Exact Inference in Bayesian Networks

Outline

- I. Probabilistic query using a BN
- II. Variable Elimination
- III. Variable ordering and relevance

^{*} Figures are either from the <u>textbook site</u>.

X: query variable

```
E = \{E_1, \dots, E_m\}: evidence variables
```

 $e = \{e_1, \dots, e_m\}$: an observed event

 $Y = \{Y_1, \dots, Y_l\}$: hidden variables

X: query variable

 $E = \{E_1, \dots, E_m\}$: evidence variables

 $e = \{e_1, \dots, e_m\}$: an observed event

 $Y = \{Y_1, \dots, Y_l\}$: hidden variables

Complete variable set: $\{X\} \cup \mathbf{E} \cup \mathbf{Y}$

X: query variable

 $E = \{E_1, \dots, E_m\}$: evidence variables

 $e = \{e_1, \dots, e_m\}$: an observed event

 $Y = \{Y_1, \dots, Y_l\}$: hidden variables

Complete variable set: $\{X\} \cup E \cup Y$

Query $P(X \mid e)$?

```
X: query variable E = \{E_1, \dots, E_m\}: evidence variables e = \{e_1, \dots, e_m\}: an observed event Y = \{Y_1, \dots, Y_l\}: hidden variables
```

Complete variable set: $\{X\} \cup E \cup Y$

Query $P(X \mid e)$?

```
II P(Burglary | j, m)
P(Burglary | JohnCalls = true, MaryCalls = true) = <math>\langle 0.284, 0.716 \rangle
```

```
X: query variable E = \{E_1, \dots, E_m\}: evidence variables
```

 $e = \{e_1, \dots, e_m\}$: an observed event

 $Y = \{Y_1, \dots, Y_l\}$: hidden variables

Complete variable set: $\{X\} \cup E \cup Y$

Query $P(X \mid e)$?

```
II P(Burglary | j, m)
P(Burglary | JohnCalls = true, MaryCalls = true) = <math>\langle 0.284, 0.716 \rangle
```

We will discuss exact algorithms for posterior probability computation.

$$P(X \mid e) = \alpha P(X, e) = \alpha \sum_{y} P(X, e, y)$$

$$P(X \mid e) = \alpha P(X, e) = \alpha \sum_{y} P(X, e, y)$$

$$P(x_1, ..., x_n) = \prod_{i=1}^n P(x_i \mid Parents(X_i))$$

$$P(X \mid e) = \alpha P(X, e) = \alpha \sum_{y} P(X, e, y)$$

$$P(x_1, ..., x_n) = \prod_{i=1}^{n} P(x_i \mid Parents(X_i))$$

computable as products of conditional probabilities from the BN.

$$P(X \mid e) = \alpha P(X, e) = \alpha \sum_{y} P(X, e, y)$$

$$P(x_1, ..., x_n) = \prod_{i=1}^{n} P(x_i \mid Parents(X_i))$$

computable as products of conditional probabilities from the BN.

• Answer the query $P(X \mid e)$ using a BN.

$$\mathbf{P}(B \mid j, m) = \alpha \mathbf{P}(B, j, m) = \alpha \sum_{E \in \{e, \neg e\}} \sum_{A \in \{a, \neg a\}} \mathbf{P}(B, j, m, E, A)$$

// the textbook uses e, a instead of E, A in the summation. // this is incorrect because e is a constant value standing // for Earthquake = true. the random variable E can take // on both e and $\neg e$ needed for the summation. you may // also call it an abuse of the notation e and a.

$$P(Burglary | JohnCalls = true, MaryCalls = true)?$$

Hidden variables: $Y = \{Earthquake, Alarm\}$

$$\mathbf{P}(B \mid j, m) = \alpha \mathbf{P}(B, j, m) = \alpha \sum_{\mathbf{E} \in \{e, \neg e\}} \sum_{\mathbf{A} \in \{a, \neg a\}} \mathbf{P}(B, j, m, \mathbf{E}, \mathbf{A})$$

evaluated for b (Burglary = true) based on

$$P(x_1, ..., x_n) = \prod_{i=1}^n P(x_i \mid Parents(X_i))$$

// the textbook uses e, a instead of E, A in the summation. // this is incorrect because e is a constant value standing // for Earthquake = true. the random variable E can take // on both e and $\neg e$ needed for the summation. you may // also call it an abuse of the notation e and e.

$$P(Burglary | JohnCalls = true, MaryCalls = true)?$$

// the textbook uses e, a instead of E, A in the summation.

Hidden variables: $Y = \{Earthquake, Alarm\}$

$$\mathbf{P}(B \mid j, m) = \alpha \mathbf{P}(B, j, m) = \alpha \sum_{\mathbf{E} \in \{e, \neg e\}} \sum_{A \in \{a, \neg a\}} \mathbf{P}(B, j, m, \mathbf{E}, \mathbf{A})$$

evaluated for b (Burglary = true) based on // this is incorrect because e is a constant value standing // for Earthquake = true. the random variable E can take // on both e and $\neg e$ needed for the summation. you may // also call it an abuse of the notation e and a.

$$P(b \mid j, m) = \alpha \sum_{E} \sum_{A} P(b)P(E)P(A \mid b, E)P(j \mid A)P(m \mid A)$$

evaluated for
$$b$$
 (Burglary = true) based on
$$P(x_1, ..., x_n) = \prod_{i=1}^{n} P(x_i \mid Parents(X_i))$$

evaluated for b (Burglary = true) based on $P(x_1, ..., x_n) = \prod_{i=1}^n P(x_i \mid Parents(X_i))$ // the textbook uses e, a instead of E, A in the summation // this is incorrect because e is a constant value standing // for Earthquake = true. the random variable E can take // on both e and $\neg e$ needed for the summation. you may // also call it an abuse of the notation e and a. // the textbook uses e, a instead of E, A in the summation.

$$P(b \mid j, m) = \alpha \sum_{E} \sum_{A} P(b) P(E) P(A \mid b, E) P(j \mid A) P(m \mid A)$$

In the general case with n variables, there are 2^n summands, each as a product requires O(n) computation time.

Take advantage of the nested structure to move summations inwards as far as possible.

$$P(b \mid j, m) = \alpha \sum_{E} \sum_{A} P(b)P(E)P(A \mid b, E)P(j \mid A)P(m \mid A)$$

Take advantage of the nested structure to move summations inwards as far as possible.

$$P(b \mid j, m) = \alpha \sum_{E} \sum_{A} P(b)P(E)P(A \mid b, E)P(j \mid A)P(m \mid A)$$

Take advantage of the nested structure to move summations inwards as far as possible.

$$P(b \mid j, m) = \alpha \sum_{E} \sum_{A} P(b)P(E)P(A \mid b, E)P(j \mid A)P(m \mid A)$$

$$P(b \mid j, m) = \alpha P(b) \sum_{E} P(E) \sum_{A} P(A \mid b, E) P(j \mid A) P(m \mid A)$$

$$P(b \mid j, m) = \alpha P(b) \sum_{E} P(E) \sum_{A} P(A \mid b, E) P(j \mid A) P(m \mid A)$$

$$P(b \mid j, m) = \alpha P(b) \sum_{E} P(E) \sum_{A} P(A \mid b, E) P(j \mid A) P(m \mid A)$$

$$P(b) \mid j, m \mid A$$

$$P(c) \mid j, m$$

$$P(b | j, m) = \alpha \times 0.00059224$$

$$P(b | j, m) = \alpha \times 0.00059224$$

 $P(\neg b | j, m) = \alpha \times 0.0014919$

$$P(b \mid j,m) = \alpha P(b) \sum_{E} P(E) \sum_{A} P(A \mid b,E) P(j \mid A) P(m \mid A)$$

$$// \text{ these values, not} // \text{ those in the table} // \text{ next to Alarm in} // \text{ solution in the tree on} // Fig. 13.2, match the .002 // values in the tree on // the right. $P(a|b,e)$.05
$$P(a|b,e) P(a|b,e) P(a|$$$$

$$\begin{array}{l}
P(b \mid j, m) = \alpha \times 0.00059224 \\
P(\neg b \mid j, m) = \alpha \times 0.0014919
\end{array}$$

$$\Rightarrow P(B \mid j, m) = \alpha \langle 0.00059224, 0.0014919 \rangle \\
\approx \langle 0.284, 0.716 \rangle$$

```
function ENUMERATION-ASK(X, \mathbf{e}, bn) returns a distribution over X
   inputs: X, the query variable
             e, observed values for variables E
             bn, a Bayes net with variables vars
   \mathbf{Q}(X) \leftarrow a distribution over X, initially empty
   for each value x_i of X do
       \mathbf{Q}(x_i) \leftarrow \text{Enumerate-All}(vars, \mathbf{e}_{x_i})
            where \mathbf{e}_{x_i} is \mathbf{e} extended with X = x_i
   return Normalize(\mathbf{Q}(X))
function ENUMERATE-ALL(vars, e) returns a real number
   if EMPTY?(vars) then return 1.0
   V \leftarrow \mathsf{FIRST}(vars)
   if V is an evidence variable with value v in e
       then return P(v | parents(V)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), \mathbf{e})
       else return \sum_{v} P(v \mid parents(V)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), \mathbf{e}_v)
                                                                                                                     .001
            where \mathbf{e}_v is \mathbf{e} extended with V = v
                                                                                                       P(e)
                                                                                                                                        P(\neg e)
                                                                                                                                        998
                                                                                                       .002
                                                                                         P(a|b,e)
                                                                                                                P(\neg a|b,e)
                                                                                                                                P(a|b, \neg e)
                                                                                                                                                       P(\neg a|b, \neg e)
                                                                              P(j|a)
                                                                                                         P(j|\neg a)
                                                                                                                        P(j|a)
                                                                                                                                                   P(j|\neg a)
                                                                              .90
                                                                                                                        .90
                                                                                                         .05
                                                                                                                                                   .05
                                                                                                         P(m|\neg a)
                                                                              P(m|a)
                                                                                                                        P(m|a)
                                                                                                                                                   P(m|\neg a)
                                                                               .70
                                                                                                         .01
                                                                                                                                                   .01
```

```
function ENUMERATION-ASK(X, \mathbf{e}, bn) returns a distribution over X
   inputs: X, the query variable
             e, observed values for variables E
             bn, a Bayes net with variables vars
   \mathbf{Q}(X) \leftarrow a distribution over X, initially empty
   for each value x_i of X do
       \mathbf{Q}(x_i) \leftarrow \text{Enumerate-All}(vars, \mathbf{e}_{x_i})
            where \mathbf{e}_{x_i} is \mathbf{e} extended with X = x_i
   return NORMALIZE(\mathbf{Q}(X))
function ENUMERATE-ALL(vars, e) returns a real number
   if EMPTY?(vars) then return 1.0
   V \leftarrow \mathsf{FIRST}(vars)
   if V is an evidence variable with value v in e
       then return P(v | parents(V)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), \mathbf{e})
       else return \sum_{v} P(v \mid parents(V)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), \mathbf{e}_v)
                                                                                                                  .001
            where \mathbf{e}_v is \mathbf{e} extended with V = v
                                                                                                    P(e)
                                                                                                                                     P(\neg e)
                                                                                                                                     998
                                                                                                     .002
                                                                                                              P(\neg a|b,e)
                                                                                                                              P(a|b, \neg e)
                                                                                                                                                    P(\neg a|b, \neg e)
                                                                                       P(a|b,e)

    Depth-first recursion

                                                                             P(j|a)
                                                                                                      P(j|\neg a)
                                                                                                                      P(j|a)
                                                                                                                                                P(j|\neg a)
```

.90

.70

P(m|a)

.90

P(m|a)

.05

.01

 $P(m|\neg a)$

.05

 $P(m|\neg a)$

```
function ENUMERATION-ASK(X, \mathbf{e}, bn) returns a distribution over X
   inputs: X, the query variable
            e, observed values for variables E
            bn, a Bayes net with variables vars
   \mathbf{Q}(X) \leftarrow a distribution over X, initially empty
   for each value x_i of X do
       \mathbf{Q}(x_i) \leftarrow \text{ENUMERATE-ALL}(vars, \mathbf{e}_{x_i})
           where \mathbf{e}_{x_i} is \mathbf{e} extended with X = x_i
   return NORMALIZE(\mathbf{Q}(X))
function ENUMERATE-ALL(vars, e) returns a real number
   if EMPTY?(vars) then return 1.0
   V \leftarrow \mathsf{FIRST}(vars)
   if V is an evidence variable with value v in e
       then return P(v | parents(V)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), \mathbf{e})
       else return \sum_{v} P(v | parents(V)) \times \text{Enumerate-All}(\text{Rest}(vars), \mathbf{e}_v)
                                                                                                              .001
           where \mathbf{e}_v is \mathbf{e} extended with V = v
                                                                                                 P(e)
                                                                                                                                 P(\neg e)
                                                                                                                                 998
                                                                                                 .002
                                                                                                          P(\neg a|b,e)
                                                                                                                          P(a|b, \neg e)
                                                                                                                                               P(\neg a|b, \neg e)
                                                                                     P(a|b,e)

    Depth-first recursion

    • O(2^n) time for n variables
```

P(j|a)

P(m|a)

.90

.70

 $P(j|\neg a)$

 $P(m|\neg a)$

.05

P(j|a)

P(m|a)

.90

 $P(j|\neg a)$

 $P(m|\neg a)$

.05

.01

```
function ENUMERATION-ASK(X, \mathbf{e}, bn) returns a distribution over X
   inputs: X, the query variable
            e, observed values for variables E
            bn, a Bayes net with variables vars
   \mathbf{Q}(X) \leftarrow a distribution over X, initially empty
   for each value x_i of X do
       \mathbf{Q}(x_i) \leftarrow \text{ENUMERATE-ALL}(vars, \mathbf{e}_{x_i})
            where \mathbf{e}_{x_i} is \mathbf{e} extended with X = x_i
   return NORMALIZE(\mathbf{Q}(X))
function ENUMERATE-ALL(vars, e) returns a real number
   if EMPTY?(vars) then return 1.0
   V \leftarrow \mathsf{FIRST}(vars)
   if V is an evidence variable with value v in e
       then return P(v | parents(V)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), \mathbf{e})
       else return \sum_{v} P(v | parents(V)) \times \text{Enumerate-All}(\text{Rest}(vars), \mathbf{e}_v)
                                                                                                                .001
            where \mathbf{e}_v is \mathbf{e} extended with V = v
                                                                                                  P(e)
                                                                                                                                  P(\neg e)
                                                                                                                                  998
                                                                                                  .002
                                                                                                           P(\neg a|b,e)
                                                                                                                           P(a|b, \neg e)
                                                                                                                                                 P(\neg a|b, \neg e)
                                                                                     P(a|b,e)

    Depth-first recursion

    • O(2^n) time for n variables
                                                                           P(j|a)
                                                                                                    P(j|\neg a)
                                                                                                                   P(j|a)
                                                                                                                                            P(j|\neg a)
                                                                                                                   .90
                                                                           .90
                                                                                                    .05
                                                                                                                                             .05
```

P(m|a)

.70

 $P(m|\neg a)$

P(m|a)

 $P(m|\neg a)$

.01

Repeated evaluations of the

same subexpressions

```
function ENUMERATION-ASK(X, \mathbf{e}, bn) returns a distribution over X
   inputs: X, the query variable
            e, observed values for variables E
            bn, a Bayes net with variables vars
   \mathbf{Q}(X) \leftarrow a distribution over X, initially empty
   for each value x_i of X do
       \mathbf{Q}(x_i) \leftarrow \text{ENUMERATE-ALL}(vars, \mathbf{e}_{x_i})
           where \mathbf{e}_{x_i} is \mathbf{e} extended with X = x_i
   return NORMALIZE(\mathbf{Q}(X))
function ENUMERATE-ALL(vars, e) returns a real number
   if EMPTY?(vars) then return 1.0
   V \leftarrow \mathsf{FIRST}(vars)
   if V is an evidence variable with value v in e
       then return P(v | parents(V)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), \mathbf{e})
       else return \sum_{v} P(v | parents(V)) \times \text{Enumerate-All}(\text{Rest}(vars), \mathbf{e}_v)
                                                                                                               .001
           where \mathbf{e}_v is \mathbf{e} extended with V = v
                                                                                                  P(e)
                                                                                                                                  P(\neg e)
                                                                                                                                  998
                                                                                                  .002
                                                                                                           P(\neg a|b,e)
                                                                                                                          P(a|b, \neg e)
                                                                                                                                                P(\neg a|b, \neg e)
                                                                                     P(a|b,e)

    Depth-first recursion

    • O(2^n) time for n variables
                                                                           P(j|a)
                                                                                                    P(j|\neg a)
                                                                                                                   P(j|a)
                                                                                                                                            P(j|\neg a)
```

.90

.70

P(m|a)

Repeated evaluations of the

same subexpressions

.90

P(m|a)

.05

.01

 $P(m|\neg a)$

.05

.01

 $P(m|\neg a)$

```
function ENUMERATION-ASK(X, \mathbf{e}, bn) returns a distribution over X
   inputs: X, the query variable
            e, observed values for variables E
            bn, a Bayes net with variables vars
  \mathbf{Q}(X) \leftarrow a distribution over X, initially empty
   for each value x_i of X do
       \mathbf{Q}(x_i) \leftarrow \text{ENUMERATE-ALL}(vars, \mathbf{e}_{x_i})
           where \mathbf{e}_{x_i} is \mathbf{e} extended with X = x_i
   return NORMALIZE(\mathbf{Q}(X))
function ENUMERATE-ALL(vars, e) returns a real number
   if EMPTY?(vars) then return 1.0
   V \leftarrow \mathsf{FIRST}(vars)
  if V is an evidence variable with value v in e
       then return P(v | parents(V)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), \mathbf{e})
       else return \sum_{v} P(v \mid parents(V)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), \mathbf{e}_v)
                                                                                                             .001
           where \mathbf{e}_v is \mathbf{e} extended with V = v
                                                                                                P(e)
                                                                                                                               P(\neg e)
                                                                                                                               998
                                                                                                .002
                                                                                                                        P(a|b, \neg e)
                                                                                                                                              P(\neg a|b, \neg e)
                                                                                   P(a|b,e)
                                                                                                         P(\neg a|b,e)

    Depth-first recursion

   • O(2^n) time for n variables
                                                                         P(j|a)
                                                                                                  P(j|\neg a)
                                                                                                                P(j|a)
                                                                                                                                         P(j|\neg a)
                                                                          .90
                                                                                                                 .90
                                                                                                                                         .05
                                                                                                  .05

    Repeated evaluations of the
```

P(m|a)

.70

same subexpressions

 $P(m|\neg a)$

.01

P(m|a)

.70

 $P(m|\neg a$

.01

Idea Do the calculation once and save the results for later use (like dynamic programming).

Idea Do the calculation once and save the results for later use (like dynamic programming).

◆ Evaluate an expression from right to left (i.e., bottom up in the expression tree).

$$P(b \mid j, m) = \alpha P(b) \sum_{E} P(E) \sum_{A} P(A \mid b, E) P(j \mid A) P(m \mid A)$$

Idea Do the calculation once and save the results for later use (like dynamic programming).

◆ Evaluate an expression from right to left (i.e., bottom up in the expression tree).

$$P(b \mid j, m) = \alpha P(b) \sum_{E} P(E) \sum_{A} P(A \mid b, E) P(j \mid A) P(m \mid A)$$

Idea Do the calculation once and save the results for later use (like dynamic programming).

◆ Evaluate an expression from right to left (i.e., bottom up in the expression tree).

$$P(b \mid j, m) = \alpha P(b) \sum_{E} P(E) \sum_{A} P(A \mid b, E) P(j \mid A) P(m \mid A)$$

$$\mathbf{P}(B \mid j, m) = \alpha \mathbf{P}(B) \sum_{E} P(E) \sum_{A} P(A \mid B, E) P(j \mid A) P(m \mid A)$$

II. Variable Elimination

Idea Do the calculation once and save the results for later use (like dynamic programming).

♦ Evaluate an expression from right to left (i.e., bottom up in the expression tree).

$$P(b \mid j, m) = \alpha P(b) \sum_{E} P(E) \sum_{A} P(A \mid b, E) P(j \mid A) P(m \mid A)$$

$$P(B \mid j,m) = \alpha P(B) \sum_{E} P(E) \sum_{A} P(A \mid B,E) P(j \mid A) P(m \mid A)$$
factors: $f_1(B)$ $f_2(E)$ $f_3(A,B,E)$ $f_4(A)$ $f_5(A)$

II. Variable Elimination

Idea Do the calculation once and save the results for later use (like dynamic programming).

♦ Evaluate an expression from right to left (i.e., bottom up in the expression tree).

$$P(b \mid j, m) = \alpha P(b) \sum_{E} P(E) \sum_{A} P(A \mid b, E) P(j \mid A) P(m \mid A)$$

$$P(B \mid j, m) = \alpha P(B) \sum_{E} P(E) \sum_{A} P(A \mid B, E) P(j \mid A) P(m \mid A)$$

$$factors: \quad f_1(B) \quad f_2(E) \quad f_3(A, B, E) \quad f_4(A) \quad f_5(A)$$

$$dimensions: \quad 2 \times 1 \quad 2 \times 1 \quad 2 \times 2 \times 2 \quad 2 \times 1 \quad 2 \times 1$$

$$P(B \mid j, m) = \alpha f_1(B) \times \sum_{E} f_2(E) \times \sum_{A} f_3(A, B, E) \times f_4(A) \times f_5(A)$$

$$P(B \mid j, m) = \alpha f_1(B) \times \sum_{E} f_2(E) \times \sum_{A} f_3(A, B, E) \times f_4(A) \times f_5(A)$$

• Sum out A from the product of f_3 , f_4 , f_5 .

$$f_6(B,E) = \sum_{A \in \{a, \neg a\}} f_3(A,B,E) \times f_4(A) \times f_5(A)$$

$$P(B \mid j, m) = \alpha f_1(B) \times \sum_{E} f_2(E) \times \sum_{A} f_3(A, B, E) \times f_4(A) \times f_5(A)$$

• Sum out A from the product of f_3 , f_4 , f_5 .

$$f_{6}(B,E) = \sum_{A \in \{a, \neg a\}} f_{3}(A,B,E) \times f_{4}(A) \times f_{5}(A)$$

$$= (f_{3}(a,B,E) \times P(a) \times P(a)) + (f_{3}(\neg a,B,E) \times P(\neg a) \times P(\neg a))$$

$$2 \times 2$$

$$2 \times 2$$

$$P(B \mid j, m) = \alpha f_1(B) \times \sum_{E} f_2(E) \times \sum_{A} f_3(A, B, E) \times f_4(A) \times f_5(A)$$

• Sum out A from the product of f_3 , f_4 , f_5 .

$$f_{6}(B,E) = \sum_{A \in \{a,\neg a\}} f_{3}(A,B,E) \times f_{4}(A) \times f_{5}(A)$$

$$2 \times 2 \qquad = (f_{3}(a,B,E) \times P(a) \times P(a)) + (f_{3}(\neg a,B,E) \times P(\neg a) \times P(\neg a))$$

$$2 \times 2 \qquad 2 \times 2$$

$$P(B \mid j,m) = \alpha f_{1}(B) \times \sum_{E} f_{2}(E) \times f_{6}(B,E)$$

$$P(B \mid j, m) = \alpha f_1(B) \times \sum_{E} f_2(E) \times \sum_{A} f_3(A, B, E) \times f_4(A) \times f_5(A)$$

• Sum out A from the product of f_3 , f_4 , f_5 .

$$f_{6}(B,E) = \sum_{A \in \{a, \neg a\}} f_{3}(A,B,E) \times f_{4}(A) \times f_{5}(A)$$

$$= (f_{3}(a,B,E) \times P(a) \times P(a)) + (f_{3}(\neg a,B,E) \times P(\neg a) \times P(\neg a))$$

$$2 \times 2$$

$$2 \times 2$$

$$P(B \mid j,m) = \alpha f_{1}(B) \times \sum_{E} f_{2}(E) \times f_{6}(B,E)$$

• Sum out E from the product of f_2 and f_6 .

$$f_7(B) = \sum_{E \in \{e, \neg e\}} f_2(E) \times f_6(B, E) = P(e) \times f_6(B, e) + P(\neg e) \times f_6(B, \neg e)$$

2 × 1

$$|P(B|j,m) = \alpha f_1(B) \times \sum_{E} f_2(E) \times \sum_{A} f_3(A,B,E) \times f_4(A) \times f_5(A)$$

• Sum out A from the product of f_3 , f_4 , f_5 .

$$f_{6}(B,E) = \sum_{A \in \{a, \neg a\}} f_{3}(A,B,E) \times f_{4}(A) \times f_{5}(A)$$

$$= (f_{3}(a,B,E) \times P(a) \times P(a)) + (f_{3}(\neg a,B,E) \times P(\neg a) \times P(\neg a))$$

$$2 \times 2$$

$$2 \times 2$$

$$P(B \mid j,m) = \alpha f_{1}(B) \times \sum_{A \in \{a, \neg a\}} f_{2}(E) \times f_{6}(B,E)$$

• Sum out E from the product of f_2 and f_6 .

$$\boldsymbol{f}_7(B) = \sum_{E \in \{e, \neg e\}} \boldsymbol{f}_2(E) \times \boldsymbol{f}_6(B, E) = P(e) \times \boldsymbol{f}_6(B, e) + P(\neg e) \times \boldsymbol{f}_6(B, \neg e)$$

$$2 \times 1$$

$$2 \times 1$$

Finally, carry out the following pointwise product:

$$P(B \mid j, m) = \alpha f_1(B) \times f_7(B)$$

$$f(X_1, ..., X_j, Y_1, ..., Y_k) \times g(Y_1, ..., Y_k, Z_1, ..., Z_l) = h(X_1, ..., X_j, Y_1, ..., Y_k, Z_1, ..., Z_l)$$

X	Y	$\mathbf{f}(X,Y)$	Y	Z	$\mathbf{g}(Y,Z)$	X	Y	Z	$\mathbf{h}(X,Y,Z)$
t	t	.3	t	t	.2	t	t	t	$.3 \times .2 = .06$
t	f	.7	t	f	.8	t	t	f	$.3 \times .8 = .24$
f	t	.9	f	t	.6	t	f	t	$.7 \times .6 = .42$
f	f	.1	f	f	.4	t	f	f	$.7 \times .4 = .28$
						f	t	t	$.9 \times .2 = .18$
						f	t	f	$.9 \times .8 = .72$
						f	f	t	$.1 \times .6 = .06$
						f	f	f	$.1 \times .4 = .04$

X	Y	$\mathbf{f}(X,Y)$	Y	Z	$\mathbf{g}(Y,Z)$	X	Y	Z	$\mathbf{h}(X,Y,Z)$
t	t	.3	t	t	.2	t	t	t	$.3 \times .2 = .06$
t	f	.7	t	f	.8	t	t	f	$.3 \times .8 = .24$
f	t	.9	f	t	.6	t	f	t	$.7 \times .6 = .42$
f	f	.1	f	f	.4	t	f	f	$.7 \times .4 = .28$
						f	t	t	$.9 \times .2 = .18$
						f	t	f	$.9 \times .8 = .72$
						f	f	t	$.1 \times .6 = .06$
						f	f	f	$.1 \times .4 = .04$

X	Y	$\mathbf{f}(X,Y)$	Y	Z	$\mathbf{g}(Y,Z)$	X	Y	Z	$\mathbf{h}(X,Y,Z)$
t	t	.3	t	t	.2	t	t	t	$.3 \times .2 = .06$
t	f	.7	t	f	.8	t	t	f	$.3 \times .8 = .24$
f	t	.9	f	t	.6	t	f	t	$.7 \times .6 = .42$
\overline{f}	\overline{f}	.1	f	f	.4	t	f	f	$.7 \times .4 = .28$
						f	t	t	$.9 \times .2 = .18$
						f	t	f	$.9 \times .8 = .72$
						f	f	t	$.1 \times .6 = .06$
						f	f	f	$.1 \times .4 = .04$

X	Y	$\mathbf{f}(X,Y)$	Y	Z	$\mathbf{g}(Y,Z)$	X	Y	Z	$\mathbf{h}(X,Y,Z)$
t	t	.3	t	t	.2	t	t	t	$.3 \times .2 = .06$
t	f	.7	t	f	.8	t	t	f	$.3 \times .8 = .24$
f	t	.9	f	t	.6	t	f	t	$.7 \times .6 = .42$
f	f	.1	f	f	.4	t	f	f	$.7 \times .4 = .28$
						f	t	t	$.9 \times .2 = .18$
						f	t	f	$.9 \times .8 = .72$
						f	f	t	$.1 \times .6 = .06$
						f	f	f	$.1 \times .4 = .04$

$$f(X_1, ..., X_j, Y_1, ..., Y_k) \times g(Y_1, ..., Y_k, Z_1, ..., Z_l) = h(X_1, ..., X_j, Y_1, ..., Y_k, Z_1, ..., Z_l)$$

common variables

X	Y	$\mathbf{f}(X,Y)$	Y	Z	$\mathbf{g}(Y,Z)$	X	Y	Z	$\mathbf{h}(X,Y,Z)$
t	t	.3	t	t	.2	t	t	t	$.3 \times .2 = .06$
t	f	.7	t	f	.8	t	t	f	$.3 \times .8 = .24$
f	t	.9	f	t	.6	t	f	t	$.7 \times .6 = .42$
f	f	.1	f	f	.4	t	f	f	$.7 \times .4 = .28$
						f	t	t	$.9 \times .2 = .18$
						f	t	f	$.9 \times .8 = .72$
						f	f	t	$.1 \times .6 = .06$
						f	f	f	$.1 \times .4 = .04$

$$\boldsymbol{l}(Y,Z) = \sum_{X} \boldsymbol{h}(X,Y,Z) = \boldsymbol{h}(X,Y,Z) + \boldsymbol{h}(\neg X,Y,Z)$$

X	Y	$\mathbf{f}(X,Y)$	Y	Z	$\mathbf{g}(Y,Z)$	X	Y	Z	$\mathbf{h}(X,Y,Z)$
t	t	.3	t	t	.2	t	t	t	$.3 \times .2 = .06$
t	f	.7	t	f	.8	t	t	f	$.3 \times .8 = .24$
f	t	.9	f	t	.6	t	f	t	$.7 \times .6 = .42$
f	f	.1	f	f	.4	t	f	f	$.7 \times .4 = .28$
						f	t	t	$.9 \times .2 = .18$
						f	t	f	$.9 \times .8 = .72$
						f	f	t	$.1 \times .6 = .06$
						f	f	f	$.1 \times .4 = .04$

$$l(Y,Z) = \sum_{X} h(X,Y,Z) = h(x,Y,Z) + h(\neg x,Y,Z)$$

X	Y	$\mathbf{f}(X,Y)$	Y	Z	$\mathbf{g}(Y,Z)$	X	Y	Z	$\mathbf{h}(X,Y,Z)$
t	t	.3	t	t	.2	t	t	t	$.3 \times .2 = .06$
t	f	.7	t	f	.8	t	t	f	$.3 \times .8 = .24$
f	t	.9	f	t	.6	t	f	t	$.7 \times .6 = .42$
f	f	.1	f	f	.4	t	f	f	$.7 \times .4 = .28$
						f	t	t	$.9 \times .2 = .18$
						f	t	f	$.9 \times .8 = .72$
						f	f	t	$.1 \times .6 = .06$
						f	f	f	$.1 \times .4 = .04$

$$\boldsymbol{l}(Y,Z) = \sum_{X} \boldsymbol{h}(X,Y,Z) = \boldsymbol{h}(X,Y,Z) + \boldsymbol{h}(\neg X,Y,Z)$$

X	Y	$\mathbf{f}(X,Y)$	Y	Z	$\mathbf{g}(Y,Z)$	X	Y	Z	$\mathbf{h}(X,Y,Z)$
t	t	.3	t	t	.2	t	t	t	$.3 \times .2 = .06$
t	f	.7	t	f	.8	t	t	f	$.3 \times .8 = .24$
f	t	.9	f	t	.6	t	f	t	$.7 \times .6 = .42$
f	f	.1	f	f	.4	t	f	f	$.7 \times .4 = .28$
						\overline{f}	t	t	$.9 \times .2 = .18$
						f	t	f	$.9 \times .8 = .72$
						f	f	t	$.1 \times .6 = .06$
						f	f	f	$.1 \times .4 = .04$

$$\mathbf{l}(Y,Z) = \sum_{X} \mathbf{h}(X,Y,Z) = \mathbf{h}(x,Y,Z) + \mathbf{h}(\neg x,Y,Z)$$
$$= \begin{pmatrix} .06 & .24 \\ .42 & .28 \end{pmatrix}$$

X	Y	$\mathbf{f}(X,Y)$	Y	Z	$\mathbf{g}(Y,Z)$	X	Y	Z	$\mathbf{h}(X,Y,Z)$
$egin{array}{c} t \\ t \\ f \\ f \end{array}$	$egin{array}{c} t \\ f \\ t \\ f \end{array}$.3 .7 .9 .1	$t \\ t \\ f \\ f$	$egin{array}{c} t \\ f \\ t \\ f \end{array}$.2 .8 .6 .4	$\begin{bmatrix} t \\ t \\ t \\ t \end{bmatrix}$	t t f t t	t f t f t f	$.3 \times .2 = .06$ $.3 \times .8 = .24$ $.7 \times .6 = .42$ $.7 \times .4 = .28$ $.9 \times .2 = .18$ $.9 \times .8 = .72$
						$f \\ f$	$f \\ f$	f f	$.9 \times .6 = .72$ $.1 \times .6 = .06$ $.1 \times .4 = .04$

$$\mathbf{l}(Y,Z) = \sum_{X} \mathbf{h}(X,Y,Z) = \mathbf{h}(x,Y,Z) + \mathbf{h}(\neg x,Y,Z)$$
$$= \begin{pmatrix} .06 & .24 \\ .42 & .28 \end{pmatrix}$$

X	Y	$\mathbf{f}(X,Y)$	Y	Z	$\mathbf{g}(Y,Z)$	X	Y	Z	$\mathbf{h}(X,Y,Z)$
t	t	.3	t	t	.2	t	t	t	$.3 \times .2 = .06$
t	f	.7	t	f	.8	t	t	f	$.3 \times .8 = .24$
f	t	.9	f	t	.6	t	f	t	$.7 \times .6 = .42$
f	f	.1	f	f	.4	t	f	f	$.7 \times .4 = .28$
						f	t	t	$.9 \times .2 = \overline{.18}$
						f	t	f	$.9 \times .8 = .72$
						f	f	t	$.1 \times .6 = .06$
						f	f	f	$.1 \times .4 = .04$

$$\mathbf{l}(Y,Z) = \sum_{X} \mathbf{h}(X,Y,Z) = \mathbf{h}(x,Y,Z) + \mathbf{h}(\neg x,Y,Z)$$
$$= \begin{pmatrix} .06 & .24 \\ .42 & .28 \end{pmatrix}$$

X	Y	$\mathbf{f}(X,Y)$	Y	Z	$\mathbf{g}(Y,Z)$	X	Y	Z	$\mathbf{h}(X,Y,Z)$
t	t	.3	t	t	.2	t	t	t	$.3 \times .2 = .06$
t	f	.7	t	f	.8	t	t	f	$.3 \times .8 = .24$
f	t	.9	f	t	.6	t	f	t	$.7 \times .6 = .42$
f	f	.1	f	f	.4	t	f	f	$.7 \times .4 = .28$
						f	t	t	$.9 \times .2 = .18$
						f	t	f	$.9 \times .8 = .72$
						f	f	t	$.1 \times .6 = .06$
						f	f	f	$.1 \times .4 = .04$

$$l(Y,Z) = \sum_{X} h(X,Y,Z) = h(x,Y,Z) + h(\neg x,Y,Z)$$
$$= \begin{pmatrix} .06 & .24 \\ .42 & .28 \end{pmatrix} + \begin{pmatrix} .18 & .72 \\ .06 & .04 \end{pmatrix}$$

X	Y	$\mathbf{f}(X,Y)$	Y	Z	$\mathbf{g}(Y,Z)$	X	Y	Z	$\mathbf{h}(X,Y,Z)$
t	t	.3	t	t	.2	t	t	t	$.3 \times .2 = .06$
t	f	.7	t	f	.8	t	t	f	$.3 \times .8 = .24$
f	t	.9	f	t	.6	t	f	t	$.7 \times .6 = .42$
f	f	.1	f	f	.4	t	f	f	$.7 \times .4 = .28$
						f	t	t	$.9 \times .2 = .18$
						f	t	f	$.9 \times .8 = .72$
						f	f	t	$.1 \times .6 = .06$
						f	f	f	$.1 \times .4 = .04$

$$l(Y,Z) = \sum_{X} h(X,Y,Z) = h(x,Y,Z) + h(\neg x,Y,Z)$$
$$= \begin{pmatrix} .06 & .24 \\ .42 & .28 \end{pmatrix} + \begin{pmatrix} .18 & .72 \\ .06 & .04 \end{pmatrix} = \begin{pmatrix} .24 & .96 \\ .48 & .32 \end{pmatrix}$$

X	Y	$\mathbf{f}(X,Y)$	Y	Z	$\mathbf{g}(Y,Z)$	X	Y	Z	$\mathbf{h}(X,Y,Z)$
t	t	.3	t	t	.2	t	t	t	$.3 \times .2 = .06$
t	f	.7	t	f	.8	t	t	f	$.3 \times .8 = .24$
f	t	.9	f	t	.6	t	f	t	$.7 \times .6 = .42$
f	f	.1	f	f	.4	t	f	f	$.7 \times .4 = .28$
						f	t	t	$.9 \times .2 = .18$
						f	t	f	$.9 \times .8 = .72$
						f	f	t	$.1 \times .6 = .06$
						f	f	f	$.1 \times .4 = .04$

Move outside the summation any factor independent of the variable to be summed out.

Move outside the summation any factor independent of the variable to be summed out.

$$\sum_{X} f(X,Y) \times g(Y,Z) = g(Y,Z) \times \sum_{X} f(X,Y)$$

Move outside the summation any factor independent of the variable to be summed out.

$$\sum_{X} f(X,Y) \times g(Y,Z) = g(Y,Z) \times \sum_{X} f(X,Y)$$

function ELIMINATION-ASK (X, \mathbf{e}, bn) returns a distribution over X inputs: X, the query variable \mathbf{e} , observed values for variables \mathbf{E} bn, a Bayesian network with variables vars

```
factors \leftarrow [\ ]

for each V in ORDER(vars) do

factors \leftarrow [Make-Factor(V, \mathbf{e})] + factors

if V is a hidden variable then factors \leftarrow Sum-Out(V, factors)

return NORMALIZE(POINTWISE-PRODUCT(factors))
```

Move outside the summation any factor independent of the variable to be summed out.

$$\sum_{X} f(X,Y) \times g(Y,Z) = g(Y,Z) \times \sum_{X} f(X,Y)$$

function ELIMINATION-ASK (X, \mathbf{e}, bn) returns a distribution over X inputs: X, the query variable \mathbf{e} , observed values for variables \mathbf{E} bn, a Bayesian network with variables vars

$$factors \leftarrow [$$
]

for each V in ORDER $vars$) do

 $factors \leftarrow [Make-Factor(V, \mathbf{e})] + factors$

if V is a hidden variable then $factors \leftarrow Sum-Out(V, factors)$

return Normalize(Pointwise-Product($factors$))

$$P(x_1, ..., x_n) = \prod_{i=1}^n P(x_i \mid Parents(X_i))$$

Levery choice of ordering yields a valid algorithm. $P(x_1, ..., x_n) = \prod_{i=1}^n P(x_i \mid Parents(X_i))$

Levery choice of ordering yields a valid algorithm. $P(x_1, ..., x_n) = \prod_{i=1}^n P(x_i \mid Parents(X_i))$

$$P(B \mid j, m) = \alpha f_1(B) \times \sum_{E} f_2(E) \times \sum_{A} f_3(A, B, E) \times f_4(A) \times f_5(A) \quad \text{(Order: } A, E)$$

* Every choice of ordering yields a valid algorithm. $P(x_1,...,x_n) = \prod_{i=1}^n P(x_i \mid Parents(X_i))$

$$P(B \mid j, m) = \alpha f_1(B) \times \sum_{E} f_2(E) \times \sum_{A} f_3(A, B, E) \times f_4(A) \times f_5(A) \qquad \text{(Order: } A, E)$$

$$P(B \mid j, m) = \alpha f_1(B) \times \sum_{A} f_4(A) \times f_5(A) \times \sum_{E} f_2(E) \times f_3(A, B, E) \qquad \text{(Order: } E, A)$$

Levery choice of ordering yields a valid algorithm. $P(x_1, ..., x_n) = \prod_{i=1}^n P(x_i \mid Parents(X_i))$

$$P(B \mid j, m) = \alpha f_1(B) \times \sum_{E} f_2(E) \times \sum_{A} f_3(A, B, E) \times f_4(A) \times f_5(A) \qquad \text{(Order: } A, E)$$

$$P(B \mid j, m) = \alpha f_1(B) \times \sum_{A} f_4(A) \times f_5(A) \times \sum_{E} f_2(E) \times f_3(A, B, E) \qquad \text{(Order: } E, A)$$

Different orderings generates different intermediate factors.

• Every choice of ordering yields a valid algorithm. $(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i \mid Parents(X_i))$

$$P(B \mid j, m) = \alpha f_1(B) \times \sum_{E} f_2(E) \times \sum_{A} f_3(A, B, E) \times f_4(A) \times f_5(A) \qquad \text{(Order: } A, E)$$

$$P(B \mid j, m) = \alpha f_1(B) \times \sum_{A} f_4(A) \times f_5(A) \times \sum_{E} f_2(E) \times f_3(A, B, E) \qquad \text{(Order: } E, A)$$

- Different orderings generates different intermediate factors.
- Time and space are dominated by the size of the largest factor constructed, which is subject to two factors:

• Every choice of ordering yields a valid algorithm. $(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i \mid Parents(X_i))$

$$P(B \mid j, m) = \alpha f_1(B) \times \sum_{E} f_2(E) \times \sum_{A} f_3(A, B, E) \times f_4(A) \times f_5(A) \qquad \text{(Order: } A, E)$$

$$P(B \mid j, m) = \alpha f_1(B) \times \sum_{A} f_4(A) \times f_5(A) \times \sum_{E} f_2(E) \times f_3(A, B, E) \qquad \text{(Order: } E, A)$$

- Different orderings generates different intermediate factors.
- Time and space are dominated by the size of the largest factor constructed, which is subject to two factors:
 - ordering of variables
 - structure of the network

• Every choice of ordering yields a valid algorithm. $(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i \mid Parents(X_i))$

$$P(B \mid j, m) = \alpha f_1(B) \times \sum_{E} f_2(E) \times \sum_{A} f_3(A, B, E) \times f_4(A) \times f_5(A) \qquad \text{(Order: } A, E)$$

$$P(B \mid j, m) = \alpha f_1(B) \times \sum_{A} f_4(A) \times f_5(A) \times \sum_{E} f_2(E) \times f_3(A, B, E) \qquad \text{(Order: } E, A)$$

- Different orderings generates different intermediate factors.
- Time and space are dominated by the size of the largest factor constructed, which is subject to two factors:
 - ordering of variables
 - structure of the network
- It is intractable to determine the optimal order.

Levery choice of ordering yields a valid algorithm. $P(x_1, ..., x_n) = \prod_{i=1}^n P(x_i \mid Parents(X_i))$

$$P(B \mid j, m) = \alpha f_1(B) \times \sum_{E} f_2(E) \times \sum_{A} f_3(A, B, E) \times f_4(A) \times f_5(A) \qquad \text{(Order: } A, E)$$

$$P(B \mid j, m) = \alpha f_1(B) \times \sum_{A} f_4(A) \times f_5(A) \times \sum_{E} f_2(E) \times f_3(A, B, E) \qquad \text{(Order: } E, A)$$

- Different orderings generates different intermediate factors.
- Time and space are dominated by the size of the largest factor constructed, which is subject to two factors:
 - ordering of variables
 - structure of the network
- It is intractable to determine the optimal order.
- Use a greedy heuristic: eliminate whichever variable minimizes the size of the next factor to be constructed.

$$\mathbf{P}(J \mid b) = \alpha P(b) \sum_{E} P(E) \sum_{A} P(A \mid b, E) \mathbf{P}(J \mid A) \sum_{M} P(M \mid A)$$

$$\mathbf{P}(J \mid b) = \alpha P(b) \sum_{E} P(E) \sum_{A} P(A \mid b, E) \mathbf{P}(J \mid A) \sum_{M} P(M \mid A)$$

$$\sum_{M} P(M \mid A) = 1$$

 $P(JohnCalls \mid Burglary = true)$?

$$\mathbf{P}(J \mid b) = \alpha P(b) \sum_{E} P(E) \sum_{A} P(A \mid b, E) \mathbf{P}(J \mid A) \sum_{M} P(M \mid A)$$

$$\sum_{M} P(M \mid A) = 1$$

The variable M is irrelevant to the query.

- We can remove a leaf node (e.g., *M*) that is neither a query variable nor an evidence variable.
- After the removal, there may be more leaf nodes that are irrelevant. Remove them as well, and so on.

- We can remove a leaf node (e.g., M) that is neither a query variable nor an evidence variable.
- After the removal, there may be more leaf nodes that are irrelevant. Remove them as well, and so on.

Every variable that is not an ancestor of a query variable or evidence variable is irrelevant to the query.

- We can remove a leaf node (e.g., M) that is neither a query variable nor an evidence variable.
- After the removal, there may be more leaf nodes that are irrelevant. Remove them as well, and so on.

Every variable that is not an ancestor of a query variable or evidence variable is irrelevant to the query.

 Using reverse topological order for variables, exact inference with elimination can be 1,000 times faster than the enumeration algorithm.

- We can remove a leaf node (e.g., M) that is neither a query variable nor an evidence variable.
- After the removal, there may be more leaf nodes that are irrelevant. Remove them as well, and so on.

Every variable that is not an ancestor of a query variable or evidence variable is irrelevant to the query.

- Using reverse topological order for variables, exact inference with elimination can be 1,000 times faster than the enumeration algorithm.
- If we want to compute posterior probabilities for all the variables rather than answer individual queries, we can use clustering algorithms (i.e., join tree algorithms).