Support Vector Machine

Classification with SVM

- Imagine that you obtain the data containing characteristics of thousand of human cell samples extracted from patients who were believed to be at risk of developing cancer.
- Analysis of the original data showed that many of the characteristics differed significantly between benign and malignant samples

What is SVM?

SVM is a supervised learning algorithm that classifies cases by finding a separator.

- 1. Mapping data to a high-dimensional feature space
- 2. Find a separator.

What is SVM?

SVM is a supervised learning algorithm that classifies cases by finding a separator.

- 1. Mapping data to a high-dimensional feature space
- 2. Find a separator.

Clump	UnifSize	UnifShape	MargAdh	SingEpiSize	BareNuc	BlandChrom	NormNucl	Mit	Class
5	1	1	1	2	1	3	1	1	benign
5	4	4	5	7	10	3	2	1	benign
3	1	1	1	2	2	3	1	1	malignant
6	8	8	1	3	4	3	7	1	benign
4	1	1	3	2	1	3	1	1	benign
8	10	10	8	7	10		7	1	malignant
1	1	1	1	2	10	3	1	1	benign
2	1	2	н	2	1	3	1	1	benign
2	1	1	1	2	1	1	1	5	benign
4	2	1	1	2	1	2	1	1	benign

Two challenging questions

- How to we transfer data in such the way that the separator could be drawn such as a hyperplane?
- How can we find the best or optimized hyperplane separator after transformation?

Data Transformation

Mapping data into a higher-dimensional space is called **Kernelling**

- Linear
- Polynomial
- RBF
- Sigmoid

Using SVM to find the hyperplane

Find w and b such that $\Phi(w) = \frac{1}{2} w^T w$ is minimized, and for all $\{x_i, y\}$: $y_i(w^T x_i + b) \ge 1$

Pros and cons of SVM

- Advantages:
 - Accuracy in high-dimensional spaces
 - Memory efficient
- Disadvantages:
 - Prone of over fitting if the number of feature is greater than the number of samples.
 - No probability estimation
 - Small datasets

SVM Applications

- Image recognition
- Text category assignment
- Detecting spam
- Sentiment analysis
- Gene expression classification
- Regression, outlier detection and clustering and more...