ADVANCED ANALYSIS OF ALGORITHMS CPS 5440

GRAPH ALGORITHMS: MINIMUM SPANNING TREES

PROBLEM: LAYING TELEPHONE WIRE

WIRING: NAÏVE APPROACH

Expensive!

WIRING: BETTER APPROACH

Minimize the total length of wire connecting the customers

MINIMUM SPANNING TREE (MST)

A minimum spanning tree is a subgraph of an undirected weighted graph **G**, such that

- it is a tree (i.e., it is acyclic)
- lacktriangle it covers all the vertices V
 - contains /V/ 1 edges
- the total cost associated with tree edges is the minimum among all possible spanning trees
- not necessarily unique

PROPERTIES OF MINIMUM SPANNING TREES

- Minimum spanning tree is **not** unique
- MST has no cycles see why:
 - We can take out an edge of a cycle and still have the vertices connected while reducing the cost
- # of edges in an MST:
 - |V| 1

APPLICATIONS OF MST

Find the least expensive way to connect a set of cities, terminals, computers, etc.

HOW CAN WE GENERATE A MST?

Initialization

- a. Pick a vertex *r* to be the root
- b. Set D(r) = 0, parent(r) = null
- c. For all vertices $v \in V$, $v \neq r$, set $D(v) = \infty$
- d. Insert all vertices into priority queue *P*, using distances as the keys

е	а	b	С	d
0	∞	8	∞	8

Vertex Parent e -

While *P* is not empty:

- 1. Select the next vertex u to add to the tree u = P.deleteMin()
- 2. Update the weight of each vertex w adjacent to u which is **not** in the tree (i.e., $w \in P$)

 If weight(u,w) < D(w),
 - a. parent(w) = u
 - b. D(w) = weight(u, w)
 - c. Update the priority queue to reflect new distance for *w*

The MST initially consists of the vertex **e**, and we update the distances and parent for its adjacent vertices

<u>Vertex</u>	<u>Parent</u>
е	-
b	е
С	е
d	е

а	С	b
2	4	5

<u>Vertex</u>	<u>Paren</u>
е	_
b	е
С	d
d	е
a	d

а	С	b
2	4	5

Parent
-
е
d
е
d

С	b
4	5

Parent
-
е
d
е
d

		<u>Vertex</u>	Parent
	_	е	-
С	b	b	е
4	5	С	d
	U	d	е
		a	d

	<u>Vertex</u>	<u>Parent</u>
1	е	-
	b	е
1	С	d
	d	е
	а	d

The final minimum spanning tree

<u>Vertex</u>	Parent	
е	-	
b	е	
С	d	
d	е	
а	d	

RUNNING TIME OF PRIM'S ALGORITHM (WITHOUT HEAPS)

Initialization of priority queue (array): O(|V|)

Update loop: |V| calls

- Choosing vertex with minimum cost edge: O(|V|)
- Updating distance values of unconnected vertices: each edge is considered only **once** during entire execution, for a **total** of O(|E|) updates

Overall cost without heaps: $O(|E| + |V|^2)$

RUNNING TIME OF PRIM'S ALGORITHM (WITHOUT HEAPS)

• Depending on the heap implementation, running time could be improved!

	EXTRACT-MIN	DECREASE-KEY	Total
binary heap	O(lgV)	O(lgV)	O(ElgV)
Fibonacci heap	O(lgV)	O(1)	O(VlgV + E)

PRIM'S ALGORITHM INVARIANT

At each step, we add the edge (u,v) s. t. the weight of (u,v) is **minimum** among all edges where u is in the tree and v is not in the tree

 Each step maintains a minimum spanning tree of the vertices that have been included thus far

When all vertices have been included, we have an MST for the graph!

This algorithm adds V-1 edges without creating a cycle, so clearly, it creates a spanning tree of any connected graph.

But is this a minimum-spanning tree? Suppose it wasn't. (*Proof by contradiction!*)

There must be a point at which it fails, and in particular, there must be a single edge whose insertion first prevented the spanning tree from being a minimum spanning tree.

- Let G be a connected, undirected graph
- Let S be the set of edges chosen by Prim's algorithm before choosing an errorful edge (x, y)

- Let V' be the vertices incident with edges in S
- Let **T** be a MST of **G** containing all edges in **S**, but not (x, y).

- Edge (x, y) is not in T, so there must be a path in T from x to y since T is connected.
- Inserting edge (x, y) into
 T will create a cycle
- There is exactly one edge on this cycle with exactly one vertex in \mathbf{V} , call this edge (\mathbf{v}, \mathbf{w})

- Since Prim's chose (x, y) over (v, w), $w(v, w) \ge w(x, y)$.
- We could form a new spanning tree **T'** by swapping (x, y) for (v, w) in **T**.
- w(T') is clearly no greater than w(T)
- But that means T' is an MST
- And yet it contains all the edges in S, and also (x, y)

...Contradiction

- Prim's algorithm is a "greedy" algorithm
 - Greedy algorithms find solutions based on a sequence of choices
 - The choices are "locally" optimal at each step
 - We make the best decision at this point of time
 - We ignore the future impact of the current move.
- Nevertheless, Prim's greedy strategy produces a globally optimum solution!
- It is not usual that greedy approaches find a globally optimum solution
- MST has some properties that make Greedy approaches optimal.

ANOTHER APPROACH

- Create a forest of trees from the vertices
- Repeatedly merge trees by adding "safe edges" until only one tree remains
- A "safe edge" is an edge of minimum weight which does not create a cycle

forest: {a}, {b}, {c}, {d}, {e}

- How is it different from Prim's algorithm?
 - Prim's algorithm grows one tree all the time
 - Kruskal's algorithm grows multiple trees (i.e., a) forest) at the same time.
 - Trees are merged together using safe edges
 - Since an MST has exactly |V|-1 edges, after |V|-1 merges, we would have only one component

Initialization

- a. Create a set for each vertex $v \in V$
- b. Initialize the set of "safe edges" *A* comprising the MST to the empty set
- c. Sort edges by increasing weight

For each edge $(u,v) \in E$ in increasing order while more than one set remains:

If u and v, belong to different sets U and V

a. add edge (u,v) to the safe edge set

$$A = A \cup \{(u,v)\}$$

b. merge the sets U and V

$$F = F - U - V + (U \cup V)$$

Return A

- Running time bounded by sorting (or findMin)
- $O(|E| \log |E|)$, or equivalently, $O(|E| \log |V|)$

$$E = \{(a,d), (c,d), (d,e), (a,c), (b,e), (c,e), (b,d), (a,b)\}$$

<u>Forest</u>	<u>A</u>
{a}, {b}, {c}, {d}, {e}	\varnothing
{a,d}, {b}, {c}, {e}	{(a,d)}
{a,d,c}, {b}, {e}	{(a,d), (c,d)}
{a,d,c,e}, {b}	{(a,d), (c,d), (d,e)}
{a,d,c,e,b}	{(a,d), (c,d), (d,e), (b,e)}

KRUSKAL'S ALGORITHM INVARIANT

After each iteration, every tree in the forest is a MST of the vertices it connects

Algorithm terminates when all vertices are connected into one tree

This algorithm adds n-1 edges without creating a cycle, so clearly, it creates a spanning tree of any connected graph.

But is this a minimum-spanning tree? Suppose it wasn't. (*Proof by contradiction!*)

There must be a point at which it fails, and in particular, there must a single edge whose insertion first prevented the spanning tree from being a minimum spanning tree.

- Let e be this first errorful edge.
- Let **K** be the Kruskal spanning tree
- Let **S** be the set of edges chosen by Kruskal's algorithm before choosing *e*
- Let T be an MST containing all edges in S, but not e.

Lemma: $w(e') \ge w(e)$ for all edges e' in **T - S**

Proof (by contradiction):

- Assume there exists some edge e' in **T S**, w(e') < w(e)
- Kruskal's must have considered
 e' before e

- However, since e' is not in K, it must have been discarded because it caused a cycle with some of the other edges in S.
- But e' + S is a subgraph of T, which means it cannot form a cycle
 ...Contradiction

- Inserting edge e into T will create a cycle
- There must be an edge on this cycle which is not in K. Call this edge e'
- e' must be in **T S**, so (by our lemma) $w(e') \ge w(e)$
- We could form a new spanning tree \mathbf{T}' by swapping e for e' in \mathbf{T} .
- w(T') is clearly no greater than w(T)
- But that means T' is a MST
- And yet it contains all the edges in S, and also e

...Contradiction

GREEDY APPROACH

Like Dijkstra's algorithm, both Prim's and Kruskal's algorithms are greedy algorithms

The greedy approach works for the MST problem; however, it does not work for many other problems!

PRIM VS KRUSKAL ALGORITHMS

Compare Prim's algorithm with and Kruskal's algorithm assuming:

(a) Sparse graphs:

In this case, E = O(V)

Kruskal:

$$\bullet O(ElgE) = O(VlgV)$$

Prim:

- Binary heap: O(ElgV) = O(VlgV)
- Fibonacci heap: O(VlgV + E) = O(VlgV)

PRIM VS KRUSKAL ALGORITHMS

(b) dense graphs

In this case, $E = O(V^2)$

Kruskal:

$$\bullet O(ElgE) = O(V^2lgV^2) = O(2V^2lgV) = O(V^2lgV)$$

Prim:

- •Binary heap: $O(ElgV) = O(V^2 lgV)$
- •Fibonacci heap: $O(VlgV + E) = O(VlgV + V^2) = O(V^2)$

QUESTIONS/ANSWERS

REFERENCES

https://www.usebackpack.com/resources/17659/download?1523493802