N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.6	
Please check the examination det Candidate surname	alls below	before enter	Other names
Pearson Edexcel International Advanced Level	Centre	Number	Candidate Number
Thursday 14	Jan	uary	2021
Morning (Time: 1 hour 30 minut	es)	Paper Re	eference WMA13/01
Mathematics International Advance Pure Mathematics P3	ed Lev	el	
You must have: Mathematical Formulae and Sta	ntistical 7	ābles (Lila	Total Marks

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

1. Find $\int \frac{x^2 - 5}{2x^3} dx \qquad x > 0$	
giving your answer in simplest form.	(3)

	Leave blank
Question 1 continued	
	0.1
	Q1
(Total 3 marks)	

Figure 1

Figure 1 shows a sketch of the curve with equation y = f(x), where $x \in \mathbb{R}$ and f(x) is a polynomial.

The curve passes through the origin and touches the x-axis at the point (3, 0)

There is a maximum turning point at (1, 2) and a minimum turning point at (3, 0)

On separate diagrams, sketch the curve with equation

(i)
$$y = 3f(2x)$$
 (3)

(ii)
$$y = f(-x) - 1$$
 (3)

On each sketch, show clearly the coordinates of

- the point where the curve crosses the *y*-axis
- any maximum or minimum turning points

Leave blank Question 2 continued Q2 (Total 6 marks)

$$f(x) = 3 - \frac{x-2}{x+1} + \frac{5x+26}{2x^2 - 3x - 5} \qquad x > 4$$

(a) Show that

$$f(x) = \frac{ax+b}{cx+d} \qquad x > 4$$

where a, b, c and d are integers to be found.

(4)

(b) Hence find $f^{-1}(x)$

(2)

(c) Find the domain of f⁻¹

	Leave blank
Question 3 continued	

Question 3 continued	
Question b continued	

Question 3 continued		blank
		Q3
	(Total 8 marks)	

Figure 2

Figure 2 shows a sketch of the graph with equation y = f(x), where

$$f(x) = |3x + a| + a$$

and where a is a positive constant.

The graph has a vertex at the point P, as shown in Figure 2.

(a) Find, in terms of a, the coordinates of P.

(2)

(b) Sketch the graph with equation y = g(x), where

$$g(x) = |x + 5a|$$

On your sketch, show the coordinates, in terms of a, of each point where the graph cuts or meets the coordinate axes.

(2)

The graph with equation y = g(x) intersects the graph with equation y = f(x) at two points.

(c) Find, in terms of a, the coordinates of the two points.

(5)

uestion 4 continued		L b
	uestion 4 continued	"

Question 4 continued		

Question 4 continued	blank
	Q4
(Total 9 marks)	

5. The temperature, θ °C, inside an oven, t minutes after the oven is switched on, is given by

$$\theta = A - 180e^{-kt}$$

where A and k are positive constants.

Given that the temperature inside the oven is initially 18 °C,

(a) find the value of A.

(2)

The temperature inside the oven, 5 minutes after the oven is switched on, is 90 °C.

(b) Show that $k = p \ln q$ where p and q are rational numbers to be found.

(4)

Hence find

(c) the temperature inside the oven 9 minutes after the oven is switched on, giving your answer to 3 significant figures,

(2)

(d) the rate of increase of the temperature inside the oven 9 minutes after the oven is switched on. Give your answer in °C min⁻¹ to 3 significant figures.

(3)

uestion 5 continued	

Question 5 continue	ed		

Question 5 continued	Leave blank
	Q5
(Total 11 marks)	

$$f(x) = x \cos\left(\frac{x}{3}\right) \qquad x > 0$$

(a) Find f'(x)

(2)

(b) Show that the equation f'(x) = 0 can be written as

$$x = k \arctan\left(\frac{k}{x}\right)$$

where k is an integer to be found.

(2)

(c) Starting with $x_1 = 2.5$ use the iteration formula

$$x_{n+1} = k \arctan\left(\frac{k}{x_n}\right)$$

with the value of k found in part (b), to calculate the values of x_2 and x_6 giving your answers to 3 decimal places.

(2)

(d) Using a suitable interval and a suitable function that should be stated, show that a root of f'(x) = 0 is 2.581 correct to 3 decimal places.

	I
Question 6 continued	
<u> </u>	

Question 6 continued	
Question o continueu	

Question 6 continued	Leave
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
(Total 8 marks)	Q6

In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

7. (a) Prove that

$$\frac{\sin 2x}{\cos x} + \frac{\cos 2x}{\sin x} \equiv \csc x \qquad x \neq \frac{n\pi}{2} \quad n \in \mathbb{Z}$$

(3)

(b) Hence solve, for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$

$$7 + \frac{\sin 4\theta}{\cos 2\theta} + \frac{\cos 4\theta}{\sin 2\theta} = 3\cot^2 2\theta$$

giving your answers in radians to 3 significant figures where appropriate.

(6)

Question 7 continued	
C	

Question 7 continued		blanl
	(T) () () () ()	Q7
	(Total 9 marks)	

8. The percentage, P, of the population of a small country who have access to the internet, is modelled by the equation

$$P = ab^t$$

where a and b are constants and t is the number of years after the start of 2005

Using the data for the years between the start of 2005 and the start of 2010, a graph is plotted of $\log_{10} P$ against t.

The points are found to lie approximately on a straight line with gradient 0.09 and intercept 0.68 on the $\log_{10} P$ axis.

(a) Find, according to the model, the value of *a* and the value of *b*, giving your answers to 2 decimal places.

(4)

(b) In the context of the model, give a practical interpretation of the constant a.

(1)

(c) Use the model to estimate the percentage of the population who had access to the internet at the start of 2015

Question 8 continued	Leave blank
	-
	- -
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	Q8
(Total 7 marks)	

9. Find

(2)

(ii)
$$\int \frac{e^{2x}}{(e^{2x} - 1)^3} dx$$
 $x \neq 0$

Question 9 continued	Leave blank
	Q9
(Total 4 m	arks)

10. The curve C has equation

$$x = 3\sec^2 2y$$
 $x > 3$ $0 < y < \frac{\pi}{4}$

(a) Find $\frac{dx}{dy}$ in terms of y.

(2)

(b) Hence show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{p}{qx\sqrt{x-3}}$$

where p is irrational and q is an integer, stating the values of p and q.

(3)

(c) Find the equation of the normal to C at the point where $y = \frac{\pi}{12}$, giving your answer in the form y = mx + c, giving m and c as exact irrational numbers.

(5)

	L
uestion 10 continued	

uestion 10 continued		blan
		Q1
	(Total 10 marks)	
	TOTAL FOR PAPER IS 75 MARKS	