Índice general

1.		liminares	
	1.1.	Metodo del segundo momento	
		Resultados sobre Galton-Watson Tree	
	1.3.	Teorema de la Eleccion	
2.	Resultado sobre el branching process		
	2.1.	Resultado sobre la ultima generación	
		2.1.1. Cota superior	
		2.1.2. Cota inferior	
	2.2.	Resultado sobre todo el arbol	

Capítulo 1

Preliminares

- 1.1. Metodo del segundo momento
- 1.2. Resultados sobre Galton-Watson Tree
- 1.3. Teorema de la Eleccion

Capítulo 2

Resultado sobre el branching process

2.1. Resultado sobre la ultima generación

Durante esta sección, para no sobrecargar de notación, dado un arbol de Galton-Watson T que no se extingue vamos a considerar $P(\cdot|T) = P(\cdot)$, analogamente con la esperanza.

Teorema 1. Dado un GFF $\eta = (\eta_v)_{v \in T_n}$, construido como antes. Entonces,

$$E[\max_{v \in L_n} \eta_v] = n\sqrt{2\log m} (1 + o(1)). \tag{2.1}$$

2.1.1. Cota superior

Sea $\bar{Z}_n = \sum_{v \in L_n} \mathbf{1}_{S_v > (1+\epsilon)x^*n}$, que cuenta la cantidad de vertices, en la *n*-th generación, se encuentran por arriba de $nx^*(1+\epsilon)$. Aplicando el metodo del primer momento: tenemos, para todo $v \in L_n$,

$$E\bar{Z}_n = |L_n|P(S_v > n(1+\epsilon)x^*) \le CWk^n e^{-nI((1+\epsilon)x^*)},$$

Donde aplicamos la desigualdad de Chebyshev en la ultima desigualdad y la definicion de I. Además, por la monotonia estricta de I, tenemos que $E\bar{Z}_n \leq e^{-nc(\epsilon)}$, para algun $c(\epsilon) > 0$. Por lo tanto,

$$P(M_n > (1+\epsilon)nx^*) \le E[\bar{Z}_n] \le CWe^{-c(\epsilon)n}. \tag{2.2}$$

Por otro lado,

$$EM_n \le EM_n \mathbf{1}_{M_n \ge 0} = \int_0^\infty P(M_n > t) dt$$
$$= \int_0^{(1+\epsilon)nx^*} P(M_n > t) dt + \int_{(1+\epsilon)nx^*}^\infty P(M_n > t) dt.$$

Luego, usando la cota de 4.2 en el segundo integrando de 4.3 e integrando, llegamos a que,

$$EM_n \le nx^*(1+\epsilon) + nx^* \frac{CWe^{-2nI(x^*)\epsilon}}{2nI(x^*)}.$$
 (2.3)

Para todo $\epsilon > 0$. Haciendo $\epsilon \to 0$ obtenemos la cota superior.

2.1.2. Cota inferior

Sea y > 0 independiente de n y sea

$$a_n = a_n(y) = x^*n - \frac{3}{2I'(x^*)}\log n.$$

Dado $v \in L_n$, definimos el evento

$$A_v = \{S_v \in [y + a_n - 1, y + a_n], S_v(t) \le a_n t/n + y, t = 1, \dots, n\},\$$

y sea

$$Z_n = \sum_{v \in L_n} \mathbf{1}_{A_v}.$$

Para derivar una cota inferior de EM_n , primero necesitamos una cota inferior en la cola derecha de la distribucion de M_n , la cual vamos a obtener utilizando el metodo del segundo momento. Para esto, primero calculamos $P(A_v)$. Recordemos que $I(x^*) = \log k$, con $\lambda^* = I'(x^*)$. Introducimos un nuevo parametro λ_n^* tal que

$$\lambda_n^* \frac{a_n}{n} - \Lambda(\lambda_n^*) = I(a_n/n).$$

Como $I'(a_n/n) = \lambda_n^*$, es facil chequear que $\lambda_n^* = \lambda^* - 3I''(x^*)\log n/(2nI'(x^*)) + O(1/n)$. (En el caso Gaussiano, $\lambda_n^* = a_n/n$)

Definimos una nueva medida de probabilidad Q en \mathbb{R} por

$$\frac{d\mu}{dQ}(x) = e^{-\lambda_n^* x + \Lambda(\lambda_n^*)},$$

y con un abuso de notacion continuamos usan Q cuando hablemos sobre un paseo aleatorio cuyos incrementos sean i.i.d. y distribuidos de acuerdo a Q. Notar que en el caso Gaussiano, Q solamente modifica la media de P.

Ahora podemos escribir

$$P(A_{v}) = E_{Q}(e^{-\lambda_{n}^{*}S_{v} + n\Lambda(\lambda_{n}^{*})} \mathbf{1}_{A_{v}})$$

$$\geq e^{-n[\lambda_{n}^{*}a_{n}/n - \Lambda(\lambda_{n}^{*})]} E_{Q}(A_{v})$$

$$= e^{-nI(a_{n}/n)} P_{Q}(\tilde{S}_{v} \in [0, 1], \tilde{S}_{v}(t) \geq 0, t = 1, \dots, n).$$
(2.4)

donde $\tilde{S}_v(t) = a_n t/n - S_v(t)$ es un paseo aleatorio con incrementos i.i.d los cuales tienen media 0 bajo Q. Ademas, en el caso Gaussiano, los incrementos son Gaussianos y no dependen de n.

Aplicando el Teorema de la Eleccion, obtenemos que

$$P(A_v) \ge c_0 \frac{y+1}{n^{3/2}} e^{-nI((a_n+y)/n)}.$$
(2.5)

Agrego detalles sobre esto? Como

$$I((a_n + y)/n) = I(x^*) - I'(x^*) \left(\frac{3}{2I'(x^*)} \cdot \frac{\log n}{n} - \frac{y}{n}\right) + O\left(\left(\frac{\log n}{n}\right)^2\right),$$

podemos concluir que

$$P(A_v) \ge c_0(y+1)k^{-n}e^{-I'(x^*)y},$$

y por lo tanto

$$EZ_n = |L_n|P(A_v) \ge \frac{W_T}{C_T}c_0(y+1)e^{-I'(x^*)y}.$$
 (2.6)

Dejamos resaltada la dependencia de las constantes del arbol, ya que va a jugar un papel principal en porque pedimos que tenga grado acotado la distribucion.

A continuación necesitamos probar una cota soperior sobre

$$EZ_n^2 = |L_n|P(A_v) + \sum_{v \neq w \in L_n} P(A_v \cap A_w) = EZ_n + \sum_{v \in L_n} \sum_{s=1}^n |D_s^v| P(A_v \cap A_{v_s}), \quad (2.7)$$

Donde $D_s^v = \{w \in L_n | d(v, w) = 2s\}$ y $v_s \in L_n$ tal que $d(v, v_s) = 2s$. Necesito ver que $|D_s^v|$ es $O(k^s)$, es facil ver

$$|D_s^v| \le |L_s(T_{v_s})| \le C(T_{v_s})Kk^s.$$
 (2.8)

Me faltaria acotar esta constante C universalmente para todo $v_s \in L_{n-s}$. Para esto puedo hacer una especie de probabilidad total, donde condiciono a que todos estos subarboles a partir de la generación l ya esten a lo sumo a distancia β de su W, elijo l y β de forma que este evento tenga alta probabilidad. Por lo que, puedo tomar $C = max\{k^l, \beta\}$.

Ahora veamos de acotar $P(A_v \cap A_{v_s})$, para esto condicionamos al valor de $S_v(n-s)$. En particular, con un poco de abuso de notacion, notamos $I_{j,s} = a_n(n-s)/n + [-j, -j+1] + y$, ahora tenemos que

$$P(A_u \cap A_{v_s}) \leq \sum_{j=1}^{\infty} P(S_v(t) \leq a_n t/n + y, t = 1, \dots, n - s, S_v(n - s) \in I_{j,s})$$

$$\times \max_{z \in I_{j,s}} \left(P(S_v(s) \in [y + a_n - 1, y + a_n], S_v(t) \leq a_n (n - s + t)/n + y, 1 \leq t \leq s \mid S_v(0) = z) \right)^2.$$

Agregar detalles

Usando la cota superior del Teorema de la Eleccion concluimos que

$$P(A_v \cap A_{v_s}) \le \sum_{j=1}^{\infty} \frac{j^5 (y+1)^2}{s^3 (n-s)^{3/2}} e^{-j\lambda^*} n^{3(n+s)/2n} k^{-(n+s)} e^{-(n+s)I'(x^*)y/n}.$$
 (2.9)

Agregar detalles

Juntando todo,

$$\begin{split} EZ_n^2 &= EZ_n + \sum_{v \in L_n} \sum_{s=1}^n |D_s^v| \sum_{j=1}^\infty \frac{j^5(y+1)^2}{s^3(n-s)^{3/2}} \, e^{-j\lambda^*} \, n^{\frac{3(n+s)}{2n}} \, k^{-(n+s)} \, e^{-(n+s)\frac{I'(x^*)y}{n}} \\ &\leq EZ_n + (y+1)^2 \sum_{v \in L_n} \sum_{s=1}^n \frac{K^s}{s^3(n-s)^{3/2}} \, n^{\frac{3(n+s)}{2n}} \, k^{-(n+s)} \, e^{-(n+s)\frac{I'(x^*)y}{n}} \sum_{j=1}^\infty j^5 e^{-j\lambda^*} \\ &\leq EZ_n + (y+1)^2 CW k^n \sum_{s=1}^n \frac{K^s}{s^3(n-s)^{3/2}} \, n^{\frac{3(n+s)}{2n}} \, k^{-(n+s)} \, e^{-(n+s)\frac{I'(x^*)y}{n}} H \\ &\leq EZ_n + H(y+1)^2 CW \sum_{s=1}^n \left(\frac{K}{k}\right)^s \frac{n^{\frac{3(n+s)}{2n}} \, e^{-(n+s)\frac{I'(x^*)y}{n}}}{s^3(n-s)^{3/2}} \\ &\leq EZ_n \left(1 + H(y+1)CW \sum_{s=1}^n \left(\frac{K}{k}\right)^s \frac{n^{\frac{3(n+s)}{2n}} \, e^{-s\frac{I'(x^*)y}{n}}}{s^3(n-s)^{3/2}} \right) \end{split}$$

Por lo tanto,

$$P(M_n \ge a_n - 1) \ge P(Z_n \ge 1)$$

$$\ge \frac{(EZ_n)^2}{EZ_n^2}$$

$$\ge \frac{EZ_n}{1 + H(y+1)CW \sum_{s=1}^n \frac{\left(\frac{K}{k}\right)^s n^{\frac{3(n+s)}{2n}} e^{-\frac{sI'(x^*)y}{n}}}{s^3(n-s)^{3/2}}}$$

$$\ge \frac{\frac{W_T}{C_T} c_0(y+1) e^{-I'(x^*)y}}{1 + H(y+1)CW \sum_{s=1}^n \frac{\left(\frac{K}{k}\right)^s n^{\frac{3(n+s)}{2n}} e^{-\frac{sI'(x^*)y}{n}}}{s^3(n-s)^{3/2}}}$$

$$\ge \frac{\frac{W_T}{C_T} c_0(y+1) e^{-I'(x^*)y}}{1 + H(y+1)CW n^{3/2} \sum_{s=1}^n \left(\frac{K}{k}\right)^s e^{-\frac{sI'(x^*)y}{n}}}.$$

Por otro lado, para cada $v \in L_r$, sea $w(v) \in L_r$ el ancestro de v en la generación r. Entonces, por independencia,

$$P\Big(M_n \le -cs + (n-r)x^* - \frac{3}{2I'(x^*)}\log(n-r)\Big)$$

$$\le \Big(P\Big(M_{n-r} \le (n-r)x^* - \frac{3}{2I'(x^*)}\log(n-r)\Big)\Big)^{|L_r|} + P\Big(\min_{w \in L_r} h_s(w) \le -cr\Big)$$

$$\le \left(1 - \frac{c_0}{1 + HC_T^2(n-r)^{3/2} \sum_{s=1}^{n-r} \left(\frac{K}{k}\right)^s}\right)^{|L_r|} + e^{-c'r}$$

$$\le \left(1 - \frac{c_0}{1 + HC_T^2(n-r)^{3/2} \sum_{s=1}^{n-r} \left(\frac{K}{k}\right)^s}\right)^{\frac{W}{C}k^r} + e^{-c'r}.$$

A partir de 2.9 en el original concluye que

$$EZ_n^2 \le c(y+1)EZ_n,$$

y por lo tanto, usando nuevamente el metodo del segundo momento,

$$P(M_n \ge a_n - 1) \ge P(Z_n \ge 1) \ge c \frac{EZ_n}{y+1} \ge c_0 e^{-I'(x^*)y}$$
(2.10)

Esto completa la evaluación de una cota inferior para la cola derecha de la ley de M_n . Con el fin de obtener una cota inferior para EM_n , solo necesitamos mostrar que

$$\lim_{y \to \infty} \limsup_{n \to \infty} \int_{-\infty}^{y} P(M_n \le a_n(y)) \, dy = 0. \tag{2.11}$$

Por otro lado, para cada $v \in L_n$, sea $w(v) \in L_s$ el ancestro de v en la generación s. Entonces, por independencia,

$$P\left(M_n \le -cs + (n-s)x^* - \frac{3}{2I'(x^*)}\log(n-s)\right) \le (1-c_0)^{k^s} + e^{-c's},\tag{2.12}$$

donde c_0 es como en (2.5.11). Esto implica (2.5.21). Junto con (2.5.20), esto completa la demostración del Teorema 1.

2.2. Resultado sobre todo el arbol

Comparación con literatura o hipótesis.