信号与系统重要公式总结

一、信号抽样与复原系统

f(t)为非周期带限信号, $F(\omega)$ 、 ω_m ,冲击序列 $p(t)=\sum_{s=0}^{+\infty}\delta(t-nullet T_s)$

抽样信号
$$f_s(t) = f(t) \bullet p(t) = \sum_{n=-\infty}^{+\infty} f(n \bullet T_s) \bullet \delta(t - n \bullet T_s)$$
 $F_s(\omega) = \frac{1}{T_s} \sum_{n=-\infty}^{+\infty} F(\omega - n \bullet \omega_s) \begin{cases} \omega_s = \frac{2\pi}{T_s} \\ \omega_s \ge 2\omega_m \end{cases}$

「再经滤波器 $H(j\omega)=|H(j\omega)| \bullet e^{j\cdot \varphi_H(\omega)}$ 得到输出信号 $y(t),|Y(j\omega)|=|F_s(\omega)| \bullet |H(j\omega)|$,

 $\varphi_{Y}(\omega) = \varphi_{F_{s}}(\omega) + \varphi_{H}(\omega)$,输出信号y(t):要注意是原始信号x(t)本身有相移,还是滤波器有相移,往往把相移等效在滤波器上。

$$E \bullet G_{\tau}(t) \leftrightarrow (E\tau) \bullet Sa\left(\frac{\tau}{2} \cdot \omega\right)$$
、 $A \bullet Sa(B \cdot t) \leftrightarrow \left(\pi \bullet \frac{A}{B}\right) \bullet G_{2B}(\omega)$; 波形对称相似性

$$e^{j\omega_0 t} \leftrightarrow 2\pi \bullet \delta(\omega - \omega_0)$$
【左上】、 $e^{-j\omega_0 t} \leftrightarrow 2\pi \bullet \delta(\omega + \omega_0)$ 【右上】;

$$\cos(\omega_0 t)$$
 $\leftrightarrow \pi \bullet [\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$ 【实轴:左上右上】、【相位:左右都为0】;

$$\sin(\omega_0 t) \leftrightarrow j\pi \bullet [\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$$
【虚轴:左上右下】、【相位:左 + $\frac{\pi}{2}$,右 $-\frac{\pi}{2}$ 】;

$$M \cdot \delta(t) \leftrightarrow M(\omega); M(t) \leftrightarrow 2\pi \cdot M \bullet \delta(\omega)$$

x(t)为周期信号, T_1 、 ω_1 ,当x(t)为矩形脉冲时,选取基本周期 $x_0(t) \leftrightarrow X_0(\omega)$,

傅里叶指数形式的系数
$$F_n = \frac{1}{T_1} \bullet X_0(\omega)|_{\varphi_{\omega=n\omega_1}} = \frac{1}{T_1} \bullet X_0(n\omega_1)$$

傅里叶级数指数形式:
$$x(t) = \sum_{n=-\infty}^{+\infty} F_n \bullet e^{j(n\omega_1)t} = \frac{1}{T_1} \bullet \sum_{n=-\infty}^{+\infty} X_0(n\omega_1) \bullet e^{j(n\omega_1)t};$$

傅里叶级数三角形式系数:
$$\begin{cases} F(+n) = \frac{a_n - jb_n}{2} \\ F(-n) = \frac{a_n + jb_n}{2} \end{cases} \Rightarrow \begin{cases} a_0 = F(0), & a_n = F(n) + F(-n) \\ b_n = j[F(n) - F(-n)] \end{cases};$$

周期信号
$$x(t)$$
的傅里叶变换 $X(\omega) = \frac{2\pi}{T_1} \bullet \sum_{n=-\infty}^{+\infty} X_0(n\omega_1) \bullet \delta(\omega - n\omega_1) = \omega_1 \bullet \sum_{n=-\infty}^{+\infty} X_0(n\omega_1) \bullet \delta(\omega - n\omega_1)$

区别于非周期信号
$$f(t)$$
经冲激序列得到的抽样信号 $f_s(t) \leftrightarrow F_s(\omega) = \frac{1}{T_s} \bullet \sum_{n=-\infty}^{+\infty} X(\omega - n\omega_s)$

傅里叶变换的系数[WD]、傅里叶级数的系数 $F(n\omega_1)$ 、偶频率分量的系数 a_n 、奇频率分量系数 b_n

$$x(t) \leftrightarrow [\text{BL}] \bullet F_0(\omega) \Rightarrow 2\pi \bullet \sum F(n\omega_1) \bullet \delta(\omega - n\omega_1). \quad F(n\omega_1) = \frac{[\text{BL}]}{T_1} \bullet F_0(n\omega_1). \quad F(n\omega_1) = \frac{a_n}{2} - j\frac{b_n}{2}$$

$$[\text{WD}] = 2\pi \bullet F(n\omega_1) \Rightarrow F(n\omega_1) = \frac{[\text{WD}]}{2\pi} = \frac{[\text{BL}]}{T_1}, a_n \bullet \cos(n\omega_1) = 2 \bullet F(n\omega_1) = \left(2 \bullet \frac{[\text{BL}]}{T_1}\right) \bullet \cos(n\omega_1)$$

$$f_{T_1}(t) = \frac{E \bullet \tau}{T_1} + (2 \bullet E \bullet \tau) \bullet \sum_{n=1}^{+\infty} \left[Sa\left(\frac{\tau}{2} \bullet n\omega_1\right) \bullet \cos(n\omega_1) \right]$$

 $f_{T_1}(t) = \frac{E \bullet \tau}{T_1} + (2 \bullet E \bullet \tau) \bullet \sum_{n=1}^{+\infty} \left[Sa\left(\frac{\tau}{2} \bullet n\omega_1\right) \bullet \cos(n\omega_1) \right]$ 問期矩形脉冲信号: $a_0 = \frac{E \bullet \tau}{T_1}$, $a_n = \left[2 \bullet (E \bullet \tau) \right] \bullet Sa\left(\frac{\tau}{2} \bullet n\omega_1\right)$

$$f_{T_1}(t) = 0 + U \bullet \sum_{n=1}^{+\infty} \left[Sa\left(\frac{n \bullet \pi}{2}\right) \bullet \cos(n\omega_1) \right]$$

 $f_{T_1}(t) = 0 + U \bullet \sum_{n=1}^{+\infty} \left[Sa\left(\frac{n \bullet \pi}{2}\right) \bullet \cos(n\omega_1) \right]$ 周期对称偶方波信号: $a_0 = 0$, $a_n = U \bullet Sa\left(\frac{n \bullet \pi}{2}\right)$

$$f_{T_1}(t) = 0 + \frac{U \bullet n \bullet \pi}{2} \bullet \sum_{n=1}^{+\infty} \left[Sa^2 \left(\frac{n \bullet \pi}{2} \right) \bullet \sin(n \omega_1) \right]$$

 $f_{T_1}(t) = 0 + \frac{U \bullet n \bullet \pi}{2} \bullet \sum_{n=1}^{\infty} \left[Sa^2 \left(\frac{n \bullet \pi}{2} \right) \bullet \sin(n\omega_1) \right]$ 周期对称奇方波信号: $b_0 = 0$, $b_n = U \bullet \left[\frac{n \bullet \pi}{2} \bullet Sa^2 \left(\frac{n \bullet \pi}{2} \right) \right]$

$$f_{T_1}(t) = 0 + \frac{U}{\pi} \bullet \sum_{n=1}^{+\infty} \left[\frac{(-1)^{n+1}}{n} \bullet \sin(n\omega_1) \right]$$

 $f_{T_1}(t) = 0 + \frac{U}{\pi} \bullet \sum_{n=1}^{+\infty} \left[\frac{(-1)^{n+1}}{n} \bullet \sin(n\omega_1) \right]$ 周期奇函数锯齿信号: $b_0 = 0$, $b_n = U \bullet \left(\frac{1}{n \bullet \pi} \right)$

$$f_{T_1}(t) = \frac{E}{2} + \frac{E}{\pi} \bullet \sum_{n=1}^{+\infty} \left[\frac{1}{n} \bullet \sin(n\omega_1) \right]$$

 $f_{T_1}(t) = \frac{E}{2} + \frac{E}{\pi} \bullet \sum_{n=1}^{+\infty} \left[\frac{1}{n} \bullet \sin(n\omega_1) \right]$ 周期直角形锯齿信号: $a_0 = \frac{N}{2}$, $b_0 = 0$, $b_n = N \bullet \left(\frac{1}{n \bullet \pi} \right)$

$$f_{T_1}(t) = \frac{E}{2} + E \bullet \sum_{n=1}^{+\infty} \left[Sa^2 \left(\frac{n \bullet \pi}{2} \right) \bullet \cos(n\omega_1) \right]$$

 $f_{T_1}(t) = \frac{E}{2} + E \bullet \sum_{n=1}^{+\infty} \left[Sa^2 \left(\frac{n \bullet \pi}{2} \right) \bullet \cos(n\omega_1) \right]$ 周期偶三角信号: $a_0 = \frac{E}{2}$, $a_n = E \bullet Sa^2 \left(\frac{n \bullet \pi}{2} \right)$

$$f_{T_1}(t) = 0 + \frac{2 \cdot U}{\pi} \cdot \sum_{n=1}^{+\infty} \left[\frac{\sin\left(\frac{n \cdot \pi}{2}\right)}{n} \cdot \sin(n\omega_1) \right]$$
周期奇三角信号: $a_0 = 0$, $a_n = \frac{2 \cdot U}{\pi} \cdot \left[\frac{1}{n} \cdot Sa\left(\frac{n \cdot \pi}{2}\right) \right]$

$$f_{T_1}(t) = \frac{2 \bullet E}{\pi} + \frac{4 \bullet E}{\pi} \bullet \sum_{n=1}^{+\infty} \left[\frac{(-1)^{n+1}}{(4n^2 - 1)} \bullet \cos(n\omega_1) \right]$$

 $f_{T_1}(t) = \frac{2 \bullet E}{\pi} + \frac{4 \bullet E}{\pi} \bullet \sum_{n=1}^{+\infty} \left[\frac{(-1)^{n+1}}{(4n^2 - 1)} \bullet \cos(n\omega_1) \right]$ 周期全波余弦信号: $a_0 = \frac{2 \bullet E}{\pi}$, $a_n = \frac{4 \bullet E}{\pi} \bullet \left[(-1)^{n+1} \bullet \frac{1}{4n^2 - 1} \right]$

$$f_{T_1}(t) = \frac{E}{\pi} + \frac{2 \cdot E}{\pi} \cdot \sum_{n=1}^{+\infty} \left[\frac{\cos\left(\frac{n \cdot \pi}{2}\right)}{1 - n^2} \cdot \cos(n\omega_1) \right]$$

周期半波余弦信号:
$$a_0 = \frac{E}{\pi}$$
, $a_n = \frac{2 \bullet E}{\pi} \bullet \left[\frac{1}{1 - n^2} \bullet \cos \left(\frac{n \bullet \pi}{2} \right) \right]$

二、离散差分系统、连续微分系统

带初始状态的
$$z$$
变换:
$$\begin{cases} \text{前向差分因果系统:} & \{x(n+1)\leftrightarrow z^{+1}\bullet X(z)-z^{+1}\bullet x(0) \\ x(n+2)\leftrightarrow z^{+2}\bullet X(z)-z^{+2}\bullet x(0)-z^{+1}\bullet x(1) \\ x(n-2)\leftrightarrow z^{-1}\bullet X(z)+z^{0}x(-1) \end{cases}$$
带初始状态的 s 变换: 因果系统:
$$\begin{cases} x(n-1)\leftrightarrow z^{-1}\bullet X(z)+z^{0}x(-1) \\ x(n-2)\leftrightarrow z^{-2}\bullet X(z)+z^{-1}x(-1)+z^{0}x(-2) \end{cases}$$
带初始状态的 s 变换: 因果系统:
$$\begin{cases} \frac{d[y(t)]}{dt}\leftrightarrow s^{1}\bullet Y(s)-s^{0}\bullet y(0_{-}) \\ \frac{d^{2}[y(t)]}{dt^{2}}\leftrightarrow s^{2}\bullet Y(s)-s^{1}\bullet y(0_{-})-s^{0}\bullet y'(0_{-}) \end{cases}$$

①如何使用z变换求解差分方程的全 响应?

根据题意,求出系统函数H(z),根据 $H(z) = \frac{Y(z)}{X(z)}$ 得到原始差分方程,

再对该差分方程进行带 初始状态的 z变换,再求 Y(z),带 X(z)的就是零状态响应;根据题目给出的初始状态值,迭代差分方程求 出目的初始状态,就得 到零输入响应。

②如何使用 s变换求解微分方程的全 响应?

根据题意,得到系统函数H(s),根据 $H(s) = \frac{Y(s)}{X(s)}$ 得到原始微分方程。

再对该微分方程进行带 初始状态的 z变换,再求 Y(s),带X(s)的就是零状态响应;题目往往给出 0_{-} 时刻的状态,而零输入 响应 0_{-} 等于 0_{+} 等于 0时刻的状态,也就是说,直接把题目 给的初始状态带入,就 可求出零输入响应。

三、滤波器、频响响应系统

连续时间系统:滤波器、频响响应,抓住 $H(j\omega)=|H(j\omega)| \bullet e^{j\cdot\varphi(\omega)}$;

「幅频特性: 低通、高通、带通; 余弦搬, 正弦搬

如果是求响应,那么由 $H(j\omega)$ 的表达式,根据输入信号频率 ω_0 得到 $(H(j\omega)) \bullet e^{j\cdot \varphi(\omega)})_{\diamond_{\omega=\omega_0}}$,如果是判断系统的因果性、稳定性、因果稳定性,使用H(s)零极点判断;

其中,系统的因果性可以用输入检验法,还可以有h(t)必须为因果图形进行判断;如果是判断系统是否为低通、高通、带通、带阻系统,使用 $H(j\omega)$ 的几何法,

得到 $H(j\omega)$ 的幅频特性和相频特性,再进行判断,这还不如使用 $H(j\omega)$ 的代数法呢!根据H(s)的零极点:①如果全部极点都在s域左半平面,全部零点都在s域右半平面,并且,全部极点与全部零点一一对应,关于 $s=j\omega$ 对称,那么该系统就是全通系统;

②如果全部零点都在s域左半平面或者虚轴 $j\omega$ 上,那么该网络就是最小相移系统;

离散时间系统: 稳定条件下,直接由系统函数 $H(z)|_{z=e^{j\omega}} \Rightarrow H(e^{j\omega})$, 借助 $e^{j\omega} = \cos \omega + j \sin \omega$, 如果是求响应,往往给出的离散输入信号的频率为 $\frac{\pi}{2}$ 、 π 、 $\frac{3\pi}{2}$ 等特殊值,因而容易求得响应;如果是判断系统的因果性、稳定性、因果稳定性,使用H(z)零极点判断;

其中,系统的因果性可以用输入检验法,还可以有h(n)必须为因果图形进行判断;如果是判断系统是否为低通、高通、带通、带阻系统,必须使用 $H(e^{j\omega})$ 的几何法,

得到 $H(e^{j\omega})$ 的幅频特性大致图形和相频特性大致图形,再进行判断;

根据H(z)的零极点,以及 $\ln z = s$ 的z域 $\rightarrow s$ 域的映射关系,将z域的零极点变换到s域的零极点,根据全通系统、最小相移系统的定义进行判定;

但是根据规律,如果z域的全部极点都在单位圆内,z域全部零点都在单位圆外,并且,

全部极点与全部零点一一对应,极点的半径为 R^{-1} ,零点的半径为R,

并且极点、零点都在同一射线上,那么该系统即为离散域全通系统;

如果z域全部零点都在单位圆内以及单位圆上,那么该系统即为z域最小相移系统。

滤波器专机

全通滤波器: $H_{A}(j\omega)=|1|\bullet e^{j[(-t_{0})\bullet\omega]}$,其冲激响应 $h_{A}(t)=\delta(t-t_{0})$, 全通滤波器 【差别与联系】 无失真传输

低通滤波器: $H_L(j\omega) = \left| 1 \bullet G_{2\omega_c} \right| \bullet e^{j[(-t_0) \bullet \omega]}$, 其冲激响应 $h_L(t) = \frac{\pi}{\omega_c} \bullet Sa[\omega_c \bullet (t - t_0)]$;

高通滤波器:记忆规则:全通滤波器减去低通滤波器。

$$H_H(j\omega) = \left|1 - G_{2\omega_c}\right| \bullet e^{j[(-t_0)\bullet\omega]}$$
,其沖激响应 $h_L(t) = \delta(t - t_0) - \frac{\pi}{\omega_c} \bullet Sa[\omega_c \bullet (t - t_0)]$

带通滤波器:记忆规则:低通滤波器进行余弦或正弦频谱搬移。

$$H_B(j\omega) = \left|1 \bullet G_{2\omega_c}$$
【左右频谱搬移 ω_0 】 $\bullet e^{j[(-t_0) \bullet \omega]}$,其冲激响应 $h_B(t) = \left\{\frac{\pi}{\omega_c} \bullet Sa[\omega_c \bullet (t - t_0)]\right\} \bullet \left\{\frac{\cos(\omega_0 t)}{\sin(\omega_0 t)}\right\}$

$$\begin{cases} g(t) = E \bullet G_{\tau} \leftrightarrow G(\omega) = (E \bullet \tau) \bullet Sa\left(\frac{\tau}{2} \bullet \omega\right); \\ r(t) = (E \bullet G_{\tau}) * (E \bullet G_{\tau}) \Leftrightarrow \Xi \mathbb{A} \mathcal{E} \begin{cases} \overline{\eta} \, \underline{\beta} \, \vdots (0, E^2 \bullet \tau) \\ \underline{\tau} \, \underline{\beta} \, \underline{\beta} \, \vdots (-\tau, 0), \\ \underline{\tau} \, \underline{\beta} \, \underline{\beta} \, \underline{\beta} \, \vdots (-\tau, 0), \\ \underline{\tau} \, \underline{\beta} \, \underline{\beta} \, \underline{\beta} \, \underline{\delta} \, \underline{$$

五、信号饶园系统

根据框图,求出该框图系统函数H(z),一般来说,根据零极点就可以判定系统的稳定性;

但是,考试有另外一种题型,就是连续时间系统的系统函数H(s)的分母

 $p(s) = a_0 s^3 + a_1 s^2 + a_2 s^1 + K s^0$; 即极点表达式与一个参数*K*相关,并且极点表达式p(s)

无从进行因式乘积分解,这时就要借助劳斯表对该系统的稳定性进行判定。

不过,因为考试涉及的系统为三阶、二阶系统,对于这两种系统,有更为简单的方法: 劳斯-赫尔维茨判别法:

对于三阶系统:系统函数H(s)的分母 $p(s) = a_0 s^3 + a_1 s^2 + a_2 s^1 + K s^0$,

稳定的充要条件
$$\begin{cases} a_0,\ a_1,\ a_2,\ a_3>0\\ a_1\bullet a_2-a_0\bullet a_3>0 \end{cases}$$

对于二阶系统:系统函数H(s)的分母 $p(s) = a_0 s^2 + a_1 s^1 + a_2 s^0$,稳定的充要条件: $a_0 \cdot a_1 \cdot a_2 > 0$;

对于四阶系统:系统函数H(s)的分母 $p(s) = a_0 s^4 + a_1 s^3 + a_2 s^2 + a_3 s^1 + a_4 s^0$,

稳定的充要条件
$$\begin{cases} a_{0,1,2,3,4} > 0 \\ a_1 \bullet a_2 - a_0 \bullet a_3 > 0 \\ (a_1 a_2 - a_0 a_3) \bullet a_3 - (a_1 a_4) \bullet a_1 > 0 \end{cases}$$

S城无件分析电路方法

七、傅里叶变换公式与性质

性质	时域 $f(t)$	频域 $F(\omega)$	时域频域 对应关系	
① <mark>奇偶虚实性</mark>	$f(-t)$ $f^*(t)$ $f^*(-t)$ $f(t)$ $f(t)$ 为实偶函数 $f(t)$ 为虚偶函数 $f(t)$ 为虚奇函数	$F(-\omega)$ $F^*(-\omega)$ $F^*(\omega)$ $F(\omega)$ 为实偶函数 $F(\omega)$ 为虚奇函数 $F(\omega)$ 为虚偶函数 $F(\omega)$ 为虚偶函数 $F(\omega)$ 为虚偶函数	实函数的偶分量对应 R(ω) 实函数的奇分量对应 jX(ω) 偶函数 同实虚 , 奇函数 反实虚 , 时域频域 同奇偶 。	
②尺度变换特性	f(at+b)	$\frac{1}{ a } \cdot F\left(\frac{\omega}{a}\right) \cdot e^{j\left(\omega \cdot \frac{b}{a}\right)}$	时域 <mark>压缩</mark> ,频域扩展 时域 扩展 ,频域压缩	
	f(-t)	$F(-\omega)$	反褶	
③波形对称相似性	时域波形 ${f(t) \atop F(t)}$	$F(\omega)$ $2\pi\cdot f(-\omega)$ 频域波形		
	$\begin{cases} E \bullet \left[u \left(t + \frac{\tau}{2} \right) - u \left(t - \frac{\tau}{2} \right) \right] \\ A \bullet Sa(B \cdot t) \end{cases}$	$\begin{cases} (E \cdot \tau) \bullet Sa\left(\frac{\tau}{2} \cdot \omega\right) \\ \left(\pi \cdot \frac{A}{B}\right) \bullet \left[u(\omega + B) - u(\omega - B)\right] \end{cases}$	时域波形与频域波形的对应 关系具有 <mark>对称相似特性</mark>	
④ <mark>时移特性</mark>	$f(t \pm t_0)$	$F(\omega)\cdot e^{\pm j(\omega t_0)}$ 、滤波器!	时移 同号 频移 反号	
⑤ <mark>频移特性</mark>	$f(t) \cdot e^{\mp j(\omega_0 \cdot t)}$	$F(\omega \pm \omega_0)$		
6线性性质	$f(t) = \sum_{i=1}^{n} [a_i \cdot f_i(t)]$	$F(\omega) = a_i \cdot \sum_{i=1}^n [F_i(\omega)]$	由 <u>积分的线性性质</u> 决定	
7时域微分特性	$f^{(n)}(t) = \frac{d^n[f(t)]}{dt^n}$	$F \left[f^{(n)}(t) \right] = (j\omega)^n \cdot F(\omega)$	时域 微分 n 次 频域×(jω)因式 n 次	
8 频域微分特性	$\mathbf{F}^{-1}[F^{(n)}(\omega)] = (-jt)^n \cdot f(t)$	$F^{(n)}(\omega) = \frac{d^n [F(\omega)]}{d\omega^n}$	频域 微分 n 次 时域 ×(-jt) 因式 n 次	
9时域积分特性	$\int_{-\infty}^t f(\tau) d\tau$	$\frac{F(\omega)}{j\omega} + \pi \cdot \delta(\omega) \cdot F(0)$	时域 积分<u>至 t</u>, 频域÷(jω) 因式+冲激 δ	

⑩频域积分特性	$\frac{f(t)}{-jt} + \pi \cdot \delta(t) \cdot f(0)$	$\int_{-\infty}^{\omega}F(\Omega)d\Omega$	频域 积分 至 $Ω$, 时域÷ $(-jt)$ 因式+冲激 $δ$
XI <mark>时域卷积定理</mark>	$f_1(t) * f_2(t) = \int_{-\infty}^{+\infty} f_1(\tau) \cdot f_2(t-\tau) d\tau$	$F_1(\omega)\!\cdot\!F_2(\omega)$	时域 卷积, 频域 乘积
XII <mark>频域卷积定理</mark>	$2\pi \cdot [f_1(t) \cdot f_2(t)]$	$F_1(\omega) * F_2(\omega) = \int_{-\infty}^{+\infty} F_1(\Omega) \cdot F_2(\omega - \Omega) d\Omega$	频域 <mark>卷积</mark> ,时域 <mark>乘积</mark>
XIII <mark>时域抽样定理</mark>	$\sum_{n=-\infty}^{+\infty} [f(t) \cdot \delta(t - n \cdot T_s)]$	$\frac{1}{T_s} \cdot \sum_{n=-\infty}^{+\infty} [F(\omega - n \cdot \omega_s)]$	时域 冲激抽样
XIV 频域抽样定理	$\frac{1}{\omega_s} \cdot \sum_{n=-\infty}^{+\infty} [f(t-n \cdot T_s)]$	$\sum_{n=-\infty}^{+\infty} [F(\omega) \cdot \delta(\omega - n \cdot \omega_s)]$	频域 冲激抽样
XV 相关性	$egin{cases} R_{12}(au) \ R_{21}(au) \end{cases}$	$F_1(\omega) \cdot F_2^*(\omega)$ $F_1^*(\omega) \cdot F_2(\omega)$	
XVI 自相关性	R(au)	$ F(\omega) ^2$	
XVII <mark>频谱搬移</mark>	$f(t) \bullet \cos(\omega_0 t)$	$\frac{\left[F(\omega+\omega_0)+F(\omega-\omega_0)\right]}{2}$	实轴: 余弦搬移,左右之和的一半
	$f(t) \bullet \sin(\omega_0 t)$	$\frac{j \bullet [F(\omega + \omega_0) - F(\omega - \omega_0)]}{2}$	虚轴: 正弦搬移,左右之差的一半

 $\boxed{$ 冲激信号: $\delta(t) \leftrightarrow 1(\omega)$

| 阶跃信号:
$$u(t) \leftrightarrow \frac{1}{j\omega} + \pi \bullet \delta(\omega)$$

$$\left\{ \exists$$
 角信号: $\leftrightarrow \left(\frac{E \bullet \tau}{2} \right) \bullet Sa^2 \left(\frac{\tau}{4} \bullet \omega \right) \right\}$

梯形信号:
$$\leftrightarrow \left[\frac{E \bullet (\tau + \tau_1)}{2}\right] \bullet Sa\left[\left(\frac{\tau + \tau_1}{4}\right) \bullet \omega\right] \bullet Sa\left[\left(\frac{\tau + \tau_1}{4}\right) \bullet \omega\right]$$

看边余弦信号:
$$\cos(\omega_0 \bullet t) \bullet u(t) \leftrightarrow \frac{1}{2} \bullet \pi [\delta(\omega + \omega_0) + \delta(\omega - \omega_0)] + \frac{j\omega}{\omega_0^2 - \omega^2}$$

有限长余弦信号(矩形调幅信号): $(E \bullet G_{\tau}) \bullet \cos(\omega_0 \bullet t)$,利用 $(E \bullet \tau) \bullet Sa\left(\frac{\tau}{2} \bullet \omega\right)$ 频谱余弦搬移

拉普拉斯的性质(高仿傅立叶变换)

①线性性质: L $[af_1(t)+bf_2(t)]=aF_1(s)+bF_2(s)$

②时域微分性质: $f(t) \leftrightarrow F(s)$, 则 $\frac{d}{dt}[f(t)] \leftrightarrow sF(s) - f(0_{-})$;

$$\frac{d^2}{dt^2}[f(t)] \leftrightarrow s[sF(s) - f(0_-)] - f'(0_-) = s^2F(s) - sf(0_-) - f'(0_-)$$

$$\frac{d^{2}}{dt^{2}}[f(t)] \leftrightarrow s[sF(s) - f(0_{-})] - f'(0_{-}) = s^{2}F(s) - sf(0_{-}) - f'(0_{-});$$

$$\frac{d^{3}}{dt^{3}}[f(t)] \leftrightarrow s[s[sF(s) - f(0_{-})] - f'(0_{-})] - f''(0_{-}) = s^{3}F(s) - s^{2}f^{(0)}(0_{-}) - s^{1}f^{(1)}(0_{-}) - s^{0}f^{(2)}(0_{-});$$

以此类推:
$$\frac{d^n}{dt^n}[f(t)] = s^n F(s) - s^{n-1} f^{(0)}(0_-) - s^{n-2} f^{(1)}(0_-) - s^{n-3} f^{(2)}(0_-) - \cdots - s^{n-1-k} f^{(k)}(0_-) - \cdots$$

③时域积分性质:
$$f(t) \leftrightarrow F(s)$$
, 则 $\int_{-\infty}^{t} f(\tau) d\tau \leftrightarrow \frac{F(s)}{s} + \frac{\int_{-\infty}^{0_{-}} f(\tau) d\tau}{s}$, 记作 $\frac{F(s)}{s} + \frac{f^{(-1)}(0_{-})}{s}$

④s域微分:
$$F(s) \leftrightarrow f(t)$$
, 则 $\frac{d}{dt}[F(s)] \leftrightarrow (-t)f(t)$; $\frac{d^n}{dt^n}[F(s)] \leftrightarrow (-t)^n f(t)$

⑤s域积分: $F(s) \leftrightarrow f(t)$, 则 $\int_{-\infty}^{\infty} F(\Theta) d\Theta$

⑥延时性质: $f(t) \leftrightarrow F(s)$, 则 $f(t-t_0) \cdot u(t-t_0) \leftrightarrow e^{-st_0} \cdot F(s)$, 请注意这条性质!

它只对于时域右移求单边拉普拉斯变换!这要求原来的时域函数f(t)是因果信号,

如果不是因果信号,那么拉氏变换的结果把t < 0的信号忽略掉了!

⑤复频移性质(s域移位): $F(s) \leftrightarrow f(t)$, 则 $F(s \pm s_0) \leftrightarrow e^{\mp s_0 t} \cdot f(t)$

延时性质和s域移位性质仍然符合"时减s负"、"s加时负"的傅里叶变换口诀。

⑦尺度变换:
$$f(t) \leftrightarrow F(s)$$
, 则 $f(at-b) = e^{-s \cdot \frac{b}{a}} \cdot \frac{1}{|a|} \cdot F(\frac{s}{a})$

⑧初值定理: $f(0_+) = \lim_{t \to 0} f(t) = \lim_{s \to \infty} sF(s)$, 如果f(t)包含冲激函数 $k\delta(t)$, 则 $f(0_+) = \lim_{s \to \infty} [sF(s) - ks]$

⑨终值定理: 在 $\lim_{t\to\infty} f(t)$ 确实存在的条件下,有 $\lim_{t\to 0} f(t) = \lim_{s\to 0} sF(s)$,如何判断左边极限是否存在呢?

根据sF(s)的图像(具体来说是零极点),当且仅当sF(s)在s平面第I、第III象限内(剔除原点、实轴、虚轴)。 X时域卷积定理: $f_1(t) * f_2(t) \leftrightarrow F_1(s) \cdot F_2(s)$

XI.s域卷积定理: $\frac{F_1(s)*F_2(s)}{j2\pi} \leftrightarrow f_1(t) \cdot f_2(t)$

$$\begin{cases} \delta(t) \leftrightarrow 1(s) \\ u(t) \leftrightarrow \frac{1}{s} \\ e^{(-\alpha) \bullet t} \bullet u(t) \leftrightarrow \frac{1}{s+a} \end{cases} \Rightarrow \begin{cases} \cos(\omega_0 \bullet t) \leftrightarrow \frac{s}{s^2 + \omega_0^2} \\ \sin(\omega_0 \bullet t) \leftrightarrow \frac{\omega_0}{s^2 + \omega_0^2} \end{cases} \Rightarrow \begin{cases} \left[t^n \bullet e^{(-\alpha) \bullet t} \right] \bullet u(t) \leftrightarrow \frac{n!}{(s+\alpha)^{n+1}} \\ t \bullet \cos(\omega_0 \bullet t) \leftrightarrow \frac{s^2 - \omega_0^2}{(s^2 + \omega_0^2)^2} \\ t \bullet \sin(\omega_0 \bullet t) \leftrightarrow \frac{2\omega_0 \bullet s}{(s^2 + \omega_0^2)^2} \end{cases}$$

7 7 15 144	Z 逆变换		
Z变换	z > 正数,因果序列	z <正数,反因果序列	
$\frac{z}{z-1}$	$u(n) = 1 \cdot (1)^n \cdot u(n), z > 1$	$-u(-n-1) = (-1)\cdot(1)^n \cdot u(-n-1), z < 1$	
$\frac{z}{z-a}$	$a^n u(n) = 1 \cdot (a)^n \cdot u(n), z > a$	$-a^{n}u(-n-1) = (-1)\cdot(a)^{n}\cdot u(-n-1), z < a$	
$\frac{z^2}{(z-a)^2}$	$(n+1)\cdot a^n u(n), z > a$	$-(n+1)\cdot a^n u(-n-1), z < a$	
$\frac{1\cdot z}{(z-1)^2}$	$n \cdot u(n)$, $ z > 1$,线性加权	$-n\cdot u(-n-1), z <1$	
$\frac{a \cdot z}{(z-a)^2}$	$n \cdot a^n u(n), z > a$		
1	$\delta(n)$, z 域全平面		
$z \cdot \sin \omega_0 = z^2 - 2 \cdot z \cdot \cos \omega_0 + 1$	$\sin(\omega_0 \cdot n) \cdot u(n) \cdot z > 1$		
$\frac{z \cdot (z - \cos \omega_0)}{z^2 - 2 \cdot z \cos \omega_0 + 1}$	$\cos(\omega_0 \cdot n), z > 1$		

- ①单边z变换: $Y(z) = \sum_{n=0}^{+\infty} [y(n) \cdot z^{-n}]$ ②双边z变换: $Y_B(z) = \sum_{n=-\infty}^{+\infty} [y(n) \cdot z^{-n}]$
- ③常用z变换极其逆变换公式注意收敛域),这要记得、写得、用得滚瓜烂熟!
- ④z变换的性质

II.序列线性加权: $n \cdot x(n) \leftrightarrow (-z) \cdot \frac{d[X(z)]}{dz} \Rightarrow n^k \cdot x(n) \leftrightarrow (-z)^k \bullet \frac{d^k[X(z)]}{dz^k}$

III.序列指数加权: $a^n \cdot x(n) \leftrightarrow X\left(\frac{z}{a}\right)$, 举例: $(-1)^n \cdot x(n) \leftrightarrow X(-z) \Leftrightarrow (-1)^n u(n) \leftrightarrow \frac{z}{z+1}$

IV.初值定理: 若x(n)为因果序列,则有 $x(0) = \lim_{z \to +\infty} X(z)$

V.终值定理: **NO.1**: 终值存在条件: X(z)的全部极点都位于单位圆内,或极点位于z=1处且为一阶极点,也就是使得系统稳定的条件:(对应的s域存在条件为,极点全部在虚轴左半平面,或虚轴上且为一阶极点) **NO.2** 若x(n)是因果序列,则 $\lim_{n\to+\infty} x(n) = \lim_{z\to 0} [(z-1)\cdot X(z)]$

十、核性耐不变因果稳定输出响应系统

关于各种名为"XX响应"的概念极其特征 剖析

- ①自由响应:对应微分方程(差分方程)的齐次解,解的形式由微分方程(差分方程)的形式决定,其中系数的求解只能由0₊时刻的相关量带入,故而要使用0时刻的冲激函数匹配法,根据0_时刻求出0_时刻的物理量;注意:自由响应与系统函数的极点相关联;
- ②强迫响应:对应微分方程(差分方程)的特解,解的形式由激励信号(输入信号)的形式决定,可根据二阶及高阶线性常微分方程的公式求解,也可根据常用结论求解;注意:强迫响应与输入信号的极点相关联;
- ③零输入响应:激励信号(输入信号)为0的条件下,求解对应的微分方程(差分方程)的齐次解,与自由相应的差别在于,正因为没有输入信号, 0_时刻与0_时刻的物理量绝对不会发生跳变,因而系数的求解可以使用0_时刻的物理量代替0_时刻的物理量;
- ④零状态响应:系统初始状态为0的条件下,输出只有输入决定,求解对应对应的微分方程(差分方程)的非齐次解,这个非齐次解包含 齐次解和特解两个部分,且齐次解的求解方法同自由响应;特解的求解方法同强迫响应;
- ⑤瞬态响应:求出全响 应后,令 $t \to +\infty (n \to +\infty)$,全响应中趋于0的衰减分量即为瞬态响 应;注意:瞬态响应与系统函数的极点相关联;
- ⑥稳态响应:求出全响 应后,令 $t\to +\infty$ $(n\to +\infty)$,全响应除去趋于0的衰减分量即为稳态响 应;注意:稳态响应与激励信号的极点相关联;
- ⑦单位冲激【样值】响 应:在输入为 $\delta(t)$ 【或 $\delta(n)$ 】的条件下,输出的响 应,根据卷积的定义, $r(t) = \delta(t) * h(t) = h(t)$ 、【 $y(n) = \delta(n) * h(n) = h(n)$ 】
- ⑧单位阶跃响应(连续域、离散域): 在输入为u(t)【或u(n)】的条件下,输出的响应,值得注意的是,卷 积的性质运用,根据 $\delta(t)$ 【或 $\delta(n)$ 】求, $u'(t) = \delta(t)$, $u(n) u(n-1) = \delta(n)$