1a	1b	1c	1d	2a	2b	3a	3b	4	\sum

ATENÇÃO: Não é permitido destacar as folhas

1^a Prova de Álgebra Linear Avançada — 13/09/2016, **10:00–12:00 hs**

NOME:	Turma:	RA:

Obs. Denotamos por $\{e_i\}$ a base canônica de um espaço vetorial.

- 1. (2,5 pt) Responder às seguintes perguntas:
- a) Existem espaços vetoriais não nulos contendo um número finito de elementos? (0,75 pt)
- b) Seja V espaço vetorial de dimensão n. Existem transformações lineares não nulas $f:V\to V$ tais que $f^n=0$? Faça um exemplo. (0.75 pt)
 - c) Qual a dimensão do espaço vetorial de matrizes $n \times n$ com traço nulo? (Mostre uma base) (0,5 pt)
 - d) Se f é isomorfismo de espaços vetoriais, sua inversa é isomorfismo? (0,5 pt)
 - 2. (3 pt)
 - a) Definir o núcleo e a imágem de uma transformação linear e provar que o núcleo é um espaço vetorial. (1 pt)
 - b) Enuncie e demonstre o Teorema "Núcleo-Imágem". (2 pt)
 - 3. (3.5 pt)
- a) Considere $V = \mathbb{C}^2$ e uma sua base $\mathcal{B} = \{e_1 e_2, 2e_2\}$. Encontre \mathcal{B}^* a base dual de \mathcal{B} mostrando os valores que ela toma na base canônica de V.(2 pt)
 - b) Mostre que o isomorfismo que leva \mathcal{B} em \mathcal{B}^* não é canônico. (1,5 pt)
 - 4. (2 pt) Enuncie e prove o Teorema de extensão de base. (2 pt)

Incluir na prova, por favor, **todas** as "contas" feitas nas resoluções. Respostas não acompanhadas de argumentos que as justifiquem não serão consideradas.

Boa Prova!