

RBE 510 - Multi-Robot Systems Lecture 4: Controlling Groups of Robots

Kevin Leahy September 2, 2025

Admin

• HW 1 Due Friday

• Office hours Wednesday 3-3:45, UH 250 D

Groups

- Group 1
 - Honor
 - Mann
 - Hart
- Group 2
 - Shah
 - Green
 - Raja

- Group 3
 - Boozer
 - Kaiser
 - Smith
- Group 4
 - Cruse
 - Rosenstein

Paper Presentations

- Presentation dates
 - **-** 9/9
 - -9/16
 - -9/23
 - -9/30
- One paper will be assigned to each group
- Whole class read the paper and be prepared to discuss
- Assigned group plan ~20 minute presentation
- Rubric, paper, and assignment posted this afternoon

Paper Presentation

Goal:

- Get a sense of some of the research going on in this field that is outside of what we can cover in class
- Tie topics from class (trade-offs, complexity, etc.) to current work

Criteria

- Explain the main/important ideas to the class
- Cover assumptions, limitations, trade-offs
- Discussion/questions for the class

Recap

- Last time:
 - Robot models
 - Motion
 - Comms
 - Processing
 - Generality of models we use
 - Distributed algorithms and complexity

Today

- Back to formations
 - Leader-follower
 - Some variants
- Non-consensus-based approaches to controlling formations
- Reference-frame invariant control

In class so far

Consensus-based control

$$\dot{x} = -Lx$$

- Including different assumptions on topologies, information flow, etc.
- Formation control
 - Modified consensus

$$\dot{x} = -Lx + d$$

In class so far

- Goal is static
 - Converge to an average value
 - Converge to a given formation
- How is such a formation determined?
- What if there's a sequence of tasks to do?

In class so far

- Lots of things are know a priori
 - Desired formation
 - Global reference frame/absolute location
- What if this type of information is unavailable?

Leader-Follower Control

Moving a Group of Agents

- So far, we've looked at agents doing something with respect to other agents
 - Reach a consensus
 - Rendezvous
 - Make a formation
 - Etc.
- What if we want to control when and how they move?
- Human input commands?

Leader-Follower Networks

- Ji, Muhammad, and Egerstedt 2006
- Ch. 6 of Mesbahi and Egerstedt
- This is a "sheep dog" problem
 - For a heterogenous group with leaders and followers, can we use consensus to control a formation and its location
 - How can the leaders move to force the followers to any desired position?

Leader-Follower Formation Intuition

- One or more agent needs control input
- The rest just perform consensus or formation control

The Model

- n_l leaders
- n_f followers
- Followers run consensus algorithm on position

$$\dot{x} = -Lx$$

- Leaders run a different control law to "herd" the followers
 - What control law should they run?
 - How does it influence the followers

The Model

- $\dot{x} = -Lx$
- Let's start by splitting the state

$$x = \begin{bmatrix} x_f \\ x_l \end{bmatrix}$$

What does this do to the Laplacian?

The Laplacian

Write our new Laplacian as

$$L = \begin{bmatrix} L_f & l_{fl} \\ l_{fl}^T & L_l \end{bmatrix}$$

- $L \in \mathbb{N}^{n \times n}$
- $L_f \in \mathbb{N}^{n_f \times n_f}$
- $L_l \in \mathbb{N}^{n_l \times n_l}$
- $l_{fl} \in \mathbb{N}^{n_f \times n_l}$

Follower Dynamics

Overall dynamics

$$\dot{x} = -Lx$$

$$\dot{x} = -\begin{bmatrix} L_f & l_{fl} \\ l_{fl}^T & L_l \end{bmatrix} \begin{bmatrix} x_f \\ x_l \end{bmatrix}$$

What are the follower dynamics?

Follower Equilibria

•
$$\dot{x_f} = -L_f x_f - l_{fl} x_l$$

• Where is equilibrium?

Equilibrium

$$\bullet \ x_f = -L_f^{-1} l_{fl} x_l$$

• Can we compute it?

Follower Laplacian

Follower Laplacian is positive definite (and therefore invertible)

Does it converge?

Yes!

Quick example

- 4 agents
- $x_l = [0, 3]^T$

Formation Dynamics

$$\bullet \ \dot{x_f} = -L_f x_f - l_{fl} x_l + d$$

- Equilibria
- $x_f = -L_f^{-1}l_{fl}x_l + L_f^{-1}d$ (unique and stable)
- Reduces to
- $\tilde{x}_f = x_f L_f^{-1}d$
- $\dot{\tilde{x}}_f = \dot{x_f}$

Other approaches

Leonard and Fiorelli 2001

 d_m, θ_m $\begin{array}{c} \Delta \\ \circ \circ \circ \circ \\ \bar{s} & \circ \end{array}$ d_1, θ_1

Pierson and Schwager 2015

Controlling Abstractions

Alternatives to Nearest Neighbor Control

- Based on Belta and Kumar 2004
- One-to-many control regime
- All agents run an identical protocol
- Control is based on the aggregate (global) state of agents instead of local information

Controlling an Abstraction

- Consider N robots, with robot i having state $q_i \in \mathbb{R}^2$
- State is position in world frame {W}
- Single integrator: $\dot{q}_i = u_i$
- Collect them together

$$\dot{q} = u$$

Where
$$q \in Q = \prod_{i=1}^{N} Q_i \in \mathbb{R}^{2N}$$

Abstracting the agents

- Consider a bunch of agents distributed in \mathbb{R}^2
- Assume they are normally distributed*
- What's a good abstraction for the agents?

Abstraction

- How to describe an ellipse in \mathbb{R}^2 ?
- Can we describe the motion we want the agents to execute in terms of an ellipse?

Abstraction

- Assume agent positions q_i are realizations of a random variable with mean μ and covariance Σ
- If N is sufficiently large, sample mean and covariance converge to true values of the Normal distribution
- Rotation R diagonalizes the covariance
- Covariance matrix has eigenvalues s_1 and s_2

Abstraction

- Can estimate as follows
 - $-\mu = \frac{1}{N} \sum_{i=1}^{N} q_i$
 - Defines "equiprobability ellipse" for probability p
 - $c = -2 \ln(1 p)$
 - $(x-\mu)^T \Sigma^{-1} (x-\mu) = c$
 - I.e., given a desire to enclose 99% of the robots, we can define a corresponding ellipse that will contain that probability mass consistently

Realism of abstraction

- Can estimate from camera or similar "stand-off" surveillance asset
- Doesn't depend on high-quality sensor or number of agents
- It is an "equipotential" view of the world

Architecture

- Control law C_i of robot R_i depends only on
 - Own state q_i
 - Abstract state a,
 provided by observer
 - Desired state or trajectory
- No explicit interagent dependence

Controlling the Abstraction

- We can describe the desired motion of the ellipse as follows
 - $-\dot{\mu} = K_{\mu} \big(\mu^d \mu \big)$
 - $-\dot{\theta} = k_{\theta}(\theta_d \theta)$
 - $\dot{s_1} = k_{s_1} (s_1^d s_1)$
 - $\dot{s_2} = k_{s_2} (s_2^d s_2)$
- Where $K_{\mu} \in \mathbb{R}^{2 \times 2}$ and $k_{\theta}, k_{s_{1,2}} > 0$
- Used to guarantee the behavior of the abstraction on a trajectory
- How to get the agents to realize the trajectory?

Map to Dynamics

- The derivation involves "simple but rather tedious calculations"
- Overall formation controls are

$$-\dot{q} = X_q^{\mu}\dot{\mu} + \frac{s_1 - s_2}{s_1 + s_2}\dot{\theta}X_q^{\theta} + \frac{s_1}{4s_1}X_q^{s_1} + \frac{s_2}{4s_2}X_q^{s_2}$$

- X_q are some matrices whose precise details don't matter for us
- Note each aspect of the abstract is controllable independently

Map to Dynamics

• Convert overall dynamics to individual agent dynamics
$$u_i = \dot{q}_i = \dot{\mu} + \frac{s_1 - s_2}{s_1 + s_2} H_3(q_i - \mu) \dot{\theta} + \frac{1}{4s_1} H_1(q_i - \mu) \dot{s_1} + \frac{1}{4s_2} H_2(q_i - \mu) \dot{s_2}$$

- "Rather centralized"
- Agents need to know their own absolute state
- I.e., position relative to the swarm/abstraction big assumption!

Agents and Distance from μ

Stability, controllability, etc.

- Some important properties
 - Proposition 2:
 - If a (the abstraction) is bounded, then so are all q_i
 - I.e., if you can control the abstraction, the control laws are well-defined
 - Argument follows that if μ , s_1 , and s_2 are bounded, then controls will be bounded
 - Proposition 3:
 - The closed-loop system converges to equilibrium
 - $\dot{a} = 0$ iff $\dot{q}_i = 0$ for all i
 - The rest follows from some Lyapunov and LaSalle-based proofs

Contractions and Expansions

 If you cede control of orientation (i.e., assume abstraction keeps its initial orientation), then control law

$$\dot{q}_i = \dot{u}_i = \dot{\mu} + \frac{q_i - \mu}{2s} \dot{s}$$

- This allows scaling of the formation via s
- Can switch from scaling mode back to standard mode and vice versa

Example

N=100 robots; equiprobability ellipse of 99%

Trade-offs

- Distributed
- Scalable
- Centralized! Observation and control come from centralized source
- Agents require good self-localization in a global reference frame

Modifications to Formation Control

Navigation with Formations

Scaling

- Recall:
 - Formation control: $\dot{x} = -Lx + d$
 - Under conditions:
 - $d_{ij} = -d_{ji}$
 - $1^T d = 0$
- Can scale the entire vector by a term $\alpha \in \mathbb{R}_+$
 - $-\dot{x} = -Lx + \alpha d$
 - Does not violate our conditions
- Formation control is therefore scale invariant
- But, in the most common case you need to specify the scale

Scaling

• Useful for navigating narrow passages, for example

Translation

- Formations are translation invariant
- We already saw this
 - If x^* is a solution to $Lx^* + d = 0$, so is $L(x^* + 1\alpha) + d$
 - If ∃ one solution, ∃ infinitely many solutions
- I.e., the formation can be displaced and still remain a solution to the closed-loop control law

Rigidity

- Imagine a formation already in goal state x^*
- If the only way to translate a single agent is to translate the entire formation, the formation is rigid

Rigidity

- Thus, to ensure a feasible formation, the best bet is to ensure
 - $-d_{ij}=-d_{ji}$
 - $-1^T d = 0$
 - Graph is rigid
- How to guarantee rigidity?

Determining Rigidity

- Assume agents in goal formation x*
- Apply infinitesimal control input $u = [u_1^T, u_2^T, ..., u_n^T]$
- We want the distances between edges to remain constant in that motion
- $\left(\dot{x}_i(t) \dot{x}_j(t)\right)^T \left(x_i(t) x_j(t)\right) = 0$ for all $i, j \in E$

Determining Rigidity

- $\left(\dot{x}_i(t) \dot{x}_j(t)\right)^T \left(x_i(t) x_j(t)\right) = 0$ for all $i, j \in E$ Trajectory Constant d_{ij}
- In matrix form, we write

$$R\big(G(x^*)\big)u=0$$

- Call $R(G(x^*))$ the **rigidity matrix**
- A framework with $n \ge 2$ points in \mathbb{R}^2 is (infinitesimally) rigid iff rank $\operatorname{ran} k\left(R\big(G(x^*)\big)\right) = 2n-3$

Infinitesimal Rigidity

Infinitesimal Rigidity

$$R = \begin{bmatrix} (p_1 - p_2)^T & -(p_1 - p_2)^T & 0 & 0 \\ (p_1 - p_3)^T & 0 & -(p_1 - p_3)^T & 0 \\ (p_1 - p_4)^T & 0 & 0 & -(p_1 - p_4)^T \\ 0 & (p_2 - p_3)^T & -(p_2 - p_3)^T & 0 \\ 0 & 0 & (p_3 - p_4)^T & -(p_3 - p_4)^T \end{bmatrix}$$

Rigidity

Worcester Polytechnic Institute

Reference Frame Invariance

Sources

- Jorge Cortes "Global and robust formation-shape stabilization of relative sensing networks," Automatica, 2009
- Bullo, Cortes, and Martinez Ch. 3
- Krick aet al. "Stabilization of Infinitesimally Rigid Formations of Multi-Robot Networks", Conference on Decision and Control, 2008

Reference Frames and Kinematics

Rotation matrices in d-dimensions

$$-SO(d) = \{R \in \mathbb{R}^{d \times d} \mid RR^T = I_d, \det R = 1$$

- $q_{fixed} = R^b_{fixed}q_b + p^b_{fixed}$
- $v_{fixed} = R^b_{fixed} v_b$

Problem Setup

• They are all defined relative to Σ^{fixed} , which is unknown to the agents

Problem Setup

- Agents are equipped with sensor that return the location of other agents, objects in the environment, etc. in their own body frame
- We'll assume a circular footprint, similar to our disc-based comms model

Sensing Model Consequences

- Robots have no information about the absolute position and orientation of themselves, the other robots, or any part of the environment
 - This significantly relaxes many of the assumptions in examples we've been studying!
 - It also makes them harder to solve
- The relative sensing capabilities of the robots gives rise to a sensing graph, whose edges denote robots within sensing range of a given robot
 - This will (for now) replace our notion of a communication graph
 - The relationship between the two graphs could be more complicated but we ignore that for the time being

Rigid-body Transformations

- Rigid body transformations contain a translation and rotation
- For a set of points $x^* = \{x_1^*, x_2^*, \dots, x_n^*\}$, $Rgd(x^*)$ is (x_1, x_2, \dots, x_n) such that
 - There exists $(q,R) \in \mathbb{R}^d \times SO(d)$ such that $x_i = Rx_i^* + q$
- Note, scalar distance between any two points i, j is the same under such a transformation

Previous versions are not SE(N)-invariant

- Earlier versions don't work this way
 - I.e. $\dot{x} = -Lx + d$ vs $\dot{x} = -LRx + d$ are not equivalent

Control Objective for Rigid Body Transformations

- Now, our goal is to stabilize to a formation in $Rgd(x^*)$
 - Using only local measurements in the local reference frame
 - Rigidity is important here
 - Control law needs to be invariant under $Rgd(x^*)$ to account for robots' individual reference frames
 - I.e., $\dot{x} = f(x)$ leads to the same result as $\dot{x} = f(Rx + d)$

Stress Function

Stress function of a graph is

$$Stress(G) = \frac{1}{2} \sum_{(i,j) \in E} (\|p_i - p_j\| - d_{ij})^2$$

 For an undirected graph, the gradient of the stress creates feedback law

$$\dot{p_i} = 2 \sum_{j:(i,j) \in E} (\|p_i - p_j\| - d_{ij}) \frac{p_i - p_j}{\|p_i - p_j\|}$$

Have we seen this before

Yes! Gradient view of consensus!

The Control Law

 Homework 2 will ask you to verify some invariance properties of systems like this

The Control Law

- Again, the centroid is invariant
- Control law is independent of global coordinates
- For arbitrary initial conditions, solutions exist and are unique
- But what are solutions?

Equilibria

$$\dot{p_i} = 2 \sum_{j:(i,j) \in E} (\|p_i - p_j\| - d_{ij}) \frac{p_i - p_j}{\|p_i - p_j\|}$$

Equilibria

- Assumption:
 - Given target formation $\{G,d\}$, assume that $Rgd^{-1}(d) \neq 0$ and framework is infinitesimally rigid at each $p \in Rgd^{-1}(d)$
- Then solutions of the form $\|p_i p_j\| = d_{ij}$ are *locally* asymptotically stable

Other Approaches

 Many works use common heading consensus (i.e., combine consensus on heading with this type of control law)

Distance- and Bearing-Only Formation Control

- Several researchers in the 2010s worked on bearing- or distanceonly formation control
 - (as opposed to relative position formations)
- Major difference is the use of different rigidity measures
 - Harder to generalize for n > 3
 - Goal configuration must satisfy certain rigidity properties that we will not discuss in much detail

Wrap Up

Recap

- Formations
 - Scale invariance
 - Translation invariance
 - Rigidity
- Moving a group of agents
 - Leader-follower formations
 - Abstraction control
- Reference-frame invariant control

Next Time:

- Putting It all Together
 - Combining modes for controlling abstractions without a global reference frame
- SE(N) invariance for generalized pairwise interactions
- Next Tuesday: Deployment and Coverage