Math 275 Notes

Jeremiah Vuong Los Angeles Valley College vuongjn5900@student.laccd.edu

2024 Spring

1 1

1.1 Slope (Direction) Fields

Equations containing derivatives are differential equations.

A differential equation that describes some physical process is often called a mathematical model of the process.

Definition 1.1: Slope (direction) field

Given the differential equation dy/dt = f(t,y). If we systematically evaluate f over a rectangular grid of points in the ty-plane and draw a line element at each point (t,y) of the grid with slope f(t,y), then the collection of all these line elements is called a slope (direction) field of the differential equation dy/dt = f(t,y)

We can graph undefined slopes in a slope field by using a vertical line; horizontal for 0.

Question 1.1: pg. 8: #6

Write down a differential equation of the form dy/dt = ay + b whose solutions diverge from y = 2.

Solution:

Given that the equation is dependent on just y, we can say that it is an autonomous differential equation (DE). We can subsequently solve for the DE by setting $\frac{dy}{dt} = f(y) = 0$, such that its solution is its equilibrium solution.

Since y = 2, $\frac{dy}{dt} = y - 2$. Thus, any number that is less than 2 will result in the solution's phase portrait diverging (-) from y = 2—vice versa for numbers greater than 2.

1.2 tfi

1.3 Classification on DEs

The order of a DE is the order of the highest derivative that appears in the equation.

Definition 1.2: Linear ODE

The ODE $F\left(t,y,y',\ldots,y^{(n)}\right)=0$ is said to be linear if F is a linear function of the variables $y,y',\ldots,y^{(n)}$. Thus the general linear ODE of order n is $a_0(t)y^{(n)}+a_1(t)y^{(n-1)}+\ldots+a_n(t)y=g(t)$.

Question 1.2: pg. 22

Determine the order of the given DE; also state whether the equation is linear or nonlinear:

- 1) $t^2y'' + ty' + 2y = \sin t$
- 2) $(1 + y^2)y'' + ty' + y = e^t$

Solution:

- 1) The order of the DE is 2, and it is linear: noticed how all the coefficients of n derivatives of y are functions of t.
- 2) The order of the DE is 2, and it is nonlinear: noticed how the coefficients of n derivatives of y are functions of t and y.

Definition 1.3: Nth-order IDE solutions

Any function h, defined on an interval and possessing at least n derivatives that are continuous on this interval, which substituted into an nth-order ODE reduces the equation to an identity, is said to be a solution of the equation on the interval.

Question 1.3: pg. 22: #9)

Verify that the functions $y_1(t) = t^{-2}$ and $y_2(t) = t^{-2} \ln t$ are solutions of the DE

$$t^2y'' + 5ty' + 4y = 0$$

Solution:

We can verify that $y_1(t)$ and $y_2(t)$ are solutions of the DE by substituting them into the DE and verifying that the equation holds true.

$$y_1 = t^{-2}$$

 $y'_1 = -2t^{-3}$
 $y''_1 = 6t^{-4}$

Substituting: $t^2y'' + 5ty' + 4y = t^2(6t^{-4}) + 5t(-2t^{-3}) + 4t^{-2} = 0$ For homework 1, we can verify that $y_2(t)$ is a solution of the DE.

Question 1.4: #12

Determine the values of r for which y'' + y' - 6y = 0 has solutions of the form $y = e^{rt}$

Solution:

We can solve for the values of r by substituting $y = e^{rt}$ into the DE and solving for r. $y = e^{rt}$, $y' = re^{rt}$, and $y'' = r^2e^{rt}$. Substituting: $r^2e^{rt} + re^{rt} - 6e^{rt} = 0$. Factoring out e^{rt} , we get $e^{rt}(r^2 + r - 6) = 0$. Thus, $r^2 + r - 6 = 0$, and r = 2, -3.

Question 1.5: #14

Determine the values of r for which $t^2y'' + 4ty' + 2y = 0$ has solutions of the form $y = t^r$ for t > 0

Solution:

 $y = t^r$, $y' = rt^{r-1}$, and $y'' = r(r-1)t^{r-2}$. Substituting: $t^2(r(r-1)t^{r-2}) + 4t(rt^{r-1}) + 2t^r = 0$. Factoring out t^r , we get $t^r[r(r-1) + 4r + 2] = 0$. t > 0 such that $t^r \neq 0$, and r(r-1) + 4r + 2 = 0. Thus, $r^2 + 3r + 2 = 0$, and r = -1, -2.