A polynomial algorithm for deterministic mean-payoff games

Bruno Scherrer*

March 14, 2022

Abstract

We describe a polynomial algorithm for solving deterministic mean payoff games. Our algorithm solves a mean payoff game with n vertices and integer edge-costs between -W and W in time ... This in particular implies that a parity game with n vertices and d priorities can be solved in time This answers positively the long-standing open problem whether these problems are in P.

1 Preliminaries

Consider a mean payoff game played by two players, MAX and MIN, on a graph with n vertices $X = \{1, 2, \ldots, n\} = X_+ \sqcup X_-$ and directed edges E. For any vertex x, we write $E(x) = \{y; (x, y) \in E\}$ the set of vertices that can be reached from x by following one edge. An integer cost $-R \le r(x) \le R$ is associated to each node x. The vertices of X_+ (resp. X_-) belong to MAX (resp. MIN). The game starts in some vertex x_0 . The player who owns the current vertex chooses a next vertex by following an edge. So on and so forth, these choices generate an infinitely long trajectory (x_0, x_1, \ldots) . The goal of MAX is to maximize

$$\lim \inf_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} r(x_t),$$

while that of MIN is to minimize

$$\lim \sup_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} r(x_t).$$

Transition matrix For any pair of positional strategies $\mu: X_+ \to X$ for MAX and $\nu: X_-$ for MIN (mappings such that for all $x, \mu(x) \in E(()x)$ and $\nu(x) \in E(()x)$), let us write $P_{\mu,\nu}$ for the transition matrix: for all $(i,j) \in \{1,2,\ldots,n\}^2$, $P_{\mu,\nu}(i,j)$ equals 1 if and only if μ and ν induce a transition $i \to j$ and 0 else.

Discounted value For any $0 < \gamma < 1$, let us introduce the following Bellman operator

$$T_{\mu,\nu}^{(\gamma)}v = r + \gamma P_{\mu,\nu}v,$$

that is a γ -contraction with respect to the max norm. The discounted value $v_{\mu,\nu}^{(\gamma)}$ when MAX and MIN respectively use μ and ν satisfies

$$v_{\mu,\nu}^{(\gamma)} = \sum_{t=0}^{\infty} (\gamma P_{\mu,\nu})^t r = (I - \gamma P_{\mu,\nu})^{-1} r$$

and is the fixed point of $T_{\mu,\nu}^{(\gamma)}$.

^{*}INRIA, bruno.scherrer@inria.fr

Gain, bias, Laurent series expansion of the value Write

$$P_{\mu,\nu}^* = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} (P_{\mu,\nu})^t.$$

for the Cesaro-limit of $P_{\mu,\nu}$. For any function $g(\cdot)$ of parameter γ , we shall write

$$g(\gamma) = f_{\gamma}[a, b]$$

when g admits a development when $\gamma \uparrow 1$ of the form :

$$g(\gamma) = \frac{a}{1 - \gamma} + b + O(1 - \gamma).$$

The Laurent series expansion [3, Appendix A] tells us that:

$$(I - \gamma P_{\mu,\nu})^{-1} = f_{\gamma} (P_{\mu,\nu}^*, (I - P_{\mu,\nu} + P_{\mu,\nu}^*)^{-1} (I - \gamma P_{\mu,\nu}^*)].$$

We deduce that

$$v_{\mu,\nu}^{(\gamma)} = f_{\gamma} [g_{\mu,\nu}, h_{\mu,\nu}],$$

where $g_{\mu,\nu}$ and $h_{\mu,\nu}$ are the gain and the bias defined as

$$g_{\mu,\nu} = P_{\mu,\nu}^* r,$$

$$h_{\mu,\nu} = [I - (P_{\mu,\nu} - P_{\mu,\nu}^*)]^{-1} (I - P_*) r.$$

For any $(g,h) \in \mathbb{R}^2$, consider the following Bellman operators

$$T_{\mu,\nu}(g,h) = (P_{\mu,\nu}g, r + P_{\mu,\nu}(h-g)).$$

Given some policies (μ, ν) , the gain $g_{\mu,\nu}$ and the bias $h_{\mu,\nu}$ are solutions to the following system of linear equations

$$(g,h) = T_{\mu,\nu}(g,h),$$

$$w = h + P_{\mu,\nu}w,$$

where the extra-variable w ensures that the above system has a unique solution [3, Theorem 8.2.6 and Corollary 8.2.9].

Order relation and Optimality Bellman operator Consider the lexicographic order relation \prec on \mathbb{R}^2 :

$$(g,h) \prec (g',h') \Leftrightarrow g < g' \text{ or } (g=g' \text{ and } h < h')$$

Consider the following Bellman operators

$$T_{\mu}(g,h) = \min_{\nu} T_{\mu,\nu}(g,h),$$

$$T(g,h) = \max_{\mu} T_{\mu}(g,h),$$

where the max and min operators are based on the order relation \prec .

The standard Policy Iteration for mean payoff games is based on the following observations:

Lemma 1. Let μ be some policy for MAX. Let ν be an optimal counter policy for MIN and $v_{\mu,\nu}=(g_{\mu,\nu},h_{\mu,\nu})$ be the value (gain and bias) of the resulting game. Let $\bar{\mu}$ be any policy that satisfies $T_{\bar{\mu}}v=Tv$. If for some $x, v_{\mu,\nu}(x) \prec T_{\bar{\mu}}v_{\mu,\nu}(x)$, then $(g_{\mu,\nu},h_{\mu,\nu}) \prec (g_{\bar{\mu},\bar{\nu}},h_{\bar{\mu},\bar{\nu}})$; otherwise, μ is an optimal policy.

For the sake of completeness we give a proof.

Proof. For any policies (μ', ν') ,

$$v_{\mu',\nu'}^{(\gamma)} - v_{\mu,\nu}^{(\gamma)} = (I - \gamma P_{\mu',\nu'})^{-1} [r + (\gamma P_{\mu',\nu'} - I) v_{\mu,\nu}^{(\gamma)}].$$

Now observe that

$$\begin{split} r + (\gamma P_{\mu',\nu'} - I) \left(\frac{g_{\mu,\nu}}{1 - \gamma} + h_{\mu,\nu} + O(1 - \gamma) \right) \\ &= r + [P_{\mu',\nu'} - I - (1 - \gamma)P_{\mu',\nu'}] \left(\frac{g_{\mu,\nu}}{1 - \gamma} + h_{\mu,\nu} + O(1 - \gamma) \right) \\ &= \frac{P_{\mu',\nu'}g_{\mu,\nu} - g_{\mu,\nu}}{1 - \gamma} + r + P_{\mu',\nu'}(h_{\mu,\nu} - g_{\mu,\nu}) - h_{\mu,\nu} + O(1 - \gamma) \\ &= \frac{P_{\mu',\nu'}g_{\mu,\nu} - P_{\mu,\nu}g_{\mu,\nu}}{1 - \gamma} + P_{\mu',\nu'}(h_{\mu,\nu} - g_{\mu,\nu}) - P_{\mu,\nu}(h_{\mu,\nu} - g_{\mu,\nu}) + O(1 - \gamma) \end{split}$$

By taking $(\mu', \nu') = (\bar{\mu}, \bar{\nu})$, we get

2 A non-stationary Policy Iteration algorithm

We consider the following iterative algorithm:

- 1. (Initialization) Set k = 0 and take an arbitrary policy μ_0 for MAX.
 - 2. (Evaluation) Compute the value v_k and an optimal counter-policy ν_k of MIN in the 1-player problem where MAX uses μ_k :

$$v_k = Tv_k = T_{\mu_k}v_k = T_{\mu_k,\nu_k}v_k$$

3. (Computation of the *n*-step advantage) Compute the advantage δ_n and a pair of *n*-horizon strategies $(\mu_k^{(n)}, \dots, \mu_k^{(1)})$ and $(\nu_k^{(n)}, \dots, \nu_k^{(1)})$ such that:

$$\delta_k = T^n v_k - v_k = T_{\mu_k^{(n)}, \nu_k^{(n)}} T_{\mu_k^{(n-1)}, \nu_k^{(n-1)}} \dots T_{\mu_k^{(1)}, \nu_k^{(1)}} v_k - v_k.$$

4. (Identification of converged nodes) Compute the set

$$Z_k = \{ x \in X : \delta_k(x) = 0 \}.$$

If $Z_k \neq \emptyset$: 1) remove the nodes of the MIN-attractor A_k set of Z_k from the game (along with the transitions that go to A_k). If the game still has nodes, increment k by 1 and go to step 2 (otherwise stop).

5. (Computation of a stationary policy) Compute the values $w_k^{(n)},\ldots,w_k^{(1)}$ in the 1-player problems for MIN where MAX uses the n-periodic strategies $\sigma_k^{(n)}=(\mu_k^{(n)},\ldots,\mu_k^{(1)}),$ $\sigma_k^{(n-1)}=(\mu_k^{(n-1)},\ldots,\mu_k^{(1)},\mu_k^{(n)}),$ $\ldots,\sigma_k^{(1)}=(\mu_k^{(1)},\mu_k^{(n)},\ldots,\mu_k^{(2)})$:

$$\begin{split} w_k^{(n)} &= T_{\mu_k^{(n)}} \dots T_{\mu_k^{(1)}} w_k^{(n)}, \\ w_k^{(n-1)} &= T_{\mu_k^{(n-1)}} \dots T_{\mu_k^{(1)}} T_{\mu_k^{(n)}} w_k^{(n-1)}, \\ &\vdots & \vdots \\ w_k^{(1)} &= T_{\mu_k^{(1)}} T_{\mu_k^{(n)}} \dots T_{\mu_k^{(2)}} w_k^{(1)}. \end{split}$$

Compute the pointwise maximum $w_k = \max_i w_k(i)$, and identify a policy μ_{k+1} that satisfies:

$$T_{\mu_k} w_k = T w_k$$

Increment k by 1 and go to step 2.

3 A scaling approach

4 Application to the Mean Payoff game

5 Conclusion

We have shown that the problem "Mean Payoff Game" is in P. To our knowledge, this problem was only previously known to be in $NP \cap co - NP$ [4].

It was shown in [2] that any parity game (a game that is central to μ -calculus model checking) on a graph with n vertices and d priorities can be reduced to a mean payoff game on the same graph with edge costs bounded in absolute value by $W = n^d$. As a consequence, Theorem ?? implies that:

Theorem 1. A parity game with n vertices and d priorities can be solved in time ...

Though "Parity Game" was long thought to be in $NP \cap co - NP$ and has recently be shown to be quasi-polynomial [1], it is in fact in P.

References

- [1] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding parity games in quasipolynomial time. In *Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017*, pages 252–263, 2017.
- [2] Anuj Puri. Theory of Hybrid Systems and Discrete Event Systems. PhD thesis, Berkeley, CA, USA, 1995. UMI Order No. GAX96-21326.
- [3] M. Puterman. Markov Decision Processes. Wiley, New York, 1994.
- [4] Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. *Theor. Comput. Sci.*, 158(1&2):343–359, 1996.