KNAPSACK PROBLEM

A dynamic approach

Knapsack Problem

- Given a sack, able to hold W kg
- Given a list of objects
 - Each has a weight and a value
- Try to pack the object in the sack so that the total value is maximized

Variation

- Rational Knapsack
 - Object is like a gold bar, we can cut it in to piece with the same value/weight
- □ 0-1 Knapsack
 - Object cannot be broken, we have to choose to take
 (1) or leave (0) the object
 - E.g.
 - K = 50
 - Objects = (60,10) (100,20) (120,30)
 - Best solution = second and third

The Problem

- Input
 - A number W, the capacity of the sack
 - n pairs of weight and price $((w_1, p_1), (w_2, p_2), ..., (w_n, p_n))$
 - \mathbf{w}_i = weight of the ith items
 - p_i = price of the ith item
- Output
 - A subset S of {1,2,3,...,n} such that
 - $\sum_{i \in S} p_{i}$ is maximum

$$\sum_{i \in S} w_i < W$$

Naïve approach

- □ Try every possible combination of {1,2,3,...n}
- Test whether a combination satisfies the weight constraint
 - If so, remember the best one

 \square This gives $O(2^n)$

Dynamic Approach

- Let us assume that W (the maximum weight) and w_i are integers
- Let us assume that we just want to know "the best total price", i.e., p_i
 - (well, soon we will see that this also leads to the actual solution
- The problem can be solved by a dynamic programming
 - How?
 - What should be the subproblem?
 - Is it overlapping?

The Sub Problem

- □ What shall we divide?
 - The number of items?
 - Let's try half of the items?

• what about the weight?

The Optimal Solution

- Assume that we know the actual optimal solution to the problem
 - The solution consist of item {2,5,6,7}
 - What if we takes the item number 7 out?
 - What can we say about the set of {2,5,6}
 - Is it an optimal solution of any particular problem?

The Optimal Solution

- Let K(b) be the "best total value" when W equals to b
- □ If the ith item is in the best solution
 - $K(W) = K(W w_i) + p_i$
- But, we don't really know that the ith item is in the optimal solution
 - So, we try everything
 - $K(W) = max_{1 \le i \le n} (K(W w_i) + p_i)$
- □ Is this our algorithm?
 - Yes, if and only if we allow each item to be selected multiple times (that is not true for this problem)

Solution

- We need to keep track whether the item is used
- What if we know the optimal solution when ith items is not being used?
 - Also for every size of knapsack from 0 to W

Then, with additional ith item, we have only two choices, use it or not use it

The Recurrence

K(a,b) = the best total price when the knapsack is of size a and only item number 1 to number b is co nsidered

- $\square K(a,b) = \max(K(a w_b,b 1) + p_b, K(a,b 1))$
- $\Box K(a,b) = 0$ when a = 0 or b = 0
- \square K(a,b) = K(a,b-1) when $w_b > a$

The solution is at K(W,n)

The Recurrent

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0																
1																
2																
3																
4																
5																

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0															
2	0															
3	0															
4	0															
5	0															

$$K(a,b) = 0$$
 when $a = 0$ or $b = 0$

Fill row 1 $(p_1=4 \ w_1=12)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0															
2	0															
3	0															
4	0															
5	0															

Fill row 1 $(p_1=4 \ w_1=12)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	v 0	V 0	0	0	0	0	0	0	0	0	0				
2	0															
3	0															
4	0															
5	0															

$$K(a,b) = K(a,b-1)$$
 when $w_b > a$

Fill row 1 $(p_1=4 \ w_1=12)$

$$K(a,b) = \max(K(a - w_b,b - 1) + p_b, K(a,b - 1))$$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0														
3	0															
4	0															
5	0															

$$K(a,b) = K(a,b-1)$$
 when $w_b > a$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0	<i>₹</i> 7													
3	0															
4	0															
5	0															

$$K(a,b) = \max(K(a - w_b,b - 1) + p_b, K(a,b - 1))$$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0	≥ 2	2	2	2	2	2	2	2	2	2	4	4	6	6
3	0															
4	0															
5	0															

$$K(a,b) = \max(K(a - w_b,b - 1) + p_b, K(a,b - 1))$$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0	2	2	2	2	2	2	2	2	2	2	4	4	6	6
3	0															
4	0															
5	0															

$$K(a,b) = \max(K(a - w_b,b - 1) + p_b, K(a,b - 1))$$

Fill row 3 $(p_3=2 \ w_3=1)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0	2	2	2	2	2	2	2	2	2	2	4	4	6	6
3	0	2	2	4	4	4	4	4	4	4	4	4	4	6	6	8
4	0															
5	0															

Fill row 3 $(p_3=2 \ w_3=1)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0	2	2	2	2	2	2	2	2	2	2	4	4	6	6
3	0	2	2	4	4	4	4	4	4	4	4	4	4	6	6	8
4	0															
5	0															

Fill row 4 $(p_4=1 \ w_4=1)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0	2	2	2	2	2	2	2	2	2	2	4	4	6	6
3	0	2	2	4	4	4	4	4	4	4	4	4	4	6	6	8
4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
5	0															

Fill row 4 $(p_4=1 \ w_4=1)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0	2	2	2	2	2	2	2	2	2	2	4	4	6	6
3	0	2	2	4	4	4	4	4	4	4	4	4	4	6	6	8
4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
5	0															

Fill row 5 $(p_5=10 \text{ w}_5=4)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0	2	2	2	2	2	2	2	2	2	2	4	4	6	6
3	0	2	2	4	4	4	4	4	4	4	4	4	4	6	6	8
4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

Fill row 5 $(p_5=10 \text{ w}_5=4)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0	2	2	2	2	2	2	2	2	2	2	4	4	6	6
3	0	2	2	4	4	4	4	4	4	4	4	4	4	6	6	8
4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

Trace the solution

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0	2	2	2	2	2	2	2	2	2	2	4	4	6	6
3	0	2	2	4	4	4	4	4	4	4	4	4	4	6	6	8
4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

The Code

```
set all K[0][j] = 0 and all K[w][0] = 0
for j = 1 to n
    for w = 1 to W
        if (w<sub>j</sub> > W)
            K[w][j] = K[w][j - 1];
    else
            K[w][j] = max( K[w - w<sub>i</sub>][j - 1] + p<sub>i</sub> ,
            K[W][j - 1] )
return K[W][n];
```