PRPN Quick Guide

how to enter numbers:

A number is erverytime beginning with a digit. A negative number can be entered with a leading understroke, as the minus sign is an operator.

Examples:

type in:	for:
1	1
_1	-1
1.5	1.5
_0.3	-0.3

After each entry press the ENTER key. There are only a very few commands where it is not necessary to press the ENTER key before:

$$+ - / *$$
 and $\hat{}$

You might use powers of ten by adding an e or E.

Examples:

type in:	for:
1.5e-6	$1.5 \cdot 10^{-6}$
1.5E-6	$1.5 \cdot 10^{-6}$

Even a number with error can be typed in by using the hash (#) as the \pm . Please note: both numbers, before and behind the hash, can have an power of ten.

The error is calculated with the Gaussian error propagation, which is included for nearly all operations now. But please be carefull with this feature, as it is not proved well now.

Examples:

type in:	for:
100#0.2	100.0 ± 0.2
1e2#2e-1	100.0 ± 0.2

Entering units is done by using a understroke between number and unit:

first enter the number followed by an understroke and than followed by the unit. Please refer to the attached document, how to spell the specific units (many imperial or US units are followed by a dot, as it is a short form, though some of them might be written without a dot).

Examples:

type in:	for:
1_kg	1kg
1_m	1m
1_s	1 s
1_V	1V
$1_{ extsf{in}}$	1in
$1_{ extsf{in}}.$	1in
1_gal.	$1 gal_{imp}$
1_us.gal.	$1qal_{US}$

For SI units the letters for the prefactors might be used in front of the units. All prefactors from yotta (10^{24}) to yocto (10^{-24}) can be used. The micro can be written as an u or as an μ . This is available for SI conform units only!

Examples:

type in:	for:
1_um	$1 \mu m$
1 $_{-}\mu$ m	$1\mu m$
1_MV	1MV
1_nF	1nF

Powers of units can be entered by using the ^ sign. The exponent might be either positive or negative, even floating point numbers are allowed.

Examples:

type in:	for:
1_m^2	$1 m^2$
1_s^-1	$1\frac{1}{s}$
1_Hz^0.5	$1\sqrt[3]{Hz}$

Units can be multiplied by using the asterisk sign \ast .

Examples:

type in:	for:
1_{kg*m}	$1kg\cdot m$
1_{in*ft^2}	$1in\cdot ft^2$

Units can be divided by using the slash sign /.

Note: any unit after the 1st slash stands in the nominator, independend if the is combined via a slash or an asterisk!

Also note: do not brackets at all while entering units!

Examples:

type in:	for:
1_m/s	$1\frac{m}{s}$
1_kg*m/s^2	$1\frac{kg\cdot m}{s^2}$
1_kg*m^1/s^2*A^2	$1 \frac{kg \cdot m^2}{s^2 \cdot A^2}$
1_kg*m^1/s^2/A^2	$1\frac{kg \cdot m^2}{s^2 \cdot A^2}$

If you want to enter a number with error, place the unit at the end of the entry: Examples:

type in: for:
$$100.0 \frac{W}{K \cdot m} ~\pm~ 0.2 \frac{W}{K \cdot m}$$

how to convert units:

If the shown units is not comfortable, it can be converted into each unit of the same dimension by using > in front of the units. If one unit has an error (like electron volts or the astronomical unit), this is automatically displayed.

given is:	type in:	to get:
$1 \mu V/e^-$	>_1/F	$6.24150948E + 12\frac{1}{E} \pm 5.5E + 05\frac{1}{E}$

With >_si a units can converted to the SI base every time.

given is:	type in:	to get:
$1 \mu V/e^-$	>_si	$6.24150948E + 12 \frac{kg \cdot m^2}{s^4 \cdot A^2} \pm 5.5E + 05 \frac{kg \cdot m^2}{s^4 \cdot A^2}$

With >_+ it is possible to scroll through all known units of the same dimension step by step.

With >_? it is possible to scroll through all known units of the same dimension using the up and down arrow keys. The conversion of the unit is automatically shown in line two. The left and right arrow keys change the direction of conversion. Leave the function by pressing <ENTER>.

This function is not well tested yet!

The database includes all SI bases and some additional pseudo bases:

SI bases:

for:	type in:	to get:
mass	kg	kilo grams
length	m	meter
time	s	seconds
electrical current	A	Ampere
temperatur	K	Kelvin
lightforce	cd	candela
amount of substance, quanity	mol	Mol

SI certified pseudo bases:

for:	type in:	to get:
flat angle	rad	radian
solid angle	sr	steradiant

additional non SI certified pseudo bases:

for:	type in:	to get:
storage (computer)	bit	bit
currency	EUR	Euro
ratio	: 1	to one
logarythmic ratio, 10*lg	dBm	deci Bel milli watt
logarythmic ratio, 20*lg	dBu	deci Bel micro volt
pixel number	pix	pixel

special unit which gets replaced by the unit of the other operand:

(usefull for add and sub operations)

for:	type in:	to get:	
auto replacement	any	the unit of the other operand	

The following bases can be converted into each other:

1	\leftrightarrow	: 1	1	\leftrightarrow	pix						
: 1	\leftrightarrow	rad	: 1	\leftrightarrow	sr	rad	\leftrightarrow	sr			
: 1	\leftrightarrow	dBm	: 1	\leftrightarrow	dBW	W	\leftrightarrow	dBm	W	\leftrightarrow	dBW
: 1	\leftrightarrow	dBu	: 1	\leftrightarrow	dBuV	V	\leftrightarrow	dBu	V	\leftrightarrow	dBuV
: 1	\leftrightarrow	dBV	: 1	\leftrightarrow	dBA	V	\leftrightarrow	dBV	Pa	\leftrightarrow	dBA
dBm	\leftrightarrow	dBW	dBm	\leftrightarrow	dBu	dBm	\leftrightarrow	dBuV	dBm	\leftrightarrow	dBV
dBW	\leftrightarrow	dBu	dBW	\leftrightarrow	dBuV	dBW	\leftrightarrow	dBV			
dBu	\leftrightarrow	dBuV	dBu	\leftrightarrow	dBV	dBuV	\leftrightarrow	dBV			

Some units get modified by operations in the following way:

general rules: $^{\circ}C$ $^{\circ}C$ ${}^{\circ}C$ $^{\circ}C$ K $^{\circ}Ra$ $^{\circ}F$ $^{\circ}F$ - $^{\circ}F$ $^{\circ}F$ $^{\circ}Ra$ $^{\circ}Ra$ (note: $?^* = any unit$) anyany(note: ?* = any unit) anyanyif AUTO is set: : 1 (note: ?* = any unit) : 1 pixpixpixpixif AUTORAD is set: m^2 radmm m^2 m^2 radmmsrWdBWJ $Pa \rightarrow dBA$

nature constants can be used by a leading backslash:

for:	type in:	to get:
speed of light	\c	299792458_m/s
elementary charge	\e	1.60217653e-19#0.00000014e-19_C
Planck constant	\h	6.6260693e-34#0.0000011e-34_J*s
Planck constant by 2 PI	hbar	1.054571682E-34#1.160028851E-74_J*s
Boltzmann constant	\k	13.80650388#2.5E-05 $_{-}\mu$ J/K
Avogadro constant	ackslash Na	6.0221415e23#0.0000010e23_1/mol
molar gas constant	$\backslash R$	8.314472#0.000015_J/mol*K
molar volume of ideal gas	V_m	22.413996E-3#0.000039E-3_m^3/mol
magnetic constant	\mu0	$1.256637061_\mu{ m H/m}$
electric constant	\e0	8.854187818_pF/m
impedance of vacuum	\Z0	376.7303135_Ohm
constant of gravitation	$\backslash \mathtt{G}$	6.6742e-11#0.0010e-11_m^3/kg*s^2
standard acceleration of	\g	$9.80665_m/s^2$
gravity		
standard atmosphere	$\setminus \mathtt{atm}$	101325_Pa
electron mass	m_e	9.1093826e-31#0.0000016e-31_kg
electron magn. moment	$\mathbf{u_e}$	-928.476412e-26#0.000080e-26_J/T
proton mass	$\backslash m p$	1.67262171e-27#0.00000029e-27_kg
proton magn. moment	$\mbox{mu_p}$	1.41060671e-26#0.00000012e-26_J/T
proton rms charge radius	$\backslash R p$	0.8750e-15#0.0068e-15_m

For a complete list take a look into the file /usr/local/lib/prpn-0.2/constants/const.txt.

This is an incomplete list of commands which are known by prpn:

_	a+ a - a d	1	£	a+: a	
•	stand	lard	†11	ctio	ns:

+	add	$x_1 = x_2 + x_1$
_	${f substrate}$	$x_1 = x_2 - x_1$
*	${f multiply}$	$x_1 = x_2 * x_1$
/	devide	$x_1 = x_2/x_1$
^	power	$x_1 = x_2^{x_1}$

• powers and logarithm:

pow <enter></enter>	power	$x_1 = x_2^{x_1}$
sq <enter></enter>	sqare	$x_1 = x_1^{\overline{2}}$
root <enter></enter>	\mathbf{root}	$x_1 = \sqrt[x_1]{x_2}$
sqrt <enter></enter>	square root	$x_1 = \sqrt{x_1}$
log <enter></enter>	${f logarithm}$	$x_1 = log_{x_2}(x_1)$
ln <enter></enter>	logarithm to base e	$x_1 = log_e(x_1)$
lg <enter></enter>	logarithm to base	$x_1 = log_{10}(x_1)$
	10	

• trigonometric functions:

sin <enter></enter>	${f sine}$	$x_1 = \sin(x_1)$
cos <enter></enter>	\mathbf{cosine}	$x_1 = \cos(x_1)$
sec <enter></enter>	secans	$x_1 = sec(x_1) = \frac{1}{cosx_1}$
tan <enter></enter>	tangens	$x_1 = tan(x_1)$
cot <enter></enter>	$\operatorname{cotangens}$	$x_1 = \cot(x_1)$
asin <enter></enter>	arcus sine	$x_1 = asin(x_1)$
acos <enter></enter>	arcus cosine	$x_1 = a\cos(x_1)$
asec <enter></enter>	arcus secans	$x_1 = asec(x_1)$
atan <enter></enter>	arcus tangens	$x_1 = atan(x_1)$
acot <enter></enter>	arcus cotangens	$x_1 = acot(x_1)$

• hyperbolic functions:

hyperbolic sine	$x_1 = sinh(x_1)$
hyperbolic cosine	$x_1 = \cosh(x_1)$
hyperbolic tangens	$x_1 = tanh(x_1)$
arcus hyperbolic	$x_1 = asinh(x_1)$
${f sine}$	
V 2	$x_1 = acosh(x_1)$
arcus hyperbolic	$x_1 = atanh(x_1)$
$ ext{tangens}$	
	hyperbolic cosine hyperbolic tangens arcus hyperbolic sine arcus hyperbolic co- sine arcus hyperbolic

\bullet display modes:

std <enter></enter>	selects standard floating point display mode
n <enter> fix <enter></enter></enter>	n = 0 to 15, selects the fixed decimal place display mode
n <enter> sci <enter></enter></enter>	n = 0 to 15, selects the scientific fixed decimal place display
	mode which uses exponents all the time
n <enter> eng <enter></enter></enter>	n = 0 to 15, selects the engineering fixed decimal place dis-
	play mode which uses intervals of 10^3
n <enter> tec <enter></enter></enter>	n = 0 and 2 to 15, selects the technican (fixed) decimal place
	display mode, uses typical non SI units, like litre, hour, etc.
	A parameter of 0 sets the floating point display mode.
deg <enter></enter>	displays angles in floting point degrees
dms <enter></enter>	displays angles in degrees minutes and seconds
rad <enter></enter>	displays angles in radian
gon <enter></enter>	displays angles in new degree

ullet others:

up and down arrow keys	select the line to be duplicated or droped
dup <enter></enter>	duplicates the selected entry, a single <enter> at empty input</enter>
	line will do the same
drop <enter></enter>	drops the selected entry, a single <backspace> at empty input</backspace>
	line will do the same
clr <enter></enter>	clears the complete stack
rpn <enter></enter>	selects the RPN mode
alg <enter></enter>	selects the algebraic mode (for those who need this)