Разработка ПО для онлайн монитора светимости детектора Belle II

Каня Кирилл Новосибирский Государствиный Университет 5 апреля 2020 г.

Аннотация

Здесь будет аннотация

Содержание

1	Введение	4
2	Эксперимент Belle II 2.1 SuperKEKB и детектор Belle2 2.2 Электромагнитный калориметр 2.3 Онлайн монитор светимости 2.4 Система медленного контроля	5 5
3	Анализ требований к ПО	6
4	Программное обеспечение для онлайн монитора светимости 4.1 Архитектура ПО 4.2 Интегральные и максимальные значения светимостей 4.3 Расчет пьедесталов 4.4 Графический интерфейс 4.5 Калибровка онлайн монитора светимости	6 6 6 6
5	Заключение	6
6	Список литературы	7

1 Введение

В 2018 году на ускорительном комплексе SuperKEKB начался эксперимент Belle II, который направлен на изучение CP-нарушения в распадах В и D мезонов, τ -физики, а также на поиск Новой физики. Проектная светимость коллайдера составляет $8\cdot10^{35}\mathrm{c}^{-1}\mathrm{cm}^{-2}$, что в 40 раз превышает светимость достигнутую в предыдущем эксперименте Belle.

SuperKEKB – электрон-позитронный коллайдер с ассиметричной энергией пучков (7 и 4 ГэВ соответственно), который является улучшенной версией предыдущего коллайдера KEKB

Одной из основных систем детектора является электромагнитный калориметр (ECL). Он предназначен для регистрации фотонов и электронов в широком диапазоне энергий, измерения их энергии и координат. Также данные с электромагнитного калориметра используются для измерения онлайн и офлайн светимости.

При изучении редких распадов необходимо серьезно контролировать процесс набора данных, а также контролировать корректность работы ускорителя и детектора. Одним из способов контроля набора данных и корректности работы ускорителя является измерние светиомсти. Светимость храктеризует количество столкновений частиц в пучке за единицу времении приходящихся на единицу площади. Для более детального контроля измерение светимости производится в режиме реального времени (онлайн). Для данной цели используется модуль онлайн монитор светимости, который был разработан в ИЯФ СО РАН. Онлайн монитор светимости измеряет скорость счета событий e^-e^+ рассеяния с торцевых частей электромагнитного калориметра. Данная работа направлена на разработку программного обеспечения для онлайн монитора светимости, которое будет обеспечивать первичную проверку качества, архивирование, отображение и передачу данных.

2 Эксперимент Belle II

2.1 SuperKEKB и детектор Belle2

Эксперимент Belle был направлен на изучение распадов В-мезонов и на подтверждение СР-нарушения предсказанного Макото Кобаяши и Тосихидэ Масакава, которые были награждены Нобелевской премией за данное открытие. Считается, что СР-нарушение является одной из причин наблюдаемого доминирования вещества над антиматерией в нашей нынешней вселенной. Однако измеренный уровень СР-нарушения далеко не достаточен для количественного объяснения фактической асимметрии. Следовательно необходимо более детально изучение связных явлений. Новый эксперимент Belle II направлен на поиск новой физики, поиск новых источник СР-нарушения и постановку более строгих ограничений на стандартную модель.

Коллайдер SuperKEKB, расположенный в лаборатории высоких энергий KEK, представляет собой ускоритель с ассиметричной энергией пучков ($E_{e^-}=7~\Gamma$ эВ и $E_{e^+}=4~\Gamma$ эВ). Данный коллайдер является модернизированной версией В-фабрики KEKB, использовавшейсяя в предыдущем эксперименте Belle. Проектная светимость коллайдера составляет $8\cdot 10^{35} {\rm c}^{-1} {\rm cm}^{-2}$, что в 40 раз превышает значение достигнутое в предыдущем эксперименте Belle. Такая светимость достигается за счет уменьшения поперечного размера пучка, а также за счет большого угла столкновения пучков. В новом эксперименте Belle планируется набрать в 50 раз больше данных.

Поскольку электронн-позитронные столкновения будут происходить с гораздо большей скоростью, необходимо было модернизировать детектор.

2.2 Электромагнитный калориметр

Здесь будет про электромагнитный калориметр

2.3 Онлайн монитор светимости

Здусь будет про онлайн монитор светимости

2.4 Система медленного контроля

Здесь будет про систему медленного контроля

3 Анализ требований к ПО

Здесь будет цель работы

4 Программное обеспечение для онлайн монитора светимости

4.1 Архитектура ПО

4.2 Интегральные и максимальные значения светимостей

Здусь будет про светимости

4.3 Расчет пьедесталов

Здесь будет про пьедесталы

4.4 Графический интерфейс

Здесь будет про графический интерфейс

4.5 Калибровка онлайн монитора светимости

Здесь будет про калибровку

5 Заключение

В рамках данной работы было улучшено ΠO для онлайн монитора светимости:

- Изменена архитектура ПО, что позволило увеличить стабильность работы системы. При помощи библиотеки pythonIOC реализована параллельная передача данных в системы медленного контроля NSM2 и EPICS.
- Добавлен расчет интегральной и максимальной светимостей за характерные промежутки времени.
- Добавлен расчет значений пьедесталов для каждого сектора, значения высчитываются в режиме реального времени.

- Создана база данных на основе sqlite для сохранения текущих значений светимостей, также записываются значение светимостей за предыдущие заходы.
- Расширен протокол управления монитором светимости. Реализованы команды pause и continue.
- Добавлено считывание значений калибровочных коэффициентов из базы данных при запуске

Также был улучшен графический интерфейс для монитора светимости, который позволяет проводить удаленную настройку параметров, а также визуализирует данные с монитора светимости

- Добавлено отображение значений пьедесталов для каждого сектора.
- Добавлено считывание порогового значения амплитуд для каждого сектора.
- Также были исправлены незначительные ошибки и улучшен интерфейс.

Также была написана программа для отображения основных параметров с монитора светимости, которую планируется интегрировать с веб-сервером?

6 Список литературы