Normalisers in Quasipolynomial Time and the Category of Permutation Groups

Sergio Siccha

May 9, 2019

Lehr- und Forschungsgebiet Algebra, RWTH Aachen

Introduction

Goal

Theorem

Let $G = \langle X \rangle \leq \operatorname{Sym} \Omega$ be a primitive group of PA type. The normaliser $N_{\operatorname{Sym} \Omega}(G)$ can be computed in quasipolynomial time $O(n^3 \cdot 2^{2 \log n \log \log n} \cdot |X|)$.

1

Goal

Theorem

Let $G = \langle X \rangle \leq \operatorname{Sym} \Omega$ be a primitive group of PA type. The normaliser $N_{\operatorname{Sym} \Omega}(G)$ can be computed in quasipolynomial time $O(n^3 \cdot 2^{2 \log n \log \log n} \cdot |X|)$.

Joint work with Prof. Colva Roney-Dougal.

Recursion for Normalisers

• $log := log_2$.

- $\log := \log_2$.
- All groups and sets are finite!

- $log := log_2$.
- All groups and sets are finite!
- Ω, Δ denote sets, G, H, T denote groups.

- $\log := \log_2$.
- All groups and sets are finite!
- Ω, Δ denote sets, G, H, T denote groups.
 - T always denotes a finite non-abelian simple group.

- $\log := \log_2$.
- All groups and sets are finite!
- Ω, Δ denote sets, G, H, T denote groups.
 - T always denotes a finite non-abelian simple group.
- Functions act from the left f(x) but groups from the right: $\alpha^g = g(\alpha)$.