同様の作業における フォルダ構造の類似性に着目した ファイル整理支援手法の提案

平成30年2月16日 岡山大学 工学部 情報系学科 西 良太

研究背景

同様の作業を行う際は過去のファイルを利用

→ 作業と主要なフォルダを関連付けて整理したい

作業にはそれを代表するフォルダが存在

ワーキングディレクトリ (WD)

<ファイル整理の現状>

フォルダは、同様の作業ではなく、 同様の目的という観点で整理されている

こ 同様の作業の WD が計算機上に散在

同様の作業におけるフォルダ構造の類似性に着目

→ フォルダ構造の特徴を用いてクラスタリング

(特徴1)フォルダ内のファイル種別

(特徴2)フォルダの階層構造の形状

No.2

フォルダ間距離の算出手法

クラスタリングにおいて、フォルダ間の距離を評価する尺度が必要

フォルダ構造の特徴を木で表現し、木構造編集距離を尺度とする

クラスタリング結果の評価

<評価観点>

(1) クラスタがどの程度同様の作業のフォルダで占められているか

Purity: クラスタの一貫性を評価

(2) 同様の作業のフォルダがどの程度同じクラスタに分類されたか

InversePurity: 正解データの集中性を評価

総合的な評価のため、2つの指標の調和平均である F値を使用

評価環境

実験データ: 計算機内の41個の WD であるフォルダ

以下の6種類の作業への分類を正解として評価を行う

	作業内容	フォルダ数
作業1	シェルスクリプト作成	1
作業2	Python スクリプト作成	4
作業3	Rails アプリケーション開発	5
作業4	Node.js による開発	1
作業5	TeXによる文書作成	19
作業6	マークダウンによる文書作成	11
合計		41

評価方法

以下の3つの方法による分類を比較

く提案手法を用いない場合>

(分類1) 上層のフォルダによる分類 各 WD がどのフォルダの下に属しているかにより分類

<提案手法を用いる場合>

(分類2) Ward 法を用いたクラスタリングによる分類

(分類3) 群平均法を用いたクラスタリングによる分類

評価結果

分類手法	Purity	InversePurity	F 値	実行時間
(分類1) 上層のフォルダによる分類	0.6341	0.5854	0.6088	
(分類2) 提案手法(Ward 法)	0.9512	0.9024	0.9262	663.35 sec
(分類3) 提案手法(群平均法)	1.0000	0.9512	0.9750	667.87 sec

く (分類1)と提案手法による分類の比較>

(分類2)では, F値が 52.1%向上

(分類3)では、F値が60.2%向上

: 提案手法は、作業とWDの関連付けに有用

分類1上層のフォルダによる分類

()内はフォルダ数

	作業1	作業2	作業3	作業4	作業5	作業6
フォルダ1	100%(1)	100%(4)	100%(5)	100%(1)		
フォルダ2					36.8%(7)	27.3%(3)
フォルダ3					31.6%(6)	54.5%(6)
フォルダ4					26.3%(5)	
フォルダ5					5.3%(1)	
フォルダ6						9.1%(1)
フォルダ7						9.1%(1)

- (1) 異なる種類の作業の WD が1つのフォルダに混在
- (2) 1種類の作業の WD が複数のフォルダに散在
 - ∴ 目的を観点としてフォルダ分けされている
- → 作業という観点で見ると繁雑

分類2 提案手法(Ward 法)による分類

()内はフォルダ数

	作業1	作業2	作業3	作業4	作業5	作業6
クラスタ1					78.9%(15)	
クラスタ2						100%(11)
クラスタ3	100%(1)		100%(5)	100%(1)		
クラスタ4					21.1%(4)	
クラスタ5		100%(4)				

- (1) 異なる種類の作業の WD が1つのクラスタに混在
- (2) 作業5「T_FX による文書作成」の WD がクラスタ1と4に<mark>散在</mark>
 - ∴ クラスタ4では、図をまとめたサブフォルダが存在

分類3提案手法(群平均法)による分類

()内はフォルダ数

	作業1	作業2	作業3	作業4	作業5	作業6
クラスタ1			60.0%(3)			
クラスタ2			20.0%(1)			
クラスタ3			20.0%(1)			
クラスタ4		'			100%(19)	
クラスタ5						100%(11)
クラスタ6		100%(4)				
クラスタ7	100%(1)					
クラスタ8				100%(1)		

- (1) すべてのクラスタが1種類の作業の WD で構成
- (2) 1種類の作業の WD が複数のクラスタに<mark>散在</mark>

まとめ

く実績>

- (1) フォルダ構造の特徴の検討
 - (A) フォルダ内のファイル種別
 - (B) フォルダの階層構造の形状
- (2) フォルダの作業に関するクラスタリング手法の検討
 - (A) 木構造編集距離によるフォルダ間距離の算出
- (3) 提案手法の評価
 - (A) 分類結果において、提案手法の有用性を示した
 - (B) 計算機内の全フォルダを対象とすると計算量大

<今後の課題>

- (1) 計算量の改善(現在は、41個の WD の分類で約11分)
- (2) ファイルへのアクセス履歴の利用
- (3) クラスタリング結果をユーザに提示するインタフェースの検討

予備スライド

評価指標

(指標1) Purity

Purity =
$$\sum_{i=1}^{|C|} \frac{|C_i|}{N} \max_{j} (\text{Precision}(C_i, A_j))$$

適合率: Precision
$$(C_i, A_j) = \frac{|C_i \cap A_j|}{|C_i|}$$

(指標2) InversePurity

InversePurity =
$$\sum_{j=1}^{|A|} \frac{|A_j|}{N} \max_i (\text{Recall}(C_i, A_j))$$

再現率: Recall
$$(C_i, A_j) = \frac{|C_i \cap A_j|}{|A_i|}$$

フォルダのクラスタリング手法

あらかじめ何種類の作業に分類すべきかは不明

→ クラスタ数を与える必要が無い階層的クラスタリングを用いる

クラスタ間距離

(1) Ward 法

 $\Delta = L(A \cup B) - L(A) - L(B)$

L(X): クラスタ X の各サンプルと重心との距離の二乗和

(2) 群平均法

全ての組合せのサンプル間距離の平均をクラスタ間距離とする

フォルダ内のファイル種別の調査

「Rails アプリケーション開発」の WD 内の拡張子

「rb」と「js」が多く存在するという特徴が類似

∴ 同様の作業では、フォルダ内に存在する拡張子が類似

フォルダの階層構造の形状の調査

$$dist(A, B) = \frac{TED(T_A, T_B)}{max(|V_A|, |V_B|) - 1}$$

				•		
	Python1	Python2	Rails1	Rails2	TeX1	TeX2
Python1		0.1935	0.9548	0.8837	0.6774	0.6129
Python2	0.1935		0.9620	0.8977	0.6296	0.5556
Rails1	0.9548	0.9620		0.6781	0.9892	0.9855
Rails2	0.8837	0.8977	0.6781		0.9721	0.9628
TeX1	0.6774	0.6296	0.9892	0.9721		0.250
TeX2	0.6129	0.5556	0.9855	0.9628	0.250	

∴ 階層構造の形状は、ユーザごとのフォルダ構造の特徴を表す

実験に用いた計算機の環境

項目名	環境
OS	Ubuntu 16.04 LTS
CPU	Intel(R) Core(TM) i7-6500U @ 2.50GHz
メモリ	8GB

実行時間

分類手法	Purity	InversePurity	F値	実行時間
(分類1) 上層のフォルダによる分類	0.6341	0.5854	0.6088	
(分類2) 提案手法(Ward 法)	0.9512	0.9024	0.9262	663.35 sec
(分類3) 提案手法(群平均法)	1.0000	0.9512	0.9750	667.87 sec

41個の WD の分類に要した時間は約11分

- 二 計算機内の全フォルダを対象とすると計算量大
- → 計算量を改善する必要あり

ファイル整理支援の様子

同様の作業の WD が散在

異なる作業の WD が混在

木構造編集距離の計算量

Zhang-shasha のアルゴリズム

時間計算量: $O(|T_1||T_2|\min(L_1,D_1)\min(L_2,D_2))$

|*T_n*|:木のノード数

 L_n : 木のはノードの数

 D_n : 木の深さ