

Facultad de Ciencias Exactas y Naturales y Agrimensura Universidad Nacional del Nordeste

QUÍMICA GENERAL

Carreras: Licenciatura en Ciencias Químicas, Profesorado en Ciencias Químicas y del Ambiente, Bioquímica

Unidad XI: Ácidos y Bases

Teoría de Arrhenius. Teoría de Bronsted-Lowry. Pares ácido-base conjugados. Reacciones protolíticas. Anfoterismo. Autoprotólisis. Equilibrio ácido-base. Autoionización y producto iónico del agua, pH y pOH. Escala de pH. Hidrólisis. Constante de hidrólisis. Teoría ácido-base de Lewis.

Características

Ácidos:

- Tienen sabor agrio.
- Son corrosivos para la piel.
- Enrojecen ciertos colorantes vegetales.
- Disuelven sustancias
- Atacan a los metales desprendiendo H₂.
- Pierden sus propiedades al reaccionar con bases.

Bases:

- Tiene sabor amargo.
- Suaves al tacto pero corrosivos con la piel.
- Dan color azul a ciertos colorantes vegetales.
- Precipitan sustancias disueltas por ácidos.
- Disuelven grasas.
- Pierden sus propiedades al reaccionar con ácidos.

Definición Acido-base de Arrhenius

Ácido: Es toda sustancia que en disolución acuosa se disocia cediendo iones H⁺.

$$HCI(ac) \rightarrow CI^{-}(ac) + H^{+}(ac)$$

Base: Es toda sustancia que en disolución acuosa se disocia cediendo iones OH.

Reacción de Neutralización — Neutraliza las propiedades típicas de los ácidos y de las bases.

$$HCI(ac) + NaOH(ac) \rightarrow NaCI(ac) + H2O(\ell)$$

La fuerza impulsora de una reacción ácidobase de Arrhenius es la combinación de los iones H⁺ y OH⁻.

Limitaciones

• Los ácidos cuando se disocian en agua dan H⁺, pero los H⁺ no existen como tal en solución acuosa.

- Solamente analiza el carácter acido-base de las sustancias cuando están disueltas en agua.
- No analiza el carácter básico de aquellas sustancias que no poseen iones OH en su molécula (Ejemplo: NH₃ y Na₂CO₃).

 $HCI(g) + NH_3(g) \rightarrow NH_4CI(s)$

Definición Ácido-Base de Lewis

Ácido: Es toda especie química (molécula o ión) que acepta un par electrónico de otra sustancia que actúa como base. Ejemplos: H+, BH₃, BF₃, BCl₃, AlCl₃, SnCl₄, Co³⁺,

Base: Es toda especie química (molécula o ión) capaz de ceder un par electrónico a otra sustancia que actúa como ácido. Ejemplos: OH⁻, NH₃, CO, Cl⁻,

$$BF_3 + NH_3 \rightarrow F_3B-NH_3$$

 $AICI_3 + CI^- \rightarrow AICI_4^-$

Una reacción acido-base de Lewis implica la compartición de uno o mas pares electrónicos de la base con el ácido.

Mapas de Potencial Electrostático Molecular

Rojo: indica concentración de carga electrónica Azul: indica regiones con deficiencia electrónica

Interacciones Ácido-base de Lewis FCI··NH₃ Enlace de halógeno Duarte, DJR; Peruchena, NM Interacciones Ácido-base de Lewis H₂Be··NH₃ Enlace de berilio K. Eskandari J Mol Model 2012, 18:3481–3487

J Mol Model 2013, 19:2035-2041

Definición Acido-Base de Brönsted-Lowry

Ácido: es toda especie química (molécula o ión) capaz de **ceder un protón (H**⁺**)**. Ejemplos: HNO₃, H₂S, HCl, H₂SO₄,

Base: es toda especie química (molécula o ión) capaz de aceptar un protón (H+). Ejemplos: OH⁻, H₂O, HCO₃⁻,

Una reacción ácido-base de B-L implica la transferencia de un H+ del ácido a la base

Ejemplos

$$HCI(ac) + H_2O(l) \Rightarrow CI^{-}(ac) + H_3O^{+}(ac)$$

 $acido_1$ base₂ base₄ $acido_2$

Pares conjugados: HCI/CI y H₂O/H₃O+

$$NH_3(ac) + H_2O(\ell) \leftrightarrows NH_4^+(ac) + OH^-(ac)$$

base₂ $\acute{a}cido_1$ $\acute{a}cido_2$ base₄

Pares conjugados: H₂O/OH⁻ y NH₃/NH₄⁺

Ejercicios

Complete las siguientes reacciones protolíticas e indique los pares conjugados.

a) HBr +
$$H_2O \implies ___ + ___$$

b)
$$HNO_3 + NH_3 \iff ___ + ___$$

c)
$$HClO_4 + H_2O \iff \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

d)
$$NH_3 + H_2O \implies$$
 ____ + ____

Anfoterismo

Una especie química es **anfótera** (o anfiprótrica) cuando es capaz de actuar como **ácido** y como **base**.

$$HF(g) + H_2O(\ell) \leftrightarrows F^-(ac) + H_3O^+(ac) \qquad NH_3(ac) + H_2O(\ell) \leftrightarrows NH_4^+(ac) + OH^-(ac)$$
base $acido$

El hecho de que el H₂O actúe como ácido o como base depende de la otra especie presente.

Ejercicio

Escriba las reacciones protolíticas e indique los pares conjugados, cuando la especie HCO_3 (ac) se encuentra en a) HCI(ac) y b) $NH_3(ac)$.

Autoprotólisis

Es la **transferencia de un H**⁺ entre dos **moléculas iguales**. Para que haya autoprotólisis es condición necesaria que la molécula sea anfiprótica.

Una pequeña fracción de moléculas

de agua está ionizada $H_2O(\ell) + H_2O(\ell) \iff H_3O^+(ac) + OH^-(ac)$

$$NH_3(\ell) + NH_3(\ell) \leftrightarrows NH_4^+ + NH_2^-$$

$$\mathsf{HF}(\ell) + \mathsf{HF}(\ell) \leftrightarrows \mathsf{F}^{\scriptscriptstyle \mathsf{T}} + \mathsf{H}_2\mathsf{F}^{\scriptscriptstyle \mathsf{+}}$$

Producto Iónico del Agua

$$K = \frac{[OH^-].[H^+]}{[H_2O]}$$
 $[H_2O] = cte$ \Longrightarrow $K.[H_2O] = [OH^-].[H^+]$

$$K_{\rm W} = 1.10^{-14} \left(\frac{\rm mol}{\rm l}\right)^2$$
 En el agua pura $[{\rm H}^+] = [{\rm OH}^-] = 1.10^{-7} \frac{\rm mol}{\rm l}$ a 25 °C y 1 atm

$$\mathbf{K}_{\mathbf{W}} = [\mathbf{O}\mathbf{H}^{-}].[\mathbf{H}^{+}]$$

Expresión matemática para el Producto Iónico del Agua.

$$\mathsf{K}_{w}\text{=}\mathsf{cte} \overset{\uparrow}{\longleftarrow} [\mathsf{H}^{+}] \Rightarrow [\mathsf{OH}^{-}] \downarrow \mathsf{para\ mantener\ } \mathsf{K}_{w}\text{=}\mathsf{cte}$$

$$\uparrow [\mathsf{OH}^{-}] \Rightarrow [\mathsf{H}^{+}] \downarrow \mathsf{para\ mantener\ } \mathsf{K}_{w}\text{=}\mathsf{cte}$$

 $[H^{+}] = [OH^{-}]$ Disolución

acuosa neutra

 $pH = -log[H^+] =$ pOH= -log [OH]

 $H_2O \leftrightarrows H^+ + OH^ [H^{+}] > [OH^{-}]$ Disolución

acuosa ácida

 $HCI \rightarrow H^{+}_{(ac)} + CI^{-}_{(ac)}$ $KOH \rightarrow K^{+}_{(ac)} + OH^{-}_{(ac)}$ $H_2O \leftrightarrows H^+ + OH^ [H^+] < [OH^-]$ Disolución acuosa básica

Medida del grado de acidez o basicidad de una solución acuosa.

Relación entre pH y pOH $H_2O = OH^- + H^+$ [H⁺].[OH⁻]= 10^{-14} aplico log $\log \{ [H^+] \cdot [OH^-] \} = \log [10^{-14}] \Longrightarrow \log [H^+] + \log [OH^-] = -14 \times (-1)$ $-\log [H^+] + \{-\log[OH^-]\} = 14 \implies$ pH + pOH = 14Escala de pH 10-1 10-2 10-3 10-4 10-5 10-6 10-10 10-11 10-7 10-8 10-9 pΗ 14 Básico o Alcalino Ácido **Neutro** pH < 7pH = 7pH > 7 $[H^{+}] > [OH^{-}]$ $[H^+] = [OH^-]$ [H+] < [OH-]

Ejercicios

- 1.- Calcule el pH del agua pura.
- 2.- Calcule el pH de una disolución acuosa que tiene una $[H^+]=7,3.10^{-4}$ mol/ ℓ .
- 3.- La concentración de iones OH de una muestra sanguinea es 2,5.10⁻⁷ M ¿Cual es el pH de la sangre?
- 4.- En cierta solución amoniacal para limpieza doméstica, la concentración de iones [OH] es 0.0025 M ¿Cual es el pH de la solución?
- 5.- Determine la [H+] de una disolución acuosa que tiene un pH = 3,62.

Electrolitos fuertes y débiles

Electrolitos fuertes: Están totalmente disociados. Ejemplos:

 $HCI (ac) \rightarrow CI^{-}(ac) + H^{+}(ac)$ Ka > 1.10²

NaOH(ac) \rightarrow Na⁺(ac) + OH⁻(ac) **Kb** > **1.10**²

Electrolitos débiles: Están disociados parcialmente. Ejemplos:

 $HCIO(ac) \leftrightarrows CIO^{-}(ac) + H^{+}(ac)$ Ka = 3.10⁻⁸

 $NH_3(ac) + H_2O \Rightarrow NH_4^+(ac) + OH^-(ac)$ **Kb** = 1,76.10⁻⁵

Ejemplo: Justifica porqué el ión HCO₃ (especie anfiprótica) actúa como ácido frente al NaOH y como base frente al HCl.

- El NaOH proporciona OH⁻ a la disolución:
 - $NaOH(ac) \rightarrow Na^{+}(ac) + OH^{-}(ac)$
- por lo que $HCO_3^-(ac) + OH^-(ac) \leftrightarrows CO_3^{2-}(ac) + H_2O(\ell)$
- es decir, el ión HCO₃ actúa como ácido.
- El HCl proporciona H+ a la disolución:
- $HCl(ac) \rightarrow H^+(ac) + Cl^-(ac)$
- por lo que $HCO_3^-(ac) + H^+(ac) \leftrightarrows H_2CO_3(ac) (CO_2 + H_2O)$
- es decir, el ión HCO₃ actúa como base.

19

Fuerza de Ácidos y Bases

El valor de la constante de equilibrio Ka indica la tendencia que tiene el ácido a ceder un H⁺. En cambio Kb indica la facilidad o no que tiene una base para aceptar un H⁺.

$$HA + H_2O = A^- + H_3O^+ K_a = \frac{[A^-].[H_3O^+]}{[HA]}$$

:B +
$$H_2O = HB^+ + OH^ K_b = \frac{[HB^+].[OH^-]}{[B]}$$

Referencia

Ka ≥ 10² Ácido Fuerte Ka ≤ 10⁻² Ácido Débil Kb ≥ 10² Base Fuerte Kb ≤ 10⁻² Base Débil

Ácidos polipróticos y bases polipróticas

Ácidos polipróticos (H₂S, H₂CO₃, H₂SO₄, H₂SO₃)

Tripróticos (H₃PO₄, H₃AsO₄)

Ceden mas de un protón (por etapas)

Ejemplo: Ácido sulfuroso

$$H_2S + H_2O \implies HS^- + H_3O^+ Ka_1 = 9,5.10^{-8}$$

$$HS^{-} + H_{2}O \implies S^{2-} + H_{3}O^{+}$$
 $Ka_{2}=1.10^{-14}$

Bases polipróticas — Aceptan mas de un protón (por etapas)

Ejemplo: Hidracina N₂H₄

$$H_2N-NH_2 + H_2O \implies {}^+(H_3N)-NH_2 + OH^-$$
 Kb₁=9.10⁻⁷

$$^{+}(H_{3}N)-NH_{2} + H_{2}O \implies ^{+}(H_{3}N)-(NH_{3})^{+} + OH^{-}$$
 Kb₂=9.10⁻¹⁶

Ejercicio. Aplique el Método del Cálculo y haga las estructuras de Lewis de electrón-punto y de guiones, de los oxoácidos: H₃PO₂, H₃PO₃ y H₃PO₄.

Constantes de Disociación de Ácidos a 25º C

NOMBRE	FÓRMULA	Ka ₁	Ka ₂	Ka ₃
Acético	HC ₂ H ₃ O ₂	1,8.10 ⁻⁵		
Arsénico	H ₃ AsO ₄	5,6.10 ⁻³	1.10 ⁻⁷	3.10 ⁻¹²
Bórico	H ₃ BO ₃	5,8.10 ⁻¹⁰		
Carbónico	H ₂ CO ₃	4,3.10 ⁻⁷	5,6.10 ⁻¹¹	
Cianhídrico	HCN	4,9.10-10		
Cloroso	HCIO ₂	1,1.10-2		
Fluorhídrico	HF	6,8.10-4		
Fosfórico	H ₃ PO ₄	7,5.10 ⁻³	6,2.10 ⁻⁸	4,2.10 ⁻¹³
Hipobromoso	HBrO	2,5.10 ⁻⁹		
Hipocloroso	HCIO	3.10-8		
Hipoyodoso	HIO	2,3.10-11		
Nitroso	HNO ₂	4,5.10-4		
Sulfhídrico	H ₂ S	9,5.10 ⁻⁸	1.10 ⁻¹⁴	
Sulfúrico	H ₂ SO ₄	Ácido Fuerte	1,2.10-2	
Sulfuroso	H ₂ SO ₃	1,7.10 ⁻²	6,4.10 ⁻⁸	

Ácidos Fuertes; Ka ≥ 1.10²: HCl, HBr, Hl, HNO₃, HClO₄,

Constantes de Disociación de Bases a 25º C

NOMBRE	FÓRMULA	Kb ₁	Kb ₂
Amoníaco	NH ₃	1,76.10 ⁻⁵	
Anilina	C ₆ H ₅ NH ₂	3,83.10 ⁻¹⁰	
Metilamina	CH ₃ NH ₂	4,40.10-4	
Etilamina	C ₂ H ₅ NH ₂	4,71.10-4	
Hidracina	N_2H_4	9.10 ⁻⁷	9.10-16

Bases Fuertes; Kb ≥ 1.10²: LiOH, NaOH, KOH, Ca(OH)₂, Sr(OH)₂, Ba(OH)₂

Deducción de Kh alcalina

Equilibrio de disociación de un ácido:

$$HA + H_2O \leftrightarrows A^- + H_3O^+$$

 Reacción de la base conjugada con el agua (hidrólisis):

$$A^- + H_2O \Rightarrow HA + OH^-$$

Sumando estas ecuaciones y aplicando propiedades de las reacciones de equilibrio, resulta:

Ka.Kh =
$$\frac{[A^-] \cdot [H_3O^+] \cdot [HA] \cdot [OH^-]}{[HA] \cdot [A^-]}$$
 = Kw

• Kw=Ka.Kh ⇒ Kh=Kw/Ka

25

Deducción de Kh ácida

Equilibrio de disociación de una base:

$$:B + H_2O \leftrightarrows HB^+ + OH^-$$

 Reacción del ácido conjugado con el agua (hidrólisis):

$$HB^+ + H_2O \Rightarrow :B + H_3O^+$$

Sumando estas ecuaciones y aplicando propiedades de las reacciones de equilibrio, resulta:

Kb.Kh =
$$\frac{[HB^+] \cdot [OH^-] \cdot [:B] \cdot [H_3O^+]}{[:B] \cdot [HB^+]} = Kw$$

Kw=Kb.Kh ⇒ Kh=Kw/Kb

Consecuencias de las relaciones entre Ka, Kb y Kh

En la práctica, estas relaciones (Ka.Kh=Kw y Kb.Kh=Kw) significan:

- Si un ácido es fuerte su base conjugada es débil y viceversa.
- Si un ácido es débil su base conjugada es fuerte y viceversa.
- A la constante del ácido o base conjugada en la reacción con el agua se le suele llamar constante de hidrólisis (Kh).

27

Hidrólisis de sales

Es la reacción de equilibrio que se produce cuando un catión o un anión (o ambos) provenientes de una sal reaccionan con el agua.

- Sólo es apreciable cuando estos iones proceden de una base o un ácido débil:
 - Hidrólisis ácida (de un catión): La solución resultante es ácida.

$$NH_4^+ + H_2O \leftrightarrows NH_3 + H_3O^+$$

Hidrólisis básica (de un anión): La solución resultante es básica.

$$CIO^- + H_2O \leftrightarrows HCIO + OH^-$$

Tipos de hidrólisis.

Según procedan el catión y el anión de un ácido o una base fuerte o débil, las sales se clasifican en:

- > Sales procedentes de base fuerte y ácido fuerte.
 - Ejemplo: NaCl
- > Sales procedentes de base fuerte y ácido débil.
 - Ejemplo: NaCN
- > Sales procedentes de base débil y ácido fuerte.
 - Ejemplo: NH₄Cl
- > Sales procedentes de base débil y ácido débil.
 - Ejemplo: NH₄CN

29

Sales procedentes de base fuerte y ácido fuerte

Ejemplo: NaCl

NO SE PRODUCE HIDRÓLISIS ya que tanto el Na+ como el Cl⁻ (base muy débil) apenas reaccionan con agua. Es decir los equilibrios:

- Na⁺ + 2 H₂O \rightleftharpoons NaOH + H₃O⁺
- $Cl^- + H_2O \implies HCl + OH^-$

están muy desplazado hacia la izquierda.

Sales procedentes de base fuerte y ácido débil

Ejemplo: NaClO

SE PRODUCE HIDRÓLISIS BÁSICA ya que el Na+ prácticamente no reacciona con el agua, pero el CIO es una base fuerte y si reacciona con ésta de forma significativa:

$$CIO^- + H_2O \leftrightarrows HCIO + OH^-$$

lo que provoca que el pH > 7 (dis. básica).

31

Sales procedentes de base débil y ácido fuerte

Ejemplo: NH₄Cl

SE PRODUCE HIDRÓLISIS ÁCIDA ya que el NH₄⁺ (ácido relativamente fuerte) reacciona con agua mientras que el Cl⁻ (base débil) no lo hace de forma significativa:

$$NH_4^+ + H_2O \leftrightarrows NH_3 + H_3O^+$$

lo que provoca que el pH < 7 (dis. ácida)

Sales procedentes de base débil y ácido débil

Ejemplo: NH₄CN

En este caso tanto el catión NH₄+ (ácido fuerte) como el anión CN⁻ (base fuerte) se hidrolizan y LA DISOLUCIÓN SERÁ ÁCIDA O BÁSICA SEGÚN QUÉ ION SE HIDROLICE EN MAYOR PROPORCIÓN.

Analizamos las constantes de hidrólisis.

$$Kh(CN^{-}) = 2,5.10^{-5}$$

 $Kh(NH_4^{+}) = 5,7.10^{-10}$

 $Kh(CN^-) > Kh(NH_4^+) \Rightarrow se hidroliza el CN^- y la disolución resultante es básica$

Ejemplo: Sabiendo que Ka(HCN)=4,0.10⁻¹⁰, calcular el valor de Kh de una disolución acuosa de NaCN. ¿La solución resultante es ácida o básica?

La reacción de hidrólisis será:

$$CN^- + H_2O \leftrightarrows HCN + OH^-$$

La solución resultante será básica, porque en la reacción de hidrólisis se producen OH

Kh(CN⁻) =
$$\frac{[HCN] \cdot [OH^{-}]}{[CN^{-}]} = \frac{Kw}{Ka} = \frac{K_W}{4,0.10^{-10}}$$

Kh(CN⁻) =
$$\frac{1,0.10^{-14}}{4,0.10^{-10}}$$
 = 2,5.10⁻⁵

Ejercicios

1.-El HNO₂ tiene un Ka=4,5.10⁻⁴. Se disuelve la sal NaNO₂ en agua. a) Escriba la reacción de disociación de la sal acuosa. b) Escriba la reacción de hidrólisis y calcule el valor de Kh. c) La disolución resultante es ¿alcalina o ácida?. Justifique la respuesta.

2.-El NH_3 tiene un $Kb=1,76.10^{-5}$ y el HCl un Ka >> 1. Se disuelve la sal NH_4 Cl en agua. a) Escriba la reacción de disociación de la sal acuosa. b) Escriba la reacción de hidrólisis y calcule el valor de Kh. c) La disolución resultante es ¿alcalina o ácida?. Justifique la respuesta.

3.-El $\rm H_2CO_3$ tiene un $\rm Ka_1$ =4,3.10⁻⁷. Se disuelve la sal NaHCO₃ en agua. a) Escriba la reacción de disociación de la sal acuosa. b) Escriba la reacción de hidrólisis y calcule el valor de Kh. c) La disolución resultante es ¿alcalina o ácida?. Justifique la respuesta.

Otra forma de Resolución del ejercicio_1

Consideremos la disolución del NaNO₂ en agua

$$NaNO_2 \rightarrow Na^+$$
 (ac) + NO_2^- (ac) **Disociación de la sal acuosa**

Base conjugada fuerte (proviene de un ácido débil [ka(HNO₂)=4,5.10⁻⁴). Por lo tanto reacciona con el agua.

$$NO_2^-$$
 (ac) + $H_2O(\ell) \leftrightarrows HNO_2$ (ac) + OH^- (ac) Kh **Reacción de hidrólisis**

$$HNO_2$$
 (ac) + H_2O (ℓ) \leftrightarrows NO_2^- (ac) + H_3O^+ (ac) Ka Reacción de disoc. del ácido

$$H_2O(\ell) + H_2O(\ell) \leftrightarrows H_3O^+(ac) + OH^-(ac)$$
 Kw Producto iónico del agua.

$$Kw = Kh.Ka \Rightarrow Kh = \frac{Kw}{Ka} \xrightarrow{\text{reemplazando}} Kh = \frac{1.10^{-14}}{4.5.10^{-4}} = 2,22.10^{-11}$$

En la Reacción de hidrólisis se producen iones OH⁻, razón por la cual la solución resultante es básica.

Otra forma de Resolución del ejercicio_2

Consideremos la disolución de la sal NH₄Cl en agua

Es un ácido conjugado fuerte, proviene de una base débil [Kb(NH₃)=1,76.10⁻⁵]. Por lo tanto reacciona con el agua.

 $NH_4CI \rightarrow NH_4^+ (ac) + CI^- (ac)$

Disociación de la sal acuosa

Base conjugada débil (proviene de un ácido fuerte $[ka(HCl) >> 10^2$. Po lo tanto no reacciona con el agua (solo se hidrata).

Kh

Kh

Kw

$$NH_4^+ (ac) + H_2O (\ell) \Rightarrow NH_3 (ac) + H_3O^+ (ac)$$

Reacción de hidrólisis

$$NH_3$$
 (ac) + H_2O (ℓ) $\leftrightarrows NH_4^+$ (ac) + OH^- (ac)

Reacción de disoc. de la base

$$H_2O(\ell) + H_2O(\ell) \leftrightarrows H_3O^+(ac) + OH^-(ac)$$

Producto iónico del agua.

$$Kw = Kh.Kb \Rightarrow Kh = \frac{Kw}{Kb} \xrightarrow{\text{reemplazando}} Kh = \frac{1.10^{-14}}{1,76.10^{-5}} = 5,68.10^{-10}$$

En la Reacción de hidrólisis se producen iones H₃O+, razón por la cual la solución resultante es ácida.

37

Bibliografía:

- Whitten, K., Davis, R., Peck, M. Química General. McGraw-Hill/Interamericana de España S.A.U. 1998
- Chang, R. "Química". McGraw-Hill Interamericana de México, S.A. de C. V. México. 2006.
- Atkins, P. y Jones, L. "Principios de Química. Los caminos del descubrimiento". Editorial Panamericana. 2006.
- Atkins, P. y Jones, L. "Química. Moléculas. Materia. Cambio".
 Ediciones Omega S.A. Barcelona. España. 1998
- Brown, T., LeMay, H., Bursten, B. "Química la Ciencia Central". Prentice Hall Hispanoamericana S.A. México. 1998.
- Burns. "Fundamentos de Química". Prentice Hall. 1996.