Mann Whitney U Test

Outline

1 Intro

Motivation and purpose Situations of the testing Mann-Whitney Test

2 Theory

2

3 Software simulation

1 Intro

Motivations and Purpose

The procedures for testing two population parameters based on two independent samples.

For testing two population means, the t test can be used, However, alternative (nonparametric) procedures such as the median test and the Mann-Whitney test for **comparing two population medians** are considered when the data **do not meet the basic normal assumption** for the t test.

- Tests of the Difference between Two Medians
 - Median Test
 - Mann-Whitney Test

Situations of the testing

Nonparametric statistics

Nonparametric test

The statistic inference method that the distribution of group is unknown and it's not normal, or sample size is small.

The tests do not require the assumption of a normal distribution.

The Mann-Whitney test is nonparametric test of two independent ordinal samples.

Mann-Whitney Test

Assumptions

- Two independent random samples $X_1, X_2, X_3, ..., X_{n1}$ and $Y_1, Y_2, Y_3, ..., Y_{n2}$ are from two populations with unknown medians M_X and M_Y , where the two populations are identical except different locations.
- The measurement is at least ordinal.
- The variable of interest is continuous.

Test Statistic

- Rank the combined sample from smallest to largest.
- Let the test statistic $T = S n_1(n_1 + 1)/2$, where S is the sum of the rank of the observations from population 1.

Mann-Whitney Test

Decision Rule

- For H_0 : $M_X = M_Y \ H_1$: $M_X \neq M_Y$
 - Reject H_0 if the value of T is sufficiently small or large.
- For H_0 : $M_X \le M_Y$ H_1 : $M_X > M_Y$
 - Reject H_0 if the value of T is sufficiently large.
- For H_0 : $M_X \ge M_Y$ H_1 : $M_X < M_Y$
 - Reject H_0 if the value of T is sufficiently small.

Large-Sample Approximation

$$Z = \frac{T - n_1 n_2 / 2}{\sqrt{n_1 n_2 (n_1 + n_2 + 1) / 12}} \approx N$$

Large sample : $n_1 + n_2 \ge 20$

² Theory

Example_insurance

Question: "Can insurance agent who have received interpersonal relationship training courses leave a 'good' impression on customers?"

GroupX unit:score	18	15	9	10	14	16	11	13	19	17
Rank	19	16	9	10.5	15	17	12	14	20	18
GroupY unit:score	12	10	8	1	2	7	5	3	6	4
Rank	13	10.5	8	1 9	2	7	5	3	6	4

 M_X : The median of insurance agents who have participated in training courses M_Y : The median of insurance agents who have not participated in training courses

 n_X : GroupX sample size n_Y : GroupY sample size

$$H_0: M_X \le M_Y \ H_1: M_X > M_Y$$
$$\alpha = 0.05$$

Example_insurance

Question: "Can insurance agent who have received interpersonal relationship training courses leave a 'good' impression on customers?"

GroupX unit:score	18	15	9	10	14	16	11	13	19	17
Rank	19	16	9	10.5	15	17	12	14	20	18
GroupY unit:score	12	10	8	1	2	7	5	3	6	4
Rank	13	10.5	8	1 10	2	7	5	3	6	4

 $S = sum \ of \ rank \ of \ score \ from \ Group X = 150.5$

$$T = S - \frac{n_x(n_x + 1)}{2} = 150.5 - \frac{10 \times 11}{2} = 95.5$$

$$Z = \frac{95.5 - \frac{10 \times 10}{2}}{\sqrt{10 \times 10(10 + 10 + 1)/12}} = 3.439477$$

Since
$$Z = 3.439477 > Z_{\alpha=0.05} = 1.645$$

Reject H_0 at $\alpha = 0.05$

"We have significant evidence to show that insurance agents who have received interpersonal relationship training courses are more capable of leaving a 'good' impression on customers compared to those who have not received such training."

Software Simulation

score	1	2	3	4	5	6	7	8	9	10
Group X	18	15	9	10	14	16	11	13	19	17
Group Y	12	10	8	1	2	7	5	3	6	4

Group_X <- c(18, 15, 9, 10, 14, 16, 11, 13, 19, 17); Group_Y <- c(12, 10, 8, 1, 2, 7, 5, 3, 6, 4) hist(Group_X); hist(Group_Y) data <- data.frame(Group_X, Group_Y)

	\sim	
1)	
- 1		

TYPE	count	median	IQR
Group_X	10	14.5	5.25
Group_Y	10	5.5	4.5

TYPE	SCORE
Group_X	18
Group_X	15
Group_X	9
Group_X	10
Group_X	14
Group_X	16
Group_X	11
Group_X	13
Group_X	19
Group_X	17
Group_Y	12
Group_Y	10
Group_Y	8
Group_Y	1
Group_Y	2
Group_Y	7
Group_Y	5
Group_Y	3
Group_Y	6
Group_Y	4

TYPE	SCORE
Group_X	18
Group_X	15
Group_X	9
Group_X	10
Group_X	14
Group_X	16
Group_X	11
Group_X	13
Group_X	19
Group_X	17
Group_Y	12
Group_Y	10
Group_Y	8
Group_Y	1
Group_Y	2
Group_Y	7
Group_Y	5
Group_Y	3
Group_Y	6
Group_Y	4

 ${\it M}_{\it X}$: The median of insurance agents who have participated in training courses

 M_Y : The median of insurance agents who have not participated in training courses

$$H_0: M_X \le M_Y \ H_1: M_X > M_Y \qquad \alpha = 0.05$$

res <- wilcox.test(SCORE~ TYPE, data = DATASET,
exact = FALSE,
alternative = "greater")
print(res)

GroupX unit:score	18	15	9	10	14	16	11	13	19	17
Rank	19	16	9	10.5	15	17	12	14	20	18
GroupY unit:score	12	10	8	1	2	7	5	3	6	4
Rank	13	10.5	8	1	2	7	5	3	6	4

W statistic	95.5
P-value	0.0003
Conclusion	Reject H0. Compared with those who have not participated in training, people who have participated in training have a better impression on customers.

Thank you for listening.

