WARTHOG 2018, Lecture III-1

Main Exercise 1. Let X be a variety over \mathbb{F}_q , and let $U \subset X$ be an open subset. Recall that we have a long exact sequence in compactly supported ℓ -adic étale cohomology:

$$\cdots \to H_c^i(U) \to H_c^i(X) \to H_c^i(X \setminus U) \to H_c^{i+1}(U) \to \cdots$$

Furthermore, if X and U are both defined over \mathbb{F}_q , then the Frobenius endomorphism acts on all of these cohomology groups, and the sequence is Frobenius equivariant.

Recall also that $H_c^i(\mathbb{A}^n) = 0$ unless i = 2n, in which case it is one-dimensional and Fr_q acts as multiplication by q^n .

- (a) Prove that the odd cohomology of \mathbb{P}_n vanishes, and that Fr acts on $H^{2i}(\mathbb{P}_n) \simeq H_c^{2i}(\mathbb{P}^n)$ as multiplication by q^i . (Hint: Let $U = \mathbf{A}^n$.)
- (b) A similar argument works for any variety admitting a stratification by affine spaces. In particular, it works for the flag variety \mathbf{G}/\mathbf{B} . Use this fact to give a formula for the Poincaré polynomial of \mathbf{G}/\mathbf{B} .
- (c) Let \mathcal{A} be a finite set of hyperplanes in $\mathbb{A}^n_{\mathbb{F}_q}$, and let $M_{\mathcal{A}}$ be the complement of the corresponding finite set of hyperplanes in \mathbb{A}^n . Prove that $H_c^{2n-i}(M_{\mathcal{A}}) = 0$ unless $0 \leq i \leq 2$ and Fr acts on $H_c^{2n-i}(M_{\mathcal{A}})$ as multiplication by q^{n-i} . (Hint: Define \mathcal{A}' by deleting a hyperplane and \mathcal{A}'' by restricting to that hyperplane, so that $M_{\mathcal{A}''} \simeq M_{\mathcal{A}'} \setminus M_{\mathcal{A}}$.)

Exercise 1. (Supplemental) Let w = vv' with $\ell(v) + \ell(v') = \ell(w)$. Recall that there is a natural morphism $D_v : \mathbf{X}(w) \to \mathbf{X}(v^{-1}wF(v))$. Show that it induces a G-equivariant isomorphism

$$H_c^{\bullet}(\mathbf{X}(w)) \stackrel{\sim}{\to} H_c^{\bullet}(\mathbf{X}(v^{-1}wF(v))).$$

(Hint: compute $D_{v'} \circ D_v$.)