a more precise characterization of system behavior in heterogeneity.

Structural Parameter Optimization A good general guideline for all modeling is to start simple and add complexity as appropriate. In bgaPEST, this goal is achieved by starting with small values of variogram parameters (slope for the linear, variance for the nugget or exponential) such that the solution will be very smooth. By optimizing for structural parameters, roughness will be introduced by the algorithm until convergence at the optimal level of roughness. At the early, exploratory stages of a project, it might be desirable to set sig_opt=1 to see what level of fit may be achievable, but the user should be prepared to override this in later stages as allowing too much roughness to be introduced. For the prior distribution variogram parameters, however, optimization should always be employed in keeping with the Empirical Bayes perspective the algorithm was designed with.

Limitations to Version 1.0

bgaPEST marks the first widely available implementation of BGA for use by practitioners. Limitations, of course, accompany this first implementation. Version 1.0 does not have an explicit parallelization facility. This can be overcome by using external programs for derivatives and calling a parallel Jacobian calculation package such a BeoPEST (Schreüder, 2009) or GENIE (Muffels and others, 2012) whenever a Jacobian matrix is required. The impact of this is on the run times required to obtain a solution.

A practical upper limit on the number of parameters estimated is on the order of 100,000. To estimate a larger number of parameters, machines with a large amount of random access memory (RAM) must be used. At some greater limit, methods such as periodic embedding or other decompositions must be incorporated to mitigate the expense of storing and calculating the prior covariance matrix.

The source code is written in Fortran-90 and should be compilable on any platform with a Fortran compiler. Special care was taken to avoid obscure and nonstandard language features. Nonetheless, it is possible that some platform- or compiler-specific

problems may be encountered.

It is possible to use bgaPEST with a small number of parameters, but the assumption from the start is that parameters in at least part of the spatio-temporal domain represent a field of correlated instances (e.g. model nodes, discrete times) that often outnumber the number of data observations. A combination of homogeneous parameters in zones with a refined area of interest that is distributed is a common application and, as implemented through beta associations, this mix of distributed and zoned parameters is supported and encouraged. Typically, sufficient data to support a distributed parameter set is limited to part of a model domain in space or time.

In considering uncertainty, version 1.0 presents posterior covariance values. For some applications, conditional realizations may be desired to capture candidate roughness of solutions within the ensemble distribution of solutions. Details for conditional realizations are provided by Kitanidis (1995).

Underline the caps that make up **P**JUPITER.

Aster, R.C., Borchers, B., and Thurber, C.H., 2005, Parameter estimation and inverse problems: Amsterdam, Elsevier Academic Press, International Geophysics Series, v. 90, 301 p.

Banta, E.R., Poeter, E.P., Doherty, J.E., and Hill, M.C., 2006, JUPITER: Joint Universal Parameter IdenTification and Evaluation of Reliability—An application programming interface (API) for model analysis: U.S. Geological Survey Techniques and Methods, book 6, chap. E1, 268 p.

Cardiff, M., and Kitanidis, P.K., 2009, Bayesian inversion for facies detection—An extensible level set framework: Water Resources Research, v. 45, W10416, doi:10.1029/2008wr007675.

Cardiff, M., Barrash, W., and Kitanidis, P.K., 2012, A field proof-of-concept of aquifer imaging using 3-D transient hydraulic tomography with modular, temporarily-emplaced equipment: Water Resources Research, v. 48, no. 5, W05531, doi:10.1029/2011WR011704.

Casella, G., 1985, An introduction to empirical Bayes data-analysis: American Statistician, v. 39, no. 2, p. 83-87, doi:10.2307/2682801.

- Chamberlin, T.C., 1890, The method of multiple working hypotheses: Science (Old Series), v. 15, no. 92.
- Collinson, J.D., 1969, Sedimentology of Grindslow shales and Kinderscout grit—A deltaic complex in Namurian of Northern England: Journal of Sedimentary Petrology, v. 39, no. 1, p. 194–221.
- Deutsch, C.V., and Journel, A.G., 1992, GSLIB—Geostatistical software library and users guide: New York, Oxford University Press, 340 p.
- Doherty, J., 2010a, PEST, Model-independent parameter estimation—User manual (5th ed., with slight additions): Brisbane, Australia, Watermark Numerical Computing.
- Doherty, J., 2010b, PEST, Model-independent parameter estimation—Addendum to user manual (5th ed.): Brisbane, Australia, Watermark Numerical Computing.
- Draper, N.R., and Smith, H., 1966, Applied regression analysis: New York, Wiley, 407 p.
- Fienen, M., Kitanidis, P., Watson, D., and Jardine, P., 2004, An application of Bayesian inverse methods to vertical deconvolution of hydraulic conductivity in a heterogeneous aquifer at Oak Ridge National Laboratory: Mathematical Geology, v. 36, no. 1, p. 101-126,
 - doi:10.1023/B:MATG.0000016232.71993.bd.
- Fienen, M., Luo, J., and Kitanidis, P., 2006, A Bayesian geostatistical transfer function approach to tracer test analysis: Water Resources Research, v. 42, no. 7, W07426, doi:10.1029/2005WR004576.
- Fienen, M., Hunt, R., Krabbenhoft, D., and Clemo, T., 2009, Obtaining parsimonious hydraulic conductivity fields using head and transport observations—A Bayesian geostatistical parameter estimation approach: Water Resources Research, v. 45, W08405, doi:10.1029/2008wr007431.
- Fienen, M.N., Clemo, T.M., and Kitanidis, P.K., 2008, An interactive Bayesian geostatistical inverse protocol for hydraulic tomography: Water Resources Research, v. 44, W00B01, doi:10.1029/2007WR006730.
- Hill, M.C., 2006, The practical use of simplicity in developing ground water models: Ground Water, v. 44, no. 6, p. 775–781,
 - Move this baby up one notch

- doi:10.1111/j.1745-6584.2006.00227.x.
- Hoeksema, R.J., and Kitanidis, P.K., 1984, An application of the geostatistical approach to the inverse problem in two-dimensional groundwater modeling: Water Resources Research, v. 20, no. 7, p. 1003-1020, doi:10.1029/WR020i007p01003.
- Isaaks, E.H., and Srivastava, R.M., 1989, Applied geostatistics: Oxford, UK; New York; Oxford University Press, 561 p.
- Jaynes, E.T., and Bretthorst, G.L., 2003, Probability theory—The logic of science: Cambridge, UK; New York; Cambridge University Press, 727 p.
- Kitanidis, P.K., 1995, Quasi-linear geostatistical theory for inversing: Water Resources Research, v. 31, no. 10, p. 2411–2419, doi:10.1029/95WR01945.
- Kitanidis, P.K., 1997, Introduction to geostatistics—Applications in hydrogeology: Cambridge, UK; New York; Cambridge University Press, 249 p.
- Kitanidis, P.K., and Vomvoris, E.G., 1983, A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations: Water Resources Research, v. 19, no. 3, p. 677-690, doi:10.1029/WR019i003p00677.
- Li, W., Nowak, W., and Cirpka, O.A., 2005, Geostatistical inverse modeling of transient pumping tests using temporal moments of drawdown: Water Resources Research, v. 41, no. 8, p. 1-13, doi:10.1029/2004WR003874.
- Li, W., Englert, A., Cirpka, O.A., Vanderborght, J., and Vereecken, H., 2007, Two-dimensional characterization of hydraulic heterogeneity by multiple pumping tests: Water Resources Research, v. 43, no. 4, W04433, doi:10.1029/2006WR005333.
- Li, W., Englert, A., Cirpka, O.A., and Vereecken, H., 2008, Three-dimensional geostatistical inversion of flowmeter and pumping test data: Ground Water, v. 46, no. 2, p. 193–201, doi:10.1111/j.1745-6584.2007.00419.x
- Michalak, A.M., Bruhwiler, L., and Tans, P.P., 2004, A geostatistical approach to surface flux estimation of atmospheric trace gases: Journal of Geophysical Research, v. 109, no. D14,

- doi:10.1029/2003jd004422.
- Michalak, A.M., and Kitanidis, P.K., 2002, Application of Bayesian inference methods to inverse modeling for contaminant source identification at Gloucester Landfill, Canada, in Hassanizadeh, S.M., Schotting, R.J., Gray, W.G., and Pinder, G.F., ed., Proceedings of the XIVth International Conference on Computational Methods in Water Resources (CMWR XIV): Amsterdam, Elsevier, v. 2, p. 1259–1266.
- Michalak, A.M., and Kitanidis, P.K., 2003, A method for enforcing parameter nonnegativity in Bayesian inverse problems with an application to contaminant source identification: Water Resources Research, v. 39, no. 2, 1033, doi:10.1029/2002WR001480.
- Mueller, K.L., Gourdji, S.M., and Michalak, A.M., 2008, Global monthly averaged CO₂ fluxes recovered using a geostatistical inverse modeling approach; 1. Results using atmospheric measurements. Journal of Geophysical Resea Subscript es, v. 113, no. D21, doi:10.1029/2007jd009734.
- Muffels, C., Schreüder, W., Doherty, J., Karanovic, M., Tonkin, M., Hunt, R., and Welter, D., 2012, Approaches in highly parameterized inversion—GENIE, a general model-independent TCP/IP run manager, U.S. Geological Survey Techniques and Methods, book 7, chap. C6, 26 p.
- Neupauer, R.M., and Wilson, J.L., 1999, Adjoint method for obtaining backward-in-time location and travel time probabilities of a conservative groundwater contaminant: Water Resources Research, v. 35, no. 11, p. 3389–3398.
- Nowak, W., and Cirpka, O.A., 2004, A modified Levenberg-Marquardt algorithm for quasi-linear geostatistical inversing: Advances in Water Resources, v. 27, no. 7, p. 737–750, doi:10.1016/j.advwatres.2004.03.004.
- R Development Core Team, 2011, R—A language and environment for statistical computing: Vienna, Austria, R Foundation for Statistical Computing, ISBN 3-900051-07-0.
- RamaRao, B.S., Lavenue, A.M., de Marsily, G., and Marietta, M.G., 1995, Pilot point methodology for automated calibration of an ensemble of

- conditionally simulated transmissivity fields; 1. Theory and computational experiments: Water Resources Research, v. 31, no. 3, p. 475–493.
- Remy, N., Boucher, A., and Wu, J., 2009, Applied geostatistics with SGeMS: Cambridge, UK; New York; Cambridge University Press, 264 p.
- Robbins, H., 1956, An empirical Bayes approach to statistics, in Neyman, J., ed., Proceedings of the Third Berkeley Symposium on Mathematical Statistics: University of California Press, v. 1, p. 157-163.
- Rubin, Y., 2003, Applied stochastic hydrogeology: Oxford, UK; New York; Oxford University Press, 391 p.
- Samper, F.J., and Neuman, S., 1986, Adjoint state equations for advective-dispersive transport, in Sixth International Conference on Finite Elements in Water Resources, p. 423–437.
- Schreüder, W., 2009, Running BeoPEST, in Proceedings, PEST Conference 2009, Potomac, Md., November 1–3, 2009: Bethesda, Md., S.S. Papadopulos and Associates, p. 228–240.
- Italic Snodgrass, M.F., and Kitanidis, P.K., 1997, A geostatistical approach to contaminant source identification: Water Resources Research, v. 33, no. 4, p. 537-546.
- Snodgrass, M. and Kitanidis, P., 1998, Transmissivity identification through multi-directional aquifer stimulation: Stochastic Hydrology and Hydraulics, v. 12, no. 5, p. 299_316 doi:10.1007/s004 Insert comma
- Swift, D.J.P., Parsons, B.S., Foyle, A., and Oertel, G.F., 2003, Between beds and sequences—Stratigraphic organization at intermediate scales in the Quaternary of the Virginia coast, USA: Sedimentology, v. 50, no. 1, p. 81–111, doi:10.1046/j.1365-3091.2003.00540.x.
- Sykes, J.F., Wilson, J.L., and Andrews, R.W., 1985, Sensitivity analysis for steady state groundwater flow using adjoint operators: Water Resources Research, v. 21, no. 3, p. 359–371, doi:10.1029/WR021i003p00359.
- Tikhonov, A.N., 1963a, Solution of incorrectly formulated problems and the regularization method [in Russian]: Soviet Mathematics Doklady, v. 4, p. 1035–1038.

- Tikhonov, A.N., 1963b, Regularization of incorrectly posed problems [in Russian]: Soviet Mathematics Doklady, v. 4, p. 1624–1637.
- Townley, L., and Wilson, J., 1985, Computationally efficient algorithms for parameter estimation and uncertainty propagation in numerical models of groundwater flow: Water Resources Research, v. 21, no. 12, p. 1851–1860.
- Walker, R.G., 1984, General introduction—Facies, facies sequences and facies models, *chap. 1 of* Walker, R.G., Facies models (2d ed.): Toronto, Geological Association of Canada, p. 1–9.
- Walker, R.G., 1992, Facies, facies models and modern stratigraphic concepts, *chap. 1 of* Walker, R.G., and James, N.P., Facies models—Response to sea level change: St. Johns, Newfoundland, Geological Association of Canada, p. 1–14.
- Westenbroek, S., Doherty, J., Walker, J., Kelson, V., Hunt, R., and Cera, T., 2012, Approaches in highly parameterized inversion—TSPROC, a general time-series processor to assist in model calibration and result summarization: U.S. Geological Survey Techniques and Methods, book 7, chap. C7, xx p.