

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Álgebra y Geometría analítica I - PM - LM - LCC - PF - LF - 2020

Operaciones. Problemas resueltos.

- 2. Defina la operación binaria cerrada $h: \mathbb{Q}^+ \times \mathbb{Q}^+ \to \mathbb{Q}^+$ dada por $h(a,b) = \frac{a}{h}$.
 - a) Muestre que h no es conmutativa ni asociativa.
 - b) Determine si h tiene algún elemento neutro.

Solución:

a) Para ver que h no es conmutativa basta con mostrar que existen dos elementos $a,b\in\mathbb{Q}^+$ para los cuales se tiene que h $(a,b)\neq h$ (b,a). Por ejemplo, h $(1,2)=\frac{1}{2}$, mientras que h (2,1)=2. Análogamente, para ver que h no es asociativa, observemos que

$$h(h(1,2),2) = \frac{h(1,2)}{2} = \frac{\frac{1}{2}}{2} = \frac{1}{4},$$

mientras que

$$h(1, h(2,2)) = \frac{1}{h(2,2)} = \frac{1}{\frac{2}{2}} = 1.$$

- b) Veamos que h no tiene elemento neutro. En efecto, si suponemos que e es un neutro para h, tenemos que $h\left(e,a\right)=h\left(a,e\right)=a$ para todo $a\in\mathbb{Q}^+$. En particular, $h\left(e,1\right)=\frac{e}{1}=1$, i.e., e debe ser necesariamente igual a e1. Sin embargo, e1 no es neutro dado que, por ejemplo, e2 de e3.
 - 3. Cada una de las siguientes funciones $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ es una operación binaria cerrada en \mathbb{Z} . Determine los casos en los que f es conmutativa o asociativa.
 - a) f(x,y) = x + y xy
 - b) $f(x,y) = \max\{x,y\}$, el máximo entre x e y
 - c) $f(x,y) = x^{|y|}$
 - d) f(x,y) = x + y 3

Solución:

a) Notemos que

$$f(x,y) = x + y - xy = y + x - yx = f(y,x)$$

y, por lo tanto, f es conmutativa. Para mostrar que f es también asociativa, observemos que, si $x,y,z\in\mathbb{Z},$ tenemos que

$$f(x, f(y, z)) = x + f(y, z) - xf(y, z)$$

$$= x + y + z - yz - x(y + z - yz)$$

$$= x + y + z - yz - xy - xz + xyz$$

$$= x + y - xy + z - (x + y + xy)z$$

$$= f(f(x, y), z).$$

Luego, $f\left(x,f\left(y,z\right)\right)=f\left(f\left(x,y\right),z\right)$ para todo $x,y,z\in\mathbb{Z}.$

b) La función $f(x,y) = \max\{x,y\}$ es conmutativa y asociativa. La conmutatividad en inmediata, $\max\{x,y\} = \max\{y,x\}$. Para ver la asociatividad, notemos que, para todo $x,y,z \in \mathbb{Z}$

$$\max \{x, \max \{y, z\}\} = \max \{x, y, z\} = \max \{\max \{x, y\}, z\}.$$

c) La función $f\left(x,y\right)=x^{|y|}$ no es conmutativa ni tampoco asociativa. Por ejemplo, $f\left(1,2\right)\neq f\left(2,1\right)$ y

$$f(f(2,2),3) = f(2,2)^{|3|} = (2^{|2|})^{|3|} = 4^3 = 64,$$

mientras que

$$f(2, f(2,3)) = 2^{|f(2,3)|} = 2^{|2^{|3|}|} = 2^8 = 256.$$

d) La función $f\left(x,y\right)=x+y-3$ es claramente conmutativa. Para mostrar que también es asociativa notemos que

$$f(f(x,y),z) = f(x,y) + z - 3$$

= $x + y - 3 + z - 3$
= $x + y + z - 6$

У

$$f(x, f(y, z)) = x + f(y, z) - 3$$

= x + y + z - 3 - 3
= x + y + z - 6.

- 5. Para $\emptyset \neq A \subseteq \mathbb{N}$, sean $f,g:A\times A\to A$ las operaciones binarias cerradas dadas por $f(x,y)=\min\{x,y\}$ y $g(x,y)=\max\{x,y\}$.
 - a) Determine si f tiene elemento neutro.
 - b) Determine si g tiene elemento neutro.

Solución:

a) Cuando A es un conjunto arbitrario, no podemos asegurar que f tenga elemento neutro. Por ejemplo, si consideramos $A=\mathbb{N}$ y suponemos que A tiene un elemento neutro n_0 , entonces tenemos que

$$n_0 + 1 = f(n_0, n_0 + 1) = \min\{n_0, n_0 + 1\} = n_0.$$

Esta contradicción muestra que para $A = \mathbb{N}$, f no tiene neutro.

Ejercicio: Pruebe que f tiene elemento neutro si y solo si el cardinal de A es finito.

b) Veamos que g tiene elemento neutro. En efecto, como $\emptyset \neq A \subseteq \mathbb{N}$, podemos asegurar que A tiene mínimo. Ahora, si denotamos con n_0 al $\min(A)$, tenemos que, para todo $a \in A$,

$$g(a, n_0) = g(n_0, a) = \max\{n_0, a\} = a.$$