ТАУ Лабораторная работа №2

Временные и частотные характеристики

Due: 4 апреля 2020

Пусть система управления с одним входом x(t) и одним выходом y(t) задана передаточной функцией W(s):

1.
$$W(s) = \frac{s+1}{(s+2)(0.04s^2+0.2s+1)};$$

2.
$$W(s) = \frac{2(s+2)}{(s+1)(0.09s^2+0.3s+1)};$$

3.
$$W(s) = \frac{3(s+1)}{(s+3)(0.16s^2+0.4+1)};$$

4.
$$W(s) = \frac{4(s+3)}{(s+1)(0.25s^2 + 0.5s + 1)};$$

5.
$$W(s) = \frac{5(s+3)}{(s+1)(0.36s^2 + 0.6s + 1)};$$

6.
$$W(s) = \frac{6(s+4)}{(s+1)(0.49s^2 + 0.7s + 1)};$$

7.
$$W(s) = \frac{7(s+4)}{(s+2)(0.64s^2 + 0.8s + 1)};$$

8.
$$W(s) = \frac{8(s+5)}{(s+3)(0.25s^2+0.7s+1)};$$

9.
$$W(s) = \frac{9(s+5)}{(s+2)(0.16s^2 + 0.56s + 1)};$$

10.
$$W(s) = \frac{2(s+1)}{(s+3)(0.49s^2 + 0.7s + 1)};$$

11.
$$W(s) = \frac{5(s+7)}{(s+1)(0.64s^2 + 0.8s + 1)};$$

12.
$$W(s) = \frac{8(s+4)}{(s+2)(0.25s^2+0.7s+1)};$$

13.
$$W(s) = \frac{9(s+1)}{(s+1)(0.16s^2 + 0.56s + 1)};$$

14.
$$W(s) = \frac{10(s+5)}{(s+4)(0.36s^2 + 0.84s + 1)}$$

Задания

- 1. Найти переходную и импульсную функции.
- 2. Найти АЧХ и ФЧХ системы. Определить реакцию системы в установившемся режиме при входном сигнале $x(t) = 2\sin(0.5t)$.
- 3. Используя пакет control найти:
 - переходную функцию (step),
 - импульсную функцию (*impulse*),
 - реакцию на входной сигнал $x(t) = 2\sin(0.5t)$ (forced-response),
 - характеристики выходного сигнала в установившемся режиме (freqresp),
 - построить диаграмму Найквиста.

Сравнить полученные результаты.