Programação Inteira

Algoritmo Branch-and-Bound (ou enumeração implícita)

- O método *Branch-and-Bound* (B&B) baseia-se na idéia de desenvolver uma enumeração inteligente das soluções candidatas à solução ótima inteira de um problema.
- Apenas uma fração das soluções factíveis é realmente examinada.
- O termo *branch* refere-se ao fato de que o método efetua partições no espaço das soluções e o termo *bound* ressalta que a prova da otimalidade da solução utiliza-se de limites calculados ao longo da enumeração.

Exemplo

$$max \quad 21x_1 + 11x_2$$
 $s.a. \quad 7x_1 + 4x_2 \le 13$
 $x_1, x_2 \ge 0$
 $x_1, x_2 \quad inteiros$

O problema é um problema de programação linear inteira, pois as variáveis devem ser inteiras.

- •Na Figura (a) têm-se os pontos que representam as soluções factíveis do problema (todos os pontos inteiros que satisfazem as restrições).
- O problema de programação linear (RL) obtido ao desconsiderarmos as restrições de integralidade das variáveis inteiras é conhecido como a relaxação linear do PI (ver Figura (b)).
- Existem outros tipos de relaxação, como por exemplo a Relaxação Lagrangiana: relaxa-se algumas restrições, consideradas complicadas, incorporando uma penalidade na função objetivo (não falaremos no curso de PM);

- Como podemos observar a solução do problema linear (RL) é sempre maior ou igual a solução do PI, pois o problema relaxado é composto por todas as soluções inteiras e também as soluções reais do problema, logo é formado por um conjunto de soluções factíveis mais abrangente.
- Assim temos que, para um problema de maximização $Z_{PPL}^* \ge Z_{PPI}^*$, ou seja, a solução ótima da relaxação linear de um problema inteiro (Z_{PPL}^*) é sempre maior ou igual a solução ótima do problema inteiro (Z_{PPI}^*) .

Problema relaxado

•Princípio básico: se a solução do RL relaxado corresponde a uma solução do PI, pois possui todas as variáveis inteiras, então esta solução é a solução ótima do PI.

• Idéia Geral: relaxar o problema de programação inteira e dividir o problema relaxado em vários problemas até encontrar soluções inteiras ou não factíveis, o ótimo é a melhor solução encontrada.

O algoritmo B&B é baseado na idéia de "dividir para conquistar", ou seja, trabalhamos em problemas menores e mais fáceis de resolver em busca da solução ótima.

- A divisão do problema é interrompida quando uma das condições a seguir é satisfeita. Essas condições são chamadas de testes de sondagem ou Poda do nó.
- (I ou poda por infactibilidade) O problema relaxado é infactível.
- (O ou poda por otimalidade) A solução ótima do problema relaxado é inteira.
- (Q ou poda por qualidade) O valor de qualquer solução factível do problema relaxado é pior que o valor da melhor solução factível atual (solução incumbente).
- Quando uma dessas três condições ocorre, o subproblema pode ser descartado (sondado ou podado), pois todas as suas soluções factíveis estão implicitamente enumeradas.

- Resolvendo o problema relaxado tem-se que:
 - Valor ótimo da solução: 39
 - Valores das variáveis $x_1=1.86$ e $x_2=0$

- Logo o valor de x_1 não é inteiro, então dividimos o problema em dois subproblemas:
 - um onde consideramos o valor de $x_1 \ge 2$, que vamos chamar de subproblema A
 - outro consideramos $x_1 \le 1$, chamado de subproblema B.

Suproblema A	Subproblema B
$max 21x_1 + 11x_2$	$max 21x_1 + 11x_2$
$s.a. 7x_1 + 4x_2 \le 13$	$s.a. 7x_1 + 4x_2 \le 13$
$x_1 \ge 2$	$x_1 \le 1$
$x_1, x_2 \ge 0$	$x_1, x_2 \ge 0$

- Não encontramos solução factível ao resolver o problema A, então aplicando o o critério para poda podemos eliminá-lo ((I) O problema relaxado é infactível).
- Resolvendo o subproblema B temos Z = 37.5, $x_1 = 1$ e $x_2 = 1.5$
 - Agora x_2 não é inteiro, logo particionamos o problema em dois considerando o subproblema C com a variável $x_2 \le 1$ e o subproblema D com $x_2 \ge 2$.

Suproblema C	Subproblema D
$max 21x_1 + 11x_2$	$max 21x_1 + 11x_2$
$s.a. 7x_1 + 4x_2 \le 13$	$s.a. 7x_1 + 4x_2 \le 13$
$x_1 \le 1$	$x_1 \le 1$
$x_2 \le 1$	$x_2 \ge 2$
$x_1, x_2 \ge 0$	$x_1, x_2 \ge 0$

(O - otimalidade) A solução ótima do problema relaxado é inteira.

- A solução do subproblema C é igual a 32, $x_1=1$ e $x_2=1$, as duas variáveis são inteiras, logo considerando o teste de sondagem (O) este problema pode ser sondado por otimalidade.
- Resolvendo o subproblema D temos Z = 37, $x_1 = 0.71$ e $x_2 = 2$
 - note que a variável x_I novamente não é inteira, então particionamos o subproblema gerando dois novos subproblemas como mostramos a seguir

Suproblema E	Subproblema F
$max 21x_1 + 11x_2$	$max 21x_1 + 11x_2$
$ s.a. 7x_1 + 4x_2 \le 1$	$3 s.a. 7x_1 + 4x_2 \le 13$
$x_1 \le 1$	$x_1 \le 1$
$x_2 \ge 2$	$x_2 \ge 2$
$x_1 \leq 0$	$x_1 \ge 1$
$x_1, x_2 \ge 0$	$x_1, x_2 \ge 0$

- O problema F é infactível, logo podemos usar I e eliminá-lo
- O subproblema E tem solução igual a 35.75 e $x_1=0$ e $x_2=3.25$

Suproblema G	Subproblema H
$max 21x_1 + 11x_2$	$max 21x_1 + 11x_2$
$s.a. 7x_1 + 4x_2 \le 13$	$s.a. 7x_1 + 4x_2 \le 13$
$x_1 \le 1$	$x_1 \le 1$
$x_2 \ge 2$	$x_2 \ge 2$
$x_1 \le 0$	$x_1 \le 0$
$x_2 \le 3$	$x_2 \ge 4$
$x_1, x_2 \ge 0$	$x_1, x_2 \ge 0$

- Resolvendo o subproblema G obtemos Z = 33, $x_1 = 0$ e $x_2 = 3$, logo a solução é inteira, portanto aplicando o (O) este problema pode ser sondado.
- O subproblema H não tem solução factível e também pode ser sondado por infactibilidade 9I).
- Temos que nenhum nó pode ser ramificado, logo, a melhor solução inteira encontrada é dada pelo problema G e é a solução ótima do problema.
- Na resolução do Exemplo através do método B&B podemos observar que muitas soluções não precisaram ser avaliadas explicitamente. Isso fica mais claro quando se resolve problemas maiores.

Criando a árvore do B&B

Qual explorar primeiro?

E depois?

Note que a ordem pode influir (e muito!)

Regras de seleção

- Regras a priori
 - determinam previamente a ordem de escolha dos nós;

- Regras adaptativas
 - dependem das informações dos nós.

Regras a priori

- Busca em profundidade com backtracking
 - last-in, first-out: o último nó a ser incluído na lista é o primeiro a ser examinado
 - backtracking: se o nó é podado, retorna-se ao longo do caminho em direção ao nó raiz, até encontrar um nó aberto.
 - ordem: pode-se definir, por exemplo, que o filho à esquerda sempre é examinado primeiro.

Regras a priori

Busca em profundidade com backtracking

Regras a priori

- Busca em profundidade com backtracking
- vantagens:
 - Nós factíveis são mais facilmente encontrados em níveis mais profundos da árvore (qual a vantagem de se encontrar nós factíveis logo ?)
 - Pode-se usar re-otimização em nós filhos.
- desvantagem:
 - tende a gerar árvores maiores (com muitos nós).

Regras adaptativas

Melhor limitante

 Selecionar a cada momento, o nó que tem melhor limitante (e que eventualmente, pode fornecer a melhor solução inteira).

Regras adaptativas

Melhor limitante

- vantagem:
 - menos nós explorados no final.
- desvantagem:
 - grande número de nós ativos a cada momento (limites de memória ?)

Exemplo (Livro Página 249)

$$z = \max 31x_1 + 126x_2 + 131x_3 + 37x_4 + 180x_5 + 170x_6 + 182x_7 + 123x_8 + 160x_9 + 80x_{10}$$
$$13x_1 + 111x_2 + 101x_3 + 27x_4 + 174x_5 + 136x_6 + 146x_7 + 99x_8 + 145x_9 + 76x_{10} \le 606$$

Solução

busca em profundidade

melhor limitante

Outras estratégias

Busca em largura
 todos os nós em um dado nível são
 considerados, antes de passar-se para o
 nível seguinte.

- Exemplo de heurística
 - (Escolhe apenas os nós mais promissores para continuar a busca)

. . .

Exercício .

Encontre a solução ótima para o problema de programação inteira abaixo. Especifique qual o motivo de cada poda dos nós. A primeira relaxação linear deve ser resolvida utilizando o algoritmo simplex O primeiro filho que será acrescentado com xi<= deverá ser resolvido pelo simplex tabelas.

Max
$$Z = x_1 + 2x_2$$

Sujeito a:
 $2x_1 + 2x_2 \le 6$
 $x_1 + 2x_2 \le 5$
 $4x_1 + 2x_2 \le 8$
 $x_1 \ge 0, x_2 \ge 0$ e inteiras.

Programação Inteira

- Referências:
- Notas de aulas do Prof. Silvio Alexandre de Araujo

http://www.dcce.ibilce.unesp.br/~saraujo/

Material da Professora Gladys Castillo do Departamento de Matemática da

Universidade de Aveiro (http://www.mat.ua.pt/io/)

Notas de aula do Prof. Alysson Machado Costa

www icmc usn hr/~alveson