9. Neural network-based time series forecasting model

Aim:

To develop neural network-based time series forecasting model.

Procedure:

1. Importing Libraries

import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense

2. Load and Prepare the Dataset

```
df = pd.read_csv('/content/supermarket_sales - Sheet1.csv')
df['Date'] = pd.to_datetime(df['Date'])
df.sort_values('Date', inplace=True)
```

3. Aggregate Daily Sales

```
daily_sales = df.groupby('Date')['Total'].sum().reset_index()
```

4. Resample Data to Daily Frequency

```
daily_sales = daily_sales.set_index('Date').resample('D').sum().fillna(0)
```

5. Normalize the Sales Data

```
scaler = MinMaxScaler()
scaled = scaler.fit_transform(daily_sales)
```

6. Create Sequences for LSTM

```
def create_dataset(data, time_steps=7):
```

```
X, y = [], []

for i in range(len(data) - time_steps):
    X.append(data[i:i + time_steps])
    y.append(data[i + time_steps])

return np.array(X), np.array(y)
```

7. Prepare Input for the Model

X = X.reshape((X.shape[0], X.shape[1], 1))

8. Train-Test Split

```
split = int(0.8 * len(X))
X_train, X_test = X[:split], X[split:]
y_train, y_test = y[:split], y[split:]
```

9. Build and Train the LSTM Model

```
model = Sequential([
    LSTM(64, activation='relu', input_shape=(time_steps, 1)),
    Dense(1)
])
model.compile(optimizer='adam', loss='mse')
model.fit(X_train, y_train, epochs=30, validation_data=(X_test, y_test),
verbose=1)
```

10. Plot the Results

```
plt.figure(figsize=(10, 5))
plt.plot(y_test_inv, label="Actual")
plt.plot(y_pred_inv, label="Predicted")
plt.title("Supermarket Daily Sales Forecast")
plt.xlabel("Time")
plt.ylabel("Sales")
plt.legend()
plt.grid()
```

plt.show()

Output

Result:

Thus the program has been successfully implemented and verified.