```
In [ ]: # Dataset used:
            # Popular UCI wine dataset
            # The labels column has been changed to reperesent three different classes
        of customers for a business problem setup
        # Business Problem Setup:
            # Use the gathered data to identify which wines are being preferred by whi
        ch type of customers,
            # so that for future wine batches the producer can selectively offer diffe
        rent wines to different customers
        # ML algorithms used:
            # Logistic Regression in conjunction with PCA and LDA
In [1]: # import libraries
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        %matplotlib inline
        sns.set(style="whitegrid", font_scale=1.5)
In [2]: # read data file
        data = pd.read csv('Wine.csv')
        data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 178 entries, 0 to 177
        Data columns (total 14 columns):
                                178 non-null float64
        Alcohol
        Malic Acid
                                178 non-null float64
        Ash
                                178 non-null float64
        Ash Alcanity
                                178 non-null float64
        Magnesium
                                178 non-null int64
        Total Phenols
                                178 non-null float64
        Flavanoids
                                178 non-null float64
        Nonflavanoid Phenols
                                178 non-null float64
        Proanthocyanins
                                178 non-null float64
        Color Intensity
                                178 non-null float64
        Hue
                                178 non-null float64
        OD280
                                178 non-null float64
        Proline
                                178 non-null int64
        Customer_Segment
                                178 non-null int64
        dtypes: float64(11), int64(3)
        memory usage: 19.6 KB
```

In [3]: data.head()

### Out[3]:

|   | Alcohol | Malic_Acid | Ash  | Ash_Alcanity | Magnesium | Total_Phenols | Flavanoids | Nonflavanoid |
|---|---------|------------|------|--------------|-----------|---------------|------------|--------------|
| 0 | 14.23   | 1.71       | 2.43 | 15.6         | 127       | 2.80          | 3.06       |              |
| 1 | 13.20   | 1.78       | 2.14 | 11.2         | 100       | 2.65          | 2.76       |              |
| 2 | 13.16   | 2.36       | 2.67 | 18.6         | 101       | 2.80          | 3.24       |              |
| 3 | 14.37   | 1.95       | 2.50 | 16.8         | 113       | 3.85          | 3.49       |              |
| 4 | 13.24   | 2.59       | 2.87 | 21.0         | 118       | 2.80          | 2.69       |              |
| 4 |         |            |      |              |           |               |            | •            |

In [ ]: # one can see from the data that there are 178 different wines characterized by 13 different features

# the last colum represents the customer segments with different wine preferences - this is our labels column

# having 13 features could make it difficult for a model to to a good job
# so, the first question that comes to mind is whether some of these features
are strongly correlated

# also, is it possible to reduce the number of features to smaller number which will capture most of the data variance

In [4]: # first select the features and the target

data\_features = data.iloc[:, :-1]
data\_target = data.iloc[:, -1]

In [5]: data\_features.head(5)

### Out[5]:

|   | Alcohol | Malic_Acid | Ash  | Ash_Alcanity | Magnesium | Total_Phenols | Flavanoids | Nonflavanoid |
|---|---------|------------|------|--------------|-----------|---------------|------------|--------------|
| 0 | 14.23   | 1.71       | 2.43 | 15.6         | 127       | 2.80          | 3.06       |              |
| 1 | 13.20   | 1.78       | 2.14 | 11.2         | 100       | 2.65          | 2.76       |              |
| 2 | 13.16   | 2.36       | 2.67 | 18.6         | 101       | 2.80          | 3.24       |              |
| 3 | 14.37   | 1.95       | 2.50 | 16.8         | 113       | 3.85          | 3.49       |              |
| 4 | 13.24   | 2.59       | 2.87 | 21.0         | 118       | 2.80          | 2.69       |              |
| 4 |         |            |      |              |           |               |            | <b>&gt;</b>  |

In [6]: data\_target.head(5)

Out[6]: 0 1

1 1

2 1

3 1

1 1

Name: Customer Segment, dtype: int64

```
In [7]: # plot the correlation function of the features

plt.figure(figsize = (12,10))
sns.heatmap(data_features.corr(), cmap = 'viridis_r')
plt.title('Correlation between Wine Features', fontsize = 22, pad = 20, c = 'b lue')
plt.tick_params(labelsize = 15)
plt.show()
```



```
In [9]: # create pairplot with 1st half of features
sns.pairplot(data_features.iloc[:, 0:6], height = 4, aspect = 1)
plt.tight_layout
plt.show()
```



In [10]: # create pairplot with 2nd half of features
sns.pairplot(data\_features.iloc[:, 6:], height = 4, aspect = 1)
plt.tight\_layout
plt.show()



In [ ]: | # here too, nothing strikes us as extreme feature behavior

In [ ]: # we are ready to proceed with the model
# however, before we continue we would like to make the problem more realistic
# we will use train\_test\_split to create two sets of data - "current" wine bat
ches and "future" wine batch
# the goal is to predict the class of the wines from the future batch using mo
del trained and validated with the current batch

```
In [11]: # separate data in current and future datasets
    from sklearn.model_selection import train_test_split

X_current, X_future, y_current, y_future = train_test_split(data_features, dat a_target, test_size = 0.1, random_state = 0)

# from here on we will use "current" data with our predictive model
# we reserve the "future" dataset for the final prediction test
```

```
In [12]: # scale X_current

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

X_current = scaler.fit_transform(X_current)
```

In [ ]: # Use PCA to reduce the number of features

In [13]: # first, determine the number of features which contribute most to the data va riance from sklearn.decomposition import PCA pca = PCA(n components = None) pca.fit(X current) explained var = pca.explained variance ratio # Variance by Principal Componen # visualizig the Variance by Principal Components plt.figure(figsize = (12,8)) sns.barplot(np.arange(1, X\_current.shape[1] + 1), explained\_var, color = 'blu e') plt.xlabel('Principal Components', fontsize = 22, labelpad = 20) plt.ylabel('Explained Data Variance', fontsize = 22, labelpad = 20) plt.title('Explained Data Variance by Principal Components', fontsize = 25, c = 'blue', pad = 20) plt.tick params(labelsize = 15) plt.show()

### **Explained Data Variance by Principal Components**



In [ ]: # the results show that the first two principal components capture ~ 55% of th
e data variance
# this is sufficient to use a PCA model with 2 principal components
# note that principal components are not identical to the data features # they are combinations of features with different weights

```
In [14]: | # apply PCA with n_components = 2 to current data
         pca = PCA(n components = 2)
         X pca = pca.fit transform(X current)
In [15]: # use Logistic Regression with current data after PCA transformation
         # first split into train/test sets
         X_train, X_test, y_train, y_test = train_test_split(X_pca, y_current, test_siz
         e = 0.2, random state = 42)
         from sklearn.linear_model import LogisticRegression
         classifier 1 = LogisticRegression(solver='lbfgs', multi class = 'auto', random
         state = 0)
         classifier_1.fit(X_train, y_train)
         y_pred_1 = classifier_1.predict(X_test)
In [16]: | # compare predictions, y_pred_1, with test data, y_test
         from sklearn.metrics import confusion_matrix, classification_report
         print('Confusion Matrix:')
         print(confusion_matrix(y_test, y_pred_1))
         print('\n')
         print('Classification Report:')
         print(classification_report(y_test, y_pred_1))
         Confusion Matrix:
         [[13 0 0]
          [ 0 12 0]
          [0 0 7]]
         Classification Report:
                       precision
                                   recall f1-score
                                                        support
                    1
                            1.00
                                      1.00
                                                 1.00
                                                             13
                    2
                            1.00
                                      1.00
                                                 1.00
                                                             12
                    3
                                                              7
                            1.00
                                       1.00
                                                 1.00
                                                             32
                                                 1.00
             accuracy
                            1.00
                                       1.00
                                                 1.00
                                                             32
            macro avg
         weighted avg
                            1.00
                                       1.00
                                                 1.00
                                                             32
In [ ]: # the prediction accuracy is perfect 100%!
         # visualize the segments created by Logistic Regression model after applying P
```

CA

In [17]: # define mapping function def mapPredictions(clf): # Create a dense grid of points to sample xx, yy = np.meshgrid(np.arange(-ax min, ax max, .005), np.arange(-ax\_min, ax\_min, .005)) # Convert to Numpy arrays npx = xx.ravel() npy = yy.ravel() # Convert to a list of 2D points samplePoints = np.c\_[npx, npy] # Generate predicted labels (cluster numbers) for each point Z = clf.predict(samplePoints) plt.figure(figsize=(10, 10)) Z = Z.reshape(xx.shape) # Reshape results to match xx dimensionplt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.6) # Draw the contour plt.scatter(X\_p[:,0], X\_p[:,1], s = 50, c=y\_p, cmap = 'rainbow') # data po ints plt.xlabel('Component 1', fontsize = 22, labelpad = 15) plt.ylabel('Component 2', fontsize = 22, labelpad = 15) plt.title(title str, fontsize = 25, c = 'blue', pad = 20) plt.tick params(labelsize= 18) plt.show()

```
In [18]: # Mapping of Training Data

ax_min = 4.5
ax_max = 4.5

X_p = X_train
y_p = y_train

title_str = 'Logistic Regression: Mapping of Training Data after PCA'

mapPredictions(classifier_1)
```

# Logistic Regression: Mapping of Training Data after PCA



In [ ]: # as we can see, despite the perfect accuracy of the predictions, there are fe w data points which are mislabeled

```
In [19]: # Mapping of Test Data

X_p = X_test
y_p = y_test

title_str = 'Logistic Regression: Mapping of Test Data after PCA'
mapPredictions(classifier_1)
```

# Logistic Regression: Mapping of Test Data after PCA



```
In [ ]: # as already indicated by the confusion matrix, there are no mislabeled points
In [ ]: # For comparison, let's use LDA followed by Logistic Regression
```

```
In [20]: # LDA is a supervised algorithm, so we need to create train/test datasets from
         the current data before applying LDA
         X train, X test, y train, y test = train test split(X current, y current, test
         size = 0.2, random state = 0)
In [21]: | # apply LDA
         from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
         lda = LDA(n_components = 2)
         lda.fit(X_train, y_train)
         X train = lda.transform(X train)
         X test = lda.transform(X test)
In [22]: # apply Logistic Regression Classifier to the LDA transformed data
         classifier 2 = LogisticRegression(solver='lbfgs', multi class = 'auto', random
         state = 0)
         classifier 2.fit(X train, y train)
         y_pred_2 = classifier_2.predict(X_test)
In [23]: | # compare predictions, y_pred_2, with test data, y_test
         print('Confusion Matrix:')
         print(confusion_matrix(y_test, y_pred_2))
         print('\n')
         print('Classification Report:')
         print(classification_report(y_test, y_pred_2))
         Confusion Matrix:
         [[ 9 0 0]
          [ 0 16 0]
          [0 1 6]]
         Classification Report:
                       precision
                                    recall f1-score
                                                        support
                    1
                            1.00
                                      1.00
                                                 1.00
                                                              9
                    2
                            0.94
                                      1.00
                                                 0.97
                                                             16
                    3
                            1.00
                                      0.86
                                                 0.92
                                                              7
                                                 0.97
                                                             32
             accuracy
            macro avg
                            0.98
                                      0.95
                                                 0.96
                                                             32
         weighted avg
                            0.97
                                      0.97
                                                 0.97
                                                             32
```

In [ ]: | # here, we have one mislabeled point

In [ ]: # visualize the segments created by Logistic Regression model after applying L DA

# In [24]: # Mapping of Training Data ax\_min = 6.5 ax\_max = 6.5 X\_p = X\_train y\_p = y\_train title\_str = 'Logistic Regression: Mapping of Training Data after LDA' mapPredictions(classifier\_2)

## Logistic Regression: Mapping of Training Data after LDA



In []: # perfect separation of the training data - no mislabeled points
# in this case, since it maximizes the separation between classes LDA performs
better with this dataset than PCA

```
In [25]: # Mapping of Test Data

X_p = X_test
y_p = y_test

title_str = 'Logistic Regression: Mapping of Test Data after LDA'
mapPredictions(classifier_2)
```

# Logistic Regression: Mapping of Test Data after LDA



In []: # as already indicated by the confusion matrix, there is one mislabeled point # overall, due to LDA maximizing the class separation Logistic Regression after r applying LDA performs better

```
In [29]: # plot the predictions and compare with the true labels, y future
         x \min = 0
         x max = 20
         d x = 1
         y \min = 0
         y max = 4
         d_y = 1
         fig, axes = plt.subplots(1, 2, sharey=True, figsize=(16,8))
         # Labeled data
         axes[0].scatter(np.arange(1, X future.shape[0]+1), y future, s = 200, marker =
         's', c = 'g', alpha = 0.4, label = 'True Customer Class')
         axes[0].scatter(np.arange(1, X_future.shape[0]+1), y_future_pca, s = 80, marke
         r = 'x', c = 'r', lw = 2, label = 'Predicted Customer Class')
         axes[0].set title('Predictions After Applying PCA', fontsize = 20, pad = 20)
         axes[0].set_xlabel('New Wine Batch', fontsize = 18, labelpad = 15)
         axes[0].set ylabel('Customer Class', fontsize = 18, labelpad = 15)
         axes[0].legend(fontsize = 14)
         axes[0].set_xlim(x_min, x_max)
         axes[0].set xticks(np.arange(x min, x max + d x, d x))
         axes[0].set_ylim(y_min, y_max)
         axes[0].set_yticks(np.arange(y_min, y_max + d_y, d_y))
         axes[0].tick params(labelsize = 14)
         # Hierarchical Clustering results
         axes[1].scatter(np.arange(1, X future.shape[0]+1), y future, s = 200, marker =
         's', c = 'g', alpha = 0.4, label = 'True Customer Class')
         axes[1].scatter(np.arange(1, X future.shape[0]+1), y future lda, s = 80, marke
         r = 'x', c = 'r', lw = 2, label = 'Predicted Customer Class')
         axes[1].set_title('Predictions After Applying LDA', fontsize = 20, pad = 20)
         axes[1].set_xlabel('New Wine Batch', fontsize = 18, labelpad = 15)
         axes[1].set_ylabel('Customer Class', fontsize = 18, labelpad = 15)
         axes[1].legend(fontsize = 14)
         axes[1].set xlim(x min, x max)
         axes[1].set xticks(np.arange(x min, x max + d x, d x))
         axes[1].set ylim(y min, y max)
         axes[1].set_yticks(np.arange(y_min, y_max + d_y, d_y))
         axes[1].tick params(labelsize = 14)
         plt.show()
```





New Wine Batch

### Predictions After Applying LDA



In [ ]:

# Both models accurately classified the new ("future") batch of wine by custom er segment, except for one wine

# The producer can offer the wines from the list below to the respective custo mers and expect near 100% buy

# wines # 1, 4, 6, 7, 13, 17, and 18 should be offered to Customer Class 1 - wine 6 is the only wrong choice

# wines # 3, 5, 9, 10, 14, and 16 should be offered to Customer Class 2 - no mistakes here

# wines # 2, 8, 11, 12, and 15 should be offered to Customer Class 3 - no mistakes here