RNNs can be used for sentence classification

e.g., sentiment classification

RNNs can be used for sentence classification

Sentence Similarity He is a wise man. encody Siamese Architecture

RNNs can be used to find sentence similarity

Siamese Architecture

- Pass both sentences through RNNs: the parameters are shared across these
- Use (a function of) the difference between the final hidden states

RNNs can be used for tagging

RNNs for compararison mining in Reviews

Bidirectional RNNs

What we have seen till now?

- The state at time t only captures information from the past $x^{(1)}, \ldots, x^{(t-1)}$, and the present input $x^{(t)}$
- Some models also allow information from past y values to affect the current state when the y values are available

Bidirectional RNNs

What we have seen till now?

- The state at time t only captures information from the past $x^{(1)}, \ldots, x^{(t-1)}$, and the present input $x^{(t)}$
- Some models also allow information from past y values to affect the current state when the y values are available

However, in many applications we want to output a prediction of $y^{(t)}$ which may depend on the whole input sequence. e.g., sentiment analysis.

Bidirectional RNNs: motivation for sentiment classification

Bidirectional RNNs

Bidirectional RNNs

Bidirectional RNNs: simplified diagram

The two-way arrows indicate bidirectionality and the depicted hidden states are assumed to be the concatenated forwards+backwards states.

Bi-RNNs are only applicable if you have access to the entire input sequence

 thus not applicable to Language Modeling where only the left context is available

NLP - Interaction Hour

Using Char-RNN for word embeddings

Multi-layer RNNs

Vanilla RNN

ht-1 —) ht

GRU, LSTME (complicated units)

BI- ENN Bi- LSTM

Multi-layer Bi-25TM

What other paradigm can RNN be used for?

Sege Sea_

Encoder de codes

Sequence to Sequence Models

Pawan Goyal

CSE, IIT Kharagpur

NLP - Interaction Hour

What we have seen?

• Input sequence to a fixed-sized vector

• Input sequence to an output sequence of the same length

What we have seen?

- Input sequence to a fixed-sized vector
- Input sequence to an output sequence of the same length

Any other constraint?

Mapping input sequence to an output sequence, not necessarily of the same length

machine translation, question answering, chatbots, summarization, ...

What is machine translation?

Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language)

> L'homme est né libre, et partout il est dans les fers X:

Man is born free, but everywhere he is in chains y:

- Rousseau

Also known as encoder-decoder architecture

- Input sequence $X = (x^{(1)}, \dots, x^{(n_x)})$ Output sequence $Y = (y^{(1)}, \dots, y^{(n_y)})$

Also known as encoder-decoder architecture

- Input sequence $X = (\underbrace{x^{(1)}, \dots, x^{(n_x)}})$
- Output sequence $Y = (y^{(1)}, \dots, y^{(n_y)})$
- Encoder (reader/input) RNN: Emits the context C, a vector summarizing the input sequence, usually as a simple function of its final hidden state

Summarization

source enadig

Also known as encoder-decoder architecture

- Input sequence $X = (x^{(1)}, ..., x^{(n_x)})$
- Output sequence $Y = (y^{(1)}, \dots, y^{(n_y)})$
- Encoder (reader/input) RNN: Emits the context C, a vector summarizing the input sequence, usually as a simple function of its final hidden state
- Decoder (writer/output) RNN: Is conditioned on the context *C* to generate the output sequence.

Also known as encoder-decoder architecture

- Input sequence $X = (x^{(1)}, \dots, x^{(n_x)})$
- Output sequence $Y = (y^{(1)}, \dots, y^{(n_y)})$
- Encoder (reader/input) RNN: Emits the context C, a vector summarizing the input sequence, usually as a simple function of its final hidden state
- Decoder (writer/output) RNN: Is conditioned on the context C to generate the output sequence.

What is the innovation?

The lengths n_x and n_y can vary from each other

Encoder-Decoder Architecture

Encoder and Decoder RNNs

- Last state of the encoder RNN is used as a representation of the input sequence, provided as input to the decoder RNN
- Decoder RNN is a vector-to-sequence RNN, described earlier.
- Two ways to receive input: as the initial state of the RNN, or can be connected to the hidden units at each time step. These two ways can also be combined.

Sequence to Sequence Models for Machine Translation

Sequence to sequence is versatile

Many NLP tasks can be phrased as sequence-to-sequence

- Summarization (long text → short text)
- Dialogue (previous utterances → next utterance)

Neural Machine Translation (NMT)

An example of a Conditiona Language Model

- Language Model because the decoder is predicting the next word of the target sentence y
- Conditional because the predictions are also conditioned on the sentence(x)

NMT directly calculates
$$P(y|x)$$
:

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots P(y_T|y_1, \dots, y_{T-1}, x)$$

Probability of next target word, given target words so far and source sentence *x*

Partioner Sessing

How to train an NMT system?

Get a big parallel corpus ...

Training an NMT system

Greedy decoding

One possibility is to generate (decode) the target sentence by taking argmax on each step of the decoder

This is greedy decoding

Problems with this method?

SCL, 2SLL. W

large 1/19