# 上海贝岭 SHANGHAI BELLING

# **BL21P01**

8Bit CMOS OTP MCU

#### 器件特性

RISC CPU:

仅需35条指令

大部分指令仅需一个时钟周期

存储器

1K x14 OTP ROM 48 Byte RAM 4 级堆栈

时钟系统

内置振荡:

Max:  $4MHz \pm 2\%$ .  $(3.3^{\circ}5.5V)$ Max:  $2MHz \pm 2\%$ .  $(2.4^{\circ}3.3V)$ 

RC 振荡:

外部晶体振荡:

IO 引脚配置

输入输出双向 IO 口: RA RC

单向输入引脚 RA3 可编程的弱上拉 RA 电平变化中断 中断源:

1个外部中断

RAO、RA1、RA3~RA5 输入电平变化中断

2个定时器中断 1个比较器中断

定时器:

8-bit 定时/计数器 T0

8-bit 自动重装定时/计数器 T1

内置比较器

低电压复位: 2.1V/3.6V

工作模式:

正常模式: I<sub>DD</sub> = 2.0mA @5V 休眠模式: I<sub>Sb</sub> = 1.4uA @5V

带独立振荡器的看门狗定时器

工作电压: 2.0V~5.5V ESD: HBM 3000V EFT: 4000V

#### 概述

BL21P01 单片机是 8 位具有高性能精简指令集的单片机,应用相当广泛。单片机具有低功耗、 I/0 灵活、定时器功能、振荡类型可选、休眠和唤醒功能、看门狗和低电压复位等丰富的功能 选项,其内部集成了系统振荡器 IRC,不需要增加外部元器件,可以广泛适用于各种应用,例 如工业控制、消费类产品、家用电器子系统控制等。

#### 器件列表

| Device  | ROM<br>(Word) | RAM | Stack | I/O   | INT | Timer<br>8/16-bit | 10-bit<br>ADC | PWM | Comparator | Footprint   |
|---------|---------------|-----|-------|-------|-----|-------------------|---------------|-----|------------|-------------|
| BL21P01 | 1024          | 48  | 4     | 12/11 | 1   | 2/0               | -             | 1   | 1          | SOP14       |
| BL21P01 | 1024          | 48  | 4     | 6/5   | 1   | 2/0               | -             | 1   | 1          | SOP8/TSSOP8 |
| BL21P01 | 1024          | 48  | 4     | 4/3   | 1   | 2/0               | -             | 1   | 1          | SOT23-6     |



# 封装说明



注: SOP14 封装, 比较器端口及 T0 外部时钟输入引脚可通过寄存器配置与 RA 口复用或与 RC 口复用。



# 引脚说明

| 名称                 | 功能    | 输入类型     | 输出类型     | 说明                         |
|--------------------|-------|----------|----------|----------------------------|
| RA0/CIN+/BZ/PWM    | RA0   | TTL      | CMOS     | 具有可编程上拉和电平变化中断功能的PORTA I/O |
|                    | CIN+  | AN       | <b>—</b> | 比较器同相输入                    |
|                    | BZ    | -        | CMOS     | 蜂鸣器输出引脚                    |
|                    | PWM   | 1-       | CMOS     | PWM 输出引脚                   |
| RA1/CIN-/nBZ       | RA1   | TTL      | CMOS     | 具有可编程上拉和电平变化中断功能的PORTA I/O |
|                    | _     | AN       | _        | 比较器反相输入                    |
|                    | nBZ   | <u> </u> | CMOS     | 蜂鸣器反相输出                    |
| RA2/T0CKI/INT/COUT | RA2   | ST       | CMOS     | 具有可编程上拉和电平变化中断功能的PORTA I/O |
|                    | T0CKI | ST       | <b>—</b> | Timer0 的时钟输入               |
|                    | INT   | ST       | _        | 外部中断                       |
|                    | COUT  |          | CMOS     | 比较器的输出                     |
| RA3/MCLR/VPP       | RA3   | TTL      | _        | 具有电平变化中断功能的PORTA 输入        |
|                    | MCLR  | ST       |          | 带内部上拉的主复位                  |
|                    | VPP   | HV       | _        | 编程电压                       |
| RA4/OSC2           | RA4   | TTL      | CMOS     | 具有可编程上拉和电平变化中断功能的PORTA I/O |
|                    | OSC2  | _        | XTAL     | 晶振/ 谐振器                    |
| RA5/OSC1           | RA5   | TTL      | CMOS     | 具有可编程上拉和电平变化中断功能的PORTA I/O |
|                    | OSC1  | XTAL     | _        | 晶振/ 谐振器                    |
| RC0//COUT          | RC0   | TTL      | CMOS     | PORTC I/O                  |
| RC1/CIN+           | RC1   | TTL      | CMOS     | PORTC I/O                  |
| RC2/CIN-           | RC2   | TTL      | CMOS     | PORTC I/O                  |
| RC3/T0CKI          | RC3   | TTL      | CMOS     | PORTC I/O                  |
| RC4                | RC4   | TTL      | CMOS     | PORTC I/O                  |
| RC5                | RC5   | TTL      | CMOS     | PORTC I/O                  |
| VDD                | VDD   | 电源       |          | 正电源                        |
| Vss                | VSS   | 电源       |          | 参考地                        |



#### 系统结构

#### 系统框图



#### CPU 特性

#### 指令周期:

MCU 内核采用优化的时钟结构,每个指令周期仅为1个时钟周期,是 PIC16C6X 内核的4倍。

#### 哈佛结构:

器件采用哈佛架构,具有独立的程序存储器和数据存储器,并可通过独自的总线进行存取。取 指操作可在单个指令周期内完成,在访问程序存储器的同时,可通过独立的总线对数据进行读 写操作。独立的总线结构使得执行一条指令的同时,可以取下一条指令。

#### 指令流水:

指令流水线有两级流水线,可以使取指操作和指令执行重叠进行。取指花费一个 Tcr 时间,而 该指令在下一个 Tcr 时间内执行。由于当前指令的取指操作和前一条指令的执行是重叠的,所 以在每一个 Tcr 内,进行一条指令的取指和另一条指令的执行。

#### 单周期指令:

程序存储器总线是 14 位宽,因此能在 1 个机器周期内完成整条指令的取指操作。指令中包含了所需的所有信息,并能在单周期内执行完毕。如果指令的执行结果要修改程序指针 PC,那么完成指令可能需要 2 个周期(有一个周期的延迟),因为此时流水线会作废 1 条指令并重新取指令。



## 存储器

MCU 内核采用 14-bit 的指令总线和 8-bit 的数据总线分开的哈佛结构。

#### 程序存储器

器件具有一个 13-bit 的 PC,能够寻址 8 x14 的程序存储空间,器件的前 1 x14 是物理实现的,访问超出上述存储单元,将回到前 1 x14 的空间内。 复位向量位于 0000H,中断向量位于 0004H。

# 

程序存储器映射和堆栈

#### PCL 和 PCLATH

程序计数器 (PC) 为 13 位宽。其低 8 位来自可读写的 PCL 寄存器,高 5 位 (PC<12:8>) 来自 PCLATH,不能直接读写。只要发生复位,PC 就将被清零。下图显示了装入 PC 值的两种情形。



#### 不同情形下 PC 值的装入



#### 堆栈

器件具有 4 级硬件堆栈,堆栈区是一块独立的存储区域,既不存在于 ROM 也不存在于 RAM 区,不能通过指令对其读写。当执行 CALL 指令或指令中断程序时,PC 值被压入栈,当执行 RETURN、RETFIE 及 RETLW 子程序和中断返回指令时,被压入的 PC 值从栈中弹出。

器件在逻辑上没有控制堆栈溢出的功能,当堆栈占满后,执行下一条 CALL 指令会导致第一次执行 CALL 操作时存储于栈的值被覆盖。



#### 数据存储器

数据存储器由通用寄存器和特殊功能寄存器构成。特殊功能寄存器位于每个存储区的前 32 个单元中。 40h - 7Fh 寄存器单元是通用寄存器,以静态 RAM 的形式实现,其他地均未实现。 STATUS 寄存器的 RP<1:0>位是存储区选择位,在 BL21P01 中 RP0 与 RP1 及 IRP 位保留且始终为 0.





#### 通用寄存器

器件的寄存器文件组织为48 x8,通过文件选择寄存器可以直接或间接访问每个寄存器。

#### 间接寻址

器件支持直接寻址和间接寻址。在直接寻址模式,STATUS 寄存器中的 PR<1:0>位 (BL21P01 中为 00 或 1x 指向 Bank0,01 指向 Bank1)和指令中的 7 位操作数组成 9 位的地址。使用 INDF 寄存器可进行间接寻址。任何使用 CONFIG 寄存器的指令,实际上是对文件选择寄存器(FSR)所指向的数据进行存取。通过将 8 位的 FSR 寄存器与 STATUS 寄存器的 IRP 位 (器件中始终为 0)进行组合可得到一个有效的 9 位地址.

## 直接寻址与间接寻址





# 特殊功能寄存器

特殊功能寄存器为 CPU 和外设模块用来对器件所需操作进行控制的寄存器。这些寄存器以静态 RAM 存储,分为内核和外设。 本节介绍内核相关的寄存器,与外设相关的特殊寄存器将在相应的外设功能模块中介绍。

x- 未知 ,u- 不变, R-可读, W-可写 , 0 -上电默认为 0, 1-上电默认为 1

#### INDF 寄存器-INDF

与 FSR 寄存器配合所使用,来进行间接寻址。

#### 状态寄存器-STATUS

| Bit | Name    | R/W   | 功能描述                            |  |  |  |
|-----|---------|-------|---------------------------------|--|--|--|
| 7   | IRP     | R -0  | 0 = Bank 0 和 1(用于间接寻址)          |  |  |  |
| 6-5 | RP1~RP0 | R/W-0 | 00= Bank 0                      |  |  |  |
|     |         |       | 01= Bank 1                      |  |  |  |
|     |         |       | 1x = Bank 0                     |  |  |  |
| 4   | TO      | R-1   | 1 = 上电复位、执行 CLRWDT 或 SLEEP 指令之后 |  |  |  |
|     |         |       | 0 = 产生了 WDT 超时                  |  |  |  |
| 3   | PD      | R-1   | 1=在上电或执行 CLRWDT 指令之后            |  |  |  |
|     |         |       | 0 = 执行 SLEEP 指令                 |  |  |  |
| 2   | Z       | R/W-x | 1=算术运算或逻辑运算的结果为0                |  |  |  |
|     |         |       | 0=算术运算或逻辑运算的结果不为零               |  |  |  |
| 1   | DC      | R/W-x | 1=结果的第4个低位发生了进位                 |  |  |  |
|     |         |       | 0=结果的第4个低位未发生进位                 |  |  |  |
| 0   | С       | R/W-x | 1=结果最高位发生了进位                    |  |  |  |
|     |         |       | 0=结果最高位未发生进位                    |  |  |  |

#### 选项寄存器-OPTION

| Bit | Name    | R/W   | 功能                    |              |  |  |  |  |
|-----|---------|-------|-----------------------|--------------|--|--|--|--|
| 7   | WDTE    | R/W-0 | 1=看门狗复位使能             |              |  |  |  |  |
|     |         |       | 0=看门狗复位禁止             |              |  |  |  |  |
| 6   | INTEDG  | R/W-1 | 1 = INT 引脚的上升浴        | }触发中断        |  |  |  |  |
|     |         |       | 0 = INT 引脚的下降沿        | 計触发中断        |  |  |  |  |
| 5   | T0CS    | R/W-1 | 1 = T0CKI 引脚上的电       | <b>电平跳变</b>  |  |  |  |  |
|     |         |       | 0 = 内部指令周期时钟          | <del>ļ</del> |  |  |  |  |
| 4   | T0SE    | R/W-1 | 1 = T0CKI 引脚信号/       | 人高至低跳变时,递增计数 |  |  |  |  |
|     |         |       | 0 = T0CKI 引脚信号/       | 从低至高跳变时,递增计数 |  |  |  |  |
| 3   | PSA     | R/W-1 | 1 = 预分频器分配给 V         | WDT          |  |  |  |  |
|     |         |       | 0 = 预分频器分配给 Timer0 模块 |              |  |  |  |  |
| 2-0 | PS2-PS0 | R/W-1 | Timer0 分频比            | WDT 分频比      |  |  |  |  |
|     |         |       | 000 = 1/2             | 000 = 1/1    |  |  |  |  |
|     |         |       | 001 = 1/4             | 001 = 1/2    |  |  |  |  |
|     |         |       | 010 = 1/8             | 010 = 1/4    |  |  |  |  |
|     |         |       | 011 = 1/16            | 011 = 1/8    |  |  |  |  |
|     |         |       | 100 = 1/32            | 100 = 1/16   |  |  |  |  |
|     |         |       | 101 = 1/64            | 101 = 1/32   |  |  |  |  |
|     |         |       | 110 = 1/128           | 110 = 1/64   |  |  |  |  |
|     |         |       | 111 = 1/256           | 111 = 1/128  |  |  |  |  |

#### 中断控制寄存器-INTCON

| Bit | Name | R/W   | 功能描述              |
|-----|------|-------|-------------------|
| 7   | GIE  | R/W-0 | 1 = 允许所有未屏蔽中断     |
|     |      |       | 0=禁止所有中断          |
| 6   | PEIE | R/W-0 | 1 = 允许所有未被屏蔽的外设中断 |



|   |      |       | 0 林儿氏亡去月八八十四                  |
|---|------|-------|-------------------------------|
|   |      |       | 0=禁止所有外设中断                    |
| 5 | TOIE | R/W-0 | 1 = 允许 Timer0 中断              |
|   |      |       | 0 = 禁止 Timer0 中断              |
| 4 | INTE | R/W-0 | 1 = 允许 INT 外部中断               |
|   |      |       | 0 = 禁止 INT 外部中断               |
| 3 | RAIE | R/W-0 | 1 = 允许 RA 电平变化中断              |
|   |      |       | 0 = 禁止 RA 电平变化中断              |
| 2 | T0IF | R/W-0 | 1 = TMR0 寄存器溢出(必须用软件清零)       |
|   |      |       | 0 = TMR0 寄存器未溢出               |
| 1 | INTF | R/W-0 | 1 = INT 外部中断发生(必须用软件清零)       |
|   |      |       | 0 = INT 外部中断没有发生              |
| 0 | RAIF | R/W-x | 1=至少有一个 RA 口引脚状态发生变化(必须用软件清零) |
|   |      |       | 0 = RA 口引脚状态均未发生变化            |

## 外设中断允许寄存器- PIE1

| Bit | Name   | R/W   | 功能描述               |  |  |  |
|-----|--------|-------|--------------------|--|--|--|
| 7   |        | U-0   | 未实现                |  |  |  |
| 6   |        | U-0   | 未实现                |  |  |  |
| 5   |        | U-0   | 未实现                |  |  |  |
| 4   |        | U-0   | 未实现                |  |  |  |
| 3   | CIE    | R/W-0 | 1 = 允许比较器中断        |  |  |  |
|     |        |       | 0=禁止比较器中断          |  |  |  |
| 2   |        | U-0   | 未实现                |  |  |  |
| 1   | TMR1IE | R/W-0 | 1 = 允许 Timer1 溢出中断 |  |  |  |
|     |        |       | 0 = 禁止 Timer1 溢出中断 |  |  |  |
| 0   |        | U-0   | 未实现                |  |  |  |

# 外设中断请求寄存器- PIR1

| Bit | Name   | R/W   | 功能描述             |
|-----|--------|-------|------------------|
| 7   |        | U-0   | 未实现              |
| 6   |        | U-0   | 未实现              |
| 5   |        | U-0   | 未实现              |
| 4   |        | U-0   | 未实现              |
| 3   | CIF    | R/W-0 | 1 = 比较器输出已改变     |
|     |        |       | 0 = 比较器输出未改变     |
| 2   |        | U-0   | 未实现              |
| 1   | TMR1IF | R/W-0 | 1 = Timer1 寄存器溢出 |
|     |        |       | 0 = Timer1 未发生溢出 |
| 0   |        | U-0   | 未实现              |

# 电源控制寄存器-PCON

| Bit | Name | R/W   | 功能描述               |
|-----|------|-------|--------------------|
| 7   |      | U-0   | 未实现                |
| 6   |      | U-0   | 未实现                |
| 5   |      | U-0   | 未实现                |
| 4   |      | U-0   | 未实现                |
| 3   |      | U-0   | 未实现                |
| 2   |      | U-0   | 未实现                |
| 1   | POR  | R/W-0 | 1=未发生上电复位          |
|     |      |       | 0=发生了上电复位(必须用软件置1) |
| 0   | BOR  | R/W-x | 1=未发生欠压复位          |



0=发生了欠压复位(必须用软件置1)



# 特殊功能寄存器汇总

| 地址     | 名称     | Bit 7    | Bit 6       | Bit 5        | Bit 4       | Bit 3  | Bit 2  | Bit 1   | Bit 0   | BOR/POR   |
|--------|--------|----------|-------------|--------------|-------------|--------|--------|---------|---------|-----------|
| Bank 0 |        |          |             | l I          |             |        |        |         |         |           |
| 00h    | INDF   |          |             |              |             |        |        |         |         | 0000 0000 |
| 01h    | TMR0   | Timer 0  | Register    |              |             |        |        |         |         | 0000 0000 |
| 02h    | PCL    | Program  | counter     | Least Signi  | ficant Byte |        |        |         |         | 0000 0000 |
| 03h    | STATUS | IRP      | RP1         | RP0          | TO          | PD     | Z      | DC      | C       | 0001 1000 |
| 04h    | FSR    | Indirect | data mer    | nory addres  | s pointer   |        |        |         |         | 0000 0000 |
| 05h    | PORTA  | -        | -           | RA5          | RA4         | RA3    | RA2    | RA1     | RA0     | 0000 x000 |
| 06h    | -      |          |             |              |             |        |        |         |         |           |
| 07h    | PORTC  | -        | -           | RC5          | RC4         | RC3    | RC2    | RC1     | RC0     | 0000 0000 |
| 08h    | -      |          |             |              |             |        |        |         |         |           |
| 09h    | -      |          |             |              |             |        |        |         |         |           |
| 0Ah    | PCLATH | Write bu | ffer upp    | er 7 bits of | PC          |        |        |         |         | 0000 0000 |
| 0Bh    | INTCON | GIE      | PEIE        | TOIE         | INTE        | RAIE   | TOIF   | INTF    | RAIF    | 0000 0000 |
| 0Ch    | PIR1   | -        | -           | -            | -           | -      | CIF    | TMR1IF  | -       | 0000 0000 |
| 0Dh    | -      |          |             |              |             |        |        |         |         |           |
| 0Eh    | -      |          |             |              |             |        |        |         |         |           |
| 0Fh    | -      |          |             |              |             |        |        |         |         |           |
| 10h    | -      |          |             |              |             |        |        |         |         |           |
| 11h    | TMR1   |          |             |              |             |        |        |         |         | 0000 0000 |
| 12h    | T1CON  | TMR1C    | TOUTE<br>S3 | TOUTPS2      | TOUTPS1     | TOUTPS | TMR10N | T1CKPS1 | T1CKPS0 | 0000 0000 |
| 13h    | -      |          | 55          |              |             |        |        |         |         |           |
| 14h    | -      |          |             |              |             |        |        |         |         |           |
| 15h    | -      |          |             |              |             |        |        |         |         |           |
| 16h    | -      |          |             |              |             |        |        |         |         |           |
| 17h    | -      |          |             |              |             |        |        |         |         |           |
| 18h    | -      |          |             |              |             |        |        |         |         |           |
| 19h    | -      |          |             |              |             |        |        |         |         |           |
| 1Ah    | CMCON  | CON      | COUT        | COE          | CPOL        | PNS1   | PNS0   | nBZE    | BZE     | 0000 0000 |
| 1Bh    | -      |          |             | <u> </u>     |             |        |        |         |         |           |
| 1Ch    | -      |          |             |              |             |        |        |         |         |           |
| 1Dh    | -      |          |             |              |             |        |        |         |         |           |
| 1Eh    | -      |          |             |              |             |        |        |         |         |           |
| 1Fh    | -      |          |             |              |             |        |        |         |         |           |

注: x- 未知 , u- 不变



| 地址   | 名称     | Bit 7    | Bit 6       | Bit 5        | Bit 4     | Bit 3  | Bit 2  | Bit 1  | Bit 0  | BOR/POI   |
|------|--------|----------|-------------|--------------|-----------|--------|--------|--------|--------|-----------|
| Bank | 1      |          |             |              |           |        |        |        |        |           |
| 80h  | INDF   |          |             |              |           |        |        |        |        |           |
| 81h  | OPTION | WDTE     | INTEDG      | T0CS         | T0SE      | PSA    | PS2    | PS1    | PS0    | 0111 111  |
| 82h  | PCL    | Program  | counter Le  | east Signifi | cant Byte |        | •      |        |        | 0000 0000 |
| 83h  | STATUS | IRP      | RP1         | RP0          | TO        | PD     | Z      | DC     | C      | 0001 100  |
| 84h  | FSR    | Indirect | data memo   | ry address   | pointer   |        | •      |        |        | 0000 0000 |
| 85h  | TRISA  | -        | -           | TRISA5       | TRISA4    | TRISA3 | TRISA2 | TRISA1 | TRISA0 | 0011 111  |
| 86h  | -      |          |             |              |           |        |        |        |        |           |
| 87h  | TRISC  | -        | -           | TRISC5       | TRISC4    | TRISC3 | TRISC2 | TRISC1 | TRISC0 | 0011 111  |
| 88h  | -      |          |             |              |           |        |        |        |        |           |
| 89h  | -      |          |             |              |           |        |        |        |        |           |
| 8Ah  | PCLATH | Write bu | ıffer upper |              | C         |        |        |        |        | 0000 000  |
| 8Bh  | INTCON | GIE      | PEIE        | T0IE         | INTE      | RAIE   | T0IF   | INTF   | RAIF   | 0000 000  |
| 8Ch  | PIE1   | -        | -           | -            | -         | -      | CIE    | TMR1IE | -      | 0000 000  |
| 8Dh  | -      |          |             |              |           |        |        |        |        |           |
| 8Eh  | PCON   | -        | -           | -            | -         | -      | -      | POR    | BOR    | 0000 000  |
| 8Fh  | I      |          |             |              |           |        |        |        |        |           |
| 90h  | -      |          |             |              |           |        |        |        |        |           |
| 91h  | -      |          |             |              |           |        |        |        |        |           |
| 92h  | PR     |          |             |              |           |        |        |        |        | 1111 111  |
| 93h  | PWMCON | -        | -           | -            | -         | FS2    | FS1    | FS0    | PWMON  | 0000 000  |
| 94h  | -      |          |             |              |           |        |        |        |        |           |
| 95h  | WPUA   | -        | -           | WPUA5        | WPUA4     | -      | WPUA2  | WPUA1  | WPUA0  | 0000 000  |
| 96h  | IOCA   | -        | -           | IOCA5        | IOCA4     | IOCA3  | -      | IOCA1  | IOCA0  | 0000 000  |
| 97h  | WPUC   | -        | -           | WPUC5        | WPUC4     | WPUC3  | WPUC2  | WPUC1  | WPUC0  | 0000 000  |
| 98h  | -      |          |             |              |           |        |        |        |        |           |
| 99h  | -      |          |             |              |           |        |        |        |        |           |
| 9Ah  |        |          |             |              |           |        |        |        |        |           |
| 9Bh  | -      |          |             |              |           |        |        |        |        |           |
| 9Ch  | -      |          |             |              |           |        |        |        |        |           |
| 9Dh  | -      |          |             |              |           |        |        |        |        |           |
| 9Eh  | -      |          |             |              |           |        |        |        |        |           |
| 9Fh  |        |          |             |              |           |        |        |        |        |           |

注: x-未知, u-不变



## 振荡器

器件有3种时钟模式,用户可通过OPBIT来配置时钟选项:

## OSC 模式:

外接晶振/陶瓷振荡器,连接方法如下图示。晶振频率为 400KHz-8MHz, 电容的选择根据晶振频率的不同而不同,下表为参考值。



| 晶体振荡器 | : C1 和 C2 值 |    |  |
|-------|-------------|----|--|
| 晶体频率  | C1          | C2 |  |
| 2MHz  | 15          | 15 |  |
| 4MHz  | 15          | 15 |  |

#### 内部振荡模式:

在此模式下外部无需任何器件, XIN/XOUT 可作为普通的输入输出口。



## 复位

#### 器件有4种复位模式:

上电复位 (POR) 外部电平复位 看门狗 (WDT) 复位

低电压欠压复位(BOR)

#### 复位相关寄存器

|   | 03h<br>83h | STATUS | IRP | RP1 | RP0 | ТО | PD | Z | DC  | С   |
|---|------------|--------|-----|-----|-----|----|----|---|-----|-----|
| ſ | 8Eh        | PCON   | -   | -   | -   | -  | -  | - | POR | BOR |

注:蓝色为模块相关的寄存器位

#### 上电复位

上电复位 STATUS 寄存器 TO 位置 1, PD 位置 1; PCON 寄存器 POR 位置 1.

## 外部电平复位

正常工作期间外部电平复位,不过改变 STATUS 及 PCON 相关的位;休眠期间外部电平复位将会置位 STATUS 的 TO 位,清 0 PD 位。

#### 看门狗复位

WDT 复位, STATUS 寄存器 TO 位清零。

#### 低电压欠压复位

若产生复位, PCON 寄存器 BOR 位将被置 1.

#### 复位状态汇总

| POR | BOR | TO | PD | 条件            |
|-----|-----|----|----|---------------|
| 0   | X   | 1  | 1  | 上电复位          |
| u   | 0   | 1  | 1  | 欠压复位          |
| u   | u   | 0  | u  | WDT 复位        |
| u   | u   | 0  | 0  | WDT 唤醒        |
| u   | u   | u  | u  | 正常期间的 MCLR 复位 |



# 寄存器各种情形复位状态

| 地址      | 寄存器    | POR/BOR  | MCLR/WDT<br>复位 | 中断/WDT<br>从休眠中唤醒 |
|---------|--------|----------|----------------|------------------|
| -       | W      | 00000000 | uuuuuuu        | uuuu uuuu        |
| -       | SP     | 000      | uuu            | uuu              |
| 00h/80h | CONFIG | 0000000  | uuuuuuu        | uuuu uuuu        |
| 01h     | TMR0   | 00000000 | uuuuuuu        | uuuu uuuu        |
| 02h/82h | PCL    | 00000000 | 00000000       | PC+1             |
| 03h/83h | STATUS | 00011000 | 000qquuu       | uuuu quuu        |
| 04h/84h | FSR    | 00000000 | uuuuuuu        | uuuu uuuu        |
| 05h     | PORTA  | 0000x000 | uuuuuuu        | 00uu uuuu        |
| 07h     | PORTC  | 00000000 | 00uuuuu        | 00uu uuuu        |
| 0Ah/8Ah | PCLATH | 00000000 | 00000000       | 000u uuuu        |
| 0Bh/8Bh | INTCON | 00000000 | 00000000       | uuuu uuuu        |
| 0Ch     | PIR1   | 00000000 | 00000000       | 0000 0uu0        |
| 11h     | TMR1   | 00000000 | 00000000       | uuuu uuuu        |
| 12h     | T1CON  | 00000000 | 00000000       | uuuu uuuu        |
| 1Ah     | CMCON  | 00000000 | 00000000       | uuuu uuuu        |
| 81h     | OPTION | 01111111 | 01111111       | uuuu uuuu        |
| 85h     | TRISA  | 00111111 | 00111111       | 00uu uuuu        |
| 87h     | TRISC  | 00111111 | 00111111       | 00uu uuuu        |
| 8Ch     | PIE1   | 00000000 | 00000000       | 0000 0uu0        |
| 8Eh     | PCON   | 00000000 | 00000000       | 0000 00uu        |
| 92h     | PR     | 11111111 | 11111111       | uuuu uuuu        |
| 93h     | PWMCON | 00000000 | 00000000       | 0000 0uuu        |
| 95h     | WPUA   | 00000000 | 00000000       | 00uu 0uuu        |
| 96h     | IOCA   | 00000000 | 00000000       | 00uu u0uu        |
| 97h     | WPUC   | 00000000 | 00000000       | 00uu uuuu        |

注: u-不改变, q-取决于具体条件所对应的 STATUS 位



#### 休眠模式

当执行 SLEEP 指令后,器件进入休眠模式。

若使能看门狗定时器:

WDT 将被清零并保持运行。

状态寄存器中的 PD 位被清零。

T0 位被置 1。

关闭振荡器驱动器。

I/O 端口保持执行 SLEEP 指令之前的状态(驱动为高电平、低电平或高阻态)。

为使这种模式下的电流消耗降至最低,所有 I/0 引脚都应保持为 VDD 或 VSS,以确保没有外部电路从 I/0 引脚消耗电流。为了避免输入引脚悬空而引入开关电流,应在外部将高阻输入的 I/0 引脚拉为高电平或低电平。为使电流消耗降至最低,TOCKI 输入也应保持为 VDD 或 VSS。还应考虑 PORTA 片上上拉的影响。MCLR 引脚必须处于逻辑高电平。

#### 从休眠状态唤醒:

MCLR 外部引脚唤醒:将导致器件复位,PD 位被置 1。

WDT 唤醒:程序将继续执行,T0 被清零。

外设中断唤醒:外部 INT 中断, RA 端口电平变化中断

使用外部中断唤醒:

当禁止全局中断(GIE 被清零)时,并且有任一中断源的中断允许位和中断标志位都置1,将会发生下列事件之一:

如果在执行 SLEEP 指令之前产生了中断,那么 SLEEP 指令将被作为一条 NOP 指令执行。因此,WDT 及其预分频器和后分频器(如果使能)将不会被清零,并且 TO 位将不会被置 1,同时 PD 位也不会被清零。

如果在执行 SLEEP 指令期间或之后产生了中断,那么器件将被立即从休眠状态唤醒。执行了 SLEEP 指令,因此, WDT 及其预分频器和后分频器(如果使能)将被清零,并且 TO 位将被置 1,同时 PD 位也将被清零。

休眠模式相关寄存器

注:蓝色为模块相关的寄存器位



## 看门狗定时器(WDT)

WDT 器件内部独立的振荡器,即便是 SLEEP 模式下主系统时钟停止振荡,WDT 仍在运行。在正常模式下,WDT 溢出会导致看门狗溢出并产生 WDT 复位在 SLEEP 模式下,看门狗溢出将器件从SLEEP 模式下唤醒,执行正常的操作模式。看门狗定时器,可通过 OPTION 寄存器的 WDTE 位来开启或关闭。

WDT 超时溢出周期的标称值为 18 ms(无预分频器)。如果需要更长的超时溢出周期,可通过写入 OPTION 寄存器将分频比最高可达 1:128 的预分频器分配给用软件控制的 WDT。因此,可实现最长 2.3 秒的超时溢出周期。如果将预分频器分配给 WDT,CLRWDT 和 SLEEP 指令会清零WDT 和预分频器,并防止其超时以及产生器件复位。一旦看门狗定时器超时,STATUS 寄存器中的 TO 位就会被清零。

#### WDT 相关寄存器

| 03h/8 | 3 STATUS | IRP  | RP1    | RP0  | TO   | PD  | Z   | DC  | С   |
|-------|----------|------|--------|------|------|-----|-----|-----|-----|
| 81h   | OPTION   | WDTE | INTEDG | T0CS | T0SE | PSA | PS2 | PS1 | PS0 |

注:灰色为模块相关的寄存器位



# 系统中断

外部中断

RA 口电平变化中断

Timer 0 和 Timer 2 溢出中断

比较器中断

# 中断相关寄存器

| 0Bh/8B | INTCON | GIE | PEIE | TOIE | INTE | RAIE | TOIF | INTF   | RAIF |
|--------|--------|-----|------|------|------|------|------|--------|------|
| 0Ch    | PIR1   | -   | -    | -    | -    | -    | CIF  | TMR2IF | -    |
| 8Ch    | PIE1   | -   | -    | -    | -    | -    | CIE  | TMR2IE | -    |

注:蓝色为模块相关的寄存器位



## 输入/输出口

器件最多可有 12 个可用的通用 I/0 引脚. 根据外设的使能情况, 部分引脚不能应用于 I/0。

#### RA 口及操作相关寄的存器

RA 端口上具有以下功能: I/0, 独立可配置上拉电阻。端口电平变化中断

## RA-数据寄存器

| Bit | Name | R/W   | 功能描述           |
|-----|------|-------|----------------|
| 7   | -    | U-0   | 未定义            |
| 6   | -    | U-0   | 未定义            |
| 5   | RA5  | R/W-0 | 1 = 端口引脚大于 VIH |
|     |      |       | 0=端口引脚小于 VIL   |
| 4   | RA4  | R/W-0 | 1 = 端口引脚大于 VIH |
|     |      |       | 0=端口引脚小于 VIL   |
| 3   | RA3  | R-x   | 1 = 端口引脚大于 VIH |
|     |      |       | 0=端口引脚小于 VIL   |
| 2   | RA2  | R/W-0 | 1=端口引脚大于 VIH   |
|     |      |       | 0=端口引脚小于 VIL   |
| 1   | RA1  | R/W-0 | 1=端口引脚大于 VIH   |
|     |      |       | 0=端口引脚小于 VIL   |
| 0   | RA0  | R/W-0 | 1 = 端口引脚大于 VIH |
|     |      |       | 0=端口引脚小于 VIL   |

注: RA3 作为 IO 口时, 仅有输入功能

## TRISA-端口方向寄存器

| Bit | Name   | R/W   | 功能描述                 |
|-----|--------|-------|----------------------|
| 7   | -      | U-0   | 未定义                  |
| 6   | -      | U-0   | 未定义                  |
| 5   | TRISA5 | R/W-1 | 1=引脚配置为输入(三态)        |
|     |        |       | 0=引脚配置为输出            |
| 4   | TRISA4 | R/W-1 | 1=引脚配置为输入(三态)        |
|     |        |       | 0=引脚配置为输出            |
| 3   | TRISA3 | R-1   | 作为 IO 时,仅有不带上拉的输入功能。 |
|     |        |       | 只读,读出值总为 1.          |
| 2   | TRISA2 | R/W-1 | 1 = 引脚配置为输入(三态)      |
|     |        |       | 0=引脚配置为输出            |
| 1   | TRISA1 | R/W-1 | 1=引脚配置为输入(三态)        |
|     |        |       | 0=引脚配置为输出            |
| 0   | TRISA0 | R/W-1 | 1=引脚配置为输入(三态)        |
|     |        |       | 0=引脚配置为输出            |



# WPUA-上拉寄存器

| Bit | Name  | R/W   | 功能描述     |
|-----|-------|-------|----------|
| 7   | -     | U-0   | 未定义      |
| 6   | -     | U-0   | 未定义      |
| 5   | WPUA5 | R/W-1 | 1 = 上拉使能 |
|     |       |       | 0 = 上拉禁止 |
| 4   | WPUA4 | R/W-1 | 1=上拉使能   |
|     |       |       | 0 = 上拉禁止 |
| 3   | -     | U-0   | 未定义      |
| 2   | WPUA2 | R/W-1 | 1=上拉使能   |
|     |       |       | 0 = 上拉禁止 |
| 1   | WPUA1 | R/W-1 | 1=上拉使能   |
|     |       |       | 0 = 上拉禁止 |
| 0   | WPUA0 | R/W-1 | 1 = 上拉使能 |
|     |       |       | 0=上拉禁止   |

# IOCA-电平变化中断寄存器

| Bit | Name  | R/W   | 功能描述         |
|-----|-------|-------|--------------|
| 7   | -     | U-0   | 未定义          |
| 6   | -     | U-0   | 未定义          |
| 5   | IOCA5 | R/W-0 | 1 = 允许电平变化中断 |
|     |       |       | 0=禁止电平变化中断   |
| 4   | IOCA4 | R/W-0 | 1 = 允许电平变化中断 |
|     |       |       | 0=禁止电平变化中断   |
| 3   | IOCA3 | R/W-0 | 1 = 允许电平变化中断 |
|     |       |       | 0=禁止电平变化中断   |
| 2   | -     | R -0  | 未定义          |
| 1   | IOCA1 | R/W-0 | 1 = 允许电平变化中断 |
|     |       |       | 0=禁止电平变化中断   |
| 0   | IOCA0 | R/W-0 | 1 = 允许电平变化中断 |
|     |       |       | 0=禁止电平变化中断   |

# 与端口 RA 操作相关的寄存器

| 05h    | PORTA  | -   | -    | RA5    | RA4    | RA3    | RA2    | RA1    | RA0    |
|--------|--------|-----|------|--------|--------|--------|--------|--------|--------|
| 85h    | TRISA  | -   | -    | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| 0Bh/8B | INTCON | GIE | PEIE | TOIE   | INTE   | RAIE   | TOIF   | INTF   | RAIF   |
| 95h    | WPUA   | -   | -    | WPUA5  | WPUA4  | -      | WPUA2  | WPUA1  | WPUA0  |
| 96h    | IOCA   | -   | -    | IOCA5  | IOCA4  | IOCA3  |        | IOCA1  | IOCA0  |

注: 蓝色为模块相关的寄存器位



# RC 口及端口操作寄存器

# RC-端口数据寄存器

| Bit | Name | R/W   | 功能描述           |
|-----|------|-------|----------------|
| 7   | -    | U-0   | 未定义            |
| 6   | -    | U-0   | 未定义            |
| 5   | RC5  | R/W-x | 1 = 端口引脚大于 VIH |
|     |      |       | 0=端口引脚小于 VIL   |
| 4   | RC4  | R/W-x | 1=端口引脚大于 VIH   |
|     |      |       | 0=端口引脚小于 VIL   |
| 3   | RC3  | R/W-x | 1=端口引脚大于 VIH   |
|     |      |       | 0=端口引脚小于 VIL   |
| 2   | RC2  | R/W-x | 1=端口引脚大于 VIH   |
|     |      |       | 0=端口引脚小于 VIL   |
| 1   | RC1  | R/W-x | 1=端口引脚大于 VIH   |
|     |      |       | 0=端口引脚小于 VIL   |
| 0   | RC0  | R/W-x | 1=端口引脚大于 VIH   |
|     |      |       | 0=端口引脚小于 VIL   |

# TRISC-端口方向寄存器

| Bit | Name   | R/W   | 功能描述            |
|-----|--------|-------|-----------------|
| 7   | -      | U-0   | 未定义             |
| 6   | -      | U-0   | 未定义             |
| 5   | TRISC5 | R/W-1 | 1 = 引脚配置为输入(三态) |
|     |        |       | 0=引脚配置为输出       |
| 4   | TRISC4 | R/W-1 | 1=引脚配置为输入(三态)   |
|     |        |       | 0=引脚配置为输出       |
| 3   | TRISC3 | R/W-1 | 1 = 引脚配置为输入(三态) |
|     |        |       | 0=引脚配置为输出       |
| 2   | TRISC2 | R/W-1 | 1=引脚配置为输入(三态)   |
|     |        |       | 0=引脚配置为输出       |
| 1   | TRISC1 | R/W-1 | 1 = 引脚配置为输入(三态) |
|     |        |       | 0=引脚配置为输出       |
| 0   | TRISC0 | R/W-1 | 1=引脚配置为输入(三态)   |
|     |        |       | 0=引脚配置为输出       |



# WPUC-端口上拉寄存器

| Bit | Name  | R/W   | 功能描述     |
|-----|-------|-------|----------|
| 7   |       | U-0   | 未实现      |
| 6   | -     | U-0   | 未实现      |
| 5   | WPUC5 | R/W-1 | 1 = 上拉使能 |
|     |       |       | 0 = 上拉禁止 |
| 4   | WPUC4 | R/W-1 | 1 = 上拉使能 |
|     |       |       | 0 = 上拉禁止 |
| 3   | WPUC3 | R/W-1 | 1=上拉使能   |
|     |       |       | 0=上拉禁止   |
| 2   | WPUC2 | R/W-1 | 1=上拉使能   |
|     |       |       | 0=上拉禁止   |
| 1   | WPUC1 | R/W-1 | 1=上拉使能   |
|     |       |       | 0=上拉禁止   |
| 0   | WPUC0 | R/W-1 | 1=上拉使能   |
|     |       |       | 0=上拉禁止   |

# 与端口 RC 相关的寄存器

| 07h | PORTC | - | - | RC5    | RC4    | RC3    | RC2    | RC1    | RC0    |
|-----|-------|---|---|--------|--------|--------|--------|--------|--------|
| 87h | TRISC | - | - | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| 97h | WPUC  | - | - | WPUC5  | WPUC4  | WPUC3  | WPUC2  | WPUC1  | WPUC0  |

注:蓝色为模块相关的寄存器位



#### 8位定时计数器-Timer0

Timer0 模块是8 位定时/计数器,具有以下特性:

8位定时器/计数器 (TMRO)

8 位预分频器(与看门狗定时器共用)

可编程的内部或外部时钟源

可编程的外部时钟边沿选择

溢出中断

#### 8位定时器模式

作为定时器使用时, Timer0 模块将在每个指令周期递增(无预分频器)。 将选项寄存器的 TOCS 选择定时器模式。 如果对 TMR0 执行写操作,则紧跟写操作之后的两个指令周期内 TMR0 禁止递增。

#### 8位计数器模式

作为计数器使用时,Timer0 模块将在 TOCKI 引脚的每个上升或下降沿递增。递增边沿由选项寄存器的 TOSE 位决定。将选项寄存器的 TOCS 位设置为 1 选择计数器模式。

#### 可编程的预分频器

可编程的预分频器可供 Timer 0 或看门狗定时器 (WDT) 使用,但不能同时使用。 预分频器的分配由选项寄存器的 PSA 位控制。要将预分频器分配给 Timer 0, 必须将 PSA 位清零。

Timer 0 模块有范围从 1/2 到 1/256 的 8 个与分频比的选项,由选项寄存器 REG\_OPTION 的  $PS\langle 2:0\rangle$ 位控制,若要实现的 1:1 的预分频比,需将预分频分配给 WDT 使用。

预分频器是不可读写的。当预分频器被分配给 Timer0 模块时,所有写入 TMR0 寄存器的指令都会将预分频器清零。 将预分频器分配给 WDT 时,CLRWDT 指令会同时将预分频器和 WDT 清零。

#### TIMERO 中断

TMRO 寄存器从 FFH 溢出到 00H 时, TimerO 将产生中断。 每次 TMRO 寄存器溢出时都会将 INTCON 寄存器的 TOIF 中断标志位置 1,与是否允许了 TimerO 中断无关。TOIF 位必须用软件清零。

#### 与 Timer 0 相关的寄存器

| 01h     | TMR0   | Timer ( | Timer 0 Register |      |      |       |       |      |      |
|---------|--------|---------|------------------|------|------|-------|-------|------|------|
| 0Bh/8Bl | INTCON | GIE     | PEIE             | T0IE | INTE | RAIE  | T0IF  | INTF | RAIF |
| 8Eh     | PCON   | -       | -                | -    | -    | -     | -     | POR  | BOR  |
| 1Ah     | CMCON  | CON     | COUT             | COE  | CPOL | PINS1 | PINS0 | nBZE | BZE  |
| 81h     | OPTION | WDTE    | INTEDG           | T0CS | TOSE | PSA   | PS2   | PS1  | PS0  |

注:蓝色为模块相关的寄存器位



#### 8位定时/计数器-Timer 1

Timer1 模块是 8 位定时/计数器, 具有以下特性: 8 位 Reload 定时器/计数器寄存器 可选的内部或外部时钟源 预分频器 (1/1, 1/4, 1/16) 后分频器 (1:1, 1:2, 1:3, …1:16)

溢出时产生中断 可编程的蜂鸣器输出

#### Timer1 工作原理

Timer1 模块是带有预分频器和后分频器的 8 位定时/计数器,模块定时/计数器器 TMR1 只读寄存器,上电或复位后其值为 00h,当 Timer1 启动后 TMR1 从 00H 开始计数,直到计数值和 RP 寄存器的值相匹配后,TMR1 值复位到 00h,并产生一个溢出信后给后分频器,经分频后置位 T1IF,若中断允许则可产生 Timer1 中断。与内部时钟源配合使用时该模块为定时器, CLK 可通过预分频器进行 1:1, 1:4 或 1:16 的分频。

#### 蜂鸣器输出:

若蜂鸣器输出使能位 BZE 置 1, Timer1 计满溢出频率经 2 分频后从 BZ 口输出。若 BZE=1, nBZE 置 1, 则 BZ 经反向后通过 nBZ 输出。

Timer 1 控制寄存器-T1CON

| Bit | Name        | R/W   | 功能描述            |
|-----|-------------|-------|-----------------|
| 7   | -           | U-0   | 未定义             |
| 6:3 | TOUTPS<6:3  | R/W-0 | 0000 = 1:1 后分频  |
|     |             |       | 0001 = 1:2 后分频  |
|     |             |       | 0010= 1:3 后分频   |
|     |             |       |                 |
|     |             |       | 1110=1:15 后分频   |
|     |             |       | 1111 = 1:16 后分频 |
| 2   | TMR1ON      | R/W-0 | 1 = Timer 1 使能  |
|     |             |       | 0 = Timer 1 关闭  |
| 1:0 | T1CKPS<1:05 | R/W-0 | 00 = 1:1 预分频    |
|     |             |       | 01 = 1:4 预分频    |
|     |             |       | 1x = 1:16 预分频   |

与 Timer 1 相关的寄存器

| 0Bh/8B | INTCON | GIE | PEIE    | TOIE   | INTE   | RAIE   | T0IF   | INTF   | RAIF   |
|--------|--------|-----|---------|--------|--------|--------|--------|--------|--------|
| 0Ch    | PIR1   | 1   | -       | -      | -      | -      | CIF    | TMR1IF | -      |
| 8Ch    | PIE1   | -   | -       | -      | -      | -      | CIE    | TMR1IE | -      |
| 11h    | TMR1   |     |         |        |        |        |        |        |        |
| 12h    | T1CON  | -   | TOUTPS: | TOUTPS | TOUTPS | TOUTPS | TMR101 | T1CKPS | T1CKPS |
| 92h    | PR     |     |         |        |        |        |        |        |        |
| 1Ah    | CMCON  | CON | COUT    | COE    | CPOL   | PINS1  | PINS0  | nBZE   | BZE    |



注:蓝色为模块相关的寄存器位



#### **PWM**

PWMOUT 控制引脚输出 PWM 波形。FSx 标志位控制 PWM 输出的阶数 (256、64、32 和 16)。8 位计数器 TMR1 计数过程中不断与 PR 相比较,当 TMR1 计数到两者相等时,PWM 输出低电平,TMR1 继续向上计数,直至计满设置的计数量程。当 TMR1 再次从零开始计数时,PWM 被强制输出高电平。PWM 输出占空比 = PR/计数量程(计数量程 = 256、64、32 或 16)。 参考寄存器保持输入 00H 可使 PWM 的输出长时间维持在低电平,通过修改 PR 可改变 PWM 输出占空比。

#### PWM 控制寄存器-PWMCON

| Bit | Name    | R/W   | 功能描述                 |
|-----|---------|-------|----------------------|
| 7:4 | -       | U-0   | 未定义                  |
| 3:1 | FS2:FS0 | R/W-0 | 0xx = 计数量程 00~FF     |
|     |         |       | 100 = 计数量程 00~7F     |
|     |         |       | 101 = 计数量程 00~3F     |
|     |         |       | 110 = 计数量程 00~1F     |
|     |         |       | 111 = 计数量程 00~0F     |
| 0   | PWMON   | R/W-0 | 0 = 关闭 PWM 输出        |
|     |         |       | 1 = 使能 <b>PWM</b> 输出 |

#### PWM 输出阶数及占空比

| FS2 | FS1 | FS0 | PWM 占空比范围       | TMR1 有效值 | PR 有效值 | 注释 |
|-----|-----|-----|-----------------|----------|--------|----|
| 0   | X   | X   | 0/256 – 255/256 | 00-FF    | 00-FF  |    |
| 1   | 0   | 0   | 0/256 - 127/256 | 00-7F    | 00-7F  |    |
| 1   | 0   | 1   | 0/64 - 63/64    | 00-3F    | 00-3F  |    |
| 1   | 1   | 0   | 0/32 - 31/32    | 00-1F    | 00-1F  |    |
| 1   | 1   | 1   | 0/16 – 15/16    | 00-0F    | 00-0F  |    |

#### 与 PWM 相关的寄存器

| 11h | TMR1   |   |        |        |        |        |        |        |         |
|-----|--------|---|--------|--------|--------|--------|--------|--------|---------|
| 12h | T1CON  | - | TOUTPS | TOUTPS | TOUTPS | TOUTPS | TMR101 | T1CKPS | T1CKPS( |
| 92h | PR     |   |        |        |        |        |        |        |         |
| 93h | PWMCON | - | -      | _      | -      | FS2    | FS1    | FS0    | PWMON   |

注: 蓝色为模块相关的寄存器位



# 比较器

比较器具有以下特性: 比较结果输出及极性可选 比较器中断

#### 比较器控制寄存器- CMCON

| Bit | Name | R/W   | 功能描述                                                                                   |                                         |  |  |
|-----|------|-------|----------------------------------------------------------------------------------------|-----------------------------------------|--|--|
| 7   | CON  | U-0   | 1= 比较器使能                                                                               |                                         |  |  |
|     |      |       | 0= 比较器禁止                                                                               |                                         |  |  |
| 6   | COUT | R-0   | CPOL=1                                                                                 | CPOL=0                                  |  |  |
|     |      |       | CVIN+>CVIN-, COUT=0                                                                    | CVIN+>CVIN-, COUT=1                     |  |  |
|     |      |       | CVIN+ <cvin-, cout="1&lt;/td"><td>CVIN+<cvin-, cout="0&lt;/td"></cvin-,></td></cvin-,> | CVIN+ <cvin-, cout="0&lt;/td"></cvin-,> |  |  |
| 5   | COE  | R/W-0 | 1= COUT 出现在 COUT 引脚                                                                    | 上                                       |  |  |
|     |      |       | 0= COUT 仅在内部有效                                                                         |                                         |  |  |
| 4   | CPOL | R/W-0 | 1 = COUT 逻辑相反                                                                          |                                         |  |  |
|     |      |       | 0 = COUT 逻辑不相反                                                                         |                                         |  |  |
| 3   | PNS1 | R/W-0 | 1 = CIN+ CIN- Cout 与 RC 口复用                                                            |                                         |  |  |
|     |      |       | 0 = CIN+ CIN- Cout 与 RA 口复用                                                            |                                         |  |  |
| 2   | PNS0 | R/W-0 | 1 = T0CKI 与 RC3 引脚复用                                                                   |                                         |  |  |
|     |      |       | 0 = T0CKI 与 RA2 复用.                                                                    |                                         |  |  |
| 1   | nBZE | R/W-0 | 1 = 若 BZE 使能, 蜂鸣器反向                                                                    | 7输出。                                    |  |  |
|     |      |       | 0=非蜂鸣反向输出.                                                                             | 输出.                                     |  |  |
| 0   | BZE  | R/W-0 | 1=使能蜂鸣器输出                                                                              |                                         |  |  |
|     |      |       | 0=禁止蜂鸣器输出                                                                              |                                         |  |  |

#### 注:

1. 当比较器使能时,需要通过 TRISA 将 RAO RA1 设为输入,此时 RAO RA1 为模拟输入口.

## 与比较器相关的寄存器

| 0Bh/8B | INTCON | GIE | PEIE | TOIE | INTE | RAIE  | T0IF  | INTF   | RAIF |
|--------|--------|-----|------|------|------|-------|-------|--------|------|
| 0Ch    | PIR1   | ı   | -    | 1    | 1    | 1     | CIF   | TMR1IF | -    |
| 8Ch    | PIE1   | -   | -    | -    | -    | -     | CIE   | TMR1IE | -    |
| 1Ah    | CMCON  | CON | COUT | COE  | CPOL | PINS1 | PINS0 | nBZE   | BZE  |

注:蓝色为模块相关的寄存器位



# 配置位

通过对配置编程(读为 0)或不编程(读为 1)来选择不同的器件配置, 如配置寄存器所示。这些位映射到程序存储单元的 2007H 中。

## 配置字寄存器-CONFIGURATION

| Bit | Name       | 描述                                |
|-----|------------|-----------------------------------|
| 13  |            | 保留。                               |
| 12  | XCTYPE     | 外部晶振类型选择                          |
|     |            | 1 = Type1                         |
|     |            | 0 = Type0                         |
| 11  | PWRON-TM   | POR/BOR 延时器                       |
|     |            | 1 = 延时 72ms                       |
|     |            | 0 = 延时 5ms                        |
| 10  | IOSCFS     | 内部时钟选择位                           |
|     |            | 1 = 4MHz                          |
|     |            | 0 = 2MHz                          |
| 9:7 | BOREN<2:0> | 欠压复位选择位                           |
|     |            | 1xx = 禁止 BOR                      |
|     |            | 011 = 使能 BOR=2.1V                 |
|     |            | 010 = 正常工作时使能 BOR=2.1V,休眠禁止 BOR   |
|     |            | 001 = 使能 BOR=3.6V                 |
|     |            | 000 = 正常工作时使能 BOR=3.6V, 休眠时禁止 BOR |
| 6   | СР         | 1 = 禁止程序存储器代码保护                   |
|     |            | 0=使能程序存储器代码保护                     |
| 5   | MCLRE      | 1 = MCLR 引脚为 MCLR                 |
|     |            | 0 = MCLR 引脚为数字输入,MCLR 内部连接到 VDD   |
| 4   |            | 保留。                               |
| 3   |            | 保留。                               |
| 2:0 | FOSC<2:0>  | 0xx = 振荡选项为外部晶振                   |
|     |            | 1xx = 振荡选项为内部 RC                  |



# 电气参数

# 极限值

| 参 数   |      | 符号              | 极限值                       | 单位         | 备 注             |
|-------|------|-----------------|---------------------------|------------|-----------------|
| 电源电压  |      | $V_{DD}$        | -0.3 ~ +6.5               | V          |                 |
|       | 输入电压 | VI              | -0.3~V <sub>DD</sub> +0.3 | V          | 相对于 vss,任何引脚电压  |
|       | 输出电压 | Vo              | $-0.3 \sim V_{DD} + 0.3$  | V          | 相刈丁 VSS,任刊引脚电压  |
| 正常电压引 | 灌电流  | I <sub>OH</sub> | -6                        | mA         | 每个 I/O 端口最大的灌电流 |
| 脚     | 总灌电流 | $\Sigma I_{OH}$ |                           | mA         | 所有 I/O 汇总灌电流    |
|       | 拉电流  | I <sub>OL</sub> | 20                        | mA         | 每个 I/O 端口最大拉电流  |
|       | 总拉电流 | $\Sigma I_{OL}$ |                           | mA         | 所有 I/O 汇总拉电流    |
| 总功率消耗 |      | $P_{T}$         | 600                       | mW         |                 |
| 储存温度  |      | $T_{\rm STG}$   | -65 ~ +150                | $^{\circ}$ |                 |

# 推荐操作参数

| 参数   | 符号              | 测试条件                      | 最小值  | 典型值 | 最大值  | 单位            |
|------|-----------------|---------------------------|------|-----|------|---------------|
| 工作电压 | V <sub>DD</sub> |                           | 2.0  | -   | 5.5  | V             |
| 工作频率 | FSYS            | $VDD = 3.3V \sim 5.5V$    | 3.92 | 4   | 4.08 | MHz           |
|      |                 | $VDD = 2.4V \sim 3.3V$    | 1.96 | 2   | 2.04 | MHz           |
| 工作温度 | $T_{OPR}$       | $V_{DD} = 2.4V \sim 5.5V$ | -40  | -   | 85   | ${\mathbb C}$ |

# 直流特性

|     | ı          |         |     |        |    | T                           |
|-----|------------|---------|-----|--------|----|-----------------------------|
| 符号  | 特性         | 最小值     | 典型值 | 最大值    | 单位 | 条件                          |
| Vdd | 工作电压       | 2.0     | 1   | 5.5    | V  | Fsys =2MHz                  |
| vuu | 工作电压       | 3.3     | -   | 5.5    | V  | Fsys =4MHz                  |
| Idd | <br>  工作电流 | -       | -   | 0.6    | mA | VDD =3V, IRC @2MHz          |
| Idd | 工作电机       | -       | ı   | 2.0    | mA | VDD =5V, IRC @4MHz          |
| Isb | 静态电流       | -       | -   | 2.0    | uA | VDD =5V                     |
| VIL | 输入低电压      | -       | -   | 0.4VDD | V  |                             |
| VIH | 输入高电压      | 0.7VDD  | -   | -      | V  |                             |
| IIL | 输入漏电流      | 50      | 56  | 60     | uA | VDD =5V. Vin=0,<br>内部上拉电阻使能 |
| Rup | 输入上拉电阻     | 80      | 94  | 100    | ΚΩ | VDD =5V. Vin=0,<br>内部上拉电阻使能 |
| VOL | 输出低电压      | -       | -   | 0.25   | V  | VDD =5V. ILoad=10mA         |
| VOH | 输出高电压      | VDD-0.5 | -   | -      | V  | VDD =5V. ILoad=6mA          |



# 交流特性

| 符号    | 特性       | 最小值    | 典型值 | 最大值  | 单位    | 条件                        |
|-------|----------|--------|-----|------|-------|---------------------------|
| Fosc  | 外部振荡频率   | 0. 455 |     | 4    | MHz   | $V_{DD} = 3.3V \sim 5.5V$ |
| TOSC  |          | 0. 455 |     | 2    | WIIIZ | $V_{DD} = 2.0 \sim 5.5 V$ |
| Тсч   | 指令周期     |        | 1   |      | Tosc  |                           |
| Firc  | 内部振荡频率   | 3. 92  | 4   | 4.08 | MHz   | $V_{DD} = 3.3 \sim 5.5 V$ |
| 1 TRC |          | 1. 96  | 2   | 2.04 | WIIIZ | $V_{DD} = 2.0 \sim 5.5 V$ |
| TMCL  | 复位脉冲宽度   |        | 2   |      | Тсч   |                           |
| Twdt  | WDT 超时周期 |        | 18  |      | ms    |                           |



# 指令集

# 针对字节的文件寄存器操作指令

| Mnemonic operands | ,   | Description                      | Opcode            | Status   | Cycles |
|-------------------|-----|----------------------------------|-------------------|----------|--------|
| ADDWF -           | f,d | Add W and F                      | 00 0111 DFFF FFFF | C,DC,Z   | 1      |
| ADDWF             | d   | Add W and (FSR)                  | 00 0111 D000 0000 | C,DC,Z   | 2      |
| ANDWF -           | f,d | AND W and F                      | 00 0101 DFFF FFFF | Z        | 1      |
| ANDWF             | d   | AND W and (FSR)                  | 00 0101 D000 0000 | Z        | 2      |
| CLRF -            | f   | Clear f                          | 00 0001 1FFF FFFF | Z        | 1      |
| CLRF              |     | Clear (FSR)                      | 00 0001 1000 0000 | Z        | 2      |
| CLRW              | -   | Clear W                          | 00 0001 0000 0011 | Z        | 1      |
| COMF -            | f,d | Complement f                     | 00 1001 DFFF FFFF | Z        | 1      |
| COMF              | d   | Complement (FSR)                 | 00 1001 D000 0000 | Z        | 2      |
| DECF -            | f,d | Decrement f                      | 00 0011 DFFF FFFF | Z        | 1      |
| DECF -            | d   | Decrement (FSR)                  | 00 0011 D000 0000 | Z        | 2      |
| DECECZ            | f,d | Decrement f, Skip if 0           | 00 1011 DFFF FFFF | -        | 1      |
| DECFSZ -          | d   | Decrement (FSR), Skip if 0       | 00 1011 D000 0000 | -        | 2      |
| INCE              | f,d | Increment f                      | 00 1010 DFFF FFFF | Z        | 1      |
| INCF -            | d,  | Increment (FSR)                  | 00 1010 D000 0000 | Z        | 2      |
| INCEGZ            | f,d | Increment f, Skip if 0           | 00 1111 DFFF FFFF | -        | 1      |
| INCFSZ -          | d   | Increment (FSR), Skip if 0       | 00 1111 D000 0000 | -        | 2      |
| IODWE             | f,d | Inclusive OR W with f            | 00 0100 DFFF FFFF | Z        | 1      |
| IORWF -           | d   | Inclusive OR W with (FSR)        | 00 0100 D000 0000 | Z        | 2      |
| MOVE              | f,d | Move f                           | 00 1000 DFFF FFFF | Z        | 1      |
| MOVF -            | d   | Move (FSR)                       | 00 1000 D000 0000 | Z        | 1      |
| MOVINE            | f   | Move W to f                      | 00 0000 1FFF FFFF | -        | 1      |
| MOVWF -           |     | Move W to (FSR)                  | 00 0000 1000 0000 | -        | 2      |
| NOP               |     | No Operation                     | 00 0000 0XX0 0000 | -        | 1      |
| DIE               | f,d | Rotate Left f through Carry      | 00 1101 DFFF FFFF | С        | 1      |
| RLF -             | d   | Rotate Left (FSR) through Carry  | 00 1101 D000 0000 | С        | 2      |
| DDE               | f,d | Rotate Right f through Carry     | 00 1100 DFFF FFFF | С        | 1      |
| RRF -             | d   | Rotate Right (FSR) through Carry | 00 1100 D000 0000 | С        | 2      |
| CHDWE             | f,d | Subtract W form f                | 00 0010 DFFF FFFF | C, DC, Z | 1      |
| SUBWF -           | d   | Subtract W form (FSR)            | 00 0010 D000 0000 | C, DC, Z | 2      |
| CWADE             | f,d | Swap nibbles in f                | 00 1110 DFFF FFFF | -        | 1      |
| SWAPF -           | d   | Swap nibbles in (FSR)            | 00 1110 D000 0000 | -        | 2      |
| WORNE             | f,d | Exclusive OR W with f            | 00 0110 DFFF FFFF | Z        | 1      |
| XORWF -           | d   | Exclusive OR W with (FSR)        | 00 0110 D000 0000 | Z        | 2      |



# 针对位的文件寄存器操作指令

| Mnemonic, operan  | Description                | Opcode            | Status | Cycles |
|-------------------|----------------------------|-------------------|--------|--------|
| f,b               | Bit Clear f                | 01 00BB BFFF FFFF | -      | 1      |
| BCF b             | Bit Clear (FSR)            | 01 00BB B000 0000 | -      | 2      |
| f,b               | Bit set f                  | 01 01BB BFFF FFFF | -      | 1      |
| BSF b             | Bit set f                  | 01 01BB B000 0000 | -      | 2      |
| f,b<br>BTFSC<br>b | Bit Clear f, Skip if Clear | 01 10BB BFFF FFFF | -      | 1      |
|                   | Bit Clear f, Skip if Clear | 01 10BB B000 0000 | -      | 2      |
| f,b               | Bit Set f, Skip if Set     | 01 11BB BFFF FFFF | -      | 1      |
| BTFSS b           | Bit Set f, Skip if Set     | 01 11BB B000 0000 | -      | 2      |

# 立即数和控制操作指令

| Mnemonic, | operan | Description                 | Opcode            | Status   | Cycles |
|-----------|--------|-----------------------------|-------------------|----------|--------|
| ADDLW     | imm    | Add literal and W           | 11 111X IIII IIII | C, DC, Z | 1      |
| ANDLW     | imm    | AND literal with W          | 11 1001 IIII IIII | Z        | 1      |
| CALL      | imm    | Call subroutine             | 10 OIII IIII IIII | -        | 2      |
| CLRWDT    | -      | Clear Watchdog Timer        | 00 0000 0110 0100 | TO, PD   | 1      |
| GOTO      | imm    | Go to address               | 10 1III IIII IIII | -        | 2      |
| IORLW     | imm    | Inclusive OR literal with W | 11 1000 IIII IIII | Z        | 1      |
| MOVLW     | imm    | Move literal to W           | 11 00XX IIII IIII | -        | 1      |
| RETFIE    | -      | Return from Interrupt       | 00 0000 0000 1001 | -        | 2      |
| RETLW     | imm    | Return with literal in W    | 11 01XX IIII IIII | -        | 2      |
| RETURN    | -      | Return from Subroutine      | 00 0000 0000 1000 | -        | 2      |
| SLEEP     | -      | Go into standby mode        | 00 0000 0110 0011 | TO, PD   | -      |
| SUBLW     | imm    | Subtract W from literal     | 11 110X IIII IIII | C, DC, Z | 1      |
| XORLW     | imm    | Exclusive OR literal with W | 11 1010 IIII IIII | Z        | 1      |



#### 上海贝岭股份有限公司

#### 公司总部/华东办事处

上海市宜山路 810 号,邮编: 200233 电话: (021)2426-1000,传真: (021)6485-2222

#### 华北办事处

北京市西城区新华里 16 号院(锦官苑小区)10 号楼 1 单元 1505 室,邮编: 100044 电话: (010)6417-9374,传真: (010)8835-9236

#### 华南办事处

深圳市福田中心区民田路新华保险大厦 1510 室,邮编: 518026 电话: (0755)3333-6777, 传真: (0755)3333-6788

#### 出口部

上海市宜山路 810 号,邮编: 200233 电话: (021)6495-8137,传真: (021)6485-2222