

Model Optimization and Tuning Phase Template

Date	23 September 2024
Team ID	LTVIP2024TMID24992
Project Title	Rainfall Prediction Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
XGBoost	"XGBoost": { 'n_estimators': [100, 200], 'learning_rate': [0.01, 0.1], 'max_depth': [3, 5, 7] },	"NGBoost': xgboost.XGBBCLassifier(base score-sine, booster-sine, callbacks-sine, colsample bylevel-sine, colsample bynode-sine, colsample bytevel-sine, device-sine, sen'y stopping rounds-sine, emable cotegorical-siase, eval partic-sine, feature type-sine, gama-sine, group colyclose, inportact systemine, justices, learning rate-8.1, max bin-sine, max cat threshold-sine, max cat to methot-sine, max delta stepsines, max depth-7, max learnes-sine, mit, child weight-sine, monotone constraints-sines, multi-stratego-sine, nostantor-sion, pide-sines, max parallel tree-sine, random state-sione),
Random Forest Classifier	<pre>"Random Forest": { 'n_estimators': [100, 200], 'max_depth': [None, 10, 20], 'min_samples_split': [2, 5] },</pre>	RandomForestClassifier(n_estimators=200),
Decision Tree Classifier	<pre>"Decision Tree": { 'max_depth': [None, 10, 20], 'min_samples_split': [2, 5] },</pre>	Tuning hyperparameters for Decision Tree Best parameters for Decision Tree: {'max_depth': None, 'min_samples_split': 2}


```
"Gradient Boosting": {
Gradient
                           'n_estimators': [100, 200],
                           'learning_rate': [0.01, 0.1],
                                                                           GradientBoostingClassifier(max_depth=7, n_estimators=200),
Boosting
                           'max_depth': [3, 5, 7]
Classifier
                       'Logistic Regression": {
                            'C': [0.1, 1, 10],
Logistic
                                                                           Logistic Regression: {'C': 10, 'penalty': 'l2', 'solver': 'lbfgs'}
                            'penalty': ['12'],
                            'solver': ['lbfgs']
Regression
K Nearest
                      "K Nearest Neighbour": {
                          'n_neighbors': [3, 5, 7],
Neighbour
                                                                           KNeighborsClassifier(n neighbors=3, weights='distance')
                          'weights': ['uniform', 'distance']
```

Performance Metrics Comparison Report (2 Marks):

Model	Baseline Metric	Optimize	ed Metric
XGBoost	78%	Evaluating XGBoost Classification Report:	necall f1-score support 0.81

Random Forest Classifier	83%	Evaluating Random Forest Classification Report:
Decision Tree Classifier	76%	Evaluating Decision Tree Classification Report: precision recall f1-score support 0 0.86 0.83 0.85 22780 1 0.46 0.52 0.49 6312 accuracy 0.76 29092 macro avg 0.66 0.67 0.67 29092 weighted avg 0.77 0.76 0.77 29092 Confusion Matrix: [[18895 3885] [3043 3269]]
Gradient Boosting Classifier	81%	Evaluating Gradient Boosting Classification Report:
Logistic Regression	76%	Evaluating Logistic Regression Classification Report:
K Nearest Neighbour	73%	Evaluating K Nearest Neighbour Classification Report:

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The Gradient Boosting Classifier model was selected for its superior performance, exhibiting high accuracy during hyperparameter tuning,
Gradient Boosting Classifier	Its ability to handle complex relationships, minimize overfitting, and optimize predictive accuracy aligns with project objectives, justifying its selection as the final model