MTAT.07.003 Cryptology II Spring 2012 / Exercise session ?? / Example Solution

Exercise (Pseudorandom generator based on hard-core bits of a permutation). A predicate π is a (t, ε) -unpredictable also known as (t, ε) -hardcore predicate for a function $f : \mathcal{S} \to \mathcal{X}$ if for any t-time adversary

Let $\pi: \{0,1\}^n \to \{0,1\}$ be a (t,ε) -hardcore predicate for a permutation $f: \{0,1\}^n \to \{0,1\}^n$. Prove that the concatenation $g_1(s) = f(s)||\pi(s)$ is (t,ε) -pseudorandom generator. Prove that the double-concatenation $g_2(s) = f(f(s))||\pi(f(s))||\pi(s)$ is $(t,2\varepsilon)$ -pseudorandom generator. Can this proof be generalised for other concatenation functions $g_i(s) = f(\ldots f(f(s))\ldots)||\pi(f(\ldots f(f(s))\ldots))||\ldots \pi(f(s))||\pi(s)$?

Solution.

Hint: Give alternative definition of hard-core bits in terms of two games Q_0 and Q_1 .

Hint: Define \mathcal{B} such that $\mathcal{Q}_0^{\mathcal{B}} \equiv \mathcal{G}_0^{\mathcal{A}}$. What is the corresponding $\mathcal{Q}_1^{\widetilde{\mathcal{B}}}$?