Лабораторная работа №2 Фильтрация Савельева Софья Б01-006

1 Root Raised Cosine

В данной задаче нужно было сгенерировать импульсную характеристику для фильтра корень из приподнятого косинуса. Воспользовавшись формулой для коэффициентов во временной области получим ИХ и ее спектр:

2 Raised Cosine

В данной задаче нужно было сгенерировать импульсную характеристику для фильтра приподнятый косинус. Воспользовавшись формулой для коэффициентов во временной области получим ИХ и ее спектр:

3 Filtration

В этом задании нужно было написать функцию фильтрации, которая работает в двух режимах: с увеличением количества выборок на символ и без (повторная фильтрация)

Режим работы без увеличения количества выборок есть результат свертки сигнала с импульсной характеристикой фильтра, в нашем случае это RRC

Режим работы с увеличением количества выборок сначала передискретизирует сигнал путем добавления нулевых отсчетов между отсчетами сигнала так, чтобы не нулевые отсчеты соответствовали символам Далее такой сигнал сворачивает с ИХ RRC

Полученные сигнальные созвездия для QPSK

Сигнальное созвездие до фильтрации, точки соответствуют символам QPSK, сгенерировали 1000 битов => 500 символов

Сигнальное созвездие после фильтрации на принимающей стороне. Количество сэмплов увеличилось до 500 * nsamp = 2000, т.к. фильтрация была с передискретизацией. Каждый 4-ый = nsamp символ примерно попадает в QPSK символ

Сигнальное созвездие после фильтрации. Появились точки в нуле из-за задержки в span сэмплов. Символы QPSK немного размазаны, скорее всего из-за spectral leakage и дискретизации фильтра

Задание 4 MER(Frequency offset)

Посчитаем bandwidth сигнала после фильтрации по формуле BW = ((rolloff + 1) / nsamp) * len(filter signal)

Будем задавать Frequency offset в процентах от bandwidth delta_f = bandwidth * x% / len(filter_signal) offset = exp(i2pi*deltalf)

Созвездие после добавления Frequency offset, на амплитуде символов QPSK появляется окружность

Созвездие после "возвращения" в полосу пропускания, после фильтрации на приемной стороне, созвездие схоже с созвездием из задания 3

Созвездие после down sampling и удаления задержки

График MER(frequency offset %). Видно, что чем больше частотный сдвиг, тем сильнее "наклоняются" созвездия и тем меньше modulation error