Controle de Sistema Dinâmico Utilizando a Lógica Paraconsistente Anotada de Anotação com Dois Valores (LPA2v)

José William Rodrigues Pereira¹

Orientador: Profo Dr. Tarcisio Fernandes Leão²

¹⟨josewrpereira@gmail.com⟩

 $^2 \langle \mathsf{leao@ifsp.edu.br} \rangle$

10 de Agosto de 2017

Sumário

- 1 Introdução
- 2 Metodologia
- 3 Resultados
- 4 Cronograma
- 5 Viabilidade
- 6 Referencias

2 / 36

Introdução

Lógica Paraconsistente (DA SILVA FILHO, 2006)

- Ferramenta promissora para tomada de decisão;
- Robótica, Automação Industrial, IA, Logística, etc.

Ideia de uso da Lógica Paraconsistente (DA SILVA FILHO; ABE, 2011)

- Conjunto de axiomas e regras de inferência;
- Objetiva representar formalmente um raciocínio válido.

Objetivo(s)

Geral

Estudar a LPA2v e desenvolver um algoritmo que possa ser embarcado para atuar no controle dinâmico de um sistema físico.

Específicos

- Construir um sistema físico para o controle de velocidade em um motor CC.
- Implementar o algorítmo da LPA2v e criar uma biblioteca.
- Desenvolver a malha de controle do sistema físico proposto utilizando o algorítmo da LPA2v.

Lógica Clássica

A origem (DA SILVA FILHO, 2006)

Grécia Antiga: Tópicos de Aristóteles 340 a.C.

Princípios da Lógica (DA SILVA FILHO, 2006)

- **1** Princípio de Identidade: $A \rightarrow A$ ou $\forall x(x = x)$;
- **2** Princípio do Terceiro Excluído: $A \lor \neg A \text{ ou } \forall x (Ax \lor \neg Ax);$
- **3** Princípio da Não Contradição: $\neg(A \land \neg A)$ ou $\forall x \neg (Ax \land \neg Ax)$.

Lógica Paraconsistente

Criadores (KRAUSE, 2004)

- Newton Carneiro Affonso da Costa (1929-presente data)
- Stanislaw Jaskiwski (1906-1965)

Desenvolvimento: Costa, Subrahmanian e Vago (KRAUSE, 2004)

- Lógica Paraconsistente Anotada
- extensão a uma Lógica de Predicados Paraconsistente Anotada de primeira ordem

Lógica Paraconsistente Anotada de Anotação com dois valores (LPA2v) (DA SILVA FILHO, 2006)

$$\tau = \{(\mu, \lambda) \mid \mu, \lambda \in [0, 1] \subset \Re\}$$

A Proposição

Para toda **proposição** P há um par de valores, chamada de **anotação**, (μ, λ) , onde μ é o **grau de evidência favorável** e λ é o **grau de evidência desfavorável**, representada como $P_{(\mu,\lambda)}$.

8 / 36

Quadrado Unitário no Plano Cartesiano

$$(\mu, \lambda) \leftrightarrow (x, y)$$

Reta Perfeitamente Definida

$$(\mu,\lambda) \leftrightarrow (x,y)$$

$$\blacksquare \ \mu + \lambda = 1$$

■
$$\mu + \lambda - 1 = 0$$

■ Grau de contradição

$$G_{ct} = \mu + \lambda - 1$$

$$\blacksquare$$
 $-1 \leqslant G_{ct} \leqslant 1$

10 / 36

Reta Perfeitamente Indefinida

$$(\mu, \lambda) \leftrightarrow (x, y)$$

$$\mu - \lambda = 0$$

■ Grau de certeza

$$G_c = \mu - \lambda$$

$$\blacksquare$$
 $-1 \leqslant G_c \leqslant 1$

11 / 36

Representação do Reticulado da LPA2v subdividido em 12 regiões

José W. R. Pereira 10 de Agosto de 2017 12 / 36

Metodologia

A construção dos sistemas de controle de acordo com (DORF; BISHOP, 2011) passam basicamente por três etapas:

- Estabelecer objetivos:
 - variáveis de controle;
 - especificação do sistema.
- 2 Configuração do sistema
 - Modelo matemático do Sistema.
- 3 Controle:
 - Desenvolvimento;
 - Simulação;
 - Análise.

13 / 36

José W. R. Pereira

Construção do Sistema Físico

(b) Motor CC

(a) Placa de desenvolvimento

José W. R. Pereira 10 de Agosto de 2017 14 / 36

Estabelecer Objetivos

- Variável Controlada : Velocidade de rotação do motor;
- Variável Manipulada: Tensão aplicada no motor através de Modulação por largura de Pulso (Pulse Width Modulation -PWM);
- Obter um modelo do sistema físico;
- Erro aceitável para o modelo matemático de no máximo 5%.

15 / 36

Metodologia

Sistema construído

(c) Sensor de rotação

(d) Planta de testes

José W. R. Pereira 10 de Agosto de 2017 16 / 36

Estabelecer uma meta para o controle em malha fechada

(DORF; BISHOP, 2011)

- Tempo de subida: ≤ 20% do tempo de subida em malha aberta;
- Sobressinal: ≤ 10%;
- Erro de regime estacionário: ≤ 5%.

José W. R. Pereira 10 de Agosto de 2017 17 /

Diagrama de Blocos do Sistema em Malha Aberta (OGATA, 2010)

Onde:

- r(t): Valor de Referência em rotações por segundo [rps];
- f(t): Controlador que converte rps em % PWM para acionar o motor;
- $\mathbf{u}(t)$: Variável Manipulada é o valor percentual do PWM;
- g(t): Planta ou Processo formado pelo motor CC com o disco acoplado no eixo;
- c(t): Variável Controlada é a velocidade de rotação do eixo em rps.

José W. R. Pereira 10 de Agosto de 2017 18 / 36

Modelagem matemática (OGATA, 2010)

$$C(s) = \frac{K}{s+a} \frac{A}{s} \to \mathcal{L}^{-1} \to c(t) = \frac{KA}{a} (1 - e^{-at})$$

(f) Resposta transitória e regime de acomodação

José W. R. Pereira 10 de Agosto de 2017 19 / 36

Modelagem matemática (OGATA, 2010)

Tomando $t = \frac{1}{a} = a^{-1} = \tau$ para gerar um valor conhecido em e^{-at} , da Equação anterior temos:

$$c(a^{-}1) = \frac{KA}{a}(1 - e^{-(a.a^{-1})}) = \frac{KA}{a}(1 - e^{-1}) = \frac{KA}{a}.0, 63 = 0, 63. C_{reg}$$

José W. R. Pereira 10 de Agosto de 2017 20 / 36

Ação de Controle em Malha Aberta

Para $\tau=2,5s$ calcula-se o polo da função: $a=\frac{1}{\tau}=\frac{1}{2.5}=0,4$

Modelo do Sistema em Malha Aberta - Formato Canônico

$$\frac{C(s)}{R(s)} = \frac{K}{s+a} = \frac{0.4}{s+0.4}$$
 $\frac{C(s)}{R(s)} = \frac{1}{\tau s+1} = \frac{1}{2.5s+1} = g(t)$

22 /

Qualidade do Modelo

Erro Relativo Percentual

%erro =
$$\frac{100}{N}$$
. $\sum_{n=0,00}^{n=22,40} \frac{|r[n] - c[n]|}{r[n]}$ (1)

Onde:

r : valor real;

c : valor calculado;

n : número da amostra aquisitada;

N : número total de amostras.

José W. R. Pereira

Qualidade do Modelo

Tabela 1: Erro Relativo Percentual para intervalos determinados por au

Intervalo de amostras	erro médio relativo
1 a 2 $ au$	3,16 %
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	3,38 %
$\overline{}$ 3 a 4 $ au$	2,00 %
4 a 5 $ au$	2,29 %
> 5 $ au$	0,82 %

10 de Agosto de 2017 24 / 36

Implementação da LPA2v

P: eixo do motor apresenta rotação igual ao valor de referência.

- μ_0 : grau de evidência favorável que refere-se ao valor desejado;

O bloco LPA2v calcula os graus de evidência desfavoráveis das respectivas entradas:

$$\lambda_0 = 1 - \mu_0 \qquad \quad \lambda_1 = 1 - \mu_1$$

Para o cálculo dos graus de Certeza e Contradição são utilizados:

$$P_{(\mu_0,\lambda_1)}$$

25 / 36

Diagrama de blocos do Controle utilizando a LPA2v

José W. R. Pereira 10 de Agosto de 2017 26 / 36

Descrição do diagrama de blocos

- *K_n*: Bloco de normalização: rps para um intervalo fechado entre 0,0 e 1,0;
- $K_{\%}$: Bloco de normaliza: intervalo fechado entre 0,0 e 1,0 para um intervalo de 0 a 100 (%PWM);
- LPA2v: Calcula os graus de Certeza e Contradição de acordo com os graus de evidência favorável μ_0 e μ_1 ;
- K_{LP}: Coeficiente de ganho proporcional do grau de contradição;
- x: Bloco multiplicador;
- \blacksquare g(t): Planta do sistema;
- Soma: Bloco somador;
- *Saturação*: Bloco limitador, impede o valor do PWM ultrapassar seu valor máximo de 100%.

José W. R. Pereira

Ação de Controle utilizando LPA2v

José W. R. Pereira 10 de Agosto de 2017 28 / 36

Ação de Controle utilizando LPA2v

Cronograma

- Entregar o estudo da LPA2v aplicada ao Controle de Sistemas.
- 2 Entregar a implementação de um controlador utilizando LPA2v.
- 3 Entregar a configuração do controlador.
- 4 Entregar a descrição do controlador e dos parâmetros de ajuste.
- **5** Entregar a primeira otimização dos parâmetros e analise da performance.
- 6 Entregar a segunda otimização dos parâmetros e analisar a performance do controlador.
- 7 Entregar a revisão de toda a dissertação.
- 8 Entregar a dissertação finalizada.
- 9 Entregar a correção da dissertação.
- 10 Entregar a impressão da dissertação.
- Entregar a apresentação finalizada.
- 12 Apresentar a dissertação.

José W. R. Pereira 10 de Agosto de 2017 30 / 36

Cronograma

Tarefas	Jul		Ago		Set		Out		Nov		Dez	
	12	26	16	30	13	27	11	25	15	29	06	13
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												

Viabilidade Econômica

Custo dos itens adquiridos para montagem do projeto

Item	Descrição	Valor	
1	Placa de desenvolvimento modelo Tiva TM TM4C123G	R\$42,00	
2	Placa padrão perfurada 10×15 cm	R\$15,00	
3	Componentes eletrônicos diversos	R\$20,00	
4	Fonte de alimentação	R\$60,00	
	Total	R\$137,00	

10 de Agosto de 2017 32 / 36

Viabilidade Econômica

Itens que não geraram custo direto ao projeto

Item	Descrição		
1	Microcomputador portátil - Notebook		
2	Softwares		
3	Multímetro		
4	Motor CC		
5	Disco acoplado ao motor		

10 de Agosto de 2017 33 / 36

Viabilidade Econômica

Ferramentas de uso livre

- Sistema Operacional: GNU/Linux Debian 8(Jessie);
- GNOME Shell:
- Editor de texto e códigos fonte VIM;
- compilador GCC para ARM (arm-none-eabi-gcc);
- GNU Make;
- processador de texto LATEX- pdfTEX;
- pacotes geradores de figuras TikZ, PGF e GNU pic(Groff);
- gerador de gráficos GNUPlot;
- teminal de comunicação Minicom;
- gravador LM4Flash.

34 / 36

José W. R. Pereira

Referências

DA SILVA FILHO, J. I. Métodos de aplicações da lógica paraconsistente anotada de anotação com dois valores-lpa2v. *Revista Seleção Documental*, Santos, v. 1, n. 1, p. 18–25, Março 2006.

DA SILVA FILHO, J. I.; ABE, J. M. Aspectos de lógica e teoria da ciência: Pesquisa e métodos de aplicações da lógica paraconsistente anotada em sistemas de inteligência artificial. *Instituto de Estudos Avançados da Universidade de São Paulo*, São Paulo, p. 50–83, 2011.

DORF, R. C.; BISHOP, R. H. *Modern control systems*. 12^a. ed. New Jersey: Pearson Education, Inc, 2011.

KRAUSE, D. Lógica paraconsistente. *Scientific American Brasil*, São Paulo, n. 30, p. 70–77, Nov 2004.

OGATA, K. *Modern Control Engineering*. 5^a. ed. New Jersey: Prentice Hall, Pearson Education, Inc. 2010.

José W. R. Pereira 10 de Agosto de 2017 35 / 36

Agradecimentos

Agradeço a todos!

36 / 36