Bounded Linear Functions

(1) Main Theirens:

O Uniform Boundapress Principle:

i) Brire Lemma:

The complete metric space X is Baire Space.

ive. (Xn) is seq of closed sets. St. int Xn = $\frac{1}{4}$.

Then int UXn = $\frac{1}{4}$.

Gr. (Yn) seq of closed sets. UXn=X. Then

Ino. It. int Xno # X.

Pf: (=) On= Xn dense. Then G= Non dense.

By contradiction: suppose IWNG=A. w open.

Choose ser (B(Xn, Yn)). Xn & B(Xn1, Ym) N On.

Yn < \frac{Tn^2}{2}. B(X0, Y0) \leq W. B(Xn1, Ym) \ N On.

Ex.s is Canchy \rightarrow 1 \in G \ N W.

ii) let E.F. n.v.s. LEE.F) is space of BLO's:

T: E -> F. With rorm IITIIZEFF; = Supil TXII.

XXE
UXIIE;

Prop. F is Barach \(\emptyreap \) LCE.F) is Barach.

- $Pf: (\Rightarrow) (m_n) \leq LiE_iF) \cdot (another \Rightarrow \forall x \cdot (M_n x) \leq F \quad (another Penote M_n x \to \gamma x \t$
 - (\Leftarrow) $(\eta_n) \leq F$. $(nwolq. Fix x_0 \in E. ||X_0|| = 1. ||X_0^*(x_0)| = 1.$ Set $A^m(x) = \chi^*(x) m. m \in F. A^m: E \to F. BLO.$ $\Rightarrow (A^m)$ (nwoln in Lie, F). where $\eta_n \to \eta = A^m(x_0)$ $(nm) \in F$. (nwoln in Lie, F). where $(n \to g) = A^m(x_0)$ $(nm) \in F$. $(nwolq. Fix x_0 \in E. ||X_0|| = 1.$ $(nm) \in F$. $(nwolq. Fix x_0 \in E. ||X_0|| = 1.$ $(nm) \in F$. $(nwolq. Fix x_0 \in E. ||X_0|| = 1.$ $(nm) \in F$. $(nwolq. Fix x_0 \in E. ||X_0|| = 1.$ $(nm) \in F$. $(nwolq. Fix x_0 \in E. ||X_0|| = 1.$ $(nm) \in F$. $(nwolq. Fix x_0 \in E. ||X_0|| = 1.$ $(nm) \in F$. $(nwolq. Fix x_0 \in E. ||X_0|| = 1.$ $(nm) \in F$. $(nwolq. Fix x_0 \in E. ||X_0|| = 1.$ $(nm) \in F$. $(nm) \in F$. (nm

Thm. CUBP).

E Banach. F n.u.s. (Ti)ieI = L (E.F). If (Ti)ieI satisfies

Sup 11Tx11 < 00. for any fixed x EE. Then I C. const.

itI

11Tix11 = C 11x11. \(\forall \). \(\forall \) \(\forall \). \(\forall \) \(\forall \).

Pf: Xn = 1 x 6 El 11 TixII = n. Vi 6 I 3. .. UXn = X.

Apply Baire Lemma. Ino. int Xno & X. Chiox a ball.

fermot: i) It's remarkable since it claims: pointwise estimate ⇒ global estimate.

ii) In general. pointwise limit of conti operators had not be conti. Linearity is essential.

Gor. G is Banach space. B C G. Subset. If &f & h.

f(B) = 1 < f(x) , x + B) is bounded. Then B is bound

1f: Let To(f) = < f(b). for b + B.

Fernak: To check B is bounded. In finite limension case, we can check every f & 6*.

Then I c >0. St. Brio.c) = TC BE(0.1)

- 11: 19) Prove = 3670. 12. TCBE(0,11) = BF(0.20)

 Xn = n TCBE(0,11). UXn = F. by surjection.

 Apply Baire Thm. 3 Beg. 40 & int Xn.
 - 2) Prove : To BE(1.11) = BF(0.0)

 E) Y P & F. II PIIF < C.] X & E. II X II E < 1. Tx = P.

 From Tobe(1.\(\frac{1}{2}\)) = BF(0.0). We have:

 Y \(\frac{1}{2}\) > 7 & BF(0.0). We have:

 If \(\frac{1}{2}\) = \frac{1}{2}\) \(\frac{1}{2}\) \(
 - Cor. Under the assumption above. T is open mapping.

 Pf: Yno & Tem. I xo & E. Txo=no. : I Bex. 1) & U.

 : Te Bex. 1) = Te Xo+Benis) & Tem.

 i.e. Texo+Tebenis) & Tem. Apply Thm: 36.

 Tebenis) = Benis : Benis & Tem.

Gar. With addition; T is bijustive. Then $T \in L_{cF,E}$.

Pf: $\forall \eta \in \beta_{F(0,u)}$. $\exists x \in \beta_{E(0,1)}$. $Tx = \eta$. $\forall z \in F. \quad z = \frac{z}{||z||} \cdot \frac{c}{z} \cdot \frac{2||z||}{c} \cdot \exists z \in \beta_{E(0,1)}.$ St. $Tx_0 = \frac{z}{||z||} \cdot \frac{c}{z} : z = \frac{2||z||}{c} \cdot Tx_0.$

: 11 T Z11 = 11 2/1811 X.11 = 2 11211. T'& Lif. E)

Gr. E. v.s. with norm $||\cdot||.$ $||\cdot||_2$. If $cE, ||\cdot||.$) and $(E, ||\cdot||_2)$ are both Banneh. and exist c>0.5t. $||x||_2 \leq c||x||.$ $\forall x \in E.$ Then $||\cdot||.$ $\sim ||\cdot||_2$. $Pf: (E, ||\cdot||.) \xrightarrow{I} (E, ||\cdot||.)$. $II \cdot ||x||_2$

3) Closed Graph Thm:

Thm. E. F are Banach space. $T: E \to F$. linear. Denote: $G(T) = I(X, TX) \mid X \in E$. Then : $T \in L(E, F) \Leftrightarrow h(T)$ is closed.

Pf: Only prove (=):

Denote: IIXII. = IIXIIE + IITXIIF. Check (E. II.II.) is Brown Since GLT) is closed. By car. above. II.II. - II.IIE

Cor. A: DLA) CE -> F. bijection. GLA) is closed. Then:

A' is ble on Filic. A' & LCF. E))

Pf: CP(A). 11.11.) is Barach space.

Rmk: A isn't necessary bld. e.g. A: $C(0.2) \cap f(0.20) \subset$ $C(0.2) \cap f(0) = 0 \longrightarrow C(0.2) . Acf = f'$

(2) Transpose of BLO's:

For X.Y Banach spaces. M = X -> Y. BLO. Then we can define transpose of M : M*: Y*-> X*. St. < M*. L > = LoM. for & L & Y*

Claim: M* & L (Y*. X*).

i) M* is linear.

ii) 11 m*11 = 11 m11

1") 11 < m*. 17 1 = 5 np 1 < m*. 1> (x) 1 = 5 np 1 dc mx) 1

= smp | (1 mil = 11 ll 11 mil = 11 mil = 11 mil

2') $||m|| = \sup_{x} ||m(x)|| = \sup_{x} \sup_{x} ||-L, mx||$ = $\sup_{x,x} |-m^{*}x, x|| = ||m^{*}x|| ||x||| = ||m^{*}||$.

iii) For Mi, Mi & L c Y* X*). (9Mi+Mi) = (xm.+mi)*

iv) For E.F.h Banneh spaces. $T \in L(E.F)$. $S \in L(F.h)$ Then: $(S \circ T)^* = T^* \circ S^* \in Cotravariant)$ $E \xrightarrow{T} f \xrightarrow{S} h : \Rightarrow h \xrightarrow{S} F^* \xrightarrow{T} E^*$

U) For TE SCE.F). bijution => T* is bijution.

VI) TELIE.F). between Branch spaces. RLT) closed => RIT's closed.

e.g. X is Milbert Space. M & L(X.X).

M* is transpose of M. To obtain adjoint in C.,.):

By Riest's Thm: 37 + X. Corresponds ly & X*.

5t. < ly. x> = (q. x). \ x \ x \ x,

Define: $\widetilde{M}: X \to X$. $\widetilde{M}(\eta) = M^*(\eta)$.

 \Rightarrow (Mx, 7) = (x, M7).

Pf: $(Mx, \eta) = \langle \eta, Mx \rangle = \langle M^* \eta, \chi \rangle$ $= (\widetilde{M}(\eta), \chi)$

(3) BLF's of Completion:

. $M \in L(X,Y)$. X,Y n.v.s. suppose $\overline{X},\overline{Y}$ nre completion of X,Y. Then we can define $M_0: \overline{X} \rightarrow \overline{Y}$. It. $M_0 \in L(\overline{X},\overline{Y})$, and it satisfies:

MO (F(Xn)]) = F(MXn)].

Check mo is well-day { Improper with (xo). linear.

and bounded by $|| M_{\bullet}(E(X_{\bullet})J)|| = || E(MX_{\bullet})J||$ $= \lim_{n \to \infty} || MX_{n}|| \leq \lim_{n \to \infty} || M_{\bullet}|| \| M_{\bullet}||$

(4) Example of BLF: integral operator

DS; is metric space. Gosilur mensure space (Sj. Bsi.Mi).

Mj(Sj) < 00. j=1.2. Bsi is Borel of Si.

If: A: L'imi) -> L'imi). Acf) = S, kes. to for Am.

where k: Sixs- -> C.

Find Condition st. A is BLF:

Note that |Acf, 12 = 11 kllimin 11 flicens

: 11 Acts 112 cm = 11 × 112 cm xm 11 file cm 1)

If $K \in L^2(M, \times M^2)$. Then A is BLD. call it integral operator.

O Representation of norm:

11 Af 11 = Smp | < Af. h > 1 = Smp . | \int Actions held Ama |

11 Af 11 = Smp | < Af. h > 1 = Smp . | \int Actions held Ama |

11 Af 11 = Smp | < Af. h > 1 = Smp . | \int Actions held Ama |

 $| \langle Af. h \rangle | = | \int_{S_1 \times S_2} k_{CS_1 + 1} f_{CA_1} h_{CS_1} A_{CA_2} A_{CS_1} A_{CS_1} A_{CS_2} A_{CS_2} A_{CS_2} A_{CS_1} A_{CS_2} A$

(t) Complementary Subspaces

nnd Invertibility:

The (property of closed subspaces)

E is Branch space. G. L = E. closed swbspaces

St. G+L is also closed. Then IC>0. Such that

\$\frac{1}{2} \in G+L. \ \frac{1}{2} \in \text{X+1}. \ \frac{1}

Pf: T= 6×L -> 6+L Conti. Linear and surjective exigo to x+y from a.L. 6+L are closed.

Apply open mapping thm. on T.

Gr. 3 6>0. It. Mist (X. GOL) = C (Listex. G) + List(X. L))

**X t E. under the andition above.

Pf: Choose neh. bel. St. 11n-x11 = Listex.4)

and 11b-x11 = Listex.L).

n-b = 6+L. Apply 7hm. 7n'6h. b'6l. St.

n-b = a'tb'. O11a-b11 = 11n'11+11b'11

: a-e'=b'+b = 6nl. Listex. 6+L) = 11 x-ca-a's11.

LOX. E Branch space. G. L = E. OLS. If I = C70. St.

LOX. GAL) = C LOX.L). Then G+L is closed.

RMK: It's converse of 7km. above.

Lemma A: DCA) CX -> Y. injective CLO. X. Y are

Branch. Then: LCA) is closed => \$\frac{1}{2} \text{C} > 0.5t.

11 XII \(\int \) C || A X II. \(\text{V} \text{X} \in \) D(A).

 $\frac{pf.}{(=)} A \times n \to \gamma \Rightarrow (\times n) \text{ Canchy } \Rightarrow \times n \to \times \text{ in } X.$ $\Rightarrow B n \text{ closed graph. } \gamma = A \times .$

(⇒) CRCA). 11.114) is cls of Y. So Bonach

A: DCA) \(\sum_{CLO} \) CRCA), 11.114) \(\cdot \cdot \) A' is bld.

CIT. $A = D(A) \in X \rightarrow Y$. CLO. Then = R(A) is closed $(=) \exists c > 0$. St. $R(x, N(A)) \leq c ||A \times ||$. $\forall \times \in D(A)$. $Pf: X \xrightarrow{A} Y$ Note that $R(\widetilde{A}) = R(A)$.

Pf. $X \xrightarrow{A} Y$ Note that $Ri\overline{A}$ = RiA). $Z \times / \overline{A}$ Check: 1°) NOA) is closel.

2°) \overline{A} is CLO.

1º) follows from A is CLO. 2°) is trivial

Then X/kerA is Bunneh. Apply Lemma.

Pf of cor: $Z: E \longrightarrow E/L$. $T: G \longrightarrow E/L$. Tx = ZX $\therefore N \circ T) = G \cap L$. T is GLO. $\Rightarrow R(T) = Z(G) \quad close. \quad Z'(Z(G)) = G+L \quad close.$

RMK: i) $l : E \rightarrow F$. linear bijection among Banach spaces. I isn't recessary to be beld: E = F. Lim $E = \infty$. Where (ex) Ath. is set of Magnel Basis. Set: Lees) = roly. By too

ii) Remove "Branch". We can't apply Close Graph Thm.

e.7. X. Branch space with Hamel Briss Let) aca.

set $11\times11y = \sum_{i=1}^{n} |a_{i}|$. for $X = \sum_{i=1}^{n} a_{i} \in X$.

Then $Y = c \times 11\cdot11y$) Isn't Branch. Since $\sum_{i=1}^{n} (x_{i} + y_{i})$. $X = \sum_{i=1}^{n} (x_{i} + y_{i})$. $X = \sum_{i=1$

O Complement: Basis:

- Def: i) Mamel Basis of Vector Span E is

 the maximal d.i. set (la) rea. St.

 If finite set of (la) rea is d.i. and

 VXEE. X is finitely span by (la) rea.
- Rmk: i) By Zorn's Lemma. Unmel Basis always exists.

 But not for Schauder basis.
- but mit Manul basis.
 - iii) Schander besis can be uncountable.

@ Complement of Barack space:

Pef: G is CLS of E. L = E subspace. L is complement

(topological) of h if: 1) L = I ii) G∩L=603. G+L=E

⇒ Za: G+L → G. canonical Proj. is Surjective BLO.

- prop. i) Firste-Limension subspace admits a complement.
 - ii) Closen subspace with finite co-dimension admits

 A complement.
 - iii) Closed subspace of Hilbert space admits a complement.
 - Pf: ii) Same as i). Denote it by 6. Let $N \subseteq E^*$.

 St. $N^* = 6$. $Aim N = P < \infty$. Prove $N^* \oplus G = E$.

Pernale: For a Branch space E. which isn't Milbert.

There exists 6 = E. closed linear subspace. St.

6 admits no complement.

- Def: For $T \in L(E,F)$.

 right inverse: $S \in L(F,E)$. St. $T \circ S = 1_F$ left inverse: $S \in L(F,E)$. St. $S \circ 7 = 1_E$.
- 7hm. i) For TELLEIF) surjective. Then

 Talmits a light inverse (3) NoT) what a complement.
 - ii) For T & L(E,F) injective. Then

 T admits a left inverse (Ret) admits a complement.

For $X \subseteq E$. finite dimension Them:

- i) M+X is closer.
- ii) m+x admits a complement A M Noes.
- Pf: i) suppose $M \cap X = Io3$. (let $X = Limplement of M \cap X in X)$ For $Xn + In \in M + X \rightarrow u \in E$. $Xn \in M$. $Nn \in X$ Check (In) is bounded. $\Rightarrow (In)$ submits convergent subseq.

 ii) $(\Leftarrow) E = M \oplus N$. $\Rightarrow Zm$. Zn. Canonical projection.

(⇒) (W+X) ⊕ M=E. Where W is the Complement of M+X in E

Permate: subspace with finite continuous ion mendate be closed: f l.F. f on E. NCT) has the Limension f im E/NcT) = 1. When f is not conti. N conti. N correction f is not closed.

Cor. Under the condition above. I m subspace of E. st. m = m. Then m is closed.

Pf: let X be the algebraic complement of M in \overline{M} . then $\overline{M} = M + X$. $\lambda i M X \leq A i M = M = \infty$. Fernont: Topological Complement E of F is different
from algebraic complement, which requires:

E OF = X. Besides, E is closed. But the later
only require: E OF = X.

Cor. E is Bonneh Spore. $M \subseteq E$ closed linear subspace of finite co-Limension. $D \subseteq E$ Lense subspace. Then there exists a Complement X of M. St. $X \subseteq D$.

Pd: By inAmetion on $k = \lim_{n \to \infty} E/m$. k = 0.

For k = n. choose $x_1 \in D$. $x_1 \times m$.

Otherwise $D \subset m$. $\Rightarrow \bar{D} = E \subset m \subset E$. antradict! $m_1 = m + ipx_1$, has to Limension m_1 . By hypothesis V.

Remak: It characterizes the complement of FCLS.

Prop. E is Barach. G.L $\subseteq E$. closed subspace. If $\exists x...x_2 \subseteq E$. subspace. St. $\lambda : x_1 = x_2 < \infty$. $\lambda : x_2 = x_2$

(b) Orthogonallity Levisit:

prop. L. L = E. closen subspaces. Then

- i) GAL = (6+++)+
- ii) 601= (4+4)

Pf: Note that N. ENZ = Nz EN. +

- 7hm. 6.2 = E. closed subspaces. Then the following properties are equivalent:
 - ii) 6+1= (6nL) iv) 6+1= (6nL)
- (7) Unbounded lipear Operators

 and its Adjoints:
 - 1) Pef: E.f bornook spaces. An unbould linear operator from E to F is: A: DIA) $\subseteq E \to F$.

 DIA) = In $\in E$ | II Amily = ∞ 3. Normin of A. $e\cdot \gamma$. A: $\frac{1}{Ax}|_{X=Y_2}$ on C^*EOII .
 - Frank: i) A is CLO => NCA) is cloud. But

 Consider RCA) = RCH) may not be close

 Since un -> u, u may & E/DCA). e.g.

 T: CCO.17 -> CCO.17. Tf = f.x f At.
 - ii) We may assume A is closed to and PLA) is home. When Il>0. St. YuEDIA).

 HANH = CHAH. Then A can extend to E.
 - Def: adjoint of A is: $A^*: D(A^*) \in F^* \longrightarrow E^*$. $P(A^*) = \mathbb{E} \left\{ cF^* \middle| \exists c70. \exists t. \middle| \leq f._{An^*} \middle| \leq c ||w||, \forall u \in D(A) \right\}.$ is linear subspace. Usually suppose D(A) is densy.

 then extend $f \in F^*$ to E.

As the known transpose, we have: $< f, A_n > p, F = < A^* f, n > E^*, E$ Prof. A = DIA) = E -> f lensely befines. Them A' is closes. Pf: For (Vn, A*Un) -> (V.f). check i) VEPIATO From < Un. Aw > = < Aun. u> ii) f = A*v. tutDIA). Lot n + 00. : < V. An> = < A*V.n> = < f.n> . | < V. An> | = 11f1/11/11. ⇒ V ∈ PIA*). Sina PiA) Long ⇒ YuEE V - f= A*v. O brthogonal Relation between A man A* · Deg: I: F*xE* -> E*xF*. IIV.fJ = 5-f.V] prop. Ic 6(A*)) = 6(A) Pf: [v,f] + GLA*) = <A*v.n> = <fin>. YutDiA) (=) <-f,n> + < V, An> = 0. ∀u ∈ D(A).

i.e. < [-f.v], [u, An] > = 0. .. [-f.v] & 61A)

Cor. A: DIA) EE - F. Newsby Refiner. cloud. Then. NIA) = RIA*) + NIA*) = RIA) + N'(A) = RIA*) . NIA*) = RIA) Pf: From: h=GCA). L= Exfos. we have:

NIA) X [0] = GOL. Ex FIA) = G+L [] x NOA*) = GTAL*. ROA*) XF* = G+L*. Since GIAJ = Ichca*1). L= EO3 x F*.

Gr. The following properties are equivalent.

i) Read is close. Ii) FIAts is close.

iii) RIA) = NIA*) - IV) RIA*) = NIA) +

3 Charterisation of surjective operators:

A Thm. X. Y. Branch. A: Dea) Ex-y
subjective CLO. Then:
A is open map.

Pf: CPCA). H.H.) A

Z Subjective CLO. Then:

1) The following properties are equivalent: map.

(N) A is surjective (b) NOA* = 803. FIA*) is closed.

(C). 7 6nst. C. st. 11V11 = C11 A*V11. YV & DIA*)

ii) The following properties are equivalent:

ca) A* is surjective (b) N(A)=803. R(A) is closed

(4) A const. C. St. IINII = O IIANII. HAEDIA).

Permate: A Exesp A*J is surjective \(\)

A* \(\text{resp A} \) is injective. Converse fails.

Consider \(A : \mathcal{L} \rightarrow \mathcal{L} \). \(A \converse \)

A* = \(A : \since \mathcal{L} \) is \(\text{libert} \). \(A : \text{lipertive}. \)

A* = \(A : \since \mathcal{L} \) is \(\text{libert} \). \(A : \text{lipertive}. \)

But \(A : \text{lipertive}! \)

In particular. \(\text{lim} \text{Extive}! \)

In particular. \(\text{lim} \text{Extive}! \)

Pf: i) (b) \Rightarrow (a). RIA) = RIA^*) = F Since RIA^*) is closed

(c) \Rightarrow (b). $A^*Un \rightarrow f \Rightarrow$ (Vn) is Lambdy.

(a) \Rightarrow (c). For $||\frac{U}{||A^*U||}|| 1 \leq C$. $\forall U \in DLA^*$).

Consider $B^* = \overline{U} ||A^*U|| \leq 1$ is bounded in DLA^* ;

By Ump. $\forall f_0 \in F$, $f_0 = Aeb$. $||x|f_0 ||z|| = ||x|Ae_0 ||x|| > ||z|| = ||z||$