# **CS 3313 Foundations of Computing:**

# **Equivalence of NFA and DFA**

http://gw-cs3313-2021.github.io

© slides based on material from Peter Linz book, Hopcroft & Ullman, Narahari

1

#### **Regular Languages – Summary**

- DFA model deterministic
- Non-deterministic Finite Automata
- Regular expressions to formally define languages
- Equivalences:
  - Proof/Algorithm to convert Reg. Expression to NFA
  - Proof/Algorithm to convert DFA to Reg. Expression
  - Proof/Algorithm to convert NFA to DFA

These proofs show equivalence of Reg.Expr and Finite Automata non-determinism does not add to compute power of DFAs

### Today.....

- 1. Outline algorithm to generate Regular expression from a DFA
- 2. Proof/algorithm to convert NFA (without  $\lambda$  moves) to a DFA
- 3. Proof/algorithm to convert  $\lambda$ -NFA to NFA without  $\lambda$
- Approach of converting NFA to DFA using (2) and (3) is slightly different from textbook

3

#### **DFA/NFA to Regular Expression**

- Given any DFA M, there is a regular expression r that defines exactly L(M)
- Find the labels of the paths from start state to each final state
  - •Concatenate labels on the path
  - •If we have two choices of paths with labels  $w_1$  and  $w_2$  then "or" the paths to get  $w_1+w_2$
  - •If there is a cycle, with path labelled w, then  $w^*$
- We discussed a process of generating an expression by examining the DFA/NFA...what we want is a constructive proof that can lead to an algorithm

# Algorithm to generate Regular Expression from Finite Automata

- Can we design an algorithm that generates a NFA for any input regular expression? Why?
- Prove: Given a DFA M, construct a RE to represent L(M)
  - •Constructive proof that can be implemented as an algorithm
    - -What we present here is different from the textbook
- key idea: formulate the problem as a graph theoretic problem and develop dynamic programming solution
  - Dynamic programming is a very important and often used technique to solve problems
    - Break down a problem, recursively, into simpler subproblems
       & optimal solution constructed from optimal sol for subproblems

5

## **DFA-to-RE Algorithm**

- A strange sort of induction.
- States of the DFA are named 1,2,...,n.
- Induction is on k, the maximum state number we are allowed to traverse along a path.
- Derive set of strings ( reg. exp.) that go from state  $q_i$  to  $q_j$  without passing through any state numbered k or greater
- Similar to the Floyd Warshall algorithm to compute for all pairs of nodes, the shortest paths between them in the graph
  - Did you see this before ?.....VERY useful (and often used) algorithm!

### **Key Ideas for DFA-to-RE Algorithm**

- DFA M=  $(Q, \Sigma, \delta, q_1, F)$
- *N* states:  $(q_{1}, q_{2}, ..., q_{n})$
- Start state: *q*<sub>1</sub>
- Consider path from state  $q_i$  to  $q_j$  that pass through states numbered at most k -- call these k-paths
  - Denote the set of strings that take DFA from  $q_i$  to  $q_j$  going through states  $\underline{at\ most\ k}$  as R(i,j,k)
  - Derive regular expression for this set of strings
  - •When i=1 and  $q_j$  is a final state, this represents the set of strings accepted by the DFA

7

#### k-Paths

- ◆A *k-path* is a path through the graph of the DFA that goes through no state numbered higher than k.
- ◆Endpoints are not restricted; they can be any state.
- ◆RE is the union of RE's for the *n-paths* from the start state to each final state.

#### **Example: k-Paths**



0-paths from 2 to 3: RE for labels =  $\mathbf{0}$ .

1-paths from 2 to 3: RE for labels = **0**+**11**.

2-paths from 2 to 3: RE for labels = (10)\*0+1(01)\*1

3-paths from 2 to 3: RE for labels = ??

9

q

# DFA to RE Constructive Proof: k-Path Induction

- ♦Let  $R_{ij}^{\ k}$  be the regular expression for the set of labels of *k-paths* from state i to state j.
- ♦ Basis: k=0. only arcs or a node by itself
- $igoplus R_{ij}{}^0 = \text{sum of labels of arc from } i \text{ to } j.$
- **▶**Ø if no such arc.
- Dut add  $\lambda$  if i=j.

•  $R_{12}^{0} = \mathbf{0}$ .

$$\qquad \mathsf{R_{11}}^0 = \varnothing + \lambda = \lambda.$$

Notice algebraic law: Ø plus/union anything = that thing.



10



- ♦ Let  $R_{ij}^{k}$  (r.e. for *k-paths* from state i to state j).
- Inductive case: A *k-path* from *i* to *j* either: (1) Never goes through state *k*, or (2) Goes through k one or more times.



11

#### **k-Path Inductive Case**

- ◆ A k-path from i to j either:
  - 1. Never goes through state k, or
  - 2. Goes through k one or more times.



12

## **Algorithm:**

■ For each 1 <= i,j <= n, compute compute the table for R(i,j) for k = 0,1,2...n where R(i,j) contains the regular expression for  $R_{ij}^{\ k}$  (or to visualize as a table, R(i,j,k))

| k=0         |   | 1 | 2 | 3 |
|-------------|---|---|---|---|
|             | 1 | λ | 0 | 1 |
|             | 2 | 1 | λ | 0 |
|             | 3 | 0 | 1 | λ |
|             |   |   |   |   |
|             |   | 1 | 2 | 3 |
| <b>∠</b> −1 | 1 | λ | 0 | 1 |

13

## Example: k=2



•0 + 
$$0(\lambda + 10)^*(\lambda + 10) = 0 + 0(10)^*$$

• 
$$R_{31}^2 = R_{31}^1 + R_{32}^1 (R_{22}^1) R_{21}^1$$

• 
$$R_{32}^2 = R_{32}^1 + R_{32}^1 (R_{22}^1) * R_{22}^*$$

• 
$$R_{23}^3 = R_{23}^2 + R_{23}^2 (R_{33}^2) R_{33}^2$$

|   | ,                                                  |                                                                             |                                                    |
|---|----------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------|
|   | 1                                                  | 2                                                                           | 3                                                  |
| 1 | λ +(0(λ+10)*1                                      | $0+(\lambda+10)(10)^*(\lambda+10) = 0+0(10)^*= 0 (10)^*$                    | 1+(0(λ+10)*(0+11)                                  |
| 2 | 1+(λ+10)(λ+10)*1= 1+(10)*1                         | $(\lambda+10)+(\lambda+10)(\lambda+10)^*(\lambda+10)=(\lambda+10)^*=(10)^*$ | (0+11)+ (λ+10)(λ+10)*(0+11)=<br>(0+11)+(10)*(0+11) |
| 3 | 0 + (1+00)(\(\lambda\)+10)*(1)= 0 + (1+00)(10)*(1) | $(1+00)+((1+00).(\lambda+10)^*(\lambda+10))=(1+00)$<br>$(10)^*$             | (λ+01) + ( (1 +00) (λ+10)*(0+11))                  |

# Example: k=1



• 
$$R_{12}^1 = R_{12}^0 + R_{11}^0 (R_{11}^0)^* R_{12}^0$$

• 
$$R_{22}^1 = R_{22}^0 + R_{21}^0 (R_{11}^0)^* R_{12}^0$$

# Example: k=1



• 
$$R_{12}^1 = R_{12}^0 + R_{11}^0 (R_{11}^0)^* R_{12}^0$$

$$\bullet 0 + \lambda (\lambda)^* 0 = 0$$

• 
$$R_{22}^1 = R_{22}^0 + R_{21}^0 (R_{11}^0)^* R_{12}^0$$

• 
$$\lambda + 1(\lambda)^* 0 = \lambda + 10$$

• 
$$R_{23}^{1} = R_{23}^{0} + R_{21}^{0} (R_{11}^{0})^{*} R_{13}^{0}$$

•0 + 1 
$$(\lambda)^*$$
 1 =  $(0+11)$ 

#### **DFA to RE: Algorithm - Final Step**

- The RE with the same language as the DFA is the sum (union) of  $R_{1i}{}^{n}$ , where:
  - 1. n is the number of states; i.e., paths are unconstrained.
  - 2.  $1(q_1)$  is the start state.
  - 3. *j* is one of the final states.
  - In terms of an algorithm,

```
R_{ij}^{\ k} is R(i,j,k) with 1 \le i, j \le n and 0 \le k \le n.
```

• Implies O(n<sup>3</sup>) algorithm

17

17

#### **Next: Equivalence to NFA and DFA**

■ Equivalence of automata models:

two classes of automata are equivalent if they are equally 'powerful' – i.e., solve exactly the same set of problems

- In terms of languages accepted, model M1 and M2 are equivalent if any language accepted by M1 is accepted by M2 and vice versa
- We show DFAs and NFAs are equivalent
  - they accept exactly the same class of languages..Regular languages

#### **Recall NFA Definition**

- $M = (Q, \Sigma, \delta, q_0, F)$
- A finite set of states, typically Q.
- An input alphabet, typically  $\Sigma$ .
- A transition function,  $\delta$  from  $QX\Sigma$  to  $2^Q$
- A start state  $(q_0)$  in Q
- A set of final states  $F \subseteq Q$ .
- Difference with DFAs: transition function reads input a in state q and goes to a subset of states in Q
- NFA with  $\lambda$  moves:  $\delta$  from  $QX\{\Sigma U\lambda\}$  to  $2^Q$ 
  - Can make a move without reading input

19

19

#### Language of an NFA

 $\blacksquare$  A string w is accepted by an NFA if  $\delta(q_0,w)$  contains at least one final state.

$$\mathsf{L}(\mathsf{M}) = \{ \; \mathsf{w} \; \mid \; \delta(\mathsf{q}_0, \, \mathsf{w}) \, \cap \, \mathsf{F} \neq \emptyset \; \}$$

The language of the NFA is the set of strings it accepts.

- Extended Transition function extend to strings as follows:
- Basis:  $\delta(q, \lambda) = \{q\}$
- Induction:  $\delta(q, wa)$  = the union over all states p in  $\delta(q, w)$  of  $\delta(p, a)$

$$\delta(q, wa) = U_{p \in \delta(q, w)} \delta(p_i, a)$$

#### **Equivalence of DFA's, NFA's**

- A DFA can be turned into an NFA that accepts the same language.
  - •If  $\delta_D(q, a) = p$ , let the NFA have  $\delta_N(q, a) = \{p\}$ .
  - •Then the NFA is always in a set containing exactly one state the state the DFA is in after reading the same input.
- Any NFA (with or without λ moves) can be transformed to an equivalent DFA accepting the same language
  - First show how  $\lambda$  NFA can be turned into a NFA that accepts the same language
  - •Next, show how NFA without  $\lambda$  moves can be converted to a DFA that accepts the same language

21

## Paths in the $\lambda$ -NFA and Concept of E-Closure

- A path from state *p* to state *q* is labelled with symbols from alphabet OR labeled with empty string
- To transform an NFA with  $\lambda$ -moves to an NFA without  $\lambda$  moves, of particular interest are paths labeled with empty string
  - ullet An edge labeled with empty string implies from a state q, we can go to another state p without reading an input
- **Definition:** E-closure of a state = Path where all edges are labeled with empty string

### Example – E-Closure

- NFA with λ moves
- E-Closure  $(q_0) = \{ q_0, q_1, q_2 \}$
- E-Closure( $q_1$ ) ={  $q_1$ ,  $q_2$ }
- E-Closure( $q_2$ ) ={ $q_2$ }
- E-Closure( $\{q_0, q_2\}$ ) =  $\{q_0, q_1, q_2\}$



23

#### E-Closure: Definition & Extended δ

- E-Closure(q) = set of states p that you can reach from q following only edges labeled with empty string
- Can extend E-Closure to set of states:

For a set of states  $P: E\text{-}Closure(P) = \bigcup_{q \in P} E\text{-}closure(q)$ 

- δ' Extended transition (over strings) for NFA
  - •Basis:  $\delta'(q, \lambda) = \text{E-closure}(q)$
  - •Ind.:  $\delta'(q, xa) =$ 
    - -Start with (q, x) = S (set S of states)
    - -Take the union of E-Closure( $\delta(p, a)$ ) for all p in S.

#### Equivalence of NFA and €-NFA

- Every NFA is an  $\lambda$ -NFA (It just has no transitions on empty string  $\epsilon$ )
- Every  $\lambda$  -NFA is an NFA: requires us to take an  $\lambda$ -NFA and construct an NFA that accepts the same language.
  - We do so by combining  $\lambda$ -transitions with the next transition on a real input.
- Start with an  $\lambda$ -NFA with states Q, inputs  $\Sigma$ , start state  $q_0$ , final states F, and transition function  $\delta_E$ .
- Construct an "ordinary" NFA with states Q, inputs  $\Sigma$ , start state  $q_0$ , final states F', and transition function  $\delta_N$ .
- Compute  $\delta_N(q, a)$  as follows:
  - 1. Let S = E-Closure(q).
  - 2.  $\delta_N(q, a)$  is the union over all p in S of  $\delta_E(p, a)$ .
- F' =the set of states q such that CL(q) contains a state of F.
- A straightforward proof of induction shows  $\delta_E(q_0, w)$  is in F if and only if  $\delta_N(q, w)$  is in F'

25

### **Example: Equivalence of NFAs**

```
\delta'(q_0, 0) = E - Cl (\delta(\delta'(q_0, \lambda), 0))
= E - Cl (\delta \{q_0, q_1, q_2\}, 0))
= E - Cl (\{\delta(q_0, 0)\}) \cup \{\delta(q_1, 0)\} \cup \{\delta(q_2, 0)\}
= \{q_0, q_1, q_2\} \cup \emptyset \cup \emptyset
= \{q_0, q_1, q_2\}
```



$$\delta'(q_0, 1) = \{q_1, q_2\}$$
  
$$\delta'(q_0, 2) = \{q_2\}$$

$$\delta'(q_1,0) = \emptyset$$

$$\delta'(q_1, 1) = \{q_1, q_2\}$$

$$\delta'(q_1,2) = \{q_2\}$$

$$\delta'(q_2,0) = \emptyset$$

$$\delta'(q_2,0) = \emptyset$$

$$\delta'(q_2,2) = \{q_2\}$$



#### **Equivalence of NFAs and DFAs**

- Surprisingly (?), for any NFA there is a DFA that accepts the same language.
- Proof is the *subset construction*.
  - •Note: this means the number of states of the DFA can be exponential in the number of states of the NFA.
- Thus, NFA's accept exactly the regular languages.
- Importance of a constructive proof.....
  - •The procedure to construct a DFA from the NFA provides us with an algorithm we can use to automate the process!

27

27

#### **Transitions in a NFA**

- Question: Given an NFA with n states in set Q, what is  $\delta(q, w)$ ?
  - •A subset  $S_i$  of Q
  - •How many subsets can we have?
- Example:  $Q = \{q_0, q_1, q_2\}$  what can  $\delta(q, w)$  be for any state  $q \in \{q_0, q_1, q_2\}$  and any input w?
- define a set of  $2^n$  elements,  $Q_D = \{p_1, p_2, ..., p_m\}$  where  $m = 2^n$  and a one to one & onto mapping from  $2^Q$  to  $Q_D$ 
  - for each subset i of Q, we label it with an element  $p_i$
- Question: if  $\delta(q, a) = S_i$  then using new labels....?
  - • $\delta(q, a) = p_i$  which is a single element...i.e., deterministic!

#### **NFA to DFA Proof: Subset Construction**

- Given an NFA with states Q, inputs  $\Sigma$ , transition function  $\delta_N$ , state state  $q_0$ , and final states F, construct equivalent DFA D with:
  - States  $Q_D = 2^Q$  (Set of subsets of Q).
  - Input alphabel  $\Sigma$
  - Start state  $\{q_0\}$ .
  - Final states = all those with a member of F.
- The transition function  $\delta_D$  is defined by:

```
\delta_D(\{q_1,...,q_k\}, a) is the union over
all i = 1,...,k of \delta_N(q_i, a).
```

29

#### **Critical Point**

- The DFA states have *names* that are sets of NFA states.
- But as a DFA state, an expression like {p,q} must be understood to be a single symbol, not as a set.
- Analogy: a class of objects whose values are sets of objects of another class.
- Observe: after reading any input w, the NFA can be in a subset  $\delta(q, w)$  this subset is denoted by **one** element in  $Q_D$ 
  - To simulate the NFA for each input, the DFA keeps track of the subset of states that the NFA can be in after reading input

# **Proof of Equivalence: Subset Construction**

■ Given NFA N= (Q,  $\Sigma$ ,  $\delta_N$ ,  $q_0$ , F) define

DFA M= (Q', 
$$\Sigma$$
,  $\delta_D$ ,  $q_0$ ', F')

where: 
$$Q' = 2^Q - \text{all subsets of } Q$$

- Label each element in Q as  $[q_{il}, q_{i2},...,q_{ik}]$  to denote the set  $\{q_{il}, q_{i2},...,q_{ik}\}$
- $q_0' = [q_0]$  and F' = set of states in Q' that contain a state in F
- Define  $\delta_D([q_1, q_2, ..., q_i], a) = [p_1, p_2, ..., p_j]$  if and only if

$$\delta_N(\{q_1,q_2,...,q_i\},a) = \{p_1, p_2,...,p_i\}$$

(i.e., apply  $\delta_N$  to each element in  $(\{q_1, q_2, ..., q_i\})$ 

3

31

## **Proof of Equivalence: 1**

- The proof is almost a pun.
- Show by induction on |w| that

$$\delta_N(q_0, w) = \delta_D(\{q_0\}, w)$$

■ Basis:  $w = \lambda$ :  $\delta_N(q_0, \lambda) = \delta_D(\{q_0\}, \lambda) = \{q_0\}$ .

#### **Proof of Equivalence - 2**

- Inductive Step: Assume IH for strings |w| = n.
- Let w = xa with |x| = n
  - IH holds for *x*.
- From definition of extended  $\delta_D([q_0], xa) = \delta_D(\delta_D([q_0], x), a)$
- from inductive hypothesis:

$$\delta_D([q_0], x) = [p_1, p_2, ..., p_i]$$
 if and only if  $\delta_N(q_0, x) = \{p_1, p_2, ..., p_i\}$ 

• From definition of  $\delta_D$ 

$$\delta_D([p_1, p_2..., p_j], a) = [r_1, r_2, ..., r_k]$$
 if and only if  $\delta_N(\{p_1, p_2..., p_j\}, a) = \{r_1, r_2, ..., r_k\}$ 

■ Therefore  $\delta_D([q_0], xa) = [r_1, r_2, ... r_k]$  iff  $\delta_N(q_0, xa) = \{r_1, r_2, ... r_k\}$ 

33

### **Proof of Equivalence - 3**

- $\delta_D([q_0], xa) = [r_1, r_2, ... r_k]$  iff  $\delta_N(q_0, xa) = \{r_1, r_2, ... r_k\}$
- From definition of DFA final states F',

 $[r_1,r_2,...r_k]$  is in F' iff  $\{r_1,r_2,...r_k\}$  contains a state in F

■ Therefore, w = xa is accepted by DFA) iff it is accepted by NFA

## Algorithm....slight modification

- Straightforward mapping of proof to algorithm works but....?
- Number of states in NFA = n then number of states in DFA = ?
- A more practical algorithm: start with start state and define the transition function for all reachable states
  - •Turns out there can be a further optimization by finding equivalent states and eliminating them.

35

## **Example**







#### **Summary**

- Reg. Expr, DFA's, NFA's, and  $\lambda$ -NFA's all accept exactly the same set of languages: the regular languages.
  - •NFA = DFA and  $\lambda$ -NFA = NFA, therefore DFA=  $\lambda$ -NFA
- NFAs types are easier to design but only DFA can be implemented!
- Algorithms to convert from NFA to DFA.....
  - But could end up with a large number of states....
    - -Can we minimize the number of states?
- Next...the BIG question = properties of regular languages
  - •What types of languages are regular? What happens when we combine reg. lang. using set and algebraic operations? How do we know if the language is not regular?
    - -How can we **prove** that a language/problem is not regular?