Lecture 9 – Image Compression (图像压缩)

This lecture will cover:

- Fundamentals (基础知识)
 - Coding Redundancy (编码冗余)
 - Spatial and Temporal Redundancy(空间和时间冗余)
 - Irrelevant Information (不相关信息)
- Measuring Image Information (信息量)
- Fidelity Criteria (保真度准则)
- Image Compression Model (图像压缩模型)
 - Source coding (信源编码)
 - Channel coding (信道编码)
- Image Formats, Containers and Compression Standards (图像格式、容器和压缩标准)

Fundamentals of Image Compression

- ➤ Coding Redundancy (编码冗余)
- ➤ Spatial and Temporal Redundancy (空间和时间冗余)
- ➤ Irrelevant Information (不相关信息)

Measuring Image Information (信息量)

Information Unit:

$$I(E) = \log \frac{1}{P(E)} = -\log P(E)$$

Where P(E) is the probability of a random event E.

➤ Entropy (熵)

$$H = -\sum_{j=1}^{J} P(a_j) \log P(a_j)$$

Calculate from Histogram

$$\widetilde{H} = -\sum_{k=0}^{L-1} p_r(r_k) \log_2 p_r(r_k)$$

Fidelity Criteria (保真度准则)

Objective Fidelity Criteria (客观保真度准则)

➤ Root Mean Square Error (均方根误差)

$$e_{\text{rms}} = \left\{ \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[\hat{f}(x, y) - f(x, y) \right]^2 \right\}^{1/2}$$

Where f(x,y) is the original image, and $\hat{f}(x,y)$ is an approximation.

➤ Mean-square Signal-to-noise ratio (均方信噪比)

$$SNR_{ms} = \frac{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} [f(x,y)]^2}{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} [\hat{f}(x,y) - f(x,y)]^2}$$

Fidelity Criteria (保真度准则)

Subjective Fidelity Criteria (主观保真度准则)

Value	Rating	Description
1	Excellent	An image of extremely high quality, as good as you could desire.
2	Fine	An image of high quality, providing enjoyable viewing. Interference is not objectionable.
3	Passable	An image of acceptable quality. Interference is not objectionable.
4	Marginal	An image of poor quality; you wish you could improve it. Interference is somewhat objectionable.
5	Inferior	A very poor image, but you could watch it. Objectionable interference is definitely present.
6	Unusable	An image so bad that you could not watch it.

Image Compression Model (图像压缩模型)

Source coding (信源编码)

Channel coding (信道编码)

Hamming Code

For a 4-bit binary number $b_3b_2b_1b_0$, define the 7-bit code word as

$$h_1 = b_3 \oplus b_2 \oplus b_0$$

$$h_2 = b_3 \oplus b_1 \oplus b_0$$

$$h_1 = b_3 \oplus b_2 \oplus b_0$$
 $h_2 = b_3 \oplus b_1 \oplus b_0$ $h_4 = b_2 \oplus b_1 \oplus b_0$

$$h_3 = b_3$$

$$h_5 = b_2$$

$$h_6 = b_1$$

$$h_3 = b_3$$
 $h_5 = b_2$ $h_6 = b_1$ $h_7 = \bigoplus b_0$

Parity (奇偶校验)

$$c_1 = h_1 \oplus h_3 \oplus h_5 \oplus h_7$$

$$c_2 = h_2 \oplus h_3 \oplus h_6 \oplus h_7$$

$$c_4 = h_4 \oplus h_5 \oplus h_6 \oplus h_7$$

Image Formats, Containers and Compression Standards

