Aufgabe 1. (Punkte: 6)

Gegeben sei die Menge von 2×2 -Matrizen $M := \left\{ \begin{pmatrix} e^x & 0 \\ 0 & e^{-x} \end{pmatrix} \in \mathbb{R}^{2 \times 2} \middle| \ x \in \mathbb{Z} \right\}.$

- 1. Zeigen Sie, dass die Menge M zusammen mit dem Matrizenprodukt eine **kommutative** Gruppe ist.
- 2. Geben Sie einen Isomorphismus $\varphi:(M,\cdot)\to(\mathbb{Z},+)$ an und weisen Sie die Isomorphie-Eigenschaften für φ nach.

Aufgabe 2. (Punkte: 12)

1	2

Multiple choice-Aufgaben zu Permutationen

Alle Elemente $f \in S_3$ der Permutationsgruppe (S_3, \circ) lassen sich in Werteschreibweise $\begin{pmatrix} 1 & 2 & 3 \\ f(1) & f(2) & f(3) \end{pmatrix}$ oder in Zykelschreibweise $(a \ f(a) \ ...)$ mit $a \in \{1, 2, 3\}$ darstellen.

 $U = \{id, (1\ 2)\}$ sei als eine Untergruppe der S_3 gegeben.

Kreuzen Sie bitte jeweils die richtige Aussage bzw. Antwort an. Begründungen werden nicht gewertet.

Lösung von $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ x = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ ist in S_3 :	$\Box \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$	$\Box \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$	$\Box \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$
$ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}^{2008} = $	$\Box \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$	$\Box \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$	$ \square \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} $
Mit welchem Element $x \in S_3$ wird $\{id, (1\ 2\ 3), x\}$ zu einer Untergruppe von S_3 ?	$\Box \ x = (1\ 3)$	$\Box x = (2\ 3\ 1)$	$\Box x = (3\ 2\ 1)$
Wieviele verschiedene Untergruppen besitzt die S_3 ?			□ 6
Welche Nebenklassen sind mit $[(1\ 2\ 3)]_U$ identisch?	$\square \ [(1\ 3\ 2)]_U$	$\square \ [(2\ 3)]_U$	$\square \ [(1\ 3)]_U$
Wieviele Elemente besitzt die Faktorgruppe S_3/U ?	□ 3		□ 6

Wertung: Für jede der 6 Teilaufgaben (Zeilen):

2 Punkte bei korrekter Beantwortung,

Punktabzug bei falscher Beantwortung,

0 Punkte bei Nichtbearbeitung.

Aufgabe 3. (Punkte: 8)

Gegeben sei die Matrix $A=\begin{pmatrix}1&1&1&1\\1&2&0&3\\0&1&-1&2\end{pmatrix}\in\mathbb{R}^{3\times 4}$ einer linearen Abbildung

$$f:\mathbb{R}^4\to\mathbb{R}^3\;,\;x\mapsto y=Ax\;\text{und der Vektor}\;b=\begin{pmatrix}2\\3\\\alpha\end{pmatrix}\in\mathbb{R}^3\;\text{mit}\;\alpha\in\mathbb{R}.$$

- 1. Bestimmen Sie den Kern von f.
- 2. Geben Sie dim(Bild(f)) und eine Basis des Bildes von f an.
- 3. Bestimmen Sie in Abhängigkeit von α alle Urbilder von b, d.h. alle Lösungen von Ax = b.

Aufgabe 4. (Punkte: 8)

$$\text{Im }\mathbb{R}^3 \text{ sind die Vektoren } v_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ \alpha \\ 1 \end{pmatrix} \text{ mit } \alpha \in \mathbb{R} \text{ gegeben.}$$

- 1. Bestimme α so, dass $span(v_1, v_2, v_3)$ ein Untervektorraum von \mathbb{R}^3 der Dimension 2 ist, und begründen Sie Ihr Ergebnis.
- 2. Bestimmen Sie alle $\alpha \in \mathbb{R}$, für die es eine lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^3$ mit

$$f(v_1) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, f(v_2) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, f(v_3) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \text{ gibt.} \quad \text{Begründen Sie Ihr Ergebnis.}$$

3. Sei nun $\alpha=0$ gewählt. Bestimmen Sie das Bild von $v=\begin{pmatrix}2\\4\\2\end{pmatrix}$ unter der linearen Abbildung f aus 2.

Aufgabe 5. (Punkte: 10)

1	2

Multiple choice-Aufgaben zu Abbildungen

Welche Eigenschaften treffen auf die angegebenen Abbildungen f zu?

Kreuzen Sie bitte alle richtigen Aussagen an. Begründungen werden nicht gewertet.

$f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R}^2 \\ x & \mapsto & \begin{pmatrix} x \\ x+1 \end{pmatrix} \right.$	□ linear	□ injektiv	□ surjektiv
	□ nicht linear	□ nicht injektiv	□ nicht surjektiv
$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} & \mapsto & \begin{pmatrix} x_1 + x_2 \\ x_1 \end{pmatrix} \right.$	□ linear □ nicht linear	□ injektiv □ nicht injektiv	□ surjektiv □ nicht surjektiv
$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} & \mapsto & \begin{pmatrix} x_1 \cdot x_2 \\ x_1 - x_2 \end{pmatrix} \right.$	□ linear	□ injektiv	□ surjektiv
	□ nicht linear	□ nicht injektiv	□ nicht surjektiv
$f: \left\{ \begin{array}{c} \mathbb{R}^3 & \to & \mathbb{R}^4 \\ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} & \mapsto & A \cdot \begin{pmatrix} x_1 + x_2 \\ x_2 + x_3 \\ x_3 + x_1 \end{pmatrix} \right.$ $\text{mit } A \in \mathbb{R}^{4 \times 3} \text{ und } Kern(A) = \{0\}$	□ linear	□ injektiv	□ surjektiv
	□ nicht linear	□ nicht injektiv	□ nicht surjektiv
$f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^3 \\ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} & \mapsto & A \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \\ \text{mit } A \in \mathbb{R}^{3 \times 3} \text{ und } Kern(A) = \{0\} \end{array} \right.$	□ linear	□ injektiv	□ surjektiv
	□ nicht linear	□ nicht injektiv	□ nicht surjektiv

Wertung: Für jede der 5 Teilaufgaben (Zeilen):

2 Punkte bei korrekter Beantwortung, Punktabzug bei falscher Beantwortung,

0 Punkte bei Nichtbearbeitung.

Aufgabe 6. (Punkte: 8)

1	2

Im \mathbb{R} -Vektorraum $\mathbb{R}^{n\times n}$ der $n\times n$ -Matrizen (n>1) sei

$$U = \{A = (a_{ij}) \in \mathbb{R}^{n \times n} \mid a_{ij} = -a_{ji} \text{ für alle } 1 \le i, j \le n\}$$

- 1. Zeigen Sie: U ist ein Untervektorraum von $(\mathbb{R}^{n\times n}, +, \cdot)$.
- 2. Zeigen Sie: $A=(a_{ij})\in U \ \Rightarrow \ a_{ii}=0$ für alle $1\leq i\leq n$.
- 3. Bestimmen Sie für n = 3 eine Basis von U.
- 4. Geben Sie dim(U) in Abhängigkeit von $n \in \mathbb{N} \setminus \{0\}$ an.
- 5. Zeigen Sie: Für $n=2k+1, k\in\mathbb{N}$ gilt: $A\in U\Rightarrow det(A)=0.$ Hinweis: Betrachten Sie $det(A^T)$!

Aufgabe 7. (Punkte: 8)

Gegeben sei die Matrix
$$A=\begin{pmatrix} 3 & 2 & 1 \\ 0 & 3 & 4 \\ 0 & 4 & -3 \end{pmatrix} \in \mathbb{R}^{3\times 3} \ \ \text{und der Vektor} \ \ v_1=\begin{pmatrix} 5 \\ 4 \\ 2 \end{pmatrix} \ \text{mit} \ \alpha \in \mathbb{R} \ .$$

- 1. Begründen Sie, warum A invertierbar ist. Die Bestimmung von A^{-1} ist dabei nicht verlangt!
- 2. Zeigen Sie, dass v_1 ein Eigenvektor von A ist und bestimmen Sie den zugehörigen Eigenwert λ_1 .
- 3. Bestimmen Sie einen Eigenvektor v_2 von A zum Eigenwert $\lambda_2=-5$.
- 4. Bestimmen Sie den fehlenden Eigenwert $\lambda_3 \notin \{\lambda_1, \lambda_2\}$ von A.
- 5. Geben Sie eine Basis des \mathbb{R}^3 aus Eigenvektoren von A an.