التكامــــ

<u>I- تكامل دالة متصلة على مجال</u>

1- تعریف و ترمین

. I و عنصرين من I و عنصرين من f دالة متصلة على مجال

إذا كانت F و G دالتين أصليتين للدالة f على I فان G دالتين أصليتين للدالة F على F فان التين أصليتين للدالة F على F

أُي أن العدد الحقيقي ۚ F(b)-F(a) غير مرتبط باختيار الدالَّة الأُصْلية Fُ. ْ

.I و منصلة على محال f و b عنصرين من f

b العدد الحقيقي (f من f من f دالة أصلية للدالة العدد الحقيقي (f على F حيث F دالة أصلية للدالة العدد الحقيقي (f

f(x)dx او تكامل من a إلى b ويكتب $\int_a^b f(x)dx$ ويكتب ويقرأ مجموع $\int_a^b f(x)dx$ ويكتب

$$\int_{a}^{b} f(x) dx$$
 وط يسميا محدا التكامل a

في الكتابة $\int_{-\infty}^{b} f\left(x\right) dx$ يمكن تعويض x في الكتابة

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt = \int_{a}^{b} f(u) du = \dots$$

 $\int_a^b f\left(x\right)dx = \left\lceil F(x) \right\rceil_a^b$ من أجل تبسيط الكتابة (F(b)-F(a) نكتبها على الشكل

$$\int_{1}^{2} \frac{1}{x} dx \quad \text{i.e.} \quad *$$

 $x \to \ln x$ الدالة $x \to \frac{1}{r}$ متصلة على [1;2] و دالة أصلية لها هي

$$\int_{1}^{2} \frac{1}{x} dx = \left[\ln x\right]_{1}^{2} = \ln 2$$
 liú

$$\int_0^{\frac{\pi}{4}} \frac{1}{\cos^2 x} dx$$
 ; $\int_{-1}^1 \frac{1}{x^2 + 1} dx$; $\int_{\frac{\pi}{2}}^0 \cos x dx$ *

 $\frac{c}{1-c}$ التكن f دالة متصلة على مجال I و f و f عناصر من f دالة f دالة متصلة على مجال f

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx * \int_{a}^{a} f(x) dx = 0*$$
(علاقة شال)
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx *$$

$$I = \int_{-1}^{1} |x| dx$$
 أحسب

$$\int_{-1}^{1} |x| dx = \int_{-1}^{1} |x| dx = \int_{-1}^{0} -x dx + \int_{0}^{1} x dx = \left[\frac{-1}{2} x^{2} \right]_{-1}^{0} + \left[\frac{1}{2} x^{2} \right]_{0}^{1} = 1$$

I و a عنصرا من التكن f دالة متصلة على مجال ا

$$\varphi: I \to \mathbb{R}$$

$$x \to \int_a^x f(t)dt$$

.I دالة أصلية لf على F حيث التا $\phi(x) = F(x) - F(a)$ لدينا

 φ التي تنعدم I التي الدالة g على I أي أن φ دالة الأصلية للدالة f على I التي تنعدم الذن φ

 \mathbf{I} دالة متصلة على مجال \mathbf{I} و \mathbf{a} عنصرا من \mathbf{I}

a التي تنعدم في I الدالة المعرفة على I التي تنعدم في $x o \int_a^x f(t)dt$

. 1مي تنعدم في $]0;+\infty[$ على $]0;+\infty[$ التي تنعدم في $x \to \ln x$ على الدالة

$$\forall x \in]0; +\infty[\quad \ln x = \int_1^x \frac{1}{t} dt$$

 $\forall x \in \left]0;+\infty\right[$ $f\left(x\right)=\frac{1}{r}\ln x$ حدد الدالة الأصلية لـ f على $\left[0;+\infty\right[$ التي تنعدم في 2 حيث حدد الدالة الأصلية لـ f

ج)- خاصیة کامین و g دالتین متصلتین علی a;b و g عدد حقیقی ثابت g و f

$$\int_{a}^{b} (\lambda f(x)) dx = \lambda \int_{a}^{b} f(x) dx \qquad \int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

$$(\cos^4 x$$
 یمکن اخطاط) $\int_0^\pi \cos^4 x \, dx$; $\int_0^1 (x^2 - 3x + 1) \, dx$ حدد

$$J=\int_0^{\pi\over 4} {\sin x\over \sin x + \cos x} dx$$
 $I=\int_0^{\pi\over 4} {\cos x\over \sin x + \cos x} dx$ نعتبر نعتبر J ; I و استنتج $I-J$ $I+J$

 $\int_a^b f(x)dx$ <u>د التأويل الهندسي للعدد</u>

f إذا كانت f دالة متصلة و موجبة على ig[a;big] ($a\prec b$) أنان مساحة الحيز المحصور بين منحنى الدالة و محور الأفاصيل و المستقيمين المعرفتين على التوالي بالمعادلتين x=b و x=b

بوحدة قياس المساحات $A(f) = \int_{-\infty}^{\infty} f(x) dx$

ملاحظة إذا كان المستوى منسوب إلى معلم متعامدين فان وحدة قياس المساحة هي مساحة المربع OIJK

$$f(x) = \frac{1}{x^2}$$
 نعتبر

$$\left(\left\|\vec{i}\,\right\|=1cm \qquad \left\|\vec{j}\,\right\|=2cm
ight) \qquad C_f$$
 أنشئ

أحسب بـ cm^2 مساحة الحيز المحصور بين C_f و محور الأفاصيل و المستقيمين المعرفين بالمعادلتين . x=3 ; x=

<u>I- تقنيات حساب التكاملات</u>

1- <u>الاستعمال المباشر لدوال الأصلية</u>

أمثلة

$$u(x) = \ln x$$
 على شكل $u'u^2$ على شكل $\frac{(\ln x)^2}{x}$ على أحسب $\int_1^e \frac{(\ln x)^2}{x} dx$ على أحسب *

$$\int_{1}^{e} \frac{(\ln x)^{2}}{x} dx = \left[\frac{1}{3}u^{3}(x)\right]_{1}^{e} = \left[\frac{1}{3}\ln^{3}x\right]_{1}^{e} = \frac{1}{3}u^{3}$$
و نعلم أن الدالة الأصلية لـ $u'u^{2}$ هي $u'u^{2}$ هي $u'u^{2}$

كتب على شكل
$$\frac{2}{1+e^x}$$
 أحسب $\frac{2}{1+e^x}$ لدينا $\frac{2}{e^x+1}=2\frac{e^{-x}}{1+e^{-x}}$ بهذا التحويل نلاحظ أن $\frac{2}{e^x+1}dx$ بهذا **

$$\int_{0}^{1} \frac{2}{e^{x} + 1} dx = \left[-2\ln|u(x)| \right]_{0}^{1} = \left[-\ln(1 + e^{-x}) \right]_{0}^{1} \quad \text{(if } u(x) = 1 + e^{-x} \quad -2\frac{u^{2}}{u^{2}}$$

$$\int_0^{\frac{\pi}{4}} \sin^3 x \, dx \quad -1 \quad \frac{1}{2}$$

$$\forall x \neq 0$$
 $\frac{2x^4 + x^2 + x - 1}{x^3 + x} = ax + \frac{b}{x} + \frac{c}{x^2 + 1}$ c b b a - 1 - 2

. على شكل
$$\frac{1}{2u^2+1}$$
 حيث u دالة يجيب تحديدها -3 على شكل $\frac{1}{x^2-2x+5}$

$$\int_{1}^{1+2\sqrt{3}} \frac{1}{x^2-2x+5} dx$$
 استنتج قیمة

$$\left(\frac{1}{x \ln x} = \frac{\frac{1}{x}}{\ln x}\right) \qquad \int_{e}^{e^{2}} \frac{1}{x \ln x} dx \quad ; \quad \int_{0}^{1} \frac{1}{(x+1)(x+2)} dx \quad -4$$

2- المكاملة بالأجزاء

 $egin{align} \left[a;b
ight]$ لتكن g و g و التين قابلتين للاشنقاق على $\left[a;b
ight]$ بحيث f و g متصلتين على g

$$\forall x \in [a;b] \quad (fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\forall x \in [a;b] \quad f'(x)g(x) = (fg)'(x) - f(x)g'(x)$$

<u>خاصية</u>

$$\int_{a}^{b} f'(x)g(x)dx = \left[(fg)(x) \right]_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx$$

$$v\left(x\right)=x$$
 ; $u'(x)=\cos x$ نضع $\int_{0}^{\frac{\pi}{2}}x\cos xdx$ ومنه $v'(x)=1$; $u\left(x\right)=\sin x$ ومنه

$$\int_0^{\frac{\pi}{2}} x \cos x dx = \left[x \sin x \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \sin x dx = \left[x \sin x \right]_0^{\frac{\pi}{2}} - \left[-\cos x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2} - 1$$

$$\downarrow i$$

$$K = \int_0^{\frac{\pi}{2}} e^x \sin x dx$$
 ; $J = \int_0^{\pi} x^2 \sin x dx$; $I = \int_1^e \ln x dx$ j

$$K = \left[e^{x} \sin x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} e^{x} \cos x dx = \left[e^{x} \sin x \right]_{0}^{\frac{\pi}{2}} - \left[e^{x} \cos x \right]_{0}^{\frac{\pi}{2}} - K$$

$$K = \frac{1}{2} \left[\left[e^{x} \sin x \right]_{0}^{\frac{\pi}{2}} - \left[e^{x} \cos x \right]_{0}^{\frac{\pi}{2}} \right] = \dots$$

$$\int_0^1 \ln \left| \frac{x+2}{x+1} \right| dx$$
 $\int_0^1 x \sqrt{x+3} dx$ $\int_0^3 (x-1)e^{2x} dx$ $\int_1^2 x^2 \ln x dx$ -1 $\int_0^2 x^2 \ln x dx$

$$f\left(x\right) = \frac{x}{\cos^2 x}$$
 جاستعمال المكاملة بالأجزاء أوجد الدوال الأصلية لـ $f\left(x\right) = \frac{x}{\cos^2 x}$ جاستعمال المكاملة بالأجزاء أوجد الدوال الأصلية لـ $f\left(x\right) = \frac{x}{\cos^2 x}$

$$(J=\int_0^x e^t \sin^2 t dt)$$
 احسب) $I=\int_0^x e^t \cos^2 t dt$ -3

[a;b] و f دالة أصلية لـ f على [a;b] و التكن f على [a;b]

$$\forall x \in [a;b]$$
 $F'(x) = f(x)$
$$\int_a^b f(x) dx = F(b) - F(a)$$
 إذا كانت f موجبة على $[a;b]$ فان f تزايدية على
$$\int_a^b f(x) dx \ge 0$$
 ادن $f(a) \le F(b)$ فان $f(a) \le 0$

 $(a \le b)$ لتكن f دالة متصلة على [a;b]

$$\int_{a}^{b} f(x) dx \ge 0$$
 فان $[a;b]$ فان f موجبة على

 $(a \le b)$ [a;b] لتكن f و g دالتين متصلتين على

$$\int_{a}^{b} f\left(x\right) dx \leq \int_{a}^{b} g\left(x\right) dx$$
 فان $f \leq g$ على إذا كانت $f \leq g$

$$I = \int_0^1 \frac{x^2}{1+x} dx$$
 نؤ طر $I = \int_0^1 \frac{x^2}{1+x} dx$ نؤ طر
$$\int_0^1 \frac{x^2}{2} dx \le I \le \int_0^1 x^2 dx$$
 ومنه
$$\forall x \in \left[0;1\right]$$

$$1 \le 1 + x \le 2 \Leftrightarrow \frac{x^2}{2} \le \frac{x^2}{1+x} \le x^2$$
 لدينا
$$\frac{1}{6} \le I \le \frac{1}{3}$$
 إذن
$$\frac{1}{6} \le I \le \frac{1}{3}$$

$$(a \le b)$$
 $[a;b]$ أ- لتكن f دالة متصلة على

$$\int_{a}^{b} f(x) dx \le 0$$
 فان f سالبة على [a,b] إذا كانت f

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx \quad -\infty$$

 $\left[a;b
ight]$ على $\left[a;b
ight]$ على القيمة الدنوية للدالة على M

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

ملاحظة

إذا كانت f موجبة على [a;b] فان المساحة f(x)dx إذا كانت f في معلم م.م محصورة بين (b-a) و m و المستطيل الذي بعديه M و (b-a) و المستطيل الذي بعديه m

$$0 \le I \le \sqrt{2}$$
 نعتبر $I = \int_1^3 \frac{1}{x\sqrt{1+x^2}} dx$ نعتبر

$$\sup_{x \in [1;3]} f(x) = f(1) = \frac{\sqrt{2}}{2}$$
 ومنه $]0;+\infty[$ على على $]0;+\infty[$ موجبة و تناقصية على الدالة

$$0 \le I \le (3-1)\frac{\sqrt{2}}{2}$$
 اذن

<u>2- القيمة المتوسطة لدالة متصلة في قطعة</u>

[a;b] على [a;b] على [a;b] على القيمة القصوية و [a;b] على القيمة الدالة [a;b][a;b] ومنه حسب مبرهنة القيمة الوسطية يوجد على الأقل $m \leq \frac{1}{b-a} \int_a^b f(x) dx \leq M$ إذن $f(c) = \frac{1}{b-a} \int_a^b f(x) dx$ حيث

(a
eq b) [a;b] حاصیة و تعریف لتکن f دالة متصلة علی

[a;b] العدد الحقيقي f على القيمة المتوسطة للدالة $\mu = \frac{1}{b-a} \int_a^b f(x) dx$ العدد الحقيقي

$$f(c) = \frac{1}{b-a} \int_a^b f(x) dx$$
 يوجد على الأقل c في $[a;b]$ حيث

<u>ملاحظة</u>

إذا كانت f موجبة على [a;b] فان المساحة $A(f)=\int_a^b f(x)dx$ في معلم م.م هي مساحة

$$.f(c)$$
 و $(b-a)$ و

R

تمرين I أحسب القيمة المتوسطة للدالة f على I في الحالتين التاليتين

$$I = [0;1]$$
 $f(x) = \frac{x^3 + 5x^2 + x + 3}{x + 1}$ $(b$; $I = [-1;0]$ $f(x) = (x - 1)e^x$ $(a + 1)e^x$ $f(x) = \arctan x$ على $f(x) = \arctan x$

الجواب عن السؤال 2 لدينا f قابلة للاشتقاق على [0;1] و [0;1] و منه الجواب عن السؤال 2

$$\frac{x}{2} \le f\left(x\right) \le x \quad \forall x \in \left[0;1\right] \qquad \int_0^x \frac{1}{2} dt \le \int_0^x f'\left(t\right) dt \le \int_0^x dt \quad \text{i.e.} \quad \forall x \in \left[0;1\right] \qquad \frac{1}{2} \le f'\left(x\right) \le 1$$

<u>IV- حساب المساحات</u>

<u>1- حساب المساحات الهندسية</u>

 $\left(o;\vec{i}\;;\vec{j}\;\right)$ المستوى منسوب إلى م.م.م

لتكن f دالة متصلة على [a;b] و محور الأفاصيل متحناها و $\Delta(f)$ الحيز المحصور بين $\Delta(f)$ و محور الأفاصيل و المستقيمين $\Delta(f): x=b$

$$- A(f) = \int_a^b -f(x)dx = \int_a^b |f(x)| dx$$

إذ ا كانت f موجبة على a;b فان مساحة $\Delta(f)$ هي $\Delta(f)$ هي أوحدة قياس المساحات a;b بوحدة قياس المساحات $\Delta(-f)$ مساحة هي مساحة a;b مساحة a;b سالبة على a;b

$$A(f) = \int_a^b -f(x) dx = \int_a^b |f(x)| dx$$

و سالبة على [a;b] و سالبة على [a;b] و سالبة على [a;b] و سالبة على [c;b]

 $egin{aligned} \left[c;b
ight]$ على $\left[a;c
ight]$ على $\left[a;b
ight]$ على $\left[a;b
ight]$ على $\left[a;b
ight]$

$$A(f) = \int_a^c f(x) dx + \int_c^b -f(x) dx = \int_a^c |f(x)| dx + \int_c^b |f(x)| dx = \int_a^b |f(x)| dx$$

<u>خاصىة</u>

 $(o; ec{i}; ec{j})$ المستوى منسوب الى م.م.م

لتكن f دالة متصلة على C_f و محور الأفاصيل منحناها و $\Delta(f)$ الحيز المحصور بين المحصور الأفاصيل لتكن المحصور بين المحصور الأفاصيل

$$\left(\Delta_{2}\right)$$
: $x=b$ $\left(\Delta_{1}\right)$: $x=a$ و المستقيمين

مساحة الحيز
$$\Delta(f)$$
 هو $\Delta(f)$ هو مساحة الحيز عبد المساحة الحيز عبد المساحة الحيز عبد المساحة الحيز عبد المساحة الحين الحين المساحة المساحة المساحة الحين المساحة المساح

$$\Delta(f)$$
 العدد الموجب $\int_a^b \left| f(x) \right| dx$ يسمى المساحة الهندسية للحيز

$$\Delta(f)$$
 العدد الحقيقي يسمى المساحة الجبرية للحيز العدد الحقيقي

$$f(x) = x^3 - 1$$
 نعتبر

حدد مساحة الحيز المحصور بين المنحنى C_f و محور الأفاصيل و المستقيمين ذا المعادلتين

$$x = 2$$
 ; $x = 0$

$$A = \int_0^2 |f(x)| dx$$

$$A = \int_0^1 (1 - x^3) dx + \int_1^2 (x^3 - 1) dx$$

$$A = \frac{7}{2}u \qquad \left(u = \|\vec{i}\| \times \|\vec{j}\| \right)$$

 $\begin{bmatrix} a;b \end{bmatrix}$ لتكن f و g دالتين متصلتين على

$$\left(o;\vec{i}\;;\vec{j}\;\right)$$
 في م.م.م $\left(\Delta_{1}\right)\;:x=b$

 $\left(\Delta_{_{1}}
ight)$: x = a و المستقيمين $C_{_{g}}$ و $C_{_{f}}$ و المحصور بين

$$A(\Delta) = A(f) - A(g) \quad \text{ ob} \quad f \ge g \ge 0 \quad \text{ ob} \quad f \ge g \ge 0 \quad \text{ ob} \quad f \ge g \ge 0 \quad \text{ ob} \quad f \ge g \ge 0 \quad \text{ ob} \quad f \ge g \ge 0 \quad \text{ ob} \quad f \ge g \ge 0 \quad \text{ ob} \quad f \ge g \ge 0 \quad \text{ ob} \quad f \ge g \ge 0 \quad \text{ ob} \quad f \ge g \quad f \ge g \quad \text{ ob} \quad f$$

خاصىة

[a;b] لتكن f و g دالتين متصلتين على [a;b] مساحة الحيز Δ المحصور بين C_g و C_g و المستقيمين Δ المحصور بين Δ وحدة قياس المساحات Δ

$\int_{a}^{c} f(x) - g(x) dx$ $\int_{c}^{b} g(x) - f(x) dx$

$A(\Delta) = \int_{a}^{c} (f(x) - g(x)) dx + \int_{c}^{b} (g(x) - f(x)) dx$

<u>٧- حساب الحجوم في الفضاء</u>

الفضاء منسوب إلى معلم م.م $\left(o;ec{i}\,;ec{j}\,;ec{k}
ight)$ نفترض أن وحدة قياس الحجم هي حجم المكعب الذي طول حرفه $\left\|ec{i}\,
ight\|$

1- حجم محسم في الفضاء

z=b و z=a و يالمعادلتين S مجسما محصورا بين المستويين المعرفين بالمعادلتين S مجسما محصورا بين المستويين المعرفين بالمعادلين S(t) الى حجم مجموعة نرمز بـS(t) إلى حجم مجموعة S(t) النقط من S(t) المحصور بين المستويين S(t) و يا من S(t) من S(t) من S(t) و يا عددا موجبا حيث S(t) عددا موجبا حيث S(t)

 $V\left(t_0+h\right)-V\left(t_0\right)$ هو $z=t_0+h$ و $z=t_0$ المحصورة بين S المحصورة بين $z=t_0$ هو $M\left(x;y;z\right)$ هو ومن جهة ثانية هذا الحجم محصور بين حجمي الأسطوانتين التي ارتفاعهما $z=t_0+h$ و مساحتا قاعدتيهما على التوالي $S\left(t_0+h\right)$ و $S\left(t_0+h\right)$

$$h\cdot Sig(t_0ig) \leq Vig(t_0+hig) - Vig(t_0ig) \leq h\cdot Sig(t_0+hig)$$
 فان $Sig(t_0ig) \leq Sig(t_0+hig) + Sig(t_0+hig)$ فان $Sig(t_0ig) \leq Sig(t_0+hig) - Vig(t_0+hig) - Vig(t_0+hig)$ و منه $Sig(t_0ig) \leq Sig(t_0+hig)$

 $\lim_{h \to 0} rac{V\left(t_0 + h
ight) - V\left(t_0
ight)}{h} = S\left(t_0
ight)$ فان $\left[a;b
ight]$ فان $t \to S\left(t
ight)$ فان التطبيق $t \to V\left(t
ight)$ قابلة للاشتقاق على $\left[a;b
ight]$ و $\left[a;b
ight]$ و $\left[a;b
ight]$ على $\left[a;b
ight]$ على $t \to V\left(t
ight)$ على أن الدالة $t \to V\left(t
ight)$ دالة أصلية للدالة $t \to S\left(t
ight)$ على أن الدالة $t \to V\left(t
ight)$

 $\forall t \in [a;b]$ $V(t) = \int_a^t S(x) dx$ فان V(a) = 0 فان و بما أن

. وحدة قياس الحجم $V=V(b)=\int_a^b S(x)dx$ هو S محجم المجسم

خاصية

الفضاء منسوب إلى معلم م.م

z=b و z=a و المستويين المعرفين بالمعادلتين S مجسما محصورا بين المستويين المعرفين بالمعادلتين S الى مساحة مجموعة النقط S(t) من S(t) الى مساحة مجموعة النقط

إذا كان أن التطبيق S متصلا على [a;b] فان حجم المجسم S هــو S(t) وحدة قياس $t \to S(t)$ وحدة الحجم.

تمرين

أحسب حجم الفلكة التي مركزها O و شعاعها R الحل : نفترض أن الفضاء منسوب م.م.م أصله O الفلكة محصورة بين المستويين المعرفين على التوالي بالمعادلتين C = -R ; C = R

z=t مجموعة النقط $M\left(x;y;z
ight)$ من الفلكة حيث $\sqrt{R^2-t^2}$ هي قرص شعاعه $-R\leq t\leq R$ و مساحته $S\left(t
ight)=\pi\left(R^2-t^2
ight)$ متصلة على [-R;R] بما أن التطبيق $t o\pi\left(R^2-t^2
ight)$ متصلة على $V=\int_{-R}^R\pi\left(R^2-t^2
ight)dt=rac{4}{3}\pi R^3$ فان

<u>2- حجم مجسم الدوران</u>

 $\left(O;\vec{i}\,;\vec{j}
ight)$ منحناها في م.م.م $\left(a;b
ight]$ و $\left[a;b
ight]$ دالة متصلة على $\left(O;\vec{i}\,
ight)$ دورة كاملة فانه يولد مجسما يسمى مجسم الدوران إذا دار $\left(C_f\;\vec{i}\;\right)$

في هذه الحالة لدينا مجموعة النقط $M\left(x;y;z\right)$ من الجسم بحيث $S\left(t\right)=\pi f^{-2}\left(t\right)$

 $\left[a;b
ight]$ التطبيق $t o\pi f^2\left(t
ight)$ متصلة على

 $V=\int_{a}^{b}\pi f^{2}(t)dt$ إذن حجم المجسم الدوراني هو

<u>خاصىة</u>

igl[a;bigr] الفضاء منسوب إلى م.م.م أصله o , و

 $V=\int_a^b \pi f^{-2}ig(tig)dt$ هو (OX) حجم مجسم الدوران المولد عن دوران المنحنى C_f حول المحور بوحدة قياس الحجم .

تمرين

$$f(x) = \frac{1}{2}x \ln x$$
 نعتبر

igl[1;eigr] المجال في المجال وحدد حجم مجسم الدوران الذي يولده دوران المنحنى C_f حول المحور C_f