m15_202111_baseline -150 to 50, 300-500 ms difference wave

Load packages and define functions

This section load the packages knitr, markdown, ez, stringr readr, tidyr, and dplyr. It also define a function to compute the standard error of the mean and to calculate the mean, standard deviation and standard error for each condition. ## Load Packages

Function to calculate the standard error of the mean

```
sem = function(x)
{
    sqrt(var(x)/length(x))
}
```

Function to calculate the mean, the standard deviation and the standard error for each condition

data: a data frame varname: the name of a column containing the variable to be summariezed groupnames: vector of column names to be used as grouping variables

Analyse Affix Frequency

Read in and format the data

Then filter into two datasets, one with 2 Relatedness Factors (related, unrelated) and 2 Productivity Factors (high, low) and another with just one factors—Priming Effects for High adn Low productivity calculated by subtracting Related scores from Unrelated.

```
m15_300_500_afx <- read_csv("M15_afxfrq_300_500_bsl_150_50.csv")
m15_diff_afx <- filter(m15_300_500_afx, binlabel == "Priming_High" | binlabel == "Priming_Low")
m15_2by2_afx <- filter(m15_300_500_afx, binlabel != "Priming_High" & binlabel != "Priming_Low")</pre>
```

Add factors relatedness and productivity for the 2-factor dataframe by separating 'binlabel' variable. Recodes the difference wave dataframe by removing the "Priming" part of the binlabel.

```
m15_2by2_afx <-separate(m15_2by2_afx, binlabel, into = c("relatedness", "productivity"), sep = "_")
m15_diff_afx$productivity <- ifelse(m15_diff_afx$binlabel == "Priming_Low", "Low", "High")
m15_diff_afx$binlabel <- NULL # removes binlabel column; no longer needed
```

Separate electrode labels into multiple factors based on *anteriority* and *laterality*. tidyr::separate makes separating columns simple by allowing you to pass an integer index of split position, including negatively indexed from the end of the string.

Run ANOVA

3

5

6

```
# ezDesign(m15_diff_afx_subset, productivity, value, row = laterality, col = anteriority)
m15_diff_afx_aov <- ezANOVA(data = m15_diff_afx_subset, dv = value, wid = ERPset,
                        within = .(anteriority, laterality, productivity))
m15_diff_afx_aov
$ANOVA
                                                                  p p<.05
                               Effect DFn DFd
2
                          anteriority 4 96 3.4081657 0.011886517
3
                           laterality
                                       2 48 5.1218317 0.009634325
4
                         productivity
                                       1 24 3.7247942 0.065511258
              anteriority:laterality 8 192 2.4203654 0.016358679
5
6
            anteriority:productivity
                                      4 96 0.3878594 0.816863007
7
             laterality:productivity
                                       2 48 0.1055398 0.900046913
8 anteriority:laterality:productivity 8 192 0.3689474 0.935939169
          ges
2 0.0107934649
3 0.0068495013
4 0.0512693055
5 0.0023599883
6 0.0012250712
7 0.0001027033
8 0.0002555112
$`Mauchly's Test for Sphericity`
                                                              p p<.05
                               Effect
2
                          anteriority 0.0044157513 1.125435e-21
```

laterality 0.6268336943 4.647847e-03

anteriority:laterality 0.0004902955 1.126790e-17

anteriority:productivity 0.0018322443 1.134203e-25

```
laterality:productivity 0.7911664741 6.762084e-02
8 anteriority:laterality:productivity 0.0081574352 3.270976e-08
$`Sphericity Corrections`
                               Effect
                                            GGe
                                                     p[GG] p[GG]<.05
                                                                            HFe
2
                          anteriority 0.3102510 0.06666460
                                                                      0.3188311
3
                           laterality 0.7282439 0.01877613
                                                                    * 0.7632394
5
               anteriority:laterality 0.3564126 0.07647378
                                                                      0.4094963
6
             anteriority:productivity 0.3160856 0.58677269
                                                                      0.3255741
              laterality:productivity 0.8272438 0.86444442
7
                                                                     0.8807627
8 anteriority:laterality:productivity 0.4631664 0.81613660
                                                                      0.5582332
       p[HF] p[HF]<.05
2 0.06525662
3 0.01722445
5 0.06701650
6 0.59280363
7 0.87680759
8 0.84984576
```

Plot Means

Summarise the data

```
df2_afx <- data_summary(m15_diff_afx_subset, varname="value",</pre>
                    groupnames=c("productivity", "laterality", "anteriority"))
# df2_afx$sem <- NULL
head(df2_afx)
  productivity laterality anteriority
                                         value
                                   C -0.92260 1.833008 0.6480661
1
         High
                       0
         High
                       0
                                  CP -1.18000 1.945685 0.6879037
2
3
         High
                       0
                                  F -0.54064 1.674559 0.5920460
4
                                 FC -0.80332 1.766818 0.6246644
         High
                       0
5
                                  P -1.44484 2.234579 0.7900429
```

Barplot with SD error bars

High

High

6

The function geom_errorbar() can be used to produce the error bars

0

```
library(ggplot2)
# Default bar plot
p<- ggplot(df2_afx, aes(x=anteriority, y=value, fill=productivity)) +</pre>
  geom_bar(stat="identity", color="black",
           position=position_dodge()) +
 facet_grid(.~laterality) +
  geom_errorbar(aes(ymin=value-sem, ymax=value+sem), width=.2,
                 position=position_dodge(.9))
p+labs(title="Priming as a function of Productivity and Scalp Topography", x="Productivity", y = "micro
   theme classic() + scale fill grey()
```

C -0.70972 1.443597 0.5103886

Analyse Stem to Wholeword Frequency Ratio (Median Split)

Read in and format the data

Then filter into two datasets, one with 2 Relatedness Factors (related, unrelated) and 2 Productivity Factors (high, low) and another with just one factors—Priming Effects for High adn Low productivity calculated by subtracting Related scores from Unrelated.

```
m15_300_500_med <- read_csv("m15_medsplt_300_500_bsl_150_50.csv")
m15_diff_med <- filter(m15_300_500_med, binlabel == "Priming_High" | binlabel == "Priming_Low")
m15_2by2_med <- filter(m15_300_500_med, binlabel != "Priming_High" & binlabel != "Priming_Low")

Add factors relatedness (and productivity for 2 x 2 df) by recoding 'binlabel' variable
m15_2by2_med <-separate(m15_2by2_med, binlabel, into = c("relatedness", "productivity"), sep = "_")
m15_diff_med$productivity <- ifelse(m15_diff_med$binlabel == "Priming_Low", "Low", "High")
m15_diff_med$binlabel <- NULL # removes binlabel column; no longer needed
```

Separate electrode labels into multiple factors based on *anteriority* and *laterality*. tidyr::separate makes separating columns simple by allowing you to pass an integer index of split position, including negatively indexed from the end of the string.

```
m15_diff_med <- m15_diff_med %>%
    separate(chlabel, into = c('anteriority', 'laterality'), sep = -1, convert = TRUE)
m15_diff_med <- m15_diff_med %>%
    mutate(laterality = replace(laterality, laterality == "Z", 0)) # Replacing "Z" value with 0
```

```
#Extract 5 x 3 matrix for analysis (F3 to P4)
m15_diff_med_subset <- filter(m15_diff_med, laterality == 0 & anteriority!= "0" |
                                 laterality == 3 | laterality == 4)
##Run ANOVA
# ezDesign(m15_diff_med_subset, productivity, value, row = laterality, col = anteriority)
m15_diff_med_aov <- ezANOVA(data = m15_diff_med_subset, dv = value, wid = ERPset,
                        within = .(anteriority, laterality, productivity))
m15 diff med aov
$ANOVA
                               Effect DFn DFd
                                                                   p p<.05
                          anteriority 4 96 3.006745074 0.02197021
2
                           laterality
3
                                        2 48 4.870856530 0.01185872
4
                         productivity 1 24 0.004043669 0.94982349
5
              anteriority:laterality 8 192 2.456366730 0.01487161
6
             anteriority:productivity 4 96 0.688855566 0.60141478
7
             laterality:productivity 2 48 4.405823165 0.01751026
8 anteriority:laterality:productivity 8 192 0.142993735 0.99703700
2 1.001284e-02
3 6.858902e-03
4 5.961797e-05
5 2.410285e-03
6 1.412322e-03
7 6.061745e-03
8 1.693543e-04
$`Mauchly's Test for Sphericity`
                               Effect
                                                 W
2
                          anteriority 0.0040471522 4.537326e-22
3
                           laterality 0.5588469677 1.241276e-03
5
               anteriority:laterality 0.0004707785 8.051844e-18
6
             anteriority:productivity 0.0069137418 1.187173e-19
7
              laterality:productivity 0.8546900469 1.643612e-01
8 anteriority:laterality:productivity 0.0015600138 1.310658e-13
$`Sphericity Corrections`
                                                     p[GG] p[GG]<.05
                               Effect
                                            GGe
                                                                           HFe
2
                          anteriority 0.3093180 0.08571510
                                                                     0.3177541
3
                           laterality 0.6938888 0.02384134
                                                                   * 0.7229374
5
               anteriority:laterality 0.3457137 0.07536932
                                                                    0.3952495
             anteriority:productivity 0.3428351 0.45668391
6
                                                                     0.3566661
7
              laterality:productivity 0.8731261 0.02243291
                                                                   * 0.9359391
8 anteriority:laterality:productivity 0.3837447 0.93687370
                                                                     0.4464213
       p[HF] p[HF]<.05
2 0.08433886
3 0.02230741
5 0.06633945
6 0.46194891
7 0.01984092
```

8 0.95468920

```
##Plot Means ### Summarise the data
```

```
productivity laterality anteriority
                                                  sd
                                      value
                                C -1.35976 2.049114 0.7244712
         High
                      0
2
         High
                      0
                               CP -1.48068 2.177337 0.7698049
3
         High
                     0
                                F -1.07200 1.530590 0.5411451
4
                      0
                               FC -1.20204 1.762030 0.6229716
         High
5
         High
                      0
                                P -1.71800 2.509986 0.8874141
6
         High
                      3
                                 C -1.03380 1.595975 0.5642623
```

Barplot with SD error bars

The function geom_errorbar() can be used to produce the error bars

Planned Comparisons

This section explores the significant "Laterality x Parsability" interaction obtained for the "m15_diff_med_subset" df above, by doing a one-factor ANOVA test (high vs low parsability) for each of the three levels of laterality.

Effect of Parsability in the LH

Effect of Parsability at the Midline

Effect of Parsability in the RH

\$ANOVA

Effect DFn DFd F p p<.05 ges 2 productivity 1 24 0.7196636 0.4046362 0.01409672