Estatística Básica e Introdução ao R

Profa. Dra. Natalia Giordani

- Estatística
 - Fazer inferências sobre a distribuição de alguma variável em uma determinada

Estatística

- Se pudermos supor que distribuição de probabilidades de certa variável possa ser descrita por um modelo probabilístico específico nosso problema se reduz a estimar os parâmetros dessa distribuição
- Há vários modelos probabilísticos
 - Variáveis discretas: função de probabilidade
 - Variáveis contínuas: função densidade de probabilidade

Modelos probabilísticos para variáveis discretas

Modelo	Parâmetros	Exemplo de uso
Binomial	n, p	Decisão: comprar / não comprar; clicar / não clicar
Poisson	λ	Eventos por unidade de tempo: nº de chamadas telefônicas de uma central em 1h

Modelos probabilísticos para variáveis contínuas

Modelo	Parâmetros	Exemplo de uso
Normal	μ, σ	Peso de recém-nascidos
Exponencial	α	Distância entre um evento e o próximo: tempo entre visitas a um site
t-Student	n	Base de referência para distribuição de médias amostrais, diferenças entre duas médias,

- Dados Amostrais
 - Subconjunto de um conjunto maior (população)
 - Para inferência deve satisfazer algumas condições
 - Amostragem probabilística seleção aleatória
 - Exemplos: Amostragem Aleatória Simples (AAS) e
 Amostragem Estratificada

- Amostragem Aleatória Simples
 - Todos os membros da população tem a mesma probabilidade de ser incluídos na amostra

- Amostragem Estratificada
 - População é dividida em estratos (homogêneos dentro e heterogêneos entre) e é realizada
 AAS em cada um

- Especificação modelo para inferência
 - Escolha de um modelo probabilístico para representar a variável de interesse (x) na população
- Como?
 - Possibilidade: histograma dos dados da amostra vs histogramas teóricos de modelos probabilísticos candidatos
 - Alternativa mais utilizada: gráficos QQ (QQ plots)
 - Pontos representam os quantis obtidos das distribuições amostral e teórica
 - Se os dados amostrais forem compatíveis com o modelo probabilístico proposto os pontos devem estar dispostos em torno de uma reta

Gráficos QQ

- Distribuição Normal é requisito para muitos métodos
- Características:
 - Formato de sino
 - Simétrica em relação a média
 - A média e mediana tem o mesmo valor
 - A área sob a curva representa 1 ou 100%

- Aproximadamente 95% dos valores de x estão entre os pontos $(\mu 2\sigma)$ e $(\mu + 2\sigma)$
- Aproximadamente 99,7% dos valores de x estão entre pontos (μ 3 σ) e (μ + 3 σ)

Gráficos QQ

- Distribuição Normal é requisito para muitos métodos
- Características:
 - Resultado importante dado pelo Teorema do limite central: para qualquer que seja a distribuição da variável de interesse, a distribuição das médias amostrais tenderá a uma distribuição Normal à medida que o tamanho de amostra cresce.

Gráficos QQ

Exemplo: peso de recém-nascidos

Gráficos QQ

Exemplo: peso de recém-nascidos

Gráficos QQ

Exemplo: peso da mãe no último período menstrual (kg)

■ Desvio padrão e erro padrão

- Desvio padrão e erro padrão
- Selecionar 10 garrafas de cada suco (aleatoriamente) e verificar seu volume com um medidor

- Desvio padrão e erro padrão
- Selecionar 10 garrafas de cada suco (aleatoriamente) e verificar seu volume com um medidor

Suco	Média	Desvio Padrão
Uva	500	52,7
Laranja	500	6

 Quanto menor o desvio padrão: mais concentrados próximos a média estão as observações (mais homogênea é a amostra)

Desvio padrão e erro padrão

Amostra considerada

■ E se mudasse a amostra, o que aconteceria com a média?

■ Desvio padrão e erro padrão

Suco	Média	Desvio Padrão	Erro padrão
Uva	500	52,7	$\frac{52,7}{\sqrt{10}} = 16.7$
Laranja	500	6	$\frac{6}{\sqrt{10}} = 1.9$

- Intervalo de confiança e tamanho da amostra
 - Dados para análise estatística são, geralmente, provenientes de variáveis observadas em unidades de investigação obtidas de uma população de interesse através de um processo de amostragem
 - Interesse?
 - Descrever e resumir dados da amostra
 - Fazer inferência
 - Não temos dúvidas sobre os resultados da amostra
 - Mas, o resultado pode ser extrapolado para a população?

- Intervalo de confiança e tamanho da amostra
 - Margem de erro
 - Medida da incerteza na extrapolação amostra população
 - Dependente de:
 - Processo amostral
 - Desvio padrão (S)
 - Tamanho de amostra (n)
 - me = kS/\sqrt{n}
 - AAS, distribuição normal, 95,4% de confiança: k=2

- Intervalo de confiança e tamanho da amostra
 - Margem de erro

- Confiança de 95%
 - me = $(1.96 * S)/\sqrt{n}$
- Quando o tamanho da amostra é suficientemente grande, podemos utilizar esses valores mesmo que a distribuição de onde foi obtida a amostra não é normal

- Intervalo de confiança e tamanho da amostra
 - Com base na margem de erro
 - Intervalo de 95% de confiança para média (IC 95%) = $\bar{X} \pm 1,96S/\sqrt{n}$
 - Exemplo: peso de 5000 recém nascidos (kg)

ID_bebe	peso
1	3,2
2	2,5
	•••
5000	3,9

- Média amostral = \bar{X} = 2,80 kg
- Desvio padrão amostral = S = 0, 5 kg

■ IC 95% =
$$[2,80 - (1,96*0,5)/\sqrt{5000}$$
; $2,80 + (1,96*0,5)/\sqrt{5000}]$
= $[2,80 - 0,014$; $2,80 + 0,014$;]
= $[2,79; 2,81]$

■ Intervalo de confiança e tamanho da amostra

■ Exemplo: pesquisa eleitoral para candidato A - 150 entrevistados declararam apoio

ID_entrevistado	apoia_candidato
1	0
2	1
	•••
500	0

- Média amostral de X = proporção de eleitores favoráveis ao candidato na amostra $(\hat{p}) = \frac{150}{500} = 0.30$
- IC 95% para proporção: $\widehat{p} \pm 1$, $96\sqrt{\widehat{p}(1-\widehat{p})/n}$

- Intervalo de confiança e tamanho da amostra
 - Qual é o tamanho da amostra necessário para que meus resultados tenham precisão ε ??
 - Depende... O que você quer estimar?
 - Média

$$■ n = (1,96S/ε)^2$$

Proporção

- Intervalo de confiança e tamanho da amostra
 - Qual é o tamanho da amostra necessário para que meus resultados tenham precisão ε ??
 - Depende... O que você quer estimar?
 - Média

■
$$n = (1.96 \text{S}/\varepsilon)^2$$
 Piloto, estudos parecidos..
Regra de bolso? [max(X) – min(X)]/4

Proporção

Pior cenário:
$$\hat{p} = 0.5 \rightarrow \hat{p}(1-\hat{p}) = 0.25 \rightarrow \sqrt{0.25} = 0.5$$

Considerando $1.96 \sim 2$
 $n = (1/\epsilon)^2$
Exemplo: pesquisas de intenção de voto, onde $\epsilon = 3$ pontos percentuais $n = (1/0.03)^2 = 1.111$

- Intervalo de confiança e tamanho da amostra
 - Qual é o tamanho da amostra necessário para que meus resultados tenham precisão ε ??
 - Calculadoras de tamanho de amostra
 - WinPepi

Transformações de variáveis

- Distribuição Normal é suposição de diversos métodos estatísticos
- Na prática é comum a distribuição dos dados na amostra ser assimétrica e conter valores atípicos
- O que fazer?
 - Transformação de dados a fim de obter uma distribuição mais simétrica
 - log(x)
 - -1/x
 - $-\sqrt{\chi}$
 - $-\sqrt[3]{x}$

■ Transformações de variáveis

Exemplo: peso da mãe no último período menstrual (kg)

Variável transformada - LOG

Variável transformada - Raiz quadrada

■ Transformações de variáveis

- Padronização (z-escore)
 - Média 0, desvio padrão 1

$$z = \frac{x - \bar{x}}{s}$$

- Normalização (min-max)
 - Intervalo 0 e 1

- Transformações de variáveis
 - Alterar tipo de variável: criar categorias de valores a partir de uma variável numérica
 - Ex.: faixa etária, faixa de renda

