Реализация асимметричного маркерного процессинга на C66x DSP

Автор: Афанасов Артём Константинович, группа 17.Б10-мм Научный руководитель: д.ф.-м.н., проф. А.Н. Терехов Научные консультанты: ст. преп. М.В. Баклановский, ст. преп. А.Р. Ханов

Санкт-Петербургский государственный университет Кафедра системного программирования

26.05.2020

Гетерогенные архитектуры

- В многоядерных гетерогенных архитектурах достигается:
 - Максимальная производительность и эффективность вычислений
 - Обфускация
- Но существуют барьеры проектирования:
 - Отдельная среда проектирования для каждого вида вычислительных ядер
 - Отсутствие целостного маршрута проектирования от программной модели верхнего уровня к ПО целевой системы
 - Ручное проектирование коммуникаций между ядрами и общего управления системой
 - Отсутствие средств отладки на уровне системы

Существующие подходы к проектированию гетерогенных вычислительных систем

- HSA ot AMD
- Code Composer Studio or Texas Instruments
- Vivado ot Xilinx

Асимметричный маркерный процессинг

Баклановский, М. В., Кривошеин, Б. Н., и др. (2018). АСИММЕТРИЧНЫЙ МАРКЕРНЫЙ ПРОЦЕССИНГ. Программная инженерия, 9(4), 156-162. https://doi.org/10.17587/prin.9.156-162

АМП — это подход к созданию гетерогенных вычислительных систем с возможностями проектирования единой вычислительной среды с унифицированным механизмом передачи управления.

- Поддержка произвольных вычислительных систем
- Унифицированный механизм передачи управления между ядрами
- Сквозной маршрут проектирования от верхнего уровня до машинного кода
- Автоматическая генерация межпроцессорного взаимодействия

Цель и задачи

Цель: реализация канального, сетевого, транспортного уровней стека протоколов асимметричного маркерного процессинга на DSP архитектуры KeyStone 2 для коммуникации с ARM.

Задачи:

- 1. Изучить асимметричный маркерный процессинг
- 2. Изучить инструменты для реализации
- 3. Обеспечить общение между ядрами DSP и ARM
- 4. Реализовать канальный, сетевой, транспортный уровни стека протоколов асимметричного маркерного процессинга на DSP
- 5. Замерить скорость передачи маркера

Асимметричный маркерный процессинг

- Маркер право решения задачи. В системе он единственен
- Стек протоколов АМП:
 - Прикладной
 - Представления
 - Транспортный
 - Сетевой
 - Канальный (в статье назван физическим)

Существующие решения

- Реализация авторами статьи АМП
 - В основном, язык ассемблера
 - Zybo Zynk-7000 (ARM + ПЛИС)

Инструменты

- 66AK2H12 Multicore DSP+ARM® KeyStone™ II System-on-Chip (SoC)
- Язык ассемблера C66x DSP
- Code Composer Studio

Архитектура системы на кристалле

9/12

Реализация

• Подготовка

- Изучение способов запуска программ на ядрах
- Изучение архитектуры для реализации
- Настройка общения между ядрами DSP и ARM
- Замеры

Замеры по передаче 12 байт:

Реализация	Матожидание, нс	Среднеквадратическое, нс
C DSP (-O3), C ARM (-Ofast)	472	109
ASM DSP, C ARM (-Ofast)	229	9
ASM DSP, ASM ARM	292	2

MSM и DDR3:

Память	Матожидание, нс	Среднеквадратическое, нс
MSM	2468	14
DDR3	2545	69

10/12

Реализация

• Замеры передачи маркера:

Пакет 1 с маркерным признаком
Пакет 2 с подтверждением получения маркера
Пакет 3 о получении подтверждения

Реализация	Матожидание, нс	Среднеквадратическое, нс
C DSP (-O3), C ARM (-Ofast)	4099	176
ASM DSP, C ARM (-Ofast)	2468	14
ASM DSP, ASM ARM	2500	6

• Реализация канального, сетевого, транспортного уровней стека протоколов асимметричного маркерного процессинга на DSP.

Итоги

Реализованы канальный, сетевой, транспортный уровни стека протоколов асимметричного маркерного процессинга на DSP архитектуры KeyStone 2 для коммуникации с ARM. Решены задачи:

- 1. Изучен асимметричный маркерный процессинг
- 2. Изучены инструменты для реализации
- 3. Обеспечено общение между ядрами DSP и ARM
- 4. Реализованы канальный, сетевой, транспортный уровни стека протоколов асимметричного маркерного процессинга на DSP
- 5. Измерена скорость передачи маркера