LISTA DE EXERCÍCIOS 8

- 1. Considere um ponto escolhido uniformemente no intervalo [0, a]. Seja X a distância da origem ao ponto escolhido. Obtenha a função de distribuição de Y = min(X, a/2).
- 2. Escolhe-se aleatoriamente um ponto em (-10, 10). Seja X uma variável aleatória definida de tal forma que X represente a coordenada do ponto se o mesmo estiver em [-5, 5], X = -5 se o ponto estiver em (-10, -5) e X = 5 se o ponto estiver em (5, 10). Obtenha a função de distribuição de X.
- 3. Verifique que:
 - (a) $X \sim N(0, 1)$ se, e somente se, $\sigma X + \mu \sim N(\mu, \sigma^2)$, onde $\mu \in \mathbb{R}$ e $\sigma > 0$.
 - (b) $X \sim Cauchy(0, 1)$ se, e somente se, $bX + a \sim Cauchy(a, b)$, onde $a \in \mathbb{R}$ e b > 0.
- 4. Suponha que $X \sim Exp(\lambda)$, $\lambda > 0$. Obtenha a densidade de Y = cX, onde c > 0.
- 5. Suponha que $X \sim U(0, 1)$. Obtenha a densidade de $Y = X^{1/\beta}$, onde $\beta \neq 0$.
- 6. Seja X uma variável aleatória contínua com densidade f.
 - (a) Obtenha uma fórmula para a densidade de Y = |X| em termos de f.
 - (b) Obtenha uma fórmula para a densidade de $Y = X^2$ em termos de f.
- 7. Seja $X \sim N(0, \sigma^2)$. Obtenha a densidade de:
 - (a) Y = |X|
 - (b) $Y = X^2$.
- 8. Seja $X \sim N(\mu, \sigma^2)$. Obtenha a densidade de $Y = e^X$. Essa densidade chama-se *densidade lognornal*.
- 9. Seja X uma v.a. contínua com densidade simétrica f (ou seja, f é função par e seu gráfico simétrico em torno de zero) e tal que $X^2 \sim Exp(\lambda)$, $\lambda > 0$. Obtenha f.
- 10. Seja $\Theta \sim U[-\pi/2, \pi/2]$. Determine a função de distribuição e a densidade de:
 - (a) $X = tan(\Theta)$
 - (b) $Y = sen(\Theta)$.
- 11. Seja $X \sim Gama(\alpha, \lambda)$. Determine a densidade de
 - (a) Y = cX, onde c > 0
 - (b) $Y = \sqrt{X}$.

Exercício	Resposta
1	$F_Y(y) = \begin{cases} 0, & y < 0 \\ \frac{y}{a}, & 0 \le y < \frac{a}{2} \\ 1, & y \ge \frac{a}{2} \end{cases}$
2	$F_X(x) = \begin{cases} 0, & x < -5\\ \frac{x+10}{20}, & -5 \le x < 5\\ 1, & x \ge 5 \end{cases}$
4	$Y \sim Exp\left(\frac{\lambda}{c}\right)$
5	Se $\beta > 0$ então: $f_Y(y) = \begin{cases} \beta \ y^{\beta-1}, & 0 < y < 1 \\ 0, & \text{c.c.} \end{cases}$ Se $\beta < 0$ então: $f_Y(y) = \begin{cases} -\beta \ y^{\beta-1}, & y > 1 \\ 0, & \text{c.c.} \end{cases}$
6	(a) $f_Y(y) = \begin{cases} f(y) + f(-y), & y > 0 \\ 0, & y \le 0 \end{cases}$ (b) $f_Y(y) = \begin{cases} \frac{1}{2\sqrt{y}} [f(\sqrt{y}) + f(-\sqrt{y})], & y > 0 \\ 0, & y \le 0 \end{cases}$
7	(a) $f_Y(y) = \begin{cases} \frac{2}{\sigma\sqrt{2\pi}} e^{-\frac{y^2}{2\sigma^2}}, & y > 0\\ 0, & y \le 0 \end{cases}$ (b) $Y \sim Gama\left(\frac{1}{2}, \frac{1}{2\sigma^2}\right)$
8	$f_Y(y) = \begin{cases} \frac{1}{y\sigma\sqrt{2\pi}} e^{-\frac{(\ln y - \mu)^2}{2\sigma^2}}, & y > 0\\ 0, & y \le 0 \end{cases}$
9	$f(x) = \lambda x e^{-\lambda x^2}, \ x \in \mathbb{R}$
10	(a) $X \sim Cauchy(0,1)$ (b) $F_Y(y) = \begin{cases} 0, & y < -1 \\ \frac{1}{\pi} \left(arcsin y + \frac{\pi}{2} \right), & -1 \le y < 1, f_Y(y) = \begin{cases} \frac{1}{\pi\sqrt{1 - y^2}}, & -1 < y < 1 \\ 0, & \text{c.c.} \end{cases}$
11	(a) $Y \sim Gama\left(\alpha, \frac{\lambda}{c}\right)$; (b) $f_Y(y) = \begin{cases} \frac{2\lambda^{\alpha}}{\Gamma(\alpha)} y^{2\alpha - 1} e^{-\lambda y^2}, & y > 0\\ 0, & y \le 0 \end{cases}$