Lab 1 Report

g14_comp3.bdf

Top-level I/O

Inputs	Outputs
--------	---------

A[2..0] – 3 bit binary number AeqB – Boolean, high if A=B

B[2..0] - 3 bit binary number AgrB – Boolean, high if A = B+1

AslB - Boolean, high if B = A+1

Description of Subcircuits

The top-level circuit contains two subcircuits. The first is a 3 bit adder, which itself is composed of 1 bit adders. The 3 bit adder adds one to a 3 bit number through the use of 1 bit adders. It returns the sum of the input plus one as well as the carry-ahead value. The second subcircuit of the top-level is a 3 bit comparator which takes in 2 3-bit binary numbers and returns high if they are equal. The comparators are used to check for the outputs' validity.

g14_3bitadder.bdf

g14_1bitadder.bdf

g14_3bitcomp.bdf

Testing

The circuit was tested by applying all the combinations of A and B to the inputs and observing the three outputs. B was held steady as A increased from 000 to 111, then B incremented by one as A cycled through its possibilities again. This process continued until all combinations were achieved. When B was 000, AslB never was never true and when B was 111, AgrB was never true. This proves that the wrap-around catching mechanism in the top-level circuit using the carry-ahead value was effective.

g14_count4.bdf

The 4-bit counter was implemented using D flip-flops per standard design.

Top-level I/O

Inputs Outputs

clk – Boolean clock

Q[3..0] - 3 bit binary output

sc - Boolean count enable

Testing

The circuit was tested by starting with clk = 0 and sc = 0. clk then was set to switch every 40 ns. sc was set to 1 after 40 ns, and was kept high for the remainder of the test. Q started to change once sc was set to 1 and continued to increase. Thus, the circuit successfully implemented the 4-bit counter.

