Topics to revise from MTL101/MTL104

- Fields of the form $\mathbb{Z}/p\mathbb{Z}$ where p is a prime.
- Vector spaces
- Subspaces
- Span and Linear Independence
- Bases and Dimension of vector spaces

Exercises

- 1. Determine whether the following assertion are true or false giving brief justifications:
 - (a) The empty set is a subspace of every vector space.
 - (b) Any non-zero vector space over \mathbb{R} has infinitely many distinct vectors.
 - (c) The set of all non-invertible matrices in $M_n(\mathbb{F})$ is a subspace.
 - (d) Let a be a fixed real number. For any $x, y, \alpha \in \mathbb{R}$ define $x \oplus y = x + y a$ and $\alpha \odot x = \alpha x + a(1 \alpha)$. Then, \mathbb{R} is a vector space over itself with respect to \oplus and \odot .
 - (e) Consider the set of real numbers in the open interval (-1,1). For any $x,y \in (-1,1)$ and for any $\alpha \in \mathbb{R}$, define $x \oplus y = \frac{x+y}{1+xy}$ and $\alpha \odot x = \frac{(1+x)^{\alpha} (1-x)^{\alpha}}{(1+x)^{\alpha} + (1-x)^{\alpha}}$. Then, (-1,1) is a vector space over \mathbb{R} with respect to \oplus and \odot .
- 2. Prove or give a counterexample: if U_1, U_2 and W are subspaces of V such that

$$U_1 + W = U_2 + W,$$

then $U_1 = U_2$. What about the case $U_1 \oplus W = U_2 \oplus W$?

- 3. Let V be a vector space. Suppose $v, w \in V$. Explain why there exists a unique $x \in V$ such that v + 3x = w.
- 4. Determine whether or not the set

$$\left\{ \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}$$

is linearly independent over \mathbb{Z}_5 .

- 5. Suppose $u, v \in V$, a vector space over a field \mathbb{F} . If $\mathbb{F} = \mathbb{R}$, then show that $\{u, v\}$ is linearly independent if and only if $\{u + v, u v\}$ is linearly independent. What happens when $\mathbb{F} = \mathbb{Z}_2$?
- 6. If $\{u, v, w\}$ is a linearly independent subset of a vector space, show that $\{u, u + v, u + v + w\}$ is also linearly independent.
- 7. Let V be the vector space of all 2×2 matrices over the field \mathbb{F} . Let W_1 be the set of matrices of the form $\begin{bmatrix} x & -x \\ y & z \end{bmatrix}$ and let W_2 be the set of matrices of the form $\begin{bmatrix} a & b \\ -a & c \end{bmatrix}$.
 - (a) Prove that W_1 and W_2 are subspaces of V.
 - (b) Is $W_1 \cup W_2$ subspace of V?
- 8. Let $P = \{(a, b, c) \mid a, b, c \in \mathbb{R}, a = 2b + 3c\}$. Prove that P is a subspace of \mathbb{R}^3 . Find a basis for P. Give a geometric description of P.
- 9. If V is a vector space of dimension n over the field \mathbb{Z}_p , how many elements are in V?
- 10. Prove that the real vector space of all continuous real-valued functions on the interval [0, 1] is infinite-dimensional.

1

Topics to revise from MTL101/MTL104

- row reduced echeolon forms, free variables, pivot rows/columns
- Bases and Dimension of vector spaces
- Linear Transformations
- Range, nullspace of a linear transformation, rank-nullity theorem

Exercises

- 1. In exercise 7 of problem sheet 1, find the dimensions of W_1 , W_2 , $W_1 + W_2$, and $W_1 \cap W_2$.
- 2. Suppose $V = \mathbb{R}^4$ and U is a subspace spanned by the vectors

$$\begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 2 \\ -4 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \\ 0 \\ 2 \end{bmatrix}$$

Find the basis of U.

3. Let V is a vector space over \mathbb{F} of dimension 5. Suppose U and W are subspaces of V of dimension 3, prove that $U \cap W \neq 0$. Generalize.

space V over a field \mathbb{F} , then m = n.

4. (a) Let U be the subspace of \mathbb{R}^5 defined by

$$U = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 = 3x_2 \text{ and } x_3 = 7x_4\}.$$

Find a basis of U.

- (b) Extend the basis in part (a) to a basis of \mathbb{R}^5 .
- (c) Find a subspace W of \mathbb{R}^5 such that $\mathbb{R}^5 = U \oplus W$.
- 5. (a) Let $U = \{p \in \mathcal{P}_4(\mathbb{F}) : p(6) = 0\}$. Find a basis of U. Here, $\mathcal{P}_4(\mathbb{F})$ denotes the set of all polynomials with coefficients in \mathbb{F} and degree at most 4.
 - (b) Extend the basis in part (a) to a basis of $\mathcal{P}_4(\mathbb{F})$.
 - (c) Find a subspace W of $\mathcal{P}_4(\mathbb{F})$ such that $\mathcal{P}_4(\mathbb{F}) = U \oplus V$.
- 6. Suppose V is finite-dimensional and U is a subspace of V such that $\dim U = \dim V$. Prove that U = V.
- 7. Recall: If W_1 and W_2 are finite-dimensional subspace of a vector space V, then $W_1 + W_2$ is also finite-dimensional and

$$dim(W_1 + W_2) = dim(W_1) + dim(W_2) - dim(W_1 \cap W_2).$$

You might guess, by analogy with the formula for the number of elements in the union of three subsets of a finite set, that if U_1, U_2, U_3 are subspaces of a finite-dimensional vector space, then

$$\dim(U_1 + U_2 + U_3) = \dim U_1 + \dim U_2 + \dim U_3$$
$$-\dim(U_1 \cap U_2) - \dim(U_1 \cap U_3) - \dim(U_2 \cap U_3)$$
$$+ \dim(U_1 \cap U_2 \cap U_3).$$

Prove this or give a counterexample.

- 8. Suppose that U and W are subspaces of \mathbb{R}^8 such that $\dim U = 3$, $\dim W = 5$, and $\mathbb{R}^8 = U + W$. Prove that $\mathbb{R}^8 = U \oplus W$.
- 9. (a) Give an example of a function $\phi: \mathbb{R}^2 \to \mathbb{R}$ such that

$$\phi(av) = a\phi(v)$$

for all $a \in \mathbb{R}$ and all $v \in \mathbb{R}^2$ but ϕ is not linear.

(b) Give an example of a function $\phi: \mathbb{C} \to \mathbb{C}$ such that $\phi(w+z) = \phi(w) + \phi(z)$ for all $w, z \in \mathbb{C}$ but ϕ is not linear.

- (c) Suppose $b, c \in \mathbb{R}$. Define $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ by T(x, y, z) = (2x 4y + 3z + b, 6x + cxyz). Show that T is linear if and only if b = c = 0.
- (d) Suppose U is a subspace of V with $U \neq V$. Suppose $S \in \mathcal{L}(U, W)$ and $S \neq \{0\}$ (which means that $Su \neq 0$ for some $u \in U$). Define $T: V \longrightarrow W$ by

$$Tv = \begin{cases} Sv & \text{if} \quad v \in U, \\ 0 & \text{if} \quad v \in V \quad \text{and} \quad v \notin U. \end{cases}$$

Prove that T is not a linear map on V.

(e) Let V be the vector space of all $n \times n$ matrices over the field \mathbb{F} , and let B be a fixed $n \times n$ matrix. If

$$T(A) = AB - BA$$

verify that T is a linear transformation from V into V.

10. (a) Give an example of a linear map $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ such that

range
$$T = \text{null } T$$
.

(b) Prove that there does not exist a linear map $T: \mathbb{R}^5 \longrightarrow \mathbb{R}^5$ such that

null
$$T = \text{range } T$$
.

(c) Prove that there does not exist a linear map from \mathbb{F}^5 to \mathbb{F}^2 whose null space equals

$$\{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}^5 : x_1 = 3x_2 \text{ and } x_3 = x_4 = x_5\}.$$

(d) Describe the range and the null space for the differentiation transformation on $\mathcal{P}(\mathbb{R})$. Do the same for the integration transformation on $\mathcal{P}(\mathbb{R})$.

Topics to revise from MTL101/MTL104

- Linear transformations, invertibility and isomorphic vector spaces
- Rank-Nullity theorem
- Matrix representation of linear maps and vectors
- Operators and its invertibility
- Product of vector spaces

Exercises

- 1. Suppose V is a finite dimensional vector space and $T \in \mathcal{L}(V, V)$. Recall that null(T) is a subspace of V and range(T) is a subspace of W. Is it true that V = null(T) + range(T). Is it a direct sum? Give a proof or a counterexample.
- 2. We proved in class that $V \cong W$ when dim $V = \dim W$. Give an example of two vector spaces V, W such that dim $V = \dim W$ and $T \in \mathcal{L}(V, W)$ such that T is not an isomorphism.
- 3. Let V be a finite-dimensional vector space and let T be a linear operator on V. Suppose that $\operatorname{rank}(T^2) = \operatorname{rank}(T)$. Prove that the range and null space of T are disjoint, i.e., have only the zero vector in common.
- 4. Find two linear operators T and U on \mathbb{R}^2 such that TU = 0 but $UT \neq 0$.
- 5. Suppose V is a vector space and $S, T \in \mathcal{L}(V, V)$ are such that range $S \subset \text{null } T$. Prove that $(ST)^2 = 0$.
- 6. Let V be a vector space and T a linear transformation from V into V. Prove that the following two statements about T are equivalent.
 - (a) The intersection of the range of T and the null space of T is the zero subspace of V.
 - (b) If T(T(a)) = 0, then T(a) = 0.
- 7. Let T be the linear operator on \mathbb{R}^3 defined by

$$T(x_1, x_2, x_3) = (3x_1, x_1 - x_2, 2x_1 - x_2 + x_3).$$

Is T invertible? If so, find T^{-1} .

- 8. Suppose $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$ are both invertible linear maps. Prove that $ST \in \mathcal{L}(U, W)$ is invertible and that $(ST)^{-1} = T^{-1}S^{-1}$.
- 9. Suppose V is finite-dimensional, U is a subspace of V, and $S \in \mathcal{L}(U, V)$. Prove there exists an invertible operator $T \in \mathcal{L}(V)$ such that Tu = Su for every $u \in U$ if and only if S is injective.
- 10. Suppose $p \in \mathcal{P}(\mathbb{R})$. Prove that there exists a polynomial $q \in \mathcal{P}(\mathbb{R})$ such that 5q'' + 3q' = p.
- 11. Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that there exist a basis of V and a basis of W such that with respect to these bases, all entries of $\mathcal{M}(T)$ are 0 except the entries in row j, column j, equal 1 for $1 \le j \le \dim \operatorname{range}(T)$.
- 12. Suppose T is a function from V to W. The graph of T is the subset of $V \times W$ defined by

graph of
$$T = \{(v, Tv) \in V \times W \mid v \in V\}.$$

Prove that T is a linear map if and only if the graph of T is a subspace of $V \times W$.

13. Give an example of a vector space V and subspaces U_1, U_2 of V such that $U_1 \times U_2$ is isomorphic to $U_1 + U_2$ but $U_1 + U_2$ is not a direct sum.

Problem Sheet 4, Math 104

Topics to revise

- Quotient Spaces
- Dual spaces
- Annilator of subspace, U°

Exercises

- 1. Suppose $\varphi \in \mathcal{L}(V, \mathbb{F})$ and $\varphi \neq 0$. Prove that dim $V/(\text{null }\varphi) = 1$.
- 2. Suppose U is a subspace of V and $v_1 + U, \ldots, v_m + U$ is a basis of V/U and u_1, \ldots, u_n is a basis of U. Prove that $v_1, \ldots, v_m, u_1, \ldots, u_n$ is a basis of V.
- 3. Explain why every linear functional is either surjective or the zero map.
- 4. Define $T: \mathbb{R}^3 \to \mathbb{R}^2$ by T(x, y, z) = (4x + 5y + 6z, 7x + 8y + 9z). Suppose φ_1, φ_2 denotes the dual basis of the standard basis of \mathbb{R}^2 and ψ_1, ψ_2, ψ_3 denotes the dual basis of the standard basis of \mathbb{R}^3 .
 - (a) Describe the linear functionals $T'(\varphi_1)$ and $T'(\varphi_2)$.
 - (b) Write $T'(\varphi_1)$ and $T'(\varphi_2)$ as a linear combination of ψ_1, ψ_2, ψ_3 .
- 5. Suppose W is finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that T' = 0 if and only if T = 0.
- 6. Suppose $T \in \mathcal{L}(\mathcal{P}_5(\mathbb{R}), \mathcal{P}_5(\mathbb{R}))$ and null $T' = \operatorname{span}(\varphi)$, where φ is the linear functional on $\mathcal{P}_5(\mathbb{R})$ defined by $\varphi(p) = p(8)$. Prove that range $T = \{p \in \mathcal{P}_5(\mathbb{R}) \mid p(8) = 0\}$.
- 7. Show that $(\mathcal{P}(\mathbb{R}))'$ and \mathbb{R}^{∞} are isomorphic.
- 8. The **double dual space** of V, denoted V'', is defined to be the dual space of V'. In other words, V'' = (V')'. Define $\Lambda: V \to V''$ by

$$(\Lambda v)(\varphi) = \varphi(v)$$

for $v \in V$ and $\varphi \in V'$.

- (a) Show that Λ is a linear map from V to V''.
- (b) Show that if $T \in \mathcal{L}(V)$, then $T'' \circ \Lambda = \Lambda \circ T$, where T'' = (T')'.
- (c) Show that if V is finite-dimensional, then Λ is an isomorphism from V onto V''.
- 9. Suppose U and W are subsets of V with $U \subseteq W$. Prove that $W^0 \subseteq U^0$.
- 10. Suppose V is finite-dimensional and U is a subspace of V. Show that U = V if and only if $U^0 = \{0\}$.
- 11. Suppose U, W are subspaces of V. Show that $(U+W)^0 = U^0 \cap W^0$.
- 12. Suppose V is finite-dimensional and U and W are subspaces of V. Prove that $(U \cap W)^0 = U^0 + W^0$.

Topics to revise

- LU Factorization
- Some applications giving rise to Linear Systems Problems
- Eigenvalue and eigenvector of an operator

Exercises

- 1. Let $A = \begin{pmatrix} 1 & 4 & 5 \\ 4 & 18 & 26 \\ 3 & 16 & 30 \end{pmatrix}$.
 - (a) Determine the LU factors of A.
 - (b) Use the LU factors to solve $Ax_1 = b_1$ as well as $Ax_2 = b_2$, where $b_1 = \begin{pmatrix} 6 \\ 0 \\ -6 \end{pmatrix}$ and $b_2 = \begin{pmatrix} 6 \\ 6 \\ 12 \end{pmatrix}$.
 - (c) Use the LU factors to determine A^{-1} .
- 2. Let A and b be the matrices

$$A = \begin{pmatrix} 1 & 2 & -3 & 4 \\ 4 & 8 & 12 & -8 \\ 2 & 3 & 2 & 1 \\ -3 & -1 & 1 & -4 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 3 \\ 60 \\ 1 \\ 5 \end{pmatrix}.$$

- (a) Explain why A does not have an LU factorization.
- 3. Give an example of an invertible matrix which does not have an LU decomposition.
- 4. Suppose A is invertible and has a LU decomposition, show that the decomposition is unique. That is, if A is invertible and $A = LU = L_1U_1$, then show that $L = L_1$ and $U = U_1$.
- 5. Determine the value(s) of ξ for which $\begin{pmatrix} \xi & 2 & 0 \\ 1 & \xi & 1 \\ 0 & 1 & \xi \end{pmatrix}$ fails to have an LU factorization.
- 6. Let $A \in \mathbb{R}^{n \times n}$ and (λ, x) be an eigenpair for A. Explain the geometrical meaning of $Ax = \lambda x$.
- 7. Suppose $T \in \mathcal{L}(V)$. Suppose $S \in \mathcal{L}(V)$ is invertible.
 - (a) Prove that T and $S^{-1}TS$ have the same eigenvalues.
 - (b) What is the relationship between the eigenvectors of T and the eigenvectors of $S^{-1}TS$.
- 8. Define $T: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ by Tp = p'. Find all eigenvalues and eigenvectors of T.
- 9. (a) Suppose $T \in \mathcal{L}(V)$ is invertible.
 - i. Suppose $\lambda \in \mathbb{F}$ with $\lambda \neq 0$. Prove that λ is an eigenvalue of T if and only if $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} .
 - ii. Prove that T and T^{-1} have the same eigenvectors.
- 10. Suppose n is a positive integer and $T \in \text{Hom}(\mathbb{F}^n)$ is defined by

$$T(x_1, \ldots, x_n) = (x_1 + \cdots + x_n, \ldots, x_1 + \cdots + x_n);$$

in other words, T is the operator whose matrix (with respect to the standard basis) consists of all 1's. Find all eigenvalues and eigenvectors of T.

- 11. Suppose $T \in \mathcal{L}(V)$ and there exists a positive integer n such that $T^n = 0$.
 - (a) Prove that I T is invertible and that

$$(I-T)^{-1} = I + T + \dots + T^{n-1}.$$

6

(b) Explain how you would guess the formula above.

- 12. (a) Give an example of an operator whose matrix with respect to some basis contains only 0's on the diagonal, but the operator is invertible.
 - (b) Give an example of an operator whose matrix with respect to some basis contains only nonzero numbers on the diagonal, but the operator is not invertible.
- 13. Suppose $P \in \mathcal{L}(V)$ and $P^2 = P$. Find all the eigenvalues of P and Prove that $V = KerP \oplus RangeP$.

Applications to Linear systems

1. Consider the electrical circuit shown below

As discussed in the class, find the current I_{AB} flowing from node A to B, and also the currents I_{BC} , I_{AC} , I_{BD} , and I_{CD} by reducing the above data in the form of a system of linear equations and then solving it using LU Factorization.

2. For a given function f the equation $\nabla^2 u = f$ is called Poisson's equation. Consider Poisson's equation on a square in two dimensions with Dirichlet boundary conditions. That is,

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$$
 with $u(x, y) = g(x, y)$ on boundary.

Discretize the problem by overlaying the square with a regular mesh containing n^2 interior points at equally spaced intervals of length h (see the figure below). Let $f_{ij} = f(x_i, y_j)$, and define f to be the vector $f = (f_{11}, f_{12}, \ldots, f_{1n}|f_{21}, f_{22}, \ldots, f_{2n}|\ldots|f_{n1}, f_{n2}, \ldots, f_{nn})^T$. Show that the discretization of Poisson's equation produces a system of linear equations of the form $Lu = g - h^2 f$, where L is the discrete Laplacian, g is the column vector corresponds to the boundary values for each mesh points and u is the unknown column vector, i.e., the required values of internal grid points.

For simplicity, take here n=4. Approximate $\partial^2 u/\partial x^2$ and $\partial^2 u/\partial y^2$ at the interior grid points (x_i,y_j) by using the second-order centered difference formula

$$\frac{\partial^2 u}{\partial x^2} \Big|_{(x_i, y_i)} = \frac{u(x_i + h, y_j) - 2u(x_i, y_j) + u(x_i - h, y_j)}{h^2} + O(h^2)$$

$$\frac{\partial^2 u}{\partial y^2} \Big|_{(x_i, y_i)} = \frac{u(x_i, y_j + h) - 2u(x_i, y_j) + u(x_i, y_j - h)}{h^2} + O(h^2).$$

Adopt the notation $u_{ij} = u(x_i, y_j)$ and $f_{ij} = f(x_i, y_j)$, and add the expressions in above equations using $\nabla^2 u \mid_{(x_i, y_j)} = f(x_i, y_j)$ for interior points (x_i, y_j) to produce

$$h^2 f_{ij} + 4u_{ij} = (u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1}) + O(h^4)$$
 for $i, j = 1, 2, \dots, n$.

Problem Sheet 6, Math 104

Topics to revise

- Transpose of a linear transformation
- Upper triangulization and Diagonalization of linear operators of finite dimensional vector spaces over C.
- Simultaneous triangulization and simultaneous diagonalization
- Inner product spaces, Orthonormal bases, Gram-Schimdt Orthogonalization process.

Exercises

- 1. Let T be the linear operator on $M_{n\times n}(\mathbb{R})$ defined by $T(A)=A^t$.
 - (a) Find all eigenvalues of T.
 - (b) Describe the eigenvectors corresponding to each eigenvalue of T.
- 2. Show that similar matrices need not have the same eigenvectors by giving an example of two matrices that are similar but have different eigenspaces.
- 3. Let V be the vector space of $n \times n$ matrices with entries in \mathbb{C} . For a matrix $A \in V$ define a linear operator $T_A : V \to V$ such that $T_A(B) = AB BA$. If A is diagonalizable, is it true that T_A is diagonalizable?
- 4. Let V be the vector space of $n \times n$ matrices with entries in \mathbb{C} . For a matrix $A \in V$ define a linear operator $T_A : V \to V$ such that $T_A(B) = AB BA$. Suppose A, A' are both diagonal matrices, show that T_A and $T_{A'}$ are simultaneously diagonalizable.
- 5. Compute $\lim_{n\to\infty} A^n$ for $A = \begin{pmatrix} 7/5 & 1/5 \\ -1 & 1/2 \end{pmatrix}$.
- 6. Suppose $T \in \mathcal{L}(V)$ is diagonalizable. Prove that $V = \text{null } T \oplus \text{range } T$. Is the converse true?
- 7. Suppose V is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Prove that T is diagonalizable if and only if

$$V = \text{null}(T - \lambda I) \oplus \text{range}(T - \lambda I),$$

for every $\lambda \in \mathbb{C}$.

- 8. Suppose $T \in \mathcal{L}(V)$ is invertible. Prove that $E(\lambda, T) = E\left(\frac{1}{\lambda}, T^{-1}\right)$ for every $\lambda \in \mathbb{F}$ with $\lambda \neq 0$.
- 9. Prove that $A = c_{n \times 1} d_{1 \times n}^T$ is diagonalizable if and only if $d^T c \neq 0$.
- 10. Explain why the following "proof" of the Cayley–Hamilton theorem is not valid. $p(\lambda) = det(A \lambda I) \implies p(A) = det(A AI) = det(0) = 0$.
- 11. Suppose $R, T \in \mathcal{L}(\mathbb{F}^3)$ each have 2, 6, 7 as eigenvalues. Prove that there exists an invertible operator $S \in \mathcal{L}(\mathbb{F}^3)$ such that $R = S^{-1}TS$.
- 12. Suppose $T \in \mathcal{L}(\mathbb{C}^3)$ is such that 6 and 7 are eigenvalues of T. Furthermore, suppose T does not have a diagonal matrix with respect to any basis of \mathbb{C}^3 . Prove that there exists $(x, y, z) \in \mathbb{C}^3$ such that $T(x, y, z) = (17 + 8x, \sqrt{5} + 8y, 2\pi + 8z)$.
- 13. Suppose V is a finite dimensional inner product space (with inner product $\langle \bullet, \bullet \rangle$) and $T \in \mathcal{L}(V)$. Define $\langle u, v \rangle_1 = \langle Tu, Tv \rangle$. If T is injectie, show that $\langle \bullet, \bullet \rangle_1$ is an inner product on V.
- 14. Suppose $T \in \mathcal{L}(V)$ such that $||T(v)|| \leq ||v||$ for all $v \in V$. Prove that $T \sqrt{2}I$ is invertible.
- 15. Find an orthonormal basis for $\mathcal{P}_2(\mathbb{R})$ where the inner product is defined as $\langle p,q\rangle = \int_{-1}^1 p(x)q(x)dx$.

Problem Sheet 7, Math 104

Topics to revise

- Linear Functionals, Riesz representation theorem, Orthogonal complement, Projection opreator.
- Adjoint of an operator, self adjoint, unitary and normal operators

Exercises

- 1. Suppose U is a subspace of \mathbb{R}^4 defined by $U = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \\ -4 \end{bmatrix}, \begin{bmatrix} -5 \\ 4 \\ 3 \\ 2 \end{bmatrix} \right\}$. Find an orthonormal basis of U and an orthonormal basis of U and U and U and U basis of U.
- 2. Suppose U is a subspace of V with basis u_1, \ldots, u_m and we extend it to a basis $u_1, \ldots, u_m, w_1, \ldots, w_n$. The Gram-Schimdt process produced a orthonormal basis $e_1, \ldots, e_m, f_1, \ldots, f_m$. Show that e_1, \ldots, e_m is an orthonormal basis for U and f_1, \ldots, f_m is an orthonormal basis for U^{\perp} .
- 3. Suppose V is a finite dimensional and $P \in \mathcal{L}(V)$ such that $P^2 = P$ and every vector in the null space null P is orthogonal to every vector in the range P. Prove that there exsits a subspace U of V such that $P = P_U$ (recall that P_U is the projection operator on U.
- 4. Supose V is finite dimensional and $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove that U and U^{\perp} are both invariant under T if and only if $P_U T = T P_U$.
- 5. Suppose $T \in \mathcal{L}(\mathbb{R}^n)$ given by $T \begin{pmatrix} \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 \\ z_1 \\ \vdots \\ z_{n-1} \end{bmatrix}$. Find the formula and matrix representation of the adjoint T^* .
- 6. Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove that U is invariant under T if and only if U^{\perp} is invariant under T^* .
- 7. Prove that dim null $T^* = \dim \operatorname{null} T + \dim W \dim V$ and dim range $T^* = \dim \operatorname{range} T$ for every $T \in \mathcal{L}(V, W)$.
- 8. SUppose $S, T \in \mathcal{L}(V)$ are self adjoint operators. Prove that ST is self adjoint if and only if ST = TS.
- 9. Suppose $P \in \mathcal{L}(V)$ such that $P^2 = P$. Prove that there is a subspace U of V such that $P = P_U$ if and only if P is self adjoint.
- 10. Fix $n \in \mathbb{N}$. In the inner product space of continuous real valued functions on $[-\pi, \pi]$ with inner product

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx$$

let $V = \operatorname{span}(1, \cos x, \cos 2x, \dots, \cos nx, \sin x, \sin 2x, \dots, \sin nx)$.

- (a) Define $D \in \mathcal{L}(V)$ by Df = f'. Show that $D^* = -D$. Conclude that D is normal but not self adjoint.
- (b) Define $T \in \mathcal{L}(V)$ by Tf = f''. Show that T is self adjoint.

Topics to revise

- Minimizing distance, Least square problems.
- positive operators, square root of an operator, isometry.
- Spectral theorems

Exercises

1. In \mathbb{R}^4 , let

$$U = \text{span}((1, 1, 0, 0), (1, 1, 1, 2)).$$

Find $u \in U$ such that ||u - (1, 2, 3, 4)|| is as small as possible.

2. Find $p \in \mathcal{P}_3(\mathbb{R})$ such that p(0) = p'(0) = 0, and

$$\int_0^1 |2 + 3x - p(x)|^2 dx$$

as small as possible.

- 3. Suppose V is finite-dimensional and $P \in \mathcal{L}(V)$ is such that $P^2 = P$ and every vector in null P is orthogonal to every vector in range P. Prove that there exists a subspace U of V such that $P = P_U$.
- 4. In physics, Hooke's law states that (within certain limits) there is a linear relationship between the length x of a spring and the force y applied to (or exerted by) the spring. That is, y = cx + d, where c is called the spring constant. Use the following data to estimate the spring constant (the length is given in inches and the force is given in pounds).

Length	Force
X	у
3.5	1.0
4.0	2.2
4.5	2.8
5.0	4.3

- 5. (True/False)
 - The set of all least squares solutions is precisely the set of solutions to the system of normal equations $A^TAx = A^Tb$.
 - There is a unique least squares solution if and only if rank(A) = n, in which case it is given by $x = (A^T A)^{-1} A^T b$
 - If Ax = b is consistent, then the solution set for Ax = b is the same as the set of least squares solutions.
- 6. Show that a vector x is a least-squares solution of Ax = b if and only if x is a solution of $A^TAx = A^Tb$
- 7. Let $T \in \mathcal{L}(V)$ be normal. Prove that $\text{null } T^k = \text{null } T$ and $\text{range } T^k = \text{range } T$ for all integers k.
- 8. In problem 10 in problem sheet 7, show that the functions in V form an orthogonal set in V under the inner product defined. Construct an orthonormal set using the set in V.
- 9. Suppose T is a self adjoint operator on a finite dimensional inner product space and 2, 3 are ten only eigenvalues of T. PRove that $T^2 5T + 6I = 0$.
- 10. Suppose V is a complex inner product space and $T \in \mathcal{L}(V)$. Prove that T is normal if and only if all pairs of eigenvectors corresponding to distinct eigenvalues of T are orthogonal. Do the same for self adjoint operators for vector spaces over real field \mathbb{R} .
- 11. Let V be a complex inner product space. Prove that every normal operator on V has a square root.

Topics to revise

- Singular Value Decomposition and its applications
- Minimal Polynomial
- Jordan Forms

Exercises

- 1. Give an example of $T \in \mathcal{L}(V)$ such that 0 is the only eigenvalue of T and the singular values 0.
- 2. Find the singular values of the differentiation operator $D \in \mathcal{P}(\mathbb{R}^2)$ defined by Dp = p', where the inner product on $\mathcal{P}(\mathbb{R}^2)$ is given by
- 3. Suppose $T \in \mathcal{L}(V)$. Prove that T is invertible if and only if 0 is not a singular value of T.
- 4. Suppose $T \in \mathcal{L}(V)$. Prove that dim range T equals the number of nonzero singular values of T.
- 5. Define $N \in \mathcal{L}(V)$ by $N(x_1, x_2, x_3, x_4, x_5) = (2x_2, 3x_3 x_4, 4x_5, 0)$. Find a square root of I + N.
- 6. Define $T \in \mathcal{L}(\mathbb{C}^2)$ by T(w,z) = (-z,w). Find the generalized eigenspaces corresponding to the distinct eigenvalues of T.
- 7. Suppose $a_0, a_1, \ldots, a_{n-1} \in \mathbb{C}$. Find the minimal and characteristic polynoomials of the operator on \mathbb{C}^n whose matrix (with respect to standard basis) is

$$A = \begin{bmatrix} 0 & & & -a_0 \\ 1 & 0 & & & \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & \\ & & \ddots & 0 & \\ & & & \ddots & -a_{n-2} \\ 1 & -a_{n-2} \end{bmatrix}.$$

- 8. Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V that is a Jordan basis for T. Describe the matrix of ² with respect to this basis.
- 9. Suppose V is an inner product space and $T \in \mathcal{L}(V)$ is normal. Prove that the minimal polynomial of T has no repeated zeros.
- 10. Suppose V is a complex vector space. Suppose $T \in \mathcal{L}(V)$ is such that $P^2 = P$. Prove that the characteristic polynomial of P is $z^m(z-1)^n$, where $m = \dim \text{null } P$ and $n = \dim \text{range } P$.