EC508: Econometrics Measures of Fit and Hypothesis Testing

Jean-Jacques Forneron

Spring, 2023

Boston University

Measures of fit for multiple regression (SW 6.4)

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \dots + \beta_k X_{k,i} + u_i, \quad i = 1, \dots, n$$

- Actual = predicted + residual: $Y_i = \hat{Y}_i + \hat{u}_i$
- SER = std. deviation of \hat{u}_i (with d.f. correction)
- RMSE = std. deviation of \hat{u}_i (without d.f. correction)
- R^2 = fraction of variance of Y explained by X
- \bar{R}^2 = "adjusted- R^2 " = R^2 with a degrees-of-freedom correction that adjusts for estimation uncertainty; $\bar{R}^2 < R^2$

SER and RMSE

• SER and RMSE are measures of the spread of the *Y*s around the regression line:

$$SER = \sqrt{\frac{1}{n-k-1} \sum_{i=1}^{n} \hat{u}_{i}^{2}}, \quad RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2}}$$

R^2 and \bar{R}^2

• The R^2 is the fraction of the variance explained – same definition as in regression with a single regressor:

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$

where

$$ESS = \sum_{i=1}^{n} (\hat{Y}_i - \hat{Y})^2$$

$$SSR = \sum_{i=1}^{n} \hat{u}_i^2$$

$$TSS = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

 The R² always increases when you add another regressor (why?) – a bit of a problem for a measure of "fit"

- The \bar{R}^2 (the "adjusted R^2 ") corrects this problem by "penalizing" you for including another regressor the \bar{R}^2 does not necessarily increase when you add another regressor.
- Adjusted-*R*²:

$$\bar{R}^2 = 1 - \frac{n-1}{n-k-1} \frac{SSR}{TSS}$$

• Note that $\bar{R}^2 < R^2$, however if n is large the two will be very close.

Measures of fit, cont'd

- Test score example:
 - (1) TEST SCORE = $698.9-2.28 \times STR$, $R^2 = .05$, SER = 18.6
 - (2) TEST SCORE = $686.0-1.10 \times STR-0.65 \times PctEL$, $R^2 = .426$, $\bar{R}^2 = .424$, SER = 14.5
- What precisely does this tell you about the fit of regression (2) compared with regression (1)?
- Why are the R^2 and the \bar{R}^2 so close in (2)?

Hypothesis Testing: Single Coefficient

- Hypothesis tests and confidence intervals for a single coefficient in multiple regression follow the same logic and recipe as for the slope coefficient in a single-regressor model.
- $(\hat{\beta}_1 \beta_1)/SE(\hat{\beta}_1)$ is approximately distributed $\mathcal{N}(0,1)$ (CLT).
- Thus hypotheses on β_1 can be tested using the usual t-statistic, and confidence intervals are constructed as $\{\hat{\beta}_1 \pm 1.96 \times SE(\hat{\beta}_1)\}.$
- So too for β_2, \ldots, β_k .

Example: The California class size data

- (1) TEST SCORE = $698.9 (10.4) 2.28(0.52) \times STR$,
- (2) TEST SCORE = 686.0 (8.7)–1.10 (0.43) \times STR–0.65 (0.031) \times PctEL
 - The coefficient on STR in (2) is the effect on TestScores of a unit change in STR, holding constant the percentage of English Learners in the district
 - The coefficient on STR falls by one-half
 - The 95% confidence interval for coefficient on STR in (2) is $\{-1.10\pm1.96\times0.43\}=(-1.95,-0.26)$
 - The t-statistic testing $\beta_{STR}=0$ is t=-1.10/0.43=-2.54, so we reject the hypothesis at the 5% significance level

Application to the California Test Score in R

```
# packages to compute standard errors
library(sandwich)
library(lmtest)
library(foreign)
data = read.dta('caschool.dta')
data$score = 0.5*(data$math_scr + data$
   read_scr)
linear_model = lm(score~str+el_pct,data=
   data)
# compute standard errors, t-statistics
coeftest(linear_model, vcov. = vcovHC)
```

Table 1: Coefficients, Standard Errors, t-statistics and p-values

	Estimate	Std. Error	t-value	Pr(> t)
(Intercept)	686.032244	8.812242	77.8499	< 2e-16 ***
str	-1.101296	0.437066	-2.5197	0.01212 *
elpct	-0.649777	0.031297	-20.7617	< 2e-16 ***

Tests of Joint Hypotheses (SW 7.2)

 Let Expn = expenditures per pupil and consider the population regression model:

$$TestScore_i = \beta_0 + \beta_1 STR_i + \beta_2 Expn_i + \beta_3 PctEL_i + u_i$$

 The null hypothesis that "school resources don't matter," and the alternative that they do, corresponds to:

$$H_0: eta_1=0 \ ext{and} \ eta_2=0$$
 $vs.H_1: \ ext{either} \ eta_1
eq 0 \ ext{or} \ eta_2
eq 0 \ ext{or} \ eta_2+ \beta_0 \ ext{or} \ ext{both}$ $TestScore_i=eta_0+eta_1STR_i+eta_2Expn_i+eta_3PctEL_i+u_i$

Tests of joint hypotheses, cont'd

- $H_0: \beta_1 = 0$ and $\beta_2 = 0$ vs. $H_1:$ either $\beta_1 \neq 0$ or $\beta_2 \neq 0$ or both
- A joint hypothesis specifies a value for two or more coefficients, that is, it imposes a restriction on two or more coefficients.
- In general, a joint hypothesis will involve q restrictions. In the example above, q=2, and the two restrictions are $\beta_1=0$ and $\beta_2=0$.
- A "common sense" idea is to reject if either of the individual t-statistics exceeds 1.96 in absolute value.
- But this "one at a time" test isn't valid: the resulting test rejects too often under the null hypothesis (more than 5%)!

Why can't we just test the coefficients one at a time?

- Because the rejection rate under the null isn't 5%.
- We'll calculate the probability of incorrectly rejecting the null using the "common sense" test based on the two individual t-statistics.
- To simplify the calculation, suppose that and are independently distributed (this isn't true in general – just in this example).
- Let t_1 and t_2 be the t-statistics:

$$t_1 = \frac{\hat{eta}_1 - 0}{SE(\hat{eta}_1)}$$
 and $t_2 = \frac{\hat{eta}_2 - 0}{SE(\hat{eta}_2)}$

- The "one at time" test is: reject $H_0: \beta_1=\beta_2=0$ if $|t_1|>1.96$ and/or $|t_2|>1.96$
- What is the probability that this "one at a time" test rejects H_0 , when H_0 is actually true? (It should be 5%.)

Suppose t_1 and t_2 are independent (for this example)

And that the t-statistics are exactly normally distributed The probability of incorrectly rejecting the null hypothesis using the "one at a time" test

$$\begin{split} &= \mathbb{P}(\{|t_1|>1.96\} \cup \{|t_2|>1.96\}) \\ &= 1 - \mathbb{P}(\{|t_1|\leq 1.96\} \cap \{|t_2|\leq 1.96\}) \\ &= 1 - \mathbb{P}(\{|t_1|\leq 1.96\}) \times \mathbb{P}(\{|t_2|\leq 1.96\}) \text{ by independence} \\ &= 1 - 0.95^2 = 0.0975 = 9.75\% > 5\%. \end{split}$$

The size of a test is the actual rejection rate under the null hypothesis.

- The size of the "common sense" test isn't 5%!
- In fact, its size depends on the correlation between t_1 and t_2 (and thus on the correlation between $\hat{\beta}_1$ and $\hat{\beta}_2$).

Two Solutions:

- 1. Use a different critical value in this procedure not 1.96 (this is the "Bonferroni" method see SW Appendix 7.1) (this method is rarely used in practice however)
- 2. Use a different test statistic designed to test both β_1 and β_2 at once: the Wald statistic (this is common practice)