# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра САУ

#### ОТЧЕТ

# по лабораторной работе № 3

### по дисциплине «Интеллектуальные системы управления»

## Тема: РЕШЕНИЕ ЗАДАЧ АППРОКСИМАЦИИ НА ОСНОВЕ НЕЙРОНЕЧЕТКОГО ПОДХОДА

#### Вариант 1

| Студент гр. 9492 | Викторов А.Д.   |
|------------------|-----------------|
| Преподаватель    | Порохненко К.А. |

Санкт-Петербург 2024

#### Цель работы

Исследование искусственных нейронов (ИН) типа перцептрона, обучение ИН выполнению логических функций «не», «и», «или»; решение задачи классификации с помощью ИН в пакете *Neural Networks Toolbox*, моделирование функций в *Toolbox Simulink*.

#### Основные сведения

Uскусственный нейрон — элементарный преобразовательный элемент, содержащий n вектор входов r, суммирующий блок, блок преобразования сигнала с помощью функции активации, скалярный выход q (рис. 4.1, а). В суммирующем блоке вычисляется взвешенная сумма n входных сигналов  $r_i$   $s = \sum_i W_i r_i + W_0 r_0$ , где  $W_i$  — весовой коэффициент  $r_i$  входа. Вход  $r_0$  и

коэффициент  $W_0$  вводят специально для смещения нейронов сети, обычно  $r_0$  = 1. В модели ИН типа *перцептрон* (модель МакКаллока–Питса) в качестве функции активации f(s) используется пороговая функция, в нейроне *сигмоидального* типа — униполярная (логистическая) или биполярная (гиперболический тангенс) сигмоидальные функции, в нейроне типа *адалина* — линейная функция [1].

Радиальный базисный нейрон (рис. 4.1, б) включает n вектор входов r, блок, в котором вычисляется расстояние между вектором входа r и вектором весовых коэффициентов W, блок преобразования с помощью функции активации, в качестве которой используется радиальная базисная функция. Полученное в первом блоке расстояние умножается на фиксированный порог  $\alpha$ , который позволяет управлять чувствительностью ИН. Радиальная базисная функция (RBF) имеет максимум равный единице, когда вход равен нулю, т.е. единица на выходе, когда входной вектор равен вектору весовых коэффициентов.

## Результаты работы

1. Реализация логических функций «и», «или», «не».

На рисунках 1-4 представлено изображение разделяющих линий для различных логических функций.

## а) Реализация функции «и»



Рисунок 1 – Изображение разделяющей линии

### b) Реализации функции «или»



Рисунок 2 – Изображение разделяющей линии

# с) Реализации функции «не»



Рисунок 3 – Изображение разделяющей линии

## d) Реализации функции «исключающее «или»»



Рисунок 4 – Изображение разделяющей линии

Как видно из графиков, при реализации функции «и» выходная функция равна нулю в трех случаях и только при x = 1 и y = 1 выходная функция будет равна единице. Таким образом, разделяющая линия делит плоскость на два участка: область, что выше, нейрон будет считать за единицу, а та, что ниже — за ноль.

При реализации функции «или» выходная функция равна единице в трех случаях и только при x=0 и y=0 выходная функция будет равна нулю. Таким образом, разделяющая линия делит плоскость также на два участка по той же логике, что и в случае функции «и».

При реализации функции «не» выходная функция может принимать всего лишь два значения, являющиеся противоположными входным значениям. В этом случае разделяющая линия вертикальная. Область, которая слева, принимается нейроном за единицу, а та, которая справа — за ноль.

Также очевидно, что при реализации функции «исключающее «или» нейрон не обучается.

#### 2. Формирование нейросетевой модели в Toolbox Simulink





Рисунок 5 – Блок диаграмма

# а) Моделирование функции «и»



Рисунок 6 — Результат моделирования нейросетевой модели функции «и» (слева — ручное сравнение, справа — сравнение через Simulink-модель)

### b) Моделирование функции «или»



Рисунок 7 — Результат моделирования нейросетевой модели функции «или» (слева — ручное сравнение, справа — сравнение через Simulink-модель)

### b) Моделирование функции «не»



Рисунок 8 — Результат моделирования нейросетевой модели функции «не» (слева — ручное сравнение, справа — сравнение через Simulink-модель)

### b) Моделирование функции «исключающее «или»»



Рисунок 9 — Результат моделирования нейросетевой модели функции «исключающее «или»» (слева — ручное сравнение, справа — сравнение через Simulink-модель)

Из рисунков 6-9 можно увидеть, что результаты моделирования соответствуют ожиданиям.

#### Вывод

В ходе выполнения данной лабораторной работы было проведено исследование искусственных нейронов (ИН) типа перцептрона, обучение ИН выполнению логических функций «не», «и», «или». Также были решены задачи классификации с помощью ИН в пакете Neural Networks Toolbox, смоделированы функций в Toolbox Simulink. Можно наглядно заметить, что нейрон обучается во всех случаях, кроме ситуации с «исключающим «или».