HW3: Linear System Theory (ECE532)

Instructor: Jun Moon

Due Date: April 2 at the begging of the class

Reading Assignment: Read the textbook on linear algebra (e.g. Linear Algebra and Its Applications by G. Strang).

Problem 1: The two vectors, x and y, in \mathbb{R}^n are said to be *orthogonal* if $x^Ty = 0$ (page 60 of the textbook). Given a k-dimensional subspace S in \mathbb{R}^n , we define its orthogonal set as

$$S^{\perp} := \{ y \in \mathbb{R}^n : x^T y = 0, \text{ for all } x \in \mathcal{S} \}.$$

- Show that S^{\perp} is a subspace
- Prove that if $v_1, ..., v_k$ is a basis for S, and $v_{k+1}, ..., v_p$ is a basis for S^{\perp} , then the vectors $v_1, ..., v_p$ are linearly independent
- Prove that $\dim(S^{\perp}) = n k$ and thus that $S + S^{\perp} = \mathbb{R}^n$.
- Given a real $n \times m$ matrix A, show that

$$R(A^T) = (N(A))^{\perp}.$$

Namely, the range space of A^T is equal to the orthogonal set of the null space N(A).

Problem 2: Given a matrix

$$B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

- Determine its eigenvalues and a set of normalized eigenvectors or normalized generalized eigenvectors (see page 60 of the textbook for the definition of the normalized eigenvectors).
- If B is a matrix representation of the linear operator $\mathcal{B}: \mathbb{R}^3 \to \mathbb{R}^3$ (with respect to the natural basis), determine the null space and the range space of \mathcal{B} .
- Can you diagonalize B? Justify your answer
- Is B similar to the matrix

$$B' = \begin{pmatrix} 2 & \alpha & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix},$$

where $\alpha \neq 0$ is a given real number? If your answer is the affirmative, find the corresponding similarity transformation.

Problem 3: Prove that $e^{(P+M)t} = e^{Pt}e^{Mt}$ if PM = MP (P and M commute). Assuming that PM = MP, use the following steps:

- Show that e^{Pt} and M commute;
- by taking derivatives directly, show that the time derivative of $Q(t) = e^{Pt}e^{Mt}$ satisfies

$$\dot{Q}(t) = (P + M)e^{Pt}e^{Mt};$$

• since Q(t) satisfies $\dot{Q}(t) = (P+M)Q(t)$ with Q(0) = I, show that $Q(t) = e^{(P+M)t}$.

Problem 4: You are given a LTV system

$$\dot{x}(t) = A(t)x(t), \ x(0) = (1,1)^T, \ A(t) = \begin{pmatrix} -1 & e^{2t} \\ 0 & -1 \end{pmatrix}$$

- Obtain a closed-form expression for the state transition matrix, $\Phi(t,s)$, corresponding to A
- Obtain an expression for the solution of the differential equation above for all $t \geq 0$
- Obtain the eigenvalues of matrix A(t) for all $t \ge 0$. Based on this information, would you expect the system trajectories to be bounded for all $t \ge 0$
- Now, use the solution obtained in (ii) to deduce whether the system states remain bounded as $t \to \infty$. Any surprises?

Problem 5:

Let V be the set of all $n \times n$ matrices with real entires with the *matrix addition* and *scalar multiplication* given by component-wise addition and multiplication. Prove that (V, \mathbb{R}) is a vector space.

Problem 6:

Suppose W is a subspace of a finite-dimensional vector space V. For some $v \in V$ and $v \notin W$, set $X = \operatorname{span}(W \cup \{v\})$. Prove that $\dim(X) = \dim(W) + 1$.