

1、直线公式汇总

1.斜率和倾斜角公式:

- 1) ①若直线的倾斜角为 α , 则 $k = \tan \alpha \left(\alpha \neq \frac{\pi}{2} \right)$.
 - ②若直线过点 $P_1(x_1, y_1)$ 和 $P_2(x_2, y_2)$ 两点. 则 $k = \frac{y_2 y_1}{x_2 x_1} (x_1 \neq x_2)$.
- 2) ①直线倾斜角的范围: [0,π);
 - ②当 k > 0 时, $\alpha = \arctan k$; 当 k < 0 时 $\alpha = \pi + \arctan k$

2.两条直线的平行和垂直

- (1)若 $l_1: y = k_1x + b_1$, $l_2: y = k_2x + b_2$
 - ① $l_1 / / l_2 \Leftrightarrow k_1 = k_2, b_1 \neq b_2$;
 - $2l_1 \perp l_2 \Leftrightarrow k_1k_2 = -1$
- (2)若 l_1 : $A_1x + B_1y + C_1 = 0$, l_2 : $A_2x + B_2y + C_2 = 0$, 且 A_1 、 A_2 、 B_1 、 B_2 都不为零,

 $2l_1 \perp l_2 \Leftrightarrow A_1A_2 + B_1B_2 = 0$

3.直线的五种方程

- (1) 点斜式 $y-y_1=k(x-x_1)$ (直线l过点 $P_1(x_1,y_1)$, 且斜率为k).
- (2) 斜截式 y = kx + b (b 为直线 $l \in y$ 轴上的截距).

(3) 两点式
$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1} (y_1 \neq y_2) (P_1(x_1,y_1) \setminus P_2(x_2,y_2) (x_1 \neq x_2)).$$

- (4) **截距式** $\frac{x}{a} + \frac{y}{b} = 1$ (a、b 分别为直线的横、纵截距, a、 $b \neq 0$)
- (5) 一般式 Ax + By + C = 0 (其中 $A \times B$ 不同时为 0).

4.直线的方向向量和法向量:

设 $P_1(x_1,y_1)$, $P_2(x_2,y_2)$ 是直线l:Ax + By + C = 0上的不同两点,那么向量 $\overline{P_1P_2}$ 以及与它平行的非零向量都称为直线l的方向向量,若 $P_1(x_1,y_1)$, $P_2(x_2,y_2)$,则 $\overline{P_1P_2}$ 的坐标为 (x_2-x_1,y_2-y_1) ;特别当直线l与x轴不垂直时,即 $x_2-x_1\neq 0$,直线的斜率k存在时,那么 (1,k)是它的一个方向向量;当直线l与x轴平行时,方向向量可为(1,0);而无论斜率存在与否,其方向向量均可表示为(-B,A),法向量为(A,B)

5.直线的向量式方程:

- 1)点方向式方程: 直线经过点 $P(x_0, y_0)$, 向量 $\vec{d} = (u, v)(uv \neq 0)$ 是直线的一个方向向量,那么直线的方程可以写成: $\frac{x x_0}{v} = \frac{y y_0}{v}$.
- 2) 点法向式方程: 直线经过点 $P(x_0,y_0)$, 向量 $\vec{n}=(a,b)$ 是直线的一个法向量,那么直线的方程可以写成: $a(x-x_0)+b(y-y_0)=0$.

- **6. 两条直线的夹角公式** : (夹角的取值范围是 $\left[0\frac{\pi}{2}\right]$)
 - 1) $\mbox{if } l_1 : y = k_1 x + b_1 \; ; \quad l_2 : y = k_2 x + b_2 \; ,$
 - ①当 $k_1k_2 \neq -1$ 时, l_1 与 l_2 的夹角为 θ ,则 $\tan \theta = \left| \frac{k_1 k_2}{1 + k_1k_2} \right|$;
 - ②当 $k_1k_2 \neq -1$ 时,两直线的夹角为 $\frac{\pi}{2}$.
 - 2) 取直线的方向向量分别为 $\vec{d} = (-b_1, a_1), \vec{d_2} = (-b_2, a_2)$,则两直线的夹角为:

$$\cos\theta = \frac{\overrightarrow{d_1} \cdot \overrightarrow{d_2}}{\left|\overrightarrow{d_1}\right| \cdot \left|\overrightarrow{d_2}\right|} = \frac{a_1 a_2 + b_1 b_2}{\sqrt{a_1^2 + b_1^2} \cdot \sqrt{a_2^2 + b_2^2}} \,, \quad \text{因为} \, \alpha \in \left[0\frac{\pi}{2}\right] \,, \quad \text{余弦函数在} \left[0\frac{\pi}{2}\right] \, \text{上是单调递减}$$

的,所以此时的 α 是唯一确定的。

7.两点间的距离公式

1) 若点 $A(x_1, y_1)$, $B(x_2, y_2)$, 则 $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1)$, 即终点坐标 - 始点坐标: $|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

2) 若
$$\vec{a} = (x, y) \Rightarrow |\vec{a}| = \sqrt{x^2 + y^2}$$
.

8.点到直线间的距离公式

点
$$P(x_0, y_0)$$
到 $l:Ax + By + C = 0$ 的距离为 d , 则 $d = \frac{|Ax_0 + By + C|}{\sqrt{A^2 + B^2}}$

9. 平行线间的距离公式

$$l_1$$
: $Ax + By + C_1 = 0$ 与 l_2 : $Ax + By + C_2 = 0$ $(C_1 \neq C_2)$ 的距离为 d ,则
$$d = \frac{\left|C_1 - C_2\right|}{\sqrt{A^2 + B^2}}$$

- 10. 四种常用直线系方程
- (1) 定点直线系方程: 经过定点 $P_0(x_0,y_0)$ 的直线系方程为 $y-y_0=k(x-x_0)$ (除直线 $x=x_0$), 其中 k 是待定的系数; 经过定点 $P_0(x_0,y_0)$ 的直线系方程为 $A(x-x_0)+B(y-y_0)=0$, 其中 A,B 是待定的系数.
- (2) 共点直线系方程: 经过两直线 l_1 : $A_1x+B_1y+C_1=0$, l_2 : $A_2x+B_2y+C_2=0$ 的交点的直线系方程为 $(A_1x+B_1y+C_1)+\lambda(A_2x+B_2y+C_2)=0$ (除 l_2),其中 λ 是待定的系数.
- (3) 平行直线系方程: 直线 y=kx+b 中当斜率 k 一定而 b 变动时,表示平行直线系方程. 与直线 Ax+By+C=0 平行的直线系方程是 $Ax+By+\lambda=0$ $(\lambda\neq 0)$, λ 是参变量.

2、圆的为程

定义

程:
$$(x-a)^2+(y-b)^2=r^2$$
。
圆的一般方程: $x^2+y^2+Dx+Ey+F=0$,圆心为 $\left(-rac{D}{2},-rac{E}{2}
ight)$

圆心为C(a,b), 半径为r的圆的标准方

$$(x-a)^2 + (y-b)^2 = r^2$$

$$-x^2 + y^2 + Dx + Ey + F = 0$$

$$(x+\frac{D}{2})^2 + (y+\frac{E}{2})^2 = \frac{D^2 + E^2 - 4F}{4} > 0$$

$$\frac{2}{2} \frac{D^2 + E^2 - F}{4} = 0$$

例 300. 当 x, y 满足条件 $|x| + |y| \le 1$ 时, 变量 $\mu = \frac{x}{v-3}$ 的取值范围是 $\overline{[-\frac{1}{3}, \frac{1}{2}]}$. 能心上:蛋、大二类=K, 期他(10,3) 17(1七岁1 二) 相当于右圈中的正的形区域 C实际上也是以量哈林旺高为距离的度量空间的一个年经为1的闭球 Bi) 上面, Lio时, 斜谷最小为 (2时, k∈[3,+∞) ka的,斜端散的时, kg (-40,-3] · TE (元,0) UCO六) 双: 本一的成成之(1)100 · 1 6 [-] .] 例 301. 函数 y = f(x) 的图象如图所示, 在区间 [a,b] 上可找到 $n(n \ge 2)$ 个不同的数 x_1, x_2, x_3, x_n , 使得 $\frac{f(x_1)}{x_1} = \frac{f(x_2)}{x_2} = \cdots = \frac{f(x_n)}{x_n}$, 则 n 的取值范围是 $\{2, 3, 4\}$. fixed 即表示 (tan, fixer) 50连线斜岸

二烟到200, 有2,3,4个

例 304. 设 $m \in \mathbb{R}$, 过定点 A 的动直线 x + my + 3 = 0 和过定点 B 的动直线 mx - y - m + 6 = 0交于点 P(x,y), 则 $|PA| \cdot |PB|$ 的最大值是_

解: x+my+3=0 恒进 L3,0), mx-y-m+b= mcx-1)-y+b=0,恒过 C1,6) i A 63,07, B (1,6)

で。A/A2+B/B2=m-m=0 : 两件主直

 $\frac{1}{2} |PA| \cdot |PB| \leq \frac{(PA)^2 + |PB|^2}{2} = \frac{|AB|^2}{2} = 26$

例 305. 已知 $\triangle ABC$ 的顶点 A(5,1), AB 边上的中线 CM 所在直线方程为 2x-y-5=0, $\angle B$ 的 平分线 BN 所在直线方程为 x-2y-5=0. 求:

- (1) 顶点 B 的坐标.
- (2) 直线 BC 的方程.

前: 波Mcxo, 301 : 270-yo-5=0, BC2xo-5, 240-D

= 270-5-212yo-1)=5 : yo-4yo=3 , yo=-1

1 76 = 2 -: B(2,-1)

(2)作成是 BN和 A对称, 没的 + (m,n)

: m=5 = 2 m+5 -2 m+1 -5 =

$$A' C_{5}^{2}, \frac{2}{5} - 2 = B C_{2}, -1$$

$$A' C_{5}^{2}, \frac{2}{5} - \frac{2}{5} = \frac{y+1}{5}$$

$$A' C_{5}^{2}, \frac{2}{5} - \frac{y+1}{5} = \frac{y+1}{5}$$

$$A' C_{5}^{2}, \frac{2}{5} - \frac{y+1}{5} = \frac{y+1}{5}$$

$$A' C_{5}^{2}, \frac{2}{5} - \frac{y+1}{5} = \frac{y+1}{5}$$

例 307. 在平面直角坐标系中, 记 d 为点 $P(\cos\theta,\sin\theta)$ 到直线 x-my-2=0 的距离. 当 θ,m 变化时, d 的最大值为_____.

例 308. 方程 $|y| = 1 + \sqrt{2x - x^2}$ 表示的曲线是

- A. 一个圆
- B. 两个半圆
 - C. 一个椭圆
 - D. 以上结论都不对

解: 当 y > 0 at, y-1= $\sqrt{2x-x^2}$, $(y-1)^2 + (x-1)^2 = 1$ 当 y co st, $-(y+1) = \sqrt{2x-x^2}$, $(y+1)^2 + (x-1)^2 = 1$ 小 两个程 。

1. 直接 5 日かは置き

() かは 1/2 (を 1) 1/2

3.国与国的经营支急.	
y-3 D And	
物物的特別	