Année : $2024/2025$	DS 1——S1	2bac pc
M.ouikrim	fkih ben salh	ecole les nations

- une bonne rédaction va être récompensé
- l'usage de la calculatrice non programmable est autorisé

PROBLÈME

I - soient les fonctions f et g définies sur $\mathbb R$ par :

$$f(x) = 1 - \frac{9}{8}x^3$$
 et $g(x) = x^5 + x$.

- 1. montrer que g est impaire.
- 2. a soit n entier naturel impair et $a \in \mathbb{R}$. Résoudre dans \mathbb{R} l'équation $x^n = a$.
 - b Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle J qu'on déterminera.
 - c Dresser le tableau de variation de f^{-1} .
 - d Déterminer $f^{-1}(x)$ pour $x \in J$.
 - e Représenter une allure de la courbe de f^{-1} dans un repère orthonormé (on vous donne la courbe de f).
- 3. a Montrer que l'équation f(x) = g(x) admet une solution unique α dans $\mathbb R$ et vérifier que $\frac{1}{2} < \alpha < 1$.
 - b Déduire que $\forall x < \alpha \quad f(x) > g(x)$ et interpréter graphiquement ce résultat.
 - c Déduire que $\forall x < \alpha \quad g(-x) + f(x) > 0$.
- 4. Soit la fonction h définie sur $\mathbb R$ par :

$$h(x) = egin{cases} \sqrt{1-x^5} & ext{si} & x \leq lpha, \\ \sqrt{x+rac{9}{8}x^3} & ext{si} & x > lpha. \end{cases}$$

- a Montrer que h est continue sur $]-\infty, \alpha[$ et $]\alpha, +\infty[$.
- b Montrer que h est continue en α .
- c Déduire que $h(\mathbb{R})$ est un intervalle.
- d Comparer les nombres $h\left(\frac{1}{\sqrt[5]{2}}\right)$ et $h\left(\sqrt[3]{2}\right)$ (justifier).
- e montrer que la fonction $x\mapsto xh\left(\frac{1}{x}\right)-h\left(x\right)$ est continue sur \mathbb{R}_{+}^{*}
- f Calculer $\lim_{x \to +\infty} xh\left(\frac{1}{x}\right) h(x)$.

Ci-joint la courbe de f:

Desktop/dr.png