A Resized Bootstrap Method for Inference of a High-Dimensional Logistic Regression

Qian Zhao

University of Massachusetts, Amherst

EcoSta 2024

Table of Contents

Logistic regressions in the high-dimensional setting

Distribution of a high-dimensional logistic MLE

The bootstrap method in regression setting

The resized parametric bootstrap method

Summary

High-dimensional logistic regression

• We model Y by a logistic model:

$$P(Y = 1 | X) = \frac{1}{1 + e^{-\beta_0 - \sum_{j=1}^{p} \beta_j X_j}},$$

- Given *n* i.i.d. pairs (X_i, Y_i) , the MLE $\hat{\beta}$ exists.
- Large number of covariates: $p/n \approx \kappa > 0$, e.g., p = 1,000 and n = 5,000.

High-dimensional logistic regression

We model Y by a logistic model:

$$P(Y = 1 | X) = \frac{1}{1 + e^{-\beta_0 - \sum_{j=1}^{p} \beta_j X_j}},$$

- Given n i.i.d. pairs (X_i, Y_i) , the MLE $\hat{\beta}$ exists.
- Large number of covariates: $p/n \approx \kappa > 0$, e.g., p = 1,000 and n = 5,000.

Question: How to construct a 95% confidence interval for β_j ?

MLE is inflated when p is large

- Classical theory: $\hat{\beta}_j \beta_j \sim \mathcal{N}(0, \mathcal{I}_{ij}^{-1}).$
- MLE is inflated: $\alpha = \hat{\beta}_j/\beta_j \approx 1.4.$

Simulation setting: Sample $X \sim \mathcal{N}(0, \Sigma)$, Σ is a circular matrix. Simulate Y from a logistic model (100 non-null $\beta_j \sim \mathcal{N}(0, 0.2)$, $\beta_0 = 0$). n = 2,000 and p = 400.

Classical theory underestimates SD of the MLE

- Classical theory: $\hat{\beta}_j \beta_j \approx \mathcal{N}(0, \mathcal{I}_{jj}^{-1}).$
- Inverse Fisher information under-estimates the SD.

Simulation setting: Sample $X \sim \mathcal{N}(0, \Sigma)$, Σ is a circular matrix. Simulate Y from a logistic model (100 non-null $\beta_j \sim \mathcal{N}(0, 0.2)$, $\beta_0 = 0$). n = 2,000 and p = 400.

Distribution of the high-dimensional logistic MLE (**Zhao**, Sur & Candès. 2022)

- n i.i.d. obs (X_i, Y_i) ,
- $X_i \in \mathbb{R}^p$ are multivariate Gaussian $X_i \sim \mathcal{N}(0, \Sigma)$.
- $Y_i \in \{0,1\}$, $Y_i \mid X_i$ is from a logistic model with parameters β .

As $p,n \to \infty$ at a constant ratio $p/n \to \kappa$, if $\sqrt{n}\tau_j\beta_j = O(1)$, then the MLE $\hat{\beta}_j$ satisfy

$$\frac{\sqrt{n}(\hat{\beta}_j - \alpha_{\star}\beta_j)}{\sigma_{\star}/\tau_i} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1),$$

where $\tau_j^2 = \text{Var}(X_j|X_{-j})$, $(\alpha_{\star}, \sigma_{\star})$ depend on two parameters:

- Problem dimension $\kappa = p/n$,
- Signal strength $\gamma = \text{Var}(X^{\top}\beta)^{1/2}$.

Applying the high-dimensional theory (HDT) to the simulated example

$$\frac{\sqrt{n}(\hat{\beta}_j - \alpha_{\star}\beta_j)}{\sigma_{\star}/\tau_j} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1),$$

- Estimated inflation from one sample: $\hat{\alpha} = 1.43$ (observed inflation = 1.41).
- Estimated SD: $\hat{\sigma} = 0.124$ (observed SD = 0.128).

HDT underestimates bias and SD when covariates are heavy-tailed

- Inflation:
 - Obs. inflation = 1.41
 - Est. HDT= 1.38
 - Est. Resized boot = 1.43
- SD
 - Obs. SD = 0.12
 - Est. SD (HDT) = 0.11
 - Est. SD (Resized boot)= 0.12

Simulation setting: Sample $X \sim t_8(0,\Sigma)$ (standardized), Σ is a circular matrix. Simulate Y from a logistic model (100 non-null $\beta_j \sim \mathcal{N}(0,0.2)$, $\beta_0 = 0$). n = 2,000 and p = 400.

The bootstrap method

Figure: Figure 8.1 in *An Introduction to the Bootstrap*, by Efron and Tibshirani

What does HDT tell us about pairs bootstrap?

- · Linear regression:
 - If $p, n \to \infty$, $p^{1+\delta}/n \to 0$ for $\delta > 0$, then bootstrap is weakly consistent (Mammen, 1993).
 - Conservative as $p/n \to \kappa > 0$ (El Karoui & Purdom, 2015).

What does HDT tell us about pairs bootstrap?

Real world	Bootstrap world
Unknown Observed distribution sample $F \longrightarrow (X_i,Y_i) \stackrel{iid}{\sim} F \stackrel{1}{\longleftarrow} 1 \leq i \leq n$ $\downarrow \qquad \qquad \downarrow$ MLE $\hat{\beta} = h(X,Y)$	Empirical Bootstrap distribution sample $\widehat{F} \longrightarrow (X_i^\star, Y_i^\star) \stackrel{iid}{\sim} \widehat{F}$ $1 \leq i \leq n$ \downarrow Bootstrap MLE $\widehat{\beta}^\star = h(X^\star, Y^\star)$

- · Linear regression:
 - If $p, n \to \infty$, $p^{1+\delta}/n \to 0$ for $\delta > 0$, then bootstrap is weakly consistent (Mammen, 1993).
 - Conservative as $p/n \to \kappa > 0$ (El Karoui & Purdom, 2015).
- Logistic regression: # distinct obs in a bootstrap sample is $< n \implies \kappa^* > \kappa$, i.e., we tend to overestimate α and σ .

What about the parametric bootstrap?

What about the parametric bootstrap?

- Linear regression (residual bootstrap):
 - If p fixed, $n \to \infty$, then bootstrap is weakly consistent (Freedman, 1981).
 - $Var(r_i) \approx (1 p/n)\sigma_{\varepsilon}^2$ for i.i.d. Gaussian covariates.

What about the parametric bootstrap?

- Linear regression (residual bootstrap):
 - If p fixed, $n \to \infty$, then bootstrap is weakly consistent (Freedman, 1981).
 - $Var(r_i) \approx (1 p/n)\sigma_{\varepsilon}^2$ for i.i.d. Gaussian covariates.
- Logistic regression: $\hat{\beta}$ is far from $\beta \implies \gamma^* > \gamma \implies$ we tend to over-estimates α and σ .

Classical pairs & parametric bootstrap fails in the high-dimensional setting!

- Pairs bootstrap:
 - $n_{\text{eff}} < n \implies \kappa^* > \kappa$.
- Parametric bootstrap:
 - $\hat{\beta} \approx \alpha_{\star} \beta + \sigma_{\star} / \tau_{j} Z$.
 - $\gamma^* > \gamma$.
- Both overestimate inflation and SD.

The resized parametric bootstrap (Zhao & Candès, 2023)

Resized bootstrap: Resample Y using a rezied MLE β^* s.t. $Var(X^{\top}\beta^*) \approx \gamma^2$.

Applying the resized bootstrap to the previous example

A
$$(1-q)$$
 CI is given by

$$\begin{aligned} \mathsf{CI}_{\mathsf{low}} &= \frac{1}{\hat{\alpha}} \left(\hat{\beta}_j - t_j^b [1 - q/2] \hat{\sigma}_j \right) \\ \mathsf{CI}_{\mathsf{up}} &= \frac{1}{\hat{\alpha}} \left(\hat{\beta}_j - t_j^b [q/2] \hat{\sigma}_j \right), \end{aligned}$$

- $\hat{\alpha}$ and $\hat{\sigma}_j$ are the estimated inflation and SD using bootstrap samples.
- $t_j^b[q/2]$ and $t_j^b[1-q/2]$ are the q and (1-q/2) quantiles of $\frac{\hat{\beta}_j^b \hat{\alpha}\beta_{\star,j}}{\hat{\sigma}_i}$.

Implemented in the R package glmhd.

Summary

- In a high-dimensional logistic regression $(n, p \to \infty, p/n \to \kappa > 0)$, the MLE is inflated and the SD is larger than given by the inverse Fisher information.
- High-dimensional theory (HDT): When $X \sim \mathcal{N}(0, \Sigma)$, $\tau_j^2 = \text{Var}(X_j \mid X_{-j})$ and $\sqrt{n}\tau_j\beta_j = O(1)$, the logistic MLE satisfy

$$\sqrt{n}(\hat{\beta}_j - \alpha_{\star}\beta_j) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma_{\star}^2/\tau_j^2),$$

- HDT underestimates α_{\star} and σ_{\star} when X is heavy-tailed.
- The resized parametric bootstrap applies the parametric bootstrap at the shrinked MLE guided by HDT. Distribution of the bootstrap MLE approximates the MLE distribution well when X from a general distribution.

Future studies

- HDT requires $\sqrt{n}\tau_j\beta_j=O(1)$. Empirically we observed SD increases with $|\beta_i|$.
 - Can we characterize how SD changes with β_i ?
- Can we apply the high-dimensional theory to genetic studies? For example,
 - Model includes a random effect to account for all the other SNPs.
 - Model multiple phenotypes at the same time.

Thank you!

- Paper: An Adaptively Resized Parametric Bootstrap for Inference in High-dimensional Generalized Linear Models, Zhao, Q., and Candès, E., Statistica Sinica 2022
- R package: zq00/glmhd

References I

Freedman, D.A.

Bootstrapping regression models Ann. Stat., 1981

Mammen, E.

Bootstrap and wild bootstrap for high-dimensional linear models *Ann.Stat.*, 1993

El Karoui, N. and Purdom, E.

Can We Trust the Bootstrap in High-Dimensions? The Case of Linear Models, *J. Mach. Learn. Res.*, 2018

Zhao, Q., Sur, P. and Candès, E.

The asymptotic distribution of the MLE in high-dimensional logistic models: Arbitrary covariance *Bernoulli*, 2022

How model parameters affect inflation and SD

A modern maximum-likelihood theory forhigh-dimensional logistic regression, Sur and Candès, *PNAS*, 2019

Estimating γ (Method 1)

Using the ProbeFrontier method.

- If $\gamma = 2.32$, then the MLE does not exist if $\kappa > 0.32$
- Sub-sample data to find the threshold in κ
- Estimate γ by the point on the phase transition curve.

Estimating γ (Method 2)

- Use the one-to-one correspondence between $\operatorname{Var}(X_{\mathrm{new}}^{\top}\hat{\beta})$ with γ .
- Use the SLOE estimator to estimate $Var(X_{\text{new}}^{\top} \hat{\beta})$ from the MLE.
- Apply the parametric bootstrap to compute $\operatorname{Var}(X_{\mathrm{new}}^{\top}\hat{\beta})$ when $\beta = s \times \hat{\beta}$.

Resized bootstrap confidence intervals

- Compute a resized MLE β_{\star}
- Generate B bootstrap samples using β_{\star} as the true coefficient, and compute the bootstrap MLE $\hat{\beta}^b$.
- Estimate the inflation and SD of the MLE:
 - $\hat{\sigma}_j^2 = \frac{1}{B-1} \sum_{b=1}^B (\hat{\beta}_j^b \bar{\beta}_j)^2$, where $\bar{\beta}_j = \frac{1}{B} \sum_{b=1}^B \bar{\beta}_j^b$.
 - Compute $\hat{\alpha}$ by regressing $\hat{\beta}^b$ onto β_{\star} , with weights inversely proportional to $\hat{\sigma}_j^2$.
- Compute the q and 1-q/2 quantile of $\frac{\hat{\beta}_j^b \hat{\alpha} \beta_{\star,j}}{\hat{\sigma}_j}$, denote them as $t_j^b[q/2]$ and $t_j^b[1-q/2]$.
- Compute a (1-q) CI as

$$\left[\frac{1}{\hat{\alpha}}\left(\hat{\beta}_j - t_j^b[1 - q/2]\hat{\sigma}_j\right), \frac{1}{\hat{\alpha}}\left(\hat{\beta}_j - t_j^b[q/2]\hat{\sigma}_j\right)\right] \tag{1}$$