Proposition 1. Any finite union of closed sets is closed, and any arbitrary intersection of closed sets is closed.

Proof. Proposition 1 - Any finite union of closed sets is closed.

Let C, D be closed sets.

Let A, B be compliments of C, D so A, B are open.

Then, $A \cap B$ is also open.

Thus, $X\setminus (A\cap B)$ is closed.

 $X \setminus (A \cap B) = X \setminus A \cap X \setminus B = C \cup D$

Inductive Proof:

 $C_1 = C \cup D$, C_1 is closed.

 $C_2 = C_1 \cup E$, C_2 is closed.

 $C_n = C_1 \cup C_2 \cup ... \cup C_n \cap (n-1), C_n$ is closed.

 $C_n(n+1) = C_n \cup Z$, $C_n(n+1)$ is closed.

Proposition 1 - Any arbitrary intersection of closed sets is closed.

Let \mathcal{C} be a collection of closed sets.

Let \mathcal{U} be the compliment of \mathcal{C} , so \mathcal{U} is a collection of open sets.

Then, $\bigcup \mathcal{U}$ is also open.

Thus, $X \setminus \bigcup \mathcal{U}$ is closed.

 $X \setminus \bigcup \mathcal{U} = \bigcap \mathcal{C}$

Therefore, $\bigcap \mathcal{C}$ is closed.

Proposition 2. A set K in a topological space X is closed if and only if K contains all its limit points.

Proof. Proposition 2

Let K = X, then K is closed because \emptyset is open.

Let $x \in X \setminus K$, so x is not a limit point of K.

 $\exists \ell \in \mathcal{U}_{\ell} \in \tau \text{ such that } \forall \ k \in K \text{ besides } \ell, \ k \notin \mathcal{U}_{\ell}$

Therefore, \mathcal{U}_{ℓ} is the compliment of K, so \mathcal{U}_{ℓ} is open.

 $\mathcal{U}_\ell = X \backslash K$

Thus, $X \setminus K = \bigcup \{ \ell \in \mathcal{U}_{\ell} : \ell \notin K \}$ is open.