

HOME CREDIT DEFAULT RISK

Google Colab: https://bit.ly/FPZeniusKelompok18

KELOMPOK 18

FIDELA ELYSIA RISWI PUTRI

EDELIN GULTOM

SHINTIA YULITA SARI

ANAK AGUNG BINTANG KRISNA DEWI

SUMBER DATA: HOME CREDIT DEFAULT RISK

Home Credit Default Risk | Kaggle

PROBLEM: CLASSIFICATION

01

BUSINESS UNDERSTANDING

HOME CREDIT

Salah satu lembaga pembiayaan di Indonesia dengan berbagai pilihan pelayanan seperti pembelian gadget, kamera, handphone, laptop, TV, furniture serta kebutuhan rumah tangga lainnya.

HOME CREDIT

PENERIMA KREDIT

mendapatkan sumber pembiayaan yang mudah dan cepat.

PEMBERI KREDIT

mendapatkan keuntungan dari bunga yang dibayarkan oleh debitur.

PEMBERI KREDIT

Kreditor harus menanggung risiko ketidaklancaran pembayaran oleh debitur.

Pihak kreditor harus mengevaluasi setiap pemohon kredit sebelum keputusan penerimaan atau penolakan diambil.

ANALISIS KREDIT

MODEL CREDIT SCORING

Tujuan:

- Mengetahui faktor dan memprediksi penyebab klien gagal bayar.
- Memprediksi model machine learning mengenai pelanggan yang akan gagal bayar dengan aspek-aspek terkait untuk menghindari risiko gagal bayar atau tidak membayar tepat waktu.

Metode: Random Forest, Logistic Regression, dan Decision tree

02

DATA UNDERSTANDING

DESKRIPSI TABEL

1. APPLICATION_TRAIN.CSV

Dataframe application_train memiliki 122 kolom dan 67 kolom memiliki missing values 1. SK_ID_CURR ID pinjaman dalam sampel kami

- 2. TARGET
- 1 = Klien dengan kesulitan pembayaran
- 0 = Klien tanpa kesulitan pembayaran
- 3. NAME_CONTRACT_TYPE Identifikasi apakah pinjaman tunai atau bergulir.

4. CODE_GENDER
Jenis kelamin klien

5. FLAG_OWN_CAR
Tandai jika klien memiliki mobil

6. FLAG_OWN_REALTY
Tandai jika klien memiliki rumah atau flat

7. CNT_CHILDREN
Jumlah anak yang dimiliki klien

8. AMT_INCOME_TOTAL Penghasilan klien

9. AMT_CREDIT
Jumlah kredit pinjaman

10. AMT_ANNUITY
Anuitas pinjaman
Note: jumlah kredit / anuitas (penjelasan tentang
bunga anuitas Jenis dan Cara Perhitungan Bunga
Kredit - Home Credit)

2. BUREAU.CSV

Dataframe bureau memiliki 17 kolom dan 7 kolom memiliki missing values.

- 1. SK_ID_CURR ID pinjaman dalam sampel credit home.
- 2. SK_BUREAU_ID
 ID yang dikodekan ulang dari kredit Biro
 Kredit sebelumnya.
- 3. CREDIT_ACTIVE
 Status kredit yang dilaporkan Biro Kredit
 (CB)
- 4. CREDIT_CURRENCY
 Mata uang yang dikodekan ulang dari
 kredit Biro Kredit

- 5. DAYS_CREDIT
 Berapa hari sebelum aplikasi saat ini klien
 mengajukan kredit Biro Kredit
- 6. CREDIT_DAY_OVERDUE
 Jumlah hari yang telah jatuh tempo pada kredit
 CB pada saat pengajuan pinjaman terkait
 dalam sampel credit home
- 7. DAYS_CREDIT_ENDDATE Sisa durasi kredit CB (dalam hari) pada saat pengajuan di Home Credit

8. DAYS_ENDDATE_FACT

Beberapa hari sejak kredit CB berakhir pada saat pengajuan Kredit Rumah (hanya untuk closed credit)

9. CNT_CREDIT_PROLONG
Berapa kali kredit Biro Kredit diperpanjang

10. AMT_CREDIT_SUM
Jumlah kredit saat ini untuk kredit Biro Kredit

3. BUREAU_BALANCE.CSV

Dataframe bureau_balance memiliki 3 kolom dan 0 kolom memiliki missing values.

- 1. SK_BUREAU_ID
 ID kredit Biro Kredit yang dikodekan ulang (pengkodean unik untuk setiap application)
- 2. MONTHS_BALANCE
 Bulan saldo relatif terhadap tanggal aplikasi (-1 berarti tanggal saldo segar)
- 3. STATUS Status pinjaman Biro Kredit selama sebulan

Berdasarkan visualisasi yang telah dilakukan dapat diketahui beberapa hal berikut :

 Client yang lebih muda lebih cenderung tidak membayar kembali pinjaman. Tingkat kegagalan untuk membayar di atas 10% untuk tiga kelompok usia termuda dan di bawah 5% untuk kelompok usia tertua.

bureau DAYS CREDIT mean Distributio

Tabel bureau kita melakukan Group by the client id, kemudian dilakukan calculate aggregation statistics meliputi ['count', 'mean', 'max', 'min', 'sum']. kolom bureau_DAYS_CREDIT_mea n' memiliki korelasi yang cukup tinggi diantara fitur lain yakni 0.08972896721998116.

Berdasarkan visualisasi yang telah dilakukan dapat diketahui beberapa hal berikut :

 angka negatif yang lebih besar menunjukkan bahwa pinjaman sudah dilakukan jauh sebelum aplikasi pinjaman saat ini. Klien yang mengajukan pinjaman lebih jauh di masa lalu berpotensi lebih mungkin untuk membayar kembali pinjaman di Home Credit.

TARGET VARIABLE VISUALIZATION (TARGET)::

Berdasarkan visualisasi dan EDA yang telah dilakukan dapat diketahui beberapa hal berikut :

 Terdapat sekitar 8.1% pelanggan yang kesulitan melakukan pembayaran atau sekitar 24.825 pelanggan.

03

DATA PREPARATION

MENGHITUNG JUMLAH PINJAMAN KLIEN SEBELUMNYA

Pandas Operations:

groupby	Mengelompokkan dataframe menurut kolom.
agg	Melakukan perhitungan pada data yang dikelompokkan seperti mengambil rata-rata kolom.
merge	Mencocokkan aggregated statistics dengan klien yang sesuai.

TAHAP MEMILIH FITUR

Menghitung Koefisien Korelasi Pearson (r-value) antara variabel dan target.

Categorical Variables akan memanfaatkan penghitungan jumlah nilai dari setiap kategori dalam setiap variabel kategoris.

Aggregating Numeric Columns menggunakan 'mean', 'max', 'min', 'sum', 'count'.

Merge dengan tabel utama (application_train.csv).
Kemudian cek missing values.

Hitung korelasi semua nilai baru dengan target. Mengurutkan korelasi berdasarkan besarnya (nilai absolut) yang diurutkan dan fungsi lambda.

Mencari variabel yang memiliki korelasi lebih besar dari 0,8 dengan variabel lain.

KORELASI ANTARA VARIABEL DAN TARGET · ::

menunjukkan bahwa risiko kesulitan pembayaran tinggi ketika peringkat dari sumber eksternal 1, 2, 3 rendah. Demikian pula, peluang pembayaran lebih tinggi ketika peringkat dari sumber-sumber ini lebih tinggi.

PERHITUNGAN TARGET

0: klien melakukan pembayaran tepat waktu

1: klien memiliki kesulitan pembayaran

04

MODELING

METRIK

Metrik yang digunakan adalah metrik confusion untuk mengevaluasi akurasi klasifikasi. Terdiri dari:

- (TN) True Negative
- (FP) False Positive
- (FN) False Negative
- (TP) True Positive

TRAIN TEST SPLIT

Train/test split adalah salah satu metode yang dapat digunakan untuk mengevaluasi model dengan membagi dataset menjadi dua bagian, yakni bagian yang digunakan untuk training data dan untuk testing data dengan proporsi tertentu (train size = 60%, test size = 40%)

LOGISTIC REGRESSION

Evaluasi dengan Classification Report

Dari classification report disebutkan bahwa model memiliki akurasi 92%

Evaluasi dengan AUC

Score AUC nilainya sekitar 50%

RANDOM FOREST

Evaluasi dengan Classification Report

Dari classification report disebutkan bahwa model memiliki akurasi 92%

Evaluasi dengan AUC

Score AUC nilainya sekitar 50%

DECISION TREE

Evaluasi dengan Classification Report

Dari classification report disebutkan bahwa model memiliki akurasi 92%

Evaluasi dengan AUC

Score AUC nilainya sekitar 53,7%

05

CONCLUSION

KESIMPULAN

Berdasarkan evaluasi yang telah dilakukan pada ketiga model, model terbaik adalah Decision Tree karena memiliki akurasi dan AUC tertinggi di antara ketiga model.

Dalam pemodelan ini, kelompok kami menggunakan semua variabel yang ada pada data karena dirasa variabel dalam data memengaruhi pelanggan yang Target.

06

DEPLOYMENT

Model di-deploy menggunakan aplikasi Streamlit

TAMPILAN HASIL DEPLOY

TERIMA KASIH!

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics ε images by <u>Freepik</u>

Please keep this slide for attribution