Solution to Practice 1j

B9(a) Let $\mathcal{A} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ Then given any $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \in \mathbb{S}$, we have that

$$\left[\begin{array}{cc} a & 0 \\ 0 & b \end{array}\right] = a \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right] + b \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right]$$

And since $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in \mathbb{S}$, we see that Span $\mathcal{A} = \mathbb{S}$, so \mathcal{A} is a spanning set for \mathbb{S} . Next, we want to show that \mathcal{A} is linearly independent. To that end, we want to look for solutions to the equation

$$\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right] = t_1 \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right] + t_2 \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right]$$

This is equivalent to the system

$$\begin{array}{ccc} t_1 & & = 0 \\ & t_2 & = 0 \end{array}$$

(Note that I left out the equations 0=0+0, as they do not contain any information.) This clearly shows that $t_1=t_2=0$ is the only solution to the equation, and thus that our set \mathcal{A} is linearly independent. Since \mathcal{A} is a linearly independent spanning set for \mathbb{S} , \mathcal{A} is a basis for \mathbb{S} . And since \mathcal{A} has two elements, we see that the dimension of \mathbb{S} is 2.

B9(b) To find a guess for the basis, let's look at a typical polynomial $p(x) = p_0 + p_1 x + p_2 x^2 \in P_2$. Then $(1 + x^2)p(x) = (p_0 + p_1 x + p_2 x^2) + (p_0 x^2 + p_1 x^3 + p_2 x^4) = p_0 + p_1 x + (p_0 + p_2)x^2 + p_1 x^3 + p_2 x^4$. By setting each of p_0 , p_1 , and p_2 equal to 1 (with the other two equal to zero), we can obtain a guess at a basis for \mathbb{S} : $\mathcal{B} = \{1 + x^2, x + x^3, x^2 + x^4\}$.

To prove that \mathcal{B} is a basis for \mathbb{S} , let's first show that \mathcal{B} is a spanning set for \mathbb{S} . Since we can rewrite \mathcal{B} as $\{(1+x^2)1,(1+x^2)x,(1+x^2)x^2\}$, we see that the elements of \mathcal{B} are in \mathbb{S} , so we know that the span of \mathcal{B} is contained in \mathbb{S} . So all that is left is to show that every element of \mathbb{S} is in Span \mathcal{B} . To that end, let $a(x) \in \mathbb{S}$. Then there is some $b_0 + b_1x + b_2x^2 \in P_2$ such that $a(x) = (1+x^2)(b_0 + b_1x + b_2x^2)$. This means that $a(x) = b_0(1+x^2) + b_1x(1+x^2) + b_2x^2(1+x^2) = b_0(1+x^2) + b_1(x+x^3) + b_2(x^2+x^4)$. As such, there are scalars $b_0, b_1, b_2 \in \mathbb{R}$ such that $a(x) = b_0(1+x^2) + b_1(x+x^3) + b_2(x^2+x^4)$, so $a(x) \in \operatorname{Span} \mathcal{B}$. And this completes the proof that \mathcal{B} is a spanning set for \mathbb{S} .

Now we need to show that $\mathcal B$ is linearly independent. To do this, we need to look for solutions to the equation

$$t_1(1+x^2) + t_2(x+x^3) + t_3(x^2+x^4) = 0 + 0x + 0x^2 + 0x^3 + 0x^4$$

Performing the calculation on the left, we see that we are looking for $t_1, t_2, t_3 \in \mathbb{R}$ such that

$$t_1 + t_2x + (t_1 + t_3)x^2 + t_2x^3 + t_3x^4 = 0 + 0x + 0x^2 + 0x^3 + 0x^4$$

Setting the coefficients equal to each other, we see that we are looking for solutions to the following homogeneous system:

$$\begin{array}{cccc}
t_1 & = 0 \\
& t_2 & = 0 \\
t_1 & +t_3 & = 0 \\
& t_2 & = 0 \\
& t_3 & = 0
\end{array}$$

The first equation tells us that $t_1 = 0$, the second and fourth equations tell us that $t_2 = 0$ and the fifth equation tells us that $t_3 = 0$, so we quickly see that the only solution to our equation is $t_1 = t_2 = t_3 = 0$. This means that \mathcal{B} is linearly independent.

And since \mathcal{B} is a linearly independent spanning set for \mathbb{S} , we have that \mathcal{B} is a basis for \mathbb{S} . And since \mathcal{B} has three elements, we know that the dimension of \mathbb{S} is 3.

 $\mathbf{B9(c)} \text{ First, we note that } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = x_1 + 0 - x_3, \text{ so } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = 0 \text{ if and only if } x_1 - x_3 = 0, \text{ which happens if and only if } x_1 = x_3. \text{ So, this } means that } \mathbb{S} = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_1 \end{bmatrix} \mid x_1, x_2 \in \mathbb{R} \right\}.$

Now, let $C = \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$. We first note that $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ are in \mathbb{S} , so Span C is contained in \mathbb{S} . Thus, to see that C is a spanning set for \mathbb{S} , we need to show that every element of \mathbb{S} is in Span C. To that end, let $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_1 \end{bmatrix} \in \mathbb{S}$.

Then there are scalars $y_1, y_2 \in \mathbb{R}$ such that $y_1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + y_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \vec{y}$. This means that $\vec{y} \in \text{Span } \mathcal{C}$, and thus \mathcal{C} is a spanning set for \mathbb{S} .

Next, we need to show that C is linearly independent. To do this, we need to find the solutions to the equation

$$t_1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + t_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

This is equivalent to the homogeneous system

$$\begin{array}{ccc}
t_1 & = 0 \\
t_2 & = 0 \\
t_1 & = 0
\end{array}$$

The first and third equations tell us that $t_1 = 0$, and the second equation tells us that $t_2 = 0$, so we see that the only solution to our equation is $t_1 = t_2 = 0$. This means that C is linearly independent.

And since $\mathcal C$ is a linearly independent spanning set for $\mathbb S$, we have that $\mathcal C$ is a basis for $\mathbb S$. And since $\mathcal C$ has two elements, we know that the dimension of $\mathbb S$ is 2

B9(d) Looking at the defining properties of \mathbb{S} , we note that a-b=0 iff a=b, b-c=0 iff b=c, and c-a=0 iff c=a. Combined, we see that a=b=c. As such, another way of describing \mathbb{S} is as $\left\{ \left[\begin{array}{cc} a & a \\ a & d \end{array} \right] \mid a,d\in\mathbb{R} \right\}$.

This description leads us to think that $\mathcal{D} = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ is a basis for \mathbb{S} . We first note that $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in \mathbb{S}$, so Span \mathcal{D} is contained in \mathcal{S} . So, to show that \mathcal{D} is a spanning set for \mathbb{S} , we need to show that every element of \mathbb{S} can be written as a linear combination of the elements of \mathcal{D} . To that end, let $A \in \mathbb{S}$. Then there are real numbers a_1 and a_2 such that $A = \begin{bmatrix} a_1 & a_1 \\ a_1 & a_2 \end{bmatrix}$. Then we can write

$$A = a_1 \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right] + a_2 \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right]$$

And thus we see that A can be written as a linear combination of the elements of \mathcal{D} . And this means that \mathcal{D} is a spanning set for \mathbb{S} .

All that remains to show that \mathcal{D} is a basis for \mathbb{S} is to show that \mathcal{D} is linearly independent. But the equation

$$t_1 \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right] + t_2 \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right]$$

clearly only has solution $t_1 = t_2 = 0$. And so we easily see that \mathcal{D} is linearly independent. And since \mathcal{D} is a linearly independent spanning set for \mathbb{S} , we have that \mathcal{D} is a basis for \mathbb{S} . And since \mathcal{D} has two elements, we know that the dimension of \mathbb{S} is 2.

B9(e) Polynomials that satisfy p(x) = p(-x) are known as even polynomials, in no small part because they only contain even powers of x. To see this, consider the following. If $p(x) = p_0 + p_1 x + p_2 x^2 + p_3 x^3 + p_4 x^4 + p_5 x^5$, then $p(-x) == p_0 + p_1(-x) + p_2(-x)^2 + p_3(-x)^3 + p_4(-x)^4 + p_5(-x)^5 == p_0 + p_1(-x) + p_2 x^2 + p_3(-x^3) + p_4 x^4 + p_5(-x^5) == p_0 - p_1 x + p_2 x^2 - p_3 x^3 + p_4 x^4 - p_5 x^5$. In order to have p(x) = p(-x), we need to have:

$$p_0 = p_0$$
 $p_1 = -p_1$ $p_2 = p_2$
 $p_3 = -p_3$ $p_4 = p_4$ $p_5 = -p_5$

We always have $p_0 = p_0$, $p_2 = p_2$, and $p_4 = p_4$. But in order to have $p_1 = -p_1$, we need to have $p_1 = 0$, and similarly we get that $p_3 = 0$ and $p_5 = 0$.

Thus, another way to write \mathbb{S} is to say $\mathbb{S} = \{p_0 + p_2 x^2 + p_4 x^4 \mid p_0, p_2, p_4 \in \mathbb{R}\}$. And this description of \mathbb{S} leads us quickly to guess that $\mathcal{E} = \{1, x^2, x^4\}$ is a basis for \mathbb{S}

First, we note that $1, x^2, x^4 \in \mathbb{S}$, so we know that Span \mathcal{E} is contained in \mathbb{S} . Thus, to show that Span $\mathcal{E} = \mathbb{S}$, we need to show that every element of \mathbb{S} is in Span \mathcal{E} . To that end, let $a(x) \in \mathbb{S}$. Then there are real numbers a_0, a_2, a_4 such that $a(x) = a_0 + a_2 x^2 + a_4 x^4$. And this shows that a(x) can be written as a linear combination of the elements of \mathcal{E} , and thus is in Span \mathcal{E} . Therefore, we have that \mathcal{E} is a spanning set for \mathbb{S} .

All that remains is to show that \mathcal{E} is linearly independent. But \mathcal{E} is a subset of the standard basis for P_5 , and thus is a subset of a linearly independent set. This means that \mathcal{E} must also be linearly independent.

And since \mathcal{E} is a linearly independent spanning set for \mathbb{S} , we have that \mathcal{E} is a basis for \mathbb{S} . And since \mathcal{E} has three elements, we know that the dimension of \mathbb{S} is 3.