import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

import seaborn as sns
%matplotlib inline

train = pd.read_csv('/content/titanic_train.csv')

train.head()

\Rightarrow	P	assengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily + Code	female + T	35.0 ext	1	0	113803	53.1000	C123	S

train.isnull()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	False	False	False	False	False	False	False	False	False	False	True	False
1	False	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	True	False
3	False	False	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	True	False
		•••										
886	False	False	False	False	False	False	False	False	False	False	True	False
887	False	False	False	False	False	False	False	False	False	False	False	False
888	False	False	False	False	False	True	False	False	False	False	True	False
889	False	False	False	False	False	False	False	False	False	False	False	False
890	False	False	False	False	False	False	False	False	False	False	True	False

sns.heatmap(train.isnull(),yticklabels=False,cbar=False,cmap='viridis')

<Axes: >

891 rows x 12 columns

sns.set_style('whitegrid')
sns.countplot(x='Survived',data=train)

<Axes: xlabel='Survived', ylabel='count'>

sns.set_style('whitegrid')
sns.countplot(x='Survived',hue='Sex',data=train,palette='RdBu_r')

<Axes: xlabel='Survived', ylabel='count'>

sns.set_style('whitegrid')
sns.countplot(x='Survived',hue='Pclass',data=train,palette='rainbow')

<Axes: xlabel='Survived', ylabel='count'>

train['Age'].hist(bins=30,color='darkred',alpha=0.3)

sns.countplot(x='SibSp',data=train)

<Axes: xlabel='SibSp', ylabel='count'>

train['Fare'].hist(color='red',bins=40,figsize=(8,4))

plt.figure(figsize=(12, 7))
sns.boxplot(x='Pclass',y='Age',data=train,palette='winter')

<Axes: xlabel='Pclass', ylabel='Age'>
80
60
50
30
20

```
def impute_age(cols):
    Age = cols[0]
    Pclass = cols[1]

if pd.isnull(Age):
    if Pclass == 1:
        return 37

    elif Pclass == 2:
        return 29

    else:
        return 24

else:
    return Age
```

10

0

train['Age'] = train[['Age','Pclass']].apply(impute_age,axis=1)

 $\verb|sns.heatmap(train.isnull(),yticklabels=False,cbar=False,cmap='viridis')|$

train.drop('Cabin',axis=1,inplace=True)

train.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500

train.dropna(inplace=True)

train.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 889 entries, 0 to 890
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	889 non-null	int64
1	Survived	889 non-null	int64
2	Pclass	889 non-null	int64
3	Name	889 non-null	object
4	Sex	889 non-null	object
5	Age	889 non-null	float64
6	SibSp	889 non-null	int64
7	Parch	889 non-null	int64
8	Ticket	889 non-null	object
9	Fare	889 non-null	float64
10	Embarked	889 non-null	object
dtyp	es: float64(2), int64(5), ob	ject(4)
memo	ry usage: 83.	3+ KB	

pd.get_dummies(train['Embarked'],drop_first=True).head()

- **Q S 0** 0 1
- **1** 0 0
- **2** 0 1
- **3** 0 1
- 4 0 1

sex = pd.get_dummies(train['Sex'],drop_first=True)
embark = pd.get_dummies(train['Embarked'],drop_first=True)

train.drop(['Sex','Embarked','Name','Ticket'],axis=1,inplace=True)

train.head()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
0	1	0	3	22.0	1	0	7.2500
1	2	1	1	38.0	1	0	71.2833
2	3	1	3	26.0	0	0	7.9250
3	4	1	1	35.0	1	0	53.1000
4	5	0	3	35.0	0	0	8.0500

train = pd.concat([train,sex,embark],axis=1)

train.head()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	male	Q	s
0	1	0	3	22.0	1	0	7.2500	1	0	1
1	2	1	1	38.0	1	0	71.2833	0	0	0
2	3	1	3	26.0	0	0	7.9250	0	0	1
_								_	_	

train.drop('Survived',axis=1).head()

	PassengerId	Pclass	Age	SibSp	Parch	Fare	male	Q	s
0	1	3	22.0	1	0	7.2500	1	0	1
1	2	1	38.0	1	0	71.2833	0	0	0
2	3	3	26.0	0	0	7.9250	0	0	1
3	4	1	35.0	1	0	53.1000	0	0	1
4	5	3	35.0	0	0	8.0500	1	0	1

train['Survived'].head()

```
0 0
1 1
2 1
3 1
```

0

4

Name: Survived, dtype: int64

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

```
logmodel = LogisticRegression()
logmodel.fit(X_train,y_train)
```

/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458: ConvergenceWarning: lbfgs failed to conver STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

```
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
    n_iter_i = _check_optimize_result(
    v LogisticRegression |
    LogisticRegression()
```

predictions = logmodel.predict(X_test)

from sklearn.metrics import confusion_matrix
accuracy=confusion_matrix(y_test,predictions)

accuracy

```
array([[149, 14],
[ 39, 65]])
```

from sklearn.metrics import accuracy_score

accuracy=accuracy_score(y_test,predictions)
accuracy

0.8014981273408239

predictions

from sklearn.metrics import classification_report

print(classification_report(y_test,predictions))

support	f1-score	recall	precision	
163	0.85	0.91	0.79	0
104	0.71	0.62	0.82	1
267	0.80			accuracy
267	0.78	0.77	0.81	macro avg
267	0.80	0.80	0.80	weighted avg