models_comparison

Methodology

The idea is to have a final table that looks like this:

	scenario	<pre>gva_moyennes</pre>	fbar_moyennes		mode	el
1	A	0.78	0.5801356		I	MΑ
2	D	0.73	0.5791226		I	AΜ
3	L	1.01	2.3088715		I	AΜ
4	A	0.38	0.7900000		BEMTO	ĴĹ
5	D	0.47	0.7400000	BEMT00L		
6	L	-1.01	1.0700000		BEMTOOL	
7	A	0.65	0.5600000	Fake	Model	3
8	D	0.47	0.4400000	Fake	Model	3
9	L	-1.01	2.2000000	Fake	Model	3
10	A	0.35	0.4900000	Fake	Model	4
11	D	0.77	0.4400000	Fake	Model	4
12	L	-1.20	1.3000000	Fake	Model	4

To produce a plot like this

Relation between GVA & FBAR per scenario & model

To obtain this we need multiple ratios:

- each fleets GVA per scenarios that we could divide by the SQ scenarios
- each species F per scenarios that we could divide by the FMSY

We then need to compute an average per scenarios, for the GVA and for the F.