Assignment 11, Authomata Theory

Oleg Sivokon

<2015-09-04 Fri>

Contents

1	Problems															2				
	1.1	Proble	em 1																	2
		1.1.1	Answer 1																	3
		1.1.2	Answer 2																	3

1 Problems

1.1 Problem 1

Given following languages over the alphabet $\{a, b\}$

- $L_1 = \emptyset$.
- $L_2 = \{\epsilon, aa\}.$
- $L_3 = \{\epsilon, a, aa, ab, abb\}.$
- $L_4 = \{aabb, aabbb, aa, aaa\}.$
- $L_5 = \{\epsilon, b, bbb, abab, abba, aabb\}.$
- $L_6 = \{\epsilon, bbbaa, baba, aaab, aabba, aa\}.$
- 1. What are the following languages:
 - \bullet L_4L_4 .
 - $(L_1 \cup L_2 \cup L_3)^R$.
 - $L_3L_1L_6$.
- 2. Define exponentiation as follows: $L^K = \{x \in L \mid \exists y \in K. (|y| = |x|)\}$. What are the languages $L_4^{L_5}$ and $L_6^{L_1}$.

```
:- use_module(library(lists)).

concatentated_member(L1, L2, L3) :-
    member(M1, L1), member(M2, L2),
    string_concat(M1, M2, L3).

concatentated(L1, L2, L3) :-
    findall(X, concatentated_member(L1, L2, X), X),
    list_to_set(X, L3).

assignment_11a :-
    X = ["aabb", "aabbb", "aa", "aaa"],
    concatentated(X, X, Y),
    [First | Rest] = Y,
    write("$$\\{"),
    write(First),
    maplist(format(',\\allowbreak ~s'), Rest),
    write("\\}$$").
```

 $\{aabbaabb, aabbaabbb, aabbaaa, aabbaaa, aabbbaaabb, aabbbaabbb, aabbbaaa, aabbbaaa, aababb, aaaabbb, aaaa, aaaaab, aaaaabbb, aaaaaabb, aaaaaabb, aaaaaabb, aaaaaabb, aaaaaabbb, aabbbaaa, aabbbaaa, aabbbaaa, aabbbaaabbb, aaaaaabbb, aaaaaabbb, aaaaaabbb, aabbbaaabbb, aabbbaabbb, aabbbaabbbaabbb, aabbbaabbbaabbb, aabbbaabbbaabbbaabbb, aabbbaabbbaabbbaabbb, aabbbaabbbaabbb, aabbbaabbbaabbbaabbb, aabbbaabbaabbbaabbbaabbbaabbbaabbbaabbab$

1.1.1 Answer 1

- 2. $(L_1 \cup L_2 \cup L_3)^R = \{\epsilon, a, aa, ba, bba\}.$
- 3. $L_3L_1L_6=\emptyset$. This is so because there are no words in language L_1 to concatenate with.

1.1.2 Answer 2

- 1. $L_4^{L_5} = \{aaa, aabb\}.$
- 2. $L_6^{L_1} = \emptyset$.