Elliptic Curve Cryptography

DR. ODELU VANGA

COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY SRI CITY

What's wrong with RSA?

Security	Key size								
strength	ECC	RSA/DSA/DH							
80 bits	160 bits	1024 bits							
112 bits	224 bits	2048 bits							
128 bits	256 bits	3072 bits							
192 bits	384 bits	7680 bits							
256 bits	521 bits	15360 bits							

EC: Elliptic Curve

• Let $a \in \mathbb{R}$, $b \in \mathbb{R}$, be constants such that

$$4a^3 + 27b^2 \neq 0$$

A non-singular elliptic curve is the set E of solutions $(x, y) \in \mathbb{R} \times \mathbb{R}$ to the equation:

$$y^2 = x^3 + ax + b$$

together with a special point *O* called the *point at infinity*.

Singularity

- For an elliptic curve $y^2=f(x)$, define $F(x,y)=y^2-f(x)$.
- A singularity of the EC is a pt (x_0, y_0) such that:

$$\frac{\partial F}{\partial x}(x_0, y_0) = \frac{\partial F}{\partial y}(x_0, y_0) = 0$$

$$or, 2y_0 = -f'(x_0) = 0$$

$$or, f(x_0) = f'(x_0)$$

:. f has a double root

It is usual to assume the EC has no singular points

Elliptic Curves modulo p

Let p > 3 be prime.

The elliptic curve $y^2 = x^3 + ax + b$ over \mathbb{Z}_p is the set of solutions $(x,y) \in \mathbb{Z}_p$ x \mathbb{Z}_p to the congruence:

$$y^2 \equiv x^3 + ax + b \pmod{p}$$

where $a \in \mathbb{Z}_p$, $b \in \mathbb{Z}_p$, are constants such that

 $4a^3 + 27b^2 \not\equiv 0 \pmod{p}$, together with

a special point O called the *point at infinity*.

Solutions form an Abelian group

Finding a point on EC

$$y^2 = x^3 + x + 1 over Z_7$$

	æ	0	1	2	3	4	5	6	
\rightarrow	y2	1	3	4	3	6	5	6	$\overline{\ }$
	81	Y	N	Y	N	N	N	N	
-	76	12.	6 _	21	5 -		_	<u> </u>	

 $1^{3} \mod 7 = 1_{1} \in 97$ $3^{3} \mod 7 = 6 = -1 \mod 7 \notin 97$ $4^{3} \mod 7 = 1_{1} \in 97$

For prime p>2 and a in Z_{p}^* , $\left(\frac{a}{p}\right) = a^{(p-1)/2} \pmod{p}$

49-276 # 0 mod 7 4(1)+27(1)=31 mod 7=3 #0 Q1 = Euler's (riteria)

 $Q_{+} = \frac{(P-)/2}{(P-)/2}$ $= \frac{(Q-)}{P} = \frac{1}{2} \cdot \frac{QR}{QRR}$ $= \frac{1}{2} \cdot \frac{QR}{QRR}$

$$\frac{(p-1)}{2} = (\frac{7-1}{2}) = 3$$

$$points: \left\{ (0,1), (212), (0,6), (215), 0 \right\}$$

For prime p>2 and a in Z_p^* ,

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \pmod{p}$$

Elliptic curve:

$$y^2 = x^{3} + x + 6$$
 over \mathbb{Z}_{11}

Cipolla's Algoritim.

Let a is a quadratic residue modulo p

Choose t such that $u = t^2 - a$ is quadratic non-residue

Then $\mathbf{b} = (t + w)^{(p+1)/2}$ gives a square root of \mathbf{a} ,

where $\mathbf{w} = \sqrt{u}$

That is, $b^2 = a \mod p$

×	0	1	2	3	4	5	6	7	8	9	10
$x^3 + x + 6 \mod 11$	6	8	5	3	8	4	8	4	9	7	4
QR?	N	N	Ŷ	Υ	N	Y	N	Y	Υ	N	Υ
у	J	-	7,4	7.	J	9		٠ س	9		9

$$(1+\sqrt{4})^{2} = 1+2\sqrt{4}+7$$

$$= 8+2\sqrt{7} \quad y^{2} = 5 \implies y = \sqrt{5}$$

$$(1+\sqrt{4})^{2} = 64+2\times16\sqrt{7}+28$$

$$= 4+10\sqrt{7} \quad y = (t+u)$$

$$= 4+10\sqrt{7} \quad y = (t+u)$$

$$= (1+\sqrt{7})^{2} = (8+2\sqrt{7})(4+10\sqrt{7}) = (1+\sqrt{7})$$

$$= 32+88\sqrt{7}+140 = 7$$

$$= 1 - 5$$

$$= -4 \text{ woll}$$

$$= 7 \text{ QNR}$$

$$= 49$$

Elliptic curve: $y^2 = x^3 + x + 6$ over \mathbb{Z}_{11}

$$y^2 = x^3 + x + 6$$
 over \mathbb{Z}_{11}

×	0	1	2	3	4	5	6	7	8	9	10
$x^3 + x + 6 \mod 11$	6	8	5	S	8	4	8	4	9	7	4
QR?	N	N	Υ	Υ	N	Υ	N	Υ	Υ	N	Υ
у			4,7	5,6		2,9		2,9	3,8		2,9

Sources Used

"Recommended Elliptic Curves For Federal Government Use" July 1999

Cryptography Theory and Practice. Douglas Stinson, 3rd ed

A Friendly Introduction to Number Theory. Joseph Silverman, 3rd ed

Elements of Modern Algebra. Gilbert and Gilbert, 6th edition