This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: D06L 1/00, 1/04, 3/02

A1

US

US

(11) International Publication Number:

WO 96/27704

21

(43) International Publication Date: 12 September 1996 (12.09.96)

(21) International Application Number:

PCT/EP96/00811

(22) International Filing Date:

26 February 1996 (26.02.96)

(30) Priority Data:

08/399,318 08/399.317 6 March 1995 (06.03.95)

6 March 1995 (06.03.95)

(74) Agent: UNILEVER N.V.; Patent Division, P.O. Box 137, NL-3130 AC Vlaardingen (NL).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except AU BB CA GB IE KE LK LS MN MW NZ SD SG SZ TT UG): UNILEVER N.V. [NL/NL]; Weena 455, NL-3013 AL Rotterdam (NL).

(71) Applicant (for AU BB CA GB IE KE LK LS MN MW NZ SD SG SZ TT UG only): UNILEVER PLC [GB/GB]; Unilever House, Blackfriars, London EC4P 4BQ (GB).

(72) Inventors: JURELLER, Sharon, Harriott: 118 Harrison Street. Haworth, NJ 07641 (US). KERSCHNER, Judith, Lynne; 520 Upper Boulevard, Ridgewood, NJ 07450 (US). BAE-LEE, Myongsuk; 10 Cambray Road, Montville, NJ 07045 (US). DEL PIZZO, Lisa; 162 Belleville Avenue, Bloomfield, NJ 07003 (US). HARRIS, Rosemarie; 76 Chester Place, Yonkers, NY 10704 (US). RESCH, Carol; 185 Orient Way, Rutherford, NJ 07070 (US). WAJA, Cathy; 86 Haring Street, Bergenfield, NJ 07621 (US).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: DRY CLEANING SYSTEM USING DENSIFIED CARBON DIOXIDE AND A SURFACTANT ADJUNCT

Supercritical CO2 Dry Cleaning

(57) Abstract

A system for dry cleaning soils from fabrics comprising densified carbon dioxide and a surfactant in the densified CO2. The surfactant has a polysiloxane, a branched polyalkylene oxide and a halocarbon group which is a functional CO2-philic moiety connected to a CO2phobic functional moiety. The surfactant either exhibits an HLB of less than 15 or has a ratio of siloxyl to substituted siloxyl groups of greater than 0.5:1.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

A	GB	United Kingdom		Malawi
••		Georgia	MX	Mexico
••••		_	NE	Niger
	_	-	NL	Netherlands
Barbados			NO	Norway
Belgium		• •	NZ	New Zealand
Burkina Paso			-	Poland
Balgaria		-	•	Portugal
Benin	•	-		Romania
Brazil		· ·	•	Russian Federation
Belarus	KG		-	Sudan
	KP			Sweden
		= -		*
	KR	Republic of Korea		Singapore
	KZ	Kazakhstan		Slovenia
•	u	Liechtenstein		Slovekie
	LK	Sri Lanka		Senegal
	1.R	Liberia		Swaziland
		Lithuspia	TD	Chad
			TG	Togo
			TJ	Tajikistan
			TT	Trinidad and Tobago
Denmark			UA	Ukraine
Estonia			UG	Uganda
Spein		-	-	United States of America
Fieland				Uzhekistan
Prance				Vict Nam
Gabon	MR	Manutania		
	Burkina Paso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzertand Côte d'Ivoire Cameroon China Czechoslovakia Czech Republic Germany Denmark Estonia Spain Finland France	Australia GE Australia GN Barbados GR Belgium HU Burkina Faso IE Bulgaria IT Benin JP Brazil KE Belarus KG Canada KP Central African Republic Congo KR Swizaertand KZ Côte d'Ivoire LI Cameroon LK China LR Czechoslovakia LT Czech Republic LU Germany LV Desmark MC Essonia MC Essonia MG Finland France MN	Australia GE Georgia Australia GN Guinea Barbados GR Greece Belgium HU Hungary Burkina Paso IE Ireland Bulgaria JP Japan Brazil KE Kenya Belarus KE Kenya Belarus KF Democratic People's Republic Congo KR Republic of Korea Congo KR Republic of Korea Congo KZ Kazakhstan Côte d'Ivoire LK Sri Lanka China LR Liberia Canchoslovakia LT Lidhuania Cacch Republic Cermany LY Larvia Demuark Book MC Monaco Basana MC Monaco Finland MI Mali France MM Monapolia	Austria GE Georgia MX Austria GR Guinea NE Australia GN Guinea NE Barbados GR Greece NL Belgium HU Hungary NO Belgium IE Ireland NZ Burkina Paso IE Ireland NZ Burkina Paso II Ireland PL Bulgaria IP Japan PT Benin KE Kenya RO Brazil KG Kyrgystan RU Belarus KG Kyrgystan RU Belarus KG Kyrgystan RU Canada Central African Republic G KC Republic of Korea SE Congo KR Republic of Korea SG Congo KR Republic of Korea SG Congo KZ Kazakhstan SI Côte d'Ivoire LI Liechtenstein SK Cameroon LK Sri Lanka SN China LR Liberia SZ China LT Liduania TD Cacchoslovakia LT Liduania TD Cacchoslovakia LT Liduania TD Cacchoslovakia LT Liduania TD Cacchoslovakia MC Monaco TT Denmark MC Monaco TT Denmark MC Monaco UA Basonia MG Madagascar UG France MN Mongolia UZ France

DRY CLEANING SYSTEM USING DENSIFIED CARBON DIOXIDE AND A SURFACTANT ADJUNCT

5

Field of the Invention

The invention pertains to a dry cleaning system utilizing densified carbon dioxide and a surfactant adjunct. The invention also pertains to a method of dry cleaning fabrics utilising densified carbon dioxide and a surfactant adjunct.

Background of the Invention

Densified, particularly supercritical fluid, carbon dioxide

15 has been suggested as an alternative to halo-carbon
solvents used in conventional dry cleaning. For example, a
dry cleaning system in which chilled liquid carbon dioxide
is used to extract soils from fabrics is described in U.S.
4,012,194 issued to Maffei on March 15, 1977.

20

- Supercritical fluid carbon dioxide provides a nontoxic, inexpensive, recyclable and environmentally acceptable solvent to remove soils in the dry cleaning process. The solvent has been shown to be effective in removing nonpolar stains such as motor oil, when combined with a viscous cleaning solvent, particularly mineral oil or petrolatum as described in US S/N 715,299, filed June 14, 1991, assigned to The Clorox Company and corresponding to EP 518,653. Supercritical fluid carbon dioxide has been combined with other components, such as a source of hydrogen peroxide and an organic bleach activator as described in US S/N 754,809, filed September 4, 1991 and owned by The Clorox Company, corresponding to EP 530,949.
- 35 The solvent power of densified carbon dioxide is low relative to ordinary liquid solvents and the carbon dioxide

solvent alon is less effective on hydrophilic stains such as grape juice, coffee and tea and on compound hydrophobic stains such as lipstick and red candle wax, unless surfactants and solvent modifiers are added.

5

A cleaning system combining particular anionic or nonionic surface active agents with supercritical fluid CO₂ is described in DE 39 04 514 A1 published August 23, 1990. These anionic and nonionic agents, such as alkylbenzene sulfates and sulfonates, ethoxylated alkyl phenols and ethoxylated fatty alcohols, were particularly effective when combined with a relatively large amount of water (greater than or equal to 4%). The patented system appears to combine the detergency mechanism of conventional agents with the solvent power of supercritical fluid carbon dioxide.

It has been observed that most commercially available surfactants have little solubility in supercritical fluid carbon dioxide as described in Consani, K.A., J. Sup. Fluids, 1990 (3), pages 51-65. Moreover, it has been observed that surfactants soluble in supercritical fluid carbon dioxide become insoluble upon the addition of water. No evidence for the formation of water-containing reversed micelles with the surfactants was found. Consani supra.

Thus, the dry cleaning systems known in the art have merely combined cleaning agents with various viscosities and polarities with supercritical fluid CO₂ generally with high amounts of water as a cosolvent. The actives clean soils as in conventional washing without any synergistic effect with the CO₂ solvent.

The formation of water-containing reversed micelles is 35 believed to be critical for the solubility and removal of hydrophilic stains. Studies of the interaction of surfactants in sup rcritical carbon dioxide with wat r, cosurfactants and cosolvents led to the conclusion that most commercially available surfactants are not designed for the formation of reversed micelles in supercritical carbon dioxide as described in McFann, G., Dissertation, University of Texas at Austin, pp. 216-306, 1993.

Therefore, the problem of developing an effective dry cleaning system utilizing supercritical fluid carbon dioxide to clean a variety of consumer soils on fabrics has remained unsolved until the present invention.

Summary of the Invention

It is therefore an object of the present invention to provide a dry cleaning system utilizing an environmentally safe, nonpolar solvent such as densified carbon dioxide, which effectively removes a variety of soils on fabrics. Another object is the design of effective surfactants for use in supercritical fluid carbon dioxide.

Another object of the invention is to provide a dry cleaning system of solvent, surfactant, enzyme and bleach for the total cleaning of fabrics using densified/supercritical fluid carbon dioxide that gives results equivalent to the cleaning demonstrated by conventional dry cleaning solvents.

25

In one aspect of the present invention, the dry cleaning system used for cleaning a variety of soiled fabrics comprises densified carbon dioxide and about 0.001% to about 5% of a surfactant in supercritical fluid carbon dioxide. The surfactant has a supercritical fluid CO2-philic functional moiety connected to a supercritical fluid CO2-phobic functional moiety. Preferred CO2-philic moieties of the surfactant include halocarbons such as fluorocarbons, chlorocarbons and mixed fluoro-chlorocarbons, polysiloxanes, and branched polyalkylene oxides. The CO2-phobic groups for the surfactant contain

WO 96/27704 PCT/EP96/00811

4

pr ferably polyalkylene oxides, carboxylates, C_{1-30} alkyl sulfonat s, carbohydrates, glycerat s, phosphates, sulfates and C_{1-30} hydrocarbons.

- 5 The dry cleaning system may also be designed to include a modifier, such as water, or an organic solvent up to only about 5% by volume; enzymes up to about 10 wt.% and a bleaching agent such as a peracid.
- 10 In a second aspect of the invention, a method for dry cleaning a variety of soiled fabrics is provided wherein a selected surfactant and optionally a modifier, an enzyme, bleaching agent or mixtures thereof are combined and the cloth is contacted with the mixture. Densified carbon
- 15 dioxide is introduced into a cleaning vessel which is then pressurized from about 700 psi to about 10,000 psi and heated to a range of about 20°C to about 100°C. Fresh densified carbon dioxide is used to flush the cleaning vessel.

20

Brief Description of the Drawing

Figure 1 is a diagrammatic flow chart of the supercritical fluid carbon dioxide dry cleaning process according to the invention.

25

Detailed Description of Preferred Embodiments

The invention provides a dry cleaning system which replaces conventional solvents with densified carbon dioxide in combination with selected cleaning surfactants.

30 Optionally, modifiers, enzymes, bleaching agents and mixtures thereof are combined with the solvent and surfactant to provide a total cleaning system.

For purposes of the invention, the following definitions 35 are used:

"Densified carbon dioxide" means carbon dioxide in a gas form which is placed under pressures exceeding about 700 psi at about 20°C.

*Supercritical fluid carbon dioxide means carbon dioxide

5 which is at or above the critical temperature of 31°C and a critical pressure of 71 atmospheres and which cannot be condensed into a liquid phase despite the addition of further pressure.

- The term "densified carbon dioxide-philic" in reference to surfactants $R_n Z_n$, wherein n and n' are each independently 1 to 50, means that the functional group, R_n is soluble in carbon dioxide at pressures of 500-10,000 psi and temperatures of 0-100°C to greater than 10 weight percent.
- 15 Preferably n and n are each independently 1-35. Such functional groups (R_n-) include halocarbons, polysiloxanes and branched polyalkylene oxides.

The term "densified carbon dioxide-phobic" in reference to surfactants, R_nZ_n, means that Z_n- will have a solubility in carbon dioxide at pressures of 500-10,000 psi and temperatures of 0-100°C of less than 10 weight percent. The functional groups in Z_n- include carboxylic acids, phosphatyl esters, hydroxys, C₁₋₃₀ alkyls or alkenyls, 25 polyalkylene oxides, branched polyalkylene oxides, carboxylates, C₁₋₃₀ alkyl sulfonates, phosphates, glycerates, carbohydrates, nitrates, substituted or unsubstituted aryls and sulfates.

The hydrocarbon and halocarbon containing surfactants (i.e., $R_n Z_{n-}$, containing the CO_2 -philic functional group, R_n -, and the CO_2 -phobic group, Z_n -) will have an HLB of less than 15, preferably less than 13 and most pr ferably less than 12.

The polym ric siloxane containing surfactants, $R_n Z_n$, also d signat d $MD_x D_y^* M$, with M repr senting trimethylsiloxyl end groups, D_x as a dimethylsiloxyl backbone (CO₂-philic functional group) and D_y^* as one or more substituted methylsiloxyl groups substituted with CO₂-phobic R or R' groups as described in the Detailed Description Section will have a $D_x D_y^*$ ratio of greater than 0.5:1, preferably greater than 0.7:1 and most preferably greater than 1:1.

10 The term "nonpolar stains" refers to those which are at least partially made by nonpolar organic compounds such as oily soils, sebum and the like.

The term "polar stains" is interchangeable with the term 15 "hydrophilic stains" and refers to stains such as grape juice, coffee and tea.

The term "compound hydrophobic stains" refers to stains such as lipstick and red candle wax.

20

The term "particulate soils" means soils containing insoluble solid components such as silicates, carbon black, etc.

- 25 Densified carbon dioxide, preferably supercritical fluid carbon dioxide, is used in the inventive dry cleaning system. It is noted that other densified molecules having supercritical properties may also be employed alone or in mixture. These molecules include methane, ethane, propane,
- ammonia, butane, n-pentane, n-hexane, cyclohexane, nheptane, ethylene, propylene, methanol, ethanol,
 isopropanol, benzene, toluene, p-xylene, sulfur dioxide,
 chlorotrifluoromethane, trichlorofluorom thane,
 perfluoropropane, chlorodifluoromethane, sulfur
- 35 hexafluoride and nitrous oxide.

During the dry cleaning process, the temperature range is between about 20°C and about 100°C, pref rably 20°C to 60°C and most preferably 30°C to about 60°C. The pressure during cleaning is about 700 psi to about 10,000 psi, preferably 800 psi to about 7,000 psi and most preferably 800 psi to about 6,000 psi.

A "substituted methylsiloxyl group" is a methylsiloxyl group substituted with a CO₂-phobic group R or R'. R or R' are each represented in the following formula:

$$-(CH_2)_a(C_6H_4)_b(A)_d-[(L)_e(A')_f]_n-(L')_gZ(G)_b$$

wherein a is 1-30, b is 0-1, C₆H₄ is substituted or
15 unsubstituted with a C₁₋₁₀ alkyl or alkenyl and A, d, L, e,
A', F, n L', g, Z, G and h are defined below, and mixtures
of R and R'.

A "substituted aryl" is an aryl substituted with a C_{1-30} 20 alkyl, alkenyl or hydroxyl, preferably a C_{1-20} alkyl or alkenyl.

A "substituted carbohydrate" is a carbohydrate substituted with a C₁₋₁₀ alkyl or alkenyl, preferably a C₁₋₅ alkyl.

25 The terms "polyalkylene oxide", "alkyl" and "alkenyl" each contain a carbon chain which may be either straight or

Surfactant Adjunct

branched unless otherwise stated.

30 A surfactant which is effective for use in a densified carbon dioxide dry cleaning system requires the combination of densified carbon dioxide-philic functional groups with densified carbon dioxide-phobic functional groups (see definitions above). The resulting compound may form 35 r vers d micell s with the CO₂-philic functional groups extending into a continuous phase and the CO₂-phobic

functional groups direct d toward the c nter of the micelle.

The surfactant is present in an amount of from 0.001 to 10 wt.*, preferably 0.01 to 5 wt.*.

5

The CO₂-philic moieties of the surfactants are groups exhibiting low Hildebrand solubility parameters, as described in Grant, D. J. W. et al. "Solubility Behavior of Organic Compounds", Techniques of Chemistry Series, J.

10 Wiley & Sons, NY (1990) pp. 46-55 which describes the Hildebrand solubility equation, herein incorporated by reference. These CO₂-philic moieties also exhibit low polarizability and some electron donating capability allowing them to be solubilized easily in densified fluid carbon dioxide.

As defined above the CO₂-philic functional groups are soluble in densified carbon dioxide to greater than 10 weight percent, preferably greater than 15 weight percent, 20 at pressures of 500-10,000 psi and temperatures of 0-100°C.

Preferred densified CO₂-philic functional groups include halocarbons (such as fluoro-, chloro- and fluoro-chlorocarbons), polysiloxanes and branched polyalkylenes oxides.

The CO₂-phobic portion of the surfactant molecule is obtained either by a hydrophilic or a hydrophobic functional group which is less than 10 weight percent soluble in densified CO₂, preferably less than 5 wt. %, at a pressures of 500-10,000 psi and temperatures of 0-100°C. Examples of moi ties contained in the CO₂-phobic groups include polyalkyl ne oxides, carboxylates, branched acrylate esters, C₁₋₃₀ hydrocarbons, aryls which are unsubstitut d or substituted, sulfonates, glycerates, phosphates, sulfates and carbohydrates. Especially

pr ferred CO₂-phobic groups include C₂₋₂₀ straight chain or branched alkyls, polyalkylene oxides, glycerates, carboxylates, phosphates, sulfates and carbohydrates.

- 5 The CO₂-philic and CO₂-phobic groups may be directly connected or linked together via a linkage group. Such groups include ester, keto, ether, amide, amine, thio, alkyl, alkenyl, fluoroalkyl or fluoroalkenyl.
- 10 Surfactants which are useful in the invention may be selected from four groups of compounds. The first group of compounds has the following formula:

 [(CX₃(CX₂)₄(CH₂)_b)_c(A)_d—[(L)_e—(A')_f]_n—(L')_g]_oZ(G)_b (I)

wherein X is F, Cl, Br, I and mixtures thereof, preferably F and Cl;

a is 1 - 30, preferably 1-25, most preferably 5-20;

b is 0 - 5, preferably 0 - 3;

c is 1 - 5, preferably 1 - 3;

A and A' are each independently a linking moiety representing an ester, a keto, an ether, a thio, an amido, an amino, a C₁₋₄ fluoroalkyl, a C₁₋₄ fluoroalkenyl, a branched or straight chain polyalkylene oxide, a phosphato, a sulfonyl, a sulfate, an ammonium and mixtures thereof;

25 d is 0 or 1;

L and L' are each independently a C_{1-30} straight chained or branched alkyl or alkenyl or an aryl which is unsubstituted or substituted and mixtures thereof;

e is 0-3;

30 f is 0 or 1;

n is 0-10, preferably 0-5, most preferably 0-3;

q is 0-3;

o is 0-5, preferably 0-3;

Z is a hydrogen, a carboxylic acid, a hydroxy, a 35 phosphato, a phosphato ester, a sulfonyl, a sulfonate, a sulfate, a branched or straight-chained polyalkylene oxide, a nitryl, a glyceryl, an aryl unsubstituted or substituted with a C₁₋₃₀ alkyl or alkenyl, (preferably C₁₋₂₅ alkyl), a carbohydrate unsubstituted or substituted with a C₁₋₁₀ alkyl or alkenyl (preferably a C₁₋₅ alkyl) or an ammonium;

5 G is an anion or cation such as H⁺, Na⁺, Li⁺, K⁺, NH₄⁺ Ca⁺², Mg⁺²; Cl⁻, Br⁻, I⁻, mesylate, or tosylate; and h is 0-3, preferably 0-2.

Preferred compounds within the scope of the formula I

10 include those having linking moieties A and A' which are
each independently an ester, an ether, a thio, a
polyalkylene oxide, an amido, an ammonium and mixtures
thereof;

L and L' are each independently a C₁₋₂₅ straight chain or branched alkyl or unsubstituted aryl; and Z is a hydrogen, carboxylic acid, hydroxyl, a phosphato, a sulfonyl, a sulfate, an ammonium, a polyalkylene oxide, or a carbohydrate, preferably unsubstituted. G groups which are preferred include H', Li', Na', NH', Cl', Br' and tosylate.

Most preferred compounds within the scope of formula I include those compounds wherein A and A' are each independently an ester, ether, an amido, a polyoxyalkylene oxide and mixtures thereof; L and L' are each independently a C₁₋₂₀ straight chain or branched alkyl or an unsubstituted aryl; Z is a hydrogen, a phosphato, a sulfonyl, a carboxylic acid, a sulfate, a polyalkylene oxide and mixtures thereof; and

30 G is H', Na' or NH₄'.

Non-limiting examples of compounds within the scope of formula I include the following:

Perhalogenated Surfactants

CF₃ (CF₂) aCH₂CH₂C (O) OX CF₃ (CF₂) aCH₂C (O) OX CF₃ (CF₃) aC (O) OX CF₃ (CF₂) _CH₂CH₂S (CH₂) _C (O) OG CF₃ (CF₂) _CH₂S (CH₂) _C (O) OG CF₃ (CF₂) _S (CH₂) _C (O) OG

CF₃ (CF₂) aCH₂CH₂C (O) O (CH₂) aCH₃ CF₃ (CF₂) aCH₂C (O) O (CH₂) aCH₃ CF₃ (CF₂) aC (O) O (CH₂) aCH₃

CF₃ (CF₂)_aCH₂CH₂OP (O) (OH)₂ CF₃ (CF₂)_aCH₂OP (O) (OH)₂ CF₃ (CF₂)_aOP (O) (OH)₂

[CF₃(CF₂)_aCH₂CH₂O]₂P(O) (OH) [CF₃(CF₂)_aCH₂O]₂P(O) (OH) [CF₃(CF₂)_aO]₂P(O) (OH)

CF₃ (CF₂) aCH₂CH₂SO₃G CF₃ (CF₂) aCH₂SO₃G CF₃ (CF₂) aSO₃G

CF₃ (CF₂)_aCH₂CH₂C (O) (CH₂)_aCH₃ CF₃ (CF₂)_aCH₂C (O) (CH₂)_aCH₃ CF₃ (CF₂)_aC (O) (CH₂)_aCH₃

CF₃ (CF₂) aCH₂CH₂O (CH₂) aCH₃ CF₃ (CF₂) aCH₂O (CH₂) aCH₃ CF₃ (CF₂) aO (CH₂) aCH₃

CF₃ (CF₂)_aCH₂CH₂C (O) N [(CH₂)_aCH₃]₂ CF₃ (CF₂)_aCH₂C (O) N [(CH₂)_aCH₃]₂ CF₃ (CF₂)_aC (O) N [(CH₂)_aCH₃]₂ a = 1-30 a' = 1-20 m = 1-30 p = 1-50

 $G = H^{+}, Na^{+}, K^{+}, NH_{4}^{+},$ $Mg^{+2}, Ca^{+2}, etc.$

CF₃ (CF₂) _aCH₂CH₂C (O) OCH₂CH₂ [OCH₂CH₂] _pOH CF₃ (CF₂) _aCH₂C (O) OCH₂CH₂ [OCH₂CH₂] _pOH CF₃ (CF₂) _aC (O) OCH₂CH₂ [OCH₂CH₂] _pOH

CF₃ (CF₂) _aCH₂CH₂C (O) OCH₂CH₂OCH₂CH (OH) CH₂OH CF₃ (CF₂) _aCH₂C (O) OCH₂CH₂OCH₂CH (OH) CH₂OH CF₃ (CF₂) _aC (O) OCH₂CH₂OCH₂CH (OH) CH₂OH

CF₃ (CF₂) aCH₂CH₂O (CH₂) a.C (O) O (CH₂) aCH₃ CF₃ (CF₂) aCH₂O (CH₂) a.C (O) O (CH₂) aCH₃ CF₃ (CF₂) aO (CH₂) a.C (O) O (CH₂) aCH₃

CF₃ (CF₂) aCH₂CH₂S (CH₂) a.C (O) O (CH₂) aCH₃ CF₃ (CF₂) aCH₂S (CH₂) a.C (O) O (CH₂) aCH₃ CF₃ (CF₂) aS (CH₂) a.C (O) O (CH₂) aCH₃

CF₃ (CF₂) $_a$ CH₂CH₂O (CH₂) $_a$. (OCH₂CH₂) $_p$ OH CF₃ (CF₂) $_a$ CH₂O (CH₂) $_a$. (OCH₂CH₂) $_p$ OH CF₃ (CF₂) $_a$ O (CH₂) $_a$. (OCH₂CH₂) $_p$ OH

 $\begin{array}{l} {\rm CF_3\,(CF_2)\, _aCH_2CH_2O\,(CH_2)\, _a,\,(OCH_2CH\,(CH_3)\,)\, _pOH} \\ {\rm CF_3\,(CF_2)\, _aCH_2O\,(CH_2)\, _a,\,(OCH_2CH\,(CH_3)\,)\, _pOH} \\ {\rm CF_3\,(CF_2)\, _aO\,(CH_2)\, _a,\,(OCH_2CH\,(CH_3)\,)\, _pOH} \\ \end{array}$

 $\begin{array}{l} {\rm CF_3 \, (CF_2) \, _aCH_2CH_2C \, (O) \, O \, (CH_2) \, _a, \, (OCH_2CH_2) \, _pOH} \\ {\rm CF_3 \, (CF_2) \, _aCH_2C \, (O) \, O \, (CH_2) \, _a, \, (OCH_2CH_2) \, _pOH} \\ {\rm CF_3 \, (CF_2) \, _aC \, (O) \, O \, (CH_2) \, _a, \, (OCH_2CH_2) \, _pOH} \\ \end{array}$

a = 1-30 a' = 1-20 m = 1-30 p = 1-50

 $G = H^{+}, Na^{+}, K^{+},$ $NH_{4}^{+}, Mg^{+2}, Ca^{+2}, etc.$

 $\begin{array}{l} {\rm CF_3\,(CF_2)\,_aCH_2CH_2C\,(O)\,O\,(CH_2)\,_a,\,(OCH_2CH\,(CH_3)\,)\,_pOH} \\ {\rm CF_3\,(CF_2)\,_aCH_2C\,(O)\,O\,(CH_2)\,_a,\,(OCH_2CH\,(CH_3)\,)\,_pOH} \\ {\rm CF_3\,(CF_2)\,_aC\,(O)\,O\,(CH_2)\,_a,\,(OCH_2CH\,(CH_3)\,)\,_pOH} \\ \end{array}$

a = 1-30

a' = 1-20

m = 1-30

p = 1-50

 $G = H^{+}, Na^{+}, K^{+}, NH_{4}^{+}, Mg^{+2}, Ca^{+2}, etc.$

Perhalogenated Surfactants (cont.)

CF₃ (CF₂) aCH₂CH₂OCH₂CH₂OCH₂CH (OH) CH₂OH CF₃ (CF₂) aCH₂OCH₂CH₂OCH₂CH (OH) CH₂OH CF₃ (CF₂) aOCH₂CH₂OCH₂CH (OH) CH₂OH

[CF₃ (CF₂) aCH₂CH₂C (O) OCH₂] 2N (CH₂) aCOOX [CF₃ (CF₂) aCH₂C (O) OCH₂] 2N (CH₂) aCOOX [CF₃ (CF₂) aC (O) OCH₂] 2N (CH₂) aCOOX

[CF₃ (CF₂) _CH₂CH₂C (O) OCH₂] ₂CH (CH₂) _COOX [CF₃ (CF₂) _CH₂C (O) OCH₂] ₂CH (CH₂) _COOX [CF₃ (CF₂) _C (O) OCH₂] ₂CH (CH₂) _COOX

$$\begin{split} & [\text{CF}_3 \, (\text{CF}_2) \, _{a}\text{CH}_2\text{CH}_2\text{S} \, (\text{CH}_2) \, _{a}\text{.C} \, (\text{O}) \, \text{N} \, [\, (\text{CH}_2) \, _{a}\text{CH}_3 \,] \, _{2} \\ & [\text{CF}_3 \, (\text{CF}_2) \, _{a}\text{CH}_2\text{S} \, (\text{CH}_2) \, _{a}\text{.C} \, (\text{O}) \, \text{N} \, [\, (\text{CH}_2) \, _{a}\text{CH}_3 \,] \, _{2} \\ & [\text{CF}_3 \, (\text{CF}_2) \, _{a}\text{S} \, (\text{CH}_2) \, _{a}\text{.C} \, (\text{O}) \, \text{N} \, [\, (\text{CH}_2) \, _{a}\text{CH}_3 \,] \, _{2} \end{split}$$

 $CF_3 (CF_2)_a CH_2 CH_2 O (CH_2)_a .C (O) N [(CH_2)_a CH_3]_2$ $CF_3 (CF_2)_a CH_2 O (CH_2)_a .C (O) N [(CH_2)_a CH_3]_2$ $CF_3 (CF_2)_a O (CH_2)_a .C (O) N [(CH_2)_a CH_3]_2$

CH₂C (0) 0 (CF₂) aCF₃
CH (SO₃G) C (0) (CF₂) aCF₃
CH (SO₃G) C (0) OCH₂CH₂ (CF₂) aCF₃
CH₂C (0) OCH₂CH₂ (CF₂) aCF₃
CH₂C (0) OCH₂ (CF₂) aCF₃
CH (SO₃G) C (0) OCH₂ (CF₂) aCF₃
CH (SO₃G) C (0) OCH₂ (CF₂) aCF₃
CF₃ (CF₂) aCH₂CH₂O (CH₂) a SO₃G
CF₃ (CF₂) aCH₂O (CH₂) a SO₃G

$$a = 1-30$$

 $a' = 1-20$
 $m = 1-30$
 $G = H^{+}$, Na^{+} , K^{+} , Li^{+} , Ca^{+2} , Mg^{+2} , NH_{4}^{+} , etc.

CF₃ (CF₂)_aCH₂CH₂C(O) (CH₂)_aN(CH₃)₃G CF₃ (CF₂)_aCH₂C(O) (CH₂)_aN(CH₃)₃G CF₃ (CF₂)_aC(O) (CH₂)_aN(CH₃)₃G

CClF₂(CClF)_aCH₂CH₂C(O)OX CClF₂(CClF)_aCH₂C(O)OX CClF₃(CClF)_aC(O)OX

CClF₂(CClF)_aCH₂CH₂C(O)O(CH₂)_aCH₃ CClF₂(CClF)_aCH₂C(O)O(CH₂)_aCH₃ CClF₂(CClF)_aC(O)O(CH₂)_aCH₃

CClF₂(CClF)_aCH₂CH₂OP(O)(OH)₂ CClF₂(CClF)_aCH₂OP(O)(OH)₂ CClF₃(CClF)_aOP(O)(OH)₂

[CClF₂(CClF)_aCH₂CH₂O]₂P(O) (OH) [CClF₂(CClF)_aCH₂O]₂P(O) (OH) [CClF₂(CClF)_aO]₂P(O) (OH)

CClF₂(CClF)_aCH₂CH₂SO₃G CClF₂(CClF)_aCH₂SO₃G CClF₂(CClF)_aSO₃G

CClF₂(CClF)_aCH₂CH₂C(O) (CH₂)_aCH₃ CClF₂(CClF)_aCH₂C(O) (CH₂)_aCH₃ CClF₂(CClF)_aC(O) (CH₂)_aCH₃

CClF₂(CClF)_aCH₂CH₂S(CH₂)_a,C(O)O(CH₂)_aCH₃ CClF₂(CClF)_aCH₂S(CH₂)_a,C(O)O(CH₂)_aCH₃ CClF₂(CClF)_aS(CH₂)_a,C(O)O(CH₂)_aCH₃

CClF₂ (CClF) CH₂CH₂O (CH₂) (OCH₂CH₂) OH CClF₂ (CClF) CH₂O (CH₂) (OCH₂CH₂) OH CClF₂ (CClF) O (CH₂) (OCH₂CH₂) OH

$$\begin{split} & \text{CClF}_2\left(\text{CClF}\right)_2\text{CH}_2\text{CH}_2\text{O}\left(\text{CH}_2\right)_2, \left(\text{OCH}_2\text{CH}\left(\text{CH}_3\right)\right)_p\text{OH} \\ & \text{CClF}_2\left(\text{CClF}\right)_2\text{CH}_2\text{O}\left(\text{CH}_2\right)_2, \left(\text{OCH}_2\text{CH}\left(\text{CH}_3\right)\right)_p\text{OH} \\ & \text{CClF}_2\left(\text{CClF}\right)_2\text{O}\left(\text{CH}_2\right)_2, \left(\text{OCH}_2\text{CH}\left(\text{CH}_3\right)\right)_p\text{OH} \end{split}$$

CClF₂(CClF)_aCH₂CH₂C(O) (CH₂)_aN(CH₃)₃G CClF₂(CClF)_aCH₂C(O) (CH₂)_aN(CH₃)₃G CClF₂(CClF)_aC(O) (CH₂)_aN(CH₃)₃G

CClF₂(CClF)_aCH₂CH₂O(CH₂)_aCH₃ CClF₂(CClF)_aCH₂O(CH₂)_aCH₃ CClF₂(CClF)_aO(CH₂)_aCH₃

CClF₂(CClF)_aCH₂CH₂C(O)N[(CH₂)_aCH₃]₂
CClF₂(CClF)_aCH₂C(O)N[(CH₂)_aCH₃]₂
CClF₂(CClF)_aC(O)N[(CH₂)_aCH₃]₂

a = 1-30

a' = 1-20

m = 1-30

p = 1-50

 $G = H^{+}$, Na^{+} , K^{+} , NH_{4}^{+} , Mg^{+2} , Ca^{+2} , Cl^{-} , Br^{-} , OTs, OMs, etc.

Compounds of formula I are prepared by any conventional preparation m thod known in the art such as the one described in March, J., "Advanced Organic Chemistry", J. Wiley & Sons, NY (1985).

5

Commercially available fluorinated compounds include compounds supplied as the Zonyl $^{\text{TM}}$ series by Dupont.

The second group of surfactants useful in the dry cleaning 10 system are those compounds having a polyalkylene moiety and having a formula (II).

$$\begin{bmatrix}
R & R' \\
I & I
\end{bmatrix}$$
[H-[-CH-CH-O-]_i-(A)_d-[(L)_e-(A')_f]_n-(L')_g]_oZ(G)_h
(II)

15

wherein R and R' each represent a hydrogen, a C_{1-5} straight chained or branched alkyl or alkylene oxide and mixtures thereof;

i is 1 to 50, preferably 1 to 30, and

20 A, A', d, L, L', e f, n, g, o, Z, G and h are as defined above.

Preferably R and R' are each independently a hydrogen, a C_{1-3} alkyl, or alkylene oxide and mixtures thereof.

Most preferably R and R' are each independently a hydrogen, C₁₋₃ alkyl and mixtures thereof. Non-limiting examples of compounds within the scope of formula II are:

Polypropylene Glycol Surfactants

HO (CH2CH (CH3) O) (CH2CH2O) H HO (CH (CH₃) (CH₂O)₄ (CH₂CH₂O)₄H $HO(CH_2CH(CH_3)O)_1(CH_2CH_2O)_1(CH_2CH(CH_3)O)_kH$ HO (CH (CH₃) CH₂O) $_{1}$ (CH₂CH₂O) $_{1}$ (CH₂CH (CH₃) O) $_{k}$ H HO (CH₂CH (CH₃) O) ₁ (CH₂CH₂O) ₃ (CH₂ (CH₃) CH₂O) _kH HO (CH (CH₃) CH₂O) (CH₂CH₂O) (CH₂ (CH₃) CH₂O) H $HO(CH_2CH_2O)_1(CH_2CH(CH_3)O)_1(CH_2CH_2O)_kH$ $HO(CH_2CH_2O)_1(CH(CH_3)CH_2O)_1(CH_2CH_2O)_kH$ HO (CH (CH₃) CH₂O) (CH₂) CH₃ HO (CH₂CH (CH₃) O) (CH₂) CH₃ HO (CH (CH₂) CH₂O) (CH₂) CH₃ HO (CH2CH (CH3) O) (CH2) CH3 HO (CH (CH₃) CH₂O) (CO) O (CH₂) CH₃ HO (CH2CH (CH3) O) 1C (O) O (CH2) CH3 HO (CH (CH₃) CH₂O) (C (O) N [(CH₂) (CH₃)] 2 $HO(CH_2CH(CH_3)O)_4C(O)N[(CH_2)_2CH_3]_2$ HO (CH (CH₃) CH₂O) (CH₂) COOG HO (CH2CH (CH3) O) (CH2) COOG HO (CH (CH₃) CH₂O) (CH₂) COOG HO (CH2CH (CH2) O) (CH2) COOG HO (CH (CH₃) CH₂O) ₄C (O) O (CH₂) _mCOOG HO (CH₂CH (CH₃) O) (CH₂) COOG HO (CH (CH₂) CH₂O) (C (O) N [(CH₂) COOG] 2 $HO(CH_2CH(CH_3)O)_4C(O)N[(CH_2)_mCOOG]_2$ HO (CH (CH₃) CH₂O) (CH₂) SO₃G HO (CH2CH (CH3) O) 4C (O) (CH2) SO3G $HO(CH(CH_3)CH_2O)_1(CH_2)_2SO_3G$ HO (CH₂CH (CH₃) O) (CH₂) SO₃G

Polypropylene Glycol Surfactants (cont.)

HO (CH (CH₃) CH₂O) ₁C (O) CH₂CH₂OCH₂CH (OH) CH₂OH HO (CH₂CH (CH₃) O) ₁C (O) CH₂CH₂OCH₂CH (OH) CH₂OH HO (CH₂CH (CH₃) O) ₁CH₂CH₂OCH₂CH (OH) CH₂OH

HO (CH (CH₃) CH₂O) ₁C (O) (CH₂) ₂N (CH₃) ₃G HO (CH₂CH (CH₃) O) ₁C (O) (CH₂) ₂N (CH₃) ₃G HO (CH (CH₃) CH₂O) ₁ (CH₂) ₂N (CH₃) ₃G HO (CH (CH₃) CH₂O) ₁C (O) O (CH₂) ₂N (CH₃) ₃G HO (CH₂CH (CH₃) O) ₁C (O) O (CH₂) ₂N (CH₃) ₃G

 20

Polypropyl ne Glycol Surfactants (cont.)

i = 1-50

j = 1-50

k = 1-50

m = 1-30

G= H', Na', K', NH4', Ca'2, Mg'2, Cl', Br', 'OTs, 'OMs, etc.

Compounds of formula II may be prepared as is known in the art and as described in March et al., Supra.

5 Examples of commercially available compounds of formula II may be obtained as the Pluronic series from BASF, Inc.

A third group of surfactants useful in the invention contain a fluorinated oxide moiety and the compounds have a 10 formula:

$$[(CX_3(XO)_r(T)_g)_c(A)_{d^-}[(L)_{e^-}(A^-)_{f^-}]_n(L^-)_g]_oZ(G)_h$$
 (III)

wherein XO is a halogenated alkylene oxide having C_{1-6} 15 straight or branched halocarbons, preferably C_{1-3} ,

r is 1-50, preferably 1-25, most preferably 5-20,

T is a straight chained or branched haloalkyl or haloaryl,

s is 0 to 5, preferably 0-3,

20 X, A, A, c, d, L, L, e, f, n, g, o, Z, G and h are as defined above.

Non-limiting examples of halogenated oxide containing compounds include:

Perhaloether Surfactants

```
CF3 (CF2CF2O) (CH2CH2O) H
CF3 (CF2CF2O) (CH2CH (CH3)O) H
CF3 (CF2CF (CF3) O) (CH2CH2O) H
CF_3 (CF_2CF (CF_3) O) _{r} (CH_2CH (CH_3) O) _{c}H
CF_3(CF_2CF_2O)_rP(O)(OH)_2
CF_3(CF_2CF_2O)_zCF_2P(O)(OH)_2
CF<sub>3</sub> (CF<sub>2</sub>CF<sub>2</sub>O) <sub>z</sub>CF (CF<sub>3</sub>) P (O) (OH) <sub>2</sub>
 [CF<sub>3</sub>(CF<sub>2</sub>CF<sub>2</sub>O)<sub>2</sub>]<sub>2</sub>P(O) (OH)
 [CF<sub>3</sub>(CF<sub>2</sub>CF<sub>2</sub>O)<sub>x</sub>CF<sub>2</sub>]<sub>2</sub>P(O)(OH)
 [CF_3(CF_2CF_2O)_{x}CF(CF_3)]_{x}P(O)(OH)
 CF_3(CF_2CF(CF_3)O)_zP(O)(OH)_2
 CF_3 (CF_2CF (CF_3) O)_2CF_2P (O) (OH)_2
 CF<sub>3</sub> (CF<sub>2</sub>CF (CF<sub>3</sub>) O) <sub>2</sub>CF (CF<sub>3</sub>) P (O) (OH) <sub>2</sub>
  [CF<sub>3</sub>(CF<sub>2</sub>CF(CF<sub>3</sub>)O)<sub>2</sub>]<sub>2</sub>P(O) (OH)
  [CF_3(CF_2CF(CF_3)O)_2CF_2]_2P(O)(OH)
  [CF_3(CF_2CF(CF_3)O)_2CF(CF_3)]_2P(O)(OH)
  CF, (CF, CF, O), C (0) OG
  CF, (CF, CF, O), CF, C (O) OG
  CF<sub>3</sub> (CF<sub>2</sub>CF<sub>2</sub>O) <sub>2</sub>CF (CF<sub>3</sub>) C (O) OG
  CF3 (CF2CF (CF3) 0) C (0) OG
  CF<sub>3</sub> (CF<sub>2</sub>CF (CF<sub>3</sub>) O)<sub>5</sub>CF<sub>2</sub>C (O) OG
  CF_3 (CF_2CF (CF_3) O) _2CF (CF_3) C (O) OG
  CF<sub>3</sub> (CF<sub>2</sub>CF<sub>2</sub>O) <sub>x</sub>C (O) O (CH<sub>2</sub>) <sub>x</sub>CH<sub>3</sub>
  CF<sub>3</sub> (CF<sub>2</sub>CF<sub>2</sub>O) <sub>x</sub>CF<sub>2</sub>C (O) O (CH<sub>2</sub>) <sub>x</sub>CH<sub>3</sub>
   CF_3 (CF_2CF_2O) _2CF (CF_3) C (O) O (CH_2) _2CH_3
   CF<sub>3</sub> (CF<sub>2</sub>CF (CF<sub>3</sub>) 0) <sub>2</sub>C (0) 0 (CH<sub>2</sub>) <sub>2</sub>CH<sub>3</sub>
   CF_3 (CF_2CF (CF_3) O) _2CF_2C (O) O (CH_2) _3CH_3
   CF<sub>3</sub> (CF<sub>2</sub>CF (CF<sub>3</sub>) O) <sub>r</sub>CF (CF<sub>3</sub>) C (O) O (CH<sub>2</sub>) <sub>n</sub>CH<sub>3</sub>
```

CF₃ (CF₂CF₂O)_aC (O) OCH₂CH₂OCH₂CH (OH) CH₂OH CF₃ (CF₂CF₂O)_aCF₂C (O) OCH₂CH₂OCH₂CH (OH) CH₂OH CF₃ (CF₂CF (CF₃) O)_aC (O) OCH₂CH₂OCH₂CH (OH) CH₂OH

CF₃ (CF₂CF₂O)₂C (O) N [(CH₂)₂CH₃]₂
CF₃ (CF₂CF₂O)₂CF₂C (O) N [(CH₂)₂CH₃]₂
CF₃ (CF₂CF₂O)₂CF (CF₃) C (O) N [(CH₂)₂CH₃]₂
CF₃ (CF₂CF (CF₃) O)₂C (O) N [(CH₂)₂CH₃]₂
CF₃ (CF₂CF (CF₃) O)₂CF₃C (O) N [(CH₂)₂CH₃]₂
CF₃ (CF₂CF (CF₃) O)₂CF (CF₃) C (O) N [(CH₂)₂CH₃]₂

CF₃ (CF₂CF₂O)₂O (CH₂)₂CH₃
CF₃ (CF₂CF₂O)₂CF₂O (CH₂)₂CH₃
CF₃ (CF₂CF₂O)₂CF (CF₃) O (CH₂)₂CH₃
CF₃ (CF₂CF (CF₃) O)₂O (CH₂)₂CH₃
CF₃ (CF₂CF (CF₃) O)₂CF₂O (CH₂)₂CH₃
CF₃ (CF₂CF (CF₃) O)₂CF (CF₃) O (CH₂)₂CH₃

CF₃ (CF₂CF₂O)₂C (O) O (CH₂)₂SO₃G CF₃ (CF₂CF₂O)₂CF₂C (O) O (CH₂)₂SO₃G CF₃ (CF₂CF₂O)₂CF (CF₃) C (O) O (CH₂)₂SO₃G CF₃ (CF₂CF (CF₃) O)₂C (O) O (CH₂)₂SO₃G CF₃ (CF₂CF (CF₃) O)₂CF₂C (O) O (CH₂)₂SO₃G CF₃ (CF₂CF (CF₃) O)₂CF (CF₃) C (O) O (CH₂)₂SO₃G

CF₃ (CF₂CF₂O) ₂C (O) O (CH₂) ₃CO₃G CF₃ (CF₂CF₂O) ₂CF₂C (O) O (CH₂) ₃CO₃G CF₃ (CF₂CF₂O) ₂CF (CF₃) C (O) O (CH₂) ₃CO₃G CF₃ (CF₂CF (CF₃) O) ₂CF₂C (O) O (CH₂) ₃CO₃G CF₃ (CF₂CF (CF₃) O) ₂CF₂C (O) O (CH₂) ₃CO₃G CF₃ (CF₂CF (CF₃) O) ₂CF (CF₃) C (O) O (CH₂) ₃CO₃G

```
CF3 (CF2CF2O) C (O) (CH2) CH3
CF_3(CF_2CF_2O)_rCF_2C(O)(CH_2)_rCH_3
CF_3 (CF_2CF_2O) _{2}CF (CF_3) C (O) (CH_2) _{2}CH_3
CF_3 (CF_2CF (CF_3) O) _{z}C (O) (CH_2) _{z}CH_3
CF_3(CF_2CF(CF_3)O)_rCF_2C(O)(CH_2)_nCH_3
CF_3 (CF_2CF (CF_3) O) _{x}CF (CF_3) C (O) (CH_2) _{x}CH,
CF_3(CF_2CF_2O)_*C(O)(CH_2)_*N(CH_3)_3G
CF_3 (CF_2CF_2O) _{2}CF_2C (O) (CH_2) _{3}N (CH_3) _{3}G
CF_3 (CF_2CF_2O) _{z}CF (CF_3) C (O) (CH_2) _{z}N (CH_3) _{3}G
CF_3 (CF_2CF (CF_3) O)_2C (O) (CH_2)_2N (CH_3)_3G
CF_3 (CF_2CF (CF_3) O) _2CF_3C (O) (CH_2) _2N (CH_3) _3G
CF_3 (CF_2CF (CF_3) O) _2CF (CF_3) C (O) (CH_2) _2N (CH_3) _3G
 r = 1-30
 t = 1-40
 m = 1-30
 G = H^{+}, Na^{+}, K^{+}, Li^{+}, NH_{4}^{+}, Ca^{+2}, Mg^{+2}, Cl^{-}, Br^{-}, "OTs, "OMs,
 etc.
```


CH₂OC (O) (CF₂CF₂O)_xCF₃

CH (SO₃G) OC (O) (CF₂CF₂O)_xCF₃

CH₂OC (O) (CF₂CF₂O)_xCF₃

CH (SO₃G) OC (O) CF₂ (CF₂CF₂O)_xCF₃

CH₂OC (O) CF (CF₃) (CF₂CF₂O)_xCF₃

CH (SO₃G) OC (O) CF (CF₃) (CF₂CF₂O)_xCF₃

CH₂OC (O) (CF₂CF (CF₃) O)_xCF₃

CH₂OC (O) (CF₂CF (CF₃) O)_xCF₃

CH₂OC (O) CF₂ (CF₂CF (CF₃) O)_xCF₃

CH₂OC (O) CF (CF₃) CF₂CF (CF₃) O)_xCF₃

CH₂OC (O) CF (CF₃) CF₂CF (CF₃) O)_xCF₃

CH₂OC (O) CF (CF₃) CF₂CF (CF₃) O)_xCF₃

 $G = H^{\circ}$, Na° , Li° , NH_{i}° , $Ca^{\circ 2}$, $Mg^{\circ 2}$, Cl° , Br° , "OTs, "OMs, etc.

Perhalo ther Surfactants (cont.)

CClF₂ (CClFCClFO)₊ (CH₂CH₂O)₊H CClF₃ (CClFCClFO)₊ (CH₂CH (CH₃) O)₊H CClF₂ (CClFCF (CClF₂) O₊ (CH₂CH₂) O)₊H CClF₃ (CClFCF (CClF₂) O₊ (CH₂CH (CH₃) O)₊H

CClF₂(CClFCClFO)₂P(O) (OH)₂
CClF₂(CClFCClFO)₂CF₂P(O) (OH)₂
CClF₂(CClFCClFO)₂CF(CF₃)P(O) (OH)₂
[CClF₂(CClFCClFO)₂]₂P(O) (OH)
[CClF₂(CClFCClFO)₂CF₃]₂P(O) (OH)
[CClF₂(CClFCClFO)₂CF(CF₃)]₂P(O) (OH)
CClF₂(CClFCF(CClF₂)O)₂P(O) (OH)₂
CClF₂(CClFCF(CClF₂)O)₂CF₂P(O) (OH)₂
CClF₂(CClFCF(CClF₂)O)₂CF(CF₃)P(O) (OH)₂
[CClF₂(CClFCF(CClF₂)O)₂CF(CF₃)P(O) (OH)₂
[CClF₂(CClFCF(CClF₂)O)₂CH₂]₂P(O) (OH)
[CClF₃(CClFCF(CClF₂)O)₂CH₂]₂P(O) (OH)

CClF₂ (CClFCClFO)₂C (O) OG CClF₂ (CClFCClFO)₂ (CH₂) C (O) OG CClF₂ (CClFCClFO)₂ (CH (CF₃) C (O) OG CClF₂ (CClFCF (CClF₂) O)₂C (O) OG CClF₂ (CClFCF (CClF₂) O)₂CF₂C (O) OG CClF₂ (CClFCF (CClF₂) O)₂CF (CF₃) C (O) OG

> r = 1-30 t = 1-40 $G = H^{+}$, Na⁺, Li⁺, K⁺, NH₄⁺, Mg⁺², Ca⁺² Cl⁻, Br⁻, OTs, OMs, etc.

Examples of commercially available compounds within the scope of formula III include those compounds supplied under the $Krytox^{TM}$ series by DuPont having a formula:

CF₃ (CFCF₂O) _xCFCO NH₄·

wherein x is 1-50.

Other compounds within the scope of formula III are made as known in the art and described in March et al., Supra.

The fourth group of surfactants useful in the invention 15 include siloxanes containing surfactants of formula IV

 $MD_xD_y^*M$ (IV)

wherein M is a trimethylsiloxyl end group, D_x is a 20 dimethylsiloxyl backbone which is CO_2 -philic and D^*_y is one or more methylsiloxyl groups which are substituted with a CO_2 -phobic R or R' group,

wherein R and R' each independently have the following formula:

25

$$(CH_2)_a(C_6H_4)_b(A)_d-[(L)_e--(A')_f-]_n-(L')_gZ(G)_h$$

wherein a is 1-30, preferably 1-25, most preferably 1-20,

30 b is 0 or 1,

 C_6H_4 is unsubstituted or substituted with a C_{1-10} alkyl or alkenyl, and

A, A', d, L, e, f, n, L', g, Z, G and h are as defined above and mixtures of R and R' thereof.

The $D_x:D_y$ ratio of the siloxane containing surfactants should b greater than 0.5:1, preferably greater than 0.7:1 and most preferably greater than 1:1.

5 The siloxane compounds should have a molecular weight ranging from 100 to 100,000, preferably 200 to 50,000, most preferably 500 to 35,000.

Silicones may be prepared by any conventional method such

10 as the method described in Hardman, B. "Silicones" the

Encyclopedia of Polymer Science and Engineering, v. 15, 2nd

Ed., J. Wiley and Sons, NY, NY (1989).

Examples of commercially available siloxane containing 15 compounds which may be used in the invention are those supplied under the ABIL series by Goldschmidt.

Suitable siloxane compounds within the scope of formula IV are compounds of formula V:

$$(CH_3)_3-Si-O = \begin{cases} CH_3 \\ Si-O \\ CH3 \end{cases} \begin{cases} CH_3 \\ Si-O \\ R \end{cases} Si-O \\ Si-O \\ R \end{cases} Si-O + Si-(CH_3)_3 \quad (V)$$

25

the ratio of x:y and y' is greater than 0.5:1, preferably greater than 0.7:1 and most preferably greater 30 than 1:1, and

R and R' are as defined above.

Preferred CO₂-phobic groups represented by R and R' include those moieties of the following formula:

$$(CH_2)_a(C_6H_4)_b(A)_d-[(L)_e-(A^*)_f-]-(L^*)_gZ(G)_h$$

wherein a is 1-20,

b is 0,

C.H. is unsubstituted,

A, A', d, L, e, f, n, g, Z, G and h are as defined above, and mixtures of R and R'.

Non-limiting examples of polydimethylsiloxane surfactants substituted with CO₂-phobic R or R' groups are:

Polydimethylsiloxane Surfactants

$$(CH_3)_3-Si-O = \begin{cases} CH_3 \\ Si-O \\ CH3 \end{cases} \begin{cases} CH_3 \\ Si-O \\ R \end{cases} Si-O \begin{cases} CH_3 \\ Si-O \\ R \end{cases}$$

$$x = 1-300; y = 1-100; y' = 1-100$$

R or R' =
$$(CH_2)_aCH_3$$

= $(CH_2)_aCH_3$ = $CH(CH_2)_aCH_3$
= $(CH_2)_aO(CH_2)_aCH_3$
= $(CH_2)_aS(CH_2)_aCH_3$
= $(CH_2)_aN[(CH_2)_aCH_3]_2$

Polydimethylsiloxane Surfactants (cont.)

R or R' =
$$(CH_2)_aC(0)O(CH_2)_aCH_3$$

= $(CH_2)_aC(0)(CH_2)_aCH_3$
= $(CH_2)_aC(0)N[(CH_2)_aCH_3]_2$

R or R' =
$$(CH_2)_a$$
 $(CH_2)_a$ $(CH_3)_a$ $(CH_2)_a$ $(CH_3)_a$ $(CH_2)_a$ $(CH_3)_a$

a = 1-30m = 1-30

OTS, OMs, tc.

Polydimethylsiloxane Surfactants (cont.)

$$(CH_3)_3-Si-O = \begin{cases} CH_3 \\ Si-O \\ CH3 \end{cases} \begin{cases} CH_3 \\ Si-O \\ R \end{cases} \begin{cases} CH_3 \\ Si-O \\ R \end{cases} Si-(CH_3)_3 \quad (V)$$

$$x = 1-300; y = 1-100; y' = 1-100$$

(CH₂) (CH₂CH₂O) H R or R' = (CH₂) (CH₂CH₂O) CH₃ = (CH₂)_a (CH₂CH₂O)_p (CH₂)_aCH₃ $(CH_2)_a(CH_2CH(CH_3)O)_pH$ (CH₂) (CH₂CH (CH₃) O) CH₃ (CH₂)_a (CH₂CH (CH₃) O)_p (CH₂)_aCH₃ (CH₂) COOG (CH₂) SO₃G (CH₂) OP (O) (OG) 2 [(CH₂)_aO]P(O)(O(CH₂)_aCH₃)(OG) (CH₂) O (CH₂) COOG (CH₂) _S (CH₂) _COOG $(CH_2)_aN[(CH_2)_aCOOG]_2$ $(CH_2)_{\bullet}O(CH_2)_{\bullet}SO_3G$ $(CH_2)_{a}S(CH_2)_{a}SO_3G$ $(CH₂)_{n}N[(CH₂)_{n}SO₃G]_{n}$ $(CH_2)_{a}O(CH_2)_{m}OP(O)(OG)_{2}$ a = 1-30; m = 0-30p = 0-50; p' = 0-50(CH₂)_aS(CH₂)_aOP(O)(OG)₂ $G = H^*$, Na^* , K^* , NH. Mg+2, Ca+2, Cl-, Br-, $(CH_2)_{2}O(CH_2)_{2}N(CH_3)_{3}G$

 $(CH_2)_{\bullet}O(CH_2)_{\bullet}N(CH_3)_{3}G$

Polydimethylsiloxane Surfactants (cont.)

PCT/EP96/00811 WO 96/27704

34

Enzymes

Enzymes may additionally be added to the dry cleaning system of the invention to improve stain removal. Such enzymes include proteases (e.g., Alcalase, Savinase and 5 Esperase from Novo Industries A/S); amylases (e.g., Termamyl from Novo Industries A/S); lipases (e.g., Lipolase from Novo Industries A/S); and oxidases. The enzyme should be added to the cleaning drum in an amount from 0.001% to 10%, preferably 0.01% to 5%. The type of 10 soil dictates the choice of enzyme used in the system. enzymes should be delivered in a conventional manner, such as by preparing an enzyme solution, typically of 1% by volume (i.e., 3 mls enzyme in buffered water or solvent).

15 Modifiers

In a preferred embodiment, a modifier such as water, or a useful organic solvent may be added with the stained cloth in the cleaning drum in a small volume. Preferred amounts of modifier should be 0.0% to about 10% by volume, more 20 preferably 0.0% to about 5% by volume, most preferably 0.0% to about 3%. Preferred solvents include water, ethanol, acetone, hexane, methanol, glycols, acetonitrile, C_{1-10} alcohols and C_{5-15} hydrocarbons. Especially preferred solvents include water, ethanol and methanol.

25

Peracid Precursors

Organic peracids which are stable in storage and which solubilize in densified carbon dioxide are effective at bleaching stains in the dry cleaning system. The selected 30 organic peracid should be soluble in carbon dioxide to greater than 0.001 wt. % at pressures of 500-10,000 psi and temperatures of 0-100°C. The p racid compound should be present in an amount of about 0.01% to about 5%, preferably 0.1% to about 3%.

The organic peroxyacids usable in the present invention can contain ither on or two p roxy groups and can be either aliphatic or aromatic. When the organic peroxyacid is aliphatic, the unsubstituted acid has the general formula:

5

where Y can be, for example, H, CH₃, CH₂Cl, COOH, or COOOH; 10 and n is an integer from 1 to 20.

When the organic peroxy acid is aromatic, the unsubstituted acid has the general formula:

15

wherein Y is hydrogen, alkyl, alkylhalogen, halogen, or COOOH or COOOH.

Typical monoperoxyacids us ful herein include alkyl peroxyacids and aryl peroxyacids such as:

- (i) peroxybenzoic acid and ring-substituted peroxybenzoic acid, e.g. peroxy-α-naphthoic acid;
- 5 (ii) aliphatic, substituted aliphatic and arylalkyl monoperoxy acids, e.g. peroxylauric acid, peroxystearic acid, and N,N-phthaloylaminoperoxycaproic acid (PAP); and
- (iii) amidoperoxy acids, e.g. monononylamide of either peroxysuccinic acid (NAPSA) or of peroxyadipic acid 10 (NAPAA).

Typical diperoxy acids useful herein include alkyl diperoxy acids and aryldiperoxy acids, such as:

- (iii) 1,12-diperoxydodecanedioic acid;
- 15 (iv) 1,9-diperoxyazelaic acid;
 - (v) diperoxybrassylic acid; diperoxysebacic acidand diperoxyisophthalic acid;
 - (vi) 2-decyldiperoxybutane-1,4-dioic acid;
 - (vii) 4,4'-sulfonylbisperoxybenzoic acid; and
- 20 (viii) N,N'-terephthaloyl-di(6-aminoperoxycaproic acid) (TPCAP).

Particularly preferred peroxy acids include PAP, TPCAP, haloperbenzoic acid and peracetic acid.

25

Dry Cleaning Process

A process of dry cleaning using densified carbon dioxide as the cleaning fluid is schematically represented in Figure

- 1. A cleaning vessel 5, preferably a rotatable drum,
- 30 receives soiled fabrics as well as the selected surfactant, modifier, enzyme, peracid and mixtures thereof. The cleaning vessel may also be referred to as an autoclave, particularly as described in the examples below.
- 35 Densified carbon dioxide, such as sup rcritical fluid carbon dioxide, is introduced into the cleaning vessel from

a storage vess 1 1. Since much of th CO₂ cleaning fluid is recycl d within the syst m, any losses during the dry cleaning process are made up through a CO₂ liquid supply vessel 2. The CO₂ fluid is pumped into the cleaning vessel by a pump 3 at pressures ranging between 700 and 10,000 psi, preferably 800 to 6000 psi. The CO₂ fluid is heated to its supercritical range of about 20°C to about 60°C by a heat exchanger 4.

10 During operation, the densified CO₂ is transferred from the supply vessel 2 to the cleaning vessel 5 through line 7 for a dry cleaning cycle of between about 15 to about 30 minutes. Before or during the cleaning cycle, surfactants, modifiers, enzymes, peracid and mixtures thereof as discussed above are introduced into the cleaning vessel, preferably through a line and pump system connected to the cleaning vessel.

At the end of the dry cleaning cycle, dirty CO₂, soil and spent cleaning agents are transferred through an expansion valve 6, a heat exchanger 8 by way of a line 9 into a flash drum 10. In the flash drum, pressures are reduced to between about 800 and about 1,000 and psi and to a temperature of about 20°C to about 60°C. Gaseous CO₂ is separated from the soil and spent agents and transferred via line 11 through a filter 12 and condenser 13 to be recycled back to the supply vessel 2. The spent agents and residue CO₂ are transferred via line 14 to an atmospheric tank 15, where the remaining CO₂ is vented to the 30 atmosphere.

Other processes known in the art may be used in the claimed dry cl aning system such as those described in Dewees et al., US Patent No. 5,267,455, owned by The Clorox Company, 35 herein incorporated by reference.

The following xamples will more fully illustrate the embodiments of the inv ntion. All parts, percentages and proportions referred to herein and in appended claims are by weight unless otherwise indicated. The definition and examples are intended to illustrate and not limit the scope of the invention.

Example 1

Hydrocarbon and fluorocarbon containing surfactants useful
in the invention must exhibit a hydrophilic/lipophilic
balance of less than 15. This example describes the
calculation of HLB values for various surfactants to
determine their effectiveness in supercritical carbon
dioxide. This calculation for various hydrocarbon and
fluorocarbon surfactants is reported in the literature and
is represented by the following equation:

 $HLB = 7 + \Sigma (hydrophilic group numbers) -$ $\Sigma (lipophilic group numbers)$

20

The hydrophilic and lipophilic group numbers have been assigned to a number of common surfactant functionalities including hydrophilic groups such as carboxylates, sulfates and ethoxylates and lipophilic groups such as -CH₂, CF₂ and PPG's.¹ These group numbers for the functional groups in surfactants were utilized to calculate the HLB number for the following hydrocarbon or fluorocarbon surfactant:

	Surfactant	Trade Name	HLB
		Zonyl FSN ²	2.1
1	CF, (CF ₂), CH ₂ H ₂ O(CH ₂ CH ₂ O), H	Zonyl FSO ³	3.4
2	CF, (CF,), CH, CH, O (CH, CH, O), 12H	Zonyi Fao	
3	CF, (CF) (CH ₂ CH ₂ C(O) O (CH ₂) 10 CH ₃		4.6
4	CF, (CF,),2CH,CH2C(O)O(CH2),CH3		7.1
5	CF, (CF,),CH,CH,C (O) ONa		17.3
6	CF, (CF,),2CH,CE,C (O) ONa		13.8
7	CF, (CF,) ,CH,CH,SO,Na	Zonyl TBS4	9.2
8	CF, (CF ₂) ₁₂ CH ₂ CH ₂ SO ₂ Na		5.7
9	HO (CH ₂ CH ₂ O) ₃ (CH (CH ₃) CH ₂ O) ₃₀ (CH ₂ CH ₂ O) ₃ H	Pluronic L61 ⁵	3.0
10	HO (CH ₂ CH ₂ O) ₂ (CH (CH ₃) CH ₂ O) ₁₆ (CH ₂ CH ₂ O) ₂ H	Pluronic L31	4.5
2.1	HO (CH ₂ CH ₂ O) , (CH (CH ₃) CH ₂ O) , (CH ₂ CH ₂ O) , H	Pluronic L62'	7.0
12	(CH ₂ CH ₂ O), (CH(CH ₃) CH ₂ O) ₂₁ (CH ₂ CH ₂ O), H	Pluronic IA3 ⁶	12.0
13	HO (CH (CH ₃) CH ₂ O) ₁₂ (CH ₂ CH ₂ O) ₉ (CH ₂ CH (CH ₃) O) ₁₂ H	Pluronic 17R2°	8.0
14	Polyethylene glycol surfactant (PEG)	Akyporox NP 1200 V ¹⁰	19.2
15	PEG 100- Laurate		19.1
16	Linear alkyl benzene sulfonate		20.0
17	Sodium lauryl sulfate		40.0
18	Sodium Cocoyl Sarcosinate		27.0

¹ Attwood, D.; Florence, A. T. "Surfactant Systems: Their chemistry, pharmacy and biology.", Chapman and Hall, NY, 1983, pp. 472-474.

Th conventional surfactants (Nos. 14-18) exhibit an HLB value of greater than 15 and are not effective as dry cl aning components in the invention.

²⁻⁴ Supplied by Dupont.

⁵⁻⁹ Supplied by BASF.

¹⁰ Supplied by Chem-Y GmbH of Germany.

WO 96/27704

40

Example 2

Supercritical fluid carbon dioxid only as a cleaning medium was used to dry clean several hydrophobic stains on cotton and wool fabrics.

The stained fabrics were prepared by taking a two inch by three inch cloth and applying the stain directly to the cloths. The cloths were allowed to dry.

The stained fabrics were then placed in a 300 ml autoclave having a gas compressor and an extraction system. The stained cloth was hung from the bottom of the autoclave's overhead stirrer using a copper wire to promote good agitation during washing and extraction. After placing the cloth in the autoclave and sealing it, liquid CO2 at a tank pressure of 850 psi was allowed into the system and was heated to reach a temperature of about 40°C to 45°C. the desired temperature was reached in the autoclave, the pressure inside the autoclave was increased to 4,000 psi by pumping in more CO2 with a gas compressor. The stirrer was then turned on for 15 minutes to mimic a wash cycle. At the completion of the wash cycle, 20 cubic feet of fresh CO₂ were passed through the system to mimic a rinse cycle. The pressure of the autoclave was then released to atmospheric pressure and the cleaned cloths were removed from the autoclave. To measure the extent of cleaning, the cloths were placed in a Reflectometer supplied by Colorguard. The R scale, which measures darkness from black to white, was used to determine stain removal. Cleaning results were reported as the percent stain removal according to the following calculation:

The cleaning results for the cotton and wool cloths dry cleaned with supercritical fluid carbon dioxide alone are in Table 1 below.

Table 1

Dry Cleaning Results on Several Hydrophobic Stains
Using Supercritical Carbon Dioxide Only As Cleaning Medium

Stain	Cloth	% Stain Removal
Ragu spaghetti sauce	Cotton	95 ·
Sebum	Wool	99
Olive Oil with Blue Dye	Wool	97
Lipstick	Wool	*

The results confirm what was known in the art: that hydrophobic stains are substantially removed with supercritical fluid carbon dioxide alone. However, the lipstick stain, which is a compound hydrophobic stain with pigment particulates, was removed only to the extent of its waxy components. The colored portion of the stain fully remained.

Example 3

The hydrophilic stain, grape juice, was dry cleaned using supercritical fluid carbon dioxide, a polydimethylsiloxane surfactant, water as a modifier and mixtures thereof according to the invention.

Two inch by three inch polyester cloths were cut and stained with conc ntrated grape juice which was diluted 1:10 with water. The grape juice stain was then dried and was approximately 2 wt. and 7 wt. grape juice stain after drying. The cloths were then placed in th autoclave as

described in Exampl 2, except th se experiments were run at a pressure of 6,000 psi.

Two different polydimethylsiloxane surfactants were used alone or in combination with 0.5 ml of water and supercritical fluid carbon dioxide. The control was supercritical fluid carbon dioxide alone.

The water was added directly to the bottom of the autoclave and not on the stain itself and the surfactant was applied directly to the stain on the cloth. After the wash and rinse cycles, cleaning results were evaluated and the results are reported in Table 2 below.

Table 2

Dry Cleaning Results on Grape Juice Stains Using
Supercritical Carbon Dioxide and Polydimethylsiloxane
Surfactant

Stain	Cloth	Burfactant	Modifier	% Stain. Removal.
2% grape juice	Polyester	None	None	18
2% grape juice	Polyester	0.2 g ABIL 88184 ¹	None	0 (darker)
7% grape juice	Polyester	None	0.5 ml water	21
7% grape juice	Polyester	0.2 g ABIL 88184	0.5 ml water	49
7% grape juice	Polyest r	0.2 g ABIL 8851 ²	0.5 ml water	51

- A polydimethylsiloxane having a molecular w ight of 13,200 and 5% of its siloxyl group substituted with a 86/14 ethylene oxide/propylene oxide chain supplied by Goldschmidt of Virginia.
- ² A polydimethylsiloxane having a molecular weight of 7,100 and 14% of its siloxyl group substituted with a 75/25 ethylene oxide/propylene oxide chain also supplied by Goldschmidt.

It was observed that the combination of water as a modifier with the selected polydimethylsiloxane surfactants improved dry cleaning results in supercritical fluid carbon dioxide. In fact, none of the three components alone removed substantially any of the grape juice stain.

Example 4

As a comparison with the prior art, a conventional alkane surfactant was used alone or in combination with a modifier and supercritical CO₂ to dry clean the hydrophilic stain, grape juice, on polyester, as described in Example 3 above.

The surfactant, linear alkylbenzene sulfonate is a solid and has an HLB value of 20. The LAS was added to the bottom of the autoclave with varying amounts of water. The following cleaning results were observed and are reported in Table 3 below.

Table 3

Dry Cleaning R sults on Grape Juice Stains Using

Supercritical Carbon Dioxide and Linear Alkylbenzene

Sulfonate Surfactant (LAS)

Stain	Cloth	Surfactant	Modifier	% Stain Removal
2% grape juice	Polyester	None	None	18
7% grape juice	Polyester	0.25 g LAS	0.5 ml water	0 (darker)
7% grape juice	Polyester	0.25 g LAS	6.0 ml water	75
2% grape juice	Polyester	0.12 g LAS	6.0 ml water	84
2% grape juice	Polyester	0.12 g LAS	0.5 ml water	Stain moved on cloth

It was observed that LAS was only effective in a larger amount of water (6 ml). When the modifier was reduced from 6 ml to 0.5 ml, the stain only wicked up the cloth and was not removed.

It is noted that DE 3904514 describes dry cleaning using supercritical fluid carbon dioxide in combination with a conventional surfactant. The publication exemplifies cleaning results with LAS. The experimental conditions in the examples state that the stained cloth has only minimal contact with supercritical fluid carbon dioxide, namely a 10 minute rinse only. It appears that the cleaning obtained with LAS and the large amount of water is similar to spot

or wet cleaning, since the cloth remains wet at the end of the process. There appears to be little to minimal influence of the supercritical fluid carbon dioxide on spot removal under these conditions.

Additionally, in a dry cleaning process, the use of LAS with supercritical fluid carbon dioxide would not be possible with water-sensitive fabrics such as silks and wools since such large amounts of water are necessary.

Example 5

A hydrophilic stain, namely grape juice, was dry cleaned using polydimethylsiloxane surfactants with water and supercritical fluid carbon dioxide according to the invention.

Polyester cloths were stained with 7% grape juice stain as described in Example 3 above. Two different polydimethylsiloxane surfactants were used with varying amounts of water and supercritical fluid carbon dioxide. In comparison, LAS, the conventional surfactant, used with the same amounts of water was used to remove the grape juice stains. The cleaning results for the two types of surfactants are reported in Table 4 below.

Table 4

Dry Cleaning R sults on Grape Juic Stains Using

Supercritical Carbon Dioxide and Surfactants with Increased

Water Levels

Stain	Cloth	Surfactant	Modifier	% Stain Removal
7% grape juice	Polyester	0.25 g. LAS	6.0 ml water	75
7% grape juice	Polyester	0.25 g. LAS	0.5 ml water	0 (darker)
7% grape	Polyester	0.2 g ABIL 88184 ¹	6.0 ml water	41
7% grape juice	Polyester	0.2 g ABIL 88184	0.5 ml water	49
7% grape juice	Polyester	0.2 g ABIL 88184	6.0 ml water	43
7% grape juice	Polyester	0.2 g ABIL 8851 ²	0.5 ml water	51

A polydimethylsiloxane having a molecular weight of 13,200 and 5% of its siloxyl group substituted with a 86/14 ethylene oxide/propylene oxide chain supplied by Goldschmidt.

² A polydimethylsiloxane having a molecular weight of 7,100 and 14% of its siloxyl group substituted with a 75/25 ethyl ne oxide/propyl ne oxide chain also supplied by Goldschmidt.

It was observed that the modified polydimethylsiloxane surfactants according to the invention are more eff ctive in the presence of less water (0.5 ml vs. 6.0 ml) as cleaning was reduced from 50% to 40% when the water levels were increased. The opposite effect was observed with LAS, as stain removal increased from 0% to 75% as the water levels were increased to 6.0 ml. Thus, the claimed siloxane surfactants provide better cleaning results with less water which is beneficial for water sensitive fabrics.

Example 6

Polydimethylsiloxanes having varying molecular weights and alkyl substituted moieties were tested as surfactants with supercritical fluid carbon dioxide in the inventive dry cleaning process. Various types of stained cloths were tested under the dry cleaning conditions described in Example 2 above.

A compound hydrophobic stain, red candle wax, was placed on both cotton fabrics as follows. A candle was lit and approximately 40 drops of melted wax were placed on each cloth so that a circular pattern was achieved. The cloths were then allowed to dry and the crusty excess wax layer was scraped off the top and bottom of each stain so that only a flat waxy colored stain was left.

Red candle wax was placed on the wool cloth by predissolving the red candle in hexane and then pipetting an amount of the hexane solution onto the fabric. The fabric was dried and the resulting fabric contained about 10 wt.% stain.

As stated above, the pressure of the autoclave during the washing cycle was 6000 psi at a temperature of 40°C with a

15 minut cycle. Twenty cubic feet of supercritical fluid carbon dioxide was us d for the rinse cycle.

Five types of modified polydimethylsiloxanes having formula V:

$$(CH_{3})_{3}-Si-O = \begin{cases} CH_{3} & CH_{3} \\ Si-O & Si-O \\ CH_{3} & R \end{cases}$$

$$(CH_{3})_{3}-Si-O = \begin{cases} CH_{3} & CH_{3} \\ Si-O & Si-O \\ R' & R' \end{cases}$$

$$(V)$$

wherein x:y and y' ratio is $\geq 0.5:1$ and R and R' are each independently a straight or branched C_{1-30} alkyl chain were prepared. The compound formula is represented as MD_x $D_x^*M(C_z)$ wherein M represents the trimethylsiloxyl end groups, D_x represents the dimethylsiloxane backbone (CO₂-philic), D_y^* represents the substituted methylsiloxyl group (CO₂-phobic) and (C₂) represents the carbon length of the alkyl chain of R.

Molecular weights of the siloxanes ranged from 1,100 to 31,000. The polydimethylsiloxanes straight chain alkyl group ranged from C₄ to C₁₈ carbons. The red wax stained cloths were cleaned and the cleaning results were observed and are reported in Table 5 below. No modifier was used.

Table 5

Red Candle Wax Stains Dry Cleaned with M difi d

Polydimethylsiloxanes and Supercritical Carbon Dioxide

Stain	Cloth	Surfactant (0.2 g)	% Stain Removal
Red candle wax	Cotton	None	13
Red candle	Cotton	MD ₁₀₀ D* ₂ M (C ₁₈) ¹	20
Red candle	Cotton	MD ₄₀₀ D* ₈ M (C ₈) ²	38
Red candle wax	Cotton	MD _{15.3} D* _{1.5} M(C ₁₂) ³	60
Red candle	Cotton	MD _{27.0} D* _{1.3} M(C ₁₂) ⁴	64
Red candle wax	Cotton	MD _{12.4} D* _{1.1} M(C ₁₂) ⁵	59
Red candle	Wool	None	33
Red candle	Wool	MD _{15.3} D* _{1.5} M (C ₁₂)	54

¹ A copolymer of polydimethylsiloxane and a stearyl substituted silicon monomer having a molecular weight of 8,200 and prepared as described in Hardman, B., "Silicones" The Encyclopedia of Polymer Science and Engineering, v. 15, 2nd d., J. Wiley and Sons, NY, NY (1989).

- ² A copolymer of polydimethylsiloxane and an octyl substitut d hydrocarbon silicon monomer having a molecular weight of 31,000 and prepared as described in Hardman Supra.
- ³ A copolymer of polydimethylsiloxane and a lauric substituted hydrocarbon silicon monomer having a molecular weight of 1,500 and prepared as described in Hardman, Supra.
- A copolymer of polydimethylsiloxane and a lauric substituted hydrocarbon silicon monomer having a molecular weight of 2,450 and prepared as described in Hardman, Supra.
- ⁵ A copolymer of polydimethylsiloxane and a lauric substituted hydrocarbon silicon monomer having a molecular weight of 1,170 and prepared as described in Hardman, Supra.

It was observed that the modified polydimethylsiloxanes in combination with supercritical fluid carbon dioxide significantly improved removal of a compound hydrophobic stain from both cotton and wool fabrics over the use of CO_2 alone. It was also observed that the lower molecular weight silicone surfactants (e.g., $MD_{12.4}D_{1.1}*M(C_{12})$; $MD_{15.3}D^*_{1.5}M(C_{12})$; and $MD_{27.0}D^*_{1.1}M(C_{12})$ are more effective at stain removal than the silicone surfactants having higher molecular weights (e.g., $MD_{100}D^*_{2}M(C_{18})$ and $MD_{400}D^*_{8}M(C_{8})$) regardless of chain length of the alkyl moiety. Especially beneficial were lower molecular weight silicones with chain lengths of C_{10-14} .

Example 7

A glycerated siloxane surfactant having a formula MD_xD*_yM wherein D*_y is substituted by -(CH₂)₃OCH₂CH(OH)CH₂OH was used to dry clean a grape juice stain on a polyester cloth under the dry cleaning conditions described in Example 2 above. About 0.2 gram of the surfactant was combined with 0.5 ml. water. The glycerated siloxane is a polydimethylsiloxane with a glycerol side chain having a molecular weight of 870 and prepared as described in Hardman, Supra.

It was observed that the glycerated siloxane removed 33% of the grape juice stain.

Example 8

Various fluorinated surfactants, either alone or with water, were used with supercritical fluid carbon dioxide to clean several types of stained fabric under the dry cleaning conditions described in Example 2.

Specifically, the pressure in the autoclave was 4000 psi and the temperature was 40°C to 45°C.

Cotton stained with red candle wax and polyester stained with grape juice were cleaned with the fluorinated surfactants and the following cleaning results were observed as reported in Table 6 below.

Table 6
Stains Dry Cl aned with Fluorinated Surfactants
and Supercritical Fluid Carbon Dioxide

Stain		Surfactant	Modifier	% Stain Removal
Red candle	Cotton	None	None	13
Red candle	Cotton	0.6 g Krytox™	None	70
2% grape juice	Polyester	None	None	18
2% grape juice	Polyester	-0.25 g FSA ²	0.5 ml water	11
2% grape juice	Polyester	0.2 g FSO- 100 ³	1.0 ml water	43
2% grape juice	Polyester	0.2 g FSN4	1.0 ml water	48
2% grape juice	Polyester	~0.2 g FSA	1.0 ml water	9

 $^{^1}$ A fluorinated polyether ammonium carboxylate supplied as $Krytox^{TM}$ surfactant by DuPont, Inc. of Delaware.

² A fluorinated nonionic having a lithium carboxylate salt supplied under the Zonyl surfactant series by DuPont, Inc. of Delaware.

³ A fluorinated nonionic surfactant supplied under the Zonyl surfactant series by DuPont, Inc. of Delaware.

⁴ A fluorinated nonionic surfactant suppli d under the Zonyl surfactant series by DuPont, Inc., of Delaware.

It was observed that all of the fluorinated surfactants equalled or improved dry cleaning of the tested stains over the use of supercritical fluid carbon dioxide alone. It was further observed that the fluorinated nonionic surfactants (FSO-100 and FSN) were more effective than the fluorinated nonionic having a lithium carboxylate salt (FSA).

Example 9

Various bleaching peracids were combined with supercritical fluid carbon dioxide to dry clean stained fabrics.

The bleaching peracids tested include m-chloroperbenzoic acid (m-CPBA), p-nitroperbenzoic acid (p-NPBA) and 6-phthalimidoperoxy hexanoic acid (PAP) in an amount of about 0.2 to 0.5 grams each. Cotton stained with red candle wax was cleaned as described in Example 5. The wash cycle of the dry cleaning system was run at 6000 psi and 45°C as described in Example 2. The coffee stains were applied to polyester and wool cloths.

At the end of the cleaning cycle, the stained cloths were evaluated and the results are reported below in Table 7.

Table 7
Stains Dry Clean d with Bleaching P racids and Supercritical Fluid Carbon Dioxide

Stain	Cloth	Surfact.	Modifier	% Stain Removal
Red candle wax	Cotton	None	None	13
Red candle wax	Cotton	0.5 g m- CPBA ¹	None	94
Red candle wax	Cotton	0.11 g p-NPBA ²	None	72
Red candle wax	Cotton	0.26 g PAP ³	None	50
Coffee	Polyester	0.5 g m- CPBA	None	45
Coffee	Wool	None	None	0

¹ m-chloroperbenzoic acid having a solubility of >0.15 g at 1900 psi, at 45°C, in 59.8 g CO₂ and supplied by Aldrich Chemical Co.

² p-nitroperbenzoic acid having a solubility of >0.05 g at 1900 psi, at 45°C, in 59.8 g CO₂ and supplied by Aldrich Chemical Co.

³ 6-phthalimidoperoxy hexanoic acid having a solubility of 0.05g at 2,000 psi, at 45°C, in 59.8 g CO₂ supplied by Ausimont.

The results show that the three peroxides tested significantly improved stain removal on the two types of stains cleaned over supercritical fluid carbon dioxide alone.

Example 10

Protease enzyme was used in supercritical carbon dioxide to clean spinach stains from cotton cloth. Three (3) mls of protease enzyme (Savinase supplied by Novo, Inc.) was added to buffered water to form a 1% solution and then added to each cloth. The cloths were then washed and rinsed as described in Example 2 above. The cleaning results observed and calculated are as shown in Table 8 below:

Table 8
Stains Drycleaned with Savinase in Supercritical
Carbon Dioxide

Stain	Cloth	Enzyme Solution	Modifier	% Stain Removal
Spinach	cotton	none	none	6.9
Spinach	cotton	Savinase	none	26.5

These results show enhanced cleaning of the spinach stain over supercritical carbon dioxide alone when the enzyme is added to th system.

WO 96/27704

56

Example 11

Lipolase enzyme (1% enzyme solution of 3 mls in buffered wear) was used in supercritical carbon dioxide to clean red candle wax stains from rayon cloth. The procedure used was identical to that of Example 10. The results are summarized in Table 9 below.

Table 9 Stains Dry Cleaned with Lipolase in Supercritical Carbon Dioxide

Stain	Cloth	Enzyme Solution	Modifier	% Stain Removal
Red Candle Wax	rayon	none	none	51
Red Candle Wax	rayon	Lipolase	none	60
Red Candle Wax	cotton	none	none	13
Red Candle Wax	cotton	Lipolase	none	64

The results in Table 9 show enhanced cleaning of the red candle wax stain when lipolase is used in conjunction with supercritical carbon dioxide, on both rayon and cotton cloths.

Example 12

Amylase enzyme (1% enzyme solution of 3 mls enzyme in buffered water) was used to dryclean starch/azure blue stains on wool cloth in supercritical carbon dioxide. The blue dye is added to make the starch stain visible so that its removal may be detected by the reflectometer. The drycleaning procedure used was identical to that of example 10, and the results are presented in Table 10 below.

Table 10

Dry Cleaning of Starch/Azure Blue Dye Stains on Wool Using

Amylase in Supercritical Carbon Dioxide

Stain	Cloth	Enzyme Solution	Modifier	% Stain Removal
Starch/Az ure Blue	wool	none	none	cloth gets darker
Starch/Az ure Blue	wool	Termamyl	none	25.6

The results in Table 10 show that the Termamyl enzyme is effective at cleaning the starch stain from wool cloth in supercritical carbon dioxide.

Example 13

Dry cleaning of grape juice stain was conducted on cloths other than polyester fabric. The experiments on rayon and silk cloth were conducted using the same procedure as in Example 3, using cloths with 2 wt. * grape juice stains with water as a modifier at pressures of 6000 psi and 4000 psi as noted in Table 11.

Table 11

Dry Cleaning of Grape Juic Stains on Rayon and Silk Using Supercritical Carbon Dioxide and Polydimethylsiloxane Surfactant

Stain	Cloth	Pressure	Surfactant	Modifier	% Stain Removal
Grape Juice	rayon	6000 psi	none	0.5 ml water	2.4
Grape Juice	rayon	6000 psi	0.2g Abil 88184	0.5 ml water	75.5
Grape Juice	silk	6000 psi	none	0.5 ml water	2.0
Grape Juice	silk	6000 psi	0.2g Abil 88184	0.5 ml water	30.4
Grape Juice	silk	4000 psi	none	0.5 ml water	3.9
Grape Juice	silk	4000 psi	0.2g Abil 88184	0.5 ml water	27.5

These results show significantly enhanced cleaning of the grape juice stain on rayon and silk when the polydimethylsiloxane surfactant Abil 88184 is added to the supercritical carbon dioxide dry cleaning system.

Example 14

Dry cleaning of r d candle wax stains was conducted on several different types of fabric, using an alkyl modified polydimethylsiloxane surfactant, $MD_{15.3}D^{\bullet}_{1.5}M$ (C₁₂), having a molecular weight of 1475 g/mole. The surfactant was synthesized as described in Hardman, Supra. The dry

cleaning procedure used was the same as that used in exampl 5, and th cleaning results ar presented in the following table.

Table 12

Dry Cleaning of Red Candle Wax Stains on Various Fabrics

Using an Alkyl-Modified Polydimethylsiloxane Surfactant in

Supercritical Carbon Dioxide

		,	
Stain	Cloth	Surfactant	% Stain Removal
Red Candle Wax	cotton	none	13.0
Red Candle Wax	cotton	0.2-0.3g MD _{15.3} D* _{1.5} M (C ₁₂)	52.9
Red Candle Wax	wool	none	36.0
Red Candle Wax	wool	0.2-0.3g MD _{15.3} D* _{1.5} M (C ₁₂)	51.6
Red Candle Wax	silk	none	61.3
Red Candle Wax	silk	0.2-0.3g MD _{15.3} D° _{1.5} M (C ₁₂)	77.3
Red Candle Wax	rayon	none	51.2
Red Candle Wax	rayon	0.2-0.3g MD _{15.3} D* _{1.5} M (C ₁₂)	50.1

The dry cleaning r sults show significantly enhanced cleaning of the red candle wax stain on all fabrics except for rayon, which shows no cleaning enhancement from addition of the surfactant. The cleaning results for the silk cloth are especially high, giving a cloth which looks very clean to the eye.

Example 15

Dry cleaning of grape juice on polyester cloth and of red candle wax on cotton cloth was investigated at different pressures to determine the effect of the pressure of supercritical carbon dioxide on the cleaning effectiveness of the system. The dry cleaning procedures used were the same as those used in examples 3 and 6 except for the variations in pressure, and the results are presented in the following table.

Table 13

Dry Cleaning of Grape Juice and Red Candle Wax Stains at

Different Pressures

Stain	Cloth	Pressure	Surfactant	Modifier	% Stain Removal
Red Candle	cotton	6000 psi	MD _{15.3} D* _{1.5} M (C ₁₂)	none	52.9
Red Candle	cotton	3000 psi	MD _{15.3} D* _{1.5} M (C ₁₂)	none	51.0
Red Candle	cotton	2000 psi	MD _{15.3} D* _{1.5} M (C ₁₂)	none	39.3
Grape Juice	polyester	6000 psi	Abil 88184	0.5 ml water	61.0
Grape Juic	polyester	4000 psi	Abil 88184	0.5 ml wat r	55.4
Grape Juice	polyester	3000 psi	Abil 88184	0.5 ml water	33.8

The results presented in the table show that the cleaning of r d candle wax stains diminishes between 3000 and 2000 psi, while the cleaning of grape juice stains diminishes between 4000 and 3000 psi.

Example 16

Further dry cleaning experiments were conducted on polyester stained with grape juice using other ethylene oxide/propylene oxide modified polydimethylsiloxane surfactants. The cleaning efficacy of these surfactants was compared to that of the Abil 88184 surfactant, whose cleaning results are presented in example 3. The dry cleaning procedure used was that same as that in example 2. Water (0.5 ml) was applied to the stained cloth before each experiment was conducted. The results are presented in the following table.

Table 14

Dry Cl aning of Grape Juice on Poly st r in Supercritical

Carbon Dioxide and Polydimethylsiloxane Surfactants

Stain	Cloth	Surfactant	Pressure	% Stain Removal
Grape Juice	polyester	Abil 88184 ¹	6000 psi	60.6
Grape Juice	polyester	Abil 88184 ¹	4000 psi	55.4
Grape Juice	polyester	Abil 8878 ²	4000 psi	38.6
Grape Juice	polyester	Abil 8848 ³	4000 psi	41.5
Grape Juice		MD _{12.7} D* ₁ M EO ₁₀ 4	6000 psi	41.4
Grape Juice		MD ₂₀ D* ₂ M EO ₁₀ ⁵	6000 psi	43.7

¹A polydimethylsiloxane having a molecular weight of 13,200 and 5% of its siloxyl groups substituted with a 86:14 ethylene oxide/propylene oxide chain. Supplied by Goldschmidt.

²A polydimethylsiloxane having a molecular weight of 674 and having one siloxyl group substituted with a 100% ethylene oxide chain. Supplied by Goldschmidt.

³A polydimethylsiloxane having a molecular weight of 901 and having one siloxyl group substituted with a 8.5:4.5 ethylene oxide/propylene oxide chain. Supplied by Goldschmidt.

A polydimethylsiloxane having a molecular weight of 1660 and 6.4% of its siloxyl groups substituted with a 100% ethylene oxide chain. Synthesized according to Hardman, Supra.

⁵A polydimethylsiloxane having a molecular weight of 2760 and 8.3% of its siloxyl groups substituted with a 100% ethylene oxide chain. Synthesized according to Hardman, Supra.

The dry cleaning results in the table show that all of the surfactants tested are effective at removing the grape juice stain from the polyester cloth, although the Abil 88184 is slightly better, even when the pressure is reduced to 4000 psi. A dry cleaning run with no surfactant cleans only 21% of the grape juice stain.

Example 17

The following tables show dry cleaning results on grape juice stains made on polyester cloth where the stained cloths were prepared by dipping the entire cloth in the staining solution. The cloths are prepared with 2 wt. * stain, and otherwise, the drycleaning procedure is identical to that of Example 3, including the use of 0.5 ml water on each cloth prior to cleaning.

Table 15

Dry Cleaning of Dipp d Grap Juice Stains Using Modified Polydimethylsiloxane Surfactants in Supercritical Carbon Dioxide

Stain	Cloth	Surfactant	Pressure	% Stain Removal
Grape Juice	polyester	Abil 88184 ¹	6000 psi	50.2
Grape Juice	polyester	MD ₂₀ D* ₂ M EO ₁₀ ²	6000 psi	48.0
Grape Juice	polyester	MD ₂₀ D* ₂ M EO ₁₀ ²	3000 psi	30.9
Grape Juice	polyester	MD ₂₀ D [*] ₂ M EO ₁₀ ²	4000 psi	46.1
Grape Juice	polyester	MD _{12.7} D* ₁ M EO ₁₀ ³	4000 psi	51.5

¹A polydimethylsiloxane having a molecular weight of 13,200 and 5% of its siloxyl groups substituted with a 86:14 ethylene oxide/propylene oxide chain. Supplied by Goldschmidt.

²A polydimethylsiloxane having a molecular weight of 2760 and 8.3% of its siloxyl groups substituted with a 100% ethylene oxide chain. Synthesized according to Hardman Supra.

³A polydimethylsiloxane having a molecular weight of 1660 and 6.4% of its siloxyl groups substituted with a 100% ethylene oxide chain. Synthesized according to Hardman Supra.

The dry cleaning results presented in this tabl show that the synthesiz d surfactants (entries 2 and 3) are just as effective at cleaning as Abil 88184. In addition, the new surfactants are just as effective at 4000 psi as they are at 6000 psi, although their cleaning ability diminishes somewhat at 3000 psi.

Example 18

These experiments comprised the cleaning of both red candle wax and grape juice stains simultaneously in the high pressure autoclave. One of each stained cloth was used with its respective surfactant and modifier (i.e. water added to the grape juice stained cloth). The grape juice stained cloth was prepared by the dipping method. Dry cleaning was conducted as described in example 2 and 5, at 6000 psi and 43-45°C, and the results are presented in the following table.

Table 16

Mixed Cloth Dry Cleaning in Supercritical Carbon Dioxide

Cloth/Stain	Surfactant	% Stain Removal
Red Wax/Cotton Grape Juice/Polyester	0.5g Krytox TM 0.2g MD _{12.7} D° ₁ M EO ₁₀	77.2 45.9
Red Wax/Cotton Grape Juice/Polyester	0.5g Krytox™ 0.2g Abil 88184	71.0 29.8
Red Wax/Cotton Grape Juice/Polyester	0.2g MD _{15.3} D [*] _{1.5} M C ₁₂ 0.2g MD _{12.7} D [*] ₁ M EO ₁₀	50.4 52.8

The results in the table show that the surfactants provide compatible amounts of cleaning of both stains, except for the combination of Krytox^(R) with Abil 88184, (entry 2), where the effectiveness of the Abil 88184 at cleaning the grape juice is diminished. The cleaning ability of the Krytox on red candle wax is actually enhanced somewhat in combination with polydimethylsiloxane surfactants.

CLAIMS

- 1. A dry cleaning system for removing stains from fabrics comprising:
 - a. an effective amount of densified carbon dioxide;
 - b. 0.001% to 10% by weight of a surfactant
 which is soluble in the densified carbon
 dioxide and which is represented by a
 formula

 R_nZ_n

wherein R_n - is a densified CO_2 -philic functional group, R is a halocarbon, a polysiloxane, or a branched polyalkylene oxide and n is 1-50, and Z_n -is a densified CO_2 -phobic functional group, and n is 1-50 and at pressures of 500-10,000 psi and temperatures of 0-100°C, the R_n - group is soluble in the densified carbon dioxide to greater than 10 wt. percent and the Z_n - group is soluble in the densified carbon dioxide to less than 10 wt. percent, and wherein R of the surfactant is the halocarbon or the branched polyalkylene oxide the surfactant has an HLB value of less than 15 and wherein R is the polysiloxane, the surfactant has a ratio of dimethyl siloxyl to substituted methyl siloxyl groups of greater than 0.5:1;

- c. 0 to about 10% by volume of a modifier;
- d. 0 to 3% by weight of an organic peracid; and
- e. 0 to 10% by weight of an enzyme solution, to substantially dry clean stains from fabrics.

- 2. A system according to claim 1 wherein the Z of Z_n- is a densified CO₂ phobic group having a functional moiety selected from the group consisting of a carboxylic acid, a hydroxyl, a phosphato, a phosphato ester, a sulfonyl, a C₁₋₃₀ alkyl sulfonate, a sulfate, an aryl which is unsubstituted or substituted with a C₁₋₃₀ alkyl or alkenyl, a branched or straight chained polyalkylene oxide, a nitro, a glyceryl, a C₁₋₃₀ straight chained or branched alkyl or alkenyl and a carbohydrate unsubstituted or substituted with a C₁₋₁₀ alkyl or alkenyl.
- 3. A system according to claim 1, wherein the HLB value of the surfactant is less than 13.
- 4. A system according to claim 1, wherein n and n' are each 1-35.
- 5. A system according to claim 1, wherein the modifier is selected from the group consisting of water, ethanol, methanol, hexane, acetone, glycol, acetonitrile, a C_{1-10} alcohol, a C_{5-15} hydrocarbon and mixtures thereof.
- 6. A system according to claim 5, wherein the modifier is present in an amount of 0.0% to about 4% by volume.
- 7. A system according to claim 1 wherein the organic peracid is selected from the group consisting of PAP, TPCAP, a haloperbenzoic acid and peracetic acid.
- 8. A system according to claim 1, wherein the enzyme is selected from the group consisting of a protease, an amylase, a lipase, an oxidase and mixtures thereof.
- A system according to claim 1 wherein the surfactant is a compound selected from the group consisting of

i) compounds of formula I

$$[(CX_3(CX_2)_a(CH_2)_b)_c(A)_d - [(L)_e - (A')_f]_n - (L')_g]_o Z(G)_h$$
 (I)

wherein X is F, Cl, Br, I and mixtures thereof;

a is 1 - 30;

b is 0 - 5;

c is 1 - 5;

A and A' are each independently a linking moiety representing an ester, a keto, an ether, a thio, an amido, an amino, a C₁₋₄ fluoroalkyl, a C₁₋₄ fluoroalkenyl, a branched or straight chain polyalkelene oxide, a phosphate, a sulfonyl, a sulfate, an ammonium and mixtures thereof;

d is 0 or 1;

L and L' are each independently a C_{1-30} straight chained or branched alkyl or alkenyl or an aryl which is unsubstituted or substituted and mixtures thereof;

e is 0-3;

f is 0 or 1;

n is 0-10;

q is 0-3;

o is 0-5;

Z is a hydrogen, a carboxylic acid, a hydroxy, a phosphato, a phosphato ester, a sulfonyl, a sulfonate, a sulfate, a branched or straight-chained polyalkylene oxide, a nitryl, a glyceryl, an aryl unsubstituted or substituted with a C₁₋₃₀ alkyl or alkenyl, a carbohydrate unsubstituted or substituted with a C₁₋₁₀ alkyl or alkenyl or an ammonium; G is an anion or cation such as H⁺, Na⁺, Li⁺, K⁺, NH₄⁺ Ca⁺², Mg⁺², Cl⁻, Br⁻, I⁻, mesylate, or tosylate; and h is 0-3;

ii) compounds of formula II

wherein R and R' each represent a hydrogen, a C_{1-5} straight chained or branched alkyl or alkylene oxide and mixtures thereof;

i is 1 to 50;

A, A', d, L, L', e f, n, g, o, Z, G and h are as defined above,

iii) compounds of formula III

$$[(CX_3(XO)_r(T)_g)_c(A)_{d}-[(L)_{e}-(A')_{f}-]_n(L')_g]_oZ(G)_h$$
 (III)

wherein XO is a halogenated alkylene oxide having a C_{1-6} straight or branched halocarbon;

r is 1-30;

T is a straight chained or branched haloalkyl or haloaryl;

s is 0-5;

X, A, A', c, d, L, L', e, f, n, g, o, Z, G and h are as defined above,

iv) compounds of formula IV

 MD_xD*_vM

(IV)

wherein M is a trimethylsiloxyl end group, D_x is a dimethylsiloxyl backbone which is CO_2 -philic and D_y^* is one or more methylsiloxyl groups which are substituted with a CO_2 -phobic R or R' group and mixtures of R and R'.

wherein R and R' are each independently defined in the formula

$$(CH_2)_a (C_6H_4)_b (A)_d - [(L)_e - (A')_f -]_n - (L')_g Z (G)_h$$

wherein a is 1-30,

b is 0 or 1,

 C_6H_4 is unsubstituted or substituted with a C_{1-10} alkyl or alkenyl,

and A, A', d, L, e, f, n, L', g, Z, G and h are as defined above, and mixtures of compounds of formulas I-IV.

- of formulas I IV are those wherein A and A' are each independently an ester, an ether, a thio, a polyalkylene oxide, an amido, an ammonium and mixtures thereof; Z is a hydrogen, a carboxylic acid, a hydroxyl, a phosphato, a sulfonyl, a sulfate, an ammonium, a polyalkylene oxide and an unsubstituted carbohydrate; and G is H', Li', Na', NH', Cl', Br' and tosylate.
- 11. A system according to claim 10, wherein the compounds of formulas I IV ar those wherein A and A' are each an ester, an ether, an amido, a polyoxyalkylene oxide and mixtures thereof; L and

- L'are ach independently a C_{1-20} alkyl or an unsubstituted aryl, Z is a hydrogen, a phosphato, a sulfonyl, a carboxylic acid, a sulfate and a polyalkylene oxide; and G is H', Na' or NH₄'.
- 12. A system according to claim 9, wherein the compounds of formula IV have a $D_x:D^*_y$ ratio of greater than 1:1.
- 13. A system according to claim 12, wherein the compounds of formula IV have a molecular weight in a range of from 100 to 100,000.
- 14. A system according to claim 13, wherein the molecular weight of the compounds of formula IV is from 200 to 50,000.
- 15. A system according to claim 1, wherein R of the R_n -group is the polysiloxane.

- Separator Soil Recovery 5 Filter Supercritical CO₂ Dry Cleaning **CO2 Dry Cleaning Vessel** - 13 Condenser Liquid CO2 Fig. 1 Storage Vessel

PCT/EP 96/00811 A. CLASSIFICATION OF SUBJECT MATTER
1PC 6 D06L1/00 D06L1/04 D06L3/02 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 D06L Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category * 1.5 EP.A.0 518 653 (THE CLOROX CO. A 16 December 1992 cited in the application see claims 1,5,6 DE,A,40 04 111 (DEUTSCHES A TEXTILFORSCHUNGSZENTRUM NORD-WEST E.V. 23 August 1990 see claims 1-11 1,7,8 EP.A.0 530 949 (THE CLOROX CO. 10 March 1993 cited in the application see page 4, line 26 - page 5, line 56 see claims -/--Patent family members are listed in annex. IX I Further documents are listed in the continuation of box C. Special categories of cited documents: "I later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not connidered to be of particular relevance "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'E' earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventve step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or Other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 1 2 -07- 1996 8 July 1996 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. St 18 Patentiaan 2 NL - 2220 HV Rijewith Td. (+31-70) 340-2040, Tz. 31 651 epo ni, Pate (+31-70) 340-3016 Serbetsoglou, A

INTERNATIONAL SEARCH REPURI

PCT/Er 96/00811

		PCT/Er 96/00811		
C/Contrate	non) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.	{	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	KEIEVEN W		
A	DE.A.39 06 735 (DEUTSCHES TEXTILFORSCHUNGSZENTRUM NORD-WEST EV.) 6 September 1990 see page 3, line 54 - line 61 see claims 1-5	1,7		
4	DE,A,39 04 514 (ÖFFENTLICHE PRÜFSTELLE UND TEXTILINSTITUT FÜR VERTRAGSFORSCHUNG E.V.) 23 August 1990 cited in the application see claims 1-8	1		
	US.A.4 012 194 (MAFFEI RAYMOND L.) 15 March 1977 cited in the application see claim 1			
A	US,A,4 219 333 (HARRIS ROBERT D.) 26 August 1980 see column 2, line 60 - column 6, line 20 see claims	1		

MIERNAHUNAL SEARCH REPURI

Info.nation on patent family members

PCT/EP 96/00811

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP-A-0518653	16-12-92	US-A- 5279615 AT-T- 127547 AU-B- 661314 AU-B- 1815792 CA-A- 2070760 DE-D- 69204567 DE-T- 69204567 ES-T- 2078659 JP-A- 5202388	18-01-94 15-09-95 20-07-95 17-12-92 15-12-92 12-10-95 01-02-96 16-12-95 10-08-93
DE-A-4004111	23-08-90	NONE	
EP-A-0530949	10-03-93	US-A- 5431843 AT-T- 127546 AU-B- 662004 AU-B- 2107292 CA-A- 2070759 DE-D- 69204606 DE-T- 69204606 ES-T- 2078660 JP-A- 5239494 US-A- 5486212	11-07-95 15-09-95 17-08-95 11-03-93 05-03-93 12-10-95 01-02-96 16-12-95 17-09-93 23-01-96
DE-A-3906735	0 6- 0 9-90	NONE	
DE-A-3904514	23-08-90	NONE	
US-A-4012194	15-03-77	NONE	
US-A-4219333	26-08-80	CA-A- 1119915	16-03-82