WHAT IS CLAIMED IS:

1	1. A wastewater treatment system comprising:
2	(a) an anaerobic reactor;
3	(b) a first aerobic reactor;
4	(c) a filtration device;
5	(d) a desalinization device;
6	(e) a first conduit connecting the anaerobic reactor to the first aerobic reactor
7	(f) a second conduit connecting the first aerobic reactor to the filtration
8	device; and
9	(g) a third conduit connecting the filtration device to the desalinization
10	device.
1	2. The wastewater treatment system of claim 1, wherein the first aerobic
2	reactor comprises an aeration device.
1	3. The wastewater treatment system of claim 1, wherein the second
2	conduit comprises a second aerobic reactor.
1	4. The wastewater treatment system of claim 3, wherein the second
2	conduit comprises a valve to direct flow of liquid from the first aerobic reactor to the
3	filtration device; or to direct flow of liquid from the first aerobic reactor to the second aerobi
4	reactor, and then to the filtration device.
1	5. The wastewater treatment system of claim 3, wherein the second
2	aerobic reactor comprises an aeration device.
1	6. The wastewater treatment system of claim 1, wherein the second
2	conduit further comprises a sludge holding member.
1	7. The wastewater treatment system of claim 6, wherein the sludge
2	holding member is a sludge settling tank.
1	O The weet avector treatment and a laim 6 with a main the all a
1	8. The wastewater treatment system of claim 6, wherein the sludge
2	holding member comprises a sludge dewatering device.

1	9. The wastewater treatment system of claim 8, wherein the sludge
2	dewatering device is selected from the group consisting of a filter press, a screw press, or a
3	belt press.
1	10. The westervision treatment avatem of aloim 6, wherein the governd
1	10. The wastewater treatment system of claim 6, wherein the second
2	conduit comprises a second aerobic reactor.
1	11. The wastewater treatment system of claim 10, wherein the second
2	conduit further comprises
3	a) a first liquid conduit, wherein the first liquid conduit connects the first
4	aerobic reactor to the second aerobic reactor or to the filtration device; wherein liquid effluent
5	is transferred from the first aerobic reactor to the second aerobic reactor or to the filtration
6	device; and
7	b). a first sludge conduit wherein the first sludge conduit connects the first
8	aerobic reactor to the sludge holding member.
1	12. The wastewater treatment system of claim 11, further comprising a
2	second liquid conduit, wherein the second liquid conduit connects the sludge holding member
3	and the first liquid conduit.
1	13. The wastewater treatment system of claim 11, further comprising a
2	second sludge conduit, wherein the second sludge conduit connects the second aerobic
3	reactor and the sludge holding member.
1	14. The wastewater treatment system of claim 10, wherein the sludge
2	holding member comprises a sludge dewatering device.
1	15. The wastewater treatment system of claim 14, wherein the sludge
2	dewatering device is selected from the group consisting of a filter press, a screw press, or a
3	belt press.
1	16. The wastewater treatment system of claim 1, wherein the anaerobic
2	reactor is an Anaerobic Biofilm Sequencing Batch Reactor (ABSBR).
1	17. The wastewater treatment system of claim 1, wherein the anaerobic

reactor is an Anaerobic Sequencing Batch Reactor (ASBR).

1	18. The wastewater treatment system of claim 1, wherein the anaerobic
2	reactor comprises an anaerobic reactor gas outlet, wherein methane gas is captured from the
3	anaerobic reactor gas outlet.
1	19. The wastewater treatment system of claim 1, wherein the filtration
2	device is selected from the group consisting of a sand filter, a microfilter, a belt filter, a
3	pressure filter, a vacuum filter, an activated charcoal filter, and biomass filter.
1	20. The wastewater treatment system of claim 1, wherein the
2	desalinization device is selected from the group consisting of reverse osmosis membrane
3	separation units, ultrafiltration units, activated carbon filters, and ion exchange resins.
1	21. The wastewater treatment system of claim 1, wherein the
2	desalinization device is a reverse osmosis membrane separation units.
1	22. The wastewater treatment system of claim 21, wherein the reverse
2.	osmosis membrane separation unit comprises a reverse osmosis membrane separation unit
3	permeate outlet, and a reverse osmosis membrane separation unit concentrate outlet.
1	23. The wastewater treatment system of claim 1, wherein the wastewater
2	comprises food waste products.
1	24. The wastewater treatment system of claim 1, wherein the wastewater
2	comprises animal waste products.
1	25. The wastewater treatment system of claim 1, wherein the wastewater
2	comprises biological fermentation wastes.
1	26. A method of treating wastewater, the method comprising the steps of
2	(a) treating for a first period, a first mixture comprising wastewater under
3	anaerobic conditions in an anaerobic reactor to form an anaerobic reactor effluent;
4	(b) treating for a second period, the anaerobic reactor effluent under aerobic
5	conditions in a first aerobic reactor to form a first aerobic reactor effluent;
6	(c) passing the first aerobic reactor effluent through a filtration device to form
7	a filtration device effluent; and

8 (d) passing the filtration device effluent through a desalinization device to 9 form a desalinization device effluent. 27. The method of claim 26, further comprising the step of incubating the 1 2. first aerobic reactor effluent for a third period in a second aerobic reactor to form a second aerobic reactor effluent; and passing the second aerobic reactor effluent through the filtration 3 device. 4 28. The method of claim 26, further comprising the step of removing 1 sludge by collecting sludge in a sludge holding tank. 2 29. The method of claim 26, further comprising the step of removing 1 2 sludge using a sludge dewatering device. 1 30. The method of claim 26, wherein the wastewater comprises food waste 2 products. The method of claim 26, wherein the wastewater comprises animal 1 31. 2 waste products. 1 32. The method of claim 26, wherein the wastewater comprises biological 2 fermentation wastes. 1 33. The method of claim 26, wherein the anaerobic reactor is an Anaerobic 2 Biofilm Sequencing Batch Reactor (ABSBR). 1 34. The method of claim 26, wherein the anaerobic reactor is an Anaerobic 2 Sequencing Batch Reactor (ASBR). 1 35. The method of claim 26, wherein the anaerobic reactor comprises an anaerobic reactor gas outlet and methane gas is captured from the anaerobic reactor gas 2 3 outlet. 1 36. The method of claim 26, wherein the filtration device is selected from 2 the group consisting of a sand filter, a microfilter, a belt filter, a pressure filter, a vacuum filter, an activated charcoal filter, and biomass filter. 3

1	37. The method of claim 26, wherein the desalinization device is selected
2	from the group consisting of a reverse osmosis membrane separation unit, an ultrafiltration
3	unit, an activated carbon filter, and an ion exchange resin.
1	38. The method of claim 26, wherein the desalinization device is a revers
2	osmosis membrane separation unit.
1 .	39. The method of claim 38, further comprising the step of passing the
2	filtration device effluent through the reverse osmosis separation unit to form a reverse
3	osmosis concentrate and a reverse osmosis permeate, wherein the reverse osmosis permeate
4	is reclaimed water, and the reverse osmosis permeate is concentrated liquid fertilizer.

40.

flocculent chemicals.

1 2

The method of claim 26, further comprising the step of adding