Authenticated Data Structures, Generically, in Haskell

Haskell eXchange 2018

Dr. Lars Brünjes, IOHK 2018-10-11

Agenda

- · What are Authenticated data structures?
- Example: Merkle trees.
- · A simple ad-hoc ADS.
- · ADS's generically.
- · Authenticated lists demo.

Authenticated data structures

An authenticated datastructure (ADS) is a data structure whose operations can be carried out by an untrusted prover, the results of which a verifier can efficiently check as authentic.

Andrew Miller et al.

Rough idea

How can this possibly work?

Rough idea

How can this possibly work?

The rough idea is to use (cryptographic) hashing: The verifier just needs hashe(s) of the datastructure(s), the prover includes preimages to those hashes in its proofs.

Cryptographic Hash functions

A (cryptographically secure) *hash function* is a function that takes arbitrary bitstrings to bitstrings of a fixed length with the following additional properties:

Cryptographic Hash functions

A (cryptographically secure) hash function is a function that takes arbitrary bitstrings to bitstrings of a fixed length with the following additional properties:

collision resistant

collision resistant

We are very unlikely to find two inputs which give the same output, no matter how hard we try.

Cryptographic Hash functions

A (cryptographically secure) *hash function* is a function that takes arbitrary bitstrings to bitstrings of a fixed length with the following additional properties:

- collision resistant
- hiding

hiding

Given a hash, it is infeasible to find its associated input, and the optimal way to do so is to try every possibility uniformly randomly.

Hashing in Haskell

In Haskell, we can use the excellent cryptonite library for hashing. For these slides, we'll use MD5, but any hashing algorithm would do.

```
data Hash = ...
```

```
hash :: Binary a => a -> Hash
```

```
GHCi> hash "Haskell" e74f20fc19d925fafccacc7ab837249e
```

```
GHCi> hash (42 :: Int)
7e0535868cd45dff74884bfba0fa1594
```

Merkle trees

In Bitcoin, Merkle trees are used to enable Simple Payment Verification (SPV) nodes.

Figure 1: Example Merkle tree (Wikipedia)

A simple tree type

Instead of Merkle trees, we will consider a very similar type as our running example:

Let' define a type for simple binary trees with data in the leaves...

```
data Tree a = T a | N (Tree a) (Tree a)
deriving (Show, Generic, Binary)
```

A simple tree type

Instead of Merkle trees, we will consider a very similar type as our running example:

Let' define a type for simple binary trees with data in the leaves...

```
data Tree a = T a | N (Tree a) (Tree a)
deriving (Show, Generic, Binary)
```

...and types representing paths in such trees:

```
data Direction = L | R deriving Show
type Path = [Direction]
```

Tree lookup

Following a Path, we can lookup the value at the corresponding leaf (ignoring partiality for simplicity's sake):

```
lookup :: Path -> Tree a -> a
lookup []    (T a) = a
lookup (d:ds) (N l r) =
  lookup ds $ case d of L -> l; R -> r
```

```
GHCi> let t = N (N (T 1) (T 2)) (T 3)
GHCi> lookup [L, R] t
2
```


Tree lookup with proving & verifying

We want to to split lookup between a prover and a verifier.

The prover holds the tree, the verifier only knows the tree's (modified) hash':

```
hash' :: Binary a => Tree a -> Hash
hash' (T a) = hash a
hash' (N l r) = hash (hash' l, hash' r)
```

Proving tree lookup

GHCi> prove [L, R] t

```
(2, [ (c6f318528e5de4532ec597d3be978c8e
, e4151c03023facf27bb46dd21c5bf6fd)
, (69503798ddf28ee3fa2358a5ab9def30
, 3fd723e4cfdb39c30f6352495b3c023f)
])
```


Verifying tree lookup

```
verify :: Binary a
        => Path -> Hash -> (a, [(Hash, Hash)])
        -> Bool
verifv[] h(a,[]) = h == hash a
verify (d:xs) h (a,(l,r):hs) =
 h = hash(l, r)
   && verify xs (case d of L \rightarrow l; R \rightarrow r) (a, hs)
verify
                                 = False
GHCi> verify [L, R] (hash't) $ prove [L, R] t
True
GHCi> verify [L, R] (hash't) $ prove [L, L] t
False
```

What we gain

The verifier only needs the hash' of the Tree, not the Tree itself (note that the proof size is logarithmic in the tree size!)

What we gain

- The verifier only needs the hash' of the Tree, not the Tree itself (note that the proof size is logarithmic in the tree size!)
- In order to cheat, the *prover* would have to create a hash collision.

 We had to implement more or less the same algorithm twice, once for the prover, once for the verifier.

- We had to implement more or less the same algorithm twice, once for the prover, once for the verifier.
- Functions prove and verify have to be carefully designed for this to work.

- We had to implement more or less the same algorithm twice, once for the prover, once for the verifier.
- Functions prove and verify have to be carefully designed for this to work.
- · We had to come of with the custom hash function hash'.

- We had to implement more or less the same algorithm twice, once for the prover, once for the verifier.
- Functions prove and verify have to be carefully designed for this to work.
- We had to come of with the custom hash function hash '.
- If we want to use a data structure other than Tree or want to support more operations than just lookup, we have to think and work hard and do a new proof of correctness.

In Authenticated Datastructures, Generically, Andrew Miller, Michael Hicks, Jonathan Katz, Elaine Shi, describe a generic way to construct authenticated datastructures in OCaml.

In Authenticated Datastructures, Generically, Andrew Miller, Michael Hicks, Jonathan Katz, Elaine Shi, describe a generic way to construct authenticated datastructures in OCaml.

• Extend the type system by adding a new type λa for each OCaml type a.

In Authenticated Datastructures, Generically, Andrew Miller, Michael Hicks, Jonathan Katz, Elaine Shi, describe a generic way to construct authenticated datastructures in OCaml.

- Extend the type system by adding a new type λa for each OCaml type a.
- Formally add functions auth : $a \rightarrow \lambda a$ and unauth : $\lambda a \rightarrow a$ which are *inverse* to each other.

In Authenticated Datastructures, Generically, Andrew Miller, Michael Hicks, Jonathan Katz, Elaine Shi, describe a generic way to construct authenticated datastructures in OCaml.

- Extend the type system by adding a new type λa for each OCaml type a.
- Formally add functions auth : $a \rightarrow \lambda a$ and unauth : $\lambda a \rightarrow a$ which are *inverse* to each other.
- Change the compiler, so that auth and unauth are treated differently for prover and verifier.

In Authenticated Datastructures, Generically, Andrew Miller, Michael Hicks, Jonathan Katz, Elaine Shi, describe a generic way to construct authenticated datastructures in OCaml.

- Extend the type system by adding a new type λa for each OCaml type a.
- Formally add functions auth : $a \rightarrow \lambda a$ and unauth : $\lambda a \rightarrow a$ which are *inverse* to each other.
- Change the compiler, so that auth and unauth are treated differently for prover and verifier.

Instead of modifying GHC, we will instead use a free monad to achieve a similar effect!

Prover Verifier

Prover

λa ~ a.

Verifier

• $\lambda a \sim \text{Hash}$.

Prover

- λa ~ a.
- auth a does nothing.

Verifier

- $\lambda a \sim \text{Hash}$.
- · auth a hashes a.

Prover

- λa ~ a.
- auth a does nothing.
- unauth x does nothing to get its result, but writes x to the proof-stream.

Verifier

- · λa ~ Hash.
- auth a hashes a.
- unauth h reads a from the proof-stream and checks that

hash a == h.

Auth

data Auth a = P a | V Hash deriving Show

```
toHash:: Binary a => Auth a -> Hash
toHash (P a) = hash a
toHash (V h) = h
```

```
instance Binary a => Binary (Auth a) where
put = put . toHash
get = V <$> get
```

Auth

data Auth a = P a | V Hash deriving Show

```
toHash :: Binary a => Auth a -> Hash
toHash (P a) = hash a
toHash (V h) = h
```

```
instance Binary a => Binary (Auth a) where
put = put . toHash
get = V <$> get
```

Crucially, when we serialize an Auth a, we "truncate" it to its hash, so proofs will be "short".

```
data Free f a =
    Pure a
    | Free (f (Free f a))
    deriving Functor
```

```
instance Functor f => Applicative (Free f) where
  pure = return
  (<*>) = ap
```

```
instance Functor f => Monad (Free f) where
  return = Pure
Pure a >>= cont = cont a
Free f >>= cont = Free $ (>>= cont) <$> f
```

AuthF & AuthM

data AuthF a where

```
A :: Binary b => b -> (Auth b -> a) -> AuthF a
U :: Binary b => Auth b -> (b -> a) -> AuthF a
```

deriving instance Functor AuthF

```
type AuthM a = Free AuthF a
```

```
auth :: Binary a => a -> AuthM (Auth a)
auth a = Free $ A a Pure
```

```
unauth :: Binary a => Auth a -> AuthM a
unauth x = Free $ U x Pure
```

Authenticated trees

Using Auth, we slightly modify our Tree type and lookup:

Interpretation for the prover

```
runProver' :: AuthM a -> (a, ByteString)
runProver' m =
  let (a, b) = runWriter $ runProver m
  in (a, toLazyByteString b)
```

Interpretation for the verifier

Verification can fail, so let's define an appropriate error type:

```
data AuthError =
    SerError String
    HashMismatch
    deriving Show
```

Interpretation for the verifier (cntd.)

```
runVer :: ( MonadReader ByteString m
         , MonadError AuthError m)
       => AuthM a -> m a
runVer (Pure a) = return a
runVer (Free (A a c)) = runVer $ c $ V $ hash a
runVer (Free (U (V h) c)) = do
 bs <- ask
 case decodeOrFail bs of
   Left ( , , e) -> throwError $ SerError e
   Right (bs', a)
      | hash a == h -> local (const bs') $ runVer $ c a
      | otherwise -> throwError HashMismatch
```

runVer' :: AuthM a -> ByteString -> Either AuthError a
runVer' m bs = runExcept \$ runReaderT (runVer m) bs

Revisiting our example

Let's recover our example tree in this setting!

```
t, t':: Auth (Tree Int)
t = fst $ runProver' $ do
    t1 <- auth $ T 1
    t2 <- auth $ T 2
    t12 <- auth $ N t1 t2
    t3 <- auth $ T 3
    auth $ N t12 t3
t' = V (toHash t)</pre>
```

```
GHCi> t
P(N(P(N(P(T1))(P(T2))))(P(T3)))
GHCi> t'
V b5bd6ae28129b46d66d4f20924aa24ef
```

Revisiting our example (cntd.)

```
GHCi> let proof =
   snd $ runProver' [L, R] $ lookup t
GHCi> runVer' (lookup [L, R] t') proof
Right 2
GHCi> runVer' (lookup [L, L] t') proof
Left HashMismatch
```

AuthT

More generally, instead of using **Free** to define our monad **AuthM**, we can use **FreeT** to define a monad transformer **AuthT**:

newtype AuthT m a = AuthT (FreeT AuthF m a)

Another example: authenticated lists (demo)

As another simple example, we can define authenticated lists...

```
data AList a = Nil | Cons a (Auth (AList a))
  deriving (Show, Generic, Binary)
```

...and use them to implement a simple stack API:

Another example: authenticated lists (demo)

As another simple example, we can define authenticated lists...

```
data AList a = Nil | Cons a (Auth (AList a))
  deriving (Show, Generic, Binary)
```

...and use them to implement a simple stack API:

Thank you for your attention!

EMail: lars.bruenjes@iohk.io

• Twitter: <code>@LarsBrunjes</code>

· GitHub:

https://github.com/brunjlar/generic-auth