Final Exam: Frequently Asked Questions

Math 195 Section 91

Wednesday July 22, 2009

What will the final exam be like?

There will be **18 questions** on the exam and it will last **120 minutes**. It will be worth 400 points.

As on the first exam, the final question will be extra credit with true/false questions.

Should I bring a calculator?

Absolutely not. Calculators are **forbidden**. You may bring the official Math 195 Paper Slide Rule, if you really want to.

How should I write down my answers?

Your task is not merely to find an answer—it is to provide an explanation. You will lose points if you surround an otherwise convincing argument with false statements (after all, once I have proved 2 = 1, I can prove anything!). **Erase** untrue statements for full credit.

Is the exam cumulative?

Yes; the final exam will cover—and combine! provided little boxes so you can check off the ta	, e
\square Find the slope of a tangent line to a curve	☐ Write vectors as a linear combination of other vectors
☐ Find the slope of a tangent line to a curve given in polar coordinates	☐ Compute dot products
\square Find distance between points in \mathbb{R}^2 , \mathbb{R}^3 , and \mathbb{R}^n	□ Determine when vectors are orthogonal□ Find the angle between two vectors

	Normalize a vector	Write down a linear approximation to a function
	Compute the norm of a vector Compute the cross product of two vec-	Find the tangent plane to a function at
	tors in \mathbb{R}^3 Find an equation for a line through a	a point Compute partial derivatives with the
	given point and in a given direction	chain rule Compute the gradient of a function
	Find an equation for a plane through a given point and with a given normal vector	Compute directional derivatives
		Find critical points
	Determine whether two lines intersect, are parallel, or are skew	Find maximum and minimum values
	Find the point of intersection between	Use the second derivative test
	a line and a plane	Optimize a function given a constraint with Lagrange multipliers
Ш	Differentiate and integrate vector- valued functions	Evaluate double and triple integrals
	Caclulate unit tangent vectors to a curve	Integrate a function over a rectangular region
	Find the angle of intersection between curves	Integrate a function over a general region
	Differentiate a vector-valued function	Apply Fubini's theorem
	Compute a limit of a function of several variables	Convert polar coordinates to cartesian coordinates.
	Convert a limit from cartesian coordinates to polar coordinates	Evaluate integrals using polar coordinates
	Define continuity for functions of sev-	Use cylindrical coordinates
	eral variables	Convert cartesian coordinates to spher-
	Give an example of a limit that does not exist	ical coordinates. Use spherical coordinates
	Compute partial derivatives	_
		Compute a Jacobian
	Compute higher partial derivatives	Find the area of a given region
	Give an example in which mixed partials commute	Compute the volume of a 3-dimensional region