

ORIONLIFESPAN[™] M E G

Opening **NEW FRONTIERS** in clinical and research MEG

LifeSpan Functional Imaging from Children to Adults Innovative Advantages:

- Patented, two-in-one MEG system with dual-helmet dewar
- High signal-to-noise ratio DROS SQUIDs
- Simultaneous acquisition from both helmets (hyperscanning) available
- Single-helmet, either adult or pediatric, option available
- Simultaneous, low-noise, high-density EEG
- Zero-loss helium recycling with no downtime
- Powered by the CURRY[™] neuroimaging platform, the world's standard software for MEG/EEG analysis
- MEG/EEG synchronized video recording

FDA (USA) and KFDA (Korea) cleared for clinical use.

DUAL-HELMET MEG

ORIONLIFESPAN MEG

System advantages

- Patented rotating dual-helmet dewar for adult and pediatric patients (adult/adult, pediatric/pediatric and single helmet options available)
- 186/138 adult/pediatric MEG sensors (250/200 option available)
- Effective environmental noise reduction reference channel array
- Designed to fit within a standard-sized (3 x 4 m) Magnetically Shielded Room (MSR) For Hyperscanning or non-rotating installations, a 2.5 x 5 m MSR is recommended
- Specially designed adjustable bed system for adult and pediatric patients
- Fully integrated with the CURRY Neuroimaging Suite for both acquisition and data analysis.

Sensor advantages

- A new generation of high-sensitivity axial gradiometers to optimize detection of cortical and deep sources
- Patented high-gain Double-Relaxation Oscillation SQUID (DROS) sensors
- Average of sensor sensitivity better than 6 fT_{rms}/ $\sqrt{\text{Hz}}$ in the white-noise regime
- Sampling rate for all channels up to 10 kHz, with resolution of 24 bits
- 32 to 256 channels of integrated simultaneous EEG, plus 4 to 16 bipolar/auxiliary analog channels.

Helium Recycling advantages

- Continuous reliquification of helium with no refilling by the user required. Top-ups, if required, will be done annually by Compumedics.
- Closed-loop system minimizes operating costs and maintenance requirements
- MEG available 24/7 for acquisitions. No downtime.

2 MEGs

Minimizes Footprint Minimizes Costs Maximizes ROI

ZERO-LOSS HELIUM RECYCLING

24/7 Uptime No Refilling **Minimizes Operational Cost**

186/138 Adult/Pediatric MEG Channels

Axial Gradiometers DROS Sensors

250/200 **High-Density Option**

> UP TO 256 EEG **Fully Synchronized**

EEG Channels

Orion LifeSpan™ **Key Advantages**

Patented Rotating Dual-Helmet Adult/Pediatric Dewar

- Two MEG systems in one MSR to minimize footprint and maximize flexibility
- Optimum data quality across the entire patient's lifespan, not only the adults
- Increased patient population maximizes return on investment
- Ability to record from both MEG helmets simultaneously is available

ORIONLIFESPAN* (11) Adult helmet view

Patented SQUID Sensing System

- DROS sensors and 2nd generation axial gradiometers
- Higher signal sensitivity
- Reduced impact from environmental interference

Fully Integrated EEG

- 32, 64, 128 or 256 channels available
- A variety of cap sizes for speedy, consistent application of electrodes
- Synchronized to MEG acquisition

Patented Zero-Loss Helium Recycling

- 100% system availability - Zero cryogen costs
- No time or labor for refilling

Fully Integrated CURRY™ Software

- Advanced acquisition/analysis neuroimaging suite
- Clinical MEG/EEG standard for source analysis and multimodal integration
- Extensive pre-surgical planning tools

Pediatric helmet view

CURRY[™] Acquisition and Analytics Software Platform **Advantages**^

- Optimized for 64-bit, Windows OS 10
- Intuitive user interface
- Co-registration of EEG & MEG, with MRI, fMRI, CT, SPECT, PET, DTI
- CURRY integrated with STIM2, including eloquent cortex evaluation
- Integrated synchronized video
- Individualized head models for MFG. FFG and combined analysis including both individualized BEM and FEM
- Complete dipole. CDR. statistics modules
- User-friendly pre-surgical planning module
- Maximum memory access for rapid processing of large data files (64 bit native application)
- Suitable for all applications (research, clinical)
- Enhanced connectivity with other hardware and software (e.g. Free Surfer, Matlab™)
- sEEG analysis module

Talaraich grid surgical planning

Individualized finite element model

intensity proj.

Magnetoencephalography (MEG) and CURRY™ - A long history together

The CURRY Neurolmaging platform and MEG have a history stretching back over 30 years. CURRY was first conceived of in the late 1980s as an MEG analysis tool. Software development by its core engineering architects has continued uninterrupted until today.

Already by 1999 studies were being published describing the application of CURRY to cortical localization of auditory, visual and tactile stimulation based on EEG and MEG activity. Localizing epileptic discharges, identifying functionally critical areas of the brain controlling language and memory testing soon followed. Processing algorithms were validated for evaluation of mild to severe traumatic brain injury.

The early 2000s saw a rapid expansion of the use of CURRY in both the research and clinical communities. The benefits associated with CURRY's ability to integrate MEG with EEG and co-register these high temporal resolution functional imaging data with structural neuroimaging data including MRI, CT, DTI, PET, SPECT and fMRI accelerated the adoption.

Early clinical adopters supported and championed the benefits of the source localization tools, contributing to the development of specific source analysis billing codes for EEG and MEG.

Today, CURRY is the industry-standard software platform for the worldwide clinical MEG community, particularly for those assessing epilepsy. CURRY is certified by the FDA, CE Mark and other regulatory bodies worldwide.

Epilepsy consortium's standard analysis platform

Orion LifeSpan specifications**

SQUID gradiometer

Double relaxation oscillation SQUID (DROS) SQUID sensor type:

with largest voltage output

Material: Based on reliable Nb/AlO_x/Nb junction technology Feedback: External feedback to eliminate inter-channel crosstalk

Heater: Integrated Pd thin-film heater to remove trapped flux

Pickup coil: High-balancing first-order axial gradiometer baseline

50 mm; Adult winding 1:1 (20 mm diameter), Pediatric winding, 2:2 (16 mm diameter)

Guaranteed sensitivity: Better than 10 fT_{rms}/ $\sqrt{\text{Hz}}$ white noise

Sensor Array

Standard density: 186 adult / 138 pediatric sensors Max sensor density: 250 adult/200 pediatric sensors

Noise cancellation: By reference array

SQUIDs and pickup coils mounted within the Sensor-in-vacuum:

dewar vacuum space for reduced cryogenic noise

Field component: Measurement of dB_r/dr

(r-axis is normal to local head surface)

Dewar

Dewar structure: Dual-helmet, optimized for adult and

pediatric measurements

Dewar positioning: Supine measurement

180 degree rotation to switch between

adult and pediatric position

Helium reliquification: Continuous operation with 24/7 uptime

Tail thermal gap: < 20 mm

SOUID electronics

DC bias, direct readout (no modulation) Flux-locked loop: Automatic control of SQUID operation using

Interference-free optical fiber-based control

DC to 2 kHz based on sampling rate Bandwidth:

Acquisition

Control:

A/D conversion: Max 10 kHz/channel.

DC-2 kHz maximum passband for MEG and EEG.

24 bit resolution

Synchronized EEG acquisition, 32-256 channels

Workstation computers/32-inch color LCD Computer:

monitor Nvidia graphics card (3D Stereoscopy) **

CPU: 3 GHz, Intel i7 Windows-based, 16 GB RAM

Mass data storage: 1 terabyte SSD main drive and secondary drive**

Real-time archivable synchronized MEG/EEG and video

CURRY Neuroimaging Software

- System control of SQUID operation, FLL (offset voltage, integrator)

- Real-time display of MEG/EEG Signals

- Signal processing of baseline correction, digital filtering, artifact

suppression, manual/automated event marking

- Dipole and CDR source modeling

- Pre-surgical planning

Stimulus delivery

- STIM2 with auditory, visual, electric stimulation

Measurement accessories

High-accuracy electrode digitization

Head position monitor: 5 circular coils integrated with EEG Cap

Patient monitor: 1 CCD camera and 1 LCD monitor

Communication: Voice communication using a noise-free

microphone and speaker

Magnetically shielded room

Structure: 2-layer mu-metal and 1-layer aluminum

Inner dimensions: 4 m (L) x 3 m (W) x 2.4 m (H).

may be modified upon site evaluation.

Wall thickness of 200-250 mm.

No door threshold (equal height Door:

with measurement room)

Shielding factors: 32 dB @ 0.01 Hz. 38 dB @ 0.1 Hz.

56 dB @ 1 Hz, 78 dB @ 10 Hz

and 94 dB @ 100 Hz

Illumination: Low-noise DC lighting

www.orionmeg.com www.compumedicsneuroscan.com www.compumedics.com

Specifications subject to change without notice. Please contact your Compumedics Neuroscan representative for the latest technical information, product availability and pricing. Compumedics Neuroscan Orion LifeSpan MEG, CURRY, STIM, COMPUMEDICS and the Compumedics logo are all trademarks of Compumedics.

^{**} Delivered systems will have equal or better specifications