Printed Pages:

BCA / D-12 MATHEMATICAL FOUNDATIONS-III Paper-BCA-236

Time allowed: 3 hours Maximum marks: 80 **Note**: Attempt **five** questions in all, selecting **one** question from each section. All questions carry equal marks. **Compulsory question** 1. (a) Differentiate x^x w.r.t. x. 2 (b) Find the nth derivative of x^n . 2 (c) Find the point on the curve $x = a (\theta + \sin \theta)$; $Y = a (1 - \cos \theta)$ where the tangent is parallel to y-axis. 2 2 (d) State maclaurin's Theorem with Cauchy's form of remainder after n terms (e) Find the asymptote to the curve $y = 1 + e^x$, parallel to x-axis. 2 (f) Find the radius of curvature for the curve $r^{2} = a^{2} - b^{2} + a^{2}b^{2}$ 2 (g) Define cusp and point of inflexion. 2 (h) Evaluate $\lim (1/x-\csc x)$ $x \rightarrow 0^+$ 2 Section-I (a) if $x = \cos^{-1} (1/\sqrt{1+t^2})$ and $y = \sin^{-1} (t/\sqrt{1+t^2})$; Find dy/dx. 8 (b) $x^{\sin x}$ w.r.t. $(\sin x)^x$. 8 (a) Find the nth derivative of $\frac{x^2}{(x-1)^3}$ (x+1) 8 (b) if $y = [\log(x + \sqrt{1 + x^2})]^2$; prove that $(1 + x^2)y_{n+2} + (2n+1)xy_{n+2} + n^2y_n = 0$ 8 **Section-II** 4. (a) Tangents are drawn from the origin to the curve $y = \sin x$. prove that their points of contact lie on the curve $x^2 y^2 = x^2 - y^2$. 8 (b) Show that the curve $r^m = a^m \sin m \theta$ and $rm = a^m \cos m \theta$ cut each other Orthogonally 8 (a) if $f(x) = x^3 - 6x^2 + 7$, find the value of f(21/20) by Taylor's theorem. 8 (b) Evaluate: $\lim (1/x^2 - \cot^2 x)$ $x\rightarrow 0$ 8 **Section-III** (a) Find all the asymptotes of the curve: $2x^3 - x^2y - 2xy^2 + y^3 + 2x^2 - 7xy + 3y^2 + 2x + 2y + 1 = 0$ 8 (b) Find the asymptotes of r sin θ 2 cos 2 θ 8 Show that the curve $y^2 - 2x^2y + x^4 - x^5 = 0$ has a single cusp of second species 7. At the origin. 8 (b) Find the points of inflexion on the curve : $Y (a^2 + x^2) = x^3$. 8

Section-IV

8.	(a)	Find the radius of curvature for the curve $r^n = a^n \cos n \theta$.	8
	(b)	Find the coordinates of the centre of curvature at any point (x, y) of a parabola	
		$y^2 = ax$.	8
9.	(a)	Trace the curve = $y^2 (a^2 + x^2) = x^2 (a^2 - x^2)$.	8
	(b)	Trace the curve $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta), -\pi \le \theta \le \pi$.	8