

Approximate Modal Decomposition of Inelastic Dynamic of Wall Buildings Advanced Vibration

Sudan Pandey Dec 2021

CONTENTS

- 1. Non-Linear Response History Analysis (NLRHA)
- 2. Modal Analysis
- 3. Uncoupled Modal Response History Analysis (UMRHA)
- 4. Approximate Modal Decomposition
 - Direct Method
 - Orthogonal Filter
- 5. Case Study Building and Results
- 6. Conclusion
- 7. Recommendation
- 8. References

Dynamic Analysis Procedures

Non-Linear Response History Analysis (NLRHA)

- Most reliable and accurate
- Numerical step-by-step direct integration
- Required long computational time, expensive
- Require high expertise to interpret analysis results and implement them for design
- Difficult to gain physical understanding of complex nonlinear dynamic response

$$[M](\ddot{x}) + [C](\dot{x}) + [K](x) = (F(t)) \quad \text{(Linear system)}$$

$$[M](\ddot{u}) + [C](\dot{u}) + F_{sn}(u, \dot{u}) = (f(t))$$
 Non-Linear system

Modal Analysis

Decoupled equations: $\ddot{q}_i + 2\zeta_i\omega_i\dot{q}_i + \omega_i^2q_i = f_i(t)$ (Linear system)

Why Modal Coordinates are Important? [Ref: Lecture 1b]

- Vibration modes have intrinsic meaning. Modes and modal coordinates tell us something more understandable about structural response than do structural matrices
- Modes, modal frequencies, and modal damping factors can be measured and compared with prediction.
- The EOM in modal coordinates can be integrated independently
- The total response can be obtained by summing the individual modal responses

Dynamic Analysis Procedures

Uncoupled Modal Response History Analysis (UMRHA)

- Developed by Chopra and Goel (2002)
- Extended version of the "Classical Modal Analysis" procedure
- Each vibration mode behaves like SDOF system and can be expressed as,

$$\ddot{u}_n + 2\xi_n \omega_n \dot{u}_n + \frac{F_{sn}(u_n, \dot{u}_n)}{L_n} = -\ddot{u}_g(t)$$

- Total response is determined by combining response of all significant modes
- Assumes that 'vibration modes' still exist even for the nonlinear responses
- Assumes principle of superposition remain valid for inelastic responses.

Uncoupled Modal Response History Analysis (UMRHA)

OF ARIZONA

Approximate Modal Decomposition

Figure 2. (a) Wall building of interest; (b) simplified inelastic wall model; and (c) equivalent linear wall model.

Case Study Building and Equivalent Linear Model

Salient Features:

- Building is modeled as vertical cantilever beam with lumped mass at floor level
- Building heights selected for this study are 20, 25, 30, 35, and 40 stories.
- The ratio of wall height to depth (aspect ratio) is set to 10.
- A fully fixed base is assumed in all cases.

Direct Method

The response of each individual equivalent linear models can be directly evaluated from the corresponding best fit equivalent linear model.

Orthogonal Filter Method

Complex modal coordinate $y_i(t)$ is first extracted from the available time histories of the bending moment and velocity.

$$y_i(t) = \frac{\int_0^h (EIu''(x,t)) \cdot \phi_i'' \, \mathrm{d}x - \lambda_i \int_0^h m(\dot{u}(x,t)) \cdot \phi_i \, \mathrm{d}x}{\int_0^h EI\phi_i''^2 \, \mathrm{d}x - \lambda_i^2 \int_0^h m\phi_i^2 \, \mathrm{d}x}$$

Both method; Direct method and Orthogonal Filter method gives close result

Decomposed modal base moment of 40-story wall building under the ANFS ground motion.

Figure 7. Modal decomposition results of 40-story wall building under the ANFS ground motion:

(a) modal base moment; (b) modal base shear; (c) comparison of combined modal moment and DI moment; and (d) comparison of combined modal shear and DI shear.

Figure 7. Modal decomposition results of 40-story wall building under the ANFS ground motion: (a) modal base moment; (b) modal base shear; (c) comparison of combined modal moment and DI moment; and (d) comparison of combined modal shear and DI shear.

Summary

- Modal decomposition provides the physical insight into the complex response of the complex dynamic system
- Both direct method and orthogonal method fairly predict the total nonlinear response of the system
- This approximate method will be very useful in the development of different alternative method for the inelastic analysis of the complex system like high rise buildings
- Orthogonal filter can be used to extract the individual response from the total response of the system
- The accuracy of this approximate modal decomposition method depends on the accuracy of the equivalent linear system

Recommendation

- Consideration of the effect of shear deformation
- Consideration of the effect of axial load effects
- Find a better way to model the equivalent linear model

References

- 1. Chopra, A. K. (2007) Dynamics of Structures: Theory and Applications to Earthquake Engineering, 3rd Edition, Pearson Prentice Hall: Upper Saddle River, NJ.
- 2. Sangarayakul, C., & Warnitchai, P. (2004). Approximate modal decomposition of inelastic dynamic responses of wall buildings. *Earthquake engineering & structural dynamics*, *33*(9), 999-1022.

