

Beber e fumar

Felipe Martins & Caio Righetto

Sobre a base de dados

A base de dados utilizada é a "Smoking and Drinking Dataset";

Ela contém informações gerais sobre os organismos de indivíduos que bebem e fumam (ou não);

Os dados foram coletados a partir do serviço Nacional de Saúde Pública da Coreia do Sul.

São 24 colunas ao todo, com mais de 900.000 registros

-age

- height

- weight

-sight left

- sight_right

-hear left

-hear right

- SBP

- DBP

- BLDS

-tot_chole

- HDL chole

- LDL_chole

-triglyceride

- hemoglobin

- urine protein

- serum creatinine

- SGOT AST

- SGOT ALT

-gamma 6TP

- SMK stat type cd

- DRK YN

Referente ao status de fumante do indivíduo

Referente ao status de bebida (se bebe ou não)

slidesmania.com

Modelos usados

Objetivo

Treinar modelos para perceberem e identificarem quais as marcas mais significativas que estão naqueles que fumam ou bebem

Regressão Logistica

Para prever se a pessoa bebe ou não

Catboost Classifier

Para prever se a pessoa bebe ou não

Comparar os resultados

Determinar qual modelo se saiu melhor

Tratamento dos Dados

Regressão Logística

O modelo de Regressão Logística foi usado para classificar se uma pessoa bebe ou não;

Foi usada a biblioteca Logistic Regression do Scikit Learn;

Pontuacao obtida com X e Y de treino: 0.7153728015978292

Pontuacao obtida com X e Y de teste: 0.7143743380239068

Pontuacao obtida com Y da previsão e o Y real: 0.7143743380239068

Regressão Logística

	Feature	Importance
22	SMK_stat_type_cd	0.386025
16	hemoglobin	0.266964
0	sex	0.244508
3	weight	0.038258
13	HDL_chole	0.020269

Catboost Classifier

O catboost classifier é baseado em árvores de decisão impulsionadas por gradientes.

Durante o treinamento, são construídas consecutivas árvores de decisão, cada árvore é construída com uma perda menor do que a anterior.

Precisão do modelo: 0.74

Catboost Classifier

	Feature	Importância
1	age	22.527525
21	gamma_GTP	19.550073
0	sex	12.703390
13	HDL_chole	9.785088
22	SMK_stat_type_cd	9.500303
20	SGOT_ALT	7.680877
2	height	3.037309

A 6ama-6T é uma enzima que é muito presente no fígado, quem consome muito álcool têm níveis mais altos dela

> Um valor elevado de colesterol alto pode ser associado ao consumo regular de álcool

A ALT é é outra enzima que é muito presente no figado, principalmente em quem tem o figado gorduroso

Comparação dos resultados

Regressão Logistica

Cathoost

- Acurácia: 71%
- Features importantes menos coerentes
- Executa mais rápido

```
modelo_LR = LogisticRegression()
modelo_LR.fit(X_train,y_train)
y_pred = modelo_LR.predict(X_test)
```

- Acurácia: 74%
- Features importantes mais coerentes
- Executa mais devagar

```
from catboost import CatBoostClassifier

model = CatBoostClassifier(iterations=500

model.fit(X_train, y_train, eval_set=(X_1)

√ 30.4s
```