```
1) Les différentes itérations sont les suivantes :
12345678910
1230507090
1230507000
2) 1<sup>er</sup> algorithme:
début
pour i := 2 à n-1 faire
 pour j := i+1 à n faire
   si T[i] <> 0 alors
            si (j mod i) alors T[j] = 0;
pour i := 1 à n faire
 si (T[i] = 0) alors imprimer (T[i]);
fin;
2<sup>ème</sup> algorithme:
début
pour i := 2 \text{ à n/2} - 1 \text{ faire}
 pour j := i+1 à n faire
   si T[i] <> 0 alors
            si (j mod i) alors T[j] = 0;
pour i := 1 à n faire
 si (T[i] = 0) alors imprimer (T[i]);
fin;
3<sup>ème</sup> algorithme:
début
pour i := 2 à \sqrt{n} faire
 pour j := i+1 à n faire
   si T[i] <> 0 alors
            si (j mod i) alors T[j] = 0;
pour i := 1 à n faire
 si (T[i] = 0) alors imprimer (T[i]);
fin;
3) Complexités:
1<sup>er</sup> algorithme
Complexité des deux boucles imbriquées: La boucle externe s'exécute de 2 à n
donc (n-1) fois. La boucle interne par contre s'exécute un nombre de fois qui
dépend de i qui varie de n-2 à 1. Le nombre d'itérations au total est donc égal à :
\sum_{1}^{n-2} i = \frac{(n-2)(n-1)}{2} = \frac{n^2 - 3n + 2}{2}.
```

Le nombre d'itérations de la dernière boucle est égal à n. Au total le nombre

d'itérations est égal à : $\frac{n^2-3n+2}{2}+n=\frac{n^2-n+2}{2}$

La complexité est donc en $O(n^2)$.

2^{ème} algorithme

Complexité des deux boucles imbriquées : La boucle externe s'exécute de 2 à $\frac{n}{2}-1$ donc $\frac{n}{2}-2$ fois. La boucle interne par contre s'exécute un nombre de fois qui dépend de i qui varie de n-2 à $n-\left(\frac{n}{2}-1\right)=\frac{n}{2}+1$. Le nombre d'itérations au total est donc égal à : $\sum_{n/2+1}^{n-2}i=\sum_{1}^{n-2}i-\sum_{1}^{n/2}i=\frac{n^2-3n+2}{2}-\frac{n^2+2n}{8}=\frac{3n^2-14n+8}{8}$.

Le nombre d'itérations de la dernière boucle est égal à n. Le nombre d'itérations au total est égal à : $\frac{3n^2-14n+8}{8}+n=\frac{3n^2-6n+8}{8}$ La complexité est donc en $O(n^2)$.

3^{ème} algorithme

Complexité des deux boucles imbriquées : La boucle externe s'exécute de 2 à \sqrt{n} , donc $(\sqrt{n}-1)$ fois. La boucle interne par contre s'exécute un nombre de fois qui dépend de i qui varie de n-2 à $n-\sqrt{n}$. Le nombre d'itérations au total est donc égal à : $\sum_{n-\sqrt{n}}^{n-2} i = \sum_{1}^{n-2} i - \sum_{1}^{n-1-\sqrt{n}} i = \frac{n^2-3n+2}{2} - \frac{n^2-2n\sqrt{n}+\sqrt{n}}{2} = \frac{2n\sqrt{n}-3n-\sqrt{n}+2}{2}.$

Le nombre d'itérations de la dernière boucle est égal à n. le nombre d'itérations au total est égal à : $\frac{2n\sqrt{n}-3n-\sqrt{n}+2}{2}+n=\frac{2n\sqrt{n}-n-\sqrt{n}+2}{2}$ La complexité est donc en $O(n\sqrt{n})$.

4)

Algorithme	Complexité	Nombre d'itérations	n=10000
1 ^{er} Algorithme	$O(n^2)$	$n^2 - n + 2$	49994999
		2	
2 ^{ème} Algorithme	$O(n^2)$	$3n^2 - 6n + 8$	37492501
		8	
3 ^{ème} Algorithme	$O(n\sqrt{n})$	$2n\sqrt{n}-n-\sqrt{n}+2$	999451
		2	

Prof. Habiba Drias