9.1

DEFINITION 6

Let R be a relation from a set A to a set B and S a relation from B to a set C. The *composite* of R and S is the relation consisting of ordered pairs (a, c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

DEFINITION 7

Let R be a relation on the set A. The powers R^n , n = 1, 2, 3, ..., are defined recursively by

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$. $(a, b) \in \mathbb{R} \land (b, c) \in \mathbb{R}^n$

THEOREM 1

The relation R on a set A is transitive if and only if $R^n \subseteq R$ for $n = 1, 2, 3, \ldots$

9.2

DEFINITION 1

Let A_1, A_2, \ldots, A_n be sets. An *n-ary relation* on these sets is a subset of $A_1 \times A_2 \times \cdots \times A_n$. The sets A_1, A_2, \ldots, A_n are called the *domains* of the relation, and *n* is called its *degree*.

A database consists of records, which are n-tuples, made up of fields. The fields are the entries of the n-tuples. For instance, a database of student records may be made up of fields containing the name, student number, major, and GPA of the student.

TABLE 1 Students. 5 X T X M X G				
Student_name	ID_number	Major	GPA	
Ackermann	231455	Computer Science	3.88	
Adams	888323	Physics	3.45	
Chou	102147	Computer Science	3.49	
Goodfriend	453876	Mathematics	3.45	
Rao	678543	Mathematics	3.90	
Stevens	786576	Psychology	2.99	

The relational data model represents a database of records as an n-ary relation. Thus, students are represented as 4-tuples of the form (Student name, ID number, Major, GPA).

TABLE 2 GPAs.			
Student_name	GPA		
Ackermann	3.88		
Adams	3.45		
Chou	3.49		
Goodfriend	3.45		
Rao	3.90		
Stevens	2.99		

表的分解(仅作3解)

TABLE 3 Enrollments.			
Student	Major	Course	
Glauser	Biology	BI 290	
Glauser	Biology	MS 475	
Glauser	Biology	PY 410	
Marcus	Mathematics	MS 511	
Marcus	Mathematics	MS 603	
Marcus	Mathematics	CS 322	
Miller	Computer Science	MS 575	
Miller	Computer Science	CS 455	

TABLE 4 Majors.		
Student	Major	
Glauser Marcus Miller	Biology Mathematics Computer Science	

 $5 \times M$

Supplementary (9.3) 仅作3条

Representation of relations on a set:

E.g., $A=\{0,1,2,3\}$, $R=\{(a,b) | a \le b; a,b \in A\}$

a\b	0	1	2	3
0	х	х	х	х
1		х	х	х
2			х	х
3				х

Directed Graph

(Binary)
Matrix
[On programming OOO 1]

Table

9.4 Closure of Relations

DEFINITION

1+)=26N

In mathematics, a subset of a given set is closed under an operation of the larger set if performing that operation on members of the subset always produces a member of that subset.

For example, the natural numbers of \mathbb{R} are closed under addition, but not under subtraction: 1 – 2 \subseteq \mathbb{N} . The closure of \mathbb{N} under subtraction is \mathbb{Z} .

DEFINITION

If there is a relation S with property P containing R such that S is a subset of every relation with property P containing R, then S is called the **closure** of R with respect to P.

RUI is the reference closure of R RUR1 is symmetric closure of R

Useful notations: Let $\Delta = \{(a, a) \mid a \in A\}$ be the diagonal relation on A.

Characteristics of closure operations:

Let R be a relation that is reflexive and transitive Prove that R = R for all positive integers n.

带几,两个item,没有对应的定理/这文可见专家数学归纳试

Machennatical Induction to prove that $R^n = R$ hold for $n \in N^+$ (i) N = 1 , R = R (平凡情况,视镜积私题) $\forall (a,a) \in R \Rightarrow (a,a) \in R = R^*$ $\forall (a,b)$, $(b,h) \in R$

By composition $(a,b) \in R \circ R = R^2$ $R \subseteq R^2$ R is transitive; by theorem, $R^2 \in R$ R = R

(iii) A soume that for n=i, Ri=R holds.

To prove that to n=i+1, Ri=R Ci=2) $\forall (a,b) \in R$ $(b,b) \in R=R^i$ by reflexive \therefore For $R^{i+1}=R^i\circ R$, $(a,b) \in R^{i+1}$ \therefore $R \subseteq R^{i+1}$ R is transitive, by theorem, $R^{i+1} \subseteq R$ $R^{i+1} \subseteq R$ $R^{i+1} \subseteq R$ is proved.

use arbitray

How many triples are in the relation {(a, b, c) | a, b, and c are integers with 0<a<b<c<5}?

$$\begin{array}{c}
\binom{3}{4} = 4 \\
(1,2,3) \\
(1,2,4) \\
(1,3,4) \\
(2,3,4)
\end{array}$$

Which 4-tuples are in the relation {(a, b, c, d) | a, b, c,

Which 4-tuples are in the relation
$$\{(a, b, c, d) \mid a, b, c, d\}$$
 and d are positive integers with abcd = 6}?

$$\begin{cases}
factorization 6 = 6 \times 1 \times 1 \times 1 & (i) \\
= 2 \times 3 \times 1 \times 1 & (i)
\end{cases}$$

$$\begin{cases}
(1) \quad C_{4} \quad C_{3}^{3} = 4 \\
(6 \cdot 1, 1, 1)
\end{cases}$$

$$(1 \cdot 1, 6, 1, 1)$$

$$(1 \cdot 1, 1, 1, 2)$$

$$(1 \cdot 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2,$$

Find the reflexive closure and the symmetric closure of the relation $\{(1, 2), (2, 3), (2, 4), (3, 1)\}$ on the set

{1, 2, 3, 4}.		2	-, .,, (-	د, _ _/ , د <u>/</u>
	1			
)	` \	X	\times	
2	X	\	Х	Х
3	Х	X		
4		X		
```				

Let R be the symmetric relation on the Set A. Prove that the reflexive closure of R is symmetric.

Proof: Let 
$$\Delta = \{(a,a) \mid a \in A\}$$
 be

the diagonal relation on  $A$ 

The reflexive dosure of  $R$  is  $RU\Delta$ ,
we denote it by  $S$ .

For  $\forall La,b \in S$ ,
Oif  $a=b$ ,  $La,a \in S \in S$  (b.a)  $\in S$ 

Qif  $a \neq b$ ,  $La,b \in R$ 

Since  $R$  is symmetric
$$(b,a) \in R \subseteq S$$

$$(b,a) \in S$$

$$By symmetric relation definition,  $S$  is symmetric.$$

Let R be the relation  $\{(a, b) \mid a \neq b\}$  on the set of integers.

Let R be the relation 
$$\{(a, b) \mid a \neq b\}$$
 on the set of integ  
What is the reflexive closure of R?  

$$(a, b) \mid a, b \in Z\} = (a, b)$$

Prove. Note 
$$S = \{(a,b) | a,b \in Z\}$$
  
(1)  $\forall (a,a) \in Z \times Z, (a,a) \in S$   
 $\vdots S$  is reflexing

(2) 
$$R \leq S = &RUD(D is the drag nation of Z and R \leq T$$
(3) Assume that T is ref. relation on Z and R  $\leq T$ 

(;i)(a,b) & s (ax3) = RET , (9,6) = RES 5'5ET