

### TECHNISCHE UNIVERSITÄT MÜNCHEN

### Report

## **Black Box Testing Report**

Alexis Engelke, Johannes Fischer, Ralph Schaumann, Saurabh Nawalgaria





### TECHNISCHE UNIVERSITÄT MÜNCHEN

### Report

## **Black Box Testing Report**

Author: Alexis Engelke, Johannes Fischer, Ralph Schaumann, Saurabh Nawalgaria

Team: 9

Lecture: Secure Coding, Phase 2

Submission Date: November 24, 2015



## **Executive Summary**

## **Contents**

| Executive Summary ii            |     |                          |                                                              |    |
|---------------------------------|-----|--------------------------|--------------------------------------------------------------|----|
| 1                               | Tim | me Tracking              |                                                              |    |
| 2                               | Vul | Vulnerabiliteis Overview |                                                              |    |
|                                 | 2.1 | Online                   | e Banking                                                    | 3  |
|                                 |     | 2.1.1                    | Stored XSS in Registration and Transaction Description       | 3  |
|                                 |     | 2.1.2                    | Missing check for amount in transactions from batch file     | 3  |
|                                 |     | 2.1.3                    | SQL injection in transaction batch file                      | 3  |
|                                 |     | 2.1.4                    | Some critical vulnerability                                  | 4  |
|                                 | 2.2 | Secure                   | eBank                                                        | 4  |
|                                 |     | 2.2.1                    | Stored XSS in transaction description                        | 4  |
| 3                               | Too | ls                       |                                                              | 5  |
|                                 | 3.1 | Zed A                    | attack Proxy (ZAP)                                           | 5  |
|                                 | 3.2 | SQLm                     | nap                                                          | 5  |
|                                 | 3.3 | W3AF                     | 3                                                            | 5  |
| 4 Detailed Report               |     | eport                    | 7                                                            |    |
|                                 | 4.1 | Config                   | guration and Deploy Management Testing                       | 8  |
|                                 |     | 4.1.1                    | Test File Extensions Handling for Sensitive Information      | 8  |
|                                 |     | 4.1.2                    | Test HTTP Methods                                            | 14 |
|                                 |     | 4.1.3                    | Test HTTP Strict Transport Security                          | 15 |
|                                 |     | 4.1.4                    | Test RIA cross domain policy                                 | 16 |
| 4.2 Identity Management Testing |     | Identi                   | ty Management Testing                                        | 17 |
|                                 |     | 4.2.1                    | Test Role Definitions                                        | 17 |
|                                 |     | 4.2.2                    | Test User Registration Process                               | 19 |
|                                 |     | 4.2.3                    | Test Account Provisioning Process                            | 21 |
|                                 |     | 4.2.4                    | Testing for Account Enumeration and Guessable User Account . | 22 |
|                                 |     | 4.2.5                    | Testing for Weak or unenforced username policy               | 23 |
| 4.3 Authentcation Testing       |     | Authe                    | entcation Testing                                            | 24 |
|                                 |     | 4.3.1                    | Testing for Credentials Transported over Encrypted Channel   | 24 |

### Contents

|     | 4.3.2  | Testing for default credentials                           | 24 |
|-----|--------|-----------------------------------------------------------|----|
|     | 4.3.3  | Testing for Weak lock out mechanism                       | 25 |
|     | 4.3.4  | Testing for bypassing authentication schema               | 27 |
|     | 4.3.5  | Testing for Vulnerable Remember Password                  | 29 |
|     | 4.3.6  | Testing for Browser Cache Weakness                        | 30 |
|     | 4.3.7  | Testing for Weak password policy                          | 31 |
|     | 4.3.8  | Testing for Weak security question/answer                 | 32 |
|     | 4.3.9  | Testing for Weak password change or reset functionalities | 32 |
|     | 4.3.10 | Testing for Weaker authentication in alternative channel  | 32 |
| 4.4 | Autho  | orization Testing                                         | 33 |
|     | 4.4.1  | Testing Directory traversal/file include                  | 33 |
|     | 4.4.2  | Testing for bypassing authorization schema                | 34 |
|     | 4.4.3  | Testing for Privilege Escalation                          | 35 |
|     | 4.4.4  | Testing for Insecure Direct Object References             | 36 |
| 4.5 | Sessio | on Management Testing                                     | 37 |
|     | 4.5.1  | Testing for Bypassing Session Management Schema           | 37 |
|     | 4.5.2  | Testing for Cookies attributes                            | 39 |
|     | 4.5.3  | Testing for Session Fixation                              | 40 |
|     | 4.5.4  | Testing for Exposed Session Variables                     | 42 |
|     | 4.5.5  | Testing for Cross Site Request Forgery                    | 44 |
|     | 4.5.6  | Testing for logout functionality                          | 46 |
|     | 4.5.7  | Test Session Timeout                                      | 47 |
|     | 4.5.8  | Testing for Session puzzling                              | 48 |
| 4.6 | Data V | Validation Testing                                        | 49 |
|     | 4.6.1  | Testing for Reflected Cross Site Scripting                | 49 |
|     | 4.6.2  | Testing for Stored Cross Site Scripting                   | 51 |
|     | 4.6.3  | Testing for HTTP Verb Tampering                           | 53 |
|     | 4.6.4  | Testing for HTTP Parameter pollution                      | 55 |
|     | 4.6.5  | Testing for SQL injection                                 | 56 |
|     | 4.6.6  | Testing for LDAP Injection                                | 59 |
|     | 4.6.7  | Testing for ORM Injection                                 | 59 |
|     | 4.6.8  | Testing for XML Injection                                 | 59 |
|     | 4.6.9  | Testing for SSI Injection                                 | 59 |
|     | 4.6.10 | Testing for XPath Injection                               | 59 |
|     | 4.6.11 | IMAP/SMTP Injection                                       | 59 |
|     | 4.6.12 | Testing for Code Injection                                | 60 |
|     | 4.6.13 | - · · · · · · · · · · · · · · · · · · ·                   | 61 |
|     | 4.6.14 | Testing for Buffer overflow                               | 62 |
|     | 4.6.15 | -                                                         | 63 |
|     |        |                                                           |    |

### Contents

|        | 4.6.16                    | Testing for HTTP Splitting/Smuggling                            | 64 |  |  |
|--------|---------------------------|-----------------------------------------------------------------|----|--|--|
| 4.7    | Error 1                   | Handling                                                        | 65 |  |  |
|        | 4.7.1                     | Analysis of Error Codes                                         | 65 |  |  |
|        | 4.7.2                     | Testing for Stack Traces                                        | 67 |  |  |
| 4.8    | Testing                   | g for weak Cryptography                                         | 68 |  |  |
|        | 4.8.1                     | Testing for Weak SSL/TLS Ciphers, Insufficient Transport Layer  |    |  |  |
|        |                           | Protection                                                      | 68 |  |  |
|        | 4.8.2                     | Testing for Padding Oracle                                      | 70 |  |  |
|        | 4.8.3                     | Testing for Sensitive information sent via unencrypted channels | 70 |  |  |
| 4.9    | .9 Business Logic Testing |                                                                 | 71 |  |  |
|        | 4.9.1                     | Test Business Logic Data Validation                             | 71 |  |  |
|        | 4.9.2                     | Test Ability to Forge Requests                                  | 73 |  |  |
|        | 4.9.3                     | Test Integrity Checks                                           | 74 |  |  |
|        | 4.9.4                     | Test for Process Timing                                         | 75 |  |  |
|        | 4.9.5                     | Test Number of Times a Function Can be Used Limits              | 76 |  |  |
|        | 4.9.6                     | Testing for the Circumvention of Work Flows                     | 77 |  |  |
|        | 4.9.7                     | Test Defenses Against Application Mis-use                       | 78 |  |  |
|        | 4.9.8                     | Test Upload of Unexpected File Types                            | 79 |  |  |
| 4.10   | Client                    | Side Testing                                                    | 80 |  |  |
| Acrony | Acronyms 81               |                                                                 |    |  |  |

## 1 Time Tracking

If a task is prefixed with (o), it refers to the Online Banking web application, if a task is prefixed with (s), the task refers only to the SecureBank web application.

Table 1.1: Time Tracking Table

| Name           | Task                                                                          | Time |
|----------------|-------------------------------------------------------------------------------|------|
| Alexis Engelke | Setting up LaTeX template                                                     | 1    |
| Alexis Engelke | (o) Analyzing XSS vulnerabilities using ZAP                                   | 2    |
| Alexis Engelke | (o) Analyzing SQL injection vulnerabilities in the web interface using SQLmap | 1.5  |
| Alexis Engelke | (o) Analyzing SQL injection vulnerabilities in the file upload                | 2    |
| Alexis Engelke | (o) Exploiting the TAN verification in the file upload                        | 2    |
| Alexis Engelke | (o) Documenting SQL injection                                                 | 1    |
| Alexis Engelke | (s) Searching for XSS vulnerabilities                                         | 1    |
| Alexis Engelke | (s) Testing and Documenting SQL injection                                     | 2    |
| Alexis Engelke | Testing and Documenting Configuration and Deploy Management Testing           | 2    |
| Alexis Engelke | Testing and Documenting Identity Management Testing                           | 1    |
| Alexis Engelke | Testing and Documenting Authentication Testing                                | 2    |
| Alexis Engelke | Testing and Documenting Authorization Testing                                 | 2    |
| Foo            | Fixing all issues                                                             | 10   |

### 2 Vulnerabiliteis Overview

Through our testing, we identified the following vulnerabilities as the most critical for the Online Banking application and the SecureBank:

### 2.1 Online Banking

### 2.1.1 Stored XSS in Registration and Transaction Description

• Likelihood: high

• Implication: high

• Risk: high

With stored cross site scripting attacks it is possible to inject JavaScript code, which is run whenever an employee logs in and opens the list of unapproved accounts or transactions. It is also possible to inject script from other sites.

### 2.1.2 Missing check for amount in transactions from batch file

• Likelihood: medium

• Implication: high

• Risk: high

It is possible to get money from another client of the bank by filling in a negative number in the amount field of a transaction batch file. Therefore, one client can generate an infinite amount of money, while reducing the amount of money of other clients.

### 2.1.3 SQL injection in transaction batch file

• Likelihood: medium

• Implication: high

• Risk: high

The application is vulnerable to SQL injections in the transaction batch files. Therefore, it is possible to perform transactions while using any unused TAN in the system, which is not known to the attacker and might come from another client.

### 2.1.4 Some critical vulnerability

• Likelihood: high

• Implication: high

• Risk: high

The web application is vulnerable.

### 2.2 SecureBank

### 2.2.1 Stored XSS in transaction description

• Likelihood: high

• Implication: high

• Risk: high

With stored cross site scripting attacks it is possible to inject JavaScript code, which is run whenever an employee logs in and opens the list of unapproved accounts or transactions. It is also possible to inject script from other sites.

### 3 Tools

### 3.1 Zed Attack Proxy (ZAP)

Using the Zed Attack Proxy (ZAP), we were able to reveal significant parts of the directory structure in both web applications. In the *Online Banking* web application, we found a stored XSS vulnerability in the registration and the transaction description as well as a SQL injection vulnerability in the login form using the fuzzer. We were also be able to find a buffer overflow vulnerability for the transaction description in the transaction batch files. In the *SecureBank* web application, we were unable to find further SQL injection or XSS vulnerabilities.

### 3.2 SQLmap

Using SQLmap, we found the SQL injection vulnerability in the login form of the *Online Banking* application, which we found using ZAP earlier. SQLmap did not reveal further SQL injection possibilities in any of the two applications.

### 3.3 W3AF

With W3AF, we made a full audit, including file\_upload(looks for uploadable files), eval(insecure eval() usage), un\_ssl(secure content via http), os\_commanding, lfi(local file inclusion), rfi, sqli(injection), preg\_replace(insecure preg\_replace() in PHP), mx\_injection, generic, format\_string, websocket\_hijacking, shell\_shock, ldapi, buffer\_overflow, redos(DOS using slow regex), global\_redirect(any redirecting scripts), xpath, cors\_origin(consistency of HTTP origin header and sender), htaccess\_methods, dav(WebDAV module configuration), ssi(server side inclusion), csrf, xss, ssl\_certificate, xst(cross site tracing), blind\_sqli, phishing\_vector, response\_splitting, rfd(reflected file download), frontpage(tries uploading files using frontpage extensions).

W3AF was able to quite easily find XSS, CSRF and SQL injection points. It also informed about unhandled errors and possible click-jacking on both sites.

However, it also showed a few false positives (showing sql injections as eval vulnerabilities, path disclosure) and missed a few vulnerabilities that our other tools found, like buffer overflows.

Overall, I'd say W3AF is a Jack of all Trades. If the functionality is not enough, however, it's possible to write custom plugins.

## 4 Detailed Report

### 4.1 Configuration and Deploy Management Testing

### 4.1.1 Test File Extensions Handling for Sensitive Information

### **Online Banking**

**Observation** We found various files which are served as plain text but are

PHP source files. One of these files contains the credentials of the mail server. We were also able to download the compiled executable as well as the source code of the batch

file parser.

**Discovery** Using the OWASP ZAP tool, we used the forced browse

functionality on /InternetBanking/. We received a list of

files which were found using this tool, see below.

**Likelihood** This can be tested by anyone who enters specific strings

into the address bar of a browser. However, the likelihood of this vulnerability is much higher if the attacker uses

specific tools which test specific paths systematically.

**Impact** The attacker can get sensitive information, e.g. credentials

to the mail server or the database. He can analyze the

source of the parser and find vulnerabilies there.

Access Vector Network

**Access Complexity** Low

**Privileges Required** | None

**User Interaction** None

Scope Unchanged

**Confidentiality** High

**Intigrity** No Impact

**Availability** No Impact

#### **Forced Browsing Results:**

```
http://vm/InternetBanking/
http://vm/InternetBanking/DataAccess/
http://vm/InternetBanking/auth/
http://vm/InternetBanking/client/
http://vm/InternetBanking/controller/
http://vm/InternetBanking/controller/clientController.php
http://vm/InternetBanking/controller/clientFunctions.inc
http://vm/InternetBanking/controller/employeeController.php
http://vm/InternetBanking/controller/employeeFunctions.inc
http://vm/InternetBanking/controller/loginController.php
http://vm/InternetBanking/controller/logoutController.php
http://vm/InternetBanking/controller/registrationController.php
http://vm/InternetBanking/css/
http://vm/InternetBanking/css/bootstrap-theme.css
http://vm/InternetBanking/css/bootstrap-theme.css.map
http://vm/InternetBanking/css/bootstrap-theme.min.css
http://vm/InternetBanking/css/bootstrap.css
http://vm/InternetBanking/css/bootstrap.css.map
http://vm/InternetBanking/css/bootstrap.min.css
http://vm/InternetBanking/employee/
http://vm/InternetBanking/fonts/
http://vm/InternetBanking/fonts/glyphicons-halflings-regular.eot
http://vm/InternetBanking/fonts/glyphicons-halflings-regular.svg
http://vm/InternetBanking/fonts/glyphicons-halflings-regular.ttf
http://vm/InternetBanking/fonts/glyphicons-halflings-regular.woff
http://vm/InternetBanking/fonts/glyphicons-halflings-regular.woff2
http://vm/InternetBanking/index/
http://vm/InternetBanking/js/
http://vm/InternetBanking/js/bootstrap.js
http://vm/InternetBanking/js/bootstrap.min.js
http://vm/InternetBanking/js/npm.js
http://vm/InternetBanking/login/
http://vm/InternetBanking/logout/
http://vm/InternetBanking/model/
http://vm/InternetBanking/model/Payment.class
http://vm/InternetBanking/model/PaymentRequest.class
http://vm/InternetBanking/model/User.class
```

```
http://vm/InternetBanking/model/UserRequest.class
http://vm/InternetBanking/parser/
http://vm/InternetBanking/parser/Makefile
http://vm/InternetBanking/parser/exec
http://vm/InternetBanking/parser/main.c
http://vm/InternetBanking/parser/mysql_query_function.c
http://vm/InternetBanking/parser/mysql_query_function.h
http://vm/InternetBanking/registration/
http://vm/InternetBanking/view/
http://vm/InternetBanking/view/account.inc
http://vm/InternetBanking/view/accounts.inc
http://vm/InternetBanking/view/approvepayments.inc
http://vm/InternetBanking/view/approveregistrations.inc
http://vm/InternetBanking/view/client.inc
http://vm/InternetBanking/view/employee.inc
http://vm/InternetBanking/view/file.inc
http://vm/InternetBanking/view/history.inc
http://vm/InternetBanking/view/historypdf.inc
http://vm/InternetBanking/view/login.inc
http://vm/InternetBanking/view/online.inc
http://vm/InternetBanking/view/registration.inc
```

#### SecureBank

**Observation** We found some HTML snippets, which do not contain

any sensitive information, and the compiled executable of the transaction file parser. We also found that the library

TCPDF appears to be used.

**Discovery** Using the OWASP ZAP tool, we used the forced browse

functionality on /seccoding-2015/. We received a list of

files which were found using this tool, see below.

**Likelihood** This can be tested by anyone who enters specific strings

into the address bar of a browser. However, the likelihood of this vulnerability is much higher if the attacker uses

specific tools which test specific paths systematically.

**Impact** The attacker only has access to the parser executable, which

might contain information about the database connection. He can analyze the parser and find vulnerabilies there.

Access Vector Network

Access Complexity Low

Privileges Required None

**User Interaction** None

Scope Unchanged

**Confidentiality** Low

**Intigrity** No Impact

**Availability** No Impact

#### Forced Browsing Results:

http://vm/seccoding-2015/

http://vm/seccoding-2015/database/

http://vm/seccoding-2015/html/

http://vm/seccoding-2015/html/auth.html

http://vm/seccoding-2015/html/dberror.html

http://vm/seccoding-2015/html/default.html

http://vm/seccoding-2015/html/display\_userstate.html

```
http://vm/seccoding-2015/html/display_userstate_table.html
http://vm/seccoding-2015/html/dologin_fail.html
http://vm/seccoding-2015/html/dologin_success.html
http://vm/seccoding-2015/html/doregister_fail.html
http://vm/seccoding-2015/html/doregister_success.html
http://vm/seccoding-2015/html/edoverify_fail.html
http://vm/seccoding-2015/html/ehome.html
http://vm/seccoding-2015/html/ehome_transaction.html
http://vm/seccoding-2015/html/ehome_user.html
http://vm/seccoding-2015/html/entry_page.html
http://vm/seccoding-2015/html/etakeover.html
http://vm/seccoding-2015/html/etransactionpdf_fail.html
http://vm/seccoding-2015/html/home.html
http://vm/seccoding-2015/html/login.html
http://vm/seccoding-2015/html/register.html
http://vm/seccoding-2015/html/root.html
http://vm/seccoding-2015/html/simpleRoot.html
http://vm/seccoding-2015/html/transaction.html
http://vm/seccoding-2015/html/udotransactionupload_fail.html
http://vm/seccoding-2015/html/utransaction.html
http://vm/seccoding-2015/html/utransactionupload.html
http://vm/seccoding-2015/index/
http://vm/seccoding-2015/login/
http://vm/seccoding-2015/parser/
http://vm/seccoding-2015/parser/parser
http://vm/seccoding-2015/tcpdf/
http://vm/seccoding-2015/tcpdf/CHANGELOG.TXT
http://vm/seccoding-2015/tcpdf/LICENSE.TXT
http://vm/seccoding-2015/tcpdf/README.TXT
http://vm/seccoding-2015/tcpdf/composer.json
http://vm/seccoding-2015/tcpdf/config/
http://vm/seccoding-2015/tcpdf/config/tcpdf_config.php
http://vm/seccoding-2015/tcpdf/fonts/
http://vm/seccoding-2015/tcpdf/include/
http://vm/seccoding-2015/tcpdf/include/barcodes/
http://vm/seccoding-2015/tcpdf/include/barcodes/datamatrix.php
http://vm/seccoding-2015/tcpdf/include/barcodes/pdf417.php
http://vm/seccoding-2015/tcpdf/include/barcodes/qrcode.php
http://vm/seccoding-2015/tcpdf/include/sRGB.icc
```

```
http://vm/seccoding-2015/tcpdf/include/tcpdf_colors.php
http://vm/seccoding-2015/tcpdf/include/tcpdf_filters.php
http://vm/seccoding-2015/tcpdf/include/tcpdf_font_data.php
http://vm/seccoding-2015/tcpdf/include/tcpdf_fonts.php
http://vm/seccoding-2015/tcpdf/include/tcpdf_images.php
http://vm/seccoding-2015/tcpdf/include/tcpdf_static.php
http://vm/seccoding-2015/tcpdf/tcpdf.php
http://vm/seccoding-2015/tcpdf/tcpdf_autoconfig.php
http://vm/seccoding-2015/tcpdf/tcpdf_barcodes_1d.php
http://vm/seccoding-2015/tcpdf/tcpdf_barcodes_2d.php
http://vm/seccoding-2015/tcpdf/tcpdf_import.php
http://vm/seccoding-2015/tcpdf/tcpdf_parser.php
http://vm/seccoding-2015/tcpdf/tools/
http://vm/seccoding-2015/tcpdf/tools/
http://vm/seccoding-2015/tcpdf/tools/convert_fonts_examples.txt
http://vm/seccoding-2015/tcpdf/tools/tcpdf_addfont.php
```

### Comparison

The web application of the SecureBank discloses less sensitive information. However, both applications disclose information which should not be available to unauthorized persons.

### 4.1.2 Test HTTP Methods

### **Online Banking**

**Observation** The server responded that the method POST, GET, OPTIONS

and HEAD are supported.

Discovery We submitted the request OPTIONS / HTTP/1.1 to the

server via NetCat on port 80.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

### SecureBank

**Observation** The server responded that the method POST, GET, OPTIONS

and HEAD are supported.

Discovery We submitted the request OPTIONS / HTTP/1.1 to the

server via NetCat on port 80.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

### Comparison

### 4.1.3 Test HTTP Strict Transport Security

### **Online Banking**

Observation | The server did not send any Strict-Transport-Security

header.

Discovery Executing the command curl -s -D-

http://vm/InternetBanking/ | grep Strict resulted in

no results.

**Impact** n/a

**Likelihood** | n/a

CVSS n/a

#### SecureBank

Observation The server did not send any Strict-Transport-Security

header.

Discovery Executing the command curl -s -D-

http://vm/InternetBanking/ | grep Strict resulted in

no results.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

### Comparison

### 4.1.4 Test RIA cross domain policy

### **Online Banking**

| Observation            | No cross domain policy files were found. |
|------------------------|------------------------------------------|
| Discovery              | We scanned the traffic using ZAP.        |
| Impact Likelihood CVSS | n/a                                      |
| Likelihood             | n/a                                      |
| CVSS                   | n/a                                      |

### SecureBank

| Observation          | No cross domain policy files were found. |
|----------------------|------------------------------------------|
| Discovery            | We scanned the traffic using ZAP.        |
| Impact<br>Likelihood | n/a                                      |
| Likelihood           | n/a                                      |
| CVSS                 | n/a                                      |

### Comparison

## 4.2 Identity Management Testing

### 4.2.1 Test Role Definitions

### **Online Banking**

| The found the following functionality for the                                                                     | Client | Employee |
|-------------------------------------------------------------------------------------------------------------------|--------|----------|
| View own account                                                                                                  | ×      | ×        |
| View own transaction history                                                                                      | ×      | _        |
| Create new transactions                                                                                           | ×      | _        |
| View account and transaction history of clients and employees                                                     | _      | ×        |
| Change account details and balance of clients and employees                                                       | _      | ×        |
| Approve transactions                                                                                              | _      | ×        |
| Approve registrations of clients and employees                                                                    | _      | ×        |
| We noticed that there are links to view the transaction history and change the account balance of employees, too. |        |          |
| We gathered the information by exploring the web application interface manually.                                  |        |          |
| n/a                                                                                                               |        |          |

Discovery

Impactn/aLikelihoodn/aCVSSn/a

### SecureBank

| Observation | We found the following functionality for the different roles:                    |        |          |
|-------------|----------------------------------------------------------------------------------|--------|----------|
|             |                                                                                  | Client | Employee |
|             | View own account                                                                 | ×      | _        |
|             | View own transaction history                                                     | ×      | _        |
|             | Create new transactions                                                          | ×      | _        |
|             | View account and transaction history of clients                                  | -      | ×        |
|             | Approve transactions                                                             | _      | ×        |
|             | Approve registrations of clients and employees                                   | _      | ×        |
| Discovery   | We gathered the information by exploring the web application interface manually. |        |          |
| Impact      | n/a                                                                              |        |          |
| Likelihood  | n/a                                                                              |        |          |
| CVSS        | n/a                                                                              |        |          |

### Comparison

The SecureBank web application does not offer a possibility for an employee to change the account balance of a client. However, the Online Banking application allows to view the transaction history and change the account balance also for employees, which have no account. This behaviour might be confusing.

### 4.2.2 Test User Registration Process

### **Online Banking**

#### Observation

For registration, a username, an e-mail address, a password and whether the registrant is a client or an employee are needed. Anyone can register for access. The registration has to be approved by an employee before the registrant can use the account. A person can register only one time with the same e-mail address. However, a person can register many times with the same username. (The activation of such an account fails with a database error.) We could not find out, whether the registrants are verified personally before the approval.

Discovery

We tried to register several accounts with the same e-mail address and/or username using the web application.

**Impact** 

n/a

Likelihood

n/a

**CVSS** 

n/a

#### SecureBank

#### Observation

For registration, the full name, an e-mail address, a password and whether the registrant is a client or an employee are needed. Anyone can register for access. The registration has to be approved by an employee before the registrant can use the account. A person can register only one time with the same e-mail address. We could not find out, whether the registrants are verified personally before the approval.

**Discovery** 

We tried to register several accounts with the same e-mail address and/or names using the web application.

**Impact** 

n/a

Likelihood

n/a

**CVSS** 

n/a

### Comparison

The Online Banking web application allows the double-registration of the same username at first, it only fails at the activation. This behaviour is confusing. Also, the application should ask for the full name be able to verify the name. Otherwise, there are no significant differences between both applications.

### 4.2.3 Test Account Provisioning Process

### **Online Banking**

**Observation** There is no way to change the role of a user. Account

requests (both, client and employee) must be approved by

an employee.

**Discovery** We followed the links in the user interface and tried to login

as a non-verified user.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

#### SecureBank

**Observation** There is no way to change the role of a user. Account

requests (both, client and employee) must be approved by

an employee.

**Discovery** We followed the links in the user interface and tried to login

as a non-verified user.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

### Comparison

# 4.2.4 Testing for Account Enumeration and Guessable User Account Online Banking

**Observation** There are no differences in the servers response for not

activated accounts, valid usernames and invalid usernames.

**Discovery** We tested the login for activated and non-activated accounts,

existing and not-existing usernames and valid or invalid

passwords.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

#### SecureBank

**Observation** There are no differences in the servers response for not

activated accounts, valid usernames and invalid usernames.

**Discovery** We tested the login for activated and non-activated accounts,

existing and not-existing usernames and valid or invalid

passwords.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

### Comparison

### 4.2.5 Testing for Weak or unenforced username policy

### **Online Banking**

ObservationWe were not able to find a username policy.DiscoveryWe tested various usernames.Impactn/aLikelihoodn/aCVSSn/a

### SecureBank

|            | The username has to be a valid e-mail address of the client/employee. There is no policy regarding the e-mail address. |
|------------|------------------------------------------------------------------------------------------------------------------------|
| Discovery  | We tested valid and invalid e-mail addresses.                                                                          |
| Impact     | We tested valid and invalid e-mail addresses.  n/a  n/a  n/a                                                           |
| Likelihood | n/a                                                                                                                    |
| CVSS       | n/a                                                                                                                    |

### Comparison

The only difference between the applications is that the Online Banking application uses usernames, which might have less correlation to the user than the e-mail address.

### 4.3 Authentcation Testing

### 4.3.1 Testing for Credentials Transported over Encrypted Channel

See Section 4.8.1.

### 4.3.2 Testing for default credentials

We decided to not test for default credentials, because we are working with custom software and therefore assume that all users and administrators choose secure passwords.

### 4.3.3 Testing for Weak lock out mechanism

### **Online Banking**

**Observation** We were not able to find any lock out mechanism. There-

fore, brute force attacks on passwords are possible.

**Discovery** We entered a valid username and incorrect passwords 10

times, and always got the error message about an incorrect password. Afterwards, we were able to log in with a correct

password.

**Impact** An attacker can brute-force the password of any user and

therefore take the user over.

**Likelihood** High

Access Vector Network

Access Complexity Low

**Privileges Required** | None

**User Interaction** None

**Scope** Unchanged

**Confidentiality** Low

**Intigrity** Low

**Availability** No Impact

#### SecureBank

**Observation** We were not able to find any lock out mechanism. There-

fore, brute force attacks on passwords are possible.

**Discovery** We entered a valid username and incorrect passwords 10

times, and always got the error message about the failed login. Afterwards, we were able to log in with a correct

password.

**Impact** An attacker can brute-force the password of any user and

therefore take the user over.

**Likelihood** High

Access Vector Network

**Access Complexity** Low

**Privileges Required** | None

**User Interaction** None

**Scope** Unchanged

**Confidentiality** Low

**Intigrity** Low

**Availability** No Impact

### Comparison

Both applications do not provide any lock out mechanism.

### 4.3.4 Testing for bypassing authentication schema

### **Online Banking**

**Observation** We were able to bypass the authentication schema via a

SQL injection. This gave us the ability to login as any user

without knowing the password.

Discovery Using the fuzzer jbrofuzz / SQL Injection of ZAP on

the username field of the login page, we were able to login as admin or another user without knowing the password. We had no success with direct page requests, modifying

the session ID and parameter modification.

Impact An attacker can take over a user without knowing the valid

access credentials.

**Likelihood** High

Access Vector Network

Access Complexity Low

Privileges Required | None

**User Interaction** None

**Scope** Unchanged

**Confidentiality** Low

**Intigrity** Low

**Availability** No Impact

### SecureBank

**Observation** We were not able to bypass the authentication schema.

Discovery Using the fuzzer jbrofuzz / SQL Injection of ZAP and

SQLmap on the username field of the login page, we were not able to find SQL injection vulnerabilities to bypass the authentication schema. We also had no success with direct page requests, modifying the session ID and parameter

modification.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

### Comparison

The Online Banking web application provides a way to bypass the authentication schema via SQL injection. The SecureBank application does not offer such vulnerabilities.

### 4.3.5 Testing for Vulnerable Remember Password

We did not found a remember password functionality, so we decided to not further test on this.

### 4.3.6 Testing for Browser Cache Weakness

### **Online Banking**

**Observation** | Clicking the back button in the browser does not cause

a re-login. All sites have the header Cache-Control: no-store, no-cache, must-revaildate, post-check=0, pre-check=0 and the Pragma: no-cache as well as an

Expires: <date in the past> header set.

**Discovery** Using ZAP, we analyzed the response header for different

pages which are only available when a user is logged in.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

#### SecureBank

**Observation** | Clicking the back button in the browser does not cause

a re-login. All sites have the header Cache-Control: no-store, no-cache, must-revaildate, post-check=0, pre-check=0 and the Pragma: no-cache as well as an

Expires: <date in the past> header set.

**Discovery** Using ZAP, we analyzed the response header for different

pages which are only available when a user is logged in.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

### Comparison

# 4.3.7 Testing for Weak password policy

## **Online Banking**

**Observation** There is a password policy enforced, which states that a

password has have a length  $\geq 6$  and has to include at least one number, one lowercase character, one uppercase character and one symbol. There is no way to change the

password. The password does not expire.

**Discovery** We tested various passwords, like 123456. If a password

does not match the policy, an error message is shown which

informs the user about the policy.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

#### SecureBank

**Observation** The password has to have a length  $\geq 8$ . There is no way to

change the password. The password does not expire.

**Discovery** We tested various passwords, like 123456. If a password

does not match the policy, an error message is shown which

informs the user about the policy.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

#### Comparison

The Online Banking application enforces a more strict password policy than the Secure-Bank application. This reduces the risk of brute force attacks.

# 4.3.8 Testing for Weak security question/answer

We could not find such functionality in both application. Therefore, we decidede to not proceed testing on this.

# 4.3.9 Testing for Weak password change or reset functionalities

We could not find such functionality in both application. Therefore, we decidede to not proceed testing on this.

# 4.3.10 Testing for Weaker authentication in alternative channel

We could not find an alternative channel for authentication. Therefore, we decidede to not proceed testing on this.

# 4.4 Authorization Testing

## 4.4.1 Testing Directory traversal/file include

## **Online Banking**

**Observation** We could not get access to sensitive files like /etc/passwd.

Discovery We manually tried to access the client main site

with different values for the parameter action, like

action=../../etc/passwd.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

### SecureBank

**Observation** We could not get access to sensitive files like /etc/passwd.

**Discovery** We manually tried to access the site with different values

for the parameter page, like page=../../etc/passwd.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

## Comparison

Both applications do not provide file include vulnerabilities.

# 4.4.2 Testing for bypassing authorization schema

## **Online Banking**

**Observation** We were unable to bypass the authorization schema

**Discovery** We manually tried to access the employee page while be-

ing logged in as a client and got the error message Not

employee.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

### SecureBank

**Observation** We were unable to bypass the authorization schema

**Discovery** We manually tried to access the employee pages like

edoverify while being logged in as a client and got the error message You are not authenticated to do this.

Impact n/a

**Likelihood** n/a

CVSS n/a

### Comparison

Both applications do not provide vulnerabilities that allow to bypass the authorization schema.

# 4.4.3 Testing for Privilege Escalation

### **Online Banking**

**Observation** We were unable to get the privileges of another user.

**Discovery** We manually tried to access the employee page while be-

ing logged in as a client and got the error message Not

employee.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

### SecureBank

**Observation** We were unable to get the privileges of another user.

**Discovery** We manually tried to access the employee pages like

edoverify while being logged in as a client and got the error message You are not authenticated to do this. We also tried to change the account number of the userid GET

parameter when downloading a PDF, without success.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

### Comparison

Both applications do not provide vulnerabilities that allow a privilege escalation.

## 4.4.4 Testing for Insecure Direct Object References

## **Online Banking**

**Observation** We were unable to find insecure direct object references.

**Discovery** We manually changed the GET parameter action using

ZAP. However, we either got an empty page or the re-

quested page.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

### SecureBank

**Observation** We were unable to find insecure direct object references.

**Discovery** We manually changed the GET parameter page. However,

we either got an error message or the requested page.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

## Comparison

Both applications do not provide vulnerabilities that allow insecure direct object references.

# 4.5 Session Management Testing

## 4.5.1 Testing for Bypassing Session Management Schema

### **Online Banking**

**Observation** Only cookies for the PHP session ID were used. This hints

at the cookies being rather secure. Using BurpSuite's sequencer we confirm that the entropy is excellent. However, the cookies are sent over an unencrypted connection, which can be exploited with a MitM attack. By stealing the session from a user (admin or not), we would be able to impersonate them and do actions in their name. This compromises

the integrity of the application.

**Discovery** BurpSuite

Impact Medium/High, depending on the victim's priviledges

Likelihood High

Access Vector Adjacent Network

Access Complexity Low
Privileges Required None

**User Interaction** Yes, the user has to do any action for which the cookie will

be transmitted.

**Scope** Unchanged

ConfidentialityLowIntigrityHighAvailabilityNone

**Observation** Only cookies for the PHP session ID were used. This hints

at the cookies being rather secure. Using BurpSuite's sequencer we confirm that the entropy is excellent. However, the cookies are sent over an unencrypted connection, which can be exploited with a MitM attack. By stealing the session from a user (admin or not), we would be able to impersonate them and do actions in their name. This compromises

the integrity of the application.

**Discovery** BurpSuite

Impact Medium/High, depending on the victim's priviledges

**Likelihood** High

Access Vector Adjacent Network

Access Complexity Low
Privileges Required None

**User Interaction** Yes, the user has to do any action for which the cookie will

be transmitted.

**Scope** Unchanged

ConfidentialityLowIntigrityHighAvailabilityNone

### Comparison

Both applications are equally secure/insecure regarding this.

# 4.5.2 Testing for Cookies attributes

## **Online Banking**

**Observation** Since only the PHP session ID is saved as cookie, no at-

tributes are saved in any cookies. Obviously there's no

attack to execute

**Discovery** | BurpSuite

**Impact** n/a

**Likelihood** n/a

CVSS n/a

#### SecureBank

**Observation** Only cookies for the PHP session ID were used. This hints

at the cookies being rather secure. Using BurpSuite's sequencer we confirm that the entropy is excellent. Not at-

tacks are possible at this point.

**Discovery** BurpSuite

**Impact** n/a

**Likelihood** n/a

CVSS n/a

### Comparison

Both applications have no attributes other than the Session ID and are thus secure under this aspect.

# 4.5.3 Testing for Session Fixation

## **Online Banking**

**Observation** Cookies aren't renewed when logging in. An attacker might

create a session and make the user authenticate with it, thus

giving the attacker access to the victim's session.

**Discovery** Firefox Developer tools

Impact Medium/High, depending on the victim's priviledges

**Likelihood** Medium

Access Vector Adjacent Network

**Access Complexity** Low

Privileges Required | None

**User Interaction** Yes, the user has to do any action for which the cookie will

be transmitted.

**Scope** Unchanged

**Confidentiality** Low

**Intigrity** High

**Availability** None

**Observation** Cookies aren't renewed when logging in. An attacker might

create a session and make the user authenticate with it, thus

giving the attacker access to the victim's session.

**Discovery** Firefox Developer tools

Impact Medium/High, depending on the victim's priviledges

**Likelihood** Medium

Access Vector Adjacent Network

Access Complexity Low

**Privileges Required** | None

**User Interaction** Yes, the user has to do any action for which the cookie will

be transmitted.

**Scope** Unchanged

**Confidentiality** Low

**Intigrity** High

**Availability** None

# Comparison

Both applications have the session fixation vulnerability.

# 4.5.4 Testing for Exposed Session Variables

## **Online Banking**

**Observation** The cookies are sent over an unencrypted connection. Cook-

ies also aren't renewed when logging in. By using MitM to steal the session from a user (admin or not), we would be able to impersonate them and do actions in their name.

This compromises the integrity of the application.

**Discovery** BurpSuite

Impact Medium/High, depending on the victim's priviledges

**Likelihood** High

Access Vector Adjacent Network

Access Complexity | Low

**Privileges Required** None

**User Interaction** Yes, the user has to do any action for which the cookie will

be transmitted.

**Scope** Unchanged

**Confidentiality** Low

**Intigrity** High

**Availability** None

**Observation** The cookies are sent over an unencrypted connection. Cook-

ies also aren't renewed when logging in. By using MitM to steal the session from a user (admin or not), we would be able to impersonate them and do actions in their name.

This compromises the integrity of the application.

**Discovery** BurpSuite

Impact Medium/High, depending on the victim's priviledges

**Likelihood** High

Access Vector Adjacent Network

Access Complexity Low
Privileges Required None

**User Interaction** Yes, the user has to do any action for which the cookie will

be transmitted.

**Scope** Unchanged

ConfidentialityLowIntigrityHighAvailabilityNone

### Comparison

Both applications are equally insecure regarding this.

# 4.5.5 Testing for Cross Site Request Forgery

## **Online Banking**

**Observation** There is no mechanism to prohibit CSRF. GET requests

aren't enough, though, since all of the important data is only transmitted via POST requests. By getting our victim to open a malicious web page, that creates a POST request with JS, we would be able to perform actions in their name.

**Discovery** Manual test

Impact Medium/High, depending on the victim's priviledges

**Likelihood** High

Access Vector Network

**Access Complexity** Low

**Privileges Required** None

**User Interaction** Yes

**Scope** Unchanged

**Confidentiality** Low

**Intigrity** High

**Availability** None

**Observation** There is no mechanism to prohibit CSRF. GET requests

aren't enough, though, since all of the important data is only transmitted via POST requests. By getting our victim to open a malicious web page, that creates a POST request with JS, we would be able to perform actions in their name.

**Discovery** Manual test

Impact Medium/High, depending on the victim's priviledges

**Likelihood** High

Access Vector Network

**Access Complexity** Low

**Privileges Required** None

**User Interaction** Yes

**Scope** Unchanged

**Confidentiality** Low

**Intigrity** High

**Availability** None

## Comparison

Both applications are equally insecure regarding this.

# 4.5.6 Testing for logout functionality

# **Online Banking**

**Observation** The logout button is easily visible and works as it should:

It invalidates the session.

**Discovery** Manual test

Impactn/aLikelihoodn/aCVSSn/a

### SecureBank

**Observation** The logout button is easily visible and works as it should:

It invalidates the session.

**Discovery** Manual test

**Impact** n/a

**Likelihood** n/a

CVSS n/a

# Comparison

Both applications have a correctly implemented logout function.

## 4.5.7 Test Session Timeout

# **Online Banking**

**Observation** The user is automatically logged out after 10 minutes of

inactivity. TODO: Is he?

**Discovery** Manual test

Impactn/aLikelihoodn/aCVSSn/a

### SecureBank

**Observation** The user is automatically logged out after 10 minutes of

inactivity.

**Discovery** Manual test

Impact n/a

**Likelihood** n/a

CVSS n/a

# Comparison

Both applications have a correctly implemented logout function.

# 4.5.8 Testing for Session puzzling

# **Online Banking**

**Observation** We found no way to perform Session Puzzling. The same

cookie is used for all interactions.

**Discovery** Zap, w3af

Impactn/aLikelihoodn/aCVSSn/a

### SecureBank

**Observation** We found no way to perform Session Puzzling. The same

cookie is used for all interactions.

**Discovery** Zap, w3af

**Impact** n/a

**Likelihood** n/a

CVSS n/a

## Comparison

Both applications aren't vulnerable to Session puzzling.

# 4.6 Data Validation Testing

# 4.6.1 Testing for Reflected Cross Site Scripting

### **Online Banking**

**Observation** The only GET parameters are "action" and if logged in as

employee, "account". When entering an action name that doesn't exist, the fake name is not displayed in any kind of error message. The same happens if the input account doesn't exist. If the account exists and the username is equal to some XSS attack, that should be considered a stored XSS attack instead. Thus, there's no attack vector for Reflected

XSS.

**Discovery** w3af (XSS plugin) and manually

Impact n/a
Likelihood n/a

CVSS n/a

#### SecureBank

**Observation** The only GET parameter is "page". When entering a page

name that doesn't exist, the fake name is not displayed in any kind of error message. Thus, there's no attack vector

for Reflected XSS.

**Discovery** w3af (XSS plugin) and manually

Impact n/a
Likelihood n/a
CVSS n/a

### Comparison

Both applications allowed no reflected XSS.

# 4.6.2 Testing for Stored Cross Site Scripting

### **Online Banking**

Observation Stored XSS can be injected via the username when reg-

istering and into the purpose field when making transactions. The email used for registration, however, is checked for validity. User names can't be longer than 32 signs. This is just enough to inject something like <script src=//bit.ly/1MvAdrm>. Users who register after this exploit has been used won't be shown, since the end tag is missing. For the transaction's description there is more

space, but an account is needed.

**Discovery** TODO

Impact Using this it's possible to e.g. automatically accept pay-

ments of over 10000 as soon as an admin opens the "Approve Transfers" page. Given a user's TAN, it's also possible to transfer their money into one's own account by sending them a manipulated transaction. The manipulated transaction just has to include code that creates a transaction in the victim's name. Furthermore, it's possible to steal sessions or, by injecting fake login forms even credentials of admins. By injecting into the username, the attacker can also auto-accept themselves as real user as soon as an

admin opens the "Approve Registrations" tab.

**Likelihood** High

Access Vector Network

**Access Complexity** Low

**Privileges Required** N/L: None for the registration XSS, Low user priviledges

for XSS in transactions

**User Interaction** Yes

**Scope** Unchanged

**Confidentiality** High

**Intigrity** High

**Availability** Low

**Observation** User names are escaped, so XSS is impossible here. Transac-

tion descriptions, however, still allow XSS. It isn't triggered on the page where transactions will be verified by employees, but by opening the recipient's (or the attacker's) transaction history. This way it's just slightly harder to get the admin's credentials. Getting to the recipient's account

is as easy as in Online Banking's app.

**Discovery** TODO

Impact Using this it's possible to e.g. automatically accept pay-

ments of over 10000 as soon as an admin opens the "Approve Transfers" page. Given a user's TAN, it's also possible to transfer their money into one's own account by sending them a manipulated transaction. The manipulated transaction just has to include code that creates a transaction in the victim's name. Furthermore, it's possible to steal sessions or, by injecting fake login forms even credentials of admins.

**Likelihood** High

Access Vector Network

**Access Complexity** Low

**Privileges Required** | normal user priviledges

**User Interaction** Yes

Scope Unchanged

ConfidentialityHighIntigrityHighAvailabilityNone

### Comparison

Both applications allowed for stored XSS, but Online Banking was easier to compromise (no account needed). Our application is the better one in this regard.

# 4.6.3 Testing for HTTP Verb Tampering

## **Online Banking**

TODO: what harm does Verb Tampering do?

**Observation** When trying all HTTP methods, CONNECT returns "Bad

Request", while OPTIONS returns "OK". Otherwise, all

methods except GET and POST are not allowed

**Discovery** script http\_tampering.sh in phase2/scripts/ (from OWASP

website)

**Impact** The web server might respond in unexpected ways to these

methods.

**Likelihood** High

Access Vector HTTP request for CONNECT or OPTIONS

**Access Complexity** 

**Privileges Required** | None

**User Interaction** None

**Scope** Unchanged

Confidentiality

**Intigrity** 

Availability

**Observation** When trying all HTTP methods, CONNECT returns "Bad

Request", while OPTIONS returns "OK". Otherwise, all

methods except GET and POST are not allowed

**Discovery** script http\_tampering.sh in phase2/scripts/ (from OWASP

website)

Impact The web server might respond in unexpected ways to these

methods.

Likelihood

**Access Vector** 

**Access Complexity** 

Privileges Required

**User Interaction** 

**Scope** Unchanged

Confidentiality

**Intigrity** 

**Availability** 

# 4.6.4 Testing for HTTP Parameter pollution

### **Online Banking**

**Observation** | The application behaves as it should, ignoring all but the

last parameter with the same name. Trying to e.g. pollute the email during registration with a value that has the

wrong format shows "Email is invalid".

**Discovery** Manipulated parameters using BurpSuite manually, since

HPP apparently can't really be tested using tools (too many

false positives)

**Impact** n/a

**Likelihood** n/a

CVSS n/a

#### SecureBank

**Observation** The application behaves as it should, ignoring all but the

last parameter with the same name. Trying to e.g. pollute the email during registration registers the user with the last

email parameter, if the email hasn't been taken.

**Discovery** Manipulated parameters using BurpSuite manually, since

HPP apparently can't really be tested using tools (too many

false positives)

**Impact** n/a

**Likelihood** n/a

CVSS n/a

### Comparison

Both apps are protected against HTTP parameter pollution.

## 4.6.5 Testing for SQL injection

#### **Online Banking**

#### Observation

We were able to log into the application as any user without knowing the passwordand to perform transactions with any unused TAN of any user when uploading a transaction batch file.

#### Discovery

We used the fuzzer of ZAP on the username field of the login form, with the query parameters username=admin&password=123, where the fuzzing point was at the end of the username. We compared the answers of the server and found that in one case we got redirected to the employee page. We analyzed the login page also using SQLmap, which delivered a similar result. Additionally, we ran SQLmap on the fields of the perform transaction form, it returned that none of the four inputs where exploitable for SQL injection.

We tested the fields of the transaction batch form manually by trying some standard SQL injection parts (e.g. '; - and "; -). We noted that the application gives no usual feedback when uploading a transaction file where the username or the comment contains strings that apparantly results in a syntactically erroneous SQL query. We continued to determine the table structure using a brute force script which tests for some expectable table and column names, the results can be found below. Finally, we were able to exploit the SQL injection vulnerability in the TAN field to use any unused TAN from any user.

### **Impact**

An attacker can log into any account, of which he knows the username, and perform transactions without knowing valid TANs for that account by uploading a transaction batch file. Furthermore, as an attacker can take over an administrator account, if he knows the username, he has access to all accounts and can change the account balances at will. Also, an attacker can analyze the structure of a database.

#### Likelihood

High

Access Vector Network

**Access Complexity** Low

Privileges Required None

**User Interaction** None

**Scope** Unchanged

**Confidentiality** High

**Intigrity** High

**Availability** No Impact

Access Vector Network

**Access Complexity** Low

**Privileges Required** Low

**User Interaction** None

**Scope** Unchanged

**Confidentiality** High

**Intigrity** High

**Availability** No Impact

## Results of the brute-force script

Login vulnerability

TAN vulnerability

Table payment: id, trancode, payer, receipt, amount, purpose

Table user: id, balance, email, username, password, isemployee

Table userrequest: id, email, username, password, isemployee

Table paymentrequest: id, trancode, payer, receipt, amount, purpose

Table trancode: id, clientid

# **Observation** No SQL injections found

### Discovery

We used the fuzzer of ZAP on the username field of the login form, with the query parameters username=admin@localhost&password=123, where the fuzzing point was at the end of the username. We also analyzed the login page also using SQLmap. Using both methods, we were not able to log in without knowing the password. Additionally, we ran SQLmap on the fields of the registration form and the perform transaction form, it returned that none of the four inputs where exploitable for SQL injection.

Impactn/aLikelihoodn/aCVSSn/a

### Comparison

The Online Banking web application is vulnerable to SQL injection at different places, allowing an attacker to take over user accounts and transfer money without knowing any credentials. In the web application of the SecureBank, we were not able to find SQL injection vulnerabilities.

- 4.6.6 Testing for LDAP Injection
- 4.6.7 Testing for ORM Injection
- 4.6.8 Testing for XML Injection
- 4.6.9 Testing for SSI Injection
- 4.6.10 Testing for XPath Injection

We did not test any of these injection types as it appears that these techniques are not used in any of the two applications. Therefore, we decided to not further investigate in these types of injection.

# 4.6.11 IMAP/SMTP Injection

We don't want to attack the used mail servers, since they're probably not part of the programming part. And we don't want to go to prison for trying to hack gmail.

# 4.6.12 Testing for Code Injection

n/a

# **Online Banking**

ObservationThe only code injection we found is the SQL injection in<br/>the uploaded file, as described in 4.6.5. Apart from that<br/>nothing was found.DiscoveryTested the action parameter in the GET requests. Our tools<br/>found no Code Injections either.Impactn/aLikelihoodn/a

### SecureBank

**CVSS** 

| Observation | No vulnerability found.                                                                   |
|-------------|-------------------------------------------------------------------------------------------|
| Discovery   | Tested the page parameter in the GET requests. Our tools found no Code Injections either. |
| Impact      | n/a                                                                                       |
| Likelihood  | n/a                                                                                       |
| CVSS        | n/a                                                                                       |

## Comparison

If we count the SQL injection in the uploaded file to the point about SQL injection, both applications perform the same.

# 4.6.13 Testing for Command Injection

# **Online Banking**

Observation W3af found two places where it suspected possible command injection via eval(). Both of these places turned out to just be SQL injection again, though. Apart from this we found no command injection.

**Discovery** W3af and then manual testing.

Impactn/aLikelihoodn/aCVSSn/a

#### SecureBank

ObservationWe found no places where command injection is possibleDiscoveryW3AF, ZAPImpactn/aLikelihoodn/aCVSSn/a

## Comparison

Both applications allow no command injections (to the OS).

# 4.6.14 Testing for Buffer overflow

### **Online Banking**

**Observation** We were able to induce a buffer overflow by putting a string

of 258 as into the TAN purpose field of the uploaded transaction batch file, although we could not identify whether this a stack or a heap buffer overflow. We were not able to cause a buffer overflow by using formatting characters. The transaction gets executed correctly, except that the purpose

field is empty, though.

**Discovery** Using the fuzzer of ZAP, we used the jbrofuzz / Buffer

Overflows / Long string's of a's fuzzing base on the transaction purpose field of the uploaded transaction batch file. For string smaller with a length smaller than 255 bytes, the transaction gets executed, and for very large strings, the application claims that the file is too large. However, in the other cases, the application gives no feedback, as described in Section 4.6.5. We also tried to cause buffer overflows caused by string format function by including strings like

%s into the username or transaction purpose field.

**Impact** As we could not identify whether this is a stack of a heap

buffer overflow, we cannot clearly identify the impact. In the worst case, if the buffer overflow happens on the stack,

an attacker has access to the database and the file system.

**Likelihood** Medium

Access Vector Network

**Access Complexity** Low

**Privileges Required** Low

**User Interaction** None

Scope Unchanged

**Confidentiality** High

**Intigrity** High

**Availability** High

**Observation** We were unable to produce a buffer overflow.

**Discovery** We tried to use long strings of as on the username and

the description field of the uploaded transaction batch file. However, the file was either rejected with the comment that it does not satisfy the specifications or the transaction was executed. We also tried to cause buffer overflows caused by string format function by including strings like %s into the

username or transaction purpose field.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

## Comparison

The SecureBank application is better in this regard, as it does not offer buffer overflow vulnerabilities.

# 4.6.15 Testing for incubated vulnerabilities

We did not test for incubated vulnerabilities for the reason of complexity.

# 4.6.16 Testing for HTTP Splitting/Smuggling

## **Online Banking**

**Observation** We were unable to find any HTTP splitting vulnerabilities.

**Discovery** Using ZAP, we analyzed the response headers and found

Location headers being sent. However, it did not appear

that user inputs are sent as part of the location header.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

### SecureBank

**Observation** We were unable to find any HTTP splitting vulnerabilities.

**Discovery** Using ZAP, we analyzed the response headers and found

Location headers being sent. However, it did not appear that user inputs are sent as part of the location header.

**Impact** n/a

**Likelihood** n/a

CVSS n/a

### Comparison

Both applications are on the same security level in this regard.

# 4.7 Error Handling

## 4.7.1 Analysis of Error Codes

### **Online Banking**

**Observation** We were not able to get reveal any information about the

database, but we were able to get usual error codes of an apache server. The error pages also revealed information about the version, which is 2.2.22 on an Ubuntu server.

Discovery By using the fuzzer jbrofuzz / SQL Injection / MySQL

Injection 101 of ZAP on the purpose field of the online transaction form, we got one response which simply stated Database error, but gave no further information. Using a browser, we requested the page /InternetBanking/foobar/, which returned a 404 error, with further information about the server operating system

and the Apache version.

Impact Using the apache version, an attacker can run known ex-

ploits for this specific version.

**Likelihood** Medium

Access Vector Network

Access Complexity Low

Privileges Required | None

**User Interaction** None

Scope Unchanged

**Confidentiality** No Impact

**Intigrity** No Impact

**Availability** No Impact

**Observation** We were not able to get reveal any information about the

database, but we were able to get usual error codes of an apache server. The error pages also revealed information about the version, which is 2.2.22 on an Ubuntu server. On the login page, we found an error code if the login was unsuccessful. Apparently, the code is always 1, if the

credentials are incorrect.

Discovery By using the fuzzer jbrofuzz / SQL Injection / MySQL

Injection 101 of ZAP on the purpose field of the online transaction form, we were not able to produce a databse error. Using a browser, we requested the page /seccoding-2015/foobar/, which returned a 404 error, with further information about the server operating sys-

tem and the Apache version.

Impact Using the apache version, an attacker can run known ex-

ploits for this specific version.

**Likelihood** Medium

Access Vector Network

Access Complexity Low

Privileges Required | None

User Interaction None

Scope Unchanged

**Confidentiality** No Impact

**Intigrity** No Impact

**Availability** No Impact

### Comparison

Although the Online Banking application produces an error message about a database error, they provide the similar information in error messages.

### 4.7.2 Testing for Stack Traces

We were not able to produce stack traces in both applications using invalid inputs (e.g. negative numbers), or SQL injection.

### 4.8 Testing for weak Cryptography

# 4.8.1 Testing for Weak SSL/TLS Ciphers, Insufficient Transport Layer Protection

#### **Online Banking**

**Observation** We were unable to connect to the application via HTTPS.

**Discovery** We tried to access the application via HTTPS on port 443.

Impact An attacker can retrieve sensitive information by sniffing

the network.

**Likelihood** High

Access Vector Adjacent Network

Access Complexity | Medium

Privileges Required | None

**User Interaction** None

**Scope** Unchanged

**Confidentiality** High

**Intigrity** No Impact

**Availability** No Impact

#### SecureBank

**Observation** We were unable to connect to the application via HTTPS.

**Discovery** We tried to access the application via HTTPS on port 443.

Impact An attacker can retrieve sensitive information by sniffing

the network.

**Likelihood** High

Access Vector Adjacent Network

Access Complexity | Medium

**Privileges Required** None

**User Interaction** None

**Scope** Unchanged

**Confidentiality** High

Intigrity No Impact
Availability No Impact

#### Comparison

Both applications transport sensitive information about non-encrypted channels.

### 4.8.2 Testing for Padding Oracle

As there is no transport layer encryption in any of the two applications, we decided to not test for a padding oracle.

### 4.8.3 Testing for Sensitive information sent via unencrypted channels

All information is sent via an unencrypted channel. See Section 4.8.1

### 4.9 Business Logic Testing

#### 4.9.1 Test Business Logic Data Validation

#### **Online Banking**

**Observation** When creating transactions, it's possible to enter negative

amounts, which results in gaining money at the "recipient's"

cost.

**Discovery** Manual testing

Impact Medium

**Likelihood** High

Access Vector Network

**Access Complexity** Low

**Privileges Required** Low

**User Interaction** None

**Scope** Unchanged

**Confidentiality** No Impact

**Intigrity** Low

**Availability** No Impact

#### SecureBank

**Observation** We found no ways to make unreasonable requests, like

negative money transactions.

**Discovery** Manual testing

**Impact** n/a

**Likelihood** n/a

CVSS n/a

| $\sim$ | •       |
|--------|---------|
| Com    | parison |

The Online Banking fails here, where our application correctly validates business data.

#### 4.9.2 Test Ability to Forge Requests

#### **Online Banking**

**Observation** None of the forms have hidden input fields that save critical

information. Editing a user as admin, e.g. has a hidden user ID field. But since admins are allowed to change any

user's values, that's no vulnerability.

**Discovery** Firefox dev tools

Impact n/a

**Likelihood** n/a

CVSS n/a

#### SecureBank

**Observation** There's a hidden input field in the file upload form to limit

the file size. But if we go around this by uploading by forging the request and increasing this value, we're still unable to upload files with a size of more than 3000.

**Discovery** Firefox dev tools, manual

Impact n/a

**Likelihood** n/a

CVSS n/a

#### Comparison

Both applications are securd against forged requests.

### 4.9.3 Test Integrity Checks

### **Online Banking**

| Observation | No vulnerability found. |
|-------------|-------------------------|
| Discovery   | ZAP                     |
| Impact      | n/a                     |
| Likelihood  | n/a                     |
| CVSS        | n/a                     |

#### SecureBank

| Observation | No vulnerability found |
|-------------|------------------------|
| Discovery   | ZAP                    |
| Impact      | n/a                    |
| Likelihood  | n/a                    |
| CVSS        | n/a                    |

### Comparison

Both applications have sufficient integrity checks.

## 4.9.4 Test for Process Timing

### Both

|                                  | Apart from blind SQL, this is not applicable, since all actions are done in atomic steps, without locking. |
|----------------------------------|------------------------------------------------------------------------------------------------------------|
| Discovery                        | n/a                                                                                                        |
| Impact                           | n/a                                                                                                        |
| Likelihood                       | n/a                                                                                                        |
| Discovery Impact Likelihood CVSS | n/a                                                                                                        |

### 4.9.5 Test Number of Times a Function Can be Used Limits

### Both

|                                  | There's no benefit for the users when using functions more often. Thus this isn't applicable for either of the apps. |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Discovery                        | n/a                                                                                                                  |
| Discovery Impact Likelihood CVSS | n/a                                                                                                                  |
| Likelihood                       | n/a                                                                                                                  |
| CVSS                             | n/a                                                                                                                  |

# 4.9.6 Testing for the Circumvention of Work Flows

### Both

|                                  | All actions in both apps are atomic, so this doesn't apply. |
|----------------------------------|-------------------------------------------------------------|
| Discovery                        | n/a                                                         |
| Impact                           | n/a                                                         |
| Likelihood                       | n/a                                                         |
| Discovery Impact Likelihood CVSS | n/a                                                         |

### 4.9.7 Test Defenses Against Application Mis-use

#### **Both**

**Observation** Defenses Against Application Mis-use aren't part of either

of the applications. When sending many malicious requests at once, due to testing, neither of the applications tried to stop us. The same holds true for any attacker who wants to

check the apps for vulnerabilities.

**Discovery** ZAP, W3AF

**Impact** Low

**Likelihood** High

Access Vector Network

**Access Complexity** Low

**Privileges Required** None

**User Interaction** None

**Scope** Unchanged

**Confidentiality** Low

**Intigrity** None

**Availability** Low

### 4.9.8 Test Upload of Unexpected File Types

#### Both

**Observation** While it's technically possible to upload files for transac-

tions, these files aren't stored (or at least we couldn't find

them), so this vulnerability is not applicable.

**Discovery** w3af, Zap

**Impact** n/a

**Likelihood** n/a

CVSS n/a

TODO!

# 4.10 Client Side Testing

We decided to not perform client-side testing, because we priotized it low. We focused on server-side attacks like XSS and SQL injection.

# Acronyms

**TUM** Technische Universität München.