Name		Period
,	Honors Chemis Thermodynamics Pra	•
Part I: Define the following	twelve terms.	
1. Temperature		
2. Heat		
3. calorie		
4. Calorie		
5. First law of Thermodynan	nics	
6. Second law of Thermodyn	amics	
7. Zeroth law of Thermodyna	amics	
8. system		
9. surroundings		
10. enthalpy		
11. entropy		
12. open system		
Part II: Numerical calculate 1. Use Hess' Law to calculate		or:
$ClF(g) + F_2(g) \hookrightarrow ClF_3(l)$		
From: $2\text{ClF}(g) + O_2(g) \leftrightarrows \text{Cl}_2O(g) - O_2(g)$	$+ OF_2(g)$	$\Delta H^{\circ} = 167.5 \text{ kJ}$

 $\Delta H^{\circ} = -43.5 \text{ kJ}$

 $\Delta H^{\circ} = 394.1 \text{ kJ}$

 $2F_2(g) + O_2(g) \leftrightarrows 2OF_2(g)$

 $2\text{ClF}_3(1) + 2\text{O}_2(g) \leftrightarrows \text{Cl}_2\text{O}(g) + 3\text{OF}_2(g)$

Form P

2. Given the following data:

$$\begin{aligned} \operatorname{Fe_2O_3}(s) + 3\operatorname{CO}(g) &\leftrightarrows 2\operatorname{Fe}(s) + 3\operatorname{CO_2}(g) \\ 3\operatorname{Fe_2O_3}(s) + \operatorname{CO}(g) &\leftrightarrows 2\operatorname{Fe_3O_4}(s) + \operatorname{CO_2}(g) \\ \operatorname{Fe_3O_4}(s) + \operatorname{CO}(g) &\leftrightarrows 3\operatorname{FeO}(s) + \operatorname{CO_2}(g) \end{aligned} \qquad \Delta H^\circ = -28 \text{ kJ}$$

Calculate ΔH° for the reaction

$$FeO(s) + CO(g) \leftrightarrows Fe(s) + CO_2(g)$$

Heat Capacities for common materials:

Substance	Specific Heat	Substance	Specific Heat
$H_2O(s)$	2.06 J/g °C	Aluminum (s)	0.900 J/g °C
$H_2O(g)$	2.02 J/g °C	Benzene (1)	1.74 J/g °C
H ₂ O (1)	4.18 J/g °C	Ethanol (1)	2.42 J/g °C

Phase Change Data

Substance	Heats of Fusion	Heats of Vaporization	Boiling Points	Melting Points
H ₂ O	333.5 J/g	2258 J/g	373.2 K	273.2 K
Benzene	135.5 J/g	394 J/g	353.2 K	278.6 K
Ethanol	99.8 J/g	944 J/g	351.5 K	158.7 K
Acetone	98.5 J/g	500.9 J/g	329.4 K	179 K

- 5. You have a sample of H_2O with a mass of 200.0 g at a temperature of -50.0 °C. How many joules of heat energy are necessary to:
- A) heat the ice to 0°C?
- B) melt the ice?
- C) heat the water from 0°C to 100°C?
- D) boil the water?
- E) heat the steam from 100°C to 110°C?