Florp
$$\exists 72$$
: Week 5 Thursday

$$SU(2) \text{ weak is copyin}$$

$$SU(2) \times U(1) \text{ y} \qquad (\varphi) = v = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$$

$$L^2 = 6^{\frac{1}{2}} \qquad L = y$$

$$L^3 = \frac{6}{\sqrt{2}} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \neq 6$$

$$Lv = y \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\$$

Since we know that An interest with strength e given by electron charge

 $\Rightarrow A_{\mu} = \cos \theta_{\mu} B_{\mu} + \sin \theta_{\mu} W_{\mu}^{3}$

 $\rightarrow e = g \sin \theta_{\omega} = g! \cos \theta_{\omega}$

Lhiggs = (Dry)+(Dry) - r2 φ+ φ - λ (φ+ φ)⁴
= M² W⁺ W⁻ (1+ H)² + ! M² Zr Zr (1+ H)²
+ !(∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H² - λν H³ - ½ H⁴ + M⁴
4 / (∂r H)² + r² H² - λν H² - λν

* Standard Model Lagrangian

Lsn = Lemions + Lgange + L Higgs + Lynkawa

L'fermions = \frac{3}{m} (\frac{1}{9}mL i) 9mL + \text{lmL i) lmL}

+ Tunk i Dunk + Jink i Ddink

+ InkiBlmR + JmRiJVmR)

Rgange = - 1 Bm Bhr - 1 Willing - 1 Ga GMV

i=1,2,3 a=1,...,8

with Bur = DBr - 2rBr

Win = DW, - dw - g sijk win Wr

Gir = DGa - dGa - grabeGrafy

with Dr= draig'/br + ig & . Wr + ig & 7 - 5,

The last term gyment q vmk is abrent if we do not include vir in the Standard Model -> then m, must be zero If φ is a weak isospin doublet under SU(2)then $\varphi = i 62 \varphi^{+} = (\varphi^{0} + \varphi^{-})$ is also a SU(2) doublet with $\{1, 2^{+}, -\frac{1}{2}\}$ with $\hat{\varphi} = \frac{1}{\sqrt{2}} \left(\frac{v + \eta}{0} \right)$ → if operates on upper weak isospin components, um R whight variation to Lyukawa Firally: gen: gan, gan; grould be a general 3×3 matrix Tp, TJ, T, Y the weak eigenstates are eliferent => 2 Juliana = - E (qml Tun quar + elc)