Maria Ali

Assignment 3- Machine Learning Course

Question No. 1: Take 50 startups of any two countries and find out which country is going to provide best profit in future.

Using Decision Tree Regression

Countries selected:

- 1. California
- 2. Florida

Plots

For California

For Florida

Result: As shown in graph, California is going to provide best profit in future.

Question No. 2: Annual temperature between two industries is given. Predict the temperature in 2016 and 2017 using the past data of both industries.

Variable explorer			- 5	,
				0
Name	Туре	Size	Value	,
dataset	DataFrame	(272, 3)	Column names: Source, Year, Mean	
m ,	DataFrame	(136, 1)	Column names: Year	
m_poly	float64	(136, 5)	[[1.00000000e+00 2.01500000e+03 4.060 1.6485	
n	DataFrame	(136, 1)	Column names: Mean	
р	DataFrame	(136, 1)	Column names: Year	
p_poly	float64	(136, 5)	[[1.00000000e+00 2.01500000e+03 4.060 1.6485	
q	DataFrame	(136, 1)	Column names: Mean	
temperature2016	float64	(1, 1)	[[0.50298425]]	
temperature2017	float64	(1, 1)	[[0.50972011]]	
temperaturee2016	float64	(1, 1)	[[0.76231028]]	
temperaturee2017	float64	(1, 1)	[[0.78149969]]	
temperatureee2016	float64	(1, 1)	[[0.49777778]]	
temperatureee2017	float64	(1, 1)	[[0.50477625]]	ŀ
temperatureeee2016	float64	(1, 1)	[[0.78885745]]	
temperatureeee2017	float64	(1, 1)	[[0.81039365]]	
tnrfont	dict	1	{'fontname':'Times New Roman'}	

Plots For GCAG

Prediction of temperature in 2016 and 2017 using Linear Regression

Prediction of temperature in 2016 and 2017 using Polynomial Regression

Result: Temperatures predicted with Polynomial Regression are more accurate.

Plots For GISTEMP

Prediction of temperature in 2016 and 2017 using Linear Regression

Prediction of temperature in 2016 and 2017 using Polynomial Regression

<u>Result:</u> Temperatures predicted with Polynomial Regression are more accurate.

Question No. 3: Data of global production of CO2 of a place is given between 1970s to 2010. Predict the CO2 production for the years 2011, 2012 and 2013 using the old data set.

Variable explorer					
± 🖺 🗓 🗷					
Name	Туре	Size	Value		
dataset	DataFrame	(260, 8)	Column names: Year, Total, Gas Fuel, Liquid Fuel, Solid Fuel, Cement,		
р	int64	(260, 1)	[[1751] [1752]		
p_grid	float64	(2590, 1)	[[1751.] [1751.1]		
p_poly	float64	(260, 5)	[[1.00000000e+00 1.75100000e+03 3.06600100e+06 5 9.4003		
q	int64	(260, 1)	[[3] [3]		
tnrfont	dict	1	{'fontname':'Times New Roman'}		
y2011	float64	(1, 1)	[[4494.86418176]]		
y2012	float64	(1, 1)	[[4518.55824859]]		
y2013	float64	(1, 1)	[[4542.25231541]]		
y_2011	float64	(1, 1)	[[4494.86418176]]		
y_2012	float64	(1, 1)	[[4518.55824859]]		
y_2013	float64	(1, 1)	[[4542.25231541]]		

Plots

Carbon dioxide production for the years 2011, 2012 and 2013 using Linear Regression:

Carbon dioxide production for the years 2011, 2012 and 2013 using Polynomial Regression:

<u>Result:</u> Carbon dioxide production predicted with Polynomial Regression is more accurate.

Question No. 4: Housing price according to the ID is assigned to every-house. Perform future analysis where when ID is inserted the housing price is displayed.

Variable exp	ē×			
± B , Ø				
Name	Type	Size	Value	
dataset	DataFrame	(1459, 2)	Column names: Id, SalePrice	
hp2920	float64	(1, 1)	[[182794.79499502]]	
hp2925	float64	(1, 1)	[[182819.52702757]]	
hp2930	float64	(1, 1)	[[182844.25906012]]	
hp_2920	float64	(1, 1)	[[182794.79499502]]	
hp_2925	float64	(1, 1)	[[182819.52702757]]	
hp_2930	float64	(1, 1)	[[182844.25906012]]	
р	int64	(1459, 1)	[[1461] [1462]	
p_grid	float64	(14580, 1)	[[1461.] [1461.1]	
p_poly	float64	(1459, 5)	[[1.00000000e+00 1.46100000e+03 2.13452100e+06 3 4.5561	
q	float64	(1459, 1)	[[169277.0524984] [187758.39398877]	
tnrfont	dict	1	{'fontname':'Times New Roman'}	

PlotsFuture analysis for housing price using Linear Regression:

Future analysis for housing price using Polynomial Regression:

<u>Result:</u> Future analysis of housing price done with Polynomial Regression is more accurate.

Question No. 5: Data of monthly experience and income distribution of different employs is given. Perform regression.

/ariable explorer					
± □ □, Ø					
Name	Туре	Size	Value		
dataset	DataFrame	(30, 2)	Column names: MonthsExperience, Income		
р	int64	(30, 1)	[[3] [3]		
p_grid	float64	(168700, 1)	[[3.] [3.01]		
p_poly	float64	(30, 5)	[[1.00000e+00 3.00000e+00 9.00000e+00 2.70000e+ [1.000		
q	int64	(30, 1)	[[424] [387]		
tnrfont	dict	1	{'fontname':'Times New Roman'}		

Plots
Linear Regression:

Polynomial Regression:

Decision Tree Regression:

