Blockchain

Dr. Bahar Ali Assistant Professor (CS), National University Of Computer and Emerging Sciences, Peshawar.

Cryptocurrency

Contents – Module B

How mempool works?

How does a Mempool work?

- Mempool is a place where all unconfirmed transactions saved
- Mempool is distributed, thus every node has its own Mempool
- When transactions are done, they are saved into a Mempool across the network
- Miner adds some transactions to a block and mines it, the information is sent to other nodes, the block is verified, and the transactions are removed from the pool

Demonstration of Unconfirmed transactions

https://www.blockchain.com/btc/unconfirmed-transactions

- Transactions of Cryptocurrency are different from normal transactions
- A UTXO (Unspent transaction output) is the amount of digital currency remaining after a cryptocurrency transaction
- To carry out transactions a cryptocurrency wallet is needed
- A wallet (device or program) stores cryptocurrency keys and allows to access coins. a public key is a wallet address, and a private key is needed to sign transactions.
- In Blockchain, transactions once added never changed, and history remains forever
- The unspent transactions are chosen for further transactions

Arjun-> Me 0.4 BTC

Raj -> Me 0.3 BTC

Alice -> Me 0.7 BTC

Bob -> Me 0.1 BTC

UTXOs

Let say I buy coffee for 0.5 BTC.

Transaction:

Input:

Output:

0.5 BTC to the coffee shop.

0.7 BTC from Alice

→ 0.2 BTC back to me.

Arjun-> Me 0.4 BTC

Raj -> Me 0.3 BTC

Bob -> Me 0.1 BTC

Me -> Me 0.2 BTC

Updated UTXOs

Arjun-> Me 0.4 BTC

Raj -> Me 0.3 BTC

Alice -> Me 0.7 BTC

Bob -> Me 0.1 BTC

UTXOs

Let say I buy Noodles for 1.4 BTC.

Transaction:

Input:

Arjun-> Me 0.4 BTC

Raj -> Me 0.3 BTC

Alice -> Me 0.7 BTC

Output:

1.4 BTC to the noodles shop.

UTXO for the noodle shop.

Updated UTXOs

Get Noodles

Arjun-> Me 0.4 BTC

Raj -> Me 0.3 BTC

Alice -> Me 0.7 BTC

Bob -> Me 0.3 BTC

UTXOs

Let say I buy coffee for 0.5 BTC.

Transaction:

Input:

0.7 BTC from Alice

Output:

0.5 BTC to the coffee shop.

0.2 BTC back to me.

Arjun-> Me 0.4 BTC

Raj -> Me 0.3 BTC

Alice -> Me 0.7 BTC

Bob -> Me 0.3 BTC

UTXOs

Let say I buy coffee for 0.5 BTC.

<u>Transaction</u>:

Input:

0.7 BTC from Alice

Output:

0.5 BTC to the coffee shop.

0.1 BTC back to me.

Arjun-> Me 0.4 BTC

Raj -> Me 0.3 BTC

Alice -> Me 0.7 BTC

Bob -> Me 0.3 BTC

UTXOs

Let say I buy coffee for 0.5 BTC.

<u>Transaction</u>:

Input:

0.7 BTC from Alice

Output:

0.5 BTC to the coffee shop.

0.1 BTC back to me.

Fees: 0.1 BTC

Arjun-> Me 0.4 BTC Raj -> Me 0.3 BTC Let say I buy coffee for 0.5 BTC. **UTXOs** Alice -> IVIE U.7 DIC Bob -> Me 0.1 BTC **UTXO** for the coffee shop. **Transaction:** Output: **UTXO** for the miner. Input: 0.5 BTC to the coffee shop. 0.7 BTC from Alice 0.1 BTC back to me. Fees: 0.1 BTC

Arjun-> Me 0.4 BTC

Raj -> Me 0.3 BTC

Bob -> **Me 0.1 BTC**

Me -> Me 0.1 BTC

UTXOs

Updated UTXOs

