

Unsupervised Domain
Adaptation through
rotation as regression for
RGB-D Object
Recognition

ABOUT THE PROJECT

- What is Domain adaptation?
- Why are we using RGB-D images?
- What are the tasks?
- What is our goal?

DATASET

SynROD as source domain

ROD as target domain

RELATED WORK

- Multy-modality CNN
- Image's stretch
- Color encoding for depth images
- Pretext task as artifact
- Loss entropy

PREPROCESSING

Resize to

256x256 px

Horizontal flip with probability p=0.5

Raw images

PREPROCESSING

POLITECNICO DI TORINO

31.45°

165.21°

Relative rotation with 133.76°

Center Crop to 224x224 px

PRETEXT TASK

By how much should the RGB image be rotated to align with the depth image?

NETWORK ARCHITECTURE

OPTIMIZATION PROBLEM

$$\mathcal{L} = \lambda_p \cdot \mathcal{L}_p + \mathcal{L}_M + \alpha \cdot \mathcal{L}_{en}$$

Cross-entropy pretext task

Cross-entropy main task

Loss entropy

Absolute Rotation

Relative Rotation

Gullotto Marco Giammarinaro Silvia

MLDL - 2020

OUR VARIATIONS

Loss = $(True angle - Predicted angle)^2$

Loss = $(20.1^{\circ} - 380^{\circ})^{2} >> 0$

ROTATION AS REGRESSION

POLITECNICO DI TORINO

Using sine and cosine we can rewrite the problem as:

$$\vartheta \to (\sin(\vartheta),\cos(\vartheta))$$

We can obtain the value of the angle in degrees using:

$$output \leftarrow atan2(sin_{predicted}, cos_{predicted})$$

The new loss becomes:

$$\mathcal{L}_{regr} = \frac{1}{2}((sin_{pred} - sin(y))^2 + (cos_{pred} - cos(y))^2)$$

ROTATION AS REGRESSION

MSE losses for the samples taken from the source domain

Gullotto Marco Giammarinaro Silvia Cross-entropy Loss entropy main task

MSE losses for the samples taken from the target domain

PRETEXT HEAD

Fully connected with 100 neurons

Output neuron

EXPERIMENTS

POLITECNICO DI TORINO

Source only

Loghmani et al. cross-modality algorithm

Absolute and relative rotation as regression

RESULTS

Method	Modality	$synROD \to ROD$
Source only	RGB	51.4%
	Depth	13.1%
	RGB-D e2e	47.9%
Loghmani et al. impl.	RGB-D	57.6% ± 1.2%
Abs. rotation as regression	RGB-D	55% ± 0.9%
Rel. rotation as regression	RGB-D	59% ± 0.8%

Gullotto Marco Giammarinaro Silvia

MLDL - 2020

CONCLUSIONS

- t-SNE algorithm
- Other trials
 - Different color encoding
 - Noise patterns
 - > ARID dataset

THANKS FOR YOUR ATTENTION!

Gullotto Marco Giammarinaro Silvia Template by <u>SlidesCarnival</u> **MLDL - 2020**