Minimize

$$z = 5x_1 + 7x_2$$

Subject to the constraints

$$2x_{1} + 3x_{2} \ge 42$$

$$3x_{1} + 4x_{2} \ge 60$$

$$x_{1} + x_{2} \ge 18$$

$$x_{1}, x_{2} \ge 0$$

Ans: $x_1=12$, $x_2=6$, Min z=102

Introducing the surplus and artificial variables, R₁, R₂, the LPP is modified as follows:

Minimize
$$z = 5x_1 + 7x_2 + MR_1 + MR_2 + MR_3$$

Subject to the constraints

$$2x_{1} + 3x_{2} - s_{1} + R_{1} = 42$$

$$3x_{1} + 4x_{2} - s_{2} + R_{2} = 60$$

$$x_{1} + x_{2} - s_{3} + R_{3} = 18$$

$$x_{1}, x_{2}, s_{1}, s_{2}, s_{3}, R_{1}, R_{2}, R_{3} \ge 0$$

									\setminus	
Basic	Z	x 1	x2	s1	s2	s3	R1	R2	R3	Sol
		-5+6M	-7+8M	-M	-M	-M	0	0	0	120M
Z	1	-5	1	Ø'	8	Ø	-M	-M	-M	Ø
<u>R1</u>	0	2	3	-1	0	0	1	0	0	42
R2	0	3	4	0	-1	0	0	1	0	60
R3	0	1	1	0	0	-1	0	0	1	18
Z	1	$-\frac{1}{3} + \frac{2M}{3}$	0	$-\frac{7}{3} + \frac{5M}{3}$	-M	-M	$\frac{7}{3} - \frac{8M}{3}$	0	0	98+8M
x2	0	2/3	1	-1/3	0	0	1/3	0	0	14
R2	0	1/3	0	4/3	-1	0	-4/3	1	0	4
R3	0	1/3	0	1/3	0	-1	-1/3	0	1	4

Basic	Z	x1	x2	s1	s2	s3	R1	R2	R3	Sol
		1 + 2M		7 5M			7 8 <i>M</i>			
Z	1	3 3	0	3 3	-M	-M	3 3	0	0	98+8M
x2	0	2/3	1	-1/3	0	0	1/3	0	0	14
R2	0	1/3	0	4/3	-1	0	-4/3	1	0	4
R3	0	1/3	0	1/3	0	-1	-1/3	0	1	4
Z	1	$\frac{1}{4} + \frac{M}{4}$	0	0	$-\frac{7}{4} + \frac{M}{4}$	-M	- M	$\frac{7}{4} - \frac{5M}{4}$	0	105+3M
x2	0	3/4	1	0	-1/4	0	0	1/4	0	15
s1	0	1/4	0	1	-3/4	0	-1	3/4	0	3
R3	0	1/4	0	0	1/4	-1	0	-1/4	1	3

Basic	Z	x1	x2	s1	s2	s3	R1	R2	R3	Sol
Z	1	$\frac{1}{4} + \frac{M}{4}$	0	0	$-\frac{7}{4} + \frac{M}{4}$	-M	-M	$\frac{7}{4} - \frac{5M}{4}$	0	105+3M
x2	0	3/4	1	0	-1/4	0	0	1/4	0	15
s1	0	1/4	0	1	-3/4	0	-1	3/4	0	3
R3	0	1/4	0	0	1/4	-1	0	-1/4	1	3
Z	1	0	0	0	-2	1	-M	2-M	-1-M	102
x2	0	0	1	0	-1	3	0	1	-3	6
s1	0	0	0	1	-1	1	-1	1	-1	0
x1	0	1	0	0	1	-4	0	-1	4	12

Basic	Z	x1	x2	s1	s2	s3	R1	R2	R3	Sol
Z	1	O	0	0	-2	1	-M	2-M	-1-M	102
x2	0	0	1	0	-1	3	0	1	-3	6
<u>s1</u>	0	0	0	1	-1	1	-1	1	-1	0
x 1	0	1	0	0	1	-4	0	-1	4	12
Z	1	0	0	-1	-1	0	1-M	1-M	2-M	102
x2	0	0	1	-3	2	0	3	-2	0	6
s3	0	0	0	1	-1	1	-1	1	-1	0
x1	0	1	0	4	-3	0	-4	3	0	12

Basic	Z	x 1	x2	s1	s2	s3	R1	R2	R3	Sol
										100
Z	1	0	0	-1	-1	0	1-M	1-M	2-M	102
x2	0	0	1	-3	2	0	3	-2	0	6
s3	0	0	0	1	-1	1	-1	1	-1	0
x 1	0	1	0	4	-3	0	-4	3	0	12

This is the optimal tableau.

Optimal solution: $x_1=12$, $x_2=6$

Minimum z = 102

TWO PHASE SIMPLEX METHOD

The Big M method involves manipulation with small and large numbers and so is not suited to a computer. We now look at the Two-Phase method. As the name suggests, the method consists of two phases: In phase-I we minimise the sum of all the artificial variables subject to the same constraint equations. If the original problem had a feasible solution this new problem will give

a solution with all artificial variables zero. Taking this as a starting BFS, we solve the original problem. We illustrate by an example.

Consider the LPP:

Minimize
$$z = 2x_1 + x_2$$

Subject to the constraints

$$3x_{1} + x_{2} \ge 9$$

$$x_{1} + x_{2} \ge 6$$

$$x_{1}, x_{2} \ge 0$$

Introducing the surplus and artificial variables, R_1 , R_2 , the LPP is same as:

Minimize
$$z = 2x_1 + x_2$$

Subject to the constraints

$$3x_1 + x_2 - s_1 + R_1 = 9$$

$$x_1 + x_2 - s_2 + R_2 = 6$$

$$x_1, x_2, s_1, s_2, R_1, R_2 \ge 0$$

Phase I:

Minimize
$$r = R_1 + R_2$$

Subject to the constraints

$$3x_1 + x_2 - s_1 + R_1 = 9$$

$$x_1 + x_2 - s_2 + R_2 = 6$$

$$x_1, x_2, s_1, s_2, R_1, R_2 \ge 0$$

We now solve it by Simplex method.

Basic	r	x 1	x2	s1	s2	R1	R2	Sol.
r	1	4	2	-1 Ø	-1 Ø	0	0	15 Ø
<u>R</u> 1	0	3	1	-1	0	1	0	9
R2	0	1	1	0	-1	0	1	6
r	1	0	2/3	1/3	-1	-4/3	0	3
x 1	0	1	1/3	-1/3	0	1/3	0	3
R2	0	0	2/3	1/3	-1	-1/3	1	3
r	1	0	0	0	0	-1	-1	0
x 1	0	1	0	-1/2	1/2	1/2	-1/2	3/2
x2	0	0	1	1/2	-3/2	-1/2	3/2	9/2

Note that Phase I has ended as min r = 0.

Phase II:

Now we solve the original LPP with

the starting BFS:
$$x_1 = \frac{3}{2}, x_2 = \frac{9}{2}$$

Note that the starting Simplex tableau is same as the <u>last</u> tableau except for the first row which is our z-Row. Since R_1 , R_2 have served their purpose (of giving a starting BFS), we suppress their columns.

Basic	Z	x 1	x2	s1	s2	R1	R2	Sol.
Z	1	0	0 X	-1/2 Ø	-1/2 Ø			15/2
x 1	0	1	0	-1/2	1/2			3/2
x2	0	0	1	1/2	-3/2			9/2

This is the optimal Tableau.

Optimal solution:
$$x_1 = 3/2, x_2 = 9/2$$

Min
$$z = 15/2$$