第一章 随机事件与概率

习题 1.1

- 1. 写出下列随机试验的样本空间:
- (1) 抛三枚硬币;
- (2) 抛三颗骰子;
- (3) 连续抛一枚硬币,直至出现正面为止;
- (4) 口袋中有黑、白、红球各一个,从中任取两个球,先从中取出一个,放回后再取出一个;
- (5) 口袋中有黑、白、红球各一个,从中任取两个球,先从中取出一个,不放回后再取出一个。
- **解:** (1) 将出现正面记为 1,出现反面记为 0,样本空间 $\Omega = \{(0,0,0),(0,0,1),(0,1,0),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)\}$ 。
- (2) 样本空间

 $\Omega = \{(x_1, x_2, x_3) \mid x_1, x_2, x_3 = 1, 2, 3, 4, 5, 6\}$

- (3) 将出现正面记为 1,出现反面记为 0,样本空间 $\Omega = \{(1), (0,1), (0,0,1), (0,0,0,1), \cdots, (0,0,\cdots,0,1), \cdots \}$ 。
- (4) 将黑球记为B,白球记为W,红球记为R,样本空间 $\Omega = \{BB, BW, BR, WB, WW, WR, RB, RW, RR\}$ 。
- (5) 将黑球记为B,白球记为W,红球记为R,样本空间 $\Omega = \{BW, BR, WB, WR, RB, RW\}$ 。
- 2. 先抛一枚硬币,若出现正面(记为Z),则再掷一颗骰子,试验停止;若出现反面(记为F),则再抛一枚硬币,试验停止。那么该试验的样本空间 Ω 是什么?

解: 样本空间

 $\Omega = \{Z1, Z2, Z3, Z4, Z5, Z6, FZ, FF\}$

- 3. 设A, B, C为三事件, 试表示下列事件:
- (1) A, B, C 都发生或都不发生;
- (2) *A*, *B*, *C* 中不多于一个发生;
- (3) A, B, C 中不多于两个发生;
- (4) A, B, C中至少有两个发生。

解: (1) $ABC \cup \overline{ABC}$ 。

- (2) $A\overline{B}\overline{C} \cup \overline{A}B\overline{C} \cup \overline{A}\overline{B}C \cup \overline{A}\overline{B}\overline{C}$.
- (3) \overline{ABC} 或 $\overline{ABC} \cup \overline{ABC} \cup \overline{A$
- (4) $AB\overline{C} \cup A\overline{B}C \cup \overline{A}BC \cup ABC$.
- 4. 指出下列事件等式成立的条件:
- (1) $A \cup B = A$;
- (2) AB = A;
- (3) A-B=A
- **解:** (1) 当 $A \supset B$ 时, $A \cup B = A$ 。
- (2) 当 $A \subset B$ 时,AB = A。
- (3) $\stackrel{\text{def}}{=} AB = \emptyset$ pt, A B = A.
- 5. 设X为随机变量,其样本空间为 $\Omega = \{0 \le X \le 2\}$,记事件 $A = \{0.5 < X \le 1\}$, $B = \{0.25 \le X < 1.5\}$,

写出下列各事件:

- (1) $\overline{A}B$;
- (2) $\overline{A} \cup B$;
- $(3) \overline{AB};$
- (4) $\overline{A \cup B}$.

M: (1) $\overline{A}B = \{0.25 \le X \le 0.5\} \cup \{1 < X < 1.5\}$.

- (2) $\overline{A} \cup B = \{0 \le X \le 2\} = \Omega$.
- (3) $\overline{AB} = \{0 \le X \le 0.5\} \cup \{1 < X \le 2\} = \overline{A}$.
- (4) $\overline{A \cup B} = \{0 \le X < 0.25\} \cup \{1.5 \le X \le 2\} = \overline{B}$.
- 6. 检查三件产品,只区分每件产品是合格品(记为 0)与不合格品(记为 1),设 X 为三件产品中的不合格品数,指出下列事件所含的样本点:

$$A = "X = 1"$$
, $B = "X > 2"$, $C = "X = 0"$, $D = "X = 4"$.

解: 所求事件为

 $A = \{(0,0,1), (0,1,0), (1,0,0)\}, B = \{(1,1,1)\}, C = \{(0,0,0)\}, D = \emptyset$

- 7. 试问下列命题是否成立?
- (1) $A (B C) = (A B) \cup C$;
- (2) 若 $AB = \emptyset$ 且 $C \subset A$,则 $BC = \emptyset$;
- (3) $(A \cup B) B = A$;
- (4) $(A-B) \cup B = A$.

解: (1) 不成立,

 $A - (B - C) = A - B\overline{C} = A\overline{B}\overline{C} = A(\overline{B} \cup C) = A\overline{B} \cup AC = (A - B) \cup AC \neq (A - B) \cup C \circ$

- (2) 成立,因 $C \subset A$,有 $BC \subset AB = \emptyset$,故 $BC = \emptyset$ 。
- (3) 不成立,

 $(A \cup B) - B = (A \cup B)\overline{B} = A\overline{B} \cup B\overline{B} = A\overline{B} \cup \emptyset = A - B \neq A$.

(4) 不成立,

 $(A-B) \cup B = A\overline{B} \cup B = (A \cup B)(\overline{B} \cup B) = (A \cup B)\Omega = A \cup B \neq A$

- 8. 若事件 $ABC = \emptyset$, 是否一定有 $AB = \emptyset$?
- **解:** 不能得出此结论,如当 $C = \emptyset$ 时,无论AB为任何事件,都有 $ABC = \emptyset$ 。

- 9. 请叙述下列事件的对立事件:
- (1) A = "掷两枚硬币,皆为正面";
- (2) B = "射击三次,皆命中目标";
- (3) C = "加工四个零件,至少有一个合格品"。

解: (1) \bar{A} = "掷两枚硬币,至少有一个反面"。

- (2) \bar{B} = "射击三次,至少有一次没有命中目标"。
- (3) \bar{C} = "加工四个零件,皆为不合格品"。
- 10. 证明下列事件的运算公式:
- (1) $A = AB \bigcup A\overline{B}$;
- (2) $A \cup B = A \cup \overline{AB}$ o

证明:(1)由并对交的分配律可得

$$AB \bigcup A\overline{B} = A(B \bigcup \overline{B}) = A\Omega = A$$
.

(2) 由交对并的分配律可得

$$A \cup \overline{A}B = (A \cup \overline{A})(A \cup B) = \Omega(A \cup B) = A \cup B$$
.

- 11. 设 \mathcal{F} 为一事件域, 若 $A_n \in \mathcal{F}$, $n=1,2,\cdots$, 试证:
- (1) $\emptyset \in \mathcal{F}$;
- (2) 有限并 $\bigcup_{i=1}^{n} A_i \in \mathcal{F}$, $n \ge 1$;
- (3) 有限交 $\bigcap_{i=1}^{n} A_i \in \mathcal{F}$, $n \ge 1$;
- (4) 可列交 $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$;
- (5) 差运算 $A_1 A_2 \in \mathcal{F}$ 。
- 证明: (1) 由事件域定义条件 1, 知 $\Omega \in \mathcal{F}$, 再由定义条件 2, 可得 $\emptyset = \overline{\Omega} \in \mathcal{F}$ 。
- (2) 在定义条件 3 中, 取 $A_{n+1} = A_{n+2} = \cdots = \emptyset$, 可得

$$\bigcup_{i=1}^{n} A_{i} = \bigcup_{i=1}^{\infty} A_{i} \in \mathcal{F} .$$

(3) 由定义条件 2,知 \bar{A}_1 , \bar{A}_2 , …, $\bar{A}_n \in \mathcal{F}$,根据(2)小题结论,可得 $\bigcup_{i=1}^n \bar{A}_i \in \mathcal{F}$,再由条件 2,知

$$\overline{\bigcup_{i=1}^n \overline{A_i}} = \bigcap_{i=1}^n A_i \in \mathcal{F} \ .$$

(4)由定义条件 2,知 $\bar{A}_1,\bar{A}_2,\cdots,\bar{A}_n,\cdots\in\mathcal{F}$,根据条件(3),可得 $\bigcup_{i=1}^\infty \bar{A}_i\in\mathcal{F}$,再由条件 2,知

$$\overline{\bigcup_{i=1}^{\infty}\overline{A}_{i}}=\bigcap_{i=1}^{\infty}A_{i}\in\mathcal{F}\text{ .}$$

(5) 由定义条件 2,知 $\overline{A}_2 \in \mathcal{F}$,根据 (3) 小题结论,可得

$$A_1\overline{A}_2=A_1-A_2\in\mathcal{F}$$
 .