Visualizing and Understanding Convolutional Networks

Matthew D. Zeiler, Rob Fergus, New York University

Presenter: Wanli Ma, Oct 14 2015

Convolution Neural Network

• Krizhevsky et. al. NIPS 2012

Convolution Neural Network

- Krizhevsky et. al. NIPS 2012
- Visualize hidden layer
 - 1st layer: map back to the input pixel space
 - Higher (convolutional) layers: how?
 - How to understand?

- Reverse Operations
 - For each layer
 - Convolution -> deconvolution
 - Max-pooling -> unpool
 - relu -> relu

- - Convolution -> deconvolution
 - Max-pooling -> unpool
 - relu -> relu

- Reverse Operations
 - For each layer
 - Convolution -> deconvolution
 - Max-pooling -> unpool
 - relu -> relu
 - No 'contrast normalization'

Evolution during training Showing epochs (total 70) 1,2,5,10,20,30,40,64

Improvements

• (b)(d)Krizhevski

vs (c)(e)this paper

Results of improvements (ImageNet 2012)

	Val	Val	Test
Error %	Top-1	Top-5	Top-5
(Gunji et al., 2012)	-	-	26.2
(Krizhevsky et al., 2012), 1 convnet	40.7	18.2	
(Krizhevsky et al., 2012), 5 convnets	38.1	16.4	16.4
(Krizhevsky et al., 2012)*, 1 convnets	39.0	16.6	
(Krizhevsky et al., 2012)*, 7 convnets	36.7	15.4	15.3
Our replication of			
(Krizhevsky et al., 2012), 1 convnet	40.5	18.1	
1 convnet as per Fig. 3	38.4	16.5	
5 convnets as per Fig. 3 – (a)	36.7	15.3	15.3
1 convnet as per Fig. 3 but with			
layers $3,4,5$: $512,1024,512 \text{ maps} - (b)$	37.5	16.0	16.1
6 convnets, (a) & (b) combined	36.0	14.7	14.8

Results of improvements (ImageNet 2012)

	Val	Val	Test
Error %	Top-1	Top-5	Top-5
(Gunji et al., 2012)	-	-	26.2
(Krizhevsky et al., 2012), 1 convnet	40.7	18.2	
(Krizhevsky et al., 2012), 5 convnets	38.1	16.4	16.4
(Krizhevsky et al., 2012)*, 1 convnets	39.0	16.6	
(Krizhevsky et al., 2012)*, 7 convnets	36.7	15.4	15.3
Our replication of			
(Krizhevsky et al., 2012), 1 convnet	40.5	18.1	
1 convnet as per Fig. 3	38.4	16.5	
5 convnets as per Fig. 3 – (a)	36.7	15.3	15.3
1 convnet as per Fig. 3 but with			
layers 3,4,5: 512,1024,512 maps – (b)	37.5	16.0	16.1
6 convnets, (a) & (b) combined	36.0	14.7	14.8

Team name	Comment	Error
Clarifai	Multiple models trained on the original data plus an additional model trained on 5000 categories.	0.11197
Clarifai	Multiple models trained on the original data plus an additional model trained on other 1000 category data.	0.11537
Clarifai	Average of multiple models on original training data.	0.11743
Clarifai	Another attempt at multiple models on original training data.	0.1215
Clarifai	Single model trained on original data.	0.12535

Results on other datasets

Acc %	K. Sande	S. Yan	Ours	Acc %	K. Sande	S. Yan	Ours
Airplane	92.0	97.3	96.0	Dining tab	63.2	77.8	67.7
Bicycle	74.2	84.2	77.1	Dog	68.9	83.0	87.8
Bird	73.0	80.8	88.4	Horse	78.2	87.5	86.0
Boat	77.5	85.3	85.5	Motorbike	81.0	90.1	85.1
Bottle	54.3	60.8	55.8	Person	91.6	95.0	90.9
Bus	85.2	89.9	85.8	Potted pl	55.9	57.8	52.2
Car	81.9	86.8	78.6	Sheep	69.4	79.2	83.6
Cat	76.4	89.3	91.2	Sofa	65.4	73.4	61.1
Chair	65.2	75.4	65.0	Train	86.7	94.5	91.8
Cow	63.2	77.8	74.4	Tv	77.4	80.7	76.1
Mean	74.3	82.2	79.0	# won	0	15	5

PASCAL 2012

Caltech 256

Thank you

References

- Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." *Computer Vision—ECCV 2014*. Springer International Publishing, 2014. 818-833.
- Zeiler, Matthew D., Graham W. Taylor, and Rob Fergus. "Adaptive deconvolutional networks for mid and high level feature learning." *Computer Vision (ICCV), 2011 IEEE International Conference on*. IEEE, 2011.