Tema 3

Octubre 2018

- **3.1.** Dos focos F_1 y F_2 , separados una distancia $d = 9 \,\mathrm{m}$, emiten ondas sonoras armónicas de frecuencia 3600 Hz, que se propagan con velocidad $1440~\mathrm{m\,s^{-1}}$, en un medio cuya densidad es $800~\mathrm{kg\,m^{-3}}$. El foco F_2 emite retrasado $\pi/2$ respecto a F_1 , observándose que en los puntos A y B de la figura, las intensidades son $I_A = \frac{5}{36} \text{ mWm}^{-2}$ e $I_B = \frac{1}{8} \text{ mWm}^{-2}$. Suponiendo que la fase inicial en el foco F_1 es nula, determinar razonadamente:
- 1) Si las ondas emitidas por los focos son ondas planas o esféricas.
- 2) La función de onda para la presión acústica de la onda emitida por el foco F_1 (utilizando notación armónica), sabiendo que en el punto A la relación entre las intensidades procedentes de cada foco por separado es $I_1 = 4I_2$.
- 3) La velocidad de las partículas del medio, asociada a la perturbación emitida por el foco F_1 , en los puntos situados a $\frac{10}{\pi}$ cm de él.

Problema 3.1

Junio 2018

3.2. Un foco puntual emite ondas sonoras que se propagan con velocidad 250 m s⁻¹ en un medio de densidad 2,4 kg m⁻³. La velocidad de oscilación de las partículas del medio, en puntos que distan $\frac{1}{6}$ m del foco, es $\vec{v} = \frac{2\sqrt{3}}{15}\cos\left(1500\sqrt{3}t - \sqrt{3}\right)\vec{u}_r$ m s⁻¹ (t en s). Obtener razonadamente la función de onda para la presión acústica, considerando que la fase inicial en el foco está comprendida entre $0 \text{ y } \pi \text{ rad}$.

Abril 2018

- **3.3.** Un foco puntual emite ondas sonoras en un medio de densidad $\frac{5}{3}$ kg m⁻³. En un determinado punto A se tiene: $Z = 125(1+i\sqrt{3})$ rayl y $v_p = 2\sqrt{3}\cos\left(100\pi t - \frac{1}{\sqrt{3}}\right)$ cm s⁻¹ (t en s). Obtener razonadamente:
- 1) La función de onda para la presión acústica.
- 2) La potencia con la que emite el foco.

Julio 2018

3.4. Un foco, de potencia 2304π mW, emite ondas sonoras. La presión acústica en puntos ① y ②, que distan respectivamente $\frac{20}{3}$ cm y 20 cm del foco, es:

$$p_1 = 360 \cos\left(\pi \cdot 10^4 t - \frac{4\pi}{3}\right) \text{Pa}$$

$$p_2 = 120 \cos\left(\pi \cdot 10^4 t - \frac{2\pi}{3}\right) \text{Pa}$$

$$\left(t \text{ en s}\right)$$

Si la velocidad de propagación de las ondas verifica $190 \,\mathrm{m\,s^{-1}} < v < 380 \,\mathrm{m\,s^{-1}}$ y la fase inicial de la presión acústica en el foco está comprendida entre $-\pi$ y π rad, obtener razonadamente:

- 1) La longitud de onda de la señal.
- 2) La velocidad de las partículas del medio, en los puntos que distan $\frac{6}{\pi}$ cm del foco.

Junio 2018

3.5. Un foco puntual emite ondas sonoras armónicas, con una potencia de $\frac{4\pi}{7}$ W, en un medio cuya

densidad es 800 kg m^{-3} . La perturbación a 1 m del foco es $p = -A\cos 2100\pi t$, donde la amplitud es desconocida y t se mide en s. Sabiendo que la fase inicial en el foco es nula y que la velocidad de propagación de las ondas verifica $620 \text{ m s}^{-1} < v < 800 \text{ m s}^{-1}$, determinar razonadamente las funciones de onda para la velocidad y para el desplazamiento de las partículas del medio, en aquellos puntos en los que la presión acústica está adelantada $2\pi/3$ respecto al desplazamiento.

Enero 2019

3.6. Un foco emite ondas sonoras en un medio de densidad 1750 g m⁻³. La presión acústica en puntos

① y ②, situados, respectivamente, a distancias $\frac{1}{12}$ m y $\frac{1}{4}$ m del foco, es:

$$p_1 = 1260\cos(1120\pi t) \text{ Pa}$$

 $p_2 = -420\cos(1120\pi t + \frac{\pi}{3}) \text{ Pa}$ $(t \text{ en s})$

Si la velocidad de propagación de las ondas satisface la condición $200 \, \mathrm{m \, s^{-1}} < v < 300 \, \mathrm{m \, s^{-1}}$, determinar razonadamente:

- 1) La función de onda para la presión acústica, indicando su fase inicial entre 0 y π rad.
- 2) La velocidad de vibración de las partículas del medio en aquellos puntos en los que el módulo de la impedancia de la onda es 245 rayl.

7) Fix is a cods pro lepton scales and fit (addis strains)

$$I_{13} = 4 I_{13} = 0$$
 $I_{1} = \frac{34}{4}$
 $I_{14} = 4 I_{13} = 14 I_{14} = \frac{34}{4}$
 $I_{14} = \frac{3}{4} I_{13} = \frac{3}{4} I_{14} = \frac{3}{4} I_{14}$
 $I_{14} = \frac{4}{5} I_{13} = \frac{3}{5} \frac{3}{3} \frac{3}{6} = \frac{1}{7} \ln \frac{3}{7} \ln \frac{3$

37 Jino Zets Pento: 6 m Vp = 2 13 (5/1500 536-53/6 M/5 Face purtual = Order esfiras 25 = 250m/s Onds stérico: Kllar, Kir = K.F 2 = 70 and a sterios: 2= Po 25 cao e io w= 1500 13 rolls k= \frac{w}{15005} = 653 pdlm cs /15005 t - 13 + 20 1/ = (slut - kr +4-0) $\varphi = 2n\pi + 0 = 2n\pi + \frac{\pi}{6}$, pro $n = 0 - 4 = \frac{\pi}{6}$ -53 + 2n T = -53 + 4-0 171 = 70 -0 Po = 121. Upo = Po 75. 450. 15 = 2,4. 250. (5) (7). 15 = 120 Pa $p_0 = \overline{r}$ $a = p_0 \cdot r = 120 \cdot 6 = 20$ $P(r,t) = \frac{20}{r} \cos(1500\sqrt{3}t - 6\sqrt{3}r + \frac{\pi}{6}) Pa(cr] = m$

So of put A:

$$v_{p}(n) = k_{p}$$
 (a (a) - kr + φ-0 n) = 2 $\overline{13}$ (a) (Accord = $\frac{1}{13}$). According to $\frac{1}{13}$ (b) = $\frac{1}{13}$ (c) = $\frac{1}{13}$ (d) = $\frac{1}{13}$ (e) = $\frac{1}{13}$ (e) = $\frac{1}{13}$ (f) =

The 2018.

3.4.

(1)
$$(\omega' - k) \frac{20}{3} \frac{1}{10^{-1}} + \frac{1}{9} = (\omega l - \frac{1}{3} + 2\alpha_1 \pi)$$

(1) $(\omega' - k) \frac{20}{3} \frac{1}{10^{-1}} + \frac{1}{9} = (\omega l - \frac{1}{3} + 2\alpha_1 \pi)$

(1) $(\omega' - k) \frac{20}{3} \frac{1}{10^{-1}} + \frac{1}{9} = (\omega l - \frac{1}{3} + 2\alpha_1 \pi)$

(1) $(\omega' - k) \frac{20}{3} \frac{1}{10^{-1}} + \frac$

$$\begin{array}{c} C_{15} O = 3. & O = 0.4 - 0.2 & \Rightarrow O_{1} = 0.1 \text{ or } O_{1} O_{2} \\ K \left(\frac{40}{3} \cdot 10^{-2} \right) = -\frac{2\pi}{3} + 2\pi \left(O_{1} - O_{2} \right) \\ K = 5\pi \left(30 - 1 \right) & \Rightarrow \left[K = 5\pi \left(4 - 1 \right) \right] = 40\pi \text{ od/m} \right] \\ K = \frac{2\pi}{3} + \left[\lambda = \frac{5 \text{ cm}}{3} \right] \\ K = \frac{2\pi}{3} + \left[\lambda = \frac{5 \text{ cm}}{3} \right] \\ V_{p} \left(r = \frac{6}{5} \left(r_{1} t \right) \right) = \frac{1}{4} + \frac{$$

Bro
$$r = 20 \text{ cm} \rightarrow Re^{-\frac{1}{4}} = 120$$

Bro $r = \frac{120}{3} = 10 \cdot 10^{-2} + 10 = 14 \cdot 16 \cdot 0$
 $a = 7 \cdot 120 = 10 \cdot 10^{-2} + 10 = 14 \cdot 16 \cdot 0$
 $a = 360 \cdot \frac{1}{3} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$

$$\frac{\partial \rho}{\partial \rho} \left\{ f = \frac{G}{\pi}(r, l) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{\partial \rho}{\partial r} + \frac{1}{\sqrt{2}} \frac{\partial \rho}{\partial r} - \frac{1}{\sqrt{2}} \frac{\partial \rho}{\partial r} \right\}$$

$$\frac{\partial \rho}{\partial \rho} \left\{ f = \frac{G}{\pi}(r, l) = \frac{1}{\sqrt{2}} \frac{\partial \rho}{\partial r} + \frac{1}{\sqrt{2}} \frac{\partial \rho}{\partial r} - \frac{\partial \rho}{\partial r} - \frac{\partial \rho}{\partial r} - \frac{\partial \rho}{\partial r} \right\}$$

$$\frac{\partial \rho}{\partial \rho} \left\{ f = \frac{G}{\pi}(r, l) = \frac{1}{\sqrt{2}} \frac{\partial \rho}{\partial r} + \frac{\partial \rho}{\partial r} - \frac{\partial \rho}$$

35.
$$W = J = \frac{4\pi}{7}W$$
 $R = 500 \text{ As}/\text{n}^{2}$
 $R = 700 \text{ Acs}/\text{n}^{2}$
 $R = 700 \text{ Ac$

$$P = \frac{100}{\Gamma} \cos \left[2100\pi I - 371 \right] Pa$$

$$Z = \frac{P}{N_1} = \left[\frac{100}{600} \cos \frac{1}{9} + \frac{1}{9} \cos \frac{1}{9} \cos$$

5 new 2019, 3,6. Po = 1750 g/m3 = 1,75 kg/m3 P4 = 4260 cs (112056) for 72 = -420 cs (1120 Tr (+ #) Pa 1/2 1 200m/s < Vs < 300 m/s 1) función de endo poro la presión sustico, fore ineal ORYET and. (ero Pa, # Poz, h presixo sustico appende de la distantia al faco supeners que la crob e estérico, por le torto la fineix de crob pro la presión restrus restrit : p= a estat - K.F +4) [4=12/ + a=1260 - a=1260 - 12 = 105 it 11 ur P2 = -420 cs(1120+1 + 3) = 420 cs (1120+1 + 3 + 7) Pz = Poz co (w6 + K. [z + P) = Poz (s (u6 + 3)) P1 = Pc1 . 00 (ul + k. 4+4+20Ti) = Po1 cs/wt) - x. 1 + 4 = 2 mm - 4 = - 1 + 2 m - k . 12 + P = 3 + 202 + 4 = 3 + 202 - 12 Vs = 1 + 201 T = 12 + 3 + 202 T [1-02 = 1.] И 1 - 1- 1 = 2 ПАТ - 2 ПЕТ - 3 K (1 - 12) = 204 - 3 1 K = 1 (60=4) - K = 24 (60+4) w > 200 → K< 200 - 24(60-4) < 200 $6n < \frac{28}{10} + 4 \rightarrow n < \frac{34}{30} = 1,13$

$$\frac{1}{10} = \frac{1}{3} = \frac{1}{10} = \frac{1}{10$$

Problema 3.1

1) Las ondas son esféricas.

2)
$$p_1 = \frac{72}{r_1} \cos(7200\pi t - 5\pi r_1) \text{ Pa } (t \text{ en s, } r_1 \text{ en m})$$

3)
$$\vec{v}_{p_1} = \frac{\pi\sqrt{5}}{16} e^{i\left(7200\pi t - \frac{1}{2} - \theta\right)} \vec{u}_r \text{ cm s}^{-1}, \text{ tg } \theta = 2 \text{ (}t \text{ en s)}$$

Problema 3.2

$$p(r,t) = \frac{20}{r} e^{i\left(1500\sqrt{3}t - 6\sqrt{3}r + \frac{\pi}{6}\right)} \text{Pa} (r \text{ en m})$$

Problema 3.3

1)
$$p = \frac{15}{\pi r} \cos \left(100\pi t - \frac{\pi}{3}r + \frac{\pi}{3} \right) \operatorname{Pa} \left(r \text{ en m} \right)$$

2)
$$W = \frac{9}{10\pi} \text{ W}$$

Problema 3.4

1)
$$\lambda = 5$$
 cm

2)
$$\vec{v}_p = \frac{13\pi}{15} e^{i\left(\pi \cdot 10^4 t - \frac{12}{5} - \frac{2\pi}{3} - \theta\right)} \vec{u}_r \text{ m s}^{-1}; \text{ tg } \theta = \frac{5}{12}$$

Problema 3.5

$$\vec{v}_p = \frac{\pi}{700} \cos \left(2100\pi t - \sqrt{3} - \frac{\pi}{6} \right) \vec{u}_r \text{ m s}^{-1}; \quad \vec{\xi} = \frac{100}{147} \cos \left(2100\pi t - \sqrt{3} - \frac{2\pi}{3} \right) \vec{u}_r \text{ } \mu\text{m}$$

Problema 3.6

1)
$$p = \frac{105}{r} \cos\left(1120\pi t - 4\pi r + \frac{\pi}{3}\right) \text{ Pa}$$
, con r en m.

2)
$$\vec{v}_p = \frac{12\pi\sqrt{3}}{7}e^{i\left(1120\pi t - \frac{1}{\sqrt{3}}\right)}\vec{u}_r \text{ ms}^{-1}$$