STAT 530 Homework 5

2022-03-19

- (1) Suppose $X_1, \dots, X_n \stackrel{iid}{\sim} \mathrm{Bernoulli}(p), 0$
 - (a) Calculate the Fisher information number $\mathcal{I}_n(p)$
 - (b) Find the value of $p \in (0, 1)$ for which $\mathcal{I}_n(p)$ is minimal. This value of p, where the fisher information $\mathcal{I}_n(p)$ is minimal, corresponds to the most difficult case for estimating p. That is, when data are generated under this value of p from the model, the variance of an unbiased estimator of p is potentially largest.
 - (c) Show that $\bar{X} = \sum_{i=1}^{n} X_i/n$ is the UMVUE of p using the Cramer-Rao inequality.
 - (d) For $n \ge 4$, show that the product $X_1 X_2 X_3 X_4$ is an unbiased estimator of p^4 , and use this fact to find the UMVUE of p^4 .
- (2) Suppose that the random variables Y_1, \ldots, Y_n satisfy

$$Y_i = \beta x_i + \epsilon_i, \quad i = 1, \dots, n$$

where $\{x_i\}_{i=1}^n$ are fixed constants and $\{\epsilon_i\}_{i=1}^n$ are i.i.d. $N(0, \sigma^2)$ with known $\sigma^2 > 0$.

- (a) Find the MLE of β .
- (b) Find the distribution of the MLE.
- (c) Find the Cramer-Rao lower bound for the variance of an unbiased estimator of β .
- (d) Show that the MLE is the UMVUE of β using the Cramer-Rao inequality.
- (3) Suppose $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\theta, 1)$ where $\theta \in \mathbb{R}$. It turns out that $T = \bar{X}^2 n^{-1}$ is the UMVUE of $\tau(\theta) = \theta^2$ (because it's a function of a complete sufficient statistic).
 - (a) Show that T is an unviased estimator of $\tau(\theta)$ and find the variance $Var_{\theta}(T)$.
 - (b) Find the Cramer-Rao lower bound for the variance of an unbiased estimator of $\tau(\theta)$.
 - (c) Show that $\operatorname{Var}_{\theta}(T)$ is strictly larger than the Cramer-Rao lower bound for all values of $\theta \in \mathbb{R}$.