人工智慧導論

期末報告

B073021024 錢 承 B075040041 鄭煥榮

一、摘要

二、前言簡介

我們的程式從十隻蜜蜂,跟著 規則慢慢演變出真實的蜂窩,像是 蜜蜂會被費洛蒙或花蜜吸引的機 制,或是牠們以把花蜜搬回蜂窩會 提升生命值且在一定數量之後達到 繁衍的功能,還有蜜蜂的存活限 制,在我們的程式中,我們預設十 隻蜜蜂個別具有不同的行走模式、 行走方向以及使用亂數控制花蜜產 生的座標。倘若蜜蜂在行走時同時 受到費洛蒙和花蜜的吸引,我們設 定讓蜜蜂優先選擇向花蜜靠近,同 時在蜜蜂的行走過程中檢查他們的 剩餘壽命,不僅可以控管蜜蜂數 量,也同時讓我們的人工生命模擬 環境更加真實,後面的程式討論部 分會再更詳細解說各個機制中的限

制和參數設定,以及每個 function 背後的建立機制。

三、相關研究

藉由期中報告的實作螞蟻生命 機制後,我們對人工模擬環境已有 初步的認識和一些基礎,我們重新 學習了這篇研究,對此有更深入的 想法應用在這次的報告中,針對蜜 蜂個體間的不同策略,慢慢學習最 佳的策略。

四、程式設計方式

首先,我們的程式中使用許多的旗標,用來儲存空間和蜜蜂當前的狀態,其中包含 FPS(控制程式迭代速度)、bee_list(儲存每一隻畫面上的蜜蜂)、flower list(儲存每一朵

畫面上的花)、STEP(蜜蜂每步的距 離)、DETECT FLOWER(可偵測花的 距離)、CONFORM(確認是否取得物 件的誤差值)、bee map(儲存費洛 蒙位置、強度、時間)、 EIGHT RANGE(紀錄蜜蜂走八字型的 範圍)等等。除了以上旗標,在每 一隻蜜蜂中,儲存了自身位置 (self.x, self.y)、蜜蜂圖檔 (self.raw image)、縮放大小 (self.image)、設定當前位置 (self.rect.topleft)、當前蜜蜂血量 (self.blood)、當前蜜蜂策略 (self.strategy)、是否偵測到花 (self.found flower)、是否持有花 (self.with_flower)、偵測到花的位 置(self.flower)、是否離開巢穴 (self.get out)、是否飛八字型 (self.go eight)等等。而在每一朵花 中儲存了花的位置以及被取得的次 數。

程式本體包含幾個重要的區塊,包含 init 函數、found_flower函數、conform函數、check函數、go_specific_place函數、eight函數、walk函數和 main loop。

init 函數:

主要功能為初始化,將初始的 十隻蜜蜂和兩朵花放入空間中,並 且對蜜蜂設定血量、策略。

found_flower 函數:

搜尋周圍是否有花。

conform 函數:

確認蜜蜂是否已經抵達指定地 點,如巢穴、花

check 函數:

確認蜜蜂是否超出視窗邊界。

go_specific_place 函數:

走道指定地點。

eight 函數:

讓蜜蜂走八字型。

walk 函數:

依照策略探索地圖。

main loop:

此為無限迴圈,將重複執行上 述函數(除了 init 函數),藉此模擬 蜜蜂的生存型態。

五、結論:

六、参考文獻:

- [1]. Artificial Life. An Overview Edit by Christopher G. Langton.
- [2]. Studies in artificial evolution. Computer science doctoral dissertation, UCLA