(all) Average marginal effects Number of obs = 2798 Model VCE : OIM Expression : Pr(Heinz), predict() dy/dx w.r.t.: Dhei Dhun Fhei Fhun DFhei DFhun lpp Delta-method dy/dx Std. Err. z P>|z| [95% Conf. Interval] Dhei | .0363993 .0161128 2.26 0.024 .0048189 .0679798 Dhun | -.0473172 .0190541 -2.48 0.013 -.0846626 -.0099719 Fhei | .0315123 .020376 1.55 0.122 -.008424 .0714486 Fhun | -.0726622 .024952 -2.91 0.004 -.1215672 -.0237572 DFhei | .032688 .0299977 1.09 0.276 -.0261065 .0914825 DFhun | -.1404768 .0358536 -3.92 0.000 -.2107485 -.070205 lpp | -.4402384 .024884 -17.69 0.000 -.48901 -.3914667

```
. margins, dydx(DFhun) at(Dhei=0 Fhei=0 DFhei=0 Dhun=0 Fhun=0 DFhun=0 lpp=0)
                                       Number of obs = 2798
Conditional marginal effects
Model VCE : OIM
Expression : Pr(Heinz), predict()
dy/dx w.r.t. : DFhun
at : Dhei
            Dhun
            Fhei =
            Fhun
            DFhei
            DFhun
            lpp
                  Delta-method
           dy/dx Std. Err. z P>|z| [95% Conf. Interval]
     DFhun | -.0783219 .0220713 -3.55 0.000 -.1215808 -.0350629
```

. gen P1=normal(_b[_cons]+_b[lpp]*lpp)

. gen P2=normal(_b[_cons]+_b[DFhei]+_b[lpp]*lpp)

. gen P3=normal(_b[_cons]+_b[DFhun]+_b[lpp]*lpp)

. line P1 P2 P3 lpp if lpp > -0.6 & lpp < 0.6, lpattern(solid dash dot)

Main conclusions:

- The higher the price of Heinz relative to Hunts, the less the probability of Heinz being purchased (and vice-versa)
- Heinz promotional activities do not allow this brand to substantially increase its price or market share
- Hunts promotional activities are more effective, with two possible effects:
 - If Hunts does not change its price, the probability of consumers purchasing its ketchup increases substantially
 - If Hunts opts for keeping its market share, it is able to sell the same quantity but at a higher price

Illustration 6

Aim:

 Studying the probability of an individual with health insurance have at least one contact with a medical doctor per year

Model:

$$Pr(dmdu = 1 | ...)$$

= $G(\beta_0 + \beta_1 lcoins + \beta_2 ndisease + \beta_3 female$
+ $\beta_4 age + \beta_5 lfam + \beta_6 child + \alpha_i)$

Details:

Cameron and Trivedi (2010), ch. 18.4

```
. xtset id year
      panel variable: id (unbalanced)
       time variable: year, 1 to 5, but with gaps
              delta: 1 unit
. xtdescribe
     id: 125024, 125025, ..., 632167
                                                       n = 5908
   year: 1, 2, ..., 5
                                                       T =
         Delta(year) = 1 unit
         Span(year) = 5 periods
          (id*year uniquely identifies each observation)
                   min 5% 25% 50% 75% 95%
Distribution of T i:
                                                                    max
                      1
                           2.
                                     3
                                              3
                                                              5
                       (continue in the next slide)
```

Freq.	Percent	Cum.		Pattern
 			+-	
3710	62.80	62.80		111
1584	26.81	89.61		11111
156	2.64	92.25		1
147	2.49	94.74		11
79	1.34	96.07		1
66	1.12	97.19		.11
33	0.56	97.75		111
33	0.56	98.31		.1111
29	0.49	98.80		11
71	1.20	100.00		(other patterns)
 			+-	
5908	100.00			XXXXX

. describe obs: 20,186 1.3 vars: storage display value variable name type format label variable label coins float %9.0q coinsurance -- medical float %9.0q year study year id float %9.0g person id, leading digit is sit float %9.0g age that year age float %9.0g female =1 if female float %9.0q medical expenditures (dollars) med number face-to-face md visits mdu float %9.0q float %9.0q num family size ndisease float %9.0g count of chronic diseases =1 if child child float %9.0g lfam float %9.0q log of family size lcoins float %9.0q log(coinsurance+1) = 1 if mdu > 0dmdu float %9.0q

. xtsum	. xtsum lcoins ndisease female age lfam child						
Variable	1	Mean	Std. Dev.	Min	Max	Observations	
					+		
lcoins	overall	2.383588	2.041713	0	4.564348	N = 20186	
	between		2.045796	0	4.564348	n = 5908	
	within		0	2.383588	2.383588	T-bar = 3.41672	
ndisease	overall	11.2445	6.741647	0	58.6	N = 20186	
	between		6.712985	0	58.6	n = 5908	
	within		0	11.2445	11.2445	T-bar = 3.41672	
female	overall	.5169424	.4997252	0	1	N = 20186	
	between		.4997557	0	1	n = 5908	
	within		0	.5169424	.5169424	T-bar = 3.41672	
age	overall	25.71844	16.76759	0	64.27515	N = 20186	
	between		16.97265	0	63.27515	n = 5908	
	within		1.086687	23.46844	27.96844	T-bar = 3.41672	
lfam	overall	1.248404	.5390681	0	2.639057	N = 20186	
	between		.5372082	0	2.639057	n = 5908	
	within		.0730824	.3242075	2.44291	T-bar = 3.41672	
child	overall	.4014168	.4901972	0	1	N = 20186	
	between		.4820984	0	1	n = 5908	
	within		.1096116	3985832	1.201417	T-bar = 3.41672	

. xttab dmdu

		Ove	rall	Bet	ween	Within
dmdu		Freq.	Percent	Freq.	Percent	Percent
	-+					
0		6308	31.25	3193	54.05	58.61
1		13878	68.75	5164	87.41	78.17
	+					
Total		20186	100.00	8357	141.45	70.70
				(n = 5908)		

- Overall, 68,75% of observations concern cases where occurred at least one annual contact with a medical doctor
- 87,41% of individuals (5164 out of 5908) had a contact with a medical doctor in at least one year
- 78,17% of those 5164 individuals had a contact with a medical doctor in every year

. logit dmdu lcoins ndisease female age lfam child, vce(cluster id) (\dots)

```
Logistic regression
                                        Number of obs = 20186
                                        Wald chi2(6) = 488.18
                                        Prob > chi2 = 0.0000
Log pseudolikelihood = -11973.392
                                       Pseudo R2 = 0.0450
                           (Std. Err. adjusted for 5908 clusters in id)
                      Robust
      dmdu | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    lcoins | -.1572107 .0109064 -14.41 0.000 -.1785869 -.1358345
   ndisease | .050301 .0039657 12.68 0.000 .0425285 .0580735
    female | .3091573
                      .0445772 6.94 0.000 .2217876 .396527
      age | .0042689
                      .0022307 1.91 0.056 -.0001032 .008641
                      .0470287 -4.35 0.000 -.2969317 -.1125828
     lfam | -.2047573
     child | .0921709 .0728107 1.27 0.206 -.0505355 .2348773
     cons | .6039411
                      .1107712 5.45 0.000 .3868335 .8210486
```

. estimates store POOLED

```
. xtlogit dmdu lcoins ndisease female age lfam child
Iteration 3: \log \text{likelihood} = -10878.687
(...)
                                       Wald chi2(6) = 549.76
                                      Prob > chi2 = 0.0000
Log likelihood = -10878.687
      dmdu | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    lcoins | -.2403864 .0162836 -14.76 0.000 -.2723017 -.208471
   ndisease | .078151 .0055456 14.09 0.000 .0672819 .0890201
     female | .4631005 .0663209 6.98 0.000 .3331138 .5930871
      age | .0073441 .0031508 2.33 0.020 .0011687 .0135194
     lfam | -.3021841 .0644721 -4.69 0.000 -.4285471 -.175821
     child | .1935357 .1002267 1.93 0.053 -.002905 .3899763
     cons | .8629898 .1568968 5.50 0.000 .5554778 1.170502
   /lnsig2u | 1.225652 .0490898
                                              1.129438 1.321866
    sigma u | 1.84564 .045301
                                              1.758953 1.936599
       rho | .5087003 .0122687
                                             .4846525 .532708
Likelihood-ratio test of rho=0: chibar2(01) = 2189.41 Prob >= chibar2 = 0.000
```

[.] estimates store RE

```
. xtlogit dmdu lcoins ndisease female age lfam child, fe
note: 3459 groups (11161 obs) dropped because of all positive or
    all negative outcomes.
(...)
Conditional fixed-effects logistic regression Number of obs = 9025
Group variable: id
                                       Number of groups = 2449
                                       Obs per group: min = 2
                                                   avg = 3.7
                                                   max =
                                       LR chi2(3) = 10.74
Log likelihood = -3395.5996
                                      Prob > chi2 = 0.0132
      dmdu | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    lcoins | 0 (omitted)
   ndisease | 0 (omitted)
    female | 0 (omitted)
       age | -.0341815 .0183827 -1.86 0.063 -.070211 .001848
     lfam | .478755 .2597327 1.84 0.065 -.0303116 .9878217
     child | .270458 .1684974 1.61 0.108 -.0597907 .6007068
```

[.] estimates store FE

```
. estimates table POOLED RE FE, b star(0.1 0.05 0.01)
  Variable | POOLED RE
dmdu
    lcoins | -.15721065*** -.24038638*** (omitted)
  ndisease | .05030099*** .07815098*** (omitted)
    female | .30915732*** .46310045*** (omitted)
     age | .0042689* .00734407** -.03418147*
      lfam | -.20475725*** -.30218405*** .47875505*
     child | .09217092 .19353567* .27045805
     cons | .60394105*** .86298976***
   -----
lnsiq2u |
                   1.2256522***
     cons
                     legend: * p<.1; ** p<.05; *** p<.01
```

Illustration 7

Sample:

- Credit ratings assigned by Standard and Poor's to 921 North-American firms in 2005
- Two rating scales:
 - 1 (D lowest rating) to 7 (AAA highest rating)
 - 'investment grade' (rating 4 / BBB or superior) and 'speculative grade':
 (rating 3 / BB or inferior)

Aim:

 Explaining firm's credit rating as a function of a set of explanatory variables

Details:

Verbeek (2008), ch. 7.2.3

. describe

obs:	921		
vars:	7		
size:	25 , 788		
variable name	3	display format	variable label
booklev	float	 %9.0g	 Book leverage
ebit	float	%9.0g	EBIT / Total assets
invgrade	float	%9.0g	Investment grade
logsales	float	%9.0g	Log(Sales)
rating	float	%9.0g	Credit rating
reta	float	%9.0g	Retained earnings / Total assets
wka	float	%9.0g 	 Working capital / Total assets

. summarize

Max	Min	Std. Dev.	Mean	Obs	Variable
					+
.9992067	0	.1735339	.2931868	921	booklev
.6515085	3841692	.0843643	.0938921	921	ebit
1	0	.4995041	.4723127	921	invgrade
12.70142	1.100278	1.497413	7.995754	921	logsales
7	1	1.134561	3.499457	921	rating
					+
.9799219	9958922	.300684	.1569942	921	reta
.7480223	4120839	.1503398	.1404142	921	wka

. logit invgrade booklev ebit logsales reta wka

Logistic regression Log likelihood = -341.07758					<pre>Number of obs = LR chi2(5) = Prob > chi2 = Pseudo R2 =</pre>		
invgrade		Std. Err.		P> z	 [95%	Conf.	Interval]
booklev	-4.427266	.7714185	-5.74	0.000	-5.939	218	-2.915313
ebit	4.354735	1.439922	3.02	0.002	1.532	2539	7.176931
logsales	1.081593	.0956839	11.30	0.000	.8940)558	1.26913
reta	4.116108	.4885083	8.43	0.000	3.158	3649	5.073566
wka	-4.012492	.7479141	-5.36	0.000	-5.478	3377	-2.546607
_cons	-8.214321	.8668543	-9.48	0.000	-9.913	3324	-6.515317

. ologit rating	, booklev ebi	it logsales	reta wka				
Ordered logisti	c regression	า		Numbe	r of obs	=	921
				LR ch	i2(5)	=	862.87
				Prob	> chi2	=	0.0000
Log likelihood	= -965.30716	5		Pseud	o R2	=	0.3089
rating	Coef.	Std. Err.	Z	P> z	[95%	Conf.	<pre>Interval]</pre>
+-							
booklev	-2.751598	.4773028	-5.76	0.000	-3.687	094	-1.816101
ebit	4.731324	.944758	5.01	0.000	2.879	632	6.583015
logsales	.9405595	.0588423	15.98	0.000	.8252	308	1.055888
reta	3.559983	.302294	11.78	0.000	2.967	498	4.152468
wka	-2.580078	.482632	-5.35	0.000	-3.526	019	-1.634136
+-							
/cut1	3694825	.6332452			-1.61	062	.8716554
/cut2	4.880646	.5208171			3.859	864	5.901429
/cut3	7.625999	.5511597			6.545	746	8.706252
/cut4	9.88504	.5916376			8.725	452	11.04463
/cut5	12.88296	.673386			11.56	315	14.20277
/cut6	14.78264				13.24	582	16.31947

Binary logit model:

$$Pr(invgrade_i = 1|x_i) = \frac{e^{x_i'\beta}}{1 + e^{x_i'\beta}}$$

Ordered logit model:

$$Pr(rating_i \ge 4|x_i) = 1 - \frac{e^{\gamma_2 - x_i'\beta}}{1 + e^{\gamma_2 - x_i'\beta}}$$

. summarize booklev ebit logsales reta wka

Variable	Obs	Mean	Std. Dev.	Min	Max
booklev	921	.2931868	.1735339	0	.9992067
ebit	921	.0938921	.0843643	3841692	.6515085
logsales	921	7.995754	1.497413	1.100278	12.70142
reta	921	.1569942	.300684	9958922	.9799219
wka	921	.1404142	.1503398	4120839	.7480223

Illustration 7 – Question 4 (cont.)

```
. quietly logit invgrade booklev ebit logsales reta wka
. scalar xblogit = b[cons] + b[booklev]*0.2931868 + b[ebit]*0.0938921 +
b[logsales]*7.995754 + b[reta]*0.1569942 + b[wka]*0.1404142
. display exp(xblogit)/(1+exp(xblogit))
.40793294
. quietly ologit rating booklev ebit logsales reta wka
. scalar xborden = b[booklev]*0.2931868 + b[ebit]*0.0938921 +
_b[logsales]*7.995754 + b[reta]*0.1569942+ b[wka]*0.1404142
. display 1-exp(b[/cut3]-xborden)/(1+exp(b[/cut3]-xborden))
.43256406
```

Illustration 8

Sample:

 210 observations concerning travel mode choice for travel between Sydney and Melbourne

Travel modes:

- Air
- Train
- Bus
- Car

Details:

• Greene (2003), ch. 21

. describe

<pre>obs: vars: size:</pre>	840 6 19,320		11 Apr 2014 14:04
variable name	_	display format	variable label
id	int	%8.0g	Identification
Modealt	str5	%9s	Travel mode alternatives
Mode	float	%9.0g	=1 if travel mode chosen
Ttme	float	%9.0g	Terminal time
GC	float	%9.0g	Cost of travel (transport cost and amount of
			time spent travelling)
Hinc	float	%9.0g	Household income
Sorted by: ic	d Modeal	.t	

. summarize Mode Ttme GC Hinc if Modealt=="air"

Variable	Obs	Mean	Std. Dev.	Min	Max
Mode	210	.2761905	.4481805	0	1
Ttme	210	61.00952	15.71943	5	99
GC	210	102.6476	30.57503	56	197
Hinc	210	34.54762	19.71132	2	72

. summarize Mode Ttme GC Hinc if Modealt=="bus"

Variable	Obs	Mean	Std. Dev.	Min	Max
Mode	210	.1428571	.3507633	0	1
Ttme	210	41.65714	12.07737	5	60
GC	210	115.2571	44.93441	45	222
Hinc	210	34.54762	19.71132	2	72

Illustration 8 – Question 2.1 (cont.)

. summarize Mode Ttme GC Hinc if Modealt=="car"

Max	Min	Std. Dev.	Mean	Obs	Variable
1	0	.4505383	.2809524	210	Mode
0	0	0	0	210	Ttme
238	30	46.82743	95.41429	210	GC
72	2	19.71132	34.54762	210	Hinc

. summarize Mode Ttme GC Hinc if Modealt=="train"

Variable	Obs	Mean	Std. Dev.	Min	Max
Mode	210	.3	.4593526	0	1
Ttme	210	35.69048	12.27922	1	99
GC	210	130.2	58.23454	42	269
Hinc	210	34.54762	19.71132	2	72

. summarize Ttme GC Hinc if Modealt=="air" & Mode==1

Variable	Obs	Mean	Std. Dev.	Min	Max
Ttme	58	46.53448	24.38882	5	99
GC	58	113.5517	33.19753	58	197
Hinc	58	41.72414	19.11534	4	70

. summarize Ttme GC Hinc if Modealt=="train" & Mode==1

Variable	Obs	Mean	Std. Dev.	Min	Max
Ttme	63	28.52381	19.35397	1	99
GC	63	106.619	49.60113	42	211
Hinc	63	23.06349	17.28683	4	72

Illustration 8 – Question 2.2 (cont.)

. summarize Ttme GC Hinc if Modealt=="bus" & Mode==1

Variable	Obs	Mean	Std. Dev.	Min	Max
Ttme	30	25.2	14.91909	5	60
GC	30	108.1333	43.24408	45	201
Hinc	30	29.7	16.85056	2	60

. summarize Ttme GC Hinc if Modealt=="car" & Mode==1

Max	Min	Std. Dev.	Mean	Obs	Variable
0	0	0	0	59	Ttme
238	30	49.83292	89.08475	59	GC
70	4	17.68505	42.22034	59	Hinc

'Long form' database:

	+						+
	' i	d	Modealt	Mode	Ttme	GC	Hinc
1.		 1	air	0	 69	70	35 I
2.		1	bus	0	35	70	35
							·
3.		1	car	1	0	30	35
4.		1	train	0	34	71	35
5.		2	air	0	64	68	30
6.		2	bus	0	53	85	30
7.		2	car	1	0	50	30
8.		2	train	0	44	84	30
9.		3	air	0	69	129	40
10.		3	bus	0	35	149	40
11.		3	car	1	0	101	40
12.		3	train	0	34	195	40
	+						+

 \Box This is the data format necessary to estimate a conditional logit model (it may include x_i -type variables) using Stata

Illustration 8 – Question 3 (cont.)

'Wide form' database:

+	+								
	id	Modeair	Ttmeair	GCair	Modebus	Ttmebus	GCbus	Modecar	Ttmecar
1.		0	69	70	0	35	70	 1	0
2.	2	0	64	68	0	53	85	1	0
3.	3	0	69	129	0	35	149	1	0
4.	4	0	64	59	0	53	81	1	0
5.	5	0	64	82	0	53	94	1	0
6.	6	0	69	70	0	35	58	0	0
7.	7	1	45	160	0	35	167	0	0
8.	8	0	69	137	0	35	146	1	0
9.	9	0	69	70	0	35	70	1	0
10.	10	0	69	65	0	35	68	1	0
11.	11	0	64	68	0	53	73	1	0
12.	l 12	0	64	79	0	53	91	1	0

 \Box This is the data format necessary to estimate a multinomial logit model using Stata when there are only x_i -type variables

Illustration 8 – Question 3 (cont.)

• From 'long form' to 'wide form':

```
. reshape wide Ttme GC Mode, i(id) j(Modealt) string
```

- After reshaping the data once, it is possible to alternate between the two formats using the following commands:
- reshape long
- . reshape wide

```
. gen Y=0 if Modeair==1
(152 missing values generated)
. replace Y=1 if Modetrain==1
(63 real changes made)
. replace Y=2 if Modebus==1
(30 real changes made)
. replace Y=3 if Modecar==1
(59 real changes made)
```

Illustration 8 – Question 3.1 (cont.)

. mlogit Y Hinc, baseoutcome (0) Multinomial logistic regression Number of obs = 210 LR chi2(3) = 44.03Prob > chi2 = 0.0000Log likelihood = -261.74506Pseudo R2 = 0.0776Y | Coef. Std. Err. z > |z| [95% Conf. Interval] | (base outcome) 1 Hinc | -.059059 .0116784 -5.06 0.000 -.0819482 -.0361698 cons | 1.963424 .4195611 4.68 0.000 1.141099 2.785749 Hinc | -.0353522 .0128212 -2.76 0.006 -.0604814 -.010223 cons | .5991669 .4909705 1.22 0.222 -.3631176 1.561452 Hinc | .0014204 .0098938 0.14 0.886 -.0179711 .0208118 cons | -.0425218 .454562 -0.09 0.925 -.9334469 .8484034

. asclogit Mode Ttme GC, case(id) alternatives(Modealt) casevars(Hinc) basealternative(air)

(...)

Mode | Coef Std Err 7 P>|7| [95% Conf Interval]

	Mode	Coef.	Std. Err.	 Z	P> z	[95% Conf.	Interval]
Modealt	₁						
	Ttme	0954606	.0104732	-9.11	0.000	1159876	0749335
	GC	0109274	.0045878	-2.38	0.017	0199192	0019355
		(base alter	rnative)				
bus							
	Hinc	0232107	.0162306	-1.43	0.153	055022	.0086006
	_cons	-1.744529	.6775004	-2.57	0.010	-3.072406	4166531
car							
	Hinc	.0053735	.0115294	0.47	0.641	0172237	.0279707
	_cons	-5.874813	.8020903	-7.32	0.000	-7.446882	-4.302745
train							
	Hinc	0511884	.0147352	-3.47	0.001	0800689	0223079
	_cons	3249561	.5763335	-0.56	0.573	-1.454549	.8046369

. reshape long

Illustration 9

Aim:

 Explaining annual health care expenditures (med) and the annual number of medical consultations (mdu) as a function of health insurance characteristics (lcoins), socio-economic factors (female, age, lf am, child) and health status variables (ndisease)

Details:

Cameron and Trivedi (2005), ch. 16.6

. summarize med

	Variable	Obs	Mean	Std. Dev.	Min	Max
_	med	20186	171.5892	698.2689	0 3	39182.02
•	summarize med	if med>0				
	Variable	Obs	Mean	Std. Dev.	Min	Max

- Non-negative outcome
- High proportion of zeros: 4453 observations (22.1% of the sample units)

med | 15733 220.1551 784.1543 .4276146 39182.02

```
. drop if year!=1
(14548 observations deleted)
. poisson med lcoins ndisease female age lfam child, robust
(\dots)
                       Robust
            Coef. Std. Err. z P>|z| [95% Conf. Interval]
       med |
    lcoins | -.0478877 .0245805 -1.95 0.051 -.0960646 .0002892
   ndisease | .0281757 .0060746 4.64 0.000 .0162696
                                                          .0400817
    female | .2263111 .1192456 1.90 0.058 -.007406
                                                          .4600282
      age | .0097846 .003701 2.64 0.008 .0025307
                                                          .0170384
                                                          .0800879
      lfam | -.0928784 .0882497 -1.05 0.293 -.2658446
     child | -.4112285 .2444742 -1.68 0.093 -.8903892 .0679321
```

. estimates store poisson

cons | 4.631177 .2039135 22.71 0.000 4.231514 5.03084

. poisson med lcoins ndisease female age lfam child if med>0, robust
(...)

Log pseudolikel	Lihood = -10		chi2(6) > chi2 do R2	= = =	66.48 0.0000 0.0657		
med	Coef.	Robust Std. Err.	Z	P> z	[95%	Conf.	Interval]
lcoins ndisease female age	0200287 .0210867 .1474704 .0087803	.0246889 .0062785 .1177851 .0036967	-0.81 3.36 1.25 2.38	0.417 0.001 0.211 0.018	068 .0087 0833 .0015	812 842	.0283606 .0333923 .3783249 .0160258
lfam child _cons	0823594 3678983 4.91825	.0902764 .2481063 .2098069	-0.91 -1.48 23.44	0.362 0.138 0.000	2592 8541 4.507	978 777	.0945791 .1183811 5.329464

. estimates store poisson0

Poisson regression

Number of obs =

4451

```
. gen lmed=log(med)
(1187 missing values generated)
. regress lmed lcoins ndisease female age lfam child if med>0, robust
(\dots)
                        Robust
      lmed |
            Coef. Std. Err. t P>|t| [95% Conf. Interval]
    lcoins | -.054901 .0099633 -5.51 0.000 -.0744341 -.0353679
   ndisease | .030717 .0030927 9.93
                                       0.000 .0246537 .0367803
                                       0.004 .0380298 .2017885
    female | .1199091 .0417646 2.87
       age | .0072817 .0020791 3.50
                                       0.000 .0032055 .0113578
      lfam | -.1357759 .0442937 -3.07 0.002 -.2226136 -.0489382
     child | -.4972463 .0737896 -6.74 0.000 -.6419107 -.3525819
```

. estimates store log0

cons | 3.954487 .1043663 37.89 0.000 3.749877 4.159096

```
. gen lmed1=log(med+1)
. regress lmed1 lcoins ndisease female age lfam child, robust
(\dots)
                       Robust
     lmed1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
    lcoins | -.1485372 .0126915 -11.70 0.000 -.1734174 -.1236569
   ndisease | .0584591 .0039132 14.94
                                       0.000 .0507878 .0661304
    female | .3064252
                     .0535977 5.72
                                       0.000 .201353 .4114974
       age | .0089512
                     .0027704 3.23
                                       0.001 .0035202 .0143821
      lfam | -.1806985 .0556686 -3.25
                                      0.001 -.2898305 -.0715666
     child | -.4759264 .0946324 -5.03 0.000 -.6614425 -.2904103
```

. estimates store log1

cons | 3.000465

.1346348 22.29 0.000 2.736529 3.264401

Illustration 9 – Question 2 (summary)

```
. estimates table poisson poisson0, b star(0.1 0.05 0.01)
   Variable | poisson poisson0
     lcoins | -.04788772* -.0200287
   ndisease | .02817566*** .02108674***
     female | .22631112* .14747037
       age | .00978456*** .00878032**
      lfam | -.09287836 -.08235938
     child | -.41122852* -.3678983
     cons | 4.6311773*** 4.9182498***
         legend: * p<.1; ** p<.05; *** p<.01
. estimates table log0 log1, b star(0.1 0.05 0.01)
   Variable | log0 log1
    lcoins | -.05490096*** -.14853716***
   ndisease | .03071698*** .0584591***
     female | .11990912*** .3064252***
       age | .00728165*** .00895117***
      lfam | -.13577591*** -.18069853***
     child | -.4972463*** -.47592639***
     cons | 3.9544865*** 3.0004653***
```

. summarize mdu					
Variable	Obs	Mean	Std. Dev.	Min	Max
mdu	5638	2.877971	4.332918	0	69
. tabulate mdu					
number					
face-to-fac					
	Freq.	Percent	Cum.		
0	1,729	30.67	30.67		
1	1,047	18.57	49.24		
2	814	14.44	63.68		
3	511	9.06	72.74		
4	385	6.83	79.57		
5	271	4.81	84.37		
6	188	3.33	87.71		
7	156	2.77	90.48		
8	134	2.38	92.85		
9	80	1.42	94.27		
10	56	0.99	95.26		
11	56	0.99	96.26		
12	32	0.57	96.83		
()					

. poisson mdu lcoins ndisease female age lfam child

Poisson regres	sion			Numbe	er of obs	s =	5638
				LR c	hi2(6)	=	2296.50
				Prob	> chi2	=	0.0000
Log likelihood	= -17173.05	8		Pseu	do R2	=	0.0627
mdu					-	Coni.	Interval
+							0.600.665
lcoins	0682563	.0038214	-17.86	0.000	 0757	/462	0607665
ndisease	.03538	.0010286	34.40	0.000	.0333	3639	.037396
female	.1276798	.0164078	7.78	0.000	.0955	5211	.1598386
age	.0041167	.0007841	5.25	0.000	.0025	5798	.0056536
lfam	141855	.0154716	-9.17	0.000	1721	L789	1115312
child	.056673	.0278998	2.03	0.042	.0019	9903	.1113557
_cons	.7463066	.0385653	19.35	0.000	.67	7072	.8218932

. estimates store cpoissonml

. poisson mdu lcoins ndisease female age lfam child, robust

Poisson regres	sion			Numbe	er of obs	s =	5638	
				Wald	chi2(6)	=	388.20	
				Prob	> chi2	=	0.0000	
Log pseudolike	elihood = -17	173.058		Pseud	do R2	=	0.0627	
		Robust						
mdu	Coef.	Std. Err.	Z	P> z	[95%	Conf.	<pre>Interval]</pre>	
+								
lcoins	0682563	.0094538	-7.22	0.000	0867	854	0497273	
ndisease	.03538	.002696	13.12	0.000	.0300	959	.0406641	
female	.1276798	.04043	3.16	0.002	.0484	1385	.2069211	
age	.0041167	.0019155	2.15	0.032	.0003	3624	.007871	
lfam	141855	.0336317	-4.22	0.000	207	7772	0759381	
child	.056673	.0625248	0.91	0.365	0658	3734	.1792194	
_cons	.7463066	.0861806	8.66	0.000	.5773	3956	.9152175	

. estimates store cpoissonqml

. nbreg mdu lcoins ndisease female age lfam child, dispersion(constant)

Negative binom	nial regressi	on		Numbe	er of obs	= 5638
				LR ch	ni2(6)	= 529.02
Dispersion	= constant			Prob	> chi2	= 0.0000
Log likelihood	d = -12128.04	1		Pseud	lo R2	= 0.0213
	Coef.					if. Interval]
+						
lcoins	076432	.0069326	-11.02	0.000	0900197	0628442
ndisease	.0309127	.0019493	15.86	0.000	.0270922	.0347333
female	.1447002	.029679	4.88	0.000	.0865305	.2028699
age	.0027029	.0014494	1.86	0.062	0001378	.0055436
lfam	1235042	.0276393	-4.47	0.000	1776761	0693323
child	0049686	.0499784	-0.10	0.921	1029245	.0929873
_cons	.8537349	.0697031	12.25	0.000	.7171195	.9903504
						
/lndelta	1.278115					1.340802
+						
delta	3.589865	.1148187			3.371733	3.822109
Likelihood-rat	io test of d	elta=0: chi	.bar2(01)	= 1.0e+0)4 Prob>=chi	bar2 = 0.000

. estimates store cnegbin1

Overdispersion test: the hypothesis of ➤ correct specification of the Poisson mode is rejected

. nbreg mdu lcoins ndisease female age lfam child, dispersion(mean)

```
Negative binomial regression
                                    Number of obs = 5638
                                    LR chi2(6) = 459.10
Dispersion = mean
                                    Prob > chi2 = 0.0000
Log likelihood = -12163.001
                                   Pseudo R2 = 0.0185
      mdu | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    lcoins | -.0719827 .0083402 -8.63 0.000 -.0883292 -.0556362
  ndisease | .0391488 .002618 14.95 0.000 .0340175 .0442801
    female | .1229883 .0350213 3.51 0.000 .0543479 .1916288
     age | .0035899 .0017692 2.03 0.042 .0001223 .0070574
     child | .0842864 .0621692 1.36 0.175 -.0375631 .2061359
     cons | .7638038 .087809 8.70 0.000 .5917012 .9359063
  /lnalpha | .2193579 .0274111
                                    .1656333 .2730826
     alpha | 1.245277 .0341344
                                      1.18014 1.314009
Likelihood-ratio test of alpha=0: chibar2(01) = 1.0e+04 Prob>=chibar2 = 0.000 → correct specification
```

. estimates store cnegbin2

Overdispersion test: the hypothesis of of the Poisson mode is rejected

Illustration 9 – Question 3.2 (summary)

. estimates table cpoissonml cpoissonqml cnegbin1 cnegbin2, b star(0.1 0.05 0.01) $\,$

```
Variable | cpoissonml cpoissongml cnegbin1 cnegbin2
mdu
     lcoins | -.06825635*** -.06825635*** -.07643198*** -.0719827***
   ndisease | .03537998*** .03537998*** .03091273*** .03914881***
     female | .12767984*** .12767984*** .1447002*** .12298834***
       age | .0041167*** .0041167** .0027029* .00358987**
      lfam | -.14185505*** -.14185505*** -.1235042*** -.18347387***
     child | .05667301** .05667301 -.00496864
                                                    .0842864
     _cons | .74630658*** .74630658*** .85373493*** .76380377***
lndelta
                                       1.2781147***
     cons
lnalpha |
     cons
                                                      .21935795***
```

legend: * p<.1; ** p<.05; *** p<.01

```
. estimates restore cpoissonml
(results cpoissonml are active now)
```

Formulas:

$$Pr(Y_i = y | x_i) = \frac{e^{-\lambda_i \lambda_i^y}}{y!}, \qquad \lambda_i = E(Y | X) = \exp(x_i' \beta)$$

- $Pr(Y_i = 0 | x_i) = e^{-\lambda_i}$
- $Pr(Y_i = 1 | x_i) = e^{-\lambda_i} \lambda_i$
- $Pr(Y_i \ge 2|x_i) = 1 Pr(Y_i = 0|x_i) Pr(Y_i = 1|x_i)$

```
. scalar lambda0 = \exp(_b[_cons] + _b[lcoins]*log(1) + _b[age]*50 + _b[lfam]*log(3))
```

- . $scalar lambda1 = exp(_b[_cons] + _b[lcoins]*log(51) + _b[age]*50 + _b[lfam]*log(3))$
- . scalar lambda2 = $\exp(_b[_cons] + _b[lcoins]*log(101) + _b[age]*50 + b[lfam]*log(3))$

Illustration 9 – Question 3.3 (cont.)

- . display lambda0
 2.2173168
- . display lambda1 1.695412
- . display lambda2
- 1.6181549
- . display exp(-lambda0)
- .10890092
- . display exp(-lambda1)
- .18352361
- . display exp(-lambda2)
- .19826418

- . display exp(-lambda0)*lambda0
 .24146784
- . display exp(-lambda1)*lambda1
 .31114812
- . display exp(-lambda2)*lambda2
 .32082215
- . display 1-0.10890092-0.24146784
 .64963124
- . display 1-0.18352361-0.31114812 .50532827
- . display 1-0.19826418-0.32082215
 .48091367

Illustration 9 – Question 3.3 (cont.)

coins:	0	50	100
E(mdu)	2.2	1.7	1.6
$Pr(mdu = 0 \dots)$	10.9	18.4	19.8
$Pr(mdu = 1 \dots)$	24.1	31.1	32.1
$Pr(mdu \ge 2)$	65.0	50.5	48.1

```
. xtset id year
     panel variable: id (unbalanced)
      time variable: year, 1 to 5, but with gaps
             delta: 1 unit
. xtdescribe
    id: 125024, 125025, ..., 632167
                                                         5908
   year: 1, 2, ..., 5
                                                              5
                                                   Τ =
         Delta(year) = 1 unit
         Span(year) = 5 periods
         (id*year uniquely identifies each observation)
Distribution of T i: min 5% 25% 50% 75%
                                                        95%
                                                               max
                       2 3 3
                                                 5
                                                        5
                                                                 5
    Freq. Percent Cum. | Pattern
    3710 62.80 62.80 | 111...
    1584 26.81 89.61 | 11111
    156 2.64 92.25 | 1....
    147 2.49 94.74 | 11...
            1.34 96.07 | ..1..
     79
            1.12 97.19 | .11..
     66
     33
            0.56 97.75 | ..111
            0.56 98.31 | .1111
     33
            0.49 98.80 | ...11
     29
            1.20 100.00 | (other patterns)
      71
    5908
          100.00
                          XXXXX
```

. poisson mdu lcoins ndisease female age lfam child, vce(cluster id)

10155011 1CG1C551011			IV CITIE	JCI OI	CDD		20100
			Walo	d chi2	(6)	=	476.93
			Prok	> ch	i2	=	0.0000
Log pseudolikelihood = -62579.401			Psei	ıdo R2		=	0.0609
	(Std.	Err.	adjusted	for 5	908 c	lusters	in id)

Number of obs =

 mdu 	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
lcoins	0808023	.0080013	-10.10	0.000	0964846	0651199
ndisease	.0339334	.0026024	13.04	0.000	.0288328	.039034
female	.1717862	.0342551	5.01	0.000	.1046473	.2389251
age	.0040585	.0016891	2.40	0.016	.000748	.0073691
lfam	1481981	.0323434	-4.58	0.000	21159	0848062
child	.1030453	.0506901	2.03	0.042	.0036944	.2023961
_cons	.748789	.0785738	9.53	0.000	.5947872	.9027907

. estimates store pooled

Poisson regression

20186

. xtpoisson mdu lcoins ndisease female age lfam child, re (\dots)

mdu	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
+	+					
lcoins	0878258	.0068682	-12.79	0.000	1012873	0743642
ndisease	.0387629	.0022046	17.58	0.000	.034442	.0430839
female	.1667192	.0286298	5.82	0.000	.1106058	.2228325
age	.0019159	.0011134	1.72	0.085	0002663	.0040982
lfam	1351786	.0260022	-5.20	0.000	186142	0842152
child	.1082678	.0341477	3.17	0.002	.0413396	.1751961
_cons	.7574177	.0618346	12.25	0.000	.6362241	.8786112
/lnalpha	.0251256	.0209586			0159526	.0662038
alpha	1.025444	.0214919			.984174	1.068444
Likelihood-rat	tio test of a	 lpha=0: chib	ar2(01) =	= 3.9e+()4 Prob>=chiba	r2 = 0.000

. estimates store RE

```
. xtpoisson mdu lcoins ndisease female age lfam child, fe
note: 265 groups (265 obs) dropped because of only one obs per group
note: 666 groups (2130 obs) dropped because of all zero outcomes
note: lcoins dropped because it is constant within group
note: ndisease dropped because it is constant within group
note: female dropped because it is constant within group
(...)
                                          Wald chi2(3) = 19.24
                                          Prob > chi2 = 0.0002
Log likelihood = -24173.211
        mdu | Coef. Std. Err. z P>|z| [95% Conf. Interval]
       age | -.0112009 .0039024 -2.87 0.004 -.0188494 -.0035523
       lfam | .0877134 .0554606 1.58 0.114 -.0209874 .1964141
      child | .1059867 .0437744 2.42 0.015 .0201905 .1917829
```

. estimates store FE

Illustration 9 – Question 4.2 (summary)

```
. estimates table pooled RE FE, b star(0.1 0.05 0.01)
   Variable | pooled RE
mdu
     lcoins | -.08080226*** -.08782576***
   ndisease | .0339334*** .03876295***
     female | .17178621*** .16671918***
      age | .00405853** .00191594* -.01120087***
      lfam | -.1481981*** -.13517858*** .08771336
      child | .10304526** .10826785*** .10598669**
     cons | .74878896*** .7574177***
lnalpha |
                     .02512562
     cons
                       legend: * p<.1; ** p<.05; *** p<.01
```

Illustration 9 – Question 4.3

. hausman FE RE

```
---- Coefficients ----

| (b) (B) (b-B) sqrt(diag(V_b-V_B))

| EF EA Difference S.E.

age | -.0112009 .0019159 -.0131168 .0037402

lfam | .0877134 -.1351786 .2228919 .0489874

child | .1059867 .1082678 -.0022812 .0273886
```

b = consistent under Ho and Ha; obtained from xtpoisson
B = inconsistent under Ha, efficient under Ho; obtained from xtpoisson

Test: Ho: difference in coefficients not systematic

Illustration 10 – Question 1

```
. drop if LE==1
(1922 observations deleted)
```

. summarize LEV LT1

Variable	Obs	Mean	Std. Dev.	Min	Max
LEV LT1	30304	.0734047	.1668595	0	.9982489

```
. count if LEV_LT1==0
23027
```

- . display 23027/30304
- .75986668

Illustration 10 – Question 2.1

```
. glm LEV LT1 SIZE2 COLLAT2 PROF1 GROWTH2 AGE, family(binomial) link(logit)
vce(cluster id)
(...)
                                                   = .4259979
                                          AIC
                                                   = -304709.7
Log pseudolikelihood = -6448.71996
                                         BIC
                            (Std. Err. adjusted for 4995 clusters in id)
                        Robust
   LEV LT1 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
     SIZE2 | .3160809 .0150444 21.01 0.000 .2865946 .3455673
    COLLAT2 | .453255 .1394787 3.25 0.001 .1798818 .7266282
     PROF1 | -3.629699 .2667238 -13.61 0.000 -4.152469 -3.10693
    GROWTH2 | .0004846 .0002476 1.96 0.050 -6.89e-07 .0009699
      AGE | -.0045993 .0017012 -2.70 0.007 -.0079335 -.0012651
     cons | -6.823869 .2264392 -30.14 0.000 -7.267681 -6.380056
```

[.] estimates store LOGIT

Illustration 10 – Question 2.2

. gen DEBT=LEV_LT1>0

```
. probit DEBT SIZE2 COLLAT2 PROF1 GROWTH2 AGE, vce(cluster id)
(\dots)
                                         Number of obs = 30304
Probit regression
                                         Wald chi2(5) = 1125.30
                                         Prob > chi2 = 0.0000
Log pseudolikelihood = -14363.976
                                        Pseudo R2 = 0.1401
                           (Std. Err. adjusted for 4995 clusters in id)
                       Robust
      DEBT | Coef. Std. Err. z P>|z| [95% Conf. Interval]
     SIZE2 | .3309445 .011001 30.08 0.000 .309383 .3525061
    COLLAT2 | .754961 .07028 10.74 0.000 .6172147 .8927074
     PROF1 | -2.114841 .176704 -11.97 0.000 -2.461175 -1.768508
    GROWTH2 | .000226 .0001309 1.73 0.084 -.0000307 .0004826
     AGE | .0011396 .0011065 1.03 0.303 -.001029 .0033082
     cons | -5.510938 .1548431 -35.59 0.000 -5.814425 -5.207451
```

. estimates store TP1

Illustration 10 – Question 2.2 (cont.)

```
. glm LEV LT1 SIZE2 COLLAT2 PROF1 GROWTH2 AGE if LEV LT>0, family(binomial)
link(logit) vce(cluster id)
(...)
                                                    = .8776548
                                           AIC
                                                    = -63243.49
Log pseudolikelihood = -3187.347033
                                          BIC
                             (Std. Err. adjusted for 2064 clusters in id)
                        Robust
   LEV LT1 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
     SIZE2 | -.185588 .0140524 -13.21 0.000 -.2131301 -.1580459
    COLLAT2 | -.7261906 .0998168 -7.28 0.000 -.9218279 -.5305533
     PROF1 | -1.523694 .2894609 -5.26 0.000 -2.091027 -.9563615
    GROWTH2 | .0030029 .0004916 6.11 0.000 .0020395 .0039663
      AGE | -.0071666 .0013872 -5.17 0.000 -.0098856 -.0044477
     cons | 2.389845 .2057352 11.62 0.000 1.986611 2.793078
```

. estimates store TP2

Illustration 10 – Question 2.3

```
. tobit LEV LT1 SIZE2 COLLAT2 PROF1 GROWTH2 AGE, 11(0) vce(cluster id)
(...)
                           (Std. Err. adjusted for 4995 clusters in id)
                      Robust
     LEV LT1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
       SIZE2 | .1228862 .0040377 30.43 0.000 .1149721 .1308004
     COLLAT2 | .2341081 .0318943 7.34 0.000 .1715941 .2966222
       PROF1 | -.9789402 .0758649 -12.90 0.000 -1.127639 -.8302418
     GROWTH2 | .0001581 .0000812 1.95 0.052 -1.14e-06 .0003174
      AGE | -.0003276 .0004359 -0.75 0.452 -.001182 .0005268
      _cons | -2.064098 .0565277 -36.51 0.000 -2.174894 -1.953301
var(e.LEV LT1) | .2180737 .0075559
                                                .2037555 .2333981
```

. estimates store TOBIT

Illustration 10 – Question 3.1

Fractional logit model:

$$E(LEV_LT_i|x_i) = \frac{e^{x_i'\beta}}{1 + e^{x_i'\beta}}$$

```
. estimates restore LOGIT
(results LOGIT are active now)

. scalar xb = _b[_cons] + _b[SIZE2]*13.54 + _b[COLLAT2]*0.41 + _b[PROF1]*0.07 +
_b[GROWTH2]*15.03 + _b[AGE]*19

. display exp(xb)/(1+exp(xb))
.06341858
```

Illustration 10 – Question 3.1 (cont.)

Two-part model:

$$E(LEV_LT_i|x_i) = \Phi(x_i'\theta) \frac{e^{x_i'\beta}}{1 + e^{x_i'\beta}}$$

```
. estimates restore TP1
(results DP1 are active now)

. scalar xb1 = _b[_cons] + _b[SIZE2]*13.54 + _b[COLLAT2]*0.41 + _b[PROF1]*0.07
+ _b[GROWTH2]*15.03 + _b[AGE]*19

. estimates restore TP2
(results DP2 are active now)

. scalar xb2 = _b[_cons] + _b[SIZE2]*13.54 + _b[COLLAT2]*0.41 + _b[PROF1]*0.07
+ _b[GROWTH2]*15.03 + _b[AGE]*19

. display normal(xb1)*exp(xb2)/(1+exp(xb2))
.06985232
```

Illustration 10 – Question 3.1 (cont.)

Tobit model:

$$E(LEV_{L}T_{i}|x_{i}) = \Phi\left(\frac{x_{i}'\beta}{\sigma}\right)x_{i}'\beta + \sigma\phi\left(\frac{x_{i}'\beta}{\sigma}\right)$$

```
. estimates restore TOBIT
(results TOBIT are active now)

. scalar xbt = _b[_cons] + _b[SIZE2]*13.54 + _b[COLLAT2]*0.41 + _b[PROF1]*0.07
+ _b[GROWTH2]*15.03 + _b[AGE]*19

. display normal(xbt/sqrt(_b[/var(e.LEV_LT1)]))*xbt+sqrt(_b[/var(e.LEV_LT1)])*
normalden(xbt/sqrt(_b[/var(e.LEV_LT1)]))
.05549759
```

Illustration 10 – Question 3.2

Fractional logit model:

By definition, it is approximately equal to one

Two-part model:

$$Pr(LEV_LT_i > 0 | x_i) = \Phi(x_i'\theta)$$

- . display normal(xb1)
- .19950111

Tobit model:

$$Pr(LEV_LT_i > 0 | x_i) = \Phi\left(\frac{x_i'\beta}{\sigma}\right)$$

- . estimates restore TOBIT
 (results TOBIT are active now)
- . display normal(xbt/sqrt(_b[/var(e.LEV_LT1)]))
- .20998609

Illustration 10 – Question 3.3

Fractional logit model:

• By definition, $E(LEV_LT_i|x_i,Y_i>0)\approx E(LEV_LT_i|x_i)$

Two-part model:

$$E(LEV_LT_i|x_i, Y_i > 0) = \frac{e^{x_i'\beta}}{1 + e^{x_i'\beta}}$$

```
. display \exp(xb2)/(1+\exp(xb2))
.35013498
```

Tobit model:

$$E(Y_i|x_i,Y_i>0)=x_i'\beta+\sigma\lambda\left(\frac{x_i'\beta}{\sigma}\right)$$

```
. estimates restore TOBIT
(results TOBIT are active now)

. display xbt+sqrt(_b[/var(e.LEV_LT1)])*normalden(xbt/sqrt(_b[/var(e.LEV_LT1)]))
)/normal(xbt/sqrt(_b[/var(e.LEV_LT1)]))
.26429175
```

Illustration 10 – Question 4

```
. xtset id YEAR
     panel variable: id (unbalanced)
      time variable: YEAR, 1995 to 2001, but with gaps
             delta: 1 unit
. gen LEVt= LEV LT1/(1-LEV LT1)
. xtpoisson LEVt SIZE2 COLLAT2 PROF1 GROWTH2 AGE, fe vce(robust)
(...)
                                (Std. Err. adjusted for clustering on id)
                        Robust
      LEVt | Coef. Std. Err. z > |z| [95% Conf. Interval]
     SIZE2 | -.2563746 .1914515 -1.34 0.181 -.6316126 .1188634
    COLLAT2 | .7169194 .5366941 1.34 0.182 -.3349818 1.768821
     PROF1 | -1.205703 2.620676 -0.46 0.645 -6.342134 3.930727
   GROWTH2 | .0024675 .00165 1.50 0.135 -.0007665 .0057014
       AGE | .0402399 .0259754 1.55 0.121 -.010671 .0911508
```