

Manual de Instruções

Produzido por: Wi-Connect

Empresa atendida: RNP

Controle do Documento

Histórico de revisões

Data	Autor	Versão	Resumo da atividade
28/11/23	Luiza	4.0	Criação do documento
20/11/23	Luiza	4.1	Criação de novas sessões e correspondência no índice
03/12/23	Luiza	4.2	Passo a passo de montagem, instalação e configuração
04/12/23	Gabrielle	4.3	Seção 6 (Guia de Operação) e legenda das imagens
05/12/23	Luiza	4.4	Inserção e legenda das imagens e atualizações gerais
06/12/23	Luiza	4.5	Índice de imagens e seção 4.2. Estrutura de Hardware
19/12/23	Luiza	4.6	Correção final do documento completo

Índice

Índice de imagens	
Glossário	5
1. Introdução	6
2. Componentes e Recursos	7
2.1. Componentes de hardware	7
2.2. Componentes externos	8
2.3. Requisitos de conectividade	8
3. Guia de Montagem	8
4. Guia de Instalação	17
4.1. Estrutura de software	17
4.2. Estrutura de hardware	18

5.	5. Guia de Configuração		
	5.1. Instalações prévias		
	5.2. Principais bibliotecas	20	
	5.3. Configuração do w-ifi	21	
	5.4. Conexão do dispositivo	22	
6. Guia de Operação		.22	
7.	7. Troubleshooting		

Índice de Imagens

Figura 1 - Referência do ESP32 e o módulo GPS com suas respectivas antenas

Figura 2 - Posicionamento do ESP 32

Figura 3 - Conexão VCC do LCD

Figura 4 - Conexão GND à fileira negativa direita

Figura 5 - Conexão GND do LCD

Figura 6 - Conexão SDA e SCL do LCD

Figura 7 - Acoplamento do GPS

Figura 8 - Conexão GND do GPS

Figura 9 - Conexão VCC do GPS

Figura 10 — Conexão RX e TX do GPS

Figura 11 — Conexão GND à fileira negativa esquerda

Figura 12 — Acoplamento do buzzer

Figura 13 — Conexão do buzzer

Figura 14 — Acoplamento do LED RGB

Figura 15 — Conexão dos resistores

Figura 16 — Conexão GND do LED RGB

Figura 17 — Acoplamento e conexão do botão

Figura 18 - Tela de download da IDE

Figura 19 — Exemplo de instalação

Figura 20 — Tela de instalação

Figura 21 – Tela de preferências dentro da Arduino IDE

Figura 22 — Ilustração da biblioteca TinyGPS++

Figura 23 — Ilustração da biblioteca ArduinoJson

Figura 24 — Ilustração da biblioteca LiquidCrystal

Figura 25 — Ilustração da biblioteca PubSubClient

Figura 26 — Tela de login.

Figura 27 – Página de pesquisa

Figura 28 — Filtros de pesquisa

Figura 29 — Exemplo de pesquisa

Figura 30 — Página do mapa ao selecionar um ativo específico

Figura 31 - Mapa mostrando todos os pontos relacionados ao filtro

selecionado: "Expirado"

Figura 32 — Exemplos de notificações ao clicar no ícone de sininho

Figura 33 — Listagem de ícones

Figura 34 — Tela LCD sinalizando o início da conexão entre o dispositivo e a rede WiFi pré-estabelecida

Figura 35 — Tela LCD mostrando informações de latitude e longitude, com um LED azul indicando ao usuário de que os processos estão sendo bem-sucedidos

Figura 36 — Tela LCD informando a tentativa de contato com o broker, com um LED azul indicando que os processos até então estão sendo bem-sucedidos

Figura 37 — Tela LCD informando que o GPS está buscando a localização do dispositivo, com um LED vermelho e um som de apito emitido pelo buzzer indicando que a conexão ainda não foi bem sucedida.

Figura 38 — Botões de reset (à esquerda) e desligar/ligar (à direita)

Glossário

- 1. Buzzer: Dispositivo sonoro que emite sinais sonoros para dar feedback auditivo.
- 2. GND: Pino de terra, referência de potencial zero, utilizado para estabelecer um ponto de referência comum para os demais componentes.
- 3. Led RGB: Light Emitting Diode Diodo Emissor de Luz que pode emitir luz de diferentes cores, como vermelho (R), verde (G) e azul (B), combinando-as em várias intensidades.
- 4. Pino: Terminal de conexão física em um componente eletrônico, usado para estabelecer conexões elétricas com outros dispositivos.
- 5. Porta: Interface de entrada/saída que possibilita a comunicação entre o microcontrolador e outros dispositivos ou periféricos.
- 6. RX: Pino de recepção, utilizado para receber dados de um dispositivo externo, como um módulo GPS.
- 7. SDA: Serial Data Line Linha de dados usada em comunicação serial, frequentemente associada a dispositivos como displays LCD.

- 8. SCL: Serial Clock Line Linha de clock usada em comunicação serial, muitas vezes associada a dispositivos como displays LCD.
- 9. TX: Pino de transmissão, utilizado para enviar dados a um dispositivo externo, como um módulo GPS.
- 10. VCC: Pino de alimentação, geralmente conectado à fonte de energia principal, fornecendo a tensão necessária para o funcionamento do microcontrolador.
- 11. 3V3: Pino que fornece uma tensão de 3,3 volts, comumente utilizado para alimentar componentes eletrônicos de baixa potência.
- 12. 5V: Pino que fornece uma tensão de 5 volts, geralmente usado para alimentar componentes eletrônicos padrão.

1. Introdução

O Wi-Connect é um projeto desenvolvido por um grupo de alunos no segundo semestre da faculdade em parceria com a RNP (Rede Nacional de Ensino e Pesquisa). Este manual apresenta um guia passo a passo para a utilização eficiente e eficaz das ferramentas desenvolvidas, as quais foram criadas para resolver desafios específicos de localização de ativos da RNP, uma renomada organização brasileira dedicada à tecnologia da informação e comunicação, com atuação em todo o território nacional.

Com o propósito de facilitar a navegação e compreensão, este documento foi organizado em seis seções fundamentais, conforme detalhado no índice. As seções abordam os seguintes temas: Componentes e Recursos, Guia de Montagem, Guia de Instalação, Guia de Configuração, Guia de Operação e Troubleshooting. Cada uma dessas seções oferece informações específicas e direcionadas para orientar de maneira eficaz na compreensão, implementação e manutenção do sistema em questão.

2. Componentes e

Recursos

Nesta parte inicial do guia, abordaremos os elementos fundamentais que compõem a sua solução, proporcionando uma compreensão abrangente dos componentes externos e dos requisitos de conectividade. Essa seção é dividida em 3 subseções que contextualizam de forma mais detalhada os componentes e recursos desse projeto, sendo elas os componentes de hardware, os componentes externos e os requisitos de conectividade.

2.1. Componentes de hardware

Os componentes de hardware referem-se aos elementos físicos e tangíveis de um dispositivo eletrônico. Esses são os componentes necessários para montar o dispositivo:

- (1x) Protoboard;
- (1x) Módulo GPS com antena;
- (1x) Microcontrolador ESP 32 com antena;
- (1x)Display LCD;
- (1x) LED RGB;
- (1x) Buzzer;
- (2x) Botões;
- (17x) Jumpers:

- o (13x) macho-macho;
- o (4x) macho-fêmea;
- (3x) Resistores 220Ω vermelho, vermelho, marrom, dourado.

Figura 1 - Referência do ESP32 e o módulo GPS com suas respectivas antenas

Fonte: Elaborado pela equipe Wi-Connect.

2.2. Componentes externos

No âmbito deste projeto, faz-se uso de componentes externos essenciais para seu funcionamento eficiente. Primeiramente, é imprescindível contar com um dispositivo eletrônico, podendo ser um computador, tablet ou celular, que desempenha a função crucial de proporcionar a visualização dos dashboards. Essa interface é vital para monitorar e compreender as informações geradas pelo projeto.

Além disso, o desenvolvimento do código responsável pelo funcionamento dos dispositivos no hardware é realizado por meio da Arduino IDE. Essa plataforma de desenvolvimento é fundamental para compilar e implementar o código necessário, garantindo a integração adequada entre o software e o hardware. Dessa forma, a combinação eficiente desses componentes externos contribui para o sucesso e a eficácia do projeto como um todo.

2.3. Requisitos de conectividade

Os requisitos de conectividade referem-se às condições e características necessárias para estabelecer e manter uma conexão eficaz entre diferentes dispositivos, sistemas ou redes. Alguns requisitos de conectividade do projeto são:

- Protocolos de Comunicação:
 - MQTT (Message Queuing Telemetry Transport)
- Serviços/Plataformas:
 - Broker (pode ser associado ao MQTT)

- Tecnologias de Comunicação Serial (no display):
 - I2C
- Tecnologias de Desenvolvimento Web:
 - Node.js Express (um framework para desenvolvimento de aplicativos web em Node.js)
- Bancos de Dados:
 - o MongoDB
- Linguagens de Programação:
 - o C++

3. Guia de Montagem

Essa seção o conduzirá através do processo de construção e integração dos elementos essenciais da sua solução, separado em 17 passos explicativos junto de imagens que ajudam na compreensão.

Passo 1 - Com a protoboard pronta (duas peças juntas, com as três faixas negativas e positivas em ordem, das esquerda para a direita, e os números em ordem crescente de cima para baixo, conforme a figura 2) acople o microcontrolador ESP 32 centralizado entre as colunas "i" e "c", com a saída USB virada para fora.

Figura 2 - Posicionamento do ESP 32

Passo 2 - Conecte 1 jumper macho-fêmea (de preferência vermelho para padronização) ao pino 5V do ESP 32 (d1) e ao pino VCC do LCD (comunicação serial I2C).

Fonte: Elaborado pela equipe Wi-Connect.

Passo 3 - Conecte 1 jumper macho-macho (de preferência preto para padronização) ao pino GND (d6) do ESP 32 e a um pino da faixa negativa (-6).

Figura 4 - Conexão GND à fileira negativa direita

Passo 4 - Com 1 jumper macho-fêmea (de preferência preto para padronização), conecte a faixa negativa (-1) ao pino GND do LCD (comunicação serial I2C)

Fonte: Elaborado pela equipe Wi-Connect.

Passo 5 - Com 2 jumpers macho-fêmea, conecte o pino SDA e SCL do LCD às portas 21 (h14) e 22 (h17) do ESP 32, respectivamente.

Figura 6 - Conexão SDA e SCL do LCD

Passo 6 - Acople o módulo GPS, com a antena, na protoboard (4 pinos paralelos — f26, f27, f28, f29).

Figura 7 - Acoplamento do GPS

Fonte: Elaborado pela equipe Wi-Connect.

Passo 7 - Com 1 jumper macho-macho (de preferência preto para padronização), conecte o pino GND do GPS (h29) ao pino GND do ESP 32 (h19).

Figura 8 - Conexão GND do GPS

Passo 8 - Com 2 jumpers macho-macho (de preferência vermelho para padronização), conecte o VCC do GPS (i26) a uma fileira da protoboard (a26) e, em série, conecte o outro jumper a essa fileira (d26) e ao pino 3V3 do ESP 32 (d19).

Fonte: Elaborado pela equipe Wi-Connect.

Passo 9 - Com 2 jumpers macho-macho, conecte os pinos TX (g28) e RX (g27) do GPS às portas 16 (h8) e 17(h9) do ESP 32, respectivamente.

Figura 10 — Conexão RX e TX do GPS

Passo 10 — Conecte, do outro lado da protoboard, mais 1 jumper macho-macho à porta GND do ESP (f13) à faixa negativa (-13).

Figura 11 — Conexão GND à fileira negativa esquerda

Fonte: Elaborado pela equipe Wi-Connect.

Passo 11 — Acople o buzzer na protoboard do lado esquerdo, conectando a "perna" menor diretamente na faixa negativa (-3) e a "perna" maior no pino não energizado da protoboard (a3).

Figura 12 – Acoplamento do buzzer

.Passo 12 — Com 1 jumper macho-macho, conecte o buzzer (b3) a porta 2 do ESP 32 (h5).

Fonte: Elaborado pela equipe Wi-Connect.

Passo 13 — Conecte os 4 pinos do LED RGB em paralelo na protoboard (b7, b8, b9, b10).

Figura 14 — Acoplamento do LED RGB

Passo 14 — Com os resistores 220Ω , conecte o pino 1(R) (e7), o pino 3(G) (e9) e o pino 4(B) (e10) do LED às portas 4 (f7), 5 (f10) e 18 (f11) do ESP 32, respectivamente.

Fonte: Elaborado pela equipe Wi-Connect.

Passo 15 — Com 1 jumper macho-macho (de preferência preto para padronização), conecte o pino 2 (GND) (a8) do LED à fileira negativa (-9) da protoboard.

Figura 16 — Conexão GND do LED RGB

Passo 16 — Coloque um botão do lado direito do microcontrolador (g15, g17, i15, i17); com 1 jumper macho-macho, conecte-o (f15) à porta 27 (d11) do ESP 32 e, com mais 1 jumper (de preferência preto para padronização), conecte-o (j17) à negativa (-13).

Figura 17 — Acoplamento e conexão do botão

Fonte: Elaborado pela equipe Wi-Connect.

Passo 17 — Coloque o outro botão mais abaixo (g25, g27, i25, i27); com 1 jumper macho-macho, conecte-o (f25) à porta 33 (d14) do ESP 32 e, com mais 1 jumper (de preferência preto para padronização), conecte-o (j27) à faixa negativa (-23).

Figura 17 — Acoplamento e conexão do botão

4. Guia de Instalação

Nesta seção, apresentamos diretrizes claras para a implementação eficiente das estruturas de software e hardware desenvolvidas no

projeto. Estas instruções abrangem aspectos práticos e técnicos, visando garantir uma integração bem-sucedida e um desempenho otimizado do sistema. Ao seguir essas orientações, busca-se assegurar uma implementação coesa e eficaz das soluções desenvolvidas.

4.1. Estrutura de Software

Há uma plataforma online dedicada à visualização de dados de ativos, incorporando dashboards e um mapa de rastreamento. Com funcionalidades adicionais, como a exibição de um dashboard abrangente, a visualização ampla de diversas informações, o histórico completo de dados e a capacidade de baixar registros.

A interface de software não requer um processo de instalação, mas fornece orientações para facilitar as interações com as diversas funcionalidades. Os usuários podem acessar a interface e serão direcionados para a página de login, onde devem inserir suas credenciais. Se as credenciais forem aceitas, a página será recarregada, levando-os à página principal, apresentando uma barra de pesquisa e acesso para explorar as outras funcionalidades disponíveis.

4.2. Estrutura de Hardware

Após a montagem conduzida na seção 3 deste documento, o dispositivo montado deverá ser alimentado por uma fonte de energia, como uma bateria, para que assim possa ser ligado e acoplado aos ativos. A seção seguinte desse documento indica como deve ser feita a conexão de rede e compilação do código no dispositivo.

5. Guia de Configuração

Nesta seção, apresentamos instruções detalhadas para otimizar as configurações dos componentes de rede e softwares, abordando especificamente as seguintes subseções: Instalação da IDE, Instalação das bibliotecas, Configuração do Wi-Fi e Conexão do dispositivo. Estas diretrizes visam proporcionar um guia claro e prático para garantir uma configuração eficiente e uma integração harmoniosa desses elementos essenciais. Ao seguir essas etapas, espera-se alcançar um desempenho otimizado e uma operação fluida do sistema.

5.1. Instalação da IDE

Aqui, abordaremos de maneira detalhada o processo essencial para configurar o ambiente de desenvolvimento integrado (IDE). Este passo inicial é fundamental para garantir uma base sólida e eficiente, proporcionando as condições ideais para o desenvolvimento do projeto. Siga as instruções a seguir para uma instalação bem-sucedida da IDE, preparando o terreno para as etapas subsequentes do processo.

Passo 1 - Antes de iniciar a configuração do dispositivo, é necessário ter o Ambiente de Desenvolvimento Arduino (IDE) instalado. Siga os passos abaixo para efetuar o download:

https://www.arduino.cc/en/software

Figura 18 - Tela de download da IDE

Fonte: Software I Arduino.

Passo 2 - Escolha o sistema operacional correspondente ao seu dispositivo (Windows, macOS, Linux) e clique no link de download correspondente.

Figura 19 — Exemplo de instalação

Fonte: Elaborado pela equipe Wi-Connect.

Passo 3 - Baixe o arquivo de instalação e siga as instruções específicas do sistema operacional para concluir a instalação. Durante o processo, você pode ser solicitado a instalar drivers adicionais; certifique-se de seguir todas as instruções fornecidas.

Figura 20 — Tela de instalação

Fonte: Arduino IDE.

Passo 4 - Após a instalação bem-sucedida, execute a Arduino IDE. Caso seja necessário, realize as configurações iniciais solicitadas pela IDE.

Passo 5 - Para programar o ESP 32, será necessário adicionar o suporte à placa na Arduino IDE. Instale o seguinte link em sua IDE:

[https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json]

Figura 21 — Tela de preferências dentro da Arduino IDE

Fonte: Arduino IDE.

Passo 6 - Com o ambiente Arduino IDE devidamente configurado, siga para a instalação das bibliotecas.

5.2. Instalação das bibliotecas

Após a conclusão da montagem física do dispositivo, é imperativo realizar as configurações de software e WiFi. Inicialmente, proceda com a instalação das bibliotecas adicionais necessárias para funcionalidades não pré-instaladas no ESP32. A seguir, apresentamos a lista de bibliotecas com as versões correspondentes:

TinyGPS++ v1.0.3

Figura 22 — Ilustração da biblioteca TinyGPS++

Fonte: Arduino IDE.

• ArduinoJson v6.21.3

Figura 23 – Ilustração da biblioteca ArduinoJson

Fonte: Arduino IDE.

• LiquidCrystal_I2C v1.1.2

Figura 24 — Ilustração da biblioteca LiquidCrystal

Fonte: Arduino IDE.

PubSubClient v2.8

Figura 25 – Ilustração da biblioteca PubSubClient

Fonte: Arduino IDE.

5.3. Configuração do wi-fi

Após a instalação bem-sucedida das bibliotecas nas versões especificadas, é crucial inserir os dados da rede WiFi a ser utilizada (essa funcionalidade será simplificada em futuras atualizações). Para realizar essa etapa:

Passo 1 - Abra o arquivo "GPS_MQTT.ino""

Passo 2 - Modifique os valores das seguintes variáveis:

Passo 3 - "WIFI_SSID": insira, entre aspas duplas, o nome exato de sua rede WiFi.

Passo 4 - "WIFI_PASSWORD": insira a senha da rede, também entre aspas duplas.

5.4. Conexão do dispositivo

Finalmente, conecte a bateria à porta Micro-USB do ESP 32 e aguarde até que o dispositivo esteja conectado aos serviços necessários.

6. Guia de Operação

Essa seção abrange os passos práticos para iniciar e operar a solução. Dependendo da finalidade que o usuário estiver utilizando o sistema, ele possui duas interfaces de interação: O dispositivo físico, responsável por dar as informações de localização, e a aplicação web, que concentra todos os dados relacionados aos ativos (inclusive o histórico de localizações captadas pelo dispositivo físico).

Caso a finalidade seja ter acesso a informações dos ativos, deve-se acessar a aplicação Web. O primeiro passo para tal é entrar no site (inserir link do site) e entrar com as suas credenciais, ou seja, login e senha nos campos correspondentes, como demonstrado na figura 26:

Figura 26 — Tela de login.

Fonte: Elaborado pela equipe Wi-Connect.

Após o credenciamento, aparecerá uma página de pesquisa que será responsável de realizar a filtragem dos ativos correspondentes conforme as palavras-chave pesquisadas. Após escrever o que procura, é só clicar no símbolo de lupa ou apertar a tecla enter do teclado. Também é possível procurar por filtro, selecionando os filtros relevantes ao clicar no ícone ao lado da barra de pesquisa, como mostrado nas figuras a seguir:

Figura 27 – Página de pesquisa

Figura 28 — Filtros de pesquisa

Fonte: Elaborado pela equipe Wi-Connect.

Ao pesquisar um tipo de ativo, o site retorna todos os que correspondem às palavras-chave, conforme exemplo na figura a seguir:

Figura 29 - Exemplo de pesquisa

Para acessar os dados de localização de um ativo específico, é possível clicar no ícone de planeta ao lado do nome do mesmo, abrindo a página de mapa que informará a posição do ativo na última verificação. (figura 30)

Figura 30 — Página do mapa ao selecionar um ativo específico

Fonte: Elaborado pela equipe Wi-Connect.

Porém, caso queira visualizar dados sobre a localização de um grupo de ativos e não apenas um, é possível selecionar filtros que irão buscar em toda a base de dados de ativos e mostrar no mapa. Dessa forma, se selecionar o filtro "Expirado", todos os ativos fora da validade irão ser mostrados no mapa (figura 31). Também é possível dar zoom no mapa para uma visão mais clara dos pontos.

Figura 31 — Mapa mostrando todos os pontos relacionados ao filtro selecionado: "Expirado"

Também é possível acessar o histórico de localizações pela aba de notificações, clicando no ícone de sininho ao lado da lupa no canto superior direito da tela, como mostrado na figura 32.

Figura 32 — Exemplos de notificações ao clicar no ícone de sininho

Fonte: Elaborado pela equipe Wi-Connect.

Para navegar pelas páginas e até mesmo acessar outras funcionalidades do site, basta clicar nos outros ícones localizados no canto superior direito. Listando a página correspondente a cada ícone da esquerda para a direita (figura 33): página de pesquisa, central de notificações, página de dashboards, página de mapas, página de adicionar ativos e o último para se desconectar do site. Vale ressaltar que nesse exemplo, o ícone de lupa está roxo, pois foi

selecionado anteriormente. Toda vez que navegar para diferentes páginas, o ícone correspondente a ela ficará roxo também.

Figura 33 — Listagem de ícones

Fonte: Elaborado pela equipe Wi-Connect.

Caso o usuário queira saber o estado do funcionamento do dispositivo físico, a interface do usuário retorna essas informações por meio de uma tela LCD, LEDS e sons (figuras 34, 35, 36 e 37). Além disso, também é possível ligar/desligar o dispositivo por meio de um botão e resetar o dispositivo por meio de outro botão em casos de falhas (figura 38).

Figura 34 — Tela LCD sinalizando o início da conexão entre o dispositivo e a rede WiFi pré-estabelecida

Fonte: Elaborado pela equipe Wi-Connect.

Figura 35 — Tela LCD mostrando informações de latitude e longitude, com um LED azul indicando ao usuário de que os processos estão sendo bem-sucedidos

Figura 36 — Tela LCD informando a tentativa de contato com o broker, com um LED azul indicando que os processos até então estão sendo bem-sucedidos

Fonte: Elaborado pela equipe Wi-Connect.

Figura 37 — Tela LCD informando que o GPS está buscando a localização do dispositivo, com um LED vermelho e um som de apito emitido pelo buzzer indicando que a conexão ainda não foi bem sucedida.

Fonte: Elaborado pela equipe Wi-Connect.

Figura 38 – Botões de reset (à esquerda) e desligar/ligar (à direita)

Em conclusão, a implementação e operação da solução apresentam um conjunto claro de passos práticos para os usuários alcançarem seus objetivos de maneira eficiente. Com interfaces distintas, o dispositivo físico e a aplicação web proporcionam acesso fácil e abrangente às informações sobre ativos e suas localizações.

A utilização da aplicação web é essencial para aqueles que buscam informações detalhadas sobre os ativos, e o processo de login, pesquisa e filtragem oferece uma experiência intuitiva. A visualização no mapa, tanto para ativos individuais quanto para grupos com filtros específicos, proporciona uma compreensão visual eficaz do status e localização dos ativos.

A seção referente ao dispositivo físico demonstra a atenção da equipe à usabilidade, com uma interface composta por LCD, LEDs e sons, dando feedback claro sobre o status de conexão e operação do dispositivo. Além disso, a capacidade de ligar, desligar e resetar o dispositivo oferece controle adicional aos usuários, permitindo intervenções rápidas em caso de falhas.

Em suma, a solução Wi-Connect integra efetivamente a funcionalidade do dispositivo físico com a aplicação web, proporcionando aos usuários uma plataforma abrangente e fácil de usar para monitorar e gerenciar ativos, reforçando assim a eficácia e a utilidade do sistema em diferentes cenários de uso.

7. Troubleshooting

Esta seção visa listar possíveis problemas ao utilizar o dispositivo, indicando formas de interpretação e resolução deles, como mostra a tabela a seguir:

#	Problema	Possível solução
1	Dispositivo não ligar	Conferir se a bateria está fraca e, caso isso esteja correto, realizar a troca.
2	Componente inoperante.	Verificar a seção 2 deste manual.

		Verificar se algum LED de alerta está aceso.
3	O LED vermelho acende e o buzzer emite som.	Verificar se o GPS está conectado e captando a localização geográfica.
4	Fios desconectados.	Verificar a seção 2 deste manual para realizar as conexões certas dos fios.

Concluindo esta seção da documentação, esperamos que este manual tenha sido uma fonte valiosa de informações para orientar os usuários na implementação eficaz do projeto Wi-Connect. Cada tópico abordado, desde a compreensão dos componentes e recursos até as etapas detalhadas de instalação, configuração e operação, foi elaborado para proporcionar uma experiência completa e bem-sucedida. Em caso de dúvidas ou questões adicionais, consulte o índice para localizar informações específicas. A equipe Wi-Connect agradece pela dedicação e interesse. Desejamos muito sucesso na utilização desta solução inovadora de localização de ativos, contribuindo para a eficiência e praticidade em seu ambiente operacional.

Integrantes

e Linkedin

Esses são os integrantes da equipe responsável pelo desenvolvimento do projeto Wi-Connect. Conheça mais sobre os responsáveis acessando o linkedin de cada um, indicado abaixo:

Daniel Augusto Rivas Mendez

Eduarda Cardoso de Souza -

https://www.linkedin.com/in/eduarda-cardoso-de-souza-8bb802268

Gabrielle Dias Cartaxo -

https://www.linkedin.com/in/gabriellediascartaxo/

Heloisa Cavalcanti Oliveira -

https://www.linkedin.com/in/heloisa-cavalcanti-oliveira/

<u>Izadora Luz Rodrigues Novaes</u> -

https://www.linkedin.com/in/izadoraluz-rsn/

<u>Luiza Rodrigues Santana</u> - https://www.linkedin.com/in/luizarsantana/

Thomas Reitzfeld - https://www.linkedin.com/in/thomasreitzfeld/