

VHDL Design and Implementation of an Instruction Set Architecture Z. Navabi

Topic 4

Processor Architectures

Zain Navabi

Course Roadmap

Processor Architecture

Learning Outcomes:

- Processor Memory interface
- Instruction Execution Flow
- Processor Registers
- Instruction Format and Addressing Modes
- SAYAC Instructions
- Design of SAYAC
- Datapath and Controller
- Description in VHDL
- Memory Model and Testbench

Processor Architecture Outline:

- Processor and Memory Model
- Processor Model Specification
- Instruction Execution Cycle
- Processor Registers
- Instruction Format
- SAYAC Instructions

- Design of SAYAC
 - SAYAC Datapath and Instruction flow
 - Controller
 - Datapath VHDL Description
 - Control Signals
 - Components of Datapath
 - Bussing
 - Controller VHDL Description
 - Putting SAYAC Together
 - Memory Model
 - Instruction execution and Testing
 - Conclusions

Processor and Memory Model

Von Neumann Process Model

- A memory, containing instructions and data
- A data unit, for performing arithmetic and logical operations
- A control unit, for interpreting instructions

Processor Architecture

Outline:

- Processor and Memory Model
- Processor Model Specification
- Instruction Execution Cycle
- Processor Registers
- Instruction Format
- SAYAC Instructions

Processor Model Specification

Simple Architecture Yet Ample Circuitry

Processor Architecture

Outline:

- Processor and Memory Model
- Processor Model Specification
- Instruction Execution Cycle
- Processor Registers
- Instruction Format
- SAYAC Instructions
- Design of SAYAC

Instruction Execution Cycle

Processor Architecture

Outline:

- Processor and Memory Model
- Processor Model Specification
- Instruction Execution Cycle
- Processor Registers
- Instruction Format
- SAYAC Instructions
- Design of SAYAC

SAYAC Architecture

Processor Registers

Shadow, Flags, and Interrupt and Exception

Processor Architecture

Outline:

- Processor and Memory Model
- Processor Model Specification
- Instruction Execution Cycle
- Processor Registers
- Instruction Format
- SAYAC Instructions

Instruction Format **Instruction Classes:**

Data Transfer Instructions

Arithmetic / Logical Instructions

Control Flow Instructions

•	Instruction	Notation	
ľ			
j			_
	LDR	.rd. <= [.rs1.]	
		.rd. <= { .rs1. }	
•	STR	[.rd.] <= .rs1.	
		{ rd }<= rs1	
•	JMR	PC <= PC + .rs1.	
		.rd. <= PC + 1 if s = 1	
	JMI	PC <= PC + "imm"	
		.rd. <= PC + 1	
4	ANR	.rd. <= .rs1. AND .rs2.	
1	ANI	.rd. <= .rd. AND USE"imm"	
	MSI	.rd. <= SE"imm"	
	MHL	.rd. [15:8] <= "imm"	
	SIR	.rd. <= .rs1. LS <u>+</u> .rs2.	
	SAR	.rd. <= .rs1. AS <u>+</u> .rs2.	
	ADR	.rd. <= .rs1. + .rs2.	
	SUR	.rd. <= .rs1rs2.	
	ADI	.rd. <= .rd. + SE"imm"	
	SUI	.rd. <= .rd SE"imm"	
	MUL	.rd. <= .rs1. × .rs2. 'LSB	8/1
		.rd+1. <= .rs1. × .rs2. 'MSB	.Y5J.
	DIV	.rd. <= .rs1. ÷ .rs2. 'Quo	رجسيے
		.rd+1. <= .rs1. ÷ .rs2. 'Rem	16 b
١,	CMR	flags <= Cmp(.rs1. , .rd.)	
	CMI	flags <= Cmp(.rd. , SE"imm")	2 Ot 1
	BRC	PC <= .rd. if flag	
	BRR	PC <= PC + .rd. if flag	
	SHI	.rd. <= .rd. LS <u>+</u> "shim"	1/2 IN
		.rd. <= .rd. AS+ "shim"	
	NTR	.rd. <= 1sComp(.rs1.)	do to v. loin by 4 158
		.rd. <= 2sComp(.rs1.)	y * '
	NTD	.rd. <= 1sComp(.rd.)	- 111
		.rd. <= 2sComp(.rd.)	J Y61
	$.rsd. \rightarrow R_f$ content	nointed by red	- 10
		pointed by 130	

Instruction Format Addressing Modes (In General)

- I- Direct Addressing
- 2- Indirect Addressing
- 3- Register Addressing
- 4- Register Indirect Addressing

No or less Memory Access
Faster Execution
Limited Address Space

Addressing Modes (In General)

5- PC Relative Addressing

6- Immediate Addressing

Instruction Types:

- R-Type Instruction
 - Contains registers for operands and addressing
- I-Type Instruction
 - Contains an immediate value embedded within the instruction word

Opcode	Immediate or register
4 bits (Up to 8-bits)	12-8 bits

For instructions with alternatives opcode can be extended up-to 8 bits

Instruction Types:

- R-Type Instruction
 - Two-operand instructions:

One-operand instructions :

Opcode	Extended C	Opcode rs	s <mark>1</mark>	rd
4 bits	4 bits	12-8 bits		4 bits

Instruction Types:

• I-Type Instruction

Processor Registers

Outline:

- Processor and Memory Model
- Processor Model Specification
- Instruction Execution Cycle
- Processor Registers
- Instruction Format
- SAYAC Instructions
 - Basic
 - Shadow

SAYAC Instructions - Basic

[15:12]	[11:10]	[9]	[8]	[7:4]	[3:0]	Instruc tion	Notation
0000					Reserved		
0001			9		Reserved		
0010	00	0		rs1	rd	LDR	$R_f(rd) \le MEM(R_f(rs1))$
		1					$R_f(rd) \le IO(R_f(rs1))$
	01	70		rs1	rd	STR	$MEM(R_f(rd)) \le R_f(rs1)$
	10	1		1		INAD	$IO(R_f(rd)) \leftarrow R_f(rs1)$
	10	S		rs1	rd	JMR	$PC \le PC + R_f(rs1)$ $R_f(rd) \le PC + 1$, IF s=1
	11			imm	rd	JMI	PC <= PC + "imm"
							R _f (rd) <= PC + 1
RY		407	y		13 1		

SAYAC Instructions - Basic

[15:12]	[11:8]	[7:4]	[3:0]	Instru ction	Notation				
0011	rs2	rs1	rd	ANR	$R_f(rd) \le R_f(rs1)$ AND $R_f(rs2)$				
0100	iı	mm	rd	ANI	$R_f(rd) \le R_f(rd)$ AND USE"imm"				
0101	i	mm	rd	MSI	R _f (rd) <= SE"imm"				
0110	il	mm	rd	MHI	R _f (rd) 'MSB <= "imm"				
0111	rs2	rs1	rd	SLR	$R_f(rd) \leftarrow R_f(rs1) LS \pm R_f(rs2)$				
1000	rs2	rs1	rd	SAR	$R_f(rd) \le R_f(rs1) AS \pm R_f(rs2)$				
1001	rs2	rs1	rd	ADK	$R_f(rd) < R_f(rs1) + R_f(rs2)$				
1010	rs2	rs1	rd	SUR	$R_f(rci) \leq R_f(rs1) - R_f(rs2)$				
1011	iı	mm	¥0	ADI	$R_f(rd) \ll R_f(rd) + SE''imm''$				
1100	İı	mm	rd	SUI	$R_f(rd) \le R_f(rd) - SE''imm''$				
1101	rs2	rs1	rd	MUL	$R_f(rd) \le R_f(rs1) \times R_f(rs2)$ 'LSB				
					$R_f(rd+1) \leftarrow R_f(rs1) \times R_f(rs2)$ 'MSB				
1110	rs2	rs1	rd	DIV	$R_f(rd) \ll R_f(rs1) + R_f(rs2)$ 'Quo				
					$R_f(rd+1) \le R_f(rs1) \div R_f(rs2)$ 'Rem				

SAYAC Instructions - Basic /

				ixgl			
[15:12]	[11:10]	[9]	[8]	[7:4]	[3:0]	Instru ction	Notation
1111	00	0		rs1	rd	CMR	flags <= Cmp($R_f(rs1)$, $R_f(rd)$)
		1		imm	rd	CMI	flags <= Cmp(R _f (rd), SE"imm")
	01	0	flag	interpretation bits	rd	BRC	PC <= R _f (rd), IF flag
		1	flag	; interpretation bits	rd	BRR	PC <= PC + R _f (rd), IF flag
	10	70		shim	rd	SHI	$R_f(rd) \leftarrow R_f(rd) LS \pm \text{"shim"}$
		1/		shim	rd		$R_f(rd) \le R_f(rd) AS \pm "shim"$
	11	0	0	rs1	rd	NTR	$R_f(rd) \le 1sComp(R_f(rs1))$
			1				$R_f(rd) \le 2sComp(R_f(rs1))$
		1	0		rd	NTD	$R_f(rd) \le 1sComp(R_f(rd))$
			1				$R_f(rd) \le 2sComp(R_f(rd))$

SAYAC Instructions - Shadow

SAYAC Instructions

[15:12]	[11:10]	[9]	[8]	[7:4]	[3:0]	Instruc tion	Notation
0000			•		Reserved		
0001					Reserved		
0010	00	0		rs1	rd	LDR	Rf(rd) <= MEM(Rf(rs1))
		1					Rf(rd) <= IO(Rf(rs1))
	01	0		rs1	rd	STR	MEM(Rf(rd)) <= Rf(rs1)
		1					IO(Rf(rd)) <= Rf(rs1)
	10	S		rs1	rd	JMR	PC <= PC + Rf(rs1)
							Rf(rd) <= PC + 1, IF s=1
	11			imm	rd	JMI	PC <= PC + "imm"
							Rf(rd) <= PC + 1

Shadow [7:0] which is IR[15:8]

3 1

SAYAC Instructions - Shadow

	[15:12]	[11:8]	[7:4]	[3:0]	Instru ction	Notation
	0011	rs2	rs1	rd	ANR	Rf(rd) <= Rf(rs1) AND Rf(rs2)
1	0100	imm	rs1	rd	ANI	$R_f(rd) \le R_f(rs1)$ AND USE"imm"
1	0101	im	m	rd	MSI	Rf(rd) <= SE"imm"
	0110	im	m	rd	MHI	Rf(rd) 'MSB <= "imm"
	0111	rs2	rs1	rd	SLR	$Rf(rd) \leftarrow Rf(rs1) LS \pm Rf(rs2)$
	1000	rs2	rs1	rd	SAR	$Rf(rd) \le Rf(rs1) AS \pm Rf(rs2)$
	1001	rs2	rs1	rd	ADR	$Rf(rd) \le Rf(rs1) + Rf(rs2)$
	1010	rs2	rs1	rd	SUR	$Rf(rd) \le Rf(rs1) - Rf(rs2)$
1	1011	imm	rs1	rd	ADI	$R_f(rd) \le R_f(rs1) + SE''imm''$
1	1100	imm	rs1	rd	SUI	$R_f(rd) \le R_f(rs1) - SE''imm''$
1	1101	rs2	rs1	rd	MUL	$R_f(rd) \le R_f(rs1) \times R_f(rs2)$ 'LSB
1						$R_f(rd+1) \le R_f(rs1) \times R_f(rs2)$ 'MSB
	1110	rs2	rs1	rd	DIV	$R_f(rd) \le R_f(rs1) \div R_f(rs2)$ 'Quo
1						$R_f(rd+1) \le R_f(rs1) \div R_f(rs2)$ 'Rem

7 6 5 4 3 2 1 0

Shadow [7:0] which is IR[15:8]

Flip extended bits
Right-most bits only
Signed Mul Div
Quotient only

SAYAC Instructions - Shadow

[15:12]	[11:10]	[9]	[8]	[7:4]	[3:0]	Instru ction	Notation
1111	00	0		rs1	rd	CMR	flags <= Cmp(R _f (rs1), R _f (rd))
		1		imm	rd	CMI	flags <= Cmp(R _f (rd), SE"imm")
	01	0	flag	interpretation bits	rd	BRC	PC <= R _f (rd), IF flag
		1	flag	interpretation bits	rd	BRR	PC <= PC + R _f (rd), IF flag
	10	0		shim	rd	SHI	$Rf(rd) \le Rf(rd) LS \pm "shirp"$
		1		shim	rd		$Rf(rd) \le Rf(rd) AS \pm "shipn"$
	11	0	0	rs1	rd	NTR	Rf(rd) <= 1sComp(Rf(rst))
			1				Rf(rd) <= 2sComp(Rf(rd1))
		1	0		rd	NTD	Rf(rd) <= 1sComp(Rf(rd))
			1				Rf(rd) <= 2sComp(Rf(rd))
7 6 5 4	3 2	2 1	0				
						Signe	ed Compare

Shadow [7:0] which is IR[15:8]

Processor Architecture Outline:

- Processor and Memory Model
- Processor Model Specification
- Instruction Execution Cycle
- Processor Registers
- Instruction Format
- SAYAC Instructions

SAYAC Hardware Implementation

- SAYAC Datapath and Instruction flow
- Controller
- Datapath VHDL Description
 - Control Signals
 - Components of Datapath
 - Bussing
- Controller VHDL Description
- Putting SAYAC Together
- Memory Model
- Instruction execution and Testing
- Conclusions

SAYAC Hardware Implementation Outline:

- Processor and Memory Model
- Processor Model Specification
- Instruction Execution Cycle
- Processor Registers
- Instruction Format
- SAYAC Instructions

- SAYAC Hardware Implementation
 - SAYAC Datapath and Instruction flow
 - Controller
 - Datapath VHDL Description
 - Control Signals
 - Components of Datapath
 - Bussing
 - Controller VHDL Description
 - Putting SAYAC Together
 - Memory Model
 - Instruction execution and Testing
 - Conclusions

SAYAC Hardware Implementation

•	Instruction	Notation	
	LDR	.rd. <= [.rs1.]	
		.rd. <= { .rs1. }	
	STR	[.rd.] <= .rs1.	
		{ .rd }<= rs1	
	JMR	PC <= PC + .rs1.	
		.rd. <= PC + 1 if s = 1	
	JMI	PC <= PC + "imm"	
		.rd. <= PC + 1	
	ANR	.rd. <= .rs1. AND .rs2.	
	ANI	.rd. <= .rd. AND USE"imm"	
	MSI	.rd. <= SE"imm"	
	MHL	.rd. [15:8] <= "imm"	
	SIR	.rd. <= .rs1. LS <u>+</u> .rs2.	
	SAR	.rd. <= .rs1. AS <u>±</u> .rs2.	
ı N	ADR	.rd. <= .rs1. + .rs2.	
	SUR	.rd. <= .rs1. – .rs2.	
	ADI	.rd. <= .rd. + SE"imm"	
	SUI	.rd. <= .rd SE"imm"	
	MUL	.rd. <= .rs1. × .rs2. 'LSB	
١.		.rd+1. <= .rs1. × .rs2. 'MSB	
	DIV	.rd. <= .rs1. ÷ .rs2. 'Quo	
		.rd+1. <= .rs1. ÷ .rs2. 'Rem	
V.	CMR	flags <= Cmp(.rs1. , .rd.)	
	CMI	flags <= Cmp(.rd. , SE"imm")	
	BRC	PC <= .rd. if flag	
	BRR	PC <= PC + .rd. if flag	
	SHI	.rd. <= .rd. LS <u>+</u> "shim"	
		.rd. <= .rd. AS+ "shim"	
M M	NTR	.rd. <= 1sComp(.rs1.)	
		.rd. <= 2sComp(.rs1.)	
EM DU	NTD	.rd. <= 1sComp(.rd.)	
		.rd. <= 2sComp(.rd.)	
	$.rsd. \rightarrow R_f$ content	nointed by red	
	A content	poniced by rou	

[adr] - Memory addressed by adr

{ loc } → IO device addressed by loc

SAYAC Hardware Implementation Outline:

- Processor and Memory Model
- Processor Model Specification
- Instruction Execution Cycle
- Processor Registers
- Instruction Format
- SAYAC Instructions

- SAYAC Hardware Implementation
 - SAYAC Datapath and Instruction flow
 - Controller
 - Datapath VHDL Description
 - Control Signals
 - Components of Datapath
 - Bussing
 - Controller VHDL Description
 - Putting SAYAC Together
 - Memory Model
 - Instruction execution and Testing
 - Conclusions

Conclusion

In this topic we have covered: