PROBLÉME I

Notations.

E et F désignent des \mathbb{R} -espaces vectoriels, de dimensions respectives p et n non nulles.

f est une application linéaire non nulle de E vers F (c'est-à-dire $f\in \mathscr{L}(E,F)).$

On désigne par :

- $\Omega(f)$ l'ensemble des endomorphismes g de F tels que : (1) $g \circ f = 0$.
- $\Gamma(f)$ l'ensemble des endomorphismes h de F tels que : (2) $h \circ f = f$.
- $-\Gamma'(f)$ l'ensemble des éléments de $\Gamma(f)$ qui sont inversibles.

Première partie.

A. 1. Montrer que $\Omega(f)$ est un \mathbb{R} -espace vectoriel et qu'il est stable pour la composition des endomorphismes de F.

Est-ce une sous-algèbre de $\mathcal{L}(F)$?

- 2. Montrer que $\Gamma(f)$ est non vide, qu'il est stable pour la composition des endomorphismes de F, puis que $\Gamma'(f)$ est un groupe pour la composition des endomorphismes de F.
- **B.** Dans cette question, n = p. Le rang de f, noté r, vérifie r < n.
 - 1. g décrivant $\Omega(f)$, déterminer la valeur maximale de l'entier r', r' étant le rang de g.
 - **2.** Démontrer que l'on peut trouver des bases \mathscr{B} de E et \mathscr{B}' de F telles que la matrice de f relativement à ces bases soit la matrice A dont le coefficient de la i-ème ligne et de la j-ème colonne $a_{i,j}$ vérifie $a_{i,i}=1$ si $i \leq r$ et $a_{i,j}=0$ sinon.
 - **3.** En déduire la dimension de $\Omega(f)$ (Indication : on pourra utiliser des produits de matrices par blocs). $(\Omega(f), +, \circ)$ est-il un anneau?
- C. Dans cette question, E et F sont de dimension 3, rapportés à des bases \mathscr{B}_1 et \mathscr{B}'_1 , et f est l'application linéaire dont la matrice dans ces bases est

$$A = M_{\mathscr{B}_1}^{\mathscr{B}_1'}(f) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 1 & 1 \end{pmatrix}$$

Déterminer dans \mathscr{B}'_1 les matrices des éléments de $\Omega(f)$, $\Gamma(f)$ et $\Gamma'(f)$.

Deuxième partie.

Le rang de f est maintenant le plus petit des entiers n et p.

- **A.** On suppose p = n. Déterminer $\Omega(f)$, puis $\Gamma(f)$ et $\Gamma'(f)$.
- **B.** On suppose p > n. Déterminer $\Omega(f)$, puis $\Gamma(f)$ et $\Gamma'(f)$.
- C. On suppose maintenant, et jusqu'à la fin de la troisième partie du problème, que p < n.
 - 1. g décrivant $\Omega(f)$, déterminer la valeur maximale de l'entier r', r' étant le rang de g.
 - **2.** Montrer que l'on peut trouver des bases \mathcal{B} de E et \mathcal{B}' de F telles que la matrice de f relativement à ces bases soit la matrice A, dont on précisera le nombre des lignes et celui des colonnes, dont le coefficient de la i-ème ligne et de la j-ème colonne $a_{i,j}$ vérifie $a_{i,i} = 1$ si $i \in [1; p]$ et $a_{i,j} = 0$ sinon.

En déduire :

- a) l'ensemble des matrices décrit par la matrice associée à g respectivement à la base \mathscr{B}' lorsque g décrit $\Omega(f)$, puis l'ensemble des matrices décrit par la matrice associée à h respectivement à la base \mathscr{B}' lorsque h décrit $\Gamma(f)$ et enfin lorsque h décrit $\Gamma'(f)$.
- **b)** la dimension de $\Omega(f)$.

Les matrices demandées dans cette question seront données sous forme de blocs.

Troisième partie.

On rappelle que p < n.

On se propose d'étudier l'équation d'inconnue w où w est une application linéaire :

(3)
$$f \circ w = h$$
 , h étant un élément donné de $\Gamma(f)$.

- 1. Préciser l'espace de départ et l'espace d'arrivée d'une éventuelle solution à cette équation.
- 2. Montrer que si cette équation admet des solutions, alors :
 - a) h est un projecteur.
 - **b)** h est de rang au plus p.
 - c) h est de rang exactement p.
 - **d)** l'image de h est celle de f.
 - e) l'équation (3) a exactement une solution.
- **3.** Soit alors h un projecteur dont l'image est celle de f.

En utilisant les bases \mathcal{B} et \mathcal{B}' déjà définies dans la seconde partie, résoudre l'équation (3). Déduire du résultat une condition nécessaire et suffisante portant sur h pour que l'équation (3) admette une solution.

Quatrième partie.

Résoudre l'équation d'inconnue $W \in \mathcal{M}_3(\mathbb{R})$:

$$(4) \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 1 & 1 \end{pmatrix} \times W = H \quad \text{avec } H \in \mathcal{M}_3(\mathbb{R}) \text{ donn\'ee telle que : } H \times \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 1 & 1 \end{pmatrix}$$