

Non-terminal as a Function

In a top-down parser a non-terminal may be viewed as a procedure matching a portion of the input. In our expression grammar G with the E-productions $E \to E + T$, $E \to E - T$, $E \to T$, the function looks as follows:

Function of E

```
E()
    Select an E-production p
              // here is the nondeterminism
    if p = E \rightarrow E + T
         call E()
         if yylex()='+'
              call T()
         else error
    else if · · ·
```

Let the input be $ic \cdots$. The parser starts with the start symbol E and chooses the production rule $E \to E + T$. But then there is no change in the input and the leftmost non-terminal E may be expanded again and again ad infinitum. A left recursive grammar may lead to non-termination.

Lect 5

In the previous example let the parser starts with the start symbol E and chooses the following sequence of production rules: $E \to T$, $T \to F$ and $F \to ic$. The first symbol of the input matches, but the choice may be incorrect if the next input symbol is '+', as there is no rule with right hand side $F + \cdots$. It may be necessary to backtrack on the choice of production rules.

Consider the grammar:

$$S \rightarrow aSa \mid aTba \mid c$$

$$T \rightarrow bS$$

If the input is $\mathbf{a} \cdot \cdots$, we cannot decide whether to use the first or the second production rule of S. But if the parser is designed to look-ahead another symbol (2-look-ahead), the correct choice can be made. If the input is $\mathbf{aa} \cdot \cdots$, the selected rule for derivation is $S \to aSa$. But if it is $\mathbf{ab} \cdot \cdots$, the choice is $S \to aTba$.

Note

In case of the expression grammar G, no fixed amount of look-ahead can help. We may have 5-look-ahead and the input is $ic+ic+ic\cdots$. The derivation sequence will be $E \to E + T \to E + T + T$. But the next step is

 $E' \to E' + T' \to E' + T' + T'$. But the next step is not known as the operator after the rightmost ic is not known. Note that no *token* has been consumed (read) so far.

Consider the ambiguous grammar:

$$S \rightarrow aSa \mid bSb \mid aTba \mid c$$

$$T \rightarrow bS$$

There is no way to decide a rule entirely on the basis of the input, without removing the ambiguity.

Compilers: CS31003

An unambiguous context-free grammar without left recursion is called an LL(k) grammar^a, if a top-down predictive parser for its language can be constructed with at most k input look-ahead. We shall consider the case of k = 1.

^aThe parser scans the input from left-to-right and uses the leftmost derivation.

 $oxed{\mathbf{FIRST}(X)}$

Compilers: CS31003

Informally, the FIRST() set of a terminal or a non-terminal X or a string over terminals and non-terminals, is the collection of all terminals (also ε) that can be derive from X, in the grammar, as the first (leftmost) terminal symbol.

$\mathbf{FIRST}(X)$

If $X \in \Sigma \cup N \cup \{\varepsilon\}$, then $FIRST(X) \subseteq \Sigma \cup \{\varepsilon\}$ is defined inductively as follows:

- FIRST $(X) = \{X\}$, if $X \in \Sigma \cup \{\varepsilon\}$,
- FIRST(X) is $\bigcup_{X \to \alpha \in P} \text{FIRST}(\alpha), X \in N$,
- $\varepsilon \in \text{FIRST}(X)$, if there is $X \to \alpha$ and $\alpha \to \varepsilon$,
- FIRST $(A \to \alpha)$ is the FIRST (α) .

$\mathbf{FIRST}(X)$

Compilers: CS31003

If $\alpha = X_1 X_2 \cdots X_k$, then $FIRST(X_1) \setminus \{\varepsilon\} \subseteq FIRST(\alpha)$ and $FIRST(X_i) \setminus \{\varepsilon\} \subseteq FIRST(\alpha)$ when $\varepsilon \in \bigcap_{j=1}^{i-1} FIRST(X_j)$, $1 < i \le k$. If $\varepsilon \in \bigcap_{j=1}^k FIRST(X_j)$, then $\varepsilon \in FIRST(\alpha)$.

Consider the classic expression grammar; FIRST(E) =FIRST(T) =FIRST(F) = {ic, (}. There are two production rules for each of E and T with the identical FIRST() sets: $E \to E + T$, $E \to T$ and $T \to T * F$, $T \to F$

Consider the grammar obtained after removing the left-recursion from G:

FIRST(E) =FIRST(T) =FIRST(F) = {ic, (}, FIRST(E') = {+, ε }, and FIRST(T') = {*, ε }. No non-terminal has more than one production rule with the identical FIRST() set.

$\mathbf{FOLLOW}(X)$

For every non-terminal X, the FOLLOW() set is the collection of all terminals that can follow X in a sentential form. The set can be defined inductively as follows.

- The special symbol eof or \$ is in FOLLOW(S), where S is the start symbol.
- If $A \to \alpha B\beta$ be a production rule, FIRST(β) \ $\{\varepsilon\} \subseteq \text{FOLLOW}(B)$.

$\mathbf{FOLLOW}(X)$

• If $A \to \alpha B\beta$, where $\beta = \varepsilon$ or $\beta \to \varepsilon$, then FOLLOW(A) \subseteq FOLLOW(B).

The reason is simple:

 $S \to uAv \to u\alpha B\beta v \to u\alpha Bv$, naturally FIRST $(v) \subseteq FOLLOW(A)$, FOLLOW(B).

Computation of FOLLOW() Sets

```
for each A \in N

FOLLOW(A) \leftarrow \emptyset

FOLLOW(S) \leftarrow \{\$\}

while (FOLLOW sets are not fixed points)

for each A \rightarrow \beta_1 \beta_2 \cdots \beta_k \in P

if (\beta_k \in N)

FOLLOW(\beta_k) \leftarrow FOLLOW(\beta_k) \cup FOLLOW(A)

FA \leftarrow FOLLOW(A)
```

Computation of FOLLOW() Sets

Compilers: CS31003

```
for i \leftarrow k downto 2

if (\beta_i \in N \& \varepsilon \in \text{FOLLOW}(\beta_i))

\text{FOLLOW}(\beta_{i-1}) \leftarrow \text{FOLLOW}(\beta_{i-1})

\cup \text{FIRST}(\beta_i) \setminus \{\varepsilon\} \cup FA

else

\text{FOLLOW}(\beta_{i-1}) \leftarrow \text{FOLLOW}(\beta_{i-1})

\cup \text{FIRST}(\beta_i) \setminus \{\varepsilon\}

FA \leftarrow \emptyset
```

In the expression grammar G: FOLLOW $(E) = \{\$, +, \}$, FOLLOW $(T) = \{\$, +, \}$, FOLLOW $(E) \cup \{*\} = \{\$, +, \}$, and FOLLOW $(F) = \{\$, +, \}$. In the transformed grammar: FOLLOW $(E) = \{\$, \}$, FOLLOW $(E') = \{\$, \}$, FOLLOW $(T) = \{\$, \}$, and FOLLOW $(F) = \{\$, \}$, +, *}.

LL(1) Grammar

A context-free grammar G is LL(1) iff for any pair of distinct productions $A \to \alpha$, $A \to \beta$, the following conditions are satisfied.

- FIRST(α) \cap FIRST(β) = \emptyset i.e. no $a \in \Sigma \cup \{\varepsilon\}$ can belong to both.
- If $\alpha \to \varepsilon$ or $\alpha = \varepsilon$, then FIRST $(\beta) \cap$ FOLLOW $(A) = \emptyset$.

Consider the following grammar with the set of terminals,

 $\Sigma = \{\text{id} \ ; := \text{int float main do else end if print scan then while} \ \cup \{\text{E BE}\}^a;$ the set of non-terminals, $N = \{\text{P DL D VL T SL S ES IS WS IOS}\};$ the start symbol is P and the set of production rules are:

^aE and BE, corresponds to expression and boolean expressions, are actually non-terminals. But here we treat them as terminals.

Production Rules

- 1 P \rightarrow main DL SL end
- 2 DL \rightarrow D DL | D
- $4 \text{ D} \rightarrow \text{T VL}$;

Compilers: CS31003

- 5 VL ightarrow id VL | id
- $7 \text{ T} \rightarrow \text{int} \mid \text{float}$
- $9 \text{ SL} \rightarrow \text{S SL} \mid \varepsilon$
- $11 \text{ S} \rightarrow \text{ES} \mid \text{IS} \mid \text{WS} \mid \text{IOS}$

Production Rules

Compilers: CS31003

```
15 ES \rightarrow id := E ;

16 IS \rightarrow if BE then SL end |

if BE then SL else SL end

18 WS \rightarrow while BE do SL end

19 IOS \rightarrow scan id ; | print E ;
```

Note

Compilers: CS31003

There is no production rule with *left-recursion*. But the rules 2,3, 5,6, and 16,17 needs *left-factoring* as the FIRST() sets are not disjoint. The transformed grammar after factoring is:

New Production Rules

- 1 P ightarrow main DL SL end
- $2 \text{ DL} \rightarrow \text{ D} \text{ DO}$

Compilers: CS31003

- $3 \text{ DO} \rightarrow \text{DL} \mid \varepsilon$
- $4 D \rightarrow T VL$;
- 5 VL ightarrow id VO
- $6 \text{ VO} \rightarrow \text{VL} \mid \varepsilon$
- $7 \text{ T} \rightarrow \text{int} \mid \text{float}$

Production Rules

Compilers: CS31003

```
9 SL

ightarrow S SL | arepsilon

ightarrow ES | IS | WS | IOS
15 ES \rightarrow id := E;
16 IS \rightarrow if BE then SL EO
   EO \rightarrow end | else SL end
    WS \rightarrow while BE do SL end
    IOS \rightarrow scan id ; | print E ;
```

FIRST()

Compilers: CS31003

The next step is to calculate the FIRST() sets of different rules.

NT/Rule	FIRST()	
P (1)	main	
DL (2)	int float	
DO (3)	int float	
DO (3a)	arepsilon	
D (4)	int float	

Compilers: CS31003

FIRST()

NT/Rule	FIRST()
VL (5)	id
VO (6)	id
VO (6a)	arepsilon
T (7)	int
T (8)	float
SL (9)	id if while scan print

Lect 5

Compilers: CS31003

FIRST()

NT/Rule	FIRST()
SL (10)	arepsilon
S (11)	id
S (12)	if
S (13)	while
S (14)	scan print

FIRST()

NT/Rule	FIRST()
ES (15)	id
IS (16)	if
EO (17)	end
E0 (17a)	else

FIRST()

NT/Rule	FIRST()
$\mathtt{WS}\ (18)$	while
IOS (19)	scan
10S(20)	print

Note

Three rules have ε -productions. Their applications in a predictive parser depends on what can follow the corresponding non-terminals. So it is necessary to compute the FOLLOW() sets corresponding to these non-terminals. The rules are:

DO $\to \varepsilon(3a)$, VO $\to \varepsilon(6a)$, SL $\to \varepsilon(10)$.

Lect 5

FOLLOW()

Compilers: CS31003

```
NT FOLLOW()

DO id if while scan print end

VO ;
SL end else
```

Note

FOLLOW(DO) = FOLLOW(DL) (rule 2). The $FOLLOW(DL) = FIRST(SL) \setminus \{\varepsilon\} \cup FOLLOW(P)$ (rule 1) as SL is *nullable* (rule 10). Now $FOLLOW(P) = \{\text{end}\}$.

Note

Compilers: CS31003

It is clear from the previous computation that no two production rules of the form $A \to \alpha_1 \mid \alpha_2$ have common elements in their FIRST() sets. There is also no common element in the FIRST() set of the production rule $A \to \alpha$ and the FOLLOW() set of A in cases where $A \to \varepsilon$. So the grammar is LL(1) and a predictive parser can be constructed.

Recursive-Descent Parser

Compilers: CS31003

We write a function (may be recursive) for every non-terminal. The function corresponding to a non-terminal A returns ACCEPT if the corresponding portion of the input can be generated by A. Otherwise it returns a REJECT with proper error message.

Consider the production rule

 $extsf{P} o extsf{main}$ DL SL end

The function corresponding to the non-terminal P is as follows:

int P()

Compilers: CS31003

```
int P(){
   if(yylex() == MAIN){ // MAIN for "main"
      nextToken = NOTOK;
      if(DL() == ACCEPT)
         if(SL() == ACCEPT) {
            if(nextToken == NOTOK)
               nextToken = yylex();
            if(nextToken == END) // END is the token
               return ACCEPT; // for "END"
            else {
                 printf("end missing (1)\n");
                 return REJECT;
```

```
Compilers: CS31003
```

```
else {
              printf("SL mismatch (1)\n");
              return REJECT;
    else {
          printf("DL mismatch (1)\n");
          return REJECT;
else {
   printf("main missing (1)\n");
    return REJECT;
```

 $Lect\ 5$

Goutam Biswas

Compilers: CS31003

The global variable nextToken stores the look-ahead input (token). If there is a valid nextToken, it is to be consumed before calling yylex().

The stack of the push-down automaton is the stack of the recursive call. The body of the function corresponding to a non-terminal corresponds to all its production rules.

We now consider a non-terminal with ε -production.

$$oxed{DO o DL \mid arepsilon}$$

The members of FIRST(DL) are {int float} and the elements of FOLLOW(DO) are {id if while scan print end}.

int DO()

```
int FDO(){
    if(nextToken == NOTOK)
       nextToken = yylex();
    if(nextToken == INT | |
       nextToken == FLOAT)
       if(DL() == ACCEPT) return ACCEPT;
       else {
           printf("DL mismatch (3)\n");
           return REJECT;
    else
       if(nextToken == IDNTIFIER | |
```

```
nextToken == IF ||
  nextToken == WHILE | |
  nextToken == SCAN ||
  nextToken == PRINT | |
  nextToken == END)
  return ACCEPT;
else {
  printf("DO follow mismatch (3)\n");
  return REJECT;
```


The global variable **nextToken** is used to store the *look-ahead* token. This helps to report an error earlier.

Table Driven Predictive Parser

A non-recursive predictive parser can be constructed that maintains a stack (explicitly) and a table to select the appropriate production rule.

Lect 5

Parsing Table

The rows of the predictive parser table are indexed by the non-terminals and the columns are indexed by the terminals including the end-of-input marker (\$). The content of the table are production rules or error situations. The table cannot have multiple entries.

Parsing Stack

The parsing stack can hold both terminals and non-terminals. At the beginning, the stack contains the end-of-stack marker (\$) and the start symbol on top of it.

Parsing Table Construction

- If $A \to \alpha$ is a production rule and $a \in FIRST(\alpha)$, then $P[A][a] = A \to \alpha$.
- If $A \to \varepsilon$ is a production rule and $a \in$ FOLLOW(A), then $P[A][a] = A \to \varepsilon$.

Actions

- If the top-of-stack is a terminal symbol (token) and matches with input token, both are consumed. A mismatch is an error.
- If the top-of-stack is a non-terminal A, the input token is α , P[A][a] has the entry $A \to \alpha$, then A is to be replaced by α , with the head of α on the top of the stack.

Consider the production rules of the non-terminal SL.

$$\mathtt{SL} o \mathtt{S} \ \mathtt{SL} \ | \ arepsilon$$

```
The FIRST(SL \rightarrow S SL) = {id if while scan print} and FOLLOW(SL) = {end else}. So, P[\text{SL}][\text{IDNTIFIER}] = P[\text{SL}][\text{IF}] = P[\text{SL}][\text{WHILE}] = P[\text{SL}][\text{SCAN}] = P[\text{SL}][\text{PRINT}] = \text{SL} \rightarrow \text{S} \text{ SL and } P[\text{SL}][\text{END}] = P[\text{SL}][\text{ELSE}] = \text{SL} \rightarrow \varepsilon.
```

Lect 5

Note

Multiple entries in a table indicates that the grammar is not LL(1). But it is interesting to note that in some cases we can drop (with proper consideration) some of these entries and construct a parser.

Example

Consider the ambiguous grammar G_1 for expressions.

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid ic$$

After the removal of left-recursion we get the following ambiguous, no-left-recursive grammar:

$$E \rightarrow (E)E' \mid icE'$$

$$E' \rightarrow +EE' \mid -EE' \mid *EE' \mid /EE' \mid \varepsilon$$
We calculate FIRST(E') = {+ - * / \$\varepsilon\$ } and the FOLLOW(E') = FOLLOW(E) = {\$) + - * /}.

Naturally, $P[E'][\pm] = \{E' \to +EE', E' \to \varepsilon\}$ and

 $P[E'][*/] = \{E' \to *EE', E' \to \varepsilon\}.$

We may drop the ε -productions from these four places and get a nice parsing table^a.

^aBut it does not work for all grammars. Consider $S \to aSa \mid bSb \mid \varepsilon$.

It seems that the removal of two ε -production disambiguates the grammar. The corresponding unambiguoes grammar G_2 is as follows:

$$E \rightarrow (E)E' \mid icE' \mid (E) \mid ic$$

$$E' \rightarrow +E \mid -E \mid *E \mid /E \mid \varepsilon$$

We have $L(G_1) = L(G_2)$ and $FOLLOW(E') = \{\$ \}$, so there is no multiple entries in the table^a.

^aHow to maintain operator precedence?

Error Recovery

- The token on the top of stack does not match with the token in the input stream.
- The entry in the parsing table corresponding to nonterminal on the top of stack and the current input token is an error.

Panic Mode

Lect 5

Goutam Biswas