

Master Thesis

Lokale Navigation von Mikromobilitätsfahrzeugen mittels Reinforcement Learning

Marco Tröster

28.08.2023

Agenda

- 1 Research Context and Goals
- 2 Reinforcement Learning
- 3 Simulation Environment
- 4 Trainings and Results
- 5 Summary and Outlook

Research Context: Micromobility

Use Cases

- Delivery drones / robots
- Autonomous passenger transport
- Autonomous warehouse transport

Challenges:

- Safe interaction with pedestrians
- Adaptation to new situations

Scoomatic, a self-driving e-scooter for passenger transport

Research Context: Autonomous Driving

- Global Navigation (= Route planning, shortest paths)
- Local Navigation (= Replacing a human driver)
 - Control: Acceleration and steering
 - Perception: Object detection
 - *Dynamics:* Prediction of movement
 - Planning:
 - Interaction with pedestrians / other vehicles
 - Obeying driving rules

Route planning, Source: www.here.com

Local planning in extended RobotSF simulator

Research Context: Existing Approaches

	RobotSF (Caruso et. al)	Multi-Robot (Fan et. al)
Approach	Controllable vehicle + pedestrians (Social Force)	Swarm of controllable vehicles, no pedestrians
Issues	Unacceptable high crash rates of trained agent	No evaluation with pedestrians, just other vehicles

Research Focus

- Extend RobotSF simulation
- Optionally include good parts of Multi-Robot

Research Goals

- Create a training environment to model vehicle-pedestrian interactions
- Train a safe autonomous driving software via reinforcement learning
- Evaluate the safety of the driving software with crash metrics

Markov Decision Process (MDP)

Dynamics Model:

$$\rho: S \times A \mapsto S \times R$$

Goal: maximize the expected return E[G]

$$E[G] = \sum_{\tau \in T} P(\tau, \theta) \cdot R(\tau)$$

$$R(\tau) = \sum_{t=0}^{t_{\text{term}}} r_t \cdot \gamma^t$$

Markov Decision Process (MDP)

$$V: S \mapsto R$$

Problem: only for simple problems

$$Q: S \times A \mapsto R$$

Problem: unstable, no model of certainty

$$\pi: S \mapsto A \times [0,1]$$

Problem: requires a lot of training data

Learning Policy π_{θ} with Actor-Critic Methods

- Maximize $E[G_t]$ by preferring profitable trajectories $au \in T$
 - Increase probability of actions leading into profitable trajectories
 - Decrease probability of actions leading into unprofitable trajectories
- Advantage measures the quality of an action in comparison to alternatives

Actor-Critic Algorithm

- Sample trajectories $\{\tau_1...\tau_m\}$ from training environment
- lacktriangle Estimate advantage A_t of selected action over alternative actions using V or Q
- Update the policy using empirically sampled policy gradients

Learning Policy π_{θ} via Proximal Policy Optimization with Generalized Advantage Estimation

$$\underset{\theta}{\operatorname{argmax}} E[\hat{A}_{t}] \longrightarrow \underset{\theta}{\operatorname{argmax}} E_{\tau \sim \theta_{old}} \left[\hat{A}_{t} r_{t}(\theta) \right], r_{t}(\theta) = \frac{\pi_{\theta}(a_{t}|s_{t})}{\pi_{\theta_{old}}(a_{t}|s_{t})}$$

$$L_{t}^{CLIP}(\theta) = \min(\hat{A}_{t} \cdot r_{t}(\theta), \hat{A}_{t} \cdot r_{t}^{CLIP}(\theta))$$

$$r_{t}^{CLIP}(\theta) = \operatorname{clip}(r_{t}(\theta), 1 - \epsilon, 1 + \epsilon) \qquad \underset{\phi}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} ||V_{\phi}(s_{n}) - \hat{V}_{n}||^{2}$$

$$\hat{A}_{t}^{GAE(\gamma,\lambda)} := \sum_{l=0}^{\infty} (\gamma \lambda)^{l} \delta_{t+l}^{V} \qquad \delta_{t}^{V} = r_{t} + \gamma V(s_{t+1}) - V(s_{t})$$

Simulated Entities

Vehicle: blue circle

Pedestrian: red circle

Waypoint: green circle

Obstacles: gray polygons

Classical Social Force

- Desired Force
- Obstacle Force
- Social Force
- Random Variance (optional)

Classical Social Force

- Desired Force
- Obstacle Force
- Social Force
- Random Variance (optional)

Classical Social Force

- Desired Force
- Obstacle Force
- Social Force
- Random Variance (optional)

Forces Combined

Extended Social Force

- Desired Force
- Obstacle Force
- Social Force
- Group Repulsive Force
- Group Coherence Force
- Group Gaze Force
- Ped-Robot Force
- Random Variance (optional)

Repulsive / Coherence Force

Gaze Force

Extended Social Force

- Desired Force
- Obstacle Force
- Social Force
- Group Repulsive Force
- Group Coherence Force
- Group Gaze Force
- Ped-Robot Force
- Random Variance (optional)

Ped-Robot Force

Vehicle: Kinematic Bicycle Model

Action Space: $[\delta_{\min}, \delta_{\max}], [a_{\min}, a_{\max}]$

 $[heta_{ ext{min}}, heta_{ ext{max}}], [v_{ ext{min}}, v_{ ext{max}}]$ Obs. Space:

Vehicle State: $[\theta, v]$

Vehicle Config: $[L, \delta_{\min}, \delta_{\max}, v_{\min}, v_{\max}, a_{\min}, a_{\max}]$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} v \cdot cos(\theta) \\ v \cdot sin(\theta) \\ v \cdot tan(\delta)/L \\ a \end{bmatrix}$$

Sketch of Bicycle Model, Source: Thomas Fermi https://thomasfermi.github.io/Algorithms-for-Automated-Driving/_images/BicycleModel_x_y_theta.svg

Vehicle: Differential Drive

• Action Space: $[\omega_{\min}, \omega_{\max}], [V_{\min}, V_{\max}]$

• Obs. Space: $[\varphi_{\min}, \varphi_{\max}], [V_{\min}, V_{\max}]$

• Vehicle State: $[\omega_R, \omega_L, \varphi]$

• Vehicle Config: $[r,b,V_{\min},V_{\max},\omega_{\min},\omega_{\max}]$

$$\begin{bmatrix} \dot{x}_B \\ \dot{y}_B \\ \dot{\varphi} \end{bmatrix} = \begin{bmatrix} v \cdot x_B \\ v \cdot y_B \\ \omega \end{bmatrix} \stackrel{v=r\omega}{=} \begin{bmatrix} \frac{r}{2} & \frac{r}{2} \\ 0 & 0 \\ -\frac{r}{b} & \frac{r}{b} \end{bmatrix} \begin{bmatrix} \omega_L \\ \omega_R \end{bmatrix}$$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\varphi} \end{bmatrix} = \begin{bmatrix} \cos(\varphi) & 0 \\ \sin(\varphi) & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} V \\ \omega \end{bmatrix}$$

Sketch of Differential Drive, Source: Wikimedia https://commons.wikimedia.org/wiki/File:Differential_D rive_Kinematics_of_a_Wheeled_Mobile_Robot.svg

Vehicle: LiDAR Sensor

• Obs. Space: $[0, s_{\max}]^n$

• LiDAR Config: $[\varphi, s_{\max}, n]$

Vehicle: Goal Sensor

• Obs. Space: $[0, d_{\max}], [-\pi, \pi], [-\pi, \pi]$

• Goal Config: $[d_{\max}]$

Navigation Task: Vehicle

Navigation Task: Pedestrians

Whole Map = Crowded Zone

Explicit Crowded Zones

Navigation Task: Pedestrians

Without Pedestrian Routes

With Pedestrian Routes

Map Editor: Create Scenarios

	Original	Reworked	
Map material	Unrealistic maps	Real-world maps from OpenStreetMap	
Navigation task Includes global navigation, very hard to learn		Just local navigation, fast convergence	
Simulation performance	Very slow, training takes more than 1 month	19x speedup, training takes less than day	

Reward Function

$$r(s_t) = \frac{-0.1}{\text{max_steps}} + \begin{cases} 1 & \text{, reached_waypoint}(s_t) \\ -2 & \text{, is_collision}(s_t) \\ 0 & \text{, else} \end{cases}$$
(1)

Defensive Policy: Drive Through Crowded Zones

- Learn Goals
 - Dive into crowds
 - Wait for pedestrians to pass
 - Find safe passages
- Approach
 - Observation: no timeseries
 - Ped. Density: medium high
 - Action Rate: low

Demo Video: Defensive Policy

Offensive Policy: Learn From Realistic Scenario

- Learn Goals
 - Use real map from OpenStreetMap
 - Model mini scenarios (route design)
 - Overtake on sidewalks safely
- Approach
 - Observation: timeseries (3 steps)
 - Ped. Density: low medium
 - Action Rate: high

Demo Video: Offensive Policy

Driving Quality Benchmark

- Route Completion Rate
- Crash Rates
 - With pedestrians
 - With obstacles
- Timeout Rate

Approach	Ped. Density	Completion	Obst. Coll.	Ped. Coll.	Timeout
Caruso et. al	0.00 m ²	1.00	0.00	0.00	0.00
Best Offensive		1.00	0.00	0.00	0.00
Best Defensive		0.14	0.00	0.00	0.86
Caruso et. al	0.02 m ²	0.87	0.00	0.13	0.00
Best Offensive		0.95	0.02	0.03	0.00
Best Defensive		0.64	0.00	0.00	0.36
Caruso et. al	0.08 m ²	0.67	0.00	0.32	0.01
Best Offensive		0.60	0.09	0.30	0.01
Best Defensive		0.61	0.04	0.00	0.35
Caruso et. al	0.10 m ²	0.52	0.01	0.47	0.00
Best Offensive		0.50	0.15	0.32	0.03
Best Defensive		0.62	0.03	0.00	0.35

Summary and Outlook

Summary: Research Goals

- Create training environment to model vehicle-pedestrian interactions
 - Extend / enhance existing RobotSF project by Caruso et. al
- Train a safe autonomous driving software via reinforcement learning
 - Use PPO algorithm by Schulman et. al to learn a policy π_{θ}
- Evaluate the safety of the driving software with crash metrics
 - Use crash metrics by Caruso et. al

Summary and Outlook

Summary: Approaches and Results

- Trained agents:
 - Defensive policy handles crowded zones (0% collisions with pedestrians)
 - Offensive policy handles less crowded zones and sidewalks (95% route completions)
 - Very simple reward function suffices to solve the navigation task
- Efficiency improvements:
 - 19x simulation speedup, enables usage of real maps
 - More efficient training algorithm (PPO vs. A3C)
 - Still lots of potential for improvement, e.g. using quad-trees

Summary and Outlook

Outlook: Ideas for Upcoming Research

- Combine RobotSF with Multi-Robot:
 - Simulation of pedestrians uses > 80% of computation
 - Drive multiple routes at once with multiple vehicles
 - Sample 5x 10x more training data in the same time
- Model-based Reinforcement Learning:
 - Dreamer architecture learns dynamics model ρ
 - While training: replay recorded scenarios
 - Efficiency improvements of 100x 1000x

Thanks for your attention!

Any Questions?

Master Thesis

Lokale Navigation von Mikromobilitätsfahrzeugen mittels Reinforcement Learning

Marco Tröster

28.08.2023

Lehrstuhl für Mechatronik
Universität Augsburg
marco.troester@student.uni-augsburg.de
www.uni-augsburg.de

Performance Optimization: Obstacle Force

Markov Decision Process (MDP)

Dynamics Model:

$$\rho: S \times A \mapsto S \times R$$

Goal: maximize the expected return E[G]

$$E[G] = \sum_{\tau \in T} P(\tau, \theta) \cdot R(\tau)$$

$$R(\tau) = \sum_{t=0}^{t_{\text{term}}} r_t \cdot \gamma^t$$

Learning Policy $\pi_{ heta}$ via Vanilla Policy Gradient Methods

$$E[G_t] = \sum_{\tau \in T} R(\tau) P(\tau, \theta) \qquad P(\tau, \theta) = \prod_{t=0}^{t_{\text{term}}} \pi_{\theta}(a_t | s_t) \cdot P(s_{t+1} | s_t, a_t)$$

Approach: Maximize the expected return $E[G_t]$ by adjusting the policy $\pi_{\theta}(a_t \mid s_t)$ to select more favorable actions

 $\operatorname*{argmax}_{\theta} E[G_t]$

$$\nabla_{\theta} E[G_t] = \sum_{\tau \in T} P(\tau, \theta) R(\tau) \nabla_{\theta} P(\tau, \theta) \qquad \nabla_{\theta} P(\tau, \theta) = \sum_{t=0}^{\sigma_{\text{term}}} \nabla_{\theta} log(\pi_{\theta}(a_t | s_t))$$

Learning Policy π_{θ} via Vanilla Policy Gradient Methods

$$\nabla_{\theta} E[G_t] = \sum_{\tau \in T} P(\tau, \theta) R(\tau) \nabla_{\theta} P(\tau, \theta)$$

Problem: Dynamics model ρ is unknown; cannot compute $P(\tau, \theta)$

Solution: Approximate $\nabla_{\theta} E[G_t]$ using an empirical sample over $\{\tau_1 ... \tau_m\}$

$$\nabla_{\theta} E[G_t] \approx \frac{1}{m} \sum_{\tau \in \{\tau_1 \dots \tau_m\}} R(\tau) \sum_{t=0}^{t_{\text{term}}} \nabla_{\theta} log(\pi_{\theta}(a_t|s_t))$$

Learning Policy π_{θ} via Vanilla Policy Gradient Methods

$$\nabla_{\theta} E[G_t] \approx \frac{1}{m} \sum_{\tau \in \{\tau_1 \dots \tau_m\}} R(\tau) \sum_{t=0}^{t_{\text{term}}} \nabla_{\theta} log(\pi_{\theta}(a_t|s_t))$$

Simplification:

Assuming the policy is optimal for all following steps, only the next action matters to lead into good trajectories. All following steps can be seen as subtrajectories.

$$\nabla_{\theta} E[G_t] \approx \frac{1}{m} \sum_{\tau \in \{\tau_1 \dots \tau_m\}} R(\tau^{(t)}) \nabla_{\theta} log(\pi_{\theta}(a_t | s_t))$$

Problem:

$$\nabla_{\theta} log(\pi_{\theta}(a_t | s_t)) > 0$$

Sign of $R(\tau^{(t)})$ determines whether $\pi_{\theta}(a_t \,|\, s_t)$ increases or decreases

Learning Policy π_{θ} via Advantage Actor-Critic (A2C) with Generalized Advantage Estimation (GAE)

$$\nabla_{\theta} E[G_t] \approx \frac{1}{m} \sum_{\tau \in \{\tau_1 \dots \tau_m\}} R(\tau^{(t)}) \nabla_{\theta} log(\pi_{\theta}(a_t | s_t))$$

Problem: Sign of $R(\tau^{(t)})$ determines whether $\pi_{\theta}(a_t \,|\, s_t)$ increases or decreases

Solution: Replace $R(\tau^{(t)})$ with an estimation of the advantage $A_t = Q(s_t, a_t) - V(s_t)$

Problem:

Training uses trajectories only once

Very inefficient

$$\hat{A}_t^{GAE(\gamma,\lambda)} := \sum_{l=0}^{\infty} (\gamma \lambda)^l \delta_{t+l}^V \qquad \delta_t^V = r_t + \gamma V(s_{t+1}) - V(s_t)$$

Learning Policy π_{θ} via Proximal Policy Optimization (PPO) with GAE

$$\underset{\theta}{\operatorname{argmax}} E[\hat{A}_{t}] \longrightarrow \underset{\theta}{\operatorname{argmax}} E_{\tau \sim \theta_{old}} \left[\hat{A}_{t} r_{t}(\theta) \right], r_{t}(\theta) = \frac{\pi_{\theta}(a_{t}|s_{t})}{\pi_{\theta_{old}}(a_{t}|s_{t})}$$

Approach: Use trajectories sampled with θ_{old} multiple times

Problem: Policy ratio $r_t(\theta)$ becomes too small / big, unstable training

Solution: Clip the ratio using objective function L^{CLIP}

$$L_t^{CLIP}(\theta) = min(\hat{A}_t \cdot r_t(\theta), \hat{A}_t \cdot r_t^{CLIP}(\theta))$$

$$r_t^{CLIP}(\theta) = clip(r_t(\theta), 1 - \epsilon, 1 + \epsilon)$$

Learning Policy π_{θ} via Proximal Policy Optimization (PPO) with GAE

$$\nabla_{\theta} E[L_t^{CPI}(\theta)] = \nabla_{\theta} E[\hat{A}_t r_t(\theta)] = E[\hat{A}_t r_t(\theta) \nabla_{\theta} log(\pi_{\theta}(a_t | s_t))]$$

$$\nabla_{\theta} E[L_t^{CLIP}(\theta)] = \nabla_{\theta} E[\hat{A}_t r_t^{CLIP}(\theta)] = E[\hat{A}_t \nabla_{\theta} r_t^{CLIP}(\theta)]$$

$$r_t(\theta) \notin [1 - \epsilon, 1 + \epsilon] \implies \nabla_{\theta} r_t^{CLIP}(\theta) = 0$$

Result: Only training examples yielding policy ratios within ϵ bound participate in the policy update -> trajectories can be re-used

Model Structure: Neural Network

- Input Layer
 - LiDAR rays (272)
 - Target sensor (3)
 - Drive state (2)
- Output Layer
 - Actuators: acceleration and steering (4)
 - Per actuator: sample normal distributed value from predicted σ and μ

