SUMMER - 2023

UNIT-1

Q.1. a) Solve (D² + 5D + 6)
$$y = e^{-2x} \sin 2x + 4x^2 e^x$$
 [6]

b) Solve by method of variation of parameters $\frac{d^2y}{dx^2} + 4y = 4\sec^2(2x)$ [7]

Q.2. a) Solve
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{e^x}$$
 [6]

b) Solve
$$(3x+2)^2 \frac{d^2y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y = 3x^2 + 4x + 1$$
 [7]

UNIT-2

Q.3. a) Find Laplace transform of t
$$e^{3t} \sin 2t$$
 [4]

b) Find
$$f(t)$$
 if $\bar{f}(s) = lag \frac{(s+b)}{(s+a)}$ [5]

c) If
$$L{J_0(t)} = \frac{1}{\sqrt{1+s^2}}$$
 show that $\int_0^\infty J_0(t)dt = 1$ [5]

Q.4. a) Evaluate
$$\int_{0}^{\infty} \frac{e^{-t} - e^{-3t}}{t} dt$$
 [4]

b) Use convolution theorem to find Inverse. Laplace transform of $\frac{1}{(s+1)(s^2+1)}$ [5]

$$f(t) = \frac{t}{a}$$
 0 < t < a = $\frac{1}{a}(2a - t)$ a < t < 2a

UNIT-3

Q.5. a) Solve
$$\frac{d^2y}{dt^2} + \frac{dy}{dt} + 5y = e^{-t} \sin t$$
 [7]
Y (0) = 0, y'(0) = 1

b) Express the function

$$f(x) = 1 \qquad for |x| \le 1$$

0 for
$$|x| > 1$$

as a Fourier integral. Hence evaluate

$$\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda$$

Q.6. a) Solve
$$\frac{d^2y}{dt^2} + 9y = 18t$$
 if y (0) = 0, & $y(\frac{\pi}{2}) = 0$ [7]

[6]

[6]

b) Find the Fourier transform of

$$f(x) = 1$$
 $|x| \le 1$
= 0 $|x| > 1$

Hence evaluate

$$\int_{0}^{\infty} \frac{\sin x}{x} dx$$

UNIT-4

Q.7. a) Solve

i) x p tan y =
$$q - 1$$
 [4]

ii)
$$(mz - ny)p + (nx - lz) q = ly - mx$$
 [4]

b) Fit a second degree parabola to the following data by least square method. [5]

	1.0						
y	1.1	1.3	1.6	2.0	2.7	3.4	4.1

Q.8. a) Solve i)
$$p^2 - pq = 1 - z^2$$
 [4]

ii)
$$\left(\frac{y-z}{yz}\right)p + \left(\frac{z-x}{zx}\right)q = \frac{x-y}{xy}$$
 [4]

b) Find the equations of the lines of regression for the data

		64						
У	126	125	139	145	165	152	180	208

UNIT-5

Q.9. a) Find the analytic function

[5]

$$F(z) = u + iv$$
 if $\frac{u}{v} = \cot y$

b) Expand
$$f(z) = \frac{1}{z^2 - 3z + 2}$$
 in the region

- i) |z| < 1
- ii) 1 < |z| < 2

Q.10. a) If f(z) = u + iv is an analytic function and $(u - v) = (x - y)(x^2 + 4xy + y^2)$ find f(z) in terms of z. [7]

b) Find the bilinear transformation which maps the points z = 1, i, -1 onto the points w = 0, $1,\infty$. [6]

UNIT-6

Q.11. a) Find div of \bar{f} and curl \bar{f} where \bar{f} = grad (x³ + y³ + z³ – 3xyz) [7]

b) Evaluate the line integral $\int_{C} \bar{f} \cdot dr$ where c is the circle x^2 +

$$y^2 = 1$$
 in xy-plane and $\bar{f} = (2x^2 - y^2)i + (x^2 + y^2)j$ [7]

Q.12. a) Show that $\bar{f} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ is irrotational. Hence find a scalar function ϕ such that $\bar{f} = \nabla \phi$

[7]

b) Find the directional derivative of $\phi = e^{2x}$ cas yz at the origin in the direction of the tangent to the curve $x = a \sin t$, $y = a \cos t$, z = at at $t = \pi/4$.