Total No. of Questions: 10] [Total No. of Printed Pages: 4

Roll No.

CS-505

B. E. (Fifth Semester) EXAMINATION, June, 2009

(Computer Science & Engg. Branch)

THEORY OF COMPUTATION

(CS - 505)

Time: Three Hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Attempt *one* question from each Unit. Assume suitable data wherever necessary.

Unit-I

- 1. (a) Show by induction that $n^4 4n^2$ is divisible by 3 for all $n \ge 0$.
 - (b) Construct minimised DFA for the given NFA. 12

Fig. 1

0r

2. (a) Construct DFA for the given WFA.

Fig. 2

(b) Explain Myhill-Nesode method of minimisation.

Unit-II

- 3. (a) State and prove the pumping lemma theory of Regular language.
 - (b) Find out whether the following grammars generate the same language:

$$G_1: A \to 0B \mid 1E$$
 $G_2: X \to 0Y \mid 0 \mid 1Z$
 $B \to 0A \mid 1F \mid \in$ $Y \to 0X \mid 1Y \mid 1$
 $C \to 0C \mid 1A$ $Z \to 0Z \mid 1X$
 $D \to 0A \mid 1D \mid \in$
 $E \to 0C \mid 1A$
 $F \to 0A \mid 1B \mid \in$

4. (a) Write a CFG to generate the language:

$$L = \{0^m \mid 1^n \mid 0^m \mid n \mid m_1 \mid n \geq 1\}$$

(b) Simplify the given grammar:

$$S \rightarrow aSB \mid aA \mid bB$$

 $A \rightarrow aA \mid \in$
 $B \rightarrow bB \mid \in$

12

6

(c) Consider the following grammar and obtain an equivalent grammar in CNF:

 $S \rightarrow AB \mid 0C2$

 $C \rightarrow 0C2 \mid 0D1 \mid 01$

 $A \rightarrow 0A1 \mid 01$

 $D \rightarrow 0D1 \mid 01$

B → 1B2 | 12

Unit-III

5. (a) Give the CFG generating the language accepted by the following PDA:

$$\mathbf{M} = (\{q_0, q_1\}, \{0, 1\}, \{z_0, x\}, \delta, q_0, z_0, \phi)$$

$$\delta\left(q_{0},\,1,z_{0}\right)=\left\{ (q_{0},z_{0})\right\} \qquad \delta\left(q_{0},\,\in,z_{0}\right)=\left\{ (q_{0},\,\in)\right\}$$

$$\delta(q_0, 1, x) = \{(q_0, xx)\}$$
 $\delta(q_1, 1, x) = \{(q_1, \in)\}$

$$\delta\left(q_{0},0,x\right)=\left\{ (q_{1},x)\right\} \qquad \delta\left(q_{1},0,z_{0}\right)=\left\{ (q_{0},z_{0})\right\}$$

(b) Explain the difference between Deterministic PDA and Non-deterministic PDA with example.

Or

- 6. (a) Construct PDA accepting $L = \{a^i b^j \mid j = i \text{ or } j = 2i\}.$
 - (b) Construct a PDA equivalent to the following grammar:

S → aAA

 $A \rightarrow aS \mid bS \mid a$

Unit-IV

7. (a) Design a Turing machine that computes a function f(m,n) = m - n i. e. proper subtraction of two integers defined as:

$$m - n = m - n$$
 if $m > n$
= () otherwise

(b) Explain Turing thesis briefly.

8

P. T. O.

[4]

Or

8.	(a)	Explain how Turing machine can be used as generat	
		device.	8
	(b)	Construct Turing machine for accepting L:	12
		$L = \{a^n b^n \mid n \ge 0\}$	
		Unit-V	
9.	(a)	Prove that the halting problem of turing machine	e is
		undecidable.	10
	(b)	Explain recursively enumerable languages.	10
		Or	
10	. (a)	Explain the post-correspondence problem briefly.	8
	(b)	Write brief notes on the following:	12
		(i) Ackermann's function	
		(ii) Primitive recusive function	
		(iii) Markov algorithms	