Email: klaus-robert.mueller@tu-berlin.de

Week 1: Euclidean Vector Spaces

Homework

Solutions must be submitted on ISIS until Tuesday May 28th, at 10am.

 $\Box \ \langle f,g \rangle \coloneqq \int_{-\infty}^{+\infty} (f(x) + g(x)) dx$ for all $f,g \in L_2(\mathbb{R})$

1. Let $V = (\mathcal{V}, +, \cdot)$ be a real vector space. Which of the following statements is <u>false</u>?

Exercise 1 (10) Points)
----------------	-----------

	□ For all $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}$ it holds that $\boldsymbol{v} + \boldsymbol{w} = \boldsymbol{w} + \boldsymbol{v}$ □ For all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}$ it holds that $(\boldsymbol{u} + \boldsymbol{v}) + \boldsymbol{w} = \boldsymbol{u} + (\boldsymbol{v} + \boldsymbol{w})$ □ For all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}$ it holds that $(\boldsymbol{u}\boldsymbol{v})\boldsymbol{w} = \boldsymbol{u}(\boldsymbol{v}\boldsymbol{w})$	
2.	Which of the following sets together with standard addition and scalar multiplication does <u>not</u> form a real vector space	
	□ The set of imaginary numbers $\{iy \in \mathbb{C} \mid y \in \mathbb{R}\}$ □ The set of real-valued, positive functions $\{f \colon \mathbb{R}^n \to [0, +\infty]\}$ □ The set of all polynomials of degree $\leq n \{f \colon \mathbb{R} \to \mathbb{R} \mid f(x) = \sum_{p=0}^n a_p x^p, a_p \in \mathbb{R}\}$	
3.	Let V be a real vector space as in question 1. Which of the following statements is $\underline{\text{true}}$?	
	$egin{aligned} & \square \ \left\{ oldsymbol{v} + oldsymbol{w} \mid oldsymbol{v}, oldsymbol{w} \in \mathcal{V} ight\} = \mathcal{V} \ & \square \ \left\{ oldsymbol{v} \mid oldsymbol{v} \in \mathcal{V}, \lambda \in \mathbb{R} ight\} = \mathbb{R} imes \mathcal{V} \end{aligned}$	
4.	Which of the following subsets of \mathbb{R}^n is a vector subspace?	
	$ \square \{ \boldsymbol{x} \in \mathbb{R}^n \mid x_1 = \ldots = x_n \} \square \{ \boldsymbol{x} \in \mathbb{R}^n \mid x_1^2 = x_2^2 \} \square \{ \boldsymbol{x} \in \mathbb{R}^n \mid x_1 = 1 \} $	
5.	Which of the following means that v_1, \ldots, v_n , all $v_i \neq 0$ are linearly independent?	
	$\Box \ \lambda_1 \boldsymbol{v}_1 + \ldots + \lambda_n \boldsymbol{v}_n = 0 \text{ if and only if } \lambda_1 = \ldots = \lambda_n = 0$ $\Box \ \text{If } \lambda_1 = \ldots = \lambda_n = 0, \text{ then } \lambda_1 \boldsymbol{v}_1 + \ldots + \lambda_n \boldsymbol{v}_n = 0$ $\Box \ \lambda_1 \boldsymbol{v}_1 + \ldots + \lambda_n \boldsymbol{v}_n = 0 \text{ for all } (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$	
6.	Which of the following vectors form a basis of the vector space of polynomials of degree 2?	
	$ \Box f_1(x) = x^2 + x - 2, f_2(x) = 2x^2 + 2x - 4, f_3(x) = 3x + 2 $ $ \Box f_1(x) = 5x^2 - 2, f_2(x) = 3x, f_3(x) = 1 $ $ \Box f_1(x) = x^2 + 3x + 1, f_2(x) = x^2 - 1, f_3(x) = x + 1, f_4(x) = x - 1 $	
7.	What is the dimension of the vector space $\{x \in \mathbb{R}^3 \mid x_1 + 2x_2 = 0, x_1 + x_3 = 0\}$?	
	\square 1 \square 2 \square 3	
8.	Which of the following statements is <u>true</u> ?	
	□ If $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defines a scalar product on \mathbb{R}^n , then it holds that $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = x_1 y_1 + \ldots + x_n y_n$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$ \cup $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ with $\langle \boldsymbol{x}, \boldsymbol{y} \rangle \coloneqq x_1 y_1 + \ldots + x_n y_n$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$ defines a scalar product on \mathbb{R}^n . □ In order for a mapping $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ to define a scalar product on \mathbb{R}^n , it is a necessary condition that $\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \delta_{ij}$. (The Kronecker symbol δ_{ij} is defined as $\delta_{ii} \coloneqq 1$ and $\delta_{ij} \coloneqq 0$ for $i \neq j$.)	
9.	Which of the following mappings does <u>not</u> define a scalar product on the vector space $L_2(\mathbb{R})$ of square-integrals functions on \mathbb{R} ?	
	$\Box \langle f, g \rangle \coloneqq \int_{-\infty}^{+\infty} f(x)g(x)dx$ for all $f, g \in L_2(\mathbb{R})$	
	$\Box \langle f, g \rangle := \int_{-\infty}^{+\infty} \exp(-x^2) f(x) g(x) dx$ for all $f, g \in L_2(\mathbb{R})$	

10. Let \mathbb{R}^2 be a Euclidean vector space with the standard scalar product. Which of the following vectors form an orthonormal basis?

$$\square \, \left[\begin{array}{c} 1 \\ -1 \end{array} \right], \left[\begin{array}{c} -1 \\ -1 \end{array} \right] \qquad \qquad \square \, \left[\begin{array}{c} 1 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ -1 \end{array} \right] \qquad \qquad \square \, \left[\begin{array}{c} 1 \\ 1 \end{array} \right], \left[\begin{array}{c} 1 \\ 1 \end{array} \right]$$

Exercise 2 (5 Points)

Let $(V, \langle \cdot, \cdot \rangle)$ be a Euclidean vector space and let $v_1, \ldots, v_n \in \mathcal{V}$ be pairwise orthogonal vectors. *Prove* the following generalized version of the Pythagorean theorem:

$$\left\|\sum_{i=1}^n \boldsymbol{v}_i\right\|^2 = \sum_{i=1}^n \|\boldsymbol{v}_i\|^2$$

Exercise 3 (5 Points)

Let V be a vector space and $\{v_1, \ldots, v_n\} \subset V$ a basis. This implies that v_1, \ldots, v_n are linearly independent and any $v \in V$ can be written as a linear combination of the v_i , i.e., there exist $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that $v = \lambda_1 v_1 + \ldots + \lambda_n v_n$. Show: For all $v \in V$ the $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ are uniquely determined.