

Olimpiada Națională de Matematică Etapa Națională, Piatra-Neamț, 16 aprilie 2022

CLASA a X-a

Problema 1. Pentru $a \in (0, \infty) \setminus \{1\}$, aflați soluțiile reale ale ecuației

$$a^x = x^x + \log_a(\log_a x).$$

Problema 2. Arătați că, oricare ar fi numerele complexe z_1 și z_2 , are loc inegalitatea

$$|z_1 + z_2| + |z_1 - z_2| \le |z_1| + |z_2| + \max\{|z_1|, |z_2|\}.$$

Problema 3. Fie $Z\subset\mathbb{C}$ o mulțime de n numere complexe, $n\geq 2$. Arătați că pentru orice număr natural nenul $m\leq \frac{n}{2}$ există o submulțime U cu m elemente a mulțimii Z astfel ca

$$\left| \sum_{z \in U} z \right| \le \left| \sum_{z \in Z \setminus U} z \right|.$$

Problema 4. Fie $M = \{1, 2, \dots, n\}$, unde $n \geq 2$ și $\mathcal{P}(M) = \{P \mid P \subseteq M\}$ mulțimea părților lui M. Determinați numărul funcțiilor $f : \mathcal{P}(M) \to \mathcal{P}(M)$ care au proprietatea:

$$|f(A) \cap f(B)| = |A \cap B|$$
, pentru orice $A, B \in \mathcal{P}(M)$.

(Am notat cu |X| numărul de elemente ale mulțimii X.)

Olimpiada Națională de Matematică Etapa Națională, Piatra-Neamț, 16 aprilie 2022

CLASA a X-a – soluții și bareme

Problema 1. Pentru $a \in (0, \infty) \setminus \{1\}$, aflați soluțiile reale ale ecuației

$$a^x = x^x + \log_a(\log_a x).$$

Problema 2. Arătați că, oricare ar fi numerele complexe z_1 și z_2 , are loc inegalitatea

$$|z_1 + z_2| + |z_1 - z_2| \le |z_1| + |z_2| + \max\{|z_1|, |z_2|\}.$$

Problema 3. Fie $Z \subset \mathbb{C}$ o mulțime de n numere complexe, $n \geq 2$. Arătați că pentru orice număr natural nenul $m \leq \frac{n}{2}$ există o submulțime U cu m elemente a mulțimii Z astfel ca

$$\left| \sum_{z \in U} z \right| \le \left| \sum_{z \in Z \setminus U} z \right|.$$

Dacă $m < \frac{n}{2}$, deci 2m < n, presupunem prin absurd că pentru orice submulțime $U \subset Z$ cu

Dacă
$$m < \frac{n}{2}$$
, deci $2m < n$, presupunem prin absurd că pentru orice submulțime $U \subset Z$ cu m elemente și $V = Z \setminus U$ avem inegalitatea contrară: $\left| \sum_{u \in U} u \right| > \left| \sum_{v \in V} v \right|$, adică
$$\sum_{u \in U} |u|^2 + \sum_{\substack{u_1 \neq u_2 \\ u_{1,2} \in U}} u_1 \cdot \overline{u_2} > \sum_{v \in V} |v|^2 + \sum_{\substack{v_1 \neq v_2 \\ v_{1,2} \in V}} v_1 \cdot \overline{v_2}.$$
 1p

Adunând aceste relații pentru toate cele C_n^m submulțimi U și notând $S_1 = \sum |z|^2$,

$$S_2 = \sum_{\substack{z_1 \neq z_2 \ z_1 \ 2 \in Z}} z_1 \cdot \overline{z_2}, \text{ obținem:}$$

$$\frac{C_n^m \cdot m}{n} \cdot S_1 + \frac{C_n^m \cdot A_m^2}{A_n^2} \cdot S_2 > \frac{C_n^m \cdot (n-m)}{n} \cdot S_1 + \frac{C_n^m \cdot A_{n-m}^2}{A_n^2} \cdot S_2.$$

Deducem că $\frac{n-2m}{n} \cdot S_1 + \frac{A_{n-m}^2 - A_m^2}{A_n^2} \cdot S_2 < 0$, adică $\frac{n-2m}{n} \cdot (S_1 + S_2) < 0$, deci $S_1 + S_2 < 0$,

Problema 4. Fie $M = \{1, 2, \dots, n\}$, unde $n \geq 2$ si $\mathcal{P}(M) = \{P \mid P \subseteq M\}$ multimea părților lui M. Determinați numărul funcțiilor $f: \mathcal{P}(M) \to \mathcal{P}(M)$ care au proprietatea:

$$|f(A) \cap f(B)| = |A \cap B|$$
, pentru orice $A, B \in \mathcal{P}(M)$.

(Am notat cu |X| numărul de elemente ale multimii X.)

Soluție. Pentru A=B în relația din ipoteză avem $|f(A)|=|f(A)\cap f(A)|=|A\cap A|=|A|$, $\operatorname{deci} |f(A)| = |A|$, pentru orice $A \in \mathcal{P}(M)$. În particular, observăm că $f(\emptyset) = \emptyset$.

Pentru orice $i, j \in \{1, 2, ..., n\}, i \neq j \text{ avem } |f(\{i\}) \cap f(\{j\})| = |\{i\} \cap \{j\}| = 0, \text{ deci } f(\{i\}) \neq j = 0 \}$ $f(\{i\})$. Cum $f(\{i\})$ are un element, pentru orice $i \in \{1, 2, \ldots, n\}$, vom avea $f(\{i\}) = \{a_i\}$, pentru orice $i \in \{1, 2, \dots, n\}$, unde $a_1, a_2, \dots a_n$ este o permutare a numerelor $1, 2, \dots, n$.

.....1p

Arătăm mai departe că orice funcție cu proprietatea din ipoteză este complet definită de valorile ei pe mulțimile de un element și că pentru orice permutare a_1, a_2, \ldots, a_n a numerelor $1, 2, \ldots, n$ o astfel de funcție verifică.

Dacă $B \subset A$, atunci $A \cap B = B$, deci $|A \cap B| = |B|$ și atunci $|f(B)| = |B| = |A \cap B| = |B|$ $|f(A) \cap f(B)|$. Cum însă $f(A) \cap f(B) \subset f(B)$, avem $f(B) = f(A) \cap f(B)$, deci $f(B) \subset f(A)$. Fie $A = \{b_1, b_2, \dots, b_k\} \in \mathcal{P}(M)$ o submultime oarecare. Atunci, pentru orice $i \in \{1, 2, \dots, k\}$ avem $\{b_i\}\subset A$, deci $\{a_{b_i}\}=f\left(\{b_i\}\right)\subset f(A)$. Atunci $\bigcup_{1\leqslant i\leqslant k}\left\{a_{b_i}\right\}\subset f(A)$. Dar k=|f(A)|=1 $\left|\bigcup_{1\leqslant i\leqslant k} \{a_{b_i}\}\right|, \operatorname{deci} f(A) = \bigcup_{1\leqslant i\leqslant k} \{a_{b_i}\} = \{a_{b_i} \mid 1\leqslant i\leqslant k\}. \dots 3p$

Reciproc, pentru orice astfel de funcție, dată de o permutare oarecare a_1, a_2, \ldots, a_n a numerelor $1, 2, \ldots, n$, și pentru orice mulțimi $A = \{b_1, b_2, \ldots, b_k\}$ și $B = \{c_1, c_2, \ldots, c_p\}$, numărul de elemente comune ale mulțimilor $f(A) = \{a_{b_1}, a_{b_2}, \dots, a_{b_k}\}$ și $f(B) = \{a_{c_1}, a_{c_2}, \dots, a_{c_p}\}$ este egal cu numărul de indici comuni dintre b_1,b_2,\ldots,\bar{b}_k și $c_1,c_2,\ldots,c_p,$ adică $|A\cap B|$ 2p

Așadar, numărul de funcții căutate este $p_n = n!$1p