第九章

热力学基础

第九章 热力学基础

热力学过程(非平保了过程(非静东过程) (谜地化) 土街过程 (唯静东过程):任一中间状东均为平街东

热学第一定律: QU二Q十A

U70内能1 Q70尔德吸热、A20分果对东原做功

2-3 : 危热的胀 系统对外条级功 T1 3-4 : 等温压缩 4分对标次级功 Q放=VRT2/n V3 4-1 : 绝热压缩

1 = 1- 元 适长路称: E= 72

热力学第二定律: 応芳修生介: 不能把热里从他温传到高温而不多其化物向 T东文:不能从单-热版及热质这转为有H功而无影响

卡诺定理: 卡诺伯尔万选 g'(不胜机) ≤ g - tpg送机 g相等 (高 S: SB-SA= JB do (J·k+) 不通力 SB-SA フルB T S=KInA

过 程	等容过程	等压过程	等温过程	绝热过程
特 征	$\mathrm{d}V=0$	dp = 0	dT = 0	dQ = 0
过程方程	p/T = 恒量	V/T = 恒量	<i>pV</i> = 恒量	$pV^{\gamma}=$ 恒量
p-V图	0	0 -	o v	P
内能增量ΔU	$C_V\left(T_2-T_1\right)$	$C_V\left(T_2-T_1\right)$	0	$C_{V}\left(T_{2}-T_{1}\right)$
外界做功A	0	$-p(V_2-V_1)$ 或 $-\nu R(T_2-T_1)$	$-\nu RT \ln \frac{V_2}{V_1}$ 或 - $\nu RT \ln \frac{p_1}{p_2}$	$ \frac{C_{V}(T_{2}-T_{1})}{\frac{1}{\gamma-1}(p_{2}V_{2}-p_{1}V_{1})} $
吸收热量Q	$C_V (T_2 - T_1)$	$C_p (T_2 - T_1)$	$vRT \ln \frac{V_2}{V_1}$	0
热容C	$C_V = \frac{v}{2}(i+s)R$	$C_p = \frac{v}{2}(i+s+2)R$	80	0