1 Plan ćwiczenia.

Przeprowadzić identyfikację off-line obiektów dyskretnych oraz ciągłych (otrzymując dyskretny model układu ciągłego).

Proponowane układy dyskretne:

$$G_1(z) = \frac{0.1z + 0.2}{z^2 + 0.3z + 0.4}$$

$$G_2(z) = \frac{0.1z^2 + 0.2z + 0.3}{z^3 + 0.3z^2 + 0.4z + 0.2}$$

Proponowane układy ciągłe:

$$G_3(s) = \frac{1}{s+2}$$

$$G_4(s) = \frac{1}{s^2 + 2s + 3}$$

$$G_5(s) = \frac{s+2}{s^3 + 2s^2 + s + 1}$$

Przeprowadzić walidację otrzymanych modeli dyskretnych sprawdzając, czy odpowiedź zidentyfikowanego modelu będzie odpowiadała odpowiedzi danego układu ciągłego.

Zagadnienia do analizy:

- 1. przydatności rozkładu SVD (wartości szczególnych) na ocenę otrzymanych wyników identyfikacji
- 2. wpływ typu sygnału wymuszenia na uwarunkowanie numeryczne problemu identyfikacji
- 3. wpływ częstotliwości próbkowania na otrzymane rezultaty identyfikacji
- dla identyfikacji układów ciągłych porównań zidentyfikowane parametry modelu dyskretnego z parametrami otrzymanymi przez dyskretyzację danego układu ciągłego wybranymi metodami.

2 Identyfikacja układów dyskretnych.

a) Identyfikacja układu dyskretnego o transmitancji:

$$G_1(z) = \frac{0.1z + 0.2}{z^2 + 0.3z + 0.4}$$

Na podstawie modelu w simulinku i programu MATLAB otrzymano wyniki:

- dla chwili początkowej k = 1 (gdy y₀ i u₀ nie są znane)

<u>, , , </u>	. ,
θ	Ф
0.150	7.729
0.150	0.216
0.300	0.123
0.400	0

- dla chwili początkowej k = 1 (gdy $y_0 = u_0 = 0$)

θ	Ф
0.100	7.761
0.200	0.715
0.300	0.214
0.400	0.122

a) Identyfikacja układu dyskretnego o transmitancji:

$$G_2(z) = \frac{0.1z^2 + 0.2z + 0.3}{z^3 + 0.3z^2 + 0.4z + 0.2}$$

Na podstawie modelu w simulinku i programu MATLAB otrzymano wyniki:

- dla chwili początkowej k = 1 (gdy y₀ i u₀ nie są znane)

θ	Ф
0.200	9.595
0.200	0.454
0.200	0.233
0.300	0.123
0.400	5.06e-17
0.200	7.76e-18

- dla chwili początkowej k = $\overline{1 \text{ (gdy y}_0 = u_0 = 0)}$

(0))	,
θ	Ф
0.150	9.661
0.150	0.876
0.300	0.431
0.300	0.228
0.400	0.123
0.200	4.48e-18

3 Identyfikacja układów ciągłych.

a) Identyfikacja układu ciągłego o transmitancji:

$$G_3(s) = \frac{1}{s+2}$$

Za pomocą funkcji c2d otrzymano dyskretny model układu ciągłego (T=0.01, metoda "zoh"):

$$G_3(z) = \frac{0.009901}{z - 0.9802}$$

Na podstawie modelu w simulinku i programu MATLAB otrzymano wyniki:

- dla chwili początkowej k = 1 (gdy y₀ i u₀ nie są znane)

, , , , , , , ,	()
θ	Ф
0.0099	61.0423
-0.9802	2.2276

- dla chwili początkowej k = 1 (gdy y₀ = u₀ = 0)

θ	Ф
0.0099	61.0423
-0.9802	2.2276

b) Identyfikacja układu ciągłego o transmitancji:

$$G_4(s) = \frac{1}{s^2 + 2s + 3}$$

Za pomocą funkcji c2d otrzymano dyskretny model układu ciągłego (T=0.01, metoda "zoh"):

$$G_4(z) = \frac{4.967e^{-5} z + 4.934e^{-5}}{z^2 - 1.98 z + 0.9802}$$

Na podstawie modelu w simulinku i programu MATLAB otrzymano wyniki:

- dla chwili początkowej k = 1 (gdy y₀ i u₀ nie są znane)

θ	Ф
4.950e-05	81.4639
4.950e-05	3.3791
-1.9799	0.0132
0.9802	0.0000

- dla chwili początkowej k = 1 ($\overline{\text{gdy}} y_0 = u_0 = 0$)

θ	Ф
4.967e-05	81.4666
4.934e-05	3.3865
-1.9799	0.7055
0.9802	0.0132

Rysunek 1 – porównanie odpowiedzi układu ciągłego i modelu dyskretnego pkt. b

c) Identyfikacja układu ciągłego o transmitancji:

$$G_5(s) = \frac{s+2}{s^3 + 2s^2 + s + 1}$$

Za pomocą funkcji c2d otrzymano dyskretny model układu ciągłego (T=0.01, metoda "zoh"):

$$G_5(z) = \frac{5e^{-5}z^2 + 9.901e^{-7}z - 4.901e^{-5}}{z^3 - 2.98z^2 + 2.96z - 0.9802}$$

Na podstawie modelu w simulinku i programu MATLAB otrzymano wyniki:

- dla chwili początkowej k = 1 (gdy y₀ i u₀ nie są znane)

	,
θ	Ф
0.0000	214.3516
0.0000	22.9152
0.0000	0.2807
-2.9801	0.0000
2.9603	0.0000
-0.9802	0.0000

- dla chwili początkowej k = 1 ($\overline{gdy y_0 = u_0} = 0$)

θ	Ф
0.0000	214.3522
0.0000	22.9389
-0.0000	0.8157
-2.9801	0.2807
2.9603	0.0000
-0.9802	0.0000

4 Wnioski.

Nie wszystkie funkcje ciągłe da się zidentyfikować metodą off-line. Problem dotyczy współczynników w liczniku, który był omówiony w instrukcji do ćwiczenia. Współczynniki w mianowniku można wyznaczać z powodzeniem. W zależności od okresu co jaki były pobierane próbki otrzymuje się różne parametry funkcji zidentyfikowanych. Jeśli okres próbkowania odpowiada czasowi z jakim będzie dyskretyzowana f. ciągła funkcją c2d, to otrzymane parametry funkcji zidentyfikowanej są zbliżone do otrzymanego układu dyskretnego.

Problemem jest otrzymywanie parametrów w liczniku o małych wartościach. Wtedy te parametry mogą być pokazane jako zero w wyniku przybliżania wartości. Skutek tego jest taki, że odpowiedź takiego układu dyskretnego ma kształt układu ciągłego, ale ma inne wartości (jest przeskalowana). Przy zwiększeniu okresu próbkowania te wartości parametrów w liczniku rosną. Mniejszy okres próbkowania pozwala uzyskać dokładniejsze modele dyskretne układów ciągłych.

Rozkład SVD pozwala określić czy otrzymane parametry są poprawne. Jeśli jest w nim wartość zero, to nie istnieje jednoznaczne rozwiązanie układu.

Sygnał wymuszenia ma duży wpływ na otrzymane wyniki identyfikacji. Najbardziej efektywny jest sygnał szumu, ponieważ pobudza układ w największym zakresie częstotliwości.