NUS Reading Seminar Summer 2023 Session 3

Clement Yung

26 May 2023

Trees

Recall that an *r*-sequential tree is a subset:

$$T \subseteq \mathsf{Seq}_r = \{(s_1, \dots, s_r) \in (\omega^\omega)^r : |s_1| = \dots = |s_r|\}$$

that is closed under initial segments - i.e. if $(s_1, \ldots, s_r) \in T$, then for all $n \leq |s_i|$, $(s_1 \upharpoonright n, \ldots, s_r \upharpoonright n) \in T$.

We now consider a slight generalisation of such trees. We define $Seq(K) := K^{<\omega}$.

Definition

Let K be a set and $r \geq 1$. A tree on $\omega^r \times K$ is a subset $T \subseteq \operatorname{Seq}_r \times \operatorname{Seq}(K)$ that is closed under initial segments.

For instance, an r-dimensional sequential tree is a tree on ω^r .

Given a tree T on $\omega^r \times K$, for $x \in \omega^r$ we can then once again

$$T(x) := \{ h \in \operatorname{\mathsf{Seq}}(K) : (x \upharpoonright |h|, h) \in T \}$$

A recap of Π_1^1 normal form:

define the "projection" as:

Theorem (Normal Form for Π_1^1 Sets)

Let $A \subseteq \omega^{\omega}$. Then A is $\Sigma_1^1(a)$ iff there exists a tree $T \subseteq \operatorname{Seq}_2$ recursive in a such that:

$$x \in A \iff T(x)$$
 is ill-founded

In other words, we have that:

$$A = \{x \in \omega^{\omega} : T(x) \text{ is ill-founded}\}$$

Notation

Let T be a tree on $\omega \times K$. Then:

$$p[T] := \{x \in \omega^{\omega} : T(x) \text{ is ill-founded}\}$$

Definition

Let κ be an infinite cardinal. A set $A \subseteq \omega^{\omega}$ is κ -Suslin if A = p[T] for some tree T on $\omega \times \kappa$.

Therefore, we may reword Π_1^1 normal form theorem to say that:

 $A\subseteq\omega^{\omega}$ is $\Sigma^1_1(a)$ iff A=p[T] for some tree T on $\omega\times\omega$ recursive in a.

Σ_2^1 -Sets

The main theorem of this section is as follows.

Theorem

If $A \subseteq \omega^{\omega}$ is $\Sigma_2^1(a)$, then A = p[T] for some tree T on $\omega \times \omega_1$ such that $T \in L[a]$.

Loosely speaking, $T \in L[a]$ means that T can be defined from a and some really simple objects.

Similar to the proof of Π_1^1 normal forms, we shall try to find an appropriate relation recursive in a, then "close it under initial segments".

In other words, we wish to find some tree T on $\omega \times \omega_1$, with $T \in L[a]$, such that:

$$x \in A \iff \exists h \in \omega_1^\omega \, \forall n (x \upharpoonright n, h \upharpoonright n) \in T$$

The proof of the theorem would follow the steps below:

- (1) "Simplify" what it means for A to be $\Sigma_2^1(a)$.
- (2) Find a tree T' on $\omega^2 \times \omega_1$, with $T \in L[a]$, such that:

$$x \in A \iff \exists y \in \omega^{\omega} \, \exists h \in \omega_1^{\omega} \, \forall n \, (x \upharpoonright n, y \upharpoonright n, h \upharpoonright n) \in T'$$

(3) Transform T' into a tree T on $\omega \times \omega_1$ with the desired property.

Proof, Step 1.

Let $A \subseteq \omega^{\omega}$ be $\Sigma_2^1(a)$. In other words, there exists a $\Pi_1^1(a)$ -set $B \subseteq (\omega^{\omega})^2$ such that:

$$x \in A \iff \exists y \in \omega^{\omega}(x, y) \in B$$

By the Π^1_1 normal form, there exists some tree $U \subseteq \operatorname{Seq}_3$ recursive in a such that:

$$x \in A$$
 $\iff \exists y \in \omega^{\omega} U(x, y) \text{ is well-founded}$

$$\frac{1}{2}$$

$$\iff \exists y \in \omega^{\omega} \exists a \text{ rank function } f: U(x,y) \to \omega_1$$

$$\iff \exists y \in \omega^{\omega} \, \exists f : \mathsf{Seq} \to \omega_1 \mathsf{ s.t. } f \! \upharpoonright \! U(x,y) \mathsf{ is order-preserving}$$

Note that by the countability of U(x, y), we assumed that $ran(f) \subseteq \omega_1$.

Proof, Step 1. (Cont.)

Fix some recursive enumeration $\text{Seq} = \{u_n : n < \omega\}$ such that $|u_n| \leq n$ for all n. Given a function f with $\text{dom}(f) \subseteq \omega$, we define f with $\text{dom}(f^*) \subseteq \text{Seq}$ by $f^*(u_n) := f(n)$. Using this enumeration we get that:

 $x \in A \iff \exists y \in \omega^{\omega} \, \exists h \in \omega_1^{\omega} \text{ s.t. } h^* \upharpoonright U(x,y) \text{ is order-preserving}$

Proof, Step 2.

We define a tree T' on $\omega^2 \times \omega_1$ by "closing" the relation in the previous slide under initial segments. More precisely, stipulate that:

$$(s,t,h) \in T' \iff h^* \upharpoonright U_{s,t}$$
 is order-preserving

where:

$$\textit{U}_{\textit{s},\textit{t}} := \{\textit{u} \in \mathsf{Seq} : |\textit{u}| \leq |\textit{s}| \land (\textit{s} {\upharpoonright} |\textit{u}|, \textit{t} {\upharpoonright} |\textit{u}|, \textit{u}) \in \textit{U}\}$$

It's easy to check that T' is a tree.

Proof, Step 2. (Cont.)

Now observe that given $x, y \in \omega^{\omega}$, we have:

$$U(x,y) = \{ u \in \operatorname{Seq} : (x \upharpoonright |u|, y \upharpoonright |u|, u) \in U \}$$

$$= \{ u \in \operatorname{Seq} : u \in U_{x \upharpoonright |u|, y \upharpoonright |u|} \}$$

$$= \bigcup_{n < \omega} \{ u \in \operatorname{Seq} : |u| \le n \land u \in U_{x \upharpoonright n, y \upharpoonright n} \}$$

$$= \bigcup_{n < \omega} U_{x \upharpoonright n, y \upharpoonright n}$$

Therefore, given $x, y \in \omega^{\omega}$ and $h \in \omega_1^{\omega}$, we have that:

$$h \in T'(x,y) \iff \forall n (x \upharpoonright n, y \upharpoonright n, h \upharpoonright n) \in T'$$
 $\iff \forall n (h \upharpoonright n)^* \upharpoonright U_{x \upharpoonright n, y \upharpoonright n} \text{ is order-preserving}$
 $\iff h^* \upharpoonright U(x,y) \text{ is order-preserving}$

Proof, Step 2. (Cont.)

Therefore:

$$x \in A \iff \exists y \in \omega^{\omega} \, \exists h \in \omega_{1}^{\omega} \, \text{ s.t. } h^{*} \upharpoonright U(x,y) \text{ is order-preserving} \\ \iff \exists y \in \omega^{\omega} \, \exists h \in \omega_{1}^{\omega} \, h \in T'(x,y) \\ \iff \exists y \in \omega^{\omega} \, \exists h \in \omega_{1}^{\omega} \, \forall n \, (x \upharpoonright n, y \upharpoonright n, h \upharpoonright n) \in T'$$

Hence this T' is the desired tree for step (2).

Proof, Step 3.

We first transform the tree T' (on $\omega^2 \times \omega_1$) into a tree T'' on $\omega \times (\omega \times \omega_1)$ by the map:

$$((s(0), \ldots, s(n-1)), (t(0), \ldots, t(n-1)), (h(0), \ldots, h(n-1)))$$

$$\downarrow$$

$$((s(0), \ldots, s(n-1)), ((t(0), h(0)), \ldots, (t(n-1), h(n-1)))$$

Clearly this map is recursive. This gives us:

$$x \in A \iff \exists g \in (\omega \times \omega_1)^{\omega} \, \forall n \, (x \upharpoonright n, g \upharpoonright n) \in T''$$

Using a definable correspondence between ω_1 and $\omega \times \omega_1$, we get a tree T such that:

$$x \in A \iff \exists g \in \omega_1^\omega \, \forall n \, (x \upharpoonright n, g \upharpoonright n) \in T$$

so A = p[T]. Clearly T is constructible from a.

We remark that if $x \in A$, so T(x) is ill-founded, then by reversing the proof we have an algorithm which obtains a real $y \in \omega^{\omega}$ (dependent only on x and ω_1) such that U(x,y) is well-founded. This will be important in proving Shoenfield absoluteness theorem later.

Theorem

If P is a $\Sigma_2^1(a)$ relation, then P is absolute for every inner models M of ZF + DC such that $a \in M$. In particular, P is absolute for L.

One may think that we can mimic the proof of Mostowski absoluteness theorem to prove Shoenfield absoluteness theorem. However, this does not work.

Suppose *P* is $\Sigma_1^1(a)$ and $R \subseteq Seq_2$ is a recursive relation in which:

$$P(x) \iff \exists y \in \omega^{\omega} \, \forall n \, R(x \! \upharpoonright \! n, y \! \upharpoonright \! n)$$

We defined the tree $T \subseteq Seq_2$ by:

$$T := \{(s,t) \in \mathsf{Seq}_2 : \forall n \le |s| \, R(s \upharpoonright n, t \upharpoonright n)\}$$

then showed that:

$$P(x) \iff T(x)$$
 is ill-founded

We proved Mostowski absoluteness theorem as follows:

- (1) If $M \models P(x)$, then $M \models T(x)$ is ill-founded, so $[T(x)] \neq \emptyset$.
- (2) If $M \models \neg P(x)$, then $M \models T(x)$ is well-founded, so there exists a rank function on T.

We implicitly used the fact that the tree T, constructed in V and in M, are the same.

What about the tree T constructed such that P = p[T] when P is $\Sigma_2^1(a)$?

We started with:

$$P(x) \iff \exists y \in \omega^{\omega} \ U(x,y) \text{ is well-founded}$$

where $U\subseteq \operatorname{Seq}_3$, and constructed a tree T on $\omega\times\omega_1$ such that from U. We immediately see that the tree T constructed in M need not be the same as that in V - for instance, we need not have $\omega_1^M=\omega_1$.

We thus have to work around this issue when proving Shoenfield absoluteness theorem.

Proof.

Suppose P is $\Sigma_2^1(a)$. As discussed before, there exists a tree $U \subseteq Seq_3$, recursive in a, such that:

$$P(x) \iff \exists y \ U(x,y) \text{ is well-founded}$$

This U is independent of the choice of models, i.e. we also have that:

$$M \models P(x) \iff \exists y \in M M \models U(x,y) \text{ is well-founded}$$

For any relation R on $\omega^{<\omega}$, the statement "R is well-founded" is Π_1^1 (Exercise), so it is absolute by Mostowski absoluteness theorem. Therefore:

$$M \models P(x) \iff \exists y \in M \ U(x, y) \text{ is well-founded}$$

This immediately proves that if $M \models P(x)$, then P(x) holds. It remains to show the converse.

Proof (Cont.)

Suppose P(x) holds. Let T be the tree on $\omega \times \omega_1$, constructed from *U* in *V*, such that P = p[T]. Therefore:

$$T(x)$$
 is ill-founded

Since well-foundedness is absolute, we have that:

$$M \models T(x)$$
 is ill-founded

Despite the fact that $T \in M$, we need not have $M \models P = p[T]$. However, as remarked earlier, we can instead reverse the proof of that P is ω_1 -Suslin to obtain a $y \in (\omega^{\omega})^M$ such that:

$$M \models U(x, y)$$
 is well-founded

Hence
$$M \models P(x)$$
.

- (1) Given $x \subseteq \omega$, we say that x is $\Sigma_n^1(a)$ (resp. $\Pi_n^1(a)$) if the set $\{e_x\}$, where e_x is the indicator function of the set x, is $\Sigma_n^1(a)$ (resp. $\Pi_n^1(a)$). Shoenfield absoluteness theorem implies that if x is $\Sigma_2^1(a)$ or $\Pi_2^1(a)$, then $x \in L[a]$. In particular, every Σ_2^1/Π_2^1 real is constructible.
- (2) There exists a model of set theory (without assuming large cardinals) in which there is a non-constructible Δ_3^1 real. Thus, Shoenfield absoluteness theorem is the best possible ZFC absoluteness theorem.

The power of Shoenfield absoluteness lies in the following result.

Corollary

If P is a Σ_2^1/Π_2^1 statement, and ZFC \vdash P, then ZF \vdash P.

Proof.

Let M be a model of ZF. Then L^M is a model of ZFC. Since $\mathsf{ZFC} \vdash P$, $\mathsf{L}^M \models P$. By Shoenfield absoluteness theorem, $M \models P$. Since this holds for any model of ZF, by Gödel's completeness theorem. $ZF \vdash P$.

Many statements in "ordinary mathematics" are "simple enough" to be of complexity Σ_2^1/Π_2^1 or lower. Examples include:

- (1) Brouwer fixed point theorem.
- (2) Hanh-Banach theorem for separable spaces.
- (3) The existence of algebraic closures for countable fields.

See more examples here.