

U-RME: Underwater Refined Motion Estimation in hazy, cluttered and dynamic environments

Shilpi Gupta*, Prerana Mukherjee**, Santanu Chaudhury***, Brejesh Lall*
*Indian Institute of Technology, Delhi. **Indian Institute of Information Technology, Sri City.

***Indian Institute of Technology, Jodhpur.

Introduction

- Optical Flow is a popular method of computer vision for motion estimation.
- Motion estimation in marine videos is a challenging task due to complex underwater environment.
- In this paper, we present a refined optical flow estimation method.
- Our approach is exploiting contour information as most of the motion lies on the edges.
- Further, we have formulated it as sparse to dense motion estimation.
- Proposed method has been evaluated on real life image sequences of Fish4Knowledge database.

Methodology

Fig. 1. Flow Chart

Fig. 2. Pipeline of the proposed flow method

Image Enhancement

Contour Detection

Fig. 3. (a) Original Image. Enhanced image by (b) DehazeNet and (c) Light Scattering Model Fig. 4. (a) Original Image. Edges detected by (b) Canny, (c) SED and (d) HED

Energy Minimization

$$E(\mathbf{u}, \mathbf{v}) = \rho_D E_D + \lambda_1 \rho_s E_S + \lambda_2 E_C + \lambda_3 E_{med}$$

$$E_D = \sum_{i,j} (F_1(i,j) - F_2(i + u_{i,j}, j + v_{i,j}))$$

$$E_S = \sum_{i,j} ((u_{i,j} - u_{i+1,j}) + (u_{i,j} - u_{i,j+1}) + (v_{i,j} - v_{i+1,j}) + (v_{i,j} - v_{i,j+1}))$$

$$E_C = (\|\mathbf{u} - \hat{\mathbf{u}}\|^2 + \|\mathbf{v} - \hat{\mathbf{v}}\|^2)$$

$$E_{med} = \sum_{i,j} \sum_{(i',j') \in N_{i,j}} (\|\hat{u}_{i,j} - \hat{u}_{i',j'}\| + \|\hat{v}_{i,j} - \hat{v}_{i',j'}\|)$$

Results

Success Cases:

Fig. 5. (a) Frame t (b) Frame t+1 (c) Proposed (d) DD Flow (e) EPIC Flow (f) LDOF (g) SIFT Flow

Failure Cases:

Fig. 6. (a) Frame t (b) Frame t+1 (c) Proposed (d) DD Flow (e) EPIC Flow (f) LDOF (g) SIFT Flow

Conclusion

- Motion information of objects is crucial for such low quality videos.
- We have shown significant improvement for underwater videos and comparative results for complex scenarios
- The proposed flow estimation technique can be further extended to segment and track the objects in hazy, cluttered and dynamic environments.

References

- Cho, Y., Kim, A.: Visibility enhancement for underwater visual slam based on underwater light scattering model. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). pp. 710–717. IEEE (2017)
- Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision. pp. 1395–1403 (2015)
- Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Epicflow: Edge-preserving interpolation of correspondences for optical flow.
 In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1164–1172 (2015)
- Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). pp. 2432–2439. IEEE (Jun 2010)