Natural Language Processing #L8

Latent Semantic Analysis

袁彩霞

yuancx@bupt.edu.cn

人工智能学院智能科学与技术中心

Outline

- The problem
- Motivation
- LSA algorithm
- Probablistic LSA
- Latent Dirichlet Allocation
- Discussions

- 文本表示:
 - 向量空间方法:
 - 基于共现关系, 得到词条文档矩阵
 - 理论上假设词条之间统计独立,即文本是由词构成的词集合(词袋,bag-of-words)
 - 每个文档都被表示为一个向量(行)

$$egin{pmatrix} a_{11} & a_{12} & ... & ... & a_{1M} \ a_{21} & a_{22} & ... & ... & a_{2M} \ ... & ... & ... & ... \ a_{N1} & a_{N2} & ... & ... & a_{NM} \end{pmatrix}$$

» aik: 词条k在文档i中的权重

- E.g., 早期的信息检索(1980s)
 - 给定一个document集合,检索与给定query相关的文档
 - document中的词条与 query中的词条相匹配
 - 采用Cosine来度量两个向量(query 和 documents)的距离:
 - 小的夹角 > 大的cosine值 > 相关

• 大的夹角 > 小的cosine值 > 不相关

- 向量空间模型的两个问题:
 - 同义词 (Synonymy): e.g. car, automobile
 - $sim(d, q) < cos(\angle(d, q))$
 - 导致较低的召回率
 - 多义词(Polysemy): e.g. model, python, chip, bank
 - $sim(d, q) > cos(\angle(d, q))$
 - 导致较低的准确率
- Why?
 - Meanings/Concepts/Topics和words之间没有关 联!

- Example: Vector Space Model
 - (from Lillian Lee)

Synonymy

Will have small cosine

but are related

Polysemy

Will have large cosine

but not truly related

- Solution: 采用隐藏的潜在概念表示 documents (和queries)
- 潜在语义索引(Latent Semantic Indexing, LSI)
 - 最早为信息检索任务提出
 - T. Landauer, P. Foltz & S. Dumais, et al., in the 1990s, at the Univ. of Colorado
 - Latent "present but not evident, hidden"
 - Semantic "meaning"

Some History

- The first papers about LSI
 - <u>Dumais, S. T.</u>, Furnas, G. W., Landauer, T. K. and Deerwester, S. (1988),
 "Using latent semantic analysis to improve information retrieval." In
 Proceedings of CHI'88: Conference on Human Factors in Computing,
 New York: ACM, 281-285.
 - Deerwester, S., Dumais, S. T., Landauer, T. K., Furnas, G. W. and Harshman, R.A. (1990) "Indexing by latent semantic analysis." Journal of the Society for Information Science, 41(6), 391-407.
 - Foltz, P. W. (1990) "Using Latent Semantic Indexing for Information Filtering". In R. B. Allen (Ed.) Proceedings of the Conferential

Information Systems, Cambridge, MA, 40-47.

– ...

Motivation

- 词条间的深层关系:
 - 不单单是邻接次数
 - 或者上下文中的共现次数
- 词条与上下文之间存在互相约束
- 如何捕捉这种约束?
 - 词条的上下文可替换性(contextual substitutability): 词条A作为词条B在同一个上下文中使用的可能性
 - E.g., Doctor, nurse, patient, bedside

Latent Semantic Indexing

- LSI 通过词条在文档中的共现关系,找到词条的 "hidden meaning"
- LSI 将词条和文档映射到潜在语义空间 "latent semantic space"
- 在潜在语义空间中,同义词的相似性可以更好地体现

LSA vs. LSI

- But first:
- What is the difference between LSI and LSA?
 - LSI refers to using this technique for indexing, or information retrieval.
 - LSA refers to using it for everything else.
 - It's the same technique, just different applications.

LSA Algorithm

- LSA is based on 3 steps:
 - 1) represent the text as a word × document matrix (word vectors are represented as rows with their frequency marked on each cell)
 - 2) Transform the cell entries by weighting them with a function expressing word importance and information rate
 - 3) Apply singular values decomposition to the matrix to reduce the dimensions of the vectors

Step 1: Representing the text as a matrix

$$\begin{pmatrix} a_{11} & a_{12} & \dots & \dots & a_{1M} \\ a_{21} & a_{22} & \dots & \dots & a_{2M} \\ \dots & \dots & \dots & \dots \\ a_{N1} & a_{N2} & \dots & \dots & a_{NM} \end{pmatrix}$$

- Columns are words
- Rows are documents (or other context in which words occur)
- Cells contain the frequency with which the words appear in the documents

Step 2: Data transformation

- Weighting the terms, e.g.,
 - The word frequency in each cell is converted to its log
 - The entropy of each word is computed as plogp over all entries in its column
 - Each cell entry is divided by the column entropy value
 - This transformation weights each word-type occurrence by estimating its importance in the passage

A 100 millionth of a typical term-document matrix

Step 3: Singular Value Decomposition

 The document-word matrix A is decomposed into the product of 3 other matrices

$$A = U\Sigma V'$$

- U, V' are orthonormal matrices
 - an orthogonal matrix is a square matrix with real entries whose columns and rows are orthogonal unit vectors (i.e., orthonormal vectors)
- Σ = diagonal matrix containing singular values ordered by size
 - Has non-zero entries on one of its main diagonals
 - The values of the main diagonal of Σ after SVD are called singular values of A and they are ordered from greatest to least along the main diagonal of Σ

Step 3: Singular Value Decomposition

 The document-word matrix A is decomposed into the product of 3 other matrices

$$A = U\Sigma V'$$

$$A_{n\times m} = U_{n\times n}\Sigma_{n\times m}V'_{m\times m}$$

• Keep only k eigenvalues from Σ , we get a *low-rank approximation* of A:

$$A_{n\times m} = U_{n\times k} \Sigma_{k\times k} V'_{k\times m}$$

ullet Convert terms and documents to points in k -dimensional space

Step 3: Singular Value Decomposition

 For an arbitrary matrix A there exists a factorization (singular value decomposition, SVD) as follows

$$A = U\Sigma V' \in \mathbb{R}^{n\times m}$$

Where

(i)
$$\mathbf{U} \in \mathbb{R}^{n \times k}$$
 $\mathbf{\Sigma} \in \mathbb{R}^{k \times k}$ $\mathbf{V} \in \mathbb{R}^{m \times k}$ (ii) $\mathbf{U}'\mathbf{U} = \mathbf{I}$ $\mathbf{V}'\mathbf{V} = \mathbf{I}$ orthonormal columns (iii) $\mathbf{\Sigma} = \operatorname{diag}(\sigma_1, \dots, \sigma_k), \ \sigma_i \geq \sigma_{i+1}$ singular values (ordered)

LSA decomposition via SVD

More on SVD

• SVD

- tool for dimension reduction
- similarity measure based on co-occurrence
- finds optimal projection into low-dimensional space
- can be viewed as a method for rotating the axes in ndimensional space, so that the first axis runs along the direction of the largest variation among the documents
 - the second dimension runs along the direction with the second largest variation
 - and so on
- generalized least-squares method

Technical Memo Titles

- c1: Human machine interface for ABC computer applications
- c2: A survey of user opinion of computer system response time
- c3: The EPS user interface management system
- c4: System and human system engineering testing of EPS
- c5: Relation of *user* perceived *response time* to error measurement
- m1: The generation of random, binary, ordered trees
- m2: The intersection graph of paths in trees
- m3: Graph minors IV: Widths of trees and well-quasi-ordering
- m4: *Graph minors*: A *survey*

	c1	c2	c3	c4	c5	m1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

Compute Spearman correlation coefficient:

 \underline{r} (human, user) = -0.38, \underline{r} (human, minors) = 0.29

Singular Value Decomposition

$$A = U\Sigma V'$$

- Selecting the k largest singular values, and corresponding singular vectors from U and V, you get the rank k approximation to A with the smallest error (Frobenius norm).
- Dimension Reduction

$$\tilde{A} = \tilde{U}\tilde{\Sigma}\tilde{V}'$$

• *U*=

0.22	-0.11	0.29	-0.41	-0.11	-0.34	0.52	-0.06	-0.41
0.20	-0.07	0.14	-0.55	0.28	0.50	-0.07	-0.01	-0.11
0.24	0.04	-0.16	-0.59	-0.11	-0.25	-0.30	0.06	0.49
0.40	0.06	-0.34	0.10	0.33	0.38	0.00	0.00	0.01
0.64	-0.17	0.36	0.33	-0.16	-0.21	-0.17	0.03	0.27
0.27	0.11	-0.43	0.07	0.08	-0.17	0.28	-0.02	-0.05
0.27	0.11	-0.43	0.07	0.08	-0.17	0.28	-0.02	-0.05
0.30	-0.14	0.33	0.19	0.11	0.27	0.03	-0.02	-0.17
0.21	0.27	-0.18	-0.03	-0.54	0.08	-0.47	-0.04	-0.58
0.01	0.49	0.23	0.03	0.59	-0.39	-0.29	0.25	-0.23
0.04	0.62	0.22	0.00	-0.07	0.11	0.16	-0.68	0.23
0.03	0.45	0.14	-0.01	-0.30	0.28	0.34	0.68	0.18

 \bullet Σ =

0.20	0.61	0.46	0.54	0.28	0.00	0.01	0.02	0.08
-0.06	0.17	-0.13	-0.23	0.11	0.19	0.44	0.62	0.53
0.11	-0.50	0.21	0.57	-0.51	0.10	0.19	0.25	0.08
-0.95	-0.03	0.04	0.27	0.15	0.02	0.02	0.01	-0.03
0.05	-0.21	0.38	-0.21	0.33	0.39	0.35	0.15	-0.60
-0.08	-0.26	0.72	-0.37	0.03	-0.30	-0.21	0.00	0.36
0.18	-0.43	-0.24	0.26	0.67	-0.34	-0.15	0.25	0.04
-0.01	0.05	0.01	-0.02	-0.06	0.45	-0.76	0.45	-0.07
-0.06	0.24	0.02	-0.08	-0.26	-0.62	0.02	0.52	-0.45

	c1	c2	c3	c4	c5	m1	m2	m3	m4
human	0.16	0.40	0.38	0.47	0.18	-0.05	-0.12	-0.16	-0.09
interface	0.14	0.37	0.33	0.40	0.16	-0.03	-0.07	-0.10	-0.04
computer	0.15	0.51	0.36	0.41	0.24	0.02	0.06	0.09	0.12
user	0.26	0.84	0.61	0.70	0.39	0.03	0.08	0.12	0.19
system	0.45	1.23	1.05	1.27	0.56	-0.07	-0.15	-0.21	-0.05
response	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
time	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
EPS	0.22	0.55	0.51	0.63	0.24	-0.07	-0.14	-0.20	-0.11
survey	0.10	0.53	0.23	0.21	0.27	0.14	0.31	0.44	0.42
trees	-0.06	0.23	-0.14	-0.27	0.14	0.24	0.55	0.77	0.66
graph	-0.06	0.34	-0.15	-0.30	0.20	0.31	0.69	0.98	0.85
minors	-0.04	0.25	-0.10	-0.21	0.15	0.22	0.50	0.71	0.62

 \underline{r} (human, user) = 0.94, \underline{r} (human, minors) = -0.83

LSA Titles example:

Correlations between titles in raw data

	c1	c2	c3	c4	<i>c</i> 5	m1	<i>m</i> 2	т3
c2	-0.19							
c 3	0.00	0.00						
c4	0.00	0.00	0.47					
c5	-0.33	0.58	0.00	-0.31				
m1	-0.17	-0.30	-0.21	-0.16	-0.17			
m2	-0.26	-0.45	-0.32	-0.24	-0.26	0.67		
m3	-0.33	-0.58	-0.41	-0.31	-0.33	0.52	0.77	
m4	-0.33	-0.19	-0.41	-0.31	-0.33	-0.17	0.26	0.56

0.02	
-0.30	0.44

Correlations in first-two dimension space

c2	0.91							
c3	1.00	0.91						
c4	1.00	0.88	1.00					
c5	0.85	0.99	0.85	0.81				
m1	-0.85	-0.56	-0.85	-0.88	-0.45			
m2	-0.85	-0.56	-0.85	-0.88	-0.44	1.00		
m3	-0.85	-0.56	-0.85	-0.88	-0.44	1.00	1.00	
m4	-0.81	-0.50	-0.81	-0.84	-0.37	1.00	1.00	1.00

0.92	
-0.72	1.00

Fundamental Comparison Quantities from the SVD Model

- Comparing Two Terms: the dot product between two row vectors of *U* reflects the extent to which two terms have a similar pattern of occurrence across the set of document.
- Comparing Two Documents: dot product between two column vectors of V
- Comparing a query and a Document: view query as a mini document, and compare it to your documents in the concept space.

- LSI puts documents together even if they don't have common words if
 - The docs share frequently co-occurring terms

- Disadvantages:
 - Statistical foundation is missing
 - Context of terms is not taken into account (BOW)
 - Direction in latent space are hard to interpret

Some Issues

- SVD Algorithm complexity O(n²k³)
 - n = number of terms
 - k = number of dimensions in semantic space (typically small ~50 to 350)
 - for stable document collection, only have to run once
 - dynamic document collections: might need to rerun
 SVD, but can also "fold in" new documents

- Some issues
 - SVD assumes normally distributed data
 - term occurrence is not normally distributed (泊松分布)
 - matrix entries are weights, not counts, which may be normally distributed even when counts are not

Some issues

- Finding optimal dimension for semantic space
 - precision-recall improve as dimension is increased until hits optimal, then slowly decreases until it hits standard vector model
 - run SVD once with big dimension, say k = 1000
 - then can test dimensions <= k</p>
 - in many tasks 150-350 works well, still room for research

- Has proved to be a valuable tool in many areas of NLP as well as IR
 - summarization
 - cross-language IR
 - topics segmentation
 - text classification
 - question answering
 - And more.....

Solves synonymy, but does not solve polysemy

Summary

- Ongoing research and extensions include
 - Probabilistic LSA (Hofmann)
 - Iterative Scaling (Ando and Lee)
 - Psychology
 - model of semantic knowledge representation
 - model of semantic word learning

Outline

- LSA algorithm
- Probablistic LSA
- Latent Dirichlet Allocation
- Discussions

probabilistic Latent Semantic Analysis

- pLSA evolved from Latent semantic analysis, adding a sounder probabilistic model
- It was introduced in 1999 by Thomas Hofmann (UAI'99)
- It is an aspect model
- It is related to non-negative matrix factorization (NMF)

probabilistic Latent Semantic Analysis

Motivation

- Documents are not related to a single cluster (i.e. aspect)
 - For each z, P(z|d) defines a specific mixture of factors
 - This offers more flexibility, and produces effective modeling
- Latent Variable model for general co-occurrence data
 - Associate each observation (w, d) with a class variable z $\in Z\{z_1,...,z_K\}$

Probabilities and Bayes rule

To get the joint probability model

$$P(d, w) = P(d)P(w|d)$$
$$= P(d)\sum_{z}P(w|z)P(z|d)$$

- (d, w) assumed to be independent
- Each word token associated with hidden variable

or

$$P(d, w) = \sum_{z} P(w|z) P(d|z) P(z)$$

which will lead to different inference process

Graphic model

- Nodes are random variables
- Edges denote possible dependence
- Observed variables are shaded
- Plate denote replicated structure

Graphic model of pLSA

- P(z|d) is shared by all words in a document
- P(w|z) is shared by all documents in collection
- It is possible to derive the equations for computing these parameters by Maximum Likelihood

Maximum Likelihood

 The log likelihood of this model is the log probability of the entire collection:

$$\mathcal{L} = \sum_{i=1}^{N} \sum_{j=1}^{M} n(d_i, w_j) \log P(d_i, w_j)$$

$$= \sum_{i=1}^{N} n(d_i) \left[\log P(d_i) + \sum_{j=1}^{M} \frac{n(d_i, w_j)}{n(d_i)} \log \sum_{k=1}^{K} P(w_j | z_k) P(z_k | d_i) \right]$$

• Which is to be maximized w.r.t. parameters P(z|d) and also P(w|z), subject to the constraints that $\sum_{j=1,...,n} P(w_j|z) = 1$ and $\sum_{k=1,...,K} P(z_k|d) = 1$

Maximum Likelihood

• Define ϕ_{kj} a distribution of word w_j on topic z_k

$$P(w_j|z_k) = \phi_{k,j}, \quad \sum_{w_j \in \mathcal{V}} \phi_{k,j} = 1$$

• And define θ_{ik} a distribution of topic z_k on document d_i

$$P(z_k|d_i) = \theta_{i,k}, \quad \sum_{z_k \in \mathcal{Z}} \theta_{i,k} = 1$$

Two sets of parameters,

$$egin{aligned} \Phi &= [\phi_1, \cdots, \phi_K], \quad z_k \in \mathcal{Z} \ \Theta &= [\theta_i, \cdots, \theta_N], \quad d_i \in \mathcal{D} \end{aligned}$$

Maximum Likelihood

Then the log likelihood is

$$\begin{split} \ell(\Phi,\Theta) &= \sum_{i=1}^{N} \sum_{j=1}^{M} n(d_i, w_j) \log P(d_i, w_j) \\ &= \sum_{i=1}^{N} n(d_i) \left(\log P(d_i) + \sum_{j=1}^{M} \frac{n(d_i, w_j)}{n(d_i)} \log \sum_{k=1}^{K} P(w_j | z_k) P(z_k | d_i) \right) \\ &= \sum_{i=1}^{N} n(d_i) \left(\log P(d_i) + \sum_{j=1}^{M} \frac{n(d_i, w_j)}{n(d_i)} \log \sum_{k=1}^{K} \phi_{k,j} \theta_{i,k} \right) \end{split}$$

Recall: Expectation Maximization (EM)

 It is a process of iteration which consists of Expectation step and Maximization step with latent variables

E-Step

 Expectation step where expectation of the likelihood function is calculated with the current parameter values

• M-Step

- Update the parameters with the calculated posterior probabilities
- Find the parameters that maximizes the likelihood function

E Step

• For E step, simply using Bayes Rule, we can obtain $P(z_k, d_i, w_i)$

$$\begin{split} P(z_{k}|d_{i},w_{j}) &= \frac{P(z_{k},d_{i},w_{j})}{\sum_{l=1}^{K}P(z_{l},d_{i},w_{j})} \\ &= \frac{P(w_{j}|d_{i},z_{k})P(z_{k}|d_{i})P(d_{i})}{\sum_{l=1}^{K}(P(w_{j}|d_{i},z_{l})P(z_{l}|d_{i})P(d_{i}))} \\ &= \frac{P(w_{j}|z_{k})P(z_{k}|d_{i})}{\sum_{l=1}^{K}P(w_{j}|z_{l})P(z_{l}|d_{i})} \\ &= \frac{\phi_{k,j}\theta_{i,k}}{\sum_{l=1}^{K}\phi_{l,j}\theta_{i,l}} \end{split}$$

Then,

$$\ell = \sum_{i=1}^{N} \sum_{j=1}^{M} n(d_i, w_j) \sum_{k=1}^{K} P(z_k | d_i, w_j) \log[\phi_{k,j} \theta_{i,k}]$$

M Step

For M-step, we need to maximize L

$$\ell = \sum_{i=1}^{N} \sum_{j=1}^{M} n(d_i, w_j) \sum_{k=1}^{K} P(z_k | d_i, w_j) \log[\phi_{k,j} \theta_{i,k}]$$

which needs to be incorporated with other constraints:

$$\sum_{j=1}^{M} \phi_{k,j} = 1$$
 $\sum_{k=1}^{K} heta_{i,k} = 1$

By introducing Lagrange factors:

$$\mathcal{H} = \mathcal{L}^c + \sum_{k=1}^K au_k \left(1 - \sum_{j=1}^M \phi_{k,j}
ight) + \sum_{i=1}^N
ho_i \left(1 - \sum_{k=1}^K heta_{i,k}
ight)$$

M Step

Let all derivatives equal 0,

$$egin{aligned} \sum_{i=1}^N n(d_i,w_j) P(z_k|d_i,w_j) - au_k \phi_{k,j} &= 0, \quad 1 \leq j \leq M, 1 \leq k \leq K \ \\ \sum_{j=1}^M n(d_i,w_j) P(z_k|d_i,w_j) -
ho_i heta_{i,k} &= 0, \quad 1 \leq i \leq N, 1 \leq k \leq K \end{aligned}$$

Finally we get:

$$\phi_{k,j} = rac{\sum_{i=1}^{N} n(d_i,w_j) P(z_k|d_i,w_j)}{\sum_{m=1}^{M} \sum_{i=1}^{N} n(d_i,w_m) P(z_k|d_i,w_m)} \ heta_{i,k} = rac{\sum_{j=1}^{M} n(d_i,w_j) P(z_k|d_i,w_j)}{n(d_i)}$$

Comparing pLSA and LSA

- LSA and PLSA perform dimensionality reduction
 - In LSA, by keeping only K singular values
 - In pLSA, by having K aspects
- Comparison to SVD
 - U Matrix related to P(d|z) (doc to aspect)
 - V Matrix related to P(z|w) (aspect to term)
 - E Matrix related to P(z) (aspect strength)
- The main difference is the way the approximation is done
 - pLSA generates a model (aspect model) and maximizes its predictive power
 - Selecting the proper value of K is heuristic in LSA
 - Model selection in statistics can determine optimal K in pLSA

 The performance of a retrieval system based on this model (PLSI) was found superior to that of both the vector space based similarity (cos) and a nonprobabilistic latent semantic indexing (LSI) method. (From Th. Hofmann, 2000)

variations of pLSA

- Hierarchical extensions:
 - Asymmetric: MASHA ("Multinomial Asymmetric Hierarchical Analysis")
 - Symmetric: HPLSA ("Hierarchical Probabilistic Latent Semantic Analysis")
- Manifold regularizer:
 - Probabilistic Dyadic Data Analysis with Local and Global Consistency
- Generative models:
 - Latent Dirichlet allocation adds a Dirichlet prior on the perdocument topic distribution, trying to address an often-criticized shortcoming of PLSA, namely that it is not a proper generative model for new documents and at the same time avoid the overfitting problem.

• Handouts:

- "Text representation and text modeling"
- LDA and its mathematics