High Temperature Electrolysis for Efficient Hydrogen Production from Nuclear Energy – INL Research Program Summary

Jim O'Brien Idaho National Laboratory

Electrolytic Hydrogen Production Workshop National Renewable Energy Laboratory Golden, CO February 27-28, 2014

NGNP/VHTR Concept for Large-Scale Centralized Nuclear Hydrogen Production based on High-Temperature Steam Electrolysis

- Directly coupled to high-temperature gas-cooled reactor for electrical power and process heat
- 600 MWth reactor could produce ~85 million SCFD (2.5 kg/s) hydrogen (similar to a large steam methane reforming plant) and 42 million SCFD oxygen
- Potential applications include petroleum refining, ammonia production, synthetic liquid fuels, hydrogen as a direct vehicle fuel

The INL High Temperature Electrolysis Project History and Background

- INL served as the lead laboratory for High-Temperature Electrolysis (HTE) research and development from 2003 – 2009, under the DOE Nuclear Hydrogen Initiative (NHI)
- During FY09, HTE was selected by DOE as the primary nuclear hydrogen production technology for continued development toward early deployment (based on the recommendation of an external independent review team)
- HTE activities were funded under the Next Generation Nuclear Plant (NGNP) Program from FY10 - FY12
- Industry Collaborators:
 - Ceramatec (co-authored initial NERI proposal with INL)
 - MSRI
 - Versa Power

INL HTE Research Scope

Fundamentals

Small-Scale Experiments

CFD Simulation

System Modeling

Technology Demonstration

Scale of INL HTSE Test Activities

Test configuration	Electrolysis Power at Design Condition (1.2 V, 0.5 A/cm²)	Zirconia
Button cell (2.5 cm ²)	1.5 W	Refer Electr
Single cell (16 cm ²)	9.6 W	
Small stack (100 cm ² ,10 cells)	600 W	
Large Stack (100 cm ² , 50 cells)	3 kW	
Multiple-stack module (4 large stacks)	12 kW	

Technical Challenge: SOEC Performance Degradation

Degradation is more severe in the electrolysis mode compared to the fuel cell mode

Possible degradation mechanisms include:

- chromium migration
- corrosion of metallic components
- morphology change (coarsening) in electrochemically active layers
- electrode delamination...

Delamination of air electrode, single cell tested at INL

Status: Working with industry, significant progress was made over the duration of the INL HTE program in reducing degradation rates from ~50%/khr to <2%/khr

Initial H₂ electrode microstructure

Suggestions for Additional Research (Current technology readiness level is ~TRL5)

- Continued support of basic research into cell and stack materials and fabrication techniques for improved initial and long-term performance
- Associated small-scale testing
- Pilot-scale demonstration

HTSE Hydrogen Production Cost Estimates

	Electrolyzer	Reactor	Reactor	electricity	H2	installed				
\$/kg H2	Capital cost	Thermal	Tout/power	cost	Production	cost (Lang)				
(baseline case)	basis	Power (MW)	cycle	(\$/MWh)	rate (kg/day)	factor	IRR (%)	H2A?	Organization	Year
Nuclear/Large-										
Scale										
	SECA									
	(2007)/2;									
\$3.67	\$100/kW	600	750/Rankine	n/a	151200	4.74	12	N	INL	2010
	SECA									
	(2007)/2;									
\$3.03	\$100/kW	600 MW	750/Rankine	n/a	159840	4.74	10	N	INL	2010
	SECA									
	(2007)/2;									
\$3.85	\$100/kW	600	750/Rankine	n/a	170400	4.74	15	N	INL	2010
			900/Direct He							
\$3.23	\$200/kW	600	Brayton	n/a	203558	4.74	10%	Υ	INL	2008
									Dominion	
\$2.56	\$30/kW	600 MW	n/a	\$60/MWh	159840	range: 1 - 4.2	?	N	Engineering	2012
1.87 – 1.93 €	\$170/kW	range	range	40 €/MWh	129600	?	6%	N	MINES/CEA	2010
Distributed										
		n/a -	n/a -							
	SECA(2012)/2;	distributed	distributed			4.1 for most				
\$3.12	\$50/kW	production	production	\$55.40	1500	components	10%	Υ	INL	2012
		n/a -	n/a -							
	SECA(2012)/2;	distributed	distributed			4.1 for most				
\$2.68	\$50/kW	production	production	\$55.40	50,000	components	10%	Υ	INL	2012

