Exploring and Processing Data - Part 1

Abhishek Kumar AUTHOR @meabhishekkumar

Data Science Project Cycle

Where Data Scientists Spend Their Time?

Organize

Exploratory Data Analysis

Basic structure

Summary statistics

Distributions

Grouping

Crosstabs, Pivots

Overview (Concepts)

Import Data

Exploratory data analysis

- Basic structure
- Summary statistics
- Distributions
- Grouping
- Crosstabs
- Pivots

Overview (Tools)

Python

- NumPy
- Pandas

NumPy

Fundamental tool for scientific computing

Very efficient array operations

Work on multi-dimensional arrays and matrices

High level mathematical functions

Pandas

Built on top of NumPy

Data structure and operations on tabular data (Pandas dataframe)

Data visualization using Matplotlib

	Column - 1		Column - n
Row 1	•••	•••	
Row	***	***	
Row m			

Exploratory Data Analysis

Exploratory Data Analysis

Basic structure

Summary statistics

Distributions

Grouping

Crosstabs, Pivots

Basic Structure How many rows or observations?

How many columns or features?

Column data types

Explore head or tail

Demo

Investigating basic structure using Pandas

PassengerId

Survived

Pclass

Name

Sex

Age

◆ Passenger ID

◆ If Survived (1 - yes, 0 - no)

◆ Passenger class (1 - 1st class, 2 - 2nd class, 3 - 3rd class)

■ Name

◄ Gender

■ Age

SibSp

Parch

Ticket

Fare

Cabin

Embarked

- Number of siblings / spouses aboard
- Number of parents / children aboard
- **◄** Ticket number

◆ Passenger fare

- **◄** Cabin
- ▼ Point of embarkment (C = Cherbourg; Q = Queenstown; S = Southampton)

Demo

Selection, indexing and filtering using Pandas

Exploratory Data Analysis

Basic structure

Summary statistics

Distributions

Grouping

Crosstabs, Pivots

Summary Statistics

Numerical

- Centrality measure (mean, median)
- Dispersion measure (range, percentiles, variance , standard deviation)

Categorical

- Total count
- Unique count
- Category Counts and proportions
- Per category statistics

Centrality Measure

One number to represent entire set of values

Number central to the data

Central tendency

Mean / Average

Average behavior

Centrality Measure: Mean or Average

Mean age : sum of ages / count = 100 / 10 = 10

Problem: Affected by extreme values

Mean age : sum of ages / count = 198 / 11 = 18

Median

Middle value in the sorted list

Centrality Measure: Median

Spread / Dispersion Measure

How spread out values are from central value

Variability

Range

Difference between maximum and minimum

Spread: Range

Age range: max - min = 12 - 8 = 4

Problem: Affected by extreme values

Age range: max - min = 98 - 8 = 90

Percentiles

x percentile is y means x% of values are below y

50 percentile is 10 means 50% of values are below 10

25th, 50th, 75th

- Bucket 1: Below 25th
- Bucket 2 : 25th 50th
- Bucket 3 : 50th 75th
- Bucket 4: above 75th

Quartiles

Box-Whisker Plot

Variance

Measure of variability

How far each value in list from mean value

Small variance = less spread

High variance = large spread

Variance =
$$\frac{sum((value - mean)^2)}{count}$$

Affected by extreme values

Unit is not clear

Standard Deviation

Standard deviation = $\sqrt{variance}$ Unit is same as that of the feature
Low standard deviation = less spread
High standard deviation = large spread

Demo

Getting summary statistics for numerical features using Pandas and NumPy

Counts and Proportions

Total count: 10

Unique count : 2

Gender	Count	Proportion
M	4	4 / 10 = 0.4
F	6	6 / 10 = 0.6

Demo

Summary statistics for categorical feature using Pandas and NumPy

Summary

Import data

Basic structure

Summary statistics

