

Parameterized Hardness

27 May 2025

Prof. Dr. Sebastian Wild

Outline

5 Parameterized Hardness

- 5.1 Parameterized Reductions
- 5.2 Nondeterministic FPT: Para-NP
- 5.3 Bounded Nondeterminism: W[P]
- 5.4 Tail-nondeterministic NRAM

▶ For some problems, no algorithm seems to achieve fpt running time

- ▶ For some problems, no algorithm seems to achieve fpt running time
- ▶ example: *p*-Clique
- \rightarrow maybe no fpt algorithm can exist for *p*-CLIQUE!

- ► For some problems, no algorithm seems to achieve fpt running time
- ► example: *p*-Clique
- \rightsquigarrow maybe no fpt algorithm can exist for *p*-CLIQUE!
- ► **Problem:** Certainly exists in case P = NP
- \rightarrow strongest lower bound we can hope for will have to be conditional on P \neq NP

- ► For some problems, no algorithm seems to achieve fpt running time
- ► example: *p*-Clique
- → maybe no fpt algorithm can exist for *p*-CLIQUE!
- ► **Problem:** Certainly exists in case P = NP
- \rightsquigarrow strongest lower bound we can hope for will have to be conditional on P \neq NP
- ► Typical complexity-theory results: No algorithm has property X unless (more of less widely believed) complexity hypothesis Y fails.

5.1 Parameterized Reductions

FPT Reductions

Goal: Compare relative hardness of parameterized problems

- → Need a notion of reductions on parameterized problems
- ightharpoonup to preserve (non)existence of fpt algorithms, need to keep small k

FPT Reductions

Goal: Compare relative hardness of parameterized problems

- Need a notion of reductions on parameterized problems
- ▶ to preserve (non)existence of fpt algorithms, need to keep small *k*

Definition 5.1 (Parameterized Reduction)

Let (L_1, κ_1) and (L_2, κ_2) be two parameterized problems (over alphabets Σ_1 resp. Σ_2). An *fpt-reduction* (*fpt many-one reduction*) from (L_1, κ_1) to (L_2, κ_2) is a mapping $A : \Sigma_1^* \to \Sigma_2^*$ so that for all $x \in \Sigma_1^*$

- **1.** (equivalence) $x \in L_1 \iff A(x) \in L_2$,
- **2.** (*fpt*) A is computable by an fpt-algorithm (w.r.t. to κ_1), and
- **3.** (parameter-preserving) $\kappa_2(A(x)) \leq g(\kappa_1(x))$ for a computable function $g: \mathbb{N} \to \mathbb{N}$.

We then write $(L_1, \kappa_1) \leq_{fpt} (L_2, \kappa_2)$.

L, Sp L2

Many reductions from classical complexity theory are **not** parameter preserving.

Recall:

VertexCover

Given: graph G = (V, E) and $k \in \mathbb{N}$

Question: $\exists V' \subset V : |V'| \le k \land \forall \{u, v\} \in E : (u \in V' \lor v \in V')$

Given: graph G = (V, E) and $k \in \mathbb{N}$

Question: $\exists V' \subset V : |V'| \ge k \land \forall u, v \in V' : \{u, v\} \notin E$

Many reductions from classical complexity theory are **not** parameter preserving.

Recall:

 VERTEX.COVER
 INDEPENDENTSET

 Given: graph G = (V, E) and $k \in \mathbb{N}$ Given: graph G = (V, E) and $k \in \mathbb{N}$

 Question: $\exists V' \subset V : |V'| \le k \land \forall \{u, v\} \in E : (u \in V' \lor v \in V')$ Question: $\exists V' \subset V : |V'| \ge k \land \forall u, v \in V' : \{u, v\} \notin E$

- ▶ We know: IndependentSet \leq_v VertexCover:
 - ► Set G' = G and k' = |V(G)| k (Complement of an indep. set must be a vertex cover, and vice versa!)

Many reductions from classical complexity theory are **not** parameter preserving.

Recall:

```
\label{eq:VertexCover} \begin{aligned} & \text{IndependentSet} \\ & \text{Given: graph } G = (V, E) \text{ and } k \in \mathbb{N} \\ & \text{Question: } \exists V' \subset V \ : \ |V'| \leq k \ \land \ \forall \{u, v\} \in E : \big(u \in V' \lor v \in V'\big) \end{aligned} \end{aligned} \qquad \begin{aligned} & \text{IndependentSet} \\ & \text{Given: graph } G = (V, E) \text{ and } k \in \mathbb{N} \\ & \text{Question: } \exists V' \subset V \ : \ |V'| \geq k \ \land \ \forall u, v \in V' : \{u, v\} \notin E \end{aligned}
```

- ▶ We know: IndependentSet \leq_p VertexCover:
 - ► Set G' = G and k' = |V(G)| k (Complement of an indep. set must be a vertex cover, and vice versa!)
- ▶ p-IndependentSet $\leq_{fpt} p$ -VertexCover
 - ▶ Indeed, we know VertexCover ∈ FPT, but IndependentSet probably isn't.

Many reductions from classical complexity theory are **not** parameter preserving.

Recall:

 $\label{eq:VertexCover} \begin{aligned} & \text{IndependentSet} \\ & \text{Given: graph } G = (V, E) \text{ and } k \in \mathbb{N} \\ & \text{Question: } \exists V' \subset V \ : \ |V'| \leq k \ \land \ \forall \{u, v\} \in E : \big(u \in V' \lor v \in V'\big) \end{aligned} \end{aligned} \qquad \begin{aligned} & \text{IndependentSet} \\ & \text{Given: graph } G = (V, E) \text{ and } k \in \mathbb{N} \\ & \text{Question: } \exists V' \subset V \ : \ |V'| \geq k \ \land \ \forall u, v \in V' : \{u, v\} \notin E \end{aligned}$

- ▶ We know: IndependentSet \leq_v VertexCover:
 - ► Set G' = G and k' = |V(G)| k (Complement of an indep. set must be a vertex cover, and vice versa!)
- ▶ p-IndependentSet $\leq_{fvt} p$ -VertexCover
 - ▶ Indeed, we know VertexCover ∈ FPT, but IndependentSet probably isn't.
- ▶ But: p-IndependentSet $\leq_{fpt} p$ -Clique (and p-Clique $\leq_{fpt} p$ -IndependentSet)
 - ► Set $G' = (V, {V \choose 2} \setminus E)$ and k' = k (Independent set iff clique in complement graph)

5.2 Nondeterministic FPT: Para-NP

Good, so we have reductions.

If P corresponds to FPT . . . but what is the analogue for NP?

Good, so we have reductions.

If P corresponds to FPT . . . but what is the analogue for NP?

Definition 5.2 (para-NP)

The class para-NP consists of all parameterized decision problems that are solved by a *non-deterministic* fpt-algorithm.

4

4

Good, so we have reductions.

If P corresponds to FPT . . . but what is the analogue for NP?

Definition 5.2 (para-NP)

The class para-NP consists of all parameterized decision problems that are solved by a *non-deterministic* fpt-algorithm.

Some nice properties:

- **1.** para-NP is closed under fpt-reductions.
- A & para-NP , B & fot A => B& para-NP

- 2. $FPT = para-NP \iff P = NP$
- 3. an analogue for kernalization in FPT holds for para-NP

4

Good, so we have reductions.

If P corresponds to FPT ... but what is the analogue for NP?

Definition 5.2 (para-NP)

The class para-NP consists of all parameterized decision problems that are solved by a *non-deterministic* fpt-algorithm.

Some nice properties:

- 1. para-NP is closed under fpt-reductions.
- 2. $FPT = para-NP \iff P = NP$
- 3. an analogue for *kernalization* in FPT holds for para-NP

Can define para-NP-hard and para-NP-complete similarly as for NP:

Definition 5.3 (para-NP-hard)

 (L, κ) is para-NP-hard if $(L', \kappa') \leq_{fpt} (L, \kappa)$ for all $(L', \kappa') \in \text{para-NP}$.

4

4

Hello hardness, my old friend

Theorem 5.4 (para-NP-complete → NP-complete for finite parameter)

Let (L, κ) be a nontrivial $(\emptyset \neq L \neq \Sigma^*)$ parameterized problem that is para-NP-complete. Then $L_{\leq d} = \{x \in L : \kappa(x) \leq d\}$ is NP-hard.

The converse is essentially also true (using a generalization of kernelizations).

rouning time of A is polynounal 1x1 A maps L' to $L_{\leq d} = \{x \in L : x(x) \leq d\}$

in poly have

=> L sd NP-hard

=> L' => L' d

para-NP-complete is too strict

Above Theorem means that many problems cannot be para-NP-complete!

For each of the following

- ▶ *p*-Clique,
- ▶ p-IndependentSet
- ▶ p-DominatingSet

bounding k by a **constant** d makes *polytime* algorithm possible.

para-NP-complete is too strict

Above Theorem means that many problems cannot be para-NP-complete!

For each of the following

- ▶ *p*-Clique,
- ▶ *p*-IndependentSet
- ▶ p-DominatingSet

bounding k by a **constant** d makes *polytime* algorithm possible.

- $\rightsquigarrow L_{\leq d}$ cannot be NP-complete for each of these
- but we rather expect them ∉ FPT
- → para-NP theory does not settle complexity status