

SIPMOS ® Power Transistor

BUZ 30A H

- Enhancement mode
- Avalanche-rated
- Pb-free lead plating; RoHS compliant
- . Halogen-free according to IEC61249-2--21

Туре	V _{DS}	I _D	R _{DS(on)}	Package	Pb-free
BUZ 30A H	200 V	21 A	0.13 Ω	PG-TO-220-3	Yes

Maximum Ratings

Parameter	Symbol	Values	Unit
Continuous drain current	I _D		А
$T_{\rm C}$ = 26 °C		21	
Pulsed drain current	I _{Dpuls}		
$T_{\rm C}$ = 25 °C		84	
Avalanche current,limited by T _{jmax}	I _{AR}	21	
Avalanche energy,periodic limited by T_{jmax}	E _{AR}	12	mJ
Avalanche energy, single pulse	E _{AS}		
$I_{\rm D}$ = 21 A, $V_{\rm DD}$ = 50 V, $R_{\rm GS}$ = 25 Ω			
$L = 1.53 \text{ mH}, T_j = 25 \text{ °C}$		450	
Gate source voltage	V_{GS}	± 20	V
Power dissipation	P _{tot}		W
$T_{\rm C}$ = 25 °C		125	
Operating temperature	$T_{\rm j}$	-55 + 150	°C
Storage temperature	$T_{ m stg}$	-55 + 150	
Thermal resistance, chip case	R _{thJC}	≤1	K/W
Thermal resistance, chip to ambient	R_{thJA}	75	
DIN humidity category, DIN 40 040		E	
IEC climatic category, DIN IEC 68-1		55 / 150 / 56	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Static Characteristics					
Drain- source breakdown voltage	V _{(BR)DSS}				V
$V_{\rm GS}$ = 0 V, $I_{\rm D}$ = 0.25 mA, $T_{\rm j}$ = 25 °C		200	-	-	
Gate threshold voltage	V _{GS(th)}				
$V_{\text{GS}} = V_{\text{DS}}$, $I_{\text{D}} = 1 \text{ mA}$		2.1	3	4	
Zero gate voltage drain current	I _{DSS}				μΑ
$V_{\rm DS} = 200 \ {\rm V}, \ V_{\rm GS} = 0 \ {\rm V}, \ T_{\rm j} = 25 \ {\rm ^{\circ}C}$		-	0.1	1	
$V_{\rm DS} = 200 \ {\rm V}, \ V_{\rm GS} = 0 \ {\rm V}, \ T_{\rm j} = 125 \ {\rm ^{\circ}C}$		-	10	100	
Gate-source leakage current	I _{GSS}				nA
$V_{GS} = 20 \text{ V}, \ V_{DS} = 0 \text{ V}$		-	10	100	
Drain-Source on-resistance	R _{DS(on)}				Ω
$V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 13.5 A		-	0.1	0.13	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Dynamic Characteristics					
Transconductance	g_{fs}				S
$V_{\rm DS} \ge 2 * I_{\rm D} * R_{\rm DS(on)max}, I_{\rm D} = 13.5 \text{ A}$		6	15	-	
Input capacitance	C _{iss}				pF
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	1400	1900	
Output capacitance	$C_{\rm oss}$				
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	280	400	
Reverse transfer capacitance	C_{rss}				
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	130	200	
Turn-on delay time	$t_{d(on)}$				ns
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 3 A					
$R_{\rm GS}$ = 50 Ω		-	30	45	
Rise time	t_{r}				
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 3 A					
$R_{\rm GS}$ = 50 Ω		-	70	110	
Turn-off delay time	t _{d(off)}				
$V_{\rm DD} = 30 \; { m V}, \; V_{ m GS} = 10 \; { m V}, \; I_{ m D} = 3 \; { m A}$					
$R_{\rm GS}$ = 50 Ω		-	250	320	
Fall time	t_{f}				
$V_{DD} = 30 \; V, \; V_{GS} = 10 \; V, \; I_{D} = 3 \; A$					
$R_{\rm GS} = 50~\Omega$		-	90	120	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Reverse Diode					
Inverse diode continuous forward current	IS				А
$T_{\rm C}$ = 25 °C		-	-	21	
Inverse diode direct current,pulsed	I _{SM}				
$T_{\rm C}$ = 25 °C		-	-	84	
Inverse diode forward voltage	$V_{\rm SD}$				V
$V_{GS} = 0 \text{ V}, I_{F} = 42 \text{ A}$		-	1.2	1.6	
Reverse recovery time	t _{rr}				ns
$V_{\rm R} = 100 \ {\rm V}, \ I_{\rm F} = I_{\rm S}, \ {\rm d}i_{\rm F}/{\rm d}t = 100 \ {\rm A/\mu s}$		-	180	-	
Reverse recovery charge	Q_{rr}				μC
$V_{\rm R} = 100 \text{ V}, I_{\rm F} = I_{\rm S}, di_{\rm F}/dt = 100 \text{ A/}\mu\text{s}$		-	1.2	-	

Power dissipation

$$P_{\mathsf{tot}} = f(T_{\mathsf{C}})$$

Drain current

 $I_{\mathsf{D}} = f(T_{\mathsf{C}})$

parameter: V_{GS} ≥ 10 V

Safe operating area

 $I_{\mathsf{D}} = f(V_{\mathsf{DS}})$

parameter: D = 0.01, $T_C = 25$ °C

Transient thermal impedance

 $Z_{\mathsf{th\ JC}} = f(t_{\mathsf{p}})$

parameter: $D = t_p / T$

Typ. output characteristics

 $I_{\rm D} = f(V_{\rm DS})$ parameter: $t_{\rm p} = 80~\mu \rm s$

Typ. transfer characteristics $I_D = f(V_{GS})$

parameter: $t_p = 80 \mu s$ $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Typ. drain-source on-resistance

 $R_{\text{DS (on)}} = f(I_{\text{D}})$ parameter: V_{GS}

Typ. forward transconductance $g_{fs} = f(I_D)$

parameter: $t_p = 80 \mu s$, $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Drain-source on-resistance

 $R_{DS (on)} = f(T_j)$

parameter: $I_D = 13.5 \text{ A}$, $V_{GS} = 10 \text{ V}$

Gate threshold voltage

 $V_{\text{GS (th)}} = f(T_{j})$

parameter: $V_{GS} = V_{DS}$, $I_{D} = 1$ mA

Typ. capacitances

 $C = f(V_{DS})$

parameter: $V_{GS} = 0V$, f = 1MHz

Forward characteristics of reverse diode

 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$

parameter: T_i , $t_p = 80 \mu s$

Avalanche energy $E_{AS} = f(T_j)$

parameter: $I_D = 21 \text{ A}$, $V_{DD} = 50 \text{ V}$

 R_{GS} = 25 Ω , L = 1.53 mH

Typ. gate charge

 $V_{\rm GS} = f(Q_{\rm Gate})$

parameter: $I_{D \text{ puls}} = 32 \text{ A}$

Drain-source breakdown voltage

 $V_{(BR)DSS} = f(T_j)$

Package Drawing: TO220-3

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2010 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.