Aufgabe

Berechne den Korrelationskoeffizienten nach Spearman für die folgende, zweidimensionale Stichprobe.

Person		1	2	3	4	5	6	7	8
Größe [cm]	Х	174	183	162	170	182	176	173	198
Gewicht [kg]	У	73	93	74	58	90	88	72	91

Aufgabe

Berechne den Korrelationskoeffizienten nach Spearman für die folgende, zweidimensionale Stichprobe.

Person		1	2	3	4	5	6	7	8
Größe [cm]	Х	174	183	162	170	182	176	173	198
Rang		4	7	1	2	6	5	3	8
Gewicht [kg]	у	73	93	74	58	90	88	72	91
Rang		3	8	4	1	6	5	2	7

Definition: Spearmans Korrelationskoeffizient

Für gegebene Daten (x_i, y_i) , i = 1, ..., n, ist der Korrelationskoeffizient nach Spearman r_{SP} definiert durch

$$r_{SP} = \frac{\sum_{i=1}^{n} [rg(x_i) - \bar{rg}_X] [rg(y_i) - \bar{rg}_Y]}{\sqrt{\sum_{i=1}^{n} [rg(x_i) - \bar{rg}_X]^2} \sqrt{\sum_{i=1}^{n} [rg(y_i) - \bar{rg}_Y]^2}},$$

wobei

$$r\bar{g}_X = \frac{1}{n} \sum_{i=1}^n rg(x_i) = \frac{1}{n} \sum_{i=1}^n i = \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2} = r\bar{g}_Y.$$

Definition: Spearmans Korrelationskoeffizient

Für gegebene Daten (x_i, y_i) , i = 1, ..., n, ist der Korrelationskoeffizient nach Spearman r_{SP} definiert durch

$$r_{SP} = \frac{\sum_{i=1}^{n} [rg(x_i) - \bar{rg}_X] [rg(y_i) - \bar{rg}_Y]}{\sqrt{\sum_{i=1}^{n} [rg(x_i) - \bar{rg}_X]^2} \sqrt{\sum_{i=1}^{n} [rg(y_i) - \bar{rg}_Y]^2}},$$

wobei

$$r\bar{g}_X = \frac{1}{n} \sum_{i=1}^n rg(x_i) = \frac{1}{n} \sum_{i=1}^n i = \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2} = r\bar{g}_Y.$$

In unserem Beispiel: $r\bar{g}_X = r\bar{g}_Y = \frac{n+1}{2} = \frac{9}{2} = 4,5$

$$r_{SP} = \frac{\sum_{i=1}^{n} [rg(x_i) - \bar{r}g_X] [rg(y_i) - \bar{r}g_Y]}{\sqrt{\sum_{i=1}^{n} [rg(x_i) - \bar{r}g_X]^2} \sqrt{\sum_{i=1}^{n} [rg(y_i) - \bar{r}g_Y]^2}}$$

$$= \frac{\sum_{i=1}^{8} [rg(x_i) - 4, 5] [rg(y_i) - 4, 5]}{\sqrt{\sum_{i=1}^{8} [rg(x_i) - 4, 5]^2} \sqrt{\sum_{i=8}^{n} [rg(y_i) - 4, 5]^2}}$$

$$= \frac{(4 - 4, 5) \cdot (3 - 4, 5) + \dots + (8 - 36) \cdot (7 - 4, 5)}{\sqrt{(4 - 4, 5)^2} + \dots + (8 - 4, 5)^2} \sqrt{(3 - 4, 5)^2 + \dots + (7 - 4, 5)^2}}$$

$$= \frac{5}{6}$$

12	0/4

Person		1	2	3	4	5	6	7	8
Größe [cm]	Х	174	183	162	170	182	176	173	198
Gewicht [kg]	У	73	93	74	58	90	88	72	91

Korrelationskoeffizient nach Spearman:
$$r_{SP}=\frac{5}{6}$$

Person		1	2	3	4	5	6	7	8
Größe [cm]	Х	174	183	162	170	182	176	173	198
Gewicht [kg]	У	73	93	74	58	90	88	72	91

Korrelationskoeffizient nach Spearman: $r_{SP} = \frac{5}{6}$

Interpretation

- $r_{SP} \in [-1, 1]$
- $r_{SP} > 0$ positiver Zusammenhang
- $r_{SP} = 0$ kein Zusammenhang
- $r_{SP} < 0$ negativer Zusammenhang

Einfachere Berechnung von r_{SP}

Für Daten (x_i, y_i) , i = 1, ..., n mit $x_i \neq x_j$ und $y_i \neq y_j$ für alle i, j gilt

$$r_{SP} = 1 - \frac{6 \cdot \sum_{i=1}^{n} (rg(x_i) - rg(y_i))^2}{(n-1) \cdot n \cdot (n+1)}.$$

Wichtig: Gilt nur falls die Daten paarweise verschieden sind (d.h. wenn es keine *Bindungen* gibt)!

X	У	rg(x)	rg(y)	rg(x) - rg(y)	$(rg(x) - rg(y))^2$
174	73	4	3		
183	93	7	8		
162	74	1	4		
170	58	2	1		
182	90	6	6		
176	88	5	5		
173	72	3	2		
198	91	8	7		
$\overline{\Sigma}$					

 \sum

X	У	rg(x)	rg(y)	rg(x) - rg(y)	$(rg(x) - rg(y))^2$
174	73	4	3	1	
183	93	7	8	-1	
162	74	1	4	-3	
170	58	2	1	1	
182	90	6	6	0	
176	88	5	5	0	
173	72	3	2	1	
198	91	8	7	1	
$\overline{}$					

X	У	rg(x)	rg(y)	rg(x) - rg(y)	$(rg(x) - rg(y))^2$
174	73	4	3	1	1
183	93	7	8	-1	1
162	74	1	4	-3	9
170	58	2	1	1	1
182	90	6	6	0	0
176	88	5	5	0	0
173	72	3	2	1	1
198	91	8	7	1	1
$\overline{}$					

 \sum

X	У	rg(x)	rg(y)	rg(x) - rg(y)	$(rg(x) - rg(y))^2$
174	73	4	3	1	1
183	93	7	8	-1	1
162	74	1	4	-3	9
170	58	2	1	1	1
182	90	6	6	0	0
176	88	5	5	0	0
173	72	3	2	1	1
198	91	8	7	1	1
\sum					14

Einfachere Berechnung von r_{SP}

Für Daten (x_i, y_i) , i = 1, ..., n mit $x_i \neq x_j$ und $y_i \neq y_j$ für alle i, j gilt

$$r_{SP} = 1 - \frac{6 \cdot \sum_{i=1}^{n} (rg(x_i) - rg(y_i))^2}{(n-1) \cdot n \cdot (n+1)}.$$

$$r_{SP} = 1 - \frac{6 \cdot \sum_{i=1}^{8} (rg(x_i) - rg(y_i))^2}{(8-1) \cdot 8 \cdot (8+1)}$$
$$= 1 - \frac{6 \cdot 14}{7 \cdot 8 \cdot 9}$$
$$= \frac{5}{6}$$