Derivadas das funções trigonométricas inversas

1)y = arcsen x

Vamos calcular $\frac{dy}{dx}$

 $y = arcsen\ x$ equivale a $x = sen\ y$, com y pertencendo ao intervalo $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Derivando, em relação a y, ambos os membros da igualdade $x = sen \ y$ obtemos $\frac{dx}{dy} = cos \ y$, com y no intervalo $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Substituindo $sen\ y\ por\ x\ em\ sen^2y+cos^2y=1$, obtemos $cos^2y=1-x^2$

Como y está em $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $\cos y$ é não negativo e então $\cos y = \sqrt{1-x^2}$.

Então
$$\frac{dx}{dy} = \sqrt{1 - x^2}$$

Logo
$$\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$$
, isto é, $D_x(arcsen \ x) = \frac{1}{\sqrt{1-x^2}}$

Assim o domínio da derivada da inversa da função seno é o intervalo (-1,1).

Como consequência da regra da cadeia, temos o seguinte

Teorema:

Se u é uma função de x, derivável, então

$$D_x(arcsen u) = \frac{1}{\sqrt{1 - u^2}} D_x u$$

Se
$$y = arcsen x^4$$
, então $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^8}} (4x^3) = \frac{4x^3}{\sqrt{1-x^8}}$

2)y = arccos x

Vamos calcular $\frac{dy}{dx}$

 $y = \arccos x$ equivale a $x = \cos y$, com y pertencendo ao intervalo $[0, \pi]$

Derivando, em relação a y, ambos os membros da igualdade $x=\cos y$ obtemos $\frac{dx}{dy}=-sen\ y$, com y no intervalo $[0,\pi]$.

Substituindo $\cos y$ por x em $\sin^2 y + \cos^2 y = 1$, obtemos $\sin^2 y = 1 - x^2$

Como y está em $[0,\pi]$, $sen\ y$ é não negativo e então $sen\ y=\sqrt{1-x^2}$.

Então
$$\frac{dx}{dy} = -\sqrt{1 - x^2}$$

Logo
$$\frac{dy}{dx} = -\frac{1}{\sqrt{1-x^2}}$$
, isto é, $D_x(\arccos x) = -\frac{1}{\sqrt{1-x^2}}$

Assim o domínio da derivada da inversa da função cosseno é o intervalo (-1,1).

Como consequência da regra da cadeia, temos o seguinte

Teorema:

Se u é uma função de x, derivável, então

$$D_x(\arccos u) = -\frac{1}{\sqrt{1-u^2}}D_x u$$

Se
$$y = \arccos x^4$$
, então $\frac{dy}{dx} = -\frac{1}{\sqrt{1-x^8}}(4x^3) = -\frac{4x^3}{\sqrt{1-x^8}}$

3)y = arctg x

Vamos calcular $\frac{dy}{dx}$

 $y = arctg \ x$ equivale a $x = tg \ y$, com y pertencendo ao intervalo $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Derivando, em relação a y, ambos os membros da igualdade $x=tg\ y$ obtemos $\frac{dx}{dy}=sec^2\ y$, com y no intervalo $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.

Substituindo $tg\ y$ por x em $sec^2y=1+tg^2y$, obtemos $sec^2y=1+x^2$

$$\operatorname{Então} \frac{dx}{dy} = 1 + x^2$$

Logo
$$\frac{dy}{dx} = \frac{1}{1+x^2}$$
, isto é,

$$D_x(arctg\ x) = \frac{1}{1+x^2}$$

Assim o domínio da derivada da inversa da função tangente é o conjunto de todos os números reais.

Como consequência da regra da cadeia, temos o seguinte

Teorema:

Se u é uma função de x, derivável, então

$$D_x(arctg\ u) = \frac{1}{1+u^2}D_x u$$

Se
$$y = arctg \frac{4}{x+3}$$
, então $\frac{dy}{dx} = \frac{1}{1 + \frac{16}{(x+3)^2}} \cdot \frac{-4}{(x+3)^2} =$

$$\frac{-4}{(x+3)^2+16} = \frac{-4}{x^2+6x+25}$$

4) y = arccotg x

Para calcular $\frac{dy}{dx}$ vamos usar o fato de que $arccotg\ x=\frac{\pi}{2}-arctg\ x$

Derivando em relação a x, obtemos

$$D_x \operatorname{arccotg} x = -\frac{1}{1+x^2}$$

Como consequência da regra da cadeia, temos o seguinte

Teorema:

Se u é uma função de x, derivável, então $D_x(arccotg\ u) = -\frac{1}{1+u^2}D_xu$

Se
$$y = \operatorname{arccot} g \frac{4}{x+3}$$
, então $\frac{dy}{dx} = -\frac{1}{1 + \frac{16}{(x+3)^2}} \cdot \frac{(-4)}{(x+3)^2} = \frac{4}{(x+3)^2 + 16} = \frac{4}{x^2 + 6x + 25}$

5)y = arcsec x

Vamos calcular $\frac{dy}{dx}$

 $y = arcsec \ x$ equivale a $x = sec \ y$, com y pertencendo ao intervalo $\left[0, \frac{\pi}{2}\right) \cup \left[\pi, \frac{3\pi}{2}\right)$

Derivando, em relação a y, ambos os membros da igualdade $x = \sec y$ obtemos $\frac{dx}{dx} = \cos x + \cos x +$

$$\frac{dx}{dy} = \sec y \ tg \ y$$
, com y no intervalo $\left[0, \frac{\pi}{2}\right) \cup \left[\pi, \frac{3\pi}{2}\right)$.

Substituindo $sec\ y$ por x em $tg^2y=sec^2y-1$, obtemos $tg^2y=x^2-1$

Como, em $\left[0,\frac{\pi}{2}\right) \cup \left[\pi,\frac{3\pi}{2}\right)$, a tangente é não negativa, temos $\frac{dx}{dy} = x\sqrt{x^2-1}$

Logo
$$\frac{dy}{dx} = \frac{1}{x\sqrt{x^2-1}}$$
, isto é,

$$D_x(arcsec\ x) = \frac{1}{x\sqrt{x^2 - 1}}$$

Assim o domínio da derivada da inversa da função secante é o conjunto dos números reais x, tais que |x| > 1.

Como consequência da regra da cadeia, temos o seguinte

Teorema:

Se u é uma função de x, derivável, então

$$D_x(arcsec\ u) = \frac{1}{u\sqrt{u^2 - 1}}D_x u$$

Se
$$y = arcsec e^{2x}$$
, então

$$\frac{dy}{dx} = \frac{1}{e^{2x}\sqrt{e^{4x}-1}} \cdot 2e^{2x} = \frac{2}{\sqrt{e^{4x}-1}}$$

6) y = arccossec x

Para calcular $\frac{dy}{dx}$ vamos usar o fato de que $arccossec \ x = \frac{\pi}{2} - arcsec \ x$

Derivando em relação a x, obtemos

$$D_x \operatorname{arccossec} x = -\frac{1}{x\sqrt{x^2 - 1}}$$

Como consequência da regra da cadeia, temos o seguinte

Teorema:

Se u é uma função de x, derivável, então

$$D_x arccossec x = -\frac{1}{u\sqrt{u^2 - 1}} D_x u$$

Se
$$y = arccossec \ e^{2x}$$
, então $\frac{dy}{dx} = -\frac{1}{e^{2x}\sqrt{e^{4x}-1}}$. $2e^{2x} = -\frac{2}{\sqrt{e^{4x}-1}}$

Integrais que resultam das derivadas das funções trigonométricas inversas

$$1) \int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$$

$$2) \int \frac{1}{1+x^2} dx = arctg \ x + c$$

$$3) \int \frac{1}{x\sqrt{x^2 - 1}} dx = \operatorname{arcsec} x + c$$

Se a > 0, estas integrais podem ser generalizadas da seguinte forma:

$$4) \int \frac{1}{\sqrt{a^2 - x^2}} dx = arcsen\left(\frac{x}{a}\right) + c$$

$$5) \int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \operatorname{arctg}\left(\frac{x}{a}\right) + c$$

$$6) \int \frac{1}{x\sqrt{x^2 - a^2}} dx = \frac{1}{a} \operatorname{arcsec}\left(\frac{x}{a}\right) + c$$

Prova de (4)

$$D_{x}\left(arcsen\left(\frac{x}{a}\right)+c\right) = \frac{1}{\sqrt{1-\left(\frac{x}{a}\right)^{2}}} \cdot \frac{1}{a} = \frac{1}{\sqrt{\frac{a^{2}-x^{2}}{a^{2}}}} \cdot \frac{1}{a} = \frac{1}{\sqrt{\frac{a^{2}-x^{2}}{a}}} \cdot \frac{1}{a} = \frac{1}{\sqrt{a^{2}-x^{2}}}$$

Prova de (5)

$$D_{x} \left(\frac{1}{a} \operatorname{arct} g \left(\frac{x}{a} \right) + c \right) = \frac{1}{a} \cdot \frac{1}{1 + \left(\frac{x}{a} \right)^{2}} \cdot \frac{1}{a} = \frac{1}{a^{2}} \cdot \frac{1}{1 + \frac{x^{2}}{a^{2}}} = \frac{1}{a^{2} \cdot \frac{1}{a^{2} + x^{2}}} = \frac{1}{a^{2} + x^{2}}$$

Prova de (6)

$$D_{x}\left(\frac{1}{a} \operatorname{arcsec}\left(\frac{x}{a}\right) + c\right) = \frac{1}{a} \cdot \frac{1}{\frac{x}{a}\sqrt{\left(\frac{x}{a}\right)^{2} - 1}} \cdot \frac{1}{a} = \frac{1}{a} \cdot \frac{1}{\frac{x}{a}\sqrt{\frac{x^{2} - a^{2}}{a^{2}}}} \cdot \frac{1}{a} = \frac{1}{a^{2}} \cdot \frac{1}{\frac{x}{a^{2}} \cdot \frac{1}{a^{2}}} = \frac{1}{a^{2}} \cdot \frac{1}{\frac{x}{a^{2}}\sqrt{x^{2} - a^{2}}} = \frac{1}{x\sqrt{x^{2} - a^{2}}}$$

Exemplos:

$$1) \int \frac{1}{\sqrt{17-x^2}} dx = arcsen\left(\frac{x}{\sqrt{17}}\right) + c$$

$$2) \int \frac{1}{12+3x^2} dx = \int \frac{1}{3(4+x^2)} dx = \frac{1}{3} \int \frac{1}{(4+x^2)} dx = \frac{1}{3} \cdot \frac{1}{2} \operatorname{arctg}\left(\frac{x}{2}\right) + c = \frac{1}{6} \operatorname{arctg}\left(\frac{x}{2}\right) + c$$

3)
$$\int \frac{4}{x\sqrt{x^2-25}} dx = 4 \int \frac{1}{x\sqrt{x^2-25}} dx = 4 \cdot \frac{1}{5} \operatorname{arcsec}\left(\frac{x}{5}\right) + c = \frac{4}{5} \operatorname{arcsec}\left(\frac{x}{5}\right) + c$$