TRIGONOMETRY

Chapter 02

2nd
SECONDARY

SISTEMAS DE MEDICIÓN ANGULAR II

¿ QUÉ ES π?

TRIGONOMETRÍA

SISTEMAS DE MEDICIÓN ANGULAR II

SISTEMA RADIAL (circular)

Unidad de medida: El radián (1 rad)

¿ Qué es el radián ?

Es la medida del ángulo central que subtiende un arco de longitud igual al radio.

 $m \not = 1$ vuelta $< > 2\pi$ rad

 $1 \text{ rad} <> 57^{\circ}17'45''$

RELACIÓN ENTRE SISTEMAS ANGULARES

Equivalencia entre los sistemas radial y sexagesimal:

m**41 vuelta < > 360° < > 2π rad**

 $180^{\circ} <> \pi \text{ rad}$

¿ Qué es un factor de conversión?

Es una equivalencia entre dos valores de diferentes sistemas de medición. Generalmente aparece en forma de fracción para facilitar los cálculos de conversión.

FACTORES DE CONVERSIÓN:

TRIGONOMETRÍA SACO OLIVEROS

Convierta los siguientes ángulos a radianes:

I) 120° II) 135° III) 270°

Recordar:

Para pasar del sistema sexagesimal al sistema radial, se multiplica por $\frac{\pi \operatorname{rad}}{180^{\circ}}$

RESOLUCIÓN

1) 120°
$$\left(\frac{\pi \text{ rad}}{180°}\right) = \frac{2\pi}{3} \text{ rad}$$

II)
$$\frac{3}{135}$$
 $\left(\frac{\pi \operatorname{rad}}{180^{\circ}}\right) = \frac{3\pi}{4} \operatorname{rad}$

III)
$$\frac{3}{270^{\circ}} \left(\frac{\pi \operatorname{rad}}{180^{\circ}} \right) = \frac{3\pi}{2} \operatorname{rad}$$

2 Convierta los siguientes ángulos a grados sexagesimales :

I)
$$\frac{2\pi}{5}$$
 rad

III)
$$\frac{4\pi}{3}$$
 rad

RESOLUCIÓN

Recordar:

Como π rad < > 180°, entonces podemos hacer el reemplazo inmediato :

1)
$$\frac{2\pi \text{ rad}}{5} = \frac{2(180^\circ)}{5} = 72^\circ$$

II)
$$\frac{2\pi \text{ rad}}{9} = \frac{2(180^\circ)}{9} = 40^\circ$$

III)
$$\frac{4 \pi \text{ rad}}{3} = \frac{4 (180^\circ)}{3} = 240^\circ$$

3

Efectue la expresión :

$$\mathsf{E} = \frac{\frac{\pi}{3} \operatorname{rad} + 100^{\circ}}{\frac{\pi}{18} \operatorname{rad}}$$

Recordar:

Como π rad < > 180°, entonces podemos hacer el reemplazo inmediato en E :

RESOLUCIÓN

$$\mathsf{E} = \frac{\frac{\pi}{3} \operatorname{rad} + 100^{\circ}}{\frac{\pi}{18} \operatorname{rad}}$$

$$\mathsf{E} = \frac{\frac{180^{\circ}}{3} + 100^{\circ}}{\frac{180^{\circ}}{18}}$$

$$E = \frac{60^{\circ} + 100^{\circ}}{10^{\circ}}$$

$$\mathsf{E} = \frac{160^\circ}{10^\circ}$$

Del gráfico, indique el valor de n :

Recordar:

Como π rad < > 180°, entonces podemos hacer el reemplazo inmediato:

RESOLUCIÓN

Por ángulos opuestos por el vértice :

$$(3n+9)^0 <> \frac{\pi}{4}$$
 rad

$$(3n+9)^0 = \frac{180^\circ}{4}$$

$$(3n+9)^{0}=45^{0}$$

$$3n = 36$$

$$\therefore$$
 n = 12

5

Si $\frac{4\pi}{15}$ rad $<>(\overline{ab})^0$, efectúe $E = \sqrt{b-a}$

Recordar:

Como π rad < > 180°, entonces podemos hacer el reemplazo inmediato:

RESOLUCIÓN

Dato: $(\overline{ab})^0 < > \frac{4\pi}{15} \text{rad}$

$$(\overline{ab})^0 = \frac{4(180^0)}{15}$$
$$(\overline{ab})^0 = 48^0$$

Efectuamos E:

$$E = \sqrt{b-a} = \sqrt{8-4} = \sqrt{4}$$

6

En un inventario del laboratorio de Física, Pedro se encuentra con dos

cajas:

Caja A:

$$x^{\circ} + \frac{2\pi}{5} \text{rad} = \frac{2\pi}{3} \text{rad}$$

Caja B :

Siendo: x = número de reglas

y = número de lápices

- a. ¿Cuántas reglas contiene la caja A?
- b. ¿Cuántos lápices contiene la caja B?

RESOLUCIÓN

Convertimos los radianes a grados sexagesimales :

$$x^0 + \frac{2(180^0)}{5} = \frac{2(180^0)}{3}$$

$$x^0 + 72^0 = 120^0$$
 $x = 48$

$$\frac{4(180^{0})}{9} - y^{0} = \frac{180^{0}}{5}$$

$$80^{0} - y^{0} = 36^{0} \qquad y = 44$$

∴ La caja A tiene 48 reglas.La caja B tiene 44 lápices.

7

María tiene un huerto en forma triangular, tal como muestra el gráfico. Para cercarlo con alambres ha colocado tres estacas de madera, las cuales están ubicadas en los vértices A, B y C.- Indique la medida en grados sexagesimales del ángulo formado en la estaca C.

RESOLUCIÓN

Por geometría:

$$(5x)^0 + (4x)^0 + \frac{2\pi}{5} \text{rad} = 180^0$$

$$(9x)^0 + \frac{2(180^0)}{5} = 180^0$$

$$(9x)^{0} + 72^{0} = 180^{0}$$

$$9x = 108$$
 $x = 12$

Luego:
$$m \not < C = (4x)^0 = (4(12))^0$$

∴
$$\mathbf{m} < \mathbf{C} = 48^{0}$$

