Exercises 5

Exercise 1 (Quantifier Elimination in PA). Apply quantifier elimination as seen in the Lectures to the following formulas:

- $\exists x, y. 2x + 3y < 7 \land x < y$
- $\bullet \exists x, y. 2x + 3y < 7 \land y < x$
- $\exists x, y. 3x + 3y < 8 \land 8 < 3x + 2y$
- $\exists x, y. \ x = 2y \land \exists z. x = 3z$

Exercise 2 (Satisfiability algorithm for Presburger arithmetic). Consider the formula F(x) given by

$$F(x) = \bigwedge_{i=1} a_i < x \land \bigwedge_{j=1} x < b_j \land \bigwedge_{i=1} K_i | (x + t_i).$$

Recall that the terms a_i, b_j, t_i may in general contain other variables than

- 1. Assume all a_i, b_j, t_i are integer constants. Give an algorithm that, given any formula of the form above, returns:
 - \bullet a value for x, if such value exists, and
 - "UNSAT" if no such value exists
- 2. Give a recursive algorithm that, given a formula in the above form returns
 - one map from variables to integers for which formula evaluates to true, if such a map exists, and
 - "UNSAT" if no such map exists.

Exercise 3 (Quantifier elimination for rationals). In this exercise we will devise a quantifier elimination method for rational numbers. We consider formulas over the signature $(\mathbb{Q}, <, \leq, =, +, -)$, i.e. with constant symbols among \mathbb{Q} , interpreted over the standard structure of rational numbers.

1. Show that for any formula F, there exists a formula F_1 such that

$$F \iff Q_1x_1, \dots, Q_nx_n, Q_{n+1}y.F_1$$

Where Q_i are either \exists or $\neg \exists$, i.e. existential quantifiers that can be separated by negations and where F_1 is built only from $(\land, \lor, \mathbb{Q}, <, =, +, -, k \cdot \bot)$. In particular it is quantifier-free and contains no negation!

- 2. Do we need to add the divisibility relation as in the PA case? Why?
- 3. Show that there exist a formula F_2 such that $F_1 \iff F_2$ and every atom of F_2 is of the form:

or

for some term t

4. Show that there exists a formula F_3 that is quantifier-free such that

$$(\exists y.F_2) \iff F_3$$

Hint: Picture a graph of the truth value of F_2 as a function of y. How often can the truth value change? Is it possible to test F_2 in some finite number of intervals only?

Exercise 4 (PA without divisibility). Show that Presburger Arithmetic without the divisibility relationship does not admit quantifier elimination with the following steps:

- 1. Find a quantified formula of one free variable F(y) such that F(y) is true for infinitely many positive integers and false for infinitely many positive integers. I.e., $S_F = \{n \in \mathbb{N} | F(n)\}$ is infinite and $\mathbb{N} \setminus S_F$ is infinite.
- 2. Show that for any quantifier-free formula of one free variable G(y), either S_G is finite or $\mathbb{N} \setminus S_G$ is finite.
- 3. Conclude.

Exercise 5 (Structure of sets). Consider the structure $(\mathcal{P}(\mathbb{N}), \subseteq, = \cap, \cup, _^c)$ whose base set is the set of all sets of natural numbers and where $_^c$ denotes complement. Is it possible to eliminate quantifiers from arbitrary first order formulas on this structure? For example, $\exists B.A \subseteq B \land B \subseteq C$ is equivalent to $A \subseteq C$. Show a quantifier elimination procedure, or give an example of a quantified first-order logic formula that has no equivalent formula without quantifiers, and prove it.