Ch 14 - Problem Set 1

Calculus 3

Section 1: Functions of Several Variables

- **3.** Let $g(x,y) = x^2 \ln(x+y)$
- (a) Evaluate g(3,1).
- (b) Find and sketch the domain of g.
- (c) Find the range of g.

Solution

- $a) 9 \ln 4$
- b) $D: \{(x,y) \mid y > -x\}$

 $c) \mathbb{R}$

7 - 15 (odd)

Find and sketch the domain of the function.

7.
$$f(x,y) = \sqrt{x-2} + \sqrt{y-1}$$

$$D: \{(x,y) \mid x \ge 2, y \ge 1\}$$

9.
$$q(x,y) = \sqrt{x} + \sqrt{4 - 4x^2 - y^2}$$

Solution

$$D: \{(x,y) \mid x^2 + \frac{1}{4}y^2 \le 1, x \ge 0\}$$

11.
$$g(x,y) = \frac{x-y}{x+y}$$

Solution

$$D: \{(x,y) \mid y \neq -x\}$$

13.
$$p(x,y) = \frac{\sqrt{xy}}{x+1}$$

 $D: \{(x,y) \mid x \neq 0, xy \geq 0\}$

15.
$$f(x,y,z) = \sqrt{4-x^2} + \sqrt{9-y^2} + \sqrt{1-z^2}$$

Solution

17. A model for the surface area of a human body is given by the function

$$S = f(w, h) = 0.1091w^{0.425}h^{0.725}$$

where w is the weight (in pounds), h is the height (in inches), and S is measured in square feet.

- (a) Find f(160,70) and interpret it.
- (b) What is your own surface area?

Solution

23 - 31 (odd)

Sketch the graph of the function

23. f(x,y) = y

Solution

25. f(x,y) = 10 - 4x - 5y

Solution

27. $f(x,y) = \sin x$

Solution

29. $f(x,y) = x^2 + 4y^2 + 1$

Solution

31. $f(x,y) = \sqrt{4-4x^2-y^2}$

32. Match the function with its graph (labeled I-VI). Give reasons for your choices.

(a)
$$f(x,y) = \frac{1}{1+x^2+y^2}$$
 (b) $f(x,y) = \frac{1}{1+x^2y^2}$

(**b**)
$$f(x,y) = \frac{1}{1+x^2y^2}$$

(c)
$$f(x,y) = \ln(x^2 + y^2)$$

(c)
$$f(x,y) = \ln(x^2 + y^2)$$
 (d) $f(x,y) = \cos\sqrt{x^2 + y^2}$

(e)
$$f(x,y) = |xy|$$

$$(\mathbf{f}) \ f(x,y) = \cos(xy)$$

33. A contour map for a function f is shown. Use it to estimate the values of f(-3,3) and f(3,-2). What can you say about the shape of the graph?

Solution

45, 47 & 51

Draw a contour map of the function showing several level curves.

45.
$$f(x,y) = x^2 + y^2$$

47.
$$f(x,y) = x^2 + y^2$$

51.
$$f(x,y) = x^2 + y^2$$

53. Sketch both a contour map and a graph of the given function and compare them.

$$f(x,y) = x^2 + 9y^2$$

Solution

61 - 66

Match the function (a) with its graph (labeled A–F below) and (b) with its contour map (labeled I–VI). Give reasons for your choices.

61. $z = \sin(xy)$

Solution

62. $z = e^x \cos y$

Solution

63. $z = \sin(x - y)$

Solution

64. $z = \sin x - \sin y$

Solution

65. $z = (1 - x^2)(1 - y^2)$

Solution

66. $z = \frac{x - y}{1 + x^2 + y^2}$

Solution

67. Describe the level surfaces of the function.

$$f(x, y, z) = 2y - z + 1$$

Section 2: Limits and Continuity

5 - 11 (odd)

Find the limit

5. $\lim_{(x,y)\to(3,2)}(x^2y^3-4y^2)$

Solution

7. $\lim_{(x,y)\to(-3,1)} \frac{x^2y - xy^3}{x - y - 2}$

Solution

9. $\lim_{(x,y)\to(\pi,\pi/2)} y \sin(x-y)$

Solution

11. $\lim_{(x,y)\to(1,1)} \left(\frac{x^2y^3-x^3y^2}{x^2-y^2}\right)$

13 - 17 (odd)

Show that the limit does not exist

13. $\lim_{(x,y)\to(0,0)} \frac{y^2}{x^2+\nu^2}$

Solution

15. $\lim_{(x,y)\to(0,0)} \frac{(x+y)^2}{x^2+y^2}$

Solution

17. $\lim_{(x,y)\to(0,0)} \frac{y^2 \sin^2 x}{x^4 + y^4}$

Solution

19 - 25 (odd)

Find the limit, if it exists, or show that the limit does not exist.

19. $\lim_{(x,y)\to(-1,-2)}(x^2y-xy^2+3)^3$

21. $\lim_{(x,y)\to(2,3)} \frac{3x-2y}{4x^2-y^2}$

Solution

Solution

23. $\lim_{(x,y)\to(0,0)} \frac{xy^2\cos y}{x^2+u^4}$

Solution

25. $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{\sqrt{x^2+y^2+1}-1}$

Solution

31 & 33

Use the Squeeze Theorem to find the limit.

31. $\lim_{(x,y)\to(0,0)} xy\sin\frac{1}{x^2+u^2}$

Solution

33. $\lim_{(x,y)\to(0,0)} \frac{xy^4}{x^4+y^4}$

Solution

41, 43 & 45

Determine the set of points at which the function is continuous.

41. $F(x,y) = \frac{xy}{1 + e^{x-y}}$

Solution

43. $F(x,y) = \frac{1+x^2+y^2}{1-x^2-y^2}$

Solution

45. $G(x,y) = \sqrt{x} + \sqrt{1 - x^2 - y^2}$