MA333 Introduction to Big Data Science Mathematical Preliminary

Zhen Zhang

Southern University of Science and Technology

Outlines

Linear Algebra

References

Inner Product and Euclidean Norm

For $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, their inner product is defined as

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^T \mathbf{y}.$$

It satisfies

- 1. (Commutativity) $\langle x, y \rangle = \langle y, x \rangle$;
- 2. (Scalar Multiplication) $< \lambda x, y >= \lambda < x, y >= < x, \lambda y >$;
- 3. (Bilinearity) < x + y, z > = < x, z > + < y, z >, < x, y + z > = < x, y > + < x, z >;
- 4. (Positivity) $\langle \mathbf{x}, \mathbf{x} \rangle \geqslant 0$, and $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ iff $\mathbf{x} = \mathbf{0}$.

The Euclidean norm (I_2 -norm) is $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$.

Linear Independency and Orthogonality

- Linear Independency:
 A set of vectors U = {bx₁,...,x_k} is linearly independent if for ∀i, x_i does not lie in the space spanned by x₁,...,x_{i-1},x_{i+1},x_k. We say U spans a subspace V if V is the span of the vectors in U. U is a basis of V if it is both independent and spans V. The dimension of V is the size of a basis of V (i.e., the number of linearly independent vectors in U).
- Orthogonality:
 We say that *U* is an orthogonal set if for all *i* ≠ *j*,
 < x_i, x_j >= 0. We say that *U* is an orthonormal set if it is orthogonal and if for every *i*, ||x_i|| = 1.

Gram-Schmidt Orthogonalization

Given a set of linear independent vectors $V = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$, we can apply Gram-Schmidt orthogonalization to obtain an orthonormal set $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ which have the same span as $\mathrm{span} V$. The procedure is as follows:

- 1. Let $\mathbf{u}_1 = \mathbf{v}_1 / \|\mathbf{v}_1\|$;
- 2. For j=2 to k, project \mathbf{v}_j onto $\mathrm{span}\{\mathbf{u}_1,\ldots,\mathbf{u}_{j-1}\}$ and find the perpendicular part $\tilde{\mathbf{u}}_j=\mathbf{v}_j-\sum_{i=1}^{j-1}<\mathbf{u}_i,\mathbf{v}_j>\mathbf{u}_i$, then normalize it to be $\mathbf{u}_j=\tilde{\mathbf{u}}_j/\|\tilde{\mathbf{u}}_j\|$;

This procedure is summarized in the matrix form : Q = AP, where $Q = (\mathbf{u}_1 \cdots \mathbf{u}_k) \in \mathbb{R}^{k \times k}$ is an orthogonal matrix whose columns are given by \mathbf{u}_i 's, $A = (\mathbf{v}_1 \cdots \mathbf{v}_k) \in \mathbb{R}^{k \times k}$ is a nonsingular matrix whose columns are given by \mathbf{v}_i 's, and $P \in \mathbb{R}^{k \times k}$ is an upper tridiagonal matrix whose upper tridiagonal (i,j)-entry is given by $<\mathbf{u}_i,\mathbf{v}_j>$. This is known as the QR factorization : A = QR where $R = P^{-1}$.

Concepts in Matrix

- Kernel and Range : Given a matrix $A \in \mathbb{R}^{n \times d}$, the range of A (Range(A)) is the span of its columns and the kernel of A (Ker(A)) is the subspace of all vectors that satisfy $A\mathbf{x} = \mathbf{0}$. The rank of A is the dimension of its range and is denoted by $\operatorname{rank}(A)$ or $\operatorname{r}(A)$ for short.
- Symmetric and Definite Matrix : A is symmetric if $A = A^T$. A symmetric matrix $A \in \mathbb{R}^{d \times d}$ is positive definite if for all $\mathbf{x} \in \mathbb{R}^d$, $\langle \mathbf{x}, A\mathbf{x} \rangle \geqslant 0$, and equality holds if and only if ("iff") $\mathbf{x} = \mathbf{0}$. This definition can be relaxed to give semidefiniteness : A symmetric matrix $A \in \mathbb{R}^{d \times d}$ is positive semidefinite if for all $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{x}^T A \mathbf{x} \geqslant 0$. In particular, all the eigenvalues of a positive definite (resp. semidefinite) matrix are positive (resp. nonnegative). And $A = BB^T$ for some matrix B. (See next slides for eigen-decomposition)

Eigenvalues and Eigenvectors

Let $A \in \mathbb{R}^{d \times d}$ be a squared matrix. A nonzero vector $\mathbf{x} \mathbb{R}^d$ is an eigenvector of A with a corresponding eigenvalue λ if $A\mathbf{x} = \lambda \mathbf{x}$.

Theorem

(Eigen-decomposition or Spectral Decomposition) If $A \in \mathbb{R}^{d \times d}$ is a symmetric matrix of rank k, then there exists an orthogonal basis of \mathbb{R}^d , $\mathbf{x}_1, \ldots, \mathbf{x}_d$, such that each \mathbf{x}_i is an eigenvector of A. Furthermore, A can be written as $A = \sum_{i=1}^d \lambda_i \mathbf{x}_i \mathbf{x}_i^T$, where each λ_i is the eigenvalue corresponding to the eigenvector \mathbf{x}_i . In matrix form, this is $A = UDU^T$, where the columns of U are the vectors $\mathbf{x}_1, \ldots, \mathbf{x}_d$, and $D = \mathrm{diag}\{\lambda_1, \ldots, \lambda_d\}$ is a diagonal matrix. Finally, $\mathbf{r}(A)$ is the number of nonzero λ_i 's, and the corresponding eigenvectors span the range of A. The eigenvectors corresponding to the zero eigenvalues span the null space of A.

Singular Values Decomposition (SVD)

Let $A \in \mathbb{R}^{m \times n}$ be a matrix of rank r. Unit (nonzero) vector $\mathbf{v} \in \mathbb{R}^n$ and $\mathbf{u} \in \mathbb{R}^m$ are called right and left singular vectors of A with corresponding singular values σ if $A\mathbf{v} = \sigma \mathbf{v}$ and $\mathbf{u}^T A = \sigma \mathbf{u}^T$.

Theorem

(SVD) Let $A \in \mathbb{R}^{m \times n}$ be a matrix of rank r. Then there exist orthonormal sets of right and left singular vectors of A, say $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ and $\{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$ respectively, and the corresponding singular values $\sigma_1, \ldots, \sigma_r$, such that $A = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$. In matrix form, this is $A = UDV^T$, where the columns of U are the vectors $\mathbf{u}_1, \ldots, \mathbf{u}_r$, the columns of V are the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_r$, and $D = \operatorname{diag}\{\sigma_1, \ldots, \sigma_d\}$ is a diagonal matrix.

Corollary

The squared matrices $A^T A \in \mathbb{R}^{n \times n}$ and $AA^T \in \mathbb{R}^{m \times m}$ have (a subset of) the eigenvectors $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ and $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ respectively, corresponding the the same eigenvalues $\sigma_1^2, \dots, \sigma_r^2$.

Reyleigh Quotient

Theorem

Let $A \in \mathbb{R}^{m \times n}$ be a matrix of rank r. Define $\mathbf{v}_1 = \underset{\mathbf{v} \in \mathbb{R}^n: ||\mathbf{v}|| = 1}{\operatorname{arg max}} ||A\mathbf{v}||$,

$$\begin{array}{l} \mathbf{v}_2 = \underset{\mathbf{v} \in \mathbb{R}^n: \|\mathbf{v}\| = 1}{\arg\max} \ \|A\mathbf{v}\|, \dots, \mathbf{v}_r = \underset{\mathbf{v} \in \mathbb{R}^n: \|\mathbf{v}\| = 1}{\arg\max} \ \|A\mathbf{v}\|. \ Then \ \mathbf{v}_1, \dots, \mathbf{v}_r \\ \mathbf{v}_i \in \mathbb{R}^n: \|\mathbf{v}\| = 1 \\ \forall i < r, < \mathbf{v}, \mathbf{v}_i > = 0 \end{array}$$

is an orthonormal set of right singular vectors of A.

Remark: (Reyleigh Quotient) If $A \in \mathbb{R}^{n \times n}$ is a squared matrix, then its eigenvalues can be found as the solution to the following optimization problems:

$$egin{aligned} \lambda_1 &= \max_{\mathbf{v} \in \mathbb{R}^n: \|\mathbf{v}\| = 1} \mathbf{v}^T A \mathbf{v}, \quad \lambda_2 = \max_{\mathbf{v} \in \mathbb{R}^n: \|\mathbf{v}\| = 1 \ <\mathbf{v}, \mathbf{v}_1 > = 0 \end{aligned}} \mathbf{v}^T A \mathbf{v}, \ \ldots, \quad \lambda_n &= \max_{\substack{\mathbf{v} \in \mathbb{R}^n: \|\mathbf{v}\| = 1 \ \forall i < n, <\mathbf{v}, \mathbf{v}_i > = 0}} \mathbf{v}^T A \mathbf{v}. \end{aligned}$$

Power Method - Dominant Eigenvalue

Assume the eigenvalues of A can be sorted according to their magnitudes : $|\lambda_1| > |\lambda_2| \geqslant |\lambda_3| \geqslant \cdots \geqslant |\lambda_n| \geqslant 0$. If The corresponding eigenvectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ form a basis of \mathbb{R}^n , then any vector can be expressed as $\mathbf{x} = \sum_{i=1}^n \beta_i \mathbf{v}_i$. Multiplying \mathbf{x} by A on the left for n times, we have an idea

$$A^{k}\mathbf{x} = \sum_{i=1}^{n} \beta_{i} \lambda_{i}^{k} \mathbf{v}_{i} = \lambda_{1}^{k} \sum_{i=1}^{n} \beta_{i} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} \mathbf{v}_{i} \sim \lambda_{1}^{k} \beta_{1} \mathbf{v}_{1}, \quad k \to \infty$$

- 1. For any nonzero vector \mathbf{x} , let $\mathbf{y}^{(0)} = \mathbf{x}$;
- 2. For $k=0,1,\ldots$: compute the smallest integer p_k such that satisfying $y_{p_k}^{(k)}=\|\mathbf{y}^{(k)}\|_{\infty}$, then compute $\mathbf{x}^{(k)}=\mathbf{y}^{(k)}/y_{p_k}^{(k)}$, $\mathbf{y}^{(k+1)}=A\mathbf{x}^{(k)}$, $\mu^{(k+1)}=y_{p_k}^{(k+1)}$.

It can be shown that $\lim_{k\to\infty}\mu^{(k)}=\lambda_1$ and $\lim_{k\to\infty}\mathbf{x}^{(k)}=\mathbf{v}_1/\|\mathbf{v}_1\|_\infty$. Other methods : QR factorization, Householder transformations

₹ 990

Linear Systems

A system of m linear algebraic equations in n unknown variables can be written in the matrix form : $A\mathbf{x} = \mathbf{b}$, where $A \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{b} \in \mathbb{R}^m$. This system has solutions iff $\mathbf{r}([A, \mathbf{b}]) = \mathbf{r}(A)$.

Theorem (Solvability Condition)

- 1. If $Ker(A) = \{0\}$, then $A\mathbf{x} = \mathbf{b}$ either has a unique solution or has no solution. It has a solution iff $\mathbf{b} \perp Ker(A^T)$.
- 2. If $Ker(A) \neq \{0\}$, then $A\mathbf{x} = \mathbf{b}$ either has infinitely many solutions or has no solution. It has a solution iff $\mathbf{b} \perp Ker(A^T)$.

If $A \in \mathbb{R}^{n \times n}$ is a square matrix, we have a simple rule : the system has a unique solution iff $\det A \neq 0$. If the solution exists, we can solve it by $\mathbf{x} = A^{-1}\mathbf{b}$, where A^{-1} is the inverse of A satisfying $A^{-1}A = AA^{-1} = I$.

Moreover, we can find it by Cramer's rule : $x_i = \frac{\det A_i}{\det A}$, where A_i is the matrix obtained from A by replacing its i-th column with \mathbf{b} . The direct application of this formula requires O(n!) arithmetic operations to find $\det A$, which is unacceptable for large n.

Gaussian Elimination

Gaussian Elimination is an algorithm that can reduce the computational complexity of solving linear systems to $O(n^3)$. It is equivalent to perform an elementary row transformation for A to obtain an upper or lower triangular matrix.

Another way to view Gaussian elimination is the LU decomposition: The k-th row transformation can be represented by a left multiplication by $M^{(k)}$, where $M^{(k)}$ is a lower triangular matrix with its diagonal entries being all 1's; after n operations, A is transformed to an upper triangular matrix U, i.e., $M^{(n)} \cdots M^{(2)} M^{(1)} A = U$; since the inverse of a lower triangular matrix is also a lower triangular matrix, we have A = LU, where $L = (M^{(1)})^{-1} (M^{(2)})^{-1} \cdots (M^{(n)})^{-1}$ with its diagonal entries being all 1's.

LU Decomposition

Theorem

An $n \times n$ nonsingular matrix A can be decomposed uniquely in the form A = LU, where

$$L = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ I_{21} & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ I_{n,1} & \cdots & I_{n,n-1} & 1 \end{pmatrix}, U = \begin{pmatrix} u_{11} & u_{12} & \cdots & u_{1,n} \\ 0 & u_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & u_{n-1,n} \\ 0 & \cdots & 0 & u_{n,n} \end{pmatrix}.$$

The computational complexity for LU decomposition is $O(n^3)$. If A is symmetric, we have Cholesky decomposition $A = LL^T$, where L is a lower diagonal matrix.

Iterative Solver

We introduce two commonly used iterative methods: Jacobi iteration and Gauss-Seidel iteration. First we write A = D - L - U, where $D = \operatorname{diag}\{a_{11}, \ldots, a_{nn}\}$, $L = \{l_{ij}\}$ and $U = \{u_{ij}\}$ are the lower and upper diagonal parts of -A respectively. That means $l_{ij} = -a_{ij}$ for i > j and 0 for $i \leqslant j$, $u_{ij} = -a_{ij}$ for i < j and 0 for $i \leqslant j$.

- Jacobi iteration : Rewrite the linear system as $D\mathbf{x} = (L+U)\mathbf{x} + \mathbf{b}$, if D^{-1} exists $(a_{ii} \neq 0)$, then we can build the iteration $\mathbf{x}^{(k)} = D^{-1}(L+U)\mathbf{x}^{(k-1)} + D^{-1}\mathbf{b}$, k = 1, 2, ...
- Gauss-Seidel iteration : Rewrite the linear system as $(D-L)\mathbf{x} = U\mathbf{x} + \mathbf{b}$, if $(D-L)^{-1}$ exists $(a_{ii} \neq 0)$, then we can build the iteration $\mathbf{x}^{(k)} = (D-L)^{-1}U\mathbf{x}^{(k-1)} + (D-L)^{-1}\mathbf{b}$, $k=1,2,\ldots$

Both are easy to implement in component form and can be written as $\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$, with $T = D^{-1}(L+U)$ for Jacobi iteration and $(D-L)^{-1}U$ for Gauss-Seidel iteration. (Fixed point iteration!)

Vector Norms

Vector Norm is a non-negative real-valued function on \mathbb{R}^n , usually denoted by $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$, with the following properties:

- 1. (Positivity) $\|\mathbf{x}\| \geqslant 0$ for all $\mathbf{x} \in \mathbb{R}^n$; $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = \mathbf{0}$;
- 2. (Homogeneity) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for $\forall \alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$;
- 3. (Triangle Inequality) $\|\mathbf{x} + \mathbf{y}\| \leq \|\mathbf{x}\| + \|\mathbf{y}\|$ for $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Examples:

- I_2 -norm : $\|\mathbf{x}\|_2 = (\sum_{i=1}^n x_i^2)^{\frac{1}{2}}$;
- I_1 -norm : $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$;
- I_{∞} -norm : $\|\mathbf{x}\|_{\infty} = \max_{1 \leq i \leq n} |x_i|$;

Theorem

Define l_p -norm as $\|\mathbf{x}\|_p = (\sum_{i=1}^n x_i^p)^{\frac{1}{p}}$, it is really a norm for $p \leq 1$.

Vector Norms (Cont')

Remark : i) I_p -norm is not a norm for $0 , since the triangular inequality is not satisfied. It is called semi-norm. ii) Useful to define <math>I_0$ -norm : $\|\mathbf{x}\|_0 = \#\{1 \leqslant i \leqslant n : x_i \neq 0\}$. Induced Distances : $\mathrm{dist}(\mathbf{x},\mathbf{y}) = \|\mathbf{x}-\mathbf{y}\|$, e.g., I_2 -distance is $\|\mathbf{x}-\mathbf{y}\|_2 = (\sum_{i=1}^n (x_i-y_i)^2)^{\frac{1}{2}}$.

Theorem

$$\forall \mathbf{x} \in \mathbb{R}^n$$
, $\|\mathbf{x}\|_{\infty} \leqslant \|\mathbf{x}\|_2 \leqslant \|\mathbf{x}\|_1$.

Matrix Norms

Matrix Norm is a non-negative real-valued function on $\mathbb{R}^{n\times m}$, usually denoted by $\|\cdot\|:\mathbb{R}^{n\times m}\to\mathbb{R}$, with the following properties :

- 1. (Positivity) $||A|| \ge 0$ for all $A \in \mathbb{R}^{n \times m}$; ||A|| = 0 iff A = 0;
- 2. (Homogeneity) $\|\alpha A\| = |\alpha| \|A\|$ for $\forall \alpha \in \mathbb{R}$ and $A \in \mathbb{R}^{n \times m}$;
- 3. (Triangle Inequality) $||A + B|| \le ||A|| + ||B||$ for $\forall A, B \in \mathbb{R}^{np \times m}$;
- 4. $||AB|| \leq ||A|| ||B||$ for $\forall A, B \in \mathbb{R}^{n \times m}$.

Theorem

If
$$\|\cdot\|$$
 is a vector norm on \mathbb{R}^n , then $\|A\| = \max_{\|\mathbf{x}\|=1} \|A\mathbf{x}\| = \max_{\mathbf{x}\neq 0} \frac{\|A\mathbf{x}\|}{\|\mathbf{x}\|}$ is a matrix norm (called natural norm).

Corollary

 $||A\mathbf{x}|| \leq ||A|| ||\mathbf{x}|| \text{ for } \forall A \in \mathbb{R}^{n \times m} \text{ and } \mathbf{x} \in \mathbb{R}^n.$

Matrix Norm (Cont')

Examples:

- I_1 -norm : $||A||_1 = \max_{1 \le i \le n} \sum_{i=1}^n |a_{ij}|$;
- I_{∞} -norm : $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$;

 l_2 -norm is not trivial. For a symmetric matrix A, define its spectral radius as $\rho(A) = \max_{1 \le i \le n} \lambda_i$, where $\lambda_i (i = 1, ..., n)$ are the eigenvalues of A. Then

Theorem

- 1. $||A||_2 = \sqrt{\rho(A^T A)}$;
- 2. $\rho(A) \leq ||A||$ for any natural norm $||\cdot||$.

Theorem (Convergence of Jacobi and Gauss-Seidel Iterations)

The Jacobi and Gauss-Seidel iterations converge to the unique solution of $\mathbf{x} = T\mathbf{x} + \mathbf{c}$ iff $\rho(T) < 1$. Moreover, we have the error estimate $\|\mathbf{x} - \mathbf{x}^{(k)}\| \le \frac{\|T\|^k}{1 - \|T\|} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|$.

Matrix Calculus

By convention, the lowercase letter a denotes a scalar, the bold letter $\mathbf{x} = (x_1, \dots, x_n)^T$ denotes a column vector, and the uppercase letter $A = (a_{ij})$ denotes an $m \times n$ matrix. Assume \mathbf{x} (or x) is independent variables, \mathbf{a} , \mathbf{b} , etc. are constant vectors, A, B, etc. are constant matrices, f(x), g(x), $\mathbf{u}(\mathbf{x})$, and $\mathbf{v}(\mathbf{x})$ are (scalar or vector valued) functions of \mathbf{x} (or x)

- Vector-by-vector formula : (resulting in matrix $\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = (\frac{\partial y_i}{\partial x_i})$)
 - 1. Linear vector-valued functions : $\frac{\partial \mathbf{a}}{\partial \mathbf{x}} = 0$, $\frac{\partial (A\mathbf{x})}{\partial \mathbf{x}} = A$, $\frac{\partial (\mathbf{x}^T A)}{\partial \mathbf{x}} = A^T$,
 - 2. Nonlinear vector-valued functions : $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \left(\frac{\partial u_i}{\partial x_j}\right)$ is Jacobian, $\frac{\partial (a\mathbf{u}(\mathbf{x}) + b\mathbf{v}(\mathbf{x}))}{\partial \mathbf{x}} = a\frac{\partial (\mathbf{u}(\mathbf{x}))}{\partial \mathbf{x}} + b\frac{\partial (\mathbf{v}(\mathbf{x}))}{\partial \mathbf{x}}$, $\frac{\partial (f(\mathbf{x})\mathbf{u}(\mathbf{x}))}{\partial \mathbf{x}} = f(\mathbf{x})\frac{\partial (\mathbf{u}(\mathbf{x}))}{\partial \mathbf{x}} + \mathbf{u}\frac{\partial (f(\mathbf{x}))}{\partial \mathbf{x}}$, $\frac{\partial (A\mathbf{u}(\mathbf{x}))}{\partial \mathbf{x}} = A\frac{\partial (\mathbf{u}(\mathbf{x}))}{\partial \mathbf{x}}$
 - 3. Chain rule : $\frac{\partial g(u(x))}{\partial x} = \frac{\partial g(u)}{\partial u} \frac{\partial (u(x))}{\partial x}$,

Matrix Calculus

- Scalar-by-vector : (resulting in row vector $\frac{\partial y}{\partial x} = (\nabla_x y)^T$) Some of the formula can be obtained from the previous page by letting the numerator be of dimension one, the others are :
 - 1. Inner product : $\frac{\partial (\mathbf{a}^T \mathbf{x})}{\partial \mathbf{x}} = \frac{\partial (\mathbf{x}^T \mathbf{a})}{\partial \mathbf{x}} = \mathbf{a}^T$, $\frac{\partial \mathbf{a}^T \mathbf{u}(\mathbf{x})}{\partial \mathbf{x}} = \mathbf{a}^T \frac{\partial (\mathbf{u}(\mathbf{x}))}{\partial \mathbf{x}}$, $\frac{\partial (\mathbf{u}(\mathbf{x})^T A \mathbf{v}(\mathbf{x}))}{\partial \mathbf{x}} = \mathbf{u}^T A \frac{\partial (\mathbf{v}(\mathbf{x}))}{\partial \mathbf{x}} + \mathbf{v}^T A^T \frac{\partial (\mathbf{u}(\mathbf{x}))}{\partial \mathbf{x}}$
 - 2. Quadratic forms : $\frac{\partial (\mathbf{x}^T A \mathbf{x})}{\partial \mathbf{x}} = \mathbf{x}^T (A + A^T), \ \frac{\partial (\mathbf{x}^T A \mathbf{x})}{\partial \mathbf{x}} = 2 \mathbf{x}^T A \text{ if } A$ is symmetric, $\frac{\partial (\mathbf{a}^T \mathbf{x} \mathbf{x}^T \mathbf{b})}{\partial \mathbf{x}} = \mathbf{x}^T (\mathbf{a} \mathbf{b}^T + \mathbf{b} \mathbf{a}^T)$ $\frac{\partial (A \mathbf{x} + \mathbf{b})^T C (D \mathbf{x} + \mathbf{e})}{\partial \mathbf{x}} = (D \mathbf{x} + \mathbf{e})^T C^T A + (A \mathbf{x} + \mathbf{b})^T C D$
 - 3. l_2 norm : $\frac{\partial \|\mathbf{x} \mathbf{a}\|}{\partial \mathbf{x}} = \frac{(\mathbf{x} \mathbf{a})^T}{\|\mathbf{x} \mathbf{a}\|}$
 - 4. 2nd order derivative (resulting in a matrix): $\frac{\partial^2(\mathbf{x}^T A \mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^T} = (A + A^T), \ \frac{\partial^2(\mathbf{x}^T A \mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^T} = 2A \text{ if } A \text{ is symmetric,} \\ \frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^T} = H = (\frac{\partial f}{\partial x_i \partial x_i}) \text{ is the Hessian matrix.}$

Trace and Frobenius inner product

Trace is defined as the sum of the diagonal entries in a matrix : $tr(A) = \sum_{i=1}^{n} a_{ii}$

- $\operatorname{tr}(A) = \operatorname{tr}(A^T)$
- $\operatorname{tr}(AB) = \operatorname{tr}(BA)$, $\operatorname{tr}(ABC) = \operatorname{tr}(CAB) = \operatorname{tr}(BCA)$
- $\frac{\partial \operatorname{tr}(AB)}{\partial A} = B^T$, $\frac{\partial \operatorname{tr}(ABA^TC)}{\partial A} = CAB + C^TAB^T$
- a = tr(a) for scalar a, as a result, $\langle \mathbf{x}, \mathbf{y} \rangle = tr(\mathbf{x}^T \mathbf{y}) = tr(\mathbf{y} \mathbf{x}^T)$ (useful formula)

The Frobenius inner product is defined for matrices :

$$\langle A, B \rangle_F = \operatorname{tr}(AB^T) = \sum_{i,j=1}^n a_{ij}b_{ij}$$
. The induced norm is called

Frobenius norm :
$$||A||_F = \sqrt{\operatorname{tr}(AA^T)} = \sqrt{\sum_{i,j=1}^n a_{ij}^2}$$
.

A last useful formula : $\frac{\mathrm{d}}{\mathrm{d}t}\log\det(A(t))=\mathrm{tr}(A(t)^{-1}A'(t))$

Jaccard distance

Let f be a nonnegative, monotone, submodular set function on X. The generalized Jaccard distance $J_{\delta,f}(A,B)=1-\frac{f(A\cap B)}{f(A\cup B)}$, when f(A)=|A|, we obtain the standard Jaccard distance $J_{\delta}(A,B):=1-\frac{|A\cap B|}{|A\cup B|}=\frac{|A\triangle B|}{|A\cup B|}$. The Jaccard distance J_{δ} is known to fulfill all properties of a metric, notably, the triangle inequality, can be proved by following steps:

Lemma

For all sets $A, B, C \subseteq X$, it holds that

$$f(A \cap C) \cdot f(B \cup C) + f(A \cup C) \cdot f(B \cap C) \leq f(C) \cdot (f(A) + f(B))$$

Jaccard distance

Corollary

For all sets $S, T \subseteq X$, it holds that

$$f(S \cap T) \cdot f(S \cup T) \leq f(S) \cdot f(T)$$
.

Theorem

For all sets $A, B, C \subseteq X$, it holds that

$$J_{\delta,f}(A,B) \leq J_{\delta,f}(A,C) + J_{\delta,f}(C,B).$$

Outlines

Linear Algebra

References

References

 Numerical Analysis, 9th Edition, by Richard L. Burden, J. Douglas Faires, Brooks/Cole, 2011.