# Models of outcome and choice: The logit model

Silje Synnøve Lyder Hermansen

March 2, 2023

### Table of Contents

#### Before we start

A latent variable approach to GLMs

Recoding: How do we get from a binary to a continuous variable?

The binomial distribution: successes and failures

Why all the fuzz? Why not OLS?

Interpretation: So... what did I find?

Back and forth: Logistic and logit transformation

My three stages of interpretation

Model assessment: How well is reality described?

How well do I discriminate?

### Let's touch base

# We will be using mentimeter (menti.com) to communicate interactively.

- answer questions on www.menti.com using the access code 8471 19241
- results show on screen
- ⇒ Relax, your answers are anonymous!

### Table of Contents

Before we start

## A latent variable approach to GLMs

Recoding: How do we get from a binary to a continuous variable?

The binomial distribution: successes and failures

Why all the fuzz? Why not OLS:

nterpretation: So... what did I find?

Back and forth: Logistic and logit transformation

My three stages of interpretation

Model assessment: How well is reality described?

How well do I discriminate?

### Section 2

A latent variable approach to GLMs

## Many outcomes are not continuous

# OLS assumes a continuous dependent variable. But many phenomena in the social sciences are not like that.

- ➤ Vote choice, civil conflict onset, legislator performance, court rulings, time to compliance, etc.
- ▶ What phenomena are you interested in?
- ⇒ OK. Let's strategize.

# All regressions are linear(ized)

# The basic formulation in any regression describes a linear relationship between $x_i$ and $y_i$ :

$$y_i = \alpha + \beta x_i + \epsilon_i \tag{1}$$

- ▶ When  $x_i$  increases with one unit,  $y_i$  increases with  $\beta$  units.
- ▶ If that relationship is not linear, we have to make it so:
  - $\triangleright$  by recoding the  $x_i$
  - **b** by recoding the  $y_i \rightarrow$  we *linearize*.

#### A latent variable

### A linear(ized) model requires a continuious dependent variable.

- ▶ Imagine we are interested in unobservable variable,  $z_i$ , that describes our propensity towards something.
- Above a certain threshold  $(\tau)$  of  $z_i$ , observability kicks in and we can see  $y_i$ .
- ▶ The regression coefficients  $(\beta)$  in GLMs describe that relationship.
- ⇒ The latent variable approach is useful when interpreting the results.

## Example: The binomial model

#### The logit model is a perfect example:

$$y_i = \begin{cases} 1 & \Leftrightarrow & z_i > \tau \\ 0 & \Leftrightarrow & z_i \leqslant \tau \end{cases} \tag{2}$$

- ▶ The probability  $(z_i)$  of an outcome  $y_i$  is continuous.
- Above a certain probability  $(\tau)$ , we observe a positive outcome  $(y_i = 1)$ .
- $\Rightarrow$  but how do we set the value of  $\tau$ ?

#### From latent variable to descrete outcomes

### Statistical theory helps us describe how $z_i$ leads to $y_i$ .

- ▶ What kind of process generated our data?  $\rightarrow$  data generating process (DGP)
- ightharpoonup How can we best describe it? ightharpoonup choice of *probability distribution* (in GLM)

## The three components of GLMs

### When fitting the model, we need to make three choices:

- ▶ A linear predictor:  $\beta x_i$ .
- ► A probability distribution: they're all in the exponential family
- A recoding strategy

# The three components of GLMs

# In R this translates to two additional arguments compared to your usual OLS.

- ▶ A linear predictor:  $\rightarrow$  (y  $\sim$  x).
- ▶ A probability distribution: → (family =)
- A recoding strategy → (link = ).

## Latent variable approach for interpretation

- The latent variable approach is useful when interpreting results.
- ► That's when we map *from* the latent variable *to* the observed outcome.
- ⇒ When estimating the model, we have to go the other way 'round.

### Table of Contents

Before we start

A latent variable approach to GLMs

Recoding: How do we get from a binary to a continuous variable?

The binomial distribution: successes and failures

Why all the fuzz? Why not OLS?

nterpretation: So... what did I find?

Back and forth: Logistic and logit transformation

My three stages of interpretation

Model assessment: How well is reality described?

How well do I discriminate?

### Section 3

Recoding: How do we get from a binary to a continuous variable?

#### Data structure

# We can only observe the outcome produced by the latent variable. There are two data structures for binary data:

- classes of observations: e.g.: rats in a cage, coin tosses...
- ► case-based: e.g.: legislator votes, Brexit...

#### Data structure

# We can only observe the outcome produced by the latent variable. There are two data structures for binary data:

- Classes of observations: e.g.: rats in a cage, coin tosses... → the closest to the latent continuous variable.
- case-based: e.g.: legislator votes, Brexit...
- $\Rightarrow$  we know the number of successes and trials in a cage/class/stratum. That's our starting point.

### Let's start with the odds

Despite binary outcomes, we want a continuous variable that is unbounded at both ends. We define a stratum and start comparing:

- Odds: Compare number of successes with number of failures within a stratum→ continuous but highly skewed.
- lacktriangle Logtransform the odds o continuous and bell shaped.

## Let's examplify with rats

We kept a 1000 rats in a cage and a number of them died (failure) while others are still alive (success). How can we model this?

#### We calculate the odds

## We calculate the odds of surviving in a cage in a 1000 cages

▶ Let's consider a series of 1000 trials where we let the successes go from complete failure (success = 0) to complete success (success = 1000)

```
success = 0:1000
tries = 1000
#remember: failure = tries - success
odds <- success/(tries - success)
hist(odds, breaks = 100, col = "blue")
hist(log(odds), breaks = 101, col = "blue")</pre>
```

plot(log(odds), success, type = "1")

### Let's start with the odds

### We get a continuous but skewed variable.



## Now, let's logtransform the odds

## We get a nice, bellshaped curve.



# Now, let's logtransform the odds

This, we can run regressions on!

# The famous S shape

We can plot the logodds of success against the number of successes or their probability (it's the same).



## Probability distributions for binary variables

# There are two, closely related probability distributions for binary outcomes:

- ▶ The binomial distribution: B(n, p)
  - p is the probability of success tells where on the x-axis (trials) the distribution is placed.
  - n is the number of trials and defines the precision (width) of the distribution.
- ▶ The Bernoulli distribution: Ber(p): when we only have only one trial.

Binary to continuous

Why not OLS?

### Subsection 2

Why all the fuzz? Why not OLS?

## Distributions in OLS and maximum likelihood

- In OLS: The residuals must be normally distributed (but not the  $y_i$ )
- In ML: The z<sub>i</sub> must follow a known probability distribution.
- ⇒ This what allows us to translate the latent variable to outcomes.

# What happens if I run a linear model on binary outcomes?

- The model predicts out of the possible bounderies
  - Predictions are wrong.
  - Regression coefficients are wrong.
  - Standard errors are wrong.
- $\triangleright$  The relationship between  $x_i$  and  $y_i$  is constant across all values.
- $\Rightarrow$  This last element has a bearing for the interpretation.

### Table of Contents

Before we start

A latent variable approach to GLMs

Recoding: How do we get from a binary to a continuous variable

The binomial distribution: successes and failure

Why all the fuzz? Why not OLS:

Interpretation: So... what did I find?

Back and forth: Logistic and logit transformation

My three stages of interpretation

Model assessment: How well is reality described?

How well do I discriminate?

Interpretation Back and forth

## Section 4

Interpretation: So... what did I find?

Subsection 1

Back and forth: Logistic and logit transformation

## The logit transformation

When we go from outcomes to latent variable we use the logit transformation.

$$logit(p) = log(\frac{p}{1-p}) \tag{3}$$

⇒ This what R does when estimating our model

## The logistic transformation

When we go from the latent variable to outcomes we use the logistic transformation.

$$logit^{-1}(logodds) = \frac{exp(logodds)}{1 + exp(logodds)} = \frac{1}{1 + exp(-logodds)}$$
(4)

⇒ This what we do when interpreting our model

# My three stages of interpretation

### I go through tree stages of interpretation

- Inspect the marginal effects from regression table
  - Logodds: check direction and significance.
    - Odds ratio (for large coefficients) and percentage change (for smaller coefficients).
- Formulate scenarios using point estimates (in text)
- Formulate more scenarios with uncertainty using graphics.

```
load("MEP2016.rda")
df <- MEP2016
mod <- glm(PoolsLocal ~
             OpenList +
             SeatsNatPal.prop +
             LaborCost,
           family = binomial(link = "logit"),
           df)
stargazer::stargazer(mod,
                      # label = "tab:regression",
                     title = "MEPs' propensity to share local
                     out = "results_table.tex",
                       type = "latex")
```

# The regression table: marginal effects

### I interpret the regression coefficient itself

- Change in logodds: check direction and significance.
- Odds ratio (for large coefficients) and percentage change (for smaller coefficients).
- $\Rightarrow$  A first stab at hypothesis testing.

## The regression table: marginal effects

**Now, you try!** What statements would you make using the change in logodds, the odds ratio and percentage change?

Table: MEPs' propensity to share local assistants (a binomial logit)

|                   | Dependent variable:         |
|-------------------|-----------------------------|
|                   | PoolsLocal                  |
| OpenList          | -1.124***                   |
|                   | (0.181)                     |
| SeatsNatPal.prop  | -1.930***                   |
|                   | (0.527)                     |
| LaborCost         | 0.056***                    |
|                   | (0.009)                     |
| Constant          | -1.094***                   |
|                   | (0.286)                     |
| Observations      | 686                         |
| Log Likelihood    | -392.832                    |
| Akaike Inf. Crit. | 793.665                     |
| Note:             | *p<0.1; **p<0.05; ***p<0.01 |

```
#Change in logodds for MEPs in candidate-centered systems
mod$coefficients[2]
## OpenList
## -1.124427

# Odds ratio: <1 is negative; > 1 is positive
exp(mod$coefficients[2])

## OpenList
## 0.3248387

# Percentage change
(exp(mod$coefficients[2]) - 1)*100
```

## OpenList ## -67.51613

## The regression table: marginal effects

#### Typical statements about marginal effects

- ► Change in logodds: "MEPs from candidate-centered systems are less likely to share local assistants. Both effects are statistically significant."
- ▶ Percentage change (for smaller coefficients; -1.93)." The likelihood that an MEP shares a local assistant with a party colleague is 68% lower when they compete in a candidate-centered system compared to those that compete in party-centered systems."
- $\Rightarrow$  A first stab at hypothesis testing.

#### Predicted values

#### If you believe the model describes reality appropriately, you can learn more about it by interpreting more thoroughly

- Odds ratios are notoriously hard to understand.
- The effect depends on the value of y; and all the other xs.
- ⇒ Interpret the predicted values

## Predicted point estimates (text)

#### Formulate scenarios using point estimates (in text)

- ► Take an all-else-equal approach: Let one x change and keep all others constant (on a typical value).
- Find the typical representative of two x values and set the other xs accordingly.
- ⇒ Which one you use depends on your objective: A theoretical point, assess effect of intervention on groups...

## Predicted point estimates/first difference (text)

**Now you try!** What is the predicted effect of changing electoral system on MEPs' propensity to share local assistants ...

- In Bulgaria (Labor cost == 4.4); when the party is small (Seat share == 0.1).
- ▶ In Denmark (Labor cost == 42); when the party is small (Seat share == 0.1).
- Is this a realistic set of scenarios?
- ⇒ Compare the two predicted probabilities for each pairs of scenarios.
  - Go to Padlet to provide your answer: (https://padlet.com/siljesynnove/logit)

```
dfp <- df %>% select(PoolsLocal,
                     SeatsNatPal.prop,
                     OpenList,
                     VoteShare_LastElection,
                     LaborCost)
## Error in df %>% select(PoolsLocal, SeatsNatPal.prop,
OpenList, VoteShare_LastElection, : could not find
function "%>%"
stargazer::stargazer(dfp,
                     title = "Descriptive statistics",
                     out = "desc table.tex")
## Error in .stargazer.wrap(..., type = type, title =
title, style = style, : object 'dfp' not found
```

```
##Bulgaria; party-centered
logodds1 <- mod$coefficients[1] * 1 + mod$coefficients[2] * 0 +
```

```
mod$coefficients[3] * 0.1 + mod$coefficients[4] * 4.4
prob1 <- exp(logodds1)/(1+exp(logodds1))</pre>
prob1
## (Intercept)
     0.2610522
##Bulgaria; candidate-centered
logodds2 <- mod$coefficients[1] * 1 + mod$coefficients[2] * 1 +
 mod$coefficients[3] * 0.1 + mod$coefficients[4] * 4.4
prob2 <- exp(logodds2)/(1+exp(logodds2))</pre>
prob2
## (Intercept)
##
      0.102944
#First difference
prob2 - prob1
## (Intercept)
## -0.1581082
#Denmark: partu-centered
logodds3 <- mod$coefficients[1] * 1 + mod$coefficients[2] * 0 +
 mod$coefficients[3] * 0.1 + mod$coefficients[4] * 42
prob3 <- exp(logodds3)/(1+exp(logodds3))
prob3
## (Intercept)
     0.7430194
#Denmark: candidate-centered
logodds4 <- mod$coefficients[1] * 1 + mod$coefficients[2] * 1 +
 mod$coefficients[3] * 0.1 + mod$coefficients[4] * 42
prob4 <- exp(logodds4)/(1+exp(logodds4))</pre>
prob4
```

```
## (Intercept)
## 0.4843289

#First difference
prob4 - prob3

## (Intercept)
## -0.2586905
```

```
#Alternative
```

```
preds <- predict(mod, newdata, type = "response")
preds</pre>
```

```
## 1 2 3 4
## 0.2610522 0.1029440 0.7430194 0.4843289
```

diff(preds[1:2]); diff(preds[3:4])

#### Interpretation Three stages of interpretation

## 2 ## -0.1581082 ## 4

## -0.2586905

## Predicted point estimates (text)

#### Notice how the absolue effect of the electoral system changes!

- ▶ Marginal effect: MEPs' likelihood of sharing assistants decreases by 68% % when we change electoral system.  $\rightarrow$  holds for all values of x.
- ▶ First difference (scenario 1a and b): We see that changing electoral system when labor cost is *low* corresponds to a predicted 16 percentage points shift in likelihood of sharing assistants (from 26 percentage points to 10 percentage points).
- ▶ First difference (scenario 2a and b): We see that changing electoral system when labor cost is *high* corresponds to a predicted 26 percentage points shift in likelihood of sharing assistants (from 74 percentage points to 48 percentage points).
- ⇒ This is an implicit interaction effect.

## Predicted values (graphic)

#### Formulate scenarios using point estimates and put them on speed

- Predict y values for the entire range of x and plot it.
- Simulate confidence and plot that too.
- You can do this for two scenarios.
- ⇒ You get a sense of the actual differences in the data.

#### Table of Contents

Before we start

A latent variable approach to GLMs

Recoding: How do we get from a binary to a continuous variable

The binomial distribution: successes and failures

Why all the fuzz? Why not OLS?

nterpretation: So... what did I find?

Back and forth: Logistic and logit transformation

My three stages of interpretation

Model assessment: How well is reality described?

How well do I discriminate?

### Section 5

Model assessment: How well is reality described?

#### Model assessment

## Model assessments aim to gauge how well we describe the data (i.e. the y).

- comparison between predicted and observed values (as in OLS).
- mapping outcomes to the recoded, "latent" variable (GLM).
- ⇒ You have a few additional "tricks" to the standard OLS assessment.

#### Brier score

Describes the "average size" of the residuals.

$$B_b \equiv \frac{1}{n} \sum_{i=1}^n (\hat{\theta}_i - y_i)^2 \tag{5}$$

⇒ Lower scores imply better predictions.

#### How well do I discriminate?

The real question for logits is how well do I distinguish 0s from 1s.

 $\Rightarrow$  Several strategies.

## Table comparison

#### The real question for logits is how well do I distinguish 0s from 1s.

- ightharpoonup Table (e.g. 2 imes 2) with proportion of predicted against observed values for 0s and 1s
- ▶ It is  $\chi^2$  distributed (ref. the Hosmer-Lemeshow test)
- $\Rightarrow$  But how do I set the cut values (the  $\tau$ )?

#### The ROC curve

# The ROC lets the cut values vary and displays how wrong we are on each side (true positive vs. false positive).

- A model with good predictions has a curve tending towards the upper left corner.
- ▶ The actual cut value depends on our priorities
- ⇒ The graphic is useful in and of itself

### The separation plot

The separation plot show how the density of observed "successes" increases as our predicted values increase.

⇒ Another graphic that is useful in and of itself