In [4]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
plt.rcParams["figure.figsize"] = (10, 20)
```

In [7]:

```
df = pd.read_csv('cardio_train.csv', sep = ';')
```

In [8]:

```
df.head()
```

Out[8]:

	id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	ca
0	0	18393	2	168	62.0	110	80	1	1	0	0	1	
1	1	20228	1	156	85.0	140	90	3	1	0	0	1	
2	2	18857	1	165	64.0	130	70	3	1	0	0	0	
3	3	17623	2	169	82.0	150	100	1	1	0	0	1	
4	4	17474	1	156	56.0	100	60	1	1	0	0	0	
4													•

In [9]:

```
df.isnull().sum()
```

Out[9]:

```
0
id
age
                0
                0
gender
height
                0
weight
                0
ap_hi
                0
ap_lo
cholesterol
                0
                0
gluc
                0
smoke
                0
alco
                0
active
cardio
dtype: int64
```

```
In [10]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 70000 entries, 0 to 69999
Data columns (total 13 columns):
id
               70000 non-null int64
               70000 non-null int64
age
gender
               70000 non-null int64
height
               70000 non-null int64
               70000 non-null float64
weight
ap_hi
               70000 non-null int64
ap_lo
               70000 non-null int64
               70000 non-null int64
cholesterol
               70000 non-null int64
gluc
               70000 non-null int64
smoke
alco
               70000 non-null int64
               70000 non-null int64
active
               70000 non-null int64
cardio
dtypes: float64(1), int64(12)
memory usage: 6.9 MB
In [11]:
df.shape
Out[11]:
(70000, 13)
In [12]:
df['gender'].value_counts()
Out[12]:
     45530
1
2
     24470
Name: gender, dtype: int64
In [13]:
df1 = pd.get_dummies(data = df['gender'], drop_first = True, prefix = 'gender')
In [15]:
data = pd.concat([df, df1], axis = 1)
```

```
In [16]:
```

```
data.head()
```

Out[16]:

	id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	ca
0	0	18393	2	168	62.0	110	80	1	1	0	0	1	
1	1	20228	1	156	85.0	140	90	3	1	0	0	1	
2	2	18857	1	165	64.0	130	70	3	1	0	0	0	
3	3	17623	2	169	82.0	150	100	1	1	0	0	1	
4	4	17474	1	156	56.0	100	60	1	1	0	0	0	
4													•

In [17]:

```
data = data.drop(['id'], axis = 1)
```

In [19]:

```
data = data.drop(['gender'], axis = 1)
```

In [20]:

```
data.head()
```

Out[20]:

	age	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio	gender_
0	18393	168	62.0	110	80	1	1	0	0	1	0	
1	20228	156	85.0	140	90	3	1	0	0	1	1	
2	18857	165	64.0	130	70	3	1	0	0	0	1	
3	17623	169	82.0	150	100	1	1	0	0	1	1	
4	17474	156	56.0	100	60	1	1	0	0	0	0	
4												

In [21]:

```
X = data.drop(['cardio'], axis = 1)
y = data['cardio']
```

In [22]:

```
from sklearn.model_selection import train_test_split
```

```
In [23]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```

In [24]:

```
from sklearn.ensemble import RandomForestClassifier
```

In [25]:

```
clf = RandomForestClassifier(n_estimators = 10)
```

In [26]:

```
clf.fit(X_train, y_train)
```

Out[26]:

```
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', max_depth=None, max_features='auto', max_leaf_nodes=None,
```

min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10,
n_jobs=None, oob_score=False, random_state=None,
verbose=0, warm_start=False)

In [27]:

```
clf.score(X_train, y_train)
```

Out[27]:

0.9790178571428572

In [29]:

```
predict = clf.predict(X_test)
```

In [30]:

```
clf.score(X_test, y_test)
```

Out[30]:

0.6958571428571428

In [31]:

from sklearn.metrics import classification_report, confusion_matrix, accuracy_score

In [32]:

print(classification_report(predict, y_test))

support	f1-score	recall	precision	
7743	0.71	0.68	0.75	0
6257	0.68	0.71	0.64	1
14000	0.70			accuracy
14000	0.69	0.70	0.70	macro avg
14000	0.70	0.70	0.70	weighted avg

In [33]:

print(accuracy_score(predict, y_test))

0.6958571428571428

```
In [35]:
```

```
sns.heatmap(data = 'data', hue = 'cardio')
                                           Traceback (most recent call last)
ValueError
<ipython-input-35-104b5855c490> in <module>
----> 1 sns.heatmap(data = 'data', hue = 'cardio')
~\Anaconda3\lib\site-packages\seaborn\matrix.py in heatmap(data, vmin, vmax,
cmap, center, robust, annot, fmt, annot_kws, linewidths, linecolor, cbar, cb
ar kws, cbar ax, square, xticklabels, yticklabels, mask, ax, **kwargs)
    515
            plotter = _HeatMapper(data, vmin, vmax, cmap, center, robust, an
not, fmt,
    516
                                  annot_kws, cbar, cbar_kws, xticklabels,
--> 517
                                  yticklabels, mask)
    518
    519
            # Add the pcolormesh kwargs here
~\Anaconda3\lib\site-packages\seaborn\matrix.py in __init__(self, data, vmi
n, vmax, cmap, center, robust, annot, fmt, annot_kws, cbar, cbar_kws, xtickl
abels, yticklabels, mask)
    108
                else:
    109
                    plot_data = np.asarray(data)
--> 110
                    data = pd.DataFrame(plot data)
    111
                # Validate the mask and convet to DataFrame
    112
~\Anaconda3\lib\site-packages\pandas\core\frame.py in __init__(self, data, i
ndex, columns, dtype, copy)
                        mgr = init_dict({data.name: data}, index, columns, d
    438
type=dtype)
   439
                    else:
                        mgr = init_ndarray(data, index, columns, dtype=dtype
--> 440
, copy=copy)
    441
    442
                # For data is list-like, or Iterable (will consume into lis
t)
~\Anaconda3\lib\site-packages\pandas\core\internals\construction.py in init_
ndarray(values, index, columns, dtype, copy)
            # by definition an array here
    169
            # the dtypes will be coerced to a single dtype
    170
--> 171
            values = prep_ndarray(values, copy=copy)
    172
    173
            if dtype is not None:
~\Anaconda3\lib\site-packages\pandas\core\internals\construction.py in prep
ndarray(values, copy)
    293
                values = values.reshape((values.shape[0], 1))
    294
            elif values.ndim != 2:
                raise ValueError("Must pass 2-d input")
--> 295
    296
    297
            return values
ValueError: Must pass 2-d input
```

```
In [36]:
```

```
from sklearn.linear_model import LogisticRegression
```

```
In [37]:
```

```
model = LogisticRegression()
```

In [38]:

```
model.fit(X_train, y_train)
```

C:\Users\SURYA\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:
432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Speci
fy a solver to silence this warning.
 FutureWarning)

Out[38]:

In [39]:

```
model.score(X_train, y_train)
```

Out[39]:

0.711125

In [40]:

```
pre = model.predict(X_test)
```

In [42]:

```
model.score(X_test, y_test)
```

Out[42]:

0.7082142857142857

In [43]:

```
print(classification_report(pre, y_test))
```

	precision	recall	f1-score	support
0	0.75	0.70	0.72	7650
1	0.66	0.72	0.69	6350
accuracy			0.71	14000
macro avg	0.71	0.71	0.71	14000
weighted avg	0.71	0.71	0.71	14000

In	[44]

print(accuracy_score(pre, y_test))

0.7082142857142857

In []: