目 录

目 录.			I
第 1 章	绪论		1
1.1	对象		1
1.2	数据结构	「	3
1.3	算法		5
1.3	.1 算法的	的定义	5
1.3	.2 算法的	的评价	6
1.3	.3 实验:	: 从 1 加到 N	7
1.4	正确性检	验	10
1.4	.1 经典的	的归纳和递降	10
1.4	.2 带映身	射的归纳和递降	12
1.4	.3 良序	关系	13
1.4	.4 字典月	序*	13
1.4	.5 超限的	的归纳和递降	14
1.4	.6 实验:	: 最大公因数	15
1.4	.7 实验:	: 数组求和	16
1.4	.8 实验:	: 函数零点	18
1.5	复杂度分	析	20
1.5	.1 复杂原	度记号的定义	20
1.5	.2 复杂原	度记号的常见理解误区	22
1.5	.3 实验:	: 判断 2 的幂次	24
1.5	.4 实验:	: 快速幂	26
1.5	.5 实验:	: 复杂度的积分计算	28
1.6	本章小结		30
第2章	向量		31
		构	

2.4 向	量的容量和规模	35
2.4.1	初始化	35
2.4.2	装填因子	37
2.4.3	改变容量和规模 *	38
2.4.4	扩容策略 *	39
2.4.5	等差扩容和等比扩容 *	40
2.4.6	分摊复杂度分析 *	41
2.5 插,	入、查找和删除	42
2.5.1	插入一个元素	43
2.5.2	平均复杂度分析	44
2.5.3	查找一个元素	45
2.5.4	删除一个元素	46
2.5.5	实验:插入连续元素	47
2.5.6	实验:向量合并	48
2.5.7	实验:按值删除元素	50
2.6 置記	乱和排序	54
2.6.1	实验: 随机置乱	55
2.6.2	偏序和全序	56
2.6.3	自上而下的归并排序	58
2.6.4	自下而上的归并排序 *	61
2.6.5	基于比较的排序的时间复杂度	63
2.6.6	信息熵 *	64
2.6.7	有序性和逆序对	64
2.6.8	实验: 先验条件下的归并排序	65
2.7 有月	亨向量上的算法	67
2.7.1	折半查找	67
2.7.2	消除尾递归	69
2.7.3	实验: 迭代形式的折半查找	70
2.7.4	实验:向量唯一化	71
2.8 实	验:循环位移	73
2.9 本	章小结	76
第3章 3	列表	78
	表的结构	78

3.2 列表	表的节点	78
3.2.1	单向列表节点	78
3.2.2	双向列表节点	80
3.2.3	哨兵节点	81
3.3 插/	入、查找和删除	82
3.3.1	后插一个元素	82
3.3.2	前插一个元素	84
3.3.3	查找一个元素	86
3.3.4	删除一个元素	86
3.3.5	实验:在头部和尾部连续插入元素	87
3.3.6	实验: 顺序删除和随机删除	89
3.3.7	实验:倒置列表	90
3.4 列表	表的归并排序	94
3.4.1	基于值的归并排序	94
3.4.2	基于指针的归并排序 *	94
3.4.3	实验: 归并排序的性能差异	96
3.5 循环	不列表	97
3.6 静	态列表	98
3.6.1	静态列表的结构	98
3.6.2	静态列表上的节点	99
3.6.3	在静态列表上删除一个元素	99
3.7 本重	章小结	101
第4章 村	戈	103
4.1 栈的	的性质	103
4.1.1	栈的定义	103
4.1.2	栈的结构	104
4.1.3	后入先出	105
4.2 出村	戋序列	106
4.2.1	出栈序列的定义	106
4.2.2	出栈序列的计数	106
4.2.3	出栈序列的计数方法 *	107
424	随机出栈序列*	108

4.3 括	号序列	109
4.3.1	合法括号序列的计数	109
4.3.2	实验: 判断括号序列是否合法	110
4.4 栈	与表达式	111
4.4.1	表达式的定义	111
4.4.2	表达式中的元素	112
4.4.3	将字符串解析为中缀表达式	115
4.4.4	中缀表达式转换为后缀表达式	115
4.4.5	后缀表达式转换为中缀表达式	118
4.4.6	后缀表达式转换为前缀表达式	121
4.4.7	后缀表达式的计算	121
4.4.8	实验:中缀表达式的计算	122
4.5 栈	与递归	123
4.5.1	实验:消除尾递归的扩展形式	123
4.5.2	实验: 计算组合数	125
4.5.3	实验:消除一般的递归 *	128
4.6 栈的	的扩展	129
4.6.1	共享栈	129
4.6.2	最小栈 *	130
4.7 本立	章小结	133
第5章 『	人列	134
5.1 先	入先出	134
5.2 队	列的结构	135
5.2.1	链式队列	135
5.2.2	整体搬移 *	136
5.2.3	循环队列	139
5.2.4	双栈队列 *	141
5.2.5	实验:队列的性能对比 *	142
5.3 双单	端队列 *	143
5.4 本重	章小结	144
第6章 二		145
	阵	
6.1.1	按行优先和按列优先	145

目 录

6.1.2	实验: 朴素矩阵乘法 *	147
6.1.3	实验:并行的朴素矩阵乘法*	148
6.1.4	实验:基于分治的矩阵乘法 *	150
6.1.5	实验: Strassen 算法 *	153
6.1.6	矩阵的压缩存储	154
6.1.7	稀疏矩阵	156
附录 A C	C++ 的安装和配置	158
附录 B 清	青华大学计算机考研指南	159

第1章 绪论

1.1 对象

作为一门 OOP 的编程语言,C++ 的设计范式总是从类和对象起步。在本书的第一节,我们将以一个"本书所有数据结构和算法的基类"作为引入,讲解如何利用 C++20 中的模块特性设计类。下面是第一个程序,它是一个**模块接口文件**,功能上类似于旧标准 C++ 中的**头文件**。它定义了命名空间dslab中的一个Object类,作为本书中所有数据结构和算法的基类。

```
// Object.ixx
  module;
2
  #include <string>
3
  #include <typeinfo>
  export module Framework.Object;
  export namespace dslab {
  class Object {
7
8
   public:
9
      virtual std::string type_name() const {
         return typeid(*this).name();
10
11
12
  };
13
  }
```

在旧标准 C++中,通常在头文件(.h)里写定义,而在源文件(.cpp)里写实现。C++20 里引入了**模块**(module)的概念,用模块接口文件(.ixx)代替头文件。模块的引入大大提高了大型 C++项目的编译速度,因为相同的模块只需要编译一次,而被不同源文件**#include**的同一个头文件会引入大量的重复编译工作。本书中的所有代码都使用模块。模块接口文件的后缀名(.ixx)是 MSVC 推荐的后缀名;如果您使用的是 GCC,需要开启-x c++选项来支持它;如果您使用的是 Clang,需要修改配置文件才能支持.ixx。您也可以简单地修改后缀名为普通的 C++文件名,如.cxx 或.cc。

在模块接口文件的开始,我们需要引入标准库。我们通过一行单独的module;进入全局模块环境,然后和往常那样,将需要使用的标准库#include到程序中。这种写法适用于版本较低的编译器。一些高版本的编译器允许用户采用import std;这样的方法一次性引入整个标准库,这是 C++23 标准中的内容。一次性引入整个标准库看起来很吓人,但在模块的支持下,它比旧标准 C++ 里单独#include <vector>更快。

接着,我们需要通过export module说明,当前模块接口文件导出的是什么

模块。和 Java 类似,模块名可以用点分隔来表示子模块。本书采用的模块命名规则和 Java 相同,即采用目录名 + 文件名的格式。

本书定义的所有内容定义在命名空间dslab下,因此,我们总是采用export namespace dslab的方式导出dslab中的所有内容。如果我们需要导出特定的类或函数,则需要将关键字export移动到对应的类或函数的前面。

在上述代码的命名空间内不再含有模块的特性。

我们使用typeid(*this).name()方法来在运行时获取一个对象的类型名,这是因为 C++ 仍然没有加入反射(reflection)这个高级语言喜闻乐见的特性。这个方法没有标准的实现,MSVC中会返回一个比较可读的结果,而 GCC 和 Clang 中则会返回不那么可读的结果。因此,我们后续实现派生于Object的数据结构和算法的时候,往往需要重写这个方法,将其改为更加可读的版本。最后,值得一提的是,作为 C++98 时代的遗留产物,typeid(*this).name()返回的是 C 风格的字符串类型(const char*),在本书中会尽可能避免使用 C 风格指针,因此将其隐式转换为 C++ 风格的std::string返回。

下面我们编写一个测试的源文件(.cpp),来导入刚才实现的Object类。

```
// ObjectTest.cpp
#include <iostream>
import Framework.Object;

using namespace std;

class Test : public dslab::Object {};

int main() {
    cout << (Test()).type_name() << endl;
    return 0;
}</pre>
```

在源文件(.cpp)中,可以通过import关键字来导入定义的模块。在这个测试文件中,我们使用了一个Test类继承此前定义的Object类,并查看Test类型临时变量的类型名。如前所述,这个程序在不同的编译器下会得到不同的输出结果。

类似于其他高级语言,我们可能希望import Framework;提供一次性引入模块Framework中所有子模块的功能。此时,我们可以建立一个新的模块接口文件,用来实现这个功能。

```
// Framework.ixx
export module Framework;
export import Framework.Object;
```

其中,混合使用**export** import表示,将子模块Framework.Object导入之后,作为亲模块Framework的一部分导出。未来我们增加其他的子模块,只需要在Framework.ixx 里增加对应的一行,就可以让它一并作为Framework的一部分被导出。

1.2 数据结构

数据结构是什么?这是一个很多新手都不会思考的问题。当然,我们可以简单 地把"数据结构"这个词拆分为**数据**和**结构**,即:数据结构是计算机中的数据元素 以某种结构化的形式组成的集合。

您可能会觉得这种定义过于草率,或者和您在教材上看到的定义不同。这是因为计算机是一门工程学科,对于不涉及工程实现的问题,都不存在标准化的定义。比如,"数据结构"和"算法",甚至"计算机"这样的基本概念,都不存在标准化的定义。一些教材会把算盘甚至算筹划归"计算机"的范畴,并把手工算法(如尺规作图,甚至按照菜谱烹饪食物)划归"算法"的范畴。这种概念和定义的争议在计算机领域广泛存在,它主要来自以下几个原因。

- 1. 为了叙述简便,有些概念会借用一个已经存在的专有名词,从而引发歧义。如**树**(tree)这个词在计算机领域就有常用但迥然不同的两个概念。图论中的"树"出现得比较早,但没有人愿意将工程界经常出现的"树"称为"有限有根有序有标号的树"——英文里这些词并不能缩写为"四有树"。
- 2. 研究人员各执一词,从而引发歧义。这个现象的典型例子是"计数时从0开始还是从1开始"。从0开始是有一定数学上的优越性的,可以避免一些公式出现刻意的"+1"余项;但从1开始计数更符合自然习惯。这个问题直接导致在有些问题(如"树的高度")上,不同教材的说法不同。考生如果参考了错误的教材就会导致无辜的失分。
- 3. 随着计算机领域的快速发展,一些概念的含义会发生变化。如众所周知,**字节**(byte)表示8个二进制位;但在远古时代,不同计算机采用的"字节"定义互不相同,有些计算机甚至是十进制的,那个时候一个字节可能表示2个十进制位。
- 4. 受计算机科学家的意识形态影响,同一概念的用词有所不同。如"树上的上层邻接和下层邻接节点"这一概念,现在普遍使用的词是 parent 和 child; 然而思想老旧的人可能还在用 father 和 son,进步主义者则可能会用 mother 和 daughter。
- 5. 计算机领域的大多数成果出自美国,而英语翻译为汉语时,不同译者可能采用不同的译法。如 robustness 有音译的**鲁棒性**和意译的**稳健性**,hash 有音译的**哈希**和意译的**散列**。
- 6. 从业人员为了销售产品或取得投资,存在滥用、炒作部分计算机概念的情况。如"人工智能""大数据""云计算""区块链""元宇宙"等概念是这个现象的重灾区。

本书在描述无标准化的定义时,将尽可能让您把握住概念的要点。正如:数据结构是**计算机**中的数据元素以某种结构化的形式组成的**集合**。

数据结构中的数据是存储在**计算机**中的数据。我们在解题的时候往往会在纸上画出数据结构的图形,这是为了让自己更好地理解数据在计算机中的组织方式。计算机中的数据和纸上的数据会有很多的不同。比如,计算机处理数据时存在高速缓存(Cache,参见《组成原理》),这会使算法的局部性对算法性能造成重大影响,而这是在纸上无法分析出的。

我们研究的计算机都是二进制计算机,这意味着数据结构的数据元素总是一个二进制数码串,程序会将这些二进制数据转换为有意义的数据类型,比如char、int、double或某个自定义的类。因为一台计算机存储的二进制串不能无限长,所以我们讨论整数数据结构或者浮点数数据结构的时候,其元素的真正取值范围并不会是数学上的 Z 或者 R,而是一个有限集合。这一特性经常被一些数学成绩优秀的学生所忽略,尤其当他们试图用数学方法完成一些证明时。另一个有限性,即数据结构规模(存放的元素个数)的有限性,则不那么容易被忽略。

通常情况下,一个数据结构中的数据元素具有相同的类型,比如,一个数据结构不能既存储int又存储std::string。一些情况下,我们可能希望元素具有多个可能的类型,此时可以选择 C 语言的union或者 C++ 的std::variant。更加特殊的情况下,我们可能希望元素是任意类型的,此时可以选择 C 语言的void*或者 C++ 的std::any。这种特殊的情况更多地被视为一种编程技巧,而非数据结构中研究的理论问题。

数据结构中的数据元素具有实质上的**互异性**。这是由于, 计算机中不可能存在两个完全一样的数据: 至少它们的地址不同。这是我们把数据结构定义为数据的**集合**的原因。这种互异性在我们设计算法的时候需要尤其注意, 比如, 如果我们将序列[a1,b,c]修改为了[a2,b,c], 其中a1和a2的值相同、地址不同, 看起来好像修改前后这个序列本身没有什么区别, 但实际上可能会引起重大的错误。因为我们在修改这个序列的过程中, 不能保证没有外部的指针指向a1。如果修改之后, a1的内存被释放, 外部指向它的指针就会变成悬垂指针, 造成严重的后果。很多有经验的程序员也容易忽视这一点, 在本书中您还将看到更加实际的例子来说明它。

现在,我们回到数据结构的实现中来。现在我们需要继承上一节中实现的Object,设计一个数据结构的基类。作为一个抽象的数据结构,我们需要从数据结构的定义中挖掘共性。

1. 数据结构总是存储相同的类型。对于支持泛型编程的 C++ 来说, 我们可以使用模板类型作为数据结构中的元素类型。

2. 数据结构是有限多个元素组成的,因此任何数据结构都具有size()方法。在 C++中,表示规模(size)的类型是size_t,它通常是一个无符号整数类型,可能是uint32_t或者uint64_t。

于是,我们可以这样设计DataStructure类:

```
template <typename T>
class DataStructure : public Object {
  public:
    virtual size_t size() const = 0;
    virtual bool empty() const {
       return size() == 0;
    }
};
```

其中,获取规模的方法size被设计成了纯虚函数 (pure virtual function),这意味着它的子类必须要实现这个方法。和规模相关,我们支持判空方法empty。

可能有的读者会认为,数据结构作为数据元素的集合,它理应支持增加元素、 删除元素、查找元素这样的方法,然而事实却并非如此。有一些数据结构,它们可能一旦建立之后就无法添加或删除元素,或者只能添加和删除特定的元素,即**写受限**。同样地,另一些数据结构可能内部对用户不透明,用户只被允许访问特定的元素,并不能在数据结构中自由地查找,即**读受限**。在本书的后续部分,您将看到写受限和读受限的具体例子。

1.3 算法

1.3.1 算法的定义

和数据结构经常同时出现的另一个名词是**算法**。算法通常指接受某些**输入**,在**有限**步骤内可以产生**输出**的计算机计算方法。输出和输入的关系可以理解为算法的功能。对于同一功能,可能存在多种算法,对于相同的输入,它们通过不同的步骤可以得到**等价**的输出。这里并不一定要求得到相同的输出,比如我们要求一个数的倍数,输入 a 的情况下,输出 2a 和 3a 都是正确的输出,在"倍数"的观点下,这两个输出等价。

通常,算法的定义除了上述的三个要素:输入、输出和有限性之外,还包括可行性和确定性。比如,算法中如果包含了"如果哥德巴赫猜想正确,则…",则在当前不满足可行性;如果包含了"任取一个…",则不满足确定性(对同一算法,同样的输入必须产生同样的输出)。不过,在计算机上用代码写成的算法,通常都具有可行性和确定性,所以我们一般不讨论它们。有限性可以通过白盒测试和黑盒测试评估。在设计"算法"的基类时,我们只考虑输入和输出。

正如我们所熟知的那样,C++有一个概念同样具有输入和输出:函数(function)。但是,直接用函数来表示一个算法并不OOP,因此我们采用**仿函数**(functor)而不是普通的全局函数。仿函数是一种类,它重载了括号运算符operator()。仿函数对象可以像一个普通的函数一样被调用,并且可以被转换为std::function。和普通的全局函数相比,仿函数具有两方面的优势:

- 1. 仿函数可以有成员变量。比如,可以定义一个m_count来统计一个仿函数对象被调用的次数。而普通的全局函数则无法做到这一点,非static的变量会在函数结束后被释放,而static的变量又强制被全局共享。
- 2. 仿函数可以有成员函数(也称为方法)。当仿函数的功能非常复杂时,它可以 将功能拆解为大量的成员函数。因为这些成员函数都处在仿函数内部,所以 不会污染外部的命名空间,并且可以清楚地看到它们和仿函数之间的关系。 必要的时候,还可以通过嵌套类显式地指明其中的关系。而普通的全局函数, 则无法在函数内嵌套一个没有实现的子函数。

于是,我们用仿函数设计了算法类Algorithm:

```
template <typename OutputType, typename... InputTypes>
class Algorithm;

template <typename OutputType, typename... InputTypes>
class Algorithm<OutputType(InputTypes...)>: public Object {
 public:
    using Output = OutputType;
    virtual OutputType operator()(InputTypes... inputs) = 0;
};
```

这个类只定义了一个纯虚的括号运算符重载。这里我们使用了可变参数模板(以"..."表示),以处理不同输入的算法。另一方面,我们借用了std::function的表示形式,要求用户使用OutputType(InputTypes...)的方式给出模板参数表。比如,一个输入两个整数、输出一个整数的算法可以继承于Algorithm<int(int, int)>。

1.3.2 算法的评价

作为一种解决问题的方法,算法的评价是多维度的,它们构成了算法题的主流 题型。即使是在算法设计题中,也经常有"对设计的算法进行评价"的附加要求。 本节将简要介绍算法的几个典型的评价维度。

正确性。正确性检验通常分为两个方面:

1. **有限性检验**。如前所述,有限性是算法定义的组成部分之一。有限性检验,主要用于判断带有无限循环(如while(true))或强制跳转(goto)的算法是

否必定会终止。没有无限循环或强制跳转的情况,有限性是默认的。这一方面对应着算法定义中的**有限性**要求。

2. **结果正确性检验**。即验证输出的结果满足算法的需求。在算法有确定的正确结果时,这一检验是"非黑即白"的;而在算法没有确定的正确结果时,可能需要专用的检验程序甚至人工打分(比如较早的象棋 AI,往往是以高手对一些局面的形势打分作为基础训练数据的)。这一方面对应着算法定义中的**输入**和**输出**。

算法定义中的另外两点,**可行性和确定性**,正如我们之前所讨论的那样,通常都可以被直接默认,而不需要进行检验。

效率。评价算法效率的标准可以简单地概括为多、快、好、省。在《数据结构》中,通常只研究"快"和"省"这两个方面,而《网络原理》则需要考虑全部的四个方面。在《网络原理》中,"多"代表网络流量,"好"代表网络质量。

- 1. **时间效率**(快)。在计算机上运行算法一定会消耗时间,时间效率高的算法消耗的时间比较短。
- 2. **空间效率**(省)。在计算机上运行算法一定会消耗空间(硬件资源),空间效率高的算法消耗的硬件资源比较少。

在不同的计算机、不同的操作系统、不同的编程语言实现下,同一算法消耗的时间和空间可能大相径庭。为了抵消这些变量对算法效率评价的干扰作用,在《数据结构》这门学科里进行算法评价时,往往不那么注重真实的时间、空间消耗,而倾向于做**复杂度分析**。关于复杂度的讨论参见后文。

稳健性(robustness,又译健壮性、鲁棒性;在看到英文之前,笔者曾一度认为"鲁棒性"这个词来源于山东大汉身体棒的地域刻板印象)。即算法面对意料之外的输入的能力。

泛用性。即算法是否能很方便地用于设计目的之外的其他场合。

在上述 4 个评价维度中,正确性和效率是《数据结构》学科研究的主要内容, 算法评价题也总是围绕正确性检验和复杂度分析命题;这两个问题留到后面的小 节里展开讨论。而稳健性和泛用性,则在课程设置上属于《软件工程》讨论的内容, 在下一节会用一个实验展示它,后续不再赘述。

1.3.3 实验: 从 1 加到 N

算法和实现它的代码(code)或程序(program)有本质区别。按照通常意义的划分,算法更接近于理科的范畴,而实现它的代码更接近工科的范畴。一些同学可能很擅长设计出精妙绝伦的算法,但需要耗费巨大的精力才能实现它,并遗留不计其数的Bug;另一些同学可能在设计算法上感到举步维艰,但如果拿到已有的设

计方案,可以轻松完成一份漂亮的代码。算法设计和工程实现对于计算机学科的研究同等重要。参加过语文高考的学生可能会很有感受:自己有一个绝妙的构思,但没有办法在有限的时间下把它说清楚。专精算法设计而忽略工程实现的同学会有类似的感觉。

上一节中介绍的算法评价维度中,**稳健性**和**泛用性**是高度依赖于算法的实现的(当然,也有少数情况和算法本身的设计相关)。在本节将通过一个实验作为例子,向读者展示:对于相同的算法,代码实现的不同会影响这两个评价维度。本节的实验可以在 Sum.cpp 中找到。

我们讨论一个非常简单的例子: 从 1 加到 n 的求和。输入一个正整数 n,输出 $1+2+\cdots+n$ 的和。我们从这个例子出发,介绍本书使用的实验框架。首先,我们 定义本问题的基类:

```
class Sum : public Algorithm<int(int) > {};
```

因为这个算法不需要用到额外的成员变量或成员函数,所以它简单地继承了我们定义的算法类Algorithm<int, int>。我们也可以使用别名(alias)技术来指定Sum和Algorithm<int, int>是同一个类:

```
1 using Sum = Algorithm<int(int)>;
```

相对于 C 语言的typedef,使用关键字using的别名技术更加清晰,并且支持带模板参数的语法。当我们使用 C++ 编程时,应当使用别名替代typedef。

现在我们回到求和问题上来。作为实验的一部分,您可以自己实现一个类,继承Sum,并重写operator(),来和笔者提供的示例程序做对比。这一过程可以发生在您阅读下面对示例程序的解析之前,也可以发生在之后。在这个实验的示例程序里,笔者设计了几个Sum的派生类来完成这个算法功能。

首先, 我们可以简单地把每个数字加起来, 就像这样:

```
1  // SumBasic
2  int operator()(int n) override {
3    int sum { 0 };
4    for (int i { 1 }; i <= n; ++i) {
5       sum += i;
6    }
7    return sum;
8  }</pre>
```

使用一对大括号(而不是等于号)对数据进行初始化,称为统一初始化,这是现代 C++ 建议的初始化方式。它有助于提示用户这里发生了初始化(调用了构造函数),而不是发生了赋值(调用了operator=)。另一方面,统一初始化有更加严格的类型检查,这可以防止某些意料之外的隐式类型转换。

此外,如果不需要使用返回值,则建议使用前置运算符++i而不是后置运算符_{i++}。尽管当i是整数的时候编译器往往会自动进行优化,可当i是自定义类型时不一定会这样。

另一方面,override关键字用于提示编译器该方法是重载方法。永远要记得为您的重载方法添加这个关键字,以避免由于细小的区别(如遗漏const)而不小心定义了一个新方法。

上面的这个算法显然称不上好。著名科学家高斯在很小的时候就发现了等差数列求和的一般公式。我们可以使用公式,得到另一个可行的算法。

由于这个算法的正确性十分显然,您或许觉得这个程序毫无问题,直到您发现了另外一个程序:

```
1  // SumAP2
2  int operator()(int n) override {
3    if (n % 2 == 0) {
4       return n / 2 * (n + 1);
5    } else {
6       return (n + 1) / 2 * n;
7    }
8 }
```

通过对比 SumAP 和 SumAP2,您会立刻意识到 SumAP 存在的问题:对于某个区间内的 n, $\frac{n(n+1)}{2}$ 的值不会超过**int**的最大值,但 n(n+1) 会超过这个值。比如,当 n=50,000 的时候,SumAP2 和 SumBasic 都能输出正确的结果,而算法 SumAP则会因为数据溢出返回一个负数。您可以算出使 SumAP 错误而 SumAP2 仍然正确的区间。

但 SumAP2 也很难称之为无可挑剔, 比如说, 如果 n 更大一些, 比如取 100,000,则它也无法输出一个正确的值。这种情况下,甚至最朴素的 SumBasic 也无法输出正确的值。

那么,我们思考一个问题:上述的三个实现,哪些是正确的?

在我们实际进行代码实现的时候,通常会倾向于 SumAP2,因为它既有较高的效率(相对于 SumBasic 而言),又保证了在数据不溢出的情况下能输出正确的结果(相对于 SumAP 而言)。但在我们进行算法评估的时候,通常认为这三个实现都是正确的,并且 SumAP 和 SumAP2 实质上是同一种算法。也就是说,数据溢出这种问题并不在我们的评估模型之内,算法虽然执行在计算机上,但又是独立于计算机的;算法虽然需要代码去实现,但又是独立于实现它的代码的。在《数据结

构》这门学科中的研究对象,通常和体系结构、操作系统、编程语言等因素都没有关系。

在本节的末尾,提出一个有趣的问题: SumAP2 在n 非常大的时候也会出现溢出问题。当然,这超过了**int**所能表示的上限。但是,这种情况下,返回什么样的值是合理的? SumAP2 返回的值(有可能是一个负数)真的合理吗? 这是纯粹的工程问题,并不在《数据结构》研究的范围内。

一种可能的方案是,在溢出的时候返回std::numeric_limits<int>::max (),这是 C++ 中用来替代 C 语言宏INT32_MAX的方法。这种方案称为"饱和"。饱和保证了数值不会因为溢出而变为负值,当数值具有实际意义时,一个不知所云的负值可能会引发连锁的负面反应。比如,路由器可能会认为两个节点之间的距离为负(事实上应当是无穷大),从而完全错误地计算路由。因此,如果实现了饱和,在泛用性上可以得到一定的提升。

还有一个问题是,如果n为负数,则应该如何输出?当然,我们的题目要求n是正整数,负数是非法输入;但我们也希望程序能输出一个有意义的值。按照朴素的想法(也就是 SumBasic),这个时候应该输出 0,然而 SumAP 和 SumAP2 都做不到这一点。在示例程序中给出了一个考虑了饱和和负数输入的实现,您也可以独立尝试实现这个功能。

1.4 正确性检验

在上一节已经说明,正确性检验可以拆解为两个方面:有限性检验和结果正确性检验。在实际解题的过程中,这两项检验往往可以一并完成,即检验算法是否能在有限时间内输出正确结果。

解决正确性检验的一般方法是**递降法**。它的思想基础是在计算机领域至关重要、并且是《数据结构》学科核心的**递归**思维方法;它的理论依据则是作为在整数公理系统中举足轻重的**数学归纳法**。

在本节中,将从数学归纳法的角度出发介绍递降法的原理,这部分有助于让您对递归思维有更加深刻的理解。当然在实际考试中只要会用递降法解题即可,您也可以跳过数学的部分(如果您对数学感到头疼,这是建议的选项)。

1.4.1 经典的归纳和递降

在高中理科数学中介绍了数学归纳法的经典形式。由于各省教材不同,您可能接触到过两种表述不太一样的数学归纳法:

定理 1.1 (第一归纳法): 令 P(n) 是一个关于正整数 n 的命题,若满足:

- 1. $P(1)_{\circ}$
- 2. $\forall n \ge 1, P(n) \rightarrow P(n+1)_{\circ}$

则 $\forall n, P(n)_{\circ}$

定理 1.2 (第二归纳法): $\Diamond P(n)$ 是一个关于正整数 n 的命题, 若满足:

- 1. $P(1)_{\circ}$
- 2. $\forall n \ge 1, (\forall k \le n, P(k)) \rightarrow P(n+1)_{\circ}$

则 $\forall n, P(n)_{\circ}$

其中,第一归纳法是皮亚诺(Piano)公理体系的一部分。您可以很轻松地用第一归纳法推导出第二归纳法。另一方面,第二归纳法的**归纳假设** $\forall k \leq n, P(k)$,显然比第一归纳法的归纳假设 P(n) 更强,所以实际应用数学归纳法进行证明时,通常都使用第二归纳法,而不使用第一归纳法。

在上面的表述中,归纳的过程是从1开始的,这比较符合数学研究者的工作习惯。在计算机领域,归纳法常常从0开始(有时甚至从-1开始)。显然,这并不影响它的正确性。本节后续对"正整数"相关问题的讨论,一般替换成"自然数"也同样可用。

我们将第二归纳法称为**经典归纳法**。经典归纳法可以用来处理有关正整数的命题。相应地,对于输入是正整数的算法,可以使用与经典归纳法相对应的**经典递 降法**。

定理 1.3 (经典递降法): $\Diamond A(n)$ 是一个输入正整数 n 的算法, 若满足:

- 1. A(1) 可在有限时间输出正确结果。
- 2. $\forall n > 1$, A(n) 可在有限时间正确地将问题化归为有限个 $A(k_j)$, 其中 $k_j < n$ 。则 $\forall n$, A(n) 可在有限时间输出正确结果。

经典递降法的正确性由经典归纳法保证,您可以自己证明这一点。显然,经典 递降法的应用范围非常狭小:只能用来处理输入是正整数的算法。对于实际的算 法,它的输入数据通常是多个数、乃至于数组和各种数据结构,而非孤零零的一个 正整数。因此,需要对经典归纳法进行推广,从而使其可以应用到更广的范围中, 并使其相对应的递降法能够处理更加多样的输入数据。

1.4.2 带映射的归纳和递降

在《线性代数》的第一章"行列式"中,您一定见过下面这个经典的命题:

$$D_n \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-2} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \leq j < i \leq n} (x_i - x_j)$$

通常这个命题都是用数学归纳法证明的, 您不会有任何违和感。

但在这个命题中,n并不是唯一的变量。在n之外,还有 x_1, x_2, \cdots, x_n 这n个变量。换句话说,这个命题所接受的是一个任意有限长的向量 (x_1, x_2, \cdots, x_n) 。在使用数学归纳法进行证明时,实际上指定了一个映射 $f(x_1, x_2, \cdots, x_n) = n$,输入数据是这个映射的原象,而在这个映射的象上做数学归纳法。有些数学书为了指明这一点,会在证明的开头写上"对行列式的阶数n做归纳";而有些书则图省事略去了这句话。

在这个例子中,通过"对行列式的阶数做归纳",将复杂的输入数据映射到了正整数集,这是一种典型的应用归纳法的技术。类似地,在证明对整数的命题时,可以对它的绝对值做归纳,等等。一般而言,可以将经典归纳法改写成下面的"带映射的"形式:

定理 1.4 (带映射的经典归纳法): 令 P(x) 是一个关于 $x \in X$ 的命题, $f: X \to N^+$ 是满射, 若满足:

- 1. $f(x) = 1 \to P(x)_{\circ}$
- 2. $[\forall y, ((f(y) < f(x)) \rightarrow P(y)] \rightarrow P(x)_{\circ}$

则 $\forall x, P(x)_{\circ}$

可以对命题 $Q(n) = (\forall x, f(x) = n \to P(x))$ 使用经典的归纳法来证明上面这个带映射的形式。相应地,也存在带映射的经典递降法。

定理 1.5 (带映射的经典递降法): 令 A(x) 是一个输入 $x \in X$ 的算法, $f: X \to N^+$ 是满射, 若满足:

- 1. 当 f(x) = 1 时,A(x) 可在有限时间输出正确结果。
- 2. $\forall x, f(x) > 1$, A(x) 可在有限时间正确地将问题化归为有限个 $A(y_j)$,其中 $f(y_i) < f(x)$ 。

则 $\forall x, A(x)$ 可在有限时间输出正确结果。

为了让上述定义的每个 Q(n) 都存在,f 需要保证是满射。这又是一项对递降 法应用范围的限制,需要想办法清除掉它,得到更加一般的、更加通用的解题方法。

1.4.3 良序关系

在带映射的归纳法中,需要通过满射将定义域 X 映射到正整数集 N^+ 上。很多时候,这样的满射并不容易构造。与其试图用高超的技巧去构造满射,不如从正整数集 N^+ 入手:放宽映射的象的条件,不要求它一定是 N^+ ,只需要满足一些和 N^+ 相似的性质即可。

对于一般的集合,引入**良序**(well-order)的概念。如果集合 S 上的一个关系 \prec 满足:

- 1. **完全性**。 $x \le y$ 和 $y \le x$ 至少有一个成立。
- 2. **传递性**。如果 $x \leq y \perp \exists y \leq z$,那么 $x \leq z$ 。
- 3. **反对称性**。如果 $x \leq y$ 和 $y \leq x$ 均成立,那么 x = y。
- 4. **最小值**。对于集合 *S* 的任意非空子集 *A*,存在最小值 min A = x。即对于 *A* 中的其他元素 v,总有 $x \le v$ 。

那么称 \leq 是 S 上的一个**良序关系**,同时称 S 为**良序集**。类似于数值的小于等于 " \leq " 和小于 "<" 关系,对于关系 \leq ,如果 $x \leq y$ 且 $x \neq y$,则可以记为 x < y。

根据上述定义,熟知的小于等于关系" \leq "在正整数集 \mathbb{N}^+ 上是良序的,而在整数集 \mathbb{Z} 上不是良序的。当然,可以通过定义"绝对值小于等于"让整数集 \mathbb{Z} 成为良序集。同时,熟知的小于等于关系" \leq "在非负实数集 $\mathbb{R}^+ \cup \{0\}$ 上不是良序的,因为它不满足最小值条件(任取一个开区间作为它的子集,都没有最小值)。

和熟知的正整数集 N+ 相比,一般的良序集具有下面的相似性质:

定理 1.6 (无穷递降): 在良序集 S 中,不存在无穷序列 $\{x_n\}$,使得 $x_{j+1} \prec x_j$ 对一切 i 成立。

您可以用反证法证明它。这一性质使得在一般的良序集上做归纳法成为可能, 后面的小节会回到这个问题上来。

1.4.4 字典序*

在上一小节,您发现熟知的小于等于关系在非负实数集 $R^+ \cup \{0\}$ 上并不是良序的。如果您感到不服气,想要尝试去构造 R 上的良序关系,几乎一定会无功而返(目前还没有数学家定义出实数集 R 上的显式良序关系)。然而我们有下面的定理:定理 1.7 (良序定理): (ZFC)任何集合都存在良序关系。

在集合论的 ZFC 公理体系下,上述定理成立。在 ZF 公理体系下,该定理和选择公理(AC)等价。选择公理是有些反直观的(有兴趣的话可以自行搜索),与它等价的良序定理同样反直观,基本上只能用于理论推导,很难实际应用。

幸运的是, 在计算机领域的日常研究中, 并不需要使用无所不能的良序定理来

"设"出一个良序关系。计算机领域中,输入数据所属的集合总是**可数的**(countable),而可数集合总是可以很轻松地定义良序关系。其中一个典型的例子是所谓的**字典序**(lexicographical order)。

定理 1.8 (字典序): 设 $\{S_n\}$ 是一个良序集序列, \leq_j 是集合 S_j 上的一个良序关系。则对于无限笛卡尔积 $\prod S_j = S_1 \times S_2 \times S_3 \times \cdots$ 中的两个元素 $a = (a_1, a_2, a_3, \cdots)$ 和 $b = (b_1, b_2, b_3, \cdots)$,定义 $a \leq b$ 当且仅当:存在某个 k,使得 $a_j = b_j$ 对于 $1 \leq j < k$ 成立,但 $a_k \leq_k b_k$ 。那么 \leq 是 $\prod S_j$ 上的一个良序关系。

上面定义的良序关系,是针对无限长向量的。将它稍微修改一下,就可以用来定义任意长向量。下面给出了一种证明方法,您也可以自己解决这个问题。在每个集合 S_j 中增加一个元素 \varnothing_j ,让这个元素作为 $S_j \cup \{\varnothing_j\}$ 的最小值。对于非无限长的向量 (a_1,a_2,\cdots,a_n) ,将其延伸为 $(a_1,a_2,\cdots,a_n,\varnothing_{n+1},\varnothing_{n+2},\cdots)$,就得到了无限长向量。这个映射是一一对应的,从而可以用无限长向量的字典序去定义任意长向量的字典序。特别地,由 $S_j = \{a,b,\cdots,z\}$ 构成的任意长向量的字典序,就是英文字典中排列单词的顺序。

在本节的最后需要说明,实际上计算机领域的输入数据所属集合总是有限的, 因为任何硬件设备都存在可承载的数据量上限。但是,在不能用枚举法的情况下, 通常都会选择将输入集合从有限集扩大为可数集,从而使用针对可数集的递降法。

1.4.5 超限的归纳和递降

在定义良序关系之后,就可以使用**超限归纳法**来证明命题。超限归纳法本质上是经典数学归纳法在集合论上的一般形式,可由良序关系的定义直接导出,而 无需用到良序定理。

定理 1.9 (超限归纳法): 令 P(x) 是一个关于 $x \in X$ 的命题, $f: X \to S$ 是满射, S 是关于 \leq 的良序集, 若满足:

- 1. $(f(x) = \min S) \rightarrow P(x)_{\circ}$
- 2. $[\forall y, (f(y) \prec f(x)) \rightarrow P(y)] \rightarrow P(x)_{\circ}$

则 $\forall x, P(x)_{\circ}$

上面的表述和经典的超限归纳法表述有所不同。它融合了之前介绍过的"映射"策略。当 S 取为正整数集 N^+ ,良序关系取为熟知的" \leq "时,超限归纳法的特例就是经典归纳法。这是最自然的良序关系和良序集。在考试解题过程中,通常都只需要用到 N^+ 或它的子集。尽管解题的时候,通常只会用到这个最自然的良序集,但"良序"的思维,仍然广泛存在于计算机领域的各个学科中。

和超限归纳法对应,可以得到一般形式的递降法。这是我们解决各种算法分析问题的基本方法。

定理 1.10 (递降法): 令 A(x) 是一个输入 $x \in X$ 的算法, $f: X \to S$ 是满射, S 是关于 \leq 的良序集, 若满足:

- 1. 当 $f(x) = \min S$ 时,A(x) 可在有限时间输出正确结果。
- 2. $\forall x, f(x) \neq \min S$, A(x) 可在有限时间正确地将问题化归为有限个 $A(y_j)$, 其中 $f(y_i) < f(x)$ 。

则 $\forall x, A(x)$ 可在有限时间输出正确结果。

递降法和**递归**(recursion)是密不可分的。在上述递降法的表述中,条件(1)对应了**递归边界**,条件(2)则对应了**递归调用**。边界情况通常对应的是最简单的情况,而递归调用则用来将复杂问题拆解成简单问题。只要您有一定的递归编程的经验,那么递降法是非常容易理解的。

递降用于分析算法,而递归用于设计算法,二者思路上相似,只是侧重点不同。当我们设计算法的时候,A(x)是一个待解决的算法问题,我们尝试将它拆解为有限个规模较小的子问题 $A(y_j)$,递归地解决这些子问题,直到到达平凡情况,也就是 $f(x) = \min S$ 的情况。而当我们拿到一个算法对它进行分析的时候,首先证明平凡情况下算法是有限和正确的,然后再证明非平凡情况下,将 A(x) 化归为有限个 $A(y_i)$ 的过程是有限和正确的。

由于递降法用到的计算机思维事实上是递归,我们将不再区分"递降法"和"递归法"。递归(递降)法是《数据结构》学科最为核心的思维方法,在这一章只是用简单的例子介绍它,后面的章节中还会反复出现,并不断增加问题的难度和思维的深度。

下面的几个小节将用几个实际的例子,来说明递降法在正确性检验中的作用。

1.4.6 实验: 最大公因数

本节以求最大公因数为例,展示如何证明递归算法的正确性。相关代码可以在 Gcd.cpp 中找到。关于这个问题,如果您有一定编程基础,肯定能一眼就知道如何解决,不妨尝试一下。

如果您没有编程基础,可以参考下面的实现,这是大名鼎鼎的最大公因数算法:欧几里得(Euclid)辗转相除法的递归形式。

```
1  // GcdEuclid
2  int operator() (int a, int b) override {
3    if (b == 0) {
4       return a;
5    } else {
6       return (*this) (b, a % b);
7    }
8  }
```

在这个算法中,递归边界是 (a,0),因此可以定义 $f(a,b) = \min(a,b)$,将输入数据映射到熟知的良序集 N。接着就可以用递降法处理这个问题了。

- 1. 如果 a < b,那么通过 1 次递归,可变换为等价的 gcd(b, a)。
- 2. 如果 $a \ge b > 0$,那么由于 b > a%b 对一切正整数 a, b 成立,所以通过 1 次递归,可变换为 $f(\cdot)$ 更小的 (b, a%b)。接下来只要证 gcd(a, b) = gcd(b, a%b)。您可以自己完成这一证明。下面提供了一种比较简单的证法。设 a = kb + l,其中 l = a%b。那么,对于 a 和 b 的公因数 d,设 a = Ad,

设 a = kb + l, 其中 l = a%b。那么,对于 a 和 b 的公因数 d,设 a = Ad, b = Bd,则 l = (A - kB)d。因此 d 也是 b 和 l 的公因数。反之,对于 b 和 l 的公因数 d',也可推出 d' 也是 a 和 b 的公因数。因此 a 和 b 的公因数集合,与 b 和 l 的公因数集合相同;它们的最大值(即最大公因数)显然也相同。

3. 如果 b = 0,到达边界,gcd(a, 0) = a 正确。 如此便完成了 Euclid 辗转相除法的正确性证明。

1.4.7 实验: 数组求和

递降法的条件 2 允许在一个递归实例中,调用自身有限次。在上一节中,一个gcd 只会调用一次自身;这一小节展示了一个多次调用自身的例子。

作为第一章的实验, 我们仍然讨论一个简单的求和问题: 给定一个规模为n的数组A, 求 $A[0] + A[1] + \cdots + A[n-1]$ 的和。相关代码可以在ArraySum.cpp中找到。

```
class ArraySum : public Algorithm<int(span<const int>)> {};
```

您可以将它改为您更熟悉的版本,比如 C 风格用指针**int***和长度size_t定义的数组,或者使用 C++ 的变长数组std::vector并结合迭代器。这里我们使用 C++20 引入的std::span来表示数组的视图,它既可以处理**int***定义的数组,又可以处理std::vector。

经典的数组求和方法,是定义一个累加器,把每个数逐一加到累加器上。这个算法在 C++ 中被封装成了std::accumulate:

```
// ArraySumBasic
int operator()(span<const int> data) override {
   return accumulate(begin(data), end(data), 0);
}
```

在 C++17 中,引入了一个新的累加算法std::reduce,它允许乱序计算,从而给了硬件技术(如 SIMD,参见《组成原理》)更高的优化空间。

```
// ArraySumReduce
int operator()(span<const int> data) override {
   return reduce(begin(data), end(data), 0);
}
```

在这个例子中,如果 n 很大,ArraySumReduce 和 ArraySumBasic 之间可以有好几倍的时间消耗差异(您可以运行参考程序来看到这一点),因此在允许乱序求和的时候,总是应当采用std::reduce。

现在回到我们的递归话题来。一个基于经典递降法的朴素思路是:要求n个元素的和,可以先求前n-1个元素的和,然后将它和最后一个元素相加。这是一个递归算法,如下所示。

```
// ArraySumReduceAndConquer
2
   int operator()(span<const int> data) override {
      if (data.size() == 0) {
3
4
         return 0;
      } else if (data.size() == 1) {
5
         return data[0];
6
7
      } else {
         return (*this) (data.first(data.size() - 1)) + data[data.
             size() - 1];
9
10
```

这种将待解决问题分拆为一个规模减小的问题 + 有限个平凡的问题的思想,被称为**减治**(reduce-and-conquer)。在《数据结构》中使用减治思想,通常是将数据结构(这里是数组)分拆成几个部分,其中只有一个部分的规模和原数据结构的规模相关(减治项),其他部分的规模都是有界的(平凡项)。在上面的例子中,数组被分拆成了两个部分,前n-1个元素组成的部分是减治项,而最后一个元素是平凡项。虽然这个算法的正确性非常显然,但作为练习,您还是可以借助之前介绍的递降法去证明它的正确性。

下面介绍另一种不同的思路。我们可以设计这样的算法: 先算出数组前一半的和, 再算出数组后一半的和, 最后把这两部分的和相加(这个算法成立的基础是加法结合律)。这也是一个递归算法, 如下所示。

```
// ArraySumDivideAndConguer
   int operator()(span<const int> data) override {
2
3
      if (data.size() == 0) {
4
         return 0;
      } else if (data.size() == 1) {
5
         return data[0];
6
7
         auto mid { data.size() / 2 };
8
         return (*this) (data.first(mid)) + (*this) (data.last(data.
9
             size() - mid));
10
      }
11
   }
```

您可以选取合适的映射,将数据范围从数组映射到通常的良序集上,并完成正确性的证明。一个显然的映射是 f(A) = A.size()。上述算法设计中,我们将待解

决问题拆分为多个规模减小的问题,这种思想称为**分治**(divide-and-conquer)。在《数据结构》中使用分治思想,通常是将数据结构(这里是数组)分拆为几个部分,每个部分的规模都和原数据的规模相关(分治项)。在上面的例子中,数组被分拆为了两个部分,每个部分的规模大约是原规模的一半。减治和分治是设计算法的重要思路,在本书中将广泛使用。这两种思想也能为您解决考试中遇到的算法问题提供强大的助力。

我们注意到,分治算法和普通算法相比,只是修改了加法的运算次序。我们不期待它能达到std::reduce的性能,但测试会发现,它竟然连基本算法的性能都远远不如。这是因为递归调用本身存在不小的开销。如果等价的迭代方法(在后续章节中,将讲解递归和迭代的相互转换)并不复杂,那么通常用迭代替换递归,以免除递归调用本身的性能开销。

1.4.8 实验:函数零点

以上两个例子都是建立在递归上的算法。很多算法可能并不包含递归;对这些算法做有限性检验,不是要排除无穷递归,而是要排除无限循环。下面展示了一个循环的例子,代码可以在 ZeroPoint.cpp 中找到。

我们考虑一个函数的零点,给定一个函数 f(x) 和区间 (l,r),保证 f(x) 在 (l,r) 上连续,并且 $f(l)\cdot f(r)<0$ 。根据介值定理,我们知道 f(x) 在 (l,r) 上存在至少一个零点。由于计算机中的浮点数计算有精度限制,我们只需要保证绝对误差不超过给定的误差限 ϵ 。为了简单起见,我们现在统一给定 $l=-1, r=1, \epsilon=10^{-6}$ 。

```
class ZeroPoint : public Algorithm < double (function < double (
      double) > ) > {
      static constexpr double limit_l { -1.0 };
2
      static constexpr double limit_r { 1.0 };
3
4
      static constexpr double eps { 1e-6 };
5
      virtual double apply(function<double(double)> f, double 1,
         double r) = 0;
7
  public:
      double operator()(function<double(double)> f) override {
8
9
         return apply(f, limit_l, limit_r);
10
      }
  };
```

上面的例子展示了我们将Algorithm定义为仿函数的优势,我们可以在零点问题的基类中定义私有(private)成员来表示给定的初值 I 和 r; 另一个给定的初值 ϵ 在算法的实现中需要用到,则可以定义为受保护的(protected)成员。

函数的零点可以通过二分的方法取得,这个方法在高中的数学课程中介绍过。如果您熟悉编程,应该可以自己实现一个版本。

```
// ZeroPointIterative
   double apply(function<double(double)> f, double 1, double r)
      override {
3
      while (r - 1 > eps) {
          double mid { 1 + (r - 1) / 2 };
4
          if (f(l) * f(mid) <= 0) {
5
             r = mid;
6
7
          } else {
             l = mid;
8
9
10
      return 1;
11
12
   }
```

尽管是经典的算法,但您仍然可以关注其中的一些细节。一个细节是我们定义mid为 $l+\frac{r-l}{2}$ 而不是 $\frac{l+r}{2}$ 。这两种写法都是推荐的写法。在整数的情况下,前者的优点是不会溢出,并保证结果接近l(后者存在负数时无法保证,而这一点在写二分算法时有时很致命);后者的优点是少一次减法计算。浮点数的情况比整数简单很多,两种写法,甚至 $\frac{l}{2}+\frac{r}{2}$ (在整数的情况下不应该使用)都是可以的。

另一个细节是我们的判断条件为 $f(I) \cdot f(\text{mid}) \leq 0$, 而没有用严格小于号。您可以自己思考,若改为严格小于,会发生什么样的变化?如果一时没有头绪,您可以实现这样的一个类,拿来和示例代码一起测试。作为一门工程学科,计算机学科非常需要您通过实验建立起来的经验。

分析循环问题的手段,和分析递归问题是相似的。递归函数的参数,在循环问题里就变成了循环变量。在处理上面的迭代算法时,首先找到循环的停止条件: $r-l < \epsilon$ 。这个条件里, ϵ 作为输入数据,在循环中是不变量,而l 和r 是循环中的变量。因此,使用递降法的时候可以将 ϵ 看成常量,而l 和r 作为递归参数。

定义映射 $f(l,r) = \lfloor \frac{r-l}{\epsilon} \rfloor$ 就可以将问题映射到通常良序集,后面的做法和前面几个例子基本相同,您可以自己完成正确性检验。请注意在证明结果正确性时要留意 f(mid) = 0 的情况。从这个映射中,我们可以发现规定 ϵ 是必要的,即使不考虑double的位宽限制,计算机也无法保证在有限时间里找到精确解,只能保证找到满足精度条件的近似解。

这种"将循环视为递归"然后用递降法处理的方法,等价于将上面的迭代算法 改写为以下与其等价的递归算法。

```
// ZeroPointRecursive
double apply(function<double(double)> f, double l, double r)
    override {
    if (r - l <= eps) {
        return l;
    } else {</pre>
```

```
double mid { 1 + (r - 1) / 2 };
if (f(1) * f(mid) <= 0) {
    return apply(f, 1, mid);
} else {
    return apply(f, mid, r);
}

11    }
12    }
13 }</pre>
```

其通用做法是:找到循环的停止条件,然后将条件中出现的、在循环内部被改变的变量视为递归的参数,以此将循环改写为递归。当然,实际解题的时候犯不着费劲改写成递归再分析,用这个思路直接分析循环就可以了。

1.5 复杂度分析

复杂度(complexity)分析的技术被用于评价一个算法的效率。在考试中它出现的频率比正确性检验更高。在上文中提到过,一个算法的真实效率(运行时间、占用的硬件资源)会受到所用计算机、操作系统以及其他条件的影响,因此无法用来直接进行比较。因此,进行复杂度分析时通常不讨论绝对的时间(空间)规模,而是采用**渐进复杂度**来表示其大致的增长速度。

1.5.1 复杂度记号的定义

以下给出复杂度记号的标准定义。

假设在问题规模为n的情况下,算法在某一计算机上执行的绝对时间单元(空间单元)的数量为T(n)。

- 1. 对充分大的 n, 如果 $T(n) \leq C \cdot f(n)$, 其中 C > 0 是和 n 无关的常数,那么记 T(n) = O(f(n))。
- 2. 对充分大的 n, 如果 $C_1 \cdot f(n) \leq T(n) \leq C_2 \cdot f(n)$, 其中 $C_2 \geq C_1 > 0$ 是和 n 无 关的常数, 那么记 $T(n) = \Theta(f(n))$ 。
- 3. 对充分大的 n, 如果 $C \cdot f(n) \leq T(n)$, 其中 C > 0 是和 n 无关的常数,那么记 $T(n) = \Omega(f(n))$ 。

用 $O(\cdot)$ 、 $O(\cdot)$ 和 $O(\cdot)$ 记号表示的时间(空间)随输入数据规模的增长速度称为**渐进复杂度**,或简称**复杂度**。

从上述定义中可以得到,当 T(n) 关于 n 单调递增并趋于无穷大时, f(n) 是阶不比它低的无穷大量, h(n) 是阶不比它高的无穷大量, 而 g(n) 是和它同阶的无穷大量。当然 T(n) 并不一定单调递增趋于无穷大。一般而言,复杂度记号是在问题规模充分大的前提下,从增长速度的角度对算法效率的定性评价。

在"充分大的 n" 和"忽略常数"两个前提下,复杂度记号里的函数往往特别简单。比如,多项式 $\sum_{i=0}^k a_i n^i$ ($a_k > 0$) 可以被记作 $\Theta(n^k)$,因为充分大的 n 下,次数较低的项都可以被省略,忽略常数又使我们可以省略系数 a_k 。

有些教材为简略起见,只介绍了 $O(\cdot)$ 一个符号,这非常容易引起理解错误或混淆。在下一小节中会展示很多错误理解的例子。因此,即使您准备参加的考试中不要求另外两种复杂度记号,也希望您理解这些记号。在本书中,这三种复杂度记号都会使用。其中, $O(\cdot)$ 记号包含了比 $O(\cdot)$ 更多的信息,如果您准备参加的考试只要求 $O(\cdot)$ 这一个记号,您可以在不引起歧义的前提下,在作答时将笔记中的 $O(\cdot)$ 用 $O(\cdot)$ 代替。在只使用 $O(\cdot)$ 的文献中,通常 $O(\cdot)$ 实际上表达的含义也是 $O(\cdot)$;而在严谨的文献中,除了 O(1) 和 O(1) 没有区别外,其他情况下这两者都是被严格区分的。

除了这三种复杂度记号之外,还有少见的两种复杂度记号: $o(\cdot)$ 和 $o(\cdot)$ 。因为在科研生活里也极少使用,所以不进行介绍。需要指出,一些错误的理解甚至可能成为 408 考试的标准答案,这种情况造成的失分是无法避免的,只能在考试中揣摩出题者的意图了。

在上面的定义中,引入了时间单元和空间单元的概念。因为渐进复杂度的记号表示中不考虑常数,所以这两个单元的大小是可以任取的。例如,一个时间单元可以取成:

- 一秒(毫秒, 微秒, 纳秒, 分钟, 小时等绝对时间单位)。
- 一个 CPU 周期。
- 一条汇编语句。
- 一次基本运算(如加减乘除)。
- 一次内存读取。
- 一条普通语句(不含循环、函数调用等)。
- 一组普通语句。

又例如,一个空间单元可以取成:

- 一个比特(字节、半字、字、双字等绝对单位)。
- 一个结构体(固定大小)所占空间。
- 一个页(参见《操作系统》)。
- 一个栈帧(参见《操作系统》)。

这些单位并不一定能直接地相互转换。比如,即使是同一台计算机,它的"一个 CPU 周期"对应的绝对时间也可能会发生变化(CPU 过热时降频)。但是这些单位在转换时,转换倍率必然存在常数的上界。比如通常情况下,能正常工作的内

存绝不可能需要多于 109 个 CPU 周期才能完成读取。

这个常数级别的差距,在复杂度分析里被纳入到了 C、 C_1 、 C_2 中,而不会影响到渐进复杂度。因此,复杂度分析成功回避了硬件、软件、环境条件等"算法外因素"对算法效率的影响。

1.5.2 复杂度记号的常见理解误区

这一小节单独开辟出来,讨论和复杂度记号(尤其是 *O*(·))有关的注意点。由于复杂度记号总是作为一门学科的背景知识出现,您可能会没有意识到这是一个相当容易混淆的概念,从而陷入某些误区而不自知。

第一,**不可交换**。已知 $n^3 = O(n^4)$, $n^2 = O(n^4)$,那么,是否有 $n^3 = O(n^4) = n^2$ 呢? 显然是不可能的。等于号 "="的两边通常都是可以交换的,但在复杂度记号这里并非如此。在进行复杂度的连等式计算时,始终需要记住:

- 1. 等式左边包含的信息不少于右边。(最核心的性质)
- 2. 复杂度记号本身损失了常数的信息。因此复杂度记号只能出现在等式的右侧。 如果出现在左侧,那么右侧也必须是复杂度记号。
- 3. 从 $\Theta(\cdot)$ 转换成 $O(\cdot)$ 或 $\Omega(\cdot)$,会损失一侧的信息。因此连等式中 $\Theta(\cdot)$ 只能出现在 $O(\cdot)$ 或 $\Omega(\cdot)$ 的左侧。只有一种情况除外,就是 $O(1) = \Theta(1)$ 。

例如, $2n^2 = \Theta(n^2) = O(n^3) = O(n^4)$ 是正确的。

第二,**不是所有算法都可以用** $\Theta(\cdot)$ **评价**。这个问题很容易从数学角度看出来,比如说 $T(n) = n \cdot (\sin \frac{n\pi}{2} + 1)$,就不存在"与它同阶的无穷大量"。正是因为这个原因,我们更多地使用表示上界的 $O(\cdot)$,而不是看起来可以精确描述增长速度的 $\Theta(\cdot)$ 。

第三, **只有** $\Theta(\cdot)$ **才可以进行比较**。已知算法 A 的复杂度是 O(n),算法 B 的复杂度是 $O(n^2)$,那么,算法 A 的复杂度是否一定低于算法 B?

这是最容易误解的一处,我们可以说 O(n) 的复杂度低于 $O(n^2)$,但切不能想当然认为算法 A 的复杂度低于算法 B。这是因为,尽管已知条件告诉我们"算法 B 的复杂度是 $O(n^2)$ ",但已知条件并没有排除"算法 B 的复杂度同时也是 O(n) 甚至 O(1)"的可能。类似地, $O(\cdot)$ 也不可比较,只有表示同阶无穷大量的 $O(\cdot)$ 有比较的意义。考试中也可能遇到需要比较复杂度的情况,这是纯粹的数学问题,因此不做展开。

计算机工程师对数学严谨性并不敏感。在相当大规模的人群中,对 $O(\cdot)$ 形式的复杂度进行比较已经成为了一种习惯。作为一门工程学科,当一种做法被人们普遍接受、成为共识的时候,通常就被认为是合理的,以至于人们忽视了,只有当 $O(\cdot)$ 事实上在表达 O(n) 的语义时,这样的比较才是成立的。如上一点所说,并非

所有复杂度分析都能用 $\Theta(\cdot)$ 形式的结果,只有了解了严谨的说法,才能避免在阅读文献时理解上出现谬误。

第四,**不满足对减法和除法的分配律**。思考一下,是否有 $O(H_n) - O(\ln n) = O(H_n - \ln n) = O(1)$ 呢? 这里记号 $H_n = \sum_{i=1}^n \frac{1}{i}$ 用来表示调和级数的部分和,在 $n \to \infty$ 时, $H_n - \ln n \to \gamma$,其中 γ 是 Euler 常数。这一性质在复杂度分析的领域非常重要,之后还会再次遇到。

答案是否定的。不论是三种复杂度记号中的哪一种,都不服从对减法的分配律。对加法和乘法,分配律是成立的,但是右侧的复杂度符号数量必须比左侧少(直观地理解是,复杂度记号包裹的范围越大,就会损失越多的信息)。比如 $O(f(n))\cdot O(g(n)) = O(f(n)\cdot g(n))$ 。 您可以自己证明这些公式。

第五,**复杂度记号和情况的好坏无关**。也就是说,尽管表示上下界,但 $O(\cdot)$ 和 $\Omega(\cdot)$ 不代表"最坏情况(worst case)"和"最好情况(best case)"。

情况(case)表示和问题规模 n 无关的输入数据特征。比如说,我们想要在规模为 n 的整数数组 A 中,寻找第一个偶数(找不到时返回 0),可以使用如下算法。

```
int operator()(span<const int> data) override {
   for (auto a : data) {
      if (a % 2 == 0) {
         return a;
      }
   }
   return 0;
}
```

容易发现,除了问题规模 n 之外,这 n 个整数自身的特征也会影响找到第一个偶数的时间。如果 A[0] 就是偶数,则只进行了一次奇偶判断,可以认为 T(n)=1;如果 A 中每一个元素都是奇数,则需要对每个元素都进行奇偶判断,可以认为 T(n)=n。对于同样的 n,不同特征的输入数据会得到不同的 T(n)。

图 1.1 最好情况和最坏情况的评估

因此,在引入了情况的时候,T(n) 不再是一个准确的值而是一个范围,它的下限对应了最好情况,上限对应了最坏情况。如果设 T(n) 在最好情况下为 g(n),最坏情况下为 h(n),那么对 g(n) 和 h(n) 可以分别做复杂度分析,得到它在最好情况和最坏情况下的复杂度。在这个复杂度分析的过程中,三种符号都是可以使用的。

也正是因为情况和复杂度记号无关,所以在只使用 $O(\cdot)$ 的书上,无论是最好、最坏还是平均都可以使用这个记号。

不同的符号表达的侧重点是不同的。如图1.1所示,当我们使用 $O(\cdot)$ 描述最好情况时,可以体现出"最好"究竟有多好,而 $\Omega(\cdot)$ 描述最好情况则做不到这一点。相应地, $\Omega(\cdot)$ 才可以体现出"最坏"有多坏。因此,在无法用准确的 O(n) 表达时,我们通常使用 $O(\cdot)$ 描述最好,用 $O(\cdot)$ 描述最坏。

1.5.3 实验: 判断 2 的幂次

下面几个小节,将通过一些简单的算法,介绍复杂度分析的基本方法。更多的复杂度分析将穿插在整本书中。在这一节我们讨论,判断一个数是否为 2 的幂次,代码可以在 *IsPower2.cpp* 中找到。

```
class IsPower2 : public Algorithm<bool(int) > {};
```

这个问题并不难,一种常规的实现是:

这里判断 n > 0 是为了健壮性。您可以从二进制数的特征出发,证明上面这个算法的正确性。对于有经验的程序员来说,写出上面的实现易如反掌,但并不是每一个人都能记住它。C++20 提供了一个专门的函数,判断一个二进制数据是否恰好只有一个非 0 比特位(对于整数来说,这等价于 2 的幂次)。

```
1  // IsPower2SingleBit
2  bool operator()(int n) override {
3    return n > 0 && has_single_bit(static_cast<unsigned>(n));
4  }
```

这里std::has_single_bit只接受无符号数,所以需要先判断是否大于0,再进行静态强制转换。static_cast是C++推荐的写法,您也可以采用C语言风格的强制类型转换,但C++风格的写法是更加类型安全的,它会在编译期检查转换是否合法。

这种简单的检查方法只需要常数次的计算,时间复杂度和空间复杂度都是O(1)。对于既不熟悉二进制位运算,又不了解标准库的程序员,可能会写出下面的算法来解决这个问题:

```
// IsPower2Recursive
bool operator()(int n) override {
  if (n % 2 == 1) {
    return n == 1;
```

这个算法涉及递归,显然它的时间复杂度不再是 O(1)。为了证明上述算法的有限性,可以采用前述的递降法,如构造 $f(n) = \max (d \mid n\%2^d = 0)$ 为满足 2^d 整除 n 的最大的 d,从而映射到通常良序集。当 n 为奇数的时候,f(n) = 0 到达边界值。但对这种简单的问题,也可以直接显式地计算 T(n),即函数体的执行次数。显式地计算出有限的 T(n),也就在复杂度分析的同时"顺便"证明了算法的有限性。

设 $n = k \cdot 2^d$, 其中 k 为正奇数, d 为自然数。则 $T(n) = T(k \cdot 2^d) = 1 + T(k \cdot 2^{d-1}) = 2 + T(k \cdot 2^{d-2}) = \cdots = d + T(k) = d + 1 = O(d) = O(\log(n/k)) = O(\log n)$ 。 另一边的 $\Omega(1)$ 是显然的。

上面这个 T(n) 的计算过程,本质上仍然是使用了递降法,将 $T(\cdot)$ 的参数不断 递降到递归边界(正奇数 k),思路和正确性检验的递降法是一致的,它利用了 $T(\cdot)$ 的递归式去显式地计算这个值。这里注明一点:因为计算机领域广泛使用二进制,所以未指定底数的对数符号 "log",底数默认为 2。而因为换底公式的存在,在复杂度记号下无论使用什么底数都没有区别。您可能会发现,这个算法在给定错误值,如 0 和-1 的时候会陷入无限递归,这属于稳健性问题,您可以自己改正它。

同样,可以显式地计算下面这个算法的T(n)。

```
// IsPower2Iterative
bool operator() (int n) override {
   int m { 1 };
   while (m < n) {
       m *= 2;
   }
   return m == n;
}</pre>
```

上面的两个实现,并不是同一算法的迭代形式和递归形式。根据上面的分析可以看到,递归算法的时间复杂度为 $O(\log n)$ 和 $\Omega(1)$, 而迭代算法为 $\Theta(\log n)$, 您可以自己证明这一点。此外,这个迭代算法也存在稳健性问题,如当输入 $n=2^{31}-1$ 时,就会陷入无限循环,您可以想办法改正它。

如果您掌握了对循环和递归相互转换,您可以实现 IsPower2Recursive 的迭代版本,以及 IsPower2Iterative 的递归版本。这两个算法的区别在两个方面。第一,迭代版本的迭代方向是"递推"而不是"递降";第二,递归边界和循环终止条件不对应。第二点是更加本质的区别,它指示了在最好情况下(n 为奇数时),时间复杂度不同的原因。

另一方面, 二者的空间复杂度也有所不同。在迭代算法中, 只引入了1个临时

变量 m,因此空间复杂度是 O(1)。而在递归算法中,看似一个临时变量都没有引入,空间复杂度也应该是 O(1),实则不然。递归算法在达到递归边界之前,每一次递归调用的函数都在等待内层递归的返回值。到达递归边界、判断完成后,这一结果被一级一级传上去,途中调用函数占据的空间才会被销毁(参见《操作系统》)。

因此,对于递归算法,递归所占用的空间在复杂度意义上等于最大递归深度。 IsPower2Recursive 的空间复杂度同样是 $O(\log n)$ 和 $\Omega(1)$ 的。现代编译器可能会将它优化成迭代形式,但在《数据结构》的解题过程中,永远不要考虑编译器优化问题。

考试时往往更加重视时间复杂度,因为现代计算机的内存通常足够普通的程序使用,而且《数据结构》中涉及的大多数算法,空间复杂度要么显而易见、要么能在计算时间复杂度的时候顺便算出来。但空间效率仍然是衡量数据结构的重要指标。这个空间效率不单指空间复杂度,也包含被复杂度隐藏下去的和数据结构相关的常数。比方说,如果在同一计算机上,数据结构 A 比数据结构 B 的常数低10 倍,那么它就能存放10 倍的数据,这个优势是非常大的——即使二者的空间复杂度一致。

1.5.4 实验: 快速幂

在上一小节的实验中,如果我们认为 n 是"问题规模",那么就不能说奇数的情况是"最好情形",因为此时没有"情形"的概念;这使得我们不能说最好 O(1) 和最坏 $\Omega(\log n)$ 。但如果认为 n 的位宽 $\log n$ 是"问题规模",则可以这么说。这从侧面反映了用位宽,也就是"输入规模"来表示问题规模的好处。

邓书上也建议这样表示问题规模, 并使用了快速幂作为举例阐述这个问题。下面, 本书也将快速幂作为一个实验, 来深入分析"问题规模"这个概念。快速幂是一个解决求幂问题的算法。求幂问题中, 我们输入两个正整数 a 和 b, 输出 a^b 。代码可以在 Power.cpp 中找到。

```
class PowerProblem : public Algorithm<int(int, int) > {};
```

基本的求幂算法,和求和类似:

```
int operator()(int a, int b) override {
  int result { 1 };
  for (int i { 0 }; i < b; ++i) {
    result *= a;
  }
  return result;
}</pre>
```

您可以毫不费力地看出这个算法的时间复杂度是 $\Theta(b)$ 。当 b 比较大时,这

个算法的时间效率很低。这是因为,在计算 a^b 的时候,采用的递推式是 $a^b = (a(a(a(a(a \cdots (a \cdot a) \cdots)))))$,像普通的 b 个数相乘一样简单地循环,没有利用 a^b 的在计算上的自相似性。

事实上,我们可以将这 $b \cap a$ 两两分组。如果 b 是偶数,那么恰好可以分成 $\frac{b}{2}$ 组,于是我们只需要计算 $\left(a^2\right)^{\frac{b}{2}}$ 。奇数的情形需要乘上那个没能进组的 a。于是,我们通过 1 到 2 次乘法,将 b 次幂问题化归到了 $\frac{b}{2}$ 次幂问题。

```
int operator() (int a, int b) override {
   if (b == 0) {
      return 1;
   } else if (b % 2 == 1) {
      return a * (*this) (a * a, b / 2);
   } else {
      return (*this) (a * a, b / 2);
   }
}
```

容易证明这个算法的时间、空间复杂度均为 $\Theta(\log b)$ 。示例代码还提供了它的 迭代版本,您也可以试着自己将它改为迭代。通常, $\Theta(\log b)$ 复杂度的求幂算法都 称为快速幂,除了上面介绍的这种实现(借助 $a^b = \left(a^2\right)^{\frac{b}{2}}$),还有另一种实现(借助 $a^b = \left(a^{\frac{b}{2}}\right)^2$),您也可以试着去实现它。

现在问题来了:这个算法的问题规模是什么?

最普遍被接受,也最自然的想法是,它的问题规模是 b。这样,上述两种算法的复杂度都可以用这个问题规模表示;至于 a 的值,则被归入"情况"的范畴,并且它也不会影响到这两个算法的复杂度。

另一种学说认为,它的问题规模是 $\log b$ 。这一学说的依据是:问题规模应当是描述这一问题的输入需要的数据量(即输入规模)。在这个问题中,要描述问题中的 b,在二进制计算机中需要 $\log b$ 个比特的数据,所以问题规模是 $\log b$ 。

这两种方法各有利弊。第一种学说的优点在于形象直观,容易理解;第二种学说的优点则在于有迹可循,定义统一。比如,如果让快速幂中的b允许超出**int**限制,比如使用 Java 中的BigInteger,那么b势必用数组或者类似的数据结构表示。这个时候,因为实质上输入的是一个数组,即使是"直观派"也会倾向于将"数组的大小"也就是 $\log b$ 作为问题规模。于是,"直观派"无法让问题规模的定义在扩展的情况下保持统一,而"输入规模派"可以做到这一点。

在大多数情况下,这两种学说并无分歧。邓书上支持"输入规模派",而大部分书上没有讨论这个问题,通常这个问题对解题也没有任何影响。

1.5.5 实验:复杂度的积分计算

递归算法的复杂度分析在之后还会讨论更多技术。在比较简单的试卷上,命题者通常不会用递归算法命题,而是使用更为简单的迭代算法,命制选择或填空题。这类题目的共同点是迭代的次数非常清晰。比如前面的 IsPower2Iterative,可以一眼就看出来迭代的次数是 $\Theta(\log n)$ 。

这种题目通常可以用积分计算,而不需要用递降法。下面是一个没什么实际意义的例子。可以在 ComplexityIntegeral.cpp 中找到它,并通过测试验证下面计算得到的时间复杂度。

```
1
   int f(int n) {
       int result = 0;
3
       for (int i { 1 }; i <= n; ++i) {</pre>
           for (int j { 1 }; j <= i; ++j)</pre>
4
              for (int k { 1 }; k <= j; ++k)</pre>
5
                  for (int 1 { 1 }; 1 <= j; 1 *= 2)</pre>
                     result += k * 1;
7
8
9
       return result;
10
```

很容易看出,要分析该算法的时间复杂度,只需要算循环体被执行了几次,也就是计算:

$$T(n) = \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} (1 + \lfloor \log j \rfloor) = \sum_{i=1}^{n} \sum_{j=1}^{i} j \cdot (1 + \lfloor \log j \rfloor)$$

要显式地求出这个和式非常困难。幸运的是,需要求出的是复杂度而不是精确的值,常数和小项都可以在求和过程被省略掉。这给了您解决它的手段:离散的求和问题可以直接转换成连续的积分问题。

如果我们只需要一个渐进复杂度,那么积分也不需要真的去求,每次积的时候直接乘上一个线性量就可以。如果想要估算常数,则求积分的时候可以每一步只保留最高次项。

比如,上面的求和式可以计算如下:

$$T(n) = \sum_{i=1}^{n} \sum_{j=1}^{i} j \cdot (1 + \lfloor \log j \rfloor) = O\left(\int_{0}^{n} \int_{0}^{x} y(1 + \log y) dy dx\right)$$

$$= O\left(\int_0^n \int_0^x y \log y dy dx\right) = O\left(\int_0^n x^2 \log x dx\right) = O(n^3 \log n)$$

其中,第一步是将求和符号转换成积分;消去积分符号的过程是做了两次"乘上一个线性量"的操作。可以看出对于l的分析来说,可以直接使用更简单的 $\log j$

代替实际执行次数 $1 + |\log j|$ 。如果想要估算常数,只需要:

$$T(n) = \sum_{i=1}^{n} \sum_{j=1}^{i} j \cdot (1 + \lfloor \log j \rfloor) \sim \int_{0}^{n} \int_{0}^{x} y(1 + \log y) dy dx$$
$$\sim \int_{0}^{n} \int_{0}^{x} y \log y dy dx \sim \int_{0}^{n} \frac{1}{2} x^{2} \log x dx \sim \frac{1}{6} n^{3} \log n$$

这里最后的 $\frac{1}{6}$ 就是常系数; 在一些难度较高的算法分析题中, 常系数可能会被用到。

上面这种积分的方法是计算此类循环算法的时间复杂度及其常数的一般方法。 在熟练之后,可以用一些小技巧来处理。下面介绍一些小技巧;当然,如果时间充足,还是建议用积分方法去严格地进行计算。

在这类循环算法中,每一层循环主要有下面这几种典型的形式:

```
for (int i { 1 }; i <= n; ++i) { /* (1) */ }
for (int i { 1 }; i <= n; i *= 2) { /* (2) */ }
for (int i { 2 }; i <= n; i *= i) { /* (3) */ }</pre>
```

- 1. 对于线性增长的循环,无论它出现在什么位置,都会为复杂度增加一个线性 项 n_0 。
- 2. 对于指数增长的循环,如果它出现在最内层(或可以被交换到最内层,下同),那么会为复杂度增加一个对数项 $\log n$;如果它不出现在最内层,通常不会影响复杂度。
- 3. 对于幂塔增长的循环,如果它出现在最内层,那么会为复杂度增加一个迭代对数项 $\log^* n$ (关于迭代对数,您不需要了解更多);如果它不出现在最内层,通常不会影响复杂度。
- 当(2)(3)出现在非最内层时,通常不会影响复杂度。这一点看起来没有那么显然,甚至很容易被忘记。我们用一个典型的例子来说明上面的(2)。(3)的情况是类似的。

上面的这个程序,和本节一开始展示的例子相比,只有最外层 *i* 的循环,从线性递增改成了指数递增。以下通过积分方法解决此问题的方法。

$$T(n) = \sum_{i=1}^{\lfloor \log n \rfloor} \sum_{j=1}^{2^i} j \cdot (1 + \lfloor \log j \rfloor) = O\left(\int_0^{\log n} \int_0^{2^x} y(1 + \log y) dy dx\right)$$
$$= O\left(\int_0^{\log n} \int_0^{2^x} y \log y dy dx\right) = O\left(\int_0^{\log n} 4^x \cdot x dx\right)$$
$$= O\left(\int_0^n t^2 \cdot \log t \cdot \frac{dt}{t}\right) = O(n^2 \log n)$$

可以发现,我们在最后一步进行换元 $t = 2^x$,此时由于 $dx = \frac{dt}{t \ln 2}$ 会引入一个分母(一次项),该分母和积分引入的、同样是一次的分子会抵消,抵消的结果就是这一层积分并不会升幂。换句话说,在上面这个程序中,指数递增的外层循环 i 是否存在,对时间复杂度没有影响。

1.6 本章小结

本书的小结部分是不全面的,我只会介绍每一章的核心要点。如果您认为有必要,应当在自己的笔记上进行更加全面、更加适合您本人学习路径的总结。

本章的核心内容是递归的思想方法。

- 1. 您可以从超限归纳法和递降法的角度, 理解递归思想的数学背景。
- 2. 您可以利用递归的思路分析迭代算法,将迭代终止条件和递归边界联系起来,认识到递归算法和迭代算法的等效性。
- 3. 您了解了利用递归的思想进行正确性检验和复杂度分析的技术。
- 4. 您了解了减治和分治这两种经典的递归设计方法。

第2章 向量

2.1 线性表

线性表是指相同类型的有限个数据组成的序列。本书按照邓书的方法,将线性表分为向量(vector)和列表(list)两种形式,分别对应 C++ 中的std::vector和std::list。在另一些教材中,这两个词被称为顺序表和链表,分别对应 Java里的ArrayList和LinkedList。向量(顺序表)和列表(链表)这两对概念通常可以混用。向量和列表代表着两种最基本的数据结构组织形式:顺序结构和链式结构。在这一节,将首先让读者对这两种组织形式有一个基本的印象。

首先,我们思考这样的问题: 抛开顺序结构或链式结构不谈,线性表这个概念本身具有怎样的性质? 这将会指导我们设计AbstractLinearList这个类。

对比它的基类DataStructure。一般的数据结构的定义中,"某种结构化的形式",在线性表这里被具体化为了"序列"。既然是序列,那么它会具有头和尾,会具有"第i个"这样的概念;每个元素有它在序列上的"上一个"和"下一个"元素。这是一个朴素的想法,从数学角度容易理解。但从计算机的角度,请您思考这样的问题:"元素"应该用什么表示?我们应该如何找到序列中的一个元素呢?

把计算机中的内存想像为一座巨大的旅馆,线性表是一个居住在其中的旅游团。现在旅游团预定了一大片连续的房间,比如,从1000到1099,并且让第1个游客住在1000,第2个游客住在1001,以此类推,那么我们就很方便地可以知道第*i*个游客的房间号。这种情况下,我们只需要知道游客的序号,就能知道它们居住的房间号。

但并不是每个人都会按部就班地居住,一些人可能喜欢阳光,一些人可能想和伙伴们做邻居,于是,这些游客开始交换房间。房间被交换之后,我们再也无法直接知道第 *i* 个游客的房间号。一个可能的想法是,从 1000 到 1099 每一个房间都敲敲门。这种方法虽然可行,但无疑是很低效的。

更加糟糕的是,旅游团可能没订到连续的房间,游客们散落在旅馆的各处。因为我们不可能像推销员那样每个房间都敲门(这会被赶出去的),所以再也无法找到我们想要的第 *i* 个游客了。为了应对这种情况,旅游团的导游往往会记录下各个游客所在的房间号,以便能够找到他们。

在上面这个比喻中,我们可以看到,如果数据结构中的元素被连续地储存,那么我们可以通过它们的序号(在邓书中,称为秩,rank)来找到它们;如果数据结构中的元素并没有被连续地储存,则我们只能通过它们的位置(position)来找到

它们。上面的三种情况,分别是地址连续、且地址和秩相关的顺序结构(向量);地址连续、但地址和秩无关的静态链式结构(静态链表);地址不连续、也和秩无关的动态链式结构(动态链表)。图2.1示意了三种结构的区别。

图 2.1 向量、静态链表和动态链表的对比

显然,如果发生了第二种情况,导游通常还是会选择记录房间号而不是逐个敲门。那么既然没有省事,也就没有必要预定一大片房间了。因为旅馆老板,也就是操作系统,可能会乘机宰客。比如,旅游团一次定了100个房间,但中途有50人提前结束了旅行。由于旅游团定的是整单,老板不允许单独退这50个人的房间。于是,旅游团要么承担50间空房的代价(空间损失);要么再定50个房间,请剩下的50人搬到新房间住(时间损失),然后把原来的100个房间一并退掉。

这个例子展示了静态链表是一个不实用的数据结构,因此在邓书中它被删除。 在包括静态链表的教材中,它也不是重点的一部分。我们将聚焦在向量和动态链 表(列表)上。如前所述,向量和列表里定位元素的方法是不同的。向量是循秩访 问,而列表则循位置访问。因此,我们设计的线性表抽象类中需要反映这一点。

```
template <typename T, typename Pos>
   class AbstractLinearList : public DataStructure<T> {
2
3
  public:
      virtual T& get(Pos p) = 0;
4
      virtual void set(Pos p, const T& e) = 0;
5
6
7
      virtual Pos insert(Pos p, const T& e) = 0;
      virtual Pos find(const T& e) const = 0;
8
      virtual T remove(Pos p) = 0;
9
10
      virtual void clear() = 0;
11
   };
```

如果您查看 AbstractLinearList.ixx,还会看到一些其他的方法。正如序言中所说的那样,那些和《数据结构》研究的内容关系不大的方法将在书里被隐藏。上面的代码中只展示了一些重要的方法。

- 1. 根据位置 p, 访问或修改在位置 p 上的元素。
- 2. 将元素插入到位置 p 上。
- 3. 在线性表中查找一个给定的元素, 返回它所在的位置。
- 4. 删除位置 p上的元素,以及将整个线性表清空。

您可能会觉得,这个线性表类中包含的内容过多或者过少。如果您感兴趣,我也非常鼓励您实现自己的抽象类模板。本书给出的模板保证您在不参与设计细节的情况下能完成本书设计的有趣实验,您可以随时用自己实现的程序替换其中的一部分。如果您打算这么做,请记得使用版本控制程序或备份,保证您可以回退到程序能正常运行的时刻。

2.2 向量的结构

向量(vector)是一个基于数组(array)的数据结构,它在内存中占据的是一段连续的空间。C++建议更多地使用标准库中的向量std::vector代替数组。向量和数组相比,其最重要的区别在于它是运行时可变长的,而在其他使用上,二者基本可以等同。因此,向量上的算法可以很容易地修改为数组上的算法(即使不使用std::span)。在 408 中通常不考虑可变长这一性质,此时讨论的顺序表就是数组,但您同样可以用本章中介绍的向量算法解决相关题目。

作为一种基于数组的线性表,向量的元素次序和数组的元素次序相同。如果一个向量 V 基于长度为 n 的数组 A 构建,那么向量 V 的第 i 个元素就是 A[i]。我们知道,C 语言的数组可以视为指针,于是向量 V 的第 i 个元素的地址就是 A+i。

向量里的元素数量 n, 称为向量的**规模**(size);而向量所占有的连续空间能够容纳的元素数量 m, 称为向量的**容量**(capacity)。这两者通常是不同的,规模必定不大于容量,而在不超过容量的前提下,向量的规模可以灵活变化,从而赋予了它比数组更高的灵活性。前面的那个旅行团的例子也可以帮助理解规模和容量的关系。一个 n 个人的旅行团订了连续的 m 个房间,这里 m 可以大于 n, 这样,如果旅行过程中有新人加入团队,他们就可以直接加入到已经预定的连续房间中来。

图 2.2 向量的基本概念

如图2.2所示,对于向量中的每一个元素 V[i] 来说,它前面的元素称为它的**前 驱**(predecessor),它后面的元素称为它的**后继**(successor)。特别地,和它位置相

邻的前驱,也就是**直接前驱**为 V[i-1],相应地,**直接后继**为 V[i+1]。所有的前驱构成了**前缀**(prefix),也就是 V[0:i];所有的后继构成了**后缀**(suffix),也就是 V[i+1:n]。本书中我们用 V[a:b] 来简记 V[a],V[a+1],…,V[b-1] 这个子序列,这是 Python 的切片(slice)语法,借助它可以简化很多叙述,尤其在记忆一些比较复杂的算法时很有用。

2.3 循秩访问

了解了向量的定义之后,我们将之前实现的线性表抽象类进行细化,构建向量的抽象类AbstractVector。随后本书会讲解一个示例实现,您可以自行继承AbstractVector进行实现,因为那些不需要您关注的方法都已经在这个抽象类中实现。比如说迭代器,对于读者而言实现迭代器会花费比较多的时间,因此,尽管示例代码中实现了一个迭代器以使我们的向量能够支持 STL 里的算法,但迭代器被排除在基本实验体系之外。我们的目标是学习数据结构,而不是复现 STL。如果您感兴趣,可以自己查看示例代码进行学习;也欢迎您为本书的示例代码提出建议。

向量的核心特征是**循秩访问**。称元素 V[i] 在向量 V 中的序号 i 为它的**秩**(rank)。对于建立在数组 A 上的向量 V,因为 V 和 A 的元素次序是一致的,所以 V[i] = A[i] = *(A+i)。因此,只要知道一个元素的秩,就可以在 O(1) 的时间内访问该元素。通常,我们用size_t类型存储下标。为了强调向量是循秩访问的,我们给它一个别名。

```
1 using Rank = size_t;
```

接下来,我们开始构筑向量抽象类。首先,除了在DataStructure里定义的规模size之外,我们还需要定义容量capacity。同时,因为向量是可变长的,所以规模和容量都是可以变化的,还需要两个修改它们的方法。有了修改规模的方法,线性表里的clear就可以直接用resize(0)实现。其次,我们需要构筑循秩访问的体系,重写AbstractLinearList里面的get和set方法。

```
1 | template <typename T>
  class AbstractVector : public AbstractLinearList<T, Rank> {
2
3
  protected:
      virtual T* data() = 0;
4
5
   public:
6
      virtual size_t capacity() const = 0;
7
      virtual void reserve(size_t n) = 0;
8
      virtual void resize(size_t n) = 0;
9
      T& get (Rank r) override {
10
         return data()[r];
11
```

操作底层内存的时候,因为和所有权无关,所以不能使用智能指针,只能使用裸指针。为了避免裸指针被外部获取,我们将向量的获取首地址方法data()设置为受保护的,而公共方法只会返回引用。

现在,我们已经拥有了一个抽象类AbstractVector,它还缺少下面这些组件的实现:获取规模、容量和首地址的方法;修改规模和容量的方法;插入、删除、查找的方法。如果您打算自己实现向量类,只需要在抽象类的基础上补充它们即可;您也可以继承本书提供的示例向量类,重写其中的部分方法。我们的示例类会从下面开始。

```
template <typename T>
1
  class Vector : public AbstractVector<T> {
3
      std::unique_ptr<T[]> m_data { nullptr };
      size_t m_capacity { 0 };
4
5
      size_t m_size { 0 };
6
      T* data() override { return m_data.get(); }
7
8 public:
9
      size_t capacity() const override { return m_capacity; }
10
      size_t size() const override { return m_size; }
11
```

C++14起,允许用户使用智能指针管理数组,因此我们使用std::unique_ptr 来申请内存。它的主要好处是不需要在析构函数里手动释放,减少了手动管理内 存的麻烦。本书中若无特殊情况,将总是使用智能指针来表示所有权,避免在任何 地方使用delete关键字释放内存。

2.4 向量的容量和规模

2.4.1 初始化

当我们建立一个新的数据结构的时候,有几种情况是比较典型的。在这里,以向量为例展示它们,后面讨论其他的数据结构的时候不再赘述。

零初始化。即,生成一个空的数据结构。对于向量来说,这应该包含一个大小为 0 的数组,并把容量和规模都赋值为 0。然而, C++ 不支持大小为 0 的数组,所

以只能把data赋值为nullptr,就像在上一节中展示的默认值那样。

指定大小的初始化。即,给定n,生成一个规模为n的数据结构,其中的每个元素都采用默认值(即元素采用零初始化)。对于向量而言,可以申请一片大小为n的内存,如下面的代码所示。

复制初始化。即,给定相同数据结构的一个对象,复制该对象里的所有数据及数据之间的结构化关系。对于向量来说,只需要在申请大小为 n 的内存之后,将给定的向量的元素逐一复制进来即可,如下面的代码所示。注意这里在初始化器中显式调用了上面的"指定大小的初始化"的构造函数,为向量进行了初步的初始化,然后再把另一个向量的数据复制进来。

```
1 Vector(const Vector& rhs) : Vector(rhs.m_size) { std::copy_n(
    rhs.m_data.get(), rhs.m_size, m_data.get()); }
```

移动初始化。即,给定相同数据结构的一个对象,将该对象里的所有数据及数据之间的结构化关系移动到当前对象处。移动(move)语义和复制(copy)有显著的不同,因为在移动之后,"被移动"的对象失去了对数据的所有权,我们永远不会从被移动后的对象里访问那些数据。下面展示了向量移动初始化的一个例子。

```
Vector(Vector&& rhs) noexcept : m_data { std::move(rhs.m_data)
      }, m_capacity { rhs.m_capacity }, m_size { rhs.m_size } {
      rhs.m_capacity = 0;
      rhs.m_size = 0;
}
```

通过对智能指针调用std::move, 我们可以在常数时间内, 将被移动对象的数据转移到新对象里。可以看出,被移动之后, rhs的数据区被复位为空指针,规模和容量都被置 0,就像它被零初始化了一样,成为了一个空向量。

图 2.3 复制和移动的区别

从图2.3中可以直观了解到复制和移动的语义区别。当数据结构里的元素数量很多时,逐元素地复制是一项复杂、琐碎、漫长的工程,而移动则是一项简单、整体、快速的工作。在本书的示例代码中,我们经常会给同一个函数提供一个复制版

本和一个移动版本。比如,对于插入(insert),我们定义一个插入const T&类型的方法用于复制(不破坏源),又定义了一个插入T&&类型的方法用于移动(破坏源)。这些方法之间往往只有一个或几个std::move的区别,因此本书通常省略移动版本的方法,而只展示复制版本的方法。尽管如此,在您的日常编程中需要时刻注意,只要复制和移动的时间成本有可能相差比较远,就应该同时定义并实现复制和移动两个版本的方法,而不能只实现复制。

需要注意的是,析构函数、复制构造函数、移动构造函数、复制赋值运算符、移动赋值运算符这 5 个函数,一旦显式定义其中的一个(比如想要定义复制构造函数),编译器就不会生成其他的函数。处于"一荣俱荣,一损俱损"的关系。因此,我们在日常编程的时候,通常选择不实现它们中间的任意一个函数(0 原则),因为日常编程的时候,通常都使用的是 STL 对象,而 STL 里已经将这些功能实现了。但是,在我们实现一些比较底层的结构时候,没法依靠 STL 里的实现,需要实现这 5 个函数中的一个或几个。此时,就必须要将所有的 5 个函数实现(5 原则)。我们可以使用=default来显式使用自动生成的函数,但如果我们不显式说明它,这些函数将不会被包含在这个类中。

初始化列表初始化。即,使用初始化列表std::initializer_list对数据结构进行初始化。初始化列表也是一个典型的线性容器,可以直接使用 STL 方法复制。

```
Vector(std::initializer_list<T> ilist) : Vector(ilist.size())
{
   std::move(ilist.begin(), ilist.end(), m_data.get());
}
```

支持初始化列表初始化之后,我们就可以用下面的形式来初始化一个向量。

```
1 Vector V {1, 2, 3};
```

2.4.2 装填因子

设向量的容量为 m, 规模为 n, 则称比值 $\frac{n}{m}$ 为**装填因子**(load factor)。正常情况下,这是一个 [0,1] 之间的数。装填因子是衡量向量效率的重要指标。

- 1. 如果装填因子过小,则会造成内存浪费:申请了巨大的数组,但其中只有少量的单元被向量中的元素用到,其他单元都被闲置了。
- 2. 如果装填因子过大(超过1),则会引发数组越界,造成段错误(segmentation fault)。

刚开始的时候,装填因子一定是在 [0,1] 之间的。但因为数组的容量 m 是固定的,而向量的规模 n 是动态的,所以一开始分配的 m 可能后来会不够用,从而产

生装填因子大于 1 的问题,此时就需要令 m 增大,这一操作称为**扩容**(expand)。由于 408 不讨论变长顺序表的问题,所以下面的几个章节可以略读。

2.4.3 改变容量和规模 *

您可能会想到,除了扩容之外,我们还可以进行**缩容**(shrink),降低 *m* 的值从而避免装填因子过小,造成内存浪费。但是,现实中很少进行缩容。因为扩容和缩容都需要时间,在扩容的场合是实现可变长特性的必需,但在缩容的场合仅仅是节约了空间而已。有多个原因让我们不愿意缩容:

- 1. 我们可以接受一定程度的空间浪费, 因为很少有程序能占满全部的内存。
- 2. 如果缩容之后,又因为规模扩大而不得不扩容,一来一回浪费了不少时间,而价值其微。
- 3. 当不得不考虑空间时,我们有很多其他方法可以节约出这些空间,不一定要使用缩容的技术。比如复制初始化生成一个新向量,然后清空原向量来释放内存;按照之前介绍的方法,这个新向量的装填因子为1,处在空间最大利用的状态。

因此,在本书中将不再讨论缩容;您可以在自己的向量类中实现这个特性,并 观察它的效果。

无论是扩容还是缩容,我们都需要重新申请一片内存。在扩容的场合,这很好理解。我们预定了 1000 到 1099 的房间,但在我们预定之后,1100 号房间可能被其他旅客占用了。这时如果我们想要预定连续的 200 个房间,就需要重新找一段空房间。缩容的场合,则是为了安全性考虑,不允许释放数组的部分内存。重新申请内存之后,我们将数据复制到新内存中。下面是扩容的一个实现。

```
void reserve(size_t n) override {
   if (n > m_capacity) {
      auto tmp { std::make_unique<T[]>(n) };
      std::move(m_data.get(), m_data.get() + m_size, tmp.get()
           );
      m_data = std::move(tmp);
      m_capacity = n;
}
```

图2.4展示了当插入元素时如果发现容量不足,所进行的扩容过程。其中释放原先的内存这一步,本书中所采用的智能指针会自动完成,而 C 语言和旧标准 C++则需要显式地delete[]释放内存。

可以看出,扩容是一项成本很高的操作,因为它需要开辟一块新的内存。设扩容之后的容量为m,则扩容算法的时间复杂度为 $\Theta(m)$ 。由于m可能会很大,我们

图 2.4 扩容过程

不希望经常扩容。在下一节里将会讨论一些扩容策略。

我们设计了一个方法resize用来改变规模,当规模超过容量(装填因子超过1)的时候调用reserve扩容。需要注意的是,一些其他的方法也会改变规模,比如插入方法insert会让规模增加1,而删除方法remove会让规模减1。我们需要在实现插入方法的时候也考虑扩容问题;如果您实现了缩容,那么在实现删除方法的时候也需要考虑缩容问题。

```
void resize(size_t n) {
   if (n > m_capacity) {
      reserve(n);
   }
   m_size = n;
}
```

2.4.4 扩容策略 *

当我们调用resize的时候,可以立刻知道,需要扩大到多少容量才能容纳目标的规模。但实际情况下,很多时候元素是被一个一个加入到向量中的,这个时候,按照resize的策略,每次都扩容到新的规模,是一个糟糕的选择。假设初始化为了一个规模为n的向量,然后元素一个一个被加入,那么按照 $n \rightarrow n+1 \rightarrow n+2 \rightarrow \cdots$ 的次序扩容,每加入一个元素,都会造成至少n个元素的复制,时间效率极差。

因此,在面对持续插入的时候,我们需要设计新的扩容策略,以降低扩容发生的频率。这个策略应该是由向量的设计者提供的,而不是用户:如果用户知道更加合适的策略,他们会主动使用reserve进行扩容。但是,用户通常没有精力用在这种细节上;这个时候,向量的设计者提供的扩容策略就会成为一个不错的备选项。

现在我们尝试为扩容策略的问题添加一个抽象的描述。当我们讨论扩容的时候,显然不需要知道向量中的数据内容是什么。因此,扩容策略作为一个算法,输入向量的当前规模 n 和当前容量 m,输出新的容量 m'。这个描述具有良好的可重用性,它同样可以用于缩容。

```
class AbstractVectorAllocator : public Algorithm<size_t(size_t,
       size t) > {
2
   protected:
      virtual size_t expand(size_t capacity, size_t size) const =
3
4
      virtual size t shrink(size t capacity, size t size) const =
         0;
   public:
5
      size_t operator()(size_t capacity, size_t size) override {
6
7
         if (capacity <= size) {</pre>
8
             return expand(capacity, size);
9
          } else {
             return shrink (capacity, size);
10
11
      }
12
13
   };
```

基于上述的分析,我们可以用这个类表示扩容策略。在后面的章节,将继承这个类并重写expand方法,实现不同策略的扩容,而缩容方法则直接返回capacity(永不缩容)。当您需要实现缩容的时候,也可以使用这个模板,重写shrink方法。如果您对如何扩容有一些自己的想法,笔者建议您先实现自己的扩容策略,然后再阅读后面的理论部分。

2.4.5 等差扩容和等比扩容 *

那么,应该如何设计扩容策略呢?一个简单的想法是,既然每次容量 +1 不行,那就加多一点。这种思路可以被概括为等差数列扩容方法。如果选取 d 作为公差,那么在本节开始的那个例子中,将按照 $n \to n + d \to n + 2d \to \cdots$ 的次序扩容。

```
template <size_t D> requires (D > 0)
class VectorAllocatorAP : public AbstractVectorAllocator {
  protected:
        size_t expand(size_t capacity, size_t size) const override
        {
        return capacity + D;
    };
}
```

这里使用了 C++20 引入的requires语法,要求用户给定的模板参数 D>0。因为很明显,如果 $D\leq 0$,expand将永远扩不起来。

既然有了等差数列,另一个很容易想到的方法是按照等比数列扩容。如果选

取 q 作为公比,则会按照 $n \to qn \to q^2n \to \cdots$ 的次序扩容。

```
template <typename Q> requires (Q::num > Q::den)
class VectorAllocatorGP : public AbstractVectorAllocator {
  protected:
    size_t expand(size_t capacity, size_t size) const override
    {
        size_t newCapacity { capacity * Q::num / Q::den };
        return std::max(newCapacity, capacity + 1);
    }
};
```

这里允许了 C++11 提供的编译期有理数std::ratio作为模板参数,Q::num 表示分子,而Q::den表示分母。请注意,需要保证新的容量比原有容量大,否则 扩容就没有意义。上面的做法保证了容量至少会扩大 1。比如,当 $Q=\frac{3}{2}$,往容量为 0 的向量里连续插入元素时,容量变化为 $0\to 1\to 2\to 3\to 4\to 6\to 9\to \cdots$,如果没有容量至少扩大 1 的设计,等比扩容将永远停留在 0 容量。

2.4.6 分摊复杂度分析*

很显然, 进行单次扩容操作的时候, 等差扩容的时间复杂度为 O(n+d) = O(n), 等比扩容的时间复杂度为 O(qn) = O(n) (因为 q 是常数), 两者看起来没有区别; 甚至和我们已经知道效率很低的情况(d=1 的等差扩容)也没有区别。这也意味着, 我们评价时间效率的方法可能出现了一些问题。

问题的关键在于,我们设计扩容策略的目的是按照等差或等比的数列扩容,而不是一次扩容。所以,评价这两种扩容规则的标准,不是进行一次扩容的效率或进行一次扩容后的装填因子,而是比较一系列扩容操作的总体效率和在这一系列扩容操作中的平均装填因子。用已有的复杂度分析工具不足以对这两种策略的效率进行准确评价。为了对一系列操作进行分析,需要引入新的复杂度分析标准。

一般地,假设 O_1, O_2, \cdots, O_n 是连续进行的 n 次操作,则当 $n \to \infty$,这 n 次连续操作所用时间的平均值的复杂度,称为这一操作的**分摊复杂度**,对分摊复杂度的分析称为**分摊分析**。分摊分析的原则之一是:使用相同效果的操作序列。所以,要比较上述两种算法,不应该把每次操作取为"进行一次扩容"(因为两种方法扩容量不一样),而应该取为"向量 V 的规模增加 1"。连续进行 n 次操作,就可以考虑向量 V 的规模从 0 增长为 n 的过程。

在等差扩容方法中,容量依次被扩充为 d, 2d, 3d, \cdots , n, 共进行 $\frac{n}{d}$ 次扩容。因此,分摊复杂度为:

$$T(n) = \frac{d+2d+3d+\dots+n}{n} = \frac{\left(\frac{n}{d}\right)\cdot d + \frac{\left(\frac{n}{d}\right)\left(\frac{n}{d}-1\right)}{2}\cdot d}{n} = \frac{\frac{n}{d}+1}{2} = \Theta\left(\frac{n}{d}\right)$$

另一方面,进行 k 次扩容之后的装填因子至少为 $\frac{kd}{(k+1)d} = \frac{k}{k+1}$,当 $k \to \infty$ 时,装填因子趋于 100%。

在等比扩容方法中,容量被依次扩充为 q,q^2,q^3,\cdots,n ,共进行 $\log_q n$ 次扩容。因此,分摊复杂度为:

$$T(n) = \frac{q + q^2 + q^3 + \dots + n}{n} = \frac{q \cdot \frac{1 - n}{1 - q}}{n} = \Theta\left(\frac{q}{q - 1}\right) = O(1)$$

另一方面,装填因子不断在 $\left[\frac{1}{q},1\right]$ 之间线性增长,平均装填因子为 $\frac{1+q}{2q}$ 。可以看出,不管怎样选择 q,对分摊复杂度都没有影响,而更小的 q 能够带来更大的平均装填因子。当选择 q=2 时,平均装填因子为 75%。

可以看出,等比扩容的装填因子并没有很低,而换来了分摊时间复杂度上巨大的优化。因此,我们倾向于选择等比扩容。至于等比扩容的公比,则是一个值得讨论的话题。从上面的推导中,我们发现分摊时间复杂度的系数为 $\frac{q}{q-1}$,它会随 q 的增加而降低;另一方面,平均装填因子也会随 q 的增加而降低。因此,选择更大的 q,事实上是以时间换空间的做法。

因为分摊 O(1) 已经很快,所以通常选取的 q 比较小。常见的公比选择有 2 和 $\frac{3}{2}$ 。邓书上介绍的版本选择了 2,这也是 GCC 和 Clang 的选择;而 MSVC 则采用更节约空间的 $\frac{3}{2}$ 。

需要指出的是,等比扩容也存在一些劣势:容量越大,装填因子不高带来的空间浪费愈发明显,所以有些对空间要求较高的情况下,也采用二者相结合的方式:在容量比较小时等比扩容、在容量比较大的时候等差扩容。这种思想在《网络原理》里的慢启动中得到了应用。

最后,既然有等比扩容,必然也有等比缩容。当我们讨论缩容的时候,通常需要结合一个**缩容阈值**,当装填因子低于这个阈值时才引发缩容,而不是每当规模低于容量时就缩容,否则就丧失了向量的灵活性。尽管本书不实现缩容(相当于缩容阈值为 0),但当缩容和缩容阈值被纳入讨论,可以命制一些有趣的问题。设等比扩容的公比为 $q_1 > 1$,等比缩容的公比为 $q_2 < 1$,缩容阈值为 θ ,您可以进行思考和计算,这三个变量满足什么条件时,才能保证对于任意的、由插入和删除组成的操作序列,扩容和缩容总和的分摊时间复杂度为 O(1)。

2.5 插入、查找和删除

对于任何数据结构,都有三种基本的操作:

- 1. **插入** (insert): 向数据结构中插入一个元素。
- 2. **查找**(find): 查找一个元素在数据结构中的位置。

3. **删除**(delete):从数据结构中移除一个元素。 在这一节中,我们以向量为例介绍这三种基本的操作。

2.5.1 插入一个元素

要将待插入的元素 e 插入到 V[r], 那么可以将原来的向量 V[0:n] 分成 V[0:r] 和 V[r:n] 两部分。

- 插入之前, 向量是 V[0:r], V[r:n]。
- 插入之后, 向量是 *V*[0:*r*], *e*, *V*[*r*:*n*]。

可以发现,在插入的前后,前一段 V[0:r] 的位置是不变的,而后一段 V[r:n] 需要整体向后移动 1 个单元的位置。据此,可以设计下面的算法,算法的原理如图2.5所示。

这里需要使用std::move_backward而不能用std::move, 因为向后移动 1 个单元这个过程, 需要先移动最后一个元素、再移动倒数第二个元素、以此类推; 如果从第一个元素开始移动, 就会覆盖掉还没移动的元素。如果您对 STL 算法不熟练, 也可以改写为熟悉的循环形式。

图 2.5 往向量中插入一个元素

在上面的算法中忽略了一点:插入有可能造成装填因子大于1的问题。如果准备插入的时候发现向量已满(装填因子等于1),那么应当先使用上一节讨论的扩容策略,扩大向量的容量,然后再执行插入。您会发现,扩容的过程中包括了一次移动,std::move_backward又包括一次移动,这两次移动中会有一些重复的、不必要的赋值操作。不过,因为扩容被调用的次数很少,我们可以忽略这些额外的性能损失。

为了让我们在上一节设计的算法被嵌入到向量里来,我们可以为向量模板增加一个参数,写成下面这样的形式。

```
template <typename T, typename Alloc = VectorAllocatorGP<std::
    ratio<3, 2>>>
    requires std::is_base_of_v<AbstractVectorAllocator, Alloc>
```

在上面这个模板参数表声明中,我们规定模板的第二个参数Alloc必须是我们上面实现的AbstractVectorAllocator的派生类。用户可以不显式地指定扩容策略,而选择我们默认的策略(公比为 $\frac{3}{2}$ 的等比扩容)。加入这个参数之后,我们只需要在insert的开头进行一次判断,就可以自动地在插入满向量时进行扩容。

最后,我们上面实现的插入算法,传入的是const引用类型,这意味着元素并没有被真正的"插入",被实际插入的是一个副本。如果我们希望让元素真正被插入,那么应当使用移动语义。移动语义版本的插入算法和复制语义基本相同。如前所述,以后将不再展示移动语义的版本。

```
Rank insert(Rank r, T&& e) override {
   if (m_size == m_capacity) {
      reserve(Alloc {} (m_capacity, m_size));
}

std::move_backward(m_data.get() + r, m_data.get() + m_size,
      m_data.get() + m_size + 1);

m_data[r] = std::move(e);
++m_size;
return r;
}
```

2.5.2 平均复杂度分析

为了更定量地分析插入操作的时间效率,引入一个新的复杂度分析策略: **平** 均复杂度。

在介绍复杂度时曾经强调,复杂度是依赖于数据规模,不依赖于输入情况的分析手段。在上面的插入算法中,数据规模通常认为是n,而r是具体情况带来的参数。为了研究不同具体情况对算法时间效率的影响,有三种常见的分析手段:

- 1. **最坏时间复杂度**:研究在情况最坏的情况下的复杂度。很多算法有硬性的时间限制(如在复试的机试中,通常要求输出结果的时间不能多于 1s 或 2s),此时常常使用最坏时间复杂度分析。这是最常用的时间复杂度分析。
- 2. **最好时间复杂度**:研究在情况最好的情况下的复杂度。研究最好时间复杂度的意义远小于最坏时间复杂度。最好时间复杂度有时用于嘲讽某种算法的效率:在最好的情况下,这种算法的复杂度也只能达到(某个复杂度),而我的新算法在最坏的情况下也可以达到(某个更好的复杂度)。

3. **平均时间复杂度**: 研究在平均情况下的复杂度。如果没有硬性的时间限制,则平均时间复杂度往往能更好地反映一个算法的总体时间效率。平均时间复杂度需要知道每种情况发生的先验概率,在这个概率的基础上计算 *T(n)* 的数学期望的复杂度。在针对现实数据的实验研究中,常见的假设包括正态分布、帕累托(Pareto)分布和泊松(Poisson)分布;而在《数据结构》学科中,通常假设成等可能的分布,以方便进行理论计算。

平均复杂度很容易和分摊复杂度发生混淆,需要加以区分。下面是它们的一 些典型的差异:

- 1. 分摊复杂度是一系列连续操作的平均效率, 而平均复杂度是单次操作的期望效率。
- 2. 分摊复杂度的一系列连续操作是有可能(通常都)存在后效的,而平均复杂度只讨论单次操作的可能情况。
- 3. 分摊复杂度需要指定每次进行何种的基本操作,而平均复杂度需要指定各种情况的先验概率。

最坏、最好、平均时间复杂度对应统计里的最大值、最小值和数学期望。显然, 其他统计量,比如方差,在分析的时候也是有价值的,也深得科研人员重视。但在 《数据结构》的考试中,是不会涉及到这些统计量的分析的,只需要知道最坏、最 好和平均时间复杂度的分析技术即可。

现在回到插入的算法,它的时间复杂度是 $\Theta(n-r)$ 。显然,最好时间复杂度是 O(1)(插入在末尾的情况),最坏时间复杂度是 $\Theta(n)$ (插入在开头的情况)。这里 有略微不严谨的地方,因为 r 的最大值可以取到 n,此时 n-r=0,不再符合复杂度记号的定义;不过,因为我们清楚任何算法的时间都不可能为 0,所以一般不在 这个细节上做区分。

为了求平均时间复杂度,一个合理的假设是,r 的取值对于 [0:n+1] 之间的整数是等概率的(注意有n 个可以插入的位置,而不是n-1 个)。在这个假设下,容易算出单次插入的平均时间复杂度为 $\Theta(n)$ 。

2.5.3 查找一个元素

查找需要返回找到的位置。对向量而言,只需要得到被查找元素的秩就可以了。和插入、删除相比,查找具有更加丰富的灵活性,甚至于一些编程语言(如 SQL)的核心就是查找。

最简单的查找是按值查找。即,给定被查找元素的值,在数据结构中找到等于 这个值的元素。对于更加复杂的查找类型,比如按区间查找等,人们设计了更加复 杂的数据结构来应对。对于按值查找的问题,最简单的方案就是检测向量中的每 个元素是否等于要查找的元素 e, 如果等于, 就把它的秩返回。

```
Rank find(const T& e) const override {
    for (size_t i { 0 }; i < m_size; ++i) {
        if (m_data[i] == e) {
            return i;
        }
    }
    return m_size;
}</pre>
```

关于找不到的情况,有多种处理方式。上面采用的方法是返回无效的秩,除了返回序列尾部溢出的m_size之外,返回序列头部溢出的 -1 也是常见的选择。此外,也可以将返回值的类型改为std::optional,当找不到的时候返回一个无效值。

设 e 在向量中的秩为 r, 那么在查找成功的情况下,上述算法的时间复杂度为 $\Theta(r)$ 。在查找失败的情况下,算法的时间复杂度为 $\Theta(n)$ 。这里可以分析,在等可能 条件下,查找成功时的平均时间复杂度是 $\Theta(n)$ 。注意,查找成功的概率是一个很 难假设的值,所以在分析平均时间复杂度时,通常只分析"查找成功时"和"查找 失败时"的平均时间复杂度,而不会将它们混为一谈。

因为对于向量 V 和待查找元素 e 的情况没有更多的先验信息,所以暂时也没有比上面更高效的解决方案。**利用信息思考**是计算机领域重要的思维方式。在设计算法时,应尽可能利用更多的先验信息。反之,如果先验信息不足,则算法的效率受到信息论限制,不可能会特别高。这个思维方式在后文介绍各种算法的设计过程时,还会反复出现。

不过,这个算法还是有一些值得推敲的地方:如果 e 在向量 V 中出现了多次,那么这个算法只会返回最小的秩。您可以思考一下,如何将其修改成返回最大的秩?并分析修改后的算法时间复杂度变化。

2.5.4 删除一个元素

删除元素是插入元素的逆操作。在插入元素时,让被插入元素的后继后移;因此在删除元素的时候,只需要让被删除元素的后继前移即可。需要注意前移和后移在方向上的差别,插入时的std::move_backward,逆操作应该是std::move。

和插入一样,可以分析出删除操作时间复杂度 $\Theta(n-r)$,平均时间复杂度 $\Theta(n)$,空间复杂度 O(1)。到此为止,我们实现了完整的Vector类,可以开始实验了。如果您自己完成了向量的设计,可以使用 Vector 甚行简单的功能测试,并在实验中将dslab::Vector替换为自己的向量类。

2.5.5 实验:插入连续元素

在这个实验中,我们将用实验观察,等差扩容和等比扩容的时间效率差异。因为我们评估的是分摊时间,所以需要构造一个插入连续元素的场景来进行观察。从2.5.1节中我们知道,在位置r插入一个元素的时间复杂度为 $\Theta(n-r)$ 。为了降低插入连续元素这个操作本身对,更好地观察扩容时间,我们固定每次都在向量的末尾插入元素。代码可以在VectorInsert.cpp中找到。

我们构造下面的类,作为插入连续元素问题的基类。因为在测试过程中,每次连续插入结束之后,需要将向量重置为空(避免已分配的空间影响),所以这里定义了一个reset方法。

```
class VectorInsertProblem : public Algorithm<size_t(size_t) > {
public:
    virtual void reset() = 0;
};
```

返回值定义为连续插入结束后的向量容量,因为笔者希望观察连续插入结束之后扩容到了多大。您也可以将其改为void或者其他您希望观察的变量。接下来,我们让在2.4.5节中定义的等差扩容和等比扩容策略,作为vector类的参数传入。

```
template <typename Vec>
1
      requires is base of v<AbstractVector<size t>, Vec>
   class VectorInsertBasic : public VectorInsertProblem {
3
      Vec V;
  public:
5
      size_t operator()(size_t n) override {
6
7
         for (size_t i { 0 }; i < n; ++i) {</pre>
            V.insert(V.size(), i);
8
9
          }
10
         return V.capacity();
11
12
      void reset() override {
13
         V.clear();
14
15
   };
```

上面的模板接受一个vec作为向量类型名,这是为了兼容您自己写的向量类。它用到了零初始化、赋值、插入、获取容量和规模的方法,如果您继承了AbstractVector,这些方法都应当已经实现。您也可以创建自己的测试类参与

对比测试。对于本书的示例Vector实现,使用下面的模板。

```
template <typename Alloc>
    requires is_base_of_v<AbstractVectorAllocator, Alloc>
class VectorInsert : public VectorInsertBasic<Vector<int, Alloc
    >> {
    public:
        string type_name() const override {
        return Alloc {}.type_name();
    }
};
```

这里重载了type_name, 否则由于模板复杂,输出的类型名会非常长。在实验的示例代码中,我们比较了 D=64、D=4096、 $Q=\frac{3}{2}$ 、Q=2、Q=4 这些情况。您可以发现,当 n 比较小的时候,差异不明显;而当 n 比较大,如达到 10^6 的量级时, D=64 会极其缓慢,而 D=4096 也慢慢和三种等比扩容拉开距离(如果您增加一个 $n=10^7$ 的用例,会更加明显)。相反,三种等比扩容的区别非常微小,我们可以判断出,这已经非常接近插入这些元素本身需要的时间,和扩容的关系不大。

如何证明上面的判断呢?去计算连续插入中原子操作的数量(计算时间复杂度的常数)是困难、繁琐且容易出错的工作。您可以加入一个 $Q=10^6$ 的向量,它的容量会直接从 1 跳变到 10^6 ,也就是,在 $n=10^6$ 的情况下,它没有进行任何多余的扩容。您会发现,即使是这样,也没有和上面三种等比扩容有显著差异,从而能够验证上面的判断。这种实验方法在计算机学科的学习中是一个有力武器。这个实验请您自己完成,您也可以加入一些自己实现的其他扩容策略来观察效果。比较有挑战性的工作是,在实现缩容之后,类似本实验,设计一个新的实验评估缩容的效果(请注意,缩容本身是时间换空间的做法,仅仅测试缩容的时间性能是不合适的)。

需要指出的是,这个实验结果只是粗略性的,因为连续插入而不做其他事情是一个非常特殊的用例。当这种情况真正发生的时候,应当直接reserve足够大的空间,而不是让向量按照设计者提供的默认扩容方案慢慢扩容。

2.5.6 实验: 向量合并

如果要插入的不是单个元素,而是多个元素,情况会发生什么变化呢?现在,假设我们有两个向量 V[0:n] 和 $V_1[0:n_1]$,我们希望将整个 V_1 插入到 V 的位置 r 处,实现向量合并。代码可以在 VectorConcat.cpp 中找到。这个问题不难,建议您自己实现算法参与对比。

```
class VectorConcat : public Algorithm<Vector<int>&(Rank)> {
protected:
    Vector<int> V {}, V1 {};
```

```
public:
    void initialize(int n, int n1) {
        V.reserve(static_cast<size_t>(n) + n1);
        V1.reserve(n1);
        V.resize(n);
        V1.resize(n1);
}
```

和上一节类似,我们定义了一个辅助函数用来对问题进行初始化。我们不希望扩容影响实验结果,所以预先给V分配了 $n+n_1$ 的空间。

如果我们采用2.5.1节中介绍的方法,将 V_1 中的元素一个一个插入到该位置,那么时间复杂度会高达 $\Theta((n-r)\cdot n_1)$,平均 $\Theta(n\cdot n_1)$,略显笨重。

```
// VectorConcatBasic
Vector<int>& operator()(Rank r) override {
   for (int i : V1) {
      V.insert(r, i);
      ++r;
   }
   return V;
}
```

您可以敏锐地发现,只要再次使用在讨论单元素插入时的分析方法,就可以得到更加高效的算法。要将待插入的向量 V_1 插入到 V[r],那么可以将原来的向量 V[0:n] 分成 V[0:r] 和 V[r:n] 两部分。

- 1. 插入之前,向量是 V[0:r], V[r:n]。
- 2. 插入之后, 向量是 V[0:r], V_1 , V[r:n]。其中, V[r:n] 被转移到了 $V[r+n_1:n+n_1]$ 的位置上。

这样设计出了一个批量插入的算法,两种方法的对比如图2.6所示。

```
// VectorConcatFast
Vector<int>& operator()(Rank r) override {
    V.resize(V.size() + V1.size());
    move_backward(begin(V) + r, end(V) - V1.size(), end(V));
    move(begin(V1), end(V1), begin(V) + r);
    return V;
}
```

您可以自行分析上述批量插入算法的时间复杂度和平均时间复杂度。因为已经预先reserve,这里resize可以保证在 O(1) 时间里完成。示例程序中进行了四类情况的评估:插入少量元素到开头、插入大量元素到开头、插入少量元素到结尾、插入大量元素到结尾。这里的少量可以认为是常数 $n_1 = O(1)$,而大量可以认为 $n_1 = O(n)$ 。您可以对比前面得到的时间复杂度,验证您对这两个算法的评估结论。您也可以将上述上述两个示例程序和您自己的实现进行对比。

图 2.6 向量合并的两种方法

批量插入的算法中体现出的用块操作代替多次单元操作的思想,在以线性表为背景的算法设计题中应用广泛。在我们的实现中,插入操作和扩容操作是解耦的:容量已经被预先分配好。在实际情况下,我们也需要同时考虑扩容的成本。按照解耦的实现,在扩容申请了新的数组空间之后,会将原数组的元素复制过去,然后再执行插入,对这些元素进行移动。很显然,V[r]之后的元素被移动了两次。事实上,如果进行耦合的实现,可以让这些元素只被移动一次:在扩容申请了新的数组空间之后,V[r]之后的元素可以直接移动到它们的目的位置,为 V_1 里的元素"空出一块空间"。您可以自己实现这个耦合算法。因为需要在外部访问Vector里的成员,因此您应当将您的类或函数生声明为友元。

2.5.7 实验:按值删除元素

在2.5.4节,我们讨论的删除是按位置删除,具体到向量就是按秩删除。另一种删除的方式是按值删除,也就是说,我们给定一个元素 e,想要删除向量中和 e 相等的每一个元素。代码可以在 VectorRemove.cpp 中找到。同样,建议您自己实现一个算法。

在分析这个问题之前,先对按值操作进行一些深层次的理解。我们知道,数据结构是元素的集合,元素之间是互不相同的,但这并不妨碍它们相等,因为我们可以定义"相等"(反映到 C++中,就是重载运算符operator==)。比如说,我们定义值相同为"相等",这样就不需要考虑元素的地址;这是按值删除的思路。顺着这个思路,我们可以扩展按值删除到更加一般的按条件删除。比如说,向量里的元素是一个结构体,我们定义结构体的某个属性相同为"相等",而其他属性可以不被考虑;此时,某个属性等于给定的值就是我们定义的条件。在 C++的 STL 中,按值

删除对应的算法是std::remove, 而按条件删除对应的算法是std::remove_if, 二者具有高度的相似性。其他的一些算法也有相应的"按条件"版本, 您可以根据需要自行了解, 这里不再赘述。

下面我们来讨论按值删除元素的问题。为了评估算法的性能,示例程序构造了一个场景:在一个规模为n的向量中,第奇数个元素为1,第偶数个元素为0,我们的算法将要删除所有的0,也就是说删除一半的元素。

```
class VectorRemove : public Algorithm<size_t, int> {
1
2
   protected:
3
      Vector<int> V {};
      virtual void batchRemove(int e) = 0;
4
6
      size_t operator()(int e) override {
7
          size_t n = V.size();
8
          batchRemove(e);
          return n - V.size();
9
10
11
      void initialize(size t n) {
          V.resize(n);
12
          for (size_t i { 0 }; i < n; ++i) {</pre>
13
             V[i] = i % 2;
14
15
16
      }
   };
17
```

和上一节一样,我们从最朴素的想法开始:逐个查找、逐个删除。我们在向量 V 中查找要删除的 e,每发现一个就删除一个,直到没有等于 e 的元素为止。如图2.7所示。

上述朴素算法的空间复杂度是 O(1),但是时间效率是很低的。这里使用的std ::find,原理和2.5.3节介绍的查找一样,时间复杂度为 O(r)。std::find返回的是一个迭代器,和起始迭代器std::begin相减之后就可以得到找到的位置(秩)。而另一方面,在找到之后,remove的时间复杂度为 O(n-r)。所以,每次循环的时间复杂度为 O(n)。在极端情况下(比如我们设计的实验场景),有 O(n)个元素要被删除,此时时间复杂度为 $O(n^2)$ 。考虑到 C++的标准算法库在考试中手写代码时通常不能使用(阅卷者可能看不懂),所以如果您不熟练,非常建议您在理解这些标准算法之后把它改写成 C语言的风格,直到您能熟练地在 STL 和 C 语言风格

图 2.7 向量按值删除元素:逐个查找、逐个删除

之间做转换为止。学习的时候使用 STL 的好处是精简代码,减少记忆量,容易抓住主要矛盾。

在设计算法的时候,题目不一定会给出要求的复杂度。这个时候,可以对比一下相似问题的复杂度。比如,之前介绍讨论批量插入(向量合并)的时候可以做到线性的时间复杂度,没有理由批量删除(按值删除)需要平方级的时间复杂度。因此,我们需要寻找提高时间效率的切入口。

为了降低时间复杂度,就要设法降低在算法中进行的不必要工作。在不必要工作中,有几种比较典型。一种是不到位工作,它代表了在算法中,本能够一步到位的计算被拆分成了若干个碎片化的步骤,而产生的时间浪费。比如在向量合并的逐个插入算法中,后缀 V[r+1:n] 就接连移动了 n_1 次;我们通过合并这些移动实现了算法优化。

另一种是重复工作,它代表了在算法中,重复计算了同一算式造成的时间效率 浪费。在上面的朴素的按值删除算法中,就有一项非常明显的重复工作。如图2.7所示,第一次检索了第一段 V_1 ,第二次检索了 $V_1 + V_2$,第三次检索了 $V_1 + V_2 + V_3$;这里 V_1 被检索了 3 次, V_2 被检索了 2 次,而事实上只需要检索一次即可。在我们查找完毕的时候,可以记录下当前查找到的位置;下一次查找的时候从记录下的位置开始记录,如图2.8所示。借用 C++ 的 STL,我们对朴素算法做很小的改动就可以做到这一点,您可以对比两张图和两份代码。

```
// VectorRemoveImproved
void batchRemove(int e) override {
   Rank r { 0 };
   while (r = find(begin(V) + r, end(V), e) - begin(V), r < V.
        size()) {
        V.remove(r);
   }
}</pre>
```


图 2.8 向量按值删除元素:一次查找、逐个删除

然而您会发现,在最坏的情况下(所有元素都要被删除),光是remove就要花费 $\Theta(n^2)$ 的时间,上面这个算法的优化程度仍然不够。因此,下一步优化就要从remove入手,需要将remove的工作展开来,看看其中哪些是不必要的。

在remove中,主要消耗时间的是元素移动的操作。您可以发现,如果 V[0:i] 中有 k 个元素要删除,那么最后一个元素 V[i-1] 就要向前移动 k 次:依次移动到 $V[i-2] \rightarrow V[i-3] \rightarrow \cdots \rightarrow V[i-k-1]$ 的位置上。比如,在图2.8中, V_3 就移动了 2 次。您可以敏锐地发现者正是前面所讲述的不到位工作。这一系列的移动被拆成了 k 次,而实际上是可以一步到位,直接从 V[i-1] 移动到目标位置 V[i-k-1] 的。

为什么可以直接移动到目标位置呢?注意到,无论是上面的 Basic 还是 Improved 算法,当检索到 V[i] 的时候,前缀 V[0:i] 的所有元素都已经被检索过了,因此 k 的值已经确定了,并且前 i-1 个元素已经移动到了正确的目标位置。所以您可以用归纳法的思路,证明直接移动的正确性。证明完成之后,剩下的就只有编码的工作了。强烈建议您自己完成这个算法再阅读示例程序。下面展示了一种实现。

```
// VectorRemoveFSP
   void batchRemove(int e) override {
2
      Rank k { 0 };
3
      for (Rank r { 0 }; r < V.size(); ++r) {</pre>
4
          if (V[r] == e) {
5
             ++k;
6
7
          } else {
8
             V[r - k] = move(V[r]);
9
10
      V.resize(V.size() - k);
11
```

12 | }

非常显然,现在时间复杂度被缩减到 $\Theta(n)$ 了。上面这个算法的思路可以被概括为快慢指针,这是线性表算法设计中非常典型的技巧。快指针即探测指针,指向 V[r];慢指针即更新指针,指向 V[r-k]。快指针找到需要保留的元素,然后将它们移动到慢指针的位置处。如图2.9所示。

图 2.9 向量按值删除元素: 快慢指针

您可以通过示例程序的测试明显感知到这三种算法的性能差异。作为结束,上述算法在 C++ 的 STL 中有一个简单的记法:

```
// VectorRemoveErase
void batchRemove(int e) override {
   V.resize(remove(begin(V), end(V), e) - begin(V));
}
```

这里使用了 STL 提供的std::remove,它并不会真正地将 e 删除,而是将非 e 的元素都移动到向量的前半部分,并返回新的尾部迭代器。用户还需要进行一次resize才能真正清除掉已经无效的后半部分,这个真正清除的过程被称为擦除 (erase);这个方法也被称为"删除-擦除"法。STL 中的向量容器std::vector提供了原生的erase方法,您可以直接使用它进行按值删除。

2.6 置乱和排序

一般数据结构重点讨论的只有插入、删除和查找三种基本操作,但向量作为一种非常基础的数据结构,经常被用来在考试中作为算法设计题的背景。下面这两

个小节分别从熵增和熵减的角度出发,讨论置乱(shuffle)和排序(sort)的算法。

2.6.1 实验: 随机置乱

通常说的置乱都是指随机置乱。给定一个向量 V 和一个随机数发生器rand,随机打乱向量中的元素。在理论分析的时候,可认为随机数发生器是理想的,即每次调用能够随机生成一个非负整数。当然现实中的随机数发生器做不到理想,我们将在本小节的末尾讨论它们的区别。

置乱算法接收一个向量将它置乱。代码可以在 Shuffle.cpp 中找到。如果您想到了解决方案,可以先自己实现它。

```
class Shuffle : public Algorithm<void(Vector<int>&)> {};
```

直接看这个"向量置乱"的问题,很容易没有头绪。不妨将这个问题迁移到比较熟悉的领域:比如洗牌。想必大家都非常熟悉洗牌。随机置乱的目的和洗牌是一样的,但如果用洗牌的方法去做随机置乱,即抽出一沓牌、把这沓牌放到牌堆底部、再抽一沓牌,则会面临三个问题:

- 1. 您不知道重复多少次抽牌比较合理。
- 2. 在有限次抽牌之后, 牌的 n! 种随机次序并不是等概率的。
- 3. 每次抽牌都要伴随大量的元素移动, 时间效率非常低下。

解决随机置乱问题可以从上面的第二个问题,也就是"随机次序等概率"入手。为了保证随机次序是等概率的,那么就要构造 n! 种等可能的情况。根据乘法原理,可以很自然地想到,如果将每种次序表示为一个 n 元随机变量组 $(X_1, X_2, ..., X_n)$,其中 X_i 两两独立,并且 X_i 恰好有 i 个等可能的取值,那么这 n! 种次序就是等可能的了。接下来,只需要建立在全排列和这样的 n 元组的一一对应的映射关系即可。当然,不能直接把全排列用上。全排列的两个元素不是相互独立的,它自身不是符合条件的 n 元组。

为了构造符合条件的映射,又可以采用递归的思想方法:

- 1. 如果 n = 1,全排列和 n 元组可以直接对应。
- 2. 对于 n > 1,考虑 V[n-1] 在打乱后的秩,显然,它可以取 $0, 1, \cdots, n-1$ 这 n 个等可能的值,令这个数为 X_n ,然后将 V[n-1] 从打乱前后的向量中都删除,就化为了 n-1 的情况。反复利用这个化归方法,最终可化归到 n=1 的情况。

以上就成功构造出了满足条件的一一映射关系,您可以在理解它的基础上自己设计相应的随机置乱算法。下面给出了一个示例实现。

```
void operator() (Vector<int>& V) override {
for (auto i { V.size() }; i > 1; --i) {
```

```
3     auto j { rand() % i };
4     swap(V[i - 1], V[j]);
5     }
6  }
```

显然上面这个算法是时间 $\Theta(n)$ 、空间 O(1) 的。并且上面的分析表明,如果rand 真的能随机生成一个非负整数(不是随机生成一个unsigned int!),那么这个算法就能将所有的 n! 个排列等概率地输出。此外,C++11 在 STL 中也提供了置乱算法,需要包含<random>库使用。

```
class ShuffleStd : public Shuffle {
   default_random_engine m_engine { random_device {} () };

public:
   void operator() (Vector<int>& V) override {
      shuffle(begin(V), end(V), m_engine);
   }
};
```

这里的默认随机数引擎可以被替换为其他用户定义的引擎,关于随机数引擎 的问题和数据结构无关,不再赘述。默认的随机数引擎基于梅森旋转算法,产生随 机数的速度较慢,但具有较好的均匀性。

下面回到随机生成器的问题上来,真实的rand会受到位宽的限制。如果每次随机生成一个随机的 32 位非负整数,那么 n 次随机一共只有 $2^{32n} = o(n!)$ 种可能的取值,所以在 n 充分大的时候,必然会有一些排列不可能被输出。

另一方面,即使忽略位宽的限制,也不可能做到等概率输出。因为当随机数生成器的返回值是在 $[0,2^k-1]$ 中随机生成的非负整数时,n! 在 $n \ge 3$ 时不是 2^k 的因子(不论 k 有多大),所以这 n! 个排列不可能是等概率的。不过,当 n 比较小时概率可以认为近似相等,您可以在示例程序的运行结果中看出这一点。

除此之外,现实中的rand是伪随机。对于同一个种子,生成的伪随机序列是相同的,所以并不能真正"随机"地打乱向量中的元素。当然,这是另一个话题了。 当我们在后面的章节讨论散列的时候,再对伪随机问题进一步探讨。

2.6.2 偏序和全序

在讨论完置乱问题之后,接下来讨论排序问题。在具体介绍排序算法前,首先需要界定清除,**序**(order)是一个什么东西。在上一章定义过良序的概念,但要对一个向量做排序,并不一定要要求它的元素是某个定义了良序关系的类型。比如说,n个实数同样可以关于熟知的" \leq "排序。因此,需要引入条件更松的序关系的定义。

将良序关系定义中的第4个条件(最小值)去掉,就变成了全序(total order)

关系。如果集合 S 上的一个关系 \leq 满足:

- 1. **完全性**。 $x \leq y$ 和 $y \leq x$ 至少有一个成立。
- 2. **传递性**。如果 $x \leq y \perp 1$ 里 $y \leq z$,那么 $x \leq z$ 。
- 3. **反对称性**。如果 $x \le y$ 和 $y \le x$ 均成立,那么 x = y。

那么称 \leq 是S上的一个**全序关系**。显然良序关系是全序关系的子集。

和良序关系相比,全序关系更加符合常规的认知。比如,实数集上熟知的"<"就是全序关系。由于完全性的存在,凡是具有全序关系的数据类型,都可以进行排序;反之,在《数据结构》里的"通常意义的排序"问题中,都假定数据结构中的元素数据类型具有"先验的全序关系"。

在 C++ 中,排序函数std::sort接受三个参数,其中第三个参数就表示"自定义的全序关系"。基本数据类型(如int和double),以及一些组合类型(如std::tuple)定义了内置的全序关系(即熟知的"≤"),但也可以使用其他的全序关系进行排序。其他编程语言中的排序函数也有类似的设计。

除了全序关系之外,还有一种序关系在《数据结构》中也经常会提到: **偏序** (partial order) 关系。

如果集合 S 上的一个关系 \leq 满足:

- 1. **自反性**。 $x \leq x$ 。
- 2. **传递性**。如果 $x \leq y$ 且 $y \leq z$,那么 $x \leq z$ 。
- 3. **反对称性**。如果 $x \le y$ 和 $y \le x$ 均成立,那么 x = y。

那么称 \leq 是 S 上的一个**偏序关系**。偏序关系和全序关系相比,第 1 个条件(完全性)变成了更简单的自反性;也就是说,并不是 S 中的任意两个元素都能进行比较。比如,令 S 为"考生组成的集合", \leq 定义为"考生 x 的每一门分数都小于等于考生 y"。您可以轻易验证,这个关系是偏序关系但不是全序关系。

在计算机编程中直接定义偏序关系是不方便的,因为 \leq 的返回值往往是bool类型,不存在true和false之外的第三个选项(无法比较)。并且,无法比较的情况不能随意地返回一个true或false的值,因为这可能导致传递性被破坏。所以,当在编程时需要定义一个偏序关系时,往往会将它扩展成一个全序关系。比如,给S 中的所有元素做标号,当已有的偏序关系无法比较时,则根据标号的大小进行比较。扩展成全序关系之后,就可以进行排序了。由扩展成的全序关系的不同,可能会产生不同的排序结果。

在 C++20 中定义了各种序关系,用于作为航天飞机运算符operator<=>的返回值。比如,偏序关系被定义为std::partial_ordering,这个类型包括大于、小于、等价以及无法比较四种比较结果。除此之外,还提供了包括大于、小于和等

于的强序关系std::strong_ordering和包括大于、小于和等价的弱序关系std::weak_ordering。这两者都可以解释为全序关系,区别在于"等于"和"等价",或者说"相同"和"相等"。强序关系不允许两个不同的元素相等(这是非常强的条件),而弱序关系允许。

2.6.3 自上而下的归并排序

现在回到向量排序的问题。对于一个线性表,如果它的数据类型是全序的;且对其中的任意一个元素 x,和 x 的后缀中的任意一个元素 y,总是有 $x \leq y$,则称它是**有序的**(ordered)。对于无序线性表,通过移动元素位置使其变为有序的过程,称为**排序**(sort)。在计算机领域所说的有序,一般都是指升序。所以在上面的定义中使用的是后缀。如果您想要讨论降序或者其他的顺序(比如按最小素因子排序),只需要重新定义全序关系 \leq ,即可以回归为升序的情况进行处理。

在上面的程序中,我们规定了一个排序的抽象模板类,它接收一个线性表(通过概念限制)对其进行排序。因为排序的结果一定是一个序列,所以我们只考虑线性表。三个模板参数分别为元素类型、数据结构类型和规定的序关系。约定俗成地,我们通常使用严格的序关系,比如 <,而不是不严格的 ≤。C++ 提供了模板std::less来表示使用类型T定义的小于运算符,用户也可以自定义仿函数传入这个模板中。

排序是计算机领域最重要的算法之一。在计算机出现至今,人们提出了各种各样的排序算法,并且仍然有不少研究者在从事着排序算法的研究。在《数据结构》中,将专门有一章讨论各种排序算法。在本节,先介绍一种最基本、最经典的排序方法: **归并排序**(merge sort)。归并排序的发明人是大名鼎鼎的冯·诺依曼(von Neumann),这位"计算机之父"在 1945 年设计并实现了该算法。

图 2.10 向量的归并排序

归并排序的设计采用的仍然是递归的思想:

- 1. 规模 n ≤ 1 的向量总是天然有序的。
- 2. 对于规模 n > 1 的向量,可以将其分成前后两部分,长度分别为 $\frac{n}{2}$ 和 $n \frac{n}{2}$ (在上一章您见过这个分法),从而将规模为 n 的问题化归为两个规模较小的子问题。这些子问题可以继续递归下去直到化为 1。解决子问题之后,V 的前半部分和后半部分分别有序,只需要将这 2 个有序序列合并为 1 个有序序列,就可以解决原问题了。这一合并的过程就称为**归并**(merge)。

您可以根据上面的思想,自己实现一个归并排序的算法(一个建议是,将归并的过程提取为单独的函数以提高可读性),然后和下面的示例算法进行比较。这个代码比较长。最好自己先写一份代码,因为直接读示例代码很难记住。注意,在《数据结构》部分,代码的记忆既不是重点也没有必要。归并排序这个知识点的核心是上面的这一段文字,即归并的思想。

下面的示例代码既可以用于向量、又可以用于后面的章节介绍的列表。

```
template <typename T, template <typename > typename Linear,
      typename Comparator = std::less<T>>
  class MergeSort : public AbstractSort<T, Linear, Comparator> {
2
   protected:
3
4
      Vector<T> W;
5
      Comparator cmp;
      using Iterator = typename Linear<T>::iterator;
6
7
      void merge (Iterator lo, Iterator mi, Iterator hi, size_t
         leftSize) {
         W.resize(leftSize);
8
9
         std::move(lo, mi, std::begin(W));
         auto i { std::begin(W) };
10
         auto j { mi }, k { lo };
11
         while (i != std::end(W) && j != hi) {
12
```

```
if (cmp(*j, *i)) {
13
14
                *k++ = std::move(*j++);
15
             } else {
                *k++ = std::move(*i++);
16
             }
17
18
          std::move(i, std::end(W), k);
19
20
21
      void mergeSort(Iterator lo, Iterator hi, size_t size) {
          if (size < 2) return;</pre>
2.2.
          auto mi { lo + size / 2 };
23
          mergeSort(lo, mi, size / 2);
24
          mergeSort(mi, hi, size - size / 2);
25
          merge(lo, mi, hi, size / 2);
26
27
      }
28
   public:
29
      void operator()(Linear<T>& L) override {
30
          mergeSort(std::begin(L), std::end(L), L.size());
31
      }
32
   };
```

C++ 提供了std::inplace_merge函数(传入 lo、mi 和 hi 的迭代器)来进行归并,您可以用这个函数代替上述手写的merge方法。归并排序的算法中有很多细节可以挖掘,下面列出了其中的一部分。在阅读并理解上述归并排序的算法的基础上,您可以尝试回答以下问题(其中,假定比较函数cmp的时间、空间复杂度都是 O(1) 的),然后再查看后面的分析。

在归并的一开始,将前半部分移动到了辅助向量中。为什么前半部分需要移动出去,而后半部分不需要?

在归并的过程中,事实上也采用了快慢指针的思想。快指针(探测指针)是 j,慢指针(更新指针)是 k。还有一个探测指针是 i,不过它工作在辅助向量 W 上。如果前半部分不移动的话,i 也会工作在原向量上,它和 k 不构成快慢关系。于是,一旦后半部分比前半部分的元素小,就会把前半部分的元素覆盖掉;而对后半部分而言,除非前半部分已经全部加入到原向量中,否则 j 永远能够在 k 前面。而当前半部分全部加入之后,i < mi - lo 不再成立,循环结束。

在归并的最后,我们将前半部分(此时在辅助向量里)多余的元素移动回原向量。为什么后半部分多余的元素不需要?

后半部分的数据没有移动出去,如果前半部分的元素已经全加入到原向量了,则后半部分剩余的元素已经在它们应该在的位置上,不需要再移动了。

辅助向量 W 的长度至少是多少?并由此确定归并排序的空间复杂度。

辅助向量 W 的长度至少为最大的 \min – \log 10,也就是 $\frac{n}{2}$,因此空间复杂度为 $\Theta(n)$ 。这里需要注意,递归产生的 $\Theta(\log n)$,相比于辅助数组的 $\Theta(n)$ 来说可以忽略;但在

解答题的场合,应当书写在解题过程中表示考虑到了此种情况。

归并排序的时间复杂度是多少?如果划分的时候,左半部分不取 $\frac{n}{2}$ 而是取 kn (其中 0 < k < 1),时间复杂度又会变成多少?如果取作 $\max\left(\frac{n}{2}, C\right)$,其中 C 是一个给定的常数,那么时间复杂度又会变成多少?

此类问题通常可以用**主定理**(master theorem)解决。主定理是用来处理分治算法得到的递归关系式的"神兵利器"。它的证明太过复杂,这里只陈述结论。

定理 2.1 (主定理): 设 $T(n) = aT\left(\frac{n}{b}\right) + f(n)$, 则:

- 1. 若 $f(n) = O\left(n^{\log_b a \epsilon}\right)$, 其中 $\epsilon > 0$, 则 $T(n) = O\left(n^{\log_b a}\right)$ 。
- 2. 若 $f(n) = \Theta\left(n^{\log_b a}\right)$, 则 $T(n) = \Theta\left(n^{\log_b a} \log n\right)$ 。
- 3. 若 $f(n) = \Omega\left(n^{\log_b a + \epsilon}\right)$, 其中 $\epsilon > 0$, 且 $\overline{\lim_{n \to \infty}} \frac{f\left(\frac{n}{b}\right)}{f(n)} < 1$, 则 $T(n) = \Theta(f(n))$ 。

2.6.4 自下而上的归并排序*

上一节中展示的归并排序是自上而下的。这里的"自上而下"指的是,我们首先调用整个向量的归并排序 mergeSort(V),在这个函数中递归地调用子向量的归并排序 mergeSort(L) 和 mergeSort(R)。以此类推,直到"最下方"的递归实例,也就是递归边界(只有一个元素的向量)。

自上而下的归并排序是归并排序的经典实现。但是我们分析归并函数 merge 的调用次序会发现,由于归并发生在递归调用之后,所以归并的次序反而是自下而上的:首先对"最下方"的子向量做归并,得到长度为 2 的有序子向量。一个子向量可以被归并,当且仅当它的左半和右半的子向量已经被归并完成。

如图2.11中左图所示,在自上而下的归并排序中,只要左半和右半的子向量都已经被归并完成,就会引发这两个子向量的归并。对于7个元素组成的向量,一共会触发6次归并,归并的次序在图中用1至6表示。由于一个向量的归并,只需要保证它左半和右半归并完成之后进行,而并不要求在左半和右半归并完成之后立即进行,所以我们可以调整这6次归并的次序。我们首先将向量视作长度为1的段两两合并,然后将它视作长度为2的段(每个段内已经有序)两两合并,再视作长度为4的有序段两两合并,以此类推,直到归并整个向量为止。上面的每一步

图 2.11 自上而下和自下而上的归并次序

称为一趟。这种方法同样保证了一个子向量晚于它的左半和右半被归并,因而也能保证正确性。

如图所示,因为向量规模不一定是 2 的幂次,每一趟的末尾处需要特殊处理。 从图中还可以看出,自下而上的归并排序对于子向量的分拆方式,是有可能和自 上而下不同的。下面展示了自下而上的归并排序的一个实现,它复用了自上而下 版本的 merge 函数,只是在调用 merge 的次序上和自上而下的版本有所区别。

```
|template <typename T, template<typename> typename Linear,
      typename Comparator = std::less<T>>
   class MergeSortUpward : public MergeSort<T, Linear, Comparator>
2
3
   public:
      void operator()(Linear<T>& L) override {
4
5
          auto n { L.size() };
          for (size_t width { 1 }; width < n; width *= 2) {</pre>
6
7
             auto lo { std::begin(L) };
             Rank i { 2 * width };
8
9
             while (i < n) {
                auto mi { lo + width };
10
                auto hi { mi + width };
11
                this->merge(lo, mi, hi, width);
12
13
                lo = hi;
                i += 2 * width;
14
15
16
             if (n + width > i) {
                auto mi { lo + width };
17
18
                auto hi { std::end(L) };
                this->merge(lo, mi, hi, width);
19
20
21
          }
22
      }
   };
23
```

外层循环进行的次数(也就是趟数)很显然是 $\lceil \log n \rceil$ 。在每一趟中,各个归并段是互不重叠,且可以证明至少有 $\frac{2}{3}$ 的元素参加了归并,所以每一趟的时间复杂

度为 $\Theta(n)$ 。因此,自下而上的归并排序时间复杂度同样是 $\Theta(n \log n)$ 。

2.6.5 基于比较的排序的时间复杂度

归并排序是一种**基于比较**(comparison-based)的排序。所谓基于比较,就是在算法进行过程的每一步,都依赖于元素的比较(即调用cmp)进行。基于比较的排序是针对全序关系设计的。大多数的排序算法都是基于比较的。还有一些不基于比较的排序,它们不是针对待排序数据类型的全序性设计的,而是针对待排序数据类型的其他性质设计的,因而应用范围会更小。在后文中会介绍一些不基于比较的排序。

下面将说明一个重要结论:

定理 2.2: 基于比较的排序在最坏情况下的时间复杂度为 $\Omega(n \log n)$ 。

这是本书中第一次使用信息论方法,讨论时间复杂度的最优性。信息论方法 在考试中通常不会直接考到,但用信息论的思路,有助于在算法设计题中判断自己 是否能得到时间复杂度层面上的满分。此外,信息论方法也对记忆知识点有帮助。

- 1. 因为是最坏情况,不妨假设所有元素互不相等。在排序算法开始之前,这n个元素可能的顺序关系有n! 种,而在排序算法开始之后,这n个元素可能的顺序关系只有1 种(因为已经找到了它们的顺序)。
- 2. 另一方面,每次比较都有两种结果(if分支和else分支)。剩下的可能的顺序关系被分为 2 个部分,根据比较结果,只保留其中的 1 个部分。在最坏情况下,每次保留的都是元素较多的部分,从而每次比较至多排除一半的可能。综合以上两点,至少需要进行 $log_2(n!) = \Theta(n log n)$ 次比较,于是就证明了上

定理 2.3 (斯特林公式): 在 $n \to \infty$ 时, $n! \sim \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$ 。

述的定理。最后一步的结论基于一个重要的公式:

这一公式的证明是纯数学的话题。感兴趣的话可自行在网上查找,这里不再叙述。在《数据结构》的学习中需要记住的公式并不多,斯特林(Stirling)公式是必须记住的公式之一。或者,您也可以只记住 $\log(n!) = \Theta(n \log n)$,因为这是它的主要应用。

由此可见,归并排序在基于比较的排序中,已经达到了最优的时间复杂度。当然,空间复杂度不是最优的,它需要 $\Theta(n)$ 的额外空间。关于排序的更多性质,在后面的专门章节中将继续分析。从这个时间复杂度下界也可以看出,排序需要付出的努力总是比置乱要高,这也符合我们对信息的一般认知:排序是熵减的过程,而置乱是熵增的过程,熵减总是要付出更多的努力。

2.6.6 信息熵 *

基于上一小节的讨论,本小节对香农(Shannon)提出的**信息熵**(information entropy)概念进行简要的介绍。在使用信息论判断复杂度问题时,并不一定需要使用信息熵去定量计算,因此如果您不感兴趣,也可以跳过本节。

在信息熵提出之前,人们很难定量地衡量一份信息所包含的信息量。香农创造性地引入概率论和热力学中的熵的概念,对信息的多少进行了定量描述。对于一个信息来说,在我们识别之前,会对它有一些先验的了解。如果我们已经先验地确切知道这个信息的内容,那么这个信息就完全是无效信息,所蕴含的信息量是0;反过来,我们对这个信息的先验了解越少、越模糊,这个信息所蕴含的信息量越丰富。

假设一个信息在我们已知的先验了解下,共有n种可能发生的情况。则对于每个情况,设其发生的概率为p,我们定义该情况的不确定性为 $-\log p$ 。对于一个信息整体,我们考虑它所有可能发生的情况的平均不确定性(即数学期望),定义其为该信息的信息熵,即

$$H = \mathbb{E}(-\log p) = -\sum_{i=1}^{n} p_i \log p_i$$

现在联系上一小节讨论的场景。在没有其他先验信息的情况下,一个乱序序列出现 *n*! 种排列的可能性是相等的,所以它的信息熵为:

$$H = -\log\left(\frac{1}{n!}\right) = \Theta(n\log n)$$

在排序结束时,序列只有唯一的可能性,所以信息熵为 0。在最坏情况下,我们进行 1 次比较-判断可以最多消除一半的不确定性,由于取了对数,所以一次判断能造成的熵减是 O(1) 的。综上所述,基于比较的排序的最坏时间复杂度是 $\Omega(n \log n)$ 的。

需要注意的是,即使信息熵的初值和终值都为 0,也不代表可以在 O(1) 的时间内完成算法。比如,对于完全倒序的序列来说,它的信息熵也为 0,但是将其进行排序需要 O(n) 的时间对序列进行倒置。所以,信息熵方法通常只能求出一个理论边界,并不代表这个边界是可以达到的。

2.6.7 有序性和逆序对

前面两个小节的讨论显示,对于没有任何先验信息的乱序序列来说,它的信息熵是 $\Theta(n \log n)$ 的,因此基于比较的排序在最坏情况下,永远不可能突破这一时

间复杂度限制。但是,如果我们事先了解到了一些先验信息,初始状态的信息熵就会下降,从而在理论上可以以更低的时间复杂度进行排序。

- 一个比较常见的情况是"基本有序"的条件。对于基本有序,通常有两种理解 方式。
 - 1. 认为基本有序就是信息熵很低的状态。我们知道,信息熵对应了信息的不确定性,也就是"无序性",信息熵比较高的序列无序性也比较高。因此,反过来也可以认为,信息熵比较低的序列基本有序。
 - 2. 认为基本有序指的是**逆序对**很少的状态。对于一个序列 A[0:n],如果 i < j 但 A[i] > A[j],则称 (i,j) 是一个逆序对。采用逆序对对序列有序性进行刻画,和信息论方法是分离的(因为一次交换可以最多消除 $\Theta(n)$ 个逆序对),但可以对顺序和倒序进行区分,在分析算法时常常可以起到重要的作用。

信息熵和逆序对都是我们分析和解决排序问题的方法。信息熵的视角更加宏观,我们很难计算每一步操作削减了多少信息熵,因此它往往用于复杂度层面上的分析;而逆序对的视角更加微观,很容易计算每一步操作消除了几个逆序对,所以可以用于具体的算法性质分析。下面我们从逆序对的角度回顾归并的过程。每次向更新指针的位置移动一个元素:

- 1. 如果被移动的元素来自于前半部分的探测指针,那么不会对逆序对的数量产生影响。
- 2. 如果被移动的元素来自于后半部分的探测指针,那么我们消除了它和前半部分剩余元素之间的逆序对。也就是说,我们消除的逆序对数量等于前半部分的剩余元素数量。

根据这一性质,我们可以在归并排序的过程中统计逆序对的数量。因为在前半和后半之一的元素被用尽之后,后半元素不需要移动,而前半元素需要从辅助空间中移回;所以,上面讨论的情况(2)会比情况(1)有数量更多的移动。因此我们可以看出,归并排序在处理完全倒序的序列时,尽管它的信息熵为0,但排序算法并不能发现这一先验信息,而是会进行更多的移动。

2.6.8 实验: 先验条件下的归并排序

下面讨论一个基本有序的场景:如果向量已经基本有序,只有开头的长度为 L(未知)的一小段前缀是乱序的(即前缀外全部有序,且前缀中的元素都比前缀 外的元素小),如何改进我们的归并排序,让它可以有更高的时间效率?改进之后 的时间复杂度是多少?

这个问题的示例代码可以在 VectorMergeSort.cpp 中找到,您可以根据自己的理解改写归并排序,并和示例代码进行比较。

这个问题也是一个排序经典问题。我们可以用信息熵和逆序对两种方法对这个场景进行分析。我们可以发现在这个场景中,乱序前缀之外的所有元素既不会提供信息熵也不会提供逆序对,因此在给定的先验条件下,序列的信息熵为 $\Theta(L \log L)$,逆序对数量为 $O(L^2)$ 。而原有的归并排序算法在最好情况下,时间复杂度也是 $\Theta(n \log n)$ 的。所以必须要改进。改进的时候,可以针对已知的方程 $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$ 做优化。

最直接的想法是从递归方程的目标入手,也就是将 T(n) 替换为 T(L)。从信息熵和逆序对的角度我们都可以发现,问题中的特殊场景相当于把排序问题的规模从 n 降低到了 L。我们可以从后向前遍历整个向量,以确定 L 的值。这种方法看起来非常直观,但确定 L 并没有那么简单。示例代码中给出了一个样例,它通过 $\Theta(n)$ 的时间找到 L,您可以自己寻找解决方法并和它对比。

```
void operator()(Linear<T>& L) override {
1
2
     Rank mid { L.size() - 1 };
     while (this->cmp(L[mid - 1], L[mid])) {
3
        if (--mid == 0) return;
5
     auto max_left { *max_element(begin(L), begin(L) + mid) };
6
     auto left { lower_bound(begin(L) + mid, end(L), max_left,
7
        this->cmp) };
     this->mergeSort(begin(L), left, left - begin(L));
8
9
```

另一个思路是从递归方程的形式入手。注意到,在这个方程中,递归项 $2T\left(\frac{n}{2}\right)$ 只要不改动递归方式,就是没法做优化的;而余项 $\Theta(n)$ 是有机会被优化的。需要在"比较好的情况"(即题中给出的"基本有序"的情况)下,让 $\Theta(n)$ 变得更小。归并排序在"将前半部分移动到辅助空间"的时候,就已经需要付出 $\Theta(n)$ 的时间。所以,我们需要在归并的最开始进行一次判断,判断是否可以不将前半部分移动到辅助空间:只需要判断前半部分的结尾是否小于后半部分的开头就可以。在我们之前实现的归并算法中,只需要加入下面的一行代码:

```
1 | if (cmp(*(mi - 1), *mi)) return;
```

这样,如果归并前的序列已经有序,就不需要进行归并。于是,对于不需要归并的部分,递归方程就变化为 $T(n) = 2T\left(\frac{n}{2}\right) + O(1)$,也就是 $\Theta(n)$ 。而需要归并的部分由题意,长度不超过 L,在这部分利用前面获得的结论,就可以得到时间复杂度为 $\Theta(L \log L)$ 。因此,改进后的时间复杂度为 $\Theta(n + L \log L)$ 。

由于归并排序的实际时间性能还和很多其他的因素相关,所以本书提供的实验代码只能大致地进行定性分析。如果您想要得到更加精准的分析结果,应当多次随机取平均值。我们可以从实验结果中看到,在题目给定的条件(前缀乱序)下,

两种改进策略的时间性能差不多;同时在 L 不大的时候,两种改进策略的性能都显著高于未改进的版本。您可以自己用上面介绍的两种方法,对自下而上的归并排序进行修改,使其时间复杂度达到 $\Theta(n+L\log L)$,并加入实验框架进行比较。

在本小节介绍的两种方法中,从递归方程入手的方法具有更好的泛用性。我们可以测试一个对偶问题:有且只有后缀是乱序的问题。在这个对偶问题上,从递归方程入手的方法仍然可以做到高效率,而从递归目标入手的方法则因为无法识别先验信息,和未改进的版本性能相若。

2.7 有序向量上的算法

2.7.1 折半查找

排序之后得到的有序向量,在查找时有额外的优越性。排序之后要执行查找操作,就不再需要一个一个元素看是否相等了。类似排序,我们首先建立针对有序线性表的抽象查找类。

```
template <typename T, template <typename> typename Linear =
    DefaultVector, typename Comparator = std::less<T>>
    requires std::is_base_of_v<AbstractLinearList<T, typename
    Linear<T>::position_type>, Linear<T>>
    class AbstractSearch : public Algorithm<typename Linear<T>::
    position_type(const Linear<T>&, const T&)> {};
```

这里可以使用刚才介绍的,基于比较的算法思路。将被查找的元素 e 和向量中的某个元素 V[i] 比较,比较结果有 2 种:

- 1. 如果 V[i] > e,那么只需要保留 V[0:i] 作为新的查找区间。
- 2. 如果 $V[i] \le e$,那么只需要保留 V[i:n] 作为新的查找区间。

当取 $i = \frac{n}{2}$ (**折半**) 时,可以保证新的查找区间长度大约是原来的一半,从而在 $\Theta(\log n)$ 的时间里完成查找。所以这个思路称为**折半查找**。当然,也存在其他二分的方法(i 取其他值),参见后面的《查找》一章。

您可以借助上面的设计或者自己的理解,设计折半查找的算法。下面给出了 一个使用递归的示例代码,它实现了刚才的设计。

```
template <typename T, typename Comparator = std::less<T>>
class BinarySearchRecursive : public AbstractSearch<T,
    DefaultVector, Comparator> {
    Comparator cmp;
    Rank search(const Vector<T>& V, const T& e, Rank lo, Rank hi
    ) const {
    if (hi - lo <= 1) {
        return lo < V.size() && cmp(V[lo], e) ? hi : lo;
    }
    Rank mi { lo + (hi - lo) / 2 };
</pre>
```

```
if (cmp(e, V[mi])) {
9
10
             return search(V, e, lo, mi);
11
          } else {
             return search(V, e, mi, hi);
12
13
14
   public:
15
      Rank operator()(const Vector<T>& V, const T& e) override {
16
17
          return search(V, e, 0, V.size());
18
19
   };
```

上面的算法,时间复杂度和空间复杂度均为 $\Theta(\log n)$,您可以自己证明。

查找是算法设计的重点。在设计的时候,需要尤其注意多个相等元素的时候是返回秩最大、秩最小还是任意一个,以及查找失败的时候返回何种特殊值。如果是无序向量,正如2.5.3节那样,那么在查找失败的时候很自然地会返回一个无效值,比如说 –1 或者 *V*.size()。但是在有序向量的情况下,即使查找失败,我们也可以返回一些有意义的值,向调用者传递一些额外的信息。下面以前面的折半查找算法为例,分析查找成功和查找失败的情况下返回值的设计。

因为如果 e < V[mi] 就只保留前半段 V[lo:mi],所以我们在任何时刻都可以保证, V[hi] > e (可认为初始值 $V[V.size()] = +\infty$)。另一方面,因为另一边的比较是不严格的,所以我们保证的是 $V[lo] \le e$;注意,这个式子只有 $lo \ne 0$ 也就是 lo 被修改过一次之后才成立。

而当进入递归边界的时候,V[lo:hi] 有且只有一个元素 V[lo]。此时,可以分成小于、等于、大于三种情况讨论。

- 1. 如果 V[lo] < e,那么我们可以定位到 V[lo] < e < V[hi],此时返回 hi,就是大于 e 的第一个元素。
- 2. 如果 V[lo] = e,那么我们直接返回 lo,符合查找算法的期待;并且,由于 e < V[hi],所以如果有多个等于 e 的元素,则返回的是最大的秩。
- 3. 如果 V[lo] > e,根据前面的分析可知,这种情况只可能发生在 lo = 0 的情况。于是,e 小于向量中的所有元素,此时返回 lo,也是大于e 的第一个元素。

综上所述,我们验证了上述折半查找算法的正确性,并且在查找成功时,返回的是最大的秩,在查找失败时,返回的是大于 e 的第一个元素的秩。二分算法在设计的时候非常容易出错;当您自己设计二分算法的时候,也可以使用上面的思考流程来分析自己的算法。

2.7.2 消除尾递归

查找 V[0:n] 中某个元素 e 的下标,这个问题在计算前有 n+1 种(包括 -1)可能的结果,计算后有 1 种确定的答案,因此从信息论的角度讲,最坏时间复杂度一定是 $\Omega(\log n)$ 的。但空间复杂度并不一定要是 $\Omega(\log n)$ 。在这一小节,将介绍一种叫做**消除尾递归**的技术,使用这个技术,可以将上面的折半查找算法的空间复杂度降为 O(1)。

如果一个递归函数只在返回(return)前调用自身,则称其为**尾递归**(tail recursion)。在实际的编程过程中如果开启了编译器优化选项,则尾递归在通常会被编译器自动优化。

本小节只介绍对于尾递归的消除方法,其他类型的递归消除将在后文中讨论。 对于尾递归,只需要将递归函数的参数作为循环变量,就可以将其改写为不含递 归的形式,从而降低空间复杂度。下面的模板是典型的尾递归。

```
R operator()(Args... args) override {
   if ((*pred)(args...)) {
      return (*bound)(args...);
   }
   return apply(*this, (*next)(args...));
}
```

示例代码可以在 VectorSearch.cpp 中找到,这里只提取出关键部分。如果您对模板元编程的技巧不感兴趣,下面的说明略读即可。其中,需要传入三个仿函数指针pred(用于判断是否进入递归边界的谓词)、bound(用于在递归边界上生成返回值)和next(用于在非递归边界上生成下一个递归调用的参数)。std::apply用于将next返回的元组再次传递到仿函数中进行调用。此外,递归参数往往是值而不是引用。引用总是作为整个递归过程中共享的参数,如折半查找中的向量 V 和待查找元素 e,而不是每次递归调用时传递的参数。因此,我们可以直接用值传递args...,而不需要使用std::forward进行完美转发。上面的递归算法可以改写成如下的迭代算法,其中std::tie表示元组的绑定赋值。

```
R operator() (Args... args) override {
    while (!(*pred) (args...)) {
        tie(args...) = (*next) (args...);
    }
    return (*bound) (args...);
}
```

2.7.3 实验: 迭代形式的折半查找

您可以利用上面的尾递归模板,将折半查找递归形式进行拆解,分解出pred、bound和next,然后代入到上面的迭代模板中,将其改写为迭代形式。示例代码仍然在 VectorSearch.cpp 中。比如,next可以实现为:

```
tuple<Rank, Rank> operator() (Rank lo, Rank hi) override {
1
     Rank mi { lo + (hi - lo) / 2 };
2
3
     if (cmp(e, V[mi])) {
4
         return { lo, mi };
5
     } else {
6
         return { mi, hi };
7
     }
8
  }
```

下面是迭代形式的一个示例程序,它和最初的递归形式是完全等价的。

```
Rank operator()(const Vector<T>& V, const T& e) override {
1
      Rank lo { 0 }, hi { V.size() };
2
      while (hi - lo > 1) {
3
         Rank mi { lo + (hi - lo) / 2 };
4
5
         if (cmp(e, V[mi])) {
6
             hi = mi;
7
          } else {
             lo = mi;
8
9
10
      return lo < V.size() && cmp(V[lo], e) ? hi : lo;</pre>
11
12
```

在示例的测试程序中,我们构造了长度为 n 的向量,将其随机赋值为某个区间的数并排序,然后重复 10⁴ 次查找(这是因为单次查找的效率太高,无法正确反映各个算法的性能差异)。我们会发现,由于进行了很多抽象,使用模板的方法性能会显著低于直接递归或迭代的性能;而递归和迭代之间相差无几(编译器对递归的版本进行了自动优化)。但即使成模板,它作为对数复杂度的算法,效率仍然远远高于在2.5.3节中讨论的顺序查找,您可以自己实现一个基于顺序查找的算法参与对比。

在本节的最后再次强调,现代 C++ 编译器如果开启了优化选项,通常可以在编译的过程中自动消除尾递归,所以在实际上机编程时,不需要刻意将尾递归改写成循环形式。但在《数据结构》中分析算法的时候,不应该考虑编译器做的优化,所以在算法设计题中,如果出现了未被改写的尾递归,就会有被扣空间分的风险。此外,您也不应当总是依赖编译器的尾递归优化,因为一些语言(比如 Python)拒绝提供尾递归优化,在 C++ 中运行良好的代码移植到这些语言上可能会发生问题。

2.7.4 实验: 向量唯一化

下面讨论**唯一化**(unique)问题。给定一个向量,我们希望删除它中间相等的重复元素,只保留秩最小的那一个。这里再次看到了相等和相同的区别,数据结构中是不可能有相同的元素的,而相等的元素我们可以用它的地址(位置、秩)来区分。代码可以在 VectorUnique.cpp 中找到。

```
template <typename T>
class VectorUnique : public Algorithm < void, Vector < T > & > { };
```

一个简单但有效的解法是: 从左到右考察 V 中的每个元素,删除这个元素的后缀中,所有和它相等的元素。在看下面的代码前,您可以自己实现这个算法。

在上面的算法里,利用了我们在2.5.7节中使用的"删除-擦除"法一次性地删除后缀里的所有重复元素;因此,最好情况下(所有元素都相等),可以达到 $\Theta(n)$ 的时间复杂度。虽然按值删除达到了 $\Theta(n-r)$ 的时间复杂度,但是因为 r 需要遍历整个向量,所以在最坏情况下(即所有元素都互不相同)需要进行 $\Theta(n^2)$ 次比较。

值得一提的是,如果按值删除的时候采用的是最坏情况 $\Theta(n^2)$ 的朴素(逐个删除)算法,那么唯一化在最坏情况下时间复杂度仍然是 $\Theta(n^2)$,并不会来到 $\Theta(n^3)$ 。这是初学者容易出现的错误,即直接把循环内外的时间复杂度相乘。这种天真的想法可能是来自于公式 $O(f(n))\cdot O(g(n)) = O(f(n)\cdot g(n))$ 。这个公式本身没有问题,但我们联系一下概率论里的 P(A)P(B) = P(AB) 的条件就能发现端倪:如果内层循环和外层循环是有联系的(不独立的),那么就不能直接相乘。比如,在上面的代码中,外层循环的 r 的区间是 0 到 V.size();然而,V.size()并不是一个常量 n,在内层循环中它会发生变化。在使用朴素算法进行按值删除的时候,删除的元素越多,花费的时间越长,但同时缩小的向量规模也就越多,减少的外层循环的轮数也就越多。您可以在这个基础上,完成对朴素按值删除情况下,上述唯一化算法的时间复杂度分析。

在有序向量的情况下,问题可以得到进一步的简化。相等的元素总是排在连续的位置的。所以,可以通过快慢指针的方法。快指针一次经过一片相等的元素,而慢指针保留这些元素中的第一个(这个算法的前提条件并不是有序,只要求相等的元素排在一起即可,但通常建立这一条件的方法是排序)。您已经见过好几次

快慢指针的方法,应该可以自己写出来。下面是一个示例程序。

```
// VectorUniqueFSP
1
   void operator() (Vector<T>& V) override {
2
3
      Rank r { 0 }, s { 0 };
      while (++s < V.size()) {</pre>
4
          if (V[r] != V[s]) {
5
6
             V[++r] = move(V[s]);
7
          }
8
9
      V.resize(++r);
10
```

这个算法的时间复杂度是 $\Theta(n)$ 的。在 STL 中,提供了std::unique来进行唯一化操作,它同样要求相等的元素排在一起。std::unique和std::remove一样不提供擦除功能,需要再进行resize。

如果定义了全序关系(即可排序),那么无序向量的唯一化可以化归到有序向量的情况进行处理: 先进行一次 $\Theta(n \log n)$ 的排序,再用有序向量唯一化。但在排序的时候,会损失"元素原先的位置"这一信息,所以需要开辟一个额外的 $\Theta(n)$ 的空间保存这一信息,以在唯一化之后能够顺利还原。您可以尝试实现这样的算法,并和给出的示例算法相比较。它的时间复杂度为 $\Theta(n \log n)$,优于前面的VectorUniqueBasic;但需要引入辅助向量,空间复杂度为 $\Theta(n)$ 。

```
template <typename T>
1
   class VectorUniqueSort : public VectorUnique<T> {
2
3
      struct Item {
          T value;
4
5
          Rank rank;
          bool operator==(const Item& rhs) const {
6
7
             return value == rhs.value;
8
          }
          auto operator<=>(const Item& rhs) const {
9
             return value <=> rhs.value;
10
11
          }
12
      };
      Vector<Item> W;
13
      void moveToW(Vector<T>& V) {
14
          W.resize(V.size());
15
          for (Rank r { 0 }; r < V.size(); ++r) {</pre>
16
             W[r].value = move(V[r]);
17
             W[r].rank = r;
18
19
20
      void moveToV(Vector<T>& V) {
2.1
2.2
          V.resize(W.size());
23
          for (Rank r { 0 }; r < W.size(); ++r) {</pre>
24
             V[r] = move(W[r].value);
25
       }
26
```

```
public:
2.7
      void operator() (Vector<T>& V) override {
28
29
          moveToW(V);
          stable sort (begin (W), end (W));
30
          W.resize(unique(begin(W), end(W)) - begin(W));
31
32
          sort (begin (W), end (W), [] (const Item& lhs, const Item&
             rhs) {
33
             return lhs.rank < rhs.rank;</pre>
34
             });
35
          moveToV(V);
36
      }
37
   };
```

通过实验我们看到,在最坏情况下(所有元素互不相同),直接对无序向量进行处理,无论采用"删除-擦除"法还是逐个删除法都非常慢,而先排序再复原则快得多。而在最好情况下(所有元素都相同),"删除-擦除"法时间复杂度仅为 $\Theta(n)$ 最快,先排序后复原需要 $\Theta(n \log n)$ 较慢,而逐个删除的方法仍然需要 $\Theta(n^2)$ 最慢。

2.8 实验:循环位移

通常我们遍历向量都采用从前向后、一个一个元素遍历的形式。在本章的最后,用**循环位移**(cyclic shift)作为例子,讨论一下非常规的遍历方法。代码可以在 *CyclicShift.cpp* 中找到。

给定向量 V[0:n] 和位移量 k,则将原有的向量 $V[0], V[1], \dots, V[n-1]$,变换为 $V[k], V[k+1], \dots, V[n-1], V[0], V[1], \dots, V[k-1]$,称为**循环左移**。相应地,变换为 $V[n-k], V[n-k+1], \dots, V[n-1], V[0], V[1], \dots, V[n-k-1]$,称为**循环右移**。循环左移和循环右移的实现方法大同小异,这一小节只讨论循环左移,右移的情况请您自己完成。建议您先自己设计解决这个问题的算法并实现。

循环左移的过程可以表示为 $(V[0:k],V[k:n]) \rightarrow (V[k:n],V[0:k])$ 。这个形式非常类似于交换。相信您一定知道最经典的交换函数的实现:

```
template <typename T>
void swap(T& a, T& b) {
   T tmp { move(a) };
   a = move(b);
   b = move(tmp);
}
```

一个最朴素的想法,就是用类似的辅助空间,暂存 V[0:k] 中的元素,然后通过 3 次移动来完成循环左移,如图2.12所示。

图 2.12 用三次移动实现循环左移,与交换元素的对比

```
// CyclicShiftMove
void operator() (Vector<T>& V, size_t k) override {
   Vector<T> W(k);
   move(begin(V), begin(V) + k, begin(W));
   move(begin(V) + k, end(V), begin(V));
   move(begin(W), end(W), end(V) - k);
}
```

这一算法的时间复杂度是 $\Theta(k) + \Theta(n-k) + \Theta(k) = \Theta(n+k)$ 。考虑到 k = O(n),也可以简化为 $\Theta(n)$ 。空间复杂度则为 $\Theta(k)$ 。

下面的目标则是将空间复杂度降到 O(1)。为了保持时间复杂度仍然为 O(n) 不变,需要尽可能一步到位地移动元素。当我们让 V[i+k] 移动到 V[i] 的位置上时,需要暂存 V[i] 到辅助空间去。下一步,如果继续将 V[i+k+1] 移动到 V[i+1] 的位置,那么需要的辅助空间就会增大。为了防止辅助空间增大,则需要考虑"不用暂存"的元素: 也就是已经被移动的 V[i+k]。下一步将 V[i+2k] 移动到 V[i+k] 的位置,这就是不需要新的辅助空间的。

因此可以得到一个算法: 将 V[i+k] 移动到 V[i], 再将 V[i+2k] 移动到 V[i+k], 以此类推。由于向量中的元素是有限的,您可以证明,存在 j,使得 (i+jk)%n=i,也就是经过 j 次移动后回到了 V[i]。最后一次赋值,将辅助空间里的 V[i] 拿出来赋给 V[i-k] 也就是 V[i+(j-1)k] 即可。这样实现了一个"轮转交换"的功能。

需要注意的是,这样一轮并不一定能经过 V 中所有的元素。比如在 n=6, k=2, i=0 时,只轮转交换了 V[0], V[2], V[4] 这 3 个元素,而对另外 3 个元素则没有移动。我们可能需要进行多轮"轮转交换",各轮共享同一个辅助空间。图2.13展

示了 n = 12, k = 3 的轮转交换例子。

图 2.13 用轮转交换进行循环位移

下面证明: 对任意的秩 $0 \le r < n$, 都存在唯一的 $0 \le i < d$ 和 $0 \le j < \frac{n}{d}$, 使 得 r = (i + jk)%n。其中, $d = \gcd(n, k)$ 是 n 和 k 的最大公因数。

证明 因为 r 和数对 (i,j) 的取值范围都是 n 元集, 所以只要证明 (i,j) 到 r 是单射, 就蕴含了它同时是满射。因此,只需要证明对于不等的 (i_1,j_1) 和 (i_2,j_2) , $(i_1+j_1k)\%n \neq (i_2+j_2k)\%n$ 。

假设存在整数 q,使得 $(i_1 - i_2) + (j_1 - j_2)k + qn = 0$ 。由于 $(j_1 - j_2)k + qn$ 必定是 d 的倍数,而 $|i_1 - i_2| < d$,所以只能有 $i_1 = i_2$ 。

设 $k = k_1 d, n = n_1 d$,那么 $(j_1 - j_2)k_1 + qn_1 = 0$ 。因为 $(k_1, n_1) = 1$,所以 $j_1 - j_2$ 必定是 n_1 的倍数,但 $|j_1 - j_2| < \frac{n}{d} = n_1$,所以只能有 $j_1 = j_2$ 。这和 (i_1, j_1) 与 (i_2, j_2) 不等矛盾,故由反证法得到单射成立。

于是,遍历顺序应当是:依次从 $0,1,\dots,d-1$ 出发,以k为步长遍历 $\frac{n}{d}$ 次回到起点。这个算法的书写有一定挑战性,您可以效仿前面的swap去实现轮转交换。

```
// CyclicShiftSwap
   void operator()(Vector<T>& V, size_t k) override {
2
3
      size_t d { static_cast<size_t>(gcd(V.size(), k)) };
      for (Rank i { 0 }; i < d; ++i) {</pre>
4
         T tmp { move(V[i]) };
5
         Rank cur { i }, next { (cur + k) % V.size() };
6
7
         while (next != i) {
             V[cur] = move(V[next]);
8
9
             cur = next;
             next = (cur + k) % V.size();
10
11
         V[cur] = move(tmp);
12
      }
13
14
```

这一算法的时间复杂度是 $\Theta(d) \cdot \Theta\left(\frac{n}{d}\right) = \Theta(n)$,空间复杂度降低到了 O(1)。 在很多教材上会介绍另一种解法: 三次**反转** (reverse)。基于反转的原理是,为 了实现 (V[0:k], V[k:n]) \to (V[k:n], V[0:k]),本质上是需要让后半段移动到前半段, 前半段移动到后半段。而反转恰好能实现这个功能,且不需要移动算法那样的额外空间。在第一次反转后,V[0:n] 变为了 $\overline{V}[n:0]$ (这里用上划线表示反转),我们可以将它拆分为($\overline{V}[n:k]$, $\overline{V}[k:0]$),然后再将这两段分别反转即可,如图2.14所示。

图 2.14 用三次反转进行循环位移

```
// CyclicShiftReverse
void operator() (Vector<T>& V, size_t k) override {
   reverse(begin(V), end(V));
   reverse(begin(V), end(V) - k);
   reverse(end(V) - k, end(V));
}
```

三次反转的时间复杂度同样是 $\Theta(n)$, 而空间复杂度是 O(1)。下面从理论层面来比较以上三种做法的时间效率。三次移动的做法,写入内存的次数为 k+(n-k)+k=n+k。轮转交换的做法,写入次数为 n(每个元素都一步到位地写入了目标位置)。三次反转的做法,写入次数为 n+(n-k)+k=2n。显然,轮转交换的写入次数最少,三次移动次之,三次反转最多。但实际上,由于三次移动中开辟 $\Theta(k)$ 的空间(并自动做零初始化)本身需要时间,所以它在 k 比较大的时候反而会慢于三次反转。您可以从实验结果中看到这一点。此外,您还能从实验结果中看到,虽然理论上轮转交换的写入次数是 n,但它的时间消耗上下浮动很大(并不像三次移动那样随 k 变大而变大),有些时候时间消耗还会大于三次移动和三次反转。这是算法的局部性导致的,具体机制参见《组成原理》。

2.9 本章小结

向量(顺序表)是程序设计中最经常使用的数据结构,因此本章具有较大的容量。向量的顺序结构是简单的,向量的循秩访问特性是自然的,无论是学习还是考试,这一章的重点都在算法设计上。本章通过较多的实验展示了一些算法设计的典型技巧。其中,对于排序和查找两个重点内容,我们还将在后续的算法章节再次讨论。

本章的主要学习目标如下:

- 1. 您有了对算法设计中的不必要工作的优化意识。
- 2. 您学会了对顺序表的整块进行操作, 而不是对单个元素进行操作。
- 3. 您学会了使用快慢指针进行探测和更新。
- 4. 您了解到可以从信息的观点分析时间复杂度问题。
- 5. 您了解到排序预处理可以为后续问题的解决提供帮助。
- 6. 您了解了分析分摊复杂度和平均复杂度的意义。
- 7. 您深化了对递归-迭代关系的认识,掌握了消除尾递归的方法。

向量本身是很简单的数据结构,记忆它的插入、删除、查找和各种变形,也是相对简单的;重要的地方在于希望您能理解并掌握书中这些典型算法的设计思路、优化思路。希望本书的内容能为您解决基于向量的算法设计问题提供帮助。

第3章 列表

本章介绍另一种线性表: **列表**(list)。列表和向量的区别在于,列表不要求在 内存中占据的空间是连续的。这一特点赋予了列表更大的灵活性,使列表的一些 操作比向量效率更高;但同时,这一特点也让列表无法通过秩定位到内存地址,丧 失了循秩访问的能力,从而在另一些操作上效率不如向量。本书会介绍列表是如 何工作的,至于列表和向量的对比表格,希望读者在阅读后自己完成。

3.1 列表的结构

列表不要求在内存中占据的空间是连续的,因此不能循秩访问,只能循位置访问:通过指向列表中某个元素的指针(也就是该元素的地址)来访问它。那么,如何获得一个元素的地址呢?首先,把所有元素的地址汇总在一张表看起来是可行的,但如果这么做的话,这张表本身如何存储就变成了一个新的问题。如果这个表使用向量存储,那么我们就放弃了列表的不连续的灵活性;如果这个表使用列表存储,那么就成为了一个嵌套的问题。所以,我们不能把所有元素的地址汇总在一张表,也就是说,我们不能采用集中式的地址存储,需要采用分布式的地址存储。

所谓分布式的地址存储,就是我们在每个元素处,同时存储它前一个和后一个元素的地址。这样,我们无论是从前往后还是从后往前,都能遍历整个列表。很明显,这样带来了一个坏处,就是我们只能"逐个"访问元素,而不能像向量那样根据任意的秩访问元素。这就是列表选择更大灵活性的代价。除此之外,列表还有一些其他的代价,比如每个元素处除了它本身的空间,还需要存两个地址,因而有可能需要付出比向量更大的空间(注意这里是有可能,因为向量的装填因子很低时,所造成的的空间浪费更大)。为了降低列表的空间浪费,有时我们会放弃存储前一个元素的地址,只存储后一个元素的地址。这种情况称为单向列表(forward list)或单链表,相对应地,同时存储前一个和后一个元素地址的情况称为双向列表(bidirectional list)或双链表。

3.2 列表的节点

3.2.1 单向列表节点

为了设计列表的抽象类,我们需要首先将列表中的每个元素抽象出来。列表中每个数据元素及其附加属性(即,前后元素的地址)组成了一个数据单元,或者

称**节点** (node)。全国科学技术名词审定委员会在 2018 年出版的《计算机科学技术名词》(第三版)中,认为"节点"是数据结构中数据元素的连接点或端点,而"结点"是计算机网络中的网络拓扑设备,并注明二者互为别称。严书等数据结构经典教材使用的是"结点",国内各学者对这两个概念的理解也互有不同,因此通常默认不做区分。本着从简到繁的精神,我们从单向列表的节点开始。

```
template <typename T>
2
   class ForwardListNode {
3
      T m_data;
      std::unique_ptr<ForwardListNode> m_next { nullptr };
4
5
      ForwardListNode() = default;
6
7
      ForwardListNode(const T& data) : m_data(data) {}
      T& data() { return m_data; }
8
      std::unique_ptr<ForwardListNode>& next() { return m_next; }
9
10
   };
```

单向列表因为只有后向指针,所以我们将它声明为智能指针,让前一个节点具有后一个节点的所有权。这样,我们只要释放一个节点,就可以自动地释放掉它的所有后继:事实果真如此吗?这个想法看起来很美好,但实际上会出现问题。

图 3.1 列表节点的递归析构和迭代析构

对于规模为 n 的列表 L 来说,如果我们清空列表,释放它的第一个节点 L[0] (请注意,虽然可以这样表记,但列表是不能循秩访问的),那么在 L[0] 的析构函数中会释放 L[0] 的后向指针,也就是 L[1]。而在 L[1] 的析构函数中,又会释放 L[2],以此类推。如图3.1中的左图所示,黄色节点代表析构中的节点,可以看出在最后一个节点被析构的时候,前面所有的节点都在等待。对于规模为 n 的列表 L,会触发 n 层析构函数的递归,当 n 非常大时,会引发栈溢出(stack overflow)错误。

因此,我们需要手动设计列表节点的析构函数,将析构函数的递归改为迭代,而不能依赖于std::unique ptr的自动释放空间。下面展示了一个迭代版本的析

构函数,如图3.1的右图所示,它不会造成大量节点在析构中状态等待的情况。

```
virtual ~ForwardListNode() {
   auto p { std::move(m_next) };

while (p != nullptr) {
      p = std::move(p->m_next);
}
}
```

3.2.2 双向列表节点

而当我们试图扩展单向列表到双向列表的时候,我们有两种选择。

- 1. 让前向指针和后向指针共享节点的所有权,也就是两个指针都声明为std:: shared_ptr。这种做法过于浪费空间,因为std::shared_ptr除了指针本身之外,还包括一个引用计数。
- 2. 仍然保留只有后向指针拥有节点的所有权,也就是后向指针仍然是std::unique_ptr,而前向指针则使用不涉及所有权的裸指针。这种做法节约了空间,但会破坏前向指针和后向指针的对称性,并且裸指针暴露给用户可能会存在问题。

在本书中,采用后向指针单独拥有所有权,而前向指针使用裸指针的设计,因为对于基础数据结构而言,增加两个引用计数的成本是难以接受的。在一个以智能指针为基础构建的项目中,用户应当永远不要使用new和delete手动管理内存,以这个约定来保证裸指针暴露给用户的安全性。更安全的方法是只暴露给用户迭代器,正如 STL 做的那样。不过本书为了和现有教材一致,在数据结构的接口中避免了迭代器的使用。

```
1 | template <typename T>
  class ListNode {
      T m_data;
3
      ListNode* m_prev { nullptr };
4
5
      std::unique_ptr<ListNode> m_next { nullptr };
  public:
7
      ListNode() = default;
      ListNode(const T& data) : m_data(data) {}
8
9
      virtual ~ListNode() { ... }
10
     T& data() { return m_data; }
11
     ListNode*& prev() { return m_prev; }
      std::unique_ptr<ListNode>& next() { return m_next; }
12
13
   };
```

如果您对智能指针不感兴趣,也可以使用裸指针改写本书中的这些节点类,变成您比较熟悉的形式。不要忘记delete每一个创建的节点。

3.2.3 哨兵节点

在单向列表中,我们只能从前向后访问节点,所以,我们只需要知道指向第一个节点的指针,就可以从前向后依次访问所有节点。而在双向列表中,我们可以从两个方向访问节点,因此我们需要知道指向第一个节点和最后一个节点的指针,才可以从两个方向依次访问所有节点。

在邓书中,每个列表存在两个不存储实际数据的虚拟节点,称为**头哨兵节点**和**尾哨兵节点**,或者简称为**头节点**(head)和**尾节点**(tail),用来标志列表的开始和结束。即使列表是空列表,这两个节点也存在。哨兵节点的引入使得许多实现得到了简化(simplify)和统一化(unify),比如前插(在一个节点之前插入新元素)不需要对第一节点进行特殊判定。在一些教材中介绍的列表是没有哨兵节点的,转而使用指向第一个节点和最后一个节点的裸指针来对头尾进行定位,称为头指针和尾指针。这不会影响到列表的功能,但有些功能的实现会略显复杂。在阅读完本章之后,您可以自己尝试写一个没有哨兵节点的列表,比较一下哪些功能的实现有所区别。

```
1 | template <typename T>
   class AbstractList : public AbstractLinearList<T, ListNode<T>*>
3 public:
      virtual ListNode<T>* head() = 0;
4
      virtual ListNode<T>* tail() = 0;
5
      virtual ListNode<T>* insertAsNext(ListNode<T>* p, const T& e
6
         ) = 0;
      virtual ListNode<T>* insertAsPrev(ListNode<T>* p, const T& e
         ) = 0;
8
      T& get(ListNode<T>* p) override {
9
         return p->data();
10
      void set(ListNode<T>* p, const T& e) override {
11
         p->data() = e;
12
13
      }
   };
14
```

根据头节点在第一个节点之前、尾节点在最后一个节点之后的特性,您可以自己补出此处没有展示的、继承线性表抽象类的first和last等方法。此外,我们将插入操作区分为了前插(插入为p的直接前驱)和后插(插入为p的直接后继)。因为后向指针和前向指针不是对称的,所以前插和后插也有一些区别。

单向列表的抽象类实现和双向列表基本一致。区别在于,单向列表不支持从后向前的访问;因此,单向列表不支持last、back和prev等方法,我们需要将线性表抽象类中定义的这些方法设置为private隐藏。

如图3.2所示,我们在单向列表和双向列表的两头各添加一个哨兵节点,代表

图 3.2 单向列表和双向列表

所有权的智能指针用实线箭头表示,不涉及所有权的裸指针则用虚线箭头表示。由于哨兵节点的存在,用户总是可以知道列表的头和尾的位置。因此,即使在单向列表中,用户无法直接获得尾部(back)元素中的数据(需要从头节点向后依次遍历来寻找尾部),也无法直接删除尾部(pop back)的元素,但用户可以直接在尾部之后插入(push back)。如果没有尾节点的存在,则我们无法直接进行 push back 操作。在 C++ 的标准库中,std::forward_list就是这样设计的:它包含一个最简单、最节约空间的抽象,没有尾节点也不支持 push back。

需要特别指出,哨兵节点仅仅用于列表的实现方法,而非列表的组成部分,因此在图3.2我们将它们用灰色表示。当我们具体讨论到某个列表 $L[0] \rightarrow L[1] \rightarrow \cdots \rightarrow L[n-1]$ 的时候,第一个节点 L[0] 和最后一个节点 L[n-1] 都是实际存储元素的节点,而非头节点或尾节点。在列表中,L[0] 没有前驱;而在列表的具体实现中,我们可以认为头节点是它的直接前驱以方便设计代码。

3.3 插入、查找和删除

3.3.1 后插一个元素

我们首先讨论后插。给定被插节点的位置 p 和待插入元素 e,将元素 e 插入到列表中,使其对应的节点成为 p 的直接后继,这种类型的插入称为后插。对于双向列表,假设 p 原有的直接后继是 q,则二者的指针连接形成 $p \leftrightarrow q$ 的形式。我们希望将 e 插入到二者之间,形成 $p \leftrightarrow e \leftrightarrow q$ 的形式。这里可以看出引入哨兵的好处。在引入哨兵节点之后,对于任何一个被插节点,它总是有直接后继 q;当被插节点是最后一个节点时,q 就是尾哨兵节点,而不需要进行特判。反过来,题目中如果遇到不含哨兵节点的情况(408 中可能是默认的),则需要特别地考虑在首尾边界的情况,必要时进行特判。

从宏观层面上来说,我们需要对p的后向指针、q的前向指针以及新生成的e的双向指针进行赋值,然而,这四个指针的赋值顺序需要仔细斟酌。这是设计列表算法的易错点,因为"拆散-重组"的过程不是一次性发生的,必定存在先后顺序。允许的顺序有许多种(所以不建议您背诵),但如果顺序错误,就有可能在拆散的

过程中丢失了信息,导致无法进行重组。如果不熟练,那么当您设计这样的算法时,建议在纸上进行演算以确保"拆散-重组"过程是可行的。

比如说,如果我们直接断开 p 到 q 的后向指针,将 e 接入,形成 $p \rightarrow e \mid q$ 的形式,那么 q 会因为失去所有权而被智能指针自动回收(这种情况可以被生动地形容为"断链")。因此,我们可以通过std::swap交换智能指针的所有权,然后再将 q 连接到 e 的后向指针处。建立好 $p \rightarrow e \rightarrow q$ 之后,再将前向指针补上。

```
ListNode<T>* insertAsNext(ListNode<T>* p, const T& e) override
     auto node { std::make unique<ListNode<T>>(e) };
2
     std::swap(p->next(), node);
3
     p->next()->next() = std::move(node);
4
5
     p->next()->prev()=p;
6
     p->next()->next()->prev() = p->next().get();
7
     ++m_size;
8
     return p->next().get();
9
```

因为使用了交换语义,上面的这种做法产生了比预期更多的赋值次数。我们看到在上面的算法中,对于node的重复赋值是不到位工作,它经历了 e 变化为 q、再变化为空的过程,而实际上可以让它一步到位地变化为空。于是,我们不应该从 $p \to e \mid q$ 开始,可以从另一个后向指针,也就是 $p \mid e \to q$ 开始。这样就能减少一次赋值。

图 3.3 双向列表的后插

从图3.3中可以看出,在后插的过程中,应当首先让 e 的后向指针接管 q 的所有权;而其他三项的赋值次序是可以随意的。当然,尽管次序可以随意,但在书写的时候仍然需要当心。比如,在 e 的后向指针接管 q 的所有权之后,我们不再能通过 p 的后向指针来找到 q,只能通过 e 的后向指针来找到它。这些细小的注意点有时熟练的程序员也会忽略,因此在考试的时候借助图形和手工演算进行检查是有意义的。

```
ListNode<T>* insertAsNext(ListNode<T>* p, const T& e) override
{
```

```
auto node { std::make_unique<ListNode<T>>(e) };
2
3
     node->next() = std::move(p->next());
4
     node->next()->prev() = node.get();
5
     node->prev() = p;
     p->next() = std::move(node);
6
7
     ++m_size;
8
     return p->next().get();
9
  }
```

单向列表的情况大同小异,只是减少了对前向指针赋值的操作。可以看出,在列表上做后插的时间复杂度和空间复杂度均为为O(1)。

3.3.2 前插一个元素

对于双向节点,前插的过程和后插大同小异。因为头哨兵节点的存在,我们总是可以找到p的直接前驱q,于是我们只需要在 $q \leftrightarrow p$ 之间插入e,和前面的 $p \leftrightarrow q$ 只有字母上的区别。您可以自己实现它,并检验自己的实现是否正确。请注意前向指针是裸指针,后向指针是智能指针。当然,也可以直接用后插实现前插。

```
ListNode<T>* insertAsPrev(ListNode<T>* p, const T& e) override
{
   auto q { p->prev() };
   return insertAsNext(q, e);
}
```

对于单向列表,情况变得有些令人沮丧。因为单向列表中,我们无法使用前向指针,也就无法定位到p的直接前驱。那么,我们是否无法进行前插呢?是,也不是。我们可以用两种方法实现前插:

- 1. 从头节点开始,沿着后向指针访问整个列表,寻找p的直接前驱,然后再采用和上面一样的方式进行前插。显而易见,如果p在列表中的秩是r,则该方法的时间复杂度高达线性的 $\Theta(r)$ 。我们放弃循秩访问而使用列表,为的是允许操作不连续内存,从而在插入和删除的时候达到O(1)的常数复杂度;因此,这种方法虽然万无一失,但和我们的初衷背道而驰。
- 2. 使用后插代替前插。我们首先找到p的直接后继q进行一次后插,形成 $p \to e \to q$ 的形式,然后我们交换p和e节点的值,形成 $e \to p \to q$,如图3.4所示。这样在值上实现了前插,但是在位置上并没有实现前插。比如,如果原先外部有一个指针指向p,我们执行前插之后,这个指针并不知道p已经被e"偷梁换柱"了,它可能还以为自己指向的是p,从而产生不可估计的错误。因此,这种方法事实上损失了安全性。但是,毕竟它是一个O(1)的方法,我们也只能接受它,并期待用户正确地使用这个方法。

很显然,两种前插都存在一些问题,因此 C++ 标准库中的单向列表就不允许

图 3.4 单向列表上使用后插代替前插

进行前插。如果我们采用从头节点开始找前驱的方法进行前插,不了解它复杂度的用户可能会错误使用这个方法,造成用户写出的程序非常缓慢。这个问题曾经让旧标准的 C++ 用户不胜其扰:在 C++11 之前,std::list的获取规模方法size()是 $\Theta(n)$ 的,而用户很容易忘记这一点,从而造成用户应用程序时间效率的严重损失。如果我们使用后插代替前插,则会出现上述的指针指向混乱风险。在本书中为了让您了解单向列表实现前插的技巧,所以介绍了这两种方法,并在下面实现用后插代替前插的算法。在现实中设计程序时,应当避免这种高风险的设计。

回到使用后插代替前插的技术上。和上一节一样,我们注意到采用交换语义会引入不到位的赋值。在消除交换语义之后,一个可能的实现如下。

```
ForwardListNode<T>* insertAsPrev(ForwardListNode<T>* p, const
1
      T& e) override {
      auto node { std::make_unique<ForwardListNode<T>>(std::move(
2
         p->data())) };
      node->next() = std::move(p->next());
3
4
      p->next() = std::move(node);
5
      p->data() = e;
      if (m_tail == p) {
6
7
         m_tail = p->next().get();
8
9
      ++m_size;
10
      return p;
11
```

前面讨论过,如果原先外部有一个指针指向 p,我们执行前插之后,这个指针并不知道 p 已经被替换了。我们无法保证用户使用的"外部指针"的安全性,但我们需要保证数据结构内部的指针的安全性。这个可能丧失安全性的指针就是尾节点指针m_tail。当我们要在尾节点处进行前插(也就是 push back)的时候,上述方法事实上进行了后插,并将原先的尾节点赋值为 e。在这种情况下,我们需要将尾节点指针指向新的尾节点处。

另外,请注意这里必须对p中的数据使用移动语义,而不能使用复制语义,否

则当 p 中的数据非常大(比如,一个被嵌套在列表里的向量)时,会引入大量的(非常数的)性能损失。

3.3.3 查找一个元素

无论是单向列表还是双向列表,查找元素的过程和无序向量都是一样的,只 需要从前向后一个一个查找即可。因为不支持循秩访问的缘故,即使是有序列表, 也不支持折半查找。您很容易自己实现顺序查找,下面是一个示例的实现。

```
ListNode<T>* find(const T& e) const override {
1
2
      auto p { m_head->next().get() };
3
      while (p != m_tail) {
          if (p->data() == e) {
4
5
             return p;
6
          p = p - > next().get();
7
8
9
      return m_tail;
10
```

3.3.4 删除一个元素

列表删除是插入的逆操作。对于双向列表,假设被删除的节点为 p,由于头节点和尾节点的存在,我们可以保证它存在直接前驱 q_1 和直接后继 q_2 。因此,我们需要将 $q_1 \leftrightarrow p \leftrightarrow q_2$ 变形为 $q_1 \leftrightarrow q_2$ 。显然,我们只需要对 q_1 的后向指针和 q_2 的前向指针各进行一次赋值。顺序仍然是重要的,但难度比插入降低了不少(因为 2次赋值的顺序一共只有 2 种)。下面是一个可行的实现。

```
T remove(ListNode<T>* p) override {
    auto e { std::move(p->data()) };
    p->next()->prev() = p->prev();
    p->prev()->next() = std::move(p->next());
    --m_size;
    return e;
}
```

类似地,上面的做法也不适用于单向列表的删除。对于单向列表,我们需要采用和前插相似的技术,首先找到 p 的直接后继 q_2 ,以及 q_2 的后继 q_3 。我们在 $p \to q_2 \to q_3$ 上交换 p 和 q_2 节点上的值,从而在值的角度,变成了 $q_2 \to p \to q_3$,然后重新复制 q_2 的后向指针,变为 $q_2 \to q_3$ 即可。双向列表和单向列表在删除节点上的区别如图3.5所示,请注意在双向列表的场合,当移交 q_2 的所有权之后,节点 p 会被智能指针自动释放(用灰色表示)。

图中 q_3 是虚线节点,这是因为即使在存在尾节点的列表中, q_3 仍然可能为空 (nullptr)。如果 q_3 为空,那么 q_2 就是尾节点(在有哨兵的场合),交换元素之

后我们会把原先的尾节点删除。所以,我们需要进行一次特判,在上述情况下让新的 q_2 成为新的尾节点。在消除了交换语义带来的不到位赋值之后,得到的一种示例程序如下所示。

```
T remove(ForwardListNode<T>* p) override {
1
      auto e { std::move(p->data()) };
2
      p->data() = std::move(p->next()->data());
3
4
      p->next() = std::move(p->next()->next());
      if (p->next() == nullptr) {
5
         m_tail = p;
6
7
8
      --m_size;
9
      return e;
10
```


图 3.5 在列表中删除一个元素

和3.3.2节一样,这里的尾节点指针m_tail也是需要维护的"外部的指向节点的指针"。我们需要对这个指针重新赋值以避免安全性问题。在 C++ 标准库的单向列表中,为了安全性考虑,只提供"删除后继"的方法erase_after而不提供直接删除的方法。

从上面对插入、查找和删除的分析中可以看出,列表的三种基本操作完全不涉及规模。所以,如果不需要在 O(1) 时间里获取规模,那么列表是可以不记录这个属性的。不记录规模可以使列表在插入和删除时减少一次赋值,从而略微提高列表的性能。如果您自己实现了列表和单向列表,可以通过 ListTest.cpp 和 ForwardListTest.cpp 进行测试。

3.3.5 实验: 在头部和尾部连续插入元素

随着三种基本操作分析完毕,我们可以开始对列表展开实验。这一节讨论在列表的头部和尾部连续插入元素的情况,代码可以在 *ListInsert.cpp* 中找到。

在示例代码中,采用示例实现的向量、双向列表和单向列表类作为实验对象。 您可以加入自己实现的版本,和它们的性能进行比较。我们考虑两种环境。第一种 是连续在头部插入元素,也就是每次插入的元素会成为线性表的第一个元素;另 一种是连续在尾部插入元素,也就是每次插入的元素会成为线性表的最后一个元 素。

这个实验表明,当在尾部连续插入元素时,向量的效率显著高于列表,但是单向列表并没有和双向列表之间有很大的差异。根据您的运行环境不同,向量和列表大致呈现一个数倍的性能差距,总体来说是常数的。需要特别指出的是,尽管在尾部连续插入元素的测试中向量的性能高于列表,但对于单次插入元素的过程则不一定。触发扩容时,向量单次插入元素的时间复杂度可达 $\Theta(n)$,而列表是稳定的 O(1)。这一点是列表的独特优势,在对响应时间稳定性有要求的场合下,向量的扩容变得不能接受,而列表的插入时间是可以保证很低的。

当在头部插入元素时,可以显著地看到,向量 $\Theta(n^2)$ 的时间复杂度远高于列表 $\Theta(n)$ 的时间复杂度,当 $n=10^6$ 的时候向量的情况已经需要耗费几十秒(在笔者的计算机上);我们可以直接做一个判断,在这种情况下抛出一个error拒绝执行,如下所示。

```
void operator()(size t n) override {
1
      if constexpr (is_base_of_v<AbstractVector<int>, Linear>) {
2
3
         if (n > 100000) {
            throw runtime_error { R"(Vector::push_front() is too
4
                slow for n > 100'000)" };
5
          }
6
7
      for (size_t i { 0 }; i < n; ++i) {</pre>
8
         m_container.push_front(i);
9
10
```

因为向量的耗时增长很快,我们在 $n=10^5$ 量级已经可以看出它的性能,因此不需要花费大量的时间等待它在更大的规模上完成实验。这里采用了 C++17 引入的 if constexpr语法,从而实现在编译期判断。上面的代码对于以向量为参数的模板实例,会将if constexpr内的判断编译进去;而对于以列表为参数的模板实例,则不会将if constexpr内的判断编译进去;这个向量和列表的区分是编译期完成的,运行期不会再做判断。这一语法简洁清晰,可以用来替代 C 语言风格很容易被滥用的#ifdef等条件编译命令。

在这个实验中,您还能发现的一点是,双向列表和单向列表在时间上的性能差异实际上非常小。双向列表虽然节点多了一个字段,但消耗的时间和单向列表相比,只有非常有限的增加,与此同时,它获得了从后向前访问的能力、更强的

灵活性以及更好的安全性(关于安全性,在前插和删除的时候已经讨论过)。因此,除非性能要求苛刻或空间不足,否则都建议使用双向列表。

3.3.6 实验:顺序删除和随机删除

当我们连续地在列表中插入节点时,这些节点也会存在一定程度上的空间连续性,因为它们的空间是操作系统连续分配的。这会导致我们的实验并不能真实地反映出现实情况下的列表所包含的节点地址弱局部性这一特征。在这个实验中我们将会认识到,如果列表所包含的节点地址局部性很差,会对列表的性能造成很大的负面影响。

我们考虑下面的连续删除场景。代码可以在 ListRemove.cpp 中找到。

```
template <typename T>
   class ContinuousPop : public Algorithm<void()> {
2
3
   protected:
4
      List<T> L;
      Vector<ListNode<T>*> V;
5
6
   public:
7
      virtual void initialize(size_t n) = 0;
      void operator()() override {
8
         for (auto p : V) {
9
10
             L.remove(p);
11
12
      }
13
   };
```

在这个框架中,我们使用向量 V 来存储列表 L 的每一个节点的位置。通过初始化函数,我们让向量 V 成为顺序的或者随机的,然后,按照向量 V 中存储的节点次序依次删除列表中的元素。对于顺序存储的情况,每次向 L 加入元素后储存在 V 中即可,如下所示。对于随机存储的情况,可以在顺序存储之后增加一个std::shuffle(我们在向量置乱的时候介绍过它)。

```
// SequentialPop
void initialize(size_t n) override {
   L.clear();
   V.clear();
   for (size_t i { 0 }; i < n; ++i) {
        V.push_back(L.insertAsNext(L.last(), i));
   }
}</pre>
```

从这个例子中可以看到,当 n 比较小的时候,顺序删除和随机删除的性能基本一致;但当 n 比较大的时候,二者就会产生一个明显的差异。这个性能差异就是随机删除的局部性丧失引起的。

在现实中, 我们生成的列表可能不是以连续插入的形式分配内存的。因此, 它

可能天然就具有一个很差的局部性。这就意味着,现实中的列表在较坏的情况下有可能会更接近于本实验中随机访问的性能。结合上一个实验,我们意识到,列表和向量之间有着巨大的性能差距,甚至在数据结构规模较小的情况下,列表 O(1) 插入、删除的优势体现不出来,从时间消耗的角度上来说还不如 O(n) 的向量操作。因此对于小型线性表,无论我们是否需要循秩访问、折半查找等向量特性,都应该优先使用向量而不是列表。

3.3.7 实验: 倒置列表

当在向量上设计算法的时候,由于向量循秩访问的特性,我们可以对秩进行运算,从而快速、精准地找到某个元素。一个典型的例子就是折半查找。循秩访问使得向量中的元素地位比较"平等";而在列表的场合,循位置访问使得列表中的元素地位比较"不平等",比较"任人唯亲"。比如,从头节点出发访问列表中的一个元素时,所需要消耗的时间会和被访问元素的位置相关;越接近头部的元素,访问需要的时间越短。

我们可以站在更高的层次,理解列表只能直接访问首尾两端、以及循位置访问"任人唯亲"的特性:列表是**线性递归定义**的。具体来说,列表可以被这样定义:

- 1. Ø 是列表(空列表,没有元素)。
- 2. 设 x 是一个节点, L 是一个列表, 则 $x \to L$ 是列表 (x 的后向指针指向 L 的第一个节点)。

这个定义具有和《绪论》章所述递降法相似的形式,它也就意味着列表适合使用减治思想设计算法。首先,我们研究递归边界(空列表)的情况;其次,对于规模为n的列表,我们将第一个节点提取出来,递归地研究后n-1个节点组成的子列表,再和第一个节点进行合并。对称地,我们可以想到列表具有另一个定义:

- 1. Ø 是列表(空列表,没有元素)。
- 2. 设 x 是一个节点, L 是一个列表, 则 $L \to x$ 是列表(L 的最后一个节点的后向指针指向 x)。

这一定义同样可以引出一种减治算法的设计。它和前一种定义的区别在于,平凡项x在减治项L的头部还是尾部。对于双向列表来说,头部减治和尾部减治是等价的,提取出平凡项x都只需要O(1)的时间。当然,我们需要注意,减治递归算法应用在列表上时,递归深度高达O(n),这不但导致了较高的空间复杂度,同时在n较大时很可能引发栈溢出错误;因此在设计完成减治算法之后,应当尽可能将其修改为迭代算法。

单向列表的头部和尾部不具有对称性,因此情况会有所不同。考虑单向列表 $L[0] \rightarrow L[1] \rightarrow L[2] \rightarrow \cdots \rightarrow L[n-1]$ 。当在头部进行减治时,只需要 O(1) 的时间

就可以找到 L[0]; 而在尾部进行减治时,需要 $\Theta(n)$ 的时间才能找到 L[n-1]。看起来单向列表应当总是在头部进行减治,然而事实却不一定是如此。本节将以倒置列表为例子,对两种减治方法进行比较。代码可以在 ListReverse.cpp 中找到。为了便于和双向列表上的算法进行对比,我们总是传入双向列表List<T>。作为参数类型,并在设计单向列表算法的时候不使用涉及前向指针的方法。

对于双向列表的倒置,我们可以直接从头尾两个方向遍历,交换对称的两个节点的数据域。这种做法和向量上的做法一致,也可以使用std::reverse。

```
// ReverseBasic
1
   void operator()(List<T>& L) override {
2
3
      auto head { L.head() };
      auto tail { L.tail() };
4
      for (auto size { L.size() }; size >= 2; size -= 2) {
5
         head = head->next().get();
6
7
         tail = tail->prev();
8
         std::swap(head->data(), tail->data());
9
      }
   }
10
```

下面讨论单向列表,首先考虑在头部进行减治的情况。按照减治的思想,在将L[0] 摘出列表之后,把从L[1] 开始的剩余列表反转,然后再进行合并:把被摘出的L[0] 接到反转后的剩余列表的尾部,如图3.6中的左图所示。

图 3.6 利用头部减治和尾部减治倒置列表

```
// ReverseReduceAtHead
void operator() (List<T>& L) override {
   if (L.size() < 2) {
      return;
   }
   auto first { L.pop_front() };
   (*this)(L);
   L.push_back(first);
}</pre>
```

它的时间复杂度和空间复杂度均为 $\Theta(n)$ 。这个算法并不是尾递归,这意味着我们将它改写成迭代的时候会遇到困难。这一困难来自于我们在做递归调用的时候,需要保存当前递归实例摘出的元素first。当我们进行到最后一层递归调用的时候,需要保存之前每一次摘出的元素,这就意味着不可避免地需要 $\Theta(n)$ 的空间。这也就意味着,将此方法改写为迭代之后,几乎和下面的"极端"做法等价。

```
// ReverseMove
void operator() (List<T>& L) override {
   Vector V(L.size());
   move(begin(L), end(L), begin(V));
   reverse(begin(V), end(V));
   move(begin(V), end(V), begin(L));
}
```

这个做法的时间复杂度和空间复杂度同样都是 $\Theta(n)$ 。它将所有元素移动到一个辅助向量里,在向量里面倒置,再移动回列表里。

无论是命题者还是我们自己,都很难接受这样的算法。从刚才的分析中已经可以发现,影响空间效率的主要原因是,单向列表只有后向指针。当在头部进行减治的时候,被提取出来的 L[0] 彻底和 L[1:n] 断开,无法通过 L[1:n] 上的指针找到 L[0],从而必须要额外的空间来存储它。于是就可以想到,是否可以利用单向列表的不对称性,采用在尾部进行减治的策略设计算法? 答案是肯定的。当在尾部进行减治的时候,我们可以先处理 L[0:n-1],然后利用 L[n-1] 的后向指针直接找到 L[n]。下面展示了一个示例代码。

```
template <typename T>
2
   class ReverseReduceAtTail : public ReverseListProblem<T> {
      unique_ptr<ListNode<T>> reverse(unique_ptr<ListNode<T>>&
3
         start, size_t size) {
         if (size == 1) {
4
5
            return move(start->next());
6
7
         auto last { reverse(start, size - 1) };
         auto tmp { move(last->next()) };
8
         last->next() = move(start);
9
10
         start = move(last);
11
         return tmp;
      }
12
   public:
13
      void operator()(List<T>& L) override {
14
         auto old_first { L.first() };
15
         auto start { move(L.head()->next()) };
16
         auto last { reverse(start, L.size()) };
17
         L.head()->next() = move(start);
18
19
         old_first->next() = move(last);
20
      }
21
   };
```

如图3.6中右图所示,上述算法中将减治项和平凡项合并的过程,就是在start、last和红色指针之间进行了一个轮换。这份代码很容易被改写为迭代,因为它在进行递归调用处理减治项的时候,并不需要存储合并的时候需要用到的变量。我们可以使用固定的变量start和size,作为每次递归调用的参数,并使用固定的变量last存储每次递归调用的返回值。一个示例的迭代写法如下所示。

```
// ReverseReduceAtTailIterative
1
2
   void operator()(List<T>& L) override {
      auto old_first { L.first() };
3
4
      auto start { move(L.head()->next()) };
      auto last { move(start->next()) };
5
      for (auto size { L.size() }; size > 1; --size) {
6
         auto tmp { move(last->next()) };
7
8
         last->next() = move(start);
9
         start = move(last);
10
         last = move(tmp);
11
      L.head()->next() = move(start);
12
      old_first->next() = move(last);
13
14
```

上述算法的时间复杂度为 $\Theta(n)$, 空间复杂度为 O(1)。此外, 这是一个针对指针域进行操作的算法, 在整个算法过程中, 只有各个后向指针的指向发生了变化, 而每个节点内部的数据域没有变化, 也没有创建或删除节点。上面介绍在头部进行减治的算法时涉及到了创建和删除节点, 您可以自己尝试对示例代码进行修改, 让它也成为一个针对指针域进行操作的算法。

另一方面,之前介绍的 ReverseBasic 算法,逐个交换双向列表中对称的节点上的数据,是针对数据域进行操作的算法。在整个算法过程中,只有各个节点内部的数据域发生了变化,而没有改变每个节点的指针指向关系,也没有创建或删除节点。

针对指针域和针对数据域,是设计列表算法时的两种不同路径。针对指针域的算法将列表上的节点当做一个整体,通过修改指针来改变节点在列表中的顺序。针对数据域的算法则将列表当做一个访问受限(只能访问已知位置的直接前驱和直接后继)的向量处理。如果一个向量上的算法没有涉及循秩访问,那就可以原封不动地迁移到列表上。涉及循秩访问的算法如折半查找则不适用。这种做法显得非常投机取巧,但效率却不一定低,在现实程序开发中不失为一种选择。为了避免考生投机取巧,试卷经常会强制要求只能针对指针域设计算法。请您根据自己对双向列表的理解,将上面的尾部减治算法改为双向列表的版本。

在实际解题时给出的列表,有可能无法直接通过size方法获取规模,此时有两种方法可以解决。其一是直接遍历一遍整个列表做个统计,因为不会影响时间

复杂度和空间复杂度,这种做法通常是可行的。其二是改变迭代的终止条件(递归边界)为不涉及规模的形式,在不同的算法中这一修改会有所不同。您可以尝试对ReverseBasic 以及尾部减治算法进行修改,使其不涉及列表的规模。

3.4 列表的归并排序

3.4.1 基于值的归并排序

本节讨论在列表上做归并排序,这是一个比较复杂的列表操作。一种基本的 思路是基于值的归并排序,即之前在2.6.3和2.6.4节使用的归并排序。因为从迭代器 的观点看,向量和列表作为线性表具有高度的相似性,所以无论是双向列表还是 单向列表,都可以使用相同的代码进行归并排序。唯一的区别在于向量的迭代器 支持随机访问,而列表无法支持这一点。因此,在我们想要找到中点的时候,向量 的版本可以直接使用左边界和右边界的平均值,而列表的版本只能传入一个规模 并手动向前依次迭代;幸运的是,迭代的时间是 $\Theta(n)$ 的,和归并的时间相同,因 此不会引入更高的时间复杂度。

3.4.2 基于指针的归并排序 *

显然,上面这种归并排序没能发挥列表的特点。在归并的时候,没有必要使用快慢指针,而是可以充分利用列表的灵活性,达到不需要辅助空间的效果。比如,原先的列表 L 可以分成 L_1 和 L_2 两部分,现在为了对列表 $L_1 \to L_2$,我们可以首先将它切断成两个独立的列表 L_1 和 L_2 。随后,令 $L = \emptyset$ 清空,依次比较 L_1 和 L_2 的首节点,将较小的节点移动到 L 的末尾。全部移动结束后,就完成了对 L 的归并。这是一个相当有挑战性的工作,几乎达到了笔试中手写代码的最大可能难度,需要对列表有深刻的理解才能写出来。非常建议您进行这项尝试。这里的示例程序仍然有进一步优化的空间。

上一小节讨论的基于值的归并排序,在整个排序过程中没有修改任何节点的相对位置,只是改动了每个节点里的数据元素的值。因此这个版本的实现和向量相同,因为向量也不能改变数据单元的相对位置,向量中相对位置和绝对位置(地址)是统一的。而这里的归并排序,则在整个排序过程中,每个节点的值都没有被修改,被改动的只有节点的前向和后向指针,从而改变节点的相对位置。这是在邓书中介绍的版本,它的原理仍然是归并排序,但归并的实现和向量的版本完全不同。

图 3.7 基于指针的归并排序

为了实现这个版本的归并排序,我们首先考虑将一个列表切断为两个独立的列表。考虑列表 $h \to L_1 \to L_2 \to t$,其中 h 和 t 分别是头节点和尾节点。那么,我们需要从 h 出发经过 $\frac{n}{2}+1$ 长度,找到 L_2 的第一个节点 L_2 [0]。那么,我们可以将 L_1 认为是头节点为 h、尾节点为 L_2 [0] 的一个列表,从而可以对它进行递归的归并排序。同理,我们可以从 h 出发经过 $\frac{n}{2}$ 长度,找到 L_1 的最后一个节点 L_1 [-1],认为 L_2 是头节点为 L_1 [-1]、尾节点为 t 的一个列表进行递归的归并排序。进行递归之后,我们再将 h, L_1, L_2, t 切分开来进行归并,如图3.7所示。

```
template <typename T, typename List, typename Comparator = std::</pre>
      less<T>>
      requires std::is_base_of_v<AbstractList<T>, List>
2
   class ListMergeSort : public AbstractSort<T, List, Comparator>
3
      using Ptr = std::unique_ptr<ListNode<T>>;
4
5
      Comparator cmp;
      void connect(ListNode<T>* prev, Ptr& next) {
6
7
         next->prev() = prev;
8
         prev->next() = std::move(next);
9
      void merge(ListNode<T>* prev, Ptr lo, Ptr mi, Ptr hi) {
10
         Ptr i { std::move(lo) }, j { std::move(mi) };
11
         ListNode<T>* k { prev };
12
13
         while (i || j) {
            if (i == nullptr || j && cmp(j->data(), i->data())) {
14
                connect(k, j);
15
                j = std::move(k->next()->next());
16
17
             } else {
```

```
connect(k, i);
18
                i = std::move(k->next()->next());
19
20
             }
21
             k = k \rightarrow next().qet();
          }
22
2.3
          connect(k, hi);
2.4
      }
      Ptr& forward(ListNode<T>* from, size t step) {
25
          for (size_t i { 1 }; i < step; ++i) {</pre>
2.6
27
             from = from->next().get();
28
29
          return from->next();
30
      }
      void mergeSort(ListNode<T>* head, Ptr tail, size_t size) {
31
          if (size < 2) {
32
33
             forward(head, size + 1) = std::move(tail);
34
             return;
35
36
          mergeSort(head, std::move(forward(head, size / 2 + 1)),
             size / 2);
          mergeSort(forward(head, size / 2).get(), std::move(tail)
37
             , size - size / 2);
38
          auto lo { std::move(forward(head, 1)) };
          auto mi { std::move(forward(lo.get(), size / 2)) };
39
40
          auto hi { std::move(forward(mi.get(), size - size / 2))
          merge(head, std::move(lo), std::move(mi), std::move(hi))
41
42
      }
   public:
43
44
      void operator()(List& L) override {
45
          mergeSort(L.head(), std::move(forward(L.head(), L.size()
             )->next()), L.size());
46
47
   };
```

上面的这个做法因为只需要调用forward来从前向后地移动指针,所以也同样支持单向列表。将所有对前向指针的赋值删去即可。

3.4.3 实验:归并排序的性能差异

基于指针的归并排序,将空间复杂度从 $\Theta(n)$ 降低到了 $\Theta(\log n)$ (一定要注意递归本身的空间复杂度,不能误以为是 O(1)),那么显然地,它会在时间上有所损失。为了评估归并排序的性能差异,我们设计了一个实验。代码可以在 ListMergeSort.cpp中找到。

我们对比三个归并排序,分别为用基于值的方法实现的归并排序的向量版本和列表版本,以及基于指针的归并排序。实验结果表明,如果节点具有较好的局部性(在本实验中,列表中的节点是连续插入的),那么基于值的时候,列表版本的

归并排序的性能相当接近于向量版本(由于找中点慢,所以不可能达到向量版本的性能)。另一方面,基于指针的归并排序则显著慢于基于值的版本。原因可以归纳为以下几个方面。

- 1. 从数据结构性质角度看。基于指针的排序针对列表中的节点进行操作。改变 节点的值只需要对数据字段进行赋值,而改变节点的相对位置则需要对前向 指针和后向指针进行赋值。增加的赋值次数会影响归并过程的常数。
- 2. 从代码实现方法角度看。基于指针的排序需要多次调用forward对列表进行 拆分,而forward造成的 $\Theta(n)$ 时间复杂度会叠加到归并的时间复杂度常数 上。
- 3. 从局部性角度看。基于指针的排序会导致列表中节点的相对关系和它们的地址分布不匹配,从而形成类似于3.3.6节中出现的乱序情况,损失了局部性,从而间接造成了性能损失。局部性角度在分析算法性能的时候很容易被忽视。

通常的题目只要求分析复杂度而不考虑常数,但也存在需要比较两个算法常数的情况。在笔试中,没有办法通过实验测定两个算法的性能优劣,通常只能通过几个角度进行理论分析比较。上面介绍了分析算法性能时常用的几个角度,您可以用在此类问题中。

3.5 循环列表

循环列表(circular list)基于循环链表,后者是普通的、线性的链表的一个变体。简单地说,循环列表就是舍弃了头节点和尾节点,让第一个节点 L[0] 的前向指针指向最后一个节点 L[-1],让最后一个节点 L[-1] 的后向指针指向第一个节点 L[0],首尾相连,形成的环状结构。循环列表同样可以分为单向循环列表和双向循环列表。循环列表的三种基本操作和本章中介绍的普通线性列表几乎完全一致,所以不再赘述。邓书中也删除了这部分内容。

图3.8展示了单向循环列表和双向循环列表的结构。由于需要保证列表的节点首尾相连,所以无法在循环列表的环上嵌入哨兵节点。图中的head称为**头指针**,它是一个指向列表中第一个元素的裸指针;类似地,也可以(可选地)用一个**尾指针**指向列表中的最后一个元素。

注意到,如果循环列表中只有一个元素,那么它的后向指针(双向循环列表中,也包括前向指针)将指向自己,因此它持有自身的所有权。您可以通过画图演算发现,使用本章中介绍的普通线性列表的删除方法,删除循环列表中唯一的一个元素时,会无法释放这个唯一元素的空间。因此,对最后一个元素进行删除的时候需要进行特判。如果您实现了循环列表,可以通过 Circular List Test.cpp 进行测试。

图 3.8 循环列表

循环列表的主要特征是:循环列表上的指针沿着前向指针或后向指针走下去,就可以在列表上无限轮询每个节点。这种无限轮询的特点使它在《网络原理》和《操作系统》这两门学科"持续性维护"的情景中有用武之地,但在《数据结构》中不常用。在 Circular List Iterate.cpp 中您可以看到无限轮询的例子。

3.6 静态列表

3.6.1 静态列表的结构

静态列表(static list)指的是基于数组实现的列表(或者也可以基于向量实现,从而允许扩容)。列表在建立的时候,申请一块连续的内存,所有的节点都存在这部分内存中。与向量有所区别的是,节点的相对位置可以和它们在数组里的位置不同。在静态列表中,前向指针和后向指针往往用所基于的数组(向量)中的下标代替,因此,静态列表虽然本质上是一种循位置访问的结构(列表),但它的位置是用秩表示的,因为列表中的节点存在数组或向量里。

和动态分配内存的动态列表相比,由于装填因子的问题,静态列表需要消耗更多的空间,所以它非常不常用(仅出现在不提供指针/引用语法的古代编程语言中),邓书删除了这部分内容,也几乎不会出现在考试中。但在机试里,由于动态分配内存可能会引起时间消耗上的不确定性,并且机试题目给定的空间几乎总是绰绰有余的,所以静态列表仍然有发挥的空间。

单链/双链、线性/循环、动态/静态,这三对关系是相互独立的,可以组成8种不同结构的列表实现。在本节将以双链、线性为例,介绍静态列表的实现方法。为了支持扩容,这里基于向量实现。由于静态列表和动态列表非常相似,这里只介绍静态列表的特有特点。

3.6.2 静态列表上的节点

和动态列表不同,静态列表用来存储前向指针和后向指针的类型变成了秩。

```
template <typename T>
class StaticListNode {
   T m_data;
   Rank m_prev { 0 };
   Rank m_next { 0 };
};
```

对于秩而言,我们需要指定特殊值用来对应指针情形中的空指针。在这里,我们认为秩为0表示指向空;因此在实现静态列表的时候,我们不能使用秩为0的数据单元来存放数据,否则会产生混淆。当然,也可以规定一个不可能出现的值(比如-1)。除了秩为0的单元外,我们还需要规定固定的单元用来存放头节点和尾节点。

```
template <typename T>
1
  class StaticList : public AbstractStaticList<T> {
     Vector<StaticListNode<T>> m_data {};
3
4
     const static Rank m_head { 1 };
     const static Rank m_tail { 2 };
5
     StaticListNode<T>& getNode(Rank r) override {
7
        return m_data[r];
8
     }
9
  };
```

这里,我们采用了一个getNode方法在秩和位置之间建立联系。静态列表的操作和动态列表相比大同小异,因为不需要考虑智能指针的所有权问题,静态列表可以更加随意一些,比如,下面是静态列表的后插实现。

```
Rank insertAsNext(Rank p, const T& e) override {
Rank r { m_data.size() };
m_data.push_back(StaticListNode<T>(e, p, getNode(p).next())
);
getNode(p).next() = r;
getNode(getNode(r).next()).prev() = r;
return r;
}
```

3.6.3 在静态列表上删除一个元素

如果我们按照动态列表的方法在静态列表上删除,可以得到下面的算法。

```
1 T remove(Rank r) override {
2    T e { std::move(getNode(r).data()) };
3    getNode(getNode(r).prev()).next() = getNode(r).next();
4    getNode(getNode(r).next()).prev() = getNode(r).prev();
5    return e;
6 }
```

上述算法存在一个致命的问题:被删除的节点的内存无法被释放。因为被删除的节点在向量 V 中,所以不能直接释放内存。所以,需要将被删除的节点从向量 V 中删除,以释放 V 中的空间,使其可以被分配给其他节点。然而,直接调用向量的删除元素方法也是不行的。因为删除 V[0:n] 中的一个节点 V[r],会导致它的后缀 V[r+1:n] 整体前移。V[r+1:n] 的前移会导致这些节点的秩发生变化,如果其他节点的前向或后向指针指向了它们,则需要更新这些指针。所以,如果用从 V 中删除节点的方式来清理内存,则删除一个节点的时间复杂度高达 $\Theta(n-r)=O(n)$,这是列表所不能允许的。

图 3.9 在静态列表上删除一个元素

为了将删除节点的影响降到最低,则希望r越大越好。当r=n-1(被删除的节点在向量末尾)时, $\Theta(n-r)=O(1)$,这是列表所理想的结果。因为列表的元素次序和V中的元素次序无关,所以您可以很自然地想到,只需要将V[r]交换到V[n-1],就可以顺利在O(1)的时间内删除了。一个可能的实现原理如图3.9所示。

```
T remove(Rank r) override {
   T e { std::move(getNode(r).data()) };
   getNode(getNode(r).prev()).next() = getNode(r).next();
   getNode(getNode(r).next()).prev() = getNode(r).prev();
   Rank s { m_data.size() - 1 };
   if (r != s) {
      getNode(r) = std::move(getNode(s));
}
```

```
getNode(getNode(r).prev()).next() = r;
getNode(getNode(r).next()).prev() = r;

m_data.pop_back();
return e;
}
```

对于元素次序不重要的向量结构,在执行删除时,可以将被删除的元素移动到向量末尾再删除,可以将删除操作的时间复杂度从 $\Theta(n-r)$ 降低为 O(1),这是一个常用的技巧。在后面的章节中还会再次出现。当然,根据我们在3.3.2节中的经验,这种对值的直接操作是不安全的。所以,如果确保空间足够,也可以选择静态列表在删除元素的时候不释放空间:在机试的时候通常都是这么做的。

如果您实现了静态列表,可以使用 Static List Test.cpp 进行测试。

3.7 本章小结

和向量相比,列表的链式结构显得不那么直观,在列表上进行插入、删除等操作时对指针的多次赋值,对初学者而言颇有难度。以列表为背景的算法设计题也常常从链式结构本身的性质入手,重点考察学生对于通过指针赋值进行链表操作的能力。在具体的题目中,有无头节点、有无尾节点、单向还是双向、顺序还是循环等因素,都会影响链表算法的具体实现,因此记忆代码是不可行的,应当理解设计列表操作的一般方法。

本书采用智能指针实现列表,为读者提供了一个不同于教材的视角:所有权视角。每个节点被且仅被一个智能指针持有所有权,我希望这一特性使得读者能够在设计链表操作的时候能够有迹可循(尽管遇到的题目使用的是裸指针)。下面列出了本章的一些学习目标。

- 1. 您学会了绘制列表的指针关系图,通过图形设计算法。
- 2. 您学会了采用后向智能指针控制列表节点所有权,并能从所有权的视角触发设计指针赋值操作序列,注意避免"断链"和更新"外部指针"。
- 3. 您了解到列表作为线性递归定义的数据结构,适合使用减治策略设计算法。
- 4. 您了解到设计列表上的算法时,可以有针对数据域和针对指针域两种路径。 向量和列表的区别也是一个重要的问题。本书从插入、删除和归并排序等几种典型场景出发,对向量、双向列表和单向列表的区别作出了分析。下面提供了几个视角,您应当根据自己的理解,列出更加全面的对比表格。
 - 1. 稳定性(向量 vs 列表)。
 - 2. 局部性(向量 vs 列表)。

- 3. 灵活性(向量 vs 双向列表 vs 单向列表)。
- 4. 安全性(双向列表 vs 单向列表)。
- 5. 空间开销(向量 vs 双向列表 vs 单向列表)。

第4章 栈

线性表是一个非常"开放的"数据结构,您可以读、写、插入和删除线性表上的任何一个数据单元。但在实际的计算模型中,并不是所有的数据结构都允许您这样做。通过对允许访问的数据进行限制,我们可以过滤掉多余的信息,简化模型的复杂程度,从而更快更好地解决问题。

栈(stack)、**队列**(queue)以及**双端队列**(deque)就是典型的"访问受限制"的数据结构,它们的实现都是以线性表作为基础的;如果说线性表是"容器",那么栈和队列这些结构更接近于"接口",在 C++ STL 中称它们为容器**适配器**(adapter)。另一种经典的限制访问的数据结构是**优先队列**(priority queue),它需要以树作为基础,因此放到较后的章节讨论。栈和队列限制了用户访问元素的范围,这使得它们能够防止用户做出对进程、系统、计算机或网络有害的"非法"行为,在《操作系统》和《网络原理》中都能看到它们的应用。本章将首先讨论栈及其应用。

4.1 栈的性质

4.1.1 栈的定义

栈(stack)是一种特殊的线性表。对于栈 S[0:n],它的插入、访问(因为只能 读一个元素,不存在"查找")、删除操作均只能对**栈顶**元素(top 或 peek,即栈的 最后一个元素)S[n-1] 进行。如图4.1所示,当栈顶为 x 时,三种操作都只能在 x 处进行。红色标出了操作之后的新栈顶,蓝色标出了操作之后的不可访问区域。

图 4.1 栈的推入、访问、弹出

- 1. 栈的插入就是在 S[n-1] 后面插入新的元素(称为入栈或推入,push)。
- 2. 栈的访问就是取 S[n-1]。
- 3. 栈的删除就是将 S[n-1] 从栈中删除(称为出栈或弹出,pop)。

由于弹出后的元素往往另有他用,出栈操作会将被删除的栈顶元素返回。

```
template <typename T>
class AbstractStack : public DataStructure<T> {
  public:
    virtual void push(const T& e) = 0;
    virtual T pop() = 0;
    virtual T& top() = 0;
};
```

4.1.2 栈的结构

由于栈实质上是对线性表的访问权限作出限定,所以很容易在线性表的基础上建立栈。以向量(顺序表)实现的栈称为顺序栈,以列表(链表)实现的栈称为链栈。您很容易自己实现一个栈,并使用 StackTest.cpp 进行测试。

```
template <typename T, typename Linear = Vector<T>>
1
      requires std::is_base_of_v<AbstractLinearList<T, typename
2
          Linear::position_type>, Linear>
3
   class Stack : public AbstractStack<T> {
      Linear L;
4
5
   public:
      constexpr static bool is_vector = std::is_base_of_v<</pre>
6
         AbstractVector<T>, Linear>;
7
      void push(const T& e) override {
          if constexpr (is_vector) {
8
9
             L.push_back(e);
10
          } else {
             L.push_front(e);
11
12
          }
      }
13
      T pop() override {
14
15
          if constexpr (is_vector) {
             return L.pop_back();
16
17
          } else {
             return L.pop_front();
18
          }
19
20
      }
21
      T& top() override {
          if constexpr (is_vector) {
22
23
             return L.back();
24
          } else {
25
             return L.front();
          }
2.6
27
      size_t size() const override { return L.size(); }
28
29
   };
```

这里需要注意的是,如果以向量(常规方式)实现栈,则我们总是使用末尾元素代表栈顶,就像在上一节所定义的那样。向量在头部做插入和删除操作的效率

非常低,所以向量只能以尾部作为栈顶。但如果以单向列表实现栈,末尾元素变得不可访问,所以应当反过来以起始元素代表栈顶。双向列表因为是对称的,所以在末尾或起始都可以作为栈顶。

显然无论是顺序栈还是链栈,取顶的时间复杂度是 *O*(1),入栈和出栈的时间复杂度在分摊意义下也是 *O*(1)。根据上一章的介绍您可以知道,用列表实现的栈,时间效率和空间效率都不如向量,但稳定性稍好。在绝大多数应用场景下,使用向量实现栈都比使用列表实现栈更优,很少会出现使用链栈的场景。

4.1.3 后入先出

因为栈只能从尾部进行操作的特性,栈可以被写作 $[S_0, S_1, S_2, ..., S_{n-1})$ 的形式,左侧的中括号表示不可操作的一端(**盲端**),右侧的尖括号表示可操作的一端(**自由端**)。更常见的一种表示方法是把它竖过来:

图 4.2 栈的桶式表示

如图4.2所示,可以把栈想成一个桶,盲端是桶的底部,自由端(栈顶)是桶中最上面的物品。于是,push操作就是往桶里放东西,后放的东西总是放在先放的东西的上面,像上图中,B放在A上面,C放在B上面。而要取东西(pop)的时候,每次只能取桶里最上面的东西,也就是栈顶元素。在上图里,为了把B取出来,必须先把B上面的C取出来。

就像列表相关问题经常用链式图帮助思考一样,处理和分析栈的相关问题经常要用到上面这种桶式图。从上图中不难发现,栈的最重要的性质是: 先入栈的元素后出栈,后入栈的元素先出栈,简称为"后入先出"(LIFO, Last In First Out)。生活中有不少LIFO的例子,比如,桌子上一大摞书需要先搬开上面的才能拿下面的。这些现象被抽象化到计算机中处理就对应栈这种数据结构。

和栈相关的题目,通常有两个方向。

- 1. 考察对栈性质(也就是 LIFO)的理解。
- 2. 在访问受限的情况下设计算法。

在下面的几节,将介绍栈的几个应用以加深您对栈性质的理解。这些应用本身也是重要的考点,栈的大多数题目都出自这些应用。

4.2 出栈序列

4.2.1 出栈序列的定义

出栈序列(又称**栈混洗序列**)是关于栈的一个重点问题。下面首先给出出栈序列的定义。

给定一个序列 $A = (a_1, a_2, \cdots, a_n)$,如果对于序列 $B = (b_1, b_2, \cdots, b_n)$,存在对空栈 S 的入、出栈操作各 n 次的操作序列 $O = (o_1, o_2, \cdots, o_{2n})$,使得当序列 O 中的入栈操作为依次将 a_1, a_2, \cdots, a_n 入栈时,序列 O 中的出栈操作出栈的元素恰好依次为 b_1, b_2, \cdots, b_n ,则称序列 B 为序列 A 的一个出栈序列。

操作序列中的每个元素是push或者pop,为简化叙述,本书将使用 v 和 A 分别表示它们。如果您用桶式图想象栈的形象,那么这两个符号是直观的。

一个显而易见的结论是: 出栈序列是全排列的子集。以入栈序列为 (1,2,3) 为例,则 (3,2,1) 是它的一个出栈序列,对应的操作序列为 V V V A A A A。您可以自己验证,(2,3,1)、(2,1,3)、(1,3,2) 以及 (1,2,3) 自身,都是它的一个出栈序列;而 (3,1,2)则无法成为一个出栈序列。

事实上,如果入栈序列是 $(1,2,\cdots,n)$,则 $B=(b_1,b_2,\cdots,b_n)$ 是出栈序列,当且仅当不存在"312"模式。即:不存在 i < j < k,使得 $b_j < b_k < b_i$ 。这个命题您可以在阅读了出栈序列的相关知识后自己证明。

根据出栈序列的定义,可以立刻得到,在给定 A 的情况下,从 O 到 B 是一个满射。那就自然地会引发猜想,从 O 到 B 也应该是一个单射。这个问题可以用递归法分析,具体证明过程您可以自己补全。设 $O = (o_1, o_2, \cdots, o_{2n})$ 中的最后一个 \vee 是 o_j ,则下一个操作 o_{j+1} 一定是 \wedge ,且 o_j 入栈的和 o_{j+1} 出栈的元素都是 a_n 。那么,将 o_j 、 o_{j+1} 和 a_n 删除就递归到了 n-1 的情形。递归边界 n=1 结论显然。这样,每个出栈序列就唯一对应了一个操作序列。

4.2.2 出栈序列的计数

从上一小节的分析可知,给定入栈序列的情况下,出栈序列的数量等于操作序列的数量,而操作序列 $O = (o_1, o_2, \cdots, o_{2n})$ 的数量和入栈序列的内容无关,只和入栈序列的长度 n 相关。

在这一小节中,先设长度为 2n 的操作序列 O 的长度是 f(n)。为了求解这个函数,需要确定操作序列 O 需要满足的条件。

- 1. 包括n个 \vee 和n个 \wedge 。
- 2. 对于操作序列的任意一个前缀,前缀中 v 的数量一定不小于 A 的数量。否则, 在这个前缀的操作结束之后, 栈的规模会变成负数, 这是不可能的。

容易验证满足上述两个条件的序列,也一定是合法的、可以生成对应出栈序列的操作序列。下面利用这两个条件,去推导 f(n) 满足的递归式。

由于条件(2), o_1 必定是 \vee 。设 o_1 入栈的 a_1 在 o_k 时出栈,其中 $1 < k \le 2n$ 。又由于 a_1 在 o_1 的时候被压入了栈的底部,所以 o_k 之后,栈变成了空栈。因此, (o_1,o_2,\cdots,o_k) 和 $(o_{k+1},o_{k+2},\cdots,o_{2n})$ 各自都是一个比较短的、符合条件的操作序列。因而 k 必须是偶数,设 k=2i,其中 $1 \le i \le n$ 。

在这两个操作序列中, o_1 和 o_k 已经被确定了,而 $(o_2, o_3, \cdots, o_{k-1})$ 有 f(i-1) 种可能性, $(o_{k+1}, o_{k+2}, \cdots, o_{2n})$ 有 f(n-i) 种可能性。于是:

$$f(n) = \sum_{i=1}^{n} f(i-1)f(n-i)$$

上述递归方程可以被改写为:

$$f(n+1) = \sum_{k=0}^{n} f(k)f(n-k)$$

使用生成函数法可以得到,这个递归方程可以解出显式的通项公式:

$$f(n) = \frac{C_{2n}^n}{n+1} = \frac{(2n)!}{(n+1)! \cdot n!}$$

这个数被称为**卡特兰**(Catalan)**数**,记为 Catalan(n)。

4.2.3 出栈序列的计数方法 *

本节介绍如何推导出栈序列的计数。如果您对数学问题不感兴趣,也没有必要特意去了解它,可以选择跳过本节的内容。

使用数学归纳法可以证明,这个递归方程的解确实是 Catalan(n),不过数学归纳法要先猜出答案才能证明。这里介绍解决此类递归方程问题的**生成函数法**。生成函数法是《概率统计》学科的内容,但并不在考研数学的要求范围内。

证明 设 $H(x) = \sum_{n=0}^{\infty} h_n x^n$, 其中 h_n 为待求解的 Catalan(n)。于是,

$$H^{2}(x) = \sum_{n=0}^{\infty} h_{n} x^{n} \sum_{k=0}^{\infty} h_{k} x^{k} = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} h_{n} h_{k} x^{n+k}$$

$$= \sum_{n=0}^{\infty} x^n \sum_{k=0}^{n} h_k h_{n-k} = \sum_{n=0}^{\infty} h_{n+1} x^n = \frac{H(x) - h_0}{x}$$

由 $H(0) = h_0 = 1$,解得 $H(x) = \frac{1-\sqrt{1-4x}}{2x}$ 。将分子上的二次根式泰勒展开,即可得到

$$H(x) = \sum_{n=0}^{\infty} \frac{C_{2n}^{n}}{n+1} x^{n}$$

此外有一种基于一一映射的计数方法,这种方法相对生成函数法更加巧妙。 证明 我们分析出栈序列需要满足的两个条件。

- 1. 在长度为 2n 的序列中安排 $n \wedge \vee 1$ 和 $n \wedge 1$ 可能的情况有 C_{2n}^{n} 种。
- 2. 如果满足条件(1)而不满足条件(2),则必定存在一个最小的 k,使得序列的前 k 项中, \vee 比 \wedge 少 1 个;后 n-k 项中, \vee 比 \wedge 多 1 个。那么,保持后 n-k 项不变,令前 k 项的 \vee 变为 \wedge 、 \wedge 变为 \vee ,则得到了一个新的序列,这个序列中有 n+1 个 \vee 和 n-1 个 \wedge 。可以证明这是一个一一映射。因此,不满足条件的情况有 C_{2n}^{n+1} 种。

因此, 出栈序列的数量为

$$C_{2n}^n - C_{2n}^{n+1} = \frac{C_{2n}^n}{n+1}$$

递归方程法和一一映射法,是计数问题的两种基本方法。相对来说,递归方程法比较常规,很容易列出递归方程,但计算比较复杂;一一映射法则需要较高的构造技巧,而计算比较简单。

4.2.4 随机出栈序列 *

这一小节从扩展卡特兰数的角度出发,讨论如何生成一个随机的栈操作序列。 考虑包含 $p \land v \land q \land h$ 的序列,其中 $0 \leqslant p \leqslant q$ 。如果在这个序列前添加 $q - p \land v$ 可以得到合法的栈操作序列,则下文称其为 p,q 的后缀操作序列(显然,一个合法操作序列的任一后缀都是后缀操作序列)。设 p,q 的后缀操作序列有 $C_{p,q}$ 个,则可以得到 $C_{n,n}$ = Catalan(n)。

直接对栈的操作序列做递归比较困难。而定义了后缀栈操作序列之后,就可以研究生成过程中的中间结果。我们的总体目标是生成 n+n 的后缀操作序列。如果从前到后生成,在某一步处已经生成了 n-p 个 \vee 和 n-q 个 \wedge ,那么剩余部分是一个 p,q 的后缀操作序列,有 $C_{p,q}$ 种等概率的可能性。从而,这一步生成 \vee 的

概率是 $\frac{C_{p-1,q}}{C_{p,q}}$,生成 \land 的概率是 $\frac{C_{p,q-1}}{C_{p,q}}$ 。

上述结论表明,只要计算出 $C_{p,q}$ 的通项公式,就可以从前向后随机地逐个生成操作序列上的操作。使用上一小节介绍的方法构造一一映射,容易证明:

$$C_{p,q} = C_{p+q}^q - C_{p+q}^{q+1} = \frac{q-p+1}{q+1} C_{p+q}^q$$

因此, 生成 v 的概率为:

$$\frac{C_{p-1,q}}{C_{p,q}} = \frac{q-p+2}{q-p+1} \cdot \frac{p}{p+q}$$

这意味着不需要实际计算组合数,就可以得到每次生成 \vee 和 \wedge 的概率。从而可以得到时间复杂度为 $\Theta(n)$ 的算法(假设随机数生成器的时间复杂度为 O(1))生成一个长度为 2n 的合法操作序列。

4.3 括号序列

4.3.1 合法括号序列的计数

卡特兰数不仅仅是出栈序列(合法操作序列)的数量,同时也是其他很多问题的答案。这些问题的解决,也普遍具有两条路径:

- 1. 从模型角度入手,将其变换为等价的出栈序列或合法操作序列问题,然后套 用卡特兰数的通项公式。(一一映射法)
- 2. 从计算角度入手,列出递归方程,发现和卡特兰数的递归方程的相似性后,利用已知的卡特兰数通项公式求解。(递归方程法)
- 一个典型的例子是合法括号序列问题。考虑左括号和右括号组成的合法括号 序列,可以用以下的递推定义:
 - 1. 空串是合法括号序列。
 - 2. 如果 S 和 T 是合法括号序列, 那么 (S)T 也是合法括号序列。

条件(2)的一个等价形式拆分成两个条件:如果 S 是合法括号序列,则 (S) 是合法括号序列;以及,如果 S 和 T 是合法括号序列,那么 ST 也是合法括号序列。这种两个条件的版本更符合直观认知。

您会发现,从 (S)T 递归到长度更短的 S 和 T,这个递归方法和前面推导合法操作序列数量时使用的递归方法如出一辙,因此,用 \vee 代替左括号,用 \wedge 代替右括号,就可以建立合法括号序列到合法操作序列的一个映射。容易证明这是一个双射,从而化归到出栈序列的问题上来。另一个方向也是类似的,容易通过条件

(2) 得到和之前完全一样的递归方程,从而解出卡特兰数的通项公式。

在这个问题上,从模型角度入手建立一一对应是显然的。但有一些问题,模型上可能一时看不出来,但通过计算角度发现结果是卡特兰数之后,就可以自然地联想到从模型上可以建立一一对应。比如,将凸n边形通过若干条互不相交的对角线划的分为n-2个三角形,划分方法数量。这个问题的答案也是卡特兰数,由于和《数据结构》关系不大,这里不再展开。您可以自己分析这个问题。后面还会遇到的一个非常重要的卡特兰数应用是树和二叉树的计数问题,我们将在对应章节进行分析讨论。

4.3.2 实验: 判断括号序列是否合法

回到合法括号序列的问题上来。发现合法括号序列的数量和出栈序列相同之后,在讨论合法括号序列的问题时,就可以自然地联想到从栈的角度入手。数量上相同只是初步的结论,更重要的是建立了一一映射。比如,借助这个一一映射,就可以用栈来判断一个括号序列是否合法。

在这个实验中,我们将同时讨论小括号、中括号和大括号,因此我们首先建立括号直接的对应关系。在存在多种括号的场合,只需要修改合法括号序列中的条件(2),将递推定义的合法括号序列包括 [S]T 和 $\{S\}T$ 。代码可以在 ParenMatch.cpp中找到。括号匹配算法接受一个字符串。这不是一个有难度的问题,建议您自己实现它。

```
class ParenMatch : public Algorithm<bool, const string&> {
   protected:
2
3
      char left(char c) {
         switch (C) {
4
         case '(': case ')': return '(';
5
         case '[': case ']': return '[';
6
         case '{': case '}': return '{';
7
         default: return 0;
8
9
10
      }
11
  };
```

从上面的分析中我们可以看到,左括号和右括号在建立一一映射的时候分别被映射为了 v 和 A。因此,我们从左到右扫描括号序列的时候,每次扫描到左括号,就进行一次入栈操作;每次扫描到右括号,就进行一次出栈操作。由于我们考虑了三种括号,所以我们需要保证左括号和右括号是同一种。因此,每次扫描到左括号,就将它入栈(因此栈里只有左括号);每次扫描到右括号,就从栈里弹出一个左括号,判断是否和右括号匹配。示例程序如下所示。

```
1 bool operator()(const string& expr) {
```

```
Stack<char> S;
2
3
      for (char c : expr) {
          if (char 1 { left(c) }; l == c) {
4
5
             S.push(c);
          } else if (1) {
6
7
             if (S.empty() || S.top() != 1) return false;
8
             S.pop();
9
          }
10
11
      return S.empty();
12
```

如果只有一种括号,那么栈中的所有元素都是相等的。在这种情况下,栈也变得不必要,因为我们事实上只需要知道栈的规模,用一个整数来表示即可;从而将空间复杂度降低到了O(1)。请您自己完成这种情况的算法设计,并使用在4.2.4节中介绍的随机序列生成方法进行测试。

4.4 栈与表达式

4.4.1 表达式的定义

括号主要的用处,就是给表达式规定计算顺序。所以,自然地就能想到,栈也可以被用来计算表达式。

回顾上一节,括号序列和栈的操作序列相对应,而一个出栈序列,是由入栈序列和操作序列共同决定的。从信息的角度看,如果要在出栈序列和表达式之间建立联系,且已知操作序列和括号序列之间有联系,那么顺理成章地,就会想到,入栈序列应当和表达式中的其他部分——也就是**操作数**(operand)和**运算符**(operator)建立联系。

那么接下来,就需要推导这个联系了。为了更清晰地展示推导过程,以下采用表达式 1+2*(3-4) 作为例子。

1. 建立完整的括号序列。

这样做的目的是,让括号序列能够完全地和运算次序形成一一对应。原有的表达式中,有一些括号被省略了,这一步的目的是将它补全。在例子中,1+2*(3-4)被变换为((1)+((2)*((3)-(4))))。

这里给每一个操作数也加上了一堆括号;这是因为,我们的目标是将"入栈序列"和"操作数与运算符"之间建立联系。在表达式中,操作数和运算符一共有7个(1,2,3,4,+,*,-),因此入栈序列的长度为7,相应地,操作序列的长度应该为14,也就是说括号序列的长度应该为14(7对括号)。在这7对括号中,有3对是用来描述运算符的计算次序的,而另外4对则用来描

述操作数的位置。这样才能达成一一对应。

2. 构造入栈序列和出栈序列。

利用第 1 步中建立的"括号对"和"操作数与运算符"的一一对应关系,决定每一对括号对应的入栈或出栈的元素。如果某一对括号对应的运算符或者操作数为 c,那么将左括号变换为 \lor (c),右括号变换为 \land (出栈元素恰好为 c),就得到了一个带参数的操作序列。

在例子中,第 1 步加入了 7 个括号,其中 3 对用来描述 3 个运算符的运算次序,4 对用来描述 4 个操作数的位置,也就是说,每一对括号都对应了一个运算符或者操作数。它对应的带参数操作序列是: $V(+)V(1) \wedge V(*)V(2) \wedge V(-)V(3) \wedge V(4) \wedge \wedge \wedge \wedge$ 。对应的入栈序列是: $V(+)V(1) \wedge V(*)V(2) \wedge V(-)V(3) \wedge V(4) \wedge \wedge \wedge \wedge$ 。对应的入栈序列是: $V(+)V(1) \wedge V(*)V(2) \wedge V(-)V(3) \wedge V(4) \wedge \wedge \wedge \wedge$ 。对应的入栈序列是: $V(+)V(1) \wedge V(*)V(2) \wedge V(-)V(3) \wedge V(4) \wedge \wedge \wedge \wedge$ 。对应的入栈序列是: $V(+)V(4) \wedge V(4) \wedge \wedge \wedge \wedge$ 。对应的入栈序列是: $V(+)V(4) \wedge V(4) \wedge \wedge \wedge \wedge \wedge$ 。对应的入栈序列是: $V(+)V(4) \wedge V(4) \wedge \wedge \wedge \wedge \wedge \wedge \wedge$

定义这个入栈序列为**前缀表达式**(又称波兰式),出栈序列为**后缀表达式**(又称逆波兰式)。在前缀表达式和后缀表达式中,由于两个数字可能连在一起,所以为了区分边界,通常使用空格或其他分隔符隔开相邻的两个元素。您所熟知的数学的表达式形式,即1+2*(3-4),被称为**中级表达式**。

这三个概念来自于运算符相对于操作数的位置。在前缀表达式中,运算符出 现在它所对应的操作数之前;后缀表达式放在之后,而中缀表达式的运算符出现 在中间。

后缀表达式和前缀表达式的性质大多是对偶的,而后缀表达式更适合使用计算机计算,因此,在考试中基本上不会出现前缀表达式,而后缀表达式则是非常重要的考察内容。

4.4.2 表达式中的元素

为简单考虑,本书中只讨论操作数为整数的表达式,讨论的运算符则包括 7种:加、减、乘、除、取余、乘方、阶乘。通过对负号和阶乘的支持,我们要求表达式处理中允许单目运算符的存在,且单目运算符可以放在操作数的左侧或者右侧。表达式解析作为《编译原理》的组成部分,如果从自动机的角度观察它会更加本质;但这已经超出了《数据结构》的讨论范畴。

需要指出的是,表达式的实现在各个教材中会有很大的、基础性的差异。比如,针对表达式中的元素的抽象,有三种解决方案。

1. 分离方案。操作数和运算符被分离,使用不同的类型的数据单元进行存储。 大多数教材采用了这样的方案。这种方案的优点在于不需要自己写类对数据 单元进行封装(可以使用基本数据类型,如char和int),缺点是在处理表达 式时往往需要两个栈分别处理操作数和运算符。而在表达式中,操作数和运 算符本质上都是表达式的元素,分离方案没有显示出这一点。

- 2. 合取方案。在每个数据单元中,存储一个运算符和一个操作数。对于输入的中缀表达式,将每个运算符和紧随其后的一个操作数合并在一个数据单元存储。通过在整个表达式的开头和结尾增加一对括号,我们可以保证在中缀表达式中每个操作数都紧跟在某个运算符之后。这种方案的优点在于处理中缀表达式时非常方便,缺点是将操作数和它前面的运算符合并,这一操作并不自然。
- 3. 析取方案。在每个数据单元中,存储一个运算符或一个操作数。这种方法可以很好地表达操作数和运算符都是表达式元素的本质。

本书将采用析取方案,我们将从表达式元素的基本功能开始,逐步往其中添加功能,使其可以支持表达式转换和计算。由于表达式是一个充满实现多样性的话题,本书在此实现了充分的解耦。您可以直接使用本书提供的表达式元素类,只关注表达式本身的算法。或者,您可以使用本书提供的抽象表达式元素类,自己实现析取方案的表达式元素类。或者,您还可以使用本书所用的抽象表达式元素类,实现合取方案的表达式元素类。或者,您还可以使用本书所用的抽象表达式元素类,实现合取方案的表达式元素类(您需要修改表达式类来支持合取方案)。或者,您也可以不使用表达式元素类,改用基本数据类型,通过分离方案实现表达式的各种算法。

表达式的每个元素可以定义如下。

```
class AbstractExpressionElement {
2
   public:
      virtual char getOperator() const = 0;
3
      virtual const int& getOperand() const = 0;
      virtual bool isOperator() const = 0;
5
6
      virtual bool isOperand() const = 0;
      virtual bool operator==(char op) const = 0;
7
      virtual bool operator!=(char op) const = 0;
      virtual void setOperator(char op) = 0;
9
      virtual void setOperand(const int& num) = 0;
10
      virtual std::pair<bool, bool> operandPosition() const = 0;
11
      virtual int apply(int lhs, int rhs) const = 0;
12
   };
13
```

我们使用apply方法表示运算,当元素是运算符时,它接收至多两个操作数,返回运算的结果;当元素是操作数时,它直接返回操作数本身。operandPosition方法则表示操作数的位置,当元素是运算符时,两个返回值各表示左侧和右侧是否可以接受操作数(比如阶乘,就只允许左侧有操作数);当元素是操作数时,当然两边都不能有操作数。上面的接口我们可以通过 C++17 引入的std::variant很方便地实现。

```
1 class ExpressionElement : public AbstractExpressionElement {
```

```
std::variant<char, int> m_element;
2
3
   public:
4
      char getOperator() const override {
5
         return std::get<char>(m_element);
6
7
      const int& getOperand() const override {
         return std::get<int>(m_element);
8
9
      bool isOperator() const override {
10
11
         return std::holds_alternative<char>(m_element);
12
13
      bool operator==(char op) const override {
         return isOperator() && getOperator() == op;
14
15
      bool isOperand() const override {
16
17
         return std::holds_alternative<int>(m_element);
18
      void setOperator(char op) override {
19
20
         m_element = op;
21
22
      void setOperand(const int& num) override {
23
         m_element = num;
24
      }
      std::pair<bool, bool> operandPosition() const override {
25
2.6
         if (isOperator()) {
             switch (getOperator()) {
27
             case '(': return { false, true };
28
             case ')': case '!': return { true, false };
29
             case '+': case '-':
30
             case '*': case '/':
31
32
             case '%': case '^': return { true, true };
33
34
          }
         return { false, false };
35
36
      int apply(int lhs, int rhs) const override {
37
38
         if (isOperator()) {
             switch (getOperator()) {
39
40
             case '+': return lhs + rhs;
             case '-': return lhs - rhs;
41
             case '*': return lhs * rhs;
42
             case '/': return lhs / rhs;
43
             case '%': return lhs % rhs;
44
             case '^': return Power {}(lhs, rhs);
45
             case '!': return Factorial {}(lhs);
46
47
48
49
         return getOperand();
50
      }
51
   };
```

4.4.3 将字符串解析为中缀表达式

本节讨论将字符串解析为中缀表达式。我们将表达式看成是析取元素组成的 线性表,每一个元素存储一个操作数或一个运算符。在将字符串解析为中缀表达 式的这个过程中,我们需要进行两件事:

- 1. 将操作数提取出来。每个运算符都是一个字符,而操作数可能不止有一个字符。因此,当扫描到数字时,不能立刻将它加入到表达式中,需要继续向下扫描,直到扫描到运算符或字符串尾,才能确认这个数字结束。
- 2. 将表达式中的负号和减号区分开来。减号需要两个操作数进行运算,而负号 只是将它后面的操作数取反,二者具有不同的语义。通过分析可以发现,运 算符 – 表示负号,当且仅当它在字符串起始位置,或前一个元素是左括号。
- 一种可能的实现如下所示。在上面的分析中我们发现,总是需要对字符串尾和字符串头进行特判。为了消除这些特判,我们可以选择在字符串的两边增加一对括号。

```
Expression(const std::string& expr) {
      std::string expr2 { '(' + expr + ')' };
2
3
      std::string num;
      for (auto& c : expr2) {
4
5
          if (isdigit(c)) {
             num += c;
6
7
          } else {
8
             if (!num.empty()) {
                this->push_back(ExpressionElement(std::stoi(num)))
9
10
                num.clear();
             }
11
             if (c == '-' && this->back() == '(') {
12
                num += c;
13
14
15
                this->push_back(ExpressionElement(c));
16
             }
17
         }
      }
18
   }
19
```

这里采用的std::stoi将字符串转换为整数,语义清晰但相对低效,您可以自己改写处理操作数的部分以提高效率。

4.4.4 中缀表达式转换为后缀表达式

在4.4.1节中, 我们已经介绍了将中缀表达式转换为后缀表达式的方法。在考试中为简化起见, 通常采用以下的快速手工方法, 如图4.3所示。

1. 补全运算符对应的括号, 而不补操作数对应的括号。

2. 对于每一对括号,设它对应的运算符为 c,则删掉左括号,将右括号替换为 c;如此就得到了后缀表达式。

图 4.3 中缀表达式转换为后缀表达式

如果要得到前缀表达式,类似地,只需要删掉右括号,将左括号替换为 c 即可。前缀表达式的运算符位于入栈的位置上,而后缀表达式的运算符位于出栈的位置上,这都是非常自然的;反而,我们熟悉的中缀表达式,运算符的位置是不自然的。所以,为了计算中缀表达式,可以先将它转换为前缀表达式或后缀表达式。此处以后缀表达式为例,您可以自行完成前缀表达式的情况。

在手工方法中,操作数仍然在它原本的位置上,而运算符则被移动到了它出 栈的位置(必定后于运算符出现的位置)。因此,我们可以对中缀表达式从前到后 扫描,当扫描到操作数的时候将其直接加入后缀表达式,而当扫描到运算符的时 候将其入栈,在运算符出栈的时候,再将它加入到后缀表达式中。但是,当在计算 机中处理中缀表达式的时候,并不是每一个运算符都有对应的一对括号,因此,我 们需要配合运算符的优先级进行处理。

我们的目标是寻找每个运算符应当在哪个位置出栈。我们考虑不为左右括号的运算符c,因为左右括号不会被加入到后缀表达式中。考虑表达式 (AcB),其中,左右的一对括号是c对应的括号,A和B都是表达式。

- 1. 如果这对括号实际存在,那么我们分析表达式 B 的情况。如果 B 是操作数或者被一对括号包裹,则它确实参与了 c 的运算。如果 B 是其他情况,则可以设 B 为 B_1 c_1 B_2 ,其中 c_1 是 B 在最后一步进行的运算, B_1 和 B_2 都是表达式。那么,只有 c 的优先级小于 c_1 时,B 作为整体才会参与 c 的运算。否则,在 A c B_1 c_1 B_2 中,会先计算 A c B_1 , c 对应的括号应当不包括 c_1 B_2 这一段。
- 2. 反过来,如果这对括号实际不存在,那么我们需要定位到它的位置。根据上

面的分析可以知道,我们从c向后可以继续扫描,直到扫描到优先级不大于c的运算符 c_1 为止(不包括括号里的运算符)。c对应的括号应当出现在 c_1 之前;所以在扫描到 c_1 的时候将c出栈。由于我们在上一节中,在表达式两端添加了一堆括号,所以不需要特别判断扫描到末尾的情况(因为末尾一定有实际存在的括号)。

如果存在右结合运算符,则不等号的严格性会发生变化,(1)中的小于应当改为不大于;(2)中的不大于应当改为小于。本书实现的运算符中不包含右结合运算符,因此不考虑这个问题;本书的示例代码允许扩展到右结合运算符中,您可以自己尝试将运算符实现为右结合的形式。

综上所述, 我们可以得到这样的算法框架:

- 1. 当扫描到操作数时,直接加入后缀表达式。
- 2. 当扫描到非括号的运算符 c 时,首先将栈内优先级不小于 c 的运算符依次弹 出并加入后缀表达式,然后将 c 入栈。

现在考虑括号的情况。我们会发现,左括号作为运算符,很难确定它的优先级。一方面,当扫描到左括号的时候,它应当具有最高的优先级,左括号内部永远应当先于当前的栈顶运算符进行计算。另一方面,当左括号在栈内时,它应当具有(除了右括号外)最低的优先级,因为必须计算完括号才能脱括号,所以在找到其对应的右括号之前,任何运算符都不应该让左括号出栈。

这就意味着我们不能用单一的优先级来描述运算符,而是需要将其拆分为栈内优先级和栈外优先级。当我们扫描到运算符c时,将栈顶的栈内优先级,和c的栈外优先级进行比较。如果栈顶的栈内优先级不小于c栈外优先级,则将栈顶弹出。左括号出栈后不进入后缀表达式,右括号则不必入栈,因为右括号对应的栈操作是 Δ ,扫描到右括号的时候恰好会弹出它对应的左括号。

除了左括号外,其他运算符的栈内和栈外优先级相同;右括号的栈内优先级和栈外优先级都是最低。左括号具有最高的栈外优先级,以及除右括号之外最低的栈内优先级。因此,左括号入栈必定不会引起其他运算符出栈(括号内总是先于括号外计算),且仅当扫描到右括号的时候左括号可以出栈。

如果您想要同时实现左结合和右结合运算,可以对栈内和栈外的优先级做进一步细化的区分。在只考虑左结合运算的情况下,两个运算符的比较函数如下。

```
inline static const std::unordered_map<char, int> priority_left
{
    {'(', 0}, {')', 0}, {'^', 3}, {'!', 4},
    {'+', 1}, {'-', 1}, {'*', 2}, {'/', 2}, {'%', 2}
};
inline static const std::unordered_map<char, int>
    priority_right {
```

```
{'(', 6}, {')', 0}, {'^', 3}, {'!', 4},
6
      \{'+', 1\}, \{'-', 1\}, \{'*', 2\}, \{'/', 2\}, \{'\%', 2\}
7
8
   };
9
   bool prior(char next) const override {
      if (isOperator()) {
10
11
         auto prior_left { priority_left.find(getOperator()) };
         auto prior_right { priority_right.find(next) };
12
13
         if (prior left != priority left.end() && prior right !=
             priority_right.end()) {
             return prior_left->second > prior_right->second;
14
15
16
      }
17
      return false;
18
```

上面虽然进行了很多分析,但目的只是为了让您更好地理解我们为什么要这样设计算法。算法的实际实现非常简单,如下所示。如果您想要实现前缀表达式,需要改为从后向前扫描,感兴趣的话可以自己完成。

```
1
   void infix2suffix() {
2
      Stack<ExpressionElement> S;
3
      Expression suffix;
      for (auto& e : *this) {
4
5
          if (e.isOperand()) {
             suffix.push_back(std::move(e));
6
7
          } else {
             while (!S.empty() && S.top().prior(e.getOperator()))
8
9
                if (auto op { S.pop() }; op != '(') {
10
                    suffix.push_back(std::move(op));
                } else {
11
12
                    break:
13
14
             }
             if (e != ')') {
15
16
                S.push(std::move(e));
17
             }
18
          }
19
      *this = std::move(suffix);
20
21
   }
```

4.4.5 后缀表达式转换为中缀表达式

现在考虑上述问题的反问题:如何从后缀表达式转换为中缀表达式?

下面从信息的角度分析,"中缀转后缀"和"后缀转中缀"有什么不同。注意到,中缀表达式是由"语义元素"(操作数和非括号的运算符)以及"括号序列"共同组成的。"语义元素"是参与运算的元素,对应了入、出栈过程中操作的数据;而"括号序列"是进行运算的次序,对应了入、出栈过程中的操作序列。所以知道

中缀表达式,也就知道了操作序列的每一步入、出栈了什么元素,从而得到入栈序列(前缀表达式)和出栈序列(后缀表达式)。从信息的角度看,中缀表达式中包含的信息,包括了前缀表达式和后缀表达式所需的信息。

但是,后缀表达式仅仅是由"语义元素"组成的,它本身只是一个出栈序列。 从前面的小节中您已经知道,给定出栈序列而不给定操作序列,则有 Catalan(n) 种可能的入栈序列。所以,如果仅仅依赖后缀表达式的文本,而不借助其他先验信息,那么从后缀表达式反推中缀(前缀)表达式是不可能的、是缺少信息的。要能够实现后缀表达式到中缀表达式的转换,必须要知道文本以外的额外信息。

这个先验的额外信息就是:每个运算符需要的操作数数量。在常见的运算符中,加、减、乘、除、乘方,操作数数量都是 2; 阶乘的操作数数量是 1。需要特别注意的是,当"减号"和"负号"都被作为运算符处理,且采用同一符号 – 时,它的操作数数量是不确定的,这一不确定性会导致后缀表达式出现歧义。中缀表达式可以通过判断 – 之前是否为操作数来进行区分,而后缀表达式无法进行区分。比如:对于后缀表达式 1 2 – 3 – 一,它的三个 – 中有一个代表负号,另外两个代表减号。因此,这个后缀表达式可能对应 3 种不同的中缀表达式: 1 – ((-2) – 3)、(1-2) – (-3) 和 – ((1-2) – 3)。前面几节我们处理中缀表达式的时候,在解析阶段就已经将减号和负号进行了分离。负号被认为是操作数的一部分,而所有出现在表达式中的运算符 – 都是减号;在后缀表达式的处理中我们也将延续这一约定以避免上述歧义。

下面解释,这个先验的额外信息是如何帮助后缀表达式转换成中缀表达式的。 这一部分的内容如果不感兴趣可以略过。

假设某个运算符 c 的操作数数量是 2。在补全了所有括号的中缀表达式中,这个操作数出现在 ((A) c(B)) 这个片段里,其中 A 和 B 都是中缀表达式。按照上一节的方法,这个片段化为后缀表达式是 A' B' c,其中 A' 和 B' 是 A 和 B 对应的后缀表达式。于是得到:

定理 4.1: 对于后缀表达式 E 中的每个运算符 c, 都存在 E 中的一个连续的子序 列 E_0 , E_0 是以 c 结尾的后缀表达式。

在之前讨论一般的出栈序列的时候,A' 和 B' 的划分是任意的,所以会得到卡特兰数的递归方程。但在讨论后缀表达式的时候,需要受到操作数数量的限制,因此 A' 和 B' 的划分不是任意的。事实上,只有一种划分是合法的。

我们知道,后缀表达式的开头必定是操作数,末尾必定是运算符。对于语义元

素组成的序列 $C = (c_1, c_2, \cdots, c_n)$, 定义:

$$f(c_i) = \begin{cases} 1, & c_i \text{ is operand,} \\ 1 - \text{Cnt}(c_i), & c_i \text{ is operator with Cnt operands} \end{cases}$$

定理 4.2: 令 $f(C) = \sum f(c_i)$,则对于合法的后缀表达式 E, f(E) = 1。 证明 使用数学归纳法,对 E 中含有的运算符数量归纳。

- 1. 对于单个操作数, f(E) = 1。
- 2. 对于以 k 元运算符结尾的表达式,设 E 为 A_1 A_2 … A_k c ,其中 A_i 是后缀表达式。从而 $f(E) = \sum f(A_i) + f(c) = k + (1 k) = 1$ 。

定理 4.3: 对于合法后缀表达式 E 的任意前缀 $E_j = (e_1, e_2, \cdots, e_j), j \leq n$,始终有 $f(E_i) \geq 1$ 。

证明 使用数学归纳法,对 j 归纳。

- 1. 由于 e_1 是操作数,所以 $f(E_1) = 1$ 。
- 2. 如果 e_i 是操作数,则 $f(E_i) = f(E_{i-1}) + 1 \ge 1 + 1 > 1$ 。
- 3. 如果 e_j 是运算符,根据定理4.1,必定存在某个 $(e_t, e_{t+1}, \cdots, e_j), 1 \leq t < j$ 是以 e_j 结尾的后缀表达式。那么根据定理4.2, $f(e_t, e_{t+1}, \cdots, e_j) = 1$,从而 $f(E_j) = f(E_{t-1}) + f(e_t, e_{t+1}, \cdots, e_j) \geq f(e_t, e_{t+1}, \cdots, e_j) = 1$ 。

定理 4.4: 对于以 k 元运算符 c 结尾的后缀表达式 E,只有唯一的合法划分方式 使 E 被划分为 A_1 A_2 … A_k c。

证明 使用反证法证明。

如果有不止一种合法的划分方式,设两种划分方式中 (A_1,A_2,\cdots,A_k) 序号最大的一个不同的项是 A_j 和 A_j' 。不妨设 A_j 的长度大于 A_j' ,那么 A_j 则可以被拆分为两段 P A_j' 。因为 A_j 和 A_j' 都是合法的后缀表达式,所以由定理4.2, $f(P)=f(A_j)-f(A_j')=1-1=0$ 。但是 P 是 A_j 的前缀,根据定理4.3应有 $f(P)\geqslant 1$,矛盾。

因此, 递归地进行唯一合法的划分, 就可以得到最终的中缀表达式。类似地, 您可以得到前缀表达式转换为中缀表达式的手段。

需要说明的是,上面的转换方式并不实用,笔者在此处也没有给出相应的示例代码,仅仅从理论的角度进行介绍。实际转换的时候,通常利用**表达式树**作为中介进行转换,表达式树的内容将会在后面的章节介绍。在本章介绍表达式,是希望您在思维中巩固"栈"和"表达式"之间的联系。

4.4.6 后缀表达式转换为前缀表达式

在上一小节中使用了一个 $f(\cdot)$ 函数用来辅助证明,这个函数并不是凭空产生的,而是另一个栈的产物。我们采用下面的方法构造一个操作序列。

- 1. 将后缀表达式中的操作数 i, 用 $\vee(i)$ 替代。
- 2. 将后缀表达式中的运算符 c,用 $\wedge^k \vee (c)$ 替代,其中 \wedge^k 表示 k 个连续的 \wedge ,k 是这个运算符的运算所需操作数数量。
- 3. 在整个序列的结尾处增加一个 △。

根据上一小节的定理4.2和定理4.3,我们可以确定,这样得到的操作序列是合法的。

我们发现,在这个操作序列中,对应的入栈序列恰好是后缀表达式。自然地,我们想到要分析它的出栈序列。仍然以前面的 1 2 3 4 - * + 作为例子,它对应 V(1) V(2) V(3) V(4) A A V(-) A A V(*) A A V(+) A,从而可以得到出栈序列是 4 3 - 2 * 1 +。这恰好是倒序的前缀表达式。对于一般情形,您可以用递归(归纳)的方法证明这个结论。对偶地,您也可以得到前缀表达式转换成后缀表达式的手段。

4.4.7 后缀表达式的计算

后缀表达式的计算是考试中的传统题型之一。要计算后缀表达式,只需要对上一小节中的操作序列作出一点点修改。

- 1. 将后缀表达式中的操作数 i, 用 V(i) 替代。
- 2. 将后缀表达式中的运算符 c,用 $\Lambda^k \vee (r)$ 替代,其中 Λ^k 表示 k 个连续的 Λ ,k 是这个运算符的运算所需操作数数量。r 是本次运算的结果。设第 i 个 Λ 出 栈的数为 A_i ,则 $r = c(A_1, A_2, \cdots, A_k)$ 。
- 3. 在整个序列的结尾处增加一个 A。这次出栈的数就是后缀表达式的计算结果。 这个算法的正确性也可以递归证明。您可以自己实现这一算法的代码,下面 展示了一个示例。

```
int calSuffix() const {
1
      Stack<int> S;
2
3
      for (auto& e : *this) {
         if (e.isOperand()) {
4
5
             S.push (e.getOperand());
6
          } else {
7
             auto [1, r] { e.operandPosition() };
8
             int rhs { r ? S.pop() : 0 };
9
             int lhs { 1 ? S.pop() : 0 };
             S.push (e.apply (lhs, rhs));
10
11
         }
      }
12
```

```
13 | return S.pop();
14 |}
```

考试中实际出现的后缀表达式计算题目,可以使用上述算法手工计算。不过和之前一样,笔者推荐使用表达式树而不是栈进行计算。诚然,表达式树的做法比栈要复杂一些;但表达式树的方法更加清晰,更加适合答题结束后的检查,更加不容易出错。

知道后缀表达式如何计算之后,由于之前已经介绍过各种表达式之间互相转换的方法,所以您也就能够写出计算前缀表达式和中缀表达式的算法了。

4.4.8 实验:中缀表达式的计算

在这个实验中将实现中缀表达式的计算,从而实现一个类似计算器的功能。代码可以在 Expression.cpp 中找到。

```
class CalExpr : public Algorithm<int, const string&> {};
```

根据前面的结论,我们可以先将中缀表达式转换为后缀表达式,再使用后缀 表达式计算。

```
int operator()(const string& expr) override {
   Expression e { expr };
   e.infix2suffix();
   return e.calSuffix();
}
```

因为无论是中缀转后缀,还是后缀求值,都是从左到右依次进行,所以我们也可以将中缀转后缀和后缀求值的过程合并在一起。此时,因为运算符的优先级只能和运算符相比,所以需要使用两个栈,将运算符和表达式拆开。如下所示。

```
1
  int calInfix() const {
2
      Stack<int> Sr;
3
      Stack<ExpressionElement> So;
      for (auto& e : *this) {
4
5
         if (e.isOperand()) {
6
             Sr.push(e.getOperand());
7
          } else {
             while (!So.empty() && So.top().prior(e.getOperator())
8
                ) {
                if (auto op { So.pop() }; op != '(') {
9
10
                   auto [1, r] { op.operandPosition() };
                   int rhs { r ? Sr.pop() : 0 };
11
                   int lhs { 1 ? Sr.pop() : 0 };
12
13
                   Sr.push(op.apply(lhs, rhs));
14
                } else {
15
                   break;
16
                }
             }
17
```

我们的实验中提供了一些简单的例子来测试它的正确性,并使用大量的 1 相加来对算法的性能进行简单的测定。直接计算的常数会比通过后缀表达式间接计算低一些,但是差距非常小,几乎可以忽略不计。

如果您使用了合取方法来定义表达式中的元素,则上面的算法可以得到大幅度简化:因为表达式里的每个元素都是运算符,而操作数是附带在前方最近的运算符上的。推荐您进行这样的尝试。此外,引入k元运算符也是一个有趣的修改方向。您可能会发现,operandPosition中包含的位置信息并没有实际的作用,事实上我们只需要知道一个运算符具有多少个参数。我们修改这个方法,并将apply实现为接受向量(而不是数对)的方法,即可兼容任意元运算符。这里需要使用向量而不是可变参数包的原因是,我们无法在编译期知道参数列表的长度。

4.5 栈与递归

栈和递归的关系非常紧密,因为调用递归函数本质上相当于使用了系统栈。具体的原理参见《操作系统》。系统栈的空间是有限的,如果递归层次过多,就会发生栈溢出(stack overflow)错误。为了避免这种情况发生,我们可以通过手写栈将递归改写为迭代形式。本节将介绍使用栈消除递归的方法。

4.5.1 实验:消除尾递归的扩展形式

在2.7.2节,我们介绍了消除尾递归的方法。尾递归因为每个递归实例只会在尾部调用一次自身,所以不需要使用栈。在这一小节,我们将介绍一种尾递归的扩展形式:每个递归实例会在尾部调用不止一次自身。这样的递归函数通常没有返回值。

在这一节,我们制造一个没有返回值的场景来对这种情况进行分析。给定 w, 求 w 个数位均为 1、2、3 或 4 的 w 位十进制数的数量。当然,我们知道答案是 4^w , 不过我们希望将所有符合条件的数枚举一遍,放入一个向量中,最后再返回向量的规模。代码可以在 *Generate4.cpp* 中找到。

```
class Generate4 : public Algorithm<size_t(size_t) > {
protected:
    Vector<size_t> V;
```

4 | };

我们可以写出这样的递归算法,对所有符合条件的数进行枚举。

```
class Generate4Solver : public Algorithm<void(Vector<size_t>&,
      size_t) > {
2
   protected:
      size_t minn, maxn;
3
4
5
      Generate4Solver() = default;
      Generate4Solver(size_t w) : minn(Power {}(10, w - 1)), maxn
          (Power {} {})(10, w) - 1) {}
7
   };
8
   class Generate4RecursiveSolver : public Generate4Solver {
9
10
   public:
      void operator() (Vector<size_t>& V, size_t n) override {
11
12
          if (minn <= n && n <= maxn) {</pre>
             V.push_back(n);
13
14
          } else {
15
             for (size_t i : {1, 2, 3, 4}) {
                 (*this)(V, n * 10 + i);
16
17
18
          }
19
      }
20
   };
```

从上述算法中, 我们可以很快提取到一些关键信息。

- 1. 递归边界: $n \in [10^{w-1}, 10^w)$ 。
- 2. 递归边界上的返回:将n加入向量。
- 3. 非递归边界时的调用: 10n + j, 其中 j = 1, 2, 3, 4。

类似于只调用一次自身的尾递归,我们可以拟造出递归形式的模板。和尾递归的区别主要有两个:(1)没有返回值;(2)非递归边界时的调用返回包含多组参数的向量。

```
void operator()(Args... args) override {
1
2
     if ((*pred)(args...)) {
3
         (*bound) (args...);
4
      } else {
         for (auto&& nextArgs : (*next) (args...)) {
5
            apply(*this, nextArgs);
6
7
         }
     }
8
9
  }
```

在我们的例子中,每个非边界的递归实例会调用 4 次自身(尾递归)。记递归函数为 f,那么首先调用 f(10n+1),完成它的所有递归实例之后再进入 f(10n+2)。这个过程类似于我们定义了一个 4 元运算符 c,在计算后缀表达式 (A_1) (A_2) (A_3) (A_4) c,

其中 A_j 表示 f(10n+j)。我们可以仿照后缀表达式的计算,在 A_1 全部计算完成之后再让 A_2 开始入栈;但因为我们是从上到下递归计算的,所以我们可以一并将 A_4 A_3 A_2 A_1 倒序入栈,这样, A_1 会成为栈顶, A_1 全部计算完成之后 A_2 成为栈顶,以此类推。下面是一个利用栈的迭代实现的模板,其中特别需要注意采用了倒序遍历。

```
void operator() (Args... args) override {
1
2
      Stack<tuple<Args...>> S { { args... } };
3
      while (!S.empty()) {
4
          tie(args...) = S.pop();
5
          if ((*pred)(args...)) {
             (*bound) (args...);
6
7
          } else {
             for (auto&& nextArgs : (*next) (args...) | views::
8
                reverse) {
9
                S.push (move (nextArgs));
10
11
          }
12
      }
13
   }
```

套用模板,可以得到 Generate4 问题的迭代版本。它和前面的递归版本等价。

```
void operator()(Vector<size_t>& V, size_t n) override {
1
2
      Stack<size_t> S { n };
3
      while (!S.empty()) {
4
          n = S.pop();
5
          if (minn <= n && n <= maxn) {</pre>
             V.push_back(n);
6
7
          } else {
8
             for (size_t i : {4, 3, 2, 1}) {
9
                S.push(n * 10 + i);
10
11
          }
12
      }
   }
13
```

类似于尾递归的情况,使用模板总是比不使用慢。但和尾递归的情况不同,采用栈进行迭代反而会慢于直接递归。同时,采用栈进行迭代也不会降低算法的空间复杂度,因此它通常只作为一种避免栈溢出系统错误的手段,在平时书写代码的时候并不实用。递归的高速的得益于编译器的优化;这告诉我们挑战编译器的能力边界,对绝大多数编程人员来说都是极具浪漫主义色彩的冒险行为。

4.5.2 实验: 计算组合数

对上一节介绍的尾递归扩展形式稍作改动,可以用来计算一些有返回值的递归函数。这些函数在计算完每个递归调用的结果之后,对这些结果进行一个简单

的处理,然后返回。本节以计算组合数的问题作为例子,代码可以在 Combine.cpp 中找到。

众所周知,组合数满足递归公式:

$$C_n^m = \begin{cases} 1, & m = 0 \text{ or } m = n, \\ C_{n-1}^{m-1} + C_{n-1}^m, & \text{otherwise} \end{cases}$$

基于这个公式, 可以设计下面的算法。

```
1  // CombineRecursive1
2  int operator() (int n, int m) override {
3    if (m == 0 || m == n)
4      return 1;
5    return (*this) (n - 1, m - 1) + (*this) (n - 1, m);
6  }
```

它和上一节介绍的尾递归扩展形式的不同在于,在递归调用两个实例之后,还进行了一次加法。看起来由于加法的存在,这个算法似乎不是尾递归;但是,我们可以通过将加法"吸收"到递归函数内部,将它改写成上一节的形式。如下所示。

```
class CombineRecursive2 : public CombineProblem {
 1
 2
      int sum { 0 };
      void combine(int n, int m) {
 3
 4
          if (m == 0 | | m == n) {
             ++sum;
 5
 6
          } else {
 7
             combine (n - 1, m - 1);
             combine (n - 1, m);
 8
 9
          }
      }
10
   public:
11
12
       int operator()(int n, int m) override {
13
          sum = 0;
14
          combine(n, m);
15
          return sum;
16
       }
17
   };
```

接着、我们可以使用上一节的模板、将其改写为使用栈进行迭代的形式。

```
int operator()(int n, int m) override {
1
2
      int sum { 0 };
3
      Stack<pair<int, int>> S { {n, m} };
4
      while (!S.empty()) {
5
          auto [n, m] { S.pop() };
          if (m == 0 | | m == n) {
6
7
             ++sum;
8
          } else {
             S.push(\{ n - 1, m - 1 \});
9
             S.push(\{ n - 1, m \});
10
          }
11
```

```
12 | }
13 | return sum;
14 |}
```

需要指出的是,这个方法是极其低效的,因为 sum 只能不断加一,所以该方法的时间复杂度高达 $\Theta\left(C_n^m\right)$ 。其中,使用栈的方法将比递归更加低效。为了提高时间效率,我们可以利用之前介绍过的不必要工作对算法的过程进行检查。我们可以发现,在这个计算过程中包含了大量的重复工作,比如, $C_n^m = C_{n-1}^{m-1} + C_{n-1}^m = C_{n-2}^{m-2} + 2C_{n-2}^{m-1} + C_{n-2}^m$,因而 C_{n-2}^{m-1} 被计算了 2 次。为了解决这个问题,我们可以利用**记忆化搜索**(memory search)的技术,将我们已经计算过的结果储存起来,如下所示。

```
1
   class CombineMemorySearch : public CombineProblem {
2
      vector<vector<int>> C;
      void initialize(size t n) {
3
4
          C.resize(n + 1);
          for (size_t i = 0; i <= n; ++i) {</pre>
5
             C[i].resize(i + 1, 0);
6
             C[i][0] = C[i][i] = 1;
7
8
9
      }
10
   public:
      int operator()(int n, int m) override {
11
12
          if (n >= C.size())
             initialize(n);
13
          if (C[n][m] == 0) {
14
             C[n][m] = (*this)(n - 1, m - 1) + (*this)(n - 1, m);
15
16
          }
17
          return C[n][m];
      }
18
   };
19
```

上述算法的空间复杂度为 $\Theta(n^2)$; 在不考虑初始化的情况下,最坏时间复杂度为 $\Theta(m(n-m))$ 。它的好处是在计算 C_n^m 的时候可以得到很多中间结果,当我们反复调用它的时候,这些储存下来的中间结果可以得到复用,从而降低了分摊的时间消耗。如果我们只需要计算 C_n^m 这一个数,有更快的计算方法,那就是直接利用 $C_n^m = \frac{(n+m)!}{n!m!}$ 这个公式: 这个公式一共只需要进行 $\Theta(m)$ 次计算(上下的 n! 可以被约去),从而我们可以做到 O(1) 的空间复杂度和 $\Theta(m)$ 的时间复杂度。您可以自己完成这个算法。

测试表明, Recursive2 的效率会明显高于 Recursive1, 这说明了尾递归在编译器优化上的优势。当我们有机会使用尾递归的时候,应当尽可能使用尾递归。

4.5.3 实验: 消除一般的递归*

在前面两节中,我们从尾递归过渡到了它的扩展形式,允许函数进行多次递归调用。对于一般的递归而言,这多次递归调用不一定出现在尾部,递归调用之间可以穿插其他代码。我们可以将一般的递归概括为下面的形式。

```
1
   R operator()(Args... args) override {
2
      if ((*pred)(args...)) {
3
         return (*bound) (args...);
4
      } else {
         vector<R> V {};
5
         while ((*hasnext)(V, args...)) {
6
             V.push_back(apply(*this, (*next)(V, args...)));
7
8
         return (*finalize)(V, args...);
9
10
      }
11
   }
```

由于递归调用依赖于此前的递归调用结果,所以在这种情况下,我们没法一次性地将所有递归调用的参数入栈,需要将用来存储已有递归调用结果的向量 V 也缓存在栈内。

```
R operator()(Args... args) override {
1
2
      vector<R> V {};
3
      Stack<tuple<vector<R>, Args...>> S { { { }}, args... }, { { }},
           args... } };
      while (S.size() > 1) {
4
5
         tie(V, args...) = S.top();
         optional<R> r {};
6
7
         if ((*pred)(args...)) {
             r = (*bound)(args...);
8
9
          } else if ((*hasnext)(V, args...)) {
             tie(args...) = (*next)(V, args...);
10
             S.push({ {}, args... });
11
          } else {
12
             r = (*finalize)(V, args...);
13
          }
14
15
         if (r.has_value()) {
16
             S.pop();
             get<0>(S.top()).push_back(r.value());
17
18
19
20
      return get<0>(S.top())[0];
21
   }
```

这里在栈中预先存放了一个空向量,用来存储最终返回的值。上述形式肉眼可见地低效,仅仅作为考试中需要改写为迭代形式而没有找到合适方法时,保底的通用解法。您可以在 Generate4Sum.cpp 中看到一个使用例子。

4.6 栈的扩展

4.6.1 共享栈

当我们使用顺序栈的时候,我们为栈申请了一片连续内存作为存储空间。注意到,我们的栈只使用了前半部分的空间,而没有使用后半部分的空间。有一种高效利用空间的方法称为**共享栈**(shared stack),它由两个共享同一片连续内存的栈组成。其中一个栈使用前半部分,以秩为 0 的元素为栈底,以秩最大的元素为栈顶;另一个栈使用后半部分,以秩为 n-1 的元素为栈底,以秩最小的元素为栈顶。两个栈的栈顶"相向而行"。由于现在往往不需要如此精打细算空间消耗,现在已经很少看到这个数据结构,邓书也不介绍它。您可以将此作为栈的一个练习自己实现,并使用 SharedStackTest.cpp 测试。

我们使用向量 V(而不是数组)作为实现共享栈的基础,以提供变长特性。使用两个变量topf和topb分别表示前向栈(栈顶向秩大的方向移动)和后向栈(栈顶向秩小的方向移动)的栈顶位置。在我们的设计中,这两个变量均代表"下一个"的值,比如前向栈的栈顶元素是 V[2] 时,topf的值是 3,后向栈的栈顶元素是 V[2] 时,topb的值是 1。您也可以记录栈顶元素本身的秩。

接下来,我们利用类的嵌套,具体构造两个栈。这里展示了后向栈的设计,前向栈与其大体相同。

```
class BackwardStack : public AbstractStack<T> {
1
      SharedStack& S;
3
  public:
      BackwardStack(SharedStack& s) : S(s) {}
4
      void push (const T& e) override {
5
         S.V[S.m\_topb--] = e;
6
7
      }
8
      T& top() override {
9
         return S.V[S.m_topb + 1];
10
      T pop() override {
11
12
         return std::move(S.V[++S.m_topb]);
13
      size_t size() const override {
14
         return S.V.size() - 1 - S.m_topb;
15
16
17
   };
```

唯一需要注意的是,在进行入栈操作的时候,除了上面的基本操作,还需要进行一次共享栈是否已满(是否已经接触到另一个栈的栈顶)的判定。如果共享栈已满,则需要进行扩容。我们可以使用向量本身的扩容,然后将后向栈移动到向量尾部的位置。

```
1 void expand() {
```

为了和您自己实现的向量类兼容,此处没有对向量自身的扩容策略进行萃取, 而是采用了固定的 2 倍扩容策略,您可以将其改为自己的扩容策略,或者改为萃 取的形式。

经典的向量中,空闲的元素位于内存的尾部,而共享栈中,空闲的元素位于内存的中部,因此不适用向量本身的规模机制。您可以认为这里的两个指针topf和topb实现了和向量中的size同样的内存管理功能。

4.6.2 最小栈 *

栈对于用户可以访问的位置做出了很强的限制,有时我们希望略微放开这些限制,使得用户可以访问到一些更多的信息。最小栈(minimum stack)是其中的一个典型的例子。在最小栈中除了栈本身所支持的三种基本操作之外,还支持min操作,返回当前栈内元素的最小值。要求在栈的三种基本操作的分摊复杂度保持O(1)的前提下,新增的min操作的分摊复杂度也为O(1)。这里假定比较两个元素的操作时间复杂度为O(1)。您自己实现的最小栈可以使用MinStackTest.cpp测试。

- 一个基本的思想是维护一个变量 m 来存储栈中的最小值。当插入的元素 e < m 的时候更新 m 没有问题,但当删除的元素 e = m 的时候,我们既不知道这个 e 是 否是当前栈中唯一的最小值 m,又不知道当唯一最小值被删除之后,新的最小值 是多少。这就导致如果我们进行连续的删除操作,则需要反复地遍历整个栈来寻找新的最小值。这在两个方面不能达到我们的要求。
 - 1. 时间复杂度上会存在问题。弹出元素的时候,时间复杂度高达 $\Theta(n)$,而无法满足我们需求的 O(1)。
 - 2. 栈的性质上会存在问题。我们不应当访问栈顶以外的其他元素,即使在栈的实现内部也是如此。

为了在弹出元素的时候,能够立刻找到新的最小值,我们想到用空间换时间的方法。我们定义一个辅助线性表 S_m ,规定 $S_m[k] = \min(S[0], S[1], \cdots, S[k])$ 。因为栈 S 只能在栈顶进行操作,而 $S_m[k] = \min(S_m[k-1], S[k])$,所以 S_m 也只会在尾部进行操作,它同样是一个栈。

```
template <typename T>
class MinStack : public Stack<T> {
   Stack<T> minStack;
```

```
public:
5
      void push(const T& e) override {
6
          Stack<T>::push(e);
7
          if (minStack.empty()) {
             minStack.push(this->top());
8
9
          } else if (auto t { minStack.top() }; t < this->top()) {
             minStack.push(t);
10
          } else {
             minStack.push(this->top());
12
13
14
      }
      T pop() override {
15
         minStack.pop();
16
17
          return Stack<T>::pop();
18
      const T& min() const {
19
20
          return minStack.top();
21
22
   };
```

上面的实现方式需要 $\Theta(n)$ 的额外空间。我们可以发现,在辅助栈中存在大量重复的元素。比如,在栈 $S = [3,4,5,1,2\rangle$ 时,辅助栈 $S_m = [3,3,3,1,1\rangle$,其中 3 被重复了 3 次,1 被重复了 2 次。因此,直觉上看存在空间复杂度并非最优的可能性。为了判断是否已经取得了最优的空间复杂度,我们需要对辅助栈进行分析。考虑一个略简单的模型,即栈内的元素互不相等的情况:设栈中的元素为 $1,2,\cdots,n$ 。我们对辅助栈和栈操作序列建立一个一一对应。

- 1. 补充定义 $S_m[-1] = n + 1$ 。对于 S[j],如果 $S[j] \neq S[j 1]$,则将 S[j] 替换 为 $\vee^k \wedge$,其中 k = S[j 1] S[j]。
- 2. 如果 S[j] = S[j-1], 则将 S[j] 替换为 \land 。

请您自己证明上面的这个映射得到的操作序列是合法的。因此,辅助栈的所有可能情况数量为 Catalan(n)。从信息论的角度看,我们至少需要 log (Catalan(n)) 的空间才能表示这些情况。又因为

$$\log (\operatorname{Catalan}(n)) \sim 2n \log \left(\frac{2n}{e}\right) - 2n \log \left(\frac{n}{e}\right) \sim 2n$$

当允许元素相等的时候,情况只会更多,需要的空间也只会更多。因此,无论采用如何的方式,只要存储了辅助栈,那么在最坏情况下需要的额外空间复杂度总是 $\Theta(n)$ 。

下面将介绍另一种最小栈的实现方法。该方法极具迷惑性,它看起来空间复杂度为O(1),但实际上仍然为O(n)。尚不清楚此类方法是否在考试中被认为是O(1)方法。

根据之前的分析, 如果采用辅助栈 S_m 来存储每个前缀的最小值, 则需要至少

 $\Theta(n)$ 的空间。因此,如果我们想要降低空间复杂度,就必须抛弃辅助栈的设计。我们观察辅助栈和原栈之间的联系: 如果辅助栈在第 k 个位置发生了变化 $x \to y$,也就意味着原栈的第 k 个位置插入了 y,并且 y < x。现在我们不想要辅助栈,也就是说我们需要借助原栈的信息从 y 还原到 x。

一个直接的想法是,在原栈的每个位置上存数据对 (x, S[k]),其中 S[k] 是栈在该位置上的实际元素,x 则是该位置被弹出之后的新的最小值。采用一个额外变量 y 来维护当前的最小值,当 (x, S[k]) 被弹出时,令 y = x。当然,我们知道这个方法和最小栈实质上完全一样,同样需要 $\Theta(n)$ 的辅助空间。

于是我们想到对这个数据对进行变形, 改为存一个映射的象 z = f(x, S[k])。那么, 我们需要在已知 y 和 z 的情况下, 能够还原出 x 和 S[k]。如果仅凭 z 还原, 就是上面的数据对思路, z 的信息量是 x 和 S[k] 的和, 需要 $\Theta(n)$ 的辅助空间。所以我们会想到, y 也能提供一部分信息, z 中需要存储的信息量可以下降。于是, 我们可以把这个映射表述为 $(y,z) = \mathbf{F}(x,S[k])$,其中 y 的语义是确定的, 即 $y = \min(x,S[k])$ 。

直观上看, **F** 输入两个值, 输出两个值, 那么可以让 x, S[k] 的信息完全被包含在 y, z 中; 但事实并非如此。由于 $y = \min(x, S[k])$ 打破了对称性, 导致 y 包含的信息量降低了, 从而使得 z 需要包含更多的信息量。假设 x, S[k] 都是某个 m 元集中, 等概率随机选取的元素, 那么 (x, S[k]) 的信息熵为 $2\log m$, 而 $y = \min(x, S[k])$ 的信息熵为

$$H(y) = -\sum_{k=1}^{m} \frac{2k-1}{m^2} \log \frac{2k-1}{m^2} = \log n - \sum_{k=1}^{m} \frac{2k-1}{m^2} \log \frac{2k-1}{m}$$

$$= \log m - \frac{1}{2} \sum_{k=1}^{m} \frac{2}{m} \cdot \frac{2k-1}{m} \log \frac{2k-1}{m} = \log m - \frac{1}{2} \int_{0}^{2} x \log x dx + o(1)$$

$$= \log m - \left(1 - \frac{1}{2\ln 2}\right) + o(1)$$

上述计算结果表明,H(y) 和 $\log m$ 之间存在 $\theta = 1 - \frac{1}{2 \ln 2} \approx 0.28$ 的差距,这使得每个 z 需要额外的至少 0.28 比特来存储这些损失的信息,使用和 S[k] 一样的空间是做不到的。

我们知道 $y = \min(x, S[k])$,一个非常简单的想法就是令 $z = \max(x, S[k])$ 。这样,我们通过 (y, z) 就能确定 $\{x, S[k]\}$,只是分不清楚哪个是 x、哪个是 S[k]。只要增加 1 个比特 (通常称为**标志位**) 来指示这一点,就可以实现逆运算 $(x, S[k]) = \mathbf{F}^{-1}(y, z)$ 。 作为举例,如果我们保证栈内的所有元素都非负,就可以让符号位作为标志

位, 即:

$$z = \begin{cases} S[k], & S[k] \ge x, \\ -x, & S[k] < x \end{cases}$$

此时还原的方法为:

$$\begin{cases} x &= |\min(y, z)|, \\ S[k] &= \max(y, z) \end{cases}$$

在实际软件开发中,带符号整数的比特数通常只能取 16、32、64 等标准位宽以做到字节对齐;所以通常都允许我们划出一些比特来存储额外的信息。但从本质上来说,这种方法仍然具有 $\Theta(n)$ 的空间开销(每个元素包含了 1 个标志位)。

您可能会注意到,在前面使用信息论方法说明辅助栈需要的空间时,空间复杂度的常数至少为 2;但上述的标志位方法常数为 1。这并不是突破了信息论的限制,而是因为辅助栈中的一些信息是包含在原栈里的。比如,在知道原栈的情况下, $S_m = [3,3,3,1,1\rangle$ 和 $S_m = [2,2,2,1,1\rangle$ 可以以相同的方式表示,因为二者都是 3 个 S[0] 和 2 个 S[3],这降低了描述辅助栈需要的信息量。上述表示方式的数量,相当于将 n 个元素划分成任意多的段的划分数量,也就是 2^{n-1} ,因此至少需要 $\log\left(2^{n-1}\right) = n-1$ 个比特进行刻画;这正好对应了 $z_1, z_2, \cdots, z_{n-1}$ 的标志位。 z_0 的标志位没有包含任何信息,因为只有一个元素的情况下,最小值必然是它本身。

4.7 本章小结

作为适配器的栈本身非常简单,无论采用顺序栈还是链栈进行实现都没有难度。初学者可能会好奇,栈能做到的事情线性表(向量或列表)都能做到,为什么要自己给自己设限制呢?这个问题的答案,和 OOP 中将一些方法设置为私有的原因是一样的。通过加以限制,我们的目光被聚焦了,更容易抓住解决问题的要点。

栈的操作很简单,这也就意味着,将其他复杂的问题,比如括号匹配、表达式 计算等转化为栈的问题,可以让问题得到大幅的简化。本章的主要学习目标如下。

- 1. 您理解了栈操作序列的性质, 在遇到相似性质的场景时可以联想到用栈解决。
- 2. 您了解到出栈序列的计数是卡特兰数,在遇到相似的递归方程时可以联想到用栈解决。
- 3. 您掌握了利用栈将任意递归改写为迭代的技术。

第5章 队列

5.1 先入先出

和栈相比,队列就要简单的多。栈是一个后入先出(LIFO)的数据结构,而**队**列(queue)是一个**先入先出(FIFO**,First In First Out)的数据结构。栈有一个不可操作的盲端,而插入、删除、访问三种操作都在自由端;而队列的两端都可以操作,但只能从其中一端插入,而只能从另一端删除或访问。允许删除(出**队**,dequeue)或访问的一端称为**队头**(front),允许插入(**入队**,enqueue)的一端称为**队尾**(rear),如图5.1所示。类似于栈,您很容易自己实现一个队列,并使用 *QueueTest.cpp* 进行测试。

从"队列"这个名字就可以看出来,它非常适合用来模拟奶茶店窗口前排队这样的场景。新过来买奶茶的人,总是会排到队伍的末尾;而只有队伍最前面的人可以买到奶茶,并在买到以后心满意足地离开队伍。

图 5.2 队列的桶式表示

和栈一样,队列也可以用桶式图来分析,只不过队列用的是漏桶,如图5.2所示。从图中的例子中可以看出,如果将 A、B、C 三个元素依次加入队列,那么为了访问 B,必须要将 B 前面的元素 A 先出队,才能让 B 也出队。因为没有盲端,所以队列没法简单地写成 Q[0:n],而是应该写成 Q[d:n],其中 d 是已经出队的元素数量,而队列的规模为 n-d。

- 1. 队列的插入就是在 Q[n-1] 后面插入新的元素。
- 2. 队列的访问就是取 Q[d]。
- 3. 队列的删除就是将Q[d] 从队列中删除。

```
template <typename T>
class AbstractQueue : public DataStructure<T> {
public:
    virtual void enqueue(const T& e) = 0;
    virtual T dequeue() = 0;
    virtual T& front() = 0;
};
```

5.2 队列的结构

5.2.1 链式队列

和栈一样,因为列表的时间和空间效率都很低,所以我们倾向于使用向量来实现队列(顺序队列)。不过,基于列表的队列相对来说,实现起来比较简单,因此邓书中选择以基于列表的队列(链式队列)为例进行讲解,本书也首先讨论这种队列。链式队列相对顺序队列的优点主要是稳定性,它保证了入队、出队操作都是O(1)的。顺序队列由于向量扩容的存在,入队只能保证分摊复杂度是O(1)的。

```
template <typename T, template<typename> typename Linear =
      ForwardList>
      requires std::is_base_of_v<AbstractLinearList<T, typename
2
         Linear<T>::position_type>, Linear<T>>
   class LinkedQueue : public AbstractQueue<T> {
3
      Linear<T> L;
4
5
   public:
      void enqueue(const T& e) {
6
         L.push_back(e);
7
8
      }
      T dequeue() {
9
         return L.pop_front();
10
11
      T& front() {
12
         return L.front();
13
14
      }
15
   };
```

5.2.2 整体搬移*

由于队列在两端都可以操作,所以上一小节中的代码不能被简单复用到顺序队列中。对于向量 V[0:n],如果我们选择让 0 成为队头、n 成为队尾,那么每次出队的时候都需要进行一次 $\Theta(n)$ 的移动。当连续出队的时候,就会和2.5.7节的情况一样,产生大量的不到位工作。反之,如果我们选择让 0 成为队尾、n 成为队头,那么每次入队的时候都需要进行一次 $\Theta(n)$ 的移动。当连续入队的时候,同样会产生大量的不到位工作。这两种方案是具有对称性的,本书采用 0 成为队头、n 成为队民的方法,和5.1节所定义的 O[d:n] 保持一致。

为了减少不到位工作,我们需要降低移动的频率。在出队的时候,我们不立刻进行移动,而是设置一个额外的成员变量来存储队头 d 的位置,让队头 d 指向下一个元素,进行逻辑上的删除。在合适的时机,再进行一次整体搬移,对已出队的元素进行物理上的删除。上述设计的代码框架如下所示,在这个示例代码中暂时没有引入整体搬移。

```
| template < typename T, template < typename > typename Vec =
      DefaultVector>
      requires std::is_base_of_v<AbstractVector<T>, Vec<T>>
2
3
   class Queue : public AbstractQueue<T> {
      Vec<T> V;
4
      Rank m front;
5
  public:
7
      size_t size() const override {
8
          return V.size() - m_front;
9
10
      void enqueue(const T& e) override {
         V.push_back(e);
11
12
13
      T dequeue() override {
          return std::move(V[m_front++]);
14
      }
1.5
      T& front() override {
16
17
         return V[m_front];
18
      }
19
   };
```

下面讨论在何种时候进行整体搬移。一个比较自然的想法是**贪心**(greedy)。 在不触发整体搬移的情况下,上述代码中的出队方法dequeue的时间开销非常低。 因此,我们希望除非必要,否则不进行整体搬移。

所谓"必要",就是队列必须要处理内存问题的时候。在上面这种实现中,Q[d:n]实际是建立在 V[0:n] 的基础上的。当向量的规模 n 达到容量 m 的时候,向量达到满的状态。当向量满的时候,如果要继续往队列里插入元素,则必须要处理内存问题:要么对向量进行扩容,要么对队列进行整体搬移,把已出队元素占用的 d 个

存储单元空出来,如图5.3所示。

图 5.3 顺序队列假满时的搬移和扩容

1. 如果队列的元素数量 n-d 没有达到 m (即 d>0),则可以称为"假满"。在这种情况下,可以选择对向量进行扩容,也可以不对向量进行扩容,改为将 Q[d:n] 中的元素整体搬移到新的向量 V[0:n-d] 中,从而空出 d 个元素的空间。

2. 如果队列的元素数量 n-d 也达到了 m (即 d=0),则可以称为"真满"。在这种情况下,只能对向量进行扩容。

当队列发生"假满"时,是选择对向量进行扩容,还是将元素进行搬移,这是一个值得思考的问题。如果每次都选择扩容,那么就没有办法重新利用起 V[0:d] 这些已经出队的元素所占用的空间。那么当出队的元素非常多时,空间利用率就会非常低。对于队列 Q[d:n] 来说,如果 $d\approx n$,则几乎所有的空间都被已出队元素浪费了。只要不断地入队、出队,就会最终发生内存不够用的情况。

但是,如果每次都选择搬移,则会在时间上出现问题。考虑 d=1 的情况,进行搬移需要移动 $n-1=\Theta(n)$ 个元素。那么如图5.4所示,当入队、出队交错进行时,队列不断在"假满"和"真满"之间"反复横跳",每次入队-出队的连续操作。因此,对于入队和出队的连续操作序列,每次操作的分摊时间复杂度高达 $\Theta(n)$,这是我们不能容忍的。图5.4所示的情形,通过不断变换状态("假满"和"真满"),从而连续触发开销较大的操作(整体搬移),导致连续操作下的分摊时间开销较大。这种情形被称为抖动(thrashing)。抖动现象影响的是分摊时间,而不一定会影响到分摊时间复杂度,因为常数的巨大上升对于系统性能来说同样致命。这一现象

图 5.4 顺序队列连续搬移产生的抖动

在《组成原理》和《操作系统》中还会遇到,如 Cache 抖动、页面抖动等。

空间和时间的权衡,是我们在设计含有内存管理的数据结构时,所必须要处理的问题。在2.4.5节介绍向量的扩容方式时,我们也曾经遇到过这样的抉择。对于连续插入的操作,等差扩容可以达到更高的装填因子(接近 100%),但是分摊时间复杂度高达 $\Theta(n)$ 。等比扩容的装填因子较低(以 2 倍扩容为例,最低为 50%),但是分摊时间复杂度仅为 O(1)。由于二者的时间差距非常巨大,空间差距则是有限的,所以我们总是使用等比扩容,而不是使用等差扩容。同样地,我们不允许队列操作的分摊时间复杂度因为抖动现象而变为 $\Theta(n)$,所以每次都搬移的做法肯定不予考虑。但在队列这个场景下,如果完全不进行搬移,则浪费的空间会无休止地越来越多,这也是我们无法接受的。因此,我们需要选择在合适的时机进行搬移。

在本书的示例代码中, 选择规定一个阈值 $\theta \in (0,1]$ 。在入队时, 如果 $\frac{d}{m} \ge \theta$, 则进行整体搬移; 否则进行扩容。特别地, $\theta = 1$ 代表禁止搬移, 当且仅当 d = n = m 即空队列假满的情况下, 才将 d 和 n 复位(reset)到 0。您可以自己证明, 对于入队和出队操作组成的操作序列, 任意大于 0 的阈值 θ , 都可以使元素搬移的分摊复杂度只有 O(1)。

示例代码并没有选择在假满时才进行搬移,这样可以在入队的时候减少一次是否 n=m 的判断,代价则是搬移的次数有可能更多。需要指出,队列这个数据结构只规定了 FIFO 这一个特性,如何在空间和时间中间做权衡,属于队列的具体实现。我们可以采用示例代码中的方法,在特定的条件下进行搬移,也可以在总是搬移、从不搬移、或者在其他的条件下进行搬移。根据具体实现的不同,队列的时间效率和空间效率可能会有所不同。若无特殊说明,通常要求队列的入队、出队分摊时间复杂度为 O(1)。您可以在这个要求的基础上,设计自己的搬移策略(比如,为搬移增加假满的条件),并在后面的实验中和示例代码进行性能比较。

5.2.3 循环队列

如上一节所述,队列的具体实现有许多种,而利用整体搬移的技巧提高空间利用率的方法只是其中一类。除此之外,我们还可以利用其它方法对空出来的V[0:d]这部分空间进行重复利用。如图所示,当发生"假满"现象时,我们不进行搬移或扩容,而是从逻辑上将空出来的V[0:d]接在V[d:m]后面。这种逻辑上的移动,可以通过将"逻辑秩"对向量的规模 m 取模实现。通过将下标 %m,逻辑上的 V[m:m+d]可以被映射到实际上的V[0:d],从而循环利用已出队元素留下的V[0:d] 空间。当队列首尾相接,即队列中恰好有m个元素时,变为"真满"状态,此时再入队需要对向量进行扩容。这一循环利用的思想指导下建立的队列就称为**循环队列**(circular queue)。

图 5.5 循环队列在假满和真满时的处理方法

在很多实际应用中,循环队列是不允许扩容或缩容的。这是因为在很多应用场景下,循环队列的容量 m 具有一定的实际意义,比如对应一定的硬件资源数量,或者对应一定的时间片数量;这通常是系统设计时确定的参数,不是运行时能轻易改变的。本书主要介绍的是软件实现的循环队列,所以仍然让它基于向量实现,当"真满"时会引发扩容。

循环队列有多种实现,我们首先展示示例代码使用的实现方法,然后说明它相对于其他方法的优点和缺点。在示例代码中,我们将存储队列的队头 d 和队长n-d (在模m 意义下)。

```
template <typename T, template<typename Vec =
    DefaultVector>
    requires std::is_base_of_v<AbstractVector<T>, Vec<T>>
class CircularQueue : public AbstractQueue<T> {
    Vec<T> V;
    size_t m_front = 0;
```

```
size_t m_size = 0;
6
7
      bool full() {
8
          return m_size == V.capacity();
9
      void expandQueue() {
10
11
          V.resize(std::max(V.capacity() + 1, V.capacity() * 2));
          std::move_backward(std::begin(V) + m_front, std::begin(V)
12
             ) + m front + m size, std::end(V));
13
      }
   public:
14
15
      void enqueue(const T& e) override {
          if (full()) {
16
17
             expandQueue();
18
          V[(m_front + m_size) % V.size()] = e;
19
20
         ++m_size;
21
      }
      T dequeue() override {
22
2.3
          T e { std::move(V[m_front]) };
24
         m_{front} = (m_{front} + 1) % V.size();
25
          --m_size;
26
         return e;
27
      }
28
      T& front() override {
29
          return V[m_front];
      }
30
   };
31
```

您可以发现,这里使用的判满和扩容方法,和前面实现共享栈时完全相同,在向量扩容的时候需要进行额外的一次搬移。除了像图5.5那样,将后半段 V[d:n] 搬移到 V[m-n+d:m] 的位置上外,如果扩容的倍数至少为 2 倍,还可以选择将 V[0:d] 搬移到 V[n:n+d] 的位置上,请您自己实现这种方法。

下面介绍几种其他的存储方式,您可以自行用这些方法实现循环队列。

- 1. 存储队头 d 和队尾 n。它的优点在于在入队的时候,可以少算一次加法;缺点在于无法分辨空队和满队(在这两种情况下,d 和 n 都相等)。为了解决这个问题,可以改为在队列"差一个元素满"的时候就扩容,从而保证永远不会出现满队的情况。
- 2. 存储队头 *d* 和队尾 *n*,以及一个空队标志。通过引入一个额外的空队标志来分辨空队和满队。这种方法更适用于硬件设计等底层应用场景。在硬件循环队列中,每个数据单元会非常大,而队列容量比较小(比如,每个队列元素是一个 I/O 缓冲区)且不能扩容,那么像上面一样"浪费一个位置"是非常奢侈的行为,而一个空队标志引入的额外组合逻辑电路是可以被接受的,它的延迟少于示例代码中引入的加法器延迟。

5.2.4 双栈队列*

从逻辑结构上思考,队列的FIFO特性决定了,它的输出和输入次序是相同的,而栈的LIFO特性决定了,它的输出和输入次序是相反的(对于连续的输入和输出而言)。负负得正,我们自然地会想到,可以用两个栈来实现一个队列。

从存储结构上思考,在上一节介绍的循环队列中,我们发现队列可以从逻辑上拆分为两段。如图5.5所示,一段是V[0:n%m](队尾段),一段是V[d%m:m](队头段),待利用的内存空间(灰色部分)在两段之间。这种形式和共享栈高度相似。

图 5.6 双栈队列的桶式表示

上面两个思路都提示我们可以基于两个栈来实现队列(**双栈队列**)。特别地,如果这两个栈以共享栈的形式储存,则双栈队列可以和前面两节一样只基于一个向量,从而节约了空间。在双栈队列中,两个栈分别作为队尾栈和队头栈,队尾栈的自由端是队尾,队头栈的自由端则是队头。如图5.6所示,我们可以将这两个栈表示为两个盲端相接的桶,此时就如同在5.2中的漏桶里加上了一块"隔板"。

当我们需要入队的时候,直接在队尾栈推入;当我们需要出队的时候,直接在队头栈弹出。需要进行特别处理的情况,是队尾栈非空而队头栈空的情况。此时,逻辑上的队头在队尾栈的盲端,我们需要把隔板抽掉,让队尾栈里的元素"掉下来"。容易发现,这一操作只需要将队尾栈的元素依次弹出,并推入到队头栈即可。弹出和访问队头的时候,都可能触发上述栈间转移。下面是一个实现双栈队列的示例。

```
template <typename T, template <typename Vec =
    DefaultVector>
    requires std::is_base_of_v<AbstractVector<T>, Vec<T>>
class StackQueue : public AbstractQueue<T> {
```

```
SharedStack<T, Vec> SS;
4
5
      auto& backStack() {
6
          return SS.getStacks().first;
7
      auto& frontStack() {
8
9
          return SS.getStacks().second;
      }
10
   public:
11
12
      void enqueue(const T& e) override {
13
          backStack().push(e);
14
      }
      T dequeue() override {
15
          if (frontStack().empty()) {
16
17
             while (!backStack().empty()) {
18
                frontStack().push(backStack().pop());
19
20
          }
          return frontStack().pop();
21
2.2
      }
23
      T& front() override {
24
          if (frontStack().empty()) {
25
             while (!backStack().empty()) {
                frontStack().push(backStack().pop());
2.6
27
2.8
          }
          return frontStack().top();
29
30
      }
      size t size() const override {
31
32
          return SS.size();
33
34
   };
```

和整体搬移、循环利用相对应,双栈队列处理空间利用率问题的方案是栈间转移。因为栈间转移是单向的,只可能从队尾栈转移到队头栈,所以任何一个元素在入队和出队之间恰好经历过一次栈间转移。这也意味着栈间转移的分摊时间复杂度是O(1)的。

需要特别指出,本节介绍的整体搬移、循环利用、栈间转移和链式队列(节点直接释放),是解决队列空间效率问题的不同解决方案。循环队列和循环列表毫不相干,也不存在"链式循环队列"这一说。

5.2.5 实验: 队列的性能对比 *

这一节通过一个实验讨论各种队列实现方式的性能,代码可以在 QueueEvalu-ation.cpp 中找到。我们构造了两个场景,一个是连续 n 次入队,一个是随机 n 次入队和 n 次出队的组合(采用4.2.4节中介绍的随机出栈序列实现)。在这两个场景下,我们对四种队列实现进行测试,其中整体搬移策略的顺序队列使用三个阈值:

 $\frac{1}{2}$ 、 $\frac{3}{4}$ 和 1(禁止搬移)。双栈队列用同样采用了两个实现,分别是空间效率更高的共享栈实现,以及判断、移动次数更少的非共享栈实现。

通过实验可以发现,对于入队为主的情况,使用整体搬移的顺序队列的效率 最高,因为它仅仅相当于连续执行了向量的尾插,没有任何多余的计算。双栈队列 也可以达到这个效率水平,而循环队列由于取模运算的原因,会花费更多的时间。

但是对于入队和出队都比较多的情况,双栈队列策略因为每次出队都要进行一次判断,必要时还会进行栈间转移,所以会造成比较多的效率损失;而循环队列的出队则几乎没有损失。所以,在这种情况下,禁止搬移的效率最高,双栈队列的效率通常不如循环队列,整体搬移策略的效率则视具体场景和搬移的阈值而定。当阈值较高时,通常效率还是高于循环队列的。

所以总体来说,如果队列以入队为主,很少触发搬移,则建议使用整体搬移的策略;如果入队和出队都很多,则可以考虑循环队列,或者调高整体搬移的阈值。 双栈队列的时间效率相对来说较低。无论哪种使用场景下,链式队列的时间效率都是最低的(即使我们使用了单向列表);除非必要,否则总是不采用链式队列。

5.3 双端队列 *

本节简要地介绍一下**双端队列**(deque)。

双端队列是栈和队列的简单推广,在大多数《数据结构》教材中都省略了它。 和栈和队列相比,双端队列基本没有什么新的知识点。笔者在这里介绍双端队列, 是希望您加深对队列这一节的理解。您可以自己实现双端队列作为练习。

顾名思义,双端队列就是在队首和队尾,都可以进行插入、删除和访问的数据结构。对于双端队列 $Q_D[d:n]$ 来说,从队首 $Q_D[d]$ 和队尾 $Q_D[n]$ 两端都可能插入新的元素,也都有可能删除旧的元素。

所以,如果使用向量去实现双端队列,那么就要让 $Q_D[d:n]$ 尽可能保持位于向量V[0:m]的中段。这是因为,双端队列的队首和队尾是对称的。因此,如果双端队列的初始位置偏前,那么在连续向队首 $Q_D[d]$ 插入新元素的过程中,会频繁地让d下降到0以下,从而需要对双端队列的元素做整体搬移。双端队列的初始位置偏后,也可以类似讨论。

设一次搬移之后,双端队列被放入了向量 V[0:m] 中,作为 $Q_D[d:n]$ 。为了保证装填因子不太低,应有 $n-d=\Theta(m)$ 。那么,就必须保证, $d=\Theta(m)$ 。否则,连续进行 d=o(m) 次对队首的插入,就要触发一次 $\Theta(n-d)=\Theta(m)$ 赋值操作的搬移,从而搬移的分摊复杂度会高于 O(1)。类似地,也需要保证 $m-n=\Theta(m)$ 。那么一个自然的想法,就是让 m-n=d,对称放置。

通过上面的分析可以知道,在没有先验信息的情况下,每次搬移应当让双端队列的前后,留出对称的空间以备插入。当然,实际应用中,双端队列的两端操作的频率并不一定是相等的,这个时候,就应当在保证 $d = \Theta(m), m - n = \Theta(m)$ 的前提下,适当调整这两段空间的比例。

如果采用循环队列的思路去实现双端队列,则没有以上的这些麻烦。因为循环队列是一个环状的结构,所以从队首插入与从队尾插入共享同一块空间。因此,无论两段操作的频率相等还是不等,对循环队列而言都是没有区别的。只需要在普通的循环队列的基础上简单地增加几个接口,就可以实现循环的双端队列。采用列表去实现双端队列,同样不会遇到这些麻烦,只需要增加几个接口即可,不再赘述。

C++ STL 中的std::deque容器不是简单的顺序结构或链式结构,而是块 (chunk) 状结构。关于块状结构的简单讨论参见《二维线性表》章,它可以认为 是顺序结构和链式结构之间的折中。STL 中的队列适配器 std::queue默认是基于std::deque的,因此它的性能也介于链式队列和几种顺序队列之间。它具有和 链式队列一样稳定 O(1) 的优点,并在时间上略快于链式队列。

5.4 本章小结

由于队列的性质是 FIFO, 所以队列的"出队序列"是唯一的。所以相对于"出栈序列"有 Catalan(n) 种可能性的栈来说, 队列要简单很多。本章注重介绍队列的多种实现, 希望让读者理解在设计数据结构的内存管理策略时, 可以采用的不同思路。

链式结构是最简单的方法,但是时间复杂度的常数较高。而在采用顺序结构进行设计的时候,则需要使用一些技巧。可以在适当的时候进行整体搬移,显式释放已出队元素的空间;也可以采用和向量不同的方法去管理顺序结构。

对于向量 V[0:n], 只有一个端 n 是变量,因此向量天然和栈一样是单端的。为了让它支持队列在头、尾两端的操作,则我们需要两个端。无论是直接基于共享栈的双栈队列,还是使用循环利用技术的循环队列,都是基于这个思路。这两种方法都将 0 和 m 这两个端点位置首尾相接形成一个环,不同的是,循环队列让这个环被打通了,而双栈队列(基于共享栈的实现)在 0 和 m 这个端点处放了一个隔板,通过栈间转移的方式让元素从隔板的一侧转移到另一侧。

第6章 二维线性表

在上面的几章中,我们对线性的数据结构进行了讨论。向量和列表作为线性表,存储的是一维的数据。当一维来到二维甚至更高维时,维度的增加并不会改变数据结构的线性性质,正如数学中的矩阵同样被认为是《线性代数》的组成部分。

本章以二维线性表为例,介绍高维的线性数据结构的存储方式。根据每一维度上的元素个数是否为定值,可以分为下列四种情况:

- 1. 第一维为定值、第二维也为定值,也就是**矩阵**(matrix)。在数学计算中大量使用矩阵,是最为常见的二维线性表。本章将重点讨论矩阵。
- 2. 第一维为定值、第二维不为定值。这种结构通常被称为**桶**(bucket)。在桶排序、基数排序、拉链法的散列表中会使用到。
- 3. 第一维不为定值、第二维为定值。这种结构通常被称为**块状表**(chunk list)。 在双端队列的实现、分块查找中会使用到。
- 4. 第一维不为定值、第二维也不为定值。这种结构比较自由、形式多样,在图的表示中会使用到。本章将不对这种情况进行介绍,参见《图》的对应章节。在数学的矩阵 $A_{m\times n}=(a_{ij})_{m\times n}$ 中, a_{ij} 表示第 i 行、第 j 列的元素。在本章中,我们沿用这种叫法,将称"第一维"为**行**(row),第二维为**列**(column)。

6.1 矩阵

6.1.1 按行优先和按列优先

对于一个矩阵 $A_{m\times n}$,它的行数 m 和列数 n 都是固定的,用户只能获取或修改某个位置上的值,而不能插入或删除元素。清空一个矩阵,可以认为是将一个矩阵上所有的元素都赋值为 0。

```
template <typename T, size_t R, size_t C>
1
      requires (R >= 0 \&\& C >= 0)
  class AbstractMatrix : public DataStructure<T> {
3
   public:
4
      virtual T& get(size_t r, size_t c) = 0;
5
      T& operator[](std::pair<size_t, size_t> p) {
6
7
         return get(p.first, p.second);
8
      virtual void set(size_t r, size_t c, const T& e) {
9
         get(r, c) = e;
10
11
      consteval size_t size() const override {
12
13
         return R * C;
```

对于一般的矩阵 A[0:m,0:n], 它的存储需要 mn 个数据单元。这是一个定值,所以我们可以将数据存入一片连续的 mn 个内存单元中,以便于循秩访问。如果一行一行地存储(同一行的数据,内存地址是连续的),就称为**按行优先**;如果一列一列地存储,就称为**按列优先**。

具体来说,按行优先的意思是,A[0:m][0:n] 会被展开成:A[0][0], A[0][1], …,A[0][n-1], A[1][0], A[1][1], …,A[1][n-1], … 以此类推。同一行(第一维相等)的数据会被存放在连续的内存里,图6.1展示了一个 3×3 的矩阵在按行优先和按列优先的情况下,各个元素在内存中的实际次序。

图 6.1 按行优先存储和按列优先存储

编程语言标准通常会对二维数组的按行优先或者按列优先作出规定。在 C/C++中的二维数组 *A*[0:*m*][0:*n*] 是按行优先存储的,而 MATLAB 等语言中二维数组是按列优先存储的。因此在 C/C++中,直接采用二维数组就可以得到按行优先存储的矩阵。下列两种方式都可以定义一个二维数组:

```
1 T A[R][C]; // C style
2 std::array<std::array<T, C>, R> A; // C++ style
```

除了直接使用二维数组之外,我们也可以用一个一维数组作为基础,显式实现按行优先或按列优先存储的矩阵。按行优先的一个例子如下所示,请您自己思考按列优先的情况。

```
template <typename T, size_t R, size_t C = R>
      requires (R >= 0 \&\& C >= 0)
2
3
   class RowMajorMatrix : public AbstractMatrix<T, R, C> {
4
      std::array<T, R * C> m_data;
5
   public:
6
      T& get(size_t r, size_t c) override {
7
         return m_data[r * C + c];
8
      void clear() override {
9
10
         m_data.fill(T{});
11
      }
   };
12
```

6.1.2 实验: 朴素矩阵乘法 *

在《线性代数》的学习过程中,我们了解了很多矩阵运算。矩阵乘法是矩阵运算中最基本的内容之一,无论是在计算机领域还是在其他工程学科中,都会广泛地使用到矩阵乘法。因此,如何高效地计算矩阵乘法,在学术界一直是一个热点话题。本书以矩阵乘法为例,介绍各种矩阵的特殊性质。为了简化问题,本书只讨论 $n \times n$ 方阵的乘法。代码可以在 NaiveMatrixMultiply.cpp 里找到。

```
template <typename T, size_t N, template<typename, size_t,
    size_t> typename Matrix>
    requires std::is_base_of_v<AbstractMatrix<T, N, N>, Matrix<
    T, N, N>>

class NaiveMatrixMultiply : public Algorithm<void(const Matrix<
    T, N, N>&, const Matrix<T, N, N>&, Matrix<T, N, N>&)> {};
```

这里的Matrix可以选用上一小节的按行优先或按列优先的矩阵实现。考虑矩阵乘法 AB = C,则按照矩阵乘法的定义,可以得到 c_{ii} 的表达式:

$$c_{ij} = \sum_{k=0}^{n-1} a_{ik} b_{kj}$$

如果直接用这个表达式,在 AB = C 中依次计算矩阵 C 里的每个元素 c_{ij} ,那么可以得到下面的算法。

```
// MatrixMultiply_IJK
 1
 2
   void operator()(const Matrix<N>& A, const Matrix<N>& B, Matrix<</pre>
       N>& C) override {
       C.clear();
 3
 4
       for (size_t i { 0 }; i < N; ++i) {</pre>
           for (size_t j { 0 }; j < N; ++j) {</pre>
 5
              for (size_t k { 0 }; k < N; ++k) {</pre>
 6
 7
                 C[\{i, j\}] += A[\{i, k\}] * B[\{k, j\}];
 8
 9
           }
10
       }
11
```

该算法的时间复杂度显然是 $\Theta(n^3)$ 。我们注意到,这个算法的三重循环之间互相没有依赖关系,因此,这三重循环的次序可以被任意地交换。除了上面的 IJK 版本之外,还有 IKJ、JIK 等版本。在示例代码中,我们对于按行优先和按列优先的矩阵,分别使用全部的 6 种版本进行测试。

因为所有的这些版本使用的都是 $\Theta(n^3)$ 的算法,所以这些版本运行的时间没有特别大的差异。然而,当 n 比较大的时候,我们仍然可以发现,一些版本运行的时间较短,而另一些版本运行的时间较长。比如说,IKJ 版本在按行优先的情况下更快,而 JKI 版本在按列优先的情况下更快。

下面对这一现象发生的原因进行解释。我们在3.3.6节里曾经介绍过,数据的局部性会影响到算法的时间效率。在按行优先的矩阵里,每一行的元素存储在连续的空间中,所以如果连续访问同一行的元素,则具有更好的局部性。反之,在按列优先的矩阵里,如果连续访问同一列的元素,则具有更好的局部性。比如,矩阵 A 的下标是 a_{ik} ,那么如果 I 在 K 的外层,则访问次序为 a_{00} , a_{01} , …, $a_{0,n-1}$, a_{10} , …, 即连续访问同一行的元素;另一方面,如果 K 在 I 的外层,即为连续访问同一列的元素。对于矩阵 B 和 C 也可以用同样的方法分析。我们看到,如果使用 IKJ 版本,那么三个矩阵均连续访问同一行的元素,因而按行优先会取得更好的效果。反过来,如果使用 JKI 版本,那么三个矩阵均连续访问同一列的元素,因而按列优先会取得更好的效果。

具体每个版本上按行优先和按列优先的表现,还取决于处理器、存储器、操作系统等软硬件功能的具体情况。在此处进行命题可以很好地将《数据结构》、《组成原理》和《操作系统》的知识融合起来,从而制造难度非常高的综合题。当给定存储器结构、访存和计算延迟、Cache 配置、虚存管理规则等信息之后,就可以对各个版本的时间性能做更加细致的定量分析。

6.1.3 实验:并行的朴素矩阵乘法*

无论是按行优先还是按列优先,它都只能体现出矩阵作为二维线性表,在其中一个维度(行或列)上的存储连续性,而忽略了在另一个维度上的存储连续性。因此,按行优先的矩阵,只有在连续访问同一行的元素时,才具有较好的局部性;按列优先的矩阵亦然,它的局部性只体现在连续访问同一列的元素时。因此在朴素矩阵乘法的例子中,根据 I、J、K 三重循环的次序,有的版本更适用于按行优先的矩阵,有的版本更适用于按列优先的矩阵。

那么,有没有办法可以实现两个维度上的存储连续性呢?很遗憾,这是不可能的。如果在两个维度上都具有局部性,就要求横向或纵向相邻的两个元素地址相差不超过某个常数 C。因为一个 $n \times n$ 的矩阵里,两个元素的位置相距不超过 $2(n-1) = \Theta(n)$ 个单位(横向或纵向相邻为 1 个单位),所以任意两个元素的地址相差应当不超过 $C\Theta(n) = \Theta(n)$ 。然而,一个 $n \times n$ 的矩阵需要 $\Theta(n^2)$ 的空间,因此它的第一个元素和最后一个元素的地址,至少相差了 $\Theta(n^2)$,从而产生了矛盾。

因此,仅靠存储连续性(空间局部性)是无法提供两个维度上的局部性的。为了提供两个维度上的局部性,我们需要引入存储连续性之外的另一个提供局部性的通道:时间局部性。

无论是按行优先还是按列优先,它都只能体现出矩阵作为二维线性表,在其中一个维度(行或列)上的存储连续性,而忽略了在另一个维度上的存储连续性。

因此,按行优先的矩阵,只有在连续访问同一行的元素时,才具有较好的局部性;按列优先的矩阵亦然,它的局部性只体现在连续访问同一列的元素时。因此在朴素矩阵乘法的例子中,根据 I、J、K 三重循环的次序,有的版本更适用于按行优先的矩阵,有的版本更适用于按列优先的矩阵。

- 1. **时间局部性**(temporal locality)指:一个数据被访问之后,它可能在短时间内被多次访问。
- 2. **空间局部性**(spatial locality)指:一个数据在被访问之后,它附近存储的数据也将被访问。

乍看上去,时间局部性似乎是空间局部性的加强:空间局部性只要求在一个数据访问之后,接着访问它附近存储的数据;而时间局部性则要求在一个数据访问之后,多次访问它本身。如果只从 Cache 的角度分析确实如此,但如果从访问权限的角度看,则时间局部性具有更加丰富的含义。如果一个算法仅仅在一小段时间里集中访问某个存储单元,那么它只需要在这一小段时间里获得这个存储单元的访问权限。以 IJK 版本的朴素乘法为例,该算法对结果矩阵 C 的每个元素 c_{ij} 具有非常强的时间局部性,在整个算法运行的 $\Theta(n^3)$ 时间里,只有 $\Theta(n)$ 的时间(一轮最内层循环)会访问它。这一时间局部性是对每个元素 c_{ij} 的,和 C 是按行优先还是按列优先没有关系,和算法中 I、I 分别在三重循环的哪一层也没有关系。因此,从时间局部性的角度出发,在两个维度上都有局部性。

图 6.2 利用时间局部性实现并行算法

如图6.2所示,假设原先的程序为绿色,时间局部性使得程序可以被分为 4 段,输出中的每个存储单元只会在其中的一段里被写入。那么,这 4 段之间不会发生写入冲突,它可以被放在 4 个线程中,在同一时间段里并行计算。通过把绿色的程序段 2、3、4 移动到红色的位置,整个程序的时间消耗降低到了原先的 $\frac{1}{4}$ 。

回到 IJK 版本的朴素乘法上来。依据时间局部性,我们就可以把整个算法拆分成 n^2 个线程,每个线程负责计算一个元素 c_{ij} 。这样,每个线程都只需要运算 $\Theta(n)$ 的时间,并且互相之间不会产生冲突。如果处理器支持无限多个线程并行计算,那

么该并行算法的时间复杂度可以直接被降到 $\Theta(\log n) + \Theta(n) = \Theta(n)$ (其中 $\Theta(\log n)$ 是分派线程的时间)。现实中由于处理器支持的线程数有限,对时间效率只会有常数级的提升,但提升幅度仍然明显。

在 Visual Studio 中提供了对并行计算库 OpenMP 的支持, 在 *MatrixMultiply.cpp* 中提供了上述并行算法的示例代码,如下所示。由于并行计算技术超出了《数据结构》的范围,本书不会深入讨论如何对并行计算进行优化,更多的是定性分析。

```
// MatrixMultiplyParallel
1
2
   void operator()(const Matrix<T, N, N>& A, const Matrix<T, N, N</pre>
       >& B, Matrix<T, N, N>& C) override {
3
      C.clear();
       #pragma omp parallel for
4
5
       for (int i { 0 }; i < N; ++i) {</pre>
          #pragma omp parallel for
7
          for (int j { 0 }; j < N; ++j) {</pre>
              for (size_t k { 0 }; k < N; ++k) {</pre>
8
9
                 C[\{i, j\}] += A[\{i, k\}] * B[\{k, j\}];
10
11
          }
       }
12
13
```

6.1.4 实验:基于分治的矩阵乘法*

在并行的朴素矩阵乘法(假设支持无限多个线程)中,每个线程写入的是一个 c_{ij} ,而它读取的是矩阵 A 中的一行,以及矩阵 B 中的一列。换言之,我们可以将矩阵 A 划分为 n 个行向量,即 $\left(\alpha_0^{\mathsf{T}},\alpha_1^{\mathsf{T}},\cdots,\alpha_{n-1}^{\mathsf{T}}\right)^{\mathsf{T}}$,将矩阵 B 划分为 n 个列向量,即 $\left(\beta_0,\beta_1,\cdots,\beta_{n-1}\right)$,如图6.3中上图所示。使用下面的公式计算每个 c_{ij} 。

$$c_{ij} = \alpha_i^{\mathrm{T}} \cdot \beta_j$$

这并不是唯一一种矩阵划分方法。我们在归并排序中将线性表划分为长度相等的前后两段,这一策略在矩阵乘法中仍然适用。如图6.3中下图所示,我们可以将矩阵 A、B、C 的每个维度都分为长度相等的前后两段,即将每个矩阵等分为四部分,使用下面的分块矩阵乘法公式进行计算。

$$\begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix} \times \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix} = \begin{pmatrix} A_{00}B_{00} + A_{01}B_{10} & A_{00}B_{01} + A_{01}B_{11} \\ A_{10}B_{00} + A_{11}B_{10} & A_{10}B_{01} + A_{11}B_{11} \end{pmatrix}$$

可以看出,在基于分治的矩阵乘法中,两个 $n \times n$ 的矩阵相乘,可以转化为 8次 $\frac{n}{2} \times \frac{n}{2}$ 的子矩阵相乘,以及 4次 $\frac{n}{2} \times \frac{n}{2}$ 的子矩阵相加。由于 $\frac{n}{2} \times \frac{n}{2}$ 的矩阵相加时间复杂度为 $\Theta\left(\frac{n}{2} \times \frac{n}{2}\right) = \Theta(n^2)$,所以可以得到下面的时间复杂度递归式:

$$T(n) = 8T\left(\frac{n}{2}\right) + \Theta(n^2)$$

图 6.3 朴素矩阵乘法和基于分治的乘法

利用主定理可以轻易地得到 $T(n) = \Theta(n^3)$,和朴素矩阵乘法相同。代码可以在 MatrixMultiply.cpp 中找到。为了降低问题的复杂性,我们只研究 n 是 2 的整次幂的情况。在示例代码中为了直观性,使用了一个类似于std::span的视图作为中间层,核心代码如下。

```
template <typename T, size_t N, template <typename, size_t,</pre>
      size_t> typename Matrix>
   class MatrixSpan {
2
      Matrix<T, N, N>& m;
3
   public:
4
5
      pair<size_t, size_t> p;
      size_t sz;
6
      T& at(pair<size_t, size_t> q) {
7
         return m[{ p.first + q.first, p.second + q.second }];
8
9
      MatrixSpan operator[](pair<size_t, size_t> q) {
10
         return MatrixSpan<T, N, Matrix>(m, { p.first + q.first *
11
              sz / 2, p.second + q.second * sz / 2 }, sz / 2);
12
      }
   };
13
```

借助上述视图,可以将分治的矩阵算法以下面的形式实现。这里并没有像图6.3中那样,将递归调用计算出的结果放到两个矩阵中再加和,而是直接加到了结果矩阵 C 上。在这种情况下只能进行 4 路并行(矩阵 C 的每一块对应一个计

算线程),如下面的代码所示。当处理器支持无限多的并行线程时,时间复杂度递归方程为 $T(n) = 2T(\frac{n}{2})$ 。因此和朴素矩阵乘法一样,该算法在无限多线程的情况下时间复杂度也为 $\Theta(n)$ 。感兴趣的同学可以自行实现 8 路并行的算法(此实验和《数据结构》无关),并推导出它在无限多线程情况下的时间复杂度为 $\Theta(\log^2 n)$ 。

```
template <typename T, size_t N, template <typename, size_t,</pre>
      size_t> typename Matrix>
   class MatrixMultiplyDivideAndConquer : public MatrixMultiply<T,</pre>
2
       N, Matrix> {
      using Span = MatrixSpan<T, N, Matrix>;
3
4
      void multiply(Span A, Span B, Span C) {
          if (A.sz == 1) {
5
             C.at(\{0, 0\}) += A.at(\{0, 0\}) * B.at(\{0, 0\});
6
7
          } else {
             #pragma omp parallel sections
8
9
10
                #pragma omp section
11
12
                   multiply(A[{0, 0}], B[{0, 0}], C[{0, 0}]);
                   multiply(A[{0, 1}], B[{1, 0}], C[{0, 0}]);
13
14
                #pragma omp section
15
16
                   multiply(A[{0, 0}], B[{0, 1}], C[{0, 1}]);
17
                   multiply(A[{0, 1}], B[{1, 1}], C[{0, 1}]);
18
19
2.0
                #pragma omp section
21
22
                   multiply(A[{1, 0}], B[{0, 0}], C[{1, 0}]);
                   multiply(A[{1, 1}], B[{1, 0}], C[{1, 0}]);
23
24
25
                #pragma omp section
2.6
                   multiply(A[{1, 0}], B[{0, 1}], C[{1, 1}]);
27
                   multiply(A[{1, 1}], B[{1, 1}], C[{1, 1}]);
28
29
                }
30
             }
31
          }
32
33
   public:
      void operator()(const Matrix<T, N, N>& A, const Matrix<T, N,</pre>
          N>& B, Matrix<T, N, N>& C) override {
35
          C.clear();
36
          multiply(Span { A }, Span { B }, Span { C });
37
38
   };
```

您在实验中会发现,上述算法和朴素矩阵乘法有数倍的时间性能差距,和 并行的朴素矩阵乘法差距更远。这主要来自于递归时需要进行的额外赋值操作, 和1.4.7节中数组求和的分治算法性能低下类似。另一方面,我们可以从实验的结 果中看出,由于分块策略对两个维度是对称的,因此基于分治的矩阵乘法在处理 按行优先和按列优先的矩阵时性能相似,并不会受到矩阵自身存储方式带来的局 部性不对称的影响。

6.1.5 实验: Strassen 算法 *

基于分治的矩阵乘法与朴素矩阵乘法相比,元素之间做加法和乘法运算的次数没有任何变化。对于加法而言,结合 $T(n) = 8T(\frac{n}{2}) + 4 \times (\frac{n}{2} \times \frac{n}{2})$ 与 T(1) = 0,可以解得 $T(n) = n^2(n-1)$ 。而对于乘法而言,结合 $T(n) = 8T(\frac{n}{2})$ 与 T(1) = 1,可以解得 $T(n) = n^3$ 。这都和朴素矩阵乘法相同。从这个角度也能分析出基于分治的矩阵乘法的时间复杂度为 $\Theta(n^3)$ 。

我们希望进行更少的加法和乘法运算。从主定理的形式中我们可以看出,只有将系数 "8"降下去才可以降低时间复杂度。这要求我们在计算分块矩阵的时候,利用每个 $C_{ij} = A_{i0}B_{0j} + A_{i1}B_{1j}$ 的相似性,使用少于 8 次的子矩阵乘法,就能计算出全部的 C_{ij} 。

Strassen 算法可以做到这一点,它只需要 7 次子矩阵乘法就能计算出全部的 C_{ij} ,从而将算法时间复杂度从 $\Theta(n^3)$ 降低到了 $\Theta(n^{\log 7})$ 。不过,该算法的常数比较高,在较小的 n 下实际表现可能尚不如前面介绍的普通分治算法。在 MatrixMultiply.cpp的示例代码中展示了 MatrixMultiply.cpp的示例代码中展示了 MatrixMultiply.cpp出《数据结构》的研究范围,在此不再展开其具体原理,只对其进行简要叙述,无需记忆。

1. 首先,进行 10 次子矩阵加减法运算,将加减法的结果写入辅助矩阵。这 10 次矩阵加减法的内容是,对矩阵 A 和 B 分别进行同行相加、同列相减和主对角线相加。

$$\begin{cases} S_1 = A_{00} + A_{01}, & S_9 = B_{00} + B_{01} \\ S_2 = A_{10} + A_{11}, & S_7 = B_{10} + B_{11} \\ S_8 = A_{00} - A_{10}, & S_3 = B_{10} - B_{00} \\ S_6 = A_{01} - A_{11}, & S_0 = B_{01} - B_{11} \\ S_4 = A_{00} + A_{11}, & S_5 = B_{00} + B_{11} \end{cases}$$

2. 其次、递归地进行7次子矩阵乘法、乘法的结果仍然写入辅助矩阵。这7个

乘法可以并行。

$$\begin{cases} P_0 = A_{00} \times S_0 \\ P_1 = S_1 \times B_{11} \\ P_2 = S_2 \times B_{00} \\ P_3 = A_{11} \times S_3 \\ P_4 = S_4 \times S_5 \\ P_5 = S_6 \times S_7 \\ P_6 = S_8 \times S_9 \end{cases}$$

3. 最后,进行 8 次子矩阵加减法运算,将运算结果写入结果矩阵 C 中。

$$C = \begin{pmatrix} P_4 + P_3 - P_1 + P_5 & P_0 + P_1 \\ P_2 + P_3 & P_4 + P_0 - P_2 - P_6 \end{pmatrix}$$

请您自己列出递归关系式、并使用主定理分析它的时间复杂度。

6.1.6 矩阵的压缩存储

对于矩阵 A[0:m,0:n] 来说,如果先验地知道矩阵所满足的一些性质,那么矩阵并没有 mn 个自由度,也就不需要用 mn 个数据单元去存储它了,这种技术称为矩阵的压缩存储。比如三角矩阵和对称矩阵,都只有大约一半的元素需要存储。我们采用如下的抽象压缩矩阵模板类,定义一个模板参数 D 用来存储压缩矩阵的实际自由度。

```
template <typename T, size_t R, size_t C, size_t D>
      requires (R >= 0 \&\& C >= 0 \&\& D >= 0)
   class AbstractCompressedMatrix : public AbstractMatrix<T, R, C>
   protected:
4
5
      std::array<T, D> m_data;
6
      virtual size_t index(size_t r, size_t c) const = 0;
7
      size_t size() const override {
8
9
         return D;
10
      }
      T& get(size_t r, size_t c) override {
11
         return m_data[index(r, c)];
12
13
      }
14
   };
```

我们研究矩阵的压缩存储,核心问题是:矩阵中的一个元素 A[r][c] 实际对应m_data中的哪一个元素。这是一个 $[0:R] \times [0:C] \rightarrow [0:D]$ 的映射 f(r,c) = d,也就是函数index。对于不同类型的压缩矩阵,其区别也在于对函数index的设计。

对于对称矩阵、上下三角矩阵等类型的压缩矩阵,您可以自己进行设计,并使用 *MatrixTest.cpp* 观察效果。比如,对称矩阵的一种实现如下:

图 6.4 对称矩阵存储的两种理解方式

上面这个版本有两种理解方法,如图6.4所示。第一种理解是,我们只存储了下三角矩阵 $(r \ge c)$,而上三角的部分则由下三角对称得到;同时我们采用按行优先的方法存储。此时, $f(r,c) = \frac{r(r+1)}{2} + c$ 。从对称矩阵 $A = A^{T}$ 的角度观察,我们可以意识到另一种理解也是可行的:即,我们只存储了下三角矩阵,并且是按列优先存储。

对称地,按行存储上三角矩阵和按列存储下三角矩阵,也共用同一个映射关系,请您自己写出相应的index函数。出于数学上使用矩阵的习惯,可能会要求您的矩阵下标从1开始,在这种情况下index函数又会有所不同,您同样可以很快推导出来。因此,这个知识点的考察方式灵活,难度却比较低,没有必要采用记忆的方法,建议您在考试过程中自己进行推导,可以通过找规律归纳总结。

还有一种常见的特殊矩阵是三对角矩阵,即除了 $|r-c| \le 1$ 的元素之外,其他元素都是 0。它的一种简单的映射方式如下所示,请您分析它采用的存储方法,并计算另一种存储方法对应的映射。

```
size_t index(size_t r, size_t c) const override {
   return 2 * r + c;
}
```

6.1.7 稀疏矩阵

除了满足某种特殊条件的矩阵可以压缩存储外,另一种情况就是所谓的**稀疏矩阵**。稀疏矩阵的意思是其中的绝大多数元素是 0 (虽然不知道哪些元素是 0),这种矩阵在人工智能领域比较常见。矩阵的稀疏与否取决于具体的应用场景,没有绝对定义。对于 n 阶方阵而言,有的时候认为非 0 元素数量为 $O(n \log n)$ 时矩阵是稀疏的,而有的时候要求非 0 元素数量为 O(n) 甚至 O(1)。

本节简要介绍存储稀疏矩阵的三元组法,其他方法将会在后面的章节中讨论。三元组,就是用"行号+列号+值"的三元组线性表存储所有的非0元素。三元组的压缩效率非常高,但是要"循秩"访问 A[r][c] 的时候就必须遍历整个线性表查找,访问效率非常低。因此,三元组是一种以时间换空间的技术。下面展示了用向量存储三元组的例子。

```
template <typename T, size_t R, size_t C = R>
2
      requires (R >= 0 \&\& C >= 0)
3
   class TripleMatrix : public AbstractMatrix<T, R, C> {
4
      Vector<Triple<T>> V;
      T zero { };
5
   public:
6
7
      T& get(size_t r, size_t c) override {
8
         for (auto& t : V) {
             if (t.row() == r && t.col() == c) {
9
10
                return t.value();
11
         }
12
         V.push_back(Triple<T> { r, c, T {} });
13
14
         return V.back().value();
15
      const T& get(size_t r, size_t c) const override {
16
         for (const auto& t : V) {
17
             if (t.row() == r && t.col() == c) {
18
19
                return t.value();
20
21
          }
22
         return zero;
      }
23
24
   };
```

在上面的示例代码中,我们为get函数重载了一个非const版本和一个const版本。当用户调用非const版本进行写入时,如果访问的位置在三元组向量里查不到,那么就会在向量末尾插入一个新的三元组存储这个位置上的元素。而当用户调用const版本进行写入时,如果访问的位置在向量里差不多,会直接返回 0。

如果保证每一个三元组中存储的值都非0,那么三元组的空间复杂度及访问元素时最坏时间复杂度均为 $\Theta(k)$,其中k为矩阵中非0元素的数量。但因为我们可

以给矩阵的元素赋值为 0,因此三元组向量的规模可能会大于 k。为了解决这个问题,我们可以在非**const**访问元素的时候增加一步,使用2.5.7节介绍的方法删除所有值为 0 的元素。这一做法的时间复杂度是 $\Theta(k)$,并不影响访问元素的最坏时间复杂度。

附录 A C++ 的安装和配置

在这篇附录里介绍 Windows 操作系统下 C++ 的安装和配置方法。采用 MacOS 或 Linux 操作系统的读者应当有能力自己完成配置。

A.1 使用 MSVC 编译 C++

Microsoft Visual C++(MSVC)是笔者在编写此书是使用的编译器,也是本书推荐的编译器;本书采用的模块接口文件后缀名(.ixx)就是 MSVC 的标准。得益于强大的 IDE Microsoft Visual Studio,您可以很方便地运行 C++20 编写的程序。

- 1. 在搜索引擎上输入 Visual Studio, 请注意忽略可能在最前方展示位的广告。或者直接访问Microsoft Visual Studio 中文官方网站。
- 2. 选择下载 Visual Studio,选择 Community 2022 (免费的社区版)。如果您是在校学生并且学校购买了专业版,也可以从学校的下载站中获取。请注意不要下载旧版本的 Visual Studio,因为可能不支持 C++20。
- 3. 安装 Visual Studio, 点选"使用 C++ 的桌面开发", 其他可以不选。
- 4. 创建项目之后,选择项目 \rightarrow 属性。在"常规"中将"C++语言标准"改为 ISO C++20 标准。另外,在 C/C++ \rightarrow 优化中,将"优化"改为"最大优化(优选速度)(/O2)"。

A.2 使用 GCC 编译 C++

在 Windows 操作系统中使用 GCC, 通常需要使用 MinGW。目前 MinGW 上似乎还不支持 format 库, 需要对相应的部分进行修改。目前 VS Code 的 C/C++ 插件似乎在 C++20 项目构建会有一些问题,建议采用命令行构建。

- 1. MinGW 的下载方式有很多,您可以在搜索引擎中找到。笔者使用的 MinGW 来自WinLibs 下载站。
- 2. 选择最新版本的 MinGW,请注意需要选择 64 位的版本。下载之后解压,需要自行配置环境路径,将 g++.exe 的所在路径配置到 includePath 中。
- 3. 在控制台(终端)使用g++ -fmodules-ts -std=c++20 -x c++ -c文件名.ixx来编译模块接口文件(.ixx),它会生成一个模块缓存文件(.gcm)和一个输出文件(.o);使用同样的命令编译源文件(.cpp)生成输出文件(.o)。
- 4. 最后使用g++ a.o b.o main.o -o main.exe这样的命令进行连接。

附录 B 清华大学计算机考研指南

本文更新于 2023.3.23。由于 2023 年录取并未完全结束,本文结论还存在一些 不确定性,有待录取名单正式公布后做进一步修订。

考研是一项信息博弈,如果在选择考研目标的时候了解了更多的信息,则可以在这项信息博弈中取得先发优势。笔者在清华大学计算机系就读本科及硕士研究生,在自己的考研经历中总结了一些经验,并通过其他考研的同学了解到了一些更多的信息。我将这些信息整理总结为本书的一个附录。若希望提供其他学校或者补充的信息,或发现我的理解有错误,或这个文件存在误导性内容,非常希望您通过 GitHub issue 或联系笔者进行告知,提高本指南的质量。非常感谢您的帮助。

B.1 基本信息和免责声明

由于笔者的本科和硕士研究生均就读于清华大学计算机科学与技术系(下简称本部),所以本文主要讨论本部的情况。除此之外,清华大学在同一考试科目(11912)下还招收网络空间与网络安全研究院(网研)和深圳国际研究生院计算机技术专业(深研),以及考数据结构(962)的清深大数据、考模式识别(807)的清深人工智能等相关专业。

- 1. 我从未上传或公开过任何清华本科的练习及考试题、上课录像、PPT、教材、 初试真题、机试真题、面试中被问到的题目。
- 2. 我本人从未阅读过 912 和机试的往年真题,所以凡是涉及往年真题的内容均不是第一手信息。
- 3. 我从未报过任何考研机构的辅导班、从未在任何考研机构里工作或投资,所以凡是涉及考研机构的内容亦不是第一手信息。
- 4. 考研有风险,报考需谨慎。感谢您阅读本文,也感谢您愿意关注笔者设计的 DS Lab,但我不对读者的报考选择和复习安排负责。

B.2 初试介绍

B.2.1 初试考试情况

B.2.1.1 初试概述

考研初试总分为 500 分,包括政治(100)、英语一(100)、数学一(150)、计算机自命题(150)。清华计算机系的自命题科目为 912,包括数据结构(70)、计

算机组成原理(30)、操作系统(30)和计算机网络(20)四个学科。

在选择报考清华计算机系之后,可以选取三个方向:系统结构、软件、应用。 和北京大学不同,这三个方向共享排名和复试分数线,并且允许学生在复试时重 新选择自己的研究方向。因此,在初试报名阶段,可以随意地选择三个方向之一。 尽管如此,并不建议您在参加考试之前对自己未来的研究方向毫无打算。

具体的历史分数和过线情况可参照网上的统计数据。2023 年本部的分数线为353, 网研为330, 深研为325。整体而言比同一水平的北京大学分数线要低一些,但也并不是一个很低的分数。跨考的学生如果大三才开始准备,必须慎之又慎,如果不付出充分的努力,是很难获得复试资格的。

以历史情况看,本部稳妥过线的分数大约为 380 分,但单科分数线有时会划得比较随意。其中政治和英语的单科分数线可能会划到 60 分甚至 65 分,数学和专业课则有可能划到 100 分。前车之覆,后车之鉴,在复习时需要尤其注意避免偏科。

B.2.1.2 初试阅卷情况

传统上北京地区被认为是旱区。北京地区的压分现象主要体现在政治主观题、英语主观题上,此外数学的步骤分也会扣得比较狠。这一压分现象造成的(和其他省市相比的)分数下降幅度,可能会由于试卷难度有所不同。考虑到压分现象,上述的政治、英语 60 乃至 65 分可能会比预想中更加困难,请务必正视这两门公共课。

考研的阅卷相对来说比较随意。和高考不同,考研的阅卷标准相对灵活,尤其是英语作文等项目有巨大的不确定性;同一篇作文在不同阅卷者手中可能会有十几分的来去。因此在估计初试总分时,应当尽量为自己留出一些余裕,比如以 390 分为目标。请在填报目标高校之前对自己的分数进行合理估计,评估报考清华计算机系的风险。我不建议您对自己的初试成绩有过高的预期。从历史情况看,以初试第一名或极具挑战性的分数(如 420)作为自己的目标,将对您的备考计划和备考心态造成巨大的压力。

B.2.1.3 清华自命题科目情况

清华自命题科目(912)难度和计算机统考(408)相仿,但命题风格有很大差异,比较接近清华计算机系本科的考试风格。另一方面,912 没有显式的考纲,通常也认为考试范围和本科生期末考试的范围相仿。不过,从近几年的情况看,一些要求较高的题目,比如大段的操作系统源代码分析等,已经很少出现在 912 的命题中,所以考试时间往往会有极大的富余。

总体而言,912的命题风格以理解为主,不要求学生有较大的知识记忆量;但

如果理解的深度不够,很容易感到无从下手。不过这一点可以通过熟悉往年真题进行弥补,并且由于 912 的命题规律性比 408 更强,所以做往年题可以自己总结出一些真题的命题角度。

B.2.1.4 初试被录取的影响

清华计算机系近几年的录取人数约为 13 人,复录比大约为 2: 1。在总成绩中,初试和复试各占 50%。网研和清深的初试占比也为 50%。

目前为止,初试第一名一定会被录取,但考虑到初试分数高的同学通常各方面能力都比较强,所以不确定这一经验规律是否在未来被打破。同时,因为初试第一名具有极大不确定性,所以任何情况下都不应该完全忽视复试而专注于追求取得初试第一名的成绩。

在 2022 年及之前,初试成绩和总分的相关性比较弱。通常可以认为初试过线之后,初试成绩对是否录取几乎不再有影响,所有同学被拉回同一起跑线。即初试是一张门票。(初试第一名可能除外)

2023 年,除一名 394 的同学未能被录取之外,其他同学的录取与否均按照初 试成绩高低确定。目前尚不清楚是否意味着在未来初复试实际占比发生了转向,还 是由于本年度初试高分同学在复试阶段做足了准备,引起的偶然现象。

不过,初试成绩较高的同学,即使没有被计算机系录取,通常也可以被校内其他院系录取,如网研院、深研院等。即使没有到达初试分数线,仍然有可能被调剂录取。

B.2.2 初试竞争情况

B.2.2.1 报考规模

总体而言,清华计算机系的报考规模相对较小,初试竞争烈度相对较小,有竞争力的报考人数甚至可能不超过 100。如下是一些可能的原因。

- 1. 912 本身有难度,科目比较多,对跨考不友好。
- 2. 目前,自命题学校无法调剂到统考 408 的学校。由于现在大多数"双一流"学校的计算机系都改考 408,选择 912 意味着基本只能在校内调剂,风险较高。
- 3. 同样考 912 的清华网研院、深研院等院系,现在呈现出越来越多的保护第一志愿的倾向。而总体看来网研院、深研院的分数线比计算机系本部要低,所以会吸引一些同学第一志愿报考网研院、深研院。

B.2.2.2 复习成本

因为难度和 408 相近, 所以在完全自学的条件下, 11912 的整体复习成本会和 11408 相近。然而, 由于辅导机构会倾向于深耕统考科目, 所以在报班的条件下, 11912 复习成本会显著高于 11408。具体需要复习时间和个人情况有关, 我通常建议至少提前 6 个月开始初试复习, 以防最后因时间不足而焦虑, 引发心态危机。

考虑到基础越扎实的同学对辅导机构的依赖度越低,所以对于名校科班的同学来说,清华计算机系的初试竞争压力是低于北大对应院系的。从分数线上看,相对于北大叉院来说,清华计算机系这边的分数线会低很多(大约 20 分)。

B.2.2.3 本系保护问题

由于多种外部环境因素,现在有越来越多的清华本校学生,以及名校科班学生报考清华计算机系。有一种广为流传的怀疑认为:如果本系的同学总分较低,会通过单科线卡掉几个高分让他们有机会进复试。这种"本系保护"无法证实但也无法证伪,所以请您重视不要让单科成绩掉队。

B.2.3 初试复习用书

B.2.3.1 数据结构之前

数据结构前,可以看徐明星《**程序设计基础**》入门。《程序设计基础》在清华是《数据结构》的先修课,这门课可以看做是 C++ 语言学习加上一小部分的编程能力训练。如果零基础的同学打算考清华计算机,可以先从这本书开始打基础。

零基础的同学在学习《数据结构》前,应当能使用 C 语言进行编程。清华大学的《数据结构》教材是用 C++98 写的,作为旧标准的 C++,它并没有在 C 语言的基础上增加太多东西,可以认为是 C with class。当然如果学习了 C++ 会更好,比如,如果您学习了现代 C++,就可以很轻松地使用笔者的 DS Lab 进行实验。不过对于跨考学生来说,C++作为一门语言特性非常多的语言,学习成本较高,不建议在编程语言上消耗太多的时间和精力,尤其是不应该在初试复习的时候。

由于《数据结构》中会涉及一些相对底层的内容(内存管理), 所以使用 C/C++ 进行学习是建议的。使用 Rust 固然也是可以的, 但是用 Rust 实现数据结构并不是一个简单的事情。

B.2.3.2 数据结构

数据结构必须看**邓俊辉**《数据结构》。邓俊辉《数据结构》和其他经典的数据结构教材相比,无论是授课风格还是知识内容上都有显著差异,且 912 中《数据结

构》占比远高于 408, 所以邓俊辉《数据结构》为这门课复习的必修课。请注意邓俊辉《数据结构》的教材出版时间较早, 目前的 PPT 和网课已经和教材有一些不一致。尽管,目前为止 912 的考试范围仍然限定在教材上,但仍然建议大家使用新版本的课件进行学习。不建议看其他版本的《数据结构》。对于备考来说,邓俊辉《数据结构》可以覆盖所有的知识点,且现版本的 PPT、网课非常新。其他版本,比如严蔚敏的《数据结构》也是优秀的教材,但对备考清华计算机系的帮助很小。

不建议看《算法导论》。《算法导论》的叙述风格太过数学了,对于计算机系的学生来说不那么必要。整个清华计算机系作为工科院系,都是以工程理解为主的。类似于《计算机程序设计艺术》(TAOCP)之类的更加艰深的书则更加不推荐。在学生刚开始复习考研的时候,总会以为时间还有很多,如果使用高难度书籍进行学习,很容易不小心地就陷入到过于复杂的问题里,最后发现时间不够用。

《面向对象程序设计》和《离散数学》在清华的课程安排上是《数据结构》的 先修课,但从考试来看并不需要学这些,性价比不够高。其中和《数据结构》关系 最密切的是《离散数学》中的图论部分,如果时间多想了解的话看一下那一章就 可以。

在学习《数据结构》的过程中,对于不懂的地方,非常建议**自己写程序验证**。这一方面锻炼了自己的编程能力,一方面深化了自己对数据结构知识的认识。但我不建议完整复现《数据结构》上的所有代码:它是 C++98 的代码现在已经落后于时代了;编程风格不够美观(节约排版原因);工作量太大。笔者的 DS Lab 可以为您提供一个新选项。

B.2.3.3 数据结构外的三门

除数据结构以外的三门,都可以不看教材,依托清华 PPT 去做复习。这三门课的教材用的都是比较厚的英文版(当然也可以买到翻译版)教材,清华本科的学生也不会全部精读。实际上期中期末考试、以及考研的命题点基本都在 PPT 上。教材分别是特南鲍姆《计算机网络》(龙书)、《软件硬件接口》、《操作系统精髓与设计》,可以买翻译版当工具书用,时间多的话可精读。

一些市面上的其他经典教材,比如袁春风《计算机组成与系统结构》《计算机系统基础》、《深入了解计算机系统》、《自顶向下方法》等,也可以作为参考,但由于不同教材之间内容相互重叠,性价比会边际效应递减。如果从备考初试出发,基于 PPT 复习已经足够,购买教材已经绰绰有余,不需要再买其他经典书了。

对于操作系统, ucore 实验指导书建议阅读, 并建议完成 ucore 的实验。ucore 的实验设计水平在不断提高, 并且没有学习 Rust 的门槛, 只需要有 C 语言基础即可。尽管近三年都没有在 912 考 ucore 的代码题, 但不排除这种可能性。另一方面,

ucore 的实验也能让同学们对操作系统的理解加深一个层次。由于不一定会考,所以时间不够可以放弃 ucore。

B.2.3.4 练习册

除非您足够自信,否则做题是有必要的。

- 1. 邓俊辉《数据结构》自带一本习题册,这本习题册类似于拓展阅读读本。题目价值比较高,但题目风格和考试不太一致。如果有时间,可以作为思考题练习。
- 2. 912 的真题是第一手复习资料, 但通常缺少答案。
- 3. 清华本科的期中期末考题也是不错的复习资料, 但同样经常缺少答案。
- 4. 可以使用 408 的辅导用书作为练习册,比如王道、竟成或其他机构的书。当然 408 和 912 的知识点可能会冲突。当知识点解释冲突时,请按照标准 >PPT> 教材 > 练习册的规则处理。比如在《计算机网络》中,教材更新可能慢于 PPT, PPT 更新又可能慢于 RFC,而考研机构编的练习册不但更新可能非常慢、编纂过程中也可能收入错题。
- 5. 不建议去做难度特别高的题,尤其是 TAOCP 之类的书上的题。虽然有些题目可能很有趣(甚至结果可以发表),但总体上性价比非常低,远远超出了考研的难度。

B.2.4 初试考研辅导

B.2.4.1 学堂在线

- 1. 邓俊辉《数据结构》课程建议看完。邓俊辉的《数据结构》在清华计算机系课程中算是首屈一指的教学标杆,我的四年本科生活没有几门课的教学水平能达到这个层次,非常推荐。
- 2. 向勇、陈渝《操作系统》课程也建议看完。这门课质量也很高,并且清华的操作系统教学比较有特色。
- 3. 据我所知,目前另外两门清华没有公开的网课。没有基础的跨考同学可以选择其他学校的网课进行学习。科班的同学不太建议再看网课,视频相对文字而言,信息输入效率比较低。

B.2.4.2 自学材料

1. 考研资料的分享网站: **912-project**。您可以从好心师兄建立的 清华大学计算 机系考研攻略中找到很多信息。遗憾的是,近几年的资料基本都被机构私藏

- 了,没有公开在这个网站上。
- 2. 最好的自学网站: **CS-DIY**。**CS** 自学指南这个网站对跨考和本科没有学扎实的科班同学都有非常巨大的帮助,归纳总结了很多经典的公开课程。
- 3. 语雀笔记。很多师兄师姐留下了出色的笔记,也可以进行参考。比如2021 清华大学计算机 912 考研笔记本,和2022 清华 912 备考笔记。
- 4. Bilibili 上的视频和知乎上的经验贴等。比如, T 神的数据结构讲解视频备受好评。

自学的时候不要贪多,重点复习初试会涉及到的部分,以及打算在复试材料中用到的部分就可以。如果时间比较多,可以把更多的时间放在自学上,提高自己的自学能力对未来的科研工作很重要。现在供给大家自学的信息来源很丰富,足够让跨考的同学通过自学达到清华计算机本科的平均水平(也就是我这个水平)。如果因为本科(科班)或工作(计算机相关)的压力大,导致考研复习时间不足的情况,可以报班而不是自学。因为这个时候考研复习节约的时间用来做了对考研上岸来说性价比更高的事情。

B.2.4.3 定向班

在报班的时候,如果对方没什么名气,请首先确认自己**不是面对电信诈骗**。近年来,经常有学生在自己上岸以后靠"考研辅导"创收,而实际上并未真正提供合格的辅导服务的情况,一定要三思而后行。

在选择报班的时候,老师的能力非常重要。考研机构基本上请的老师都是往届的师兄师姐,很多都不是全职从事考研辅导工作,他们的能力和责任感都是参差不齐的。请务必确认老师本人对知识的理解足够深刻、并且足够负责。很多时候,宣传里的老师和实际和学生对接的老师并不是同一个,需要小心。

相对于自学而言,培训班的主要优势是答疑。这是因为 912 的报名人数太少,课程制作成本和收益不成比例,所以 912 定向的课程和非定向的 408 课程相比,一般会粗糙很多。因为考研机构的老师基本也都是师兄师姐,且主要服务是答疑,所以您务必要大胆提问、大胆质疑、大胆以超越他们为目标。尊师重道、为尊者讳的做法在考研里用通常不会有多少正面效果。

王道目前是最大的计算机考研机构,王道的定向班相对比较可靠;集中在王道这边的同届、往届同学也比较多。不过再次声明,必须要确认老师的情况。

B.2.4.4 非定向班

408 有非常成熟的辅导培训体系,而且可以达到的上限,也远高于目前已有的912 培训: 所以可以考虑报 408 培训班,再通过自学差额知识点转成 912。从理论

上讲,给知识体系打一个扎实基础,比初试 912 拿下高分更有意义,未来在研究生阶段更容易触类旁通。不过,单独报名 408 培训班来考 912 的风险很大。之前很多同学按照 408 复习 912 结果成绩很低。

所以, 如果选择非定向班, 请务必通过多自学、多交流降低信息不对称。

B.2.4.5 专门面向 912 的机构

新威考研有一个专门面向 912 的培训。主讲是张威老师(威神),已经办了好多年,有不少往届的上岸同学推荐,质量相对有保证。目前是名气最大的 912 培训机构。威神本人当时以 316 分上岸,并非名校科班出身(哈工大软件),对四门学科的知识体系理解可能比较有局限。但威神深耕 912 多年,就应试而言应该有平均以上的水平。

据我所知,新威考研没有第二个可以担纲的主讲,威神本人的时间、精力和身体状况是一个问题。并且,新威考研价格极低,在912整体报考规模非常小的情况下,每年的流水肉眼可见的捉襟见肘。在不转型的情况下,未来资金链可能会成为问题。所以,报名新威考研的风险会略高于王道等大型机构。

在 2023 年本部录取的学生名单中,报名新威考研的学生占一半以上(信息来源:新威考研 B 站官方号);而未报名的被录取的学生以科班出身、尤其是清华科班出身的学生为主,他们本身对 912 培训机构的需求是比较弱的。从我了解到的情况看,新威考研最重要的作用是帮助对 912 课程体系不了解的跨考学生掌握这些课程的重点,在这方面张威老师大概还是颇有心得的。

新威考研有个押题卷,评价也不错。押题卷主要是评估自己的知识掌握程度,不是真的为了押中题,需要正确看待押题卷的作用。912 命题比较随意,往年题有很多能和新题相似。如果自己做了912 的往年题,稍微思考一下,肯花点时间设计,每个人都能出押题卷,不过考研的时候,一般也没有这个时间。

由于了解不多, 笔者这里先不讨论其他的机构情况。欢迎有了解的同学联系笔者添加。

B.2.4.6 考研交流群

考研交流群,尤其是人数较多的大群,经常会讨论无关的问题。经常水群不如不加群,请确保您有良好的自制力。在无关问题上参与考研群的讨论,这些时间不如用来和自己的家人、朋友、恋人加深感情。此外,大群里还有被其他同学的进度干扰到心态的影响。一部分相互熟悉的研友组成的小群,互相都能信得过的话,通常氛围会好一些。辅导机构的班级经常也会组织小群,不过并不一定会负责任地进行管理。

群里问问题的时候,请提供足够多的信息,讲清楚自己有困惑的地方在哪里。 群里的同学们互相回答问题,是出于兴趣做的,没有包讲包会的责任,和培训班的 老师不一样。

B.3 复试介绍

B.3.1 复试考试情况

B.3.1.1 复试概述

清华计算机系复试的满分为 500 分,其中机试 100 分、综合面试 80 分、专业面试 320 分。20 至 22 年由于疫情影响没有笔试,复试在线上进行。23 年延续了线上机试,同时本部采用线上面试,但深研院为线下面试。

机试通常包括 3 道题,每道题 100 分,满分 300 分;在计算总分时折算为 100 分。根据公开的文件,综合面试除了英语之外,还可能会关心政治倾向、兴趣爱好、人际关系等各种问题。专业面试则主要关注专业问题。

B.3.1.2 机试命题情况

清华的机试由清华本科算协的同学负责命题,具有命题随意、难度随机、风格多变的特征。机试题没有稳定的命题人,难度非常随机,有可能大家都能做对,也有可能几乎全都0分;命题没有范围,各种领域的问题都可能会出,具体可以参考往年。往年的题目可以在网上搜到。根据Oler 的反馈,目前的机试按照提高省选的难度去准备是比较合适的。此外,存在多套机试备用卷。后续调剂可能需要考第二场机试。

B.3.1.3 面试流程情况

面试需要提前准备一些材料,包括**简历、个人陈述和面试现场的 PPT**。这些是同学们可以自己控制的内容,通过灵活地组织展示材料,可以更好地展现自己的真实实力。综合面试的英语环节会考察口语(形式比较多样,不一定是自我介绍),如果毫无基础则需要预先准备。可以和初试的英语一同准备。

专业面试的老师,专业素养很强,除非自己已经做到了本领域的边界,否则很难糊弄过关。不过清华的面试氛围通常比较轻松,不需要过度紧张。

B.3.1.4 复试对录取的影响

在 2023 年以前,在清华计算机系(不包括调剂)的复试,初试过线基本上回到同一起跑线。根据同学的反馈,实际招生的老师可能并不了解或不在意初试的

成绩,甚至可能不知道初试的满分是多少。复试的成绩可能会相差很远(100 分甚至更多),从而抵消掉初试的差异。尽管 2023 年的录取结果和初试成绩高度相关,但对于考研的学生而言,一年只有一次机会,仍然应当为复试作出充分的准备。

除了客观的机试成绩以外,复试成绩可能会受到各种因素的影响。对比不同届甚至同一届的复试成绩,都是一件意义不大的事情。初试到复试之间大约有3个月的时间,对于跨考的同学来说可能不足以展示一个漂亮的材料,可能需要**提前准备**:但一切要以保证初试能过线为前提,切忌好高骛远。

B.3.2 复试竞争情况

进入复试之后,只有二十多个同学参与竞争,此时竞争难度的重点变成了"对手的实力"。因此,这一节站在"对手"层面上进行讨论。

B.3.2.1 本系学生

目前为止,本科在本系且初试过线的同学一定会被录取。同一届满足上述两个条件的学生,目前看来在不断增加,2023年达到了4个,但相对考研同学总数来说还是比较少的。想要挤掉他们,通常只能卷起来让这些同学初试无法过线。本系的大四课程压力不小,应届过初试难度较大。而如果是非应届,通常也不愿意花一年时间在考研,通常就选择就业、出国、保研较低层次的院校、保研到其他系。所以目前为止,本系同学还非常少。

因为本系的学生一般都是当地高考状元或者集训队选手,所以复试名单公布后.可以通过搜索引擎确定数量。

B.3.2.2 其他学校的科班

目前为止,第一作者的高水平论文(CCF B 或以上,尤其是非 AI 方向的)、ACM 区域赛金牌都是极强的竞争力。这两点也可以在复试名单公布后,通过搜索引擎很容易确定。

名校科班在录取的同学中占主体部分。对于名校科班的学生来说,往往可以拥有一份非常漂亮的简历,并且因为专业知识丰富,在面试中回答专业问题占据着很大的优势。那些参与过 ACM 等算法竞赛的同学在机试中也具有优势。因此,经常可以看到名校科班的学生在复试中逆袭。

非名校的科班同学可能本科可以获得的资源有限,难度也相对较高。从近几年的录取情况看,几乎没有本科学校在 211 以下的同学被录取。科班身份仍然可以提供相对丰富的专业经验,但因为本科学校生源问题,本科的课程要求通常相对偏低,最好在本科阶段就努力向名校的标准看齐,不要局限于自己的学校课程

要求。

需要特别注意的是,不要轻信其他人对复试材料的肯定,一般除非太过朴素的,师兄师姐都会给以鼓励,更不用说考研辅导机构了。比如我就会给几乎所有同学鼓励。因为名额少,赛道和 408 隔离,所以每年的竞争情况都可能大不相同,应当在保证初试能过线的情况下尽可能丰富自己的复试武器储备。

B.3.2.3 跨考

目前来看,清华本校在计算机外的其他院系,不会在跨考中占据显著的额外优势。例如,在2022年有数学系和叉院的同学没有被录取。

经常有相近专业(软件、电子、通信等)跨考上岸的成功例子,即使稍远一些的其他工科也不乏其人。理科、商科等基础薄弱的跨考同学,也可以凭借自己的努力上岸。但无一例外,必须对计算机专业具有足够的了解。跨考一战上岸通常需要从大二(甚至大一)开始进行准备。初试只是一部分,更重要的是提升自己在科研阵线上的**即战力**。硕士只有三年,老师等不起跨考的同学进来之后继续学习再兑现天赋,跨考和科班是站在比较统一的起跑线上竞争的。这是一种相对公平的做法,但也要求跨考的同学付出更多的努力,在即战力上达到科班的水准。

B.3.3 复试复习资料

B.3.3.1 算法题训练

机试存在每年会变化的保底分数(第一题通常是送分的签到题,以及后面两题可能有的暴力分),达到保底分数就说明能力过关。达到保底分数通常阅读胡凡《算法笔记》这类入门书,适当地针对基本算法进行复习,加上考试的时候心态平稳就可以。达不到保底分数则会比较危险,这个时候如果有较大的项目或竞赛获奖佐证自己的编程能力(并在面试中应答自如),可以挽回一些印象分。

算法题网站(比如 ACwing)上的题可以提供很好的练习。由于算法题网站上往往涵盖了大量的、难度不一的题目,请在练习的过程中务必注意远离自己的舒适区,不要贪图题目数量,在自己能力范围内的题里花费过多时间,限制了自己的进步速度。

可以提前参加 CCF CSP 或者 PAT 等考试感受考试氛围,缓解考场上的紧张。如果考试中感到困难,一定要优先采用暴力方法拿到保底分数,再尝试进行优化。历史上有不少算法能力优秀的同学和第 2 题死磕导致错失第 3 题保底分。

B.3.3.2 充实简历的工作

如果没有机会在本科直接参与科研,或者是跨考的同学,则建议在复习时准备一些可以充实简历的工作,并为面试做准备。

首先,操作系统训练营或者一生一芯这种大型活动,每年都有,可以系统性地提升操作系统(组成原理)的能力,提升的上限很高,对于初试复习也比较有用。不过,这类型活动有一定门槛,对于跨考的同学来说难度可能略高。

翁家翌牵头做的**清华课设指南**:清华大学计算机系课程攻略,是由清华计算机系本科生整理的清华课程体系,包含了大量的清华课设。可以选择自己喜欢的方向去做,也可以在初试复习的时候,顺便做掉那几门课的课设。

传统的三件套是 CPU、OS、编译器,名校科班基本都做过,是课设中相对分量较重的项目。计网的软件路由器是可选项目。三件套做出来能极大提高同学对对应学科的理解,兼顾 912 的初试,三件套的价值是 OS > CPU > 编译器,最好能三件套都做,作为跨考同学,做个青春版也能展示出一定实力。青春版大概相当于,照着经验贴做 ucore lab,华科平台上画的、不带任何附加功能的五级流水 MIPS32,用 lex/yacc 写的没有任何优化的 C 语言编译器。跨考的同学大约需要 2-3 个月完成这些项目,想要展现出更多实力可以在 OS 或者 CPU 上加内容,做深入、有东西可讲、不容易被问倒,比做了很多"手写数字识别"级别的简单项目有用的多。虽然编译原理也很有用,但是和初试没关系,所以不那么建议在编译器上深入做。

随后是论文阅读和复现。这是最简单、直接、见效快的方法,根据自己的目标方向和导师,去选择相应的文章精读。如果有机会,复现其中的一些项目;如果有机会,找到一些可以进一步改进的点。

笔者写的 DS Lab 并不是为复试材料设计的,它的难度和在复试材料中的价值不匹配。对于跨考的同学来说,准备复试材料应当更加重点突出自己的即战力,而不是基本功。

总体来说,准备复试材料时,在精不在多。这一点跨考的同学需要做准备,很多科班的同学也要引起重视。研究生最终还是要研究一个而非很多个方向的,所以有一项精通(至少是精读)的方向很重要。

B.3.3.3 复试辅导机构

据我所知,几乎所有收费的复试辅导性价比都很低。复试群里有免费的模拟 复试和信息分享,可以部分解决信息不对称的问题。复试材料的展示和组织,也是 可以找师兄师姐、老师、研友等帮忙修改完善的。这个现象的主要原因还是清华计 算机的特殊性:层次高、样本少、初试占比低,导致很多一般的复试技巧在应对清 华计算机复试时不够通用。收费的复试辅导可以让自己看起来比较富婆, 兴许能得到同学们的另眼相看。

B.3.4 复试简历设计

特别强调,本节的复试简历设计为笔者的一家之言,不一定适用于每一个同学。简历设计对于每个同学而言,具有高度的矛盾特殊性,本文仅做参考。

B.3.4.1 简历设计纲领

在进行复试的复习之前,一定要明确复试的考察目的是什么。复试是用来筛选科研能力的,科研能力主要可以分为四个方面: **知识习得、知识产出、知识验证、知识表达**。

展现这些科研能力的媒介主要包括机试、简历、面试时的 PPT 以及临场问答; 这其中,简历和 PPT 是完全由我们自己控制的,所以尤其需要打磨好。如果在这 方面无法提起面试老师的兴趣,很有可能无法

复试是用来筛选科研能力的,并非考察学生的整体科研素质。通常情况下,科研能力的展示只需要围绕自己选择的一个方向上的能力。比如说,自己想要研究系统结构的话,一般就不会问到人工智能方向的问题,因为通常情况下老师也不愿意浪费时间,去问无效的问题。所以,简历就像一扇窗户。我们除了把窗外的布景做好,还需要准备好老师在考场上用望远镜细细观察下去的准备。因此简历设计,不但是简历本身的设计,还包括围绕简历的准备工作。面试 PPT 同理。

很多人看简历的时候只看简历中的标签,比如清本、ACM 金牌、X 篇论文等。但简历并不是斗兽棋,除了它的内容以外,形式也是非常重要的。仅凭内容就能上岸的,目前来看还是少数。对大多数同学来说,简历不是有一条加一条分的那种设计,它主要决定的是第一印象。简历上相同的内容,会根据准备的细致程度以及展示时的表现好坏,得到不同的最终印象,反映为不同的最终分数。

B.3.4.2 知识习得

- 1. 本科的课程成绩和位次可以列出。
- 2. 本科学得好的课程成绩可以列出。
- 3. 本科如果有英文学习经验(英文课程、英文教材的课程、国外联培或交换)可以列出。
- 4. 阅读一定数量的英文文献,可以选择自己打算研究的方向、或者精确到自己的目标导师去精读一部分文献。

B.3.4.3 知识产出

- 1. 本科产出的学术论文或专利,在投(在申请)的也可列出。如果有这部分内容,很可能会成为老师最为核心的关注点,请务必对其背景、技术、创新点、应用等内容做细致的准备。如果不是第一作者,需要说清楚自己负责的内容。
- 2. 本科的毕业设计可以列出,需要强调自己的创新点。没有创新点也可以列出,作为知识验证能力的一部分。
- 3. 即使没有付诸实践,可以列一些自己对当前已有技术(尤其是目标导师的工作)的改进思路。

B.3.4.4 知识验证

- 1. 本科完成的课程设计可以列出, 尤其是自己在基本要求之上完成的工作。
- 2. 本科参加算法类比赛的成绩可以列出。数学建模一类的比赛也在此列。
- 3. 本科参加项目类比赛的成绩可以列出。由于很多比赛可能老师并不清楚含金量(清华的本科生很少参加比赛,尤其是国内比赛),所以应主要强调项目的创新点和自己的贡献。如果对项目的内容、背景、技术等不够清楚,应提前做好准备。
- 4. 自己做的论文复现或者自己开发的软硬件作品可以列出。
- 5. 自己掌握的编程语言、框架、技术等可以列出。在写上去的时候回忆一下自己用这个做过什么,尤其是一些比较冷门的可能引起老师兴趣的内容,比如智能合约这种。
- 6. 如果是跨考的同学,任何能证明计算机能力的内容都可以列出,一张白纸的 简历是最危险的。
- 7. 可以估算一下自己做工程的能力,如工程开发的效率以及最大的个人工程规模等。代码行数是一个非常直观的体现。声称自己做过一个巨大的项目有可能会得到特别关注,而老师会担心招进来的学生只能解决算法比赛级的小规模代码。简历提到的内容最好都回忆一下。

B.3.4.5 知识表达

- 1. 本科写作的学术论文(尤其英文学术论文)最佳,不再重复。
- 2. 英文能力的证明可以列出。包括四六级、托福、雅思、GRE等。
- 3. 本科参加英文类比赛的成绩可以列出。
- 4. 常规的 PPT 都是中文展示、中文讲解的,可以考虑改为使用英文展示或使用 英文讲解。