CSE 881: Data Mining (Fall 2016 Homework 3)

Due date: Sept 27, 2016 (before midnight).

A soft copy of your homework must be submitted via handin. All submitted homework must be your own work.

1. Proximity Measure

Let **x** and **y** be a pair of non-negative vectors, i.e., $\forall i: x_i \geq 0, y_i \geq 0$, where x_i and y_i are elements of the vectors. Consider the following distance measure:

$$d(\mathbf{x}, \mathbf{y}) = 1 - c(\mathbf{x}, \mathbf{y}) = 1 - \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|},$$
(1)

where $c(\mathbf{x}, \mathbf{y})$ is the cosine similarity between two non-negative vectors.

- (a) What are the maximum and minimum possible values for the distance measure?
- (b) Does the measure satisfy the positivity property?
- (c) Does the measure satisfy the symmetry property?
- (d) Does the measure satisfy the triangle inequality property?

2. Nearest-neighbor Search

Suppose you are given a set of points S in Euclidean space, as well as the distances between every point $\mathbf{x} \in S$ to a reference point \mathbf{y} . Assume the distance measure you use is a metric. Note: It does not matter if the reference point $\mathbf{y} \in S$.

- (a) If the goal is to find all the points in S within a specified distance ϵ of a query point $\mathbf{q} \neq \mathbf{y}$, explain how you can use the triangle inequality and the already calculated distances to \mathbf{y} to potentially reduce the number of distance calculations necessary. Hint: calculate the upper and lower bounds of the distance between the query point \mathbf{q} and a data point $\mathbf{x} \in S$ using triangle inequality.
- (b) Suppose that you can find a small subset of points, Ψ , from the original data set S, such that every point $\mathbf{x} \in S$ is within a specified distance ϵ of at least one of the points in Ψ , and that you also have the pairwise distance matrix between all pairs of points in Ψ . Assume you can easily identify the corresponding point $\mathbf{x}^* \in \Psi$ for each point $\mathbf{x} \in S$, where $d(\mathbf{x}, \mathbf{x}^*) \leq \epsilon$. Describe a technique that uses this information to compute, with a minimum number of distance calculations, all pairs of points in S that are within a distance of β of each other.

3. KD-tree

Consider the 2-dimensional data set shown in the table below:

Data point	x	y
1	0.1190	0.6991
2	0.2238	0.1493
3	0.2551	0.8407
4	0.3404	0.5472
5	0.4984	0.8909
6	0.5060	0.2543
7	0.5853	0.1386
8	0.7513	0.2575
9	0.9597	0.9593

- (a) Draw a KD-tree for the data set. If there are even number of points, e.g., 2 points, define median as the smaller of the two midpoints after sorting the data on the given dimension.
- (b) Draw a 2-dimensional plot of the data. Partition the space into rectangular regions based on the KD-tree.
- (c) Suppose you need to find the nearest-neighbors of a query point [0.6,0.5] within the following bounding box: $0.5 \le x \le 0.7$ and $0.4 \le y \le 0.6$. List all the nodes (starting from the root) that are visited to search for the nearest neighbors.

4. Hashing

Consider the binary data shown below.

Document	w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9	w_{10}
d_1	1	1	1	0	0	0	1	0	1	1
d_2	0	1	1	1	0	1	1	1	0	1
d_3	0	0	1	1	0	0	1	0	0	0
d_4	0	1	0	0	0	1	1	1	0	1

(a) Compute the pair-wise Jaccard similarity between the documents by filling out the following similarity matrix:

$$\begin{pmatrix} d_1 & d_2 & d_3 & d_4 \\ d_2 & d_3 & d_4 \\ d_4 & \begin{pmatrix} & & & & \\ & & & & & \\ & & & & & \end{pmatrix}$$

(b) Construct a MinHash signature of length 6 for each document by applying the following permutation matrices π with column ordering shown below:

π_1	10	3	8	9	6	5	4	2	1	7
π_2	3	9	7	5	4	2	6	8	1	10
π_3	4	2	3	1	7	5	6	9	8	10
π_4	6	4	3	10	7	8	5	9	1	2
π_5	9	6	8	5	1	4	7	2	3	10
π_6	10	1	4	6	9	2	7	3	8	5

(c) Based on the matrix you found in part (b), compute the probabilities $p[h(d_i) = h(d_j)]$ between every pair of documents (where h is the minHash function) and enter them into the following 4×4 matrix:

$$\begin{pmatrix}
d_1 & d_2 & d_3 & d_4 \\
d_2 & d_3 & d_4 & & \\
d_4 & & & & & \\
\end{pmatrix}$$

- (d) Compare the pair of documents with highest Jaccard similarity (in part (a)) against the pair of documents with highest probability (in part (c)). Are the results consistent with each other?
- (e) Compare the pair of documents with lowest Jaccard similarity (in part (a)) against the pair of documents with lowest probability (in part (c)). Are the results consistent with each other?