

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

6 2 4 9 4 9 4 4 8 6

FURTHER MATHEMATICS

9231/31

Paper 3 Further Mechanics

May/June 2022

1 hour 30 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use $10 \,\mathrm{m\,s^{-2}}$.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

BLANK PAGE

A particle of weight $10\,\mathrm{N}$ is attached to one end of a light elastic string. The other end of the string is attached to a fixed point A on a horizontal ceiling. A horizontal force of $7.5\,\mathrm{N}$ acts on the particle. In the equilibrium position, the string makes an angle θ with the ceiling (see diagram). The string has natural length $0.8\,\mathrm{m}$ and modulus of elasticity $50\,\mathrm{N}$.

(a)	Find the tension in the string.	[2]
<i>a</i> .		
(b)	Find the vertical distance between the particle and the ceiling.	[3]
		•••••

between OA and the downward vertical is equal to α , where	· ·
perpendicular to the string in an upwards direction, with a path in a vertical plane. The string first goes slack when i through O .	a speed $\sqrt{3ga}$. It then moves along a circle t makes an angle θ with the upward version
Find the value of $\cos \theta$.	

A particle <i>P</i> is moving in a horizontal straight line. Initially <i>P</i> is at the point <i>O</i> on the line and is moving with velocity $25 \mathrm{ms^{-1}}$. At time <i>t</i> s after passing through <i>O</i> , the acceleration of <i>P</i> is $\frac{4000}{(5t+4)^3} \mathrm{ms^{-1}}$ the direction <i>PO</i> . The displacement of <i>P</i> from <i>O</i> at time <i>t</i> is <i>x</i> m.				
and an expression for x in terms of t .	[5			

An object is composed of a hemispherical shell of radius 2a attached to a closed hollow circular cylinder of height h and base radius a. The hemispherical shell and the hollow cylinder are made of the same uniform material. The axes of symmetry of the shell and the cylinder coincide. AB is a diameter of the lower end of the cylinder (see diagram).

(a)	Find, in terms of a and h , an expression for the distance of the centre of mass of the object from AB . [4]

The object is placed on a rough plane which is inclined to the horizontal at an angle θ , where $\tan \theta = \frac{2}{3}$. The object is in equilibrium with AB in contact with the plane and lying along a line of greatest slope of the plane.

(b) Find the set of possible values of h, in terms of a.

[4]

A light inextensible string AB passes through two small holes C and D in a smooth horizontal table where AC = 3a and DB = a. A particle of mass m is attached at the end A and moves in a horizontal circle with angular velocity ω . A particle of mass $\frac{3}{4}m$ is attached to the end B and moves in a horizontal circle with angular velocity B0. AC1 makes an angle B2 with the horizontal (see diagram).

Find the value of k .	[7]

••••••
•••••
•••••
•••••
•••••
••••••
••••••
• • • • • • • • • • • • • • • • • • • •
•••••

rest	eres are on a horizontal surface. Sphere A is travelling with speed u towards sphere B which is a . The spheres collide. Immediately before the collision, the direction of motion of A makes an anglith the line of centres. The coefficient of restitution between the spheres is $\frac{1}{2}$.
(a)	Show that the speed of <i>B</i> after the collision is $\frac{3u\cos\alpha}{2(1+k)}$ and find also an expression for the speed of <i>A</i> along the line of centres after the collision, in terms of <i>k</i> , <i>u</i> and α . [4]

After the collision, the kinetic energy of A is equal to the kinetic energy of B.

(b) Given that $\tan \alpha = \frac{2}{3}$, find the possible values of k. [5]

Particles P and Q are projected in the same vertical plane from a point O at the top of a cliff. The height of the cliff exceeds $50 \, \text{m}$. Both particles move freely under gravity. Particle P is projected with

Write they	e down expression double collide and hence	ons, in terms	of T for t				
		e show that	$4uT = 21\sqrt{2}$	he horizont $\sqrt{5}(T+1)$.	al displacen	nents of P ar	nd Q from
		•••••		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••••
		•••••		• • • • • • • • • • • • • • • • • • • •			
		•••••		•••••		•••••	
•••••							
•••••	•••••	•••••	•••••	•••••		•••••	••••••
•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •

••••••				•••••	
	•••••	•••••			
,				•••••	
•••••				•••••	
	zontal and verti	cal displacemen	its of the particles	from O when they	collide.
find the hori					
Find the hori					
Find the hori					
Find the hori					
ind the hori					
Find the hori					
Find the hori					

Additional page

If you use the following page to complete the answer to any question, the question number must be clear shown.	ly
	·
	·
	·
	· • •
	· • •
	.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.