# Parallel signal transfer through hippocampal CA2 region following perforant-path stimulation and internally generated dentate spikes

Cameron A Wilhite<sup>1</sup>, Russell S Witte<sup>1</sup>, Stephen L Cowen<sup>2</sup>

1) Department of Medical Imaging, 2) Department of Psychology, University of Arizona, Tucson, AZ

Contact: camwilhite@gmail.com



#### **Abstract**

- Most studies investigating signal propagation through the entorhinal cortex (EC) - hippocampal network focus on the tri-synaptic circuit (EC→ Dentate Gyrus (DG)→ CA3→ CA1).
- The role of CA2 in the transmission of signals within the EC-hippocampal network remains unclear in vivo.



- Using silicon probes, we studied EC signal transfer across the dorsal hippocampus in anesthetized and sleeping rats after perforant-path stimulation and dentate spikes, which are spontaneous DG field potentials evoked by EC input.
- Contrary to the tri-synaptic model, CA2 activation preceded CA3 following perforant-path stimulation and dentate spikes.
- Furthermore, peak activation of CA2 was significantly greater than activation of CA3 following both events.
- These data demonstrate a powerful transfer of signals from EC to CA2 in vivo that runs parallel to the tri-synaptic circuit.

## Stimulating the perforant-path



- A) Stimulation and recording protocol.
- B) Histological section of the dorsal hippocampus stained with DAPI (cell layers) and Dil (silicon probe tracks).
- C) Electrophysiological mapping of perforant-path activation (750 µA stimulation intensity, average of 10 stimulations across 10 recording positions).

# Strong activation of CA2 precedes CA3 following perforant-path stimulation Voltage mapping Transverse (mm)

2D voltage maps over time of perforant-path activation of the dorsal hippocampus taken at 2-ms intervals after stimulation.

#### Current source density (CSD)



A) Left: electrode site orientations used for CSD analysis. Right: evoked peri-event CSD traces in CA2 and CA3. B) Latency to peak CSD (left) and peak CSD amplitude (right) across all hippocampal sections (n = 120 stimulations, 3 rats). C) Left: temporal cross-correlations taken from evoked CSD in A. Center, right: Temporal cross-correlations between CSD in CA2 and CA3 separated by stimulation intensity, and between DG and each hippocampal region (CA2, CA3, CA1).

# Detecting dentate spikes Data contributed by Azahara Oliva<sup>3</sup> and Antal Berényi<sup>4,5</sup> Time (ms from peak)



column marked by intersection of red triangles in C. C) Electrophysiological mapping at time of dentate spike in B.

### Voltage mapping



2D voltage maps over time taken at 1.6-ms intervals around the time of dentate spike peak in B and C above.

# **Current source density** -5 0 5 CA2:CA3 time lag (ms) Time (ms)

**A)** Top: LFP trace of sample dentate spike (duration = 33 ms). Bottom: CSD traces in CA2 and CA3 during dentate spike.

B) Temporal cross-correlations taken from CSD in A.

## Strong activation of CA2 precedes CA3 during dentate spikes



DG spike amplitude (mV/mm²)

A) Temporal cross-correlations between CSD in CA2 and CA3 for all dentate spikes (n = 151 dentate spikes, 3 rats) at time intervals before, during, and after each dentate spike.

B) Peak CSD amplitude in CA2 & CA3 during dentate spikes. C) Temporal cross-correlations between peak CSD in DG and CA2, and DG and CA3.

**D-F)** Effect of dentate spike amplitude on temporal crosscorrelations between CA2 and CA3, DG and CA2, and DG and

#### Conclusion

- Peak activation of CA2 preceded and was higher in amplitude than CA3 after perforant-path stimulation and dentate spikes.
- These data show a powerful transfer of signals from EC to CA2 in vivo that runs parallel to the tri-synaptic circuit.
- These findings suggest a key role of CA2 in the initial and concurrent processing of cortical input within the EChippocampal memory network.

### Acknowledgements

Grant support: NIH/NINDS BRAIN No. 1R24MH109060-01 Acknowledgements: Antonio Fernandez-Ruiz, György Buzsáki, Carol Barnes, Menno Witter.