COMP170 Discrete Mathematical Tools for Computer Science

Quantifiers

Version 2.0: Last updated, May 13, 2007

Discrete Math for Computer Science K. Bogart, C. Stein and R.L. Drysdale Section 3.2, pp. 104-114

3.2 Variables and Quantifiers

- Variables and Universes
- Quantifiers
- Standard Notation for Quantification
- Statements about Variables
- Proving Quantified Statements True or False
- Negation of Quantified Statements
- Implicit Quantification

Consider the statement:

(*)
$$m^2 > m$$

Is (*) True or False?

Consider the statement:

(*)
$$m^2 > m$$

Is (*) True or False?

This is an ill-posed question!

For some values of m, e.g., m=2, (*) is True For other values of m, e.g., m=1/2, (*) is False

Consider the statement:

(*)
$$m^2 > m$$

Is (*) True or False?

This is an ill-posed question!

For some values of m, e.g., m=2, (*) is True For other values of m, e.g., m=1/2, (*) is False

In statements such as $m^2 > m$, variable m is not constrained. Unconstrained variables are called *free variables*.

Each possible value of a free variable gives a new statement. The Truth or Falsehood of this new statement, is determined by substituting in the new value for the variable.

• For which values of m is (*) True and for which values is it False?

- For which values of m is (*) True and for which values is it False?
- This statement is also ill-defined!
 The answer depends upon which universe we assume

- For which values of m is (*) True and for which values is it False?
- This statement is also ill-defined!
 The answer depends upon which universe we assume
 - For the universe of non-negative integers, the statement is True for every value of m except m=0,1.

- For which values of m is (*) True and for which values is it False?
- This statement is also ill-defined!
 The answer depends upon which universe we assume
 - For the universe of non-negative integers, the statement is True for every value of m except m=0,1.
 - For the universe of real numbers, the statement is True for every value of m except for $0 \le m \le 1$

- For which values of m is (*) True and for which values is it False?
- This statement is also ill-defined!
 The answer depends upon which universe we assume
 - For the universe of non-negative integers, the statement is True for every value of m except m=0,1.
 - For the universe of real numbers, the statement is True for every value of m except for $0 \le m \le 1$

Two main points:

- Clearly state the universe
- A statement about a variable can be True for some values of a variable and False for others.

3.2 Variables and Quantifiers

- Variables and Universes
- Quantifiers
- Standard Notation for Quantification
- Statements about Variables
- Proving Quantified Statements True or False
- Negation of Quantified Statements
- Implicit Quantification

The statement

(*) For every integer m, $m^2 > m$

is False.

The statement

(*) For every integer m, $m^2 > m$

is False.

• While $m^2 > m$ is True for values such as m = -3 or m = 9 it is False for m = 0 or m = 1.

The statement

(*) For every integer m, $m^2 > m$

is False.

- While $m^2 > m$ is True for values such as m = -3 or m = 9 it is False for m = 0 or m = 1.
- Thus, it is not True that $m^2 > m$ for every integer m, so (*) is False

The statement

(*) For every integer m, $m^2 > m$

is False.

The statement

(*) For every integer m, $m^2 > m$

is False.

• A phrase like for every integer m that converts a symbolic statement about potentially any member of our universe into a statement about the universe is called a **quantifier**

The statement

(*) For every integer m, $m^2 > m$

is False.

- A phrase like for every integer m that converts a symbolic statement about potentially any member of our universe into a statement about the universe is called a **quantifier**
- A quantifier that asserts a statement about a variable is true for every value of the variable in its universe, is called a **universal quantifier**.

Examples of universal quantifiers

The statement

(**) For every integer m, 2m is even

is True.

Examples of universal quantifiers

The statement

(**) For every integer m, 2m is even

is True.

The statement

(**) For every real number m, 2m is even

is False.

(***) There exists an integer m, such that $m^2>m$ is True.

(***) There exists an integer m, such that $m^2 > m$ is True.

 An existential quantifier asserts that at least one element of the universe exists that makes the individual statement True.

(***) There exists an integer m, such that $m^2 > m$ is True.

- An existential quantifier asserts that at least one element of the universe exists that makes the individual statement True.
- To show that a statement with an existential quantifier is True, we need only exhibit one value of the variable being quantified that makes the statement True.

(***) There exists an integer m, such that $m^2 > m$ is True.

- An existential quantifier asserts that at least one element of the universe exists that makes the individual statement True.
- To show that a statement with an existential quantifier is True, we need only exhibit *one* value of the variable being quantified that makes the statement True.
 - Example for (***): set m=2

 What would you have to do to show that a statement about one variable with an existential quantifier is False?

- What would you have to do to show that a statement about one variable with an existential quantifier is False?
 - You would have to show that every element of the universe makes the statement being quantified False

- What would you have to do to show that a statement about one variable with an existential quantifier is False?
 - You would have to show that every element of the universe makes the statement being quantified False

 What would you have to do to show that a statement about one variable with a universal quantifier is True?

- What would you have to do to show that a statement about one variable with an existential quantifier is False?
 - You would have to show that every element of the universe makes the statement being quantified False

- What would you have to do to show that a statement about one variable with a universal quantifier is True?
 - You would have to show that every element of the universe makes the satement being quantified True

3.2 Variables and Quantifiers

- Variables and Universes
- Quantifiers
- Standard Notation for Quantification
- Statements about Variables
- Proving Quantified Statements True or False
- Negation of Quantified Statements
- Implicit Quantification

A quantified statement about x asserts either that

A quantified statement about x asserts either that

ullet the statement is True for all x in the universe, or

A quantified statement about x asserts either that

- ullet the statement is True for all x in the universe, or
- ullet there exists an x in the universe that makes the statement True

A quantified statement about x asserts either that

- ullet the statement is True for all x in the universe, or
- ullet there exists an x in the universe that makes the statement True

Notation: \forall for for all and \exists for there exists.

A quantified statement about x asserts either that

- ullet the statement is True for all x in the universe, or
- there exists an x in the universe that makes the statement True

Notation: \forall for for all and \exists for there exists.

Examples: Use Z for universe of all integers

- For all integers n, $n^2 \ge n$ becomes $\forall n \in \mathbb{Z} \ (n^2 \ge n)$
- There exists an integer n such that $n^2 \not> n$ becomes

$$\exists n \in Z \ (n^2 \not> n)$$

Using the given notation let's rewrite the part of Euclid's division theorem (Theorem 2.12) that states

For every positive integer n and every nonnegative integer m, there are integers q and r, with $0 \le r < n$, such that m = qn + r

Let \mathbb{Z}^+ be the positive integers and N the nonnegative integers.

Using the given notation let's rewrite the part of Euclid's division theorem (Theorem 2.12) that states

For every positive integer n and every nonnegative integer m, there are integers q and r, with $0 \le r < n$, such that m = qn + r

Let \mathbb{Z}^+ be the positive integers and N the nonnegative integers.

$$\forall n \in Z^+ \ (\forall m \in N \ (\exists q \in N \ (\exists r \in N)$$

$$((r < n) \land (m = qn + r))))$$

3.2 Variables and Quantifiers

- Variables and Universes
- Quantifiers
- Standard Notation for Quantification
- Statements about Variables
- Proving Quantified Statements True or False
- Negation of Quantified Statements
- Implicit Quantification

Use p(n) to stand for the statement $n^2 > n$.

Use p(n) to stand for the statement $n^2>n$. p(4) and p(-3) are True; p(1) and p(0.5) are False

Use p(n) to stand for the statement $n^2 > n$.

p(4) and p(-3) are True; p(1) and p(0.5) are False

We now rewrite Euclid's division theorem.

Let p(m, n, q, r) denote m = nq + r with $0 \le r < n$.

Leave out references to universes to clearly see the order in which the quantifiers occur.

Use p(n) to stand for the statement $n^2 > n$.

$$p(4)$$
 and $p(-3)$ are True; $p(1)$ and $p(0.5)$ are False

We now rewrite Euclid's division theorem.

Let p(m, n, q, r) denote m = nq + r with $0 \le r < n$.

Leave out references to universes to clearly see the order in which the quantifiers occur.

$$\forall n \ (\forall m \ (\exists q \ (\exists r \ p(m,n,q,r) \)))$$

It is sometimes useful to rewrite a quantified statement so that the universe is larger while the statement itself focuses on a subset of the new universe.

It is sometimes useful to rewrite a quantified statement so that the universe is larger while the statement itself focuses on a subset of the new universe.

Let R be the real numbers & R^+ the positive reals. Consider the following two statements.

a)
$$\forall x \in \mathbb{R}^+ \ (x > 1)$$

b)
$$\exists x \in R^+ \ (x > 1)$$

It is sometimes useful to rewrite a quantified statement so that the universe is larger while the statement itself focuses on a subset of the new universe.

Let R be the real numbers & R^+ the positive reals. Consider the following two statements.

a)
$$\forall x \in R^+ \ (x > 1)$$

b)
$$\exists x \in R^+ \ (x > 1)$$

Now rewrite (a) and (b) so that the universe is R but the statements say the same thing

It is sometimes useful to rewrite a quantified statement so that the universe is larger while the statement itself focuses on a subset of the new universe.

Let R be the real numbers & R^+ the positive reals. Consider the following two statements.

a)
$$\forall x \in R^+ \ (x > 1)$$

b)
$$\exists x \in R^+ \ (x > 1)$$

Now rewrite (a) and (b) so that the universe is R but the statements say the same thing

a')
$$\forall x \in R ((x > 0) \Rightarrow (x > 1))$$

b')
$$\exists x \in R \ ((x > 0) \land (x > 1))$$

Theorem 3.2:

Let U_1, U_2 be two universes with $U_1 \subseteq U_2$. Suppose that q(x) is a statement such that (*) $U_1 = \{x \in U_2 \mid q(x) \text{ is true}\}.$

Then, if p(x) is a statement about U_2 , it may also be interpreted as a statement about U_1 , and

a. $\forall x \in U_1 \ (p(x))$ is equiv. to $\forall x \in U_2 \ (q(x) \Rightarrow p(x))$, and

b. $\exists x \in U_1 \ (p(x))$ is equiv. to $\exists x \in U_2 \ (q(x) \land p(x))$.

Theorem 3.2:

Let U_1, U_2 be two universes with $U_1 \subseteq U_2$. Suppose that q(x) is a statement such that (*) $U_1 = \{x \in U_2 \mid q(x) \text{ is true}\}.$

Then, if p(x) is a statement about U_2 , it may also be interpreted as a statement about U_1 , and

a. $\forall x \in U_1 \ (p(x))$ is equiv. to $\forall x \in U_2 \ (q(x) \Rightarrow p(x))$, and

b. $\exists x \in U_1 \ (p(x))$ is equiv. to $\exists x \in U_2 \ (q(x) \land p(x))$.

Proof:

By (*), q(x) must be True for all $x \in U_1$ and False for all $x \in U_2$ but $x \notin U_1$.

3.2 Variables and Quantifiers

- Variables and Universes
- Quantifiers
- Standard Notation for Quantification
- Statements about Variables
- Proving Quantified Statements True or False
- Negation of Quantified Statements
- Implicit Quantification

Let R be the real numbers & R^+ the positive real numbers.

- a) $\forall x \in R^+ \ (x > 1)$
- **b)** $\exists x \in R^+ \ (x > 1)$
- c) $\forall x \in R \ (\exists y \in R \ (y > x))$
- d) $\forall x \in R \ (\forall y \in R \ (y > x))$
- e) $\exists x \in R \ ((x \ge 0) \land \forall y \in R^+ \ (y > x))$

Let R be the real numbers & R^+ the positive real numbers.

For each of the following, state T or F and explain why.

a)
$$\forall x \in R^+ \ (x > 1)$$

F, because $1/2 \le 1$.

- **b)** $\exists x \in R^+ \ (x > 1)$
- c) $\forall x \in R \ (\exists y \in R \ (y > x))$
- d) $\forall x \in R \ (\forall y \in R \ (y > x))$
- e) $\exists x \in R \ ((x \ge 0) \land \forall y \in R^+ \ (y > x))$

Let R be the real numbers & R^+ the positive real numbers.

For each of the following, state T or F and explain why.

a)
$$\forall x \in R^+ \ (x > 1)$$

F, because $1/2 \le 1$.

b)
$$\exists x \in R^+ \ (x > 1)$$

T, because 2 > 1.

c)
$$\forall x \in R \ (\exists y \in R \ (y > x))$$

d)
$$\forall x \in R \ (\forall y \in R \ (y > x))$$

e)
$$\exists x \in R \ ((x \ge 0) \land \forall y \in R^+ \ (y > x))$$

Let R be the real numbers & R^+ the positive real numbers.

a)
$$\forall x \in R^+ \ (x > 1)$$

F, because
$$1/2 \le 1$$
.

b)
$$\exists x \in R^+ \ (x > 1)$$

T, because
$$2 > 1$$
.

c)
$$\forall x \in R \ (\exists y \in R \ (y > x))$$
 T. Let $y = x + 1$.

T. Let
$$y = x + 1$$
.

d)
$$\forall x \in R \ (\forall y \in R \ (y > x))$$

e)
$$\exists x \in R \ ((x \ge 0) \land \forall y \in R^+ \ (y > x))$$

Let R be the real numbers & R^+ the positive real numbers.

a)
$$\forall x \in R^+ \ (x > 1)$$

F, because
$$1/2 \le 1$$
.

b)
$$\exists x \in R^+ \ (x > 1)$$

T, because
$$2 > 1$$
.

c)
$$\forall x \in R \ (\exists y \in R \ (y > x))$$

T. Let
$$y = x + 1$$
.

$$\mathbf{d)} \ \forall x \in R \ (\forall y \in R \ (y > x))$$

F. Let
$$x = 1, y = 0$$

e)
$$\exists x \in R \ ((x \ge 0) \land \forall y \in R^+ \ (y > x))$$

Let R be the real numbers & R^+ the positive real numbers.

a)
$$\forall x \in R^+ \ (x > 1)$$

F, because
$$1/2 \le 1$$
.

b)
$$\exists x \in R^+ \ (x > 1)$$

T, because
$$2 > 1$$
.

c)
$$\forall x \in R \ (\exists y \in R \ (y > x))$$

T. Let
$$y = x + 1$$
.

$$\mathbf{d)} \ \forall x \in R \ (\forall y \in R \ (y > x))$$

F. Let
$$x = 1, y = 0$$

e)
$$\exists x \in R \ ((x \ge 0) \land \forall y \in R^+ \ (y > x))$$

T. Let
$$x=0$$
.

Principle 3.2 (The Meaning of Quantified Statements)

- The statement $\exists x \in U \ (p(x))$ is True if there exists at least one value of $x \in U$ for which the statement p(x) is True.
- The statement $\exists x \in U \ (p(x))$ is False if there is no $x \in U$ for which p(x) is True.
- The statement $\forall x \in U \ (p(x))$ is True if p(x) is True for every value of $x \in U$.
- The statement $\forall x \in U \ (p(x))$ is False if p(x) is False for at least one value of $x \in U$.

3.2 Variables and Quantifiers

- Variables and Universes
- Quantifiers
- Standard Notation for Quantification
- Statements about Variables
- Proving Quantified Statements True or False
- Negation of Quantified Statements
- Implicit Quantification

What is the meaning of the statement It is not the case that $n^2>0$ for all integers n

What is the meaning of the statement It is not the case that $n^2>0$ for all integers n

 $\neg \forall n \in Z \ (n^2 > 0)$ asserts that it is not the case that $n^2 > 0$ for all integers n.

What is the meaning of the statement It is not the case that $n^2>0$ for all integers n

 $\neg \forall n \in Z \ (n^2 > 0) \text{ asserts that}$ it is not the case that $n^2 > 0$ for all integers n.

Then, there must be some integer n such that $n^2 \not > 0$.

What is the meaning of the statement It is not the case that $n^2>0$ for all integers n

 $\neg \forall n \in Z \ (n^2 > 0)$ asserts that it is not the case that $n^2 > 0$ for all integers n.

Then, there must be some integer n such that $n^2 \geq 0$.

i.e., there exists some integer n s.t. $n^2 \leq 0$,

What is the meaning of the statement It is not the case that $n^2>0$ for all integers n

 $\neg \forall n \in Z \ (n^2 > 0) \text{ asserts that}$ it is not the case that $n^2 > 0$ for all integers n.

Then, there must be some integer n such that $n^2 \not > 0$.

i.e., there exists some integer n s.t. $n^2 \leq 0$,

i.e.,
$$\exists n \in Z \ (n^2 \le 0)$$

What is the meaning of the statement It is not the case that $n^2>0$ for all integers n

 $\neg \forall n \in Z \ (n^2 > 0) \text{ asserts that}$ it is not the case that $n^2 > 0$ for all integers n.

Then, there must be some integer n such that $n^2 \not > 0$.

i.e., there exists some integer n s.t. $n^2 \leq 0$,

i.e.,
$$\exists n \in Z \ (n^2 \le 0)$$

Thus, the negation of our for all (\forall) statement is a there exists (\exists) statement.

Theorem 3.3: The statements

$$\neg \forall x \in U(p(x)) \text{ and } \exists x \in U(\neg p(x))$$

are equivalent.

Theorem 3.3: The statements $\neg \forall x \in U(p(x)) \ \text{ and } \ \exists x \in U(\neg p(x))$ are equivalent.

Proof:

Theorem 3.3: The statements

$$\neg \forall x \in U(p(x)) \text{ and } \exists x \in U(\neg p(x))$$

are equivalent.

Proof:

p(x)	$\neg p(x)$	$\forall x \in U(p(x))$	$\neg \forall x \in U(p(x))$	$\exists x \in U(\neg p(x))$
always true	always false	true	false	false
not always true	not always false	false	true	true

The following theorem formalizes the example.

Theorem 3.3: The statements

$$\neg \forall x \in U(p(x)) \text{ and } \exists x \in U(\neg p(x))$$

are equivalent.

Proof:

p(x)	$\neg p(x)$	$\forall x \in U(p(x))$	$\neg \forall x \in U(p(x))$	$\exists x \in U(\neg p(x))$
always true	always false	true	false	false
not always true	not always false	false	true	true

Example: Let p(x) be the statement $x^2 > 0$. Then

$$\neg \forall n \in Z \ (n^2 > 0)$$
 is equivalent to $\exists n \in Z \ (n^2 \le 0)$

$$\exists n \in Z \ (n^2 \le 0)$$

 $\neg \exists x \in U(p(x)) \ \text{ and } \ \forall x \in U(\neg p(x)) \ \text{ are equivalent}.$

 $\neg \exists x \in U(p(x))$ and $\forall x \in U(\neg p(x))$ are equivalent.

Proof:

 $\neg \exists x \in U(p(x))$ and $\forall x \in U(\neg p(x))$ are equivalent.

Proof:

From Theorem 3.3

 $\neg \forall x \in U(q(x))$ and $\exists x \in U(\neg q(x))$ are equivalent.

 $\neg \exists x \in U(p(x))$ and $\forall x \in U(\neg p(x))$ are equivalent.

Proof:

From Theorem 3.3

 $\neg \forall x \in U(q(x))$ and $\exists x \in U(\neg q(x))$ are equivalent.

Negating both statements gives

 $\forall x \in U(q(x))$ and $\neg \exists x \in U(\neg q(x))$ are equivalent.

 $\neg \exists x \in U(p(x))$ and $\forall x \in U(\neg p(x))$ are equivalent.

Proof:

From Theorem 3.3

 $\neg \forall x \in U(q(x))$ and $\exists x \in U(\neg q(x))$ are equivalent.

Negating both statements gives

$$\forall x \in U(q(x))$$
 and $\neg \exists x \in U(\neg q(x))$ are equivalent.

Now, setting
$$q(x) = \neg p(x)$$
 gives

$$\forall x \in U(\neg p(x))$$
 and $\neg \exists x \in U(p(x))$ are equivalent,

and proves the corollary.

 $\neg \exists x \in U(p(x)) \ \text{ and } \ \forall x \in U(\neg p(x)) \ \text{ are equivalent}.$

 $\neg \exists x \in U(p(x))$ and $\forall x \in U(\neg p(x))$ are equivalent.

Example:

Let p(x) be 2x is odd.

Then $\neg p(x)$ is 2x is even.

 $\neg \exists x \in U(p(x))$ and $\forall x \in U(\neg p(x))$ are equivalent.

Example:

Let p(x) be 2x is odd.

Then $\neg p(x)$ is 2x is even.

The corollary then says that

$$\neg \exists x \in Z \ (2x \text{ is odd})$$

is equivalent to

$$\forall x \in Z \ (2x \text{ is even})$$

3.2 Variables and Quantifiers

- Variables and Universes
- Quantifiers
- Standard Notation for Quantification
- Statements about Variables
- Proving Quantified Statements True or False
- Negation of Quantified Statements
- Implicit Quantification

Are there any quantifiers in the statement The sum of even integers is even?

Are there any quantifiers in the statement The sum of even integers is even?

Yes! When we write this out mathematically we see that there are.

Are there any quantifiers in the statement The sum of even integers is even?

Yes! When we write this out mathematically we see that there are.

Let p(n) be the statement n is even.

Are there any quantifiers in the statement The sum of even integers is even?

Yes! When we write this out mathematically we see that there are.

Let p(n) be the statement n is even.

Our original statement really means that For every two even integers, m, n, m+n is even

Are there any quantifiers in the statement The sum of even integers is even?

Yes! When we write this out mathematically we see that there are.

Let p(n) be the statement n is even.

Our original statement really means that

For every two even integers, m, n, m + n is even

In symbols

$$\forall m \in Z \ (\forall n \in Z \ (\ (p(m) \land p(n)) \Rightarrow p(m+n)\)\)$$