Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Організація циклічних процесів. Ітераційні цикли»

Варіант 32

Виконав студент ІП-12 Федій Олександр Валерійович				
	(шифр, прізвище, ім'я, по батькові)			
Перевірив				
	(прізвище ім'я по батькові)			

Лабораторна робота 3

Організація циклічних процесів. Ітераційні цикли

Мета — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 32

Задача 3.32.

32. Наближено (із заданою точністю ε) обчислити $(1+x)^m$, за формулою:

$$S = 1 + m \cdot x + \frac{m(m-1)x^2}{2!} + \frac{m(m-1)(m-2)x^3}{3!} + \frac{m(m-1)(m-2)(m-3)x^4}{4!} + \dots$$

Постановка задачі. Результатом задачі буде дійсне число. Для виконання цієї задачі потрібно побудувати ітераційний цикл, умовою якого буде перевірка нерівності значення наступного члена біноміального ряду з заданою точністю.

Математична побудова. Складемо таблицю змінних.

Змінна	Тип	Ім'я	Призначення	
Значення т	Ціле	m	Початкове дане	
Значення х	Ціле	X	Початкове дане	
Наступний член	Дійсний	term	Проміжне дане	
біноміального				
ряду				
Номер члена	Натуральний	n	Проміжне дане	
послідовності				
Біноміальна	Дійсна	Sum	Результат	
сума				
Точність	Дійсне число	eps	Початкове дане	

Для вирішення задачі потрібно використати рекурентну формулу наступного вигляду: Sum= Sum + term. Також term має бути наступного вигляду term=term*x*(m-n+1)/n щоб член набував значення наступного члену.

Розв'язання:

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію ітераційного циклу та виведемо результат

Псевдокод

```
крок 1
```

початок

Ввести eps, x, m

Знайти значення Sum з заданою точністю

кінець

крок 2

початок

Ввести eps, x, m

term=1

Sum=term

n=1

повторити

term=term*(m-n+1))/n)*x

Sum+=term

n+=1

поки |term|>=eps

все повторити

Вивести значення Ѕит

кінець

Випробування алгоритму

Перевіримо привильність роботи алгоритму на довільних конкретних значеннях початкових даних:

Блок	Дія
	Початок
1	Введення eps = 0.01 x =- 0.1 m = 10
2	term=1*(-0.1)*10=-1
	Sum=0
	n=1+1=2
	term >=eps – Так, повторити
3	term=-1*0.1*4.5=0.45
	Sum=0.45
	n=2+1=3
	term >=eps – Так, повторити
4	term=0.45*(-0.1)*(8/3)=-0.12
	Sum=0.45-0.12=0.33
	n=3+1=4
	term >=eps - Так, повторити
5	term=-0.12*(-0.1)*(7/4)=0.021
	Sum=0.33+0.021=0.351
	n=4+1=5
	term >=eps – Так, повторити
6	term=0.021*(-0.1)*(6/5)=-0.00252
	Sum=0.351-0.00252=0.34848
	n=5+1=6
	term >=eps – Hi, вивести Sum
	Вивід: 0.34848
	Кінець

Висновок

Під час виконання лабораторної роботи було досліджено подання операторів повторення дій та набуто практичних навичок їх використання під час складання циклічних програмних специфікацій шляхом виконання алгебраїчної задачі. Також вперше була проведена робота з поняттям точність та біноміальний ряд.