

Zheng Feng

Part 1: Resistive Circuit Analysis

- 1. Circuit Variables and Circuit Elements
- 2. Simple Resistive Circuit Analysis
- 3. Techniques of Circuit Analysis
- 4. Operational Amplifier

Chapter 3: Techniques of Circuit Analysis

- Node-Voltage Analysis Method
- Mesh-Current Analysis Method
- Superposition Theorem
- Source Transformation
- Thévenin and Norton Theorem
- Maximum Power Transfer Theorem

- What should we do for circuit analysis?
 - Build equations for a given circuit;
 - Solve equations to determine currents and voltages for all (or required) circuit elements.

What is the problem now?

- How many, at least, independent equations should we have to solve for a given circuit?
- How can we get the necessary equations?

Theorem 1

■ For a circuit with *n* nodes, KCL yields (*n*-1) independent equations for any (*n*-1) nodes.

Theorem 2

- For a circuit with *n* nodes and *b* branches:
 - The circuit must have m = b (n-1) meshes;
 - KVL yields m = b (n-1) independent equations for the m = b (n-1) meshes.

- Node-Voltage Analysis Method
- Mesh-Current Analysis Method

3-1 Node-Voltage Analysis Method

- What is node voltage?
- How is node voltage analysis method implemented?

What is Node Voltage?

- Node voltage is defined as the voltage rise from the reference node;
- Voltages across all branches can be represented by node voltages.

What is Node Voltage?

HOW is node voltage analysis method implemented?

Example

Find v_1 , v_2 , and i_1 .

Solution:

Step 1: Select reference node and define node voltages:

Step 2: Build KCL equations for nodes except the reference node

$$\begin{cases} 15 - \frac{u_1}{60} - \frac{u_1}{15} - \frac{u_1 - u_2}{5} = 0\\ \frac{u_1 - u_2}{5} - \frac{u_2}{2} - 5 = 0\\ \end{cases}$$

Step 3: Solve equations to get node voltages:

$$\begin{cases} u_1 = 60V \\ u_2 = 10V \end{cases}$$

Step 4: Determine required unknown voltages and currents by solved node voltages:

$$\begin{cases} v_1 = u_1 = 60V \\ v_2 = u_2 = 10V \end{cases}$$
$$i_1 = \frac{u_1 - u_2}{5} = \frac{60 - 10}{5} = 10A$$

- Further, if necessary, other unknown voltages, currents, or powers can also be determined, and the circuit is completely solved;
- If necessary, answers can be checked by power balance.

Steps of Node-Voltage Method

- 1. Select one of the nodes as the reference node, and define node voltages for other nodes;
- 2. Build KCL equations for nodes except the reference node;
- 3. Solve equations for the node voltages;
- 4. Determine required voltages, currents or powers by node voltages.

Example

Find the power dissipated by all resistors in the circuit.

Solution:

Select the reference node and define node voltages:

Build KCL equations for nodes except the reference node:

$$\begin{cases} 1 - 0.1v_1 - 0.1(v_1 - v_4) - (v_1 - v_2) = 0\\ (v_1 - v_2) - v_2 - 0.5(v_2 - v_3) - 0.5 = 0\\ 0.5(v_2 - v_3) + 0.5 - 0.5v_3 - 0.25(v_3 - v_4) = 0\\ 0.1(v_1 - v_4) + 0.25(v_3 - v_4) - 0.25v_4 = 0 \end{cases}$$

$$\begin{cases} 1.2v_1 - v_2 - 0.1v_4 = 1 \\ v_1 - 2.5v_2 + 0.5v_3 = 0.5 \\ 0.5v_2 - 1.25v_3 + 0.25v_4 = -0.5 \\ 0.1v_1 + 0.25v_3 - 0.6v_4 = 0 \end{cases}$$

Solve equations for node voltages by Cramer's rule:
$$\begin{vmatrix} v_1 = 1.23V \\ v_2 = 0.42V \\ v_3 = 0.67V \\ v_4 = 0.48V \end{vmatrix}$$

Then, calculate power dissipated by all resistors...

Example with Dependent Source

Use node-voltage method to find the value of ν_3 and ν_4 .

Concept of Super Node

4

Solution:

1.
$$V_1 - V_4 = V_4 - V_3$$

2.
$$-V_1-I+V_2-V_1=0$$

3.
$$V_2=10V$$

4.
$$-2(V_3-V_2)+4(V_4-V_3)-2V_3=0$$

5.
$$-4(V_4-V_3)-2(V_3-V_2)-4V_4+I=0$$

解得:

 $V_1=7/2V$; $V_2=10V$; $V_3=9/2V$; $V_4=4V$; I=3A

其中,1式由超节点得到V1与V4的关系并带入受控方程得出,2-5式分别为V1~V4的节点方程

3-2 Mesh-Current Analysis Method

- What is mesh current?
- How is mesh current analysis method implemented?

What is Mesh Current?

- Mesh current is introduced just as an imaginary quantity;
- Mesh current flows around a mesh;
- All branch currents do not change for introducing mesh currents
- All branch currents can be represented by mesh currents.

What is Mesh Current?

Branch currents:

$$i_{\rm c} = i_{\rm a} + i_{\rm b}$$

Mesh currents:

$$\begin{cases} i_{c} = i_{m1} + i_{m2} \\ i_{a} = i_{m1} \\ i_{b} = i_{m2} \end{cases}$$

HOW is mesh current analysis method implemented?

Example:

Determine the currents of every branch.

Solution:

Step 1: Select mesh current i_a and i_b

Step 2: Build KVL equations for all meshes

$$\begin{cases} R_1 i_a + R_3 (i_a - i_b) - u_{s0} = 0 \\ R_2 i_b + u_{s1} + R_3 (i_b - i_a) = 0 \end{cases}$$

Step 3: Solve equations to get mesh current i_a and i_b

$$\begin{cases} 5i_a + 20(i_a - i_b) - 20 = 0 \\ 10i_b + 10 + 20(i_b - i_a) = 0 \end{cases}$$

$$i_b = \frac{3}{7}A$$

Step 4: Determine required currents by mesh current i_a and i_b .

$$\begin{cases} i_0 = i_1 = \mathbf{i}_a = \frac{8}{7} A \\ i_2 = \mathbf{i}_b = \frac{3}{7} A \end{cases}$$

$$\begin{cases} i_3 = \mathbf{i}_a - \mathbf{i}_b = \frac{5}{7} A \\ i_4 = -\mathbf{i}_b = -\frac{3}{7} A \end{cases}$$

- Further, if necessary, other unknown voltages and currents can also be determined, and the circuit is completely solved;
- If necessary, answers can be checked by power balance.

Steps of Mesh-Current Method

- Assume mesh current and its reference direction (clockwise) for every mesh;
- 2. Build KVL equations for every mesh;
- 3. Solve equations for mesh currents;
- 4. Determine required unknown currents and voltages by mesh currents.

Example with Dependent Source

Use mesh-current method to find the total power developed in the circuit.

Solution:

对回路1,2列写回路方程:

解得:

$$I_1=22A; I_2=6A;$$

$$I_3=I_2-I_1=-16A$$
;

对回路3列回路方程:

$$-U-10+6 \times 3+75=0$$

解得:

$$U = 83V$$

两个电压源和一个电流源由其各自的电压电流关联关系可知:

只有电压为125V的电压源发出功率。

Example of Super-Mesh

Use mesh-current method to find the total power dissipated in the circuit.

Concept of Super-Mesh

$$P_{dissipated} = 75 \text{W}$$

Solution:

解得:

$$I_a = -1A; I_b = 2A;$$

由其电压电流关联关系可知: 10V电压源吸收功率,15V电压源发出功率;

采用超回路法:

$$\begin{bmatrix} -10 + 3I_a + 9I_b - 15 + 6I_b + 2I_a = 0 \\ I_a + 3 = I_b \end{bmatrix}$$

对a回路列回路方程:

$$-10-3+U-2=0$$

解得U=15V; U为受控源两端电压;

由于受控源电流电压非关联,故受控源发出功率;

故总的发出功率为:

 $P=3\times15+2\times15=75W$

Nodal method versus Mesh method

- Mesh analysis only applies to planar circuits;
- Node-voltage method results in direct calculation of voltage; whereas mesh-current analysis provides currents;
- Mesh analysis results in *m*=*b*-(*n*-1) equations; and nodal analysis results in (*n*-1) equations.

3-3 Superposition Theorem

- If a linear circuit is excited by more than one independent source, the total response is the algebraic sum of all the individual responses.
- The individual response is the result of an independent source acting alone.

Excitation and Response

Response

Comments on Superposition

Act alone:

- Consider each independent source one at a time;
- Other independent sources are "killed", or "turned off", or "zeroed out".

Comments on Superposition

- If a voltage source is zeroed out, it is treated as a short circuit;
- If a current source is zeroed out, it is treated as an open circuit;
- Superposition theorem does not apply to power calculation.

Example

Find the unknown branch current i.

Solution:

1. Set the current source to be zero:

$$i_a = \frac{3V}{(6+9)\Omega}$$
$$= 0.2A$$

2. Set the voltage source to be zero:

3. By superposition, we have:

$$i = i_a + i_b = 0.2 + 0.8 = 1A$$

4

3-4 Source Transformation

Source Transformation

$$\begin{cases} R_s = R_p \\ v_s = i_s R_p \end{cases}$$

Source Transformation

$$v_{Ls} = \frac{v_s}{R_s + R_L} R_L$$
 $\qquad \qquad \qquad v_{Lp} = \frac{l_s R_p}{R_p + R_L} R_L$

Source Transformation

$$v_{Ls} = \frac{v_s}{R_s + R_L} R_L$$

$$\begin{vmatrix} R_s = R_p \\ V_{Lp} = \frac{i_s R_p}{R_p + R_L} R_L \end{vmatrix}$$

Example

NOTE the reference direction of voltage and current sources.

Example

Find the current in the 5 $k\Omega$ resistor by source transformations.

ANS: $i_0 = 3mA$

Special Cases of Source Transformation

Example

Use source transformation to find ν_0 .

Solution:

ANS: $v_0 = 400V$

3-5 Thévenin and Norton Equivalents

- **Thévenin Equivalent Circuit**
- Norton Equivalent Circuit

Thévenin and Norton Equivalents

Resistive network containing independent and dependent sources

- At times, we only have interest in the behavior at the two terminals;
- Thévenin and Norton Equivalents are circuit simplification techniques that focus on terminal behavior.

Thévenin Equivalent Circuit

- 1. A network with two terminals can be equivalent to an independent voltage source v_{TH} in series with a resistor R_{TH} ;
- 2. v_{TH} is the open-circuit voltage when the two terminals are disconnected;
- 3. R_{TH} is the equivalent resistance of the twoterminal network when all independent sources in it are zeroed out (killed).

Thévenin Equivalent Circuit

Example

Find the Thévenin equivalent of the circuit between terminals a and b.

Solution:

Find the open circuit voltage between two terminals a and b:

By node-voltage analysis method, we have:

$$\frac{v_{oc} - 25}{5} + \frac{v_{oc}}{20} - 3 = 0$$

$$v_{oc} = 32V$$

$$v_{TH} = v_{oc} = 32V$$

Find the Thévenin equivalent resistance between two terminals a and b:

$$R_{TH} = 8\Omega$$

Then, the Thévenin equivalent of the circuit between terminals a and b is:

Thévenin Equivalent Circuit

Open-Circuit Voltage

Short-Circuit Current

Thévenin Equivalent Circuit

$$\begin{cases} v_{TH} = v_{oc} \\ R_{TH} = v_{oc} / i_{sc} \end{cases}$$

Example

Find the Thévenin equivalent of the circuit between terminals a and b.

Solution:

Find the open circuit voltage between a and b:

$$v_{oc} = 32V$$

Find the short circuit current from a to b:

By node-voltage method, we have:

$$\frac{v-25}{5} + \frac{v}{20} - 3 + \frac{v}{4} = 0$$

$$v = 16V$$

$$i_{sc} = 16/4 = 4A$$

$$\begin{cases} v_{TH} = v_{oc} = 32V \\ R_{TH} = v_{oc}/i_{sc} = 32/4 = 8\Omega \end{cases}$$

Then, we have:

Example

Find the Thévenin equivalent with respect to the terminals of a and b.

Solution:

Find the open circuit voltage:

By node-voltage method, we have:

$$\begin{cases} \frac{v_1 - 50}{2} + \frac{v_1}{20} + \frac{v_1 - v_2}{5} = 0\\ \frac{v_2 - v_1}{5} + \frac{v_2}{50} + \frac{v_2 - v_3}{10} + 20\frac{v_2}{50} = 0\\ \frac{v_3}{40} + \frac{v_3 - v_2}{10} - 20\frac{v_2}{50} = 0 \end{cases}$$

1

Find short circuit current from a to b:

By node-voltage method, we have:

$$\begin{cases} \frac{v_1}{20} + \frac{v_1 - 50}{2} + \frac{v_1 - v_2}{5} = 0\\ \frac{v_2 - v_1}{5} + \frac{v_2}{50} + \frac{v_2}{10} + 20 \frac{v_2}{50} = 0 \end{cases} \qquad \begin{cases} v_1 = 36V\\ v_2 = 10V \end{cases}$$

$$i_{sc} = \frac{v_2}{10} + 20 \frac{v_2}{50}$$
 $i_{sc} = 5 \text{mA}$

$$\begin{cases} v_{TH} = v_{oc} = 100 \text{V} \\ R_{TH} = \frac{v_{oc}}{i_{sc}} = \frac{100 \text{V}}{5 \text{mA}} = 20 \text{k}\Omega \end{cases}$$

Example

Find the Thévenin equivalent with respect to the terminals a, b.

Solution:

Since the circuit contains no independent sources,

$$v_{TH} = v_{oc} = 0V$$

4

Apply a test voltage source to terminal a and b:

By node voltage method, we have:

$$\begin{cases} i_{T} = \frac{v_{T} - v}{20} + \frac{v_{T} - 40i_{\Delta}}{60} \\ \frac{v - 40i_{\Delta}}{16} + \frac{v}{80} + \frac{v - v_{T}}{20} = 0 \\ i_{\Delta} = \frac{-v}{80} \end{cases} \longrightarrow \frac{v_{T}}{i_{T}} = 18.75\Omega$$

$$\begin{cases} v_{TH} = 0 \\ R_{TH} = \frac{v_T}{i_T} = 18.75\Omega \end{cases}$$

Norton Equivalent Circuit

- 1. A network with two terminals can be equivalent to an independent current source i_{sc} in parallel with a resistor R_N ;
- 2. i_{sc} is the short-circuit current when the two terminals are directly connected;
- 3. R_N is the equivalent resistance of the twoterminal network when all independent sources in it are zeroed out (killed).

Norton Equivalent Circuit

Norton Equivalent Circuit

Norton equivalent can be derived from Thévenin equivalent by source transformation; and vice versa.

Thévenin and Norton Equivalents

- Both Thévenin and Norton circuits provide an equivalent for a 2-terminal network, and the "load" network (*R*_L) would not "know" if it was "seeing" the equivalent;
- Thévenin equivalent can be derived from Norton equivalent by source transformation; and vice versa.

3-6 Maximum Power Transfer

Resistive network containing independent and dependent sources

Problem:

To determine the value of the load R_L that permits maximum power delivered to R_L .

Power delivered to
$$R_{\rm L}$$
: $p = \left(\frac{v_{\rm TH}}{R_{\rm TH} + R_{\rm L}}\right) R_{\rm L}$

The derivative of power p with respect to R_L :

$$\frac{dp}{dR_{\rm L}} = \frac{R_{\rm TH} - R_{\rm L}}{\left(R_{\rm TH} + R_{\rm L}\right)^3} v_{\rm TH}^2$$

Let
$$\frac{dp}{dR_{\rm L}}=0$$
 , we get:

$$R_{\rm L} = R_{\rm TH}$$

Maximum power transfer occurs

Maximum Power Transfer

Condition of maximum power transfer:

$$R_{\rm L} = R_{\rm TH}$$

■ The maximum power delivered to R_L is:

$$p_{\text{max}} = i^2 R_{\text{L}} = \left(\frac{v_{\text{TH}}}{R_{\text{TH}} + R_{\text{L}}}\right)^2 R_{\text{L}} = \frac{v_{\text{TH}}^2}{4R_{\text{L}}}$$

Summary of Chapter 3

- Node-voltage analysis method
- Mesh-current analysis method
- Superposition theorem
- Source transformation
- Thévenin and Norton Equivalent
- Maximum power transfer

Primary Goals of Chapter 3

By this chapter, you should be able to:

- Understand and use node-voltage and mesh-current method for circuit analysis;
- Implement superposition and source transformation to solve a circuit;

- Understand the concept of Thévenin and Norton equivalent circuit;
- Construct the Thévenin and Norton equivalent for a circuit;
- Find the condition for maximum power transfer to a resistive load.

