PPS Cheatsheet

Qianrui Li

May 11, 2023

1 Logic

Definitio 1.1 (Disjunction). $A \vee B$ is true if either A or B is true.

Definitio 1.2 (Converse). Converse to a conditional $A \implies B$ is $B \implies A$.

Definitio 1.3 (Contrapositive). Contrapositive to a conditional $A \implies B$ is $\overline{B} \implies \overline{A}$.

2 Real Numbers

Definitio 2.1 (Field). A field is a set F with two operations, addition and multiplication, such that

Addition

- 1. $a + b \in F$ for all $a, b \in F$.
- 2. a+b=b+a for all $a,b\in F$.
- 3. (a+b) + c = a + (b+c) for all $a, b, c \in F$.
- 4. There exists an element $0 \in F$ such that a + 0 = a for all $a \in F$.
- 5. For each $a \in F$, there exists an element $-a \in F$ such that a + (-a) = 0.

Multiplication

- 1. $a \cdot b \in F$ for all $a, b \in F$.
- 2. $a \cdot b = b \cdot a$ for all $a, b \in F$.
- 3. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in F$.
- 4. There exists an element $1 \in F$ such that $a \cdot 1 = a$ for all $a \in F$.
- 5. For each $a \in F$, if $a \neq 0$, there exists an element $a^{-1} \in F$ such that $a \cdot a^{-1} = 1$.

Distributive Law

1. $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a, b, c \in F$.

3 Inequality

Definitio 3.1 (Ordered Field). An ordered field is a field F with a relation < such that

- 1. Exactly one of is true: a < 0, a = 0, or 0 < a
- 2. b < a imples -a < -b.
- 3. If a < b, then a + c < b + c for all $a, b, c \in F$.
- 4. a > b and b > 0 implies that ab > 0.
- 5. If a < b and b < c, then a < c for all $a, b, c \in F$.

Theorema 3.1 (AM-GM Inequality). For any non-negative real numbers a_1, a_2, \ldots, a_n , we have

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n} \tag{1}$$

Theorema 3.2 (Cauchy-Schwarz Inequality). For any real numbers $\mathbf{u} = [x_1, x_2, \dots, x_n]$ and $\mathbf{v} = [y_1, y_2, \dots, y_n]$, we have

$$x_1y_1 + x_2y_2 + \dots + x_ny_n \le \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \sqrt{y_1^2 + y_2^2 + \dots + y_n^2} \implies \boldsymbol{u} \cdot \boldsymbol{v} \le ||\boldsymbol{u}|| ||\boldsymbol{v}||$$
 (2)

Theorema 3.3 (Triangular Inequality).

$$|x+y| \le |x| + |y|;$$
 $||x| - |y|| \ge |x+y|$

Theorema 3.4 (Formula for Geometric Series). For any real number x and integer $n \geq 0$, we have

$$a + ax + ax^{2} + \dots + ax^{n} = \frac{a - x^{n+1}}{1 - x}$$
 (3)

4 Completeness Axiom

Axioma 4.1 (Completeness of Real number). Every nonempty set of real numbers that is bounded above has a least upper bound.

Definitio 4.1 (Monotone Sequence). A sequence $(a_n)_{n=1}^{\infty}$ is increasing if $a_n \leq a_{n+1}$ for all $n \geq 1$. A sequence $(a_n)_{n=1}^{\infty}$ is decreasing if $a_n \geq a_{n+1}$ for all $n \geq 1$. A sequence is monotone if it is increasing or decreasing.

Theorema 4.1 (Monotone Convergence Theorem). A bounded above increasing sequence of real number converges; likewise a bounded below decreasing real sequence converges.

Definitio 4.2 (Convergence of series (Partial Sum)). Given a sequence (a_j) , the infinite series $\sum_{j=1}^{\infty} a_j$ converges to s if the sequence of partial sums

$$s_n = \sum_{j=1}^n a_j$$

converges as $n \to \infty$. If (s_n) converges we denote its limit by $\sum_{i=1}^{\infty} a_i$

Definitio 4.3 (Base of Natural Logarithm).

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{4}$$

5 Polynomials

Definitio 5.1 (N-degree Complex Polynomial). For $n \in \mathbb{N}$, an **n-degree complex polynomial** is a function of the form

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$
(5)

where $a_n \neq 0$ and $a_i \in \mathbb{C}$. A root of p is number α such that $p(\alpha) = 0$.

Theorema 5.1 (Root Coefficient Theorem). Let $p(z) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ have roots $r_1, r_2, \cdots r_n$, then

$$r_1 + r_2 + \dots + r_n = -a_{n-1}; \qquad r_1 r_2 \cdots r_n = (-1)^n a_0$$
 (6)

In general, let s_j denote the sum of all products of j-tuples of the roots (e.g., $s_2 = r_1r_2 + r_1r_3 + r_2r_3 \cdots$), then

$$s_j = (-1)^j a_{n-j} (7)$$

Theorem 5.2 (Fundamental Theorem of Arithmetic). Let $n \leq 2$ be an integer.

Existance n is equal to the product of prime number $n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$, where $p_1 < p_2 < \cdots < p_k$ and $r_i > 0$ for all i.

Uniqueness The factorisation is unique, i.e., if $q_1^{s_1}q_2^{s_2}\cdots q_l^{s_l}=n=p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k}$ are "two" prime factorisations, then k=l and $p_i=q_i$, $r_i=s_i$ for all i.

6 Number Theory

Theorema 6.1. Let $m \geq 2$ be a natural number, \mathbb{Z}/m is a field if and only if m is a prime.

Theorema 6.2 (Fermat's Little Theorem). Let p be a prime number, then for any integer a, if p does not divide a, we have

$$a^{p-1} \equiv 1 \mod p \tag{8}$$

Theorema 6.3. Let $n \in \mathbb{N}$ and p be a prime. If n and p-1 are coprime and p divides not b, the equation

$$x^n \equiv b \mod p \tag{9}$$

has exactly one solution $x \in \{0, 1, \dots, p-1\}$.

7 Relation and Function

Definitio 7.1 (Cartesian Product). Let X and y be sets; their Cawrtesian Product is the set of ordered pairs

$$X \times Y = \{(x, y) : x \in X, y \in Y\}$$

Definitio 7.2 (Injectivity and Surjectivity). Let $f: X \to y$ be a function.

1. It is *injective* if and only if $f(a) = f(b) \implies a = b$

- 2. It is *surjective* if and only if for all $y \in Y$ we have $x \in X$ such that f(x) = y
- 3. It is *bijective* if and only if it is both injective and surjective.

Definitio 7.3 (Images and Preimages). Let $f: X \to Y$ be a function. For $A \subseteq X$, the *image* of A

$$f(A) = \{f(x) : x \in A\} \subseteq Y$$

For $B \subseteq Y$, the **preimage** of B is

$$f^{-1}(B) = \{x \in X : f(x) \in B\} \subseteq X$$

Definitio 7.4 (Cardinality). Tow sets A, B have the same cardinality, (i.e., isomorphic) if there is a bijection $f: A \to B$. We write |A| = |B| or $A \cong B$. If there is an injective map, we write $|A| \le |B|$, and if $|A| \le |B|$ and there is no injective map from B to A, we write |A| < |B|. When $|A| \le \mathbb{N}$, we say A is countable.

Definitio 7.5. Let $S = \{a_1, a_2, \dots, a_n\}$ be a set of n distinct objects. An ordering (or arrangement) of S is a sequence (a_1, \dots, a_n) in which each element of S appears exactly once.

Theorema 7.1. For $n \geq 0$,

$$2^n = \sum_{k=0}^n \binom{n}{k}$$

Definitio 7.6. Given $n \in \mathbb{N}, k \in \mathbb{N}$, with $k \geq 2$ and non-negative integers $r_1, r_2, \dots r_k$ such that $r_1 + \dots r_k = n$, we denote the number of ordered partitions (A_1, \dots, A_k) of set S such that $|A_i| = r_i$ by

$$\binom{n}{r_1, r_2, \cdots, r_k} = \frac{n!}{r_1! \, r_2! \cdots r_k!}$$

8 Permutaion

Definitio 8.1. Given $n \in \mathbb{N}$, denote by S_n the set of all bijections $\{1, 2, 3, 4, \dots, n\} \rightarrow \{1, 2, 3, \dots, 4\}$. We call S_n permutation of the set $\{1, 2, 3, \dots, n\}$. (Which is also called the symmetric group of degree n)