Chapter 1 Formation of crystal

- 1.1 Quantum Mechanics and atomic structure
- 1.2 Interatomic Bonding in Solids
- 1.3 Crystal Structure
 - 1.3.1 Crystal Structure
 - 1.3.2 Typical Crystal Structures
- 1.4 Reciprocal Lattice and Brillouin Zone

Amorphous (Non-crystalline) Solid

All atoms have order only within a few atomic or molecular dimensions. --- random arrangement in a bigger size

Crystal

All atoms or molecules in the solid have a regular geometric arrangement or periodicity. --- highly ordered

Periodicity

The quality of recurring at regular intervals.

Basis

Repeatable structure units.

Lattice site

The dot representing a basis.

Lattice (Crystal lattice)

Geometric pattern of crystal structure

Barvais Lattice

- **Barvais Lattice:** all points of the lattice is identical.
- For a crystal,
 - ** Bravais lattice: the geometric pattern of basis' arrangement.
 - * Lattice point: the dot representing a basis.

Bravais basis crystal lattice

- **Bravais lattice only summarizes the geometry of crystals, regardless of what the actual units may be.**
- ***** The basis consists of the atoms, their spaces and bond angles.

How to analyze a honeycomb lattice?

Honeycomb Lattice (Graphite or BN layer)

Bravais lattice

The geometric pattern of basis' arrangement. All points of the lattice is identical.

Primitive vectors 基矢, position vectors 格矢

$$\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2$$

$$\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$$

Primitive unit cell

A set of shortest vectors making the unit cell with a smallest volume

Conventional unit cell

A set of vectors making the unit cell with a highest symmetry

$$\mathbf{a}_1 = \frac{1}{2}a(\mathbf{j} + \mathbf{k}), \mathbf{a}_2 = \frac{1}{2}a(\mathbf{k} + \mathbf{i}), \mathbf{a}_3 = \frac{1}{2}a(\mathbf{i} + \mathbf{j})$$

$$\mathbf{a_1} = \frac{1}{2}a(\mathbf{j} + \mathbf{k} - \mathbf{i}), \mathbf{a_2} = \frac{1}{2}a(\mathbf{k} + \mathbf{i} - \mathbf{j}), \mathbf{a_3} = \frac{1}{2}a(\mathbf{i} + \mathbf{j} -)\mathbf{k}$$

Preface

Three Typical Cubic Structures

Important Parameters in Crystal Structure

- **♦ Number of atoms per unit cell (n): The number of atoms in a unit cell.**
- **♦ The number of nearest neighbours, or Coordination Number (CN): The number of atoms closest to a given atom.**
- **Atomic Packing Factor (APF):** The fraction of the volume of a unit cell that is occupied by "hard sphere" atoms or ions. $AFP = \frac{volume\ of\ atoms\ in\ unit\ cell}{volume\ of\ unit\ cell}$

Atomic Radius: The radius of the "hard sphere".

1. Body-centred Cube (BCC)

$$n = \frac{1}{8} \times 8 + 1 = 2$$

CN: 8

Close-packed plane: {110};

Close-packed direction: <111>

Atomic radius: $\frac{\sqrt{3}}{4}a$

APF:

$$K = \frac{nV_0}{V} = \frac{2\sqrt{3}\pi a^3}{16} \cdot \frac{1}{a^3} = \frac{\sqrt{3}\pi}{8} \approx 0.68$$

Example: α-Fe, Cr, W, Mo, V

2. Face-centred Cube (FCC)

n: 4

CN: 12

Close-packed plane: {111}

Close-packed direction: <110>

Atomic radius: $\frac{\sqrt{2}}{4}a$

APF: $K = \frac{4 \times \frac{4}{3} \pi (\frac{\sqrt{2}}{4} a)^3}{a^3} = 0.74$

Example: γ -Fe, Cu, Al, Ag, Au,

Pb. Ni

3. Hexagonal Close-Packed Structure (HCP)

a=b, $\alpha=120$, c=1.633a

Example: He, Be, Mg, Ti, Zn, Cd, Co, Y, Zr, Gd, Re...

n, CN, APF, lattice type?

SUMMARY

Structure	a vs. r	n	CN	APF	Examples
SC	a = 2r	1	6	0.52	P,a-Mn
BCC	$a = \frac{4}{\sqrt{3}}r$	2	8	0.68	α-Fe, Ti, W, Mo, Nb, K, Na, V, Zr, Cr
FCC	$a = \frac{4}{\sqrt{2}}r$	4	12	0.74	y-Fe, Cu, Au, Pt, Ag, Pb,Ni
НСР	$a = 2r$ $c / a \approx 1.633$	6	12	0.74	Mg, Zn, Be, Co, Zr, Cd

Semiconductor's structure

1. Diamond Structure

The diamond lattice (formed by the carbon atoms) consists of two interpenetrating face-centered cubic Bravais lattices, displaced along the body diagonal of the cubic cell by one quarter the length of the diagonal.

Basis: two identical atoms at

$$000; \frac{1}{4} \frac{1}{4} \frac{1}{4}$$

Lattice type and basis?

2.Zinc Blende Structure (ZnS)

Zinc Blende has equal numbers of zinc and sulfur ions distribute on a diamond lattice or is the FCC arrays of S and Zn interpenetrating eatch other.

lattice? Basis?

3. Comparison Between Diamond and ZnS

Diamond

Zinc Blende (Cubic Zinc Sulfide)

Summary

Crystal Structure	CN	Atoms/per unit cell	APF	Examples
Diamond	4	8	0.34	Diamond, Ge, Si,α-Sn
Zinc blende	4	8	0.34	ZnS, GaAs, GaSb, InAs, InSb

Ionic Crystals' Structure

- **❖** In an ionic crystal, the cations and anions are held together by electrostatic forces, thus forming an ionic bond.
- ***** The ions has a full shell structure, thus tend to close-packed.

Transfer electrons!

1.Cesium Chloride Structure (CsCl)

A simple cubic Bravias lattice with a basis consisting of a cesium and a chlorine ion at the points of corners and body centered cubic lattice respectively.

Number of atoms per unit cell?

Rock Salt Structure (NaCl)

A face-centered-cubic Bravais lattice with a basis consisting of a sodium ion at 000 and chlorine ion at $\frac{1}{2}\frac{1}{2}\frac{1}{2}$.

CN? number of atoms per unit cell?

Perovskite Structure (CaTiO₃)

Perovskite structure is composed by five simple cubes of Ba, Ti, O_I , O_{II} and O_{III} .

Typical materials: BaTiO₃, PbZrO₃, LiNbO₃, LiTaO₃...

Summary of Some Common Ionic Crystal Structures

Structure name	Structure type	Lattice	CN Cation anion		Examples
Rock salt (NaCl)	AX	FCC	6	6	NaCl, MgO, FeO
Cesium chloride	AX	Simple cubic	8	8	CeCl
Zinc blende	AX	FCC	4	4	ZnS, SiC
Perovskite	ABX ₃	Simple cubic	12(A)6(B), 6		BaTiO ₃ , SrZrO ₃
Spinel	AB ₂ X ₄	FCC	4(A)6(B	8), 4	MgAl ₂ O ₄ , FeAl ₂ O ₄

Metals

- **★**Cubic (SC, FCC, BCC)
- **★** Hexagonal Closed-Packed Structure (HCP)

Semiconductor

- **★ Diamond Structure (Si, C, Ge)**
- **★ Zinc Blende (ZnS)**

Ceramics

- **★ Cesium Chloride Structure (CsCl)**
- *Sodium Chloride Structure (NaCl)—rock salt structure
- **★** Perovskite Structure (CaTiO₃)