Project Design Phase-II Technology Stack (Architecture & Stack)

Date	18 October 2022	
Team ID	PNT2022TMID14022	
Project Name	Project - Iot Based Safety Gadget for	
	Child Safety Monitoring and	
	Notification	
Maximum Marks	4 Marks	

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

Guidelines:

- Include all the processes (As an application logic / Technology Block)
- 2. Provide infrastructural demarcation (Local / Cloud)
- 3. Indicate external interfaces (third party API's etc.)

- 4. Indicate Data Storage components / services
- 5. Indicate interface to machine learning models (if applicable)

Table-1: Components & Technologies:

S.No Component Description Technology	S.No	o Component	Description	Technology
---	------	-------------	-------------	------------

1.	User Interface	User had to register and view the other	HTML, CSS, JavaScript
		device's location e.g. Web UI, Mobile App	-
		etc.	
2.	IoT Application Logic-1	Registration of child's and parent's device in	Python
		each other's device	
3.	IoT Application Logic-2	Child's GPS should be in on condition,	IBM Watson Assistant
		Parent's device should always connected to	
		Child's device	
4.	IoT Application Logic-3	If child shouts out of danger it will be notified	IBM Watson STT Service
		to parent's device by tracking & converting	
		using STT	
5.	Database	Data Type can be any format such as arbitrary	SQlite,InFluxDB
		binary data, text. User-defined blob of data	
		sent from Cloud IoT Core to a device etc.	
6.	Cloud Database	Users install tracking software on a cloud	IBM DB2, IBM Clouding etc.
		infrastructure to implement the database.	
7.	File Storage	Files will be labelled with what they contain	IBM Block Storage or Local File
		and how long they should be kept	system
8.	External API-1	Purpose of External API used in the device is	Author API, etc.
		to use the internet for communicating and	
		conducting allotted operations efficiently	
9.	External API-2	External API used in the device to expose data	City Geo-Location Lookup API
		that enables those devices to transmit data to	etc.
		your device/mobile, acting as a data interface.	

10.	Machine Learning Model	IoT and machine learning deliver insights	Object Recognition Model,
		otherwise hidden in data for rapid, automated	Danger Prediction Model etc.
		responses and improved decision making	
11.	Infrastructure (Server / Cloud)	Application Deployment on Local System /	Local, Cloud Foundry,
		Cloud	Kubernetes, Underlying
		Local Server Configuration: Wearable tech	Infrastructure etc.
		device Cloud Server Configuration :massive	
		network that supports IoT devices and	
		applications	

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	Device that removes much of the manual work needed to write and configure code. It provides rapid development, is easy to set up and has a strong support base	Mainflux, Thinger.io, Zetta for non stop streaming of child condition, Openremote
2.	Security Implementations	To trigger the alarm and enable automatic video recording whenever the emergency button is pressed.	e.g. SHA-256, Encryption of data regarding child condition, Firewalls, Antivirus, Data Loss Prevention

3.	Scalable Architecture	If problem arises parents can see all the features like location, temperature, heart beat of the child along with live view around the children without hindrance	Multiple Data Storage Technologies , Reliable Micro services ,Automated Bootstrapping
4.	Availability	Child monitor, audio monitor, location monitor, video monitor	Temperature,Pulsesensor ,GPS,GSM,Web camera ,Raspberry pi microprocessor
5.	Performance	When a child is facing an emergency situation, device button should be pressed so that the device captures the image along with the user information to the enrolled mobile numbers	GSM tracker,High Durable Device Battery