Il progetto dei circuiti logici: esempi

M. Sonza Reorda

Politecnico di Torino Dip. di Automatica e Informatica

#1: Funzione booleana

Data la seguente funzione booleana, si richiede di

- Costruire la corrispondente tavola di verità
- Fornire il corrispondente circuito minimo.

$$f = a \cdot \overline{b} + \overline{a} \cdot c + b \cdot c \cdot d$$

Tavola della verità

a	b	c	d	f	a	b	c	d	f
0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	1	0	0	1	1
0	0	1	0	1	1	0	1	0	1
0	0	1	1	1	1	0	1	1	1
0	1	0	0	0	1	1	0	0	0
0	1	0	1	0	1	1	0	1	0
0	1	1	0	1	1	1	1	0	0
0	1	1	1	1	1	1	1	1	1

$$f = \overline{a} \cdot c + a \cdot \overline{b} + c \cdot d$$

Circuito

#2: Progetto di circuito combinatorio

Si vuole progettare un circuito con 4 ingressi a, b, c, d la cui uscita u valga 1 quando 8 < (abcd) < 13.

Tavola di verità

a	\boldsymbol{b}	\boldsymbol{c}	d	u
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

$$u = ab\overline{c}\overline{d} + a\overline{b}d + a\overline{b}c$$

Circuito

#3: Progetto di circuito sequenziale

- Si progetti un circuito sequenziale che gestisca un distributore (minimo) di bevande
- Il sistema possiede
 - due ingressi x1 e x2 che segnalano l'introduzione di una moneta da 25 e 10 centesimi, rispettivamente; ad ogni istante uno solo dei due ingressi può essere attivo
 - un'uscita z che segnala se le monete introdotte hanno valore superiore o uguale a 30 centesimi, e se quindi la bevanda deve essere fornita all'utente.
- Il sistema non fornisce resto.

Diagramma degli stati

 $X1=1 \Rightarrow$ introdotta una moneta da 25 ¢

 $X2=1 \Rightarrow$ introdotta una moneta da 10 ¢

 $Z = 1 \implies introdotti almeno 30 ¢$

Assegnazione degli stati

- Dal momento che il sistema ha 4 stati, sono necessari 2 flip flop
- Una possibile assegnazione degli stati è

S0: 00

S1: 01

S2: 10

S3: 11

Funzione di transizione degli stati

stato presente	ingressi	stato futuro
(y2y1)	(x1 x2)	(Y2 Y1)
00	00	00
00	01	01
00	10	11
00	11	
01	00	01
01	01	10
01	10	00
01	11	
10	00	10
10	01	00
10	10	00
10	11	
11	00	11
11	01	00
11	10	00
11	11	

Funzione di uscita

stato presente	ingressi	uscita
(y2y1)	(xI x2)	(z)
00	00	0
00	01	0
00	10	0
00	11	-
01	00	0
01	01	0
01	10	1
01	11	-
10	00	0
10	01	1
10	10	1
10	11	-
11	00	0
11	01	1
11	10	1
11	11	=

y_2 y_1 x_1 x_2	00	01	11	10
00	0	0	d	1
01	0	1	d	0
11	1	0	d	0
10	1	0	d	0

$$Y2 = \overline{x_1} \overline{x_2} y_2 + x_2 \overline{y_2} y_1 + x_1 \overline{y_2} \overline{y_1}$$

y_2 y_1 x_1 x_2	00	01	11	10
00	0	1	d	1
01	1	0	d	0
11	1	0	d	0
10	0	0	d	0

$$Y1 = \overline{x_1} \overline{x_2} y_1 + x_1 \overline{y_2} \overline{y_1} + x_2 \overline{y_2} \overline{y_1}$$

y_2 y_1 x_1 x_2	00	01	11	10
00	0	0	d	0
01	0	0	d	1
11	0	1	d	1
10	0	1	d	1

$$z = y_2 x_1 + y_2 x_2 + y_1 x_1$$

Circuito

Nota

- Il diagramma degli stati poteva essere minimizzato:
 - gli stati S2 e S3 sono equivalenti, e possono essere collassati in un solo stato
- La minimizzazione avrebbe ridotto il numero di stati da 4 a 3
- Quindi il numero di flip flop richiesti sarebbe rimasto lo stesso.

#4: Riconoscitore di permanenze

- Si progetti il circuito corrispondente a una macchina di Moore avente un ingresso X e un'uscita Z
- L'uscita Z, normalmente a 0, vale 1 se negli ultimi 2 cicli di clock l'ingresso X non è variato (0-0 oppure 1-1)
- Si ipotizzi che al reset il circuito si comporti come se l'ingresso fosse stato precedentemente stabile al valore 0.

Diagramma degli stati

Assegnazione degli stati

- Dal momento che il sistema ha 4 stati, sono necessari 2 flip flop
- Una possibile assegnazione degli stati è

Funzione di transizione degli stati

stato presente	ingresso	stato futuro
$(y_2 y_1)$	(X)	$(\boldsymbol{Y}_2 \; \boldsymbol{Y}_1)$
00	0	00
00	1	11
01	0	10
01	1	01
10	0	00
10	1	11
11	0	10
11	1	01

Funzione di uscita

stato presente	ingresso	uscita
$(y_2 y_1)$	(X)	(\mathbf{Z})
00	0	1
00	1	1
01	0	1
01	1	1
10	0	0
10	1	0
11	0	0
11	1	0

Funzione per Y₂

Funzione per Y₂

Funzione per Y₂

$$Y_2 = \overline{X}y_1 + X\overline{y_1}$$

Funzione per Y₁

Funzione per Y₁

Funzione per Y₁

$$\mathbf{Y}_1 = \mathbf{X}$$

$$\mathbf{Z} = \overline{\mathbf{y_2}}$$

Circuito

