# Modeling the mitigation of dengue fever, Chikungunya and Zika by infecting mosquitoes with *Wolbachia* bacteria

### Zhuolin Qu

Mathematics Department Tulane University

James (Mac) Hyman, Tulane University, USA Ling Xue, University of Manitoba, Canada

#### **Outlines**

- 1 Mosquito-borne diseases v.s. Wolbachia
- 2 Vertical transmission Wolbachia model
- 3 Numerical simulations of Wolbachia mitigation

#### "Mosquitoes cause more human suffering than any other organism."

- American Mosquito Control Association
- dengue fever, Chikungunya: high fever, muscle and joint pains, may be life-threatening
- Zika virus: no or only mild symptoms; infection during pregnancy can cause birth defect of brain

#### "Mosquitoes cause more human suffering than any other organism."

- American Mosquito Control Association
- dengue fever, Chikungunya: high fever, muscle and joint pains, may be life-threatening
- Zika virus: no or only mild symptoms; infection during pregnancy can cause birth defect of brain



# Aedes aegypti – primary vector for the transmission

# Aedes aegypti - primary vector for the transmission



Aedes aegypti, the yellow fever mosquito

# Aedes aegypti - primary vector for the transmission



Aedes aegypti, the yellow fever mosquito

#### mitigation approaches:

- remove breeding habitats
  - water tank/scrap tires
- natural predators
  - fish to control larvae
- spraying of insecticide (most used)
  - financial cost can be prohibitively high
  - logistically difficult in very urban/remote areas

# Aedes aegypti - primary vector for the transmission



Aedes aegypti, the yellow fever mosquito

#### mitigation approaches:

- remove breeding habitats
  - water tank/scrap tires
- natural predators
  - fish to control larvae
- spraying of insecticide (most used)
  - financial cost can be prohibitively high
  - logistically difficult in very urban/remote areas
- Eradication failed: lost political importance, no financial support, etc.
- © The re-infestation of Aedes aegypti keeps happening.

# Wolbachia - a promising strategy to stop diseases at source

• Recently proposed by public health researchers.

# Wolbachia - a promising strategy to stop diseases at source

Recently proposed by public health researchers.

reducing population of the mosquitoes

1

create a Wolbachia epidemic in the population to stop an epidemic

# Wolbachia – a promising strategy to stop diseases at source

• Recently proposed by public health researchers.

reducing population of the mosquitoes

 $\downarrow \downarrow$ 

create a Wolbachia epidemic in the population to stop an epidemic

- a natural parasitic microbe, found in 60% insects, but not in the wild Aedes aegypti mosquitoes (reproductive number < 1)</li>
- stops the proliferation of harmful viruses inside the mosquito
   → reduces the disease transmissions

# Wolbachia - complex vertical transmission

• Wolbachia can be maternally transmitted from infected mothers to offspring within the mosquito population.

#### Wolbachia - complex vertical transmission

 Wolbachia can be maternally transmitted from infected mothers to offspring within the mosquito population.

#### Schematic of the complex vertical transmission mating

Green: uninfected/natural; Red: Wolbachia-infected.

• release infected mosquitoes into the wild mosquito population

- release infected mosquitoes into the wild mosquito population
- difficult to sustain a stable infection in a wild mosquito population

- release infected mosquitoes into the wild mosquito population
- difficult to sustain a stable infection in a wild mosquito population fitness-cost:
  - cytoplasmic incompatibility: no viable offspring
  - female lifespan ↓
  - number of eggs produced ↓

- release infected mosquitoes into the wild mosquito population
- difficult to sustain a stable infection in a wild mosquito population fitness-cost:
  - cytoplasmic incompatibility: no viable offspring
  - female lifespan ↓
  - number of eggs produced ↓
- small infection will be wiped out (infection not naturally found in Aedes aegypti mosquitoes)

- release infected mosquitoes into the wild mosquito population
- difficult to sustain a stable infection in a wild mosquito population fitness-cost:
  - cytoplasmic incompatibility: no viable offspring
  - female lifespan ↓
  - ② number of eggs produced ↓
- small infection will be wiped out (infection not naturally found in Aedes aegypti mosquitoes)

# If there is a threshold condition that the *Wolbachia* endemic can take off? Our approach:

- develop an ODE model to describe the complex transmission cycle
- analyze the critical threshold condition for a sustained *Wolbachia* infected population

#### **Outlines**

- 1 Mosquito-borne diseases v.s. Wolbachia
- 2 Vertical transmission Wolbachia model
- 3 Numerical simulations of Wolbachia mitigation

#### Our new model captures the complex transmission cycle

#### by accounting for ...

- heterosexual transmission
- multiple pregnant states for females
- aquatic-life stage with carrying capacity







 $\nu_w$ : vertical transmission  $\sigma$ : mating rate  $\phi_w/\phi_u$ : egg laying rates  $\psi$ : egg developing rate

$$\begin{aligned} & \text{single males} \begin{cases} \dot{M}_u = b_m \psi A_u - \mu_{mu} M_u \\ \dot{M}_w = b_m \psi A_w - \mu_{mw} M_w \end{cases} \\ & \text{single females} \end{cases} \begin{cases} \dot{F}_u = b_f \psi A_u - \sigma F_u - \mu_{fu} F_u \\ \dot{F}_w = b_f \psi A_w - \sigma F_w - \mu_{fw} F_w \end{cases} \\ \\ \dot{F}_{pu} = \sigma F_u \frac{M_u}{M_u + M_w} - \mu_{fu} F_{pu} \\ \dot{F}_{pw} = \sigma F_w \frac{M_u}{M_u + M_w} + \sigma F_w \frac{M_w}{M_u + M_w} - \mu_{fw} F_{pw} \end{cases} \\ \\ \dot{A}_u = \left(\phi_u F_{pu} + \nu_u \phi_w F_{pw}\right) \left(1 - \frac{A_u + A_w}{K_a}\right) - \left(\mu_a + \psi\right) A_u \\ \dot{A}_w = \nu_w \phi_w \left(1 - \frac{A_u + A_w}{K_a}\right) F_{pw} - \left(\mu_a + \psi\right) A_w \end{cases}$$

In epidemiology, the basic reproduction number  $R_0$  of an infection

• is the number of cases one case generates within its infectious period, in a totally susceptible population

#### In epidemiology, the basic reproduction number $R_0$ of an infection

- is the number of cases one case generates within its infectious period, in a totally susceptible population
- threshold condition for the disease transmission
  - $R_0 > 1$  the infection spreads in a population
  - $R_0 < 1$  the infection dies out

In epidemiology, the basic reproduction number  $R_0$  of an infection

- is the number of cases one case generates within its infectious period, in a totally susceptible population
- threshold condition for the disease transmission
  - $R_0 > 1$  the infection spreads in a population
  - $R_0 < 1$  the infection dies out

By next generation matrix approach ... (messy calculations) ...

$$R_0 = \nu_w \frac{\mu_{fu} \phi_w (\sigma + \mu_{fu})}{\mu_{fw} \phi_u (\sigma + \mu_{fw})}$$

In epidemiology, the basic reproduction number  $R_0$  of an infection

- is the number of cases one case generates within its infectious period, in a totally susceptible population
- threshold condition for the disease transmission
  - $R_0 > 1$  the infection spreads in a population
  - $R_0 < 1$  the infection dies out

By next generation matrix approach ... (messy calculations) ...

$$R_0 = \nu_w \frac{\mu_{fu} \phi_w (\sigma + \mu_{fu})}{\mu_{fw} \phi_u (\sigma + \mu_{fw})}$$

 $= \frac{\text{\# of new infected eggs generated by an infected egg}}{\text{\# of new uninfected eggs generated by an uninfected egg}}$ (within one life cycle)

# $R_0 \sim \text{Stability analysis}$

$$R_0 = \frac{\text{\# of new infected eggs generated by an infected egg}}{\text{\# of new uninfected eggs generated by an uninfected egg}}$$
(within one life cycle)

# $R_0 \sim \mathsf{Stability} \; \mathsf{analysis}$

$$R_0 = \frac{\text{\# of new infected eggs generated by an infected egg}}{\text{\# of new uninfected eggs generated by an uninfected egg}}$$
 (within one life cycle)

- $R_0 > 1$  ("new infected")
  - $infection\ spreads 
    ightarrow system\ approach\ to\ endemic\ state$

# $R_0 \sim \mathsf{Stability}$ analysis

$$R_0 = rac{\# ext{ of new infected eggs generated by an infected egg}}{\# ext{ of new uninfected eggs generated by an uninfected egg}}$$
 (within one life cycle)

- $R_0 > 1$  ("new infected>new uninfected")
  - $infection \ spreads \rightarrow system \ approach \ to \ endemic \ state$
  - too good to be true (baseline  $R_0 \approx 0.7$ )

# $R_0 \sim \mathsf{Stability}$ analysis

$$R_0 = rac{\# ext{ of new infected eggs generated by an infected egg}}{\# ext{ of new uninfected eggs generated by an uninfected egg}}$$
 (within one life cycle)

- $R_0 > 1$  ("new infected>new uninfected")
  - $infection \ spreads \rightarrow system \ approach \ to \ endemic \ state$
  - too good to be true (baseline  $R_0 \approx 0.7$ )
- $R_0 < 1$  ("new infected<new uninfected")  $\leftarrow$  the real world
  - infection dies out? Not necessarily!

# $R_0 \sim \mathsf{Stability}$ analysis

$$R_0 = rac{\# ext{ of new infected eggs generated by an infected egg}}{\# ext{ of new uninfected eggs generated by an uninfected egg}}$$
 (within one life cycle)

- $R_0 > 1$  ("new infected>new uninfected")
  - $infection\ spreads 
    ightarrow system\ approach\ to\ endemic\ state$
  - too good to be true (baseline  $R_0 \approx 0.7$ )
- $R_0 < 1$  ("new infected<new uninfected")  $\leftarrow$  the real world
  - infection dies out? Not necessarily!
  - There is a critical threshold to maintain Wolbachia infection!

#### Critical threshold: backward bifurcation



- disease-free equilibrium ( $R_0 < 1$ ): stable
- endemic equilibrium (bifurcated)
  - upper branch ( $R_0 > 4\nu_u\nu_w$ ): stable
  - lower branch  $(4\nu_{\mu}\nu_{\nu} < R_0 < 1)$ : unstable

4 D > 4 A > 4 B > 4 B > 5 B B 9 Q C

#### **Outlines**

- 1 Mosquito-borne diseases v.s. Wolbachia
- 2 Vertical transmission Wolbachia model
- 3 Numerical simulations of Wolbachia mitigation

It's more effective if we remove some natural population before the release.

# It's more effective if we remove some natural population before the release.



Dashed lines: natural; Solid lines: infected

(The percentage is relative to the initial natural population.)

It's more effective to split a big release into several smaller ones.

#### It's more effective to split a big release into several smaller ones.



Dashed lines: natural; Solid lines: infected

# Acknowledgment

#### This research was partially supported by

- National Science Foundation MPS/DMS/Mathematical Biology Program
- National Institutes of Health NIGMS/MIDAS Program

# Thank you!

# Releases of infected males only (to wipe out the population)

$$Q + O \rightarrow \text{offspring}$$

- requires repetitive releases to wipe out thoroughly
- $\bullet$  -25% adult, -50% aquatic, release 80%



Releasing infected males only is not a reliable mitigation strategy

▶ large release quantity ▶ local effect only; the environment is not isolated