Simulation and Analysis of 1D Wave Propagation under Various Physical Models

Dario Liotta

Dipartimento di Fisica e Astronomia Galileo Galilei

September 6th 2025 Course of **Quantum Information and Computing** Academic Year 2024/2025

Numerical methods for differential equations

Numerical methods for differential equations

Introduction to the problem

Solving a **PDE** means to find a function u such that

$$\mathcal{L}u = f$$

where \mathcal{L} is a differential operator and f is a source term.

The equation holds in a domain Ω and is completed by prescribing **boundary conditions** on $\partial\Omega$.

In most physical applications
$$\mathcal{L}$$
 is a second-order operator

Poisson equation: $\mathcal{L} = -\Delta$

Heat equation: $\mathcal{L} = \frac{\partial}{\partial t} - \Delta$

Wave equation: $\mathcal{L} = \frac{\partial^2}{\partial t^2} - c^2 \Delta$

Introduction to the problem

Solving a **PDE** means to find a function u such that

$$\mathcal{L}u = f$$

where \mathcal{L} is a differential operator and f is a source term.

The equation holds in a domain Ω and is completed by prescribing boundary conditions on $\partial\Omega$.

Galerkin methods rely on a weak formulation

 \bullet Multiply by a test function v and integrate over the entire domain

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} f v d\Omega$$

• Integrate by parts the left hand side

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} \nabla u \cdot \nabla v d\Omega - \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

• <u>Substitute</u> and get the new expression

$$\int_{\Omega} \nabla u \cdot \nabla v d\Omega = \int_{\Omega} f v d\Omega + \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

Galerkin methods rely on a weak formulation

 \bullet Multiply by a test function v and integrate over the entire domain

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} f v d\Omega$$

• Integrate by parts the left hand side

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} \nabla u \cdot \nabla v d\Omega - \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

• <u>Substitute</u> and get the new expression

$$\int_{\Omega} \nabla u \cdot \nabla v d\Omega = \int_{\Omega} f v d\Omega + \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

Galerkin methods rely on a weak formulation

 \bullet Multiply by a test function v and integrate over the entire domain

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} f v d\Omega$$

• Integrate by parts the left hand side

$$-\int_{\Omega}(\Delta u)vd\Omega=\int_{\Omega}\nabla u\cdot\nabla vd\Omega-\int_{\partial\Omega}\frac{\partial u}{\partial n}vds$$

• Substitute and get the new expression

$$\int_{\Omega} \nabla u \cdot \nabla v d\Omega = \int_{\Omega} f v d\Omega + \int_{\partial \Omega} \frac{\partial u}{\partial n} v dx$$

Galerkin methods rely on a weak formulation

 \bullet Multiply by a test function v and integrate over the entire domain

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} f v d\Omega$$

• Integrate by parts the left hand side

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} \nabla u \cdot \nabla v d\Omega - \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

• <u>Substitute</u> and get the new expression

$$\int_{\Omega} \nabla u \cdot \nabla v d\Omega = \int_{\Omega} f v d\Omega + \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

About the test function

The test function v is introduced to check whether the PDE is satisfied on average throughout the domain.

The problem becomes to find u such that

$$a(u,v) = F(v) \qquad \forall v \in V$$

where

$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v d\Omega \qquad \text{is a bilinear form}$$
$$F(v) = \int_{\Omega} f v d\Omega + \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds \qquad \text{is a linear functional}$$

About the test function

The test function v is introduced to check whether the PDE is satisfied on average throughout the domain.

The problem becomes to find u such that

$$a(u, v) = F(v) \qquad \forall v \in V$$

where

$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v d\Omega \qquad \text{is a bilinear form}$$
$$F(v) = \int_{\Omega} f v d\Omega + \int_{\partial\Omega} \frac{\partial u}{\partial n} v ds \qquad \text{is a linear functional}$$

Benefits of the weak formulation

Strong formulation	Weak formulation
$u \in C^2(\Omega)$	$u,v\in H^1(\Omega)^{\textstyle *}$
Holds pointwise in Ω	Holds on average on Ω
Derivatives exist classically	Derivatives exist in the distributional sense

In short: weak formulation requires less regularity

$$w \in H^1(\Omega) = \left\{ w \in L^2(\Omega) \mid \nabla w \in L^2(\Omega)^d \right\}$$

 $^{^*}H^1(\Omega)$ is a **Sobolev space** of functions with square-integrable first derivatives:

Benefits of the weak formulation

Strong formulation	Weak formulation
$u\in C^2(\Omega)$	$u,v\in H^1(\Omega)^{\pmb *}$
Holds pointwise in Ω	Holds on average on Ω
Derivatives exist classically	Derivatives exist in the distributional sense

In short: weak formulation requires less regularity

$$w \in H^1(\Omega) = \left\{ w \in L^2(\Omega) \mid \nabla w \in L^2(\Omega)^d \right\}$$

 $^{^*}H^1(\Omega)$ is a **Sobolev space** of functions with square-integrable first derivatives:

On boundary conditions

a