Elementos de um problema de predição

INFORMAÇÃO,

TECNOLOGIA

& INOVAÇÃO

REGRESSÃO

Aprendizado supervisionado: Dadas medições $(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)$, aprender um modelo para prever Y_i baseado em \mathbf{X}_i

Y: variável numérica

EXEMPLO

Prever a altura de um filho (Y) com base na altura de seu pai (X)

Amostra: $(X_1, Y_1), ..., (X_n, Y_n)$.

OBJETIVOS

(i) construir g de modo a se obter boas predições

$$g(\mathbf{X}_{n+1}) \approx Y_{n+1}, \ldots, g(\mathbf{X}_{n+m}) \approx Y_{n+m}$$

(ii) saber quantificar o quão boa uma (função de) predição é.

COMO CONSTRUIR g?

COMO CONSTRUIR g?

Regressão Linear

COMO CONSTRUIR g?

x = 1,80 m

COMO AVALIAR g?

Se y=1,76m, qual o erro cometido?

Erro quadrático:
$$(g(x) - y)^2 = (1,77 - 1,76)^2 = 0.0001$$

Quanto maior o valor de $(g(x) - y)^2$, pior é nossa predição

COMO AVALIAR g?

Quantificamos quão boa g é apenas para um par (x, y)

Generalização: função de risco

$$R(g) = \mathbb{E}\left[(Y - g(X))^2\right]$$

COMO AVALIAR g?

Se os novos dados seguem a mesma distribuição,

$$\frac{1}{m}\sum_{i=1}^m(Y_{n+i}-g(\mathbf{X}_{n+i}))^2\approx \mathbb{E}\left[(Y-g(\mathbf{X}))^2\right]:=R(g)$$

RESUMINDO

Observamos um conjunto de treinamento $(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n).$

 $\mathbf{X} \in \mathbb{R}^d$ são chamados de preditores, variáveis explicativas, variáveis independentes, covariáveis ou *features*/atributos.

Y é chamado de resposta, variável dependente ou labels

- Desejamos criar uma função de predição g(x) para prever novas observações X_{n+1}, \ldots, X_{n+m} bem
- Prever novas observações bem = criar g tal que R(g) seja baixo

A MELHOR FUNÇÃO DE PREDIÇÃO

Seja
$$r(\mathbf{x}) = \mathbb{E}[Y|\mathbf{X} = \mathbf{x}]$$
 a função de regressão

Resultado:

$$R(r) \leq R(g)$$
 para toda função $g(\mathbf{x})$

COMO ESTIMAR A FUNÇÃO DE REGRESSÃO?

COMO ESTIMAR A FUNÇÃO DE REGRESSÃO?

Covariáveis				Resposta
$X_{1,1}$		$X_{1,d}$	$(={f X}_1)$	Y_1
:	:	٠	*	
$X_{n,1}$		$X_{n,d}$	$(= \mathbf{X}_n)$	Y_n

Objetivo: estimar $r(\mathbf{x}) := \mathbb{E}[Y|\mathbf{x}]$

 $x_{i,j}$: valor da j-ésima covariável no i-ésimo indivíduo.

