

TEKNIK INTEGRASI

MATEMATIKA LANJUT Fakultas Teknologi Maju dan Multidisiplin

Outline

- 1. Integrasi Fungsi Trigonometri
- 2. Integral Tak Wajar
- 3. Integrasi Numerik

2. INTEGRAL TAK WAJAR

Pengantar

Tentukan luas area di bawah kurva $y = \frac{1}{x^2}$, di atas sumbu x antara x = 1 dan x = t untuk $1 < t < \infty$

Jawab:

Gambar area dimaksud

Luas area dimaksud

$$A(t) = \int_{1}^{t} \frac{1}{x^{2}} dx = -\frac{1}{x} \bigg]_{1}^{t} = 1 - \frac{1}{t}$$

Tentukan luas area di bawah kurva $y = \frac{1}{x^2}$, di atas sumbu x antara x = 1 dan x = t untuk $1 < t < \infty$

Misalkan dipilih beberapa nilai untuk *t*

Untuk t = 2Luas: $A(2) = 1 - \frac{1}{2} = \frac{1}{2}$

Untuk
$$t = 3$$

Luas:
 $A(3) = 1 - \frac{1}{3} = \frac{2}{3}$

Untuk
$$t = 5$$

Luas:
 $A(5) = 1 - \frac{1}{5} = \frac{4}{5}$

Fakta: t semakin besar maka luas A(t) semakin besar, namun selalu berlaku A(t) < 1.

Tentukan luas area di bawah kurva $y = \frac{1}{x^2}$, di atas sumbu x antara x = 1 dan x = t untuk $1 < t < \infty$

Untuk nilai t semakin besar, yaitu $t \to \infty$, diperoleh

Luas area:

$$\lim_{t \to \infty} A(t) = \lim_{t \to \infty} \left(1 - \frac{1}{t} \right) = 1$$

Jadi luas area di bawah kurva $y = \frac{1}{x^2}$, di atas sumbu x antara x = 1 dan x = t untuk $t \to \infty$ adalah

$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}} dx = 1$$

Integral Tak Wajar Tipe 1

- •
- Jika $\int_a^t f(x)dx$ ada untuk setiap $t \ge a$, maka

$$\int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx$$

Jika $\int_t^b f(x)dx$ ada untuk setiap $t \le b$, maka

$$\int_{-\infty}^{b} f(x)dx = \lim_{t \to -\infty} \int_{t}^{b} f(x)dx$$

Integral tak wajar $\int_a^{\infty} f(x)dx$ dan $\int_{-\infty}^b f(x)dx$ dikatakan:

- konvergen jika limit integralnya ada
- divergen jika limit integralnya tidak ada
- Jika $\int_a^\infty f(x)dx$ dan $\int_{-\infty}^a f(x)dx$ keduanya konvergen maka didefinisikan

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{\infty} f(x)dx$$

untuk sebarang bilangan real a

Contoh

Hitunglah $\int_{-\infty}^{0} xe^{x} dx$

Penyelesaian.

$$\int_{-\infty}^{0} xe^{x} dx = \lim_{t \to -\infty} \int_{t}^{0} xe^{x} dx$$

Dengan integrasi pasial,

$$\int_{t}^{0} xe^{x} dx = xe^{x} - e^{x} \Big]_{t}^{0} = 0 - 1 - (te^{t} - e^{t}) = e^{t} - te^{t} - 1$$

sehingga $\lim_{t \to -\infty} \int_{t}^{0} x e^{x} dx = \lim_{t \to -\infty} (e^{t} - t e^{t} - 1) = \lim_{t \to -\infty} e^{t} - \lim_{t \to -\infty} \frac{t}{e^{-t}} - 1 = 0 - 0 - 1 = -1$

Diperoleh

$$\int_{-\infty}^{0} x e^{x} \ dx = \lim_{t \to -\infty} \int_{t}^{0} x e^{x} \ dx = -1.$$

Contoh

Hitunglah $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$

Penyelesaian.

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \int_{-\infty}^{0} \frac{1}{1+x^2} dx + \int_{0}^{\infty} \frac{1}{1+x^2} dx$$

Selanjutnya

$$\int_{-\infty}^{0} \frac{1}{1+x^2} dx = \lim_{t \to \infty} \int_{0}^{t} \frac{1}{1+x^2} dx = \lim_{t \to \infty} \arctan x \Big]_{0}^{t} = \lim_{t \to \infty} \arctan t - 0 = \frac{\pi}{2}$$

$$\int_{-\infty}^{0} \frac{1}{1+x^2} dx = \lim_{t \to -\infty} \int_{t}^{0} \frac{1}{1+x^2} dx = \lim_{t \to -\infty} \arctan x \Big]_{t}^{0} = \lim_{t \to -\infty} (0 - \arctan t) = 0 - (-\frac{\pi}{2}) = \frac{\pi}{2}$$

Diperoleh

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} \ dx = \frac{\pi}{2} + \frac{\pi}{2} = \pi.$$

Integral Tak Wajar Tipe 2

Jika f kontinu pada [a,b) dan diskontinu pada b, maka

$$\int_{a}^{b} f(x)dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x)dx$$

Jika Jika f kontinu pada (a,b] dan diskontinu pad a, maka

$$\int_{a}^{b} f(x)dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x)dx$$

Integral tak wajar $\int_a^b f(x)dx$ di atas dikatakan:

- **konvergen** jika limit integralnya ada
- divergen jika limit integralnya tidak ada
- Jika f diskontinu di c untuk a < c < b dan integral $\int_a^c f(x) dx$ dan $\int_c^b f(x) dx$ keduanya konvergen maka didefinisikan

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Contoh

Hitunglah $\int_{2}^{5} \frac{1}{\sqrt{x-2}} dx$.

Penyelesaian.

Integran diskontinu di x = 2.

$$\int_{2}^{5} \frac{dx}{\sqrt{x-2}} = \lim_{t \to 2^{+}} \int_{t}^{5} \frac{dx}{\sqrt{x-2}}$$

$$= \lim_{t \to 2^{+}} 2\sqrt{x-2} \Big]_{t}^{5}$$

$$= \lim_{t \to 2^{+}} 2(\sqrt{3} - \sqrt{t-2})$$

$$= 2\sqrt{3}$$

Diperoleh:

- $\Rightarrow \int_2^5 \frac{1}{\sqrt{x-2}} dx$. konvergen
- Luas area di bawah kurva $y = \frac{1}{\sqrt{x-2}}$, di atas sumbu x pada $2 < x \le 5$ adalah $2\sqrt{3}$.

Semester Genap 2020/2021

Contoh Apakah $\int_0^{\pi/2} \sec x \, dx$ konvergen ataukah divergen?

Penyelesaian.

Karena
$$\lim_{x \to (\pi/2)^{-}} \sec x \ dx = \infty$$
 maka

$$\int_0^{\pi/2} \sec x \, dx = \lim_{t \to (\pi/2)^-} \int_0^t \sec x \, dx = \lim_{t \to (\pi/2)^-} \ln|\sec x + \tan x|\Big]_0^t$$
$$= \lim_{t \to (\pi/2)^-} \left[\ln(\sec t + \tan t) - \ln 1 \right] = \infty$$

Catatan: jika $t \to (\pi/2)^-$ maka sec $t \to \infty$ dan tan $t \to \infty$

Jadi $\int_0^{n/2} \sec x \, dx$ divergen.

Contoh

Apakah $\int_0^3 \frac{1}{x-1} dx$ konvergen ataukah divergen?

Penyelesaian.

Karena integran diskontinu di x = 1, maka

$$\int_0^3 \frac{dx}{x-1} = \int_0^1 \frac{dx}{x-1} + \int_1^3 \frac{dx}{x-1}$$

$$\int_0^1 \frac{dx}{x - 1} = \lim_{t \to 1^-} \int_0^t \frac{dx}{x - 1} = \lim_{t \to 1^-} \ln|x - 1| \Big]_0^t$$
$$= \lim_{t \to 1^-} \left(\ln|t - 1| - \ln|-1| \right)$$
$$= \lim_{t \to 1^-} \ln(1 - t) = -\infty$$

Jadi $\int_0^1 \frac{1}{x-1} dx$ divergen. Akibatnya $\int_0^3 \frac{1}{x-1} dx$ divergen.

AWAS: $\int_0^3 \frac{1}{x-1} dx = \ln|x-1| \Big|_0^3 = \ln 2 - \ln 1 = \ln 2$, tetapi ini **SALAH** (tidak memperhatikan diskontinuitas)

1. Jelaskan mengapa integral di bawah ini merupakan integral tak wajar.

(a)
$$\int_{1}^{\infty} x^4 e^{-x^4} dx$$

(a)
$$\int_{1}^{\infty} x^4 e^{-x^4} dx$$
 (b) $\int_{0}^{\pi/2} \sec x \, dx$

(c)
$$\int_0^2 \frac{x}{x^2 - 5x + 6} dx$$
 (d) $\int_{-\infty}^0 \frac{1}{x^2 + 5} dx$

(d)
$$\int_{-\infty}^{0} \frac{1}{x^2 + 5} dx$$

2. Manakah di antara integral di bawah ini merupakan integral tak wajar?

(a)
$$\int_{1}^{2} \frac{1}{2x-1} dx$$
 (b) $\int_{0}^{1} \frac{1}{2x-1} dx$

(b)
$$\int_0^1 \frac{1}{2x-1} dx$$

(c)
$$\int_{-\infty}^{\infty} \frac{\sin x}{1 + x^2} dx$$
 (d) $\int_{1}^{2} \ln(x - 1) dx$

(d)
$$\int_{1}^{2} \ln(x-1) dx$$

Selesaikan integral berikut

$$3 \int_0^1 \frac{x-1}{\sqrt{x}} dx$$

4.
$$\int_{-1}^{1} \frac{dx}{x^2 - 2x}$$

5.
$$\int_{1}^{\infty} \frac{1}{(3x+1)^2} dx$$

6.
$$\int_{-\infty}^{0} \frac{1}{2x-5} dx$$

7.
$$\int_{-\infty}^{-1} \frac{1}{\sqrt{2-w}} \, dw$$

9.
$$\int_{4}^{\infty} e^{-y/2} dy$$

11.
$$\int_{-\infty}^{\infty} \frac{x}{1+x^2} dx$$

$$13. \int_{-\infty}^{\infty} x e^{-x^2} dx$$

15.
$$\int_{2\pi}^{\infty} \sin\theta \ d\theta$$

17.
$$\int_{1}^{\infty} \frac{x+1}{x^2+2x} dx$$

19.
$$\int_0^\infty se^{-5s} \, ds$$

8.
$$\int_0^\infty \frac{x}{(x^2+2)^2} dx$$

10.
$$\int_{-\infty}^{-1} e^{-2t} dt$$

12.
$$\int_{-\infty}^{\infty} (2 - v^4) dv$$

$$14. \int_{1}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx$$

$$16. \int_{-\infty}^{\infty} \cos \pi t \, dt$$

18.
$$\int_0^\infty \frac{dz}{z^2 + 3z + 2}$$

20.
$$\int_{-\infty}^{6} re^{r/3} dr$$

$$21. \int_{1}^{\infty} \frac{\ln x}{x} dx$$

23.
$$\int_{-\infty}^{\infty} \frac{x^2}{9 + x^6} dx$$

$$25. \int_{\epsilon}^{\infty} \frac{1}{x(\ln x)^3} dx$$

27.
$$\int_0^1 \frac{3}{x^5} dx$$

29.
$$\int_{-2}^{14} \frac{dx}{\sqrt[4]{x+2}}$$

31.
$$\int_{-2}^{3} \frac{1}{x^4} dx$$

22.
$$\int_{-\infty}^{\infty} x^3 e^{-x^4} \, dx$$

24.
$$\int_0^\infty \frac{e^x}{e^{2x} + 3} \, dx$$

26.
$$\int_0^\infty \frac{x \arctan x}{(1+x^2)^2} dx$$

28.
$$\int_{2}^{3} \frac{1}{\sqrt{3-x}} dx$$

30.
$$\int_{6}^{8} \frac{4}{(x-6)^3} dx$$

32.
$$\int_0^1 \frac{dx}{\sqrt{1-x^2}}$$

33.
$$\int_0^{33} (x-1)^{-1/5} dx$$

35.
$$\int_0^3 \frac{dx}{x^2 - 6x + 5}$$

37.
$$\int_{-1}^{0} \frac{e^{1/x}}{x^3} dx$$

39.
$$\int_0^2 z^2 \ln z \, dz$$

$$34. \int_0^1 \frac{1}{4y-1} \, dy$$

36.
$$\int_{\pi/2}^{\pi} \csc x \, dx$$

38.
$$\int_0^1 \frac{e^{1/x}}{x^3} dx$$

$$\mathbf{40.} \ \int_0^1 \frac{\ln x}{\sqrt{x}} \, dx$$

