Model Selection:

Incorporating Model Complexity

- Rationale: Occam's Razor
 - Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
 - A complex model has a greater chance of being fitted accidentally by errors in data
 - Therefore, one should include model complexity when evaluating a model

```
Gen. Error(Model) = Train. Error(Model, Train. Data) + \alpha x Complexity(Model)
```

Estimating the Complexity of Decision Trees

Pessimistic Error Estimate of decision tree T with k leaf nodes:

$$err_{gen}(T) = err(T) + \Omega \times \frac{k}{N_{train}}$$

- err(T): error rate on all training records
- Ω : trade-off hyper-parameter (similar to α)
 - Relative cost of adding a leaf node
- k: number of leaf nodes
- N_{train}: total number of training records

Estimating the Complexity of Decision Trees: Example

Decision Tree, T₁

Decision Tree, T_R

$$e_{gen}(T_L) = 4/24 + 1*7/24 = 11/24 = 0.458$$

$$e_{gen}(T_R) = 6/24 + 1*4/24 = 10/24 = 0.417$$

Estimating the Complexity of Decision Trees

Resubstitution Estimate:

- Using training error as an optimistic estimate of generalization error
- Referred to as optimistic error estimate

Decision Tree, T₁

Decision Tree, T_R