Completely Fair Scheduler Na perspectiva de Simulação de Eventos Discretos

Bruno E. O. Meneguele bmeneguele@gmail.com

Simulação de Eventos Discretos SIM0101

31 de Maio de 2019

Escalonadores de Processos

Tomada de Decisões

Escalonares em Sistemas Operacionais

Define as políticas (regras) para tomada de decisão;

Escalonares em Sistemas Operacionais

- Define as políticas (regras) para tomada de decisão;
- Separação entre política e mecanismo (dispatcher);

Escalonares em Sistemas Operacionais

- Define as políticas (regras) para tomada de decisão;
- Separação entre política e mecanismo (dispatcher);
- Diferentes abordagens para diferentes cargas de trabalho:
 - Single vs Multi core;
 - Usuário (workstation) vs Servidor

Completely Fair Scheduler (CFS)

Escalonador do Linux 2.6.24+

Alguns dos princípios do CFS

- Prioridade dinâmica em fila única;
- Eliminar situações de starvation com períodos fixos de execução;
- Considerar o quão "carregado" o sistema está;
- Considerar aplicações e não apenas threads (grupo de tarefas).

Alguns dos princípios do CFS

- Prioridade dinâmica em fila única;
- Eliminar situações de starvation com períodos fixos de execução;
- Considerar o quão "carregado" o sistema está;
- Considerar aplicações e não apenas threads (grupo de tarefas).

Mas e as demais abordagens (i.e. FreeBSD ULE)?

Alguns dos princípios do CFS

- Prioridade dinâmica em fila única;
- Eliminar situações de starvation com períodos fixos de execução;
- Considerar o quão "carregado" o sistema está;
- Considerar aplicações e não apenas threads (grupo de tarefas).

Mas e as demais abordagens (i.e. FreeBSD ULE)?

- Priorizar tarefas com alta prioridade e curta duração mesmo levando a situações de starvation;
- Filas múltiplas para "tipos" de tarefas: interativa vs batch e idle.

Projeto de Simulação de Eventos Discretos do escalonador CFS

Descrição do Modelo

Primeiro Modelo - Completo

Servidores representando **cores** e **fontes** gerando **tarefas** utilizando conceitos de sistemas *multi core*:

- Afinidade entre cores para grupo de tarefas;
- Controle e sincronização de acesso a recurso compartilhado: intra core e extra;
- **.**..

Primeiro Modelo - Completo

Servidores representando **cores** e **fontes** gerando **tarefas** utilizando conceitos de sistemas *multi core*:

- Afinidade entre cores para grupo de tarefas;
- Controle e sincronização de acesso a recurso compartilhado: intra core e extra;
- **...**

Problemas:

- Complexidade da modelagem considerando-se Eventos Discretos;
- Tempo de entrega para disciplina.

Segundo Modulo - Simplificado

Servidor representando **core** (processador) e **fonte** gerando **tarefas** utilizando conceitos de sistemas *single core*:

- Fila prioritária de execução única;
- Prioridade dinâmica para controle de starvation;
- Aplicações vs tarefas individuais: grupo de tarefas;
- Sistema preemptivo;
- Tarefas de tempo real não foram levadas em consideração;

Dados do Modelo

Fonte: Aplicações que geram um número aleatório de tarefas; Servidores:

- 1. Processador;
- Tratamento de Eventos.

Eventos:

- 1. Preempção (*slicetime* ou *quantum*): tempo variável com a prioridade da tarefa;
- Dormir: requisição de uso de recurso externo, i.e. I/O, IRQ, ..., de ocorrência aleatória;
- 3. Acordar: tarefa volta à ativa após algum tempo aleatório.

Variáveis do Modelo

TAREFAS

Variável	Distribuição	Justificativa
Tempo de Criação	Uniforme	Uso contínuo do sistema
Quantidade	Normal	Aplicações geram mais de uma tarefa,
		mas de modo controlado
Prioridade	Exponencial	Considerando servidor, maior número
		de tarefas de baixa prioridade
Tempo de Execução	Uniforme	Tarefas semelhantes

Variáveis do Modelo

EVENTOS

Nome	Distribuição	Justificativa
Dormir E	Evnononcial	Servidores tendem a jogar o máximo
	Exponencial	de conteúdo em memória
Acordar No	Naumal	Depende do tipo de requisição foi
	Normai	feita: I/O, IRQ,

Regras do modelo

- Runqueue: Árvore Vermelha e Preta (Red-Black Tree);
- Timeslice: Baseado na prioridade;
- vruntime: Quantidade de tempo executado acumulado;
- Prioridade: diferença de vruntime é contabilizado;
- Criação de tarefas e eventos influenciam no vruntime

Modelo

Figura 1: Modelo do escalonador CFS sob eventos discretos.

DÚVIDAS?

Muito Obrigado!

https://github.com/bmeneguele/os-sched-des

bmeneguele@gmail.com