LABORATORIO Nºº 3 (cursada 2023) APROXIMACIÓN DE FUNCIONES / INTERPOLACIÓN

Ejercicio 1: Considere la figura de las gráficas de 6 funciones de estimación clasicas presentada en la clase RESUMEN Ajuste de datos

a) A partir de esta figura, determine gráficamente cuál de las siguientes funciones:

$$g(x) = \alpha e^{\beta x}$$
 ó $h(x) = \alpha x^{\beta}$ parece ser la más apropiada para ajustar los siguientes datos: $P_1 = (1,2.3), P_2 = (2,6.1), P_3 = (3,10.7), P_4 = (4,16.0), P_5 = (5,21.9), P_6 = (6,28.3)$

- b) Use el Algoritmo de Linealización para ajustar g(x) y h(x) a los datos y luego
- c) encuentre los errores de cada caso con el criterio de cuadrados mínimos. Confirman estos resultados su respuesta en el inciso a)?

Ejercicio 2: De acuerdo a la Figura 1, los polinomios interpoladores para la función $\frac{1}{(1+x^2)}$ en el intervalo [-3,3] basados en puntos igualmente espaciados son muy inexactos cerca de los extremos del intervalo.

- 2.1 Realice interpolaciones por spline cúbica natural basadas en los mismos 3, 5 y 11 puntos dato.
- 2.2 Compare con la Figura 1 los gráficos obtenidos en la sección 2.1. Exhibe la técnica de interpolación por spline la misma inexactitud?

Figura 1. Polinomios de interpolación de grados 2, 4 y 10 para la función $\frac{1}{(1+x^2)}$

Ejercicio 3: Chen y Saxena reportaron los siguientes datos experimentales para la emisividad e del tungsteno en función de la temperatura T:

T (°K)	300	400	500	600	700	800	900	1000	1100
e	0.024	0.035	0.046	0.058	0.067	0.083	0.097	0.111	0.125
T (°K)	1200	1300	1400	1500	1600	1700	1800	1900	2000
e	0.140	0.155	0.170	0.186	0.202	0.219	0.235	0.252	0.269

Ellos encontraron que la ecuación (1) correlaciona los datos en forma exacta a tres dígitos.

$$e(T) = 0.02424 \left(\frac{T}{303.16}\right)^{1.27591} \tag{1}$$

- a) Qué grado se requiere del polinomio interpolador tal que sus aproximaciones se correspondan con la correlación (1) en los puntos que están localizados a medio camino entre las temperaturas tabuladas?
- b) Discuta los pros y contras de la interpolación polinomial en comparación con usar su correlación.

Ejercicio 4: Para n = 0,1,...,5, ajuste un polinomio de grado n mediante **Cuadrados Mínimos** empleando los siguientes datos:

t	0.0	1.0	2.0	3.0	4.0	5.0
y	1.0	2.7	5.8	6.6	7.5	9.9

- a) Grafique los puntos dato originales junto con cada curva polinomial resultante (puede hacer gráficos separados para cada curva, ó un único gráfico que contenga todas las curvas)
- b) ¿Cuál polinomio captura mejor la tendencia general de los datos? Justifique su respuesta. *Nota*: Obviamente esta pregunta es subjetiva y su respuesta depende de dos factores relevantes: la naturaleza de los datos (por ejemplo, la incertidumbre de los valores dato) y el propósito con que se realiza el ajuste.