Geometric Modeling 2015

Laplace-Beltrami Operator

Last Lecture

Triangle Meshes

Representation of a triangle mesh in \mathbb{R}^3

- Vertices: a finite list $\{v_1, ..., v_n\}$ of points in \mathbb{R}^3
- Faces: a list of triples, e.g. {{2,34,7}, ..., {14,7,5}}

Topology

The face array contains information about the surface that is independent of the choice of vertex positions

Topology

Genus of a surface and Euler characteristic

$$V - E + F = 2(1 - g)$$

$$16 - 32 + 16 = 2(1 - 1)$$

Orientable and non-orientable surfaces

Functions on Triangles

Motivation

Why notions like gradient and Laplace operator?

- Formulate methods mesh independ
 - Method should work for irregular meshes
 - Similar results after simplification, remeshing,...

Motivation

Why notions like gradient and Laplace operator?

- Transfer concepts and ideas from other areas
 - Signal processing, image processing, physics, geometry
 - Learn language in which concepts are formulated

Example: Fourier analysis on meshes

Motivation

Why notions like gradient and Laplace operator?

Transfer concepts and ideas from other areas

Functions on Triangles

Discrete Function

A function value at every vertex

This specifies a linear polynomial (linear function +

constant) on the triangle

Graph of the function

Barycentric combinations

• A barycentric combination of a set $\{p_1, p_2, ..., p_m\} \subset V$ is a sum

$$\sum_{i=1}^{m} \alpha_i \, p_i$$

with $\alpha_i \in \mathbb{R}$ and $\sum_{i=1}^m \alpha_i = 1$.

 Example: Think of springs pulling at the point, where the weight is the spring constant

Triangles

- Consider a (non-degenerate) triangle T spanned by $\{p_1, p_2, p_3\}$.
- Set $p=\sum_{i=1}^3 \alpha_i p_i$ and $\sum_{i=1}^3 \alpha_i =1$.

Properties

- The barycenter is the point p with $\alpha_1 = \alpha_2 = \alpha_3$.
- $p \in T$ if and only if all $\alpha_i \geq 0$.

Evaluate Linear Polynomial

Use barycentric coordinates

• Point p in the triangle (p_1, p_2, p_3) :

$$p = \sum_{i=1}^{3} \propto_{i} p_{i}$$

• Function values u_1, u_2, u_3

ullet Linear polynomial u at p has the function value

$$u(p) = \sum_{i=1}^{3} \propto_{i} u_{i}$$

Evaluate Linear Polynomial

What is the function value?

Vector Space of Linear Polynomial

Vector space

- The linear polynomials over a triangle form a vector space
 - Add functions by adding function values at vertices

$$\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{pmatrix}$$

• Multiply with scalar $a \in \mathbb{R}$

$$a \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} a & u_1 \\ a & u_2 \\ a & u_3 \end{pmatrix}$$

Lagrange Basis Functions

Lagrange basis functions

• The linear polynomials φ_i that take the value 1 at p_i and 0 at all other vertices

• Any linear polynomial u can be written as

$$u(p) = \sum_{i=1}^{3} u_i \, \varphi_i(p)$$

where u_i are the function values of u at the vertices

Lagrange Basis Functions

A geometric formula

$$\varphi_i(p) = \frac{\operatorname{area}(T_i(p))}{\operatorname{area}(T)}$$

• The area of T_i is given by

area
$$(T_1(p)) = \frac{1}{2} \langle p - p_2, R^{90^{\circ}} e_1 \rangle$$

where $R^{90^{\circ}}$ is the 90° rotation in the plane of the triangle that rotates the edge into the triangle

Gradient of a linear polynomial

- Vector in the plane of the triangle that points into the direction of steepest ascent
- The same vector at all points of the triangle

We only need the gradients of the basis functions

What is the gradient of a linear polynomial over a triangle?

$$u(p) = \sum_{i=1}^{3} u_i \, \varphi_i(p)$$

$$\Longrightarrow \nabla u(p) = \sum_{i=1}^{3} u_i \, \nabla \varphi_i(p)$$

We only need the gradients of the basis functions

Gradient of basis functions

Gradient of basis functions

Observations:

- Orthogonal to opposite edge
- Length of gradient: 1/height (over opposite edge)

Gradient of linear functions

- What is the gradient of φ_i ?
- $\varphi_i(p) = \frac{\operatorname{area}(T_i(p))}{\operatorname{area}(T)}$
- What is the gradient of $area(T_i(p))$?

Consider T_1

area
$$(T_1(p)) = \frac{1}{2} \langle p - p_2, R^{90^{\circ}} e_1 \rangle$$

The derivative satisfies

d area
$$(T_1(p))(v) = \frac{1}{2} \langle v, R^{90^{\circ}} e_1 \rangle$$

Hence the gradient is

$$Varea(T_1(p))(v) = \frac{1}{2}R^{90^{\circ}}e_1$$

We have

$$R^{90^{\circ}}e_1 = \cot(\alpha_2) e_2 - \cot(\alpha_3) e_3$$

Gradient of linear functions

$$\nabla u(p) = \sum_{i=1}^{3} u_i \, \nabla \varphi_i(p) = \frac{1}{2 \text{area}(T)} \sum_{i=1}^{3} u_i \, R^{90^{\circ}} e_i$$

$$= \frac{1}{2 \text{area}(T)} \sum_{i=1}^{3} u_i \, (\cot(\alpha_{i+1}) \, e_{i+1} - \cot(\alpha_{i+2}) \, e_{i+2})$$

Indices i+1 and i+2 are to be read modulo 3

We used the formula

$$R^{90^{\circ}}e_1 = \cot(\alpha_2) e_2 - \cot(\alpha_3) e_3$$

$$\nabla u(p) = \sum_{i=1}^{3} u_i \, \nabla \varphi_i(p) = \frac{1}{2 \text{area}(T)} \sum_{i=1}^{3} u_i \, R^{90^{\circ}} e_i$$

Gradient is a linear map

Gradient maps function values to constant vectors

$$\nabla: \mathbb{R}^3 \mapsto \mathbb{R}^3$$

is linear:
$$\nabla(u+v) = \nabla u + \nabla v$$
, $\nabla(a u) = a\nabla u$

Matrix representation

$$\frac{1}{2\text{area}(T)}(R^{90^{\circ}}e_1 \quad R^{90^{\circ}}e_2 \quad R^{90^{\circ}}e_3)$$

Functions on Meshes

A function space

- Consider a mesh M
- Consider the set S_h of functions that are
 - Continuous
 - Linear polynomial in every triangle

Linear space

- S_h is a subspace of the vector space of all functions on M
 - Check: $u + \lambda v \in S_h$ for any $u, v \in S_h$ and $\lambda \in \mathbb{R}$

What is a basis in this space?

- In a triangle a linear function is determined by the function values at the vertices
- Continuity
 - For neighboring triangles the values at the common vertices must agree
- A function in S_h is determined by its values at the vertices (and linear interpolation in the triangles)

Lagrange basis (or nodal basis)

• A basis is given by the family of functions $\{\varphi_1, \varphi_2, \dots, \varphi_n\}$ that satisfy

$$\varphi_i(p_j) = \begin{cases} 1 & for \ i = j \\ 0 & for \ i \neq j \end{cases}$$

Function representation

• Any $u \in S_h$ can be represented in the Lagrange basis

$$u(x) = \sum_{i=1}^{n} u_i \, \varphi_i(x)$$

- u_i is the function value of u at the vertex p_i
- x is an arbitrary point in M

What is the gradient of a function in S_h ?

- A constant tangential vector in every triangle
- ullet Denote space of piecewise constant vector fields by V_h

Gradient matrix

Gradient

Linear map from functions to vector fields

$$G: S_h \mapsto V_h$$

Matrix representation of G

- $m \times n \ (3\#T \times \#V) \ \text{matrix}$
- Assembled from the elementary matrices:

$$\frac{1}{2\text{area}(T)}(R^{90^{\circ}}e_1 \quad R^{90^{\circ}}e_2 \quad R^{90^{\circ}}e_3)$$

So Far

Two vector spaces

- Functions: real value per vertex
- Vector fields: vector per triangle (vector in the plane of the triangle)

Gradient

 Linear map from functions to vector fields

Remainder: Norm on \mathbb{R}^n

Norm on a vector space

- Length of a vector
- Distance between points

On \mathbb{R}^n

Norm

$$\|\mathbf{v}\|^2 = \sum_{i=1}^n |\mathbf{v}_i|^2 = (\mathbf{v}_1 \quad \dots \quad \mathbf{v}_n) \begin{pmatrix} \mathbf{v}_1 \\ \dots \\ \mathbf{v}_n \end{pmatrix}$$

Distance

Distance of two points p and q

$$d(p,q) = ||p - q||$$

Norms for Meshes

Norm of a function, vector field

- Why? Use for problem modeling
 - Example: Find shortest function that satisfies...
- Why not use norm on \mathbb{R}^n ?
 - Different results when remeshing, coarse or refine

Remainder: Scalar product on \mathbb{R}^n

Scalar product

Measure length, but also angles between vectors

On \mathbb{R}^n

Scalar product of u and v

$$\langle \mathbf{v}, \mathbf{w} \rangle = \sum_{i=1}^{n} \mathbf{v}_i \mathbf{w}_i = (\mathbf{v}_1 \quad \dots \quad \mathbf{v}_n) \begin{pmatrix} \mathbf{w}_1 \\ \dots \\ \mathbf{w}_n \end{pmatrix}$$

Relation to norm

$$\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle$$

Piecewise-Constant Vectorfields

L^2 -product of piecewise-constant vector fields

$$\int_{M} \langle V(x), W(x) \rangle dx = \sum_{T \in M} \int_{T} \langle V(x), W(x) \rangle dx$$
$$= \sum_{T \in M} A_{T} \langle V_{T}, W_{T} \rangle$$

Notation: V(x) —vector at point x, V_T — vector in triangle T, A_T —area of triangle T

• Benefit of integral formulation: mesh independence

Piecewise-Constant Vectorfields

L^2 -Norm of vector field

$$||V||_{L^2} = \sqrt{\sum_{T \in M} A_T \langle V_T, V_T \rangle}$$

Linear Polynomials

L^2 -scalar product

$$\int_{M} u(x) v(x) dx \cong \sum_{p_{i} \in M} A_{p_{i}} u_{i} v_{i}$$

Notation: A_{p_i} —a third of the sum of areas of all triangle adjacent to p_i

L^2 -norm

$$\|u\|_{L^2} = \sqrt{\sum_{p_i \in M} A_{p_i} u_i v_i}$$

Mass Matrix

Matrix representation

- Often called the mass matrix
- We denote the matrix by M

$$\sum_{p_i \in M} A_{p_i} u_i v_i = (u_1 \quad \dots \quad u_n) \begin{pmatrix} A_{p_1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & A_{p_n} \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

Piecewise-Constant Vectorfields

Matrix representation

• We denote the matrix by M_V

$$(V_{1,x} \quad V_{1,y} \quad \dots \quad V_{m,z}) \begin{pmatrix} A_{T_1} & 0 & \dots & 0 \\ 0 & A_{T_1} & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & A_{T_m} \end{pmatrix} \begin{pmatrix} W_{1,x} \\ W_{1,y} \\ \vdots \\ W_{m,z} \end{pmatrix}$$

$$V_{1,x} - x$$
-coordinate of V_1

So Far

Two vector spaces

• S_h and V_h

Gradient

• $G: S_h \mapsto V_h$

Norms, scalar products

• M, M_V

Stiffness Matrix

A bilinear form

- Combine gradient and scalar product for vectors
- Consider $u, v \in S_h$

$$u, v \to \int_M \langle \nabla u, \nabla v \rangle dx$$

Vanishes for constant functions

Dirichlet Energy

$$E_D(u) = \frac{1}{2} \int_M \langle \nabla u, \nabla u \rangle dx$$

• $\sqrt{E_D(u)}$ is almost a norm, almost because it vanishes for constant functions

Stiffness Matrix

Dirichlet Energy

$$u \to \frac{1}{2} \int_{M} \langle \nabla u, \nabla u \rangle dx$$

Matrix representation

$$S = G^T M_V G$$
$$E_D(\mathbf{u}) = \frac{1}{2} u^T S u$$

Matrix S explicitly:

$$s_{ij} = -\frac{1}{2} \left(\cot(\alpha_{ij}) + \cot(\beta_{ij}) \right) \text{ for } i \neq j$$

$$s_{ii} = -\sum_{j=1}^{n} s_{ij}$$

Dirchlet vs. L^2

L^2 measures magnitude of function values

• Both functions have approximately the same value

Dirchlet vs. L^2

Dirchlet energy measures magnitude of gradient

- Smoother functions have smaller value
- First function has larger Dirichlet energy than second

Discrete Laplace-Beltrami Operator

Laplace Matrix

• We call the matrix $L = M^{-1}S$ the Laplace matrix

Remarks

- Maps functions to functions
- Continous analog for \mathbb{R}^2

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) u$$
 or Δu

• The constant functions are in the kernel of L

Overview Matrices

Matrices

M, M_V :

- diagonal matrices
- positive entries (areas)

$S = G^T M_V G:$

- symmetric $(n \times n)$
- sparse
- non-negative: $u^T S u \ge 0$ for all u
- kernel are the constants

G:

- rectangular matrix $(m \times n)$
- sparse

$$L = M^{-1}S$$

- not symmetric $(n \times n)$
- sparse
- non-negative eigenvalues
- kernel are the constants

Deformation-Based Editing

Function Spaces on Meshes

Examples

- x-coordinate of every point of the surface
- The embedding is a vector-valued function in $S_h^{\ 3}$
- Displacements of the vertices are $S_h^{\ 3}$

Displacement Vector

Notation

• Denote by $x \in S_h^3$ the map that maps every vertex to its positions in \mathbb{R}^3 and by $u \in S_h^3$ a displacement of the surface

Deformation Energies

General deformation energies

 A deformation energy measures the "energy" stored in a deformation (or the "cost" of a deformation)

Quadratic Deformation Energies

Gradient-based deformation energy

$$E_D(\mathbf{u}) = \frac{1}{2} \int_M \|\nabla u\|^2 dA$$

Matrix representation

$$E_D(\mathbf{u}) = \frac{1}{2} u^T S u$$

• This energy is also called the Dirichlet energy of u

Quadratic Deformation Energies

Laplace-based deformation energy

$$E_L(\mathbf{u}) = \frac{1}{2} \int_M \|\Delta u\|^2 dA$$

Matrix representation

$$E_L(\mathbf{u}) = \frac{1}{2} u^T L^T M L u = \frac{1}{2} u^T S M^{-1} M M^{-1} S u$$
$$= \frac{1}{2} u^T S M^{-1} S u$$

Modeling metaphor

Handles (global deformations)

• Handles (blue)

Modeling metaphor

Region of interest (local deformations)

- Support region (blue)
- Fixed vertices (gray)
- Handle regions (green)

Botsch et al. 2004

O. Sorkine et al. 2004

Constraints

To deform the object the user sets constraints

Hard constraints:

$$Au = a$$

• Soft constraints:

$$E_C(u) = \frac{1}{2} ||Au - a||^2$$

- A is a rectangular matrix, a is a vector
- Use masses for irregular meshes

Quadratic Program

Soft constraints

- Minimize weighted sum deformation energy E_L and constraints energy E_C over all displacements $u \in {S_h}^3$
 - $\lambda \in \mathbb{R}_{>0}$

$$E(u) = E_L(u) + \lambda E_C(u)$$

- Necessary condition for a minimum u^* is $\nabla E(u^*) = 0$
- Since E is quadratic and positive definite, this is also a sufficient condition

$$\nabla E(u) = (SM^{-1}S + \lambda A^{T}A)u - A^{T}a$$

Computing the Deformation

Linear system

• To compute the deformation, the linear system $(SM^{-1}S + \lambda A^TA)u = A^Ta$

has to be solved

- The matrix $(SM^{-1}S + \lambda A^T A)$ is
 - sparse
 - symmetric, positive definite
- An efficient solver is a sparse Cholesky decomposition
- Since changing the positions of the handles only changes the right-hand side, the factorization can be re-used and interactive modeling is possible

Quadratic Program

Hard constraints

- Use Lagrange multipliers λ
- The displacements are the solution of

$$\begin{bmatrix} SM^{-1}S & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} u \\ \lambda \end{bmatrix} = \begin{bmatrix} 0 \\ a \end{bmatrix}$$

The matrix $\begin{bmatrix} SM^{-1}S & A^T \\ A & 0 \end{bmatrix}$ is symmetric and positive definite

 Since changing the positions of the handles only changes the right-hand side, the factorization can be re-used and interactive modeling is possible

Laplacian Surface Editing

Laplacian Mesh Editing

A short editing session with the *Octopus*