

Unterschiede zwischen der EN ISO 9972 und EN 13829

"Bestimmung der Luftdurchlässigkeit von Gebäuden – Differenzdruckverfahren"

Im Folgenden wird auf einige Unterschiede zwischen den beiden Normen eingegangen. Es handelt sich bei unserer Aufstellung, um die in unseren Augen wichtigsten Neuerungen durch die EN ISO 9972, wir erheben dabei keinen Anspruch auf Vollständigkeit.

Im Dezember 2018 wurde der nationale Anhang zur europäischen Version der EN ISO 9972 aus 2015 für Deutschland veröffentlicht. Am Ende dieses Dokuments möchten wir Ihnen daher gerne die speziellen Neuerungen für eine BlowerDoor Messungen in Deutschland vorstellen.

Hier nun aber erstmal die wichtigsten Unterschiede zwischen der europäischen Version der EN ISO 9972 aus 2015 zur Vorgängernorm EN 13829:

1. Änderung von Formelzeichen

Die Symbole der ISO 9972 und die Symbole der EN 13829 sind in der folgenden Tabelle gegenübergestellt (Kapitel 3.2).

Größe	ISO 9972 (2015)	EN 13829 (2001)
Leckagestrom bei 50 Pa	q_{50}	\dot{V}_{50}
Luftdurchlässigkeit (Gebäudehülle) bei 50 Pa	q_{E50}	q_{50}
Spezifischer Leckagestrom (Grundfläche) bei 50 Pa (nach EN 13829: nettogrundflächenbezogener Leckagestrom)	q_{F50}	w_{50}
Luftwechselrate bei 50 Pa	n_{5}	0

Bedeutung für die BlowerDoor Messung: Die neuen Symbole sind in TECTITE Express 5.1 hinterlegt.

2. Änderung bei der Berechnung des Innenvolumens V

ISO 9972 (Kapitel 6.1.1): Zur Berechnung des Innenvolumens V sind die Gesamtinnenmaße anzusetzen. Beispielsweise werden Innenliegende Wände oder Decken in das Volumen mit eingerechnet.

EN 13829 - Bisher wurden die Innenwände und –decken nicht in die Volumenberechnung einbezogen.

Besonderheit der ISO 9972: In Abhängigkeit vom Zweck der Messung (z. B. zum Nachweis für nationale Regelungen) ist es möglich, auch von der ISO 9972 abweichende Bezugsgrößen zu verwenden (Kapitel 6.1).

Bedeutung für die BlowerDoor Messung: Das nach ISO 9972 zu berechnende Innenvolumen ist größer als nach EN 13829. Das hat zur Folge, dass die Luftwechselrate n_{50} bei gleichem Leckagestrom q_{50} (\dot{V}_{50}) nach der ISO-Berechnung kleiner ist als nach der EN-Berechnung.

Wichtiger Hinweis: In Deutschland wurde diese Änderung, durch die im Jahr 2018 veröffentlichten, nationalen Anhänge wieder zurückgenommen (siehe unten).

3. Genauigkeitsanforderungen an die Messtechnik

Die Genauigkeitsanforderungen an die eingesetzte Differenzdruckmesstechnik und Thermometer sind stark verschärft worden.

Druckmessgerät

ISO 9972: Instrument, das in der Lage ist, Druckdifferenzen mit einer Genauigkeit von ± 1 Pa im Bereich von 0 Pa bis 100 Pa zu messen (Kapitel 4.2.2).

EN 13829: Ein Instrument zur Messung von Druckdifferenzen mit einer Genauigkeit von \pm 2 Pa im Bereich von 0 Pa bis 60 Pa.

Thermometer

ISO 9972: Instrument, das in der Lage ist, die Temperatur mit einer Genauigkeit von ± **0,5 K** zu messen (Kapitel 4.2.4).

EN 13829: Ein Instrument zur Messung der Temperatur mit einer Messgenauigkeit von \pm 1 K.

Bedeutung für die BlowerDoor Messung: Alle digitalen BlowerDoor Druckmessgeräte erfüllen diese neuen Anforderungen bereits, lediglich unsere analogen Druckmessdosen aus den 1980er und 90er Jahren dürfen nach ISO 9972 nicht mehr für den öffentlich-rechtlichen Nachweis verwendet werden.

4. Änderung bei den Verfahren zur Vorbereitung des Gebäudes

Die **ISO 9972** unterscheidet drei Verfahren zur Gebäudevorbereitung: Verfahren 1, 2 und 3 (Kapitel 5.2.1) und beschreibt dessen Ausführung (Kapitel 5.2.3).

- Verfahren 1: Prüfung des Gebäudes im Nutzungszustand
 Die Öffnungen für freie Lüftung werden geschlossen und die Öffnungen für ventilatorgestützte Lüftung oder Klimatisierung des Gesamtgebäudes werden abgedichtet.
- Verfahren 2: Prüfung der Gebäudehülle
 Alle absichtlich vorhandenen Öffnungen werden abgedichtet sowie die Türen, Fenster und Falltüren geschlossen.
- Verfahren 3: Prüfung des Gebäudes zu einem bestimmten Zweck Alle absichtlich vorhandenen Öffnungen werden entsprechend der im jeweiligen Land geltenden Normen oder Richtlinien an den Zweck der Messung angepasst.

Die **EN 13829** unterscheidet zwei Arten der Messung, abhängig von deren Zweck.

- Verfahren A (Prüfung des Gebäudes im Nutzungszustand)
- Verfahren B (Prüfung der Gebäudehülle)

Bedeutung für die BlowerDoor Messung: In TECTITE Express 5.1 kann das jeweilige Verfahren entsprechend dem Zweck der Messung ausgewählt werden.

5. Anforderungen an die Messreihe: Kleinste Druckdifferenz

ISO 9972: "Die kleinste Druckdifferenz muss etwa 10 Pa (d. h. mit einer zulässigen Abweichung von ± 3 Pa) oder das Fünffache des Wertes der natürlichen Druckdifferenz (Δp_{01}) betragen, je nachdem, welcher Wert höher ist…" (Kapitel 5.3.4)

EN 13829: "Die kleinste Druckdifferenz muss 10 Pa bzw. 5 mal der Betrag der natürlichen Druckdifferenz (größerer der Beträge des positiven und negativen Mittelwertes) sein, je nachdem, welcher Wert größer ist."

Änderung:

- Nach ISO 9972 muss die kleinste Druckdifferenz etwa 10 Pa betragen oder das 5-fache der natürliche Druckdifferenz Δp_{01} vor der Messung. Die EN 13829 nimmt anstelle von Δp_{01} den Mittelwert der positiven bzw. negativen natürlichen Druckdifferenz.
- Zudem definiert die ISO 9972 eine Abweichung von ±3 Pa, mit der die kleinste Druckdifferenz erreicht werden soll.

Bedeutung für die BlowerDoor Messung: TECTITE Express 5.1 prüft nach Aufnahme der natürlichen Druckdifferenz, ob die voreingestellte Messreihe diese Bedingungen erfüllen kann und gibt gegebenenfalls Änderungshinweise.

6. ISO 9972 setzt Anforderungen an die Qualität der Messreihe

Für jede Messung (Unterdruck sowie Überdruck) ist das Bestimmtheitsmaß r² zu berechnen (Kapitel 6.2). **r²** darf **0,98 nicht unterschreiten**.

Der Strömungsexponent **n** (Steigung der Leckagekurve) muss im Bereich **0,5 bis 1** liegen.

Erläuterung:

 ${\it n}$ = Ist der sogenannte Strömungsexponent, dieser kann Werte zwischen 0,5 und 1 annehmen. Bei einem bestimmten Gebäudedruck hängt die Art der Strömung von der Größe und Form der Öffnungen ab. Für relativ "große" Durchlässe ist die Strömung normalerweise turbulent und n tendiert eher Richtung 0,5. Für sehr enge Ritzen und Spalten mit relativ langen Strömungs-wegen wie Risse im Mörtel wird die Strömung hauptsächlich durch die Zähigkeit der Luft bestimmt, ist also im Wesentlichen laminar und n tendiert eher in Richtung 1 [1998; Zürcher, Christoph: Bau und Energie; Leitfaden für Planung und Praxis]. Die Leckagen in der Gebäude-hülle sind üblicherweise eine Kombination aus beidem. Der Strömungsexponent wird sich zwischen beiden Extremen bewegen. Liegt der Wert außerhalb dieses Bereichs, hat sich während der Messung die Hüllfläche

Liegt der Wert außerhalb dieses Bereichs, hat sich während der Messung die Hüllfläche verändert, z.B. durch eine temporäre Abdichtung, die mit sich änderndem Gebäudedruck dichter oder undichter wurde.

 r^2 = Das Bestimmtheitsmaß ist ein Maß aus der Statistik. Aus den einzelnen Messpunkten einer BlowerDoor Messung wird die Leckagekurve errechnet. Wird die Messung z. B. bei Wind durch-geführt, liegen die Messpunkte unter Umständen nicht exakt auf der Ausgleichsgeraden (Leckagekurve). Das Bestimmtheitsmaß gibt nun an, wie gut die Übereinstimmung ausfällt. Bei vollständiger Übereinstimmung ist r^2 = 1 (Messpunkte liegen exakt auf der Ausgleichgeraden). Damit eine Messung die ISO 9972 noch erfüllt, darf der ermittelte Wert für r^2 nicht unter 0,98 fallen.

Bedeutung für die BlowerDoor Messung: Es gibt damit klare Anforderungen an die Qualität einer BlowerDoor Messung. Die Einhaltung der Anforderungen kann direkt in TECTITE Express 5.1 überprüft werden.

7. Neue abgeleitete Größen in der ISO 9972

(Kapitel 6.3)

Größe	Symbol	Einheit
Effektive Leckagefläche	$\mathit{ELA}_{\mathtt{pr}}$	m ²
Spezifische effektive Leckagefläche (Hülle)	$\mathit{ELA}_{\operatorname{Epr}}$	m^2/m^2
Spezifische effektive Leckagefläche (Grundfläche)	$\mathit{ELA}_{\mathtt{Fpr}}$	m^2/m^2

Bedeutung für die BlowerDoor Messung: Die neuen Größen sind in TECTITE Express 5.1 hinterlegt.

Fazit für Anwender der Minneapolis BlowerDoor:

Die Berechnung des Leckagestroms ist in beiden Normen gleich. Daher sind nur die oben angesprochenen Änderungen, welche in der Softwareversion TECTITE Express 5.1 hinterlegt sind, relevant.

Die Software TECTITE Express 5.1 können Sie direkt bei uns bestellen, bei Fragen wenden Sie sich an unseren Herrn Alexander Kiss unter: kiss@blowerdoor.de

DIN EN 9972:2018-12 -

Was bringt uns der neue nationale Anhang für Deutschland?

Im Dezember 2018 sind die nationalen Anhänge zur DIN EN ISO 9972:2015 für Deutschland erschienen, im Folgenden möchten wir die wichtigsten Neuerungen einmal vorstellen.

Bitte beachten Sie dabei, dass die Energieeinsparverordnung 2013/14 für Gebäude mit einem Bauantrag vor dem 1. November 2020 derzeit noch gültig ist und damit BlowerDoor Messungen nach der Vorgängernorm DIN EN 13829 durchgeführt werden müssen.

Mit in Kraft treten des neuen Gebäudeenergiegesetz am 1. November 2020 müssen Gebäude, welche nach diesen neuen Vorgaben erbaut wurden, nach der in Deutschland gültigen DIN EN ISO 9972:2018-12 NA gemessen werden.

Die neue Deutsche Norm mit nationalen Anhängen revidiert und erweitert einige der Neuerungen durch die EN ISO 9972 aus 2015, dies sind die wichtigsten Änderungen nach unserer Auffassung:

Änderungen von Formelzeichen

Auch der nationale Anhang für Deutschland bringt uns ein paar neue Symbole, so wird unter anderem der n₅₀ neu definiert:

• n_{L50} = Netto-Luftwechselrate bei 50 Pascal

Abweichend von der Berechnung der Luftwechselrate n_{50} nach DIN EN ISO 9972:2015 legt der nationale Anhang die Berechnung der Netto-Luftwechselrate n_{L50} wie folgt fest:

$$n_{L50} = \frac{q_{50}}{V_L}$$

Dabei ist "das Luftvolumen V_L des zu untersuchenden Gebäudeteils … mit dem Netto-Rauminhalt des zu untersuchenden Gebäudeteils nach DIN 277-1:2016-01 identisch. Es ergibt sich als Produkt aus der Nettoraumfläche und der mittleren lichten Raumhöhe." (DIN EN ISO 9972:2018 - NA.8.1.)

• n_{L50A} = Netto-Luftwechselrate bei 50 Pa bei abschnittsweiser Messung

Es wurde eine neue Bezeichnung eingeführt, welche eindeutig aufzeigt, dass die Netto-Luftwechselrate bei 50 Pa für das gesamte Gebäude durch abschnittsweise Messungen ermittelt wurde.

• n_{L50S} = Netto-Luftwechselrate bei 50 Pa für Stichproben-Messungen

Der n_{L50S} ist die mittlere Netto-Luftwechselrate bei 50 Pa für ein Gebäude mit gleichartigen Nutzungseinheiten, welcher lediglich durch repräsentative Stichproben-Messungen ausgewählter Nutzungseinheiten ermittelt wurde.

Messzeitpunkt

Der nationale Anhang definiert in Kapitel NA.4 aus DIN EN 9972:2018 den Messzeitpunkt wie folgt:

"Nach 5.1.3 kann die Messung kann erst stattfinden nachdem die Gebäudehülle fertiggestellt ist, d. h. die Prüfung der Gebäudehülle kann erst stattfinden, wenn die Luftdichtheit der Gebäudehülle <u>inklusive aller Durchdringungen</u> fertig gestellt ist.

Luftdichtheitsschichten müssen so befestigt bzw. mechanisch gesichert sein, dass sie durch die Messung nicht beschädigt werden."

In der Anmerkung 1 zu der oben erwähnten Anforderung, wird auch ein früherer Zeitpunkt erlaubt, sofern dadurch Nachbesserungen ermöglicht werden sollen. Wie oben beschrieben muss die Gebäudehülle inklusive aller Durchdringungen fertiggestellt sein. Einzige Ausnahmen bilden die nach Tabelle NA.2 Nr. 9 genannten "Durchdringungen der luftdichten Ebene für Wäschetrockner, Dunstabzugshauben und Kaminöfen (wenn Geräte noch nicht vorhanden sind)"

Berechnung des Innenvolumens/Luftvolumens

Im Gegensatz zur DIN EN 13829:2002 wird das Innenvolumen V nach DIN EN ISO 9972:2015 Kapitel 6.1.1 inklusive aller innenliegenden Wänden und Decken ermittelt.

Um weiterhin vergleichbare Luftwechselraten zu erhalten, definiert der nationale Anhang das Luftvolumen V_L als nationale Bezugsgröße. Es ist dabei " ... mit dem Netto-Rauminhalt des zu untersuchenden Gebäudeteils nach DIN 277-1:2016-01 identisch. Es ergibt sich als Produkt aus der Nettoraumfläche und der mittleren lichten Raumhöhe." (DIN EN ISO 9972:2018 - NA.8.1.)

Verfahren zur Vorbereitung des Gebäudes

Die DIN EN ISO 9972:2015 unterscheidet drei Verfahren zur Gebäudevorbereitung: Verfahren 1, 2 und 3 (Kapitel 5.2.1) und beschreibt dessen Ausführung (Kapitel 5.2.3).

- Verfahren 1: Prüfung des Gebäudes im Nutzungszustand
 Die Öffnungen für freie Lüftung werden geschlossen und die Öffnungen
 für ventilatorgestützte Lüftung oder Klimatisierung des Gesamtgebäudes
 werden abgedichtet.
- Verfahren 2: Prüfung der Gebäudehülle
 Alle absichtlich vorhandenen Öffnungen werden abgedichtet sowie die Türen, Fenster und Falltüren geschlossen.

Verfahren 3: Prüfung des Gebäudes zu einem bestimmten Zweck
 Alle absichtlich vorhandenen Öffnungen werden entsprechend der im jeweiligen Land geltenden Normen oder Richtlinien an den Zweck der Messung angepasst.

Der nationale Anhang für Deutschland legt nun das Verfahren 3 für die Messung nach DIN EN 9972:2018-12 fest. Ebenso wird anhand von Tabellen exakt definiert, wie mit den Öffnungen in der Gebäudehülle zu verfahren ist. Hier finden Sie eine Aufstellung der Präparationen nach Verfahren 3:

Aus Tabelle NA.1 — Präparation von Bauteilen der Gebäudehülle	
Bauteil, Öffnung, Einbau usw.	Maßnahme
Außentüren, Fenster,	Schließen
Dachflächenfenster	
Innentüren	Öffnen
Aufzugtüren	Schließen (Bleiben geschlossen)
Fenster in Räumen außerhalb des zu	Schließen (falls zugänglich)
untersuchenden Gebäudeteils	
Klappen, Türen, Luken zu	Öffnen
Abstellräumen, Abseiten, Spitzböden	
innerhalb der Systemgrenze	
Klappen, Türen, Luken zu	Schließen
Gebäudebereichen außerhalb der	
Systemgrenze (z. B. Garage,	
Abstellraum, Abseite, Spitzboden)	
Tür zum unbeheizten, d. h.	Schließen
außerhalb der Systemgrenze	
liegenden, Keller,	
Kellerflur, Kellertreppenabgang	
Schlüssellöcher	keine Maßnahme
Einbauten in der abgehängten Decke	keine Maßnahme

Aus Tabelle NA.2 — Präparation von Öffnungen, die nicht für die Lüftung vorgesehen sind		
Bauteil, Öffnung, Einbau usw.	Maßnahme	
Kanalbelüftungsventile	keine Maßnahme	
Leerrohre zu unbeheizten Bereichen	keine Maßnahme	
(z. B. für nachträgliche Montage		
von Solaranlagen)		
Rolladengurtdurchführungen	keine Maßnahme	
Klappen des Wäscheschachts zum	Schließen	
unbeheizten Gebäudeteil Briefkastenklappen, -schlitze,	Wenn schließbar, dann schließen,	
Katzenklappen	sonst keine Maßnahme	
zentrale Staubsaugeranlage	keine Maßnahme	
Fahrschachtbelüftung von Aufzügen,	Wenn schließbar, dann schließen,	
Rauch- und Wärmeabzug (RWA)	sonst keine Maßnahme	
Wäschetrockner im untersuchten	Schließen (Wäschetrockner)	
Gebäudeteil mit Abluft nach außen	,	
Durchdringungen der luftdichten	Abdichten	
Ebene für Wäschetrockner,		
Dunstabzugshauben und Kaminöfen		
(wenn Geräte noch nicht vorhanden		
sind)		
Deckel von Schächten mit Pumpen,	Schließen	
Installationen		
Fugen im Absenkboden für	keine Maßnahme	
Ladebuchten in Lagerhallen	771	
Raumluftabhängige Feuerstätten für	Klappen schließen, Asche entfernen,	
feste Brennstoffe, Öl und Gas (Öfen,	sonst keine Maßnahme	
Herde, Kamine, Durchlauferhitzer)	W/ 11' 01 1 11' 0	
Nachströmöffnung für die	Wenn schließbar, dann schließen,	
Ablufthaube bzw.	sonst keine Maßnahme	
Verbrennungsluftversorgung Öffnung Zuluft" in	Tür schließen und betroffenen Raum	
Öffnung "Zuluft" in		
anlagentechnischen Räumen, wie z. B. im	nicht in die Messung einbeziehen	
Heizungsraum oder Brennstofflager	CHIOCZICHCH	
innerhalb der Systemgrenze		

im zu untersuchenden Gebäudeteil	keine Maßnahme
angeordnete Hinterlüftungsöffnung	
von Schornsteinen	

Aus Tabelle NA.3 — Präparation von Bauteilen der Lüftung		
Bauteil, Öffnung, Einbau usw.	Maßnahme	
Freie Lüftung		
Außenbauteil-Luftdurchlässe (ALD)	Wenn schließbar, dann schließen,	
für die freie Lüftung	sonst	
Ç	keine Maßnahme	
Außenbauteil-Luftdurchlässe (ALD) a	Wenn schließbar, dann schließen,	
als	sonst	
Nachströmöffnung für	keine Maßnahme	
Entlüftungsanlagen nach		
DIN 18017-3 oder BaRL		
Bauteile für ventilatorgestützte Lüftung oder Klimatisierung, die		
permanent betrieben werden		
Einzelventilatoren, Abluftdurchlässe	Abdichten bzw. schließen	
sowie Außen-		
bauteil-Luftdurchlässe (ALD) für		
Abluftanlagen		
nach DIN 1946-6		
Zuluftventilatoren (z. B. zur	Abdichten	
Schalldämmlüftung) zur		
Belüftung einzelner Räume		
Zu- und Abluftdurchlässe oder	Abdichten	
Außen- und Fortluftdurchlässe von		
Zu- und Abluftanlagen zur		
Wohnungslüftung nach DIN 1946-6		
RLT-Anlagen im Nichtwohnungsbau,	Abdichten oder Jalousieklappen	
die während der Heizzeit ständig in	schließen	
Betrieb sind		
Bauteile für ventilatorgestützte Lüftu	ıng oder Klimatisierung, die	
zeitweise genutzt werden		
Einzelventilatoren, Abluftdurchlässe	Wenn schließbar, dann schließen,	
für	sonst	
Entlüftungsanlagen nach DIN 18017-	keine Maßnahme	
3 oder BaRL		

RLT-Anlagen im Nichtwohnungsbau	Ausschalten
sonstige Anlagen mit Ventilatoren, die	Ausschalten
während der Heizzeit nicht	
ununterbrochen im Betrieb sind	

Anforderungen an die Messreihe

Bislang wurde nach DIN EN 13829:2002 und auch DIN EN ISO 9972:2015 empfohlen jeweils eine Messreihe bei Unter- und Überdruck durchzuführen. Mit dem nationalen Anhang wird die bisherige Empfehlung zur Anforderung, folglich müssen für den öffentlich-rechtlichen Nachweis nach DIN EN 9972:2018 zukünftig beide Messreihen aufgenommen werden.

Nach DIN EN 9972:2018 müssen diese Differenzdruck-Messreihen immer bis zu einem Gebäudedruck von mindestens 50 Pa durchgeführt werden.

Fazit für Anwender der Minneapolis BlowerDoor:

Die speziellen Anforderungen nach Gebäudeenergiegesetz bzw. DIN EN ISO 9972:2018-12 für Deutschland, können mit unserer neuen <u>BlowerDoor Report Software</u> erfüllt werden. Diese kleine Java-basierte Software ersetzt unsere bekannte Excel-Prüfberichtsvorlage nach EnEV/EN13829 und ermöglicht detaillierte und individuelle Auswertungen Ihrer BlowerDoor Messungen.

Weitere Informationen:

Bei Rückfragen freuen wir uns auf Ihre Nachricht, kontaktieren Sie gerne unseren Herrn Alexander Kiss unter: kiss@blowerdoor.de

Für aktuelle Informationen empfehle wir Ihnen unseren 2-4x jährlich erscheinenden Newsletter zu abonnieren. Die kostenfreie Registrierung finden Sie unter:

www.blowerdoor.de/newsletter

Mit besten Grüßen Das Team der BlowerDoor GmbH