Transitions de phase

 $\underline{\text{D\'efinition}}: \text{Transition de phase} \implies \text{\'em\'ergence d'un param\`etre d'ordre } (\left<\hat{\phi}\right> \neq 0) \text{ en dessous d'une temp\'erature}$ (pression, champ magnétique, ...) T_c suite à une brisure (spontané) de symétrie.

Figure 1 – Deux grands types de symétries

Transition	$\langle \phi angle$	ordre	nouvelles excitations
gaz-liquide	$ ho_L- ho_G$	1 ou 2	aucune
liquide-solide	$ ho_?$	1	phonons
Para - ferro (magnétique)	??	2	magnons, antiferro magnons
Cristaux liquides	(une fonction de l'angle)	2	oui(parce que θ varie continuement)
Superfuluide (${}^{4}\mathrm{He}^{(1)} \rightarrow {}^{4}\mathrm{He}^{(2)}$)	fonctions d'onde macrosopique		mode de vibrations, vortex
supracondictivité	$\Psi \sim \Psi e^{i arphi}$		Pas d'excitation sans gap, Mécanisme Anderson-Higgs

${\bf Gaz\text{-}liquide/liquide\text{-}solide}$

Ensemble isobar-isotherme

$$G(T, P, N) = Ng(T, P,)$$

$$\left(\frac{\partial G}{\partial N}\right)_{T,P} = \mu = g$$