

TEOREMAS DE CONVERGENCIA

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 21) 17.ABRIL.2023

En esta sección estudiaremos algunos teoremas de convergencia importantes en el desarrollo de la teoría de la integral de Lebesgue, y de funciones $L^1(\mu)$, así como sus apliaciones.

Recordemos que en el Aula 18, desarrollamos el Teorema de Beppo Levi.

Teorema (Teorema de Beppo Levi)

Sea (X, \mathcal{A}, μ) espacio de medida. Para una secuencia no-decreciente de funciones mesurables positivas $\{f_n\}_{n\geq 1}\subseteq \mathcal{M}^+(\mathcal{A})$, con $f_1\leq f_2\leq f_3\leq\dots$ Entonces, el límite $f=\lim_n f_n=\sup_n f_n\in \mathcal{M}^+(\mathcal{A})$. Además,

$$\int (\sup_n f_n) d\mu = \int f d\mu = \sup_n \int f_n d\mu.$$

Equivalentemente,

$$\int (\lim_n f_n) d\mu = \int f d\mu = \lim_n \int f_n d\mu.$$

Teorema (Lema de Fatou)

Sea (X, \mathcal{A}, μ) espacio de medida, y sea $\{f_n\}_{n\geq 1}\subseteq \mathcal{M}^+(\mathcal{A})$ una secuencia de funciones mesurables no-negativas. Entonces la función $f=\liminf_n f_n\in \mathcal{M}^+(\mathcal{A})$ y

$$\int (\liminf_{n\to\infty} f_n) \, d\mu \leq \liminf_{n\to\infty} \int f_n \, d\mu.$$

Prueba: Recordemos que $\liminf_n f_n = \sup_k \inf_{n \geq k} f_n$ siempre existe, y ya probamos que define una función mesurable no negativa.

Como la secuencia $g_k=\inf_{n\geq k}f_n\in\mathcal{M}^+(\mathcal{A})$, es tal que $g_k\nearrow f$, por Beppo Levi

$$\int \liminf_{n \to \infty} f_n \, d\mu = \int \sup_{k} \inf_{n \ge k} f_n \, d\mu = \sup_{k} \left(\int \inf_{n \ge k} f_n \, d\mu \right)$$

$$\leq \sup_{k} \left(\inf_{n \ge k} \int f_n \, d\mu \right) = \liminf_{n \to \infty} \int f_n \, d\mu. \square$$

Teorema (Lema de Fatou Revertido)

Sea (X, \mathcal{A}, μ) espacio de medida, y sea $\{f_n\}_{n\geq 1}\subseteq \mathcal{M}^+(\mathcal{A})$ una secuencia de funciones mesurables no-negativas, tales que $f_n\leq f$, $\forall n$, para una $f\in \mathcal{M}^\mathcal{A}$, con $\int f \,d\mu < +\infty$. Entonces

 $\int (\limsup_{n\to\infty} f_n) d\mu \geq \limsup_{n\to\infty} \int f_n d\mu.$

Prueba: Ejercicio!

Obs!

- El Lema de Fatou es uno de los "lemas más importantes" del análisis.
- Existe una versión del Lema de Fatou para medidas. Si $\{A_n\}_{n\geq 1}\subseteq \mathcal{A}$
 - i) $\mu(\liminf_n A_n) \leq \liminf_n \mu(A_n)$.
 - ii) $\limsup_n \mu(A_n) \leq \mu(\limsup_n A_n)$, cuando μ es una medida finita.

Teorema (Teorema de Convergencia Monótona)

Sea (X, A, μ) espacio de medida.

i) Sea $\{f_n\}_{n\geq 1}\subseteq L^1(\mu)$ una secuencia creciente de funciones integrables, con $n\nearrow f$, $f=\sup_n f_n$. Entonces $f\in L^1(\mu)\Leftrightarrow \int f\,d\mu<+\infty$ y en ese caso

$$\int f d\mu = \int \lim_{n\to\infty} f_n d\mu = \lim_{n\to\infty} \int f_n d\mu.$$

ii) Sea $\{f_n\}_{n\geq 1}\subseteq L^1(\mu)$ una secuencia decreciente de funciones integrables, con $n\searrow f$, $f=\inf_n f_n$. Entonces $f\in L^1(\mu) \Leftrightarrow \int f\,d\mu>-\infty$ y en ese caso

$$\int f d\mu = \int \lim_{n \to \infty} f_n d\mu = \lim_{n \to \infty} \int f_n d\mu.$$

Prueba: Observe que (i) \Rightarrow (ii) tomando $-f_n$. Basta entonces mostrar (i).

Como $f_n \in L^1(\mu)$ para todo $n \ge 1$, y $f_1 \le f_2 \le \cdots \le f_n \le \cdots$, entonces las funciones $f_n - f_1 \ge 0$ definen una secuencia creciente de funciones integrables en $\mathcal{M}^+(\mathcal{A})$,

$$0 = f_1 - f_1 \le f_2 - f_1 \le f_3 - f_1 \le \cdots \le f_n - f_1 \le \cdots$$

Por Beppo Levi, en el límite, $\lim_n (f_n-f_1)=f-f_1\in \mathcal{M}^+(\mathcal{A})$, y asumiendo $f\in L^1(\mu)$ $0\leq \sup_n \int (f_n-f_1)\,d\mu=\int \sup_n (f_n-f_1)\,d\mu=\int (f-f_1)\,d\mu.$

Así,
$$\sup_{n} \int f_{n} d\mu = \sup_{n} \int \left[(f_{n} - f_{1}) + f_{1} \right] d\mu = \sup_{n} \left[\int (f_{n} - f_{1}) d\mu + \int f_{1} d\mu \right]$$

$$= \sup_{n} \int (f_{n} - f_{1}) d\mu + \int f_{1} d\mu = \int (f - f_{1}) d\mu + \int f_{1} d\mu = \int f d\mu$$

$$= \int \sup_{n} f_{n} d\mu < +\infty.$$

Recíprocamente, si $\sup_n \int f_n \, d\mu < +\infty$, entonces de nuevo por Beppo Levi

$$\int (f-f_1)\,d\mu=\int \sup_n (f_n-f_1)\,d\mu=\sup_n \int (f_n-f_1)\,d\mu=\sup_n \int f_n\,d\mu-\int f_1\,d\mu<+\infty.$$

por lo que $f-f_1\in L^1(\mu)$. Como $f_1\in L^1(\mu)$, entonces $f=(f-f_1)+f_1\in L^1(\mu)$. Esto muestra que

$$\int f \, d\mu = \int (f-f_1) \, d\mu + \int f_1 \, d\mu = \sup_n \int f_n \, d\mu < +\infty.$$
 \Box

Teorema (Teorema de Convergencia Dominada)

Sea (X, \mathcal{A}, μ) espacio de medida, y sea $\{f_n\}_{n\geq 1}\subseteq L^1(\mu)$ una secuencia de funciones integrables, tales que $|f_n(\mathbf{x})|\leq w(\mathbf{x}), \, \forall n, \, \forall \mathbf{x}\in X$, para alguna función integrable $w\in L^1(\mu)$, y suponga que $f=\lim_n f_n$. Entonces

i)
$$\lim_{n\to\infty}\int |f_n-f|\,d\mu=0$$
.

ii) $f\in L^1(\mu)$ y vale

$$\int f \, \mathrm{d}\mu = \int \lim_{n o \infty} f_n \, \mathrm{d}\mu = \lim_{n o \infty} \int f_n \, \mathrm{d}\mu.$$

Prueba: De la hipótesis $|f_n| \le w$, para todo $n \ge 1$, tenemos que $|f| = \lim_n |f_n| \le w$. Entonces, como $w \in l^1(\mu)$ $\int |f| \, d\mu \le \int w \, d\mu < +\infty,$

y esto muestra que $|f| \in L^1(\mu)$. Portanto, $f \in L^1(\mu)$.

(i) De la desigualdad triangular, tenemos $|f_n-f| \le |f_n|+|f| \le w+w=2w$. Luego, $2w-|f_n-f| \ge 0$, para todo $n \ge 1$.

Por el Lema de Fatou

$$\int 2w \, d\mu = \int \liminf_{n \to \infty} (2w - |f_n - f|) \, d\mu \leq \liminf_{n \to \infty} \int (2w - |f_n - f|) \, d\mu$$

$$\leq \int 2w \, d\mu - \limsup_{n \to \infty} \int |f_n - f| \, d\mu.$$

De ahí que o
$$\leq \liminf_{n \to \infty} \int |f_n - f| \, d\mu \leq \limsup_{n \to \infty} |f_n - f| \, d\mu \leq \text{o}.$$
 En consecuencia, $\liminf_{n \to \infty} \int |f_n - f| \, d\mu = \limsup_{n \to \infty} |f_n - f| \, d\mu = \text{o},$ y portanto,
$$\lim_{n \to \infty} \int |f_n - f| \, d\mu.$$

Mostramos que (i) \Rightarrow (ii). Observe que

$$\Big|\int f_n d\mu - \int f d\mu\Big| = \Big|\int (f_n - f) d\mu\Big| \le \int |f_n - f| d\mu.$$

Luego,
$$\lim_{n\to\infty} \Big| \int f_n \, d\mu - \int f \, d\mu \Big| \leq \lim_{n\to\infty} \int |f_n-f| \, d\mu = \mathsf{o}.$$

Esto muestra que
$$\left|\lim_{n\to\infty}\int f_n\,d\mu-\int f\,d\mu\right|=0.$$

En consecuencia,

$$\lim_{n o\infty}\int f_n\,d\mu=\int f\,d\mu=\int\lim_{n o\infty}f_n\,d\mu.$$
 \Box

Obs!

- En el Teorema de Convergencia Dominada, podemos reemplazar $\forall \mathbf{x} \in X$ en el enunciado por $\forall \mathbf{x} \in X$ μ -c.t.p.
- Si hacemos lo anterior, el conjunto

$$N = \{\mathbf{x} \in X : \lim_{n} f_n(\mathbf{x}) \text{ no existe}\} \cup \bigcup_{n \ge 1} \{\mathbf{x} \in X : |f_n(\mathbf{x})| \ge w(\mathbf{x})\}$$

es un conjunto mesurable, con medida $\mu(N) = 0$, ya que $f_n, w \in \mathcal{M}(A)$.

En ese caso, las funciones $f \cdot \mathbf{1}_{N^c}$ y $f_n \cdot \mathbf{1}_{N^c}$ satisfacen las condiciones del teorema.

• La hipótesis de las f_n ser dominada uniformemente ($|f_n(\mathbf{x})| \le |w(\mathbf{x})|$, $\forall \mathbf{x} \in X$), para $w \in L^1(\mu)$ es esencial.

Ejemplo: Sea $(X, \mathcal{A}, \mu) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda^1)$. Definamos la secuencia de funciones $f_n : \mathbb{R} \to \mathbb{R}$, dadas por

$$f_n(\mathbf{x}) = n \cdot \mathbf{1}_{[0,1/n]}(\mathbf{x}) = \begin{cases} n, & 0 \le \mathbf{x} \le \frac{1}{n}; \\ 0, & \text{otro caso.} \end{cases}$$

Las f_n son funcinoes simples,

Entonces
$$f_n \in \mathcal{M}^+(\mathcal{A})$$
.

Además,
$$f_n = n \cdot \mathbf{1}_{[0,1/n]} \rightarrow 0$$
, λ^1 -c.t.p.

Por otro lado,

$$\int_{\mathbb{D}} f_n \, d\lambda^1 = \int_{\mathbb{D}} 1 \cdot \mathbf{1}_{[0,1/n]} \, \dot{\chi}^1 = n \int_0^{1/n} d\lambda^1 = n \cdot \lambda^1([0,1/n]) = n \cdot \frac{1}{n} = 1, \ \forall n \geq 1.$$

Así, tenemos
$$\int \lim_n f_n d\lambda^1 = \int o d\lambda^1 = o y \lim_n \int f_n d\lambda^1 = \lim_n 1 = 1$$
.