TPLGPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGIPWA PLSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIW QQMEELGMAPALQPTQGAMPAFASAFQRRAGGVLVASHLQSFLEVSYRVLRHLAQP

hGCSF wild type

ATGACTCCATTAGGTCCAGCTTCCTCTGCCGCAAAGCTTCCTGCTGAAATGCCTGGAACAGGTTCGTAAAATCCAGGGTGATGG TGCTGCTCTGCAGGAAAAACTGTGCGCTACCTACAAACTGTGCCATCCGGAAGAACTGGTTCTGCTGGGTCACTCCCTGGGTATCC CAGGGTCTGCTGCAAGCTCTGGAAGGTATCTCCCCGGAACTGGGTCCGACCCTGGACACTCTGCAGCTGGACGTCGCTGACTTCGC TACCACCATCTGGCAGCAGATGGAAGAACTGGGTATGGCTCCGGCTCTGCAGCCGACCCAGGGTGCTATGCCGGCTTTCGCTTCCG CTTTCCAGCGTCGCGCAGGTGGCGTTCTGGTTGCTAGCCACCTGCAGGTTCCTGGAAGTTTCCTACCGTGTTCTGCGTCACCTG GCTCAGCCGTGA

FIG.

core4	core4v	bndry4_2	dry4_core	bndry4_AD	Jry4_AD_(
					core4	
21 151	21 153	14 120	14 120	14	14	
24 152	24 154	20 145	20 145	2.0	20	
28 153	28 157	27	146	27	27	
31 154	31 160	32 147	32 147	32	32	
75 157	75 161	34 148	34 148	34	34	
78 160	78 167	38 155	38 155	38	38	
82	82 168	77 156	77	145	145	
85 168	8 5	79 164	79	146	146	
89	68	84 170	84 170	147	147	
103	103	91	91	148	148	
106	106	<u>ი</u>	6	155	155	
110	110	102	102	156	156	
113	113	107	107	164	164	
114	114	109	109	170	170	
117	117	116	116			
149	151					`
	17 21 24 28 31 75 78 82 85 89 103 106 110 113 114 117 14 150 151 152 153 154 157 160 161 168	17 21 24 28 31 75 78 82 85 89 103 106 110 113 114 117 14 150 151 152 153 154 157 160 161 163 103 106 110 113 114 117 15 152 153 154 157 160 161 167 168 82 85 89 103 106 110 113 114 117 15	17 21 24 28 31 75 78 82 85 89 103 106 110 113 114 117 14 150 151 152 153 154 157 160 161 167 168 85 89 103 106 110 113 114 117 15 152 153 154 157 160 161 167 168 84 91 99 102 107 109 116 1-2 145 146 147 148 155 156 164 170 99 102 107 109 116	17 21 24 28 31 75 78 82 85 89 103 106 110 113 114 117 14 150 151 152 153 154 157 160 161 168 82 85 89 103 106 110 113 114 117 15 152 153 154 157 160 161 167 168 152 153 154 157 160 161 167 168 152 153 154 157 160 161 167 168 154 170 199 102 107 109 116 155 156 145 146 147 148 155 156 164 170 156 164 170 199 102 107 109 116	150 151 152 153 154 157 160 161 168 85 89 103 106 110 113 114 117 14 152 153 154 157 160 161 167 168 85 89 103 106 110 113 114 117 15 152 153 154 157 160 161 167 168 82 85 89 103 106 110 113 114 117 15 120 145 146 147 148 155 156 164 170 99 102 107 109 116 1AD 14 20 27 32 34 38 77 79 84 91 99 102 107 109 116 1AD 14 20 27 32 34 38 145 146 170 199 102 107 109 116	150 151 152 153 154 157 160 161 168 89 103 106 110 113 114 117 14 150 151 152 153 154 157 160 161 168 85 89 103 106 110 113 114 117 15 151 152 153 154 157 160 161 167 168 82 85 89 103 106 110 113 114 117 15 152 153 154 157 160 161 167 168 82 85 89 103 106 110 113 114 117 15 152 153 154 157 160 161 167 168 156 164 170 150 145 146 147 148 155 156 164 170 150 150 107 109 116 150 150 150 150 150 150 150 150 150 150

F/G._2

G-CSF Designs - Optimal Sequences Selected by PDA*

t _2 _cor _AD _AD _AD	MTPLGPASSLPQS	FLL	KCLE	OVERT	100			Subbe	T,VI,T,C	LGHSLGIPWA	Q VIV
AD AD AT A A D A D A D A D A D A D A D A				X + 1 1 1 1 X	JOIN GAL	ALQEKLCA	ATYKL	ממענו	1		77770
				L	田	Н	ĸ				
_AD	34		H	Ţ	EA	디	н				
_ADV16		H		E E	曰	H	Ħ				
core4 core4_V1677	_core4		ч	L	EA	디	H				
core4_V1671			н		K						
Gores	~		н	Н	ď						
			H		4	Н					
sm0	! ! ! !	1 1 1 1 1		1 1 1 1 1 1 1	- A	1 1 1 1 1	! ! ! !	1 1 1	! ! !	[]] []	i 1 1
£m2			ď		ď						
£m3			ы		Ø						
£m4			н		æ						
£m7			ı		ď						
	.,,										
	70	80		90		100		110		120	
Ö	PSQALQLAGCL	SQLHSGLF	FLYQ	GLLQAL	EGISE	PELGPTL	DTLQLI	LDVADFAT	Ę	1	
bndry4_2		ᄓ		X		ı ∧		E-)	Н	ļ rā	
ndry4_core4		Ţ Ŀ	Ŀų	×		ΚV	Н	EI L	Н	ı	
ndry4_AD											
bndry4_AD_core4		Ľι	Įτι			>		H			
ore4		ᄕ	ഥ			>		П			
ore4_V167A		ഥ	Ĺτι					н			
2re3	1	E4	F4	Įτί				H			
sm0	t 1 1 1 1	! ! ! !	! { !	1 t t t	 	 	1 1 1 1	1 1	 	1 1 1 1	1 1 1
. 2											
fm3		ᄕᅫ						H			
fm4		Ē						H			
£m7		ſ×ι	Ĺτι					H			

FIG._3A

__

	130	130 140 150 160 170		150		16	0	170	
hGCSFwt ME	$\tt MEELGMAPALQPTQGAMPAFASAFQRRAGG{\bf VL}{\bf V} ASHLQSFLEVSYRV{\bf L}RHLAQP$	AMPAFASAF	QRRAG	GVL	VASHI	QSFL	EVSY	RV L RHLAQP	
bndry4_2			KED		II		Ø		
bndry4_core4			KED	н	I		Ø	ᄕᅭ	
bndry4_AD			KET		II		Ø		
bndry4_AD_core4	e4.		KED	н	III		Ø	ᄕ	
core4				н	ш			ᄕᅭ	
core4_V167A				н		I WF		AF	
core3				н	u			ᄕ	
sm0	1 f f t l l l t	! ! ! !	! !	1	1 1 1 1 1	! ! ! !	 	1 1 1 1 4 1 8 1	1 1 1 1 1 1
fm2				н	.				
fm3								ĺΨ	
£m4				н	ш			Ē	
£m7				Н	_			ſΞŧ	

Core4 mutant ground state; Monte Carlo analysis shows the ground state with Phe instead of Trp for *Sequences shown below dotted lines were not obtained from PDA calculations but were The sequence selected for Core4_V167A is not the derived by reverting some core4 or core3 mutant positions to wild type. position 160, and Leu instead of Phe for position 161 (see Table 4) positions are indicated in bold.

FIG._3B

FIG._4

Core4 - Monte Carlo Analysis - Ground State and Allowed Amino Acids and Their Number of Occurrences (For the Top 1000 Sequences)		
state rthe1		313
ound S		<u> </u>
s - Gro urrence		229 287 961 172 707 707 707 140 321 264 143 143 187 187 161
Analysi er of Occu	_	
te Carlo Numbe	ind ite	736 736 747 747 747 747 747 747 747 747 747 74
Mont Id Their	Ground State	LEU ARAL LEU RAL LEU LEU LEU LEU LEU LEU LEU LEU LEU LE
Core4	Position	7
	hG-CSF	CYS LEU SEL SEL LEU SEE SEL SEL SEL SEL SEL SEL SEL SEL SEL SEL

*position where Monte Carlo didn't find an alternative and where the top amino acid is the wild type $\, extstyle\,$

Щ.

FIG._5

Coredv - Monte Carlo Analysis (Ground State and Allowed Amino Acids

Core4v - Monte Carlo Analysis (Ground State and Allowed Amino Acids and Their Number of Occurrences (For the Top 1000 Sequences)	·													
Allowed Sequen		17	47		94	295								
ate and p 1000		吊	=		ΤYΒ	当								
und Sta the To		251 300	257		16	46 269	149					184		
s (Gro		빌빌	VAL		LE T	LEU	LEU					빌		
ınalysi urrence		51 682 61	193	7 + 7	α <u>ç</u>	78	54 405		61	:	414	18 448	156	
carlo ⊿ r of Occ	_	X & & & & & & & & & & & & & & & & & & &	LEU	VAL	VAL	ALA	VAL VAL		VAL		VAL	VAL TRP	H H	
- Monte r Numbe	und ite	697 682 938	808 694 699	982 982	887	357	945 445	666	800	0 0 1 0 0 0	282 666 67	797 551	843 999	666
ore4v Id Theii	Ground State	LEU VAL	ALA LEU	E 문 된	품.	WAL WAL		LEU	Ш Ш		ILE ALA	HE	LEU ALA	띺
Table 4. Car	Position	24 71 72 74	28 31 75*	8 4 8 8 2 8	822	103	106 110	ττ εξ 4 13	117*	152	153 154*	157	161 167	168
<u> </u>	hG-CSF	CYS VAL ILE	GEV LEU LEU	EE	T - R -	LEF	LEU VAL	PHE ALA		LEU	VAL ALA	먎	LEU VAL	LEO

*position where Monte Carlo didn't find an alternative and where the top amino acid is the wild type $\, extcircles$

	Table 5.	Core; and Tr	3 - Mon l neir Num	t e Carlo iber of O	Analy s courrei	sis (Gro nces (F	or the	tate an Top 10(d Allow 30 Seq	red Amil uences	o Acids	
hG-CSF	Position	Ground State	und ate									
CYS	17	LEU	585	VAL	35	밀	379					
VAL	21	VAL	551	ALA	र्फ	<u> </u>	291	DHE BHE	141	ΤΥΒ	-	
빌	24	<u>Н</u>	657	ALA	31	VAL	303	LEC	ω			
GLY	28	ALA	928	LEU	71							
LEU	31	LEU	888	VAL	111							
ΓΥS	35	Щ	785	VAL	214							
		i	1 1									

\blacksquare															
	61													_	
	TYR													TRP	
	75													50	
	LE LE													H	
	12										291			Ŋ	
	LEU										Щ			LEU	
	149	136			#						294	44		168	
	VAL	뮢			TRP						LEU	PH H		VAL	
- 4 - 4	9	12	363		214				11	106	4			15	
AA VAL	ALA	ALA	TRP		LEU				빌	VAL	ALA	ALA		ALA	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		851	636	666	674	666	666	666	888	893	400	954	666	790	
	PHE	LEU	出	LEU	띺	뮢	밀	LEU	LEU	LEU	VAL	LEU	ALA	II I	
- 0 6 4 4 4 6 6 7 4 4 4 4 4 4 4 4 4 4 4 4 4	78	85	82	* 88 8	68	95	35*	*66	103	106	110	113	114*	117	
	E i	EU	Ϋ́R	品	교	EU	щ	EU	凹	EU	ÄL	里	ĻΑ	щ	

Table 5. Core3 - Monte Carlo Analysis (Ground State and Allowed Amino Acids and Their Number of Occurrences (For the Top 1000 Sequences)

	·	
		104
		ILE 10 PHE 16
)))		179
; ;)		VAL
		22 425 6
5		ALA ALA
3	und ite	99999999999999999999999999999999999999
5	Ground State	PHE LEU PHE PHE PHE PHE
3	Position	151 152 153 154 160 160
	hG-CSF	PHE VAL LEU LEU LEU LEU LEU LEU LEU LEU LEU LE

*position where Monte Carlo didn't find an alternative and where the top amino acid is the wild type

Table 6. Bndrv4 2 - Monte Carlo Analysis (Ground State and Allowed Amino Acids

lable 6. Bndry4_2 - Monte Carlo Analysis (Ground State and Allowed Amino Acids and Their Number of Occurrences (For the Top 1000 Sequences)																			
d Allow Seque				154															227
tate and p 1000				ΓΧ															GLN
und S the To			73	237							52					330			248
sis (Gro			GLU	0.00							ΓXS					ASP			GLU
Analys urrence			209	88			0	5.4 5.4	- - -	474	198		349	108		268			11
e Carlo	_		Щ!	<u> </u>			<u>.</u>		!	VAL	LEU		OLU GLU	GLN		ALA			LEU
2 - Mont r Numbe	around State	& o o o o o o o o	999 717	904 909 909	666	666	999	562	993	525	749	666	650	891	666	401	n o	666	380
dry4_ d Thei	O		SES CES	SLN GLN	LEU	LEU	Z Z			GLU	Щ	LEU	GLN	ΓΥS	015 101	는 <u>-</u>	_ _ _ _	ALA	HSP
ble 6. Bn an	Position	44 20 70	3888	38 77*	79	****	ი ი	102	107	109	116	120	145	146	147	148 17	2 0 0 0 0	164	170
<u>a</u>	hG-CSF	LEU GLN	SCN SCN FAS FAS FAS FAS FAS FAS FAS FAS FAS FAS	GLN	SH.	LEU S	A <u>-</u>	를 문	GLN	VAL	THR	Z I	GLN GLN	ARG	ARG	ALA ED	H S S	SER	S E

*position where Monte Carlo didn't find an alternative and where the top amino acid is the wild type

∞
Į
G.
Ī
\mathcal{I}

3.31
'n
LYS
214
GLN
239
GLU
109
LEU
56
ASP
380
HSP D
170
E S

Table 7. Bndry4_core4 - Monte Carlo Analysis (Ground State and Allowed Amino Acids and Their Number of Occurrences (For the Top 1000 Sequences)

*position where Monte Carlo didn't find an alternative and where the top amino acid is the wild type

 \perp

FIG._9

Table 8. Bndrv4_AD - Monte Carlo Analysis (Ground State and Allowed Amino Acids

S															62
no Acic															LYS
ed Ami ices)							123								209
a Allow Sequen							ΓYS								GLN
1000 S						277	217								230
he Top						LYS	GLU								GLU
s (For t						223	225				321				136
Ariarys irrence						GLN	HSP				ASP				LEU
		112				89	133	394	213		305				22
and Their Number of Occurrences (For the Top 1000 Sequences)		LEU				H H	Щ	GLU	GLN		ALA				ASP
d Their N	ם מ	887	666	984	931	357	287	605	982	962	373	926	994	666	304
an an	Ground State	Ш	LEU	GLU	LE	GLU	VAL	GLN	ΓλS	GLU	HH	LE	LEU	ALA	HSP
	Position	4	20	27	32	34	38	145	146	147	148	155	156	164	170

*position where Monte Carlo didn't find an alternative and where the top amino acid is the wild type

≻ FIG._ 10

	130		
	LYS		
	203		216
	GLU		SLN S
271	277	323	234
E E	HSP	THR	GLU
194	89 376 179	332	134
LEU VAL	OCIC OCIC OCIC OCIC OCIC OCIC OCIC OCIC	ALA	LEU
8 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0	850 850 850 850 850 850 850 850 850 850	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	666 870
	GLN GLN LYS	GLU ASP ILE LEU	ALA HSP
4 0 2 7 8 8 4 8 4 8 9 4 8 9 9 9 9 9 9 9 9 9 9 9	38 145 146	147 155 156	164 170

Table 9. Bndry4_AD_core4 - Monte Carlo Analysis (Ground State and Allowed Amino Acids and Their Number of Occurrences (For the Top 1000 Sequences)

Ground State

Position

*position where Monte Carlo didn't find an alternative and where the top amino acid is the wild type

13 / 16

ATGACTCCATTAGGTCCAGCTTCCTCTGCCGCAAAGCTTCCTGCTGAAACTGCTGGAACAGGTTCGTAAAATCCAGGGTGATGC <u> AGCTGCTCTGCAGGAAAAATCTGCGCTACCTACAAACTGTGCCATCCGGAAGÁACTGGTTCTGCTGGGTCACTCCCTGGGTATCC</u> CAGGGTCTGTTCCAGGCTTTCGAAGGTATCTCCCCGGAACTGGGTCCGACCCTGGACACTCTGCAGCTGGACGTCGCTGCTGACCTGG TACCACCATCTGGCAGCAGATGGAAGAACTGGGTATGGCTCCGGCTCTGCAGCCGACCCAGGGTGCTATGCCGGCTTTTCGCTTCCG CTITCCAGCGTCGCGCAGGTGGCATCCTGATCGCTAGCCACCTGCAGGCTTCCTGGAAGTTTCCTACCGTGTTTTCCGTCACCTG GCTCAGCCGTGA

FIG._ 11A

ore4

atgactccattaggtccagcttcctctgccgcaaagcttcctgctgaaactgctggaactggaacaggttcgtaaaatccagggtgatgc **AGCTGCTCTGCAGGAAAACTGTGCGCTACCTACAAACTGTGCCATCCGGAAGAACTGGTTCTGCTGGGTCACTCCCTGGGTATCC** CAGGGTCTGCTGCAAGCTCTGGAAGGTATCTCCCCGGAACTGGGTCCGACCGTTGACACTCTGCAGCTGGACATCGCTGACCTGG TACCACCATCTGGCAGCAGATGGAAGAACTGGGTATGGCTCCGGCTCTGCAGCCGACCCAGGGTGCTATGCCGGCTTTCGCTTCCG CTTTCCAGCGTCGCCAGGTGGCATCCTGATCGCTAGCCACCTGCAGGCTTCCTGGAAGTTTCCTACCGTGTTTTCCGTCTCACCTG GCTCAGCCGTGA

FIG. 11B

Core4v

ATGACTCCATTAGGTCCAGCTTCCTCTCTGCCGCAAAGCTTCCTGCTGAAACTGCTGGAACAGATCCGTAAAATCCAGGGTGATGC AGCTGCTCTGCAGGAAAACTGTGCGCTACCTACAAACTGTGCCATCCGGAAGAACTGGTTCTGCTGGGTCACTCCCTGGGTATCC CAGGGTCTGCTGCAAGCTCTGGAAGGTATCTCCCCGGAACTGGGTCCGACCCTGGACACTCTGCAGCTGGACATCGCTGACCTGGC TACCACCATCTGGCAGCAGATGGAAGAACTGGGTATGGCTCCGGCTCTGCAGCCGACCCAGGGTGCTATGCCGGCTTTCGCTTCCG CTTTCCAGCGTCGCGCAGGTGGCATCCTGATCGCTAGCCACATCCAGAGCTGGTTCGAAGTTTCCTACCGTGCTTTCCGTCGTCACCTG GCTCAGCCGTGA

FIG. 11C

FIG._12

-Melting Temperature (T_m)

	T _m (°C)	Extinction Coefficient (M ⁻¹ cm ⁻¹)
hG-CSFwt	60	15720
core4	72	14230
core4v	61	19730
core3	58	14230
sm0*	63	15720
fm4*	63	15720
fm7*	70	14230

* Derived by reverting some core4 or core3 mutant positions to wild type

FIG._16

16 / 16

+