Ebsempel: Karre when lake: Tolde lengt shuger 56 m

Mchimen auflden: F

$$F = xy + 2x2 + 2y2$$

Derium:
$$\frac{\partial F}{\partial x} = 28 - 3y - 4x$$
, $\frac{\partial F}{\partial y} = 28 - 3x - 4y$

Fav:

$$4x + 3y = 28$$
 | .4 | $16x + 12y = 4 \cdot 28$
 $3x + 4y = 28$ | -3 | $-9x - 12y = (-3) \cdot 28$

$$7x = 28 \Rightarrow x = 4$$
 $y = 9$
 $2 = 14 - x \cdot y = 6$

Mulig mals: (4,4,6)

Currendinalister: $A = \frac{\partial^2 F}{\partial x^2} (4,4) = -4$, $B = \frac{\partial^2 F}{\partial x \partial y} (4,4) = -3$

$$D = \begin{vmatrix} A & B \\ B & C \end{vmatrix} = \begin{vmatrix} -4 & -3 \\ -3 & -4 \end{vmatrix} = (-4)(-4) - (-3)(-3) = 16 - 9 = 7 > 0$$

Ser of D>0, A <0, allow or (4,4) of local modernium.

Oplumening under hildingsber

Hittel: Wato/mm. } (x) van del ette en legemenique ja x

 $\frac{N\dot{c}}{c}$ — 11 — $\int_{0}^{\infty} (\bar{x}) \sin \hat{u} \sin \hat{u} \cos \hat{u} \cos \hat{u} \cos \hat{u} \cos \hat{u} \cos \hat{u}$ of $(\bar{x}) = \hat{b}$.

tiletrigelse.

Konkredsever lil 2-dim: Owher à molssieue g(x,y) under

Df = 2 Day Lagrange-multiplikator.

Terum. Onto at f. g: R on lo funtagener und hartmulige gestull derruh. Onto at x en at lokelt mohaimum aller minimum for f go mengden

 $A = \{ \vec{x} \in \mathbb{R}^m \mid g(\vec{x}) = b \}$. Do or enter $\nabla g(\vec{x}) = \vec{0}$ eller del fermes et fell \vec{x} while all $\nabla f(\vec{x}) = \vec{x} \nabla g(\vec{x})$

VB and 4, le 16 13

Ebsempl: Firm mols of min. Il

{ (x,y) = xy under bildingelsen

Geombish.

Sor the puller plik of
$$\nabla f = 205$$
.

The (x,y) = $\begin{pmatrix} \frac{3}{3} \\ \frac{3}{3} \\ \frac{3}{3} \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$

$$\nabla \varphi(x,y) = \begin{pmatrix} \frac{\partial \varphi}{\partial x} \\ \frac{\partial \varphi}{\partial y} \end{pmatrix} = \begin{pmatrix} 16x \\ 2y \end{pmatrix}$$

Sith im i $\nabla f = 1 \nabla y$. $y = 188 \times 1$ Har lyd hel is ble den x = 28 y Stoote lipniger med den $9x^2 + y^2 = 18$ ombe: Problem: kan $x_1 y_1$ eller x_2 van lih O. Son of delta a

 $\frac{\text{Deley:}}{x} = \frac{\sqrt{8}x}{2x} = \frac{9x}{y}$

y? = 9 x? S. Har im & Der bredje hørungeri $9x^{2} + 9x^{2} = 18 \implies x^{2} = 1 + x = 1 + y^{2} = 9 \implies y = \frac{1}{3}$

L'osninger: (1,3), (1,-3), (-1,3), (-1,-3)

$$f(x,y) = xy$$

$$f(1,3) = 1, 3 = 3, f(1,-3) = 1, (-3) = -3$$

$$f(-1,3) = (-1)\cdot 3 = -3, f(-1,-3) = (-1)(-3) = 3$$

Flere lildergebes

Max (um hil $\int (x_1, x_n)$ under libehingsberne $g_1(x_1, x_n) = b_1$ $g_2(x_1, x_n) = b_2$ \vdots $g_{k_1}(x_1, x_n) = b_k$

Tenem. Onto at $f, q: \mathbb{R} \to \mathbb{R}$ han hautinedy partilldemede. Densom \bar{x} en at leftelt mels eller minimum for f på mengden $A = \{ \vec{x} \in \mathbb{R}^m \mid q, (\bar{x}) = b_n q_2(\bar{x}) = b_2, \dots oq q_k(\bar{x}) = b_k \vec{y}_2 \}$ Så en enten $\nabla q_1(\bar{x}), \nabla q_2(\bar{x}), \dots \nabla q_k(\bar{x})$ binead arbengige eller det firms handante $\chi_1, \chi_2, \dots, \chi_k$ which et $\nabla f(\bar{x}) = \chi_1 \nabla q_1(\bar{x}) + l_2 \nabla q_2(\bar{x}) + \dots + l_k \nabla q_k(\bar{x})$

Sidne punter des Of = 1,09, + 1,092

$$\nabla f = \begin{pmatrix} 2 \times -2 \\ 4 & \gamma \\ 2 & +1 \end{pmatrix}, \quad \nabla g_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \nabla g_2 = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$$

7 = 1, 07, 1 1, 092:

3 lieps.

Nucl Subjulc $2x-2=\lambda_1+2\lambda_2$ $4y=\lambda_1-\lambda_2$ $2z+1=\lambda_1-\lambda_2$ $2z+1=\lambda_1-\lambda_2$

Copphile mals/min-prolluer:

Karre Men lokk: Pår 56 m 2 Mahnnerer:

$$f(x_1y_1 + 2x_2 + 2x_2 + 2y_2 + 2x_2 + 2y_2 + 2x_2 + 2y_2 + 2x_2 + 2y_2 + 2y_$$

Bruhn Lagrange:

$$\nabla f = \begin{pmatrix} y + 2z \\ x + 2z \\ 2x + 2y \end{pmatrix}, \quad \nabla g = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Har: