Multi-Robot Path Planning with Due Times

Hanfu Wang and Weidong Chen

Institute of Medical Robotics and Department of Automation, Shanghai Jiao Tong University

January 16, 2022

Outline

- Introduction and Motivation
- 2 Problem Formulation
- Methodology
- Results and Analysis
- Conclusions and Future Work
- 6 References

Introduction: Multi-Robot Path Planning

• multi-robot path planning (MRPP)¹ or multi-agent path finding (MAPF)² is an enabling research field for practical deployment of multi-robot systems

¹Lynne E. Parker. "Multiple Mobile Robot Teams, Path Planning and Motion Coordination in". In: Encyclopedia of Complexity and Systems Science (2009), pp. 5783-5800, DOI: 10.1007/978-0-387-30440-3 344.

²Roni Stern. "Multi-Agent Path Finding – An Overview". In: Artificial Intelligence. Springer International Publishing, 2019 DOI: 10 1007/978-3-030-33274-7

Introduction: Solutions

- MRPP or MAPF can be solved by various methodologies:
 - reduction-based (SAT, ILP, AST...)
 - search-based, optimal (CBS, ICBS, M*...)
 - search-based, bounded suboptimal (ECBS, CBS-HWY...)
 - search-based, unbounded suboptimal (HCA*,WHCA*,co-WHCA*...)
 - rule-based (Push&Swap, Push&Rotate, traffic rules...)
 - decoupled (prioritized planning, path coordination...)
 - sensor-based or reactive (ORCA...)
 - learning-based (PRIMAL,PRIMAL2,MAGAT...)
 - **...**

Motivation

- in practice, multi-robot systems have to accomplish tasks with due times can be anticipated
- multi-robot path planning with time and distance-based objectives:³
 - makespan
 - total travel times
 - maximum distance
 - total distances
- multi-agent path finding with deadline-based objectives:⁴
 - the number of successful agents
- none of existing problem formulations could reflect soft temporal constraints of tasks⁵

³ Jingjin Yu and Steven M. LaValle. "Optimal Multirobot Path Planning on Graphs: Complete Algorithms and Effective Heuristics". In: IEEE Transactions on Robotics 32.5 (2016), pp. 1163–1177. ISSN: 15523098. DOI: 10.1109/TRN.2016.2593448. arXiv: 1507.03290.

⁴Hang Ma et al. "Multi-agent path finding with deadlines". In: *IJCAI International Joint Conference on Artificial Intelligence* 2018-July (2018), pp. 417–423. ISSN: 10450823.

⁵Ernesto Nunes et al. "A taxonomy for task allocation problems with temporal and ordering constraints". In: Robotics and Autonomous Systems 90 (2017), pp. 55–70. ISSN: 09218890. DOI: 10.1016/j.robot.2016.109008.4 **\(\frac{1}{2}\) *\(\frac{1}{2}\) *\(\frac{1}

Problem Formulation: MRPP-DT

- inputs:
 - underlying graph G = (V, E)
 - ightharpoonup robot set R composed of n robots
 - ightharpoonup start vertices V_s
 - ightharpoonup goal vertices V_q
 - due times D
- outputs:
 - ▶ n feasible collision-free paths $P = \{p_1, \dots, p_n\}$
- three due time-related objectives:
 - ightharpoonup minimization of maximum lateness L_{max}
 - minimization of total tardiness $\sum_{i=1}^{n} H_i$
 - lacktriangle minimization of total unit penalties $\sum_{i=1}^n U_i$

Problem: Multi-Robot Path Planning with Due Times

Given (G,R,V_s,V_g,D) as is described previously, find an optimal solution $P=\{p_1,\cdots,p_n\}$ composed of n feasible collision-free paths for all robots with objective 1, 2, or 3.

Examples and Problem Analysis

Examples

Figure: Three examples with the same start and goal vertices, but different due times. The underlying graph has 6 vertices.

Intractrability

The MRPP-DT problem is NP-hard.

Parato Structure

Any two of seven objectives cannot be optimized simultaneously.

Reduction-based Algorithms

Completeness Theorem

MINMAXLAT, MINTOTALTARD, MINTOTALUP are all complete.

Instance Design

Figure: An MRPP-DT instance with 40 robots on a $20 \times 20 \times 20\%$ grid map.

Results of Objective 1

Figure: Performance of $\operatorname{MinMaxLat}$ over MRPP-DT instances.

Results of Objective 2

Figure: Performance of $\operatorname{MinTotalTard}$ over MRPP-DT instances.

Results of Objective 3

Figure: Performance of $\operatorname{MinTotalUP}$ over MRPP-DT instances.

12 / 14

Conclusions and Future Work

- conclusions:
 - MRPP-DT is formulated to address task awareness in path coordination level
 - complete reduction-based algorithms are developed
- future work:
 - develop fast algorithms
 - apply related ideas in practical applications, i.e., logistics
 - combined task and path planning

Key References

- Lynne E. Parker. "Multiple Mobile Robot Teams, Path Planning and Motion Coordination in". In: Encyclopedia of Complexity and Systems Science (2009), pp. 5783–5800. DOI: 10.1007/978-0-387-30440-3_344.
- [2] Roni Stern. "Multi-Agent Path Finding An Overview". In: Artificial Intelligence. Springer International Publishing, 2019, pp. 96–115. DOI: 10.1007/978-3-030-33274-7 6.
- [3] Jingjin Yu and Steven M. LaValle. "Optimal Multirobot Path Planning on Graphs: Complete Algorithms and Effective Heuristics". In: *IEEE Transactions on Robotics* 32.5 (2016), pp. 1163–1177. ISSN: 15523098. DOI: 10.1109/TR0.2016.2593448. arXiv: 1507.03290.
- [4] Hang Ma et al. "Multi-agent path finding with deadlines". In: IJCAI International Joint Conference on Artificial Intelligence 2018-July (2018), pp. 417–423. ISSN: 10450823.
- [5] Ernesto Nunes et al. "A taxonomy for task allocation problems with temporal and ordering constraints". In: *Robotics and Autonomous Systems* 90 (2017), pp. 55–70. ISSN: 09218890. DOI: 10.1016/j.robot.2016.10.008.