Homework #6

Justin Millsap

Due: Sunday, March, 11 2024 at 11:59 pm

Problem 1: Define what is meant by the Debye Length of a plasma.

Solution:

The Debye Length (λ_D) is the distance scale factor by which the electric field is reduced to 1/e of the value it would have in the absence of the plasma.

Problem 2: Assume you are in geostationary orbit with a Debye length of 55m. What is the generalized plasma parameter.

Solution:

$$\Lambda = \frac{4 \times \pi \times \eta_e \times \lambda_D^3}{3} \tag{1}$$

Where:

$$\eta_e = 10^7 \text{ m}^3 \; ; \; \lambda_D = 55m$$

Using Equation (1) we get:

$$\Lambda = \frac{4 \times \pi \times 10^7 \times 55^3}{3} = 6.9690 \times 10^{12}$$

Problem 3: Your measured Plasma Frequency during the day is 5 MHz; what region of the Ionosphere are you in and why?

Solution:

$$\eta_e = (\frac{f_{pe}}{K_1})^2 \tag{2}$$

Where:

$$f_{pe} = 5MHz$$
; $K_1 = 8.979Hzm^{\frac{3}{2}}$

Using Equation (2) we get:

$$\eta_e = (\frac{5 \times 10^6}{8.979})^2 = 3.1008 \times 10^{11} m^{-3}$$

At a Plasma Frequency during the day of 5 MHz, this results in the F1 region because η_e is in the range of $2-5\times 10^{11}m^{-3}$

Problem 4: What is the range error for a 100MHz transmission to a satellite @ 350 km altitude? Assume a TEC of $1E^{15}$

Solution:

$$\Delta r = K_2 \frac{\text{TEC}}{f^2} \tag{3}$$

Where:

TEC =
$$1 \times 10^{15}$$
; $f = 100 \text{ MHz}$; $K_2 = 40.31 m^3 Hz^2$

Using Equation (3) we get:

$$\Delta r = (40.31 \,\mathrm{m}^3 \mathrm{Hz}^2) \, \frac{1 \times 10^{15}}{(100 \times 10^6 \,\mathrm{Hz})^2} = 4.031 m$$

Problem 5: If your electron number density is $2E^{11}/\mathrm{m}^3$, what is your Critical Frequency, f_{pe} .

Solution:

$$\eta_e = \frac{f_{pe}^2}{k_1^2} \tag{4}$$

Rearranging Equation (4) for f_{pe} gives:

$$f_{pe} = \sqrt{\eta_e \times k_1^2} \tag{5}$$

Using Equation (5) we get:

$$f_{pe} = \sqrt{(2 \times 10^{11} m^{-3})(80.62 m^3 Hz^2)} = 4.015 MHz$$