Sustainable Asteroid Mining Results and methods of team BIT-CAS-DFH

Zhang Yining
Beijing Institute of Technology

Team Members

Zhu Zhengfan

Wen Changxuan

Gao Yang

Peng Chao

Beijing Institute of Technology

Center for Space Utilization, CAS

Ltd.

DFH Satellite CO., Aerospace Information Research Inst., CAS

Jin Zihan

Lu Meng

Wang Yangxin

He Shengmao Yin Yongchen

Zhou Rui

He Lvzheng Li Zhaohang

Outline

1. Preliminary Analysis

2. Method

- 2.1 Databases building
- 2.2 Asteroid visiting sequences searching
- 2.3 Low-thrust trajectory converting

3. Results and Discussion

1 Preliminary Analysis

- ✓ Mining mission is divided into 3 phases
- ✓ Different kind of asteroid rendezvous strategies available for phase 2

Preliminary Analysis

■ Mining Strategies for Phase 2

Strategy a

- ✓ No interference between Ships
- ✓ Easy for parallel design
- ✓ Easy for adding new ships
- × Lower theoretical upper bound

Strategy b

- ✓ Higher theoretical upper bound
- ✓ Larger space to search
- × Higher computing load
- Sequence design bundled with other ship

Strategy c

- ✓ The most fuel saving scheme
- ✓ Can be used for patching
- × High time cost

Outline

1. Preliminary Analysis

2. Method

- 2.1 Databases building
- 2.2 Asteroid visiting sequences searching
- 2.3 Low-thrust trajectory converting

3. Results and Discussion

Method: Databases building

Phase 1: Earth to Asteroid

Phase 2: Asteroid to Asteroid

Phase 3: Asteroid to Earth

Database 1: Earth to Asteroid

Database 2: Asteroid to Asteroid

Database 3: Asteroid to Earth

2

Method: Databases building

☐ Earth-Asteroid and Asteroid-Earth databases

Step 1
Fuel efficient
Lambert transfers

Step 2
Time optimal
Low-thrust transfer

Step 3
Pruning for early arrival and late return

Method: Databases building

□ Asteroid-Asteroid database

- Lambert transfer is adopted
- C++ parallel computing platform
- NVIDIA TITAN RTX GPU

Search parameters	Range
Asteroid ID	1-60000
Departure epoch (days)	365-5000
Transfer time (days)	50-300

1.79997×109
asteroid-asteroid
transfers

Pruning conditions: T<0.6 N; Δ V < 2 km/s

	ID_1	ID ₂	ΔV	$ au_0$	$ au_f$
1	1	2	ΔV_{12}	$ au_I$	$ au_2$
2	1	3	ΔV_{13}	$ au_3$	τ4
1	:	:	÷	1	1
N					

- √ 1.5076249 × 10⁸ survival results
- ✓ Database created in three days

■Mission segments

Straightforward two segments strategy

Segment 1

Segment 2

Difficulty

- Very long sequences facing computational issues
- The <u>number of sequences</u> exceeds 10¹⁰, when searching to the <u>8th node</u> (~ 7 years).

Why not paying more attention on areas that can score higher?

Four segments strategy

Segment 1

Segment 2

Segment 3

Segment 4

Time Forward

Time Backward

Secondary scoring segments

Priority scoring segments

□ Sequences for Segments 1 and 4

sequences 9.23

□Selection of sequence candidates for Segment 1 and Segment 4

□Segments 2 and 3 sequence candidates

2 M

Method: Asteroid visiting sequences

■ Matching forward and backward asteroid sequences

Method: Low-thrust trajectory converting

☐ There exists two main issues in the low-thrust trajectory generation.

Problem 1: Low-thrust transfer infeasible

Due to the short transfer time of between asteroids, the low-thrust optimization problem is infeasible.

Problem 2: Constraints Violation

The fuel consumption of the trajectory violates the constraint requirements.

Method: Low-thrust trajectory converting

Steps for successful low-thrust trajectory converting

Making low-thrust feasible

Increase the time interval for the infeasible interval

$$T_{k,i} = T_{k,i} \pm \delta T$$

Mining Mass 0.3 %

Step 2:

Satisfying the fuel limitation

Find the most fuel-efficient direction and step size

$$T_{k,i} = T_{k,i} + D \cdot \Delta T_r^*$$

Step 3:

Maximizing the mining mass

Move nodes that are not sensitive to fuel consumption

$$\min(\{\Delta \text{fuel}_i\}) \longrightarrow T_i$$

Mining Mass

Outline

1. Preliminary Analysis

2. Method

- 2.1 Databases building
- 2.2 Asteroid visiting sequences searching
- 2.3 Low-thrust trajectory converting

3. Results and Discussion

□Timeline of the competition

□ Final submission

Mass retrieval	20,314.7 kg
Number of ships	30
Number of asteroids visited	237
Final score	17728

No gravity assist was adopted

✓ Mining strategy 2 was used

■ Asteroid visiting timeline

□ Comparison of top five teams

Team	Average mass retrieved/ asteroid [kg]	Average	Average △V Asteroid- Earth [km/s]	Average ∆V Asteroid- Asteroid [km/s]
JPL	80.5	6.60	6.36	2.13
BIT-CAS- DFH	85.7	8.02	7.80	2.17
OptimicS	82.8	6.38	6.27	2.46
ESA ACT	74.2	6.57	5.69	2.22
TheAntipo des	79.3	6.93	6.28	2.38

3.5 km/s more than the average for the departure Earth-asteroid and return asteroid-Earth transfers

□Summary

✓ Positives treatments:

- > We have appropriately divided the mission into different phases
- > We have chosen mining strategy 2
- > We used four segments strategy for searching asteroid sequences

✓ Negative issues:

- > Too much fuel consumed for the departure Earth-asteroid and return asteroid-Earth transfers
- > At least one more asteroid can be visited for each ship if the departure and return legs were properly optimized.
- ➤ If we managed to bring only 40 kg on this asteroid, the permissible number of ships can reach to the same level with JPL.

China Trajectory Optimization Competition (CTOC) was initiated in 2009 Our team won the championship of CTOC-12 We will launch CTOC-13 in this summer The problem will focus on on-orbit servicing

CTOC started in 2009

CTOC-12 in 2022

CTOC-13 coming soon

WELCOME TEAMS ALL OVER THE WORLD TO JOIN CTOC-13!!