A Theory Learning SAT-Solver for Sudokus Project Report

September 28, 2017

Overview: The project is about the effects of redundant constraints and the process of learning redundant constraints in Sudoku.

Problem description: Definition: A redundant constraint is a constraint that is valid given the other constraints. That is, if A is a model for constraint/clause P(x,y), s.t. A = P(x,y) with P'(x,y) = P(x,y) then A is also a model for Q(x,y,z) = P'(x,y)vR(z), that is, A = Q(x,y,z). Q(x,y,z) is then a redundant clause.

Many SAT solvers use clausal learning in the process of finding a model for the problem. Clausal learning adds clauses to the set of formulas. The clauses added do not affect the model of the problem but makes explicit which valuations are not possible. If the clause which is learned is valid given the original restraints (it is redundant), then it could have been derived to begin with and added to the set of formulas and the SAT solver would not have to explore the tree that lead to the learned clause. These redundant clauses become more important when dealing with a class of problems which differ only in few formulas. Learning clauses which pertain to the class of problems, not the individual problems, could save time as it reduces the search space and tells us more about the structure of the problem. In particular, it tells us what clauses could be added to the initial problem description and further speed up the SAT solver by adding redundant clauses (http://www.cs.cmu.edu/ hjain/papers/sudoku-as-SAT.pdf [Sudoku as SAT]).

Checking validity of a clause is the VAL problem which is Co-NP. In other words, checking whether the negation is satisfiable will answer the VAL problem. If the negation of a clause is not satisfiable, the clause must be valid.

Consider this example: Let's say the foreign policy of the country can be described by the following clauses:

P'+Q' Q'+R' R+P

In addition the king wants Q+R

The first three clauses then describe the class of problem and the king's demands are a particular instance of the problem. When running a SAT solver on this problem it might try splitting by trying Q. Then we are forced to choose P' and R' but then we cannot satisfy R+P. The clauses of the class of problem imply Q'. We can therefore add Q' to the problem class description and avoid splitting by Q in future runs of another problem instance.

Plan: Our plan is to explore the learned clauses when using a SAT solvers to solve Sudoku puzzles. More specifically, our plan is to find out which redundant constraints in Sudoku make SAT-solvers faster (here we should investigate the clauses from the extended encoding and also the constraints in http://4c.ucc.ie/ hsimonis/sudoku.pdf [Sudoku as constraint problem]) and especially we are interested in which of those redundant constraints are the most commonly learned.

We look at two different encodings of Sudoku puzzles. One called the minimal encoding (a misnomer, see https://lirias.kuleuven.be/bitstream/123456789/353637/1/sudokutplp.pdf [redundant sudoku rules]) and the other one the extended encoding. Both are taken from http://www.cs.cmu.edu/ hjain/papers/sudoku-as-SAT.pdf [Sudoku as SAT]. Most results point towards faster execution of SAT solvers, given more redundant constaints. Except in the case when the redundant constraints overflow the memory of the machine running the SAT solver. In those cases a minimal representation of the problem might be more feasible. We therefore conjecture that:

"For low numbers of variables (e.g. 3x3 Sudokus) SAT-performance can be increased by adding redundant constraints. For high numbers of variables (e.g. 81x81 Sudoku) SAT-performance suffers from adding redundant constraints."

"It is possible to train a SAT solver to perform faster on (a class of Sudokus) by letting it add the most commonly learned valid clauses to the constraints of the (class of) Sudokus."

Data: As a data set I would suggest the 50000 minimal sudokus found here: http://staffhome.ecm.uwa.edu.au/ 00013890/sudokumin.php Another dataset that might be useful is this website http://www.menneske.no/sudoku/ This is also what's used in most of the other papers.

Code: