Bài toán 1. Gọi S_n là tổng bình phương các hệ số của đa thức $(1+x)^n$. Chứng minh rằng $S_{2n} + 1$ không chia hết cho 3.

 $D\hat{o}$ khó: 3 (Vietnam TST 2010/6)

Lời giải. Ta thấy

$$S_n = \sum_{k=0}^n \binom{n}{k}^2 = \binom{2n}{n}$$

Đẳng thức trên đúng do cả 2 vế đều đang đếm số tập con có n phần tử của tập có 2n phần tử. Giờ, giả sử phản chứng rằng $3 \mid \binom{4n}{2n} + 1$.

Ta viết $2n = (a_0, \ldots, a_t)_3$. Lúc này sẽ có số chẵn số 1, và nếu tồn tại $a_i = 2$ thì không mất tính tổng quát, giả sử x là số nguyên lớn nhất để $a_x = 2$. Và đặt $4n = (b_0, b_1, \ldots, b'_t)$, trong đó t' bằng t hoặc t+1.

Khi đó $b_x=1$, lúc này theo định lý Lucas thì $3\mid \binom{4n}{2n}$. Còn nếu $a_i\leq 1$ với mọi i thì chú ý rằng ngoại trừ $\binom{2}{1}=2$ thì các số $\binom{x}{y}$ với $3>x\geq y>0$ đều bằng 1.

Vậy có lẻ số $a_i = 1$ không được thêm lần nhớ nào khi nhân 2. Mà số số 1 trong biểu diễn hệ cơ số 3 của 2n là chẵn nên phải tồn tại ít nhất 1 số 1 được nhớ khi nhân 2.

Điều này mâu thuẫn do không có số 2 nào trong biểu diễn cơ số 3 của 2n. Vậy giả sử phản chứng là sai nên ta có điều phải chứng minh.