```
1) univarate analysis:
  We pick up 1 feature co tren we altronine
  what the output is.
                                       9/0
                     weight
   Height
                                       obuse
    180
                      90
                                       Lum
                      50
     160
                                       FIF
                    78
     170
                                       THE.
                    90
     190
      ( Jaking Just 2 feature) [weight)
                 (weight)
      But sometimes ( fit / scime might overlap or
        fit obuse might overlap)
  due to this we cannot classify the O/P catigors
```

just by 1 teature.

After categorizing them we will apply an ML algoritm ex alumin the OIP.

Multirariale analysis :-

It this an age coumn world apply this. weight

MA A B B

1 X B + hight | ** **

B+B DXX ITH

age 1, height 1 (tre) collication

" + , " " + (-ve) "

If evenly increasing / decreasing correlation (0). (-1,0141)

Please try to go through the next part of the notes, I'll surely improve my handwriting after this Linear Regression notes

Now we will find lost function
$$\Rightarrow$$

$$= \frac{1}{2m} \sum_{i=1}^{m} (\hat{y} - \hat{y})^{2}$$

$$= \frac{1}{2m} \sum_{i=1}^{m} (1 - 1)^{2} + (2 - 2)^{2} + (3 - 3)^{2} + (4 - 4)^{2}$$

$$= \frac{1}{2m} \sum_{i=1}^{m} (1 - 1)^{2} + (2 - 2)^{2} + (3 - 3)^{2} + (4 - 4)^{2}$$

$$\Rightarrow \frac{1}{6} (0) \Rightarrow 0.$$

$$\Rightarrow \text{protting cost function } \text{Cy Normal slope}$$

$$x - \alpha x = \text{Not function}$$

$$y - \alpha x = \text{Slope lim}$$

$$36, \text{the graph.}$$

$$36, \text{the graph.}$$

$$37(m)$$

$$36, \text{the graph.}$$

stope (m) - supe.

She proted graph.

changing M value
$$2s$$
, $m=0.5$.

equate the point in $g=m(x)$
 $g=(0.5)(1)=0.5$
 $g=(0.5)(1)=1$
 $g=(0.5)(3)=1.5$ atc.

10, NOW find the lost function,

 $=\frac{1}{2m}\sum_{i=1}^{m}\left[g-g\right]^{2}$
 $=\frac{1}{2m}\left[(0.5-1)^{2}+(1-2)^{2}+(1.5-3)^{2}\right]$
 $=\frac{1}{2(3)}\left[\frac{1}{2}\left[\frac{1}\left[\frac{1}{2}\left[\frac{1}\left[\frac{1}{2}\left[\frac{1}{2}\left[\frac{1}\left[\frac{1}{2}\left[\frac{1}\left[\frac{$

To for different (M) values we get different lines of curvature? Lombining both the diagrams a assuming other 19 values.

- i). Jim)= 0, m=1 (== 2.11) + 1/2-
- ii). J(m) = 0.58, m = 0.5

assuming for other points (slope 1m) randoms)

- I once we get the gradient discent when showd we know, that we need to stop scenting is value, for the best fit line.
 - + gradient ducent:

Ao now well use convergence theorem

formula (convergence theorem) (Learning rate alpha). $m = m - \left(\frac{\Delta m}{d(m)}\right) \times \infty$) [Derivative of M wrt. M) (D(m) is my supe) arrive at the global minima see how to Based on some (ra value) thatis Point. the initial point. 750, now we've to move down Alope (DM (so mow weive to find whiter its a positive (at) Negative Alope) by tousing on right & lift hand of slope. - H the Higher side of stope pointing (1) -ve (Slope) 4 how to assire? so, m= m - (-ve slope) x d' quivatire) x d' ya-ve valus - (-VL Value) x & m + (tre) x d -> the was will come close to 1. downward steps.) small

so when thration by different M values gos southed, it was nove towards global minima.

point will jump at high spaces & might never touch global minima.

Jhatis why & should be small.

Fight-hand side pointing upward

(byt hand side pointing alown ward)

of 1250 So it a tree slope,

Convergence:

dwivates of the slope,

m = m - (+vc) xq

so the m valuet nill subtract mith smaller value que track global minima (1).

stope m valu 4 when the grobal mainima stouly reaches 10, the me stop will be O.

speify that this should ratul mill but fit line.

y=mx+c, alled as an intercept. -) also called as an toefficient.

→ so what is (m - m (stope) x x) ->?

so in every step as the arrow ends to Starts again that particular equation exceets to reach the global minima point.