PATENT SPECIFICATION

NO DRAWINGS

876,015

Date of Application and filing Complete Specification: March 15, 1960.

No. 9154/60.

Application made in Germany on March 24, 1959.

Complete Specification Published: Aug. 30, 1961.

-Classes 111, B3(Cl: C2: C3: C4: C5: F1: F2); 2(3), C1E6K4, C3A12(A4A: B1: C5), C3A14(A3A: A8C: B3E: B8C); and 81(1), E1C3B3, E1C4(A2: A3: B2: B3: B4), E1C(5C: 7B). Index at Acceptance :-

International Classification: -C05b, c, d, f. A01n. C07d.

COMPLETE SPECIFICATION

Improvements in or relating to Compositions for Furthering the Growth and Yield of Plants

We, CHEMISCHE WERKE ALBERT, a German Body Corporate of Wiesbaden-Biebrich, Germany, do hereby declare the invention, for which we pray that a patent may be granted 5 to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

The present invention concerns new compositions for use in agriculture or horticulture

10 particularly for regulating the growth of plants. We have found that mono- or di- alkyl substituted ureas or cyclic substituted ureas have a growth regulating action on plants, and when used at suitable rates of application act 15 as plant-growth stimulants. By the term "cyclic substituted ureas" as used herein we mean compounds in which the

_N-C-N-

grouping of urea forms part of a ring system. Thus the term includes such compounds as imidazolone-2 and benzimidazolone-2.

According to the invention therefore we 25 provide agricultural or horticultural compositions possessing plant growth regulating properties and comprising as active ingredient one or more mono-alkyl or di-alkyl substituted ureas or cyclic-substituted ureas (as herein 30 defined) together with a suitable carrier as herein defined. The term "suitable carrier" as used herein means any substance or mixture of substances suitable for the formulation of the active ingredient for application in agri-35 culture or horticulture, it being understood however that no claim is made herein to any previously known combination of any of the said active ingredients with any other sub-

The compositions according to the invention may be employed to regulate the growth of plants of widely differing nature. For example, at a suitable rate of application they may be [Price 3s. 6d.]

used to stimulate the growth of crops of many kinds as well as to improve the development of blossom and fruit. In addition they appear to increase the resistance of plants to withering.

Valuable mono- or di-alkyl substituted ureas for use in compositions according to the invention are those in which the alkyl substituents contain from 1 to 4 carbon atoms, the test-butyl group being particularly pre-ferred. Examples of such urea derivatives are N-tert-butyl-urea, N,N'-di-tert-butyl-urea and N-N'-dimethylurea.

Of cyclic substituted ureas imidazolone-2 and derivatives thereof are particularly useful for use in compositions according to the invention. Such derivatives of imidazolone include for example alkyl-, aryl- or furylsubstituted imidazolone-2, and benzimidazolone-2, substituted, if desired, in the benzene ring by halogen, alkyl, amino, alkoxy or acyl radicals. Examples of suitable imidazolone-2 derivatives are the following compounds:-

4,5-di-[furyl]-imidazolone-2, 4.5-diphenyl-imidazolone-2. 4.5-dimethyl-imidazolone-2 5-chloro-benzimidazolone-2 5-methoxy-benzimidazolone-2, 5-acetyl-benzimidazolone-2, 5-myristyl-benzimidazolone-2, 5-butyryl-benzimidazolone-2, 4,5,6-trimethyl-benzimidazolone-2

The growth-promoting action of the urea 75 derivatives in compositions according to the invention is surprising. At the most it might have been expected that a urea derivative would have a nutritive effect equivalent to its nitrogen-content, comparable for example with urea 80

70

Suitable carriers for use in the compositions according to the invention include both solid and liquid carriers. Liquid compositions according to the invention may be in the form 85 of solutions, emulsions or suspensions, in

	water or suitable organic solvents of a non-	with furoin, acctoin or benzoin, preferably in	
	phytotoxic nature. Liquid compositions may	solution in acetic acid, the corresponding 4,5-	
	include one or more dispersing, emulsifying,	disubstituted imidazolone-2 compounds may	
	suspending, wetting, nutritional, plant-growth	be obtained.	70
5	stimulating, fungicidal, bactericidal, insecti-	In order that the invention may be well	
	cidal, acaricidal and/or solid-improving agents.	understood the following Examples are given	
	In the preparation of emulsions containing	by way of illustration only.	
	the active usea derivatives, the usea derivatives	Example 1	
	may first be dissolved in an organic solvent,		75
10	cince they are generally solid at normal amplement	224	15
	temperatures. The solution of urea derivative	nutrients	
	may then be converted into an circuision in	A Knop nutrient solution contain N-tert-	
	water, preferably using one or more suitable	butyl urea is made up by dissolving the follow-	
	empleifying agents.	ing substances in 100 cc. water:-	
15	The concentration of urea derivative obtain-		80
17	able in an aqueous solution (which may contain	0.25 g. magnesium sulphate	
	other ingredients) is generally fairly low.	0.25 g. potassium dihydrogen phosphate	
	Thus N-tert-butyl-urea and benzimidazolone-2	0.12 g. potassium chloride	
	have a solubility of 0.00025% in distilled water	0.025 g. N-tert-butyl urea.	
	have a solution of 0.00025 /o in collector hutvi-	To this solution is added 1cc of a 5% solution	85
20	at room temperature, and N,N'-dl-tert-butyl- urea a solubility of 0.0003% under the same	of FeCl ₂ . 5H ₂ O. For application the solution	
	urea a solubility of 0.0005% under the same	is diluted with water in a ratio of nutrient	
	conditions. However, imidazolone-2 has a	solution to water of 1 to 10. The solution is	
	solubility of 40% under these conditions, thus	suitable for so-called hydroculture.	
_	permitting the preparation of highly con-	Example 2	90
25	centrated solutions of this compound.	Composite fertilizer solution containing macro-	
	Solid compositions according to the inven-	and micro-nutrients	
	tion may include various inert diluents e.g.	A 0.1 to 0.5% aqueous solution is produced	
	clays, chalk, sand, earth and pear, and may		
	take the form of dusts, granulates or wettable	from the following mixture:—	95
-30	nawders. The solid carrier may also include	16.4 parts by weight monoammonium	
	nutritional other plant-growth stimulating,	phosphate	
	fingicidal, bactericidal, insecticidal, acaricidal,	27.0 parts by weight of a mixture of am-	
	soil-improving agents, binding agents and also	monium sulphate and ammonium	
	humus substances. Solid compositions accord-	nitrate	100
35	ing to the invention may be applied in any	13.0 parts by weight urea	100
-	convenient form, for example as dusts,	0.4 parts by weight anhydrous magnesium	
	granulates and wettable powders etc. For the	sulphate	
	preparation of dispersions it is generally pre-	0.9 parts by weight manganese sulphate	
	familie to mix the urea derivative with a	(.1H ₂ O)	102
40	suitable solid carrier. The solids should of	0.5 parts by weight copper sulphate	105
	course he finely ground.	(.5H ₂ O)	
	Further examples of substances which may	0.1 parts by weight zinc sulphate (.1H2O)	
	be employed in association with urea deriva-	0.5 parts by weight boric acid	
	tives in compositions according to the inven-	1.2 parts by weight N,N'-di-tert-butyl-	
45	tion include for example micro-nutrients, such	urea.	110
40	as the trace elements copper, manganese and	This solution may be used directly, or for	
	boron, macro-nutrients such as superphos-	so-called leaf fertilizing may be diluted to a	
	phate, potash and nitrogenous compounds.	concentration of 0.1 to 0.2%.	
	The compositions according to the invention	Example 3	
-	may be employed at any suitable time. Thus,	Emulsion	115
שכ	for example, soil may be treated before sowing	1.66 Parts of benzimidazolone-2, 50 parts	
	seed, the seed may itself be treated, or the	ethanol and 25 parts of cyclohexanone are	
	growing plant may be treated at a sufficiently	heated to boiling under a reflux condenser.	
	early period for the treatment to have a suitable	5 parts olive oil and 1 part of emulsifying agent	
	carry period for the treatment to have a daran-	(a polyethylenealkyl ether) are gradually added.	120
52	effect. For treating growing plants an advan-	Upon dilution with water an emulsion is	
	tageous method of application is by spraying	obtained, which can be used for spraying.	
	a liquid composition according to the inven-	Example 4	
	tion. More than one application of a com-	Dry compositions	
_	position according to the invention during	10 parts by weight of imidazolone-2 are	125
60	the life of a plant may, of course, be carried out.	intimately mixed with 85 parts by weight of talc	
	The urea derivatives for use in compositions	as carrier and 5 parts by weight of a dispersing	
	according to the invention are generally readily	as carrier and a bare of meight or a dispersing	
	prepared. Thus, for example, benzimidazo-	agent, (a commercially available polyethylene	
	lone-2 may be prepared in good yield by	adduct, and then finely ground. This com-	120
6	reacting o-phenylenediamine with urea in	position is used for dusting, or alternatively	
	· · · · · · · · · · · · · · · · ·		

mixed with fine sand, and used for scattering. The finely ground composition may also be made up as a dispersion for spraying. Using kaolin or prepared chalk as carrier, the composition is applied as a 0.01 to 0.1% dispersion in water.

EXAMPLE 5

Seed-treating compositions

A. Combination with insoluble, but resorbable micro-nutrients

The following are mixed dry with 5 to 20 parts of 4,5-di-(furyl)-imidazolone-2:

15 to 30 parts by weight calcium borate 15 to 30 parts by weight cuprous oxide

30 to 60 parts by weight manganous oxide. All the components are used in a finely ground condition. To improve adhesion and hence reduce dust, 2 to 4 parts by weight of spindle oil are worked into the composition, while for 20 identification 0.05 to 1 part by weight of a dye may also be incorporated. Seed is treated dry

with this composition. B. Combination with the same micro-nutrients and fungicides

Into the mixture of Example 5A above are worked in addition:-

1 to 10 parts by weight of organic mercury compound, namely methoxyethyl-mercury benzoate and/or 5 to 20 parts by weight of hexa-30 chlorophenol or pentachloronitrobenzene.

If it is desired simultaneously to control insects, for example wire worms, insecticides such as hexachlorocyclohexane, aldrin and dieldrin, may be added to an extent of 20-40% 35 by weight of the seed-treating composition. Corresponding reductions in the amount of manganous oxide should preferably be made when adding these insecticides.

Example 6 40 Compositions containing macro-nutrients A. 0.2 to 0.5% of 4,5-dimethyl-imidazolone-

2 are added to superphosphate fertilizer.

B. 1.2 parts by weight of 4,5-dimethylimidazolone-2 are worked into the mixture of Example 2, and the composite fertilizer so 45 obtained applied in the solid state.

C. The dry composition of Example 2 is first made up without a urea derivative, and then the 5-chloro-benzimidazolone is dusted onto the composition in a slightly damp, 50 granulated form. For this the urea derivative is mixed before dusting with dry talc.

D. The composition described in Example 2 is worked into a paste, or formed into kernels, balls, rods or other suitably-shaped bodies for 55 fertilizing, using a suitable binding-agent, such as a solution of a glue.

EXAMPLE 7

Compositions with inert solid carriers 2 to 5 mg of N,N'-dimethyurea are mixed 60 into each litre of a mixture of earth and sand, and this composition applied in any convenient manner.

A number of experiments were also conducted in order to illustrate the growth-promoting 65 action of the urea derivatives of the compositions according to the invention. The results of these experiments are presented in tabular form, each table representing experiments conducted on a particular species of 70

The growth-promoting action of the urea derivatives used according to the invention is first shown by the cress root test carried out by the plate method of Flaig and Otto (Land-75 wirtschaftliche Forschung, Vol. 3, page 66 (1951/52)). To a 16 Knop nutrient solution (cp. e.g. Schropp, die Methodik der Wasserkultur hoherer Pflanzen, page 132, Neumann-Verlag 1951) is added 2.5 mg of urea derivative 80 per litre, and the length of the roots is measured after 6 days.

TABLE 1

Demonstration of activity by the cress root test Amount of urea derivative: 2.5 mg. per litre of 16 Knop nutrient solution Measurement after 6 days

Anornae length of root Number of

77-ma	Urea derivative		in millimetres		individual	
Exp. No.	O. j.a. abistassis		absolute	relative	measurements	
1	Control without urea derivative	•••	146	100	98	
2	N.N'-di-tert-butyl urea	•••	162	111	108	
2	i-idenologo ()	•••	168	115	102	
2	A.E. J. IC Ilimidamlana 2		162	111	101	
4	4,5-ci-[riry]jimcazoione-2	•••	164	112	95	
5	henzimidazolone-2	***	101			

As is shown in the table, the growth of the 85 cress roots is increased by 11-15% by the addition of the urea derivative. For greater accuracy, a large number of individual measurements were carried out each time.

In a further series of experiments, growth-'90 promoting urea derivatives were incorporated in a seed-treating composition, which consisted of the micro-nutrients copper, boron and manganese in a sparingly soluble form and absorbable by the plant, but otherwise contained no further additives. Yellow oats 95 served as test plants; the experiments were carried out in Mitscherlich vessels, and the results evaluated in the usual form.

The amount of urea derivative used was 18 parts by weight to 100 parts by weight of seed- 100 treating agent, corresponding to 1.5 mg. of urea derivative per vessel.

Vessel experiment with yellow oats
Seed treatment with sparingly soluble micro-nutrients and urea derivative corresponding to 1.5 mg. per vessel

Yields

_		Total	Grain	Straw
Exp. No.	Urea derivative	g. M± m rel	M± m rel	g. M± m rel 28.0 0.98 96
ă	Control without urea derivative Control with added Hg* 4,5-d-[furyl] imidazolone-2 N.N'-di-tert-butyl-urea		21.2 0.01 100 21.1 0.24 100 24.2 0.97 115 24.3 0.20 115	28.0 0.98 96 29.3 0.48 100 31.2 1.20 107 31.9 1.50 109

M is the mean value of the results obtained from a series of experiments. m is the deviation of individual results in the series of experiments from the mean value of the results. rel is the relative value of the mean value of a series of experiments with regard to the mean value of the control taking the control as 100.

*So as to facilitate a comparison with the next series of experiments, experiments 9 from table 3 has been included here.

The next series of experiments was carried out with a seed-treating agent which contained 15 the same sparingly soluble, absorbable mixture of micro-nutrients (Cu, Mn, B) and in addition 2% of organically combined mercury; the urea derivatives of compositions according to the invention are worked into this composition,

and the seeds are treated dry. The experiments 20 were carried out in Mitscherlich vessels with the same test plant (yellow oats) as in Table 2. The amount of urea derivative used was varied as follows:—

Experiment No. 10: 6 parts by weight of urea 25 derivative to 100 parts by weight of seed-treating composition=0.5 mg. of urea derivative per vessel

Experiment No. 11: 18 parts by weight of urea derivative to 100 parts by weight of seed- 30 treating composition=1.5 mg. of urea derivative per vessel

Experiment No. 12: 6 parts by weight of urea derivative to 100 parts by weight of seed-treating composition =0.5 mg. of urea deri-35 vative per vessel.

Vessel tests with yellow oats

Seed treatment with sparingly soluble, absorbable micro-nutrients, 2% organically combined mercury and urea derivatives.

Yields

Emb	Urea derivative	Total	Grain	Straw M+ m rel
10	Control without urea derivative benzimidazolone-2 benzimidazolone-2 N ₂ N'-di- <i>tart</i> -butyl-urea	57.4 0.67 1	00 21.1 0.24 100	29.3 0.48 100 32.1 0.75 110 33.4 0.22 114 33.0 1.45 113

The growth-promoting action of the urea derivatives in the above table appears to be uniform for both grain and straw relative to the control sample.

These urea derivatives had a similar action in experiments with green peas likewise carried out in Mitscherlich vessels. The seed was 45 treated with the mixture of sparingly soluble

micro-nutrients, 2% of organically combined mercury and urea derivatives.

Amount of urea derivative in all experiments (control excepted):—

6 parts by weight to 100 parts by weight of 50 seed-treating composition =0.5 mg. of urea derivative per vessel.

Vessel tests with green peas Seed treatment with sparingly soluble micro-nutrients, 2% of organically combined mercury and 0.5 mg. of urea derivative per vessel.

Yizlds

.		fresh weigh	ht	dry	weigh	t
14	4.5-di-[furvi]-imidazolone-2	$M \pm m$ 127.9 3.8 150.6 2.34 148.9 0.97	<i>rel</i> 1 0 0	M ± 21.8 26.1 25.2	0.76 0.30	<i>rel</i> 100 120 116

The effectiveness of the urea derivatives in compositions according to the invention can clearly be seen.

Green maize (country maize from Baden) served as test plant in the next series. The seed was treated dry as in the previous experiments with a mixture of sparingly soluble micro-nutrients, 2% of organically combined 10 mercury and urea derivatives and then placed

in Mitscherlich vessels.

In one case (experiment 18), dry unsubsti-tuted urea itself was worked into the seedtreating composition in such a quantity that the composition contained 5.7% of nitrogen. 15 This corresponds approximately to the quantity of nitrogen contained in the compositions containing urea derivatives according to the invention.

Vessel tests with green maize Seed treatment with sparingly soluble micro-nutrients, 2% of organically combined mercury and urea derivatives. In experiment 18, the added urea corresponds to 5.7% N. In experiment 23, the urea derivative was applied by leaf-spraying.

	applied by leaf-spraying.			Yiel	ld d r y	
Exp.	Urea derivative	addition by	Amount	subs M±	tance m	rel
20 No. 17 18 19 20 21 22 23	Control without urea derivative Control +urea N-tert-butyl-urea N,N'-di-tert-butyl-urea benzimidazolone-2 benzimidazolone-2 N-tert- and N,N'-di-tert-butyl- urea 1: 1 in 0.0025% aqueous solution	seed-treating composition "" "" leaf-spraying		88.6 85.7 104.8 92.4 106.6 97.5	1.55 1.55 2.16 1.64 2.56 2.85 3.62	103 100 122 108 124 114 113

The results of this table are informative in several respects. Experiment 18 shows the action of unsubstituted urea acting as a source of nitrogen. Comparison with experiments 19 25 to 23 shows that the activity of the urea derivatives used in accordance with the invention is substantially greater and exceeds the effect of simple nitrogen addition. This was unexpected, since the nitrogen is more firmly 30 bound in the urea derivatives, so that a slower absorption by the plant would be expected to occur. Putting the value for urea at 100 as has been done here, then the urea derivatives used according to the invention caused an 35 increase of yield of up to 24%.

Experiment 23 shows on the one hand that

more than one urea derivative can be used at once, and on the other hand that application by means of leaf-spraying, using highly dilute solutions is both possible and effective.

The following tables contain experimental results for broad beans (Vicia faba) in Mitscherlich vessels:-

Table 6, experiments 24 to 30: addition of urea derivative by seed-treating composition as 45 described above.

Table 7, experiments 31 to 37: addition of urea derivative by leaf-spraying with highly dilute solutions.

Table 8, experiments 38 to 42: addition of urea 50 derivative by mixing into the soil, similar to the so-called crumb fertilisation.

Vessel tests with broad beans

Seed treatment with sparingly soluble micronutrients, 2% of organically combined mercury and urea derivatives.

			Yu	uas jar	y	
Exp.	Urea derivative	Application mg.	. substance			
No.	Crow durious	per vessel	М±	271	rel	
24	Control without urea derivative		23.1	1.20	100	
	Control+urea		23.6	1.13	102	
25	N-tert-butyl-urea	0.8	25.5	1.03	110	
26	N-tert-butyl-urea	1.6	27.2	0.32	118	
27	N.N'-di-tert-butyl-urea	1.6	26.6	0.41	115	
28	N,N-m-tert-butyl-mea	1.6	26.2	0.88	114	
29	imidazolone-2	2.4	27.8	1.02	120	
20	imidazolone-2	#4-T				

The control experiment with urea (No. 25) with the urea derivatives used according to here also confirms its low activity compared the invention.

TABLE 7

Vessel tests with Broad beans
Seed treatment with sparingly soluble micronutrients 2% of organically combined mercury.
Addition of active composition by leaf-spraying with 0.0025% solutions.

Ent		Application ml.	substance		
Exp. No.	Urea derivative	per vessel	M:	Ŀ m	rel
	Control without urea derivative		23.1	1.2	100
31		2 x 10	25.9	0.49	112
32	N-tert-butyl-urea	$\tilde{2} \times \tilde{10}$	25.5	0.64	110
33	N,N'-di-tert-butyl urea		25.7	0.35	111
34	N-tert- and N,N'-di-tert-butyl	2 x 10	25.1	ررن	111
	urea (1 : 1)		07.1	0.01	117
35	imidazolone-2	2×10	27.1	0.91	
36	imidazolone-2 and benzimidazo-	2 x 10	27.8	0.32	120
	lone-2 in a ratio of 1:1				
45	N-tert- and N.N'-di-tert-butyl	2×10	27.9	1.14	121
37	M-fett- and Man and penale				
	urea, imidazolone-2 and benzi-				
	mid_{2} olone-2 (1:1:1:1)				

The results achieved by means of leaf-spraying of the highly dilute solutions (0.0025%) are of the same order of magnitude as those obtained 10 by means of seed treatment. Thus this recently developed method of applying macro- and micro-nutrients and insecticides can also be used for the application of compositions according to the invention. The solutions of the active substances can be applied in one or more sprayings, and wetting agents and the like may also be incorporated in the solutions. Fine distribution also increases activity of the

urea derivatives.

For applying the urea derivatives by means 20 of so-called crumb fertilisation, 10 mg. of urea derivative were thoroughly mixed with the total quantity of soil in individual Mirscherlich vessels (6 kg). The soils received in addition a uniform fertilisation with the 25 macro-nutrients superphosphate, potash and nitrogen. Since the fertilisation of the soil was carried out uniformly in all experiments of this series, it can be ignored when assessing the results.

Yields dry

Vessel tests with broad beans

Seed treatment with sparingly soluble micro-nutrients, 2% of organically combined mercury, and 10 mg. of urea derivative worked into 6 kg. of soil. Uniform ground-fertilisation with phosphorus, potash and nitrogen.

Exp.		Yields	dry su	bstances
No.	Urea derivatives		- m	rel
38	Control without urea derivative	23.1	1.20	100
39	N-tert-butyl-urea	25.7	1.13	111
40	N.N'-di-tert-butyl-urea	26.8	0.73	116
41	imidazolone-2	26.0	0.51	113
42	benzimidazolone-2	26.0	1.20	113

Further experiments were carried out with a typical leaf plant, namely with spinach (sharp-seed winter). Here a simple increase of growth may be equated with an increase of yield.

The experiments were carried out in seedling

boxes under open country conditions. The seed was treated with the above-mentioned micro-nutrient mercury seed-treating composition into which the urea derivatives had been worked, and sowed each time in 4 rows, at a rate of one gram of seed per linear metre.

TABLE 9

Box experiments with spinach

Open country conditions, seed treatment with sparingly soluble micronutrients, 2% of organically combined mercury and urea derivatives.

Application parts by

		weight of urea derivative per	Yields				
Exp. No.	Urea derivative	100 parts of seed-treating	fresh w	eight	đry w	eight	
ZID.		composition	grams	rel	grams	rel	
43	Control without urea derivative		336.5	100	31.7	100	
. 44	N-tert-butyl-urea	12	497:7	142	47.3	149	
45	N.N'-di-tert-butyl-urea	12	428.1	· 127	38.0	120	
46	imidazolone-2	12	426.8	127	39.9	126	
	benzimidszolone-2	6	448.6	133	43.4	137	
47 40	benzimidazolone-2	12	513.6	152	48.2	152	

15 The growth or yield increase is here particularly significant. Thus in one case it amounts to more than 50%, otherwise from 27 to 42%.

In a further series of experiments seeds of forest trees were treated dry with a mixture of 20 sparingly soluble but resorbable micro-nutrients and urea derivatives, such as are described in Tables 3 to 8.

The growth-promoting influence of the active substances according to the invention on the seed of *Quercus rubra* and *Fagus sibastica* first became apparent in that compared with the untreated controls, a substantially larger number of fruit germinated, whereupon also the young plants showed a stronger development; subsequently a stronger development

and widening of the leaves took place.

In another series of experiments year-old seedlings of forest pine (Pinus silvestris) were dipped into 0.002 to 0.02% aqueous solutions of the active urea derivatives for 5 to 10 minutes and planted immediately thereafter.

Compared with the untreated controls the number of seedlings which took root was first substantially higher, and very soon the treated 40 plants showed an increased needle formation

and a stronger growth in length. Their development was in general also stronger.

As is shown in the following series of experiments the urea derivatives used according to the invention are suitable not only for 45 promoting the growth of useful plants, but also of ornamental plants.

N-tertiary butyl urea was dissolved in a mixture of ethanol and water (1:1) with the addition of a small quantity of a commercially 50 available dispersing agent (an ethylene oxide condensation product) to yield a 5% solution, and this solution was then diluted with water in the ratio of 1:500.

Then 20 cc of this dilute solution were used 55 for pouring on seedlings of the Alpine violet (Cyclamen persicum) which were grown in pots in a layer of peat; each pot containing 500g. of peat. Test plants and untreated controls were treated with a well-balanced ground-fertilizer (2 g. per litre of peat) containing phosphorus, potash and nitrogen, as in Table 8, small quantities of the micro-nutrients Mn, Cu, B in the form of water-soluble salts, and in addition 3 g of calcium carbonate. The figures of the table are mean values for 5 plants each time.

	Doe test wif	TABLE IV h seedlings of		nicum		
	Tot test with	Widths of leaves in an		Number of ^ leaves	Flowers and buds after	
Exp. No. 49 50 51	Urea derivative Control without urea derivative 2 x 2 mg of N-tert-butyl-urea 2 x 4 mg of N-tert-butyl-urea	6 weeks 6 10 10	20 weeks 7.8 12 12	after 20 weeks 31 40 44	22 w 1 8 7	
71	2	*fully grown	leaves			

WHAT WE CLAIM IS:-

1. Agricultural or horticultural compositions possessing plant-growth regulating properties 5 and comprising as an active ingredient one or more mono-alkyl or di-alkyl substituted ureas or cyclic-substituted ureas (as herein defined) together with a suitable carrier as herein defined.

2. Compositions as claimed in claim 1, in which the suitable carrier is a liquid and comprises in addition one or more of the following agents: dispersing, emulsifying, suspending, wetting, nutritional, plant-growth stimulating, fungicidal, bactericidal, insecticidal, acaricidal and/or soil-improving agents.

3. Compositions as claimed in claim 1 in solid form in which the suitable carrier includes one or more of the following: inert, solid 20 diluents and nutritional, plant-growth stimulating, fungicidal, bactericidal, insecticidal, acaricidal, soil-improving and/or agents, fillers and humus substances.

4. Compositions as claimed in any of the preceding claims in which the alkyl-substituted ureas are substituted with alkyl groups containing 1 to 4 carbon atoms.

5. Compositions as claimed in claim 4, in

which the alkyl-substituted ureas are N-tert-

butyl-urea, N,N'-di-tert-butyl-urea and N,N'- 30 dimethylurea.

6. Compositions as claimed in any of claims 1 to 3, in which the cyclic-substituted ureas are imidazolone-2, alkyl-, aryl- and furyl-substituted imidazolone-2, benzimidazolone-2, 35 and halogen-, alkyl-, amino-, alkoxy- or acylsubstituted derivatives thereof.

7. Compositions as claimed in claim 6, in

which the cyclic-substituted ureas are
4,5-di-[furyl]-imidazolone-2,
4,5-diphenyl-imidazolone-2,
4,5-dimethyl-imidazolone-2,
5-chloro-benyimidazolone-2 40 5-chloro-benzimidazolone-2 5-methoxy-benzimidazolone-2, 5-acetyl-benzimidazolone-2, 45 5-myristyl-benzimidazolone-2, 5-butyryl-benzimidazolone-2,

4,5,6-trimethyl-benzimidazolone-2. 8. Agricultural and horticultural composi-tions as claimed in claim 1 substantially as 50 herein described with reference to the Examples.

For the Applicants: FRANK B. DEHN & CO., Chartered Patent Agents, Kingsway House, 103 Kingsway, London, W.C.2.

Printed for Her Majesty's Stationery Office by J. Looker Ltd., Poole, Dorset. 1961.
Published at The Parent Office, 25, Southampton Buildings, London, W.C.2, from which copies may be obtained.