

# Data Clustering: K means method

**CPS 563 – Data Visualization** 

Dr. Tam Nguyen

tamnguyen@udayton.edu

Implicit class label, not pre-defined!

# What is Cluster Analysis?

• Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups



#### Applications of Cluster Analysis

#### Better understanding & search

 Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

#### Visualization

Reduce the size of large data sets





Clustering rain fall amount in Australia

### Notion of a Cluster can be Ambiguous



#### Types of Clustering

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
  - A division of data points into non-overlapping subsets (clusters) such that each data point is in exactly one subset
- Hierarchical clustering
  - A set of nested clusters organized as a hierarchical tree

Cluster number is determined as you like

# Partitional Clustering



### Hierarchical Clustering



**Traditional Hierarchical Clustering** 



Non-traditional Hierarchical Clustering



**Traditional Dendrogram** 



Non-traditional Dendrogram

#### K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified

1: Select K points as the initial centroids.

"How" is the key!
Discuss!

- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

#### K-means Clustering – Details

- Initial centroids are often chosen randomly.
  - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
  - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O( n \* K \* I \* d )
  - n = number of points, K = number of clusters,
     I = number of iterations, d = number of features

### Why is choosing distance metric important?



### What is a natural grouping among these objects?



Clustering depends on the distance metric







#### Another example













#### Clustering depends on the distance metric



Marvel











Run

Billionaire

Will be a billionaire

• The Minkowski metric is a generalization of a Euclidean distance:

$$L_p(\mathbf{a}, \mathbf{b}) = \left(\sum_{k=1}^d \left| a_k - b_k \right|^p \right)^{1/p}$$



, where d is the number of feature dimensions, and is often referred to as the  $L_{\rho}$  norm.

- Special cases:
  - L<sub>1</sub>: absolute, cityblock, or Manhattan distance
  - L<sub>2</sub>: Euclidian distance

• Euclidean Distance:

$$dist(\mathbf{a}, \mathbf{b}) = \left(\sum_{k=1}^{d} (a_k - b_k)^2\right)^{1/2}$$





• Manhattan distance:  $dist(\mathbf{a}, \mathbf{b}) = \sum_{k=1}^{d} |a_k - b_k|$ 



• It is named Manhattan distance because it is the shortest distance a car would drive in a city laid out in square blocks, like Manhattan.



# K-means: an example



### K-means: Initialize centers randomly



#### K-means: assign points to nearest center



# K-means: readjust centers



#### K-means: assign points to nearest center



# K-means: readjust centers



#### K-means: assign points to nearest center



# K-means: readjust centers



#### K-means: assign points to nearest center



No changes: Done

#### Two different K-means Clusterings







### Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
  - For each point, the error is the **distance** to the **nearest cluster**
  - To get SSE, we square these errors and sum them:

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster  $C_i$  and  $m_i$  is the representative point for cluster  $C_i$ 
  - $m_i$  corresponds to the center (mean) of the cluster mostly
- Given many clusterings, we can choose the one with the smallest error

### Importance of Choosing Initial Centroids



### Importance of Choosing Initial Centroids ...



#### Problems with Selecting Initial Points

- If there are K 'real' clusters then the chance of selecting one centroid from each cluster is small.
  - Chance is relatively small when K is large
  - Sometimes the initial centroids will readjust themselves in 'right' way, and sometimes they don't

#### Solutions to Initial Centroids Problem

- Multiple runs
  - Helps, but probability is not on your side
- Select more than k initial centroids and then select among these initial centroids
  - Select most widely separated
- Postprocessing
  - Eliminate small clusters that may represent outliers
  - Split 'loose' clusters, i.e., clusters with relatively high SSE
  - Merge clusters that are 'close' and that have relatively low SSE

#### Limitations of K-means

- K-means has problems when clusters are of differing
  - Sizes
  - Densities

• K-means has problems when the data contains outliers (not belonging to any cluster).

### Limitations of K-means: Differing Sizes



**Original Points** 

K-means (3 Clusters)

### Limitations of K-means: Differing Density



**Original Points** 

K-means (3 Clusters)

#### Overcoming K-means Limitations



One solution is to use many clusters.

Find parts of clusters, but need to put together.

### Overcoming K-means Limitations

**Original Points** 



**K-means Clusters** 

36

# More Clustering Applications: Face Clustering







# Search result clustering



# Pixel Clustering

Image pixels are represented by 3D vectors of R,G,B values. The vectors are grouped to K = 10, 3, 2 clusters, and represented by the mean values of the respective clusters.



# Q&A