Задание на НИРС

Руцкий Владимир Владимирович, гр. 5057/2, 9 семестр 2010 г.

Тема работы: Решение задачи сшивки перекрывающихся аэрофотоснимков с ярко выраженным параллаксом

Место выполнения: ЗАО «Транзас Новые Технологии»

Руководитель: Ковалёв Антон Сергеевич, магистр прикладной математики и информатики, ведущий инженер-программист (руководитель группы) ЗАО «Транзас Новые Технологии»

Постановка задачи

Даны два аэрофотоснимка поверхности Земли R_1 и R_2 , сделанных соответственно камерами C_1 и C_2 .

Дано, что высота съёмки над уровнем Земли находится в дапазоне в метрах: $C_i.h \in [800,1000]$ (здесь и далее i=1,2 — индекс камеры). При съёмке с такой высоты видимая поверхность Земли считается плоскотью P с направленной вверх нормалью \bar{n} (нормаль \bar{n} дана, плоскость P — нет). Для камер заданы пирамиды видимости $C_i.V$: даны направления камер $C_i.\bar{d}$ и углы зрения $C_i.\alpha$, $C_i.\gamma$. Направления съёмки камерами даны и близки к вертикальным вниз: $(C_i.\bar{d}, -\bar{n}) < 30^\circ$, а углы зрения $C_i.\alpha$, $C_i.\gamma \in [30^\circ, 60^\circ]$.

 $G_i = C_i.V \cap P$ — часть плоскости P, видимая из камеры C_i . Положение камер друг относительно друга или их позиции в пространстве не даны, но дано, что они взаимнорасположены так, что G_i пересекаются примерно половиной своей площади: $\frac{S(G_1 \cap G_2)}{S(G_1)} \approx \frac{S(G_1 \cap G_2)}{S(G_2)} \approx 50 \%$.

На снимаемой поверхности Земли встречаются объекты $O_{\rm upper}$ возвышающиеся над её плоскостью на высоту до 40 метров: строения, деревья; и объекты $O_{\rm lower}$ опускающиеся ниже уровня плоскости Земли на несколько метров: канавы, рвы. Все пиксели снимков R_i можно разбить на три непересекающихся класса:

- 1) X_{upper_i} пиксели, в которые при съёмке попали фрагменты объектов из O_{upper} ;
- 2) X_{lower_i} пиксели, в которые при съёмке попали фрагменты объектов из O_{lower} ;
- 3) X_{G_i} пиксели, в которые при съёмке попали фрагменты плоскости Земли P.

Пиксели из X_{upper_i} , X_{lower_i} и X_{G_i} соответствуют точкам пространства, которые были сфотографированы T_{upper_i} , T_{lower_i} , $T_{G_i} \subset R^3$ соответственно, причем $T_{G_i} \subset G_i$.

Из-за съёмки области $G_1 \cap G_2$ камерами C_i из двух разных точек возникает параллакс объектов O_{upper} и O_{lower} . Возвышающиеся объекты O_{upper} загораживают часть снимаемой поверхности $G_1 \cup G_2$, и она оказывается видна лишь на одном из снимков: $(T_{G_1} \setminus T_{G_2}) \cap (G_1 \cap G_2) \neq \emptyset$, $(T_{G_2} \setminus T_{G_1}) \cap (G_1 \cap G_2) \neq \emptyset$.

Требуется:

- 1. Найти плоскость Земли P.
- 2. Найти взаимное расположение областей G_i .
- 3. Спроецировать $X_{G_1} \cup X_{G_2}$ на $T_{G_1} \cup T_{G_2}$ для точек плоскости из $G_1 \cap G_2$ полученное изображение будет соответствовать ортофотоплану $G_1 \cap G_2$.

Элементы исследования и новизны

Оссобенностью данной работы является то, что рассматривается задача сшивки снимков сделанных на низких высотах, с большим углом зрения и большим разрешением, когда эффект параллакса существенно сказывается на получаемом результате.

Ожидаемый результат

Решение поставленной задачи позволит улучшить качество ортофотопланов, получаемых из аэрофотоснимков, сделанных на низких высотах.

Среда разработки

Платформа: Microsoft Windows XP. Языки программирования: C+++, Python.

Среда разработки: Microsoft Visual Studio, NetBeans.

Литература

- 1. R. Szeliski. Image Alignment and Stitching: A Tutorial. Now Publishers Inc, 2006.
- 2. R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.

Студент	 В.В.Руцкий
Руководитель	 А. С. Ковалёв

29 сентября 2010 г.