PRICING GAMES IN COMBINATORIAL MARKETS REPORT

Combinatorial Auction

Abstract

Μελετάται η ειδική περίπτωση δημοπρασίας με έναν πλειοδότη και η πωλητές, όπου κάθε πωλητής διαθέτει στην αγορά ένα μοναδικό αγαθό

Εισαγωγή

Σε αυτή την εργασία υλοποιείται μια συνδυαστική δημοπρασία η αγαθών όπου κάθε δημοπράτης διαθέτει στην αγορά ένα προϊόν σε έναν μοναδικό αγοραστή. Ο πλειοδότης έχει μια ιδιωτική αποτίμηση ως προς τα αγαθά. Η αποτίμηση αυτή διαμορφώνεται με βάση τα χαρακτηριστικά του αγοραστή και των προϊόντων. Στο παρόν θα μελετηθούν οι περιπτώσεις όπου:

- Ο αγοραστής ενδιαφέρεται για ένα μοναδικό και τυχαίο υποσύνολο αγαθών (single minded)
- Ο αγοραστής έχει ξεχωριστή αποτίμηση για κάθε ένα προϊόν και δεν έχει σημασία αν αγοράζει άλλα.
- Η αποτίμηση του αγοραστή ανήκει στην κλάση submodular

Ο αλγόριθμος

Δεδομένων των αποτιμήσεων του αγοραστή για κάθε ένα από τα υποσύνολα των αγαθών

- Κάθε πωλητής προσφέρει το αγαθό του σε μια αρχική τιμή (μηδενική, τυχαία ή μέγιστη)
- Ο αγοραστής αποφασίζει το σύνολο των προϊόντων του που τον ενδιαφέρουν περισσότερο (μεγιστοποιούν το utility του).
- Ο πωλητής λαμβάνει σαν feedback μια binary τιμή (0 εάν το προϊόν του δεν πουλήθηκε ή 1 αν πουλήθηκε)
- Αν η binary τιμή είναι 0
 - Ο Αν η τιμή (price) που είχε θέσει αρχικά ήταν 0 τότε την αφήνει ως έχει
 - ο Αλλιώς κατεβάζει την τιμή του κατά μια μονάδα.
- Av η binary τιμή είναι 1
 - Αυξάνει την τιμή του (Price) κατά μία μονάδα αν ο αγοραστής συνεχίζει να αγοράζει το προϊόν του
 - Αφήνει την τιμή ως έχει αν ο αγοραστής δεν είναι διατεθειμένος να πληρώσει περισσότερα.

Test cases

Για την διευκόλυνση στην κατανόηση του προβλήματος θα θέσουμε

- Αριθμός αγοραστών = 1
- Αριθμός πωλητών (Agent) = 3
- Μέγιστη αποτίμηση αγοραστή = 100
- Μέγιστη τιμή (price) = 100

Επομένως ο αγοραστής αντιμετωπίζει 2^3 διαφορετικά σύνολα προϊόντων και καλείται να αποτιμήσει καθένα από αυτά ξεχωριστά.

Τα διαγράμματα που ακολουθούν θα αφορούν:

- Single-Minded αγοραστές
- Ξεχωριστή αποτίμηση για κάθε ένα από τα αγαθά
- Submodular

Κάθε μια από τις παραπάνω περιπτώσεις θα μελετηθεί για αγοραστές με

- Αρχικές τιμές (price) = 0
- Αρχικές τιμές (price) = τυχαίες
- Αρχικές τιμές (price) = μέγιστες = 100

Παρακάτω θα αναφερθούμε σε Starting Prices το οποίο είναι ένας πίνακας 1xn και δηλώνει την αρχική τιμή του κάθε πωλητή και Valuation Table ο οποίος είναι ένας πίνακας $1x2^n$ και κάθε τιμή του αναφέρεται στο valuation του αγοραστή για το υποσύνολο i μ ε i = $\{1, 2, ..., 2^n\}$

Πχ για 3 πωλητές:

Valuation ₁ = 0
Valuation ₂ =
Valuation₃ =

Agent0	Agent1	Agent2
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
0	1	0
1	1	1

Αποτελέσματα

Single Minded

Valuation Table = [0, 0, 0, 100, 0, 0, 0, 100]

• Starting Prices = [0, 0, 0]

• Starting Prices = RANDOM [0, 100]

• Starting Prices = Max = 100

Συμπέρασμα

Στην περίπτωση που ο αγοραστής ενδιαφέρεται για ένα μοναδικό υποσύνολο αγαθών (έστω το $\{0,1,1\}$) και οι πωλητές θέτουν ίδια αρχική τιμή, τότε η τελική τιμή θα διαμορφωθεί ως εξής

Final Prices =
$$[0, 50, 49]$$

Σε κάθε άλλη περίπτωση, μεγαλύτερη τελική τιμή θα θέσει εκείνος που έθεσε αρχικά μεγαλύτερη (???)

Ξεχωριστή αποτίμηση για κάθε ένα από τα αγαθά

Valuation Table = [0, 10, 20, 30, 30, 40, 50, 60]

Starting Prices = [0, 0, 0]

Starting Prices = Random in [0, 100]

<u>Starting Prices = [100, 100, 100]</u>

Συμπέρασμα

Στην περίπτωση που ο αγοραστής αποτιμά κάθε ένα από τα αγαθά ξεχωριστά και δεν λαμβάνει υπόψιν του το γεγονός ότι αγοράζει κι άλλα αγαθά, η διαδικασία είναι σχετικά απλή. Οι τελικές τιμές διαμορφώνονται αντίστοιχα με την αποτίμηση του αγοραστή για κάθε ένα από τα αγαθά ξεχωριστά.

<u>Submodular</u>

Valuations = [0, 48, 54, 81, 51, 72, 83, 92]

Starting Prices = [0, 0, 0]

Starting Prices = Random in [0, 100]

<u>Starting Prices = [100, 100, 100]</u>

Συμπέρασμα

Στην περίπτωση που ο αγοραστής αποτιμά τα αγαθά με βάση μια submodular συνάρτηση, δεν παίζει ρόλο η αρχική τιμή. **Υπάρχει μία μοναδική ισορροπία*?**