Cahier des Charges : Application Web de Détection du COVID-19 Basée sur l'Analyse d'Images Radiographiques

1. Contexte du Projet :

Ce projet a pour objectif de développer une application web basée sur un modèle d'apprentissage profond. L'application permettra de prédire si un patient est atteint de la COVID-19 en se basant sur l'analyse d'images radiographiques thoraciques. Cette solution est destinée principalement aux médecins et professionnels de la santé pour les aider dans le diagnostic et la prise de décisions cliniques.

2. Objectifs du Projet :

- Développer un système de prédiction précis basé sur l'apprentissage automatique (Machine Learning).
- Offrir une interface utilisateur intuitive permettant aux professionnels de la santé de soumettre les informations des patients et d'obtenir une prédiction en temps réel.
- Garantir la sécurité et la confidentialité des données médicales conformément aux réglementations locales (comme le RGPD).

3. Fonctionnalités de l'Application :

3.1. Authentification et gestion des utilisateurs

- **Inscription/Connexion sécurisée** pour les utilisateurs (médecins, infirmiers) avec validation des droits d'accès.
- Gestion des sessions avec une déconnexion automatique après une période d'inactivité.

3.2. Collecte des données des patients

- Un formulaire permettant de compléter la fiche des patients et d'uploader l'image radiographique thoracique, afin de faciliter la collecte d'informations médicales et l'analyse des images pour la détection du COVID-19."
- **Gestion des fichiers médicaux** : Possibilité de télécharger et consulter des documents médicaux associés.

3.3. Prédiction du risque

• **Modèle d'apprentissage automatique :** Le système utilise un modèle d'apprentissage automatique (ML) pour prédire si un patient est atteint de la COVID-19 ou non.

• Affichage des résultats : Prédiction indiquant si le patient est atteint de la COVID-19 ou non

3.4. Tableau de bord et gestion des patients

- **Tableau de bord** : Affichage d'une liste des patients avec l'historique des prédictions.
- **Détails des patients** : Visualisation des informations détaillées sur chaque patient, avec possibilité de modifier les informations médicales.

4. Technologies et Infrastructure :

- Frontend: On va utiliser des technologies telles que HTML, CSS et JavaScript, ainsi que des frameworks comme Vue.js.
- **Backend : Node.js** serait utilisé pour gérer la logique métier, les routes API et l'interaction avec la base de données, par exemple avec **MongoDB**.

4.1. Modèle d'apprentissage automatique

- Langage : Python pour la création et l'intégration du modèle ML.
- **Bibliothèques**: TensorFlow, ou Keras pour l'entraînement du modèle.
- Modèle: VGG16, un modèle de réseau de neurones convolutionnels (CNN) réputé pour son architecture profonde et sa capacité à extraire des caractéristiques à partir d'images.
- **Hébergement du modèle** : Utilisation de Flask ou FastAPI pour déployer le modèle ML via une API.

5. Délais de Développement :

- **Phase 1 (1-2 semaines)**: Analyse des besoins, collecte des données et conception de l'architecture du système.
- **Phase 2 (2-3 semaines)**: Développement du backend et intégration du modèle d'apprentissage automatique.
- Phase 3 (2-3 semaines): Développement du frontend et de l'interface utilisateur.
- Phase 4 (1-2 semaines): Tests (unitaires, d'intégration) et validation du modèle.
- Phase 5 (1 semaine): Déploiement et mise en production.

6. Critères de Réussite :

- **Précision du modèle** : Taux de précision supérieur à 85% dans la prédiction.
- **Performance** : Application rapide et performante même pour de larges volumes de données.
- **Sécurité** : Respect total des normes de sécurité et de confidentialité des données médicales.
- **Ergonomie** : Interface utilisateur intuitive et facile à utiliser par les professionnels de la santé.

7. Contraintes et Risques :

- **Fiabilité des données** : Les prédictions sont fortement dépendantes de la qualité des données d'entraînement et des mises à jour médicales.
- Évolution des variants : Nécessité de mettre à jour le modèle en fonction des nouveaux variants du Covid-19.
- Conformité juridique : Obligation de respecter les lois locales sur la gestion des données de santé.