Aprendizaje automático

☐ Tei	ma 5: Aprendizaje automático
	Introducción
	Tipos de aprendizaje
	Según el grado de realimentación
	Según el paradigma utilizado
	Según lo que se aprende
	(o según el problema que se resuelve)

IAIC - Curso 2008-09

Aprendizaje automático

- Aspectos fundamentales de la Inteligencia Artificial
 Representación del conocimiento
 - Métodos de búsqueda
 - Aprendizaje

No se puede hablar de inteligencia sin aprendizaje

Tema 5 - 2

Aprendizaje Automático (machine learning)

Aprendizaje	
"El acto, proceso o experiencia de adquirir conocimiento o aptitu	ıdes"
y poder hacer algún tipo de inferencia o acción con ello	
El aprendizaje es la clave de la inteligencia	
El aprendizaje está relacionado con el conocimiento	
"El proceso mediante el cual un ente adquiere conocimiento"	
Este conocimiento puede ser suministrado	
por otro ente denominado "profesor" o	
o adquirirse por el propio ente "automáticamente"	
El aprendizaje automático es un área muy activa porqué	
Hay gran cantidad de información en formato electrónico	
La mejora constante de las técnicas y los algoritmos	
La potencia de procesamiento cada vez es más barata	
IAIC – Curso 2008-09	Tema 5 - 3

ejemplos

Aprendizaje de conocimiento
□ Sistema Inteligente □ ¿qué conocimiento? ¿cómo adquirirlo?
Ingeniería de conocimiento – expertos humanos
☐ El cuello de botella de la adquisición de conocimiento
Mucho tiempo y mala gestión de errores
☐ ¡¡¡ A veces ni siquiera está disponible !!!
☐ Ejemplo: todos somos expertos en reconocimiento de imágenes
Podemos ver una foto y reconocer gente envejecida, con poca luz, bronceada, girada,
¿Podemos escribir un programa que lo haga? ¿Y ayudar a explicitar el conocimiento que utilizamos para realizar este proceso?
☐ Hay muchos casos en los que las personas aprenden de

IAIC - Curso 2008-09 Tema 5 - 4

¿Qué entendemos por aprendizaje?

"Cambios en el sistema que son adaptativos: permiten llevar a cabo la misma tarea de un modo más eficiente y eficaz" (Herb Simon, 1983)
El comportamiento en el desarrollo de una determinada tarea mejora con la experiencia
□ Refinamiento de habilidades
Adquisición de conocimiento
El aprendizaje es, por sí mismo, un proceso de resolución de problemas
La idea de poder aprender de la propia experiencia en la resolución de problemas nos lleva a esperar obtener mejores soluciones en un futuro
□ En dominios grandes, puede representar la diferencia entre la resolución rápida de un problema y la imposibilidad de resolverlo

IAIC – Curso 2008-09

¿Qué entendemos por aprendizaje?

"La capacidad de aprendizaje permite realizar nuevas tareas que previamente no podían realizarse, o bien realizar mejor (más rápidamente, con mayor exactitud,) las que ya se realizaban, como resultado de los cambios producidos en el sistema al resolver problemas anteriores"
"La captura y/o transformación de conocimiento en un formato utilizable para mejorar el rendimiento"
El aprendizaje no puede añadirse a posteriori a un programa
Aprender significa varias cosas. Entre otras:
Memorizar
□ Observar y explorar
Practicar para desarrollar las capacidades
☐ Organizar el nuevo conocimiento de una forma general y efectiva

Clasificaciones de Aprendizaje

IAIC - Curso 2008-09

Tema 5 - 7

Clasificaciones de Aprendizaje

- Según el grado de realimentación
 - Cómo se observa, explora y memoriza
 - ☐ Supervisado, no supervisado (por descubrimiento) y por refuerzo
- ☐ Según el paradigma utilizado
 - ☐ Aprendizaje inductivo: aprende descripción (con muchos ejemplos "+" y "-")
 - ☐ Aprendizaje analítico/deductivo: mejor resolver problemas (1ejemplo+teoría)
 - ☐ Algoritmos genéticos: crea generación de soluciones y evalúa su calidad
 - ☐ Método conexionista-red neuronal: reconocimiento de patrones (letras, voz)
- ☐ Según lo que se aprende (usan los paradigmas anteriores)
 - ☐ Aprendizaje de resolución de problemas
 - Memorístico o rutinario ; Por ajuste de parámetros ;
 - Macro-operadores ; Macro-reglas y meta-reglas ;
 - Por analogía ; Razonamiento basado en casos (CBR)
 - Aprendizaje de conceptos
 - ☐ Inductivo (Winston, Mitchell, Quinlian ID3). Analítico (explicaciones EBL)

Tema 5 - 8

Tipos de aprendizaje: según el grado de realimentación

	Aprendizaje supervisado	
	Los ejemplos de entrenamiento son comprobablesYa sea porque	
	"el profesor" le suministre el valor real al sistema	
	o porque pueda percibirlo (en entornos observables)	
	Redes neuronales supervisadas y los demás que veremos (no clustering)	
	Aprendizaje no supervisado o por descubrimiento	
	No hay "profesor" para verificar los ejemplos	
	Objetivo: descubrir patrones en el conjunto de entrenamiento que	
	Permitan agrupar y diferenciar unas observaciones (ejemplos) de otras:	
	Formación de taxonomías y clustering conceptual	
	Descubrimiento de leyes cualitativas (AM) de leyes cuantitativas (BACON)	
	Aprendizaje por refuerzo	
	El sistema recibe algún tipo de recompensa (positiva o negativa)	
	Cada vez que produce una respuesta,	
	Ajustando su comportamiento en función de dicha recompensa	
IAIC -	Curso 2008-09 Tema 5 -	- 9

---Aprendizaje inductivo ---

Clas	ficaciones del aprendizaje:
	Grado de realimentación: no supervisado
	Paradigma: inductivo
	Qué aprende: descripción de Conceptos (y también reglas)

Aprendizaje inductivo: Definiciones previas

- ☐ Estrategia de aprendizaje: algoritmo que genera la descripción concepto/clase
- Ejemplos de entrenamiento
 - Describen situaciones reales mediante un conjunto de atributos
 - Se usan para entrenar el aprendizaje.

- □ Ejemplos positivos "+" (ejemplos que sí son de ese concepto o clase) y negativos "-" (que no son del concepto, contraejemplos)
- ☐ Clasificar los ejemplos: asignarle etiqueta de + o −
- □ Ruido: si se ha dado una etiqueta + a un ejemplo negativo o viceversa
- ☐ Hipotesis: conjeturas posibles sin probar (solución: la descripción adecuada).

IAIC – Curso 2008-09

Aprendizaje inductivo: aprendizaje a partir de ejemplos

- Objetivo: construir la descripción de un concepto (conjunto condiciones)
 - Así establecer rasgos comunes de una serie de ejemplos
 - ☐ En la que encajen todos los ejemplos "+" y ningún ejemplo "—"
 - ☐ Que permita decidir si un ejemplo sin etiquetar es "+" ó "—"
 - ☐ Y así diferenciarlo de otro concepto : Clasifica en Categorías
- Estrategia: Proceso de búsqueda en el espacio de hipótesis
- ☐ Un Problema: Dada una lista de ejemplos (previamente clasificadas)
 - □ pares ordenados de números: {[(3,4), E+], [(4,5), E-], [(9,5), E-], [(1,6), E+]}
- Una solución (concepto obtenido):
 - "par ordenado de números en el que el primero es menor que el segundo" (una hipótesis de todas las posibles)

Aprendizaje inductivo : Dificultades

Disponemos de un número suficiente de ejemplos?
Problemas de ruido (ejemplos mal clasificados)
Ejemplos malos/sesgados/poco representativos
Información irrelevante → dificulta la inducción
Ejercicio:
Definir un vehículo: bici, helicóptero,barco,

IAIC – Curso 2008-09

--- Sistema de aprendizaje de Winston ---

_	
Ш	Es inductivo supervisado
	Construir definiciones de conceptos del dominio "mundo de bloques"
	☐ Recibe incrementalmente ejemplos y contraejemplos de un concepto
	☐ Genera incrementalmente una descripción estructural de dicho concepto
	Esta descripción sirve para clasificar correctamente ejemplos desconocidos
	Se emplea en tareas de reconocimiento:
	de caracteres, de piezas defectuosas, etc.
	Es sensible al orden de los ejemplos
	Realiza un recorrido primero en profundidad
	 en el espacio de posibles descripciones de conceptos

Aprendizaje de Winston: Análisis situación

Se empieza por analizar la situación, determinando	
	El problema: crear una descripción textual basada en reglas
	Distinguir lo que es un "arco" de otra cosa
	Elementos relevantes: objetos, relaciones o propiedades
	Objetos: bloques B, C, D
	Relaciones: vertical, horizontal, separados, es_un, tiene_parte
	Determinar la representación formal de la descripción textual
	apoyado_en(a1 a2) no_unión(a2 a3)
	Si hechol(al a4) & hecho8(a2) Entonces es_un(a1, arco)
	Construir ejemplos "+" y "-" (50% cada) en el lenguaje formal
	con la ayuda de expertos del dominio (el "profesor")
Algo	oritmo: Encontrar una descripción que sea un patrón (regla)
	Donde encajen los ejemplos adecuados (+) y no los contraejemplos (-)
	Mediante un proceso de refinamiento (generaliza o especifica la regla)

IAIC – Curso 2008-09

Aprendizaje de Winston: Algoritmo

Pasos:

- 1. Crear una descripción estructural (regla) usando el primer ejemplo +
- 2. Generalizar la regla para que incluya todos los ejemplos +
- Especificar la regla para que excluya todos los ejemplos -

Operaciones con los ejemplos (para los dos últimos pasos)

- ☐ Variabilización: Añadir variables (generalizar)
- Jerarquizar las clases o conceptos (generalizar)
- ☐ Debilitar añadiendo disyunciones de condiciones (generalizar)
- ☐ Fortalecer añadiendo conjunciones de condiciones (especificar)
- Cuantificar para todos los ejemplos (generalizar). Así se termina.

Aprendizaje de Winston : Ejemplo en texto

Ejemplos recibidos

Descripción estructural generada

Dos bloques verticales y un bloque horizontal

Se empieza analizando una instancia conocida del concepto que quiere describirse (arco, en este caso)

Dos bloques verticales *separados* y un bloque horizontal

Cuando un ejemplo (−) encaja es porque la descripción es demasiado general → especializar

IAIC - Curso 2008-09

Tema 5 - 17

Aprendizaje de Winston : Ejemplo en texto

Ejemplos recibidos

Descripción estructural generada

Dos bloques verticales separados y un bloque horizontal

Dos bloques verticales separados y un *objeto* horizontal

Cuando un ejemplo (+) no encaja es porque la descripción es demasiado específica → generalizar

Aprendizaje de Winston : Ejemplo en texto

Ejemplos recibidos

Descripción estructural generada

Dos bloques verticales separados y un objeto horizontal

Dos bloques verticales separados y un objeto horizontal apoyado en ellos

IAIC - Curso 2008-09

Tema 5 - 19

Aprendizaje de Winston : Ejemplo con redes

- ☐ Las descripciones se representan con redes semánticas
 - ☐ Facilitan el proceso de generalización y particularización

Aprendizaje de Winston : Ejemplo formalizado

- Paso 1: análisis de la instancia A1 (ejemplo positivo de arco)
 - tiene_parte(A1, B1) & tiene_parte(A1, C1) & tiene_parte(A1, D1) & apoyado_en(C1, B1) & apoyado_en(C1, D1) & es_un(B1, ladrillo) & es_un(C1, ladrillo) & es_un(D1, ladrillo) & no_union(B1, D1)
- Paso 2: análisis de la instancia A2 (ejemplo positivo de arco) tiene_parte(A2, B2) & tiene_parte(A2, C2) & tiene_parte(A2, D2) & apoyado_en(C2, B2) & apoyado_en(C2, D2) & es_un(B2, ladrillo) & es_un(C2, cilindro) & es_un(D2, ladrillo) & no union(B2, D2)
- Luego, la descripción se generaliza para incluir a ambas instancias tiene_parte(A, B) & tiene_parte(A, C) & tiene_parte(A, D) & apoyado_en(C, B) & apoyado_en(C, D) & es_un(B, ladrillo) & es_un(C,objeto) & es_un(D, ladrillo) & no_union(B, D)
 - donde tanto ladrillo (bloque) como cilindro son instancias de una clase superior objeto

Tema 5 - 21

Aprendizaje de Winston : Ejemplo formalizado

- Paso 3: se considera la instancia S1 (semejante, ejemplo negativo)
 - tiene_parte(S1, T1) & tiene_parte(S1, U1) & tiene_parte(S1, V1) & apoyado_en(U1, T1) & apoyado_en(U1, V1) & es_un(T1, ladrillo) & es_un(U1, ladrillo)
- ☐ La definición del concepto debe restringirse para excluir el semejante
 - ☐ La definición debe excluir de manera explícita al semejante fortaleciendo la relación con "no debe union"
- La descripción queda de la siguiente manera:

tiene_parte(A, B) & tiene_parte(A, C) & tiene_parte(A, D) & apoyado_en(C, B) & apoyado_en(C,D) & es_un(B, ladrillo) & es_un(C2, objeto) & es_un(D, ladrillo) & no_debe_union(B, D)

--- Espacio de versiones de Mitchell -----

Es inductivo y supervisado	
Mismo objetivo:	
producir una descripción de un concepto que sea consistente con los ejemplos positivos y negativos de entrenamiento	
No se ve afectado por el orden en que se presentan los ejemplos	
Se mantiene un conjunto de descripciones posibles hasta el final	
Existen descripciones más generales que otras (orden parcial)	
☐ La ierarquía completa forma el espacio de descripciones de conceptos	

IAIC – Curso 2008-09

Espacio de versiones de Mitchell

A medida que se procesan los ejemplos de entrenamiento se va refinando la noción de dónde se encuentra el concepto destino
□ G: conjunto de descripciones más generales que son consistentes con los ejemplos
□ E: conjunto de descripciones más específicas que son consistentes con los ejemplos
La parte del espacio de descripciones de conceptos comprendida entre las fronteras G y E se denomina espacio de versiones

Espacio de versiones de Mitchell: algoritmo

G := hipótesis vacía (variables)
 E := primer ejemplo positivo
 mientras queden ejemplos y no parar
 Coger siguiente ejemplo SE
 Si SE es positivo => eliminar de G cualquier descripción que no sea consistente con SE. Generalizar E lo imprescindible para que sea consistente con SE
 Si SE es negativo => eliminar de E descripciones consistentes con SE. Especializar G lo imprescindible para que no sea consistente con SE
 Si E y G son unitarios e iguales => imprimir contenido y parar
 Si E y G son unitarios e incompatibles => error de

IAIC – Curso 2008-09

Espacio de versiones de Mitchell: ejemplo 1

inconsistencia y parar

Aprender el perfil característico de los pa determinada enfermedad	acientes con una
Cada paciente se describe con 5 caracte	erísticas:
□ Edad (<20, 20-50, >50)	
Lugar de residencia (ciudad, campo, moi	ntaña, costa)
Actividad física (baja, media, alta)	
Consumo de tabaco (nulo, bajo, medio, a	alto)
☐ Tipo de trabajo (sedentario, físico, paro)	
☐ Ejemplos de entrenamiento	
1. (20-50, ciudad, baja, nulo, sedentario)	+
2. (>50, campo, baja, medio, físico)	-
3. (>50, ciudad, baja, alto, sedentario)	+
4. (20-50, ciudad, media, bajo, sedentario)	-
5. (20-50, ciudad, baja, medio, paro)	+

Espacio de versiones de Mitchell: ejemplo 1

```
Proceso de aprendizaje
     ☐ Ejemplo 1:
                           (20-50, ciudad, baja, nulo, sedentario)
         \square G = {(X1, X2, X3, X4, X5)}
                                                               hipótesis vacía
                                                                1º ej. positivo
         \Box E = {(20-50, ciudad, baja, nulo, sedentario)}
     ☐ Ejemplo 2:
                           (>50, campo, baja, medio, físico)
          \square G = {(20-50, X2, X3, X4, X5), (X1, ciudad, X3, X4, X5),
                 (X1, X2, X3, nulo, X5), (X1, X2, X3, X4, sedentario)}
            especializar lo imprescindible para que no sea consistente
          \Box E = {(20-50, ciudad, baja, nulo, sedentario)}
                                                               nada a eliminar
     ☐ Ejemplo 3:
                           (>50, ciudad, baja, alto, sedentario)
          □ G = {(X1, ciudad, X3, X4, X5), (X1, X2, X3, X4, sedentario)}
            eliminar lo no consistente
         \square E = {(X1, ciudad, baja, X4, sedentario)}
                                                               generalizar
```

IAIC – Curso 2008-09

Espacio de versiones de Mitchell: ejemplo 1

Proce	eso de aprendi:	zaje (continuación)		
	•	(>50, ciudad, baja, alto, se	dentario)	+ (repetimos
	☐ G = {(X1, ciud	dad, X3, X4, X5), (X1, X2, X3, X	(4, sedentario))	por claridad)
	□ E = {(X1, ciuc	dad, baja, X4, sedentario)}		
□ E	jemplo 4:	(20-50, ciudad, media, bajo	o, sedentario)	-
	E = {(X1, ciuc	lad, baja, X4, sedentario)}	nada a e	eliminar
	☐ G = {(X1, ciud	dad, baja, X4, X5), (X1, X2, baja	a, X4, sedentar	io)}
	especia	alizar lo imprescindible para que	e no sea consis	stente
□ E	jemplo 5:	(20-50, ciudad, baja, medic	o, paro)	+
	☐ G = {(X1, ciud	dad, baja, X4, X5)}		
	elimina	r lo no consistente		
	□ E = {(X1, ciuc	lad, baja, X4, X5)}	generali	zar

Espacio de versiones de Mitchell

Sesgo del sistema (elementos necesarios para que pueda aprender):

 Conjunción de literales positivos

 Desarrolla una búsqueda en anchura

 Trabajando con un conjunto de descripciones posibles en la franja contenida entre G y E (espacio de versiones)

 El conjunto E contiene una única descripción

 Si tuviera 2, p1 y p2, la intersección de ambas también sería consistente y más específica.

 Tiene baja tolerancia al ruido:

 un ejemplo mal etiquetado puede hacer que no converja

IAIC – Curso 2008-09

Espacio de versiones de Mitchell: ejemplo 2

☐ Representación del concepto coche como marco:

```
(origen = x1; x1 \in \{Japón, EEUU, UK, Italia,...\}

marca = x2; x2 \in \{Honda, Toyota, Chrysler, Fiat,...\}

color = x3; x3 \in \{azul, blanco, amarillo, verde,...\}

década = x4; x4 \in \{1950,1960,1970,1980,1990,2000,...\}

tipo = x5) x5 \in \{económico, lujo, deportivo,...\}
```

☐ Un ejemplo o instancia del concepto coche en particular:

```
(origen = Japón; marca = Honda; color = azul; década = 1970; tipo = económico)
```

■ La descripción de conceptos se puede poner en términos de ranuras y valores. Por ejemplo, el concepto coche económico japonés

```
(origen = Japón; marca = x2; color = x3; década = x4; tipo = económico)
```

Espacio de versiones de Mitchell: ejemplo 2

```
☐ Ejemplo: inducir el concepto coche económico japonés
     Se inicializa G = {(x1, x2, x3, x4, x5)}
                                                           hipótesis vacía
     Primer ejemplo positivo
         ☐ (origen = Japón; marca = Honda; color = azul;
            década = 1970; tipo = económico)
         □ E = {(Japón, Honda, azul, 1970, económico)}
                                                            1º ej. positivo
     Segundo ejemplo: negativo
         ☐ (origen = Japón; marca = Toyota; color = verde;
            década = 1970; tipo = deportivo)
         ☐ G = {(x1, Honda, x3, x4, x5), (x1, x2, azul, x4, x5), especializar para
                (x1, x2, x3, x4, económico)}
                                                          no consistencia
     Tercer ejemplo: positivo
         ☐ (origen = Japón; marca = Toyota; color = azul;
            década = 1990; tipo = económico)
         \Box G = {(x1, x2, azul, x4, x5), (x1, x2, x3, x4, económico)}
                                                                   eliminar
         \blacksquare E = {(Japón, x2, azul, x4, económico)}
                                                           generalizar
```

Tema 5 - 31

Espacio de versiones de Mitchell: ejemplo 2

IAIC - Curso 2008-09

☐ Tercer ejemplo: positivo	
☐ (origen = Japón; marca = Toyota; color = azul; década = 1990; tipo = económico)	
G = {(x1, x2, azul, x4, x5), (x1, x2, x3, x4, económi	co)}
□ E = {(Japón, x2, azul, x4, económico)}	
Cuarto ejemplo: negativo	
☐ (origen = EEUU; marca = Chrysler; color = azul década = 1980; tipo = económico)	;
□ G = {(Japón, x2, azul, x4, x5), (Japón, x2, x3, x4, e	conómico)}
Quinto ejemplo: positivo	
☐ (origen = Japón; marca = Honda; color = blance década = 1980; tipo = económico)	o;
□ G = {(Japón, x2, x3, x4, económico)}	eliminar
□ E = {(Japón, x2, x3, x4, económico)}	generalizar
 Dado que G y E convergen en un conjunto unital descripción del concepto buscada 	rio se llegó a la

Tema 5 - 32

Espacio de versiones : El problema del ruido

Problema: un error en el etiquetado de un ejemplo
☐ Puede causar que se pode del espacio de versiones el concepto objetivo
□ P.E.: si el 3º coche ejemplo se etiqueta como negativo por error,
no se llega al concepto de coche económico japonés
Posible solución: mantener varios conjuntos G y E Un conjunto G es consistente con todas las instancias de entrenamiento, otro lo será con todas menos una, otro con
todas menos dos, etc. (ídem para E)
 Cuando se presenta una inconsistencia, el algoritmo cambia de conjuntos de entrenamiento
☐ Mantener múltiples espacios de versiones puede resultar muy costoso

IAIC – Curso 2008-09

----- ID3 (Quinlan) ------

Inductivo y aprendizaje de conceptos A partir de un conjunto de ejemplos, Construye un árbol de decisión (no necesariamente binario) Que le permite clasificar casos nuevos (sin etiquetar) Determina qué atributo es más importante (raíz)
Objetivo: construir el árbol de decisión más simple Que clasifique bién los ejemplos de entrenamiento
Sesgo: descripciones que incluyen conjunciones, disyunciones y negaciones (formas normales disyuntivas; cjtos. de reglas)
Ventaja: permite aprender varios conceptos simultáneamente (no sólo un concepto y su negación)
No es incremental: usa la totalidad del conjunto inicial de ejemplos

Árboles de decisión: ejemplo 1

- ☐ Especificación con un árbol de decisión de un concepto
 - ☐ ¿Cuál?
 - "Coche económico japonés"
 - □ Origen, marca, color, década, tipo

Clasificación booleana: ejemplos positivos o negativos

IAIC - Curso 2008-09

Tema 5 - 35

Árboles de decisión: ejemplo 2

- ☐ Aprender a clasificar diferentes situaciones de riesgo de inundación (en función de los atributos lluvia, suelo y topografía)
 - ☐ Ejemplos de entrenamiento:

Caso	Lluvia	Suelo	Topografía	Problema
1	intensa	empapado	escarpada	grave
2	intensa	empapado	suave	grave
3	intensa	húmedo	escarpada	grave
4	intensa	húmedo	suave	medio
5	importante	empapado	escarpada	grave
6	importante	húmedo	escarpada	medio
7	importante	húmedo	suave	medio
8	baja	empapado	escarpada	nulo
9	baja	húmedo	escarpada	nulo
10	baja	húmedo	suave	nulo

Árboles de decisión

- Representación natural de los criterios de decisión de las personas
 - Nodos: preguntas (atributos o características)
 - ☐ Arcos: posibles respuestas (valores posibles en los ejemplos)
 - ☐ Hojas están etiquetadas con la predicción (clase de ese ejemplo)

Tema 5 - 37

Árboles de decisión

Criterio principal en una inundación? : Lluvia ← la raíz

Construcción de árboles de decisión con ID3

Árbol de decisión trivial
Un camino de la raíz a una hoja por cada ejemplo
Memoriza exactamente los ejemplos de entrenamiento, no extrae ningún patrón, luego no sirve para extrapolar a ejemplos nuevos
□ Buscamos el árbol de decisión <i>más pequeño</i> que sea consistente con los ejemplos. ¡Problema intratable!
El orden en el que se eligen los atributos para construir un árbol de decisión afecta al tamaño del árbol (1º + importante)
Usando heurísticas, puede encontrarse uno más bien pequeño
□ Solución: ID3 (Quinlan, 83) o su sucesor C4.5 (Quinlan, 93)
Algoritmo de búsqueda heurística
Optimización local: escalada
Teoría de la información para estimar el mejor candidato
Se consigue complejidad lineal
IAIC – Curso 2008-09 Tema 5 - 39

Construcción de árboles de decisión con ID3

ID3 construye automáticamente un árbol de decisión dadas diferentes instancias positivas y negativas del concepto destino
Algoritmo iterativo, que comienza eligiendo un subconjunto aleatorio de ejemplos de entrenamiento: ventana
Construye un árbol que clasifica todos los ejemplos de la ventana, y prueba con ejemplos fuera de la ventana
☐ Si los ejemplos son correctamente clasificados, el algoritmo finaliza
☐ Si no, se añaden a la ventana más ejemplos y el proceso se repite
Los árboles se construyen creando nodos a partir de los atributos que proporcionan más información: más discriminantes
Cuando se llega a atributos que dividen perfectamente las instancias de entrenamiento en subconjuntos cuyos miembros participan con una etiqueta común (positivo o negativo) la ramificación ha terminado y los nodos hoja están etiquetados

ID3

- Datos sobre los que opera el algoritmo:
 - ☐ Conjunto de ejemplos de entrenamiento
 - □ E
 - Conjunto de las clases a las que pueden pertenecer los ejemplos
 - □ Cl₁, Cl₂, ..., Cl_N
 - Conjunto de atributos definidos sobre los ejemplos
 - □ A, B, C, ...
 - Conjuntos con los valores posibles para cada atributo
 - \square A₁, ..., A_K, B₁, ..., B_L, C₁, ..., C_M, ...

IAIC – Curso 2008-09

ID3

- ☐ El árbol se construye de arriba a abajo, trabajando por niveles
- ☐ En cada iteración del algoritmo se pretende:
 - Obtener el atributo en base al cual ramificar el nodo problema
 - Se seleccionará aquél que mejor discrimine entre el conjunto de ejemplos
 - Heurística para obtener árboles pequeños (en profundidad)
 - El atributo más discriminante será aquél que conduzca a un estado con menor entropía
- ☐ La entropía (Shannon, 1948) mide la ausencia de homogeneidad de un conjunto de ejemplos con respecto a su clase
 - Es una medida estándar del desorden (utilizada en física y en la teoría de la información: 0 es homogeneidad total)
- ☐ Ganancia de información = diferencia entre la entropía del conjunto original y la de los subconjuntos obtenidos

ID3

- La entropía se define utilizando resultados de la teoría de la información
- La entropía inicial de un nodo X (antes de clasificar los ejemplos que contiene en base a alguno de los atributos) es:

donde

$$E(X) = -\sum_{j=1}^{N} P_X(Cl_j) \cdot \log_2 P_X(Cl_j)$$

$$\hat{\log}_2 x = \begin{cases} 0 & \text{si } x = 0\\ \log_2 x & \text{en otro caso} \end{cases}$$

y la probabilidad de una clase Cl_i en el nodo X es

$$P_X(Clj) = \frac{\left| n^{\circ} de _ejemplos _correspondientes _a _Clj _en _X \right|}{\left| n^{\circ} total _de _ejemplos _en _X \right|}$$

para $j \in [1..N]$

IAIC – Curso 2008-09

ID3

■ La entropía final del nodo X al ramificar utilizando el atributo A, es igual a la suma de las entropías de los nodos resultantes de fijar el valor del atributo multiplicadas por la probabilidad de cada valor

$$E_A(X) = \sum_{i=1}^k P_X(A_i) \cdot E(A_i)$$

donde la probabilidad $P_X(A_i)$ es

$$P_X(A_i) = \frac{\left| n^{\circ} de _ejemplos _en _X _con _atributo _A = A_i \right|}{\left| n^{\circ} total _de _ejemplos _en _X \right|}$$

ID3

- Para cada atributo se calcula la disminución de entropía causada por su utilización
 - □ Disminución de entropía_A(X)= $E(X) E_A(X)$
 - ☐ Disminución de entropía_B(X)= $E(X) E_B(X)$
 - $lue{}$ Disminución de entropía_C(X)= E(X) E_C(X) ...
- En cada nodo, se selecciona aquel atributo que mayor disminución de entropía provoca
- Aplicado al ejemplo
 - Hay 3 clases
 - □ Cl₁ problema grave, Cl₂ problema medio, Cl₃ problema nulo
 - Y 3 atributos
 - A Iluvia, B suelo, C topografía

Tema 5 - 45

ID3: ejemplo

ID3: ejemplo

☐ Entropía inicial en la raíz del árbol: (del problema global)

$$P(grave) = 0.4$$
 $P(medio) = 0.3$ $P(nulo) = 0.3$ $E(raíz) = -0.4 log_2 0.4 - 0.3 log_2 0.3 - 0.3 log_2 0.3 = 1.571$

ID3: ejemplo

IAIC - Curso 2008-09

☐ Entropía final clasificando según lluvia (A):

A₁: Iluvia intensa,

A₂: Iluvia importante,

A₃: Iluvia baja

$$E(A_1) = -0.75 \log_2 0.75 - 0.25 \log_2 0.25 = 0.811$$

$$E(A_2) = 0.918$$

$$E(A_3)=0$$
 entropía

$$E_A(raiz) = 0.4*0.811 + 0.3*0.918 = 0.6$$

lluvia

Disminución de entropía_A(raíz) = 1,571 - 0,60 = 0,971

ID3: ejemplo

☐ Entropía final clasificando según suelo(B):

$$E_B(raiz) = 0.4*0.811 + 0.6*1.459 = 1.20$$

Disminución de entropía_B(raíz) = 1,571 - 1,20 = 0,371

IAIC – Curso 2008-09

ID3: ejemplo

☐ Entropía final clasificando según topografía (C):

$$-1/4 \log_2 1/4 - 2/4 \log_2 2/4 - 1/4 \log_2 1/4$$

$$\uparrow$$

$$E_C(raiz) = 0.6*1.459 + 0.4*1.50 = 1.475$$

$$\downarrow$$

$$-1/6 \log_2 1/6 - 3/6 \log_2 1/2 - 2/6 \log_2 1/3$$

Disminución de entropía_C(raíz) = 1,571 - 1,475 = 0,096

☐ La mayor disminución de entropía se consigue con el atributo A y por ello éste es el seleccionado para el primer nivel del árbol

ID3: ejemplo

■ En la siguiente iteración se vuelve a aplicar el algoritmo sobre cada uno de los tres nuevos nodos, considerando en cada uno el subconjunto de ejemplos obtenido y habiendo eliminado el atributo lluvia del conjunto de atributos

Tema 5 - 51

ID3

- Terminación:
 - La expansión de un nodo se detiene cuando todos sus ejemplos pertenecen a la misma clase (≡ entropía nula)
 - □ El proceso se detiene cuando no se puede seguir expandiendo ningún nodo
 - A las hojas se les asigna la clase a la que pertenecen todos sus ejemplos

ID3: refinamientos

☐ Cuando es muy grande, del conjunto de ejemplos disponibles se escoge una ventana para construir el árbol (incremental)
☐ Si el resto de ejemplos es clasificado correctamente, se detiene
Si no, se añaden elementos a la ventana y se repite el proceso
Análisis empíricos demuestran que esta estrategia es más eficiente que considerar todos los ejemplos desde el principio (no claro)
■ Ruido en los datos: para mejorar la tolerancia
Sólo se ramifica un nodo cuando la disminución de entropía está por encima de un determinado umbral. A cada nodo terminal se le asigna la clase de la mayoría de sus ejemplos
☐ Ha evolucionado dando lugar al algoritmo C4.5 (Quinlan 93)
Soluciona un pequeño problema de ID3: tiene una cierta tendencia a favorecer la elección de atributos con muchos valores posibles, lo que redunda en una peor generalización de las observaciones
Última versión: C5.0 comercial (RuleQuest Research, de Quinlan)
IAIC – Curso 2008-09

---- Aprendizaje por Descubrimiento -----

0	asificaciones del aprendizaje: Grado de realimentación: no supervisado Paradigma: inductivo Qué aprende: agrupa en clases
	orendizajes NO supervisados (sin "profesor") ☐ Formación de taxonomías y clustering conceptual ← veremos ☐ Descubrimiento de leyes cualitativas ☐ Descubrimiento de leyes cuantitativas
C	orendizaje por descubrimiento: Transformar o reorganizar las experiencias De manera que se puedan extraer nuevas conclusiones

Formación de taxonomías

Escenario (situación):
Conjunto de objetos / observaciones reales
No hay nadie que aporte información sobre a qué clase pertenecen
Descripción del objeto:
■ N pares <atributo, valor=""> (espacio N dimensiones)</atributo,>
Similitud entre objetos: distancia entre los puntos que los representan
Objetivos:
Agrupar ejemplos con características similares para formar categorías
Crear árbol de clasificación con grupos a diferentes alturas de abstracción
maximizar la similitud "intra-cluster"
minimizar la similitud entre "clusters"

IAIC – Curso 2008-09

Formación de taxonomías : Algoritmo

□ FASE 1: Crear Matriz de Distancias o su opuesta de Similitudes
 □ FASE 2: Agrupación de Individuos (técnica jerárquica)
 □ Cada objeto es un cluster
 □ Usando M. Distancias:
 □ Ordenar por parecidos todos los individuos
 □ Agrupar de dos en dos los objetos más parecidos
 □ Crear un objeto (cluser) nuevo que sustituya a los dos
 □ Sus coordenadas son la media de las de ambos
 □ Repetir FASE 2 hasta que solo un cluster con todos los individuos
 □ Forman un Dendograma , es el Arbol de Clasificiación
 □ Formar clases a diferentes niveles
 □ Se corta el Dendograma a diferentes alturas
 □ Algunos ejemplos
 □ P. 700 Inteligencia Artificial (J.T.Palma, R. Martín)
 □ http://anthropologynet.files.wordpress.com/2008/02/population-dendogram.jpg

--Paradigma: Aprendizaje analítico/deductivo--

	Se aplica habitualmente a resolución de problemas
	Parten de muy pocos ejemplos (normalmente 1) junto con una teoría del dominio
	El ejemplo se utiliza para guiar las cadenas deductivas que deben seguirse para resolver nuevos problemas o para formular reglas de control de búsqueda que posibiliten una aplicación más eficiente del conocimiento del dominio
	El ejemplo del que se parte suele ser una traza de la resolución del problema junto con anotaciones sobre la justificación de las decisiones adoptadas. Este conocimiento debe ser generalizado de acuerdo con la teoría del dominio
	No intentan ampliar lo que sabe hacer el sistema sino mejorar su eficiencia
IAIC	- Curso 2008-09 Tema 5 - 5

---Aprendizaje basado en explicaciones (EBL)---

☐ Clasificaciones del aprendizaje:
Realimentación: supervisado
Paradigma: analítico / deductivo (usa teoría del dominio
Qué aprende: definición estructural de un concepto
A partir de una descripción funcional y un ejemplo

Sistemas EBL

Entrada:
□ C: Concepto objetivo (a aprender) descrito funcionalmente
□ E: Ejemplo positivo (de C)
TD: Teoría del dominio (axiomas y reglas de inferencia)
Permite probar que E es un ejemplar de C usando TD
CO: Criterio de operacionalidad : debe cumplirlo cualquier
Nueva descripcion estructural más genérica
Salida: descripcion estructural más genérica

Tema 5 - 59

Ejemplo EBL

Concepto objetivo: TAZA

Definición funcional:

RECIPIENTE_ABIERTO(x) \cap ESTABLE(x) \cap ALZABLE(x) \leftrightarrow TAZA(x)

Ejemplo de entrenamiento:

TIENE_PARTE(OBJ1, CONCAVIDAD1)

COLOR(OBJ1, ROJO)

CONCAVIDAD(CONCAVIDAD1)

ORIENTADA_HACIA_ARRIBA(CONCAVIDAD1)

TIENE_DUEÑO(OBJ1, SAM)

TIENE_PARTE(OBJ1, FONDO1)

FONDO(FONDO1)

PLANO(FONDO1)

LIGERO(OBJ1)

TIENE_PARTE(OBJ1, ASA1)

ASA(ASA1)

LONGITUD(ASA1, 5)

Tema 5 - 60

Ejemplo EBL

Teoría del dominio:

TIENE_PARTE(OBJ, F) \cap FONDO(F) \cap PLANO(F) \rightarrow ESTABLE(OBJ)

TIENE_PARTE(OBJ, C) ∩ CONCAVIDAD(C) ∩
ORIENTADA_HACIA_ARRIBA(C) → RECIPIENTE_ABIERTO(OBJ)

TIENE_PARTE(OBJ, A) \cap ASA(A) \cap LIGERO(OBJ) \rightarrow ALZABLE(OBJ)

Criterio operacional:

El concepto tiene que definirse en términos de los predicados usados en el ejemplo.

IAIC - Curso 2008-09

Aprendizaje EBL

Ш	Ρ	а	S	O	S	•

- Crea explicación: porqué un ejemplo satisface una definición funcional
- Crea una descripción estructural con la explicación
- El proceso de aprendizaje tiene 2 pasos:
 - Se usa la teoría del dominio para construir una explicación (demostración) de que el ejemplo de entrenamiento es un ejemplo positivo del concepto objetivo. Los nodos terminales del árbol de explicación tienen que ser operativos
 - Transformar los nodos terminales en un conjunto de condiciones suficientes para que la demostración siga siendo válida (generalizar la explicación de acuerdo con la teoría del dominio)

Ejemplo EBL

Resultado del proceso de aprendizaje:

TIENE_PARTE(X, Y) \cap CONCAVIDAD(Y) \cap ORIENTADA_HACIA_ARRIBA(Y) \cap TIENE_PARTE(X, Z) \cap FONDO(Z) \cap PLANO(Z) \cap TIENE_PARTE(X, W) \cap ASA(W) \cap LIGERO(X)

IAIC – Curso 2008-09

Métodos analíticos: Ventajas e Inconvenientes

□ Ventajas:
Proporcionan justificación lógica de la descripción del concepto que han obtenido
Sólo necesitan un ejemplo positivo
Permiten disyunciones y conjunciones
☐ Tolerancia al ruido

Inconvenientes:

- □ Requieren considerable conocimiento del dominio
 (→ menor aplicabilidad)
- Sustituyen la búsqueda en el espacio de descripciones de conceptos por búsqueda en el espacio de explicaciones)

----- Paradigma: Algoritmos genéticos -----

Tipos	s de Aprendizaje: paradigmas	(recordatorio)						
□ A	Aprendizaje inductivo							
□ A	Aprendizaje analítico o deductivo							
□ A	□ Algoritmos genéticos							
	■ Métodos conexionistas (enfoque subsimbólico)							
U Clas	Clasificaciones del aprendizaje:							
	Realimentación: supervisado							
	Paradigma: Algoritmos genéticos							
	Qué aprende: encuentra solución a	un Problema						
	Crea generaciones de solucio	nes y las evalúa						
	Se queda con la mejor							