Post Quantum Cryptography, Isogeny Graphgs

Javad Doliskani

Intitiute for Quantum Computing University of Waterloo

Content

- Quantum computers
- 2 Cryptoygraphy
- Isogeny based cryptography
- Implementation and demo

Quantum computers

- Able to run any classical code!
 - ▶ In a quantum computer every operation is reversible.
 - ► Classical operations might not be reversible.
 - Irreversible operations can be made reversible.

Irreversible + extra input and output = Reversible

Quantum computers

- More powerful than classical computers
 - Operations can be performed on registers in superposed states.
 - ► There are problems that a quantum computer can provably solve more efficient than a classical computer.
 - Deutsch 1985
 - 2 Jozsa 1992
 - Bernstein and Vasirani 1997

Quantum computers

Search

- In a list of size n, and element can be found in time $O(\sqrt{n})$
- More generally, if there are m solutions then a solution can be found in time $O(\sqrt{\frac{m}{n}})$

Period finding

- If $f(n+s) = f(n), \forall n$ then s can be found efficiently
 - An *n*-bit integer can be factored in time $O(n^3)$
 - Discrete logarithm problem in $\mathbb{F}_q^ imes$ can be solved in time $O(\log^3 q)$

Cryptography

Classical cryptography

Cryptography using a classical computer:
 Most known cryptosystems

Post quantum cryptography

Classical cryptosystems which seem to resist quantum attacks:
 Lattice based, Code based, Isogeny based, etc.

Quantum cryptography

Cryptography using a quantum computer/device:
 Quantum Key Distribution

Post quantum cryptography

- Lattice based
 - ▶ NewHope, CRYSTALS-KYBER, NTRU, Frodo, etc.
- Code based
 - McEliece, BIKE, LAKE, etc.
- Multivariate
 - DME, Rainbow, CFPKM, etc.
- Hash based
 - Gravity-SPHINCS, SPHINCS+.
- Isogeny based
 - ► SIKE.

Isogeny based cryptography

Elliptic curve $E: y^2 = x^3 + ax + b$

A Graph

Vertices

- The set of all elliptic curves E: $y^2 = x^3 + ax + b$ where a, b are in a given field.
- For example, the curve $y^2 = x^3 + 5x + 13$ is defined over the finite field \mathbb{F}_{31} .

Edges

Mappings between elliptic curves are given by rational functions:

$$\psi: E_1 \longrightarrow E_2 (x,y) \longmapsto (R_1(x,y), R_2(x,y))$$

• Isogenies are special kind of such mappings

Isogeny graphs

There are two kinds of elliptic curves over a finite field \mathbb{F}_q .

- Ordinary elliptic curves
 - ▶ Nontrivial *p*-torsion.
 - Isogeny graphs are called isogeny volcanoes
- Supersingular elliptic curves
 - Trivial p-torsion.
 - ► Isogeny graphs regular graphs
 - ► For example the graph of 2-isogenies is 3-regular

Isogeny volcanoes

Inner nodes have degree 3 and leaves have degree 1

Supersingular graphs

Connected 3-regular graph.

Supersingular graphs

Over the finite field \mathbb{F}_{p^2} :

- The graph is connected.
 - ▶ The diameter of the graph is $O(\log p)$.
- The number of vertices in the graph is $\approx \lceil \frac{p}{12} \rceil$.
- The vertices are encoded using *j*-invariants
 - *j*-invariants are elements of \mathbb{F}_{p^2} .
- The edges are encoded using modular poltnomials.

Taking $p \approx 2^{700}$, the isogenty graph has $\approx 2^{696}$ nodes.

Supersingular isogeny problem

Let G be the isogeny graph of supersingular curves over \mathbb{F}_{p^2} . Given two vertices E_1 and E_2 in G, find a path $E_1 \to E_2$.

The endomorphism version:

• Let G be the isogeny graph of supersingular curves over \mathbb{F}_{p^2} . Given a vertex E in G, find a nontrivial loop $E \to E$.

A trivial loop is multiplication by an integer

$$[m]: E \longrightarrow E$$

$$P \longmapsto [m]P$$

Attacks

- Pollard-rho
 - Complexity: $O(\sqrt{p}\log^2 p)$
 - Might not always find the path of correct length
- Quantum claw finding
 - ▶ Complexity: classical $O(\sqrt{p})$, and quantum $O(\sqrt[3]{p})$
- ullet Using the $\mathbb{F}_{m{p}} ext{-subgraph}$ and quantum search
 - ▶ Complexity: $O(\sqrt[4]{p})$.
 - Usually finds longer paths

Set $p \approx 2^{512}$ to get ≈ 128 bits of security.

Supersingular hash

- Hashing of an *n*-bit message M = 100...10
- Charles, Lauter, Goren 2009

Supersingular Isogeny Diffie-Hellman

Shared key: the *j*-invariant of E_{AB} .

Implementation

Performance (in thousands of cycles) on a 3.4GHz Intel Core i7-6700

Scheme	KeyGen	Encaps	Decaps
SIKEp503	10,134	16,619	17,696
SIKEp751	30,919	50,014	53,838

Size (in bytes) of inputs and outputs

Scheme	secret key	public key	ciphertext	shared secret
SIKEp503	(56+378) 434	378	402	16
SIKEp751	(80+564) 644	564	596	24
SIKEp964	(100+726) 826	726	766	32

See http://sike.org for more details.