IoTデバイス活用マニュアル

センサ種類:水分計

型番: Grove Moisture Sensor V1.4

ストーリー: 観葉植物の水やりタイミングを知る

•Arduinoのプログラムの変更

コードの変更箇所

WiFi 設定、デバイスキーの書き換え

WiFi の SSID、パスワードを入力する
Azure IoThub で発行されたデバイスのプライマリ文字列を該当箇所に反映する

2.Stream Analyticsのクエリ確認

水分計の値を確認する

Stream Analytics への書き込み状況を確認

StreamAnalytics での入力テストの例

{"Sensor":"moisture","EspValue":494} "hamanakaMoisture"

"2020-11-29T08:30:19.... 2

3. PowerBIでのレポートの作成

水分計の値をモニターする

データセットを開く

「折れ線グラフ」を選択

4.水やりのタイミングを知らせる

閾値を超えた場合に通知を送る

センサーの閾値を検討する

Specification

Item	Condition	Min	Typical	Max	Unit	
Voltage	-	3.3	-	5	٧	
Current	-	0	-	35	mA	
Output Value	Sensor in dry soil Sensor in humid soil Sensor in water	0 300 700		300 700 950	-	

Seeed社のウェブサイトにあるスペックシートから 3.3V でこのセンサーを使用した場合、乾いた土で 300、水に入れた状態で 700 の値を示すことがわかる。

「KPI」を選択

value を「インジケーター」にドラッグアンドドロップ

time を「トレンド軸」に ドラッグアンドドロップ

このビジュアルでのフィルターに「device」をドラッグアンドドロップして水分計のデバイスIDにチェックを入れる

ダッシュボードを確認

ダッシュボードでアラートを設定する

ダッシュボードでのアラートの設定

