Feuille de TD 5:

Jacobiennes, EDP, fonctions de classe C^2 et recherche d'extrema

Exercice 1.

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par :

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

- 1. Montrer que f est de classe C^1 sur \mathbb{R}^2 .
- 2. Montrer que $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ et $\frac{\partial^2 f}{\partial y \partial x}(0,0)$ existent et diffèrent. Qu'en déduire?

Exercice 2.

Soit f l'application de \mathbb{R}^2 dans \mathbb{R} définie par :

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

- 1. Montrer que f est de classe C^2 sur $\mathbb{R}^2 \setminus \{(0,0)\}$ et préciser ses dérivées partielles secondes.
- 2. Étudier l'existence des dérivées partielles secondes en (0,0).
- 3. f est-elle de classe C^2 ?

Exercice 3.

Étudier les extrema des fonctions suivantes :

- 1. $f(x,y) = \frac{x^4}{2} x^2 + y^2$.
- $2. \ f(x,y) = e^{x \sin y}.$
- 3. $f(x,y) = x^2 + y^2 + \cos(x^2 + y^2)$.
- 4. $f(x,y) = x^3y^2(1-x-y)$

Exercice 4.

Soit la fonction définie par $f(x,y) = x^2 + y^3$.

- 1. Déterminer les points critiques de f.
- $2. \ \,$ Peut-on déterminer la nature de ce point à l'aide du test de dérivées secondes ?
- 3. Pour tout entier n non nul, calculer f(1/n, 0) et f(0, -1/n).
- 4. En déduire la nature des points critiques.

Exercice 5.

Soient f définie de \mathbb{R}^2 dans \mathbb{R}^2 par f(x,y)=(x+y,xy) et g définie de \mathbb{R}^2 dans \mathbb{R} par $g(x,y)=x^2-2y$.

- 1. Vérifier que $g \circ f$ est différentiable sur \mathbb{R}^2 et exprimer sa différentielle en un point $(x,y) \in \mathbb{R}^2$ en fonction de celles de f et de g.
- 2. Préciser les matrices Jacobiennes de f et de g, en déduire celle $g \circ f$
- 3. Donner alors les dérivées partielles de $g \circ f$
- 4. Vérifier le résultat précédent par un calcul direct.

Exercice 6.

Résoudre l'équation

$$2\frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial y}(x,y) = 0$$

en utilisant le changement de variables u = x + y et v = x + 2y.

Exercice 7.

Déterminer les fonctions f de classe C^1 sur $\mathbb{R}_+^* \times \mathbb{R}$ solutions d'équation aux dérivées partielles :

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) = \sqrt{x^2 + y^2}$$

en utilisant le changement de variable $x=u>0,\ y=uv$ ou bien un passage en coordonnées polaires.

Exercice 8.

On désire fabriquer une boite ayant la forme d'un parallélépipède rectangle, sans couvercle sur le dessus. Le volume de cette boite doit être égal à $0,5m^3$ et pour optimiser la quantité de matière utilisée, on désire que la somme des aires des faces soit aussi petite que possible. Quelles dimensions doit-on choisir pour fabriquer la boite?