Elektrické a magnetické pole – základní charakteristiky

Elektromagnetické jevy, vlastnosti elementárních částic, elektrický náboj Elektrický náboj a jeho základní vlastnosti, elementární náboj Elektrické a magnetické síly a jejich obecná povaha Základní mechanizmus vytvoření elektrického pole z makroskopického hlediska – elektricky vodivé a dielektrické materiály Volné náboje ve vodičích a vázané náboje v dielektriku – elektrické dipóly

Pojem elektrostatické pole

Pojem abstraktního bodového náboje, liniová, plošná a objemová hustota náboje

Základní mechanizmus vytvoření magnetického pole z makroskopického hlediska, vodiče protékané proudem a magnetické materiály Kondukční proud ve vodičích a vázané proudy v magnetiku, magnetické dipóly

Stacionární magnetické pole

Nestacionární elektromagnetické pole, vznik elektromagnetické vlny Lorenzova síla jako výsledná síla působící na náboj v elektromagnetickém poli

Elektromagnetické jevy jsou svázány se samotnými vlastnostmi hmoty a částic, ze kterých je tvořena. Mezi určitým typem částic můžeme pozorovat specifický druh sil, které se nazývají elektromagnetické. V souvislostí s těmito silami hovoříme o existenci elektromagnetického silového pole.

JEDNODUCHÝ MODEL ATOMU

Elektrický náboj

Při popisu chování částic s ohledem na elektromagnetické silové působení jim přisuzujeme určitou vlastnost tím, když říkáme, že **nesou elektrický náboj**.

S ohledem na elektromagnetické působení existují dva základní typy částic a tedy i dva typy náboje. **Částice kladně nabité nesoucí kladný náboj** a **částice záporně nabité nesoucí záporný náboj**.

Ke kladně nabitým patří například **proton**, k záporně nabitým **elektron**. Jednotkou elektrického náboje je **Coulomb**. V elektrickém poli se náboje stejného znaménka odpuzují, náboje různých znamének přitahují.

Vlastnosti elektrického náboje

Náboje nikde nevznikají ani nezanikají, nabité částice se mohou v rámci určitých hmotných těles přemísťovat, posouvat, hromadit, čímž se elektromagnetické jevy projevují i v makroskopickém měřítku. V makroskopické teorii elektromagnetického pole nedělíme obvykle materiál na jednotlivé elektrony a protony, zabýváme se pouze jejich sumárními účinky

Elementární náboj

Náboj protonu a elektronu je stejně velký, ale s opačným znaménkem, přisuzujeme mu s ohledem na volbu jednotek velikost 1.6*10⁻¹⁹C. Tento náboj nazýváme elementární protože předpokládáme, že už není možné ho dále dělit. Nebyly totiž prokázány jiné částice, které by vykazovaly s ohledem na silové působení v elektromagnetickém poli menší velikost náboje.

Elektromagnetické síly se projevují mezi částicemi, které jsou v klidu, ale i mezi částicemi, které jsou v pohybu. Z hlediska charakteru rozdělujeme síly na elektrické a magnetické.

Elektrické síly se projevují mezi nabitými částicemi bez ohledu na to, zda se pohybují.

Magnetické síly se projevují pouze mezi pohybujícími se nabitými částicemi.

Částice nesoucí náboj, elementární náboj

Proton

Náboj 1.6 × 10⁻¹⁹ C Klidová hmotnost: 1.67 x 10⁻²⁷ kg Rozmery 0,84 x 10⁻¹⁵ m

Elektron

Náboj 1.6 × 10⁻¹⁹ C

Klidová hmotnost: 9.11×10^{-31} kg

Rozmery menší než 10⁻¹⁹m

Proton odpovídá približne hmotnosti 1836 elektronu

Elektrická síla

Elektrickými silami jsou elektrony a protony navzájem přitahovány či odpuzovány

Elektrické pole pomyslně vytéká z kladných nábojů – zřídla a vstupuje do záporných - nory

Magnetická síla

Magnetické síly působí ve směru kolmém na směr pohybu, zakřivují dráhu pohybu

Magnetické pole má podobu pomyslných vírů kolem letících nábojů

Magnetické pole má podobu pomyslných vírů kolem letících nábojů

Elektrické pole, jeho základní charakteristiky a způsob vybuzení

Elektrické vodiče

Volné náboje

Elektrické vodiče

volné elektrony v podobě pomyslného elektronového plynu

kladná jádra + s neúplným elektronovým obalem

Základní mechanizmus vybuzení elektrického pole

Náboje na povrchu vodivého tělesa

Elektrické pole mezi nabitými elektrodami Siločáry elektrického pole

Elektricky vodivé materiály v elektrickém poli volných nábojů

Vázané náboje v dielektriku - elektrické dipóly

Dielektrikum v neutrálním stavu

E = 0

Dielektrikum polarizované v elektrickém poli

Elektrické dipóly

Nehomogenní dielektrikum, vázaný náboj na povrchu i v objemu dielektrika

Dielektrické materiály vložené do elektrického pole volných nábojů

21

Abstraktní pojem bodového náboje

Náboj konečné velikost na rozměrově nekonečně malém tělese. Za bodový náboj lze považovat náboj na elementu délky dl, na elementu plochy dS, nebo v elementu objemu dV elektricky nabitého tělesa

Linový náboj - náboj rozmístěný na přímé linii s liniovou hustotou T

Například volný náboj na tenkém či rovnoměrně nabitém válcovém vodiči

Náboj rozmístěný na povrchu s plošnou hustotou O Například volný náboj na povrchu vodiče, nebo vázaný náboj na povrchu dielektrika.

Náboj rozmístěný v objemu s objemovou hustotou ρ

Například vázaný náboj v nehomogenním dielektriku

Magnetické pole, jeho základní charakteristiky a způsob vybuzení

Základní mechanizmus vybuzení magnetického pole

Pomyslné vázané proudy v magnetiku

Elektromagnetické pole objektivně existuje, šíří se v prostoru ve formě elektromagnetických vln

Kmitající elektrický dipól

Celková elektrická a magnetická síla působící na elektrický náboj Q

- **elektrická síla** centrální, působí ve směru po spojnici mezi náboji, je popsána veličinou, která se nazývá intenzita elektrického pole \mathbf{E} , má velikost : $\mathbf{F} = \mathbf{Q}.\mathbf{E}$
- magnetická síla působí pouze na pohybující se náboje, je kolmá na směr dráhy letícího náboje i na veličinu popisující magnetické pole – magnetickou indukci B. Má velikost

$$F=Q(v \times B)$$

Lorentzova síla – výsledná síla: je součtem síly elektrické a magnetické

