BOAZ Spring Study: 6th & 7th week Assignment (Due date: 2023.05.14)

[필기]

1. 다음 중 딥러닝에 대한 설명이 옳으면 O, 틀리면 X를 하고, O 이유를 설명하세요. (30 points)

- (1) 퍼셉트론(Perceptron)은 OR 문제를 풀지 못하였다는 한계점이 존재하였다.
- (2) 은닉층(hidden layer) 하나로 XOR 문제를 풀 수 있다.
- (3) 은닉층(hidden layer)가 꽤 많은 어떤 심층 신경망(Deep Neural Network)에서 활성화함수로 시그모이드 함수를 이용하면, 역전파를 진행할 때 gradient가 항상 작아진다.
- (4) 은닉층(hidden layer)가 꽤 많은 어떤 심층 신경망(Deep Neural Network)에서 활성화함수로 하이퍼볼릭 탄젠트 함수를 이용하면, 역전파를 진행할 때 gradient가 항상 작아진다.
- (5) 과적합이 발생하는 이유는 모델의 일반화 성능이 좋지 않았다고 볼 수 있다.
- (6) 심층 신경망(Deep Neural Network)의 학습 과정에서 과적합 문제를 해결하기 위해 드롭아웃(Dropout)을 진행하였다면, 학습 과정과 테스트 과정에 모두 동일하게 적용해야 한다.
- (7) 배치 경사 하강법(Batch Gradient Descent)은 확률적 경사 하강법(Stochastic Gradient Descent)보다 계산 시간이 느리다는 단점이 있지만, 정확도 면에서는 높다는 장점이 있다.
- (8) 배치 경사 하강법(Batch Gradient Descent)을 이용하여 파라미터를 업데이트 하는 데 적합이 잘 되지 않는다면, 학습 데이터를 섞는 것이 때로는 효과적일 수 있다.
- (9) 딥러닝을 학습하기 위해 손실 함수(Loss function)로 크로스 엔트로피(CrossEntropy)를 사용하면, global optimum을 찾을 수 있다.

$$CrossEntropy = -\sum_{i=1}^{n} y_i \log \hat{y_i}$$

- (10) 딥러닝 알고리즘을 학습하기 위해 학습률(Learning rate)을 작게 설정할수록 더 좋은 solution을 제공한다고 보장할 수 있다.
- (11) 데이터를 표준화(Standardization)하게 되면 최솟값이 0이고, 최댓값이 1인 분포를 띄게 된다.
- (12) 심층 신경망(Deep Neural Network)에서 네트워크의 각 층을 넘어갈수록 활성화 함수를 적용하면서 분포가 달라질 수 있다.
- (13) 심층 신경망(Deep Neural Network)에서 은닉층을 더 깊게 쌓을수록 loss가 줄어든다.
- (14) 신경망의 옵티마이저(Optimizer) 중 하나인 RmsProp는 이전까지 기울기의 변화량을 고려하여 가중치를 업데이트한다.
- (15) 신경망의 옵티마이저 중 하나인 아다그라드(Adagrad)는 Epoch을 반복할수록 업데이트 되는 가중치가 줄어든다.

- 2. 딥러닝에서 활성화함수로 쓰기 올바른 경우면 O, 그렇지 않으면 X표 하세요.
- (10 points)
- (1) f(x) = -0.8x + 1.2
- (2) $f(x) = \min\{2, x+1\}$
- (3) $f(x) = \begin{cases} \max(x, 0.5x) & (x < 0) \\ \min(x, 0.5x) & (x \ge 0) \end{cases}$
- (4) $f(x) = \begin{cases} \min(x, 0.5x) & (x < 0) \\ \min(x, 2x) & (x \ge 0) \end{cases}$
- (5) sigmoid 함수를 활성화 함수로 쓸 경우, 어떤 문제점이 있는 지 쓰세요. 또한, 이 문제점을 해결하기 위해 어떤 활성화함수를 쓰면 좋은 지 설명하세요.
- 3. 아래 두 신경망에 대하여 물음에 답하세요. (30 points)

- (1) (a)의 신경망에서 \hat{y} 를 w_1, w_2, w_3 을 이용하여 나타내세요.(bias는 없습니다.) (4 points)
- (2) (a)의 신경망에서 loss function을 MSE로 정할 때, $\frac{\partial L}{\partial x_1}$, $\frac{\partial L}{\partial x_2}$, $\frac{\partial L}{\partial x_3}$ 을 각각

 $w_1, w_2, w_3, \hat{y}, y$ 을 이용하여 나타내세요.(bias는 없습니다.) (8 points)

$$L = \frac{1}{n} \sum (y - \hat{y})^2$$

(3) (b)의 신경망에서 주어진 값이 아래와 같다. (y는 실제 값입니다.)

x_1	x_2	w_{11}	w_{12}	w_{21}	w_{22}	w_{31}	w_{32}	b_1	b_2	b_3	y
3.0	-2.0	1.0	-1.5	-1.0	1.5	1.0	-0.5	1.5	-2.0	1.0	4.5

 $h_1, h_2, h_3, h_4, \hat{y}$ 의 값을 모두 구하세요. (5 points)

- (4) (3)의 결과에서 Mean Squared Error의 값을 구하세요. (3 points)
- (5) (b)의 신경망에 대하여 Gradient Descent를 이용하여 가중치를 update하려고 합니다. 아래 물음에 답하세요.(loss function은 MSE이고, learning rate는 0.02입니다.)

(10 points)

- a. 가중치 w_{31} 를 update 하세요.
- b. a에서 update한 가중치 w_{31} 와 같은 방법으로, w_{11} 과 w_{12} 를 update 하세요.
- 4. 아래와 같은 상황에서 문제를 어떻게 해결하면 좋을지 설명해 보세요. (10 points)
- (1) Epoch을 거듭하면 거듭할수록 training loss와 test loss가 아래와 같은 상황이 되었습니
- 다. 어떻게 하는 것이 좋을까요? (6 points)

(2) 앞서, Sigmoid 함수를 활성화함수로 이용하면, 신경망을 깊게 쌓았을 때, 기울기 소실 (Vanishing Gradient) 문제가 발생한다는 점을 배웠습니다. 하지만, 반대로 기울기가 폭발적으로 증가해버릴 수 있습니다. 이를 기울기 폭주(Gradient Exploding)이라고 하는데요, 이처럼, 기울기 소실 또는 기울기 폭주를 막을 수 있는 방법은 어떤 것들이 있을까요? (4 points)

- 5. 아래는 어떤 심층 신경망(Deep Neural Network)의 구조를 대략적으로 나타낸 것입니다. 물음에 답하세요. (20 points)
- (1) 입력층(Input layer)의 차원이 10이고, 출력층(Output layer)의 차원이 3인 퍼셉트론(Perceptron)에 존재하는 모든 매개변수(Parameters)의 개수는 얼마인가요? (3 points)
- (2) 입력층(Input layer)의 차원이 2이고, 첫 번째 은닉층(Hidden layer)의 차원이 6,
- 그 다음 출력층(Output layer)의 차원이 3인 심층 신경망의 구조를 그리세요. (5 points)
- (3) (2)의 신경망에 존재하는 모든 파라미터의 개수는 얼마인가요? (5 points)
- 이제, 아래와 같은 신경망을 참고해주세요.

(4) 데이터가 총 100개가 있을 때, 입력층과 첫 번째 은닉층 사이의 가중치 행렬의 크기, 첫 번째 은닉층과 두 번째 은닉층 사이에서의 가중치 행렬의 크기를 쓰세요. (7 points)

[실기]

- 6. PyTorch를 이용하여 다중 선형 회귀를 구현해 보려고 합니다. 아래의 순서를 따라서 완성해 보세요. (50 points)
- (1) x1에는 0.2부터 1까지의 실수 중에서 랜덤으로 100개를 저장하고, x2는 0.1부터 0.9까지의 실수 중에서 랜덤으로 100개를, x3은 0.1부터 1까지의 실수 중 랜덤으로 100개를 저장하세요. y는 x1 + 2x2 + 2x3 + 2에 추가적으로 0부터 1까지의 실수 중 랜덤으로 하나를 뽑아서 noise를 주세요. 이 모든 과정은 Numpy를 이용하면서 진행하며, 최종적으로 x1, x2, x3의 shape는 (100, 3)이고, y는 (100)이어야 합니다. (10 points)
- (2) x1. x2. x3. y를 Numpy에서 tensor의 형태로 바꾸어 주세요. (5 points)
- (3) batch size를 32로 두고, 학습을 진행하려고 합니다. 그 전에, TensorDataSet를 이용하여 DataSet의 형태로 만들어 주고, DataLoader에 사용하고자 하는 데이터셋을 담으세요. (배치가 적절하게 섞이도록 dataloader 옵션에 shuffle = True를 추가해 주세요.)

(10 points)

- (4) CustomLinearRegression 클래스에 nn.Module을 상속받고, 만들 모델을 클래스에 적으세요. 만들 모델은 입력층과 출력층 사이에 하나의 은닉층이 존재하며, 차원은 4입니다. 활성화 함수(Activation Function)은 sigmoid를 사용하세요. (10 points)
- (5) 모델을 설정하고, optimizer는 확률적 경사 하강법(SGD)를 선택하고, learning rate는 0.001로 한 다음에, 학습을 시작해 주세요. Epoch는 200회 반복하며, 10번마다 Loss 값을 출력하도록 구현하세요. Loss Function은 MSE를 사용합니다. (15 points)

- 7. PyTorch를 이용하여 MNIST 데이터에 있는 손글씨를 분류해보려고 합니다. 아래의 순서를 따라서 완성해 보세요. (50 points)
- (1) train_dataset과 test_dataset에 있는 dataset을 DataLoader에 담으세요. 이때, batch size는 64로 설정하세요. DataLoader 과정에서 오류가 뜬다면, drop_last = True를 추가해보세요. (10 points)
- (2) MNIST 데이터는 0부터 9까지의 손글씨로 적힌 숫자가 무엇인지를 맞추도록 한 데이터셋입니다. 아래는 nn.Module을 상속받은 클래스 MLP에 대한 구조일 때, MLP 클래스를 알맞게 완성하세요. (15 points)

```
MLP(
    (fc1): Linear(in_features=784, out_features=128, bias=True)
    (relu): ReLU()
    (fc2): Linear(in_features=128, out_features=64, bias=True)
    (fc3): Linear(in_features=64, out_features=10, bias=True)
    (softmax): Softmax(dim=1)
)
```

(3) loss function은 CrossEntropyLoss로, 옵티마이저는 Adam을 이용하며, 옵티마이저의 파라미터는 자유롭게 설정하세요. train 데이터를 이용하여 epoch을 20번 돌려 학습한 후, test 데이터를 이용해서 검증하는 단계까지 완성하세요. (25 points)