IN THE CLAIMS:

Please amend	claims 2-6,	indicated a	it being allo	owable, as	follows:
				5 · · · · · · · · · · · · · · · · · · ·	10110 11 5.

1	2. An interferometric coupler, comprising:			
\ ² \.	a first amplifying part (2), and			
$\frac{3}{3}$	a second transparent part (4) to guide radiation previously amplified in the fir			
4.	wherein the first and second parts are separated by a curved interface (6).			
1	3. An interferometric coupler, comprising:			
2	a first amplifying part (2), and			
3	a second transparent part (4) to guide radiation previously amplified in the first part;			
4	wherein the first and second parts are separated by a V-shaped interface (6).			
1	4. An interferometric coupler, comprising:			
2	a first amplifying part (2), and			
3	a second transparent part (4) to guide radiation previously amplified in the first part;			
4	wherein the first and second parts are separated by a zigzag shaped interface (6).			
1	5. An interferometric coupler, comprising:			
2	a first amplifying part (2), and			
3	a second transparent part (4) to guide radiation previously amplified in the first part;			
4	wherein the first and second parts are separated by an inclined interface (6) on a path			
5	of input (8) and output (10) rays.			
1	6. An interferometric coupler, comprising:			
2	a first amplifying part (2), and			
3	a second transparent part (4) to guide radiation previously amplified in the first part;			
4	wherein the first and second parts are laid out to be approximately perpendicular to a			
5	path of an incident beam (8) and an output beam (10).			
	Please amend claims 1, 7-15 as follows:			

a second transparent part (4) to guide radiation previously amplified in the first part.

a first amplifying part (2), and

An interferometric coupler, comprising:

- The coupler according to any of claims 1-6, wherein a signal mode guide is 7. placed at an output of the second part. The coupler according to claim 1, wherein the amplifier material is a structure 2 embedded in an InP substrate. 9. The coupler according to claim 1, wherein the amplifying material is a 1 2 laser material. 10. 1 The coupler according to claim 9, wherein the laser material is an 2 InGaAsP quaternary.
 - 11. The coupler according to claim 1, wherein the amplifying material has quantic wells.
 - 12. An optical amplifier comprising: an optical pre-amplifier, and a coupler according to one of claims 1 to 6 and 8-11.

2

1

2

3

1

2

3

1

2

- 13. Process for amplifying the power of a light source emitting radiation, consisting of placing a coupler according to any of claims 1 to 6 and 8-11, in the path of the said radiation.
- 14. Process to compensate for losses in an optical fiber consisting of placing a coupler according to any one of claims 1 to 6 and 8-11, in the path of radiation passing through the optical fiber.
- 15. Process for amplification of signals multiplexed in wave length, consisting of increasing the output power using a coupler according to one of claims 1 to 6 and 8-11.