Broué's conjecture in a special case

Johannes Hahn

June 11, 2018

Convention:

Let G be a finite group, p a prime, $(\mathbb{K}, \mathcal{O}, \mathbb{F})$ a p-modular system with \mathbb{K} and \mathbb{F} large enough (e.g. algebraically closed).

1 What was Broué's conjecture again?

1.1 Definition (Derived category):

 $D^?(\mathsf{A}) := Q^{-1}K^?(\mathsf{A})$ (with $? \in \{\text{unbounded}, +, -, b\}$ where Q is the class of quasi-isomorphisms, i.e.

$$Q := \{ f \in Mor(K) \mid H(f) \text{ isomorphism } \}$$

1.2 Conjecture (Abelian Defect Group Conjecture (Broué, Rickard)):

Let G be a finite group, $B \in Bl(G)$ a p-block of G, $D \leq G$ its defect group and $b \in Bl(N_G(D))$ the Brauer correspondent of B. If D is abelian, then

$$D^b(B) \cong D^b(b)$$

as triangulated categories.

2 Modular representation theory of A_5

2.1 Theorem (Ordinary character table of A_5):

The character table of A_5 in characteristic zero is

C	1	(12)(34)	(123)	(12345)	(13524)
ord(x)	1	2	3	5	5
$C_G(x)$	A_5	$C_2 \times C_2$	C_3	C_5	C_5
C	1	15	20	12	12
χ_1	1	1	1	1	1
χ_2	3	-1	0	α	\overline{lpha}
χ_3	3	-1	0	\overline{lpha}	α
χ_4	4	0	1	-1	-1
χ_5	5	1	-1	0	0

with $\alpha := \frac{1+\sqrt{5}}{2}$.

2.2 Theorem (2-modular representation theory of A_5):

The 2-modular Brauer character table of A_5 is

	1	(123)	(12345)	(13524)		/1	1	1		1\		11	2	2	\
$\overline{\phi_1}$	1	1	1	1		1	1	1	•	1		$\binom{4}{2}$	2	1	.)
ϕ_2	2	-1	$\alpha - 1$	$\overline{\alpha} - 1$	$\frac{\overline{1}}{1}$ $\overline{\alpha} - 1 \qquad D =$ $\alpha - 1$	$D = \begin{bmatrix} \cdot & 1 \\ \cdot & \cdot \end{bmatrix}$	_	1	•	1	C =	$=\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	1	2	.
ϕ_3	2	-1	$\overline{\alpha} - 1$	$\alpha - 1$				(.	•	1	1	1		\ _	1
ϕ_4	4	-2	-1	-1		1.	•	•	1	./		/.	•	•	1/

In particular there are two 2-blocks:

- The principal block: IBr $(B_0) = \{\phi_1, \phi_2, \phi_3\}$, Irr $(B_0) = \{\chi_1, \chi_2, \chi_3, \chi_5\}$, $D = C_2 \times C_2$, $N_G(D) = A_4 = D \rtimes C_3$.
- One block of defect zero: $\operatorname{IBr}(B_1) = \{ \phi_4 \}, \operatorname{Irr}(B_1) = \{ \chi_4 \}$

2.3 Theorem (3-modular representation theory of A_5):

The 3-modular character table of A_5 is

_(7 1	(12)(34)	(12345)	(13524)		/1				1\		/2			1\	
$\overline{\phi}$	1 1	1	1	1	1	1	1	•	•	1		[-	1		1)	
ϕ	$\mathbf{a}_2 \mid 3$	-1	α	\overline{lpha}	D =	•	1	1	•	۱ .	C =	l	1	1		
ϕ	$_3 \mid 3$	-1	\overline{lpha}	α	(٠.	•	1	1	1		$\binom{1}{1}$		1	2	
ϕ	$_4 \mid 4$	1	-1	-1		(.	•	•	1	1/		/1			2)	

In particular there are three 3-blocks:

• The principal block: $IBr(B_0) = \{\phi_1, \phi_4\}, Irr(B_0) = \{\chi_1, \chi_4, \chi_5\}, D = C_3, N_G(D) = C_3 \rtimes C_2.$

2

• Two blocks of defect zero: $IBr(B_1) = \{ \phi_2 \}$, $Irr(B_1) = \{ \chi_2 \}$, $IBr(B_2) = \{ \phi_3 \}$, $Irr(B_2) = \{ \phi_3 \}$

2.4 Theorem (5-modular representation theory of A_5):

The 5-modular character table of A_5 is

In particular there are two 3-blocks:

- The principal block: $IBr(B_0) = \{ \phi_1, \phi_2 \}$, $Irr(B_0) = \{ \chi_1, \chi_2, \chi_3, \chi_4 \}$, $D = C_5$, $N_G(D) = C_5 \rtimes C_2$.
- One block of defect zero: $\operatorname{IBr}(B_1) = \{ \phi_5 \}, \operatorname{Irr}(B_1) = \{ \chi_5 \}$

3 Step minus one: Defect zero

3.1: ADGC is trivially true for defect zero, because $N_G(1) = G$ and B = b in this case.

3.2 Theorem:

All blocks of defect zero are matrix rings.

Proof. Standard theorem shows that blocks of $\mathbb{F}G$ of defect zero are simply matrix rings $\mathbb{F}^{a \times a}$

Sketch: Defect zero $\stackrel{V \leq D}{\Longrightarrow}$ All vertices trivial \Longrightarrow all simple modules of this block are projective \Longrightarrow all modules are projective \Longrightarrow B is semisimple $\stackrel{Wedderburn}{\Longrightarrow}$ $B \cong \mathbb{F}^{\dim(S) \times \dim(S)}$ because B is indecomposable.

4 Step 0: Different equivalences

4.1 Theorem (Morita):

Let A and B be two k-algebras. TFAE:

- a.) $A-\mathsf{Mod} \cong B-\mathsf{Mod}$.
- b.) A-proj $\cong B$ -proj.
- c.) There ex. bimodules ${}_{A}M_{B}$ and ${}_{B}N_{A}$ s.t.

$$_{A}M_{B}\otimes {_{B}N_{A}}\cong {_{A}A_{A}}$$
 and $_{B}N_{A}\otimes {_{A}M_{B}}\cong {_{B}B_{B}}$

In this case M and N determine each other via $N \cong \operatorname{Hom}_{\mathsf{Mod}-B}(M,B)$ and $M \cong \operatorname{Hom}_{\mathsf{Mod}-A}(N,A)$. Moreover $A \cong \operatorname{End}_{\mathsf{Mod}-B}(M)$ and $B \cong \operatorname{End}_{\mathsf{Mod}-A}(N)$.

- d.) There ex. a progenerator, i.e. a module M s.t.
 - i.) M is f.g. projective and
 - ii.) M is a generators of A-Mod, i.e. every module X is a quotient of $\bigoplus_{i \in I} P$ for some sufficiently large I.

which satisfies $B \cong \operatorname{End}(M)$.

Proof. a. \Longrightarrow b. because finite generation and projectivity can be categorically defined. b. \Longrightarrow c. If an equivalence $A - \operatorname{proj} \stackrel{F}{\Longleftrightarrow} B - \operatorname{proj}$ is given, then M := G(AA) and N := F(BB) are the desired bimodules. In fact $F = N \otimes -$ and $G = M \otimes -$ because F and G are additive.

c. \Longrightarrow a. Conversely if M,N are given, then $F:=N\otimes -$ and $G:=M\otimes -$ are pseudoinverse functors.

4.2: $\operatorname{Hom}(M_B, B_B)$ is isomorphic to $M^{\vee} = \operatorname{Hom}_k(M, k)$ if B is a symmetric k-algebra. Similarly $\operatorname{Hom}(N_A, A_A) \cong N^{\vee}$ if A is symmetric.

4.3 Theorem (Rickard, Keller, ...):

Let A and B be two k-algebras which are f.g. projective over k. TFAE:

- a.) $D^b(A) \cong D^b(B)$ as triangulated categories.
- b.) $K^b(A-\text{proj}) \cong K^b(B-\text{proj})$ as triangulated categories.
- c.) There exist P of A-B-bimodules and Q of B-A-bimodules s.t.

$$P \otimes_B^L Q \sim A$$
 and $Q \otimes_A^L P \sim B$

In this case P and Q determine each other via $Q = \operatorname{Hom}_{D^b(\mathsf{Mod}-B)}(P,B)$ and $P = \operatorname{Hom}_{D^b(\mathsf{Mod}-A)}(Q,A)$. Moreover $A \cong \operatorname{End}_{D^b(B)}(P)$ and $B \cong \operatorname{End}_{D^b(A)}(Q)$.

- d.) There exists a tilting complex, i.e. a bounded complex P of A-modules s.t.
 - i.) P consists of f.g. projective A-modules
 - ii.) add(P), the smallest full subcategory which contains P and is closed under taking direct sums and direct summands, generates $K^b(A \mathsf{proj})$ as a triangulated category.
 - iii.) P is "rigid":

$$\forall n \neq 0 : \operatorname{Hom}(P, P[n]) = 0$$

such that $B \cong \operatorname{End}({}_{A}P)$

4.4: Now it is not (known to be) true that every equivalence $F: D^b(A) \to D^b(B)$ is actually isomorphic to some $Q \otimes^L -$ as it is in the Morita case. If so, F is called "standard".

4.5 Definition (Rickard):

Let G, H be two finite groups with a common (fixed) p-subgroup D.

A splendid tilting complex for two blocks $B \in Bl(\mathbb{F}G)$ and $C \in Bl(\mathbb{F}H)$ is a complex B-b-bimodules as above such that additionally the following hold:

a.) Homotopy instead of quasi-isomorphism:

$$P \otimes_b P^{\vee} \simeq B$$
 and $P^{\vee} \otimes_B P \simeq b$

b.) Each term of P is a p-permutation module of $G \times H$ and is projective relative to $\Delta(D)$.

4.6 Theorem (Rickard):

Let A be a self-injective \mathbb{F} -algebra. The canonical functor $A-\mathsf{mod} \to D^b(A)$ which maps a module M to the complex $\cdots \to 0 \to M \to 0 \to \cdots$ with M concentrated in 0 induces an equivalence

$$\underbrace{A{-}\mathsf{mod}/A{-}\mathsf{proj}}_{=A-\underline{\mathsf{mod}}} \to D^b(A)/K^b(A{-}\mathsf{proj})$$

of triangulated categories.

4.7 Corollary:

Let A and B be finite-dimensional, self-injective \mathbb{F} -algebras. If they are derived equivalent, they are also stably equivalent. In fact, there is a stable equivalence of Morita type.

4.8 Theorem (Okuyama, Rickard, ...):

Let A and B be symmetric k-algebras over a field.

If $\mathcal{F}: A-\mathsf{mod} \to B-\mathsf{mod}$ is an exact functor which induces a stable equivalence, $\mathrm{Irr}(A) = \{S_1, \ldots, S_n\}$ are and $\mathcal{X} = \{X_1, \ldots, X_n\}$ are objects in $D^b(B)$ s.t.

a.) $\operatorname{Hom}(X_i, X_j[m]) = 0$ for all m < 0 and all i, j.

b.)
$$\operatorname{Hom}(X_i, X_j) = \begin{cases} k & i = j \\ 0 & i \neq j \end{cases}$$

c.) \mathcal{X} generates $D^b(B)$ as triangulated category.

and such that X_i is stably isomorphic to $\mathcal{F}(S_i)$ for all i (i.e. isomorphic in $D^b(A)/K^b(A-\text{proj})$), then \mathcal{F} also induces a derived equivalence.

4.9: The proof is based on a theorem by Linckelmann that a stable equivalence of Morita type (i.e. induced by a tensor-functor) between indecomposable, finite-dimensional, self-injective K-algebras which also maps simples to simples is a Morita equivalence.

5 Step one: Cyclic defect

5.1 Theorem:

Blocks with cyclic defect group D are Brauer tree algebras with $e = |\mathrm{IBr}(B)|$ edges and multiplicity $\mu = \frac{|D|-1}{e}$.

5.2 Theorem (Rickard):

ADGC holds for blocks of cyclic defect. In fact, all Brauer tree algebras with the same number of edges and the same multiplicity are derived equivalent.

6 Step two: Klein four defect

6.1 Theorem (2-modular representation theory of A_4):

The 2-modular Brauer character table of A_4 is

In particular there is only one 2-block.

6.2 Example:

ADGC holds for A_5 .

Proof. p = 3 and p = 5 are already done because cyclic defect.

Only other case is the principal 2-block. We set $D := V_4 \in Syl_2(G)$, $H := N_G(D) = A_4$. Since D is a TI subgroup of A_5 , Green correspondence gives a stable equivalence of Morita type

$$\{\ M\in \mathbb{F}H-\underline{\operatorname{mod}}\mid vx(M)\leq D\ \} \xleftarrow{\operatorname{Ind}_H^G} \{\ M\in \mathbb{F}G-\underline{\operatorname{mod}}\mid vx(M)\leq D\ \}$$

which restricts to a stable equivalence of Morita type

$$b-\underline{\operatorname{mod}} \xleftarrow{\operatorname{Ind}_H^G} B-\underline{\operatorname{mod}}$$

$$\operatorname{Res}_H^G B-\underline{\operatorname{mod}}$$

The restriction of the three simple B-modules ϕ_1, ϕ_2, ϕ_3 are

$$Y_1 := \psi_1 \quad Y_2 = \begin{array}{cc} \psi_2 \\ \psi_3 \end{array} \quad Y_3 = \begin{array}{cc} \psi_3 \\ \psi_2 \end{array}$$

which can be verified by explicit calculations. Simple constituents can be seen from the character tables. Which one is the socle and which the head of Y_i can be calculated by looking at explicit modules.

Then $X_1 := Y_1$ is already simple. Furthermore

$$\Omega Y_2 = \begin{array}{cc} \psi_1 \\ \psi_2 \end{array} \quad \Omega Y_3 = \begin{array}{cc} \psi_1 \\ \psi_3 \end{array}$$

Then we can set $X_2 := \Omega Y_2[1]$ and $X_3 := \Omega Y_3[1]$. These three generate $D^b(b)$ because $\psi_1 = X_1$ is already in \mathcal{X} , ψ_2 and ψ_3 are kernels of $X_i \to X_1$. It is also easy to see that $\dim_k \operatorname{Hom}(X_i, X_j) = \delta_{ij}$ and that $\operatorname{Hom}(X_i, X_j[m]) = 0$ for m < 0.

Okuyama's method therefore upgrades the stable equivalence to a derived equivalence.

6.3: In fact, one can do the same with the cyclic defect groups instead of using the heavy guns.