Femtosecond-laser induced dynamics of CO on Ru(0001): New insights from a HOT-ELECTRON, ELECTRONIC FRICTION MODEL INCLUDING SURFACE MOTION

Robert Scholz^{1,2}, Gereon Floß¹, Peter Saalfrank¹, Gernot Füchsel³, Ivor Lončarić⁴, and J. I. Juaristi^{4,5,6}

¹Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany ²Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany ³Universiteit Leiden, Gorlaeus Laboratories, Einsteinweg 55, 2333 Leiden, The Netherlands ⁴Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain ⁵Departamento de Física de Materiales, Facultad de Químicas, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain ⁶Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián, Spain

Introduction

Motivation

- research on small molecules adsorbed to metals is important for:
- -catalytic applications
- -fundamental understanding of bonding
- femtosecond(fs)-lasers are a valuable tool for such research as they
- allow for investigations on small timescales
- open up new processes compared to heating (femtochemistry)
- may enable specific control over catalytic reactions (photocatalysis)
- specific motivation for system CO/Ru(0001)
- -experimentally well studied regarding fs-laser irradiation, e.g. [1, 2]
- -fulldimensional ab-initio potential recently developed in our group[3]
- -details of this indicate interpretation of experiment [2] may be wrong

How does fs-laser-irradiation affect metal surfaces?

Desorption **Diffusion** (and possibly Reactions)

- (1) Electron-phonon coupling
- (2) Electronic friction
- (3) Phonon-adsorbate interaction

_kf(Ε)

⊻ 5000-

....low T_{el}

t/ps

- metals: ion lattice plus quasi-free electron gas
- visible light is absorbed only by the electrons
- produced electron hole pairs thermalize quickly \Rightarrow "hot" Fermi-Dirac-distribution (after $\sim 10 \text{ fs}$)
- electrons transfer part of energy to ion lattice, via **1** electron-phonon coupling
- (phonons = lattice vibrations; quasi-particles)
- -electrons couple to phonons as their fast movement causes "shockwaves" in ion lattice -equilibration process completes after $\sim 1 \text{ ps}$
- \Rightarrow Thus, with fs-lasers, two different temperatures:
 - $-T_{\rm el}$ electron temperature
 - $-T_{\rm ph}$ phonon temperature
- can be simulated using a Two-Temperature Model (2TM)[4] (see right)

Models and Methods

Six-dimensional Potential Energy Surface (6D PES)[3]

- Basis for dynamics: precomputed PES from DFT (rPBE + D2)
 - all 6 dimensions of the adsorbate

 - ⇒ number and length of trajectories can be large

 \bullet analytical PES and gradients \Rightarrow very fast

- downsides: surface atoms frozen \Rightarrow no phonons 0.0
- had to be constructed first

Two-Temperature Model (2TM)[4]

- consists of two coupled differential equations: $C_{\rm el} \frac{\partial T_{\rm el}}{\partial t} = \frac{\partial}{\partial z} \kappa \frac{\partial}{\partial z} T_{\rm el} g(T_{\rm el} T_{\rm ph}) + S(z, t),$ $C_{\rm ph} \frac{\partial T_{\rm ph}}{\partial t} = g(T_{\rm el} T_{\rm ph}).$ • describes interaction of the metal surface and laser
- calculates $T_{\rm el}$ and $T_{\rm ph}$ as f(z,t) from laser parameters and material properties:
- -laser wavelength λ (affects penetretion depth into material)

- (effective) absorbed fluence F (energy/area)

- -electron and phonon heat capacities $C_{\rm el}$ and $C_{\rm ph}$
- -electron heat conductivity κ
- -pulse duration τ (all three appear in the "source term" S(z,t))
- electron-phonon coupling constant g

Electronic Friction: Langevin Dynamics[5] and Local Density Friction Approximation (LDFA)[6]

Inclusion of Phonons: Generalized Langevin Oscillator(GLO)-model[7, 8, 9]

References

[1] S. Funk, M. Bonn, D. N. Denzler, C. Hess, M. Wolf and G. Ertl, J. Chem. Phys. 112, 9888 (2000).

[2] M. Dell'Angela, T. Anniyev, M. Beye, R. Coffee, A. Föhlisch et al., Science 339, 1302 (2013).

[3] G. Füchsel, J. C. Tremblay, and P. Saalfrank, J. Chem. Phys. **141**, 094704 (2014).

[4] S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel'man, Sov. Phys.-JETP 39, 375 (1974).

[5] M. Head-Gordon and J. C. Tully, *J. Chem. Phys.* **103**, 10137 (1995).

[6] J. I. Juaristi, M. Alducin, R. Díez Muiño, H. F. Busnengo and A. Salin, *Phys. Rev. Lett.* **100**, 116102 (2008).

[7] S. A. Adelman and J. D. Doll, *J. Chem. Phys.* **64**, 2375 (1976).

[8] J. C. Tully, J. Chem. Phys. **73**, 1975 (1980).

[9] H. F. Busnengo, M. A. Di Césare, W. Dong, and A. Salin, *Phys. Rev. B* 72, 125411 (2005).