DATA SCIENCE

AULA 10 – SISTEMA DE RECOMENDAÇÃO I

PROF^a. ANA CAROLINA B. ALBERTON

INTRODUÇÃO

Variáveis

- Existe uma relação matemática entre estas duas variáveis?
- Se existe, como posso medir sua força?
- Poderia usar essa relação para fazer previsões?

No olhômetro, não conseguimos identificar uma relação, principalmente em um conjunto de dados maior.

Idade	Custo
18	871
23	1132
28	1242
33	1356
38	1488
43	1638
48	2130
53	2454
58	3066
63	4090

Como então podemos criar essa relação, imaginando um conjunto de dados com mais de 5000 linhas? Essa é a questão a ser resolvida na aula de hoje. Vamos então seguir uma linha de raciocínio... me acompanhem (mesmo que de forma remota)...

GRÁFICO DE DISPERSÃO

Idade	Custo
18	871
23	1132
28	1242
33	1356
38	1488
43	1638
48	2130
53	2454
58	3066
63	4090

Vamos plotar essas variáveis para visualizar melhor

Custo de Clientes para Plano de Saúde

GRÁFICO DE DISPERSÃO

Idade	Custo
18	871
23	1132
28	1242
33	1356
38	1488
43	1638
40	2120

É importante ter bem claro essas definições em vermelho

63 4090

Eixo Y (Vertical)
Variável de Resposta
Ou Dependente
Na regressão é o que
queremos Prever

Olhando assim, Vcs já conseguem me dizer qual vai ser o custo para o plano de saúde de um paciente com 45 anos de idade?

Eixo X (Horizontal)

Variável Explanatória ou Independente

Na regressão é o que explica,
ou usamos para prever

REGRESSÃO LINEAR

CORRELAÇÃO (r)

Existe um valor que diz para a gente qual a relação entre elas, chamado de correlação

- Mostra a força e a direção da relação entre variáveis
 - Pode ser um valor entre I e I
 - A correlação de A ~ B é a mesma que B ~ A

$$r = \frac{n\sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{\sqrt{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \sqrt{n\sum_{i=1}^{n} y_{i}^{2} - \left(\sum_{i=1}^{n} y_{i}\right)^{2}}}$$

CORRELAÇÃO (R)

Mostra a força e a direção da relação entre variáveis

Pode ser um valor entre - I e I

A correlação de A ~ B é a mesma que B ~ A

CORRELAÇÃO - FORÇA E DIREÇÃO

EXEMPLO

Relacione:

a) 1

b) -0,8

c) 0,23

d) 0,09

e) -0,334

f) 0

g) 0,6

h) 1,2

□Inexistente

□Erro

☐ Positiva moderada

☐ Negativa forte

☐Positiva fraca

Positiva fraca

☐Positiva perfeita

☐ Negativa FRACA

EXEMPLO - resposta

Relacione:

CORRELAÇÃO

Forte - Fraca

Cor: 0,93092 Cor: -0,22765

Positiva - Negativa

Cor: 0,93092 Cor: -0,93092

CORRELAÇÃO POSITIVA

Idade	Custo
18	871
23	1132
28	1242
33	1356
38	1488
43	1638
48	2130
53	2454
58	3066
63	4090

CORRELAÇÃO NEGATIVA

Temperatura	Vendas
-1	4090
0	3066
4	2454
9	2130
11	1638
15	1488
18	1356
20	1242
24	1132
26	871

COEFICIENTE DE DETERMINAÇÃO (R²)

Temos também um outro valor, derivado do R. O coeficiente de determinação, que é o R ao quadrado

Mostra o quanto o modelo consegue explicar os valores

Quanto maior, mais explicativo ele é

O restante da variabilidade está em variáveis não incluídas no modelo

Varia entre zero até 1 (Sempre positivo)

Calcula-se com o quadrado do coeficiente de correlação (R)

COEFICIENTE DE DETERMINAÇÃO (R²)

- Correlação = 0,93
- \blacksquare R²=0,86
- 86% da variável dependente consegue ser explicada pelas variáveis explanatórias presentes no modelo

Esse é o significado do valor dele. Muito interessante, por sinal!

Então quando temos uma boa correlação e um bom R², podemos aplicar a função de regressão linear

Idade	Custo
18	871
23	1132
28	1242
33	1356
38	1488
43	1638
48	2130
53	2454
58	3066
63	4090

Previsão: Qual vai ser o custo de um cliente com 45 anos de idade?

O correto para criar essa previsão é encontrar aquela linha vermelha, ou seja, encontrar a equação da reta Y=ax+b (lembram disso?)

Custo de Clientes para Plano de Saúde

- Como a linha é construída?
 Interseção: Ponto de Encontro da Linha no Eixo Y : X=0
- Inclinação: a cada unidade que aumenta a variável Independente (x), a variável de resposta (y) sobe o valor da inclinação

$$y = ax + b$$

 $y = inclinação*x + Interseção$

Exemplo para encontrar o custo para idade = 34:

Intersecção: -558,94

Inclinação: 61,86

Previsão:

33 anos: 1356

34 anos: 1356 + 61,86 = 1417,86

Se pegarmos usando os dados, seria só somar.

Mas então porque essa conta não bate, se tentar encontrar a equação da reta?

Porque não consideramos os erros

Custo de Clientes para Plano de Saúde

- Quando analisamos dados que sugerem a existência de uma relação funcional entre duas variáveis, surge então o problema de se determinar uma função matemática que exprime esse relacionamento, ou seja, uma equação de regressão.
- Ao imaginar uma relação funcional entre duas variáveis, digamos X e Y, estamos interessados numa função que explique grande parte da variação de Y por X. Entretanto, uma parcela da variabilidade de Y não explicada por X será atribuída ao acaso, ou seja, ao erro aleatório.
- Quando se estuda a variação de uma variável Y em função de uma variável X, dizemos que Y é a variável dependente e que X é a variável explanatória (ou independente)

REGRESSÃO LINEAR SIMPLES

■ Formalmente, a análise de regressão parte de um conjunto de observações pareadas,(x1,y1),(x2,y2).. e considere que podemos escrever a relação da seguinte maneira:

$$y_i = \alpha + \beta x_i + E$$

- \blacksquare α e β devem ser estimados
- E é erro aleatório para a i-ésima observação

ESTIMAÇÃO DE PARÂMETROS

- lacktriangle O objetivo é estimar valores para α e β através dos dados fornecidos pela amostra
- Além disso, encontrar a reta que passe o mais próximo possível dos pontos observados segundo um critério estabelecido

MÉTODO DOS MÍNIMOS QUADRADOS

É usado para estimar os parâmetros do modelo e consiste em fazer com que a soma dos erros quadráticos seja menor possível ou seja este método consiste em obter os valores de α e β que minimizam a expressão

$$S = \sum \varepsilon_i = \sum (Y_i - \alpha - \beta x_i)^2$$

 \blacksquare Aplicando-se as derivadas parciais à expressão acima, e igualando-se a zero, acharemos as estimativas para α e β

$$a = \frac{\sum y_i - b \sum x_i}{n}$$

e

$$b = \frac{\mathbf{n} \sum \mathbf{x_i} \mathbf{y_i} - \sum \mathbf{x_i} \sum \mathbf{y_i}}{\mathbf{n} \sum \mathbf{x_i}^2 - (\sum \mathbf{x_i})^2}$$

RESÍDUOS

■ A diferença entre os valores observados e os preditos será chamada de **resíduos**

$$e_{\mathbf{i}} = \mathbf{y}_{\mathbf{i}} - \hat{\mathbf{y}}_{\mathbf{i}}$$

O resíduo relativo é a i-ésima observação e pode ser chamada de erro aleatório como mostra abaixo

OUTLIERS

Nesses casos os outiliers interferem muito, por isso é sempre bom avaliar

Por exemplo aqui. acrescentei essa terceira linha, olhem como ficou a minha correlação

Idade	Custo
18	871
22	1122
24	5435
28	1242
33	1356
38	1488
43	1638
48	2130
53	2454
58	3066
63	4090

Antiga correlação= 0,93

Nova correlação= 0,34

Custo de Clientes para Plano de Saúde

Desafio -

Usando o arquivo .ipynb com os códigos em python e esse conjunto de dados, responda:

- Qual a correlação?
- 2) Qual o coeficiente de determinação?
- 3) Essa correlação é forte, moderada ou fraca? positiva ou negativa? Podemos explorar a regressão linear?
- 4) Qual seria a quantidade de gols feitos para um jogador que ficou em 23° lugar? (dica: use os valores gerados dos coeficientes de intercessão e de inclinação)

Posição	Gols Feitos
1°	86
2°	60
3°	61
4°	64
5°	51
6°	39
7°	44
8°	42
9°	50
10°	46
11°	44
12°	39
13°	44
14°	38
15°	31
16°	36
17°	27
18°	24
19°	31
20°	18