Black Hole Thermodynamics in Bits — Part III: Kerr/Kerr-Newman, Measurement Limits, and Observational Hooks

Evan Wesley, Rosetta Stone of Physics — Reality Encoded (build: September 1, 2025)

Abstract. We extend the previous Schwarzschild-bit identities to rotating and charged holes, derive the one-bit energy law from the full first law, and formalize the integer-bit "mass ladder" in the Kerr/Kerr–Newman family. We then quantify measurement limits: for astrophysical black holes the step in M^2 implied by one bit is a Planck-scale constant, utterly unresolvable by current gravitational-wave or EHT instruments. Finally we outline observational hooks (ringdown quantization and area-inference) and connect horizon thermodynamics to a bit-rate bound on entropy/knowledge flux.

1 Conventions

We keep G, \hbar , $k_{\rm B}$, c explicit until stated otherwise. The Bekenstein–Hawking entropy and horizon area are

$$S = \frac{\mathcal{A}}{4\ell_{\rm P}^2}, \qquad S_{\rm bits} \equiv \frac{S}{\ln 2} = \frac{\mathcal{A}}{4\ell_{\rm P}^2 \ln 2}.$$
 (1)

The one-bit area quantum and Landauer energy are

$$\Delta \mathcal{A}_{1 \text{ bit}} = 4 \ell_{P}^{2} \ln 2, \qquad \Delta E_{1 \text{ bit}} = k_{B} \ln 2. \tag{2}$$

Numerically, $4\ell_{\rm P}^2 \ln 2 = 7.242\,778\,905\,692\,047 \times 10^{-70}\,{\rm m}^2.$

2 Schwarzschild recap and the integer-bit ladder

For Schwarzschild mass M,

$$A = \frac{16\pi G^2 M^2}{c^4}, \qquad = \frac{\hbar c^3}{8\pi k_{\rm B} G M}.$$
 (3)

The bit count and the mass ladder follow immediately:

$$N_{\text{bits}} = \frac{A}{4\ell_{\rm p}^2 \ln 2} = \frac{4\pi G M^2}{\hbar c \ln 2}, \qquad M_N = m_{\rm P} \sqrt{\frac{\ln 2}{4\pi} N}.$$
 (4)

A uniform step in N corresponds to a *constant* step in M^2 :

$$\Delta(M^2) = \frac{\hbar c \ln 2}{4\pi G} = m_{\rm P}^2 \frac{\ln 2}{4\pi} \approx 2.61 \times 10^{-17} \,\text{kg}^2.$$
 (5)

At $M \sim M_{\odot}$, the corresponding mass increment is $\Delta M \approx \Delta(M^2)/(2M) \sim 6.6 \times 10^{-48}$ kg, far beyond any conceivable direct resolution.

3 Kerr and Kerr-Newman in bits

Work now in geometric units $(G=c=\hbar=k_{\rm B}=1)$ for clarity, restoring constants at the end. For Kerr–Newman with mass M, charge Q, and spin parameter $a\equiv J/M$, the horizons are $r_+,r_-=M\pm\sqrt{M^2-a^2-Q^2}$ and the area and surface gravity are

$$A = 4\pi \left(r_{+}^{2} + a^{2}\right) = 4\pi \left(2Mr_{+} - Q^{2}\right), \tag{6}$$

$$\kappa_{\rm H} = \frac{r_+ - r_-}{2(r_+^2 + a^2)} = \frac{\sqrt{M^2 - a^2 - Q^2}}{r_+^2 + a^2} \,. \tag{7}$$

The angular velocity and electric potential at the horizon are

$$\Omega_{\rm H} = \frac{a}{r_+^2 + a^2}, \qquad \Phi_{\rm H} = \frac{Q \, r_+}{r_+^2 + a^2}.$$
(8)

The temperature is $= \kappa_{\rm H}/(2\pi)$ and the entropy $S = \mathcal{A}/4$. The differential first law and Smarr relation read

$$dM = \frac{\kappa_{\rm H}}{8\pi} d\mathcal{A} + \Omega_{\rm H} dJ + \Phi_{\rm H} dQ, \qquad (9)$$

$$M = 2S + 2\Omega_{\rm H}J + \Phi_{\rm H}Q. \tag{10}$$

One-bit law at fixed (J,Q). If an interaction changes the horizon area by exactly one bit while holding J and Q fixed, then from (9)

$$(\Delta M)_{J,Q} = \frac{\kappa_{\rm H}}{8\pi} \, \Delta \mathcal{A} = \Delta S = \ln 2 \equiv \Delta E_{1 \text{ bit}}, \qquad (11)$$

precisely the Landauer cost. Thus the one-bit energy law is *universal* across Schwarzschild, Kerr, and Kerr–Newman.

Area-per-bit is invariant. Since ΔA depends only on ℓ_P and $\ln 2$, the area quantum does not care about rotation or charge. What changes with (J,Q) is the local surface gravity κ_H and hence; as one approaches extremality $(a^2 + Q^2 \to M^2)$, $\kappa_H \to 0$ and the energy-per-bit tends to zero even though each bit still occupies area $4\ell_P^2 \ln 2$.

Bit-labeled families. Define the integer bit label N by $\mathcal{A}(N) = 4\ell_{\mathrm{P}}^2 \ln 2 N$. For Kerr the map $(M, a) \mapsto N$ is many-to-one; given (N, a) the mass solves $4\pi(r_+^2 + a^2) = 4\ell_{\mathrm{P}}^2 \ln 2 N$ with $r_+ = M + \sqrt{M^2 - a^2}$. The Schwarzschild ladder M_N is recovered at a = 0. For Kerr-Newman the family extends with $Q \neq 0$ under the cosmic censorship bound $a^2 + Q^2 \leq M^2$.

4 Measurement limits for the mass ladder

4.1 Gravitational-wave masses

Detector posteriors resolve component masses at $\mathcal{O}(\%)$ in favorable events. The Schwarzschild ladder predicts a constant $\Delta(M^2)$ at the Planck scale; for any stellar or supermassive black hole,

$$\frac{\Delta M}{M} \sim \frac{m_{\rm P}^2 (\ln 2/4\pi)}{2M^2} \ll 10^{-60} \quad (M \gtrsim M_{\odot}).$$
(12)

Hence direct step-resolving tests in the mass spectrum are intractable. The same conclusion holds for EHT-scale masses.

4.2 Ringdown and area inference

While $\Delta(M^2)$ is unresolvably small, asymptotic properties of quasinormal modes (QNMs) might encode area quantization through their spacing constants. Different proposals correspond to different area quanta (e.g. $\propto \ln k$ factors). The bit quantum here is $4 \ln 2 \, \ell_{\rm P}^2$. A practical program is to (i) stack high-SNR ringdowns to calibrate the dependence of overtone spacing on surface gravity, then (ii) test for a universal logarithmic factor compatible with $\ln 2$. This is a long-term target; present instruments likely lack the required SNR and mode counts.

5 Greybody flux and a bit-rate bound

Let P be the total Hawking power at infinity and let $\epsilon_{\rm gb} \in (0,1)$ denote the greybody efficiency (frequency- and spin-dependent). The maximum bit emission rate consistent with the one-bit cost is

$$\dot{N_{\rm bits}} \le \frac{\epsilon_{\rm gb} P}{k_{\rm B} \ln 2}.$$
 (13)

This also bounds any channel that treats the horizon as a thermodynamic transducer: to communicate or erase information at the horizon you must pay $k_{\rm B} \ln 2$ per bit (at fixed J,Q). For astrophysical holes $\propto 1/M$ is minuscule, making the energy-per-bit tiny but the absolute flux $P \propto 1/M^2$ is tinier still; net bit throughput is effectively zero on observational timescales.

6 Worked numbers (Schwarzschild anchors)

For quick reference (using the constants defined above):

Mass	(K)	$\Delta E_{1 \text{ bit }} (\text{eV})$	$S_{ m bits}$
$1M_{\odot}$	$\approx 6.17 \times 10^{-8}$	$\approx 3.69 \times 10^{-12}$	$\approx 1.50 \times 10^{77}$
$10M_{\odot}$	$\approx 6.17 \times 10^{-9}$	$\approx 3.69 \times 10^{-13}$	$\approx 1.50 \times 10^{79}$
$4 \times 10^6 M_{\odot}$	$\approx 1.54 \times 10^{-14}$	$\approx 9.21 \times 10^{-19}$	$\approx 2.40 \times 10^{90}$

Values scale as $\propto 1/M$, $\Delta E_{1 \text{ bit}} \propto 1/M$, and $S_{\text{bits}} \propto M^2$.

7 Falsification checklist

- 1. One-bit law under spin/charge. Verify $\Delta E_{1 \text{ bit}} = k_{\text{B}} \ln 2$ experimentally in any analogue horizon with controlled Ω_{H} (rotation) or Φ_{H} (effective charge).
- 2. Area-per-bit invariance. Independent of (J,Q) all horizon area changes in single-bit increments of $4\ell_P^2 \ln 2$.
- 3. **Ringdown spacing test.** Look for a universal logarithmic factor compatible with $\ln 2$ in high-overtone QNM stacks.
- 4. **Entropy flux bound.** In any process that couples to the horizon, the bit-rate satisfies $N_{\text{bits}} \leq P/(k_{\text{B}} \ln 2)$ up to greybody factors; any persistent violation rules out the framework.

8 Discussion

The key structural facts survive generalization: (i) the energy per bit is set by the local Hawking temperature, (ii) the area per bit is Planck-locked, and (iii) the Schwarzschild mass ladder becomes a family of (N, J, Q)-labeled states with the same ΔA but suppressed by rotation/charge. Observationally, direct resolution of $\Delta(M^2)$ is impossible; the promising path is spectral—through precision ringdown physics and analogue systems where and P are tunable.

Outlook. Two natural follow-ups: (1) a Kerr numerical appendix that tabulates ($\kappa_{\rm H}, \Omega_{\rm H}, \Phi_{\rm H}$) and $\Delta E_{\rm 1 \ bit}$ across spin a_* at fixed M, and (2) a ringdown data challenge that tests for a universal logarithmic constant in overtone spacing.

Appendix A: Restoring constants

The geometric-units expressions can be mapped back to SI by $= \hbar \kappa_{\rm H}/(2\pi k_{\rm B}c)$ and $S = \mathcal{A}c^3/(4G\hbar)$. The first law reads

$$d(Mc^2) = \frac{\kappa_{\rm H}c^2}{8\pi G} d\mathcal{A} + \Omega_{\rm H} dJ + \Phi_{\rm H} dQ.$$
 (14)

At fixed (J,Q) and for a single-bit area change $\Delta \mathcal{A} = 4\ell_{\mathrm{P}}^2 \ln 2$ one obtains $\Delta E_{\mathrm{1 \ bit}} = k_{\mathrm{B}} \ln 2$.

Appendix B: Useful constants

$$m_{\rm P} = \sqrt{\frac{\hbar c}{G}} = 4\ell_{\rm P}^2 \ln 2 = 7.242778905692047 \times 10^{-70} \,\mathrm{m}^2, \qquad \Delta(M^2) = m_{\rm P}^2 \,\frac{\ln 2}{4\pi} \approx 2.61 \times 10^{-17} \,\mathrm{kg}^2.$$
 (15)