S2 B3 Correction EV

Exercice 1 : sous-espaces vectoriels

1. Soient E un \mathbb{R} -espace vectoriel et F un ensemble. Donner les conditions mathématiques pour avoir : « F est un sousespace vectoriel de E »

F est uns sous-espace vectoriel de de $E \iff 1$) $F \subset E$, 2) $0_E \in F$, 3) $\forall (u, v) \in F^2$, $\forall \alpha \in \mathbb{R}$, $\alpha u + v \in F$.

- 2. Dire si les ensembles suivants sont des R-espaces vectoriels. Justifiez riquireusement votre réponse.
 - (a) $F = \{ P \in \mathbb{R}[X], P'(1) = 1 \}$

 $0_{\mathbb{R}[X]} \notin F$ donc F n'est pas un espace vectoriel.

- (b) $G = \{(x, y, z) \in \mathbb{R}^3, 2x = z\}$
 - On a $G \subset \mathbb{R}^3$ et $0_{\mathbb{R}^3} \in H$ car $2 \times 0 = 0$.
 - Soient $(u = (x, y, z), v = (x', y', z')) \in G^2$ et $\alpha \in \mathbb{R}$.

On a $\alpha u + v = (\alpha x + x', \alpha y + y', \alpha z + z')$. Ainsi, $2(\alpha x + x') = \alpha \times 2x + 2x' = \alpha z + z'$. On en déduit que $\alpha u + v \in G$.

- Conclusion : G est donc un sous-espace vectoriel de \mathbb{R}^3 . C'est donc un \mathbb{R} -espace vectoriel.
- (c) $H = \{ f \in \mathbb{R}^{\mathbb{R}}, \exists (a,b) \in \mathbb{R}^2, \forall x \in \mathbb{R}, f(x) = ax + b \}$ (ensemble des fonctions affines).
 - On a $H \subset \mathbb{R}^{\mathbb{R}}$ et $0_{\mathbb{R}^{\mathbb{R}}} \in H$ car, pour tout réel x, $0_{\mathbb{R}^{\mathbb{R}}}(x) = 0x + 0$.
 - Soient $(f,g) \in H^2$ et $\alpha \in \mathbb{R}$.

Comme $f \in H$, $\exists (a,b) \in \mathbb{R}^2$ tel que $\forall x \in \mathbb{R}$, f(x) = ax + b et comme $g \in H$, $\exists (a',b') \in \mathbb{R}^2$ tel que $\forall x \in \mathbb{R}$, g(x) = a'x + b'.

Soit $x \in \mathbb{R}$. On a alors $(\alpha f + g)(x) = \alpha f(x) + g(x) = \alpha (ax + b) + (a'x + b') = (\alpha a + a')x + (\alpha b + b')$. Comme $\alpha a + a' \in \mathbb{R}$ et $\alpha b + b' \in \mathbb{R}$, on en déduit que $\alpha f + g \in H$.

- Conclusion : H est donc un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$. C'est donc un \mathbb{R} -espace vectoriel.
- 3. Donner sans justifier:
 - (a) un sous-espace vectoriel de $E = \mathbb{R}[X]$ autre que E et $\{0_E\}$.

 $\{P \in \mathbb{R}[X], P(1) = 0\}$ est un sous-espace vectoriel de E.

(b) un sous-ensemble de $E = \mathbb{R}^2$ (autre qu'un singleton) qui ne soit pas un sous-espace vectoriel de E.

 $\{(x,y) \in \mathbb{R}^2, x+y=1\}$ n'est pas un sous-espace vectoriel de E.

Exercice 2 : somme de sev

Dans $E = \mathbb{R}^3$, on considère les deux sous-espaces vectoriels $F = \{(x, y, z) \in \mathbb{R}^3, x = 0\}$ et $G = \{(x, y, z) \in \mathbb{R}^3, z = 0\}$

1. Géométriquement, que représentent F et G?.

Ce sont deux plans.

2. Soit $u = (x, y, z) \in \mathbb{R}^3$. Le vecteur u appartient-il à F + G? Justifier.

Oui car on peut écrire par exemple $u = (x, y, z) = u_1 + u_2$ avec $u_1 = (0, y, z) \in F$ et $u_2 = (x, 0, 0) \in G$.

3. A-t-on E = F + G? Justifier.

De la question précédente, on a montré que pour tout $u \in \mathbb{R}^3$, $u \in F + G$. Ainsi $\mathbb{R}^3 \subset F + G$. Or $F + G \subset \mathbb{R}^3$. Donc $F + G = \mathbb{R}^3$.

4. A-t-on $E=F\oplus G$? Justifier. Vous rappellerez avant la caractérisation mathématique avec les quantificateurs de $E=F\oplus G$.

$$E = F \oplus G$$
 signifie: $\forall u \in E, \exists ! (u_1, u_2) \in F \times G$ tel que $u = u_1 + u_2$.

Ici, nous n'avons pas l'unicité de la décomposition car dans la question 2. on aurait aussi pu écrire $u = v_1 + v_2$ avec $v_1 = (0, 0, z) \in F$ et $v_2 = (x, y, 0) \in G$. Et en fait, il y a une infinité de décompositions possibles. Donc, ici $E \neq F \oplus G$.

5. $F \cup G$ est-il un sous-espace vectoriel de \mathbb{R}^3 ? Justifier.

Non car $u=(0,1,1)\in F$ donc $u\in F\cup G$. $v=(1,1,0)\in G$ donc $v\in F\cup G$. Mais u+v=(1,2,1) n'est ni dans F, ni dans G donc $u+v\notin F\cup G$. $F\cup G$ n'est pas un sous-espace vectoriel de E.

Exercice 3: les familles

Dans \mathbb{R}^3 , on considère la famille de vecteurs $\mathcal{F} = (u, v, w)$.

1. Donner la définition mathématique (avec les quantificateurs) de « \mathcal{F} est une famille libre de \mathbb{R}^3 ».

$$\mathcal{F}$$
 est libre $\iff [\forall (\alpha, \beta, \gamma) \in \mathbb{R}^3, \ \alpha u + \beta v + \gamma w = 0_{\mathbb{R}^3} \implies \alpha = \beta = \gamma = 0]$

2. Donner la définition mathématique (avec les quantificateurs) de « \mathcal{F} est une famille liée de \mathbb{R}^3 ».

$$\mathcal{F}$$
 est liée $\iff \left[\exists (\alpha, \beta, \gamma) \in \mathbb{R}^3 \setminus \{(0, 0, 0)\}, \ \alpha u + \beta v + \gamma w = 0_{\mathbb{R}^3}\right]$

3. Donner la définition mathématique (avec les quantificateurs) de « \mathcal{F} est une famille génératrice de \mathbb{R}^3 ».

$$\mathcal{F}$$
 génératrice de $\mathbb{R}^3 \iff \left[\forall X \in \mathbb{R}^3, \ \exists (\alpha, \beta, \gamma) \in \mathbb{R}^3, \ X = \alpha u + \beta v + \gamma w \right]$

4. Donner, sans justifier, un exemple d'une famille libre de \mathbb{R}^3 composée de 3 vecteurs.

$$\mathcal{F} = (u = (1, 0, 0), v = (0, 1, 0), w = (0, 0, 1))$$
 est libre.

5. Donner, sans justifier, un exemple d'une famille liée de \mathbb{R}^3 composée de 3 vecteurs.

$$\mathcal{F} = (u = (1, 0, 0), v = (0, 1, 0), w = (1, 1, 0))$$
 est liée.