(11) EP 0 962 986 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 08.12.1999 Bulletin 1999/49

- (51) Int Cl.6: H01L 29/51
- (21) Application number: 99303872.8
- (22) Date of filing: 18.05.1999
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE

 Designated Extension States:

 AL LT LV MK RO SI
- (30) Priority: 28.05.1998 US 86252
- (71) Applicant: LUCENT TECHNOLOGIES INC.
 Murray Hill, New Jersey 07974-0636 (US)
- (72) Inventors:
 - Alers, Glenn B.
 Santa Cruz, California 95060 (US)

- Fieming, Robert McLemore Chatham, New Jersey 07928 (US)
- Schneemeyer, Lynn Frances Westfield, New Jersey 07090 (US)
- van Dover, Robert Bruce
 Maplewood, New Jersey 07040 (US)
- (74) Representative:

Watts, Christopher Malcolm Kelway, Dr. et al Lucent Technologies (UK) Ltd, 5 Mornington Road Woodford Green Essex, IG8 0TU (GB)

- (54) MOS transistors with improved gate dielectrics
- (57) The specification describes silicon MOS devices with gate dielectrics having the composition $Ta_{1-x}Al_x$. O_y, where x is 0.03-0.7 and y is 1.5-3, $Ta_{1-x}Si_zO_y$, where x is 0.05-0.15, and y is 1.5-3, and $Ta_{1-x-2}Al_xSi_zO_y$, where 0.7>x+z>0.05, z < 0.15 and y is 1.5-3. By comparison with the standard Si02 gate dielectric material, these

materials provide improved dielectric properties and also remain essentially amorphous to high temperatures. This retards formation of SiO₂ interfacial layers which otherwise dominate the gate dielectric properties and reduce the overall effectiveness of using a high dielectric material.

FIG. 1

EP 0 962 986 A

Description

Field of the Invention

[0001] The invention relates to improved gate dielectric structures for increasing the gate capacitance in MOS transistor devices.

Background of the Invention

[0002] As the size shrinks and speed of silicon devices increases, current leakage and other reliability problems increase. In MOS devices, small device dimensions, high speed performance, and low operating voltages are primary issues facing the continued development of improved devices. With a given budget for operating voltages the main option for the device designer is a trade-off between low power and high speed. The operating voltage scales with device dimensions which are relatively fixed for the current generation of technology. Thus the most promising option left for device improvement is to increase the coupling ratio by increasing the gate capacitance.

[0003] The main options for increasing the gate capacitance are to reduce the gate dielectric thickness or to alter the dielectric properties of the gate dielectric material. Device and process designers to date have recognized that as the gate dielectric thickness shrinks, the potential for leakage and other electrical defects increases. Thus the quality of the dielectric material used is important. The highest quality material so far developed in silicon technology for low defects and for low surface state density is SiO₂. An important advantage of SiO₂ is that it can be grown from the silicon substrate. It is well known that grown oxides tend to have fewer defects, e.g. pinholes, than deposited materials. Thus SiO₂ has persisted as the dielectric material of choice in most silicon device structures.

[0004] In spite of the popularity of SiO₂ as a dielectric material, efforts continue in a search for new dielectric materials. The use of Ta2O5 as a dielectric has been proposed for MOSFETs (see Youichi Momiyama et al, "Ultra-Thin Ta2O5/SiO2 Gate Insulator with TiN Gate Technology for 0.1 µm MOSFETs", 1997 Symposium on VLSI Technology Digest of Technical Papers, pp. 135,136. This material has also been proposed for stacked and trench capacitors in DRAM structures (see Tomonori Aoyama et al, "Leakage Current Mechanism of Amorphous and Polycrystalline Ta₂O₅ Films Grown by Chemical Vapor Deposition*, J. Electrochem. Soc., Vol. 143, No. 3, pp. 977-983, March 1996. The formula Ta₂O₅ represents the most common stoichiometric tantalum oxide, but this material, when deposited by most thin film deposition techniques, is often not stoichiometric. Therefore it is frequently referred to as TaOx which is the generic reference used in this description. The oxygen content x will typically be a value between 1.5 and 3. [0005] While there is interest in Ta₂O₅ as a gate ma-

terial it has been found to be incompatible with conventional silicon device processing. The gate dielectric in e. g. silicon gate device fabrication is exposed to heating steps at temperatures of the order of 850 °C and above. These temperatures are required for annealing and drive in of the source/drain implant. The conventional gate dielectric material, SiO2, easily withstands these temperatures, and remains amorphous to temperatures as high as 1100 °C. However, TaO, crystallizes at a temperature of approximately 650-700 °C. In the crystal form, TaO, is not suitable for high performance device fabrication because of the formation of a substantial SiO₂ interfacial layer at the surface of the silicon substrate during high temperature processing. The excessively thick SiO2 layer limits the objective of having a specific capacitance, C/A, material for the gate.

[0006] Crystallization of the Ta₂O₅ can also lead to non-uniformities in the capacitance on a length scale due to variations in the density of grain boundaries and inhomogeneities from gate to gate leading to unacceptable variations in threshold voltage in a given integrated circuit.

[0007] A modified form of TaO_x, Ta-Al-O, has been proposed for capacitor structures. See Nomura et al, U. S. Patent No. 4,602,192. However, it has not been used in MOS transistor gate structures and there is no indication that it is compatible with the high temperature conditions required in the fabrication of these devices. [0008] Use of Ta-Al-O has also been described in connection with thin film transistors. See Fujikawa et al, J. Appl. Phys, 75, 2538 (1994). These structures typically do not use single crystal silicon substrates and there is no indication of the electrical performance of a Ta-Al-O/ silicon interface. Moreover, the devices were processed at temperatures well below those encountered in the process of this invention.

Summary of the Invention

40 [0009] We have developed a new MOS gate structure, with improved dielectric properties, using Ta-Al-O or Ta-Si-O as the gate dielectric material. We have discovered that MOS transistor gates with these materials have exceptional electrical properties and these properties are not degraded by high temperature processing. Even after high temperature anneal, these materials have low leakage currents, show relatively little growth of interfacial SiO2, and thus have high specific capacitance with low interface state density. The dielectric properties of these MOS gates are substantially improved over conventional silicon gate structures and allow new options for MOS device designers. Use of these gate dielectric materials is fully compatible with state of the art silicon device processing, and they have low defect potential comparable to that of SiO₂ but with a substantially higher K.

Brief Description of the Drawing

[0010]

Fig. 1 is a schematic diagram of a typical insulated gate field effect transistor device;

Fig. 2 is an enlarged view of the gate structure of Fig. 1;

Figs. 3 is a C-V plot for the dielectric gate material of the invention;

Fig. 4 is a plot showing the crystallization temperature for the gate dielectric materials of the invention;

Fig. 5 is an x-ray diffraction pattern for a dielectric material of the invention; and

Figs. 6 and 7 are plots of a Figure of Merit of dielectric performance for Ta-Al-O (Fig. 6) and Ta-Si-O (Fig. 7).

Detailed Description

[0011] Referring to Fig. 1, the essential elements of an insulated gate field effect transistor device are illustrated and include silicon substrate 11, source 13 and drain 14. These are shown as n-type regions for an n-channel device, but may also be p-type for CMOS devices. The field oxide is shown at 12, and the gate structure comprises gate dielectric 15 and gate conductor 16. Typically the gate conductor is polysilicon although other conductive materials, notably TiN or TaN, may also be used.

[0012] The gate structure of Fig. 1 is shown in detail in Fig. 2. The important parameters are designated in the figure and relate to one another according to the following:

[0013] The voltage on the gate is:

Equation (1):
$$V_G = \frac{C_{GD} \times V_D}{C_{GD} + C_{GS} + C_{GC}}$$

where C_{GD} is the capacitance between the gate and the drain, V_D is the drain voltage, C_{GS} is the capacitance between the gate and the source, C_{GC} is the capacitance between the gate and the substrate, and V_G is the gate voltage.

[0014] It is desirable that the coupling between the gate and the channel of the substrate be high, therefore the C_{GC} term in equation (1) should be large. This capacitance is determined by:

Equation (2):
$$C_{GC} \approx \frac{\varepsilon_i}{t_1} X A$$

where ϵ_i is the dielectric constant for the insulating layer between the gate and the substrate, t_1 is the thickness of the insulating layer, and $\bf A$ is the gate area.

[0015] In state of the art device technology the thickness of the gate dielectric t₁ is generally optimized, i.e. it cannot practically be reduced further. Consequently, the only remaining option for improving gate performance is to increase the dielectric constant of the insulated gate material.

[0016] Many insulating materials are available with dielectric constants higher than that of the commonly used insulator, SiO₂. SiO₂ has a dielectric constant ϵ_i of 3.9. Among other candidates Ta_2O_5 is attractive, with a ε_i of 25. This means, inter alia, that a 100 Angstrom Ta₂O₅ gate oxide should have dielectric properties approximately equivalent to a 20 Angstrom SiO₂ layer, or that a 30 Angstrom Ta₂O₅ gate oxide should be approximately equivalent to a 5 Angstrom SiO₂ layer. The extra thickness for an equivalent dielectric allows considerably more latitude and control for the process designer. While a SiO₂ gate dielectric with a thickness of 20 Angstroms may have excessive leakage due to quantummechanical tunneling, leading to reduced reliability of the device, a 100 Angstrom Ta₂O₅ generally will not have the same problems.

[0017] However, when TaO_x is substituted for SiO₂ in a state of the art self-aligned silicon gate process the capacitance of the TaO, undergoes rapid degradation at temperatures in the range 800°C and above. This is believed to be due to the inevitable formation of native silicon oxide on the silicon substrate during high temperature process steps. The term high temperature in this context means temperatures where silicon readily oxidizes, i.e. greater than 800°C. While formation of some native oxide is essentially unavoidable in silicon processing, it was found that with an interface that is nominally Si/TaOx, a very substantial SiO2 layer grows at temperatures of 800 °C and above. The silicon oxide growth is believed to be enabled by the morphology of the TaO_x layer. Below 600 °C, TaO_x remains essentially amorphous. At approximately 650-700 °C, TaO, crystallizes, and the crystal form of TaO_x does not withstand the high temperature processing required for Si IGFET device manufacture. These effects are known and were reported on in detail by Kim et al, Jpn. J. Appl. Phys. Vol. 33 (1994) Pt. 1, No. 12A, pp. 6691-6698.

[0018] The degradation of a TaO_x dielectric layer at high temperatures is illustrated in Fig. 3. Fig. 3 shows the effect of an 800 °C anneal on the C-V (capacitance vs. voltage) curve of an MOS TaO_x dielectric. The solid curve gives data for the unannealed dielectric, and the dashed curve gives data for the dielectric layer after an 800 °C anneal. The decrease in capacitance in the accumulation regime is quite large, i.e. from 17 fF/µm² before annealing, to 10 fF/µm² after annealing. This decrease in capacitance is highly undesirable and is associated with crystallization of the TaO_x.

[0019] As a consequence of excessive SiO₂ growth,

which occurs during the anneal just described, the goal of the device design is largely defeated. In gate capacitors with less than 20 fF/µm2, the capacitance of a Ta₂O₅ film can be increased with crystallization of the Ta2O5 due to the slightly higher dielectric constant of crystalline Ta₂O₅ relative to amorphous. However, obtaining a capacitance larger than 20 fF/µm² is still limited by the formation of the interfacial SiO, region during high temperature processing. If the device design calls for a Ta₂O₅ gate dielectric with a thickness of 100 Angstroms, i.e. a capacitance of approximately 22 fF/µm², the final gate dielectric may actually include e.g. 20 Angstroms or more of SiO2. The series capacitance of the SiO2, 17 fF/μm², dominates the gate dielectric properties. For the dual dielectric layer, the capacitance equals (C/A)D = $[(C_1/A_1)^{-1} + (C_2/A_2)^{-1}]^{-1}$, where C_1 and A_1 are properties of the TaO_x layer and C₂ and A₂ are properties of the SiO_2 layer. The value $(C/A)_D = 9.6 \text{ fF/}\mu\text{m}^2$.

[0020]´ According to the invention, ${\rm TaO}_{\rm x}$ is modified by the inclusion of substantial amounts of Al or Si. The addition of Al or Si to ${\rm TaO}_{\rm x}$ has been found to increase the crystallization temperature of the oxide to the point where it will withstand high temperature silicon device processing conditions.

[0021] To demonstrate the effect of AI and Si additions, thin films of Ta-AI-O and Ta-Si-O were deposited on HF-etched single crystal silicon substrates. The films were prepared by off-axis co-sputtering using the following procedure.

[0022] Silicon substrates were mounted onto Al sample holders using Ta clips for thermal and electrical contact. The samples were positioned 5.5 cm from the 2-inch diameter Ta-metal magnetron sputter gun target, and 5.5 cm. from the 2-inch diameter Al-metal magnetron sputter gun target. The two magnetron sputter guns are positioned with targets facing each other. The sample is positioned so that its plane is parallel to the line connecting the centers of the two magnetron targets, and displaced 3.5 cm. from that line. The vacuum system was pumped to a pressure lower than 5 x 10⁻⁶ Torr. Oxygen was introduced into the chamber at a rate of 10 sccm, with 15 sccm Ar carrier gas. The total chamber pressure was 30 mTorr. RF power to the substrate was adjusted to 10 W. The Ta gun was RF powered at 100 W and the Al gun was RF powered at 60 W. RF matching circuits for the RF power supplies were tuned for minimum reflected power. Deposition continued for 5 minutes which produced a film with a composition Ta_{0.7}Al_{0.3}O_x and a thickness of approximately 600 Angstroms.

[0023] Films were also sputtered from a composite Ta-Al target using the following procedure.

[0024] A 2-inch diameter Ta_{0.9}Al_{0.1} composite sputtering target was mounted in the magnetron sputtering gun. A silicon substrate was mounted on the sample holder using Ta clips. The sample was positioned facing the target at a distance of 9 cm. The chamber was pumped to a pressure below 1 x 10⁻⁶ Torr. The silicon

substrate was heated to 300°C. Oxygen was admitted at a flow rate of 3 sccm with 5 sccm of Ar carrier gas. Pulsed DC power at 200 W was applied to the composite target gún. Pulse rate was 122 kHz with a 20% duty cycle. Deposition continued for 2 minutes and produced an 8% Al-TaO_x film with a thickness of 500 Angstroms. [0025] Films with a composition Ta-Si-O are produced using the same procedure except that Si is substituted for Al in the targets.

[0026] While these techniques produce acceptable results, other suitable thin film deposition techniques may be used. For example, chemical vapor deposition (CVD) is widely used in silicon processing. A suitable process for depositing heavily doped TaO_x is by low pressure chemical vapor deposition (LPCVD). The recommended temperature is in the range 300-500 °C and preferably approximately 375-430 °C. The recommended pressure is in the range 50-200 mTorr and preferably approximately 75-150 mTorr. Precursors for CVD deposition are selected from those known in the art, e.g. Ta (OC₂H₅)₅, AlCl₃, SiCl₄, SiH₄, and O₂ in an argon carrier gas. Typical deposition rates are 30-100 Angstroms/min.

[0027] Mixed Al/Si compositions can be prepared using the above described techniques by simply using three sputtering targets in the first approach described, or a mixed target containing both Al and Si in the composite target sputtering example. In CVD processes the precursor gas materials comprise mixed Al and Si reagents.

[0028] Other possible deposition processes include, atomic layer deposition (epitaxy) (ALD), and jet vapor deposition. Anodization is widely used in Ta thin film technology but is less suitable for Ta-Al technology.

[0029] Coated silicon substrates prepared by the foregoing procedure were examined by x-ray diffraction to show the crystallization characteristics of the Ta-Al/Si-O, materials of the invention. The onset of crystallization of the thin film was indicated by the development of characteristic peaks in the diffraction pattern. Samples were annealed at the test temperature for 30 minutes in air. Samples that were sequentially annealed (e.g. 700 °C, 750 °C,825 °C) gave the same results as samples annealed in a single step (e.g. 825 °C). Results of this evaluation are given in Fig. 4, where T_x is the maximum temperature at which the films remain amorphous, and is plotted against the atomic % substitution of Al and Si in Ta-O. Data is also given for Ge substitutions, which, as seen, are ineffective for the purposes of the invention. [0030] Fig. 5 shows the θ - 2θ diffraction pattern for a Ta 95Al 05Ox sample after heating to 825 °C for 30 min-

utes in air (dashed curve), where no x-ray peaks are seen, and after 850 °C for 30 minutes in air (solid curve), where clear x-ray peaks prove the occurrence of crystallization. The peaks observed for the sample after the 850 °C anneal did not increase after a 900 °C/30 minute anneal, thus establishing that crystallization is complete after the 850 °C treatment.

25

[0031] Studies were also made to determine the effect of these gate material modifications on the electrical performance of a gate dielectric. Measurements were made of the Figure of Merit vs. Al content in Ta-Al-O films. The Figure of Merit is defined as $\epsilon\epsilon_0 E_{br}$, where ϵ is the dielectric constant, and E_{br} is the breakdown voltage. The results of this investigation are given in Fig. 6. Similar data for Si additions is given in Fig. 7.

[0032] Based on the data of Figs. 4-7, the recommended range of atomic percent substitutions for Al is 3-70 percent, and preferably 5-40%. The data in Fig. 4 show that at atomic percent substitutions of 3% some benefits are obtained. At 5% and above, the films are expected to remain completely amorphous throughout the silicon device processing. The data given in Fig. 6 indicates that with additions as high as 70% the electrical properties of the modified oxide films are still relatively unaffected. For silicon substitutions, the recommended range is 5-15%. These compositions can be expressed as Ta_{1-x}Al_xO_y, where x is 0.03-0.7, and preferably 0.05-0.2, and y is 1.5-3; and Ta_{1-x}Si_xO_y, where x is 0.05-0.15, and y is 1.5-3.

[0033] These studies show that similar results are expected for compositions $Ta_{1-x-z}Al_xSi_zO_y$, where 0.7>x+z > 0.05, and z < 0.15.

[0034] The thickness of the gate dielectric layer in state of the art devices is in the range 5-100 Angstroms and preferably 10-60 Angstroms. Gate dielectrics having a Ta-Al-O or Ta-Si-O composition according to the invention and prepared by normal thin film techniques may in many cases have a very thin of native SiO₂ at the interface with the silicon substrate to reduce surface state density. Because of the considerations discussed earlier, the layer should be kept very thin, i.e. less than 15 Angstroms, which is characteristically the result of using the teachings of this invention.

[0035] Thereafter the gate electrode is deposited by a known technique, e.g. CVD or sputtering, to complete the MOS device. The gate material is typically polysilicon, which is widely used in silicon device processing. However, other gate electrode materials, notably TiN, WN, or WSi can also be used.

[0036] It will be evident from the foregoing that a significant advantage of the invention is that it can be integrated with conventional silicon device manufacturing processes in which one or more processing steps involve heating the silicon substrates or wafers to temperatures in excess of 850 °C. Thus the invention in a principle embodiment can be described as a method for the manufacture of silicon MOS IGFET devices which method includes at least one step of heating the silicon substrate to a temperature of at least 850 °C. A typical heating step in a conventional process is the source/drain implant anneal, used to activate and drive the implanted impurities. The heating step may have a duration of e. g. 5-60 minutes, or may be a rapid thermal anneal in which case the duration of the heating step will be substantially shorter.

[0037] The basic sequence of steps, the details of which are well known, is the following:

Grow field oxide and pattern field oxide to expose transistor sites (this operation may be a single step using a silicon nitride LOCOS process or may be an oxide growth and/or deposit step with a photoresist (PR) patterning step).

Clean silicon surface with a procedure that leaves passivating layer of either hydrogen or silicon oxide.

Deposit Ta-Al-O, Ta-Si-O, or Ta-Al-Si-O gate dielectric layer.

Deposit gate electrode layer (typically polysilicon evaporated or deposited by CVD).

Mask gate electrode layer and open source/drain windows (using PR).

Implant source and drain using the gate electrode as a mask (typically an arsenic implant for an nchannel device or a boron implant for a p-channel device).

Heat to a temperature of at least 850 °C (implant anneal and drive).

Deposit oxide (typically TEOS).

Define contact windows(PR).

Metallize to form electrical contacts.

[0038] As known to those skilled in the art, these (or a subset thereof) are the essential steps in a typical silicon MOS wafer fabrication operation. The source/drain implants may be into the bare silicon substrate or through a regrown oxide layer. In either case the mask for the source/drain implant is essentially the gate electrode. Other details of the process, such as forming sidewalls, LDD implant, cleaning operations, interlevel dielectric formation, multilevel metal interconnects, etc. are not important to the context of the invention.

[0039] Various additional modifications of this invention will occur to those skilled in the art. All deviations from the specific teachings of this specification that basically rely on the principles and their equivalents through which the art has been advanced are properly considered within the scope of the invention as described and claimed.

⁵ Claims

 Method for the manufacture of an MOS silicon device comprising the steps of:

- a. forming a dielectric layer on a silicon substrate
- b. forming a gate electrode on said dielectric layer,

characterized in the dielectric layer has a composition selected from the group consisting of: (1) $Ta_{1-x}Al_xO_y$, where x is 0.03-0.7 and y is 1.5-3, (2) $Ta_{1-x}Si_xO_y$, where x is 0.05-0.15, and y is 1.5-3, and (3) Ta_{1-x-z} $Al_xSi_zO_y$ where 0.7>x+z>0.05,z < 0.15 and y is 1.5-3.

- The method of claim 1 in which the dielectric layer has a composition Ta_{1-x}Al_xO_y, where x is 0.05-0.4.
- The method of claim 1 or claim 2, wherein the dielectric layer has a thickness in the range 20-100 Angstroms.
- The method of any of the preceding claims wherein 20 the gate electrode is polysilicon.
- The method of any of claims 1 to 3 wherein the gate electrode is a material selected from the group consisting of TiN, WN and WSi.
- 6. Method for the manufacture of an MOS silicon device as claimed in any of the preceding claims, wherein said step of forming the gate electrode comprises:

forming a gate electrode layer on said dielectric layer and patterning said gate electrode layer to define a MOS gate electrode, and is followed by: implanting source and drain regions using said MOS gate electrode as a mask, and heating the silicon substrate to a temperature of at least 850°C.

- MOS silicon device comprising:
 - a. a silicon substrate,b. a dielectric layer on said silicon substrate,
 - c. a gate electrode on said dielectric layer,

characterized in the dielectric layer has a composition selected from the group consisting of: (1) $Ta_{1-x}Al_xO_y$, where x is 0.03-0.7 and y is 1.5-3, (2) $Ta_{1-x}Si_xO_y$, where x is 0.05-0.15, and y is 1.5-3, and (3) $Ta_{1-x-z}Al_xSi_zO_y$, where 0.7>x+z>0.05,z <0.15 and y is 1.5-3.

- The device of claim 7 in which the dielectric layer has a composition Ta_{1-x}Al_xO_y, where x is 0.05-0.4.
- The device of claim 7 or claim 8 wherein the dielectric layer has a thickness in the range 20-100 Ang-

stroms.

- The device of any of claims 7 to 9 wherein the gate electrode is polysilicon.
- The device of any of claims 7 to 9 in which the gate electrode is selected from the group consisting of TiN, WN and WSi.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 0 962 986 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 27.12.2000 Bulletin 2000/52

(51) Int Cl.7: **H01L** 29/51, H01L 21/28

- (43) Date of publication A2: 08.12.1999 Bulletin 1999/49
- (21) Application number: 99303872.8
- (22) Date of filing: 18.05.1999
- (84) Designated Contracting States:
 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
 MC NL PT SE
 Designated Extension States:
 AL LT LV MK RO SI
- (30) Priority: 28.05.1998 US 86252
- (71) Applicant: LUCENT TECHNOLOGIES INC. Murray Hill, New Jersey 07974-0636 (US)
- (72) Inventors:
 - Alers, Glenn B.
 Santa Cruz, California 95060 (US)

- Fleming, Robert McLemore Chatham, New Jersey 07928 (US)
- Schneemeyer, Lynn Frances
 Westfield, New Jersey 07090 (US)
- van Dover, Robert Bruce
 Maplewood, New Jersey 07040 (US)
- (74) Representative:
 Watts, Christopher Malcolm Kelway, Dr. et al Lucent Technologies (UK) Ltd,
 5 Mornington Road
 Woodford Green Essex, IG8 0TU (GB)

(54) MOS transistors with improved gate dielectrics

(57) The specification describes silicon MOS devices with gate dielectrics having the composition $Ta_{1-x}Al_{x-1}O_y$, where x is 0.03-0.7 and y is 1.5-3, $Ta_{1-x}Si_zO_y$, where x is 0.05-0.15, and y is 1.5-3, and $Ta_{1-x-z}Al_xSi_zO_y$, where 0.7>x+z>0.05, z < 0.15 and y is 1.5-3. By comparison with the standard Si02 gate dielectric material, these

materials provide improved dielectric properties and also remain essentially amorphous to high temperatures. This retards formation of SiO₂ interfacial layers which otherwise dominate the gate dielectric properties and reduce the overall effectiveness of using a high dielectric material.

FIG. 1

EUROPEAN SEARCH REPORT

Application Number EP 99 30 3872

ategory	Citation of document with indication, where appropriate, of relevant passages		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.6)	
X			1,7	H01L29/51 H01L21/28	
'	<pre>page 1 XP000570831 * the whole document</pre>	nt *	2-6,8-11		
	CAVA R J ET AL: "DIELECTRIC PROPERT: SUBSTITUTION WITH APPLIED PHYSICS LE'INSTITUTE OF PHYSIC vol. 70, no. 11, 17 March 1997 (1991) 1396-1398, XP000689 ISSN: 0003-6951	TES OF TA205 THROUGH AL203" TTERS,US,AMERICAN CS. NEW YORK, 7-03-17), pages	2,8		
	* page 1396, column	1, line 19 - line 25 * 1 2, line 4 - line 6 *			
	US 5 548 548 A (CH/ 20 August 1996 (1998 * abstract * * column 2, line 22 * column 3, line 24	? - line 24 *	3,9	TECHNICAL FIELDS SEARCHED (Int.CL6)	
	PATENT ABSTRACTS OF vol. 010, no. 332 (12 November 1986 (1 -& JP 61 137370 A (25 June 1986 (1986- * abstract *	4,10			
	29 April 1997 (1997 * column 4, line 14	- line 31 * - column 6. line 3 *	5,6,11		
	The process seems seems have				
	The present search report has	Date of completion of the search	\sqcup	Examinar	
	THE HAGUE	27 October 2000	Ness	so, S	
X : partic Y : partic docui	TEGORY OF CITED DOCUMENTS sularly relevant if taken alone sularly relevant if combined with anot ment of the same category tological background	T : theory or principle E : earlier patent do	o underlying the ir sument, but publis e n the application	nvention	

2

EUROPEAN SEARCH REPORT

Application Number

EP 99 30 3872

Category	Citation of document with it of relevant pass	ndication, where appropriate, ages	Retevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
A	of the thermal oxid tantalum-aluminum c metal-insulator-sem SOVIET PHYSICS SEMI vol. 19, no. 8, Aug pages 855-856, XP00	ompound in iconductor structures" CONDUCTORS, ust 1985 (1985-08)	1,7	
A	AL203-TA205 COMPOSI	F REACTIVE SPUTTERING" TROCHEMICAL HEMICAL SOCIETY.	1,7	
	1 April 1987 (1987- XP002058331 ISSN: 0013-4651 * abstract *	04-01), pages 922-925,		TECHNICAL FIELDS SEARCHED (Int.CL6)
Α .	JOSHI P C ET AL: "STRUCTURAL AND ELECTRICAL PROPERTIES OF CRYSTALLINE (1-X)TA205-XAL203 THIN FILMS FABRICATED BY METALORGANIC SOLUTION DEPOSITED TECHNIQUE" APPLIED PHYSICS LETTERS, US, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, vol. 71, no. 10,		1,7	
0	8 September 1997 (1: 1341-1343, XP000720: ISSN: 0003-6951 * abstract * * page 1342, column			
		-/		
	The present search report has b			
	Place of search THE HAGUE	Date of completion of the search 27 October 2000	Nes	Examiner SO. S
X : partic Y : partic docu	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone mustry relevant if combined with anothment of the same category tological background	T : theory or principl E : earlier patent do	e underlying the i cument, but public te n the application	rivention

3

EUROPEAN SEARCH REPORT

Application Number

Category	Citation of document with of relevant pas	indication, where appropriate, saces	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.6)
	TANTALUM OXIDE FOR COSPUTTERING OF TA JOURNAL OF VACUUM SPART A,US,AMERICAN NEW YORK, vol. 5, no. 4, PART 1 July 1987 (1987-000036454 ISSN: 0734-2101 * page 1769, column figure 4 *	SCIENCE AND TECHNOLOGY: INSTITUTE OF PHYSICS.	1,7	
),A	US 4 602 192 A (ABE 22 July 1986 (1986- * column 2, line 37	-07-22)	1,7	
P,X	CAPACITORS" INTERNATIONAL ELECTMEETING,US,NEW YORK 6 December 1998 (1823-826, XP00085949 ISBN: 0-7803-4775-7	E OXIDE, DRAM AND RF RON DEVICES , NY: IEEE, 998-12-06), pages 6	1,7	TECHNICAL FIELDS SEARCHED (Int.Cl.5)
	The present search report has	been drawn up for all claims Date of completion of the search		Examiner
	THE HAGUE	27 October 2000	Noce	so, S
X : partic Y : partic documents	TEGORY OF CITED DOCUMENTS sularly relevant if taken alone cularly relevant if combined with anot ment of the same category tological background	T : theory or principle E : earlier patent doo after the filting date	underlying the in ument, but publis the application	wention

CD COST SEASON

EP 0 962 986 A3

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 99 30 3872

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

27-10-2000

Ci	Patent document ted in search repo		Publication date		Patent family member(s)	Publication date
US	5548548	A	20-08-1996	JP	8046156 A	16-02-199
JP	61137370	A	25-06-1986	NONE		
US	5625217	A	29-04-1997	US AU GB HK JP SG WO	5783478 A 5669794 A 2286723 A,B 43297 A 8508851 T 43836 A 9414198 A	21-07-199 04-07-199 23-08-199 18-04-199 17-09-199 14-11-199 23-06-199
us	4602192	A .	22-07-1986	JP JP JP JP JP DE EP	1938950 C 5063947 B 59182572 A 1793721 C 4006277 B 59224098 A 3480243 D 0139764 A 8403992 A	09-06-199 13-09-199 17-10-198 14-10-199 05-02-199 15-12-198 23-11-198 08-05-198 11-10-198
	-					
•						
					,	