Digital Integrated Circuit Lecture 5 MOS Transistor Theory

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Review of Previous Lecture

Lecture 4

- CMOS fabrication
- CMOS layout
 - Standard cell design
 - -NAND3

MOS capacitor

2.1 Introduction

2.1. Introduction (3)

- MOSFET is a four-terminal device.
 - -Source and drain are symmetric.

- By convention, the source is biased with a lower voltage. Therefore, $V_{ds} \ge 0$.
- The body of an NMOSFET is grounded.
- Operation regions: Subthreshold, linear, and saturation

2.1. Introduction (4)

- When the gate-to-source voltage is lower than the threshold voltage (V_t) ,
 - No mobile carrier. Therefore,

$$I_d \approx 0$$

Fig. 2.3(a)

2.1. Introduction (5)

- Linear mode
 - When $V_{gs} > V_t$, we have an inversion channel.

– By applying a positive V_{ds} , we have $I_d > 0$.

Fig. 2.3(b) & (c)

2.1. Introduction (6)

- Saturation
 - When $V_{ds} > V_{gs} V_t$, the drain current is controlled only by the gate voltage and ceases to be influenced by the drain.

Fig. 2.3(d)

2.2 Long-channel IV

2.2. Long-channel IV (1)

- Current through the channel depends on
 - How much "electron" charge is in the channel?
 - How fast is the charge moving?
- Charge

$$Q_{channel} = C_g (V_{gc} - V_t)$$

-Note) $Q_{channel}$ for electrons. (It should be negative, but in the above equation, it is understood.)

Fig. 2.5

2.2. Long-channel IV (2)

Capacitance

$$C_g = C_{OX}WL$$

-The "oxide capacitance," C_{OX} , is given as

$$C_{OX} = \frac{\epsilon_{OX}}{t_{OX}}$$

Calculate C_{OX} , when the effective oxide thickness is 1 nm.

Fig. 2.6

2.2. Long-channel IV (3)

- IV characteristics
 - After some manipulation, we have

Subthreshold

Linear

Saturation

-Here,

$$I_d = 0$$

$$I_d = \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

$$I_d = \frac{\beta}{2} \left(V_{gs} - V_t \right)^2$$

$$\beta = \mu_n C_{OX} \frac{W}{L}$$

Calculate I_d at $V_{as} = V_{ds} =$ $\beta = \mu_n C_{OX} \frac{W}{L}$ 1.0 V, when W/L = 2, $t_{ox} = 1$ 1 nm, $\mu_n = 80$ cm²/V sec, and V_t is 0.3 V.

2.2. Long-channel IV (4)

- IV characteristics of an NMOSFET
 - Input characteristics

 V_{DD} = 1.0 V, W/L = 2, t_{ox} = 1 nm, μ_n = 80 cm²/V sec, and V_t is 0.3 V.

2.2. Long-channel IV (5)

- IV characteristics of an NMOSFET
 - Output characteristics

 V_{DD} = 1.0 V, W/L = 2, t_{ox} = 1 nm, μ_n = 80 cm²/V sec, and V_t is 0.3 V.

2.3. Capacitance (1)

- Any two conductors separated by an insulator have capacitance.
- Gate-to-channel capacitance is very important.
 - It creates channel charge which is necessary for operation.
- Source and drain have capacitance to body across the reversebiased diodes.
 - It is called the diffusion capacitance, because it is associated with source/drain diffusion regions.

2.3. Capacitance (2)

- Gate capacitance
 - It is given as $C_g = C_{OX}WL$.
- ullet Overlap capacitance, C_{gs} and C_{gd}

Fig. 2.6

2.3. Capacitance (3)

- Diffusion capacitance, C_{sb} and C_{sb}
 - Parasitic capacitance
 - Due to the PN junction between a diffusion region and the substrate

Fig. 2.8

2.3. Capacitance (4)

Total source parasitic capacitance is

$$C_{sb} = AS \times C_{jbs} + PS \times C_{jbssw}$$

- Example 2.2) (Assume that is 25 nm.)
 - -Area is $4\lambda \times 5\lambda = 20\lambda^2 = 0.0125 \,\mu\text{m}^2$.
 - -Perimeter is $2(4\lambda + 5\lambda) = 18\lambda = 0.45 \mu m$.
 - -Since $C_{ibd} = 1.2 fF/\mu m^2$, the capacitance is 0.015 fF.
 - -Assume that $C_{jbdsw} = 0.1 fF/\mu m$.
 - Contribution from sidewalls is 0.071 fF.
 - The overall diffusion capacitance is 0.086 fF.

 4λ

Homework#1

- Due: AM08:00, September 14
- Submit a single PDF file for your solutions.
- Problem#1
 - Draw the input charactersitics of an NMOSFET. Its threshold voltage is 0.4 V and W/L = 2. The oxide thickness is 2 nm. The electron mobility is 80 cm²/V sec. The channel length is 180 nm. V_{DD} = 1.8 V. Consider two drain voltages, 0.05 V and V_{DD} .
- Problem#2
 - For the same device, draw the output charactersitics.

Thank you!