





### **One-dimensional Run-length Encoding**

■ One-dimensional RL encoding represents each image row by a sequence of lengths that describes successive runs of black and white pixels; where

P(w/w) > P(b/w) and P(b/b) > P(w/b)

- Basic concept
  - ☐ Assume that each row begins with a white (or a black) run;
  - ☐ In a left to right raster scan fashion, encode each contiguous group of 0's, or 1's, by its length
  - ☐ Whenever you have a row starts with a black (or a white) run, the length of this run will be zero

© Mahmoud R. El-Sakka

CS4481/9628: Image Compression



Topic 09: Run-length Encoding

### **One-dimensional Run-length Encoding**

■ Example: Encode the shown image, using one-dimensional runlength encoding. Assuming that the first run of each row is black.



[16], [6, 4, 6], [4, 8, 4], [3, 10, 3],

[2, 12, 2], [1, 14, 1], [1, 14, 1], [1, 14, 1],

[1, 14, 1], [1, 14, 1], [1, 14, 1], [2, 12, 2],

[3, 10, 3], [4, 8, 4], [6, 4, 6], and [16]

- The white runs are: 4, 8, 10, 12, and 14
- The black runs are: 1, 2, 3, 4, 6, and 16
- Do we need to encode "[" and "]"? Why?

© Mahmoud R. El-Sakka



### **One-dimensional Run-length Encoding**

- To keep the size of the Huffman table reasonably small,
  - □ Codes are defined for run lengths from 0 to 63 and then for 64, 128, 192, and 1728 (1728 pixels per line for A4 paper with 204 dpi)
  - □ Values of 64 or greater are encoded with a two-part codeword
- Encoded rows of pixels are terminated by a special end-of-line codeword to force codeword synchronization (resetting errors, if any)
- This codeword encoding is called Modified Huffman (MH) method

© Mahmoud R. El-Sakka



# **One-dimensional Run-length Encoding**

| White  | Code word | Black  | Code word  |
|--------|-----------|--------|------------|
| run    |           | run    |            |
| length |           | length |            |
| ľ      |           |        |            |
| 0      | 00110101  | 0      | 0000110111 |
| 1      | 000111    | 1      | 010        |
| 2      | 0111      | 2      | 11         |
| 3      | 1000      | 3      | 10         |
| 4      | 1011      | 4      | 011        |
| 5      | 1100      | 5      | 0011       |
| 6      | 1110      | 6      | 0010       |
| 7      | 1111      | 7      | 00011      |
| 8      | 10011     | 8      | 000101     |
| 9      | 10100     | 9      | 000100     |
| 10     | 00111     | 10     | 0000100    |
| 11     | 01000     | 11     | 0000101    |
| 12     | 001000    | 12     | 0000111    |
| 13     | 000011    | 13     | 00000100   |
| 14     | 110100    | 14     | 00000111   |
| 15     | 110101    | 15     | 000011000  |

| White  | Code word | Black  | Code word    |
|--------|-----------|--------|--------------|
| run    |           | run    |              |
| length |           | length |              |
|        |           |        |              |
| 16     | 101010    | 16     | 0000010111   |
| 17     | 101011    | 17     | 0000011000   |
| 18     | 0100111   | 18     | 0000001000   |
| 19     | 0001100   | 19     | 00001100111  |
| 20     | 0001000   | 20     | 00001101000  |
| 21     | 0010111   | 21     | 00001101100  |
| 22     | 0000011   | 22     | 00000110111  |
| 23     | 0000100   | 23     | 00000101000  |
| 24     | 0101000   | 24     | 00000010111  |
| 25     | 0101011   | 25     | 00000011000  |
| 26     | 0010011   | 26     | 000011001010 |
| 27     | 0100100   | 27     | 000011001011 |
| 28     | 0011000   | 28     | 000011001100 |
| 29     | 00000010  | 29     | 000011001101 |
| 30     | 00000011  | 30     | 000001101000 |
| 31     | 00011010  | 31     | 000001101001 |

© Mahmoud R. El-Sakka

7

CS4481/9628: Image Compression

Topic 09: Run-length Encoding

# **One-dimensional Run-length Encoding**

| White  | Code word | Black  | Code word    |
|--------|-----------|--------|--------------|
| run    |           | run    |              |
| length |           | length |              |
|        |           |        |              |
| 32     | 00011011  | 32     | 000001101010 |
| 33     | 00010010  | 33     | 000001101011 |
| 34     | 00010011  | 34     | 000011010010 |
| 35     | 00010100  | 35     | 000011010011 |
| 36     | 00010101  | 36     | 000011010100 |
| 37     | 00010110  | 37     | 000011010101 |
| 38     | 00010111  | 38     | 000011010110 |
| 39     | 00101000  | 39     | 000011010111 |
| 40     | 00101001  | 40     | 000001101100 |
| 41     | 00101010  | 41     | 000001101101 |
| 42     | 00101011  | 42     | 000011011010 |
| 43     | 00101100  | 43     | 000011011011 |
| 44     | 00101101  | 44     | 000001010100 |
| 45     | 00000100  | 45     | 000001010101 |
| 46     | 00000101  | 46     | 000001010110 |
| 47     | 00001010  | 47     | 000001010111 |

| 1 A /I - ! 4 - | 0 - 1 1   | Disal  | O a da consul |
|----------------|-----------|--------|---------------|
| White          | Code word | Black  | Code word     |
| run            |           | run    |               |
| length         |           | length |               |
|                |           |        |               |
| 48             | 00001011  | 48     | 000001100100  |
| 49             | 01010010  | 49     | 000001100101  |
| 50             | 01010011  | 50     | 000001010010  |
| 51             | 01010100  | 51     | 000001010011  |
| 52             | 01010101  | 52     | 000000100100  |
| 53             | 00100100  | 53     | 000000110111  |
| 54             | 00100101  | 54     | 000000111000  |
| 55             | 01011000  | 55     | 000000100111  |
| 56             | 01011001  | 56     | 000000101000  |
| 57             | 01011010  | 57     | 000001011000  |
| 58             | 01011011  | 58     | 000001011001  |
| 59             | 01001010  | 59     | 000000101011  |
| 60             | 01001011  | 60     | 000000101100  |
| 61             | 00110010  | 61     | 000001011010  |
| 62             | 00110011  | 62     | 000001100110  |
| 63             | 00110100  | 63     | 000001100111  |

© Mahmoud R. El-Sakka

8



### **One-dimensional Run-length Encoding**

| White  | Code word | Black  | Code word     |
|--------|-----------|--------|---------------|
| run    |           | run    |               |
| length |           | length |               |
|        |           | _      |               |
| 64     | 11011     | 64     | 0000001111    |
| 128    | 10010     | 128    | 000011001000  |
| 192    | 010111    | 192    | 000011001001  |
| 256    | 0110111   | 256    | 000001011011  |
| 320    | 00110110  | 320    | 000000110011  |
| 384    | 00110111  | 384    | 000000110100  |
| 448    | 01100100  | 448    | 000000110101  |
| 512    | 01100101  | 512    | 0000001101100 |
| 576    | 01101000  | 576    | 0000001101101 |
| 640    | 01100111  | 640    | 0000001001010 |
| 704    | 011001100 | 704    | 0000001001011 |
| 768    | 011001101 | 768    | 0000001001100 |
| 832    | 011010010 | 832    | 0000001001101 |
| 896    | 011010011 | 896    | 0000001110010 |
| 960    | 011010100 | 960    | 0000001110011 |
| 1024   | 011010101 | 1024   | 0000001110100 |

| 1A/I-14- | 0 1 1        | DI. d. | 0 1 1         |
|----------|--------------|--------|---------------|
| White    | Code word    | Black  | Code word     |
| run      |              | run    |               |
| length   |              | lengt  |               |
| -        |              | h      |               |
|          |              |        |               |
| 1088     | 011010110    | 1088   | 0000001110101 |
| 1152     | 011010111    | 1152   | 0000001110110 |
| 1216     | 011011000    | 1216   | 0000001110111 |
| 1280     | 011011001    | 1280   | 0000001010010 |
| 1344     | 011011010    | 1344   | 0000001010011 |
| 1408     | 011011011    | 1408   | 0000001010100 |
| 1472     | 010011000    | 1472   | 0000001010101 |
| 1536     | 010011001    | 1536   | 0000001011010 |
| 1600     | 010011010    | 1600   | 0000001011011 |
| 1664     | 011000       | 1664   | 0000001100100 |
| 1728     | 010011011    | 1728   | 0000001100101 |
| EOL      | 000000000001 | EOL    | 000000000001  |

© Mahmoud R. El-Sakka

Q

CS4481/9628: Image Compression



Topic 09: Run-length Encoding

# **Two-dimensional Run-length Encoding**

- One-dimensional run-length encoding concept can be easily extended to two-dimension
- The basic idea is to encode the starting position of a run in the current line relative to the previous line
- The RL version that is used in the CCITT group 3 and 4 standards is a *modification* of a two-dimensional encoding scheme called *Relative Element Address Designate* (READ); hence it is often referred to as *Modified READ* (MR)
- CCITT Group 3 standard (T.4) is published in 1980, whereas CCITT Group 4 standard (T.6) is published in 1984

© Mahmoud R. El-Sakka

10

## Two-dimensional Run-length Encoding

- To understand the two-dimensional RL encoding, consider the following definitions of *A0*, *A1*, *A2*, *B1*, *B2* 
  - $\square$  **A0**: The last pixel whose value is <u>known to both encoder and decoder</u>; At the beginning of each line, **A0** refers to an <u>imaginary</u> white pixel to the <u>left</u> of the first actual pixel
  - $\square$  **A1**: The first transition pixel to the right of **A0**; its color should be the **opposite** to the **A0** color; **known only to the encoder**
  - $\Box$  **A2**: The second transition pixel to the right of **A0**; its color should be the **same** as the **A0** color; **known only to the encoder**
- **A0** can refer to an *imaginary* pixel to the *left* of the first actual pixel (initial condition), but not **A1** or **A2**
- Note: the *left imaginary* pixel can be assumed as white (or black)
- A1 and A2 can refer to an *imaginary* pixel to the *right* of the last actual pixel, but not A0
- We assume that this *right imaginary* pixel has color that is *opposite* to the last actual pixel

© Mahmoud R. El-Sakka

1

CS4481/9628: Image Compression

Topic 09: Run-length Encoding















# Two-dimensional Run-length Encoding B1: The first transition pixel on the line above the line currently being encoded to the right of A0 whose color is the opposite to A0; known to both encoder and decoder B2: The first transition pixel to the right of B1 in the line above the line currently being encoded; its color should be the same as the A0 color; known to both encoder and decoder B1 and B2 can refer to an imaginary pixel to the right of the last actual pixel © Mahmoud R. El-Sakka 19 CS4481/9628: Image Compression

































### **Two-dimensional Run-length Encoding**

- As an initial step, one-dimensional run-length encoding is applied first, followed by two-dimensional run-length encoding
- In general, two-dimensional run-length encoding achieves higher compression than that in the one-dimensional run-length encoding, since it utilizes the vertical correlation in an image as well

© Mahmoud R. El-Sakka

35

CS4481/9628: Image Compression



Topic 09: Run-length Encoding

## **Two-dimensional Run-length Encoding**

- Since the encoding of a line in the two-dimensional run-length encoding algorithm is based on the previous line, an error in one line could propagate to all other lines in the transmission
- To prevent this from happening, a recommendation is made to require that after each line is encoded with the one-dimensional runlength encoding algorithm, at most *K-1* lines will be encoded using the two-dimensional run-length encoding algorithm, where
  - $\square$  K=2 in the standard resolution images (i.e., <u>one</u> line to utilize 1D-RL and <u>one</u> line to utilize 2D-RL) and
  - □ K=4 in the high resolution images (i.e., <u>one</u> line to utilize 1D-RL and <u>three</u> line to utilize 2D-RL)

© Mahmoud R. El-Sakka

36

























```
Two-dimensional Run-length Encoding

Two-dimensional Run-length Encoding

Decode the following 2D-RL compressed binary image.

IMAGE Width: 12>; <RL-1D: 0, 12>; <Horizontal mode: 3, 2>;
Horizontal mode: 4, 2>; <Vertical mode: 0>; <Vertical mode: 0>;
Vertical mode: 0>; <Vertical mode: -3>;
Vertical mode: 0>; <Vertical mode: 0>; <Vertical mode: 0>;
Vertical mode: 0>; <Vertical mode: 0>; <Vertical mode: 0>;
Vertical mode: 0>; <Vertical mode: 0>; <Vertical mode: 0>;
Vertical mode: 0>; <Vertical mode: 0>; <Vertical mode: 0>;
Vertical mode: 0>; <Vertical mode: 0>;
```











































**Exercise**: Continue encoding/decoding the rest of the image.

© Mahmoud R. El-Sakka

60

CS4481/9628: Image Compression

Topic 09: Run-length Encoding
Binary Compression Performance

- Compression results highly depend on the image to be encoded
- One-dimensional RL encoding (i.e., MH only) *typically* achieve
  - □ 7:1 compression
- Two-dimensional RL encoding (Group 3) *typically* achieve
  - 9:1 compression (in case of normal resolution, i.e., k=2)
  - □ 11:1 compression (in case of normal resolution, i.e., k=4)
- Group 4 is just Group 3 compression without the need to go to the one-dimensional mode at all, even at the first line, where an imaginary line is assumed just before the first line to get things off the ground
- Two-dimensional RL encoding (Group 4) *typically* achieve
  - □ 14:1 compression

© Mahmoud R. El-Sakka

70