Section 7.3- Trigonometric Integrals

Name/ Uid:______ Date:____

In this section, we learn a few techniques which help in evaluating integrals of trig functions. Some identities which will be used in this section:

$$\sin^{2} x + \cos^{2} x = 1$$
 (1)

$$\tan^{2} x + 1 = \sec^{2} x$$
 (2)

$$\sin^{2} x = \frac{1}{2} (1 - \cos(2x))$$
 (3)

$$\cos^{2} x = \frac{1}{2} (1 + \cos(2x))$$
 (4)

$$\sin A \cos B = \frac{1}{2} (\sin(A - B) + \sin(A + B))$$
 (5)

$$\sin A \sin B = \frac{1}{2} (\cos(A - B) - \cos(A + B))$$
 (6)

$$\cos A \cos B = \frac{1}{2} (\cos(A - B) + \cos(A + B))$$
 (7)

Integrals of the form $\int \sin^m x \cos^n x \ dx$

• Either m or n is odd- If, for example, m is odd, then we write $\sin^m x = \sin x \sin^{m-1} x$ and use identity (1) to write $\sin^{m-1} x$ in terms of $\cos x$. We then make the substitution $u = \cos x$. If m is even, but n is odd, we perform the same steps with the roles of $\sin x$ and $\cos x$ reversed.

Example 1. Evaluate $\int \sin^3 x \cos^2 x \ dx$

ullet Both m and n are even- In this case, we use the double angle formulas (identities (3) and (4)).

Example 2. Evaluate $\int \sin^2 x \cos^2 x \ dx$

Integrals of the form $\int \tan^m x \sec^n x \ dx$

• If n is even- Pull out a factor of $\sec^2 x$ and then use identity (2) to rewrite the remaining integrand as a polynomial in $\tan x$. Then make the substitution $u = \tan x$.

Example 3. Evaluate $\int \sec^4 x \tan x \ dx$

• If m is odd-Pull out a factor of $\sec x \tan x$, and then use identity (2) to rewrite the remaining integrand as a polynomial in $\sec x$. Then make the substitution $u = \sec x$.

Example 4. Evaluate $\int \sec^3 x \tan^3 x \ dx$

• Otherwise- No one method. Try using substitution or integration by parts using the facts

$$\int \tan x \, dx = \ln|\sec x| + C$$
$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

Integrals of the form $\int \sin(Ax)\cos(Bx) dx$ and the like

These are relatively straightforward uses of identities (5), (6), and (7).

Example 5. Evaluate $\int \sin(5x)\cos(2x) dx$