Definition 13.1.1 (1D Poisson process). A sequence of arrivals in continuous time is a *Poisson process* with rate λ if the following conditions hold:

- 1. The number of arrivals in an interval of length t is distributed $Pois(\lambda t)$.
- 2. The numbers of arrivals in disjoint time intervals are independent.

$$E = \lambda t$$

N(t) ~ Pois (
$$\lambda t$$
): $P(Nt)=k$) = $\frac{(\lambda t)^k}{k!}e^{-\lambda t}$

Expected times of arrivals in one unit time.

Let $N(t)$ be number of arrivals in $(0,t]$.

 $N(t_2)-N(t_1)$ is $\#$ arrivals in $(t_1,t_1]$.

Let T_j be the time of j th arrival

 $T_1 > t$ is same as $N(t) = 0$.

 $P(T_1 > t) = P(N(t) = 0) = e^{-\lambda t}$
 $T_j - T_{j-1} \sim Expo(\lambda)$
 $T_j \sim Camma(j,\lambda)$
 $T_j \sim Camma(j,\lambda)$
 $T_j \sim Expo(l)$.

Theorem 13.2.1 (Conditional counts). Let (N(t): t > 0) be a Poisson process with rate λ , and $t_1 < t_2$. The conditional distribution of $N(t_1)$ given $N(t_2) = n$ is

$$N(t_1) \mid N(t_2) = n \sim \operatorname{Bin}\left(n, \frac{t_1}{t_2}\right).$$

无被落在(0,七)上的概率每处均等 = 一位 一截落在(0,七)上的概率为 <u>七</u>元

Proposition 13.2.2. In a Poisson process of rate λ , conditional on N(t) = 1, the first arrival time T_1 has the Unif(0, t) distribution.

Proof:
$$P(T, \leq s | N(t) = l) = \frac{P(N(s) = l)P(N(t-s) = 0)}{P(N(t) = l)}$$

$$= \frac{\lambda s}{\lambda t} \underbrace{\sum_{s=\lambda t}}_{s=\lambda t} = \frac{s}{t}$$

Theorem 13.2.3 (Conditional times). In a Poisson process of rate λ , conditional on N(t) = n, the joint distribution of the arrival times T_1, \ldots, T_n is the same as the joint distribution of the order statistics of n i.i.d. Unif(0, t) r.v.s.

order statistics of Unif(0:1) are Becas. So $\frac{T_i}{t} \sim Beta(j, n-j+1)$.

Theorem 13.2.6 (Superposition). Let $(N_1(t):t>0)$ and $(N_2(t):t>0)$ be independent Poisson processes with rates λ_1 and λ_2 , respectively. Then the combined process $N(t) = N_1(t) + N_2(t)$ is a Poisson process with rate $\lambda_1 + \lambda_2$.

Theorem 13.2.8 (Probability of type-1 event before type-2 event). Consider two independent Poisson processes: a Poisson process of type-1 arrivals, with rate λ_1 , and a Poisson process of type-2 arrivals, with rate λ_2 . In the superposition of these two processes, the probability of the first arrival being type-1 is $\lambda_1/(\lambda_1 + \lambda_2)$.

Proof:
$$T \sim E \times po(\lambda_1)$$
 $V \sim E \times po(\lambda_2)$.
 $\widetilde{T} = \lambda_1 \overline{\Gamma} \sim E \times po(1)$ $\widetilde{V} = \lambda_2 V \sim E \times po(1)$.
 $P(T \leq V) = P(\frac{\overline{T}}{\lambda_1} \leq \frac{\overline{V}}{\lambda_2})$

$$= P(\frac{\overline{T}}{\overline{V}} \leq \frac{\overline{V}}{\overline{N}} \cdot \frac{\lambda_1}{\lambda_2})$$

$$= P(U \leq (1-U) \cdot \frac{\lambda_1}{\lambda_2})$$

$$= P(U \leq \frac{\lambda_1}{\lambda_1 + \lambda_2})$$

$$= \frac{\lambda_1}{\lambda_1 + \lambda_2}$$

Theorem 13.2.11 (Projection of superposition into discrete time). Consider the superposition (N(t): t > 0) of two independent Poisson processes with rates λ_1 and λ_2 . For $j = 1, 2, \ldots$, let I_j be the indicator of the jth event being from the Poisson process with rate λ_1 . Then the I_j are i.i.d. $\operatorname{Bern}(\lambda_1/(\lambda_1 + \lambda_2))$.

Bernoulli distribution:
$$f_X(x) = \begin{cases} \frac{\lambda_1}{\lambda_1 + \lambda_2}, & \text{if } x = 1 \\ \frac{\lambda_2}{\lambda_1 + \lambda_2}, & \text{if } x = 0 \end{cases}$$

Theorem 13.2.12 (Exponential mixture of Poissons is Geometric). Suppose that $X \sim \text{Expo}(\lambda)$ and $Y|X = x \sim \text{Pois}(x)$. Then $Y \sim \text{Geom}(\lambda/(\lambda+1))$.

Proof. As with the competing risks theorem, we embed X and Y into Poisson processes. Consider two independent Poisson processes, a process of failures arriving at rate 1 and another of successes arriving at rate λ . Let X be the time of the first success; then $X \sim \text{Expo}(\lambda)$. Let Y be the number of failures before the time of the first success. By the definition of a Poisson process with rate 1, $Y|X = x \sim \text{Pois}(x)$. Therefore X and Y satisfy the conditions of the theorem.

To get the marginal distribution of Y, strip out the continuous-time information! In discrete time we have i.i.d. Bernoulli trials with success probability $\lambda/(\lambda+1)$, and Y is defined as the number of failures before the first success, so by the story of the Geometric distribution, $Y \sim \text{Geom}(\lambda/(\lambda+1))$.

Theorem 13.2.13 (Gamma mixture of Poissons is Negative Binomial). Suppose that $X \sim \operatorname{Gamma}(r, \lambda)$ and $Y|X = x \sim \operatorname{Pois}(x)$. Then $Y \sim \operatorname{NBin}(r, \lambda/(\lambda+1))$.

Proof. Consider two independent Poisson processes, a process of failures arriving at rate 1 and another of successes arriving at rate λ , Let X be the time of the rth success, so $X \sim \operatorname{Gamma}(r,\lambda)$. Let Y be the number of failures before the time of the rth success. Then $Y|X=x\sim\operatorname{Pois}(x)$ by definition of Poisson process. We have that Y is the number of failures before the rth success in a sequence of i.i.d. Bernoulli trials with success probability $\lambda/(\lambda+1)$, so $Y \sim \operatorname{NBin}(r,\lambda/(\lambda+1))$.

$$f(Y) = \begin{pmatrix} y+r-1 \\ y \end{pmatrix} \left(\frac{\lambda}{\lambda+1}\right)^r \left(\frac{1}{\lambda+1}\right)^y$$