Translating mathematical functions to code with time asymptotic analysis

Suppose the following for some finite k, $M = \{m_1, m_2, \dots, m_k\} \land N = \{n_1, n_2, \dots, n_k\}$:

$$f(k) = \prod_{i=1}^k \sum_{j=1}^k \left(m_i imes n_j
ight)$$

The given function can be similarly expressed as:

$$f(k) = \Big(\sum_{j=1}^k m_1 imes n_j\Big) imes \Big(\sum_{j=1}^k m_2 imes n_j\Big) imes \cdots imes \Big(\sum_{j=1}^k m_{k-1} imes n_j\Big) imes \Big(\sum_{j=1}^k m_k imes n_j\Big)$$

Or even more explicitly:

$$f(k) = \left[\left(m_1 imes n_1
ight) + \left(m_1 imes n_2
ight) + \cdots + \left(m_1 imes n_j
ight)
ight] + \cdots + \left[\left(m_i imes n_1
ight) + \left(m_i imes n_2
ight) + \cdots + \left(m_i imes n_j
ight)
ight]$$

Code translation in Python3

The proposed function f(k) is implemented below.

Code analysis

Let product be 1 in the initial state, that is, for some value v_1 computed in the first iteration of the outer for loop holds: product $=v_1$. Thus, product $=\prod_{i=0}^k v_i$ for k-th iteration. Furthermore, let sum_buffer (previously indicated as v_i) be initially 0 in each iteration of the outer for loop, so for each iteration in the inner for loop, sum_buffer equals to the sum of all terms of N, namely n_j , multiplied by some current constant m_c , thus sum_buffer $=\sum_{j=1}^k m_c \times n_j$, where c is a constant and $c \le k$.

Time complexity

According to **asymptotic analysis**, the lower and the upper bounds of such algorithm remain **identical**, and, undeniably, any case holds the same running time complexity. Thus, we compute the average (and, frankly, the only possible) running time as $\Theta(k^2)$ where the only variable affecting the real running speed is the value of k. Assume the parabolic function $g(k)=k^2$, where k is an integer and $k\geq 1$.