

Closure Properties of RL Elementary Questions about RL Identifying Nonregular Languages

About RL ...

- What is a regular language? Give a definition.
- Can you give the formal definition of RE?
- What is Kleen's Theorem?

4

RL Review

- RL a language that can be defined by a RE or FA.
- RE
 - 1. \emptyset , λ , and $a \in \Sigma$ are RE's.
 - 2. If r_1 and r_2 are RE, so are $r_1 + r_2$, r_1 . r_2 , r_1^* and (r_1) .
- Kleen's Theorem: L(FA)=L(TG)=L(RE)

Issues on Regular Languages

- Set operations on RL would that result another RL?
- Is a given language finite or not?
- Is every finite language regular?
- How can we tell whether a given language is regular or not?

- One way to show a language is not regular is to study properties that are shared by all RL
 - If we know some such property and we can show a candidate language does not have it, then we can tell that the language is not regular
- FA is also an powerful algorithm to recognize membership, equality, and more

4.1 Closure Properties of RL

Theorem 4.1

• If L_1 and L_2 are RL, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, $L_1 \setminus L_2$, L_1' , and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Theorem 4.1 Proof Outline - 1

If L_1 and L_2 are RL, then there exist RE r_1 and r_2 such that $L_1=L(r_1)$ and $L_2=(r_2)$. By definition, we have

```
L_1 \cup L_2 : r_1 + r_2
```

$$\bullet L_1L_2 : r_1 \cdot r_2$$

•
$$L_1^*$$
: r_1^*

-

Theorem 4.1 Proof Outline - 2

- If L is a RL, then L' is also a RL
- Proof if L is a RL, then there is a FA M such that L = L(M). We can make a new FA M' by
 - Change all final states of M to non-final states
 - Change all non-final states to final states
 - L(M') = L'

Theorem 4.1 Proof Outline - 3

- If L_1 and L_2 are RL, then $L_1 \cap L_2$ is also RL.
- Proof (key step)

$$L_1 \cap L_2 = (L_1' + L_2')'$$

-

Example 4.1

- Show that RL is closed under difference
 - If L₁ and L₂ are regular so are L₁- L₂
- Proof
 - L_1 $L_2 = L_1 \cap L_2'$
 - L₂ is RL implies L₂′ is RL (Theorem 4.1)
 - Then, because closure of RL under intersection, we have $L_1 \cap L_2'$ is regular

Theorem 4.2

- The family of RL is closed under reversal.
- Proof (try to give a outline)
 - Use RE or FA?

- Given a language L and a string w, can we determine whether or not w is an element of L?
- Need a membership algorithm
- Algorithm a method for which one can write a computer program (informal)

Theorem 4.5 FA as membership algorithm

- Given a standard representation of any RL L on Σ and any $w \in \Sigma^*$, there exists an algorithm for determining whether or not w is in L.
- Proof. Represent L by a dfa, then test w to see if it is accepted by this automaton

Theorem 4.6

RL empty, finite, or infinity determination using FA

- There exists an algorithm for determining whether a regular language L, given in standard representation, is empty, finite, or infinite.
- Proof. Represent L as a dfa.
 - If there is a path from the initial vertex to any final vertex, then L is not empty.
 - Find all the vertices that are the base of a cycle. If any of these are on a path from an initial to final vertex, L is **infinite**. Otherwise, it is **finite**.

Theorem 4.7

- Given two regular languages L₁ and L₂, there exists an algorithm to determine whether or not L₁ = L₂
- Proof
 - Using L₁ and L₂, we define the language
 - $L_3 = (L_1 \cap L_2') \cup (L_1' \cap L_2)$
 - By closure L_3 is regular and we can use the algorithm in Theorem 4.6 to determine if L_3 is empty
 - If L_3 is empty then $L_1 = L_2$

4.3 Identifying Nonregular Languages

- How do you prove a language to be regular?
 - Constructive proof
- How do you prove a language to be nonregular?
 - Proof by negation
 - Using the Pigeonhole Principle
 - A Pumping Lemma

Using the Pigeonhole Principle

- Case 1. Finite number of pigeonholes, H, for finite number of pigeons, P.
 - When |H| < |P| and all of pigeons went into the pigeonholes, then at least one hole contains at least two pigeons
- Case 2. When |H| = N, and $|P| = \infty$, then at least one hole contains infinite number of pigeons
- Applying the principle to an FA that has <u>limited</u> memory and can accept an <u>infinite</u> RL.
 - Pumping Lemma = another form of the pigeonhole principle

17

A Pumping Lemma

- Let L be an infinite RL. Then there exists some positive integer m such that any w ∈ L with |w| ≥ m can be decomposed as
 - w = xyz
 - with $|xy| \leq m$
 - and |y| ≥ 1
 - such that $w_i = xy^iz$ is also in L for all i = 0, 1, 2, ...

A Pumping Lemma

-- in other words

- Every sufficiently long string in L can be broken into three parts in such a way that an arbitrary number of repetitions of the **middle part** (y) yields another string in L. We say that the middle string is "pumped".
- w = xyz
 - $|w| \ge m$ (m is the integer in Pumping Lemma)
 - x or z can be empty but y must be nonempty
 - You can think m to be the number of the states of the FA that accepts L

Example 4.7 Show $L = \{a^nb^n : n \ge 0\}$ is not regular

- Proof.
 - Assume that L is regular, so that the pumping lemma must hold. Let m be the integer in the pumping lemma.
 - Let $w = a^m b^m (|w| \ge m)$
 - By the pumping lemma, w may be written as xyz, where |y| ≥ 1 and |xy| ≤ m and xyⁱz is also in L for all i = 0, 1, 2, ...
 - Let i = 2, $xy^2z = a^{m+k}b^m \notin L$ with $1 \le k \le m$
 - This string brings at least one more a into the a's segment, and is not a string in L. This contradicts the pumping lemma and thereby indicates that the assumption that L is regular must be false.

In applying the Pumping Lemma...

- The correct argument can be viewed as a game we play against an opponent
- Our goal is to win the game by establishing a contradiction of the pumping lemma, while the opponent tries to foil us. There are 4 moves:
 - The opponent picks m
 - Given m, we pick w in L with |w| ≥ m
 - The opponent chooses the decomposition xyz, subject to $|xy| \le m$, $|y| \ge 1$
 - We pick i in such a way that the pumped string w_i, is not in
 L. If we can do so, we win the game

Key elements

apply Pumping Lemma to prove L is non-regular

- Assume L is regular and m is integer in Pumping Lemma
- 2. Let w = f(m) in L and $|w| \ge m$
- 3. W =xyz, subject to $|xy| \le m$, $|y| \ge 1$
- 4. Let i = ? to show resulting Wi make Pumping property fail, and therefore a contradiction. Conclusion: L is not regular

Example 4.8 show $L = \{ww^R: w \in \Sigma^*\}$ is not regular

- Proof.
 - Assume that L is regular, so that the pumping lemma must hold. Let m be the integer in the pumping lemma. Let
 - $w = a^m b^m b^m a^m (|w| \ge m)$ -- **step 2**
 - Because this choice of w, in step 3, y can only consists of a's; in step 4, we may use i = 0 and the contradiction follows – the resulting string has fewer a's on the left.

23

Key steps:

pick the w and i to make the argument easier for us

- Ex. 4.9 L = { $w \in \Sigma^*$, $n_a(w) < n_b(w)$ }
 - $W = a^m b^{m+1}$ i = 2, $w_2 = ?$ for $y = a^k$
- Ex. 4.10 L = $\{(ab)^n a^k : n > k, k \ge 0\}$
 - $w = (ab)^{m+1}a^m$ i = 0, $w_0 = ?$ for all possible y's
- Ex. 4.11 $L = \{a^n : n \text{ is a perfect square}\}$
 - Pick $n = m^2$ i = 0, $w_0 = ?$ for $y = a^k$
 - You may try i = 2, and it works too

Example 4.13

For $L = \{a^nb^l : n \neq l\}$, there is a better way than the Pumping Lemma to show L is not regular

- Suppose L is regular. Then by Theorem
 4.1, L' is also a RL, and
 - $L_1 = L' \cap L(a*b*)$ would also regular.
 - But $L_1 = \{a^nb^n : n \ge 0\}$ is nonregular.
 - Consequently, L cannot be regular.

Note: this is also "prove by contradiction"

More examples/exercises in proving a language to be non regular

- PALINDROME
- PRIME

The Pumping Lemma is ...

- Difficult to understand
- Easy to make mistakes when applying it
- Common mistakes
 - Using it to show a language is regular
 - Pick w is not in L or not easy to argue
 - Mix up m and i
 - Make some assumption about the decomposition xyz

To apply the Pumping Lemma well: Knowledge of the rule + a good strategy

- Knowledge of the rules is essential, but that alone is not enough to play a good game
- Need a good strategy to win
- Read more examples + do more exercises will help – just like playing any games!

The Pumping Lemma: Poem

Any regular language L has a magic number p And any long-enough word in L has the following property: Amongst its first p symbols is a segment you can find Whose repetition or omission leaves x amongst its kind.

So if you find a language L which fails this acid test, And some long word you pump becomes distinct from all the rest, By contradiction you have shown that language L is not A regular guy, resiliant to the damage you have wrought.

But if, upon the other hand, x stays within its L, Then either L is regular, or else you chose not well. For w is xyz, and y cannot be null, And y must come before p symbols have been read in full.

As mathematical postscript, an addendum to the wise: The basic proof we outlined here does certainly generalize. So there is a pumping lemma for all languages context-free, Although we do not have the same for those that are r.e.

CSC 135 29