

MCCORMICK, PAULDING & HUBER LLP
City Place II
185 Asylum Street
Hartford, CT 06103-4102
Tel. (860) 549-5290

"EXPRESS MAIL" MAILING LABEL
NUMBER EH302562611US
DATE OF DEPOSIT March 26, 1999
I HEREBY CERTIFY THAT THIS PAPER OR FEE IS BEING
DEPOSITED WITH THE UNITED STATES POSTAL SERVICE
"EXPRESS MAIL POST OFFICE TO ADDRESSEE" SERVICE
UNDER 37 C.F.R. 1.10 ON THE DATE INDICATED ABOVE AND
IS ADDRESSED TO THE ASSISTANT COMMISSIONER FOR
PATENTS, WASHINGTON, D. C. 20231

LISA M. GRUNDSTROM
(TYPED NAME OF PERSON MAILING PAPER OR FEE)

Lisa M. Grundstrom
(SIGNATURE OF PERSON MAILING PAPER OR FEE)

Box PATENT APPLICATION
Assistant Commissioner for Patents
Washington, DC 20231

Dear Sir:

NEW APPLICATION TRANSMITTAL

Transmitted herewith for filing is the patent application of:

Inventor(s): Terry M. Robar, William A. Veronesi, Paul A. Stucky
and Jacek F. Gieras

For: METHOD AND APPARATUS FOR DETECTING ELEVATOR
ROPE DEGRADATION USING ELECTRICAL OR MAGNETIC
ENERGY

Atty Docket No.: 4167-52

Enclosed are:

1. The papers required for filing date under 37 CFR 1.53(b):

10 Pages of Specification
1 Page of Abstract

6 Pages of Claims
7 Sheets of Drawings:
 Formal / X Informal

In addition to the above pages there is also attached:

 pages of an amendment

2. Declaration or oath

X Enclosed

 Original executed by:

 Inventor(s);

 Legal representative of inventor(s); 37 CFR 1.42 or 1.43;

 Joint inventor or person showing a proprietary interest on behalf
of inventor who refused to sign or cannot be reached; or

 this is the petition required by 37 CFR 1.47 and the statement required
by 37 CFR 1.47 is also attached.

Application Transmittal Letter

(Continued)

Page 2

Not Enclosed

Application is made by a person authorized under 37 CFR 1.41(c) on behalf of all the above named inventor(s). The declaration or oath, along with the surcharge required by 37 CFR 1.16(e) can be filed subsequently.

Showing that the filing is authorized. Not required unless called into question. 37 CFR 1.41(d).

3. Language

English

Non-English

A verified English translation of the:

specification and claims

declaration is attached.

4. Assignment

An assignment of the invention from _____ to _____
_____. A duplicate copy of this letter is enclosed.

5. Certified Copy

A certified copy of application(s):

Application No(s): _____

Filed On: _____ Country _____

from which priority is claimed. A certified copy of application(s) is:

enclosed _____ to follow.

6. Small Entity Statement

Verified statement that this is a filing by a small entity under 37 CFR 1.9 and 1.27 is attached.

7. The filing fee has been calculated as shown below:

FOR:	NO. FILED	NO. EXTRA	RATE	FEE
BASIC FEE			\$380.00/760.00	\$760.00
TOTAL CLAIMS	32 - 20 =	12 x	\$9.00/18.00 =	\$216.00
IND. CLAIMS	8 - 3 =	5 x	\$39.00/78.00 =	\$390.00
Multiple Dependent Claims		0 x	\$130.00/260.00 =	-0-
			TOTAL	\$1,366.00

Amendment cancelling extra claims enclosed.

Amendment deleting multiple dependencies enclosed.

Fee for extra claims is not being paid at this time.

Application Transmittal Letter
(Continued)
Page 3

8. Fee payment being made at this time

Enclosed:

<input checked="" type="checkbox"/> Total Filing Fee (From Above)	\$ 1,366.00
<input type="checkbox"/> Recording Assignment (\$40.00; 37 CFR 1.21(h)(1))	\$ _____
<input type="checkbox"/> for processing an application with a specification in a non-English language. (\$130.00; 37 CFR 1.52(d) and 1.17(k))	\$ _____

TOTAL FEES \$ 1,366.00

Not enclosed

No filing fee is to be paid at this time. (This and the surcharge
required by 37 CFR 1.16(e) can be paid subsequently.)

9. Method of payment fees:

check in the amount of \$ 1,366.00

charge Account No. 13-0235 in the amount of \$ _____.
A duplicate of this transmittal is attached.

10. Authorization to charge additional fees:

The Commissioner is hereby authorized to charge the following
additional fees which may be required to Account No. 13-0235.

37 CFR 1.16 (filing fees)

37 CFR 1.16 (presentation of extra claims)

37 CFR 1.17 (application processing fees)

11. Instructions as to overpayment

credit Account No. 13-0235

refund.

Respectfully submitted,

Lawrence Cruz
Registration No. 36,385
Attorney for Applicant(s)

Enclosures

METHOD AND APPARATUS FOR DETECTING ELEVATOR ROPE DEGRADATION USING ELECTRICAL OR MAGNETIC ENERGY

TECHNICAL FIELD

The present invention relates to elevator ropes and, more particularly, to a method and apparatus for testing elevator ropes to detect degradation using electrical or magnetic energy.

5

BACKGROUND OF THE INVENTION

Tension rope systems for lifting elevator cars, or similar vessels for vertically raising and lowering loads in industrial or commercial applications, are typically made up of steel ropes. Such ropes typically comprise multiple cords which, in turn, generally comprise a plurality of strands that are made up of individual steel wires. Such tension ropes are critical components upon 10 which safety and productivity often depend.

Deterioration of individual components of a multi-strand or multi-cord rope adversely affects tension strength of the rope. The tension strength of a rope is dependent upon various parameters including its cross-sectional area. 15 When one or more components of a steel rope stretch, tear or permanently bend, those components are disabled or weakened as load bearing members and, thus, the effective tension-bearing cross-sectional area of the rope is reduced. This type of deterioration can occur through a variety of ways, such as normal wear and tear, impact, fatigue or inadvertent corrosion.

Because service ropes, such as elevator ropes, are very long and are made up of many individual wires and strands, it is impractical to perform thorough and accurate testing of rope condition or deterioration level simply by visual inspection. Furthermore, it is impractical to disassemble elevator ropes and apply them to various testing devices. Thus, it is common in the industry to 20 substantially overdesign the ropes to allow for a large margin of deterioration without a large risk of failure. The ropes are replaced at time or cycle milestones. Occasional in-field visual inspections are typically the only means of testing.

The main problem with visual inspection of ropes is that the eye can only 30 see the strands and wires on the outer surface of the rope, which make up only a fraction of the tension-bearing cross-sectional area. Also, it is difficult to visually inspect an entire length of rope installed in, for example, an elevator system. Thus, sampling and approximation methods are generally employed.

These methods still require a large margin of overdesign to ensure safety. As a result, ropes are designed with excessive and costly materials, and ropes are often discarded well before their useful life expires. In addition, man hours and operation down-time for inspection are often costly.

5

OBJECTS AND SUMMARY OF THE INVENTION

Various objects of the present invention include providing a method and apparatus for detecting deterioration of steel ropes or compound ropes having steel ropes as members, wherein detection is practical in time, cost and complexity, wherein continuous monitoring and detection are practical and efficient, and further wherein detection is accurate and reliable. Another object achieved is the ability to inspect rope components that are not viewable, such as in the case of compound ropes or belts including flat ropes in which one or more steel ropes are embedded in an insulator, such as polyurethane or rubber. In this situation, visual inspection is impossible. These and other objects are achieved by the present invention as described below.

One embodiment of the present invention involves applying a novel arrangement of magnets and sensors for saturating magnetically permeable ropes with a magnetic field and then obtaining magnetic flux leakage measurements for comparison to pre-stored data in order to determine rope condition. Another embodiment of the present invention involves applying electric current to a rope and measuring resistance values for comparison to pre-stored data in order to determine rope condition.

While the preferred embodiments are described below with respect to elevator ropes, by way of example, it is acknowledged that the present invention has application to other types of ropes and belts subject to similar loading and use conditions.

BRIEF DESCRIPTION OF THE DRAWINGS

30 Fig. 1 is a schematic, cross-sectional view of an elevator rope having multiple cords in an insulator material.

Fig. 2 is a schematic, cross-sectional view of a cord of an elevator rope of the type illustrated in Fig. 1.

35 Fig. 3 is schematic diagram of a two magnets arranged adjacent to a ferromagnetic member.

Fig. 4 is a schematic diagram of a magnetic flux sensor array adjacent to an elevator rope of the type disclosed in Fig. 1.

Fig. 5 is a schematic diagram of a first embodiment apparatus according to the present invention.

Fig. 6 is a partial, schematic view of a first embodiment apparatus according to the present invention mounted to an elevator system.

5 Fig. 7 is a schematic diagram of a second embodiment apparatus according to the present invention.

Fig.s 8A - 8B are graphs illustrating magnetic flux detection according to the present invention.

10 Fig. 9 is a schematic diagram illustrating a third embodiment of the present invention.

Fig. 10 is a partial, schematic view of a third embodiment apparatus according to the present invention mounted to an elevator system.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

15

Magnetic Flux Method and Apparatus

A defect such as a crack, cut or other discontinuity in a ferromagnetic member, such as a wire, can be detected by monitoring magnetic flux density distribution within. A defect will result in penetration of the magnetic flux to the air.

20 The quantitative determination of loss of metallic cross-sectional area, in a rope having wires of a diameter of 0.175 mm, caused by deterioration or defect is possible with quantitative resolutions of 0.175 mm. The terms "quantitative resolution" as used herein refers to the required minimum flaw for which the sensor provides a quantitative measure directly, without additional signal processing.

25 The most prevalent modes of deterioration of wire ropes include internal abrasion, corrosion, breaking and kinking. Internal abrasion is caused by nicking, high pressure or poor lubrication. Corrosion, which can occur internally or externally, is caused by various environmental conditions and poor lubrication. Breaking of wires results from fatigue, plastic wear, martensitic brittling, and mechanical damage. Kinking results from sharp bending or mechanical damage.

30 Deterioration results in loss of cross-sectional area of wires which reduces tension load bearing capacity. The transfer of load from a defective or deteriorated wire to neighboring wires will reduce the expected fatigue life of the remaining wires. As the number of defects in a group increases, the rate of

increase in number of defects will accelerate due to increasingly displaced loads.

- A system for detection of the leakage flux basically consists of a magnetic flux exciter and a magnetic flux sensor. The exciter is necessary to
- 5 magnetize the ferromagnetic part to be inspected. It can be in the form of, for example, an encircling coil, or a U-shaped electromagnet or permanent magnet with mild steel poles. Encircling coils do not have ferromagnetic cores and, thus, result in poor utilization of the produced magnetic flux to magnetize the part being tested. U-shaped magnets are better because they can direct
- 10 most of the produced magnetizing flux to the part being tested. Permanent magnet excitors do not require any power supply and they are smaller than electromagnets producing the same flux. Various magnetic flux sensors are available such as, for example, search coils, Hall elements, and magnetodiodes. Search coils allow for inspection of large surface areas but,
- 15 however, their output signal is speed dependent. Hall elements can produce high output signals which are independent of speed.

Applying the exciter-sensor system to a flat rope made up of a series of wire cords is described with respect to Fig. 1 - 6. While the preferred embodiment is described in the context of a flat rope of non-ferromagnetic insulator material having ferromagnetic cords embedded therein, the invention is not limited to such an embodiment and may be applied to, for example, a compound rope having a single ferromagnetic cord embedded in a round insulator jacket. A flat rope (10) has a generally rectangular cross-sectional area of non-ferromagnetic insulator material, such as polyurethane,

20 (12) surrounding a plurality of generally uniformly distributed steel ropes (14), each consisting of a plurality of cords (15). As illustrated in Fig. 2, a cord (15) comprises a plurality of strands (16). Each strand (16) is made up of a plurality of steel wires (17). In order to apply the magnetic flux exciter-sensor system according to the present invention, the following presumptions are made:

25 (a) leakage fluxes are negligible; (b) magnetic permeability of the ferromagnetic poles and yokes of the exciter tends to infinity; and (c) no eddy currents are induced in the tested strands.

Referring to Fig. 3, a schematic illustration shows a permanent magnet (100) positioned adjacent to a ferromagnetic test sample (102) representing the

30 rope (10). The reluctance $R_{\mu r}$ of the steel ropes (14) is $R_{\mu r} = \frac{\Delta l_r}{\mu_0 \mu_n S_r}$, where Δl_r

is the tested segment of the cord equal to the distance between center lines of poles of the exciter.

The magnetic permeability of free space, μ_0 , is $\mu_0 = 0.4\pi \times 10^{-6}$ H/m.

- 5 The relative magnetic permeability of steel strands is μ_r . The cross-section area of the steel wire rope (14) is S_r . The magnetic permeability μ_r is a nonlinear function of the magnetic flux density in strands (magnetic field intensity).

The cross section area S_r of the steel rope (all steel strands) is $S_r = n_c n_{str} \frac{\pi d_{str}^2}{4}$, where n_c is the number of strands, n_{str} is the number of strands in

- 10 each cord and d_{str} is the diameter of a single strand.

The reluctance $R_{\mu g}$ of the airgap between pole faces and cores is, approximately, $R_{\mu g} \sim \frac{g}{\mu_0 S_g}$, where g is the airgap (ferromagnetic body to ferromagnetic body) and $S_g = \omega_p l_p$. The width of the pole face (parallel to the rope length) is ω_p and the length of the pole face (transverse to the rope length) is l_p .

According to Ohm's Law for magnetic circuits and including assumptions (a), (b) and (c) as stated above, the magnetic flux produced by the excitation system (with electromagnet or permanent magnet) is $\Phi = \frac{NI}{\Delta l_r / \mu_0 \mu_r S_r + 2g / \mu_0 S_g}$

- 20 and the magnetic flux density in the rope (equal to the magnetic flux density in a single strand) is $B = \frac{\Phi}{S_r} = \frac{\mu_0 NI}{\Delta l_r / \mu_r + 2g S_r / S_g}$ where N is the number of turns of the

electromagnet winding used for the excitation and I is the d.c. current in the electromagnet winding. The equivalent magnetic motive force (MMF) NI can also be produced by a permanent magnet. For a permanent magnet NI should be replaced by $H h_M$ where H is the equivalent magnetic field intensity and h_M is the length of the permanent magnet.

- 25 Using Hall elements, a system's sensitivity can be configured sufficiently to enable detection of a difference in magnetic flux density representative of the loss of one wire having a diameter of, for example, 0.175 mm in a cord of diameter 1.6 mm. By sampling rope as it deteriorates, determining magnetic flux density, and storing the measurement, data can be stored for comparison to magnetic flux density for a rope to be tested. Using Hall elements, a system can be configured sufficiently to enable detection of a difference in magnetic

flux density between the non-deteriorated rope and a test subject in which only one wire is broken.

- To provide the level of sensitivity needed to detect differences in magnetic flux density of individual wires at such dimensions, the magnetic flux
- 5 excitation system, comprising a U-shaped electromagnet or permanent magnet, should be configured using a small distance, Δl_r , between the centerlines (104, 106) of mild steel poles (108, 110). If Δl_r is too small, however, the leakage flux can reduce the useful flux in the steel rope to an unacceptable level. The cross section area of each airgap, approximately
- 10 equal to the cross section area of each mild steel pole, should be small. This can be achieved by minimizing the width (112) of each pole face to a value not less than the diameter of a single cord of the rope. If the cross section area of the air gap is too small, a large leakage flux from pole-to-pole will occur.

The magnetic flux exciter-sensor system according to the present

15 invention requires the test sample, an elevator rope having internal steel cords, for example, to be passed over the poles of a magnet so that at any instant the portions of the cords that are over and in between the poles are magnetized, becoming part of the magnetic circuit, and a magnetic flux density is established in the cords parallel to their axes. In an ideal, non-deteriorated

20 rope the majority of magnetic flux is parallel to the rope. A deterioration defect, as described above, in a steel cord or wire thereof causes local fringing in the magnetic flux density, so that it forms a "bump" or discontinuity in the parallel direction of the flux. At the location of the defect there is some magnetic flux density directed in a direction normal to the axis of the cord. This normal flux

25 density is what is detected as indicative of a defect in the rope by the system of the present invention.

The magnetic flux sensor assembly may include either Hall effect sensors, search coils, or other known sensors. By way of example, an arrangement employing Hall effect sensors is described with respect to the

30 schematic, cross section illustration of Fig. 4. The sensor assembly (300) illustrated is for use with a rope (302) having twelve steel rope cords (304) evenly spaced therein and running parallel to the longitudinal axis of the rope (302). First and second banks (306, 308) of Hall effect sensors (310) are positioned above and below, respectively, the flat belt (306) to be tested so that

35 the Hall effect sensors (310) correspond to individual cords (304). A single bank of sensors on only one side of the belt may be used. Any number of sensors may be used, as the number of sensors does not necessarily have to

correspond to the number of cords. The sensor banks (306, 308) should be generally centered in a direction along the longitudinal axis of the flat rope (302) with respect to the poles of the magnet, since the components of magnetic flux density normal to the belt axis is at a minimum midway between

- 5 the poles. Thus, the detection of a significant normal flux at this location would indicate a defect in the steel cord.

The testing assembly (400), shown schematically in Fig. 5, comprises an exciter system (402) having a U-shaped magnet with two poles (404, 406), a sensor assembly (408), as previously described with respect to Fig. 4, and a controller (410). The testing assembly (400) may be fixed as a dedicated unit to an elevator system (420), as shown in Fig. 6, or it may be assembled on-site and transportable to and from various sites. For example, the testing assembly (400) may be fixed to an elevator hoist machine assembly (401) by means of a bracket (403). The exciter and sensor assemblies are positioned so that a rope 10 (412) to be tested may move relative to the magnet (402) and sensors (408). If desired, the controller (410) may be remotely located from the rest of the testing assembly (400) and in communication therewith through such means as hard-wire, RF, or modem. Remote monitoring and remote controlling may be 15 implemented.

20 Alternatively, as shown in Fig. 7, the testing assembly (500) may be a self-contained, portable unit having an on-board controller (502) and power source (504) in addition to the components described with respect to Fig. 5. The unit may, for example, have a two-part housing comprising of halves (506, 508) which may be closed around an elevator rope (510) for testing.

25 A testing assembly designed for an array of cords (304) positioned in pre-determined relative positions within a rope (302) may be calibrated by first running a deteriorated rope sample, of known characteristics, through the testing assembly and pre-storing data signals from each individual Hall effect sensor. By relating each specific location for individual sensor elements, and 30 repeating test runs with selectively damaged cords or strands, actual test data can be compared to known or predictable pre-stored data. By analyzing, for example, measurements from several sensor elements as they relate to only one rope at a known location, precise levels of defective strands or wires and their relative position within the cord cross section can be determined.

35 By way of example, the graph shown in Fig. 8A depicts magnetic flux leakage for each cord of a flat, multi-cord rope under tension as a function of time measured by a bank of top-side sensors. For each cord, identified by cord

number, the magnetic flux leakage in volts is plotted against time in seconds.

The relative peaks on the magnetic flux leakage axis identify defects. Because the starting position on the rope and the rate of movement of the rope relative to the sensors is known, the time axis can be correlated to location on the rope. A

- 5 similar graph for bottom-side sensors is provided in Fig. 8B. The graphs in 8A and 8B are complementary with respect to longitudinal position along the rope and depict the same period in time for the same rope. The output for the two sets of sensors (Fig. 8A and Fig. 8B) differs because of precise locations of defects. More precisely, the location of a defect on each cord can be located
10 with respect to angular position and distance from the central axis of the cord, in addition to longitudinal position, by correlating reference points between the two sensor arrays.

The above example described in Fig.s 8A and 8B is one example of various tests that can be used to precisely measure or locate wire or cord performance or failure under various conditions.

This approach, with this level of resolution, enables precise detection of wire or rope failure. Such measurements are useful, for example, for identifying chronic failure or wear patterns that may be indicative of problems with surrounding hardware or environment.

20

Electrical Resistance Measurement Method and Apparatus

Another embodiment of the present invention relates to detecting deterioration of steel cord tension load carrying members that are encased in non-condutive insulator materials, such as a flat rope constructed of, for
25 example, polyurethane, by directing electric current through the steel cords and measuring electrical resistivity. An example of such a rope is a flat elevator rope having a polyurethane jacket with tension load carrying cords encased within and running the length of the rope. Changes in the resistivity of a steel rope are indicative of defective strands or wires. In the elevator environment,
30 such testing requiring conductance is not possible with non-insulated belts or ropes where steel cords come into contact with metallic components of the elevator system.

According to the present invention, an electrical resistance measuring device is applied to a rope to be tested so that measured resistance through
35 the cord can be correlated to pre-stored test data for an ideal rope.

Predetermined threshold data values are used to determine when a tested

rope or belt should be replaced. The resistance measuring device may be, for example, a Kelvin bridge.

- A schematic representation of such a system (600) is shown in Fig.9, where an elevator rope (602) is connected at first and second ends (604, 606) to current input and output leads (608, 610). A floating stable constant current source (612) is supplied at one end of the rope (602). Connections are made at both ends and the voltage is measured. The measuring current is passed through the unknown resistance of the rope through the input wire (608) and passed through the return or output wire (610). The additional wires (609, 611) are connected to high input impedance sense heads and have no current flow. Since the current is known, by relating the voltage in (V_{in}) and the voltage out (V_{out}), as total rope voltage (V_{rope}), and knowing the current in (I_{in}), the resistivity of the rope (R_{rope}) can be determined.

15 $V_{rope} = V_{out} - V_{in}$
 $R_{rope} = V_{rope} / V_{in}$

When the rope being tested reaches a predetermined threshold value of resistance, it is an indication to replace the rope. The threshold value can be determined by testing a similar rope at different stress levels for load and fatigue, for measured numbers of cycles, and measuring the corresponding resistance and residual load bearing strength. A relationship between resistance and load bearing capacity can then be established.

- Because resistivity is affected by factors such as temperature and moisture, it is advantageous to use relative comparisons of individual cords in a multi-cord rope, or of multiple ropes, when applying the present invention. For instance, temperatures in a tall building can vary significantly between the top and bottom levels. By applying the present invention system to a rope having multiple cords of electrically conductive material, relative comparisons of resistivity with neighboring cords permits detection of changes in resistance despite effects from temperature, moisture or other environmental conditions.

- As shown in Fig. 10, current input and output leads (608, 610) can be made to an elevator rope (602) at termination points (614, 616) in an elevator system. A power source (618) and controller (620), shown schematically, may be connected via hardwire or other conventional means. The controller (620) may be programmed to correlate resistivity measurements with predetermined data indicative of tension-load bearing strength of the rope (602). A remote

controller may be used through RF, modem connection or similar means for monitoring and controlling data input, current input, and readings.

CONCLUSION

- 5 The testing systems described in the foregoing may be implemented for continuous monitoring of rope condition, or they may be implemented periodically during maintenance procedures. The systems may be dedicated or portable systems.
While the preferred embodiments have been herein described, it is
- 10 acknowledged and understood that various modifications may be made without departing from the scope of the presently claimed invention.

WHAT IS CLAIMED IS :

- 1) A method of detecting degradation of a rope comprising a plurality of ferromagnetic cord members, said method comprising
 - applying a magnetic field to a portion of said cord members;
 - monitoring magnetic flux associated with said magnetic field; and
 - identifying locations along said cord members exhibiting magnetic flux leakage, wherein said locations are indicative of degradation.
- 2) A method according to claim 1, wherein
 - said magnetic field is applied by relative movement between said rope and a magnet.
- 3) A method according to claim 1, wherein
 - said rope comprises a body of non-ferromagnetic insulator material having a generally rectangular cross-section in which said plurality of ferromagnetic cord members are distributed and extend longitudinally therewith.
- 4) A method of detecting and locating degradation of a rope comprising a plurality of ferromagnetic cord members, said method comprising
 - causing said rope to move at a known rate relative to a magnet in order to apply a magnetic field to a portion of said cord members;
 - monitoring magnetic flux associated with said magnetic field as a function of time; and
 - identifying points in time in which said cord members exhibit magnetic flux leakage, wherein said points in time are indicative of the location of rope degradation.
- 5) A method for approximating tension-load bearing capacity of a rope comprising a plurality of ferromagnetic cord members, said method comprising
 - applying a magnetic field to a portion of said cord members;
 - measuring magnetic flux associated with said magnetic field; and
 - comparing said measured magnetic flux leakage to predetermined data indicative of tension-load bearing capacity.

- 6) A method of detecting and locating degradation of a rope comprising a plurality of ferromagnetic cord members, said method comprising
5 applying a magnetic field to a portion of said cord members;
 monitoring magnetic flux associated with said magnetic field;
 identifying locations along each individual cord member
 exhibiting magnetic flux leakage, wherein said locations are indicative of
 degradation; and
 correlating said locations indicative of degradation of individual
10 cord members with respect to each other to determine relative locations
 of each.
- 7) A method according to claim 3, further comprising
 measuring the magnitude of said magnetic flux leakage.
- 8) A method according to claim 4, further comprising
 measuring the magnitude of said magnetic flux leakage.
- 9) A method according to claim 6, further comprising
 measuring the magnitude of said magnetic flux leakage.
- 10) An apparatus for detecting and locating degradation of a rope having at least one ferromagnetic component, said apparatus comprising
5 a body comprising rope guide means for guiding said rope along said body;
 a magnet fixed with respect to said body for establishing a magnetic field adjacent to said body;
 magnetic flux sensing means mounted with respect to said body for monitoring magnetic flux associated with said magnetic field; and
 means for correlating said magnetic flux with said rope to
10 determine one or more locations of degradation.
- 11) An apparatus according to claim 10, wherein
 said rope comprises a plurality of ferromagnetic cord members.

- 12) An apparatus according to claim 11, wherein
said magnetic flux sensing means comprise a plurality of
magnetic flux sensors mounted to said body.
- 13) An apparatus according to claim 12, wherein
said magnetic flux sensors comprise Hall effect transducers.
- 14) An apparatus according to claim 12, wherein
said plurality of magnetic flux sensors each correspond to one of
said ferromagnetic cord members such that each magnetic flux sensor
monitors the magnetic flux of a respective one of said cord members.
- 5
- 15) An apparatus according to claim 14, further comprising
control means for correlating the magnetic flux detected by each
of said magnetic flux sensors.
- 16) An apparatus according to claim 14, wherein
said plurality of magnetic flux sensors are positioned with respect to said
body so that they remain on one side of said rope when it is guided along said
body.
- 5
- 17) An apparatus according to claim 14, wherein
said plurality of magnetic flux sensors are positioned with respect to said
body so that they are on opposing sides of said rope when it is guided along
said body.
- 5
- 18) An apparatus according to claim 10, further comprising
means for mounting said apparatus in an elevator assembly in
such a manner as to enable it to engage an installed elevator rope with
said rope guide means for detecting and locating degradation of said
elevator rope.

- 19) An apparatus according to claim 10, further comprising
means for mounting said apparatus to an elevator hoist machine
assembly in an elevator assembly in such a manner as to enable it to
engage an installed elevator rope with said rope guide means for
detecting and locating degradation of said elevator rope.
- 5
- 20) An apparatus according to claim 10, wherein
said apparatus is a self-contained, portable unit adapted to be
transported to and from an elevator assembly for use therewith to enable
it to engage an installed elevator rope with said rope guide means for
detecting and locating degradation of said elevator rope.
- 5
- 21) A method for approximating the tension-load bearing capacity of an
elevator rope comprising an electrically-conductive, tension-bearing
component, said method comprising
applying an electric current through said elevator rope ;
determining electrical resistivity of said elevator rope ; and
comparing said resistivity to predetermined data indicative of
tension-load bearing capacity of said elevator rope.
- 5
- 22) A method according to claim 21, further comprising
connecting current input and current output leads at dead-end
hitch points, respectively, of said elevator rope in an elevator assembly.
- 23) A method according to claim 21, wherein
said electrically-conductive component is a tension-bearing cord
in an elevator rope, wherein said tension-bearing member supports the
load of the elevator car.
- 5
- 24) A method according to claim 21, wherein
said elevator rope further comprises a non-conductive insulating
jacket generally surrounding said electrically-conductive, tension-
bearing component.
- 5

25) A system for approximating tension-load bearing capacity of an elevator rope having two fixed ends in an elevator assembly and comprising an electrically-conductive component, said system comprising

5 means for applying electric current through a section of said elevator rope ;

means for measuring electrical resistivity of said elevator rope ; and

10 means for correlating said measurement of said resistivity to predetermined data indicative of tension-load bearing strength of said elevator rope.

26) A system according to claim 25, wherein

said electrically-conductive component is a tension-bearing member cord in an elevator rope, wherein said tension-bearing member supports the load of the elevator car.

27) A system according to claim 25, wherein

said elevator rope further comprises a non-conductive insulating jacket generally surrounding said electrically-conductive, tension-bearing component.

5

28) A system according to claim 25, wherein

said electrically-conductive, tension-bearing component of said elevator rope comprises a plurality of cords embedded within and running longitudinally along the length of said elevator rope for supporting the load of an elevator car; and

5

said means for applying electric current through a section of said elevator rope engage each of said cords to apply electric current therethrough.

29) A system according to claim 25, further comprising

means for engaging said two fixed ends of said elevator rope for applying said electric current through said elevator rope.

- 30) A system according to claim 25, further including
means for comparing said measurement of said resistivity for
each cord with the others and determining the relative tension-load
bearing strengths of each with respect to the others.
- 5
- 31) A system according to claim 28, wherein
said elevator rope further comprises a non-conductive insulating
jacket generally surrounding said plurality of cords.
- 32) A monitoring system for monitoring the level of excitation of an elevator
rope having a load-bearing element that supports the tension loads of the
elevator system and a jacket that encompasses the load-bearing element, said
monitoring system comprising
excitation means for exciting said load-bearing element in a
manner such that said jacket is not subject to excitation; and
monitoring means for monitoring the level of excitation of said
load-bearing element.

ABSTRACT

A method and system for detecting or measuring defects in a rope having ferromagnetic tension members includes a magnetic field exciter and an array of magnetic flux sensors corresponding to the tension members in a known relationship. Measurements of magnetic flux leakage are indicative of defects. Another aspect of the invention includes a method and system for detecting or measuring defects in an elevator rope having electrically conductive tension members, whereby measured electrical resistance in the tension members is indicative of defects.

Figure 2

FIG. 6

FIG. 7

FIG. 8A

FIG. 8B

MAR-04-1999 15:21

McCORMICK/PAULDING/HUBER

860 527 0464 P.03/03

FIB 10
TOTAL P.03

MAR 4 '99 16:02

860 527 0464

PAGE.003

DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

the specification of which

(Check X
one) is attached hereto.

— was filed on _____
as Application Serial No. _____
and was amended on _____
(if applicable)

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose to the U.S. Patent and Trademark Office all information known to be material to the patentability of this application in accordance with Title 37, Code of Federal Regulations, §§1.56 and 1.63(d).

I hereby claim foreign priority benefits under Title 35, United States Code §119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior Foreign Application(s): None

Priority
Claimed

(Number)	(Country)	(Day/Month/Year Filed)	Yes/No
----------	-----------	------------------------	--------

I hereby claim the benefit under Title 35, United States Code §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations §§1.56 and 1.63(d) which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

(Application Serial No.)	(Filing Date)	(Status - Patented, pending, abandoned)
--------------------------	---------------	--

I hereby appoint Donald K. Huber, Registration No. 18,686; Theodore R. Paulding, Registration No. 19,294; John C. Hilton, Registration No. 22,965; Frederick J. Haesche, Registration No. 24,529; John C. Linderman, Registration No. 24,420; J. Kevin Grogan, Registration No. 31,961; Arthur F. Dionne, Registration No. 23,093; Daniel G. Mackas, Registration No. 38,541; Richard R. Michaud, Registration No. 40,088; Peter J. Rainville, Registration No. 41,263; Marina F. Cunningham, Registration No. 38,419; Lawrence Cruz, Registration No. 36,385; Susan C. Oygard, Registration No. 42,969; Nicholas J. Tuccillo, Registration No. P44,322, all of the firm of McCormick, Paulding & Huber LLP, CityPlace II, 185 Asylum Street, Hartford, Connecticut 06103-4102, telephone (860) 549-5290, and Robert P. Hayter, Registration No. 28,424; Troxell K. Snyder, Registration No. 30,804; and Randy G. Henley, Registration No. 35,188, as my attorneys to prosecute this application, to make alterations and amendments therein, to receive the patent and all correspondence relating to this application, and to transact all business in the U.S. Patent and Trademark Office connected therewith, and the said attorneys are hereby given full power of substitution and revocation.

INVENTOR
6

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

TERRY M. ROBAR

Full name of sole or first inventor

Inventor's Signature

Date

Citizenship

Residence Address

Post Office Address

WILLIAM A. VERONESI

Full Name of second joint inventor, if any

Inventor's Signature

Date

Citizenship

Residence Address

Post Office Address

PAUL A. STUCKY

Full name of third inventor

JACEK F. GIERAS

Full Name of fourth joint
inventor, if any

Inventor's Signature

Date

Citizenship

Inventor's Signature

Date

Citizenship

Residence Address

Residence Address

Post Office Address

Post Office Address