Phys 216 Homework 3

1.

Ef = mghmar =
$$\frac{1}{2}mv_y^2 + mg$$
 (6-bcose) = [0

hmax = $\frac{1}{2g}$ $v^2 + b(1-cose)$

hmax = $\frac{1}{2g}$ $v^2 + b(1-cose)$

hmax = $\frac{1}{2g}$ $v^2 + b(1-cose)$

h is a first parabolic function, so hman is when $\frac{1}{2g}$ $\frac{1}{2g}$ h = 0

 $\frac{1}{2}v^2 + \frac{1}{2}v^2 + \frac{1}{2}v^2$

 $0 = (v')^2 + 2bwv' + w^2b^2 - \mu_s gb$ = qvadrafic $v' = \frac{-2bw}{2} + \sqrt{4b^2w^2 - 4(w^2b^2 - \mu_s gb)}$

 $= -bw \pm \sqrt{b^{2}w^{2} - w^{2}b^{2} + \mu_{5}gb}$ $v_{max} = -bw + \sqrt{\mu_{5}gb}$

 $= (v')^2 + 2wv' + w^2b$

want (+) sgr root

b)
$$\vec{v}' = -v'\vec{\partial}\theta$$
 $M_S g = (v')^2 - 2wv' + w^2b$
 $0 = (v')^2 - 2wbv' + w^2b^2 - M_S gb$
 $V''_{max} = bw + \sqrt{M_S gb}$

"

x_final = -123.313229 m, y_final = 182.431474 m

I calulated these numbers by first using a very small timestep

to produce an accurate result, then increased the timestep until is was no longer within 1cm error

altitude = 19.000000 degrees, azimuth = 100.000000 degrees

flight time = 3.247130 s

velocity vector final = 51.583635 m/s

