Cap. 2- Cálculo Integral

Novembro 2019

M.Isabel Caiado [MIEInf] Cálculo-2019-20 1 / 31

2.1 Primitivas

Definição

Primitivas fundamentais

Regras de primitivação

Primitivação por decomposição Primitivação imediata Primitivação por partes Primitivação por substituição

Primitivação de funções racionais

Frações simples Funções racionais

Até agora...

Dada uma função derivável

$$f: I \longrightarrow \mathbb{R}$$

definida num intervalo I, determinar uma função

$$g: I \longrightarrow \mathbb{R}$$

tal que

$$g(x) = f'(x), \quad \forall x \in I.$$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

3 / 31

Problema

▶ Dada uma função $f: I \longrightarrow \mathbb{R}$ definida num intervalo I, determinar uma função $F: I \longrightarrow \mathbb{R}$, derivável e tal que

$$F'(x) = f(x), \quad \forall x \in I.$$

Este problema diz-se problema da primitivação da função f, no intervalo I.

Definição de primitiva

▶ [Função primitiva] Uma função derivável $F:I\longrightarrow \mathbb{R}$ diz-se função primitiva de $f:I\longrightarrow \mathbb{R}$ quando, para todo o $x\in I$,

$$F'(x) = f(x).$$

- Neste caso
 - ullet Diz-se que f é primitivável em I.
 - F diz-se uma primitiva (ou antiderivada) de f em I;
 - ullet F é uma primitiva de $f \Longleftrightarrow f$ é a derivada de F.

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

5 / 31

Exemplo

1. A função $F:\mathbb{R} \to \mathbb{R}$ dada por

$$F(x) = \frac{1}{2}x^2$$

é uma primitiva da função $f:\mathbb{R} \to \mathbb{R}$, f(x)=x;

2. A função $F:\mathbb{R}\to\mathbb{R}$ dada por

$$F(x) = \frac{1}{2}x^2 + \sqrt{3}$$

é uma primitiva da função $f:\mathbb{R} \to \mathbb{R}$, f(x)=x.

3. Nem todas as funções admitem primitiva. Por exemplo, a função

$$g(x) = \begin{cases} 1 & \text{se } 0 \le x \le 2 \\ 2 & \text{se } 2 < x \le 4 \end{cases}$$

não admite primitiva no intervalo [0,4] porque não é a derivada de nenhuma função (c.f. Teorema de Darboux).

4. Gráfico de f e de duas possíveis funções primitivas F:

5. Gráfico de g e de F:

F não é uma primitiva de g porque F não é derivável em I=[-2,2].

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

7 / 31

Consequências da definição

 \blacktriangleright Se F é uma primitiva de f no intervalo I então toda a função definida por

$$F(x) + \mathcal{C}, \quad x \in I,$$

com $\mathcal C$ uma constante real arbitrária, é também uma primitiva de f .

Basta notar que
$$[F(x) + \mathcal{C}]' = F'(x) = f(x), \ x \in I.$$

 $lackbox{N\~ao}$ existem outras primitivas de f para além das que têm a forma

$$F(x) + \mathcal{C}, \ x \in I,$$

com F uma primitiva conhecida de f em I e $\mathcal C$ uma constante arbitrária.

$$\int f(x) dx = F(x) + \mathcal{C}, \qquad \mathcal{C} \in \mathbb{R}$$

onde

- \blacktriangleright \int é um "S" alongado;
- ightharpoonup dx é uma partícula que, em particular, especifica a variável independente;
- $ightharpoonup \int f(x)\,dx$ diz-se integral indefinido da função f.

M.Isabel Caiado [MIEInf] Cálculo-2019-20 9 / 31

Primitivas fundamentais

Reescreva-se a tabela de derivadas de forma a ler-se uma tabela de primitivas fundamentais $(k \in \mathbb{R})$

Função	Derivada
e^x	e^x
$\operatorname{sen} x$	$\cos x$
$\cos x$	$-\operatorname{sen} x$
x^k	$k x^{k-1}$
$\ln x$	$\frac{1}{x}, x > 0$

FunçãoPrimitivas e^x $e^x + \mathcal{C}$ $\cos x$ $\sin x + \mathcal{C}$ $-\sin x$ $\cos x + \mathcal{C}$ x^k $\frac{x^{k+1}}{k+1} + \mathcal{C}, k \neq -1$ 1 $ x + \mathcal{C}$	
$\begin{vmatrix} \cos x & & \sin x + \mathcal{C} \\ -\sin x & & \cos x + \mathcal{C} \\ x^k & \frac{x^{k+1}}{k+1} + \mathcal{C}, k \neq -1 \end{vmatrix}$	Primitivas
$\frac{1}{x}$ $\frac{1}{x}$	$e^{x} + \mathcal{C}$
$\frac{\overline{x}}{x}$	

$$1. \int 1 \, dx =$$

$$2. \int 2x \, dx =$$

$$3. \int e^x \, dx =$$

$$4. \int \sin x \, dx =$$

$$5. \int \frac{1}{x} dx =$$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

11 / 31

Observação

- 1. Foi visto que o problema da primitivação pode não ter solução.
- No que se segue serão estudadas técnicas que irão permitir resolver o problema de primitivação em muitas situações.
 (Primitivação de funções elementares)
- 3. As técnicas a estudar não permitem determinar primitivas de todas as funções primitiváveis. Um exemplo é a função Gaussiana definida por

$$e^{-x^2}, \quad x \in \mathbb{R}$$

que é primitivavel em qualquer intervalo I não sendo possível obter uma sua primitiva recorrendo às técnicas que agora se passa a estudar.

(Este problema será abordado na UC de Análise.)

Regras de primitivação

► [Primitivação por decomposição]

Sejam
$$f,g:I\longrightarrow\mathbb{R}$$
 e $\alpha\,,\beta\in\mathbb{R}$ constantes. Então
$$\int [\alpha\,f(x)+\beta\,g(x)]\,dx=\alpha\,\int f(x)\,dx+\beta\,\int g(x)\,dx.$$

 Esta regra resulta da regra da derivação da soma de funções e da regra da derivada do produto de uma função por uma constante.

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

13 / 31

Exemplo

$$1. \int (\sin x + 2\cos x) \, dx =$$

2.
$$\int (3x^2 - 2x^5) dx =$$

3.
$$\int (\sqrt{x} + 2)^2 dx =$$

► [Primitivação imediata]

Sejam funções $u:I\longrightarrow J$ e $g:J\longrightarrow \mathbb{R}$ duas funções deriváveis tais que a função composta está bem definida. Então

$$\int g'(u(x)) \cdot u'(x) \, dx = \int [g(u(x))]' \, dx = g(u(x)) + \mathcal{C}, \qquad \mathcal{C} \in \mathbb{R}.$$

• Esta regra resulta da regra da derivada da função composta.

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

15 / 31

Exemplo

1.
$$\int \operatorname{sen}(2x) \, dx =$$

2.
$$\int (2x+10)^{20} dx =$$

3.
$$\int x^4(x^5+10)^9 dx =$$

4.
$$\int x^2 e^{x^3} dx =$$

5. $\int \cos x (\sin x)^3 dx$ é uma primitiva imediata.

De facto,
$$[g \circ u]'(x) = g'(u(x)) \cdot u'(x)$$
 pelo que

$$\int g'(u(x)) \cdot u'(x) \, dx = (g \circ u)(x)$$

Neste caso, $u(x) = \operatorname{sen} x$ e $g(x) = x^4$, então

$$(g \circ u)(x) = g(u(x)) = g(\operatorname{sen} x) = (\operatorname{sen} x)^4$$

е

$$[(\sin x)^4]' = 4 (\sin x)^3 \cos x$$

donde

$$\int \cos x (\sin x)^3 dx = \frac{1}{4} \int 4 \cos x (\sin x)^3 dx = \frac{1}{4} (\sin x)^4 + \mathcal{C}, \quad \mathcal{C} \in \mathbb{R}.$$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

17 / 31

► [Primitivação por partes]

Sejam funções $f,g:I\longrightarrow \mathbb{R}$ funções deriváveis. Então

$$\int f'(x) \, g(x) \, dx = f(x) \, g(x) - \int f(x) \, g'(x) \, dx.$$

- Esta regra resulta da regra da derivada do produto de duas funções.
- Como o produto é comutativo, na primitivação por partes
 - lacktriangle escolhe-se para f' a função da qual se conhece a primitiva;
 - ightharpoonup escolhe-se para g a função que, por derivação, simplifica a expressão.

$$1. \int x \cos x \, dx =$$

$$2. \int e^x \cos x \, dx =$$

$$3. \int \ln x \, dx =$$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

19 / 31

► [Primitivação por substituição]

Seja $g:I\longrightarrow \mathbb{R}$ uma função primitivável e $f:J\longrightarrow I$ uma função bijectiva e derivável cuja derivada nunca se anula. Então

$$\int g(x) \, dx = \left[\int g(f(t)) \, f'(t) \, dt \, \right]_{t=f^{-1}(x)}.$$

- Esta regra também resulta da regra de derivação de uma função composta.
- Procedimento
 - 1. fazer a substituição x=f(t);
 - 2. calcular a primitiva $\int g(f(t)) f'(t) dt$;
 - 3. voltar à variável x fazendo $t = f^{-1}(x)$.

- 1. Calcular $\int x\sqrt{x-1}\,dx$ tomando $x=t^2+1$.
- I) Aqui $g(x)=x\sqrt{x-1}$ e $x=t^2+1=f(t)$. Como f tem de ser uma função bijetiva cuja derivada não se anula tome-se

$$f: [0, +\infty[\longrightarrow]1, +\infty[, f(t) = t^2 + 1.$$

Então

$$g(f(t)) = (t^2 + 1)\sqrt{t^2 + 1 - 1} = (t^2 + 1)t$$
 e $f'(t) = 2t$.

II) Assim

$$\int g(f(t)) f'(t) dt = \int 2t^2 (t^2 + 1) dt$$

$$= 2 \int (t^4 + t^2) dt = 2 \left(\frac{t^5}{5} + \frac{t^3}{3}\right) + C,$$

$$= 2t^3 \left(\frac{t^2}{5} + \frac{1}{3}\right) + C, \quad C \in \mathbb{R}$$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

21 / 31

III) Tem-se f bijetiva e $x = f(t) = t^2 + 1$ então

$$t = \sqrt{x - 1} = f^{-1}(x)$$

pelo que

$$\int x\sqrt{x-1} \, dx = \left[\int g(f(t)) f'(t) \, dt \right]_{t=f^{-1}(x)}$$

$$= \left[2t^3 \left(\frac{t^2}{5} + \frac{1}{3} \right) + \mathcal{C} \right]_{t=f^{-1}(x)}$$

$$= 2(\sqrt{x-1})^3 \left(\frac{x-1}{5} + \frac{1}{3} \right) + \mathcal{C}, \qquad \mathcal{C} \in \mathbb{R}$$

Primitivação de funções racionais

- A primitivação das funções racionais reduz-se à primitivação de
 - polinómios e
 - frações simples
- Função racional] Uma função $f:U\longrightarrow \mathbb{R}$ diz-se função racional quando

$$f(x) = \frac{P(x)}{D(x)}, \quad x \in U = \{x \in \mathbb{R} : D(x) \neq 0\},$$

onde P e D são dois polinómios.

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

23 / 31

Exemplos

1. São exemplo de funções racionais as seguintes leis definidas em domínios apropriados

a)
$$f(x) = \frac{x^2 - 1}{x^3 + 1}$$

b)
$$g(s) = \frac{21}{s^3 - 4s^2 + 3s - 8}$$

c)
$$h(t) = \frac{t^6 + 4t^2 - 3}{7t^5 + 3t}$$

[Frações simples] Frações simples são frações da forma

$$\frac{1}{(x-\alpha)^n}$$
 e $\frac{Ax+B}{\left[(x-\alpha)^2+\beta\right]^n}$

com $A, B, \alpha \in \mathbb{R}, \beta > 0, n \in \mathbb{N}.$

Estudam-se 6 casos para a primitivação destas frações

- Caso 1: $\frac{1}{x-\alpha}$;

- Caso 1: $\frac{1}{x-\alpha}$; Caso 4: $\frac{1}{\left[(x-\alpha)^2+\beta\right]^n}$; Caso 2: $\frac{1}{(x-\alpha)^n}$; Caso 5: $\frac{Ax+B}{(x-\alpha)^2+\beta}$; Caso 6: $\frac{Ax+B}{\left[(x-\alpha)^2+\beta\right]^n}$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

25 / 31

Exemplo

$$1. \int \frac{3}{x-2} \, dx = \tag{Caso 1}$$

2.
$$\int \frac{3}{(x-2)^5} dx =$$
 (Caso 2)

3.
$$\int \frac{1}{(x-1)^2+4} dx =$$
 (Caso 3 com $\alpha = 1$ e $\beta = 4$)

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

► [Primitivação de funções racionais] A determinação de

$$\int \frac{P(x)}{D(x)} \, dx$$

P,D polinómios, $D \neq 0$, divide-se nas seguintes etapas:

- 1. Escrever $\frac{P(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}$ usando a divisão euclidiana
- 2. Calcular os zeros de D e decompor D em fatores irredutíveis.
- 3. Decompor a fração $\frac{R(x)}{D(x)}$ em frações simples.
- 4. Determinar as primitivas das frações simples.
- 5. Adicionar a primitiva de Q e as primitivas das frações simples: como resultado obtêm-se as primitivas de $\frac{P(x)}{D(x)}$.

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

27 / 31

28 / 31

- ▶ [Decomposição em frações simples] O passo 3 do algoritmo anterior é feito com base nos zeros de D
 - \bullet cada zero real x=a, com multiplicidade k, contribui com k frações simples da forma

$$\frac{A_1}{(x-a)^k}$$
, $\frac{A_2}{(x-a)^{k-1}}$, ..., $\frac{A_k}{x-a}$,

onde A_1, A_2, \ldots, A_k são constantes reais a determinar;

• cada par de zeros complexos conjugados $x = a \pm i b$, com multiplicidade m, contribui com m frações simples da forma

$$\frac{B_1x + C_1}{[(x-a)^2 + b^2]^m}, \frac{B_2x + C_2}{[(x-a)^2 + b^2]^{m-1}}, \dots, \frac{B_mx + C_m}{(x-a)^2 + b^2}$$

onde $B_1, C_1, B_2, C_2, \dots, B_m, C_m$ são constantes reais a determinar.

• As constantes A_i, B_i, C_i calculam-se recorrendo à igualdade de polinómios ou outras regras.

M.Isabel Caiado [MIEInf] Cálculo-2019-20

1. Calcular
$$\int \frac{7x-1}{(x+1)(x+2)(x-3)} dx$$
.

Sejam

$$P(x) = 7x - 1$$
, $D(x) = (x + 1)(x + 2)(x - 3)$ e $f(x) = \frac{P(x)}{D(x)}$.

- 1. Como grauP < grauD não é necessário fazer a divisão de polinómios.
- 2. Os zeros de D(x) = (x+1)(x+2)(x-3) são

x = -1, real de multiplicidade 1;

x=-2, real de multiplicidade 1;

x = 3, real de multiplicidade 1;

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

29 / 31

3. A fração f decompõe-se numa soma de três frações simples, cada uma delas associada a cada um dos zeros:

$$\frac{7x-1}{(x+1)(x+2)(x-3)} = \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{x-3}$$

onde A, B, C são constantes reais a determinar.

Da equação anterior, reduzindo ao mesmo denominador, sai que

$$7x - 1 = A(x+2)(x-3) + B(x+1)(x-3) + C(x+1)(x+2)$$
$$= (A+B+C)x^{2} + (-A2B+3C)x + (-6A-3B+2C)$$

donde, pela igualdade de polinómios,

$$A + B + C = 0$$
, $-A2B + 3C = 7$, $-6A - 3B + 2C = -1$

e, resolvendo o sistema anterior,

$$A = 2,$$
 $B = -3,$ $C = 1.$

Pode-se, agora, escrever

$$\frac{7x-1}{(x+1)(x+2)(x-3)} = \frac{2}{x+1} + \frac{-3}{x+2} + \frac{1}{x-3}.$$

4. Primitivando cada uma das frações simples anteriores

$$\int \frac{2}{x+1} dx = 2 \ln|x+1| + C_1$$

$$\int \frac{-3}{x+2} dx = -3 \ln|x+2| + C_2$$

$$\int \frac{1}{x-3} dx = \ln|x-3| + C_3$$

onde $\mathcal{C}_1,\mathcal{C}_2,\mathcal{C}_3\in\mathbb{R}.$

5. Assim, a primitiva pedida é

$$\int \frac{7x-1}{(x+1)(x+2)(x-3)} dx = \int \frac{2}{x+1} dx + \int \frac{-3}{x+2} dx + \int \frac{1}{x-3} dx$$

$$= 2\ln|x+1| + \mathcal{C}_1 - 3\ln|x+2| + \mathcal{C}_2 + \ln|x-3| + \mathcal{C}_3$$

$$= 2\ln|x+1| - 3\ln|x+2| + \ln|x-3| + \mathcal{C}, \qquad \mathcal{C} \in \mathbb{R}$$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

31 / 31