Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Logik für Studierende der Informatik Blatt 10

Abgabe: 15.01.2019 14 Uhr Gruppennummer angeben!

Aufgabe 1 (6 Punkte).

(a) Sei $f: \mathbb{N}^{k+1} \to \mathbb{N}$ eine (primitiv) rekursive Funktion. Zeige, dass die Funktion

$$g(x_1, \dots, x_k, y) = \sum_{z < y} f(x_1, \dots, x_k, z)$$

auch (primitiv) rekursiv ist, wobei die leere Summe Wert 0 hat.

- (b) Zeige, dass die Teilmenge von N, welche aus den Potenzen von 2 besteht, primitiv rekursiv ist.
- (c) Schließe daraus, dass die Funktion $x \mapsto$ Anzahl von Potenzen von 2, welche echt kleiner als x sind, eine primitiv rekursive Funktion ist.

Aufgabe 2 (4 Punkte).

- (a) Zeige, dass die leere Menge primitiv rekursiv ist. Schließe daraus, dass jede endliche Teilmenge von \mathbb{N}^n primitiv rekursiv ist.
- (b) Zeige, dass die Diagonale $\Delta=\{(x,y)\in\mathbb{N}^2\,|\,x=y\}$ eine primitiv rekursive Teilmenge von \mathbb{N}^2 ist.

Aufgabe 3 (10 Punkte).

Die Abbildung

$$\alpha: \mathbb{N}^2 \to \mathbb{N}$$

$$(x,y) \mapsto \binom{x+y+1}{2} + x$$

bestimmt eine Aufzählung von \mathbb{N}^2 , wie im obigen Diagramm: das Element (0,0), mit Wert $0 = \alpha(0,0)$, ist das kleinste Element. Sein Nachfolger ist (0,1) mit Wert $1 = \alpha(0,1)$. Auf jeder Diagonale ist der Nachfolger von (x,y+1) der Punkt (x+1,y). Der Nachfolger von (x,0) ist der Punkt (0,x+1).

(Bitte wenden!)

(a) Schließe aus der Identität

$$1+2+\ldots+n=\binom{n+1}{2},$$

dass die Funktion α injektiv ist.

HINWEIS: Auf der Gerade im Diagramm, welche den Punkt (x, y) enthält, gibt es genau x viele Vorgänger von (x, y). Wie viele Punkte gibt es auf den vorigen Geraden? Was ist der Zusammenhang mit $\alpha(x, y)$?

- (b) Zeige mit Induktion, dass jedes n aus $\mathbb N$ im Bildbereich von α liegt. Schließe daraus, dass α eine Bijektion ist.
- (c) Zeige, dass α primitiv rekursiv ist.
- (d) Zeige, dass die Funktionen β_1 und β_2 mit $\alpha^{-1} = (\beta_1, \beta_2)$ primitiv rekursiv sind.

HINWEIS: $\alpha(x, y) \ge \max\{x, y\}.$

Sei nun die Fibonacci Folge:

$$a_0 = a_1 = 1$$
 und $a_{n+2} = a_{n+1} + a_n$ für $n \ge 2$.

(e) Zeige mit Hilfe der Funktionen β_1 und β_2 , dass die Funktion $h(n) = \alpha(a_n, a_{n+1})$ primitiv rekursiv ist. Insbesondere ist die Funktion $n \mapsto a_n = \beta_1(h(n))$ auch primitiv rekursiv.

DIE ÜBUNGSBLÄTTER MÜSSEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IN DEN (MIT DEN NUMMERN DER ÜBUNGSGRUPPEN GEKENNZEICHNETEN) FÄCHERN IM EG DES GEBÄUDES 51.