# Data driven techniques for learning games playing strategies and their application to combinatorial optimization problems

Thomas Philip Runarsson

School of Engineering and Natural Sciences University of Iceland

Stirling University 6 Dec. 2013

#### Outline

Sequential Decision Making Problems

Learning a Game Playing Policy using Data

Data Driven Design of Composite Dispatching Rules

Discussion and Challenges

## Sequential Decision Making Problems

Many optimization problems may be formulated within a sequential decision making (dynamic programming) framework, this includes the shortest path, assignment, packing, scheduling, etc.

A solution consist of n components, or decisions selected one-at-a-time. For  $n=1,\ldots,N$ , the state of the nth stage is formed by the sequence of n decisions:

$$(u_1, u_2, \ldots, u_n)$$

For example, in *job scheduling* decisions may involve selecting different dispatching heuristic or simply the job to be dispatched next.

## Sequential Decision Making Problems

Many optimization problems may be formulated within a sequential decision making (dynamic programming) framework, this includes the shortest path, assignment, packing, scheduling, etc.

A solution consist of n components, or decisions selected one-at-a-time. For  $n=1,\ldots,N$ , the state of the nth stage is formed by the sequence of n decisions:

$$(u_1, u_2, \ldots, u_n)$$

For example, in *job scheduling* decisions may involve selecting different dispatching heuristic or simply the job to be dispatched next.

## Sequential Decision Making Problems

Many optimization problems may be formulated within a sequential decision making (dynamic programming) framework, this includes the shortest path, assignment, packing, scheduling, etc.

A solution consist of n components, or decisions selected one-at-a-time. For  $n=1,\ldots,N$ , the state of the nth stage is formed by the sequence of n decisions:

$$(u_1, u_2, \ldots, u_n)$$

For example, in *job scheduling* decisions may involve selecting different dispatching heuristic or simply the job to be dispatched next.

# Jobshop problem as an example ...



The key idea is to employ a given heuristic in the construction of an optimal cost-to-go function approximation, which is then used in the spirit of the *neuro-dynamic programming* and *reinforcement learning* methodology.

In particular, an optimal solution  $(u_1^*,\ldots,u_N^*)$  can be obtained by

$$u_i^* = \arg\min_{u_i \in U_i(u_1^*, ..., u_{i-1}^*)} J^*(u_1^*, ..., u_{i-1}^*, u_i), \quad i = 1, ..., N$$

The Rollout algorithm uses multiple heuristics to provide an approximation of  $J^*$  and so obtain a sub-optimal solution

$$\tilde{u}_i = \arg\min_{\tilde{u}_i \in U_i(\tilde{u}_1, \dots, \tilde{u}_{i-1})} \tilde{J}(\tilde{u}_1, \dots, \tilde{u}_{i-1}, u_i), \quad i = 1, \dots, N$$

The key idea is to employ a given heuristic in the construction of an optimal cost-to-go function approximation, which is then used in the spirit of the *neuro-dynamic programming* and *reinforcement learning* methodology.

In particular, an optimal solution  $(u_1^*,\ldots,u_N^*)$  can be obtained by

$$u_i^* = \arg\min_{u_i \in U_i(u_1^*, \dots, u_{i-1}^*)} J^*(u_1^*, \dots, u_{i-1}^*, u_i), \quad i = 1, \dots, N$$

The Rollout algorithm uses multiple heuristics to provide an approximation of  $J^*$  and so obtain a sub-optimal solution

$$\tilde{u}_i = \arg\min_{\tilde{u}_i \in U_i(\tilde{u}_1, \dots, \tilde{u}_{i-1})} \tilde{J}(\tilde{u}_1, \dots, \tilde{u}_{i-1}, u_i), \quad i = 1, \dots, N$$

The key idea is to employ a given heuristic in the construction of an optimal cost-to-go function approximation, which is then used in the spirit of the *neuro-dynamic programming* and *reinforcement learning* methodology.

In particular, an optimal solution  $(u_1^*,\ldots,u_N^*)$  can be obtained by

$$u_i^* = \arg\min_{u_i \in U_i(u_1^*, \dots, u_{i-1}^*)} J^*(u_1^*, \dots, u_{i-1}^*, u_i), \quad i = 1, \dots, N$$

The Rollout algorithm uses multiple *heuristics* to provide an approximation of  $J^*$  and so obtain a sub-optimal solution

$$ilde{u}_i = rg \min_{ ilde{u}_i \in U_i( ilde{u}_1, \dots, ilde{u}_{i-1})} ilde{J}( ilde{u}_1, \dots, ilde{u}_{i-1}, u_i), \quad i = 1, \dots, N$$

The name "rollout policy" was used by Tesauro (Tesauro and Galperin, 1996) in connection with one of his simulation-based computer backgammon algorithms, also known as *trajectory sampling* (Sutton and Barto, 1998)

There are different versions of the Rollout algorithm, one in particular looks at all downstream neighbour states,  $\mathcal{N}(u_{i-1})$ , of the partial solution  $(\tilde{u}_1, \dots, \tilde{u}_{i-1})$ : and uses a default heuristic to generate a complete solution with cost C(j).

The decision made is then

$$\widetilde{u}_i = rg \min_{j \in \mathcal{N}(\widetilde{u}_{i-1})} C(j)$$

The name "rollout policy" was used by Tesauro (Tesauro and Galperin, 1996) in connection with one of his simulation-based computer backgammon algorithms, also known as *trajectory sampling* (Sutton and Barto, 1998)

There are different versions of the Rollout algorithm, one in particular looks at all downstream neighbour states,  $\mathcal{N}(u_{i-1})$ , of the partial solution  $(\tilde{u}_1, \ldots, \tilde{u}_{i-1})$ : and uses a default heuristic to generate a complete solution with cost C(j).

The decision made is then

$$\tilde{u}_i = \arg\min_{j \in \mathcal{N}(\tilde{u}_{i-1})} C(j)$$

The name "rollout policy" was used by Tesauro (Tesauro and Galperin, 1996) in connection with one of his simulation-based computer backgammon algorithms, also known as *trajectory sampling* (Sutton and Barto, 1998)

There are different versions of the Rollout algorithm, one in particular looks at all downstream neighbour states,  $\mathcal{N}(u_{i-1})$ , of the partial solution  $(\tilde{u}_1, \ldots, \tilde{u}_{i-1})$ : and uses a default heuristic to generate a complete solution with cost C(j).

The decision made is then

$$\tilde{u}_i = \arg\min_{j \in \mathcal{N}(\tilde{u}_{i-1})} C(j)$$

- The idea is to add one-step look-ahead and so apply greedy heuristics from different starting points.
- The procedure is applied repeatedly, effectively building a tree.
- This procedure is not unlike strategies used in game playing programs, that search a game trees for good moves.
- Essentially equivalent to the Rollout algorithm, but motivated differently.

- The idea is to add one-step look-ahead and so apply greedy heuristics from different starting points.
- The procedure is applied repeatedly, effectively building a tree.
- This procedure is not unlike strategies used in game playing programs, that search a game trees for good moves.
- Essentially equivalent to the Rollout algorithm, but motivated differently.

- The idea is to add one-step look-ahead and so apply greedy heuristics from different starting points.
- The procedure is applied repeatedly, effectively building a tree.
- This procedure is not unlike strategies used in game playing programs, that search a game trees for good moves.
- Essentially equivalent to the Rollout algorithm, but motivated differently.

- The idea is to add one-step look-ahead and so apply greedy heuristics from different starting points.
- The procedure is applied repeatedly, effectively building a tree.
- This procedure is not unlike strategies used in game playing programs, that search a game trees for good moves.
- Essentially equivalent to the Rollout algorithm, but motivated differently.



Selection A tree is asymmetrically grown toward the most promising region.

Expansion Tree descended using an exploration/exploitation policy until a unexplored leaf found.

Rollout Node added to the tree and solution completed by some procedure.

Update Solution back-propagated to nodes on the path taker



Selection A tree is asymmetrically grown toward the most promising region.

Expansion Tree descended using an exploration/exploitation policy until a unexplored leaf found.

Rollout Node added to the tree and solution completed by some procedure.

Update Solution back-propagated to nodes on the path taker





Selection A tree is asymmetrically grown toward the most promising region.

Expansion Tree descended using an exploration/exploitation policy until a unexplored leaf found.

Rollout Node added to the tree and solution completed by some procedure.

Update Solution back-propagated to nodes on the path taken





Selection A tree is asymmetrically grown toward the most promising region.

Expansion Tree descended using an exploration/exploitation policy until a unexplored leaf found.

Rollout Node added to the tree and solution completed by some procedure.

Update Solution back-propagated to nodes on the path taken.



## Decision Making in Board Games



Othello game in progress with seven possible legal moves for black (dash).

The purpose of learning a board <u>evaluation function</u> is to decide which move to take.

- When used in a one-ply search or a minimax game tree, decisions are based on comparisons.
- The absolute values are not important, only relative values are needed.

## Decision Making in Board Games



Othello game in progress with seven possible legal moves for black (dash).

The purpose of learning a board <u>evaluation function</u> is to decide which move to take.

- When used in a one-ply search or a minimax game tree, decisions are based on comparisons.
- The absolute values are not important, only relative values are needed.

## **Decision Making in Board Games**



Othello game in progress with seven possible legal moves for black (dash).

The purpose of learning a board <u>evaluation function</u> is to decide which move to take.

- When used in a one-ply search or a minimax game tree, decisions are based on comparisons.
- The absolute values are not important, only relative values are needed.

- Simply learn to satisfy constraints that lead to correct choices.
- Don't care about absolute values.
- What are correct choices?
- Given a set of game logs (trajectories)
- For each board state with more than one legal move:
  - label board state reached by chosen move as "correct".
  - label all other board states reachable by a single legal move as "incorrect"
- Attempt to learn a function that performs correct classification according to the above.

- Simply learn to satisfy constraints that lead to correct choices.
- Don't care about absolute values.
- What are correct choices?
- Given a set of game logs (trajectories)
- For each board state with more than one legal move:
  - label board state reached by chosen move as "correct".
  - label all other board states reachable by a single legal move as "incorrect"
- Attempt to learn a function that performs correct classification according to the above.

- Simply learn to satisfy constraints that lead to correct choices.
- Don't care about absolute values.
- What are correct choices?
- Given a set of game logs (trajectories)
- For each board state with more than one legal move:
  - label board state reached by chosen move as "correct".
  - label all other board states reachable by a single legal move as "incorrect".
- Attempt to learn a function that performs correct classification according to the above.

- Simply learn to satisfy constraints that lead to correct choices.
- Don't care about absolute values.
- What are correct choices?
- Given a set of game logs (trajectories)
- For each board state with more than one legal move:
  - label board state reached by chosen move as "correct".
  - label all other board states reachable by a single legal move as "incorrect".
- Attempt to learn a function that performs correct classification according to the above.

- Simply learn to satisfy constraints that lead to correct choices.
- Don't care about absolute values.
- What are correct choices?
- Given a set of game logs (trajectories)
- For each board state with more than one legal move:
  - label board state reached by chosen move as "correct".
  - label all other board states reachable by a single legal move as "incorrect".
- Attempt to learn a function that performs correct classification according to the above.

- Simply learn to satisfy constraints that lead to correct choices.
- Don't care about absolute values.
- What are correct choices?
- Given a set of game logs (trajectories)
- For each board state with more than one legal move:
  - label board state reached by chosen move as "correct".
  - label all other board states reachable by a single legal move as "incorrect".
- Attempt to learn a function that performs correct classification according to the above.

## A linear evaluation function based on *n*-tuples features





- Essentially a linear architecture with highly non-linear pattern-like features  $\phi$ .
- In our study we have used an *n*-tuple architecture evolved by Pete Burrow, with 6561 features.
- The evaluation function is simply  $Q(s, a) = \mathbf{w}^{\mathsf{T}} \phi(s^a)$ , where  $s^a$  is the after or post-decision state when move a is chosen.

## A linear evaluation function based on *n*-tuples features





- Essentially a linear architecture with highly non-linear pattern-like features  $\phi$ .
- In our study we have used an *n*-tuple architecture evolved by Pete Burrow, with 6561 features.
- The evaluation function is simply  $Q(s, a) = \mathbf{w}^{\mathsf{T}} \phi(s^a)$ , where  $s^a$  is the after or post-decision state when move a is chosen.

## A linear evaluation function based on *n*-tuples features





- Essentially a linear architecture with highly non-linear pattern-like features  $\phi$ .
- In our study we have used an *n*-tuple architecture evolved by Pete Burrow, with 6561 features.
- The evaluation function is simply  $Q(s, a) = \mathbf{w}^{\mathsf{T}} \phi(s^a)$ , where  $s^a$  is the after or post-decision state when move a is chosen.

Say that move j is preferred to move k then the learner simply aims to satisfy the simple constraint:

$$\mathbf{w}^{\mathsf{T}}\phi_{j} > \mathbf{w}^{\mathsf{T}}\phi_{k}$$

or solve the problem of minimizing  $\|\mathbf{w}\|$  and satisfying

$$[\mathbf{w}^{\mathsf{T}}(\phi_{i}-\phi_{k})] > 1 \ \forall j \in J, \ k \in K$$

where J and K are the preferred and non-preferred post-decision board states respectively.

## Other Machine Learning Approaches

We (with Simon Lucas) have compared preference learning with the following approaches (and variations thereof):

- · least squares temporal difference learning,
- direct classification,
- and the Bradley-Terry model fitted using minorization-maximization.

## Human Generated Expert Games Trajectories

- Taken from human competitions held by the French Othello Federation www.ffothello.org.
- More than 112 thousand games available, we use only one thousand.

# Matching human decisions (French Othello league)

|        |      |          | <i>n</i> -Tuple |      |      |          | WPC  |      |
|--------|------|----------|-----------------|------|------|----------|------|------|
| #discs | BF   | #N       | PREF            | MM   | LSTD | Classify |      | ETDL |
| 1–16   | 7.1  | 73133    | 78.3            | 68.8 | 29.8 | 68.7     | 21.9 | 13.4 |
| 17–20  | 11.0 | 40045    | 52.4            | 43.0 | 15.2 | 31.8     | 2.6  | 15.5 |
| 21-24  | 11.5 | 42194    | 49.6            | 33.4 | 21.6 | 32.2     | 2.0  | 20.6 |
| 25-28  | 11.9 | 43796    | 45.1            | 31.1 | 20.7 | 34.1     | 5.2  | 22.9 |
| 29-32  | 11.7 | 42818    | 40.5            | 26.2 | 18.4 | 29.7     | 4.3  | 22.1 |
| 33–36  | 11.3 | 41319    | 40.1            | 28.0 | 17.6 | 30.2     | 6.8  | 24.9 |
| 37-40  | 10.6 | 38318    | 41.8            | 30.6 | 17.9 | 32.0     | 9.4  | 26.1 |
| 41–44  | 9.6  | 34308    | 41.5            | 31.6 | 20.4 | 32.5     | 14.3 | 29.6 |
| 45-48  | 8.4  | 29412    | 43.6            | 34.0 | 21.6 | 34.7     | 20.8 | 31.5 |
| 49-52  | 7.1  | 23784    | 44.0            | 35.3 | 24.1 | 36.4     | 27.2 | 35.8 |
| 53-56  | 5.5  | 17385    | 49.0            | 40.9 | 31.3 | 41.1     | 33.4 | 42.2 |
| 57–60  | 4.0  | 10960    | 53.9            | 46.5 | 39.0 | 48.3     | 38.7 | 49.5 |
| 61–64  | 2.5  | 3411     | 62.5            | 55.9 | 52.8 | 57.3     | 48.0 | 61.3 |
| $\sum$ | 8.6  | (437883) | 53.0            | 42.5 | 25.1 | 42.7     | 17.6 | 27.0 |

#### Round Robin League

- Each evaluation function was used to play each other one using one-ply minimax search from the same 1000 randomly chosen unique initial positions.
- We then used BayesElo to rank the players and to assess the likelihood of superiority.

#### Round Robin League

- Each evaluation function was used to play each other one using one-ply minimax search from the same 1000 randomly chosen unique initial positions.
- We then used BayesElo to rank the players and to assess the likelihood of superiority.

#### Round Robin League Rating

| Ranking | Player           | Rating | % Score | b/w | w     |
|---------|------------------|--------|---------|-----|-------|
| 1       | iPref-N-Tuple    | 1879   | 82.3%   | inv | 6,561 |
| 2       | ETDL-N-Tuple     | 1871   | 81.6%   | neg | 6,561 |
| 3       | Pref-N-Tuple     | 1779   | 72.3%   | neg | 6,561 |
| 4       | Coev-WPC         | 1672   | 59.7%   | neg | 64    |
| 5       | Heur-WPC         | 1655   | 57.5%   | neg | 64    |
| 6       | MM-N-Tuple       | 1630   | 54.3%   | inv | 6,561 |
| 7       | iPref-1-Tuple    | 1555   | 44.7%   | inv | 192   |
| 8       | MM-1-Tuple       | 1542   | 43.0%   | inv | 192   |
| 9       | Pref-1-Tuple     | 1511   | 39.1%   | neg | 192   |
| 10      | Classify-N-Tuple | 1500   | 37.7%   | inv | 6,561 |
| 11      | Classify-1-Tuple | 1425   | 28.5%   | inv | 192   |
| 12      | LSTD-N-Tuple     | 1419   | 27.8%   | neg | 6,561 |
| 13      | LSTD-1-Tuple     | 1360   | 21.6%   | neg | 192   |

#### Data Driven Design of Composite Dispatching Rules

Use now the same preference learning technique for learning dispatching policies for scheduling problems:

- Generate optimal dispatching "trajectories" using a MIP solver (Gurobi).
- Use random instance generator to create example problems to train on and others for testing.
- We will look at 3 different types of scheduling problems.





















#### Jobshop-10 $\times$ 10, U(1, 100) – average decision accuracy



# Jobshop-10 imes 10, $\mathit{U}(1,100)$ – impact on objective























#### Jobshop-10 $\times$ 10, U(51, 100) – average decision accuracy



#### Jobshop-10 $\times$ 10, U(51, 100) – impact on objective





















## Flowshop-8 $\times$ 8, U(1,100) – average decision accuracy



## Flowshop-8 $\times$ 8, U(1,100) – impact on objective



- Visualization techniques (analytics) for combinatorial optimization.
- Problem specific feature discovery for combinatorial optimization.
- Understanding where decision are critical for success (focus the training data).
- Sub-optimal trajectory sampling? For games we have found that sampling more effectively the game state space is important.
- Apply these techniques directly within MIP solvers such as Gurobi. We are currently investigating this using SCIP.

- Visualization techniques (analytics) for combinatorial optimization.
- Problem specific feature discovery for combinatorial optimization.
- Understanding where decision are critical for success (focus the training data).
- Sub-optimal trajectory sampling? For games we have found that sampling more effectively the game state space is important.
- Apply these techniques directly within MIP solvers such as Gurobi. We are currently investigating this using SCIP.

- Visualization techniques (analytics) for combinatorial optimization.
- Problem specific feature discovery for combinatorial optimization.
- Understanding where decision are critical for success (focus the training data).
- Sub-optimal trajectory sampling? For games we have found that sampling more effectively the game state space is important.
- Apply these techniques directly within MIP solvers such as Gurobi. We are currently investigating this using SCIP.

- Visualization techniques (analytics) for combinatorial optimization.
- Problem specific feature discovery for combinatorial optimization.
- Understanding where decision are critical for success (focus the training data).
- Sub-optimal trajectory sampling? For games we have found that sampling more effectively the game state space is important.
- Apply these techniques directly within MIP solvers such as Gurobi. We are currently investigating this using SCIP.

- Visualization techniques (analytics) for combinatorial optimization.
- Problem specific feature discovery for combinatorial optimization.
- Understanding where decision are critical for success (focus the training data).
- Sub-optimal trajectory sampling? For games we have found that sampling more effectively the game state space is important.
- Apply these techniques directly within MIP solvers such as Gurobi. We are currently investigating this using SCIP.

- Visualization techniques (analytics) for combinatorial optimization.
- Problem specific feature discovery for combinatorial optimization.
- Understanding where decision are critical for success (focus the training data).
- Sub-optimal trajectory sampling? For games we have found that sampling more effectively the game state space is important.
- Apply these techniques directly within MIP solvers such as Gurobi. We are currently investigating this using SCIP.