

Europäische Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 845 532 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
03.06.1998 Patentblatt 1998/23

(51) Int. Cl.⁶: C12N 15/53, C12N 9/02,
C12P 7/22, C12N 9/80

(21) Anmeldenummer: 97120058.9

(22) Anmeldetag: 17.11.1997

(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL PT SE

- Priefert, Horst, Dr.
48291 Telgte (DE)
- Rabenhorst, Jürgen, Dr.
37671 Höxter (DE)

(30) Priorität: 29.11.1996 DE 19649655

(74) Vertreter:
Petrovicki, Wolfgang, Dr. et al
Bayer AG
Konzernbereich RP
Patente und Lizenzen
51368 Leverkusen (DE)

(71) Anmelder: HAARMANN & REIMER GMBH
D-37601 Holzminden (DE)

(72) Erfinder:
• Steinbüchel, Alexander, Prof Dr.
48341 Altenberge (DE)

(54) **Syntheseenzyme für die Herstellung von Coniferylalkohol, Coniferaldehyd, Ferulasäure, Vanillin und Vanillinsäure und deren Verwendung**

(57) Die vorliegende Erfindung betrifft Synthaseenzyme für die Herstellung von Coniferylalkohol, Coniferaldehyd, Ferulasäure, Vanillin und Vanillinsäure, deren Verwendung bei der Herstellung von Coniferylalkohol, Coniferaldehyd, Ferulasäure, Vanillin und Vanillinsäure, für diese Enzyme codierende DNA sowie mit dieser DNA transformierte Mikroorganismen.

EP 0 845 532 A2

Beschreibung

Die vorliegende Erfindung betrifft Syntheseenzyme für die Herstellung von Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und Vanillinsäure, deren Verwendung bei der Herstellung von Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und Vanillinsäure, für diese Enzyme codierende DNA sowie mit dieser DNA transformierte Mikroorganismen.

Der erste Artikel der sich mit dem Abbau von Eugenol befaßt, stammt von Tadasa 1977 (Degradation of eugenol by a microorganism. Agric. Biol. Chem. 41, 925-929). In ihm wird der Abbau von Eugenol mit einem Bodenisolat, vermutlich Corynebacterium sp., beschrieben. Es wurden dabei Ferulasäure und Vanillin als intermediäre Abbauprodukte gefunden und der weitere Abbau über Vanillinsäure und Protocatechusäure postuliert.

1983 erschien von Tadasa und Kyahara (Initial Steps of Eugenol Degradation Pathway of a Microorganism. Agric. Biol. Chem. 47, 2639-2640) ein weiterer Artikel, über die ersten Schritte des Eugenolabbaus; diesmal mit einem Bodenisolat, das als Pseudomonas sp. identifiziert wurde. In ihm wurden Eugenoloxid, Coniferylalkohol und Coniferylaldehyd als Zwischenstufen zur Bildung von Ferulasäure beschrieben.

Ebenfalls 1983 erschien von Sutherland et al. (Metabolism of cinnamic, p-coumaric, and ferulic acids by Streptomyces setonii. Can. J. Microbiol. 29, 1253-1257) ein Bericht über den Metabolismus von Zimtsäure, p-Coumarsäure und Ferulasäure in Streptomyces setonii. Dabei wird Ferulasäure über Vanillin, Vanillinsäure und Protocatechusäure abgebaut. Dabei wurden die ringspaltenden Enzyme Catechol 1,2-Dioxygenase und Protocatechuat 3,4-Dioxygenase im zellfreien Extrakt indirekt nachgewiesen.

Ötük (Degradation of Ferulic Acid by Escherichia coli. J. Ferment. Technol. 63, 501-506) berichtete 1985 über den Abbau von Ferulasäure mit einem Escherichia coli Stamm, der von verrottender Rinde isoliert wurde. Auch hier wurden Vanillin, Vanillinsäure und Protocatechusäure als Abbauprodukte nachgewiesen.

1987 erschien eine deutsche Patentanmeldung der BASF (Verfahren zur Gewinnung von Coniferylaldehyd und Mikroorganismus dafür; DE-A 3 606 398) für ein Verfahren zur Herstellung von Coniferylaldehyd aus Eugenol mit einer Arthrobacter globiformis Mutante. Dabei war das Ziel die Gewinnung von natürlichem Vanillin.

Abraham et al. (Microbial transformations of some terpenoids and natural compounds. in: Bioflavour '87, pp 399-413) berichten auf der Bioflavor '87 über die Verstoffwechslung von Eugenol mit verschiedenen Mikroorganismen. Dabei wurden bei der Verwendung von Pilzen vor allem Dimere gefunden, und nur bei Verwendung von Isoeugenol bildet Aspergillus niger ATCC 9142 auch Vanillin.

1988 wurde von Omori et al. (Protocatechuic acid production from trans-ferulic acid by Pseudomonas sp. HF-1 mutants defective in protocatechuic acid catabolism. Appl. Microbiol. Biotechnol. 29, 497-500) ein Verfahren zur Gewinnung von Protocatechusäure mit einer Mutante einer Pseudomonas sp. HF-1 beschrieben. Als Zwischenprodukt wird nur Vanillinsäure erwähnt.

Der Metabolismus von Ferulasäure mit zwei Pilzen, Paecilomyces variotii und Pestalotia palmarum wurde 1989 von Rahouti et al. (Metabolism of ferulic acid by Paecilomyces variotii and Pestalotia palmarum. Appl. Environ. Microbiol. 55, 2391-2398) beschrieben. Dabei wurde der Abbau über 4-Vinylguajacol und Vanillin zur Vanillinsäure postuliert.

1990 erscheinen zwei japanische Patentanmeldung von Hasegawa über eine neue Pseudomonas sp. und ein Dioxygenase Enzym (Novel Pseudomonas sp. and dioxygenase enzyme. JP 2195-871:25.10.88-JP-267 284 (02.08.90) 09.03.89 as 055111), und über eine neue Methode zur Herstellung eines Aldehyds, wie z.B. Vanillin (A new method for the preparation of aldehyde e.g. vanillin. JP 2200-192:25.10.88-JP-267 285 (08.08.90) 09.03.89 as 055112). Dabei wird aber nicht von Eugenol ausgegangen, sondern von verschiedenen Edukten wie Isoeugenol und Coniferylalkohol. Es besteht auch keine Übereinstimmung zwischen der dort beanspruchten Dioxygenase und den hier beanspruchten Enzymen.

In (Production of natural vanillin by microbial oxidation of eugenol or isoeugenol. EP-A 405 197) wurden Bakterien der Gattungen Serratia, Enterobacter oder Klebsiella zur mikrobiellen Oxidation von Eugenol und Isoeugenol verwendet. Der Prozeß brachte aber nur mit Isoeugenol gute Umsetzungen, mit Eugenol lief er nur sehr schlecht.

1991 erschien die EP-A 453 368 (Production de vanilline par bioconversion de précurseurs benéniques), bei der mit einem Basidiomyceten, Pycnoporus cinnabarinus CNCM I-937 und I-938, mit Vanillinsäure und Ferulasäure die Umsetzung zu Vanillin beobachtet wurde.

Takasago Perfumery Company erhielt 1992 ein japanisches Patent (Preparation of vanillin, coniferyl-alcohol and -aldehyde, fenilic acid and vanillyl alcohol - by culturing mutant belonging to Pseudomonas genus in presence of eugenol which is oxidatively decomposed; JP 05 227 980 21.02.1992) für die Herstellung von Vanillin, Coniferylalkohol, Coniferylaldehyd, Ferulasäure und Vanillylalkohol aus Eugenol mit einer Pseudomonas Mutante.

Ebenfalls 1992 wurde das US-Patent 5 128 253 von Labuda et al. (Kraft-General Foods) (Bioconversion Process for the production of vanillin) erteilt, in dem eine Biotransformation zur Herstellung von Vanillin beschrieben wird. Ausgangsmaterial ist auch hier Ferulasäure, verwendete Organismen sind Aspergillus niger, Rhodotorula glutinis und Corynebacterium glutamicum. Entscheidend dabei ist die Verwendung von Sulphydryl-Komponenten (z.B. Dithiothreitol) im Medium. 1993 erscheint der Inhalt des Patents auch als Publikation (Microbial bioconversion process for the

production of vanillin; Prog. Flavour Precursor Stud. Proc. Int. Conf. 1992, 477-482).

Die EP-A 542 348 (Process of preparation of phenylaldehydes) beschreibt ein Verfahren zur Herstellung von Phenylaldehyden mit dem Enzym Lipoxygenase. Substrate sind u.a. Eugenol und Isoeugenol. Wir haben versucht, das Verfahren mit Eugenol nachzuarbeiten, konnten aber die Umsetzungen nicht bestätigen.

5 Die DE-A 4 227 076 (Verfahren zur Herstellung substituierter Methoxyphenole und dafür geeigneter Mikroorganismus) beschreibt die Herstellung substituierter Methoxyphenole mit einer neuen Pseudomonas sp. Ausgangsmaterial ist hier Eugenol und die Produkte sind Ferulasäure, Vanillinsäure, Coniferylalkohol und Coniferaldehyd.

Ebenfalls 1995 erscheint ein umfangreiches Review über die Biotransformationsmöglichkeiten mit Ferulasäure von Rosazza et al. (Biocatalytic transformation of ferulic acid: an abundant aromatic natural product; J. Ind. Microbiol. 15, 10 457-471).

10 Die vorliegende Erfindung betrifft nun Syntheseenzyme für Coniferylalkohol, Coniferaldehyd, Ferulasäure, Vanillin und Vanillinsäure aus Eugenol.

Syntheseenzyme gemäß der Erfindung sind beispielsweise die

- 15 a) Eugenol-Hydroxylase,
- b) Coniferylalkohol-Dehydrogenase,
- c) Coniferaldehyd-Dehydrogenase,
- d) Ferylasäuredeacylase und die
- e) Vanillin-Dehydrogenase.

20 Weiterhin betrifft die Erfindung DNA codierend für die genannten Enzyme und Cosmidklone enthaltend diese DNA sowie Vektoren enthaltend diese DNA und Mikroorganismen transformiert mit der DNA bzw. den Vektoren. Sie betrifft auch die Verwendung der DNA zur Transformation von Mikroorganismen zur Herstellung von Coniferylalkohol, Coniferaldehyd, Ferulasäure, Vanillin und Vanillinsäure. Die Erfindung betrifft auch Teilsequenzen dieser DNA sowie funktionelle Äquivalente. Unter funktionellen Äquivalenten sind solche Derivate zu verstehen, bei denen einzelne Nucleobasen ausgetauscht wurden (Wobbelaustausche), ohne die Funktion zu ändern. Auch auf Proteinebene können Aminosäuren ausgetauscht werden, ohne daß es eine Veränderung der Funktion zur Folge hat.

25 Ebenso betrifft die Erfindung die einzelnen Herstellungsschritte der Herstellung von Coniferylalkohol, Coniferaldehyd, Ferulasäure, Vanillin und Vanillinsäure aus Eugenol, also konkret:

- 30 a) das Verfahren zur Herstellung von Coniferylalkohol aus Eugenol, das in Anwesenheit von Eugenolhydroxylase stattfindet;
- b) das Verfahren zur Herstellung von Coniferaldehyd aus Coniferylalkohol, das in Anwesenheit von Coniferaldehyd-Dehydrogenase stattfindet;
- c) das Verfahren zur Herstellung von Ferulasäure aus Coniferaldehyd, das in Anwesenheit von Coniferaldehyd-Dehydrogenase stattfindet;
- d) das Verfahren zur Herstellung von Vanillin aus Ferulasäure, das in Anwesenheit von Ferulasäuredeacylase stattfindet;
- e) das Verfahren zur Herstellung von Vanillinsäure aus Vanillin, das in Anwesenheit von Vanillin-Dehydrogenase stattfindet.

45 Von dem Eugenol verwertenden Stamm Pseudomonas sp. HR 199 (DSM 7063) wurden nach NMG-Mutagenese Mutanten erhalten, die Defekte in einzelnen Schritten des Eugenol-Katabolismus aufweisen. Ausgehend von partiell EcoRI-verdauter Gesamt-DNA des Pseudomonas sp. HR 199 Wildtyps wurde eine Genbank in dem Cosmid pVK100 angelegt, welches über ein breites Wirtsspektrum verfügt und auch in Pseudomonaden stabil repliziert wird. Die 50 Hybridcosmide wurden nach Verpackung in λ -Phagenpartikel nach E. coli S17-1 transduziert. Die Genbank umfaßte 1330 rekombinante E. coli S17-1 Klone. Das Hybridcosmid eines jeden Klons wurde konjugativ in zwei Eugenol-negative Mutanten (Mutanten 6164 und 6165) des Stammes Pseudomonas sp. HR 199 übertragen und auf eine mögliche Komplementationseigenschaft überprüft. Dabei wurden zwei Hybridcosmide (pE207 und pE115) identifiziert, deren Erhalt die Mutante 6165 wieder in die Lage versetzten, Eugenol zu verwerten. Ein Hybridcosmid (pE5-1) führte zur 55 Komplementation der Mutante 6164.

Die komplementierende Eigenschaft der Plasmide pE207 und pE115 konnte auf ein 23 kbp EcoRI-Fragment (E230) zurückgeführt werden. Von diesem Fragment wurde eine physikalische Karte angefertigt und das Fragment wurde vollständig sequenziert. Auf einem 11,2 kbp HindIII-Subfragment (H110) wurden die Gene vanA und vanB loka-

lisiert, die für die Vanillat-Demethylase codieren. Ein weiterer offener Leserahmen (ORF) wies Homologie zur γ -Glutamylcystein Synthetase aus *Escherichia coli* auf. Zwischen diesem ORF und dem vanB-Gen wurde ein weiterer ORF identifiziert, der Homologie zu Formaldehyd-Dehydrogenasen aufwies. Zwei weitere ORF wiesen Homologien zur Cytochrom C- bzw. Flavoprotein-Untereinheit der p-Cresol Methylhydroxylase aus *Pseudomonas putida* auf und codieren im Stamm *Pseudomonas* sp. HR 199 für eine bisher noch nicht beschriebene Eugenol Hydroxylase, welche Eugenol, in Analogie zum Reaktionsmechanismus der p-Cresol Methylhydroxylase, über ein Chinon-Methid-Derivat zu Coniferylalkohol umsetzt. Zwischen den Genen der beiden Untereinheiten der Eugenol Hydroxylase wurde ein weiterer ORF unbekannter Funktion identifiziert. Auf einem 5,0 kbp HindIII-Subfragment (H50) wurde ein ORF identifiziert, der Homologie zur Lignostilben- α , β -Dioxygenase aufwies. Daneben wurde ein ORF identifiziert, welcher Homologie zu Alkohol-Dehydrogenasen aufwies. Auf einem 3,8 kbp HindIII/EcoRI-Subfragment wurde das Strukturgen vdh der Vanillin Dehydrogenase identifiziert. Stromaufwärts von diesem Gen wurde ein ORF mit Homologie zu Enoyl-CoA Hydrataseren aus unterschiedlichen Organismen lokalisiert.

Die komplementierende Eigenschaft des Plasmids pE5-1 konnte auf den gemeinsamen Erhalt der 1,2 und 1,8 kbp EcoRI-Fragmente (E12 und E18) zurückgeführt werden. Fragment E 12 wurde vollständig, Fragment E 18 wurde teilweise sequenziert. Auf diesen Fragmenten wurde das Strukturgen cadh der Coniferylalkohol Dehydrogenase lokalisiert, welches eine EcoRI-Schnittstelle aufwies. Das Enzym wurde mittels chromatographischer Methoden aus der löslichen Fraktion des Rohextraktes auf Eugenol gewachsener Zellen von *Pseudomonas* sp. HR 199 isoliert. Von der bestimmten N-terminalen Aminosäuresequenz wurde eine Oligonukleotidsequenz abgeleitet. Eine entsprechende DNA-Sonde hybridisierte mit Fragment E12, auf welchem der den N-Terminus codierende Bereich des cadh Gens lokalisiert war.

Eine Eugenol- und Ferulasäure-negative Mutante (Mutante 6167) ließ sich durch den Erhalt eines 9,4 kbp EcoRI-Fragments (E 94) des Hybridcosmids pE5-1 komplementieren. Von diesem Fragment wurde eine physikalische Karte angefertigt. Die komplementierende Eigenschaft ließ sich auf ein 1,9 kbp EcoRI/HindIII-Subfragment eingrenzen. Dieses Fragment wies unvollständige ORF (erstreckten sich über die EcoRI- bzw. HindIII-Schnittstelle) mit Homologien zu Acetyl-CoA Acetyltransferasen unterschiedlicher Organismen bzw. mit der "Medium-chain acyl-CoA Synthetase" aus *Pseudomonas oleovorans* auf. Das Fragment E 94 wurde vollständig sequenziert. Stromabwärts des zuvor genannten ORFs befand sich ein ORF mit Homologie zu β -Ketothiolasen. In zentraler Lage auf Fragment E 94 wurde das Strukturgen der Coniferaldehyd-Dehydrogenase (cadh) lokalisiert. Das Enzym wurde mittels chromatographischer Methoden aus der löslichen Fraktion des Rohextraktes auf Eugenol gewachsener Zellen von *Pseudomonas* sp. HR 199 isoliert.

Die konjugative Übertragung des Hybridcosmids pE207 in eine Vielzahl von *Pseudomonas*-Stämmen führte zur heterologen Expression der Gene vanA, vanB, vdh und der Eugenol-Hydroxylase-Gene in den erhaltenen Transkonjuganten. Ein Stamm wurde durch den Erhalt des Plasmids zum Wachstum mit Eugenol als C- und Energiequelle befähigt.

35 Material und Methoden

Wachstumsbedingungen der Bakterien. Stämme von *Escherichia coli* wurden bei 37°C in Luria-Bertani (LB) oder M9-Mineralmedium (Sambrook, J.E.F. Fritsch und T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2. Aufl., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York) angezogen. Stämme von *Pseudomonas* sp. und *Alcaligenes eutrophus* wurden bei 30°C in Nutrient Broth (NB, 0,8 Gew.-%) oder in Mineralmedium (MM) (Schlegel, H.G. et al. 1961. Arch. Mikrobiol. 38: 209-222) angezogen. Ferulasäure, Vanillin, Vanillinsäure und Protocatechusäure wurden in Dimethylsulfoxid gelöst, und dem jeweiligen Medium in einer Endkonzentration von 0,1 Gew.-% zugesetzt. Eugenol wurde dem Medium direkt in einer Endkonzentration von 0,1 Vol.-% zugesetzt, bzw. in den Deckel von MM-Agarplatten auf Filterpapier (Rundfilter 595, Schleicher & Schuell, Dassel, Deutschland) appliziert. Bei der Anzucht von Transkonjuganten von *Pseudomonas* sp. wurde Tetracyclin und Kanamycin in Endkonzentrationen von 25 µg/ml bzw. 300 µg/ml eingesetzt.

Nitrosoguanidin-Mutagenese. Die Nitrosoguanidin-Mutagenese von *Pseudomonas* sp. HR 199 wurde mit Modifikationen nach Miller (Miller, J.H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York) durchgeführt. An Stelle des Citrat-Puffers kam Kalium-Phosphat (KP)-Puffer (100 mM, pH 7,0) zum Einsatz. Die Endkonzentration von N-Methyl-N'-Nitrosoguanidin betrug 200 µg/ml. Die erhaltenen Mutanten wurden hinsichtlich des Verlustes der Fähigkeit, Eugenol, Ferulasäure, Vanillin und Vanillinsäure als Wachstumssubstrate nutzen zu können, gescreent.

Qualitativer und quantitativer Nachweis von Stoffwechselintermediaten in Kulturüberständen. Kulturüberstände wurden direkt bzw. nach Verdünnung mit zweifach destilliertem Wasser mittels Hochdruck-Flüssigkeits-Chromatographie (Knauer-HPLC) analysiert. Die Chromatographie erfolgte an Nucleosil-100 C18 (7 µm, 250 x 4 mm). Als Lösungsmittel diente 0,1 Vol.-% Ameisensäure und Acetonitril.

Reinigung der Coniferylalkohol-Dehydrogenase und der Coniferaldehyd-Dehydrogenase. Die Aufreinigung-

gen erfolgten bei 4°C.

Rohextrakt. Auf Eugenol angezogene Zellen von Pseudomonas sp. HR 199 wurden in 10 mM Natriumphosphat-Puffer, pH 7,5 gewaschen, im gleichen Puffer resuspendiert und durch zweimalige Passage einer French-Presse (Amicon, Silver Spring, Maryland, USA) bei einem Druck von 1 000 psi aufgeschlossen. Das Zellhomogenat wurde einer Ultrazentrifugation (1 h, 100 000 x g, 4°C) unterzogen, wodurch die lösliche Fraktion des Rohextraktes als Überstand erhalten wurde.

Anionenaustauschchromatographie an DEAE-Sephacel. Die lösliche Fraktion des Rohextraktes wurde über Nacht gegen 10 mM Natriumphosphat-Puffer, pH 7,5 mit 100 mM NaCl dialysiert. Das Dialysat wurde auf eine mit 10 mM Natriumphosphat-Puffer, pH 7,5 mit 100 mM NaCl äquilibrierte DEAE-Sephacel-Säule (2,6 cm x 35 cm, Bettvolumen [BV]: 186 ml) mit einer Durchflußrate von 0,8 ml/min aufgetragen. Die Säule wurde mit zwei BV 10 mM Natriumphosphat-Puffer, pH 7,5 mit 100 mM NaCl gespült. Die Elution der Coniferylalkohol-Dehydrogenase (CADH) und der Coniferylaldehyd-Dehydrogenase (CALDH) erfolgte mit einem linearen Salzgradient von 100 bis 500 mM NaCl in 10 mM Natriumphosphat-Puffer, pH 7,5 (2 x 150 ml). Es wurden 5 ml-Fraktionen aufgefangen. Fraktionen mit hoher CADH- bzw. CALDH-Aktivität wurden zum jeweiligen DEAE-Pool vereinigt.

Gelfiltrationschromatographie an Sephadex G200. Der CADH-DEAE-Pool wurde in einer 50 ml Amicon Ultrafiltrationskammer über eine Diaflo Ultrafiltrationsmembran PM 30 (beide Fa. AMICON CORP., Lexington, USA) bei einem Druck von 290 kPa auf ein Volumen eingeengt, welches ca. 2 % des Sephadex G200-BV entsprach. Die eingeengte Proteinlösung wurde auf eine mit 10 mM Natriumphosphat-Puffer, pH 7,5 mit 100 mM NaCl äquilibrierte Sephadex G200-Säule (BV: 138 ml) aufgetragen und mit einer Flußrate von 0,2 ml/min mit dem gleichen Puffer eluiert. Es wurden 2 ml-Fraktionen aufgefangen. Fraktionen mit hoher CADH-Aktivität wurden zum Sephadex-G200-Pool vereinigt.

Hydrophobe Interaktionschromatographie an Butyl-Sepharose 4B. Der CADH-Sephadex-G200-Pool wurde auf 3 M NaCl eingestellt und anschließend auf eine mit 10 mM Natriumphosphat-Puffer, pH 7,5 mit 3 M NaCl äquilibrierte Butyl-Sepharose 4B-Säule (BV: 48 ml) aufgetragen (Flußrate: 0,5 ml/min). Die Säule wurde anschließend mit 2 BV 10 mM Natriumphosphat-Puffer, pH 7,5 mit 3 M NaCl gewaschen (Flußrate: 1,0 ml/min). Die Elution der CADH erfolgte mit einem linearen abfallenden NaCl-Gradienten von 3 bis 0 M NaCl in 10 mM Natriumphosphat-Puffer, pH 7,5 (2 x 50 ml). Es wurden 4 ml-Fraktionen aufgefangen. Fraktionen mit hoher CADH-Aktivität wurden zum HIC-Pool vereinigt und wie oben beschrieben eingeengt.

Chromatographie an Hydroxylapatit. Der CALDH-DEAE-Pool wurde in einer 50 ml Amicon Ultrafiltrationskammer über eine Diaflo Ultrafiltrationsmembran PM 30 (beide Fa. AMICON CORP., Lexington, USA) bei einem Druck von 290 kPa auf 10 ml eingeengt. Die eingeengte Proteinlösung wurde auf eine mit Puffer (10 mM NaCl in 10 mM Natriumphosphat-Puffer, pH 7,0) äquilibrierte Hydroxylapatit-Säule (BV: 80 ml) aufgetragen (Flußrate: 2 ml/min). Die Säule wurde anschließend mit 2,5 BV Puffer gewaschen (Flußrate: 2 ml/min). Die Elution der CALDH erfolgte mit einem linearen ansteigenden Natriumphosphat-Gradienten von 10 bis 400 mM NaP (jeweils mit 10 mM NaCl) (2 x 100 ml). Es wurden 10 ml-Fraktionen aufgefangen. Fraktionen mit hoher CALDH-Aktivität wurden zum CALDH-HA-Pool vereinigt.

Gelfiltrationschromatographie an Superdex HR 200 10/30. Der CALDH-HA-Pool wurde auf 200 µl eingeengt (Amicon Ultrafiltrationskammer, Ultrafiltrationsmembran PM 30), und auf eine mit 10 mM Natriumphosphat-Puffer, pH 7,0 äquilibrierte Superdex HR 200 10/30-Säule (BV: 23,6 ml) aufgetragen. Die CALDH wurde mit einer Flußrate von 0,5 ml/min mit dem gleichen Puffer eluiert. Es wurden 250 µl-Fraktionen aufgefangen. Fraktionen mit hoher CALDH-Aktivität wurden zum CALDH-Superdex-Pool vereinigt.

Bestimmung der Coniferylalkohol-Dehydrogenase-Aktivität. Die Bestimmung der CADH-Aktivität erfolgte bei 30°C durch einen optisch enzymatischen Test nach Jaeger et al. (Jaeger, E., L. Eggeling und H. Sahm. 1982. Current Microbiology. 6: 333-336) mit Hilfe eines ZEISS PM 4 Spektralphotometers mit angeschlossenem TE-Wandler (beide Fa. ZEISS, Oberkochen, Deutschland) und Schreiber. Der Reaktionsansatz mit einem Volumen von 1 ml enthielt 0,2 mmol Tris/HCl (pH 9,0), 0,4 µmol Coniferylalkohol, 2 µmol NAD, 0,1 mmol Semicarbazid und Enzymlösung ("Tris"=Tris(hydroxymethyl)-aminomethan). Die Reduktion von NAD wurde bei $\lambda = 340$ nm verfolgt ($\epsilon = 6,3 \text{ cm}^2/\mu\text{mol}$). Die Enzymaktivität wurde in Einheiten (U) angegeben, wobei 1 U der Enzymmenge entspricht, die 1 µmol Substrat pro Minute umsetzt. Die Proteinkonzentrationen in den Proben wurden nach Lowry et al. (Lowry, O. H., N.J. Rosebrough, A.L. Farr und R. J. Randall. 1951. J. Biol. Chem. 193: 265-275) bestimmt.

Bestimmung der Coniferylaldehyd-Dehydrogenase-Aktivität. Die Bestimmung der CALDH-Aktivität erfolgte bei 30°C durch einen optisch enzymatischen Test mit Hilfe eines ZEISS PM 4 Spektralphotometers mit angeschlossenem TE-Wandler (beide Fa. ZEISS, Oberkochen, Deutschland) und Schreiber. Der Reaktionsanatz mit einem Volumen von 1 ml enthielt 10 mM Tris/HCl-Puffer (pH 8,8), 5,6 mM Coniferylaldehyd, 3 mM NAD und Enzymlösung. Die Oxidation von Coniferylaldehyd zu Ferulasäure wurde bei $\lambda = 400$ nm verfolgt ($\epsilon = 34 \text{ cm}^2/\mu\text{mol}$). Die Enzymaktivität wurde in Einheiten (U) angegeben, wobei 1 U der Enzymmenge entspricht, die 1 µmol Substrat pro Minute umsetzt. Die Proteinkonzentrationen in den Proben wurden nach Lowry et al. (Lowry, O. H., N.J. Rosebrough, A.L. Farr und R.J. Randall. 1951. J. Biol. Chem. 193:265-275) bestimmt.

Electrophoretische Methoden. Die Auftrennung von proteinhaltigen Extrakten erfolgte in 7,4 Gew.-% Polyacrylamidgelen unter nativen Bedingungen nach der Methode von Stegemann et al. (Stegemann et al. 1973. Z. Naturforsch.

28c: 722-732) und unter denaturierenden Bedingungen in 11,5 Gew.-% Polyacrylamidgelen nach der Methode von Laemmli (Laemmli, U.K. 1970. Nature (London) 227: 680-685). Zur unspezifischen Proteinfärbung wurde Serva Blue R verwendet. Zur spezifischen Anfärbung der Coniferylalkohol-, Coniferaldehyd- und Vanillin-Dehydrogenase wurden die Gele für 20 min in 100 mM KP-Puffer (pH 7,0) umgepuffert und anschließend bei 30°C im gleichen Puffer, dem 0,08 Gew.-% NAD, 0,04 Gew.-% p-Nitroblau-Tetrazoliumchlorid, 0,003 Gew.-% Phenazine-Methosulfat und 1 mM des jeweiligen Substrates zugesetzt worden war, inkubiert, bis entsprechende Farbbanden sichtbar wurden.

5 **Transfer von Proteinen aus Polyacrylamidgelen auf PVDF-Membranen.** Proteine wurden aus SDS-Polyacrylamidgelen mit Hilfe eines Semidry-Fastblot Gerätes (B32/33, Biometra, Göttingen, Deutschland) nach Herstellerangaben auf PVDF-Membranen (Waters-Milipore, Bedford, Mass., USA) übertragen.

10 **Bestimmung von N-terminalen Aminosäuresequenzen.** Die Bestimmung von N-terminalen Aminosäuresequenzen erfolgte mit Hilfe eines Protein Peptide Sequenzers (Typ 477 A, Applied Biosystems, Foster City, USA) und eines PTH-Analysers nach Herstellerangaben.

15 **Isolierung und Manipulation von DNA.** Die Isolierung von genetischer DNA erfolgte nach der Methode von Marmur (Marmur, J. 1961. J. Mol. Biol. 3: 208-218). Megaplasmid-DNA wurde nach der Methode von Nies et al. (Nies, D., et al. 1987. J. Bacteriol. 169: 4865-4868) isoliert. Die Isolierung und Analyse von anderer Plasmid-DNA bzw. von DNA-Restriktionsfragmenten, die Verpackung von Hybridcosmiden in λ-Phagenpartikel und die Transduktion von *E. coli* erfolgte nach Standardmethoden (Sambrook, J.E.F. Fritsch und T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2. Aufl., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York).

20 **Transfer von DNA.** Die Präparation und Transformation von kompetenten *Escherichia coli*-Zellen erfolgte nach der Methode von Hanahan (Hanahan, D. 1983. J. Mol. Biol. 166: 557-580). Konjugativer Plasmidtransfer zwischen Plasmidtragenden *Escherichia coli* S17-1-Stämmen (Donor) und *Pseudomonas* sp.-Stämmen (Rezipient) bzw. *Alcaligenes eutrophus* (Rezipient) erfolgte auf NB-Agarplatten nach der Methode von Friedrich et al. (Friedrich, B. et al. 1981. J. Bacteriol. 147: 198-205) oder durch eine "Minikomplementation-Methode" auf MM-Agarplatten mit 0,5 Gew.-% Glucosat als C-Quelle und 25 µg/ml Tetracyclin oder 300 µg/ml Kanamycin. Dabei wurden Zellen des Rezipienten in einer Richtung als Impfstrich aufgetragen. Nach 5 min wurden dann Zellen der Donor-Stämme als Impfstriche aufgetragen, wobei der Rezipienten-Impfstrich gekreuzt wurde. Nach einer Inkubation für 48 h bei 30°C wuchsen die Transkonjuganten direkt hinter der Kreuzungsstelle, wohingegen weder Donor- noch Rezipienten-Stamm zum Wachstum in der Lage war.

25 **Hybridisierungsexperimente.** DNA-Restriktionsfragmente wurden in einem 0,8 Gew.-% Agarose-Gel in 50 mM Tris- 50 mM Borsäure- 1,25 mM EDTA-Puffer (pH 8,5) elektrophoretisch aufgetrennt (Sambrook, J.E.F. Fritsch und T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2. Aufl., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York). Die Übertragung der denaturierten DNA aus dem Gel auf eine positiv geladene Nylonmembran (Porengröße: 0,45 µm, Pall Filtrationstechnik, Dreieich, Deutschland), die anschließende Hybridisierung mit biotinylierten bzw. ³²P-markierten DNA-Sonden und die Herstellung dieser DNA-Sonden erfolgten nach Standardmethoden (Sambrook, J.E.F. Fritsch und T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York).

30 **Synthese von Oligonukleotiden.** Ausgehend von Desoxynukleosid-Phosphoramiditen wurden Oligonukleotide im 0,2 µmol-Maßstab synthetisiert (Beaucage, S. L., and M.H. Caruthers. 1981. Tetrahedron Lett. 22: 1859-1862). Die Synthese erfolgte in einem Gene Assembler Plus nach Herstellerangaben (Pharmacia-LKB, Uppsala, Schweden). Die 35 Abspaltung von Schutzgruppen erfolgte durch eine 15 h Inkubation bei 55°C in 25 Vol.-% wäßriger Ammoniak-Lösung. Die Oligonukleotide wurden abschließend durch Chromatographie an einer NAP-5-Säule (Pharmacia-LKB, Uppsala, Schweden) gereinigt.

35 **DNA-Sequenzierung.** Die Bestimmung von Nukleotidsequenzen erfolgte nach der Didesoxy-Kettenabbruch-Methode von Sanger et al. (Sanger et al. 1977. Proc. Natl. Acad. Sci. USA 74: 5463-5467) mit [α -³⁵S]dATP und einem 40 T7-Polymerase-Sequencing-Kit (Pharmacia-LKB). Dabei wurde 7-Desazaguanosin-5'-Triphosphat an Stelle von dGTP verwendet (Mizusawa, S. et al. 1986. Nucleic Acids Res. 14: 1319-1324). Die Produkte der Sequenzierreaktionen wurden in einem 6 Gew.-% Polyacrylamid-Gel in 100 mM Tris/HCl-, 83 mM Borsäure-, 1 mM EDTA-Puffer (pH 8,3) mit 42 Gew.-% Harnstoff aufgetrennt, wobei eine S2-Sequenzier-Apparatur (GIBCO/BRL, Bethesda Research Laboratories GmbH, Eggenstein, Deutschland) nach Vorschrift des Herstellers zum Einsatz kam. Nach der Elektrophorese wurden 45 die Gele 30 min in 10 Vol.-% Essigsäure inkubiert und nach kurzem Spülen in Wasser für 2 h bei 80°C getrocknet. Für die Autoradiographie der getrockneten Gele fanden Kodak X-OMAT AR-Röntgenfilme (Eastman Kodak Company, Rochester, NY, USA) Verwendung. Daneben wurden DNA-Sequenzen auch "nicht-radioaktiv" mit einem "LI-COR DNA-Sequencer Modell 4000L" (LI-COR Inc., Biotechnology Division, Lincoln, NE-USA) unter Verwendung eines "Thermo Sequenase fluorescent labelled primer cycle sequencing kit with 7-deaza-dGTP" (Amersham Life Science, Amersham 50 International plc, Little Chalfont, Buckinghamshire, England) jeweils nach Vorschrift des Herstellers bestimmt.

55 Es kamen unterschiedliche Sequenzierungsstrategien zur Anwendung: Mit Hilfe von synthetischen Oligonukleotiden wurde nach der "Primer-hopping Strategie" von Strauss et al. (Strauss, E. C. et al. 1986. Anal. Biochem. 154: 353-360) sequenziert. Bei ausschließlicher Verwendung von "Universal-" und "Reverse-Primer" kamen Hybridplasmide als

"Template-DNA" zum Einsatz, deren Insert-DNA-Fragmente mit Hilfe eines "Exo III/Mung Bean Nuklease Deletions"-Kits (Stratagene Cloning Systems, La Jolla, Cal., USA) nach Herstellerangaben unidirektional verkürzt worden waren.

Chemikalien, Biochemikalien und Enzyme. Restriktionsenzyme, T4 DNA-Ligase, Lambda-DNA und Enzyme bzw. Substrate für die optisch enzymatischen Tests wurden von C. F. Boehringer & Söhne (Mannheim, Deutschland) oder von GIBCO/BRL (Eggenstein, Deutschland) bezogen. [α -³⁵S]dATP und [γ -³²P]ATP kam von Amersham/Buchler (Braunschweig, Deutschland). Agarose vom Typ NA wurde von Pharmacia-LKB (Uppsala, Schweden) bezogen. Alle anderen Chemikalien waren von Haarmann & Reimer (Holzminden, Deutschland), E. Merck AG (Darmstadt, Deutschland), Fluka Chemie (Buchs, Schweiz), Serva Feinbiochemica (Heidelberg, Deutschland) oder Sigma Chemie (Deisenhofen, Deutschland).

10

Beispiele

Beispiel 1

15 Isolierung von Mutanten des Stammes Pseudomonas sp. HR 199 mit Defekten im Eugenol-Katabolismus

Der Stamm Pseudomonas sp. HR 199 wurde einer Nitrosoguanidin-Mutagenese unterzogen mit dem Ziel, Mutanten mit Defekten im Eugenol-Katabolismus zu isolieren. Die erhaltenen Mutanten wurden bezüglich ihres Vermögens, Eugenol, Ferulasäure und Vanillin als C- und Energiequelle nutzen zu können, klassifiziert. Die Mutanten 6164 und 20 6165 waren nicht mehr in der Lage, Eugenol als C- und Energiequelle zu nutzen, vermochten jedoch wie der Wildtyp, Ferulasäure und Vanillin zu verwerten. Die Mutanten 6167 und 6202 waren nicht mehr in der Lage, Eugenol und Ferulasäure als C- und Energiequelle zu nutzen, vermochten jedoch wie der Wildtyp, Vanillin zu verwerten. Die obenannten Mutanten kamen bei den weiteren molekularbiologischen Analysen zum Einsatz.

25

Beispiel 2

Anlegen einer Pseudomonas sp. HR 199 Genbank im Cosmidvektor pVK100

Die genomische DNA des Stammes Pseudomonas sp. HR 199 wurde isoliert und einer partiellen Restriktionsverdauung mit EcoRI unterzogen. Die so erhaltene DNA-Präparation wurde mit EcoRI-geschnittenem Vektor pVK100 ligiert. Die DNA-Konzentrationen lagen dabei relativ hoch, um die Entstehung konkateremer Ligationsprodukte zu forcieren. Die Ligationsansätze wurden in λ -Phagenpartikel verpackt, mit denen anschließend E. coli S17-1 transduziert wurde. Die Selektion der Transduktanten erfolgte auf Tetracyclin-haltigen LB-Agarplatten. Auf diese Weise wurden 1330 Transduktanten erhalten, die über unterschiedliche Hybridcosmide verfügten.

35

Beispiel 3

Identifizierung von Hybridcosmiden, die essentielle Gene des Eugenol-Katabolismus beherbergen

40 Die Hybridcosmide der 1330 Transduktanten wurden durch ein Minikomplementation-Verfahren konjugativ in die Mutanten 6164 und 6165 übertragen. Die erhaltenen Transkonjuganten wurden auf MM-Platten mit Eugenol bezüglich ihres Vermögens, wieder auf Eugenol wachsen zu können (Komplementation der jeweiligen Mutante), untersucht. Die Mutante 6164 wurde durch den Erhalt des Hybridcosmids pE5-1 komplementiert, in welchem ein 1,2 kbp, ein 1,8 kbp, ein 3 kbp, ein 5,8 kbp und ein 9,4 kbp EcoRI-Fragment kloniert vorlag. Der dieses Hybridcosmid pE5-1 tragende E. coli 45 S17-1-Stamm wurde bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH (DSM) unter der Nummer DSM 10440 hinterlegt. Die Mutante 6165 wurde jeweils durch den Erhalt der Hybridcosmide pE207 und pE115 komplementiert. Die komplementierende Eigenschaft war auf ein 23 kbp EcoRI-Fragment zurückzuführen, welches in dem Hybridcosmid pE207 als alleiniges EcoRI-Fragment kloniert vorlag, wohingegen in dem Hybridcosmid pE115 zusätzlich noch ein 3 kbp und ein 6 kbp EcoRI-Fragment enthalten war. Der das Hybridcosmid pE207 tragende 50 E. coli S17-1-Stamm wurde bei der DSM unter der Nummer DSM 10439 hinterlegt.

Beispiel 4

Analyse des 23 kbp EcoRI-Fragments (E230) des Hybridcosmids pE207

55

Das Fragment E230 wurde präparativ aus dem mit EcoRI-verdautem Hybridcosmid pE207 isoliert und mit EcoRI-verdauter pBluescript SK'-DNA ligiert. Mit dem Ligationsansatz wurde E. coli XL1-Blue transformiert. Nach "Blau-Weiß"-Selektion auf X-Gal und IPTG enthaltenden LB-Tc-Amp-Agarplatten wurden "weiße" Transformanden erhalten,

deren Hybridplasmide pSKE230 das Fragment E230 kloniert enthielten. Mit Hilfe dieses Plasmids und durch Einsatz unterschiedlicher Restriktionsenzyme wurde eine physikalische Karte des Fragments E230 angefertigt (Abb. 1).

Der die Mutante 6165 komplementierende Bereich wurde durch Klonierung von Subfragmenten von E230 in den Vektoren pVK101 und pMP92, die beide über ein weites Wirtsspektrum verfügen und auch in Pseudomonaden stabil sind, mit anschließender konjugativer Übertragung in die Mutante 6165 auf ein 1,8 kbp KpnI-Fragment (K18) eingeschlossen. Nach Klonierung dieses Fragments in pBluescript SK⁻ wurde die Nukleotidsequenz bestimmt, wobei das Gen der Cytochrom C-Untereinheit der Eugenol-Hydroxylase identifiziert wurde. Das Genprodukt von 117 Aminosäuren besaß N-terminal ein Leader-Peptid (MMNVNYKAVGASLLAFISQGAWA) und wies eine 32,9 %ige Identität (über einen Bereich von 82 Aminosäuren) mit der Cytochrom C-Untereinheit der p-Cresol Methylhydroxylase aus Pseudomonas putida (McIntire et al. 1986. Biochemistry 25: 5975-5981) auf.

Durch Klonierung der an K18 angrenzenden KpnI-Subfragmente von E230 in pBluescript SK⁻ und Sequenzierung wurden weitere offene Leserahmen (ORF) identifiziert, wobei einer dieser ORFs für die Flavoprotein-Untereinheit der Eugenol-Hydroxylase codiert und hohe Homologie zur Flavoprotein-Untereinheit der p-Cresol Methylhydroxylase aus Pseudomonas putida aufwies. Ein weiterer ORF wies hohe Homologien zur γ -Glutamylcystein Synthetase (erstes Enzym in der Glutathion-Biosynthese) aus Escherichia coli (Watanabe et al. 1986. Nucleic Acids Res. 14: 4393-4400) auf.

In der löslichen Fraktion des Rohextraktes von E. coli (pSKE230) konnte durch spezifische Aktivitätsfärbung im Polyacrylamid-Gel Vanillin-Dehydrogenase nachgewiesen werden. Durch Subklonierung in pBluescript SK⁻ und entsprechender Analyse löslicher Fraktionen der Rohextrakte von erhaltenen Transformanden konnte das Vanillin-Dehydrogenase-Gen (vdh) auf einem 3,8 kbp HindIII/EcoRI-Subfragment von E230 lokalisiert werden. Die Nukleotidsequenz dieses Fragments wurde vollständig bestimmt. Das Molekulargewicht der Vanillin-Dehydrogenase betrug 50 779, was durch SDS-Polyacrylamid-Gelelektrophorese bestätigt wurde. Die Aminosäuresequenz wies hohe Homologien zu anderen Aldehyd-Dehydrogenasen unterschiedlicher Herkunft auf.

Stromaufwärts des vdh-Gens wurde ein weiterer ORF identifiziert, der Homologien zu Enoyl-CoA Hydratasen aufwies. Das errechnete Molekulargewicht von 27 297 wurde durch SDS-Polyacrylamid-Gelelektrophorese bestätigt.

Durch Sequenzierung des 5,0 kbp HindIII-Subfragments von E230, welches ebenfalls in pBluescript SK⁻ kloniert worden war, wurde ein ORF mit hoher Homologie zur Lignostilben- α,β -Dioxygenase aus Pseudomonas paucimobilis identifiziert. Durch vollständige Sequenzierung des Fragments E 230 wurden zwei weitere ORFs identifiziert, die Homologien zu Formaldehyd-Dehydrogenasen (fdh) bzw. zu Alkohol-Dehydrogenasen (adh) aufwiesen (s. Abb. 1).

30

Beispiel 5

Analyse des die Mutante 6164 komplementierenden Bereichs des Hybridcosmids pE5-1

Die Mutante 6164 wurde durch den Erhalt des Hybridcosmids pE5-1 komplementiert, welches ein 1,2 kbp (E12), 35 ein 1,8 kbp (E18), ein 3 kbp (E30), ein 5,8 kbp (E58) und ein 9,4 kbp (E94) EcoRI-Fragment kloniert enthielt (Abb. 1). Durch Verdauung von pE5-1 mit EcoRI und anschließender Religation wurde ein Derivat (pE106) dieses Hybridcosmids erhalten, welches nur noch über die Fragmente E12, E18 und E30 verfügte. Dieses Plasmid war jedoch nach konjugativer Übertragung in die Mutante 6164 in der Lage, diese zu komplementieren, wodurch entsprechende Transkonjuganten wieder auf Eugenol als C- und Energiequelle wachsen konnten.

Nach Verdauung des Plasmids pE106 mit EcoRI, gelelektrophoretischer Auf trennung des Verdauungsansatzes in einem 0,8 Gew.-% Agarose-Gel und Übertragung der DNA auf eine Nylonmembran erfolgte eine Hybridisierung mit einer mit ^{32}P -markierten Oligonukleotid-Sonde mit der folgenden Sequenz:

45	5'-ATG	CAA	CTC	ACC	AAC	AAA	AAA	ATC	GT-3'
	G	G	C	T	G	G	G	T	
	G	G	C		G	G			
50	G	T	G		G	G			
			G		G	G			
				T	G	G			

55

Die Sequenz dieser Gensonde war aus der N-terminalen Aminosäuresequenz der aus Pseudomonas sp. HR 199 aufgereinigten Coniferylalkohol-Dehydrogenase (CADH) (s.u.) abgeleitet worden. Mit Hilfe dieser Sonde wurde der den

N-Terminus der CADH codierende Bereich des *cadh*-Gens auf Fragment E12 lokalisiert. Dieses Fragment und Teile des angrenzenden Fragments E 18 wurden ebenfalls sequenziert und somit die vollständige Sequenz des *cadh*-Gens bestimmt. Die Von *cadh* abgeleitete Aminosäuresequenz wies Homologien zu anderen Alkohol-Dehydrogenasen der Klasse I, Gruppe II (nach Matthew und Fewson. 1994. Critical Rev. Microbiol. 20(1): 13-56) auf.

5

Beispiel 6

Reinigung und Charakterisierung der Coniferylalkohol-Dehydrogenase

10

Pseudomonas sp. HR 199 wurde auf Eugenol angezogen. Die Zellen wurden geerntet, gewaschen und mit Hilfe einer French-Presse aufgeschlossen. Die nach Ultrazentrifugation erhaltene lösliche Fraktion des Rohextraktes wies eine spezifische Aktivität von 0,24 U/mg Protein auf. Durch Chromatographie an DEAE-Sephacel wurde eine 11,7 fache Anreicherung der CADH bei einer Ausbeute von 83,7 % erzielt. Durch Chromatographie an Sephadex G200 wurde eine 6,8fache Anreicherung der CADH bei einer Ausbeute von 11,2 % erzielt. Durch Chromatographie an Butyl-

15

Sepharose 4B wurde eine 70,6 fache Anreicherung der CADH bei einer Ausbeute von 7,8 % erzielt.

Durch diese Methode wurde ein Präparat erhalten, welches nach SDS-Polyacrylamid-Gelelektrophorese eine Bande bei 27 kDa ergab. Der Aufreinigungsfaktor betrug 64 bei einer Ausbeute von 0,8 %.

20

Temperatur-Optimum und -Stabilität

25

Das Temperatur-Optimum der von der CADH katalysierten Reaktion lag bei 42°C. Das Enzym war jedoch wärmeempfindlich. Die Halbwertszeiten waren wie folgt: $T_{1/2}$ (34°C) = 5 min, $T_{1/2}$ (39°C) = 1 min, $T_{1/2}$ (42°C) <1 min.

pH-Optimum

25

Das pH-Optimum für die von der CADH katalysierten Reaktion lag bei pH 10,9 in 25 mM MOPS-Puffer. Bei höheren pH-Werten wurde ein Aktivitätsverlust durch Denaturierung beobachtet.

30

Apparentes Molekulargewicht

35

Das native Molekulargewicht der CADH wurde mit Hilfe der FPLC durch Gelfiltration an Superdex 200HR 10/30 mit 54,9 kDa ermittelt, was eine α_2 -Untereinheitenstruktur nahelegt.

35

N-terminale Aminosäuresequenz

Die N-terminale Aminosäuresequenz-Bestimmung des gereinigten Proteins ergab folgendes Ergebnis:

40

I	5	10	15	20															
M	Q	L	T	N	K	K	I	V	V	V	(G)	V	(S)	?	(R)	(I)	?	(A)	(E)

(V) (V)

45

(Sequenz im Ein-Buchstaben-Code; ?: keine Angabe möglich; (): unsicher; in der zweiten Zeile wurde eine ebenfalls mögliche Aminosäure angegeben)

50

Beispiel 7

Reinigung und Charakterisierung der Coniferylaldehyd-Dehydrogenase

55

Pseudomonas sp. HR199 wurde auf Eugenol angezogen. Die Zellen wurden geerntet, gewaschen und mit Hilfe einer French-Presse aufgeschlossen. Die nach Ultrazentrifugation erhaltene lösliche Fraktion des Rohextraktes wies eine spezifische Aktivität von 0,43 U/mg Protein auf. Durch Chromatographie an DEAE-Sephacel wurde eine 6,6-fache Anreicherung der CALDH, bei einer Ausbeute von 65,3 % erzielt. Durch Chromatographie an Hydroxylapatit wurde eine 63-fache Anreicherung der CALDH, bei einer Ausbeute von 33 % erzielt. Durch Chromatographie an Superdex HR 200 wurde eine 81-fache Anreicherung der CALDH, bei einer Ausbeute von 13 % erzielt. Durch diese Methode wurde ein

Präparat erhalten, welches nach SDS-Polyacrylamid-Gelelektrophorese eine Bande bei ca. 49 kDa ergab.

Temperatur-Optimum und -Stabilität

5 Das Temperatur-Optimum der von der CALDH katalysierten Reaktion lag bei 26°C. Das Enzym war warmempfindlich. Die Halbwertzeiten waren wie folgt: $T_{1/2}$ (31°C) = 5 min, $T_{1/2}$ (34°C) = 2,5 min, $T_{1/2}$ (38°C) = 1 min.

pH-Optimum

10 Das pH-Optimum für die von der CALDH katalysierten Reaktion lag bei pH 8,8 in 100 mM Tris/HCl-Puffer. Bei diesem pH-Wert ist das Enzym jedoch schon instabil (87 % Aktivitätsverlust innerhalb von 5 min). Bei niedrigen pH-Werten ist das Enzym stabiler (z.B. pH 6,0: 50 % Aktivitätsverlust innerhalb von 4 h).

Substratspezifität

15 Das Enzym setzt neben Coniferylaldehyd (100 %) auch trans-Zimtaldehyd (96,7 %), Sinapylaldehyd (76,7 %), p-Anisaldehyd (23,1 %), Benzaldehyd (17,8), 3,5-Dimethoxy-Benzaldehyd (7,6 %) und 3-Hydroxybenzaldehyd (1,7 %) um. Der K_M -Wert der CALDH für Coniferylaldehyd liegt im Bereich zwischen 0,007 und 0,012 mM, bei einer V_{max} von ca. 9 bis 15 U/ml. Der K_M -Wert der CALDH für NAD liegt bei 0,334 mM, bei einer V_{max} von 14,2 U/ml. NADP wird mit einer Rate von 4,3 % verglichen mit NAD umgesetzt.

N-terminale Aminosäuresequenz

25 Die N-terminale Aminosäuresequenz-Bestimmung des gereinigten Proteins ergab folgendes Ergebnis:
1 S I L G L N G A P V G A E Q L G S A L (D) 20
(Sequenz im Ein-Buchstaben-Code; (): unsicher).

Beispiel 8

30 Lokalisierung und Sequenzierung des Coniferylaldehyd-Dehydrogenase Gens (caldh)

Die N-terminale Aminosäuresequenz konnte eindeutig einer von der DNA-Sequenz des Fragmentes E94 des Plasmids pE5-1 abgeleiteten Aminosäuresequenz zugeordnet werden. Somit ist das CALDH-Strukturen caldh auf E94 lokalisiert. Die von caldh abgeleitete Aminosäuresequenz wies Homologien zu anderen Aldehyd-Dehydrogenasen auf.

Beispiel 9

Komplementierung weiterer, im Eugenol-Katabolismus defekter Mutanten durch die Hybridcosmide pE207 und pE5-1

40 Nach NMG-Mutagenese waren die Mutanten 6167 und 6202 erhalten worden, die nicht mehr in der Lage waren, Eugenol und Ferulasäure als C- und Energiequelle zu nutzen (s.o.). Die Mutante 6202 war durch Erhalt des Plasmids pE207 nach konjugativem Transfer wieder in der Lage, diese Substrate zu nutzen. Diese Mutante wird durch das Enoyl-CoA Hydratase-homologe Gen komplementiert.

45 Die Mutante 6167 war durch Erhalt des Plasmids pE5-1 nach konjugativem Transfer wieder in der Lage, diese Substrate zu nutzen. Die komplementierende Eigenschaft konnte durch einzelne Klonierung der EcoRI-Fragmente von pE5-1 in pHP1014 und konjugativer Übertragung dieser Plasmide in die Mutante 6167 auf das Fragment E94 eingegrenzt werden. Von Fragment E94 wurde nach Klonierung in pBluescript SK⁺ und Verdauung mit unterschiedlichen Restriktionsenzymen eine physikalische Karte angefertigt. Der die Mutante 6167 komplementierende Bereich wurde durch Klonierung von Subfragmenten von E94 in den Vektoren pVK101 und pMP92 mit anschließender konjugativer Übertragung in die Mutante 6167 auf ein 1,9 kbp EcoRI/HindIII-Fragment (EK19) eingegrenzt. Nach Klonierung dieses Fragments in pBluescript SK⁺ und Sequenzierung wurden 2 ORFs identifiziert, die Homologien zu Acetyl-CoA Acetyltransferasen bzw. zur "Medium-chain acyl-CoA Synthetase" aus Pseudomonas oleovorans aufwiesen. Durch vollständige Sequenzierung des Fragments E94 wurden weitere ORFs identifiziert, die Homologien zu Regulator-Proteinen und einem Chenotaxis-Protein aufwiesen (s. Abb. 1).

55

Beispiel 10

Nachweis der chromosomalen Codierung der Gene des Eugenol-Katabolismus in Pseudomonas sp. HR 199

5 Da Pseudomonas sp. HR 199 ein Megaplasmid mit einer Größe von ca. 350 kbp besitzt, wurde in einem Hybridisierungsexperiment überprüft, ob die Gene des Eugenol-Katabolismus auf diesem Megaplasmid oder auf dem Chromosom lokalisiert waren. Dazu wurden Megaplasmidpräparationen des Wildtyps und der Mutanten im 0,8 Gew.-% Agarose-Gel aufgetrennt. Die chromosomal und megaplasmidäre DNA wurde auf eine Nylonmembran geblottet und anschließend gegen eine biotinylierte HE38-DNA-Sonde hybridisiert. Dabei wurde nur mit der chromosomal DNA,
10 nicht jedoch mit der Megaplasmid-DNA ein Hybridisierungssignal erhalten. Somit liegen die Gene des Eugenol-Katabolismus in Pseudomonas sp. HR 199 chromosomal codiert vor.

Beispiel 11

15 Heterologe Expression von Genen des Eugenol-Katabolismus aus Pseudomonas sp. HR 199 in anderen Pseudomonas-Stämmen und in Alcaligenes eutrophus.

Das Plasmid pE207 und ein pVK101-Hybridplasmid mit Fragment H110 (pVKh110) wurden konjugativ nach A. eutrophus und in Pseudomonas-Stämme übertragen, die nicht in der Lage waren, Eugenol, Vanillin oder Vanillinsäure
20 zu verstoffwechseln. Die erhaltenen Transkonjuganten wurden zum einen auf ihr Vermögen überprüft, auf MM-Agarplatten mit Eugenol, Vanillin oder Vanillinsäure wachsen zu können. Zum anderen wurden einige Transkonjuganten in MM-Flüssigmedium mit Eugenol inkubiert. Mittels HPLC-Analyse der Kulturüberstände wurde eine Umsetzung von Eugenol durch einige der Transkonjuganten beobachtet.

25 Auf diese Weise wurde eine funktionelle Expression des vdh-Gens in Transkonjuganten von P. stutzeri, P. asplenii, Pseudomonas sp. DSM13, Pseudomonas sp. DSM15a und Pseudomonas sp. D1 nachgewiesen.

Transkonjuganten des Stammes Pseudomonas sp. D1, die das Plasmid pE207 erhalten hatten, waren in der Lage, mit Eugenol als C- und Energiequelle zu wachsen. Auch in entsprechenden Transkonjuganten von P. testosteroni LMD3324, P. fluorescens TypB, P. stutzeri DSM50027, Pseudomonas sp. DSM1455 und P. fragi DSM3456 wurde eine funktionelle Expression der Eugenol-Hydroxylase-Gene beobachtet, was zu einer Ausscheidung von Intermediaten
30 des Eugenol-Katabolismus (Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin, Vanillinsäure) in das Kulturmedium führte. Ein Wachstum dieser Transkonjuganten auf Eugenol wurde hingegen nicht beobachtet.

35

40

45

50

55

SEQUENZPROTOKOLL

5 (1) ALLGEMEINE ANGABEN:

(i) ANMELDER:

- (A) NAME: Haarmann & Reimer GmbH
- (B) STRASSE: Rumohrtalstrasse 1
- (C) ORT: Holzminden
- (D) LAND: Deutschland
- (F) POSTLEITZAHL: 37603
- (G) TELEFON: 0214-3067988
- (H) TELEFAX: 0214-303482

10 15 (ii) BEZEICHNUNG DER ERFINDUNG: Synthaseenzyme fuer die Herstellung von
Coniferylalkohol, Coniferylaldehyd, Ferulasaeure, Vanillin
und Vanillinsaeure und deren Verwendung

20 (iii) ANZAHL DER SEQUENZEN: 42

(iv) COMPUTER-LESBARE FASSUNG:

- (A) DATENTRÄGER: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)

25 (2) ANGABEN ZU SEQ ID NO: 1:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 32679 Basenpaare
- (B) ART: Nucleotid
- (C) STRANGFORM: Doppelstrang
- (D) TOPOLOGIE: linear

30 35 (ii) ART DES MOLEKÜLS: Genom-DNA

(iii) HYPOTHETISCH: NEIN

(iv) ANTISENSE: NEIN

40 (vi) URSPRUNGLICHE HERKUNFT:

- (A) ORGANISMUS: Pseudomonas sp.
- (B) STAMM: HR199

(ix) MERKMAL:

- (A) NAME/SCHLÜSSEL: CDS
- (B) LAGE: 3146..3997
- (D) SONSTIGE ANGABEN:/gene= "ORF1"

50 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

GAATTCATCC TCATGGAGCA CTTCTACAAG CAGCAGGCAG GCCACCCCTCC CCAGACCGAT

60

55

	GACGTGCATA TTATCGCGAT CGGCAGAACG AGCTTTAAC GCTACCTGGA GCTCGAAAG	120
5	CTCCTGAACA TCAGAGTTGC CGCAATTGCA GATAACGACG GTGACTATCA GCAGAACTGT	180
	GTAGCGAACT ACGAAGGCTA CCTGTACGAG TCGGCCAAGA TTTTCGCCGC CCCAGATCCT	240
	GACCGAAGCA CCTTCGAAAT AGGGCTGTAC CGTGACAACC AGAAAGCCTG TGACGATCTC	300
10	TTTGTGCGG GTCGAAAAA ACTGACCGTG CAAGAGTACA TGCTAAAAA TAAAGCGGAT	360
	GCCGCTTCG AGCTGCTGAC CAAGAAGTCC GCTGAACTGA TCGCCCCGAA GTACATACAG	420
	GAAGCGATCG AATGGATAAG AGCGTAATTT TCTCCGTCGC AGGATCCGGG AAAACCAGCC	480
15	TGATCATCGA GCGTCTCAGC CTTGATCAGC GGGCATTGGT CATCACTTAC ACGGACAACA	540
	ATCACCGGCA CCTGCGCAAC AGGATCATTC AGAGATTCGG GGTGATCCA TCCAACATCA	600
20	CGCTCATGAC GTACTTCTCG TTCCTGCATG GGTCTGCTA TCGGCCCTTG ATGCAATTGC	660
	AGCTAGGAAC ACGAGGGCTA AATTCAGAC GTCCGCCAA CAGGCAGTAC CCCCTGAACG	720
	ATCTCAATCG GTATCGCGAT GGAAGCGGCA GGCTCTATCA CTGCCGCCTC GCGAAACTGC	780
25	TGGACGTTGC GCAGGCCTTA CCGGATGTGC GTGCCCGCCT GGAGCGCTTT TACGACTGCC	840
	TGTACGTCGA CGAGGTACAG GATTCGCGG GTCACGACTT CAACCTCCTG CTGGAGGTTT	900
	CACGGGCGAA GATCGGCATG ACGTTGTCG GTGATTTCCA CCAGCACACC TTGATACCA	960
30	GCCGAGACGG AGCGGTAAAAC AAAACCTTC ACCACGATGC CGTCGCTAC GAGAACGCT	1020
	TTCGTGATGC CGGCATTCG GTGGACAAGC AAACGTTGAA CCGCAGCTGG CGATGCGCCA	1080
	AAACGGCTG TGACTTCATC AGCGCAAAGC TGAAAATTGG CGATGGACGC TCACGAGGAG	1140
35	CGGGGCAGCC GGATCATTAG AGTTGATGAC CAAGAGCAGG CCAACTTGTT GCACGTTGAC	1200
	CCAACCATCG TGAAGCTGTT TTTGAGCGAA CACTACAAGT ACGGCTGCCA CTCCGAAAAC	1260
	TGGGGGGCAA GCAAGGCATG GATCACTTTA ACGATGTCTG CGTTGTGATG GGCCCGGGTA	1320
40	TCTGGAAAGA CTATGTGGCT GAGAGGTTAC ACCAGGCCAA CCCGCAAACC CGAAACAAGC	1380
	TGTACGTTGGC CTGCACTAGG GCGCGGGGTG ATCTGTATTT CGTGCCTGAG AAGCTTTGA	1440
	GGGCCTTCAA ACAGGGAAAT TAGGCGATAA AGCTGAAAAA GGATTTCAA GTAAAGACCA	1500
45	CTCCTTCCTT ACTCGATGTC CGCTTTGGC CGATTTCTGC CAGTCACGAC CGGCAAAGAA	1560
	CGGCCAAAAG CGGACTGATG CGGTTACTAA GCCTGCCTCT TATTGAAGCT TGGTGGCTT	1620
50	TAAGAATGTG GTGCGATCCA GCCTGATGAT GTTCCGCTTT ATGCACGCAG CCAAGCCTAT	1680
	CGACCGCCGT CTGCACGTTG TAACCGACTA CGCCTGTGCC TTTGCCGCTG GTGGCCATGG	1740

55

EP 0 845 532 A2

	AGCGTGCATC CGGATCGGTG AGTGAGACTT GCCCATCCGG TGCTTCACGT AGCTGCTGCT	1800
5	CCATCTCCTT GAGGCGCTGC ATCTGCTGGC GGAGTTTCTC GATTTTATCC TGGAGGCGGC	1860
	TGGCTTGGC TTCGGCGACA TCGGATTGAG TTCTGTCGGC GGTGTCCATC GCTGCCAGAT	1920
	AGCGGTCGAT GATTTTATCA ATCTGGTCCA TCCGGGCGCG CACCCGCTAT GATCCGGAGT	1980
10	CCTCCGATAT CGATGAGGCC TATCTGGCT GGAAGAGCGG TTCGGTGTTC TCAGACCTTG	2040
	GCGAGAACGC GGTCAAGCTC AGCTTCGGGC GCCAAGCCTT CAAGATCGGC AACGGCTTCC	2100
	TGATCGGCGA AGGCCACGTC GACCAAGGTA ACGATGCGGG CTACTGGCTG GCCCCTACCT	2160
15	AGGCGTTCGA CAACACCGTC CTAGCCAAAC TGGACACCGG CAAGCTGCAT GTCGACCTGT	2220
	TCGACCTCCA GGCGGGCATG GATCTGGACG TCGCCGACAT CAAGGAGAAA GTCCGGGTGC	2280
	GCAGGGGCAA CGTCGAGTGG CGCGACGAGA CCTACGGCAC GGTAGGGTTC ACCGGCTTCC	2340
20	ATACGCTGGA CGCTGACAAT CCGCTGCGCG ACGGCATGAA TGTCTACGAC GTACGCGCAT	2400
	CGGGCAGCCC GATCCGAGCC CTGCCGCAGG TGGCCCTGGC GGCGGAGTAC GCCTGGCAGC	2460
	GCAGGGCGGA GGCGGACAAG ACGAGTGAGG CCTGGTACCT ACAGGGCAGC TACACCTTC	2520
25	GGGATGCCCG CTGGACGCCA GTGCTGATGT ACCGTCACGC GGTCTTCTCC GACGACTACG	2580
	ACTCCCTGCT GTACGGCTAA GGGGGCAACA ACATGGGCTG GAAAGGAGCA TTGCGTTGAA	2640
30	ACGATGCTGA AGGGCGTCAC TCTTTTACTG CTGTCCGCTC ACGTCGAAAC TGCAATGATT	2700
	CGGGCAGCCT TTCTTCTATC CAGTCGGCCA GCACCTGAAC ATGAGCCGCT ACTTCCTGGC	2760
	CAAGCGGCGT CAGGCTGTAC TCGACATGTG GGGGAACGAC CGGGAGCGA TGTCGAGCTA	2820
35	TGAAACCGTC TCCCTCCAGG CCTTGTAGGG TCTGCGCAAG CATTCTTTTC GCTGACACCG	2880
	CCGATTCTTC CGACCGCAGGT CGCTGAATCG ATGGACACCG TCCACCAAGA TGATCAGCAC	2940
	GAGCACGCCA AGCGGCTTGT CACGTGCTTG AGCACGTCCC GCGACGGCAT TCAGCACTCA	3000
40	GCAATTCCCG CGCCGTGCTT GCATGGAGAG ACTGGTAAGG GCGGCCAGCG TGAGTTTCAT	3060
	GGCACTAACCTTTATGTAG TACTTACTTT TAGTTGCTAG TAGGGATATG GTGACGCCTT	3120
	CATCCTACGA AACAAAGTGAA GACTG ATG ATC GCC ATC ACA GGT GCC TCC GGA Met Ile Ala Ile Thr Gly Ala Ser Gly	3172
	1 5	
	CAA CTT GGT CGG TTG ACT ATA GAG GCG CTA CTG AAG CGC CTG CCA GCA Gln Leu Gly Arg Leu Thr Ile Glu Ala Leu Leu Lys Arg Leu Pro Ala	3220
50	10 15 20 25	
	TCC GAA ATT ATT GCC CTC GTC CGG GAT CCG AAT AAG GGC GGA GAC CTT	3268

	Ser Glu Ile Ile Ala Leu Val Arg Asp Pro Asn Lys Ala Gly Asp Leu		
	30	35	40
5	ACC GCA CGT GGC ATC GTG GTG CGC CAG GCC GAT TAC AAC CGG CCG GAA Thr Ala Arg Gly Ile Val Val Arg Gln Ala Asp Tyr Asn Arg Pro Glu		3316
	45	50	55
10	ACA CTC CAC CGG GCC CTG ATT GGG GTC AAC CGG TTG CTG TTG ATT TCC Thr Leu His Arg Ala Leu Ile Gly Val Asn Arg Leu Leu Leu Ile Ser		3364
	60	65	70
15	TCC AGT GAG GTG GGT CAA CGA ACT GCG CAA CAC CGG GCA GTG ATC GAC Ser Ser Glu Val Gly Gln Arg Thr Ala Gln His Arg Ala Val Ile Asp		3412
	75	80	85
	GCT GCG AAG CAA GAA GGT ATC GAG TTG CTG GCT TAT ACG AGT CTG CTT Ala Ala Lys Gln Glu Gly Ile Glu Leu Leu Ala Tyr Thr Ser Leu Leu		3460
20	90	95	100
	CAT GCC GAT AAA TCG GCG CTG GGC CTA GCG ACT GAA CAC CGA GAC ACG His Ala Asp Lys Ser Ala Leu Gly Leu Ala Thr Glu His Arg Asp Thr		3508
	110	115	120
25	GAA CAG GCC CTG ACA GAG TCC GGT ATT CCT CAT GTC CTG TTG CGC AAC Glu Gln Ala Leu Thr Glu Ser Gly Ile Pro His Val Leu Leu Arg Asn		3556
	125	130	135
	GGT TGG TAT CAC GAG AAC TAC ACG GCG GGC ATC CCA GTC GCG CTG GTT Gly Trp Tyr His Glu Asn Tyr Thr Ala Gly Ile Pro Val Ala Leu Val		3604
30	140	145	150
	CAT GGC GTG TTG CTG GGC TGT GCC CAG GAT GGC TTG ATT GCT TCT GCT His Gly Val Leu Leu Gly Cys Ala Gln Asp Gly Leu Ile Ala Ser Ala		3652
	155	160	165
35	GCA CGT GCT GAC TAC GCC GAA GCA GCG GCT GTG GTG CTC ACC GGT GAG Ala Arg Ala Asp Tyr Ala Glu Ala Ala Val Val Leu Thr Gly Glu		3700
	170	175	180
40	AAT CAG GCA GGT CGC GTC TAC GAG CTG GCC GGT GAA CCG GCA TAT ACG Asn Gln Ala Gly Arg Val Tyr Glu Leu Ala Gly Glu Pro Ala Tyr Thr		3748
	190	195	200
	CTC ACC GAA CTG GCA GCT GAG GTG GCG CCG CAA GCA GGA AAG ACC GTC Leu Thr Glu Leu Ala Ala Glu Val Ala Pro Gln Ala Gly Lys Thr Val		3796
45	205	210	215
	GTG TAT TCG AAC CTA TCC GAG AGC GAT TAC CGA TCT GCG TTG ATC AGT Val Tyr Ser Asn Leu Ser Glu Ser Asp Tyr Arg Ser Ala Leu Ile Ser		3844
	220	225	230
50	GCG GGC CTT CCC GAT GGT TTT GCG GCA TTG CTC GCA GAC TCT GAT GCA Ala Gly Leu Pro Asp Gly Phe Ala Ala Leu Leu Ala Asp Ser Asp Ala		3892
	235	240	245

55

EP 0 845 532 A2

	GGC GCA GCC AAG GGG TAT TTG TTT GAT TCC AGT GGA GAC AGT CGC AAG Gly Ala Ala Lys Gly Tyr Leu Phe Asp Ser Ser Gly Asp Ser Arg Lys 250 255 260 265	3940
5	CTG ATC GGT CGC CCA ACC ACT CCG ATG TCG GAA GCC ATC GCG GCA GCA Leu Ile Gly Arg Pro Thr Thr Pro Met Ser Glu Ala Ile Ala Ala Ala 270 275 280	3988
10	ATT GGC CGC TAAAAACTGCA TTTTCGCGAC TTGAGTGACA CCTGGGTTAG Ile Gly Arg	4037
	ATAACCCAGG TGTCTCGCAC CGCTTTGGGT TAGTGGTGGG CAATAGCGGT GTCTGGTCAC	4097
15	CGCTTGGCCG GCGGCGCGCC CGCTATTGGA TGATTCTCAA CTTCCTGGTG CGGGCGTCTT	4157
	GTTGGGGCCC AAACAGGCAG GCATAACGCA ATGTGGCATT TGCACTGTGCG CGCATGATGG	4217
20	CTTCTGCTCG AGCACCTTGC CCGCTAATCA GCGCGTCTAC CACAGCATGA TGCTGCATGT	4277
	TGGCAAAATT GAACCGGGCGG TACTCTTGGG GAGGTTGCTA CCGTCGACGG CCAGTGAAC	4337
	GACAGAGGCA AAGGGCAGGT GTTCATTCCG AGCCAATGCT TCACCTATGG CAGCGTTACC	4397
25	GCTGGCATCC ACGATAGCTT GATGGAAGCG CTTGTTGATG TCGTGGTATT CGGCAGGGTC	4457
	GTCTTCGCTG ACATAACCTT TCTCAAATAG GGCATCGCCC TGGGCCAAGC ACTGCAAGAG	4517
	GATCTCTTGC GTTTCACTGG ATAGCCCTCG CTCGGCAGCC TGCCCTGCGG CCAGTCCTTC	4577
30	AAGTACCCCT CGAACCTCCA CCGCGCTGC CAGGTCAATT GGGGTCAATT GCCGCACTGC	4637
	ATAGCCACGT GCGCCTTGGC GATCAGTAAC CTTCCCTGTT CTAGCGCTCG GAACGCAATG	4697
	CGGATAGGTG TGCGCCGACA CTCCCAGGGC CTCGGCAGTG GGGATTTCGG CGATGCGCTC	4757
35	TCCTGCCGGG AGTTGCCCCAT CCACAATCAT TTTGCGCAGT AGATTGAGTA CTCGCTGCC	4817
	GGGCCGCTC ATTTCAGCCT CCGATTGGAT CCAGTAATGG TTTGAGAGAA TTTTACTCGC	4877
	AAGGGATTTC TGGGCAATAG CCCCGCTGAT TGCTGGTTTT TGTATGTGGC GTGCGACTAT	4937
40	CGCACAGAAT TGGATCCACC TTGGCGAAA AAAACTGGAG CTACCTCATC GGTCGTGGTT	4997
	ATATTGGATC CCATAAGGTC AAGTTCATAG CTGATTTGG CTTTAGATGT CCATTGTGGA	5057
	TCCAAAAACA AGATCGCCAT TGAGGAACGC GCCATGTTTC CGAAAAACGC CTGGTATGTC	5117
45	GCTTGCACTC CGGATGAAAT CGCAGATAAG CCGCTAGGCC GTCAGATCTG CAACGAAAAG	5177
	ATTGTCTTCT ATCGGGGGCC GGAAGGACGT GTTGCCGCGG TAGAGGATTT CTGCCCTCAT	5237
	CGCGGGGCAC CGTTGTCCCT GGGTTTCGTT CGCGACGGTA AGCTGATTTG CGGCTACCAC	5297
50	GGTTTGGAAA TGGGCTGCGA GGGCAAAACG CTCGCGATGC CCGGGCAGCG CGTTCAAGGC	5357
55		

EP 0 845 532 A2

	TTCCCTTGCA TCAAAAGCTA CGCGGTAGAA GAGCGATAACG GCTTTATCTG GGTATGGCCT	5417
5	GGTGATCGCG AGCTGGCGGA TCCGGCGCTT ATTCACCACC TGGAGTGGGC CGATAATCCG	5477
	GAGTGGGCCT ATGGTGGCGG TCTCTACCAC ATCGCTTGTG ATTACCGCCT GATGATCGAC	5537
	AACCTCATGG ATCTCACCCA TGAGACCTAT GTGCATGCCT CCAGCATCGG TCAAAAGGAA	5597
10	ATTGACGAGG CACCGGTCAAG TACTCGTGTG GAGGGCGACA CCGTGATTAC CAGCCGGTAC	5657
	ATGGATAACG TCATGGCCCC TCCGTTCTGG CGTGCTGCAC TTCGTGGCAA CGGCTTGGCC	5717
	GACGATGTAC CGGTTGATCG CTGGCAGATC TGCGGATTACG CTCCCTCCGAG TCACGTACTG	5777
15	ATCGAAGTAG GTGTGGCTCA TGCGGGCAAA GGCGGGATATG ACGCGCCGGC GGAATACAAG	5837
	GCCGGCAGCA TAGTGGTCGA CTTCATCACG CCGGAGAGTG ATACCTCGAT TTGGTACTTC	5897
	TGGGGCATGG CTCGCAACTT CCGTCCGCAG GGCACGGAGC TGACTGAAAC CATTGTGTT	5957
20	GGTCAGGGCA AGATTTTGC CGAGGACCTG GACATGCTGG AGCAGCAGCA GCGCAATCTG	6017
	CTGGCCTACC CGGAGCGCCA GTTGCTCAAG CTGAATATCG ATGCCGGCGG GGTTCAAGTCA	6077
	CGGCGCGTCA TTGATCGGAT TCTCGCAGCT GAACAAGAGG CCGCAGACGC AGCGCTGATC	6137
25	GCGAGAAGTG CATCATGATT GAGGTAATCA TTTCGGCGAT GCGCTTGGTT GCTCAGGACA	6197
	TCATTAGCCT TGAGTTTGTG CGGGCTGACG GTGGCTTGCT TCCGCCTGTC GAGGCCGGCG	6257
30	CCCACGTCGA TGTGCATCTT CCTGGCGGCC TGATTCGGCA GTACTCGCTC TGGAAATCAAC	6317
	CAGGGGCGCA GAGCCATTAC TGCATCGGTG TTCTGAAGGA CCCGGCGTCT CGTGGTGGTT	6377
	CGAAGGCGGT GCACGAGAAT CTTCGCGTCG GGATGCGCGT GCAAATTAGC GAGCCGAGGA	6437
35	ACCTATTCCC ATTGGAAGAG GGGGTGGAGC GGAGTCTGCT GTTCGCGGGC GGGATTGGCA	6497
	TTACGCCGAT TCTGTGTATG GCTCAAGAAC TAGCAGCACG CGAGCAAGAT TTCAAGTTGC	6557
	ATTATTGCGC GCGTTCGACC GACCGAGCGG CGTTCTGTTGA ATGGCTTAAG GTTTGCGACT	6617
40	TTGCTGATCA CGTACGTTTC CACTTGACA ATGGCCCGGA TCAGCAAAAA CTGAATGCCG	6677
	CAGCGCTGCT AGCGGCCGAG GCCGAAGGTA CCCACCTTA TGTCTGTGGG CCCGGCGGGT	6737
	TCATGGGCAT TGTGCTTGAT ACCGCGAAGG AGCAGGGCTG GGCTGACAAT CGACTGCATC	6797
45	GAGAGTATTT CGCCGCGGGCG CGGAATGTGA GTGCTGACGA TGGCAGTTTC GAGGTGCGGA	6857
	TTCACAGCAC CGGACAAGTG CTTCAAGGTCC CCGCGGATCA AACGGTCTCC CAGGTGCTCG	6917
	ATGCGGCCGG AATTATCGTT CCCGTTCTT GTGAGCAGGG CATCTGCGGT ACTTGATCA	6977
50	CTCGGGTGGT AGACGGAGAG CCTGATCATC GTGACTTCTT CCTCACGGAT GCGGAGAAGG	7037

55

EP 0 845 532 A2

	CAAAGAACGA CCAGTTCACC CCCTGTTGCT CGCGAGCCAA GAGCGCCTGT TTGGTCTTGG	7097
5	ATCTCTAACT CATCCCCGTG TCCGGTCCCC TGCTTTGGTG CGCGCGACTG TGCGCGGGTA	7157
	AGTAAACAGG CTCAACCCTT TTTAGCGGGA TAACCATTCT TGAGGATGAA GGAGGGTTAT	7217
	CCCGCTCTTT TCATGCACCA AGCCATTCAT AGTCACCAGC TGCTTCTACG TGCTGCTGCG	7277
10	TTACAAGTTT ATTCAAGAAGG AAATCGGAAT GATCAAATCC CGCGCCGCTG TGGCGTTCGC	7337
	ACCCAATCAG CCATTGCAGA TCGTCGAAGT GGACGTGGCT CCGCCCAAGG CCGGTGAAGT	7397
	CCTGGTGCAG GTCGTGGCCA CCGGCCTTGT CCACACCGAT GCCTACACCC TGTCCGGCGC	7457
15	TGATTCAGGAG GGCCTTTCC CCTGCATCCT TGGTCACGAA GGCGGCGGCA TTGTCGAAGC	7517
	GGTGGGCGAG GGCCTCACCT CGCTGGCGGT CGCGGACAC GTGATCCCGC TCTACACGGC	7577
20	CGAATGCCGT GAGTGCAAGT TCTTCAAGTC CGGCAAGACC AACCTGTGCC AGAAAGTGC	7637
	TGCTACTCAG GGCAAGGGTC TGATGCCGGA CGGCACCTCC CGCTTCAGCT ACAACGGTCA	7697
	GCCGATCTAC CACTACATGG GCTGCTCGAC CTTCTCCGAG TACACCGTGC TGCCGGAAAT	7757
25	CTCCCTGGCG AAGATTCCCA AGAATGCGCC GCTGGAGAAA GTCTGCCTGC TGGGCTGCGG	7817
	CGTGACCACC GGCATTGGCG CGGTGCTGAA CACTGCCAAG GTGGAGGAGG GTGCTACCGT	7877
	GGCCATCTTC GGCCCTGGCG GCATCGGCTT GGCGCGATC ATCGGCGCGA AGATGGCAA	7937
30	GGCCTCGCG ATCATGCCA TCGACATCAA TCCGTCAGG TTCAATGTGG CTCGCGAGCT	7997
	GGGCGCCACT GACTTCGTCA ATCCGAACGA TCACGCGAAG CCGATCCAGG ATGTCATCGT	8057
	CGAGATGACT GATGGCGGTG TGGACTACAG CTTCGAGTGC ATCGCAACG TTCGACTCAT	8117
35	GCGCGCAGCA CTCGAGTGC GCCACAAGGG CTGGGGCGAA TCCGTGATCA TCGCGTGGC	8177
	GCCGGGGGG GCCGAAATCA ACACCCGTCC GTTCCACCTG GTGACCGGTC GCGTCTGGCG	8237
	GGGTTCGCGG TTCGGTGGCG TAAAGGGCCG CACCGAACTG CCGAGCTACG TGGAGAAGGC	8297
40	ACAGCAGGGC GAGATCCCGC TGGACACCTT CATCACTCAC ACCATGGGCC TGGACGACAT	8357
	CAACACGGCC TTGACCTGA TGGACGAAGG GAAGAGCATC CGCTCTGTTG TTCAATTGAG	8417
	TCGCTAGTGA AGTGGGGTGA GGAAATTGGA TTAGGAGGCG GATGGTTCTT GCCGCTTAAC	8477
45	CACCTTGTCC CAGCTTCTGG CTGAGATTTC CAAGATTGG TGAAATTGCA CATGCCGCAA	8537
	ACTCTTGCTG GACGGTTGAG TCTGTTATCC GGCACCGACG AATTAACCCCT GCTTCTTCGG	8597
	GGTGGTCGGG GCATTGAGCG TGAAGCCTTG CGGGTCGATG TTCAAGGTGA ACTGGCGCTG	8657
50	ACGCCTCACC CGGCAGCGCT TGGCTCTGCG TTGACCCATC CGACAATTAC TACGGATTAC	8717
55		

EP 0 845 532 A2

	GCCGAGGCC	TGCTTGAGTT	GATCACTCGG	CCGGCAACCG	ATTGTGCGCA	AGCCTTGGCT	8777
5	GAGCTGGAGG	AGCTTCACCG	TTTCGTTCAT	TCGAGACTTG	AGGGGGAGTA	TCTCTGGAAT	8837
	CTGTCCATGC	CTGGCAGATT	GCCGGTTGAT	GAGCAAATCC	CGATTGCTTG	GTATGGACCA	8897
	TCAAATCCAG	GCATGTTGCG	CCACGTTTAT	CGCCGTGGCC	TAGCTCTGCG	TTATGGCAAG	8957
10	CGAATGCAAT	GCATCGCAGG	GATTCACTAC	AACTACTCAC	TGCCGCCAGA	GCTTTTCGCT	9017
	GTCCTGACCA	AGGCAGAGGT	CGGGTCTCCC	AAGTTACTGG	AGCGCCAGTC	AGCAGCTTAC	9077
	ATGCGCCAAA	TTCGCAACCT	TCGGCAATAC	GGTTGGTTGC	TGGCCTACTT	GTTCGGCGCT	9137
15	TCCCCCGCCA	TCTGCAAGAG	CTTCTTGGGG	GGCGAGAGAG	ATGAGCTAGC	TCGCATGGGG	9197
	GGCGATAACGC	TTTACATGCC	CTATGCAACC	AGCTTGCAGA	TGAGTGACAT	CGGGTACCGC	9257
	AACCGTGCCA	TGGATGATCT	ATCTCCCAGC	CTGAATGATC	TGGGTGCCTA	TATTGGCGAT	9317
20	ATTGCGCGTG	CTCTTCACAC	TCCCGATGCC	CAGTACCAAGG	CGCTGGGTGT	GTGGCACAG	9377
	GGCGAGTGGC	GGCAGTTAAA	CGCCAATCTA	TTGCAGTTGG	ATAGTGAGTA	CTACGCACTG	9437
25	GCGCGACCGA	AGTCAGCGCC	CGAGCGGGGG	GAGCGAAACC	TGGATGCTCT	CGCTAGGCCT	9497
	GGAGTCCAGT	ATGTGGAGCT	GCGCGCACTG	GATCTCGATC	CATTCTCCCC	GTTAGGCATT	9557
	GGCCTGACCT	GCGCCAAGTT	CCTCGATGGC	TTTTGCTTT	TCTGCTTGT	GTCTGAGGCG	9617
30	CCGGTTGATG	ATCGAAAATGC	CCAGCGTTCA	AGACCGGGAA	AATCTGAGCC	TGGCGGGCAA	9677
	GTACGGCGT	CACCTGGCTT	AAAGCTGCAT	CGGAATGGTC	AGTCCATTCT	CCTCAAGGAT	9737
	TGGGCGCAGG	AAGTGTGAC	GGAGGTTCA	GCCTGTGTGG	AATTGCTCGA	CAGTGCAAT	9797
35	GGGGGCTCAT	CTCACGCATT	GGCTTGGTCA	GCACAGGAGG	AAAAGGTGCT	TAATCCGGAT	9857
	TGTGCGCCAT	CAGCTCAGGT	GCTCGCAGAG	ATACACAGAC	ACGGTGGGAG	CTTCACGGCA	9917
	TTTGGTCGCC	AATTAGCTAT	CGACCATGCA	AAACACTTCA	GTGCCTCCCT	GCTTGAGGCT	9977
40	GGCGTAGCCA	AAGCGCTTGA	CCTCCAGGCG	ACGTCGTCTC	TGCGCGAGCA	GCATCAATTG	10037
	GAGGCCAACG	ACCGTGCAGCC	ATTTTCTGAC	TACCTTCAGC	AATTCTCCCT	GGCTTTCGGT	10097
45	CAATCCGTCG	GCGCCTCTCG	TGCGCCCAAC	CCTACCGCGC	ACCTCATCGA	TCTGACCCCT	10157
	CCTGTCTAAG	GTTGTCGTGG	GACCGAGATCC	GTGGGCCGAG	CTTCCTCCAG	GGCCTGGCCG	10217
	CAGCGATCCA	GTTGCTAGGT	CCCTATGCTC	TTGCATAGGG	AAAAAAATTAG	TTATTGTGTT	10277
50	TAACGAAACG	TCTGGCATAAC	TGGCTTCTAGG	CACGAGCTTC	CACGCCGAAG	TTGAGAGCGT	10337
	CATGAACGAT	TTTCGTTGTG	GAGAGACGAT	GCCCGATGCG	GTGACGAGG	TTCAGGTCC	10397

55

EP 0 845 532 A2

	AATGGCAGTG CCGGCGGCTA AACGGAACGT GCCGTATTT GAGGCTTGG A GCGTGGTGAA	10457
5	GCAGCTTGGC TGCTCCCTGG GCCTGTCAGG ATCACCGCTGT GTCGGCAGTG ACACATTCAA	10517
	ACAAGAAGGG CATTAAAGATG ATGAATGTTA ATTATAAGGC TGTCGGGGCG AGCCTACTCC	10577
	TCGCCTTCAT CTCTCAGGGGA GCTTGGGCAG AGAGCCCCGC AGCCTCTGGC AATACCCCTG	10637
10	ACATTTATCG AAAGACCTGC ACCTACTGCC ATGAGCCTAC TGTCAACAAT GGCGGGTCA	10697
	TTGCCCGAAG CCTCGGGCCG ACTCTGCGAG GGCGCCAGAT CCCTCCACAG TACACGGAGT	10757
	ACATGGTGC G TCATGGACGC GGGGCAATGC CTGCATTCTC TGAAGCAGAA GTGCCTCCGG	10817
15	CGGAGCTGAA AGTTCTGGC GATTGGATTTC AGCAAAGCAG TGCTCCAAA GACGCTGGAG	10877
	T CGCGGCCATG ACTACCCGTC GCAAACTTCT AATAGGCAGC TCGCAGGTGG GGGCATTGGT	10937
	GATGATGTCG CCGAAATTGG TCTTCCGTAC GCCGCTCAAG CAGAAGCCCCG TGCGCATCCT	10997
20	GTCGACCGGG CTGGCCGGTG AGCAAGAGTT TCACTCGATG CTTCGCGCGC GATTGACCCA	11057
	TACGGGTCAG GTCGACATCG CGTCGGTACC GCTGGACGCA GCTATTTGGG CTTCTCCCGC	11117
	TCGACTTGCC CAGGCAATGG ATGCGTTGAA TGGTACGCGT CTGATCGCTT TTGTTGAGCC	11177
25	CAGGAACGAA TTGATACTGA TGCAATTCTT GATGGATCGC GGGGCTGCGG TGCTTATTCA	11237
	AGGTGAGCAT GCGGTGGACA GCAAGGGGGT CTCTCGGCAC GACTTTCTGA GTACCCCATC	11297
30	CAGTGCAGGG A ATTGGAGGGG CGCTAGCCGA CAGCCTGGCA AAAGGGGGCT CGCCGTTCTC	11357
	TATTTCCGTC CGAGCGCTTG GCTCGGTAAC TGCTCAGCCA AGAAGTAATC AGAGTGAGGT	11417
	GGCCACCCAC TGGACGACCG CTCTGGGAC CTATTATGCC GATATCGCAG TGGGGCGCTG	11477
35	GGAGCCGCAG CGCGAAGTGG CCAGCTATGG AAGTGGACTA ATCATGGCGG AACGGCTTGA	11537
	T CGTGTGTTGCC TCAACCTTCA TTGCAAGATCT CTGAGTCAGG GTATTGATAT GGAAAGCACC	11597
	GTAGTTCTTC CCGAGGGGTGT CACCCCGGAG CAGTCACCA AAGCCATCAG CGAGTTCCGT	11657
40	CAGGTATTGG GTGAGGACAG T GTTCTTGTC ACTGCTGAAC GAGTTGTTCC CTATACGAAA	11717
	CTCCTCATTC CTACACAGGA TGATGCCAG TACACCCGG CCGGTGCCTT GACTCCTTCT	11777
	TCGGTGGAGC AGGTCCAGAA AGTCATGGGG ATCTGCAATA AGTACAAGAT CCCGGTATGG	11837
45	CCAATCTCTA CCGGTGGAA CTGGGGGTAT GGGTCCGCTT CGCCTGCAAC TCCTGGGCAG	11897
	ATGATTCTTG ACCTTCGCAA GATGAACAAAG ATCATTGAGA TCGATGTTGA GGGGTGTACT	11957
	GCCCTGCTCG AGCCGGCGT TACCTACCAAG CAGCTTCACG ATTACATCAA GGAGCACAAT	12017
50	CTGCCCTTGA TGCTGGATGT GCCGACTATT GGGCCTATGG TTGGCCCGGT GGGTAACACG	12077

55

	CTGGATCGAG GCGTTGGTTA TACGCCGTAC GGCGAGCACT TCATGATGCA GTGTGGTATG	12137
5	GAAGTCGTCA TGGCCGATGG CGAAATCCTC CGTACTGGTA TGGGCTCGGT GCCCAAAGCC	12197
	AAGACTTGGC AGGCATTCAA ATGGGGCTAT GGTCCATATC TGGACGGTAT CTTTACCCAG	12257
	TCCAACCTTG GTGTTGTGAC AAAGCTCGGG ATTGGTGA TGCCCAAGCC GCCAGTGATC	12317
10	AAGTCGTTA TGATCCGTAA TCCCAATGAA GCTGATGTGG TTAAGGCAAT TGATGTTTT	12377
	CGCCCGCTGC GTATTACTCA GCTGATTCCCT AACGTCGTTT TGTTCATGCA CGGCATGTAC	12437
	GAAACGGCAA TCTGCCGGAC GCGTGTGAG GTTACTTCGG ACCCAGGTCC TATTCTGAA	12497
15	GCGGACGCC CAAAGAGCATT CAAAGAGCTA GGCCTGGCT ACTGGAACGT TTACTTCGCG	12557
	CTTTACGGCA CAGAAGAGCA GATAGCCGTC AATGAAAAGA TCGTCCGCGG CATCCTCGAA	12617
	CCGACGGGG GTGAGATCCT CACCGAAGAG GAGGCTGGAG ATAACATTCT TTTCCATCAC	12677
20	CATAAGCAGC TCATGAACGG CGAGATGACA TTGGAGGAAA TGAATATCTA CCAGTGGCGC	12737
	GGAGCAGGTG GCGGTGCTTG CTGGTTGCA CCGGTTGCTC AGGTCAAGGG GCATGAGGCA	12797
	GAGCAGCAGG TCAAGCTTGC TCAGAAGGTG CTTGCAAAGC ATGGGTTCGA TTACACGGCG	12857
25	GGCTTTGCGA TTGGTTGGCG CGATCTTCAC CATGTGATCG ATGTGCTGTA CGACCGTAGC	12917
	AATGCCGACG AGAAAAAGCG CGCTTACGCT TGCTTGATG AATTGATCGA CGTCTTGCG	12977
30	GCCGAAGGCT TTGCAAGTTA CAGGACCAAT ATTGCCTTA TGGACAAAGT CGCCTCTAAG	13037
	TTCGGCGCTG AGAATAAGAG GGTCAATCAG AAGATCAAGG CTGCCCTGCA TCCAAACGGC	13097
	ATCATCGCTC CCGGCAAGTC GGGCATTCACTT CTTCCCAAAT AATGCGTGTGTT CGTGAGGGCG	13157
35	CTGCTAGCCG CCTCATTGCA AGAAAGAGTC GTATGGCGA TGCAATGATGC GTCGTTGCT	13217
	CTCGGCTGTT GATTCTTCA AAGAACGTA TGGGGGGGGG ATGATTGCAA TCACTGCGGG	13277
	CACCGGAAGT CTTGGTCGGG CTATCGTTGA GCGACTAGGG GACTGCGGTC TTATCGGTCA	13337
40	AGTCGATTG ACGGCTCGCG ATCCTAAAAG GCTTCGTGCC GCTGCCGAGG AAGGGTTCA	13397
	GGTCGCTAAG GCGGATTACG CCGATATTGG GAGTCTTGAC CAGGCATTAC AGGGGGTAGA	13457
	CGTATTACTC CTGATTCTG GTACTGCACC CAATGAAATA AGGATCCAAC AGCATAAGTC	13517
45	GGTCATCGAC GCGGAAAC GAAACGGCGT GTCGCGTATT GTGTATACCA GCTTCATAAA	13577
	TCCAAGTACT CGCAGCAGGT CTATTGGC CTCCATTCACT CGTGAAACTG AGACTTACCT	13637
50	CAGGCAGTCT GGGGTGAAGT TTACGATTGT CCGAAATAAT CAGTATGCGT CTAACCTGGA	13697
	TCTGTTGCTG CTGAGGGCTC AAGACAGCGG AATATTGCG ATTCCGGGG CGAAGGGCG	13757

EP 0 845 532 A2

	GGTGGCGTAC GTCTCTCATC GCGACGTTGC CGCTGCCATC TGTAGTGTCC TGACGACCGC	13817
5	CGGACACGAT AACAGGATCT ACCAGCTCAC AGGCTCTGAG GCTCTCAATG GGCTCGAGAT	13877
	CGCGGAGATT CTTGGTGGGG TGCTCGGGCG TCCAGTGCAG GCGATGGATG CCTCGCCTGA	13937
	CGAGTTTGCT GCCAGCTTTC GCGAGGCTGG ATTCCCTGAG TTTATGGTTG AAGGCCTACT	13997
10	AAGCAATTAT GCCGCTTCAG GTGCTGGGA GTACCAATCC GTCAAGTCCTG ATGTTGGTT	14057
	GTTGACGGGA CGACGTGCCG AATCGATGCG AACTTACATA CAGCGTCTAG TTTGGCCTTG	14117
	AGGGAGGTGA CGCACGTATG AAGGCTTATG AGCTTCACAA GATTCGGAA CAGGTAGAGG	14177
15	TCAGGCTCCA GCCAACTCGG CCCCGCCCGC AGTTGAATCA TGGCGAGGTC CTCATCAGGG	14237
	TCCATGCAGC CTCGCTAAC TTTCGCGATT TGATGATCTT GGCGGGTCGC TATCCGGGTC	14297
	AAATGAAACC CGATGTGATC CCGCTGTCCG ATGGTGTCTGG CGAGATTGTG GAGGTCGGC	14357
20	CTGGCGTATC TTCGGAGGTG CAGGGTCAGC GCGTAGCCAG CACCTTTTC CCTAACTGGC	14417
	GGGCCGGAAA GATTACCGAG CCGGCTATTG AGGTGTCGTT GGGCTTCGGT ATGGACGGGA	14477
25	TGCTCGCGGA ATACGTTGCT CTGCCCTATG AGGCAACGAT ACCGATACCG GAGCACCTGT	14537
	CGTACGAGGA GGCTGCAACA TTGCCTTGCG CGCGCTAAC CGCTTGGAAAT GCGTTGACCG	14597
	AAGTGGGGCG TGTCAAGGCC GGTGATACGG TCTTGTGCT TGGCACTGGC GGTGTCTCGA	14657
30	TGTCGCGTT GCAGTTCGCC AAGCTCTTGG GGGCGACGGT CATTACACACC TCGAGCAGTG	14717
	AACAAAAGCT GGAGAGGGTG AAAGCGATGG GGGCTGATCA TCTGATCAAC TACCGCAATT	14777
	CGCCAGGGTG GGACCGTACT GTCCCTGGATC TCACCGCGGG GCGAGGGGTT GACCTGGTAG	14837
35	TCGAGGTAGG GGGGGCGGGG ACCTTGGAGC GCTCACTTCG TGCGGTCAAG GTAGGCGGTA	14897
	TTGTCGCCAC GATTGGGCTA GTGGCTGGCG TTGGCCCGAT TGACCCATTG CCGCTTATCT	14957
	CCAGGGCTAT TCAGCTCTCG GGCGTCTATG TCGGTTCCCG GGAAATGTTT CTCTCAATGA	15017
40	ACAAAGCCAT TGCATCAGCC GAAATCAAGC CAGTGATCGA TTGCTGCTTC CCCATCGACG	15077
	AGGTTGGAGA TGCTTATGAG TACATGCGTA GCGGCAATCA CCTTGGAAA GTAGTTATCA	15137
45	CGATCTAACT GCCGCTAAAC CCGTTGTGCG GCAATTGCG GGAGCTAGTA CCGGGCTTTC	15197
	GGTTTGGCTC TTGGATGGTC TTGCGATGCA CGCTTACGA AGGGGGCCAG GGACAGACGC	15257
	CCCGGGCGT AATCAATGGC CTTGCGTGCA GGCTCTCACC GTGCGTATCG GGATTGGAAA	15317
50	TTCGTGCAG GACAGCGGCC ACGTACCGGC GCCCTGAAGG GCTGGAAGGT TGGAGTTTCG	15377
	TTAAGGTCTG GTACCCAGCA GCCATGGAGA CGGGCCCTTA GCCGGAATGG CAGCTTGATG	15437

55

	GTTGCCACGG GACCAGACTG GATGTCTTGA GTGTCGAGAA TTACCAAGATC GCTGCGATTT	15497
5	TCATCGAGGC GACCAACCAC GGTCAGCAAG TACCCGTCAC CTTCGGCGGC GGTGGACTT	15557
	CTAGGGACGA AGGCCGGCTC CTGGGCCGCC GAGGCTTCGC CGGAGTACCA GAGGTCGTAG	15617
	TCACCTCGGT GGTTGTCCA GATGCCGAGT GAGTTGTACG CGAATATCTT CTCGGCCTGC	15677
10	TGATGCGCAA GTGGTTTGCG TGGATCGTCC ACCCCCATAA AGCCATAGCG GTTGCATTGC	15737
	AGGGCGAACG AAGAATCCAT GATTGGCATT TCCGCAAAGA AATCGTGTAG CCGGGTTCGC	15797
	TTGATCTCGT CGCTGCTGCT ATCGAGGTCA ATTTCCCAAC GAGTCAGGCG TGGTACGGCT	15857
15	TTCTCAGGGG CGAAGGGTTG GTTTTGTGAG TTGGGGAGG GGAACGGCAG GATTCACCTT	15917
	TCCATAAGGT CGATATAAAAT CTTGGTTCCG ACTTCCCAAG CATTACAAC ATGAAATACC	15977
	CAGAGCGCCG GTGCCTTGAG CCAGCGAACG AGACTGCCCT GGCGCGGCCG GAGTACGCCA	16037
20	ATGTAGCTGC CCAGTTCCGG CTCCCCACATA TAAATTGGCT GTTTCGCCCT GAGGCGGGAC	16097
	AGGCTGTTGG TGGCCGGCAT AATTGGAAA ATGGACCAAT TTCGGGTAAT GGCAAAGTCG	16157
	TGCATGAATG CGCCATAGGG CTGCTAAAC CAAGTTCAT GTGTCACCTT GCCGTGCTTG	16217
25	TCGACAATGT AATAGGCCAT GTCTGGAGTT GCTTCGCCCT TAGCTGCCGA ACCGAAGAAC	16277
	AACAAGTCAC CCGTTCCGG GTCATATTTT GGATGGCGG TGTGGGTTTG GCTGGTAACT	16337
30	TGGCCGTCGT AGTCGAAGTG TCCCGGAGTT TCAAGTGTAC GAGGATCCAG TTCTGTACGGT	16397
	AGGCCGTCTT CCTTCACCGC CAGCACCTTG CGGTGATGGC TAATGATGCT TGTATTGGCA	16457
	ACGGTGCCTT CTAGTCCTT TACACTGGTG TCGTCGGTAT AGGGGTTCT GTACATGCCA	16517
35	AATAGCGATT TTCGCGCTAG TCGTCGGCC GTGAATCGAG CGGTTTAAC CCAGCGACTG	16577
	ATGAAGTCGA CATGACCATC TTCAAGTGG AAGGCAGAGG CCATTCCATC TCCATCTATG	16637
	AAGGTGTGGA ATTTTGTTGG GTAACTTGA GGCTCTGGCG TATTACGGTA GAACGTTCCA	16697
40	TTTATTGATT TTGGGATTC GCGTCACACC TCTAGATCGA ACAAGTCTGC CTCTATACGG	16757
	GTGGGGAGAA GTGTTCTAC TAATTGCGGG TCGTTGCGGT TGAATCTCGC CATGGCACGG	16817
	TCTCCTTGT TGTTCTGAAT GGCTAAATG CGCGGCTTGC CGGGTTGGAG TTTATGTTA	16877
45	GGACTGACCG GATTTCATGT GTGCCGGTGA AGTGAAGATG TCTGTGAGTG CAATGGTGGT	16937
	GGTATTGAAA ATGGGCCGAG GCTGGCCTAT TGTTAGAAT TTCAAGAATG ACAACTATTC	16997
50	GGTGGCGGGCG TATGTCCATT CACTCTGAGG GGATCACTCT CGCGGATTTCG CCGCTGCATT	17057
	GGCGCATAAC CCTGAATGGA TCAATGCGTA CTCATTCGA AGTCCAGCGT CTTGAGCGGG	17117

55

EP 0 845 532 A2

	GTAGAGGTGC CTCCCTTGCC CGATCTAGAT TTGGCGCGGG TGAGCTGTAC AGTGCCATTG	17177
5	CACCAAGCCA GGTACTTCGC CACTTCAACG ACCAGCGAAA TGCTGATGAG GCTGAGCACA	17237
	GCTATTTGAT TCAGATACGA AGTGGCGCTT TGGCGTTGC ATCCGGCGGA AGAAAGGTGA	17297
	TCTTGGCAAA TGTTGATTGC TCCATAGTTG ATAGTCGCCA AGACTTCACA CTTTCCTCGA	17357
10	ACTCTTCGAC CCAAGGTGTC GTAATACGCT TTCCGGTGAG TTGGCTGGGA GCGTGGGTGT	17417
	CCAATCCGGA GGATCTTATC GCCCGACGAG TTGATGCTGA GGTAGGGTGG GGTAGGGCGC	17477
	TAAGCCGCATC GGTTTCTAAT CTAGATCCAT TGCGCATCGA CGATTTAGGT AGCAATGTAA	17537
15	ATGGCATTGC AGAGCATGTT GCTATGTTAA TTTCACTAGC AAGTTCTGCG GTTAGTTCTG	17597
	AAGATGGGGG TGTGGCTCTT CGGAAAATGA GGGAAAGTGAA GAGAGTACTC GAGCAGAGTT	17657
20	TCGCAGACGC TAATCTCGGG CGGGAAAGTG TTTCAAGTC ATTAGGAATT TCGAAACGCT	17717
	ATTTGCATTA TGTCTTGCT GCGTGCCTA CGACCTTTGG TCGCGAGCTG TTGGAAATAC	17777
	GCCTGGCAA AGCTTATCGA ATGCTCTGTG CGCGAGTGA CTCGGGTGCT GTGCTGAAGG	17837
25	TGGCCATGTC CTCAGGTTTT TCGGATTCAA GCCATTCAG CAAGAAATT AAGGAAAGAT	17897
	ACGGTGTTC GCCTGTCTCC TTGGTGAGGC AGGCTTGATT TCCCATAGCG TTATTGCGGT	17957
	CGTCGTTGCA AATGCGGACC TCGTGATCA TCAAGGCTAA GACTGCCACA TTAGGTGTCG	18017
30	ACTCGAGCGT CCCTCTATCC GCCTGACCGC GCTCCGTCCC TAGTACCTAG GAAATTGAGT	18077
	GGGCCTACTT GCCAGGGCCA GTTGGATTG TGCTGGTGA GCGCTGCAGGG TGACAGAAC	18137
	CTGATCGTGG CGATCACGAT GCGATAAAAG TTGCCCGGTG TCGTAGATCG CAGGGTGACC	18197
35	AAGACGGGGA CTCATGGCGC GGATCCCGCC AGTGATGCCT TCGCATGACG CCACCTCTCT	18257
	CCTCCGCTCA GCCTTCATGC CTGACTAATT AAGTCGTATA TCAATCTGGC TCTGTGCCGC	18317
	ATTCAGTTCC TCCAGCTGCA TTGTCTCTCG CGGGGAGGGC ATTCCCCTGC ATTGGCCAAA	18377
40	TGGGTCCCCCT TGTTCACGAC CGGACAAGCG CACCGTGCTG CCCGTTCGTC GTGTGCCCTG	18437
	TCAAAAAGCC TGGCGACGAA AGGGCGGCAG GCCGCATGGC CACGGCTGGG CGGTAAGTGA	18497
	TGCTTGCCTT AATCGTTAAC CGTTTGAAAT TCCTTGCCAA ATTTCGGCGA GAGAATCATG	18557
45	CGGGTACGCC TTTCCGTGCG CTTTGATCTG CGCTTCCGTG CCTTGAATCA GAAAAATAGT	18617
	TAATTGACAG AACTATAGGT TCGCAGTAGC TTTGCTCAC CCACCAAATC CACAGCACTG	18677
50	GGGTGCACGA TGAATAGCTA CGATGGCCGT TGGTCTACCG TTGATGTGAA GGTTGAAGAA	18737
	GGTATCGCTT GGGTCACGCT GAACCGCCCG GAGAAGCGCA ACGCAATGAG CCCAACTCTC	18797
55		

EP 0 845 532 A2

	AATCGAGAGA TGGTCGAGGT TCTGGAGGTG CTGGAGCAGG ACGCAGATGC TCGCGTGCTT	18857
5	GTTCTGACTG GTGCAGGCCA ATCCTGGACC GCGGGCATGG ACCTGAAGGA GTATTCCGC	18917
	GAGACCGATG CTGGCCCCGA AATTCTGCAA GAGAAGATTC GTCGCGAACG GTCGACCTGG	18977
	CAGTGGAAAGC TCCTGCGGAT GTACACCAAG CCGACCATCG CGATGGTCAA TGGCTGGTGC	19037
10	TTCGGCGGCG GCTTCAGCCC GCTGGTGGCC TGTGATCTGG CCATCTGTGC CGACGAGGCC	19097
	ACCTTTGGCC TGTCCGAGAT CAACTGGGGC ATCCCGCCGG GCAACCTGGT GAGTAAGGCT	19157
	ATGGCCGACA CCGTGGGTCA CCGCGAGTCC CTTTACTACA TCATGACTGG CAAGACATTT	19217
15	GGCGGTCAGC AGGCCGCCAA GATGGGGCTT GTGAACCAGA GTGTTCCGCT GGCGAGCTG	19277
	CGCAGTGTCA CTGTAGAGCT GGCTCAGAAC CTGCTGGACA AGAACCCCGT AGTGCCTGCGT	19337
20	GCCGCCAAAA TAGGCTTCAA GCGTTGCCGC GAGCTGACTT GGGAGCAGAA CGAGGACTAC	19397
	CTGTACGCCA AGCTCGACCA ATCCCCTTG CTCGATCCGG AAGGCGGTG CGAGCAGGGC	19457
	ATGAAGCAGT TCCTTGACGA GAAAAGCATC AAGCCGGCT TGCAGACCTA CAAGCGCTGA	19517
25	TAAATGCGCC GGGGCCCTCG CTGCGCCCCC GGCCCTTCAA TAATGACAAT AATGAGGAGT	19577
	GCCCAATGTT TCACGTGCC CTGCTTATTG GTGGTAAGCC TTGTTCAGCA TCTGATGAGC	19637
	GCACCTTCGA GCGTCGTAGC CCGCTGACCG GAGAAGTGGT ATCGCGCGTC GCTGCTGCCA	19697
30	GTTTGGAAAGA TGCGGACGCC GCAGTGGCCG CTGCACAGGC TGCCTTCCT GAATGGCGG	19757
	CGCTTGCTCC GAGCGAACGC CGTGGCCGAC TGCTGCGAGC GGCGGATCTT CTAGAGGACC	19817
	GTTCTTCCGA GTTCACCGCC GCAGCGAGTG AAACTGGCGC AGCGGGAAAC TGGTATGGGT	19877
35	TTAACGTTA CCTGGCGGCG GGCATGTTGC GGGAAAGCCGC GGCCATGACC ACACAGATTC	19937
	AGGGCGATGT CATTCCGTCC AATGTGCCCG GTAGCTTGC CATGGCGTT CGACAGCCAT	19997
40	GTGGCGTGGT GCTCGGTATT GCGCCTTGGA ATGCTCCGGT AATCCTTGGC GTACGGCTG	20057
	TTACCCATCG CCTGATTGGT CAGGTGTTGC ATGATGCTGG TCTGGGGAT GGCGTGGTGA	20117
45	ATGTCATCAG CAATGCCCG CAAGACGCTC CTGCGGTGGT GGAGCGACTG ATTGCAAATC	20237
	CTGCGGTACG TCGAGTGAAC TTCACCGGTT CGACCCACGT TGGACGGATC ATTGGTGAGC	20297
	TGTCTGCGCG TCATCTGAAG CCTGCTGTGC TGGAAATTAGG TGGTAAGGCT CCGTTCTTGG	20357
50	TCTTGGACGA TGCGACCTC GATGCGGCCG TCGAAGCGGC GGCTTTGGT GCCTACTTCA	20417
	ATCAGGGTCA AATCTGCATG TCCACTGAGC GTCTGATTGT GACAGCAGTC GCAGACGCCT	20477

55

EP 0 845 532 A2

	TTGTTGAAAA GCTGGCGAGG AAGGTCGCCA CACTGCGTGC TGGCGATCCT AATGATCCGC	20537
5	AATCGGTCTT GGGTCGTTG ATTGATGCCA ATGCAGGTCA ACCGATCCAG GTTCTGGTCG	20597
	ATGATGCGCT CGCAAAAGGC GCGCGGCAGG TCGTCGGTGG TGGCTTAGAT GGCAGCATCA	20657
	TGCAGCCGAT GCTGCTTGAT CAGGTCACTG AAGAGATGCG GCTCTACCGT GAGGAGTCCT	20717
10	TTGGCCCTGT TGCGTGTGTC TTGCGCGCG ATGGTGTGAGA AGAACTGCTG CGTCTTGCCA	20777
	ACGATTCGGA GTTTGGTCTT TCGGCCGCCA TTTTCAGCCG TGACGTCTCG CGCGCAATGG	20837
	AATTGGCCCA GCGCGTCGAT TCGGGCATTT GCCATATCAA TGGACCGACT GTGCATGACG	20897
15	AGGCTCAGAT GCCATTGCGT GGGGTGAAGT CCAGCGGCTA CGGCAGCTTC GGCAGTCGAG	20957
	CATCGATTGA GCACTTTAAC CAGCTGCGCT GGCTGACCAT TCAGAATGGC CGCGGGCACT	21017
20	ATCCAATCTA AATCGATCTT CGGGCGCCGC GGGCATCATG CCCGCGGCCGC TCGCCTCATT	21077
	TCAATCTCTA ACTTGATAAAA AACAGAGCTG TTCTCCGGTC TTGGTGGATC AAGGCCAGTC	21137
	GCGGAGAGTC TCGAAGAGGA GAGTACAGTG AACGCCAGT CCACATTGCA ACCGCAGGCA	21197
25	TCATCATGCT CTGCTCAGCC ACGCTACCGC AGTGTGTGCA TTGGTCATCC TCCGGTTGAG	21257
	GTTACGCAAG ACGCTGGAGG TATTGTCCGG ATGCGTTCTC TCGAGGGCGCT TCTTCCCTTC	21317
	CCGGGTCGAA TTCTTGAGCG TCTCGAGCAT TGGGCTAAGA CCCGTCCAGA ACAAAACCTGC	21377
30	GTTGCTGCCA GGGCGGCAAA TGGGAATGG CGTCGTATCA GCTACGCGGA AATGTTCCAC	21437
	AACGTCCGCG CCATCGCACA GAGCTTGCTT CCTTACGGAC TATCGGCAGA GCGTCCGCTG	21497
	CTTATCGTCT CTGGAAATGA CCTGGAACAT CTTCACTGG CATTGGGGC TATGTATGCG	21557
35	GGCATTCCCT ATTGCCCGGT GTCTCCTGCT TATTCACTGC TGTCGCAAGA TTTGGCGAAG	21617
	CTGCGTCACA TCGTAGGTCT TCTGCAACCG GGACTGGTCT TTGCTGCCGA TGCAGCACCT	21677
	TTCCAGCGCG CAATTGAGAC CATTCTGCCG GACGACGTGC CCGCAATCTT CACTCGAGGC	21737
40	GAATTGGCCG GGCAGCGCAC GGTGAGTTT GACAGCCTGC TGGAGCAGCC TGGTGGGATT	21797
	GAGGCAGATA ATGCCTTGC GGCAACTGGC CCCGATAACGA TTGCCAAGTT CTTGTTCACT	21857
	TCTGGCTCTA CCAAACGTGCC TAAGGCGGTG CCGACTACTC AGCGAATGCT CTGCGCCAAT	21917
45	CAGCAGATGC TTCTGCAAAC TTTCCCGGTT TTTGGTGAAG AGCCGCCGGT GCTGGTGGAC	21977
	TGGTTGCCGT GGAACCACAC CTTCGGCGGC AGCCACAACA TCGGCATCGT GTTGTACAAC	22037
50	GGCGGCACGT ACTACCTTGA CGACGGTAAA CCAACCGCCC AAGGGTTCGC CGAGACGCTT	22097
	CGCAACTTGA GCGAAATCTC TCCCACGTGCG TACCTCACTG TGCCGAAAGG CTGGGAGGAA	22157

55

	TTAGTGGGTG CCCTTGAGCG AGACAGTACC CTGCGCGAAC GCTTCTTCGC TCGCATGAAG	22217
5	CTGTTCTTCT TCGCGGCCGC TGGGTTGTCG CAAGGGATCT GGGATCGTT GGACCGGGTC	22277
	GCTGAACAGC ACTGTGGTGA GCGCATTGCG ATGATGGCG GTCTGGGCAT GACGGAGACT	22337
	GCTCCTTCCT GCACCTTTAC CACCGGACCG CTGTCGATGG CTGGTTACAT TGGGCTGCCA	22397
10	GCGCCTGGCT GCGAGGTCAA GCTCGTTCCG GTCGATGGGA ATTGGAAAGG GCGTTTCCAT	22457
	GGTCCGCACG TCATGAGCGG CTACTGGCGT GCTCCTGAAC AAAATGCCA AGCGTTCGAC	22517
	GAGGAAGGCT ATTACTGCTC CGGTGATGCC ATCAAATTGG CAGATCCTGC CGATCCTCAG	22577
15	AAAGGTCTGA TGTGGACGG TCGAATTGCT GAAGACCTCA AGCTGTCCTC AGGGGTATTT	22637
	GTCAGCGTTG GGCCATTGCG CACGCCGGCG GTTCTGGAAG GCGGCTCTTA CGTCCTGGAC	22697
	GTAGTGGTTG CTGCTCTGA TCGTGAATGC CTTGGATTGC TCGTGTTC GCGTCTTCTC	22757
20	GACTGCCGTG CCTTGTCGGG GCTAGGAAAA GAGGCCTCGG ACGCCGAGGT GCTTGCCAGT	22817
	GAGCCGGTTC GGGCCTGGTT TGCTGACTGG CTCAAACGAC TCAATCGAGA AGCAACTGGC	22877
	AATGCCAGTC GCATCATGTG GGTAGGGCTC CTCGATACGC CGCCGTCGAT TGATAAGGGC	22937
25	GAGGTCACTG ACAAGGGCTC GATCAACCAG CGCGCTGTT TGCAATGGCG GTCGGGAAA	22997
	GTTGATGCGC TGTATCGTGG TGAAGATCAA TCCATGCTGC GTGACGAGGC CACACTGTGA	23057
30	GTTGGTCAGG GGGGGCTTAC TCGGCGTTT CCGACACTGC GTTGGTTGCG GCAGTGCAC	23117
	CCCCCTGGAT TGATTGCGGG GGTGCCCTGT CGCTGGTGT GCCTATCGAC TTAGGGTAA	23177
	AGGTCGCTCG CGAAGTTCTG ATGCGTGCCTG CGCTTGAACC ACAAAATGGTC GATAGCGTAC	23237
35	TCGCAGGCTC TATGGCTCAA GCAAGCTTGT ATGCTTACCT GCTCCCGCGG CACATTGGCT	23297
	TGTACAGCGG TGTCCCCAAG TCGGTTCCGG CCTTGGGGGT GCAGCGCATT TGCAGCACAG	23357
	GCTTCGGCAG GCCGGCGAGC AGATTTCCAAG AGGCGCTGAT CACGTGCTGT	23417
40	GTGTCGCGGC AGAGTCCATG TCGCGTAACC CCATCGCGTC GTATACACAC CGGGGGCGGGT	23477
	TCCGCCTCGG TCGGCCCGTT GAGTTCAAGG ATTTTTGTG GGAGGCATTG TTTGATCCTG	23537
	CTCCAGGACT CGACATGATC GCTACCGCAG AAAACCTGGC GCGCCTGTAC GGAATCACCA	23597
45	GGGGAGAAGC TAATTCTAC GCGGTAAGCA GCTTCGAGCG CGCATTGAGG GCGCAAGAGG	23657
	AGAAAATGGAT TGACCAAGAG ATCGTGGCTG TTACGGATGA ACAGTTCGAT TTAGAGGGCT	23717
50	ACAACAGTCG AGCAATTGAA CTGCCTCGGA AGGCAAATT GTTGATCGTG ACAGTCATCC	23777
	CGGGCCTAGC AGTCTTGAA GCCCTTCCC GATTGAAGCC TGTTCAATTCT GGCGGGGTGC	23837

55

EP 0 845 532 A2

	AGACTGCGGG CAACAGCTGT GCCGTAGTGG ACGGGCCGC GGCGGTTTG GTGGCTCGAG	23897
5	AGTCGCTGC GACACAGCCG GTCTGGCTA GGATACTGGC TACCTCCGTA GTCGGGATCG	23957
	AGCCCGAGCA TATGGGGCTC GGCCCTGCGC CCGCGATTG CCTGCTGCTT GCGCGTAGTG	24017
10	ATCTTAGTTT GAGGGATATC GACCTCTTG AGATAAACGA GGCGCAGGCC GCCCAAGTTC	24077
	TAGCGGTACA GCATGAATTG GGTATTGAGC ACTCAAAACT TAATATTTGG GGCGGGGCCA	24137
15	TTGCACCTGG ACACCCGCTT GCCCGCACCG GATTGCGTCT CTGCATGACC CTCGCTCACC	24197
	AATTGCAAGC TAATAACTTT CGATATGGAA TTGCCTCGGC ATGCATTGGT GGGGGACAGG	24257
20	GGATGGCGGT TCTTTTAGAG AATCCCCACT TCGGTTCGTC CTCTGCACGA AGTCGATGA	24317
	TTAACAGAGT TGACCACTAT CCACTGAGCT AACGGCAGTC TCCCTTGTG CTTTGAGGTG	24377
25	GCGCACGAAG GAGGGCTCGA AAATCTCTGC TAAAAACAAG AAGAAGGAAC AGGGAACATG	24437
	ATTAGTTTCG CTCGTATGGC AGAAAGTTA GGAGTCCAGG CTAAACTTGC CCTTGCTTC	24497
	GCACTCGTAT TATGTGTCGG GCTGATTGTT ACCGGCACGG GTTCTACAG TGTACATACC	24557
30	TTGTCAGGGT TGGTGGAAA GAGCGCGATA GCTGGTGAGT TGCGGGCGAA AATTCAAGAA	24617
	CTGAAGGTTC TGGAGCAGCG CGCCTTATTC ATGCCGATG AAGGGTCGCT GAAGCAGCGC	24677
	TCGATCCTCC TAAGTCAGGT GATAGCTGAA GTTAATGATG CTATAGATAT TTTTGACTTT	24737
35	CAGCGCGGAC GATCTGAGTT ACTTAAATTC GCTGCTTCTT CGCGCGAACG AAGTTACTCC	24797
	ATTGAGGTCG GTAGAACGC TGCGGCCGAT AAGTTGCAGT CGGGCGAACC AAGTGACGCA	24857
	TTGATGGTTG CCGATAAAAAA GCTGAATGTT GAGTATGAGC ATTGAGTTC TGCTGTGAAT	24917
40	GCAC TGATGG GGCATTTAAT TGAGGATCAG AATGAAAAAG TTCCACTAAT CTACTATATG	24977
	CTTGGCGGCG TAACCTTGTT TACGATGCTC ATGAGTGCCTT ATTCCGGTCTG GTTCATTCG	25037
	CGTCAGTTAG TTCCGCCATT AAAGTCGACG GTGCAGCTTG CCGAGCGGAT TGCATCAGGC	25097
45	GACTTGGCTG ATGTCGGGA CAGCAGGCCGC AAGGATGAAA TCGGTCAGTT GCAAAGTGCA	25157
	ACTAGGCAGA TGGCGATTGG ACTGCGTAAT CTGGTCGGTG ATATTGGTCA AAGTCGTGCG	25217
	CAACTGGTTT CATCGTCCAG CGACCTTCG GCCATCTGTG CTCAGGCTCA GATTGATGTC	25277
50	GAGTGCCAGA AGCTTCGGT CGCCCAGGTC TCTACCGCCG TGAACGAGTT GGTTGAAACC	25337
	GTCCAGGCAA TAGCAAAAAG CACCGAAGAG GCAGCAACAG TCGCCGTCTT GGCGATGAA	25397
	AAGGCACGCG GTGGTGAAAG TGTCGTTAAC AAGGCCGTTG ATTCATTGA GCACCTCTCC	25457
	GGAGATATGG CGGAACCTGGG AGACGCAATG GAGCGGCTTC AGAACGACAG TGCGCAGATC	25517

55

	AATAAGGTAG TAGACGTCAT TAAGGCTGTG GCGGAGCAGA CCAATCTGCT AGCCCTGAAT	25577
5	GCGGCGATAG AGGC GGCCCG TGCAGGAGAG CAGGGCAGGG GCTTTGCGGT CGTGGCGGAT	25637
	GAGGTTCGTG CTTTGGCGAT GCGCACCCAA CAATCGACCA AAGAAATTGA GAGGCTAGTG	25697
	GTTTCATTGC AGCAGGGAAAG TGAAGCTGCG GGCAGTTGA TGCGGC GTGG CAAGGTCCGG	25757
10	ACGCATGACG TCGTTGGATT GGCCCAGCAA GCCGCGCGCC GCGCTACTCG AAATTACCCA	25817
	GCTGTCGCCG GCATCCAAGC GATGAACTAT CAGATCGCCG CTGGAGCAGA GCAGCAAGGG	25877
	GCTGCTGTGG TTCAAATCAA CCAGAATATG CTTGAAGTGC ATAAGATGGC TGACGAGTCC	25937
15	GCCATTAAAG CGGGACAGAC CATGAAAGTCA TCGAAGGAGC TTGCTCACCT CGGCAGTGCG	25997
	CTACAAAAAT CCGTTGATCG ATTCCAGCTG TAGCGCTCCG GGTGGCTGAA ACGCGCATTT	26057
	TCGTTAAGGT CTTCAGCGCG GTCTGCTGGT GCGTGGCCG CTAGCCTAAC TGTTGCGCTT	26117
20	CAGGCTCCGC ATGGATCTTG TGCAGCAGCA ATAGCAATTG TTCACGTTCG TCATCACTCA	26177
	GCATCGACGT CGCGTCTTGG TCGCTCTGTA CCACGATCTT CTTCAGCTCT TTGAGCTGCG	26237
	TCTCCCCAGC TTTGCTGAGA AATATCCCAT AGGAACGCTT GTCCGGCTTG CAGCGCACGC	26297
25	GCACAGCAAG GCCGAGCTTC TCGAGCTTGT TCAGCAAGGG AACCAAGTTGT GGTGGTTCGA	26357
	TTGCGAGCAT CCGCGCTAGG TCAGCCTGCA TAAGCCCAGG GCTCGCTTCG ATGATTAGAA	26417
30	GTGCCGACAG CTGCGCCGGG CGTAGGTCAT ATGGCGTCAG GGCTTCAATC AGGCCCTGAG	26477
	CGAGCTTCAG CGTGTGAGCCG GCGTAAGGCA TAGCCAATCA ATTGATTCA GAGCGTATCG	26537
	CCCGGTTCTA TCAGCGGGCC GCTTCGAAA GTCATGGTGT TAGCCGGTAG GGTCTTTTC	26597
35	TTGGCCATGC TTGTTGCCTG AACCTTCGTT GACATAGGGC AGAGGTGCGT TTGCCGCTTC	26657
	GCTTCGCGAT GAACCGCATC GAGATGCTGA GGTCAAGGATT TTTCTTAAC TCGCGTAAGC	26717
	ATTCTGTCAT TTTTTGGTG GCTTTGAACA GCCTGATGAA AGGTGGTCTC GCCCTTGAG	26777
40	GCCGATTCTT GGGCGCTTGG CGCGTCGAA GCGATGCTCC ACTACCGATT AAGATAATTA	26837
	AAATAAGGAA ACCGCATGGT TTCTTATGTG AATTGTCTG GCATACTCCA GCTCAAGGGC	26897
	AATTTTGGG CTATTGGCTG AGCAGTTGCC TCTATATGGT TATTCAGAAT AACAAATTGAC	26957
45	TCCTCAGGAG GTCAGCGATG AGCATTCTTG GTTGAATGG TGCCCCGGTC GGAGCTGAGC	27017
	AGCTGGCTC GGCTCTTGAT CGCATGAAGA AGGCGCACCT GGAGCAGGGG CCTGCAAAC	27077
50	TGGAGCTGCG TCTGAGTAGG CTGGATCGTG CGATTGCAAT GCTTCTGGAA AATCGTGAAG	27137
	CAATTGCCGA CGCGGTTTCT GCTGACTTTG GCAATCGCAG CCGTGAGCAA ACAC TGCTT	27197

55

EP 0 845 532 A2

	GCGACATTGC TGGCTCGGTG GCAAGCCTGA AGGATAGCCG CGAGCACGTG GCCAAATGGA	27257
5	TGGAGCCCGA ACATCACAAAG GCGATGTTTC CAGGGCGGA GGCACCGTGT GAGTTTCAGC	27317
	CGCTGGGTGT CGTTGGGTC ATTAGTCCT GGAACTTCCC TATCGTACTG GCCTTGGC	27377
	CGCTGCCGG CATATTGCA GCAGGTAATC GCGCCATGCT CAAGCCGTCC GAGCTTACCC	27437
10	CGCGGACTTC TGCCCTGCTT GCGGAGCTAA TTGCTCGTTA CTTCGATGAA ACTGAGCTGA	27497
	CTACAGTGCT GGGCGACGCT GAAGTCGGTG CGCTGTTCAAG TGCTCAGCCT TTGATCATC	27557
	TGATCTTCAC CGGGCGCACT GCCGTGGCCA AGCACATCAT GCGTGCCCG GCGGATAACC	27617
15	TAGTGCCCGT TACCCCTGGAA TTGGGTGGCA AATGCCGGT GATCGTTCC CGCAGTGCA	27677
	ATATGGCGGA CGTTGCACAA CGGGTGTGCA CGGTGAAAAC CTTCAATGCC GGGCAAATCT	27737
20	GTCTGGCACC GGACTATGTG CTGCTGCCGG AAGAACGCT GGATAGCTTT GTGCCGAGG	27797
	CGACCGCGCTT CGTGGCCGCA ATGTATCCCT CGCTTCTAGA TAATCCGGAT TACACGTCGA	27857
	TCATCAATGC CCGAAATTTC GACCGTCTGC ATCGCTACCT GACTGATGCG CAGGCAAAGG	27917
25	GAGGGCGCGT CATTGAAATC AATCCTGCCGG CGAAGAGTT GGGGGATAGT GGTATCAGGA	27977
	AGATCGCGCC CACTTTGATC GTGAATGTGT CGGATGAAAT GCTGGTCTTG AACGAGGAGA	28037
	TCTTTGGTCC GCTGCTCCCG ATCAAGACTT ATCGTGATTT CGACTCGGCT ATCGACTACG	28097
30	TCAACAGCAA GCAGCGACCA CTTGCCTCGT ACTTCTTCGG CGAAGATGCG GTTGAGCGTG	28157
	AGCAAGTGCT TAAGCGTACG GTTTGGCGCG CGGTGGTCGT GAACGATGTC ATGAGCCATG	28217
	TGATGATGGA TACGCTTCCA TTTGGTGGTG TGGGGCACTC GGGGATGGGG GCATATCACG	28277
35	GCATTTATGG TTTCCGAACC TTCAGCCATG CCAAGCCTGT TCTCGTGCAA AGTCCTGTGG	28337
	GTGAGTCGAA CTTGGCGATG CGCGCACCT ACGGAGAACG GATCCACGGA CTGCTCTCTG	28397
	TCCTCCTTTC AACGGAGTGT TAGAACCGTT GGTAGTGGTT TTGGACGGGC CCAGGAGCAT	28457
40	GCGCTTCTGG GCCCGTTCT TGAGTATTCA TTGGATAGTC ACCGCTGGTA GCTTCGAGCC	28517
	TGCACAGCTG ATGAGCACCC TGGAAAGGCGC GCTGTACGCG GACGACTGGG TTCATCTTCG	28577
	CCATTCCATGA CGGAACCTCG TTCCCCAGTA CCGCGATGAC TATTTTGCCCT CTTCCGATGT	28637
45	CCGATTCCAC GCCGCCTGAC GCTAACGGGG GGCGGGGCG CCCGCATCCC AGCCCAGACA	28697
	GCAACAAATG AGTAGGCTCT TGGATGCCGC GGCAGCTGAG ATTGGTAACG GCAATTTCGT	28757
50	CAATGTGACG ATGGATTCGA TTGCCCCGTGC TGCCGGCGTC TCAAAAAAAA CGCTGTACGT	28817
	CTTGGTGGCG AGCAAGGAAG AACTCATTTC CCGGTTAGTG GCTCGAGACA TGTCCAACCT	28877

55

	TGAGCTGCTG CTTTGTACG AGGTTGAGTC TCGGGAGGCC CTTCAGGATG AGTTGCAGAA	28937
5	CTATCTGCTG CTCTGGGCGC GCTTGACCTT GTCCCCCTTT GCTTTGGCA TTTTTCTGAT	28997
	GGCCGTGCAG GGGCGTGAAA GTGCCCCGGG CCTGGCGAGA ATCTGGTATC GAGAGGGGGC	29057
	AGAGCGTTGC CTCAGCTTGC TTCGGGGATG GTTGGCAAGG ATGGCAAGCC GGGAGCTGAT	29117
10	CGCTCCTGGA GATATCGACT CGCGAGTGGA GCTTATCGAT TCGCTCCTGA TCTCACAGCC	29177
	TTTGAAATTAA TTTGGCCTGG GGATCCAGAG CGGCTGGACC GATGATCAGA TCAATCAACG	29237
	GGTCACAATC GCTCTCGATG CATTCCGTCG GTGCTATGTC GTTTAGCACC GTTCTCGCGG	29297
15	GCTGTGGCGG CGTGACCTAT TTGTCTAGTG GTCGGGCGGA AATTGATAA GAAAGCTGGG	29357
	CGCGAGTGAG GCGAGGCCGG CGGGCAGCTT CCGAGACATT GCCTTCACC TGGCCCAGAG	29417
	CATGGCTAAT CATCGCGTCC TCCACTTCTT GCAGCGTCAT CGCGCTCAGG TCCTTGAGT	29477
20	CAAGCGGCAGA GTCGATTGTG CTGGTCGGTT TGGAGAAGGA AGTACTTGGG CTGCCAGTT	29537
	CCTGTGGCTG ATTATCTTGA GCGGTGGCCA GGATGCCGCT GGCCCCAATG GAGAACATCG	29597
25	GTTGAGTCAG TCGTTCACCG CTAGTGAAGA GGTGGCTCAC GTCAATGGCT CCATCCTCCG	29657
	GAGCGCTGAT GACTCCGCGC TCCACCAAAT TTTGAAGCTC CCGGATGTTT CCTGGAAAGT	29717
	CGTAGCCAAG CAGGGCATTG GCTGCACGTG GAGTGAATCC GCTGACCACC CGGCTATGAC	29777
30	GCTGATTGAA GCGGTGCAGG AAATAGGTCA TCAGGAGGGG AATGTCTTCC TTCTCTCTC	29837
	GAAGCGGCAGG GAGGTGGATC GGGTAAACAT TGAGGCGGAA AAAAAGGTCC TCGCGGAAC	29897
	CGCCGCGCTG GACGCCCTGG CGAAGATCGA CATTGGTTGC GGCTACCACA CGGACGTCAA	29957
35	CCTTGAGTGT CCTGCTTCCG CCAACCCGTT CGACCTCCGA CTCTTGCAGG GCGCGAAGTA	30017
	ACTTCCCTTG GGCCACGAGG CTTAGCGTCC CTATCTCGTC AAGGAATAGT GTGCCGCCCG	30077
	AAGCGCGCTC GAACCGTCT GCTCGAGATT GGGTGGCGCC GGTAAACGCC CCCCGTTCGA	30137
40	CGCCGAACAA CTCGGACTCC ATCAGGGTTT CGGGAATACG TCGCAATTG ACCGCAACAA	30197
	ACGGGCCGTC GTGTCTGGGG CTGATGCGGT GAAGCATGCG GGCGAACATC TCCTTGCCCA	30257
	CACCTGATTC ACCCGTAAAC AGTACCGTCG CCTCCGTGGG TGCTACGCAC TTCAGCATGT	30317
45	GGCAGGCAGC ATTGAATGCC GAGGAAATTG CCACCATGTC GTGTTCCGAT GCAGTGCTTG	30377
	AGTCTGCGGC GGAGTGATGG GGAGTGTTCC TTTGTCCCTG CTGCGTTCTT CGTCTCTGCG	30437
50	GCGTGCTTGG TTGCCGACAA ATGGTTGCGC TAAGCGCCGC CAAGTCCTCT TCGGCGTCTT	30497
	CCCATTCTTC CGCTGGCTTG CCGATCATGC GGCAGATCTG CGAACCCGTG GAGCGGCATT	30557

55

EP 0 845 532 A2

	CCACCTCTCG GTAAAGGATG AGGCGACCAA CCAGCGCGGA CGTATAGCCA ATGGCATAAC	30617
5	CCGTCTGCGT CCAGCACGCG GGCTCGGTGC CGATGCCGTA GTGCGCAATA TGTCATCAT	30677
	CTTCGCTCGA ATGGTGCCAG AGGAATTCGC CGTAGTAGGT CCCCAAATCC ATGTCGAAGT	30737
	CGAAGTGGAT CGGCTCCACG CGTACTGCGC CTTCCAGAGA GTGCAAGTTC GGGCCGGCG	30797
10	CAAATAGGGA GAGCGGATCG GCGTTGCTGA AGCGCTCCTT CAGAAGGGCG GCATCTTGG	30857
	CGCCGCAGTG GTAACCGGTT CGCAGCATGA TTCCGCGGGC GCGGGCGAAG CCCACGCTT	30917
	CAATTAATTG GCGTCGCAAT GCACCCAGTC CGCTGCTGTG GAGGAGCAGC ATTGCGCGC	30977
15	CGTTCAACCA GATGCGTCCA TCGCCAGGGC TGAAAAGGAG GGATTCAGTG AGGTCATGAA	31037
	GGGAGGGGAC GGCCTGGC TCCAATTGCT CGATGGCGCC GCGATTGAGT GTCTGGCG	31097
20	CGGTCTTGGGAGTTGGCT AGGGAGATAA ATTTGCTGGC CATGGTGGCG GCCCCTGATG	31157
	GGTTGGATGA TTTTCTGCAT TCTGCATCAT GAAATTCTATG AAATCATCAC TTTTCGGGGG	31217
	GTGGGTGCAC GGGATTGAAG GTTGCTAGGA GAGTGCATTG CTCGTAAGCC CAGGAAGCAC	31277
25	GCGGGTTTCA GGATGGTGCA TGGAAATGGC ATGAGCTTG CTGGATATGA TTAGAGACAT	31337
	TAACTATTTT GGCAGGAAATGG AAGCACGATT CCTCGCCCGG TAGAGCGGTA ACCGCGACAT	31397
	TCAGGACCGT AAAAAGGAAA GAGCATGCAA CTGACCAACA AGAAAATCGT CGTCACCGGA	31457
30	GTGTCCCTCCG GTATCGGTGC CGAAACTGCC CGCGTTCTGC GCTCTCACGG CGCCACAGTG	31517
	ATTGGCGTAG ATCGAACAT GCCGAGCCTG ACTCTGGATG CTTTCGTTCA GGCTGACCTG	31577
	AGCCATCCTG AAGGCATCGA TAAGGCCATC TCTCAGCTGC CGGAGAAAAT TGACGGACTC	31637
35	TGCAATATCG CCGGGGTGCC CGGCAGTGC GATCCTCAGC TCGTCGAAA CGTGAACACTAC	31697
	CTGGGTCTAA AGTATCTGAC CGAGGCAGTC CTGTCGCGCA TTCAACCCGG TGGTCGATT	31757
	GTCAACGTGT CCTCTGTGCT TGGCGCCGAG TGGCCGGCCC GCCTTCAGTT GCATAAGGAG	31817
40	CTGGGGAGTG TTGTTGGATT CTCCGAAGGC CAGGCATGGC TTAAGCAGAA TCCAGTGGCC	31877
	CCCGAATTCT GCTACCAGTA TTTCAAAGAA GCACTGATCG TTTGGTCTCA AGTCAGGCG	31937
	CAGGAATGGT TCATGAGGAC GTCTGTACGC ATGAACTGCA TCGCCCCCGG CCCTGTATTG	31997
45	ACTCCCATTG TCAATGAGTT CGTCACCATG CTGGGTCAAG AGCGGACTCA GGCGGACGCT	32057
	CATCGTATTA AGCGCCCAGC ATATGCCGAT GAAGTGGCCG CGGTGATTGC ATTCAATGTGT	32117
50	GCTGAGGGAGT CACGTTGGAT CAACGGCATA AATATTCCAG TGGACGGAGG TTTGGCATTG	32177
	ACCTACGTGT AAGTTCGTGG ACGCCCTTG CACGCGCACT ATATCTCTAT GCAGCAGCTG	32237

55

	AAAGCAGCTT TGGTTTGAT CGGAGGTAGC GGGCGGAAAG GTGCAGAATG TCTAAATAAT	32297
5	AAAGGATTCT TGTGAAGCTT TAGTTGTCCG TAAACGAAAA TAAAAATAAA GAGGAATGAT	32357
	ATGAAAGCAA GTAGATCAGT CTGCACTTC AAAATAGCTA CCCTGGCAGG CGCCATTTAT	32417
	GCAGCGCTGC CAATGTCAGC TGCAAACTCG ATGCAGCTGG ATGTAGGTAG CTCGGATTGG	32477
10	ACGGTGCCTT GGGGACAACA CCCTCAAGTA TAGCCTTGCC TCTCGCCTGA ATGAGCAAGA	32537
	CTCAAGTCTG ACAAAATGCAC CGACTGTCAA TGGTTATATC CGGATATTCA AAGTCAGGGT	32597
	GATCGTAACT TTGACCGGGG CCTTGGTATC CAATCGTCTC GATATTCTGT CGGAGCTTGA	32657
15	TGTCAGTCGT GACTGGTTGG TG	32679

(2) ANGABEN ZU SEQ ID NO: 2:

(i) SEQUENZKENNZEICHEN:
 (A) LÄNGE: 284 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein
 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

Met Ile Ala Ile Thr Gly Ala Ser Gly Gln Leu Gly Arg Leu Thr Ile			
1	5	10	15
Glu Ala Leu Leu Lys Arg Leu Pro Ala Ser Glu Ile Ile Ala Leu Val			
20	25	30	
Arg Asp Pro Asn Lys Ala Gly Asp Leu Thr Ala Arg Gly Ile Val Val			
35	40	45	
Arg Gln Ala Asp Tyr Asn Arg Pro Glu Thr Leu His Arg Ala Leu Ile			
50	55	60	
Gly Val Asn Arg Leu Leu Leu Ile Ser Ser Ser Glu Val Gly Gln Arg			
65	70	75	80
Thr Ala Gln His Arg Ala Val Ile Asp Ala Ala Lys Gln Glu Gly Ile			
85	90	95	
Glu Leu Leu Ala Tyr Thr Ser Leu Leu His Ala Asp Lys Ser Ala Leu			
100	105	110	
Gly Leu Ala Thr Glu His Arg Asp Thr Glu Gln Ala Leu Thr Glu Ser			
115	120	125	
Gly Ile Pro His Val Leu Leu Arg Asn Gly Trp Tyr His Glu Asn Tyr			
130	135	140	
Thr Ala Gly Ile Pro Val Ala Leu Val His Gly Val Leu Leu Gly Cys			

55

EP 0 845 532 A2

145	150	155	160
Ala Gln Asp Gly Leu Ile Ala Ser Ala Ala Arg Ala Asp Tyr Ala Glu			
165		170	175
Ala Ala Ala Val Val Leu Thr Gly Glu Asn Gln Ala Gly Arg Val Tyr			
180		185	190
Glu Leu Ala Gly Glu Pro Ala Tyr Thr Leu Thr Glu Leu Ala Ala Glu			
195		200	205
Val Ala Pro Gln Ala Gly Lys Thr Val Val Tyr Ser Asn Leu Ser Glu			
210		215	220
Ser Asp Tyr Arg Ser Ala Leu Ile Ser Ala Gly Leu Pro Asp Gly Phe			
225		230	240
Ala Ala Leu Leu Ala Asp Ser Asp Ala Gly Ala Ala Lys Gly Tyr Leu			
245		250	255
Phe Asp Ser Ser Gly Asp Ser Arg Lys Leu Ile Gly Arg Pro Thr Thr			
260		265	270
Pro Met Ser Glu Ala Ile Ala Ala Ile Gly Arg			
275		280	

(2) ANGABEN ZU SEQ ID NO: 3:

- (i) SEQUENZKENNZEICHEN:

 - (A) LÄNGE: 1065 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Doppelstrang
 - (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Genom-DNA

iii) HYPOTHETISCH: NEIN

(iv) ANTISENSE: NEIN

(ix) MERKMAL:

 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE:1..1062
 - (D) SONSTIGE ANGABEN:/product=
"Vanillinsäure-O-Demethylase"
/gene= "vanA"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

```

Ala Thr CCG AAA AAC GCC TGG TAT GTC Ser Tyr Asp Cys Thr Pro Asp Glu Ile
Met Phe Pro Lys Asn Ala Trp Tyr Val Ala Cys Thr Pro Asp Glu Ile
285          290          295          300

```

48

55

EP 0 845 532 A2

	GCA GAT AAG CCG CTA GGC CGT CAG ATC TGC AAC GAA AAG ATT GTC TTC Ala Asp Lys Pro Leu Gly Arg Gln Ile Cys Asn Glu Lys Ile Val Phe 305 310 315	96
5	TAT CGG GGG CCG GAA GGA CGT GTT GCC GCG GTA GAG GAT TTC TGC CCT Tyr Arg Gly Pro Glu Gly Arg Val Ala Ala Val Glu Asp Phe Cys Pro 320 325 330	144
10	CAT CGC GGG GCA CCG TTG TCC CTG GGT TTC GTT CGC GAC GGT AAG CTG His Arg Gly Ala Pro Leu Ser Leu Gly Phe Val Arg Asp Gly Lys Leu 335 340 345	192
15	ATT TGC GGC TAC CAC GGT TTG GAA ATG GGC TGC GAG GGC AAA ACG CTC Ile Cys Gly Tyr His Gly Leu Glu Met Gly Cys Glu Gly Lys Thr Leu 350 355 360	240
	GCG ATG CCC GGG CAG CGC GTT CAA GGC TTC CCT TGC ATC AAA AGC TAC Ala Met Pro Gly Gln Arg Val Gln Gly Phe Pro Cys Ile Lys Ser Tyr 365 370 375 380	288
20	GCG GTA GAA GAG CGA TAC GGC TTT ATC TGG GTA TGG CCT GGT GAT CGC Ala Val Glu Arg Tyr Gly Phe Ile Trp Val Trp Pro Gly Asp Arg 385 390 395	336
25	GAG CTG GCG GAT CCG GCG CTT ATT CAC CAC CTG GAG TGG GCC GAT AAT Glu Leu Ala Asp Pro Ala Leu Ile His His Leu Glu Trp Ala Asp Asn 400 405 410	384
30	CCG GAG TGG GCC TAT GGT GGC GGT CTC TAC CAC ATC GCT TGT GAT TAC Pro Glu Trp Ala Tyr Gly Gly Leu Tyr His Ile Ala Cys Asp Tyr 415 420 425	432
	CGC CTG ATG ATC GAC AAC CTC ATG GAT CTC ACC CAT GAG ACC TAT GTG Arg Leu Met Ile Asp Asn Leu Met Asp Leu Thr His Glu Thr Tyr Val 430 435 440	480
35	CAT GCC TCC AGC ATC GGT CAA AAG GAA ATT GAC GAG GCA CCG GTC AGT His Ala Ser Ser Ile Gly Gln Lys Glu Ile Asp Glu Ala Pro Val Ser 445 450 455 460	528
40	ACT CGT GTC GAG GGC GAC ACC GTG ATT ACC AGC CGG TAC ATG GAT AAC Thr Arg Val Glu Gly Asp Thr Val Ile Thr Ser Arg Tyr Met Asp Asn 465 470 475	576
	GTC ATG GCC CCT CCG TTC TGG CGT GCT GCG CTT CGT GGC AAC GGC TTG Val Met Ala Pro Pro Phe Trp Arg Ala Ala Leu Arg Gly Asn Gly Leu 480 485 490	624
45	GCC GAC GAT GTA CCG GTT GAT CGC TGG CAG ATC TGC CGA TTC GCT CCT Ala Asp Asp Val Pro Val Asp Arg Trp Gln Ile Cys Arg Phe Ala Pro 495 500 505	672
50	CCG AGT CAC GTA CTG ATC GAA GTA GGT GTG GCT CAT GCG GGC AAA GGC Pro Ser His Val Leu Ile Glu Val Gly Val Ala His Ala Gly Lys Gly 510 515 520	720

55

EP 0 845 532 A2

5	GGA TAT GAC GCG CCG GCG GAA TAC AAG GCC GGC AGC ATA GTG GTC GAC Gly Tyr Asp Ala Pro Ala Glu Tyr Lys Ala Gly Ser Ile Val Val Asp 525 530 535 540	768
10	TTC ATC ACG CCG GAG AGT GAT ACC TCG ATT TGG TAC TTC TGG GGC ATG Phe Ile Thr Pro Glu Ser Asp Thr Ser Ile Trp Tyr Phe Trp Gly Met 545 550 555	816
15	GCT CGC AAC TTC CGT CCG CAG GGC ACG GAG CTG ACT GAA ACC ATT CGT Ala Arg Asn Phe Arg Pro Gln Gly Thr Glu Leu Thr Glu Thr Ile Arg 560 565 570	864
20	GTT GGT CAG GGC AAG ATT TTT GCC GAG GAC CTG GAC ATG CTG GAG CAG Val Gly Gln Gly Lys Ile Phe Ala Glu Asp Leu Asp Met Leu Glu Gln 575 580 585	912
25	CAG CAG CGC AAT CTG CTG GCC TAC CCG GAG CGC CAG TTG CTC AAG CTG Gln Gln Arg Asn Leu Leu Ala Tyr Pro Glu Arg Gln Leu Leu Lys Leu 590 595 600	960
30	AAT ATC GAT GCC GGC GGG GTT CAG TCA CGG CGC GTC ATT GAT CGG ATT Asn Ile Asp Ala Gly Val Gln Ser Arg Arg Val Ile Asp Arg Ile 605 610 615 620	1008
35	CTC GCA GCT GAA CAA GAG GCC GCA GAC GCA GCG CTG ATC GCG AGA AGT Leu Ala Ala Glu Gln Glu Ala Ala Asp Ala Ala Leu Ile Ala Arg Ser 625 630 635	1056
40	GCA TCA TGA Ala Ser	1065

(2) ANGABEN ZU SEQ ID NO: 4:

35	(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 354 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear
40	(ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:
45	Met Phe Pro Lys Asn Ala Trp Tyr Val Ala Cys Thr Pro Asp Glu Ile 1 5 10 15
50	Ala Asp Lys Pro Leu Gly Arg Gln Ile Cys Asn Glu Lys Ile Val Phe 20 25 30
55	Tyr Arg Gly Pro Glu Gly Arg Val Ala Ala Val Glu Asp Phe Cys Pro 35 40 45
60	His Arg Gly Ala Pro Leu Ser Leu Gly Phe Val Arg Asp Gly Lys Leu 50 55 60

55

EP 0 845 532 A2

Ile Cys Gly Tyr His Gly Leu Glu Met Gly Cys Glu Gly Lys Thr Leu
65 70 75 80

5 Ala Met Pro Gly Gln Arg Val Gln Gly Phe Pro Cys Ile Lys Ser Tyr
85 90 95

Ala Val Glu Glu Arg Tyr Gly Phe Ile Trp Val Trp Pro Gly Asp Arg
100 105 110

10 Glu Leu Ala Asp Pro Ala Leu Ile His His Leu Glu Trp Ala Asp Asn
115 120 125

Pro Glu Trp Ala Tyr Gly Gly Leu Tyr His Ile Ala Cys Asp Tyr
130 135 140

15 Arg Leu Met Ile Asp Asn Leu Met Asp Leu Thr His Glu Thr Tyr Val
145 150 155 160

His Ala Ser Ser Ile Gly Gln Lys Glu Ile Asp Glu Ala Pro Val Ser
165 170 175

20 Thr Arg Val Glu Gly Asp Thr Val Ile Thr Ser Arg Tyr Met Asp Asn
180 185 190

Val Met Ala Pro Pro Phe Trp Arg Ala Ala Leu Arg Gly Asn Gly Leu
25 195 200 205

Ala Asp Asp Val Pro Val Asp Arg Trp Gln Ile Cys Arg Phe Ala Pro
210 215 220

30 Pro Ser His Val Leu Ile Glu Val Gly Val Ala His Ala Gly Lys Gly
225 230 235 240

Gly Tyr Asp Ala Pro Ala Glu Tyr Lys Ala Gly Ser Ile Val Val Asp
245 250 255

35 Phe Ile Thr Pro Glu Ser Asp Thr Ser Ile Trp Tyr Phe Trp Gly Met
260 265 270

Ala Arg Asn Phe Arg Pro Gln Gly Thr Glu Leu Thr Glu Thr Ile Arg
275 280 285

40 Val Gly Gln Gly Lys Ile Phe Ala Glu Asp Leu Asp Met Leu Glu Gln
290 295 300

Gln Gln Arg Asn Leu Leu Ala Tyr Pro Glu Arg Gln Leu Leu Lys Leu
305 310 315 320

45 Asn Ile Asp Ala Gly Gly Val Gln Ser Arg Arg Val Ile Asp Arg Ile
325 330 335

Leu Ala Ala Glu Gln Glu Ala Ala Asp Ala Ala Leu Ile Ala Arg Ser
340 345 350

50 Ala Ser

55

(2) ANGABEN ZU SEQ ID NO: 5:

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:

25 ATG ATT GAG GTA ATC ATT TCG GCG ATG CGC TTG GTT GCT CAG GAC ATC 48
 Met Ile Glu Val Ile Ile Ser Ala Met Arg Leu Val Ala Gln Asp Ile
 355 360 365 370

ATT AGC CTT GAG TTT GTC CGG GCT GAC GGT GGC TTG CTT CCG CCT GTC
 30 Ile Ser Leu Glu Phe Val Arg Ala Asp Gly Gly Leu Leu Pro Pro Val
 375 380 385

GAG	GCC	GGC	GCC	CAC	GTC	GAT	GTG	CAT	CTT	CCT	GGC	GGC	CTG	ATT	CGG	144
Glu	Ala	Gly	Ala	His	Val	Asp	Val	His	Leu	Pro	Gly	Gly	Leu	Ile	Arg	
390								395					400			

CAG TAC TCG CTC TGG AAT CAA CCA GGG GCG CAG AGC CAT TAC TGC ATC	192	
Gln Tyr Ser Leu Trp Asn Gln Pro Gly Ala Gln Ser His Tyr Cys Ile		
405	410	415

40 GGT GTT CTG AAG GAC CCG GCG TCT CGT GGT GGT TCG AAG GCG GTG CAC 240
 Gly Val Leu Lys Asp Pro Ala Ser Arg Gly Gly Ser Lys Ala Val His
 420 425 430

45 GAG AAT CTT CGC GTC GGG ATG CGC GTG CAA ATT AGC GAG CCG AGG AAC 288
 Glu Asn Leu Arg Val Gly Met Arg Val Gln Ile Ser Glu Pro Arg Asn
 435 440 445 450

CTA TTC CCA TTG GAA GAG GGG GTG GAG CGG AGT CTG CTG TTC GCG GGC 336
 Leu Phe Pro Leu Glu Glu Gly Val Glu Arg Ser Leu Leu Phe Ala Gly
 455 460 465

GGG ATT GGC ATT ACG CCG ATT CTG TGT ATG GCT CAA GAA TTA GCA GCA 384

EP 0 845 532 A2

	Gly Ile Gly Ile Thr Pro Ile Leu Cys Met Ala Gln Glu Leu Ala Ala		
	470	475	480
5	CGC GAG CAA GAT TTC GAG TTG CAT TAT TGC GCG CGT TCG ACC GAC CGA Arg Glu Gln Asp Phe Glu Leu His Tyr Cys Ala Arg Ser Thr Asp Arg		432
	485	490	495
10	GCG GCG TTC GTT GAA TGG CTT AAG GTT TGC GAC TTT GCT GAT CAC GTA Ala Ala Phe Val Glu Trp Leu Lys Val Cys Asp Phe Ala Asp His Val		480
	500	505	510
15	CGT TTC CAC TTT GAC AAT GGC CCG GAT CAG CAA AAA CTG AAT GCC GCA Arg Phe His Phe Asp Asn Gly Pro Asp Gln Gln Lys Leu Asn Ala Ala		528
	515	520	525
	530		
20	GCG CTG CTA GCG GCC GAG GAA GGT ACC CAC CTT TAT GTC TGT GGG Ala Leu Leu Ala Ala Glu Ala Glu Gly Thr His Leu Tyr Val Cys Gly		576
	535	540	545
25	CCC GGC GGG TTC ATG GGG CAT GTG CTT GAT ACC GCG AAG GAG CAG GGC Pro Gly Phe Met Gly His Val Leu Asp Thr Ala Lys Glu Gln Gly		624
	550	555	560
	565		
30	TGG GCT GAC AAT CGA CTG CAT CGA GAG TAT TTC GCC GCG GCG CCG AAT Trp Ala Asp Asn Arg Leu His Arg Glu Tyr Phe Ala Ala Ala Pro Asn		672
	570	575	
35	G TG AGT GCT GAC GAT GGC AGT TTC GAG GTG CGG ATT CAC AGC ACC GGA Val Ser Ala Asp Asp Gly Ser Phe Glu Val Arg Ile His Ser Thr Gly		720
	580	585	590
40	CAA GTG CTT CAG GTC CCC GCG GAT CAA ACG GTC TCC CAG GTG CTC GAT Gln Val Leu Gln Val Pro Ala Asp Gln Thr Val Ser Gln Val Leu Asp		768
	595	600	605
	610		
45	GCG GCC GGA ATT ATC GTT CCC GTT TCT TGT GAG CAG GGC ATC TGC GGT Ala Ala Gly Ile Ile Val Pro Val Ser Cys Glu Gln Gly Ile Cys Gly		816
	615	620	625
50	ACT TGC ATC ACT CGG GTG GTA GAC GGA GAG CCT GAT CAT CGT GAC TTC Thr Cys Ile Thr Arg Val Val Asp Gly Glu Pro Asp His Arg Asp Phe		864
	630	635	640
	645		
	650	655	
	660		
	665	670	
	(2) ANGABEN ZU SEQ ID NO: 6:		
	(i) SEQUENZKENNZEICHEN:		

55

- (A) LÄNGE: 317 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

5

- (ii) ART DES MOLEKÜLS: Protein
 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:

10

Met	Ile	Glu	Val	Ile	Ile	Ser	Ala	Met	Arg	Leu	Val	Ala	Gln	Asp	Ile
1				5				10						15	

Ile	Ser	Leu	Glu	Phe	Val	Arg	Ala	Asp	Gly	Gly	Leu	Leu	Pro	Pro	Val
				20				25					30		

15

Glu	Ala	Gly	Ala	His	Val	Asp	Val	His	Leu	Pro	Gly	Gly	Leu	Ile	Arg
				35				40					45		

20

Gln	Tyr	Ser	Leu	Trp	Asn	Gln	Pro	Gly	Ala	Gln	Ser	His	Tyr	Cys	Ile
				50			55					60			

25

Gly	Val	Leu	Lys	Asp	Pro	Ala	Ser	Arg	Gly	Gly	Ser	Lys	Ala	Val	His
	65				70			75					80		

30

Glu	Asn	Leu	Arg	Val	Gly	Met	Arg	Val	Gln	Ile	Ser	Glu	Pro	Arg	Asn
				85				90					95		

35

Leu	Phe	Pro	Leu	Glu	Glu	Gly	Val	Glu	Arg	Ser	Leu	Leu	Phe	Ala	Gly
				100				105					110		

40

Gly	Ile	Gly	Ile	Thr	Pro	Ile	Leu	Cys	Met	Ala	Gln	Glu	Leu	Ala	Ala
	115						120					125			

45

Arg	Glu	Gln	Asp	Phe	Glu	Leu	His	Tyr	Cys	Ala	Arg	Ser	Thr	Asp	Arg
	130				135				140						

50

Ala	Ala	Phe	Val	Glu	Trp	Leu	Lys	Val	Cys	Asp	Phe	Ala	Asp	His	Val
	145				150			155				160			

55

Arg	Phe	His	Phe	Asp	Asn	Gly	Pro	Asp	Gln	Gln	Lys	Leu	Asn	Ala	Ala
	165				170				175						

60

Ala	Leu	Leu	Ala	Ala	Glu	Ala	Glu	Gly	Thr	His	Leu	Tyr	Val	Cys	Gly
				180			185			190					

65

Pro	Gly	Gly	Phe	Met	Gly	His	Val	Leu	Asp	Thr	Ala	Lys	Glu	Gln	Gly
	195				200				205						

70

Trp	Ala	Asp	Asn	Arg	Leu	His	Arg	Glu	Tyr	Phe	Ala	Ala	Pro	Asn	
	210				215				220						

75

Val	Ser	Ala	Asp	Asp	Gly	Ser	Phe	Glu	Val	Arg	Ile	His	Ser	Thr	Gly
	225				230				235				240		

80

Gln	Val	Leu	Gln	Val	Pro	Ala	Asp	Gln	Thr	Val	Ser	Gln	Val	Leu	Asp
				245				250				255			

85

Ala Ala Gly Ile Ile Val Pro Val Ser Cys Glu Gln Gly Ile Cys Gly
 260 265 270

5 Thr Cys Ile Thr Arg Val Val Asp Gly Glu Pro Asp His Arg Asp Phe
 275 280 285

Phe Leu Thr Asp Ala Glu Lys Ala Lys Asn Asp Gln Phe Thr Pro Cys
 290 295 300

10 Cys Ser Arg Ala Lys Ser Ala Cys Leu Val Leu Asp Leu
 305 310 315

(2) ANGABEN ZU SEQ ID NO: 7:

- 15 (i) SEQUENZKENNZEICHEN:
 (A) LÄNGE: 1119 Basenpaare
 (B) ART: Nucleotid
 (C) STRANGFORM: Doppelstrang
 (D) TOPOLOGIE: linear

20 (ii) ART DES MOLEKÜLS: Genom-DNA

(iii) HYPOTHETISCH: NEIN

25 (iv) ANTISENSE: NEIN

30 (ix) MERKMAL:
 (A) NAME/SCHLÜSSEL: CDS
 (B) LAGE: 1..1116
 (D) SONSTIGE ANGABEN:/product=
 "Formaldehyd-Dehydrogenase"
 /gene= "fdh"

35 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:

ATG ATC AAA TCC CGC GCC GCT GTG GCG TTC GCA CCC AAT CAG CCA TTG
 Met Ile Lys Ser Arg Ala Ala Val Ala Phe Ala Pro Asn Gln Pro Leu
 320 325 330

48

40 CAG ATC GTC GAA GTG GAC GTG GCT CCG CCC AAG GCC GGT GAA GTC CTG
 Gln Ile Val Glu Val Asp Val Ala Pro Pro Lys Ala Gly Glu Val Leu
 335 340 345

96

45 GTG CGG GTC GTG GCC ACC GGC GTT TGC CAC ACC GAT GCC TAC ACC CTG
 Val Arg Val Val Ala Thr Gly Val Cys His Thr Asp Ala Tyr Thr Leu
 350 355 360 365

144

TCC GGC GCT GAT TCC GAG GGC GTT TTC CCC TGC ATC CTT GGT CAC GAA
 Ser Gly Ala Asp Ser Glu Gly Val Phe Pro Cys Ile Leu Gly His Glu
 370 375 380

192

50 GGC GGC GGC ATT GTC GAA GCG GTG GGC GAG GGC GTC ACC TCG CTG GCG
 Gly Gly Ile Val Glu Ala Val Gly Glu Gly Val Thr Ser Leu Ala

240

55

EP 0 845 532 A2

	385	390	395	
5	GTC GGC GAC CAC GTG ATC CCG CTC TAC ACG GCC GAA TGC CGT GAG TGC Val Gly Asp His Val Ile Pro Leu Tyr Thr Ala Glu Cys Arg Glu Cys 400	405	410	288
10	AAG TTC TTC AAG TCC GGC AAG ACC AAC CTG TGC CAG AAA GTG CGT GCT Lys Phe Phe Lys Ser Gly Lys Thr Asn Leu Cys Gln Lys Val Arg Ala 415	420	425	336
15	ACT CAG GGC AAG GGT CTG ATG CCG GAC GGC ACC TCC CGC TTC AGC TAC Thr Gln Gly Lys Gly Leu Met Pro Asp Gly Thr Ser Arg Phe Ser Tyr 430	435	440	384
20	AAC GGT CAG CCG ATC TAC CAC TAC ATG GGC TGC TCG ACC TTC TCC GAG Asn Gly Gln Pro Ile Tyr His Tyr Met Gly Cys Ser Thr Phe Ser Glu 450	455	460	432
25	TAC ACC GTG CTG CCG GAA ATC TCC CTG GCG AAG ATT CCC AAG AAT GCG Tyr Thr Val Leu Pro Glu Ile Ser Leu Ala Lys Ile Pro Lys Asn Ala 465	470	475	480
30	CCG CTG GAG AAA GTC TGC CTG CTG GGC TGC GGT GCT ACC ACC GGC ATT Pro Leu Glu Lys Val Cys Leu Leu Gly Cys Gly Val Thr Thr Gly Ile 480	485	490	528
35	GGC GCG GTG CTG AAC ACT GCC AAG GTG GAG GAG GGT GCT ACC GTG GCC Gly Ala Val Leu Asn Thr Ala Lys Val Glu Glu Gly Ala Thr Val Ala 495	500	505	576
40	ATC TTC GGC CTG GGC GGC ATC GGC TTG GCG GCG ATC ATC GGC GCG AAG Ile Phe Gly Leu Gly Ile Gly Leu Ala Ala Ile Ile Gly Ala Lys 510	515	520	624
45	ATG GCC AAG GCC TCG CGC ATC ATC GCC ATC GAC ATC AAT CCG TCC AAG Met Ala Lys Ala Ser Arg Ile Ile Ala Ile Asp Ile Asn Pro Ser Lys 530	535	540	672
50	TTC GAT GTG GCT CGC GAG CTG GGC GCC ACT GAC TTC GTC AAT CCG AAC Phe Asp Val Ala Arg Glu Leu Gly Ala Thr Asp Phe Val Asn Pro Asn 545	550	555	720
55	GAT CAC GCG AAG CCG ATC CAG GAT GTC ATC GTC GAG ATG ACT GAT GGC Asp His Ala Lys Pro Ile Gln Asp Val Ile Val Glu Met Thr Asp Gly 560	565	570	768
59	GGT GTG GAC TAC AGC TTC GAG TGC ATC GGC AAC GTT CGA CTC ATG CGC Gly Val Asp Tyr Ser Phe Glu Cys Ile Gly Asn Val Arg Leu Met Arg 575	580	585	816
64	GCA GCA CTC GAG TGC CAC AAG GGC TGG GGC GAA TCC GTG ATC ATC Ala Ala Leu Glu Cys Cys His Lys Gly Trp Gly Glu Ser Val Ile Ile 590	595	600	864
69	GGC GTG GCG CCG GCG GGG GCC GAA ATC AAC ACC CGT CCG TTC CAC CTG			912

	Gly Val Ala Pro Ala Gly Ala Glu Ile Asn Thr Arg Pro Phe His Leu		
	610	615	620
5	GTG ACC GGT CGC GTC TGG CGG GGT TCG GCG TTC GGT GGC GTA AAG GGC		960
	Val Thr Gly Arg Val Trp Arg Gly Ser Ala Phe Gly Gly Val Lys Gly		
	625	630	635
10	CGC ACC GAA CTG CCG AGC TAC GTG GAG AAG GCA CAG CAG GGC GAG ATC		1008
	Arg Thr Glu Leu Pro Ser Tyr Val Glu Lys Ala Gln Gln Gly Glu Ile		
	640	645	650
15	CCG CTG GAC ACC TTC ATC ACT CAC ACC ATG GGC CTG GAC GAC ATC AAC		1056
	Pro Leu Asp Thr Phe Ile Thr His Thr Met Gly Leu Asp Asp Ile Asn		
	655	660	665
	ACG GCC TTC GAC CTG ATG GAC GAA GGG AAG AGC ATC CGC TCT GTT GTT		1104
	Thr Ala Phe Asp Leu Met Asp Glu Gly Lys Ser Ile Arg Ser Val Val		
	670	675	680
20	CAA TTG AGT CGC TAG		1119
	Gln Leu Ser Arg		

25 (2) ANGABEN ZU SEQ ID NO: 8:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 372 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear

30 (ii) ART DES MOLEKÜLS: Protein
 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:

35	Met Ile Lys Ser Arg Ala Ala Val Ala Phe Ala Pro Asn Gln Pro Leu			
	1	5	10	15
	Gln Ile Val Glu Val Asp Val Ala Pro Pro Lys Ala Gly Glu Val Leu			
	20	25	30	
40	Val Arg Val Val Ala Thr Gly Val Cys His Thr Asp Ala Tyr Thr Leu			
	35	40	45	
	Ser Gly Ala Asp Ser Glu Gly Val Phe Pro Cys Ile Leu Gly His Glu			
	50	55	60	
45	Gly Gly Gly Ile Val Glu Ala Val Gly Glu Gly Val Thr Ser Leu Ala			
	65	70	75	80
	Val Gly Asp His Val Ile Pro Leu Tyr Thr Ala Glu Cys Arg Glu Cys			
	85	90	95	
50	Lys Phe Phe Lys Ser Gly Lys Thr Asn Leu Cys Gln Lys Val Arg Ala			
	100	105	110	

55

Thr Gln Gly Lys Gly Leu Met Pro Asp Gly Thr Ser Arg Phe Ser Tyr
 115 120 125
 5 Asn Gly Gln Pro Ile Tyr His Tyr Met Gly Cys Ser Thr Phe Ser Glu
 130 135 140
 Tyr Thr Val Leu Pro Glu Ile Ser Leu Ala Lys Ile Pro Lys Asn Ala
 145 150 155 160
 10 Pro Leu Glu Lys Val Cys Leu Leu Gly Cys Gly Val Thr Thr Gly Ile
 165 170 175
 Gly Ala Val Leu Asn Thr Ala Lys Val Glu Glu Gly Ala Thr Val Ala
 180 185 190
 15 Ile Phe Gly Leu Gly Gly Ile Gly Leu Ala Ala Ile Ile Gly Ala Lys
 195 200 205
 Met Ala Lys Ala Ser Arg Ile Ile Ala Ile Asp Ile Asn Pro Ser Lys
 210 215 220
 20 Phe Asp Val Ala Arg Glu Leu Gly Ala Thr Asp Phe Val Asn Pro Asn
 225 230 235 240
 Asp His Ala Lys Pro Ile Gln Asp Val Ile Val Glu Met Thr Asp Gly
 245 250 255
 25 Gly Val Asp Tyr Ser Phe Glu Cys Ile Gly Asn Val Arg Leu Met Arg
 260 265 270
 Ala Ala Leu Glu Cys Cys His Lys Gly Trp Gly Glu Ser Val Ile Ile
 275 280 285
 30 Gly Val Ala Pro Ala Gly Ala Glu Ile Asn Thr Arg Pro Phe His Leu
 290 295 300
 Val Thr Gly Arg Val Trp Arg Gly Ser Ala Phe Gly Gly Val Lys Gly
 305 310 315 320
 35 Arg Thr Glu Leu Pro Ser Tyr Val Glu Lys Ala Gln Gln Gly Glu Ile
 325 330 335
 40 Pro Leu Asp Thr Phe Ile Thr His Thr Met Gly Leu Asp Asp Ile Asn
 340 345 350
 Thr Ala Phe Asp Leu Met Asp Glu Gly Lys Ser Ile Arg Ser Val Val
 355 360 365
 45 Gln Leu Ser Arg
 370
 (2) ANGABEN ZU SEQ ID NO: 9:
 50 (i) SEQUENZKENNZEICHEN:
 (A) LÄNGE: 1638 Basenpaare

55

- (B) ART: Nucleotid
 (C) STRANGFORM: Doppelstrang
 (D) TOPOLOGIE: linear

5

(ii) ART DES MOLEKÜLS: Genom-DNA

(iii) HYPOTHETISCH: NEIN

10

(iv) ANTISENSE: NEIN

15

(ix) MERKMAL:

- (A) NAME/Schlüssel: CDS
 (B) LAGE: 1..1635
 (D) SONSTIGE ANGABEN: /product= "gamma-Glutamylcystein-Synthetase"
 /gene= "gcs"

20

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:

ATG CCG CAA ACT CTT GCT GGA CGG TTG AGT CTG TTA TCC GGC ACC GAC	48
Met Pro Gln Thr Leu Ala Gly Arg Leu Ser Leu Leu Ser Gly Thr Asp	
375 380 385	
GAA TTA ACC CTG CTT CTT CGG GGT CGG GGC ATT GAG CGT GAA GCC	96
Glu Leu Thr Leu Leu Leu Arg Gly Gly Arg Gly Ile Glu Arg Glu Ala	
390 395 400	
TTG CGG GTC GAT GTT CAA GGT GAA CTG GCG CTG ACG CCT CAC CCG GCG	144
Leu Arg Val Asp Val Gln Gly Glu Leu Ala Leu Thr Pro His Pro Ala	
405 410 415 420	
GCG CTT GGC TCT GCG TTG ACC CAT CCG ACA ATT ACT ACG GAT TAC GCC	192
Ala Leu Gly Ser Ala Leu Thr His Pro Thr Ile Thr Thr Asp Tyr Ala	
425 430 435	
GAG GCC CTG CTT GAG TTG ATC ACT CGG CCG GCA ACC GAT TGT GCG CAA	240
Glu Ala Leu Leu Glu Leu Ile Thr Arg Pro Ala Thr Asp Cys Ala Gln	
440 445 450	
GCC TTG GCT GAG CTG GAG GAG CTT CAC CGT TTC GTT CAT TCG AGA CTT	288
Ala Leu Ala Glu Leu Glu Leu His Arg Phe Val His Ser Arg Leu	
455 460 465	
GAG GGG GAG TAT CTC TGG AAT CTG TCC ATG CCT GGC AGA TTG CCG GTT	336
Glu Gly Glu Tyr Leu Trp Asn Leu Ser Met Pro Gly Arg Leu Pro Val	
470 475 480	
GAT GAG CAA ATC CCG ATT GCT TGG TAT GGA CCA TCA AAT CCA GGC ATG	384
Asp Glu Gln Ile Pro Ala Trp Tyr Gly Pro Ser Asn Pro Gly Met	
485 490 495 500	
TTG CGC CAC GTT TAT CGC CGT GGC CTA GCT CTG CGT TAT GGC AAG CGA	432
Leu Arg His Val Tyr Arg Arg Gly Leu Ala Leu Arg Tyr Gly Lys Arg	

55

EP 0 845 532 A2

	505	510	515	
5	ATG CAA TGC ATC GCA GGG ATT CAC TAC AAC TAC TCA CTG CCG CCA GAG Met Gln Cys Ile Ala Gly Ile His Tyr Asn Tyr Ser Leu Pro Pro Glu 520	525	530	480
10	CTT TTC GCT GTC CTG ACC AAG GCA GAG GTC GGG TCT CCC AAG TTA CTG Leu Phe Ala Val Leu Thr Lys Ala Glu Val Gly Ser Pro Lys Leu Leu 535	540	545	528
	GAG CGC CAG TCA GCA GCT TAC ATG CGC CAA ATT CGC AAC CTT CGG CAA Glu Arg Gln Ser Ala Ala Tyr Met Arg Gln Ile Arg Asn Leu Arg Gln 550	555	560	576
15	TAC GGT TGG TTG CTG GCC TAC TTG TTC GGC GCT TCC CCC GCC ATC TGC Tyr Gly Trp Leu Leu Ala Tyr Leu Phe Gly Ala Ser Pro Ala Ile Cys 565	570	575	580
20	AAG AGC TTC TTG GGG GGC GAG AGA GAT GAG CTA GCT CGC ATG GGG GGC Lys Ser Phe Leu Gly Gly Glu Arg Asp Glu Leu Ala Arg Met Gly Gly 585	590	595	672
25	GAT ACG CTT TAC ATG CCC TAT GCA ACC AGC TTG CGC ATG AGT GAC ATC Asp Thr Leu Tyr Met Pro Tyr Ala Thr Ser Leu Arg Met Ser Asp Ile 600	605	610	720
	GGG TAC CGC AAC CGT GCC ATG GAT GAT CTA TCT CCC AGC CTG AAT GAT Gly Tyr Arg Asn Arg Ala Met Asp Asp Leu Ser Pro Ser Leu Asn Asp 615	620	625	768
30	CTG GGT GCC TAT ATT CGC GAT ATT TGC CGT GCT CTT CAC ACT CCC GAT Leu Gly Ala Tyr Ile Arg Asp Ile Cys Arg Ala Leu His Thr Pro Asp 630	635	640	816
35	GCC CAG TAC CAG GCG CTG GGT GTG TTT GCA CAG GGC GAG TGG CGG CAG Ala Gln Tyr Gln Ala Leu Gly Val Phe Ala Gln Gly Glu Trp Arg Gln 645	650	655	660
	TTA AAC GCC AAT CTA TTG CAG TTG GAT AGT GAG TAC TAC GCA CTG GCG Leu Asn Ala Asn Leu Leu Gln Leu Asp Ser Glu Tyr Tyr Ala Leu Ala 665	670	675	912
40	CGA CCG AAG TCA GCG CCC GAG CGG GGG GAG CGA AAC CTG GAT GCT CTC Arg Pro Lys Ser Ala Pro Glu Arg Gly Glu Arg Asn Leu Asp Ala Leu 680	685	690	960
45	GCT AGG CGT GGA GTC CAG TAT GTG GAG CTG CGC GCA CTG GAT CTC GAT Ala Arg Arg Gly Val Gln Tyr Val Glu Leu Arg Ala Leu Asp Leu Asp 695	700	705	1008
50	CCA TTC TCC CCG TTA GGC ATT GGC CTG ACC TGC GCC AAG TTC CTC GAT Pro Phe Ser Pro Leu Gly Ile Gly Leu Thr Cys Ala Lys Phe Leu Asp 710	715	720	1056
	GGC TTT TTG CTT TTC TGC TTG TTG TCT GAG GCG CCG GTT GAT GAT CGA			1104

55

EP 0 845 532 A2

	Gly Phe Leu Leu Phe Cys Leu Leu Ser Glu Ala Pro Val Asp Asp Arg	725	730	735	740
5	AAT GCC CAG CGT TCA AGA CCG GGA AAA TCT GAG CCT GGC CGG CAA GTA Asn Ala Gln Arg Ser Arg Pro Gly Lys Ser Glu Pro Gly Arg Gln Val	745	750	755	1152
10	CGG GCG TCA CCT GGC TTA AAG CTG CAT CGG AAT GGT CAG TCC ATT CTC Arg Ala Ser Pro Gly Leu Lys Leu His Arg Asn Gly Gln Ser Ile Leu	760	765	770	1200
15	CTC AAG GAT TGG GCG CAG GAA GTG TTG ACG GAG GTT CAG GCC TGT GTG Leu Lys Asp Trp Ala Gln Glu Val Leu Thr Glu Val Gln Ala Cys Val	775	780	785	1248
20	GAA TTG CTC GAC AGT GCA AAT GGG GGC TCA TCT CAC GCA TTG GCT TGG Glu Leu Leu Asp Ser Ala Asn Gly Gly Ser Ser His Ala Leu Ala Trp	790	795	800	1296
25	TCA GCA CAG GAG GAA AAG GTG CTT AAT CCG GAT TGT GCG CCA TCA GCT Ser Ala Gln Glu Glu Lys Val Leu Asn Pro Asp Cys Ala Pro Ser Ala	805	810	815	820
30	CAG GTG CTC GCA GAG ATA CAC AGA CAC GGT GGG AGC TTC ACG GCA TTT Gln Val Leu Ala Glu Ile His Arg His Gly Gly Ser Phe Thr Ala Phe	825	830	835	1344
35	GGT CGC CAA TTA GCT ATC GAC CAT GCA AAA CAC TTC AGT GCC TCC TCG Gly Arg Gln Leu Ala Ile Asp His Ala Lys His Phe Ser Ala Ser Ser	840	845	850	1392
40	CTT GAG GCT GGC GTA GCC AAA GCG CTT GAC CTC CAG GCG ACG TCG TCT Leu Glu Ala Gly Val Ala Lys Ala Leu Asp Leu Gln Ala Thr Ser Ser	855	860	865	1440
45	CTG CGC GAG CAG CAT CAA TTG GAG GCC AAC GAC CGT GCG CCA TTT TCT Leu Arg Glu Gln His Gln Leu Glu Ala Asn Asp Arg Ala Pro Phe Ser	870	875	880	1488
50	GAC TAC CTT CAG CAA TTC TCC CTG GCT TTC GGT CAA TCC GTC GGC GCC Asp Tyr Leu Gln Gln Phe Ser Leu Ala Phe Gly Gln Ser Val Gly Ala	885	890	895	900
55	TCT CGT GCG CCC AAC CCT ACC GCG CAC CTC ATC GAT CTG ACC CCT CCT Ser Arg Ala Pro Asn Pro Thr Ala His Leu Ile Asp Leu Thr Pro Pro	905	910	915	1536
60	GTC TAA Val				1632
65					1638

50 (2) ANGABEN ZU SEQ ID NO: 10:

(i) SEQUENZKENNZEICHEN:

55

EP 0 845 532 A2

- (A) LÄNGE: 545 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear

5 (ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:

Glu Leu Thr Leu Leu Leu Arg Gly Gly Arg Gly Ile Glu Arg Glu Ala
20 25 30

15 Leu Arg Val Asp Val Gln Gly Glu Leu Ala Leu Thr Pro His Pro Ala
35 40 45

Ala Leu Gly Ser Ala Leu Thr His Pro Thr Ile Thr Thr Asp Tyr Ala
50 55 60

20 Glu Ala Leu Leu Glu Leu Ile Thr Arg Pro Ala Thr Asp Cys Ala Gln
65 70 75 80

Ala Leu Ala Glu Leu Glu Glu Leu His Arg Phe Val His Ser Arg Leu
85 90 95

Glu Gly Glu Tyr Leu Trp Asn Leu Ser Met Pro Gly Arg Leu Pro Val
100 105 110

Asp Glu Gln Ile Pro Ile Ala Trp Tyr Gly Pro Ser Asn Pro Gly Met
 115 120 125

Leu Arg His Val Tyr Arg Arg Gly Leu Ala Leu Arg Tyr Gly Lys Arg
130 135 140

35 Met Gln Cys Ile Ala Gly Ile His Tyr Asn Tyr Ser Leu Pro Pro Glu
 145 150 155 160

Leu Phe Ala Val Leu Thr Lys Ala Glu Val Gly Ser Pro Lys Leu Leu
165 170 175

40 Glu Arg Gln Ser Ala Ala Tyr Met Arg Gln Ile Arg Asn Leu Arg Gln
180 185 190

Tyr Gly Thr Ser Leu Ala Tyr Leu Phe Gly Ala Ser Pro Ala Ile Cys
195 200 205

Lys Ser Phe Leu Gly Gly Glu Arg Asp Glu Leu Ala Arg Met Gly Gly
210 215 220

EP 0 845 532 A2

Leu Gly Ala Tyr Ile Arg Asp Ile Cys Arg Ala Leu His Thr Pro Asp
 260 265 270
 Ala Gln Tyr Gln Ala Leu Gly Val Phe Ala Gln Gly Glu Trp Arg Gln
 5 275 280 285
 Leu Asn Ala Asn Leu Leu Gln Leu Asp Ser Glu Tyr Tyr Ala Leu Ala
 290 295 300
 10 Arg Pro Lys Ser Ala Pro Glu Arg Gly Glu Arg Asn Leu Asp Ala Leu
 305 310 315 320
 Ala Arg Arg Gly Val Gln Tyr Val Glu Leu Arg Ala Leu Asp Leu Asp
 325 330 335
 15 Pro Phe Ser Pro Leu Gly Ile Gly Leu Thr Cys Ala Lys Phe Leu Asp
 340 345 350
 Gly Phe Leu Leu Phe Cys Leu Leu Ser Glu Ala Pro Val Asp Asp Arg
 20 355 360 365
 Asn Ala Gln Arg Ser Arg Pro Gly Lys Ser Glu Pro Gly Arg Gln Val
 370 375 380
 Arg Ala Ser Pro Gly Leu Lys Leu His Arg Asn Gly Gln Ser Ile Leu
 25 385 390 395 400
 Leu Lys Asp Trp Ala Gln Glu Val Leu Thr Glu Val Gln Ala Cys Val
 405 410 415
 Glu Leu Leu Asp Ser Ala Asn Gly Gly Ser Ser His Ala Leu Ala Trp
 30 420 425 430
 Ser Ala Gln Glu Glu Lys Val Leu Asn Pro Asp Cys Ala Pro Ser Ala
 435 440 445
 35 Gln Val Leu Ala Glu Ile His Arg His Gly Gly Ser Phe Thr Ala Phe
 450 455 460
 Gly Arg Gln Leu Ala Ile Asp His Ala Lys His Phe Ser Ala Ser Ser
 465 470 475 480
 40 Leu Glu Ala Gly Val Ala Lys Ala Leu Asp Leu Gln Ala Thr Ser Ser
 485 490 495
 Leu Arg Glu Gln His Gln Leu Glu Ala Asn Asp Arg Ala Pro Phe Ser
 45 500 505 510
 Asp Tyr Leu Gln Gln Phe Ser Leu Ala Phe Gly Gln Ser Val Gly Ala
 515 520 525
 Ser Arg Ala Pro Asn Pro Thr Ala His Leu Ile Asp Leu Thr Pro Pro
 50 530 535 540
 Val

55

545

5 (2) ANGABEN ZU SEQ ID NO: 11:

- 10 (i) SEQUENZKENNZEICHEN:
 (A) LÄNGE: 354 Basenpaare
 (B) ART: Nucleotid
 (C) STRANGFORM: Doppelstrang
 (D) TOPOLOGIE: linear

15 (ii) ART DES MOLEKÜLS: Genom-DNA

15 (iii) HYPOTHETISCH: NEIN

15 (iv) ANTISENSE: NEIN

20 (ix) MERKMAL:

- (A) NAME/Schlüssel: CDS
 (B) LAGE: 1..351
 (D) SONSTIGE ANGABEN: /product= "Cytochrom C
 UE-Eugenol-Hydroxylase"
 /gene= "ehyA"

25 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:

ATG ATG AAT GTT AAT TAT AAG GCT GTC GGG GCG AGC CTA CTC CTC GCC	48
Met Met Asn Val Asn Tyr Lys Ala Val Gly Ala Ser Leu Leu Leu Ala	
550	555

TTC ATC TCT CAG GGA GCT TGG GCA GAG AGC CCC GCA GCC TCT GGC AAT	96
Phe Ile Ser Gln Gly Ala Trp Ala Glu Ser Pro Ala Ala Ser Gly Asn	
565	570

ACC CCT GAC ATT TAT CGA AAG ACC TGC ACC TAC TGC CAT GAG CCT ACT	144
Thr Pro Asp Ile Tyr Arg Lys Thr Cys Thr Tyr Cys His Glu Pro Thr	
580	585

GTC AAC AAT GGC CGG GTC ATT GCC CGA AGC CTC GGG CCG ACT CTG CGA	192
Val Asn Asn Gly Arg Val Ile Ala Arg Ser Leu Gly Pro Thr Leu Arg	
595	600

GGG CGC CAG ATC CCT CCA CAG TAC ACG GAG TAC ATG GTG CGT CAT GGA	240
Gly Arg Gln Ile Pro Pro Gln Tyr Thr Glu Tyr Met Val Arg His Gly	
610	615

CGC GGG GCA ATG CCT GCA TTC TCT GAA GCA GAA GTG CCT CCG GCG GAG	288
Arg Gly Ala Met Pro Ala Phe Ser Glu Ala Glu Val Pro Pro Ala Glu	
630	635

CTG AAA GTT CTG GGC GAT TGG ATT CAG CAA AGC AGT GCT CCC AAA GAC	336
Leu Lys Val Leu Gly Asp Trp Ile Gln Gln Ser Ser Ala Pro Lys Asp	
645	650

55

GCT GGA GTC GCG CCA TGA
 Ala Gly Val Ala Pro
 660

354

5

(2) ANGABEN ZU SEQ ID NO: 12:

(i) SEQUENZKENNZEICHEN:

- 10 (A) LÄNGE: 117 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:

15

Met Met Asn Val Asn Tyr Lys Ala Val Gly Ala Ser Leu Leu Leu Ala
 1 5 10 15

20

Phe Ile Ser Gln Gly Ala Trp Ala Glu Ser Pro Ala Ala Ser Gly Asn
 20 25 30

Thr Pro Asp Ile Tyr Arg Lys Thr Cys Thr Tyr Cys His Glu Pro Thr
 35 40 45

25

Val Asn Asn Gly Arg Val Ile Ala Arg Ser Leu Gly Pro Thr Leu Arg
 50 55 60

Gly Arg Gln Ile Pro Pro Gln Tyr Thr Glu Tyr Met Val Arg His Gly
 65 70 75 80

30

Arg Gly Ala Met Pro Ala Phe Ser Glu Ala Glu Val Pro Pro Ala Glu
 85 90 95

Leu Lys Val Leu Gly Asp Trp Ile Gln Gln Ser Ser Ala Pro Lys Asp
 100 105 110

35

Ala Gly Val Ala Pro
 115

40

(2) ANGABEN ZU SEQ ID NO: 13:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 687 Basenpaare
 (B) ART: Nucleotid
 (C) STRANGFORM: Doppelstrang
 (D) TOPOLOGIE: linear

45

(ii) ART DES MOLEKÜLS: Genom-DNA

(iii) HYPOTHETISCH: NEIN

50

(iv) ANTISENSE: NEIN

(ix) MERKMAL:

55

EP 0 845 532 A2

(A) NAME/SCHLÜSSEL: CDS
 (B) LAGE:1..684
 (D) SONSTIGE ANGABEN:/gene= "ORF5"

5

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13:

	ATG ACT ACC CGT CGC AAC TTT CTA ATA GGC GCG TCG CAG GTG GGG GCA	48
10	Met Thr Arg Arg Asn Phe Leu Ile Gly Ala Ser Gln Val Gly Ala	
	120 125 130	
15	TTG GTG ATG ATG TCG CCG AAA TTG GTC TTC CGT ACG CCG CTC AAG CAG	96
	Leu Val Met Met Ser Pro Lys Leu Val Phe Arg Thr Pro Leu Lys Gln	
	135 140 145	
20	AAG CCC GTG CGC ATC CTG TCG ACC GGG CTG GCC GGT GAG CAA GAG TTT	144
	Lys Pro Val Arg Ile Leu Ser Thr Gly Leu Ala Gly Glu Gln Glu Phe	
	150 155 160 165	
25	CAC TCG ATG CTT CGC GCG CGA TTG ACC CAT ACG GGT CAG GTC GAC ATC	192
	His Ser Met Leu Arg Ala Arg Leu Thr His Thr Gly Gln Val Asp Ile	
	170 175 180	
30	GCG TCG GTA CCG CTG GAC GCA GCT ATT TGG GCT TCT CCC GCT CGA CTT	240
	Ala Ser Val Pro Leu Asp Ala Ala Ile Trp Ala Ser Pro Ala Arg Leu	
	185 190 195	
35	GCC CAG GCA ATG GAT GCG TTG AAT GGT ACG CGT CTG ATC GCT TTT GTT	288
	Ala Gln Ala Met Asp Ala Leu Asn Gly Thr Arg Leu Ile Ala Phe Val	
	200 205 210	
40	GAG CCC AGG AAC GAA TTG ATA CTG ATG CAA TTC TTG ATG GAT CGC GGG	336
	Glu Pro Arg Asn Glu Leu Ile Leu Met Gln Phe Leu Met Asp Arg Gly	
	215 220 225	
45	GCT GCG GTG CTT ATT CAA GGT GAG CAT GCG GTG GAC AGC AAG GGG GTC	384
	Ala Ala Val Leu Ile Gln Gly His Ala Val Asp Ser Lys Gly Val	
	230 235 240 245	
50	TCT CGG CAC GAC TTT CTG AGT ACC CCA TCC AGT GCG GGA ATT GGA GGG	432
	Ser Arg His Asp Phe Leu Ser Thr Pro Ser Ala Gly Ile Gly Gly	
	250 255 260	
55	GCG CTA GCC GAC AGC CTG GCA AAA GGG GGC TCG CCG TTC TCT ATT TCC	480
	Ala Leu Ala Asp Ser Leu Ala Lys Gly Ser Pro Phe Ser Ile Ser	
	265 270 275	
	GTC CGA GCG CTT GGC TCG GTA ACT GCT CAG CCA AGA AGT AAT CAG AGT	528
	Val Arg Ala Leu Gly Ser Val Thr Ala Gln Pro Arg Ser Asn Gln Ser	
	280 285 290	
55	GAG GTG GCC ACC CAC TGG ACG ACC GCT CTG GGG ACC TAT TAT GCC GAT	576
	Glu Val Ala Thr His Trp Thr Thr Ala Leu Gly Thr Tyr Tyr Ala Asp	
	295 300 305	

EP 0 845 532 A2

ATC GCA GTG GGG CGC TGG GAG CCG CAG CGC GAA GTG GCC AGC TAT GGA Ile Ala Val Gly Arg Trp Glu Pro Gln Arg Glu Val Ala Ser Tyr Gly 310 315 320 325	624
5 AGT GGA CTA ATC ATG GCG GAA CGG CTT GAT CGT GTT GCC TCA ACC TTC Ser Gly Leu Ile Met Ala Glu Arg Leu Asp Arg Val Ala Ser Thr Phe 330 335 340	672
10 ATT GCA GAT CTC TGA Ile Ala Asp Leu 345	687

(2) ANGABEN ZU SEQ ID NO: 14:

15 (i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 228 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear

20 (ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:

Met Thr Thr Arg Arg Asn Phe Leu Ile Gly Ala Ser Gln Val Gly Ala 1 5 10 15
25 Leu Val Met Met Ser Pro Lys Leu Val Phe Arg Thr Pro Leu Lys Gln 20 25 30
Lys Pro Val Arg Ile Leu Ser Thr Gly Leu Ala Gly Glu Gln Glu Phe 30 35 40 45
His Ser Met Leu Arg Ala Arg Leu Thr His Thr Gly Gln Val Asp Ile 50 55 60
35 Ala Ser Val Pro Leu Asp Ala Ala Ile Trp Ala Ser Pro Ala Arg Leu 65 70 75 80
Ala Gln Ala Met Asp Ala Leu Asn Gly Thr Arg Leu Ile Ala Phe Val 85 90 95
40 Glu Pro Arg Asn Glu Leu Ile Leu Met Gln Phe Leu Met Asp Arg Gly 100 105 110
Ala Ala Val Leu Ile Gln Gly Glu His Ala Val Asp Ser Lys Gly Val 115 120 125
45 Ser Arg His Asp Phe Leu Ser Thr Pro Ser Ser Ala Gly Ile Gly Gly 130 135 140
Ala Leu Ala Asp Ser Leu Ala Lys Gly Ser Pro Phe Ser Ile Ser 145 150 155 160
50 Val Arg Ala Leu Gly Ser Val Thr Ala Gln Pro Arg Ser Asn Gln Ser 165 170 175

55

Glu Val Ala Thr His Trp Thr Thr Ala Leu Gly Thr Tyr Tyr Ala Asp
 180 185 190

5 Ile Ala Val Gly Arg Trp Glu Pro Gln Arg Glu Val Ala Ser Tyr Gly
 195 200 205

Ser Gly Leu Ile Met Ala Glu Arg Leu Asp Arg Val Ala Ser Thr Phe
 210 215 220

10 Ile Ala Asp Leu
 225

(2) ANGABEN ZU SEQ ID NO: 15:

15 (i) SEQUENZKENNZEICHEN:
 (A) LÄNGE: 1554 Basenpaare
 (B) ART: Nucleotid
 (C) STRANGFORM: Doppelstrang
 (D) TOPOLOGIE: linear

20 (ii) ART DES MOLEKÜLS: Genom-DNA

(iii) HYPOTHETISCH: NEIN

(iv) ANTISENSE: NEIN

25 (ix) MERKMAL:
 (A) NAME/SCHLÜSSEL: CDS
 (B) LAGE: 1..1551
 (D) SONSTIGE ANGABEN: /product= "Flavoprotein
 UE-Eugenol-Hydroxylase"
 /gene= "ehyB"

35 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 15:

35 ATG GAA AGC ACC GTA GTT CTT CCC GAG GGT GTC ACC CCG GAG CAG TTC
 Met Glu Ser Thr Val Val Leu Pro Glu Gly Val Thr Pro Glu Gln Phe 48
 230 235 240

40 ACC AAA GCC ATC AGC GAG TTC CGT CAG GTA TTG GGT GAG GAC AGT GTT
 Thr Lys Ala Ile Ser Glu Phe Arg Gln Val Leu Gly Glu Asp Ser Val 96
 245 250 255 260

45 CTT GTC ACT GCT GAA CGA GTT CCC TAT ACG AAA CTC CTC ATT CCT
 Leu Val Thr Ala Glu Arg Val Val Pro Tyr Thr Lys Leu Leu Ile Pro 144
 265 270 275

50 ACA CAG GAT GAT GCC CAG TAC ACC CCG GCC GGT GCC TTG ACT CCT TCT
 Thr Gln Asp Asp Ala Gln Tyr Thr Pro Ala Gly Ala Leu Thr Pro Ser 192
 280 285 290

55 TCG GTG GAG CAG GTC CAG AAA GTC ATG GGG ATC TGC AAT AAG TAC AAG
 Ser Val Glu Gln Val Gln Lys Val Met Gly Ile Cys Asn Lys Tyr Lys 240

EP 0 845 532 A2

	295	300	305	
5	ATC CCG GTA TGG CCA ATC TCT ACC GGT CGG AAC TGG GGG TAT GGG TCC Ile Pro Val Trp Pro Ile Ser Thr Gly Arg Asn Trp Gly Tyr Gly Ser 310 315 320			288
10	GCT TCG CCT GCA ACT CCT GGG CAG ATG ATT CTT GAC CTT CGC AAG ATG Ala Ser Pro Ala Thr Pro Gly Gln Met Ile Leu Asp Leu Arg Lys Met 325 330 335 340			336
15	AAC AAG ATC ATT GAG ATC GAT GTT GAG GGG TGT ACT GCC CTG CTC GAG Asn Lys Ile Ile Glu Ile Asp Val Glu Gly Cys Thr Ala Leu Leu Glu 345 350 355			384
20	CCG GGC GTT ACC TAC CAG CAG CTT CAC GAT TAC ATC AAG GAG CAC AAT Pro Gly Val Thr Tyr Gln Gln Leu His Asp Tyr Ile Lys Glu His Asn 360 365 370			432
25	CTG CCC TTG ATG CTG GAT GTG CCG ACT ATT GGG CCT ATG GTT GGC CCG Leu Pro Leu Met Leu Asp Val Pro Thr Ile Gly Pro Met Val Gly Pro 375 380 385			480
30	GTG GGT AAC ACG CTG GAT CGA GGC GTT GGT TAT ACG CCG TAC GGC GAG Val Gly Asn Thr Leu Asp Arg Gly Val Gly Tyr Thr Pro Tyr Gly Glu 390 395 400			528
35	CAC TTC ATG ATG CAG TGT GGT ATG GAA GTC GTC ATG GCC GAT GGC GAA His Phe Met Met Gln Cys Gly Met Glu Val Val Met Ala Asp Gly Glu 405 410 415 420			576
40	ATC CTC CGT ACT GGT ATG GGC TCG GTG CCC AAA GCC AAG ACT TGG CAG Ile Leu Arg Thr Gly Met Gly Ser Val Pro Lys Ala Lys Thr Trp Gln 425 430 435			624
45	GCA TTC AAA TGG GGC TAT GGT CCA TAT CTG GAC GGT ATC TTT ACC CAG Ala Phe Lys Trp Gly Tyr Gly Pro Tyr Leu Asp Gly Ile Phe Thr Gln 440 445 450			672
50	TCC AAC TTT GGT GTT GTG ACA AAG CTC GGG ATT TGG TTG ATG CCC AAG Ser Asn Phe Gly Val Val Thr Lys Leu Gly Ile Trp Leu Met Pro Lys 455 460 465			720
55	CCG CCA GTG ATC AAG TCG TTT ATG ATC CGT TAT CCC AAT GAA GCT GAT Pro Pro Val Ile Lys Ser Phe Met Ile Arg Tyr Pro Asn Glu Ala Asp 470 475 480			768
60	GTG GTT AAG GCA ATT GAT GCT TTT CGC CCG CTG CGT ATT ACT CAG CTG Val Val Lys Ala Ile Asp Ala Phe Arg Pro Leu Arg Ile Thr Gln Leu 485 490 495 500			816
65	ATT CCT AAC GTC GTT TTG TTC ATG CAC GGC ATG TAC GAA ACG GCA ATC Ile Pro Asn Val Val Leu Phe Met His Gly Met Tyr Glu Thr Ala Ile 505 510 515			864
70	TGC CGG ACG CGT GCT GAG GTT ACT TCG GAC CCA GGT CCT ATT TCT GAA			912

55

EP 0 845 532 A2

	Cys Arg Thr Arg Ala Glu Val Thr Ser Asp Pro Gly Pro Ile Ser Glu			
	520	525	530	
5	GCG GAC GCC CGC AAA GCA TTC AAA GAG CTA GGC GTT GGC TAC TGG AAC		960	
	Ala Asp Ala Arg Lys Ala Phe Lys Glu Leu Gly Val Gly Tyr Trp Asn			
	535	540	545	
10	GTT TAC TTC GCG CTT TAC GGC ACA GAA GAG CAG ATA GCC GTC AAT GAA		1008	
	Val Tyr Phe Ala Leu Tyr Gly Thr Glu Glu Gln Ile Ala Val Asn Glu			
	550	555	560	
15	AAG ATC GTC CGC GGC ATC CTC GAA CCG ACG GGG GGT GAG ATC CTC ACC		1056	
	Lys Ile Val Arg Gly Ile Leu Glu Pro Thr Gly Gly Glu Ile Leu Thr			
	565	570	575	580
	GAA GAG GAG GCT GGA GAT AAC ATT CTT TTC CAT CAC CAT AAG CAG CTC		1104	
	Glu Glu Glu Ala Gly Asp Asn Ile Leu Phe His His His Lys Gln Leu			
	585	590	595	
20	ATG AAC GGC GAG ATG ACA TTG GAG GAA ATG AAT ATC TAC CAG TGG CGC		1152	
	Met Asn Gly Glu Met Thr Leu Glu Met Asn Ile Tyr Gln Trp Arg			
	600	605	610	
25	GGA GCA GGT GGC GGT GCT TGC TGG TTT GCA CCG GTT GCT CAG GTC AAG		1200	
	Gly Ala Gly Gly Ala Cys Trp Phe Ala Pro Val Ala Gln Val Lys			
	615	620	625	
30	GGG CAT GAG GCA GAG CAG CAG GTC AAG CTT GCT CAG AAG GTG CTT GCA		1248	
	Gly His Glu Ala Glu Gln Gln Val Lys Leu Ala Gln Lys Val Leu Ala			
	630	635	640	
35	AAG CAT GGG TTC GAT TAC ACG GCG GGC TTT GCG ATT GGT TGG CGC GAT		1296	
	Lys His Gly Phe Asp Tyr Thr Ala Gly Phe Ala Ile Gly Trp Arg Asp			
	645	650	655	660
40	CTT CAC CAT GTG ATC GAT GTG CTG TAC GAC CGT AGC AAT GCC GAC GAG		1344	
	Leu His His Val Ile Asp Val Leu Tyr Asp Arg Ser Asn Ala Asp Glu			
	665	670	675	
	AAA AAG CGC GCT TAC GCT TGC TTT GAT GAA TTG ATC GAC GTC TTT GCG		1392	
45	Lys Lys Arg Ala Tyr Ala Cys Phe Asp Glu Leu Ile Asp Val Phe Ala			
	680	685	690	
	GCC GAA GGC TTT GCA AGT TAC AGG ACC AAT ATT GCC TTT ATG GAC AAA		1440	
	Ala Glu Gly Phe Ala Ser Tyr Arg Thr Asn Ile Ala Phe Met Asp Lys			
	695	700	705	
50	GTC GCC TCT AAG TTC GGC GCT GAG AAT AAG AGG GTC AAT CAG AAG ATC		1488	
	Val Ala Ser Lys Phe Gly Ala Glu Asn Lys Arg Val Asn Gln Lys Ile			
	710	715	720	
	AAG GCT GCC CTT GAT CCA AAC GGC ATC ATC GCT CCC GGC AAG TCG GGC		1536	
	Lys Ala Ala Leu Asp Pro Asn Gly Ile Ile Ala Pro Gly Lys Ser Gly			
	725	730	735	740

55

1554

ATT CAT CTT CCC AAA TAA
 Ile His Leu Pro Lys
 745

5

(2) ANGABEN ZU SEQ ID NO: 16:

- 10 (i) SEQUENZKENNZEICHEN:
 (A) LÄNGE: 517 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

- 15 (ii) ART DES MOLEKÜLS: Protein
 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16:

Met Glu Ser Thr Val Val Leu Pro Glu Gly Val Thr Pro Glu Gln Phe
 1 5 10 15

Thr Lys Ala Ile Ser Glu Phe Arg Gln Val Leu Gly Glu Asp Ser Val
 20 25 30

Leu Val Thr Ala Glu Arg Val Val Pro Tyr Thr Lys Leu Leu Ile Pro
 35 40 45

Thr Gln Asp Asp Ala Gln Tyr Thr Pro Ala Gly Ala Leu Thr Pro Ser
 50 55 60

Ser Val Glu Gln Val Gln Lys Val Met Gly Ile Cys Asn Lys Tyr Lys
 65 70 75 80

Ile Pro Val Trp Pro Ile Ser Thr Gly Arg Asn Trp Gly Tyr Gly Ser
 85 90 95

Ala Ser Pro Ala Thr Pro Gly Gln Met Ile Leu Asp Leu Arg Lys Met
 100 105 110

Asn Lys Ile Ile Glu Ile Asp Val Glu Gly Cys Thr Ala Leu Leu Glu
 115 120 125

Pro Gly Val Thr Tyr Gln Gln Leu His Asp Tyr Ile Lys Glu His Asn
 130 135 140

Leu Pro Leu Met Leu Asp Val Pro Thr Ile Gly Pro Met Val Gly Pro
 145 150 155 160

Val Gly Asn Thr Leu Asp Arg Gly Val Gly Tyr Thr Pro Tyr Gly Glu
 165 170 175

His Phe Met Met Gln Cys Gly Met Glu Val Val Met Ala Asp Gly Glu
 180 185 190

Ile Leu Arg Thr Gly Met Gly Ser Val Pro Lys Ala Lys Thr Trp Gln
 195 200 205

Ala Phe Lys Trp Gly Tyr Gly Pro Tyr Leu Asp Gly Ile Phe Thr Gln

55

EP 0 845 532 A2

Ile His Leu Pro Lys
515

(2) ANGABEN ZU SEQ ID NO: 17:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 861 Basenpaare
- (B) ART: Nucleotid
- (C) STRANGFORM: Doppelstrang
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Genom-DNA

(iii) HYPOTHETISCH: NEIN

(iv) ANTISENSE: NEIN

(ix) MERKMAL:

- (A) NAME/SCHLÜSSEL: CDS
- (B) LAGE: 1..858
- (D) SONSTIGE ANGABEN:/gene= "ORF2"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:

25	ATG ATT GCA ATC ACT GCG GGC ACC GGA AGT CTT GGT CGG GCT ATC GTT Met Ile Ala Ile Thr Ala Gly Thr Gly Ser Leu Gly Arg Ala Ile Val 520 525 530	48
30	GAG CGA CTA GGG GAC TGC GGT CTT ATC GGT CAA GTT CGA TTG ACG GCT Glu Arg Leu Gly Asp Cys Gly Leu Ile Gly Gln Val Arg Leu Thr Ala 535 540 545	96
35	CGC GAT CCT AAA AGG CTT CGT GCC GCT GCC GAG GAA GGG TTT CAG GTC Arg Asp Pro Lys Arg Leu Arg Ala Ala Glu Glu Gly Phe Gln Val 550 555 560 565	144
40	GCT AAG GCG GAT TAC GCC GAT ATT GGG AGT CTT GAC CAG GCA TTA CAG Ala Lys Ala Asp Tyr Ala Asp Ile Gly Ser Leu Asp Gln Ala Leu Gln 570 575 580	192
45	GGG GTA GAC GTA TTA CTC CTG ATT TCT GGT ACT GCA CCC AAT GAA ATA Gly Val Asp Val Leu Leu Ile Ser Gly Thr Ala Pro Asn Glu Ile 585 590 595	240
50	AGG ATC CAA CAG CAT AAG TCG GTC ATC GAC GCG GCA AAA CGA AAC GGC Arg Ile Gln Gln His Lys Ser Val Ile Asp Ala Ala Lys Arg Asn Gly 600 605 610	288
55	G TG TCG CGT ATT GTG TAT ACC AGC TTC ATA AAT CCA AGT ACT CGC AGC Val Ser Arg Ile Val Tyr Thr Ser Phe Ile Asn Pro Ser Thr Arg Ser 615 620 625	336
	AGG TCT ATT TGG GCC TCC ATT CAT CGT GAA ACT GAG ACT TAC CTC AGG	384

EP 0 845 532 A2

	Arg Ser Ile Trp Ala Ser Ile His Arg Glu Thr Glu Thr Tyr Leu Arg			
	630	635	640	645
5	CAG TCT GGG GTG AAG TTT ACG ATT GTC CGA AAT AAT CAG TAT GCG TCT			432
	Gln Ser Gly Val Lys Phe Thr Ile Val Arg Asn Asn Gln Tyr Ala Ser			
	650	655	660	
10	AAC CTG GAT CTG TTG CTG AGG GCT CAA GAC AGC GGA ATA TTT GCC			480
	Asn Leu Asp Leu Leu Leu Arg Ala Gln Asp Ser Gly Ile Phe Ala			
	665	670	675	
	ATT CCC GGG GCG AAG GGG CGG GTG GCG TAC GTC TCT CAT CGC GAC GTT			528
	Ile Pro Gly Ala Lys Gly Arg Val Ala Tyr Val Ser His Arg Asp Val			
	680	685	690	
15	GCC GCT GCC ATC TGT AGT GTC CTG ACG ACC GCC GGA CAC GAT AAC AGG			576
	Ala Ala Ala Ile Cys Ser Val Leu Thr Thr Ala Gly His Asp Asn Arg			
	695	700	705	
20	ATC TAC CAG CTC ACA GGC TCT GAG GCT CTC AAT GGG CTC GAG ATC GCG			624
	Ile Tyr Gln Leu Thr Gly Ser Glu Ala Leu Asn Gly Leu Glu Ile Ala			
	710	715	720	725
25	GAG ATT CTT GGT GGG GTG CTC GGG CGT CCA GTG CGC GCG ATG GAT GCC			672
	Glu Ile Leu Gly Val Leu Gly Arg Pro Val Arg Ala Met Asp Ala			
	730	735	740	
	TCG CCT GAC GAG TTT GCT GCC AGC TTT CGC GAG GCT GGA TTC CCT GAG			720
	Ser Pro Asp Glu Phe Ala Ala Ser Phe Arg Glu Ala Gly Phe Pro Glu			
	745	750	755	
30	TTT ATG GTT GAA GGC CTA CTA AGC ATT TAT GCC GCT TCA GGT GCT GGG			768
	Phe Met Val Glu Gly Leu Leu Ser Ile Tyr Ala Ala Ser Gly Ala Gly			
	760	765	770	
35	GAG TAC CAA TCC GTC AGT CCT GAT GTT GGG TTG TTG ACG GGA CGA CGT			816
	Glu Tyr Gln Ser Val Ser Pro Asp Val Gly Leu Leu Thr Gly Arg Arg			
	775	780	785	
40	GCC GAA TCG ATG CGA ACT TAC ATA CAG CGT CTA GTT TGG CCT			858
	Ala Glu Ser Met Arg Thr Tyr Ile Gln Arg Leu Val Trp Pro			
	790	795	800	
	TGA			861

45 (2) ANGABEN ZU SEQ ID NO: 18:

- 50 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 286 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 18:

55

Met Ile Ala Ile Thr Ala Gly Thr Gly Ser Leu Gly Arg Ala Ile Val
 1 5 10 15
 Glu Arg Leu Gly Asp Cys Gly Leu Ile Gly Gln Val Arg Leu Thr Ala
 20 25 30
 Arg Asp Pro Lys Arg Leu Arg Ala Ala Ala Glu Glu Gly Phe Gln Val
 35 40 45
 Ala Lys Ala Asp Tyr Ala Asp Ile Gly Ser Leu Asp Gln Ala Leu Gln
 50 55 60
 Gly Val Asp Val Leu Leu Ile Ser Gly Thr Ala Pro Asn Glu Ile
 65 70 75 80
 Arg Ile Gln Gln His Lys Ser Val Ile Asp Ala Ala Lys Arg Asn Gly
 85 90 95
 Val Ser Arg Ile Val Tyr Thr Ser Phe Ile Asn Pro Ser Thr Arg Ser
 100 105 110
 Arg Ser Ile Trp Ala Ser Ile His Arg Glu Thr Glu Thr Tyr Leu Arg
 115 120 125
 Gln Ser Gly Val Lys Phe Thr Ile Val Arg Asn Asn Gln Tyr Ala Ser
 130 135 140
 Asn Leu Asp Leu Leu Leu Arg Ala Gln Asp Ser Gly Ile Phe Ala
 145 150 155 160
 Ile Pro Gly Ala Lys Gly Arg Val Ala Tyr Val Ser His Arg Asp Val
 165 170 175
 Ala Ala Ala Ile Cys Ser Val Leu Thr Thr Ala Gly His Asp Asn Arg
 180 185 190
 Ile Tyr Gln Leu Thr Gly Ser Glu Ala Leu Asn Gly Leu Glu Ile Ala
 195 200 205
 Glu Ile Leu Gly Gly Val Leu Gly Arg Pro Val Arg Ala Met Asp Ala
 210 215 220
 Ser Pro Asp Glu Phe Ala Ala Ser Phe Arg Glu Ala Gly Phe Pro Glu
 225 230 235 240
 Phe Met Val Glu Gly Leu Leu Ser Ile Tyr Ala Ala Ser Gly Ala Gly
 245 250 255
 Glu Tyr Gln Ser Val Ser Pro Asp Val Gly Leu Leu Thr Gly Arg Arg
 260 265 270
 Ala Glu Ser Met Arg Thr Tyr Ile Gln Arg Leu Val Trp Pro
 275 280 285
 50

(2) ANGABEN ZU SEQ ID NO: 19:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 1011 Basenpaare
- (B) ART: Nucleotid
- (C) STRANGFORM: Doppelstrang
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Genom-DNA

10 (iii) HYPOTHETISCH: NEIN

(iv) ANTISENSE: NEIN

15 (ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE:1...1008
(D) SONSTIGE ANGABEN:/product= "Alkohol-Dehydrogenase"
/gene= "adh"

20 (xii) SEQUENZBESCHREIBUNG: SEQ ID NO: 18:

48

25 CTC CAG CCA ACT CGG CCC CGC CCG CAG TTG AAT CAT GGC GAG GTC CTC
 Leu Gln Pro Thr Arg Pro Arg Pro Gln Leu Asn His Gly Glu Val Leu
 305 310 315

96

30 ATC AGG GTC CAT GCA GCC TCG CTC AAC TTT CGC GAT TTG ATG ATC TTG
Ile Arg Val His Ala Ala Ser Leu Asn Phe Arg Asp Leu Met Ile Leu
320 325 330

144

35 GCC GGT CGC TAT CCG GGT CAA ATG AAA CCC GAT GTG ATC CCG CTG TCC
 Ala Gly Arg Tyr Pro Gly Gln Met Lys Pro Asp Val Ile Pro Leu Ser
 335 340 345 350

192

GAT GGT GCT GGC GAG ATT GTG GAG GTC GGG CCT GGC GTA TCT TCG GAG
 Asp Gly Ala Gly Glu Ile Val Glu Val Gly Pro Gly Val Ser Ser Glu
 355 360 365

240

40 GTG CAG GGT CAG CGC GTA GCC AGC ACC TTT TTC CCT AAC TGG CGG GCC
 Val Gln Gly Gln Arg Val Ala Ser Thr Phe Phe Pro Asn Trp Arg Ala
 370 375 380

288

45 GGA AAG ATT ACC GAG CCG GCT ATT GAG GTG TCG TTG GGC TTC GGT ATG
 Gly Lys Ile Thr Glu Pro Ala Ile Glu Val Ser Leu Gly Phe Gly Met
 385 390 395

336

GAC GGG ATG CTC GCG GAA TAC GTT GCT CTG CCC TAT GAG GCA ACG ATA
 Asp Gly Met Leu Ala Glu Tyr Val Ala Leu Pro Tyr Glu Ala Thr Ile
 400 405 410

384

CCG ATA CCG GAG CAC CTG TCG TAC GAG GAG GCT GCA ACA TTG CCT TGC

432

EP 0 845 532 A2

	Pro Ile Pro Glu His Leu Ser Tyr Glu Glu Ala Ala Thr Leu Pro Cys			
415	420	425	430	
5	GCG GCG CTA ACC GCT TGG AAT GCG TTG ACC GAA GTG GGG CGT GTC AAG Ala Ala Leu Thr Ala Trp Asn Ala Leu Thr Glu Val Gly Arg Val Lys	435	440	445
10	GCC GGT GAT ACG GTC TTG TTG CTT GGC ACT GGC GGT GTC TCG ATG TTC Ala Gly Asp Thr Val Leu Leu Gly Thr Gly Gly Val Ser Met Phe	450	455	460
15	GCG TTG CAG TTC GCC AAG CTC TTG GGG GCG ACG GTC ATT CAC ACC TCG Ala Leu Gln Phe Ala Lys Leu Leu Gly Ala Thr Val Ile His Thr Ser	465	470	475
20	AGC AGT GAA CAA AAG CTG GAG AGG GTG AAA GCG ATG GGG GCT GAT CAT Ser Ser Glu Gln Lys Leu Glu Arg Val Lys Ala Met Gly Ala Asp His	480	485	490
25	CTG ATC AAC TAC CGC AAT TCG CCA GGG TGG GAC CGT ACT GTC CTG GAT Leu Ile Asn Tyr Arg Asn Ser Pro Gly Trp Asp Arg Thr Val Leu Asp	495	500	505
30	510			
35	CTC ACC GCG GGG CGA GGG GTT GAC CTG GTA GTC GAG GTA GGG GGG GCG Leu Thr Ala Gly Arg Gly Val Asp Leu Val Val Glu Val Gly Gly Ala	515	520	525
40	Gly Thr Leu Glu Arg Ser Leu Arg Ala Val Lys Val Gly Ile Val	530	535	540
45	GGG ACC TTG GAG CGC TCA CTT CGT GCG GTC AAG GTA GGC GGT ATT GTC Ala Thr Ile Gly Leu Val Ala Gly Val Gly Pro Ile Asp Pro Leu Pro	545	550	555
50	GCC ACG ATT GGG CTA GTG GCT GGC GTT GGC CCG ATT GAC CCA TTG CCG Leu Ile Ser Arg Ala Ile Gln Leu Ser Gly Val Tyr Val Gly Ser Arg	560	565	570
55	CTT ATC TCC AGG GCT ATT CAG CTC TCG GGC GTC TAT GTC GGT TCC CGG Glu Met Phe Leu Ser Met Asn Lys Ala Ile Ala Ser Ala Glu Ile Lys	575	580	585
55	GAA ATG TTT CTC TCA ATG AAC AAA GCC ATT GCA TCA GCC GAA ATC AAG Pro Val Ile Asp Cys Cys Phe Pro Ile Asp Glu Val Gly Asp Ala Tyr	595	600	605
55	GAG TAC ATG CGT AGC GGC AAT CAC CTT GGC AAA GTA GTT ATC ACG ATC Glu Tyr Met Arg Ser Gly Asn His Leu Gly Lys Val Val Ile Thr Ile	610	615	620
55	TAA			1011

(2) ANGABEN ZU SEQ ID NO: 20:

5
 (i) SEQUENZKENNZEICHEN:
 (A) LÄNGE: 336 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein
 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 20:

10	Met Lys Ala Tyr Glu Leu His Lys Ile Ser Glu Gln Val Glu Val Arg	1	5	10	15
	Leu Gln Pro Thr Arg Pro Arg Pro Gln Leu Asn His Gly Glu Val Leu	20	25	30	
15	Ile Arg Val His Ala Ala Ser Leu Asn Phe Arg Asp Leu Met Ile Leu	35	40	45	
	Ala Gly Arg Tyr Pro Gly Gln Met Lys Pro Asp Val Ile Pro Leu Ser	50	55	60	
20	Asp Gly Ala Gly Glu Ile Val Glu Val Gly Pro Gly Val Ser Ser Glu	65	70	75	80
	Val Gln Gly Gln Arg Val Ala Ser Thr Phe Phe Pro Asn Trp Arg Ala	85	90	95	
25	Gly Lys Ile Thr Glu Pro Ala Ile Glu Val Ser Leu Gly Phe Gly Met	100	105	110	
	Asp Gly Met Leu Ala Glu Tyr Val Ala Leu Pro Tyr Glu Ala Thr Ile	115	120	125	
30	Pro Ile Pro Glu His Leu Ser Tyr Glu Glu Ala Ala Thr Leu Pro Cys	130	135	140	
	Ala Ala Leu Thr Ala Trp Asn Ala Leu Thr Glu Val Gly Arg Val Lys	145	150	155	160
35	Ala Gly Asp Thr Val Leu Leu Leu Gly Thr Gly Gly Val Ser Met Phe	165	170	175	
	Ala Leu Gln Phe Ala Lys Leu Leu Gly Ala Thr Val Ile His Thr Ser	180	185	190	
40	Ser Ser Glu Gln Lys Leu Glu Arg Val Lys Ala Met Gly Ala Asp His	195	200	205	
	Leu Ile Asn Tyr Arg Asn Ser Pro Gly Trp Asp Arg Thr Val Leu Asp	210	215	220	
45	Leu Thr Ala Gly Arg Gly Val Asp Leu Val Val Glu Val Gly Gly Ala	225	230	235	240
	Gly Thr Leu Glu Arg Ser Leu Arg Ala Val Lys Val Gly Gly Ile Val	245	250	255	
50					
55					

Ala Thr Ile Gly Leu Val Ala Gly Val Gly Pro Ile Asp Pro Leu Pro
 260 265 270

5 Leu Ile Ser Arg Ala Ile Gln Leu Ser Gly Val Tyr Val Gly Ser Arg
 275 280 285

Glu Met Phe Leu Ser Met Asn Lys Ala Ile Ala Ser Ala Glu Ile Lys
 290 295 300

10 Pro Val Ile Asp Cys Cys Phe Pro Ile Asp Glu Val Gly Asp Ala Tyr
 305 310 315 320

Glu Tyr Met Arg Ser Gly Asn His Leu Gly Lys Val Val Ile Thr Ile
 15 325 330 335

(2) ANGABEN ZU SEQ ID NO: 21:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 1518 Basenpaare
- (B) ART: Nucleotid
- (C) STRANGFORM: Doppelstrang
- (D) TOPOLOGIE: linear

25 (ii) ART DES MOLEKÜLS: Genom-DNA

(iii) HYPOTHETISCH: NEIN

(iv) ANTISENSE: NEIN

30 (ix) MERKMAL:

- (A) NAME/SCHLÜSSEL: CDS
- (B) LAGE: complement (4..1518)
- (D) SONSTIGE ANGABEN:/product= "Lignostilben-Dioxygenase"
- /gene= "lsd"

40 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 21:

TCACCGTCGT GATCGGGATT GGAAATTCGT GCGAGGACAG CGGCCACGTA CCGGCGCCCT	60
GAAGGGCTGG AAGGTTGGAG TTTCTTAAG GTCTGGTACC CAGCAGCCAT GGAGAGCGGC	120
CCTTAGCCGG AATGGCAGCT TGATGGTTGC CACGGGACCA GACTGGATGT CTTGAGTGTC	180
GAGAATTACC AGATCGCTGC GATTTTCATC GAGGCGACCA ACCACGGTCA GCAAGTACCC	240
GTCACCTTCG GCGGCGGTG GACTTCTAGG GACGAAGGCC GGCTCCTGGG CCGCCGAGGC	300
50 TTCGCCGGAG TACCAAGAGGT CGTAGTCACC TCGGTGGTTG TCCCAGATGC CGAGTGAGTT	360
GTACGCGAAT ATCTTCTCGG CCTGCTGATG CGCAAGTGGT TTGCGTGGAT CGTCCACCCC	420

55

	CATAAAGCCA TAGCGGTTGC ATTGCAGGGC GAACGAAGAA TCCATGATTG GCATTCGCC	480
5	AAAGAAATCG TGTAGCCGGG TTTCGCTTGAT CTCGTCGCTG CTGCTATCGA GGTCAATTTC	540
	CCAACGAGTC AGGCAGTGGTA CGGCTTCTC AGGGGCGAAG GGTTGGTTT GTGAGTTGGG	600
	GAAGGGGAAC GGCAAGGATT CACTTCCAT AAGGTCGATA TAAATCTTGG TTCCGACTTC	660
10	CCAAGCATTC ACAACATGAA ATACCCAGAG CGCCGGTGCC TTGAGCCAGC GAATCAGACT	720
	GCCCTGGCGC GGCGCGAGTA CGCCAATGTA GCTGCCAGT TCCGGCTCCC ACATATAAAT	780
	TGGCTGTTTC GCCTTGAGGC GGGACAGGCT GTTGGTGGCC GGCATAATTG GGAAAATGGA	840
15	CCAATTTCGG GTAATGGCAA AGTCGTGCAT GAATGCGCCA TAGGGCTGCT CAAACCAAAGT	900
	TTCATGTGTC ACCTTGCCGT GCTTGTGAC AATGTAATAG GCCATGTCTG GAGTTGCTTC	960
20	GCCCTTAGCT GCCGAACCGA AGAACAAACAA GTCACCCGTT TCCGGGTCAATTTGGATG	1020
	GGCGGTGTGG GTTTGGCTGG TAACTTGCGC GTCGTAGTCG AAGTGTCCCG GAGTTTCAAG	1080
	TGTACGAGGA TCCAGTTCGT ACGGTAGGCC GTCTTCCTTC ACCGCCAGCA CCTTGCCGTG	1140
25	ATGGCTAATG ATGCTTGAT TGGCAACGGT GCGGTCTAGT CCTTTTACAC TGGTGTGTC	1200
	GGTATAGGGG TTTCTGTACA TGCCAATAG CGATTTTCGC GCTAGTCGTT CGGCCGTGAA	1260
	TCGAGCCTGTT TAAACCCAGC GACTGATGAA GTCGACATGA CCATCTTCGA AGTGGAAAGC	1320
30	AGAGGCCATT CCATCTCCAT CTATGAAGGT GTGGAATTTC TGTGGGGTAA CTTGAGGCTC	1380
	TGGCGTATTA CGGTAGAACG TTCCATTTAT TGATTTGGG ATTTGCCGT CAACCTCTAG	1440
	ATCGAACAAAG TCTGCCTCTA TACGGGTGGG GAGAAGTGTGTT CCTACTAATT GCGGGTGCGTT	1500
35	GC GGTTGAAT CTCGCCAT	1518

(2) ANGABEN ZU SEQ ID NO: 22:

- 40 (i) SEQUENZKENNZEICHEN:
 (A) LÄNGE: 505 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear
- 45 (ii) ART DES MOLEKÜLS: Protein
 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 22:

Met	Ala	Arg	Phe	Asn	Arg	Asn	Asp	Pro	Gln	Leu	Val	Gly	Thr	Leu	Leu	
1			5					10				15				
50	Pro	Thr	Arg	Ile	Glu	Ala	Asp	Leu	Phe	Asp	Leu	Glu	Val	Asp	Gly	Glu
								20				25			30	

EP 0 845 532 A2

Ile Pro Lys Ser Ile Asn Gly Thr Phe Tyr Arg Asn Thr Pro Glu Pro
35 40 45

5 Gln Val Thr Pro Gln Lys Phe His Thr Phe Ile Asp Gly Asp Gly Met
50 55 60

Ala Ser Ala Phe His Phe Glu Asp Gly His Val Asp Phe Ile Ser Arg
65 70 75 80

10 Trp Val Lys Thr Ala Arg Phe Thr Ala Glu Arg Leu Ala Arg Lys Ser
85 90 95

Leu Phe Gly Met Tyr Arg Asn Pro Tyr Thr Asp Asp Thr Ser Val Lys
100 105 110

15 Gly Leu Asp Arg Thr Val Ala Asn Thr Ser Ile Ile Ser His His Gly
115 120 125

Lys Val Leu Ala Val Lys Glu Asp Gly Leu Pro Tyr Glu Leu Asp Pro
130 135 140

20 Arg Thr Leu Glu Thr Arg Gly His Phe Asp Tyr Asp Gly Gln Val Thr
145 150 155 160

Ser Gln Thr His Thr Ala His Pro Lys Tyr Asp Pro Glu Thr Gly Asp
165 170 175

25 Leu Leu Phe Phe Gly Ser Ala Ala Lys Gly Glu Ala Thr Pro Asp Met
180 185 190

30 Ala Tyr Tyr Ile Val Asp Lys His Gly Lys Val Thr His Glu Thr Trp
195 200 205

Phe Glu Gln Pro Tyr Gly Ala Phe Met His Asp Phe Ala Ile Thr Arg
210 215 220

35 Asn Trp Ser Ile Phe Pro Ile Met Pro Ala Thr Asn Ser Leu Ser Arg
225 230 235 240

Leu Lys Ala Lys Gln Pro Ile Tyr Met Trp Glu Pro Glu Leu Gly Ser
245 250 255

40 Tyr Ile Gly Val Leu Ala Pro Arg Gln Gly Ser Leu Ile Arg Trp Leu
260 265 270

Lys Ala Pro Ala Leu Trp Val Phe His Val Val Asn Ala Trp Glu Val
275 280 285

45 Gly Thr Lys Ile Tyr Ile Asp Leu Met Glu Ser Glu Ile Leu Pro Phe
290 295 300

50 Pro Phe Pro Asn Ser Gln Asn Gln Pro Phe Ala Pro Glu Lys Ala Val
305 310 315 320

Pro Arg Leu Thr Arg Trp Glu Ile Asp Leu Asp Ser Ser Ser Asp Glu

EP 0 845 532 A2

	325	330	335
5	Ile Lys Arg Thr Arg Leu His Asp Phe Phe Ala Glu Met Pro Ile Met 340 345 350		
	Asp Ser Ser Phe Ala Leu Gln Cys Asn Arg Tyr Gly Phe Met Gly Val 355 360 365		
10	Asp Asp Pro Arg Lys Pro Leu Ala His Gln Gln Ala Glu Lys Ile Phe 370 375 380		
	Ala Tyr Asn Ser Leu Gly Ile Trp Asp Asn His Arg Gly Asp Tyr Asp 385 390 395 400		
15	Leu Trp Tyr Ser Gly Glu Ala Ser Ala Ala Gln Glu Pro Ala Phe Val 405 410 415		
	Pro Arg Ser Pro Thr Ala Ala Glu Gly Asp Gly Tyr Leu Leu Thr Val 420 425 430		
20	Val Gly Arg Leu Asp Glu Asn Arg Ser Asp Leu Val Ile Leu Asp Thr 435 440 445		
	Gln Asp Ile Gln Ser Gly Pro Val Ala Thr Ile Lys Leu Pro Phe Arg 450 455 460		
25	Leu Arg Ala Ala Leu His Gly Cys Trp Val Pro Asp Leu Asn Glu Thr 465 470 475 480		
	Pro Thr Phe Gln Pro Phe Arg Ala Pro Val Arg Gly Arg Cys Pro Arg 485 490 495		
30	Thr Asn Phe Gln Ser Arg Ser Arg Arg 500 505		
35	(2) ANGABEN ZU SEQ ID NO: 23:		
	(i) SEQUENZKENNZEICHEN:		
40	(A) LÄNGE: 951 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Doppelstrang (D) TOPOLOGIE: linear		
	(ii) ART DES MOLEKÜLS: Genom-DNA		
45	(iii) HYPOTHETISCH: NEIN		
	(iv) ANTISENSE: NEIN		
50	(ix) MERKMAL:		
	(A) NAME/SCHLÜSSEL: CDS (B) LAGE: 1..948 (D) SONSTIGE ANGABEN: /gene= "ORF3"		
55			

EP 0 845 532 A2

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 23:

	ATG ACA ACT ATT CGG TGG CGG CGT ATG TCC ATT CAC TCT GAG GGG ATC Met Thr Thr Ile Arg Trp Arg Arg Met Ser Ile His Ser Glu Gly Ile 510 515 520	48
5		
	ACT CTC GCG GAT TCG CCG CTG CAT TGG GCG CAT ACC CTG AAT GGA TCA Thr Leu Ala Asp Ser Pro Leu His Trp Ala His Thr Leu Asn Gly Ser 10 525 530 535	96
10		
	ATG CGT ACT CAT TTC GAA GTC CAG CGT CTT GAG CGG GGT AGA GGT GCC Met Arg Thr His Phe Glu Val Gln Arg Leu Glu Arg Gly Arg Gly Ala 540 545 550	144
15		
	TCC CTT GCC CGA TCT AGA TTT GGC GCG GGT GAG CTG TAC AGT GCC ATT Ser Leu Ala Arg Ser Arg Phe Gly Ala Gly Glu Leu Tyr Ser Ala Ile 555 560 565	192
20		
	GCA CCA AGC CAG GTA CTT CGC CAC TTC AAC GAC CAG CGA AAT GCT GAT Ala Pro Ser Gln Val Leu Arg His Phe Asn Asp Gln Arg Asn Ala Asp 570 575 580 585	240
25		
	GAG GCT GAG CAC AGC TAT TTG ATT CAG ATA CGA AGT GGC GCT TTG GGC Glu Ala Glu His Ser Tyr Leu Ile Gln Ile Arg Ser Gly Ala Leu Gly 590 595 600	288
30		
	GTT GCA TCC GGC GGA AGA AAG GTG ATC TTG GCA AAT GGT GAT TGC TCC Val Ala Ser Gly Gly Arg Lys Val Ile Leu Ala Asn Gly Asp Cys Ser 605 610 615	336
35		
	ATA GTT GAT AGT CGC CAA GAC TTC ACA CTT TCC TCG AAC TCT TCG ACC Ile Val Asp Ser Arg Gln Asp Phe Thr Leu Ser Ser Asn Ser Thr 620 625 630	384
40		
	CAA GGT GTC GTA ATA CGC TTT CCG GTG AGT TGG CTG GGA GCG TGG GTG Gln Gly Val Val Ile Arg Phe Pro Val Ser Trp Leu Gly Ala Trp Val 635 640 645	432
45		
	TCC AAT CCG GAG GAT CTT ATC GCC CGA CGA GTT GAT GCT GAG GTA GGG Ser Asn Pro Glu Asp Leu Ile Ala Arg Arg Val Asp Ala Glu Val Gly 650 655 660 665	480
50		
	TGG GGT AGG GCG CTA AGC GCA TCG GTT TCT AAT CTA GAT CCA TTG CGC Trp Gly Arg Ala Leu Ser Ala Ser Val Ser Asn Leu Asp Pro Leu Arg 670 675 680	528
	ATC GAC GAT TTA GGT AGC AAT GTA AAT GGC ATT GCA GAG CAT GTT GCT Ile Asp Asp Leu Gly Ser Asn Val Asn Gly Ile Ala Glu His Val Ala 685 690 695	576
	ATG TTA ATT TCA CTA GCA AGT TCT GCG GTT AGT TCT GAA GAT GGG GGT Met Leu Ile Ser Leu Ala Ser Ser Ala Val Ser Ser Glu Asp Gly Gly 700 705 710	624
	GTG GCT CTT CGG AAA ATG AGG GAA GTG AAG AGA GTA CTC GAG CAG AGT	672

55

EP 0 845 532 A2

Val Ala Leu Arg Lys Met Arg Glu Val Lys Arg Val Leu Glu Gln Ser			
715	720	725	
5	TTC GCA GAC GCT AAT CTC GGG CCG GAA AGT GTT TCA AGT CAA TTA GGA		720
	Phe Ala Asp Ala Asn Leu Gly Pro Glu Ser Val Ser Ser Gln Leu Gly		
	730	735	740
			745
10	ATT TCG AAA CGC TAT TTG CAT TAT GTC TTT GCT GCG TGC GGT ACG ACC		768
	Ile Ser Lys Arg Tyr Leu His Tyr Val Phe Ala Ala Cys Gly Thr Thr		
	750	755	760
15	TTT GGT CGC GAG CTG TTG GAA ATA CGC CTG GGC AAA GCT TAT CGA ATG		816
	Phe Gly Arg Glu Leu Leu Glu Ile Arg Leu Gly Lys Ala Tyr Arg Met		
	765	770	775
20	CTC TGT GCG GCG AGT GAC TCG GGT GCT GTG CTG AAG GTG GCC ATG TCC		864
	Leu Cys Ala Ala Ser Asp Ser Gly Ala Val Leu Lys Val Ala Met Ser		
	780	785	790
25	TCA GGT TTT TCG GAT TCA AGC CAT TTC AGC AAG AAA TTT AAG GAA AGA		912
	Ser Gly Phe Ser Asp Ser Ser His Phe Ser Lys Lys Phe Lys Glu Arg		
	795	800	805
30	TAC GGT GTT TCG CCT GTC TCC TTG GTG AGG CAG GCT TGA		951
	Tyr Gly Val Ser Pro Val Ser Leu Val Arg Gln Ala		
	810	815	820

(2) ANGABEN ZU SEQ ID NO: 24:

30	(i) SEQUENZKENNZEICHEN:		
	(A) LÄNGE: 316 Aminosäuren		
	(B) ART: Aminosäure		
	(D) TOPOLOGIE: linear		
35	(ii) ART DES MOLEKÜLS: Protein		
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 24:		
	Met Thr Thr Ile Arg Trp Arg Arg Met Ser Ile His Ser Glu Gly Ile		
	1 5 10 15		
40	Thr Leu Ala Asp Ser Pro Leu His Trp Ala His Thr Leu Asn Gly Ser		
	20 25 30		
	Met Arg Thr His Phe Glu Val Gln Arg Leu Glu Arg Gly Arg Gly Ala		
	35 40 45		
45	Ser Leu Ala Arg Ser Arg Phe Gly Ala Gly Glu Leu Tyr Ser Ala Ile		
	50 55 60		
	Ala Pro Ser Gln Val Leu Arg His Phe Asn Asp Gln Arg Asn Ala Asp		
	65 70 75 80		
50	Glu Ala Glu His Ser Tyr Leu Ile Gln Ile Arg Ser Gly Ala Leu Gly		
	85 90 95		

55

Val Ala Ser Gly Gly Arg Lys Val Ile Leu Ala Asn Gly Asp Cys Ser
100 105 110

5 Ile Val Asp Ser Arg Gln Asp Phe Thr Leu Ser Ser Asn Ser Ser Thr
115 120 125

Gln Gly Val Val Ile Arg Phe Pro Val Ser Trp Leu Gly Ala Trp Val
130 135 140

10 Ser Asn Pro Glu Asp Leu Ile Ala Arg Arg Val Asp Ala Glu Val Gly
145 150 155 160

Trp Gly Arg Ala Leu Ser Ala Ser Val Ser Asn Leu Asp Pro Leu Arg
165 170 175

15 Ile Asp Asp Leu Gly Ser Asn Val Asn Gly Ile Ala Glu His Val Ala
180 185 190

Met Leu Ile Ser Leu Ala Ser Ser Ala Val Ser Ser Glu Asp Gly Gly
195 200 205

20 Val Ala Leu Arg Lys Met Arg Glu Val Lys Arg Val Leu Glu Gln Ser
210 215 220

Phe Ala Asp Ala Asn Leu Gly Pro Glu Ser Val Ser Ser Gln Leu Gly
225 230 235 240

25 Ile Ser Lys Arg Tyr Leu His Tyr Val Phe Ala Ala Cys Gly Thr Thr
245 250 255

Phe Gly Arg Glu Leu Leu Glu Ile Arg Leu Gly Lys Ala Tyr Arg Met
260 265 270

30 Leu Cys Ala Ala Ser Asp Ser Gly Ala Val Leu Lys Val Ala Met Ser
275 280 285

Ser Gly Phe Ser Asp Ser Ser His Phe Ser Lys Lys Phe Lys Glu Arg
290 295 300

35 Tyr Gly Val Ser Pro Val Ser Leu Val Arg Gln Ala
305 310 315

40 (2) ANGABEN ZU SEQ ID NO: 25:

(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 735 Basenpaare
(B) ART: Nucleotid
45 (C) STRANGFORM: Doppelstrang
(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Genom-DNA

50 (iii) HYPOTHETISCH: NEIN

(iv) ANTISENSE: NEIN

EP 0 845 532 A2

(ix) MERKMALE:

(A) NAME/SCHLÜSSEL: CDS

(B) LAGE: 1..732

(D) SONSTIGE ANGABEN: /product= "Enoyl-CoA-Hydratase"
/gene= "ech"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 25:

5	ATG AGC CCA ACT CTC AAT CGA GAG ATG GTC GAG GTT CTG GAG GTG CTG Met Ser Pro Thr Leu Asn Arg Glu Met Val Glu Val Leu Glu Val Leu 320 325 330	48
10	GAG CAG GAC GCA GAT GCT CGC GTG CTT GTT CTG ACT GGT GCA GGC GAA Glu Gln Asp Ala Asp Ala Arg Val Leu Val Leu Thr Gly Ala Gly Glu 335 340 345	96
15	TCC TGG ACC GCG GGC ATG GAC CTG AAG GAG TAT TTC CGC GAG ACC GAT Ser Trp Thr Ala Gly Met Asp Leu Lys Glu Tyr Phe Arg Glu Thr Asp 350 355 360	144
20	GCT GGC CCC GAA ATT CTG CAA GAG AAG ATT CGT CGC GAA GCG TCG ACC Ala Gly Pro Glu Ile Leu Gln Glu Lys Ile Arg Arg Glu Ala Ser Thr 365 370 375 380	192
25	TGG CAG TGG AAG CTC CTG CGG ATG TAC ACC AAG CCG ACC ATC GCG ATG Trp Gln Trp Lys Leu Leu Arg Met Tyr Thr Lys Pro Thr Ile Ala Met 385 390 395	240
30	GTC AAT GGC TGG TGC TTC GGC GGC TTC AGC CCG CTG GTG GCC TGT Val Asn Gly Trp Cys Phe Gly Gly Phe Ser Pro Leu Val Ala Cys 400 405 410	288
35	GAT CTG GCC ATC TGT GCC GAC GAG GCC ACC TTT GGC CTG TCC GAG ATC Asp Leu Ala Ile Cys Ala Asp Glu Ala Thr Phe Gly Leu Ser Glu Ile 415 420 425	336
40	AAC TGG GGC ATC CCG CCG GGC AAC CTG GTG AGT AAG GCT ATG GCC GAC Asn Trp Gly Ile Pro Pro Gly Asn Leu Val Ser Lys Ala Met Ala Asp 430 435 440	384
45	ACC GTG GGT CAC CGC GAG TCC CTT TAC TAC ATC ATG ACT GGC AAG ACA Thr Val Gly His Arg Glu Ser Leu Tyr Tyr Ile Met Thr Gly Lys Thr 445 450 455 460	432
50	TTT GGC GGT CAG CAG GCC AAG ATG GGG CTT GTG AAC CAG AGT GTT Phe Gly Gly Gln Gln Ala Ala Lys Met Gly Leu Val Asn Gln Ser Val 465 470 475	480
55	CCG CTG GCC GAG CTG CGC AGT GTC ACT GTA GAG CTG GCT CAG AAC CTG Pro Leu Ala Glu Leu Arg Ser Val Thr Val Glu Leu Ala Gln Asn Leu 480 485 490	528
	CTG GAC AAG AAC CCC GTA GTG CTG CGT GCC GCC AAA ATA GGC TTC AAG	576

EP 0 845 532 A2

Leu Asp Lys Asn Pro Val Val Leu Arg Ala Ala Lys Ile Gly Phe Lys
495 500 505

5 CGT TGC CGC GAG CTG ACT TGG GAG CAG AAC GAG GAC TAC CTG TAC GCC 624
Arg Cys Arg Glu Leu Thr Trp Glu Gln Asn Glu Asp Tyr Leu Tyr Ala
510 515 520

10 AAG CTC GAC CAA TCC CGT TTG CTC GAT CCG GAA GGC GGT CGC GAG CAG 672
Lys Leu Asp Gln Ser Arg Leu Leu Asp Pro Glu Gly Gly Arg Glu Gln
525 530 535 540

15 GGC ATG AAG CAG TTC CTT GAC GAG AAA AGC ATC AAG CCG GGC TTG CAG 720
Gly Met Lys Gln Phe Leu Asp Glu Lys Ser Ile Lys Pro Gly Leu Gln
545 550 555

20 ACC TAC AAG CGC TGA 735
Thr Tyr Lys Arg
560

(2) ANGABEN ZU SEQ ID NO: 26:

25 (i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 244 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 26:

30 Met Ser Pro Thr Leu Asn Arg Glu Met Val Glu Val Leu Glu Val Leu
1 5 10 15

Glu Gln Asp Ala Asp Ala Arg Val Leu Val Leu Thr Gly Ala Gly Glu
20 25 30

35 Ser Trp Thr Ala Gly Met Asp Leu Lys Glu Tyr Phe Arg Glu Thr Asp
35 40 45

Ala Gly Pro Glu Ile Leu Gln Glu Lys Ile Arg Arg Glu Ala Ser Thr
50 55 60

40 Trp Gln Trp Lys Leu Leu Arg Met Tyr Thr Lys Pro Thr Ile Ala Met
65 70 75 80

45 Val Asn Gly Trp Cys Phe Gly Gly Phe Ser Pro Leu Val Ala Cys
85 90 95

Asp Leu Ala Ile Cys Ala Asp Glu Ala Thr Phe Gly Leu Ser Glu Ile
100 105 110

50 Asn Trp Gly Ile Pro Pro Gly Asn Leu Val Ser Lys Ala Met Ala Asp
115 120 125

Thr Val Gly His Arg Glu Ser Leu Tyr Tyr Ile Met Thr Gly Lys Thr

55

130 135 140

5 Phe Gly Gly Gln Gln Ala Ala Lys Met Gly Leu Val Asn Gln Ser Val
145 150 155 160

Pro Leu Ala Glu Leu Arg Ser Val Thr Val Glu Leu Ala Gln Asn Leu
165 170 175

10 Leu Asp Lys Asn Pro Val Val Leu Arg Ala Ala Lys Ile Gly Phe Lys
180 185 190

Arg Cys Arg Glu Leu Thr Trp Glu Gln Asn Glu Asp Tyr Leu Tyr Ala
195 200 205

15 Lys Leu Asp Gln Ser Arg Leu Leu Asp Pro Glu Gly Gly Arg Glu Gln
210 215 220

Gly Met Lys Gln Phe Leu Asp Glu Lys Ser Ile Lys Pro Gly Leu Gln
225 230 235 240

20 Thr Tyr Lys Arg

(2) ANGABEN ZU SEQ ID NO: 27:

25 (i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 1446 Basenpaare
- (B) ART: Nucleotid
- (C) STRANGFORM: Doppelstrang
- (D) TOPOLOGIE: linear

30 (ii) ART DES MOLEKÜLS: Genom-DNA

(iii) HYPOTHETISCH: NEIN

35 (iv) ANTISENSE: NEIN

(ix) MERKMAL:

- (A) NAME/SCHLÜSSEL: CDS
- (B) LAGE: 1..1443
- (D) SONSTIGE ANGABEN: /product= "Vanillin-Dehydrogenase"
/gene= "vdh"

45 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 27:

ATG TTT CAC GTG CCC CTG CTT ATT GGT AAG CCT TGT TCA GCA TCT
Met Phe His Val Pro Leu Leu Ile Gly Gly Lys Pro Cys Ser Ala Ser
245 250 255 260

48

50 GAT GAG CGC ACC TTC GAG CGT CGT AGC CCG CTG ACC GGA GAA GTG GTA
Asp Glu Arg Thr Phe Glu Arg Arg Ser Pro Leu Thr Gly Glu Val Val
265 270 275

96

55

EP 0845 532 A2

	TCG CGC GTC GCT GCC AGT TTG GAA GAT GCG GAC GCC GCA GTG GCC Ser Arg Val Ala Ala Ala Ser Leu Glu Asp Ala Asp Ala Ala Val Ala 280 285 290	144
5	GCT GCA CAG GCT GCG TTT CCT GAA TGG GCG GCG CTT GCT CCG AGC GAA Ala Ala Gln Ala Ala Phe Pro Glu Trp Ala Ala Leu Ala Pro Ser Glu 295 300 305	192
10	CGC CGT GCC CGA CTG CTG CGA GCG GCG GAT CTT CTA GAG GAC CGT TCT Arg Arg Ala Arg Leu Leu Arg Ala Ala Asp Leu Leu Glu Asp Arg Ser 310 315 320	240
15	TCC GAG TTC ACC GCC GCA GCG AGT GAA ACT GGC GCA GCG GGA AAC TGG Ser Glu Phe Thr Ala Ala Ser Glu Thr Gly Ala Ala Gly Asn Trp 325 330 335 340	288
	TAT GGG TTT AAC GTT TAC CTG GCG GCG GGC ATG TTG CGG GAA GCC GCG Tyr Gly Phe Asn Val Tyr Leu Ala Ala Gly Met Leu Arg Glu Ala Ala 345 350 355	336
20	GCC ATG ACC ACA CAG ATT CAG GGC GAT GTC ATT CCG TCC AAT GTG CCC Ala Met Thr Thr Gln Ile Gln Gly Asp Val Ile Pro Ser Asn Val Pro 360 365 370	384
25	GGT AGC TTT GCC ATG GCG GTT CGA CAG CCA TGT GGC GTG GTG CTC GGT Gly Ser Phe Ala Met Ala Val Arg Gln Pro Cys Gly Val Val Leu Gly 375 380 385	432
	ATT GCG CCT TGG AAT GCT CCG GTA ATC CTT GGC GTA CGG GCT GTT GCG Ile Ala Pro Trp Asn Ala Pro Val Ile Leu Gly Val Arg Ala Val Ala 390 395 400	480
30	ATG CCG TTG GCA TGC GGC AAT ACC GTG GTG TTG AAA AGC TCT GAG CTG Met Pro Leu Ala Cys Gly Asn Thr Val Val Leu Lys Ser Ser Glu Leu 405 410 415 420	528
35	AGT CCC TTT ACC CAT CGC CTG ATT GGT CAG GTG TTG CAT GAT GCT GGT Ser Pro Phe Thr His Arg Leu Ile Gly Gln Val Leu His Asp Ala Gly 425 430 435	576
	CTG GGG GAT GGC GTG GTG AAT GTC ATC AGC AAT GCC CCG CAA GAC GCT Leu Gly Asp Gly Val Val Asn Val Ile Ser Asn Ala Pro Gln Asp Ala 440 445 450	624
40	CCT GCG GTG GTG GAG CGA CTG ATT GCA AAT CCT GCG GTA CGT CGA GTG Pro Ala Val Val Glu Arg Leu Ile Ala Asn Pro Ala Val Arg Arg Val 455 460 465	672
45	AAC TTC ACC GGT TCG ACC CAC GTT GGA CGG ATC ATT GGT GAG CTG TCT Asn Phe Thr Gly Ser Thr His Val Gly Arg Ile Ile Gly Glu Leu Ser 470 475 480	720
	GCG CGT CAT CTG AAG CCT GCT GTG CTG GAA TTA GGT GGT AAG GCT CCG Ala Arg His Leu Lys Pro Ala Val Leu Glu Leu Gly Gly Lys Ala Pro 485 490 495 500	768

55

EP 0 845 532 A2

	TTC TTG GTC TTG GAC GAT GCC GAC CTC GAT GCG GCG GTC GAA GCG GCG Phe Leu Val Leu Asp Asp Ala Asp Leu Asp Ala Ala Val Glu Ala Ala 505 510 515	816
5	GCC TTT GGT GCC TAC TTC AAT CAG GGT CAA ATC TGC ATG TCC ACT GAG Ala Phe Gly Ala Tyr Phe Asn Gln Gly Gln Ile Cys Met Ser Thr Glu 520 525 530	864
10	CGT CTG ATT GTG ACA GCA GTC GCA GAC GCC TTT GTT GAA AAG CTG GCG Arg Leu Ile Val Thr Ala Val Ala Asp Ala Phe Val Glu Lys Leu Ala 535 540 545	912
15	AGG AAG GTC GCC ACA CTG CGT GCT GGC GAT CCT AAT GAT CCG CAA TCG Arg Lys Val Ala Thr Leu Arg Ala Gly Asp Pro Asn Asp Pro Gln Ser 550 555 560	960
20	GTC TTG GGT TCG TTG ATT GAT GCC AAT GCA GGT CAA CGC ATC CAG GTT Val Leu Gly Ser Leu Ile Asp Ala Asn Ala Gly Gln Arg Ile Gln Val 565 570 575 580	1008
25	CTG GTC GAT GAT GCG CTC GCA AAA GGC GCG CGG CAG GTC GTC GGT GGT Leu Val Asp Asp Ala Leu Ala Lys Gly Ala Arg Gln Val Val Gly Gly 585 590 595	1056
30	GGA TTA GAT GGC AGC ATC ATG CAG CCG ATG CTG CTT GAT CAG GTC ACT Gly Leu Asp Gly Ser Ile Met Gln Pro Met Leu Leu Asp Gln Val Thr 600 605 610	1104
35	GAA GAG ATG CGG CTC TAC CGT GAG GAG TCC TTT GGC CCT GTT GCC GTT Glu Glu Met Arg Leu Tyr Arg Glu Glu Ser Phe Gly Pro Val Ala Val 615 620 625	1152
40	GTC TTG CGC GGC GAT GGT GAT GAA GAA CTG CTG CGT CTT GCC AAC GAT Val Leu Arg Gly Asp Gly Asp Glu Glu Leu Leu Arg Leu Ala Asn Asp 630 635 640	1200
45	TCG GAG TTT GGT CTT TCG GCC GCC ATT TTC AGC CGT GAC GTC TCG CGC Ser Glu Phe Gly Leu Ser Ala Ala Ile Phe Ser Arg Asp Val Ser Arg 645 650 655 660	1248
50	GCA ATG GAA TTG GCC CAG CGC GTC GAT TCG GGC ATT TGC CAT ATC AAT Ala Met Glu Leu Ala Gln Arg Val Asp Ser Gly Ile Cys His Ile Asn 665 670 675	1296
55	GGA CCG ACT GTG CAT GAC GAG GCT CAG ATG CCA TTC GGT GGG GTG AAG Gly Pro Thr Val His Asp Glu Ala Gln Met Pro Phe Gly Gly Val Lys 680 685 690	1344
	TCC AGC GGC TAC GGC AGC TTC GGC AGT CGA GCA TCG ATT GAG CAC TTT Ser Ser Gly Tyr Gly Ser Phe Gly Ser Arg Ala Ser Ile Glu His Phe 695 700 705	1392
	ACC CAG CTG CGC TGG CTG ACC ATT CAG AAT GGC CCG CGG CAC TAT CCA Thr Gln Leu Arg Trp Leu Thr Ile Gln Asn Gly Pro Arg His Tyr Pro 710 715 720	1440

55

1446

ATC TAA
Ile
725

5

(2) ANGABEN ZU SEQ ID NO: 28:

- (i) SEQUENZKENNZEICHEN:

 - (A) LÄNGE: 481 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear

- (ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 28:

15 Met Phe His Val Pro Leu Leu Ile Gly Gly Lys Pro Cys Ser Ala Ser
 1 5 10 15
 20 Asp Glu Arg Thr Phe Glu Arg Arg Ser Pro Leu Thr Gly Glu Val Val
 20 25 30
 25 Ser Arg Val Ala Ala Ala Ser Leu Glu Asp Ala Asp Ala Ala Val Ala
 35 40 45
 30 Ala Ala Gln Ala Ala Phe Pro Glu Trp Ala Ala Leu Ala Pro Ser Gln
 50 55 60
 35 Arg Arg Ala Arg Leu Leu Arg Ala Ala Asp Leu Leu Glu Asp Arg Ser
 65 70 75 80
 30 Ser Glu Phe Thr Ala Ala Ala Ser Glu Thr Gly Ala Ala Gly Asn Trp
 85 90 95
 35 Tyr Gly Phe Asn Val Tyr Leu Ala Ala Gly Met Leu Arg Glu Ala Ala
 100 105 110
 40 Ala Met Thr Thr Gln Ile Gln Gly Asp Val Ile Pro Ser Asn Val Pro
 115 120 125
 45 Gly Ser Phe Ala Met Ala Val Arg Gln Pro Cys Gly Val Val Leu Glu
 130 135 140
 50 Ile Ala Pro Trp Asn Ala Pro Val Ile Leu Gly Val Arg Ala Val Al
 145 150 155 160
 45 Met Pro Leu Ala Cys Gly Asn Thr Val Val Leu Lys Ser Ser Glu L
 165 170 175
 50 Ser Pro Phe Thr His Arg Leu Ile Gly Gln Val Leu His Asp Ala G
 180 185 190
 55 Leu Gly Asp Gly Val Val Asn Val Ile Ser Asn Ala Pro Gln Asp A
 195 200 205
 60 Pro Ala Val Val Glu Arg Leu Ile Ala Asn Pro Ala Val Arg Arg V

55

EP 0 845 532 A2

5	210	215	220
	Asn Phe Thr Gly Ser Thr His Val Gly Arg Ile Ile Gly Glu Leu Ser		
	225	230	235
			240
	Ala Arg His Leu Lys Pro Ala Val Leu Glu Leu Gly Gly Lys Ala Pro		
	245	250	255
10	Phe Leu Val Leu Asp Asp Ala Asp Leu Asp Ala Ala Val Glu Ala Ala		
	260	265	270
	Ala Phe Gly Ala Tyr Phe Asn Gln Gly Gln Ile Cys Met Ser Thr Glu		
	275	280	285
15	Arg Leu Ile Val Thr Ala Val Ala Asp Ala Phe Val Glu Lys Leu Ala		
	290	295	300
	Arg Lys Val Ala Thr Leu Arg Ala Gly Asp Pro Asn Asp Pro Gln Ser		
20	305	310	315
	Val Leu Gly Ser Leu Ile Asp Ala Asn Ala Gly Gln Arg Ile Gln Val		
	325	330	335
25	Leu Val Asp Asp Ala Leu Ala Lys Gly Ala Arg Gln Val Val Gly Gly		
	340	345	350
	Gly Leu Asp Gly Ser Ile Met Gln Pro Met Leu Leu Asp Gln Val Thr		
	355	360	365
30	Glu Glu Met Arg Leu Tyr Arg Glu Glu Ser Phe Gly Pro Val Ala Val		
	370	375	380
	Val Leu Arg Gly Asp Gly Asp Glu Glu Leu Leu Arg Leu Ala Asn Asp		
	385	390	395
35	Ser Glu Phe Gly Leu Ser Ala Ala Ile Phe Ser Arg Asp Val Ser Arg		
	405	410	415
	Ala Met Glu Leu Ala Gln Arg Val Asp Ser Gly Ile Cys His Ile Asn		
40	420	425	430
	Gly Pro Thr Val His Asp Glu Ala Gln Met Pro Phe Gly Gly Val Lys		
	435	440	445
45	Ser Ser Gly Tyr Gly Ser Phe Gly Ser Arg Ala Ser Ile Glu His Phe		
	450	455	460
	Thr Gln Leu Arg Trp Leu Thr Ile Gln Asn Gly Pro Arg His Tyr Pro		
	465	470	475
50	Ile		

(2) ANGABEN ZU SEQ ID NO: 29:

- (i) SEQUENZKENNZEICHEN:
- (A) LÄNGE: 1770 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Doppelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Genom-DNA
- 10 (iii) HYPOTHETISCH: NEIN
- (iv) ANTISENSE: NEIN
- 15 (ix) MERKMAL:
- (A) NAME/Schlüssel: CDS
 - (B) LAGE: 1..1767
 - (C) SONSTIGE ANGABEN:/product= "Ferulasaeure-CoA-Synthetase"
 - (D) /gene= "fcs"
- 20 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 29:
- | | |
|---|-----|
| ATG CGT TCT CTC GAG GCG CTT CTT CCC TTC CCG GGT CGA ATT CTT GAG | 48 |
| Met Arg Ser Leu Glu Ala Leu Leu Pro Phe Pro Gly Arg Ile Leu Glu | |
| 485 490 495 | |
| CGT CTC GAG CAT TGG GCT AAG ACC CGT CCA GAA CAA ACC TGC GTT GCT | 96 |
| Arg Leu Glu His Trp Ala Lys Thr Arg Pro Glu Gln Thr Cys Val Ala | |
| 500 505 510 | |
| GCC AGG GCG GCA AAT GGG GAA TGG CGT CGT ATC AGC TAC GCG GAA ATG | 144 |
| Ala Arg Ala Ala Asn Gly Glu Trp Arg Arg Ile Ser Tyr Ala Glu Met | |
| 515 520 525 | |
| TTC CAC AAC GTC CGC GCC ATC GCA CAG AGC TTG CTT CCT TAC GGA CTA | 192 |
| Phe His Asn Val Arg Ala Ile Ala Gln Ser Leu Leu Pro Tyr Gly Leu | |
| 530 535 540 545 | |
| TCG GCA GAG CGT CCG CTG CTT ATC GTC TCT GGA AAT GAC CTG GAA CAT | 240 |
| Ser Ala Glu Arg Pro Leu Leu Ile Val Ser Gly Asn Asp Leu Glu His | |
| 550 555 560 | |
| CTT CAG CTG GCA TTT GGG GCT ATG TAT GCG GGC ATT CCC TAT TGC CCG | 288 |
| Leu Gln Leu Ala Phe Gly Ala Met Tyr Ala Gly Ile Pro Tyr Cys Pro | |
| 565 570 575 | |
| GTG TCT CCT GCT TAT TCA CTG CTG TCG CAA GAT TTG GCG AAG CTG CGT | 336 |
| Val Ser Pro Ala Tyr Ser Leu Leu Ser Gln Asp Leu Ala Lys Leu Arg | |
| 580 585 590 | |
| CAC ATC GTA GGT CTT CTG CAA CCG GGA CTG GTC TTT GCT GCC GAT GCA | 384 |
| His Ile Val Gly Leu Leu Gln Pro Gly Leu Val Phe Ala Ala Asp Ala | |
| 595 600 605 | |

55

EP 0 845 532 A2

5	GCA CCT TTC CAG CGC GCA ATT GAG ACC ATT CTG CCG GAC GAC GTG CCC Ala Pro Phe Gln Arg Ala Ile Glu Thr Ile Leu Pro Asp Asp Val Pro 610 615 620 625	432
10	GCA ATC TTC ACT CGA GGC GAA TTG GCC GGG CGG CGC ACG GTG AGT TTT Ala Ile Phe Thr Arg Gly Glu Leu Ala Gly Arg Arg Thr Val Ser Phe 630 635 640	480
15	GAC AGC CTG CTG GAG CAG CCT GGT GGG ATT GAG GCA GAT ATT GCC TTT Asp Ser Leu Leu Glu Gln Pro Gly Ile Glu Ala Asp Asn Ala Phe 645 650 655	528
20	GCG GCA ACT GGC CCC GAT ACG ATT GCC AAG TTC TTG TTC ACT TCT GGC Ala Ala Thr Gly Pro Asp Thr Ile Ala Lys Phe Leu Phe Thr Ser Gly 660 665 670	576
25	TCT ACC AAA CTG CCT AAG GCG GTG CCG ACT ACT CAG CGA ATG CTC TGC Ser Thr Lys Leu Pro Lys Ala Val Pro Thr Thr Gln Arg Met Leu Cys 675 680 685	624
30	GCC AAT CAG CAG ATG CTT CTG CAA ACT TTC CCG GTT TTT GGT GAA GAG Ala Asn Gln Gln Met Leu Leu Gln Thr Phe Pro Val Phe Gly Glu Glu 690 695 700 705	672
35	CCG CCG GTG CTG GTG GAC TGG TTG CCG TGG AAC CAC ACC TTC GGC GGC Pro Pro Val Leu Val Asp Trp Leu Pro Trp Asn His Thr Phe Gly Gly 710 715 720	720
40	AGC CAC AAC ATC GGC ATC GTG TTG TAC AAC GGC GGC ACG TAC TAC CTT Ser His Asn Ile Gly Ile Val Leu Tyr Asn Gly Gly Thr Tyr Tyr Leu 725 730 735	768
45	GAC GAC GGT AAA CCA ACC GCC CAA GGG TTC GCC GAG ACG CTT CGC AAC Asp Asp Gly Lys Pro Thr Ala Gln Gly Phe Ala Glu Thr Leu Arg Asn 740 745 750	816
50	TTG AGC GAA ATC TCT CCC ACT GCG TAC CTC ACT GTG CCG AAA GGC TGG Leu Ser Glu Ile Ser Pro Thr Ala Tyr Leu Thr Val Pro Lys Gly Trp 755 760 765	864
55	GAG GAA TTA GTG GGT GCC CTT GAG CGA GAC AGT ACC CTG CGC GAA CGC Glu Glu Leu Val Gly Ala Leu Glu Arg Asp Ser Thr Leu Arg Glu Arg 770 775 780 785	912
60	TTC TTC GCT CGC ATG AAG CTG TTC TTC GCG GCG GCT GGG TTG TCG Phe Phe Ala Arg Met Lys Leu Phe Phe Ala Ala Ala Gly Leu Ser 790 795 800	960
65	CAA GGG ATC TGG GAT CGT TTG GAC CGG GTC GCT GAA CAG CAC TGT GGT Gln Gly Ile Trp Asp Arg Leu Asp Arg Val Ala Glu Gln His Cys Gly 805 810 815	1008
70	GAG CGC ATT CGC ATG ATG GCG GGT CTG GGC ATG ACG GAG ACT GCT CCT Glu Arg Ile Arg Met Met Ala Gly Leu Gly Met Thr Glu Thr Ala Pro 820 825 830	1056

55

EP 0 845 532 A2

	TCC TGC ACT TTT ACC ACC GGA CCG CTG TCG ATG GCT GGT TAC ATT GGG Ser Cys Thr Phe Thr Thr Gly Pro Leu Ser Met Ala Gly Tyr Ile Gly 835 840 845	1104
5	CTG CCA GCG CCT GGC TGC GAG GTC AAG CTC GTT CCG GTC GAT GGG AAA Leu Pro Ala Pro Gly Cys Glu Val Lys Leu Val Pro Val Asp Gly Lys 850 855 860 865	1152
10	TTG GAA GGG CGT TTC CAT GGT CCG CAC GTC ATG AGC GGC TAC TGG CGT Leu Glu Gly Arg Phe His Gly Pro His Val Met Ser Gly Tyr Trp Arg 870 875 880	1200
15	GCT CCT GAA CAA AAT GCC CAA GCG TTC GAC GAG GAA GGC TAT TAC TGC Ala Pro Glu Gln Asn Ala Gln Ala Phe Asp Glu Glu Gly Tyr Tyr Cys 885 890 895	1248
	TCC GGT GAT GCC ATC AAA TTG GCA GAT CCT GCC GAT CCT CAG AAA GGT Ser Gly Asp Ala Ile Lys Leu Ala Asp Pro Ala Asp Pro Gln Lys Gly 900 905 910	1296
20	CTG ATG TTT GAC GGT CGA ATT GCT GAA GAC TTC AAG CTG TCC TCA GGG Leu Met Phe Asp Gly Arg Ile Ala Glu Asp Phe Lys Leu Ser Ser Gly 915 920 925	1344
25	GTA TTT GTC AGC GTT GGG CCA TTG CGC ACG CGG GCG GTT CTG GAA GGC Val Phe Val Ser Val Gly Pro Leu Arg Thr Arg Ala Val Leu Glu Gly 930 935 940 945	1392
30	GGC TCT TAC GTC CTG GAC GTA GTG GTT GCT GCT CCT GAT CGT GAA TGC Gly Ser Tyr Val Leu Asp Val Val Ala Ala Pro Asp Arg Glu Cys 950 955 960	1440
	CTT GGA TTG CTC GTG TTT CCG CGT CTT CTC GAC TGC CGT GCC TTG TCG Leu Gly Leu Leu Val Phe Pro Arg Leu Leu Asp Cys Arg Ala Leu Ser 965 970 975	1488
35	GGG CTA GGA AAA GAG GCG TCG GAC GCC GAG GTG CTT GCC AGT GAG CCG Gly Leu Gly Lys Glu Ala Ser Asp Ala Glu Val Leu Ala Ser Glu Pro 980 985 990	1536
40	GTT CGG GCC TGG TTT GCT GAC TGG CTC AAA CGA CTC AAT CGA GAA GCA Val Arg Ala Trp Phe Ala Asp Trp Leu Lys Arg Leu Asn Arg Glu Ala 995 1000 1005	1584
	ACT GGC AAT GCC AGT CGC ATC ATG TGG GTA GGG CTC CTC GAT ACG CCG Thr Gly Asn Ala Ser Arg Ile Met Trp Val Gly Leu Leu Asp Thr Pro 1010 1015 1020 1025	1632
45	CCG TCG ATT GAT AAG GGC GAG GTC ACT GAC AAG GGC TCG ATC AAC CAG Pro Ser Ile Asp Lys Gly Glu Val Thr Asp Lys Gly Ser Ile Asn Gln 1030 1035 1040	1680
50	CGC GCT GTT TTG CAA TGG CGG TCG GCG AAA GTT GAT GCG CTG TAT CGT Arg Ala Val Leu Gln Trp Arg Ser Ala Lys Val Asp Ala Leu Tyr Arg 1045 1050 1055	1728

55

GGT GAA GAT CAA TCC ATG CTG CGT GAC GAG GCC ACA CTG TGA
 Gly Glu Asp Gln Ser Met Leu Arg Asp Glu Ala Thr Leu
 1060 1065 1070

1770

5

(2) ANGABEN ZU SEQ ID NO: 30:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 589 Aminosäuren
- (B) ART: Aminosäure
- (D) TOPOLOGIE: linear

(iii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 30:

Met Arg Ser Leu Glu Ala Leu Leu Pro Phe Pro Gly Arg Ile Leu Glu
 1 5 10 15

Arg Leu Glu His Trp Ala Lys Thr Arg Pro Glu Gln Thr Cys Val Ala
 20 25 30

Ala Arg Ala Ala Asn Gly Glu Trp Arg Arg Ile Ser Tyr Ala Glu Met
 35 40 45

Phe His Asn Val Arg Ala Ile Ala Gln Ser Leu Leu Pro Tyr Gly Leu
 50 55 60

Ser Ala Glu Arg Pro Leu Leu Ile Val Ser Gly Asn Asp Leu Glu His
 65 70 75 80

Leu Gln Leu Ala Phe Gly Ala Met Tyr Ala Gly Ile Pro Tyr Cys Pro
 85 90 95

Val Ser Pro Ala Tyr Ser Leu Leu Ser Gln Asp Leu Ala Lys Leu Arg
 100 105 110

His Ile Val Gly Leu Leu Gln Pro Gly Leu Val Phe Ala Ala Asp Ala
 115 120 125

Ala Pro Phe Gln Arg Ala Ile Glu Thr Ile Leu Pro Asp Asp Val Pro
 130 135 140

Ala Ile Phe Thr Arg Gly Glu Leu Ala Gly Arg Arg Thr Val Ser Phe
 145 150 155 160

Asp Ser Leu Leu Glu Gln Pro Gly Gly Ile Glu Ala Asp Asn Ala Phe
 165 170 175

Ala Ala Thr Gly Pro Asp Thr Ile Ala Lys Phe Leu Phe Thr Ser Gly
 180 185 190

Ser Thr Lys Leu Pro Lys Ala Val Pro Thr Thr Gln Arg Met Leu Cys
 195 200 205

Ala Asn Gln Gln Met Leu Leu Gln Thr Phe Pro Val Phe Gly Glu Glu

55

EP 0 845 532 A2

	210	215	220
5	Pro Pro Val Leu Val Asp Trp Leu Pro Trp Asn His Thr Phe Gly Gly 225 230 235 240		
	Ser His Asn Ile Gly Ile Val Leu Tyr Asn Gly Gly Thr Tyr Tyr Leu 245 250 255		
10	Asp Asp Gly Lys Pro Thr Ala Gln Gly Phe Ala Glu Thr Leu Arg Asn 260 265 270		
	Leu Ser Glu Ile Ser Pro Thr Ala Tyr Leu Thr Val Pro Lys Gly Trp 275 280 285		
15	Glu Glu Leu Val Gly Ala Leu Glu Arg Asp Ser Thr Leu Arg Glu Arg 290 295 300		
	Phe Phe Ala Arg Met Lys Leu Phe Phe Ala Ala Ala Gly Leu Ser 305 310 315 320		
20	Gln Gly Ile Trp Asp Arg Leu Asp Arg Val Ala Glu Gln His Cys Gly 325 330 335		
	Glu Arg Ile Arg Met Met Ala Gly Leu Gly Met Thr Glu Thr Ala Pro 340 345 350		
25	Ser Cys Thr Phe Thr Thr Gly Pro Leu Ser Met Ala Gly Tyr Ile Gly 355 360 365		
	Leu Pro Ala Pro Gly Cys Glu Val Lys Leu Val Pro Val Asp Gly Lys 370 375 380		
30	Leu Glu Gly Arg Phe His Gly Pro His Val Met Ser Gly Tyr Trp Arg 385 390 395 400		
	Ala Pro Glu Gln Asn Ala Gln Ala Phe Asp Glu Glu Gly Tyr Tyr Cys 405 410 415		
35	Ser Gly Asp Ala Ile Lys Leu Ala Asp Pro Ala Asp Pro Gln Lys Gly 420 425 430		
	Leu Met Phe Asp Gly Arg Ile Ala Glu Asp Phe Lys Leu Ser Ser Gly 435 440 445		
40	Val Phe Val Ser Val Gly Pro Leu Arg Thr Arg Ala Val Leu Glu Gly 450 455 460		
	Gly Ser Tyr Val Leu Asp Val Val Ala Ala Pro Asp Arg Glu Cys 465 470 475 480		
45	Leu Gly Leu Leu Val Phe Pro Arg Leu Leu Asp Cys Arg Ala Leu Ser 485 490 495		
	Gly Leu Gly Lys Glu Ala Ser Asp Ala Glu Val Leu Ala Ser Glu Pro 500 505 510		

EP 0 845 532 A2

Val Arg Ala Trp Phe Ala Asp Trp Leu Lys Arg Leu Asn Arg Glu Ala
515 520 525

5 Thr Gly Asn Ala Ser Arg Ile Met Trp Val Gly Leu Leu Asp Thr Pro
530 535 540

10 Pro Ser Ile Asp Lys Gly Glu Val Thr Asp Lys Gly Ser Ile Asn Gln
545 550 555 560

Arg Ala Val Leu Gln Trp Arg Ser Ala Lys Val Asp Ala Leu Tyr Arg
565 570 575

15 Gly Glu Asp Gln Ser Met Leu Arg Asp Glu Ala Thr Leu
580 585

(2) ANGABEN ZU SEQ ID NO: 31:

- 20 (i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 1296 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Doppelstrang
(D) TOPOLOGIE: linear

25 (ii) ART DES MOLEKÜLS: Genom-DNA

30 (iii) HYPOTHETISCH: NEIN

(iv) ANTISENSE: NEIN

35 (ix) MERKMAL:
(A) NAME/Schlüssel: CDS
(B) LAGE: 1..1293
(D) SONSTIGE ANGABEN:/product= "beta-Ketothiolase"
/gene= "aat"

40 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 31:

ATG AGT TGG TCA GGG GGG GCT TAC TCG GCG TTT TCC GAC ACT GCG TTG 48
Met Ser Trp Ser Gly Gly Ala Tyr Ser Ala Phe Ser Asp Thr Ala Leu
590 595 600 605

45 GTT GCG GCA GTG CGC ACC CCC TGG ATT GAT TGC GGG GGT GCC CTG TCG 96
Val Ala Ala Val Arg Thr Pro Trp Ile Asp Cys Gly Gly Ala Leu Ser
610 615 620

50 CTG GTG TCG CCT ATC GAC TTA GGG GTA AAG GTC GCT CGC GAA GTT CTG 144
Leu Val Ser Pro Ile Asp Leu Gly Val Lys Val Ala Arg Glu Val Leu
625 630 635

ATG CGT GCG TCG CTT GAA CCA CAA ATG GTC GAT AGC GTA CTC GCA GGC 192
Met Arg Ala Ser Leu Glu Pro Gln Met Val Asp Ser Val Leu Ala Gly
640 645 650

55

EP 0 845 532 A2

	TCT ATG GCT CAA GCA AGC TTT GAT GCT TAC CTG CTC CCG CGG CAC ATT Ser Met Ala Gln Ala Ser Phe Asp Ala Tyr Leu Leu Pro Arg His Ile 655 660 665	240
5	GGC TTG TAC AGC GGT GTT CCC AAG TCG GTT CCG GCC TTG GGG GTG CAG Gly Leu Tyr Ser Gly Val Pro Lys Ser Val Pro Ala Leu Gly Val Gln 670 675 680 685	288
10	CGC ATT TGC GGC ACA GGC TTC GAA CTG CTT CGG CAG GCC GGC GAG CAG Arg Ile Cys Gly Thr Gly Phe Glu Leu Leu Arg Gln Ala Gly Glu Gln 690 695 700	336
15	ATT TCC CAA GGC GCT GAT CAC GTG CTG TGT GTC GCG GCA GAG TCC ATG Ile Ser Gln Gly Ala Asp His Val Leu Cys Val Ala Ala Glu Ser Met 705 710 715	384
	TCG CGT AAC CCC ATC GCG TCG TAT ACA CAC CGG GGC GGG TTC CGC CTC Ser Arg Asn Pro Ile Ala Ser Tyr Thr His Arg Gly Gly Phe Arg Leu 720 725 730	432
20	GGT GCG CCC GTT GAG TTC AAG GAT TTT TTG TGG GAG GCA TTG TTT GAT Gly Ala Pro Val Glu Phe Lys Asp Phe Leu Trp Glu Ala Leu Phe Asp 735 740 745	480
25	CCT GCT CCA GGA CTC GAC ATG ATC GCT ACC GCA GAA AAC CTG GCG CGC Pro Ala Pro Gly Leu Asp Met Ile Ala Thr Ala Glu Asn Leu Ala Arg 750 755 760 765	528
30	CTG TAC GGA ATC ACC AGG GGA GAA GCT AAT TCC TAC GCG GTA AGC AGC Leu Tyr Gly Ile Thr Arg Gly Glu Ala Asn Ser Tyr Ala Val Ser Ser 770 775 780	576
	TTC GAG CGC GCA TTG AGG GCG CAA GAG GAG AAA TGG ATT GAC CAA GAG Phe Glu Arg Ala Leu Arg Ala Gln Glu Glu Lys Trp Ile Asp Gln Glu 785 790 795	624
35	ATC GTG GCT GTT ACG GAT GAA CAG TTC GAT TTA GAG GGC TAC AAC AGT Ile Val Ala Val Thr Asp Glu Gln Phe Asp Leu Glu Gly Tyr Asn Ser 800 805 810	672
40	CGA GCA ATT GAA CTG CCT CGG AAG GCA AAA TTG TTG ATC GTG ACA GTC Arg Ala Ile Glu Leu Pro Arg Lys Ala Lys Leu Leu Ile Val Thr Val 815 820 825	720
	ATC CGC GGC CTA GCA GTC TTT GAA GCC CTT TCC CGA TTG AAG CCT GTT Ile Arg Gly Leu Ala Val Phe Glu Ala Leu Ser Arg Leu Lys Pro Val 830 835 840 845	768
45	CAT TCT GGC GGG GTG CAG ACT GCG GGC AAC AGC TGT GCC GTA GTG GAC His Ser Gly Gly Val Gln Thr Ala Gly Asn Ser Cys Ala Val Val Asp 850 855 860	816
50	GGC GCC GCG GCG GCT TTG GTG GCT CGA GAG TCG TCT GCG ACA CAG CCG Gly Ala Ala Ala Ala Leu Val Ala Arg Glu Ser Ser Ala Thr Gln Pro 865 870 875	864

55

EP 0 845 532 A2

	GTC TTG GCT AGG ATA CTG GCT ACC TCC GTA GTC GGG ATC GAG CCC GAG Val Leu Ala Arg Ile Leu Ala Thr Ser Val Val Gly Ile Glu Pro Glu 880 885 890	912
5	CAT ATG GGG CTC GGC CCT GCG CCC GCG ATT CGC CTG CTG CTT GCG CGT His Met Gly Leu Gly Pro Ala Pro Ala Ile Arg Leu Leu Leu Ala Arg 895 900 905	960
10	AGT GAT CTT AGT TTG AGG GAT ATC GAC CTC TTT GAG ATA AAC GAG GCG Ser Asp Leu Ser Leu Arg Asp Ile Asp Leu Phe Glu Ile Asn Glu Ala 910 915 920 925	1008
15	CAG GCC GCC CAA GTT CTA GCG GTA CAG CAT GAA TTG GGT ATT GAG CAC Gln Ala Ala Gln Val Leu Ala Val Gln His Glu Leu Gly Ile Glu His 930 935 940	1056
20	TCA AAA CTT AAT ATT TGG GGC GGG GCC ATT GCA CTT GGA CAC CCG CTT Ser Lys Leu Asn Ile Trp Gly Gly Ala Ile Ala Leu Gly His Pro Leu 945 950 955	1104
25	GCC GCG ACC GGA TTG CGT CTC TGC ATG ACC CTC GCT CAC CAA TTG CAA Ala Ala Thr Gly Leu Arg Leu Cys Met Thr Leu Ala His Gln Leu Gln 960 965 970	1152
30	GCT AAT AAC TTT CGA TAT GGA ATT GCC TCG GCA TGC ATT GGT GGG GGA Ala Asn Asn Phe Arg Tyr Gly Ile Ala Ser Ala Cys Ile Gly Gly Gly 975 980 985	1200
35	CAG GGG ATG GCG GTT CTT TTA GAG AAT CCC CAC TTC GGT TCG TCC TCT Gln Gly Met Ala Val Leu Leu Glu Asn Pro His Phe Gly Ser Ser Ser 990 995 1000 1005	1248
40	GCA CGA AGT TCG ATG ATT AAC AGA GTT GAC CAC TAT CCA CTG AGC Ala Arg Ser Ser Met Ile Asn Arg Val Asp His Tyr Pro Leu Ser 1010 1015 1020	1293
45	TAA	1296
50	(2) ANGABEN ZU SEQ ID NO: 32: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 431 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 32: Met Ser Trp Ser Gly Gly Ala Tyr Ser Ala Phe Ser Asp Thr Ala Leu 1 5 10 15 Val Ala Ala Val Arg Thr Pro Trp Ile Asp Cys Gly Gly Ala Leu Ser 20 25 30	
55		

EP 0 845 532 A2

Leu Val Ser Pro Ile Asp Leu Gly Val Lys Val Ala Arg Glu Val Leu
 35 40 45
 Met Arg Ala Ser Leu Glu Pro Gln Met Val Asp Ser Val Leu Ala Gly
 50 55 60
 Ser Met Ala Gln Ala Ser Phe Asp Ala Tyr Leu Leu Pro Arg His Ile
 65 70 75 80
 Gly Leu Tyr Ser Gly Val Pro Lys Ser Val Pro Ala Leu Gly Val Gln
 85 90 95
 Arg Ile Cys Gly Thr Gly Phe Glu Leu Leu Arg Gln Ala Gly Glu Gln
 100 105 110
 Ile Ser Gln Gly Ala Asp His Val Leu Cys Val Ala Ala Glu Ser Met
 115 120 125
 Ser Arg Asn Pro Ile Ala Ser Tyr Thr His Arg Gly Gly Phe Arg Leu
 130 135 140
 Gly Ala Pro Val Glu Phe Lys Asp Phe Leu Trp Glu Ala Leu Phe Asp
 145 150 155 160
 Pro Ala Pro Gly Leu Asp Met Ile Ala Thr Ala Glu Asn Leu Ala Arg
 165 170 175
 20
 Leu Tyr Gly Ile Thr Arg Gly Glu Ala Asn Ser Tyr Ala Val Ser Ser
 180 185 190
 Phe Glu Arg Ala Leu Arg Ala Gln Glu Lys Trp Ile Asp Gln Glu
 195 200 205
 Ile Val Ala Val Thr Asp Glu Gln Phe Asp Leu Glu Gly Tyr Asn Ser
 210 215 220
 Arg Ala Ile Glu Leu Pro Arg Lys Ala Lys Leu Leu Ile Val Thr Val
 225 230 235 240
 Ile Arg Gly Leu Ala Val Phe Glu Ala Leu Ser Arg Leu Lys Pro Val
 245 250 255
 His Ser Gly Gly Val Gln Thr Ala Gly Asn Ser Cys Ala Val Val Asp
 260 265 270
 Gly Ala Ala Ala Ala Leu Val Ala Arg Glu Ser Ser Ala Thr Gln Pro
 275 280 285
 Val Leu Ala Arg Ile Leu Ala Thr Ser Val Val Gly Ile Glu Pro Glu
 290 295 300
 His Met Gly Leu Gly Pro Ala Pro Ala Ile Arg Leu Leu Leu Ala Arg
 305 310 315 320
 25
 Ser Asp Leu Ser Leu Arg Asp Ile Asp Leu Phe Glu Ile Asn Glu Ala

55

	325	330	335	
5	Gln Ala Ala Gln Val Leu Ala Val Gln His Glu Leu Gly Ile Glu His 340	345	350	
	Ser Lys Leu Asn Ile Trp Gly Gly Ala Ile Ala Leu Gly His Pro Leu 355	360	365	
10	Ala Ala Thr Gly Leu Arg Leu Cys Met Thr Leu Ala His Gln Leu Gln 370	375	380	
	Ala Asn Asn Phe Arg Tyr Gly Ile Ala Ser Ala Cys Ile Gly Gly Gly 385	390	395	400
15	Gln Gly Met Ala Val Leu Leu Glu Asn Pro His Phe Gly Ser Ser Ser 405	410	415	
	Ala Arg Ser Ser Met Ile Asn Arg Val Asp His Tyr Pro Leu Ser 420	425	430	
20	(2) ANGABEN ZU SEQ ID NO: 33:			
	(i) SEQUENZKENNZEICHEN:			
	(A) LÄNGE: 1596 Basenpaare			
25	(B) ART: Nucleotid			
	(C) STRANGFORM: Doppelstrang			
	(D) TOPOLOGIE: linear			
	(ii) ART DES MOLEKÜLS: Genom-DNA			
30	(iii) HYPOTHETISCH: NEIN			
	(iv) ANTISENSE: NEIN			
35	(ix) MERKMAL:			
	(A) NAME/Schlüssel: CDS			
	(B) LAGE: 1..1593			
	(D) SONSTIGE ANGABEN:/product= "Chemotaxis-Protein" /gene= "mac"			
40	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 33:			
	ATG ATT AGT TTC GCT CGT ATG GCA GAA AGT TTA GGA GTC CAG GCT AAA Met Ile Ser Phe Ala Arg Met Ala Glu Ser Leu Gly Val Gln Ala Lys	435	440	445
45	CTT GCC CTT GCC TTC GCA CTC GTA TTA TGT GTC GGG CTG ATT GTT ACC Leu Ala Leu Ala Phe Ala Leu Val Leu Cys Val Gly Leu Ile Val Thr	450	455	460
50	GGC ACG GGT TTC TAC AGT GTA CAT ACC TTG TCA GGG TTG GTG GAA AAG Gly Thr Gly Phe Tyr Ser Val His Thr Leu Ser Gly Leu Val Glu Lys	465	470	475
55				

EP 0 845 532 A2

	AGC GCG ATA GCT GGT GAG TTG CGG GCG AAA ATT CAG GAA CTG AAG GTT Ser Ala Ile Ala Gly Glu Leu Arg Ala Lys Ile Gln Glu Leu Lys Val 480 485 490 495	192
5	CTG GAG CAG CGC GCC TTA TTC ATC GCC GAT GAA GGG TCG CTG AAG CAG Leu Glu Gln Arg Ala Leu Phe Ile Ala Asp Glu Gly Ser Leu Lys Gln 500 505 510	240
10	CGC TCG ATC CTC CTA AGT CAG GTG ATA GCT GAA GTT AAT GAT GCT ATA Arg Ser Ile Leu Leu Ser Gln Val Ile Ala Glu Val Asn Asp Ala Ile 515 520 525	288
15	GAT ATT TTT GAC TTT CAG CGC GGA CGA TCT GAG TTA CTT AAA TTC GCT Asp Ile Phe Asp Phe Gln Arg Gly Arg Ser Glu Leu Leu Lys Phe Ala 530 535 540	336
20	GCT TCT TCG CGC GAA GCA AGT TAC TCC ATT GAG GTC GGT AGT AAC GCT Ala Ser Ser Arg Glu Ala Ser Tyr Ser Ile Glu Val Gly Ser Asn Ala 545 550 555	384
25	GCG GCC GAT AAG TTG CAG TCG GGC GAA CCA AGT GAC GCA TTG ATG GTT Ala Ala Asp Lys Leu Gln Ser Gly Glu Pro Ser Asp Ala Leu Met Val 560 565 570 575	432
30	GCC GAT AAA AAG CTG AAT GTT GAG TAT GAG CAA TTG AGT TCT GCT GTG Ala Asp Lys Lys Leu Asn Val Glu Tyr Glu Gln Leu Ser Ser Ala Val 580 585 590	480
35	AAT GCA CTG ATG GGG CAT TTA ATT GAG GAT CAG AAT GAA AAA GTT CCA Asn Ala Leu Met Gly His Leu Ile Glu Asp Gln Asn Glu Lys Val Pro 595 600 605	528
40	CTA ATC TAC TAT ATG CTT GGC GGC GTA ACT TTG TTT ACG ATG CTC ATG Leu Ile Tyr Tyr Met Leu Gly Gly Val Thr Leu Phe Thr Met Leu Met 610 615 620	576
45	AGT GCT TAT TCG GTC TGG TTC ATT TCG CGT CAG TTA GTT CCG CCA TTA Ser Ala Tyr Ser Val Trp Phe Ile Ser Arg Gln Leu Val Pro Pro Leu 625 630 635	624
50	AAG TCG ACG GTG CAG CTT GCC GAG CGG ATT GCA TCA GGC GAC TTG GCT Lys Ser Thr Val Gln Leu Ala Glu Arg Ile Ala Ser Gly Asp Leu Ala 640 645 650 655	672
55	GAT GTC GGG GAC AGC AGG CGC AAG GAT GAA ATC GGT CAG TTG CAA AGT Asp Val Gly Asp Ser Arg Arg Lys Asp Glu Ile Gly Gln Leu Gln Ser 660 665 670	720
60	GCA ACT AGG CGG ATG GCG ATT GGA CTG CGT AAT CTG GTC GGT GAT ATT Ala Thr Arg Arg Met Ala Ile Gly Leu Arg Asn Leu Val Gly Asp Ile 675 680 685	768
65	GGT CAA AGT CGT GCG CAA CTG GTT TCA TCG TCC AGC GAC CTT TCG GCC Gly Gln Ser Arg Ala Gln Leu Val Ser Ser Ser Asp Leu Ser Ala 690 695 700	816

EP 0 845 532 A2

	ATC TGT GCT CAG GCT CAG ATT GAT GTC GAG TGC CAG AAG CTT TCG GTC Ile Cys Ala Gln Ala Gln Ile Asp Val Glu Cys Gln Lys Leu Ser Val 705 710 715	864
5	GCC CAG GTC TCT ACC GCC GTG AAC GAG TTG GTT GAA ACC GTC CAG GCA Ala Gln Val Ser Thr Ala Val Asn Glu Leu Val Glu Thr Val Gln Ala 720 725 730 735	912
10	ATA GCA AAA AGC ACC GAA GAG GCA GCA ACA GTC GCC GTC TTG GCC GAT Ile Ala Lys Ser Thr Glu Glu Ala Ala Thr Val Ala Val Leu Ala Asp 740 745 750	960
15	GAA AAG GCA CGC GGT GGT GAA AGT GTC GTT AAC AAG GCC GTT GAT TTC Glu Lys Ala Arg Gly Gly Glu Ser Val Val Asn Lys Ala Val Asp Phe 755 760 765	1008
	ATT GAG CAC CTC TCC GGA GAT ATG GCG GAA CTG GGA GAC GCA ATG GAG Ile Glu His Leu Ser Gly Asp Met Ala Glu Leu Gly Asp Ala Met Glu 770 775 780	1056
20	CGG CTT CAG AAC GAC AGT GCG CAG ATC AAT AAG GTA GTA GAC GTC ATT Arg Leu Gln Asn Asp Ser Ala Gln Ile Asn Lys Val Val Asp Val Ile 785 790 795	1104
25	AAG GCT GTG GCG GAG CAG ACC AAT CTG CTA GCC CTG AAT GCG GCG ATA Lys Ala Val Ala Glu Gln Thr Asn Leu Leu Ala Leu Asn Ala Ala Ile 800 805 810 815	1152
	GAG GCG GCC CGT GCA GGA GAG CAG GGC AGG GGC TTT GCG GTC GTG GCG Glu Ala Ala Arg Ala Gly Glu Gln Gly Arg Gly Phe Ala Val Val Ala 820 825 830	1200
30	GAT GAG GTT CGT GCT TTG GCG ATG CGC ACC CAA CAA TCG ACC AAA GAA Asp Glu Val Arg Ala Leu Ala Met Arg Thr Gln Gln Ser Thr Lys Glu 835 840 845	1248
35	ATT GAG AGG CTA GTG GTT TCA TTG CAG CAG GGA AGT GAA GCT GCG GGC Ile Glu Arg Leu Val Val Ser Leu Gln Gln Gly Ser Glu Ala Ala Gly 850 855 860	1296
40	GAG TTG ATG CGG CGT GGC AAG GTC CGG ACG CAT GAC GTC GTT GGA TTG Glu Leu Met Arg Arg Gly Lys Val Arg Thr His Asp Val Val Gly Leu 865 870 875	1344
	GCC CAG CAA GCC GCG CGC CGC GCT ACT CGA AAT TAC CCA GCT GTC GCC Ala Gln Gln Ala Ala Arg Arg Ala Thr Arg Asn Tyr Pro Ala Val Ala 880 885 890 895	1392
45	GGC ATC CAA GCG ATG AAC TAT CAG ATC GCC GCT GGA GCA GAG CAG CAA Gly Ile Gln Ala Met Asn Tyr Gln Ile Ala Ala Gly Ala Glu Gln Gln 900 905 910	1440
50	GGG GCT GCT GTG GTT CAA ATC AAC CAG AAT ATG CTT GAA GTG CAT AAG Gly Ala Ala Val Val Gln Ile Asn Gln Asn Met Leu Glu Val His Lys 915 920 925	1488

55

	ATG GCT GAC GAG TCC GCC ATT AAA GCG GGA CAG ACC ATG AAG TCA TCG Met Ala Asp Glu Ser Ala Ile Lys Ala Gly Gln Thr Met Lys Ser Ser 930 935 940	1536
5	AAG GAG CTT GCT CAC CTC GGC AGT GCG CTA CAA AAA TCC GTT GAT CGA Lys Glu Leu Ala His Leu Gly Ser Ala Leu Gln Lys Ser Val Asp Arg 945 950 955	1584
10	TTC CAG CTG TAG Phe Gln Leu 960	1596
15	(2) ANGABEN ZU SEQ ID NO: 34:	
	(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 531 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear	
20	(ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 34:	
25	Met Ile Ser Phe Ala Arg Met Ala Glu Ser Leu Gly Val Gln Ala Lys 1 5 10 15	
	Leu Ala Leu Ala Phe Ala Leu Val Leu Cys Val Gly Leu Ile Val Thr 20 25 30	
30	Gly Thr Gly Phe Tyr Ser Val His Thr Leu Ser Gly Leu Val Glu Lys 35 40 45	
	Ser Ala Ile Ala Gly Glu Leu Arg Ala Lys Ile Gln Glu Leu Lys Val 50 55 60	
35	Leu Glu Gln Arg Ala Leu Phe Ile Ala Asp Glu Gly Ser Leu Lys Gln 65 70 75 80	
	Arg Ser Ile Leu Leu Ser Gln Val Ile Ala Glu Val Asn Asp Ala Ile 85 90 95	
40	Asp Ile Phe Asp Phe Gln Arg Gly Arg Ser Glu Leu Leu Lys Phe Ala 100 105 110	
	Ala Ser Ser Arg Glu Ala Ser Tyr Ser Ile Glu Val Gly Ser Asn Ala 115 120 125	
45	Ala Ala Asp Lys Leu Gln Ser Gly Glu Pro Ser Asp Ala Leu Met Val 130 135 140	
	Ala Asp Lys Lys Leu Asn Val Glu Tyr Glu Gln Leu Ser Ser Ala Val 145 150 155 160	
50	Asn Ala Leu Met Gly His Leu Ile Glu Asp Gln Asn Glu Lys Val Pro 165 170 175	
55		

EP 0 845 532 A2

Leu Ile Tyr Tyr Met Leu Gly Gly Val Thr Leu Phe Thr Met Leu Met
 180 185 190
 5 Ser Ala Tyr Ser Val Trp Phe Ile Ser Arg Gln Leu Val Pro Pro Leu
 195 200 205
 Lys Ser Thr Val Gln Leu Ala Glu Arg Ile Ala Ser Gly Asp Leu Ala
 210 215 220
 10 Asp Val Gly Asp Ser Arg Arg Lys Asp Glu Ile Gly Gln Leu Gln Ser
 225 230 235 240
 Ala Thr Arg Arg Met Ala Ile Gly Leu Arg Asn Leu Val Gly Asp Ile
 245 250 255
 15 Gly Gln Ser Arg Ala Gln Leu Val Ser Ser Ser Ser Asp Leu Ser Ala
 260 265 270
 Ile Cys Ala Gln Ala Gln Ile Asp Val Glu Cys Gln Lys Leu Ser Val
 275 280 285
 20 Ala Gln Val Ser Thr Ala Val Asn Glu Leu Val Glu Thr Val Gln Ala
 290 295 300
 Ile Ala Lys Ser Thr Glu Glu Ala Ala Thr Val Ala Val Leu Ala Asp
 25 305 310 315 320
 Glu Lys Ala Arg Gly Glu Ser Val Val Asn Lys Ala Val Asp Phe
 325 330 335
 Ile Glu His Leu Ser Gly Asp Met Ala Glu Leu Gly Asp Ala Met Glu
 340 345 350
 Arg Leu Gln Asn Asp Ser Ala Gln Ile Asn Lys Val Val Asp Val Ile
 355 360 365
 35 Lys Ala Val Ala Glu Gln Thr Asn Leu Leu Ala Leu Asn Ala Ala Ile
 370 375 380
 Glu Ala Ala Arg Ala Gly Glu Gln Gly Arg Gly Phe Ala Val Val Ala
 385 390 395 400
 40 Asp Glu Val Arg Ala Leu Ala Met Arg Thr Gln Gln Ser Thr Lys Glu
 405 410 415
 Ile Glu Arg Leu Val Val Ser Leu Gln Gln Gly Ser Glu Ala Ala Gly
 420 425 430
 45 Glu Leu Met Arg Arg Gly Lys Val Arg Thr His Asp Val Val Gly Leu
 435 440 445
 Ala Gln Gln Ala Ala Arg Arg Ala Thr Arg Asn Tyr Pro Ala Val Ala
 450 455 460
 50 Gly Ile Gln Ala Met Asn Tyr Gln Ile Ala Ala Gly Ala Glu Gln Gln

55

- 5
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 136 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear

- 10
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 36:

Met Pro Tyr Ala Gly Ser Gln Leu Lys Leu Ala Gln Gly Leu Ile Glu
1 5 10 15
Ala Leu Thr Pro Tyr Asp Leu Arg Pro Ala Gln Leu Ser Ala Leu Leu
20 25 30
Ile Ile Glu Ala Ser Pro Gly Leu Met Gln Ala Asp Leu Ala Arg Met
35 40 45
Leu Ala Ile Glu Pro Pro Gln Leu Val Pro Leu Leu Asn Lys Leu Glu
50 55 60
Lys Leu Gly Leu Ala Val Arg Val Arg Cys Lys Pro Asp Lys Arg Ser
65 70 75 80
Tyr Gly Ile Phe Leu Ser Lys Ala Gly Glu Thr Gln Leu Lys Glu Leu
85 90 95
Lys Lys Ile Val Val Gln Ser Asp Gln Asp Ala Thr Ser Met Leu Ser
100 105 110
Asp Asp Glu Arg Glu Gln Leu Leu Leu Leu His Lys Ile His Ala
115 120 125
Glu Pro Glu Ala Gln Gln Leu Gly
130 135

35
(2) ANGABEN ZU SEQ ID NO: 37:

- 40
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 1446 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Doppelstrang
(D) TOPOLOGIE: linear

- 45
(ii) ART DES MOLEKÜLS: Genom-DNA

- (iii) HYPOTHETISCH: NEIN

- (iv) ANTISENSE: NEIN

- 50
(ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE: 1..1443
(D) SONSTIGE ANGABEN: /product=
"Coniferylaldehyd-Dehydrogenase"

/gene= "caldh"

5 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 37:

ATG AGC ATT CTT GGT TTG AAT GGT GCC CCG GTC GGA GCT GAG CAG CTG Met Ser Ile Leu Gly Leu Asn Gly Ala Pro Val Gly Ala Glu Gln Leu 140 145 150	48
10 GGC TCG GCT CTT GAT CGC ATG AAG AAG GCG CAC CTG GAG CAG GGG CCT Gly Ser Ala Leu Asp Arg Met Lys Lys Ala His Leu Glu Gln Gly Pro 155 160 165	96
15 GCA AAC TTG GAG CTG CGT CTG AGT AGG CTG GAT CGT GCG ATT GCA ATG Ala Asn Leu Glu Leu Arg Leu Ser Arg Leu Asp Arg Ala Ile Ala Met 170 175 180	144
20 CTT CTG GAA AAT CGT GAA GCA ATT GCC GAC GCG GTT TCT GCT GAC TTT Leu Leu Glu Asn Arg Glu Ala Ile Ala Asp Ala Val Ser Ala Asp Phe 185 190 195 200	192
25 GGC AAT CGC AGC CGT GAG CAA ACA CTG CTT TGC GAC ATT GCT GGC TCG Gly Asn Arg Ser Arg Glu Gln Thr Leu Leu Cys Asp Ile Ala Gly Ser 205 210 215	240
30 GTG GCA AGC CTG AAG GAT AGC CGC GAG CAC GTG GCC AAA TGG ATG GAG Val Ala Ser Leu Lys Asp Ser Arg Glu His Val Ala Lys Trp Met Glu 220 225 230	288
35 CCC GAA CAT CAC AAG GCG ATG TTT CCA GGG GCG GAG GCA CGC GTT GAG Pro Glu His His Lys Ala Met Phe Pro Gly Ala Glu Ala Arg Val Glu 235 240 245	336
40 TTT CAG CCG CTG GGT GTC GTT GGG GTC ATT AGT CCC TGG AAC TTC CCT Phe Gln Pro Leu Gly Val Val Gly Val Ile Ser Pro Trp Asn Phe Pro 250 255 260	384
45 ATC GTA CTG GCC TTT GGG CCG CTG GCC GGC ATA TTC GCA GCA GGT AAT Ile Val Leu Ala Phe Gly Pro Leu Ala Gly Ile Phe Ala Ala Gly Asn 265 270 275 280	432
50 CGC GCC ATG CTC AAG CCG TCC GAG CTT ACC CCG CGG ACT TCT GCC CTG Arg Ala Met Leu Lys Pro Ser Glu Leu Thr Pro Arg Thr Ser Ala Leu 285 290 295	480
55 CTT GCG GAG CTA ATT GCT CGT TAC TTC GAT GAA ACT GAG CTG ACT ACA Leu Ala Glu Leu Ile Ala Arg Tyr Phe Asp Glu Thr Glu Leu Thr Thr 300 305 310	528
55 GTG CTG GGC GAC GCT GAA GTC GGT GCG CTG TTC AGT GCT CAG CCT TTC Val Leu Gly Asp Ala Glu Val Gly Ala Leu Phe Ser Ala Gln Pro Phe 315 320 325	576
55 GAT CAT CTG ATC TTC ACC GGC GGC ACT GCC GTG GCC AAG CAC ATC ATG Asp His Leu Ile Phe Thr Gly Gly Thr Ala Val Ala Lys His Ile Met	624

55

EP 0 845 532 A2

	330	335	340	
5	CGT GCC GCG GCG GAT AAC CTA GTG CCC GTT ACC CTG GAA TTG GGT GGC Arg Ala Ala Ala Asp Asn Leu Val Pro Val Thr Leu Glu Leu Gly Gly 345 350 355 360			672
10	AAA TCG CCG GTG ATC GTT TCC CGC AGT GCA GAT ATG GCG GAC GTT GCA Lys Ser Pro Val Ile Val Ser Arg Ser Ala Asp Met Ala Asp Val Ala 365 370 375			720
15	CAA CGG GTG TTG ACG GTG AAA ACC TTC AAT GCC GGG CAA ATC TGT CTG Gln Arg Val Leu Thr Val Lys Thr Phe Asn Ala Gly Gln Ile Cys Leu 380 385 390			768
20	GCA CCG GAC TAT GTG CTG CTG CCG GAA GAA TCG CTG GAT AGC TTT GTC Ala Pro Asp Tyr Val Leu Leu Pro Glu Glu Ser Leu Asp Ser Phe Val 395 400 405			816
25	GCC GAG GCG ACG CGC TTC GTG GCC GCA ATG TAT CCC TCG CTT CTA GAT Ala Glu Ala Thr Arg Phe Val Ala Ala Met Tyr Pro Ser Leu Leu Asp 410 415 420			864
30	AAT CCG GAT TAC ACG TCG ATC ATC AAT GCC CGA AAT TTC GAC CGT CTG Asn Pro Asp Tyr Thr Ser Ile Ile Asn Ala Arg Asn Phe Asp Arg Leu 425 430 435 440			912
35	CAT CGC TAC CTG ACT GAT GCG CAG GCA AAG GGA GGG CGC GTC ATT GAA His Arg Tyr Leu Thr Asp Ala Gln Ala Lys Gly Gly Arg Val Ile Glu 445 450 455			960
40	ATC AAT CCT GCG GCC GAA GAG TTG GGG GAT AGT GGT ATC AGG AAG ATC Ile Asn Pro Ala Ala Glu Glu Leu Gly Asp Ser Gly Ile Arg Lys Ile 460 465 470			1008
45	GGC CCC ACT TTG ATC GTG AAT GTG TCG GAT GAA ATG CTG GTC TTG AAC Ala Pro Thr Leu Ile Val Asn Val Ser Asp Glu Met Leu Val Leu Asn 475 480 485			1056
50	GAG GAG ATC TTT GGT CCG CTG CTC CCG ATC AAG ACT TAT CGT GAT TTC Glu Glu Ile Phe Gly Pro Leu Leu Pro Ile Lys Thr Tyr Arg Asp Phe 490 495 500			1104
55	GAC TCG GCT ATC GAC TAC GTC AAC AGC AAG CAG CGA CCA CTT GCC TCG Asp Ser Ala Ile Asp Tyr Val Asn Ser Lys Gln Arg Pro Leu Ala Ser 505 510 515 520			1152
60	TAC TTC TTC GGC GAA GAT GCG GTT GAG CGT GAG CAA GTG CTT AAG CGT Tyr Phe Phe Gly Glu Asp Ala Val Glu Arg Glu Gln Val Leu Lys Arg 525 530 535			1200
65	ACG GTT TCG GGC GCC GTG GTC GTG AAC GAT GTC ATG AGC CAT GTG ATG Thr Val Ser Gly Ala Val Val Val Asn Asp Val Met Ser His Val Met 540 545 550			1248
70	ATG GAT ACG CTT CCA TTT GGT GGT GTG GGG CAC TCG GGG ATG GGG GCA			1296

55

Met Asp Thr Leu Pro Phe Gly Gly Val Gly His Ser Gly Met Gly Ala
 555 560 565

5 TAT CAC GGC ATT TAT GGT TTC CGA ACC TTC AGC CAT GCC AAG CCT GTT 1344
 Tyr His Gly Ile Tyr Gly Phe Arg Thr Phe Ser His Ala Lys Pro Val
 570 575 580

10 CTC GTG CAA AGT CCT GTG GGT GAG TCG AAC TTG GCG ATG CGC GCA CCC 1392
 Leu Val Gln Ser Pro Val Gly Glu Ser Asn Leu Ala Met Arg Ala Pro
 585 590 595 600

15 TAC GGA GAA GCG ATC CAC GGA CTG CTC TCT GTC CTC CTT TCA ACG GAG 1440
 Tyr Gly Glu Ala Ile His Gly Leu Leu Ser Val Leu Leu Ser Thr Glu
 605 610 615

20 TGT TAG 1446
 Cys

(2) ANGABEN ZU SEQ ID NO: 38:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 481 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 38:

30 Met Ser Ile Leu Gly Leu Asn Gly Ala Pro Val Gly Ala Glu Gln Leu
 1 5 10 15

Gly Ser Ala Leu Asp Arg Met Lys Lys Ala His Leu Glu Gln Gly Pro
 20 25 30

35 Ala Asn Leu Glu Leu Arg Leu Ser Arg Leu Asp Arg Ala Ile Ala Met
 35 40 45

40 Leu Leu Glu Asn Arg Glu Ala Ile Ala Asp Ala Val Ser Ala Asp Phe
 50 55 60

Gly Asn Arg Ser Arg Glu Gln Thr Leu Leu Cys Asp Ile Ala Gly Ser
 65 70 75 80

Val Ala Ser Leu Lys Asp Ser Arg Glu His Val Ala Lys Trp Met Glu
 85 90 95

Pro Glu His His Lys Ala Met Phe Pro Gly Ala Glu Ala Arg Val Glu
 100 105 110

50 Phe Gln Pro Leu Gly Val Val Gly Val Ile Ser Pro Trp Asn Phe Pro
 115 120 125

Ile Val Leu Ala Phe Gly Pro Leu Ala Gly Ile Phe Ala Ala Gly Asn

55

EP 0 845 532 A2

	130	135	140
5	Arg Ala Met Leu Lys Pro Ser Glu Leu Thr Pro Arg Thr Ser Ala Leu		
	145	150	155
	Leu Ala Glu Leu Ile Ala Arg Tyr Phe Asp Glu Thr Glu Leu Thr Thr		
	165	170	175
10	Val Leu Gly Asp Ala Glu Val Gly Ala Leu Phe Ser Ala Gln Pro Phe		
	180	185	190
	Asp His Leu Ile Phe Thr Gly Gly Thr Ala Val Ala Lys His Ile Met		
	195	200	205
15	Arg Ala Ala Ala Asp Asn Leu Val Pro Val Thr Leu Glu Leu Gly Gly		
	210	215	220
	Lys Ser Pro Val Ile Val Ser Arg Ser Ala Asp Met Ala Asp Val Ala		
	225	230	235
20	Gln Arg Val Leu Thr Val Lys Thr Phe Asn Ala Gly Gln Ile Cys Leu		
	245	250	255
	Ala Pro Asp Tyr Val Leu Leu Pro Glu Glu Ser Leu Asp Ser Phe Val		
25	260	265	270
	Ala Glu Ala Thr Arg Phe Val Ala Ala Met Tyr Pro Ser Leu Leu Asp		
	275	280	285
30	Asn Pro Asp Tyr Thr Ser Ile Ile Asn Ala Arg Asn Phe Asp Arg Leu		
	290	295	300
	His Arg Tyr Leu Thr Asp Ala Gln Ala Lys Gly Gly Arg Val Ile Glu		
	305	310	315
			320
35	Ile Asn Pro Ala Ala Glu Glu Leu Gly Asp Ser Gly Ile Arg Lys Ile		
	325	330	335
	Ala Pro Thr Leu Ile Val Asn Val Ser Asp Glu Met Leu Val Leu Asn		
	340	345	350
40	Glu Glu Ile Phe Gly Pro Leu Leu Pro Ile Lys Thr Tyr Arg Asp Phe		
	355	360	365
	Asp Ser Ala Ile Asp Tyr Val Asn Ser Lys Gln Arg Pro Leu Ala Ser		
	370	375	380
45	Tyr Phe Phe Gly Glu Asp Ala Val Glu Arg Glu Gln Val Leu Lys Arg		
	385	390	395
			400
	Thr Val Ser Gly Ala Val Val Asn Asp Val Met Ser His Val Met		
	405	410	415
50	Met Asp Thr Leu Pro Phe Gly Gly Val Gly His Ser Gly Met Gly Ala		
	420	425	430

55

Tyr His Gly Ile Tyr Gly Phe Arg Thr Phe Ser His Ala Lys Pro Val
 435 440 445

5 Leu Val Gln Ser Pro Val Gly Glu Ser Asn Leu Ala Met Arg Ala Pro
 450 455 460

Tyr Gly Glu Ala Ile His Gly Leu Leu Ser Val Leu Leu Ser Thr Glu
 465 470 475 480

10 Cys

(2) ANGABEN ZU SEQ ID NO: 39:

- 15 (i) SEQUENZKENNZEICHEN:
 (A) LÄNGE: 1827 Basenpaare
 (B) ART: Nucleotid
 (C) STRANGFORM: Doppelstrang
 (D) TOPOLOGIE: linear
- 20 (ii) ART DES MOLEKÜLS: Genom-DNA
- (iii) HYPOTHETISCH: NEIN
- 25 (iv) ANTISENSE: NEIN
- (ix) MERKMAL:
 (A) NAME/SCHLÜSSEL: CDS
 (B) LAGE: complement (4..1827)
 (D) SONSTIGE ANGABEN:/product=
 "Transkriptions-Aktivator-Protein"
 /gene= "tap"

35 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 39:

CTATTTGTCT AGTGGTCGGC GCGAAATTAG ATAAGAAAAGC TGGGCGCGAG TGAGGCCGAG	60
CCGGCGGGCA GCTTCCGAGA CATTGCCTTT CACCTGGCCC AGAGCATGGC TAATCATCGC	120
40 GTCCTCCACT TCTTGAGCG TCATCGCGCT CAGGTCCCTTT GAGTCAAGCG GCGAGTCGAT	180
TGTGCTGGTC GGTTTGGAGA AGGAAGTACT TGGGCTGCCA GTTTCCTGTG GCTGATTATC	240
TTGAGCGGTG GCCAGGATGC CGCTGGCCCC AATGGAGAAC ATCGGTTGAG TCAGTCGTT	300
45 ACCGCTAGTG AAGAGGTGGC TCACGTCAAT GGCTCCATCC TCCGGAGCGC TGATGACTCC	360
GCGCTCCACC AAATTTTGAA GCTCCCGGAT GTTTCCTGGA AAGTCGTAGC CAAGCAGGGC	420
50 ATTGGCTGCA CGTGGAGTGA ATCCGCTGAC CACCCGGCTA TGACGCTGAT TGAAGCGGTG	480
CAGGAAATAG GTCATCAGGA GGGGAATGTC TTCCCTCCTC TCTCGAAGCG GCAGGGAGGTG	540

55

EP 0 845 532 A2

5	GATCGGGTAA ACATTGAGGC GGAAAAAAAAG GTCCTCGCGG AACTCGCCGC GCTGGACGCC	600
	TGCGCGAAGA TCGACATTGG TTGCGGCTAC CACACGGACG TCAACCTTGA GTGTCCTGCT	660
	TCCGCCAACCG CGTTCGACCT CCGACTCTTG CAGGGCGCGA AGTAACCTCC CTTGGGCCAC	720
	GAGGCTTAGC GTCCCTATCT CGTCAAGGAA TAGTGTGCCG CCCGAAGCGC GCTCGAACCG	780
10	TCCTGCTCGA GATTGGGTGG CGCCGGTAAA CGCCCCCGT TCGACGCCGA ACAACTCGGA	840
	CTCCATCAGG GTTCGGGAA TACGTGCGCA ATTGACCGCA ACAAACGGGC CGTCGTGTCT	900
	GGGGCTGATG CGGTGAAGCA TGCGGGCGAA CATCTCCTTG CCCACACCTG ATTCAACCGT	960
15	AAACAGTACC GTCGCCTCCG TGGGTGCTAC GCGCTTCAGC ATGTGGCAGG CAGCATTGAA	1020
	TGCCGAGGAA ATTCCCACCA TGTCGTGTT CGATGCAGTG CTTGAGTCTG CGGCGGAGTG	1080
20	ATGGGGAGTG TTCCTTGTC CCTGCTGCGT TCTTCGTCTC TGCGGCGTGC TTGGTTGCCG	1140
	ACAAATGGTT GCGCTAACGCG CGGCCAACGTC CTCTTCGGCG TCTTCCCATC CTTCCGCTGG	1200
	CTTGCCTGATC ATGCGGCAGA TCTGCGAACCGTGG CATTCCACCT CTCGGTAAAG	1260
25	GATGAGGCAGA CCAACCAGCG CGGACGTATA GCCAATGGCA TAACCCGTCT GCGTCCAGCA	1320
	CGCGGGCTCG GTGCCGATGC CGTAGTGCAGC AATATGTTCA TCATCTTCGC TCGAATGGTG	1380
	CCAGAGGAAT TCGCCGTAGT AGGTCCCCAA ATCCATGTAG AAGTCGAAGT GGATCGGCTC	1440
30	CACCGTACT GCGCCTCCA GAGAGTGCAA GTTGGGCCG GCGGCAAATA GGGAGAGCGG	1500
	ATCGCGTTG CTGAAGCGCT CCTTCAGAAG GGCAGCATCT TTGGCGCCGC AGTGGTAACC	1560
	GGTTCGCAGC ATGATTCCGC GGGCGCGGGC GAAGCCCACG CTTTCAATTAA ATTCCGCTCG	1620
35	CAATGCACCC AGTCCGCTGC TGTGGAGGAG CAGCATTGCG GCGCCGTTCA ACCAGATGCG	1680
	TCCATCGCCA GGGCTGAAAA GGAGGGATTC AGTGAGGTCA TGAAGGGAGG GGACGGCGCC	1740
	TGGCTCCAAT TGCTCGATGG CGCCGCGATT GAGTGTCTTG GGCGCGGTCT TGGAGAGTTC	1800
40	GGCTAGGGAG ATAATTTGC TGGCCAT	1827

(2) ANGABEN ZU SEQ ID NO: 40:

- 45 (i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 608 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear
- 50 (ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 40:

55

EP 0 845 532 A2

Met Ala Ser Lys Phe Ile Ser Leu Ala Glu Leu Ser Lys Thr Ala Pro
1 5 10 15

5 Lys Thr Leu Asn Arg Gly Ala Ile Glu Gln Leu Glu Pro Gly Ala Val
20 25 30

Pro Ser Leu His Asp Leu Thr Glu Ser Leu Leu Phe Ser Pro Gly Asp
35 40 45

10 Gly Arg Ile Trp Leu Asn Gly Ala Arg Met Leu Leu Leu His Ser Ser
50 55 60

Gly Leu Gly Ala Leu Arg Arg Glu Leu Ile Glu Ser Val Gly Phe Ala
65 70 75 80

15 Arg Ala Arg Gly Ile Met Leu Arg Thr Gly Tyr His Cys Gly Ala Lys
85 90 95

Asp Ala Ala Leu Leu Lys Glu Arg Phe Ser Asn Ala Asp Pro Leu Ser
20 100 105 110

Leu Phe Ala Ala Gly Pro Asn Leu His Ser Leu Glu Gly Ala Val Arg
115 120 125

Val Glu Pro Ile His Phe Asp Phe Asp Met Asp Leu Gly Thr Tyr Tyr
25 130 135 140

Gly Glu Phe Leu Trp His His Ser Ser Glu Asp Asp Glu His Ile Ala
145 150 155 160

His Tyr Gly Ile Gly Thr Glu Pro Ala Cys Trp Thr Gln Thr Gly Tyr
30 165 170 175

Ala Ile Gly Tyr Thr Ser Ala Leu Val Gly Arg Leu Ile Leu Tyr Arg
180 185 190

35 Glu Val Glu Cys Arg Ser Thr Gly Ser Gln Ile Cys Arg Met Ile Gly
195 200 205

Lys Pro Ala Glu Glu Trp Glu Asp Ala Glu Glu Asp Leu Ala Ala Leu
40 210 215 220

Ser Ala Thr Ile Cys Arg Gln Pro Ser Thr Pro Gln Arg Arg Arg Thr
225 230 235 240

Gln Gln Gly Gln Arg Asn Thr Pro His His Ser Ala Ala Asp Ser Ser
45 245 250 255

Thr Ala Ser Glu His Asp Met Val Gly Ile Ser Ser Ala Phe Asn Ala
260 265 270

Ala Cys His Met Leu Lys Arg Val Ala Pro Thr Glu Ala Thr Val Leu
50 275 280 285

Phe Thr Gly Glu Ser Gly Val Gly Lys Glu Met Phe Ala Arg Met Leu

55

EP 0 845 532 A2

	290	295	300
5	His Arg Ile Ser Pro Arg His Asp Gly Pro Phe Val Ala Val Asn Cys 305 310 315 320		
	Ala Arg Ile Pro Glu Thr Leu Met Glu Ser Glu Leu Phe Gly Val Glu 325 330 335		
10	Arg Gly Ala Phe Thr Gly Ala Thr Gln Ser Arg Ala Gly Arg Phe Glu 340 345 350		
	Arg Ala Ser Gly Gly Thr Leu Phe Leu Asp Glu Ile Gly Thr Leu Ser 355 360 365		
15	Leu Val Ala Gln Gly Lys Leu Leu Arg Ala Leu Gln Glu Ser Glu Val 370 375 380		
	Glu Arg Val Gly Gly Ser Arg Thr Leu Lys Val Asp Val Arg Val Val 385 390 395 400		
20	Ala Ala Thr Asn Val Asp Leu Arg Ala Gly Val Gln Arg Gly Glu Phe 405 410 415		
	Arg Glu Asp Leu Phe Phe Arg Leu Asn Val Tyr Pro Ile His Leu Pro 420 425 430		
25	Pro Leu Arg Glu Arg Lys Glu Asp Ile Pro Leu Leu Met Thr Tyr Phe 435 440 445		
	Leu His Arg Phe Asn Gln Arg His Ser Arg Val Val Ser Gly Phe Thr 450 455 460		
30	Pro Arg Ala Ala Asn Ala Leu Leu Gly Tyr Asp Phe Pro Gly Asn Ile 465 470 475 480		
	Arg Glu Leu Gln Asn Leu Val Glu Arg Gly Val Ile Ser Ala Pro Glu 485 490 495		
35	Asp Gly Ala Ile Asp Val Ser His Leu Phe Thr Ser Gly Glu Arg Leu 500 505 510		
	Thr Gln Pro Met Phe Ser Ile Gly Ala Ser Gly Ile Leu Ala Thr Ala 515 520 525		
40	Gln Asp Asn Gln Pro Gln Glu Thr Gly Ser Pro Ser Thr Ser Phe Ser 530 535 540		
	Lys Pro Thr Ser Thr Ile Asp Ser Pro Leu Asp Ser Lys Asp Leu Ser 545 550 555 560		
45	Ala Met Thr Leu Gln Glu Val Glu Asp Ala Met Ile Ser His Ala Leu 565 570 575		
	Gly Gln Val Lys Gly Asn Val Ser Glu Ala Ala Arg Arg Leu Gly Leu 580 585 590		

55

EP 0 845 532 A2

	705	710	715	720	
5	GTC AAC GTG TCC TCT GTG CTT GGC GCC GAG TGG CCG GCC CGC CTT CAG Val Asn Val Ser Ser Val Leu Gly Ala Glu Trp Pro Ala Arg Leu Gln 725 730 735				384
10	TTG CAT AAG GAG CTG GGG AGT GTT GTT GGA TTC TCC GAA GGC CAG GCA Leu His Lys Glu Leu Gly Ser Val Val Gly Phe Ser Glu Gly Gin Ala 740 745 750				432
15	TGG CTT AAG CAG AAT CCA GTG GCC CCC GAA TTC TGC TAC CAG TAT TTC Trp Leu Lys Gln Asn Pro Val Ala Pro Glu Phe Cys Tyr Gln Tyr Phe 755 760 765				480
20	AAA GAA GCA CTG ATC GTT TGG TCT CAA GTT CAG GCG CAG GAA TGG TTC Lys Glu Ala Leu Ile Val Trp Ser Gln Val Gln Ala Gln Glu Trp Phe 770 775 780				528
25	ATG AGG ACG TCT GTA CGC ATG AAC TGC ATC GCC CCC GGC CCT GTA TTC Met Arg Thr Ser Val Arg Met Asn Cys Ile Ala Pro Gly Pro Val Phe 785 790 795 800				576
30	ACT CCC ATT CTC AAT GAG TTC GTC ACC ATG CTG GGT CAA GAG CGG ACT Thr Pro Ile Leu Asn Glu Phe Val Thr Met Leu Gly Gln Glu Arg Thr 805 810 815				624
35	CAG GCG GAC GCT CAT CGT ATT AAG CGC CCA GCA TAT GCC GAT GAA GTG Gln Ala Asp Ala His Arg Ile Lys Arg Pro Ala Tyr Ala Asp Glu Val 820 825 830				672
40	GCC GCG GTG ATT GCA TTC ATG TGT GCT GAG GAG TCA CGT TGG ATC AAC Ala Ala Val Ile Ala Phe Met Cys Ala Glu Glu Ser Arg Trp Ile Asn 835 840 845				720
45	GGC ATA AAT ATT CCA GTG GAC GGA GGT TTG GCA TCG ACC TAC GTG Gly Ile Asn Ile Pro Val Asp Gly Gly Leu Ala Ser Thr Tyr Val 850 855 860				765
50	TAA				768
	(2) ANGABEN ZU SEQ ID NO: 42:				
	(i) SEQUENZKENNZEICHEN:				
	(A) LÄNGE: 255 Aminosäuren				
	(B) ART: Aminosäure				
	(D) TOPOLOGIE: linear				
	(ii) ART DES MOLEKÜLS: Protein				
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 42:				
	Met Gln Leu Thr Asn Lys Lys Ile Val Val Thr Gly Val Ser Ser Gly 1 5 10 15				
	Ile Gly Ala Glu Thr Ala Arg Val Leu Arg Ser His Gly Ala Thr Val				

55

EP 0 845 532 A2

	20	25	30
5	Ile Gly Val Asp Arg Asn Met Pro Ser Leu Thr Leu Asp Ala Phe Val 35	40	45
	Gln Ala Asp Leu Ser His Pro Glu Gly Ile Asp Lys Ala Ile Ser Gln 50	55	60
10	Leu Pro Glu Lys Ile Asp Gly Leu Cys Asn Ile Ala Gly Val Pro Gly 65	70	75 80
	Thr Ala Asp Pro Gln Leu Val Ala Asn Val Asn Tyr Leu Gly Leu Lys 85	90	95
15	Tyr Leu Thr Glu Ala Val Leu Ser Arg Ile Gln Pro Gly Gly Ser Ile 100	105	110
	Val Asn Val Ser Ser Val Leu Gly Ala Glu Trp Pro Ala Arg Leu Gln 115	120	125
20	Leu His Lys Glu Leu Gly Ser Val Val Gly Phe Ser Glu Gly Gln Ala 130	135	140
	Trp Leu Lys Gln Asn Pro Val Ala Pro Glu Phe Cys Tyr Gln Tyr Phe 145	150	155 160
25	Lys Glu Ala Leu Ile Val Trp Ser Gln Val Gln Ala Gln Glu Trp Phe 165	170	175
	Met Arg Thr Ser Val Arg Met Asn Cys Ile Ala Pro Gly Pro Val Phe 180	185	190
30	Thr Pro Ile Leu Asn Glu Phe Val Thr Met Leu Gly Gln Glu Arg Thr 195	200	205
	Gln Ala Asp Ala His Arg Ile Lys Arg Pro Ala Tyr Ala Asp Glu Val 210	215	220
35	Ala Ala Val Ile Ala Phe Met Cys Ala Glu Glu Ser Arg Trp Ile Asn 225	230	235 240
	Gly Ile Asn Ile Pro Val Asp Gly Gly Leu Ala Ser Thr Tyr Val 245	250	255

45

50

55

Anlage zum Sequenzprotokoll

5	SEQ ID NO	2:	ORF 1
		4:	Van A
		6:	Van B
10		8:	FDH
		10:	GCS
		12:	CytC
15		14:	ORF 5
		16:	Ehy B
		18:	ORF 2
20		20:	ADH
		22:	LSD
		24:	ORF 3
25		26:	Ech
		28:	VDH
		30:	FCS
		32:	Aat
30		34:	Mac
		36:	Trp
		38:	Caldh
35		40:	Tap
		42:	Cadh

40

Patentansprüche

1. Syntheseenzyme für Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und Vanillinsäure aus Eugenol.
- 45 2. Syntheseenzyme gemäß Anspruch 1 ausgewählt aus der Gruppe
 - a) Eugenol-Hydroxylase
 - b) Coniferylalkohol-Dehydrogenase
 - c) Coniferylaldehyd-Dehydrogenase
 - d) Ferulasäuredeacylase.
 - e) Vanillin-Dehydrogenase
- 50 3. DNA, codierend für die Enzyme gemäß Anspruch 1 und 2 sowie Teilsequenzen und funktionelle Äquivalente davon.
- 55 4. Cosmidklone, enthaltend die DNA gemäß Anspruch 3.

5. Vektoren, enthaltend DNA nach Anspruch 3.
6. Mikroorganismen, transformiert mit DNA gemäß Anspruch 3.
- 5 7. Verwendung von DNA nach Anspruch 3 zur Transformation von Mikroorganismen.
8. Verwendung von Mikroorganismen gemäß Anspruch 6 zur Herstellung von Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und Vanillinsäure.
- 10 9. Verfahren zur Herstellung von Coniferylalkohol aus Eugenol, dadurch gekennzeichnet, daß die Reaktion in Anwesenheit von Eugenol-Hydroxylase stattfindet.
- 10 10. Verfahren zur Herstellung von Coniferylaldehyd aus Coniferylalkohol, dadurch gekennzeichnet, daß die Reaktion in Anwesenheit von Coniferylalkohol-Dehydrogenase stattfindet.
- 15 11. Verfahren zur Herstellung von Ferulasäure aus Coniferylaldehyd, dadurch gekennzeichnet, daß die Reaktion in Anwesenheit von Coniferylaldehyd-Dehydrogenase stattfindet.
- 20 12. Verfahren zur Herstellung von Vanillin aus Ferulasäure, dadurch gekennzeichnet, daß die Reaktion in Anwesenheit von Ferulasäuredeacylase stattfindet.
13. Verfahren zur Herstellung von Vanillinsäure aus Vanillin, dadurch gekennzeichnet, daß die Reaktion in Anwesenheit von Vanillin-Dehydrogenase stattfindet.

25

30

35

40

45

50

55

Fig. 1

Ristrikutionskarte des sequenzierten Bereichs
Größenangaben in Basenpaaren

Fragment E230 des Hybridcosmids pE 207

EcoRI	EcoRI										EcoRI					
	21300										9400	1200	1800	3000		
HindIII	11200										3800	+ 1900	2000	5400		
EcoRV	9500										+ 2700	5200	1550 + 200*	X		
KpnI	2500										6000	+ 9400	+ 2200*	X		
BamHI	2700										1850	3100	+ 7900	1500 + 200*	X	
SacI	1300										5100	1500 + 950	2350	+ 3700	5700 + 200*	X
SmaI	3500										1250	6100	7700	1650 + 200*	X	
											vanA	ehyA	fcs	aat	mac	
											vanB	ehyB	ehyC	ehyD	ehyE	
											ges	fdh	fdh	fdh	fdh	
											vanC	vanD	vanE	vanF	vanG	
											adl	adl	adl	adl	adl	
											lsd	lsd	lsd	lsd	lsd	
											lsh	lsh	lsh	lsh	lsh	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	
											adl	adl	adl	adl	adl	

(19) Europäischer Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 845 532 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

(88) Veröffentlichungstag A3:
05.01.2000 Patentblatt 2000/01

(51) Int. Cl.⁷: C12N 15/53, C12N 9/02,
C12P 7/22, C12N 9/80

(43) Veröffentlichungstag A2:
03.06.1998 Patentblatt 1998/23

(21) Anmeldenummer: 97120058.9

(22) Anmeldetag: 17.11.1997

(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL PT SE

- Priefert, Horst, Dr.
48291 Telgte (DE)
- Rabenhorst, Jürgen, Dr.
37671 Höxter (DE)

(30) Priorität: 29.11.1996 DE 19649655

(74) Vertreter:
Petrovicki, Wolfgang, Dr. et al
Bayer AG
Konzernbereich RP
Patente und Lizenzen
51368 Leverkusen (DE)

(71) Anmelder: HAARMANN & REIMER GMBH
D-37601 Holzminden (DE)

(72) Erfinder:
• Steinbüchel, Alexander, Prof Dr.
48341 Altenberge (DE)

(54) **Syntheseenzyme für die Herstellung von Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und Vanillinsäure und deren Verwendung**

(57) Die vorliegende Erfindung betrifft Synthaseenzyme für die Herstellung von Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und Vanillinsäure, deren Verwendung bei der Herstellung von Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und Vanillinsäure, für diese Enzyme codierende DNA sowie mit dieser DNA transformierte Mikroorganismen.

EP 0 845 532 A3

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung
EP 97 12 0058

EINSCHLÄGIGE DOKUMENTE					
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betritt Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)		
X	WO 95 02062 A (QUEST INTERNATIONAL B.V.) 19. Januar 1995 (1995-01-19) * Seite 2, Zeile 11 - Zeile 21 * * Seite 3, Zeile 1 - Zeile 13; Beispiel * ---	1-9	C12N15/53 C12N9/02 C12P7/22 C12N9/80		
X	EP 0 583 687 A (HAARMANN & REIMER GMBH) 23. Februar 1994 (1994-02-23) * Seite 5, Zeile 31 - letzte Zeile; Anspruch 2; Beispiele 1-5 * ---	1,3-8			
X	RABENHORST, J.: "Production of methoxyphenol-type natural aroma chemicals by biotransformation of eugenol with a new Pseudomonas sp." APPL. MICROBIOL. BIOTECHNOL. (1996), 46(5/6), 470-474, 1996, XP002122081 * Seite 472, linke Spalte, Absatz 2 - Seite 473, rechte Spalte, Absatz 4; Abbildung 5 * ---	6,8-13			
X	WO 94 02621 A (V. MANEFILS S.A.) 3. Februar 1994 (1994-02-03) * Seite 1, Zeile 1 - Zeile 28 * * Seite 2, Zeile 32 - Seite 6, Zeile 7; Beispiele 2,7 * ---	1	RECHERCHIERTE SACHGEBIETE (Int.Cl.6) C12N C12P		
P,X	EP 0 761 817 A (HAARMANN & REIMER GMBH) 12. März 1997 (1997-03-12) * Spalte 2, letzte Zeile - Spalte 3, Zeile 6; Anspruch 2 * ---	1,3-8			
A	WO 97 35999 A (INSTITUTE OF FOOD RESEARCH) 2. Oktober 1997 (1997-10-02) * Ansprüche; Abbildung 1 * ----	1-13			
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt					
Recherchenort	Abschlußdatum der Recherche	Prüfer			
DEN HAAG	9. November 1999	Montero Lopez, B			
KATEGORIE DER GENANNTEN DOKUMENTE					
X : von besonderer Bedeutung allein betrachtet	T : der Erfindung zugrunde liegende Theorien oder Grundsätze				
Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie	E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist				
A : technologischer Hintergrund	D : in der Anmeldung angeführtes Dokument				
O : nichtschriftliche Offenbarung	L : aus anderen Gründen angeführtes Dokument				
P : Zwischenliteratur	& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument				

**ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT
ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.**

EP 97 12 0058

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am

Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

09-11-1999

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9502062	A	19-01-1995	AT 148919 T AU 6999294 A DE 69401755 D DE 69401755 T EP 0710289 A JP 8512203 T US 5721125 A	15-02-1997 06-02-1995 27-03-1997 12-06-1997 08-05-1996 24-12-1996 24-02-1998
EP 583687	A	23-02-1994	DE 4227076 A DE 59309293 D JP 6153924 A US 5371013 A US 5510252 A	24-02-1994 25-02-1999 03-06-1994 06-12-1994 23-04-1996
WO 9402621	A	03-02-1994	FR 2694020 A AT 173296 T DE 69322067 D DE 69322067 T EP 0606441 A JP 7500253 T US 5712132 A	28-01-1994 15-11-1998 17-12-1998 15-07-1999 20-07-1994 12-01-1995 27-01-1998
EP 761817	A	12-03-1997	DE 19532317 A JP 9206068 A	06-03-1997 12-08-1997
WO 9735999	A	02-10-1997	AU 2038597 A CA 2250043 A EP 0904396 A	17-10-1997 02-10-1997 31-03-1999

EPO FORM P0461

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

