Set 05: Abstract Data Types and Data Structures

CS240: Data Structures and Data Management

Jérémy Barbay

Outline

Simple Abstract Data Types Stack ADT Queue (FIFO) ADT

Graphs

A family of ADTs Several Data Structures Algorithms for Search and Traversal

What's an Abstract Data Type? A Data Structure?

- Data Type
 The set of allowed values for a variable.
- Principle of AbstractionWhen solving a pb, focus on what, not how.
- ► Abstract Data Type (ADT) Set of elements + Set of operations.
- Data Structure (DS)
 Systematic way of organizing and accessing data.

Stack ADT

- ▶ ADT consisting of a container of objects
- Insertion/Deletion performed LIFO
- Required operations push(o), pop(), isEmpty()
- Helpful operations top(), size()
- Applications:
 - Evaluation of Arithmetic operations.
 - Recursive Calls (passing parameters).
 - Unix History of commands.
 - Reversing elements in an array.
 - Undo in Editors.

Implementation in an Array

- Two instance variables:
 - ► Array, A, of size N
 - ▶ Integer, size
- Maximum size of stack is N
- Vector
- ▶ Running Times: Insertion/Deletion in *O*(1).
- ▶ Space Usage (after n items inserted): O(N)

Implementation in a Singular Linked List

- ▶ Use Node class:
 - Data fields elem, next
 - Accessor/Mutators getElem/setElem, getNext/setNext
- ► Two instance variables:
 - ▶ Reference to *top* Node of stack
 - Integer, size
- No maximum size of stack
- ▶ Running Times : Insertion/Deletion in O(1).
- ▶ Space Usage (after n items inserted): O(n).

Queue (FIFO) ADT

- ▶ ADT consisting of a container of objects
- ► Insertion/Deletion performed FIFO
- Required operations enqueue(o), dequeue(),
 isEmpty()
- Helpful operations front(), size()
- Applications:
 - Print/Job Servers
 - Simulation of Discrete Events

Implementation in an Array

- ► Four instance variables:
 - ► Array, A, of size N
 - ▶ Integers, size, front, rear
- Maximum size of queue is N
- Circular array
- ▶ Running Times: O(1)
- ▶ Space Usage (after n items inserted): O(N)

Implementation in a Singular Linked List

- Use Node class:
- Three instance variables:
 - ▶ Reference to *front*, *back* Nodes of queue
 - ▶ Integer, size
- ▶ No maximum size of queue
- \triangleright Running Times : O(1)
- ▶ Space Usage (after n items inserted): O(n)

Outline

Simple Abstract Data Types Stack ADT Queue (FIFO) ADT

Graphs

A family of ADTs Several Data Structures Algorithms for Search and Traversal

Definitions

- ightharpoonup A graph G is a pair (V, E) such that
 - ▶ V is the set of vertices $\{v_1, v_2, \dots, v_n\}$
 - E is the set of edges $\{e_1, e_2, \ldots, e_m\}$
- Undirected Graph

$$E = \{\{v_i, v_j\} : v_i \neq v_j \text{ and } v_i, v_j \in V\}$$

Directed Graph

$$E = \{(v_i, v_j) : v_i, v_j \in V\}$$

Edges can also have a weight (cost) associated with it

Examples

► Undirected Graph

"Who knows who"

► Directed Graph

"Who likes who"

► Weighted Graph

Distances

▶ Directed Graph

Commuting time

Terminology

- Simple Graph Finite, undirected graph with no self-loops or multi-edges
- **▶** Dense Graph $-m \in \Omega(n^2)$ $m \in \Theta(n^2)$
- ▶ Sparse Graph $-m \in O(n)$
- ▶ Path (simple) sequence of incident edges without repetition from u to v
- ▶ Cycle path from u to u
- ▶ non directed graph is connected $\neg \forall u, v, \exists path(u, v)$
- ▶ directed graph is connected $-\exists u, \forall v, \exists path(u, v)$
- ▶ directed graph is strongly connected $\neg \forall u, v, \exists path(u, v)$

A family of Abstract Data Types

The most common operators are:

- Query Operators
 - ▶ numVertices(), numEdges(), degree(v), areAdjacent(v₁, v₂),...
- Update Operators
 - ▶ insertEdge(e), removeEdge(e), insertVertex(v), removeVertex(v),...
- Iterators
 - vertices(), edges(),
 adjacentVertices(v), incidentEdges(v), ...

Data Structures for the Graph ADTs

- ▶ Number the vertices 0, 1, ..., n-1
- ▶ We will look at two possible data structures:
 - 1. Adjacency List
 - 2. Adjacency Matrix

- Ideas extend to directed and weighted graphs (exercise)
- ▶ **Note**: when analyzing iterator operators, we will determine the time to visit **all** the vertices or edges.

Adjacency List

Maintain an unsorted list of neighbors, for each vertex in the array

- Worst-case Runtimes:
 - ▶ areAdjacent(v1, v2) O(m)
 - ▶ adjacentVertices(v) O(output size)
 - ▶ insertEdge(e) O(1)
 - ▶ removeVertex(v) O(n+m)
- ▶ Space Usage O(m) words

Adjacency List (variant)

Maintain a sorted list of neighbors, for each vertex in the array

- Worst-case Runtimes:
 - ▶ areAdjacent(v1, v2) $O(\lg m)$
 - adjacentVertices(v) O(output size)
 - ▶ insertEdge(e) O(m)
 - ▶ removeVertex(v) O(n+m)
- ► Space Usage O(m) words

Adjacency Matrix

- ▶ Using a $n \times n$ matrix
- $ightharpoonup A_{i,j} = 1$ if there is an edge

- Worst-case Runtimes:
 - ▶ areAdjacent(v1, v2) O(1)
 - ▶ adjacentVertices(v) O(n)
 - ▶ insertEdge(e) O(1)
 - ▶ removeVertex(v) O(n)
- ► Space Usage $O(n^2)$ bits

Many Other Implementations

- Many other implementations, but much more sophisticated, based on different trade-offs, and supporting more operators.
- ▶ An example: *static* succinct encoding of binary relations.
- Worst-case Runtimes:
 - ▶ areAdjacent(v1, v2) $O(\lg \lg n)$
 - ▶ adjacentVertices(v) O(1)
 - ▶ degree(v) O(1)
 - insertEdge(e), insertVertex(v), removeVertex(v), removeEdge(e) - not supported
- Space Usage − O(m lg n) bits, i.e. O(m) words on most machines

Some Algorithms on Graphs

There are many algorithms on graphs:

- Connex Component Search;
- Cycle search/detection;
- Flux optimisation;
- Shortest path:
 - between a pair of nodes,
 - between a node and all others.

We study here two of the simplest:

- ► Depth-First Search (and Traversal)
- Breadth-First Search (and Traversal)

Depth-First Search

"Narrow" traversal of vertices

```
From a given start vertex v:
DFS-Graph(v)
  Mark v
 Visit(v)
  for each vertex, w, adjacent to v do
    if w is unmarked then
      DFS-Graph(w)
    end if
  end for
                                         (0,3)
```

Example:

What is the worst-case running time of the entire algorithm using adjacency lists?

$$O(n+m)$$

Breadth-First Search

"Broad" traversal of vertices:

```
From a given start vertex v:

BFS-Graph(v)

if v has not been visited yet then

VISIT(v)

for w \leftarrow 1 \dots n do

BFS-GRAPH(w)

end for

end if
```

Example:

$$(0,1)$$
 $(0,3)$ $(0,4)$ $(1,5)$ $(5,2)$

What is the worst-case running time of the entire algorithm, when using adjacency lists? O(n+m)

Summary

Topic	Concept(s)
What's an ADT?	Abstract the "What" of the "How".
Stacks (LIFO)	Pile of plates
Queue (FIFO)	People waiting in line
Graphs	(non)directed, (un)weighted
Adjacency list DS	O(m), good for sparse graphs.
Adjacency matrix DS	O(1) or $O(n)$, good for dense graphs.
Algorithms on graphs	Depth First and Breadth First Traversal.

Summary

Topic	Concept(s)
What's an ADT?	Abstract the "What" of the "How".
Stacks (LIFO)	Pile of plates
Queue (FIFO)	People waiting in line
Graphs	(non)directed, (un)weighted
Adjacency list DS	O(m), good for sparse graphs.
Adjacency matrix DS	O(1) or $O(n)$, good for dense graphs.
Algorithms on graphs	Depth First and Breadth First Traversal.