Homework 4

Clearly describe the reasoning behind the work done in each problem.

SOLVE 5 OF ANY OF THE FOLLOWING PROBLEMS.

Problem 1: (20 points)

Solve for the capacitor's current and voltage, i_c and v_c , at $t = 0^-$, $t = 0^+$ and $t = \infty$.

Problem 2: (20 points)

Solve for v_c , i_c and i_s at $t = 0^-$, $t = 0^+$ and $t = \infty$. Explain whether the capacitor is charging or discharging.

Problem 3: (20 points)

Consider the two-position switch in the circuit, which has been in position a for a long time. At time t=0 the switch moves to position b. Determine the time for the capacitor to discharge to 2V and calculate the current at that time.

Problem 4: (20 points)

Solve for i_x at $t = 0^-$, $t = 0^+$ and $t = \infty$.

Problem 5: (20 points)

Solve for v_x and i_c at $t=0^-$, $t=0^+$ and $t=\infty$.

Problem 6: (30 points)

Solve for v_x at $t = 0^-$, $t = 0^+$ and $t = \infty$.

Problem 7: (20 points)

Solve for i_c at $t = 0^-$, $t = 0^+$ and $t = \infty$.

Problem 8: (30 points)

Solve for $v_c,\,i_c$ and i_s at t = $0^-,\,t$ = 0^+ and t = $\infty.$ Vy = 1 V.

Proh(em Two

When
$$t = 0$$

The second secon

Kcl on L₁

$$V_c + 2000 i_c = 0$$

$$V_c + 2000 \frac{da}{dt} = 0$$

$$V_c + 2000 C \frac{dv_c}{dt} = 0$$

$$Diff evential Equation Solving$$

$$V_e = V_c(o^{\dagger}) e^{-\frac{t}{Rc}}$$

$$\frac{V_c}{V_c(o^{\dagger})} = e^{-\frac{t}{Rc}}$$

$$-\frac{t}{Rc} = \ln\left(\frac{V_c}{V_c(o^{\dagger})}\right)$$

$$t = -RC \ln\left(\frac{V_c}{V_c(o^{\dagger})}\right)$$

$$= -(2000)(0.5e - 6) \ln\left(\frac{V_c}{5}\right)$$
Solve for tubon $V_c = 2v$

$$t = -(2000)(0.5e - 6) \ln\left(\frac{2}{5}\right)$$

$$= 9. |620| e - 4s$$
Solve for i_c at $t = 9. |620| e - 4s$

Solve for
$$V_y$$

Use Node Voltage Analysis

4 nodes - I grand - 2 voltage sewers = I anthony

Solve for V_y
 $V_z = V_z + V_z$
 $V_z = V_z + V_z$

