

Année universitaire 2024-2025

Filière : MIP Semestre : S2

Module : Analyse 2

Primitives usuelles

Formulaire de primitives 1				
Fonction	Une primitive	Intervalle	Commentaire	
0	С	\mathbb{R}	$c \in \mathbb{R}$ constante	
a	ax	\mathbb{R}	$a \in \mathbb{R}$ constante	
χ^n	$\frac{x^{n+1}}{n+1}$	R	$n \in \mathbb{N}$	
$\frac{\frac{1}{x}}{\frac{1}{x^n}}$	$\ln x$]0, +∞[
	$-\frac{1}{(n-1)x^{n-1}}$	ℝ+* ou ℝ-*	$n \in \mathbb{N} \backslash \{0, 1\}$	
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$]0, +∞[
x^{α}	$\frac{x^{\alpha+1}}{\alpha+1}$]0, +∞[$\alpha \in \mathbb{R} \setminus \{-1\}$	
cos x	$\sin x$	\mathbb{R}		
sin x	$-\cos x$	\mathbb{R}		
tan x	$-\ln \cos x $	$\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[$	$k \in \mathbb{Z}$	
$\frac{1}{\cos^2 x}$	tan x	$\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[$	$k \in \mathbb{Z}$	
$\frac{-\frac{1}{\sin^2 x}}{1}$	cotan x	$]k\pi,(k+1)\pi[$	$k \in \mathbb{Z}$	
$\frac{1}{\sqrt{1-x^2}}$	arcsin x] - 1, 1[
$\frac{1}{1+x^2}$	arctan x	\mathbb{R}		
e^x	e^x	\mathbb{R}		
$e^{\alpha x}$	$\frac{e^{\alpha x}}{\alpha}$ a^{x}	\mathbb{R}	$\alpha \in \mathbb{R}^*$	
a^x	$\frac{a^x}{\ln a}$	R	$a \in \mathbb{R}^{+*} \backslash \{1\}$	
ch x	sh x	\mathbb{R}		
$\operatorname{sh} x$	ch x	\mathbb{R}		
$\frac{1}{\cosh^2 x}$	th x	\mathbb{R}		

Formulaire de primitives 2				
Fonction	Une primitive	Commentaire		
f + g	F + G			
λf	λF	λ constante		
$(g'\circ f).f'$	$g \circ f$			
$f'f^{lpha}$	$\frac{f^{\alpha+1}}{\alpha+1}$	$\alpha \in \mathbb{R} \setminus \{-1\}$ et $f > 0$ sur son domaine		
$\frac{f'}{f}$	$\ln f $	$f \neq 0$ sur son domaine		
$\frac{f'}{f^n}$	$-\frac{1}{(n-1)f^{n-1}}$	$n \in \mathbb{N} \setminus \{0, 1\}$		
$\frac{\frac{f'}{f}}{\frac{f'}{f^n}}$ $\frac{f'}{\sqrt{f}}$	$2\sqrt{f}$	$f \geqslant 0$ sur son domaine		
$f'\mathrm{e}^f$	e^f			
$f'\sin f$	$-\cos f$			
$f'\cos f$	sin f			
$\frac{f'}{\cos^2 f} = f'.(1 + \tan f)$	tan f			
$f' \operatorname{sh} f$	ch f			
$f'\operatorname{ch} f$	$\operatorname{sh} f$			
$\frac{f'}{\cosh^2 f} = f'.(1 - \th f)$	$\operatorname{th} f$			
$\frac{f'}{\sqrt{1-f^2}}$ $\frac{f'}{1+f^2}$	arcsin f			
$\frac{f'}{1+f^2}$	arctan f			
<u> </u>	:	i		