Core-Maths-C1 - 2012-January

Question 1

Given that $y = x^4 + 6x^{\frac{1}{2}}$, find in their simplest form

(a)
$$\frac{dy}{dx}$$

(b)
$$\int y \, dx$$
 (3)

Question 2

(a) Simplify $\sqrt{32+\sqrt{18}}$

giving your answer in the form $a\sqrt{2}$, where a is an integer.

(2)

(b) Simplify
$$\frac{\sqrt{32 + \sqrt{18}}}{3 + \sqrt{2}}$$

giving your answer in the form $b\sqrt{2}+c$, where b and c are integers.

(4)

Question 3

Find the set of values of x for which

(a)
$$4x-5>15-x$$

(b)
$$x(x-4) > 12$$
 (4)

A sequence $x_1, x_2, x_3,...$ is defined by

$$x_1 = 1$$

$$x_{n+1} = ax_n + 5, n \geqslant 1$$

where a is a constant.

(a) Write down an expression for x_2 in terms of a.

(1)

(b) Show that $x_3 = a^2 + 5a + 5$

(2)

Given that $x_3 = 41$

(c) find the possible values of a.

(3)

Question 5

The curve C has equation y = x(5-x) and the line L has equation 2y = 5x + 4

(a) Use algebra to show that C and L do not intersect.

(4)

(b) In the space on page 11, sketch C and L on the same diagram, showing the coordinates of the points at which C and L meet the axes.

(4)

Figure 1

The line l_1 has equation 2x - 3y + 12 = 0

(a) Find the gradient of l_1 .

(1)

The line l_1 crosses the x-axis at the point A and the y-axis at the point B, as shown in Figure 1.

The line l_2 is perpendicular to l_1 and passes through B.

(b) Find an equation of l_2 .

(3)

The line l_2 crosses the x-axis at the point C.

(c) Find the area of triangle ABC.

(4)

Question 7

A curve with equation y = f(x) passes through the point (2, 10). Given that

$$f'(x) = 3x^2 - 3x + 5$$

find the value of f(1).

(5)

The curve C_1 has equation

$$y = x^2(x+2)$$

(a) Find $\frac{dy}{dx}$

(2)

(b) Sketch C_1 , showing the coordinates of the points where C_1 meets the x-axis.

(3)

(c) Find the gradient of C_1 at each point where C_1 meets the x-axis.

(2)

The curve C_2 has equation

$$y = (x-k)^2(x-k+2)$$

where k is a constant and k > 2

(d) Sketch C_2 , showing the coordinates of the points where C_2 meets the x and y axes.

(3)

Question 9

A company offers two salary schemes for a 10-year period, Year 1 to Year 10 inclusive.

Scheme 1: Salary in Year 1 is £P.

Salary increases by $\mathfrak{L}(2T)$ each year, forming an arithmetic sequence.

Scheme 2: Salary in Year 1 is £(P + 1800).

Salary increases by $\pounds T$ each year, forming an arithmetic sequence.

(a) Show that the total earned under Salary Scheme 1 for the 10-year period is

£
$$(10P + 90T)$$

(2)

For the 10-year period, the total earned is the same for both salary schemes.

(b) Find the value of T.

(4)

For this value of T, the salary in Year 10 under Salary Scheme 2 is £29 850

(c) Find the value of P.

(3)

Figure 2

Figure 2 shows a sketch of the curve C with equation

$$y = 2 - \frac{1}{x}, \quad x \neq 0$$

The curve crosses the x-axis at the point A.

(a) Find the coordinates of A.

(1)

(b) Show that the equation of the normal to C at A can be written as

$$2x + 8y - 1 = 0 ag{6}$$

The normal to C at A meets C again at the point B, as shown in Figure 2.

(c) Find the coordinates of B.

(4)