

TP BANCS DE FILTRES NUMÉRIQUES GÉNÉRATION DE L'ENVELOPPE COMPLEXE D'UN SIGNAL

Ayoub Najmeddine

Département Sciences du Numérique 2022-2023

Table des matières

1	Partie théorique	3
2	Implantation sous MATLAB	7

1 Partie théorique

Question 1

Le filtre de Nyquist est symétrique par rapport au point $\frac{R_s}{2}$. Tandis que le filtre demi-bande a un point de symétrie en $\frac{F_e}{4}$. Ainsi la superposition des points de symétrie de chaque filtres donne :

$$\frac{F_e}{4} = \frac{R_s}{2} = B \Rightarrow F_e = 2R_s$$

Donc on peut voir le filtre demi-bande comme un filtre de Nyquist synthétisé à $F_e=2R_s$. Comme il s'agit d'un filtre en racine de cosinus surélevé :

$$B = (\alpha + 1)R_s \Rightarrow B = 0.5$$

On déduit que les coefficients d'indices pairs sont nuls :

$$\forall n \neq 0$$
 $h(2n) = h(2nT_e) = 0$

Question 2

FIGURE 1 – DSP du signal analogique.

Figure 2 – DSP du signal après numérisation.s

Aprés échantillonnage du signal analogique, le spectre du signal échantillonné et ses réplica sont centrées aux fréquences kF_e . On tompe tous les 2B sur un bloc car les spectres sont entrelacés de façon uniforme.

FIGURE 3 – DSP du signal décalé en fréquence B.

On envisage de centré la densité du signal échantillonné autour de 0 pour pouvoir ensuite utiliser un filtre passe-bas pour filtrer le bloc utile. Ceci est plus efficace que si on utilise un filtre passe bande pour filtre le bloc utile.

Figure 4 – Mise en place du filtre passe-bas.

Le filtre numérique s'applique aussi à tous les multiples de F_e , donc on élimine tous les blocs négatifs.

FIGURE 5 – DSP du signal décalé en fréquence B et filtré.

On remarque qu'il y a des zones vides dans le spectre du signal filtré. Ceci correspond à un suréchantillonnage. Une solution consiste à décimer le signal.

FIGURE 6 – DSP du signal décalé en fréquence B, filtré, et décimé.

Question 3

FIGURE 7 – Shéma de principe.

L'expression du signal à l'entrée du filtre est donnée par :

$$w(n) = x(n)exp(2j\pi BnT_e)$$
 , $T_e = \frac{1}{F_e} = \frac{1}{4B}$

$$w(n) = x(n)exp(-j\frac{\pi}{2})^n$$

$$w(n) = (-j)^n x(n)$$

En sortie du filtre h_{HB} , l'expression du signal devient :

$$z(n) = w(n) * h_{HB} = \sum_{k} h_{HB}(n-k)w(k)$$

 $y(n) = z(2n) = \sum_{k} h_{HB}(2n-k)w(k)$

On effectue la division euclidienne de k sur 2: k = 2l + r , $0 < r \le 1$

$$y(n) = \sum_{r=0}^{1} \sum_{l} h_{HB}(2(n-l) - r)w(2l + r)$$
$$y(n) = \sum_{r=0}^{1} \sum_{l} h_{r}(n-l)x_{r}(l)(-j)^{2l+r}$$

où:

$$h_r(l) = h_{HB}(2l - r)$$
 , $x_r(l) = x(2l + r)$

Question 4

D'après la l'expression du signal en sortie de la chaine :

$$y(n) = \sum_{r=0}^{1} \sum_{l} h_r(n-l)x_r(l)(-j)^{2l+r}$$

$$y(n) = \sum_{l} h_0(n-l)x_0(l)(-j)^{2l} + \sum_{l} h_1(n-l)x_1(l)(-j)^{2l+1}$$

$$y(n) = \sum_{l} h_0(n-l)x_0(l)(-1)^l - j\sum_{l} h_1(n-l)x_1(l)(-1)^l$$

Comme $h_r(n)$ et $x_r(n)$ ont des coefficients réels, alors :

$$Re(y(n)) = \sum_{l} h_0(n-l)x_0(l)(-1)^l$$

$$Im(y(n)) = -\sum_{l} h_1(n-l)x_1(l)(-1)^l$$

Question 5

En identifiant le produit de convolution, on obtient :

$$Re(y(n)) = h_0(n) * (x_0(n)(-1)^n)$$

$$Im(y(n)) = -h_1(n) * (x_1(n)(-1)^n)$$

d'où le schéma de réalisation suivant :

FIGURE 8 – Shéma de réalisation.

Question 6

Les filtres h_0 et h_1 sont des filtres polyphases à $N_c/2$ coefficients calculés à une fréquence de $N_cF_e^{'}/2$ multiplication par seconde.

Le schéma de réalisation combine 2 filtres calculé à $N_cF_e^{'}/2$ multiplications par seconde. Pour un total de $N_{multi/s}=2N_cF_e^{'}/2=N_cF_e^{'}=N_cF_e/2$.

2 Implantation sous MATLAB

Génération du signal réel

Dans cette partie nous nous allons générer le signal transmis. Les caractéristiques du signal transmis sont les suivants :

- $\diamond R_s = 1 \text{ MHz}.$
- \diamond Modulation : QPSK.
- \diamond Filtre en racine carré de cosinus surélevé de rolloff $\alpha=0.35.$
- \diamond Fréquence porteuse : $2R_s$.
- \diamond Fréquence d'échantillonage : $8R_s$.

FIGURE 9 – Chaine de Transmission.

On génère la densité spectrale de puissance du signal en sortie de l'interpolateur :

FIGURE 10 – DSP du signal en sortie de l'interpolateur.

Implantation du générateur d'enveloppe complexe : Schéma de principe

On s'intéresse dans cette partie à l'implantation du schéma de principe sous MATLAB. La première étape consiste à centrer le signal autour de 0 en le décalant de -B. On obtient la densité spectrale de puissance suivante :

FIGURE 11 – DSP du signal décalé de -B.

Ensuite, on implante le filtre demi-bande pour ensuite générer le signal y(n):

FIGURE 12 – DSP du signal y(n).

Pour récupérer le signal on utilise un filtrage adapté de fréquence d'échantillonnage égale à $4R_s$, on obtient le diagramme de l'oeil, et la figure de constellation qui montre bien la modulation QPSK :

FIGURE 13 – Constellation QPSK du signal reçu.

FIGURE 14 – Diagramme de l'oeil du signal reçu.

Implantation du générateur d'enveloppe complexe : Schéma de réalisation

On s'intéresse dans cette partie à l'implantation du schéma de réalisation sous MATLAB. On génère les filtres h_0 et h_1 à partir du filtre demi-bande, et on fait passer le signal x_0 et x_1 respectivement dans les branches h_0 et h_1 . Le signal est ensuite reconstruit à partir de la sommation de ces deux signaux, la figure suivante montre la densité spectrale de puissance du signal ainsi construit :

FIGURE 15 – DSP du signal y(n).

 ${\it Figure~16-Constellation~du~signal~après~le~filtre~adapt\'e}.$

FIGURE 17 – Diagramme de l'oeil du signal reçu.