MATH 207: Problem Set 6

Jesse Farmer

November 10, 2003

- 1. Let F be a field and $A \in M_2(F)$. Show that A has a inverse if and only if $det(A) \neq 0$ By question 2, A is invertible if and only if det(A) is invertible in F. But since F is a field the only element that is not invertible is 0. Therefore A is invertible if and only if $det(A) \neq 0$;
- 2. Let R be a commutative ring with one and $A \in M_2(R)$. When does A have an inverse?

Claim: A is invertible if and only if det(A) is invertible in R.

Assume A is invertible, then there exists a $B \in M_2(R)$ such that AB = I. But this means det(AB) = det(I) = 1. Since the determinent is distributive, $1 = det(AB) = det(A)det(B) \Rightarrow det(B) = det(A)^{-1}$. That is, det(A) is invertible.

Assume det(A) is invertible and let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. We see that det(A) = ad - bc, and $A \cdot \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$. That is, A is invertible.

Therefore *A* is invertible if and only if det(A) is invertible in *R*.

- 3. What are the zero divisors of $M_2(R)$?
- 4. Let $(R,+,\cdot,<)$ be an ordered integral domain. Show that R has a subring which is order isomorphic to \mathbb{Z} .
- 5. Show that $\mathbb Q$ does not satisfy the least upper bound property.

Let $S = \{p \in \mathbb{Q} | p^2 < 2\}$. We know that $p^2 = 2 \Rightarrow p \notin \mathbb{Q}$. So we want to show that this number is the upper bound. Let $\alpha = \sup S \in \mathbb{Q}$.

• Assume $\alpha^2 > 2$ $\alpha^2 > 2 \Leftrightarrow \alpha^2 + 2\alpha > 2 + 2\alpha \Leftrightarrow \alpha > \frac{2\alpha + 2}{\alpha + 2}$ $(\frac{2\alpha + 2}{\alpha + 2})^2 > 2 \Leftrightarrow 4\alpha^2 + 8\alpha + 4 > 2\alpha^2 + 8\alpha + 8$ $\Leftrightarrow 4\alpha^2 > 2\alpha^2 + 4$ $\Leftrightarrow 2\alpha^2 > 4$

So $\frac{2\alpha+2}{\alpha+2}$ is an upper bound but less than α , contradicting the assumption that $\alpha = \sup S$.

1

• Assume $\alpha^2 < 2$

$$\alpha^{2} < 2 \Leftrightarrow \alpha^{2} + 2\alpha < 2 + 2\alpha \Leftrightarrow \alpha < \frac{2\alpha + 2}{\alpha + 2}$$

$$(\frac{2\alpha + 2}{\alpha + 2})^{2} < 2 \Leftrightarrow 4\alpha^{2} + 8\alpha + 4 < 2\alpha^{2} + 8\alpha + 8$$

$$\Leftrightarrow 4\alpha^{2} < 2\alpha^{2} + 4$$

$$\Leftrightarrow 2\alpha^{2} < 4$$

$$\Leftrightarrow \alpha^{2} < 2$$

So $\frac{2\alpha+2}{\alpha+2} \in S$ but greater than α , contradicting the assumption that $\alpha = \sup S$.

Hence the supremum must satisfy $\alpha^2 = 2$, but no rational number does this. Therefore we have a bounded set, S, whose supremum is not in \mathbb{Q} . That is, \mathbb{Q} does not satisfy the least upper bound property.

- 6. Show that there is a bijection from the normal subgroups of $\frac{G}{H}$ and the normal subgroups of G containing H.
- 7. Let G be a finite group and H be a subgroup of G with index k. Show that there exists a set of elements $x_1, x_2, ..., x_k$ in G which can serve as complete coset representatives for both left and right cosets of H.
- 8. Find all possible areas of lattice squares in \mathbb{R}^2 .
- 9. Find all positive integers which can be the length of the hypotenuse of a right triangle with legs of integer length.
- 10. Define a polyhedron in \mathbb{R}^n .
- 11. Find a Cauchy sequence in \mathbb{Q} which does not converge in \mathbb{Q} .
- 12. Show that if $(a_n), (b_n)$ are Cauchy sequences then $(a_n + b_n)$ is a Cauchy sequence. We have $\forall r > 0 \exists N_1 \in \mathbb{N} \ni m, n > N_1 \Rightarrow |a_n a_m| < \frac{r}{2}$ and $\forall r > 0 \exists N_2 \in \mathbb{N} \ni m, n > N_2 \Rightarrow |b_n b_m| < \frac{r}{2}$ Let $N = max(N_1, N_2)$, then $\forall r > 0, |(a_n + b_n) (a_m + b_m)| \leq |a_n a_m| + |b_n b_m| < \frac{r}{2} + \frac{r}{2} = r$ Therefore if (a_n) and (b_n) are Cauchy sequences then so is $(a_n + b_n)$.
- 13. Let $(R, +, \cdot)$ be a ring with one. Show that (R^x, \cdot) is a group.
 - Associativity is inhereted.
 - Each element has an inverse by definition of (R^x, \cdot) .
 - $1 \cdot 1 = 1$, so there is an identity in R^x
 - Let $a, b \in R^x$, then a^{-1}, b^{-1} exist. $(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b = b^{-1}b = 1$. So the operation is an internal law of composition.
- 14. Describe (\mathbb{Z}_n^x, \cdot) for $2 \le n \le 16$.
- 15. Let C be the set of all Cauchy sequences in \mathbb{Q} . Show that $\{(a_n) \in C | a_n \to 0\}$ is a maximal ideal.