N°: Nome: Curso:

${ m ALGA~I} - 2011/2012$	Perg.	Cotação	
1 ^a Chamada - 9 de Janeiro de 2012	1-4	(12x0.5) 6.0	
Exame A	5	1.0	
AVISO:	6	6.5	
O Exame que vai realizar é constituído por duas partes.	7	3.5	
As respostas às perguntas/alíneas da 1ª Parte devem	8	3.0	
ser dadas unicamente nos respectivos espaços, não			
sendo necessário apresentar os cálculos intermédios.			
Na resolução da 2ª Parte deve apresentar todos os			
cálculos e todas as justificações necessárias.	Total	20.0	

1^a Parte

1. Para cada k e t pertencentes a \mathbb{R} , considere o sistema AX = B em que

$$A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2k - 1 & 3 & 0 \\ 0 & 0 & 0 & k + 5 \end{bmatrix}$$
 e
$$B = \begin{bmatrix} 1 \\ 3k \\ t - 3 \end{bmatrix}.$$

(a)	Após discutir o sistema em função dos parâmetros k e t , complete cada alínea de modo
	a obter uma afirmação verdadeira:

- (i) O sistema AX = B é impossível se e só se

- (b) Para k = 1 e t = 0 o conjunto das soluções do sistema AX = B é:

.....

3. Para cada $b \in \mathbb{R}$, considere as matrizes reais

$$A_b = \begin{bmatrix} b & 0 & b \\ 2 & b - 1 & 0 \\ b & 0 & b + 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 1 & -1 & 2 \\ 2 & 4 & -2 & 2 \\ 3 & 5 & 1 & 0 \\ -3 & -5 & 2 & 1 \end{bmatrix}.$$

(a) Complete:

i.
$$A_2^T - A_2 =$$

$$CB =$$

ii.
$$det(BC) =$$

$$det(D) =$$

iii.
$$A_2^{-1} =$$

- (b) Indique:
 - i. Os valores de b para os quais A_b é invertível.
 - ii. Uma decomposição LU de A_4 .
 - iii. Matrizes elementares E_1 e E_2 tais que $E_2E_1A_b=\left[\begin{array}{ccc}0&0&1\\2&b-1&0\\b&0&b+2\end{array}\right].$

4. Sejam α e β bases de \mathbb{R}^2 . Sabendo que $\beta = ((-1, -5), (2, 3))$ e a matriz de mudança da base α para a base β é $\begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$, determine a base α .

.....

2^a Parte

Na resolução da 2ª Parte deve apresentar todos os cálculos e todas as justificações necessárias.

6. No espaço vectorial real \mathbb{R}^3 , munido do produto interno canónico, considere o subespaço vectorial

$$F = <(1, 2, -1), (1, -2, 3), (3, 2, 1) > .$$

- (a) Determine a dimensão de F. Justifique.
- (b) Indique uma base ortogonal de F.
- (c) Exprima o vector (3,5,1) como soma de um vector de F com um vector de F^{\perp} .
- (d) Justifique que F^{\perp} tem dimensão 1 e indique uma base de F^{\perp} .
- (e) Indique um subespaço G de \mathbb{R}^3 tal que $\mathbb{R}^3 = F \oplus G$.
- (f) Diga, justificando, se a afirmação seguinte é verdadeira ou falsa:

$$\cos \angle (w, (-1, 1, 1)) = 0, \ \forall w \in F.$$

7. Considere o espaço vectorial real \mathbb{R}^4 e o seu subespaço

$$F = \{(a+2b, a+2b, a-b, 3a-b) : a, b \in \mathbb{R}\}.$$

- (a) Determine uma base de F.
- (b) Determine uma base de \mathbb{R}^4 que inclua a base de F encontrada na alínea anterior.
- (c) Indique, caso exista, um subespaço G de \mathbb{R}^4 tal que $\dim G = 2$ e $\dim(F \cap G) = 1$. Justifique.
- 8. Seja $n \in \mathbb{N}$ tal que $n \geq 2$ e seja $C \in M_n(\mathbb{R})$. Considere o conjunto

$$\mathcal{F}_C = \{ A \in M_n(\mathbb{R}) : AC = CA \}.$$

Mostre que

- (a) \mathcal{F}_C é subespaço do espaço vectorial real $M_n(\mathbb{R})$.
- (b) Se $C = \alpha I_n$, para algum $\alpha \in \mathbb{R}$, então $\mathcal{F}_C = M_n(\mathbb{R})$.
- (c) $dim(\mathcal{F}_C) \geq 2$. Sugestão: Considere separadamente o caso do sistema de vectores (I_n, C) ser linearmente dependente e o caso de (I_n, C) ser linearmente independente.