Combo 3 de teoremas

Emanuel Nicolás Herrador - November 2024

Lectura única de términos

Dado $t \in T^{\tau}$ se da una de las siguientes:

- 1. $t \in Var \cup C$
- 2. Hay únicos $n \geq 1, f \in \mathcal{F}_n, t_1, \dots, t_n \in T^{\tau}$ tales que $t = f(t_1, \dots, t_n)$

Demostración

Por el lema de Menú para términos sabemos que: Supongamos $t \in T_k^{\tau}$, con $k \geq 1$. Entonces se da alguna de las siguientes:

- 1. $t \in Var \cup C$
- 2. $t = f(t_1, ..., t_n) \text{ con } f \in \mathcal{F}_n, n \ge 1 \text{ y } t_1, ..., t_n \in T_{k-1}^{\tau}$

Por el lema de Mordizqueo de términos sabemos que: Sean $s,t\in T^{\tau}$ y supongamos que hay palabras x,y,z, con $y\neq \varepsilon$ tales que s=xy y t=yz. Entonces $x=z=\varepsilon$ o $s,t\in \mathcal{C}$. En particular, si un término es tramo inicial o final de otro término, entonces dichos términos son iguales.

Por el lema de "Menú para términos", solo debemos demostrar la unicidad del punto (2). Supongamos $t = f(t_1, \ldots, t_n) = g(s_1, \ldots, s_m)$ con $n, m \ge 1, \ f \in \mathcal{F}_n, \ g \in \mathcal{F}_m, \ t_1, \ldots, t_n, s_1, \ldots, s_m \in T^{\tau}$.

Notemos que claramente f=g, por lo que n=m=a(f)=a(g). Notemos que t_1 es tramo inicial de s_1 o s_1 es tramo inicial de t_1 . Por el lema de "Mordizqueo de términos", $t_1=s_1$. Análogamente, podemos probar que $t_2=s_2,\ldots,t_n=s_n$. Por ello, llegamos a que efectivamente son únicos, por lo que se demuestra.

Lema

Supongamos que $F: \mathbf{A} \to \mathbf{B}$ es un isomorfismo. Sea $\varphi \in F^{\tau}$. Entonces:

$$\mathbf{A} \vDash \varphi[(a_1, a_2, \dots)] \text{ sii } \mathbf{B} \vDash \varphi[(F(a_1), F(a_2), \dots)]$$

para cada $(a_1, a_2, \dots) \in A^N$. En particular **A** y **B** satisfacen las mismas sentencias de tipo τ .

Demostración

Durante la demostración vamos a usar el siguiente lema: Sea $F: \mathbf{A} \to \mathbf{B}$ un homomorfismo, entonces $F(t^{\mathbf{A}}[(a_1, a_2, \dots)]) = t^{\mathbf{B}}[(F(a_1), F(a_2), \dots)] \ \forall t \in T^{\tau}, \ (a_1, a_2, \dots) \in A^N.$

Vamos a demostrar por inducción en $k \in \mathbb{N}_0$ que el lema vale $\forall \varphi \in F_k^{\tau}$. Supongamos $(a_1, a_2, \dots) \in A^N$ y $F : \mathbf{A} \to \mathbf{B}$ un isomorfismo. Para mayor facilidad, denotemos con \vec{a} a (a_1, a_2, \dots) y con $F(\vec{a})$ a $(F(a_1), F(a_2), \dots)$. Entonces:

- Caso base k=0: Sea $\varphi \in F_0^{\tau}$, tenemos dos casos:
 - $-\ \varphi = (t \equiv s)$ con $t,s \in T^\tau \colon$ Veamos que:

$$\mathbf{A} \vDash \varphi[\vec{a}] \iff t^{\mathbf{A}}[\vec{a}] = s^{\mathbf{A}}[\vec{a}] \qquad \text{Def. de } \vDash$$

$$\iff F(t^{\mathbf{A}}[\vec{a}]) = F(s^{\mathbf{A}}[\vec{a}]) \qquad \text{Al ser F isomorfismo (i.e., biyectiva)}$$

$$\iff t^{\mathbf{B}}[F(\vec{a})] = s^{\mathbf{B}}[F(\vec{a})] \qquad \text{Lema}$$

$$\iff \mathbf{B} \vDash \varphi[F(\vec{a})] \qquad \text{Def. de } \vDash$$

Por lo que se demuestra.

 $-\varphi = r(t_1, \ldots, t_n)$ con $r \in \mathcal{R}_n, \ n \ge 1, \ t_1, \ldots, t_n \in T^{\tau}$: Veamos que:

$$\begin{split} \mathbf{A} \vDash \varphi[\vec{a}] &\iff (t_1^{\mathbf{A}}[\vec{a}], \dots, t_n^{\mathbf{A}}[\vec{a}]) \in r^{\mathbf{A}} & \text{Def. de } \vDash \\ &\iff (F(t_1^{\mathbf{A}}[\vec{a}]), \dots, F(t_n^{\mathbf{A}}[\vec{a}])) \in r^{\mathbf{B}} & F \text{ es isomorfismo} \\ &\iff (t_1^{\mathbf{B}}[F(\vec{a})], \dots, t_n^{\mathbf{B}}[F(\vec{a})]) \in r^{\mathbf{B}} & \text{Lema} \\ &\iff \mathbf{B} \vDash \varphi[F(\vec{a})] & \text{Def. de } \vDash \end{split}$$

Por lo que se demuestra.

- Hipótesis inductiva (k): Sea $k \in \mathbb{N}_0$, entonces $\forall \varphi \in F_k^{\tau}, (\mathbf{A} \models \varphi[\vec{a}] \iff \mathbf{B} \models \varphi[F(\vec{a})])$
- Caso inductivo (k+1): Sea $\varphi \in F_{k+1}^{\tau}$, tenemos varios casos:
 - Si $\varphi \in F_k^{\tau}$: se demuestra por HI.
 - Si $\varphi = (\varphi_1 \eta \varphi_2)$ con $\varphi_1, \varphi_2 \in F_k^{\tau}$ y $\eta \in \{\land, \lor, \rightarrow, \leftrightarrow\}$: Los casos son análogos, por lo que vamos a suponer $\varphi = (\varphi_1 \land \varphi_2)$. Por ello:

$$\mathbf{A} \vDash \varphi[\vec{a}] \iff \mathbf{A} \vDash \varphi_1[\vec{a}] \text{ } \mathbf{A} \vDash \varphi_2[\vec{a}] \qquad \text{ Def. de } \vDash$$

$$\iff \mathbf{B} \vDash \varphi_1[F(\vec{a})] \text{ } \mathbf{B} \vDash \varphi_2[F(\vec{a})] \qquad \text{HI}$$

$$\iff \mathbf{B} \vDash \varphi[F(\vec{a})] \qquad \text{ Def. de } \vDash$$

Por lo que se demuestra.

– Si $\varphi = Qx_j\varphi_1$ con $\varphi_1 \in F_k^{\tau}$ y $Q \in \{\forall, \exists\}$: Los dos casos son análogos, por lo que vamos a ver $\varphi = \forall x_j\varphi_1$. Por ello:

$$\mathbf{A} \vDash \varphi[\vec{a}] \iff \forall a \in A, \ \mathbf{A} \vDash \varphi_1[\downarrow_j^a(\vec{a})] \qquad \text{Def. de } \vDash$$

$$\iff \forall a \in A, \ \mathbf{B} \vDash \varphi_1[F(\downarrow_j^a(\vec{a}))] \qquad \text{HI}$$

$$\iff \forall b \in B, \ \mathbf{B} \vDash \varphi_1[\downarrow_j^b(F(\vec{a}))] \qquad \text{Al ser F isomorfismo (i.e., biyectivo)}$$

$$\iff \mathbf{B} \vDash \varphi[F(\vec{a})] \qquad \text{Def. de } \vDash$$

Por lo que se demuestra.

Con ello, se demuestra el lema. ■

Teorema

Sea $T = (\Sigma, \tau)$ una teoría. Entonces $(S^{\tau} / \dashv \vdash_T, s^T, i^T, c^T, 0^T, 1^T)$ es un álgebra de Boole. Pruebe solo el item (6).

Demostración

Queremos probar que $\forall \varphi_1, \varphi_2, \varphi_3 \in S^{\tau}$, $[\varphi_1]_T \ s^T \ ([\varphi_2]_T \ s^T \ [\varphi_3]_T) = ([\varphi_1]_T \ s^T \ [\varphi_2]_T) \ s^T \ [\varphi_3]_T$. Sean $\varphi_1, \varphi_2, \varphi_3 \in S^{\tau}$ fijas pero arbitrarios, veamos que:

$$[\varphi_1]_T \ s^T \ ([\varphi_2]_T \ s^T \ [\varphi_3]_T) = ([\varphi_1]_T \ s^T \ [\varphi_2]_T) \ s^T \ [\varphi_3]_T$$

$$\updownarrow \text{ def. de } s^T$$

$$[(\varphi_1 \lor (\varphi_2 \lor \varphi_3))]_T = [((\varphi_1 \lor \varphi_2) \lor \varphi_3)]_T$$

$$\updownarrow \text{ Def. de clase de equivalencia en } S^\tau / \dashv \vdash_T$$

$$(\varphi_1 \lor (\varphi_2 \lor \varphi_3)) \dashv \vdash_T ((\varphi_1 \lor \varphi_2) \lor \varphi_3)$$

$$\updownarrow \text{ Def. de } \dashv \vdash_T$$

$$T \vdash ((\varphi_1 \lor (\varphi_2 \lor \varphi_3)) \leftrightarrow ((\varphi_1 \lor \varphi_2) \lor \varphi_3))$$

Ahora, por lema sabemos que: Sea (Σ, τ) una teoría y $(\Sigma, \tau) \vdash \varphi_1, \dots, \varphi_n$. Si R es una regla distinta de GENERALIZACION y ELECCION, y φ se deduce de $\varphi_1, \dots, \varphi_n$ por la regla R, entonces $(\Sigma, \tau) \vdash \varphi$.

Por ello, por el anterior lema aplicado con la regla EQUIVALENCIAINTRODUCCION, tenemos que probar solo que:

$$T \vdash ((\varphi_1 \lor (\varphi_2 \lor \varphi_3)) \to ((\varphi_1 \lor \varphi_2) \lor \varphi_3))$$
$$T \vdash (((\varphi_1 \lor \varphi_2) \lor \varphi_3) \to (\varphi_1 \lor (\varphi_2 \lor \varphi_3)))$$

Las dos son totalmente análogas, por lo que solo vamos a dar la prueba que atestigua la primera:

1. $(\varphi_1 \lor (\varphi_2 \lor \varphi_3))$	HIP1
$2. \varphi_1$	HIP2
3. $\varphi_1 \vee \varphi_2$	DISJINT(2)
4. $(\varphi_1 \vee \varphi_2) \vee \varphi_3$	TESIS2DISJINT(3)
5. $\varphi_1 \to ((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	CONC
6. $\varphi_2 \vee \varphi_3$	HIP3
7. φ_2	HIP4
8. $\varphi_1 \vee \varphi_2$	DISJINT(7)
9. $(\varphi_1 \vee \varphi_2) \vee \varphi_3$	TESIS4DISJINT(8)
10. $\varphi_2 \to ((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	CONC
11. φ_3	HIP5
12. $(\varphi_1 \vee \varphi_2) \vee \varphi_3$	TESIS5DISJINT(11)
13. $\varphi_3 \to ((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	CONC
14. $((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	${\tt TESIS3DIVPORCASOS}(6,10,13)$
15. $(\varphi_2 \vee \varphi_3) \to ((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	CONC
16. $((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	${\tt TESIS1DIVPORCASOS}(1,5,15)$
17. $(\varphi_1 \lor (\varphi_2 \lor \varphi_3)) \to ((\varphi_1 \lor \varphi_2) \lor \varphi_3)$	CONC

Por lo tanto, se demuestra para toda sentencia dado que las consideramos fijas pero arbitrarias. \blacksquare