Universidade Federal de Minas Gerais Departamento de Engenharia Elétrica Sistemas Nebulosos

Trabalho Prático 2 Sistemas de Inferência Fuzzy

Aluno: Thiago Lages Rocha | 2015.123.320

Professor: Cristiano Leite de Castro

Belo Horizonte 2019.2

Sumário

1	Inti	rodução	2
2	Exercícios		2
_	2.1	Exercício 1	2
	$\frac{2.1}{2.2}$	Exercício 2	3
		2.2.1 Sugeno	4
		2.2.2 Mamdani	4
	2.3	Exercício 3	9
3	Cor	nclusão	10
J	COI	iciusao	10
_		a 73	
L	ist	of Figures	
	1	Retas utilizadas para aproximação da função cosseno	2
	2	Definição das funções de pertencimento triangulares para aprox-	
		imação da função cosseno	3
	3	Aproximação da função cosseno pelo método de Sugeno	4
	4	Definição das funções de pertencimento de entrada, pelo método	
		de Sugeno	5
	5	Definição das funções de pertencimento de saída, pelo método de	
		Sugeno	5
	6	Exemplo de ativação de uma entrada	6
	7	Saída final do Sistema Fuzzy de Interência	6
	8	Definição das funções de pertencimento de entrada, pelo método	
		de Mamdani	7
	9	Definição das funções de pertencimento de saída, pelo método de	
		Mamdani	8
	10	Exemplo de ativação de uma entrada	8
	11	Saída final do Sistema Fuzzy de Interência	9
	12	Curva relativa ao problema da gorjeta	10
	13	Definição das funções de pertencimento de entrada, pelo método	
		de Mamdani	11
	14	Definição das funções de pertencimento de saída, pelo método de	
		Mamdani	12
	15	Exemplo de ativação de uma entrada	12
	16	Saída final do Sistema Fuzzy de Interência.	13

Introdução 1

2 Exercícios

2.1 Exercício 1

Enunciado: Empregue o mecanismo de inferência de Sugeno com consequentes de ordem 1 e obtenha uma expressão analítica para a função. Dica: use funções de pertinência do tipo triangular para "fuzzificação" da variável x.

Solução: Para o primeiro exercício, a função cossseno foi aproximada a partir de três funções de primeira ordem, mostradas na figura 1 e explicitadas abaixo:

Figure 1: Retas utilizadas para aproximação da função cosseno.

$$z_1 = \frac{2}{\pi}x + 1, x\varepsilon[\frac{-\pi}{2}, 0] \tag{1}$$

$$z_2 = \frac{-2}{\pi}x + 1, x\varepsilon[0, \pi] \tag{2}$$

$$z_2 = \frac{\pi}{\pi} x + 1, x \varepsilon [0, \pi]$$

$$z_3 = \frac{2}{\pi} x - 3, x \varepsilon [\pi, \frac{-3\pi}{2}]$$

$$(2)$$

Estas equações foram obtidas a partir da determinação de pontos notáveis na função cosseno, e da ligação entre eles, dois a dois. Os pontos utilizados foram os pontos onde a função cruza o eixo das abscissas, e seu ponto máximo e ponto mínimo, todos dentro do intervalo $\left[\frac{-\pi}{2}, \frac{3\pi}{2}\right]$.

Após a obtenção destas funções, é importante definir funções de pertencimento para cada uma delas, de maneira que haja um grau de ativação da entrada que possa ser combinada com as ativações em todas as regras, a fim de se construir uma saída \hat{y} . Assim, escolheu-se funções triangulares de centros em $\frac{-\pi}{2}$, $\frac{\pi}{2}$ e $\frac{3\pi}{2},$ justamente onde a função cosseno cruza o eixo X neste intervalo, e de abertura $\frac{\pi}{2}$ para cada um dos lados, resultando, assim, na figura 2.

Figure 2: Definição das funções de pertencimento triangulares para aproximação da função cosseno.

A partir daí, basta obter o grau de ativação de cada entrada em cada uma das funções de pertencimento, obtendo os coeficientes $\omega_1, \omega_2 e \omega_3$. Finalmente, aplicamos a média ponderada presente na abordagem de Sugeno, que propõe:

$$z = \frac{\omega_1 * z_1 + \omega_2 * z_2 + \omega_3 * z_3}{\omega_1 + \omega_2 + \omega_3}$$
 (4)

onde $z_1,\,z_2$ e z_3 são as funções lineares definidas em 1, 2 e 3. O resultado final é apresentado na Figura 3.

2.2 Exercício 2

Enunciado: Aproximar a função y = seno(x), para x definido no intervalo de $[0, 2\pi]$ empregando os mecanismos de inferência de Mamdani e Sugeno no Toolbox Fuzzy do MatLab. Mostrar os gráficos das aproximações e calcular o Erro Quadrático Médio

$$EQM = \sum_{i=1}^{N} \frac{1}{N} (y_i - \hat{y}_i)^2,$$
 (5)

onde y_i é a saída real da função e \hat{y} é a saída obtida pelo sistema nebuloso.

Figure 3: Aproximação da função cosseno pelo método de Sugeno.

2.2.1 Sugeno

Solução: Neste exercício, o toolbox de Lógica Fuzzy foi utilizada com o método de Sugeno, e o primeiro passo foi definir as funções de pertencimento como funções triangulares da mesma maneira do exercício anterior. Este passo é mostrado na figura 4. O segundo passo foi definir as funções de saída do método de Sugeno, que são as mesmas apresentadas no exercício anterior, nas equações 1, 2 e 3. Este segundo passo está representado na figura 5

A partir daí, as regras foram definidas como:

- se x é A1, então y é B1
- se x é A2, então y é B2
- se x é A3, então y é B3

E o resultado de um exemplo de uma ativação nas regras definidas é apresentada na figura 6.

O resultado final obtido é mostrado na figura 7. O cálculo do erro médio quadrático neste caso foi de 0,013.

2.2.2 Mamdani

Solução: Neste exercício, o toolbox de Lógica Fuzzy foi utilizada com o método de Mamdani, e o primeiro passo foi definir as funções de pertencimento como

Figure 4: Definição das funções de pertencimento de entrada, pelo método de Sugeno.

Figure 5: Definição das funções de pertencimento de saída, pelo método de Sugeno.

funções gaussianas como mostra a figura 8. Diferente das outras abordagens, estas curvas foram achadas empiricamente, testando-se a melhor disposição delas de maneira a obter uma saída desejada, neste caso, o seno.

Figure 6: Exemplo de ativação de uma entrada.

Figure 7: Saída final do Sistema Fuzzy de Interência.

O segundo passo foi definir as funções de saída do método de Mamdani, que também foram definidas como sendo do tipo gaussiana, com médias -1, 0 e 1,

que são os valores notáveis assumidos pelo seno. Neste caso, percebemos que a gaussiana do centro, a função de pertencimento de número dois, se tornou um pouco mais estreita, tendo sua variância diminuída propositalmente a fim de se obter o melhor resultado na saída. Isto se deve ao fato de que temos menos pontos em torno do zero, do que temos em torno de -1 e +1. Este segundo passo está representado na figura 9

Figure 8: Definição das funções de pertencimento de entrada, pelo método de Mamdani.

A partir daí, as regras foram definidas como:

- se x é A1, então y é B1
- se x é A2, então y é B2
- se x é A3, então y é B3

E o resultado de um exemplo de uma ativação nas regras definidas é apresentada na figura 10.

O resultado final obtido é mostrado na figura 11. O cálculo do erro médio quadrático neste caso foi de 0,0151. Este valor foi maior do que o calculado para o método de Sugeno, e isto se deve pelo fato de que a aproximação empírica feita através da junção das Gaussianas foi pior do que a aproximação por retas mais bem definidas no método de Sugeno. Para este caso, onde não sabemos a priori a melhor forma das funções de pertencimento da saída, mas sabemos equações que relacionam bem os pontos de entrada com a saída, o método de Sugeno é melhor aproveitado.

Figure 9: Definição das funções de pertencimento de saída, pelo método de Mamdani.

Figure 10: Exemplo de ativação de uma entrada.

Figure 11: Saída final do Sistema Fuzzy de Interência.

2.3 Exercício 3

Enunciado:Problema da Gorjeta: Considere as regras de ouro da gorjeta as quais foram construídas segundo a experiência dos clientes ao longo dos anos nos restaurantes americanos:

- se o serviço é ruim ou a comida é de má qualidade, então a gorjeta é pequena.
- se o serviço é bom então a gorjeta é média.
- se o serviço é excelente ou a comida é deliciosa, então a gorjeta é generosa.

Assuma que uma gorjeta média equivale a 15% do valor da conta, uma gorjeta generosa equivale a 25% e uma gorjeta pequena equivale a 5%. A variável de saída, gorjeta, deve ter a seguinte aparência:

Com base nessas informações construa um sistema nebuloso usando o mecanismo de inferência de Sugeno para modelar o relacionamento entre as variáveis serviço, comida e gorjeta. Use o Toolbox Fuzzy do MatLab e mostre o gráfico da aproximação resultante.

Solução: Neste exercício, também foi utilizado o *toolbox* de Lógica Fuzzy do MATLAB, e o primeiro passo foi definir as funções de pertencimento das entradas 'comida' e 'serviço' como gaussianas de variância 1.5 e centradas em 0, 5 e 10. Este passo é mostrado na figura 13. O segundo passo foi definir as funções de saída do método de Sugeno, que está representado na figura 5

A partir daí, as regras foram definidas como:

Figure 12: Curva relativa ao problema da gorjeta.

- se x é A1, e y é B1, então z é C1
- \bullet se x é A2 então z é C2
- se x é A3, e y é B3, então z é C3

sendo

- \bullet x = comida, y = serviço, z = gorjeta
- A1 = serviço ruim, B1 = comida de má qualidade
- A2 = serviço bom
- A3 = serviço excelente, B3 = comida deliciosa

Perceba que não é estritamente necessário definir B2 (comida 'mediana'), visto que as regras ditam que, se o serviço for bom, não importa a qualidade da comida, a gorjeta sempre será 'média'. O resultado de um exemplo de uma ativação nas regras definidas é apresentada na figura 15.

O resultado final obtido é mostrado na figura 16.

3 Conclusão

Com este trabalho pôde-se aprender a utilizar os métodos de Sugeno e Mamdani para aproximações tanto de funções conhecidas (seno, cosseno), como de problemas onde não se sabe exatamente a resposta, mas a modelagem pode ser feita através da lógica nebulosa.

Ao lidar com cada um dos métodos, podemos perceber que é possível extrair saídas muito parecidas de ambos, dependendo da modelagem feita e das regras

Figure 13: Definição das funções de pertencimento de entrada, pelo método de Mamdani.

criadas. Apesar disso, a escolha de um método inadequado para resolver o problema proposto pode causar um gasto muito maior de tempo e esforço para chegar ao mesmo resultado.

Dessa forma, para problemas bem definidos, onde podem-se estabelecer relações lineares entre as variáveis de entrada com as de saída, o método de Sugeno é melhor aproveitado, visto que sua saída é uma composição linear das entradas, ponderado por um termo de ativação.

Já o método de Mamdani é muito bem aproveitado onde temos variáveis linguísticas que descrevem muito bem o problema, por exemplo, de maneira que as funções de pertencimento podem ser bem modeladas através de funções como gaussianas ou triangulares.

Figure 14: Definição das funções de pertencimento de saída, pelo método de Mamdani.

Figure 15: Exemplo de ativação de uma entrada.

Figure 16: Saída final do Sistema Fuzzy de Interência.