

Roll No :- G-772

1 . Create Student Table with appropriate constraints. STUDENT(sno number primary key, sname text(20), age number, total_marks number) write python programs to perform following task: 1) store the table data into a dataframe and display the dataframe. 2) List out top three records from the dataframe 3) Display all records from dataframe whose age is not less than 18. 4) Display age of student whose sno is 5. (use loc() and iloc() function)

< SQLite Code >

sqlite> create table STUDENT(

(x1...> sno number primary key,

(x1...> sname text(20) not null,

(x1...> age number,

(x1...> total marks number);

sqlite> insert into STUDENT values(101, 'vinayak', 18,570);

sqlite> insert into STUDENT values(102, 'john', 19,490);

sqlite> insert into STUDENT values(103, 'alex',17,530);

sqlite> insert into STUDENT values(104, 'micheal', 19,550);

sqlite> select * from Student;

sno	sname	age	total_marks
101	vinayak	18	570
102	john	19	490
103	alex	17	530
104	micheal	19	550
5	sirdharth	12	580

Class :- SYBCA (sem 3) Roll No :- G-772

<PYTHON CODE>

```
import sqlite3
import pandas as pd
try:
  db = sqlite3.connect('jounralsolution')
  db.cursor()
  df = pd.read_sql_query('SELECT * FROM STUDENT', db)
  print("Printing entire dataframe......")
  print(df)
  print("\nTask 2: Top three records:")
  top_three=df.head(3)
  print(top_three)
  print("\nTask 3: Records with age not less than 18:")
  above_18=df[df['age']>=18]
  print(above_18)
  print("\nTask 4: Displaying age of student whose sno is 5: ")
  print("\nage of student with sno 5 (loc):",df.loc[df['sno']==5 ,'age'].values[0])
  print("\nage of student with sno 5
(iloc):",df.iloc[df.index[df['sno']==5],df.columns.get_loc('age')].values[0])
  db.commit()
except:
  print('ERROR 402: Something went wrong.....')
  db.rollback()
```


Class :- SYBCA (sem 3) Roll No :- G-772

```
= RESTART: C:\sqlite\Q1.py
Printing entire dataframe....:
                   age total marks
   sno
            sname
          vinayak
0
   101
                   18
                                570
                   19
  102
             john
                                490
                  17
2 103
             alex
                                530
          micheal
                                550
3 104
                 19
     5 sirdharth
                  12
                                580
4
Task 2: Top three records:
                 age total marks
   sno
          sname
  101 vinayak
                  18
                              570
  102
                  19
           john
                              490
                  17
  103
           alex
                              530
Task 3: Records with age not less than 18:
                 age
                     total marks
   sno
          sname
  101 vinayak
                  18
                              570
1 102
           john
                  19
                              490
                  19
   104
        micheal
                              550
Task 4: Displaying age of student whose sno is 5:
age of student with sno 5 (loc): 12
age of student with sno 5 (iloc): 12
```


Roll No :- G-772

Q2. Create following table and store any five records: Employee(eno number primary key, Ename text(20),designation text(10),basic number, da number, gross_salary number) write python programs to perform following tasks:

Store the table data into dataframe and display the dataframe.
 Sort the dataframe based used on gross salary and List out bottom two record from the dataframe.
 Display all records from dataframe whose gross Display gross salary is more than 25000.
 Display gross salary of employee whose eno is 4.

<SQLite Code>

```
sqlite> CREATE TABLE IF NOT EXISTS Employee (
(x1...> eno INTEGER PRIMARY KEY,
(x1...> Ename TEXT(20),
(x1...> designation TEXT(10),
(x1...> basic REAL,
(x1...> da REAL,
(x1...> gross_salary REAL
(x1...>);
sqlite> insert into Employee values (1, 'Vinayak', 'Manager', 50000, 10000, 60000);
sqlite> insert into Employee values (2, 'ketan, 'Engineer', 45000, 9000, 54000);
sqlite> insert into Employee values (3, 'shailesh', 'Developer', 55000, 11000, 66000);
sqlite> insert into Employee values (4, 'siddharth', 'Analyst', 48000, 9600, 57600);
sqlite> insert into Employee values (5, 'Eva Brown', 'Designer', 42000, 8400, 50400);
sqlite> select * from Employee;
```

sqlite> select * from Employee;								
eno	Ename	designation	basic	da	gross_salary			
1 2 3 4	Vinayak ketan shailesh siddharth	Manager Engineer Developer Analyst	50000.0 45000.0 55000.0 48000.0	10000.0 9000.0 11000.0 9600.0	60000.0 54000.0 66000.0 57600.0			
5	Eva Brown	Designer	42000.0	8400.0	50400.0			

Class :- SYBCA (sem 3) Roll No :- G-772

< PYTHON CODE >

```
import sqlite3
import pandas as pd
try:
  db = sqlite3.connect('jounralsolution')
  db.cursor()
  df = pd.read_sql_query('SELECT * FROM Employee', db)
  print("\nPrinting entire dataframe......")
  print(df)
  print("\nTask 2:Sorting the dataframe based used on gross salary....")
  df_sorted = df.sort_values(by='gross_salary')
  print(df_sorted)
  print("\nprinting bottom two record from the dataframe....")
  bottom = df.tail(2)
  print(bottom)
  print("\nTask 3:Displaying all records from dataframe whose gross Display gross salary is more
than 25000")
  sorted_data = df[df['gross_salary']>25000]
  print(sorted_data)
  print("Task 4: Displaying gross salary of employee whose eno is 4...")
  print("\ngross salary of employee with sno 4 (loc):",df.loc[df['eno']==4 ,'gross_salary'].values[0])
  print("\ngross salary of employee with sno 4
(iloc):",df.iloc[df.index[df['eno']==4],df.columns.get_loc('gross_salary')].values[0])
except:
```


Class :- SYBCA (sem 3) Roll No :- G-772

print('Something went wrong')

```
Printing entire dataframe....:
        Ename designation basic
                                      da gross salary
        Vinayak
                  Manager 50000.0 10000.0
                                                60000.0
1
                  Engineer 45000.0 9000.0
                                                54000.0
         ketan
   3 shailesh Developer 55000.0 11000.0
2
                                                66000.0
3
  4 siddharth Analyst 48000.0 9600.0
                                                57600.0
  5 Eva Brown Designer 42000.0
                                    8400.0
                                                50400.0
Task 2:Sorting the dataframe based used on gross salary....
          Ename designation basic
                                   da gross salary
  eno
  5 Eva Brown Designer 42000.0 8400.0 50400.0
4
   2 ketan Engineer 45000.0 9000.0
                                               54000.0
  4 siddharth Analyst 48000.0 9600.0
1 Vinayak Manager 50000.0 10000.0
3
                                               57600.0
0
                                               60000.0
    3 shailesh Developer 55000.0 11000.0
                                               66000.0
printing bottom two record from the dataframe.....
          Ename designation basic da gross salary
  eno
    4 siddharth Analyst 48000.0 9600.0
                                               57600.0
    5 Eva Brown
                  Designer 42000.0 8400.0
                                               50400.0
Task 3:Displaying all records from dataframe whose gross Display gross salary is more than 25000
  eno Ename designation basic da gross salary
0
   - 1
        Vinayak
                  Manager 50000.0 10000.0 60000.0
1
         ketan Engineer 45000.0 9000.0
                                              54000.0
2
   3 shailesh Developer 55000.0 11000.0
                                              66000.0
3
    4 siddharth Analyst 48000.0 9600.0
                                               57600.0
    5 Eva Brown Designer 42000.0 8400.0
                                                50400.0
Task 4: Displaying gross salary of employee whose eno is 4...
gross salary of employee with sno 4 (loc): 57600.0
gross salary of employee with sno 4 (iloc): 57600.0
```


Class :- SYBCA (sem 3) Roll No :- G-772

Q3. Create CSV file for product selling for 6 months and add only 5 record for 5 different product

Prod_name JAN FEB MAR APR MAY JUN

Create Python script for following program:

1.Read data into DataFrame 2) Add columns and calculate total_sell, average_sell 3) Plot Total sell and average sell together on Line chart with proper legends, Titles and Lables. 4) Save the DataFrame to CSV named 'sell analysis.csv'

< SQLiteCode >

```
sqlite> CREATE TABLE IF NOT EXISTS sales (
(x1...> sid INTEGER PRIMARY KEY AUTOINCREMENT,
(x1...> year INTEGER NOT NULL,
(x1...> totalsales REAL,
(x1...> CONSTRAINT year_check CHECK (year >= 0),
(x1...> CONSTRAINT totalsales_check CHECK (totalsales >= 0)
(x1...> );
sqlite> insert into sales values(1,2018,53000.33);
sqlite> insert into sales values(2,2019,24000.56);
sqlite> insert into sales values(3,2020,34200.42);
sqlite> insert into sales values(4,2021,31220.23);
sqlite> insert into sales values(5,2022,50220.87);
sqlite> .mode box
sqlite> select * from sales;
```

sqlite	> select	t * from Sales	;
sid	year	totalsales	
1 2	2018 2019	53000.0 24000.56	
3	2020	34200.42	
4	2021	31220.23	
5	2022	50220.87	

Class :- SYBCA (sem 3) Roll No :- G-772

< PYTHON CODE >

```
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('data.csv')
print(df)
print("\nTask 2: AddING columns and calculate total sell and average sell...")
df['total_sell']=df.iloc[:,1:].sum(axis=1)
df['average_sell']=df.iloc[:,1:].mean(axis=1)
print(df)
print("\nTask 3: printting linediagram.....")
plt.figure(figsize=(10,6))
plt.plot(df['prod_name'],df['total_sell'],label='Total Sell',marker='o')
plt.plot(df['prod name'],df['average sell'],label='Average Sell',marker='o')
plt.xlabel('products')
plt.ylabel('amount')
plt.title('product sell analysis')
plt.legend()
plt.grid(True)
plt.show()
print("\nTask 4: DataFrame to CSV")
df.to csv('sell analysis.csv',index=False)
print("CSV file created successfully.....")
```


Roll No :- G-772

```
= RESTART: C:\sqlite\Q3.py
                               MAR
                                                   JUN
    prod name
                 JAN
                        FEB
                                      APR
                                            MAY
0
                 100
                        120
                                90
                                                    95
            AC
                                      110
                                             130
1
   Television
                  80
                         85
                                75
                                       90
                                             88
                                                    92
2
                   60
                         70
                                65
                                       75
                                             72
                                                    80
       Mobile
3
       Laptop
                 110
                        105
                               100
                                      115
                                             120
                                                   118
4
       Cooler
                 150
                        140
                               160
                                      145
                                             155
                                                   152
```

Task 2: AddING columns and calculate total_sell and average_sell...

						_		_	
	prod name	JAN	FEB	MAR	APR	MAY	JUN	total sell	average sell
0	AC	100	120	90	110	130	95	645	184.285714
1	Television	80	85	75	90	88	92	510	145.714286
2	Mobile	60	70	65	75	72	80	422	120.571429
3	Laptop	110	105	100	115	120	118	668	190.857143
4	Cooler	150	140	160	145	155	152	902	257.714286

Task 3: printting linediagram.....

```
Task 4: DataFrame to CSV CSV file created successfully.....
```


Roll No :- G-772

Q4. Write a phython script to do following on student (Rollno, Name, Sub 1, Sub 2, Sub 3, total) table:

1) Insert atleast 5 to 10 records. 2) Update the specific record value. 3) Delete the record specific record. 4) Display student detail who got highest total marks

< PYTHON CODE >

```
import sqlite3
db = sqlite3.connect('jounralsolution')
try:
 cur=db.cursor()
 cur.execute("drop table if exists student1;")
 cur.execute("""CREATE TABLE IF NOT EXISTS Student1 (
           Rollno INTEGER PRIMARY KEY,
          Name TEXT,
          Sub1 INTEGER,
          Sub2 INTEGER,
          Sub3 INTEGER,
          Total INTEGER
  print('Table created successfully.....')
              ----- RESTART: C:\sqlite\Q4 - Copy.py -----
Table created successfully.....
 data = [(1, 'Vinayak', 85, 90, 78, 253),
    (2, 'Virat', 92, 88, 76, 256),
    (3, 'Mahendra', 78, 85, 80, 243),
    (4, 'Rohit', 90, 92, 85, 267),
```


Roll No :- G-772

```
(5, 'Aakash', 88, 86, 94, 0)]
```

```
cur.executemany("""
INSERT INTO Student1 (Rollno, Name, Sub1, Sub2, Sub3, Total)

VALUES (?, ?, ?, ?, ?)
""", data)

db.commit()
print("Records successfully inserted.....")
```

sqlite> select * from Student1; Rollno Sub1 Sub2 Sub3 Total Name Vinayak 85 90 78 253 Virat 76 256 92 88 Mahendra 78 85 243 80 Rohit 90 92 85 267 Aakash 88 86 94 0

```
print("\nTask 3: Updating the specific record value")

cur.execute("UPDATE Student1 SET Total = ? WHERE Rollno = ?", ((88 + 86 + 94), 5))

print("successfully updated...")

db.commit()

= RESTART: C:\sqlite\Q4 - Copy.py

Task 3: Updating the specific record value successfully updated...
```


Class :- SYBCA (sem 3) Roll No :- G-772

sqlite> select * from Student1;

Rollno	Name	Sub1	Sub2	Sub3	Total
1	Vinayak	85	90	78	253
2	Virat	92	88	76	256
3	Mahendra	78	85	80	243
4	Rohit	90	92	85	267
5	Aakash	88	86	94	268

```
print("\nTask 4: Delete the record specific record")
rno=int(input("Enter the rollno to be deleted: "))
cur.execute("delete from student1 where Rollno = ?",(rno,))
print("record deleted successfully....")
db.commit()
```

= RESTART: C:\sqlite\Q4 - Copy.py

Task 4: Delete the record specific record Enter the rollno to be deleted: 5 record deleted successfully....

sqlite> select * from Student1;

Rollno	Name	Sub1	Sub2	Sub3	Total
1	Vinayak	85	90	78	253
2	Virat	92	88	76	256
3	Mahendra	78	85	80	243
4	Rohit	90	92	85	267

Roll No :- G-772

```
print("\nTask 5: Printing higest numbet std Details......")
    cur.execute("SELECT * FROM Student1 WHERE Total = (SELECT MAX(Total) FROM Student1);")
    maxnum=cur.fetchone()
    print(maxnum)
except:
    print("Something went wrong.....")

= RESTART: C:\sqlite\Q4 - Copy.py

Task 5: Printing higest numbet std Details.....
(4, 'Rohit', 90, 92, 85, 267)
```


Roll No :- G-772

Q5. Write Python Script to do followings on item.csv (Item_no, Item_name, Price, Qty, total)

1) Write item's detail in the item.csv file. Calculate total = price * Qty 2) Using data frame display item name and price whose price is between 1000 to 5000. 3) Display alternate records from item.csv file. 4) Display items whose price is minimum, maximum. 5) Sort the data according to item name wise. 6) Display items rows between 3th to 7th row. 7) Display last 6 rows

< PYTHON CODE >

```
import pandas as pd
print("\nTask 1: Write item's detail in the item.csv file and calculate total")
data = {
    'Item_no': [1, 2, 3, 4, 5],
    'Item_name': ['Laptop', 'Blender', 'Scooter', 'TV', 'Freedge'],
    'Price': [1500, 3000, 2500, 4500, 2000],
    'Qty': [2, 3, 4, 1, 5]
    }
df = pd.DataFrame(data)
df['Total'] = df['Price'] * df['Qty']
df.to_csv('item.csv', index=False)
```

	А	В	С	D	Е	
1	Item_no	ltem_nam	Price	Qty	Total	
2	1	Laptop	1500	2	3000	
3	2	Blender	3000	3	9000	
4	3	Scooter	2500	4	10000	
5	4	TV	4500	1	4500	
6	5	Freedge	2000	5	10000	
7						


```
Roll No :- G-772
print("\nTask 2: Display item name and price whose price is between 1000 to 5000")
filtered df = df[(df['Price'] >= 1000) & (df['Price'] <= 5000)]
print("Items with price between 1000 and 5000:")
print(filtered_df[['Item_name', 'Price']])
Task 1: Write item's detail in the item.csv file and calculate total
Task 2: Display item name and price whose price is between 1000 to 5000
Items with price between 1000 and 5000:
  Item name Price
     Laptop
              1500
               3000
    Blender
2
    Scooter
               2500
3
         TV
              4500
4
    Freedge 2000
print("\nTask 3: Display alternate records from item.csv file")
print("\nAlternate records:")
print(df[::2])
= RESTART: C:\sqlite\Q5.py
Task 3: Display alternate records from item.csv file
Alternate records:
                              Price
    Item no Item name
                                         Qty
                                                Total
                                1500
                                                  3000
0
             1
                    Laptop
                                            2
2
             3
                  Scooter
                                 2500
                                            4 10000
4
             5
                  Freedge
                                 2000
                                            5
                                                 10000
print("\nTask 4: Display items whose price is minimum and maximum")
min price item = df[df['Price'] == df['Price'].min()]
```

max price item = df[df['Price'] == df['Price'].max()]

print("\nltems with minimum price:")

Class :- SYBCA (sem 3) Roll No :- G-772

```
print(min_price_item)
print("\nItems with maximum price:")
print(max_price_item)

print("\nTask 5: Sort the data according to item name wise...")
sorted_df = df.sort_values(by='Item_name')
print(sorted_df)

print("\nTask 6: Display items rows between 3th to 7th row...")
print(df.iloc[2:7])

print("\nTask 7: Display last 6 rows...")
print(df.tail(6))
```


Roll No :- G-772

= RESTART: C:\sqlite\Q5.py

Task 4: Display items whose price is minimum and maximum

Items with minimum price: Item_no Item_name Price Qty Total 0 1 Laptop 1500 2 3000

Task 5: Sort the data according to item name wise...

	Item_no	Item_name	Price	Qty	Total
1	_ 2	Blender	3000	3	9000
4	5	Freedge	2000	5	10000
0	1	Laptop	1500	2	3000
2	3	Scooter	2500	4	10000
3	4	TV	4500	1	4500

Task 6: Display items rows between 3th to 7th row...

	Item no	Item name	Price	Qty	Total
2	_ 3	Scooter	2500	4	10000
3	4	TV	4500	1	4500
4	5	Freedge	2000	5	10000

Task 7: Display last 6 rows...

	Item no	Item name	Price	Qty	Total
0	_ 1	Laptop	1500	2	3000
1	2	Blender	3000	3	9000
2	3	Scooter	2500	4	10000
3	4	TV	4500	1	4500
4	5	Freedge	2000	5	10000

Roll No :- G-772

Q6. Sales (sid, year, totalsales) Create above table into a SQLite database with appropriate constraints. 1) Insert at least 5-10 records into the sales table 2) Export sales table data into sales.csv file. 3) Write a python scripts that read the sales.csv file and plot a bar chart that shows totalsales of the year. Also decorate the chart with appropriate title, lables, colours etc.

< SQLite Code >

sqlite> CREATE TABLE sales (

(x1...> sid INTEGER PRIMARY KEY AUTOINCREMENT,

(x1...> year INTEGER NOT NULL,

(x1...> totalsales REAL);

sqlite> INSERT INTO Employee VALUES(1,'Vinayak','Manager',50000.0,10000.0,60000.0); sqlite> INSERT INTO Employee VALUES(2,'Jane Smith','Engineer',45000.0,9000.0,54000.0); sqlite> INSERT INTO Employee VALUES(3,'shailesh','Developer',55000.0,11000.0,66000.0); sqlite> INSERT INTO Employee VALUES(4,'siddharth','Analyst',48000.0,9600.0,57600.0); sqlite> INSERT INTO Employee VALUES(5,'Eva Brown','Designer',42000.0,8400.0,50400.0);

sqlite> .header on

sqlite> .mode csv

sqlite> .output sales.csv

sqlite> select * from sales;

	Α	В	С	[
1	sid	year	totalsales	
2	1	2018	53000	
3	2	2019	24000.56	
4	3	2020	34200.42	
5	4	2021	31220.23	
6	5	2022	50220.87	
7				

Class :- SYBCA (sem 3) Roll No :- G-772

< PYTHON CODE >

```
import pandas as pd
import matplotlib.pyplot as plt

df=pd.read_csv('sales.csv')
print(df)

plt.figure(figsize=(10,6))
plt.bar(df['year'],df['totalsales'],color='skyblue')
plt.xlabel('year')
plt.ylabel('total sales')
plt.title('totalsales by year')
plt.xticks(rotation=45)
plt.grid(axis='y',linestyle='--',alpha=0.7)
plt.tight_layout()
plt.show()
```

```
= RESTART: C:\sqlite\Q6.py
   sid
        year totalsales
     1
        2018
                53000.00
0
1
     2
        2019
                24000.56
2
                34200.42
        2020
3
     4
        2021
                31220.23
     5
                50220.87
4
        2022
```


Class :- SYBCA (sem 3) Roll No :- G-772

Roll No :- G-772

Q7. Create following table with appropriate constraints in Collage Database: Employee (E_ID, Name, Dob, Designation, Salary) a) Dump Employee table structure and data in Emp.csv file. b) Dump whole Database named College in Emp1.csv file.

```
sqlite> CREATE TABLE Employee (
(x1...> E ID INTEGER PRIMARY KEY,
(x1...> Name TEXT NOT NULL,
(x1...> Dob DATE,
(x1...> Designation TEXT NOT NULL,
(x1...> Salary REAL CHECK (Salary >= 0)
(x1...>);
sqlite> INSERT INTO Employee VALUES(1,'Amrit','1990-01-
15','Manager',60000.0);
sqlite> INSERT INTO Employee VALUES(2, 'Suresh', '1995-03-
22', 'Engineer', 55000.0);
sqlite> INSERT INTO Employee VALUES(3,'kartik','1987-07-
10','Analyst',50000.0);
sqlite> INSERT INTO Employee VALUES(4,'Ajay','1992-09-
05','Designer',52000.0);
sqlite> INSERT INTO Employee VALUES(5,'Ram','1998-12-
30','Developer',58000.0);
sqlite> INSERT INTO Employee VALUES(6,'Laxman','1994-06-
18','Tester',53000.0);
sqlite> .mode box
sqlite> select * from Employee;
```


Class :- SYBCA (sem 3) Roll No :- G-772

sqlite> select * from employee;

E_ID	Name	Dob	Designation	Salary
1 2 3 4 5	Amrit Suresh kartik Ajay Ram Laxman	1990-01-15 1995-03-22 1987-07-10 1992-09-05 1998-12-30 1994-06-18	Manager Engineer Analyst Designer Developer Tester	60000.0 55000.0 50000.0 52000.0 58000.0 53000.0

sqlite> .mode csv

sqlite> .output Emp.csv

sqlite> .schema Employee

	А	В	С	D	Е
1	CREATE TA	ABLE Emplo			
2	E_ID INTE	GER PRIMA			
3	Name TEX	T NOT NUL	.L		
4	Dob DATE				
5	Designation	n TEXT NO	T NULL		
6	Salary REA	AL CHECK (S	Salary >= 0)		
7);				
8	1	Amrit	15-01-1990	Manager	60000
9	2	Suresh	22-03-1995	Engineer	55000
10	3	kartik	10-07-1987	Analyst	50000
11	4	Ajay	05-09-1992	Designer	52000
12	5	Ram	30-12-1998	Developer	58000
13	6	Laxman	18-06-1994	Tester	53000
14					

Class :- SYBCA (sem 3) Roll No :- G-772

sqlite> select * from Employee;

sqlite> .output Emp1.csv

sqlite> .dump

	А	В	C	D	E	
1	PRAGMA 1	oreign_ke				
2	BEGIN TRA	NSACTION				
3	CREATE TA	ABLE Emplo				
4	E_ID INTE	GER PRIMA	ARY KEY			
5	Name TEX	T NOT NUL	L			
6	Dob DATE					
7	Designation	n TEXT NO	T NULL			
8	Salary REA	L CHECK (S	Salary >= 0)			
9);					
10	INSERT IN	'Amrit'	'1990-01-1	'Manager'	60000.0);	
11	INSERT IN	'Suresh'	'1995-03-2	'Engineer'	55000.0);	
12	INSERT IN	'kartik'	'1987-07-1	'Analyst'	50000.0);	
13	INSERT IN	'Ajay'	'1992-09-0	'Designer'	52000.0);	
14	INSERT IN	'Ram'	'1998-12-3	'Develope	58000.0);	
15	INSERT IN	'Laxman'	'1994-06-1	'Tester'	53000.0);	
16						
17	COMMIT;					
18						

Class :- SYBCA (sem 3) Roll No :- G-772

8. Create following table with appropriate Constraints: Product (prod_id, prod_name, price, qty,total_amount) 1) Import Product.csv file data into Product table. 2) Export Product table data into prod.csv file.

< SQLite Code >

sqlite> CREATE TABLE Product (

(x1...> prod_id TEXT PRIMARY KEY,

(x1...> prod_name TEXT NOT NULL,

(x1...> price real NOT NULL,

(x1...> qty INTEGER not null,

(x1...> total_amount REAL);

sqlite> .mode csv

sqlite> .import product.csv Product

sqlite> .mode box

sqlite> select * from Product;

	А	В	C	D	E	F	G	
1	prod_nam	JAN	FEB	MAR	APR	MAY	JUN	
2	AC	100	120	90	110	130	95	
3	Television	80	85	75	90	88	92	
4	Mobile	60	70	65	75	72	80	
5	Laptop	110	105	100	115	120	118	
6	Cooler	150	140	160	145	155	152	
7								

Class :- SYBCA (sem 3) Roll No :- G-772

1101110110112								
sqlite> select * from Product;								
prod_id	prod_name	price	qty	total_amount				
101	'Laptop'	25000.0	5	125000.0				
102	'Mobile'	15000.0	10	150000.0				
103	'TV'	18000.0	13	234000.0				
104	'Moniter'	16500.0	8	132000.0				
105	'Computer'	123500.0	6	741000.0				

sqlite> .mode csv

sqlite> .output prod.csv

sqlite> select * from Product;

ſ	 5 ° (⇒ ∨ ∓							proc	l [Read-Only] - Excel	
F	ile Hor	ne Inser	rt Page	e Layout	Formulas	Data	Review	View	Help	Q Tel	l me what yo	ou want to do
G9	G9 · [X ✓ fx											
	Α	В	С	D	Е	F	G	Н	1	J	K	L
1	prod_id	prod_nam	price	qty	total_amo	unt						
2	101	'Laptop'	25000	5	125000							
3	102	'Mobile'	15000	10	150000							
4	103	'TV'	18000	13	234000							
5	104	'Moniter'	16500	8	132000							
6	105	'Compute	123500	6	741000							
7												

Roll No :- G-772

Q9. Employee(Eno number ,Ename text ,Desg text ,Salary number ,City text ,Email text) Write a SQL trigger named emp_trigger that is designed to execute before inserting records into the emp table. The trigger should perform the following action: 1) Check if the 'email' field in the newly inserted record follows a specific email address pattern. (example :

abc@gmail.com

< SQLite Code >

```
sqlite> CREATE TABLE Employees (
(x1...> Eno INTEGER PRIMARY KEY,
(x1...> Ename TEXT NOT NULL,
(x1...> Desg TEXT,
(x1...> Salary REAL,
(x1...> City TEXT,
(x1...> Email TEXT
(x1...>);
sqlite> create trigger check_email
 ...> before
 ...> insert on Employees
 ...> begin
          select
 ...>
              case
 ...>
                   when new.email not like '%_@_%._%'
 ...>
              then
 ...>
                   raise(abort, 'Invail Email Address')
 ...>
 ...>
          end;
 ...> end;
sqlite> .mode box
```


Class :- SYBCA (sem 3) Roll No :- G-772

sqlite> select * from Employees;

```
sqlite> insert into Employees values(1,'Ram prasad','Account',150000,'Surat','@ram.gmail.com');
Runtime error: Invail Email Address (19)
sqlite> insert into Employees values(1,'Ram prasad','Account',150000,'Surat','ramprasad@gmail.com');
sqlite> insert into Employees values(2,'Vinayak Purohit','Cyber security',230000,'Surat','purohitvinayak48@gmail.com');
sqlite> insert into Employees values(3,'Vishal','CA',124000,'Surat','@gmail.vishal.in');
Runtime error: Invail Email Address (19)
```

sqlite> select * from Employees;

Eno	Ename Desg		Salary	City	Email
1	Ram prasad	Account	150000.0	Surat	
2	Vinayak Purohit	Cyber security	230000.0	Surat	