

Universidad Tecnológica Nacional Facultad Regional Villa María Ingeniería en Sistemas de la Información Sintaxis y Semántica de los Lenguajes TRABAJO PRÁCTICO N°3

Profesores:

Ing. Mario Rinaldi Ing. Jorge Palombarini (J.T.P.) Grupo L

Alumnos:

- Comba, Enzo (enzo_comba@hotmail.com) (13648)
- Mairone, Nicolás (mairone.nicolas@gmail.com) (13672)
- Pereyra, Bruno (pizzi686@gmail.com) (12206)
- Cerutti, Alejo (alejocerutti4@gmail.com) (13503)

- 1. Para el autómata M1 determine.
 - a) ¿Cuál es el estado inicial?
 - b) ¿Cuál es el estado de aceptación?
 - c) ¿Qué secuencia de estados sigue el autómata ante la entrada aabb?
 - d) Especifique la descripción formal de M1
- a) Estado inicial: q1
- b) Estado de aceptación: q2
- c) $\{(q1 -> a, q2), (q2 -> a, q3), (q3 -> b, q1), (q1 -> b, q1)\}$ La secuencia podría ir entre corchetes, así como está es un conjunto.

- d) La descripción formal para M1 es $(Q, \Sigma, \delta, q1, \epsilon)$ donde
 - 1. $Q = \{q1, q2, q3\},\$
 - 2. $\Sigma = \{a, b\}$
 - 3. δ está dado por

a b	_	• 5 000		P	
			a		b

q1	q2	q1
q2	q3	q3
q3	q2	q1

- 4. q1 es el estado inicial, y
- 5. $F = \{q2\}$
 - 2. Dada la siguiente descripción formal de un autómata, diseñe el diagrama de estados del mismo.

$$\begin{pmatrix} \{q_1,q_2,q_3,q_4,q_5\}, \{\mathtt{u},\mathtt{d}\}, \delta,q_3,\{q_3\} \}, \end{pmatrix}$$
, $\begin{pmatrix} \mathtt{u} & \mathtt{d} \\ q_1 & q_1 & q_2 \\ q_2 & q_1 & q_3 \\ q_3 & q_2 & q_4 \\ q_4 & q_3 & q_5 \\ q_5 & q_4 & q_5 \end{pmatrix}$

- 3. Parte 1: Obtener los diagramas de estado de los autómatas que reconocen los siguientes lenguajes.
 - a. L={w|w comienza con 1 y termina con 0} Σ ={0,1}
 - b. L={w|w contiene al menos tres 1} Σ ={0,1}
 - c. L={w | w contiene el substring 0101} Σ ={0,1}
 - d. * L={w|w tiene una longitud de al menos 3, y su tercer símbolo es un 0} Σ ={0,1}
 - e. * L={w|w tiene longitud impar y comienza con 0, o comienza con 1 y tiene longitud par} Σ ={0,1}
 - f. Δ L={w|w tiene una cantidad par de 0 y 1} Σ ={0,1}
 - g. L={w|w no contiene tres b consecutivas} Σ ={a,b}
 - h. Δ L={w|w no contiene las subcadenas aa o bb} Σ ={a,b}
 - i. * L={w | w contiene una cantidad impar de 0 y 1} Σ ={0,1}
 - j. Δ L={w|w $\in \Sigma^*$, y, si |w|=5, entonces contiene al menos dos a's} Σ ={a,b}

a-

 $0,1\,\,\mathrm{No}$ es necesaria esta transición, igualmente reconoce el lenguaje

b-

c-

f-

g-

No reconoce cadenas válidas como bba, etc

h-

j-

4. Para el siguiente AFN

4a. Obtener la descripción formal del mismo.

La descripción formal es $(Q, \Sigma, \delta, q1, F)$ donde: 1. $Q = \{q1, q2, q3, q4\}$ 2. $\Sigma = \{0,1\}$ 3. δ :

1.
$$Q = \{a1, a2, a3, a4\}$$

2.
$$\Sigma = \{0,1\}$$

$$3. \delta$$
:

	0	1	3
q1	{q1}	{q1,q2}	Ø
$\mathbf{q2}$	{q3}	Ø	{q3}
q3	Ø	{q4}	Ø
$\mathbf{q4}$	{q4}	{q4}	Ø

4. q1 es el estado inicial

5. $F = \{q4\}$

4b. ¿Qué lenguaje reconoce? Dar ejemplos positivos de cadenas reconocidas y no reconocidas.

El lenguaje que reconoce es: L={w|w contiene las subcadenas 101 o 11}

Cadenas reconocidas: 101, 11, 00010100 Cadenas no reconocidas: 00010,1, 001

5. Diseñe un AFN que reconozca todos los Strings de la forma 0^k donde k es múltiplo de 2 o 3.

- a. Determine si los mismos son determinísticos o no determinísticos.
- b. Determine qué lenguaje reconoce cada uno.

6)

a)

No determinístico.

L= {w|w si empieza en b termina con longitud de 1} Σ ={a,b}

b)

No determinístico.

L= {w|w contiene la substring aa o bb} Σ = {a,b}

c)

No determinístico.

L= $\{w|w \text{ si empieza con a puede terminar con longitud de } 1 \text{ o puede terminar con ab's infinitas veces} \}$ $\Sigma = \{a,b\}$

7. Δ Para el siguiente autómata:

- Especifique: Estado inicial, Estado final y Alfabeto, suponiendo que todos los símbolos están presentes en las transiciones del AF.
- De 3 ejemplos de cadenas reconocidas por el mismo. ¿Qué lenguaje reconoce? (Ej. L(Ai)={w|w...})

a- Estado inicial: a1 estado final: a5 $\Sigma = \{0,1\}$

- b- Reconoce las cadenas:
 - •abbbaa
 - •abaabaa
 - •abaaaaaaaaabaa

 $L(Ai)=\{w|w \text{ empieza con ab } y \text{ termina con aa.}\}$

- 8. Construir autómatas finitos no deterministas que acepten los siguientes lenguajes:
- a. El lenguaje de las cadenas sobre el alfabeto binario cuyo último símbolo coincida con el primero.
- b. El lenguaje de las cadenas sobre el alfabeto binario cuyo último símbolo no aparezca con anterioridad.

8)a

8)b

9. Δ Parte 1: Convertir los siguientes autómatas no deterministas en autómatas deterministas

Parte 2: a) Empleando el lenguaje de programación Python y la librería automata-lib valide computacionalmente el diseño de los autómatas de la Parte 1.

- **b)** Verifique computacionalmente que los autómatas implementados en a) son los autómatas mínimos.
- c) Verifique computacionalmente la conversión realizada en el punto a)

9)a

9)b

- 10. Sean A1 y A2 dos autómatas finitos deterministas, y sean L1 y L2 los lenguajes reconocidos respectivamente. Demostrar las siguientes afirmaciones:
- 1. Existe un autómata A que tiene por lenguaje L1 U L2.
- 2. Existe un autómata A que tiene por lenguaje L1 L2.
- 3. Existe un autómata A que tiene por lenguaje L1 L2.

A1:

L1={W|W contiene la cadena 10.}. $\Sigma = \{0,1\}$

L2={W | W contiene la cadena 101 }. $\Sigma = \{0,1\}$

1. Automata A que tiene por lenguaje L1 U L2 :

2. Autómata A que tiene por lenguaje L1 - L2 :

3. Autómata A que tiene por lenguaje L1 \cap L2 :

11 Δ. **Parte 1:** Suponga que los autómatas siguientes representan, cada uno, el comportamiento de dos sistemas distintos; los estados se corresponden con los estados posibles del sistema en cuestión, y las transiciones con las acciones permitidas en cada estado mencionado. Obtenga un AFD que permita determinar si existen y cuáles son las secuencias de acciones que son válidas en ambos sistemas al mismo tiempo.

Explique la metodología empleada para obtener el autómata.

11) a:

La metodología de resolución aplicada al problema fue la siguiente consideramos los lenguajes sobre el alfabeto Σ ={a, b}, luego realizamos el producto cartesiano entre ambos autómatas y finalmente dimos como estado final los estados en los que eran finales en ambos autómatas, ya que debíamos realizar la intersección entre ambos.