Linear Algebra 1

Exercise Number 1

1) Use induction to prove:

a)
$$\frac{1^2}{1 \cdot 3} + \frac{2^2}{3 \cdot 5} + \ldots + \frac{n^2}{(2n-1)(2n+1)} = \frac{n(n+1)}{2(2n+1)}$$

b)
$$2 + \frac{3}{(1 \cdot 2)^2} + \frac{5}{(2 \cdot 3)^2} + \dots + \frac{2n+1}{n^2(n+1)^2} = 3 - \frac{1}{(n+1)^2}$$

- 2) In the set of complex numbers C define the following numbers $z_1 = 2 i$, $z_2 = 3i$, $z_3 = 2i$ -1+3i and $z_4=5$. Compute the following numbers: $4z_1-5z_2+2\bar{z}_3-z_4,\ z_1\bar{z}_2,\ \frac{z_3}{z_1},\ z_1^2,\ \frac{1}{z_3},\ \mathrm{Im}(z_2-z_3)$ $3z_1$), Re $(z_2 - 3z_4)$, $|z_1 + z_2|$, $|z_1 - z_2|$.
 - **3)** Prove the following:

a)
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
 b) $|z_1 z_2| = |z_1| |z_2|$ c) $z\bar{z} = |z|^2$

a)
$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$$
 b) $|z_1 z_2| = |z_1||z_2|$ c) $z\bar{z} = |z|^2$ d) $\overline{z_1 \pm z_2} = \bar{z_1} \pm \bar{z_2}$ e) $\bar{z} = z$ f) $z + \bar{z} = 2\text{Re}(z)$

- 4) Use induction to prove that $|z^n| = |z|^n$ for all $z \in \mathbb{C}$ and all $n \in \mathbb{N}$.
- **5)** a) Prove that $|z|^2 = (\text{Re}z)^2 + (\text{Im}z)^2$.
- b) Use part a) to prove that $|\text{Re}z| \leq |z|$ and $|\text{Im}z| \leq |z|$.