MATH 1450 Exam I practice problems*

1 Section 1.1

- 11 Find the and the midpoint and the distance between the points P(0,-1), Q(-3,5).
- 17 Are these three points collinear? Why? (1,1),(2,3),(4,7).
- 27 Which one of these points are on the graph of the equation? (3, 2), (3, 4), (0, 1), (0, 0).

$$y^2 - x - 1 = 0$$

- 31 Plot the graph of the equation using a table. $y = -\sqrt{9/x^2}$.
- 45 Find the x and y intercepts of the graph of the equation $x = y^2 5y + 5$.
- 71 Find the center and radius of the circle $2x^2 + 2y^2 + 4y = 0$, then find its x and y intercepts.
- 83 The equation $P = -0.002t^2 + 0.093t + 8.18$ models the approximate number of female college students in the US for the academic years 1995-2001, with t = 0 representing 1995.
 - sketch the graph of the equation.
 - Find the positive t-intercept. What does it represent?
 - Find the P-intercept. What does it represent?
- 94 Graph the equation: $(y 2x)(x^2 + y^2 4) = 0$

- 9 Find the slope of the line through points (1,3), (2,-3).
- 27 Find the equation of the line through points (1,3), (2,-3).
- 49 Find the equation of the line through (1, 1), perpendicular to the line in previous problem.

^{*}The numbers denote the similar problems from the book.

- 51 Write the following equation in the slope-intercept form: 3x 2y + 6 = 0.
- 59 Find the intercepts of the line $\frac{x}{a} + \frac{y}{b} = 1$.
- 60 Write the equation in general form of the line with x-intercept 4 and y-intercept 3.
- 75 Find the equation of the line passing trough (5,-4) and parallel to y = -1.
- $95\,$ The number of the females in Florida's prison rose from 2425 in 2000 to 4026 in 2006.
 - Find a linear equation relating the number of women prisoners to the year t. (t = 0 for year 2000)
 - Draw the graph of the equation.
 - How many women prisoners were there in 2003?
 - Predict the number of women prisoners in 2100.
- 120 Draw the graph of the equation (x-1)(x-2) + (y-2)(y-3) = 15.5.

- 15 Determine whether the equation defines y as a function of x: yx = 1.
- 28 Determine whether the equation defines y as a function of x: $x + y^3 = 1$.
- 35 Find the domain:

$$- f(x) = \frac{2x}{x-1}$$
.

$$- f(x) = \frac{2x}{\sqrt{x-1}}.$$

$$-f(x) = \frac{\sqrt{3-x}}{x-1}$$

$$- f(x) = \frac{\sqrt{1-x}}{x-3}.$$

- 63 Find the average rate of change for $f(x) = (3-x)^2$ from -3 to 3.
- 75 Compute the difference quotient for $f(x) = \frac{-1}{x}$.
- 93 Is the total surface area S of a cube a function of the edge x of the cube? If it is not, explain why not. If it is a function, write the function S(x) and evaluate S(3).
- 106 Explain whether f and g represent the same function: $f(x) = (\sqrt(x))^2, g(x) = x$.
- 126 Write the equation of two different functions where their implied domain is $(-\infty, 2)$.

- 19 Sketch the graph and fund the intervals over which the function is increasing, is decreasing, or is constant: $f(x) = -\sqrt[3]{x}$.
- 37 Determine whether the function is odd, is even, both, or neither one: $f(x) = \frac{1}{x^2+4}$.
- 37 Determine whether the function is odd, is even, both, or neither one: $f(x) = \frac{x}{x^2+4}$.
- 51 Let

$$f(x) = \begin{cases} 2x & \text{if } x \ge 2, \\ 2 & \text{if } x < 2 \end{cases}$$

- Find f(1), f(2), f(3).
- Sketch the graph of the function.
- Find the range of the function.
- 64 The speed V of sound in air at temperature T is given by the linear function $V(T)=1055+1.1T^2$.
 - Find the speed of the sound at 90 degrees.
 - Find the speed of sound at which the speed of sound is 1100.
 - In order to increase the speed of sound, should the temperature increase, or decrease?
- 77 Let $f(x) = \frac{|x|}{x}, x \neq 0$, and g(x) = x [x].
 - Find the domain and range of f and q.
 - Find the intervals over which the function is increasing, decreasing, or constant.
 - State whether the function is odd, even, both, or neither one.

- 7 Describe the transformations that produce the graph of $y = -2(x+1)^3 + 2$ from the graph of $y = x^3$.
- 33 Draw the graph of the function $f(x) = 1 2\sqrt{x}$.
- 63 Right an equation for a function whose graph is the graph of $f(x) = x^3$ shifted three units left, reflected in the x-axis, and shifted two units down.
- 63 Right an equation for a function whose graph is the graph of $f(x) = x^3$ shifted three units left, shifted two units down, and reflected in the x-axis.

- 82 Suppose the employees making \$30,000 or more received 2% raise and an additional \$500, while those making less than \$30,000 received a 10% raise. Write a piecewise function to describe the new salaries.
- 99 Sketch the graph of $y = |4 x^2|$.
- 106 If f is a function with x-intercept 4 and y-intercept -1, find the corresponding x and y intercepts for
 - -f(x+2)-f(-x)
 - -f(x)
 - -5f(x)
 - -5f(x) + 3
 - -5f(x-2)+3
 - -5f(2x-2)+3

- 7 If $f(x) = 1 x^2$, g(x) = 2x + 1 find (f+g)(0), (fg)(1), (f/g)(-1), $f \circ g(5)$.
- 33 If $f(x) = \frac{1}{x-1}$, $g(x) = \frac{2}{\sqrt{x+3}}$, find $f \circ g$ and its domain.
- 53 Write $H(x) = \sqrt{3x^2} + 3$ as a composition of two non-trivial functions f, g, such that $H(x) = f \circ g(x)$. Then compute $g \circ f(x)$.
- 73 The area A of a circular disk of radius r is given by $A = f(r) = \pi r^2$. Suppose a metal disk is being heated and its radius is increasing according to the equation r = g(t) = 2t + 1, where t is time in hours. Find $f \circ g(t)$. Determine A as a function of time. Then compare these two function.
- 77 True/False: (give enough reasoning)
 - If f and g are odd then $f \circ g$ is odd.
 - If f and g are odd then $f \circ g$ is even.
 - If f and g are even then $f \circ g$ is even.
 - If f and g are even then $f \circ g$ is odd.
- 81 If $f(x) = \sqrt{4-x}$, find the domain of $f \circ f$.

- 15 Let f be a one-to-one function. If f(2) = 2, then find $f^{-1}2$. If f(3) = 0, then find $f^{-1}(0)$.
- 27 For $f(x) = x^3 + 1$, find $f(2), f^{-1}(9), f \circ f^{-1}(5), f^{-1} \circ f(111)$.
- 29 Verify that $f(x) = \frac{x-1}{x+2}$ and $g(x) = \frac{1+2x}{1-x}$ are inverses of each other.
- 43 Determine whether the function $f(x) = \sqrt{4-x^2}$ is one-to-one.
- 55 Assume that $f(x) = \frac{x}{1-x}, x \neq 1$ is one-to-one. Find its inverse. Find range of f.
- 87 Sketch the graph of the function $g(x) = (x-1)^3 + 2$. Find $g^{-1}(x)$. Sketch the graph of g^{-1} .

8 Section 2.1

- 17 Find the quadratic function of the form $f(x) = ax^2$ passing through (-2,8).
- 21 Find the quadratic function with vertex (2,5) and passing through (3,7).
- 35 Graph the function $y = -3x^2 + 18x 11$ by writing it standard form. Find the x-intercepts of the function.
- 43 Determine if the function $y = x^2 18x + 15$ opens up or down. Find its vertex, find its axis of symmetry, and sketch the graph of it. Does the function have a maximum or a minimum? At what point? What is the value of it?
- 59 Solve the inequality by sketching the graph of an appropriate function: $x^2 + 2 2 > 0$.
- 59 Solve the inequality by sketching the graph of an appropriate function: $x^2 + 2 2 > 0$.
- 69 Find the dimensions of a rectangle of maximum area if the perimeter of the rectangle is 80cm. What is the maximum area?
- 70 Product of two numbers is 25, their sum is at least _____.
- 89 Find two quadratic functions, one opening up and the other down, whose graphs have x-intercepts -2,6.
- 93 $f(x) = 4x x^2$. Solve f(a+1) f(a-1) = 0.

9 Section A.6

- 57 A farmer can plow his field by himself in 15 days, if his son helps, they can do it in 6 days. How long would it take his son to plow the field by himself?
- 58 An open box is to be constructed from a rectangular sheet of tin 3 meters wide by cutting out a 1 meter square from each corner and folding up the sides. The volume of the box is to be 2 cubic meters. What is the length of the tin rectangle?

10 Section A.8

- 5 Solve the equation by factoring: $x^2 5x = 0$.
- 15 Solve the equation by factoring: $5x^2 + 12x + 4 = 0$.
- 25 Solve by square root method: $2(x-1)^2 + 1 = 5$.
- 35 Add a constant to make it a perfect square: $x^2 3.5x + 1$.
- 45 Solve the equation by completing the square: $5y^2 + 10y + 4 = 2y^2 + 3y + 1$.
- 59 Solve using the quadratic formula: $t(t+1) = 3t^2 + 1$.
- 75 Find the discriminant and determine the number and type of roots of $17x 12 = 6x^2$.
- 83 Find k such that $x^2 kx + 3 = 0$ has equal roots.
- 91 Find k such that the sum and the product of the roots are equal $2x^2 + (k-3)x + 3k 5 = 0$.
- 95 The length of a rectangle is 5cm greater than its width. The area of the rectangle is $500 {\rm cm}^2$. Find the dimensions of the rectangle.