HONEWORK 3 SOLUTIONS

$$\frac{(a)}{\sigma^{2}} \sim \chi^{2}_{m-1}.$$

$$P \left[\chi^{2}_{m-1}, 1-d/2} \left\langle \frac{(m-1)}{\sigma^{2}} \right\rangle \left\langle \chi^{2}_{m-1}, a/2 \right\rangle = 1-\alpha.$$

$$P \left[\frac{(m-1)}{\chi^{2}_{m-1}, a/2}} \left\langle \sigma^{2} \right\rangle \left\langle \frac{(m-1)}{\sigma^{2}} \right\rangle = 1-\alpha.$$

$$L_{0}^{2}(a) = \frac{(m-1)}{\chi^{2}_{m-1}, a/2}, \qquad U_{0}^{2}(a) = \frac{(m-1)}{\chi^{2}_{m-1}, 1-a/2}.$$

(b)
$$\sqrt{n}(\overline{x}-\mu) \sim 2_{n-1}$$
 $\Rightarrow P[2_{n-1},1-d_2] < \sqrt{n}(\overline{x}-\mu) < 2_{n-1},d_2] = 1-d$
 $\therefore C.I. \text{ for } \mu : \overline{\chi} + \frac{s}{\sqrt{n}} 2_{n-1},d_2, \overline{\chi} - \frac{s}{\sqrt{n}} 2_{n-1},1-d_2.$

(1) Since S^2 appear in both pairs of end points, in There is no reason to think that $(L_p(\alpha), U_p(\alpha))$ and $(L_0^2(\alpha), U_0^2(\alpha))$ are independent.

The event $\frac{1}{x-s}$ $\mu \in [L_{\mu}(\alpha), U_{\mu}(\alpha)]$ and $6^2 \in [L_{\sigma}^2(\alpha), U_{\sigma}^2(\alpha)]^{1/2}$ can be represented as a region in \bar{x} -s plane bounded by the following four lines:

L₁ · S =
$$\sqrt{6^2 \chi^2_{n-1,a/2}} / (n-1)$$

L₂ · S = $\sqrt{6^2 \chi^2_{n-1,a/2}} / (n-1)$
L₃ · $\sqrt{8} = \sqrt{6^2 \chi^2_{n-1,a/2}} / (n-1)$
L₄ · $\sqrt{8} = \sqrt{6^2 \chi^2_{n-1,a/2}} / (n-1)$
L₄ · $\sqrt{8} = \sqrt{6^2 \chi^2_{n-1,a/2}} / (n-1)$

P(KE [Ly(a), Uy(a)], 02 [[Lo2(a), U2 (a)]) 21- (P(µ¢[Lµ(a), Uµ(a)] or o2¢ [Lo(a), U2(a)])) > 1- P (M = [L M (a), U M (a)]) - P (62 \$ [L2 (a), U2 (a)]) Z 1-20. (d) To obtain different C.I. choose 0<a<b s.Z $P\left[a < \frac{(n-1)s^2}{6^2} < b\right] = 1-d \longrightarrow (A)$ $(n-1)s^2$, $(n-1)s^2$) is a 100 (1-a)%. EI for 6^2 . with length of the interval $(n-1)s^2(\frac{1}{a}-\frac{1}{b})$ so we need to find the charce of a and b that minimizes $\frac{1}{a} - \frac{1}{b}$ bubject to the constraint (a) (x) determines b as a function of a. So, we can use implicit differentiation: $\frac{d}{da}\int_{a}^{b}dn_{-1}(x)dx = \frac{d}{da}(1-a)$ on-1 is the density of x_{n-1}^2 $\Rightarrow -\xi_{m+}(a) + \xi_{m+1}(b) \frac{db}{da} = 0$ $\frac{db}{da} = \frac{\delta \eta_{-1}(a)}{\delta \eta_{-1}(b)}$ Now, $\frac{d}{da}(\frac{1}{a}-\frac{1}{b}) = -\frac{1}{a^2} + \frac{1}{b^2} \frac{f_{n-1}(a)}{f_{n-1}(b)}$ 19his equals 0 when $a^2 f_{n-1}(0) = b^2 f_{n-1}(b)$ 4- To verify this we that we have actually forered a minimum, à second implicit differentiation yields

$$\frac{d^{2}b}{da^{2}} = \frac{g_{n-1}'(a)}{g_{n-1}(b)} - g_{n-1}'(b) \frac{g_{n-1}(a)}{g_{n-1}(b)}.$$

For the result values of d, we have a must be large be small enough and b must be large enough so that b_{m-1} is incuaring at a and developing at b, quaranteeing that $\frac{d^2b}{da^2} > 0$.

consequently, an interval of minimum length will be found for any a, b such that

$$a^2 f_{n-1}(a) = b^2 f_{n-1}(b)$$

2. (a) likelihood ratio

$$\Lambda = \frac{\left(\frac{1}{\sqrt{2}\pi}\right)^{n} \exp\left(-\frac{n}{\sqrt{2}}(x_{i}^{2}-6)^{2}\right)}{\left(\frac{1}{\sqrt{2}\pi}\right)^{n} \exp\left(-\frac{n}{\sqrt{2}}(x_{i}^{2}-10)^{2}\right)}$$

$$= \exp \left(-n(\bar{x}-5)^2 + n(\bar{x}-10)^2\right)$$

=
$$exp\left(-n\left(\bar{x}^2+25-10\bar{x}-\bar{x}^2+20\bar{x}-100\right)\right)$$

$$=\exp\left(-n\left(-75+10\bar{x}\right)\right)$$

 $\Lambda > C \iff 10n(x-7.5) < 2 \text{ for home } 2.$ $\iff x-7.5 < 2^{*} \text{ for home } 2^{*}.$

Now, $\sqrt{N} \sim N(0, \frac{1}{20})$; render Ho, 0 = 5 & render H, ; 0 = 10.

$$P_{H_0}(\bar{x}-7.5(t^4)=a \iff P_{H_0}(\bar{x}-5(t^4+7.5-5)=a)$$

P
$$(\pi(\bar{x}-5)/\pi(\bar{x}^{*}+2.5)) = d$$
.

Fig. $(\bar{x}^{*}+2.5) = 3d$

A-th quantile of $N(0,1)$

P $(\pi(\bar{x}-5)/\pi(\bar{x}^{*}+2.5)) = d$.

i likelihood ratio test is I & 1>cf or equivalently I {x-7.5 (2x) or equivalent II { x < 5+3 d/m}

(b) Power of the test we reject to when 1 is small. or, we accept to when 1. is large, ie. 1) c. i.e. we accept to when $\overline{X} < 5 + \frac{3d}{\sqrt{n}}$.

(b) Power of the test:
$$P_{H_1}$$
 (Reject Ho)

= $1 - P_{H_1}$ (Accept Ho)

= $1 - P_{0 \ge 10}$ ($\overline{x} < 5 + \frac{3a}{\sqrt{n}}$)

= $1 - P_{0 \ge 10}$ ($\overline{x} - 10 < -5 + \frac{3a}{\sqrt{n}}$)

= $1 - P_{0 \ge 10}$ (\sqrt{n} ($\overline{x} - 10$) $< -5\sqrt{n} + 3a$)

= $1 - D$ ($-5\sqrt{n} + 3a$) where D is abundand Non

Notice hou as n invuasus, power increases.

[: under H, m(x-16)~N(S))

standard Normal

Ho: 020 VS Hi: 027-1/2.

Likelihood ratio
$$\Lambda = \frac{\exp(-\frac{1}{2}\sum_{i=1}^{n}x_{i}^{2})}{\exp(-\frac{1}{2}\sum_{i=1}^{n}(\alpha_{i}^{2}-m^{-\frac{1}{2}})^{2})}$$

$$= \exp(-\frac{1}{2}\sum_{i=1}^{n}(\alpha_{i}^{2}-\alpha_{i}^{2}+2m^{-\frac{1}{2}}\alpha_{i}^{2}+n^{-\frac{1}{2}})$$

$$= \exp(-\frac{1}{2}2\pi^{\frac{1}{2}}\sum_{i=1}^{n}\alpha_{i}^{2}-\frac{1}{2}m^{-\frac{1}{2}})$$

$$= \exp(-\frac{m\pi}{\sqrt{n}}-\frac{1}{2})$$

$$= \exp(-\sqrt{m\pi}-\frac{1}{2})$$

Rijed No when $\Lambda < C$ equivalently, when $\sqrt{n} \bar{z} > t^*$ for home t^* . $P(\sqrt{n} \bar{z} > t^*) = 2d (z) + t^* = 3d [: \sqrt{n} \bar{x} N(0,1)]$ Power of the test: $P_{H_1}(Rijed H_0)$ $= P_{H_1}(\bar{z} > 3a/\sqrt{n})$ $= P_{H_1}(\bar{z} > 3a/\sqrt{n})$

$$= P_{H_1} \left(\overline{x} > 3\sqrt{m} \right)$$

$$= P_{H_1} \left(\overline{x} - \sqrt{m} > 3\sqrt{-4m} \right)$$

$$= P_{H_1} \left(\sqrt{m} \left(\overline{x} - \sqrt{m} \right) > 3\alpha - 4 \right)$$

$$= 1 - P_{H_1} \left(\sqrt{m} \left(\overline{x} - \sqrt{m} \right) \leq 3\alpha - 4 \right)$$

$$= 1 - \mathfrak{P} \left(3\alpha - 4 \right) \quad \text{where} \quad \mathfrak{T} \text{ is sbandard}$$

$$= 1 - \mathfrak{P} \left(3\alpha - 4 \right) \quad \text{where} \quad \mathfrak{T} \text{ of subandard}$$

$$= 1 - \mathfrak{P} \left(3\alpha - 4 \right) \quad \text{where} \quad \mathfrak{T} \text{ of subandard}$$

(d) Notice in (b), as n invicases, power invicases.
in (c), as n changes, power semains same!

X1,..., Xn ~ N(H, 02) H unknown Ho; 620,2 vs H; 62 + 6,2. render $(6, \frac{(n-1)s^2}{6s^2} \sim \chi^2_{n-1}$. Reject to when (so is too small or too large. equivalently reject H_0 when $\frac{s^2}{60^2} < a_1 \frac{OK}{60^2} > b$ $P\left(\frac{s^2}{60^2} < \alpha\right) = P\left(\frac{s^2}{60^2} > b\right) = d/2$ such that i. Reject when $\frac{(n-1)5^2}{6n^2} < \chi^2_{q_2, n-1}$ or $\frac{(n-1)5^2}{6n^2} > \frac{1}{1-q_2, n-1}$ where $\chi^2_{d_2,n-1}$ and $\chi^2_{1-d_2,n-1}$ are report dy_th and (1-d/2) the percentile of 2n-1 distribution A. let X = No. of heads. => X ~ Bin (n, p) Reject to where Pz probabelity of heads. n = 10 Ho; Pz 2 VS H; P = 2. Reject to if X = 0 or

(a) dignificance level $= P_{H_0}(x=0) + P_{H_0}(x=10)$ $= (1-1/2)^{1.0} + (1/2)^{1.0} = 2 \cdot (\frac{1}{2})^{1.0} = \frac{1}{29}$ (b) when P = 0.1, Power of the tast $= P_{H_1}(x=10) + P_{H_1}(x=10)$

(b) when P = 0.1, bower of the H₁ (x=10) + O.10 = 0.9 + 0.10