MIDTERM EXAM 2022 FALL (H)

Write your answers with **detailed steps** in the provided answer sheets. Partial answers can get partial credits.

Question 1 (20 points). Let $A, B \subset \mathbb{R}^n$ with $m_*(A), m_*(B) < \infty$. Then $m_*(A \cup B) = m_*(A) + m_*(B)$ if and only if there exist measurable sets E, F suh that $E \supset A, F \supset B$, and $m(E \cap F) = 0$.

Proof. (\Leftarrow) For $\epsilon > 0$, take open set $U \supset A \cup B$ such that $m_*(A \cup B) + \epsilon > m(U)$. Then

$$m_*(A) + m_*(B) \le m(E \cup U) + m(F \cup U) \le m((E \cup F) \cap U) + m(E \cap F)$$

 $\le m(U) < m_*(A \cup B) + \epsilon.$

Let $\epsilon \to 0$, we have the desired claim.

 (\Rightarrow) There exist G_{δ} sets U, V such that $U \supset A, V \supset B$ and $m_*(A) = m(U), m_*(B) = m(V)$.

Then
$$m_*(A \cup B) \leq m(U \cap V) + m(U \cup V) = m(U) + m(V) = m_*(A) + m_*(B)$$
. Thus $m(U \cap V) = 0$.

Question 2 (20 points). Show the following claims. Let $E \subset [0,1]$ be a measurable set.

- (1) If m(E) = 1, then $\bar{E} = [0, 1]$ (here \bar{E} is the closure of E).
- (2) If m(E) = 0, then $E^{\circ} = \emptyset$ (here E° is the interior of E).

Proof. (1) If $[0,1] - \bar{E} \neq \emptyset$, then there exists $(a,b) \subset [0,1] - \bar{E} \neq \emptyset$. Hence $m([0,1] - E) \geq b - a > 0$. A contradiction.

(2) If $E^{\circ} \neq \emptyset$, then there exists $(a,b) \subset E^{\circ}$. Hence $m(E) \geq b-a > 0$, a contradiction.

Question 3 (20 points). Suppose $\{E_k\}_{k=1}^{\infty}$ is a countable family of measurable subsets of \mathbb{R}^d and that $\sum_{k=1}^{\infty} m(E_k) < \infty$. Let

$$E = \{x \in \mathbb{R}^d \mid x \in E_k, \text{ for infinitely many } k\}.$$

- (1) Directly show that E is measurable.
- (2) Prove m(E) = 0.

Answer. (1) $E = \bigcap_n \bigcup_{k>n} E_k$, hence measurable.

(2) By monotone converges (or its corollary),

$$\int \sum \chi_{E_i} = \sum \int \chi_{E_i} = \sum m(E_i) < \infty.$$

Hence $\sum \chi_{E_i} < \infty$ a.e. x. That is m(E) = 0. (one can also get (1) from m(E) = 0.)

Question 4 (20 points). Let f be an integrable function on \mathbb{R}^d , then $\lim_{\delta\to 1} \|f(\delta x) - f(x)\|_{L^1(\mathbb{R}^d)} = 0$. (Hint: use continuous functions of compact support are dense in $L^1(\mathbb{R}^d)$.)

Answer. Let ϕ_n be continuous functions with compact support such that

$$\lim_{n \to \infty} \|\phi_n - f(x)\|_{L^1(\mathbb{R}^d)} = 0.$$

Then

(1)

$$||f(\delta x) - f(x)|| \le ||f(\delta x) - \phi_n(\delta x)|| + ||\phi_n(\delta x) - \phi_n(x)|| + ||\phi_n(x) - f(x)||$$

$$= \frac{1}{\delta d} ||f(x) - \phi_n(x)|| + ||\phi_n(\delta x) - \phi_n(x)|| + ||\phi_n(x) - f(x)||.$$

For ϵ , fix an n such that $(1+2^d)\|f(x)-\phi_n(x)\|<\epsilon/2$. As ϕ_n is continuous supporting in a compact set B, ϕ_n is uniformly continuous on B. Let m(B)=M, for $\frac{\epsilon}{2M}$, there exists $\delta'>0$ such that when $\|x_1-x_2\|<\delta'$, we have $|\phi_n(x_1)-\phi_n(x_2)|<\frac{\epsilon}{2M}$. Thus there exists $\delta<1$ (so that $\|x-\delta x\|<\delta'$ for $x\in B$) such that $\|\phi_n(x)-\phi_n(\delta x)\|\leq \frac{\epsilon}{2M}\cdot M=\epsilon/2$. Thus take $\delta>1/2$, by (1)

$$||f(\delta x) - f(x)|| \le \epsilon/2 + \epsilon/2.$$

Question 5 (20 points). Let $E \subset \mathbb{R}^1$ be a measurable set and $L^1(E)$ be the set of Lebesgue integrable functions.

(1) Let $f \in L^1(E)$, show that

$$\lim_{k \to \infty} \int_{\{x \in E | |f(x)| < \frac{1}{k}\}} |f(x)| dx = 0.$$

(2) Let f be a continuous function on $[0, \infty]$. Let $a \in \mathbb{R}$ such that $\lim_{x\to\infty} f(x) = a$, then for any m > 0, we have

$$\lim_{k \to \infty} \int_{[0,m]} f(kx) dx = am.$$

Proof. 1. Let $E_k = \{x \in E \mid |f(x)| < \frac{1}{k}\}$, then $|f| \geq |f|\chi_{E_k}$. By the dominated convergence theorem,

$$\lim_{k \to \infty} \int_{\{x \in E || f(x)| < \frac{1}{k}\}} |f(x)| dx = \int \lim_{k \to \infty} |f| \chi_{E_k} = \int 0 = 0.$$

2. By the assumption, there exists M such that |f| < M. Hence by the bounded convergence theorem,

$$\lim_{k \to \infty} \int_{[0,m]} f(kx) dx = \int_{[0,m]} \lim_{k \to \infty} f(kx) = \int_{[0,m]} a = ma.$$