Name:	_
Roll Number:	_

Practice final

$\operatorname{MTH}302$ - Set Theory and Mathematical Logic

(Odd Semester 2024/25, IIT Kanpur)

INSTRUCTIONS

- 1. Write your **Name** and **Roll number** above.
- 2. This exam contains $\mathbf{5}\,+\,\mathbf{1}$ questions and is worth $\mathbf{50}\%$ of your grade.
- 3. Answer \mathbf{ALL} questions.

Page 2 MTH302

Question 1. $[5 \times 2 \text{ Points}]$

For each of the following statements, determine whether it is true or false. No justification required.

- (i) There exists a sequence of ordinals $\langle \alpha_n : n < \omega \rangle$ such that $\alpha_{n+1} < \alpha_n$ for every $n < \omega$.
- (ii) $(\mathbb{Q},<)$ is an elementary submodel of $(\mathbb{R},<)$.
- (iii) Every consistent first order theory has an infinite model.
- (iv) $\mathsf{Th}([0,1],<)$ is ω -categorical.
- (v) If $A\subseteq \omega$ is c.e., then $A+A=\{m+n:m,n\in A\}$ is c.e.

Solution

- (i) False. Otherwise, $\{\alpha_n : n < \omega\}$ is a nonempty set of ordinals with no least member.
- (ii) True. See HW 34.
- (iii) False. Let $T = \{(\forall x)(\forall y)(x = y)\}.$
- (iv) True. Showed in class.
- (v) True. Showed in class.

Page 3 MTH302

Question 2. [10 Points]

Call a subset $E \subseteq \mathbb{R}$ mid-point free if there do not exist x < y < z in E such that x + z = 2y.

- (a) [2 Point] State Zorn's lemma.
- (b) [4 Points] Show that there is a maximal mid-point free set $E \subseteq \mathbb{R}$. This means that E is mid-point free and for every $x \in \mathbb{R} \setminus E$, $E \cup \{x\}$ is not mid-point free.
- (c) [4 Points] Show that every maximal mid-point free set has cardinality \mathfrak{c} .

Solution

(a)	Eve	ery L	et $(P,$	≼) b	e a p	oartial	orderi	ng sucl	h that	every	chain ir	P has a	ın upper	bound	d in P	. Then	(P, \preceq)
	has	a m	axima	al eler	ment												
/a \		ъ.													d	_	

- (b) Let P be the set of all mid-point free $E \subseteq \mathbb{R}$ ordered by \subseteq . Then P is nonempty since $\emptyset \in P$. Let \mathcal{C} be a chain in P. Put $A = \bigcup \mathcal{C}$. Then for every $E \in \mathcal{C}$, $E \subseteq A$. We claim that $E \in P$. Suppose not. Then there are a < b < c in E such that 2b = a + c. Choose E_1, E_2, E_3 in \mathcal{C} such that $a \in E_1, b \in E_2$ and $c \in E_2$. As \mathcal{C} is a chain, one of the sets, say E_1 is a superset of the other two. This implies that $\{a,b,c\}\subseteq E_1$. But this contradicts the fact that E_1 is mid-point free. So $A \in P$ is an upper bound of \mathcal{C} . By Zorn's lemma, P has a maximal member E. It follows that E is mid-point free and for every $E \in \mathbb{R} \setminus E$, $E \cup \{x\}$ is not mid-point free.
- (c) It suffices to show that if $E \subseteq \mathbb{R}$ is mid-point free and $|E| < \mathfrak{c}$, then there exists $x \in \mathbb{R} \setminus E$ such that $E \cup \{x\}$ is mid-point free. For each pair $x \neq y$ in E, there are exactly 3 points $z \in \mathbb{R}$ such that $\{x, y, z\}$ is not mid-point free namely, x + y = 2z, y + z = 2x and x + z = 2y. Let $B_{x,y}$ be the set of all these z's. Then $B = \bigcup \{B_{x,y} : x, y \in E \land x \neq y\}$ is a union of $|E \times E| < \mathfrak{c}$ sets each of size 3. So $|B| < \mathfrak{c}$ and hence $|E \cup B| < \mathfrak{c}$. Choose $x \in \mathbb{R} \setminus (E \cup B)$. Then $E \cup \{x\}$ is mid-point free.

Page 4 MTH302

Question 3. [10 Points]

Let \mathcal{L} be the empty language. For each $n \geq 2$, recall that $\exists_{\geq n}$ denotes the following \mathcal{L} -sentence:

$$(\exists x_1)(\exists x_2)\dots(\exists x_n)\left(\bigwedge_{i< j\leq n}\neg(x_i=x_j)\right)$$

Define $T = \{\exists_{\geq n} : n \geq 2\}$. Prove the following.

- (a) [2 Points] T does not have a finite model.
- (b) [2 Points] T is consistent.
- (c) [2 Points] T is ω -categorical.
- (d) [2 Points] T is complete.
- (e) [2 Points] $\{\phi: T \vdash \phi\}$ is computable.

Solution

As \mathcal{L} is empty, an \mathcal{L} -structure is just a nonempty set M (its domain).

- (a) Suppose M is finite and |M| = n. Then $M \models \neg(\exists_{\geq n+1})$. So M does not model T.
- (b) Every infinite set M is a model of T. As T has a model, it is consistent.
- (c) Let $|M| = |N| = \omega$. Then any bijection between M and N is an isomorphism because \mathcal{L} is empty. So every \mathcal{L} -theory (and hence T) is ω -categorical.
- (d) Since \mathcal{L} is countable, T is ω -categorical and T has no finite models, it is complete (Slide 141).
- (e) Since T is computable and complete, $\{\psi : T \vdash \psi\}$ is computable (Slide 165).

Page 5 MTH302

Question 4. [10 Points]

Let $T = \mathsf{Th}(\mathbb{Z}, <)$. So T is an \mathcal{L} -theory where $\mathcal{L} = \{<\}$.

- (a) [2 Point] Is T a complete theory? Justify your response.
- (b) [2 Point] State the compactness theorem for first order logic.
- (c) [6 Points] Show that T is not ω -categorical. Hint: Put $\mathcal{L}_1 = \{<, c, d\}$ where c, d are constant symbols and consider the \mathcal{L}_1 -theory $T_1 = T \cup \{\psi_n : n \geq 1\}$ where ψ_n is says "there are at least n elements between c and d".

Solution

- (a) Yes. Because every \mathcal{L} -sentence is either true or false in $(\mathbb{Z}, <)$.
- (b) Let T be a first order theory such that every finite subset of T has a model. Then T has a model.
- (c) This is similar to the application of compactness theorem on Slide 140.

For each $n \geq 1$, consider the \mathcal{L}_1 -structure $\mathcal{M}_n = (\mathbb{Z}, <, c^{\mathcal{M}} = -n, d^{\mathcal{M}} = n)$. Then $\mathcal{M}_n \models T \cup \{\psi_k : k \leq n\}$. It follows that every finite subset of T has a model. Hence T has a model and as \mathcal{L}_1 is countable, by the Lowenheim-Skolem theorem it must have a countable model say $\mathcal{A} = (A, <^{\mathcal{A}}, c^{\mathcal{A}}, d^{\mathcal{A}})$. Then $|A| = \omega$ since $(\mathbb{Z}, <) \models \exists_{\geq n}$ for every $n \geq 2$. Furthermore, $(A, <^{\mathcal{A}}) \models T$ and it is a linear ordering that has two elements $c^{\mathcal{A}}$ and $d^{\mathcal{A}}$ with infinitely many members in between. Since $(\mathbb{Z}, <)$ does not have such elements, it follows that $(A, <^{\mathcal{A}})$ is not isomorphic to $(\mathbb{Z}, <)$. So T is not ω -categorical.

Page 6 MTH302

Question 5 [10 Points]

Let $\mathcal{N} = (\omega, 0, S, +, \cdot)$ be the standard model of PA. Define

$$\mathsf{True}_{\mathcal{N}} = \{ \ulcorner \psi \urcorner : \mathcal{N} \models \psi \} \text{ and } \mathsf{False}_{\mathcal{N}} = \{ \ulcorner \psi \urcorner : \mathcal{N} \models \neg \psi \}$$

- (a) [3 Points] Let $E \subseteq \omega$. What does it mean to say that E is definable in \mathcal{N} ?
- (b) [3 Points] State Tarski's theorem on undefinability of truth in arithmetic.
- (c) [4 Points] Suppose $S \subseteq \omega$, True_N $\subseteq S$ and False_N $\subseteq (\omega \setminus S)$. Show that S is not computable.

Solution

(a) There is an \mathcal{L}_{PA} -formula $\phi(x)$ such that for every $n \in \omega$,

$$n \in E \iff \mathcal{N} \models \phi(n)$$

- (b) True \mathcal{N} is not definable in \mathcal{N} .
- (c) Suppose S is computable. We will show that $\mathsf{True}_{\mathcal{N}}$ is computable which is impossible since every computable subset of ω is definable in \mathcal{N} while $\mathsf{True}_{\mathcal{N}}$ is not definable in \mathcal{N} .

Consider a program P that on input n does the following. If $n = \lceil \psi \rceil$ for some $\mathcal{L}_{\mathcal{P}\mathcal{A}}$ -sentence ψ , then output $1_S(n)$. Otherwise output 0. Let us check that P computes the characteristic function of $\mathsf{True}_{\mathcal{N}}$.

First suppose $n \in \mathsf{True}_{\mathcal{N}}$. Then there is an $\mathcal{L}_{\mathcal{P}\mathcal{A}}$ -sentence ψ such that $n = \lceil \psi \rceil$ and $\mathcal{N} \models \psi$. So P on input n outputs $1_S(n) = 1$ (since $n \in \mathsf{True}_{\mathcal{N}} \subseteq S$).

Next suppose $n \notin \mathsf{True}_{\mathcal{N}}$. Then either n is not the Gödel number of an $\mathcal{L}_{\mathcal{P}\mathcal{A}}$ -sentence in which case P outputs 0. Or n is the Gödel number of an $\mathcal{L}_{\mathcal{P}\mathcal{A}}$ -sentence ψ and $\mathcal{N} \models \neg \psi$ which means $n \in \mathsf{False}_{\mathcal{N}}$ and so P outputs $1_S(n) = 0$ (as $\mathsf{False}_{\mathcal{N}} \subseteq (\omega \setminus S)$).

Page 7 MTH302

Bonus Question [5 Points]

Recall that φ_e is the eth partial computable function on ω . Define $A = \{e : e \in \mathsf{dom}(\varphi_e) \text{ and } \varphi_e(e) = 0\}$ and $B = \{e : e \in \mathsf{dom}(\varphi_e) \text{ and } \varphi_e(e) = 1\}$. Show that $A, B \subseteq \omega$ are disjoint c.e. sets and there is no computable $R \subseteq \omega$ such that $A \subseteq R$ and $B \subseteq \omega \setminus R$.

Solution

That A,B are c.e. is easy to check. Next, towards a contradiction, suppose $R\subseteq\omega$ is computable, $A\subseteq R$ and $B\subseteq\omega\setminus R$. Then $h(n)=1_R(n)$ is computable (here 1_R is the characteristic function of R). So there must be some $e_\star<\omega$ such that $h=\varphi_{e_\star}$. In particular, φ_{e_\star} is total. Now check that $h(e_\star)\neq\varphi_{e_\star}(e_\star)$. A contradiction.