Experiment No. 9

Active Filters

Objectives:

To understand the characteristics of low-pass, high pass, band pass and band stop active filters

Equipment/Components Required:

- 1. Op-Amp μA 741
- 2. Resistors
- 3. Capacitors
- 4. Regulated Power Supply
- 5. Digital Storage Oscilloscope
- 6. Arbitrary Function Generator

Steps:

1. Compute the cut off frequency of LPF, HPF and the band stop filter shown in Figure 1 with R_a = 8 k Ω , R_b = 2.2 k Ω , R_1 = R_F = 1 k Ω , C_a = C_b =10 nF.

Figure 1: Circuit for Active Filters

2. Connect the circuit of the band-stop filter as shown in Figure 1. This circuit includes sub-circuits of a high pass filter, a low pass filter and an adder.

- 3. Apply a sinusoidal input having amplitude 100 mV, vary the frequency from 100 Hz to 100 KHz and observe the output of the low pass, high pass and band-pass outputs.
- 4. Plot the magnitude and phase response of all the three filters.

Freq.	Vi (Vp-p V)	<i>Vo</i> (Vp-p V)	Phase diff.

Band pass filter

• Compute the cut-off frequencies of the band pass filter shown in Figure 2. Given R_a =2.2 k Ω , R_b =22 k Ω and C_a = C_b =10 nF.

Figure 2: Circuit for a band-pass active filter.

• Apply a sinusoidal input having amplitude 100 mV, vary the frequency from 100 Hz to 100 kHz and observe the output.

• Plot the magnitude and phase response of the filter.

Band pass filter

Danu pass inter					
Freq.	Vi (Vp-p V)	<i>Vo</i> (Vp-p V)	Phase diff.		