

Data Reuse and Dataflow

黃稚存 Chih-Tsun Huang

cthuang@cs.nthu.edu.tw

聲明

●本課程之內容 (包括但不限於教材、影片、圖片、檔案資料等), 僅供修課學生個人合理使用,非經授課教師同意,不得以任何 形式轉載、重製、散布、公開播送、出版或發行本影片內容 (例如將課程內容放置公開平台上,如 Facebook, Instagram, YouTube, Twitter, Google Drive, Dropbox 等等)。如有侵權行 為,需自負法律責任。

CS5120 CT 2024

Outline

- Matrix Multiplication in DNN
- Tiling
- Data Locality and Reuse
- Data Reuse in DNN
 - Temporal reuse
 - Spatial reuse
 - Reducing reuse distance
- Dataflow
- Tiled Loop Nest for Dataflow

Reference:

V. Sze, Y.-H. Chen, T-.J. Yang and J. S. Emer,"
Efficient Processing of Deep Neural Networks -- Synthesis Lectures on Computer Architecture, "
Morgan&Calypool Publishers, 2020.

Recap: Matrix Multiplication in DNN

Lec05 CS5120 CT 2024

Recap: Fully-Connected Layer

H = 1W = 1R = 1S = 1P = 1 $\mathbf{Q} = 1$ **U (Stride)**= 1 Pad (Padding) = 0 **C:** # of Input Channels **M:** # of Output Channels

5

N: Batch size

Alternative: Mapping FC Layer to Matrix Multiplication

Single Input Activation Map

Batch Size = 1

Batch Size = N

Recap: Mapping Convolution to Matrix Multiplication (Redundant Input Activations)

Converting convolution to GEMM via im2col

Mapping Convolution to Matrix Multiplication: Multiple Input/Output Channels

Filter (Weight)

Input Activation

Output Activation

Toeplitz Matrix (w/ redundant data)

I Channel 1 | I Channel 2

O Channel 1
O Channel 2

1	2	3	4	1	2	3	4
1	2	3	4	1	2	3	4

а	b	d	е
b	O	е	f
d	е	g	h
е	f	h	i
а	р	đ	Ф
a b	ЬС	ъ Ф	e f
			e f h

| Channel 2 | Channel 1

O Channel 1
O Channel 2

Mapping Convolution Layer to Matrix Multiplication

$$P = \frac{(H - R + U)}{U}, Q = \frac{(W - S + U)}{U}$$

Mapping Convolution to Matrix Multiplication (Redundant Weights)

Tiling

Naïve Matrix Multiplication for Fully-Connected Layer

Concept of Tiling: Tile-based Computation

Tiling for Matrix Multiplication in Hardware

- Partition the matrix operation into small submatrices (tiles) to optimize hardware execution
 - Improves data reuse (locality) across different levels of memory hierarchy
 - Reduces memory bandwidth by keeping data closer to compute units
 - Allows for parallel execution on hardware accelerators
 - May generate subsequent partial results (psum) to be added
- Memory management
 - Not primarily managed by hardware caches (i.e., implicitly data orchestration)
 - Instead, explicitly managed local buffers (scratchpads) store and reuse tiles controlled explicitly by programmers or designers
 - Optimized data flow reduces costly global memory access

Data Locality and Reuse

Lec05 CS5120 CT 2024 15

Single MAC Unit for DNN

* MAC: Multiply-and-ACcumulate

Memory Access is the Bottleneck

* MAC: Multiply-and-ACcumulate

- Worst case: all memory R/W are DRAM accesses
- E.g., AlexNet has 724M MACs
 - → 2896M DRAM accesses required (extremely energy inefficient!)

Locality: Leverage Local Memory for Data Reuse

Extra levels of local memory hierarchy

Smaller, but Faster and more Energy-Efficient

(Usually more expensive with more levels)

Temporal reuse: the same data is used more than once over time by the same consumer

Temporal and Spatial Reuse

Temporal reuse

 The same data is used more than once over time by the same consumer

Memory Subsystem (Hierarchy)

Spatial reuse

 The same data is used by more than one consumer at different spatial locations of the hardware

Leverage Parallelism for Higher Performance

Leverage Parallelism with Spatial Data Reuse

Spatial reuse: the same data is used by more than one consumer at different spatial locations of the hardware.

Data Reuse in DNN

Lec05 CS5120 CT 2024 2

Data Reuse in DNN

Batch Size = 1 (N = 1)

- # MACs:
 - ◆ RSCPQM
- # Input Activations
 - ◆ Size: *HWC*
 - ◆ Max reuse: ~RSM
- # Weights
 - ◆ Size: RSCM
 - ◆ Max reuse: PQ
- # Output Activations
 - ◆ Size: *PQM*
 - Max reuse: RSC

Dataflow and Mapping to Hardware

Millions of non-trivial mappings

7-dimensional Network Layer Reuse Reuse **Output**

RSCPQMN

4D Operand / Result Space

Weights: RSCM

Inputs: *HWCN*

Outputs: PQMN

Algorithmic | Hardware 1-d or 2-d (or 3-d or ...) Hardware

Some Statistics for Your Reference

AlexNet conv2

- Ifmap: 46K; Filter: 300K; Ofmap: 180K (total: 528K data)
- ◆ MAC: 224M
- MobileNet V1 conv2_1/dw
 - Ifmap: 420K; Filter 9.2K, Ofmap: 400K (total: 829K data)
 - ◆ MAC: 116M
- ResNet50 res5a_branch1
 - Ifmap: 200K; Filter 2.1M, Ofmap: 100K (total: 2.4M data)
 - ◆ MAC: 103M

Types of Data Reuse in DNN

For ideal data reuse, DRAM accesses in AlexNet can be reduced from 2896M to 61M

Convolutional Reuse

CONV layers only (sliding window)

Reuse: Activations
Filter weights

Fmap Reuse

CONV and FC layers

Reuse: Activations

Filter Reuse

CONV and FC layers (batch size > 1)

Reuse: Filter weights

Temporal Reuse

Lec05 CS5120 CT 2024 2

1-D Convolution with Temporal Reuse

Lec05 CS5120 CT 2024 29

Temporal Reuse to Improve Efficiency

- Temporal reuse occurs when the same data value is used more than once by the same consumer (e.g., a PE)
 - By adding an intermediate memory level to the memory hierarchy of the hardware
- Benefits
 - Less energy by accessing data from smaller memory level
 - May be faster too

Reuse Distance for Temporal Reuse

- Reuse distance of temporal reuse
 - Number of data accesses required by the consumer in between the accesses to the same data value
 - A function of the ordering of operations
- Storage capacity of intermediate memory limits the maximum reuse distance to be exploited
 - However, larger storage capacity implies more energy
- Reducing the reuse distance of one data type (ifmap, weight, or ofmap) often comes at the cost of increasing the reuse distance of other types
- Changing the processing order of compute can alter the reuse distance

Spatial Reuse

Lec05 CS5120 CT 2024 32

1-D Convolution with Spatial Reuse

Spatial Reuse to Improve Efficiency

- Spatial reuse occurs when the same data value is used by more than one consumer (e.g., a group of PEs) at different spatial locations of the hardware
 - By reading the data once from the source memory level and multicasting it to all consumers

Benefits

- Reducing # accesses to the source memory level
 - Less energy cost
- Reducing the bandwidth required from the source memory level
 - □ Helps to keep the PEs busy (higher utilization) → higher performance

Reuse Distance for Spatial Reuse

- Reuse distance of spatial reuse
 - The maximum number of data accesses in between any pair of consumers that access the same data value
 - A function of the ordering of operations
- If group of consumers have no storage capacity
 - Spatial reuse by multicast in the same cycle
 - Data need to be resent when it is needed in a different cycle

Physical Interconnection and Multi-Bank Memory

- Physical connectivity of the interconnection between L1 and consumers may limit the multicast from any banks in L1 to all consumers
- Data should be multicast from L2 to L1 → data duplication

Reducing Reuse Distance

Lec05 CS5120 CT 2024 37

Concept of Temporal Tiling to Reduce Reuse Distance of Partial Sums

Tiled Temporal Reuse

Tiling

- The goal is to tile (partition) the data so that the reuse distance becomes smaller
 - However, it is not feasible to minimize the reuse distance for all data types simultaneously
- Temporal tiling (tiling for temporal reuse)
 - Reducing the reuse distance of specific data types to make it smaller than the storage capacity of a certain memory level in the memory hierarchy

Lec05 CS5120 CT 2024 3

Spatial Tiling (Tiling for Spatial Reuse)

- Reusing the same data value by as many consumers as possible
- Reducing the reuse distance so that one multicast can serve the maximum possible consumers given a fixed amount of storage capacity at each consumer

(a) No spatial reuse

(b) Medium degree of spatial reuse

(c) High degree of spatial reuse

Dataflow

Lec05 CS5120 CT 2024

Dataflow

- Dataflow refers to how data is processed within the hardware architecture
 - Determines the path that data moves and how it is transformed and manipulated through the system
 - Defines the execution order of the DNN operations in hardware
 - Computation order
 - Data movement order
- Loop nest is a compact way to describe the dataflow supported in hardware
 - for (temporal for): describes the temporal execution order
 - parallel_for (spatial for): describes the parallel execution

Weight-Stationary (WS) Dataflow and Output-Stationary (OS) Dataflow


```
for s in range(S):
    for q in range(Q):
        w = q+s;
        OA[q] += IA[w] * W[s];
```

```
for q in range(Q):
    for s in range(S):
        w = q+s;
        OA[q] += IA[w] * W[s];
```

Weight-Stationary (WS) Dataflow

More Dataflow: Input-Stationary (IS)


```
for w in range(W):
    for s in range(S):
        q = w-s;
        OA[q] += IA[w] * W[s];
```

Input-Stationary (IS) Dataflow

Model of Single Processing Element (PE)

Space-Time Diagram for Weight-Stationary (WS) Dataflow

$$Q = 9, W = 12, S = 4$$

Space-Time Diagram for Weight-Stationary (WS) Dataflow

Observation: Single weight reused Q times

Weight-Stationary Dataflow

Weight-Stationary Dataflow

Weight-Stationary Dataflow

Space-Time Diagram for Output-Stationary (OS) Dataflow

```
for q in range(Q):
   for s in range(S):
        w = q+S
        OA[q] += IA[w] * W[s];
```

$$Q = 9, W = 12, S = 4$$

Space-Time Diagram for Output-Stationary (OS) Dataflow

Observation: Single output reused *S* times

Sliding Window in Output-Stationary

Tiled Loop Nest for Dataflow

Lec05 CS5120 CT 2024 58

Tiled Loop Nest for Weight-Stationary Dataflow


```
Q = 9, W = 12, S = 4; S is tiled into S1 = 2, S0 = 2
```

```
for s1 in range(S1):
    for q in range(Q):
        parallel_for s0 in range(S0):
        s = s1*S0 + s0;
        w = q+s;
        OA[q] += IA[w] * W[s];
```

Space-Time Diagrams of Tiled WS Dataflow

```
for s1 in range(S1):
    for q in range(Q):
        parallel_for s0 in range(S0):
        s = s1*S0 + s0; w = q+s;
        OA[q] += IA[w] * W[s];
```

Q = 9, W = 12, S = 4; S is tiled into S1 = 2, S0 = 2

Summary

- Parallelizing the compute may reduce the latency
- Minimizing data movement is the key to high energy efficiency for DNN accelerators
 - Maximizing data reuse at the higher level of memory hierarchy
- Dataflow taxonomy:
 - Output Stationary: minimize movement of psums
 - Weight Stationary: minimize movement of weights
 - Input Stationary: minimize movement of inputs
- Loop nest provides a compact way to describe properties of a dataflow
 - E.g., data tiling in multi-level storage and temporal/spatial processing