Úloha 10: Stanovení rozpustnosti a obsahu krystalové vody

Zadané úlohy

- 1. Stanovte rozpustnost předloženého vzorku anorganické soli ve vodě při laboratorní teplotě.
- 2. Na základě naměřených údajů identifikujte neznámý vzorek.
- 3. Termogravimetricky stanovte množství krystalové vody v předloženém vzorku.

Teoretický úvod

Rozpustnost látek

Gibbsův zákon fází popisuje rovnováhu v uzavřeném systému rovnicí: f+v=s+2. ve které je f počet fází, v počet stupňů volnosti a s počet složek v systému. Fáze jsou homogenní složky (plyn, kapalina, pevná fáze) systému a složky jsou jednotlivé chemické sloučeniny. Stupeň volnosti je jakákoliv intenzivní fyzikální veličina. Intenzivní veličina je taková, která nezávisí na celkové hmotě systému.

Krystalová voda

Když látky krystalizují z vodném prostředí do sebe často zabudovávají molekuly vody do struktury krystalu. Krystalové vody se může snadno zbavit stáním krystalických vzorků na vzduchu.

Práce s automatickou pipetou

Automatická pipeta se používá o odměření velmi malých objemů. Daný objem se nastavuje šroubem v horní části pipety. Pipetu nesmíme nikdy obracet napo pokládat na stranu, pokud je na ní nasazena znečištěná špička.

Zahřívání nad kahanem a žíhání do konstantní hmotnosti

Žíhání je specifickým laboratorním postupem provádějícím se nad kahanem, obvykle v porcelánových miskách. Kelímek je zahříván pomalu, aby nepraskl, poté je přesunut do nejteplejší části plamene. K žíhání můžeme také používat žíhací pec. Žíhání do konstantní hmotnosti můžeme využít například při gravimetrii.

Postup

Stanovení rozpustnosti a identifikace vzorku

Nad kahanem byly vyžíhány tři kelímky do konstantní hmotnosti. Zíhání probíhalo cca 10 minut a kelímky byly pomocí kleští přesunuty do exsikátoru k vychladnutí. Vychladlé kelímky byly zváženy na analytických vahách. Žíhání kelímků bylo zopakováno. Kelímky byly znovu zváženy a hmotnosti byly porovnány. Kdyby se hmotnosti měnili, proces by byl zopakován. Byla změřena teplota suspenze neznámého vzorku (č.105), poté co byl vzorek rozmíchán a bylo počkáno 5 minut. Do vyžíhaných kelímků bylo pomocí automatické pipety odpipetováno 5 ml nasyceného roztoku a byla zapsána hmotnost roztoku. Voda z

odpipetovaných roztoků byla opatrně odpařena. Po odpaření vody, byl zbytek v kelímcích žíhán ještě dalších 10 minut. Po vychladnutí v exsikátoru byly kelímky zváženy a kelímky byly žíhány do konstantní hmotnosti.

Plamenová zkouška

Předem vyžíhaný drátek byl ponořen do neznámého vzorku a poté byl vložen do plamene. Podle jeho barvy byl určen kationt v roztoku.

Stanovení obsahu krystalové vody

V peci vyhřáté na 400°C byly vyžíhány dva malé kelímky do konstantní hmotnosti. Bylo postupováno stejně jako v předchozí úloze. Na analytických vahách do nich bylo odváženo přibližně 250 mg (viz naměřené hodnoty) neznámého vzorku. Odvážené vzorky, byly žíhány v peci při teplotě 400°C po dobu 10 minut.

Naměřené hodnoty

	Číslo kalíšku	Hmotnost (g)
1. měření		
	1	38,9027
	2	47,0566
	3	48,4781
2. měření		
	1	38,9032
	2	47,0576
	3	48,4788
3. měření (přidaná suspenze)		
	1	45,3725
	2	53,5302
	3	54,9578
4. měření		
	1	41,5500

	2	50,0238
	3	51,1284
5. měření		
	1	41,4791
	2	49,9191
	3	51,0435
6. měření		
	1	40,6798
	2	48,9884
	3	50,4258

Tab. 1: žíhání do konstantní hmotnosti při stanovení rozpustnosti a identifikace roztoku

	Číslo kalíšku	Hmotnost kalíšků	Hmotnost látky	Celková hmot.
1. měření				
	1	23,5433	0,2541	23,7974
	2	23,009	0,2507	23,2597
2. měření				
	1			23,6693
	2			23,1318
3. měření				
	1			23,6690
	2			23,1317

Tab. 2: žíhání do konstantní hmotnosti při stanovení obsahu krystalové vody

Výpočty

Stanovení rozpustnosti a identifikace vzorku

$$m_{1(vzorek)} = 6,4693 g$$

 $m_{2(vzorek)} = 6,479 g$
 $m_{3(vzorek)} = 6,479 g$

$$m_{1(vytezek)} = 1,7766 g$$

 $m_{2(vytezek)} = 1,9308 g$
 $m_{3(vytezek)} = 1,947 g$

$$m_{1(odparenevody)} = 4,6927 g$$

 $m_{2(odparenevody)} = 4,5418 g$
 $m_{3(odparenevody)} = 4,532 g$

$$\rho_1 = 1,2939 \ g \cdot cm^{-3}$$

$$\rho_2 = 1,2945 \ g \cdot cm^{-3}$$

$$\rho_3 = 1,2958 \ g \cdot cm^{-3}$$

$$\rho_{prumer} = 1,2947 \ g \cdot cm^{-3}$$

Rozpustnost

gramy rozpuštěné látky/100 ml roztoku

$$1,8848 \ g. \ldots 5 \ ml$$

$$x \ g. \ldots 100 \ ml$$

$$x = \frac{100}{5} \cdot 1.8848$$

$$x = 37,696 \ g \cdot 100 ml^{-1} \ roztoku$$

gramy rozpuštěné látky/100 g roztoku

$$y = \frac{100}{6,4758} \cdot 1,8848$$

$$y = 29,1052 \ g \cdot 100 g^{-1} \ roztoku$$

gramy rozpuštěné látky/100 g vody

$$1,8848 \ g. \dots ... 4,5888 \ g$$
 $z \ g. \dots ... 100 \ g$

$$z = \frac{100}{4,5888} \cdot 1,8848$$
$$z = 41,0739 \ g \cdot 100 \ g^{-1} vody$$

Molární koncentrace

$$V = 0,005 dm^3$$
$$c = \frac{n}{V}$$

$$n = \frac{m_{vytezek}}{M_{r(MgSO_4)}}$$
$$n = 0,016 \ mol$$
$$\rightarrow c = 3,2 \ mol \cdot dm^{-3}$$

Molalita

$$c_m = \frac{n}{m_{rozpoistedlo}}$$
$$c_m = 3,5mol \cdot kg^{-1}$$

Stanovený počet molekul krystalové vody

$$m_{H_2O} = 0,1282 g$$

 $\rightarrow m = \frac{m_{H_2O}}{M_{r(H_2O)}}$
 $n = 0,0071 \ mol$
 $\rightarrow N = 4,28 \cdot 10^{21}$

Závěr

Na základě rozpustnosti byl neznámý vzorek č. 105 identifikován jako síran hořečnatý. Byla spočítána hustota $\rho_{prumer}=1,2947\,g\cdot cm^{-3}$, molární koncentrace $c=3,2mol\cdot dm^{-3}$ a molalita $c_m3,5\,mol\cdot kg^{-1}$. Rozpustnost síranu hořečnatého je $x=37,696\,g\cdot ml^{-1}$ roztoku, $29,1052\,g\cdot 100g^{-1}$ roztoku a $41,0739\,g\cdot 100g^{-1}$.