
习题 3.1

1. 按定义证明下列函数在其定义域内连续

$$(1)f(x) = \frac{1}{x^2}; \quad (2)f(x) = \sin\frac{1}{x}; \quad (3)f(x) = \sqrt{x}; \quad (4)f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0, \\ 1, & x = 0. \end{cases}$$

证明: $(3)\forall \ \varepsilon > 0$, 若 $x_0 = 0$, 则由 $|\sqrt{x} - 0| < \varepsilon$ 解得 $x < \varepsilon^2$. 取 $\delta = \varepsilon^2$, 则当 $0 \le x < \delta$ 时, 有 $|\sqrt{x} - 0| < \varepsilon$. 故 $f(x) = \sqrt{x}$ 在 x = 0 处连续. 现任取 $x_0 > 0$, 则对 $x \ge 0$, 由不等式 $|f(x) - f(x_0)| = |\sqrt{x} - \sqrt{x_0}| = \frac{|x - x_0|}{\sqrt{x} + \sqrt{x_0}} \le \frac{|x - x_0|}{\sqrt{x_0}} < \varepsilon$ 解得 $|x - x_0| < \varepsilon \sqrt{x_0}$. 于是, 取 $\delta = \varepsilon \sqrt{x_0}$, 则当 $|x - x_0| < \delta$ $(x \ge 0)$ 时, 成立 $|f(x) - f(x_0)| = |\sqrt{x} - \sqrt{x_0}| < \varepsilon$. 故 f(x) 在 $x = x_0$ 处连续.

综上所述, f(x) 在 $[0,\infty)$ 上连续.

(4) 由重要极限 $\lim_{x\to 0} \frac{\sin x}{x} = 1 = f(0)$ 得到 f(x) 在 x = 0 处连续. 当 $x = x_0 \neq 0$ 时,因为 $\frac{\sin x}{x}$ 为偶函数,所以不妨考虑 $x = x_0 > 0$ 的情形.

限制
$$|x-x_0| < \frac{x_0}{2}$$
, 则 $\frac{x_0}{2} < x < \frac{3x_0}{2}$. $\forall \ \varepsilon > 0$, 由

$$\left| \frac{\sin x}{x} - \frac{\sin x_0}{x_0} \right| = \left| \frac{x_0 \sin x - x \sin x_0}{x x_0} \right|$$

$$\leqslant \frac{x_0 |\sin x - \sin x_0| + |\sin x_0| |x - x_0|}{x_0^2 / 2}$$

$$\leqslant \frac{2(x_0 + |\sin x_0|)}{x_0^2} |x - x_0|$$

$$\leqslant \varepsilon$$

解得 $|x-x_0| < \frac{x_0^2}{2(x_0 + |\sin x_0|)} \varepsilon$. 取

$$\delta = \min\{\frac{x_0}{2}, \frac{x_0^2}{2(x_0 + |\sin x_0|)}\varepsilon\},\$$

则当 $|x-x_0|<\delta$ 时,有

$$|f(x) - f(x_0)| = \left| \frac{\sin x}{x} - \frac{\sin x_0}{x_0} \right| < \varepsilon.$$

所以 f(x) 在 $x = x_0$ 处连续.

综上所述, f(x) 在其定义域上连续.

2. 请指出下列函数的间断点并说明其类型:

$$(1)f(x) = [3x] - 3[x];$$
 $(2)f(x) = \text{sgn}|x|;$ $(3)f(x) = \begin{cases} x, & x$ 为有理数, 0, x 为无理数;

2. 请指出下列函数的间断点并说明其类型:
$$(1)f(x) = [3x] - 3[x]; \quad (2)f(x) = \operatorname{sgn}|x|; \quad (3)f(x) = \begin{cases} x, & x 为 有理数, \\ 0, & x 为 无理数; \end{cases}$$

$$(4)f(x) = \frac{1+x}{4-x^2}; \quad (5)f(x) = \operatorname{sgn}(\cos x); \quad (6)f(x) = \begin{cases} \sin \pi x, & x 为 有理数, \\ 0, & x 为 无理数; \end{cases}$$

$$(7)f(x) = e^{-\frac{1}{x}}; \quad (8)f(x) = \arctan \frac{1}{x}; \quad (9)f(x) = \begin{cases} \frac{1}{x+3}, & x < -3, \\ x, & -3 \leqslant x \leqslant 1, \\ (x-1)\sin \frac{1}{x-1}, & 1 < x < +\infty. \end{cases}$$

解:(1) 依题意知: 当 $k \le x < k + \frac{1}{3}$ 时, f(x) = 0; 当 $k + \frac{1}{3} \le x < k + \frac{2}{3}$ 时, f(x)=1; 当 $k+\frac{2}{3}\leqslant x< k+1$ 时, f(x)=1; 所以 $x=\frac{n}{3}(n\in {\bf Z})$ 为 f(x) 的跳跃间 断点.

- (2) 依题意知: $f(x) = \begin{cases} 1 & (x \neq 0) \\ 0 & (x = 0). \end{cases}$ 由于 $f(0+0) = f(0-0) = 1 \neq f(0)$, 所 以 x=0 为可去间断点.
 - (3) 当 $x \neq 0$ 时, f(x) 不连续. 所有的不等于 0 的点为 f(x) 的第二类间断点.
 - (4) 依题意知: $f(2+0) = +\infty$, $f(-2+0) = +\infty$, 所以 $x = \pm 2$ 为第二类间断点.
 - (5) 依题意知:

$$f(x) = \begin{cases} 1 & (\cos > 0) \\ 0 & (\cos = 0) \\ -1 & (\cos < 0) \end{cases}$$

故

$$f(x) = \begin{cases} 1 & \left(-\frac{\pi}{2} + 2k\pi < x < \frac{\pi}{2} + 2k\pi\right) \\ 0 & \left(x = \frac{\pi}{2} + k\pi\right) \\ -1 & \left(\frac{\pi}{2} + 2k\pi < x < \frac{3\pi}{2} + 2k\pi\right) \end{cases} \quad (k \in \mathbf{Z})$$

所以 $x = \frac{\pi}{2} + k\pi(k \in \mathbf{Z})$ 为 f(x) 的第一类跳跃间断点

- (6) 因为对 $k \in \mathbf{Z}$, $|\sin \pi x \sin \pi k| \leq \pi |x k|$, 所以 f(x) 在 x = k ($k \in \mathbf{Z}$) 连续. 所有 $x \neq k$ ($k \in \mathbb{Z}$) 的点为第二类可去间断点. 事实上, $x_0 \neq k$ 时, f(x) 在 x_0 处的 单侧极限都不存在.
- (7) 依题意知, f(x) 的定义域为 $(-\infty,0) \bigcup (0,+\infty)$. 因为 $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} e^{-\frac{1}{x}} =$ $+\infty$, 所以 x=0 为 f(x) 的第二类间断点.
 - (8) 依题意知: $f(0+0) = \frac{\pi}{2}$, $f(0-0) = 0 = -\frac{\pi}{2}$, 所以 x = 0 为跳跃间断点.
 - (9) 由于 $\lim_{x \to (-3)^{-}} f(x) = -\infty$,

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x - 1) \sin \frac{1}{x - 1} = 0 \neq f(1) = 1,$$

而 f(x) 又在各段区域内连续, 所以 x = -3 为 f(x) 的第二类无穷间断点, x = 1 为 f(x) 的第一类跳跃间断点.

3. 求下列函数的极限:

$$(1)\lim_{x\to 0} (1+\sin x)^{\cot x}; \quad (2)\lim_{x\to 0} \frac{\tan(\tan x)}{\sin 3x}; \quad (3)\lim_{x\to +\infty} (\sqrt{(x+a)(x+b)}-x)$$

$$(4) \lim_{x \to +\infty} (\sin \frac{1}{x} + \cos \frac{1}{x})^x; \quad (5) \lim_{x \to 0} \frac{e^x - 1}{x}; \quad (6) \lim_{x \to \alpha} (\frac{\sin x}{\cos \alpha})^{\frac{1}{x - \alpha}};$$

$$(1) \lim_{x \to 0} (1 + \sin x)^{\cot x}; \quad (2) \lim_{x \to 0} \frac{\tan(\tan x)}{\sin 3x}; \quad (3) \lim_{x \to +\infty} (\sqrt{(x+a)(x+b)} - x);$$

$$(4) \lim_{x \to +\infty} (\sin \frac{1}{x} + \cos \frac{1}{x})^x; \quad (5) \lim_{x \to 0} \frac{e^x - 1}{x}; \quad (6) \lim_{x \to \alpha} (\frac{\sin x}{\cos \alpha})^{\frac{1}{x-\alpha}};$$

$$(7) \lim_{x \to 0^+} \left\{ \sqrt{\frac{1}{x} + \sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}}} - \sqrt{\frac{1}{x} - \sqrt{\frac{1}{x} + \sqrt{\frac{1}{x}}}} \right\}; \quad (8) \lim_{\beta \to 0} \frac{\alpha^{x+\beta} + \alpha^{x-\beta} - 2\alpha^x}{\beta^2} (\alpha > 0);$$

(9)
$$\lim_{x \to +\infty} (\sin \sqrt{x+1} - \sin \sqrt{x});$$
 (10) $\lim_{n \to \infty} \sqrt{2} \cdot \sqrt[4]{2} \cdot \sqrt[8]{2} \cdot \cdots \sqrt[2^n]{2}.$

解: (1) 原式
$$\lim_{x\to 0} (1+\sin x) \frac{\cos x}{\sin x} = \lim_{x\to 0} ((1+\sin x) \frac{1}{\sin x})^{\cos x} = e$$
.

(2) 原式 =
$$\lim_{x \to 0} \frac{\tan x}{3x} = \frac{1}{3}$$
;

(3) 原式 =
$$\lim_{x \to +\infty} \frac{(x+a)(x+b)-x^2}{\sqrt{(x+a)(x+b)}+x} = \frac{a+b}{2};$$

(4)
$$\mathbb{R}\mathfrak{T} = \lim_{x \to +\infty} (1 + \sin\frac{2}{x})^{\frac{x}{2}} = \lim_{x \to +\infty} ((1 + \sin\frac{2}{x})^{\frac{1}{\sin\frac{2}{x}}})^{\frac{\sin\frac{2}{x}}{2}} = e;$$

(5) 原式 =
$$\lim_{x\to 0} \frac{x}{x} = 1$$
;

(6) 原式

$$= \lim_{x \to \alpha} \left(1 + \frac{\sin x - \sin \alpha}{\sin \alpha}\right)^{\frac{\sin \alpha}{\sin x - \sin \alpha}} \frac{\sin x - \sin \alpha}{(x - \alpha)\sin \alpha}$$

$$= \lim_{x \to \alpha} \left(1 + \frac{\sin x - \sin \alpha}{\sin \alpha}\right)^{\frac{\sin \alpha}{\sin x - \sin \alpha}} \frac{\cos \frac{x + \alpha}{2}\sin \frac{x - \alpha}{2}}{\frac{x - \alpha}{2}\sin \alpha}$$

$$= e^{\frac{\cos \alpha}{\sin \alpha}} = e^{\cot \alpha}.$$

$$(7) \mathbb{R} = \lim_{x \to 0^{+}} \frac{2\sqrt{\frac{1}{x} + \sqrt{\frac{1}{x}}}}{\sqrt{\frac{1}{x} + \sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x} + \sqrt{\frac{1}{x}}}}} = \lim_{x \to 0^{+}} \frac{2\sqrt{1 + \sqrt{x}}}{\sqrt{1 + \sqrt{x + \sqrt{x^{3}}} + \sqrt{1 - \sqrt{x + \sqrt{x^{3}}}}}}$$

$$\frac{\lim_{x \to 0^{+}} 2\sqrt{1 + \sqrt{x}}}{\lim_{x \to 0^{+}} \sqrt{1 + \sqrt{x + \sqrt{x^{3}}} + \lim_{x \to 0^{+}} \sqrt{1 - \sqrt{x + \sqrt{x^{3}}}}}} = \frac{2}{1 + 1} = 1;$$

(8) 原式 =
$$\lim_{x \to 0^+} \alpha^{x-\beta} \cdot \frac{\alpha^{2\beta} - 2\alpha^{\beta} + 1}{\alpha^2} = \lim_{x \to 0^+} \alpha^{x-\beta} \cdot (\frac{\alpha^{\beta} - 1}{\alpha})^2 = a^x \ln \alpha^{x-\beta}$$

(8) 原式 =
$$\lim_{\beta \to 0} = \alpha^{x-\beta} \cdot \frac{\alpha^{2\beta} - 2\alpha^{\beta} + 1}{\beta^2} = \lim_{\beta \to 0} \alpha^{x-\beta} \cdot (\frac{\alpha^{\beta} - 1}{\beta})^2 = a^x \ln^2 a;$$

(9) 原式 = $\lim_{x \to +\infty} 2 \sin \frac{\sqrt{x+1} - \sqrt{x}}{2} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{1}{2(\sqrt$

0;

(10) 原式 =
$$\lim_{n \to \infty} 2^{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}} = \lim_{n \to \infty} 2^{1 - \frac{1}{2^n}} = 2.$$

4. 证明: Riemann 函数

$$R(x) = \begin{cases} \frac{1}{q} & \text{当 } x = \frac{p}{q}(p, q \text{ 为正整数}, \frac{p}{q} \text{ 为既约真分数}), \\ 0, & \text{当 } x = 0, 1 \text{ 及 } (0, 1) \text{ 内无理数}; \end{cases}$$

在 (0,1) 内任何无理点都连续, 任何有理点处都不连续.

证明略, 见华东师大或复旦大学《数学分析》教材.

5. 证明: 若函数 f(x) 在 [a,b] 上连续, 对 [a,b] 上任意两个有理数 r_1, r_2 且 $r_1 < r_2$ 有

$$f(r_1) < f(r_2),$$

则 f(x) 在 [a,b] 上单调增加.

证明: 任取 (a,b) 内的两实数 t_1,t_2 且 $t_1 < t_2$, 可取有理数列 $x_n \in U^{\circ}(t_1,\frac{t_2-t_1}{2}) \cap (a,b)$, $y_n \in U^{\circ}(t_2,\frac{t_2-t_1}{2}) \cap (a,b)$ 使 $x_n \to t_1, y_n \to t_2(n \to \infty)$, 则 $x_n < y_n$ ($\forall n$), 从而由已知得到 $f(x_n) < f(y_n)$ ($\forall n$). 由连续性和 Heine 定理, 以及极限的保不等式性质知: $f(t_1) = \lim_{n \to \infty} f(x_n) \leq \lim_{n \to \infty} f(y_n) = f(t_2)$. 当 t_1,t_2 为 [a,b] 的两个端点时, 同理可证 $f(t_1) \leq f(t_2)$; 综上知: f(x) 在 [a,b] 上单调增加.

6. 证明: 若函数 f(x) 在 x_0 处连续, 则函数

$$f^+(x) = \max\{f(x), 0\}, \quad f^-(x) = \min\{f(x), 0\}$$

在 x₀ 处连续.

证明: 依题意知, $f^+(x) = \frac{f(x)}{2} + \frac{|f(x)|}{2}$, $f^-(x) = \frac{f(x)}{2} - \frac{|f(x)|}{2}$. 由 f(x) 在 x_0 处连续知, 对 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\exists |x - x_0| < \delta$ 时, 有 $|f(x) - f(x_0)| < \varepsilon$, 所以, $|f^+(x) - f^+(x_0)| \leq |\frac{f(x)}{2} - \frac{f(x_0)}{2}| + |\frac{|f(x)|}{2} - \frac{|f(x_0)|}{2}| \leq 2|\frac{f(x)}{2} - \frac{f(x_0)}{2}| \leq |f(x) - f(x_0)| < \varepsilon$, 故 $f^+(x)$ 在 x_0 处连续. 同理可证得 $f^-(x)$ 在 x_0 处连续.

注: 由连续的定义和关系式 $||f(x)| - |f(y)|| \le |f(x) - f(y)|$ 易知: f(x) 连续 $\Rightarrow |f(x)|$ 连续. 所以本题也可由连续的加法运算得到结论. 下题同理.

7. 证明: 若函数 f(x), g(x) 在 [a,b] 上连续, 则函数

$$F(x) = \max\{f(x), g(x)\}, \quad G(x) = \min\{f(x), g(x)\}\$$

在 [a, b] 上连续.

证明: 易知: $F(x) = \frac{f(x) + g(x)}{2} + \frac{|f(x) - g(x)|}{2}, G(x) = \frac{f(x) + g(x)}{2} - \frac{|f(x) - g(x)|}{2}.$ 由 f(x), g(x) 在 [a,b] 上连续知, 对 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\exists |x - x_0| < \delta(\forall x_0 \in [a,b])$ 时, 有 $|f(x) - f(x_0)| < \frac{\varepsilon}{2}, \ |g(x) - g(x_0)| < \frac{\varepsilon}{2};$ 所以, $|F(x) - F(x_0)| = |\frac{1}{2}(f(x) - f(x_0) + g(x) - g(x_0))| + \frac{1}{2}(|f(x) - g(x)| - |f(x_0) - g(x_0)|)| < \frac{1}{2}\varepsilon + \frac{1}{2}|f(x) - f(x_0) + g(x) - g(x_0)| < \varepsilon,$ 故 F(x) 在 [a,b] 上连续; 同理可证 G(x) 在 [a,b] 上连续.

8. 证明: 设函数 f(x) 在 $[a,+\infty)$ 上连续, $\lim_{x\to +\infty} f(x)=A,$ 则 f(x) 在 $[a,+\infty)$ 上有界.

证明: 取 $\varepsilon = 1$, 则 $\exists M > a$, 当 x > M 时, 有 |f(x)| < |A| + 1. 又因为 f(x) 在 [a, M] 上连续, 因而有界, 即 $\exists A_1$, 使得当 $x \in [a, M]$ 时, 有 $|f(x)| \leq A_1$, 取 $A_2 = \max\{|A| + 1, A_1\}$, 则 $|f(x)| \leq A_2$ $(x \geq a)$, 即 f(x) 在 $[a, +\infty)$ 上有界.

9. 证明: 设函数 f(x) 在 $(-\infty, +\infty)$ 上连续, $\lim_{x\to\infty} f(x) = A$, 则 f(x) 在 $(-\infty, +\infty)$ 上有界, 且存在最大值或最小值.

证明: 若 $f(x) \equiv A$, 则证完. 若存在 $x_0 \in (-\infty, +\infty)$, 使 $f(x_0) \neq A$. 先设 $f(x_0) > A$, 下面证明 f(x) 在 $(-\infty, +\infty)$ 上有界, 且存在最大值. 事实上, 由 $\lim_{x \to \infty} f(x) = A$ 知, $\exists X > 0$, 当 |x| > M 时, 有 $|f(x) - A| < \frac{f(x_0) - A}{2}$, 即 $\frac{A - f(x_0)}{2} f(x) < \frac{f(x_0) + A}{2} < f(x_0)$. 又 f(x) 在有限区间 [-X, X] 上连续, 所以 f(x) 在 [-X, X] 上有界且存在最大值 M. 故 f(x) 在 $(-\infty, +\infty)$ 上有界. 注意到 $x_0 \in [-X, X]$, 从而 $f(x_0) \leq M$. 因此, M 就是 f(x) 在 $(-\infty, +\infty)$ 上的最大值.

若 $f(x_0) < A$, 类似可证 f(x) 在 $(-\infty, +\infty)$ 上有界且存在最小值.

10. 证明: 设函数 f(x) 在 (a,b) 上连续, $\lim_{x\to a^+} f(x) = \lim_{x\to b^-} f(x) = +\infty$, 则 f(x) 在 (a,b) 内取到最小值.

证明: 已知 $\lim_{x \to a^+} f(x) = \lim_{x \to b^-} f(x) = +\infty$, 则对 $f(\frac{a+b}{2})$, $\exists \delta > 0 \ (\delta < \frac{a+b}{2})$, 当 $x \in (a, a+\delta) \cup (b-\delta, b)$ 时, 有 $f(x) > f(\frac{a+b}{2})$.

因为 $\frac{a+b}{2} \in [a+\delta,b-\delta]$, 且函数 f(x) 在 $[a+\delta,b-\delta]$ 上连续, 所以 f(x) 在 $[a+\delta,b-\delta]$ 上存在最小值, 即存在 $x_0 \in [a+\delta,b-\delta]$, $\forall x \in (a,b)$, 有 $f(x) \geq f(x_0)$. 故 f(x) 在 (a,b) 内取到最小值.

11. 证明: 设函数 f(x) 在 (a,b) 上连续, 对任意的 $r \in (a,b)$, 有 f(r) = 0, 则对任意 $x \in (a,b)$, f(x) = 0.

证明: 假设存在 $x_0 \in (a,b)$ 使得 $f(x_0) \neq 0$. 取一有理数列 $\{a_n\}$, 满足 $\lim_{n\to\infty} a_n = x_0$, 则由题意得到 $f(a_n) = 0$ ($\forall n$), 从而有 $\lim_{n\to\infty} f(a_n) = 0$. 另一方面, 因为 f(x) 在 x_0 处连续, 由 Heine 定理知: $\lim_{n\to\infty} f(a_n) = f(x_0) \neq 0$, 矛盾, 故假设不成立. 因此, 对任意 $x \in (a,b)$, f(x) = 0.

12. 证明: 设函数 f(x) 在 $(-\infty, +\infty)$ 上连续, 对任意的 $x \in (-\infty, +\infty)$, 函数值 f(x) 都是有理数, 且 $f(\frac{1}{2}) = 2$, 则 $f(x) \equiv 2$, $x \in (-\infty, +\infty)$.

证明: 假设 f(x) 不为常函数, 则 $\exists x_1, x_2 \in (-\infty, +\infty)$, $x_1 < x_2$, 使得 $f(x_1) \neq f(x_2)$. 于是由 f(x) 的连续性知: $\{f(x) | x \in [x_1, x_2]\}$ 必为非单点闭区间. 该闭区间 必有无理数, 从而由连续函数介值定理知, f(x) 在 $[x_1, x_2]$ 上的函数值可以是无理数, 这与题设相矛盾. 故, $f(x) \equiv 2$, $x \in (-\infty, +\infty)$.

13. 证明: 若对任意的 $x,y \in (-\infty,+\infty)$ 上有

$$f(x+y) = f(x) + f(y),$$

且 f(x) 在点 0 连续, 则 f(x) 在 $\in (-\infty, +\infty)$ 内连续, 且 f(x) = f(1)x.

证明: (1) 由题意知: f(0) = 0. 又 f(x) 在点 0 连续, 则 $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in U(0,\delta)$, 有 $|f(x) - f(0)| < \varepsilon$, 即 $|f(x)| < \varepsilon$. 现任取 $x_0 \in (-\infty, +\infty)$, 则对上述 δ ,

 $\forall x \in U(x_0, \delta)$, 有 $|f(x) - f(x_0)| = |f(x - x_0)| < \varepsilon$, 因此 f(x) 在 x_0 处连续. 由 x_0 的任意性知, f(x) 在 $\in (-\infty, +\infty)$ 内连续.

(2) 由题意知: 对正整数 n, 有 f(n) = nf(1), $f(\frac{1}{n}) \cdot n = f(1)$. 又, 0 = f(n - n) = f(n) + f(-n), 从而有 f(-n) = -f(n). 于是对正整数 n 和整数 m, 成立 $f(\frac{m}{n}) = \frac{m}{n}f(1)$. 这表明若 x 为有理数, 则 f(x) = xf(1).

若 x 为无理数,则存在有理数 x_0 ,使得 $x = x_0 + 0.x_1x_2x_3\cdots x_n\cdots$ (其中 $x_i \in \{0,1,\cdots,9\}$, $i=0,1,2,3,\cdots$).取 $a_n = x_0 + 0.x_1x_2x_3\cdots x_n$,则 $\{a_n\}$ 是有理数列,且 $x_n \to x$.由 Heine 定理知: $f(x) = \lim_{n\to\infty} f(a_n) = \lim_{n\to\infty} a_n f(1) = f(1)x$.

综上所述, f(x) 在 $\in (-\infty, +\infty)$ 内连续, 且 f(x) = f(1)x.

14. 证明:

- (1) 方程 $\frac{\alpha_1}{x-\lambda_1} + \frac{\alpha_2}{x-\lambda_2} + \frac{\alpha_3}{x-\lambda_3} = 0$ 在 $(\lambda_1, \lambda_2), (\lambda_2, \lambda_3)$ 内分别各有一根, 其中 $\alpha_1, \alpha_2, \alpha_3 > 0, \lambda_1 < \lambda_2 < \lambda_3$;
- (2) 方程 $x^3 + \alpha x + \beta = 0$ ($\alpha > 0$) 有且仅有一个实根;
- (3) 方程 $x^n = \beta(\beta > 0)$ 有且仅有一个正实根, 其中 n 是正整数;
- (4) 方程 $x = \alpha \sin x + \beta(\alpha, \beta > 0)$ 至少有一个正实根;
- (5) 方程 $x^2 \cos x = \sin x$ 在 $(\pi, \frac{3\pi}{2})$ 内至少有一个实根.

证明:(1) 设 $f(x) = \alpha_1(x - \lambda_2)(x - \lambda_3) + \alpha_2(x - \lambda_1)(x - \lambda_3) + \alpha_3(x - \lambda_1)(x - \lambda_2)$. 由于 $f(\lambda_1) > 0$, $f(\lambda_2) < 0$, $f(\lambda_3) > 0$, 所以由根的存在性定理知: 原方程在 (λ_1, λ_2) , (λ_2, λ_3) 内分别各有一根, 其中 $\alpha_1, \alpha_2, \alpha_3 > 0$, $\lambda_1 < \lambda_2 < \lambda_3$.

(2) $\mbox{id} x_1 < x_2, f(x) = x^3 + \alpha x + \beta, \mbox{jj}$

$$f(x_1) - f(x_2) = (x_1 - x_2)[(x_1 + \frac{1}{2}x_2)^2 + \frac{3}{4}x_2^2 + \alpha] < 0,$$

故 f(x) 为严格单调增函数; 又 f(x) 在 $(-\infty, +\infty)$ 上连续, $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to +\infty} f(x) = +\infty$, 由函数的连续性知: f(x) = 0 有且仅有一个实根.

- (3) 设 $f(x) = x^n \beta$, f(x) 在 $[0, +\infty)$ 上连续. 由于 $f(0) = -\beta < 0$, $f(+\infty) = +\infty$, 所以方程 f(x) = 0 至少存在一个正实根; 又因为 f(x) 严格单调增加, 所以方程 f(x) = 0 有且仅有一个正实根.
- (4) 设 $f(x) = x \alpha \sin x \beta(\alpha, \beta > 0)$, 则 f(x) 在 $[0, +\infty)$ 上连续. $f(0) = -\beta < 0$, 又 $\lim_{x \to +\infty} f(x) = +\infty$, 所以 f(x) = 0 至少有一个正实根.
- (5) 设 $f(x) = x^2 \cos x \sin x$, 则 f(x) 在 $[\pi, \frac{3\pi}{2}]$ 上连续. 由于 $f(\pi) = -\pi^2 < 0$, $f(\frac{3\pi}{2}) = 1 > 0$, 所以方程 f(x) = 0 在 $(\pi, \frac{3\pi}{2})$ 内至少有一个实根.

15. 证明: 设函数 f(x) 在 [0,2a] 上连续, 且 f(0)=f(2a), 则方程 f(x)=f(x+a) 在 [0,a] 上至少有一根.

证明: 设 g(x) = f(x) - f(x+a), 则 g(x) 在 [0,a] 上连续. 因为 g(0) = f(0) - f(a), g(a) = f(a) - f(2a) = f(a) - f(0), 所以 $g(0)g(a) = -[f(0) - f(a)]^2 \le 0$.

若 f(0) = f(a), 则 x = 0 为 f(x) = f(x + a) 的一根; 若 $f(0) \neq f(a)$, 则 g(0)g(a) < 0, 由根的存在性定理知, 方程 g(x) = 0 在 (0,a) 内至少有一根.

综上知: f(x) = f(x+a) 在 [0,a] 上至少有一根.

16. 证明: 设函数 f(x) 在 [0,1] 上连续, 且 f(0) = f(1), 则对任意的正整数 n, 存在 $\xi \in [0,1]$, 使得

$$f(\xi + \frac{1}{n}) = f(\xi).$$

证明: 令 $h(x) = f(x) - f(x + \frac{1}{n})$, 则 h(x) 在 $[0, 1 - \frac{1}{n}]$ 上连续, 且

$$0 = f(0) - f(1) = h(0) + h(\frac{1}{n}) + h(\frac{2}{n}) + \dots + h(1 - \frac{1}{n}).$$

若上式右边的项全为 0, 则证完. 若上式右边的项不全为 0, 则必有两项异号, 由根的存在性定理知, 存在 $\xi \in (0, 1 - \frac{1}{n})$, 使得 $h(\xi) = 0$, 即 $f(\xi + \frac{1}{n}) = f(\xi)$. 证毕.

17. 设函数 f(x) 在 [a,b] 上连续, a < c < d < b, 且 k = f(c) + f(d). 证明:

- (1) 存在 $\xi \in (a, b)$, 使得 $k = 2f(\xi)$;
- (2) 存在 $\xi \in (a, b)$, 使得 $mf(c) + nf(d) = (m+n)f(\xi)$, 其中 m, n 为正数.

证明: (1) 令 h(x) = k - 2f(x), 则在 [c,d] 用零点定理即得.

(2) 令 g(x) = mf(c) + nf(d) - (m+n)f(x), 则在 [c,d] 用零点定理即得.

18. 证明: 若函数 f(x) 在 [a,b] 上连续, $x_i \in [a,b](i=1,2,\cdots,n), \lambda_i > 0 (i=1,2,\cdots,n),$ 且 $\lambda_1 + \lambda_2 + \cdots + \lambda_n = 1$, 则存在 $\xi \in [a,b]$, 使得

$$f(\xi) = \lambda_1 f(1) + \lambda_2 f(2) + \dots + \lambda_n f(n).$$

证明: 记 $u = \lambda_1 f(1) + \lambda_2 f(2) + \cdots + \lambda_n f(n)$, 且设 f(x) 在 [a,b] 上的最大值 为 M, 最小值为 m. 则 $(\lambda_1 + \lambda_2 + \cdots + \lambda_n) m \leqslant u \leqslant (\lambda_1 + \lambda_2 + \cdots + \lambda_n) M$, 又 $\lambda_1 + \lambda_2 + \cdots + \lambda_n = 1$, 故 $m \leqslant u \leqslant M$, 由介值定理知: $\exists \xi \in [a,b]$, 使得 $f(\xi) = u$, 故 得证.

19. 证明: 若函数 f(x) 在 [a,b] 上连续, 且函数值的集合也是 [a,b], 则存在一点 $\xi \in [a,b]$, 使得 $f(\xi) = \xi$.

证明: 设 g(x) = f(x) - x, 则由题设知: g(x) 在 [a,b] 上连续, 且 $f(a) \le a$, $f(b) \le b$, 即 $g(a)g(b) \le 0$.

- (1) 若 f(a) = a 或 f(b) = b, 则证完.
- (2) 若 f(a) > a 且 f(b) < b, 则 g(a)g(b) < 0. 由零点定理知, 弐 $\in (a,b)$, 使得 $g(\eta) = 0$, 即 $f(\eta) = \eta$.

综上知: 存在一点 $\xi \in [a,b]$, 使得 $f(\xi) = \xi$.

20. 证明:

 $(1)\sin x^2$ 在 $(-\infty, +\infty)$ 上不一致连续, 但在 [0, A] 上一致连续;

- $(2)\sqrt{x}$ 在 $[1,+\infty)$ 上一致连续;
- (3)ln x 在 $[1,+\infty)$ 上一致连续;
- (4) 设函数 f(x) 在区间 I 上满足 Lipschitz 条件, 即对区间 I 上任意 x, y, 有 $|f(x) f(y)| \leq L|x y|$ (L 是常数), 则 f(x) 在 I 上一致连续;
- (5) 设函数 f(x) 在有限开区间 (α, β) 上连续, 则 f(x) 在 (α, β) 上一致连续的充分必要条件是: $f(\alpha + 0)$ 与 $f(\beta 0)$ 存在;
- (6) 若函数 f(x) 在 $[\alpha,+\infty)$ 上连续,且 $\lim_{x\to+\infty}f(x)=\beta,$ 则 f(x) 在 $[\alpha,+\infty)$ 上一致连续;
- (7) 若函数 f(x) 在 $[\alpha, +\infty)$ 上连续, 且 $\lim_{x\to +\infty} [\beta x f(x)] = 0(\beta$ 为常数), 则 f(x) 在 $[\alpha, +\infty)$ 上一致连续.

证明: (1) 取 $x_n = \sqrt{2n\pi + \frac{\pi}{2}}, x_n' = \sqrt{2n\pi}, \text{ 则 } x_n' - x_n \to 0 (n \to \infty), \text{ 但 } f(x_n') - f(x_n) = 1 \not\to 0 (n \to \infty), 因而 <math>\sin x^2$ 在 $(-\infty, +\infty)$ 上不一致连续.

易知 $f(x) = \sin x^2$ 在 [0,A] 上连续, 由 Cantor 定理知: $f(x) = \sin x^2$ 在 [0,A] 上一致连续.

 $(2)\forall \varepsilon > 0$, 对 $x_1, x_2 \in [1, +\infty)$, 成立

$$|f(x_1) - f(x_2)| = |\sqrt{x_1} - \sqrt{x_2}| = |\frac{x_1 - x_2}{\sqrt{x_1} + \sqrt{x_2}}| < |x_1 - x_2| < \varepsilon,$$

所以, 取 $\delta = \varepsilon$ 时, $\forall x_1, x_2 \in [1, +\infty)$, 只要 $|x_1 - x_2| < \delta$, 就有 $|f(x_1) - f(x_2)| < \varepsilon$. 故 \sqrt{x} 在 $[1, +\infty)$ 上一致连续.

(3) $\forall \varepsilon > 0$,由不等式 $\ln(1+\alpha) \leqslant \alpha \ (\alpha > -1)$,和对 $x_1, x_2 \in [1, +\infty)$,成立

$$|f(x_1) - f(x_2)| = |\ln x_1 - \ln x_2| = |\ln(1 + \frac{x_1 - x_2}{x_2})| \le \frac{|x_1 - x_2|}{x_2} \le |x_1 - x_2| < \varepsilon$$

知: 取 $\delta = \varepsilon$ 时, $\forall x_1, x_2 \in [1, +\infty)$, 只要 $|x_1 - x_2| < \delta$, 就有 $|f(x_1) - f(x_2)| < \varepsilon$. 故 $\ln x$ 在 $[1, +\infty)$ 上一致连续.

 $(4)\forall \varepsilon > 0$,取 $\delta = \frac{\varepsilon}{L}$,则 $\forall x, y \in I$,只要 $|x - y| < \delta$,就有 $|f(x) - f(y)| \leq L|x - y| < L\delta < \varepsilon$. 故 f(x) 在 I 上一致连续.

(5) 充分性: 已知 $f(\alpha + 0)$ 与 $f(\beta - 0)$ 存在, 作辅助函数

$$h(x) = \begin{cases} f(x), & x \in (\alpha, \beta), \\ f(\alpha + 0), & x = \alpha, \\ f(\beta - 0), & x = \beta, \end{cases}$$

则函数 h(x) 在 $[\alpha,\beta]$ 上连续. 由 Cantor 定理知, h(x) 在 $[\alpha,\beta]$ 上一致连续, 从而 h(x) 在 (α,β) 内一致连续. 注意到 $x\in(a,b)$ 时 h(x)=f(x), 所以 f(x) 在 (α,β) 内一致连续.

必要性: 已知 f(x) 在 (α,β) 内一致连续, 所以 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\forall x_1,x_2 \in (\alpha,\beta)$, 只要 $|x_1 - x_2| < \delta$, 就有

$$|f(x_1) - f(x_2)| < \varepsilon$$
.

在区间 (α, β) 内任取收敛于 α 的点列 $\{x_n\}$, 则由点列的 Cauchy 收敛准则知, 对上述 δ , $\exists N$, $\forall n$, m > N, 有 $|x_n - x_m| < \delta$. 因此

$$|f(x_n) - f(x_m)| < \varepsilon \qquad (\forall n, m > N),$$

即 $\{f(x_n)\}$ 为基本列, 故收敛. 由 Heine 定理知, $f(\alpha+0)$ 存在.

同理可得 $f(\beta - 0)$ 存在. 证毕.

(6) 因为 $\lim_{x \to +\infty} f(x) = \beta$, 所以 $\forall \varepsilon > 0$, $\exists X > \alpha$, $\stackrel{.}{=} x_1, x_2 > X$ 时, 有

$$|f(x_1) - f(x_2)| \leqslant \varepsilon.$$

又, f(x) 在 [a, X+1] 上连续, 从而一致连续. 于是, $\exists \delta > 0 \ (\delta < 1), \forall x_1, x_2 \in [a, X+1]$, 只要 $|x_1 - x_2| < \delta$, 就有 $f(x_1) - f(x_2)| < \varepsilon$.

现任取 $x', x'' \in [\alpha, +\infty)$, 满足 $|x' - x''| < \delta$, 则点 x', x'' 只有两种位置关系: (1) $x', x'' \in [\alpha, X+1]$; (2) $x', x'' \in (X, +\infty)$. 无论何种位置关系, 由前述, 都有 $|f(x') - f(x'')| < \varepsilon$. 故 f(x) 在 $[\alpha, +\infty)$ 上一致连续.

- (7) 令 $h(x) = \beta x f(x)$, 则 h(x) 在 $[\alpha, +\infty)$ 上连续, 且 $\lim_{x \to +\infty} h(x) = 0$. 由上 题知, h(x) 在 $[\alpha, +\infty)$ 上一致连续. 注意到函数 $g(x) = \beta x$ 在 $[\alpha, +\infty)$ 上一致连续, 得到 $f(x) = \beta x h(x)$ 在 $[\alpha, +\infty)$ 上一致连续. 证毕.
 - 21. 设函数 f(x) 在 $[\alpha, \beta]$ 上连续, 且对任意的 $x \in [\alpha, \beta]$, 存在 $y \in [\alpha, \beta]$ 使得

$$|f(y)| \leqslant \frac{1}{2}|f(x)|.$$

证明: 存在一点 $\xi \in [\alpha, \beta]$, 使得 $f(\xi) = 0$.

证明: (反证法) 假设对所有的 $x \in [\alpha, \beta]$, 都有 $f(x) \neq 0$, 即 f(x) 同号, 不妨设对 $\forall x \in [\alpha, \beta]$, 都有 $0 < f(x) \leq M$, 则 $M \geq f(x) \geq 2f(y) \geq 2^2 f(y_2) \geq \cdots \geq 2^n f(y_n)$, 即 $0 < f(y_n) \leq \frac{M}{2^n}$; 令 $n \to \infty$ 得, $f(y_n) \to 0$. 由于 $y_n \in [\alpha, \beta]$ ($\forall n$), 即数列 $\{y_n\}$ 有界, 所以有收敛子列, 不妨仍记为 $\{y_n\}$, 令 $y_n \to y_0$, 则 $y_0 \in [\alpha, \beta]$, 且 $f(y_0) = 0$. 与假设矛盾, 故任意的 $x \in [\alpha, \beta]$, 存在 $y \in [\alpha, \beta]$ 使得 $|f(y)| < \frac{1}{2}|f(x)|$.

22. 设函数 f(x) 定义在 $(-\infty, +\infty)$ 上, 在点 0,1 上连续, 且对任意的 $x \in (-\infty, +\infty)$, 有 $f(x^2) = f(x)$ 证明: f(x) 为常量函数.

证明: 当 |x| < 1 时, $f(x) = f(x^2) = f(x^4) = \cdots = f(x^{2^n}) \to f(0)$, 即 f(x) = f(0); 当 |x| > 1 时, $f(x) = f(x^2) = f(|x|) = \cdots = f(|x|^{\frac{1}{2^n}}) \to f(1)$, 即 f(x) = f(1); 又因为 f(x) 在点 1 处连续, 所以 f(0) = f(1). $f(-1) = f((-1)^2) = f(1)$. 故, $f(x) \equiv f(0) = f(1)$, 得证.

23. 证明: 设函数 f(x) 在 $[\alpha, \beta]$ 上连续, 且对任意的 $x \in [\alpha, \beta]$, 有

$$|f(x) - \frac{\alpha + \beta}{2}| \le \frac{\beta - \alpha}{2}.$$

则方程 f(f(x)) = x 在 $[\alpha, \beta]$ 上至少存在一个解.

证明: 因为对任意的 $x \in [\alpha, \beta]$, 成立 $|f(x) - \frac{\alpha + \beta}{2}| \leqslant \frac{\beta - \alpha}{2} \Leftrightarrow \alpha \leqslant f(x) \leqslant \beta$, 所以对任意的 $x \in [\alpha, \beta]$, 有 $\alpha \leqslant f(f(x)) \leqslant \beta$. 对函数 g(x) = f(f(x)) 利用第 19 题即得结论. (也可如第 19 题般直接证明, 令 h(x) = f(f(x)) - x 即得)

24. 证明: 设函数 f(x), g(x) 在 $[\alpha, \beta]$ 上连续, $\{x_n\} \subset [\alpha, \beta]$, 且

$$g(x_n) = f(x_{n+1}), \quad n = 1, 2, \cdots$$

则至少存在一点 $\xi \in [\alpha, \beta]$, 使方程 $f(\xi) = g(\xi)$.

证明: 若 $f(x_1) = g(x_1)$, 则证完. 不妨设 $f(x_1) < f(x_2)$. 若存在 x_{n_0} , 使得 $f(x_{n_0}) > g(x_{n_0})$, 则由零点定理, $\exists x_0$, 使得 $f(x_0) = g(x_0)$. 若不存在如此 n_0 , 即 $\forall n$, 有 $f(x_n) < g(x_n)$, 则与已知条件 $g(x_n) = f(x_{n+1})$ 联立, 得知数列 $\{f(x_n)\}$ 严格递增且有界, 从而它收敛, 记其极限为 A. 于是

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(x_{n+1}) = \lim_{n \to \infty} g(x_n) = A.$$

由于 $x_n \in [\alpha, \beta]$ ($\forall n$),即数列 $\{x_n\}$ 有界,从而有收敛子列 $\{x_{n_k}\}$. 记 $\lim_{k \to \infty} x_{n_k} = \xi$,则 $\xi \in [\alpha, \beta]$,且由函数 f 和 g 在点 ξ 连续得到 $f(\xi) = g(\xi)$. 证毕.

习题 3.2

1. 设 $\{(\alpha_n, \beta_n)\}$ 是一个严格的开区间套, 即

$$\alpha_1 < \alpha_1 < \dots < \alpha_n < \dots < \beta_n < \dots < \beta_2 < \beta_1$$

且 $\lim_{n\to\infty} (\beta_n - \alpha_n) = 0$. 证明存在唯一的一点 ξ , 使得

$$\alpha_n < \xi < \beta_n, n = 1, 2, \cdots$$

证明: 类似于闭区间套定理的证明. 事实上, $\{\alpha_n\}$ 严格递增且有界, 从而有极限 ξ ; $\{\beta_n\}$ 严格递减且有界, 也存在极限, 由 $\beta_n-\alpha_n\to 0 (n\to\infty)$ 得到 $\{\beta_n\}$ 的极限也是 ξ . 由两数列的严格单调性得知: $\forall n\in\mathbb{N}_+,\ \alpha_n<\xi<\beta_n$ (否则, 若对某 m, $\xi=\alpha_m$, 则 $\forall n\geqslant m$, 有 $\alpha_n=\xi$, 与 $\{\alpha_n\}$ 的严格单调性相矛盾. 对 $\xi<\beta_n$ 类似说明).

唯一性: 假设 $\alpha_n < \eta < \beta_n \ (n=1,2,\cdots)$, 由迫敛性定理得到 $\eta = \xi$.

2. 证明: 任何有限集都没有聚点.

设 E 为有限集, 假设 a 为 E 的聚点, 则 $\forall \varepsilon > 0$, $U^0(z, \varepsilon) \cap E$ 有无穷多个点, 这 与 E 为有限集相矛盾.

3. 证明: 设函数 $f(x) = \frac{1}{x}, 0 < x \leq 1$, 对任意的 $\alpha \in (0,1]$, 都存在开区间 Λ_{α} , 当 $x \in \Lambda_{\alpha}$ 时, 有

$$|f(x) - f(\alpha)| < \frac{1}{3},$$

则开区间集 $\{\Lambda_\alpha:\alpha\in(0,1)\}$ 覆盖了 (0,1],但是没有有限个 Λ_α 覆盖 (0,1]. 证明: (1) 函数 $f(x)=\frac{1}{x}$ 在区间 (0,1] 上连续,于是 $\forall \alpha\in(0,\alpha]$,对 $\varepsilon_0=\frac{1}{3}$,存 在 $\delta_{\alpha} > 0$, $\forall x \in (\alpha - \delta_{\alpha}, \alpha + \delta_{\alpha}) \subset (0, 1]$, 有 $|f(x) - f(\alpha)| < \frac{1}{3}$.

设 $\Lambda_{\alpha} = (\alpha - \delta_{\alpha}, \alpha + \delta_{\alpha})$, 则开区间集 $\{\Lambda_{\alpha} : \alpha \in (0, 1]\}$ 覆盖了 $\{0, 1\}$.

- (2) 任取 $\{\Lambda_{\alpha}: \alpha \in (0,1]\}$ 中的有限个开区间 $\Lambda_{\alpha_k} = (a_k, b_k)$ $(k = 1, 2, \dots, m)$. 由题设, $0 \notin \Lambda_{\alpha}$ ($\alpha \in (0,1]$), 取 $a = \min\{a_1, a_2, \dots, a_m\}$, 则 a > 0. 于是 (0,a] 不能 被 $\{(a_k, b_k): k = 1, 2, \dots, m\}$ 覆盖. 故没有有限个 Λ_{α} 覆盖 (0, 1].
- 4. 应用有限覆盖定理证明: 若函数 f(x) 在 [a,b] 上连续, 且对任意的 $x \in [a,b]$, 有 f(x) > 0, 则存在 $\beta > 0$, 对任意 $x \in [a, b], f(x) > \beta$.

证明: 有连续函数的保号性知, $\forall x \in [a, b]$, 存在 $\delta_x > 0$, 使得 $\forall y \in U(x, \delta_x)$, 有

$$f(y) > \frac{f(x)}{2} > 0.$$

于是得到 [a,b] 的一个开覆盖 $\mathcal{H} = \{U(x,\delta_x) : x \in [a,b]\}$, 从而由有限覆盖定理知: 存在一个有限子覆盖 $\mathcal{H}^* = \{U(x_i, \delta_i) : j = 1, 2, \dots, m\}$. 取

$$\beta = \min\{\frac{f(x_j)}{2} : j = 1, 2, \dots, m\},\$$

则 $\beta > 0$. 因此, $\forall x \in [a, b]$, 存在 j_0 , 使 $x \in U(x_{j_0}, \delta_{j_0}) \in \mathcal{H}^*$, $f(x) > \frac{f(x_{j_0})}{2} \geqslant \beta > 0$.

注: 不用有限覆盖定理也可证明本题, 且更简单. 事实上, 由闭区间上连续函数 的最值定理, $m = \min f[a, b] > 0$ (因为存在 $x_0 \in [a, b]$, 使得 $m = f(x_0) > 0$). 取 $\beta = m/2$ 即可.