DEVOIR SURVEILLÉ 4

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Les documents, la calculatrice et tout matériel électronique sont interdits.

Vous pouvez traiter le sujet dans l'ordre que vous souhaitez tant que le correcteur peut clairement identifier la question à laquelle vous répondez. Il est possible d'admettre le résultat d'une question précédente pour répondre à une question tant que cela est spécifié clairement.

Ce sujet comporte 4 pages et est constitué de 4 exercices. Bon courage!

Exercice 1 – On considère les matrices suivantes :

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}, \qquad L = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

- 1. Calculer P^3 . En déduire que P est inversible et calculer son inverse.
- 2. Vérifier que $P^{-1}AP = L$.
- 3. (a) Montrer que pour tout entier naturel n, on a $P^{-1}A^nP = L^n$.
 - (b) Soit J = L I. Calculer J^2 puis J^3 .
 - (c) En utilisant la formule du binôme de Newton, montrer que pour tout entier $n \ge 2$, on a

$$L^n = I + nJ + \frac{n(n-1)}{2}J^2.$$

- (d) En déduire, pour $n \ge 2$, les neufs coefficients de L^n . Vérifier que votre résultat reste vrai lorsque n = 0 et n = 1.
- (e) Déduire des questions précédentes que pour tout $n \in \mathbb{N}$, on a

$$A^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 2n(n-1) & 1 & 2n \\ 2n & 0 & 1 \end{pmatrix}.$$

4. On considère les trois suites $(u_n)_{n\geqslant 1}$, $(v_n)_{n\geqslant 1}$ et $(w_n)_{n\geqslant 1}$ définies par $u_1=1$, $v_1=0$ et $w_1=2$ et pour tout entier naturel $n\geqslant 1$,

$$u_{n+1} = u_n$$
, $v_{n+1} = v_n + 2w_n$ et $w_{n+1} = 2u_n + w_n$.

- (a) Que pouvez-vous dire de la suite $(u_n)_{n\geqslant 1}$? Donner u_n pour tout entier $n\geqslant 1$.
- (b) Pour tout entier $n \ge 1$, on pose $X_n = \begin{pmatrix} 1 \\ v_n \\ w_n \end{pmatrix}$. Montrer que $X_{n+1} = AX_n$.
- (c) Établir pour tout entier $n \ge 1$ que $X_n = A^{n-1}X_1$.
- (d) Déduire des questions précédentes que pour tout entier $n \ge 1$, on a

$$v_n = 2n(n-1)$$
 et $w_n = 2n$.

- 5. On considère le programme suivant qui permet de calculer les premiers termes des suites $(u_n)_{n\geqslant 1}$, $(v_n)_{n\geqslant 1}$ et $(w_n)_{n\geqslant 1}$.
 - (a) Compléter la ligne 1 afin que soit mémorisée dans la variable A la matrice *A*.
 - (b) Pour mémoriser les termes successifs de la suite $(v_n)_{n\geqslant 1}$ de v_2 à v_{10} , quelle instruction parmi celles-ci faut-il ajouter en ligne 10? (On justifiera la réponse.)
 - A. v(i)=X(i) B. v(i)=X C. v(i)=X(2) D. une autre instruction à préciser.
 - (c) Proposer de la même manière une instruction pour la ligne 11 qui permette de mémoriser les premiers termes de la suite $(w_n)_{n\geqslant 1}$.

- 1. A=...
- 2. u=zeros(1,10)
- 3. v=zeros(1,10)
- 4. w=zeros(1,10)
- 5. u(1)=1,v(1)=0,w(1)=2
- 6. X=[1;0;2]
- 7. for i=2:10
- 8. X=A*X
- 9. u(i)=1
- 10.
- 11.
- 11.
- 12. end

Exercice 2 – On considère la fonction f définie sur $]0, +\infty[$ par $f(x) = e^x - \ln(x)$ et la fonction g définie sur $[0, +\infty[$ par $g(x) = xe^x - 1$.

- 1. (a) Calculer $\lim_{x \to +\infty} g(x)$.
 - (b) Calculer la dérivée g' de g sur $[0, +\infty[$. En déduire le tableau des variations de g. On y fera figurer la valeur en 0 et la limite en $+\infty$.
 - (c) Montrer que l'équation g(x) = 0 admet une unique solution α dans $[0, +\infty[$. Vérifier que $\alpha \in [0, 1]$.
 - (d) Préciser le signe de g(x) selon les valeurs de x.
- 2. (a) Calculer la limite de f(x) lorsque x tend vers 0 par valeurs supérieures et la limite de f(x) lorsque x tend vers $+\infty$.
 - (b) Montrer que la dérivée de *f* vérifie, pour tout réel *x* strictement positif,

$$f'(x) = \frac{g(x)}{x}.$$

En déduire le tableau des variations de f sur $]0,+\infty[$.

- (c) Justifier que le réel α vérifie $\frac{1}{\alpha} = e^{\alpha}$. En déduire que $f(\alpha) = \alpha + \frac{1}{\alpha}$.
- 3. (a) Montrer que la dérivée seconde de f vérifie, pour tout réel $x \in]0, +\infty[$,

$$f''(x) = e^x + \frac{1}{x^2}.$$

- (b) Étudier la convexité de f sur $]0, +\infty[$.
- 4. Tracer la courbe représentative de f dans un repère orthonormé $(O, \vec{\imath}, \vec{\jmath})$ d'unité 2cm. On donne $\alpha \approx 0.57$ et $f(\alpha) \approx 2.33$.

Exercice 3 – Dans un square, un enfant cherche à monter au sommet de la *"cage à l'écureuil"*. Il s'agit d'une structure métallique que l'enfant doit escalader jusqu'à son sommet.

La cage est constituée de trois niveaux. L'enfant part du premier niveau *A*. Il cherche ensuite à atteindre le deuxième niveau *B* et enfin le troisième niveau qui est le sommet *C*.

On décompose l'ascension de l'enfant en une succession d'instants. On suppose qu'à l'instant 0, l'enfant se trouve sur le niveau *A* puis que la montée se fait selon le protocole suivant :

- Si à un instant n donné l'enfant est sur le niveau A, alors à l'instant suivant n+1, il y reste avec la probabilité $\frac{1}{3}$ et passe au B avec la probabilité $\frac{2}{3}$.
- Si à un instant n donné l'enfant est sur le niveau B, alors à l'instant suivant n+1, il y reste avec la probabilité $\frac{1}{3}$ et passe au C avec la probabilité $\frac{2}{3}$.
- Si à un instant *n* donné l'enfant est sur le niveau *C*, alors il y reste définitivement.

On note, pour tout entier naturel n, A_n l'événement : "l'enfant se trouve sur le niveau A à l'instant n", B_n l'événement : "l'enfant se trouve sur le niveau B à l'instant n". On note enfin C_n l'événement : "à l'instant n l'enfant est au sommet". On note a_n , b_n et c_n les probabilités respectives de ces trois événements.

- 1. Donner les probabilités a_1 , b_1 et c_1 .
- 2. En utilisant la formule des probabilités totales, montrer que pour tout $n \in \mathbb{N}$, on a

$$a_{n+1} = \frac{1}{3}a_n$$
, $b_{n+1} = \frac{2}{3}a_n + \frac{1}{3}b_n$ et $c_{n+1} = \frac{2}{3}b_n + c_n$.

- 3. Montrer que pour tout entier naturel n, on a $a_n = \frac{1}{3^n}$.
- 4. Pour tout entier naturel n, on pose $v_n = 3^n b_n$.
 - (a) Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est arithmétique de raison 2.
 - (b) En déduire, pour tout entier naturel n, une expression de v_n en fonction de n. Établir pour tout entier naturel n que $b_n = \frac{2n}{3^n}$.
- 5. Pour tout entier naturel n, quelle est la valeur de $a_n + b_n + c_n$? En déduire une expression de c_n en fonction de l'entier n. Calculer $\lim_{n \to +\infty} c_n$. Comment interpréter le résultat?
- 6. On note *X* la variable aléatoire égale à l'instant où l'enfant atteint le sommet.
 - (a) Déterminer l'ensemble des valeurs prises par X.
 - (b) Justifier que pour tout entier naturel $n \ge 2$, on a $[X = n] = B_{n-1} \cap C_n$.
 - (c) En déduire, pour $n \ge 2$, que $P(X = n) = \frac{4(n-1)}{3^n}$.
- (a) On note X₁ la variable aléatoire égale à l'instant où pour la première fois l'enfant quitte le niveau A pour arriver sur le niveau B.
 Justifier que X₁ suit une loi usuelle. Donner l'ensemble X₁(Ω) des valeurs prises par X₁ et donner P(X₁ = k) pour tout entier k de X₁(Ω). Calculer E(X₁).
 - (b) On note X_2 la variable aléatoire égale au nombre d'instants supplémentaires nécessaires à l'enfant pour atteindre pour la première fois le niveau C une fois qu'il a atteint le niveau B. Justifier que X_2 suit la même loi que X_1 .
 - (c) Exprimer la variable aléatoire X en fonction de X_1 et X_2 . En déduire que X admet une espérance et que E(X) = 3.

Exercice 4 –

- 1. On considère la matrice $A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$.
 - (a) Montrer que A est inversible et expliciter A^{-1} .
 - (b) On rappelle que $A^0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Prouver que pour tout entier $n \ge 0$, il existe deux

réels u_n et v_n tels que $A^n = \begin{pmatrix} 1 & 0 & 0 \\ 2u_n & 1 & 0 \\ v_n & u_n & 1 \end{pmatrix}$. On vérifiera que

$$u_0 = v_0 = 0$$
 et $\forall n \in \mathbb{N}$, $\begin{cases} u_{n+1} = u_n - 1 \\ v_{n+1} = v_n - 2u_n \end{cases}$

- (c) Exprimer u_n en fonction de n.
- (d) Démontrer que $\forall n \ge 1$, $v_n = 2 \sum_{k=0}^{n-1} k$.
- (e) En déduire une expression simplifiée de v_n , puis écrire A^n sous la forme d'un tableau de nombres.
- 2. Soit f la fonction qui à tout réel x associe $f(x) = (ax^2 + bx + c)e^{-x}$, où a, b, c sont trois réels.
 - (a) Pour tout réel x, calculer f'(x) et montrer que f'(x) s'écrit sous la forme

$$f'(x) = (a_1x^2 + b_1x + c_1)e^{-x}$$

où a_1 , b_1 , c_1 sont trois réels.

Vérifier que
$$\begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix} = -A \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
.

- (b) Expliciter $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ en fonction de $\begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix}$ en utilisant la matrice A^{-1} .
- 3. Application

Soient r et s deux fonctions définies sur \mathbb{R} par

$$\forall x \in \mathbb{R}$$
, $r(x) = (x+1)e^{-x}$ et $s(x) = (x^2 + x)e^{-x}$.

Déduire de la question précédente une primitive R de r et une primitive S de s.

4. On considère la fonction g définie sur ℝ par

$$\forall x < 0, \quad g(x) = 0 \quad \text{et} \quad \forall x \ge 0, \quad g(x) = \frac{1}{2}(x+1)e^{-x}.$$

- (a) Soit $X \in [0, +\infty[$. Calculer $\int_0^X g(x) dx$ et $\int_0^X xg(x) dx$.
- (b) En déduire la convergence des intégrales $\int_0^{+\infty} g(x) dx$ et $\int_0^{+\infty} x g(x) dx$ puis donner leurs valeurs respectives.
- (c) Prouver que g est une densité de probabilité.
- (d) Soit Y une variable aléatoire possédant g pour densité. Démontrer que Y admet une espérance et donner la valeur de E(Y).