Paradigmas de Programação

Fabrício Olivetti de França 14 de Junho de 2018

λ -cálculo

Computabilidade

Computabilidade é uma área de estudo central da Ciência da Computação. Ela estuda a possibilidade de resolver um problema seguindo um algoritmo.

Computabilidade

Problemas associados:

- **Decisão:** verifica se um elemento $s \in S$ está contido também em T. Exemplo: testar se um número é primo, $x \in \mathbb{N}, x \in P$.
- Função: calcular o resultado da aplicação de uma função $f:S \to T.$ Exemplo: inverter uma string.
- **Busca:** verificar se xRy em uma relação binária R. Exemplo: buscar um clique em um grafo.
- Otimização: encontrar a solução x^* entre todas as soluções do espaço de busca S de tal forma a maximizar ou minimizar uma função f(x). Exemplo: quanto devo colocar em cada possível investimento para maximizar meus lucros.

Máquina de Turing

Modelo matemático de computação criado por Alan Turing em 1936. Consiste de uma **Máquina de Estado Finita** cuja entrada é provida por uma fita de execução de tamanho arbitrário.

A máquina permite ler, escrever, e andar por essa fita.

Qual a menor linguagem universal?

Nas linguagens que vocês aprenderam até então, temos:

- Atribuição (x = x + 1)
- · Booleanos, inteiros, float, caracteres,...
- Condicionais
- Laços
- Funções
- Recursão
- Ponteiros
- · Objetos, classes

Mas do que realmente precisamos para programar?

λ -cálculo

Sistema formal para expressar computação baseado em **abstração** de funções e **aplicação** usando apenas **atribuição** de nome e **substituição**.

Criado por Alonzo Church na década de 1930s.

λ -cálculo

Ele descreve computação apenas utilizando...funções!!

- Atribuição (x = x + 1)
- Booleanos, inteiros, float, caracteres,...
- Condicionais
- Laços
- Funções
- Recursão
- Ponteiros
- Objetos, classes

Linguagem do λ -cálculo

Uma linguagem deve ser descrita em função de sua **sintaxe** e **semântica** (vocês estudarão isso em compiladores), ou como você escreve e o que significa.

Sintaxe do λ -cálculo

Sintaxe do λ -cálculo

Um programa é definido por uma $\exp ressão$ e, ou termos- λ que podem assumir uma de três formas:

- Variável: x, y, z, um nome que assumirá um valor durante a computação.
- Abstração: ou função anônima ou função λ, \x -> e, para qualquer valor x compute e
- Aplicação: e1 e2, aplique o argumento e2 na função e1 (e1(e2)). Todo e_i é uma expressão!

Exemplos

Funções de dois ou mais argumentos

$$\x -> (\y -> y)$$
 -- recebe dois args e retorna o segundo $\x -> (\y -> x)$ -- recebe dois args e retorna o primeiro

Syntatic Sugar

original	syntatic sugar
(((e1 e2) e3) e4)	e1 e2 e3 e4
$\xspace x -> (\y -> (\z -> e))$	\x -> \y -> \z -> e
\x -> \y -> \z -> e	\x y z -> e

Escopo de uma variável

Escopo indica a visibilidade de uma variável. Em C, Java:

```
int x; /* x está visível aqui, mas y não */
{
  int y; /* x e y estão visíveis */
}
/* y deixou de existir :( */
```

Escopo de uma variável

Na expressão $\x -> e$, x é uma variável e a expressão e é o escopo de x. Qualquer ocorrência de x em e está **ligada** (bound) por \x :

Escopo de uma variável

Por outro lado x está **livre** (*free*) se não está dentro de uma abstração:

$$x y$$
 -- não tem \
 $y \rightarrow x y$ -- $x vem de outro lugar$
 $(\x -> \y -> x) x -- o segundo $x \in diferente do primeiro$$

Pergunta

Na expressão (\x -> x) x, x é ligado ou livre?

Expressões fechadas

Se e não tem variáveis livres, então é uma **expressão fechada**.

Semântica

Podemos reescrever as expressões utilizando duas regras:

- Passo α : renomeia uma expressão, simplificando.
- **Passo** β : aplica uma expressão utilizando uma variável livre.

Redução eta

$$(\x -> e1) e2 => e1[x := e2]$$

Toda ocorrência de x em e1 é substituída por e2.

Redução eta

$$(\x -> x) 2 => 2$$

 $(\f -> f (\x -> x)) (somar 1) => (somar 1) (\x -> x)$

Pergunta

$$(\x -> (\y -> y)) 3 => ???$$

Equivalência lpha

Renomeia as variáveis de uma função para evitar conflito:

$$\xspace \xspace \xsp$$

Forma normal (Normal form)

Um termo λ na forma ($\x -> e1$) e2 é chamado de **reducible expression** ou **redex** e pode ser reduzida utilizando um dos passos da semântica.

O termo está em sua forma normal se não contém nenhum redex.

Pergunta

Quais dos termos abaixo **não** está na forma normal?

x (\y -> y)

Avaliação

Um termo λ e é **avaliado para** e' se existe uma sequência de passos:

e e' é uma forma normal.

Avaliação

Programando com λ

Como expressamos o conceito de **Verdadeiro** e **Falso** utilizando funções?

Programando com λ

O que fazemos com **Verdadeiro** e **Falso**?

Programando com λ

O que fazemos com Verdadeiro e Falso?

Decisões no formato: if b then e1 else e2.

Nós já implementamos as funções necessárias para essa definição em outros slides 🖨

Booleanos

```
Veradeiro = \xy \rightarrow x

Falso = \xy \rightarrow y

IF = \bxy \rightarrow b x y
```

Booleanos

IF Verdadeiro 2 3

- \Rightarrow (\b x y \rightarrow b x y) Verdadeiro 2 3
- => (\x y -> Verdadeiro x y) 2 3
- => (\y -> Verdadeiro 2 y) 3
- => Verdadeiro 2 3
- $=> (\xy -> x) 2 3$
- $=> (\y -> 2) 3$
- => 2

Exercício (0.5 ptos)

Definia as seguintes funções:

```
NOT = \b -> ???
AND = \b 1 \b 2 -> ???
OR = \b 1 \b 2 -> ???
```

Números Naturais

Considere os números naturais $0,1,2,\ldots$, que operações fazemos com eles?

- Contagem: 0, inc, dec
- Aritimética: +, -, *
- Comparações: ==, <,...

Números Naturais

Vamos começar definindo os números:

```
ZERO = ???
UM = ???
DOIS = ???
```

Números de Church: um número N é codificado como a chamada de uma função N vezes:

```
ZERO = ???

UM = \f x \rightarrow f x

DOIS = \f x \rightarrow f (f x)

TRES = \f x \rightarrow f (f (f x))

...
```

```
E o ZERO?

ZERO = ???

UM = \f x -> f x

DOIS = \f x -> f (f x)

TRES = \f x -> f (f (f x))

...
```

Com que essa definição parece?

```
ZERO = \f x -> x

UM = \f x -> f x

DOIS = \f x -> f (f x)

TRES = \f x -> f (f (f x))
```

ZERO =
$$\f$$
 x -> x
Falso = \x y -> y

Função INC deve adicionar mais 1 no número n:

$$INC = \n \rightarrow ???$$

Função INC deve adicionar mais 1 no número ${\tt n}$:

INC =
$$\n \rightarrow ???$$

INC ZERO = UM

Substituindo pelas definições:

INC =
$$\n \rightarrow ???$$

INC $(\f x \rightarrow x) = \f x \rightarrow f x$

A operação que deve ser feita para encontrar o novo $\mathbf x$ é em função do ZERO:

INC =
$$\n \rightarrow (\f x \rightarrow ???)$$

INC $(\f x \rightarrow x) = \f x \rightarrow f x$
INC $(\f x \rightarrow x) = \f x \rightarrow f ((\f x \rightarrow x) ???)$

Se eu passar como argumento de ZERO o f e o x, obtemos:

Se eu passar como argumento de ZERO o f e o x, obtemos:

Exercício (0.5 pto)

Como implementar a função ADD?

```
ADD = \n m \rightarrow ???
ADD DOIS UM = TRES
ADD (\f x \rightarrow f (f x)) (\f x \rightarrow f x) = (\f x \rightarrow f (f (f x)))
```

Como podemos fazer chamadas recursivas se as funções são anônimas (não tem nome)?

$$SUM = n \rightarrow ??? -- 1 + 2 + ... + n$$

Nas nossas linguagens basta fazer:

```
sum 0 = 0

sum n = n + sum (n-1)
```

E no cálculo λ ?

SUM não existe, não tem nome ainda!

Vamos criar uma função intermediaria, chamada STEP que recebe uma expressão rec:

Nosso objetivo é passar a definição de rec como parâmetro de STEP.

Fixed Combinator

Queremos criar uma função FIX que faça:

FIX STEP => STEP (FIX STEP)

Fixed Combinator

Dessa forma teríamos:

```
SUM = FIX STEP
SUM UM
   => FTX STEP UM
  => STEP (FIX STEP) UM
   => \rec -> \n -> IF (ISZERO n) ZERO
             (ADD n (rec (DEC n))) (FIX STEP) UM
  => \n -> IF (ISZERO n) ZERO
             (ADD n ((FIX STEP) (DEC n))) UM
  => IF (ISZERO UM) ZERO
             (ADD UM ((FIX STEP) (DEC UM)))
  => ADD UM ((FIX STEP) (DEC UM))
```

=> ADD UM ((FIX STEP) ZERO)

Fixed Combinator

Dessa forma teríamos:

Nosso objetivo é passar a definição de rec como parâmetro de STEP.

Y-Combinator

Criado por Haskell Curry 😂

FIX =
$$\stp \rightarrow (\x \rightarrow stp (x x)) (\x \rightarrow stp (x x))$$

Y-Combinator

FIX STEP

```
=> (\stp -> (\x -> stp (x x)) (\x -> stp (x x))) STEP
```

$$\Rightarrow$$
 (\x \rightarrow STEP (x x)) (\x \rightarrow STEP (x x))

$$\Rightarrow$$
 STEP ((\x -> STEP (x x) (\x -> STEP (x x))