1 Overview

1.1 What Operating Systems Do

Components of a Modern Computer System

An **operating system** is a software that

- manages and controls a computer's hardware;
- coordinates and optimizes utilization of hardware;
- provides a basis for application programs.

An operating system is similar to a *government*, who performs no useful function, but provides an environment within which other programs can do useful work.

1.2 Computer-System Organization

1.2.1 Computer-System Operation

Figure: Components of Modern General-Purpose Computer

For a computer to start running, it

- 1. runs **bootstamp program**, which
 - tends to be simple.
 - is stored in **read-only memory** (ROM), or Electrically Erasable Programmable ROM

- initializes all aspects of the OS, from CPU registers to device controllers to memory.
- locates the operating system and loads it to memory (← know how to load and start)
- 2. loads service programs (**system daemons**: outside kernel, loaded at boot, runs entire time)

The event is signaled by an **interrupt** from either hardware or software.

1.2.2 Storage Structure

All forms of memory provide an array of bytes. Each byte has its own address.

Other types of memory:

- Cache: stores data to reduce time cost of further request for that data.
- ROM: cannot be changed \Rightarrow ONLY static programs (e.g., bootstamp program).
- EEPROM: change is slow \Rightarrow mostly static programs (e.g., factory-installed programs).

Hierarchy	Magnitude	Volatility	Implementation
Registers	bytes	√	MOSFET
Cache	16KB ~ 50MB		MOSFET
Main Memory	8GB ~ 64GB	√	MOSFET
Solid-state Disks	≥ 100 GB	O/x	Flash Memory
Magnetic Disks	≥ 500 GB	×	Magnetic Poles
Optical Disks		×	Pits & Lands
Magnetic Tapes	TB	×	Magnetic Memory

Table: Information and Hierarchy of Storage (higher in hierarchy ⇒ larger capacity, more expensive, and faster)

1.2.3 I/O Structure

Figure: I/O Structure

Figure: I/O Operation

This form creates overhead when bulk and/or frequent data movement, like disk and keyboard. By **direct memory access** (DMA), the driver fires only one interrupt and transfers a block of data from its local buffer the main memory, without CPU's intervention.

1.3 Computer-System Architecture

1.3.1 Single-Processor Systems

S.P.S.
$$\begin{cases} 1 \text{ GP CPU \& GP registers} & \text{GP instruction set} \\ \text{SP registers (from processors)} & \text{limited SP instruction set} \end{cases} \begin{cases} \text{runs user program} \\ \text{is managed by OS} \\ \text{only autonomously} \end{cases}$$

1.3.2 Multiprocessor Systems

Figure: Multiprocessor System Concepts

Types of Multiprocessor System

Multicore: includes multiple computing cores (owns registers and local cache) on a single chips; on-chip communication is faster and uses significantly less power than between-chip communication.

1.3.3 Clustered Systems

A **clustred sytem** are composed of two or more individual systems, or nodes, joined together.

Figure: General structure of a clustered system

Parallelization: divides a program into separate components to run on individual computers in the cluster \implies much greater computational power (significantly greater than multiple single-processor systems or even symmetric multiprocessor systems).

Parallel clusters: multiple hosts to access data on shared storage ⇒ access control and locks

1.4 Operating-System Structure

Figure: Multiprogramming Idea Interpretation

Figure: Multitasking Idea Interpretation (Multitasking requires an **interactive** system, with short device responsive time.)

Job scheduling: OS needs to choose ready jobs from disk because memory is too small. CPU scheduling: OS needs to choose a job in memory when multiple jobs are ready to run. Swapping: processes are swapped in and out of main memory.

1.5 Operating-System Operations

The OS must ensure that incorrect or malicious behaviors in a program cannot cause other programs and the OS to execute incorrectly.

1.5.1 Dual-Mode and Multimode Operation

Figure: Dual-Mode Interpretation

Some instructions that might cause harm are called privileged instructions. The hardware only supports privileged instructions and some other operations, like I/O controls, interrupt management, etc., in privileged mode. Some modern architectures support more than two modes.

The lack of hardware-supported dual mode causes serious shortcomings. For example, a user program can overwrite the OS, which might make the system crash or behave oddly.

If a privilege violation is occurred, these errors are handled by the OS. The OS must terminate the program abnormally, probably with an appropriate error message.

1.5.2 Timer

Timer is to detect infinite loops, failed returns, user programs running too long, etc. It can interrupt the computer after a specified period. It is usually implemented by a fixed-rate clock and a counter set by the OS. The OS might terminate the program or give more time. Instructions modifying the timer are privileged.

1.6 Process Management

A process is a program in execution.

1.7 Memory Management