EN1060 Signals and Systems: Signals

Ranga Rodrigo ranga@uom.1k

The University of Moratuwa, Sri Lanka

August 15, 2017

Section 1

Continuous-Time Fourier Series

1 Continuous-Time Fourier Series
Introduction
Fourier Series

2 Properties of the Continuous-Time Fourier Series

• Using the Fourier techniques we can obtain the frequency-domain representation of signals.

- Using the Fourier techniques we can obtain the frequency-domain representation of signals.
- We use Fourier series for periodic signals, and Fourier transform for aperiodic signals.

- Using the Fourier techniques we can obtain the frequency-domain representation of signals.
- We use Fourier series for periodic signals, and Fourier transform for aperiodic signals.
- Each of these have continuous-time and discrete-time versions:

- Using the Fourier techniques we can obtain the frequency-domain representation of signals.
- We use Fourier series for periodic signals, and Fourier transform for aperiodic signals.
- Each of these have continuous-time and discrete-time versions:
 - 1 Continuous-time Fourier series

- Using the Fourier techniques we can obtain the frequency-domain representation of signals.
- We use Fourier series for periodic signals, and Fourier transform for aperiodic signals.
- Each of these have continuous-time and discrete-time versions:
 - Continuous-time Fourier series
 - 2 Continuous-time Fourier transform

- Using the Fourier techniques we can obtain the frequency-domain representation of signals.
- We use Fourier series for periodic signals, and Fourier transform for aperiodic signals.
- Each of these have continuous-time and discrete-time versions:
 - Continuous-time Fourier series
 - 2 Continuous-time Fourier transform
 - 3 Discrete-time Fourier series

- Using the Fourier techniques we can obtain the frequency-domain representation of signals.
- We use Fourier series for periodic signals, and Fourier transform for aperiodic signals.
- Each of these have continuous-time and discrete-time versions:
 - 1 Continuous-time Fourier series
 - 2 Continuous-time Fourier transform
 - 3 Discrete-time Fourier series
 - 4 Discrete-time Fourier transform

- Using the Fourier techniques we can obtain the frequency-domain representation of signals.
- We use Fourier series for periodic signals, and Fourier transform for aperiodic signals.
- Each of these have continuous-time and discrete-time versions:
 - Continuous-time Fourier series
 - 2 Continuous-time Fourier transform
 - 3 Discrete-time Fourier series
 - 4 Discrete-time Fourier transform
- In this part of the course, we will concentrate on how to actually compute continuous-time Fourier series and transform. Later, after we study liner, time-invariant (LTI) systems, we will study the conceptual aspects of Fourier techniques.

Figure: Jean-Baptiste Joseph Fourier, 1768–1830, French mathematician who discovered Fourier series and transform

• Every signal has a frequency distribution or a spectrum.

Figure: Jean-Baptiste Joseph Fourier, 1768–1830, French mathematician who discovered Fourier series and transform

- Every signal has a frequency distribution or a spectrum.
- Periodic signals have a line spectra, called the Fourier series.

Figure: Jean-Baptiste Joseph Fourier, 1768–1830, French mathematician who discovered Fourier series and transform

- Every signal has a frequency distribution or a spectrum.
- Periodic signals have a line spectra, called the Fourier series.
- The French mathematician, Jean-Baptiste Joseph Fourier, discovered this representation.

Figure: Jean-Baptiste Joseph Fourier, 1768–1830, French mathematician who discovered Fourier series and transform

- Every signal has a frequency distribution or a spectrum.
- Periodic signals have a line spectra, called the Fourier series.
- The French mathematician, Jean-Baptiste Joseph Fourier, discovered this representation.
- Fourier series provides a way to represent a periodic signal as a sum of complex sinusoids.

Figure: Jean-Baptiste Joseph Fourier, 1768–1830, French mathematician who discovered Fourier series and transform

- Every signal has a frequency distribution or a spectrum.
- Periodic signals have a line spectra, called the Fourier series.
- The French mathematician, Jean-Baptiste Joseph Fourier, discovered this representation.
- Fourier series provides a way to represent a periodic signal as a sum of complex sinusoids.
- These sinusoids will be at frequencies that are integer multiples of the fundamental frequency ω_0 .

Figure: Jean-Baptiste Joseph Fourier, 1768–1830, French mathematician who discovered Fourier series and transform

- Every signal has a frequency distribution or a spectrum.
- Periodic signals have a line spectra, called the Fourier series.
- The French mathematician, Jean-Baptiste Joseph Fourier, discovered this representation.
- Fourier series provides a way to represent a periodic signal as a sum of complex sinusoids.
- These sinusoids will be at frequencies that are integer multiples of the fundamental frequency ω_0 .
- $\omega_0 = \frac{2\pi}{T}$, where T: fundamental period of the waveform.

1 Continuous-Time Fourier Series
Introduction
Fourier Series

2 Properties of the Continuous-Time Fourier Series

Continuous-Time Fourier Series

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

$$\omega_0 = \frac{2\pi}{T}$$
(1)

The set of coefficients $\{a_k\}$ is called the Fourier series coefficients of the spectral coefficients of x(t). The coefficient a_0 is the dc or constant component of x(t), given by Equation 1 with k=0:

$$a_0 = \frac{1}{T} \int_T x(t) dt, \tag{2}$$

which is simply the average of x(t) over one period.

Example

Let

$$x(t) = \sin \omega_0 t$$
,

which has the fundamental frequency ω_0 .

$$\sin \omega_0 t = \frac{1}{2j} e^{j\omega_0 t} - \frac{1}{2j} e^{-j\omega_0 t}$$

Comparing the right-hand side of this equation and Equation 1, we obtain

$$a_1 = \frac{1}{2j} \qquad a_{-1} = -\frac{1}{2j}$$

$$a_k = 0, \qquad k \neq \pm 1.$$

Example

Let

$$x(t) = 1 + \sin \omega_0 t + 2\cos \omega_0 t + \cos \left(2\omega_0 t + \frac{\pi}{4}\right),$$

which has the fundamental frequency ω_0 .

- **1** Use Euler's formula to express x(t) as a liner combination of complex exponentials.
- **2** Find the Fourier series coefficients, a_k .
- **3** Plot the magnitude and phase of a_k .

$$x(t) = 1 + \sin \omega_0 t + 2\cos \omega_0 t + \cos \left(2\omega_0 t + \frac{\pi}{4}\right),$$

Using Euler's formula

$$x(t) = 1 + \frac{1}{2j} \left[e^{j\omega_0 t} - e^{-j\omega_0 t} \right] + \left[e^{j\omega_0 t} + e^{-j\omega_0 t} \right] + \frac{1}{2} \left[e^{j(2\omega_0 t + \pi/4)} + e^{-j(2\omega_0 t + \pi/4)} \right]$$

Collecting terms,

$$x(t) = 1 + \left(1 + \frac{1}{2j}\right)e^{j\omega_0 t} + \left(1 - \frac{1}{2j}\right)e^{-j\omega_0 t} + \left(\frac{1}{2}e^{j\pi/4}\right)e^{j2\omega_0 t} + \left(\frac{1}{2}e^{-j\pi/4}\right)e^{-j2\omega_0 t}$$

The Fourier coefficients are

$$a_{0} = 1,$$

$$a_{1} = \left(1 + \frac{1}{2j}\right) = \left(1 - \frac{j}{2}\right),$$

$$a_{-1} = \left(1 - \frac{1}{2j}\right) = \left(1 + \frac{j}{2}\right),$$

$$a_{-1} = \left(1 - \frac{1}{2j}\right) = \left(1 + \frac{j}{2}\right),$$

$$a_{-1} = \left(1 - \frac{1}{2j}\right) = \left(1 + \frac{j}{2}\right),$$

$$a_{-1} = \left(1 - \frac{1}{2j}\right) = \left(1 + \frac{j}{2}\right),$$

$$a_{-2} = \frac{1}{2}e^{-j\pi/4} = \frac{\sqrt{2}}{4}(1 - j),$$

$$a_{k} = 0, |k| > 2.$$

Figure: $|a_k|$, $\triangleleft a_k$

Example

The periodic square wave, sketched below, is defined over one period as

$$x(t) = \begin{cases} 1, & |t| < T_1, \\ 0, & T_1 < |t| < T/2, \end{cases}$$

This signal is periodic with fundamental period T and fundamental frequency $\omega_0 = 2\pi/T$.

- **1** Find the Fourier series coefficients, a_k .
- **2** Plot the magnitude and phase of a_k for the case $T = 4T_1$.

Figure: Periodic square wave

$$a_0 = \frac{1}{T} \int_T x(t) dt,$$

= $\frac{1}{T} \int_{-T_1}^{T_1} 1 dt,$
= $\frac{2T_1}{T}.$

$$a_0 = \frac{1}{T} \int_T x(t) dt,$$

$$= \frac{1}{T} \int_{-T_1}^{T_1} 1 dt,$$

$$= \frac{2T_1}{T}.$$

$$a_k = \frac{1}{T} \int_{T} x(t) e^{-jk\omega_0 t} dt,$$

$$= \frac{1}{T} \int_{-T_1}^{T_1} e^{-jk\omega_0 t},$$

$$= -\frac{1}{jk\omega_0 T} e^{-jk\omega_0 t} \Big|_{-T_1}^{T_1}$$

$$a_{0} = \frac{1}{T} \int_{T} x(t) dt,$$

$$= \frac{1}{T} \int_{-T_{1}}^{T_{1}} 1 dt,$$

$$= \frac{2T_{1}}{T}.$$

$$a_{k} = \frac{1}{T} \int_{T} x(t) e^{-jk\omega_{0}t} dt,$$

$$= \frac{1}{T} \int_{-T_{1}}^{T_{1}} e^{-jk\omega_{0}t},$$

$$= -\frac{1}{jk\omega_{0}T} e^{-jk\omega_{0}t} \Big|_{-T_{1}}^{T_{1}}$$

$$a_k = \frac{2}{k\omega_0 T} \left[\frac{e^{jk\omega_0 t} - e^{-jk\omega_0 t}}{2j} \right]$$

$$a_k = \frac{2\sin(k\omega_0 T_1)}{k\omega_0 T} = \frac{2\sin(k\omega_0 T_1)}{k\pi}, k \neq 0.$$

$$a_k = 0$$
, k even.

$$a_0 = \frac{1}{2}$$

$$a_1 = a_{-1} = \frac{1}{\pi}$$

$$a_3 = a_{-3} = \frac{1}{3\pi}$$

$$a_5 = a_{-5} = \frac{1}{5\pi}$$

Figure: Plots of scaled Fourier series coefficients Tak

Section 2

Properties of the Continuous-Time Fourier Series

Suppose that x(t) is a periodic signal with period T and fundamental frequency $\omega_0 = 2\pi/T$. Then if the Fourier series coefficients are denoted by a_k , then

$$x(t) \xrightarrow{\mathscr{F}\mathscr{S}} a_k \tag{3}$$

Let x(t) and y(t) denote two periodic signals with period T.

$$x(t) \stackrel{\mathscr{F}\mathscr{S}}{\longleftrightarrow} a_k,$$
$$y(t) \stackrel{\mathscr{F}\mathscr{S}}{\longleftrightarrow} b_k.$$

Any linear combination of the two signals will also be periodic with period T. Fourier series coefficients c_k of the linear combination of X(t) and y(t), z(t) = Ax(t) + By(t), are given by the same linear combination:

$$z(t) = Ax(t) + By(t) \stackrel{\mathscr{F}\mathscr{S}}{\longleftrightarrow} c_k = Aa_k + Bb_k. \tag{4}$$

Time Shifting

$$x(t-t_0) \stackrel{\mathscr{F}\mathscr{S}}{\longleftrightarrow} e^{-jk\omega_0 t_0} a_k = e^{-jk(2\pi/T)t_0} a_k \tag{5}$$

Proof:

$$x(t-t_0) \stackrel{\mathscr{F}\mathscr{S}}{\longleftrightarrow} e^{-jk\omega_0 t_0} a_k = e^{-jk(2\pi/T)t_0} a_k \tag{5}$$

Proof:

$$\begin{split} x(t) & \stackrel{\mathscr{F}\mathscr{S}}{\longleftrightarrow} a_k, \quad x(t-t_0) \stackrel{\mathscr{F}\mathscr{S}}{\longleftrightarrow} b_k, \\ b_k &= \frac{1}{T} \int_T x(t-t_0) e^{-jk\omega_0 t} dt, \\ &= \frac{1}{T} \int_T x(\tau) e^{-jk\omega_0(\tau+t_0)} dt, \\ &= e^{-jk\omega_0 t_0} \frac{1}{T} \int_T x(\tau) e^{-jk\omega_0 \tau} d\tau, \\ &= e^{-jk\omega_0 t_0} a_k. \\ x(t-t_0) \stackrel{\mathscr{F}\mathscr{S}}{\longleftrightarrow} e^{-jk\omega_0 t_0} a_k. \end{split}$$

Note: $|a_k| = |b_k|$

lf

$$x(t) \xrightarrow{\mathscr{F}\mathscr{S}} a_k \tag{6}$$

then

$$x(-t) \stackrel{\mathscr{F}\mathscr{S}}{\longleftrightarrow} a_{-k}. \tag{7}$$

$$x(-t) = \sum_{k=-\infty}^{\infty} a_k e^{-jk2\pi t/T}.$$
 (8)

Substitution: k = -m

$$y(t) = x(-t) = \sum_{m=-\infty}^{\infty} a_{-m} e^{-jk2\pi t/T}.$$

lf

$$x(t) \stackrel{\mathscr{F}\mathscr{S}}{\longleftrightarrow} a_k \tag{6}$$

then

$$x(-t) \stackrel{\mathscr{F}\mathscr{S}}{\longleftrightarrow} a_{-k}. \tag{7}$$

$$x(-t) = \sum_{k=-\infty}^{\infty} a_k e^{-jk2\pi t/T}.$$
 (8)

Substitution: k = -m

$$y(t) = x(-t) = \sum_{m=-\infty}^{\infty} a_{-m} e^{-jk2\pi t/T}.$$

• Time reversal applied to a continuous-time signal results in a time reversal of the corresponding sequence of Fourier series coefficients.

- Time reversal applied to a continuous-time signal results in a time reversal of the corresponding sequence of Fourier series coefficients.
- If x(t) is even—x(-t) = x(t)—then its Fourier series coefficients are also even, i.e., $a_{-k} = a_k$.

- Time reversal applied to a continuous-time signal results in a time reversal of the corresponding sequence of Fourier series coefficients.
- If x(t) is even—x(-t) = x(t)—then its Fourier series coefficients are also even, i.e., $a_{-k} = a_k$.
- If x(t) is odd—x(-t) = -x(t)—then its Fourier series coefficients are also odd, i.e., $a_{-k} = -a_k$.

Time scaling, in general, changes the period.

If x(t) is a periodic with period T and fundamental frequency $\omega_0 = 2\pi/T$, then $x(\alpha t)$, where α is a positive real number, is periodic with period T/α and fundamental frequency $\alpha \omega_0$.

$$x(\alpha t) = \sum_{k=-\infty}^{\infty} a_k e^{jk(\alpha \omega_0)t}$$
(9)

While Fourier coefficients have not changes, the Fourier series representation has changed because of the change in the fundamental frequency.

Let x(t) and y(t) denote two periodic signals with period T.

$$x(t) \stackrel{\mathscr{F}\mathscr{S}}{\longleftrightarrow} a_k,$$
$$y(t) \stackrel{\mathscr{F}\mathscr{S}}{\longleftrightarrow} b_k.$$

Since the product x(t)y(t) is also periodic with period T, its Fourier series coefficients h_k are

$$x(t)y(t) \xrightarrow{\mathscr{F}\mathscr{S}} \sum_{l=-\infty}^{\infty} a_l b_{k-l}.$$
 (10)

• Taking the complex conjugate of a periodic signal x(t) has the effect of complex conjugation and time reversal on the corresponding Fourier series coefficients.

- Taking the complex conjugate of a periodic signal x(t) has the effect of complex conjugation and time reversal on the corresponding Fourier series coefficients.
- If x(t) is real— $x(t) = x^*(t)$: Fourier series coefficients conjugate symmetric, i.e., $a_{-k} = a_k^*$.

- Taking the complex conjugate of a periodic signal x(t) has the effect of complex conjugation and time reversal on the corresponding Fourier series coefficients.
- If x(t) is real— $x(t) = x^*(t)$: Fourier series coefficients conjugate symmetric, i.e., $a_{-k} = a_k^*$.
- If x(t) is real, then a_0 is real and $|a_k| = |a_{-k}|$.

- Taking the complex conjugate of a periodic signal x(t) has the effect of complex conjugation and time reversal on the corresponding Fourier series coefficients.
- If x(t) is real— $x(t) = x^*(t)$: Fourier series coefficients conjugate symmetric, i.e., $a_{-k} = a_k^*$.
- If x(t) is real, then a_0 is real and $|a_k| = |a_{-k}|$.
- If x(t) is real and even, we know that $a_k = a_{-k}$. From above, $a_k^* = a_{-k}$, so that $a_k = a_k^*$. That is if x(t) is real and even, so are its Fourier series coefficients.

- Taking the complex conjugate of a periodic signal x(t) has the effect of complex conjugation and time reversal on the corresponding Fourier series coefficients.
- If x(t) is real— $x(t) = x^*(t)$: Fourier series coefficients conjugate symmetric, i.e., $a_{-k} = a_k^*$.
- If x(t) is real, then a_0 is real and $|a_k| = |a_{-k}|$.
- If x(t) is real and even, we know that $a_k = a_{-k}$. From above, $a_k^* = a_{-k}$, so that $a_k = a_k^*$. That is if x(t) is real and even, so are its Fourier series coefficients.
- If x(t) is real and odd, its Fourier series coefficients are purely imaginary and odd. Thus, e.g., $a_0 = 0$.

Parseval's Relation for Continuous-Time Periodic Signals

$$\frac{1}{T} \int_{T} |x(t)|^{2} dt = \sum_{k=-\infty}^{\infty} |a_{k}|^{2}.$$
 (11)

Note: Left-hand side of equation 11 is the average power (i.e., energy per unit time) in one period of the periodic signal x(t).

$$\frac{1}{T} \int_{T} \left| a_{k} e^{jk\omega_{0}t} \right|^{2} dt = \frac{1}{T} \int_{T} |a_{k}|^{2} dt = |a_{k}|^{2}.$$
 (12)

So, $|a_k|^2$ is the average power in the *k*th harmonic component of x(k).

Thus, what Parseval's relation state is that the total power in a periodic signal equals the sum of the average powers in all of its harmonic components.

Consider the signal g(t) with a fundamental period of 4, shown in Figure 5.

Figure: Figure for example

Determine the Fourier series representation of g(t)

- directly from the analysis equation.
- 2 by assuming that the Fourier series coefficients of the symmetric periodic square wave are known.

Consider the triangular wave signal x(t) with period T=4 and fundamental frequency $\omega_0=\pi/2$, shown in Figure 6. The derivative signal is the signal g(t) in Figure 5. Using this information, find the Fourier series coefficients of x(t).

Figure: Figure for example

Obtain the Fourier series coefficients of the impulse train

$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT).$$
 (13)

By expressing the derivative of a square wave signal in terms of impulses, obtain the Fourier series coefficients of the square wave signal.

Figure: Figure for example

Other Forms of Fourier Series

Complex Exponential Fourier Series

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$
(14)

Harmonic Form Fourier Series (for Real x(t))

$$x(t) = C_0 + 2\sum_{k=1}^{+\infty} C_k \cos(k\omega_0 t - \theta_k)$$

$$C_0 = A_0$$

$$C_k = \sqrt{A_k^2 + B_k^2} \quad \theta_k = \tan^{-1} \left(\frac{B_k}{A_k}\right)$$
(16)

Trigonometric Fourier Series

$$x(t) = A_0 + 2 \sum_{k=1}^{+\infty} A_k \cos k\omega_0 t + B_k \sin k\omega_0 t$$

$$A_k = \frac{1}{T} \int_T x(t) A_k \cos k\omega_0 t dt \qquad (15)$$

$$B_k = \frac{1}{T} \int_T x(t) A_k \sin k\omega_0 t dt$$
Relationship

$$A_0 = a_0$$

$$A_k = \frac{a_k + a_{-k}}{2}$$

$$B_k = j \frac{a_k - a_{-k}}{2}$$

$$\omega_0 = \frac{2\pi}{T}$$
(17)

Convergence of Fourier Series