Оптика и вълни

Геометрична оптика

2010	Есенно	3	Отрицателен коефициент на пречупване (?). Елементарно упражнение върху закон на Снелиус.			
2013	Пролетно	3	Вълнички в басейн (МА). Лесна задача за радиус на кривина.			
2017	Есенно	1	Планета с ядро (MA). Лека задача върху гравитация и закон на Снелиус за сеизмични вълни. Основна задача в геофизиката.			
2018	Есенно	3	Небесна дъга (MA). Блъскаческа задача върху пречупване при сферична повърхност. Последната подточка се отнася за поляризация и преподава полезни формули.			
2022	Пролетно	3	Тънка сферична леща (MA). Скучна задача с извеждане на уравнение на тънка леща и решаване на система уравнения.			
2004	Есенно	3	Назъбена пластинка (MA). Не можах да я реша сам и не разбирам нищо от решението. Или задачата е много сложна, или е грешна.			
Вълнова оптика						
2003	Есенно	5	Слухов апарат (?). Стандартна задача с биномно приближение и векторна диаграма.			
2012	Есенно	1	Интерференция от три процепа (?). Още една стандартна ситуация, която се решава най-лесно с векторна диаграма. Решението на a) е грешно, тъй като използва моментни стойности, а не амплитуди.			
2010	Пролетно	3	Интерференция от клин (MA). Задача с алтернативен подход при намиране на максимуми, а именно с ъгъл между снопове при екрана. Втората част е усложнен вариант на класическата задача за интерференция между тънки слоеве.			
1999	_	2	Бипризма на Френел (ММ). Друга класическа установка във вълновата оптика. Може да проверите, че два лъча от S върху призмата се отклоняват на еднакви ъгли, така че ъгълът, сключен между тях, се запазва. Ако сте запознати с вълни на Дьо Бройл, втората част на задачата е безплатна.			
2015	Пролетно	3.2	Нютонови пръстени (МА). Задача върху класическа установка. Решението на в) е излишно дълго. Като пояснение, има интерференция само от дадените снопове, защото разстоянието между тях е малко. При всички други двойки отразени лъчи разстоянието е много дължини на вълната. Понеже светлината никога не е идеално монохроматична, за тях би имало загуба на кохерентност, много максимуми се смесват с много минимуми.			
2023	Есенно	3	Сапунен мехур (ВИ). Красива практическа задача, която по- казва стандартен сценарий в непознат контекст. Нужно е вни- мателно прочитане на условието.			

Вълни

2002	Пролетно	4	Вълни по водна повърхност (ВИ). Лесна практическа задача върху уравнение на дълбоката вода.
2006	Пролетно	1	Разхлабена струна (ВИ). Стандартна задача, стига да сте запознати с основната теория за вълни. Обърнете внимание, че T е фиксирано, то е същото за стоящата вълна и бягащите вълни, които я изграждат.
2016	Есенно	3	Стояща вълна и микровълнова печка (MA). Техническа задача. Първата част извежда уравнението на стояща вълна при определени гранични условия. Втората част е само пресмятания.
2015	Есенно	3	Радар (ВИ). Хубава и кратка задача с лошо формулирано условие. От $\bf B$) нататък се приема, че радарът излъчва изотропно в рамките на областта от $\bf 6$). Начинът, по който огледалната сфера разпределя мощността обратно в пространството, не е очевиден и трябва да се изведе. Мерната единица на D е метри.
2019	Есенно	3	Ефект на Доплер (USAPhO 2016-A1). Стандартна задача върху нерелативистки ефект на Доплер. Вълната се отразява със същата дължина само от гледна точка на неподвижен отражател.