

Text-Based Advertisement Feedback Topic Modeling

Springboard Data Science Bootcamp Capstone 2 Project Presented by: Rebeca Mahr (Spring 2021)

Business Problem

Can a NLP machine learning model be developed to identify topics among text-based video ad feedback to inform message comprehension?

Standard practice is a manual review of feedback

very time consuming

subjective to reviewer

Image source: https://www.dreamstime.com/stock-illustration-businesswoman manager hold-long-list-scroll-tasks-questionnaire-woman-business-suit-flat character-vector image90834784

Data

Ad Campaign	Nicotine-vape-prevention campaign		
Target Audience	Teens within target US regions		
Data Source	1,448 text-based survey responses to question "What do you think the main message of this ad is?" collected via Qualtrics online survey platform		
Video Ads Tested	DD: message related to vape companies deceiving teens		
	DF: message related to vapes making smokers vulnerable to viruses		
	ST: message related to exposing the chemicals in vapes		

1. contractions expanded

2. alphanumeric only

3. lowercase

4. gibberish removed

~Don't vape EVER dafjda;f~!

~Do not vape EVER dafjda;f~!

Do not vape EVER dafjdaf

do not vape ever dafjdaf

do not vape ever

Q Text EDA

Top 50 Words

Top 8 Words

vape 31%

company 5%

virus 4%

stop 4%

people 4%

bad 4%

teen 4%

smoke 4%

Preprocessing

Removal of stop words

- examples: a, all, but, for, or, I, and...
- combination of Gensim, spaCy, and WordCloud stop words

Tokenization

- splitting text into meaningful tokens
- using spaCy Tokenizer

Lemmatization

- convert token words to root form
- using spaCy lemma_ method

TF-IDF Vector

Processed Strings

0	main message ad stop vape harm
1	know chemical harm body
2	ad teen stop vape
3	vape chemical virus

weight terms

$$TF(w) = rac{Number\ of\ times\ the\ word\ w\ occurs\ in\ a\ document}{Total\ number\ of\ words\ in\ the\ document}$$

 $IDF(w) = log rac{Total \ number \ of \ documents}{Number \ of \ documents \ containing \ word \ w}$

$$weight(w,d) = TF(w,d) imes IDF(w)$$

Formula source: Kedia, A., & Rasu, M. (2020). Understanding the Basics of NLP. In Hands on Python Natural Language Processing (p. 84). Birmingham - Mumbai: Packt Publishing Ltd.

max_df: .95

min_df: 2

use_id: True

TF-IDF Vector

	ad	chemical	harm	stop	vape
0	0.523035	0.000000	0.523035	0.523035	0.423442
1	0.000000	0.707107	0.707107	0.000000	0.000000
2	0.613667	0.000000	0.000000	0.613667	0.496816
3	0.000000	0.777221	0.000000	0.000000	0.629228

Stratified Train / Test Split

Modeling

Initial LDA Topic Model

n_components: 6 topics (2 per ad)

max_iter: 250

learning method: online Bayes (for speed)

- company teen lie vape target harmful juul product young try
- 1 smoke safe tell vape stop danger people inform inhale harmless
- health risk disease vape high germ ingredient get spread increase
- vape stop damage virus lung dangerous susceptible make vulnerable people
- bad vape chemical body harm know good harmful people contain
- immune weaken vape virus sick break fight easy likely body

Initial NMF Topic Model

n_components: 6 topics (2 per ad)

max_iter: 250

0

5

- vape harmful dangerous chemical health immune know quit sick effect
- bad chemical lung body health vape thing people know lot
 - stop people try body young kid inform encourage put help
- company lie teen target juul product addict young kid people
- smoke harmful dangerous health good cape vulnerable care inform kid
- virus make lung susceptible damage immune body vulnerable weaken fight

Randomized Search Hyperparameter Tuning

Hyperparameter grid

- n_components: 3-12
- max_iter: 50-500 (increments of 50)

Other Parameters

- Iterations: 50
- cv: 5

Optimized LDA Topic Model

n_components: 3 topics max_iter: 450

- o vape company teen harmful lie target dangerous sick juul harm
- 1 smoke stop virus vape people damage make lung susceptible vulnerable
- 2 bad vape immune weaken health know risk chemical quit tell

Optimized NMF Topic Model

n_components: 3 topics max_iter: 450

- vape company harmful virus lie teen stop immune damage dangerous
- bad vape chemical health smoke lung body thing know lot
- smoke stop people health kid try good inform dangerous teen

Selected Model

Optimized LDA Topic Model

- n_components: 3 topics
- max_iter: 450
- learning method: online Bayes (for speed)
- 51% improvement in perplexity score

Conclusion

DD

message related to vape companies deceiving teens

69%

responses in topic "vape company teen harmful lie target dangerous sick juul harm"

DF

message related to vapes making smokers vulnerable to viruses

75%

responses in topics "smoke stop virus vape people damage make lung susceptible vulnerable" and "bad vape immune weaken health know risk chemical quit tell"

ST

ad message related to exposing the chemicals in vapes

51%

responses in topic "vape company teen harmful lie target dangerous sick juul harm"

Limitations

Sample selection bias

Small sample size

Skewed sample demographic distribution

Subjectivity in model topic interpretation

Limited options for NMF topic model evaluation

Limited computational resources for hyperparameter tuning

Thank you!