

MECH468: Modern Control Engineering MECH509: Controls

L21 : State feedback Stabilizability

Dr. Ryozo Nagamune
Department of Mechanical Engineering
University of British Columbia

Zoom lecture to be recorded and posted on Canvas

MECH 468/509

Course plan

Topics	СТ	DT
Modeling Stability Controllability/observability Realization → State feedback/observer LQR/Kalman filter		

Review & today's topic

- In the last two lectures
 - State feedback
 - Pole placement theorem: Arbitrary pole placement is possible by a state feedback u=-Kx if and only if (A,B) is controllable
 - Direct method & canonical form method to compute the feedback gain K ("place.m")
- Today's topics
 - Stabilizability
 - Where to place closed-loop poles
 - Appendix: Lyapunov equation method (not covered)

State feedback (review)

Open-loop and closed-loop systems

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases} \rightarrow \begin{cases} \dot{x}(t) = (A - BK)x(t) + Br(t) \\ y(t) = Cx(t) \end{cases}$$

$$u(t) = -Kx(t) + r(t)$$

Pole placement theorem (review)

 If (A,B) is controllable, the eigenvalues of (A-BK) can be placed arbitrarily (provided that they are symmetric with respect to the real axis).

X : Closed-loop poles (design parameters)

Stabilizability

- Suppose that (A,B) is NOT controllable.
- If the "uncontrollable part" of A-matrix is stable, then the system is called *stabilizable*.

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$z(t) := Tx(t)$$

$$\dot{z}_c(t)$$

$$\dot{z}_c(t)$$

$$\dot{z}_{\bar{c}}(t)$$

Eigenvalues of this cannot be changed by state feedback.

Stabilizability (cont'd)

$$A - BK = T^{-1} \begin{bmatrix} A_c & A_{12} \\ 0 & A_{\bar{c}} \end{bmatrix} T - T^{-1} \begin{bmatrix} B_c \\ 0 \end{bmatrix} K$$

$$= T^{-1} \left\{ \begin{bmatrix} A_c & A_{12} \\ 0 & A_{\bar{c}} \end{bmatrix} - \begin{bmatrix} B_c \\ 0 \end{bmatrix} K T^{-1} \right\} T$$

$$(KT^{-1} =: \begin{bmatrix} K_c & K_{\bar{c}} \end{bmatrix})$$

$$= T^{-1} \begin{bmatrix} A_c - B_c K_c & A_{12} - B_c K_{\bar{c}} \\ 0 & A_{\bar{c}} \end{bmatrix} T$$

$$\rightarrow$$
 eig $(A - BK)$ = eig $(A_c - B_cK_c) \cup$ eig $(A_{\bar{c}})$

Arbitrarily assignable

Not movable!

Remarks on stabilizability

- If a system is controllable, it is stabilizable.
- Stabilizability is necessary (but may not be sufficient) for successful feedback control.
- The real plant needs to be modified (e.g. by adding actuators, changing the location of actuators, or changing the types of actuators) if
 - the system is not stabilizable, or
 - the uncontrollable part is stable, but limits the closedloop performance (e.g., the un-movable eigenvalues are too close to the imaginary axis).

Where to place closed-loop poles Rules of thumbs

- Move the poles for improvement of stability and performance.
- Do not try to move poles farther than necessary.
 - Control input should not be too large.

$$K := \underline{[\alpha_n - a_n, \cdots, \alpha_1 - a_1]} T$$
(desired CL) - (OL)

- Place the poles in similar distances from the origin, to make the control effort efficient.
 - Control effort depends on the farthest poles, while speed depends on the closest poles to the origin.

Influence of real part of poles (How to decrease settling time)

Influence of imag. part of poles (How to increase oscillation freq.)

Influence of angle of poles (How to decrease overshoot)

Example: DC motor position control

ctms.engin.umich.edu

$$J\ddot{\theta}(t) = K_t i(t) - b\dot{\theta}(t)$$

 $V(t) = Ri(t) + L\frac{d}{dt}i(t) + K_e \dot{\theta}(t)$

DC motor position control (cont'd)

State-space model

$$\begin{cases} \frac{d}{dt} \begin{bmatrix} \theta \\ \dot{\theta} \\ i \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -b/J & K_t/J \\ 0 & -K_e/L & -R/L \end{bmatrix} \begin{bmatrix} \theta \\ \dot{\theta} \\ i \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1/L \end{bmatrix} V(t) \\ \theta(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \theta \\ \dot{\theta} \\ i \end{bmatrix}$$

J	moment of inertia	$3.2284 \cdot 10^{-6}$	$ m kg \cdot m^2$
b	damping coefficient	$3.0577 \cdot 10^{-6}$	$kg \cdot m^2/s$
$K_t = K_e$	emf constant	$2.74 \cdot 10^{-2}$	$N \cdot m/Amp$

$$R = 4\Omega$$
 $L = 2.75 \cdot 10^{-6} H$

DC motor position control (cont'd)

- Specifications: For $\begin{bmatrix} \theta(0) & \dot{\theta}(0) \end{bmatrix}$ $i(0) \end{bmatrix}^T = \begin{bmatrix} 1 & 1 & 10 \end{bmatrix}^T$
 - r(t)=0
 - Settling time < 40 ms
 - Overshoot < 16%
 - Zero steady state error
- Open-loop system
 - Poles = 0 -59.226 -1.4545E+6
 - Not asymptotically stable!

Feedback control for stability & performance!

DC motor position control (cont'd)

poles:
$$-200, -100 \pm 10j$$

poles:
$$-200, -100 \pm 100j$$

Exercise

 Try the simulation by yourselves! (Matlab code "motorposition.m" is posted on Canvas.) Change the pole locations, and get a feeling how responses are affected by the pole location.

Summary

- State feedback
 - Stabilizability
 - Where to place closed-loop poles (one always needs trial-and-error)
 - Rules of thumbs
 - Optimal method (We will learn more later in LQR.)
 - Lyapunov equation method to design state feedback gain (Appendix, not covered in the exam)
- Next,
 - Tracking (servo) control

Step 0: Check whether (A,B) is controllable. If it is, go to Step 1.

Step 1: Select a matrix F with desired eigenvalues s.t. $\sigma(F) \cap \sigma(A) = \emptyset \ (\sigma : \text{set of eigenvalues})$

Step 2: Select a matrix $\bar{K} \in \mathbb{R}^{p \times n}$: (F, \bar{K}) is observable

Step 3: Solve the Lyapunov equation w.r.t. T

$$AT - TF = B\bar{K}$$

Step 4: If T is singular, redo from Step 3 with different \bar{K}

Step 5: If T is nonsingular, $K = \bar{K}T^{-1}$

- How to construct F
 - Suppose that the desired poles are $\lambda_1, \alpha_1 \pm j\beta_1, \alpha_2 \pm j\beta_2$ Then, F can be chosen as $\begin{bmatrix} \lambda_1 & 0 & 0 & 0 \end{bmatrix}$

$$F = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 & 0 \\ 0 & \alpha_1 & \beta_1 & 0 & 0 \\ 0 & -\beta_1 & \alpha_1 & 0 & 0 \\ 0 & 0 & 0 & \alpha_2 & \beta_2 \\ 0 & 0 & 0 & -\beta_2 & \alpha_2 \end{bmatrix}$$

- How to construct $ar{K}\,$: Select randomly!
- Condition for the unique solution of the Lyapunov equation:

$$AX - XB = C, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}$$

$$\sigma(A) \cap \sigma(B) = \emptyset$$

• From Steps 3 & 5,
$$K = \bar{K}T^{-1}$$
 $AT - TF = B\bar{K}$ \longleftrightarrow $(A - BK)T = TF$ \longleftrightarrow $A - BK = TFT^{-1}$

- If T is nonsingular $\{ \text{eigenvalues of } A BK \} = \{ \text{eigenvalues of } F \}$
- $\begin{array}{c} \left\{ \begin{array}{c} (A,B) \text{ : controllable} \\ \text{ Conditions } \left(F,\bar{K} \right) \text{ : observable} \\ \text{ are necessary for the Lyapunov equation to have a nonsingular solution. (Proof omitted.)} \end{array}$

An example

• SS model
$$\dot{x}(t) = \underbrace{\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}}_{A} x(t) + \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{B} u(t)$$

- CL poles $-1 \pm 2j$
 - Step 1: $F = \begin{bmatrix} -1 & 2 \\ -2 & -1 \end{bmatrix}$
 - Step 2: $\bar{K} = \begin{bmatrix} 1 & 0 \end{bmatrix}$
 - Step 3: $AT TF = B\bar{K}$ $T = \text{lyap}(A, -F, -B\bar{K})$
 - Step 5: $K = \bar{K}T^{-1} = \begin{bmatrix} 4 & \frac{17}{3} \end{bmatrix}$