

Computabilità, Complessità e Logica

Prof. Adriano Peron

Computabilità: Automi regolari

Automi regolari (Macchine a stati finiti)

- Modello computazionale semplice ed efficace
 - ▶ E una macchina stato-transizione con un numero finito di stati.
 - ▶ Rappresentazione come grafo con gli archi etichettati.
- Intuizione: rappresentazione di un sistema che interagisce con il modo esterno.

Esempio: Contatore modulo 3

- Operazioni con l'ambiente esterno:
- Reset
- Incremento 0
- Incremento 1
- Incremento 2

Automi regolari (Macchine a stati finiti)

Stato.

- Nodo del grafo. Rappresentazione la condizione interna del sistema. Il suo stato di controllo, il contenuto delle sue variabili.
- Esempio. Uno stato per ogni valore del contatore

Transizione.

- Arco orientato. Rappresenta una variazione della condizione interna del Sistema a seguito di una interazione col mondo esterno.
- Etichetta. Rappresenta il tipo di sollecitazione del mondo esterno che determina il cambio di stato.
- Esempio. Operazioni di incremento o reset sul contatore.

Caratteristiche del modello

- ▶ Il numero degli stati è finito;
- Computazione controllata dall'ambiente esterno
 - ▶ E possible una evoluzione della macchina senza un trigger esterno?
- ▶ Il comportamento della macchina è deterministico: fissato lo stato di partenza e l'input dell'ambiente esterno è determinato in maniera univoca lo stato di arrivo.
- Comunicazione unidirezionale Ambiente-Macchina
 - La macchina può comunicare con l'esterno?

Esempio: il controllo di un ascensore

- Lo stato ha due componenti:
 - il piano $P = \{0, 1, 2\}$ e
 - ▶ lo stato di occupazione libero/occupato $S = \{L, O\}$.
- ightharpoonup Ciascuno stato è un elemento del prodotto $P \times S$
- ▶ Lo stato iniziale è (0, L)
- ▶ Gli stati finali sono {(0, L), (1, L), (2, L)}
- L'alfabeto contiene simboli per
 - lacktriangle le chiamate dell'ascensore al piano $\Sigma_e=\{e_0,e_1,e_2\}$
 - le indicazioni di direzione interna $Σ_i = \{i_0, i_1, i_2\}$
 - ▶ Ingresso e uscita dall'ascensore $\Sigma_{IO} = \{+, -\}$

Esempio: il controllo di un ascensore

Automi regolari: sintassi

Sintassi formale.

$\langle Q, \Sigma, \delta, q_0, F \rangle$

- Q è un insieme finito di stati.
- \triangleright Σ è un alfabeto, insieme di simboli di etichette per gli archi delle transizioni.
- ▶ δ è la funzione di transizione δ : Q x Σ —> Q che, fissato uno stato (sorgente) e un simbolo dell'alfabeto, determina lo stato successivo (destinazione).
- $ightharpoonup q_0$ è lo stato iniziale.
- F ⊆ Q è l'insieme degli stati finali.

Automi regolari: sintassi

Sintassi formale. Esempio.

```
\langle Q, \Sigma, \delta, q_0, F \rangle
```

- Arr Q = {q₀, q₁, q₂}.
- $\Sigma = \{RESET, 0, 1, 2\}$
- $\delta = \{(q_0,0, q_0), (q_0,1, q_1), (q_0, 2, q_2), (q_0,RESET,q_0), (q_1,0, q_1), (q_1,1, q_2), (q_1,2, q_0), (q_1,RESET,q_0), (q_2,0, q_2), (q_2,1, q_1), (q_2,2, q_1), (q_2,RESET,q_0)\}$
- $ightharpoonup q_0$ è lo stato iniziale.
- ightharpoonup F ={q₀, q₁, q₂}...

Automi regolari: notazione

Notazione

$$\langle Q, \Sigma, \delta, q_0, F \rangle$$

- ightharpoonup un alfabeto di simboli. (esempio Σ={a,b})
- $ightharpoonup \Sigma^*$ rappresenta l'insieme delle parole di lunghezza finita sull'alfabeto Σ
- Le parole su Σ si ottengono sequenzializzando un numero arbitrario ma finito (anche 0) di simboli di Σ .
 - ightharpoonup Comprende la parola nulla ϵ (epsilon) (sequenzializzazione di 0 simboli di Σ)
 - Comprende parole della forma

$$w = \sigma_1 \sigma_2 \sigma_n$$
, con $\sigma_i \in \Sigma^*$ per ogni $i, 1 \le i \le n$

- Σ^+ = Σ^* \ {ε} rappresenta l'insieme delle parole finite non nulle sull'alfabeto Σ
- |w| denota (rappresenta) la lunghezza della parola w
 - | € | =0
 - $|\mathbf{w}| = \mathbf{n} \text{ se } \mathbf{w} = \sigma_1 \dots \sigma_n$

Automi regolari: notazione

Per una parola w,

 $\mathbf{w(i)}$ con $1 \le i \le |w|$, denota l'i-esimo simbolo della parola w

```
(se w= \sigma_1 \sigma_2 ....\sigma_n, allora w(i)= \sigma_i per 1 \le i \le n)
```

• w(i,j) con $1 \le i \le j \le |w|$, denota la sottoparola di w (infisso) delimitata dall'i-esimo e j-esimo simbolo.

(se w=
$$\sigma_1 \sigma_2 \sigma_n$$
, allora w(i,j)= $\sigma_i ... \sigma_j$ per $1 \le i \le j \le n$)

Concatenazione di parole su Σ*

date due parole w,w' $\in \Sigma$ * sullo stesso alfabeto w·w' denota la concatenazione di w e w'

se w=
$$\sigma_1$$
 σ_2 σ_n , e w'= σ'_1 σ'_2 σ'_m allora w·w'= σ_1 σ_2 σ_n σ'_1 σ'_2 σ'_m

Si osservi che la parola vuota funge da elemento neutro nella concatenazione

```
\mathbf{w} \cdot \mathbf{\varepsilon} = \mathbf{w} \ \mathbf{e} \ \mathbf{\varepsilon} \cdot \mathbf{w} = \mathbf{w}
```

Automi regolari: notazione

Un linguagggio L su un alfabeto di simboli Σ è un insieme di parole (possibilmente vuoto) di Σ^* . (In simboli, L $\subseteq \Sigma^*$)

- L = Ø è un linguaggio (il linguaggio vuoto)
- ▶ Attenzione: L = {€} non è il linguaggio vuoto !!!
- Esempio per l'alfabeto Σ={a,b}
- ► $L_1=\{\varepsilon,a,aa,aaa,aaaa,.....\}$ (tutte le sequenze di a di lunghezza arbitraria)

$$L_1 = \{a^n : n \geq 0\}$$

 L₂={ε,ab,aabb,aaabbb,aaaabbbb,......} (tutte le sequenze di lunghezza arbitraria di a seguito da uno stesso numero di di b)

$$L_2 = \{a^n b^n : n \ge 0\}$$

L₃ parole di lunghezza k

$$L_3 = \{ \mathbf{w} \in \mathbf{\Sigma}^* \colon |\mathbf{w}| = \mathbf{k} \}$$

Automi regolari: semantica intuitiva

Descrizione di una computazione di un automa regolare $\langle Q, \Sigma, \delta, q_0, F \rangle$

- L'automa inizia la computazione nello stato iniziale;
- L'evoluzione è guidata da una sequenza di simboli (parola) dell'alfabeto ∑

$$w = \sigma_1 \sigma_2 \sigma_n, w \in \Sigma^*$$

- I simboli della parola vengono elaborati in sequenza (da σ_1 a σ_n) un simbolo alla volta
- L'elaborazione di un simbolo produce un cambiamento di stato (transizione)
- Una computazione è la sequenza degli stati che l'automa assume nell'elaborazione dei simboli.
- Una computazione per una parola ha buon fine se lo stato raggiunto è uno stato classificato come finale.

Automi regolari: semantica

Descrizione di una computazione di un automa regolare $\langle Q, \Sigma, \delta, q_0, F \rangle$

- Intuitivamente è una sequenza di transizioni dallo stato iniziale.
- \blacktriangleright Viene fissata una sequenza di simboli dell'alfabeto (una parola sull'alfabeto Σ)

$$w = \sigma_1 \sigma_2 \sigma_n, w \in \Sigma^*$$

Una computazione per la parola w è una sequenza di stati

$$q_1, q_2,, q_n, q_{n+1}$$

- ▶ q₁ è lo stato iniziale.
- ▶ $q_i \in Q$ per ogni i, $1 \le i \le n+1$
- ▶ $(q_i, \sigma_i, q_{i+1}) \in \delta$ per ogni $i, 0 \le i \le n$ (è possible scrivere anche $(q_i, w(i), q_{i+1}) \in \delta$ per ogni $i, 0 \le i \le n$.
- ▶ La computazione è accettante se $q_{n+1} \in F$.

Automi regolari: semantica

Linguagio L(A) riconosciuto da automa regolare $A = \langle Q, \Sigma, \delta, q_0, F \rangle$

E' l'insieme delle parole sull'alfabeto per cui l'automa A ha una computazione accettante.

 $L(A) = \{ w \in \Sigma^* : la computazione di A per w è accettante \}$

- ▶ Un linguaggio è detto regolare se è riconosciuto da un automa regolare.
- Attenzione: essendo l'automa deterministico (la relazione di transizione è una funzione) la parola determina in modo univoco la computazione.
- Un automa astrattamente è visto come accettore di parole e, dunque, come un riconoscitore di linguaggi.
- Dal punto di vista di un sistema può essere interpretato come una macchina che definisce le modalità accettabili di interazione con la macchina stessa.
- L'interazione è corretta se pilota la macchina ad uno stato di accettazione.

Esempi. Linguaggi accettati

Linguagio L(A) riconosciuto

L(A)=
$$\{w \in \{0,1\}^* : w=w' \cdot 1 \cdot w'', w' \in \{0\}^*, w'' \in \{00,01,1\}^* \}$$

Linguagio L(A) riconosciuto

$$L(A) = \{w \in \{a,b\}^* : w = ?\}$$

Esempi. Linguaggi accettati

Linguagio L(A) riconosciuto

L(A)=
$$\{w \in \{0,1\}^* : w=ab \cdot w'', w'' \in \{a^*,bb^*\} \}$$

Si osservi che l'automa non è completamente definito poiché ad esempio dallo stato q_1 non ci sono archi etichettati dal simbolo b

La relazione di transizione δ è una funzione totale ed è definita per ogni elemento dell'alfabeto.

La mancanza di un arco etichettato dal simbolo simbolo bindica che se nello stato q_1 si osserva b allora la computazione non potrà essere accettante.

L'automa equivalente con la funzione di transizione completamente esplicitata usa uno stato pozzo E che non può raggiungere gli stati accettanti

I due automi accettano lo stesso linguaggio

Esempi. Linguaggi accettati

Automi per i seguenti linguaggi?

```
L_1(A) = \{w \in \{a,b\}^* : w \text{ ha un numero pari di a} \}

L_2(A) = \{w \in \{a,b\}^* : w \text{ ha un numero pari di a e di b} \}
```

E' possibile esprimere un automa regolare per ogni possibile linguaggio?

Tutti i linguaggi su un alfabeto sono regolari?

Ad. Es.

```
L_2(A) = \{w \in \{a,b\}^* : \text{ stesso numero di a e di b}\}
L_3(A) = \{w \in \{a,b\}^* : \text{ maggior numero di a che di b}\}
L_4(A) = \{w \in \{a,b\}^* : w = a^n \cdot b^n\}
L_3(A) = \{w \in \{a,b\}^* : \text{ maggior numero di a che di b}\}
```

Vedremo che la capacità espressiva degli automi regolari è limitata.

E' possible dimostrare che alcuni linguaggi non sono regolari (non esiste nessun automa regolare che li possa accettare)

Primi problemi sui linguaggi regolari

Consideriamo un automa deterministico A sull'alfabeto Σ

- Vogliamo stabilire se siamo in grado di risolvere (decidere) i seguenti problemi.
- Problema del linguaggio vuoto.

```
E' possible stabilire se L(A) = \emptyset?
```

lacktriangle Problema dell'appartenenza di una parola $w \in \Sigma^*$.

E' possible stabilire se w $\in L(A)$?

Problema dell'universalità.

E' possible stabilire se $L(A) = \Sigma^*$?

Problema della finitezza

E' possible stabilire se L(A) è finito?

Per risolvere i problem elencati ricordiamo che un automa è un grafo.

Equivalenza tra automi

Nozione di equivalenza

Due automi A_1 e A_2 si dicono equivalenti se accettano lo stesso linguaggio:

$$L(A_1) = L(A_2)$$

Lo stesso linguaggio L può essere accettato da automi diversi

Esempio.

Si preferiscono automi che minimizzano il numero di stati.

Perché?

Automi regolari non deterministici

Estensione degli automi regolari deterministici.

- La transizione da uno stato q non è più univocamente determinata da un simbolo dell'alfabeto.
- ➤ Se in uno stato vi sono più transizioni etichettate dallo stesso simbolo dell'alfabeto si sceglie non-deterministicamente quale transizione far scattare.
- Scelta non deterministica:
- Una scelta casuale tra diverse possibili opzioni
- Si astrae dal dettaglio che determina la scelta.
- Può essere un modo per semplificare la descrizione di un sistema.
- Permette di scrivere degli automi più compatti (succinti).

Esempio: il controllo di un ascensore

Versione non deterministica. Trascuro dettagli di chiamate e direzioni.

Automi regolari non deterministici

Estensione degli automi regolari deterministici.

- La transizione da uno stato q non è più univocamente determinata da un simbolo dell'alfabeto.
- \triangleright δ non è una funzione ma una relazione.

Sintassi formale.

$$\langle Q, \Sigma, \delta, q_0, F \rangle$$

- Q è un insieme finito di stati.
- Σ è un alfabeto, insieme di simboli di etichette per gli archi delle transizioni
- ▶ δ è la relazione di transizione $\delta \subseteq Q \times \Sigma \times Q$ che, fissato uno stato (sorgente) e un simbolo dell'alfabeto, determina i possibili stati successivi (destinazione).
- $ightharpoonup q_0$ è lo stato iniziale.
- F ⊆ Q è l'insieme degli stati finali.

Automi regolari non-deterministici: semantica

Descrizione di una computazione di un automa non-deterministico $A=\langle Q, \Sigma, \delta, q_0, F \rangle$ su una parola $w=\sigma_1\sigma_2....\sigma_n, \ w\in \Sigma^*$

Una computazione per la parola w è una sequenza di stati

$$q_1, q_2,, q_n, q_{n+1}$$

- p q₁ è lo stato iniziale.
- ▶ $q_i \in Q$ per ogni i, $1 \le i \le n+1$
- ▶ $(q_i, \sigma_i, q_{i+1}) \in \delta$ per ogni $i, 0 \le i \le n$ (è possible scrivere anche $(q_i, w(i), q_{i+1}) \in \delta$ per ogni $i, 0 \le i \le n$.
- La computazione è accettante se q_{n+1} ∈ F.
- Una parola w è accetta da A se esiste una computazione accettante di A per la parola w.

Automi regolari non-deterministici: semantica

Automa deterministico.

 Una parola w ha una sola computazione (univocamente accettante o non accettante)

Automa non-deterministico.

- Una parola w può avere più computazioni (diverse).
- Alcune computazioni per w possono essere accettanti ed altre non accettanti
- Per accettare la parola w basta che vi sia almeno una computazione accettante (indifferente quale sia).
- Esempio.

Intuizione. Albero delle computazioni per una parola.

Automi regolari non-deterministici

Esempio

```
Si consideri il linguaggio L su \Sigma = \{a_1,...,a_n,\#\}

L = \{v \cdot \# \cdot w : v, w \in H^*, v \text{ usa } l'\text{insieme } di \text{ simboli } H

\subseteq \{a_1,...,a_n\} \text{ } e \text{ } w \text{ } usa \text{ } l'\text{insieme } H' \subseteq \{a_1,...,a_n\} \text{ } con \text{ } H \neq H'\}
```

Automa deterministico:

- Due fasi:
- La prima fase memorizza nello stato i simboli che compaiono prima di incontrare il simbolo # (insieme H).
- Nella seconda fase (dopo aver letto il simbolo #) si controlla che l'insieme di simboli che occorrono dopo # sia diverso da H.
- Per ricordare un sottoinsieme di Σ servono 2^n stati.
- L'automa deterministico richiede un numero di stati esponenziale nella cardinalità dell'alfabeto

Esempio

Esempio di succintezza.

```
Si consideri il linguaggio L su \Sigma = \{a_1,...,a_n,\#\}

L = \{v \cdot \# \cdot w : v, w \in H^*, esiste \ h \in \{a_1,...,a_n\}, h \ occorre \ in \ v \in w\}
```

Automa deterministico:

- Due fasi:
- La prima fase memorizza nello stato I simboli che compaiono prima di incontrare il simbolo #.
- Nella seconda fase (dopo aver letto il simbolo #) si controlla che ci sia un simbolo memorizzato nella prima parte che occorre anche nella seconda.
- Per ricordare un sottoinsieme di Σ servono 2^n stati.
- L'automa deterministico richiede un numero di stati esponenziale nella cardinalità dell'alfabeto

Automi regolari non-deterministici

Esempio di succintezza.

```
Si consideri il linguaggio L su \Sigma = \{a_1, ..., a_n, \#\}

L = \{v \cdot \# \cdot w : v, w \in H^*, esiste \ h \in \{a_1, ..., a_n\} \ h \ occorre \ in \ v \in w\}
```

Automa deterministico: (www. 0, b, c, #

Esempio

Esempio di succintezza.

```
Si consideri il linguaggio L su \Sigma = \{a_1, ..., a_n, \#\}

L = \{v \cdot \# \cdot w : v, w \in H^*, esiste \ h \in \{a_1, ..., an\} \ h \ occorre \ in \ v \in w\}
```

Automa non-deterministico:

Si inizia la computazione scegliendo nondeterministicamente il simbolo h (scommessa)

Si verifica la scommessa sia corretta, vale a dire che h occorra sia prima di # sia dopo # (accettazione)

Si scommette per ogni simbolo in $\{a_1,...,a_n\}$ quindi almeno una delle scommesse ha successo (e basta che solo una abbia successo).

Per l'automa basta un numero di 2(n+1) stati

Automi regolari non-deterministici

Esempio di succintezza.

Si consideri il linguaggio L su $\Sigma = \{a_1, ..., an, \#\}$ $L = \{v \cdot \# \cdot w : v, w \in H^*, esiste \ h \in \{a_1, ..., an\}, h \ occorre \ in \ v \in w\}$

Esercizio

Si scriva l'automa non deterministico che riconosce il linguaggio usando un numero di stati polinomiale nella cardinalità dell'alfabeto.

```
Si consideri il linguaggio L su \Sigma = \{a_1,...,a_n,\#\}

L = \{v \cdot \# \cdot w : v, w \in H^*, v \text{ usa l'insieme di simboli H}

\subseteq \{a_1,...,a_n\} \text{ e w usa l'insieme H'} \subseteq \{a_1,...,a_n\} \text{ con H} \neq H'\}
```

L'Automa deterministico richiede un numero esponenziale di stati.

Idea:

- ▶ Si scelga in modo non-deterministico il simbolo a_i tale per cui H \neq H'
- Si verifichi la correttezza della scelta.

Espressività del non-determinismo

- Gli automi regolari non-deterministici sono più espressivi degli automi regolari deterministici?
- (espressività = capacità di riconoscere linguaggi)
- ► Esistono linguaggi riconosciuti da automi non-deterministici che non siano riconosciuti da automi deterministici?

No!

Teorema. Per ogni automa non-deterministico A esiste un automa deterministico DA tale che L(A)=L(DA).

La differenza tra determinismo e non-determinismo negli automi regolari non riguarda l'espressività ma la succintezza della rappresentazione.

Determinizzazione di un automa

- ▶ Determinizzazione di un automa A: costruzione dell'automa deterministico DA equivalente ad A (L(A)=L(DA))
- Automa non-deterministico $A = \langle Q, \Sigma, \delta, q_0, F \rangle$
- Costruzione dell'automa deterministico DA=<Q',Σ,δ',q'0,F'>
- Da uno stato posso transire in un insieme di stati mediante un simbolo dell'alfabeto
- Sia $\delta(q,a)=\{q': < q,a,q'>\epsilon \,\delta\}$ per $q,q'\epsilon Q$ e $a\epsilon \Sigma$ Insieme di stati raggiunti dallo stato q mediante il simbolo a
- ► Lo stato dell'automa deterministico è l'insieme di stati che possono essere raggiunti mediante una parola
- Uno stato di DA è un insieme di stati di A:
- $Q' = 2^{Q}$ (insieme delle parti di Q)

Determinizzazione di un automa

- ► Costruzione DA=<Q',Σ,δ',q'₀,F'>
- **Stato iniziale** $q_0' = \{q_0\}$ singoletto con lo stato iniziale di A
- Stati finali

 $F' = \{H \in Q' : H \cap F \neq \emptyset\}$ stati che contengono almeno uno stato finale di A.

Relazione di transizione

 $F'=\{< H,a,K>: H\in Q',K=\cup_{q\in H}\ \delta(q,a)\}$ da H si raggiunge l'insieme di stati non-deterministicamente raggiungibili da qualche stato in H.

Si può provare che L(A)=L(DA)

Per ogni computazione accettante di A per w esiste una computazione accettante di DA per w e viceversa.

Esempio determinizzazione

Determinizzazione

automa non-oleterministic

determinit 22 210nc

clé esposione esponenziale

Proprietà di chiusura per automi regolari

- ► Gli automi regolari riconoscono linguaggi (insiemi di parole)
- Come si comportano rispetto alle operazioni insiemistiche (note anche come chiusure booleane) complemento, unione e intersezione?

Complementazione: caso deterministico

▶ Dato un un linguaggio L riconosciuto da un automa regolare deterministico A, esiste un automa deterministico CA che riconosce il complemento di L?

Il complemento di un linguaggio L su Σ^* è il linguaggio Σ^*/L .

Teorema. Gli automi deterministici sono chiusi per complementazione.

Nel caso deterministico la complementazione è semplice basta complementare l'insieme degli stati finali

Prova.

- Dato un automa deterministico $DA=< Q, \Sigma, q_0, \delta, F>$ l'automa deterministico $L(CDA)=< Q, \Sigma, q_0, \delta, Q/F>$ è tale che $L(CDA)=\Sigma^*/L(DA)$
- La complementazione degli automi deterministici è semplice.
- ▶ Attenzione! Per poter applicare la complementazione l'automa di partenza deve essere completo (da ogni stato deve partire un arco per ogni dimbolo dell'alfatbeto).
- Se l'automa non è completo va prima completato e poi complementato.

Complementazione: caso non-deterministico

Dato un un linguaggio L riconosciuto da un automa regolare nondeterministico A, esiste un automa non-deterministico CA che riconosce il complemento di L?

Teorema. Gli automi non-deterministici sono chiusi per complementazione.

Nel caso non-deterministico la complementazione è più complessa.

Non è possibile sfruttare la complementazione degli stati finali! Prova.

- **Determinizzazione.** Dato un automa non-deterministico $A=<Q,\Sigma,q_0,\delta,F>$ è possible trovare un automa deterministico DA tale che L(A)=L(DA).
- ► Complementazione. DA è deterministico e dunque esiste un automa CDA tale che L(CDA) è il complemento di L(DA)=L(A).
- Nel caso non-determimnistico la complemetazione può richiedere una esplosione esponenziale nella dimensione iniziale dell'automa!

- ▶ Dati due linguaggi L_1 e L_2 riconosciuti da due automi regolari (deterministici/non-deterministici) A_1 e A_2 , esiste un automa (deterministico/non-deterministico) A che riconosce il linguaggio $L_1 \cap L_2$?
- L'alfabeto dei due linguaggi deve essere lo stesso!

Teorema. Gli automi regolari sono chiusi per intersezione.

Idea. Possiamo eseguire I due automi A_1 e A_2 sincronamente (per ogni transizione dell'uno ci deve essere una simultanea transizione dell'altro)

- ▶ Dati due linguaggi L_1 e L_2 riconosciuti da due automi regolari (deterministici/non-deterministici) A_1 e A_2 , esiste un automa (deterministico/non-deterministico) A che riconosce il linguaggio $L_1 \cap L_2$?
- L'alfabeto dei due linguaggi deve essere lo stesso!

Teorema. Gli automi regolari sono chiusi per intersezione.

Esempio.

 L_1 il linguaggio su $\Sigma = \{a, b\}$ con parole con un numero pari di a.

 L_2 il linguaggio su $\Sigma = \{a, b\}$ con parole con un numero pari di b.

 $L_1 \cap L_2$ il linguaggio su $\Sigma = \{a, b\}$ con parole con un numero pari di a e b.

Esempio.

 L_1 il linguaggio su $\Sigma = \{a, b\}$ con parole con un numero pari di a.

 L_2 il linguaggio su $\Sigma = \{a, b\}$ con parole con un numero pari di b.

 $L_1 \cap L_2$ il linguaggio su $\Sigma = \{a, b\}$ con parole con un numero pari di a e b.

Intersezione: costruzione generale

$$A_1 = < Q_1, \Sigma, q_{01}, \delta_1, F_1 > A_2 = < Q_2, \Sigma, q_{02}, \delta_2, F_2 >$$

$$A = < Q, \Sigma, q_0, \delta, F >,$$

 $Q = Q_1 \times Q_2$

Coppie di stati che evolvono sincronamente

 $ightharpoonup q_0 = (q_{01}, q_{02})$

Coppia di stati iniziali

▶ $δ = {((q,p), a, (q', p')): (q, a, q') ∈ δ_1, (p, a, p') ∈ δ_2, a ∈ Σ}$

Coppia di transizioni sincrone

 $F = F_1 \times F_2$

Coppia di stati finali

$$L(A) = L(A_1) \cap L(A_2)$$

Unione

- ▶ Dati due linguaggi L_1 e L_2 riconosciuti da due automi regolari (non-deterministici) A_1 e A_2 , esiste un automa (non-deterministico) A che riconosce il linguaggio $L_1 \cup L_2$?
- L'alfabeto dei due linguaggi deve essere lo stesso!

Teorema. Gli automi regolari (deterministici/non-deterministici) sono chiusi per unione.

Idea.

- Prendiamo i due automi A_1 e A_2 garantendo che abbiano due insiemi disgiunti di stati.
- Aggiungiamo uno stato iniziale che direziona in modo potenzialmente non deterministico la computazione verso l'automa A_1 o l'automa A_2

Unione: costruzione generale

$$A_1 = < Q_1, \Sigma, q_{01}, \delta_1, F_1 > A_2 = < Q_2, \Sigma, q_{02}, \delta_2, F_2 >$$

$$A = < Q, \Sigma, q_0, \delta, F >,$$

 $Q = \{1\} \times Q_1 \cup \{2\} \times Q_2 \cup \{q_0\}$

Unione disgiunta dei due insiemi di stati

$$\delta = \{ ((i,p), a, (i,p')) : (p,a,p') \in \delta_i, a \in \Sigma, i \in \{1,2\} \} \cup \{ (q_0, a, (i,p')) : (q_{0i}, a, p') \in \delta_i, a \in \Sigma, i \in \{1,2\} \}.$$

Unione disgiunta delle transizioni

 $F = \{1\} \times F_1 \cup \{2\} \times F_2 \cup \{q_0: se \ q_{01} \in F_1o \ q_{02} \in F_2\}$ Unione disgiunta degli stati finali

$$L(A) = L(A_1) \cup L(A_2)$$

Concatenazione

- ▶ Dati due linguaggi L_1 e L_2 riconosciuti da due automi regolari (non-deterministici) A_1 e A_2 , esiste un automa (non-deterministico) A che riconosce il linguaggio $L_1 \cdot L_2$?
- ▶ Definizione: $L_1 \cdot L_2 = \{ w \cdot v : w \in L_1 \in v \in L_2 \}$

Teorema. Gli automi regolari (deterministici/non-deterministici) sono chiusi per concatenazione.

Idea.

- Prendiamo un automa che simula A_1 finché non raggiunge uno stato di accettazione di A_1 .
- Nello stato di accettazione di A_1 sceglie non-determisticamente se continuare a simulare A_1 o se simulare A_2

Concatenazione: costruzione generale

$$A_1=A_2=$$

$$A=,$$

 $Q = \{1\} \times Q_1 \cup \{2\} \times Q_2$

Unione disgiunta dei due insiemi di stati

 $q_0 = (1, q_{01})$

Stato iniziale (della prima componente)

$$\delta = \{ ((i,p), a, (i,p')) : (p,a,p') \in \delta_i, a \in \Sigma, i \in \{1,2\} \} \cup \{ ((1,q^-), a, (2,p^-)) : (q_{02}, a, p) \in \delta_2, a \in \Sigma, q \in F_1 \}$$

Unione disgiunta delle transizioni

► $F = \{2\} \times F_2 \cup \{(1, q_{01}) : se \ q_{01} \in F_1 \ e \ q_{02} \in F_2\}$ Unione disgiunta degli stati finali

$$L(A) = L(A_1) \cdot L(A_2)$$

Stella di Kleene

- ▶ Dato un linguaggio L riconosciuto da un automa regolare (non-deterministici) A, esiste un automa (non-deterministico) A che riconosce il linguaggio L^* ?
- ▶ Definizione: $L^* = \{v_1 \cdot v_2 \cdots v_n : v_i \in L \text{ per ogni } 1 \le i \le n\} \cup \{\varepsilon\}$
- Concatenazione di un numero arbitrario di parole di L

Teorema. Gli automi regolari (deterministici/non-deterministici) sono chiusi per stella di Kleene.

Idea.

- Prendiamo un automa che simula A finché non raggiunge uno stato di accettazione di A_1 .
- ▶ Nello stato di accettazione di A sceglie non-determinticamente se continuare a simulare A ripartendo dallo stato iniziale o se fermarsi

Stella di Kleene: costruzione generale

$$A_1 = \langle Q_1, \Sigma, q_{01}, \delta_1, F_1 \rangle$$
 $A = \langle Q_1, \Sigma, q_{01}, \delta_1, F_1 \rangle$

$$\delta = \delta_1 \cup \\ \{(q,a,q_{01}): (q,a,p) \in \delta_1, a \in \Sigma, p \in F_1\}$$

Transizione dagli stati finali all'iniziale

▶
$$F = F_1 \cup \{q_{01}\}$$

Lo stato iniziale è accettante per includere la parola vuota

$$L(A) = L(A_1)^*$$

Linguaggi non regolari.

- ▶ Per accertare che un linguaggio sia regolare basta costruire un automa regolare che lo riconosce.
- Come possiamo dimostrare che un linguaggio NON è regolare?
- Non riuscire a costruire un automa A tale che L(A)=L è un indizio che L non sia regolare ma non è una prova!

E' possible sfruttare una proprietà dei linguaggi regolari espressa da un teorema noto con il nome di "Pumping Lemma"

Ad esempio:

Pumping Lemma: idea.

- Supponiamo esista un cammino dallo stato iniziale ad uno stato finale che coinvolge un ciclo.
- Osservazione. Se un cammino è più lungo del numero degli stati dell'automa certamente attraversa e ripete un ciclo!
- Il ciclo può essere percorso un numero arbitrario di volte prima di deviare allo stato di accettazione: la parola è accettata indipendentemente dal numero di iterazioni!
- Conseguenza: Il linguaggio include parole di lunghezza arbitraria (basta aumentare il numero di cicli -pumping)

Pumping Lemma: definizione

- Teorema. Sia L un linguaggio regolare. Esiste un numero p tale che per ogni parola $w \in L$ con $|w| \ge p$ (p è detto periodo di pumping) la parola w può essere divisa in tre parti
- $w = x \cdot y \cdot z$
- e vale che
- |y| > 0
- $|x \cdot y| \le p$
- Per ogni $i \ge 1, x \cdot y^i \cdot z \in L$

Linguaggi non regolari: applicazione del pumping lemma

- Per accertare che un linguaggio L NON è regolare si sfrutta il punping lemma.
- 1. Si assume per ipotesi che L sia regolar
- 2. Si applica il pumping lemma per derivare una contraddizione.

Ad esempio sia L = $\{a^n \cdot b^n : n \ge 0\}$

- 1. Assumiamo che L sia regolare.
- 2. Allora esiste un period di pumping p per il lingiaggio.
- 3. Prendiamo la parola $w = a^p \cdot b^p$
- 4. Possiamo frammentare la parola $w = x \cdot y \cdot z$ con $|x \cdot y| \le p$
- 5. se $|x \cdot y| \le p$ allora $x \cdot y = a^k \cdot a^j$ per qualche $1 \le k + j \le p$
- 6. Per il lemma $a^k \cdot a^{2j} \cdot a^{k+j-p} \cdot b^n$ è una parola di L
- 7. Una contraddizione! Infatti $k + 2j + k + j p \neq p$

Linguaggi non regolari: applicazione del pumping lemma

Provare che i seguenti linguaggi non sono regolari

- 1. L il linguaggio su $\Sigma = \{a, b\}$ dove le parole hanno un ugual numero di occorrenze di a e di b
- 2. L il linguaggio su $\Sigma = \{a\}$ dove le parole hanno lunghezza pari a una potenza di due
- 3. L il linguaggio su Σ delle parole speculari: $L = \{w \cdot w^R : w \in \Sigma^*\}$

- In un automa regolare una transizione è legata ad un simbolo dell'alfabeto
- Una transizione dell'automa non può avvenire in assenza di uno stimolo esterno che controlla l'evoluzione dell'automa.
- Non è possibile che l'automa faccia transizioni di stato autonome (elaborazioni interne non visibili dall'ambiente esterno)
- Idea:
- ▶ Permettere speciali transizioni non controllate dall'alfabeto
- \blacktriangleright Si una uno speciale simbolo ϵ dell'alfabeto che rappresenta il simbolo neutro (azione interna).

- In un automa regolare una transizione è legata ad un simbolo dell'alfabeto
- Una transizione dell'automa non può avvenire in assenza di uno stimolo esterno che controlla l'evoluzione dell'automa.
- Non è possibile che l'automa faccia transizioni di stato autonome (elaborazioni interne non visibili dall'ambiente esterno)
- Idea:
- ▶ Permettere speciali transizioni non controllate dall'alfabeto
- Si una uno speciale simbolo ϵ dell'alfabeto che rappresenta il simbolo neutro (azione interna).

Esempio: controllore dell'ascensore con transizioni interne che modellano il cambio del piano

Automi regolari con transizioni interne: sintassi e semantica

Piccola variante della sintassi standard

$$\langle Q, \Sigma, \delta, q_0, F \rangle$$

- Q è un insieme finito di stati.
- Σ è un alfabeto, insieme di simboli di etichette per gli archi delle transizioni
- ▶ δ è la funzione di transizione δ : Q x $(Σ \cup {ε})$ -> Q che, fissato uno stato (sorgente) e un simbolo dell'alfabeto, determina lo stato successivo (destinazione).
- $ightharpoonup q_0$ è lo stato iniziale.
- F ⊆ Q è l'insieme degli stati finali.

Automi regolari con transizioni interne: semantica

.

Descrizione di una computazione di un automa regolare $\langle Q, \Sigma, \delta, q_0, F \rangle$ con transizioni interne

- Intuitivamente è una sequenza di transizioni dallo stato iniziale.
- ▶ Una computazione è una sequenza alternata di stati e simboli dell'alfabeto $\Sigma \cup \{\varepsilon\}$

$$q_1 \sigma_1, q_2, \sigma_2,, q_n, \sigma_n q_{n+1}$$

- $ightharpoonup q_1$ è lo stato iniziale.
- ightharpoonup $q_i \in Q$ per ogni i, $1 \le i \le n+1$
- ▶ $(q_i, \sigma_i, q_{i+1}) \in \delta$ per ogni $i, 0 \le i \le n \ con \ \sigma_i \in \Sigma \cup \{\varepsilon\}$
- ▶ La computazione è accettante se $q_{n+1} \in F$.
- ▶ La parola accettata dalla computazione è $w ∈ Σ^*$ dove w è la parola ottenuta da $\sigma_1 \cdot \sigma_2 \cdot \cdot \cdot \sigma_n$ rimuovendo tutte le occorrenze di ε

Esempio:

- L'aggiunta di transizioni interne non aumenta l'espressività degli automi regolari
- ► Teorema. Per ogni automa regolare con transizioni interne A esite un automa senza transizioni interne A' equivalente, L(A)=L(A').

Idea della costruzione.

- Alpha A'= $\langle Q, \Sigma, \delta', q_0, F' \rangle$ ha gli stessi stati di A= $\langle Q, \Sigma, \delta, q_0, F \rangle$
- ► C'e' una transizione $(q, a, q') \in \delta' \ con \ a \in \Sigma \ e \ q, q' \in Q \ se$ Esiste una sequenza di transizioni in δ della forma

► Gli stati finali sono quelli raggiungibili da stati finali di Á tramite transizioni interne

- L'aggiunta di transizioni interne non aumenta l'espressività degli automi regolari
- ▶ Le transizioni interne permettono tuttavia descrizioni più agevoli.
- **Esempio:** Automa per l'unione di due automi $A_1 e A_2$

Le transizioni interne permettono tuttavia descrizioni più agevoli.

Esempio: Automa per la concatenazione di due automi $A_1 e A_2$

Le transizioni interne permettono tuttavia descrizioni più agevoli.

► Esempio: Automa per la stella di Kleene di un automa

Espressioni regolari: espressioni regolari

- Le espressioni regolari forniscono un modo alternativo per descrivere i linguaggi regolari.
- ▶ Idea.
- ▶ Il linguaggio viene definito a partire da linguaggi regolari elementari
- ► I linguaggi vengono trasformati mediante operazioni che preservano la regolarità del linguaggio
- ▶ Unione, intersezione, complemento, concatenazione, * di Kleene sono esempi di operazioni che trasformano linguaggi regolari in linguaggi regolari.
- ► Anziché definire il linguaggio tramite un automa che lo riconosce lo si definisce tramite l'espressione.

Esempi di espressioni regolari

- Si consideri un alfabeto $Σ = {a, b}$
- - ► La valutazione di una espressione è un linguaggio
 - ▶ a è il linguaggio $\{a\}$
 - **▶** *b* è il linguaggio {*b*}
 - ► $(a \cup b)$ è il linguaggio $\{a, b\}$
 - ▶ b^* è il linguaggio $\{\varepsilon,b,bb,bbb,...\}$
 - ▶ Il linguaggio definito è $\{b, bb, bbb, ...\} \cup \{ab, abb, abbb, ...\}$
 - ► Stesso linguaggio definito dall'automa

Sintassi delle espressioni regolari

- Si consideri un alfabeto Σ
- \triangleright ϵ è una espressione regolare
- ightharpoonup a è una espressione regolare per ogni $a \in Σ$
- \blacktriangleright ϕ è una espressione regolare
- ► Se *R e R'* sono espressioni regolari lo sono anche
 - $ightharpoonup R \cup R'$
 - $\triangleright R \cdot R'$
 - $ightharpoonup R^*$
- ► L(R) denota il linguaggio ottenuto valutando l'espressione R

Esempi di espressioni regolari

$$0^* \cdot 1 \cdot 0^* =$$

$$\Sigma^* \cdot 1 \cdot \Sigma^* =$$

$$(\Sigma \cdot \Sigma)^* =$$

$$(\Sigma \cdot \Sigma \cdot \Sigma)^* =$$

$$(0 \cup \varepsilon) \cdot (1 \cup \varepsilon) =$$

$$R \cdot R^* = ?$$

- L'espressione per l'insieme dei numeri decimali?
- L'espressione per l'insieme delle stringhe che rispettano il formato di un codice fiscale?

Confronto tra espressioni regolari e automi regolari.

Teorema. Per ogni espressione regolare R esiste un automa regolare A tale che L(R) = L(A)

- ► La prova è per induzione strutturale sulla espressione R Casi base.
 - $ightharpoonup R = \varepsilon, A=?$
 - $ightharpoonup R = \phi, A=?$
 - ightharpoonup R = a, A=?

Casi induttivi. Supponiamo che A e A' siano gli automi che riconoscono I linguaggi di delle espressioni R e R' rispettivamente.

```
ightharpoonup R \cup R'
```

 $A \cup A'$ è un automa regolare e $L(A \cup A') = L(A) \cup L(A') = L(R) \cup L(R') = L(R \cup R')$

 $ightharpoonup R \cdot R'$

 $A \cdot A'$ è un automa regolare e $L(A \cdot A') = L(A) \cdot L(A') = L(R) \cdot L(R') = L(R \cdot R')$

▶ R*

 A^* è un automa regolare e $L(A^*)=L(A)^*=L(R^*)$

Esempio automa per (a.b. Ja)*

a
$$\rightarrow \bigcirc$$
 $\stackrel{a}{\longrightarrow} \bigcirc$

b $\rightarrow \bigcirc$ $\stackrel{b}{\longrightarrow} \bigcirc$

ab $\rightarrow \bigcirc$ $\stackrel{\varepsilon}{\longrightarrow} \bigcirc$

$$(ab \cup a)^* \longrightarrow \underbrace{\varepsilon} \xrightarrow{a} \underbrace{\varepsilon} \xrightarrow{b} \bigcirc$$

Confronto tra espressioni regolari e automi regolari.

Il terorema precedente permette di affermare che i linguaggi regolari includono i linguaggi definiti da espressioni regolari.

Vale anche l'inclusione simmetrica

Teorema. Per ogni automa regolare A esiste una espressione regolare R tale che L(R) = L(A)

- ► Come corollario si ha che espressioni regolari e automi definiscono la stessa classe di liguaggi (sono ugualmente espressivi)
- ► La prova richiede l'uso di una variante degli automi regolari nondeterministici: gli automi non-determinsistici generalizzati

Automi non-deterministici generalizzati

Una transizione non viene attivata da un singolo simbolo di input ma da una sequenza di simboli

Le transizioni sono etichettate da espressioni regolari.

Da automi deterministici a automi non-deterministici generalizzati

Si introduce un nuovo stato iniziale e uno finale.

automi non-deterministici generalizzati: rimozione degli stati non iniziali o finali

Regole di trasformazione.

Automi non-deterministici generalizzati: rimozione degli stati non iniziali o finali

Uno alla volta vengono rimossi iterativamente gli stati non iniziale e non finale trasformando le etichette delle transizioni. Idea generale.

Uno alla volta vengono rimossi iterativamente gli stati non iniziale e non finale trasformando le etichette delle transizioni.

٠.

