Programación Microcontrolador Arduino

Z C3.1 Arduino UNO salida digital

Arduino IDE y Arduino UNO, utilizando un diodo LED y una resistencia

Instrucciones

- De acuerdo con la información presentada por el asesor referente al tema, desarrollar lo que se indica dentro del apartado desarrollo.
- Toda actividad o reto se deberá realizar utilizando el estilo MarkDown con extension .md y el entorno de desarrollo VSCode, debiendo ser elaborado como un documento single page, es decir si el documento cuanta con imágenes, enlaces o cualquier documento externo debe ser accedido desde etiquetas y enlaces.
- Es requisito que el archivo .md contenga una etiqueta del enlace al repositorio de su documento en Github, por ejemplo Enlace a mi GitHub
- Al concluir el reto el reto se deberá subir a github el archivo .md creado.
- Desde el archivo .md se debe exportar un archivo .pdf con la nomenclatura C3.1_NombreAlumno_Equipo.pdf, el cual deberá subirse a classroom dentro de su apartado correspondiente, para que sirva como evidencia de su entrega; siendo esta plataforma oficial aquí se recibirá la calificación de su actividad por individual.
- Considerando que el archivo .pdf, fue obtenido desde archivo .md, ambos deben ser idénticos y mostrar el mismo contenido.
- Su repositorio ademas de que debe contar con un archivo **readme**.md dentro de su directorio raíz, con la información como datos del estudiante, equipo de trabajo, materia, carrera, datos del asesor, e incluso logotipo o imágenes, debe tener un apartado de contenidos o indice, los cuales realmente son ligas o enlaces a sus documentos .md, evite utilizar texto para indicar enlaces internos o externo.
- Se propone una estructura tal como esta indicada abajo, sin embargo puede utilizarse cualquier otra que le apoye para organizar su repositorio.

```
readme.md
blog
 | C3.1 TituloActividad.md
 C3.2_TituloActividad.md
 | C3.3_TituloActividad.md
 | img
 docs
A3.1_TituloActividad.md
```


Desarrollo

1. Basado en el siguiente circuito, y utilizando uno de los simuladores propuestos, ensamblar lo que observa.

1. Analice y escriba el programa que se muestra a continuación.

```
Blink | Arduino 1.8.9
   Edit Sketch Tools Help
 Blink
21
     http://www.arduino.cc/en/Tutorial/Blink
23 */
24
25 // the setup function runs once when you press reset or power the board
26 void setup() {
    // initialize digital pin LED_BUILTIN as an output.
28
    pinMode (LED_BUILTIN, OUTPUT);
29 }
30
31 // the loop function runs over and over again forever
32 void loop() {
                                        // turn the LED on (HIGH is the voltage level)
   digitalWrite (LED BUILTIN, HIGH);
   delay(1000);
                                        // wait for a second
35
    digitalWrite (LED_BUILTIN, LOW);
                                        // turn the LED off by making the voltage LOW
36
    delay(1000);
                                         // wait for a second
37 }
```

3. Explique el resultado observado.

R= El resultado a simple vista era un led encendiendo y apagandose cada segundo, el codigo daba estas indicaciones al Arduino en el bloque loop. El codigo es entendible a simple vista, utiliza el metodo digitalwrite y recibe parametros del led; high para encender o low para apagar.

4. Inserte aquí las imágenes que considere como evidencias para demostrar el resultado obtenido.

Captura de LED apagado

Captura de LED encendido

Criterios Descripción Puntaje

Criterios	Descripción	Puntaje
Instrucciones	Se cumple con cada uno de los puntos indicados dentro del apartado Instrucciones?	20
Desarrollo	Se respondió a cada uno de los puntos solicitados dentro del desarrollo de la actividad?	80

lr a repositorio de GitHub