Analyse Syntaxique descendante

Analyse descendante

- Principe: l'analyse descendante part de l'axiome et tente de reconstituer l'arbre de dérivation par un parcours gauche-droite préfixé
 - elle essaye de dériver l'axiome par une suite de dérivations gauches
- Exemple 1 :

$$S \rightarrow aSbT \mid cT \mid d$$

 $T \rightarrow aT \mid bS \mid c$

avec le mot accbbadbc

- On part avec l'arbre contenant le seul sommet 5
- La lecture de la première lettre du mot (a) nous permet d'avancer la construction

Analyse descendante

Exemple 1

 $S \rightarrow aSbT \mid cT \mid d$ $T \rightarrow aT \mid bS \mid c$ Avec le mot : accbbadbc

a ccbbadbc

$$S \Rightarrow aSbT$$

La lecture de la deuxième lettre du mot (c) nous amène à

ac cbbadbc

$$S \Rightarrow aSbT \Rightarrow acTbT$$

acc bbadbc

$$S \Rightarrow aSbT \Rightarrow accbT$$

Analyse descendante

Exemple 1

S → aSbT | cT | d T → aT | bS | c Avec le mot : accbbadbc

Analyse descendante Exemple 2

 $S \rightarrow aAb$ $A \rightarrow cd \mid c$ Avec le mot : acb

La lecture de la première lettre du mot (a) nous amène à :

a cb

Une seule production possible :
S ⇒ aAb

- En lisant le c, on ne sait pas s'il faut prendre la règle A → cd ou A → c
 - Pour le savoir il faut lire aussi la lettre suivante (b)
 - Ou alors essayer les différentes possibilités
 - on essaye , A → cd on aboutit à un échec,
 - lacksquare on retourne en arrière et on essaye la deuxième règle $m{A}
 ightarrow m{c}$

Analyse descendante Exemple 3

Exemple 3 : grammaire des expressions arithmétiques :

$$E \rightarrow TE' \mid G$$
 $G \rightarrow -E$
 $E' \rightarrow +TE' \mid -TE' \mid \varepsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid /FT' \mid \varepsilon$
 $F \rightarrow (E) \mid nb$

Avec le mot nb*nb +nb/nb

- Quelle règle de production choisir ??!!
- Utiliser une table d'analyse :
 - Elle indique quelle production utiliser quand je lis tel caractère et que j'en suis à dériver tel non terminal
 - Pour construire une table d'analyse, on a besoin des ensembles PREMIER et SUIVANT

Analyse descendante Analyse prédictive sans récursivité

- L'analyseur syntaxique prédictif comporte :
 - un tampon d'entrée: initialisé avec la chaîne d'entrée suivie du symbole \$
 - une pile: initialisée avec le symbole de départ par-dessus le symbole \$
 - une table d'analyse (notée M) : où M [A, +] indique : quelle production utiliser si le symbole (non terminal) sur le dessus de la pile est A et que le prochain symbole en entrée est +

Table d'analyse LL(1)

Exemple de la table d'analyse

Table d'analyse de la grammaire des expressions arithmétiques :

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' | -TE' | \varepsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' | /FT' | \varepsilon$
 $F \rightarrow (E) | nb$

La table d'analyse obtenue est :

Symbole d'entrée

	nb	+	-	*	/	()	\$
E	E → TE'					E → TE'		
E'		E→+TE′	E→-TE'				$E' \rightarrow \varepsilon$	$E' \rightarrow \varepsilon$
T	$T \rightarrow FT'$					$T \rightarrow FT'$		
T'		$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$	<i>T'</i> →* <i>FT'</i>	<i>T'</i> →/ <i>FT'</i>		$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$
F	$F \rightarrow nb$					<i>F</i> → <i>(E)</i>		

La table d'analyse est définie à partir des ensembles : PREMIER et SUIVANT

Table d'analyse LL(1) Calcul de PREMIER

Soit α un non terminal

• On définit l'ensemble PREMIER(α) comme étant l'ensemble des **terminaux** qui débutent les chaînes générées à partir de (α) plus ε si α peut générer ε

```
Formellement: PREMIER(\alpha) = \{ \alpha \mid \alpha \Rightarrow * \alpha \omega \} \cup \{ \varepsilon \mid \alpha \Rightarrow * \varepsilon \}
```

```
■ Exemple: S \rightarrow Ba

B \rightarrow cP \mid bP \mid P \mid \varepsilon

P \rightarrow dS

S \Rightarrow^* a \ donc \ a \in PREMIER(S); S \Rightarrow^* cPa \ donc \ c \in PREMIER(S)

S \Rightarrow^* bPa \ donc \ b \in PREMIER(S); S \Rightarrow^* dSa \ donc \ d \in PREMIER(S)

S \Rightarrow^* dSa \ donc \ d \in PREMIER(S)

S \Rightarrow^* dSa \ donc \ d \in PREMIER(S)

S \Rightarrow^* dSa \ donc \ d \in PREMIER(S)

S \Rightarrow^* dSa \ donc \ d \in PREMIER(S)

S \Rightarrow^* dSa \ donc \ d \in PREMIER(S)

S \Rightarrow^* dSa \ donc \ d \in PREMIER(S)

S \Rightarrow^* dSa \ donc \ d \in PREMIER(S)
```

Table d'analyse LL(1) Calcul de PREMIER

On peut calculer les ensembles *PREMIER à* l'aide des règles suivantes :

- PREMIER $(\varepsilon) = \{\varepsilon\}$
- PREMIER ($\alpha \alpha$) ={ α } /* α est un terminal*/
- Si $X \to \alpha$ est une production, PREMIER $(\alpha) \subseteq PREMIER(X)$
- Si $\varepsilon \notin PREMIER(X)$ • alors $PREMIER(X\alpha) = PREMIER(X)$ • sinon $PREMIER(X\alpha) = \{PREMIER(X) / \{\varepsilon\}\} \cup PREMIER(\alpha)$

Table d'analyse LL(1) Calcul de PREMIER (exemples)

Exemple 1 : grammaire des expressions arithmétiques :

```
E \rightarrow TE'
E' \rightarrow +TE' \mid -TE' \mid \varepsilon
T \rightarrow FT'
T' \rightarrow *FT' \mid /FT' \mid \varepsilon
F \rightarrow (E) \mid nb
```

- PREMIER(E)=PREMIER(T) = {(, nb}; $\varepsilon \notin PREMIER(T)$
- PREMIER(E')=PREMIER(+TE') \cup PREMIER(-TE') \cup PREMIER(ε)= {+, -, ε }
- PREMIER(T)=PREMIER(F) = {(, nb}
- PREMIER(T')= { *, /, ε}
- PREMIER(F) = {(, nb}

Table d'analyse LL(1) Calcul de PREMIER (exemples)

Exemple 2:

```
S \rightarrow ABCe

A \rightarrow aA \mid \varepsilon

B \rightarrow cB \mid bB \mid \varepsilon

C \rightarrow de \mid da \mid dA
```

- PREMIER(S)={a,b,c,d}
- PREMIER(A)= $\{a, \varepsilon\}$
- $PREMIER(B)=\{b,c,\varepsilon\}$
- PREMIER(C)={d}

Exemple 3:

$$S \rightarrow c \mid ABS$$

 $A \rightarrow B \mid a$
 $B \rightarrow b \mid \varepsilon$

- PREMIER(S)={a,b,c}
- $PREMIER(A) = \{a, b, \varepsilon\}$
- PREMIER(B)= $\{b, \varepsilon\}$

Table d'analyse LL(1) Calcul de SUIVANT

 SUIVANT(A) est l'ensemble de tous les terminaux qui peuvent apparaître immédiatement à droite de A

Formellement : $SUIVANT(A) = \{a \mid S \Rightarrow^* \alpha A a \beta \}...$

■ Exemple :
$$S \rightarrow Sc \mid Ba$$

$$B \rightarrow BPa \mid bPb \mid P \mid \varepsilon$$

$$P \rightarrow dS$$

 $\{a, b, c, d\} \subseteq SUIVANT(S)$ car il y a les dérivations :

- $S \Rightarrow Sc$
- $\blacksquare S \Rightarrow^* dSa (S \Rightarrow Ba \Rightarrow Pa \Rightarrow dSa)$
- $S \Rightarrow *bdSba$
- $\blacksquare S \Rightarrow^* dSdSaa : (S \Rightarrow Ba \Rightarrow BPaa \Rightarrow PPaa \Rightarrow dSdSaa)$

Table d'analyse LL(1) Calcul de SUIVANT (algorithme)

On peut calculer les ensembles *SUIVANT* de tous les non terminaux d'une grammaire à l'aide des **règles** suivantes :

- I. Si *S* est le symbole de départ (l'axiome), alors *\$* ∈ *SUIVANT* (*S*)
- II. Si $A \rightarrow \alpha B \beta$ est une production où B est un non terminal alors ajouter PREMIER $(\beta) \{\varepsilon\}$ à SUIVANT(B) (sauf ε)
- III.Si $A \rightarrow \alpha B$ est une production ou si $A \rightarrow \alpha B\beta$ est une production et que $\varepsilon \in PREMIER(\beta)$, alors ajouter SUIVANT(A) à SUIVANT(B)

Table d'analyse LL(1) Calcul de SUIVANT (Exemple 1)

Exemple 1 : grammaire des expressions arithmétiques :

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' \mid -TE' \mid \varepsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid /FT' \mid \varepsilon$
 $F \rightarrow (E) \mid nb$

Règle I : On commence par ajouter {\$} à SUIVANT(E)

Table d'analyse LL(1) Calcul de SUIVANT (Exemple 1)

Exemple 1 : grammaire des expressions arithmétiques :

Règle II : Appliquons cette règle, symbole par symbole :SymboleContraintes identifiées $E \to \underline{T}E'$ PREMIER $\{E'\}-\{\varepsilon\}\subseteq SUIVANT(T) \Rightarrow \{+, -\}\subseteq SUIVANT(T)$ $E' \to +\underline{T}E'$ PREMIER $\{E'\}-\{\varepsilon\}\subseteq SUIVANT(T) \Rightarrow \{+, -\}\subseteq SUIVANT(T)$ $F \to (E)$ PREMIER $\{\}-\{\varepsilon\}\subseteq SUIVANT(E) \Rightarrow \{\}\subseteq SUIVANT(E)$

E
ightarrow TE' $E'
ightarrow +TE' | -TE' | \varepsilon$ T
ightarrow FT' $T'
ightarrow *FT' | /FT' | \varepsilon$ F
ightarrow (E) | nb

 $P(E) = \{(, nb)\}$ $P(E') = \{+, -, \varepsilon\}$ $P(T) = \{(, nb)\}$ $P(T') = \{*, /, \varepsilon\}$ $P(F) = \{(, nb)\}$

Symbole Symbole	Appliquons cette regle, syml justification	Contraintes
$E \to \underline{T}E'$ $E \to T\underline{E'}$	T est suivi de ε (situé à la fin)	$SUIVANT{E} \subseteq SUIVANT(T)$ $SUIVANT{E} \subseteq SUIVANT(E')$
$E' \rightarrow +\underline{T}E'$ $E' \rightarrow +T\underline{E'}$ $E' \rightarrow -\underline{T}E'$	suivi de ε situé à la fin suivi de ε	$SUIVANT{E'} \subseteq SUIVANT(T)$ $SUIVANT{E'} \subseteq SUIVANT(E')$ $SUIVANT{E'} \subseteq SUIVANT(T)$
		•••
<i>F</i> → (E)	_	_

Table d'analyse LL(1) Calcul de SUIVANT (Exemple)

grammaire des expressions arithmétiques :

```
E \rightarrow TE'

E' \rightarrow +TE' \mid -TE' \mid \varepsilon

T \rightarrow FT'

T' \rightarrow *FT' \mid /FT' \mid \varepsilon

F \rightarrow (E) \mid nb
```

On trouve enfin la solution suivante :

```
    SUIVANT(E)={$, } }
    SUIVANT(E')={$, } }
    SUIVANT(T)={+, -, $, } }
    SUIVANT(T')= {+, -, $, } }
    SUIVANT(F) = {*, /, +, -, $, } }
```

Table d'analyse LL(1) Calcul de PREMIER et de SUIVANT

Exemple 2 :

- $S \rightarrow aSb \mid cd \mid Ae$
- $A \rightarrow aAdB \mid \varepsilon$ $B \rightarrow bb$

- PREMIER(S)={a, c, e}
- PREMIER(A)= $\{a, \varepsilon\}$
- PREMIER(B)={b}

- SUIVANT(S)={\$, b}
- SUIVANT(A)={e, d}
- SUIVANT(B)={e, d}

- I. Si S est le symbole de départ (l'axiome), alors \$ ∈ SUIVANT (S)
- II. Si $\mathbf{A} \to \alpha \mathbf{B} \beta$ est une production où \mathbf{B} est un non terminal alors ajouter PREMIER $(\beta) \{\varepsilon\}$ à SUIVANT(B) (sauf ε)
- III. Si $A \rightarrow \alpha B$ est une production ou si $A \rightarrow \alpha B\beta$ est une production et que $\varepsilon \in PREMIER(\beta)$, alors ajouter SUIVANT(A) à SUIVANT(B)

Table d'analyse LL(1) Construction de la table d'analyse (algorithme)

 Une table d'analyse est un tableau à deux dimensions qui indique quelle production utiliser pour chaque non terminal A et chaque terminal a (tel que a est le prochain symbole en entrée)

Entrée : Une grammaire G

Sortie: Une table d'analyse M

Méthode:

- 1. Pour chaque production $A \rightarrow \alpha$, faire:
 - (a) Pour tout $a \in PREMIER(\alpha)$ (a $\neq \epsilon$), rajouter $A \rightarrow \alpha$ dans la case M[A, a];
 - (b) Si $\varepsilon \in PREMIER(\alpha)$, ajouter $A \rightarrow \alpha$ à M[A, b] pour chaque $b \in SUIVANT(A)$ où b est un terminal ou \$.
- 2. Chaque case de M[A,a] vide doit être initialisée à un signalement d'erreur

Table d'analyse LL(1)

Construction de la table d'analyse (exemple 1)

Table d'analyse de la grammaire des expressions arithmétiques :

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' | -TE' | \varepsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' | /FT' | \varepsilon$
 $F \rightarrow (E) | nb$

1. Pour chaque production $A \rightarrow \alpha$, faire:

- (a) Pour tout $a \in PREMIER(\alpha)$ (a $\neq \epsilon$), rajouter $A \rightarrow \alpha$ dans la case M[A, a];
- (b) Si $\varepsilon \in PREMIER(\alpha)$, ajouter $A \rightarrow \alpha$ à M[A, b] pour chaque

b∈SUIVANT(A) où b est un terminal ou \$.

2. Chaque case de M[A,a] vide doit être initialisée à un signalement d'erreur

- PREMIER(E)={(, nb}
- PREMIER(E')={+, -, ε}
- PREMIER(T)={(, nb}
- PREMIER(T')= { *, /, ε}
- PREMIER(F) = {(, nb}

- SUIVANT(E)={\$,) }
- SUIVANT(E')={\$,) }
- SUIVANT(T)={+, -, \$,) }
- SUIVANT(T')= { +, -, \$,) }
- SUIVANT(F) = {*, /, +, -, \$,)}

Production	Étape	Information	Table d'analyse
E → TE'	1(a) 1(b)	PREMIER(TE')={(, nb} ε∉PREMIER(TE') : rien à faire	Ajouter $E \rightarrow TE'$ dans la case M[E,(] Ajouter $E \rightarrow TE'$ dans la case M[E,nb]
<i>E'</i> → + <i>TE'</i>	1(a)	PREMIER(+TE')={+}	Ajouter E' →+TE' dans la case M[E',+]
E' → -TE'	1(a)	PREMIER(-TE')={-}	Ajouter E' →+TE' dans la case M[E',-]
$E' \rightarrow \varepsilon$	1(a) 1(b)	Rien à faire SUIVANT(E')={\$,)}	Ajouter $E' \to \varepsilon$ dans la case M[E',)] ajouter $E' \to \varepsilon$ dans la case M[E',\$]

Table d'analyse LL(1)

Construction de la table d'analyse (exemple 1)

Table d'analyse de la grammaire des expressions arithmétiques :

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' | -TE' | \varepsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' | /FT' | \varepsilon$
 $F \rightarrow (E) | nb$

La table d'analyse obtenue est :

Symbole d'entrée

	nb	+	-	*	/	()	\$
E	E → TE'					E → TE'		
E'		E→+TE′	E→-TE'				$E' \rightarrow \varepsilon$	$E' \rightarrow \varepsilon$
T	$T \rightarrow FT'$					$T \rightarrow FT'$		
T'		$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$	<i>T'</i> →* <i>FT'</i>	<i>T'</i> →/ <i>FT'</i>		$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$
F	$F \rightarrow nb$					<i>F</i> → <i>(E)</i>		

Analyse descendante prédictive

Algorithme: Grammaire LL(1)

- Dans une configuration où *X* est le sommet de la pile et *a* est le prochain symbole dans l'entrée, l'analyseur effectue une action parmi les suivantes :
 - Si X = a = \$, l'analyseur arrête ses opérations et annonce une analyse réussie
 - Si X = a ≠ \$, l'analyseur dépile X et fait avancer le pointeur de l'entrée
 - Si X est un non terminal, le programme de l'analyseur consulte la table d'analyse en position M[X, a]. La case consultée fournit soit une production à utiliser, soit une indication d'erreur
 - Si, par exemple, M[X, a] = {X → UVW}, alors l'analyseur dépile X et empile W, V et U, dans cet ordre
 - En cas d'erreur, l'analyseur s'arrête et signale une erreur

La sortie de l'analyseur : la suite de productions utilisées

Analyse descendante prédictive Exemple 1

- Exemple : grammaire des expressions arithmétiques :
 - $_{-}$ $E \rightarrow TE'$
 - $E' \rightarrow +TE' \mid -TE' \mid \varepsilon$
 - $T \rightarrow FT'$
 - $_{-}$ $T' \rightarrow *FT' | /FT' | \varepsilon$
 - $-F \rightarrow (E) \mid nb$

	nb	+	-	*	/	()	\$
E	E → TE'					E → TE'		
E'		E→+TE′	E→-TE'				$E' \rightarrow \varepsilon$	$E' \rightarrow \varepsilon$
T	$T \rightarrow FT'$					$T \rightarrow FT'$		
T'		$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$	<i>T'</i> →* <i>FT'</i>	<i>T'</i> →/ <i>FT'</i>		$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$
F	$F \rightarrow nb$					<i>F</i> → <i>(E)</i>		

Analyse prédictive de la chaîne nb + nb * nb

Analyse descendante prédictive

Exemple 1

nbT'E'\$

T'E'\$

+TE'\$

TE'\$

FT'E'\$

nbT'E'\$

T'E'\$

E'\$

nb+nb*nb\$

+nb*nb\$

+nb*nb\$

+nb*nb\$

nb*nb\$

nb*nb\$

nb*nb\$

*nb\$

Analyse prédictive de la chaîne nb + nb * nb

LACITIPIC										
			nb	+	-	*	/	()	\$
		E	$E \rightarrow TE$					E → TE'		
		E'		E→+TE'	E→-TE'				$E' \rightarrow \varepsilon$	$E' \rightarrow \varepsilon$
		<i>T</i>	$T \rightarrow F7$	-,				$T \rightarrow FT'$		
		T'		$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$	<i>T'</i> →* <i>FT'</i>	<i>T'→/FT'</i>		$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$
		F	$F \rightarrow nk$)			Г	F → (E)		
PILE	ENT	REE		S	ORTIE			()		
E\$	nb-	+nb*r	nb\$			E → TE	′			
TE'\$	nb-	+nb*r	nb\$			$T \rightarrow FT$	•			
FT'E'\$	nb-	+nb*r	nb\$			$F \rightarrow nb$				

Consommer le terminal nb

Consommer le terminal +

Consommer le terminal nb

 $T' \rightarrow \varepsilon$

 $E' \rightarrow +TE'$

 $T \rightarrow FT'$

 $F \rightarrow nb$

Succès

Analyse descendante prédictive

Exemple 1

Analyse prédictive de la chaîne *nb* + *nb* * *nb*

On oubtient l'arbre syntaxique suivant :

SORTIE
E → TE'
$T \rightarrow FT'$
F o nb
Consommer le terminal nb
T' o arepsilon
<i>E'</i> → + <i>TE'</i>
Consommer le terminal +
$T \rightarrow FT'$
$F \rightarrow nb$
Consommer le terminal nb
•••
Succès

Analyse descendante prédictive Algorithme : Grammaire LL(1)

Entrée : Une chaîne w et la table d'analyse M associée à une grammaire G

Sortie : Une dérivation à gauche d'abord de w si $w \in L(G)$ ou erreur sinon

Algorithme:

- initialiser la pile avec l'axiome **S** par-dessus **\$** et le tampon d'entrée avec **w**\$
- faire pointer ip sur le premier symbole de l'entrée
- Répéter
 - soit X le symbole du sommet de la pile et a le symbole pointé par ip;
 - **si** X est un terminal ou \$ alors
 - \mathbf{a} si X = a alors
 - dépiler X et avancer ip
 - sinon erreur ()
 - sinon /* X est un non-terminal */
 - si $M[X, a] = X \rightarrow Y_1 \dots Y_k$ alors début
 - dépiler X
 - empiler Y_k, \ldots, Y_1 , dans l'ordre
 - afficher la production $X \to Y_1 \dots Y_k$ (dérivation utilisée)
 - fin
 - sinon erreur () /* M[X, a] est vide*/
- jusqu'à ce que X = \$ ou erreur /* la pile est vide */

Analyse descendante prédictive

Exemple 2

Analyser la chaîne (nb + nb)nb

							_	•	7
		nb	+	-	*	/	()	\$
	E	E → TE'					E → TE'		
	E'		<i>E</i> →+ <i>TE</i>	E→-TE'				$E' \rightarrow \varepsilon$	$E' \rightarrow \varepsilon$
			,						
	T	$T \rightarrow FT'$					$T \rightarrow FT'$		
	T'		$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$	<i>T'</i> →* <i>FT'</i>	<i>T'→/FT'</i>		$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$
	F	$F \rightarrow nb$					F → (E)		
-	_		00						

	SORTIE	ENTREE	PILE
.,	E → TE	(nb+nb)nb\$	E\$
-,	$T \rightarrow F7$	(nb+nb)nb\$	TE'\$
)	F → (E	(nb+nb)nb\$	FT'E'\$
(Consommer le terminal	(nb+nb)nb\$	(E)T'E'\$
2	nh±nh\nh n'annartiont nac au lanc	I a mot (r	

Le mot (nb+nb)nb n'appartient pas au langagegénéré par cette grammaire

$E' \rightarrow \varepsilon$)nb\$	E')T'E'\$
Consommer le terminal))nb\$)T'E'\$
Erreur	nb\$	T'E'\$

Analyse descendante prédictive Grammaire LL(1)

- L'algorithme d'analyse descendante prédictive présenté précédement ne peut être appliqué qu'aux grammaires LL(1)
- On appelle grammaire LL(1) une grammaire pour laquelle chaque case de la table d'analyse contient au plus une règle de production
- LL(1) signifie
 - L : Left to right scanning (parcourt l'entrée de gauche à droite)
 - L: Leftmost derivation (dérivation gauches)
 - 1 : un seul symbole de pré-vision est nécessaire
- Une grammaire ambiguë ou récursive à gauche ou non factorisée à gauche n'est pas LL(1)

Analyse descendante prédictive Grammaire LL(1)

- Attention : une grammaire non ambiguë, non récursive à gauche et factorisée à gauche n'est pas toujours LL(1)
- Exemple : la grammaire $S \rightarrow aTb/\varepsilon$ $T \rightarrow cSa/d$

n'est pas LL(1) or elle n'est pas récursive à gauche, elle est factorisée à gauche et elle n'est pas ambiguë!!

Conclusion

- Pour utiliser l'analyse descendante vue ci-dessus il faut vérifier que notre grammaire est bien LL(1)
- Comment?
 - Etant donnée une grammaire
 - La rendre non ambiguë : il n'y a pas de méthodes
 - Éliminer la récursivité à gauche si nécessaire
 - La factoriser à gauche si nécessaire
 - Construire la table d'analyse
 - Et espérer que ça soit LL(1) (i.e : chaque case de la table d'analyse contient au plus une règle de production)
 - Sinon, il faut concevoir une autre méthode pour l'analyse syntaxique

Exercices

Donner la table d'analyse pour les grammaires suivantes :

$$S \rightarrow iEtSS' \mid a$$

$$S' \rightarrow eS \mid \varepsilon$$

$$E \rightarrow b$$

- Lesquelles de ces grammaires sont LL(1)?
 - $S \rightarrow ABBA$
 - $A \rightarrow a \mid \varepsilon$
 - $B \rightarrow b \mid \varepsilon$
 - S → aSe | B
 - B \rightarrow bBe | C
 - C → cCe | d
 - \bullet S \rightarrow Abc
 - $A \rightarrow a \mid \varepsilon$
 - $B \rightarrow b \mid \varepsilon$
 - $S \rightarrow Ab$
 - $A \rightarrow a \mid B \mid \varepsilon$
 - $B \rightarrow b \mid \varepsilon$