Algebraic topology 1

Luka Horjak (luka1.horjak@gmail.com)

October 9, 2023

Contents Luka Horjak

Contents

Introduction		
1	Bas	sic homotopy theory
	1.1	Definition
	1.2	Homotopy equivalence
	1.3	Extensions of homotopies
Tn	dex	

Introduction Luka Horjak

Introduction

These are my lecture notes on the course Algebraic topology 1 in the year 2023/24. The lecturer that year was prof. dr. Petar Pavešić.

The notes are not perfect. I did not write down most of the examples that help with understanding the course material. I also did not formally prove every theorem and may have labeled some as trivial or only wrote down the main ideas.

I have most likely made some mistakes when writing these notes – feel free to correct them.

1 Basic homotopy theory

1.1 Definition

Definition 1.1.1. Continuous maps $f, g: X \to Y$ of topological spaces are *homotopic*, if there is a continuous map $H: X \times I \to Y$, such that H(x, 0) = f(x) and H(x, 1) = g(x). Such H is called a *homotopy*. We write $H: f \simeq g$.

Remark 1.1.1.1. If X is a locally compact and Hausdorff space, homotopies coincide with paths in the space C(X,Y).

Proposition 1.1.2. Homotopy is an equivalence relation on C(X,Y).

Proof. The proof is obvious and need not be mentioned.

Definition 1.1.3. We denote the set of equivalence classes of the homotopy relation on C(X,Y) by [X,Y].

Remark 1.1.3.1. If X is a locally compact and Hausdorff space, [X, Y] is the set of path components of C(X, Y).

Definition 1.1.4. With $f:(X,A) \to (Y,B)$ we denote maps $f:X \to Y$ such that $f(A) \subseteq f(B)$. Similarly, we define $\mathcal{C}((X,A),(Y,B))$ and [(X,A),(Y,B)].

Definition 1.1.5. Let $A \subseteq X$ and $f, g: X \to Y$ be maps, such that $f|_A = g|_A$. $G: X \times I \to Y$ is a homotopy relative to A if $H: f \simeq g$ and $H_t|_A = f|_A$ for all $t \in I$.

Definition 1.1.6. A map $f: X \to Y$ is *null-homotopic* if it is homotopic to a constant.

Definition 1.1.7. Let X be a topological space. The *cone* on X is the space

$$CX = X \times I / X \times \{1\}$$
.

Proposition 1.1.8. A map $f: X \to Y$ is null-homotopic if and only if it extends to the cone CX.

Proof. In the following diagram, H exists if and only if F exists.

$$X \xrightarrow{f} Y$$

$$i_0 \downarrow H \qquad \uparrow F$$

$$X \times I \xrightarrow{g} CX$$

1.2 Homotopy equivalence

Proposition 1.2.1. Let $f, f': X \to Y$ and $g, g': Y \to Z$ be maps. If $f \simeq g$ and $f' \simeq g'$, we also have $g \circ f \simeq g' \circ f'$.

Proof. Let $H\colon X\times I\to Y$ and $K\colon Y\times I\to Z$ be the two homotopies. It is trivial to check that

$$L(x,t) = K(H(x,t),t)$$

is a homotopy of the compositions.

Definition 1.2.2. The *homotopy category* HoTop is the category with topological spaces as objects and homotopies as morphisms. Operations are induced by the compositions of maps.

Definition 1.2.3. The category $\underline{\text{Top}}^2$ has pairs of spaces (X, A) with $A \subseteq X$ as spaces, maps of pairs as morphisms and composition as the operation. Analogously as above, this category induces the category HoTop^2 .

Definition 1.2.4. The category $\underline{\text{Top}}_{\bullet}$ has pairs (X, x_0) with $x_0 \in X$ as spaces, maps of pairs as morphisms and composition as the operation. Analogously as above, this category induces the category HoTop_{\bullet} .

Definition 1.2.5. Homotopy equivalence is an isomorphism in the category <u>HoTop</u>. If spaces X and Y are homotopy equivalent, we write $X \simeq Y$.

Remark 1.2.5.1. A map $f: X \to Y$ is a homotopy equivalence if there exists a map $g: Y \to X$ such that $g \circ f \simeq \operatorname{id}_X$ and $f \circ g \simeq \operatorname{id}_Y$. The map g is a homotopy inverse of f.

Definition 1.2.6. A space X is *contractible* if it is homotopy equivalent to a point.

Remark 1.2.6.1. Every cone is contractible.

Proposition 1.2.7. Let X be a topological space. The following statements are equivalent:

- i) The space X is contractible.
- ii) The map id_X is homotopy equivalent to a constant map.
- iii) The space X is a retract of CX.

Proof. The proof is obvious and need not be mentioned.

Theorem 1.2.8. Let X and Y be closed surfaces. If $X \simeq Y$, then $X \approx Y$.

Definition 1.2.9. A subspace $A \subseteq X$ is a deformation retract of X if it is a retract and the retraction is a homotopy inverse of the inclusion.

Definition 1.2.10. A subspace $A \subseteq X$ is a *strong deformation retract* is a retract and the retraction is a homotopy inverse of the inclusion relative to A.

1.3 Extensions of homotopies

Definition 1.3.1. A closed subspace $A \subseteq X$ has the homotopy extension property if for every space Y, map $f: X \to Y$ and homotopy $H: A \times I \to Y$ with $H_0 = f|_A$ there exists a homotopy $\overline{H}: X \times I \to Y$ such that $\overline{H}_0 = f$ and $\overline{H}|_A = H$.

Proposition 1.3.2. A closed subspace $A \subseteq X$ has the homotopy extension property if an only if the space

$$L = A \times I \cup X \times \{0\}$$

is a retract of $X \times I$.

Proof. Suppose that L is a retract of X. It is easy to see that $\overline{H} = (H \cup f) \circ r$ is the required homotopy extension, where $r: X \times I \to L$ is a retraction.

Now suppose that A has the homotopy extension property. Let $i_0: X \hookrightarrow L$ and $H: A \times I \hookrightarrow L$ be inclusions. By the homotopy extension property, there exists a homotopy $\overline{H}: X \times I \to L$, which is of course a retraction.

Proposition 1.3.3. Let $A \subseteq X$ be a contractible subspace. If A has the homotopy extension property, then $q: X \to X/A$ is a homotopy equivalence.

Proof. Let $K: A \times I \to A$ be a homotopy equivalence between id_A and the constant map. Then $K \cup \mathrm{id}_X: A \times I \cup X \to X$ is a well defined map. Let $H: X \times I \to X$ be its extension.

$$\begin{array}{c|c} X \times I & \xrightarrow{H} & X \\ q \times \operatorname{id}_I & & \downarrow q \\ X/A \times I & \xrightarrow{\overline{H}} & X/A \end{array}$$

The map $q \times \operatorname{id}_I$ is a quotient map because I is locally compact. The induced map \overline{H} is therefore well defined. But now H_1 induces a map $h \colon X/A \to X$. Note that, by definition, $h \circ q = H_1 \simeq H_0 = \operatorname{id}_X$, and $q \circ h = \overline{H}_1 \simeq \overline{H}_0 = \operatorname{id}_{X/A}$.

Index

```
\mathbf{C}
cone, 4
contractible space, 5
\mathbf{D}
deformation retract, 5
\mathbf{H}
homotopic, 4
homotopy, 4
    category, 5
    equivalence, 5
    extension property, 6
    inverse, 5
    relative to a subspace, 4
\mathbf{N}
null-homotopic, 4
\mathbf{S}
strong deformation retract, 5
```