(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 16. Juni 2005 (16.06.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/054659 A1

- (51) Internationale Patentklassifikation⁷: F02M 37/10, H01R 39/04
- (21) Internationales Aktenzeichen: PCT/EP2004/052801
- (22) Internationales Anmeldedatum:

4. November 2004 (04.11.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 103 56 080.7 1. Dezember 2003 (01.12.2003) DE
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, 80333 München (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): WARNKE, Wolfgang [DE/DE]; Eisfeld 7, 37293 Herleshausen (DE).
- (74) Gemeinsamer Vertreter: SIEMENS AKTIENGE-SELLSCHAFT; Postfach 22 16 34, 80506 München (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,

[Fortsetzung auf der nächsten Seite]

(54) Title: FUEL PUMP

(54) Bezeichnung: KRAFTSTOFFPUMPE

- (57) Abstract: The invention relates to a fuel pump comprising an electromotive drive that has a commutator (20) and carbon brushes (24, 26) that brush alternately against commutator segments (16, 18) when said commutator (20) is rotated. The aim of the invention is to improve the corrosion resistance and to clean the carbon brushes (24, 26). To achieve this, the commutator segments (16, 18) contain graphite and at least one commutator segment (16, 18) contains graphite and an admixture of a material (30) that has a greater hardness than graphite.
- (57) Zusammenfassung: Die Erfindung bezieht sich auf eine Kraftstoffpumpe mit einem elektromotorischen Antrieb mit einem Kollektor (20) und mit bei Rotation des Kollektors (20) wechselweise an Kollektorsegmenten (16, 18) schleifenden Kohlebürsten (24, 26). Zur Verbesserung der Korrosionsbeständigkeit und zur Reinigung der Kohlebürsten (24, 26) weisen die Kollektorsegmente (16, 18) Graphit und zumindest ein Kollektorsegment (16, 18) Graphit mit einer Beimischung von einem eine grössere Härte als Graphit besitzenden Werkstoff (30) auf.

WO 2005/054659 A1

WO 2005/054659 A1

TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL,

PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen. WO 2005/054659 PCT/EP2004/052801

Beschreibung

Kraftstoffpumpe

Die Erfindung bezieht sich auf eine Kraftstoffpumpe mit einem elektromotorischen Antrieb mit einem Kollektor und mit bei Rotation des Kollektors wechselweise an Kollektorsegmenten schleifenden Kohlebürsten.

10 Derartige Kraftstoffpumpen sind bekannt. Sie werden insbesondere in Kraftfahrzeugen verwendet und dienen der Förderung von Kraftstoff aus einem Kraftstoffbehälter zum Vergaser oder zur Einspritzanlage eines Verbrennungsmotors. Der elektromotorische Antrieb erfolgt dabei mittels eines einen Kollektor 15 aufweisenden Elektromotors, eines so genannten Kommutatormotors. Der Kollektor, der auch als Stromwender oder Kommutator bezeichnet wird, ist ein koaxial auf einer Welle des Kommutatormotors aufsitzendes zylindrisches Bauteil, bestehend aus Segmente bildenden Kupferlamellen mit Isolierzwischenlagen, 20 an die so genannte Ankerspulen angeschlossen werden. Auf dem Kollektor schleifen Strom zuführende Bürsten aus Kupferdrahtgewebe oder Kohle.

Nachteilig bei diesen Kommutatormotoren ist die Lebensdauer

des Motors herabsetzender Verschleiß, der durch die Bildung
von ausgeprägten Oxidschichten auf der Oberfläche des Kollektors hervorgerufen wird. Eine besonders starke Oxidbildung
und damit erheblicher Verschleiß erfolgt bei in einer Kraftstoffumgebung arbeitenden Motoren. Um dem Verschleiß entgegenzuwirken, ist es bekannt, zusätzlich zu den Kohlebürsten
oder in diese integriert eine Putzvorrichtung vorzusehen, die
während der Kollektorrotation einen Abrieb der sich auf der
Kollektoroberfläche bildenden Oxidschicht bewirken soll. Eine

Reinigung der Kohlebürsten ist weder angedacht noch vorgesehen.

2

PCT/EP2004/052801

WO 2005/054659

5

10

20

25

30

In einer speziellen Ausführungsform einer Kraftstoffpumpe für bestimmte Kraftstoffe wird anstelle eines Kupferkollektors ein Kohlekollektor verwendet. Das bedeutet, dass nicht Kupfersegmente in dem Kollektor zum Einsatz kommen, sondern Kohlesegmente. Insbesondere im Zusammenhang mit alkoholhaltigen Kraftstoffen, die die Eigenschaft aufweisen, mit der Zeit elektrisch leitfähig zu werden, ergibt sich dabei der Nachteil, dass sich durch elektrochemische Vorgänge Korrosionsprodukte auf den Laufflächen der Kohlebürsten ablagern.

Aufgabe der Erfindung ist es daher, eine Kraftstoffpumpe der eingangs genannten Art zu schaffen, bei der die Laufflächen der Kohlebürsten frei von Korrosionsprodukten gehalten werden.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Kollektorsegmente Graphit und zumindest ein Kollektorsegment Graphit mit einer Beimischung von einem eine größere Härte als Graphit besitzenden Werkstoff aufweisen.

Durch die Verwendung von Graphit ist der Kollektor des Elektromotors zum Antrieb der erfindungsgemäßen Kraftstoffpumpe sehr korrosionsbeständig, insbesondere auch in einer Umgebung von alkoholhaltigen Kraftstoffen; die Lebensdauer der Kraftstoffpumpe wird dadurch sehr positiv beeinflusst. Besonders vorteilhaft wird gleichzeitig durch die Beimischung eines härteren Werkstoffs eine Reinigung der an den Kohlesegmenten anliegenden Kohlebürsten während des Betriebs der Kraftstoffpumpe dadurch erreicht, dass eine Abrasion, das heißt eine Ritzung und Mikrozerspanung, der Kohlebürsten, und zwar ins-

besondere der sich auf den Laufflächen der Kohlebürsten ablagernden Korrosionsprodukte, mittels des beigemischten Werkstoffs erfolgt. Der beigemischte Werkstoff führt somit zu einem gewünschten, erhöhten abrasiven Verschleiß der Korrosionsprodukte auf den Kohlebürsten durch den Kollektor. Eine zusätzliche Putzvorrichtung oder speziell ausgebildete Kohle-

3

PCT/EP2004/052801

Man könnte sich vorstellen, den beigemischten Werkstoff beispielsweise in Form streifenförmigen Vollmaterials in dem
Graphit vorzusehen. Eine besonders gute Reinigung der Kohlebürsten sowie eine einfache, kostengünstige Herstellung der
Kollektorsegmente wird hingegen erreicht, wenn gemäß einer
vorteilhaften Weiterbildung der Erfindung der beigemischte
15 Werkstoff in Form von einzelnen Partikeln in dem Graphit
vorliegt.

bürsten sind dafür nicht erforderlich.

Dabei ergibt sich vorteilhaft eine gleichförmige Reinigung der Kohlebürsten im Bereich ihrer gesamten Auflagefläche am Kollektor, wenn gemäß einer anderen Weiterbildung der Erfindung die Partikel gleichmäßig in den jeweiligen Kollektorsegmenten, das heißt in dem oder den Kollektorsegmenten, die Graphit mit einer Beimischung des eine größere Härte als Graphit besitzenden Werkstoffs aufweisen, verteilt sind.

25

30

20

5

WO 2005/054659

Grundsätzlich unterliegt die Wahl des beigemischten Werkstoffs keinen Einschränkungen. Wie Versuche mit erfindungsgemäßen Kraftstoffpumpen gezeigt haben, hat es sich jedoch als
besonders vorteilhaft erwiesen, wenn gemäß einer anderen
Weiterbildung der Erfindung der beigemischte Werkstoff Aluminiumoxid ist.

Um trotz guter Reinigungswirkung die elektrischen Eigenschaften der Kohlebürsten-Kollektorsegmente-Paarung nicht möglicherweise ungünstig zu beeinflussen, hat es sich als vorteilhaft gezeigt, wenn der Anteil des beigemischten Werkstoffs an den jeweiligen Kollektorsegmenten, das heißt an dem oder den Kollektorsegmenten, die Graphit mit einer Beimischung des eine größere Härte als Graphit besitzenden Werkstoffs aufwei-

PCT/EP2004/052801

WO 2005/054659

sen, in etwa 0,2 % beträgt.

5

20

10 Eine vorteilhaft besonders schlanke Bauform des elektromotorischen Antriebs der Kraftstoffpumpe ergibt sich nach einer
anderen Weiterbildung der Erfindung, wenn die Kollektorsegmente bezogen auf die Kollektorachse radial ausgerichtet sind
und die Kohlebürsten axial an den Kollektorsegmenten anlie15 gen. Die Kollektorsegmente sind dabei an einer Stirnseite des
Kollektors angeordnet, an die die Kohlebürsten axial angedrückt werden.

Gemäß einer anderen vorteilhaften Weiterbildung der Erfindung sind die Kollektorsegmente bezogen auf die Kollektorachse axial ausgerichtet und die Kohlebürsten liegen radial an den Kollektorsegmenten an, wodurch die Antriebseinheit der Kraftstoffpumpe sehr kurz und flach ausgebildet werden kann.

Durch die Rotation des Kollektors und das sich daraus ergebende Schleifen der Kohlebürsten über alle Kollektorsegmente kann eine nennenswerte Reinigung der Kohlebürsten bereits erreicht werden, wenn lediglich ein Kollektorsegment oder wenige Kollektorsegmente den beigemischten, härteren Werkstoff aufweisen. Für eine besonders wirkungsvolle Reinigung der Kohlebürsten bei gleichzeitiger Vermeidung von Unwucht des Kollektors ist es hingegen vorteilhaft, wenn gemäß einer anderen Weiterbildung der Erfindung alle in Kontakt mit den

Kohlebürsten kommenden Kollektorsegmente den beigemischten Werkstoff aufweisen.

5

PCT/EP2004/052801

WO 2005/054659

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im Folgenden näher beschrieben. Darin zeigt die einzige Figur eine geschnittene Ansicht eines Rotors einer Kraftstoffpumpe.

In der Figur ist ein Rotor 1 eines nicht weiter dargestellten
Kommutatormotors einer Kraftstoffpumpe abgebildet. Der eine
Rotorwelle 2 aufweisende Rotor 1 rotiert beim Betrieb der
Kraftstoffpumpe um eine Rotorachse 4 und ist mit Rotorwicklungen 6 versehen. Die Enden der Rotorwicklungen 6 sind
elektrisch leitend mit Anschlüssen 8, 10 von Kontaktfahnen
15 12, 14 verbunden.

Ferner sind Graphit aufweisende, bevorzugt aus Graphit bestehende, Kollektorsegmente 16, 18 eines koaxial auf der Rotorwelle 2 aufsitzenden Kollektors 20 mit den Kontaktfahnen 12, 20 14 verbunden. Somit sind die Kollektorsegmente 16, 18 an die Rotorwicklungen 6 elektrisch angeschlossen. Die Kollektorsegmente 16, 18 des Kollektors 20 sind bezogen auf die der Rotorachse 4 entsprechenden Kollektorachse radial, von der Kollektorachse wegweisend ausgerichtet. Bei einer Rotation 25 des Rotors 1, angedeutet durch einen Pfeil 22, und damit des Kollektors 20 schleifen mittels einer nicht dargestellten Federeinrichtung vorgespannte Kohlebürsten 24, 26 wechselweise an den Kollektorsegmenten; während einer Umdrehung des Rotors 1 schleift daher beispielsweise sowohl das in der 30 Figur obere Kollektorsegment 16 als auch das in der Figur untere Kollektorsegment 18 an der in der Figur oberen Kohlebürste 24 entlang.

Es ist ferner zu erkennen, dass die Kollektorsegmente 16, 18 eine Beimischung von Partikeln 28 aufweisen, die gleichmäßig in den Kollektorsegmenten 16, 18 verteilt sind und aus einem Werkstoff 30 Aluminiumoxid bestehen. Der Deutlichkeit halber sind die Partikel 28 im Verhältnis zu den Kollektorsegmenten 16, 18 in Übergröße dargestellt.

6

PCT/EP2004/052801

WO 2005/054659

WO 2005/054659

Patentansprüche

5

10

15

20

25

30

1. Kraftstoffpumpe mit einem elektromotorischen Antrieb mit einem Kollektor und mit bei Rotation des Kollektors wechselweise an Kollektorsegmenten schleifenden Kohlebürsten, dad urch gekennzeich net, dass die Kollektorsegmente (16, 18) Graphit und zumindest ein Kollektorsegment (16, 18) Graphit mit einer Beimischung von einem eine größere Härte als Graphit besitzenden Werkstoff (30) aufweisen.

PCT/EP2004/052801

- 2. Kraftstoffpumpe nach Anspruch 1, dadurch ge-kennzeichnet, dass der beigemischte Werkstoff (30) in Form von einzelnen Partikeln (28) in dem Graphit vorliegt.
- 3. Kraftstoffpumpe nach Anspruch 2, dadurch ge-kennzeichnet, dass die Partikel (28) gleichmäßig in den jeweiligen Kollektorsegmenten (16, 18) verteilt sind.
- 4. Kraftstoffpumpe nach einem der vorhergehenden Ansprüche, da durch gekennzeichnet, dass der beigemischte Werkstoff (30) Aluminiumoxid ist.
- 5. Kraftstoffpumpe nach einem der vorhergehenden Ansprüche, da durch gekennzeichnet, dass der Anteil des beigemischten Werkstoffs (30) an den jeweiligen Kollektorsegmenten (16, 18) in etwa 0,2 % beträgt.
- 6. Kraftstoffpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass

die Kollektorsegmente (16, 18) bezogen auf die Kollektorachse radial ausgerichtet sind und dass die Kohlebürsten (24, 26) axial an den Kollektorsegmenten (16, 18) anliegen.

8

PCT/EP2004/052801

5

10

WO 2005/054659

- 7. Kraftstoffpumpe nach einem der Ansprüche 1 bis 5, da durch gekennzeichnet, dass die Kollektorsegmente bezogen auf die Kollektorachse axial ausgerichtet sind und dass die Kohlebürsten radial an den Kollektorsegmenten anliegen.
- 8. Kraftstoffpumpe nach einem der vorhergehenden Ansprüche, da durch gekennzeichnet, dass alle in Kontakt mit den Kohlebürsten (24, 26) kommenden Kollektorsegmente (16, 18) den beigemischten Werkstoff (30) aufweisen.