predavanje 9: Geometrijska optika

1. Što je geometrijska optika? Kako glasi zakon loma i refleksije. Kako se ponašaju valna duljina i frekvencijom svjetlosti pri prijelazu iz jednog sredstva u drugo. (obavezno)

Geometrijska optika je dio optike u kojoj se za opis svjetlosnih pojava služimo svjetlosnom zrakom. Pomoću tri osnovna zakona geometrijske optike mogu se objasniti svojstva zrcala i leća, te načine na koje pomoću njih nastaju slike. Osnovni zakoni geometrijske optike su:

1. zakon – zakon o pravocrtnom širenju svjetlosti

U optički jednolikom i prozirnom sredstvu zamišljamo da se svjetlost širi u zrakama koje su pravci. Taj je zakon primjenjiv kada je valna duljina svjetlosti vrlo malena prema dimenzijama optičke naprave.

2. zakon – zakon odbijanja ili refleksije

Ako na glatku plohu, padne zraka svjetlosti, ona se od nje odbije. Upadna zraka koja je normala na plohu i odbijena zraka leže u istoj ravnini. Pri tome je kut odbijanja o jednak upadnom kutu u. Kutevi se mjere s obzirom na normalu na graničnu plohu.

3. zakon - zakon loma ili refrakcije

Ako zraka svjetlosti prelazi iz jednoga sredstva u drugo, ona mijena smjer. Upadna zraka, normala na granicu u upadnoj točki i lomljena zraka, leže u istoj ravnini zajedno s odbijenom zrakom.

Upadni kut **u** i kut loma ℓ povezani su Snellovim zakonom:

$$\frac{\sin u}{\sin \ell} = \frac{n_2}{n_1} = \frac{v_1}{v_2}$$

$$\frac{\sin u}{\sin \ell} = \frac{n_2}{n_1} = \frac{v_1}{v_2} \qquad (n_1 = \frac{c}{v_1}; n_2 = \frac{c}{v_2})$$

gdje su n₁ i n₂ indeksi loma, dok su v₁ i v₂ fazne brzine svjetlosti u sredstvu 1 i 2.

- □ Kad se svjetlo širi iz jedne sredine u $f_1 = f_2$ ali $\nu_1 \neq \nu_2$ pa je $\lambda_1 \neq \lambda_2$ drugu njena frekvencija se ne

 - mijenja se valna duljina i brzina propagacije
- $\frac{\lambda_{1}}{\lambda_{2}} = \frac{v_{1}}{v_{2}} = \frac{c/n_{1}}{c/n_{2}} = \frac{n_{2}}{n_{1}}$ $n = \frac{\lambda}{\lambda_{n}} \quad \frac{(\lambda vakuum)}{(\lambda sredstvo)}$

- $\square \quad v = f\lambda$
 - $f_1 = f_2$ ali $v_1 \neq v_2$ pa je $\lambda_1 \neq \lambda_2$

2. Objasnite nastanak totalne refleksije i navedite jednu njenu primjenu. (obavezno)

Totalna refleksija – Kada svjetlost prolazi iz optički gušćeg u optički rjeđe sredstvo kut loma veći je od kuta upada. Postoji kut uq koji zovemo granični kut, za koji je kut loma 90°, što znači da lomljena zraka ide točno granicom sredstva. Za kuteve veće od graničnog kuta $(u > u_g)$ svjetlost se reflektira u isto sredstvo i tu pojavu zovemo totalna refleksija.

Za granični kut vrijedi da je:

$$\sin u_g = \frac{n_2}{n_1}$$

Najčešća primjena totalne refleksije je u optičkim instrumentima i u svjetlovodima.

3. Što je to Fermatov princip. Izvedite zakon refleksije i loma iz Fermatovog principa.

Fermatov princip glasi: svjetlo koje se lomi i odbija prevaljuje toliki put između dviju točaka da pripadni optički put zrake ima ekstremnu vrijednost, odnosno svjetlo prelazi put u ekstremnom vremenu. Obično je taj ekstrem minimum.

Svjetlosni snop intenziteta I_0 koji pada na graničnu plohu djelomično će se relfektirati, a djelomično lomiti (tj. transmitirati). Ako sredstvo ne apsorbira svjetlo, mora biti ispunjen uvjet:

$$\frac{I_r}{I_o} + \frac{I_t}{I_o} = \rho + \sigma = 1$$

gdje je I_r intenzitet reflektirane svjetlosti, I_t intenzitet transmitirane svjetlosti, ρ **faktor refleksije**, a σ **faktor transmisije**.

Vrijeme t_s u kojem svjetlo prijeđe put je:

$$t_s = \frac{s_u}{v_1} + \frac{s_r}{v_1}$$
 za slučaj odbijanja svjetla, a

$$t_s = \frac{s_u}{v_1} + \frac{s_t}{v_2}$$
 za slučaj loma svjetla,

gdje prijeđene puteve treba izraziti preko geometrijskih veličina.

ZAKON REFLEKSIJE

zakon refleksije: $\angle u = \angle o$

$$s_u = \sqrt{a^2 + x^2}$$
; $s_r = \sqrt{b^2 + (d - x)^2}$

$$t = \frac{s_1}{v} + \frac{s_2}{v} = \frac{1}{v} (\sqrt{a^2 + x^2} + \sqrt{(d - x)^2 + b^2})$$

Na osnovi nužnog uvjeta za ekstrem ($\frac{d t_s}{d x}$ = 0) dobije se

$$\frac{dt}{dx} = \frac{x}{\sqrt{a^2 + x^2}} - \frac{d - x}{\sqrt{b^2 + (d - x)^2}} =$$

$$= \sin \theta_1 - \sin \theta_1' = 0, \quad \text{iti} \qquad \text{uvjet ekstrema}$$

$$kut \ \theta_1 = kut \ \theta_1' \quad \text{(zakon refleksije)}$$

ZAKON LOMA

$$\frac{\sin u}{\sin \ell} = \frac{n_2}{n_1} = \frac{v_1}{v_2}$$

Fermatov princip: Svjetlost koja se lomi ili reflektira giba se između dvije točke putanjom koja zahtjeva najkraće vrijeme.

$$t = \frac{r_1}{v_1} + \frac{r_2}{v_2} = \frac{\sqrt{a^2 + x^2}}{c/n_1} + \frac{\sqrt{b^2 + (d - x)^2}}{c/n_2}$$

$$\frac{dt}{dx} = \frac{n_1 x}{c\sqrt{a^2 + x^2}} - \frac{n_2 (d - x)}{c\sqrt{b^2 + (d - x)^2}} = 0$$

$$n_1 \sin \theta_1 - n_2 \sin \theta_2 = 0$$

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1} = \frac{v_1}{v_2} \quad \text{(zakon loma)}$$
Uvjet ekstrema

4. Kako se konstruira slika sfernih zrcala. Kako se konstruira slika leća.

Sferna zrcala imaju oblik dijela sfere. **Konkavno ili udubljeno sferno zrcalo**ima reflektirajuću površinu na unutrašnjoj strani, konkavnoj stani krivulje.

Konveksno ili ispupčeno sferno zrcalo ima reflektirajuću površinu na vanjskom dijelu krivulje, konveksnoj strani krivulje.

Zrcalo ima radijus zakrivljenosti R. Centar zakrivljenosti je u točki C. Točka V (tjeme zrcala) se nalazi u centru sfernog segmenta. Linija od C do V se zove **glavna ili optička os**.

Slike sfernih zrcala mogu se odrediti pomoću sjecišta 4 karakteristične zrake koje se šire iz predmeta:

- Zraka 1 upada paralelno optičkoj osi i reflektira se kroz fokus F,
- Zraka 2 prolazi kroz fokus i reflektira se paralelno optičkoj osi,
- Zraka 3 prolazi kroz centar zakrivljenosti i reflektira se sama u sebe,
- Zraka 4 reflektira se u tjemenu i vrijedi: kut upada=kut refleksije.

Leća je prozirno optičko tijelo omeđeno dvjema glatkim prozirnim površinama koje mogu biti ili obje zakrivljene, ili jedna zakrivljena a druga ravna.

Leća je prozirno optičko sredstvo omeđeno dvjema sfernim granicama (sferne leće) čiji centri zakrivljenosti leže na zajedničkoj optičkoj osi.

Ako se točkasti predmet nalazi na optičkoj osi u predmetnoj daljini a, tanka leća načini sliku na optičkoj osi u slikovnoj udaljenosti b prema relaciji (f – žarišna daljina):

 $\frac{1}{a} + \frac{1}{b} = \frac{1}{f}$ Relacija vrijedi ako se leća nalazi u homogenom sredstvu jednog indeksa loma, npr. zraku

Žarišna udaljenost konvergente leće je pozitivna, a divergentne leće negativna.

Slika je realna (b>0) ako je sa suprotne strane od predmeta, a virtualna (b<0) ako je s iste strane kao predmet.

Jakost ili konvergencija leće jednaka je J=1/f i izražava se recipročnim metrom (m⁻¹) ili dioptrijom (dpt).

Slike tankih leća mogu se odrediti pomoću sjecišta 3 karakteristične zrake koje se šire iz predmeta:

- Zraka 1 koja upada paralelno optičkoj osi prolazi kroz fokus F₂,
- Zraka 2 koja prolazi kroz fokus F₁ pojavljuje se paralelno optičkoj osi,
- Zraka 3 koja prolazi kroz centar leće ne mijenja smjer pri prolasku.