CMPSC 465: LECTURE VII

More Examples of Divide-and-Conquer

Ke Chen

September 12, 2025

Median of medians as pivot for selection

Select(A, k):

- 1. Divide the input A into groups of 5.
- 2. Find the median of each group.
- 3. Recursively find the median m of all these n/5 medians.
- 4. Partition A with pivot m.
- Do recursive call as in RandomizedSelect.

Time complexity?

Worst-case:
$$T(n) = c \cdot n/5 + T(n/5) + \Theta(n) + T(\ref{n})$$

= $T(n/5) + T(\ref{n}) + \Theta(n)$.

Select(A, k):

- 1. Divide the input A into groups of 5.
- 2. Find the median of each group.
- 3. Recursively find the median m of all these n/5 medians.
- 4. Partition A with pivot m.
- 5. Do recursive call as in RandomizedSelect.

n = 30

Select(A, k):

- 1. Divide the input A into groups of 5.
- 2. Find the median of each group.
- 3. Recursively find the median m of all these n/5 medians.
- 4. Partition A with pivot m.
- 5. Do recursive call as in RandomizedSelect.

n = 30

7 15 42 5	88 91 4 29 21
13 67 54 18 20	73 8 36 49 2
9 25 31 44 12	6 80 14 22 3

Select(A, k):

- 1. Divide the input A into groups of 5.
- 2. Find the median of each group.
- 3. Recursively find the median m of all these n/5 medians.
- 4. Partition A with pivot m.
- 5. Do recursive call as in RandomizedSelect.

$$n = 30$$

19 7 15 42 5	88 91 4 29 21
13 67 54 18 20	73 8 36 49 2
9 25 31 44 12	6 80 14 22 3

$$n = 30, \ m = 20$$

- ▶ For each median $\leq m$, there are at least 2 more in its group $\leq m$.

$$n = 30, \ m = 20$$

- $\leq (n/5)/2 = n/10$ medians; also $\geq n/10$ medians.
- ▶ For each median $\leq m$, there are at least 2 more in its group $\leq m$.
- For each median $\geq m$, there are at least 2 more in its group $\geq m$.

$$n = 30, \ m = 20$$

19 7 15 42 5	88 91 4 29 21
13 67 54 18 20	
9 25 31 44 12	6 80 14 22 3

- ▶ For each median $\leq m$, there are at least 2 more in its group $\leq m$.
- For each median $\geq m$, there are at least 2 more in its group $\geq m$.

$$n = 30, \ m = 20$$

19 7 15 42 5	88 91 4 29 21
13 67 54 18 20	73 8 36 49 2
9 25 31 44 12	6 80 14 22 3

- ▶ For each median $\leq m$, there are at least 2 more in its group $\leq m$.
- For each median $\geq m$, there are at least 2 more in its group $\geq m$.
- ▶ In total, we can guarantee 3(n/5)/2 = 3n/10 numbers $\leq m$; also 3n/10 numbers $\geq m$.

$$n = 30, \ m = 20$$

7 15 42 5	88 91 4 29 21
13 67 54 18 20	73 8 36 49 2
9 25 31 44 12	6 80 14 22 3

- $\leq (n/5)/2 = n/10$ medians; also $\geq n/10$ medians.
- ▶ For each median $\leq m$, there are at least 2 more in its group $\leq m$.
- For each median $\geq m$, there are at least 2 more in its group $\geq m$.
- In total, we can guarantee 3(n/5)/2 = 3n/10 numbers $\leq m$; also 3n/10 numbers $\geq m$.

n=30, m=20, 15 numbers $\leq m$, 15 numbers $\geq m$

19 7 15 5 4	13 18 3 8 2
9 12 6 14 20	73 29 36 49 21
88 25 31 44 67	54 80 91 22 42

Select(A, k):

- 1. Divide the input A into groups of 5.
- 2. Find the median of each group.
- 3. Recursively find the median m of all these n/5 medians.
- 4. Partition A with pivot m.
- 5. Do recursive call as in RandomizedSelect.

Time complexity?

► Worst-case: $T(n) = T(n/5) + T(?) + \Theta(n)$

Select(A, k):

- 1. Divide the input A into groups of 5.
- 2. Find the median of each group.
- 3. Recursively find the median m of all these n/5 medians.
- 4. Partition A with pivot m.
- 5. Do recursive call as in RandomizedSelect.

Time complexity?

 $\qquad \text{Worst-case: } T(n) = T(n/5) + T(\frac{\mathsf{n-3(n/5)}}{2}) + \Theta(n)$

Select(A, k):

- 1. Divide the input A into groups of 5.
- 2. Find the median of each group.
- 3. Recursively find the median m of all these n/5 medians.
- 4. Partition A with pivot m.
- 5. Do recursive call as in RandomizedSelect.

Time complexity?

Worst-case:
$$T(n)=T(n/5)+T(\frac{n-3(n/5)/2}{9})+\Theta(n)$$

$$=T(n/5)+T(\frac{7n/10}{9})+\Theta(n).$$

Select(A, k):

- 1. Divide the input A into groups of 5.
- 2. Find the median of each group.
- 3. Recursively find the median m of all these n/5 medians.
- 4. Partition A with pivot m.
- 5. Do recursive call as in RandomizedSelect.

Time complexity?

- Worst-case: $T(n)=T(n/5)+T(\frac{n-3(n/5)/2}{9})+\Theta(n)$ $=T(n/5)+T(\frac{7n/10}{9})+\Theta(n).$
- ▶ (Exercise) Prove that T(n) = O(n).
- ► (Exercise) What happens if we group by 3, or 7?

Input: Two $n \times n$ matrices A and B

Output: $C = A \cdot B$

Input: Two $n \times n$ matrices A and B

Output: $C = A \cdot B$

Recall:

Input: Two $n \times n$ matrices A and B

Output:
$$C = A \cdot B$$

Recall:

$$C(i,j) = \sum_{k=1}^{n} A(i,k) \cdot B(k,j).$$

Input: Two $n \times n$ matrices A and B

Output:
$$C = A \cdot B$$

Recall:

$$C(i,j) = \sum_{k=1}^{n} A(i,k) \cdot B(k,j).$$

Direct computation takes $O(n^3)$ time. Obvious lower bound is $\Omega(n^2)$.

Input: Two $n \times n$ matrices A and B

Output:
$$C = A \cdot B$$

Recall:

$$C(i,j) = \sum_{k=1}^{n} A(i,k) \cdot B(k,j).$$

Direct computation takes $O(n^3)$ time. Obvious lower bound is $\Omega(n^2)$. Can we do better?

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Fact:
$$C = A \cdot B = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

Idea: Divide matrices into four $n/2 \times n/2$ blocks and perform multiplication block-wise.

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Fact:
$$C = A \cdot B = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

We obtain a divide-and-conquer algorithm with 8 subproblems of size n/2 each.

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Fact:
$$C = A \cdot B = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

- ▶ We obtain a divide-and-conquer algorithm with 8 subproblems of size n/2 each.
- ▶ To combine results of subproblems, we need 4 additions of $n/2 \times n/2$ matrices, which take $O(n^2)$ time.

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Fact:
$$C = A \cdot B = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

- ▶ We obtain a divide-and-conquer algorithm with 8 subproblems of size n/2 each.
- To combine results of subproblems, we need 4 additions of $n/2 \times n/2$ matrices, which take $O(n^2)$ time.
- So the running time satisfies $T(n) = 8T(n/2) + O(n^2) \rightsquigarrow$

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Fact:
$$C = A \cdot B = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

- ▶ We obtain a divide-and-conquer algorithm with 8 subproblems of size n/2 each.
- To combine results of subproblems, we need 4 additions of $n/2 \times n/2$ matrices, which take $O(n^2)$ time.
- So the running time satisfies $T(n) = 8T(n/2) + O(n^2) \rightsquigarrow T(n) = O(n^3).$

Idea: Divide matrices into four $n/2 \times n/2$ blocks and perform multiplication block-wise.

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Fact:
$$C = A \cdot B = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

- ▶ We obtain a divide-and-conquer algorithm with 8 subproblems of size n/2 each.
- ▶ To combine results of subproblems, we need 4 additions of $n/2 \times n/2$ matrices, which take $O(n^2)$ time.
- So the running time satisfies $T(n) = 8T(n/2) + O(n^2) \rightsquigarrow T(n) = O(n^3)$.

Same as direct computation!

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Let

$$P_1 = A_{11}(B_{12} - B_{22}) P_2 = (A_{11} + A_{12})B_{22}$$

$$P_3 = (A_{21} + A_{22})B_{11} P_4 = A_{22}(B_{21} - B_{11})$$

$$P_5 = (A_{11} + A_{22})(B_{11} + B_{22}) P_6 = (A_{12} - A_{22})(B_{21} + B_{22})$$

$$P_7 = (A_{11} - A_{21})(B_{11} + B_{12})$$

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Let

$$P_{1} = A_{11}(B_{12} - B_{22}) P_{2} = (A_{11} + A_{12})B_{22}$$

$$P_{3} = (A_{21} + A_{22})B_{11} P_{4} = A_{22}(B_{21} - B_{11})$$

$$P_{5} = (A_{11} + A_{22})(B_{11} + B_{22}) P_{6} = (A_{12} - A_{22})(B_{21} + B_{22})$$

$$P_{7} = (A_{11} - A_{21})(B_{11} + B_{12})$$

Then
$$A \cdot B = C = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix}$$

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Let

$$P_{1} = A_{11}(B_{12} - B_{22}) P_{2} = (A_{11} + A_{12})B_{22}$$

$$P_{3} = (A_{21} + A_{22})B_{11} P_{4} = A_{22}(B_{21} - B_{11})$$

$$P_{5} = (A_{11} + A_{22})(B_{11} + B_{22}) P_{6} = (A_{12} - A_{22})(B_{21} + B_{22})$$

$$P_{7} = (A_{11} - A_{21})(B_{11} + B_{12})$$

Then
$$A \cdot B = C = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix}$$

Verify:
$$P_1 + P_2 = A_{11}(B_{12} - B_{22}) + (A_{11} + A_{12})B_{22}$$

= $A_{11}B_{12} - A_{11}B_{22} + A_{11}B_{22} + A_{12}B_{22}$
= $A_{11}B_{12} + A_{12}B_{22}$

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Let

$$P_{1} = A_{11}(B_{12} - B_{22}) P_{2} = (A_{11} + A_{12})B_{22}$$

$$P_{3} = (A_{21} + A_{22})B_{11} P_{4} = A_{22}(B_{21} - B_{11})$$

$$P_{5} = (A_{11} + A_{22})(B_{11} + B_{22}) P_{6} = (A_{12} - A_{22})(B_{21} + B_{22})$$

$$P_{7} = (A_{11} - A_{21})(B_{11} + B_{12})$$

Then
$$A \cdot B = C = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix}$$

 P_1,\dots,P_7 requires \ref{prop} $n/2\times n/2$ matrix multiplications, therefore $T(n)=7T(n/2)+O(n^2)\leadsto$.

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Let

$$P_{1} = A_{11}(B_{12} - B_{22}) P_{2} = (A_{11} + A_{12})B_{22}$$

$$P_{3} = (A_{21} + A_{22})B_{11} P_{4} = A_{22}(B_{21} - B_{11})$$

$$P_{5} = (A_{11} + A_{22})(B_{11} + B_{22}) P_{6} = (A_{12} - A_{22})(B_{21} + B_{22})$$

$$P_{7} = (A_{11} - A_{21})(B_{11} + B_{12})$$

Then
$$A \cdot B = C = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix}$$

 P_1,\ldots,P_7 requires 7 $n/2\times n/2$ matrix multiplications, therefore $T(n)=7T(n/2)+O(n^2)\leadsto O(n^{\log 7})=O(n^{2.81})$.

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Let

$$P_{1} = A_{11}(B_{12} - B_{22}) P_{2} = (A_{11} + A_{12})B_{22}$$

$$P_{3} = (A_{21} + A_{22})B_{11} P_{4} = A_{22}(B_{21} - B_{11})$$

$$P_{5} = (A_{11} + A_{22})(B_{11} + B_{22}) P_{6} = (A_{12} - A_{22})(B_{21} + B_{22})$$

$$P_{7} = (A_{11} - A_{21})(B_{11} + B_{12})$$

Then
$$A \cdot B = C = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix}$$

$$P_1,\ldots,P_7$$
 requires 7 $n/2\times n/2$ matrix multiplications, therefore $T(n)=7T(n/2)+O(n^2)\leadsto O(n^{\log 7})=O(n^{2.81})$.

Can we do better?

Can we do better?

Figure by Jochen Burghardt

Closest pair of points

Input: A set of n points in the plane.

Output: A pair of points with the smallest Euclidean distance.

Input: A set of n points in the plane.

Output: A pair of points with the smallest Euclidean distance.

Brute-force: $O(n^2)$.

•

•••••

• • • • •

•

Input: A set of n points in the plane.

Output: A pair of points with the smallest Euclidean distance.

Input: A set of n points in the plane.

Output: A pair of points with the smallest Euclidean distance.

Brute-force: $O(n^2)$.

- 1 Divide the points into two parts.
- 2 Find a closest pair in each.

Input: A set of n points in the plane.

Output: A pair of points with the smallest Euclidean distance.

Brute-force: $O(n^2)$.

- 1 Divide the points into two parts.
- 2 Find a closest pair in each.
- 3 Find if any cross-boundary pair is closer.

Input: A set of n points in the plane.

Output: A pair of points with the smallest Euclidean distance.

Brute-force: $O(n^2)$.

Divide-and-conquer:

- 1 Divide the points into two parts.
- 2 Find a closest pair in each.
- Find if any cross-boundary pair is closer.

Can be done in O(n) time, therefore $T(n) = 2T(n/2) + O(n) \implies$

Input: A set of n points in the plane.

Output: A pair of points with the smallest Euclidean distance.

Brute-force: $O(n^2)$.

Divide-and-conquer:

- 1 Divide the points into two parts.
- 2 Find a closest pair in each.
- Find if any cross-boundary pair is closer.

Can be done in O(n) time, therefore $T(n) = 2T(n/2) + O(n) \rightsquigarrow O(n \log n)$.

Input: A set of n points in the plane.

Output: The convex hull, i.e., smallest convex shape that contains all the points.

• • • •

•

Input: A set of n points in the plane.

Output: The convex hull, i.e., smallest convex shape that contains all the points.

Divide-and-conquer:

Divide the points into two parts.

Input: A set of n points in the plane.

Output: The convex hull, i.e., smallest convex shape that contains all the points.

- 1 Divide the points into two parts.
- 2 Compute the convex hull of each.

Input: A set of n points in the plane.

Output: The convex hull, i.e., smallest convex shape that contains all the points.

- 1 Divide the points into two parts.
- 2 Compute the convex hull of each.
- 3 Merge the two convex polygons.

Input: A set of n points in the plane.

Output: The convex hull, i.e., smallest convex shape that contains all the points.

Divide-and-conquer:

- 1 Divide the points into two parts.
- 2 Compute the convex hull of each.
- 3 Merge the two convex polygons.

Can be done in O(n) time, therefore $T(n) = 2T(n/2) + O(n) \rightsquigarrow$

Input: A set of n points in the plane.

Output: The convex hull, i.e., smallest convex shape that contains all the points.

Divide-and-conquer:

- 1 Divide the points into two parts.
- 2 Compute the convex hull of each.
- 3 Merge the two convex polygons.

Can be done in O(n) time, therefore $T(n) = 2T(n/2) + O(n) \rightsquigarrow O(n \log n)$.