

Department of Computer Science and Engineering (Data Science)

Experiment No.5	
Implement Bi-Gram model for the given Text input	
Date of Performance:	

Date of Submission:

Department of Computer Science and Engineering (Data Science)

Aim: Implement Bi-Gram model for the given Text input

Objective: To study and implement N-gram Language Model.

Theory:

A language model supports predicting the completion of a sentence.

Eg:

- Please turn off your cell _____
- Your program does not _____

Predictive text input systems can guess what you are typing and give choices on how to complete it.

N-gram Models:

Estimate probability of each word given prior context.

P(phone | Please turn off your cell)

- Number of parameters required grows exponentially with the number of words of prior context.
- An N-gram model uses only N1 words of prior context.
 - Unigram: P(phone)
 - o Bigram: P(phone | cell)
 - Trigram: P(phone | your cell)
- The Markov assumption is the presumption that the future behavior of a dynamical system only depends on its recent history. In particular, in a kth-order Markov model, the next state only depends on the k most recent states, therefore an N-gram model is a (N1)-order Markov model.

N-grams: a contiguous sequence of n tokens from a given piece of text

Department of Computer Science and Engineering (Data Science)

Fig. Example of Trigrams in a sentence

Implementation:

Department of Computer Science and Engineering (Data Science)

Department of Computer Science and Engineering (Data Science)

Department of Computer Science and Engineering (Data Science)

Conclusion: