

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC160905

Page: 1 of 78

FCC Radio Test Report FCC ID: 2AKBP-T1

Original Grant

Report No. : TB-FCC160905

Applicant: Shenzhen Hysiry Technology Co., Ltd.

Equipment Under Test (EUT)

EUT Name: WiFi Smart Breaker

Model No. : T1

Series Model No. : N/A

Brand Name : hysiry

Receipt Date : 2018-07-12

Test Date : 2018-07-13 to 2018-07-21

Issue Date : 2018-07-22

Standards : FCC Part 15, Subpart C (15.247: 2017)

Test Method : ANSI C63.10: 2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness Engineer : Jason Xv

Test/Witness Engineer : 7

Approved& : fugla.

Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Page: 2 of 78

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	9
	1.7 Measurement Uncertainty	9
	1.8 Test Facility	10
2.	TEST SUMMARY	11
3.	TEST EQUIPMENT	12
4.	CONDUCTED EMISSION TEST	13
	4.1 Test Standard and Limit	
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	14
	4.5 Test Data	14
5.	RADIATED EMISSION TEST	15
	5.1 Test Standard and Limit	15
	5.2 Test Setup	
	5.3 Test Procedure	17
	5.4 EUT Operating Condition	18
	5.5 Test Data	18
6.	RESTRICTED BANDS REQUIREMENT	19
	6.1 Test Standard and Limit	19
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 EUT Operating Condition	20
	6.5 Test Data	20
7.	BANDWIDTH TEST	21
	7.1 Test Standard and Limit	21
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	
	7.5 Test Data	
8.	PEAK OUTPUT POWER TEST	22
	8.1 Test Standard and Limit	22

Page: 3 of 78

	8.2 Test Setup	22
	8.3 Test Procedure	
	8.4 EUT Operating Condition	
	8.5 Test Data	
9.	POWER SPECTRAL DENSITY TEST	
	9.1 Test Standard and Limit	23
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	
	9.5 Test Data	
10.	ANTENNA REQUIREMENT	24
	10.1 Standard Requirement	24
	10.2 Antenna Connected Construction	
ATTA	ACHMENT A CONDUCTED EMISSION TEST DATA	25
	ACHMENT B RADIATED EMISSION TEST DATA	
	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	
ATTA	ACHMENT D BANDWIDTH TEST DATA	64
ATTA	ACHMENT E PEAK OUTPUT POWER TEST DATA	70
	CHMENT F POWER SPECTRAL DENSITY TEST DATA	

Page: 4 of 78

Revision History

Report No.	Version	Description	Issued Date
TB-FCC160905	Rev.01	Initial issue of report	2018-07-22

Page: 5 of 78

1. General Information about EUT

1.1 Client Information

Applicant : Shenzhen Hysiry Technology Co., Ltd.		Shenzhen Hysiry Technology Co., Ltd.	
Address No.524, BLDG A, One square world NET Industry Park, Xia Wan Li Hua Industrial Zone, XiXiang Street, BaoAn District, ShenZhen			
Manufacturer		Shenzhen Hysiry Technology Co., Ltd.	
Address		No.524, BLDG A, One square world NET Industry Park, Xia Wei Yuan Wan Li Hua Industrial Zone, XiXiang Street, BaoAn District, ShenZhen	

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	WiFi Smart Breaker			
Models No.	:	T1			
Model Different	:	N/A			
		Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz		
		Number of Channel:	802.11b/g/n(HT20):11 channels see note(3)		
		RF Output Power:	802.11b: 16.91dBm 802.11g: 15.83dBm 802.11n (HT20): 14.58dBm		
Product	:	Antenna Gain:	1dBi PCB Antenna		
Description		Modulation Type:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK,QPSK,16QAM, 64QAM)		
		Bit Rate of Transmitter:	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6 Mbps 802.11n:up to 150Mbps		
Power Supply	:	AC Voltage supplied			
Power Rating	:	Input: AC 100~240V,50/ 60Hz Output: AC 100~240V,50/ 60Hz			
Software Version	:	N/A			
Hardware Version	:	N/A			
Connecting I/O Port(S)	:	Please refer to the User's Manual			

Page: 6 of 78

Note:

(1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v04.

(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 7 of 78

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
01	2412	05	2432	09	2452		
02	2417	06	2437	10	2457		
03	2422	07	2442	11	2462		
04	2427	08	2447				
Note: CH 01~CH 11 for 802.11b/g/n(HT20)							

(4) The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

The EUT has been tested as an independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Page: 8 of 78

For Conducted Test				
Final Test Mode	Description			
Mode 1	Normal Working with TX B Mode			

For Radiated Test				
Final Test Mode	Description			
Mode 2	TX Mode B Mode Channel 01/06/11			
Mode 3	TX Mode G Mode Channel 01/06/11			
Mode 4	TX Mode N(HT20) Mode Channel 01/06/11			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK (1 Mbps) 802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 9 of 78

1.6 Description of Test Software Setting

During testing channel & Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software Version		SecureCRT.exe	
Channel	CH 01	CH 06	CH 11
IEEE 802.11b DSSS	15	40	45
IEEE 802.11g OFDM	10	35	40
IEEE 802.11n (HT20)	10	30	35

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})	
	Level Accuracy:		
Conducted Emission	9kHz~150kHz	±3.42 dB	
	150kHz to 30MHz	±3.42 dB	
Dedicted Emission	Level Accuracy:	. 4 CO dD	
Radiated Emission	9kHz to 30 MHz	±4.60 dB	
Radiated Emission	Level Accuracy:	±4.40 dB	
Radiated Effission	30MHz to 1000 MHz	±4.40 db	
Dedicted Emission	Level Accuracy:	. 4 20 dB	
Radiated Emission	Above 1000MHz	±4.20 dB	

Page: 10 of 78

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 11 of 78

2. Test Summary

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 2						
Standa	rd Section	Test Item	Judgment	Remark		
FCC	IC	rest item	Judgment	Remark		
15.203	/	Antenna Requirement	PASS	N/A		
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A		
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A		
15.247(a)(2)	RSS 247	6dB Bandwidth	PASS	N/A		
- (/(/	5.2 (1)			-		
15.247(b)	RSS 247	Peak Output Power	PASS	N/A		
13.247 (6)	5.4 (4)	Teak Output Tower	1 700	IN/A		
45.047(-)	RSS 247	Power Spectral Density	PASS	N/A		
15.247(e)	5.2 (2)					
4 = 0.4=(1)	RSS 247	5		N/A		
15.247(d)	5.5	Band Edge	PASS			
15.247(d)&	RSS 247	Transmitter Radiated Spurious	DAGG	N1/A		
15.209	5.5	Emission	PASS	N/A		
Note: "/" for no requirement for this test item						

Note: "/" for no requirement for this test item.

N/A is an abbreviation for Not Applicable.

Page: 12 of 78

3. Test Equipment

Conducted Emiss	ion Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019
Radiation Emission	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 14, 2018	Jul. 13, 2019
Pre-amplifier	Sonoma	310N	185903	Mar.17, 2018	Mar. 16, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.17, 2018	Mar. 16, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.17, 2018	Mar. 16, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducto	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 18, 2018	Jul. 17, 2019
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Oct. 26, 2017	Oct. 25, 2018
Vector Signal Generator	Agilent	N5182A	MY50141294	Oct. 26, 2017	Oct. 25, 2018
Analog Signal Generator	Agilent	N5181A	MY50141953	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Oct. 26, 2017	Oct. 25, 2018
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Oct. 26, 2017	Oct. 25, 2018

Page: 13 of 78

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Fraguency	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 14 of 78

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 15 of 78

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limits (9 kHz~1000 MHz)

Radiated Linission Linits (3 KH2~1000 MH2)					
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)			
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3m	(dBuV/m)
(MHz)	Peak	Average
Above 1000	74	54

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Report No.: TB-FCC160905
Page: 16 of 78

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 17 of 78

Above 1GHz Test Setup

5.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency Below 1GHz. The EUT was placed on a rotating 0.8m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Page: 18 of 78

(8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 19 of 78

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.247(d)

FCC Part 15.209

FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance of 3	3m (dBuV/m)
Band (MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency Below 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Page: 20 of 78

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please refer to the Attachment C.

Page: 21 of 78

7. Bandwidth Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

F(CC Part 15 Subpart C(15.2	47)
Test Item	Limit	Frequency Range(MHz)
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.

Page: 22 of 78

8. Peak Output Power Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)				
Test Item	Limit	Frequency Range(MHz)		
Peak Output Power	1 Watt or 30 dBm	2400~2483.5		

8.2 Test Setup

8.3 Test Procedure

The measurement is according to section 9.1.2 of KDB 558074 D01 DTS Meas Guidance v04. The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment E.

Page: 23 of 78

9. Power Spectral Density Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)				
Test Item	Limit	Frequency Range(MHz)		
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5		

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

Page: 24 of 78

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 1dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

Antenna Type
Unique connector antenna
Professional installation antenna

Page: 25 of 78

Attachment A-- Conducted Emission Test Data

Page: 26 of 78

Temperatu	re: 25	$^{\circ}$ C		Relative H	umidity:	55%)	
Test Voltag	je: AC	120V/60Hz	,					
Terminal:	Neu	utral						
Test Mode:	: Nor	mal working	with TX B I	Mode				
Remark:	Onl	y worse cas	e is reporte	d				
90.0 dBuV							QP: — AVG: —	~ peak
-10 0.150		0.5 Reading	(MHz)	Measure-			30.00] D0
No. Mk.	Freq.	Level	Factor	ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBu∨	dB	Detector	_
1	0.1660	32.19	9.64	41.83	65.15	-23.32	QP	
2	0.1660	19.25	9.64	28.89	55.15	-26.26	AVG	•
3	0.2128	28.93	9.64	38.57	63.09	-24.52	QP	•
4	0.2128	18.49	9.64	28.13	53.09	-24.96	AVG	-
5	0.2420	26.89	9.62	36.51	62.02	-25.51	QP	-
6	0.2420	17.90	9.62	27.52	52.02	-24.50	AVG	-
7	0.2924	23.00	9.58	32.58	60.45	-27.87	QP	-
8	0.2924	15.61	9.58	25.19	50.45	-25.26	AVG	-
9	0.9220	18.53	9.59	28.12	56.00	-27.88	QP	-
10 *	0.9220	15.22	9.59	24.81	46.00	-21.19	AVG	-
11	1.4940	20.94	9.60	30.54	56.00	-25.46	QP	-
12	1.4940	15.08	9.60	24.68	46.00	-21.32	AVG	-

Page: 27 of 78

Temperature:	25 ℃		Relative Humidi	ty: 55	%
Test Voltage:	AC 240V/50Hz				
Terminal:	Line				
Test Mode:	Normal working w	vith TX B Mod	de		
Remark:	Only worse case	is reported			
90.0 dBuV					
40 ************************************			× × × × × × × × × × × × × × × × × × ×	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	QP: — AVG: — pcak
-10 0.150	0.5	(MHz)	5		30.000
No. Mk. Fr	Reading eq. Level	Correct M Factor	leasure- ment Limit	Over	
M	Hz dBuV	dB	dBuV dBuV	dB	Detector
1 0.16	324 28.57	9.58	38.15 65.34	-27.19	QP
2 0.16	324 22.35	9.58	31.93 55.34	-23.41	AVG
3 0.19	940 27.21	9.58	36.79 63.86	-27.07	QP
4 0.19	940 24.05	9.58	33.63 53.86	-20.23	AVG
5 0.62	220 32.03	9.61	41.64 56.00	-14.36	QP
6 * 0.62	220 30.07	9.61	39.68 46.00	-6.32	AVG
7 1.66	32.38	9.61	41.99 56.00	-14.01	QP
8 1.66	620 29.88	9.61	39.49 46.00	-6.51	AVG
9 2.83	31.70	9.64	41.34 56.00	-14.66	QP
10 2.83	380 29.46	9.64	39.10 46.00	-6.90	AVG
11 4.21	100 30.89	9.69	40.58 56.00	-15.42	QP
12 4.21	100 28.42	9.69	38.11 46.00	-7.89	AVG
Emission Level	= Read Level+ Co	rect Factor			

Page: 28 of 78

Temperature:	25 ℃		Relative H	umiditv:	55%	
Test Voltage:	AC 240V/50Hz					
Terminal:	Neutral					
Test Mode:	Normal working	with TX B M	lode			
Remark:	Only worse cas	e is reported				
90.0 dBuV						
40 MM						AVG: — peak
-10 0.150	0.5	(MHz)	!	<u> </u>		30.000
No. Mk. Fi	Reading req. Level	Correct Factor	Measure- ment	Limit	Over	
M	IHz dBu∨	dB	dBuV	dBuV	dB	Detector
1 0.1	620 26.57	9.64	36.21	65.36 -	29.15	QP
2 0.1	620 19.24	9.64	28.88	55.36 -	26.48	AVG
3 0.1	740 26.03	9.64	35.67	64.76 -	29.09	QP
4 0.1	740 20.50	9.64	30.14	54.76 -	24.62	AVG
5 0.6	100 28.70	9.59	38.29	56.00 -	17.71	QP
6 * 0.6	100 26.66	9.59	36.25	46.00	-9.75	AVG
7 0.7	180 28.06	9.59	37.65	56.00 -	18.35	QP
8 0.7	180 25.81	9.59	35.40	46.00 -	10.60	AVG
9 1.6	820 28.94	9.60	38.54	56.00 -	17.46	QP
10 1.6	820 26.43	9.60	36.03	46.00	-9.97	AVG
11 3.0	140 27.96	9.67	37.63	56.00 -	18.37	QP
12 3.0	140 25.45	9.67	35.12	46.00 -	10.88	AVG
Emission Level	l= Read Level+ C	orrect Facto	or			

Page: 29 of 78

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Emission Level= Read Level+ Correct Factor

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz~1GHz

rempe	rature:	25 ℃	2		Relative	Humidity:	55%	
Test Vo	oltage:	AC 1	20V/60HZ					
Ant. Po	ol.	Horiz	zontal					
Test Mo	ode:	TX B	3 Mode 241	2MHz				
Remarl	k:	Only	worse cas	e is reported				
80.0 dB	luV/m							
30	7 m/			2 3 5 * X	6		15C 3M Radio	in -6 dB
-20 30.000	40 5	0 60 7	70 80	(MHz)	Measure-		500 600 7	700 1000.00
No. I	ML E	roa		C4			1 M/	
No. I		req.	Level	Factor	ment	Limit	Over	Detector
	M	MHz	Level dBuV	dB/m	dBuV/m	Limit dBuV/m	dB	Detector
1 *	M 103.	1Hz 8055	dBuV 60.29	dB/m -22.23	dBuV/m 38.06	dBuV/m 43.50	dB -5.44	QP
1 *	103.	1Hz 8055 9196	dBuV 60.29 56.70	dB/m -22.23 -22.40	dBuV/m 38.06 34.30	dBuV/m 43.50 43.50	dB -5.44 -9.20	QP QP
1 * 2 3	103. 112. 140.	8055 9196 3421	Level dBuV 60.29 56.70 53.70	dB/m -22.23 -22.40 -22.45	dBuV/m 38.06 34.30 31.25	dBuV/m 43.50 43.50 43.50	dB -5.44 -9.20 -12.25	QP QP QP
1 * 2 3	103. 112. 140.	8055 9196 3421 3456	dBuV 60.29 56.70	dB/m -22.23 -22.40	dBuV/m 38.06 34.30	dBuV/m 43.50 43.50	dB -5.44 -9.20	QP QP
	103. 112. 140.	8055 9196 3421	Level dBuV 60.29 56.70 53.70	dB/m -22.23 -22.40 -22.45	dBuV/m 38.06 34.30 31.25	dBuV/m 43.50 43.50 43.50	dB -5.44 -9.20 -12.25	QP QP QP

Page: 30 of 78

Temperature:	25 ℃		Relative Hu	midity:	55%	
Test Voltage:	AC 120V/60H	Z				
Ant. Pol.	Vertical					
Test Mode:	TX B Mode 24	412MHz				
Remark:	Only worse ca	ase is reporte	ed			
80.0 dBuV/m						
				(RF)FC	C 15C 3M Rac	
1 2 3			6		Mai	gin -6 dB
1 2 3	*	5 Mag A	<u>*</u>			+++
30	W ~~ W	M M M	$\backslash \backslash \backslash \backslash \backslash$		i i i illim	I and
	- Y	' V		Maran Market		White the
			The state of the s			
-20						
30.000 40 50	60 70 80	(MHz)	3	00 400	500 600	700 1000.0
	Reading	Correct	Measure-			
No. Mk. Freq		Factor	ment	Limit	Over	
MHz	dBuV					
MHZ	ubuv	dB/m	dBuV/m	dBuV/m	dB	Detector
1 ! 33.798		dB/m -15.86	38.58	dBu√/m 40.00	-1.42	QP
	36 54.44					
1 ! 33.798	36 54.44 91 55.97	-15.86	38.58	40.00	-1.42	QP
1 ! 33.798 2 ! 36.509	36 54.44 91 55.97 30 62.56	-15.86 -17.46	38.58 38.51	40.00 40.00	-1.42 -1.49	QP QP
1 ! 33.798 2 ! 36.509 3 * 51.843	36 54.44 91 55.97 30 62.56 55 60.37	-15.86 -17.46 -23.45	38.58 38.51 39.11	40.00 40.00 40.00	-1.42 -1.49 -0.89	QP QP QP
1 ! 33.798 2 ! 36.509 3 * 51.843 4 ! 103.80	36 54.44 91 55.97 30 62.56 55 60.37 90 57.54	-15.86 -17.46 -23.45 -22.23	38.58 38.51 39.11 38.14	40.00 40.00 40.00 43.50	-1.42 -1.49 -0.89 -5.36	QP QP QP QP

Page: 31 of 78

Above 1GHz

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60HZ		
Ant. Pol.	Horizontal		
Test Mode:	TX B Mode 2412MHz		
Remark:	No report for the emission	which more than 10 dE	B below the prescribed
	limit.		

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4822.974	41.83	14.55	56.38	74.00	-17.62	peak
2	*	4822.974	29.09	14.55	43.64	54.00	-10.36	AVG

Page: 32 of 78

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60HZ		
Ant. Pol.	Vertical		
Test Mode:	TX B Mode 2412MHz		
Remark:	No report for the emission w	hich more than 10 dB	below the
	prescribed limit.		

No.	. Mk	Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4824.402	43.32	14.55	57.87	74.00	-16.13	peak
2	*	4825.500	29.19	14.57	43.76	54.00	-10.24	AVG

Report No.: TB-FCC160905
Page: 33 of 78

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60HZ		
Ant. Pol.	Horizontal		
Test Mode:	TX B Mode 2437MHz		
Remark:	No report for the emission	which more than 10 dE	B below the
	prescribed limit.		

N	o. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.946	43.46	14.86	58.32	74.00	-15.68	peak
2	*	4875.500	29.10	14.87	43.97	54.00	-10.03	AVG

Report No.: TB-FCC160905
Page: 34 of 78

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60HZ		
Ant. Pol.	Vertical		
Test Mode:	TX B Mode 2437MHz		
Remark:	No report for the emission prescribed limit.	which more than 10 dE	3 below the

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.862	43.52	14.86	58.38	74.00	-15.62	peak
2	*	4875.500	29.13	14.87	44.00	54.00	-10.00	AVG

Report No.: TB-FCC160905
Page: 35 of 78

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60HZ		
Ant. Pol.	Horizontal		
Test Mode:	TX B Mode 2462MHz		
Remark:	No report for the emission prescribed limit.	which more than 10 dE	3 below the

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.274	44.80	15.17	59.97	74.00	-14.03	peak
2	*	4923.448	29.83	15.17	45.00	54.00	-9.00	AVG

Page: 36 of 78

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60HZ		
Ant. Pol.	Vertical		
Test Mode:	TX B Mode 2462MHz		
Remark:	No report for the emission prescribed limit.	which more than 10 dE	B below the

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4923.130	30.54	15.17	45.71	54.00	-8.29	AVG
2		4923.412	46.24	15.17	61.41	74.00	-12.59	peak

Page: 37 of 78

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60HZ		
Ant. Pol.	Horizontal		
Test Mode:	TX G Mode 2412MHz		
Remark:	No report for the emission prescribed limit.	which more than 10 dE	3 below the
	prescribed limit.		

No.	. М	k.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4	823.610	29.20	14.55	43.75	54.00	-10.25	AVG
2		4	824.618	43.89	14.55	58.44	74.00	-15.56	peak

Page: 38 of 78

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Vertical						
Test Mode:	TX G Mode 2412MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
100 0 dB:M//m							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.466	43.41	14.55	57.96	74.00	-16.04	peak
2	*	4824.714	29.22	14.55	43.77	54.00	-10.23	AVG

Test Voltage: AC 120V/60HZ

Ant. Pol. Horizontal

Test Mode: TX G Mode 2437MHz

Remark: No report for the emission which more than 10 dB below the prescribed limit.

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4874.648	42.97	14.86	57.83	74.00	-16.17	peak
2	*	4875.026	29.11	14.87	43.98	54.00	-10.02	AVG

Page: 40 of 78

25 ℃	Relative Humidity:	55%
AC 120V/60HZ		
Vertical		
TX G Mode 2437MHz		
No report for the emission prescribed limit.	which more than 10 dE	B below the
	AC 120V/60HZ Vertical TX G Mode 2437MHz No report for the emission	AC 120V/60HZ Vertical TX G Mode 2437MHz No report for the emission which more than 10 dE

No	o. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4872.548	43.32	14.85	58.17	74.00	-15.83	peak
2	*	4875.500	29.13	14.87	44.00	54.00	-10.00	AVG

Page: 41 of 78

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60HZ					
Ant. Pol.	Horizontal					
Test Mode:	TX G Mode 2462MHz					
Remark:	No report for the emission prescribed limit.	which more than 10 dE	B below the			

Ν	lo.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4922.500	29.81	15.17	44.98	54.00	-9.02	AVG
2			4925.368	44.27	15.19	59.46	74.00	-14.54	peak

Report No.: TB-FCC160905
Page: 42 of 78

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60HZ						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX G Mode 2462MHz						
Remark:	No report for the emission	No report for the emission which more than 10 dB below the					
	prescribed limit.						

No.	Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4922.968	30.54	15.17	45.71	54.00	-8.29	AVG
2		4923.454	46.10	15.17	61.27	74.00	-12.73	peak

Page: 43 of 78

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60HZ					
Ant. Pol.	Horizontal					
Test Mode:	TX N(HT20) Mode 2412MI	Hz				
Remark:	No report for the emission which more than 10 dB below the					
	prescribed limit.					

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.766	43.57	14.55	58.12	74.00	-15.88	peak
2	*	4825.500	29.19	14.57	43.76	54.00	-10.24	AVG

Report No.: TB-FCC160905

Page: 44 of 78

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60HZ						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX N(HT20) Mode 2412M	TX N(HT20) Mode 2412MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No.	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4822.944	43.79	14.55	58.34	74.00	-15.66	peak
2	*	4823.610	29.21	14.55	43.76	54.00	-10.24	AVG

Report No.: TB-FCC160905
Page: 45 of 78

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60HZ						
Ant. Pol.	Horizontal						
Test Mode:	TX N(HT20) Mode 2437M	Hz					
Remark: No report for the emission which more than 10 dB below							
	prescribed limit.						

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4874.870	43.33	14.86	58.19	74.00	-15.81	peak
2	*	4875.344	29.12	14.87	43.99	54.00	-10.01	AVG

Report No.: TB-FCC160905
Page: 46 of 78

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60HZ					
Ant. Pol.	Vertical					
Test Mode:	TX N(HT20) Mode 2437M	Hz				
Remark:	Remark: No report for the emission which more than 10 dB below the					
	prescribed limit.					

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
-		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.172	43.04	14.85	57.89	74.00	-16.11	peak
2	*	4874.870	29.14	14.86	44.00	54.00	-10.00	AVG

Page: 47 of 78

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60HZ					
Ant. Pol.	Horizontal					
Test Mode:	TX N(HT20) Mode 2462MH	Z				
Remark:	No report for the emission which more than 10 dB below the					
	prescribed limit.					

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4922.518	44.27	15.17	59.44	74.00	-14.56	peak
2	*	4922.974	29.82	15.17	44.99	54.00	-9.01	AVG

Page: 48 of 78

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60HZ						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX N(HT20) Mode 2462MH:	Z					
Remark:	emark: No report for the emission which more than 10 dB below the						
	prescribed limit.						

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4922.974	30.52	15.17	45.69	54.00	-8.31	AVG
2		4923.118	46.29	15.17	61.46	74.00	-12.54	peak

Page: 49 of 78

Attachment C-- Restricted Bands Requirement Test Data

(1) Radiation Test

Page: 50 of 78

51 of 78 Page:

N	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2462.800	86.46	3.27	89.73	Fundamental Frequency		AVG
2	Х	2463.400	96.05	3.28	99.33	Fundamental F	Frequency	peak
3		2483.500	51.46	3.41	54.87	74.00	-19.13	peak
4		2483.500	40.36	3.41	43.77	54.00	-10.23	AVG

Page: 52 of 78

TOBY

Page: 53 of 78

Lillission Level- Nead Level+ Correct ractor

Report No.: TB-FCC160905 Page: 54 of 78

Page: 55 of 78

Report No.: TB-FCC160905
Page: 56 of 78

Temperati	ıre:	25 ℃				Re	lativ	e Hur	nidity:	55	5%
Test Volta	ge:	AC 12	AC 120V/60HZ								
Ant. Pol.		Vertica	al								
Test Mode):	TX G	Mode :	2462MF	lz						
Remark:		N/A									
100.0 dBuV/m		1									
		×									
		2									
		×	igwedge						(RF) FCC	PART	15C (PEAK)
				3							
			+	*					(RF) FO	E PART	[15C [AVG]
50				ili a							
				all .			_				
0.0											
0.0 2443.000 24	53.00 24	463.00	2473.00	2483.00	2493	3.00 25	03.00	2513	.00 252	3.00	2543.0
		R	eading	Corr	ect	Measu	re-				
No. Mk	. Free		_evel	Fac		men		Limi	t O	/er	
	MHz	Z	dBu∀	dB/r	n	dBuV/	m	dBu∖	//m c	ΙB	Detector
1 X	2467.6	000	91.22	3.3	1	94.5	3 F	undame	ntal Frequ	ency	peak
2 *	2468.8	300	74.76	3.3	1	78.0	7 F	undame	ntal Frequ	ency	AVG
3	2483.5	500	57.15	3.4	1	60.5	6	74.0	00 -1	3.44	peak
4	2483.5	500 :	38.79	3.4	1	42.2	0	54.0	00 -1	1.80	AVG

Page: 57 of 78

empe	eratu	re:	25 °	25 ℃			Re	Relative Humidity: 55%			%			
est V	oltag	e:	AC	AC 120V/60HZ										
nt. P	ol.		Hori	zontal										
est N	lode:		1XT	N(HT20)) Mo	de 24	412N	1Hz						
emai	rk:		N/A											
00.0 d	BuV/m										,			_
												3 ×		
													_	
											(RF)	FCC PART 1	4 SC_(PEAK)	
										1 X	IRI	F)/FCC PART	15C (AVG1	Н
50)	ise (Ava)	+
										2 X				
														-
														4
D. O														
2324.0	00 2334	1.00 2	2344.00	2354.00	230	64.00	2374	.00 2	384.00	239	4.00	2404.00	2424.0	0 1
				Read			rect	Mea	sure-			_		
No	o. Mi		req.	Lev		Fa	ctor		ent		mit	Over		
		M	lHz	dBu	ıV	dB	/m	dBu	ıV/m	dE	8uV/m	dB	Detector	
1		2390	0.000	55.	50	2.8	82	58	.32	7	4.00	-15.68	peak	
2		2390	0.000	39.	29	2.8	32	42	.11	5	4.00	-11.89	AVG	
3	Х	2405	5.600	90.	70	2.9	90	93	.60	- Fund	amenta	l Frequency	peak	
4	*	2410	0.800	74.3	37	2.9	93	77	.30	– Funda	amental	I Frequency	AVG	

Page: 58 of 78

TOBY

Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60HZ Ant. Pol. Horizontal **Test Mode:** TX N(HT20) Mode 2462MHz Remark: N/A 100.0 dBuV/m 1 X (RF) FCC PART 15C (PEAK) (RF) FCC PART 15C (AVG) 50 0.0 2443.500 2453.50 2463.50 2473.50 2483.50 2493.50 2503.50 2513.50 2523.50 2543.50 MHz Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBu∀ dBuV/m dBuV/m dΒ Detector dB/m 2464.700 91.20 3.28 94.48 Fundamental Frequency peak 78.26 Fundamental Frequency 2 2467.700 74.95 AVG 3.31 3 2483.500 57.77 3.41 61.18 74.00 -12.82 peak 4 42.30 AVG 2483.500 38.89 3.41 54.00 -11.70

Page: 60 of 78

Page: 61 of 78

(2) Conducted Test

Page: 62 of 78

Page: 63 of 78

64 of 78 Page:

Attachment D-- Bandwidth Test Data

Temperature: 25 °C

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60HZ					
Test Mode:	Test Mode: TX 802.11B Mode					
Channel frequence	cy 6dB Bandwidth	99% Bandwidth	Limit			
(MHz)	(MHz)	(MHz)	(MHz)			
2412	8.039	11.050				
2437	8.067	11.084	>=0.5			
2462	8.082	11.096				

802.11B Mode

x dB Bandwidth

16.35 MHz

x dB

-6.00 dB

Page: 66 of 78

Channel frequency (MHz)	Test Voltage:	25 ℃	R	Relative Humidity:		55%	
Channel frequency (MHz) (MHz) (MHz) (MHz) (MHz) 2412		AC 120V/60HZ				•	
(MHz) (MHz) (MHz) (MHz) 2412 16.35 16.521 2437 16.36 16.499 >=0.4 2462 16.35 16.484 802.11G Mode 2412 MHz Keysiph Spectrum Analyzer - Occupied BW SENSE INT 1149-22 BM Jul 18, 2018 Center Freq: 2412000000 GHz Trig: Free Run Avg Hold:>10/10 Radio Stet: None Radio Device: BTS	Test Mode:	TX 802.11G Mode	Э				
2412 16.35 16.521 2437 16.36 16.499 >=0.4 2462 16.35 16.484 802.11G Mode 2412 MHz Keysight Spectrum Analyzer - Occupied BW Selectivity Selectivit	Channel frequen	cy 6dB Band	width	99% Bandv	vidth	Limit	
2437 16.36 16.499 >=0.8 2462 16.35 16.484 802.11G Mode 2412 MHz Keysight Spectrum Analyzer - Occupied BW SENSE:INIT ALIGN AUTO 11:49:28 AM Juli 8, 2018 Center Freq 2.412000000 GHz Trig: Free Run Avg Hold:>10/10 Radio Std: None Radio Device: BTS 15 dB/div Ref 20.00 dBm Center Freq 2.412 GHz Sense: INIT Avg Hold:>10/10 Radio Device: BTS Sense: INIT Avg Hold:>10/10 Radio Device: BTS Sense: INIT Avg Hold:>10/10 Radio Device: BTS Sense: INIT Sense: INIT Avg Hold:>10/10 Radio Device: BTS Sense: INIT Sen	(MHz)	(MHz))	(MHz)		(MHz)	
802.11G Mode 2412 MHz Keysight Spectrum Analyzer - Occupied BW SENSE:INT ALIGN AUTO 11:49:28 MM Jul 18, 2018	2412	16.35	5	16.521			
## Reysight Spectrum Analyzer-Occupied BW Reysight Spectrum Analyzer-Occupied BW Reprint 75 to Ac SENSE:INT ALIGN AUTO 11:49-28 AM Jul 18, 2018 Center Freq 2.412000000 GHz Trigs Free Run Avg Hold:>10/10 Radio Std: None Trigs Free Run Avg Hold:>10/10 Radio Device: BTS	2437	16.36	3	16.499		>=0.5	
2412 MHz Keysight Spectrum Analyzer - Occupied BW SENSE:INT ALIGN AUTO 11:49:28 AM Jul 18, 2018	2462	16.35	j	16.484			
Keysight Spectrum Analyzer - Occupied 8W SENSE:INT ALIGN AUTO 11:49:28 AM Jul 18, 2018			802.11G Mod	le			
Log				Avg Hold:>10/10	Radio	Device: BTS	
	-40.0 -55.0 -65.0		handrand on the same	According to the second	Wardens of warehouse of warehouse	The state of the s	
	-115	:Hz				Snan 40 MHz.L	

802.11G Mode 2437 MHz Center Freq 2.437000000 GHz Radio Device: BTS #IFGain:Low Ref 20.00 dBm Center 2.437 GHz #Res BW 100 kHz Span 40 MHz Sweep 4 ms #VBW 300 kHz **Total Power** 12.4 dBm **Occupied Bandwidth** 16.499 MHz **Transmit Freq Error** 28.170 kHz % of OBW Power 99.00 % 16.36 MHz x dB Bandwidth x dB -6.00 dB 802.11G Mode 2462 MHz 11:54:44 AM Jul 18, 2018 Radio Std: None Center Freq 2.462000000 GHz Radio Device: BTS #IFGain:Low Ref 20.00 dBm Center 2.462 GHz #Res BW 100 kHz Span 40 MHz Sweep 4 ms #VBW 300 kHz

Total Power

x dB

% of OBW Power

12.9 dBm

99.00 %

-6.00 dB

Occupied Bandwidth

Transmit Freq Error

x dB Bandwidth

16.484 MHz

40.923 kHz

16.35 MHz

Page: 68 of 78

Temperature:	25 ℃		Relative Humidity:	55%		
Test Voltage:	AC 1	20V/60HZ				
Test Mode:	TX 80	02.11N(HT20) Mode				
Channel frequer	псу	6dB Bandwidth	99% Bandwidth	Limit		
(MHz)		(MHz)	(MHz)	(MHz)		
2412		17.58	17.808			
2437		17.58	17.781	>=0.5		
2462		17.62	17.781			
	, ,	802.11N(HT	20) Mode			
		2412 N	ЛНz			
Keysight Spectrum		SENSE:INT	q: 2.412000000 GHz Radio	11:59:30 AM Jul 18, 2018 • Std: None		

Center 2.462 GHz #Res BW 100 kHz

Occupied Bandwidth

Transmit Freq Error

x dB Bandwidth

17.781 MHz

53.419 kHz

17.62 MHz

2437 MHz Center Freq 2.437000000 GHz Radio Device: BTS #IFGain:Low Ref 20.00 dBm Center 2.437 GHz #Res BW 100 kHz Span 40 MHz Sweep 4 ms #VBW 300 kHz **Total Power** 11.5 dBm **Occupied Bandwidth** 17.781 MHz **Transmit Freq Error** 40.372 kHz % of OBW Power 99.00 % 17.58 MHz x dB Bandwidth x dB -6.00 dB 802.11N(HT20) Mode 2462 MHz 12:08:31 PM Jul 18, 2018 Radio Std: None SENSE:INT ALIGN AUTO
Center Freq: 2.462000000 GHz
Trig: Free Run Avg|Hold:>10/10
#Atten: 10 dB Center Freq 2.462000000 GHz Radio Device: BTS #IFGain:Low Ref 20.00 dBm

#VBW 300 kHz

11.6 dBm

99.00 %

-6.00 dB

Total Power

x dB

% of OBW Power

802.11N(HT20) Mode

Span 40 MHz Sweep 4 ms

Page: 70 of 78

Attachment E-- Peak Output Power Test Data

Test Conditions:		Continuous transmitting Mode					
Temperature:		25 ℃	Relative Humidity:		55%		
Test Voltage:		AC 120V/60HZ					
Mode	С	hannel frequency (MHz)	Tes	t Result (dBm)	Limit (dBm)		
		2412		16.91			
802.11b		2437		16.58			
		2462		16.04			
		2412		15.51			
802.11g	2437		15.53		30		
		2462		15.83			
000 44		2412		14.41			
802.11n		2437		14.39			
(HT20)	2462		14.58				
		Resu	ılt: F	PASS			

Duty Cycle							
Mode	Channel frequency (MHz)	Test Result					
	2412						
802.11b	2437						
	2462						
	2412						
802.11g	2437	>98%					
	2462						
000.44	2412						
802.11n	2437						
(HT20)	2462						

Page: 71 of 78

TOBY

Span 16.08 MHz Sweep 1.695 s (10001 pts)

Center 2.412000 GHz #Res BW 3.0 kHz Page: 73 of 78

Attachment F-- Power Spectral Density Test Data

Temperature:	25 ℃		Relative Hu	midity:	55%
Test Voltage:	AC 120V	/60HZ			
Test Mode:	TX 802.1	1B Mode			
Channel Fred	quency	Power D	ensity		Limit
(MHz)		(dBm/3	kHz)		(dBm/3kHz)
2412		-8.4	34		
2437		-8.4		8	
2462		-9.9	79		
		802.11B	Mode		
		2412	MHz		
	75 Ω AC	SENSE:INT	ALIGN AUTO Avg Type:	Low Dury	11:34:39 AM Jul 18, 2018
Center Freq	2.412000000 GH	PNO: Fast Trig: Free IFGain:Low Atten: 30	Run Avg Hold:		TRACE 123456 TYPE MWWWWW DET PNNNNN
10 dB/div Re	Offset 3.63 dB f 23.63 dBm			Mkr1 2	.412 721 9 GHz -8.434 dBm
Log					
13.6					
3.63			.1		
-6.37			Mileson a district		
-16.4	or tradelife				

#VBW 10 kHz

Page: 74 of 78

802.11B Mode

Report No.: TB-FCC160905 Page: 75 of 78

Temperature:	25 ℃		Temperature:	25 ℃			
Test Voltage:	AC 120V/	AC 120V/60HZ					
Test Mode:	TX 802.11G Mode						
Channel Frequency	uency	Power Dens	sity	Limit			
(MHz)		(dBm/3 kH	z)	(dBm/3kHz)			
2412		-14.718					
2437		-15.058		8			
2462		-14.822					

802.11G Mode

Page: 76 of 78

802.11G Mode

Report No.: TB-FCC160905

Page: 77 of 78

Temperature:	25 ℃		Temperature:	25 ℃			
Test Voltage:	AC 120V/	AC 120V/60HZ					
Test Mode:	TX 802.1	TX 802.11N(HT20) Mode					
Channel Frequency	uency	Power Der	nsity	Limit			
(MHz)		(dBm/3 kHz)		(dBm/3kHz)			
2412		-17.160					
2437		-17.189		8			
2462		-17.358					

802.11N(HT20) Mode

TOBY

Page: 78 of 78

----END OF REPORT----