Minimum Makespan Problem

MURUN ENKHEE

Agenda

- 1. Makespan Problem Definition
- 2. Previous Work
 - **1. Online List** Scheduling Algorithm Greedy
 - 2. Online MR Algorithm Current Best Deterministic Algorithm
 - 3. Online Rand Algorithm Current Best Randomized Algorithm for general case
 - 4. Offline Algorithm NEAR Optimal
- 3. Input Sequence Generation
 - 1. Uniformly Distributed Randoms
 - 2. **Normally** Distributed Randoms
 - **3. Zipfian** Distributed Randoms
- 4. Report Table

Basic Legendary Classic SCHEDULING!

Call me MACHINE

Call me MACHINE

M machines

Call me MACHINE

Call me MACHINE Let's minimize the max load /makespan/

Call me MACHINE

Call me MACHINE max load /makespan/ How Would You Schedule, tho? The Famous

Introduced by Graham in 1966

Online List Scheduling Algorithm

1 3 6 4 5 ... N jobs

Processing Time

Call me MACHINE

Call me MACHINE

Call me MACHINE

6 4 5 ... N jobs

Processing Time

Call me MACHINE

4 5 ... N jobs

5 ... N jobs

... N jobs

... N jobs

Makespan = 13.

However, OPT can do 11

Previous Work

Upper Bound

(2 – 1/m) – List by Graham 1966

1.986 – Bartal et al.

1.945 – Karger et al

1.923 – M2 by Susan et al.

1.9201 – MR by Fleischer & Wahl 2000

Lower Bound /current best/

1.853 – Gormley et al.

Randomized Upper Bound /current best/

1.916 – Rand by Susan et al. 2002

Generating Input Sequence

Uniform Distribution

Normal Distribution

Zipfian Distribution

Report Table

	Number of Jobs /n/		# of Machines /m/	Offline Approximation	Online Algorithm		
Input sequence					Greedy	Current Best Deterministic	Current Best Random /m>7/
					List Scheduling	MR Algorithm	Rand Algorithm /avg of 10runs/
Uniform Distribution			5	15161.76	15191	15191	19401.7
	1000	(1 <tp<150)< td=""><td>50</td><td>1518.65</td><td>1586.71</td><td>1586.71</td><td>1890.23</td></tp<150)<>	50	1518.65	1586.71	1586.71	1890.23
			150	512.93	588.86	588.86	682.64
		(200 <tp<500)< td=""><td>5</td><td>697703.07</td><td>697835.85</td><td>697835.85</td><td>892607.39</td></tp<500)<>	5	697703.07	697835.85	697835.85	892607.39
	10000		50	69770.44	70036.74	70036.74	83628.11
			150	23323.91	23538.27	23538.27	27806.87
Normal Distribution		(1 <tp<170)< td=""><td>5</td><td>19997.99</td><td>20015.61</td><td>20015.61</td><td>25600.01</td></tp<170)<>	5	19997.99	20015.61	20015.61	25600.01
	1000		50	2014	2053.66	2291.78	2434.17
			150	689.89	750.39	750.39	868.49
		(0 <tp<650)< td=""><td>5</td><td>600335.77</td><td>600366.77</td><td>600366.77</td><td>767888.58</td></tp<650)<>	5	600335.77	600366.77	600366.77	767888.58
	10000		50	60044.81	60282.12	60282.12	72080.16
			150	20036.75	20332.37	21457.02	24019.45
Zipfian Distribution		(0 <tp<1034)< td=""><td>5</td><td>1034</td><td>1211</td><td>1211</td><td>1175</td></tp<1034)<>	5	1034	1211	1211	1175
	1000		50	1034	1046	1046	1043
			150	1034	1036	1036	1036
			5	11361	11529	11529	14714
	10	0000	50	3974	4068	4068	4038
			150	3974	3998	3998	3991

References

- 1. S. Albers. On Randomized Online Scheduling. *Proceeding STOC'02 Proceedings of the thirty-fourth annual ACM symposium on Theory of Computing*, pages 134-143
- 2. S. Albers. Better Bounds for online scheduling. *SIAM Journal on Computing*, 29:459-473, 1999
- 3. Y. Bartal, H. Karlo and Y. Rabani. A better lower bound for on-line scheduling. *Information Processing Letters*, 50:113-116, 1994
- 4. R. Fleisher and M.Wahl. Online scheduling revisited. *Proc. 8th Annual European Symposium on Algorithms*, Springer LNCS, 2000
- 5. T. Gormley, N. Reingold, E. Torng and J. Westbrook. Generating adversaries for requestanswer games. *Pro* . 11th ACM-SIAM Symposium on Dis rete Algorithms , 564-565, 2000.
- 6. R.L. Graham. Bounds for certain multi-processing anomalies. *Bell System Technical Journal*, 45:1563-1581, 1966