Projet RADAR Promotion 2022-23

Antenne de transmission

Antenne boite à Thé (guide rectangulaire)

F. Daout & F. Schmitt

https://cva-geii.parisnanterre.fr/

LP MHR

- Concevoir et réaliser une antenne simple, low cost et directive (antenne externe)
- Utilise le principe d'un guide d'onde rectangulaire court-circuité
- Utilise une boite métallique (type boite à Thé)
- Nécessite uniquement un seul perçage (deux si on met en place une « patte » de fixation)

Pour réaliser l'antenne (ex : 2.45GHz)

- Une calculatrice
- Un connecteur SMA avec vis et écrous de fixation
- 5 cm de fil de cuivre de diamètre 1mm
- Une boîte à Thé, métallique de marque « Twinings » dans lcas ou f=2.45GHz
- De la soudure, un fer à souder et une perceuse avec un foret de 3mm
- De la toile abrasive (toile d'émeri ou papier de verre)

Pour mesurer (caractériser) l'antenne

- Un analyseur de réseau vectoriel
- Un moyen de mesure type chambre anéchoïque (chambre Boris Vian à l'IUT de Ville d'Avray)

S'inspire d'une transition coaxiale - guide d'onde utilisée comme une antenne

2459MHz Waveguide - Coaxial line Transformer

Exemple de transition

(http://www.chinaguoguang.com)

Rectangular Waveguide Transition

QX0611-Wade13

La dimension A détermine la bande de fréquence de l'antenne

La longueur d'onde de coupure (mode TE10) est donc liée à la dimension A :

$$\lambda_c = 2A$$

La dimension B correspond généralement à la moitié de A.

Généralement, les relations suivantes sont utilisées pour déterminer la bande passante du guide :

- fréquence minimale : min(f) = 1.25f_c Cette définition permet de calculer la fréquence f_c . Cette contrainte fixe la fréquence de coupure de l'antenne.
- fréquence maximale : max(f) = 1.89f_c . Cette relation est une indication, généralement la bande de fréquence est plus importante.

La bande de fréquence de l'antenne

En fonction des dimensions de la boîte, calculer la bande de fréquence de votre antenne. Pour cela, déterminer :

- Fc
- La fréquence minimum
- La fréquence maximum
- La bande de fréquence possible

Pour alimenter l'antenne, il faut déterminer la longueur du monopôle d'alimentation (Probe length)

Probe length =
$$\lambda_0/4$$

$$\lambda_0 = c_0/f_0$$
 Fréquence souhaitée

À déterminer

Le diamètre du monopôle est aussi un paramètre de la bande passante de l'antenne

Position de la sonde d'alimentation (Backshort) 9

La longueur d'onde dans le guide est différente de la longueur d'onde dans le vide. Elle est donnée à partir de la formule :

$$\lambda_g = \frac{\lambda_0}{\sqrt{1 - (\frac{\lambda_0}{\lambda_c})^2}}$$

avec λ_0 la longueur d'onde dans le vide.

Distance Backshort =
$$\lambda_g/4$$

Sonde d'alimentation

À partir de votre cahier des charges, déterminer :

- La position de la sonde : distance « backshort »
- La longueur du monopôle d'alimentation : Probe length

Monopôle d'alimentation

Connecteur SMA du monopôle d'alimentation

To Do...

- **1. Soudez** un morceau de fil de cuivre dans la broche du connecteur SMA :
 - la longueur du fil de cuivre doit être supérieure à la valeur calculée (+30%) afin d'ajuster ultérieurement l'antenne.
 - Pensez à ôter le vernis sur le fil avant la soudure
- 2. Repérez la position du point d'alimentation puis percez la boîte à cet endroit.
- 3. Fixer le connecteur SMA au point d'alimentation.
- 4. Mesurez le |S11|dB de l'antenne avec un analyseur de réseau vectoriel (VNA).
- Lorsque l'antenne rayonne à la bonne fréquence : |S11|dB < -10 dB.
- Si ce n'est pas le cas, coupez le cuivre par petits incréments jusqu'à obtenir |S11|dB < -10 dB

Avec un analyseur de réseau vectoriel (VNA) étalonné

Kit d'étalonnage

En mesurant son ROS (VSWR) ou le paramètre S11 sur le VNA

- Plus le module du coefficient de réflexion |S11|dB est faible, moins la puissance incidente est réfléchie et donc plus la puissance rayonnée est importante.
- Le VSWR s'exprime en fonction du | S11|dB :

$$VSWR = \frac{1 + |S_{11}|}{1 - |S_{11}|}$$

$$|S_{11}| = 10^{|S_{11}|_{dB}/20}$$

Rédigez la Datasheet de votre antenne et justifier les paramètres importants par des courbes de mesures:

- Fréquence
- Bande passante
- ROS
- Dimensions
- Poids
- Connecteur
- ...

