ACA228 - Modelos de Regressão e Previsão

Regressão Linear Multipla: Verificando as hipóteses I

Prof. Carlos Trucíos carlos.trucios@facc.ufrj.br ctruciosm.github.io

Faculdade de Administração e Ciências Contábeis, Universidade Federal do Rio de Janeiro

Aula 13

Tipos de resíduos

Gráfico de resíduos

Heterocedasticidade

O MRLM é contruido sob as seguintes hipóteses:

- ► HRLM1: Modelo Populacional Linear nos parâmetros
- HRLM2: Amostragem aleatória
- ▶ HRLM3: Colinearidade não perfeita
- HRLM4: Média condicional zero
- ► HRLM5: Variância constante
- HRLM6: Normalidade

O que acontece se algumas essas hipóteses não são verificadas?

A não verificação das hipóteses pode levar a resultados instaveis, *i.e.* uma amostra diferente pode levar a resultados totalmente diferentes e inclusíve conclusões opostas.

A não verificação das hipóteses pode levar a resultados instaveis, *i.e.* uma amostra diferente pode levar a resultados totalmente diferentes e inclusíve conclusões opostas.

▶ Os resultados padrão do ajuste do modelo como R², Teste-t, Teste-F não nos permitem saber se alguma das hipóteses foi violada.

A não verificação das hipóteses pode levar a resultados instaveis, *i.e.* uma amostra diferente pode levar a resultados totalmente diferentes e inclusíve conclusões opostas.

- ▶ Os resultados padrão do ajuste do modelo como R², Teste-t, Teste-F não nos permitem saber se alguma das hipóteses foi violada.
- Os resíduos nos ajudarão nesta tarefa

$$\hat{u}_i = y_i - \hat{y}_i$$

A não verificação das hipóteses pode levar a resultados instaveis, *i.e.* uma amostra diferente pode levar a resultados totalmente diferentes e inclusíve conclusões opostas.

- ▶ Os resultados padrão do ajuste do modelo como R², Teste-t, Teste-F não nos permitem saber se alguma das hipóteses foi violada.
- Os resíduos nos ajudarão nesta tarefa

$$\hat{u}_i = y_i - \hat{y}_i$$

► A análise dos resíduos é uma maneira eficaz de descobrir vários tipos de *inadequações* no modelo ajustado.

Standardized Residuals:

Sabemos que

$$\hat{u} = y - \underbrace{\hat{y}}_{X'\hat{\beta}} = y - X' \underbrace{(X'X)^{-1}X'y}_{\hat{\beta}} = (I - \underbrace{X'(X'X)^{-1}X'}_{H})y = (I - H)y$$

vamos padronizar cada resíduo pelo seu respectivo desvio padrão

Standardized Residuals:

Sabemos que

$$\hat{u} = y - \underbrace{\hat{y}}_{X'\hat{\beta}} = y - X' \underbrace{(X'X)^{-1}X'y}_{\hat{\beta}} = (I - \underbrace{X'(X'X)^{-1}X'}_{H})y = (I - H)y$$

vamos padronizar cada resíduo pelo seu respectivo desvio padrão

$$V(\hat{u}_i|X) = V(\underbrace{[0\dots 1\dots 0]}_{\mathbb{I}_i}\hat{u}|X) = \mathbb{I}_i\underbrace{V(\hat{u}|X)}_{(I-H)\sigma^2}\mathbb{I}_i' = \sigma^2(1-h_{ii})$$

Standardized Residuals:

Sabemos que

$$\hat{u} = y - \underbrace{\hat{y}}_{X'\hat{\beta}} = y - X' \underbrace{(X'X)^{-1}X'y}_{\hat{\beta}} = (I - \underbrace{X'(X'X)^{-1}X'}_{H})y = (I - H)y$$

vamos padronizar cada resíduo pelo seu respectivo desvio padrão

$$V(\hat{u}_i|X) = V(\underbrace{[0\dots 1\dots 0]}_{\mathbb{I}_i} \hat{u}|X) = \underbrace{\mathbb{I}_i}_{(I-H)\sigma^2} \underbrace{V(\hat{u}|X)}_{(I-H)\sigma^2} \mathbb{I}'_i = \sigma^2(1-h_{ii})$$

$$r_i = \frac{\hat{u}_i}{\sqrt{\hat{\sigma}^2(1-h_{ii})}}$$

Studentized Residuals

Seja $\hat{y}_{(i)}$ o valor estimado de y_i utilizando todas as observações menos a i-ésima.

$$\hat{u}_{(i)} = y_i - \hat{y}_{(i)} = \frac{\hat{u}_i}{1 - h_{ii}}$$

Se dividirmos pelo desvio padrão de $\hat{u}_{(i)}$, temos:

$$t_i = \frac{\hat{u}_i}{\sqrt{S_{(i)}^2(1-h_{ii})}} = r_i\sqrt{\frac{n-k-2}{n-k-1-r_i^2}}$$

onde
$$S_{(i)}^2 = \frac{(n-k-1)\hat{\sigma}^2 - \hat{u}_i^2/(1-h_{ii})}{n-k-2}$$

Resíduo	Notação	Formula
Standardized	r _i	$\frac{\hat{u}_i}{\sqrt{\hat{\sigma}^2(1-h_{ii})}}$
Studentized	t _i	$\frac{\hat{u}_i}{\sqrt{S_{(i)}^2(1-h_{ii})}}$

Studentized é preferido.

Resíduo	Notação	Formula
Standardized	r _i	$\frac{\hat{u}_i}{\sqrt{\hat{\sigma}^2(1-h_{ii})}}$
Studentized	t _i	$\frac{\hat{u}_i}{\sqrt{S_{(i)}^2(1-h_{ii})}}$

Studentized é preferido.

Com os resíduos vamos identificar **outliers** ou **valores extremos** e as hipóteses do **modelo linear clássico**

```
library(wooldridge)
modelo = lm(log(bwght) ~ npvis + I(npvis^2), data = bwght2)
uhat = residuals(modelo)
r = rstandard(modelo)
t = rstudent(modelo)
```

Gráfico de resíduos

Gráfico para detecção de outliers/extremos

Gráfico para detecção de outliers/extremos: residuais vs yhat

- Faremos o gráfico dos valores estimados \hat{y} (eixo X) vs. os resíduais (eixo Y)
- Se algum ponto está muito afastado dos outros, ele será um possível outliers
- Faremos os gráficos utilizando os três tipos de resíduos

Mas os *Studentized Residuals* são preferidos quando fazemos análise de resíduos.

Gráfico para detecção de outliers/extremos: residuais vs yhat

Gráfico de probabilidade Normal

- Quando precisamos verificar a hipótese de normalidade
- Nos permite identificar se as caudas são mais pessadas do que as caudas da distribuição Normal
- Nos permite identificar asssimetrias
- ▶ Sob Normalidade, esperamos que os pontos estejam sobre a reta

```
qqnorm(normal)
qqline(normal)
```

Gráfico de probabilidade Normal

Gráfico de probabilidade Normal

Gráfico de probabilidade Normal: Detecção de outliers

Gráficos para verificar homecasticidade e forma funcional

Gráficos para verificar homecasticidade e forma funcional

Preferivelmente utilizamos os Studentized Residuals

$$t_i = \frac{\hat{u}_i}{\sqrt{S_{(i)}^2(1-h_{ii})}},$$

onde
$$S_{(i)}^2 = \frac{(n-p)\hat{\sigma}^2 - \hat{u}_i^2/(1-h_{ii})}{n-p-1}$$

- ▶ (a): modelo aparentemente ok
- ▶ (b) e (c): indicam que a variância dos erros não é constante
- ▶ (d): não linearidade

Cuidado!

O grafico é dos residuos vs \hat{y} (não y)

 Até agora vimos gráficos que nos ajudam a detectar heterocedasticidade, não linearidade, normalidade.

- Até agora vimos gráficos que nos ajudam a detectar heterocedasticidade, não linearidade, normalidade.
- Agora veremos dois gráficos que nos darão uma ideia sobre a correlação dos resíduos

- Até agora vimos gráficos que nos ajudam a detectar heterocedasticidade, não linearidade, normalidade.
- Agora veremos dois gráficos que nos darão uma ideia sobre a correlação dos resíduos
- Grafico de sequência (série temporal) e função de autocorrelação

- Até agora vimos gráficos que nos ajudam a detectar heterocedasticidade, não linearidade, normalidade.
- Agora veremos dois gráficos que nos darão uma ideia sobre a correlação dos resíduos
- Grafico de sequência (série temporal) e função de autocorrelação

- Até agora vimos gráficos que nos ajudam a detectar heterocedasticidade, não linearidade, normalidade.
- Agora veremos dois gráficos que nos darão uma ideia sobre a correlação dos resíduos
- Grafico de sequência (série temporal) e função de autocorrelação

Lembre-se, sob HMRLM2, os erros são não correlacionados (na verdade eles são independentes), então esperamos também que os resíduos sejam não correlacionados.

acf(normal)

Resumo:

O que fazer após ajustar o modelo?

- 1. Gráfico de sequência e ACF dos resíduos
- 2. Gráfico dos resíduos vs os valores ajustados \hat{y}
- 3. Gráfico de probabilidade normal*
- 4. Verificar se existem outliers ou valores extremos

Heterocedasticidade

Heterocedasticidade

Homocedasticidade

► Significa que a variância do erro, condicional nas variáveis explicativas, é constante *i.e.*

$$V(u|X) = \sigma^2 I$$

- \blacktriangleright É necessária para definir o teste t, teste F, IC para β
- Sua ausência tem consequências no método MQO
- ► Heterocedasticidade: não homocedasticidade

Homocedasticidade

► Significa que a variância do erro, condicional nas variáveis explicativas, é constante *i.e.*

$$V(u|X) = \sigma^2 I$$

- \blacktriangleright É necessária para definir o teste t, teste F, IC para β
- Sua ausência tem consequências no método MQO
- ► Heterocedasticidade: não homocedasticidade

Discutiremos as consequências, detecção e soluções ao problema de Heterocedasticidade.

A falta de homocedasticidade afeta $V(\hat{\beta})$

 \blacktriangleright Os intervalos de confiança (para β) construidos não são mais validos

A falta de homocedasticidade afeta $V(\hat{\beta})$

- \blacktriangleright Os intervalos de confiança (para β) construidos não são mais validos
- Os testes de hipóteses não são mais válidos

A falta de homocedasticidade afeta $V(\hat{\beta})$

- \blacktriangleright Os intervalos de confiança (para β) construidos não são mais validos
- Os testes de hipóteses não são mais válidos

A falta de homocedasticidade afeta $V(\hat{\beta})$

- \blacktriangleright Os intervalos de confiança (para β) construidos não são mais validos
- Os testes de hipóteses não são mais válidos

As estatísticas utilizadas para testar hipóteses não são mais validas na presença de heterocedasticidade

A falta de homocedasticidade afeta $V(\hat{\beta})$

- \blacktriangleright Os intervalos de confiança (para β) construidos não são mais validos
- Os testes de hipóteses não são mais válidos

As estatísticas utilizadas para testar hipóteses não são mais validas na presença de heterocedasticidade

Na presença de heterocedasticidade, precisamos corrigir a estimação de $V(\hat{\beta})$, para isto utilizaremos o estimador de White

Estimador de White

Seja $y_i = \beta_0 + \beta_1 x_i + u_i$, então o estimator MQO é da forma

$$\hat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^{n} (x_i - \bar{x}) u_i}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Sob heterocedasticidade, *i.e.* $V(u_i|X) = \sigma_i^2$, temos que:

$$V(\hat{\beta}_1|X) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sigma_i^2}{\left[\sum_{i=1}^{n} (x_i - \bar{x})^2\right]^2}$$

Estimador de White

Como
$$\sigma_i^2$$
 é desconhecido, estimamos $V(\hat{\beta}_1|X) = \frac{\sum_{i=1}^n (x_i - \bar{x})^2 \sigma_i^2}{\left[\sum_{i=1}^n (x_i - \bar{x})^2\right]^2}$ por

Estimador de White | White-Huber

$$\widehat{V}(\hat{\beta}_1|X) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 \hat{u}_i^2}{\left[\sum_{i=1}^{n} (x_i - \bar{x})^2\right]^2}$$

No modelo
$$y=\beta_0+\beta_1x_1+\ldots+\beta_kx_k+u$$
 Sob HRLM1-HRLM4 e $V(u|X)=E(uu'|X)=\Omega$,

Estimador de White | White-Huber

$$\widehat{V}(\hat{\beta}|X)=(X'X)^{-1}X'\widehat{\Omega}X(X'X)^{-1}$$
 onde $\widehat{\Omega}=diag\{\hat{u}_1^2,\dots,\hat{u}_n^2\}$

No modelo $y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + u$ Sob HRLM1-HRLM4 e $V(u|X) = E(uu'|X) = \Omega$.

Estimador de White | White-Huber

$$\widehat{V}(\hat{\beta}|X) = (X'X)^{-1}X'\widehat{\Omega}X(X'X)^{-1}$$

onde $\widehat{\Omega} = diag\{\widehat{u}_1^2, \dots, \widehat{u}_n^2\}$

Usando as variâncias obtidas pelo estimador de White, os *testes t, testes F* e *IC* podem ser obtidos como de costume.

##	(Intercept)	homemcasado	mulhercasada	mulhersolteira
##	0.3214	0.2127	-0.1983	-0.1104
##	exper	I(exper^2)	tenure	I(tenure^2)
##	0.0268	-0.0005	0.0291	-0.0005

library(sandwich); library(lmtest)

```
coeftest(modelo, vcov= vcovHC(modelo, type="HC"))
##
## t test of coefficients:
##
##
                     Estimate
                               Std. Error t value Pr(>|t|)
   (Intercept)
                   0.32137810
                               0.10852842 2.9612 0.0032049 **
  homemcasado
                   0.21267568
                                0.05665095
                                            3.7541 0.0001937
## mulhercasada
                  -0.19826760
                                0.05826505 -3.4029 0.0007186 ***
## mulhersolteira -0.11035021
                                0.05662551 - 1.9488 0.0518632
## educ
                   0.07891028
                                0.00735096 \ 10.7347 < 2.2e-16 ***
                   0.02680057
                                0.00509497
                                            5.2602 2.111e-07 ***
## exper
  I(exper^2)
                  -0.00053525
                                0.00010543 -5.0770 5.360e-07 ***
## tenure
                   0.02908752
                                0.00688128
                                            4.2270 2.800e-05 ***
## I(tenure^2)
                  -0.00053314
                                0.00024159 - 2.2068 \ 0.0277670 *
```

Comparação

##		betas	Std	White	P-valor	P-valor_W
##	(Intercept)	0.32138	0.10001	0.10853	0.00139	0.00320
##	homemcasado	0.21268	0.05536	0.05665	0.00014	0.00019
##	mulhercasada	-0.19827	0.05784	0.05827	0.00066	0.00072
##	${\tt mulhersolteira}$	-0.11035	0.05574	0.05663	0.04827	0.05186
##	educ	0.07891	0.00669	0.00735	0.00000	0.00000
##	exper	0.02680	0.00524	0.00509	0.00000	0.00000
##	I(exper^2)	-0.00054	0.00011	0.00011	0.00000	0.00000
##	tenure	0.02909	0.00676	0.00688	0.00002	0.00003
##	I(tenure^2)	-0.00053	0.00023	0.00024	0.02153	0.02777

plot(residuals(modelo),fitted(modelo))


```
Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
              1.470065
                         0.229803 6.397063 0.000000
               0.001141 0.000179 6.388504 0.000000
## sat
## hsperc
        -0.008566 0.001240 -6.906004 0.000000
## tothrs
                         0.000731 3.425511 0.000685
               0.002504
## female
               0.303433
                         0.059020 5.141166 0.000000
## black
             -0.128284
                         0.147370 -0.870486 0.384616
             -0.058722
## white
                         0.140990 - 0.416497 0.677295
```

```
coeftest(modelo, vcov= vcovHC(modelo, type="HC"))
##
## t test of coefficients:
##
##
                  Estimate
                            Std. Error t value Pr(>|t|)
                            0.21855969 6.7261 6.888e-11 ***
## (Intercept)
               1.47006477
                0.00114073
                            0.00018969 6.0136 4.468e-09 ***
## sat
              -0.00856636
                            0.00140430 - 6.1001 2.744e - 09 ***
## hsperc
                0.00250400
                            0.00073353 3.4136 0.0007142 ***
## tothrs
## female
                0.30343329
                            0.05856959 5.1807 3.693e-07 ***
## black
               -0.12828368
                            0.11809549 - 1.0863 0.2780880
              -0.05872173
## white
                            0.11032164 - 0.5323 \ 0.5948631
## ---
## Signif. codes:
                           0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
```

Comparação

##		betas	Std	White	P-valor	P-valor_W
##	(Intercept)	1.47006	0.22980	0.21856	0.00000	0.00000
##	sat	0.00114	0.00018	0.00019	0.00000	0.00000
##	hsperc	-0.00857	0.00124	0.00140	0.00000	0.00000
##	tothrs	0.00250	0.00073	0.00073	0.00068	0.00071
##	female	0.30343	0.05902	0.05857	0.00000	0.00000
##	black	-0.12828	0.14737	0.11810	0.38462	0.27809
##	white	-0.05872	0.14099	0.11032	0.67730	0.59486

Seja

$$H_0: \beta_{black} = 0, \quad \beta_{white} = 0 \quad \text{vs.} \quad H_1: H_0 \quad \text{não é verdade}$$

Precisamos do Teste F

Seja

$$H_0: eta_{black} = 0, \quad eta_{white} = 0 \quad \text{vs.} \quad H_1: H_0 \quad ext{n ilde{a}o \'e verdade}$$

- Precisamos do Teste F
- Modelo irrestrito

$$cumgpa = \beta_0 + \beta_1 sat + \beta_2 hsperc + \beta_3 tothrs + \beta_4 female + \beta_5 black + \beta_6 white + u$$

Seja

$$H_0: eta_{black} = 0, \quad eta_{white} = 0 \quad \text{vs.} \quad H_1: H_0 \quad \text{não \'e verdade}$$

- Precisamos do Teste F
- Modelo irrestrito

$$cumgpa = \beta_0 + \beta_1 sat + \beta_2 hsperc + \beta_3 tothrs + \beta_4 female + \beta_5 black + \beta_6 white + u$$

► Modelo restrito

$$cumgpa = \beta_0 + \beta_1 sat + \beta_2 hsperc + \beta_3 tothrs + \beta_4 female + u$$

```
modeloi = lm(cumgpa~sat+hsperc + tothrs + female + black +
              white, data = newgpa)
modelor = lm(cumgpa~sat+hsperc + tothrs + female, data = newgpa)
# Teste F clássico
anova(modelor, modeloi)
## Analysis of Variance Table
##
## Model 1: cumgpa ~ sat + hsperc + tothrs + female
## Model 2: cumppa ~ sat + hsperc + tothrs + female + black + who
##
    Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 361 79.362
## 2 359 79.062 2 0.29934 0.6796 0.5075
```

```
library(sandwich)
library(lmtest)
# Versão robusta (à Heterocedasticidade) do teste F
waldtest(modelor, modeloi, vcov = vcovHC(modeloi, type = "HC"))
## Wald test
##
## Model 1: cumgpa ~ sat + hsperc + tothrs + female
## Model 2: cumgpa ~ sat + hsperc + tothrs + female + black + who
     Res.Df Df F Pr(>F)
##
       361
## 1
## 2 359 2 0.7478 0.4741
```

plot(residuals(modeloi),fitted(modeloi))

$$narr86 = \beta_0 + \beta_1 pcnv + \beta_2 avgsen + \beta_3 avgsen^2 + \beta_4 ptime86 + \beta_5 qemp86 + \beta_6 black + \beta_7 hispan + u$$

$$narr86 = \beta_0 + \beta_1 pcnv + \beta_2 avgsen + \beta_3 avgsen^2 + \beta_4 ptime86 + \beta_5 qemp86 + \beta_6 black + \beta_7 hispan + u$$

- ▶ Fazer o *teste t* para testar a significância das variáveis
- ► Fazer o *teste F* para testar

$$H_0: \beta_{avgsen} = 0$$
 $\beta_{avgsen^2} = 0$ vs $H_1: H_0$ não é verdade

$$narr86 = \beta_0 + \beta_1 pcnv + \beta_2 avgsen + \beta_3 avgsen^2 + \beta_4 ptime86 + \beta_5 qemp86 + \beta_6 black + \beta_7 hispan + u$$

- ▶ Fazer o *teste t* para testar a significância das variáveis
- ► Fazer o *teste F* para testar

$$H_0: eta_{avgsen} = 0 \quad eta_{avgsen^2} = 0 \quad \text{vs} \quad H_1: H_0 \text{ não \'e verdade}$$

Comparação

##		betas	Std	White	P-valor	P-valor_W
##	(Intercept)	0.56701	0.03606	0.04021	0.00000	0.00000
##	pcnv	-0.13560	0.04037	0.03357	0.00079	0.00006
##	avgsen	0.01784	0.00970	0.01011	0.06587	0.07763
##	I(avgsen^2)	-0.00052	0.00030	0.00021	0.08226	0.01283
##	ptime86	-0.03936	0.00869	0.00621	0.00001	0.00000
##	qemp86	-0.05051	0.01443	0.01418	0.00047	0.00037
##	inc86	-0.00148	0.00034	0.00023	0.00001	0.00000
##	black	0.32460	0.04542	0.05842	0.00000	0.00000
##	hispan	0.19338	0.03970	0.04023	0.00000	0.00000

```
# Teste F clássico
anova(modelor, modeloi)
## Analysis of Variance Table
##
## Model 1: narr86 ~ pcnv + ptime86 + qemp86 + inc86 + black + h
## Model 2: narr86 ~ pcnv + avgsen + I(avgsen^2) + ptime86 + qem
##
      black + hispan
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2718 1866.4
## 2 2716 1864.0 2 2.3716 1.7278 0.1779
```

 $H_0: \beta_{avgsen} = 0$ $\beta_{avgsen^2} = 0$ vs $H_1: H_0$ não é verdade

```
H_0: \beta_{avgsen} = 0 \beta_{avgsen^2} = 0 vs H_1: H_0 não é verdade
```

```
# Teste F robusto
waldtest(modelor, modeloi, vcov = vcovHC(modeloi, type = "HC"))
## Wald test
##
## Model 1: narr86 ~ pcnv + ptime86 + qemp86 + inc86 + black + h
## Model 2: narr86 ~ pcnv + avgsen + I(avgsen^2) + ptime86 + qem
      black + hispan
##
## Res.Df Df F Pr(>F)
## 1 2718
## 2 2716 2 4.7806 0.008461 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '
```

plot(fitted(modeloi), residuals(modeloi))

Na presença de heterocedasticidade, embora os estimadores MQO continuem sendo não viesados, eles não são mais o melhor estimador linear não viesado.

- Na presença de heterocedasticidade, embora os estimadores MQO continuem sendo não viesados, eles não são mais o melhor estimador linear não viesado.
- Embora o estimador robusto de White funcione bem em casos heterocedasticos e homocedasticos, sob HRLM6 (Normalidade) as estatísticas t e F são exatas e não aproximadas como com o estimador de White.

- Na presença de heterocedasticidade, embora os estimadores MQO continuem sendo não viesados, eles não são mais o melhor estimador linear não viesado.
- ► Embora o estimador robusto de White funcione bem em casos heterocedasticos e homocedasticos, sob HRLM6 (Normalidade) as estatísticas t e F são exatas e não aproximadas como com o estimador de White.
- ▶ Às vezes, graficamente não é tão facil identificar a presença de hetorocedasticidade, mas podemos utilizar um teste para testar

$$H_0: \underbrace{V(u|X) = E(u^2|X) = E(u^2)}_{\mathsf{HRLM4:}} = \sigma^2 I$$

Sob H_0 (Homocedasticidade) não deve existir nenhuma relação entre u^2 com alguma variavel explicativa

Teste Breusch-Pagan da Heterocedasticidade

$$\hat{u}^2 = \delta_0 + \delta_1 x_1 + \ldots + \delta_k x_k + \nu$$

Teste de White para a Heterocedasticidade

$$\hat{u}^2 = \delta_0 + \delta_1 x_1 + \ldots + \delta_k x_k + \delta_{k+1} x_1^2 + \ldots + \delta_{2k} x_k^2 + \delta_{2k+1} x_1 x_2 + \delta_{2k+2} x_1 x_3 + \ldots + \nu$$

 H_0 implica que os coeficientes δ sejam todos iguais a zero (ou seja, homocedasticidade).

```
modelo = lm(price~lotsize+sqrft + bdrms, data = hprice1)
round(summary(modelo)$coef,4)
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -21.7703 29.4750 -0.7386
                                         0.4622
               0.0021 0.0006 3.2201
## lotsize
                                         0.0018
               0.1228
## sqrft
                         0.0132 9.2751
                                         0.0000
## bdrms
              13.8525
                         9.0101 1.5374
                                         0.1279
```

```
# Test Breusch-Pagan
bptest(modelo,studentize = TRUE)

##
## studentized Breusch-Pagan test
##
## data: modelo
## BP = 14.092, df = 3, p-value = 0.002782
```

```
# Test Breusch-Pagan
bptest(modelo,studentize = TRUE)

##
## studentized Breusch-Pagan test
##
## data: modelo
## BP = 4.2232, df = 3, p-value = 0.2383
```

```
# Teste de White
bptest(modelo, ~ log(lotsize)*log(sqrft) +
         log(lotsize)*bdrms + log(sqrft)*bdrms +
         I(log(lotsize)^2) + I(log(sqrft)^2) + I(bdrms^2),
       studentize = TRUE, data = hprice1)
##
##
    studentized Breusch-Pagan test
##
## data: modelo
## BP = 9.5495, df = 9, p-value = 0.3882
```

- Os testes de heterocedasticidade BP e White são construidos Sob HRML1–HRML4, se umas das hipóteses não for verificada afeta os testes.
- Algumas vezes E(y|X) esta mal-especificada, nesse caso os testes de heterocedasticidade podem rejetiar H_0 mesmo quando $V(u|X) = \sigma^2 I$
- Devemos primeiro verificar a má-especificação antes de testarmos heterocedasticidade
- Outra alternativa: Mínimos Quadrados Ponderados (MQP)

Leituras recomendadas

Leituras recomendadas

- Montgomery, D. C; Peck, E. A; Vining, G. Introduction to Linear Regression Analysis. (2012). Wiley, 5ed. – Cap 4
- Wooldridge, Jeffrey M. Introdução à Econometria: Uma abordagem moderna. (2016). Cengage Learning. – Cap 8