CS3853: Computer Architecture
Midterm 1
Spring 2017
Total Marks: 100
Time: 75 min

Name:
Banner Id: Solution

- 1. [10 pt] Indicate True or False for the following statements:
 - Speed up of system A over system B is ET_B/ET_A
 - CPI is proportional to performance.
 - If 25% of a program cannot be parallelized, then the maximum speed up that can be achieved through parallelization is 5.
 - Higher MIPS rating always implies lower execution time.
 - Pipeline improves throughput not latency. T
 - Throughput can be used as a performance metric.
 - Structural hazard is related to branch instructions.
 - If a branch is actually taken, then the static predict not taken policy incurs stalls.
 - In the 5 stage MIPS pipeline, register access (i.e., read or write) takes an entire cycle.
 - Forwarding and bypassing are synonymous.

2. [16 pt] Amdahl's law:

Suppose you can apply two enhancements - enh_1 and enh_2 . enh_1 can be applied to 40% of the program whereas enh_2 can be applied to 30% of the program. The speed ups of enh_1 and enh_2 are 4 and 2 respectively.

- (a) [4 pt] Write down the equation of Amdahl's law that applies two enhancements together.
- (b) [4 pt] What is the overall speed up if you use only enh_1 ?
- (c) [4 pt] What is the overall speed up if you use only enh_2 ?
- (d) [4 pt] What is the overall speed up if you use both enhancements together?

a)
$$S = \frac{1}{1 - f_1 - f_2 + \frac{f_1}{5enh_1}} + \frac{f_2}{5enh_2}$$

b) $S_1 = \frac{1}{1 - f_1 + \frac{f_1}{5enh_1}} = \frac{1}{0.7} = 1.43$
 $= \frac{1}{1 - 0.4 + \frac{0.4}{24}} = \frac{1}{0.7} = 1.43$

c) $S_2 = \frac{1}{1 - f_2 + \frac{f_2}{5enh_2}} = \frac{1}{0.85} = 1.18$
 $dS = \frac{1}{1 - 0.4 - 0.3 + \frac{0.4}{4} + \frac{0.3}{2}} = \frac{1}{0.55}$
 $= 1.82$

3. [16 pt] CPI calculation:

Suppose your program has 30% load, 20% store, 40% ALU, and 10% branch instructions. The CPIs of those instructions are 1.2, 1.5, 1.05, and 1.9 respectively.

- (a) [4 pt] What is the overall CPI?
- (b) [4 pt] If we use a faster memory, CPIs of load and store are reduced by 10%. What is the new overall CPI?
- (c) [4 pt] If the program has a total of 5 billion instructions and the clock cycle time is 1 ns, what are the original and new execution time?
- (d) [4 pt] What is the speed up of the new machine?

a)
$$CPI_0 = 0.3 \times 1.2 + 0.2 \times 1.5 + 0.4 \times 1.05 + 0.1 \times 1.9$$

= 1.27

b)
$$CPI_{10ad} = 0.9 \times 1.2 = 1.08$$

 $CPI_{store} = 0.9 \times 1.5 = 1.35$
 $CPI_{new} = 0.3 \times 1.08 + 0.2 \times 1.35 + 0.4 \times 1.05$
 $+0.1 \times 1.9$

4. [38 pt] Pipeline & CPI:

Let us consider a classic 5 stage MIPS pipeline where a **branch is resolved in the ID stage** and is handled by **static predict not taken** policy. Consider the following code fragment:

L1: LD R1, 0 (R10)
SD R1, 4 (R2)
ADD R3, R1, R2
ADD R3, R3, R5
BEQZ R3, L1
ADD R3, R2, R4

(a) [12 pt] Assume that the pipeline has no forwarding support. Show the pipeline timing diagram of the same code.

Ins	1	2	3	4	(5)	6	7	(8)	(9)	10	11	(12)	13	14	(15)	(16)	17	18	19	20	21
L1: LD R1, 0(R10)	F	D	E	M	W						e B	0			0						
SD R1, 4(R2)		5	5	F	D	E	M	W													
ADD R3, R1, R2					F	D	E	M	W												
ADD R3, R3, R5						5	5	F	D	E	M	W									
BEQZ R3, L1									S	S	F	D	E	7	W						
ADD R3, R2, R4												F	D	E	M	W					

(b) [12 pt] Assume that the pipeline has full forwarding support. Show the pipeline timing diagram of the same code.

Ins	1	2	3	4	(5)	6	7	(8)	9	(10)	(11)	12	13	14	15	16	17	18	19	20	21
L1: LD R1, 0(R10)	F	D	E	M	W																
SD R1, 4(R2)		F	D	E	M	W	r														
ADD R3, R1, R2			F	D	E	M	W														
ADD R3, R3, R5				F	D	E	M	W													
BEQZ R3, L1					F	5	D	E	M	W											
ADD R3, R2, R4							F	D	E	M	W										

- (c) [14 pt] Assume that our 5 stage MIPS pipeline has full forwarding. Also assume that that branch condition is evaluated in the ID stage, target is calculated in the EX stage and a branch is handled using static freeze policy. 10% loads have a dependence with the immediately following ALU instruction and 5% loads have a dependence with the immediately following branch instruction. There are no other load dependencies.
 - i. [3 pt] What is the number of stalls when a load is immediately followed by a dependent ALU instruction? Show your work.
 - ii. [3 pt] What is the number of stalls when a load is immediately followed by a dependent branch instruction? Show your work.
 - iii. [4 pt] What is the average number of stalls caused by a load instruction? Show your work.
 - iv. [4 pt] What is the CPI of a load instruction? Show your work.

- 5. [20 pt] Short Questions. Answer precisely.
 - (a) [4 pt] What is normalized execution time? How can you summarize the normalized execution times of *n* programs?

(b) [4 pt] If speed up of a program due to some hardware optimization is 3, what is the percentage improvement of performance?

200%

(c) [4 pt] What are the different types of dependences? Give an example of each type.

RAW WAR WAW (d) [4 pt] What are the different ways to eliminate structural hazards?

i) Resource duplication ii) Stall

(e) [4 pt] In our MIPS 5 stage pipeline, can we have WAR hazard? Explain your answer.

No, read always rappers early in the pipeline before write.