Math (L2)

Geometric series

$$\sum_{i=0}^{\infty} x^i = \frac{1}{1-x} \text{ whenever } |x| < 1.$$

Harmonic series

$$\sum_{k=1}^{n} \frac{1}{k} \sim \log n$$

Stirling

 $\log n! \in \Theta(n \lg n)$

Binomial theorem

Master Theorem (L2)

Suppose T(n) = aT(n/b) + f(n).

For any $\epsilon > 0$, - if $f(n) \in O(n^{\log_b a - \epsilon})$, then $T(n) \in \Theta(n^{\log_b a})$; - if $f(n)in\Theta(n^{\log_b a})$, then $T(n) \in \Theta(n^{\log_b a} \log n)$; - if $f(n)in\Omega(n^{\log_b a + \epsilon})$, then $T(n) \in \Theta(f(n))$.

Binary trees (L3)

- a complete binary tree with n levels has $2^n 1$ nodes
- a pre-heap is the result of deleting zero r more leaves consecutively from the right of a complete binary tree
- represent pre-heap as an array A with length equal to number of nodes, so that
 - root has index 1
 - the left, right children have indices 2n, 2n + 1
- a preheap with H levels has at least 2^{H-1} and at most 2^H-1 nodes
- a preheap with H levels has at most 2^{H-1} leaves, because
 - it has at most $2^H 1$ nodes, and
 - a pre-heap with n nodes has $\lceil n \rceil$ nodes

Heaps (L3)

- a heap is a labeled binary tree, such that
 - as a tree it's a pre-heap, and
 - the key of each node is greater than those of its children
- operations are
 - HEAPIFY(A,i)
 - * transforms a preheap A so that the subtree rooted at i is a heap
 - * swaps A[i] with the larger of left/right child if it's larger than A[i],, then recurses

- * running time is $O(\log n)$ where n is the length of A
- BUILD_HEAP(A)
 - * transforms preaheap A into a heap
 - * calls HEAPIFY(A,i) iteratively backward from i=len(A)/2 to i=1
 - * running time is O(n) where n is the length of A
- heap data structure supports sorting method
 - HEAPSORT(A)
 - * sorts pre-heap A
 - * implementation
 - · BUILD HEAP(A)
 - · from i=A.len to i=2
 - · exchange A[i], A[1]
 - \cdot decrement heap-size
 - · call HEAPIFY(A, 1)
 - * running time $O(n \log n)$

Priority Queues (L3)

- generally useful ADT with these operations
 - INSERT, MAX, EXTRACT_MAX, INCREASE_KEY
- heap implementation like this
 - EXTRACT MAX
 - * swap first and last elements
 - * decrement length
 - * heapify on root
 - * return last element
 - INCREASE KEY
 - * assign new (larger) key
 - * while larger than parent: exchange with parent
 - INSERT
 - * append to array, then "float up" as in INCREASE_KEY

Quicksort (L4)

- another sorting routine
 - implementation of QUICKSORT(A,p,r) like this:
 - * while p < r:
 - $\cdot q = PARTITION(A,p,r)$
 - \cdot QUICKSORT(A,p,q-1)
 - $\cdot \ \ QUICKSORT(A,p,q+1)$
 - implementation of PARTITION(A,p,r)
 - * take A[r] to be the "pivot element"
 - * set left-right boundary to be 0
 - * for i = 1 to r-1:
 - · if A[i] < pivot
 - \cdot increment left-right boundary

 \cdot swap A[i] with the value at the new left-right boundary * swap A[r] with the first value after the left-right boundary

Lower bound on comparison sorting (L5)

• any sort implemented with a binary decision tree has worst-case Omega(nlog n)

Bucketsort (L6)

- suppose A contains n integers uniformly drawn from 1..M with M>n
- allocate values into n buckets, each upper bounded by M/n, 2M/n .. nM/n
- this has running time O(n)
 - basically, constant time to put each number in its bucket
 - and constant time to sort each bucket

Medians and Order statistics (L6)

- to get cth largest/smallest entry for constant c
- can use HEAPIFY(A), then EXTRACT MAX/MIN for $O(\log n)$
- but to get, e.g., median, this is O(nlog n), $somightas well just sort RANDOMIZED_SELECT(A, i) uses it$
- this runs in O(n) time

Graphs, paths and trees (L7)

- a path is a sequence of vertices of a graph, connected by edges
- it is simple iff it contains no vertex more than once
- a loop is a path with same first and last vertex
- a simple loop is a path containing at least 3 nodes such that
 - its first (=last) node occurs exactly twice
 - no other node occurs more than once
- a tree is a connected undirected graph with no simple loops
 - there is exactly one simple path from any node to any other
- a rooted tree is a tree with one vertex distinguished as its root
 - node x is ancestor of node y if the path from root to y contains x

Traversing binary trees (L7)

- modes of traversal
 - preorder: node, then left, then right
 - * lambda f(x): g(x) f(x.left) f(x.right)
 - inorder: left, then node, then right
 - * lambda f(x): f(x.left) g(x) f(x.right)
 - postorder: right, then node, then left
 - * lambda f(x): f(x.left) f(x.right) g(x)

Binary Search Trees (L7)

- a binary search tree is a binary tree such that
 - each descendant of the left child of x is no greater than x
 - each descendant of the right child of ${\bf x}$ is no less than ${\bf x}$
- $\bullet\,$ the successor of a node x is the node after x according to inorder traversal
- facts about successor:
 - succ(x) is either an ancestor or a descendant of x
 - if x has a right child, then succ(x) is the leftmost in the right subtree rooted at x
 - otherwise, if x has a successor, then this is the least ancestor of x such that x descends from the left child of x
 - the operations FIND, MIN, MAX, PRED, SUC are all O(h) for h the height
 - the expected cost of search is $O(\log(n))$ for n the number of nodes