Assignment 4 Answer

Q1. 总分10分

• 状态表

A_n	B_n	input: x	A_{n+1}	B_{n+1}
0	0	0	0	1
0	0	1	0	0
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	1	1

当 $A_nB_n=0$ 1与 $A_nB_n=10$ 时,会得到相同的 $A_{n+1}B_{n+1}$,因此简化后得到的状态表如下:

A_n	B_n	input: x	A_{n+1}	B_{n+1}
0	0	0	0	1
0	0	1	0	0
0	1	0	1	1
0	1	1	0	1
1	1	0	0	0
1	1	1	1	1

我们有 $A(n+1)=T\oplus A(n)$, 因此 $T=A(n)\oplus A(n+1)$,状态表如下:

A_n	B_n	input: x	A_{n+1}	B_{n+1}	T_A	T_B
0	0	0	0	1	0	1
0	0	1	0	0	0	0
0	1	0	1	1	1	0
0	1	1	0	1	0	0
1	0	0	Х	Х	Х	Х
1	0	1	Х	Х	Х	Х
1	1	0	0	0	1	1
1	1	1	1	1	0	0

• K-map化简并得出激励方程

A Bx	00	01	11	10
0	0	0	0	1
1	х	х	0	1

A Bx	00	01	11	10
0	1	0	0	0
1	x	x	0	1

得出激励方程:

$$T_A = Bx' + Ax'$$

$$T_B = B'x' + Ax'$$

Q2. 总分10分

• 获得表达式

。 真值表:

Q(t)	G	In	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

• K-map:

得出激励方程: Q(t+1) = G'Q(t) + GIn

• 电路图

Q3. 总分25分

$$S_0 = None, S_1 = 1, S_2 = 11, S_3 = 110, S_4 = 1101$$

• 状态图

• 状态表

	Next	Next State			put
Present State	x = 0	x = 1		x = 0	x = 1
S_0	S_0	S_1		0	0
S_1	S_0	S_2		0	0
S_2	S_3	S_2		0	0
S_3	S_0	S_4		0	0
S_4	S_0	S_1		1	1

• 状态编码 (State Encoding/Assignment)

$$S_0 = 000, S_1 = 001, S_2 = 010, S_3 = 011, S_4 = 100$$

• 状态表和IK触发器输入

A	B	C	x	A(t+1)	B(t+1)	C(t+1)	J_A	K_A	J_B	K_B	J_C	K_C
0	0	0	0	0	0	0	0	X	0	X	0	X
0	0	0	1	0	0	1	0	X	0	X	1	X
0	0	1	0	0	0	0	0	X	0	X	X	1
0	0	1	1	0	1	0	0	X	1	X	X	1
0	1	0	0	0	1	1	0	X	X	0	1	X
0	1	0	1	0	1	0	0	X	X	0	0	X
0	1	1	0	0	0	0	0	X	X	1	X	1
0	1	1	1	1	0	0	1	X	X	1	X	1
1	0	0	0	0	0	0	X	1	0	X	0	X
1	0	0	1	0	0	1	X	1	0	X	1	X
A	В	C	\overline{x}	A(t+1)	B(t+1)	C(t+1)	J_A	K_A	J_B	K_B	J_C	K_C
1	0	1	X	X	X	X	X	X	X	X	X	X
1	1	X	X	X	X	X	X	X	X	X	X	X

注意:ABC=101、110、111(unused state)可以填也可以不填,不在状态表中做要求,但需要在K-map中的需要体现出是X

• 推导激励方程

ab	d ₀₀	01	11	10
00	0	0	0	0
01	0	0	1	0
11	X	X	X	X
10	X	X	X	X

$$J_A = BCx, \quad K_A = 1$$

ab	00 b	01	11	10
00	0	0	1	0
01	X	X	X	X
11	X	X	X	X
10	0	0	X	X

ab	d 00	01	11	10
00	X	X	X	X
01	0	0	1	1
11	X	X	X	X
10	X	X	X	X

$$J_B = Cx, \quad K_B = C$$

ab	d 00	01	11	10
00	0	1	X	X
01	1	0	X	X
11	X	X	X	X
10	0	1	X	X

ab	00 to	01	11	10
00	X	X	1	1
01	X	X	1	1
11	X	X	X	X
10	X	X	X	X

$$J_C = B \oplus x, \quad K_C = 1,$$

Q4. 总分25分

 $7 \le 2^n - 1, n \ge 3$,至少需要3个FF以生成 1011110

n = 3 时, 状态表如下:

Clock	Sequence	FF's Output				
	Z	Q_2	Q_1	Q_0		
1	0	1	0	1		
1	1	0	1	0		
1	1	1	0	1		
1	1	1	1	0		
1	1	1	1	1		
1	0	1	1	1		
1	1	0	1	1		

存在相同 Q_2,Q_1,Q_0 但输出结果不同的情况,因此3个FF不足以生成序列 10111110

n = 4 时, 状态表如下:

Clock	Sequence		FF's	Output	
	Z	Q_3	Q_2	Q_1	Q_0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	0	1
↑	1	1	1	1	0
↑	0	1	1	1	1
1	1	0	1	1	1

• 推导方程

$$Z=Q_0^\prime+Q_1^\prime+Q_3^\prime$$

• 电路图

Q5. 总分30分

• 状态表

Present		State	Next		State			
A	B	C	A	B	C	T_A	T_B	T_C
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	0
0	1	0	X	X	X	X	X	X
0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	0
1	0	1	X	X	X	X	X	X
1	1	0	1	0	0	0	1	0
1	1	1	1	1	0	0	0	1

• 推导方程

a	^c 00	01	11	10
0	0	1	0	X
1	0	X	0	1

$$T_A = AB' + A'B = A \oplus B$$

$$T_B = BC' + B'C = B \oplus C$$

$$T_C = AC + A'C' = A \oplus C'$$

• 将don't care conditions情况进行修改,修改合理即可:

1) 修改一:

设定 010 和 101 下一状态均为 000 :

Pre	esent	State	Ne	ext St	tate]	Flip	-Flop	Inputs
\overline{A}	B	C	\overline{A}	B	C		T_A	T_B	T_C
0	0	0	0	0	1		0	0	1
0	0	11	0	1	1		0	1	0
0	1	0	0	0	0		0	1	0
0	1	1	1	1	1		1	0	0
1	0	0	0	0	0		1	0	0
1	0	1	0	0	0		1	0	1
1	1	0	1	0	0		0	1	0
_1	1	1	1	1	0		0	0	1

推导方程:

$$T_A = AB' + A'BC$$

$$T_B = BC' + A'B'C$$

$$T_C = AC + A'B'C'$$

2) 修改二:

设定 010 的下一状态为 100 , 101 的下一状态为 011

Present		State	Next		State			
A	B	C	A	B	C	T_A	T_B	T_C
0	1	0	1	0	0	1	1	0
1	0	1	0	1	1	1	1	0

推导方程:

a b	^c 00	01	11	10
0	0	1	0	1
1	0	1	0	1

The final equation is

$$T_A = AB' + A'B = A \oplus B$$

$$T_B = BC' + B'C = B \oplus C$$

$$T_C = ABC + A'B'C'$$