PRACTITIONER'S CHALLENGE

Reducing CO₂ emission in transport

MEET THE TEAM

Julia Adamczyk

Robbie Deegan

Sishi Feng

Firuza Mamedova

Chinonye Dianne Pat-Ekeji

THE WHY

CO2 emission per sector

Global warming is a menacing disaster

- Global average temperatures are up by almost **1°C** since mid-1970s
- 2010-2020 was the hottest decade in history
 - With 2020/2016 tying for **hottest** year ever
- **150,000** deaths annually from climate change
 - 6.7mil displaced in 2019

The UK is one of the major CO₂ contributors

- CO₂ in the atmosphere highest in **650,000** years
- UK is 17th out of 195 countries with 1.1% of global GHG emissions and emitting 351.5 mln tonnes of CO₂ in 2019

The UK's transport sector is its main CO2 contributor

• **33%** of total CO2 emission (2019) which is more than the energy sector

THE HOW

EV cars

Less traffic

Drivers and Risk factors of EV growth in the UK

Drivers

Cultural shift

80% said that the positive effect for the climate is the reason they want EVs (Shell study)

Government Incentives

Plug-in grant up to **£3,000**; Free parking; Tax Exempts;

Affordability

Battery is **21%** of total EV price. Its cost has decreased by **89%** in comparison to 2010.

Battery production

Risks

59% more CO2 emission from EV production, due to battery manufacturing;

Infrastructure

Low availability to **off-street** parking, thus less charging points.

Charging times and peak loads

35% of people charge at home, typically between **5pm-8pm**

CO₂ emission model

Climate Change Act 2008

Achieve Zero Net Carbon by **2050**

Constraints

Increase EV share to **43%** and EV sales to **97%** by **2030**

THE WHAT CO, model predictive tool

$$CO_2 = \beta_0 + \beta_1 * (Petrol + Diesel Cars) + \beta_2 * UK population$$

Variable Selection for the model:

Predictors	BIC	Adjusted R-squared
Total Cars + Petrol fraction	48.98	.713
Total_Cars + UK Population	53.35	.660
(Petrol and Diesel cars) + UK Population	59.39	0.571
Petrol fraction+UK_Population	77.30	0.145
All EV + UK Population	77.71	0.132

Forecasting

Total vehicles: ARIMA model/ARIMAX model

- Test the stationarity and difference itself
- Find the suitable order of lags of residuals and y
- Fit the model and make prediction

$$(1-\varphi_1L-\varphi_2L^2)\,\Delta y_{\rm t}=c+(1+\theta_1L+\theta_2L^2)\,\varepsilon_{\rm t}$$

Population: use the projection created by Office for National Statistics

Petrol + Diesel

Petrol + Diesel = total vehicles * (1-EV Fraction)

→ We can get the projection of CO2 emissions by using previously chosen linear model, it will reach 23295 in 2030(around 34.9% of 2020)

Trend for EV-Fraction

- Follows SI (Susceptible-Infective) model trend
- Time series given by:

$$f'(t) = \lambda f(t) (1 - f(t))$$

 By constraint of 43% LEV on the UK roads by 2030

$$\lambda = 0.507$$

Too optimistic: we have two more feasible scenarios

SOLUTIONS

Proposals for faster decarbonisation of the UK road network

SCENARIO 1

Social Awareness

- SI model for EV popularity
- From Google trend scores:

$$\lambda = 0.247$$

- Current 2030 scenario for EVs: 8.7%
- CO2 reduction is **6.4%**
- Feasible: higher % with Social Media
 Influence

SCENARIO 2

Private Sector

Enforce 50/50 work from home scheme for largest employee companies

- 75% of workers in the UK travelled to work in 2017
- July 2020 :
 - Similar scenario to 50/50 scheme
 - 51.25% on average travelled to work
 - **-16.5%** less car traffic
 - -4.84% less CO2 emission in transport

Feasibility: Very feasible

SCENARIO 3

Government control - Norway emulation

- Norway is the world's EV leader with 74.7% EV market penetration in 2020 from 0.1% in 2009
 - 0% VAT on leased EVs
 - Free parking for EV drivers
 - o **50%** decreased company road tax
- UK could have 38% of EV market penetration by 2030 if Norway's incentives are adopted in isolation
 - Within 5% of UK's intended goal of 43% EVby 2030
 - o **3.3%** within the UK's 2030 goal of CO2 emissions
- This is feasible because there is an existing roadmap from Norway

Fig 1: EV market share %age with Norway Incentives

free acess to road ferries	50% discount on parking fees
free acess to road tolls	40% decreased company car tax on EVS
0% VAT on leased Evs	

OTHER SOLUTIONS

Al methods to reduce CO₂ of the UK's current fleet of LCVs and HGVs

- Fuel Consumption = Payload x
 Truck Speed x Total Resistance
- 9% fuel consumption reduction

Robots for efficient pre-sorting for LCV and HGVs at their end of life.

- Estimated that around 1.6 2 million end of life vehicles (ELVs) are arising in the UK each year
- The robot ELV recycling system will sort at98% purity

THANK YOU!

ANY QUESTIONS?

