

École supérieure en sciences et technologies de l'informatique et du numérique

2021/2022 2^{ème} année CP Analyse 3

Interrogation N°1

Groupes : A_3 et A_4 ; Durée : 1h 30mn

Exercice 1. Étudier la nature de chacune des séries numériques suivantes :

$$\sum_{n\geq 1} \frac{\sin^2(n)}{n\sqrt{n} + \log n}; \ \sum_{n\geq 0} \left\{ \log(e^n + 1) - n \right\}; \ \sum_{n\geq 1} \frac{n!}{(2n)!}; \ \sum_{n\geq 1} \left\{ e - \left(1 + \frac{1}{n^2}\right)^{n^2} \right\}.$$

Exercice 2. Soient $(f_n)_{n\in\mathbb{N}^*}$ et $(g_n)_{n\in\mathbb{N}^*}$ deux suites de fonctions définies par :

$$f_n(x) = x^n(1-x), \quad (\forall x \in [0,1])$$

$$g_n(x) = (\sin(x))^{2n} \cos^2(x), \quad (\forall x \in \mathbb{R}).$$

- 1. Étudier la convergence simple et uniforme de $(f_n)_{n\in\mathbb{N}^*}$ sur l'intervalle [0,1].
- 2. Montrer que $(g_n)_{n\in\mathbb{N}^*}$ converge uniformément sur \mathbb{R} . (On pourra utiliser la question 1).

Exercice 3. Soit $\varphi(x) = \sum_{n=2}^{+\infty} \frac{\log n}{n^x}$.

- 1. Déterminer le domaine de définition de φ . (Indication : vous pouvez utiliser le théorème de Bertrand).
- 2. Montrer que la série de fonctions $\sum \frac{\log n}{n^x}$ converge uniformément sur tout intervalle [a,b] où b>a>1.
- 3. Montrer que la fonction $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$ est de classe \mathscr{C}^1 sur $]1, +\infty[$ et exprimer $\zeta'(x)$ en fonction de $\varphi(x)$ pour tout $x \in]1, +\infty[$.
- 4. Montrer que la série de fonctions $\sum \frac{\log n}{n^x}$ ne converge pas uniformément sur $]1, +\infty[$.

-0

BON TRAVAIL S.A. BOUSLA

Date: Mardi, 14 décembre 2021.