SAGEDUSRUUM

LOTI.05.064 DIGITAALNE SIGNAALITÖÖTLUS TARTU|2021 (6 EAP)

Janno Jõgeva

Organisatoorne info

- Organisatoorne info
- Fourier' pööre

- Organisatoorne info
- Fourier' pööre

Sagedused ja faas graafikul

- Organisatoorne info
- Fourier' pööre

- Sagedused ja faas graafikul
- Fourier' pöördteisendus

KORRALDUSLIK INFO

PUNKTID

Moodlesse on lisatud seni praktikumide eest saadud punktid

7. PRAKTILINE TÖÖ

Avaldatakse järgmisel nädalal

Ei kuulu vahearvestuse alla

FOURIER' PÖÖRE

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n]e^{\frac{-j2\pi kn}{N}}$$

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n]e^{\frac{-j2\pi kn}{N}}$$

$$\downarrow \qquad \downarrow$$

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{\frac{-j2\pi kn}{N}}$$

$$\downarrow \qquad \downarrow$$

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \left(\cos\left(\frac{2\pi kn}{N}\right) - j\sin\left(\frac{2\pi kn}{N}\right)\right)$$

SAGEDUSLAHUTUS

NYQUIST-SHANNONI TEOREEM

Ajas pideva signaali diskreetimisel peab kasutama >2 korra kõrgemat sagedust kui esineb algses signaalis

Sellisel juhul on tulemuses tagatud diskreetmoonutuse puudumine aga võivad esineda teised moonutused

NYQUISTI TEOREEMI AJALUGU

- Harry Nyquist ei ole ainuke ega ka esimene inimene kes selle omaduse avastas
- Näiteks järgmised inimesed on samuti nende teadmiste formaliseerimise juures rolli mänginud
 - Claude Shannon
 - Vladimir Kotelnikov
 - E. T. Whittaker

OSTSILLOSKOOP

Sämplimise sagedust soovitatakse vähemalt 5 korda kõrgemat kui kõige kõrgem sagedus mõõdetavas signaalis

OSTSILLOSKOOP

Sämplimise sagedust soovitatakse vähemalt 5 korda kõrgemat kui kõige kõrgem sagedus mõõdetavas signaalis

Miks on see nii?

DFT SAGEDUSLAHUTUS

MILLISEID SAGEDUSI SUUDAME ERISTADA?

Võtame sisendsignaali milles on 16 punkti

KÕIGE MADALAM SAGEDUS

KÕIGE KÕRGEM SAGEDUS?

$$X[0] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \left(\cos \left(\frac{2\pi 0n}{N} \right) - j \sin \left(\frac{2\pi 0n}{N} \right) \right)$$

$$X[0] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \left(\cos \left(\frac{2\pi 0n}{N} \right) - j \sin \left(\frac{2\pi 0n}{N} \right) \right)$$

$$\downarrow \qquad \downarrow$$

$$X[0] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \left(\cos \left(\frac{2\pi 0n}{N} \right) - j \sin \left(\frac{2\pi 0n}{N} \right) \right)$$

$$\downarrow \qquad \downarrow$$

$$X[0] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] (\cos(0) - j \sin(0))$$

$$X[0] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \left(\cos\left(\frac{2\pi 0n}{N}\right) - j\sin\left(\frac{2\pi 0n}{N}\right) \right)$$

$$\downarrow \qquad \downarrow$$

$$X[0] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] (\cos(0) - j\sin(0))$$

Mis valemiga on tegu?

KAS OLETE LOENGUSSE KIRJA PANDUD?

LIVE DEMO

SAGEDUSRUUMI PUNKTID

SIGNAAL 1

SAGEDUSRUUM

SIGNAAL 2

SAGEDUSRUUM

FAAS?

$\mathsf{FAAS}\,k=1$

ARVUTÜÜBID PYTHONIS

- int type (1)
- float type (1.0)
- complex type (1+0j)

TAGASI AEGRUUMI

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n]e^{\frac{-j2\pi kn}{N}}$$

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n]e^{\frac{-j2\pi kn}{N}}$$

Signaali pikkus: N

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{\frac{-j2\pi kn}{N}}$$

Signaali pikkus: N

k on nüüd sagedusvahemik

PÖÖRDTEISENDUS

PÖÖRDTEISENDUS

$$x[n] = \sum_{k=0}^{N-1} X[k]e^{\frac{j2\pi kn}{N}}$$

PÖÖRDTEISENDUS

$$x[n] = \sum_{k=0}^{N-1} X[k]e^{\frac{j2\pi kn}{N}}$$

Signaali pikkus: N

JÄRGMISEL KORRAL

DFT SENISE IMPLEMENTATSIOONI PROBLEEM

See on praktilistes rakendustes väga aeglane

KOKKUVÕTVALT

MIS ON VAJA TEIL ÄRA TEHA?

- 5. praktiline töö
- 5. kodutöö
- Alustada 6. praktilise tööga

SAGEDUSRUUM: LOTI.05.064 DIGITAALNE SIGNAALITÖÖTLUS TARTU 2021 (6 EAP)

Janno Jõgeva