

Paul Scherrer Institut

Davide Reggiani

Extraction, Transport and Collimation of the PSI 1.3 MW Proton Beam

Outline

- Introduction to the PSI High Intensity Proton Accelerator (HIPA)
- Extraction from the Ring Cyclotron
- Beam Transfer to the Meson Production Targets M and E
- Collimation and Transfer to the Neutron Spallation Source SINQ
- 1.3 MW Beam Switchover to the UCN source

The PSI Proton Accelerator Facility

- CW, 590 MeV, 2.2 mA (1.3 MW) to meson production targets M and E (7 beam lines)
- CW, 575 MeV, 1.5 mA (0.86 MW) to neutron spallation target SINQ (18 beam lines)
- Macro-Pulsed, 1% duty-cycle, 590 MeV, 2.2 mA (1.3 MW) to UCN target (3 beam lines)
- Upgrade program towards 3.0 mA (1.8 MW) launched!

Extraction from Ring Cyclotron

Extraction electrode placed between last two turns

Extraction losses: limiting factor of any high power cyclotron!

Losses minimization through:

- «Thin» extraction device
- Large turn separation

Turn separation

Radius increment per turn

Off-center orbit Extraction:

Exploit betatron oscillation to increase turn separation by a factor of 3!

PSI, 17.09,2012

Turn Separation at PSI Ring

Aceleration term:

$$\frac{dR}{dn_t} = \frac{R}{\gamma(\gamma^2 - 1)} \frac{U_t}{m_0 c^2} \qquad \text{at excitation} \\ R = 4460 \text{ mm}, \quad U_t = 3 \text{MeV}, \quad \gamma = 1.63$$

PSI, 17. September 2012 Seite 5

Principle of Extraction Channel

GND HV loss collimator electrodes electrodes current electrodes current tungsten stripes (3mm x 0.05mm) gap 16mm

EEC: Electrostatic Extraction Channel Gap = 16 mm θbeam = 8.2 mrad

Extraction Efficency: 99.98 %

PSI, 17. September 2012

The 590 MeV Proton Channel

1.3 MW Beam Transport

1.3 MW Beam Envelopes from Cyclotron Extraction to SINQ Target (with Magnet and Collimator Apertures)

Peak beam current density on target M and E: 200 kW/mm²

Average losses away from targets: 0.6 W/m

Target-M Design

Specifications:

Mean diameter: 320 mm

Target thickness: 5.2 mm

Target width: 20 mm

Graphite density: 1.8 g/cm³

Beam loss: 1.6 %

Power deposition: 2.4 kW/mA

Operating Temperature: 1100 K

Irradiation damage rate: 0.12 dpa/Ah

Rotational Speed: 1 Turn/s

Current limit: 5 mA

Life time: 50000 h

PSI, 17.09.2012

Target-E Design

600 K

Target width: 6 mm, Beam width $(1\sigma) \approx 1$ mm Beam transverse range ≈ 4 mm

New design (2003): **gaps** allow dimensional changes of the irradiated part of the graphite

TARGET WHEEL

Mean diameter: 450 mm

Graphite density: 1.8 g/cm³

Operating Temperature: 1700 K

Irradiation damage rate: 0.1 dpa/Ah

Rotational Speed: 1 Turn/s

Target thickness: 40 mm (7g/cm²)

Beam loss: 12 %

Power deposition: 20 kW/mA

Cooling: Radiation

Temperature distribution simulation

Target E Region

150 kW on a Collimator! Temperature Effect

KHE2 Collimator during installation (1990)

...and after 20 years operation (120 Ah total beam charge)

KHE2 Temperature Distr. for 2.0 mA

Proton Beam on Target E

Tmax = 653 K, safe till 770 K (~2.6 mA)

Do we need a new collimator or a new running strategy for 3.0 mA?

150 kW on a Collimator! Activation

Dose rate up to 500 Sv/h measured at KHE2 during inspection in March 2010!!

Beam Transport to SINQ

H and V movable slits (halo scrapers)

Feasibility Study: SINQ Beam Rotation System

Peak current density on the SINQ target could become an issue in view of an intensity upgrade

- → Consider a beam flattening system:
 - •Non linear elements (i.e. octupoles): distort beam footprint
 - •Fast beam rotation system: seems a good option

Machine Protection System

- 1.3 MW proton beam with $\sigma_X = \sigma_Y \approx 1$ mm [\rightarrow TM and TE regions] melts beam pipe in \approx 10 ms
- PSI MPS stops the beam in < 5 ms
- MPS gets signals from:
 - Magnet power supplies
 - Beam loss monitors (110 ion chambers)

- Halo monitors
- Temperature sensors (collimators)
- VIMOS tungsten mesh (SINQ beam footprint)

HIPA MPS Review: A. Mezger and M.Seidel, Proceedings HB2010

UCN Beam Line

1.3 MW Proton Macro-Pulses diverted to Ultra Colde Spallation Source (1% duty cycle, pulse-lengthmax = 8 s)

PSI, 17.09.2012

UCN Pulsing Scheme: Requirements and Solutions

- Limit beam losses
 - → Fast Kicker-Magnet (Rise-Time < 1 ms)

- Avoide machine interlock during switchover
 - → Short (3 ms) shift of beam loss monitor interlock thresholds

Measured Beam Intensity

- Check beam centering
 - → Perform 5 ms pilot pulse before each long pulse

22 December 2010

First successful 1 MW, 8 s long UCN Beam Pulse

(after three years beam commissioning with the UCN beam dump!)

August 2011

Start UCN production

PSI, 17.09.2012

Conclusion

- Since many years the PSI 1.3 MW proton accelerator is an established and reliable user facility
- The «production» beam current has been gradually increased from 100 μA (1974) to 2.2 mA (2008)
- High current runs at 2.4 mA take place for 2 shitfs (16 hours) every 14 days
- At 590 MeV, the main issues related to a further intensity increase (up to 3.0 mA, 1.8 MW) are:
 - Extraction losses
 - Beam collimation/reshape after target E
 - Beam current distribution on SINQ target

Thank you for your attention!

PSI, 17. September 2012 Seite 2