Dinesh Auti

Basics of Wearable Electronics

What is a Circuit?

• Combination of electronic parts, wires connected between power sources. It's like a physical program. It's also like setting up dominoes in sequence.

We can see here the flow of the circuit starts and ends at the power source

"Blinky, Festive, Elegant"

LEDs

What is an LED?

LEDs (that's "ell-ee-dees") are a particular type of diode that convert electrical energy into light. In fact, LED stands for "Light Emitting Diode." (It does what it says on the tin!)

Basics

- Ohms Law
- LEDs require a lot less power to light up
- Polarity matters
- More current equals More light
- There is such a thing as too much power!

LEDs without Maths

- A rule of thumb
- A battery, a resistor and an LED
- A good resistor value for most LEDs is 330 Ohms
- Connect all the components in series as shown
- Another way to light up an LED is to just connect it to a coin cell battery!

LEDs with Maths

- Of course, if you're not getting great results with the trial and error approach, you can always get out your calculator and math it up.
- LED Current
- LED Voltage
- LED Wavelength
- LED Brightness

ITEMS	Symbol	Absolute Maximum Rating	Unit
Forward Current	Ι¢	20	mA
Peak Forward Current	IFP	30	mA
Suggestion Using Current	Isu	16-18	mA
Reverse Voltage (V _R =5V)	IR	10	uA
Power Dissipation	Po	105	mW
Operation Temperature	Topa	-40 ~ 85	*C
Storage Temperature	Tstg	-40 ~ 100	*C
Lead Soldering Temperature	TsoL	Max. 260 ℃ for 3 Sec. Max. (3mm from the base	of the expoxy bulb)

ITEMS	Symbol	Test condition	Min.	Тур.	Max.	Unit
Forward Voltage	VF	I==20mA	1.8		2.2	V
Wavelenength (nm) or TC(k)	Δλ	I _F =20mA	620		625	nm
*Luminous intensity	Iv	I _F =20mA	150		200	mcd

Demo!

"The Power!"

Battery

What is a Battery?

- Imagine a world where everything that used electricity had to be plugged in
- Battery to our rescue
- Chemical to Electrical
- Potential difference and Current
- With great power comes great responsibility!
- How Long Will My Project Run on Battery Power?
- Battery capacity is given in milliamp-hours (mAh)

Battery Capacity

- A typical LilyPad LED uses 20mA of current at full brightness
- A single LilyPad Pixel Board will use 40mA when it's set to white (all three internal LEDs fully on)
- Always consider the worst case!
- Hours = Battery mAh / Project mA
- Example 110mAh battery total hours?

	Number of LEDs	1	2	5	10	20		
Battery Name	Battery mAh	Hours of Operation						
Polymer Lithium Ion Battery - 40mAh	40	1.3	8.0	0.4	0.2	0.1		
E-Textiles Battery - 110mAh (2C Discharge)	110	3.7	2.2	1.0	0.5	0.3		
Coin Cell Battery - 20mm (CR2032) *	250	8.3	5.0	2.3	1.2	.61		
Polymer Lithium Ion Battery - 400mAh	400	13.3	8.0	3.6	1.9	1.0		
Polymer Lithium Ion Battery - 850mAh	850	28.3	17.0	7.7	4.0	2.1		
Polymer Lithium Ion Battery - 1000mAh	1000	33.3	20.0	9.1	4.8	2.4		
Polymer Lithium Ion Battery - 2000mAh	2000	66.7	40.0	18.2	9.5	4.9		
Polymer Lithium Ion Battery - 6Ah	6000	200.0	120.0	54.5	28.6	14.6		

Example:

A project with 10 LilyPad LEDs controlled by a LilyPad Arduino

20mA * 10 + 10mA = 210mA

0.52 hrs = 110 mAh / 210 mA

"The Brain"

Controller

What is a Controller?

- Acts as the brain
- Imparts smartness
- Entire computer on a single chip
- GPIO interface to the physical world
- Transducers/Sensors
- Need to write the software

Demo!

"Fashion meets Tech"

Wearables

Demo!

Credits

The content used to prepare these slides was taken from SparkFun and Adafruit.