

Deepboy

2018.11.30

Background of GCN

Convolutional neural network

NLP: CNN for Sentence Classification

CV: CNN for Image Classification

Graph: Graph embedding

Background of GCN

Adversarial Attacks on Neural Networks

Implementation in different fields:

Computer Vision

Audio

Graph

Adversarial Attacks on Graph Convolutional Networks

Latest reference works

- 2018-KDD-Adversarial Atacks on Neural Networks for Graph Data Preprints-Adversarial Attacks on Node Embeddings
 Technical University of Munich, Germany
- 2018-ICML-Adversarial Attack on Graph Structured Data 1. Georgia Institute of Technology
 - 2. Ant Financial
- 2018-AAMAS-Adversarial Classification on Social Networks

Main Contribution:

- The first study of adversarial attacks on attributed graphs;
- Implement attacks at test time and poisoning / causative attacks at training phase
- The attacks are transferable.

Main Content:

adversarial attacks against node classification tasks

Node classification:

Semi-supervised task

Let G = (A, X) be an attributed graph: the adjacency matrix $A \in \{0,1\}^{N\times N}$ and node's features matrix $X \in \{0,1\}^{N\times D}$

Classification algorithm:

$$Z = f_{\theta}(A, X) = \operatorname{softmax} \left(\hat{A} \sigma \left(\hat{A} X W^{(1)} \right) W^{(2)} \right)$$

Attack model:

Attack goal

Original graph $G^{(0)} = (A^{(0)}, X^{(0)})$ $\xrightarrow{\text{perturbations}}$ Adversarial graph G' = (A', X')

Change X⁽⁰⁾
Feature attacks

Attack model:

Target vs. Attackers.

Attack a specific target node v_0 , aim to change v_0 's prediction.

- 1. Perturb v₀
- 2. Change other nodes

Unnoticeable Perturbations:

Difficulties

- (i) The graph structure is discrete preventing to use infinitesimal small changes
- (ii) Sufficiently large graphs are not suitable for visual inspection

Solution

Core idea is to allow only those perturbations that preserve specific inherent properties for the input graph

Degree distribution

Feature statistics preserving

Experiments

Dataset

Dataset	N _{LCC}	ELCC	
Cora-ML 23	2,810	7,981	
CITESEER 30	2,110	3,757	
Pol. Blogs 1	1,222	16,714	

Attacks on the surrogate model

- (1) Nettack Nettack-In
- (2) FGSM
- (3) RND

Transferability of attacks

- (1) Evasion vs. Poisoning Attack
- (2) Base model: GCN 、CLN and unsupervised model DeepWalk
- (3) Limited Knowledge

Partial results

Adversarial Attack on Graph Structured Data

Main Contribution:

- First propose a RL based attack, while only requiring prediction labels.
- Propose attack based on GA and gradient descent where additional prediction confidence or gradients are available.

Main Content:

Attack model:

Attacker's goal

Attack a specific target node v_0 , aim to change v_0 's prediction.

- (1) Add edges
- (2) Delete edges

$$\max_{\tilde{G}} \quad \mathbb{I}(f(\tilde{G},c) \neq y)$$

s.t.
$$\tilde{G} = g(f,(G,c,y))$$

 $\mathcal{I}(G,\tilde{G},c) = 1.$

Equivalency indicator

$$\mathcal{I}(G,\tilde{G},c) = \mathbb{I}(f^*(G,c) = f^*(\tilde{G},c))$$

Small modifications

$$\mathcal{I}(G, \tilde{G}, c) = \mathbb{I}(|(E - \tilde{E}) \cup (\tilde{E} - E)| < m)$$
$$\cdot \mathbb{I}(\tilde{E} \subseteq \mathcal{N}(G, b))).$$

Base attack model

Figure 2. Illustration of graph structure gradient attack. This white-box attack adds/deletes the edges with maximum gradient (with respect to α) magnitudes.

Gradient-based white box attack

Figure 3. Illustration of attack using genetic algorithm. The population evolves with selection, crossover and mutation operations. Fitness is measured by the loss function.

Genetic algorithm

Experiments

Dataset

15000 graphs generated with Erdos-Renyi random graph model

Table 3. Statistics of the graphs used for node classification.

Dataset	Nodes	Edges	Classes	Train/Test I/Test II	
Citeseer	3,327	4,732	6	120/1,000/500	
Cora	2,708	5,429	7	140/1,000/500	
Pubmed	19,717	44,338	3	60/1,000/500	
Finance	2,382,980	8,101,757	2	317,041/812/800	

Partial results

Method	Citeseer	Cora	Pubmed	Finance
(unattacked)	71.60%	81.00%	79.90%	88.67%
RBA, RandSampling	67.60%	78.50%	79.00%	87.44%
WBA, GradArgmax	63.00%	71.30%	72.4%	86.33%
PBA-C, GeneticAlg	63.70%	71.20%	72.30%	85.96%
PBA-D, RL-S2V	62.70%	71.20%	72.80%	85.43%
Exhaust	62.50%	70.70%	71.80%	85.22%