Application 0

Dynamique du véhicule – Segway de première génération– Corrigé

Frédéric SOLLNER – Lycée Mermoz – Montpellier.

Présentation

Objectif

L'objectif est de valider l'exigence 1 : permettre à l'utilisateur de se déplacer sur le sol.

Question 1 Exprimer la vitesse, notée $\overline{V(G_E/\Re_0)}$, du point G_E dans son mouvement par rapport à \Re_0 en fonction de $\dot{\theta}$ et R_C . Exprimer la vitesse linéaire $V_L = ||\overline{V(G_E/\Re_0)}||$ du véhicule en fonction de R_C et $\dot{\theta}$.

On a
$$\overrightarrow{V(G_E/\Re_0)} = -R_C \dot{\theta} \overrightarrow{x_1}$$
. On a alors $V_L = R_C \dot{\theta}$.

Correction

$$\overrightarrow{\Gamma(G_E/\Re_0)} = \left[\frac{\overrightarrow{dV(G_E/\Re_0)}}{\overrightarrow{dt}} \right]_{\Re_0} = -R_C \overrightarrow{\theta} \overrightarrow{x_1} - R_C \dot{\theta}^2 \overrightarrow{y_1} = -R_C \dot{\theta}^2 \overrightarrow{y_1} \ (\dot{\theta} \text{ est constant}).$$

Correction

La direction des efforts normaux et tangentiels est donnée. En utilisant les lois de Coulomb, on a donc, $T_A \le fN_A$ et $T_B \le fN_B$. En sommant les inégalités, on a donc $T_A + T_B \le f(N_A + N_B)$.

Correction

 \overrightarrow{E} étant un ensemble indéformable, on a : $\overrightarrow{R_d(E/\Re_0)} = -m_E R_C \dot{\theta}^2 \overrightarrow{y_1}$ (pas de projection sur $\overrightarrow{z_0}$. On isole E et les roues et on réalise le BAME :

- \triangleright pesanteur sur E;
- ► action du sol sur les roues.

En appliquant le TRD en projection sur $\overrightarrow{z_{01}}$, on a donc : $N_A + N_B - m_E g = 0$.

Correction

En appliquant le TRD en projection sur $\overrightarrow{y_1}$, on a : $-T_A - T_B = -m_E R_C \dot{\theta}^2 \Leftrightarrow T_A + T_B = m_E R_C \dot{\theta}^2$. En utilisant les résultats de la question précédente, $m_E R_C \dot{\theta}^2 \leq f m_E g$. En notant $V_L = R_C \dot{\theta}$ la vitesse limite avant dérapage, on a $\frac{V_L^2}{R_C} \leq f g$. On a donc $V_L \leq \sqrt{R_C f g}$.

Correction

La vitesse limite est donc de $10 \,\mathrm{m\,s^{-1}}$ soient $36 \,\mathrm{km\,h^{-1}}$ ce qui satisfait le cahier des charges.

Étude du renversement en virage du véhicule Segway

Correction

Au centre d'inertie de
$$E$$
, on a $\overline{\delta(G_E, E/\Re_0)} = \left[\frac{d\overline{\sigma(G_E, E/\Re_0)}}{dt}\right]_{\Re_0}$. On a $\overline{\Omega(E/\Re_0)} = \dot{\theta} \overrightarrow{z_0}$. On a donc, $\overline{\sigma(G_E, E/\Re_0)} = -E\dot{\theta}\overrightarrow{x_1} - D\dot{\theta}\overrightarrow{y_1} + C\dot{\theta}\overrightarrow{z_{01}}$. On a donc $\overline{\delta(G_E, E/\Re_0)} = -E\dot{\theta}^2\overrightarrow{y_1} + D\dot{\theta}^2\overrightarrow{x_1}$. En conséquence, $\{\mathfrak{D}(E/\Re_0)\} = \left\{\begin{array}{c} -m_E R_C \dot{\theta}^2 \overrightarrow{y_1} \\ -E\dot{\theta}^2 \overrightarrow{y_1} + D\dot{\theta}^2 \overrightarrow{x_1} \end{array}\right\}_{G_E}$.

Correction

$$\overrightarrow{\delta\left(B,E/\mathcal{R}_{0}\right)} \ = \ \overrightarrow{\delta\left(G_{E},E/\mathcal{R}_{0}\right)} \ + \ \overrightarrow{BG_{E}} \ \wedge \ \overrightarrow{R_{d}\left(B/E\right)} \ = \ -E\dot{\theta}^{2}\overrightarrow{y_{1}} \ + \ D\dot{\theta}^{2}\overrightarrow{x_{1}} \ + \ \left(h\overrightarrow{z_{0}} - l\overrightarrow{y_{1}}\right) \ \wedge \\ \left(-m_{E}R_{C}\dot{\theta}^{2}\overrightarrow{y_{1}}\right) = -E\dot{\theta}^{2}\overrightarrow{y_{1}} + D\dot{\theta}^{2}\overrightarrow{x_{1}} + hm_{E}R_{C}\dot{\theta}^{2}\overrightarrow{x_{1}}. \ \overrightarrow{\delta\left(B,E/\mathcal{R}_{0}\right)} \cdot \overrightarrow{x_{1}} = \left(D + hm_{E}R_{C}\right)\dot{\theta}^{2}.$$

Correction

On a:

$$\overrightarrow{BG_E} \wedge -m_E g \overrightarrow{z_{01}} = \left(-l \overrightarrow{y_1} + h \overrightarrow{z_0}\right) \wedge -m_E g \overrightarrow{z_{01}} = l m_E g \overrightarrow{x_1};$$

$$\blacktriangleright \overrightarrow{BA} \wedge \left(-T_A \overrightarrow{y_1} + N_A \overrightarrow{z_1} \right) = -2l \overrightarrow{y_1} \wedge \left(-T_A \overrightarrow{y_1} + N_A \overrightarrow{z_1} \right) = -2l N_A \overrightarrow{x_1}.$$

En appliquent le TMD en B suivant $\overrightarrow{x_1}$, on a : $lm_E g - 2lN_A = (D + hm_E R_C) \dot{\theta}^2$. Au final, $N_A = \frac{lm_E g - (D + hm_E R_C) \dot{\theta}^2}{2l}$.

Correction

Pour qu'il y ait non renversement, N_A doit rester positif ou nul.

On néglige $I_{G_E}(E)$ pour simplifier l'application numérique.

Question 2 Faire les applications numériques nécessaires et vérifier la conformité au cahier des charges.

Correction

$$\begin{split} N_A &\simeq \frac{lm_E g - hm_E R_C \dot{\theta}^2}{2l} \geq 0. \text{Ce qui est positif (pas de basculement)}. \\ N_A &\geq 0 \Rightarrow \frac{lm_E g - (D + hm_E R_C) \dot{\theta}^2}{2l} \geq 0 \Rightarrow lg - hR_C \dot{\theta}^2 \geq 0 \Rightarrow lg - hV_L^2/R_C \geq 0 \\ \Rightarrow lg \geq hV_L^2/R_C \Rightarrow \sqrt{\frac{R_C lg}{h}} \geq V_L \Rightarrow V_L \leq 6.38 \, \text{m s}^{-1} = 22.9 \, \text{km h}^{-1}. \, \text{CDCF Valid\'e}. \end{split}$$

