Exercise Number: 3.2.2

Proposition. Consider a possibly infinite collection $\{A_{\alpha}\}_{{\alpha}\in I}$ of events. Suppose they are independent: i.e. for each $j\in\mathbb{N}$ and each distinct finite choice $\alpha_1,...,\alpha_j$ the following holds:

$$\mathbb{P}(A_{\alpha_1} \cap A_{\alpha_2} \cap \dots \cap A_{\alpha_j}) = \mathbb{P}(A_{\alpha_1})\mathbb{P}(A_{\alpha_2}) \cdots \mathbb{P}(A_{\alpha_j}).$$

Then if any arbitrary A_{α_i} is replaced by $A_{\alpha_i}^C$, the independence property still holds. Logically this implies any arbitrary number of the events may be replaced by their complements, and independence will still hold.

Proof. WLOG let i = 1 in the proposition, and let $B = A_{\alpha_2} \cap \cdots \cap A_{\alpha_j}$