Universidade Federal Rural do Rio de Janeiro Instituto Multidisciplinar Ciência da Computação Grafos e Algoritmos

LABORATÓRIO DE GRAFOS E ALGORITMOS

Gabriel Marinho João Pedro Ribeiro de Moura Li Victor Lucas Nickolas da Rocha Machado Pedro Conrado

> Nova Iguaçu 28 de Novembro 2019

Conteúdo

1	1 Introdução	2	
2	Definições	2	
3	Implementação3.1Força Bruta3.2Funções do Algoritmo Força Bruta3.3Algoritmo Otimizado (Busca em Largura Lexicográfica)3.4Funções do Algoritmo Otimizado	3 3 4 6 7	
4	Parte 2	8	
5	Testes e métricas 5.1 Ambiente de teste	8 8 9	
6	Instruções de uso 6.1 Linux 6.2 Windows	9 9 10	
7	Referências		
8	Agradecimentos	10	

Resumo

Este artigo tem como objetivo mostrar e discutir sobre os métodos por nós implementados de Reconhecimento de Grafos Cordais e suas aplicações. Ademais, é apresentado definições e detalhes sobre os métodos utilizados, tais como as funções que foram utilizadas e também, informações sobre a implementação, na qual foi utilizada a linguagem Python na sua versão 3.7.

1 Introdução

Primeiramente, é apresentado o algoritmo de Força Bruta, no qual o algoritmo faz literalmente um "Força Bruta", ou seja, verifica todas as possibilidades, uma por uma, verificando se a propriedade do grafo "ser cordal" é verdadeira ou não em todos os ciclos do grafo. Posteriormente, o algoritmo nos dá a resposta se o grafo que foi estudado, é cordal ou não. Ademais, foi implementada também um algoritmo otimizado que utiliza da Busca Lexicográfica em Largura para o reconhecimento de Grafos Cordais, na qual gera uma ordenação de vértices de acordo com a quantidade de vizinhos que cada vértice tem.

2 Definições

• Grafo Cordal: Um grafo é denominado cordal (ou triangularizado) quando todo ciclo de comprimento maior do que 3 possui uma corda (Szwarcfiter, J. Teoria Computacional de Grafos. Cap 4).

Figura 1: Grafo Cordal à esquerda e o não cordal à direita.

- Passeio: uma sequência $v_1, v_2, ..., v_k$ de vértices de V com $V_i V_j \in E$.
- Ciclo: Ciclo é um passeio fechado $v_1, v_2, ..., v_k = v_1$, onde $v_1, v_2, ..., v_{k-1}$ é um caminho.
- Busca em Largura Lexicográfica: Uma busca em largura para um grafo não direcionado G(V, E) é lexicográfica quando para todo

 $v \in V$ e $w, w_1 \in A^*(v) = \{w \in N(v) \mid w \text{ não foi marcado}\}$, se w é mais remoto do que w_1 , ou seja, existe um vértice z adjacente a w e não a w_1 , que foi alcançado na busca antes de qualquer vértice z' adjacente a w_1 e não a w; então w é explorado antes de w_1 na busca. Esta prioridade diminuirá a liberdade de escolha dos vértices, mas nem sempre a eliminará, ou seja, a prioridade não conduzirá a escolha necessariamente única de um vértice.

• Esquema de Eliminação Perfeita: Diz-se que uma sequência de vértices é um esquema de eliminação perfeita se cada vértice v_i for um vértice simplicial do subgrafo induzido por $\{v_i, v_i+1, \ldots, v_n\}$, ou seja, para cada v_i , o subgrafo induzido por $A(v_i) = \{v_1, v_2, \ldots, v_{i-1}\}$ é completo.

• vert_inicial: Vértice inicial.

• v: Vértice atual.

• ciclo: Ciclo atual.

• ciclos: Lista de ciclos.

• n: Número de vértices.

• **G9**: Grafo com 9 vértices.

3 Implementação

A implementação do algoritmo de Reconhecimento de Grafos Cordais foi desenvolvida e baseada na linguagem Python na sua versão 3.7. O método de ordenação utilizado no algoritmo de Força Bruta foi a ordenação topológica, e no algoritmo otimizado, foi utilizado o método da Busca em Largura Lexicográfica em conjunto com o Esquema de Eliminação Perfeita.

3.1 Força Bruta

O algoritmo Força Bruta do Reconhecimento de Grafos Cordais, verifica todos os ciclos existentes no grafo em questão, e verifica se estes ciclos são ou não cordais.

Em seguida, é apresentado as funções usadas na implementação do Força Bruta , com o seu protótipo (pseudo-código) e uma breve explicação da função.

3.2 Funções do Algoritmo Força Bruta

```
Algoritmo 1: achaCiclo (vert_inicial, v, lst_aberta, inicio, ciclo,
ciclos)
 if inicio == False and v == vert\_inicial then
     if ta\_dentro(ciclo, copy()) == False then
      I adiciona o ciclo na lista
     end if
     retorna
 end if
 for aresta em lista_aberta do
     if v em aresta then
        cria uma cópia da lista_aberta
        remove aresta atual da cópia da lista
        atribui os vértices da aresta a 2 variaveis a e b
        if v é igual ao primeiro elemento da aresta e o segundo não
          está no ciclo ou é o vert inicial then
            adiciona o segundo elemento (b) em ciclo
            chama achaCiclo() com o segundo elemento como vértice
            remove o segundo elemento do ciclo
        end if
            if v é o segundo elem da aresta e o primeiro nao está no
             ciclo ou é o vert inicial then
               adiciona o primeiro elemento no ciclo
               chama achaCiclo() com o primeiro elemento como
                vértice inicial
               remove o primeiro elemento do ciclo
            end if
        end if
     end if
 end for
```

Algoritmo 2: trataCiclo(ciclos)

```
for ciclo em ciclos do

if se tamanho do ciclo é maior ou igual a 4 then

adiciona o ciclo achado
end if
end for
retorna lista
```

Algoritmo 3: identificaCiclo(edge_list,n)

```
adiciona 0 na fila
while fila \neq \emptyset do
   coloca 0 no vértice atual e tira o 0 da fila
   for arestas na lista de arestas do
       if se aresta não está em lista_aberta then
          if se vértice está em aresta then
              adiciona a aresta em lista_aberta
              if se vértice é o primeiro elemento da aresta then
                 chama achaCiclo() com o segundo vértice da
                   aresta como vértice inicial e atual
              end if
              else
                 adiciona o segundo elemento na fila
                 visitados[segundo elemento] = 1
              end if
          end if
          else
              if vértice é o segundo elemento da aresta then
                 if primeiro elemento da aresta está na fila then
                     chama achaCiclo() com o primeiro vértice
                      como vértice inicial e atual
                 end if
                 else
                     adiciona o primeiro elemento na fila
                     visitados[primeiro elemento] = 1
                 end if
              end if
          end if
       end if
   end for
   if fila == \emptyset then
       for i = 1 até i = n do
          if visitados/i/==0 then
              adiciona i na fila
              visitados[i] = 1
          end if
       end for
   end if
end while
retorna os ciclos tratados
```

Algoritmo 4: is_chordal_brute(n)

```
chama função que identifica os ciclos
gera lista de adjacência
for ciclo em ciclos do
   for for vértice em ciclo do
      grau = 0
      for vizinho em N(v) do
          if vizinho em ciclo then
             grau = grau + 1
          end if
      end for
      if grau maior ou igual a 3 then
         quebra
      end if
   end for
   else
   retorna False, ciclo
   end if
end for
retorna True
```

3.3 Algoritmo Otimizado (Busca em Largura Lexicográfica)

O algoritmo otimizado do Reconhecimento de Grafos Cordais, baseia-se no uso do método da Busca em Largura Lexicográfica, onde é retornado um conjunto de vértices ordenados pela quantidade de vizinhos a ele associados.

Esse algoritmo também é baseado no Teorema dos Grafos Cordais, no qual mostra que:

Teorema: Um grafo G(V, E) é cordal se e somente se G possuir um esquema de eliminação perfeita.

Lema: Seja G(V,E) um grafo cordal aplicado ao algoritmo de busca em largura lexicográfica. Então a sequência S de vértices v ordenados decrescentemente segundo largura(v) é um esquema de eliminação perfeita.

Em seguida, é apresentado as funções usadas na implementação do Algoritmo Otimizado, com o seu protótipo (pseudo-código) e uma breve explicação da função.

3.4 Funções do Algoritmo Otimizado

```
Algoritmo 5: get_lexBfs()
 for v \in V do
  R(v) = \emptyset
 end for
 for j = n até j = 1 do
     escolher v \in V: s^{-1}(v) e lexicograficamente maximo s(j) = v
     for w \in Adj(v): s^-1(w) não definido fazer do
       incluir j a direita em R(w)
     end for
 end for
Algoritmo 6: elimPerfeita(grafo, correção = None)
 lex = lista de vértices ordenados pela função lexBfs()
 for i = 1 até i = n do
  adiciona um conjunto vazio na lista L
 end for
 for v \in lex do
     if rotulo de v não esteja vazio then
        seleciona o vértice u com menor valor de largura
        adiciona na lista do vértice u, o conjunto de vértices a serem
         verificados
     end if
     else
     | quebra
     end if
 end for
 for i = 1 até i = n do
     if lista do vértice, menos seus adjacentes não for vazia then
        adicione o vértices problemáticos
        if numero dos vértices estiver errado then
            return False, e o conjunto de vértices que formam o ciclo
             proibido
        end if
        else
            retorna False, e o conjunto de vértices que formam o
             ciclo proibido
        end if
     end if
```

 $\begin{array}{c} \mathbf{end} \ \mathbf{for} \\ \mathbf{retorna} \ True \end{array}$

Algoritmo 7: is_chordal

```
for componente \in componentes do

| verifica se há uma eliminação perfeita
| if se não houver eliminação perfeita then
| retorna problema
| end if
end for
retorna True
```

O algoritmo otimizado para verificar se um grafo é cordal parte da premissa que o grafo é conexo, por conta da busca lexBfs.

Contudo, na implementação aqui realizada, há um pré processamento para que as componentes conexas sejam verificadas separadamente, e assim pode-se verificar se um grafo não conexo é cordal da mesma maneira.

4 Parte 2

O nosso objetivo, foi inferir a interferência da otimização do processo de reconhecimento do grafo cordal no reconhecimento de outra classe de grafo, o grafo de intervalo.

O Grafo de Intervalo tem várias aplicações tais quais análise de cadeias de DNA e seriação arqueológica.

Existem muitos estudos sobre grafos e ordens de intervalo, tanto pelo interesse puramente teórico, quanto pelo papel central que desempenham em certas aplicações.

Eles surgem em muitas aplicações práticas que requerem a construção de uma linha do tempo onde, a cada evento relacionado ao problema, corresponde um intervalo representando a sua duração..

5 Testes e métricas

Abaixo, é exibido os resultados obtidos nos testes, o ambiente de teste usados no desenvolvimento do projeto e as métricas obtidas.

5.1 Ambiente de teste

• Processador: Intel Core i7-7700HQ

• Memória: 16GB DDR4

• Sistema Operacional: Ubuntu 19.04

5.2 Testes

Os testes foram feitos usando os algoritmos de Reconhecimento de Grafos desenvolvidos nesse projeto no ambiente de teste acima definido. A seguir serão apresentados os resultados obtidos nos testes em cada grafo utilizado.

	Mémoria	Tempo de Execução
K5	OMB	0.000601 segundos
K10	OMB	3m 48s
K20	OMB	mais de 20m
G9	OMB	0.0042s

Figura 2: Tabela com os resultados obtidos no Força Bruta.

	Mémoria	Tempo de Execução
K5	OMB	0.00005s
K10	OMB	0.00012
K20	OMB	0.0002s
G9	OMB	0.00005s

Figura 3: Tabela com os resultados obtidos no Algoritmo Otimizado.

6 Instruções de uso

Abaixo, será apresentado o passo a passo de como executar os algoritmos nos sistemas operacionais Linux e Windows e MacOs.

6.1 Linux

- Caso não tenha o python instalado, abra o terminal e use o comando sudo apt-get install python3
- 2. Abra o terminal com o comando CTRL + ALT + T e instale a biblioteca networkx com os seguinte comando: **pip3 install networkx**
- 3. Instale o Openjdk-11 pelo comando: sudo apt-get openjdk-11-jdk
- 4. Instale o Openjfx pelo comando: sudo apt-get install openjfx

5. java –
module-path .\ linux \ –add-modules=javafx.controls -jar chordal
graph-0.0.1.jar

6.2 Windows

- 1. Baixar o OpenJDK 11
- 2. Baixar o OpenJFX
- 3. Copiar o conteúdo da pasta bin do OpenJFX e colar na bin do OpenJDK11
- 4. Caso a versão do Java não estiver sendo alterada (por conta da versão antiga instalada), usar o caminho completo do OpenJDK11 pra rodar o programa "C:\ Program Files\ Java\ jdk11\ bin\ java -module-path windows -add-modules=javafx.controls -jar"

7 Referências

- Teoria Computacional de Grafos Jayme Luiz Szwarcfiter.
- https://en.wikipedia.org/wiki/Lexicographic_breadth-first_search
- https://www.cos.ufrj.br/uploadfile/1368208720.pdf

8 Agradecimentos

Agradecemos a Prof(a). Fernanda Couto, por nos auxiliar no desenvolvimento do projeto e por explicar todas as dúvidas que tivemos sobre o mesmo.