

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

THE PA-32 PLATFORM

https://tutorcs.com

SEC204

Overview

- Introduction
- Core components
- Summary

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

WeChat: cstutorcs

INTRODUCTION Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

BIG AND LITTL回题编述AN

- Endianness was intropic for Interest anny Cohen in 1980. It comes from the Line Laboration of the Interest (1726).
- Big Endian 0x12345678 et præd assigutores
 - Network traffic is Big Endian
 - Most architectures (PowerPC, ARM, SPABC, MIPS) are either Big Endian by definition by the roject Exam Help configured as either (Bi-Endian)
- Little Endian 0x123 #5678 storeton RAM 163.com "little end" first. The least significant byte of a word or larger is stored in the lowest address. E.g. 0x78563412
 - Intel (IA-32) is Little Endian https://tutorcs.com

Value: 0 x 1 2 3 4 5 6 7 8

Big Endian

1 2 3 4 5 6 7 8

Little Endian

8 5 6 3

ENDIANESS 程序代写代做 CS编程辅导

BIG AND LITTLEENDTAN ACTIVITY

• Use an ASCII to Hex (i.e. type a message "HELLO W(I)

• https://www.rapidtables.com/convert/num
ber/ascii-to-hex.htm
WeChat: cstutorcs

• Use an online Hex coavertent project this is represented in big/little endian environments

Email: tutorcs@163

• https://www.scadacore.com/tools/program
ming-calculators/online-hex-converter/476

• https://hexed.it/

	ASCII	Hex	ASCII	HEX	
	Space	20	M	4D	
	!	21	N	4E	
	А	41	0	4F	
	В	42	Р	50	
	С	43	Q	51	
	D	44	R	52	
	Exan	145H	₃lp	53	
	F	46	T	54	
)	.com	47	U	55	
	Н	48	V	56	
	I	49	W	57	
	J	4A	Χ	58	
	K	4B	Υ	59	
	L	4C	Z	5A	

INSTRUCTION CODE

As processor runs, it reads inst that are stored in memory

Instruction Pointer As each instruction is decoded, any required instructions move from lower to higher memory addresses

Cechat: cstutorcs 55 89 ES 83 EC 80

To differentiate between instructions and

data, special pointers are used

data is also copied from memory

Instruction Pointer keeps that Signment Project Exam Help instructions have already been processed and which is next to be processed:1: tutorcs@163.com

Data Pointer shows where the data area in memory starts.

The Instruction Pointer moves from lower to higher addresses, whereas the Data pointer moves from higher to lower ad artistics://tutorcs.com

Data pointer moves from higher to lower memory addresses

OF
49
40
54
68

INSTRUCTION @ CORMAT

- Optional) Instruction prefix: de behaviour. Up to 4 prefixes, each 1 byte long
- [](Required)Operational code (opcode): Defines the task to be performed
- (Optional) Modifier: Define what registers or memory locations are involved in the function
- [] (Optional) Data element: used by ithe function Pltood of bear and the state of a memory address

1-3 Bytes Chat: cstutorcs 0-4 Bytes

0-4 Bytes

45 FC 01 00 00 00

Assignment Project Exam Help

© C7: Opcode. Move a value to memory location

- 2 45 FC: Modifier. The memory location pointed to by the value in the EBP register (value 45).
- 2 01 00 00 00: Data element. Polinteger 3804 00 00 01 to be placed in that memory location. (Note the little endian notation)

^{*} There is no expectation you will be able to decode this instruction by yourself. This is only shown as an example.

Villa about decode MARIE instructions (fixed length a length) a length a le

Assignment Project Exam Help push %ebp Finallotutores@163.com wov %esp, %ebp \$0x8, %esp \$0x8, %esp \$0x1, -4(%ebp) \$0x1, -4(%ebp) \$0x2, %esp \$0x6, %esp \$0

Welchat Scatulor S?

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

WeChat: cstutorcs

IA 32 CORE COMPONENTS Email: tutores@163.com

QQ: 749389476

CONTROL UNIT

- 1. Retrieves instructional and instructional and
- 2. Decodes instructions for operation
- 3. Retrieves data from the mark as needed
- 4. Stores results as necessary
 Assignment Project Exam Help
- NetBurst functionality spaceds up processing by incorporating:
 - Instruction prefetch and decoding pipeline
 - Branch prediction **QQ**: 749389476
 - Out-of-order execution
 - Retirement https://tutorcs.com

- Instruction execution execution divided into stages
- Pipelining makes it o start an instruction before completing the execution of previous one

Stages WeChat: cstutorcs

		S1	S2	S3	S4	S5	S6										
	1	I-1				A a	710	nmont D		ot 1		m.	ப் പ	10			
	2		I-1		•	H 5	sig.	nment Project ExamaHelp									
	3			I-1					1	S1	S2	S3	S4	S5	S6		
	4	Vo	6		I-1 ·		• 1	: tutorcs		7 1	32	33	34	33	30		
es	5		Dir				lall		w_{\perp}		CO ₁	n_{-}					
Sycles	6		Ž	0//0			I-1		2	I-2	I-1						
O.	7	I-2		76	. Q L	00		S C C C C C C C C C C C C C C C C C C C	3		I-2	I-1					
	8		I-2		70): /	49389	6	P	<i>i.</i>	I-2	l-1				
	9			I-2		4/0	b		5	E	Oelin		I-2	I-1			
	10				I-2		•		6	746	C	0,		I-2	I-1		
	11					hitzt 1	bs:/	/tutorcs.	CO1	\overline{n}	TIO	h			I-2		
	12						I-2					"					

EXECUTION UNipped Text

EXECUTION UNIPPED T

E

• It consists of one or representations:

- 1. Simple-integer operations
- 2. Complex-integer operations: cstutorcs
- 3. Floating-point operations

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

GENERAL PUR LEGISTERS

SEGMENT REGISTERS, CONTROL REGISTERS

Used to reference memory lo

Used to determine the operating mode of the processor and the characteristics of the executing task

SEGMENT REGISTERS	DESCRIPTION WeChat:	CONTROL CSTUTOTC	DESCRIPTION
CS	Code Segment	CR0	System flags to control
DS	Data Segment Assignm	ent Proic	microprocessor operating mode ect Exam Help Not used
SS	Stack Schillent		
ES	Extra segment poletenail: tu	cr2 Itores@1	Memory page fault information O3.COM Memory page directory
PS	Extra segment pointer	CR3	Memory page directory information
GS	Extra segment pont: 749	389476	Enable processor features

EFLAGS

- Status Flags
 - Indicate status of arithmetic and logical operations
- Control flags
 - Control CPU operations
- System flags
 - Control O/S-level operations

WeChat: cstutorcs EFLAGS Control flags

CF = Carry flag

DF = Direction flag

SSPETAMENT Project Exam

ZF = Zero flag

Email Louis orcs @ 163.com

QQ: 749389476

https://tutorcs.com

System flags

TF = Trap flag
Tpnterrupt flag

IOPL = I/O privilege level

NT = Nested task

RF = Resume flag

VM = Virtual 8086 mode

AC = Alignment check

VIF = Virtual interrupt flag

VIP = Virtual interrupt pending

ID = ID flag

STATUS FLAGS

- Carry Flag
 - Set when unsigned arithmetic result is out of range
- Overflow Flag
 - Set when signed arithmetic lest it is still to Fange
- Sign Flag
 - Copy of sign bit, set whos ignuments are ject Exam Help
- Zero Flag
 - Set when result is zer mail: tutorcs@163.com
- Auxiliary Carry Flag
 - Set when there is a carry from bit 3 to bit 4
- Parity Flag
 - Set when parity is even
 - Least-significant byte in the suit to the ins even humber of 1s

ACTIVITY — SPC直流 DIFFERENCES

Work in pairs

- Compare the MARIE and IA32 architectures. Spot the differences
 - Core Components WeChat: cstutorcs
 - Instruction Set Architecture
 - Instruction Code Handlingignment Project Exam Help
 - Data types

Email: tutorcs@163.com

QQ: 749389476

ADVANCED FE

- X87 Floating Point un<mark>增生</mark>
 - perform floating-point mathematical operations
- Multimedia Extension (Matt): cstutorcs
 - Performs complex integer arithmetic operations often found in multimedia applications. Support Athei Intel Gingle Pretrection x Multiple pata (SIMD) execution model
- Streaming SIMD extersional (sympres@163.com
 - Enhances performance for complex floating-point arithmetic often used in 3D graphics and motion wide 749389476
- Hyperthreading
 - https://tutorcs.com
 Handles multiple program execution threads simultaneously

SUMMARY

- The IA-32 processor colling to control unit, the execution unit, registers and flags
- The control unit controls how the execution unit processes instructions and data
 WeChat: cstutorcs
 - Prefetching and decoding instructions from memory long before execution improves performance
 - Instructions can also be processed to the foreign of the state of th
- Registers are used as logandata storages withing processor
- Instructions are retrieved from memory based on the value of the Instruction Pointer Register: 749389476
- The Control Register controls the processor's behaviour
- Instruction Pointer, Datatepinterutorcs.com

SUMMARY

• Little Endian, Big End

Instruction Code Handling

Pipeline execution WeC.

Registers

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

FURTHER REAL

- Professional Assemble, chapter 2
- http://ecee.colorado.edu/~ecen2120/Manual/ia32summar
 y.pdf
 WeChat: cstutorcs
- Reference information on IA 32: http://www.sandpile.org/gnment Project Exam Help
- Guide to programming Intel IA32 PC @rchitecture https://www.cs.princeton.edu/courses/archive/fall04/cos3 18/docs/pc-arch.htmQQ: 749389476