Obligatorisk oppgave TMA 4101

Elgtungen

Jeg kokte opp litt vann og målte temperaturen jevnt gjennom avkjølingsprosessen og fikk disse resultatene:

Tid (minutter)	Temperatur (°C)
2	82
4	75.2
6	71.2
8	67.2
10	64.4
12	61.4
14	59.1
16	57
18	55.2
20	52.8
22	51.5
24	50
26	48.6
28	47.2
30	45.8
35	43
40	40.2
45	38.7
50	35.7
55	33.8
60	32.4
65	31.3
70	30.2
75	29.3
80	28.5
85	27.7
90	27.2
95	26.8
100	26.5
105	26.2

Dette brukte jeg så til å lage et Python program:

import numpy as np import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

```
tider = np.array([2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105]) temperatur = np.array([82, 75.2, 71.2, 67.2, 64.4, 61.4, 59.1, 57, 55.2, 52.8, 51.5, 50, 48.6, 47.2, 45.8, 43, 40.2, 38.7, 35.7, 33.8, 32.4, 31.3, 30.2, 29.3, 28.5, 27.7, 27.2, 26.8, 26.5, 26.2])
```

 $T_0 = 94$ T K = 24

def newton_avkjorlingslov(t, alpha):
 return T_K + (T_0 - T_K) * np.exp(-alpha * t)

beste_alpha, _ = curve_fit(newton_avkjorlingslov, tider, temperatur)
alpha_fitted = beste_alpha[0]

theoretical_values_fitted = newton_avkjorlingslov(tider, alpha_fitted)

plt.figure(figsize=(10, 6))
plt.plot(tider, theoretical_values_fitted, label=f"Teoretisk modell (alpha ≈ {alpha_fitted:.4f})", color="orange")
plt.scatter(tider, temperatur, label="Målte verdier", color="blue")
plt.xlabel("Tid (minutter)")
plt.ylabel("Temperatur (°C)")
plt.title("Målt temperatur vs. Newtons avkjølingslov")
plt.legend()
plt.show()

I programmet regnes det ut en passende ∞ som er best til mine data. Jeg begynte å måle temperaturen hvert andre minutt ettersom det er her temperaturendringen er størst, og byttet tilslutt til hvert femte minutt.