Symbolic Complexity Analysis using Context-preserving Histories

Kasper Luckow, Rody Kersten, Corina Pasareanu

```
class Entry {
     String key; Action val; Entry next;
    public Entry(String key, Action val, Entry next) {
      this.key = key; this.val = val; this.next = next;
5
6
7 Entry findEntry(String o, int n) {
    for(Entry e = table[n]; e != null; e = e.next) {
                                                               12
      if(e.key.equals(o)) {
                                                                    return null:
10
        return e;
                                                               14
11
                                                               15 class String {
                                                                    char[] val;
                                                                    public boolean equals(Object oObj) {
                                                               19
                                                                      String o = (String) oObj;
                                                               20
                                                                      if(val.length == o.val.length) {
                                                               21
                                                                        for(int i = 0; i < val.length; i++) {
                                                               22
                                                                          if(val[i] != o.val[i])
                                                               23
                                                                            return false;
                                                               24
                                                               25
                                                                        return true:
                                                               26
                                                               27
                                                                      return false;
                                                               28
                                                               29
```

30

- Worst Case
 - strings: length k; Input size: length n;
 - -n*k
- We aim to extract a policy that dictates what branch to take during symbolic execution at any input size

 We take into account the history of decisions taken along the worst-case

path

Guided Policy

- Policy p: a policy p is a function mapping a CFG branch c to a choice b {{},{true},{false},{true/false}}
- p is deterministic if it contains no {} or {true/false}

Complexity analysis

Procedure 1 Worst-case complexity analysis.

```
Input: Program P(n), input size bound N, policy gen. input
     sizes L, H s.t. L \le H \le N, cost model C, policy score \kappa
     {Phase (i)}
 1: \rho_{\cup} initialized to \perp for all CFG conditions c
 2: for j \leftarrow L to H do
     W_e \leftarrow exhaustiveWCA(P(j), C)
 4: \rho_{best} \leftarrow null
      for all \langle \phi, \mathcal{C}(\phi), PC \rangle \in W_e do
      \rho \leftarrow computePolicy(\phi)
       if \rho_{best} is null then
            \rho_{best} \leftarrow \rho
       else if \kappa(\rho) > \kappa(\rho_{best}) then
           \rho_{hest} \leftarrow \rho
      \rho_{\cup} \leftarrow \rho_{\cup} \bigcup \rho_{best}
     {Phase (ii)}
12: D \leftarrow \emptyset
13: for i \leftarrow 1 to N do
14: W_g \leftarrow guidedSymExe(P(i), \rho_{\cup}, \mathcal{C})
15: cost_i \leftarrow C(\phi) \ s.t. \ \langle \phi, C(\phi), PC \rangle \in W_g
16: D \leftarrow D \cup \langle i, cost_i \rangle
17: \langle f, r^2 \rangle \leftarrow regressionAnalysis(D)
18: Output \langle f, r^2 \rangle, input constraints and solutions.
19: return
```

Complexity Analysis

Procedure 2 computePolicy

```
Input: Worst-case path \phi
```

Output: Policy ρ

- 1: ρ initialized to \perp for all CFG conditions c
- 2: **for all** $\pi_k = \langle c, b, \alpha \rangle$ where $k = 1, ..., length(\phi)$ **do**
- 3: $\rho(c) \leftarrow \rho(c) \cup b$
- 4: return ρ

Procedure 3 guidedSymExe

Input: Program P, policy ρ , cost model C

Output: $W = \{\langle \phi, \mathcal{C}(\phi) \rangle_1, ...\}$

- 1: Run symbolic execution on P and record worst-case paths in set W
- 2: **for all** $\pi = \langle c, b, \alpha \rangle$ about to be explored **do**
- 3: $choice \leftarrow \rho(c)$
- 4: **if** *choice* $\neq \bot$ and *choice* $\neq \top$ **then**
- 5: Explore b = choice for c in π
- 6: else
- 7: Explore both b = true and b = false for c in π
- 8: return W

Procedure 4 κ

Input: Policy ρ

Output: Policy rank

- 1: $rank \leftarrow 0$
- 2: for all c in P(n) do
- 3: $res \leftarrow \rho(c)$
- 4: **if** $res \neq \bot$ and $res \neq \top$ **then**
- 5: $rank \leftarrow rank + 1$
- 6: return rank

History-based policy

Policy updating

For (1), we update line 3 in Procedure 2 as follows:

$$\rho(c,\downarrow(\mathcal{H}_h(\pi_k))) \leftarrow \rho(c,\downarrow(\mathcal{H}_h(\pi_k))) \cup b$$

Policy guided search

For (2), we update line 3 in Procedure 3 as follows

$$choice \leftarrow \rho(c, \downarrow(\mathcal{H}_h(\pi)))$$

Theoretical guarantee

Theorem 1 Let $\rho_{\cup}^{L..H} = \bigcup_{n=L..H} \rho_n$ denote the unification of the policies obtained from the analysis at input sizes L..H, for same history size h. Then there exists a sufficiently large M such that the policy $\rho_{\cup}^{L..M}$ accurately predicts the worst-case path for any input size that is greater or equal to L.

Proof: First observe monotonicity of policy generation. We define $\rho_1 \subseteq \rho_2$ as $\forall_{i \geq L} \{ \Phi_{i,\rho_1} \subseteq \Phi_{i,\rho_2} \}$, where $\Phi_{i,\rho}$ is the set of paths explored with policy ρ at input size i. Unification of policies leads to increased coverage of program behaviors: if $\rho_{\cup}^{L..n+1} = \rho_{\cup}^{L..n} \bigcup \rho_{n+1}$ then $\rho_{\cup}^{L..n+1} \supseteq \rho_{\cup}^{L..n}$, since ρ_{n+1} can only add more behaviours that are allowed. Since the number of choices for the policy is finite and the history size is fixed, there is a finite number of possible policies. Hence, there exists an M for which $\rho_{\cup}^{L..M}$ is 'largest' according to \subseteq and thus includes the worst-case path for any input size that greater or equal to L.

Evaluation

Benchm.	Set-up			Input Size (N)												Complexity	r^2
Denchin.	L=H	h		1	2	3	4	5	10	15	20	30	100	250	1000	Complexity	r
Blogger URI Verifier	Exh.		Paths	55	2213	114533	-	-	-	-	-	-	-	-	-		
			Time	0:02	0:25	26:46	-	-	1.5	: - :	-	-	-	-	-		
	1	m.l.	Paths	8	57	155	351	743	-	-	-	-	-	-	-	$\mathcal{O}(n^2)$	0.99986
			Time	0:00	0:02	0:31	4:45	45:09	-	-	-	-	-	-	-		
TextCrunchr ZIP Decompressor	Exh.		Paths	3	4	5	6	7	12	17	22	32	102	252	1002		
			Time	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:01	0:06	1:27		
	1	m.l.	l. Paths	1	1	1	1	1	1	1	1	1	1	1	1	$\mathcal{O}(n)$	1.0000
		Time	Time	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:01	0:06	1:28	<i>(''')</i>	
Find Entry $(k=15)$	Exh.		Paths	16	376	11656	-	-	-	-	-	-	-	-	-		
			Time	0:01	0:07	4:59	-	-		-	-	-	-	-			
	2	m.l.	Time	16	376	11656	-	-	-	-	-	-	-	-	-	(too few predictors)	
		*****		0:01	0:07	4:09	-	-	-	-	-	-	-	-	-	(too iew predictors)	
	2	14	Paths	0.01	0.01	0.02	0.02	0.00	0:04	0.00	0.12	0.24	6.00	2.00.22	-	$\mathcal{O}(n)$	1.0000
			Time	0:01	0:01	0:02	0:02	0:02	0:04	0:08	0:12	0:24	6:00	2:00:32	-	- ()	
TextCrunchr NGram Score (trigrams)	Exh. Tin		Paths	4	13	40	121	364	88573	-	-	-	-	-	-		
			Time	0:00	0:00	0:00	0:01	0:02	3:15	-	-	-	-	-	1-1		
	2	m.l.	11me	4	13	40	121	364	88573	-	-	-	-	-	-	$\mathcal{O}(n)$	1.0000
				0:00	0:00	0:00	0:01	0:02	5:10	-	-	-	-	-	-		
	2	2 Paths	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.15	7.07	$\mathcal{O}(n)$	1.0000	
	-	555	Time	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:02	0:15	7:07)/ - ()	2.000

	Exh.		33 1057	33825	-	- 1	-	-	-	-	-	(=)			
Password Checker	2 m.l.	Paths	0:01 0:04 33 1057	2:00 33825	-	-	-	-	-	-	-	-	-	(C	
(k=32)		Time 0	0:00 0:03	2:04	- 1	-	- 1	-	-	-	-	-	-	(too few predictors)	
18.0 00.5	2 31		0:00 0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:04	-	-	$\mathcal{O}(n)$	1.0000
LawDB Exh.		Paths Time 0	3 13 0:01 0:01	75 0:01	541 0:01	4683 0:07	-	-	-	-	-	-	-		
Database B-Tree	2 m.l.	Paths	2 3	4	3	3	4	5	5	6	8	583	-	$\mathcal{O}(\log n)$	0.99755
B-1ree	2 ///		0:01 0:01	0:01	0:01	0:01	0:01	0:01	0:01	0:01	0:29	06:23	-	O (log n)	0.99755
Sorted	Exh.	Paths Time (1 2	0:00	0:01	120 0:01	-	-	-	-	-	-	-		
Linked-List insert	3 [†] m.l.	Paths	1 1	1	1	1	1	1	1	1	1	-	-	$\mathcal{O}(n)$	1.0000
insert	J		0:00 0:01	0:01	0:01	0:01	0:01	0:02	0:04	0:10	58:51	-	-	0(11)	1.0000
Heap insert	Exh.	Paths Time 0	1 2	0:00	0:00	0:01	0:46	-	-	-	-	-	-		
(JDK 1.5)	2 m.l.	Paths	1 1	1	1	1	1	1	1	1	1	1	1	$\mathcal{O}(\log n)$	0.99699
		Paths 0	3 10	0:01	0:01	0:01	0:01	0:01	0:01	0:01	0:02	0:09	0:53	(0)	
Red-Black	Exh.	Time 0	0:00	0:00	0:01	0:03	-	-	-	-	-	-	-		
Tree search	8 m.l.	Paths Time 0	1 1 1 0:01	0:01	0:01	0:01	0:01	0:01	0:01	0:02	0:25	7:09	-	$\mathcal{O}(\log n)$	0.99837
	P.1	Paths	1 2	6	24	120	-	-	-	-	-	-	-	1000	
Quicksort	Exh.	Time 0	0:00	0:00	0:00	0:01	ī	-	-	-	-	-	-		
(JDK 1.5)	8 m.l.		0:00 0:01	0:01	0:01	0:01	0:01	0:02	0:06	0:09	37:42	-	-	$\mathcal{O}(n^2)$	0.99997
Binary	Exh.	Paths	1 3	13	75	541	-	-	-	-	-	-	-		
Search Tree		Paths 0	0:00 0:00	0:00	0:01	0:02	-	-	-	-	-	-	-	m()	
search	3 m.l.		0:00 0:01	0:01	0:01	0:01	0:01	0:03	0:05	0:13	-	-	-	$\mathcal{O}(n)$	1.0000
	Exh.	Paths Time (1 2	0:00	0:00	120 0:01	3628800 2:06:22	-	-	-	-	-	-		
	7 m.l.	Paths	1 1	1	1	1	251	-	-	-	-	-	-	$\mathcal{O}(n \log n)$	0.99591
Merge Sort (JDK 1.5)		Time 0	0:00	0:00	0:00	0:00	0:02	- 1	-	- 1	-	- 1	-	, ,	0.99591
(3511 1.5)	7 1	Time (0:00 0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:01	0:11	2:03	-	$\mathcal{O}(n\log n)$	0.99941
	8 1		1 1 1 0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:00	0:11	1:33	-	$\mathcal{O}(n\log n)$	0.99962
	Exh.	Paths	1 2	63	-	-	-	-	-	-	-	-	-		
Bellman-Ford [‡]		Time 0	0:00 0:00	0:02	- 1	-	ī	-	-	-	-	-			
	2 m.l.		0:00 0:00	0:00	0:01	0:02	6:19	-	-	-			-	$\mathcal{O}(n^3)$	1.0000
Dijkstra's [‡]	Exh.	Paths	1 1	4	56	2592	-	-	-	-	-	-	-		
	3 m.l.	Paths	0:00 0:00	0:00	0:00	0:10	1	1	1	1	-	-	-	$\mathcal{O}(n^2)$	1.0000
	3 m.t.		0:00 0:00	0:00	0:00	0:00	0:01	0:03	0:11	1:16	-	(2)	-	O(n)	1.0000
Traveling Salesman [‡]	Exh.	Paths Time 0	1 1	0:00	0:02	-	-	-	-	-	-		-		
	3 m.l.	Paths	1 1	1	1	1	-	-	-	-	-	-	-	$\mathcal{O}(n!)$	0.99935
		Paths 0	0:01 0:01	0:01	0:02	0:04	3628800	-	-	-	-	-	-	- ()	1
Insertion	Exh.	Time 0	0:00 0:00	0:00	0:00	0:01	1:37:46	-	-	-	-	-	-		
Sort	2 m.l.	Paths Time (1 1 0:01 0:01	0:01	0:01	0:01	0:01	0:01	0:01	0:01	0:02	0:05	1:10	$\mathcal{O}(n^2)$	1.0000