Tutorial 3 (with solution)

Relations

Q.1 Relation

Let A be the set of all lines in the 2-dimensional plane. Let R be the relation on A defined by l_1Rl_2 iff l_1 is perpendicular to l_2 .

page 3-16

- a) Is it reflexive?
- b) Is it symmetric?
- c) Is it antisymmetric?
- d) Is it transitive?

Q.1 (solution)

- a) No
- b) Yes
- c) No
- d) No

You are expected to be able to explain the answers.

Q.2 Equivalence Relation

page 3-22/26

Let *S* be the set of all digital logic circuit with two inputs and one output.

Let *R* be defined on *S* as follows:

 c_1Rc_2 iff c_1 has the same input/output table as c_2 .

- a) Explain why R is an equivalence relation.
- b) How many distinct equivalence classes are there?
- c) Find two different circuits that are in the same equivalence class.

Q.2 (solution)

- a) Check the three defining conditions. Details omitted.
- b) There are $2^4 = 16$ equivalence classes.
- c) An example:

Q.3 Partial Order

Let $A = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$. Consider the relation R on A defined as xRy iff x is a factor of y.

- a) Prove that R is a partial order. page 3-35
- b) List all maximal elements. page 3-38
- c) List all minimal elements.

Q.3 (solution)

- a) Check the three defining conditions. Details omitted.
- b) Maximal elements: 8, 9, 10, 11, 12, 13, 14, 15
- c) Minimal elements: 2, 3, 5, 7, 11, 13

Q.4 Congruence

page 3-24

Let $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Prove that $a + c \equiv b + d \pmod{n}$.

Q.4 (solution)

By the definition of congruences,

$$a = kn + b$$
 for some integer k .

$$c = hn + d$$
 for some integer h .

Adding the two equations,

$$a + c = kn + hn + b + d$$

= $(k + h)n + (b + d)$.

☐ Since (k + h) is an integer, $a + c \equiv b + d \pmod{n}$.

Q.E.D.