

Controle do loTDoc - documentação geral do projeto

Histórico de revisões

Data	Autor	Versão	Resumo da atividade
17/10/2022	Gustavo Oliveira	1.1	Criação do documento
19/10/2022	Gustavo Oliveira	1.2	Atualização da Seção Users Stories
20/10/2022	Luiz Alencar Henrique Lemos Antônio Ribeiro Felipe Campos Gustavo Oliveira	1.2.1	Adição do diagrama da solução e a tabela das tecnologias a serem utilizadas. Adição do Planejamento Geral da Solução
21/10/2022	Gustavo Oliveira	1.2.2	Revisão das seções: 1.3 e 1.4
04/11/2022	Gabriel Carneiro	2.0	Arquitetura da solução 2. Situações de uso.

Sumário

1. Definições Gerais	3
1.1. Parceiro de Negócios	3
1.2. Definição do Problema e Objetivos (sprint 1)	3
1.2.1. Problema	3
1.2.2. Objetivos	3
1.3. Análise de Negócio	3
1.3.1. Contexto da indústria	3
1.3.2. Análise SWOT	6
1.3.3. Planejamento Geral da Solução	6
1.3.4. Value Proposition Canvas	8
1.3.5. Matriz de Riscos	9
1.4. Análise de Experiência do Usuário 1.4.1. Personas	10
1.4.2. Jornadas do Usuário e/ou Storyboard	12
1.4.3. User Stories	12
1.4.4. Protótipo de interface com o usuário	13
(sprint 2)	13
2. Arquitetura da solução	14
2.1. Arquitetura versão 1	14
2.2. Arquitetura versão 2	16
2.3. Arquitetura versão 3 (sprint 3)	18
3. Situações de uso	19
3.1. Entradas e Saídas por Bloco	19
3.2. Interações	20
Anexos	21

1. Definições Gerais

1.1. Parceiro de Negócios

O IPT (Instituto de Pesquisas Tecnológicas) tem cerca de 20 mil equipamentos, totalizando R\$187 milhões, com 4000 equipamentos que necessitam de monitoramento, devido sua rotatividade dentro do campus, e mesmo fora dele, em pesquisas externas.

1.2. Definição do Problema e Objetivos (sprint 1)

1.2.1. Problema

Pelo fato do IPT ser uma instituição pública, ela é submetida a diversas auditorias, é necessário que o auditor veja o equipamento in loco. Encontrar esses equipamentos dentro de um campus de 217.843,35 m², muitas vezes se torna uma tarefa difícil, por isso o IPT necessita de uma solução que localize estes equipamentos de maneira fácil e eficaz.

1.2.2. Objetivos

Para solucionar esse problema, planejamos a criação de um equipamento que informa a localização da máquina a ser procurada dentro da rede do campus. Estas informações são dispostas através de uma plataforma que o usuário poderá utilizar para procurar por equipamentos e encontrá-los, além de ser notificado caso alguma máquina se desconecte ou saia do campus.

1.3. Análise de Negócio

1.3.1. Contexto da indústria

5 FORÇAS DE PORTER

- 1. Ameaça de produtos e serviços substitutos:
 - Alta. Visto que os principais concorrentes possuem produtos consolidados no mercado.
- 2. Poder de barganha dos fornecedores
 - Baixo. Sendo o ESP32 um hardware de fácil acesso no mercado, o fornecedor não possui um alto poder de barganha.
- 3. Poder de barganha dos compradores

- Baixo. Como nosso produto só pode ser usado com o nosso software, uma vez instalado, o poder de barganha do comprador é baixo, visto que precisaria trocar toda infraestrutura por de um outro concorrente.

4. Ameaça de novos entrantes

- Baixa. Uma vez que o desenvolvimento de hardware é mais complexo, seu mercado é composto por poucas empresas já consolidadas, o que faz com que a entrada seja difícil.

5. Rivalidade de concorrentes

- Alta. Sendo os produtos similares, a rivalidade é alta

PRINCIPAIS PLAYERS

- Apple
- Samsung
- Xiaomi
- Tile
- Chipolo

MODELO DE NEGÓCIO

Como?

- Parcerias Principais

- Inteli Blockchain (em análise).

- Atividades Principais

 Venda do rastreador e fornecimento do software necessário para localizar os equipamentos.

Recursos Principais

- ESP32, Arduino.cc, Figma, C/C++, HTML, CSS, JavaScript.

O que?

Proposta de Valor

- Trazer para o usuário a experiência de nunca mais ter suas coisas perdidas.

Para quem?

- Relacionamento com os clientes

- Suporte após a implementação do hardware

- Segmento de Clientes

Qualquer pessoa que não quer mais perder suas coisas.

- Canais

- Instagram, whatsapp, ads.

Quanto?

- Estrutura de Custos

- Custo de produção do Hardware; Custo para manter o serviço no ar.

- Receitas

- Venda e instalação do hardware; Mensalidade pelo software.

TENDÊNCIAS

O mercado de tracking tem ganhado espaço entre as prioridades das empresas, devido a possibilidade de, a partir dessa tecnologia, monitorar seus produtos com mais facilidade, o que garante o aumento do controle do processo, eficiência e segurança. Além de grandes empresas, diversas startups têm desbravado esse nicho, o que demonstra a potencial força deste negócio. Recente tendências tem sido relacionada a integração desse tracking com sistemas IOT, a fim de coletar dados importantes para empresa, tais como: gasto o de gasolina por um veículo que transporta mercadorias, controle da temperatura dessas mercadorias, monitoramento da parte interna do transporte, para saber se há possíveis falhas e assim evitar acidentes ou prejuízos. Como visto, a maioria dos exemplos são relacionados ao transporte de mercadorias, uma vez que esse mercado surgiu na necessidade de evitar furtos de mercadorias. Finalmente, esse mercado ganhou uma área de atuação enorme após a pandemia, devido ao aumento de e-commerce e a carência por um sistema de logística vasto e estruturado.

1.3.2. Análise SWOT

Análise-SWOT

1.3.3. Planejamento Geral da Solução

a) quais os objetivos da solução:

Localizar e, possivelmente, monitorar os equipamentos dentro do campus do IPT, avisando se ele está também fora do campus.

b) quais os dados disponíveis (fonte e conteúdo - exemplo: dados da área de Compras da empresa descrevendo seus fornecedores)

Temos como dados disponíveis o número de prédios (63) e o número de dispositivos pilotos que irão receber os localizadores (4.000). Sua área total corresponde a um total de 217.843.65m² e sua área construída é 106.459.29m²

Cada sala possui um perímetro distinto podendo ser desde de salas pequenas a andares inteiros. Por isso, especificar o número exato de salas fica quase impossível visto que há 63 prédios dentro da área do IPT. Cada uma das salas podem possuir diversos equipamentos, desde pequenos itens a grandes maquinários.

As salas representam laboratórios que possuem desde divisórias simples a pilares. Há possibilidade de alguns equipamentos emitem frequências que impeçam o funcionamento correto dos localizadores.

c) qual a solução proposta (visão de negócios)

A solução proposta é um um dispositivo chamado IPTag que será acoplado aos equipamentos que desejam ser rastreados. Além disso, serão postos dispositivos sensoriais nas entradas das salas. Deverão também registrar todos os itens no sistema. Após isto, a solução está funcionando, só abrir a aplicação ou site e buscar qual item deseja. Apenas aqueles dispositivos que são móveis necessitam de bateria. O resto estará conectado à própria fiação do IPT. Finalmente, o sistema será informado se o dispositivo saiu da rede, o que permitirá saber se o equipamento foi a campo ou não.

d) como a solução proposta pretende ser utilizada

A IPTag (localizador) será implantado em cada equipamento trazendo uma localização real do objeto . Desta maneira, podemos ter o controle do equipamento, dizendo em qual sala ele está. Um outro uso do dispositivo é a possibilidade de ver se ele está em pesquisa de campos. Caso o objeto passe pelo sensor e perca acesso a internet, o BackEnd informará que o equipamento saiu do domínio do IPT.

Para ter acesso a localização do IPTag (localizador), o equipamento terá que sair da sala passando pela porta e um sensor que estará acoplado na porta, irá captar o id do IPTag (localizador) e mandará uma requisição para o BackEnd.

e) quais os benefícios trazidos pela solução proposta

Com a solução proposta será possível ter a certeza da localização do equipamento em qualquer sala do IPT, uma vez que o sinal será emitido diversas vezes ao dia, revelando a movimentação do equipamento pelo campus. Além disso, o IPTag poderá emitir um som constante até que seja desativado, para facilitar a procura pelo item dentro da sala.

f) qual será o critério de sucesso e qual medida será utilizada para o avaliar

Os critérios serão proximidade do lugar indicado pelo sistema e tempo de resposta.

1.3.4. Value Proposition Canvas

Value Proposition Canvas

1.3.5. Matriz de Riscos

Matriz de Risco

1.4. Análise de Experiência do Usuário1.4.1. Personas

Vívian Pacheco

Age: 35

Occupation: Auditora da Secretaria da Fazenda de São Paulo Location: São Paulo, SP

Education: Formado em Administração Status: Solteira

Bi

Vívian Pacheco, nascida e residente de São Paulo capital, atualmente é solteira. Adora se exercitar e aos finais de semanas costuma ir a festivais de cinema nacionai. Sua condição financeira é boa já que é funcionaria publica. Tem como formação faculdade de administração e gosta muito do emprego que tem.

"Faz algum tempo que trabalho como auditora da Secretaria da Fazenda de São Paulo. No início foi um pouco difícil me adaptar ao trabalho já que as coisas ainda eram mais demoras e burocráticas de serem realizadas devido a escassez de tecnologia que possuía em todos os setores.

Atualmente trabalho no setor de Auditoria, realizando a fiscalização e levantamento de equipamentos e ferramentas do instituto de Pesquisas Tecnológicos - 1PT, tarefa que é multo demorada, burocrática e rigorosa. Esse é um dos únicos processos que não utiliza a tecnologia para acelerar o processo, coisa que já acontece em outros setores. Seria melhor se fosse possível rastrear cada tipo de equipamento ou ferramenta."

2. More about this persona

Needs & Expectations

Uma maneira de acelerar seu processo de levantamento de equipamentos durante as audições que realiza

Gustavo Ferreira

Mauro Ferreira Silva

Age: 42

Occupation: Gestor da Controladoria do IPT Location: São Paulo, SP Education: Formado em Contabilidade Status: Casado

Mauro Augusto, nascido em Piracicaba e residente em São Paulo capital, é um homem casado, com 2 filhos. Adora ir ao parque com sua familia e aos domingos costuma assistir aos jogos do seu time do coração. Trabalha como Gestor da Controladoria do IPT e é formado em Contabilidade pela USP.

"Faz alguns anos que trabalho no IPT como Gestor da Controladoría. No passado não existia muitas tecnologias para nos auxiliar em nossas demandos do trabalho, fazendo com que as tarefas fossem realizadas de forma mais lenta, burocrática e passível de erros humanos. Mas com o passar do anos e a tecnologia foi avançando, tivemos que passar a adequar o uso de tecnologia em nossa rotina.

Nossa demanda atual é atualizar a forma que Nossa demanda atual é atualizar a forma que monitoramos equipamentos e ferramentas que são de propriedade do IPT. Eu como Gestor da Controladoria possuo multa dor de cabeça no período do ano que realizamos o levantamento do inventário. Espero que logo, essa tarefa se tome mais fácil de realizar:

2. More about this persona

Interests:

- Animal Planet
- Tocar violão
- Gosta de animais
- Jogar xadrez

Influences:

- Família
- Deus • Dinheiro

Gustavo Ferreira

Goals:

- Estabilidade financeira
- Aposentar cedoConhecer a Europa

Needs & Expectations

- Rotina de trabalho estressante devido ao processo burocrático
- Melhor forma de monitorar os equipamentos que é responsável

Motivations

 Dar uma melhor qualidade de vida para a família

Pain Points / Frustrations

• Processo longo e burocrático em período de auditoria no trabalho

Personas

1.4.2. Jornadas do Usuário e/ou Storyboard

Mauro Augusto

Occupation: Gestor da Controladoria do IPT

Cenário

Mauro está durante uma auditoria do BNDES, e o auditor solicitou que fosse apresentado a ele um equipamento de alta rotatividade nos laboratórios do IPT. Para conseguir localiza-lo, Mauro abre o aplicativo de localização e procura pelo ID do equipamento.

Expectativas

ntrar o dispositivo o mais rápido possível, para economizar tempo na auditoria e passar Que consiga er credibilidade.

Fases	Fase 1 Procura do dispositivo na rede	Fase 2 O sistema procura pelo equipamento e aponta seu local	Fase 3 Equipamento encontrado com sucesso
Tarefas	Idenficar o ID do equipamento desejado Digitar o ID do equipamento no aplicativo	Programa procura pelo ID do equipamento, e em qual sala ele se conectou pela última vez. Retorna o prédio e o laboratório onde o dispositivo foi encontrado.	Juntamente com o auditor, Mauro encontra o equipamento desejado, na sala apontada.
Pensamentos	"O equipamento scrá encontrado? Será que ele foi cadastrado?"	"Será que o equipamento está mesmo nesse local? "	"O sistema localizou corretamente o equipamento, e tornou o tempo de auditoria muito mais rápido"
Emoções			•

Jornada do Usuário

1.4.3. User Stories

Épico	User Story
Eu, como gestor, preciso achar um equipamento ou ferramenta espalhados pelo IPT.	Eu como usuário quero poder digitar o ID do equipamento na plataforma, para encontrá-lo no sistema.
	Eu como usuário quero poder visualizar a localização do equipamento, para que possa ir até o local e encontrá-lo.
Eu, como gestor, quero poder cadastrar novos equipamentos ao sistema.	Eu como usuário gostaria de um manual de instruções que me guie quais etapas preciso seguir para acoplar a placa ao equipamento.
	Eu como usuário quero poder cadastrar o ID do equipamento na placa, para que possa procurá-lo futuramente.
Eu, como gestor, gostaria de	Eu como usuário quero poder pesquisar um

produto.	identificar o histórico de movimentações de determinado	equipamento no sistema e obter acesso as últimas movimentações dele pelo campus, para poder identificar algum problema de furto por exemplo	
		Eu como usuário quero ter acesso a um dashboard que liste os equipamentos com maior rotatividade pelo campus, assim como os equipamentos que mais saem para atividades externas, para que possa encontrar padrões e melhorar a disposição deles pelo campus.	
		Eu como gestor quero ser notificado caso algum aparelho saia do campus do IPT, para que possa ser monitorado e registrado devidamente.	

1.4.4. Protótipo de interface com o usuário

(sprint 2)

Coloque aqui o link para seu protótipo de interface.

Requisitos (como descrito no Adalove):

- 1. O protótipo deve demonstrar telas que representem o fluxo de navegação e interação do usuário para cumprir a tarefa de ler (e alterar) estados dos dispositivos IoT mapeados
- 2. O protótipo deve ser coerente com o mapa de jornada do usuário (ou storyboard) feito anteriormente na seção 1.4.2
- 3. O protótipo deve refletir ao menos uma User Story mapeada anteriormente na seção 1.4.3
- 4. O protótipo deve ter boa usabilidade (fácil de compreender e usar, fácil de se conseguir cumprir a tarefa)

Obs.: Não é necessário caprichar no detalhamento gráfico neste momento. O importante é que o protótipo reflita uma boa estrutura para adequar as informações na tela e que seja coerente com o planejamento das seções anteriores.

2. Arquitetura da solução

2.1. Arquitetura versão 1

Componente / Conexão	Descrição da função	Tipo: entrada / saída
ESP32-S3	Microcontrolador de baixo custo e baixo consumo energético com chips WiFi e Bluetooth integrados.	Entrada
Sensor digital Tem como objetivo receber o sinal de um o localizadores.		Entrada
Led	Indicar níveis da bateria.	Saída
Controles de interação via Wi-Fi	Cálculo de distância dos objetos da região em que o roteador se encontra.	Entrada
Multímetros, Osciloscópio	Ferramentas para testar a integridade do hardware.	Ferramenta
Protoboards	Agilizar a produção do protótipo.	Ferramenta

2.2. Arquitetura versão 2

Posicione aqui a evolução dos seus diagramas, aprimorando a versão inicial do diagrama dos blocos e da tabela de componentes, desta vez incluindo possíveis displays e acionadores.

O diagrama e a tabela devem:

- 1. mostrar microcontroladores, incluindo descrições de sua função no sistema (por exemplo: "Irá processar o sinal dos sensores a cada X minutos")
- 2. mostrar sensores, incluindo descrição de função e especificações técnicas do tipo de informação que será coletada
- 3. mostrar apresentadores de informação (displays), incluindo descrição de que tipo de informação será apresentada (por exemplo, "Mostrar temperatura dos sensores")
- 4. mostrar atuadores, caso existam na solução, incluindo descrições do que irão acionar (por exemplo, "Ligar motor de irrigação durante x minutos")
- 5. mostrar bloco de interface/controle no servidor, incluindo descrições de onde estará, futuramente, a interface do usuário (por exemplo: "Em uma página web que consulta os dados dos dispositivos IoT a partir de um servidor em nuvem")
- 6. mostrar ligações entre os elementos (com fio ou sem fio) no diagrama, nomeie cada ligação com algum código/sigla; e depois liste na tabela tais códigos e suas respectivas descrições (por exemplo, "Sensor envia dados de variação de velocidade para serem processados pelo controlador")

Componente / Conexão	Descrição da função	Tipo: entrada / saída / atuador
ESP32-S3	Microcontrolador de baixo custo e baixo consumo energético com chips WiFi e Bluetooth integrados.	Entrada
Sensor digital	Tem como objetivo receber o sinal de um dos localizadores.	Entrada
Led	Indicar níveis da bateria.	Saída
Controles de interação via Wi-Fi	Cálculo de distância dos objetos da região em que o roteador se encontra.	Entrada
Multímetros, Osciloscópio	Ferramentas para testar a integridade do hardware.	Ferramenta
Buzzer	Dispositivo que emite sons	Saída
Protoboards	Agilizar a produção do protótipo.	Ferramenta

2.3. Arquitetura versão 3 (sprint 3)

Posicione aqui a evolução dos seus diagramas, aprimorando a versão inicial dos blocos e incluindo as soluções de interação com módulos externos (por exemplo, sistema de posicionamento). O diagrama e a tabela devem:

1. Além do já incluído nas versões anteriores, mostrar a interação indireta (wifi) entre os elementos externos e o seu funcionamento

Componente / Conexão	Descrição da função	Tipo: entrada / saída / atuador / conexão

3. Situações de uso

3.1. Entradas e Saídas por Bloco

#	bloco	componente de entrada	leitura da entrada	componente de saída	leitura da saída	Descrição
1	Indicad or de Bateria	Suporte para Bateria 18650	Gerenciam ento de carga interno	Led Vermelho/ Notificação pela plataforma	O led ligará constantemente caso a bateria entre em um nível crítico. O usuário receberá uma notificação também	Quando o nível da bateria estiver abaixo de 10% o usuário receberá uma notificação e um led vermelho acoplado ao equipamento ligará.
2	Identifi cação sonora de localiza ção	Plataforma de identificação dos aparelhos.	Botão que aciona essa função de localizar pelo aviso sonoro.	Buzzer	O buzzer irá emitir um som quando for pressionado um botão na plataforma.	Para facilitar a localização dos dispositivos, é acoplado a cada "TAG", um buzzer que emitirá um aviso sonoro para facilitar sua localização.
3	Identifi cação de conexã o	Dispositivo WIFI do ESP	Acesso às redes próximas, e a intensida de do sinal	LEDS: Verde, Vermelho e Azul	O Led azul acenderá caso algum dispositivo se conecte a ele, o Led vermelho mostra que o ESP está conectado à internet, e o Vermelho que ele perdeu a conexão.	Os Leds mudam de cor de acordo com a conectividade do ESP

3.2. Interações

#	configuração do ambiente	ação do usuário	resposta esperada do sistema
1	O dispositivo localizador deve estar acoplado a um equipamento e dentro da rede	O usuário irá pesquisar o item* que deseja encontrar, na plataforma	O sistema retornará a localização do dispositivo, entregando o prédio e sala onde o equipamento se encontra.
2	Administrador pode cadastrar um dispositivo novo ao sistema	Tendo a identificação do produto, o usuário preenche um formulário de cadastro.	O sistema irá cadastrar o produto juntamente a TAG direcionada a ele. Após a inserção no banco de dados, a plataforma retorna uma mensagem de êxito ou possível erro.
3	Um usuário deseja encontrar um determinado dispositivo conectado em uma sala.	Após ter feito o processo anterior de pesquisa do equipamento, o usuário poderá clicar em "Tocar dispositivo".	O sistema enviará uma requisição para a TAG que emitirá um sinal sonoro e visual através de um buzzer e um led.
4	Uma TAG apresenta um nível crítico de bateria.	Não é necessário uma ação do usuário.	O sistema irá alertar o usuário através de uma notificação que a TAG está com um baixo nível de bateria.
5	Uma TAG perde conexão com a rede, ou apresenta um comportamento que é necessário um REBOOT do aparelho.	O usuário pode utilizar a plataforma para reiniciar a TAG remotamente.	O sistema deverá enviar para a TAG a informação para reiniciar. Caso o problema não seja resolvido, é interessante alertar o usuário acerca do erro.
6	Dado uma TAG conectada a rede, em perfeito funcionamento, o usuário pode pedir uma atualização do rastreio.	O usuário ao clicar em "Rastrear novamente", irá atualizar o STATUS da TAG especificada.	O sistema deverá enviar uma requisição para a placa e atualizar seus STATUS no banco de dados.

Anexos

Utilize esta seção para anexar materiais extras que julgar necessário.