Package 'MUSS'

January 2, 2023

Version 1.0.0
Author Shuyu Guo [aut, cre] <guo_sy@outlook.com>, Bo Ning [aut, ctb] <bycning@ucdavis.edu></bycning@ucdavis.edu></guo_sy@outlook.com>
Description In high-dimensional sparse regression with measurement error in variables, assu the errors are Normally distributed with mean 0 and errors for each variable have a spec
the particular transfer of the particular transf

Description In high-dimensional sparse regression with measurement error in variables, assuming the errors are Normally distributed with mean 0 and errors for each variable have a specific variance, then 'MUSS' can conduct variable selection for such case. 'MUSS' selects variables by spike and slab priors for the regression coefficients. It works under EM framework, where the unknown true design matrix and indicators of spike-slab priors are treated as latent variables. To avoid the effect of inappropriate choices of spike and slab scale parameters on variable selection, the final output coefficients are obtained following a decreasing sequence of spike parameters and the path can be displayed by functions from 'MUSS' package.

License GPL-3
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.1
LinkingTo Rcpp, RcppEigen
Imports Rcpp, RcppEigen, ggplot2, reshape2, stats, MASS
Suggests knitr, rmarkdown, SSLASSO, glmnet
VignetteBuilder knitr

Title Spike and Slab Variable Selector under Matrix Uncertainty

R topics documented:

Index																																												,
	posteriorX																																											4
	pathPlot .																																											2
	MUSS																																											1
	gPlot	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	4

2 MUSS

gPlot

Description

Plot maximized $g(\boldsymbol{\beta}, \boldsymbol{\theta}, \sigma | \boldsymbol{\beta^{(t)}}, \boldsymbol{\theta^{(t)}}, \sigma^{(t)})$ over iterations at a specified spike parameter. The function g is a concave lower bound for objective log-likelihood function at $\boldsymbol{\beta^{(t)}}, \boldsymbol{\theta^{(t)}}$ and $\sigma^{(t)}$ by Jensen's Inequality. $\boldsymbol{\beta^{(t+1)}}, \boldsymbol{\theta^{(t+1)}}$ and $\sigma^{(t+1)}$ are obtained by maximizing $g(\boldsymbol{\beta}, \boldsymbol{\theta}, \sigma | \boldsymbol{\beta^{(t)}}, \boldsymbol{\theta^{(t)}}, \sigma^{(t)})$. See Vignette for more details.

Usage

```
gPlot(fit_obj, spike_param)
```

Arguments

fit_obj

Fitted object from function 'MUSS'.

gPlot

spike_param

The value of the spike parameter to be specified, which must be in spike_params designated in 'MUSS' function. Each spike_param corresponds to a unique gPlot. If default spike_params is used in function 'MUSS', one can check the value of spike_params by calling \$spike_params from the returned object from function 'MUSS'.

MUSS

Spike and Slab Variable Selector under Matrix Uncertainty

Description

For high dimensional sparse regression with additive errors in potential variables, Spike and Slab Variable Selector under Matrix Uncertainty(MUSS) selects variables under EM framework by treating both unknown true variables and spike-slab indicators as latent variables. Following a decreasing list of spike scale parameters, a path of regression coefficients is obtained.

Usage

```
MUSS(
   Z,
   y,
   tauList,
   beta_prior_type = "Laplacian",
   spike_params,
   slab_param,
   beta_init,
   sigma_update = TRUE,
   sigma_init,
   theta_init = 0.5,
   return_g = FALSE,
   a = 1,
   b,
```

MUSS 3

```
omega = 1,
kappa = 1,
tolerance = 0.01,
max_iter = 500
)
```

Arguments

Z	$n*p$ covariate matrix with additive error in each column (possibly $p>n$). It is assumed the measurement error model takes the form $Z=X+\Xi$, where X is the unknown true design matrix and Ξ is the matrix of i.i.d Gaussian measurement error of mean 0 and same variance within each column.
У	Numeric response vector from n observations.
tauList	Vector of length p . Corresponding variances of additive measurement error for p columns.
beta_prior_type	
	Character. Type of prior distribution of regression parameter β . beta_prior_type = "Laplacian" or "Gaussian". Default is "Laplacian".
spike_params	Vector of of length L . Decreasing scale parameters of spike prior for beta. spike_params should be less than slab_param. If not specified, spike_params will be assigned default values. See 'Details' for more information.
slab_param	Numeric. Scale parameter λ_1 of slab prior for beta. If not specified, slab_param = spike_params[1] * 10 if spike_params is given; Otherwise, slab_param = 1 by default.
beta_init	Vector. Initial value of regression coefficients beta. beta_init = 0 by default.
sigma_update	Logical. Whether the variance of model error is updated or not. Default is TRUE.
sigma_init	Numeric. The initial value of standard deviation of model error. If not specified, sigma is initialized according to sd(y).
theta_init	Numeric. The initial value of prior proportion of nonzero beta. theta_init must be in (0,1]. Default is 0.5.
return_g	Logical. Default is FALSE. If specified TRUE, return a list containing the expected value of log likelihood function w.r.t the current conditional distribution of latent variables.
a, b	Numeric parameters of Beta prior distribution of theta, where theta \sim Beta(a,b). a = 1 and b = p by default.
omega, kappa	Numeric parameters of Inverse Gamma prior distribution of sigma^2, where sigma^2 ~ IG(omega/2,omega*kappa/2). omega = 1 and kappa = 1 by default.
tolerance	Numeric. Criterion for early stopping at each spike_param. If $\ \beta_{old} - \beta_{new}\ _2 <$ tolerance, then break the iteration at the current spike_param.
max_iter	Integer. The maximum iteration number at each spike_param.

Details

Since 'MUSS' is built based on EM algorithm, it is possible to converge to local but not global maximum values. Thus the result can be sensitive to the initial choices of beta, sigma and theta.

In addition, the value of spike and slab parameters can be crucial to variable selection result in practice. We set some default values for $spike_params$ and $slab_param$. If $spike_param$ is not specified and $slab_param$ is given, $spike_params = exp(seq(log(slab_L), by=-0.3, length.out=20))[-1]$

4 pathPlot

for beta_prior_type = "Laplacian", and spike_params = exp(seq(log(slab_G),by=-0.5,length.out=20))[-1] for beta_prior_type = "Gaussian" by default. If slab_param is also not specified, the slab_param = 1 by default and the spike_param is set the same as the previous way. One can assign any valid values to spike_params and slab_param.

Value

MUSS returns a list containing the following values:

beta_path L*p matrix. Each row is the beta fitted at corresponding spike_param. For Gaussian case, it is not thresholded. beta_indices Vector. Indices of selected nonzero regression parameters. beta_values Vector. Values of selected nonzero regression parameters. beta_output Vector of length p. Full output beta including zeros. For Laplacian case, it is the last row of beta_path. For Gaussian case, it is the thresholded result from last row of beta_path. beta thresholds Vector of length L. Threshold at each spike_param, returned only when "beta_prior_type" sigma_path Vector of Length *L*. Estimated sigma at each spike_param. theta_path Vector of Length *L*. Estimated theta at each spike_param. List of Length L. Each element of g_List is a list containing values of maxig_List mized function g over iterations at corresponding spike_param. iter_nums Vector of Length *L*. Number of Iterations at each spike_param.

Examples

```
require(MASS)
n = 200
p = 500

set.seed(1234)
beta_true = c(-3, 2, -1.5, -2, 3, rep(0,p-5))
X = matrix(rnorm(n*p, 0, 1), nrow = n)
epsilon = rnorm(n, 0, 1)
y = X %*% beta_true+epsilon

tau = sample(seq(0.5,0.9,by = 0.1), size = p, replace = TRUE)
Xi = mvrnorm(n, rep(0,p), diag(tau))
Z = X + Xi

muss_L = MUSS(Z, y, tauList = tau, beta_prior_type = "Laplacian")
```

pathPlot pathPlot

Description

Plot the path of beta, theta or sigma over spike_params. If beta_prior_type = "Gaussian", the thresholds will be displayed as well.

posteriorX 5

Usage

```
pathPlot(fit_obj, path_of = "beta")
```

Arguments

fit_obj The fitted object from 'MUSS' function.

path_of Character. path_of = "beta", "theta" or "sigma". Default is "beta".

posteriorX posteriorX

Description

In ordinary regression model, assuming each column of the design matrix Z contains additive Gaussian measurement errors with known variance collected in tauList, function 'posteriorX' returns posterior expectation as well as some related values for the true design matrix X.

More specifically, if we denote the measurement error matrix as Ξ , then the measurement error model takes the form: $Z = X + \Xi$. Since we have $y_i | \boldsymbol{x_i}, \boldsymbol{\beta}, \sigma^2 \sim N(\boldsymbol{x_i^\top \beta}, \sigma^2)$ and $\boldsymbol{x_i} | \boldsymbol{z_i}, \Lambda \sim N(\boldsymbol{z_i}, \Lambda)$ where Λ is the diagonal matrix consists of tauList, posteriorX computes the expectation of X, variance of $\boldsymbol{x_i}$ and expectation of $X^\top X$ conditioning on $\boldsymbol{\beta}, \boldsymbol{y}, Z, \Lambda$ and σ .

This is part of E-step in the 'MUSS' function.

Usage

```
posteriorX(Z, y, beta, sigma, tauList)
```

Arguments

Z	n * p covariate matrix with additive errors in each column (possibly $p > n$). It is
	assumed the measurement error model takes the form $Z = X + \Xi$, where X is
	the unknown true design matrix and Ξ is the matrix of i.i.d Gaussian measure-
	ment errors of mean 0 and same variance within each column.

y Numeric response vector from n observations.

beta Regression parameter vector of length p.

sigma Numeric. The standard deviance of regression model error terms.

tauList Vector of length p. Corresponding variances of additive measurement error for

p columns.

Value

'posteriorX' returns a list containing the following values:

hat X = n * p matrix. The expectation of X conditional on β , γ , γ , γ , and γ .

hatSigma p*p matrix. The variance of x_i conditional on β , y, Z, Λ and σ , which is

equivalent for each x_i .

hatXX p * p matrix. The conditional expectation of X^TX . hatXX = t(hatX) * hatX +

hatSigma.

6 posteriorX

Examples

```
require(MASS)
n = 200
p = 500

set.seed(1234)
beta_true = c(-3, 2, -1.5, -2, 3, rep(0,p-5))
X = matrix(rnorm(n*p, 0, 1), nrow = n)
epsilon = rnorm(n, 0, 1)
y = X %*% beta_true+epsilon

tau = sample(seq(0.5,0.9,by = 0.1), size = p, replace = TRUE)
Xi = mvrnorm(n, rep(0,p), diag(tau))
Z = X + Xi

post_X = posteriorX(Z, y, beta = beta_true, sigma = 1, tauList = tau)
```

Index

```
gPlot, 2
MUSS, 2
pathPlot, 4
posteriorX, 5
```