

功的原理

日期:	时间:	姓名:
Date:	Time:	Name:

学习目标&

重难点

初露锋芒

数学家陈景润在大学读书时,生活极为简朴,他始终穿着一件黑色的学生装.由于家境贫寒,他经常一天吃两顿饭,为的是把省下的钱用来买书.他说:"饭可以不吃,书不可以不念."他平时不看电影,不随便和人闲聊,全身心地投入学习当中.

那时,宿舍有按时熄灯的制度,他为了不影响别人休息,便把头埋在被窝里,打着手电筒看书.在进军"哥德巴赫猜想"时,他居住在6平方米的小屋里,演算全靠自己笔算.他演算的手稿有几麻袋.就这样,日复一日,年复一年,整整十年过去了,陈景润在1966年终于攻克了"(1+2)"这个堡垒.英国数学家哈勃斯丹和西德数学家李希特把陈景润的发现誉为"陈氏定理",说它是"筛法"的"光辉顶点".一位英国数学家写信称赞他:"您,移动了群山!"

1、知道功的原理,知道使用任何机械都不省功;
2、知道什么是有用功、额外功和总功;
3、理解机械效率及其影响因素;
4、理解机械效率的计算及公式。
1、有用功、额外功和总功
2、机械效率的计算及公式

根深蒂固

知识点一、功的原理

使用任何机械都不省功。

- 1、功的原理对任何机械都适用。
- 2、使用机械可以省力,或省距离,或改变动力的方向,使用方便等好处。

知识点二、有用功、额外功、总功

- **1、有用功**:为了达到某一目的而必须做的功。如提沙子上楼时对沙子做的功就是有用功。利用机械工作时对工作目的物做的功叫有用功。
- **2、额外功:**对人们完成某件事情来说没有用,但又不得不做的功,如提沙子上楼时对桶、滑轮等做的功就是额外功。
- **3、总功:**使用机械时,动力做的功,例如:用桶从井中打水。由于工作目的是水,所以对水做的功是有用功,对桶做的功是额外功,人在整个提水过程中做的功是总功。

知识点诠释:

- 1、总功是有用功与额外功之和,即 W _有+W _{额外}=W _总
- 2、额外功的产生是因为利用机械做功时,除了对工作目的物做功外,还要克服机械本身的摩擦力或重力做功。

知识点三、机械效率

为了表示有用功在总功中所占的比例,物理学中引入了机械效率,它等于有用功 $\mathbf{W}_{\bar{a}}$ 与总功 $\mathbf{W}_{\bar{a}}$ 之比,符号为 $\mathbf{\eta}_{o}$ 。

- 1、公式为 $\eta = \frac{W_{\pi}}{W_{\odot}}$,式中 η 表示机械效率,它是一个百分数。 η 的值越大,表明有用功在总功中所占的比
- 例越大, 做功的效率越高。
- 2、η的值总小于 100%,由于机械本身的摩擦力或重力不可能为零,所以额外功总是存在的,即有用功总是小于总功。

知识点四、机械效率的几个推导公式

求简单机械的机械效率是初中物理教学的重点内容,也是近年来中考的热点问题。由于计算中涉及到总功、有用功、额外功等抽象概念,特别是滑轮组的机械效率题目中,同一滑轮组在不同负载情况下机械效率不同,有用功在具体情况中的形式不同,隐含条件的渗入,以及特殊形式的滑轮组等等,在学习的过程中常感觉困惑,易造成错解。为了解决这类问题,同学们要搞清楚以下几点:

要对机械效率公式进行归类细化

根据对 W_{δ} 、 $W_{\eta \pi}$ 、 $W_{\delta h}$ 的具体理解,可以将机械效率的定义式进行如下归类:

$$\eta = \frac{W_{\text{有用}}}{W_{\text{B}}} = \begin{cases} \frac{Gh}{FS} = \frac{G_{\text{N}} \cdot h}{F \cdot nh} = \frac{Gh}{Gh + G_{\text{sh}}h} = \frac{G}{G + G_{\text{sh}}} \\ ① ② ③ ③ \end{cases}$$

$$\frac{fS_{\text{N}}}{FS} = \frac{f}{nF} \text{ (水平方向)}$$

$$\frac{Gh}{FS} = \frac{Gh}{Gh + fL} \text{ (斜面方向)}$$

知识点诠释:

- 1、在竖直方向上,G 是物体重,G 或是动滑轮重,h 是物体被提升的高度,也是动滑轮被提升的高度。 : $W_{\P H} = Gh$, 若绳重及摩擦不计,F 是拉力,S 是拉力 F 移动的距离,n 是动滑轮上承担力的绳的段数。 $W_{\P H} = G_{hh}$, $W_{\tilde{\mathbf{e}}} = FS = Gh + G_{hh}$, (1) ②③公式都适合。若是考虑绳重和摩擦力,用滑轮组把物体提升的高度 h,拉力 F 移动的距离 S,总满足 S=nh;只可用于①②。
- 2、在水平方向上,由于物体是匀速运动,滑轮组对物体的拉力 F' 与水平地面对物体的摩擦力 f 是一对平衡力, ... $W_{\mathsf{q},\mathsf{H}} = F^{\mathsf{N}}_{\mathsf{Q}} = f^{\mathsf{N}}_{\mathsf{Q}}$,即克服水平面对物体摩擦所做的功在数值上是等于有用功。
- 3、在斜面方向上,f 是物体与斜面之间的摩擦,L 是斜面的长,由于克服斜面对物体摩擦所做的功是额外功,所以 $W_{\overline{a}, y} = fL$ 。

知识点五、如何提高机械效率

由
$$\eta = \frac{W_{\dagger}}{W_{\&}} = \frac{W_{\dagger}}{W_{\dagger} + W_{\&}}$$
可知:

- 1、当 W_{q} 一定时,减少 W_{qq} ,可提高效率。比如影响滑轮组效率的因素有:动滑轮和绳重;绳与轮之间的摩擦。所以,我们可以使用轻质材料做动滑轮或尽量减少动滑轮的个数;还可通过加润滑油来减少轴处的摩擦及使用较细的绳子等措施,以此来提高它的效率。
- 2、当 W_{∞} 一定时,增加 W_{η} ,可适当提高机械效率。比如,对于同一滑轮组(额外功不变),增加所提物体的重, W_{η}

W就会越大,机械效率就会越高。

总之,对于滑轮组而言,要提高效率,可增加有用功的同时尽量减小额外功。

3、机械效率与功率的区别

功率是表示机械做功的快慢, 功率大只表示机械做功快; 机械效率是表示机械对总功利用率高低的物理量, 效率高只表示机械对总功的利用率高。因此, 功率大的机械不一定机械效率高, 如内燃机车的功率是4210W, 但它的效率只有30—40%; 而机械效率高的机械, 它的功率不一定就大, 如儿童玩具汽车的电动机效率可达80%, 但功率只有几瓦。

4、机械效率的高低与机械是否省力无内在联系,不能认为越省力的机械效率就越高。

【例 1】图中是一个两面光滑的斜面, $\angle \beta$ 大于 $\angle \alpha$,同一个物体分别在 AC 和 BC 斜面受拉力匀速运动到 C 点, 所需拉力分别为 F_A、F_B,所做功分别为 W_A、W_B,则(

- A. $F_A=F_B$, $W_A=W_B$ B. $F_A < F_B$, $W_A=W_B$
- C. $F_A < F_B$, $W_A < W_B$
 - D. $F_A > F_B$, $W_A > W_B$

举一反三:

【变式】骑自行车上坡的人常走"S"型路线,这样(

- A. 可以省力、省功
- B. 不能省力、省功
- C. 不能省力, 但可以省功 D. 能省力, 但不能省功

【例 2】用一块长 5m 的木板, 搭在离地面高 1.5m 的卡车车厢上, 用它把重 1000N 的货物匀速拉到车上。若 不计摩擦作用,人的拉力需多大?

举一反三:

【变式】使用滑轮组,在不考虑滑轮重及摩擦的情况下,动力做功100焦耳,物体上升0.5米,则此物体的重 力是多少?

【例3】做值日时,小阳将一桶水从一楼提到二楼。此过程中,关于做功的说法正确的是()

- A. 对桶做的功是有用功
- B. 对水做的功是有用功
- C. 对水做的功是额外功
- D. 克服自身重力做的功是总功

举一反三:

【变式】工人用滑轮组把一箱箱货物从一楼提升到五楼,在滑轮组上加润滑油后,机械效率提高了,则加润滑油后工人提升同样的重物时,做功的()

- A. 有用功减小,总功不变
- B. 有用功增加, 总功增加
- C. 有用功减小,总功减小
- D. 有用功不变, 总功减小

【例4】关于机械效率,下列说法中正确的是()

- A. 机械做功越快, 机械效率越高
- B. 机械所做的总功越少, 机械效率越高
- C. 机械做的有用功在总功中占的百分比越大, 机械效率越高
- D. 使用机械时, 所用动力跟物重的比值越小, 机械效率越高

举一反三:

【变式】关于机械效率,下列说法正确的是

- A. 越省力的的机械, 机械效率越高
- B 有用功多的机械,效率越高
- C.额外功少的机械, 机械效率高
- D.总功一定时,有用功多的机械的效率高

【例 5】如图所示,用滑轮组提升重物时,重 800N 的物体在 10s 内匀速上升了 1m. 已知拉绳子的力 F 为 500N,则提升重物的过程中()

- A. 做的有用功是 800J
- B. 拉力 F的功率是 80W
- C. 绳子自由端被拉下 3m
- D. D滑轮组的机械效率是 60%

举一反三:

【变式】用某一滑轮组提起某重物,滑轮组所做的额外功是总功的 25%,则此滑轮组的机械效率是(

A. 20% B. 25% C. 75% D. 80%

【例 6】在不计摩擦和绳子质量的情况下,分别使用定滑轮、动滑轮、滑轮组(两个定滑轮和两个动滑轮)匀速 提升同一物体到同一高度处, 其机械效率分别为 η 定、 η 动、 η 组则下列选项正确的是

- A. η₄₁< η₅₁< η₆
 Β. η₆< η₅₁< η₄₁

- C. $\eta_{3} < \eta_{2} < \eta$ D. $\eta_{2} < \eta_{4} < \eta_{3}$

【例7】一个工人用由一个定滑轮和一个动滑轮组成的滑轮组(不计摩擦和绳重),站在地上将 400N 重的货物 经过 10s 匀速提高 4m, 所用的拉力是 250N, 求:

- (1) 这个工人做功的功率是多少?
- (2) 此时滑轮组的机械效率是多少?
- (3) 若把 800N 的重物提起,工人至少要用多大的拉力?

举一反三:

【变式】某人用如图所示的滑轮组(不计摩擦)提升某一重物,所用拉力 F 为 200N,若滑轮组的机械效率 为80%。求(1)被提升的物重,(2)动滑轮重。

瓜熟蒂落

一、填空题

1、机械师设计的任何机械都遵循______原理,使用机械的目的是省_____或者省____,但不省____。 2、在实际生产劳动中使用机械时,总要做一些额外功,原因是任何机械本身都有_____,并且机械零 件与零件之间在发生相对运动时还存在着_____, 所以任何机械的机械效率总是_____100%(选填"大 干"或"小干")。 过简化____结构,____机械自重等方法,来提高机械效率。 4、斜面长 5m, 高 1.5m, 把重为 800N 的物体匀速推向斜面顶端。若斜面是光滑的,则推力为 N,如 果斜面不光滑, 所用推力为 300N, 则斜面的机械效率为。 5、如果是水桶掉在了水井里,需要把水桶捞上来。在将水桶捞上来的过程中,克服水的重力所做的功是 应该根据______来判断有用功和额外功。 6、如图所示,用定滑轮和动滑轮分别将质量相同的甲、乙两物体匀速提升相同的高度,不计绳重与摩擦, 且动滑轮重 G 动小于物体的物重 G,甲图中拉力做的功为 W 甲,乙图中拉力做的功 W 乙,则所用的拉力 F_Ψ____F_Z(选填">"、"<"或"=",下同), W_Ψ___W_Z, 其机械效率 η_Ψ___ η_Z。

8、斜面长 5m, 高 1m, 工人用沿斜面方向 400 N 的力把重 1600 N 的集装箱匀速推到车上,推力对集装

箱做的功是_____J, 斜面的机械效率是____。

二、选择题

- 9、下列关于机械效率的说法中,正确的是 ()
 - A. 越省力的机械, 其机械效率越高
 - B. 做的有用功越多, 机械效率就越高
 - C. 做的总功越少, 机械效率就越高
 - D. 额外功在总功中占的比例越小, 机械效率越高

10、甲、乙、丙三台机器,它们的机械效率大小是, $\eta_{\mathbb{P}} < \eta_{\mathbb{Z}} < \eta_{\mathbb{R}}$. 用它们分别把同一物体提高相同高度, 下列说法中你认为正确的是

- A. $W_{\text{AH}} > W_{\text{AZ}} > W_{\text{AB}}$
- B. $W_{\rm \&p} < W_{\rm \&Z} < W_{\rm \&p}$
- C. $W_{\mathbb{A}^{\mathbb{H}}} = W_{\mathbb{A}^{\mathbb{Z}}} = W_{\mathbb{A}^{\mathbb{H}}}$
- D. 无法判断

11、如图所示,工人用滑轮组吊起质量为 40 kg 的箱子,工人施加的拉力为 250 N,箱子被匀速竖直提升了 2 m,不计绳重和摩擦,取 g=10 N/kg,则滑轮组的机械效率为 ()

- A. 62.5%
- B. 100%
- C. 80%
- D. 50%

12、小明用两个相同的滑轮组成不同的滑轮组(如图所示),分别将同一物体匀速提高到相同高度,滑轮组的机 械效率分别为 η_1 、 η_2 。下列关系正确的是(忽略绳重及摩擦) ()

- A. $F_1 > F_2$, $\eta_1 = \eta_2$ B. $F_1 > F_2$, $\eta_1 > \eta_2$
- C. $F_1 < F_2$, $\eta_1 = \eta_2$ D. $F_1 < F_2$, $\eta_1 > \eta_2$

13、利用如图所示的滑轮组, 拉一金属块在水平地面上以 0.1m/s 的速度匀速运动, 若动滑轮重 15N, 金属块 受重力 105N, 地面对金属块的摩擦力是 15N (不计绳重和滑轮组摩擦),则()

- A. 绳子自由端拉力 F 是 10N
- B. 绳子自由端拉力 F 是 40N
- C. 拉力 F 的功率是 3W
- D. 拉力 F 的功率是 12W
- 14、下列措施中可以提高机械效率的是()
- A. 增大物体提升的高度
- B. 改变绳子的绕法, 使滑轮组最省力
- C. 减少动滑轮的个数
- D. 增大被提升的物体的质量

三、实验与计算题

15、在物理课上,同学们通过实验对斜面的机械效率进行探究。其中一组同学研究"斜面的倾斜程度跟机械效率的关系"。下表是他们的部分实验数据。

实验序号	斜面倾角 q/°	木块重 G/N	拉力	斜面高	斜面长	机械效
			F/N	h/cm	S/cm	率 h/%
1	10	2	0.6	10	57.6	57.9
2	15	2	0.8	10	38.6	64.8
3	20	2	1.0	10	29.2	68.5
4	25	2	1.1	10	24.0	75.8
5	30	2	1.2	10	20.0	83.3

析表中的数据,可以知道:

①斜面的机械效率跟斜面倾角(倾斜程度)的天系是;	
②实验中, 拉力做的有用功(填"相等"或"不相等");	
③实验中,随着斜面倾角的增大,拉力做的总功(填"增加"、"不变"或	"减少");
④额外功减少的原因是;	
(2)进而可以有如下推论:	
①木块受到的摩擦力跟斜面倾角的关系是;	
②从影响滑动摩擦力大小因素方面分析,在实验中,摩擦力的大小发生变化的原因是	

- 16、用滑轮组匀速提升重为 2000N 的物体,作用在绳子自由端的拉力大小为 625N,拉力做功的功率为 1250W,滑轮组的机械效率为 80%,不计摩擦与绳重,求:
 - (1)重物上升的速度;
 - (2 本滑轮组用几段绳子悬挂动滑轮?

17、如图所示的两个滑轮组。已知图甲中的物重 G_1 与动滑轮 G_2 之比为 $G_1:G_2=5:1$,图乙中的物重 G_3 与动滑轮重 G_4 之比为 $G_3:G_4=6:1$ 。两个物体重力之比 $G_1:G_3=3:2$ 。若不计摩擦,求:

- (1)甲、乙两图中的滑轮组效率之比 η_{Ψ} : η_{Z} ;
- (2)将物体匀速拉起时,绳子的拉力 F_1 、 F_2 之比。