

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Mestrado Integrado em Engenharia Informática Computação Natural 2018/2019

Paulo Novais, Cesar Analide, Filipe Gonçalves

- Paulo Novais pjon@di.uminho.pt
- Cesar Analide <u>cesar.analide@di.uminho.pt</u>
- Filipe Gonçalves <u>fgoncalves@algoritmi.uminho.pt</u>
- Departamento de Informática
 Escola de Engenharia
 Universidade do Minho
- Grupo ISLab (Synthetic Intelligence Lab)
- Centro ALGORITMI
 Universidade do Minho

Introduction to Reinforcement Learning

■ The Multi-armed Bandit Problem (Exploration vs Exploitation Problem)

■ The Multi-armed Bandit Problem (Exploration vs Exploitation Problem)

Marketing - Ads Selection (Exploration vs Exploitation Problem)

- Marketing Ads Selection (Exploration vs Exploitation Problem)
 - We have d arms. For example, arms are ads that we display to users each time they connect to a web page
 - Each time a user connects to this web page, that makes a round
 - At each round n, we choose one ad to display to the user
 - At each round n, ad i gives reward:
 - $r_i(n) \in \{0,1\}$: $r_i(n) = 1$ if the user clicked on the ad i, 0 if the user didn't
 - o Goal: maximize the total reward we get over many rounds

Marketing - Ads Selection

o Index: Person

o Column: Ads

• 1: Person clicked on Ad

 0: Person ignored Ad

Index	Ad 1	Ad 2	Ad 3	Ad 4	Ad 5	Ad 6	Ad 7	Ad 8	Ad 9	Ad 10
0	1	0	0	0	1	0	0	0	1	0
1	0	0	0	0	0	0	0	0	1	0
2	0	0	0	0	0	0	0	0	0	0
3	0	1	0	0	0	0	0	1	0	0
4	0	0	0	0	0	0	0	0	0	0
5	1	1	0	0	0	0	0	0	0	0
6	0	0	0	1	0	0	0	0	0	0
7	1	1	\$	9	1	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0
9	0	0	1	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0
12	0	0	0	1	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	1	0
14	0	0	0	0	0	0	0	1	0	0
15	0	0	0	0	1	0	0	1	0	0
16	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	1	0	0
19	0	0	0	0	0	0	0	0	1	0
20	0	1	0	0	0	0	0	1	0	0
21	0	0	0	0	1	0	0	0	0	1

- Marketing Ads Selection
 - Random Selection

```
1# Random Selection
 3# Importing the libraries
 4 import numpy as np
 5 import matplotlib.pyplot as plt
 6 import pandas as pd
 8# Importing the dataset
 9 dataset = pd.read_csv('Ads_CTR_Optimisation.csv')
10
11# Implementing Random Selection
12 import random
13N = 10000
14d = 10
15 ads selected = []
16 total reward = 0
17 for n in range(0, N):
      ad = random.randrange(d)
      ads_selected.append(ad)
      reward = dataset.values[n, ad]
21
      total_reward = total_reward + reward
23# Visualising the results - Histogram
24 plt.hist(ads_selected)
25 plt.title('Histogram of ads selections')
26 plt.xlabel('Ads')
27 plt.ylabel('Number of times each ad was selected')
28 plt.show()
```


Marketing - Ads Selection

o Random Selection

1 *	Type	Size	Value
0	int	1	4
1	int	1	6
2	int	1	1
3	int	1	0
4	int	1	4
5	int	1	5
6	int	1	0
7	int	1	8
8	int	1	5
9	int	1	3
10	int	1	8
11	int	1	5
12	int	1	8
13	int	1	4
14	int	1	0

- Deterministic
- Requires update at every round

- Probabilistic
- Can accommodate delayed feedback
- Better empirical evidence

Upper Confidence Bound Algorithm

Step 1. At each round n, we consider two numbers for each ad i:

- $N_i(n)$ the number of times the ad i was selected up to round n,
- $R_i(n)$ the sum of rewards of the ad i up to round n.

Step 2. From these two numbers we compute:

the average reward of ad i up to round n

$$\bar{r}_i(n) = \frac{R_i(n)}{N_i(n)}$$

• the confidence interval $[\bar{r}_i(n) - \Delta_i(n), \bar{r}_i(n) + \Delta_i(n)]$ at round n with

$$\Delta_i(n) = \sqrt{\frac{3}{2} \frac{\log(n)}{N_i(n)}}$$

Step 3. We select the ad *i* that has the maximum UCB $\bar{r}_i(n) + \Delta_i(n)$.

- Marketing Ads Selection
 - Upper Confidence Bound

```
1# Upper Confidence Bound
 3# Importing the libraries
4 import numpy as np
5 import matplotlib.pyplot as plt
 6 import pandas as pd
 8# Importing the dataset
 9 dataset = pd.read_csv('Ads_CTR_Optimisation.csv')
11# Implementing UCB
12 import math
13N = 10000
14d = 10
15 ads_selected = []
16 numbers_of_selections = [0] * d
17 \text{ sums\_of\_rewards} = [0] * d
18 total reward = 0
19 for n in range(0, N):
20
      ad = 0
      max_upper_bound = 0
      for i in range(0, d):
23
          if (numbers of selections[i] > 0):
24
              average_reward = sums_of_rewards[i] / numbers_of_selections[i]
25
              delta_i = math.sqrt(3/2 * math.log(n + 1) / numbers_of_selections[i])
26
              upper bound = average reward + delta i
27
          else:
28
              upper bound = 1e400
29
          if upper_bound > max_upper_bound:
30
              max_upper_bound = upper_bound
31
              ad = i
      ads_selected.append(ad)
33
      numbers_of_selections[ad] = numbers_of_selections[ad] + 1
      reward = dataset.values[n, ad]
      sums_of_rewards[ad] = sums_of_rewards[ad] + reward
      total reward = total reward + reward
37
```


Marketing - Ads Selection

Upper Confidence Bound

1 4	Туре	Size	Value
9985	int	1	4
9986	int	1	4
9987	int	1	4
9988	int	1	4
9989	int	1	4
9990	int	1	4
9991	int	1	4
9992	int	1	4
9993	int	1	4
9994	int	1	4
9995	int	1	4
9996	int	1	4
9997	int	1	4
9998	int	1	4
9999	int	1	4

total_reward	int64	1	2178
upper_bound	float64	1	0.31017236647899182

Thompson Sampling Algorithm

Step 1. At each round n, we consider two numbers for each ad i:

- $N_i^1(n)$ the number of times the ad i got reward 1 up to round n,
- $N_i^0(n)$ the number of times the ad i got reward 0 up to round n.

Step 2. For each ad i, we take a random draw from the distribution below:

$$\theta_i(n) = \beta(N_i^1(n) + 1, N_i^0(n) + 1)$$

Step 3. We select the ad that has the highest $\theta_i(n)$.

- Thompson Sampling Algorithm
 - Ad *i* gets rewards **y** from Bernoulli distribution $p(\mathbf{y}|\theta_i) \sim \mathcal{B}(\theta_i)$.
 - θ_i is unknown but we set its uncertainty by assuming it has a uniform distribution $p(\theta_i) \sim \mathcal{U}([0,1])$, which is the prior distribution.
 - Bayes Rule: we approach θ_i by the posterior distribution

$$\underbrace{p(\theta_i|\mathbf{y})}_{\text{posterior distribution}} = \frac{p(\mathbf{y}|\theta_i)p(\theta_i)}{\int p(\mathbf{y}|\theta_i)p(\theta_i)d\theta_i} \propto \underbrace{p(\mathbf{y}|\theta_i)}_{\text{likelihood function}} \times \underbrace{p(\theta_i)}_{\text{prior distribution}}$$

- We get $p(\theta_i|\mathbf{y}) \sim \beta(\text{number of successes} + 1, \text{number of failures} + 1)$
- At each round n we take a random draw $\theta_i(n)$ from this posterior distribution $p(\theta_i|\mathbf{y})$, for each ad i.
- At each round n we select the ad i that has the highest $\theta_i(n)$.

- Marketing Ads Selection
 - o Thompson Sampling

```
1# Thompson Sampling
3# Importing the libraries
4 import numpy as np
5 import matplotlib.pyplot as plt
6 import pandas as pd
8# Importing the dataset
9 dataset = pd.read_csv('Ads_CTR_Optimisation.csv')
11# Implementing Thompson Sampling
12 import random
13N = 10000
14d = 10
15 ads_selected = []
16 numbers of rewards 1 = [0] * d
17 \text{ numbers\_of\_rewards\_0} = [0] * d
18 total reward = 0
19 for n in range(0, N):
      ad = 0
      max random = 0
      for i in range(0, d):
23
          random beta = random.betavariate(numbers of rewards 1[i] + 1, numbers of rewards 0[i] + 1)
24
          if random_beta > max_random:
25
              max_random = random_beta
26
              ad = i
27
      ads_selected.append(ad)
      reward = dataset.values[n, ad]
29
      if reward == 1:
30
          numbers_of_rewards_1[ad] = numbers_of_rewards_1[ad] + 1
31
      else:
32
          numbers_of_rewards_0[ad] = numbers_of_rewards_0[ad] + 1
33
      total reward = total reward + reward
```


Marketing - Ads Selection

Thompson Sampling

1 .	Туре	Size	Value
9985	int	1	4
9986	int	1	4
9987	int	1	4
9988	int	1	4
9989	int	1	4
9990	int	1	4
9991	int	1	4
9992	int	1	4
9993	int	1	4
9994	int	1	4
9995	int	1	4
9996	int	1	4
9997	int	1	4
9998	int	1	4
9999	int	1	4

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Mestrado Integrado em Engenharia Informática Computação Natural 2018/2019

Paulo Novais, Cesar Analide, Filipe Gonçalves