Final Project Math 6937

Daniel Gemara

May 3, 2017

Daniel Gemara Final Project May 3, 2017 1 / 12

SLIAR Model

Parameter	Explanation		
β	How often a susceptible-infected contact results in a new infection.		
α	The rate an infected recovers and moves into the resistant phase.		
η	The rate an aymptotic recovers and moves into the resistant phase.		
κ	The rate where latent move to either asymptomatic or infected.		
δ	reduction in infectivity of asymptomatic members.		
р	fraction of latent members that develop symptoms.		

Basic Reproduction Number (1)

The basic reproduction number is the number of secondary infections caused by introducing a single infective into a susceptible population.

$$R_0 = S_0 \beta \left[\frac{p}{\alpha} + \frac{\delta(1-p)}{\eta} \right]$$

Parameter	Value	
β	0.000201207243	
α	0.244	
η	0.244	
δ	0.5	
р	0.667	

Basic Reproduction Number (2)

$$R_0 = (1988)(0.000201207243)\left[\frac{0.667}{0.244} + \frac{0.5(1-.667)}{0.244}\right]$$

$$R_0 = 0.4[2.73360656 + 0.682377049]$$

$$R_0 = 1.36639344$$

Final Relation

$$S_0[ln(S_0) - ln(S_\infty)] = R_0(S_0 - S_\infty) + \frac{R_0 l_0}{\alpha[\frac{\rho}{\alpha} + \frac{\delta(1-\rho)}{\eta}]}$$

$$1988[ln(1988) - ln(S_\infty)] = 1.36639344(1988 - S_\infty) + \frac{1.36639344(12)}{(0.244)3.41598361}$$

$$15098.6302 - 1988lnS_\infty = 2716.39016 - 1.36639344(S_\infty) + 19.67213109$$

$$12362.5679 - 1988lnS_\infty = -1.36639344S_\infty$$

$$S_\infty = 994.173$$

R Code

Use R to find the curves of the SLAIR Model

6 / 12

Curves of SLIAR Model

SIR Model

$$\frac{dS}{dt} = -\frac{\beta}{N}S(t)I(t)$$

$$\frac{dI}{dt} = \frac{\beta}{N}S(t)I(t) - \gamma I(t)$$

$$\frac{dS}{dt} = \gamma I(t)$$

Use R to find beta and gamma.

Daniel Gemara Final Project

Beta & Gamma

	Estimate	Std. Error	t value	Pr(> t)
beta	0.2355422	0.0004309	546.6	<2e-16
gamma	0.1709625	0.0003960	431.7	<2e-16

$$R_0 = rac{eta}{\gamma} = rac{0.2355422}{0.1709625} = 1.3777419$$
 compared to 1.36639344 from SLIAR model.

Curves of SIR Model

Comparison of I(t) Curves

Use Excel to compare curves.

Explicit Relation between A and I

$$I' = p\kappa L - \alpha I$$
, $A' = (1 - p)\kappa L - \eta A$
 $e^{\alpha t}I(t) = I(0) + p\kappa \int_0^t e^{\alpha s}L(s)ds$
 $e^{\eta t}A(t) = A(0) + (1 - p)\kappa \int_0^t e^{\eta s}L(s)ds$
 $\eta = \alpha$

Using $\int_0^t e^{\alpha s} L(s) ds$, a relationship between A and I occurs.

$$I(t) - e^{\alpha t}I(0) = \frac{p}{1-p}[A(t) - e^{-\alpha t}A(0)]$$

- ◀ □ ▶ ◀ 🗗 ▶ ◀ 볼 ▶ · 볼 · 씨 및 ⓒ

May 3, 2017 12 / 12