Jorge y las Habichuelas Mágicas.

<u>Condición B</u>: Dadas dos habichuelas A y B (que pueden ser la misma o bien habichuelas distintas) existe una habichuela C que toma el color verde si y solo si tanto A como B toman el color blanco. (De este modo, si bien A o bien B toman el color verde, entonces C ese día tomaría el color blanco, pero si ambas A y B son blancas, entonces C toma el color verde).

Nuestro objetivo será demostrar que de cada enunciado podemos transformarlo en NAND, que es la condición B.

B1. En este enunciado tras construir la tabla de verdad observamos que es un NOT.

Α	В
0	1
0	1
1	0
1	0

podemos derivar la puerta NAND así:

B = NOTA

B= A NAND A

B2. La operación en esta es un AND:

A AND B = NOT(A NAND B)

A AND B = (A NAND B)NAND(A NAND B)

Α	В	С
0	0	0
0	0	0
0	1	0
0	1	0
1	0	0
1	0	0
1	1	1
1	1	1

B3. Esta coincide con un OR:

A OR B = NOT(NOT(A) AND NOT(B))

A OR B = (A NAND A) NAND (B NAND B)

Α	В	С
0	0	0
0	0	0
0	1	1
0	1	1
1	0	1
1	0	1
1	1	1
1	1	1

B4. Es una implicación lógica:

A THEN B = A NAND (A NAND B)

Α	В	С
0	0	1
0	0	1
0	1	1
0	1	1
1	0	0
1	0	0
1	1	1
1	1	1

B5. Es la operación XNOR:

A XNOR B =

(A NAND B)NAND((A NAND A) NAND(B NAND B))

Α	В	С
0	0	1
0	0	1
0	1	0
0	1	0
1	0	0
1	0	0
1	1	1
1	1	1

B6. Es la operación XOR:

A XOR B =

(A NAND(A NAND B))NAND(B NAND(A NAND B))

B7. Es una conjunción condicional:

(A NAND A) NAND B

Α	В	С
0	0	0
0	0	0
0	1	0
0	1	0
1	0	1
1	0	1
1	1	0
1	1	0

B8. La operación AND de los complementos de A y B:

A AND B = NOT(NOT(A) OR NOT(B))

NOT A= A NAND A

NOT B= B NAND B

NOT(A) AND NOT(B) =

(A NAND A) NAND (B NANDB)

В	С
0	1
0	1
1	0
1	0
0	0
0	0
1	0
1	0
	0 0 1 1 0 0

B9. Al menos una habichuela es blanca:

Sabiendo que la condición NAND devuelve verde cuando ambas habichuelas son blancas, si A y B son ambas verdes cualquier habichuela calculada como A NAND B será blanca.

B10. Al menos una habichuela es verde:

En este caso si existen dos habichuelas blancas existirá una verde, lo cual asegura el conjunto booleano de habichuelas. NAND es verdadera(verde) en cualquier caso que ambas entradas sean blancas.