SAPIENZA Università di Roma – MSc. in Engineering in Computer Science

Formal Methods – June 26, 2020

(*Time to complete the test online: 2:30 hours*)

Exercise 1. Express the following UML class diagram in FOL:

Exercise 2. Consider the above UML class diagram and the following (partial) instantiation:

MScStudent			supervises	exam/mark			
BScStudent sm1	Professor	Course	p1 sm1	sm1	c1	p1	30
sb1 sb2 sm3	p1 p2	c1 c2	p1 sm1 p2 sm2 p1 sm3	sm1	c2	p2	28
				sm2	c1	p1	30
				sb1	c1	p2	27

- 1. Check whether the above instantiation, once completed, is correct, and explain why it is or it is not.
- 2. Express in FOL the following queries and evaluate them over the completed instantiation:
 - (a) Return those students that have taken an exam with mark 30.
 - (b) Return those students that have taken at least three exams.
 - (c) Check if there is a professor that has supervised all students.
 - (d) Check if there is a professor that has supervised only students that have taken an exam with mark 30.

Exercise 3. Consider the following transitio

- 1. Model check the Mu-Calculus formula: $\nu X.\mu Y.((a \wedge [next]X) \vee \langle next \rangle Y)$
- 2. Model check (by translating it in Mu-Calculus) the CTL formula: $EG(a \wedge AFa)$

Exercise 4. Compute the *weakest precondition* for getting x=y executing the following program:

Exercise 5. Check whether the following FOL formula is valid, by using tableaux:

$$\forall x. ((\forall y. (P(x) \supset Q(y))) \equiv (P(x) \supset \forall y. Q(y)))$$

Exercise 6 (optional). Consider the transition system of Exercise 3. Model check the LTL formula $\Diamond(a \land \bigcirc a)$, by considering that the Büchi automaton for $\neg \Diamond(a \land \bigcirc a)$ is the one below:¹

Not optional anymore