윈도우 시스템 구조

proneer

proneer@gmail.com

http://forensic-proof.com

Security is a people problem...

1. 물리메모리 (Physical Memory)

2. 메모리보호 (Memory Protection)

3. 가상메모리 (Virtual Memory)

4. 사용자모드와 커널모드 (User Mode and Kernel Mode)

forensicinsight.org Page 2 / 50

Physical Memory

- Physical Address Extension (PAE)
- Data Execution Prevention (DEP)
- Address Windowing Extensions (AWE)
- Pages, Page Frames and Page Frame Numbers

forensicinsight.org Page 3 / 50

물리메모리

소개

■ 물리 메모리 확인 방법

```
전 관리자: C:\Windows\\system32\\cmd.exe

C:\Wisers\\proneer\>systeminfo \ findstr "메모리"
총 실제 메모리: 3,503MB
사용 가능한 실제 메모리: 1,392MB
가상 메모리: 최대 크기: 7,005MB
가상 메모리: 사용 가능: 4,737MB
가상 메모리: 사용 중: 2,268MB

C:\Wisers\\proneer\>
```

- BIOS의 POST 작업에서 확인된 메모리와 비교
- 시스템 등록정보를 통해서도 확인 가능

forensicinsight.org Page 4 / 48

물리 주소 확장 (PAE, Physical Address Extension)

■ 운영체제 버전, 하드웨어 플랫폼, 구성 방식에 따라 접근 가능한 메모리 크기

Version	Limit for 32-bit Hardware	Limit for 64-bit Hardware
Windows XP Home, Mediacenter	4 GB	N/A
Windows XP Professional	4 GB	128 GB
Windows Server 2003 Standard	4 GB	32 GB
Windows Server 2003 R2 Enterprise, Datacenter	64 GB	1 TB
Windows Vista Business, Enterprise, Ultimate	4 GB	128 GB
Windows Server 2008 Standard, Web	4 GB	32 GB
Windows Server 2008 Enterprise, Datacenter	4 GB	2 TB
Windows 7 Home Premium	4 GB	16 GB
Windows 7 Pro, Enterprise, Ultimate	4 GB	192 GB
Windows Server 2008 R2 Standard	N/A	32 GB
Windows Server 2008 R2 Enterprise	N/A	2 TB

forensicinsight.org Page 5 / 48

물리메모리

물리 주소 확장 (PAE, Physical Address Extension)

- 물리적 주소 확장
 - 물리적 주소 지정 비트를 32비트에서 36비트로 확장 (4GB → 64GB)
 - 접근 가능한 물리 주소 공간 증가
- 윈도우 Vista 이후의 PAE 설정
 - **bcdedit** (BCD Boot Configuration Data)

forensicinsight.org Page 6 / 48

물리메모리

물리 주소 확장 (PAE, Physical Address Extension)

■ 윈도우 2003 이전에서 PAE 설정

- boot.ini 파일에 /PAE 스위치 추가
- 증가된 주소 공간에 접근하기 위해서는 AEW(Address Windowing Extensions) API 사용

• PAE로 확장된 공간은 보통 램 디스크(RAM Disk)로 활용

forensicinsight.org Page 7 / 48

데이터 실행 방지 (DEP, Data Execution Prevention)

- 데이터 실행 방지
 - 스택, 데이터 세그먼트, 힙과 같은 메모리 페이지를 실행 불가능하도록 설정
 - 버퍼 오버플로우과 같은 공격 방지

하드웨어 강제 DEP 설정 비트	CPU 제조사	설명
NX	AMD	No-eXecute page-protection
XD	Intel	eXecution Disable bit

■ 하드웨어 강제(Hardware-enforced)

- CPU의 NX/XD 비트로 설정하며 OS와 사용자 애플리케이션 모두에서 사용 가능
 - ✓ NX/XD 비트를 지원하는 CPU에서만 동작
- PAE가 동작할 때만 설정 가능(NX/XD 비트를 사용할 경우 자동으로 PAE로 부팅)
- 소프트웨어 강제(Software-enforced)
 - 비쥬얼 스튜디오의 /SafeSEH 링커 옵션(SHE, Structured Exception Handler)
 - 소프트웨어 예외 처리시 컴파일된 PE 이미지의 예외 처리자에 포함되어 있는지 추가 검사

forensicinsight.org Page 8 / 48

데이터 실행 방지 (DEP, Data Execution Prevention)

- 윈도우 Vista/7, 서버 2008에서 하드웨어 강제 DEP 설정
 - bcdedit /set nx AlwaysOn

- 윈도우 서버 2003 이하에서 하드웨어 강제 DEP 설정
 - boot.ini 파일의 /noexecute 스위치 추가

forensicinsight.org Page 9 / 48

물리메모리

x

데이터 실행 방지 (DEP, Data Execution Prevention)

■ 시스템 속성 → 고급 → 성능

시스템 속성

forensicinsight.org Page 10 / 48

주소 윈도잉 확장 (AWE, Address Windowing Extensions)

- 확장된 메모리 접근 API
 - 물리 주소 확장(PAE)에 의해 확장된 메모리를 접근하기 위한 API (winbase.h)
- Lock Pages in Memory
 - 사용자 응용프로그램의 경우 가상 메모리로 데이터를 페이징하지 않도록 "Lock Pages in Memory" 가 설정되야 함

AWE Routine	Description	
VirtualAlloc()	Reserves a region in the linear address space of the calling process	
VirtualAllocEx()	Reserves a region in the linear address space of the calling process	
AllocateUserPhysicalPages()	Allocate pages of physical memory to be mapped to linear memory	
MapUserPhysicalPages()	Map allocated pages of physical memory to linear memory	
MapUserPhysicalPagesScatter()	Map allocated pages of physical memory to linear memory	
FreeUserPhysicalPages()	Release physical memory allocated for use by AWE	

forensicinsight.org Page 11 / 48

물리메모리

페이지, 페이지 프레임, 페이지 프레임 번호

■ 페이지(Page)

- 가상 주소 공간에서 연속된 영역
- IA-32 프로세스에서 페이지 크기 : 4KB, 2MB, 4MB (보통 4KB)
- 페이지와 연결된 물리적인 위치는 존재하지 않음
- 페이지는 메모리 또는 디스크 상에 존재

■ 페이지 프레임(Page Frame)

• 페이지가 램이 존재하고 있을 때, 페이지의 물리메모리 상의 위치

■ 페이지 프레임 번호 (PFN, Page Frame Number)

• 페이지 프레임의 물리메모리 위치는 페이지 프레임 번호로 표현

forensicinsight.org Page 12 / 48

물리메모리

페이지, 페이지 프레임, 페이지 프레임 번호

- 20비트 PFN
 - 페이지 크기가 4 KB이고 PAE가 비활성화일 경우, PFN은 20바이트
 - 예) 0x12345
- 최하위 12비트는 0
 - 예) 0x12345 0x12345000
- 상위 20바이트 PFN 주소에 항상 페이지 크기를 곱

forensicinsight.org Page 13 / 48

Memory Protection

- Segmentation
- Paging
- Linear to Physical Address Translation

forensicinsight.org Page 14 / 50

메모리 보호 소개

- 운영체제와 사용자 애플리케이션의 경계는 하드웨어 기반 매커니즘에 의존
- IA-32 프로세스의 메모리 보호 기법
 - 페이징 > 세그먼트
- 4개의 링 모델 → 2개의 링 모델
 - 관리자 레벨(Supervisor Level) 커널 모드
 - 사용자 레벨(User Level) 사용자 모드
- U/S 비트
 - PDE, PTE에서 커널/사용자 모드의 구분은 U/S 비트를 통해 이루어짐

forensicinsight.org Page 15 / 48

메모리 보호 소개

forensicinsight.org Page 16 / 48

세그멘테이션 (Segmentation)

- 세그먼트는 GDT(Global Descriptor Tale)에 정의
- **GDTR 레지스터** : GDT의 베이스 주소와 크기 저장
- rM 0x100 → descriptor register 확인

```
kd> rM 0x100
gdtr=8003f000 gdt1=03ff idtr=8003f400 idt1=07ff tr=0028 1dtr=0000
LiveKdD+0x32fd:
f8a852fd eb30 jmp LiveKdD+0x332f (f8a8532f)
```

```
kd> r gdtr
gdtr=8003f000
kd> r gdt1
gdt1=000003ff
```

• GDT 시작 주소 : 0x8003f000

• GDT 크기: 1,023 바이트(0x3FF)

forensicinsight.org Page 17 / 48

세그멘테이션 (Segmentation)

▪ GDT 내용 확인

```
kd> d 0x8003f000 L3FF
8003£000
                            00
                               00
                                   00-ff ff
                                             00 00 00 9b cf
8003f010
                            93
                               сf
                                   00-ff
                                             00
                                                00
8003f020
                                                       8ь 00
                            £3
                               сf
                                   00-ab 20
                                             00
                                                20
                                                              80
8003£030
                               сØ
                                   ff-ff
                                          0£
                                             00
8003£040
                               ОО
                                   00-00
                                          ОО
                                             ОО
                                                           ОО
                                                              ОО
8003£050
                                                                   h...T...h...T...
                               00
                                   80-68
                                          ИΝ
                                                              80
8003£060
                                                                   ......?......
                                                              00
8003£070
                                                                   ...р.............
                                                              80
8003£080
                                                                    . . . . . . . . . . . . . . . . . . .
                            92
                               ОО
                                   80-00
                                          00
                                             00
                                                           00
                                                              00
8003£090
                                                           ЯΩ
                                                              ИΝ
                            ИΝ
                                ИΝ
                                   ии-ии
                                          ИΝ
                                             ИΝ
8003f0a0
                                   82-00
                                                              00
                            89
                                00
                                          ОО
                                             ОО
8003£0b0
                                   00-00
                                                              00
8003f0c0
                            ЯΘ
                                ЯΘ
                                   00-00
                                          ЯΘ
                                             ИΝ
                                                           00
                                                              ЯΘ
8003£0d0
                                                              ОО
8003f0e0
                                                              00
80036060
                                                              00
                                                                    . . . . 0 . . . . . . . . . .
8003f100
                         3a
                            93
                                                                    40
                                   f8-ff
                                             ОО
                                                           40
                                                              £8
8003f110
                            93
                                40
                                   f8-20
                                             03
                                                              00
8003f120
                                   00-30 f1
                                             03
                            00
                               00
                                                              00
8003f130
                                                              ИИ
                     80
                            00
                                   00-40
                                ИИ
```

forensicinsight.org Page 18 / 48

세그멘테이션 (Segmentation)

GDT 내용 확인

```
kd> dg 0 3f8
                                 P Si Gr Pr Lo
               Limit
                                 1 ze an es ng Flags
Sel
       Base
                         Type
0000 00000000 00000000 (Reserved) 0 Nb By Np N1 00000000
0008 00000000 ffffffff Code RE Ac 0 Bg Pg P  N1 00000c9b
0010 00000000 ffffffff Data RW Ac 0 Bg Pg P
                                            N1 00000c93
0018 00000000 ffffffff Code RE Ac 3 Bg Pg P
                                            N1 00000cfb
0020 00000000 ffffffff Data RW Ac 3 Bg Pg P
                                            N1 00000cf3
0028 80042000 000020ab TSS32 Busy 0 Nb By P
                                            N1 00000008b
0030 ffdff000 00001fff Data RW Ac 0 Bg Pg P
                                            N1 00000c93
0038 7ffdf000 00000fff Data RW Ac 3 Bg By P
                                            N1 000004f3
0040 00000400 0000ffff Data RW
                                 3 Nb By P
                                            N1 0000000f2
0048 00000000 00000000 (Reserved) 0 Nb By Np N1 00000000
0050 8054bf80 00000068 TSS32 Av1 0 Nb By P
                                            N1 000000089
0058 8054bfe8 00000068 TSS32 Avl  0 Nb By P
                                            N1 000000089
0060 00022f40 0000ffff Data RW Ac 0 Nb By P
                                            N1 000000093
0068 000b8000 00003fff Data RW
                                 0 Nb By P
                                            N1 000000092
0070 ffff7000 000003ff Data RW
                                 0 Nb By P
                                            N1 00000092
0078 80400000 0000ffff Code RE
                                 0 Nb By P
                                            N1 00000009a
0080 80400000 0000ffff Data RW
                                 0 Nb By P
                                            N1 000000092
0088 00000000 00000000 Data RW
                                 0 Nb By P N1 00000092
0090 00000000 00000000 (Reserved) 0 Nb By Np N1 00000000
0098 00000000 000000000 (Reserved) 0 Nb By Np N1 00000000
00A8 00000000 00000000 (Reserved) 0 Nb By Np N1 00000000
00B0 00000000 000000000 (Reserved) 0 Nb By Np N1 00000000
```

forensicinsight.org Page 19 / 48

세그멘테이션 (Segmentation)

GDT 내용 확인

```
kd> dg 0 3f8
                                 P Si Gr Pr Lo
               Limit
                                 1 ze an es ng Flags
Sel
       Base
                         Type
0000 00000000 00000000 (Reserved) 0 Nb By Np N1 00000000
0008 00000000 ffffffff Code RE Ac 0 Bg Pg P N1 00000c9b
0010 00000000 ffffffff Data RW Ac 0 Bg Pg P
                                            N1 00000c93
0018 00000000 ffffffff Code RE Ac 3 Bg Pg P N1 00000cfb
0020 00000000 ffffffff Data RW Ac 3 Bg Pg P  Nl 00000cf3
                                            N1 00000008b
0028 80042000 000020ab TSS32 Busy 0 Nb By P
                                            N1 00000c93
0030 ffdff000 00001fff Data RW Ac 0 Bg Pg P
0038 7ffdf000 00000fff Data RW Ac 3 Bg By P
                                            N1 000004f3
0040 00000400 0000ffff Data RW
                                 3 Nb By P
                                            N1 0000000f2
0048 00000000 00000000 (Reserved) 0 Nb By Np N1 00000000
0050 8054bf80 00000068 TSS32 Av1 0 Nb By P
                                            N1 000000089
0058 8054bfe8 00000068 TSS32 Avl  0 Nb By P
                                            N1 000000089
0060 00022f40 0000ffff Data RW Ac 0 Nb By P
                                            N1 000000093
0068 000b8000 00003fff Data RW
                                 0 Nb By P
                                            N1 000000092
0070 ffff7000 000003ff Data RW
                                 0 Nb By P
                                            N1 00000092
0078 80400000 0000ffff Code RE
                                 0 Nb By P
                                            N1 00000009a
0080 80400000 0000ffff Data RW
                                 0 Nb By P
                                            N1 000000092
0088 00000000 00000000 Data RW
                                 0 Nb By P N1 00000092
0090 00000000 00000000 (Reserved) 0 Nb By Np N1 00000000
0098 00000000 000000000 (Reserved) 0 Nb By Np N1 00000000
00A8 00000000 00000000 (Reserved) 0 Nb By Np N1 00000000
00B0 00000000 00000000 (Reserved) 0 Nb By Np N1 00000000
```

forensicinsight.org Page 20 / 48

페이징 (Paging)

- 각각의 프로세스는 고유한 CR3 레지스터 값이 할당
- CR3 레지스터
 - 페이지 디렉터리의 PFN 저장 → 프로세스는 고유한 페이지 디렉터리를 가짐
 - KPROCESS의 DirectoryTableBase에 값 저장
 - 커널에 의해 작업 전환 시 수행할 프로세스의 CR3 레지스터가 로드

```
kd> !process 0 0

**** NT ACTIVE PROCESS DUMP ****

PROCESS 825b97c0 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000

DirBase: 00b18000 ObjectTable: e1001cb0 HandleCount: 598.

Image: System

PROCESS 8227bda0 SessionId: none Cid: 0228 Peb: 7ffd4000 ParentCid: 0004

DirBase: 0a400020 ObjectTable: e13c4bf8 HandleCount: 19.

Image: smss.exe
```

Cid(PID), PEB(Process Environment Block), ParentCid(PPID), DirBase(DirectoryTableBase)

forensicinsight.org Page 21 / 48

페이징 (Paging)

■ CR3 레지스터

```
kd> !process 0 0

**** NT ACTIVE PROCESS DUMP ****
PROCESS 825b97c0 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000

DirBase: 00b18000 ObjectTable: e1001cb0 HandleCount: 598.
Image: System
```

```
kd> dt nt!_EPROCESS 825B97C0

+0x000 Pcb : _KPROCESS

+0x06c ProcessLock : _EX_PUSH_LOCK

+0x070 CreateTime : _LARGE_INTEGER 0x0

+0x078 ExitTime : _LARGE_INTEGER 0x0

+0x080 RundownProtect : _EX_RUNDOWN_REF

+0x084 UniqueProcessId : 0x00000004 Void

+0x088 ActiveProcessLinks : _LIST_ENTRY [ 0x8227be28 - 0x8055c1d8 ]
```

```
kd> dt nt!_KPROCESS 825B97C0
+0x000 Header : _DISPATCHER_HEADER
+0x010 ProfileListHead : LIST ENTRY [ 0x825b97d0 - 0x825b97d0 ]
+0x018 DirectoryTableBase : [2] 0xb18000
+0x020 LdtDescriptor : _KGDTENTRY
+0x028 Int21Descriptor : _KIDTENTRY
+0x030 IopmOffset : 0x20ac
+0x032 Iopl : 0 ''
```

forensicinsight.org Page 22 / 48

페이징 (Paging)

- !pte
 - 특정 가상 주소(VA)와 연관된 PDE, PTE 값 확인

VA(Virtual Address): 0x00030001

• PDE의 VA: 0xC0600000 PDE의 내용(Hex): 0x0000000015744067

• **PDE의 PFN**: 15744000

• **PDE의 최하위 10비트 디코딩**: ---DA--UWEV

forensicinsight.org Page 23 / 48

페이징 (Paging)

Flag Code

Bit	Bit Set	Bit Clear	Description (when bit is set)	
0	V	-	Page/Page table is valid (present in memory)	
1	W	R	Page/Page table writable (as opposed to being read-only)	
2	U	К	Owner is user (as opposed to being owned by the kernel)	
3	Т	-	Write-through caching is enabled for this Page/Page table	
4	N	-	Page/Page table caching is disabled	
5	А	-	Page/Page table has been accessed (read from or written to)	
6	D	-	Page is dirty (has been written to)	
7	L	-	Page is larger than 4 KB (4 MB, or 2 MB if PAE is enabled)	
8	G	-	Indicates a global page {related to translation lookaside buffers}	
9	С	-	Copy on write is enabled	
	E	-	Page contains executable code	

forensicinsight.org Page 24 / 48

페이징 (Paging)

PDE, PTE 내용 확인

```
kd> !pte 0
               VA 00000000
PDE at C0600000 PTE at C0000000
contains 0000000015744067 contains 0000000000000000
pfn 15744 ---DA--UWEV not valid
kd> !pte 500000
              VA 00500000
PDE at C0600010 PTE at C0002800
pfn 1c1bb ---DA--UWEV pfn bfb2 ---DA--UW-V
kd> !pte 7fffffff
                VA 7fffffff
PDE at C0601FF8 PTE at C03FFFF8
contains 000000001EFC1067 contains 0000000000000000
pfn 1efc1 ---DA--UWEV not valid
kd> !pte 80000000
                VA 80000000
PDE at C0602000
              PTE at C0400000
contains 00000000000B25163 | contains 000<u>00000000000000</u>
pfn b25 -G-DA--KVEV not valid
kd> !pte ffffffff
                VA ffffffff
PDE at C0603FF8 PTE at C07FFFF8
contains 0000000000B2D163 contains 0000000000000000
```

forensicinsight.org Page 25 / 48

x86 물리메모리 맵핑

forensicinsight.org Page 26 / 48

forensicinsight.org Page 27 / 48

가상 주소 → 물리 주소 변환

■ 천천히

• **VA** : 0x00A80910

• **Page Directory Index**: 00000000 10 (0x2)

• Page Table Index : 101000 0000 (0x2D0)

• Page Offset: 1001 00010000 (0x910)

PTE linear address = (page table starting address) +

(page directory index) * (bytes per page table) + (page table index) * (bytes per PTE)

kd> .formats a80910

Hex:

Octal:

Time:

Float:

Double:

Binary: Chars:

Evaluate expression:

Decimal: 11012368

00a80910

5.44083e-317

00000000 1<mark>1</mark>101000 0000<mark>1001 00010</mark>000

Fri May 08 19:59:28 1970

low 1.54316e-038 high 0

= (0xC0000000) + (0x2 * 0x1000) + (0x2D0 * 0x4)

= 0xC0002B40

kd> dd c0001700 c0001700 | Ofe96025 | 00000000 00000000 00000000

forensicinsight.org Page 28 / 48

가상 주소 → 물리 주소 변환

!PTE 명령 이용

• **PFN**: 0xC9DB **Offset**: 0x910

Physical Address: 0xC9DB910

■ CR3 레지스터 이용

```
kd> r cr3
cr3=086401c0
kd> !vtop 086401c0 a80910
X86VtoP: Virt 00a80910, pagedir 86401c0
X86VtoP: PAE PDPE 86401c0 - 000000000c981001
X86VtoP: PAE PDE c981028 - 000000000ca43067
X86VtoP: PAE PTE ca43400 - 00000000c9db067
X86VtoP: PAE Mapped phys c9db910
Virtual address a80910 translates to physical address c9db910.
```

forensicinsight.org Page 29 / 48

Virtual Memory

- User Space Topography
- Kernel Space Dynamic Allocation
- Address Space Layout Randomization (ASLR)

forensicinsight.org Page 30 / 50

가상메모리 소개

- 각 프로세스는 4GB의 가상 주소 공간과 고유한 CR3 레지스터를 가짐
- 가상 주소 공간의 구분
 - 사용자 영역 (0x00000000 0x7FFFFFFF)
 - 커널 영역 (0x8000000 0xFFFFFFF)
- 사용자 영역 증가
 - 윈도우 Vista 이상
 - ✓ bcdedit /set increaseuserva 3072

C:₩>bcdedit /set increaseuserva 3072 작업을 완료했습니다.

- 윈도우 XP, 2003
 - ✓ boot.ini 파일에 /3GB 스위치 추가

forensicinsight.org Page 31 / 48

X86 주소 공간 배치

forensicinsight.org Page 32 / 48

X86 주소 공간 배치

forensicinsight.org Page 33 / 48

X86 주소 공간

forensicinsight.org Page 34 / 48

X86 주소 공간

forensicinsight.org Page 35 / 48

X86 주소 공간

forensicinsight.org Page 36 / 48


```
kd> !process 0 0 explorer.exe
PROCESS 81e5d980 SessionId: 0 Cid: 05cc
                                             Peb: 7ffde000 ParentCid: 05b8
    DirBase: 086801c0 ObjectTable: e1e556c8 HandleCount: 276.
    Image: explorer.exe
kd> .process 81e5d980
Implicit process is now 81e5d980
kd> !peb
PEB at 7ffde000
    InheritedAddressSpace:
    ReadImageFileExecOptions: No
    BeingDebugged:
    ImageBaseAddress:
                              01000000
    Ldr
                              00191e90
    Ldr.Initialized:
                              Yes
    Ldr.InInitializationOrderModuleList: 00191f28 . 00194908
    Ldr.InLoadOrderModuleList:
                                         00191ec0 . 001948f8
    Ldr.InMemorvOrderModuleList:
                                         00191ec8 . 00194900
            Base TimeStamp
                                               Module
         1000000 48025c30 Apr 14 04:17:04 2008 C:\WINDOWS\Explorer.EXE
        7c900000 4802a12c Apr 14 09:11:24 2008 C:\WINDOWS\system32\ntdll.dll
        7c800000 4802a12c Apr 14 09:11:24 2008 C:\WINDOWS\system32\kernel32.dll
        77dd0000 4802a0b2 Apr 14 09:09:22 2008 C:\WINDOWS\system32\ADVAPI32.dl
        77e70000 4802a106 Apr 14 09:10:46 2008 C:\WINDOWS\system32\RPCRT4.dll
        77fe0000 4802a11b Apr 14 09:11:07 2008 C:\WINDOWS\system32\Secur32.dll
        75f80000 4802a0a8 Apr 14 09:09:12 2008 C:\WINDOWS\system32\BROWSEUI.dl
        77f10000 4802a0be Apr 14 09:09:34 2008 C:\WINDOWS\system32\GDI32.dll
        7e410000 4802allb Apr 14 09:11:07 2008 C:\WINDOWS\system32\USER32.dll
        77c10000 4802a188 Apr 14 09:12:56 2008 C:\WINDOWS\system32\msvcrt.dll
        774e0000 4802a111 Apr 14 09:10:57 2008 C:\WINDOWS\system32\ole32.dll
        77f60000 4802a116 Apr 14 09:11:02 2008 C:\WINDOWS\system32\SHLWAPI.dll
        77120000 4802a112 Apr 14 09:10:58 2008 C:\WINDOWS\system32\OLEAUT32.dl
        7e290000 4802a110 Apr 14 09:10:56 2008 C:\WINDOWS\system32\SHDOCVW.dll
        77a80000 4802a0d7 Apr 14 09:09:59 2008 C:\WINDOWS\system32\CRYPT32.dll
        77b20000 4802a126 Apr 14 09:11:18 2008 C:\WINDOWS\system32\MSASN1.dll
        754d0000 4802a0dd Apr 14 09:10:05 2008 C:\WINDOWS\system32\CRYPTUI.dll
```

forensicinsight.org Page 37 / 48

■ 윈도우 Vista 이후 커널은 동적 할당 기능을 사용 (하드코딩 루트킷 방지)

0: kd> 1m n						
start	end	module na	ame			
80bab000	80773000	kdcom	kdcom.dll			
82e10000	83222000	nt	ntkrpamp.exe			
83222000	83259000	hal	halmacpi.dll			
8c200000	8c218000	ras12tp	ras12tp.sys			
8c229000	8c2ae000	mcupdate_	_GenuineIntel			
8c2ae000	8c2bf000	PSHED	PSHED.dll			
8c2bf000	8c2c7000	BOOTUID	BOOTVID.dll			
8c2c7000	8c309000	CLFS	CLFS.SYS			
8c309000	8c3b4000	CI	CI.dll			
8c3b4000	8c3d7000	ataport	ataport.SYS			
8c3e8000	8c3f9000	termdd	termdd.sys			
8c400000	8c409000	amdxata	amdxata.sys			
8c40b000	8c47c000	Wdf01000	Wdf01000.sys			
8c47c000	8c48a000	WDFLDR	WDFLDR.SYS			
8c48a000	8c4d2000	ACPI	ACPI.sys			
8c4d2000	8c4db000	WMILIB	WMILIB.SYS			
8c4db000	8c4e3000	msisadrv	msisadrv.sys			
8c4e3000	8c50d000	pci	pci.sys			
8c50d000	8c518000	vdrvroot	vdrvroot.sys			
8c518000	8c529000	partmgr	partmgr.sys			
8c529000	8c539000	volmgr	volmgr.sys			
8c539000	8c584000	volmgrx	volmgrx.sys			
8c584000	8c58b000	pciide	pciide.sys			
8c58b000	8c599000	PCIIDEX	PCIIDEX.SYS			
8c599000	8c5af000	mountmgr	mountmgr.sys			
8c5af000	8c5d8180	vmbus	vmbus.sys			
8c5d9000	8c5eb000	winhv	winhv.sys			
8c5eb000	8c5f4000	atapi	atapi.sys			

0: kd> lm n				
start	end	module na	ame	
00d10000	00d72000	kd	kd.exe	
5c930000	5ccb6000	dbgeng	dbgeng.d11	
5ccc0000	5cde1000	dbghe lp	dbghelp.dll	
5d900000	5d948000	symsrv	symsrv.dll	
74810000	74819000	UERSION	UERSION.dll	
75410000	754f a000	KERNELBAS	SE KERNELBASE.dll	
75650000	75669000	sechost	sechost.dll	
75700000	757a1000	RPCRT4	RPCRT4.d11	
76b£0000	76cc4000	kerne132	kernel32.dll	
76e70000	76f1c000	msvcrt	msvcrt.dll	
76£20000	76fc0000	ADVAPI32	ADVAPI32.dll	
771d0000	7730c000	ntdll	ntdll.dll	
8ca00000	8ca11000	fileinfo	fileinfo.sys	
8ca11000	8ca96000	mcupdate_	_GenuineIntel mcup	
8ca96000	8caa7000	PSHED	PSHED.dll	
8caa7000	8caaf000	BOOTUID	BOOTUID.dll	
8caaf000	8caf1000	CLFS	CLFS.SYS	
8caf1000	8cb9c000	CI	CI.dll	
8cb9c000	8cbbf000	ataport	ataport.SYS	
8cbbf000	8cbc8000	amdxata	amdxata.sys	
8cbc8000	8cbfc000	fltmgr	fltmgr.sys	
8cc00000	8cc09000	atapi	atapi.sys	
8cc09000	8cc13000	msahci	msahci.sys	
8cc19000	8cc8a000	Wdf01000	Wdf01000.sys	
8cc8a000	8cc98000	WDFLDR	WDFLDR.SYS	
8cc98000	8cce0000	ACPI	ACPI.sys	
8cce0000	8cce9000	WMILIB	WMILIB.SYS	
8cce9000	8ccf1000	msisadrv	msisadrv.sys	

forensicinsight.org Page 38 / 48

가상메모리

사용자 공간 구성 (User Space Topography)

■ /BASE 링커 옵션

- EXE: 0x400000
- DLL: 0x10000000
- 메모리가 사용가능하지 않을 경우 재배치(relocation)
- /FIXED 옵션은 재배치 방지

/DYNAMICBASE (ASLR, Vista 이상 적용)

- 로드될 때 메모리 상의 임의 주소 배치
- MS 컴파일러가 아닐 경우, ASLR 적용을 위해서는 추가컴파일 필요

forensicinsight.org Page 39 / 48

DLL 로드

0x80000000 커널 영역 0xFFFFFFFF

forensicinsight.org Page 40 / 48

Process Explorer

forensicinsight.org Page 41 / 48

User Mode vs. Kernel Mode

- How versus Where
- Kernel-Mode Components
- User-Mode Components

forensicinsight.org Page 42 / 50

forensicinsight.org Page 43 / 48

커널 모드 컴포넌트

■ 커널 관련 컴포넌트

File Name	ame Description	
ntoskrnl.exe	Uniprocessor x86 architecture systems where PAE is not supported	
ntkrnlpa.exe	Uniprocessor x86 architecture systems with PAE support	
ntkrnlmp.exe	Multiprocessor version of ntoskrnl.exe	
ntkrpamp.exe	Multiprocessor version of ntkrnlpa.exe	

■ 커널 주요 컴포넌트 임포트 모듈 (dumpbin.exe 활용)

Component	Imported Modules	
hal.dll ntoskrnl.exe, kdcom.dll, pshed.dll		
bootvid.dll	ntoskrnl.exe, hal.dll	
ntoskrnl.exe hal.dll, pshed.dll, bootvid.dll, kdcom.dll, clfs.sys, ci.dll		
win32k.sys	ntoskrnl.exe, msrpc.sys, watchdog.sys, hal.dll, dxapi.sys	

forensicinsight.org Page 44 / 48

사용자 모드 컴포넌트

서브시스템

- Win32 (what Microsoft wanted to people to use)
- **WOW** (supported legacy Windows 3.1 apps)
- NTVDM (supported even older MS-DOS apps)
- OS/2 (an attempt to appeal to the IBM crowd)
- POSIX (an attempt to appeal to the UNIX crowd)

서브시스템을 구성하는 주요 컴포넌트

- User-mode Client-Server Runtime Subsystem (csrss.exe)
- Kernel-mode device driver (win32k.sys)
- User-mode DLLs that implement the subsystem's API

forensicinsight.org Page 45 / 48

사용자 모드 컴포넌트

- User-mode Client-Server Runtime Subsystem (csrss.exe)
 - 사용자 모드의 프로세스와 쓰레드를 관리하는 역할
 - CLI(Command Line Interface) 지원
 - 사용자 영역의 필수 구성 요소
- 사용자 애플리케이션에서 노출되는 서브시스템 인터페이스 (API)
 - kernel32.dll, advapi32.dll, user32.dll, gdi.dll, shell32.dl, rpcrt4.dll, etc

forensicinsight.org Page 46 / 48

사용자 모드 컴포넌트

■ 사용자 주요 컴포넌트 임포트 모듈 (dumpbin.exe 활용)

Component	onent Imported Modules	
advapi32.dll	ntdll.dll, kernel32.dll, user32.dll, rpcrt4.dll, wintrust.dll, secur32.dll, bcrypt.dll	
user32.dll	ntdll.dll, kernel32.dll, gdi32.dll, advapi32.dll, msimg32.dll, powrprof.dll, winsta.dll	
gdi32.dll	ntdll.dll, kernel32.dll, user32.dll, advapi32.dll	
csrss.exe	ntdll.dll, csrsrv.dll	
kernel32.dll	ntdll.dll	
ntdll.dll	none	

forensicinsight.org Page 47 / 48

질문 및 답변

forensicinsight.org Page 48 / 48