Branch/Specialisation: EC/EI

Enrollment No.....

Find the voltage $v_0(t)$ in the circuit of figure 8 by means of Laplace 5 transform.

Figure 8

OR Find vo(t), for all t > 0, in the circuit of figure 9. iv.

Q.5 i. Define admittance and hybrid parameters for two-port network.

ii. Find I_1 and I_2 in the circuit shown in figure 10.

Figure 10

OR iii. Find the transmission parameters for the two-port network shown in figure 11.

Figure 11

Q.6 Define positive real function and write its properties. i.

3

5

6

Check the following polynomial is Hurwitz or not. ii.

$$P(s) = s^5 + s^4 + 8s^3 + 6s^2 + 15s + 8$$

Find the Foster first form for the following driving point impedance 5

function:
$$Z(s) = \frac{2(S^2+1)(S^2+9)}{s(S^2+4)}$$

Find the first canonical form of Cauer network for following impedance 5 OR iv. function: $Z(s) = \frac{S(S^2+3)(S^2+5)}{(S^2+2)(S^2+4)}$

Faculty of Engineering

End Sem (Odd) Examination Dec-2017

EC3CO05 / EI3CO05 Circuit Analysis and Synthesis

Maximum Marks: 60 Duration: 3 Hrs.

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1	i.	In a network consisting of linear resistors and ideal voltage source, if	1
		the value of resistors are doubled, then voltage across each resistor	

- (a) Increases four time
- (b) Remains unchanged

(c) Doubled

- (d) Halved
- The coefficient of coupling for two coils having $L_1 = 2H$, $L_2 = 8H$ and 1 M = 3H
 - (a) 0.75
- (b) 0.1875

Programme: B.Tech.

- (c) 1.333
- (d) 5.333
- When the total charge in a capacitor is doubled, the energy stored:
 - (a) Remains the same
- (b) Is halved
- (c) Is doubled
- (d) Is quadrupled
- A 5-H inductor changes its current by 3 Ain 0.2 s. The voltage 1 produced at the terminals of the inductor is:
 - (a) 75 V
- (b) 8.888 V (c) 3 V
- (d) 1.2 V
- A source $V_s(t) = V\cos 100\pi t$ has an internal impedance of $(4+i3)\Omega$. If a 1 purely resistive load connected to this source has to extract the maximum power out of the source, its value in Ω should be
 - (a) 3
- (b) 4
- (c) 5
- (d)7

(d) 1/6

- The initial value of f(t) with transform $F(s) = \frac{(s+1)}{(s+2)(s+3)}$ is
 - (a) ∞
- (b) 0
- (c) 1
- The current through an RL series circuit with input voltage v(t) is given in *s*-domain as:
 - (a) $V(s)[R + \frac{1}{sL}]$
- (b) V(s)(R+sL)

(d) $\frac{V(s)}{R+sL}$

When port 1 of a two-port circuit is short-circuited, $I_1=4I_2$ and 1 $V_2=0.25I_2$. Which of the following is true?

- (a) $Y_{11}=4$ (b) $Y_{12}=16$ (c) $Y_{21}=16$
- (d) $Y_{22}=0.25$

1

1

- ix. How much inductance is needed to resonate at 5kHz with a capacitance of 12nF?
 - (a) 2.652 mH (b) 11.844 mH(c) 3.333 mH (d) 84.43 mH
- x. The time constant for RL circuit with $R = 2\Omega$ and L = 4H is
 - (a) 2 s
- (b) 0.5 s
- (c) 4 s
- (d) 8 s

1

5

5

- Q.2 Attempt any two questions:
 - i. For the network shown in figure 1 draw the graph and write cut set and tie set matrix. Also write KCL and KVL equations.

Figure 1

ii. For the circuit of figure 2, determine all four nodal voltages.

Figure 2

iii. Calculate the phasor currents I_1 and I_2 in the circuit of figure 3.

- Q.3 Attempt any two questions:
 - i. The switch in figure 4 has been in position a for a long time. At t=0, it moves to position b. Calculate i(t) for all t>0.

Figure 4

- ii. For the circuit in figure 5, find:
 - (a) $i(0^+)$ and $v(0^+)$, (b) $di(0^+)/dt$ and $dv(0^+)/dt$ (c) $i(\infty)$ and $v(\infty)$

Figure 5

Determine the maximum power delivered to the variable resistor R 5 shown in the circuit of figure 6.

Figure 6

Q.4 i. Express the sawtooth function shown in Figure 7 in terms of singularity function.

Explain initial value and final value theorem.

3

5

EC3CO05 / EI3CO05 Circuit Analysis and Synthesis

Marking Scheme

Q.1	i.	In a network consisting of linear resistors and ideal voltage source, if the value of resistors are doubled, then voltage across each resistor (b) Remains unchanged	1
	ii.	The coefficient of coupling for two coils having $L_1 = 2H$, $L_2 = 8H$ and $M = 3H$ (a) 0.75	1
	iii.	When the total charge in a capacitor is doubled, the energy stored: (d) Is quadrupled	1
	iv.	A 5-H inductor changes its current by 3 Ain 0.2 s. The voltage produced at the terminals of the inductor is: (a) 75 V	1
	V.	A source $V_s(t) = V\cos 100\pi t$ has an internal impedance of $(4+j3)\Omega$. If a purely resistive load connected to this source has to extract the maximum power out of the source, its value in Ω should be (c) 5	1
	vi.	The initial value of $f(t)$ with transform $F(s) = \frac{(s+1)}{(s+2)(s+3)}$ is	1
		(c) 1	
	vii.	The current through an <i>RL</i> series circuit with input voltage $v(t)$ is given in <i>s</i> -domain as: (d) $\frac{V(s)}{R+sL}$	1
	viii.	When port 1 of a two-port circuit is short-circuited, I_1 =4 I_2 and V_2 =0.25 I_2 .Which of the following is true? (b) Y_{12} =16	1
	ix.	How much inductance is needed to resonate at 5kHz with a capacitance of 12nF? (d) 84.43 mH	1
	х.	The time constant for RL circuit with $R = 2\Omega$ and $L = 4H$ is (a) 2 s	1
Q.2		Attempt any two questions:	
	i.	1 marks for graph 2 marks for cut set matrix and its KCL, KVL equations	5
	ii.	2 marks for tie set matrix and its KCL, KVL equations 3 marks for nodal equations 2 marks for solution of those equations.	5
	iii.	2 marks for loop equations 3 marks for solution of those equations	5

Q.3		Attempt any two questions:	
	i.	1 marks for initial value calculation	5
		1 marks for final value calculation	
		1 marks for time constant calculation	
		2 marks for final solution	
	ii.	(a) $i(0^+)$ and $v(0^+)$ - 1 mark	5
		(b) $di(0^+)/dt$ and $dv(0^+)/dt - 3$ marks	
		(c) $i(\infty)$ and $v(\infty)$ - 1 mark	
	iii	2 marks for V_{th} calculation	5
		2 marks for R_{th} calculation	
		1 marks for P_{max} calculation	
Q.4	i.	2 marks for expression	2
	ii.	1.5 marks each for initial and final value theorem.	3
		(1.5 marks * 2 = 3 marks)	
	iii.	2 marks for initial value calculation	5
		2 marks for Laplace transform	
OR	iv.	1 mark for inverse Laplace transform.2 marks for initial value calculation	5
OK	1 .	1 marks for Laplace transform	J
		2 marks for inverse Laplace transform.	
Q.5	i.	2 marks each for admittance and hybrid parameters	4
		(2 marks * 2 = 4 marks)	
	ii.	3 marks for equations	6
		3 marks for their solutions.	_
OR	iii.	2 marks for equations	6
		1 mark for each of the 4 parameters. (1 mark $*$ 4 = 4 marks)	
Q.6	i.	1 mark for definition	2
(1 mark for properties	_
	ii.	2 marks for procedure	3
		1 mark for conclusion	
	iii.	4 marks for coefficient calculation	5
		1 marks for synthesis.	
OR	iv.	4 marks for coefficient calculation	5
		1 marks for synthesis.	

Q. 2(ii) V,=1V, V2= 3.085V, V3=1.256V, V4=0.9512V 9.2 (iii) I, = 13.01 (-49.39 A , Iz= 2.91 (14.04 A. V(0+)=10 V, V(00)=4V, T=4sec, V(t)=4+6et/4V P. 3 (1) i(t) = -3 et/4 A 3.3 (ii) 2A, 12V, (b) -4AIS, -5VIS, (C) OA, OV ? 3.(111) Vth = 3V, Rth = 104,89 12, Pmax = 21,45 mW 2. 4 (i) V(t) = 5t U(t) - 5(t-2)U(t-2) - 10U(t-2)· 4 (iii) $V_0(s) = \frac{40}{s(2s^3+s^2+6s+2)}$ $V_0(t) = 40 \text{ u(t)} - 39.2 \text{ e u(t)}$ 0.788 = 0.08t LOR 1.714t - 7.85 e sin 1.714t 4 (iv) Vo(t)= (1-ext cos [7 t + 4.913 ext sin [7 t) u(t) 5 (ii) I1 = 2A I2 = - jA Or 1 1-90 A S (Tit) B=15.291, C=0.0588S, D=1.176 · 6 (ii) in Hurwitz 6 (iii) Fostes 1.875 H First Form 1H = H 6 (iv) Carrel First Form 25 F