# Assignment 4 Writeup

Harvard CCB Clinic Team November 30, 2022

## Step 1: Setting up the database

It took us a while to find a machine on our end that would work (issues with computer performance, computer architecture, server difficulties with getting container IPs), but our clinic computer was the ticket. The only complicating factor was that one of the Docker images wouldn't build, so we built in on another machine, saved the built Docker image as a .tar file, loaded it onto our clinic computer, and loaded the .tar file into Docker on there. Aside from that, the setup was pretty straightforward!

### Step 2: Queries

#### QUERY ONE: Join the ISD and TIGER tables together.

With this query, we need to process the LATITUDE and LONGITUDE columns in the ISD table as geography::Points, then check which Polygon in the TIGER GeographyLocation column that they lie within. We can do all this in a join to link the tables together:

```
SELECT * FROM [ISD_HMC].[2021_USA].[DAILY_SUMMARY] as i
INNER JOIN [TIGERFiles].[dbo].[t1_2020_us_zcta] as t
ON t.GeographyLocation.STIntersects(geography::Point([LATITUDE], [LONGITUDE],
4326)) = 1
ORDER BY STATE asc;
```

The main problem with this is that it doesn't complete in a reasonable time! This is because we aren't using spatial indexing to the fullest here. But only joining the top 1000 entries in ISD and pulling off the distinct names and zips shows that things are looking good:

|   | NAME                              | zcta5ce20 | <b>~</b> |
|---|-----------------------------------|-----------|----------|
| 1 | ALMA BACON CO AIRPORT GA          | 31510     |          |
| 2 | TAMPA INTERNATIONAL AIRPORT FL    | 33607     |          |
| 3 | GAMBELL AIRPORT AK                | 99742     |          |
| 4 | SMITHFIELD JOHNSTON CO AIRPORT NC | 27577     |          |





We were able to improve performance by using a spatial index with maximum grid resolution (high at all four levels):

```
CREATE SPATIAL INDEX WeatherLocationsInd ON
[ISD_HMC].[2021_USA].[ISD_Spatial](GeographyLocationIsd)
WITH (GRIDS = (HIGH, HIGH, HIGH, HIGH))

SELECT i.STATION_NAME, t.zcta5ce20
   FROM [ISD_HMC].[2021_USA].[ISD_Spatial] as i
        WITH (INDEX (WeatherLocationsInd))
   INNER JOIN [TIGERFiles].[dbo].[t1_2020_us_zcta] as t
   ON t.GeographyLocation.STIntersects(i.GeographyLocationIsd) = 1;
```

This query took 7 minutes and 32 seconds to complete on our clinic computer. It is likely that more could be done with spatial index options, but for now this is a promising result!

QUERY TWO: Find the average annual temperature in Boston.

Because the ISD table contains a group of weather stations named 'BOSTON MA', the most obvious approach is to find the average temperature using those rows:

```
SELECT NAME, AVG (TEMP) as "AVG TEMP" FROM

[ISD_HMC].[2021_USA].[DAILY_SUMMARY] WHERE NAME = 'BOSTON MA' AND TEMP !=

9999.9

GROUP BY NAME
```

|   | NAME \    | / | AVG | TEMP         | <b>~</b> |
|---|-----------|---|-----|--------------|----------|
| 1 | BOSTON MA | ١ | 55. | 065112865577 | 31       |

However, we weren't confident that all of the weather stations in Boston were named 'BOSTON MA'. We wrote some Python code that pulls the zip codes for Boston using a package, then prints out the SQL needed to make the temp table:

import zipcodes

-- Insert relevant zip codes

INSERT INTO #BostonZipcodes(zip)

```
tableName = "#BostonZipcodes"
desired_zips = zipcodes.filter_by(city="Boston")
zip_str = ""
for d in range(len(desired_zips)):
    zip_str = zip_str + " (" + desired_zips[d]['zip_code'] + "),"

print("CREATE TABLE " + tableName + " ( zip INT NOT NULL );")

print("INSERT INTO " + tableName + "(zip) VALUES " + zip_str[:-1] + ";")
-- Create temporary table of Boston zipcodes
CREATE TABLE #BostonZipcodes (
    zip INT NOT NULL
);
```

```
VALUES (02108), (02109), (02110), (02111), (02112), (02113), (02114), (02115), (02116), (02117), (02118), (02119), (02120), (02121), (02122), (02123), (02124), (02125), (02126), (02127), (02128), (02129), (02130), (02131), (02132), (02133), (02134), (02135), (02136), (02137), (02141), (02149), (02150), (02151), (02152), (02163), (02171), (02196), (02199), (02201), (02203), (02204), (02205), (02206), (02210), (02211), (02212), (02215), (02217), (02222), (02241), (02266), (02283), (02284), (02293), (02297), (02298), (02445), (02467);
```

From there, we do a join similar to our work in query 1, but we do it on a subset of both tables (only the MA rows in ISD, only the rows from TIGER that have the zip codes from our temp table) so it actually runs!

```
-- Extract rows from TIGER that have Boston zipcodes,
SELECT i.NAME, AVG(i.TEMP) as "AVG_TEMP"
   FROM (
    SELECT *
        FROM [ISD_HMC].[2021_USA].[ISD_Spatial]
        WITH (INDEX (WeatherLocationsInd))
        WHERE STATE = 'MA'
    ) as i
INNER JOIN (
    SELECT *
        FROM [TIGERFiles].[dbo].[tl_2020_us_zcta], #BostonZipcodes as b
        WHERE zcta5ce20 = b.zip
    ) as t
ON t.GeographyLocation.STIntersects(i.GeographyLocationIsd) = 1
GROUP BY NAME
```

|   | NAME ~    | AVG_TEMP ~        |
|---|-----------|-------------------|
| 1 | BOSTON MA | 55.06511286557731 |

This is the same result as before, but doing it with the zip codes was a good check that there aren't data validity issues in this case!

There was one more data validity concern in that one of the Boston weather stations did not report a temperature for every day of the year, throwing off our averages slightly.

|     |             |            | NUMBER | OF BOSTON EN | ITRIES | ~ |           |   |
|-----|-------------|------------|--------|--------------|--------|---|-----------|---|
|     |             | 1          | 708    |              |        |   |           |   |
| 385 | 99497199999 | 2021-01-20 | 42.35  | -71.05       | 0      |   | BOSTON MA | 3 |
|     |             |            |        |              |        |   |           |   |

This result is pretty close to what a local news organization in Boston found for 2021. Of course this all depends on location within Boston and time of day, so it makes sense they should differ a little.



#### QUERY THREE: What are the top five windiest stations in Massachusetts?

We decided that this could either mean highest average wind speed or highest maximum wind speed, so we did both:

```
SELECT Top(5) MAX (WDSP) AS "MAX WIND SPEED", NAME FROM

[ISD_HMC].[2021_USA].[DAILY_SUMMARY] WHERE [STATE] = 'MA' AND WDSP != 999.9

GROUP BY NAME

ORDER BY "MAX WIND SPEED" DESC;

SELECT Top(5) AVG (WDSP) AS "AVG WIND SPEED", NAME FROM

[ISD_HMC].[2021_USA].[DAILY_SUMMARY] WHERE [STATE] = 'MA' AND WDSP != 999.9
```

# GROUP BY NAME ORDER BY "AVG WIND SPEED" DESC;

|   | MAX WIND SPEED (knots) 🗸 | NAME ~                    |
|---|--------------------------|---------------------------|
| 1 | 34.5                     | PROVINCETOWN MUNICIPAL AI |
| 2 | 31.2                     | NANTUCKET MEMORIAL AIRPOR |
| 3 | 27.8                     | PLYMOUTH MUNICIPAL AIRPOR |
| 4 | 27.4                     | BORDEN FLATS LIGHT MA     |
| 5 | 26.5                     | BOSTON MA                 |
|   | AVG WIND SPEED (knots) 🗸 | NAME ~                    |
| 1 | 10.429041110652767       | NANTUCKET MEMORIAL AIRPOR |
| 2 | 9.975147932944212        | BLUE HILL LCD MA          |
| 3 | 9.811538455905495        | PROVINCETOWN MUNICIPAL AI |
|   | 9.011330433903493        |                           |
| 4 | 9.199999992930612        | BORDEN FLATS LIGHT MA     |

This query also could have benefitted from double-checking with the zip codes, but we opted to hold off on that until we've improved performance on the joins with spatial indexes.

It's a little harder to find comparable data for this one, but our results here make sense, as all of these stations are either on Cape Cod, the islands, or relatively close to the seafront (in the case of Boston and Blue Hill).

#### QUERY FOUR: Where is the rainiest station in Washington State located?

We could have just queried the ISD table for this one, but that would only get us position in terms of latitude and longitude. To get the zip code as well, we made a temp table then joined that data with TIGER:

```
-- Make temp table that gets the total precipitation for each weather station in Washington State

SELECT SUM (PRCP) AS "TOTAL PRECIPITATION", NAME, LATITUDE, LONGITUDE

INTO #RainiestInWA

FROM [ISD_HMC].[2021_USA].[DAILY_SUMMARY]

WHERE [STATE] = 'WA' AND PRCP != 99.99

GROUP BY NAME, LATITUDE, LONGITUDE

ORDER BY "TOTAL PRECIPITATION" DESC;
```

```
-- Join temp table with zcta on Points in Polygons to get zip code column

SELECT TOP (1) "TOTAL PRECIPITATION", NAME, LATITUDE, LONGITUDE, t.zcta5ce20
as "ZIP CODE"

FROM #RainiestInWA

INNER JOIN [TIGERFiles].[dbo].[tl_2020_us_zcta] as t

ON t.GeographyLocation.STIntersects(geography::Point([LATITUDE], [LONGITUDE], 4326)) = 1

ORDER BY "TOTAL PRECIPITATION" DESC;
```

|   | TOTAL PRECIPITATION | ~ | NAME ~           | LATITUDE 🗸 | LONGITUDE 🗸 | ZIP CODE 🗸 |
|---|---------------------|---|------------------|------------|-------------|------------|
| 1 | 175.2200006004423   |   | QUINAULT 4 NE WA | 47.5139    | -123.812    | 98526      |

Like query 3, our analysis also would have benefitted from double-checking with the zip codes.

Quinault ranks highly on a list of average precipitation levels by town in Washington. All of the other top performers are in western WA (where Quinault is as well).



USA.com / Ranks / Washington Average Precipitation City Rank

## Washington Average Precipitation City Rank

A total of 744 results found. Show Results on Map.

| Rank | Average Precipitation ▼ | City / Population     |
|------|-------------------------|-----------------------|
| 1.   | 110.31 inches           | Taholah, WA / 829     |
| 2.   | 109.79 inches           | Amanda Park, WA / 175 |
| 3.   | 109.77 inches           | Quinault, WA          |
| 4.   | 109.75 inches           | Neilton, WA / 400     |
| 5.   | 109.65 inches           | Humptulips, WA / 249  |

QUERY FIVE: How many weather stations are there per state? Which state has the most weather stations? The least?

We tackled this question by counting all the distinct station names in each state in the ISD table:

```
SELECT STATE, COUNT (DISTINCT NAME) AS "NUMBER OF STATIONS" FROM [ISD_HMC].[2021_USA].[DAILY_SUMMARY]

GROUP BY STATE

ORDER BY "NUMBER OF STATIONS" DESC;
```

The query gives us a top 20 that looks good:

|    | STATE 🗸 | NUMBER OF STATIONS 🗸 |
|----|---------|----------------------|
| 1  | TX      | 211                  |
| 2  | AK      | 209                  |
| 3  | CA      | 167                  |
| 4  | FL      | 115                  |
| 5  | MI      | 106                  |
| 6  | MN      | 101                  |
| 7  | NC      | 80                   |
| 8  | WI      | 71                   |
| 9  | CO      | 70                   |
| 10 | GA      | 68                   |
| 11 | AL      | 67                   |
| 12 | VA      | 67                   |
| 13 | IL      | 63                   |
| 14 | LA      | 63                   |
| 15 | IA      | 60                   |
| 16 | 0K      | 58                   |
| 17 | SC      | 53                   |
| 18 | 0H      | 53                   |
| 19 | WA      | 53                   |
| 20 | NE      | 52                   |

...and a bottom 20 that looks a little strange:

|    | STATE \ | / | NUMBER OF STATIONS 🗸 |
|----|---------|---|----------------------|
| 47 | СТ      |   | 14                   |
| 48 | RI      |   | 13                   |
| 49 | VT      |   | 11                   |
| 50 | L,      |   | 10                   |
| 51 | I,      |   | 9                    |
| 52 | DE      |   | 7                    |
| 53 | М,      |   | 4                    |
| 54 | Υ,      |   | 4                    |
| 55 | PR      |   | 4                    |
| 56 | Α,      |   | 3                    |
| 57 | к,      |   | 3                    |
| 58 | D,      |   | 2                    |
| 59 | Х,      |   | 2                    |
| 60 | VI      |   | 2                    |
| 61 | R,      |   | 1                    |
| 62 | RM      |   | 1                    |
| 63 | DC      |   | 1                    |
| 64 | С,      |   | 1                    |
| 65 | Ε,      |   | 1                    |
| 66 | FM      |   | 1                    |
| 67 | N,      |   | 1                    |

We went through all of these unusual state codes using queries to see what happened with them. Some of the results were mislabeled, while others did not exist within the 50 states, or were weird all around:

|   | NAME ~          | STATE | ~ |
|---|-----------------|-------|---|
| 1 | PORT ARANSAS TX | Х,    |   |
| 2 | SABINE TX       | Х,    |   |

|   | NAME ~                            | STATE ~ |  |
|---|-----------------------------------|---------|--|
| 1 | BOOMVANG SPAR OIL PLATFORM        | Μ,      |  |
| 2 | SHELL WEST DELTA 143 OIL PLATFORM | Μ,      |  |
| 3 | STROM THURMOND DAM                | Μ,      |  |
| 4 | VERMILION 331 OIL PLATFORM        | Μ,      |  |

| Unusual State Code | Actual State/Country |
|--------------------|----------------------|
| L,                 | Illinois (IL)        |

| I, | Michigan (MI)                                |  |  |
|----|----------------------------------------------|--|--|
| M, | Mostly oil platforms in the Gulf of Mexico   |  |  |
| Υ, | New York (NY)                                |  |  |
| PR | Puerto Rico                                  |  |  |
| A, | 2 for Washington (WA), 1 for California (CA) |  |  |
| K, | Arkansas (AK)                                |  |  |
| D, | 1 for Maryland (MD), 1 for Mississippi (MS)  |  |  |
| X, | Texas (TX)                                   |  |  |
| VI | U.S. Virgin Islands                          |  |  |
| R, | Oregon (OR)                                  |  |  |
| RM | Marshall Islands                             |  |  |
| DC | Washington D.C.                              |  |  |
| С, | South Carolina (SC)                          |  |  |
| Е, | Maine (ME)                                   |  |  |
| FM | Micronesia                                   |  |  |
| N, | Minnesota (MN)                               |  |  |

Repairing the faulty state codes gives Texas two more weather stations, so it has the most at 213. On the other hand, Delaware is the U.S. state with the fewest weather stations, having only 7 of them.

QUERY SIX: Get the latitude and longitude for a station of your choosing.

For this one, we wanted to find the closest weather station to Harvey Mudd College. So we started by retrieving all the stations in California:

```
SELECT DISTINCT NAME FROM [ISD_HMC].[2021_USA].[DAILY_SUMMARY] WHERE STATE = 'CA'
```

From there we found that the nearby Ontario International Airport was one of the included weather stations. So we opted for that one:

```
SELECT DISTINCT NAME, LATITUDE, LONGITUDE FROM

[ISD_HMC].[2021_USA].[DAILY_SUMMARY] WHERE NAME = 'ONTARIO INTERNATIONAL

AIRPORT CA';
```

|   | NAME ~                           | LATITUDE ~ | LONGITUDE ~ |
|---|----------------------------------|------------|-------------|
| 1 | ONTARIO INTERNATIONAL AIRPORT CA | 34.05314   | -117.57689  |

QUERY SEVEN: Calculate the distance between the latitude and longitude values we choose in (6) and every station in the surrounding state (in both miles and meters)

We took the latitude and longitude from query 6, made it a fixed geography::Point in our query, then built distance columns using STDistance, the fixed point of Ontario, and all the other points using the LATITUDE and LONGITUDE columns. We converted our meters to miles by multiplying the meters result by the appropriate unit conversion:

```
SELECT DISTINCT NAME, LATITUDE, LONGITUDE, geography::Point([LATITUDE],
[LONGITUDE], 4326).STDistance(geography::Point(34.05314, -117.57689,4326)) AS
'DISTANCE (m)',
geography::Point([LATITUDE], [LONGITUDE],
4326).STDistance(geography::Point(34.05314, -117.57689,4326)) * 0.00062137 AS
'DISTANCE (mi)'
FROM [ISD_HMC].[2021_USA].[DAILY_SUMMARY] WHERE STATE = 'CA'
```

|    | NAME ~                     | LATITUDE 🗸 | LONGITUDE 🗸 | DISTANCE (m) ~     | DISTANCE (mi) 🗸    |
|----|----------------------------|------------|-------------|--------------------|--------------------|
| 1  | ALAMEDA CA                 | 37.772     | -122.298    | 593013.5608329265  | 368.48083629475553 |
| 2  | ALTURAS MUNICIPAL AIRPORT  | 41.48362   | -120.5615   | 865476.6092183783  | 537.7812006700237  |
| 3  | ARCATA EUREKA AIRPORT CA   | 40.97844   | -124.10479  | 960510.1377075925  | 596.8321842673668  |
| 4  | ARENA COVE CA              | 38.92      | -123.7      | 769500.7254337437  | 478.1446657627653  |
| 5  | AUBURN MUNICIPAL AIRPORT   | 38.95472   | -121.08194  | 627916.9495769239  | 390.1687549586132  |
| 6  | AVALON CATALINA AIRPORT CA | 33.40419   | -118.41456  | 105866.92651434588 | 65.7825321282191   |
| 7  | BAKERSFIELD AIRPORT CA     | 35.43424   | -119.05524  | 204446.20686858858 | 127.03673956193488 |
| 8  | BARSTOW DAGGETT AIRPORT CA | 34.85371   | -116.78702  | 114694.16385018027 | 71.26751259158651  |
| 9  | BEALE AFB CA               | 39.13333   | -121.43333  | 660814.9394718683  | 410.6105789396348  |
| 10 | BICYCLE LAKE FORT IRWIN A  | 35.28333   | -116.63333  | 161562.85138670175 | 100.39030896615486 |
| 11 | BIG BEAR CITY AIRPORT CA   | 34.264     | -116.854    | 70644.22779588272  | 43.89620382552764  |
| 12 | BISHOP AIRPORT CA          | 37.37114   | -118.35886  | 374878.41761088796 | 232.93820235087745 |
| 13 | BLUE CANYON NYACK AIRPORT  | 39.27617   | -120.70927  | 643595.0667504265  | 399.91066662671255 |
| 14 | BLYTHE ASOS CA             | 33.61876   | -114.71451  | 269283.22672228026 | 167.32451858842327 |
| 15 | BODEGA 6 WSW CA            | 38.3208    | -123.0747   | 684434.0220705845  | 425.28676829399905 |
| 16 | BRIDGEPORT SONORA JUNCTIO  | 38.3557    | -119.519    | 508330.92396147863 | 315.861586221944   |
| 17 | BURBANK GLENDALE PASADENA  | 34.19966   | -118.36543  | 74534.64785156358  | 46.31359413552606  |
| 18 | CABLE CA                   | 34.11154   | -117.68759  | 12097.883647088094 | 7.517261961791129  |
| 19 | CALAVERAS CO MAURY RASMUS  | 38.14612   | -120.64817  | 531659.4966978206  | 330.3572614631248  |
| 20 | CAMARILLO AIRPORT CA       | 34.21142   | -119.08762  | 140452.3684043649  | 87.27288815542022  |
| 21 | CAMP PENDLETON MCAS CA     | 33.30424   | -117.35508  | 85573.97208557083  | 53.173099034811145 |
| 22 | CARLSBAD MCCLELLAN PALOMA  | 33.12993   | -117.27651  | 106126.09770065156 | 65.94357332825386  |
| 23 | CASTLE AFB CA              | 37.38333   | -120.56667  | 457880.24317279714 | 284.51304670028094 |

For this to be right, we'd expect the distance between Ontario International Airport and itself to be zero (or very close if there was slight error in calculating the distances).

| 92 | ONTARIO INTERNATIONAL AIRPORT CA | 34.05314 | -117.57689 | 0.166257710197364 | 0.000103307553385 |  |
|----|----------------------------------|----------|------------|-------------------|-------------------|--|