

Programmierung und Deskriptive Statistik

BSc Psychologie WiSe 2024/25

Belinda Fleischmann

(8) Verteilungsfunktionen und Quantil	е

Empirische Verteilungsfunktionen
Quantile und Boxplots
Programmierübungen und Selbstkontrollfragen

Empirische Verteilungsfunktionen

Programmierübungen und Selbstkontrollfragen

Quantile und Boxplots

Kumulative Häufigkeitsverteilungen

Definition (Kumulative absolute und relative Häufigkeitsverteilungen)

 $x=(x_1,...,x_n)$ sei ein Datensatz, $A:=\{a_1,...,a_k\}$ mit $k\le n$ die im Datensatz vorkommenden verschiedenen Zahlenwerte und h und r die absoluten und relativen Häufigkeitsverteilungen von x, respektive. Dann heißt die Funktion

$$H:A\to \mathbb{N}, a\mapsto H(a):=\sum_{a'\leq a}h(a') \tag{1}$$

die kumulative absolute Häufigkeitsverteilung von x und die Funktion

$$R:A\rightarrow [0,1], a\mapsto R(a):=\sum_{a'< a}r(a') \tag{2}$$

die kumulative relative Häufigkeitsverteilung der Zahlwerte von x.

Bemerkung

• Mit den Definitionen der absoluten und relativen Häufigkeitsverteilungen gilt also

$$H(a) = \text{Anzahl der } x_i \text{ aus } x \text{ mit } x_i \leq a$$
 (3)

und

$$R(a) = \text{Anzahl der } x_i \text{ aus } x \text{ mit } x_i \leq a \text{ geteilt durch } n.$$
 (4)

Evaluation kumulativer Summen

In R können kumulative Summen mit cumsum() berechnet werden.

Evaluation am Beispiel der Pre.BDI-Werte:

```
# Einlesen des Beispieldatensatzes und Abbildungsverzeichnisdefinition
        <- file.path(data path, "psychotherapie datensatz.csv")
fpath
        <- read.table(fpath, sep = ",", header = T)
# Evaluation der absoluten und relativen Häufigkeitsverteilugen von Pre.BDI
        <- D$Pre BDT
                                     # Double vector der Pre BDI Werte
n
      <- length(x)
                                     # Anzahl der Datenwerte
       <- as.data.frame(table(x)) # absolute Häufigkeitsverteilung als Dataframe
names(H) <- c("a", "h")
                                     # Spaltenbenennung
                                     # kumulative absolute Häufigkeitsverteilung
H$H
      <- cumsum(H$h)
H$r <- H$h/n
                                     # relative Häufigkeitsverteilung
H$R <- cumsum(H$r)
                                     # kumulative relative Häufigkeitsverteilung
print(H)
```

```
a h H r k
1 14 1 1 0.01 0.01
2 15 3 4 0.03 0.04
3 16 6 10 0.06 0.10
4 17 17 27 0.17 0.25
5 18 21 48 0.21 0.48
6 19 20 68 0.20 0.68
7 20 17 85 0.17 0.85
8 21 12 97 0.12 0.97
9 22 2 99 0.02 0.99
9 22 2 99 0.02 0.99
```

Kumulative absolute Häufigkeitsverteilung der Pre.BDI Werte

```
# Vorbereitung der zu visualisierenden Daten
Ha
        <- H$H # H(a) Werte
names(Ha) <- H$a  # barplot braucht a Werte als names
# Visualisierung der kumulativen absoluten Häufigkeitsverteilung
graphics.off() # Alle offenen graphical devices schließen
dev new()
                      # Abbildungsinitialisierung
barplot(
                  # Balkendiagramm
 Ha.
               # H(a) Werte als input
 col = "grav90". # Balkenfarbe
 ylab = "H(a)", # y Achsenbeschriftung
 ylim = c(0,110), # y Achsenlimits
las = 1, # Achsenticklabelorientierung
 main = "Pre.BDI" # Titel
# PDF Speicherung
dev.copv2pdf(
 file = file.path(fdir, "pds_8_kh.pdf"),
 width = 8,
 height = 5
```

Kumulative absolute Häufigkeitsverteilung der Pre.BDI Werte

Kumulative relative Häufigkeitsverteilung der Pre.BDI Werte

```
# Vorbereitung der zu visualisierenden Daten
      names(R) <- H$a  # barplot braucht a Werte als names
# Visualisierung der kumulativen relativen Häufigkeitsverteilung
graphics.off()
                     # Alle offenen graphical devices schließen
dev.new()
                     # Abbildungsinitialisierung
barplot(
                  # Balkendiagramm
 R.
                  # R(a) Werte
 col = "grav90", # Balkenfarbe
 vlab = "R(a)", # y Achsenbeschriftung
 ylim = c(0,1),
                 # v Achsenlimits
                  # Achsenticklabelorientierung
 las = 1.
 main = "Pre BDT" # Titel
# PDF Speicherung
dev.copv2pdf(
 file = file.path(fdir, "pds_8_kr.pdf"),
 width = 8,
 height = 5
```

Kumulative relative Häufigkeitsverteilung der Pre.BDI Werte

Empirische Verteilungsfunktionen

Definition (Empirische Verteilungsfunktion)

 $x=(x_1,\ldots,x_n)$ sei ein Datensatz. Dann heißt die Funktion

$$F:\mathbb{R}\to [0,1], \xi\mapsto F(\xi):=\frac{\text{Anzahl der }x_i\text{ aus }x\text{ mit }x_i\leq \xi}{n} \tag{5}$$

die empirische Verteilungsfunktion (EVF) von x.

Bemerkungen

- Die empirische Verteilungsfunktion wird auch empirische kumulative Verteilungsfunktion genannt.
- Die Definitionsmenge der EVF ist im Gegensatz zu Häufigkeitsverteilungen $\mathbb R$ und nicht A
- Die EVF verhält sich zu kumulativen Häufigkeitsverteilungen wie Histogramme zu Häufigkeitsverteilungen.
- Typischerweise sind empirische Verteilungsfunktionen Treppenfunktionen.
- Die (visuelle) Umkehrfunktion der EVF kann zur Bestimmung von Quantilen genutzt werden.

Evaluation und Visualisierung der EVF mit ecdf()

ecdf () evaluiert die empirischen Verteilungsfunktion eines Datensatzes.

plot() kann mit ecdf object umgehen.

Empirische Verteilungsfunktion am Beispiel der Pre.BDI Werte

```
<- D$Pre RDT
                                                  # double vector der Pre BDT Werte
evf <- ecdf(x)
                                                  # Evaluation der EVF
# Visualisierung der kumulativen relativen Häufigkeitsverteilung
library(latex2exp)
                                                  # TeX Formatierungstool laden
graphics.off()
                                                  # Alle offenen graphical devices schließen
dev.new()
                                                  # Abbildungsinitialisierung
plot(
 evf.
                                                  # ecdf Objekt
 xlab = TeX("$\xi$"),
                                                  # x Achsenbeschriftung
 vlab = TeX("$F(\xi)$"),
                                                  # v Achsenbeschriftung
 main = "Pre.BDI Empirische Verteilungsfunktion" # Titel
# PDF Speicherung
dev.copy2pdf(
 file = file.path(fdir, "pds 8 ecdf.pdf"),
 width = 8.
 height = 5)
```

Empirische Verteilungsfunktionen

Empirische Verteilungsfunktion der Pre.BDI Werte

Empirische Verteilungsfunktionen

Programmierübungen und Selbstkontrollfragen

Quantile und Boxplots

Definition (p-Quantil)

 $\boldsymbol{x} = (x_1, \dots, x_n)$ sei ein Datensatz und

$$x_s = \left(x_{(1)}, x_{(2)}, \ldots, x_{(n)}\right) \ \ \min_{1 \leq i \leq n} x_i = x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)} = \max_{1 \leq i \leq n} x_i \tag{6}$$

der zugehörige aufsteigend sortierte Datensatz. Weiterhin bezeichne $\lfloor \cdot \rfloor$ die Abrundungsfunktion. Dann heißt für ein $p \in [0,1]$ die Zahl

$$x_p := \begin{cases} x_{(\lfloor np+1 \rfloor)} & \text{falls } np \neq \mathbb{N} \\ \frac{1}{2} \left(x_{(np)} + x_{(np+1)} \right) & \text{falls } np \in \mathbb{N} \end{cases} \tag{7}$$

das p-Quantil von x.

Bemerkungen

- Mindestens $p \cdot 100\%$ aller Werte in x sind kleiner oder gleich x_n .
- Mindestens $(1-p)\cdot 100\%$ aller Werte in x sind größer als x_p .
- ullet Das $p ext{-}\mathsf{Quantil}$ teilt den geordneten Datensatz im Verhältnis p zu (1-p) auf.
- x_{0.25}, x_{0.50}, x_{0.75} heißen unteres Quartil, Median, und oberes Quartil, respektive.
- $x_{j\cdot 0.10}$ für j=1,...,9 heißen Dezile,
- $x_{j \cdot 0.01}$ für j=1,...,99 heißen Percentile.

Datensatz und sortierter Datensatz

i	1	2	3	4	5	6	7	8	9	10
x_i	8.5	1.5	75	4.5	6.0	3.0	3.0	2.5	6.0	9.0
x_i $x_{(i)}$	1.5	2.5	3.0	3.0	4.5	6.0	6.0	8.5	9.0	75

0.25-Quantil

Es ist n=10 und es sei p:=0.25. Dann gilt $np=10\cdot 0.25=2.5\notin \mathbb{N}$. Also folgt

$$x_{0.25} = x_{(\lfloor 2.5+1 \rfloor)} = x_{(3)} = 3.0$$
 (8)

0.80-Quantil

Es ist n=10 und es sei p:=0.80. Dann gilt $np=10\cdot 0.80=8\in \mathbb{N}$. Also folgt

$$x_{0.80} = \frac{1}{2} \left(x_{(8)} + x_{(8+1)} \right) = \frac{1}{2} \left(x_{(8)} + x_{(9)} \right) = \frac{8.5 + 9.0}{2} = 8.75.$$
 (9)

(Henze (2018), Kapitel 5)

"Manuelle" Quantilbestimmung anhand obiger Definition

```
<- c(8.5, 1.5, 12, 4.5, 6.0, 3.0, 3.0, 2.5, 6.0, 9.0)
                                                              # Beispieldaten (Henze, 2018)
     <- length(x)
                                                              # Anzahl Datenwerte
x s <- sort(x)
                                                              # sortierter Datensatz
     <- 0.25
                                                              # np \notin \mathbb{N}
x_p \leftarrow x_s[floor(n*p + 1)]
                                                              # 0.25 Quantil
print(x p)
                                                              # Ausgabe
Γ17 3
p <- 0.80
                                                              # np \in \mathbb{N}
x_p \leftarrow (1/2)*(x_s[n*p] + x_s[n*p + 1])
                                                              # 0.80 Quantil
print(x_p)
                                                              # Ausgabe
```

[1] 8.75

Quantilsbestimmung mithilfe vordefinierter R-Funktionen

quantile() wertet Quantile anhand der Quantildefinition type aus.

Es gibt mindestens neun verschiedene Quantildefinitionen (cf. Hyndman and Fan (1996))

80% 8.75

Visuelle Bestimmung des Quantils

Kombination von ecdf()und abline() erlaubt prinzipiell die visuelle Bestimmung von Quantilen

EVF und 80%-Quantil der Beispieldaten aus Henze, 2018

```
library(latex2exp)
                                           # TeX Formatierungstool laden
graphics.off()
                                           # Alle offenen graphical devices schließen
dev.new()
                                           # Abbildungsinitialisierung
evf \leftarrow ecdf(x)
                                           # Evaluation der EVF
plot(
                                           # plot() weiß mit ecdf object umzugehen
  evf.
                                           # ecdf Objekt
  xlab
          = TeX("$\\xi$"),
                                           # x Achsenbeschriftung
  vlab
           = TeX("$F(\xi)$"),
                                           # y Achsenbeschriftung
  verticals = TRUE.
                                           # vertikale Linien
  do.points = FALSE.
                                           # keine Punkte
  main
           = "Beispiel 80%-Quantil"
                                           # Titel
abline(
                                           # horizontale Linie
  h = 0.80.
                                           # y Ordinate der Linie
  col = "blue"
                                           # Farbe der Linie
# PDF Speicherung
dev.copy2pdf(
 file = file.path(fdir, "pds_8_ecdf_abline_x.pdf"),
  width = 8.
 height = 5
```

Visuelle Bestimmung des Quantils

EVF und 80%-Quantil der Beispieldaten aus Henze, 2018


```
0.80 Quantil mit type=1 bestimmt: 8.5
0.80 Quantil mit type=2 bestimmt: 8.75
```

EVF und 80%-Quantil der Pre.BDI-Werte aus dem Psychotherpiedatensatz

```
library(latex2exp)
                                           # TeX Formatierung laden
graphics.off()
                                           # Alle offenen graphical devices schließen
                                           # Abbildungsinitialisierung
dev.new()
x <- D$Pre.BDT
                                           # Double vector der Pre.BDT Werte
evf \leftarrow ecdf(x)
                                           # Evaluation der EVF
plot(
                                           # plot() kann mit ecdf object umgehen
  evf.
                                           # ecdf Objekt
  xlab
          = TeX("$\\xi$"),
                                           # x Achsenbeschriftung
  ylab
           = TeX("$F(\xi)$"),
                                           # y Achsenbeschriftung
  verticals = TRUE.
                                           # vertikale Linien
  do.points = FALSE.
                                           # keine Punkte
  main
           = "Beispiel 80%-Quantil"
                                           # Titel
abline(
                                           # horizontale Linie
  h = 0.80.
                                           # y Ordinate der Linie
  col = "blue"
                                           # Farbe der Linie
# PDF Speicherung
dev.copv2pdf(
 file = file.path(fdir, "pds_8_ecdf_abline_prebdi.pdf"),
  width = 8,
 height = 5
```

Visuelle Bestimmung des Quantils

EVF und 80%-Quantil der Pre.BDI-Werte aus dem Psychotherpiedatensatz


```
x_p_1 \leftarrow quantile(D\$Pre.BDI, 0.80, type = 1) # 0.80 Quantil, Definition 1 <math>x_p_2 \leftarrow quantile(D\$Pre.BDI, 0.80, type = 2) # 0.80 Quantil, Definition 2 cat("0.80 Quantil mit type=1 bestimmt: ",x_p_1, "\n0.80 Quantil mit type=2 bestimmt: ", x_p_2)
```

```
0.80 Quantil mit type=1 bestimmt: 20
0.80 Quantil mit type=2 bestimmt: 20
```

Boxplots

Ein Boxplot visualisiert eine Quantil-basierte Zusammenfassung eines Datensatzes.

Typischerweise werden $\min x, x_{0.25}, x_{0.50}, x_{0.75}, \max x$ visualisiert.

- $\min x$ und $\max x$ werden oft als "Whiskerendpunkte" dargestellt.
- $x_{0.25}$ und $x_{0.75}$ sind untere und obere Grenze der zentralen grauen Box.
- ullet $x_{0.50}$ wird als Strich in der zentralen grauen Box abgebildet.

 $d_O := x_{0.75} - x_{0.25}$ heißt Interquartilsabstand und dient als Verteilungsbreitenmaß

summary() liefert wesentliche Kennzahlen

```
# Sechswertezusammenfassung
summary(D$Pre.BDI)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
14.00 17.00 19.00 18.61 20.00 23.00
```

Erstellen von Boxplots in R

boxplot() erstellt einen Boxplot

Boxplot der Pre.BDI-Werte

```
# Boxplot erstellen
graphics.off()
                               # Alle offenen graphical devices schließen
dev.new()
                               # Abbildungsinitialisierung
boxplot(
                               # Boxplot
 D$Pre.BDI,
                              # Datensatz
 horizontal = T, # horizontale Darstellung
 range = 0,
                              # Whiskers bis zu min x und max x
 xlab = "x",
                              # x Achsenbeschriftung
 main = "Pre.BDI Boxplot" # Titel
# PDF Speicherung
dev.copy2pdf(
 file
           = file.path(fdir, "pds 8 boxplot prebdi.pdf"),
 width = 8.
 height = 5
```

Boxplot der Pre.BDI-Werte

Es gibt viele Boxplotvariationen (cf. McGill, Tukey, and Larsen (1978)). Es sollte immer erläutert werden, welche Kennzahlen dargestellt werden!

Empirische Verteilungsfunktionen

Quantile und Boxplots

Programmierübungen und Selbstkontrollfragen

Programmierübungen

- Erzeuge und visualisiere die kumulativen absoluten und relativen Häufigkeitsverteilungen der Post.BDI Daten des Beispieldatensatzes psychotherapie datensatz.csv.
- 2. Erzeuge und visualisiere die empirische Verteilungsfunktion der Post.BDI Daten.
- 3. Berechne das obere Quartil des Beispieldatensatzes auf Folie 16.
- Berechne das untere Quartil, den Median und das obere Quartil der Post.BDI Daten. Vergleiche deine Ergebnisse mit der Ausgabe der summary() Funktion.
- 5. Erstelle einen Boxplot der Post.BDI Daten.

Selbstkontrollfragen

- Definiere die Begriffe der kumulativen absoluten und relativen Häufigkeitsverteilungen. der Post.BDI Daten des Beispieldatensatzes psychotherapie_datensatz.csv.
- 2. Definiere den Begriff der empirischen Verteilungsfunktion.
- Erläutere den Begriff des sortierten Datensatzes. Gibt dazu ein einfaches Beispiel mit drei Datenpunkten an.
- 4. Definiere den Begriff des p-Quantils.
- 5. Definiere die Begriffe unteres Quartil, Median und oberes Quartil mithilfe des p-Quantils.

References

- Henze, Norbert. 2018. Stochastik für Einsteiger. Wiesbaden: Springer Fachmedien Wiesbaden. https://doi.org/10.1 007/978-3-658-22044-0.
- Hyndman, Rob J., and Yanan Fan. 1996. "Sample Quantiles in Statistical Packages." *The American Statistician* 50 (4): 361. https://doi.org/10.2307/2684934.
- McGill, Robert, John W. Tukey, and Wayne A. Larsen. 1978. "Variations of Box Plots." *The American Statistician* 32 (1): 12. https://doi.org/10.2307/2683468.