m.
$$X \sim Normal(M, 6, \frac{2}{2})$$
 $(\overline{X} - \overline{Y}) - (M - M_2)$

n. $Y \sim Normal(M, 6, \frac{2}{2})$ $\overline{M_m^2} + 6\frac{2}{3}$ $\sim Normal(0, 1)$
 $S_p^2 = (m-1)S_x^2 + (n-1)S_n^2$ if $6, -6z$

then $E[S_p^2] = E[S_x^2] = E[S_y^2] = 6^2$
 $(\overline{X} - \overline{Y}) - (M_1 - M_2)$ $\sim t (m+n-2)$
 $\overline{S_p^2} + \frac{5}{n}$
 $M_1 - M_2 = (\overline{X} - \overline{Y}) \pm t \frac{2}{3} (\overline{M_m^2} + \frac{6}{n})$
 $M_1 - M_2 = (\overline{X} - \overline{Y}) \pm t \frac{2}{3} (m+n-2) (\overline{S_p^2} + \frac{5}{n})$
 $S_p^2 = (m-1)S_x^2 + (n-1)S_x^2$ $S_p \rightarrow the poded estimate of standard deviation$
 $\overline{P} = \frac{1}{n} \sum_{j=1}^{n} X_j \times (x_j - Bernoulli(p))$
 $E[p] = P \quad Var(\overline{P}) = \frac{p_1 - p_2}{n}$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P})$
 $M \in \overline{X} \pm t \frac{2}{3} (\overline{P} - \overline{P}$