

Complete Circuit

ac Midband Schematic

 $\rm C_B$: Base Blocking Capacitor , $\rm C_C$: Collector Coupling Capacitor $\rm C_E$: Emitter Bypass Capacitor , $\rm R_S$: Source Resistance , $\rm R_L$: Load Resistance

- \succ C_B,C_C: Used for *DC isolation* of the *bias circuit* from *the source and the load*
 - DC biasing becomes independent of source and load
- \succ C_E: *Plays no role in DC (opens up)*, but *shorts out R_E in ac* (will see its effects later)
- ➤ These 3 capacitors dictate the *lower cutoff* frequency (f_L) of the circuit
- Typically have values in the order of μF to 100s of μF in order to give f_L as close to 0 (DC) as possible

- First need to do the *DC analysis* to find the *operating point*
- > All capacitors open up for DC analysis
 - \blacksquare R_S and R_L play no role
- > Neglecting base current:

$$V_{B} = V_{CC}R_{2}/(R_{1} + R_{2}) = 1.2 \text{ V}$$

$$\Rightarrow V_{E} = V_{B} - V_{BE} = 0.5 \text{ V}$$

$$\Rightarrow I_{E} \approx I_{C} = V_{E}/R_{E} = 2 \text{ mA}$$

$$V_{C} = V_{CC} - I_{C}R_{C} = 4 \text{ V}$$

$$V_{CE} = 3.5 \text{ V} \text{ (quite close to } V_{CC}/3\text{)}$$

> DC bias point analysis done!

- Now we can move on to the *ac analysis*
- \triangleright All capacitors get shorted due to their high values, assuming frequency of operation is beyond f_L and less than f_H , i.e., midband range
- $\succ C_E$ bypasses R_E
 - \Rightarrow Emitter of Q goes to ground
 - $\Rightarrow R_E$ plays no role in ac analysis
- > Refer to the ac schematic
 - $R_3 = R_1 || R_2 = 9 \text{ k}\Omega$
 - $R_4 = R_C || R_L = 2 \text{ k}\Omega$
- \triangleright Need β for ac analysis (choose 100)

- $ightharpoonup r_E = V_T/I_C = 13 \Omega$, and $r_{\pi} = \beta r_E = 1.3 \text{ k}\Omega$
- $ightharpoonup R_{i1} = r_{\pi} = 1.3 \text{ k}\Omega$
- $R_i = R_{i1} || R_3 = 1.14 \text{ k}\Omega$
- \triangleright Total resistance *seen* by $v_i = R_S + R_i = 2.14 \text{ k}\Omega$
- For calculation of *voltage gain* A_v, apply *chain rule*:

$$A_{v} = v_{0}/v_{i} = (v_{0}/v_{b}) \times (v_{b}/v_{i})$$

$$v_{0}/v_{b} = -R_{4}/r_{E} = -153.85 (\textit{CE stage})$$

$$v_{b}/v_{i} = R_{i}/(R_{i} + R_{S}) = 0.533$$

$$\Rightarrow A_{v} = -82 (\textit{Very Good Gain}!)$$

- Note that v_i and v_0 are *exactly out of phase*, which is expected from a *CE stage*
- $ightharpoonup R_0 = r_0 || R_4 \approx R_4 = 2 \text{ k}\Omega$ (since for *discrete circuits*, r_0 is generally *neglected*)
- > This completes the analysis of the stage
- > Summary:
 - $A_v = -82$
 - $R_i = 1.14 \text{ k}\Omega$
 - Resistance *seen* by $v_i = 2.14 \text{ k}\Omega$
 - $R_0 = 2 k\Omega$

- Now let's explore what happens if C_E were absent, i.e., R_E unbypassed
- > Redraw the *ac schematic*:

ac Midband Schematic for R_F unbypassed