FRE6871 R in Finance

Lecture#4, Spring 2023

Jerzy Pawlowski jp3900@nyu.edu

NYU Tandon School of Engineering

April 19, 2023

Vector and Matrix Calculus

Let **v** and **w** be vectors, with $\mathbf{v} = \{v_i\}_{i=1}^{i=n}$, and let $\mathbb{1}$ be the unit vector, with $\mathbb{1} = \{1\}_{i=1}^{i=n}$.

Then the inner product of \mathbf{v} and \mathbf{w} can be written as $\mathbf{v}^T\mathbf{w} = \mathbf{w}^T\mathbf{v} = \sum_{i=1}^n v_i w_i$.

We can then express the sum of the elements of \mathbf{v} as the inner product: $\mathbf{v}^T \mathbb{1} = \mathbb{1}^T \mathbf{v} = \sum_{i=1}^n v_i$.

And the sum of squares of \mathbf{v} as the inner product: $\mathbf{v}^T\mathbf{v} = \sum_{i=1}^n v_i^2$.

Let \mathbb{A} be a matrix, with $\mathbb{A} = \{A_{ij}\}_{i,j=1}^{i,j=n}$.

Then the inner product of matrix \mathbb{A} with vectors \mathbf{v} and \mathbf{w} can be written as:

$$\mathbf{v}^T \mathbb{A} \mathbf{w} = \mathbf{w}^T \mathbb{A}^T \mathbf{v} = \sum_{i,j=1}^n A_{ij} v_i w_j$$

The derivative of a scalar variable with respect to a vector variable is a vector, for example:

$$\frac{d(\mathbf{v}^T \mathbb{1})}{d\mathbf{v}} = d_v[\mathbf{v}^T \mathbb{1}] = d_v[\mathbb{1}^T \mathbf{v}] = \mathbb{1}^T$$
$$d_v[\mathbf{v}^T \mathbf{w}] = d_v[\mathbf{w}^T \mathbf{v}] = \mathbf{w}^T$$
$$d_v[\mathbf{v}^T \mathbb{A} \mathbf{w}] = \mathbf{w}^T \mathbb{A}^T$$
$$d_v[\mathbf{v}^T \mathbb{A} \mathbf{v}] = \mathbf{v}^T \mathbb{A} + \mathbf{v}^T \mathbb{A}^T$$

Eigenvectors and Eigenvalues of Matrices

The vector w is an eigenvector of the matrix \mathbb{A} , if it satisfies the eigenvalue equation:

$$\mathbb{A} w = \lambda w$$

Where λ is the eigenvalue corresponding to the eigenvector w.

The number of *eigenvalues* of a matrix is equal to its dimension.

Real symmetric matrices have real *eigenvalues*, and their *eigenvectors* are orthogonal to each other.

The eigenvectors can be normalized to 1.

The eigenvectors form an orthonormal basis in which the matrix $\mathbb A$ is diagonal.

The function eigen() calculates the eigenvectors and eigenvalues of numeric matrices.

An excellent interactive visualization of *eigenvectors* and *eigenvalues* is available here:

http://setosa.io/ev/eigenvectors-and-eigenvalues/

Eigenvalues of a real symmetric matrix

- > # Create a random real symmetric matrix
- > matrixv <- matrix(runif(25), nc=5)
- > matrixv <- matrixv + t(matrixv)
- > # Calculate the eigenvalues and eigenvectors
 > eigend <- eigen(matrixy)</pre>
- > eigenvec <- eigend\$vectors
- > elgenvec <- elgend\$vecto > dim(elgenvec)
- > # Plot eigenvalues
- > barplot(eigend\$values, xlab="", ylab="", las=3,
- + names.arg=paste0("ev", 1:NROW(eigend\$values)),
- + main="Eigenvalues of a real symmetric matrix")

Eigen Decomposition of Matrices

Real symmetric matrices have real *eigenvalues*, and their *eigenvectors* are orthogonal to each other.

The eigenvectors form an orthonormal basis in which the matrix $\mathbb A$ is diagonal:

$$\Sigma = \mathbb{O}^T \mathbb{A} \mathbb{O}$$

Where Σ is a diagonal matrix containing the eigenvalues of matrix \mathbb{A} , and \mathbb{O} is an orthogonal matrix of its eigenvectors, with $\mathbb{O}^T\mathbb{O}=\mathbb{1}$.

Any real symmetric matrix \mathbb{A} can be decomposed into a product of its *eigenvalues* and its *eigenvectors* (the *eigen decomposition*):

$$\mathbb{A} = \mathbb{O} \Sigma \mathbb{O}^T$$

The eigen decomposition expresses a matrix as the product of a rotation, followed by a scaling, followed by the inverse rotation.

- > # eigenvectors form an orthonormal basis
- > round(t(eigenvec) %*% eigenvec, digits=4)
- > # Diagonalize matrix using eigenvector matrix
- > round(t(eigenvec) %*% (matrixv %*% eigenvec), digits=4)
- > eigend\$values
- > # eigen decomposition of matrix by rotating the diagonal matrix
 > matrixe <- eigenvec %*% (eigend\$values * t(eigenvec))</pre>
- > # Create diagonal matrix of eigenvalues
- > # diagmat <- diag(eigend\$values)
- > # matrixe <- eigenvec %*% (diagmat %*% t(eigenvec))
 - > all.equal(matrixv, matrixe)

Orthogonal matrices represent rotations in hyperspace, and their inverse is equal to their transpose: $\mathbb{O}^{-1} = \mathbb{O}^T$

The diagonal matrix Σ represents a scaling (stretching) transformation proportional to the eigenvalues.

The *% operator performs inner (scalar) multiplication of vectors and matrices.

Inner multiplication multiplies the rows of one matrix with the columns of another matrix, so that each pair produces a single number.

Positive Definite Matrices

Matrices with positive eigenvalues are called positive definite matrices.

Matrices with non-negative eigenvalues are called positive semi-definite matrices (some of their eigenvalues may be zero).

An example of *positive definite* matrices are the covariance matrices of linearly independent variables.

But the covariance matrices of linearly dependent variables have some *eigenvalues* equal to zero, in which case they are *singular*, and only *positive semi-definite*.

All covariance matrices are *positive semi-definite* and all *positive semi-definite* matrices are the covariance matrix of some multivariate distribution.

Matrices which have some *eigenvalues* equal to zero are called *singular* (degenerate) matrices.

For any real matrix \mathbb{A} , the matrix $\mathbb{A}^T \mathbb{A}$ is *positive* semi-definite.

Eigenvalues of positive semi-definite matrix

- > # Create a random positive semi-definite matrix
- > matrixv <- matrix(runif(25), nc=5)
 > matrixv <- t(matrixv) %*% matrixv</pre>
- > # Calculate the eigenvalues and eigenvectors
- > eigend <- eigen(matrixy)
- > eigend\$values
- > # Plot eigenvalues
- > barplot(eigend\$values, las=3, xlab="", ylab="",
- + names.arg=paste0("ev", 1:NROW(eigend\$values)),
- + main="Eigenvalues of positive semi-definite matrix")

Singular Value Decomposition (SVD) of Matrices

The Singular Value Decomposition (SVD) is a generalization of the eigen decomposition of square matrices.

The SVD of a rectangular matrix $\mathbb A$ is defined as the factorization:

$$\mathbb{A} = \mathbb{U} \Sigma \mathbb{V}^T$$

Where $\mathbb U$ and $\mathbb V$ are the left and right singular matrices, and Σ is a diagonal matrix of singular values.

If $\mathbb A$ has $\mathbb m$ rows and $\mathbb n$ columns and if $(\mathbb m > \mathbb n)$, then $\mathbb U$ is an $(\mathbb m \times \mathbb n)$ rectangular matrix, Σ is an $(\mathbb m \times \mathbb n)$ diagonal matrix, and $\mathbb V$ is an $(\mathbb m \times \mathbb m)$ orthogonal matrix, and if $(\mathbb m < \mathbb n)$ then the dimensions are: $(\mathbb m \times \mathbb m)$, $(\mathbb m \times \mathbb m)$, and $(\mathbb m \times \mathbb m)$, and $(\mathbb m \times \mathbb m)$.

The left $\mathbb U$ and right $\mathbb V$ singular matrices consist of columns of orthonormal vectors, so that $\mathbb U^T\mathbb U=\mathbb V^T\mathbb V=\mathbb T$

In the special case when \mathbb{A} is a square matrix, then $\mathbb{U} = \mathbb{V}$, and the SVD reduces to the eigen decomposition.

The function svd() performs Singular Value Decomposition (SVD) of a rectangular matrix, and returns a list of three elements: the singular values, and the matrices of left-singular vectors and the right-singular vectors.

- > # Perform singular value decomposition
- > matrixv <- matrix(rnorm(50), nc=5)
- > svdec <- svd(matrixv)
 > # Recompose matrixv from SVD mat_rices
- > all.equal(matrixv, svdec\$u %*% (svdec\$d*t(svdec\$v)))
- > # Columns of U and V are orthonormal
- > round(t(svdec\$u) %*% svdec\$u, 4)
- > round(t(svdec\$v) %*% svdec\$v, 4)

The Left and Right Singular Matrices

The left $\mathbb U$ and right $\mathbb V$ singular matrices define rotation transformations into a coordinate system where the matrix $\mathbb A$ becomes diagonal:

$$\Sigma = \mathbb{U}^T \mathbb{A} \mathbb{V}$$

The columns of $\mathbb U$ and $\mathbb V$ are called the singular vectors, and they are only defined up to a reflection (change in sign), i.e. if vec is a singular vector, then so is -vec.

The left singular matrix $\mathbb U$ forms the $\it eigenvectors$ of the matrix $\mathbb A\mathbb A^T.$

The right singular matrix V forms the *eigenvectors* of the matrix A^TA .

```
> # Dimensions of left and right matrices
> nrows <- 6 ; ncols <- 4
> # Calculate left matrix
> leftmat <- matrix(runif(nrows^2), nc=nrows)
> eigend <- eigen(crossprod(leftmat))
> leftmat <- eigend$vectors[, 1:ncols]
> # Calculate right matrix and singular values
> rightmat <- matrix(runif(ncols^2), nc=ncols)
> eigend <- eigen(crossprod(rightmat))
> rightmat <- eigend$vectors
> singval <- sort(runif(ncols, min=1, max=5), decreasing=TRUE)
> # Compose rectangular matrix
> matrixv <- leftmat %*% (singval * t(rightmat))
> # Perform singular value decomposition
> sydec <- syd(matrixy)
> # Recompose matrixv from SVD
> all.equal(matrixv, svdec$u %*% (svdec$d*t(svdec$v)))
> # Compare SVD with matrixv components
> all.equal(abs(svdec$u), abs(leftmat))
> all.equal(abs(svdec$v), abs(rightmat))
> all.equal(svdec$d, singval)
> # Eigen decomposition of matrixv squared
> retsq <- matrixv %*% t(matrixv)
> eigend <- eigen(retsq)
> all.equal(eigend$values[1:ncols], singval^2)
> all.equal(abs(eigend$vectors[, 1:ncols]), abs(leftmat))
> # Eigen decomposition of matrixv squared
> retsq <- t(matrixv) %*% matrixv
> eigend <- eigen(retsq)
> all.equal(eigend$values, singval^2)
> all.equal(abs(eigend$vectors), abs(rightmat))
```

Inverse of Symmetric Square Matrices

The inverse of a square matrix A is defined as a square matrix \mathbb{A}^{-1} that satisfies the equation:

$$A^{-1}A = AA^{-1} = 1$$

Where 1 is the identity matrix.

The inverse \mathbb{A}^{-1} of a *symmetric* square matrix \mathbb{A} can also be expressed as the product of the inverse of its eigenvalues (Σ) and its eigenvectors (\mathbb{O}):

$$\mathbb{A}^{-1} = \mathbb{O} \; \mathbf{\Sigma}^{-1} \, \mathbb{O}^{\, \mathsf{T}}$$

But singular (degenerate) matrices (which have some eigenvalues equal to zero) don't have an inverse.

The inverse of non-symmetric matrices can be calculated using Singular Value Decomposition (SVD).

The function solve() solves systems of linear equations, and also inverts square matrices.

- > # Create a random positive semi-definite matrix > matrixv <- matrix(runif(25), nc=5) > matrixv <- t(matrixv) %*% matrixv > # Calculate the inverse of matrixv > invmat <- solve(a=matrixv) > # Multiply inverse with matrix > round(invmat %*% matrixv, 4) > round(matrixv %*% invmat, 4) > # Calculate the eigenvalues and eigenvectors > eigend <- eigen(matrixv) > eigenvec <- eigend\$vectors > # Calculate inverse from eigen decomposition
- > inveigen <- eigenvec %*% (t(eigenvec) / eigend\$values) > # Decompose diagonal matrix with inverse of eigenvalues > # diagmat <- diag(1/eigend\$values)

> all.equal(invmat, inveigen)

> # inveigen <- eigenvec %*% (diagmat %*% t(eigenvec))

Generalized Inverse of Rectangular Matrices

The generalized inverse of an (m x n) rectangular matrix A is defined as an $(n \times m)$ matrix A^{-1} that satisfies the equation:

$$\mathbb{AA}^{-1}\mathbb{A} = \mathbb{A}$$

The generalized inverse matrix \mathbb{A}^{-1} can be expressed as a product of the inverse of its singular values (Σ) and its left and right singular matrices (\mathbb{U} and \mathbb{V}):

$$\mathbb{A}^{-1}=\mathbb{V}\:\Sigma^{-1}\:\mathbb{U}^{T}$$

The generalized inverse \mathbb{A}^{-1} can also be expressed as the Moore-Penrose pseudo-inverse:

$$\mathbb{A}^{-1} = (\mathbb{A}^T \mathbb{A})^{-1} \mathbb{A}^T$$

In the case when the inverse matrix \mathbb{A}^{-1} exists, then the pseudo-inverse matrix simplifies to the inverse: $(\mathbb{A}^{T}\mathbb{A})^{-1}\mathbb{A}^{T} = \mathbb{A}^{-1}(\mathbb{A}^{T})^{-1}\mathbb{A}^{T} = \mathbb{A}^{-1}$

The function MASS::ginv() calculates the generalized inverse of a matrix.

- > # Random rectangular matrix: nrows > ncols > nrows <- 6 ; ncols <- 4
- > matrixv <- matrix(runif(nrows*ncols), nc=ncols)
- > # Calculate generalized inverse of matrixv
- > invmat <- MASS::ginv(matrixv)
- > round(invmat %*% matrixv, 4)
- > all.equal(matrixv, matrixv %*% invmat %*% matrixv)
- > # Random rectangular matrix: nrows < ncols > nrows <- 4 ; ncols <- 6
- > matrixv <- matrix(runif(nrows*ncols), nc=ncols)
- > # Calculate generalized inverse of matrixv
- > invmat <- MASS::ginv(matrixv)
- > all.equal(matrixv, matrixv %*% invmat %*% matrixv)
- > round(matrixv %*% invmat, 4) > round(invmat %*% matrixv, 4)
- > # Perform singular value decomposition
 - > svdec <- svd(matrixv)
- > # Calculate generalized inverse from SVD
- > invsvd <- svdec\$v %*% (t(svdec\$u) / svdec\$d)
- > all.equal(invsvd, invmat)
- > # Calculate Moore-Penrose pseudo-inverse
- > invmp <- MASS::ginv(t(matrixv) %*% matrixv) %*% t(matrixv) > all.equal(invmp, invmat)

Regularized Inverse of Singular Matrices

Singular matrices have some singular values equal to zero, so they don't have an inverse matrix which satisfies the equation: $\mathbb{A}\mathbb{A}^{-1}\mathbb{A}=\mathbb{A}$

But if the singular values that are equal to zero are removed, then a regularized inverse for singular matrices can be specified by:

$$\mathbb{A}^{-1} = \mathbb{V}_n \, \Sigma_n^{-1} \, \mathbb{U}_n^T$$

Where \mathbb{U}_n , \mathbb{V}_n and Σ_n are the SVD matrices with the rows and columns corresponding to zero singular values removed.

- > # Create a random singular matrix
- > # More columns than rows: ncols > nrows
- > nrows <- 4 ; ncols <- 6
- > matrixv <- matrix(runif(nrows*ncols), nc=ncols)
- > matrixv <- t(matrixv) %*% matrixv
- > # Perform singular value decomposition
- > sydec <- syd(matrixy)
- > # Incorrect inverse from SVD because of zero singular values
- > invsvd <- svdec\$v %*% (t(svdec\$u) / svdec\$d)
- > # Inverse property doesn't hold
- > all.equal(matrixv, matrixv %*% invsvd %*% matrixv)

- > # Set tolerance for determining zero singular values
- > precv <- sqrt(.Machine\$double.eps)
- > # Check for zero singular values > round(svdec\$d, 12)
- > notzero <- (svdec\$d > (precv*svdec\$d[1]))
- > # Calculate regularized inverse from SVD
- > invsvd <- svdec\$v[, notzero] %*%
- (t(svdec\$u[, notzero]) / svdec\$d[notzero])
- > # Verify inverse property of matrixv
- > all.equal(matrixv, matrixv %*% invsvd %*% matrixv) > # Calculate regularized inverse using MASS::ginv()
- > invmat <- MASS::ginv(matrixv)
- > all.equal(invsvd, invmat)
- > # Calculate Moore-Penrose pseudo-inverse
- > invmp <- MASS::ginv(t(matrixv) %*% matrixv) %*% t(matrixv)
- > all.equal(invmp, invmat)

Diagonalizing the Inverse of Singular Matrices

The left-singular matrix $\mathbb U$ combined with the right-singular matrix $\mathbb V$ define a rotation transformation into a coordinate system where the matrix $\mathbb A$ becomes diagonal:

$$\Sigma = \mathbb{U}^T \mathbb{A} \mathbb{V}$$

The generalized inverse of singular matrices doesn't satisfy the equation: $\mathbb{A}^{-1}\mathbb{A} = \mathbb{A}\mathbb{A}^{-1} = \mathbb{I}$, but if it's rotated into the same coordinate system where \mathbb{A} is diagonal, then we have:

$$\mathbb{U}^{T}(\mathbb{A}^{-1}\mathbb{A})\,\mathbb{V}=\mathbb{1}_{n}$$

So that $\mathbb{A}^{-1}\mathbb{A}$ is diagonal in the same coordinate system where \mathbb{A} is diagonal.

- > # Diagonalize the unit matrix > unitmat <- matrixv %*% invmat
- > round(unitmat, 4)
- > round(matrixv %*% invmat, 4)
- > round(t(svdec\$u) %*% unitmat %*% svdec\$v, 4)

Jerzy Pawlowski (NYU Tandon)

Solving Linear Equations Using solve()

A system of linear equations can be defined as:

$$\mathbb{A} x = b$$

Where \mathbb{A} is a matrix, b is a vector, and \mathbf{x} is the unknown vector.

The solution of the system of linear equations is equal to:

$$x = \mathbb{A}^{-1}b$$

Where \mathbb{A}^{-1} is the *inverse* of the matrix \mathbb{A} .

The function solve() solves systems of linear equations, and also inverts square matrices.

The %*% operator performs inner (scalar) multiplication of vectors and matrices.

Inner multiplication multiplies the rows of one matrix with the columns of another matrix, so that each pair produces a single number:

- > # Define a square matrix
- > matrixv <- matrix(c(1, 2, -1, 2), nc=2)
- > vectorv <- c(2, 1)
- > # Calculate the inverse of matrixv
- > invmat <- solve(a=matrixv)
- > invmat %*% matrixv
- > # Calculate solution using inverse of matrixv
- > solutionv <- invmat %*% vectorv
- > matrixv %*% solutionv
- > # Calculate solution of linear system
- > solutionv <- solve(a=matrixv, b=vectorv)
- > matrixv %*% solutionv

times=10))[, c(1, 4, 5)]

Fast Matrix Inverse Using C++

The Armadillo C++ functions can be several times faster than R functions - even those that are compiled from C++ code.

That's because the *Armadillo* C++ library calls routines optimized for fast numerical calculations.

The package RcppArmadillo allows calling from R the high-level Armadillo C++ linear algebra library.

The C++ Armadillo function arma::inv() calculates the matrix inverse several times faster than the function solve().

The function solve() calculates the matrix inverse several times faster than the function MASS::ginv().

// Rcpp header with information for C++ compiler

```
> # Create a random matrix
> matrixv <- matrix(rnorm(100), nc=10)
> # Calculate the matrix inverse using solve()
> invmatr <- solve(a=matrixv)
> round(invmatr %*% matrixv. 4)
> # Compile the C++ file using Rcpp
> Rcpp::sourceCpp(file="/Users/jerzy/Develop/Rcpp/test_fun.cpp")
> # Calculate the matrix inverse using C++
> invmat <- calc invmat(matrixv)
> all.equal(invmat, invmatr)
> # Compare the speed of RcppArmadillo with R code
> library(microbenchmark)
> summary(microbenchmark(
    ginv=MASS::ginv(matrixv),
    solve=solve(matrixv),
    cpp=calc_invmat(matrixv),
```

```
// [[Rcpp::depends(RcppArmadillo)]]
#include <a href="Acquainter-Armadillo">Acquainter-Armadillo</a> header file
using namespace arma; // use Armadillo C++ namespace
// [[Rcpp::export]]
arma::mat calc_invmat(arma::mat& matrixv) {
   return arma::inv(matrixv);
} // end calc_invmat
```

+ } # end if

> cholmat[1:5, 1:5]

> # Calculate the Cholesky matrixv
> cholmat <- chol(matrixv)</pre>

> invchol <- chol2inv(cholmat)
> all.equal (solve(matrixv), invchol)
> # Compare speed of Cholesky inversion
> library(microbenchmark)
> summary(microbenchmark(
+ solve=solve(matrixv),
- cholmat-chol2inv(chol(matrixv)).

> all.equal(matrixv, t(cholmat) %*% cholmat)
> # Calculate inverse from Cholesky

Cholesky Decomposition

The Cholesky decomposition of a positive definite matrix $\mathbb A$ is defined as:

$$A = L^T L$$

Where \mathbb{L} is an upper triangular matrix with positive diagonal elements.

The matrix \mathbb{L} can be considered the square root of \mathbb{A} .

The vast majority of random *positive semi-definite* matrices are also *positive definite*.

The function chol() calculates the *Cholesky* decomposition of a *positive definite* matrix.

The functions chol2inv() and chol() calculate the inverse of a *positive definite* matrix two times faster than solve()

```
> # Create large random positive semi-definite matrix
> matrix v - matrix(runif(1e4), no=100)
> matrix v - t(matrixv) %*% matrixv
> # Calculate the eigen decomposition
> eigend <- eigen(matrixv)
> eigenval <- eigendsvalues
> eigenval <- eigendsvalues
> eigenval <- eigendsvalues
> precv <- eigendsvectors
> # Set tolerance for determining zero singular values
> precv <- sqrt(.Machinesdouble.eps)
> # If needed convert to positive definite matrix
> notzero <- (eigenval > (precv*eigenval[i]))
> if (sum((intzero) > 0) {
+ eigenval[(notzero] <- 2*precv
+ matrixv <- eigenvec %*% (eigenval * t(eigenvec))
```

times=10))[, c(1, 4, 5)] # end microbenchmark summary

Simulating Correlated Returns Using Cholesky Matrix

The *Cholesky* decomposition of a covariance matrix can be used to simulate correlated *Normal* returns following the given covariance matrix: $\mathbb{C} = \mathbb{L}^T \mathbb{L}$

Let \mathbb{R} be a matrix with columns of *uncorrelated* returns following the *Standard Normal* distribution.

The correlated returns \mathbb{R}_c can be calculated from the uncorrelated returns \mathbb{R} by multiplying them by the Cholesky matrix \mathbb{L} :

$$\mathbb{R}_c = \mathbb{L}^T \mathbb{R}$$

- > # Calculate random covariance matrix > covmat <- matrix(runif(25), nc=5)
- > covmat <- t(covmat) %*% covmat
- > # Calculate the Cholesky matrix > cholmat <- chol(covmat)
- > cholmat <
- > # Simulate random uncorrelated returns
- > nassets <- 5
- > retp <- matrix(rnorm(nassets*nrows), nc=nassets)
- > # Calculate correlated returns by applying Cholesky
- > retscorr <- retp %*% cholmat
- > # Calculate covariance matrix
- > covmat2 <- crossprod(retscorr) /(nrows-1)
- > all.equal(covmat, covmat2)

Eigenvalues of Singular Covariance Matrices

If \mathbb{R} is a matrix of returns (with zero mean) for a portfolio of k stocks (columns), over n time periods (rows), then the sample covariance matrix is equal to:

$$\mathbb{C} = \mathbb{R}^T \mathbb{R}/(n-1)$$

If the number of rows is less than the number of stocks, then the returns are collinear, and the sample covariance matrix is singular, with some eigenvalues equal to zero.

The function crossprod() performs inner (scalar) multiplication, exactly the same as the \%*% operator, but it is slightly faster.

```
> # Simulate random stock returns
> nassets <- 10
> nrows <- 100
> set.seed(1121) # Initialize random number generator
> retp <- matrix(rnorm(nassets*nrows), nc=nassets)
> # Calculate de-meaned returns matrix
> retp <- t(t(retp) - colMeans(retp))
> # Or
> retp <- apply(retp, MARGIN=2, function(x) (x-mean(x)))
> # Calculate covariance matrix
> covmat <- crossprod(retp) /(nrows-1)
> # Calculate the eigenvalues and eigenvectors
> eigend <- eigen(covmat)
> eigend$values
> barplot(eigend$values, # Plot eigenvalues
 xlab="", ylab="", las=3,
   names.arg=pasteO("ev", 1:NROW(eigend$values)),
```

90.0 0.04 0.02 00.0 15 20

Smallest eigenvalue of covariance matrix

as function of number of returns

```
> # Calculate the eigenvalues and eigenvectors
> # as function of number of returns
> ndata <- ((nassets/2):(2*nassets))
> eigenval <- sapply(ndata, function(x) {
    retp <- retp[1:x, ]
    retp <- apply(retp, MARGIN=2, function(v) (v - mean(v)))
    covmat <- crossprod(retp) / (x-1)
    min(eigen(covmat)$values)
+ }) # end sapply
> plot(y=eigenval, x=ndata, t="1", xlab="", ylab="", lwd=3, col="bl
    main="Smallest eigenvalue of covariance matrix
```

Regularized Inverse of Singular Covariance Matrices

The regularization technique allows calculating the inverse of singular covariance matrices while reducing the effects of statistical noise.

If the number of time periods of returns is less than the number of assets (columns), then the covariance matrix of returns is singular, and some of its eigenvalues are zero, so it doesn't have an inverse.

The regularized inverse \mathbb{C}_n^{-1} is calculated by removing the higher order eigenvalues that are almost zero, and keeping only the first n eigenvalues:

$$\mathbb{C}_n^{-1} = \mathbb{O}_n \, \Sigma_n^{-1} \, \mathbb{O}_n^T$$

Where Σ_n and \mathbb{O}_n are matrices with the higher order eigenvalues and eigenvectors removed.

The function MASS::ginv() calculates the regularized inverse of a matrix

- > # Create rectangular matrix with collinear columns
- > matrixv <- matrix(rnorm(10*8), nc=10) > # Calculate covariance matrix
- > covmat <- cov(matrixv)
- > # Calculate inverse of covmat error
- > invmat <- solve(covmat)
- > # Calculate regularized inverse of covmat
- > invmat <- MASS::ginv(covmat)
- > # Verify inverse property of matrixv
- > all.equal(covmat, covmat %*% invmat %*% covmat)
- > # Perform eigen decomposition > eigend <- eigen(covmat)
- > eigenvec <- eigend\$vectors
- > eigenval <- eigend\$values
- > # Set tolerance for determining zero singular values
- > precv <- sqrt(.Machine\$double.eps) > # Calculate regularized inverse matrix
- > notzero <- (eigenval > (precv * eigenval[1]))
- > invreg <- eigenvec[, notzero] %*%
- (t(eigenvec[, notzero]) / eigenval[notzero])
- > # Verify that invmat is same as invreg
- > all.equal(invmat, invreg)

4 D > 4 B > 4 B > 4 B >

The Bias-Variance Tradeoff of the Regularized Inverse

Removing the very small higher order eigenvalues can also be used to reduce the propagation of statistical noise and improve the signal-to-noise ratio.

Removing a larger number of eigenvalues further reduces the noise, but it increases the bias of the covariance matrix.

This is an example of the bias-variance tradeoff.

Even though the *regularized* inverse \mathbb{C}_n^{-1} does not satisfy the matrix inverse property, its out-of-sample forecasts may be more accurate than those using the actual inverse matrix.

The parameter dimax specifies the number of eigenvalues used for calculating the *regularized* inverse of the covariance matrix of returns.

The optimal value of the parameter dimax can be determined using backtesting (cross-validation).

- > # Calculate regularized inverse matrix using cutoff > dimax <- 3
- > invmat <- eigenvec[, 1:dimax] %*%
 - (t(eigenvec[, 1:dimax]) / eigend\$values[1:dimax])
- > # Verify that invmat is same as invreg
- > all.equal(invmat, invreg)

> invmat <- solve(covshrink)

Shrinkage Estimator of Covariance Matrices

The estimates of the covariance matrix suffer from statistical noise, and those noise are magnified when the covariance matrix is inverted.

In the *shrinkage* technique the covariance matrix \mathbb{C}_s is estimated as a weighted sum of the sample covariance estimator \mathbb{C} plus a target matrix \mathbb{T} :

$$\mathbb{C}_{s} = (1 - \alpha) \, \mathbb{C} + \alpha \, \mathbb{T}$$

The target matrix \mathbb{T} represents an estimate of the covariance matrix subject to some constraint, such as that all the correlations are equal to each other.

The shrinkage intensity α determines the amount of shrinkage that is applied, with $\alpha=1$ representing a complete shrinkage towards the target matrix.

The *shrinkage* estimator reduces the estimate variance at the expense of increasing its bias (known as the *bias-variance tradeoff*).

```
> # Create a random covariance matrix
> set.seed(1121)
> matrixv <- matrix(rnorm(5e2), nc=5)
> covmat <- cov(matrixv)
> cormat <- cor(matrixv)
> stdev <- sqrt(diag(covmat))
> # Calculate target matrix
> cormean <- mean(cormat[upper.tri(cormat)])
> targetmat <- matrix(cormean, nr=NROW(covmat), nc=NCOL(covmat))
> diag(targetmat) <- 1
> targetmat <- tt(ttargetmat * stdev) * stdev)
> # Calculate shrinkage covariance matrix
> alpha <- 0.5
> covshrink <- (1-alpha)*covmat + alpha*targetmat
> # Calculate inverse matrix
```

Recursive Matrix Inverse

The inverse of a square matrix A can be calculated approximately using the recursive Schulz formula:

$$\mathbb{A}_{i+1}^{-1} \leftarrow 2\mathbb{A}_{i}^{-1} - \mathbb{A}_{i}^{-1}\mathbb{A}\mathbb{A}_{i}^{-1}$$

The Schulz formula requires a good initial value for the inverse matrix \mathbb{A}_1^{-1} or else the recursion diverges.

If the initial inverse matrix \mathbb{A}_1^{-1} is very close to the actual inverse \mathbb{A}^{-1} , then the Schulz formula produces a very good approximation with just a few iterations.

The Schulz formula is useful for updating the inverse when the matrix A changes only slightly. For example, for updating the inverse of the covariance matrix as it changes slowly over time.

The super-assignment operator "<<-" modifies variables in the enclosing environment in which the function was defined (lexical scoping).

- > # Create a random matrix
- > matrixv <- matrix(rnorm(100), nc=10) > # Calculate the inverse of matrixy
- > invmat <- solve(a=matrixv)
- > # Multiply inverse with matrix
- > round(invmat %*% matrixv, 4) > # Calculate the initial inverse
- > invmatr <- invmat + matrix(rnorm(100, sd=0.1), nc=10) > # Calculate the approximate recursive inverse of matrixv
- > invmatr <- (2*invmatr invmatr %*% matrixv %*% invmatr)
- > # Calculate the sum of the off-diagonal elements
- > sum((invmatr %*% matrixy)[upper.tri(matrixy)])

Iterations of Recursive Matrix Inverse

- > # Calculate the recursive inverse of matrixv in a loop
- > invmatr <- invmat + matrix(rnorm(100, sd=0.1), nc=10)
- > iterv <- sapply(1:5, function(x) {
- + # Calculate the recursive inverse of matrixy
- invmatr <<- (2*invmatr invmatr %*% matrixv %*% invmatr)
- + # Calculate the sum of the off-diagonal elements
- sum((invmatr %*% matrixv)[upper.tri(matrixv)])
- + }) # end sapply
- > # Plot the iterations
- > plot(x=1:5, y=iterv, t="1", xlab="iterations", ylab="error", main="Iterations of Recursive Matrix Inverse")

One-dimensional Optimization Using The Functional optimize()

The functional optimize() performs one-dimensional optimization over a single independent variable.

optimize() searches for the minimum of the objective function with respect to its first argument, in the specified interval.

optimize() returns a list containing the location of the minimum and the objective function value,

The argument tol specifies the numerical accuracy, with smaller values of tol requiring more computations.

```
> # Display the structure of optimize()
> str(optimize)
> # Objective function with multiple minima
> obifun <- function(input, param1=0.01) {
    sin(0.25*pi*input) + param1*(input-1)^2
+ } # end obifun
> optiml <- optimize(f=obifun, interval=c(-4, 2))
> class(optiml)
> unlist(optiml)
> # Find minimum in different interval
> unlist(optimize(f=obifun, interval=c(0, 8)))
> # Find minimum with less accuracy
> accl <- 1e4*.Machine$double.eps^0.25
> unlist(optimize(f=objfun, interval=c(0, 8), tol=accl))
> # Microbenchmark optimize() with less accuracy
> library(microbenchmark)
> summary(microbenchmark(
   more_accurate = optimize(f=objfun, interval=c(0, 8)),
   less_accurate = optimize(f=objfun, interval=c(0, 8), tol=accl),
```

times=100))[, c(1, 4, 5)] # end microbenchmark summary

- > # Plot the objective function
- > curve(expr=objfun, type="1", xlim=c(-8, 9),
- + xlab="", ylab="", lwd=2)
- > # Add title
- > title(main="Objective Function", line=-1)

Package rgl for Interactive 3d Surface Plots

The package *rgl* creates *interactive* 3d scatter plots and surface plots by calling the *WebGL JavaScript* library.

The function rg1::persp3d() plots an *interactive* 3d surface plot of a *vectorized* function or a matrix.

```
> # Rastrigin function
> rastrigin <- function(x, y, param=25) {
+ x'2 + y'2 - param*(cos(x) + cos(y))
+ } # end rastrigin
> # Rastrigin function is vectorized!
> rastrigin(c(-10, 5), c(-10, 5))
> # Set rgl options and load package rgl
> library(rgl)
> options(rgl.useNULL=TRUE)
> # Draw 3d surface plot of function
> rgl::persp3d(x=rastrigin, xlim=c(-10, 10), ylim=c(-10, 10),
+ col="greem", axes=FALES, param=15)
> # Render the 3d surface plot of function
> rgl::rglwidget(elementid="nlot3dright", width=400, height=400)
```


Multi-dimensional Optimization Using optim()

The function optim() performs *multi-dimensional* optimization.

The argument fn is the objective function to be minimized.

The argument of fn that is to be optimized, must be a vector argument.

The argument par is the initial vector argument value.

optim() accepts additional parameters bound to the
dots "..." argument, and passes them to the fn
objective function.

The arguments lower and upper specify the search range for the variables of the objective function fn.

method="L-BFGS-B" specifies the quasi-Newton gradient optimization method.

optim() returns a list containing the location of the minimum and the objective function value.

The gradient methods used by optim() can only find the local minimum, not the global minimum.

```
> # Rastrigin function with vector argument for optimization
> rastrigin <- function(vectorv, param=25) {
   sum(vectorv^2 - param*cos(vectorv))
+ } # end rastrigin
> vectorv <- c(pi, pi/4)
> rastrigin(vectorv=vectorv)
> # Draw 3d surface plot of Rastrigin function
> rgl::persp3d(
+ x=Vectorize(function(x, y) rastrigin(vectorv=c(x, y))),
   xlim=c(-10, 10), ylim=c(-10, 10),
   col="green", axes=FALSE, zlab="", main="rastrigin")
> # Optimize with respect to vector argument
> optiml <- optim(par=vectorv, fn=rastrigin,
          method="L-BFGS-B",
         upper=c(14*pi, 14*pi),
          lower=c(pi/2, pi/2),
          param=1)
> # Optimal parameters and value
> optiml$par
> optiml$value
> rastrigin(optiml$par, param=1)
```

The Likelihood Function

The *likelihood* function $\mathcal{L}(\theta|\bar{x})$ is a function of the parameters of a statistical model θ , given a sample of observed values \bar{x} , taken under the model's probability distribution $p(x|\theta)$:

$$\mathcal{L}(\theta|x) = \prod_{i=1}^{n} p(x_i|\theta)$$

The *likelihood* function measures how *likely* are the parameters of a statistical model, given a sample of observed values \bar{x} .

The maximum-likelihood estimate (MLE) of the model's parameters are those that maximize the likelihood function:

$$\theta_{\textit{MLE}} = \operatorname*{arg\,max}_{\theta} \mathcal{L}(\theta|x)$$

In practice the logarithm of the *likelihood* $log(\mathcal{L})$ is maximized, instead of the *likelihood* itself.

The function outer() calculates the *outer* product of two matrices, and by default multiplies the elements of its arguments.

```
> # Sample of normal variables
> datav <- rnorm(1000, mean=4, sd=2)
> # Objective function is log-likelihood
> objfun <- function(parv, datav) {
   sum(2*log(parv[2]) +
      ((datav - parv[1])/parv[2])^2)
+ } # end objfun
> # Objective function on parameter grid
> parmean <- seq(1, 6, length=50)
> parsd <- seq(0.5, 3.0, length=50)
> objective_grid <- sapply(parmean, function(m) {
    sapply(parsd, function(sd) {
      objfun(c(m, sd), datav)
    }) # end sapply
+ }) # end sapply
> # Perform grid search for minimum
> objective_min <- which(
    objective_grid==min(objective_grid),
    arr.ind=TRUE)
> objective_min
> parmean[objective_min[1]] # mean
> parsd[objective_min[2]] # sd
> objective grid[objective min]
> objective_grid[(objective_min[, 1] + -1:1),
         (objective_min[, 2] + -1:1)]
> # Or create parameter grid using function outer()
> obivecive <- Vectorize(
   FUN=function(mean, sd. datay)
      objfun(c(mean, sd), datav),
    vectorize.args=c("mean", "sd")
+ ) # end Vectorize
> objective grid <- outer(parmean, parsd,
+ objvecive, datav=datav)
```

Perspective Plot of Likelihood Function

The function persp() plots a 3d perspective surface plot of a function specified over a grid of argument values.

The argument "z" accepts a matrix containing the function values.

persp() belongs to the base graphics package, and doesn't create interactive plots.

The function rgl::persp3d() plots an *interactive* 3d surface plot of a function or a matrix.

rgl is an R package for 3d and perspective plotting, based on the *OpenGL* framework.

> rgl::persp3d(z=-objective_grid, zlab="objective",
+ col="green". main="objective function")

Optimization of Objective Function

The function optim() performs optimization of an objective function.

The function fitdistr() from package MASS fits a univariate distribution to a sample of data, by performing maximum likelihood optimization.

```
> # Initial parameters
> initp <- c(mean=0, sd=1)
> # Perform optimization using optim()
> optiml <- optim(par=initp,
   fn=objfun, # Log-likelihood function
   datav=datav,
+ method="L-BFGS-B", # Quasi-Newton method
+ upper=c(10, 10), # Upper constraint
 lower=c(-10, 0.1)) # Lower constraint
> # Optimal parameters
> optiml$par
> # Perform optimization using MASS::fitdistr()
> optiml <- MASS::fitdistr(datav, densfun="normal")
> optiml$estimate
> optiml$sd
> # Plot histogram
> histp <- hist(datav, plot=FALSE)
```

> plot(histp, freq=FALSE, main="histogram of sample") > curve(expr=dnorm(x, mean=optiml\$par["mean"], sd=optiml\$par["sd"]), + add=TRUE, type="1", 1wd=2, col="red")

- > legend("topright", inset=0.0, cex=0.8, title=NULL, y.intersp=0.4,
- + leg="optimal parameters", lwd=2, bg="white", col="red")

histogram of target vector

Mixture Model Likelihood Function

```
> # Sample from mixture of normal distributions
> datav <- c(rnorm(100, sd=1.0),
        rnorm(100, mean=4, sd=1.0))
> # Objective function is log-likelihood
> objfun <- function(parv, datav) {
   likev <- parv[1]/parv[3] *
   dnorm((datav-parv[2])/parv[3]) +
  (1-parv[1])/parv[5]*dnorm((datav-parv[4])/parv[5])
   if (any(likev <= 0)) Inf else
      -sum(log(likev))
   # end objfun
> # Vectorize objective function
> objvecive <- Vectorize(
   FUN=function(mean, sd, w, m1, s1, datav)
      objfun(c(w, m1, s1, mean, sd), datav),
    vectorize.args=c("mean", "sd")
+ ) # end Vectorize
> # Objective function on parameter grid
> parmean <- seq(3, 5, length=50)
> parsd <- seq(0.5, 1.5, length=50)
> objective_grid <- outer(parmean, parsd,
      objvecive, datav=datav.
      w=0.5, m1=2.0, s1=2.0)
> rownames(objective grid) <- round(parmean, 2)
> colnames(objective_grid) <- round(parsd, 2)
> objective min <- which(objective grid==
   min(objective_grid), arr.ind=TRUE)
> objective min
> objective_grid[objective_min]
> objective_grid[(objective_min[, 1] + -1:1),
           (objective_min[, 2] + -1:1)]
```

```
> # Perspective plot of objective function
> persp(parmean, parsd, -objective_grid,
+ theta=45, phi=30,
+ shade=0.5,
+ col=rainbow(50),
+ border="green",
+ main=""objective function")
```


Optimization of Mixture Model

```
> # Initial parameters
> initp <- c(weight=0.5, m1=0, s1=1, m2=2, s2=1)
> # Perform optimization
> optiml <- optim(par=initp,
        fn=objfun,
        datav=datav,
        method="L-BFGS-B",
        upper=c(1,10,10,10,10),
        lower=c(0,-10,0.2,-10,0.2))
> optiml$par
> # Plot histogram
> histp <- hist(datav, plot=FALSE)
> plot(histp, freq=FALSE,
       main="histogram of sample")
> fitfun <- function(x, parv) {
    parv["weight"] *dnorm(x, mean=parv["m1"], sd=parv["s1"]) +
    (1-parv["weight"])*dnorm(x, mean=parv["m2"], sd=parv["s2"])
+ } # end fitfun
> curve(expr=fitfun(x, parv=optiml$par), add=TRUE,
+ type="1", 1wd=2, col="red")
> legend("topright", inset=0.0, cex=0.8, title=NULL,
+ leg="optimal parameters", y.intersp=0.4,
+ lwd=2, bg="white", col="red")
```

histogram of target vector

Package DEoptim for Global Optimization

The function DEoptim() from package *DEoptim* performs *global* optimization using the *Differential Evolution* algorithm.

Differential Evolution is a genetic algorithm which evolves a population of solutions over several generations:

 $https://link.springer.com/content/pdf/10.1023/A: \\1008202821328.pdf$

The first generation of solutions is selected randomly.

Each new generation is obtained by combining the best solutions from the previous generation.

The *Differential Evolution* algorithm is well suited for very large multi-dimensional optimization problems, such as portfolio optimization.

Gradient optimization methods are more efficient than Differential Evolution for smooth objective functions with no local minima.

- > # Rastrigin function with vector argument for optimization
- > rastrigin <- function(vectorv, param=25) {
- + sum(vectorv^2 param*cos(vectorv))
- + } # end rastrigin
- > vectorv <- c(pi/6, pi/6)
- > rastrigin(vectorv=vectorv)
- > library(DEoptim)
- > # Optimize rastrigin using DEoptim
- > optim1 <- DEoptim(rastrigin,
- + upper=c(6, 6), lower=c(-6, -6),
- + DEoptim.control(trace=FALSE, itermax=50))
 > # Optimal parameters and value
- > optiml\$optim\$bestmem
- > rastrigin(optiml\$optim\$bestmem)
- > summary(optim1)
- > plot(optiml)

Package Rcpp for Calling C++ Programs from R

The package Rcpp allows calling C++ functions from R, by compiling the C++ code and creating R functions.

Rcpp functions are R functions that were compiled from C++ code using package Rcpp.

Rcpp functions are much faster than code written in R, so they're suitable for large numerical calculations.

The package *Rcpp* relies on *Rtools* for compiling the C++ code:

https://cran.r-project.org/bin/windows/Rtools/

You can learn more about the package Rcpp here:

http://adv-r.had.co.nz/Rcpp.html

http://www.rcpp.org/

http://gallerv.rcpp.org/

```
Loops in R and in Python are slow - I will use C++ instead.

Loops in R and in Python are slow - I will use C++ instead.

Loops in R and in Python are slow - I will use C++ instead.

Loops in R and in Python are slow - I will use C++ instead.

Loops in R and in Python are slow - I will use C++ instead.

Loops in R and in Python are slow - I will use C++ instead.

Loops in R and in Python are slow - I will use C++ instead.
```

- > # Verify that Rtools or XCode are working properly:
- > devtools::find rtools() # Under Windows
- > devtools::has_devel()
- > # Install the packages Rcpp and RcppArmadillo
 > install.packages(c("Rcpp", "RcppArmadillo"))
- > # Load package Rcpp
- > library(Rcpp)
- > # Get documentation for package Rcpp
- > # Get short description
- > packageDescription("Rcpp")
- > # Load help page
- > help(package="Rcpp")
- > # List all datasets in "Rcpp"
- > data(package="Rcpp")
- > # List all objects in "Rcpp"
- > ls("package:Rcpp")
- > # Remove Rcpp from search path
- > detach("package:Rcpp")

Function cppFunction() for Compiling C++ code

The function cppFunction() compiles C++ code into an R function.

The function cppFunction() creates an R function only for the current R session, and it must be recompiled for every new R session.

The function sourceCpp() compiles C++ code contained in a file into R functions.

- > # Define Rcpp function
- > Rcpp::cppFunction("
 + int times_two(int x)
 - { return 2 * x;}
 - ") # end cppFunction
- > # Run Rcpp function > times_two(3)
- > # Source Rcpp functions from file
- > Rcpp::sourceCpp(file="/Users/jerzy/Develop/lecture_slides/scripts
- > # Multiply two numbers
- > mult_rcpp(2, 3) > mult_rcpp(1:3, 6:4)
- > # Multiply two vectors
- > mult_vec_rcpp(2, 3)
- > mult_vec_rcpp(1:3, 6:4)

Performing Loops in Rcpp Sugar

Loops written in $\ensuremath{\textit{Rcpp}}$ can be two orders of magnitude faster than loops in $\ensuremath{\mathtt{R!}}$

 $Rcpp\ Sugar\ allows\ using\ R-style\ vectorized\ syntax\ in\ Rcpp\ code.$

```
> # Define Rcpp function with loop
> Rcpp::cppFunction("
+ double inner_mult(NumericVector x, NumericVector y) {
+ int xsize = x.size():
+ int ysize = y.size();
+ if (xsize != ysize) {
      return 0:
  } else {
      double total = 0:
     for(int i = 0: i < xsize: ++i) {
+ total += x[i] * v[i]:
   return total:
+ }") # end cppFunction
> # Run Rcpp function
> inner mult(1:3, 6:4)
> inner mult(1:3, 6:3)
> # Define Rcpp Sugar function with loop
> Rcpp::cppFunction("
+ double inner_sugar(NumericVector x, NumericVector y) {
+ return sum(x * y);
+ }") # end cppFunction
> # Run Rcpp Sugar function
> inner_sugar(1:3, 6:4)
> inner_sugar(1:3, 6:3)
```

```
> # Define R function with loop
> inner_multr <- function(x, y) {
      sumv <- 0
      for(i in 1:NROW(x)) {
+ sumv <- sumv + x[i] * y[i]
      sumv
     # end inner_multr
> # Run R function
> inner_multr(1:3, 6:4)
> inner_multr(1:3, 6:3)
> # Compare speed of Rcpp and R
> library(microbenchmark)
> summary(microbenchmark(
    rcode=inner_multr(1:10000, 1:10000),
    innerp=1:10000 %*% 1:10000,
    Rcpp=inner_mult(1:10000, 1:10000),
    sugar=inner_sugar(1:10000, 1:10000),
    times=10))[, c(1, 4, 5)]
```

Simulating Ornstein-Uhlenbeck Process Using Rcpp

Simulating the Ornstein-Uhlenbeck Process in Rcpp is about 30 times faster than in R!

```
> # Define Ornstein-Uhlenbeck function in R
> sim_our <- function(nrows=1000, eq_price=5.0,
               volat=0.01, theta=0.01) {
  retp <- numeric(nrows)
   pricev <- numeric(nrows)
 pricev[1] <- eq_price
  for (i in 2:nrows) {
     retp[i] <- theta*(eq_price - pricev[i-1]) + volat*rnorm(1)
     pricev[i] <- pricev[i-1] + retp[i]
   } # end for
   pricev
+ } # end sim our
> # Simulate Ornstein-Uhlenbeck process in R
> eq_price <- 5.0; sigmav <- 0.01
> thetav <- 0.01; nrows <- 1000
> set.seed(1121) # Reset random numbers
> ousim <- sim_our(nrows, eq_price=eq_price, volat=sigmav, theta=tl
```

```
> # Define Ornstein-Uhlenbeck function in Rcpp
> Rcpp::cppFunction("
+ NumericVector sim_oucpp(double eq_price,
                      double volat,
                      double thetay.
                      NumericVector innov) {
    int nrows = innov.size();
   NumericVector prices(nrows);
   NumericVector returns(nrows);
   pricev[0] = eq_price;
   for (int it = 1; it < nrows; it++) {
     returns[it] = thetav*(eq_price - pricev[it-1]) + volat*innov[
     pricev[it] = pricev[it-1] + returns[it];
  } // end for
   return prices;
+ }") # end cppFunction
> # Simulate Ornstein-Uhlenbeck process in Rcpp
> set.seed(1121) # Reset random numbers
> oucpp <- sim_oucpp(eq_price=eq_price,
   volat=sigmav, theta=thetav, innov=rnorm(nrows))
> all.equal(ousim, oucpp)
> # Compare speed of Rcpp and R
> library(microbenchmark)
> summary(microbenchmark(
   rcode=sim_our(nrows, eq_price=eq_price, volat=sigmav, theta=the
   Rcpp=sim_oucpp(eq_price=eq_price, volat=sigmav, theta=thetav, i
   times=10))[, c(1, 4, 5)]
```

Rcpp Attributes

Rcpp attributes are instructions for the C++ compiler, embedded in the Rcpp code as C++ comments, and preceded by the "//" symbol.

The Rcpp::depends attribute specifies additional C++ library dependencies.

The Rcpp::export attribute specifies that a function should be exported to R, where it can be called as an R function

Only functions which are preceded by the Rcpp::export attribute are exported to R.

The function sourceCpp() compiles C++ code contained in a file into R functions.

rcode=sim_our(nrows, eq_price=eq_price, volat=sigmav, theta=thetav),

Rcpp=sim_oucpp(eq_price=eq_price, volat=sigmav, theta=thetav, innov=rnorm(nrows)),

```
// Rcpp header with information for C++ compiler
#include <Rcpp.h> // include Rcpp C++ header files
using namespace Rcpp; // use Rcpp C++ namespace
// The function sim_oucpp() simulates an Ornstein-Uhlenb
// export the function roll_maxmin() to R
// [[Rcpp::export]]
NumericVector sim_oucpp(double eq_price,
                          double volat.
                          double thetay.
                          NumericVector innov) {
  int(nrows = innov.size():
  NumericVector pricev*nrows):
  NumericVector retp*nrows);
  pricev[0] = eq_price;
  for (int it = 1: it < nrows: it++) {
    retp[it] = thetav*(eq_price - pricev[it-1]) + volat*
    pricev[it] = pricev[it-1] + retp[it];
  } // end for
  return pricev:
   // end sim_oucpp
```

+ times=10))[, c(1, 4, 5)]

Generating Random Numbers Using Logistic Map in Rcpp

The logistic map in Rcpp is about seven times faster than the loop in R, and even slightly faster than the standard runif() function in R!

```
> # Calculate uniformly distributed pseudo-random sequence
> unifun <- function(seedv, nrows=10) {
   output <- numeric(nrows)
   output[1] <- seedv
                                                                 11
 for (i in 2:nrows) {
     output[i] <- 4*output[i-1]*(1-output[i-1])
  } # end for
                                                                  //
   acos(1-2*output)/pi
+ } # end unifun
> # Source Rcpp functions from file
> Rcpp::sourceCpp(file="/Users/jerzy/Develop/lecture_slides/scripts,// [[Rcpp::export]]
> # Microbenchmark Rcpp code
> library(microbenchmark)
                                                                  // define pi
> summary(microbenchmark(
   rcode=runif(1e5).
  rloop=unifun(0.3, 1e5).
+ Rcpp=unifuncpp(0.3, 1e5),
 times=10))[, c(1, 4, 5)]
                                                                    output[0] = seedv;
                                                                 // perform loop
                                                                    } // end for
```

```
// Rcpp header with information for C++ compiler
#include <Rcpp.h> // include Rcpp C++ header files
using namespace Rcpp; // use Rcpp C++ namespace
// This is a simple example of exporting a C++ function
// You can source this function into an R session using
// function Rcpp::sourceCpp()
// (or via the Source button on the editor toolbar).
// Learn more about Rcpp at:
     http://www.rcpp.org/
     http://adv-r.had.co.nz/Rcpp.html
     http://gallerv.rcpp.org/
// function unifun() produces a vector of
// uniformly distributed pseudo-random numbers
NumericVector unifuncpp(double seedy, int(nrows) {
static const double pi = 3.14159265;
// allocate output vector
  NumericVector output(nrows):
// initialize output vector
  for (int i=1; i < nrows; ++i) {
    output[i] = 4*output[i-1]*(1-output[i-1]);
// rescale output vector and return it
  return acos(1-2*output)/pi;
```

Package RcppArmadillo for Fast Linear Algebra

The package RcppArmadillo allows calling from R the high-level Armadillo C++ linear algebra library.

Armadillo provides ease of use and speed, with syntax similar to Matlah

RcppArmadillo functions are often faster than even compiled R functions, because they use better optimized C++ code:

http://arma.sourceforge.net/speed.html

You can learn more about RcppArmadillo: http://arma.sourceforge.net/

```
http://dirk.eddelbuettel.com/code/rcpp.armadillo.html
https://cran.r-project.org/web/packages/
\emph{RcppArmadillo}/index.html
```

https://github.com/RcppCore/\emph{RcppArmadillo}

```
> library(RcppArmadillo)
```

- > # Source Rcpp functions from file
- > Rcpp::sourceCpp(file="/Users/jerzy/Develop/lecture_slides/script:
- > vec1 <- runif(1e5)
- > vec2 <- runif(1e5)
- > inner vec(vec1, vec2)
- > vec1 %*% vec2

```
// Rcpp header with information for C++ compiler
#include <RcppArmadillo.h>
using namespace Rcpp;
using namespace arma;
// [[Rcpp::depends(RcppArmadillo)]]
// The function inner_vec() calculates the inner (dot)
// It uses \emph{RcppArmadillo}.
//' @export
// [[Rcpp::export]]
double inner vec(arma::vec vec1, arma::vec vec2) {
  return arma::dot(vec1, vec2):
} // end inner vec
// The function inner mat() calculates the inner (dot) r
// with two vectors.
// It accepts pointers to the matrix and vectors, and re
// It uses \emph{RcppArmadillo}.
//' @export
// [[Rcpp::export]]
double inner mat(const arma::vec& vectorv2. const arma:
  return arma::as scalar(trans(vectorv2) * (matrixv * ve
} // end inner mat
> # Microbenchmark \emph{RcppArmadillo} code
> summary(microbenchmark(
   rcpp = inner vec(vec1, vec2).
 rcode = (vec1 %*% vec2).
   times=100))[, c(1, 4, 5)] # end microbenchmark summary
> # Microbenchmark shows:
> # inner vec() is several times faster than %*%. especially for lo
               mean median
> # 1 inner vec 110.7067 110.4530
> # 2 rcode 585 5127 591 3575
```

Simulating ARIMA Processes Using RcppArmadillo

ARIMA processes can be simulated using RcppArmadillo even faster than by using the function filter().

> # Source Rcpp functions from file

```
> Rcpp::sourceCpp(file="/Users/jerzy/Develop/lecture_slides/scripts/
> # Define AR(2) coefficients
> coeff <- c(0.9, 0.09)
> nrows <- 1e4
> set.seed(1121)
> innov <- rnorm(nrows)
> # Simulate ARIMA using filter()
> arimar <- filter(x=innov, filter=coeff, method="recursive")
> # Simulate ARIMA using sim ar()
> innov <- matrix(innov)
> coeff <- matrix(coeff)
> arimav <- sim ar(coeff, innov)
> all.equal(drop(arimav), as.numeric(arimar))
> # Microbenchmark \emph{RcppArmadillo} code
> summary(microbenchmark(
  rcpp = sim ar(coeff, innov).
```

+ filter = filter(x=innov, filter=coeff, method="recursive").

+ times=100))[, c(1, 4, 5)] # end microbenchmark summary

```
// Rcpp header with information for C++ compiler
#include <RcvpArmadillo.h> // include C++ header file
using namespace arma; // use C++ namespace from Armadill
// declare dependency on RcppArmadillo
// [[Rcpp::depends(RcppArmadillo)]]
//' @export
// [[Rcpp::export]]
arma::vec sim_ar(const arma::vec& innov, const arma::vec
  uword nrows = innov.n elem:
  uword look back = coeff.n elem:
  arma::vec arimav[nrows):
 // startup period
  arimav(0) = innov(0):
  arimav(1) = innov(1) + coeff(look back-1) * arimav(0):
 for (uword it = 2: it < look back-1: it++) {
    arimav(it) = innov(it) + arma::dot(coeff.subvec(look
  } // end for
  // remaining periods
  for (uword it = look_back; it < nrows; it++) {
    arimav(it) = innov(it) + arma::dot(coeff, arimav.sub
 } // end for
  return arimav;
} // end sim_arima
```

Fast Matrix Algebra Using RcppArmadillo

```
RcppArmadillo functions can be made even faster by
                                                             // Rcpp header with information for C++ compiler
                                                             #include <RcppArmadillo.h> // include C++ header file fr
operating on pointers to matrices and performing
                                                             using namespace arma; // use C++ namespace from Armadill
calculations in place, without copying large matrices.
                                                             // declare dependency on RcppArmadillo
                                                             // [[Rcpp::depends(RcppArmadillo)]]
RcppArmadillo functions can be compiled using the
same Rtools as those for Rcpp functions:
                                                             // Examples of \emph{RcppArmadillo} functions below
  https://cran.r-project.org/bin/windows/Rtools/
                                                             // The function demeanr() calculates a matrix with de-me
                                                             // It accepts a pointer to a matrix and operates on the
> library(RcppArmadillo)
                                                             // It returns the number of columns of the input matrix
> # Source Rcpp functions from file
                                                             // It uses \emph{RcppArmadillo}.
> Rcpp::sourceCpp(file="/Users/jerzy/Develop/lecture_slides/scripts///, @export
> matrixy <- matrix(runif(1e5), nc=1e3)
                                                             // [[Rcpp::export]]
> # De-mean matrix columns using apply()
                                                             int demeanr(arma::mat& matrixv) {
> matd <- apply(matrixv, 2, function(x) (x-mean(x)))
                                                               for (uword i = 0; i < matrixv.n_cols; i++) {
> # De-mean matrix columns in place using Rcpp demeanr()
                                                                  matrixv.col(i) -= arma::mean(matrixv.col(i)):
> demeanr(matrixv)
                                                               } // end for
> all.equal(matd. matrixv)
                                                               return matrixv.n cols:
> # Microbenchmark \emph{RcppArmadillo} code
                                                             } // end demeanr
> library(microbenchmark)
> summary(microbenchmark(
                                                             // The function inv_mat() calculates the inverse of symm
+ rcode = (apply(matrixv, 2, mean)),
                                                             // definite matrix.
+ rcpp = demeanr(matrixv),
                                                             // It accepts a pointer to a matrix and operates on the
+ times=100))[, c(1, 4, 5)] # end microbenchmark summary
                                                             // It returns the number of columns of the input matrix.
> # Perform matrix inversion
                                                             // It uses \emph{RcppArmadillo}.
> # Create random positive semi-definite matrix
                                                             //' @export
> matrixv <- matrix(runif(25), nc=5)
                                                             // [[Rcpp::export]]
> matrixv <- t(matrixv) %*% matrixv
                                                             double inv mat(arma::mat& matrixv) {
> # Invert the matrix
                                                               matrixv = arma::inv_sympd(matrixv);
> matrixinv <- solve(matrixv)
                                                               return matrixv.n cols:
> inv_mat(matrixv)
                                                             } // end inv mat
> all.equal(matrixinv, matrixv)
> # Microbenchmark \emph{RcppArmadillo} code
> summary(microbenchmark(
+ rcode = solve(matrixv),
```

+ times=100))[, c(1, 4, 5)] # end microbenchmark summary

+ rcpp = inv_mat(matrixv),

// Rcpp header with information for C++ compiler

Fast Correlation Matrix Inverse Using RcppArmadillo

RcppArmadillo can be used to quickly calculate the regularized inverse of correlation matrices. > library(RcppArmadillo) > # Source Rcpp functions from file > Rcpp::sourceCpp("/Users/jerzy/Develop/lecture_slides/scripts/Highlusing namespace arma; > # Calculate matrix of random returns > matrixv <- matrix(rnorm(300), nc=5) > # Regularized inverse of correlation matrix > dimax <- 4 > cormat <- cor(matrixy) > eigend <- eigen(cormat)

> invmat <- eigend\$vectors[, 1:dimax] %*% (t(eigend\$vectors[, 1:dimax]) / eigend\$values[1:dimax])

> # Regularized inverse using \emph{RcppArmadillo}

> invarma <- calc_inv(cormat, dimax=dimax) > all.equal(invmat, invarma)

> # Microbenchmark \emph{RcppArmadillo} code > library(microbenchmark)

> summary(microbenchmark(

+ rcode = {eigend <- eigen(cormat) + eigend\$vectors[, 1:dimax] %*% (t(eigend\$vectors[, 1:dimax]) / eige

+ rcpp = calc_inv(cormat, dimax=dimax),

+ times=100))[, c(1, 4, 5)] # end microbenchmark summary

```
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
// include Rcpp C++ header files
using namespace std;
using namespace Rcpp; // use Rcpp C++ namespace
//' @export
// [[Rcpp::export]]
arma::mat calc_inv(const arma::mat& matrixv,
                   arma::uword dimax = 0, // Max number
                   double eigen_thresh = 0.01) { // Thre
  // Allocate SVD variables
  arma::vec svdval; // Singular values
  arma::mat svdu, svdv; // Singular matrices
  // Calculate the SVD
  arma::svd(svdu, svdval, svdv, tseries):
 // Calculate the number of non-small singular values
  arma::uword sydnum = arma::sum(sydval > eigen thresh*a
 // If no regularization then set dimax to (svdnum - 1
  if (dimax == 0) {
    // Set dimax
```

dimax = std::min(dimax - 1, svdnum - 1):

// Remove all small singular values svdval = svdval.subvec(0, dimax): svdu = svdu.cols(0, dimax): svdv = svdv.cols(0, dimax):

dimax = svdnum - 1:

} else { // Adjust dimax

} // end if

// Calculate the regularized inverse from the SVD deco

Downloading Treasury Bond Rates from FRED

The constant maturity Treasury rates are yields of hypothetical fixed-maturity bonds, interpolated from the market yields of actual Treasury bonds.

The FRFD database contains current and historical constant maturity Treasury rates,

https://fred.stlouisfed.org/series/DGS5

quantmod::getSymbols() creates objects in the specified environment from the input strings (names).

It then assigns the data to those objects, without returning them as a function value, as a side effect.

- > # Symbols for constant maturity Treasury rates
- > symbolv <- c("DGS1", "DGS2", "DGS5", "DGS10", "DGS20", "DGS30")
- > # Create new environment for time series
- > ratesenv <- new.env()
- > # Download time series for symbolv into ratesenv
- > quantmod::getSymbols(symbolv, env=ratesenv, src="FRED")
- > # List files in rateseny
- > ls(ratesenv)
- > # Get class of all objects in ratesenv
- > sapply(ratesenv, class)
- > # Get class of all objects in R workspace
- > sapply(ls(), function(name) class(get(name)))
- > # Save the time series environment into a binary .RData file
- > save(ratesenv, file="/Users/jerzy/Develop/lecture_slides/data/ra

dyOptions(colors="blue", strokeWidth=2)

> par(mar=c(2, 2, 0, 0), oma=c(0, 0, 0, 0))

> x11(width=6, height=5)

> # Plot 10-year constant maturity Treasury rate

10-year Treasury Rate

4 D > 4 B > 4 B > 4 B >

> chart_Series(ratesenv\$DGS10["1990/"], name="10-year Treasury Rate

2.0

2020 2021

Treasury Yield Curve

The yield curve is a vector of interest rates at different maturities, on a given date.

The *yield curve* shape changes depending on the economic conditions: in recessions rates drop and the curve flattens, while in expansions rates rise and the curve steepens.

```
> # Load constant maturity Treasury rates
> load(file="/Users/jerzy/Develop/lecture_slides/data/rates_data.RData_
> # Get most recent yield curve
> ycnow <- eapply(ratesenv, xts::last)
> class(ycnow)
> ycnow <- do.call(cbind, ycnow)
> # Check if 2020-03-25 is not a holiday
> date2020 <- as.Date("2020-03-25")
```

- > weekdays(date2020) > # Get yield curve from 2020-03-25
- > yc2020 <- eapply(ratesenv, function(x) x[date2020])
- > yc2020 <- do.call(cbind, yc2020) > # Combine the yield curves
- > rates <- c(yc2020, ycnow)
- > # Rename columns and rows, sort columns, and transpose into matr: > colnames(rates) <- substr(colnames(rates), start=4, stop=11)
- > rates <- rates[, order(as.numeric(colnames(rates)))]
- > colnames(rates) <- pasteO(colnames(rates), "yr")
- > rates <- t(rates)
- > colnames(rates) <- substr(colnames(rates), start=1, stop=4)

0.5 2yr 20vr 30vr > # Plot using matplot() > colorv <- c("blue", "red") > matplot(rates, main="Yield Curves in 2020 and 2021", xaxt="n", lw type="1", xlab="maturity", ylab="yield", col=colorv)

> axis(1, seq along(rownames(rates)), rownames(rates))

> legend("topleft", legend=colnames(rates), v.intersp=0.5, + btv="n", col=colorv, ltv=1, lwd=6, inset=0.05, cex=1.0)

Yield Curves in 2020 and 2021

4 D > 4 B > 4 B > 4 B

> # Add x-axis

> # Add legend

Treasury Yield Curve Over Time

The yield curve has changed shape dramatically depending on the economic conditions: in recessions rates drop and the curve flattens, while in expansions rates rise and the curve steepens.

```
> # Load constant maturity Treasury rates
> load(file="/Users/jerzy/Develop/lecture slides/data/rates data.RDa
> # Get end-of-vear dates since 2006
> dates <- xts::endpoints(ratesenv$DGS1["2006/"], on="vears")
> dates <- zoo::index(ratesenv$DGS1["2006/"][dates])
> # Create time series of end-of-year rates
> rates <- eapply(ratesenv, function(ratev) ratev[dates])
> rates <- rutils::do call(cbind, rates)
> # Rename columns and rows, sort columns, and transpose into matrix
> colnames(rates) <- substr(colnames(rates), start=4, stop=11)
> rates <- rates[, order(as.numeric(colnames(rates)))]
> colnames(rates) <- pasteO(colnames(rates), "vr")
> rates <- t(rates)
> colnames(rates) <- substr(colnames(rates), start=1, stop=4)
> # Plot matrix using plot.zoo()
> colorv <- colorRampPalette(c("red", "blue"))(NCOL(rates))
> plot.zoo(rates, main="Yield curve since 2006", lwd=3, xaxt="n",
     plot.type="single", xlab="maturity", ylab="yield", col=colory
```

> axis(1, seq_along(rownames(rates)), rownames(rates)) > # Add legend > legend("topleft", legend=colnames(rates), y.intersp=0.5,

> # Add x-axis

+ bty="n", col=colorv, lty=1, lwd=4, inset=0.05, cex=0.8)

2012 2014 2015 /eld 2017 2018 2yr 20vr 30vr > # Alternative plot using matplot() > matplot(rates, main="Yield curve since 2006", xaxt="n", lwd=3, lt type="1", xlab="maturity", ylab="yield", col=colory) > # Add x-axis > axis(1, seq_along(rownames(rates)), rownames(rates)) > # Add legend > legend("topleft", legend=colnames(rates), v.intersp=0.5,

+ btv="n", col=colorv, ltv=1, lwd=4, inset=0.05, cex=0.8)

Yield curve since 2006

Covariance Matrix of Interest Rates

The covariance matrix \mathbb{C} , of the interest rate matrix \mathbf{r} is given by:

$$\mathbb{C} = \frac{(\mathbf{r} - \overline{\mathbf{r}})^T (\mathbf{r} - \overline{\mathbf{r}})}{n - 1}$$

- > # Extract rates from ratesenv
- > symbolv <- c("DGS1", "DGS2", "DGS5", "DGS10", "DGS20") > rates <- mget(symboly, envir=rateseny)
- > rates <- rutils::do call(cbind, rates)
- > rates <- zoo::na.locf(rates, na.rm=FALSE)
- > rates <- zoo::na.locf(rates, fromLast=TRUE)
- > # Calculate daily percentage rates changes
- > retp <- rutils::diffit(log(rates))
- > # De-mean the returns
- > retp <- lapply(retp, function(x) {x mean(x)})
- > retp <- rutils::do_call(cbind, retp)
- > sapply(retp, mean)
- > # Covariance and Correlation matrices of Treasury rates
- > covmat <- cov(retp)
- > cormat <- cor(retp)
- > # Reorder correlation matrix based on clusters
- > library(corrplot)
- > ordern <- corrMatOrder(cormat, order="hclust",
- + hclust.method="complete")
- > cormat <- cormat[ordern, ordern]

Correlation of Treasury Rates

- > # Plot the correlation matrix
- > x11(width=6, height=6)
- > colory <- colorRampPalette(c("red", "white", "blue"))
- > corrplot(cormat, title=NA, tl.col="black",
- method="square", col=colorv(NCOL(cormat)), tl.cex=0.8,
 - cl.offset=0.75, cl.cex=0.7, cl.align.text="1", cl.ratio=0.25)
- > title("Correlation of Treasury Rates", line=1)
- > # Draw rectangles on the correlation matrix plot
- > corrRect.hclust(cormat, k=NROW(cormat) %/% 2, method="complete", col="red")

Principal Component Vectors

Principal components are linear combinations of the k return vectors r::

$$\mathbf{pc}_j = \sum_{i=1}^k w_{ij} \, \mathbf{r}_i$$

Where \mathbf{w}_i is a vector of weights (loadings) of the principal component j, with $\mathbf{w}_{i}^{T}\mathbf{w}_{i}=1$.

The weights \mathbf{w}_i are chosen to maximize the variance of the principal components, under the condition that they are orthogonal:

$$\mathbf{w}_{j} = \operatorname{arg\ max}\ \left\{\mathbf{pc}_{j}^{T}\ \mathbf{pc}_{j}\right\}$$

$$\mathbf{pc}_{i}^{T}\ \mathbf{pc}_{j} = 0\ (i \neq j)$$

- > # Create initial vector of portfolio weights > nweights <- NROW(symbolv)
- > weightv <- rep(1/sqrt(nweights), nweights) > names(weights) <- symbolv
- > # Objective function equal to minus portfolio variance
- > objfun <- function(weightv, retp) {
- retp <- retp %*% weightv
- -1e7*var(retp) + 1e7*(1 sum(weightv*weightv))^2
- + } # end objfun
- > # Objective function for equal weight portfolio > objfun(weightv, retp)
- > # Compare speed of vector multiplication methods
- > library(microbenchmark)
- transp=t(retp) %*% retp, + sumv=sum(retp*retp),
- > summary(microbenchmark(

- First Principal Component Loadings 9.0 0.2 0 DGS1 DGS2 DGS5 **DGS10 DGS20**
- > # Find weights with maximum variance
- > optiml <- optim(par=weightv,
- fn=objfun, retp=retp,
- method="L-BFGS-B",
- upper=rep(5.0, nweights),
- lower=rep(-5.0, nweights))
- > # Optimal weights and maximum variance
- > weights1 <- optiml\$par
- > objfun(weights1, retp)
- > # Plot first principal component loadings
- > x11(width=6, height=5)
- > par(mar=c(3, 3, 2, 1), oma=c(0, 0, 0, 0), mgp=c(2, 1, 0)) > barplot(weights1, names.arg=names(weights1),
- xlab="", ylab="", main="First Principal Component Loadings")

Higher Order Principal Components

The second principal component can be calculated by maximizing its variance, under the constraint that it must be orthogonal to the first principal component. Similarly, higher order principal components can be calculated by maximizing their variances, under the constraint that they must be orthogonal to all the previous principal components.

The number of principal components is equal to the dimension of the covariance matrix.

+ xlab="", ylab="", main="Second Principal Component Loadings")

Principal Component Variances

Eigenvalues of the Covariance Matrix

The portfolio variance: $\mathbf{w}^T \mathbb{C} \ \mathbf{w}$ can be maximized under the *quadratic* weights constraint $\mathbf{w}^T \mathbf{w} = 1$, by maximizing the *Lagrangian* \mathcal{L} :

$$\mathcal{L} = \mathbf{w}^{\mathsf{T}} \mathbb{C} \, \mathbf{w} \, - \, \lambda \, (\mathbf{w}^{\mathsf{T}} \mathbf{w} - 1)$$

Where λ is a Lagrange multiplier.

The maximum variance portfolio weights can be found by differentiating $\mathcal L$ with respect to $\mathbf w$ and setting it to zero:

$$\mathbb{C} \mathbf{w} = \lambda \mathbf{w}$$

The above is the *eigenvalue* equation of the covariance matrix \mathbb{C} , with the optimal weights \mathbf{w} forming an *eigenvector*, and λ is the *eigenvalue* corresponding to the *eigenvector* \mathbf{w} .

The eigenvalues are the variances of the eigenvectors, and their sum is equal to the sum of the return variances:

$$\sum_{i=1}^{k} \lambda_i = \frac{1}{1-k} \sum_{i=1}^{k} \mathbf{r}_i^T \mathbf{r}_i$$

> barplot(eigend\$values, names.arg=paste0("PC", 1:nweights),
+ las=3, xlab="", vlab="", main="Principal Component Variances")

> # Plot eigenvalues

Principal Component Analysis Versus Eigen Decomposition

Principal Component Analysis (PCA) is equivalent to the eigen decomposition of either the correlation or the covariance matrix.

If the input time series *are* scaled, then *PCA* is equivalent to the eigen decomposition of the *correlation* matrix.

If the input time series *are not* scaled, then *PCA* is equivalent to the eigen decomposition of the *covariance* matrix

Scaling the input time series improves the accuracy of the *PCA dimension reduction*, allowing a smaller number of *principal components* to more accurately capture the data contained in the input time series.

The function prcomp() performs *Principal Component Analysis* on a matrix of data (with the time series as columns), and returns the results as a list of class prcomp.

The prcomp() argument scale=TRUE specifies that the input time series should be scaled by their standard deviations.

- > # Eigen decomposition of correlation matrix
 > eigend <- eigen(cormat)</pre>
- > # Perform PCA with scaling
- > pcad <- prcomp(retp, scale=TRUE)
- > # Compare outputs
- > all.equal(eigend\$values, pcad\$sdev^2)
- > all.equal(abs(eigend\$vectors), abs(pcad\$rotation),
- > # Eigen decomposition of covariance matrix
- > # Eigen decomposition of covariance matri
 > eigend <- eigen(covmat)
- > # Perform PCA without scaling
- > pcad <- prcomp(retp, scale=FALSE)

check.attributes=FALSE)

- > # Compare outputs
- > all.equal(eigend\$values, pcad\$sdev^2)
- > all.equal(abs(eigend\$vectors), abs(pcad\$rotation),
- check.attributes=FALSE)

Principal Component Analysis of the Yield Curve

Principal Component Analysis (PCA) is a dimension reduction technique, that explains the returns of a large number of correlated time series as linear combinations of a smaller number of principal component time series.

The input time series are often scaled by their standard deviations, to improve the accuracy of *PCA dimension reduction*, so that more information is retained by the first few *principal component* time series.

If the input time series are not scaled, then *PCA* analysis is equivalent to the *eigen decomposition* of the covariance matrix, and if they are scaled, then *PCA* analysis is equivalent to the *eigen decomposition* of the correlation matrix.

The function prcomp() performs *Principal Component Analysis* on a matrix of data (with the time series as columns), and returns the results as a list of class prcomp.

The prcomp() argument scale=TRUE specifies that the input time series should be scaled by their standard deviations

A scree plot is a bar plot of the volatilities of the principal components.

- > # Perform principal component analysis PCA
- > pcad <- prcomp(retp, scale=TRUE)
- > # Plot standard deviations
- > barplot(pcad\$sdev, names.arg=colnames(pcad\$rotation),
- + las=3, xlab="", ylab="",
- + main="Scree Plot: Volatilities of Principal Components
- + of Treasury rates")

Yield Curve Principal Component Loadings (Weights)

Principal component loadings are the weights of portfolios which have mutually orthogonal returns.

The principal component portfolios represent the different orthogonal modes of the data variance.

The first principal component of the vield curve is the correlated movement of all rates up and down.

The second principal component is yield curve steepening and flattening.

The third principal component is the yield curve butterfly movement.

```
> # Calculate principal component loadings (weights)
> pcad$rotation
> # Plot loading barplots in multiple panels
```

> par(mfrow=c(3,2))

> par(mar=c(3.5, 2, 2, 1), oma=c(0, 0, 0, 0)) > for (ordern in 1:NCOL(pcad\$rotation)) {

barplot(pcad\$rotation[, ordern], las=3, xlab="", ylab="", main=

title(paste0("PC", ordern), line=-2.0, col.main="red")

+ } # end for

Jerzy Pawlowski (NYU Tandon) FRE6871 Lecture#4

Yield Curve Principal Component Time Series

The time series of the *principal components* can be calculated by multiplying the loadings (weights) times the original data.

The *principal component* time series have mutually orthogonal returns.

Higher order *principal components* are gradually less volatile.

```
> # Standardize (de-mean and scale) the returns
> retp <- lapply(retp, function(x) {(x - mean(x))/sd(x)})
> retp <- rutils::do_call(cbind, retp)
> sapply(retp, mean)
> sapply(retp, sd)
> # Calculate principal component time series
> pcacum <- retp %*% pcad$rotation
> all.equal(pcad$x, pcacum, check.attributes=FALSE)
> # Calculate products of principal component time series
> round(t(pcacum) %*% pcacum, 2)
> # Coerce to xts time series
> pcacum <- xts(pcacum, order.by=zoo::index(retp))
> pcacum <- cumsum(pcacum)
> # Plot principal component time series in multiple panels
> par(mfrow=c(3,2))
> par(mar=c(2, 2, 0, 1), oma=c(0, 0, 0, 0))
> rangev <- range(pcacum)
> for (ordern in 1:NCOL(pcacum)) {
   plot.zoo(pcacum[, ordern], ylim=rangev, xlab="", ylab="")
```

title(paste0("PC", ordern), line=-1, col.main="red")

Jerzy Pawlowski (NYU Tandon)

end for

Inverting Principal Component Analysis

The original time series can be calculated *exactly* from the time series of all the *principal components*, by inverting the loadings matrix.

The function solve() solves systems of linear equations, and also inverts square matrices.

- > # Invert all the principal component time series
- > retspca <- retp %*% pcad\$rotation
- > solved <- retspca %*% solve(pcad\$rotation)
- > all.equal(coredata(retp), solved)

Dimension Reduction Using Principal Component Analysis

The original time series can be calculated approximately from just the first few principal components, which demonstrates that PCA is a form of dimension reduction.

A popular rule of thumb is to use the *principal components* with the largest variances, which sum up to 80% of the total variance of returns.

The Kaiser-Guttman rule uses only principal components with variance greater than 1.

```
> # Invert first 3 principal component time series
> solved <- retspca[, 1:3] %*% solve(pcad$rotation)[1:3, ]
> solved <- xts::xts(solved, zoo::index(retp))
> solved <- cumsum(solved)
> retc <- cumsum(retp)
> # Plot the solved returns
> par(mfrow=c(3,2))
> par(mar=c(2, 2, 0, 1), oma=c(0, 0, 0, 0))
> for (symbol in symboly) {
   plot.zoo(cbind(retc[, symbol], solved[, symbol]),
      plot.type="single", col=c("black", "blue"), xlab="", ylab=""
   legend(x="topleft", bty="n", y.intersp=0.5,
    legend=pasteO(symbol, c("", " solved")),
    title=NULL, inset=0.0, cex=1.0, lwd=6,
    lty=1, col=c("black", "blue"))
    # end for
```


52 / 75

Jerzy Pawlowski (NYU Tandon) FRE6871 Lecture#4 April 19, 2023

Vector and Matrix Calculus

Let **v** and **w** be vectors, with $\mathbf{v} = \{v_i\}_{i=1}^{i=n}$, and let $\mathbb{1}$ be the unit vector, with $\mathbb{1} = \{1\}_{i=1}^{i=n}$.

Then the inner product of \mathbf{v} and \mathbf{w} can be written as $\mathbf{v}^T\mathbf{w} = \mathbf{w}^T\mathbf{v} = \sum_{i=1}^n v_i w_i$.

We can then express the sum of the elements of \mathbf{v} as the inner product: $\mathbf{v}^T \mathbb{1} = \mathbb{1}^T \mathbf{v} = \sum_{i=1}^n v_i$.

And the sum of squares of \mathbf{v} as the inner product: $\mathbf{v}^T\mathbf{v} = \sum_{i=1}^n v_i^2$.

Let \mathbb{A} be a matrix, with $\mathbb{A} = \{A_{ij}\}_{i,j=1}^{i,j=n}$.

Then the inner product of matrix \mathbb{A} with vectors \mathbf{v} and \mathbf{w} can be written as:

$$\mathbf{v}^T \mathbb{A} \mathbf{w} = \mathbf{w}^T \mathbb{A}^T \mathbf{v} = \sum_{i,j=1}^n A_{ij} v_i w_j$$

The derivative of a scalar variable with respect to a vector variable is a vector, for example:

$$\frac{d(\mathbf{v}^T \mathbb{1})}{d\mathbf{v}} = d_v[\mathbf{v}^T \mathbb{1}] = d_v[\mathbb{1}^T \mathbf{v}] = \mathbb{1}^T$$
$$d_v[\mathbf{v}^T \mathbf{w}] = d_v[\mathbf{w}^T \mathbf{v}] = \mathbf{w}^T$$
$$d_v[\mathbf{v}^T \mathbb{A} \mathbf{w}] = \mathbf{w}^T \mathbb{A}^T$$
$$d_v[\mathbf{v}^T \mathbb{A} \mathbf{v}] = \mathbf{v}^T \mathbb{A} + \mathbf{v}^T \mathbb{A}^T$$

Jerzy Pawlowski (NYU Tandon)

Formula Objects

Formulas in R are defined using the "~" operator followed by a series of terms separated by the "+" operator.

Formulas can be defined as separate objects. manipulated, and passed to functions.

The formula "z "x" means the response vector z is explained by the predictor x (also called the explanatory variable or independent variable).

The formula "z ~ x + y" represents a linear model: z = ax + bv + c.

The formula "z ~ x - 1" or "z ~ x + 0" represents a linear model with zero intercept: z = ax.

The function update() modifies existing formulas. The "." symbol represents either all the remaining

data, or the variable that was in this part of the formula.

```
> # Formula of linear model with zero intercept
> formulav <- z ~ x + y - 1
> formulay
> # Collapse vector of strings into single text string
> paste0("x", 1:5)
> paste(paste0("x", 1:5), collapse="+")
> # Create formula from text string
> formulay <- as.formula(
   # Coerce text strings to formula
   paste("z ~ ",
   paste(paste0("x", 1:5), collapse="+")
+ ) # end paste
+ ) # end as.formula
> class(formulay)
> formulay
> # Modify the formula using "update"
```

> update(formulav, log(.) ~ . + beta)

Simple Linear Regression

A Simple Linear Regression is a linear model between a response vector y and a single predictor x, defined by the formula:

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

 α and β are the unknown regression coefficients.

 ε_i are the *residuals*, which are usually assumed to be standard normally distributed $\phi(0, \sigma_\varepsilon)$, independent, and stationary.

In the Ordinary Least Squares method (*OLS*), the regression parameters are estimated by minimizing the *Residual Sum of Squares* (*RSS*):

$$RSS = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$

$$= (y - \alpha \mathbb{1} - \beta x)^{T} (y - \alpha \mathbb{1} - \beta x)$$

Where
$$\mathbbm{1}$$
 is the unit vector, with $\mathbbm{1}^T \mathbbm{1} = n$ and $\mathbbm{1}^T x = x^T \mathbbm{1} = \sum_{i=1}^n x_i$

The data consists of n pairs of observations (x_i, y_i) of the response and predictor variables, with the index i ranging from 1 to n.

- > # Define explanatory (predm) variable
- > nrows <- 100
- > set.seed(1121) # Initialize random number generator
- > predm <- runif(nrows)
 > noisev <- rnorm(nrows)</pre>
- > # Response equals linear form plus random noise
- > respv <- (-3 + 2*predm + noisev)

The response vector and the predictor matrix don't have to be normally distributed.

Solution of Linear Regression

The OLS solution for the regression coefficients is found by equating the RSS derivatives to zero:

$$RSS_{\alpha} = -2(y - \alpha \mathbb{1} - \beta x)^{T} \mathbb{1} = 0$$

$$RSS_{\beta} = -2(y - \alpha \mathbb{1} - \beta x)^{T} x = 0$$

The solution for α is given by:

variables. Then β is given by:

$$\alpha = \bar{y} - \beta \bar{x}$$

The solution for β can be obtained by manipulating the equation for RSS_B as follows:

$$(y - (\bar{y} - \beta \bar{x})\mathbb{1} - \beta x)^{T}(x - \bar{x}\mathbb{1}) =$$

$$((y - \bar{y}\mathbb{1}) - \beta(x - \bar{x}\mathbb{1}))^{T}(x - \bar{x}\mathbb{1}) =$$

$$(\hat{v} - \beta \hat{x})^{T} \hat{x} = \hat{v}^{T} \hat{x} - \beta \hat{x}^{T} \hat{x} = 0$$

Where $\hat{x} = x - \bar{x}\mathbb{1}$ and $\hat{v} = v - \bar{v}\mathbb{1}$ are the de-meaned

$$\beta = \frac{\hat{\mathbf{y}}^T \hat{\mathbf{x}}}{\hat{\mathbf{x}} T \hat{\mathbf{x}}} = \frac{\sigma_y}{\sigma} \rho_{xy}$$

 β is proportional to the correlation coefficient ρ_{yy} between the response and predictor variables.

If the response and predictor variables have zero mean, then $\alpha = 0$ and $\beta = \frac{y^T x}{T}$.

The residuals $\varepsilon = y - \alpha \mathbb{1} - \beta x$ have zero mean: $RSS_{\infty} = -2\varepsilon^{T}\mathbb{1} = 0.$

The residuals ε are orthogonal to the predictor x: $RSS_{\beta} = -2\varepsilon^{T}x = 0.$ The expected value of the RSS is equal to the degrees

of freedom (n-2) times the variance σ_a^2 of the residuals ε_i : $\mathbb{E}[RSS] = (n-2)\sigma_-^2$.

- > # Calculate de-meaned predictor and response vectors
- > predzm <- predm mean(predm)
- > respzm <- respv mean(respv) > # Calculate the regression beta
- > betav <- cov(predm, respv)/var(predm)
- > # Calculate the regression alpha
- > alpha <- mean(respv) betav*mean(predm)

check.attributes=FALSE)

[1] TRUE

Linear Regression Using Function lm()

Let the data generating process for the response variable be given as: $z=\alpha_{lat}+\beta_{lat}x+\varepsilon_{lat}$

Where α_{lat} and β_{lat} are latent (unknown) coefficients, and ε_{lat} is an unknown vector of random noise (error terms).

The error terms are the difference between the measured values of the response minus the (unknown) actual response values.

The function lm() fits a linear model into a set of data, and returns an object of class "lm", which is a list containing the results of fitting the model:

- call the model formula,
- coefficients the fitted model coefficients (α, β_j),
- residuals the model residuals (respv minus fitted values).

The regression *residuals* are not the same as the error terms, because the regression coefficients are not equal to the coefficients of the data generating process.

```
> # Specify regression formula
> formulav <- respv ~ predm
> regmod <- lm(formulav) # Perform regression
> class(regmod) # Regressions have class lm
[1] "1m"
> attributes(regmod)
$names
 [1] "coefficients"
                     "residuals"
                                      "effects"
                                                      "rank"
 [5] "fitted.values" "assign"
                                      "ar"
                                                      "df.residual"
 [9] "xlevels"
                      "call"
                                      "terms"
                                                      "model"
$class
[1] "]m"
> eval(regmod$call$formula) # Regression formula
respv ~ predm
> regmod$coeff
                # Regression coefficients
(Intercept)
                  predm
      -2.79
                   1.67
> all.equal(coef(regmod), c(alpha, betav),
```

The Fitted Values of Linear Regression

The fitted values y_{fit} are the estimates of the response vector obtained from the regression model:

$$y_{fit} = \alpha + \beta x$$

The *generic function* plot() produces a scatterplot when it's called on the regression formula.

abline() plots a straight line corresponding to the regression coefficients, when it's called on the regression object.

```
> fittedv <- (alpha + betav*predm)
> all.equal(fittedv, regmod$fitted.values, check.attributes=FALSE)
> x11(vidth=5, height=4) # Open x11 for plotting
> # Set plot parameters to reduce whitespace around plot
> par(mar=c(5, 5, 2, 1), oma=c(0, 0, 0, 0))
> # Plot scatterplot using formula
> plot(formulav, xlab="predictor", ylab="response")
> title(main="Simple Regression", line=0.5)
> # Add regression line
> abline(regmod, lud=3, col="blue")
> # Plot fitted (predicted) response values
```

> points(x=predm, y=regmod\$fitted.values, pch=16, col="blue")


```
> # Plot response without noise
> lines(x=predm, y=(respv-noisev), col="red", lwd=3)
> legend(x="topleft", # Add legend
+ legend=c("response without noise", "fitted values"),
+ title=NULL, inset=0.01, cex=1.0, lwd=6, y.intersp=0.4,
+ bvv="".llv=1.col=c("red", "blue"))
```

Linear Regression Residuals

The residuals ε_i of a linear regression are defined as the response vector minus the fitted values:

$$\varepsilon_i = y_i - y_{fit}$$

- > # Calculate the residuals
- > fittedv <- (alpha + betav*predm)
- > resids <- (respv fittedv)
- > all.equal(resids, regmod\$residuals, check.attributes=FALSE) [1] TRUE
- > # Residuals are orthogonal to the predictor
- > all.equal(sum(resids*predm), target=0)
- [1] TRUE
- > # Residuals are orthogonal to the fitted values
- > all.equal(sum(resids*fittedv), target=0)
- [1] TRUE
- > # Sum of residuals is equal to zero
- > all.equal(mean(resids), target=0)
- [1] TRUE

- > x11(width=6, height=5) # Open x11 for plotting
- > # Set plot parameters to reduce whitespace around plot > par(mar=c(5, 5, 1, 1), oma=c(0, 0, 0, 0))
- > # Extract residuals
- > datav <- cbind(predm, regmod\$residuals)
- > colnames(datav) <- c("predictor", "residuals")
- > # Plot residuals
- > plot(datav)

FRE6871 Lecture#4

- > title(main="Residuals of the Linear Regression", line=-1)
- > abline(h=0, lwd=3, col="red")

Standard Errors of Regression Coefficients

The *residuals* are the source of error in the regression model, producing uncertainty in the *response vector y* and in the regression coefficients: $y_i = \alpha + \beta x_i + \varepsilon_i$.

The standard errors of the regression coefficients are equal to their standard deviations, given the *residuals* as the source of error.

Since $\beta = \frac{\hat{y}^T \hat{x}}{\hat{x}^T \hat{x}}$, then its variance is equal to:

$$\sigma_{\beta}^{2} = \frac{1}{(n-2)} \frac{E[(\varepsilon^{T} \hat{x})^{2}]}{(\hat{x}^{T} \hat{x})^{2}} = \frac{1}{(n-2)} \frac{E[\varepsilon^{2}]}{\hat{x}^{T} \hat{x}} = \frac{\sigma_{\varepsilon}^{2}}{\hat{x}^{T} \hat{x}}$$

Since $\alpha = \bar{\mathbf{y}} - \beta \bar{\mathbf{x}}$, then its variance is equal to:

$$\sigma_{\alpha}^2 = \frac{\sigma_{\varepsilon}^2}{n} + \sigma_{\beta}^2 \bar{\mathbf{x}}^2 = \sigma_{\varepsilon}^2 (\frac{1}{n} + \frac{\bar{\mathbf{x}}^2}{\hat{\mathbf{x}}^T \hat{\mathbf{x}}})$$

- > # Degrees of freedom of residuals > degf <- regmod\$df.residual
- > # Standard deviation of residuals
- > residsd <- sqrt(sum(resids^2)/degf)
- > # Standard error of beta
- > betasd <- residsd/sqrt(sum(predzm^2))</pre>
- > # Standard error of alpha
- > alphasd <- residsd*sqrt(1/nrows + mean(predm)^2/sum(predzm^2))

Linear Regression Summary

The function summary.lm() produces a list of regression model diagnostic statistics:

- coefficients: matrix with estimated coefficients, their *t*-statistics, and *p*-values,
- r.squared: fraction of response variance explained by the model,
- adj.r.squared: r.squared adjusted for higher model complexity,
- fstatistic: ratio of variance explained by the model divided by unexplained variance,

The regression summary is a list, and its elements can be accessed individually.

```
> regsum <- summary(regmod) # Copy regression summary
> regsum # Print the summary to console
Call.
lm(formula = formulav)
Residuals:
   Min
           10 Median
-2.133 -0.649 0.106 0.590 3.321
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
              -2.787
                         0.196 -14.20 < 2e-16 ***
predm
               1 665
                          0.357
                                  4 67 9 8e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 0.988 on 98 degrees of freedom
Multiple R-squared: 0.182.Adjusted R-squared: 0.173
```

F-statistic: 21.8 on 1 and 98 DF, p-value: 9.75e-06 > attributes(regsum)\$names # get summary elements

"terms"

"sigma"

[9] "adj.r.squared" "fstatistic"

"residuals"

"cov.unscaled"

"df"

[1] "call"

[5] "aliased"

"coefficients

"r.squared"

Regression Model Diagnostic Statistics

The *null hypothesis* for regression is that the coefficients are *zero*.

The *t*-statistic (*t*-value) is the ratio of the estimated value divided by its standard error.

The *p*-value is the probability of obtaining values exceeding the *t*-statistic assuming the null hypothese.

exceeding the *t*-statistic, assuming the *null hypothesis* is true.

A small *p*-value means that the regression coefficients are very unlikely to be zero (given the data).

The key assumption in the formula for the standard error is that the *residuals* are normally distributed, independent, and stationary.

If they are not, then the standard error and the p-value may be much bigger than reported by summary.lm(), and therefore the regression may not be statistically significant.

Asset returns are very far from normal, so the small *p*-values shouldn't be automatically interpreted as meaning that the regression is statistically significant.

```
> regsum$coeff
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
               -2.79
                          0.196
                                -14.20 1.61e-25
predm
                1 67
                          0.357
                                   4.67 9.75e-06
> # Standard errors
> regsum$coefficients[2, "Std, Error"]
Γ17 0.357
> all.equal(c(alphasd, betasd), regsum$coefficients[, "Std. Error"]
    check.attributes=FALSE)
[1] TRUE
> # R-squared
> regsum$r.squared
[1] 0.182
> regsum$adj.r.squared
[1] 0.173
> # F-statistic and ANOVA
> regsum$fstatistic
value numdf dendf
 21 8 1 0 98 0
> anova(regmod)
Analysis of Variance Table
Response: respv
          Df Sum Sq Mean Sq F value Pr(>F)
                               21.8 9.8e-06 ***
predm
               21.3
                      21.25
Residuals 98
               95.7
                       0.98
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Weak Regression

If the relationship between the response and predictor variables is weak compared to the error terms (noisev), then the regression will have low statistical significance.

- > # High noise compared to coefficient
 > respv <- (-3 + 2*predm + rnorm(nrows, sd=8))</pre>
- > regmod <- lm(formulav) # Perform regression
- > # Values of regression coefficients are not
- > # Statistically significant
- > summary(regmod)

Call:

lm(formula = formulav)

Residuals:

Min 1Q Median 3Q Max -16.430 -4.325 0.735 4.365 16.720

Coefficients:

Residual standard error: 7.25 on 98 degrees of freedom Multiple R-squared: 0.0043,Adjusted R-squared: -0.00586 F-statistic: 0.423 on 1 and 98 DF, p-value: 0.517

Influence of Noise on Regression

```
> regstats <- function(stdev) { # Noisy regression
    set.seed(1121) # initialize number generator
   Define explanatory (predm) and response variables
    predm <- rnorm(100, mean=2)
   respv <- (1 + 0.2*predm +
    rnorm(NROW(predm), sd=stdev))
   Specify regression formula
    formulay <- respy ~ predm
   Perform regression and get summary
    regsum <- summarv(lm(formulav))
 # Extract regression statistics
    with(regsum, c(pval=coefficients[2, 4],
     adj_rsquared=adj.r.squared,
     fstat=fstatistic[1]))
    # end regstats
> # Apply regstats() to vector of std dev values
> vecsd <- seg(from=0.1, to=0.5, bv=0.1)
> names(vecsd) <- paste0("sd=", vecsd)
> statsmat <- t(sapply(yecsd, regstats))
> # Plot in loop
> par(mfrow=c(NCOL(statsmat), 1))
> for (it in 1:NCOL(statsmat)) {
   plot(statsmat[, it], type="1",
  xaxt="n", xlab="", ylab="", main="")
   title(main=colnames(statsmat)[it], line=-1.0)
   axis(1, at=1:(NROW(statsmat)), labels=rownames(statsmat))
+ } # end for
```


Jerzy Pawlowski (NYU Tandon)

Influence of Noise on Regression Another Method

```
> regstats <- function(datav) { # get regression
+ # Perform regression and get summary
    colnamev <- colnames(datav)
    formulay <- paste(colnamev[2], colnamev[1], sep="~")
    regsum <- summarv(lm(formulav, data=datav))
 # Extract regression statistics
    with(regsum, c(pval=coefficients[2, 4],
     adj_rsquared=adj.r.squared,
     fstat=fstatistic[1]))
    # end regstats
   Apply regstats() to vector of std dev values
 vecsd <- seg(from=0.1, to=0.5, bv=0.1)
> names(vecsd) <- paste0("sd=", vecsd)
> statsmat <- t(sapply(vecsd, function(stdey) {
      set.seed(1121) # initialize number generator
 # Define explanatory (predm) and response variables
      predm <- rnorm(100, mean=2)
      respv <- (1 + 0.2*predm +
 rnorm(NROW(predm), sd=stdev))
      regstats(data.frame(predm. respv))
 # Plot in loop
 par(mfrow=c(NCOL(statsmat), 1))
> for (it in 1:NCOL(statsmat)) {
    plot(statsmat[, it], type="1",
  xaxt="n", xlab="", ylab="", main="")
   title(main=colnames(statsmat)[it], line=-1.0)
    axis(1, at=1:(NROW(statsmat)),
  labels=rownames(statsmat))
```

+ } # end for

Jerzy Pawlowski (NYU Tandon)

65 / 75

FRE6871 Lecture#4 April 19, 2023

Linear Regression Diagnostic Plots

plot() produces diagnostic scatterplots for the residuals, when called on the regression object.

The diagnostic scatterplots allow for visual inspection to determine the quality of the regression fit.

- $^{\prime\prime}$ Residuals vs Fitted $^{\prime\prime}$ is a scatterplot of the residuals vs. the predicted responses.
- "Scale-Location" is a scatterplot of the square root of the standardized residuals vs. the predicted responses.

The residuals should be randomly distributed around the horizontal line representing zero residual error.

A pattern in the residuals indicates that the model was not able to capture the relationship between the variables, or that the variables don't follow the statistical assumptions of the regression model.

- "Normal Q-Q" is the standard Q-Q plot, and the points should fall on the diagonal line, indicating that the residuals are normally distributed.
- "Residuals vs Leverage" is a scatterplot of the residuals vs. their leverage.

Leverage measures the amount by which the fitted values would change if the response values were shifted by a small amount.

Cook's distance measures the influence of a single observation on the fitted values, and is proportional to the sum of the squared differences between forecasts made with all observations and forecasts made without the observation.

Points with large leverage, or a Cook's distance greater than 1 suggest the presence of an outlier or a poor model,

> par(mfrow=c(2, 2)) # Plot 2x2 panels

> plot(regmod) # Plot diagnostic scatterplots

> plot(regmod, which=2) # Plot just Q-Q

Im(reg_formula)

Durbin-Watson Test of Autocorrelation of Residuals

The *Durbin-Watson* test is designed to test the *null hypothesis* that the autocorrelations of regression *residuals* are equal to zero.

The test statistic is equal to:

$$DW = \frac{\sum_{i=2}^{n} (\varepsilon_i - \varepsilon_{i-1})^2}{\sum_{i=1}^{n} \varepsilon_i^2}$$

Where ε_i are the regression *residuals*.

The value of the *Durbin-Watson* statistic *DW* is close to zero for large positive autocorrelations, and close to four for large negative autocorrelations.

The ${\it DW}$ is close to two for autocorrelations close to zero.

The p-value for the reg_model regression is large, and we conclude that the null hypothesis is TRUE, and the regression residuals are uncorrelated.

> library(lmtest) # Load lmtest

> # Perform Durbin-Watson test

> lmtest::dwtest(regmod)

Durbin-Watson test

data: regmod

DW = 2, p-value = 0.7

alternative hypothesis: true autocorrelation is greater than $\boldsymbol{0}$

The Leverage for Univariate Regression

We can add an extra unit column to the predictor matrix X so that the univariate regression can be written in homogeneous form as:

$$y = X\beta + \varepsilon$$

With two regression coefficients: $\beta = (\alpha, \beta_1)$, and a predictor matrix X with two columns, with the first column equal to a unit vector.

After the second column of the predictor matrix \mathbb{X} is de-meaned, its covariance matrix is given by:

$$\mathbb{X}^T \mathbb{X} = \begin{pmatrix} n & 0 \\ 0 & \sum_{i=1}^n (x_i - \bar{x})^2 \end{pmatrix}$$

And the *influence matrix* \mathbb{H} is given by:

$$\mathbb{H}_{ij} = [\mathbb{X}(\mathbb{X}^{T}\mathbb{X})^{-1}\mathbb{X}^{T}]_{ij} = \frac{1}{n} + \frac{(x_{i} - \bar{x})(x_{j} - \bar{x})}{\sum_{i=1}^{n}(x_{i} - \bar{x})^{2}}$$

The first term above is due to the influence of the regression intercept α , and the second term is due to the influence of the regression slope β_1 .

The diagonal elements of the *influence matrix* \mathbb{H}_{ii} form the leverage vector.

- > # Add unit column to the predictor matrix
- > predm <- cbind(rep(1, nrows), predm)
- > # Calculate generalized inverse of the predictor matrix
- > predinv <- MASS::ginv(predm)
- > # Calculate the influence matrix
- > infmat <- predm %*% predinv
- > # Plot the leverage vector
- > ordern <- order(predm[, 2])
- plot(x=predm[ordern, 2], v=diag(infmat)[ordern], type="1", lwd=3, col="blue",
- xlab="predictor", ylab="leverage",
- main="Leverage as Function of Predictor")

- > # Define linear regression data > set.seed(1121) # Initialize random number generator
- > nrows <- 100
- > predm <- runif(nrows)
- > noisev <- rnorm(nrows)

Covariance Matrix of Fitted Values in Univariate Regression

The fitted values y_{fit} can be considered to be random variables \hat{y}_{fit} :

$$\hat{y}_{fit} = \mathbb{H}\hat{y} = \mathbb{H}(y_{fit} + \hat{\varepsilon}) = y_{fit} + \mathbb{H}\hat{\varepsilon}$$

The covariance matrix of the fitted values \hat{y}_{fit} is:

$$\begin{split} \sigma_{\mathit{fit}}^2 &= \frac{\mathbb{E}[\mathbb{H}\hat{\varepsilon}(\mathbb{H}\hat{\varepsilon})^T]}{d_{\mathit{free}}} = \frac{\mathbb{E}[\mathbb{H}\,\hat{\varepsilon}\hat{\varepsilon}^T\mathbb{H}^T]}{d_{\mathit{free}}} = \\ &\frac{\mathbb{H}\,\mathbb{E}[\hat{\varepsilon}\hat{\varepsilon}^T]\,\mathbb{H}^T}{d_{\mathit{free}}} = \sigma_{\varepsilon}^2\,\mathbb{H} = \sigma_{\varepsilon}^2\,\mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T \end{split}$$

The square of the *influence matrix* \mathbb{H} is equal to itself (it's idempotent): $\mathbb{H} \mathbb{H}^T = \mathbb{H}$.

The variance of the *fitted values* σ_{fit}^2 increases with the distance of the *predictors* from their mean values.

This is because the *fitted values* farther from their mean are more sensitive to the variance of the regression slope.

- > # Calculate the influence matrix
- > infmat <- predm %*% predinv
- > # The influence matrix is idempotent
- > all.equal(infmat, infmat %*% infmat)

Standard Deviations of Fitted Values in Univariate Regression

- > # Calculate covariance and standard deviations of fitted values
- > betay <- prediny %*% respy
- > fitv <- drop(predm %*% betav)
 > resids <- drop(respv fitv)</pre>
- > degf <- (NROW(predm) NCOL(predm))
- > degf <- (NROW(predm) NCOL(predm))
 > residsd <- sqrt(sum(resids^2)/degf)</pre>
- > fitcovar <- residsd*infmat
- > fitsd <- sqrt(diag(fitcovar))
- > # Plot the standard deviations
 > fitdata <- cbind(fitted=fitv, stdev=fitsd)</pre>
- > fitdata <- fitdata[order(fitv),]
- > plot(fitdata, type="1", lwd=3, col="blue",
- + xlab="Fitted Value", ylab="Standard Deviation",
 + main="Standard Deviations of Fitted Values\nin Univariate Re

FRE6871 Lecture#4 April 19, 2023

69 / 75

Fitted Values for Different Realizations of Random Noise

The fitted values are more volatile for predictor values that are further away from their mean, because those points have higher leverage.

The higher leverage of points further away from the mean of the predictor is due to their greater sensitivity to changes in the slope of the regression.

The fitted values for different realizations of random noise can be calculated using the influence matrix.

- > # Calculate response without random noise for univariate regression > # equal to weighted sum over columns of predictor.
- > respn <- predm %*% c(-1, 1) > # Perform loop over different realizations of random noise
- > fitm <- lapply(1:50, function(it) {
- # Add random noise to response
- respv <- respn + rnorm(nrows, sd=1.0)
- # Calculate fitted values using influence matrix
- infmat %*% respv
- + }) # end lapply
- > fitm <- rutils::do call(cbind, fitm)

- > # Plot fitted values
- > matplot(x=predm[, 2], v=fitm.
- + type="1", lty="solid", lwd=1, col="blue",
- + xlab="predictor", vlab="fitted",
- + main="Fitted Values for Different Realizations
- + of Random Noise")
- > lines(x=predm[, 2], y=respn, col="red", lwd=4)
- > legend(x="topleft", # Add legend
 - legend=c("response without noise", "fitted values"),
- title=NULL, inset=0.05, cex=1.0, lwd=6, y.intersp=0.4,
- btv="n", ltv=1, col=c("red", "blue"))

70 / 75

Forecasts From Univariate Regression Models

The forecast $y_{forecast}$ from a regression model is equal to the *response value* corresponding to the *predictor* vector with the new data \mathbb{X}_{new} :

$$y_{forecast} = \mathbb{X}_{new} \beta$$

The variance $\sigma_{forecast}^2$ of the forecast value is equal to the predictor vector multiplied by the covariance matrix of the regression coefficients σ_R^2 :

$$\begin{split} \sigma_{\text{forecast}}^2 &= \frac{\mathbb{E}[\mathbb{X}_{\text{new}} \mathbb{X}_{\text{inv}} \hat{\varepsilon} \, (\mathbb{X}_{\text{new}} \mathbb{X}_{\text{inv}} \hat{\varepsilon})^T]}{d_{\text{free}}} = \\ &\frac{\mathbb{E}[\mathbb{X}_{\text{new}} \mathbb{X}_{\text{inv}} \hat{\varepsilon} \hat{\varepsilon}^T \mathbb{X}_{\text{inv}}^T \mathbb{X}_{\text{new}}^T]}{d_{\text{free}}} = \sigma_{\varepsilon}^2 \mathbb{X}_{\text{new}} \mathbb{X}_{\text{inv}} \mathbb{X}_{\text{inv}}^T \mathbb{X}_{\text{new}}^T = \\ \sigma_{\varepsilon}^2 \mathbb{X}_{\text{new}} (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}_{\text{new}}^T = \mathbb{X}_{\text{new}} \sigma_{\beta}^2 \mathbb{X}_{\text{new}}^T = \\ \end{split}$$

- > # Define new predictor
- > newdata <- (max(predm[, 2]) + 10*(1:5)/nrows)
 > predn <- cbind(rep(1, NROW(newdata)), newdata)</pre>
- > # Calculate the forecast values and standard errors
- > predm2 <- MASS::ginv(crossprod(predm)) # Inverse of predictor mat
- > predsd <- residsd*sqrt(predn %*% predm2 %*% t(predn))
- > fcast <- cbind(forecast=drop(predn %*% betay),
- + stdev=diag(predsd))

Confidence Intervals of Regression Forecasts

The variables σ_{ε}^2 and σ_{v}^2 follow the *chi-squared* distribution with $d_{free} = (n - k - 1)$ degrees of freedom, so the forecast value v_{forecast} follows the t-distribution

```
> # Prepare plot data
> xdata <- c(predm[, 2], newdata)
> ydata <- c(fitv, fcast[, 1])
> # Calculate t-quantile
> tquant <- qt(pnorm(2), df=degf)
> fcastl <- fcast[, 1] - tquant*fcast[, 2]
> fcasth <- fcast[, 1] + tquant*fcast[, 2]
> # Plot the regression forecasts
> xlim <- range(xdata)
> vlim <- range(c(respy, vdata, fcastl, fcasth))
> plot(x=xdata, y=ydata, xlim=xlim, ylim=ylim,
      type="1", 1wd=3, col="blue",
      xlab="predictor", ylab="forecast",
      main="Forecasts from Linear Regression")
> points(x=predm[, 2], y=respv, col="blue")
> points(x=newdata, y=fcast[, 1], pch=16, col="blue")
> lines(x=newdata, y=fcasth, lwd=3, col="red")
> lines(x=newdata, y=fcastl, lwd=3, col="green")
> legend(x="topleft", # Add legend
        legend=c("forecasts", "+2SD", "-2SD"),
        title=NULL, inset=0.05, cex=1.0, lwd=6, y.intersp=0.4,
        bty="n", lty=1, col=c("blue", "red", "green"))
```

Forecasts from Linear Regression

Forecasts of *Linear Regression* Using predict.lm()

The function predict() is a *generic function* for forecasting based on a given model.

predict.lm() is the forecasting method for linear models (regressions) produced by the function lm().

```
> # Perform univariate regression
> dframe <- data.frame(resp=respv, pred=predm[, 2])
> regmod <- lm(resp ~ pred, data=dframe)
> # Calculate forecasts from regression
> newdf <- data.frame(pred=predn[, 2]) # Same column name
> fcastlm <- predict.lm(object=regmod,
   newdata=newdf, confl=1-2*(1-pnorm(2)),
    interval="confidence")
> rownames(fcastlm) <- NULL
> all.equal(fcastlm[, "fit"], fcast[, 1])
> all.equal(fcastlm[, "lwr"], fcastl)
> all.equal(fcastlm[, "upr"], fcasth)
> plot(x=xdata, v=vdata, xlim=xlim, vlim=vlim,
      type="1", lwd=3, col="blue",
      xlab="predictor", ylab="forecast",
      main="Forecasts from lm() Regression")
> points(x=predm[, 2], v=respv, col="blue")
```

Forecasts from Im() Regression


```
> abline(regmod, col="blue", lwd=3)
> points(x=newdata, y=fcastlm[, "fit"], pch=16, col="blue")
> lines(x=newdata, y=fcastlm[, "lur"], lwd=3, col="green")
> lines(x=newdata, y=fcastlm[, "upr"], lwd=3, col="red")
```

- > legend(x="topleft", # Add legend
- + legend=c("forecasts", "+2SD", "-2SD"),
 + title=NULL, inset=0.05, cex=0.8, lwd=6, y.intersp=0.4,
 - bty="n", lty=1, col=c("blue", "red", "green"))

Spurious Time Series Regression

Regression of non-stationary time series creates spurious regressions.

The t-statistics, p-values, and R-squared all indicate a statistically significant regression.

But the Durbin-Watson test shows residuals are autocorrelated, which invalidates the other tests.

The Q-Q plot also shows that residuals are not normally distributed.

```
> predm <- cumsum(rnorm(100)) # Unit root time series
         > respv <- cumsum(rnorm(100))
         > formulav <- respv ~ predm
         > regmod <- lm(formulay) # Perform regression
         > # Summary indicates statistically significant regression
         > regsum <- summary(regmod)
*** residuals are autocorrelated 
         > regsum$coeff
```

lm(reg_formula)

Homework Assignment

Required

• Study all the lecture slides in FRE6871_Lecture_4.pdf, and run all the code in FRE6871_Lecture_4.R

Jerzy Pawlowski (NYU Tandon)