Feuille d'exercice n° 01 : Nombres complexes

Exercice 1 () Écrire sous forme algébrique les nombres complexes suivants.

1)
$$\frac{1+2i}{3-4i}$$

3)
$$\frac{(1+i)^3}{(1-i)^2}$$

5)
$$\frac{1}{1+\frac{2}{i}}$$

2)
$$\frac{1}{(1+2i)^2}$$

4)
$$\frac{1+i}{3-i} + \frac{1-i}{3+i}$$

6)
$$(1+(1+(1+2i)^2)^{-1})$$

Exercice 2 Montrer que pour tout $(a, b, c, d) \in \mathbb{Z}^4$, il existe $(m, n) \in \mathbb{Z}^2$ tel que $(a^2 + b^2)(c^2 + d^2) = m^2 + n^2$.

Exercice 3 Soit $\theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}$, $z = \frac{1 + \cos \theta + i \sin \theta}{1 - \cos \theta - i \sin \theta}$. Calculer Re z, Im z, |z|, arg z.

Exercice 4 ($\stackrel{\triangleright}{\sim}$) Résoudre pour $z \in \mathbb{C}$, $2 \arg(z+i) = \arg(z) + \arg(i) [2\pi]$.

Exercice 5 Soient z_1 et z_2 deux complexes de module 1, tels que $1+z_1z_2\neq 0$. Montrer que $\frac{z_1+z_2}{1+z_1z_2}\in\mathbb{R}$.

Exercice 6 Soit $a \in [0; 2\pi[$ et n un entier naturel. Déterminer le module et l'argument de $: (1+ie^{ia})^n$.

Exercice 7 Soit $\omega = \exp\left(\frac{2i\pi}{7}\right)$. Calculer $A = \omega + \omega^2 + \omega^4$ et $B = \omega^3 + \omega^5 + \omega^6$. (*Indication*: on pourra d'abord calculer AB et A + B.)

Exercice 8 (\circlearrowleft) Déterminer les racines 4^{es} dans \mathbb{C} de -119 + 120i

Exercice 9 ($(x, z) \in \mathbb{N}^* \times \mathbb{C}$ tel que $z^n = (z + 1)^n = 1$. Montrer que n est multiple de 6 et que $z^3 = 1$.

Exercice 10 Soit $n \in \mathbb{N}^*$. Résoudre dans \mathbb{C} l'équation d'inconnue $x: (1+x)^{2n} = (1-x)^{2n}$. Calculer alors le produit des solutions de cette équation.

Exercice 11 ($^{\circ}$) Soit *n* un entier supérieur ou égal à 2.

- 1) Écrire -i et 1+i sous forme trigonométrique.
- 2) Calculer les racines n^{es} de -i et de 1+i.
- 3) Résoudre $z^2 z + 1 i = 0$.
- 4) En déduire les racines de $z^{2n} z^n + 1 i = 0$.

Exercice 12 Résoudre dans \mathbb{C} l'équation $\overline{z} = z^3$.

Exercice 13 Résoudre dans $\mathbb C$ l'équation d'inconnue $z:z^4+2\lambda^2z^2(1+\cos\theta)\cos\theta+\lambda^4(1+\cos\theta)^2=0$ $(\lambda\in\mathbb C,\theta\in[0,\pi])$. Pour $n\in\mathbb N$, calculer $\sum\limits_{k=1}^4 z_k^n$ où les z_k sont les racines de cette équation.

Exercice 14 (\bigcirc) Mettre sous forme algébrique les nombres complexes suivants : $(\sqrt{3} - i)^{11}$ et $(-1+i)^{17}$

Exercice 15 ((5)) Soient $n \in \mathbb{N}$ et $a, b \in \mathbb{R}$. Calculer $\sum_{k=0}^{n} \binom{n}{k} \cos(a+kb)$ et $\sum_{k=0}^{n} \binom{n}{k} \sin(a+kb)$.

Exercice 16

- 1) Calculer les racines carrées de $\frac{1+i}{\sqrt{2}}$. En déduire les valeurs de $\cos(\pi/8)$ et $\sin(\pi/8)$.
- 2) Calculer les valeurs de $\cos(\pi/12)$ et $\sin(\pi/12)$.

Exercice 17

- 1) Soit $x \in \mathbb{R}$. Exprimer $\cos(5x)$ en fonction de $\cos(x)$.
- 2) En déduire que $\cos\left(\frac{\pi}{10}\right)$ est racine du polynôme $16X^4 20X^2 + 5$.
- 3) En déduire la valeur de $\cos^2\left(\frac{\pi}{10}\right)$.
- 4) Montrer que $\cos\left(\frac{\pi}{5}\right) = \frac{1+\sqrt{5}}{4}$.

Exercice 18 ($^{\circ}$) Calculer $\cos 5\theta$, $\cos 8\theta$, $\sin 6\theta$, $\sin 9\theta$, en fonction de $\cos \theta$ et $\sin \theta$.

Exercice 19 () Linéariser les quantités suivantes.

1)
$$\cos^2(x)\sin^3(x)$$
.

2)
$$\cos^6(x) + \sin^6(x)$$
.

Exercice 20 Déterminer l'ensemble des nombres complexes z vérifiant chacune des équations suivantes.

1)
$$\left| \frac{z-3}{z-5} \right| = 1$$

2)
$$\left| \frac{z-3}{z-5} \right| = \frac{\sqrt{2}}{2}$$

Exercice 21 Quel est l'ensemble des nombres complexes z tels que $\frac{z+1}{z-1}$ est imaginaire pur ?

Exercice 22 Déterminer les points d'affixe $z \in \mathbb{C}$ vérifiant chaque situation.

- 1) 1, z et z^2 soient les affixes de trois points alignés.
- 2) z et $\frac{1}{z}$ soient les affixes de deux vecteurs orthogonaux.
- 3) 1, z et z+i soient les affixes des sommets d'un triangle dont le centre du cercle circonscrit est l'origine O du repère.
- 4) $z, \frac{1}{z}$ et z-1 soient les affixes de trois points situés sur un même cercle de centre O.

Exercice 23 Soient A, B et C trois points d'affixes respectifs a, b et c. Montrer que les propositions suivantes sont équivalentes.

- 1) ABC est un triangle équilatéral.
- 2) j ou j^2 est racine du polynôme $aX^2 + bX + c$.
- 3) $a^2 + b^2 + c^2 = ab + bc + ca$.
- 4) $(b-a)^2 + (c-b)^2 + (a-c)^2 = 0$.

Exercice 24 Soient A, B, A' et B' quatre points tels que $A \neq B$ et $A' \neq B'$. Montrer qu'il existe une et une seule similitude directe qui transforme A en A' et B en B'.

Exercice 25 ()

- 1) Caractériser géométriquement l'application $\left\{ \begin{array}{ll} \mathbb{C} & \to & \mathbb{C} \\ z & \mapsto & (2+2i)z (7+4i) \end{array} \right.$
- 2) Soient r la rotation de centre le point d'affixe 1 et d'angle de mesure $\frac{\pi}{2}$, et s la symétrie centrale de centre le point d'affixe i+3. Caractériser géométriquement l'application $s\circ r$.
- 3) Soit r la rotation de centre le point d'affixe 1+i et d'angle de mesure $\frac{\pi}{4}$. Déterminer l'expression complexe de r.

