

Chapter 5

DESIGN of COMBINATIONAL CIRCUITS

Kinds of Logic Circuits

- Combinational circuit
 - output is determined
 by the current inputs
 with some delays of
 logic gates only
 - performs specificinformation-processing operation

- Sequential circuit
 - output is determined
 by the inputs and the
 state of the memory
 elements
 - output can changewhen clock ticks

Combinational Logic Design

- Specify the design problem
 - make sure you completely understand all the design requirements
- Generate a truth table
 - translate the word statement into an input/output table
- Generate an SOP equation
 - write a Boolean equation based from the truth table

Combinational Logic Design

- Simplify the equation
 - use Boolean algebra (or some other means) to reduce the equation
- Implement the expression using logic gates

Step One - Requirements

- Make sure you completely understand all the design requirements
 - functionality
 - performance
 - reliability
 - fault-tolerance
 - maintainability

Step One - Requirements

Example:

Design a combinational circuit with three inputs (a, b, c) and one output, F such that F is 1 when all three inputs are 1 or when a is 1 and either b or c is also 1 or when all three inputs are 0.

Step Two - Truth Table

- List all possible inputs and outputs
 - for the example there are 3 inputs A, B, and C so how many rows will there be in the truth table?

- List all possible inputs and outputs
 - for the example there are 3 inputs A, B, and C so how many rows will there be in the truth table?

Α	В	C	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Step Two - Truth Table

- List all possible inputs and outputs
 - for the example there are 3 inputs A, B, and C so how many rows will there be in the truth table?

- SOP Sum Of Products
- Look at those inputs in the truth table which produce a "1" on the output
 - each of these input conditions represents a product (AND) term in the SOP equation containing the input variable or its complement
 - if the input variable is "1" the term contains
 the variable
 - if it is "0" the term contains the complement of the variable
 - these product terms are ORed

Example

• Translate the truth table into an SOP function

АВС	F	
0 0 0	1	A'B'C'
0 0 1	0	
0 1 0	0	
0 1 1	0	
1 0 0	0	
1 0 1	1	AB'C
1 1 0	1	ABC'
1 1 1	1	ABC

Example

• Translate the truth table into an SOP function

$$F = A'B'C' + AB'C + ABC' + ABC$$

$$F = A'B'C' + AB'C + ABC' + ABC$$

$$F = A'B'C' + AB'C + ABC' + ABC$$

$$= A'B'C' + AC(B' + B) + ABC'$$

$$F = A'B'C' + AB'C + ABC' + ABC$$

$$= A'B'C' + AC(B' + B) + ABC'$$

$$= A'B'C' + AC + ABC'$$

$$F = A'B'C' + AB'C + ABC' + ABC$$

$$= A'B'C' + AC(B' + B) + ABC'$$

$$= A'B'C' + AC + ABC'$$

$$= A'B'C' + A(C + BC')$$

$$F = A'B'C' + AB'C + ABC' + ABC$$

$$= A'B'C' + AC(B' + B) + ABC'$$

$$= A'B'C' + AC + ABC'$$

$$= A'B'C' + A(C + BC')$$

$$= A'B'C' + A(C + B)(C + C')$$

$$F = A'B'C' + AB'C + ABC' + ABC$$

$$= A'B'C' + AC(B' + B) + ABC'$$

$$= A'B'C' + AC + ABC'$$

$$= A'B'C' + A(C + BC')$$

$$= A'B'C' + A(C + B)(C + C')$$

$$= A'B'C' + AC + AB$$

Step Five - The Circuit

There is a direct correspondence between the equation and the circuit

Design Example Design a combinational circuit that generates the 9's complement of a BCD digit. For example, the complement of (0100) is (0101).

a b c d	a b c d
0000	1000
0001	1001
0010	1010
0011	1011
0100	1100
0101	1 1 0 1
0110	1110
0 1 1 1	1111

a b c d	WXYZ	a b c d	WXYZ
0000		1000	
0001		1001	
0010		1010	
0011		1011	
0100		1100	
0101		1101	
0110		1110	
0111		1111	

a b c d	WXYZ	a b c d	WXYZ
0000	1001	1000	
0001	1000	1001	
0010	0111	1010	
0011	0110	1011	
0100	0101	1100	
0101	0100	1101	
0110	0011	1110	
0111	0010	1111	

a b c d	WXYZ	a b c d	WXYZ
0000	1001	1000	0 0 0 1
0001	1000	1001	0 0 0 0
0010	0111	1010	XXXX
0011	0110	1011	XXXX
0100	0101	1100	XXXX
0101	0100	1101	XXXX
0110	0011	1110	XXXX
0111	0010	1111	$\mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$

Equations

- W = a'b'c'd' + a'b'c'd
- X = a'b'cd' + a'b'cd + a'bc'd' + a'bc'd
- Y = a'b'cd' + a'b'cd + a'bcd' + a'bcd
- Z = a'b'c'd' + a'b'cd' + a'bc'd' + a'bcd' + ab'c'd'

• W = a'b'c'd' + a'b'c'd

AB	0 0	0 1	1 1	1 0
0 0	1	1		
0 1				
11	X	X	X	X
1 0			X	X

• W = a'b'c'd' + a'b'c'd

<u>مر و</u>	AB	0 0	0 1	11	10
<u>5</u>	0 0				
	0 1				
<u>م</u> ور	11	X	X	X	Χ
<u> </u>	1 0			X	X

•
$$W = a'b'c'd' + a'b'c'd = a'b'c'$$

• X = a'b'cd' + a'b'cd + a'bc'd' + a'bc'd

	AB	0 0	0 1	11	10
	0 0			1	1
	0 1	1	1		
0	1 1	X	X	X	X
•	1 0			X	X

• X = a'b'cd' + a'b'cd + a'bc'd' + a'bc'd

• X = a'b'cd' + a'b'cd + a'bc'd' + a'bc'd= b'c + bc'

• Y = a'b'cd' + a'b'cd + a'bcd' + a'bcd

2	AB	0 0	0 1	1 1	10
-0	0 0			1	1
9	0 1			1	1
<u> </u>	1 1	X	X	X	X
<u>.</u> .	1 0			X	X

• Y = a'b'cd' + a'b'cd + a'bcd' + a'bcd

• Y = a'b'cd' + a'b'cd + a'bcd' + a'bcd= c

Z = a'b'c'd' + a'b'cd' + a'bc'd' + a'bcd' + ab'c'd'

<u>مر</u> و	AB	0 0	0 1	1 1	10
<u>ي</u>	0 0	1			1
<u>.</u>	0 1	1			1
<u>)</u>	1 1	X	Χ	X	Χ
<u></u>	1 0	1		X	X

K-map Simplification

• Z = a'b'c'd' + a'b'cd' + a'bc'd' + a'bcd' + ab'c'd'

K-map Simplification

• Z = a'b'c'd' + a'b'cd' + a'bc'd' + a'bcd' + ab'c'd' = d'

- W = a'b'c'
- $\bullet X = bc' + b'c$
- Y = c
- Z = d'

More Examples

1) Design a combinational circuit that converts BCD to Excess-3 code. For example, (0100) to (0111).

Example 1: Truth Table

a b c d	WXYZ	a b c d	WXYZ
0000		1000	
0001		1001	
0010		1010	
0011		1011	
0100		1100	
0101		1101	
0110		1110	
0111		1111	

Example 1: Truth Table

a b c d	WXYZ	a b c d	W X Y Z
0000	0011	1000	1 0 1 1
0001	0100	1001	1 1 0 0
0010	0101	1010	XXXX
0011	0110	1011	XXXX
0100	0111	1100	XXXX
0101	1000	1101	XXXX
0110	1001	1110	XXXX
0111	1010	1111	XXXX

Equations

- W(a,b,c,d) = Σ (5,6,7,8,9)
- $X(a,b,c,d) = \Sigma (1,2,3,4,9)$
- $Y(a,b,c,d) = \Sigma (0,3,4,7,8)$
- $Z(a,b,c,d) = \Sigma (0,2,4,6,8)$

• W(a,b,c,d) = Σ (5,6,7,8,9)

• $W(a,b,c,d) = \Sigma(5,6,7,8,9) = a + bc + bd$

• $X(a,b,c,d) = \Sigma(1,2,3,4,9)$

CD	l			
AB	0 0	0 1	11	10
0 0		1	1	1
0 1				
1 1	X	X	X	X
1 0		1	X	X

• $X(a,b,c,d) = \Sigma(1,2,3,4,9) = b'c + b'd + bc'd'$

• $Y(a,b,c,d) = \Sigma(0,3,4,7,8) = cd + c'd'$

• $\overline{Z(a,b,c,d)} = \Sigma(0,2,4,6,8) = d'$

AB CD	0 0	0 1	11	1 0
0 0	1			1
0 1	1			1
11	X	X	X	X
1 0	1		X	X

More Examples

- 1) Design a combinational circuit that converts BCD to Excess-3 code. For example, (0100) to (0111).
- 2) Design a circuit whose output is HIGH whenever A and B are both HIGH as long as C and D are either both LOW or both HIGH.

Example 2: Truth Table and Expression

ABCD	F	ABCD	F
0000		1000	
0001		1001	
0010		1010	
0011		1011	
0100		1100	
0101		1101	
0110		1110	
0111		1111	

Example 2: Truth Table and Expression

ABCD	F	ABCD	F	
0000	0	1000	0	
0001	0	1001	0	
0010	0	1010	0	
0011	0	1011	0	
0100	0	1100	1	
0101	0	1101	0	
0110	0	1110	0	
0111	0	1111	1	

Example 2: Truth Table and Expression

ABCD	F	ABCD	F	
0000	0	1000	0	
0001	0	1001	0	
0010	0	1010	0	
0011	0	1011	0	
0100	0	1100	1	
0101	0	1101	0	
0110	0	1110	0	
0111	0	1111	1	

F(A,B,C,D) = ABC'D' + ABCD = AB (C'D' + CD)

More Examples

- 1) Design a combinational circuit that converts BCD to Excess-3 code. For example, (0100) to (0111).
- 2) Design a circuit whose output is HIGH whenever A and B are both HIGH as long as C and D are either both LOW or both HIGH.
- 3) Design a circuit which detects whether a fourvariable input is a palindrome or not.

Example 3: Truth Table and Expression

wxyz	F	wxyz	F
0000		1000	
0001		1001	
0010		1010	
0011		1011	
0100		1100	
0101		1 1 0 1	
0110		1110	
0111		1111	

Example 3: Truth Table and Expression

wxyz	F	wxyz	F
0000	1	1000	0
0001	0	1001	1
0010	0	1010	0
0011	0	1011	0
0100	0	1100	0
0101	0	1 1 0 1	0
0110	1	1110	0
0111	0	1111	1

Example 3: Truth Table and Expression

wxyz	F	wxyz	F	
0000	1	1000	0	
0001	0	1001	1	
0010	0	1010	0	
0011	0	1011	0	
0100	0	1100	0	
0101	0	1101	0	
0110	1	1110	0	
0111	0	1111	1	

F(w,x,y,z) = w'x'y'z' + w'xyz' + wx'y'z + wxyz

Other Tasks

- Need to determine the actual gates to use
- Find the speed
- Find the cost
- Find the power requirements

Example

 Design a combinational circuit with three inputs (a, b, c) and one output, F such that F is 1 when all three inputs are 1 or when a is 1 and either b or c is also 1 or when all three inputs are 0.

$$F = a'b'c' + ac + ab$$

Solution One

Use two OR gates - each with two inputs for
 F = a'b'c' + ac + ab

Solution Two

• Use a 3 input NOR gate with an inverter on the output for F = a'b'c' + ac + ab

Solution Three

Use NAND gates instead of AND-ORs for
 F = a'b'c' + ac + ab

Solution One

SPEED (worst case/ave)

Total = 52 nsec

Solution Two

SPEED (worst case/typical)

Total = 56.5 nsec

Solution Three

SPEED (worst case/typical)

Total = 50 nsec

Prototype

$$F = a'b'c' + ab + ac$$

Prototype F = a'b'c' + ab + ac

Prototype F = a'b'c' + ab + ac

Schematic Annotation

Design involves translating a problem from one representation to another

- 1. A four-input function Z has the value 1 if and only if either of the following two conditions holds:
 - a. All the inputs have the same value
 - b. Half the inputs are 0s and half are 1s

Z	ABCD	Z
	1000	
	1001	
	1010	
	1011	
	1100	
	1101	
	1110	
	1111	
	Z	1000 1001 1010 1011 1100 1101 1110

ABCD	Z	ABCD	Z
0000	1	1000	0
0001	0	1001	1
0010	0	1010	1
0011	1	1011	0
0100	0	1100	1
0101	1	1101	0
0110	1	1110	0
0111	0	1111	1

- 1. A four-input function Z has the value 1 if and only if either of the following two conditions holds:
 - a. All the inputs have the same value
 - b. Half the inputs are 0s and half are 1s
- 2. An alarm circuit contains 4 switches. The alarm A is sounded if at least two of the switches are on.

wxyz	A	wxyz	Α
0000		1000	
0001		1001	
0010		1010	
0011		1011	
0100		1100	
0101		1101	
0110		1110	
0111		1111	

wxyz	A	wxyz	A
0000	0	1000	0
0001	0	1001	1
0010	0	1010	1
0011	1	1011	1
0100	0	1100	1
0101	1	1 1 0 1	1
0110	1	1110	1
0111	1	1111	1

3. A BCD-to-seven-segment converter is a combinational circuit that accepts a decimal digit in BCD and generates the appropriate outputs for selection of segments in a display indicator used for displaying the decimal digit. The outputs of the converter select the corresponding segments in the display as shown in the figure below. No segments should be selected for invalid inputs. Design the BCD-to-seven-segment circuit.

3. A BCD-to-seven-segment converter is a combinational circuit that accepts a decimal digit in BCD and generates the appropriate outputs for selection of segments in a display indicator used for displaying the decimal digit. The outputs of the converter select the corresponding segments in the display as shown in the figure below. No segments should be selected for invalid inputs. Design the BCD-to-seven-segment circuit.

wxyz	abc def g
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	

wxyz	abc def g
0000	1111110
0001	
0010	
0011	
0100	
0101	
0110	
0111	

wxyz	abc def g
0000	1111110
0001	0110000
0010	
0011	
0100	
0101	
0110	
0111	

wxyz	abc def g
0000	1111110
0001	0110000
0010	1101101
0011	1111001
0100	0110011
0101	1011011
0110	1011111
0111	1110000

wxyz	abc def g
1000	1111111
1001	1111011
1010	000000
1011	000000
1100	000000
1101	000000
1110	000000
1111	000000

BCD-to-seven-segment converter

		I
9	ab c	F
i	000	
	001	
	010	
	011	
	100	
•	101	
	110	
9	111	

a b c	F
000	0
001	0
010	0
011	1
100	0
101	1
110	1
111	0

a b c	F
000	0
001	0
010	0
011	1
100	0
101	1
110	1
111	0

$$F = a'bc + ab'c + abc'$$

= $(a'b + ab')c + abc'$

A	В
0	0
0	1
1	0
1	1

Α	В	C _{out}	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Α	В	C _{out}	Sum
0	0	0	0
0	1	0	1
- 1	0	0	1
1	1	1	О

$$Sum = A \oplus B$$

$$C_{out} = AB$$