3 Strictly Local stringsets

For each k, and each there is a canonical form for strictly k-local stringsets. Here it is.

Definition 4. Given the stucture of the canonical SL_k DFA for L(G) is a DFA such that

- $Q = \Sigma^{\leq k-1}$;
- Σ is the alphabet;
- $q_0 = \lambda$;
- F = Q; and
- For all $q \in Q, \sigma \in \Sigma, \delta(q, \sigma) = \mathfrak{suff}_{k-1}(qa)$

Here is an example, where $\Sigma = \{a, b, c\}$ and k = 2. Observe that the language of this DFA is Σ^* .

Figure 1: A canonical SL₂ DFA

Other SL_2 languages are obtained by removing transitions or making states non-final. In other words, every SL_2 stringset corresponds to some subgraph of this canonical DFA.

To see why, consider any strictly k-local grammar $G \subseteq \mathtt{factor}_k(\{\times\}\Sigma^*\{\times\})$.

- For all $w \in \Sigma^*$: $w \in F$ iff $w \ltimes \in G$ or $\forall w \ltimes \in G$.
- For all $wa \in \Sigma^*$: $\delta(w, a)$ exists iff $wa \in G$ or $\forall wa \in G$.