

MAKİNE MÜHENDİSLİĞİ

TERS LAPLACE DÖNÜŞÜMÜ

t domenindeki denklemi s domenine dönüştürüp çıkış değişkenlerini s'nin bir fonksiyonu olarak bulduktan sonra tekrar zaman (t) domenine dönüştürülmesi işlemine Ters Laplace Dönüşümü denir.

t>0 için f(t)'nin Laplace dönüşümü F(s) ise, t>0 için F(s)'nin ters Laplace dönüşümü aşağıdaki gibi tanımlanır.

$$f(t) = \mathcal{L}^{-1}{F(s)} = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + j\infty} F(s) e^{st} dt$$

Pratikte bu denklemin çözümü zor olduğundan bunun yerine Laplace dönüşüm tabloları veya diğer bazı yöntemler kullanılır.

Ters Laplace yöntemi için kullanılan yöntemler şunlardır:

- 1. Tablo yöntemi
- 2. Basit (kısmi) kesirlere ayırma yöntemi
- 3. Ters Laplace integralinin çözümü ile gerçekleştirilen yöntem

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

MAKİNE MÜHENDİSLİĞİ

1. Kısmi Kesirlere Ayırma Yöntemiyle Ters Laplace Dönüşümü

Ters Laplace dönüşümü yapılacak F(s) fonksiyonu basit fonksiyonlar dizisi şeklinde aşağıdaki gibi veniden düzenlenir.

$$F(s) = F_1(s) + F_2(s) + F_3(s) + \dots + F_n(s)$$

Daha sonra her bir ifadenin ayrı ayrı ters Laplace dönüşümü alınır.

$$\mathcal{L}^{-1}\{F(s)\} = \mathcal{L}^{-1}\{F_1(s)\} + \mathcal{L}^{-1}\{F_2(s)\} + \mathcal{L}^{-1}\{F_3(s)\} + \dots + \mathcal{L}^{-1}\{F_n(s)\}$$

$$\mathcal{L}^{-1}\{F(s)\} = f_1(t) + f_2(t) + f_3(t) + \dots + f_n(t)$$

Kontrol sistemi uygulamalarında F(s) fonksiyonu, aşağıda görüldüğü gibi s'nin fonksiyonları olan iki polinomun birbirine oranı olarak verilir.

$$F(s) = \frac{N(s)}{D(s)} = \frac{(s+z_1)(s+z_2)\dots(s+z_n)}{(s+p_1)(s+p_2)\dots(s+p_n)}$$

F(s) fonksiyonunu sıfır yapan payın kökleri (-z₁, -z₂, ...,-z_n) fonksiyonunun sıfırları adını alır.

F(s) fonksiyonunu sonsuz yapan paydanını kökleri $(-p_1, -p_2, ..., -p_n)$ fonksiyonunun kutupları adını alır.

MAKİNE MÜHENDİSLİĞİ

1. Kısmi Kesirlere Ayırma Yöntemiyle Ters Laplace Dönüşümü...

Fonksiyon, paydanın köklerine göre çarpanlarına ayrılırsa:

$$F(s) = \frac{N(s)}{(s + p_1)(s + p_2) \dots (s + p_n)}$$

Burada paydanın kökleri 3 farklı şekilde olabilir. Bunlar:

- 1. Reel ve tek katlı köklere sahip olabilir.
- 2. Reel ve katlı (tekrarlı) köklere sahip olabilir.
- 3. Karmaşık (kompleks) eşlenik köklere sahip olabilir.

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

1. Kısmi Kesirlere Ayırma Yöntemiyle Ters Laplace Dönüşümü...

1. Farklı reel köklere sahip ise:

Eğer F(s) fonksiyonunun paydasındaki tüm kökler birbirinden farklı (ayrık basit kök) ise F(s) fonksiyonu n adet terimin toplamı olarak yazılabilir:

$$F(s) = \frac{A_1}{(s+p_1)} + \frac{A_2}{(s+p_2)} + \frac{A_3}{(s+p_3)} + \dots + \frac{A_n}{(s+p_n)}$$

Daha sonra her bir terimin payındaki sabitler aşağıdaki gibi hesaplanır.

$$A_{1} = \lim_{s \to p_{1}} [(s + p_{1}).F(s)] = [(s + p_{1}).F(s)]_{s=-p_{1}}$$

$$A_{2} = \lim_{s \to p_{2}} [(s + p_{2}).F(s)] = [(s + p_{2}).F(s)]_{s=-p_{2}}$$

$$A_{3} = \lim_{s \to p_{3}} [(s + p_{3}).F(s)] = [(s + p_{3}).F(s)]_{s=-p_{3}}$$

$$A_n = \lim_{s \to n} (s + p_n) \cdot F(s) = [(s + p_n) \cdot F(s)]_{s = -p_n}$$

MAKİNE MÜHENDİSLİĞİ

1. Kısmi Kesirlere Ayırma Yöntemiyle Ters Laplace Dönüşümü...

1. Farklı reel köklere sahip ise:

Son olarak Laplace tablosu kullanılarak her bir terimin ayrı ayrı Laplace dönüşümleri alınarak tüm fonksiyonunun Laplace dönüşümü gerçekleştirilir.

$$\mathcal{L}^{-1}\{F(s)\} = f(t) = A_1.e^{-p_1t} + A_2.e^{-p_2t} + A_3.e^{-p_3t} + \cdots + A_n.e^{-p_nt}$$

Hatırlatma:

Laplace dönüşüm tablosundan

$$\frac{1}{s+a} \mid e^{-a}$$

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

1. Kısmi Kesirlere Ayırma Yöntemiyle Ters Laplace Dönüşümü...

2. Reel ve katlı (tekrarlı) köklere sahipse:

Eğer F(s) fonksiyonunun paydasında s=-a 'da m kez tekrarlanan bir katlı kök varsa, F(s) fonksiyonu aşağıdaki gibi kısmi kesirlere ayrılabilir.

$$F(s) = \frac{C_m}{(s+a)^m} + \frac{C_{m-1}}{(s+a)^{m-1}} + \frac{C_{m-2}}{(s+a)^{m-2}} + \dots + \frac{C_2}{(s+a)^2} + \frac{C_1}{(s+a)^1}$$

Daha sonra her bir terimin payındaki sabitler aşağıdaki gibi hesaplanır.

$$C_m = \lim_{s \to a} [(s+a)^m . F(s)]$$

$$C_{m-1} = \lim_{s \to a} \frac{d}{ds} [(s+a)^m . F(s)]$$

$$C_{m-i} = \lim_{s \to a} \frac{1}{i!} \frac{d^i}{ds^i} [(s+a)^m . F(s)]$$

$$C_1 = \lim_{s \to a} \frac{1}{(m-1)!} \frac{\vdots}{d^{m-1}} \left[(s+a)^m . F(s) \right]$$

MAKİNE MÜHENDİSLİĞİ

1. Kısmi Kesirlere Ayırma Yöntemiyle Ters Laplace Dönüşümü...

2. Reel ve katlı (tekrarlı) köklere sahipse:

Son olarak F(s) fonksiyonunun terim terim ters Laplace dönüşümü gerçekleştirilerek f(t) fonksiyonu elde edilir.

$$f(t) = \left[\frac{C_m}{(m-1)!} \ t^{m-1} + \frac{C_{m-1}}{(m-2)!} \ t^{m-2} + \\ + \frac{C_{m-2}}{(m-3)!} \ t^{m-3} + \cdots + C_2 \ t + C_1 \right] \cdot e^{-at}$$

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

1. Kısmi Kesirlere Ayırma Yöntemiyle Ters Laplace Dönüşümü...

3. Karmaşık (kompleks) eşlenik köklere sahipse:

Karmaşık kökler her zaman çiftler halinde bulunur. Dolayısıyla biri diğerinin eşleniği durumundadır. Örneğin köklerden birisi *a+jb* ise diğer *a-jb* olacaktır.

Eğer F(s) fonksiyonunun paydasında $s_{1,2}=-a\mp jb$ gibi karmaşık eşlenik kök varsa, bu durumda F(s) fonksiyonu aşağıdaki gibi kısmi kesirlere ayrılabilir.

$$F(s) = \frac{K_c}{s + (a - jb)} + \frac{K_{-c}}{s + (a + jb)} + \frac{A_1}{s + p_1} + \frac{A_2}{s + p_2} + \dots + \frac{A_n}{s + p_n}$$

Terim terim ters Laplace dönüşümü alınırsa aşağıdaki ifade elde edilir.

$$y(t) = K_c \cdot e^{(-a+jb)t} + K_{-c} \cdot e^{(-a-jb)t} + A_1 \cdot e^{-p_1t} + A_2 \cdot e^{-p_2t} + \dots + A_n \cdot e^{-p_nt}$$

YYA - 2009 MAKINE MÜHENDİSLİĞİ

1. Kısmi Kesirlere Ayırma Yöntemiyle Ters Laplace Dönüşümü...

3. Karmaşık (kompleks) eşlenik köklere sahipse:

Ancak bu ifadedeki K_c ve K_{-c} ifadelerinin de aşağıdaki gibi hesaplanması gerekir. Buna göre:

$$K_c = \frac{1}{2jb} \; |K(-\alpha+jb)| \; e^{j\theta}$$

$$K_{-c} = -\frac{1}{2jb} |K(-a-jb)| e^{-j\theta}$$

Bu ifadeler y(t) fonksiyonunda yerine konulursa;

$$f(t) = \frac{1}{b} |K(a+jb)| e^{-at} \frac{e^{j(bt+\theta)} - e^{-j(bt+\theta)}}{2j} + A_1 \cdot e^{-p_1 t} + A_2 \cdot e^{-p_2 t} + \dots + A_n \cdot e^{-p_n t}$$

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

1. Kısmi Kesirlere Ayırma Yöntemiyle Ters Laplace Dönüşümü...

3. Karmaşık (kompleks) eşlenik köklere sahipse:

Bunu sadeleştirecek olursak;

$$f(t) = \frac{1}{b} |K(a+jb)| e^{-at} \sin(bt+\theta) + A_1 \cdot e^{-p_1 t} + A_2 \cdot e^{-p_2 t} + \dots + A_n \cdot e^{-p_n t}$$

İfadede geçen K(a+jb) ise aşağıdaki gibi hesaplanır:

$$K(a+jb) = \lim_{s \to -a+jb} [(s^2 - 2as + a^2 + b^2).F(s)]$$

MAKİNE MÜHENDİSLİĞİ

ÖRNEKLER

ÖRNEK-1: Aşağıda verilen fonksiyonun ters Laplace dönüşümünü yapınız (f(t)=?).

$$F(s) = \frac{s+1}{s(s+3)}$$

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

$$F(s) = \frac{s+1}{s(s+3)}$$

Fonksiyonun kutupları yani paydadaki polinomun kökleri s_1 =0, s_2 =-3 olduğuna göre F(s)'nin kısmi kesirlere ayrılmış hali:

$$F(s) = \frac{A_1}{s} + \frac{A_2}{(s+3)}$$

Paydaki terimler aşağıdaki gibi bulunur.

$$A_1 = \lim_{s \to 0} [s. F(s)] = [s. F(s)]_{s=0} = \left[s \frac{s+1}{s(s+3)} \right]_{s=0} = \frac{1}{3}$$

$$A_2 = \lim_{s \to -3} [(s+3).F(s)] = [(s+3).F(s)]_{s=-3} = \left[(s+3) \frac{s+1}{s(s+3)} \right]_{s=-3} = \frac{2}{3}$$

MAKİNE MÜHENDİSLİĞİ

Buna göre F(s)'nin kısmi kesirlere ayrılmış halinin nihai şekli:

$$F(s) = \frac{1/3}{s} + \frac{2/3}{(s+3)}$$

$$F(s) = \frac{1}{3} \cdot \frac{1}{s} + \frac{2}{3} \cdot \frac{1}{(s+3)}$$

Tablo kullanılarak terim terim Laplace dönüşümü yapılacak olursa fonksiyonun t domenindeki karşılığı aşağıdaki gibi bulunacaktır.

$$f(t) = \frac{1}{3} \cdot 1 + \frac{2}{3} \cdot e^{-3t}$$

$$f(t) = \frac{1}{3} + \frac{2}{3} \cdot e^{-3t}$$

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

ÖRNEK-2: Aşağıda verilen fonksiyonun ters Laplace dönüşümünü yapınız (f(t)=?).

$$F(s) = \frac{s^2 + 9s + 19}{(s+1)(s+2)(s+4)}$$

$$F(s) = \frac{s^2 + 9s + 19}{(s+1)(s+2)(s+4)}$$

Fonksiyonun kutupları yani paydadaki polinomun kökleri s₁=-1, s₂=-2, s₃=-4 olduğuna göre F(s)'nin kısmi kesirlere ayrılmış hali:

$$F(s) = \frac{A_1}{(s+1)} + \frac{A_2}{(s+2)} + \frac{A_3}{(s+4)}$$

Paydaki terimler aşağıdaki gibi bulunur.

$$A_1 = \lim_{s \to -1} [(s+1).F(s)] = [(s+1).F(s)]_{s=-1} = \left[(s+1) \frac{s^2 + 9s + 19}{(s+1)(s+2)(s+4)} \right]_{s=-1} = \frac{11}{3}$$

$$A_2 = \lim_{s \to -2} \left[(s+2).F(s) \right] = \left[(s+2).F(s) \right]_{s=-2} = \left[(s+2) \frac{s^2 + 9s + 19}{(s+1)(s+2)(s+4)} \right]_{s=-2} = -\frac{5}{2}$$

$$A_3 = \lim_{s \to -4} [(s+4).F(s)] = \left[(s+4).F(s) \right]_{s=-4} = \left[(s+4) \frac{s^2 + 9s + 19}{(s+1)(s+2)(s+4)} \right]_{s=-4} = -\frac{1}{6}$$

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

Buna göre F(s)'nin kısmi kesirlere ayrılmış halinin nihai hali:

$$F(s) = \frac{11/3}{(s+1)} + \frac{-5/2}{(s+2)} + \frac{-1/6}{(s+4)}$$

$$F(s) = \frac{11}{3(s+1)} - \frac{5}{2(s+2)} - \frac{1}{6(s+4)}$$

Tablo kullanılarak terim terim Laplace dönüşümü yapılacak olursa fonksiyonun t domenindeki karşılığı aşağıdaki gibi bulunacaktır.

$$f(t) = \frac{11}{3}e^{-t} - \frac{5}{2}e^{-2t} - \frac{1}{6}e^{-4t}$$

MAKINE MÜHENDİSLİĞİ

ÖRNEK-3: Aşağıda verilen fonksiyonun ters Laplace dönüşümünü yapınız (f(t) =?).

$$F(s) = \frac{11s + 28}{(s+2)^2 (s+5)}$$

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

$$F(s) = \frac{11s + 28}{(s+2)^2 (s+5)}$$

Fonksiyonun kutupları yani paydadaki polinomun kökleri $s_{1,2}$ =-2 de iki tane tekrarlı ve katlı kök, s_3 =-5 'de ise bir adet basit kök vardır. Buna göre F(s)'nin kısmi kesirlere ayrılmış hali:

$$F(s) = \frac{C_2}{(s+2)^2} + \frac{C_1}{(s+2)} + \frac{A_1}{(s+5)}$$

Paydaki terimler aşağıdaki gibi bulunur.

$$C_2 = \lim_{s \to -2} \left[(s+2)^2 \cdot \frac{11s + 28}{(s+2)^2 \cdot (s+5)} \right] = 2$$

$$C_1 = \lim_{s \to -2} \frac{d}{ds} \left[(s+2)^2 \cdot \frac{11s+28}{(s+2)^2 \cdot (s+5)} \right] = \lim_{s \to -2} \frac{d}{ds} \left[\frac{11s+28}{(s+5)} \right] = \lim_{s \to -2} \frac{11(s+5) - (11s+28)}{(s+5)^2} = 3$$

$$A_1 = \lim_{s \to -5} \left[(s+5) \frac{11s+28}{(s+2)^2 (s+5)} \right] = -3$$

MAKİNE MÜHENDİSLİĞİ

Buna göre F(s)'nin kısmi kesirlere ayrılmış hali:

$$F(s) = \frac{C_2}{(s+2)^2} + \frac{C_1}{(s+2)} + \frac{A_1}{(s+5)}$$

$$F(s) = \frac{2}{(s+2)^2} + \frac{3}{(s+2)} - \frac{3}{(s+5)}$$

Tablo kullanılarak terim terim Laplace dönüşümü yapılacak olursa fonksiyonun t domenindeki karşılığı aşağıdaki gibi bulunacaktır.

$$\mathcal{L}^{-1}{F(s)} = f(t) = (2t+3)e^{-2t} - 3e^{-5t}$$

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

ÖRNEK-4: Aşağıda verilen fonksiyonun ters Laplace dönüşümünü yapınız (f(t)=?).

$$F(s) = \frac{1}{s(s+2)(s+1)^3}$$

MAKİNE MÜHENDİSLİĞİ

$$F(s) = \frac{1}{s(s+2)(s+1)^3}$$

Buna göre F(s)'nin kısmi kesirlere ayrılmış hali:

$$F(s) = \frac{K_1}{s} + \frac{K_2}{(s+2)} + \frac{A_3}{(s+1)^3} + \frac{A_2}{(s+1)^2} + \frac{A_1}{(s+1)}$$

Paya ait tüm terimler bulunacak olursa;

$$K_1 = \lim_{s \to 0} [s.F(s)] = [s.F(s)]_{s=0} = \left[s \cdot \frac{1}{s(s+2)(s+1)^3} \right]_{s=0} = \frac{1}{2}$$

$$\begin{split} K_2 &= \lim_{s \to -2} [(s+2).F(s)] = [(s+2).F(s)]_{s=-2} \\ &= \left[(s+2) \cdot \frac{1}{s (s+2) (s+1)^3} \right]_{s=-2} = \frac{1}{2} \end{split}$$

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

$$F(s) = \frac{K_1}{s} + \frac{K_2}{(s+2)} + \frac{A_3}{(s+1)^3} + \frac{A_2}{(s+1)^2} + \frac{A_1}{(s+1)}$$

$$A_3 = \lim_{s \to -1} \left[(s+1)^3 \frac{1}{s(s+2)(s+1)^3} \right] = -1$$

$$A_2 = \lim_{s \to -1} \frac{1}{1!} \cdot \frac{d}{ds} \left[(s+1)^3 \frac{1}{s(s+2)(s+1)^3} \right]$$

$$= \lim_{s \to -1} \frac{d}{ds} \left[\frac{1}{s(s+2)} \right]$$

$$= \lim_{s \to -1} \frac{-(2s+2)}{[s(s+2)]^2}$$

$$= 0$$

$$A_1 = \lim_{s \to -1} \frac{1}{2!} \cdot \frac{d^2}{ds^2} \left[(s+1)^3 \frac{1}{s(s+2)(s+1)^3} \right] = \lim_{s \to -1} \frac{1}{2} \cdot \frac{d^2}{ds^2} \left[\frac{1}{s(s+2)} \right] = -1$$

MAKİNE MÜHENDİSLİĞİ

Buna göre F(s)'nin kısmi kesirlere ayrılmış hali:

$$F(s) = \frac{K_1}{s} + \frac{K_2}{(s+2)} + \frac{A_3}{(s+1)^3} + \frac{A_2}{(s+1)^2} + \frac{A_1}{(s+1)}$$

$$F(s) = \frac{1}{2s} + \frac{1}{2(s+2)} - \frac{1}{(s+1)^3} - \frac{1}{(s+1)}$$

Tablo kullanılarak terim terim Laplace dönüşümü yapılacak olursa fonksiyonun t domenindeki karşılığı aşağıdaki gibi bulunacaktır.

$$\mathcal{L}^{-1}{F(s)} = f(t) = \frac{1}{2} + \frac{1}{2} \cdot e^{-2t} - \frac{1}{2} t^2 \cdot e^{-t} - e^{-t}$$

o 1	1 tn-1 e-at
$(s+a)^n$	(n-1)!

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

MAKİNE MÜHENDİSLİĞİ

ÖRNEK-5: Aşağıda verilen fonksiyonun ters Laplace dönüşümünü yapınız (f(t)=?).

$$F(s) = \frac{2s^2 - 2s - 4}{(s+3)(s^2 + 2s + 2)}$$

MAKİNE MÜHENDİSLİĞİ

$$F(s) = \frac{2s^2 - 2s - 4}{(s+3)(s^2 + 2s + 2)}$$

Fonksiyonun kutupları yani paydadaki polinomun kökleri:

$$(s+3)(s^2+2s+2)=0$$

 $s_1 = -3$ 'de bir adet basit kök var.

 $s_{2,3} = -1 \pm j$ 'de karmaşık kök çifti var.

Buna göre F(s)'nin kısmi kesirlere ayrılmış hali:

$$F(s) = \frac{K_c}{s+1-j} + \frac{K_{-c}}{s+1+j} + \frac{A_1}{s+3}$$

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

MAKİNE MÜHENDİSLİĞİ

Ters Laplace dönüşümü alınırsa;

$$f(t) = \frac{1}{b} |K(a+jb)| e^{at} sin(bt+\theta) + A_1 \cdot e^{-3t}$$

Burada ilk önce A₁ değerini bulalım. Buna göre;

$$A_1 = \lim_{s \to -3} \left[(s+3) \frac{2s^2 - 2s - 4}{(s+3)(s^2 + 2s + 2)} \right] = 4$$

MAKİNE MÜHENDİSLİĞİ

Şimdi de karmaşık eşlenik kök çiftinin ters Laplace dönüşümüne geçelim. Buna göre;

$$s_{2,3} = -1 \pm j \text{ 'den } a = -1 \text{ , } b = 1$$

İfadede geçen K(a + jb) ise aşağıdaki gibi hesaplanır:

$$K(a+jb) = \lim_{s \to -a+jb} [(s^2 - 2as + a^2 + b^2).F(s)]$$

$$K(-1+j) = \lim_{s \to -1+j} \left[(s^2 + 2s + 2) \frac{2s^2 - 2s - 4}{(s+3)(s^2 + 2s + 2)} \right] = \frac{-2 - 6j}{2+j} = -2 - 2j$$

Buradan modülü ve argümenti;

$$|K(-1+j)| = |-2-2j| = \sqrt{(-2)^2 + (-2)^2} = 2,828$$

$$\theta = tan^{-1}\left(\frac{-2}{-2}\right) = 225^{\circ} = 225\frac{\pi}{180} = 3{,}927 \ rad$$

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

Yukarıdaki değerler fonksiyonda yerlerine koyulursa kesin çözüm aşağıdaki gibi elde edilir.

$$f(t) = \frac{1}{b} |K(a+jb)| e^{at} sin(bt+\theta) + A_1.e^{-3t}$$

$$f(t) = 2,83. e^{-t} sin(t + 3,927) + 4 e^{-3t}$$

MAKİNE MÜHENDİSLİĞİ

ÖRNEK-6: Aşağıda verilen diferansiyel denklemi y(0) = 0 ve y(0) = 1 başlangıç koşullarına göre, Laplace dönüşüm yoluyla çözünüz.

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = 1 + t$$

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = 1 + t$$

Öncelikle t domenindeki bu ifadenin s domenine dönüştürülmesi gerekir. Buna göre;

$$[s^{2}Y(s) - s y(0) - \dot{y}(0)] + 3[s Y(s) - y(0)] + 2Y(s) = \frac{1}{s} + \frac{1}{s^{2}}$$

$$[s^{2}Y(s) - s \cdot 0 - 1] + 3[s Y(s) - 0] + 2Y(s) = \frac{1}{s} + \frac{1}{s^{2}}$$

$$s^{2}Y(s) - 1 + 3s Y(s) + 2Y(s) = \frac{1}{s} + \frac{1}{s^{2}}$$

$$(s^{2} + 3s + 2)Y(s) = 1 + \frac{1}{s} + \frac{1}{s^{2}}$$

$$Y(s) = \frac{s^{2} + s + 1}{s^{2}(s^{2} + 3s + 2)}$$

MAKINE MÜHENDISLIĞI

Bu noktadan sonra Y(s) fonksiyonu kısmi kesirlerine ayrılır. Buna göre;

$$Y(s) = \frac{s^2 + s + 1}{s^2(s^2 + 3s + 2)} = \frac{A_2}{s^2} + \frac{A_1}{s} + \frac{B}{s + 1} + \frac{C}{s + 2}$$

$$A_2 = \lim_{s \to 0} \left[s^2 \frac{s^2 + s + 1}{s^2 (s^2 + 3s + 2)} \right] = \frac{1}{2}$$

$$A_1 = \lim_{s \to 0} \frac{1}{1!} \cdot \frac{d}{ds} \left[s^2 \frac{s^2 + s + 1}{s^2 (s^2 + 3s + 2)} \right]$$

$$= \lim_{s \to 0} \frac{(2s+1)(s^2+3s+2) - (s^2+s+1)(2s+3)}{(s^2+3s+2)^2}$$

$$=-\frac{1}{4}$$

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

$$B = \lim_{s \to -1} \left[(s+1) \frac{s^2 + s + 1}{s^2 (s+1)(s+2)} \right] = 1$$

$$C = \lim_{s \to -2} \left[(s+2) \frac{s^2 + s + 1}{s^2 (s+1)(s+2)} \right] = -\frac{3}{4}$$

$$Y(s) = \frac{1}{2} \cdot \frac{1}{s^2} - \frac{1}{4} \cdot \frac{1}{s} + \frac{1}{s+1} - \frac{3}{4} \cdot \frac{1}{s+2}$$

Ters Laplace dönüşümü alınırsa;

$$y(t) = \frac{1}{2} \cdot t - \frac{1}{4} + e^{-t} - \frac{3}{4} \cdot e^{-2t}$$

MAKİNE MÜHENDİSLİĞİ

ÖRNEK-7: Aşağıda verilen fonksiyonun ters Laplace dönüşümünü yapınız (f(t) =?).

$$F(s) = \frac{s+3}{(s+5)(s^2+4s+5)}$$

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

MAKİNE MÜHENDİSLİĞİ

$$F(s) = \frac{s+3}{(s+5)(s^2+4s+5)}$$

F(s)'nin kısmi kesirlere ayrılmış halini bulacak olursak;

$$F(s) = \frac{s+3}{(s+5)(s^2+4s+5)} = \frac{s+3}{(s+5)(s+2-j)(s+2+j)} = \frac{A_1}{(s+5)} + \frac{A_2}{(s+2-j)} + \frac{A_3}{(s+2+j)}$$

$$A_1 = (s+5)F(s)|_{s=-5} = (s+5)\frac{s+3}{(s+5)(s+2-j)(s+2+j)}\Big|_{s=-5} = -0.2$$

$$A_2 = (s+2-j)F(s)|_{s=-2+j} = (s+2-j)\frac{s+3}{(s+5)(s+2-j)(s+2+j)}\bigg|_{s=-2+j} = 0, 1-0, 2j$$

$$A_3 = (s+2+j)F(s)|_{s=-2-j} = (s+2+j)\frac{s+3}{(s+5)(s+2-j)(s+2+j)}\bigg|_{s=-2-j} = 0.1 + 0.2j = A_2^*$$

$$F(s) = \frac{-0.2}{(s+5)} + \frac{0.1 - 0.2j}{(s+2-j)} + \frac{0.1 + 0.2j}{(s+2+j)}$$

MAKİNE MÜHENDİSLİĞİ

$$F(s) = \frac{-0.2}{(s+5)} + \frac{0.1 - 0.2j}{(s+2-j)} + \frac{0.1 + 0.2j}{(s+2+j)}$$

Ters Laplace dönüşümü yapılırsa;

$$\mathcal{L}^{-1}{F(s)} = f(t) = -0.2 \cdot e^{-5t} + (0.1 - 0.2j)e^{(-2+j)t} + (0.1 + 0.2j)e^{(-2-j)t}$$

$$f(t) = -0.2 \cdot e^{-5t} + e^{-2t} \left[0.1 \left(e^{jt} + e^{-jt} \right) - 0.2j \left(e^{jt} - e^{-jt} \right) \right]$$

$$f(t) = -0.2 \cdot e^{-5t} + e^{-2t} \left[0.2 \frac{\left(e^{jt} + e^{-jt} \right)}{2} + 0.4 \frac{\left(e^{jt} - e^{-jt} \right)}{2j} \right]$$

$$f(t) = -0.2 \cdot e^{-5t} + 0.2 \cdot \cos(t) \cdot e^{-2t} + 0.4 \cdot \sin(t) \cdot e^{-2t}$$

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

MAKİNE MÜHENDİSLİĞİ

Ters LAPLACE Dönüşümü İçin MATLAB Kullanımı

Symbolic Math Toolbox içinde tanımlı olan ilaplace komutuyla ers önüşümü doğrudan sembolik olarak çözümlenebilir.

ilaplace(f) komutu Matlab ortamında tanımlanmış bir fonksiyonunun sembolik ters Laplace dönüşümünü yapar.

Burada Laplace dönüşümünde kullanılan **s** ve **t** değişkenleri ile varsa **a**, **b** gibi parametrelerin sym veya syms komutları ile önceden tanımlanması gerekir.

MAKİNE MÜHENDİSLİĞİ

ÖRNEK-8

Aşağıda verilen fonksiyonun ters Laplace dönüşümünü MATLAB kullanarak elde ediniz.

$$F(s) = \frac{s+4}{s^2 + 5s + 6}$$

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

MAKİNE MÜHENDİSLİĞİ

ÖRNEK-8

$$F(s) = \frac{s+4}{s^2 + 5s + 6}$$

MATLAB'da komut penceresine aşağıdakiler yazılarak Laplace dönüşümü yapılır.

%önce fonksiyon için gereken değişken ve parametreler tanımlanır syms s t

%Daha sonra fonksiyon, MATLAB komutlarına uygun şekilde yazılır

 $f = (s+4) / (s^2+5*s+6)$

%Son olarak ters Laplace dönüşümünü yapacak komut yazılıp Enter %tuşuna basılır

cevap=ilaplace(f)

MAKİNE MÜHENDİSLİĞİ

ÖRNEK-8

$$F(s) = \frac{s+4}{s^2 + 5s + 6}$$

Cevap olarak aşağıdaki sonuç elde edilir.

$$2*exp(-2*t) - exp(-3*t)$$

Eğer sonucun daha sade görünmesi istenirse aşağıdaki komut yazılıp Enter tuşuna basılır.

pretty(cevap)

Bu durumda elde edilecek görüntü;

$$\exp(-2 t) 2 - \exp(-3 t)$$

Dr. Hakan TERZİOĞLU

TEKNOLOJÍ FAKÜLTESÍ

ÖRNEK-9

Aşağıda verilen fonksiyonun ters Laplace dönüşümünü MATLAB kullanarak elde ediniz.

$$F(s) = \frac{s+5}{s^2 + 6s + 10}$$

TEKNOLOJÍ FAKÜLTESÍ MAKÍNE MÜHENDÍSLÍĞÍ

ÖRNEK-10

Aşağıda verilen fonksiyonun ters Laplace dönüşümünü MATLAB kullanarak elde ediniz.

$$F(s) = \frac{25}{(s+10)^2(s+8)}$$

TEKNOLOJÍ FAKÜLTESÍ MAKÍNE MÜHENDÍSLÍĞÍ

ÖRNEK-11

Aşağıda verilen fonksiyonun ters Laplace dönüşümünü MATLAB kullanarak elde ediniz.

$$F(s) = \frac{s^2 + 9s + 19}{(s+4)(s+2)(s+1)}$$

TEKNOLOJÍ FAKÜLTESÍ MAKÍNE MÜHENDÍSLÍĞÍ

ÖRNEK-12

Aşağıda verilen fonksiyonun ters Laplace dönüşümünü MATLAB kullanarak elde ediniz (f(t)=?).

$$F(s) = \frac{s+3}{(s+5)(s^2+4s+5)}$$

```
SELÇUK
ÜNİVERSİTESİ
KONYA - 1975
  TEKNOLOJI
                          TEKNOLOJÍ FAKÜLTESÍ
                            MAKİNE MÜHENDİSLİĞİ
ÖRNEK-12
                                                                   s + 3
                                                        F(s) = \frac{3 + 5}{(s+5)(s^2 + 4s + 5)}
>> syms s t
>> F=(s+3)/((s+5)*(s^2+4*s+5))
(s + 3)/((s + 5)*(s^2 + 4*s + 5))
>> cevap=ilaplace(F)
cevap =
(\exp(-2*t)*(\cos(t) + 2*\sin(t)))/5 - \exp(-5*t)/5
>> pretty(cevap)
\exp(-2 t) (\cos(t) + 2 \sin(t)) \exp(-5 t)
Dr. Hakan TERZİOĞLU
```

