

WEBENCH® Design Report

Design : 3663732/5 LM22674MR-5.0/NOPB LM22674MR-5.0/NOPB 16.0V-10.0V to 5.0V @ 0.5A

BENCH Design Report

 $\begin{aligned} & \text{VinMin} = 16.0 \text{V} \\ & \text{VinMax} = 10.0 \text{V} \\ & \text{Vout} = 5.0 \text{V} \\ & \text{Iout} = 0.5 \text{A} \end{aligned}$

Device = LM22674MR-5.0/NOPB Topology = Buck Created = 2/26/13 10:57:08 AM BOM Cost = \$1.68 Total Pd = 0.3W Footprint = 206.0mm2 BOM Count = 7

Electrical BOM

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
I. Cbst	Kemet	C0805C103K5RACTU Series= X7R	Cap= 10.0 nF ESR= 1.739 Ohm VDC= 50.0 V IRMS= 411.0 mA	1	\$0.01	0805 13mm2
2. Cin	Kemet	C1206C475K4PACTU Series= X5R	Cap= 4.7 μF ESR= 13.0 mOhm VDC= 16.0 V IRMS= 4.9 A	1	\$0.04	1206 19mm2
3. Cinx	TDK	C1608X5R1C105K Series= X5R	Cap= 1.0 µF ESR= 5.7 mOhm VDC= 16.0 V IRMS= 0.0 A	1	\$0.01	0603 10mm2
1. Cout	TDK	C3225X5R1E106K Series= X5R	Cap= 10.0 µF ESR= 15.0 mOhm VDC= 25.0 V IRMS= 3.0 A	1	\$0.15	1210 23mm2
5. D1	ON Semiconductor	MBR0520LT1G	VF@Io= 385.0 mV VRRM= 20.0 V	1	\$0.06	SOD-123 22mm2
5. L1	Bourns	SRN6045-680M	L= 68.0 μH DCR= 351.0 mOhm	1	\$0.16	SRN6045 64mm2
7. U1	Texas Instruments	LM22674MR-5.0/NOPB	Switcher	1	\$1.25	MRA08B 56mm2

Operating Values

Opo	raining varaco			
#	Name	Value	Category	Description
1.	Cin IRMS	295.737 mA	Current	Input capacitor RMS ripple current
2.	Cout IRMS	22.171 mA	Current	Output capacitor RMS ripple current
3.	IC lpk	538.402 mA	Current	Peak switch current in IC
4.	lin Avg	280.04 mA	Current	Average input current
5.	L lpp	76.804 mA	Current	Peak-to-peak inductor ripple current
6.	M1 Irms	361.34 mA	Current	Q lavg
7.	BOM Count	7	General	Total Design BOM count
8.	FootPrint	206.0 mm2	General	Total Foot Print Area of BOM components
9.	Frequency	500.0 kHz	General	Switching frequency
10.	IC Tolerance	75.0 mV	General	IC Feedback Tolerance
11.	M Vds Act	74.162 mV	General	Voltage drop across the MosFET
12.	Mode	CCM	General	Conduction Mode
13.	Pout	2.5 W	General	Total output power
14.	Total BOM	\$1.68	General	Total BOM Cost
15.	D1 Tj	48.945 degC	Op_Point	D1 junction temperature
16.	Vout OP	5.0 V	Op_Point	Operational Output Voltage
17.	Cross Freq	59.87 kHz	Op_point	Bode plot crossover frequency
18.	Duty Cycle	52.227 %	Op_point	Duty cycle
19.	Efficiency	89.272 %	Op_point	Steady state efficiency
20.	IC Tj	36.648 degC	Op_point	IC junction temperature
21.	ICThetaJA	60.0 degC/W	Op_point	IC junction-to-ambient thermal resistance
22.	IOUT_OP	500.0 mA	Op_point	lout operating point
23.	Phase Marg	45.148 deg	Op_point	Bode Plot Phase Margin
24.	VIN_OP	10.0 V	Op_point	Vin operating point
25.	Vout p-p	2.308 mV	Op_point	Peak-to-peak output ripple voltage
26.	Cin Pd	1.137 mW	Power	Input capacitor power dissipation
27.	Cout Pd	7.374 µW	Power	Output capacitor power dissipation
28.	Diode Pd	91.964 mW	Power	Diode power dissipation
29.	IC Pd	110.798 mW	Power	IC power dissipation
30.	L Pd	96.525 mW	Power	Inductor power dissipation
31.	Total Pd	300.427 mW	Power	Total Power Dissipation

Design Inputs

#	Name	Value	Description
1.	lout	500.0 mA	Maximum Output Current
2.	lout1	500.0 mAmps	Output Current #1
3.	VinMax	10.0 V	Maximum input voltage
4.	VinMin	16.0 V	Minimum input voltage
5.	Vout	5.0 V	Output Voltage
6.	Vout1	5.0 Volt	Output Voltage #1
7.	base_pn	LM22674	National Based Product Number
8.	source	DC	Input Source Type
9.	Та	30.0 degC	Ambient temperature

Design Assistance

- 1. Part Description The LM22674 is a monolithic integrated circuit that provides all of the active functions for a step-down (buck) switching regulator capable of driving up to 0.5A loads with excellent line and load regulation characteristics. High efficiency (>90%) is obtained through the use of a low ON-resistance N-channel MOSFET.
- $2. \ \textbf{LM22674} \ Product \ Folder: http://www.ti.com/product/lm22674: contains the \ data \ sheet \ and \ other \ resources.$

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.