MIDTERM, AFTERNOON CLASS

1.

1.1 ZP

Write down a regular expression for the language over the alphabet {a,b} of all words where the first and last letter are different.

Write down an epsilon-NFA for the language of 1.1.

2. 29

Consider the NFA given by the following state-transition diagram.

Transform this NFA into a DFA. Write out the table of the DFA and its state-transition diagram.

3.

Consider the following C++ program and the grammar Cpp.cf we used as the starting point for Assignment 1.

bool fun () { if (true) return
$$1 + 2 * 3$$
; else y; }

(Note that this question is only about parsing, do not worry about the fact that the program fails to type check.)

3.1 27

Show the steps taken by a shift-reduce parser. Label the reduction steps by the corresponding name of the rule of the grammar.

Write out the abstract syntax tree of the program (in 2-dimensional, not in linearized, notation).

Answers.

" last two letters are different"

	State	a	6
milia	l o	0,1	03
	0,1	/ ₁	012,3
-	0,3	0,1,4	013
Ruid	0,2,3	011,4	0,3
hinal	0,1,4	0,1	0,2,3

aba

Output of the parser (not required for answer but useful to have at hand):

PDefs [DFun Type_void (Id "main") [] [SInit Type_bool (Id "x") (EInt 0),SReturn (EAss (EId (Id "x")) (EPlus (EPlncr (EId (Id "x"))) (EInt 2)))]]

Abstract Syntax Tree:

