STAT 6104 - Time Series

Chapter 2 - Probability Models

- Introduction
- 2 Terminologies
 - Definition 1 Stochastic Process
 - Definition 2 Finite dimensional distribution function
 - Definition 3 Strictly Stationary
 - Definition 4 Weakly Stationary
 - Definition 5 Autocovariance function
- Strictly and Weakly Stationary
- 4 Examples
- Sample Correlation Function
- 6 Summary

Introduction

- Assume that we have done the preliminary analysis to estimate trend T_t and seasonality S_t
- What remains unexplained is the noise N_t :

$$N_t = X_t - T_t - S_t$$

 \bullet We propose statistical models to describe the noise $\{N_t\}$ to extract more information

- Introduction
- 2 Terminologies
 - Definition 1 Stochastic Process
 - Definition 2 Finite dimensional distribution function
 - Definition 3 Strictly Stationary
 - Definition 4 Weakly Stationary
 - Definition 5 Autocovariance function
- Strictly and Weakly Stationary
- 4 Examples
- 5 Sample Correlation Function
- 6 Summary

- Introduction
- 2 Terminologies
 - Definition 1 Stochastic Process
 - Definition 2 Finite dimensional distribution function
 - Definition 3 Strictly Stationary
 - Definition 4 Weakly Stationary
 - Definition 5 Autocovariance function
- Strictly and Weakly Stationary
- 4 Examples
- Sample Correlation Function
- 6 Summary

Definition 1– Stochastic Process

- A collection of random variables $\{X_t : t \in R\}$ is called a stochastic process, or random function
- Continuous Time $\{X(t): 0 \le t < \infty\}$

• Discrete Time $\{X_t : t = 1, 2, ..., n\}$

Discrete Time Stochastic Process is commonly known as Time Series

Definition 1 – Stochastic Process

Understand the meaning of stochastic (Random):

• We assume that there is a sample space Ω (a set of all possible scenarios) that generates the randomness

```
 \begin{array}{ll} \bullet \ \Omega = (\omega_1, \omega_2, \omega_3, \ldots \ldots) \\ \Rightarrow \ \omega_1 \to \{X_t(\omega_1)\}_{t \geq 0}; \ \omega_2 \to \{X_t(\omega_2)\}_{t \geq 0} \end{array} \qquad \mbox{(an $\infty$-face die)}
```

- For a fixed ω , $\{X_t(\omega)\}_{t\geq 0}$ is called a sample function/ realization/ sample path
- For a fixed t, $X_t(\cdot)$ is a random variable

Definition 1 – Stochastic Process

- In practice, we can only observe one sample path (i.e. the situation is generated by one particular ω)
- To summarize important features from the data, we require the process to be repeating itself in some way (stationarity).

- Introduction
- 2 Terminologies
 - Definition 1 Stochastic Process
 - Definition 2 Finite dimensional distribution function
 - Definition 3 Strictly Stationary
 - Definition 4 Weakly Stationary
 - Definition 5 Autocovariance function
- Strictly and Weakly Stationary
- 4 Examples
- 5 Sample Correlation Function
- Summary

Definition 2 – Finite dimensional distribution function

• Finite dimensional distribution functions:

$$F_{\mathbf{t}}(\mathbf{x}) = P(X_{t_1} \le x_1, ..., X_{t_n} \le x_n)$$

for all possible $\mathbf{t} = (t_1, t_2, ..., t_n)$ where, $1 \le t_1 < t_2 < \cdots < t_n \le \infty$ and

$$\mathbf{x} = (x_1, x_2, ..., x_n) \in \mathbb{R}^n, n = 1, 2, ...$$

- Introduction
- 2 Terminologies
 - Definition 1 Stochastic Process
 - Definition 2 Finite dimensional distribution function
 - Definition 3 Strictly Stationary
 - Definition 4 Weakly Stationary
 - Definition 5 Autocovariance function
- Strictly and Weakly Stationary
- 4 Examples
- Sample Correlation Function
- 6 Summary

Definition 3 – Strictly Stationary

- Strictly stationary distribution of a process does not change
- ullet $\{X_t\}$ is said to be strictly stationary if
 - for all n,
 - for all $(t_1, t_2, ..., t_n)$,
 - for all h,

$$(X_{t_1},...,X_{t_n}) \stackrel{d}{=} (X_{t_1+h},...,X_{t_n+h})$$
,

where " $\stackrel{d}{=}$ " means "equal in distribution", i.e.,

$$F_{\mathbf{t}}(\mathbf{x}) = P(X_{t_1} \le x_1, ..., X_{t_n} \le x_n) = P(X_{t_1+h} \le x_1, ..., X_{t_n+h} \le x_n) = F_{\mathbf{t}+h}(\mathbf{x})$$

• May not be easy to check in practice because joint distribution $F_{\mathbf{t}}(\mathbf{x})$ is difficult to compute.

- Introduction
- 2 Terminologies
 - Definition 1 Stochastic Process
 - Definition 2 Finite dimensional distribution function
 - Definition 3 Strictly Stationary
 - Definition 4 Weakly Stationary
 - Definition 5 Autocovariance function
- Strictly and Weakly Stationary
- 4 Examples
- 5 Sample Correlation Function
- 6 Summary

Definition 4 – Weakly Stationary

- Weakly Stationary:
 - same mean
 - same variance and same covariance

across time.

- \bullet Formally, $\{X_t\}$ is weakly stationary/ second order stationary/ wide-sense stationary if
 - 1) $E(X_t) = \mu$
 - 2) $Cov(X_t, X_{t+h}) = \gamma(h)$ for all t and h. (auto-covariance only depends on time lag h , but not time t)
- Easier to verify weakly stationary than strictly stationary

- Introduction
- Terminologies
 - Definition 1 Stochastic Process
 - Definition 2 Finite dimensional distribution function
 - Definition 3 Strictly Stationary
 - Definition 4 Weakly Stationary
 - Definition 5 Autocovariance function
- Strictly and Weakly Stationary
- 4 Examples
- 5 Sample Correlation Function
- 6 Summary

Definition 5 – Autocovariance function

Autocovariance function (ACVF)

$$\gamma(h) = \operatorname{Cov}(X_t, X_{t+h})$$

Autocorrelation function (ACF)

$$\rho(h) = \frac{\operatorname{Cov}(X_t, X_{t+h})}{\sqrt{\operatorname{Var}(X_t)\operatorname{Var}(X_{t+h})}}$$
$$= \frac{\gamma(h)}{\gamma(0)},$$

since
$$\gamma(0) = \operatorname{Var}(X_t) \stackrel{\text{Stationary}}{=} \operatorname{Var}(X_{t+h}).$$

- Introduction
- 2 Terminologies
 - Definition 1 Stochastic Process
 - Definition 2 Finite dimensional distribution function
 - Definition 3 Strictly Stationary
 - Definition 4 Weakly Stationary
 - Definition 5 Autocovariance function
- 3 Strictly and Weakly Stationary
- 4 Examples
- Sample Correlation Function
- 6 Summary

Strictly vs Weakly Stationary

- Strictly: distribution of the process unchange Weakly: mean/covariance unchange
- \bullet Strictly stationary implies weakly stationary whenever $E(X_t^2)<\infty$
- ullet Weakly stationary implies strictly stationary when $\{X_t\}$ is normal ,but in general not true

Strictly vs Weakly Stationary

- Basic Statistics: If $X \sim t_{d\!f}$, then $E(X^k) < \infty$ if and only if $k < d\!f$.
- $X_1, X_2, ..., X_n \stackrel{iid}{\sim} t_2$
 - ullet $\{X_t\}$ is strictly stationary
 - $\bullet \ \, \mathrm{But} \,\, E(X_t^2) = \infty \mathrm{,}$

 $\therefore \{X_t\}$ is **NOT** weakly stationary

- $X_1, X_2, ..., X_n \stackrel{iid}{\sim} t_3$
 - $\bullet \ \ {\rm Now} \ E(X_t^2)<\infty \text{,}$

 $\therefore \{X_t\}$ is both strictly and weakly stationary

- $X_1 \sim \exp(1) 1, X_2, X_3, \dots \stackrel{iid}{\sim} N(0, 1)$
 - $\{X_t\}$ is Weakly stationary:

$$\mathrm{E}(X_t)=0$$
, $\mathrm{Var}(X_t)=1$, $\mathrm{Cov}(X_t,X_{t+k})=0$, all t and $k\neq 0$

• But $\{X_t\}$ is **NOT** Strictly stationary, since $X_1 \neq X_2$.

- Introduction
- 2 Terminologies
 - Definition 1 Stochastic Process
 - Definition 2 Finite dimensional distribution function
 - Definition 3 Strictly Stationary
 - Definition 4 Weakly Stationary
 - Definition 5 Autocovariance function
- Strictly and Weakly Stationary
- 4 Examples
- 5 Sample Correlation Function
- 6 Summary

Example 1: White Noise

If a time series $\{X_t\}$ is a sequence of uncorrelated random variables with

$$\rho(h) = \begin{cases} 1, & h = 0 \\ 0, & |h| \ge 1, \end{cases}$$
 (1)

with zero mean and constant variance, then it is called a **white noise** sequence.

- zero-mean i.i.d. random variables are white noises if their second moments exist
- white noise *may not be* i.i.d. $(\text{e.g.} X_1 \sim \exp(1) 1, X_k \sim N(0,1), k \geq 2)$
- independence is a stronger assumption than zero-correlation

Example 2: Same Observation

If
$$\{Y_t\}$$
 satisfies $Y_1 = Y_2 = \cdots = Y$, then

- $\rho(h) = \operatorname{Corr}(Y, Y) = 1$ for all h
- Essentially there is only one observation

Example 3: Periodic Function

• Suppose a time series $\{X_t\}$ satisfies

$$X_t = A\cos\theta t + B\sin\theta t$$
,

where A and B are i.i.d. random variables with mean 0 & variance σ^2 .

- $\{X_t\}$ is weakly stationary because
 - $E(X_t) = E(A)\cos\theta t + E(B)\sin\theta t = 0$
 - $\operatorname{Cov}(X_{t+h}, X_t)$
 - $= \operatorname{Cov}(A\cos\theta(t+h) + B\sin\theta(t+h), A\cos\theta t + B\sin\theta t)$
 - $= \cos \theta t \cos \theta (t+h) \operatorname{Var}(A) + \sin \theta t \sin \theta (t+h) \operatorname{Var}(B)$
 - $= \sigma^2 \cos(\theta(t+h) \theta t) \quad (\cos(A-B) = \cos A \cos B + \sin A \sin B)$
 - $= \sigma^2 \cos \theta h \,,$

independent of t.

Example 4: Moving Average MA(1) Model

Let $\{\epsilon_t\}$ be a white noise sequence and $X_t = \epsilon_t + 0.5\epsilon_{t-1}$. Is $\{X_t\}$ stationary? Find the ACVF and ACF of $\{X_t\}$.

Example 5: Moving Average $MA(\infty)$ Model

Let $\{\epsilon_t\}$ be a white noise sequence and $X_t = \sum_{k=0}^{\infty} \psi_k \epsilon_{t-k}$ and $\sum_{k=0}^{\infty} \psi_k^2 < \infty$. Is $\{X_t\}$ stationary? Find the ACVF and ACF of $\{X_t\}$.

- Introduction
- 2 Terminologies
 - Definition 1 Stochastic Process
 - Definition 2 Finite dimensional distribution function
 - Definition 3 Strictly Stationary
 - Definition 4 Weakly Stationary
 - Definition 5 Autocovariance function
- Strictly and Weakly Stationary
- 4 Examples
- 5 Sample Correlation Function
- 6 Summary

Sample ACVF and ACF

$$\begin{array}{lll} \mathsf{ACVF} & : & \gamma(h) & = & \mathrm{Cov}(X_t, X_{t+h}) \\ \mathsf{ACF} & : & \rho(h) & = & \frac{\mathrm{Cov}(X_t, X_{t+h})}{\sqrt{\mathrm{Var}(X_t)\mathrm{Var}(X_{t+h})}} = \frac{\gamma(h)}{\gamma(0)} \end{array}$$

- Both ACVF and ACF are population quantities. It means that they involve the unknown true distribution of the process $\{X_t\}$
- If we have a dataset $X_1,X_2,...,X_n$ but we do not know the true probability distribution of the time series, we can estimate the ACF/ACVF by
 - Sample ACVF: $C_h = \frac{1}{n} \sum_{t=1}^{n-h} (X_t \overline{X})(X_{t+h} \overline{X})$
 - Sample ACF : $r_h = C_h/C_0$

Sample ACVF and ACF

- Sample ACVF: $C_h = \frac{1}{n} \sum_{t=1}^{n-h} (X_t \overline{X})(X_{t+h} \overline{X})$
- Why $\frac{1}{n}$ but not $\frac{1}{n-h}$? (Optional)
 - To ensure the non-negative definiteness of covariance matrix

$$\widehat{\operatorname{Var}}((X_1,\ldots,X_n)) = \left(C_{|i-j|}\right)_{i,j\in\{1,\ldots,n\}} = \frac{1}{n}MM',$$

where with $\tilde{X}_k = X_k - \overline{X}$,

• Denote $X = (X_1, \dots, X_n)$, $\widehat{\mathrm{Var}}(X)$ is non-negative definite guarantees that $\widehat{\mathrm{Var}}(a'X) = a'\widehat{\mathrm{Var}}(X)a = \frac{1}{n}a'MM'a = \frac{1}{n}(a'M)(a'M)' \geq 0$.

ACF plot

ACF plot: A graph to summarize r_h (acf(x) in R)

Example 1

Example 2

- By definition, $r_0 = \frac{C_0}{C_0} = 1$
- Trust r_h up to h = n/3, otherwise r_h is not accurate

Sample Correlation Function

- Test for time dependence:
 - $H_0: \rho(h) = \text{Corr}(X_t, X_{t+h}) = 0$
 - ullet Idea: check if r_h is significantly different from 0

Theorem 1

If $\{X_t\}$ is white noise, then $r_h \sim N(0, \frac{1}{n})$ for each $h \geq 1$ when n is large.

- Proof of this result is complicated
- Conclude time dependence exists if r_h s exceed horizontal lines at levels $\pm \frac{2}{\sqrt{n}}$

Example-ACF plot

Sketch the sample acf plot for the dataset (2,5,3,5,6,3,4). Is this time series a white noise sequence?

More examples of ACF function

 $\bullet \ Y_t = Z_t, \{Z_t\} \ \text{are i.i.d.}$

• $Y_t = 0.4Y_{t-1} + Z_t$

Series : ACF[["C2"]]

• $Y_t = 0.9Y_{t-1} + Z_t$

 $Y_t = -0.5Y_{t-1} + Z_t$

Series : ACF[["C2"]]

More examples of ACF function

• $Y_t = a\cos(t\omega)$, where a, ω are constants

More examples of ACF function

$$Y_t = Y_{t-1} + Z_t$$
Series: ACF[["C2"]]

•
$$Y_t = at + Z_t$$

- 1. In both cases, ACF decay very slowly
- 2. Commonly observed in **non-stationary** process
- 3. In practice, perform detrending/filtering and study the resulting stationary noises

- Introduction
- 2 Terminologies
 - Definition 1 Stochastic Process
 - Definition 2 Finite dimensional distribution function
 - Definition 3 Strictly Stationary
 - Definition 4 Weakly Stationary
 - Definition 5 Autocovariance function
- Strictly and Weakly Stationary
- 4 Examples
- Sample Correlation Function
- 6 Summary

Summary of Chapter 2

- Strictly Stationary: Joint distribution remain unchanged
- Weakly Stationary: Mean and covariance structure remain unchanged
- White Noise: $E(X_t) = 0$, $Cov(X_t, X_k) = \sigma^2 1_{\{t=k\}}$

$$\begin{aligned} \mathsf{ACVF} &: \gamma(h) &= \mathrm{Cov}(X_t, X_{t+h}) \\ \mathsf{ACF} &: \rho(h) &= \frac{\mathrm{Cov}(X_t, X_{t+h})}{\sqrt{\mathrm{Var}(X_t)\mathrm{Var}(X_{t+h})}} = \frac{\gamma(h)}{\gamma(0)} \\ \mathsf{Sample} \; \mathsf{ACVF} &: C_h &= \frac{1}{n} \sum_{t=1}^{n-h} (X_t - \overline{X})(X_{t+h} - \overline{X}) \\ \mathsf{Sample} \; \mathsf{ACF} &: r_h &= \frac{C_h}{C_0} \end{aligned}$$

Summary of Chapter 2

ACF plot (ACF r_h against lag h):

Check if $\rho(h) = \operatorname{Corr}(X_t, X_{t+h}) = 0$:

- $\{X_t\}$ is white noise $\Rightarrow r_h \sim N(0, \frac{1}{n})$ for all $h \geq 1$
- Draw horizontal lines at levels $\pm \frac{2}{\sqrt{n}}$ on acf and check for exceedance.

Summary of Chapter 2

Stationary

Non-stationary

