

Luigi TRICARICO

Leghe Ferrose

- Acciai
 - Acciai da costruzione di uso generale
 - o A bassa resistenza
 - o A media resistenza
 - o Ad alta resistenza

Acciai speciali da costruzione di uso generale -Generalità

- Rappresentano il 75-80&% in peso della totalità degli acciai utilizzati
- Sono leghe ipoeutettoidiche con un tenore di carbonio nominalmente inferiore allo 0.2% (noti per questo come acciai dolci al carbonio)
- Silicio (0.2-0.4%) e manganese (0.3-0.7%) poiché' usati come disossidanti del bagno liquido. Tenuti sotto controllo il rame (<0.6), dal rottame, e zolfo e fosforo (<0.05%) dal minerale. Intenzionalmente Mn può essere portato sino al 2.5%
- ✓ Sono usati in esercizio sono usati in esercizio per realizzare varie tipologie di componenti o elementi strutturali, con operazioni di piegatura, tranciatura, stampaggio, saldatura
- ✓ Possono essere rivesti superficialmente (zincati, cromati, fosfatati), o preverniciati

Luigi TRICARICO

Carbon steels

Acciai speciali da costruzione di uso generale - Generalità

- ✓ Classificazione in base delle proprietà meccaniche. Si distinguono:
 - Acciai a bassa resistenza (UTS \leq 270MPa)
 - Al solo carbonio per impieghi strutturali o ingegneristici (carbon steels)
 - Per lavorazioni ad alta velocità (Free Machining steels), noti anche come automatici
 - Al solo carbonio da profondo stampaggio (Deep drawing steels)
 - IF (Interstitial Free steels)
 - BH (Bake Hardening steels)
 - Acciai a media resistenza (270 MPa ≤ UTS ≤ 700 MPa)
 - Al carbonio manganese per impieghi strutturali o ingegneristici (C-Mn steels)
 - Resistenti alla corrosione atmosferica (Weathering steels)
 - Ad alto limite di snervamento debolmente legati HSLA (High Strength Low Alloy steel)
 - Acciai ad alta resistenza (UTS ≥ 700 MPa)
 - DP (Dual Phase steels)
 - TRIP (Transformation Induced Plasticity steels)
 - CP (Complex Phase steels
 - MART (Martensitic steels)

Acciai da costruzione a bassa resistenza (1/9)

- ✓ Sono leghe ipoeutettoidiche Fe-C o Fe-C-Mn con tenore di carbonio inferiore allo 0.2%, mentre la percentuale di manganese non supera 1.5%
- ✓ Microstruttura quasi completamente ferritica (piccole tracce di perlite lungo la direzione di deformazione plastica a caldo)
- ✓ YS \leq 150-300 MPa, UTS \leq 270 -500 MPa, A% \approx 25-40%, ottima saldabilità (c_{EV} \leq 0.40)

$$C_{EV} = \%C + \frac{\%M_n}{6} + \frac{\%C_r + \%M_o + \%V}{5} + \frac{\%N_i + \%C_u}{15} \qquad \begin{array}{l} c_{\text{EV}} \leq \text{ 0.40 Ottima saldabilità} \\ 0.40 \leq c_{\text{EV}} \leq \text{ 0.60. Saldabile con preriscaldo} \\ c_{\text{EV}} \geq \text{ 0.60. Non saldabile o saldabili con preriscaldo o post-riscaldo} \end{array}$$

Cenni storici

- Durante quasi un secolo, sino al 1975, gli acciai da costruzione di uso generale non hanno subito grandi cambiamenti. Elementi strutturali e funzionali erano realizzati in acciai dolci che dovevano essere il più duttili possibile per garantire la formabilità, la tranciatura, la piegatura, ecc., compresa la capacità di essere saldati, verniciati, e così via. La resistenza a trazione di questi acciai era limitata a 180-200 MPa, la resistenza a trazione di conseguenza a 330-350 MPa
- È stato nel 1975, in seguito all'esplosione della crisi petrolifera mondiale, che l'industria dei trasporti ed in particolare quella automobilistica ha richiesto acciai più resistenti per ridurre lo spessore delle parti e quindi il loro peso, in modo da diminuire il consumo di carburante
- È stato proprio in quel momento che sono stati sviluppati i primi accia al limite degli acciai a bassa resistenza, con YS superiore a 280-300 MPa e TS di circa 450 MPa

Acciai da costruzione a bassa resistenza (2/8)

- ✓ Acciai al solo carbonio per impieghi strutturali (Carbon steels)
 - Semilavorati laminati a caldo o coils, per applicazioni strutturali o ingegneristiche per cui non sia richiesta elevata resistenza meccanica (profilati per carpenteria meccanica e costruzioni civili, tubi saldati, lamiere, componenti strutturali zincati, arredi urbani, cisterne, bombole saldate)

3-150mm

0.2-3mm

Designazione	Normativa	%C	%Si	%Mn	%P	%S	%N	%Cu	%Al _{tot}
S235J0	EN 10025	≤ 0,17		≤ 1,40	≤ 0,030	≤ 0,030	≤ 0,012	≤ 0,55	(*)
S275J2	EN 10025	≤ 0,18		≤ 1,50	≤ 0,025	≤ 0,025		≤ 0,55	(**)
P235S	EN 10207	≤ 0,16	≤ 0,35	0,40-1,20	≤ 0,025	≤ 0,025	≤ 0,010	n.s.	≤ 0,020
E195+N	EN 10296	≤ 0,15	≤ 0,35	≤ 0,70	≤ 0,045	≤ 0,045	n.s.	n.s.	n.s.
S220GD+ZF	EN 10346	≤ 0,20	≤ 0,60	≤ 1,70	≤ 0,10	≤ 0,045	n.s.	n.s.	n.s.

S: applicazioni strutturali, YS, J: Resilienza minima (0: 27J a 0 degC, 1: 27J a -20 degC)

P: Cisterne e sistemi in pressione, YS, S: costruzioni navali

E: Tubi saldati per applicazioni ingegneristiche, YS, +N: normalizzato)

S: Applicazione strutturale, YS, GD+ZF: zincatura a caldo in bagno di zinco-ferro

Designazione	Normativa	Carico unitario di snervamento, R _{p0.2} [MPa]	Carico unitario di rottura, R _m [MPa]	Allungamento a rottura, A%	Posizione prelievo saggi
S235J0 (*)	EN 10025-2	≥ 235	360-510	≥ 26	longitudinale
S275J2 (*)	EN 10025-2	≥ 275	410-560	≥ 23	longitudinale
P235S (*)	EN 10207	≥ 235	360-480	≥ 26	longitudinale
E195+N (**)	EN 10296-1	≥ 195	≥ 300	≥ 28	longitudinale
S220GD+ZF (***)	EN 10346	≥ 220	≥ 300	≥ 20 (°)	longitudinale

Acciai da costruzione a bassa resistenza (3/8)

- ✓ Acciai automatici (Free Machining Steels)
 - Per lavorazioni per asportazione di truciolo ad alta velocità (>30 m/min)
 - Il truciolo deve segmentarsi facilmente e la formazione del tagliente di riporto deve essere limitata
 - Consente di ridurre usura, scheggiature, microfessurazioni termiche
 - Azione autolubrificante
 - Sono contraddistinti dalla presenza di zolfo (0.3-0.4%) e piombo, aggiunti per migliorare la truciolabilità
 - Inclusioni di piccola dimensione di solfuro di manganese (Mn di 1-1.5% e di piombo (0.2-0.3%) che è insolubile
 - Favoriscono la rottura del truciolo e hanno azione lubrificante sull'interfaccia utensile/pezzo
 - La designazione è basata sulla composizione chimica
 - Viti, dadi, raccorderia e minuteria metallica e componenti non saldati con intense lavorazioni per asportazione di truciolo

Designazione	Normativa	%C	%Si	%Mn	%Р	%S	%Pb
11SMn30	EN ICO 692 4	-011	~ 0.0E (*)	0.00 1.20	-0.11	0 27 0 22	
11SMnPb30	EN ISO 683-4	≥ 0,14	≤ 0,05 (*)	0,90-1,30	_ ≤ 0,11	0,27-0,33	0,20-0,35

Designazione	Normativa	Carico unitario di snervamento, R _{p0.2} [MPa]	Carico unitario di rottura, R _m [MPa]	Durezza Brinell, [HB]	Posizione prelievo saggi	
11SMn30 (*)	EN ISO 683-4	non indicato	380-570	≤ 169	longitudinale	
11SMnPb30 (*)	EN 130 063-4	non indicato	300-370	≥ 109	iorigitudinale	

Effetto della dimensione delle inclusioni nella frammentazione del truciolo. Le line rosse indicano i possibili pian di frattura

Struttura ferritico-perlitica a bande e inclusioni di MnS e PB lungo la direzione di laminazione nel EN 11SMnPb30

Acciai da costruzione a bassa resistenza (4/8)

- ✓ Acciai da profondo stampaggio o per formatura a freddo
 - Volumi e quote di mercato più intensi rispetto ad acciai dolci al carbonio e automatici
 - È di interesse [per il settore automotive (telai, ruote, carrozzeria) del packaging (imballaggi alimentari e degli elettrodomestici
 - Lamiere sottili e nastri per la formatura a freddo, lo stampaggio, l'imbutitura e la tranciatura allo stato tal quale o dopo rivestimento metallico (zincatura, stagnatura, cromatura. Eccellente saldabilità
 - Nastri e lamiere sono normalmente finiti a freddo (tolleranze e rugosità richieste) e sottoposti a ricottura di ricristallizzazione del progettare le caratteristiche di duttilità richieste
 - Le proprietà di deformazioni plastica sono caratterizzate
 - 1. dal coefficiente di incrudimento (n) della relazione di Hollomon

$$\sigma_r = K \cdot \epsilon_r^n$$
 $\sigma_r = \sigma \cdot (1 + \varepsilon)$ $\sigma = \frac{P}{A_0}$ $\varepsilon = \frac{\Delta l}{l_0}$

- Alti valori di n rappresentatici di elevata formabilità per stiramento (stretching), e di una duttilità omogenea e uniformi (sposta la strizione più elevati valori di deformazione).
- Il coefficiente di incrudimento aumenta
 - Con il diminuire degli elementi presenti in soluzione solida interstiziale (C, N) e del tenore di Mn
 - Con l'aumento della dimensione del grano, sino ad un valore limite
 - Con l'aumento della distanza tra eventuali precipitati

MUR Dipartimento di Eccellenza 2018-2022 2023-2027

TECNOLOGIA MECCANICA II – PARTE II Luigi TRICARICO

Acciai da costruzione a bassa resistenza (5/8)

- 2. Il rapporto tra deformazione trasversale e longitudinale (r), noto come anisotropia.
 - Il comportamento plastico è determinato dall'anisotropia normale (r_m) e planare (Δr)

$$r_m = \frac{r_0 + r_{90} + 2 \cdot r_{45}}{4}$$
 $\Delta r = \frac{r_0 + r_{90} - 2 \cdot r_{45}}{2}$

- Elevati valori di anisotropia normale (riduzione Mn, C, N), garantiscono ottima deformabilità e imbutibilità (contrasta l'assottigliamento e dunque ritarda la frattura per strizione)
- Valori di Δ r prossimi a zero consentono di avere deformabilità omogenea lungo tutte le direzioni (materiale isotropo) senza formazione di orecchie

Designazione	Normativa	%C	%Si	%Mn	%P	%S	%Al _{tot}	%Ti
DD14	EN 10111	≤ 0,08	n.s.	≤ 0,35	≤ 0,025	≤ 0,025	(*)	n.s.
DC05	EN 10130	≤ 0,06	n.s.	≤ 0,35	≤ 0,025	≤ 0,025	(*)	n.s.
DX54D+Z	EN 10346	≤ 0,12	≤ 0,50	≤ 0,60	≤ 0,10	≤ 0,045	(*)	≤ 0,30
TS260 (**)	EN 10202	0,04-0,08	≤ 0,030	≤ 0,025	≤ 0,020	≤ 0,020	0,02-0,08	n.s.

	Designazione	Normativa	Carico unitario di snervamento, R _{p0.2} [MPa]	Carico unitario di rottura, R _m [MPa]	Allungamento a rottura, A%	Indice r ₉₀	Indice n ₉₀	Posizione prelievo saggi
	DD14 (*)	EN 10111	170-310	≤380	≥36			trasversale
	DC05 (**)	EN 10130	≤ 180	270-330	≥ 40 (°)	≥ 1,9	≥ 0,20	trasversale
	DX54D+Z (***)	EN 10346	120-220	260-350	≥ 36 (°)	≥ 1,6	≥ 0,18	trasversale
Γ	TS260	EN 10202	260±50	360±50				n.s.

D: Indicato per formatura a freddo, D: Ottenuto da laminazione a caldo (1-12 mm), valore di qualità

D: Indicato per formatura a freddo, C: Ottenuto da laminazione a freddo (0.35-3 mm), valore di qualità

D: Indicato per formatura a freddo, X: laminazione non indicata, Valore qualità, D+Z: zincato a caldo

T: Banda stagnata, S: ricottura in forno non continuo, YS

Acciai da costruzione a bassa resistenza (6/8)

- ✓ Acciai IF (Interstitial Free), ovvero acciaio senza interstiziali
 - Non ci sono atomi di soluto interstiziali (C, N) nel reticolo CCC della ferrite, con conseguente incremento della deformabilità
 - o Indicati per formatura a freddo di parti complesse (sviluppati ne 80' per realizzare pannelli nel settore automotive)
 - o Prodotti con un tenore estremamente ridotto di C (0.004 0.007%) e N
 - Esiste una sotto-famiglia con un tenore di carbonio minore dello 0.003% (Ultra-Low Interstitial Free, UL-IF)
 - Nei IF e UL-IF sono aggiunti elementi stabilizzanti, come Ti e Nb (a volte anche V e B), che hanno un effetto neutralizzante su C e T poiché' formano carburi/nitruri
 - Aumento della deformabilità a freddo
 - \circ Gradi con P (\leq 0.1%) e di manganese (\leq 1%) per migliorare la resistenza meccanica
 - Come gli acciai per stampaggio, dopo laminazione a caldo e a freddo subiscono un trattamento di ricottura di ricristallizzazione

Designazione	Normativa	%C	%Si	%Mn	%Р	%S	%Al _{tot}	%Ti	%Nb
HC180Y	EN 10268	≤ 0,01	≤ 0,30	≤ 0,7	≤ 0,06	≤ 0,025	≥0,01	≤ 0,12	≤ 0,09
HC260Y		≤ 0,01	≤ 0,30	≤ 1,6	≤ 0,10	≤ 0,025	≥0,01	≤ 0,12	≤ 0,09
HX180YD	EN 10346	≤ 0,01	≤ 0,30	≤ 0,70	≤ 0,06	≤ 0,025	≥0,01	≤ 0,12	≤ 0,09
HX260YD		≤ 0,01	≤ 0,30	≤ 1,60	≤ 0,10	≤ 0,025	≥0,01	≤ 0,12	≤ 0,09

Designazione	Normativa	Carico unitario di snervamento, R _{p0.2} [MPa]	Carico unitario di rottura, R _m [MPa]	Allungamento a rottura, A%	Indice r ₉₀	Indice n ₉₀	Posizione prelievo saggi
HC180Y (*)	EN 10268	180-230	330-400	≥ 35 (°)	≥ 1,7	≥ 0,19	trasversale
HC260Y (*)	EN 10200	260-320	380-440	≥ 31 (°)	≥ 1,4	≥ 0,17	trasversale
HX180YD (**)	EN 10346	180-240	330-390	≥ 34 (°)	≥ 1,7	≥ 0,18	trasversale
HX260YD (**)	EN 10340	260-320	380-440	≥ 30 (°)	≥ 1,4	≥ 0,16	trasversale

H: Ad alta resistenza per formatura a freddo, C: Ottenuto da laminazione a freddo (sino a 3 mm), YS, Y: IF D: Ad alta resistenza per formatura a freddo, X: laminazione non indicata, YS, Y: IF, D: Rivestito a caldo

TECNOLOGIA MECCANICA II – PARTE II Luigi TRICARICO

Acciai da costruzione a bassa resistenza (7/8)

- ✓ Acciai GH (Bake Hardening)
 - Sviluppati alla fine degli anni '80. Simili agli IF
 - La principale differenza è un leggero aumento del tenore di C e N e la presenza di alluminio tale da garantire la possibilità di combinarsi con l'azoto per formare dei composti duri (AIN)
 - Negli IF, C e N o sono assenti o sono sotto forma di carburi/carbonitruri

 L'effetto di BH deriva dall'azione congiunta dell'incrudimento per deformazione plastica a freddo e della successiva fase di invecchiamento che si ha durante la verniciatura (mantenimento a 160-180°C per 20-30 min)

Acciai da costruzione a bassa resistenza (8/8)

- Il rafforzamento meccanico dopo verniciatura si ha poiché
 - C e N diffondono verso zone ad elevata densità di dislocazioni (zone incrudite) per la presenza di lacune più ampie rispetto a quelle del reticolo della ferrite
 - Addensamenti di Ce Z (atmosfere di Cottrel) che tendono ad ancorare le dislocazioni ed ad impedirne il movimento
- Hanno il vantaggio di avere un basso carico di snervamento ed una elevata formabilità prima del processo di deformazione plastica a freddo.
- In funzione del livello di incrudimento, dopo verniciatura si osserva un aumento della YS dell'ordine dei 50 MPa

H: Ad alta resistenza per formatura a freddo, C: Ottenuto da laminazione a freddo (sino a 3 mm), YS, B: BH

Designazione	Normativa	%C	%Si	%Mn	%Р	%S	%Al _{tot}
HC180B		≤ 0,06	≤ 0,5	≤ 0,7	≤ 0,06	≤ 0,030	≥ 0,015
HC220B	EN 10268	≤ 0,08	≤ 0,5	≤ 0,7	≤ 0,085	≤ 0,030	≥ 0,015
HC260B		≤ 0,1	≤ 0,5	≤ 1,0	≤ 0,1	≤ 0,030	≥ 0,015

Designazione	Normativa	Carico unitario di snervamento, R _{p0.2} [MPa]	Carico unitario di rottura, R _m [MPa]	Allungamento a rottura, A%	Indice r ₉₀	Indice n ₉₀	Posizione prelievo saggi
HC180B (*)		180-230	290-360	≥ 34 (°)	≥ 1,6	≥ 0,17	trasversale
HC220B (*)	EN 10268	220-270	320-400	≥ 32 (°)	≥ 1,5	≥ 0,16	trasversale
HC260B (*)		260-320	360-440	≥ 29 (°)			trasversale

