ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report "DESIGN AND SIMULATION OF SENTINEL GUN ASSITED BY IMAGE PROCESSING FOR DEFENCE APPLICATION" is the bonafide work of "A. AJEETH (920415114007), K. BHARANI DHARAN (920415114027), A. THEIR MUTHU SELVAM (920415114101)" who carried out the project work under my supervision.

CICNIA TUDE

ENTERNAL EXAMINER

SIGNATURE	SIGNATURE
Dr. S. Senthil M.E., Ph.D.,	Mr.R. Sakthivel MuruganM.E. (Ph.D),
HEAD OF THE DEPARTMENT	SUPERVISOR
Mechanical Engineering,	Mechanical Engineering,
Kamaraj College of	Kamaraj College of
Engineering & Technology,	Engineering & Technology,
Madurai.	Madurai
Submitted and held on	

CICNIA TUDE

INTERNAL EXAMINER

ACKNOWLEDGEMENT

The success of any project depends on the people associated with it. We are indebted to everyone who has made valuable contribution towards the success of the project. We would like to take this opportunity to acknowledge the enthusiasm of all the personalities.

We deliver our sincere thanks to our principal **Dr. ANANT ACHARY M.Tech., Ph.D.,** for having given us the prestigious opportunity of being the member of the institution and also for allowing us to undertake this project work.

We wish to express our heart full of thanks to **Dr. S. SENTHIL M.E., Ph.D.,** Head / Department of Mechanical Engineering, and our project coordinators **Dr. A. ASHA M.E., Ph.D.,** Professor Department of Mechanical Engineering and **Dr. P. NARAYANASAMY M.E, Ph.D.,** Assistant Professor Department of Mechanical Engineering for his valuable comments, suggestions and also for his kind encouragement.

We wish to record our thanks to our project guide Mr. R. SAKTHIVEL MURUGAN M.E., Assistant Professor Department of Mechanical Engineering for his supervision throughout our work. He has been a continuous source and spirit of inspiration in the problem concerned.

We wish to record our thanks to our project co-guide Mr. T. PALANIAPPAN M.E., Assistant Professor Department of Electronics and Communication Engineering for his supervision throughout our work. He has been a continuous source and spirit of inspiration in the problem concerned.

We wish to deliver our thanks to non-teaching staff Department of Mechanical Engineering for their taught how to operate the machines safely.

We thank our parents for their backbone support and motivation. We also thank our friends for their moral support and informative co-operation during the strenuous hours.

ABSTRACT

Every year our Indian soldiers have lost their lives due to sudden terrorist

ingress and natural calamities. It should be a great lose to our nation. In order to

save the life of our soldier, an autonomous guarding system is to be developed

which should save the lives of the soldiers. In this project, a versatile gun holder

and automatic aiming sentinel gun is designed with the assistance of image

processing technology. Web Camera is used along with the gun holder to capture

the live videos. This video is then further analyzed for face detection and tracking.

Precise coding is made for face detection and tracking algorithms using OpenCV,

Spyder software. The output of face detection and tracking of the captured image

sequences is then fed to Arduino microcontroller. In Arduino, the face tracking is

coupled with the servo motors which directly controls the Gun for tilting, rotation

and triggering. Thus, it could fire the enemies automatically when they come into

the range of the camera. This work will be useful for our country in Defense

Sectors.

KEYWORDS: Image Processing, OpenCV, Face Detection, Sentinel Gun,

Face Tracking.

iv

TABLE OF CONTENTS

CHAPTER NO	TITLE	PAGE NO	
	ABSTRACT	iii	
	LIST OF FIGURES	ix	
	LIST OF TABLES	xi	
	ABBREVIATION	xii	
1	INTRODUCTON	1	
	1.1 GENERAL	1	
	1.2 OBJECTIVE	5	
	1.3 PROBLEM IDENTIFICATION	6	
	1.4 TYPES OF GUNS USED BY INDIAN	6	
2	ARMY LITERATURE REVIEW	8	
3	METHODOLOGY	18	
	3.1 OVERVIEW	18	
	3.2 SCHEMATIC DIAGRAM	18	
	3.2.1 Input Video Capturing	19	
	3.2.2 Face Recognition	19	
	3.2.3 Face Detection and Coding	19	
	3.2.4 Output of Spyder-Detected Face	19	
	3.2.5 Arduino Controlling	20	
	3.2.6 Servo Motor Control	20	

CHAPTER NO				TITLE	PAGE NO
		3.2.7	Uzi Gu	n Movement	20
		3.2.8	Battle F	Field	21
	3.3	UTIL	IZATIO	N	21
4	CO	DING	FOR IM	IAGE PROCESSING	22
	4.1	IMAC	GE PROC	CESSING	22
		4.1.1	Purpose	e of Image Processing	22
		4.1.2	Applica	ations Of Digital Image	23
			Process	ing	
	4.2	SOFT	WARE 1	DESCRIPTION	23
		4.2.1	About (OpenCV	24
			4.2.1.1	Python	25
			4.2.1.2	Python Packages	25
			4.2.1.3	NumPy	26
			4.2.1.4	Pyserial	26
		4.2.2	Anacor	nda	26
			4.2.2.1	Using Python Anaconda	27
			4.2.2.2	Miniconda	27
			4.2.2.3	Anaconda Add-Ons	28
			Spyder		28
		4.2.4	Arduino		28
			4.2.4.1	Types of Arduino	29
			4.2.4.2	Arduino UNO	20

CHAPTER NO				TITLE	PAGE NO
	4.3	PROC	GRAMM	ING	30
		4.3.1	Origina	l Image Program	30
		4.3.2	Gray In	nage Program	31
		4.3.3	Actual	Color Video Display	32
		4.3.4	Gray Co	olor Video Display Program	32
	4.4	TYPE	ES OF AI	LGORITHM ADOPTED	33
		4.4.1	Backgro	ound Subtraction Algorithm	33
			4.4.1.1	Types of Background	34
				Subtraction	
			4.4.1.2	Background Subtractor	34
				MOG	
			4.4.1.3	Background Subtractor	35
				MOG2	
			4.4.1.4	Background Subtractor	36
				GMG	
			4.4.1.5	Background Subtraction	37
				Program	
		4.4.2	Face an	nd Eye Detection Algorithm	38
			4.4.2.1	Face and Eye Detection	40
				Program	
		4.4.3	Face De	etection Algorithm	41
			4.4.3.1	Face Detection Program	41
	4.5	ARD	UINO PF	ROGRAM FOR FACE	43
		DETE	CTION	AND TRACKING	

CHAPTER NO	TITLE	PAGE NO
5	CAD MODELLING	45
	5.1 SOLID WORKS SOFTWARE	45
	5.2 DESIGN PROCESS	45
	5.3 PART DIAGRAM	45
	5.3.1 Base Table	46
	5.3.2 Lower Base Plate	46
	5.3.3 Upper Base Plate	47
	5.3.4 Flange	47
	5.3.5 Left and Right Leg	48
	5.3.6 Servo Motor	49
	5.3.6.1 Calculation for Selection Of	49
	Stepper Motor	
	5.3.7 Nylon Rod	50
	5.3.8 Gun Holder	51
	5.3.9 Final Assembly	51
6	SIMULATION AND OUTPUT	53
	6.1 FACE DETECTION OPENCV	53
	PROGRAM	
	6.1.1 Program Embedded	53
	6.2 ARDUINO PROGRAM TO RUN	54
	HARDWARE	
	6.3 OUTPUT	56
	6.3.1 Intial Setup	56

CHAPTER NO		TITLE	PAGE NO
	6.3.2	Detected Face	56
	6.3.3	Data Passage	57
	6.3.4	Rotation	57
	6.3.5	Tilting	58
7	FABRICA	ATION OF PROTOTYPE	59
	7.1 LIST	OF COMPONENTS	59
	7.1.1	Acrylic Sheet	59
	7.1.2	Nylon Rod	60
	7.1.3	Servo Motor	61
	7.1.4	Arduino Uno	62
	7.1.5	Jumper Wires	63
	7.1.6	Webcam	64
	7.1.7	Data Cable	65
		Uzi Gun	67
		CESS FLOW	68
		Selection of Materials	69
		Measuring and Marking	70
		Cutting Process	
	7.2.4	Punching	71
	7.2.5	Drilling Process	71
	7.2.6	Filing	72
	7.2.7	Fastening	72
	7.2.8	Assembly of All Parts	73
8	ADVANT	AGES & APPLICATIONS	74
	8 1 ADVA	NTAGES	74

CHAPTER NO	TITLE	PAGE NO
	8.2 APPLICATION	74
9	CONCLUSION	75
10	FUTURE WORK	76
11	OUTCOMES OF THE PROJECT	77
	REFERENCES	82

LIST OF FIGURES

FIGURE NO	TITLE	PAGE NO
3.1	Schematic Diagram	18
4.1	Arduino UNO	30
4.2(a)	Baby.Jpg (Input)	31
4.2(b)	Baby Original (Output)	31
4.3(a)	Baby.Jpg (Input)	32
4.3(b)	Babygray.Png (Output)	32
4.5	Face and Eye Detection	40
5.1	Base Table	46
5.2	Lower Base Plate	46
5.3	Upper Base Plate	47
5.4	Flange	47
5.5	Left Leg	48
5.6	Right Leg	48
5.7	Servo Motor	49
5.8	Nylon Rod	50
5.9	Gun Holder	51
5.10	Final Assembly	51
6.1	Initial Setup	56
6.2	Detected Face	56
6.3	Data Passage	57
6.4	Rotation	57
6.5	Tilting	58
7.1	Acrylic Sheet	59
7.2	Nylon Rod	60

FIGURE NO	TITLE	PAGE NO
7.3	Servo Motor	61
7.4	Arduino Uno	62
7.5	Jumper Fires	63
7.6	Webcam	64
7.7	Data Cable	65
7.8	Uzi Gun	66
7.9	Acrylic Sheet	68
7.10	Nylon Rod	69
7.11	Measuring	69
7.12	Marking	70
7.13	Cutting Process	70
7.14	Drilling Process	71
7.15	Filing	72
7.16	Fastening	72
7.17	Final Product	73

LIST OF TABLES

TABLE NO	TITLE	PAGE NO
1.1	History of Terrorist Attack Incidents	1
1.2	Guns Used by Our Indian Army	6
7.1	List of Components Used for Fabrication	59

ABBREVIATIONS

CPU Central Processing Unit

MATLAB Matrix Laboratory

OpenCV Open Source Computer Vision Library

2D Two Dimensional

WPA Wi-Fi Protected Access

RGB Red Green Blue

KNN K-Nearest Neighbor

PAN Pan Tilt Zoom

GPU Graphics Processing Unit

CMOS Complementary Metal Oxide Semiconductor

HTML Hypertext Markup Language

BAM Bluetooth Access Module

CNNs Conventional Neural Networks

PIR Passive Infra-Red

DOF Degree of Freedom