

Towards Realistic Low-resource Relation Extraction: A Benchmark with Empirical Baseline Study

Xin $Xu^{1,2*}$, Xiang Chen^{1,2*}, Ningyu Zhang^{1,2}, Xin Xie^{1,2}, Xi Chen³, Huajun Chen^{1,2} ¹Zhejiang University & AZFT Joint Lab for Knowledge Engine ²Hangzhou Innovation Center, Zhejiang University, ³Tencent

Few-shot Prompt-based Tuning Balancing Methods: Re-sampling Data and Re-weighting Loss Long-tail More Labeled Data: Data Augmentation and Self-training

LREBench (https://github.com/zjunlp/LREBench)

This paper presents an empirical study with 3 schemes to build relation extraction systems in low-resource settings:

- prompt-based methods with few-shot labeled data
- balancing methods for the long-tailed distribution issue
- data augmentation and self-training to generate more labeled in-domain data from easy-collected unlabeled data

Prompting for Few-shot Instances

- Prompt-based tuning is more beneficial in general domains than specific domains for low-resource RE
- Entity type information in prompts is helpful for low-resource RE

Balancing for Long-tailed Distribution

- Re-sampling Data
- Re-weighting Loss
- The tail relations can yield better performance on both general and domain-specific datasets with rebalancing methods (e.g., Focal Loss and LDAM Loss

	SemEval									SciERC									
Method	Few		Medium		Many		Overall			Few		Medium		Many		Overall			
	MaF1	MiF1	MaF1	MiF1	MaF1	MiF1	MaF1	MiF1		MaF1	MiF1	MaF1	MiF1	MaF1	MiF1	MaF1	MiF1		
Normal	50.42	74.58	89.53	89.02	90.17	90.59	83.40	90.01		69.98	67.78	88.05	87.52	92.98	91.93	83.27	89.01		
Re-sample	38.17	56.18	70.13	70.56	71.22	71.54	65.37	71.31		71.79	69.64	88.49	87.83	92.96	92.25	82.61	87.58		
DSC	49.80	73.87	87.84	88.00	88.97	89.52	82.19	89.00		71.57	69.90	89.94	89.51	93.51	92.88	83.09	88.91		
Focal	53.31	77.69	89.50	89.57	90.71	91.06	84.21	90.55		73.47	72.38	91.88	91.54	94.83	94.08	84.83	90.04		
GHM-C	00.00	00.00	3.39	6.27	70.42	75.81	43.79	70.99		71.34	69.28	89.42	88.82	93.90	93.33	82.95	88.81		
LDAM	53.53	79.66	88.71	88.98	90.32	90.60	83.83	90.15		72.32	70.55	88.48	87.73	94.61	93.98	83.31	89.22		

Leveraging More Instances via Data **Augmentation and Self-training**

- Data Augmentation
- Self-training
- Data augmentation is beneficial to few-shot RE and performs better in general domains than vertical domains.
- Self-training performs poorly on few-shot RE in most cases.

			Sem	Eval			TACRED-Revisit							
Method	30%			100%			30%			100%				
	Context	Entity	All	Context	Entity	All	Context	Entity	All	Context	Entity	All		
WordNet's Synonym	75.49	75.50	76.47	83.54	83.50	82.56	76.54	76.87	76.63	76.12	76.59	76.37		
TF-IDF Similarity	73.93	76.23	74.30	82.92	82.61	82.33	76.63	76.05	76.90	75.44	75.80	75.15		
Contextual Word Embedding (RoBERTa)	73.84	_	74.41	81.63	-	81.31	75.86	76.76	76.35	75.98	76.12	75.92		
KnowPrompt (RoBERTa)			69	.90		77.00								
	SciERC							ChemProt						
WordNet's Synonym	77.70	76.98	77.54	79.36	79.40	79.92	57.37	57.56	57.03	53.36	57.11	54.27		
TF-IDF Similarity	78.50	77.33	73.92	78.30	79.38	79.38	41.22	58.26	47.95	43.06	54.60	43.63		
Contextual Word Embedding (BioBERT)	76.24	73.55	74.62	75.50	77.35	76.59	56.01	53.48	56.28	45.95	53.26	46.68		
KnowPrompt (BioBERT)		.00		56.96										

Head classes

Re-sampling

Re-weighting

well-classified

Probability

Pseudo Labels Sherlock Holmes [/E1] Predict lived in [E2] London [/E2]. Student Relation? per:cities_of_residence

Datasets and Settings

- 8 benchmark RE datasets in diverse domains and with different languages
- Training without validation and hyperparameter tuning

	Metric	Fine-Tune								Prompt							
Dataset			Normal		Balance		DA	ST	1	Normal	8 .	Balance		DA	ST		
		8-shot	10%	100%	10%	100%	10%	10%	8-shot	10%	100%	10%	100%	10%	10%		
325. 22.07 21	MaF1	2.69	34.63	81.88	41.84	82.44	69.84	60.10	48.54	44.71	83.40	54.54	83.20	71.73	63.55		
SemEval	MiF1	9.70	54.61	89.10	58.26	89.44	78.98	74.12	54.55	69.90	90.01	76.53	92.31	83.54	76.81		
	MaF1	1.02	47.32	63.41	48.64	63.38	50.68	48.84	29.46	61.40	67.08	63.09	69.63	62.20	7.32		
TACREV	MiF1	1.76	65.43	71.68	67.19	73.86	65.99	66.89	30.88	77.00	78.30	76.25	81.41	76.90	32.93		
	MaF1	37.89	37.82	71.31	44.37	73.36	49.40	37.47	75.11	60.67	82.79	63.99	83.72	63.40	60.80		
Wiki80	MiF1	44.85	46.50	72.82	49.74	74.20	55.00	45.91	76.34	64.86	82.96	67.86	83.86	66.96	65.04		
	MaF1	10.41	10.31	83.41	10.11	81.17	30.09	31.48	23.26	51.71	83.27	60.55	84.83	65.98	56.94		
SciERC	MiF1	39.12	54.66	89.12	54.72	87.78	61.79	64.07	22.07	74.00	89.01	76.90	90.04	79.92	76.32		
	MaF1	2.18	27.96	47.35	33.38	47.35	36.31	30.67	6.17	36.43	47.16	38.99	47.07	37.44	33.6		
ChemProt	MiF1	8.93	49.20	68.81	54.98	68.77	56.58	54.17	8.65	56.96	69.14	57.28	69.12	58.26	53.5		
8 9	MaF1	1.13	2.17	25.31	5.84	27.28	9.74	0.00	44.96	45.51	64.49	46.22	71.73	49.47	34.7		
DialogRE	MiF1	3.92	23.37	41.52	24.53	41.24	27.40	0.00	45.70	54.16	73.66	55.65	73.52	57.53	46.5		
the municipal	MaF1	36.62	90.46	95.01	92.91	96.00	91.47	89.27	80.31	93.48	95.73	93.70	96.01	93.66	90.4		
DuIE2.0	MiF1	39.00	94.42	96.22	94.46	96.13	94.46	93.81	82.14	95.09	96.43	95.23	96.44	95.11	93.3		
	MaF1	13.68	62.30	84.37	67.22	86.31	63.82	58.46	36.54	67.59	86.42	67.84	86.68	69.95	65.7		
CMeIE	MiF1	17.05	79.82	90.48	80.43	90.56	80.14	78.92	38.02	83.38	92.08	83.40	92.14	83.71	81.2		

Findings

- Prompt-based tuning largely outperforms standard fine-tuning for RE, especially more effective in the low-resource scenario
- Though **balancing methods** obtain advancement with long-tailed distribution, they may still fail on challenging RE datasets
- Data augmentation achieves much gain on RE and even better performance than promptbased tuning
- RE systems **struggle** against difficulty in obtaining correct relations from cross-sentence contexts and among multiple triples
- Self-training with unlabeled in-domain data may not always show an advantage for lowresource RE

Xiang Chen, et al. Knowprompt: Knowledge-aware prompt-tuning with synergistic optimization for relation extraction. Proceedings of the ACM Web Conference 2022. Xu Han, et al. OpenNRE: An Open and Extensible Toolkit for Neural Relation Extraction. Proceedings of the 2019 EMNLP-IJCNLP: System Demonstrations. Xu Han, et al. PTR: Prompt Tuning with Rules for Text Classification. arXiv: 2105.11259.