

Sistema de Partículas

André Tavares da Silva

andre.silva@udesc.br

Sistema de Partículas

• Criado por William T. Reeves para o filme Star Trek II: A ira de Khan lançado em 1982.

Sistema de Partículas

- Criado por William T. Reeves para o filme Star Trek II: A ira de Khan lançado em 1982.
- Usados normalmente para modelar objetos "confusos" como fogos, nuvens, fumaça, água. Algumas diferenças em relação aos outros objetos:
 - Seu volume não é representado por uma única entidade, mas através de uma nuvem de primitivas que definem seu volume.
 - As partículas não são entidades estáticas. Elas se movem dentro do volume. Novas partículas são normalmente criadas e destruídas durante a animação.
 - Objetos definidos por sistemas de partículas não são determinísticos. Sua forma não é completamente especificada.

Atributos das partículas

- initial position
- initial velocity (speed and direction)
- initial size
- initial color
- initial transparency
- shape
- lifetime

Vida Artificial

- Simulação de bando de pássaros (Craig Reynolds)
- Peixes (Dimetri Terzopoulos)
- Cobras e vermes (Gavin Miller)
- Humanos Virtuais (Daniel Thalmann e Norman Badler)

Conceito

• Conjunto de partículas cujo comportamento evolui no tempo de acordo com regras algorítmicas com o objetivo de simular um fenômeno fuzzy.

Aplicações

- Fenômenos naturais: explosões, fogos de artifício, nuvens, água
- Modelagem e deformação geométrica de superfícies
- Comportamento de grupos/multidões: pássaros, peixes, pessoas

Atributos de uma partícula

- Massa (real)
- Posição (R3)
- Velocidade (R3)
- Aceleração (R3)
- Cor (RGB)
- Tempo de vida (frames ou tempo)
- Forma
- Tamanho
- Transparência

Dinâmica de Partículas

- Sistemas desacoplados:
 - O movimento das partículas não é influenciado pelas outras partículas. Só depende de seu estado e interação com o ambiente
 - Vantagens:
 - Facilmente simulados
 - Complexidade na O(n), onde n é o número de partículas vivas em t
 - Sistemas desacoplados são naturalmente paralelizáveis

Dinâmica de Partículas

- Sistemas acoplados:
 - O movimento das partículas depende fundamentalmente de:
 - interação entre os corpos
 - seu estado
 - interação com o ambiente
 - O acoplamento pode ser:
 - Fixo, determinado por vínculos
 - Variável, determinado por proximidade
 - Total
 - Vantagem: mais realista de acordo com fenômenos reais

Dinâmica de Partículas

- Redução de complexidade em sistemas acoplados:
 - Decomposição celular do domínio
 - Separar as partículas por células
 - Calcular as interações entre partículas da mesma célula
 - Calcular as interações entre células vizinhas
- Complexidade O(n) se:
 - Nº de células proporcional ao nº de partículas
 - Partículas uniformemente distribuídas
 - Partículas "que não se movem muito"

- Objetivo: modelar sistemas difusos, como nuvens, fumaça, água e fogo
- Porque as técnicas tradicionais de CG não são adaptadas a esses fenômenos?
- Evolução de partículas de acordo com regras algorítmicas incluindo aleatoriedade
- Porque possui componente estocástico?

- Algoritmo
 - Para cada quadro
 - Criar novas partículas
 - Incluí-las na hierarquia
 - Definir atributos
 - Matar partículas velhas
 - Gerar novos movimentos para as partículas
 - Gerar uma imagem

- Define parâmetros que controlam a faixa de validade dos atributos de forma, aparência e movimento
- Por exemplo: n = m + vr
 n = número de partículas a serem criadas
 m = média de valores
 v = variância
 r = variável aleatória no intervalo [-1;1]
- O usuário controla m e v

- Porque uma partícula morre?
 - Tempo de vida: Seu tempo de vida acabou
 - Baixa intensidade: sua cor não pode ser vista
 - Fuga do pai (na hierarquia); sai do controle
- Rendering
 - Simplificação possível: Cada partícula é uma fonte pontual de luz (oclusão)
- Performance:
 - Dependendo do número de partículas a serem simuladas, não pode ser em tempo real

Exemplo

- Algoritmo de Reeves 1983
- Cada partícula é representada por um pixel na imagem gerada
- A cor de cada pixel é o resultado das cores de várias partículas que estão ativas no

mesmo pixel

- 20000 partículas
- 20 a 50 frames

• Utilização de sistemas de partículas para modelagem de flocks

- Objetivo: Simular bandos de pássaros, manadas de animais, cardumes, etc...
- Stanley & Stella (1988), The Lion King(1994), Batman Returns, The Hunchback of Notre Dame (1996), Hercules (1997), Mulan (1998)
- Boid (short termo para bird-object)
- Modelo mais utilizado em filmes e jogos

- Diferenças entre Boids e Particle Systems:
 - Cada boid possui uma descrição geométrica 3D baseada em polígonos
 - Cada boid tem um SR local
 - Existe um número fixo de boids eles não são criados ou destruídos
 - Métodos de rendering podem ser usados porque existem geralmente não muitos boids
 - O comportamento dos boids é dependente de seus estados internos e externos

- Três regras locais:
 - Collision avoidance
 - Velocity matching
 - Flock centering
- Comportamento emergente:
 - Boids andam juntos
 - Com velocidades parecidas
 - Não se interpenetram

Flocks e Boids

- Boid é um objeto simulado (como um pássaro)
- Flock é um grupo de objetos que exibe uma classe geral de objetos alinhados, livres de colisão e que apresentam movimento agregado
- Para simular um flock, devemos simular comportamentos de um indivíduo
 - Percepção
 - Dinâmica de movimento

Simulando flocks em animação

- Usar *script* não é boa idéia
- Particle system é muito simples
- Para tornar particle systems mais complexo
 - Percepção Local
 - Simulação baseada em Física
 - Comportamento de Flocking
- O resultado global é através da interação entre comportamentos locais individuais

Simulando flocks em animação

- Animador é um diretor de cinema
- A performance dos personagens é o resultado indireto das instruções do diretor aos atores
- Não saber o que vai acontecer com a simulação (onde são informados comportamentos e condições iniciais) pode trazer inesperadas e interessantes surpresas
- Problema: as vezes não é fácil descobrir porque eles estão fazendo o que estão fazendo... ("these darn boids seem to have a mind of their own!").

Simulando flocks em animação

- O comportamento individual deve ser coordenado com os dos membros do flock
- Dois equilibrados e opostos comportamentos:
 - Desejo de ficar perto do centro do flock
 - Desejo de evitar colisão com o flock
- Indivíduos não prestam atenção aos comportamentos de cada pássaro
 - A percepção de um pássaro em relação ao resto do flock é localizada e filtrada:
 - 2 ou 3 vizinhos próximos
 - Resto do flock

Flocks simulados

- Collision Avoidance
 - Evitar colisão com os membros do flock
- Igualar velocidade
 - Tentam igualar as velocidades com seus vizinhos próximos
- Ir ao centro do flock
 - Tentam ir ao centro do flock

O Modelo de Helbing

- Helbing et al. (2000) propuseram um modelo de forças físicas e sócio-psicológicas;
- Descreveram os indivíduos como um sistema de discos com os seguintes atributos:

O Modelo de Helbing

- Helbing et al. (2000) propuseram um modelo de forças físicas e sócio-psicológicas;
- Descreveram os indivíduos como um sistema de discos com os seguintes atributos:

```
m_{i}^{} \rightarrow massa
r_{i}^{0} \rightarrow raio
v_{i}^{0} \rightarrow intensidade da velocidade desejada
e_{i}^{0} \rightarrow vetor unitário apontando para um ponto desejado
<math>v_{i}^{0} \rightarrow velocidade instantânea
t_{i}^{0} \rightarrow tempo para restaurar as condições desejadas
```


O Modelo de Helbing

- Os indivíduos tentam adaptar sua velocidade para:
 - Atingirem o local desejado;
 - Manterem-se afastados uns dos outros e das paredes.

 $F_1 \Longrightarrow$ Força Motivadora

 $F_2 \Longrightarrow$ Evitar Colisão

 $F_3 \Longrightarrow$ Força de Contato

 $F_4 \Rightarrow$ Força de Atrito

http://www.angel.elte.hu/~panic