Vetores no \mathbb{R}^n

Marcelo Dreux

Vetores no \mathbb{R}^2 e no \mathbb{R}^3

As grandezas podem ser:

- Escalares número
 Ex: tempo, massa, temperatura
- Vetoriais número + direção + sentido
 Ex: força, deslocamento, velocidade

Representação Gráfica de Um Vetor

Obs: Dois vetores são **iguais** ou **equivalentes** quando são paralelos, têm o mesmo sentido e intensidade.

Sistema de Coordenadas

Cada ponto P=(a,b) do plano cartesiano define um vetor \vec{u} que sai da origem (0,0) e chega no ponto P. Escreve-se $\vec{u}=(a,b)$

Sistema de Coordenadas

OBS: Vetor é extremidade menos origem ou coordenadas do ponto final menos coordenadas do ponto inicial.

Soma de Vetores

• graficamente

numericamente

$$\boldsymbol{a} + \boldsymbol{b} = (a_x + b_x, a_y + b_y, a_z + b_z)$$

Mutiplicação de Um Vetor por Um Escalar

Se \boldsymbol{v} for um vetor não nulo do espaço bi ou tridimensional e k um escalar não nulo, então o múltiplo escalar de \boldsymbol{v} por k, denotado por $k\boldsymbol{v}$, é o vetor de mesma direção do que \boldsymbol{v} , mas cujo comprimento é |k| vezes o comprimento de \boldsymbol{v} e cujo sentido é o mesmo que o de \boldsymbol{v} se k for positivo e o oposto de \boldsymbol{v} se k for negativo. Se k=0 ou v=0 então define-se $k\boldsymbol{v}$ como sendo $\boldsymbol{0}$.

Vetores Unitários

Um vetor é dito **unitário** quando tem comprimento 1. Os vetores unitários nas direções dos eixos coordenados são os **vetores unitários canônicos.**

No \mathbb{R}^2 são denotados por: $\boldsymbol{i}=(1,0)$ e $\boldsymbol{j}=(0,1)$

No \mathbb{R}^3 são denotados por: ${\pmb i} = (1,0,0)$ e ${\pmb j} = (0,1,0)$ e ${\pmb k} = (0,0,1)$

Vetores do \mathbb{R}^n

Se n for um inteiro positivo, então uma **ênupla ordenada** é uma sequência de n números reais $(v_1, v_2, ..., v_n)$. O conjunto de todas as ênuplas ordenadas é denominado **o espaço de dimensão** n e é denotado por \mathbb{R}^n .

Combinação Linear

Dizemos que um vetor w em \mathbb{R}^n é uma combinação linear (CL) dos vetores $v_1, v_2, v_3, ..., v_n$ em \mathbb{R}^n se w puder ser expresso na forma

$$w = k_1 v_1 + k_2 v_2 + ... + k_n v_n$$

Em que $k_1, k_2, ..., k_n$ são escalares. Esses escalares são denominados **coeficientes** da combinação linear.

Exercícios

Verificar se o vetor v é CL dos vetores v_1, \dots, v_n fornecidos. Em caso afirmativo, achar os coeficientes.

a)
$$v = (1,2), v_1 = (1,-1)$$
 e $v_2 = (-2,4)$

b)
$$v = (2,0,-2), v_1 = (1,-1,1) e v_2 = (0,-2,4)$$