CO543 – Image Processing Lab 2

20/7/2017

1. Image thresholding

Write a function to perform image thresholding using point processing taking the image file and the threshold value from the user.

2. Image arithmetic operations

Read two images and perform addition and subtraction.

I=I1+I2; # Addition of two

I=I1-I2; # Subtraction of two images

Now, use inbuilt functions

- OpenCV function, **cv2.add**() or simply by numpy operation, **res** = **img1** + **img2**. Both images should be of same depth and type, or second image can just be a scalar value.
- OpenCV function, **cv2.subtract()** or simply by numpy operation, **res = img1 img2**.

3. Write simple programs to demonstrate

- a. Log transformation
- b. Power transformation
- c. Gray level slicing
- d. Bit plane slicing

Show the original and resultant images in same figure to compare them easily.

4. Masking

Write a program to read any image, resize it to 256x256. Apply the masks shown in following figures so that only the middle part of the image is visible.

5. Brightness

Write your own Python OpenCV function addbrightness() and use it to increase brightness of given image.(Hint: Use Image arithmetic operations)

6. Histogram

• Histogram Calculation in OpenCV

Use inbuilt OpenCV cv2.calcHist() function to display the histogram of a given image.

Histogram Calculation in Numpy

Use inbuilt numpy **np.histogram()** function to display the histogram of a given image.

Then write your own histogram functions for the following scenarios

a. Show a histogram plot for a grayscale image. b. Show three histograms for a given RGB image.