

Università di Pisa

Dipartimento di Matematica Corso di Laurea Triennale in Matematica

Tesi di Laurea

Il Modello Epidemiologico SIR sulle Reti Complesse

Relatore: Dott. Fabio Durastante Candidato: Simmaco Di Lillo

Anno Accademico 2020/2021

Sommario

[2]

1 Epidemiologia matematica e reti

1.1 Il modello SIR

Il modello SIR è un modello compartimentale: la popolazione viene suddivisa in tre classi:

- S: i suscettibili ovvero individui che possono contrarre la malattia;
- *I*: gli *infetti* ovvero coloro che sono ammalati;
- R: i rimossi ovvero quelli tolti dalla prima classe perchè completamente guariti (dunque immuni).

Tale modello si basa su alcune assunzioni.

- A1 Il numero della popolazione è costante nel tempo e verrà indicato con N, ovvero mon si considerano nuove nascite o morti. Inoltre stiamo assumendo che N sia sufficientemente grande da poter considerare la variazione in ogni classe continua e non discreta.
- A2 Esiste un fattore di contatto β . Tale rapporto indica il valore medio di contatti per infettivo per unità di tempo.
- A3 Gli infetti lasciano la classe al tasso α per unità di tempo e vanno nella classe R, un individuo che entra nella classe R non uscirà da tale classe.

Da queste considerazioni segue che

$$S' = -\beta SI,$$

$$I' = \beta SI - \alpha I,$$

$$R' = \alpha I.$$
(1.1)

Poichè abbiamo assunto che ${\cal N}=S+I+R$ sia costante, il sistema precedente risulta equivalente a

$$S' = -\beta SI,$$

$$I' = \beta SI - \alpha I.$$
(1.2)

Studiamo cosa succede se introduciamo un piccolo numero di infetti in una popolazione di suscettibili, ovvero consideriamo il sistema (1.2) con le condizioni iniziali

$$I(0) = I_0 > 0, I_0 \ll N e$$

$$S(0) = S_0 = N - I_0.$$

Da (1.2) osserviamo che S'<0 per ogni tempo t, mentre I'>0 se e solo se $\frac{\beta S}{\alpha}>1$.

Definiamo

$$\mathcal{R}_0 = \frac{\beta S_0}{\alpha}$$

il *numero di riproduttività di base*. Esso rappresenta il numero di individui infettati all'interno di una popolazione di suscettibili.

Tale valore ci permette di descrivere la fase iniziale dell'epidemia:

- se $\mathcal{R}_0 < 1$ allora l'epidemia si estingue infatti sotto queste condizioni I'(t) < 0 per ogni tempo t,
- se $\mathcal{R}_0 > 1$ allora I inizialmente aumenta e dunque l'epidemia ha inizio.

Studiamo ora gli equilibri del sistema autonomo di equazioni differenziali (1.2). Sommando le due equazioni che definiscono tale sistema otteniamo

$$(S+I)' = -\alpha I. (1.3)$$

Ora S+I è una funzione non negativa, decrescente dunque ammette un limite. Poichè la derivata di una funzione decrescente e limitata deve tendere a 0 si ha

$$I(t) \to 0$$
.

Da queste due osservazioni si ha

$$S(t) \to S_{\infty}$$
.

Integrando da 0 a $+\infty$ in (1.3) otteniamo

$$\alpha \int_{0}^{+\infty} I(t) dt = -\int_{0}^{+\infty} (S(t) + I(t))' = N - S_{\infty}.$$

In (1.2), dividendo per S e integrando da 0 a T otteniamo

$$\log \frac{S_0}{S_{\infty}} = \beta \int_0^{+\infty} I(t) \, dt = \frac{\beta}{\alpha} \left(N - S_{\infty} \right) = \mathcal{R}_0 \left(1 - \frac{S_{\infty}}{N} \right). \tag{1.4}$$

L'equazione (1.4) prende il nome di *relazione di dimensione finale* infatti fornisce una relazione tra il numero \mathcal{R}_0 e la dimensione dell'epidemia, ovvero il numero di membri che sono stati infetti nel corso dell'epidemia: $N - S_{\infty}$.

Osservazione 1. Poichè il lato destro della (1.4) è finito lo è anche il lato sinistro: $S_{\infty} > 0$ ovvero finita l'epidemia esisteranno ancora degli individui suscettibili.

Proposizione 1.1.1. La relazione finale (1.4) ha un'unica soluzione.

Dimostrazione. Sia

$$g(x) = \log \frac{S_0}{x} - \mathcal{R}_0 \left(1 - \frac{x}{N} \right),$$

ora

$$\lim_{x\to 0^+}g(x)>0 \ \mathrm{e} \ g(N)=\log\frac{S_0}{N}<0,$$

mentre

$$g'(x) = -\frac{1}{x} + \frac{\mathcal{R}_0}{N} < 0 \quad \Leftrightarrow x < \frac{N}{\mathcal{R}_0}.$$

- Se $\mathcal{R}_0 \leq 1$, allora $N < \frac{N}{\mathcal{R}_0}$ dunque g decresce da un valore positivo in 0^+ fino ad un valore negativo in N. In questo caso g(x) ammette un'unico zero S_∞ con $S_\infty < N$.
- Se $\mathcal{R}_0>1$, allora g(x) è monotona decrescente da un valore positivo in 0^+ fino al minimo in $\frac{N}{\mathcal{R}_0}$.

Ora

$$g\left(\frac{S_0}{\mathcal{R}_0}\right) = \log \mathcal{R}_0 - \mathcal{R}_0 + \frac{S_0}{N} \le \log \mathcal{R}_0 \le \mathcal{R}_0 + 1 < 0,$$

dove la penultima disuguaglianza deriva da log x < x - 1 se x > 0. Dunque g(x) ha un unico zero in S_{∞} con $S_{\infty} < \frac{N}{\mathcal{R}_0}$.

I).

Andiamo ora a descrivere le orbite delle soluzioni nel piano (S, I). Dividendo per S l'equazione (1.2) e integrando tra 0 a t otteniamo

$$\log \frac{S_0}{S(t)} = \beta \int_0^{+\infty} I(t) dt = \frac{\beta}{\alpha} (N - S(t) - I(t)).$$

Per poter studiare il modello, occorre stimare i parametri.

Il fattore β è di difficile stima: dipende dalla malattia in esame e, in particolar modo, da fattori sociali e comportamentali.

I valori di S_0 e S_∞ possono essere ricavati tramite test sierologici (misurazione della risposta immunitaria tramite analisi del sangue): da questi valori usando la (1.4) possiamo stimare \mathcal{R}_0 .

Questa stima tuttavia è a posteriori, cioè può essere ricavata solamente dopo che l'epidemia ha fatto il suo corso.

Un altro modo per stimare β può essere ricavato dalla seguente approssimazione

$$I' = (\beta N - \alpha) I$$
,

da cui si ottiene che il numero degli infetti cresce esponenzialmente con un tasso di crescita

$$r = \beta N - \alpha = \alpha \left(\mathcal{R}_0 - 1 \right),$$

ricavabile dall'incidenza della malattia all'inizio dell'epidemia.

Otteniamo così

$$\beta = \frac{r + \alpha}{N}.$$

Osservazione 2 (Immunizzazione). Se un gruppo di infetti viene introdotto in una popolazione, è possibile ridurre l'impatto dell'epidemia diminuedo \mathcal{R}_0 .

Una strategia può essere tramite l'immunizzazione, il cui scopo è quello di trasferire membri della popolazione della classe S a quella R, così facendo viene ridotto il numero S_0 e dunque anche \mathcal{R}_0 .

Supponiamo che una frazione p della popolazione sia immunizzata: il numeri dei suscettibili passa da S_0 a $S_0(1-p)$.

Se inizialmente il numero di riproduzione di base era $\mathcal{R}_0 = \frac{\beta N}{\alpha}$, nella nuova situazione diventa $\mathcal{R}_0'' = \frac{\beta N(1-p)}{\alpha}$ da cui si ha che

$$\frac{\beta N(1-p)}{\alpha} < 1 \quad \Leftrightarrow \quad p > 1 - \frac{\alpha}{\beta N} = 1 - \frac{1}{\mathcal{R}_0}.$$

1.1.1 Un esempio

Analizziamo i dati della peste bubonica del 1665 - 66 nel villaggio di Eyam in Inghilterra [3].

I membri del villaggio hanno annotato giorno per giorno il numero di decessi. Per appianare alcune significative variazioni giornaliera nel tasso di mortalità, Raggett [3] ha raccolto i dati con una cadenza di $15\frac{1}{2}$ giorni a partire dal 18 Giugno del 1666 (vedi Tabella 1.1).

Periodo (1666)	Deceduti	Rimossi (alla fine del periodo)
19 Giugno-3/4 Luglio	11.5	11.5
4/5 Luglio-19 Luglio	26.5	38
20 Luglio-3/4 Agosto	40.5	78.5
4/5 Agosto-19 Agosto	41.5	120
20 Agosto-3/4 Settembre	25	145
4/5 Settembre-19 Settembre	11	156
20 Settembre-4/5 Ottobre	11.5	167.5
5/6 Ottobre-20 Ottobre	10.5	178

Tabella 1.1: Popolazione di deceduti e rimossi.

Prendendo come periodo medio di infezione 11 giorni, possiamo stimare il numero degli infetti. Alla fine di ogni intervallo di tempo il numero di infetti è dato analizzando il diario dei decessi degli 11 giorni successivi. Sfruttando la relazione

$$N = S(t) + I(t) + R(t),$$

otteniamo la Tabella 1.2.

Tabella 1.2: Numero di suscettibili ed infetti. Dati reali.

S(0) = 254 I(0) = 7 e N = 261			
Data (1666)	S	I	
3/4 Luglio	235	14.5	
19 Luglio	201	22	
3/4 Agosto	153.5	29	
19 Agosto	121	20	
3/4 Settembre	108	8	
19 Settembre	97	8	
4/5 Ottobre	Sconosciuti	Sconosciuti	
20 Ottobre	83	0	

Ora sfruttando (1.4) otteniamo $\frac{\alpha}{\beta} \simeq 159.$

Simulando il modello (1.2) con condizioni iniziali S(0)=254 e I(0)=7, utilizzando come parametri $\alpha=2.73$ e $\beta=0.0178$ troviamo i risultati in Tabella 1.3 e i grafici di S,I e R come funzioni del tempo (Figura 1.1(a)). Si veda il Capitolo 3 per i dettagli riguardo la simulazione.

La Figura 1.1(b) mostra i punti reali insieme al ritratto di fase per il modello (1.2): notiamo che i dati effettivi sono notevolmente vicini alle previsioni ottenute.

Tabella 1.3: Numero di suscettibili ed infetti. Dati sperimentali.

S(0) = 254 I(0) = 7 e N = 261			
Data (1666)	S	I	
3/4 Luglio	230	15	
19 Luglio	190	26	
3/4 Agosto	147	30	
19 Agosto	115	24	
3/4 Settembre	96	15	
19 Settembre	86	9	
4/5 Ottobre	81	4	
20 Ottobre	78	2	

Figura 1.1: Grafici ottenuti in MATLAB.

1.2 Reti complesse e grafi

Molti sistemi che si basano su interazioni tra soggetti sono rappresentabili e visualizzabili, in maniera naturale, come network dove i nodi rappresentano gli individui e gli archi le interazioni.

In questa sezione andremo a definire formalmente un grafo e alcune nozioni rilevanti.

Un grafo è una coppia G = (V, E) dove:

- V è detto insieme dei vertici o nodi,
- $E \subseteq V \times V$ è l'insieme degli *archi* o link.

Diremo che un grafo è *non orientato* se ogni arco appare in entrambe le direzioni, altrimenti diremo che è un grafo *diretto* o *orientato*.

Per visualizzare un grafo si può usare una rappresentazione come in Figura 1.2: cerchi, i vertici, connessi da frecce, nel caso di grafi diretti, oppure da segmenti, per grafi non orientati.

Figura 1.2: Due esempi di grafi.

È possibile codificare un grafo, con un numero finito di nodi, attraverso una matrice detta matrice di adiacenza.

Supponiamo |V| = N dunque esiste una biezione $\phi : \{1, \dots, N\} \to E$. La matrice di adiacenza di G è la matrice $H_G = (g_{ij})$ dove

$$g_{ij} = \begin{cases} 1 & \text{se } (\phi(i), \phi(j)) \in E \\ 0 & \text{altrimenti} \end{cases}.$$

Un esempio di matrice di adiacenza è riportata nella Figura 1.3.

Figura 1.3: Grafo e matrice di adiacenza del toast.

Un grafo G si dice *pesato* se ad ogni suo arco è associato un'etichetta. Formalmente, G=(V,E) si dice grafo pesato se esiste una funzione $p:E\to P$ dove P è un insieme. Generalmente $T=\mathbb{R}$.

Dato un grafo G=(V,E), un cammino P che connette i vertici $u,v\in V$ è una sequenza di vertici

$$P = (v_0, \dots, v_n)$$

dove $\forall i = 0, \dots, n-1$ si ha $(v_i, v_{i+1}) \in E$, $v_0 = u$ e $v_n = v$.

Un grafo si dice fortemente connesso se per ogni coppia di nodi (u,v) esiste un cammino che li congiunge.

Definiamo il *diametro* di un grafo come la distanza massima tra due nodi, la distanza è il numero di archi di un cammino.

Nello studio della diffusione di una malattia in una città, è irrealistico sperare di conoscere l'esatta matrice di adiacenza. Supporremo, dunque, che la propagazione della malattia sia governata solamente da alcune misure qualitative delle rete che andiamo a presentare.

Definiamo il grado uscente (out-degree) del nodo i come il numero di archi che partono dal nodo i. In termini della matrice di adiacenza

$$k_i^{out} = \sum_{j=1}^{N} g_{ij}.$$

Analogamente il *grado entrante* (*in-degree*) è il numero di archi che arrivano al nodo:

$$k_i^{in} = \sum_{j=1}^{N} g_{ji}.$$

Nel caso di grafi non orientati si ha $k_i^{out} = k_i^{in}$ che denoteremo, semplicemente, con k_i .

Il grado medio di un grafo è la quantità

$$\langle K \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i.$$

Sia L il numero di gradi differenti e siano $\{d_1,\ldots,d_L\}$ i possibili gradi. Sia N_ℓ il numero di vertici con grado d_ℓ allora il grado di distribuzione del grado ℓ è la quantità

$$p_{\ell} = \frac{N_{\ell}}{N}.$$

Se tutti i vertici hanno lo stesso grado, diremo che il grafo è regolare.

Andiamo, ora, a definire una misura che ci permette di capire come nodi con gradi diversi sono collegati.

Sia L il numero di gradi differenti che denotiamo conn $\{d_1, \ldots, d_L\}$. Definiamo i *mixing coefficients* (coefficienti di miscelamento) $n_{\ell j}$ come il numero di collegamenti tra nodi di grado d_{ℓ} e nodi di grado d_{j} .

Osserviamo che i due coefficienti definiti non caratterizzano, a meno di isomorfismo, un grafo: in Figura 1.4 sono presentati due grafi con gli stessi coefficienti di miscelamento e medesimo grado di distribuzione che non sono, tuttavia, isomorfi avendo numero diverso di triangoli.

Figura 1.4: Due grafi non isomorfi con stesso grado di distribuzione e coefficiente di miscelamento.

Presentiamo una misura del grado in cui i nodi di un grafo tendono a raggrupparsi insieme, di tale misura esiste una versione locale ed una globale.

Definiamo l'intorno del nodo i come l'insieme dei nodi con cui i è direttamente connesso:

$$N_i = \{ j \in V : (i, j) \in E \lor (j, i) \in E \}.$$

e poniamo $s_i = |N_i|$.

Il coefficiente di *clustering locale* (raggruppamento locale) per i grafi diretti è il numero

$$C_i = \frac{|\{(j,k) \in E : j, k \in N_i\}|}{s_i(s_i - 1)},$$

ovvero, il numero di collegamenti tra i membri di N_i fratto il numero di collegamenti potenziali fra loro, è $s_i(s_i-1)$.

Nei grafi non orientati il numero dei collegamenti potenziali è la metà e dunque il coefficiente è

$$C_i = \frac{2 \cdot |\{(j,k) \in E : j,k \in N_i\}|}{s_i(s_i - 1)}.$$

Il coefficiente di *clustering globale* è il numero delle triple chiuse (tre nodi connessi da tre collegamenti) fratto il numero totale di triple.

2 Il modello SIR *bottom-up* su una rete

2.1 Un primo esempio

Vediamo come è possibile applicare il modello SIR ad un semplice grafo con 3 nodi (vedi Figura $\ref{eq:sigma}$).

Fissiamo la notazione:

Figura 2.1: Grafo con 3 nodi.

- $\langle S_i \rangle(t)$ denota la probabilità che il nodo i sia suscettibile al tempo t;
- $\langle I_i \rangle (t)$ denota la probabilità che il nodo *i* sia infetto al tempo *t*;
- $\langle R_i \rangle (t)$ denota la probabilità che il nodo t sia rimosso al tempo t;
- $(\langle I_i \rangle + \langle R_i \rangle)(t)$ denota la probabilità che il nodo i sia infetto o rimosso al tempo t;
- $\langle S_i I_j \rangle (t)$ denota la probabilità che il nodo i sia sano e il nodo j sia infetto al tempo t.

In analogia a quanto fatto in 1.1 si ha che:

- ogni nodo i può diventare infetto se è suscettibile e almeno uno dei suoi vicini è infetto. Per ogni suo vicino infetto i diventa infetto con un tasso di τ ;
- una volta infettato, ogni nodo diventa rimosso con un tasso di γ indipendentemente dallo stato di qualsiasi altro nodo.

Passiamo ora allo studio del grafo ??.

- Poichè il nodo 1 ha come vicino solamente il nodo 2 la probabbilità che possa infettarsi è $\langle S_1 I_2 \rangle$. $\langle S_1 \rangle$ diminuisce con un tasso di $\tau \langle S_1 I_2 \rangle$.
- Il nodo 2 ha due possibili fonti d'infezione: i nodi 1 e 2. Il suo tasso d'infezione è, dunque, $\tau (\langle S_2I_1 + \langle S_2I_3 \rangle)$.
- Il tasso d'infezione relativo al nodo 3 è, in analogia a quanto visto per il nodo 1, $\tau \langle S_3 I_2 \rangle$.

Mettendo insieme questi punti e ricordando il tasso di rimozione otteniamo il seguente sistema di equazioni differenziali:

$$\begin{split} \langle \dot{S}_1 \rangle &= -\tau \langle S_1 I_2 \rangle, & \langle \dot{I}_1 \rangle = \tau \langle S_1 I_2 \rangle - \gamma \langle I_1 \rangle, & \langle \dot{R}_1 \rangle = \gamma \langle I_1 \rangle, \\ \langle \dot{S}_2 \rangle &= -\tau \left(\langle I_1 S_2 \rangle + \langle I_3 S_2 \rangle \right), & \langle \dot{I}_2 \rangle = \tau \left(\langle I_1 S_2 \rangle + \langle I_3 S_2 \rangle \right) - \gamma \langle I_2 \rangle, & \langle \dot{R}_2 \rangle = \gamma \langle I_2 \rangle, \\ \langle \dot{S}_3 \rangle &= -\tau \langle I_2 S_3 \rangle, & \langle \dot{I}_3 \rangle = \tau \langle I_2 S_3 \rangle - \gamma \langle I_3 \rangle, & \langle \dot{R}_3 \rangle = \gamma \langle I_3 \rangle. \end{split}$$

Analizzando attentamente il sistema possiamo notare che le equazioni per $\langle R_i \rangle$ possono essere rimosse infatti

$$\forall i \in \{1, 2, 3\} \quad \forall t > 0 \quad \langle R_i \rangle(t) = 1 - (\langle S_i \rangle + \langle I_i \rangle)(t).$$

Osserviamo, inoltre, che il sistema precedente non è chiuso: abbiamo altre quantità (come ad esempio: $\langle S_1 I_2 \rangle$), dunque, dobbiamo conoscere come esse evolvono nel tempo. Servono altre equazioni.

Usando argomenti simili a quanto fatto per i nodi otteniamo il sistema

$$\begin{split} &\langle S_1 \dot{I}_2 \rangle = & \tau \langle S_1 S_2 I_3 \rangle - (\tau + \gamma) \, \langle S_1 I_2 \rangle, \\ &\langle I_1 \dot{S}_2 \rangle = - \tau \langle I_1 S_2 I_3 \rangle - (\tau + \gamma) \, \langle I_1 S_2 \rangle, \\ &\langle S_2 \dot{I}_3 \rangle = - \tau \langle I_1 S_2 I_3 \rangle - (\tau + \gamma) \, \langle S_2 I_3 \rangle, \\ &\langle I_2 \dot{S}_3 \rangle = & \tau \langle I_1 S_2 S_3 \rangle - (\tau + \gamma) \, \langle I_2 S_3 \rangle. \end{split}$$

Anche tale sistema non è chiuso: richiede ulteriori informazioni sulle triple.

Aggiungendo le equazioni necessarie otteniamo il sistema

$$\langle \dot{S}_{1} \rangle = -\tau \langle S_{1} I_{2} \rangle, \qquad \langle \dot{S}_{1} \dot{I}_{2} \rangle = \tau \langle S_{1} S_{2} I_{3} \rangle - (\tau + \gamma) \langle S_{1} I_{2} \rangle,
\langle \dot{I}_{1} \rangle = \tau \langle S_{1} I_{2} \rangle - \gamma \langle I_{1} \rangle, \qquad \langle \dot{I}_{1} \dot{S}_{2} \rangle = -\tau \langle I_{1} S_{2} I_{3} \rangle - (\tau + \gamma) \langle I_{1} S_{2} \rangle,
\langle \dot{S}_{2} \rangle = -\tau (\langle I_{1} S_{2} \rangle + \langle I_{3} S_{2} \rangle), \qquad \langle \dot{I}_{2} \dot{S}_{3} \rangle = \tau \langle I_{1} S_{2} I_{3} \rangle - (\tau + \gamma) \langle I_{1} S_{2} \rangle,
\langle \dot{I}_{2} \dot{S}_{3} \rangle = \tau \langle \langle I_{1} S_{2} \rangle + \langle I_{3} S_{2} \rangle) - \gamma \langle I_{2} \rangle, \qquad \langle \dot{S}_{2} \dot{I}_{3} \rangle = -\tau \langle I_{1} S_{2} I_{3} \rangle - (\tau + \gamma) \langle I_{1} S_{2} \rangle,
\langle \dot{S}_{3} \rangle = -\tau \langle I_{2} S_{3} \rangle \qquad \langle \dot{S}_{1} \dot{S}_{2} I_{3} \rangle = -\tau \langle I_{1} S_{2} I_{3} \rangle,
\langle \dot{I}_{3} \dot{S}_{2} \rangle = \tau \langle \dot{I}_{2} \dot{S}_{3} \rangle - \gamma \langle \dot{I}_{3} \rangle, \qquad \langle \dot{I}_{1} \dot{S}_{2} \dot{I}_{3} \rangle = -\tau \langle \dot{I}_{1} \dot{S}_{2} \dot{I}_{3} \rangle,
\langle \dot{I}_{1} \dot{S}_{2} \dot{S}_{3} \rangle = -\tau \langle \dot{I}_{1} \dot{S}_{2} \dot{S}_{3} \rangle. \qquad (2.1)$$

Nella Figura 2.2 sono riportati i grafici dello stato dei nodi in funzione del tempo (a)(b)(c) e del grafico di prevalenza (d).

Per la sperimentazione, le condizioni iniziali sono state prese a partire da uno stato puro (1 infetto e 2, 3 sani) sotto le ipotesi di indipendenza statica delle condizioni iniziali (vedi [4]).

Figura 2.2: Sperimentazione in MATLAB relativa al grafo ??.

2.2 Chiusure

Come già osservato nell'esempio introduttivo, il modello botton-up su una rete richiede un elevato numero di equazioni differenziali: le equazioni per i nodi dipendono dalle coppie, le coppie dalle triple e così via.

Tale approccio, al crescere del numero di nodi, risulterebbe computazionalmente intrattabile. Per risolvere questo problema dobbiamo trovare alcune semplificazioni che ci permettono di esprimere le coppie in termini dei singoli nodi, le triple in termini delle coppie e dei nodi e così via.

Se riusciamo a fare ciò, possiamo rompere la "cascata" nella quale ogni struttura dipende da tutte le strutture di ordine superiore.

Andiamo a presentare un approccio formale basato sul lavoro di Keeling [1] e van Baalen [5]. A tal fine introduciamo i *coefficienti di correlazione*.

Siano $A, B \in \{S, I, R\}$ e $(i, j) \in E$ allora

$$C_{A_i B_j} = \frac{\langle A_i B_j \rangle}{\langle A_i \rangle \langle B_j \rangle}.$$

Tali coefficienti quantificano la propensione che due nodi adiacenti abbiamo stato differente o identico.

Se $C_{A_iB_j}=1$ allora possiamo, in modo equivalente, assuemere A_i e B_j indipendenti.

Osserviamo che nel modello SIR gli stati non sono però indipendenti. I nodi infetti possono infettare i loro vicini dunque hanno una maggior probabilità di essere uniti ad altri nodi infetti, di conseguenza $C_{I_iI_j} \geq 1$. Diremo che I_i e I_j sono correlati positivamente.

Con medesime argomentazioni si arriva a dire che S_i e I_j sono correlati negativamente: $C_{S_iI_j} \leq 1$.

In un certo senso, sapere che j è infetto aumenta la nostra aspettativa che i sia infetto e diminuisce quella che sia sano.

2.2.1 Chiusura al livello delle coppie

Da quanto osservato nella parte introduttiva sulle chiusure, possiamo scrivere:

$$\langle A_iB_j\rangle = \langle A_i\rangle\langle B_j\rangle C_{A_iB_j} \text{ dove } A,B\in \{S,I,R\} \text{ e } (i,j)\in E.$$

Assumendo, in prima approssimazione, l'indipendenza a livello delle coppie abbiamo

$$\langle A_i B_j \rangle \approx \langle A_i \rangle \langle B_j \rangle.$$

Per enfatizzare che non abbiamo identità esatte, quando andremo a risolvere un sistema ottenuto usando le chiusure denoteremo con $\langle X_i \rangle$ l'approssimazione di $\langle S_i \rangle$ e con $\langle Y_i \rangle$ quella di $\langle I_i \rangle$.

Presentiamo il modello botton-up generale su una rete con N nodi senza loop e mostriamo come usando l'indipendenza a livello delle coppie si riesca ad ottenere un sistema di equazioni differenziali chiuse.

Sia $G=(g_{ij})$ la matrice di adiacenza del grafo G. Assumiamo che il tasso di trasmissione da i a j sia τg_{ij} e che il tasso di rimozione per il nodo i sia γ_i indipendentemente dallo stato di ogni altro nodo.

Dunque le equazione per il sistema diventano

$$\langle S_i \rangle = -\tau \sum_{\substack{j=1\\j\neq i}}^{N} \langle S_i I_j \rangle,$$

$$\langle I_i \rangle = \tau \sum_{\substack{j=1\\j\neq i}}^{N} \langle S_i I_j \rangle - \gamma_i \langle I_i \rangle,$$
(2.2)

dove ricordiamo che $\langle R_i \rangle = 1 - \langle S_i \rangle - \langle I_i \rangle$.

Usando l'indipendenza a livello delle coppie possiamo un sistema chiuso:

$$\langle X_i \rangle = -\tau \sum_{\substack{j=1\\j \neq i}}^{N} \langle X_i \rangle \langle Y_j \rangle,$$

$$\langle Y_i \rangle = \tau \sum_{\substack{j=1\\j \neq i}}^{N} \langle X_i \rangle \langle Y_j \rangle - \gamma_i \langle Y_i \rangle.$$
(2.3)

Nella Figura 2.3 possiamo confrontare le soluzioni del modello esatto con l'approssimazione ottenuta dall'indipendenza a livello delle coppie per il grafo ??. Per non appesantire i grafici abbiamo tracciato solamente $\langle S_i \rangle$ e $\langle I_i \rangle$ in funzione del tempo: $\langle R_i \rangle$ può essere ricavata.

2.2.2 Chiusura al livello delle triple

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur

Figura 2.3: Nei grafici è possibile confrontare le soluzioni del modello esatto (2.1) (in blu) con il modello in cui abbiamo assunto l'indipendenza delle coppie (2.3) (in rosso)

et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

2.2.3 Approccio generale alla chiusura

Sia G = (V, E) un grafo connesso

- Diremo che $v \in V$ è un *cut-vertex* (vertice tagliato) se il grafo senza il nodo v risulta sconnesso.
- Diremo che $e \in E$ è un ponte se il grafo $G' = (V, E \setminus \{e\})$ risulta sconnesso

Per un esempio di cut-vertex si guardi la Figura 2.4.

Figura 2.4: (a) Un esempio di rete con 5 cut-vertices e (b) la rete equivalente dopo la decomposizioni in sottoreti

Prima di presentare il teorema cardine del capitolo ricordiamo pero, la seguente definizione.

Siano A,B due eventi di uno spazio di probabilità con $\mathbb{P}(B)>0$. Si dice pro-

babilità condizionale di A dato B la quantità

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \tag{2.4}$$

Teorema 2.2.1. Sia G = (V, E) un grafo e $F = \{v_1, \dots, v_k\}$ un sottoinsieme connesso di vertici e sia v_i sia un suo cut-vertex. Poniamo

$$F_1 = \{v_1, \dots, v_{i-1}\}$$
 $F_2 = \{v_{i+1}, \dots, v_k\}.$

Se ogni cammino che connette un nodo in F_1 ad uno in F_2 passa da v_i allora:

$$\langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \rangle = \langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} \rangle \langle S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \rangle$$
 (2.5)

dove $Z \in \{S, I, R\}$

Dimostrazione. Se $\langle S_{v_i} \rangle = 0$ allora l'uguaglianza (2.5) risulta banalmente vera.

Sia $\langle S_{v_i} \rangle \neq 0$. Utilizzanndo la definizione di probabilità condizionale (2.4) si ha

$$\langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \rangle = \langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \mid S_{v_i} \rangle \langle S_{v_i} \rangle.$$

Notiamo che

$$\langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \mid S_{v_i} \rangle = \langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} \mid S_{v_i} \rangle \langle S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \mid S_{v_i} \rangle,$$

infatti, ogni percorso da F_1 a F_2 deve passare attraverso v_i . Ora v_i è suscettibile dunque la trasmissione non può avvenire tra un nodo in F_1 ed uno in F_2 . Per tale motivo i due eventi presenti nel membro di sinistra sono inipendenti. Se riapplichiamo la definizione di probabilità condizionale otteniamo

$$\langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} | S_{v_i} \rangle = \frac{\langle Z_{v_1} \dots Z_{v_{i-1}} S_{v_i} \rangle}{\langle S_{v_i} \rangle},$$

$$\langle S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} | S_{v_i} \rangle = \frac{\langle S_{v_i} Z_{v_{i+1}} \dots Z_{v_k} \rangle}{\langle S_{v_i} \rangle}.$$

da cui la tesi . \Box

Grazie a questo teorema siamo pronti per presentare l'algoritmo generale per le chiusure. Nella prossima sezione daremo un esempio della sua applicazione. Ecco i passi dell'algoritmo.

1. Si trovano tutti i cut-vertices di G e si denotino con $C = \{v_{i_1}, \dots, v_{i_L}\}$. Tale procedimento può essere fatto con un costo in tempo di O(|E| + |V|) utilizzando una visita DFS.

- 2. Si divide la rete originale in sottoreti connesse a due a due scollegate.
- 3. Tale procedura conduce ad una famiglia di sottoreti distinte G_1, \ldots, G_P . Le sottoreti vengono create in modo che i cut-vertices siano mantenuti in tutte le sottoreti generate. Si veda la Figura 2.4.
- 4. Per ogni nodo i delle sottoreti, si ha

$$\begin{split} \langle \dot{S}_i \rangle &= -\tau \sum_j g_{ij} \langle S_i I_j \rangle, \\ \langle \dot{I}_i \rangle &= \tau \sum_j g_{ij} \langle S_i I_j \rangle - \gamma \langle I_i \rangle, \\ \langle \dot{R}_i \rangle &= 1 - \langle S_i \rangle - \langle I_i \rangle. \end{split}$$

Si possono trovare equazioni simili per le derivate di tutte le coppie che sorgono in queste equazioni. Queste coppie dipendono dalle triple. A loro volta le triple dipendono dalle quadruple. Si forma, così, una gerarchia di equazioni

5. Nella gerarchia che si verrà a creare, se in un termine appaiono vertici di più sottoreti allora in esso appare un cut-vertex suscettibile. Si usi il Teorema (2.2.1) per esprimere questo termine in termine di altri più semplici.

2.3 Un esempio completo

Andiamo ad applicare l'algoritmo precedente alla rete 2.5.

Figura 2.5: (a) Il network lollipop e (b) la sua decomposizione in 2 sottoreti

Nella rete esiste un solo cut-vertex: il nodo 3. Decomponiamo il grafo in un triangolo e un singolo arco (Figure 2.5). Le equazioni per i singoli nodi sono

$$\begin{split} \langle \dot{S}_{1} \rangle &= -\tau \left(\langle S_{1} I_{2} \rangle + \langle S_{1} I_{3} \rangle \right), & \langle \dot{S}_{3} \rangle &= -\tau \left(\langle I_{1} S_{3} \rangle + \langle I_{2} S_{3} \rangle + \langle S_{3} I_{4} \rangle \right), \\ \langle \dot{I}_{1} \rangle &= & \tau \left(\langle S_{1} I_{2} \rangle + \langle S_{1} I_{3} \rangle \right) - \gamma \langle I_{1} \rangle & \langle \dot{I}_{3} \rangle &= & \tau \left(\langle I_{1} S_{3} \rangle + \langle I_{2} S_{3} \rangle + \langle S_{3} I_{4} \rangle \right) - \gamma \langle I_{3} \rangle, \\ \langle \dot{S}_{2} \rangle &= & -\tau \left(\langle I_{1} S_{2} \rangle + \langle S_{2} I_{3} \rangle \right), & \langle \dot{S}_{4} \rangle &= & -\tau \langle I_{3} S_{4} \rangle, \\ \langle \dot{S}_{2} \rangle &= & \tau \left(\langle I_{1} S_{2} \rangle + \langle S_{2} I_{3} \rangle \right) - \gamma \langle I_{2} \rangle, & \langle \dot{I}_{4} \rangle &= & \tau \langle I_{3} S_{4} \rangle - \gamma \langle I_{4} \rangle. \end{split}$$

Tali equazioni dipendono da alcune coppie: tutte le disposizioni di archi con un nodo suscettibile ed un uno infetto. Abbiamo bisogno di equazioni addizionali. Esaminiamo l'equazione per $\langle S_1 I_3 \rangle$.

$$\begin{split} \langle S_1 I_3 \rangle &= \tau \left(\langle S_1 I_2 S_3 \rangle + \langle S_1 S_3 I_4 \rangle \right) - (\tau + \gamma) \left\langle S_1 I_3 \right\rangle - \tau \langle S_1 I_2 I_3 \rangle \\ &= \tau \left(\langle S_1 I_2 S_3 \rangle + \frac{\langle S_1 S_3 \rangle \langle S_3 I_4 \rangle}{\langle S_3 \rangle} \right) - (\tau + \gamma) \left\langle S_1 I_3 \right\rangle - \tau \langle S_1 I_2 S_3 \rangle \end{split}$$

dove abbiamo usato il Teorema 2.2.1 per sostituire $\langle S_1 S_3 I_4 \rangle$. Andiamo a scrivere le equazioni per le coppie rimanenti, sostituendo ogni tripla che connette le due sottoreti:

$$\langle \dot{S_1} I_2 \rangle = \tau \langle \dot{S_1} S_2 I_3 \rangle - (\tau + \gamma) \langle \dot{S_1} I_2 \rangle - \tau \langle \dot{S_1} I_2 S_3 \rangle,$$

$$\langle \dot{I_1} \dot{S_2} \rangle = \tau \langle \dot{S_1} S_2 I_3 \rangle - (\tau + \gamma) \langle \dot{I_1} S_2 \rangle - \tau \langle \dot{I_1} S_2 I_3 \rangle,$$

$$\langle \dot{S_2} \dot{I_3} \rangle = \tau \left(\langle \dot{I_1} S_2 S_3 \rangle + \frac{\langle \dot{S_2} S_3 \rangle \langle \dot{S_3} I_4 \rangle}{\langle \dot{S_3} \rangle} \right) - (\tau + \gamma) \langle \dot{S_2} I_3 \rangle - \tau \langle \dot{I_1} I_2 I_3 \rangle,$$

$$\langle \dot{I_1} \dot{S_3} \rangle = -\tau \left(\langle \dot{I_1} I_2 S_3 \rangle \frac{\langle \dot{I_1} S_3 \rangle \langle \dot{S_3} I_4 \rangle}{\langle \dot{S_3} \rangle} \right) - (\tau + \gamma) \langle \dot{I_1} S_3 \rangle + \tau \langle \dot{S_1} I_2 S_3 \rangle,$$

$$\langle \dot{I_2} \dot{S_3} \rangle = -\tau \left(\langle \dot{I_1} I_2 S_3 \rangle \frac{\langle \dot{I_2} S_3 \rangle \langle \dot{S_3} I_4 \rangle}{\langle \dot{S_3} \rangle} \right) - (\tau + \gamma) \langle \dot{I_2} S_3 \rangle + \tau \langle \dot{I_1} S_2 S_3 \rangle,$$

$$\langle \dot{S_3} \dot{I_4} \rangle = -\tau \left(\frac{\langle \dot{I_1} S_3 \rangle \langle \dot{S_3} I_4 \rangle}{\langle \dot{S_3} \rangle} + \frac{\langle \dot{I_2} S_3 \rangle \langle \dot{S_3} I_4 \rangle}{\langle \dot{S_3} \rangle} \right) - (\tau + \gamma) \langle \dot{S_3} I_4 \rangle,$$

$$\langle \dot{I_3} \dot{S_4} \rangle = \tau \left(\frac{\langle \dot{I_1} S_3 \rangle \langle \dot{S_3} S_4 \rangle}{\langle \dot{S_3} \rangle} + \frac{\langle \dot{I_2} S_3 \rangle \langle \dot{S_3} S_4 \rangle}{\langle \dot{S_3} \rangle} \right) - (\tau + \gamma) \langle \dot{I_3} I_4 \rangle.$$

Da queste equazioni emergono nuove coppie, dunque necessitiamo anche di

$$\begin{split} &\langle \dot{S_1} \dot{S_3} \rangle = -2\tau \langle S_1 I_2 S_3 \rangle - \tau \frac{\langle S_1 S_3 \rangle \langle S_3 I_4 \rangle}{\langle S_3 \rangle}, \\ &\langle \dot{S_2} \dot{S_3} \rangle = -2\tau \langle I_1 S_2 S_3 \rangle - \tau \frac{\langle S_2 S_3 \rangle \langle S_3 I_4 \rangle}{\langle S_3 \rangle}, \\ &\langle \dot{S_3} \dot{S_4} \rangle = -\tau \left(\langle I_1 S_3 \rangle + \langle I_2 S_3 \rangle \right) \frac{\langle S_3 S_4 \rangle}{\langle S_2 \rangle}. \end{split}$$

Osserviamo che non necessitiamo di un'equazione per $\langle S_1S_2\rangle$ e nemmeno di coppie di nodi che coinvolgono dei rimossi.

Le equazioni per le coppie introducono alcune triple

$$\langle S_{1}\dot{S}_{2}I_{3}\rangle = \tau \frac{\langle S_{1}S_{2}S_{3}\rangle\langle S_{3}I_{4}\rangle}{\langle S_{3}\rangle} - (2\tau + \gamma) \langle S_{1}S_{2}I_{3}\rangle,$$

$$\langle S_{1}\dot{I}_{2}I_{3}\rangle = \tau \left(\langle S_{1}S_{2}I_{3}\rangle + \frac{\langle S_{1}I_{2}S_{3}\rangle\langle S_{3}I_{4}\rangle}{S_{3}}\right) - (2\tau + \gamma) \langle S_{1}I_{2}I_{3}\rangle,$$

$$\langle S_{1}\dot{I}_{2}S_{3}\rangle = -\tau \frac{\langle S_{1}I_{2}S_{3}\rangle\langle S_{3}I_{4}\rangle}{\langle S_{3}\rangle} - (2\tau + \gamma) \langle S_{1}I_{2}S_{3}\rangle,$$

$$\langle I_{1}\dot{S}_{2}I_{3}\rangle = \tau \left(\langle S_{1}S_{2}I_{3}\rangle + \frac{\langle I_{1}I_{2}S_{3}\rangle\langle S_{3}I_{4}\rangle}{S_{3}}\right) - (2\tau + \gamma) \langle I_{1}S_{2}I_{3}\rangle,$$

$$\langle I_{1}\dot{S}_{2}S_{3}\rangle = -(2\tau + \gamma) \langle I_{1}S_{2}S_{3}\rangle,$$

$$\langle I_{1}\dot{I}_{2}S_{3}\rangle = \tau \left(\langle S_{1}I_{2}S_{3}\rangle + \langle I_{1}S_{2}S_{3}\rangle,$$

$$\langle I_{1}\dot{I}_{2}S_{3}\rangle = \tau \left(\langle S_{1}I_{2}S_{3}\rangle + \langle I_{1}S_{2}S_{3}\rangle,$$

$$\langle I_{1}\dot{I}_{2}S_{3}\rangle = \tau \left(\langle S_{1}I_{2}S_{3}\rangle + \langle I_{1}S_{2}S_{3}\rangle,$$

$$\langle I_{1}\dot{I}_{2}S_{3}\rangle = \tau \left(\langle S_{1}I_{2}S_{3}\rangle + \langle I_{1}S_{2}S_{3}\rangle,$$

$$\langle I_{1}\dot{I}_{2}S_{3}\rangle = \tau \left(\langle S_{1}I_{2}S_{3}\rangle + \langle I_{1}S_{2}S_{3}\rangle,$$

$$\langle I_{1}\dot{I}_{2}S_{3}\rangle = \tau \left(\langle S_{1}I_{2}S_{3}\rangle + \langle I_{1}S_{2}S_{3}\rangle,$$

Scrivendo queste equazioni appare una nuova tripla, completiamo il sistema aggiungendo

$$\langle S_1 \dot{S}_2 S_3 \rangle = -\tau \frac{\langle S_1 S_2 S_3 \rangle \langle S_3 I_4 \rangle}{\langle S_3 \rangle}.$$

Se non avessimo usato le chiusure avremmo dovuto scrivere equazioni per

- Nodi: $\langle S_1 \rangle$, $\langle I_1 \rangle$, $\langle S_2 \rangle$, $\langle I_2 \rangle$, $\langle S_3 \rangle$, $\langle I_3 \rangle$, $\langle S_4 \rangle$, $\langle I_4 \rangle$;
- Coppie: $\langle S_1I_2\rangle$. $\langle S_1I_3\rangle$. $\langle I_1S_2\rangle$. $\langle S_2I_3\rangle$. $\langle I_1S_3\rangle$. $\langle I_2S_3\rangle$. $\langle S_3I_4\rangle$. $\langle I_3S_4\rangle$;
- Triple: $\langle S_1S_2I_3\rangle$, $\langle S_1I_2I_3\rangle$, $\langle S_1I_2S_3\rangle$, $\langle I_1S_2I_3\rangle$, $\langle I_1I_2S_3\rangle$, $\langle I_1S_3I_4\rangle$, $\langle I_2S_3I_4\rangle$, $\langle I_2S_3S_4\rangle$, $\langle I_1S_3S_4\rangle$, $\langle I_2S_3S_4\rangle$, $\langle I_2S_4\rangle$, $\langle I_2S_4\rangle$, $\langle I_2S_4\rangle$
- Quadruple: $\langle I_1I_2S_3I_4\rangle$, $\langle S_1I_2S_3I_4\rangle$, $\langle I_1S_2S_3I_4\rangle$, $\langle I_1I_2S_3S_4\rangle$, $\langle S_1I_2S_3I_4\rangle$.

Il sistema che verrebbe fuori consterebbe di 35 variabili, usando le chiusure riusciamo, invece, a scrivere un sistema con 27 equazioni.

3 Integrazione numerica del sistema di ODE

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

3.1 | Esempi numerici

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum pri-

mis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

Conclusioni

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis consectetuer tortor sapien facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

Etiam ac leo a risus tristique nonummy. Donec dignissim tincidunt nulla. Vestibulum rhoncus molestie odio. Sed lobortis, justo et pretium lobortis, mauris turpis condimentum augue, nec ultricies nibh arcu pretium enim. Nunc purus neque, placerat id, imperdiet sed, pellentesque nec, nisl. Vestibulum imperdiet neque non sem accumsan laoreet. In hac habitasse platea dictumst. Etiam condimentum facilisis libero. Suspendisse in elit quis nisl aliquam dapibus. Pellentesque auctor sapien. Sed egestas sapien nec lectus. Pellentesque vel dui vel neque bibendum viverra. Aliquam porttitor nisl nec pede. Proin mattis libero vel turpis. Donec rutrum mauris et libero. Proin euismod porta felis. Nam lobortis, metus quis elementum commodo, nunc lectus elementum mauris, eget vulputate ligula tellus eu neque. Vivamus eu dolor.

Bibliografia

- [1] Matthew James Keeling. *The ecology and evolution of spatial host-parasite systems.* PhD thesis, University of Warwick, 1995.
- [2] Istvan Z. Kiss, Charles G. Morris, Fanni Sélley, Péter L. Simon, and Robert R. Wilkinson. Exact deterministic representation of Markovian SIR epidemics on networks with and without loops. *J. Math. Biol.*, 70(3):437–464, 2015.
- [3] GF Raggett. A stochastic model of the Eyam plague. *Journal of Applied Statistics*, 9(2):212–225, 1982.
- [4] K. J. Sharkey, I. Z. Kiss, R. R. Wilkinson, and P. L. Simon. Exact equations for SIR epidemics on tree graphs. *Bull. Math. Biol.*, 77(4):614–645, 2015.
- [5] Minus Van Baalen. Pair approximations for different spatial geometries. *The geometry of ecological interactions: simplifying spatial complexity*, 742:359–387, 2000.

S. Di Lillo BIBLIOGRAFIA

Elenco delle figure

1.1	Grafici ottenuti in MATLAB.	7
1.2	Due esempi di grafi.	8
1.3	Grafo e matrice di adiacenza del toast.	9
1.4	Due grafi non isomorfi con stesso grado di distribuzione e coefficiente di miscelamento.	11
2.1	Grafo con 3 nodi.	12
2.2	Sperimentazione in MATLAB relativa al grafo ??.	15
2.3	Confronto tra modello esatto e chiuso alle coppie per ??	18
2.5	(a) Il network lollipop e (b) la sua decomposizione in 2 sottoreti	23

Elenco delle tabelle

1.1	Popolazione di deceduti e rimossi.	ϵ
1.2	Numero di suscettibili ed infetti. Dati reali.	ϵ
1.3	Numero di suscettibili ed infetti. Dati sperimentali.	7

Indice

Sommario

C D: I:11-	INIDIO
S. Di Lillo	INDIC

1	Epi	demiologia matematica e reti	2
	1.1	Il modello SIR	2
		1.1.1 Un esempio	6
	1.2	Reti complesse e grafi	8
2	Il m	nodello SIR <i>bottom-up</i> su una rete	12
	2.1	Un primo esempio	12
	2.2	Chiusure	16
		2.2.1 Chiusura al livello delle coppie	16
		2.2.2 Chiusura al livello delle triple	17
		2.2.3 Approccio generale alla chiusura	19
	2.3	Un esempio completo	23
3	Inte	egrazione numerica del sistema di ODE	26
	3.1	Esempi numerici	26
Co	onclu	isioni	28
Bi	bliog	grafia	29
El	enco	delle figure	31
El	enco	delle tabelle	31