MICRO-502_Aerial_Robotics_Notes

Flapping-Wing (week9)

Drone Regulations (week9)

UAS Hardware (week10)

Introduction

Frame and materials

materials comparison

metric when considering materials

Energy sources

Actuators for propulsion and maneuvering

Propellers

Sensors

Autopilots

Communication protocols

MICRO-502_Aerial_Robotics_Notes

Lecture notes by Yujie He

Last updated on 2021/4/29

Flapping-Wing (week9)

Drone Regulations (week9)

Author: Markus Farner

https://www.bazl.admin.ch/bazl/en/home/good-to-know/drohnen.html

 Unmanned Aircraft Systems (UAS) >= Drones; UAS = Remotely piolted aircraft systems / autonomous aircraft systems

- Rules in Aviation: Federal Office of Civil Aviation Switzerland
- Everything which is not forbidden is allowed -> Switzerland
 Trust, less difficult for innovation
- 3 Pillar Concept / Drone Categories
 - 1. Open-Within the legal framework (No Authorization required)
 - 2. Specific-Not sufficiently safe (Authorization required)
 - 3. Certified-Approved to accepted standards
- Act
 - Ordinance on Special Category Aircraft
 - No authorization required for commercial flights
 - No distinction between Unmanned Aircraft and Model Aircraft
 - DETEC Ordinance on Special Category Aircraft
 - No authorization below 30kg
 - Within direct visual contact (VLOS)
 - Not within a distance <=100m around crowds
 - ANSP (Skyguide) or Airport responsibility
 - > 5km Distance to civil & military airports/aerodromes
 - < 150m AGL (Above Ground Level) within a CTR
- Act in EU
 - Open/Specific/Certified
 - o Difference
 - restrictions: MTOM 25kg
 - maximum flying altitude: 120m

• Specific Category

Application for an operating permit on the basis of the SORA (Specific Operations Risk Assessment)

Operational Volume = Flight Geography + Contingency Volume

- **?** Robustness Levels: Integrity + Assurance
- U-Space

The U-space is a collection of decentralized services that collectively aim to safely and efficiently integrate drones into the airspace and enable drone operations alongside manned flight.

https://www.bazl.admin.ch/bazl/en/home/good-to-know/drohnen/wichtigsten-rege ln/uspace.html.html

https://www.skyguide.ch/en/events-media-board/u-space-live-demonstration/

airspace in block to avoid collision and report the location for further path calculation

UAS Hardware (week10)

Introduction

- 1. The aerial vehicle
 - o Air frame
 - Actuators for propulsion and control
 - o Energy source
 - Autopilot
 - Sensors for attitude estimation
 - Electronics for regulation, control and communication
 - Sensor and avoid system

2. Payload

- Cameras
- Environmental sensors (wind, temperature, humidity)
- Robotic arms for manipulation
- 3. Ground Control Station
 - Communication systems
 - Interface to monitor internal parameters and to send commands to the vehicle

Frame and materials

materials comparison

Material	Composite	ABS/PLA	Wood	Foam
Pros				
Cons				
Comment				

metric when considering materials

• Young's modulus [wiki]

弹性模量,正向应力与正向应变的比值

• Specific modulus [wiki]

比模量,单位密度的弹性模量,劲度-质量比,在航天工业中有广泛应用。

Energy sources

Actuators for propulsion and maneuvering

Propellers

Sensors

Autopilots

Communication protocols