Without loss of generality, suppose that the true means of the systems are indexed so that $\mu_k \ge \mu_{k-1} \ge \cdots \ge \mu_1$. Assume c > 0.

Assumption 1 There exist finite constants μ_i and v_i^2 such that the probability of distribution of $C_i(t,r) \equiv \frac{\sum_{j=1}^{floor(rt)} X_{ij} - rt\mu_i}{v_i\sqrt{r}}$ over D[0,1] converges to that of a standard Brownian motion process, W(t), for t on the unit interval, as r increases; i.e.

$$C_i(r) \Longrightarrow W(r)$$

as $r \to \infty$.

Note: D[0,1] is the Skorohod space, i.e. it's the space of real-valued functions on [0,1] that are right-continuous and have left-hand limits.

Under Assumption 1, μ_i is the mean, and $v_i^2 = \lim_{r \to \infty} r \operatorname{Var}\left(\bar{X}_i(r)\right)$ where $\bar{X}_i(r)$ is the sample mean of the first r observations from system i.

Lemma. For $i \neq l$, if \mathbf{X}_i and \mathbf{X}_l satisfy Assumption 1 and are independent, then there exists a constant v_{il}^2 such that

$$\frac{t_{l}\left(Y_{\text{floor}(rt_{i}),i} - rt_{i}\mu_{i}\right) - t_{i}\left(Y_{\text{floor}(rt_{l}),l} - rt_{l}\mu_{l}\right)}{v_{il}\sqrt{r}} \Longrightarrow t_{l}W_{1}\left(t_{i}\right) - t_{i}W_{2}\left(t_{l}\right)$$

as $r \to \infty$.

Proof. First, note that

$$v_{il}^{2} := \lim_{r,s \to \infty} \operatorname{Var}\left(\sqrt{r}\bar{X}_{i}\left(r\right) + \sqrt{s}\bar{X}_{l}\left(s\right)\right) = v_{i}^{2} + v_{l}^{2}$$

because of the independence of \mathbf{X}_i and \mathbf{X}_l . Now,

$$\frac{t_{l}\left(Y_{\text{floor}(rt_{i}),i} - rt_{i}\mu_{i}\right) - t_{i}\left(Y_{\text{floor}(rt_{l}),l} - rt_{l}\mu_{l}\right)}{v_{il}\sqrt{r}} = t_{l}\frac{\sum_{j=1}^{\text{floor}(rt_{i})}X_{ij} - rt_{i}\mu_{i}}{v_{il}\sqrt{r}} - t_{i}\frac{\sum_{j=1}^{\text{floor}(rt)}X_{lj} - rt_{l}\mu_{l}}{v_{il}\sqrt{r}} = t_{l}\left(\frac{v_{i}}{v_{il}}\right)C_{i}\left(t,r\right) - t_{i}\left(\frac{v_{l}}{v_{il}}\right)C_{l}\left(t,r\right).$$

Because we assume that \mathbf{X}_i and \mathbf{X}_l are independent, so are $C_i(t,r)$ and $C_l(t,r)$. Assumption 1 implies $C_i(r) \Rightarrow W_i(r)$ and $C_l(r) \Rightarrow W_l(r)$ where W_i and W_l are independent standard Brownian motion processes. By Theorem 3.2 of Billingsley, $(C_i(r), C_l(r)) \Rightarrow (W_i(r), W_l(r))$. By the Continuous Mapping Theorem,

$$t_{l}\left(\frac{v_{i}}{v_{il}}\right)C_{i}\left(t,r\right)-t_{i}\left(\frac{v_{l}}{v_{il}}\right)C_{l}\left(t,s\right)\Rightarrow t_{l}\left(\frac{v_{i}}{v_{il}}\right)W_{i}\left(t\right)-t_{i}\left(\frac{v_{l}}{v_{il}}\right)W_{l}\left(t\right).$$

Theorem. If samples from system $x \in \{1..., k\}$ are normally distributed and independent, over time and across alternatives, then $\lim_{\delta \to 0} Pr$ {BIZ selects k} $\geq P*$ provided $\mu_k \geq \mu_{k-1} + \delta$. We also suppose that the algorithm ends in at most $R(\delta) \in \mathbb{N}$ iterations, and $R(\delta) \to \infty$ as $\delta \to 0$ with probability 1. Furthermore, $\sqrt{R}\delta \to \Delta$ with probability 1. Suppose $B_1 = \cdots = B_k = 1$.

Proof. Suppose the variances are known. We begin by considering the case of only two systems, denoted k and i, with $\mu_k \geq \mu_i + \delta *$. Let $A = \{k, i\}$. Let

$$T\left(\delta\right) = \min\left\{t \leq R, t \in \mathbb{N} : \min_{x \in A} \hat{q}_{tx}\left(A\right) \leq c \text{ or } \max_{x \in A} \hat{q}_{tx}\left(A\right) \geq P*\right\}.$$

Thus $T(\delta)$ is the stage at which the procedure terminates.

Now, let
$$a_t, b_t \in A$$
 such that $\exp\left(\delta \beta_t \frac{W_{ta_t}}{n_{ta_t}}\right) \ge \exp\left(\delta \beta_t \frac{W_{tb_t}}{n_{tb_t}}\right)$, so

$$\min_{x \in A} \hat{q}_{tx} (A) \leq c$$

$$\Leftrightarrow \min_{x \in A} \exp \left(\delta \beta_t \frac{W_{tx}}{n_{tx}} \right) \leq c \sum_{x' \in A} \exp \left(\delta \beta_t \frac{W_{tx'}}{n_{tx'}} \right)$$

$$\Leftrightarrow \exp \left(\delta \beta_t \frac{W_{tb_t}}{n_{tb_t}} \right) (1 - c) \leq c \exp \left(\delta \beta_t \frac{W_{ta_t}}{n_{ta_t}} \right)$$

$$\Leftrightarrow \exp \left(\delta \beta_t \left(\frac{W_{tb_t}}{n_{tb_t}} - \frac{W_{ta_t}}{n_{ta_t}} \right) \right) \leq \frac{c}{1 - c}$$

an

$$\max_{x \in A} \hat{q}_{tx} (A) \geq P *$$

$$\Leftrightarrow \max_{x \in A} \exp \left(\delta \beta_t \frac{W_{tx}}{n_{tx}} \right) \geq P * \sum_{x' \in A} \exp \left(\delta \beta_t \frac{W_{tx'}}{n_{tx'}} \right)$$

$$\Leftrightarrow \exp \left(\delta \beta_t \frac{W_{ta_t}}{n_{ta_t}} \right) (1 - P^*) \geq P^* \exp \left(\delta \beta_t \frac{W_{tb_t}}{n_{tb_t}} \right)$$

$$\Leftrightarrow \exp \left(\delta \beta_t \left(\frac{W_{ta_t}}{n_{ta_t}} - \frac{W_{tb_t}}{n_{tb_t}} \right) \right) \geq \frac{P^*}{1 - P^*},$$

thus

$$\begin{split} T\left(\delta\right) &= & \min\left\{t \leq R, t \in \mathbb{N} : \exp\left(\delta\beta_t \left|\frac{W_{tk}}{n_{tk}} - \frac{W_{ti}}{n_{ti}}\right|\right) \geq \min\left\{\frac{P^*}{1 - P^*}, \frac{1 - c}{c}\right\}\right\} \\ &= & \min\left\{t \leq R, t \in \mathbb{N} : \left|\frac{W_{tk}}{n_{tk}} - \frac{W_{ti}}{n_{ti}}\right| \geq \frac{\log\left[\min\left\{\frac{P^*}{1 - P^*}, \frac{1 - c}{c}\right\}\right]}{\delta\beta_t}\right\} \end{split}$$

Now, let's prove that $n_{ti} \to \infty, n_{tk} \to \infty$ as $t \to \infty$. For each $t, n_{t+1,x} = n_{tx} + B_x$ for some $x \in A$. If $n_{t+1,i} = n_{ti} + B_i$ for a finite number of t's, then $n_{tk} \to \infty$ as $t \to \infty$. So, there exists l_0 such that $n_{li}/\hat{\lambda}_{li}^2 > n_{lk}/\hat{\lambda}_{lk}^2$ if $l > l_0$. Since $\hat{\lambda}_{ti}^2 \to \sigma_i^2$ and $\hat{\lambda}_{tk}^2 \to \sigma_k^2$ as $t \to \infty$, then $n_{ti} \to \infty$ as $t \to \infty$. Similarly, we get the same result in the other cases. Thus, $n_{ti} \to \infty, n_{tk} \to \infty$ as $t \to \infty$.

Let $\lambda_r^2 = \min \{\lambda_i^2, \lambda_k^2\}$ and $\lambda_s^2 = \max \{\lambda_i^2, \lambda_k^2\}$. Then $n_{1,s} = n_0 + 1$, $n_{1r} = \max \left\{n_0, \operatorname{ceil}\left(\frac{\lambda_r^2}{\lambda_s^2}\left(n_0 + 1\right)\right)\right\}$. Note that $\frac{n_{ts}}{\lambda_s^2} \leq \frac{n_{tr}}{\lambda_r^2}$ for all t, because by induction

$$\frac{n_{t+1,r}}{\lambda_r^2} \ge \frac{\frac{\lambda_r^2}{\lambda_s^2} (n_{ts} + 1)}{\lambda_r^2} = \frac{n_{ts} + 1}{\lambda_s^2}.$$

So, $n_{tr} = \max \left\{ n_{t-1,r}, ceil\left(\frac{\lambda_r^2}{\lambda_s^2} \left(n_{t-1,s} + 1\right)\right) \right\} = \max \left\{ n_{t-1,r}, ceil\left(\frac{\lambda_r^2}{\lambda_s^2} \left(n_0 + t\right)\right) \right\}.$ Thus there exists t_0 such that $n_{t_0,r} = ceil\left(\frac{\lambda_r^2}{\lambda_s^2} \left(n_0 + t_0\right)\right)$ and $n_{tr} = n_0$ if $t < t_0$. Observe that if $t > t_0$, $n_{tr} = ceil\left(\frac{\lambda_r^2}{\lambda_s^2} \left(n_0 + t\right)\right)$. Furthermore, $n_{ts} = n_0 + t$.

Suppose i = s or i = r and $t_0 = 1$. If $0 \le t \le 1$, let

$$\begin{split} D_{i}\left(t,R\right) &= \frac{\sum_{j=1}^{n_{floor}(tR),i} X_{ij} - \left(n_{0} + (tR)\right) \mu_{i}}{v_{i}\sqrt{R}} \\ &= \frac{\sum_{j=1}^{n_{0} + floor(tR)} X_{ij} - \left(n_{0} + (tR)\right) \mu_{i}}{v_{i}\sqrt{R}} \\ &= \frac{\sum_{j=1}^{n_{0}} X_{ij} - n_{0}\mu_{i}}{v_{i}\sqrt{R}} + \frac{\sum_{j=1}^{floor(tR)} X_{i,n_{0} + j} - (tR) \mu_{i}}{v_{i}\sqrt{R}} \\ &\Rightarrow W_{i}\left(\right). \end{split}$$

Suppose $\lambda_i^2 \leq \lambda_k^2$. Assume $t_0 = 1$. Let

$$\begin{split} D_{ik}\left(t,R\right) &= \frac{n_{tR,i}\left(\sum_{j=1}^{n_{floor(tR),k}}X_{kj} - \left(n_{0} + (tR)\right)\mu_{k}\right)}{v_{ik}R\sqrt{R}} \\ &- \frac{n_{tR,k}\left(\sum_{j=1}^{n_{floor(tR),i}}X_{kj} - \left(\frac{\lambda_{i}^{2}}{\lambda_{k}^{2}}\left(n_{0} + (tR)\right)\mu_{i}\right)\right)}{v_{ik}R\sqrt{R}} \\ &= \frac{ceil\left(\frac{\lambda_{i}^{2}}{\lambda_{k}^{2}}\left(n_{0} + tR\right)\right)\left(\sum_{j=1}^{(n_{0} + floor(tR))}X_{kj} - \left(n_{0} + (tR)\right)\mu_{k}\right)}{v_{ik}R\sqrt{R}} \\ &- \frac{\left(n_{0} + tR\right)\left(\sum_{j=1}^{ceil\left(\frac{\lambda_{i}^{2}}{\lambda_{k}^{2}}\left(n_{0} + floor(tR)\right)\right)}X_{kj} - ceil\left(\frac{\lambda_{i}^{2}}{\lambda_{k}^{2}}\left(n_{0} + (tR)\right)\mu_{i}\right)\right)}{v_{ik}R\sqrt{R}} \\ &\Rightarrow \frac{v_{k}}{v_{ik}}\frac{\lambda_{i}^{2}}{\lambda_{k}^{2}}tW_{k}\left(t\right) - \frac{v_{i}}{v_{ik}}tW_{i}\left(t\right) = tW\left(\right). \end{split}$$

Now, let $N = \max\{n_{Rk}, n_{Ri}\}$, then

$$\frac{W_{T(\delta)k}}{n_{T(\delta)k}} < \frac{W_{T(\delta)i}}{n_{T(\delta)i}}
\Leftrightarrow \frac{\mu_k - \mu_i}{R^{3/2}v_{ik}} \left(n_{T(\delta)k} n_{T(\delta)i} \right) + \frac{n_{T(\delta)i} \left(\sum_{j=1}^{n_{T(\delta)k}} X_{kj} - n_{T(\delta)k} \mu_k \right) - n_{T(\delta)k} \left(\sum_{j=1}^{n_{T(\delta)i}} X_{ij} - n_{T(\delta)i} \mu_i \right)}{R^{3/2}v_{ik}} < 0.$$

Then

$$\mathbb{P}\left\{\frac{W_{T(\delta)k}}{n_{T(\delta)k}} < \frac{W_{T(\delta)i}}{n_{T(\delta)i}}\right\} \leq \mathbb{P}\left\{\frac{n_{T(\delta)i}\left(\sum_{j=1}^{n_{T(\delta)k}} X_{kj} - n_{T(\delta)k}\mu_{k}\right) - n_{T(\delta)k}\left(\sum_{j=1}^{n_{T(\delta)i}} X_{ij} - n_{T(\delta)i}\mu_{i}\right)}{R^{3/2}v_{ik}} + \frac{\delta}{R^{3/2}v_{ik}}\left(n_{T(\delta)k}n_{T(\delta)i}\right) < 0\right\} \\
= E\left[\mathbb{P}\left\{\frac{n_{T(\delta)i}\left(\sum_{j=1}^{n_{T(\delta)k}} X_{kj} - n_{T(\delta)k}\mu_{k}\right) - n_{T(\delta)k}\left(\sum_{j=1}^{n_{T(\delta)i}} X_{ij} - n_{T(\delta)i}\mu_{i}\right)}{R^{3/2}v_{ik}} + \frac{\delta}{R^{3/2}v_{ik}}\left(n_{T(\delta)k}n_{T(\delta)i}\right) < 0\right\} \mid \Delta\right]$$

Define

$$\hat{T}(\delta) = \min \left\{ t \in \left\{ \frac{1}{R}, \dots, 1 \right\} : \left| D_{ik}(t, \delta) + \frac{\operatorname{ceil}\left(\frac{\lambda_i^2}{\lambda_k^2} \left(n_0 + tR\right)\right) \left(n_0 + tR\right) \delta}{R^{3/2} v_{ik}} \right| \\
\geq \frac{\operatorname{ceil}\left(\frac{\lambda_i^2}{\lambda_k^2} \left(n_0 + tR\right)\right) \left(n_0 + tR\right) \log \left[\min \left\{\frac{P^*}{1 - P^*}, \frac{1 - c}{c}\right\}\right]}{R^{3/2} v_{ik} \beta_{tR} \delta} \right\}$$

where
$$\beta_{tR} = \frac{n_0 + tR + ceil\left(\frac{\lambda_i^2}{\lambda_k^2}(n_0 + tR)\right)}{\lambda_i^2 + \lambda_k^2}$$
.

Clearly, $\hat{T}(\delta) = T(\delta)/R$. Also, define the stopping time of the corresponding continuous-time process as

$$\tilde{T}(\delta) = \min \left\{ 1 \ge t \ge \frac{1}{R} : \left| D_{ik}(t,\delta) + \frac{ceil\left(\frac{\lambda_i^2}{\lambda_k^2}(n_0 + tR)\right)(n_0 + tR)\delta}{R^{3/2}v_{ik}} \right| \\
\ge \frac{ceil\left(\frac{\lambda_i^2}{\lambda_k^2}(n_0 + tR)\right)(n_0 + tR)\log\left[\min\left\{\frac{P^*}{1 - P^*}, \frac{1 - c}{c}\right\}\right]}{R^{3/2}v_{ik}\beta_{tR}\delta} \right\}$$

Note that for fixed δ , $D_{ik}\left(\hat{T}\left(\delta\right),\delta\right)$ corresponds to the right-hand limit of a point of discontinuity of $D_{ik}\left(\delta\right)$. We can show that $\hat{T}\left(\delta\right) \to \tilde{T}\left(\delta\right)$ with probability 1 as $\delta \to 0$, making use of the fact that $1/R \to 0$ with probability 1. Thus, in the limit, we can focus on $D_{ik}\left(\tilde{T}\left(\delta\right),\delta\right)$.

Now, condition on Δ . By Assumption 1, Lemma 1, and the CMT we have that

$$D_{ik}(t,\delta) + \frac{ceil\left(\frac{\lambda_i^2}{\lambda_k^2} (n_0 + tR)\right) (n_0 + tR) \delta}{R^{3/2} v_{ik}} \Rightarrow tW(t) + t^2 \Delta.$$

$$= t(W(t,\Delta))$$

Let

$$\begin{split} A\left(\delta\right) &= \frac{n_0 ceil\left(\frac{\lambda_i^2}{\lambda_k^2}\left(n_0 + tR\right)\right) \log\left[\min\left\{\frac{P^*}{1 - P^*}, \frac{1 - c}{c}\right\}\right]}{R^{3/2} v_{ik} \beta_{tR} \delta} \\ &= \frac{\left(\lambda_i^2 + \lambda_k^2\right) n_0 ceil\left(\frac{\lambda_i^2}{\lambda_k^2}\left(n_0 + tR\right)\right) \log\left[\min\left\{\frac{P^*}{1 - P^*}, \frac{1 - c}{c}\right\}\right]}{\left(n_0 + tR + ceil\left(\frac{\lambda_i^2}{\lambda_k^2}\left(n_0 + tR\right)\right)\right) R^{3/2} v_{ik} \delta} \xrightarrow{\delta \to 0} 0 \end{split}$$

and

$$\begin{split} tB\left(\delta\right) &= \frac{\left(\lambda_{i}^{2} + \lambda_{k}^{2}\right)ceil\left(\frac{\lambda_{i}^{2}}{\lambda_{k}^{2}}\left(n_{0} + tR\right)\right)\left(tR\right)\log\left[\min\left\{\frac{P^{*}}{1-P^{*}},\frac{1-c}{c}\right\}\right]}{\left(n_{0} + tR + ceil\left(\frac{\lambda_{i}^{2}}{\lambda_{k}^{2}}\left(n_{0} + tR\right)\right)\right)R^{3/2}v_{ik}\delta} \\ &= \frac{\left(\lambda_{i}^{2} + \lambda_{k}^{2}\right)ceil\left(\frac{\lambda_{i}^{2}}{\lambda_{k}^{2}}\left(n_{0} + tR\right)\right)\left(t\right)\log\left[\min\left\{\frac{P^{*}}{1-P^{*}},\frac{1-c}{c}\right\}\right]}{\left(n_{0} + tR + ceil\left(\frac{\lambda_{i}^{2}}{\lambda_{k}^{2}}\left(n_{0} + tR\right)\right)\right)R^{1/2}v_{ik}\delta} \\ \overrightarrow{\delta \to 0} &\xrightarrow{\left(\lambda_{i}^{2} + \lambda_{k}^{2}\right)\frac{\lambda_{i}^{2}}{\lambda_{k}^{2}}\left(t\right)\log\left[\min\left\{\frac{P^{*}}{1-P^{*}},\frac{1-c}{c}\right\}\right]} = Bt. \end{split}$$

Note that the stopping time $\tilde{T}(\delta)$ is the first time t at which the event

$$\left\{ \left| D_{ik}\left(t,\delta\right) + \frac{ceil\left(\frac{\lambda_{i}^{2}}{\lambda_{k}^{2}}\left(n_{0} + tR\right)\right)\left(n_{0} + tR\right)\delta}{R^{3/2}v_{ik}} \right| - A\left(\delta\right) - tB\left(\delta\right) \ge 0 \right\}$$

occurs. Define the mapping $s_{\delta}: D[0,1] \to \mathbb{R}$ such that $s_{\delta}(Y) = Y(T_{Y,\delta})$, where

$$T_{Y,\delta} = \inf \left\{ t : |Y(t)| - A(\delta) - B(\delta) t \ge 0 \right\}$$

for every $Y \in D[0,1]$ and $\delta > 0$. Similarly, define $s(Y) = Y(T_Y)$, where

$$T_Y = \inf\{t : |Y(t)| - Bt \ge 0\}$$

for every $Y \in D[0,1]$. Note that

$$s_{\delta} \left(D_{ik} \left(t, \delta \right) + \frac{ceil \left(\frac{\lambda_{i}^{2}}{\lambda_{k}^{2}} \left(n_{0} + tR \right) \right) \left(n_{0} + tR \right) \delta}{R^{3/2} v_{ik}} \right) = D_{ik} \left(\tilde{T} \left(\delta \right), \delta \right) + \frac{ceil \left(\frac{\lambda_{i}^{2}}{\lambda_{k}^{2}} \left(n_{0} + \tilde{T} \left(\delta \right) R \right) \right) \left(n_{0} + \tilde{T} \left(\delta \right) R \right) \delta}{R^{3/2} v_{ik}},$$

$$s\left(tW\left(t,\Delta\right)\right)=T_{\mathfrak{W}\left(\right)}W\left(T_{\mathfrak{W}\left(\right)},\Delta\right) \text{ where }\mathfrak{W}\left(t\right)=tW\left(t,\Delta\right).$$

We need to show that

$$s_{\delta}\left(G_{ik}\left(t,\delta\right)\right)\Rightarrow s\left(tW\left(t,\Delta\right)\right)$$

as $\delta \to 0$, where

$$G_{ik}(t,\delta) \equiv D_{ik}(t,\delta) + \frac{ceil\left(\frac{\lambda_i^2}{\lambda_k^2}(n_0 + tR)\right)(n_0 + tR)\delta}{R^{3/2}v_{ik}}$$

for $t \in [0,1]$ and $\delta > 0$. If $\mathbb{P}(tW(t,\Delta) \in D[0,1] - D_s)) = 1$ where $D_s \equiv \{x \in D[0,1] :$ for some sequence $\{x_n\} \subset D[0,1]$ with $\lim_n d(x_n,x) = 0$, the sequence $\{s_{\delta_n}(x_n)\}$ does not converge to $s(x)\}$, and d(X,Y) is the infimum of those positive w for which there exists $\lambda \in \Lambda$ such that $\sup_{t \in [0,1]} |X(t) - Y(\lambda(t))| \le w$ and $\sup_{t \in [0,1]} |\lambda(t) - t| \le w$ (Λ is the class of strictly increasing, continuous mappings of [0,1] onto itself such that for every $\lambda \in \Lambda$, we have $\lambda(0) = 0$ and $\lambda(1) = 1$, then by Theorem 5.5 of Billingsley 1968 we conclude that this is true. By Kim et al. (2005), we know that $\mathbb{P}(W(t,\Delta) \in D[0,1] - D_s)) = 1$, thus

it follows this is true (to prove).

Now, unconditioning on Δ gives

$$\lim \sup_{\delta \to 0} \mathbb{P}\left(ICS\right) \leq E\left[\mathbb{P}\left[\tilde{T}\left(\delta\right)W\left(\tilde{T}\left(\delta\right),\Delta\right) < 0 \mid \Delta\right]\right]$$

Observe that,

$$\mu_k - \mu_i + \frac{v_k}{\sqrt{n_{T(\delta)k}}} C_k \left(1, n_{T(\delta)k} \right) - \frac{v_i}{\sqrt{n_{T(\delta)i}}} C_i \left(1, n_{T(\delta)i} \right) \Rightarrow \mu_k - \mu_i$$

when $\delta \to 0$ if $n_{T(\delta)j}$ is independent of $C_j(1,n)$ for n sufficiently large and j = k, i.

Suppose i = r and $t_0 > 1$. Let $s_0 \le t \le 1$ where $floor(s_0R) \ge t_0$ and $floor(s_0R) < t_0$ if $s < s_0$. Let

$$D_{i}(t,R) = \frac{\sum_{j=1}^{n_{floor}(tR),i} X_{ij} - \frac{\lambda_{i}^{2}}{\lambda_{k}^{2}} (n_{0} + (tR)) \mu_{i}}{v_{i} \sqrt{R}}$$

$$= \frac{\sum_{j=1}^{ceil \left(\frac{\lambda_{i}^{2}}{\lambda_{k}^{2}} (n_{0} + floor(tR))\right)} X_{ij} - (n_{0} + (tR)) \mu_{i}}{v_{i} \sqrt{R}}$$

and if $t < s_0$

$$D_{i}(t,R) = \frac{\sum_{j=1}^{n_{floor}(tR),i} X_{ij} - n_{0}\mu_{i}}{v_{i}\sqrt{R}}$$
$$= \frac{\sum_{j=1}^{n_{0}} X_{ij} - n_{0}\mu_{i}}{v_{i}\sqrt{R}},$$

Suppose $D_i(t,R) \Rightarrow W()$ if $t \geq s_0$.

$$D_{ik}\left(t,R\right) = \frac{\sum_{j=1}^{n}}{v_{ik}\sqrt{R}}$$

By Assumption 1, Lemma 1, and the CMT we have that

$$C_{ik}\left(\frac{n_{t,i}}{N},\frac{n_{t,k}}{N},\delta\right) + \frac{n_{t,k}n_{t,i}\delta}{N^{1/2}v_{ik}} \Rightarrow n_{ti}W_{1}\left(n_{ti}\right) - n_{tk}W_{2}\left(n_{tk}\right) + \frac{n_{t,k}n_{t,i}\Delta}{v_{ik}}.$$

Let

$$A\left(\delta\right) = \frac{\log\left[\min\left\{\frac{P^*}{1-P^*},\frac{1-c}{c}\right\}\right]}{N^{1/2}v_{ik}\delta} \to \frac{\log\left[\min\left\{\frac{P^*}{1-P^*},\frac{1-c}{c}\right\}\right]}{N^{1/2}v_{ik}\delta}$$

$$\beta_t = \sum$$

Observe that,

$$\mu_k - \mu_i + \frac{v_k}{\sqrt{n_{T(\delta)k}}} C_k \left(1, n_{T(\delta)k} \right) - \frac{v_i}{\sqrt{n_{T(\delta)i}}} C_i \left(1, n_{T(\delta)i} \right) \Rightarrow \mu_k - \mu_i$$

when $\delta \to 0$ if $n_{T(\delta)j}$ is independent of $C_j(1,n)$ for n sufficiently large and j = k, i.

Let ICS denote the even that an incorrect selection is made. Then,

$$\lim \inf_{\delta \to 0} \mathbb{P} \left\{ ICS \right\} = \lim \inf_{\delta \to 0} \mathbb{P} \left\{ \frac{W_{T(\delta)k}}{n_{T(\delta)k}} < \frac{W_{T(\delta)i}}{n_{T(\delta)i}} \right\}$$
$$= \mathbb{P} \left\{ \mu_k < \mu_i \right\} = 0.$$

However, it's very likely $n_{T(\delta)k}$ is not independent of $C_k(1, n)$. Thus, let's give other proof. First, we'll show that n_{ti} is independent of $C_i(1, n)$ if $n \geq 1$ and $t \geq 0$. Note that

$$C_{i}(1,n) = \frac{\sqrt{n}\sum_{j=1}^{n}X_{ij}}{v_{i}n} - \frac{\sqrt{n}}{v_{i}}\mu_{i}$$
$$= \frac{\sqrt{n}\bar{X}_{i}(n)}{v_{i}} - \frac{\sqrt{n}}{v_{i}}\mu_{i}.$$

Since $n_{0i} = n_0$, then $C_i(1, n)$ is independent of n_{0i} . Note that

$$n_{1,i} = \operatorname{ceil}\left(\hat{\lambda}_{0i}^{2} \left(n_{0} + B_{z}\right) / \hat{\lambda}_{0z}^{2}\right),\,$$

if z = i, then $n_{1,i}$ is independent of $C_i(1, n)$. Suppose z = k. Note that

$$\hat{\lambda}_{1i}^{2} = \frac{1}{n-1} \sum_{j=1}^{n_{1i}} (X_{ij} - \bar{X}_{i} (n_{1i}))^{2}
= \frac{1}{n-1} \left((X_{i1} - \bar{X}_{i} (n_{1i}))^{2} + \sum_{j=2}^{n_{ti}} (X_{ij} - \bar{X}_{i} (n_{1i}))^{2} \right)
= \frac{1}{n-1} \left(\left[\sum_{j=2}^{n_{1i}} (X_{ij} - \bar{X}_{i} (n_{1i}))^{2} \right] + \sum_{j=2}^{n_{1i}} (X_{ij} - \bar{X}_{i} (n_{1i}))^{2} \right).$$

Then $\hat{\lambda}_{1i}^2$ can be written as a function only of $(X_{i2} - \bar{X}_i(n_{0i}), \dots, X_{in_{ti}} - \bar{X}_i(n_{ti}), n_{ti})$.

Suppose $C_i(1,n)$ is independent of n_{ti} . Observe that

$$n_{t+1,i} = \operatorname{ceil}\left(\hat{\lambda_{ti}^2} \left(n_{tz} + B_z\right) / \hat{\lambda_{tz}^2}\right),\,$$

if z = i, then $n_{t+1,i} = \text{ceil}\left(\left(n_{tz} + B_z\right)\right)$ and $C_i\left(1,n\right)$ are independent random

variables. Now suppose z = k. Note that

$$\hat{\lambda}_{ti}^{2} = \frac{1}{n-1} \sum_{j=1}^{n_{ti}} (X_{ij} - \bar{X}_{i} (n_{ti}))^{2}
= \frac{1}{n-1} \left((X_{i1} - \bar{X}_{i} (n_{ti}))^{2} + \sum_{j=2}^{n_{ti}} (X_{ij} - \bar{X}_{i} (n_{ti}))^{2} \right)
= \frac{1}{n-1} \left(\left[\sum_{j=2}^{n_{ti}} (X_{ij} - \bar{X}_{i} (n_{ti})) \right]^{2} + \sum_{j=2}^{n_{ti}} (X_{ij} - \bar{X}_{i} (n_{ti}))^{2} \right).$$

Then $\hat{\lambda}_{ti}^2$ can be written as a function only of $(X_{i2} - \bar{X}_i(n_{ti}), \dots, X_{in_{ti}} - \bar{X}_i(n_{ti}), n_{ti})$. Suppose n_{ti} is given. The joint pdf of the sample $X_{i1}, \dots, X_{in_{ti}}$ is given by

$$f(x_1, \dots, x_{n_{ti}}) = \frac{1}{(2\pi)^{n_{ti}/2}} e^{-(1/2)\sum_{i=1}^{n_{ti}} x_i^2}.$$

Make the transformation $y_1 = \bar{x}(n_{ti}), y_2 = x_2 - \bar{x}(n_{ti}), \dots, y_{n_{ti}} = x_{n_{ti}} - \bar{x}(n_{ti})$. This is a linear transformation with a Jacobian equal to $1/n_{ti}$. We have

$$f(y_1, \dots, y_{n_{ti}}) = \frac{n_{ti}}{(2\pi)^{n_{ti}/2}} e^{-(1/2) \left(y_1 - \sum_{i=2}^{n_{ti}} y_i\right)^2} e^{-(1/2) \sum_{i=2}^{n_{ti}} (y_i + y_1)^2}$$

$$= \left[\left(\frac{n_{ti}}{2\pi}\right)^{1/2} e^{\left(-n_{ti}y_1^2\right)/2} \right] \left[\frac{n_{ti}^{1/2}}{(2\pi)^{(n_{ti}-1)/2}} e^{-(1/2) \left[\sum_{i=2}^{n_{ti}} y_i^2 + \left(\sum_{i=2}^{n_{ti}} y_i\right)^2\right]} \right].$$

Then y_1 is independent of $\hat{\lambda}_{ti}^2$ given n_{ti} . If $n_{ti} \geq n$, then $\bar{X}_i(n)$ is independent

of $\hat{\lambda}_{ti}^2$ because X_{ij} is independent of $X_{ij'}$ for j' < j. If $n_{ti} < n$,

$$\bar{X}_{i}(n) = \frac{\sum_{j=1}^{n_{ti}} X_{ij}}{n_{ti}} \frac{n_{ti}}{n} + \frac{\sum_{j=n_{ti+1}}^{n} X_{ij}}{n}$$
$$= Y_{1} \frac{n_{ti}}{n} + \frac{\sum_{j=n_{ti+1}}^{n} X_{ij}}{n}$$

and then $\bar{X}_{i}(n)$ is independent of $\hat{\lambda}_{ti}^{2}$. Thus, $C_{i}(1, n)$ is independent of $\hat{\lambda}_{ti}^{2}$ given n_{ti} . So, by induction,

$$f\left(C_{i}\left(1,n\right),\hat{\lambda_{ti}^{2}}\right) = \int f\left(C_{i}\left(1,n\right),\hat{\lambda_{ti}^{2}}\mid n_{ti}\right)f\left(n_{ti}\right)dn_{ti}$$
$$= f\left(C_{i}\left(1,n\right)\right)f\left(\hat{\lambda_{ti}^{2}}\right),$$

then $C_i(1, n)$ is independent of $\hat{\lambda}_{ti}^2$. Consequently, $C_i(1, n)$ is independent of $n_{t,i+1}$. Thus

$$\mu_k - \mu_i + \frac{v_k}{\sqrt{n_{tk}}} C_k (1, n_{tk}) - \frac{v_i}{\sqrt{n_{ti}}} C_i (1, n_{ti}) \Rightarrow \mu_k - \mu_i$$

as $t \to \infty$. Let $Y_t = C_k \left(1, n_{T(1/t)k}\right)$ and $X_t = C_k \left(1, n_{tk}\right)$, if $d\left(Y_t, X_t\right) \to 0$ in probability, then $Y_t \Rightarrow W\left(\right)$. Thus the result would be proved. Let's show that $d\left(Y_t, X_t\right) \to 0$. ???Let $\epsilon > 0$.

$$\mu_k - \mu_i + \frac{v_k}{\sqrt{n_{T(\delta)k}}} C_k \left(1, n_{tk} \right) - \frac{v_i}{\sqrt{n_{T(\delta)i}}} C_i \left(1, n_{T(\delta)i} \right) \Rightarrow \mu_k - \mu_i$$

$$\mathbb{P}\left\{\frac{W_{T(\delta)k}}{n_{T(\delta)k}} < \frac{W_{T(\delta)i}}{n_{T(\delta)i}}\right\} = \mathbb{P}\left\{\frac{W_{T(\delta)k}}{n_{T(\delta)k}} < \frac{W_{T(\delta)i}}{n_{T(\delta)i}}\right\}$$

Now consider $k \geq 2$ systems and let CS be the event that k is selected and let ICS_i be the event that an incorrect selection is made when systems k and i are considered in isolation.

Theorem. If samples from system $x \in \{1..., k\}$ are normally distributed and independent, over time and across alternatives, then $\lim_{\min_{x} \sigma_{x}^{2} \to \infty} Pr$ {BIZ selects k} $\geq P*$ provided $\mu_{k} \geq \mu_{k-1} + \delta*$ for some $\delta* > 0$.

Graphs Delta goes to 0

k=10; pstar=0.95; n=5000; sigma=50

Delta goes to 0.

k=10; pstar=0.3; sigma=1.0; delta*=1; n=50000

Variances go to infinity.

k=10; pstar=0.5; delta=1; n=500

R=10; pstar=0.95; delta=1; n=500

Theorem. If samples from system $x \in \{1...,k\}$ are normally distributed and independent, over time and across alternatives, then $\lim_{\delta \to 0} Pr \{BIZ \text{ selects } k\} \ge P* \text{ (or } =1??) \text{ provided } \mu_k \ge \mu_{k-1} + \delta^*.$

Prooof. We begin by considering the case of only two systems, denoted k and i, with $\mu_k \geq \mu_i + \delta *$. Let $A = \{k, i\}$. For $\delta \leq \delta *$, let

$$T\left(\delta\right)=\min\left\{ t\in\mathbb{N}:\min_{x\in A}\hat{q}_{tx}\left(A\right)\leq c\text{ or }\max_{x\in A}\hat{q}_{tx}\left(A\right)\geq P*\right\}.$$

Thus $T(\delta)$ is the stage at which the procedure terminates.

Now,

$$\begin{aligned} \min_{x \in A} \hat{q}_{tx} \left(A \right) & \leq c \\ \Leftrightarrow \min_{x \in A} \exp \left(\delta \beta_t \frac{W_{tx}}{n_{tx}} \right) & \leq c \sum_{x' \in A} \exp \left(\delta \beta_t \frac{W_{tx'}}{n_{tx'}} \right) \\ \Leftrightarrow \min_{x \in A} \frac{W_{tx}}{n_{tx}} & \leq \log \left[c \sum_{x' \in A} \exp \left(\delta \beta_t \frac{W_{tx'}}{n_{tx'}} \right) \right] / \left(\delta \beta_t \right) \\ \Leftrightarrow \left(\frac{W_{tk}}{n_{tk}} + \frac{W_{ti}}{n_{ti}} - \left| \frac{W_{tk}}{n_{tk}} - \frac{W_{ti}}{n_{ti}} \right| \right) & \leq 2 \log \left[c \sum_{x' \in A} \exp \left(\delta \beta_t \frac{W_{tx'}}{n_{tx'}} \right) \right] / \left(\delta \beta_t \right) \end{aligned}$$

and

$$\max_{x \in A} \hat{q}_{tx} (A) \geq P *$$

$$\Leftrightarrow \max_{x \in A} \exp \left(\delta \beta_t \frac{W_{tx}}{n_{tx}} \right) \geq P * \sum_{x' \in A} \exp \left(\delta \beta_t \frac{W_{tx'}}{n_{tx'}} \right)$$

$$\Leftrightarrow \max_{x \in A} \frac{W_{tx}}{n_{tx}} \geq \log \left[P * \sum_{x' \in A} \exp \left(\delta \beta_t \frac{W_{tx'}}{n_{tx'}} \right) \right] / (\delta \beta_t)$$

$$\Leftrightarrow \left(\frac{W_{tk}}{n_{tk}} + \frac{W_{ti}}{n_{ti}} + \left| \frac{W_{tk}}{n_{tk}} - \frac{W_{ti}}{n_{ti}} \right| \right) \geq 2 \log \left[P * \sum_{x' \in A} \exp \left(\delta \beta_t \frac{W_{tx'}}{n_{tx'}} \right) \right] / (\delta \beta_t).$$
Let $d(\delta) := 2 \log \left(\sum_{x' \in A} \exp \left(\delta \beta_t \frac{W_{tx'}}{n_{tx'}} \right) \right) / (\delta \beta_t)$, then
$$T(\delta) = \min \left\{ t \in \mathbb{N} : \left(\frac{W_{tk}}{n_{tk}} + \frac{W_{ti}}{n_{ti}} + \left| \frac{W_{tk}}{n_{tk}} - \frac{W_{ti}}{n_{ti}} \right| \right) \geq 2 \frac{\log (P *)}{\delta \beta_t} + d(\delta) \text{ or } \left(\frac{W_{tk}}{n_{tk}} + \frac{W_{ti}}{n_{ti}} - \left| \frac{W_{tk}}{n_{tk}} - \frac{W_{ti}}{n_{ti}} \right| \right) \leq 2 \frac{\log c}{\delta \beta_t} + d(\delta) \right\}.$$

Now, let's prove that $n_{ti} \to \infty, n_{tk} \to \infty$ as $t \to \infty$. For each $t, n_{t+1,x} = n_{tx} + B_x$ for some $x \in A$. If $n_{t+1,i} = n_{ti} + B_i$ for a finite number of t's, then $n_{tk} \to \infty$ as $t \to \infty$. So, there exists l_0 such that $n_{li}/\hat{\lambda}_{li}^2 > n_{lk}/\hat{\lambda}_{lk}^2$ if $l > l_0$. Since $\hat{\lambda}_{ti}^2 \to \sigma_i^2$ and $\hat{\lambda}_{tk}^2 \to \sigma_k^2$ as $t \to \infty$, then $n_{ti} \to \infty$ as $t \to \infty$. Similarly, we get the same result in the other cases. Thus, $n_{ti} \to \infty, n_{tk} \to \infty$ as $t \to \infty$. Furthermore, it's easy to see that $T(\delta) \to \infty$ as $\delta \to 0$.

Now, we'll show that $T(\delta)$ is finite. Observe that there exists t_0 such that if $t > t_0$

$$W_{ti}/n_{ti} < W_{tk}/n_{tk}$$

otherwise there would exists t such that

$$\mu_k - \delta/2 < W_{tk}/n_{tk} \le W_{ti}/n_{ti} < \delta/2 + \mu_i$$

which is a contradiction. Moreover, there exists $t_1 > t_0$ such that if $t > t_1$

$$\beta_t \left(W_{tk}/n_{tk} - W_{ti}/n_{ti} \right) > \log \left(P * / \left(1 - P * \right) \right) / \delta$$

since $\beta_t \to \infty$ as $t \to \infty$ and $P^* > \frac{1}{2}$. Consequently, if $t > t_1$

$$\exp\left(\delta\beta_{t}\frac{W_{tk}}{n_{tk}}\right) / \exp\left(\delta\beta_{t}\frac{W_{ti}}{n_{ti}}\right) > \frac{P*}{1 - P*}$$

$$\Rightarrow \exp\left(\delta\beta_{t}\frac{W_{tk}}{n_{tk}}\right) > P*\exp\left(\delta\beta_{t}\frac{W_{ti}}{n_{ti}}\right)$$

$$+P*\exp\left(\delta\beta_{t}\frac{W_{tk}}{n_{tk}}\right)$$

and so $T(\delta) \leq t_1(\delta) < \infty$.

By the strong law of large numbers, almost surely

$$\frac{W_{T(\delta)k}}{n_{T(\delta)k}} - \frac{W_{T(\delta)i}}{n_{T(\delta)i}} \to \mu_k - \mu_i$$

as $\delta \to 0$. Thus,

$$\frac{W_{T(\delta)k}}{n_{T(\delta)k}} - \frac{W_{T(\delta)i}}{n_{T(\delta)i}} \Rightarrow \mu_k - \mu_i$$

as $\delta \to 0$.

Let ICS denote the even that an incorrect selection is made. Then,

$$\lim \inf_{\delta \to 0} \mathbb{P} \left\{ ICS \right\} = \lim \inf_{\delta \to 0} \mathbb{P} \left\{ \frac{W_{T(\delta)k}}{n_{T(\delta)k}} < \frac{W_{T(\delta)i}}{n_{T(\delta)i}} \right\}$$
$$= \mathbb{P} \left\{ \mu_k < \mu_i \right\} = 0.$$