Ex.No.: 1	CREATION OF BASE TABLE AND
Date:	DML OPERATIONS

1. Create MY_EMPLOYEE table with the following structure

NAME	NULL?	TYPE
ID	Not null	Number(4)
Last_name		Varchar(25)
First_name		Varchar(25)
Userid		Varchar(25)
Salary		Number(9,2)

CREATE TABLE MY_EMPLOYEE (ID NUMBER(4) NOT NULL, Last_name VARCHAR2(25), First_name VARCHAR2(25), Userid VARCHAR2(25), Salary NUMBER(9, 2));

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Commen
MY_EMPLOYEE	<u>ID</u>	NUMBER	:=:	4	0	-	-	-	-
	LAST_NAME	VARCHAR2	25	-	D .	ATC	~	1. -	-
	FIRST_NAME	VARCHAR2	25	-	i i	-	~	-	-
	USERID	VARCHAR2	25		-	-	/	\$ <u></u>	84
	SALARY	NUMBER	-	9	2	-	/	-	1-

2. Add the first and second rows data to MY_EMPLOYEE table from the following sample data.

ID	Last_name	First_name	Userid	salary
1	Patel	Ralph	rpatel	895
2	Dancs	Betty	bdancs	860
3	Biri	Ben	bbiri	1100
4	Newman	Chad	Cnewman	750
5	Ropebur	Audrey	aropebur	1550

Begin

INSERT INTO MY_EMPLOYEE VALUES (1, 'Patel', 'Ralph', 'rpatel', 895); INSERT INTO MY_EMPLOYEE VALUES (2, 'Dancs', 'Betty', 'bdancs', 860); End;

ID	LAST_NAME	FIRST_NAME	USERID	SALARY
1	Patel	Ralph	rpatel	895
2	Dancs	Betty	bdancs	860

3. Display the table with values.

Select * from My_Employee;

ID	LAST_NAME	FIRST_NAME	USERID	SALARY
1	Patel	Ralph	rpatel	895
2	Dancs	Betty	bdancs	860

4. Populate the next two rows of data from the sample data. Concatenate the first letter of the first_name with the first seven characters of the last_name to produce Userid.

Begin

INSERT INTO MY_EMPLOYEE (ID, Last_name, First_name, Userid, Salary) VALUES (3, 'Biri', 'Ben', SUBSTR('Biri', 1, 1) || SUBSTR('Biri', 1, 7), 1100); INSERT INTO MY_EMPLOYEE (ID, Last_name, First_name, Userid, Salary) VALUES (4, 'Newman', 'Chad', SUBSTR('Newman', 1, 1) || SUBSTR('Newman', 1, 7), 750); End;

ID	LAST_NAME	FIRST_NAME	USERID	SALARY
1	Patel	Ralph	rpatel	895
2	Dancs	Betty	bdancs	860
3	Biri	Ben	BBiri	1100
4	Newman	Chad	NNewman	750

5. Delete Betty dancs from MY _EMPLOYEE table.

DELETE FROM MY_EMPLOYEE WHERE Last_name = 'Dancs';

ID	LAST_NAME	FIRST_NAME	USERID	SALARY
1	Patel	Ralph	rpatel	895
3	Biri	Ben	BBiri	1100
4	Newman	Chad	NNewman	750

6. Empty the fourth row of the emp table.

DELETE FROM MY_EMPLOYEE WHERE ID = 4;

ID	LAST_NAME	FIRST_NAME	USERID	SALARY
1	Patel	Ralph	rpatel	895
3	Biri	Ben	BBiri	1100

7. Make the data additions permanent.

COMMIT;

Statement processed.

0.01 seconds

8. Change the last name of employee 3 to Drexler.

UPDATE MY_EMPLOYEE SET Last_name = 'Drexler' WHERE ID = 3;

ID	LAST_NAME	FIRST_NAME	USERID	SALARY
1	Patel	Ralph	rpatel	895
3	Drexler	Ben	BBiri	1100

9. Change the salary to 1000 for all the employees with a salary less than 900.

UPDATE MY_EMPLOYEE SET Salary = 1000 WHERE Salary < 900;

ID	LAST_NAME	FIRST_NAME	USERID	SALARY
1	Patel	Ralph	rpatel	1000
3	Drexler	Ben	BBiri	1100

Ex.No.: 2	DATA MANIPULATIONS
Date:	

Create the following tables with the given structure.

EMPLOYEES TABLE

NAME	NULL?	ТҮРЕ
Employee_id	Not null	Number(6)
First_Name		Varchar(20)
Last_Name	Not null	Varchar(25)
Email	Not null	Varchar(25)
Phone_Number		Varchar(20)
Hire_date	Not null	Date
Job_id	Not null	Varchar(10)
Salary		Number(8,2)
Commission_pct		Number(2,2)
Manager_id		Number(6)
Department_id		Number(4)

(a) Find out the employee id, names, salaries of all the employees

SELECT Employee_id, First_name, Last_name, Salary FROM EMPLOYEES;

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	SALARY
101	John	Doe	6000
102	Jane	Smith	4500
103	Mike	Johnson	7200
104	Emily	Davis	5000
105	Robert	Miller	6200
106	Sophia	Wilson	5600
107	Daniel	Brown	5800
108	Lisa	Taylor	4600
109	Kevin	Anderson	7100
110	Rachel	Thomas	5300

(b) List out the employees who works under manager 100

SELECT Employee_id, First_name, Last_name FROM EMPLOYEES WHERE Manager_id = 100;

EMPLOYEE_ID	FIRST_NAME	LAST_NAME
101	John	Doe

(c) Find the names of the employees who have a salary greater than or equal to 4800 SELECT First_name, Last_name FROM EMPLOYEES WHERE Salary >= 4800;

FIRST_NAME	LAST_NAME
John	Doe
Mike	Johnson
Emily	Davis
Robert	Miller
Sophia	Wilson
Daniel	Brown
Kevin	Anderson
Rachel	Thomas

(d) List out the employees whose last name is _AUSTIN'

SELECT Employee_id, First_name, Last_name FROM EMPLOYEES WHERE Last_name = 'AUSTIN';

EMPLOYEE_ID	FIRST_NAME	LAST_NAME
109	Kevin	AUSTIN

(e) Find the names of the employees who works in departments 60,70 and 80

SELECT First_name, Last_name FROM EMPLOYEES WHERE Department_id IN (60, 70, 80);

FIRST_NAME	LAST_NAME
John	Doe
Jane	Smith
Mike	Johnson
Emily	Davis
Robert	Miller
Sophia	Wilson
Daniel	Brown
Lisa	Taylor
Kevin	AUSTIN
Rachel	Thomas

(f) Display the unique Manager_Id.

SELECT DISTINCT Manager_id FROM EMPLOYEES;

MANAGER_ID
100
102
101
104
105
103

Create an Emp table with the following fields: (EmpNo, EmpName, Job,Basic, DA, HRA,PF, GrossPay, NetPay) (Calculate DA as 30% of Basic and HRA as 40% of Basic)

(a) Insert Five Records and calculate GrossPay and NetPay.

```
INSERT INTO EMP (EmpNo, EmpName, Job, Basic, DA, HRA, PF, GrossPay, NetPay)
VALUES (1, 'John Doe', 'Manager', 50000, 0.30 * 50000, -- DA as 30% of Basic
 0.40 * 50000, -- HRA as 40% of Basic, 0.12 * 50000, -- PF as 12% of Basic
50000 + (0.30 * 50000) + (0.40 * 50000), -- GrossPay (50000 + (0.30 * 50000) + (0.40 * 50000)
50000)) - (0.12 * 50000) -- NetPay
   );
INSERT INTO EMP (EmpNo, EmpName, Job, Basic, DA, HRA, PF, GrossPay, NetPay)
VALUES (2, 'Jane Smith', 'Clerk', 30000, 0.30 * 30000, 0.40 * 30000,
    0.12 * 30000.
    30000 + (0.30 * 30000) + (0.40 * 30000),
    (30000 + (0.30 * 30000) + (0.40 * 30000)) - (0.12 * 30000)
   );
INSERT INTO EMP (EmpNo, EmpName, Job, Basic, DA, HRA, PF, GrossPay, NetPay)
VALUES (3, 'Mike Johnson', 'Salesman', 40000,
    0.30 * 40000,
    0.40*40000,
    0.12*40000,
    40000 + (0.30 * 40000) + (0.40 * 40000),
    (40000 + (0.30 * 40000) + (0.40 * 40000)) - (0.12 * 40000)
   );
INSERT INTO EMP (EmpNo, EmpName, Job, Basic, DA, HRA, PF, GrossPay, NetPay)
VALUES (4, 'Emily Davis', 'Accountant', 35000,
    0.30 * 35000,
    0.40 * 35000,
    0.12 * 35000,
    35000 + (0.30 * 35000) + (0.40 * 35000),
    (35000 + (0.30 * 35000) + (0.40 * 35000)) - (0.12 * 35000)
   );
INSERT INTO EMP (EmpNo, EmpName, Job, Basic, DA, HRA, PF, GrossPay, NetPay)
VALUES (5, 'Robert Miller', 'Clerk', 25000,
    0.30 * 25000,
    0.40 * 25000,
    0.12 * 25000,
    25000 + (0.30 * 25000) + (0.40 * 25000),
    (25000 + (0.30 * 25000) + (0.40 * 25000)) - (0.12 * 25000)
   );
```

EMPNO	EMPNAME	JOB	BASIC	DA	HRA	PF	GROSSPAY	NETPAY
1	John Doe	Manager	50000	15000	20000	6000	85000	79000
2	Jane Smith	Clerk	30000	9000	12000	3600	51000	47400
3	Mike Johnson	Salesman	40000	12000	16000	4800	68000	63200
4	Emily Davis	Accountant	35000	10500	14000	4200	59500	55300
5	Robert Miller	Clerk	25000	7500	10000	3000	42500	39500

(b) Display the employees whose Basic is lowest in each department.

SELECT EmpNo, EmpName, Job, Basic FROM EMP E1 WHERE Basic = (SELECT MIN(Basic) FROM EMP E2 WHERE E2.Job = E1.Job);

EMPNO	EMPNAME	JOB	BASIC
1	John Doe	Manager	50000
3	Mike Johnson	Salesman	40000
4	Emily Davis	Accountant	35000
5	Robert Miller	Clerk	25000

(c) If Net Pay is less than 50000, display employee number,name and net pay SELECT EmpNo, EmpName, NetPay FROM EMP WHERE NetPay < 50000;

EMPNO	EMPNAME	NETPAY
2	Jane Smith	47400
5	Robert Miller	39500

DEPARTMENT TABLE

NAME	NULL?	ТҮРЕ
Dept_id	Not null	Number(6)
Dept_name	Not null	Varchar(20)
Manager_id		Number(6)
Location_id		Number(4)

JOB_GRADE TABLE

NAME	NULL?	ТҮРЕ
Grade_level		Varchar(2)
Lowest_sal		Number
Highest_sal		Number

LOCATION TABLE

NAME	NULL?	ТҮРЕ
Location_id	Not null	Number(4)
St_addr		Varchar(40)
Postal_code		Varchar(12)
City	Not null	Varchar(30)
State_province		Varchar(25)
Country_id		Char(2)

1. Create the DEPT table based on the DEPARTMENT following the table instance chart below. Confirm that the table is created.

Column name	ID	NAME
Key Type		
Nulls/Unique		
FK table		
FK column		
Data Type	Number	Varchar2
Length	7	25

CREATE TABLE DEPT (Dept_id NUMBER(6) NOT NULL, Dept_name VARCHAR2(20) NOT NULL, Manager_id NUMBER(6), Location_id NUMBER(4), CONSTRAINT my_dept_id_pk PRIMARY KEY (Dept_id));

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullabie	Default	Comment
DEPT	DEPT_ID	NUMBER	0.5	6	0	1	-		2
	DEPT_NAME	VARCHAR2	20	-	4	-	=	2	-
	MANAGER_ID	NUMBER	r -	6	0		/	-	
	LOCATION_ID	NUMBER	l a	4	0	-	/	5	5

2. Create the EMP table based on the following instance chart. Confirm that the table is created.

Column name	ID	LAST_NAME	FIRST_NAME	DEPT_ID
Key Type				
Nulls/Unique				
FK table				
FK column				
Data Type	Number	Varchar2	Varchar2	Number
Length	7	25	25	7

CREATE TABLE EMP (EmpNo NUMBER(7) PRIMARY KEY,Last_name VARCHAR2(25) NOT NULL,First_name VARCHAR2(25),Dept_id NUMBER(7), CONSTRAINT my_emp_dept_id_fk FOREIGN KEY (Dept_id) REFERENCES DEPT(Dept_id));

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMP	<u>EMPNO</u>	NUMBER	-	7	0	1	-	<u>=</u>	2
	LAST_NAME	VARCHAR2	25	721	-	12	-	<u>1</u> 6	2
	FIRST_NAME	VARCHAR2	25	/ = /	-	(-)	/	-	-
	DEPT_ID	NUMBER		7	0	-	/	-	-

3. Modify the EMP table to allow for longer employee last names. Confirm the modification.(Hint: Increase the size to 50)

ALTER TABLE EMP MODIFY (Last_name VARCHAR2(50));

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMP	EMPNO	NUMBER	V2	7	0	1	<u> </u>	1	I I
	LAST_NAME	VARCHAR2	50	:	2	2	≟	_	<u> </u>
	FIRST_NAME	VARCHAR2	25	-		-	/		-
	DEPT_ID	NUMBER	(-	7	0	. 7:	/	-	-

4. Create the EMPLOYEES2 table based on the structure of EMPLOYEES table. Include Only the Employee_id, First_name, Last_name, Salary and Dept_id coloumns. Name the columns Id, First_name, Last_name, salary and Dept_id respectively.

CREATE TABLE EMPLOYEES2 (Id NUMBER(6) PRIMARY KEY,First_name VARCHAR2(20),Last_name VARCHAR2(25), Salary NUMBER(8,2),Dept_id NUMBER(4));

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMPLOYEES2	<u>ID</u>	NUMBER	2	6	0	1		-	-
	FIRST_NAME	VARCHAR2	20	-	-	-	/	-	-
	LAST_NAME	VARCHAR2	25	-	-	-	/	-	-
	SALARY	NUMBER	12	8	2	2	/	-	-
	DEPT_ID	NUMBER	-	4	0		/	:=:	-

5. Drop the EMP Table

DROP TABLE EMP;

Table dropped.

6. Rename the EMPLOYEES2 table as EMP.

ALTER TABLE EMPLOYEES2 RENAME TO EMP;

Table altered.

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMP	<u>ID</u>	NUMBER	:=:	6	0	1	-	-	-
	FIRST_NAME	VARCHAR2	20	l a x	•	-	~	-	-
	LAST_NAME	VARCHAR2	25	-	÷.	-	~	-	-
	SALARY	NUMBER	<u>//</u> 24	8	2		/	W2:	W2
	DEPT_ID	NUMBER	-	4	0	-	/	-	/-

7. Add a comment on DEPT and EMP tables. Confirm the modification by describingthe table.

COMMENT ON TABLE DEPT IS 'This table contains department information.'; COMMENT ON TABLE EMP IS 'This table contains employee information.';

TABLE_NAME	TABLE_TYPE	COMMENTS
DEPT	TABLE	This table contains department information.
EMP	TABLE	This table contains employee information.
DEMO_CUSTOMERS	TABLE	(. .
MY_EMPLOYEE	TABLE	
APEX\$_ACL	TABLE	
STUDENTS	TABLE	l. .
APEX\$_WS_TAGS	TABLE	l. -
APEX\$_WS_WEBPG_SECTIONS	TABLE	l. -
APEX\$_WS_LINKS	TABLE	(. .
MANAGER	TABLE	ı-

8. Drop the First_name column from the EMP table and confirm it.

ALTER TABLE EMP DROP COLUMN First_name;

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMP	<u>ID</u>	NUMBER	-	6	0	1	_	<u>~</u>	<u>~</u>
	LAST_NAME	VARCHAR2	25	-	-	-	/	-	-
	SALARY	NUMBER	-	8	2		/	-	1
	DEPT_ID	NUMBER	-	4	0	-	/	-	-

Ex.No.: 2	DATA MANIPULATIONS
Date:	

Create the following tables with the given structure.

EMPLOYEES TABLE

NAME	NULL?	ТҮРЕ
Employee_id	Not null	Number(6)
First_Name		Varchar(20)
Last_Name	Not null	Varchar(25)
Email	Not null	Varchar(25)
Phone_Number		Varchar(20)
Hire_date	Not null	Date
Job_id	Not null	Varchar(10)
Salary		Number(8,2)
Commission_pct		Number(2,2)
Manager_id		Number(6)
Department_id		Number(4)

(a) Find out the employee id, names, salaries of all the employees

SELECT Employee_id, First_name, Last_name, Salary FROM EMPLOYEES;

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	SALARY
101	John	Doe	6000
102	Jane	Smith	4500
103	Mike	Johnson	7200
104	Emily	Davis	5000
105	Robert	Miller	6200
106	Sophia	Wilson	5600
107	Daniel	Brown	5800
108	Lisa	Taylor	4600
109	Kevin	Anderson	7100
110	Rachel	Thomas	5300

(b) List out the employees who works under manager 100

SELECT Employee_id, First_name, Last_name FROM EMPLOYEES WHERE Manager_id = 100;

EMPLOYEE_ID	FIRST_NAME	LAST_NAME
101	John	Doe

(c) Find the names of the employees who have a salary greater than or equal to 4800 SELECT First_name, Last_name FROM EMPLOYEES WHERE Salary >= 4800;

FIRST_NAME	LAST_NAME
John	Doe
Mike	Johnson
Emily	Davis
Robert	Miller
Sophia	Wilson
Daniel	Brown
Kevin	Anderson
Rachel	Thomas

(d) List out the employees whose last name is _AUSTIN'

SELECT Employee_id, First_name, Last_name FROM EMPLOYEES WHERE Last_name = 'AUSTIN';

EMPLOYEE_ID	FIRST_NAME	LAST_NAME
109	Kevin	AUSTIN

(e) Find the names of the employees who works in departments 60,70 and 80

SELECT First_name, Last_name FROM EMPLOYEES WHERE Department_id IN (60, 70, 80);

FIRST_NAME	LAST_NAME
John	Doe
Jane	Smith
Mike	Johnson
Emily	Davis
Robert	Miller
Sophia	Wilson
Daniel	Brown
Lisa	Taylor
Kevin	AUSTIN
Rachel	Thomas

(f) Display the unique Manager_Id.

SELECT DISTINCT Manager_id FROM EMPLOYEES;

MANAGER_ID
100
102
101
104
105
103

Create an Emp table with the following fields: (EmpNo, EmpName, Job,Basic, DA, HRA,PF, GrossPay, NetPay) (Calculate DA as 30% of Basic and HRA as 40% of Basic)

(a) Insert Five Records and calculate GrossPay and NetPay.

```
INSERT INTO EMP (EmpNo, EmpName, Job, Basic, DA, HRA, PF, GrossPay, NetPay)
VALUES (1, 'John Doe', 'Manager', 50000, 0.30 * 50000, -- DA as 30% of Basic
 0.40 * 50000, -- HRA as 40% of Basic, 0.12 * 50000, -- PF as 12% of Basic
50000 + (0.30 * 50000) + (0.40 * 50000), -- GrossPay (50000 + (0.30 * 50000) + (0.40 * 50000)
50000)) - (0.12 * 50000) -- NetPay
   );
INSERT INTO EMP (EmpNo, EmpName, Job, Basic, DA, HRA, PF, GrossPay, NetPay)
VALUES (2, 'Jane Smith', 'Clerk', 30000, 0.30 * 30000, 0.40 * 30000,
    0.12 * 30000.
    30000 + (0.30 * 30000) + (0.40 * 30000),
    (30000 + (0.30 * 30000) + (0.40 * 30000)) - (0.12 * 30000)
   );
INSERT INTO EMP (EmpNo, EmpName, Job, Basic, DA, HRA, PF, GrossPay, NetPay)
VALUES (3, 'Mike Johnson', 'Salesman', 40000,
    0.30 * 40000,
    0.40*40000,
    0.12*40000,
    40000 + (0.30 * 40000) + (0.40 * 40000),
    (40000 + (0.30 * 40000) + (0.40 * 40000)) - (0.12 * 40000)
   );
INSERT INTO EMP (EmpNo, EmpName, Job, Basic, DA, HRA, PF, GrossPay, NetPay)
VALUES (4, 'Emily Davis', 'Accountant', 35000,
    0.30 * 35000,
    0.40 * 35000,
    0.12 * 35000,
    35000 + (0.30 * 35000) + (0.40 * 35000),
    (35000 + (0.30 * 35000) + (0.40 * 35000)) - (0.12 * 35000)
   );
INSERT INTO EMP (EmpNo, EmpName, Job, Basic, DA, HRA, PF, GrossPay, NetPay)
VALUES (5, 'Robert Miller', 'Clerk', 25000,
    0.30 * 25000,
    0.40 * 25000,
    0.12 * 25000,
    25000 + (0.30 * 25000) + (0.40 * 25000),
    (25000 + (0.30 * 25000) + (0.40 * 25000)) - (0.12 * 25000)
   );
```

EMPNO	EMPNAME	JOB	BASIC	DA	HRA	PF	GROSSPAY	NETPAY
1	John Doe	Manager	50000	15000	20000	6000	85000	79000
2	Jane Smith	Clerk	30000	9000	12000	3600	51000	47400
3	Mike Johnson	Salesman	40000	12000	16000	4800	68000	63200
4	Emily Davis	Accountant	35000	10500	14000	4200	59500	55300
5	Robert Miller	Clerk	25000	7500	10000	3000	42500	39500

(b) Display the employees whose Basic is lowest in each department.

SELECT EmpNo, EmpName, Job, Basic FROM EMP E1 WHERE Basic = (SELECT MIN(Basic) FROM EMP E2 WHERE E2.Job = E1.Job);

EMPNO	EMPNAME	JOB	BASIC
1	John Doe	Manager	50000
3	Mike Johnson	Salesman	40000
4	Emily Davis	Accountant	35000
5	Robert Miller	Clerk	25000

(c) If Net Pay is less than 50000, display employee number,name and net pay SELECT EmpNo, EmpName, NetPay FROM EMP WHERE NetPay < 50000;

EMPNO	EMPNAME	NETPAY
2	Jane Smith	47400
5	Robert Miller	39500

DEPARTMENT TABLE

NAME	NULL?	ТҮРЕ
Dept_id	Not null	Number(6)
Dept_name	Not null	Varchar(20)
Manager_id		Number(6)
Location_id		Number(4)

JOB_GRADE TABLE

NAME	NULL?	ТҮРЕ
Grade_level		Varchar(2)
Lowest_sal		Number
Highest_sal		Number

LOCATION TABLE

NAME	NULL?	ТҮРЕ
Location_id	Not null	Number(4)
St_addr		Varchar(40)
Postal_code		Varchar(12)
City	Not null	Varchar(30)
State_province		Varchar(25)
Country_id		Char(2)

1. Create the DEPT table based on the DEPARTMENT following the table instance chart below. Confirm that the table is created.

Column name	ID	NAME
Key Type		
Nulls/Unique		
FK table		
FK column		
Data Type	Number	Varchar2
Length	7	25

CREATE TABLE DEPT (Dept_id NUMBER(6) NOT NULL, Dept_name VARCHAR2(20) NOT NULL, Manager_id NUMBER(6), Location_id NUMBER(4), CONSTRAINT my_dept_id_pk PRIMARY KEY (Dept_id));

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullabie	Default	Comment
DEPT	DEPT_ID	NUMBER	0.5	6	0	1	-		2
	DEPT_NAME	VARCHAR2	20	-	4	-	=	2	-
	MANAGER_ID	NUMBER	r -	6	0		/	-	
	LOCATION_ID	NUMBER	l a	4	0	-	/	5	5

2. Create the EMP table based on the following instance chart. Confirm that the table is created.

Column name	ID	LAST_NAME	FIRST_NAME	DEPT_ID
Key Type				
Nulls/Unique				
FK table				
FK column				
Data Type	Number	Varchar2	Varchar2	Number
Length	7	25	25	7

CREATE TABLE EMP (EmpNo NUMBER(7) PRIMARY KEY,Last_name VARCHAR2(25) NOT NULL,First_name VARCHAR2(25),Dept_id NUMBER(7), CONSTRAINT my_emp_dept_id_fk FOREIGN KEY (Dept_id) REFERENCES DEPT(Dept_id));

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMP	<u>EMPNO</u>	NUMBER	-	7	0	1	-	<u>=</u>	2
	LAST_NAME	VARCHAR2	25	721	-	12	-	<u>1</u> 6	2
	FIRST_NAME	VARCHAR2	25	/ = /	-	(-)	/	-	-
	DEPT_ID	NUMBER		7	0	-	/	-	-

3. Modify the EMP table to allow for longer employee last names. Confirm the modification.(Hint: Increase the size to 50)

ALTER TABLE EMP MODIFY (Last_name VARCHAR2(50));

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMP	EMPNO	NUMBER	V2	7	0	1	<u> </u>	1	I I
	LAST_NAME	VARCHAR2	50	:	2	2	≟	_	<u> </u>
	FIRST_NAME	VARCHAR2	25	-		-	/		-
	DEPT_ID	NUMBER	(-	7	0	. 7:	/	-	-

4. Create the EMPLOYEES2 table based on the structure of EMPLOYEES table. Include Only the Employee_id, First_name, Last_name, Salary and Dept_id coloumns. Name the columns Id, First_name, Last_name, salary and Dept_id respectively.

CREATE TABLE EMPLOYEES2 (Id NUMBER(6) PRIMARY KEY,First_name VARCHAR2(20),Last_name VARCHAR2(25), Salary NUMBER(8,2),Dept_id NUMBER(4));

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMPLOYEES2	<u>ID</u>	NUMBER	2	6	0	1		-	-
	FIRST_NAME	VARCHAR2	20	-	-	-	/	-	-
	LAST_NAME	VARCHAR2	25	-	-	-	/	-	-
	SALARY	NUMBER	12	8	2	2	/	-	-
	DEPT_ID	NUMBER	-	4	0		/	:=:	-

5. Drop the EMP Table

DROP TABLE EMP;

Table dropped.

6. Rename the EMPLOYEES2 table as EMP.

ALTER TABLE EMPLOYEES2 RENAME TO EMP;

Table altered.

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMP	<u>ID</u>	NUMBER	:=:	6	0	1	-	-	-
	FIRST_NAME	VARCHAR2	20	l a x	•	-	~	-	-
	LAST_NAME	VARCHAR2	25	-	÷.	-	~	-	-
	SALARY	NUMBER	<u>//</u> 24	8	2		/	W2:	W2
	DEPT_ID	NUMBER	-	4	0	-	/	-	/-

7. Add a comment on DEPT and EMP tables. Confirm the modification by describingthe table.

COMMENT ON TABLE DEPT IS 'This table contains department information.'; COMMENT ON TABLE EMP IS 'This table contains employee information.';

TABLE_NAME	TABLE_TYPE	COMMENTS
DEPT	TABLE	This table contains department information.
EMP	TABLE	This table contains employee information.
DEMO_CUSTOMERS	TABLE	(. .
MY_EMPLOYEE	TABLE	
APEX\$_ACL	TABLE	
STUDENTS	TABLE	l. .
APEX\$_WS_TAGS	TABLE	l. -
APEX\$_WS_WEBPG_SECTIONS	TABLE	l. -
APEX\$_WS_LINKS	TABLE	(. .
MANAGER	TABLE	ı-

8. Drop the First_name column from the EMP table and confirm it.

ALTER TABLE EMP DROP COLUMN First_name;

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMP	<u>ID</u>	NUMBER	-	6	0	1	_	<u>~</u>	<u>~</u>
	LAST_NAME	VARCHAR2	25	-	-	-	/	-	-
	SALARY	NUMBER	-	8	2		/	-	1
	DEPT_ID	NUMBER	-	4	0	-	/	-	-

Ex.No	o.: 3	WRITING BASIC SQL SELECT STATEMENTS
Date:		

Find the Solution for the following:

True OR False

1. The following statement executes successfully.

Identify the Errors

SELECT employee_id, last_name sal*12 ANNUAL SALARY FROM employees;

False ->Corrected Query and Output Select employee_id,last_name,salary*12 AS "Annual Salary" from Employees;

EMPLOYEE_ID	LAST_NAME	Annual Salary
101	Doe	72000
102	Smith	54000
103	Johnson	86400
104	Davis	60000
105	Miller	74400
106	Wilson	67200
107	Brown	69600
108	Taylor	55200
109	AUSTIN	85200
110	Thomas	63600

2. Show the structure of departments the table. Select all the data from it.

DESC department;

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
DEPARTMENT	DEPT_ID	NUMBER	-	6	0	-	-		
	DEPT_NAME	VARCHAR2	20	-	-	-	-	(-	-
	MANAGER_ID	NUMBER	-	6	0	-	~	0.7	
	LOCATION_ID	NUMBER	-	4	0	_	/	0 <u>=</u>	9- <u>2</u> -

Select * from Department;

DEPT_ID	DEPT_NAME	MANAGER_ID	LOCATION_ID
10	Admin	101	1000
20	Marketing	102	1001
30	Purchasing	103	1002
40	HR	104	1003
50	IT	105	1004
60	Sales	106	1005
70	Customer Service	107	1006
80	Accounting	108	1007
90	R&D	109	1008
100	Legal	110	1009

3. Create a query to display the last name, job code, hire date, and employee number for each employee, with employee number appearing first.

SELECT employee_id, last_name, job_id, hire_date FROM employees;

EMPLOYEE_ID	LAST_NAME	JOB_ID	HIRE_DATE
101	Doe	IT_PROG	01/15/2020
102	Smith	HR_REP	02/20/2019
103	Johnson	SA_MAN	05/30/2021
104	Davis	AC_ACCOUNT	10/10/2020
105	Miller	MK_MAN	07/25/2018
106	Wilson	SA_REP	03/12/2022
107	Brown	IT_PROG	11/05/2017
108	Taylor	HR_REP	12/15/2019
109	AUSTIN	AC_MGR	08/22/2021
110	Thomas	MK_REP	04/01/2020

4. Provide an alias STARTDATE for the hire date.

SELECT employee_id, last_name, job_id, hire_date AS STARTDATE FROM employees;

EMPLOYEE_ID	LAST_NAME	JOB_ID	STARTDATE
101	Doe	IT_PROG	01/15/2020
102	Smith	HR_REP	02/20/2019
103	Johnson	SA_MAN	05/30/2021
104	Davis	AC_ACCOUNT	10/10/2020
105	Miller	MK_MAN	07/25/2018
106	Wilson	SA_REP	03/12/2022
107	Brown	IT_PROG	11/05/2017
108	Taylor	HR_REP	12/15/2019
109	AUSTIN	AC_MGR	08/22/2021
110	Thomas	MK_REP	04/01/2020

5. Create a query to display unique job codes from the employee table.

SELECT DISTINCT job_id FROM employees;

	JOB_ID
IT_	_PROG
AC	_ACCOUNT
AC	_MGR
SA	_MAN
Mł	K_MAN
SA	REP
MŁ	K_REP
HF	R_REP

6. Display the last name concatenated with the job ID, separated by a comma and space, and name the column EMPLOYEE and TITLE.

SELECT last_name || ', ' || job_id AS "EMPLOYEE and TITLE" FROM employees;

EMP	LOYEE and TITLE
Doe,	IT_PROG
Smith	n, HR_REP
Johns	son, SA_MAN
Davis	, AC_ACCOUNT
Miller	, MK_MAN
Wilso	n, SA_REP
Brow	n, IT_PROG
Taylo	r, HR_REP
AUS	ΓΙΝ, AC_MGR
Thom	nas, MK_REP

7. Create a query to display all the data from the employees table. Separate each columnby a comma. Name the column THE_OUTPUT.

SELECT employee_id \parallel ', ' \parallel last_name \parallel ', ' \parallel job_id \parallel ', ' \parallel hire_date AS THE_OUTPUTFROM employees;

	THE_OUTPUT
101,	Doe, IT_PROG, 01/15/2020
102,	Smith, HR_REP, 02/20/2019
103,	Johnson, SA_MAN, 05/30/2021
104,	Davis, AC_ACCOUNT, 10/10/2020
105,	Miller, MK_MAN, 07/25/2018
106,	Wilson, SA_REP, 03/12/2022
107,	Brown, IT_PROG, 11/05/2017
108,	Taylor, HR_REP, 12/15/2019
109,	AUSTIN, AC_MGR, 08/22/2021
110,	Thomas, MK REP, 04/01/2020

Ex.No.: 4	WORKING WITH CONSTRAINTS
Date:	

1. Add a table-level PRIMARY KEY constraint to the EMP table on the ID column. The constraint should be named at creation. Name the constraint my_emp_id_pk.

CREATE TABLE EMP (EmpNo NUMBER(7) PRIMARY KEY, Last_name VARCHAR2(25) NOT NULL,First_name VARCHAR2(25));

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMP	<u>ID</u>	NUMBER	÷	6	0	1	-	-	-
	LAST_NAME	VARCHAR2	25	-	-	-	/	-	-
	SALARY	NUMBER	-	8	2	\. .	/	-	

2. Create a PRIMAY KEY constraint to the DEPT table using the ID colum. The constraint should be named at creation. Name the constraint my_dept_id_pk.

CREATE TABLE DEPT (Dept_id NUMBER(6) NOT NULL,Dept_name VARCHAR2(20) NOT NULL,Manager_id NUMBER(6), Location_id NUMBER(4),CONSTRAINT my_dept_id_pk PRIMARY KEY (Dept_id));

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
DEPT	DEPT_ID	NUMBER	-	6	0	1	-	-	-
	DEPT_NAME	VARCHAR2	20		-	-	-	-	-
	MANAGER_ID	NUMBER	-	6	0		/	-	-
	LOCATION_ID	NUMBER	-	4	0	÷	/	1-	

3. Add a column DEPT_ID to the EMP table. Add a foreign key reference on the EMP table that ensures that the employee is not assigned to nonexistent department. Name the constraint my_emp_dept_id_fk.

ALTER TABLE EMP ADD Dept_id NUMBER(6); ALTER TABLE EMP ADD CONSTRAINT my_emp_dept_id_fk FOREIGN KEY(Dept_id) REFERENCES DEPT (Dept_id);

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMP	EMPNO	NUMBER	-	7	0	1		-	=
	LAST_NAME	VARCHAR2	25		-		-	-	-
	FIRST_NAME	VARCHAR2	25	·	4	×-	~	-	-
	DEPT_ID	NUMBER		6	0	-	/	-	; <u> </u>

4. Modify the EMP table. Add a COMMISSION column of NUMBER data type, precision2, scale 2. Add a constraint to the commission column that ensures that a commission value is greater than zero.

ALTER TABLE EMP

ADD Commission NUMBER(8,2) CONSTRAINT commission_check CHECK(Commission > 0);

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMP	<u>EMPNO</u>	NUMBER	:=:	7	0	1	-	=	-
	LAST_NAME	VARCHAR2	25	-	-	-	-	-	-
	FIRST_NAME	VARCHAR2	25	-	5	-	~	-	-,
	DEPT_ID	NUMBER	-	6	0	-	/	-	-
	COMMISSION	NUMBER	_	8	2	-	~	2	2

Ex.No	o.: 5	CREATING VIEWS
Date:		

1. Create a view called EMPLOYEE_VU based on the employee numbers, employee names and department numbers from the EMPLOYEES table. Change the heading for the employee name to EMPLOYEE.

CREATE VIEW EMPLOYEE_VU AS SELECT employee_id, last_name AS EMPLOYEE, department_id FROM EMPLOYEES;

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMPLOYEE_VU	EMPLOYEE_ID	NUMBER	-	6	0	(=)	-	(-)	-)
	EMPLOYEE	VARCHAR2	25	-	-	(-	-	-	-
	DEPARTMENT_ID	NUMBER	÷	4	0	1-	/	-	-

2. Display the contents of the EMPLOYEES_VU view.

SELECT * FROM EMPLOYEE_VU;

EMPLOYEE_ID	EMPLOYEE	DEPARTMENT_I
101	Doe	60
102	Smith	70
103	Johnson	80
104	Davis	60
105	Miller	70
106	Wilson	80
107	Brown	60
108	Taylor	70
109	AUSTIN	80
110	Thomas	60

3. Select the view name and text from the USER_VIEWS data dictionary views.

SELECT view_name, text FROM USER_VIEWS WHERE view_name = 'EMPLOYEE_VU';

VIEW_NAME	техт
EMPLOYEE_VU	SELECT employee_id, last_name AS EMPLOYEE, department_id FROM EMPLOYEES

4. Using your EMPLOYEES_VU view, enter a query to display all employees names and department.

SELECT EMPLOYEE, department_id FROM EMPLOYEE_VU;

EMPLOYEE	DEPARTMENT_
Doe	60
Smith	70
Johnson	80
Davis	60
Miller	70
Wilson	80
Brown	60
Taylor	70
AUSTIN	80
Thomas	60

5. Create a view named DEPT50 that contains the employee number, employee last names and department numbers for all employees in department 50.Label the view columns EMPNO, EMPLOYEE and DEPTNO. Do not allow an employee to be reassigned to another department through the view.

CREATE OR REPLACE VIEW DEPT50 (EMPNO, EMPLOYEE, DEPTNO) AS SELECT employee_id, last_name, department_id FROM EMPLOYEES
WHERE department_id = 50
WITH CHECK OPTION;

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
DEPT50	EMPNO	NUMBER	7	6	0	7	171	673	1
	EMPLOYEE	VARCHAR2	25	-	100		-7		
	<u>DEPTNO</u>	NUMBER	-	4	0	-	/	-	-

6. Display the structure and contents of the DEPT50 view.

SELECT * FROM DEPT50;

EMPNO	EMPLOYEE	DEPTN
101	Doe	50
103	Johnson	50
107	Brown	50
109	AUSTIN	50

7. Attempt to reassign Matos to department 80.

UPDATE DEPT50 SET DEPTNO = 80 WHERE EMPLOYEE = 'Matos';

ORA-01402: view WITH CHECK OPTION where-clause violation

8. Create a view called SALARY_VU based on the employee last names, department names, salaries, and salary grades for all employees. Use the Employees, DEPARTMENTS and JOB_GRADE tables. Label the column Employee, Department, salary, and Grade respectively.

CREATE VIEW SALARY_VU AS
SELECT e.last_name AS Employee,
d.department_name AS Department,
e.salary AS Salary,
j.grade_level AS Grade
FROM EMPLOYEES e

JOIN DEPARTMENTS d ON e.department_id = d.department_id JOIN JOB_GRADE j ON e.salary BETWEEN j.lowest_sal AND j.highest_sal;

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
SALARY_VU	EMPLOYEE	VARCHAR2	25	.=:	-	-	-	-	-
	DEPARTMENT	VARCHAR2	20	-	8 - 8	=	-		-
	SALARY	NUMBER	-	8	2	-	/	-	•
	GRADE	VARCHAR2	2	-	-	-	/	177	5

Ex.No.: 6	RESTRICTING AND SORTING DATA
Date:	

1. Create a query to display the last name and salary of employees earning more than 12000.

SELECT last_name, salary FROM employees WHERE salary > 12000;

LAST_NAME	SALARY
Smith	12500
Davis	15000
Wilson	13500
Brown	16000

2. Create a query to display the employee last name and department number for employee number 176.

SELECT last_name, department_id FROM employees WHERE employee_id = 176;

LAST_NAME	DEPARTMENT_ID
Smith	70

3. Create a query to display the last name and salary of employees whose salary is not in the range of 5000 and 12000. (hints: not between).

SELECT last_name, salary FROM employees WHERE salary NOT BETWEEN 5000 AND 12000;

LAST_NAME	SALARY
Smith	12500
Davis	15000
Wilson	13500
Brown	16000
Taylor	4600

4. Display the employee last name, job ID, and start date of employees hired between February 20,1998 and May 1,1998.order the query in ascending order by start date.(hints: between)

SELECT last_name, job_id, hire_date FROM employees WHERE hire_date BETWEEN '02-20-1998' AND '05-01-1998' ORDER BY hire_date ASC;

LAST_NAME	JOB_ID	HIRE_DATE
Johnson	SA_MAN	03/01/1998

5. Display the last name and department number of all employees in departments 20 and 50 in alphabetical order by name.(hints: in, orderby)

SELECT last_name, department_id FROM employees WHERE department_id IN (20, 50) ORDER BY last name ASC;

LAST_NAME	DEPARTMENT_ID
AUSTIN	50
Brown	50
Johnson	50
Matos	50

6. Display the last name and salary of all employees who earn between 5000 and 12000 and are in departments 20 and 50 in alphabetical order by name. Label the columns EMPLOYEE, MONTHLY SALARY respectively.(hints: between, in)

SELECT last_name AS "EMPLOYEE", salary AS "MONTHLY SALARY" FROM employees WHERE salary BETWEEN 5000 AND 12000 AND department_id IN (20, 50) ORDER BY last_name ASC;

EMPLOYEE	MONTHLY SALARY
AUSTIN	7100
Johnson	7200
Matos	6000

7. Display the last name and hire date of every employee who was hired in 1994.(hints: like)

SELECT last_name, hire_date FROM employees WHERE hire_date LIKE '% 1994%';

LAST_NAME	HIRE_DATE
Matos	01/01/1994

8. Display the last name and job title of all employees who do not have a manager.(hints: is null)

SELECT last_name, job_id FROM employees WHERE manager_id IS NULL;

LAST_NAME	JOB_ID
Austin	AC_MGR

9. Display the last name, salary, and commission for all employees who earn commissions. Sort data in descending order of salary and commissions.(hints: is not nul,orderby)

SELECT last_name, salary, commission_pct FROM employees WHERE commission_pct IS NOT NULL ORDER BY salary DESC, commission_pct DESC;

LAST_NAME	SALARY	COMMISSION_PCT
Wilson	13500	.1
Johnson	7200	.15
Thomas	5300	.08

10. Display the last name of all employees where the third letter of the name is *a*.(hints:like) SELECT last_name FROM employees WHERE last_name LIKE '_a%';

11. Display the last name of all employees who have an a and an e in their last name.(hints: like)

SELECT last_name FROM employees WHERE last_name LIKE '%a%' AND last_name

LIKE '%e%';

12. Display the last name and job and salary for all employees whose job is salesrepresentative or stock clerk and whose salary is not equal to 2500,3500 or 7000.(hints:in,not in)

SELECT last_name, job_id, salary FROM employees WHERE job_id IN ('SA_REP','ST_CLERK') AND salary NOT IN (2500, 3500, 7000);

LAST_NAME	JOB_ID	SALARY
Wilson	SA_REP	13500

Ex.No.: 7	USING SET OPERATORS
Date:	

1. The HR department needs a list of department IDs for departments that do not contain the job ID ST_CLERK. Use set operators to create this report.

SELECT department_id FROM departments MINUS SELECT department_id FROM employees WHERE job_id = 'ST_CLERK';

Di	PARTMENT_ID
10	1
20	
30	
40	1
50	1
80	1
90	
10	0

2. The HR department needs a list of countries that have no departments located in them. Display the country ID and the name of the countries. Use set operators to create this report.

SELECT country_id, country_name FROM countries MINUS SELECT country_id, country_name FROM departments;

CN	China	
BR	Brazil	

3. Produce a list of jobs for departments 10, 50, and 20, in that order. Display job ID and department ID using set operators.

SELECT job_id, department_id FROM employees WHERE department_id = 10 UNION

SELECT job_id, department_id FROM employees WHERE department_id = 50 UNION

SELECT job_id, department_id FROM employees WHERE department_id = 20;

JOB_ID	DEPARTMENT_ID
AC_ACCOUNT	20
AC_MGR	50
HR_REP	20
IT_PROG	10
IT_PROG	50
SA_MAN	50
ST_CLERK	10

^{4.} Create a report that lists the employee IDs and job IDs of those employees who currently have a job title that is the same as their job title when they were initially hired by the company (that is, they changed jobs but have now gone back to doing their original job).

SELECT employee_id, job_id FROM employees INTERSECT SELECT employee_id, job_id FROM job_history;

EMPLOYEE_ID	JOB_ID
201	IT_PROG
202	HR_REP
203	SA_REP
204	IT_PROG
205	HR_REP
206	SA_REP
207	IT_PROG
208	SA_REP
209	IT_PROG
210	HR_REP

- 5. The HR department needs a report with the following specifications:
- Last name and department ID of all the employees from the EMPLOYEES table, regardless of whether or not they belong to a department.

- Department ID and department name of all the departments from the DEPARTMENTS table, regardless of whether or not they have employees working in them Write a compound query to accomplish this.

SELECT last_name, department_id FROM employeesUNION SELECT department_name, department_id FROM departments;

Andrea	10	
Austin	50	
Brown	I E	
Clark	12	

Silva	2	
Smith	70	
Tanaka	. :	
Taylor	20	
Thomas	60	
Wei	7	
Wilson	80	

Ex.No.: 8	WORKING WITH MULTIPLE TABLES
Date:	

1. Write a query to display the last name, department number, and department name for all employees.

SELECT e.last_name, e.department_id, d.department_name FROM employees e JOIN departments d ON e.department_id = d.department_id;

LACT NAME	DEPARTMENT ID	DEBARTMENT NAME
LAS I_NAIVIE	DEPARTMENT_ID	DEPARTMENT_NAME
Miller	10	Admin
Andrea	10	Admin
Davis	20	ST_CLERK
Taylor	20	ST_CLERK
Matos	50	IT
Johnson	50	IT
Austin	50	IT
Thomas	60	ST_CLERK
Smith	70	Customer Service
Wilson	80	ST_CLERK

2. Create a unique listing of all jobs that are in department 80. Include the location of the department in the output.

SELECT DISTINCT e.job_id, d.location_id FROM employees e JOIN departments d ON e.department_id = d.department_id WHERE e.department_id = 80;

JOB_ID	LOCATION_ID
SA_REP	1007

3. Write a query to display the employee last name, department name, location ID, and city of all employees who earn a commission

SELECT e.last_name, d.department_name, d.location_id, l.city FROM employees e JOIN departments d ON e.department_id = d.department_id JOIN locations l ON d.location_id = l.location_id WHERE e.commission_pct IS NOT NULL;

LAST_NAME	DEPARTMENT_NAME	LOCATION_ID	CITY
Johnson	IT	1004	London
Thomas	ST_CLERK	1005	Sydney
Wilson	ST_CLERK	1007	Dubai

4. Display the employee last name and department name for all employees who have an a(lowercase) in their last names. P

SELECT e.last_name, d.department_name FROM employees e JOIN departments d ON e.department_id = d.department_id WHERE e.last_name LIKE '%a%';

LAST_NAME	DEPARTMENT_NAME
Matos	IT
Davis	ST_CLERK
Andrea	Admin
Taylor	ST_CLERK
Thomas	ST_CLERK

5. Write a query to display the last name, job, department number, and department name for all employees who work in Toronto.

SELECT e.last_name, e.job_id, e.department_id, d.department_name FROM employees e JOIN departments d ON e.department_id = d.department_id JOIN locations l ON d.location_id = l.location_id WHERE l.city = 'Toronto';

LAST_NAME	JOB_ID	DEPARTMENT_ID	DEPARTMENT_NAME
Andrea	IT_PROG	10	Admin
Miller	ST_CLERK	10	Admin

6. Display the employee last name and employee number along with their manager's last name and manager number. Label the columns Employee, Emp#, Manager, and Mgr#, Respectively

SELECT e.last_name AS Employee, e.employee_id AS Emp#, m.last_name AS Manager, m.employee_id AS Mgr# FROM employees e LEFT JOIN employees m ON e.manager_id = m.employee_id;

EMPLOYEE	EMP#	MANAGER	MGR#
Andrea	107	Matos	101
Davis	104	Matos	101
Smith	176	Matos	101
Wilson	106	Johnson	103
Thomas	110	Miller	105
Silva	210	-	4
Wei	209	-	2
Tanaka	208	-	2
Wilson	207	-	<u>-</u>
Miller	206	-	-

7. Modify lab4_6.sql to display all employees including King, who has no manager. Order the results by the employee number.

SELECT e.last_name, e.employee_id, m.last_name AS Manager FROM employees e LEFT JOIN employees m ON e.manager_id = m.employee_id ORDER BY e.employee_id;

LAST_NAME	EMPLOYEE_ID	MANAGER
Matos	101	÷
Johnson	103	8
Davis	104	Matos
Miller	105	<u> </u>
Wilson	106	Johnson
Andrea	107	Matos
Taylor	108	÷
Austin	109	-
Thomas	110	Miller
Smith	176	Matos

8. Create a query that displays employee last names, department numbers, and all the employees who work in the same department as a given employee. Give each column an appropriate label

SELECT e1.last_name AS Employee, e2.last_name AS Colleague FROM employees e1 JOIN employees e2 ON e1.department_id = e2.department_id WHERE e1.employee_id = :employee_id;

EMPLOYEE	COLLEAGUE
Matos	Matos
Matos	Johnson
Matos	Austin

9. Show the structure of the JOB_GRADES table. Create a query that displays the name, job, department name, salary, and grade for all employees

DESC job_grades;

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
JOB_GRADES	GRADE_LEVEL	VARCHAR2	2	-	-	2	/	-	-
	LOWEST_SAL	NUMBER	22	-		-	/	-	-
	HIGHEST_SAL	NUMBER	22	-	-	-	/	-	-
	DEPTNO	NUMBER	22	-	7	5	~	-	

SELECT e.last_name, e.job_id, d.department_name, e.salary, j.grade_level FROM employees e JOIN departments d ON e.department_id = d.department_id JOIN job_grades j ON e.salary BETWEEN j.lowest_sal AND j.highest_sal;

LAST_NAME	JOB_ID	DEPARTMENT_NAME	SALARY	GRADE_LEVEL
Davis	AC_ACCOUNT	ST_CLERK	15000	G2
Wilson	SA_REP	ST_CLERK	13500	G1
Smith	HR_REP	Customer Service	12500	F2
Johnson	SA_MAN	IT	7200	D1
Austin	AC_MGR	IT	7100	D1
Miller	ST_CLERK	Admin	6200	C2
Matos	IT_PROG	IT	6000	C1
Thomas	ST_CLERK	ST_CLERK	5300	C1
Taylor	HR_REP	ST_CLERK	4600	B2

^{10.} Create a query to display the name and hire date of any employee hired after employee Davies.

SELECT last_name, hire_date FROM employees WHERE hire_date > (SELECT hire_dateFROM employees WHERE last_name = 'Davies');

LAST_NAME	HIRE_DATE		
Smith	02/20/2019		
Johnson	03/01/1998		
Davis	01/01/1998		
Miller	07/25/2018		
Wilson	03/12/2022		
Andrea	11/05/2017		
Taylor	12/15/2019		
Austin	08/22/2021		
Thomas	04/01/2020		
Doe	10/10/2015		

11. Display the names and hire dates for all employees who were hired before their managers, along with their manager's names and hire dates. Label the columns Employee, Emp Hired, Manager, and Mgr Hired, respectively.

SELECT e.last_name AS Employee, e.hire_date AS Emp_Hired, m.last_name AS Manager,m.hire_date AS Mgr_Hired FROM employees e JOIN employees m ON e.manager_id = m.employee_id WHERE e.hire_date < m.hire_date;

EMPLOYEE	EMP_HIRED	MANAGER	MGR_HIRED
Smith	02/20/2019	Matos	01/01/1994
Davis	01/01/1998	Matos	01/01/1994
Andrea	11/05/2017	Matos	01/01/1994
Wilson	03/12/2022	Johnson	03/01/1998
Thomas	04/01/2020	Miller	07/25/2018