Skript Mathe 2

15. Mai 2018

1 Reelle Funktionen

Grundbegriffe und Beispiele

1.1 Definition: Abbildung

Eine Abbildung $f:A\to B$ besteht aus

- Dem Definitionsbereich A (Menge A)
- \bullet Dem Bildbereich B (Menge B)
- Einer Zuordnungsvorschrift f, die jedem $a \in A$ genau ein Element $b \in B$ zuordnet.

Man schreibt b = f(a), nennt b Bild/Funktionswert von a und a (ein) Urbild von b.

Notation: $f: A \to B, a \mapsto f(a)$

A = Menge aller Studenten von Mathe II

 $B = \{ \text{Raucher}, \text{Nichtraucher} \}$

f = Zuordnungsvorschrift, die jedem Studenten zuordnet, ob er/sie raucht/nicht raucht

1.2 Definition: Reelle Funktion

Eine reelle Funktion einer Veränderlichen ist eine Abbildung $f:D\to\mathbb{R},D\subseteq\mathbb{R}.$

- a) $(f \pm g)(x) := f(x) \pm g(x) \quad \forall x \in D$ Summe/Differenz von f und g
- b) $(f \cdot g) := f(x) \cdot g(x) \quad \forall x \in D$ Produkt von f und g
- c) Für $g(x) \neq 0 \quad \forall x \in D$ heißt

$$\left(\frac{f}{g}\right)(x) := \frac{f(x)}{g(x)} \quad \forall x \in D$$

Quotient von f und g

d) Komposition/Verknüpfung

$$f: D_f \to \mathbb{R}, g: D_g \to \mathbb{R} \text{ mit } f(D_f) \subseteq D_g$$

$$f \circ g: D_f \to \mathbb{R}$$

$$(g \circ f)(x) := g(f(x))$$

$$D_f \xrightarrow{f} f(D_f) \subseteq D_g \xrightarrow{g} g(f(D_f)) \subseteq \mathbb{R}$$

$$g \circ f \text{ ("g nach f")}$$

1.3 Beispiel

$$\begin{split} f,g:\mathbb{R}\to\mathbb{R}, &f(x)=x^2, g(x)=x-1\\ &(f+g)(x)=x^2+x-1, (f\cdot g)(x)=x^2(x-1)\\ &\left(\frac{f}{g}\right)\!(x)=\frac{x^2}{x-1} \text{ für } D=\{x\in\mathbb{R}|x\neq 1\} \text{ Definitionsbereich von } \frac{f}{g}.\\ &(f\circ g)(x)=(x-1)^2\neq\\ &(g\circ f)(x)=x^2-1 \end{split}$$

1.4 Definition: Injektiv, Surjektiv, Bijektiv

Sei $f: X \to Y$ eine Abbildung. f heißt:

- 1. Surjektiv $\Leftrightarrow \forall y \in Y \ \exists x \in X : f(x) = y$
- 2. Injektiv \Leftrightarrow $(f(x_1) = f(x_2) \Rightarrow x_1 = x_2)$
- 3. Bijektiv $\Leftrightarrow f$ ist injektiv und surjektiv

1.5 Beispiele

- a) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$ ist
 - nicht surjektiv: z.B gibt es für y=-1 kein $x\in\mathbb{R}$ mit f(x)=-1, da $f(x)=x^2\geq 0 \quad \forall x\in\mathbb{R}$
 - nicht injektiv: f(-1) = f(1) aber $-1 \neq 1$
- b) Jedoch ist $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ mit $f(x) = x^2$ bijektiv, wie man leicht prüfen kann

1.6 Definition: Umkehrfunktion, Bild, Urbild

Sei $f:X\to Y$ eine Abbildung

1. Für $X_0 \subseteq X$ heißt $f(X_0) := \{f(x) | x \in X_0\}$ Bild von X_0

- 2. Für $Y_0 \subseteq Y$ heißt $f^{-1}(Y_0) := \{x \in X | f(x) \in Y_0\}$ Urbild von Y_0
- 3. Ist f bijektiv, so heißt $f^{-1}:Y\to X$ Umkehrfunktion von f, falls $f^{-1}\circ f=\mathrm{id}_x$ und $f\circ f^{-1}=\mathrm{id}_y$

1.7 Beispiel

a) $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, f(x) = x^2 \text{ ist bijektiv } (4.6b)$ Umkehrfunktion: $f^{-1}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, f^{-1}(x) = \sqrt{x}$ da: $(f \circ f^{-1})(x) = f(f^{-1}(x)) = (\sqrt{x})^2 = \underbrace{x}_{\text{eid } \mathbb{R}_{\geq 0}}$ $= f^{-1}(f(x)) = \sqrt{x^2} = (f^{-1} \circ f)(x)$

 $\underline{\text{Bemerkung:}}$ Die Umkehrfunktion erhält man durch Spiegelung an der Ursprungsgeraden

b) Achtung: Das Urbild existiert immer, auch wenn f^{-1} als Umkehrfunktion nicht existiert.

Beispiel:
$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$$
 $f^{-1}(\{\frac{1}{4}\}) = \{-\frac{1}{2}, +\frac{1}{2}\}$

1.8 Definition: Symmetrie

Sei $f(x): \mathbb{R} \to \mathbb{R}$ heißt:

- Achsensymmetrisch $\Leftrightarrow f(x) = f(-x) \quad \forall x \in \mathbb{R} \text{ (zur y-Achse)}$
- Punktsymmetrisch $\Leftrightarrow f(x) = f(-x) \quad \forall x \in \mathbb{R}$

1.9 Definition: Monotonie

Sei $f: D \to \mathbb{R}, D \subseteq \mathbb{R}$. f heißt (streng) monoton wachsend, falls $f(x_1) \leq f(x_2) \quad \forall x_1 \leq x_2$.

Falls $f(x_1) \geq f(x_2)$ $\forall x_1 \geq x_2$, so heißt f (streng) monoton fallend.

1.10 Elementare Funktionen

- a) Konstante Funktion: Sei $c \in \mathbb{R}$ $f : \mathbb{R} \to \mathbb{R}, x \mapsto c$
- b) Identität: $f: \mathbb{R} \to \mathbb{R}, x \mapsto x$
- c) Betragsfunktion: $f: \mathbb{R} \to \mathbb{R}, x \mapsto |x|$ f ist achsensymmetrisch
- d) Monome/Potenzen: $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^n \quad (n \in \mathbb{N})$
 - n gerade: f achsensymmetrisch, weder injektiv noch surjektiv, nicht monoton, $f(x) \neq 0 \quad \forall x \in \mathbb{R}$

- n ungerade: f punktsymmetrisch, bijektiv, streng monoton steigend
- e) Wurzenlfunktion Sind Umkehrfunktion von Monomen
 - n ungerade $\Rightarrow f(x) = x^n$ bijektiv \Rightarrow Umkehrfunktion existiert und hat die Form $\frac{4.7}{3}$

$$\sqrt[n]{}: \mathbb{R} \to \mathbb{R}, x \mapsto \sqrt[n]{x}$$