UNIVERSIDAD DE GRANADA.

ESCUELA TECNICA SUPERIOR DE INGENIERIAS INFORMATICA Y DE TELECOMUNICACIÓN.

Departamento de Arquitectura y Tecnología de Computadores.

TECNOLOGÍA Y ORGANIZACIÓN DE COMPUTADORES.

PRÁCTICA 7. ANÁLISIS Y DISEÑO DE UN SISTEMA SECUENCIAL SÍNCRONO.

11 GRADO EN INGENIERÍA INFORMÁTICA.

PRÁCTICA 7.

ANÁLISIS Y DISEÑO DE UN SISTEMA SECUENCIAL SÍNCRONO.

Objetivos:

- Analizar y comprender el funcionamiento de un sistema secuencial síncrono.
- Diseñar un sistema secuencial síncrono. Etapas de diseño.

7.1. Análisis de un sistema secuencial síncrono:

Analice el comportamiento del sistema secuencial síncrono de la Figura 7.1, obteniendo la tabla de transiciones, la tabla de estados y el diagrama de estados que representa el funcionamiento del sistema.

Simule el comportamiento del circuito de la Figura 7.1 utilizando Logic Works y compruebe que cumple con el funcionamiento teórico obtenido anteriormente.

Complete los siguientes apartados:

1.- Expresiones de las funciones de salida:

$$z_1 = z_0 = z_0 = z_0$$

2.- Expresiones de las ecuaciones de entrada a los elementos de memoria:

$$D_{1\,=} \hspace{1.5cm} D_{0\,=}$$

3.- Tabla de Excitación del Sistema:

$X Q_1^n Q_0^n$	D_1	D_0
0 0 0 0 0 1 0 1 0		
0 1 1 1 0 0 1 0 1		
1 1 0 1 1 1 1 1		

- 4.- Tabla de transición y de salidas del sistema:
 - 4.a) Obtención de los estados siguientes y de las salidas del sistema:

$X Q_1^n Q_0^n$	D_1	Q_1^{n+1}	D_0	Q_0^{n+1}	z_1	z_0
0 0 0 0 0 1						
0 1 0						
0 1 1 1 1 0 0						
1 0 1						
1 1 0 1 1 1						

4.b) Tabla de transición del flip-flop D ($Q_i^{n+1} = D_i$):

$D_i {Q_i}^n$	Q_i^{n+1}
0 0	0
0 1	0
1 0	1
1 1	1

4.c) Tabla de transición y de salidas del sistema:

$X Q_1^n Q_0^n$	Q_1^{n+1}	Q_0^{n+1}	z_1	Z ₀
0 0 0				
0 0 1				
0 1 0				
0 1 1				
1 0 0				
1 0 1				
1 1 0				
1 1 1				

4.d) Reordenación de la tabla de transición y de salidas:

$Q_1^n Q_0^n$	0	1	0	1
0 0				
0 1				
1 0				
1 1				

$$Q_1^{n+1} Q_0^{n+1}$$
 $z_1 z_0$

5.- Asignación de estados:

ESTADO	$Q_1^n Q_0^n$
A	0 0
В	0 1
С	10
D	1 1

6.- Tabla de estados:

X E. Pres.	0	1
A		
В		
С		
D		

E. S., $z_1 z_0$

7.- Diagrama de estados:

7.2. Diseño de un sistema secuencial síncrono:

Diseñe un circuito secuencial síncrono con dos entradas X_1, X_0 y una salida Z. La salida debe valer 1 durante el ciclo de reloj en el que las entradas $X_1 = X_0$ si y solo si también han sido iguales entre sí en el ciclo inmediatamente anterior e iguales a las del ciclo actual. Una vez que Z = 1, se mantiene a dicho valor hasta que X_1 sea distinto de X_0 .

Ejemplo de funcionamiento:

```
X_1 = 011011000110...

X_0 = 11101000110...

Z = 00100001100...
```

Realice:

- Diagrama de Estados que represente el funcionamiento del sistema.
- Tabla de Estados que represente el funcionamiento del sistema.
- Asignación de estados.
- Tablas de Transición y Excitación. Utilice flip-flops de tipo D para implementar el sistema.
- Circuito digital que cumple con las especificaciones del sistema. Dibuje explícitamente dicho circuito.

Una vez finalizado el diseño, implemente el circuito resultante en el simulador lógico de prácticas.