國立中興大學附屬高級中學 113 學年度第 1 學期興附盃 高一數學測驗卷

班級:	座號:	姓名:		試題共 西 頁
			命題 老師:Bao	_{案題} 去師:Derek

第壹部分:選填題 (100 分)

說明:1. 第 A 至 K 題,將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號(1-26)

- 2. A~ D 每題完全答對給 11 分,E~ K 每題完全答對給 8 分,答錯不倒扣,未完全答對不 給分。
- 3. 若答案為分數,皆須化為最簡分數;若答案內有根號,皆須化為最簡根式。
- A. 設平面上有一直線 L:y=2x+k,與 A(2,-3)、 B(1,4) 兩點,已知 \overline{AB} 與 L 會相交,則滿足此條件之 k 的範圍為 $a\leq k\leq b$,試求 a+b=1
- B. 平面上有兩條平行線 $L_1:3x+4y+2=0$ 與 $L_2:6x+8y-17=0$,則兩平行線距離為 34 。 56
- C. 在坐標平面上,將直線 L:x-5y+21=0 向右平移 k 單位,再向下平移 3k 單位,其中 k>0,得到的新直線可通過 (1,2),則 $k=\frac{7}{8}$ 。
- D. 已知二元一次方程組 $\left\{ \begin{array}{l} (2k+1)x+ky-2=0\\ (k-1)x-2y+k=0 \end{array} \right. , \\ \text{其中 } k \ \text{為實數 } \circ \ \text{若此方程組並非唯一解 } , \\ \text{試求所有可能的 } k \ \text{ 值總和為 } \left(9\right) \boxed{10} \circ \right.$
- E. 在坐標平面上有一三角形 $\triangle ABC$,其外心 O(5,0),已知 \overline{AB} 中點為 (-1,-2), \overline{AC} 中點為 (2,-3),則 A 點坐標為 $(\widehat{11})\widehat{12},\widehat{(13)}$ 。

F. 給定一直線 L:x+3y=3,與兩點 A(-2,5)、B(1,3),若要在直線 L 上找一點 P,使得 $\overline{PA}+\overline{PB}$ 有最小值,則此最小值為 $\sqrt{14/15}$ 。

G. 承上題,若要在直線 L 上找一點 Q,使得 $|\overline{QA}-\overline{QB}|$ 有最大值,則此最大值為 $\sqrt{16 (17)}$ 。

H. 將 $x \le 0$, $y \ge 0$, $x+y \le 3$, $4x-3y \ge -30$ 所圍出之區域稱為 R,試求區域 R 之面積為 18(19)。

I. 承上題,試求在區域 R 中 $\frac{y+2}{x-1}$ 的最小值為 2021。

J. 如果將一張畫有直角坐標系的紙沿著一條直線摺疊,使得 A(2,0) 與 B(0,4) 兩點重合,若此時點 P(-4,-4) 也會和點 Q(x,y) 重合,則 x+3y=22

K. 若 $L:\frac{x}{a}+\frac{y}{b}=1$ 通過 (1,2) 且和兩坐標軸所圍的三角形面積為 4 ,若滿足此條件的直線共有 t 條,且所有滿足此條件的直線 x 截距總和為 s ,求 (t,s)=24,2526 。

第壹部分:選填題

- A. -5
- B. $\frac{21}{10}$
- C. $\frac{3}{4}$
- D. -3
- E. (-2,1)
- F. 41
- G. 13
- H. 27
- I. -5
- J. -2
- K. (3, -2)