ДИСПЕРСИОННЫЙ АНАЛИЗ

Однофакторный дисперсионный анализ

Во многих практических ситуациях представляет интерес влияние того или иного фактора на рассматриваемый признак.

Пусть, например, оценка качества поверхности детали проводится с помощью l приборов и необходимо исследовать влияние фактора «прибор» на результат измерений. Если приборов два, то проверка нулевой гипотезы о равенстве их средних показаний проводится обычными методами проверки статистических гипотез. Если же l > 2, то используются методы диспертьлсионного анализа.

Проверяется нулевая гипотеза H_0 : $m_1 = m_2 = ... = m_l$ об отсутствии влияния на результативный признак X фактора A, имеющего l уровней A_k , k = 1, ..., l. Основная идея дисперсионного анализа состоит в том, чтобы сопоставить дисперсию за счет воздействия фактора A с дисперсией, обусловленной случайными причинами. Если различие между ними не существенно, то влияние фактора A на признак X незначительно. Если же различие между факторной и остаточной дисперсиями значимо, то это говорит о влиянии фактора A на рассматриваемый признак X.

Предполагается, что случайная величина X имеет нормальное распределение с математическим ожиданием m_k , зависящим от уровня фактора A_k , и постоянной дисперсией σ^2 . В качества исходных данных используются выборочные значения величины X, полученные для каждого уровня фактора A; число элементов выборки на каждом уровне равно n, тогда общее число наблюдений nl, x_{ik} - результат

номер	Уровни фактора А				
опыта	A1	A2	Ak	Αl	
1	X11	X12	X1k	X 11	
2	X12	X22	X2k	X21	
l	l				
i	Xi1	Xi2	Xik	Xil	
n	Xn1	Xn2	Xnk	Xnl	

i -го наблюдения (i=1, ..., n) за k-тым уровнем фактора A (k=1, ..., l).

Выборочная средняя, соответствующая k-му уровню фактора A, (групповая средняя) вычисляется по формуле:

$$\frac{1}{x_k} = \frac{1}{n} \sum_{i=1}^n x_{ik} \; ; \tag{3.1}$$

общая выборочная средняя есть

$$\overline{x} = \frac{1}{nl} \sum_{k=1}^{l} \sum_{i=1}^{n} x_{ik} = \frac{1}{l} \sum_{k=1}^{l} \overline{x}_{k}.$$
 (3.2)

Для вычисления дисперсии найдем суммы квадратов.

Общая сумма квадратов — это сумма квадратов отклонений наблюдаемых значений x_{ik} от общей выборочной средней:

$$Q = \sum_{k=1}^{l} \sum_{i=1}^{n} (x_{ik} - \overline{x})^2 = \sum_{k=1}^{l} \sum_{i=1}^{n} x_{ik}^2 - nl\overline{x}^2$$
(3.3)

Факторная сумма квадратов (обусловленная влиянием фактора A) - это сумма квадратов отклонений групповых средних от общей средней:

$$Q_{A} = n \sum_{k=1}^{l} (\bar{x}_{k} - \bar{x})^{2} = n \sum_{k=1}^{l} \bar{x}_{k}^{2} - n l \bar{x}^{2}$$
(3.4)

Остаточная сумма квадратов характеризует рассеяние внутри группы:

$$Q_e = \sum_{k=1}^{l} \sum_{i=1}^{n} (x_{ik} - \bar{x}_k)^2$$
(3.5)

На практике эта сумма определяется из основного тождества дисперсионного анализа, в соответствии с которым

$$Q = Q_A + Q_e \tag{3.6}$$

Разделив суммы квадратов на соответствующее число степеней свободы, найдем соответствующие дисперсии (иногда их называют средними суммами квадратов):

$$S^{2} = \frac{Q}{nl-1},$$

$$S_{A}^{2} = \frac{Q_{A}}{l-1},$$

$$S_{e}^{2} = \frac{Q}{l(n-1)}.$$
(3.7)

Если нулевая гипотеза о равенстве средних справедлива, то эти дисперсии являются несмещенными оценками дисперсий генеральной совокупности. Значительное превышение дисперсии S_A^2 над дисперсией S_e^2 можно объяснить различием средних в группах. Поэтому для проверки нулевой гипотезы используется отношение этих средних, которое имеет распределение Фишера

$$F = \frac{S_A}{S_e} = \frac{\frac{1}{l-1}Q_A}{\frac{1}{l(n-1)}Q_e}$$
(3.8)

с числом степеней свободы (l-1) и l(n-1). Гипотеза H_0 : $m_1=m_2=\ldots=m_l$ не противоречит результатам наблюдений при заданном уровне значимости α , если

$$F > F_{1-\alpha}(l-1,l(n-1))$$

в этом случае считается, что фактор A не оказывает существенного влияния на признак X.

Результаты расчета обычно сводятся в таблицу.

Источник	Сумма	Число	Дисперсия	Выборочное
дисперсии	квадратов	степеней		значение
		свободы		статистики
				Фишера
Φ актор A	Q_A	<i>l</i> – 1	$S_A^{\ 2}$	F
Остаток	Q_e	<i>l</i> (<i>n</i> – 1)	$S_e^{\ 2}$	
Общая	Q	<i>ln</i> – 1	S^2	

3.2. Многофакторный дисперсионный анализ

В двухфакторном дисперсионном анализе проверяется влияние на результативный признак X двух факторов A и B и их взаимодействия. Фактор A имеет l уровней A_j , $j=1,\ldots,l$; фактор B-r уровней B_k , $k=1,\ldots,r$. При каждом сочетании уровней A_jB_k делается n наблюдений. Общее число наблюдений nlr.

Проверяются три нулевые гипотезы: об отсутствии влияния на результативный признак X фактора A, фактора B и их взаимодействия AB.

Пусть X_{ijk} — результат i-го наблюдения ($i=1,\ldots,n$) при j-ом уровне фактора A и k-ом уровне фактора B. Тогда средняя, соответствующая сочетанию уровней A и B:

$$\overline{x}_{jk} = \frac{1}{n} \sum_{i=1}^{n} x_{ijk}$$

средняя, соответствующая уровню A_j :

$$\bar{x}_{0j} = \frac{1}{nr} \sum_{i=1}^{n} \sum_{k=1}^{r} x_{ijk} = \frac{1}{r} \sum_{k=1}^{r} x_{jk}$$

средняя, соответствующая уровню B_k :

$$x_{k0} = \frac{1}{nl} \sum_{i=1}^{n} \sum_{j=1}^{l} x_{ijk} = \frac{1}{l} \sum_{j=1}^{l} \overline{x}_{jk}$$

общая средняя

$$\overline{x} = \frac{1}{nlr} \sum_{i=1}^{n} \sum_{j=1}^{l} \sum_{k=1}^{r} x_{ijk} = \frac{1}{l} \sum_{i} \overline{x}_{0j} = \frac{1}{r} \sum_{k=1}^{r} x_{k0}$$

По аналогии с однофакторным анализом справедливо тождество

$$Q = Q_A + Q_B + Q_{AB} + Q_e$$

где общая сумма квадратов:

$$Q = \sum_{i} \sum_{j} \sum_{k} (x_{ijk} - \bar{x})^2$$

сумма квадратов, учитывающая влияние фактора A:

$$Q_A = nr \sum_j (\bar{x}_{0j} - \bar{x})^2$$

сумма квадратов, учитывающая влияние фактора В:

$$Q_B = nl \sum_{k} (\bar{x}_{0k} - \bar{x})^2$$

сумма квадратов, учитывающая взаимодействие факторов A и B:

$$Q_{AB} = n \sum_{j} \sum_{k} (\bar{x}_{jk} - x_{0j} - x_{k0} + \bar{x})^{2}$$

остаточная сумма квадратов:

$$Q_e = \sum_i \sum_j \sum_k (x_{ijk} - \bar{x}_{jk})^2$$

соответствующие дисперсии:

$$S^{2} = \frac{Q}{nlr - 1},$$

$$S_{A}^{2} = \frac{Q_{A}}{l - 1},$$

$$S_{B}^{2} = \frac{Q_{B}}{r - 1},$$

$$S_{AB}^{2} = \frac{Q_{AB}}{(l - 1)(r - 1)},$$

$$S_{e}^{2} = \frac{Q_{e}}{lr(n - 1)}.$$

Проверка нулевых гипотез осуществляется с использованием статистик Фишера:

$$F_{A} = \frac{S_{A}^{2}}{S_{e}^{2}},$$

$$F_{B} = \frac{S_{B}^{2}}{S_{e}^{2}},$$

$$F_{AB} = \frac{S_{AB}^{2}}{S_{e}^{2}},$$

которые сравниваются с соответствующими квантилями. Например, гипотеза H_0 об отсутствии влияния взаимодействия факторов A и B на результативный признак X принимается, если

$$F_{AB} < F_{1\!-\!\alpha} \left[(l-1)(r-1), lr\,(n-1) \right]$$

Результаты оформляются в виде таблицы.

Источник	Сумма	Число	Дис-	Выборочное
дисперсии	квад-	степеней	персия	значение
	ратов	свободы		статистики
				Фишера
Φ актор A	Q_A	<i>l</i> – 1	$S_A^{\ 2}$	F_A
Фактор <i>В</i>	Q_B	r – 1	S_B^2	F_B
Взаимодействие	Q_{AB}	(l-1)(r-1)	S_{AB}^{2}	F_{AB}
AB				
Остаток	Q_e	<i>rl</i> (<i>n</i> − 1)	$S_e^{\ 2}$	
Общая	Q	<i>lrn</i> – 1	S^2	

Алгоритм трехфакторного дисперсионного анализа аналогичен двухфакторному. Оценивается влияние факторов A, B, C, их попарного взаимодействия AB, BC, AC и общего взаимодействия ABC на результативный признак X. Фактор A имеет I уровней, фактор B-r уровней, фактор C-q

уровней. При каждом сочетании уровней проводятся по n измерений, то есть общее число измерений *nlrq*.

Таблица трехфакторного анализа имеет вид:

Источник	Сумма	Число	Дис-	Выборочное
дисперсии	квад-	степеней	персия	значение
	ратов	свободы		статистики
				Фишера
Φ актор A	Q_A	l-1	$S_A^{\ 2}$	F_A
Фактор В	Q_B	r-1	S_B^2	F_{B}
Φ актор C	Q_C	Q-1	$S_C^{\ 2}$	F_C
Взаимодействие АВ	Q_{AB}	(l-1)(r-1)	S_{AB}^{2}	F_{AB}
Взаимодействие ВС	Q_{BC}	(q-1)(r-1)	S_{BC}^{2}	F_{BC}
Взаимодействие АС	Q_{AC}	(l-1)(q-1)	S_{AC}^{2}	F_{AC}
Взаимодействие	Q_{ABC}	(<i>l</i> -1)(<i>r</i> -1)*	S_{ABC}^{2}	F_{ABC}
ABC		*(q-1)		
Остаток	Q_e	<i>lrq</i> (<i>n</i> − 1)	$S_e^{\ 2}$	
Общая	Q	<i>lrqn</i> – 1	S^2	

Для проверки нулевой гипотезы, например, об отсутствии влияния общего взаимодействия ABC значение статистики Фишера

$$F_{ABC} = \frac{S_{ABC}^2}{S_e^2} = \frac{\frac{1}{(l-1)(r-1)(q-1)}Q_{ABC}}{\frac{1}{lrq(n-1)}Q_e}$$

сравнивается с квантилью

$$F_{1-\alpha}[(l-1)(r-1)(q-1), lrq(n-1)]$$