PH207: Year 2023 Problem Set-VI Instructor: Subhradip Ghosh

- 1. (a) The pressure inside a container enclosing water maintained at $^{-10}$ C is slowly reduced from an initial value of 10^5 mm Hg. Calculate the pressure at which the phase transition occurs. Assume the vapor phase behaves like ideal gas. Use the following data: at the triple point of water P=4.6 mm of Hg, specific volume of solid is 1.12 cm³/g, specific volume of liquid is 1 cm³/g, heat of melting is 80 cal/g and heat of vaporisation is 600 cal/g.
 - (b) Calculate the change in specific latent heat with temperature dL/dT at a point (P,T) along a phase equilibrium line. Express your result in terms of L and specific heat C_P , coefficient of volume expansion β and specific volume v of each phase at the original temperature T and pressure P.
- 2. (a) The pressure-volume diagram shows two neighbouring isotherms in the region of a liquid-gas phase transition. By considering a Carnot cycle between temperatures T and T + dT in the region shaded in the diagram, derive the Clasius Clapeyron equation relating vapour pressure and temperature, dP/dT = L/(TΔV) where L is the latent heat of vaporisation per mole and ΔV is the volume change between gas and liquid per mole. (b) Liquid Helium boils at T₀ = 4.2 K when its vapour pressure P₀ = 1 atm. The vapour pressure is now reduced to a much smaller value P. Assuming that the latent heat L is approximately independent of temperature and that the Helium vapor density is much smaller than that of the liquid, calculate the approximate temperature T_m of the liquid in equilibrium with the vapor at pressure P.

- 3. Calculate the relation between the pressure of a gas above a non volatile solvent and the concentration of the dissolved gas in the solvent.
- 4. Calculate the vapor pressure of the mixture of two solvents as the function of the molar fraction of solvent 1. Assume that Raoult's law is valid for partial pressure.
- 5. A solvent with a dissolved material is separated from the pure solvent by a diaphragm which is permeable only for the solvent. Calculate the pressure difference between the systems as a function of the concentration X_m of the dissolved substance. Assume the solution to behave ideally.

T ₁	T ₂
μ_1	μ_2
\mathbf{p}_1	p_2
pure solvent	solvent
	with
	substance