

Using Matched Molecular Pairs for CoreDesign®

Jess Stacey jessica.stacey@medchemica.com

Twitter @MedChemica
Twitter @covid_moonshot

www.medchemica.com

Agenda

- What are we trying to do?
- Introduce MMPs
- CoreDesign®
- Examples

What are we trying to do?

Idea generation for new core structures

CoreDesign Uses:

- Idea generator
- Scaffold hopping

Key Features:

- More **flexible** than RuleDesign as transformations do not have to be rules (i.e. can have one example)
- Bibliography of references provided to showcase the transformation (where available)

What is a core?

 A core of a molecule can be either a ring or ring system(s) that are connected via linker(s). Cores are therefore built of rings and linkers.

$$R_1$$

What are we trying to do?

MedChemica CREATING A STEP CHANGE IN MEDICINAL CHEMISTRY

- Different Core Alterations
 - Or a combination of these

Changing an Atom(s)

Changing or breaking a bond including changing the aromaticity of a ring

Adding or Removing an Atom(s) either to a ring or linker

Adding or Removing a Ring either to a ring or linker

Matched Molecular Pairs

- Molecules that differ only by a well-defined structural chemical change are said to have a matched molecular pair
- Two methods of finding MMP
 - Fragment and Index Method

- Break all single rotatable bonds and groups on common 'core' parts
- Single, Double and Triple cuts combinations are made as standard
- Leads to many fragments from a single molecule
- ...and the same pair paired by many combinations of core / frag

Matched Molecular Pairs

B - CHEMBL1784632

- Molecules that differ only by a well-defined structural chemical change are said to have a matched molecular pair
- Two methods of finding MMP
 - Fragment and Index Method
 - Maximum Common Substructure Method

- Structures matched by overlapping of the matching heavy atom
- Semantically the same matched pair as F/I but syntactically different in that 'points of modification' are not the same
- Encoding of the resultant transformation can be different

A - CHEMBL2316582

Matched Molecular Pairs As SMIRKS

- MMP encoded as SMIRKS
 - [c][c]1[c][n][n][c]1 >> [c][n][C]
 - Along with delta values of properties

$$A \xrightarrow{\Delta - 2.721} B$$

smirk.RunReactants((mol,))

Capture the environment around a transformation – up to 4 atoms

Environment size 1: [c][c][c]1[c][n][n][c]1[n] >> [c][n]([c][n])[C]

Capture the environment around a transformation – up to 4 atoms

- Environment size 1: [c][c][c]1[c][n][n][c]1[n] >> [c][n]([c][n])[C]
- Environment size 2: [C][c]1[c][c]2[c][n][n][c]2[n][c]1 >> [C][c]1[c][n][c][n]1[C]

Capture the environment around a transformation – up to 4 atoms

- Environment size 1: [c][c][c]1[c][n][n][c]1[n] >> [c][n]([c][n])[C]
- Environment size 2: [C][c]1[c][c]2[c][n][n][c]2[n][c]1 >> [C][c]1[c][n][c][n]1[C]
- Environment size 3: [C]#[C][c]1[c][c]2[c][n][n][c]2[n][c]1 >> [C]#[C][c]1[c][n][c][n]1[C]

Capture the environment around a transformation – up to 4 atoms

- Environment size 1: [c][c][c]1[c][n][n][c]1[n] >> [c][n]([c][n])[C]
- Environment size 2: [C][c]1[c][c]2[c][n][n][c]2[n][c]1 >> [C][c]1[c][n][c][n]1[C]
- Environment size 3: [C]#[C][c]1[c][c]2[c][n][n][c]2[n][c]1 >> [C]#[C][c]1[c][n][c][n]1[C]
- Environment size 4: [c][C]#[C][c]1[c][c]2[c][n][n][c]2[n][c]1 >> [c][C]#[C][c]1[c][n]1[C]

RuleDesign®

- A rule requires 6 or more MMPs with 95% confidence
- RuleDesign® applies rules to improve a property of interest to provide new molecule suggestions

- RuleDesign gives ideas and a new direction <u>based upon rules</u>
- CoreDesign gives new ideas based upon <u>any previously seen</u> <u>examples – with references</u>

1. Leach et al. J. Chem. Inf. Model. 2017, 57, 2424 - 2436

CoreDesign® Key Differences

- Apply any MMPs that are within the database with environment size 1 or 2
- Property value is not of interest

Rinkers

- Cores are built up of rings and linkers (or a combination)
- These are known as our rinker transformations
- A rinker transformation can be associated to a bibliography as long as the transformation has previously been seen within the same journal article
- Therefore, we can create a biology along with our CoreDesign suggestions

* Rinker != Riniker *

Rinkers

Results viewer					×
<					>
	HN NH		HN NHI		
	CHEMBL2325997		1c566a39-3936-4691-a20b-4235c6413910_4		
> Properties					
✓ References					
Compound A	Compound B	Journal	Title	DOI	0
CHEMBL4468832	CHEMBL4526935	J. Med. Chem.	Synthesis and Antichlamydial Activity of Molecules Based on Dysregulators of Cylindrical Proteases.	10.1021/acs.jmedchem.0c00371	
CHEMBL4649394	CHEMBL4632548	J. Med. Chem.	Treating Cancer by Spindle Assembly Checkpoint Abrogation: Discovery of Two Clinical Candidates, BAY 1161909 and BAY 1217389, Targeting MPS1 Kinase.	10.1021/acs.jmedchem.9b02035 🗹	

* Rinker != Riniker *

2-Aminomethylene-5-

CoreDesign®

How it works...

Performing CoreDesign Transformation

Apply CoreDesign Transformations

Products

Performing CoreDesign Transformation

- Need to let the mol object know what is the core and what isn't
- Protect atoms that are not part of the core

Atom.HasProp('_protected', '1')

Atom.HasProp('core', '1')

Number of Core Substituents

Calculate the number of core substituents and compare

Linker Length

Set a range the linker length can change by (if linker present)

Linker Length

Set a range the linker length can change by (if linker present)

Chem.GetShortestPath(mol, atom1, atom2) = 5

Linker Length

Set a range the linker length can change by (if linker present)

Chem.GetShortestPath(mol, atom1, atom2) = 5

$$\begin{array}{c} & = 7 \\ \text{HN} \\ & \Delta = +2 \end{array}$$

What is a PROTAC?

Built from three components:

- A Proteolysis Targeting Chimera
- Used to remove a selected protein from cells
- Changing the linker (& linker length) is a known problem as other two building blocks are specific for binding

Linker length range -2 to +2

Focussing Suggestions

- Two issues remain in focusing suggestions:
 - Will the core or linker change maintain potency?
 - Filter by preferred vectors, overall shape, docking?

What effect does the replacement have on ADMET properties?

- Particularly in large molecules: on permeability?
 - Understand change in HBD/A, tPSA?

- Do not allow new core substituents
- Linker length range -2 to +2

8 examples

- Do not allow new core substituents
- Linker length range -2 to +2

- Do not allow new core substituents
- Linker length range -2 to +2

- Do not allow new core substituents
- Linker length range -2 to +2

- Do not allow new core substituents
- Linker length range -2 to +2

- Do not allow new core substituents
- Linker length range -2 to +2

Linker length change is +2

- Do not allow new core substituents
- Linker length range -2 to +2

- We do not believe this is adding a new core substituent
- However, the linker length change is +4

- Do not allow new core substituents
- Linker length range -2 to +2

- Do not allow new core substituents
- Linker length range -2 to +2

Summary

Results Allowed

- Do not allow new core substituents
- Linker length range -2 to +2

Results Not Allowed

Conclusions

- MMPs can be used for CoreDesign
 - We can guide the user to iterate in the bibliography where previously seen examples with the same transformation can be reviewed
- Two new filters have been created
- RDKit can be used to achieve this
 - Setting atoms as '_protected' helps to optimise
 - Exploits the GetShortestPath function

