Practice Quiz 2 (Multiple Choice)

Due Jun 10 at 11:59pm

Points 30

Questions 24

Available May 21 at 12am - Jun 10 at 11:59pm 21 days

Time Limit None

Allowed Attempts 2

This quiz was locked Jun 10 at 11:59pm.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	128 minutes	27.67 out of 30

(!) Correct answers are hidden.

Score for this attempt: 27.67 out of 30

bmitted May 17 at 2:18am is attempt took 128 minutes.

Question 1

3 / 3 pts

Suppose we have an alphabet with only five letters A, B, C, D, E which occur with the following frequencies:

• A = 51, B = 10, C = 8, D = 12, E = 19

Construct a Huffman code using the following guidelines while constructing the code

• the lowest frequency node is the left child in the tree while the higher frequency node is the right child

• when creating the code the left branch is assigned a 0 while the right branch is assigned a 1.

The Huffman binary coding is:

Question 2

1 / 1 pts

All dynamic programming problems can be solved by using a greedy choice algorithm.

True

False

Question 3 1 / 1 pts

Which of the following is an example where the greedy method does not achieve the optimal solution to the Coin Change problem. D is the set of denominations and A is the amount to make change.

- D = { 1, 5, 10, 25} and A = 30
- D = { 1, 7, 11} and A = 14
- $D = \{ 1, 7, 11 \}$ and A = 22
- D = { 3, 8, 13, 25} and A = 53
- D = {1, 5, 10, 25, 50 } and A = 52

Question 4 0 / 1 pts

Consider the following greedy choice strategies to solve the activity-selection problem of section 16.1 in CLRS.

Select the compatible activity with:

- 1. the earliest start time.
- 2. the shortest total time.
- 3. the fewest conflicts.
- 4. the latest finishing time.

5. the latest start time.

Which strategy is guaranteed to result in an optimal solution.

- 0 1
- 2
- 3
- 4
- **5**

Question 5

1 / 1 pts

Consider weights and values of items below and a knapsack that can hold at most 20 lbs.

14	Value	Weight
Item	in \$	in lbs
1	15	10
2	30	15
3	48	12
4	25	5
5	12	4

Assume that each item can be used at most once and can be broke n. What is the of items that can be placed in the knapsack.	e maximum value
O 90	
O 85	
82	
O 87	
None of the above	

Partial

Rod-cutting

Question 6 0.67 / 1 pts

Which of the following problems can not be solved using a greedy algorithm? Select all that apply
□ 0-1 Knapsack
☐ Huffman codes
Fractional Knapsack
Subset Sum

Question 7	1 / 1 pts
Given two vertices s and t in a connected graph G, which of the two traversals, BFS and used to find if there is a path from s to t?	nd DFS can be
Only DFS	
Only BFS	
Both BFS and DFS	
O Neither BFS nor DFS	
Question 8	0 / 1 pts
Let T be a complete binary tree with n vertices . Finding a shortest path (measured by edges) from the root of T to a given vertex $v \in T$ takes	number of
O(n)	
O(lgn)	

Incorrect

1 / 1 pts **Question 9** Let G be a graph with n vertices and m edges. Assume that the graph is represented by an adjacency matrix. What is the tightest upper bound on the running time of DFS performed on G? O(n^2) O(m+n) O(mn) O(m) O(n)

Question 10

Every directed acyclic graph has exactly one topological ordering.

•

O True		
False		

Given a weighted directed graph G = (V,E,w) and a shortest path P from s to t, if we doubled the weight of every edge to produce G'=(V,E,w'), then P is also a shortest path in G'.

True

False

Dijkstra's algorithm may not terminate with the correct distances if the graph contains negative-weight cycles.

True

False

Question 15 1 / 1 pts

In an undirected weighted graph the heaviest edge is never in the MST.

True

False

Question 16 1 / 1 pts

What is the weight of the MST for the graph below? Give strictly a numeric answer.

16

Question 17 1 / 1 pts

In the above graph, what is the weight of the MST?

19

Question 18 1 / 1 pts

Which of the following is a topological sort of the graph above.

- 7, 6, 5, 2, 4, 3, 1, 0
- 0 6, 7, 0, 1, 3, 2, 5, 4
- 0, 1, 2, 3, 4, 5, 6, 7
- 0, 3, 2, 5, 1, 4, 6, 7
- None of the above

Question 19

1 / 1 pts

In the graph above, the shortest path from vertex 0 to vertex 7 has weight of

- 21
- 19
- 15
- **16**

Question 20

1 / 1 pts

A Breadth First Search Algorithm has been implemented using a queue data structure. One possible order of visiting the vertices of the graph above is:

- 0, 5, 4, 1, 2
- 0 4, 1, 0, 5, 2, 3
- 0 4, 0, 1, 3, 5, 2
- 0 1, 0, 5, 2, 4, 3

Question 21 1 / 1 pts

In the graph above, the shortest path from vertex 0 to vertex 7 has weight of

- 21
- **19**
- 15
- **16**

Question 22 3 / 3 pts

Given a weighted directed graph G = (V,E,w) and a shortest path P from s to t, if we doubled the weight of every edge to produce G'=(V,E,w'), then P is also a shortest path in G'.

True

Question 23 1 / 1 pts

Dijkstra's algorithm may not terminate with the correct distances if the graph contains negativeweight cycles.

- True
- False

Question 24 1 / 1 pts

A Breadth First Search Algorithm has been implemented using a queue data structure. One possible order of visiting the vertices of the graph above is:

0, 5, 4, 1, 2			
0 4, 1, 0, 5, 2, 3			
0 4, 0, 1, 3, 5, 2			
0 1, 0, 5, 2, 4, 3			

Quiz Score: **27.67** out of 30