- 1. Dla każdej z pięciu sieci Bravais'go w dwu wymiarach:
 - (a) Wypisać własności możliwych par wektorów sieciowych.
 - (b) Wypisać symetrie sieci krystalicznej.
 - (c) Znaleźć komórkę elementarną i komórkę prymitywną oraz liczbę węzłów sieci w każdej z nich.
- 2. Znaleźć jawną formę konwencjonalnych wektorów sieciowych grafenu (patrz wykład).
- 3. Znaleźć możliwe wektory sieci oraz komórkę elementarną dla sieci typu Kagome (Rysunek 3).

Rysunek 1: Sieć Kagome.

- 4. Pokazać, że $c/a = \sqrt{8/3}$ dla struktry heksagonalnej o najgęstszym upakowaniu.
- 5. Naszkicować kilka sieci regularnych i wyrysować w nich następujące płaszczyzny sieciowe: : $(0\ 0\ 1)$, $(1\ 0\ 1)$, $(0\ 1\ 1)$, $(0\ 2\ 1)$, $(2\ 1\ 0)$, $(2\ 1\ 1)$ i $(1\ 2\ 2)$.
- 6. Udowodnić, że w sieci o symetrii regularnej, kierunek $[h\,k\,l]$ jest prostopadły do płaszczyzny $(h\,k\,l)$ z tymi samymi wskaźnikami.
- 7. Pokazać, że odległość międzypłaszczyznowa d dla zbioru płaszczyzn sieciowych $(h\, k\, l)$ sieci regularnej o stałej a wynosi

$$d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}.$$

8. Rozważ wzór:

Zaznacz:

(a) prostokatna komórkę elementarna;

- (b) komórkę prymitywną,
- (c) bazę liter związaną z każdym węzłem sieci.
- 9. Rozważ sieci fcc, bcc, hcp, and strukturę diamentu
 - (a) Narysuj plany (widok z góry) konwencjonalnych komórek elementarnych tych struktur, zaznaczając wysokość atomów jako ułamek wysokości komórki.
 - (b) Jakie są współrzędne atomów bazy dla każdej ze struktur?
 - (c) Jeśli struktury zawierają ze stykających się ze sobą sfer, jaki ułamek objętości zajmują komórki zajmują?
- 10. Bazę sieci tworzy jeden atom, dany jest także zbiór wektorów translacji (mierzonych w Å):

$$\mathbf{a} = 3\hat{i}$$
, $\mathbf{b} = 3\hat{j}$, $\mathbf{c} = 1.5(\hat{i} + \hat{j} + \hat{k})$,

gdzie $\hat{i},\,\hat{j}$ i \hat{k} to standardowe wersory układu kartezjańskiego.

- (a) Jaki jest typ sieci Bravais'go dla tego kryształu?
- (b) Jakie są wskaźniki Millera dla płaszczyzn najgęściej obsadzonych atomami?
- (c) Jakie są objętości komórki prymitywnej i konwencjonalnej komórki elementarnej?
- 11. Dla sieci typu fcc i bcc można tak wybrać komórkę prymitywną, aby długości wektorów translacji **a**, **b**, and **c** oraz kąty między nimi były równe. Naszkicować obie sytuacje z zaznaczeniem **a**, **b** i **c** oraz obliczyć kąty między nimi.