Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

CLASE 1 - 24/07/2025

Números complejos

Definición y operatoria

Definimos un número complejo como un par ordenado de números reales z = (a, b). Llamamos parte real a a = Re(z) y parte imaginaria a b = Im(z).

Además de esto también definimos las operaciones básicas del cuerpo. Sean z=(a,b) y w=(c,d), entonces:

- 1. Igualdad (a, b) = (c, d) sii a = c y b = d
- 2. Suma: (a,b) + (c,d) = (a+c,b+d)
- 3. Producto: $(a,b) \cdot (c,d) = (ac bd, ad + bc)$

Observemos que realizando un pequeño sistema de ecuaciones podemos llegar a que el inverso de un complejo (a,b) cualquiera es el siguiente:

•
$$(a,b)^{-1} = (\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2})$$

Notación binómica

Dado un complejo cualquiera z = (a, b), definimos su notación binómica por:

•
$$z = a + bi$$

Esta es la primera notación con la que vamos a trabajar con los complejos, que es más práctica que la anterior ya que se comporta bien con todas las operaciones que definimos (porque el producto se puede obtener usando distributiva).

Definición (norma y argumento)

Dado un complejo z=a+bi, definimos su módulo como $|z|=\sqrt{a^2+b^2}$ y su argumento θ como el ángulo que forma con el eje real.

Veamos como se ve todo al representarlo gráficamente:

Figura 1

Figure 1: Figura 1

Figura 2

Figure 2: Figure 2

Observación importante

Al estar trabajando con ángulos, está claro que dos argumentos θ_1, θ_2 son iguales en ambos los siguientes casos:

- $\theta_1 = \theta_2$ o
- $\theta_1 = \theta_2 + 2k\pi \text{ con } k \in \mathbb{Z}$

La intuición es sencilla, un ángulo se mantiene igual si damos una vuelta completa.

Detalle sobre el argumento

Se observa, mirando la representación gráfica, que podemos cálcular el argumento θ de un complejo, a partir de ambas su parte real e imaginaria de la siguiente forma:

- $tan(\theta) = \frac{b}{a}$, entonces $\theta = arctan(\frac{b}{a})$

Pero debemos tener cuidado en como aplicamos arctan, por la naturaleza que tiene la función (pues varios ángulos diferentes entre si tienen el mismo valor de arctan)

Ejemplo

Consideremos el complejo $z_1 = 1 + i$, el mismo tiene:

- Norma: $|z| = \sqrt{2}$
- Argumento: $arctan(\frac{1}{1}) = \frac{\pi}{4}$

Ahora, consideremos el complejo $z_2 = -1 - i$, el mismo tiene:

- Norma: $|z| = \sqrt{2}$
- Argumento: $arctan(\frac{-1}{-1}) = \frac{\pi}{4}$

Entonces, algo tiene que estar mal, pues sabemos que $z_1 \neq z_2$ pero tienen mismo argumento y norma. El problema viene de que la tangente tiene varias ramas, y estamos usando en ambos casos la que se define en el intervalo $(\frac{-\pi}{2}, \frac{\pi}{2})$, por lo que en algunos casos, debemos corregir sumando (o restando) π . En general lo que debemos hacer es corroborar que el resultado tenga sentido con la representación gráfica.