PATENT ABSTRACTS OF JAPAN

(11)Publication number:

03-157816

(43)Date of publication of application: 05.07.1991

(51)Int.CI.

G11B 7/00 G11B 7/24

(21)Application number: 01-296550

15.11.1989

(71)Applicant:

MATSUSHITA ELECTRIC IND CO LTD

(72)Inventor:

NISHIUCHI KENICHI YAMADA NOBORU AKAHIRA NOBUO

(54) OPTICAL INFORMATION RECORDING MEMBER AND OPTICAL INFORMATION RECORDING AND REPRODUCING DEVICE

(57)Abstract:

(22)Date of filing:

PURPOSE: To allow reproducing and recording even if the absorption spectra before and after the recording and the wavelength of a light source vary by providing transparent separating layers between plural recording information layers and recording layers and providing an administration region which administers the intensity of the light with which the respective recording layers are irradiated in the specific part of the recording member. CONSTITUTION: The information recording member is constituted by providing the transparent separating layers 4a to 4b between the respective recording layers 3a to 3b. The administration region 21a for the reproducing power corresponded to the respective recording layers is provided in the specific part of the recording member. The reproducing power is controlled according to the signal from the administration region 21a at the time of reproducing information. Recording is executed successively from one end of the recording layer 3c furthest from the incident light of a light beam or the recording power is controlled according to the quantity of the reflected light from the optical recording member at the time of recording signals. The reproducing or recording of the signals is possible in this way even in such a case in which the absorption spectra change in the wavelength region of the reproducing light before and after the recording.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

BEST AVAILABLE COPY

THIS PAGE BLANK (USPTO)

⑱日本国特許庁(JP)

① 特 出 願 公 開

平3-157816 ⑩公開特許公報(A)

@Int. Cl. 5

識別記号 庁内整理番号 個公開 平成3年(1991)7月5日

7/00 G 11 B 7/24

7520-5D Q $\vec{\mathbf{B}}$ 8120-5D

> 未請求 請求項の数 9 (全9頁) 塞杳請求

60発明の名称

光学情報記録部材および光学情報記録再生装置

頭 平1-296550 の特

願 平1(1989)11月15日 29出

明 西 者 ⑫発

内

大阪府門真市大字門真1006番地 松下電器產業株式会社內

明 者 個発 者 明 個発

Ш 田 亚 赤

昇 夫

大阪府門真市大字門真1006番地 松下電器産業株式会社内

大阪府門真市大字門真1006番地 松下電器產業株式会社內

頣 人 勿出

松下電器産業株式会社

大阪府門真市大字門真1006番地

弁理士 粟野 重孝 理 砂代

外1名

1. 発明の名称

光学情報記録部材および光学情報記録再生装

2. 特許請求の範囲

- (1) 複数の情報記録層と前記記録層の間に透明 な分離層を設けた構成からなる光学情報記録部材 において、 前記記録暦の少なくとも 2 暦は情報再 生用の光源の被長に対し一定の吸収または回折を 伴う記録層から構成され 前記記録部材の特定の 部分に前記各記録層に照射する光の強度を管理す る管理領域を設けたことを特徴とする光学情報記 **妈部扰**
- (2) 各記録層に照射する光の強度を管理する管 理領域を 光顔に最も近い記録層上のデータ領域 に近接する領域に設けることを特徴とする請求項 1 記載の光学情報記録部構
- (3)複数の情報記録層と前記記録層の間に透明 な分離層を設けた構成からなる光学情報記録部材 上に光を照射し 前記記録層の情報を再生する装

層において 再生用の光源と 前記光顔からの光 ピームを前記記録部材上に導く光学的手段と、 前 記記録部材の一部に設けられた管理領域からの情 報にしたがって、前記記録層に照射する光の強度 を設定することを特徴とする光学情報記録再生袋

- (4) 光源からの光ピームを前記記級部材上に導 く光学的手段が 前記光憑からの光ビームを箸脱 可能な平行平板を介して前記記録層上に築光する ことを特徴とする請求項3記載の光学情報記録装
- (5)·複数の情報記録層と前記記録層の間に送明 な分離層を設けた構成からなる光学情報記録部材 上に光を照射し 前記記録層の情報を再生する装 置において 前記記録暦の少なくとも1暦は記録 可能あるいは書き換え可能である記録層から構成 され、記録再生用の光源と、前記光源からの光ビ ームを前記記録部材上に導く光学的手段と 前記 記録部材の記録状態を管理する手段と 前記記録 状態を確認する手段からの出力に対応させて各層

-9-

に対して独立の光強度を設定することを特徴とする光学情報記録再生装置。

- (6) 記録部材の記録状態を管理する手段が 光学情報記録層からの反射光量を検出する手段から構成されることを特徴とする請求項 5 記載の光学情報記録再生装置
- (7) 光源からの光ビームを記録部材上に導く光学的手段が 前記光源からの光ビームを着脱可能な平行平板を介して記録層上に集光することを特徴とする請求項5記載の光学情報記録装置。
- (8) 複数の情報記録層と前記記録層の間に透明な分離層を設けた構成からなる光学情報記録化を照射した光の光学的な変再生的と光の光学的な変再生用して情報を記録する装置において、記録再生用の光源と、前記光源からの光ビームを前記記録層の記録状を発してずる手段と、前記記録層とに導する手段と、前記記録層とに導く、の記録の手段とを備え、前記光ビームの記録層上に導く、の順の手段とを備え、前記光ビームの記録層から順側に対し最も離れた位置にある記録層かり

-3-

書ファイル データファイルへと応用が盛んに行われている追記型の光ディスク 第三は記録消出の可能な光ディスクである。これらの装置の詳細は、例えば「光ディスク技術」(尾上守夫監修ラジオ技術社出版 平成元年2月10日)に記載されている。第二および第三の光記録は、いずれもヒートモードの記録であり、照射した光のエネルギーを記録層が吸収し、温度上昇することにより行われる。

一方 次世代の光記録材料としては フォトンモードで記録できる有機色素等を用いたフォトクロミック材料が検討されている。 これらの材料を用いて 吸収スペクトルの異なる性質の薄膜を積層することにより光多重記録を行い 光ディスクの記録密度を大幅に向上させる方法が提案されている.

発明が解決しようとする課題

上記のような光多重記録のための記録材料には 各層の記録前後の吸収スペクトラムと信号再生用 の光顔の彼長を一致させる必要がある。 しか し

次記録を行なっことを特徴とする光学情報記録再 生装<mark>性</mark>

(9) 記録層の少なくとも I 層は書き換えが可能である記録層で構成され 前記記録媒体への記録を関しては始めに前記光ビームの記録のおへの記録の開始し、順次光ビームの入射側の層に記録を行ない 一旦全ての層に記録が行なわれた後に 書き換えモードで動作を行なうことを特徴とする請求項 8 記載の光学情報記録再生装置

3. 発明の詳細な説明

産業上の利用分野

本発明は、複数の情報記録層を備えた光記録部 林、および記録部材上に情報を記録再生する装置 に関する。

従来の技術

レーザー光等の高密度エネルギー光東を利用して情報の記録・再生を行う技術は既に公知であり、第一はコンパクトディスクやレーザディスクに代表される再生専用の光ディスクである。 第二は文

-4

光記録装置の 光源としては半導体レーザが一般的であるが 現在室温で連続発振可能な半導体レーザの披長は 850、780、670 nmと限られた範囲である。

このため 半導体レーザを用いて光多重記録を行なうためには 各層がそれぞれの記録レーザ光の波長に対して選択的な吸収特性を示すことが必要である。 さらに記録の前後で記録層の光学する (国折率 消衰係数)が、それぞれの目的ととでもの関の再生光の波長に対しては変化率が大きいと、他の関である。 しかい である 記録材料の お発には 至っていない

本発明は 複数の記録層を積層してなる多層構造の光学情報記録部材に対し 各記録層の材料組成が同一 あるいは各記録層の材料は異なるが記録前後で吸収スペクトルが再生光の波長領域で変化するような場合においても 信号の再生あるいは記録が可能である光学情報記録部材および記録

-8-

再生装置を提供することを目的とする

課題を解決するための手段

情報記録部材を各記録層の間に透明な分離層を 設けた構成とし 記録部材の特定の部分に各記録 層に対応させた再生パワーの管理領域を設ける。

情報の再生時には管理領域からの信号に応じて 再生パワーを制御する。また、信号の記録時には 光ピームの入射側に対し最も離れた記録層の一端 から順次記録を行なう。 あるいは、光記録部材か らの反射光景に応じて記録パワーを制御する。

作用

各記録層の間に透明な分離層を設けることにより、 記録層間を一定の距離にする事ができ、 目的とする記録層に近接した層からの影響を小さくすることができる。

また再生光のパワーを各記録層に応じて変化させることにより、各記録層から一定の損幅を持つ再生信号を得ることができ、記録層に形成された情報を誤りなく復願することができる。

また 記録を光ピームの入射側に対し最も離れ

-7-

表面には光ピームのトラッキング用の記録方向に 一定の硬さを持つガイドトラック、 またはサンプ ルサーボトラッキング用の凹凸ピットが形成され ている。

記録層 3 a, 3 b, 3 c を構成する材料には 再生専用 1回だけ記録可能な追記型 再記録の 可能な香換え型の3種類がある。 再生専用では 基板 2 あるいは分離層 4 の表面に凹凸ピットを情 報として形成したものを用い 記録層の材料の機 能としては一定の反射率 透過率を示す薄膜で 例えばAl,Au等の金属材料が適用できる。 この場合 の記録状態は凹凸ピットの回折による反射光量あ るいは透過光量の変化を 利用して信号の再生を 行なう。 追記型の記録材料としては、Te-0,Te-Pd -O. Sb-Se,BiTe等の相変化を利用するもの 即ち アモルファスー結晶間の光学定数の差を利用して 信号を記録する。また、Te-C,TeSe,有機色素材料 等の形状変化による回折あるいは記録膜の有無に よる反射光量あるいは透過光量の変化を利用して 記録を行なう記録材料がある。 書換え型には 照

た記録層の一端から順次記録を行なうことにより、 各層に対し1つの記録パワーを設定するだけで確 実な記録が行なわれる。

さらに 光記級部材からの反射光景に応じて記録パワーを制御することで、 各記録層の記録状態にかかわらず任意の記録層に記録することが可能となる。

要施例

(実施例1)

第2図は 本発明に用いる光学情報記録部材の一実施例を示す断面図である。 光学情報記録部材である光ディスク 1 は基板 2 上に複数の情報記録層3 a、 3 b、 3 c を備え 各記録層の間は 分離層4 a、 4 b により熱的に かつ光学的に分離されている。情報記録層3 は 凹凸や 光学的な速度差あるいはピットからなる情報パターンが形成されている。

光ディスク用の茲板 2 としては、ポリカーポネートやポリメチルメタアクリレート (PMMA) 等の樹脂材料 及びガラスが用いられる。 基板の

-8-

射された光を吸収し昇湿することにより、アモルファスー結晶間あるいは結晶ー結晶間の相変が効果を利用した光磁気に緩材料がある。アモルファスー結晶間の相変化には、GeTe、GeTeSb、GeSbTeSe、InSe、InSbTe、InSeTICO等の材料が、また結晶ー結晶にいることができる。光磁気に銀材料としては、MnBi、GdTbPe、TbPeCo系の材料でCo-Pt、Co-Pd等の超構造とはできる。前記3種類のほととは構造とはできる。前記3種類のほととはできなが適用できる。前記3種類のほとは情報の再生は困難である。また、光により直接変移するスピロピラン系に代表されるフォトクロミック材料等も適用できる。

各記録層に形成された情報を、分離して独立に 再生可能とするため透明分離層 4 a、 4 b を記録 層間に設ける。透明分離層 4 a、 4 b は照射光の 彼長に対して、光吸収が小さく薄膜の形成が容易 であることが要求され、SiOa、ZnS、SiN、AlN等の誘 電体材料あるいはPMMA、ポリスチレン等の樹脂材料 等を用いることができる。 記録層 3 の間隔は 各に記録層に記録された信号の許例から見て最終の保護 合わせて設定する。 光の制例はするための保護 層 5 を設ける。 保護層を材料としては 前できる。 保護層に用いた材料できる。 または透明分離層に用いた材料できる。また、 ディスクの特定部に例えばデータ記録はに近接した記録 投 の管理を記録 は に エスクの記録 状 飽の管理 を記録 で の管理をするための情報を記録する。

第2図以外に 記録層3 c と保護層の間に 透明分離層と反射層を設け 照射した光の利用効率を高める方法がある。 反射層用の材料としては入射光に対し一定の反射率を示すもので A 1, A u などの金属が用いられる。

次に第1図により、本発明の記録装置の一実施例を説明する。全体は、レーザ駆動部A、光学系B、再生制御部Cから構成される。

レーザ駆動部Aは 光ディスク 1 からの情報を 再生する場合には コントローラ 6 からの制御信

-11-

ーザ8を用いる。 レーザ駆動部Aにより変調された半導体レーザ8の光はコリメータレンズ14により平行光となり、 偏向ビームスブリッター15で反射され、1/4被長板16を透過し、対物レンズ12により所定の光学長を有する平行平板13径で光ディスク1の情報記録面上に集光される。

また、情報記録層からの反射光は、再び平行平板13、対物レンズ12、1/4 披長板16を経て、偏向ビームスプリッター15を透過し、光検出器17に入射する。光検出器により光電変換された信号17sは、再生制御部Cのプリアンプ18により増幅される。

再生制御部 C は、フォーカス・トラッキング制御部 1 9 によりプリアンンプ信号 1 8 c からフォーカスエラー信号 トラッキング信号を作成し制御信号に従って対物レンズ 1 2 を支持するポイスコイル 2 0 を駆動する。この結果 光ディスク1上の記録層の所定の位置に光ビームを照射することができる。

一方 ディスク管理部21では 光ディスク上

光学系 B は 基本的に 従来の 光ディスク 装置と同じ構成であるが 異なる点は 光ディスク 1 が複数の 記録層を持つため 複数の 記録層の中から目的の 層に光を集光する手段が必要である。 ここでは 対物レンズ 1 2 と光ディスク 1 の間に光路長を変更用の透明平板 1 3 を設け、目的とする記録層に応じて平行平板の厚さを選択する方法を用いた

光ディスク上に信号を記録 あるいは記録され た信号を再生するための光源としては 半導体レ

-12-

第3図により、多層構造の光ディスク上に光を 集光するためのフォーカシング法について説明する。光ディスクの分野で用いられる対物レンスは 所定の光学長 例えば屈折率が 1. 5であり、厚さ1. 2 mmの基材を透過した後に正しく焦点を 結ぶ構成(各種収差が小さい状態)となって対物レ 本発明の再生法では この特性を利用して対物レンズ12と光ディスク1の間に透明な平行平板1

記録層 3 から対物 3を設ける・即ち、目的とす レンズ12までの間で 平行平板13と 光ディ スク芸板2と 透明分離層4の厚さを合計した値 (光学長)が1.2mmとなるように各層の値を 設定する。 例えば記録層 3·a、 3 b、 3 c の厚さ は 1 µ m 以下 と 透明分離層 4 a、 4 b の厚さに 比べ十分に小さくする。 透明分離層 3 a、 3 b が 共に100μmであれば透明平板の厚さは 10 0μmと200μm、光ディスク基板の厚さは1 mmとする。 この場合 ディスク基板と透明分離 届と透明平板は それぞれの屈折率が 1. 5に近 い程 光の集光状態が最適となる。 なお光ディス クは 未記録の状態で各記録層がほぼ均等に光を 吸収するよう各層の厚さを設定する。 即ち 第3 図(a)の平行平板がない場合は光源からの最終 の記録層3c 冬 (b)は平行平板13a が10 0 μmであり記録層 3 b を (c)は平行平板 1 3 a が 2 0 0 μ m であり記録層 3 c を再生する。 以上のように 目的とする記録層に対応して 平 行平板を選択することにより、 任意の記録層に光

-15-

N A / n)) · · · (I)

ここで L = 8 3 0 n m N A = 0. 5、 n = 1. 5、 a = 1 0 即ち クロストーク量 2 0 d B とすると 記録層間隔は d = 3. 7 μmとなる。 即ち 許容できるクロストーク量が決定されたならばず 1 より求められた値以上に記録層間隔を設定すれば良い。 なお 式1 は厳密には各層の回折の影響を考慮する必要があるが、各種記録層の記録原理及び材料特性の影響によりその値は機々である。

を集光することができる

一方 各層におけるトラッキングの制御は 従来の光ディスクの方式を用い 連続 ガイドトラックの場合はブッシュブル方式 サンブルビットの場合は サンブルサーボ方式により 行なう。以上のような方式により、任意の記録層の任意の位置に光を照射することが可能となる。

-16-

ここでは記録圏3aと3b上の光スポットと比より近似的に求めた結果である。 式 1 からさらにクロストーク影響を小さくするためには、記録層間隔を大きく散定すれば良いことがわかる。 しかし記録層の間隔を大きくするに従って、 光検出器 17に到達する光量が減少するため、 再生信号の振幅が低下し、 データの復願時にエラーを生じる

6 . . .

最内周部等のデータ領域の周囲に光学的に記録する場合や 他の方法としてはディスクを保護するためのカートリッジの一部に磁気的 光学的あるいは半導体メモリ等の手及で設けられる。 この領域に記録された値を、再生装置にディスクをセットした時点で、読みだすことにより、データの確実な再生が行なわれる。

次に 多層構造ディスクの記録方法について説明する。 前述のように 各記録暦は近接する記録層の影響により、記録膜に到達する光の強度が低下する。 このため、第3図の第1の記録層3aにデータをランダムに記録した場合には、光源の出が一定であったとしても、第1層3aの記録状態により、第2層3b、第3層3cに到達する光量が変化する。

本発明においては 記録層の特定の位置 例えば第1層のデータ記録領域の外側にディスクの管理領域を設け、光ディスクのデータ記録履歴を管理する。管理情報に従ってデータの記録開始点を光の入射側に対し最も離れた位置にある記録層か

-19-

ーと同様に2つの消去パワーを設定する。 (実施例2)

ここでは 予め各記録層に対応した照射パワーを設定せずに 照射パワーを制御する方法について説明する

データの再生時に一旦所定のパワーの光を照射した後に、目的とする記録層からの反射光量に応じて、照射パワーにパワーサーボを行なう。例えば第2層3bを再生する場合、光検出器17に到達する光量は第1層の吸収、あるいは回折の影響により反射光量が著しく低下すると、同時に再生援幅が低下する。この反射光量が一定となるように、再生光光源のパワーにサーボをかける。

記録あるいは記録消去の可能な記録層の場合は 予め光ディスクの各層が未記録状態の反射光量 順次記録状態の反射光量を測定し、それぞれの状態における。各層の反射光量と記録に必要なれる光線 の出力が実験的に求めておく。これらの結果をコントローラ8に記憶させることで、反射率測定部 22からの出力信号をもとに、目的とする記録層 ら順次記録する方法をとる。 以上の構成とすることで、記録光を照射する層よりも光源側の記録層は、常に未記録状態であり、 東光 される光は記録ピットによる光の回折及び、 吸収 率の変化を解消することができる。 この結果、 記録時のレーザ光の照射パワーは、 それぞれ記録層 に対応して1種類の値を設定するだけで記録が可能となる。

-20-

に必要な光源の光出力が特定され、この結果に従ってレーザ駆動回路 1 0 を駆動することにより、信号の記録が行なわれる。以上の構成によれば、各層の記録状態を制限することなく、かつ記録パワー不足等による記録エラーを回避できる。

ここまでは 反射光量に応じてパワーサーボを 行なう場合であったが 他の方法としては 再生 信号の振幅によりパワーサーボを加える方法がある。 データの記録に際して 常にデータの先頭の 部分に一定のパターンからなる信号を記録する構 成とし この振幅に対してサーボを行なう。

以上の構成とすることにより複数の記録層からなる光ディスクの任意層に、データを再生 記録 あるいは記録消去することが可能となった。

(実施例3)

ここまでは、単一の光源を用いて複数の記録層を再生する構成であったが、本発明は、複数の光源を用いて記録再生する場合においても同様に適用できる。

第4図は、複数の記録層に対応して、それぞれ

-22-

単独の発光波長の異なる3 3 た 2 6 a. 2 6 b. 2 6 c を設けた例である。 即 5 数 と 2 の 色収 を を 利用 し で あれ で れ で の と で と で と の と で は で と で と で と な と こ で ら に 色 収 差 の で は で さ を と か で き る。 と の で き る。 と が で き る。

第 5 図は 同一波長の複数光源を用いる方法であり、光源 2 8 a、 2 8 b、 2 8 c とコリメータレンズ 1 4 間の距離を段階的に強過した後のではより、対物レンズ 1 2 を透過した後の地域とは、第 4 図 第 5 図 光 供出器の群型は、第 4 図 第 5 図 光 大 と同様の構成で、光 は 中 に 偏向 ビーム 光 光 と 同様の 構成で、フラー 等 に よ り 大 か な と の 光 検 出器を 設ければよい。

-23-

での記録状態による回折を無視することができ、 有利である。

以上の方法により、 複数の情報記録層からの情報が再生可能となり、 光記録部材の記録容量の向上が図れる。

発明の効果

本発明により、複数の情報記録層からの情報が再生可能な記録部材の提供 およびそれらの部材に対し信号の記録・再生が可能となり、 光記録部材の記録容量の向上が図れる。

4. 図面の簡単な説明

第1図は本発明の一実施例における記録再生装置全体の構成図 第2図は光情報記録部材の断面図 第3図は単一ビームによる多層構造記録媒体の焦点制御の標理図 第4図は複数ビームによる多層構造記録媒体の焦点制御の構成図 第5図は被成図である。

1 ・・・光ディスク、 2 ・・・基板 3・・・記録風 4 ・・・分離圏 7・・・駆助回路 8・・・光線 1 2・・・

各光源のパワーは 例1と同様に名層に対応した値を設定する。 その方法としては 予め各値をディレクトリー等で管理する方法 あるいは 照射した光の反射光量に応じて照射パワーを変化させるいずれにも対応できる。

以上のような構成によれば 複数層を同時に再 生 あるいは記録することが可能となる。

ここでは情報層が3層の場合について述べたが情報層が2層の場合、情報層の吸収率が低く、また回折効果の少ない情報層を複層することでさらに多層の場合の情報再生も可能である。

なお情報記録暦については、例えばコンパクトアイスクのピットのような形状変化によるも品間の状態変化を利用したもの、あるいは磁性体の関光学効果により信号を再生する光磁気配録をおりに上記の薄膜を組みあれる。 特に入射光に近気の情報層を配置する方法によれば、光磁気記録層

-24-

対物レンズ 17・・・光検出器 13・・・平行平板 21・・・ディスク管理部 21 a・・・ディスク管理領域 2・2・・・反射率測定部

代理人の氏名 弁理士 粟野鼠孝 ほか1名

第 4 図

第 5 図

THIS PAGE BLANK (USPTO)