EXCEL 151 Final Exam Review Practice

2 December 2019

Sam Yong (Fall 2019)

- 1. Prove that if $S \subseteq \mathbb{N}$ is finite, $\mathbb{N} S$ is infinite.
- 2. Construct $S, T \in \mathbb{R}$ such that S, T are both uncountable, and $S \cap T$ is countable.
- 3. Compare the cardinality of \mathbb{N} and the cardinality of even natural numbers.
- 4. Compare the cardinality of \mathbb{N} and the cardinality of \mathbb{Z} .
- 5. Show that the set of all functions $f:[n] \to \mathbb{N}$ is countable.
- 6. A finite union of countable sets is _____.
- 7. A finite intersection of countable sets is _____.
- 8. A finite Cartesian product of countable sets is _____.
- 9. A countable union of countable sets is _____.
- 10. A countable intersection of countable sets is _____.
- 11. A countable Cartesian product of countable sets is _____.
- 12. Prove that $2^n + 1$ is divisible by 3 for all odd integers n.
- 13. Prove that $f_n \perp f_{n+1}$ for all $n \geq 1$.
- 14. Let n be a positive integer. Show that the product of n consecutive integers is divisible by n!.
- 15. Show that $\mathcal{P}(\mathbb{N})$ is uncountable.
- 16. Show that $\{(a, b, c): a \in \mathbb{N}, b = 2a, c \in \mathbb{Z} \land c \leq a\}$ is countably infinite.
- 17. Find an explicit bijection between [3, 7] and [0, 1).
- 18. Solve for *x* where $5x \equiv 22 \mod 13$.
- 19. Show that $|\{f: \mathbb{N} \to \{0, 1\}\}| = |\mathcal{P}(\mathbb{N})|$.
- 20. Let $A \subseteq [100]$ and has 52 elements. Prove that there always exists $x, y \in A$ such that x + y = 100.
- 21. Three coins are flipped. What is the expected number of heads?
- 22. 100 dice are rolled, and the 100 results are added together. What is the expected value of the sum?
- 23. Prove the special number 10 for 3-color version of Pascal's triangle.