RT HW2

Due 7/29 please submit your solutions to the TAs in tutorial session

July 24, 2025

Problem 1. Prove that the map $a \mapsto a^{-1}$ is a group isomorphism of G to itself if and only if G is abelian.

Problem 2. Find all subgroups of D_4 of order 4. (In class I listed two of them, but there is a third one that I missed. Thank the students who pointed it out to me.)

Problem 3. Prove that all the subgroups of $(\mathbb{Z}, +)$ has the form $n\mathbb{Z}$ for some integer $n \geq 0$.

Problem 4. Let G be the subset of $GL(2,\mathbb{R})$ consisting of matrices

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

with $a^2 + b^2 \neq 0$. Prove that G is a subgroup of $GL(2,\mathbb{R})$ and isomorphic to \mathbb{C}^{\times} . Here \mathbb{C}^{\times} is the multiplicative group of nonzero complex numbers, and $GL(2,\mathbb{R})$ is the group of invertible 2×2 matrices with real entries. Is G a normal subgroup of $GL(2,\mathbb{R})$?

Furthermore, if a,b have the form, $a = \cos \theta$ and $b = \sin \theta$, prove these matrices also form a subgroup of $GL(2,\mathbb{R})$ and it is isomorphic to U(1).

Problem 5. Let G be a group and H is a subgroup of G. Assume the number of elements in G/H is 2. Prove that H is a normal subgroup of G.

Problem 6. Let $G = \{(a,b)|a,b \in \mathbb{R}, a \neq 0\}$. Define a binary operation of G as $(a,b) \cdot (c,d) = (ac,ad+b)$. Prove that G is a group with this operation.

Problem 7. In this question, you will explore when the group is a product group.

1. Let G_1 and G_2 be two groups with indentity elements e_1 and e_2 , and G is the product group $G = G_1 \times G_2$. Prove that $G_1 \times \{e_2\}$ is a normal subgroup of G and isomorphic to G_1 . Similarly, $\{e_1\} \times G_2$ is a normal subgroup of G and isomorphic to G_2 . The intersection of these two normal subgroups is $\{(e_1, e_2)\}$, the identity element of G.

2. Let H and K be two normal subgroups of a group G such that $H \cap K = \{e\}$, the identity element of G. Prove that the subset $HK = \{hk | h \in H, k \in K\}$ is a subgroup of G and isomorphic to the product group $H \times K$. If we assume that HK = G, then we can say that G is isomorphic to the product group $H \times K$. (Hint: first you can show that the elements from H and K commute with each other, i.e., for any $h \in H$ and $k \in K$, we have hk = kh. Then you can use the first part of this question to show that the map

$$H \times K \to HK, (h, k) \mapsto hk$$

is a group isomorphism from $H \times K$ to HK.)