Trabalho de Redes Neurais

Lucas Abadde, Luiz Lima e Pedro Carletti

Breast-cancer

O conjunto de dados reune 9 características relacionadas à ocorrência do câncer de mama

1. Age

Idade da paciente no momento do diagnóstico.

Tipo: categórico

Valores: 10-19, 20-29, 30-39, 40-49,

50-59, 60-69, 70-79, 80-89, 90-99

2. Menopause

Situação de menopausa da paciente no momento do diagnóstico.

Tipo: categórico

Valores: It40, ge40, premeno

3. Tumor-size

Tamanho do tumor, em mm.

Tipo: categórico

Valores: 0-4, 5-9, 10-14, 15-19, 20-24,

25-29, 30-34, 35-39, 40-44, 45-49,

50-54, 55-59

4. Inv-nodes

Número de gânglios linfáticos axilares apresentando câncer de mama no momento do exame histológico.

Tipo: categórico

Valores: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29,

30-32, 33-35, 36-39

5. Node-caps

Penetração do tumor na cápsula do gânglio linfático.

Tipo: binário

Valores: yes, no

6. Deg-malig

Classificação histológica do tumor:

- 1. Mais tecido normal e crescimento lento;
- 2. Entre graus 1 e 3;
- Muito diferente do tecido normal e crescimento rápido

Tipo: categórico

Valores: 1, 2, 3

7. Breast

Lado do seio diagnosticado com tumor.

Tipo: binário

Valores: left, right

8. Breast-quad

Quadrante do seio onde se localiza o tumor, considerando o mamilo como centro

Tipo: categórico

Valores: left-up, left-low, right-up,

right-low, central

9. Irradiat

Se a paciente já passou por radioterapia.

Tipo: binário

Valores: yes, no

A classificação esperada é sobre a recorrência da doença

_

10. Class

Sintomas reaparecem na paciente após tratamento

Tipo: binário

Valores: no-recurrence-events,

recurrence-events

Existem 286 amostras, sendo 201 não recorrentes e 85 recorrentes

Voted Perceptron

Simples e eficiente para classificação linear com grandes margens

Algoritmo de treino

```
Input:
                    a labeled training set \langle (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m) \rangle
                    number of epochs T
                    a list of weighted perceptrons \langle (\mathbf{v}_1, c_1), \dots, (\mathbf{v}_k, c_k) \rangle
Output:
    Initialize: k := 0, \mathbf{v}_1 := \mathbf{0}, c_1 := 0.
• Repeat T times:
     - For i = 1, ..., m:
                  Compute prediction: \hat{\mathbf{v}} := \text{sign}(\mathbf{v}_k \cdot \mathbf{x}_i)
           * If \hat{y} = y then c_k := c_k + 1.
                                else \mathbf{v}_{k+1} := \mathbf{v}_k + v_i \mathbf{x}_i;
                                      c_{k+1} := 1;
                                       k := k + 1
```

Algoritmo de teste

Given: the list of weighted perceptrons: $\langle (\mathbf{v}_1, c_1), \dots, (\mathbf{v}_k, c_k) \rangle$ an unlabeled instance: \mathbf{x} compute a predicted label \hat{y} as follows:

$$s = \sum_{i=1}^{k} c_i \operatorname{sign}(\mathbf{v}_i \cdot \mathbf{x}); \quad \hat{y} = \operatorname{sign}(s).$$

Resultados

Variando o número de iterações

	n_iter	conf_mat	accuracy	precision	recall	f1
0	1	[[39, 20], [9, 16]]	0.654762	0.444444	0.64	0.524590
1	2	[[36, 23], [7, 18]]	0.642857	0.439024	0.72	0.545455
2	4	[[39, 20], [9, 16]]	0.654762	0.444444	0.64	0.524590
3	8	[[39, 20], [9, 16]]	0.654762	0.444444	0.64	0.524590
4	16	[[40, 19], [9, 16]]	0.666667	0.457143	0.64	0.533333
5	32	[[40, 19], [9, 16]]	0.666667	0.457143	0.64	0.533333
6	64	[[39, 20], [9, 16]]	0.654762	0.444444	0.64	0.524590
7	128	[[39, 20], [9, 16]]	0.654762	0.444444	0.64	0.524590
8	256	[[39, 20], [9, 16]]	0.654762	0.444444	0.64	0.524590
9	512	[[40, 19], [9, 16]]	0.666667	0.457143	0.64	0.533333

Número de iterações x Taxa de acerto

F1 score

Conclusões

Modelo e dataset

O dataset não é linearmente separável por grandes margens. No Voted Perceptron mais iterações não representam mais qualidade* _

Obrigado!