Real Analysis - Assignmennt 6

Philip Warton

November 13, 2020

Problem 6.9

If $A \subset B \subset \overline{A} \subset M$, and if A is connected, show that B is connected. In particular, \overline{A} is connected.

Proof. Suppose that $A \subset B \subset \overline{A} \subset M$, and that A is connected. We want to show that there does not exist some disjoint union of open sets such that $U \dot{\cup} V = \overline{A}$ where U and V are non-empty. By contradiction, suppose that such a disconnection does exist. Then it follows that $A \subset U \dot{\cup} V = \overline{A}$. Since A is connected, it must be the case that either $A \cap U = \emptyset$ or $A \cap V = \emptyset$. Otherwise, A yields the disconnection $A = (A \cap U) \dot{\cup} (A \cap V)$. Without loss of generality, choose U and V such that $A \cap U$ is nonempty and $A \cap V$ is empty.

Choose $x \in V \subset \overline{A}$. Since V is open, there exists some ϵ -neighborhood $B_{\epsilon}(x) \subset V \subset \overline{A}$. However, since x has some ϵ -neighborhood contained in \overline{A} , x must lie in the interior of A. Thus, V intersects A, and a contradiction arises. Therefore \overline{A} must be connected and so too must B be connected

Problem 7.19

Define $c_0 \subset \ell_\infty$ by the set of all sequences converging to 0. Prove that c_0 is complete by showing that c_0 is closed in l_∞ .

Proof. Let $f \in \ell_{\infty}$ be a limit point of c_0 . Then let (f_n) be a squence in c_0 converging to $f \in \ell_{\infty}$. Let $\frac{\epsilon}{2} > 0$ be arbitrary. Then we say

$$|f(k)| \le |f(k) - f_n(k)| + |f_n(k)|$$

As n grows large, the right hand side is eventually smaller than $\frac{\epsilon}{2} + |fn(k)|$, and as k grows large each $|f_n(k)|$ is eventually less than $\frac{\epsilon}{2}$. At this point we say

$$|f(k)| \le |f(k) - f_n(k)| + |f_n(k)| < \epsilon$$

Thus $f(k) \to 0$, and we say $f \in c_0$. Since an arbitrary limit point f belongs to c_0 , we say that c_0 contains its limit points, and is therefore closed in ℓ_{∞} . Because this is this case, c_0 is complete.

Problem 7.35

Prove that a normed vector space is complete if and only if its closed unit ball is complete.

Proof. Let X be a normed vector space. We must show that the bidirectional implication holds in both directions.

 \implies First, assume that X is complete. Then we wish to show that $B=\{x\in X: ||x||\leq 1\}$ is complete. We will show that B is closed in X, and therefore is complete. Let $x\in B^c$. We know that ||x||>1, and for any $y\in B, ||y||\leq 1$. By the reverse triangle inequality, we know that $||x-y||\geq ||x||-||y||\geq ||x||-1>0$. Let $\epsilon=\frac{||x||-1}{2}$, and let $y\in B$. For every $y'\in B_{\epsilon}(x), ||y'||<\epsilon$.

$$||y' - y|| \ge ||y' - x|| - ||y - x|| > \epsilon - 0 > 0$$

Since $x \in B^c$ has some ϵ -neighborhood contained in B^c , B is closed. Since B is closed in a complete space, the space (B,d) is also complete.

 \models Now assume that $B=\{x\in X: ||x||\leq 1\}$ is a complete subspace of X. We wish to show that the space X is complete. Let (x_n) be a Cauchy sequence in M. Let $\epsilon=\frac{1}{2}$. Then $\exists N\in\mathbb{N}$ such that $\forall n>N, ||x_N-x_n||<\frac{1}{2}$. Let y_n be a series defined by $y_n=x_n-x_N$. Then $y_N=0$ and we say that $B_\epsilon(y_N)=B_{\frac{1}{2}}(0)\subset B$. Since x_n is Cauchy, so too is y_n . Then since the limit of x_n must be a limit point of $B_\epsilon(x_N)$, the limit $y=\lim y_n$ must be a limit point of $B_\epsilon(0)$ and therefore must lie in B and be some point $y\in M$. Then since we have closure under vector addition, it follows that $y+x_N\in M$, and that this the limit $x=\lim x_n=y+x_N=\lim y_n+x_N$.

Problem 7.41

Let M be complete and let $f: M \to M$ be continuous. If f^k is a strict contraction for some integer k > 1, show that f has a unique fixed point.

Proof. Since f^k is a strict contraction on a complete space it admits some unique fixed point x. Since $f^k(x) = x$, we can write

$$f^{k}(f(x)) = (f^{k} \circ f)(x)$$

$$= (f \circ f \circ \cdots \circ f)(x)$$

$$= (f \circ f^{k})(x)$$

$$= f(f^{k}(x))$$

$$= f(x)$$

Since $f^k(f(x)) = f(x)$, we say that f(x) is a fixed point for f^k . Then since our fixed point must be unique, we say that it must be the case that f(x) = x. Thus x is a fixed point under f. To show that this point x is unique, let $x' \in M$ such that x' is a fixed point under f. Then, f(x') = x'. However, this means

$$f^{k}(x') = f^{k-1}(f(x')) = f^{k-1}(x')$$

$$= f^{k-2}(f(x')) = f^{k-2}(x')$$

$$\vdots$$

$$= f(f(x')) = f(x') = x'$$

Thus x' is a fixed point under f^k , and since this function has exactly one unique fixed point x, it follows that x' = x. Therefore f has a unique fixed point x.