Please amend the claims as indicated:

1. (currently amended) A rotatable downhole assembly adapted for conveying in a 1 2 borehole and determining a parameter of interest of a medium proximate to the 3 borehole, the downhole assembly comprising: a navigation assembly including a first sensing device including at least 4 (a) 5 one of (i) a gyroscopo, (ii) a magnetometer, and, (iii) an accelerometer, for providing a measurement indicative of toolface angle of the downhole 6 7 assembly, said navigation assembly associated with a first processor; 8 a directional evaluation device for providing measurements indicative of **(b)** 9 the parameter of interest, said directional evaluation device associated with a second processor; and 10 11 (c) a common bus operatively connected to the first processor and the second 12 processor. 13 2. (currently amended) The rotatable downhole assembly of claim 1 wherein the first 1 2 sensing device navigation assembly further provides an indication of a location of 3 the downhole assembly. 4 l 3. (original) The rotatable downhole assembly of claim 1 wherein said directional evaluation device further comprises a formation evaluation device. 2

3 1 4. (currently amended) The rotatable downhole assembly of claim 1 wherein said 2 navigation assembly and said second sensing device are is conveyed one of (A) a 3 drillstring, (B) a coiled tubing, and, (C) a wireline. 4 5. (currently amended) The rotatable downhole assembly of claim 1 wherein said 1 2 navigation assembly is on a first housing and said directional formation evaluation 3 device is on a second housing, said first and second housing encircling a drive 4 shaft, said drive shaft having with a mud motor at a first end and a drilling device 5 at a second end. б 6. (original) The rotatable downhole assembly of claim 1 wherein said navigation 1 assembly comprises a gyroscope selected from (A) a two-axis gyroscope and, (B) 2 3 a three-axis gyroscope. 4 7. (original) The rotatable downhole assembly of claim 1 wherein said navigation 1 2 assembly comprises a three-component magnetometer. 3 8. (currently amended) The rotatable downhole assembly of claim 1 wherein: 1 2 **(I)** said first processor processes signals from said first-sensing device 3 navigation assembly, while the rotatable downhole assembly is being rotated, to provide a value of an instantaneous tool face angle, said value 4

5	being communicated on the common bus at specified intervals, and;		
6	(II) wherein said second processor processes signals from the directional		
7	evaluation device, while the downhole assembly is being rotated, and		
8	provides a signal indicative of the parameter of interest, said signal being		
9	communicated on the common bus at specified intervals.		
10			
1	9. (currently amended) The rotatable downhole assembly of claim 8 further comprising a		
2	least one of (A) a telemetry device for transmitting information about the		
3	parameter of interest to an uphole device, and, (B) a memory for storing values of		
4	the instantaneous tool face angle and signal indicative of the parameter of		
5	interest.		
6			
1	10. (original) The rotatable downhole assembly of claim 8 wherein said processing of		
2	signals from the first sensing device by the first processor is independent of said		
3	processing of signals from the directional evaluation device by the second		
4	processor.		
5			
1	11. (original) The rotatable downhole assembly of claim 10 wherein said first and second		
2	processors are spaced apart.		
3			
1	12. (original) The rotatable downhole assembly of claim 10 wherein said first and secon		
2	processors are not spaced apart.		
	10/629,268 5		

Fax:7132668510

sides of the rotatable downhole assembly.

indicative of the parameter of interest.

13. (currently amended) The rotatable downhole assembly of claim 3 wherein said

directional formation evaluation device further comprises at least one of (I) at

gamma ray detector further comprises a pair of gamma ray detectors on opposite

least one gamma ray, (II) a resistivity device, (III) a density logging device.

14. (original) The rotatable downhole assembly of claim 13 wherein said at least one

15. (original) The rotatable downhole assembly of claim 10 further comprising a

processor for synchronizing said value of the tool face angle with the signal

16. (currently amended) The rotatable downhole assembly of claim 15 further comprising

at least one of (A) a telemetry device for transmitting information about the

the instantaneous tool face angle and signal indicative of the parameter of

parameter of interest to an uphole device, and, (B) a memory for storing values of

3

ì

2

3

4

1 2

3

1

2

3

4 1

2

3

4

5

6

17. (currently amended) The rotatable downhole assembly of claim 15 wherein said 1

3

2

10/629,268

interest.

6

processor for synchronizing is one of the first processor and the second processor.

MADANMOSSMANSRIRAM

1	18. (currently amended) A method of determining a parameter of interest of a medium			
2	proximate to a borehole using a rotating downhole assembly in said borehole, the			
3	method comprising:			
4	(a)	obtaining information about a tool-face angle of the assembly during		
5		rotation thereof;		
6	(b)	using a directionally sensitive evaluation device for obtaining		
7		measurements indicative of the parameter of interest, said measurements		
8		being obtained separately over a plurality of specified time intervals; and		
9	(c)	using at least one processor for determining from said obtained		
10		information and said measurements of the directionally sensitive		
11		evaluation device, partially processed measurements indicative of the		
12		parameter of interest over a plurality of sectors of said tool face angle.		
13				
1	19. (original)	The method of claim 18 wherein obtaining said information about said tool		
2	face a	ngle further comprises:		
3	(i)	using a navigation assembly including a first sensing device that is at least		
4		one of (A) a gyroscope, (B) a magnetometer, and, (C) an accelerometer,		
5		for providing a measurement indicative of said toolface angle; and		
б	(ii)	using a processor associated with the navigation assembly for determining		
7		said toolface angle over said time intervals.		
8				
1	20. (currently	y amended) The method of claim 19 wherein said rotating downhole		
	10/620 268			

Fax:7132668510

2	assembly further comprises a drill bit for penetrating a formation, the method
3	further comprising using at least one of (I) said gyroscope, and, (II) an
4	accelerometer, for determining a rate of penetration (ROP) of said downhole
5	assembly.
6	•
1	21. (currently amended) The method of claim 13 18 further comprising using said at least
2	one processor for approximating said partially processed measurements by a serie
3	expansion that includes a sinusoidal variation with said tool face angle.
4	
1	22. (original) The method of claim 21 wherein said series expansion further includes a
2	sinusoidal variation of twice said tool face angle.
3	
1	23. (currently amended) The method of claim 18 wherein said directional directionally
2	sensitive evaluation device further comprises at least one gamma ray detector
3	nuclear sensor.
4	•
1	24. (currently amended)The method of claim 22 23 wherein the at least one gamma
2	detector nuclear sensor further comprises a pair of gamma ray detectors nuclear
3	sensors on substantially opposite sides of the downhole assembly.
4	
1	25. (currently amended) The method of claim 23 further comprising using a drill bit
2	coupled to the downhole assembly for penetrating a formation and using
	2
	10/629,268

Fax:7132668510

3 measurements from said at least one gamma ray detector nuclear sensor for 4 determining a relative inclination of the borehole to a formation boundary. 5 1 26. (currently amended) The method of claim 24 further comprising using a drill bit 2 coupled to the downhole assembly for penetrating a formation and using 3 measurements from said pair of gamma ray detectors nuclear sensors for 4 determining a relative inclination of the borehole to a formation boundary. 5 1 27. (currently amended) The method of claim 18 wherein said directional directionally 2 sensitive evaluation device further comprises a resistivity device, 3 1 28. (currently amended) The method of claim 18 wherein said directional formation 2 directionally sensitive evaluation device further comprises a density 3 measurement device. 4 1 29. (original) The method of claim 21 further comprising using a processor for 2 determining from said series expansion an indication of proximity to a bed 3 boundary in the subsurface formation. 4 1 30. (currently amended) A method of obtaining a processed image of a borehole in an 2 earth formation using a rotating downhole assembly in said borehole, the method comprising: 3 10/629,268 9

4	(a)	obtaining information about a tool-face angle of the assembly during			
5		rotation thereof;			
6	(b)	using a directionally sensitive evaluation device for obtaining			
7		measurements indicative of a property of said earth formation at a			
8		plurality of tool-face angles;			
9	(c)	repeating (a) and (b) at a plurality of different times and obtaining a raw			
0		data set;			
1	(d)	fitting said raw data set at each of said plurality of different times with a			
12		fitting function to obtain a partially processed data set;			
13	(e)	applying a low pass filter to said partially processed data set at each of			
14		said plurality of tool-face angles and defining a fully processed data set;			
15		and			
16	(f)	displaying said fully processed data set as an image			
17					
1	31. (currently amended) The method of claim 30 wherein said fitting function further				
2	comprises using a sinusoidal function.				
3					
1	32. (currently amended) The method of claim 30 further comprising determining contours				
2	of an	equal value of said fully processed data set.			
3					
1	33. (new) The rotatable downhole assembly of claim 1 wherein said navigation assembly				
2	inclu	les at least one of (i) a gyroscope, (ii) a magnetometer, and, (iii) an			
	10/629,268	10			

3 accelerometer

4

1 34. (new) The method of claim 23 wherein said at least one nuclear sensor comprises a

2 gamma ray sensor.

3