Epreuve écrite

Examen de fin d'études secondaires 2001

Sections Bet C

Branche: CHINIE

Nom et prénom du candidat

REPECHAGE 15.06.2001

A) COMPOSÉS AROMATIQUES

A₁) Modèle du novau benzénique (QC)

8 pts

- ALI Indiquer l'hybridation des atomes, la formation des liaisons sigma et la géométrie du cycle.
- A_{1,2} Expliquer la formation du nuage électronique pi. Comment ce nuage influence-t-il la géométrie et la stabilité du cycle ?

A2) Le phénol (hydroxybenzène) (AT)

8 pts

- A2.1 Dresser les formules contributives à la mésomérie du phénol.
- A22 Pourquoi le phénol
- a) est-il un acide plus fort que le propan-2-ol?
- b) se prête-t-il plus facilement à des substitutions électrophiles que le benzaldéhyde ? (5 effet M-)

B) ALCOOLS

B₁) Etudier la réaction entre l'éthanol et l'acide éthanoïque. (QC) (équation-bilan, analyse des réactifs, mécanisme, vitesse de réaction)

12 pts

B₂) Le monoalcanol A a une masse volumique de 0,79 kg.L⁻¹. (EN + AT)

12 pts

- Si on fait réagir 9,5 mL de A avec un excès de sodium, on recueille 1,4 L de dihydrogène (cntp) Trouver la formule moléculaire de A.
- b) A une 2° prise de 9,5 mL de A on ajoute de l'eau afin d'obtenir 100 mL de solution. 10 mL de cette solution sont acidifiés, puis on a proper une solution de dichromate de potassium 0,2 molaire. Le mélange vire au vert après addition de 21 mL de la solution du dichromate. Etablir les équations des réactions des isomères de A avec le dichromate. A quelle classe appartient l'alcool analysé ? Justifier votre réponse.

C) AMINES (AT)

C₁) L'amine primaire C₄H₁₁N est optiquement active. Indiquer sa formule semi-développée, son nom et la formule de structure de l'énantiomère R. 4 pts

C2) Expliquer la différence de volatilité des 3 composés indiqués

4 pts

composé	masse molaire (g.mol ⁻¹)	t° ébullition (°C)
N,N-diméthyléthylamine	73	37
diéthylamine	73	56
butan-1-ol	74	117

Epreuve écrite

Exame Section Branch		idat		
D)	ACIDES ET BASES (EN)			
Β,	Le pK _a du couple acide propanoïque - propanoate vaut 4,87.			
	On dispose d'une solution d'acide propanoïque 0,1 molaire.	4 pt		
D ₁)	Trouver le pH, le pOH et et le degré de dissociation de cette solution.			
D ₂)	A quelle valeur devrait-on amener le pH de cette solution pourque α devienne égal à 0,5 ?			
D ₃)	A 20 mL de la solution initiale on ajoute a) 7 mL d'une solution d'hydroxyde de Na 0,1 molaire b) 24 mL d'une solution d'hydroxyde de Na 0,1 molaire. Trouver les pH des 2 mélanges.			