Exercices | supplémentaires

Pour progresser

- $\boxed{\mathbf{1}} \ \ \text{Pour tout } n \in \mathbb{N}^* \text{ et } x \in \mathbb{R}^+ \text{, on pose } f_n(x) = \frac{nx}{\sqrt{n^2 + x^2}} \ .$
- 1) Montrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur $[0,+\infty[$ vers une fonction f qu'on déterminera .
- 2) En considérant la suite $x_n = n$, montrer que la convergence de la suite $(f_n)_{n \in \mathbb{N}^*}$ n'est pas uniforme sur \mathbb{R}^+ .
- 3) a) En utilisant l'inégalité :

$$\forall a, b \in \mathbb{R}, \quad \left| \sqrt{a} - \sqrt{b} \right| \le \sqrt{|a - b|}.$$

Montrer que

$$\forall n \in \mathbb{N}^*, \ \forall x \in [0, +\infty[, \ |f(x) - f_n(x)| \le \frac{x^2}{n}.$$

- b) En déduire que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément sur [0,M], pour tout M>0
- **2** Pour tout $n \in \mathbb{N}^*$ et $x \in \mathbb{R}^+$, on pose $f_n(x) = n \left(e^{x/n} 1 \right)$.
- 1) Montrer que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge simplement vers la fonction f définie par f(x)=x.
- 2) En utilisant la suite $x_n=n$, montrer que la convergence de la suite $(f_n)_{n\in\mathbb{N}^*}$ n'est pas uniforme sur \mathbb{R}^+ .
- 3) Montrer que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément sur tout intervalle [0,a], a>0.
- 4) Montrer que

$$\lim_{n \to +\infty} \int_0^1 \frac{f_n(x)}{1+x^2} \, dx = \frac{1}{2} \ln 2 \, .$$

 $oxed{3}$ On considère la suite de fonctions $(f_n)_{n\geq 1}$ définie sur $\mathbb R$ par $f_n(x)=\frac{x}{1+e^{nx}}$. On note $F:\mathbb R\to\mathbb R$ la fonction définie par

$$F(x) = x \text{ si } x < 0; \quad F(x) = 0 \text{ si } x \ge 0.$$

- 1) Montrer que la suite de fonctions $(f_n)_{n\geq 1}$ converge simplement vers F sur \mathbb{R} .
- 2) a) Montrer les inégalités suivantes :

$$\forall n \ge 1, \forall x \le 0, \quad |f_n(x) - F(x)| \le -xe^{nx}.$$

$$\forall n \ge 1, \forall x \ge 0, \quad |f_n(x) - F(x)| \le xe^{-nx}.$$

- b) Déterminer $\sup_{x \in [0, +\infty[} xe^{-nx}$.
- c) En déduire que la suite de fonctions $(f_n)_{n\geq 1}$ converge uniformément vers F sur \mathbb{R} .
- 3) Calculer f'_n et étudier la convergence simple de la suite $(f'_n)_{n\geq 1}$.
- 4) la convergence de la suite $(f'_n)_{n\geq 1}$ est-elle uniforme sur \mathbb{R} .
- Soit $f: [0, +\infty[\to \mathbb{R}$ une fonction continue non identiquement nulle qui vérifie f(0) = 0. On considère la suite de fonctions $(f_n)_{n \ge 1}$ définie sur $[0, +\infty[$ par

$$\forall n \in \mathbb{N}^*, \forall x \in [0, +\infty[, f_n(x) = f\left(\frac{x}{n}\right)].$$

- 1) Montrer que la suite de fonctions $(f_n)_{n\geq 1}$ converge simplement vers la fonction nulle.
- 2) Soit $x_0 > 0$ tel que $f(x_0) \neq 0$. En considérant la suite $u_n = nx_0$, montrer que la convergence n'est pas uniforme sur $[0, +\infty[$.
- 3) On se propose de montrer que la suite de fonctions $(f_n)_{n\geq 1}$ converge uniformément sur tout intervalle [0, M], M > 0.
- a) Soit $\varepsilon>0$ un réel fixé. En utilisant la continuité de f au point 0, montrer qu'il existe un réel a>0 tel que

$$\forall x \in [0, a] \quad |f(x)| \le \varepsilon.$$

b) Soit $n_0 \in \mathbb{N}$ tel que $\frac{M}{n_0} \leq a$. Montrer que

$$\forall n \geq n_0, \ \forall x \in [0, M], \quad \left| f\left(\frac{x}{n}\right) \right| \leq \varepsilon.$$

Conclure.

- 1) Montrer que la suite de fonctions $(f_n)_{n\geq 1}$ converge simplement sur $[0,+\infty[$ vers la fonction $f(x)=\frac{x}{(1+x^2)^2}$.
- 2) Pour tout $n \in \mathbb{N}^*$ et $x \in \mathbb{R}^+$, on pose $\varphi_n(x) = x n (1 e^{-x/n})$.
- a) Étudier les variations de φ_n sur $[0, +\infty[$ et déterminer le signe de $\varphi_n(x)$.
- b) Soit a un réel strictement positif. Montrer que

$$\forall n \in \mathbb{N}^*, \ \forall x \in [0, a], \quad 0 \le f(x) - f_n(x) \le \varphi_n(a).$$

- c) En déduire que la suite $(f_n)_{n \in \mathbb{N}^*}$ converge uniformément sur [0, a].
- 3) Montrer que les intégrales généralisées $\int_0^{+\infty} f(x) dx$ et $\int_0^{+\infty} f_n(x) dx$ sont convergentes et on a

$$\lim_{n \to +\infty} \int_0^{+\infty} f_n(x) \, dx = \int_0^{+\infty} f(x) \, dx = \frac{1}{2}.$$