# 第五章 无约束优化算法

#### 修贤超

https://xianchaoxiu.github.io

## 目录

- 5.1 线搜索方法
- 5.2 梯度类算法
- 5.3 次梯度算法
- 5.4 牛顿类算法
- 5.5 拟牛顿类算法
- 5.6 信赖域算法
- 5.7 非线性最小二乘问题算法

# 引言: 无约束可微优化算法

■ 考虑无约束优化问题

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$

- 线搜索  $x^{k+1} = x^k + \alpha_k d^k$ 
  - □ 先确定下降方向: 负梯度、牛顿方向、拟牛顿方向等
  - □ 按某种准则搜索步长
- 信赖域  $z^k = x^k + d^k$

$$d^k = \arg\min_{a} (g^k)^\top d + d^\top B d$$
 s.t.  $||d||_2 \le \Delta_k$ 

- lue 给定信赖域半径 (步长) $\Delta_k$ , 构造信赖域子问题求解方向  $d^k$
- flue 如果  $z^k$  满足下降性条件,则  $x^{k+1}=z^k$ ,否则  $x^{k+1}=x^k$  更新  $\Delta_k$

#### 线搜索算法

- 求解 f(x) 的最小值点如同<mark>盲人下山</mark>, 无法一眼望知谷底
  - □ 首先确定下一步该向哪一方向行走
  - □ 再确定沿着该方向行走多远后停下以便选取下一个下山方向
- 线搜索类算法的数学表述

$$x^{k+1} = x^k + \alpha_k d^k$$

- $\square$   $\alpha_k$  为步长
- $\Box$   $d^k$  为下降方向,即  $(d^k)^{\top}\nabla f(x^k) < 0$

#### $\alpha_k$ 的选取

■ 首先构造一元辅助函数

$$\phi(\alpha) = f(x^k + \alpha d^k)$$

- 线搜索的目标是选取合适的  $\alpha_k$  使得  $\phi(\alpha_k)$  尽可能减小

  - $\square$  不应在寻找  $\alpha_k$  上花费过多的计算量
- 一个自然的想法是寻找  $\alpha_k$  使得

$$\alpha_k = \arg\min_{\alpha > 0} \phi(\alpha)$$

■ 称为精确线搜索算法, 在实际应用中较少使用

#### 例 5.1

■ 考虑一维无约束优化问题

$$\min_{x} \quad f(x) = x^2$$

- 迭代初始点  $x^0 = 1$ , 下降方向  $d^k = -\text{sign}(x^k)$
- 选取如下两种步长

$$\alpha_{k,1} = \frac{1}{3^{k+1}}, \quad \alpha_{k,2} = 1 + \frac{2}{3^{k+1}}$$

■ 简单计算可以得到

$$x_1^k = \frac{1}{2}(1 + \frac{1}{3^k}), \quad x_2^k = \frac{(-1)^k}{2}(1 + \frac{1}{3^k})$$

■ 序列  $\{f(x_1^k)\}$  和序列  $\{f(x_2^k)\}$  均单调下降, 但序列  $\{x_1^k\}$  收敛的点不是极小值点, 序列  $\{x_2^k\}$  则在原点左右振荡, 不存在极限

#### 非精确线搜索

■ 定义 5.1 设  $d^k$  是点  $x^k$  处的下降方向, 若

$$f(x^k + \alpha d^k) \le f(x^k) + c_1 \alpha \nabla f(x^k)^{\top} d^k$$

则称步长  $\alpha$  满足 Armijo 准则

- 参数  $c_1 \in (0,1)$  是一个常数, 通常取  $c_1 = 10^{-3}$
- 引入 Armijo 准则保证每一步迭代充分下降
- 需要配合其他准则以保证迭代的收敛性, 反例  $\alpha=0$

#### 几何含义

■ 点  $(\alpha, \phi(\alpha))$  必须在直线

$$l(\alpha) = \phi(0) + c_1 \alpha \nabla f(x^k)^{\top} d^k$$

的下方, 图中区间  $[0,\alpha_1]$  中的点均满足 Armijo 准则



#### 回退法

• 给定初值  $\hat{\alpha}$ , 以指数方式缩小试探步长, 找到第一个满足 Armijo 准则的点

$$\alpha_k = \gamma^{j_0} \hat{\alpha}$$

其中 
$$j_0 = \min\{j \mid f(x^k + \gamma^j \hat{\alpha} d^k) \le f(x^k) + c_1 \gamma^j \hat{\alpha} \nabla f(x^k)^\top d^k\}, \gamma \in (0, 1)$$

\_\_\_\_\_

#### 算法 5.1 线搜索回退法

- 1 选择初始步长  $\hat{\alpha}$ , 参数  $\gamma, c \in (0,1)$ . 初始化  $\alpha \leftarrow \hat{\alpha}$
- 2 while  $f(x^k + \alpha d^k) > f(x^k) + c\alpha \nabla f(x^k)^{\top} d^k$  do
- $\mathbf{3} \ \ \boldsymbol{\diamondsuit} \ \ \boldsymbol{\alpha} \leftarrow \boldsymbol{\gamma} \boldsymbol{\alpha}$
- 4 end while
- $\delta$  输出  $\alpha_k = \alpha$

#### Wolfe 准则

■ 定义 5.2 设  $d^k$  是点  $x^k$  处的下降方向, 若

$$f(x^k + \alpha d^k) \le f(x^k) + c\alpha \nabla f(x^k)^\top d^k,$$
  
$$f(x^k + \alpha d^k) \ge f(x^k) + (1 - c)\alpha \nabla f(x^k)^\top d^k$$

则称步长  $\alpha$  满足 Goldstein 准则, 其中  $c \in (0, \frac{1}{2})$ 

■ 定义 5.3 设  $d^k$  是点  $x^k$  处的下降方向, 若

$$f(x^k + \alpha d^k) \le f(x^k) + c_1 \alpha \nabla f(x^k)^{\top} d^k,$$
  
 
$$\nabla f(x^k + \alpha d^k)^{\top} d^k \ge c_2 \nabla f(x^k)^{\top} d^k$$

则称步长  $\alpha$  满足 Wolfe 准则, 其中  $c_1, c_2 \in (0,1)$  为给定的常数且  $c_1 < c_2$ 

#### Wolfe 准则

- Wolfe 准则实际要求  $\phi(\alpha)$  在点  $\alpha$  处切线的斜率不能小于  $\phi'(0)$  的  $c_2$  倍
- $\phi(\alpha)$  的极小值点  $\alpha^*$  处有  $\phi'(\alpha^*) = \nabla f(x^k + \alpha^* d^k)^\top d^k = 0$ , 因此  $\alpha^*$  永远满足条件二. 而选择较小的  $c_1$  可使得  $\alpha^*$  同时满足条件一, 即 Wolfe 准则在绝大多数情况下会包含线搜索子问题的精确解



## Zoutendijk 定理

■ 定理 5.1 考虑一般的迭代格式  $x^{k+1} = x^k + \alpha_k d^k$ , 其中  $d^k$  是搜索方向,  $\alpha_k$  是 步长, 且在迭代过程中 Wolfe 准则满足. 假设目标函数 f 下有界、连续可微 且梯度 L -利普希茨连续, 即

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall \ x, y \in \mathbb{R}^n$$

那么

$$\sum_{k=0}^{\infty} \cos^2 \theta_k \|\nabla f(x^k)\|^2 < +\infty$$

其中  $\cos \theta_k$  为负梯度  $-\nabla f(x^k)$  和下降方向  $d^k$  夹角的余弦, 即

$$\cos \theta_k = \frac{-\nabla f(x^k)^\top d^k}{\|\nabla f(x^k)\| \|d^k\|}$$

这个不等式也被称为Zoutendijk 条件

## 线搜索算法的收敛性

■ 推论 5.1 对于迭代法  $x^{k+1} = x^k + \alpha_k d^k$ , 设  $\theta_k$  为每一步负梯度  $-\nabla f(x^k)$  与下降方向  $d^k$  的夹角, 并假设对任意的 k, 存在常数  $\gamma > 0$ , 使得

$$\theta_k < \frac{\pi}{2} - \gamma$$

则在 Zoutendijk 定理成立的条件下, 有

$$\lim_{k \to \infty} \nabla f(x^k) = 0$$

# 线搜索算法收敛性的证明

证明 假设结论不成立, 即存在子列  $\{k_l\}$  和正常数  $\delta>0$ , 使得

$$\|\nabla f(x^{k_l})\| \ge \delta, \quad l = 1, 2, \cdots$$

根据  $\theta_k$  的假设, 对任意的 k 有

$$\cos \theta_k > \sin \gamma > 0$$

仅考虑 Zoutendijk 条件中第  $k_l$  项的和满足

$$\sum_{k=0}^{\infty} \cos^2 \theta_k \|\nabla f(x^k)\|^2 \ge \sum_{l=1}^{\infty} \cos^2 \theta_{k_l} \|\nabla f(x^{k_l})\|^2$$

这显然和 Zoutendijk 定理矛盾

## 目录

- 5.1 线搜索方法
- 5.2 梯度类算法
- 5.3 次梯度算法
- 5.4 牛顿类算法
- 5.5 拟牛顿类算法
- 5.6 信赖域算法
- 5.7 非线性最小二乘问题算法

#### 梯度下降法

■ 注意到  $\phi(\alpha) = f(x^k + \alpha d^k)$  有泰勒展开

$$\phi(\alpha) = f(x^k) + \alpha \nabla f(x^k)^{\top} d^k + \mathcal{O}(\alpha^2 ||d^k||^2)$$

■ 由柯西不等式, 当  $\alpha$  足够小时取  $d^k = -\nabla f(x^k)$  会使函数下降最快

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k)$$

■ 另一种理解方式

$$x^{k+1} = \arg\min_{x} f(x^{k}) + \nabla f(x^{k})^{\top} (x - x^{k}) + \frac{1}{\alpha_{k}} ||x - x^{k}||_{2}^{2}$$
$$= \arg\min_{x} ||x - (x^{k} - \alpha_{k} \nabla f(x^{k}))||_{2}^{2}$$
$$= x^{k} - \alpha_{k} \nabla f(x^{k})$$

#### 二次函数的梯度法

■ 设二次函数  $f(x,y)=x^2+10y^2$ , 初始点  $(x^0,y^0)$  取为 (10,1), 取固定步长  $\alpha_k=0.085$ , 使用梯度法  $x^{k+1}=x^k-\alpha_k\nabla f(x^k)$  进行 15 次迭代



#### 二次函数的收敛定理

■ 定理 5.2 考虑正定二次函数

$$f(x) = \frac{1}{2}x^{\top}Ax - b^{\top}x$$

设最优值点为  $x^*$ . 若使用梯度法  $x^{k+1}=x^k-\alpha_k\nabla f(x^k)$  并选取  $\alpha_k$  为精确线搜索步长, 即

$$\alpha_k = \frac{\|\nabla f(x^k)\|^2}{\nabla f(x^k)^\top A \nabla f(x^k)}$$

则梯度法关于迭代点列  $\{x^k\}$  是 Q-线性收敛, 即

$$||x^{k+1} - x^*||_A^2 \le (\frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n})^2 ||x^k - x^*||_A^2$$

#### 梯度法在凸函数上的收敛性

■ 对于可微函数 f, 若存在 L>0, 对任意的  $x,y\in \text{dom } f$  有

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

■ 定理 5.3 设 f(x) 为 凸的梯度 L -利普希茨连续函数,  $f^* = f(x^*) = \inf_x f(x)$  存在且可达, 如果步长  $\alpha_k$  取为常数  $\alpha$  且满足  $0 < \alpha < \frac{1}{L}$ , 那么点列  $\{x^k\}$  的 函数值收敛到最优值, 且在函数值的意义下收敛速度为  $\mathcal{O}(\frac{1}{k})$ 

#### 梯度法在强凸函数上的收敛性

- 引理 5.1 设函数f(x) 是  $\mathbb{R}^n$  上的凸可微函数,则以下结论等价
  - $\Box f$  的梯度为 L -利普希茨连续的
  - $\mathbf{G}$  函数  $g(x) = \frac{L}{2}x^{\mathsf{T}}x f(x)$  是凸函数

$$(\nabla f(x) - \nabla f(y))^{\top}(x - y) \ge \frac{1}{L} \|\nabla f(x) - \nabla f(y)\|^2$$

■ 定理 5.4 设 f(x) 为 m -强凸的梯度 L -利普希茨连续函数,  $f(x^*) = \inf_x f(x)$  存在且可达. 如果步长  $\alpha$  满足  $0 < \alpha < \frac{2}{m+L}$ , 那么由梯度下降法迭代得到的点列  $\{x^k\}$  收敛到  $x^*$ , 且为Q-线性收敛

■考虑

$$\min \quad f(x) = \frac{1}{2} ||Ax - b||^2 + \mu ||x||_1$$

■ 由于 ||x||<sub>1</sub> 不光滑, 考虑 Huber 光滑函数

$$l_{\delta}(x) = \begin{cases} \frac{1}{2\delta}x^2, & |x| < \delta \\ |x| - \frac{\delta}{2}, & \text{其他} \end{cases}$$



■ 光滑化 LASSO 问题为

min 
$$f_{\delta}(x) = \frac{1}{2} ||Ax - b||^2 + \mu L_{\delta}(x), \quad \sharp \dot{\mathbb{P}} \quad L_{\delta}(x) = \sum_{i=1}^{n} l_{\delta}(x_i),$$

■  $f_{\delta}(x)$  的梯度为

$$\nabla f_{\delta}(x) = A^{\top}(Ax - b) + \mu \nabla L_{\delta}(x),$$

其中

$$(\nabla L_{\delta}(x))_i = \begin{cases} \operatorname{sign}(x_i), & |x_i| > \delta \\ \frac{x_i}{\delta}, & |x_i| \leq \delta \end{cases}$$

■  $f_{\delta}(x)$  的梯度是利普希茨连续的, 且相应常数为  $L = \|A^{\top}A\|_2 + \frac{\mu}{\delta}$ 

■ 光滑化 LASSO 问题求解迭代过程



■ 精确解 (左) v.s. 梯度法解 (右)



# 目录

- 5.1 线搜索方法
- 5.2 梯度类算法
- 5.3 次梯度算法
- 5.4 牛顿类算法
- 5.5 拟牛顿类算法
- 5.6 信赖域算法
- 5.7 非线性最小二乘问题算法

## 次梯度算法结构

■ 回顾一阶充要条件

$$x^*$$
是一个全局极小点  $\Leftrightarrow$   $0 \in \partial f(x^*)$ 

■ 类似梯度法构造如下次梯度算法的迭代格式

$$x^{k+1} = x^k - \alpha_k g^k, \quad g^k \in \partial f(x^k)$$

- □ 固定步长  $\alpha_k = \alpha$
- $\Box$  固定  $||x^{k+1}-x^k||$ , 即  $\alpha_k||g^k||$  为常数
- $\Box$  选取  $\alpha_k$  使其满足某种线搜索准则

- 考虑 LASSO 问题
- 次梯度算法

$$\min \quad f(x) = \frac{1}{2} ||Ax - b||^2 + \mu ||x||_1$$

$$x^{k+1} = x^k - \alpha_k (A^{\top} (Ax^k - b) + \mu \operatorname{sign}(x^k))$$



# Q&A

# Thank you!

感谢您的聆听和反馈