AL-TR-1992-0139

AD-A260 255

INDUSTRIAL HYGIENE EVALUATION OF F-111 FUEL TANK SEALANT PROCESS

Robert Walton, Captain, USAF, BSC

OCCUPATIONAL AND ENVIRONMENTAL HEALTH DIRECTORATE 2402 E Drive Brooks Air Force Base, TX 78235-5114

December 1992

Final Technical Report for Period January 1991 - October 1991

Approved for public release; distribution is unlimited.

93-03013

98 2 16 127

AIR FORCE MATERIEL COMMAND BROOKS AIR FORCE BASE, TEXAS

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement operation, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

The Office of Public Affairs has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

Government agencies and their contractors registered with the Defense Technical Information Center (DTIC) should direct requests for copies to: DTIC, Cameron Station, Alexandria VA 22304-6145.

Non-Government agencies may purchase copies of this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161.

CRAIG H. HOLLENBECK, Maj, USAF, CIH

Chief, Industrial Hygiene Branch

MARK H. STOKES, Col, USAF, BSC Deputy Chief, Occ Med Division

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Artington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis Highway, Suite 1204, Arlington, VA 22202-4		3. REPORT TYPE AND DA	
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE December 1992		991 - October 1991
4. TITLE AND SUBTITLE	Decamber 1332		UNDING NUMBERS
Industrial Hygiene Eva Sealant Process	luation of F-111 Fue	I * · ·	SADING NOWBERS
6. AUTHOR(S)			
Robert Walton			
7. PERFORMING ORGANIZATION NAM	NE(S) AND ADDRESS(ES)		ERFORMING ORGANIZATION EPORT NUMBER
Armstrong Laboratory Occupational and Envir 2402 E Drive			TR-1992-0139
Brooks Air Force Base,	1X /8230=0114		
9. SPONSORING/MONITORING AGEN	CY NAME(S) AND ADDRESS(ES		PONSORING/MONITORING GENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / AVAILABILITY ST			DISTRIBUTION CODE
Approved for public re	lease; distribution	is unlimited.	
13. ABSTRACT (Maximum 200 words)			
This report prese a new tank sealant pro results and current in bases implementing thi ment for workers and i menting worker exposur	cess. Recommendation dustrial hygiene pra s new process in sel n determining where	ectices. This report lecting the proper pr	n air sampling c will aid those cotective equip-
14. SUBJECT TERMS Fuel Tank Sealant Proc			15. NUMBER OF PAGES 38 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. OF REPORT	SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	N 20. LIMITATION OF ABSTRACT
	Unclassified	Unclassified	UL 200 (0. 200)
NSN 7540-01-280-5500			Standard Form 298 (Rev 2-89)

TABLE OF CONTENTS

				Page
Purpose a Backgrour Descripti	and Scope ad			1 . 1 . 1 . 1
Findings. Sealant M Personal Confined	Materials and Chem Protective Equipm Space Entry	nistry		2 4 5 5
POTENTIAL HAZA	RDS	•••••		. 7
Sample Re Sample Re	esults Within Tank esults From Mixing			. 8
conclusions			• • • • • • • • • • • • • • • • • • • •	. 16
RECOMMENDATION	ıs	• • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	. 16
	Sample Results	••••••	• • • • • • • • • • • • • • • • • • • •	
Figures	LIST C	OF FIGURES		
1 Fue 2 San 3 San 4 San 5 San 6 San	apling Points of F apling Points of F apling Points of F apling Points of F apling Points of F	F-111 Aircraft F-111 Aircraft F-111 Aircraft F-111 Aircraft F-111 Aircraft	t 22 Jan 91 t 23 Jan 91 t 24 Jan 91 t 25 Jan 91 t 12-16 Aug 91 t 30 Oct 91	9 10 11 12

DTIC QUALITY INSPECTED 3

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Justification

By
Distribution/
Availability Codes
Avail and/or
Dist
Special

INDUSTRIAL HYGIENE EVALUATION OF F-111 FUEL TANK SEALANT PROCESS

INTRODUCTION

Purpose and Scope

In response to a 12 Oct 90 letter of request from the McClellan Air Force Base (AFB) Bioenvironmental Engineering Section (BES), we conducted an initial industrial hygiene evaluation of this new sealant process. Three separate surveys (22-26 January 1991, 12-16 August 1991, and 29-31 October 1991) were performed at McClellan AFB during actual spray sealant operations. Additional air sample results included in this report were done by Lt Devine of BES during September and October 1991. The purpose of the surveys was to conduct a thorough industrial hygiene evaluation of this new fuel tank sealant process. The ultimate goal was to determine how the process could be safely implemented and to provide that documentation to other Air Force Materiel Command (AFMC) bases.

Background

The F-111 fuel tank sealant process is new to the Air Force but has been used successfully by civilian industry for some time. The F-111 has had a history of fuel tank leak problems and therefore was a good candidate for testing the new sealant process.

Description of Operation

The process consists of a number of different operations which must be performed in a certain order. It begins with fuel tank de-sealing where all the old sealant is removed by waterpicking. The old sealant surface is prepped using a wire brush and wiped down with Turco 6628. The sealant surface is then primed with a Desoto epoxy primer which takes 30 to 60 minutes, depending on tank size, when using a spray gun (air pressure $@ 30 \pm 5$ psi and fluid pressure $@ 4 \pm 1$ psi). primer coat requires a 30-minute to 45-minute drying time prior to sealant application. The sealant application requires two coats to ensure proper coverage. By applying white and black coats separately, sealant coverage for each coat can be easily determined by visual inspection. The sealant is also applied with an air-assisted airless spray gun (fluid pressure is 500 psi @ pump but decreases to 30 psi @ qun tip); each application requires between 1.5 to 3 hours per coat depending on tank size. The current procedure requires a 3-hour drying time between sealant coat applications. During spray application, the tank is ventilated by two supply hoses and two exhaust hoses to control the explosive hazard. After the spray application is finished, the tank should be continuously vented by one exhaust hose for a period of 7 days to control the solvent off-gassing during drying. A technical order on sprayable sealant procedures is currently being drafted.

Methods

Standard National Institute for Occupational Safety and Health (NIOSH) Analytical Methods were used for the sampling and analyses of air contaminants except for isocyanates, 1-methoxy-2-propanol acetate (PM Acetate), and diethyltoluenediamine (DETDA). For these compounds, sampling and analyses were performed according to manufacturer-published methods; there is no published NIOSH method.

DISCUSSION

Findings

Ventilation: The first point that must be noted is that the F-111 fuel tank sealant process cannot be performed safely without the use of local supply and exhaust ventilation. constituents which make up the primer, especially toluene and methyl ethyl ketone (MEK), present an extreme explosive hazard when sprayed in the confined space of the fuel tanks. Furthermore, the configuration of the tanks with multiple bays offers a challenge for eliminating concentration pockets even with local ventilation. Fortunately, we were able to overcome that problem with a dual push-pull system utilizing pre-existing openings within the fuel tanks. Figure 1 shows how the air is supplied at two locations from the middle top of the tank, while air is exhausted from the top at each end of the tank. The operation is currently being performed in Hangar 251 and utilizes an HDU-13 for supply air and a pre-existing overhead vehicle maintenance type exhaust system with a makeshift booster. current system has adequately controlled the explosive atmosphere problem in the tank during spraying, but it has some other problems that MUST be addressed. The primer coating applied first to the tank has a consistency similar to paint and therefore has problems associated with local exhaust of painting operations. The most important consideration is the particulate aerosol formed by the overspray. The current system lacks a particulate filter, and the paint particles are being deposited within the ducting of the ventilation system. The accumulation of the paint particles presents fire and explosive hazards, especially when the booster system does not have intrinsically safe motors. Obviously, the booster system should contain

Figure 1. Fuel Tank

intrinsically safe blowers and a Class 2 flameproof particulate filter. Filter installation may cause a problem with tank ventilation flow rates. The increased filter resistance will decrease the exhaust flow rate, thereby causing an imbalance between supply and exhaust air flow. We recommend you let your Civil Engineering ventilation experts design a balanced system for you.

NOTE: All accessible openings are covered on the tank being sprayed.

Sealant Materials and Chemistry

- 1. Solvent Wipe Down: Turco 6628
 - a) Principal Ingredients toluene, ethyl acetate, MEK
 - b) Material is used as received and is not diluted
- 2. Primer: 3 Part Epoxy Primer from DeSoto
 - a) 519X303 Primer Base
 - b) 910X357 Activator
 - c) 020X324 Solvent Reducer (Not used in this process)

The primer is mixed just prior to application with a ratio of three parts Primer Base to one part Activator. The hazard from this material can be broken into two fundamentally different types. First, there is an explosive hazard from the major solvent components, i.e., MEK, n-butyl acetate, and toluene, being sprayed in a confined space. Second, there may be possible health effects due to exposure to strontium chromate and toluene diisocyanate monomer (TDI). It is important to note, however, that these latter two constituents present only an airborne particulate hazard because of their lack of volatility. Therefore, they only present a hazard to personnel directly exposed to the paint spray mist; i.e., only to personnel spraying inside the fuel tank.

- 3. Sealant: 2-Part Polyamine Curing Agent Compound from PRC.
 - a) PRC 2911 Part A Activator. Principal Ingredients diethyltoluenediamine (DETDA) and 1-methoxy-2-propanol acetate (PM Acetate)
 - b) PRC 2911 Part B Sealant Base. Principal Ingredients PM Acetate, methylene bis(4-cyclohexyl isocyanate)(HMDI), and HMDI polythioether pre-polymer

The sealant is mixed just prior to application using a handheld pneumatic mixer with a one-to-one ratio between parts A and B. Again, mixing changes the constituent concentrations from what is indicated in the MSDS to 50% PM Acetate, 40% HMDI polythioether pre-polymer (according to John Zook, PRC chemist, only 2.5% of the 40% is unreacted HMDI terminal groups), 2.5% HMDI monomer, 2.5% DETDA, and 5% pigment. The explosive hazard during sealant spraying is significantly reduced compared to the primer because PM Acetate is much less volatile. As with the primer application, most worker exposure to these materials will occur during spraying and only within the confined spaces of the tank. This proximal effect is due to the non-volatile nature of the contaminants which generate a particulate aerosol hazard only. Refer to Appendix A for a diagram of the vulcanization mechanism.

Personal Protective Equipment (PPE)

PPE, worn by workers to protect them from a hazardous work environment, is used while engineering controls are being developed or when appropriate engineering controls are still unable to adequately eliminate the hazard. It is NEVER used in place of engineering controls. In this particular case, PPE is used to supplement existing engineering controls to reduce the There are really three different exposure groups workers' risk. within Hangar 251: the sealant mixing operator, the sealant spray applicators and workers not associated with the sealant operation. All require different levels of protection. group has no exposure to the material and, therefore, does not require any PPE. Current procedures require the mixer to wear a full-face dual cartridge organic-vapor respirator, cotton coveralls with a polyethylene-coated Tyvek suit including boots and drawstring hood on top, and Ansell/Edmont nitrile gloves. All openings in this ensemble must be taped to prevent any skin exposures. A portable ventilation booth is being procured for mixing operations. Current procedures require the sealant applicators to wear full-face, positive-pressure, air-supplied respirators, cotton coveralls with a Sarnex 23P suit including boots and drawstring hood on top, and Ansell/Edmont nitrile gloves. Again, all openings must be taped to prevent skin exposures. Heat stress became a problem for the personnel inside the tank; consequently, a whole-body cooling suit system was procured and seems to work very well. The method of operation is very simple. A small pumping unit circulates ice water within narrow plastic tubing woven throughout a cotton suit.

Confined Space Entry

According to the proposed Occupational Safety and Health Administration (OSHA) standard, Title 29 of the Code of Federal

Regulations (CFR) Part 1910.146, the F-111 fuel tank must be considered a confined space. However, the new AFOSH Std. 127-25 governing confined space entry specifically excludes fuel cells. Volume 54, Number 106 page 24102-24110 of the Federal Register contains the proposed rules and defines a "permit required confined space" as an enclosed space which:

- 1. Is large enough and so configured that an employee can bodily enter and perform assigned work.
- 2. Has limited or restricted means for entry or exit.
- 3. Is not designed for continuous employee occupancy; and,
- 4. Has one or more of the following characteristics:
 - a. Contains or has a known potential to contain a hazardous atmosphere.
 - b. Contains a material with the potential for engulfment of an entrant.
 - c. Has an internal configuration such that an entrant could be trapped or asphyxiated by inwardly converging walls, or a floor which slopes downward and tapers to a smaller cross-section; or,
 - d. Contains any other recognized serious safety or health hazard.

Thus, according to the OSHA definition, the tank should be considered a "permit required confined space." On page 24103 of the proposed rule OSHA, sets forth the entry permit program as:

- 1. Hazard Identification
- 2. Hazard Control
- Permit System Requirements set forth in 1910.146 (d) pg 24103.
- 4. Employee Information
- 5. Prevention of Unauthorized Entry
- 6. Employee Training Requirements set forth in 1910.146 (e), (f), and (g) pg 24104.
- 7. Equipment
- 8. Rescue Requirements set forth in 1910.146 (h) pg 24105.

- 9. Protection from External Hazards
- 10. Duty to Other Employees

Waste Stream Discharge

All of the material exhausted by the ventilation system is vented through the roof directly outside. Due to the composition of the material being sprayed, even without a filter, only the solvents would actually be discharged to the outside air. The Environmental Management Division at McClellan AFB has stated that, at the current usage levels, the mass of volatile organic chemicals (VOC) does not violate current California State Regulations. Again, we highly recommend use of an in-line particulate filter.

POTENTIAL HAZARDS

The solvents in the material combined with the confined space of the fuel tank produce an explosive hazard during spray application.

The strontium chromate contains hexavalent (Cr+6) chromium which is listed as a human carcinogen by the International Agency for Research on Cancer and the National Toxicology Program and as a potential human carcinogen by the American Conference of Governmental Industrial Hygienists (ACGIH). The Cr+6 form is treated differently than the trivalent (Cr+3) form because Cr+6 is readily absorbed by the body while Cr+3 is not. An ironic point to note is the damage to the body is caused by the reduction of Cr+6 to Cr+3.

Between the primer and sealant material, three different forms of isocyanates are used: Toluene diisocyanates (TDI), HMDI, and HMDI polythioether pre-polymer. The hazard stems from the extreme reactivity of the isocyanate functional group (N=C=O). Isocyanates are doubly dangerous because they will readily react with the moisture in the skin as well as any of the mucous membranes. They are potent sensitizers and once sensitized, exposure to levels far below the threshold limit value (TLV) will still elicit a reaction. Again, it is important to note that, because of the extremely low volatility of the isocyanates, they present an airborne particulate hazard to only those personnel exposed to the spray mist.

The sealant contains a secondary amine DETDA which activates the isocyanate and begins the vulcanization mechanism. The manufacturer, Ethyl Corporation, has performed a two-year study

on rats. It should be noted that two years represents a lifetime exposure in rats. Results indicate possible liver, thyroid, pancreas, kidney, and mammary gland effects at the highest dosing level. As with isocyanates, DETDA presents a skin contact hazard and has an extremely low vapor pressure. It requires skin protection and presents a particulate aerosol hazard only to personnel directly exposed to the spray mist.

The solvent used in the sealant, PM Acetate, is water soluble and will not cause defatting of the skin, a common solvent hazard. On the other hand, it has a unique, unpleasant odor which becomes noticeable between .1 and 1 ppm due to the acetate portion. The odor caused a "health awareness" problem with the general hangar population. This is a new odor to them, and they believe they are being "overexposed" to this chemical. The manufacturer, Dow Chemical, has conducted animal testing and recommends an exposure limit of 100 ppm. They note, however, that at concentrations of 80 ppm, no human would be able to stand the "terrible stench."

AIR SAMPLING STRATEGIES AND RESULTS

Many air samples were collected during the three different surveys. They were separated into three different categories to coincide with the three different exposure groups.

First, breathing zone samples were collected on the personnel spraying the sealant in the tank. Next, breathing zone samples and some general area samples were collected during the sealant mixing operation. Finally, general area samples were collected at varying distances from the aircraft being sprayed representing possible exposures to personnel not associated with the sealant process.

Appendix B contains all the tabulated sample results along with the most stringent exposure guidelines. The 15-min Time Weighted Average (TWA) values indicate worst-case exposures assuming all the contaminant is collected in the first 15 minutes of the sampling period. These values are then compared to the Short Term Exposure Limit (STEL). Figures 2-7 show all the sampling locations utilized. Note that no data is available for the sampling done by Lt Devine during September 1991.

Sample Results Within Tank

Solvent samples for the priming operation were only collected during the January 1991 survey. The highest exposures were for isopropyl alcohol and toluene. Neither compound's 8-hr TWA exceeded the TLV; however, isopropyl alcohol exceeded a worst case STEL by three times.

NOTE: All sampling points app. 17 ft from entry point

Figure 2. Sampling Points of F-111 Aircraft (not to scale)
22 Jan 91

NOTE: All sampling points app. 17 ft from entry point

Figure 3. Sampling Points of F-111 Aircraft (not to scale)
23 Jan 91

Figure 4. Sampling Points of F-111 Aircraft (not to scale)

24 Jan 91

Figure 5. Sampling Points of F-111 Aircraft (not to scale)
25 Jan 91

Sampling Point 6

Sampling Point 4

NOTE: Sample Point 1 (sealer inside different fuel tank each day)

Figure 6. Sampling Points of F-111 Aircraft (not to scale)
12 - 16 Aug 91

Sample Point A

Figure 7. Sampling Points of F-111 Aircraft (not to scale) 30 Oct 91

Strontium chromate 8-hr TWA values exceeded the TLV by as much as 360 times during the January 1991 sampling and 680 times during the August 1991 sampling. It is important to note that the TLV for strontium chromate has changed since the survey was done. The TLV at the time of the sampling was 0.05 mg/m^3 ; the new TLV is 0.0005 mg/m^3 . Consequently, not enough air volume was collected during the sampling and the detection limit of the analysis of these samples is above the TLV.

The August 1991 survey sample results indicate a worst case HMDI exposure that exceeded the TLV by 10.3 times. The DETDA and 1M2PA sample results are well below the manufacturer's recommended exposure limits. Although some of the above results seem very high, they originate within a confined space and personnel are wearing a positive pressure supplied respirator which provides a protection factor of 1000.

Sample Results From Mixing

Samples were collected on the mixer only during the Jan 91 survey and all results were below recommended exposure guidelines. However, due to the extreme sensitization characteristics of isocyanates and the close proximity to the ongoing operation, all mixing personnel should continue to wear the PPE previously described in the PPE section.

Sample Results Within Hangar

Sample collection points ranged from 13 to 120 feet from the aircraft being sprayed. During the January 1991 survey, several strontium chromate samples were above exposure limits. On 24 January, levels exceeding the TLV by 18 times were detected in location A4 (see Figure 4). On 25 January, levels exceeding 100 times the TLV were measured on the helper (see Figure 5). During the August 1991 survey, all general area samples were below detection limits. However, as noted above, due to the low sample volume collected, the TLV is below the analysis detection limit. These results indicate that, with the exception of strontium chromate at location A4, no airborne hazard exists outside the fuel tanks. The levels of air samples collected by Lt Devine for DETDA and 1M2PA were below the manufacturer's recommended exposure limits.

CONCLUSIONS

- 1. This process can be done efficiently and SAFELY!!
- 2. Odor does not mean there is a hazard!!
- 3. Exposures are classified into three different categories.
- 4. Exposures within the tank can be and are controlled with the use of current PPE and ventilation.
- 5. Results conclusively indicate, excepting strontium chromate, no exposures outside the tank.

RECOMMENDATIONS

- 1. Have a balanced tank ventilation system designed for this process. It must include a Class 2 flameproof particulate filter.
 - 2. All accessible tank openings must be covered.
- 3. Keep the chemistry of the products consistent when mixing. Changes in material viscosity can increase misting or clogging.
- 4. Keep the spray gun pressure constant. Increased pressure will increase material misting.
- 5. PPE described in the process T.O. must always be worn. Do not deviate due to a shorter exposure duration. The helper must wear the same PPE as the sealer to protect against strontium chromate exposure.
- 6. When the proposed OSHA Confined Space Entry Rule becomes final, compliance is mandatory. Most of the requirements are administrative and are described in the rules.
 - 7. Provide employee training and hazard communication.
- 8. Ensure current sealant utilization rates do not violate the current state regulations.
- 9. Fuel tanks should be monitored prior to entry and during the operation for oxygen and explosive levels.
- 10. SGPB should continue to conduct process surveys with air sampling at least annually.

APPENDIX A

VULCANIZATION MECHANISM

VULCANIZATION MECHANISM:

Reaction starts after Part A and B are mixed -

NOTE: Amine opens Epoxide ring generating hydroxyls (-OH) which can react with Isocyanates which can also react with Amines.

APPENDIX B

AIR SAMPLE RESULTS

22 January 1991 Priming Operation

STEL (mg/m3)	0.14	202	1230	0.14	565			0.14			2700		2700		2700		2700	
15 min TWA (mg/m3)								0.063			<0.91		<0.93		<0.92		454	
TLV (mg/m3)@	0.036	983 0.0005	983	0.036	983	188	0.0005	0.036	oat	0.054	540	0.054	540	0.054	540	0.054	540	0.054
8-hr TWA (mq/m3)	0.006	<0.16 <0.0013	<0.16	0.0025	<0.16	17.76	0.002	0.0018	lst Adhesive Coat	<0.00028	<0.26	0.016	<0.26	0.03	<0.26	0.073	129	0.001
Result (mg/m3)	0.042	<1.2 <0.01	<1.2	0.21	<1.2	155	0.08	0.063	16	<0.01	<0.91	0.57	<0.93	1.15	<0.92	5.6	454	0.04
Contaminant	TOI (TO)	Iso Alc Str Chr	Iso Alc	TDI (TD)	Iso Alc	Toluene	Str Chr	TDI (TD)		HMDI (TD)	1M2PA	HMDI (TD)	1M2PA	HMDI (TD)	1M2PA	HMDI (TD)	1M2PA	HMDI (TD)
Location (**)		A 2 A 3		A5 (mixer)	A5 (mixer)	A6 (sealer)	A4	A4		A1	A1	A 3	A3	A5 (mixer)	_	_	A6 (sealer)	
Sample # (*)	SX910002	SX910003 SX910005	SX910007	SZ910010	SZ910011	SZ910013	SX910015	SX910016		SX910017	SX910018	SX910019	SX910020	SZ910022	SZ910023	SZ910024	SZ910026	SX910027

23 January 1991 Priming Operation

STEL (mg/m3) 0.14	1230	1230	0.14 1230 950 1230		2700	2700	2700
15 min TWA (mg/m3)	<1.25	<1.2 0.025 <1.2	<0.001 26.8 620 2980		<1.0	<1.0	<1.1
<u>TLV (mg/m3)</u> @ 0.036	983 0.036 0.005	983 0.036 0.0005 983	0.036 983 0.0005 713 983	188 Coat 0.054	540 0.054	540 0.054 540	0.054 540 0.054 540
8-hr TWA (mq/m3) 0.0024	0.0018 0.001 0.0018	0.0006 0.0006 0.0018	0.00007 2.0 0.18 25.8 124.2		<0.26 <0.0003	<0.26 <0.26	<pre><0.0003 <0.27 <0.0003 432</pre>
Result (mg/m3) 1.6	6.45 6.45	<1.2<0.28<0.07	<pre><0:0 <0:0 26.8 4.3 620 2980</pre>	695 13 40.01	, 40.0 , 60.0 , 60.0	4.0 6.01 7.0	<0.01 <1.1 <0.01 1658
Contaminant Analysis TDI (TD)	Str Cir. Iso Alc TDI (TD)	Stront Iso Alc TDI (TD) Str Chr	TDI (TD) ISO Alc Str Chr But Acetate Iso Alc	Toluene HMDI (TD)	1M2PA HMDI (TD)	IMZPA HMDI (TD) IMZPA	HMDI (TD) 1M2PA HMDI (TD) 1M2PA
Location (**) Al	X 22 X 3		(mixer) (mixer) (sealer (sealer (sealer	(sealer	A1	A2 A3 A3	A4 (mixer) A4 (mixer) A5 (sealer) A5 (sealer)
Sample # (*) SX910028	SX910030 SX910032 SX910033	\$\$10034 \$\$10034 \$\$10036 \$\$910037	\$2910040 \$2910042 \$2910045 \$2910046 \$2910046	SZ910046 SX910048	SX910049 SX910050	SX910051 SX910052 SX910053	SZ910054 SZ910056 SZ910058 SZ910059

24 January 1991 Priming Operation

STEL (mg/m3) 0.14 1230	0.14 1230 1230	950 1230	2700 2700 2700 2700
15 min TWA (mg/m3) <0.001 <1.2	<0.001 <1.2 <1.2	824 3678	<0.77 <0.77 <0.77
TLV (mg/m3)0 0.0005 0.036 983	0.0005 0.0005 0.0005 0.0005 0.0005	713 713 983 188 ive	0.054 540 0.054 540 0.054 0.054 540
8-hr TWA (mg/m3) <0.0013 <0.15	<pre><0.0013 <0.0013 <0.0013 <0.0013 <0.0094 <0.0031</pre>	81 360 92 st Coat Adhesive	<pre><0.0003 <0.26 <0.0003 <0.26 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003</pre>
Result (mg/m3) <0.01 <0.01	<pre></pre>	-	<pre><0.01 <0.77 <0.07 <0.07 <0.07 <0.07 <0.07 <0.01 <0.01 814</pre>
Contaminant Analysis Str Chr TDI (TD) Iso Alc	Str Chr TDI (TD) Iso Alc Str Chr Str Chr	But Acetate Iso Alc Toluene	HWDI (TD) 1M2PA HWDI (TD) 1M2PA HWDI (TD) 1M2PA HWDI (TD) 1M2PA HWDI (TD) HWDI (TD)
cation *)		2000	1 2 2 3 3 4 4 (sealer) 5 (sealer)
	SX910063 AZ SX910065 AZ SX910066 AZ SX910068 AZ SX910069 A4 SX910070 A4	1 M M M	SX910075 A1 SX910076 A1 SX910077 A2 SX910078 A3 SX910080 A3 SX910081 A4 SZ910082 A5 SZ910084 A5

25 January 1991 Priming Operation

STEL (mg/m3) 0.14 1230 0.14	1230 0.14 1230	950 1230	0.14	950 1230		2700	2700	2700 2700	2700	2700
15 min TWA (mg/m3) <0.001 <1.2 <0.001	<1.2 <0.001 <1.2	114 548	<0.001	182 817		<0.61	<0.62	<0.61 127	13.2	1035
TLV (mg/m3)@ 0.036 983 0.036	983 0.036 983	0.0003 713 983	0.036 188 0.005	713 983 188	۸e	0.054 540 0.054	540 0.054	540	0.054 540	0.034 0.054
8-hr TWA (mg/m3) <0.0001 <0.165	<0.165 <0.0001 <0.165	0.05 9.98 4.8 2.1.2	60.0001 0.40	15.9 71.5 27.7	lst Coat Adhesive	<pre><0.004 <0.26 </pre>	<0.26 <0.0004	<0.26 45.8	<0.0004 6.2	390 390 0.03
Regult (mg/m3) <0.01 <1.2 <0.01	<pre><pre><pre><pre></pre></pre></pre><pre><pre><pre></pre></pre></pre></pre>	114 114 128 128	40.01 8.7	1:1 182 817 316	-	< 0.01 < 0.61		<0.61 127	<0.01 13.2	1035 0.8
Contaminant Analysis TDI (TD) Iso Alc TDI (TD)	Iso Alc Iso Alc	Str Chr But Acetate Iso Alc	TDI (TD) Toluene	But Acetate Iso Alc Toluene		HMDI (TD) 1M2PA HMDI (TD)	IMZPA HMDI (TD)	1M2PA 1M2PA	HMDI (TD) 1M2PA	HMDI (TD) HMDI (TD)
cation		(helper) (helper) (helper)	(mixer) (mixer) (mixer)	(sealer) (sealer) (sealer)		A1 A1		(helper)	(mixer)	Ao (sealer) A6 (sealer) A6 (sealer)
Sample * (*) (*) SX910085 SX910086 SX910087	SX910088 SX910089 SX910090	\$2910091 \$2910092 \$2910092	SZ910093 SZ910093 SZ910095	SZ910098 SZ910098 SZ910098 SZ910098		SX910099 SX910100	SX910102 SX910103	SX910104 SZ910106	SZ910107 SZ910109	\$2910110 \$2910112 \$2910114

12 August 1991 Priming Operation

STEL (mg/m3) 0.14	0.14	0.14	0.14	0.14	•	0.14	71 0		0.14		0.14		0.14					2700		2700	6	7 / 00	2700		2700		2700	,	2700	STEL (mg/m3)
15 min TWA (mg/m3) 0.0054	<0.0035	<0.0036	<.0035	20.0037		<0.0036	40.0034	•	<0.0034		<0.0035		<0.0084					206		<0.3	9	87.0>	<0.3		<0.3		<0.28	,	<0.31	15 min TWA (mg/m3)
TLV (mg/m3)@ 0.036	0.036	0.036	0.0005 0.036	0.0005	0.0005	0.036	0.0005	0.0005	0.036	0.0005	0.036	0.0005	0.036	0.0005	ion	0.054	0.054	540	0.054	540	0.054	540 0.054	540	0.054	540	0.054	540	0.054	540	TLV (mg/m3)@
8-hr TWA (mg/m3) 0.00063	<0.00065	40.00 40.0066	<0.0009	<0.00.0>	6000°0>	<0.00066	<0.000	6000.0>	<0.00064	<0.000	<0.00066	<0.000	<0.00063	0.03	Sealing Operation	0.00328	<0.0011	98.55	<0.00257	<0.89	<0.00267	<0.082	<0.0>	<0.00273	<0.0>	<0.00264	<0.084	<0.00248	<0.088	8-hr TWA (mg/m3)
Result (mg/m3) 0.0054	<0.0035	<0.0036	<0.005	<0.005	<0.005	<0.0036	< 0.005 < 0.005	<0.005	<0.0034	<0.005	<0.0035	<0.005	<0.0084	0.43	Ŋ	0.0235	<0.08	902	<0.0087	<0.3	<0.0092	<0.28 <0.0085	<0.3	<0.0091	<0.3	<0.0088	<0.28	<0.0087	<0.31	Result (mg/m3)
11 A			Str Chr TDI (MI)	•	_		Str Chr	_		Str Chr		Str Chr		Str Chr		HMDI (MI)	HMDI (TD)		HMDI (MI)	1M2PA	HMDI (MI)	IMZPA HMDI (MI)	_	HMDI (MI)	1M2PA	HMDI (MI)	-	HMDI (MI)	1M2PA	Contaminant Analysis
0 *	1 (Bealer) 2	v m :	w 4	4 n	ח ער	9	۰ م	, ,	- α ο	80	6	o)	1 (sealer)		_	(seal	1 (sealer)	7	7	m (n 4	. 4.	J.	ις.	9	9	7	7	Location (**)
Sample # (*) (*) SZ911348	SX911350	SX911352	SX911353 SX911354	SX911355	SX911357	SX911358	SX911359 SX911360	SX911361	SX911362	SX911363	SX911364	SX911365	S 2911366	SZ911367		Ξ	7	_	Ξ.	Ξ:	SX911373	SX911374 SX911375	SX911376	Ξ	コ	Ξ.	Ξ.	SX911381	[Sample # (*)

SX911383	80	HMDI (MI)	<0.0088	<0.0026	0.054		
138	∞	1M2PA	<0.38	<0.11	540	<0.38	2700
SX911385	σ	HMDI (MI)	<0.0088	<0.00264	0.054		
138	6	1M2PA	<0.28	<0.084	540	<0.28	2700
138	1 (sealer)	HMDI (TD)	0.76	0.01	0.054		
			-	13 August 1991	-4		
			S	aling Operati	uo		
S2911415	(seal	HMDI (TD)	18.75	0.32	0.054		
SZ911416	1 (sealer)	1M2PA	1219	216	540	1219	2700
14	~	HMDI (MI)	<0.0127	<0.0025	0.054		
SX911418	~	1M2PA	<0.42	<0.08	540	<0.42	2700
141	e	HMDI (MI)	<0.0127	<0.0025	0.054		
142	m	1M2PA	<0.42	<0.08	540	<0.42	2700
SX911421	4	HMDI (MI)	<0.0127	<0.0025	0.054		
142	4	1M2PA	<0.42	<0.08	540	<0.42	2700
SX911423	S	HMDI (MI)	<0.0127	<0.0025	0.054		
SX911424	S	1M2PA	<0.43	<0.08	540	<0.43	2700
SX911425	9	HMDI (MI)	<0.0127	<0.0025	0.054		
SX911426	9	1M2PA	<0.37	<0.08	540	<0.37	2700
SX911427	7	HMDI (MI)	<0.0127	<0.0025	0.054		
SX911428	7	1M2PA	<0.44	<0.08	540	<0.44	2700
SX911429	œ	HMDI (MI)	<0.0127	<0.0025	0.054		
SX911430	œ	1M2PA	<0.4	<0.08	540	<0.4	2700
1143	σ	HMDI (MI)	<0.0127	<0.0025	0.054		
SX911432	6	1M2PA	<0.43	<0.08	540	<0.43	2700

14 August 1991 Priming Operation

STEL (mg/m3) 0.14	0.14	0.14	0.14	0.14		2700			2700	2700	2700	2700		2700
15 min TWA (mg/m3) 0.0252	<0.005	<0.005	<0.005	<0.00>		597			1159	<0.86	<0.42	<0.41		<0.40
/m3)@	0.0005 0.0005 0.0005	0.0005 0.036 0.0005	0.0005 0.036 0.0005	0.036	uo	0.054 540	1 .on	0.054	540	540	0.054 540	0.054 540	0.054	0.054 540
8-hr TWA (mq/m3) 0.0031	0.34 <0.0006 <0.00085 <0.00085	<0.007 <0.0006 <0.00085	<0.00085 <0.00085 <0.00085	<0.00085	Sealing Operation	0.00645	15 August 1991 Sealing Operation	0.0941 0.56	118	<0.16	<0.00243 <0.081	<0.00243 <0.081	<0.00243	<0.00243 <0.081
Result (mq/m3)	2.79 <0.005 <0.007 <0.007	<0.005 <0.005 <0.007	<0.007 <0.005 <0.007	<0.007	Se	0.0442 597	ŭ	0.922	1159	<0.012	<0.012 <0.42	<0.0123	<0.0113	<0.0118 <0.40
4 1 4				Str Chr TDI (MI)		HMDI (MI) 1M2PA		HMDI (MI) HMDI (TD)	1M2PA	HMDI (MI) IM2PA	HMDI (MI) 1M2PA	HMDI (MI)	HMDI (MI)	
0 * ~	1 (sealer) 2 3	4 സ സ	ယ ထ ထ	9 Hangar Roof		<pre>1 (sealer) 1 (sealer)</pre>		1 (sealer)	_	N N	សស	∞ α) F1 F1	rı Hangar Roof Hangar Roof
Sample # (*) S2911433	SZ911434 SX911435 SX911436 SX911437	SX911438 SX911439 SX911440	444	SX911444 SX911445		SZ911449 SZ911451		SZ911452 SZ911453	82911454	SX911455 SX911456	SX911457 SX911458	SX911460		SX911463 SX911464 SX911465

16 August 1991 Priming Operation

Sample #	Location	Contaminant	Result	8-br TWA		15 min TWA	STEL
(*) evel1403	(**)	Analysis	(mq/m3)	(mq/m3)	TLV (mq/m3)@	(mq/m3)	(mq/m3)
4	Handar Roof	TDI (MI)	<0.0025	\$000°	0.036		1.0
SX911495		Str Chr	<0.004	<0.001	0.0005		
SX911496	7	TDI (MI)	<0.0023	<0.0006	0.036	<0.0023	0.14
SX911497	7	Str Chr	<0.004	<0.001	0.0005		
SX911498	4	TDI (MI)	<0.0023	<0.0006	0.036		0.14
SX911499	4	Str Chr	<0.004	<0.001	0.0005		
SX911500	ഗ	TDI (MI)	<0.0023	<0.0006	0.036		0.14
SX911501	ις O	Str Chr	<0.004	<0.001	0.0005		
SX911502	œ	TDI (MI)	<0.0023	<0.0006	0.036	<0.0023	0.14
SX911503	œ	Str Chr	<0.004	<0.001	0.0005		
SX911504	6	Str Chr	<0.004	<0.001	0.0005		
			10 Se	10 September 1991 Sealing Operation	991 ion		
SX911775		1M2PA	<0.19	<0.08	540	<0.19	2700
SX911776	50 ft	1M2PA	40.19	0.08 0.08	540	40.19	2700
SX911778		1M2DA	28.2	12.6	7 40 7 40	28.2	2700
SX911779	A 2	1M2PA	809	272	540	809	2700
			11 Se	11 September 1991 Sealing Operation	991 ion		
SX911775		1M2PA		<0.0>		<0.18	2700
SX911776	50 ft	1M2PA	<0.18	<0.0>	540	<0.18	2700
SX911777		1M2PA	<0.18	60.0>	540	<0.18	2700
SX911778	A1	1M2PA	32.5	15.6	540	32.5	2700
SX911779	A 2	IM2PA	487	238	540	487	2700

September 1991	ling Operation
	Ξ
12	Sea

				•			
Sample #	sation	Contaminant	Result	8-hr TWA		15 min TWA	STEL
(*) 8x911775	1	Analysis	(mg/m3)	(md/m3) (0.0>	TLV (mg/m3)e 540	(mg/m3) <0.17	1 mg/m31 2700
SX911776	ţ;	1H2PA	<0.17	<0.0>	540	<0.17	2700
SX911777	ft	1M2PA	<0.18	<0.0>	540	<0.18	2700
SX911778		1M2PA	21.6	10.8	540	21.6	2700
8X911779		1M2PA	503	252	540	503	2700
			H	13 September 1991	91		
			Š	ealing Operati	uo		
SX911775		1H2PA	<0.17	<0.0>	540	<0.17	2700
SX911776	50 ft	1M2PA	<0.17	<0.0>	540	<0.17	2700
SX911777		1H2PA	<0.18	<0.0>	540	<0.18	2700
SX911778		1M2PA	198	66	540	198	2700
SX911779	A2	1M2PA	621	311	540	621	2700
			ผัญ	24 September 1991 Sealing Operation	91 on		
SX911841	inside F-1	DETDA	-	4.5 ppb		12 ppb	
SX911842	exit F-1	DETDA		<0.75 ppb	30000	<2 ppb	
SX911843	mix mach	DETDA		<0.75 ppb	30000		
SX911844	30 ft	DETDA	<2 ppb	<0.75 ppb	30000 ppb	<2 ppb	150000 ppb
SX911848	inside F-1	DETDA		5.63 ppp	30000		
SX911849	exit F-1	DETDA		<0.75 ppb	30000		
SX911850	mix mach	DETDA		<0.75 ppb			
SX911851	30 ft	DETDA		<0.75 ppb			
SX918887	exit F-2	DETDA		<0.96 ppb		<2 ppb	
SX911888	mix mach	DETDA		<0.96 ppb		<2 ppb	
SX911889	30 ft	DETDA		<0.96 ppb		<2 ppb	

30 October 1991 Sealing Operation

Sample # 1 EX912064 A REX912066 A REX912067 B REX912067 B REX912070 C REX912073 C REX912073 C REX912075 B REX912075 B REX912076 B REX912075 B REX912076 B REX9120776 B REXP120776 B REXP1	Location (**)	Contaminant Analysis IM2PA DETDA IM2PA IM2PA IM2PA IM2PA IM2PA IM2PA IM2PA IM2PA	Result (mg/m3) <0.37 <0.32 <0.41 <0.37 <0.37 <0.42 <0.42 <0.32 <0.43 <0.43 <0.38 174	8-hr TWA (mg/m3) <0.18 <0.15 <0.20 <0.20 <0.15 <0.15 <0.18	TLV (mg/m3)@ 540 30000 ppb 540 30000 ppb 540 30000 ppb 540	15 min TWA (mg/m3)	STEL (mg/m3) 2700 150000 ppb 2700 2700 2700 2700 2700 2700 2700 270
78 I	•	DETDA	<0.45	<0.22	30000 ppb	<0.45	

All sample numbers with X as the second number are area samples and with Z as the second number are personal samples.

See attached maps of sampling points.

*

The ACGIH TLV is used for all chemicals with the following exceptions: The manufacturer's recommended exposure limits are used for 1M2PA and DETDA

- Total Dust - Midget Impinger なる