

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Teile & Herrsche (Divide & Conquer)

- Teile Eingabe in mehrere Teile auf
- Löse das Problem rekursiv auf den Teilen
- Füge die Teillösungen zu einer Gesamtlösung zusammen

Teile & Herrsche (Divide & Conquer)

- Teile Eingabe in mehrere Teile auf
- Löse das Problem rekursiv auf den Teilen
- Füge die Teillösungen zu einer Gesamtlösung zusammen

Beispiel (Sortieren)

15	7	6	13	25	4	9	12
----	---	---	----	----	---	---	----

Teile & Herrsche (Divide & Conquer)

- Teile Eingabe in mehrere Teile auf
- Löse das Problem rekursiv auf den Teilen
- Füge die Teillösungen zu einer Gesamtlösung zusammen

Beispiel (Sortieren)

Schritt 1: Aufteilen der Eingabe

Teile & Herrsche (Divide & Conquer)

- Teile Eingabe in mehrere Teile auf
- Löse das Problem rekursiv auf den Teilen
- Füge die Teillösungen zu einer Gesamtlösung zusammen

Beispiel (Sortieren)

Schritt 2: Rekursiv Sortieren

Teile & Herrsche (Divide & Conquer)

- Teile Eingabe in mehrere Teile auf
- Löse das Problem rekursiv auf den Teilen
- Füge die Teillösungen zu einer Gesamtlösung zusammen

Teile & Herrsche (Divide & Conquer)

- Teile Eingabe in mehrere Teile auf
- Löse das Problem rekursiv auf den Teilen
- Füge die Teillösungen zu einer Gesamtlösung zusammen

Teile & Herrsche (Divide & Conquer)

- Teile Eingabe in mehrere Teile auf
- Löse das Problem rekursiv auf den Teilen
- Füge die Teillösungen zu einer Gesamtlösung zusammen

Beispiel (Sortieren) Schritt 3: Zusammenfügen 6 7 13 15 4 9 12 25

Teile & Herrsche (Divide & Conquer)

- Teile Eingabe in mehrere Teile auf
- Löse das Problem rekursiv auf den Teilen
- Füge die Teillösungen zu einer Gesamtlösung zusammen

Beispiel (Sortieren) Schritt 3: Zusammenfügen 6 7 13 15 4 9 12 25

Teile & Herrsche (Divide & Conquer)

- Teile Eingabe in mehrere Teile auf
- Löse das Problem rekursiv auf den Teilen
- Füge die Teillösungen zu einer Gesamtlösung zusammen

Beispiel (Sortieren) 4 6 7 9 Continue of the series of t

Teile & Herrsche (Divide & Conquer)

- Teile Eingabe in mehrere Teile auf
- Löse das Problem rekursiv auf den Teilen
- Füge die Teillösungen zu einer Gesamtlösung zusammen

Beispiel (Sortieren) 4 6 7 9 12 Schritt 3: Zusammenfügen 6 7 13 15 4 9 12 25

Teile & Herrsche (Divide & Conquer)

- Teile Eingabe in mehrere Teile auf
- Löse das Problem rekursiv auf den Teilen
- Füge die Teillösungen zu einer Gesamtlösung zusammen

Beispiel (Sortieren) 4 6 7 9 12 13 Schritt 3: Zusammenfügen 6 7 13 15 4 9 12 25

Teile & Herrsche (Divide & Conquer)

- Teile Eingabe in mehrere Teile auf
- Löse das Problem rekursiv auf den Teilen
- Füge die Teillösungen zu einer Gesamtlösung zusammen

Beispiel (Sortieren) 4 6 7 9 12 13 15 6 7 13 15 4 9 12 25

Teile & Herrsche (Divide & Conquer)

- Teile Eingabe in mehrere Teile auf
- Löse das Problem rekursiv auf den Teilen
- Füge die Teillösungen zu einer Gesamtlösung zusammen

Beispiel (Sortieren)

Schritt 3: Zusammenfügen

Teile & Herrsche (Divide & Conquer)

- Teile Eingabe in mehrere Teile auf
- Löse das Problem rekursiv auf den Teilen
- Füge die Teillösungen zu einer Gesamtlösung zusammen

Wichtig

- Wir benötigen Rekursionabbruch
- Sortieren: Folgen der Länge 1 sind sortiert

- 1. if p < r then
- 2. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 3. MergeSort(A, p, q)
- 4. MergeSort(A, q + 1, r)
- 5. Merge(A, p, q, r)

MergeSort(Array A, p, r)

- 1. if p < r then
- 2. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 3. MergeSort(A, p, q)
- 4. MergeSort(A, q + 1, r)
- 5. Merge(A, p, q, r)

 \triangleright Sortiere A[p..r]

MergeSort(Array A, p, r)

- 1. **if** p < r then
- 2. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 3. MergeSort(A, p, q)
- 4. MergeSort(A, q + 1, r)
- 5. Merge(A, p, q, r)

 \triangleright Sortiere A[p..r]

- 1. **if** p < r then
- $2. q \leftarrow \lfloor (p+r)/2 \rfloor$
- 3. MergeSort(A, p, q)
- 4. MergeSort(A, q + 1, r)
- 5. Merge(A, p, q, r)

- \triangleright Sortiere A[p..r]
- $ightharpoonup p \geq r$, dann nichts zu tun

- 1. if p < r then
- 3. MergeSort(A, p, q)
- 4. MergeSort(A, q + 1, r)
- 5. Merge(A, p, q, r)

- \triangleright Sortiere A[p..r]
- $ightharpoonup p \geq r$, dann nichts zu tun

- 1. if p < r then
- 3. MergeSort(A, p, q)
- 4. MergeSort(A, q + 1, r)
- 5. Merge(A, p, q, r)

- \triangleright Sortiere A[p..r]
- $ightharpoonup p \geq r$, dann nichts zu tun
- Berechne Mitte

- 1. if p < r then
- $2. q \leftarrow \lfloor (p+r)/2 \rfloor$
- $3. \qquad \text{MergeSort}(A, p, q)$
- 4. MergeSort(A, q + 1, r)
- 5. Merge(A, p, q, r)

- \triangleright Sortiere A[p..r]
- $ightharpoonup p \geq r$, dann nichts zu tun
- > Berechne Mitte

- 1. if p < r then
- $2. q \leftarrow \lfloor (p+r)/2 \rfloor$
- 3. MergeSort(A, p, q)
- 4. MergeSort(A, q + 1, r)
- 5. Merge(A, p, q, r)

- \triangleright Sortiere A[p..r]
- $ightharpoonup p \geq r$, dann nichts zu tun
- Berechne Mitte
- > Sortiere linke Hälfte

- 1. if p < r then
- 2. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 3. MergeSort(A, p, q)
- 4. MergeSort(A, q + 1, r)
- 5. Merge(A, p, q, r)

- \triangleright Sortiere A[p..r]
- $ightharpoonup p \geq r$, dann nichts zu tun
- Berechne Mitte
- > Sortiere linke Hälfte

- 1. if p < r then
- 2. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 3. MergeSort(A, p, q)
- 4. MergeSort(A, q + 1, r)
- 5. Merge(A, p, q, r)

- \triangleright Sortiere A[p..r]
- $> p \ge r$, dann nichts zu tun
- Berechne Mitte
- ➤ Sortiere linke Hälfte
- ➤ Sortiere rechte Hälfte

- 1. if p < r then
- $2. q \leftarrow \lfloor (p+r)/2 \rfloor$
- 3. MergeSort(A, p, q)
- 4. MergeSort(A, q + 1, r)

- \triangleright Sortiere A[p..r]
- $ightharpoonup p \geq r$, dann nichts zu tun
- Berechne Mitte
- ➤ Sortiere linke Hälfte
- > Sortiere rechte Hälfte

- 1. if p < r then
- $2. q \leftarrow \lfloor (p+r)/2 \rfloor$
- 3. MergeSort(A, p, q)
- 4. MergeSort(A, q + 1, r)

- \triangleright Sortiere A[p..r]
- $ightharpoonup p \geq r$, dann nichts zu tun
- Berechne Mitte
- ➤ Sortiere linke Hälfte
- ➤ Sortiere rechte Hälfte
- > Zusammenfügen

MergeSort(Array A, p, r)

- 1. if p < r then
- 2. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 3. MergeSort(A, p, q)
- 4. MergeSort(A, q + 1, r)
- 5. Merge(A, p, q, r)

Aufruf des Algorithmus

MergeSort(A, 1, r) für r = length[A]

- \triangleright Sortiere A[p..r]
- $\triangleright p \ge r$, dann nichts zu tun
- Berechne Mitte
- ➤ Sortiere linke Hälfte
- ➤ Sortiere rechte Hälfte
- > Zusammenfügen

Erweiterte Induktion

- (I.A.) Aussage A(1) ist richtig
- (I.V.) Aussage A(m) gilt für alle $1 \le m \le n$
- (I.S.) Aus (I.V.) folgt Aussage A(n + 1)
- Bisher hatten wir nur A(n) benutzt, um A(n+1) zu folgern. Nun nutzen wir alle A(m) mit $1 \le m \le n$ (oder eine Teilmenge).

Satz 4

Algorithmus MergeSort(A, p, r) sortiert das Feld A[p..r] korrekt.

Satz 4

Algorithmus MergeSort(A, p, r) sortiert das Feld A[p..r] korrekt.

Beweis

• Wir zeigen die Korrektheit per Induktion über n = r - p.

Satz 4

Algorithmus MergeSort(A, p, r) sortiert das Feld A[p..r] korrekt.

Beweis

- Wir zeigen die Korrektheit per Induktion über n = r p.
- (I.A.) Für n = 0, d.h. p = r, macht der Algorithmus nichts. Das Feld A[p..r] enthält nur ein Element und ist somit sortiert.

Satz 4

Algorithmus MergeSort(A, p, r) sortiert das Feld A[p..r] korrekt.

Beweis

- Wir zeigen die Korrektheit per Induktion über n = r p.
- (I.A.) Für n = 0, d.h. p = r, macht der Algorithmus nichts. Das Feld A[p..r] enthält nur ein Element und ist somit sortiert.
- (I.V.) Für alle r, p mit m = r p und $0 \le m \le n$ sortiert MergeSort(A, p, r) das Feld A[p..r] korrekt.

Satz 4

Algorithmus MergeSort(A, p, r) sortiert das Feld A[p..r] korrekt.

Beweis

(I.V.) Für alle r, p mit m = r - p und $0 \le m \le n$ sortiert MergeSort(A, p, r) das Feld A[p..r] korrekt.

Satz 4

Algorithmus MergeSort(A, p, r) sortiert das Feld A[p..r] korrekt.

Beweis

- (I.V.) Für alle r, p mit m = r p und $0 \le m \le n$ sortiert MergeSort(A, p, r) das Feld A[p..r] korrekt.
- (I.S.) Wir betrachten den Aufruf von MergeSort für beliebige p, r mit n+1=r-p. Da n+1>0 folgt p< r und der Algorithmus führt den **then**-Fall aus. Hier wird q auf $\lfloor (p+r)/2 \rfloor$ gesetzt.

Satz 4

Algorithmus MergeSort(A, p, r) sortiert das Feld A[p..r] korrekt.

Beweis

- (I.V.) Für alle r, p mit m = r p und $0 \le m \le n$ sortiert MergeSort(A, p, r) das Feld A[p..r] korrekt.
- (I.S.) Wir betrachten den Aufruf von MergeSort für beliebige p, r mit n+1=r-p. Da n+1>0 folgt p< r und der Algorithmus führt den **then**-Fall aus. Hier wird q auf $\lfloor (p+r)/2 \rfloor$ gesetzt. Es gilt $q \geq p$ und q < r.

Satz 4

Algorithmus MergeSort(A, p, r) sortiert das Feld A[p..r] korrekt.

- (I.V.) Für alle r, p mit m = r p und $0 \le m \le n$ sortiert MergeSort(A, p, r) das Feld A[p..r] korrekt.
- (I.S.) Wir betrachten den Aufruf von MergeSort für beliebige p, r mit n+1=r-p. Da n+1>0 folgt p < r und der Algorithmus führt den then-Fall aus. Hier wird q auf [(p+r)/2] gesetzt. Es gilt q ≥ p und q < r. Dann wird MergeSort rekursiv in den Grenzen p, q bzw. q+1,r aufgerufen.

Satz 4

Algorithmus MergeSort(A, p, r) sortiert das Feld A[p..r] korrekt.

- (I.V.) Für alle r, p mit m = r p und $0 \le m \le n$ sortiert MergeSort(A, p, r) das Feld A[p..r] korrekt.
- (I.S.) Wir betrachten den Aufruf von MergeSort für beliebige p, r mit n + 1 = r p. Da n + 1 > 0 folgt p < r und der Algorithmus führt den then-Fall aus. Hier wird q auf [(p + r)/2] gesetzt. Es gilt q ≥ p und q < r. Dann wird MergeSort rekursiv in den Grenzen p, q bzw. q + 1, r aufgerufen. Nach (I.V.) sortiert MergeSort in diesem Fall korrekt.</p>

Satz 4

Algorithmus MergeSort(A, p, r) sortiert das Feld A[p..r] korrekt.

- (I.V.) Für alle r, p mit m = r p und $0 \le m \le n$ sortiert MergeSort(A, p, r) das Feld A[p..r] korrekt.
- (I.S.) Wir betrachten den Aufruf von MergeSort für beliebige p, r mit n + 1 = r p. Da n + 1 > 0 folgt p < r und der Algorithmus führt den then-Fall aus. Hier wird q auf ⌊(p + r)/2⌋ gesetzt. Es gilt q ≥ p und q < r. Dann wird MergeSort rekursiv in den Grenzen p, q bzw. q + 1, r aufgerufen. Nach (I.V.) sortiert MergeSort in diesem Fall korrekt. Nun folgt die Korrektheit aus der Tatsache, dass Merge die beiden Bereiche korrekt zu einem sortierten Feld zusammenfügt.</p>

MergeSort(Array A, p, r)

- 1. if p < r then
- 2. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 3. MergeSort(A, p, q)
- 4. MergeSort(A, q + 1, r)
- 5. Merge(A, p, q, r)

- MergeSort(A, 1, n) für Feld A[1..n]
- Laufzeit?

- \triangleright Sortiere A[p..r]
- $ightharpoonup p \geq r$, dann nichts zu tun
- Berechne Mitte
- ➤ Sortiere linke Hälfte
- ➤ Sortiere rechte Hälfte
- Zusammenfügen

MergeSort(Array A, p, r)

1. if
$$p < r$$
 then

$$2. q \leftarrow \lfloor (p+r)/2 \rfloor$$

- 3. MergeSort(A, p, q)
- 4. MergeSort(A, q + 1, r)
- 5. Merge(A, p, q, r)

\triangleright Sortiere A[p..r]

- $ightharpoonup p \geq r$, dann nichts zu tun
- > Berechne Mitte
- > Sortiere linke Hälfte
- Sortiere rechte Hälfte
- Zusammenfügen

- MergeSort(A, 1, n) für Feld A[1..n]
- T(m) = maximale Laufzeit bei Eingabe A, p, r mit r p + 1 = m

MergeSort(Array A, p, r)

Laufzeit:

1. **if** p < r then

1

- 2. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 3. MergeSort(A, p, q)
- 4. MergeSort(A, q + 1, r)
- 5. Merge(A, p, q, r)

- MergeSort(A, 1, n) für Feld A[1..n]
- T(m) = maximale Laufzeit bei Eingabe A, p, r mit r p + 1 = m

MergeSort(Array A, p, r)

1. if p < r then

 $2. \qquad q \leftarrow \lfloor (p+r)/2 \rfloor$

3. MergeSort(A, p, q)

4. MergeSort(A, q + 1, r)

5. Merge(A, p, q, r)

Laufzeit:

1

1

- MergeSort(A, 1, n) für Feld A[1..n]
- T(m) = maximale Laufzeit bei Eingabe A, p, r mit r p + 1 = m

MergeSort(Array A, p, r)

1. if
$$p < r$$
 then

2.
$$q \leftarrow \lfloor (p+r)/2 \rfloor$$

3.
$$MergeSort(A, p, q)$$

- 4. MergeSort(A, q + 1, r)
- 5. Merge(A, p, q, r)

Laufzeit:

1

1

1 + T(n/2)

Wir nehmen an, dass *n* eine Zweierpotenz ist, d.h. wir müssen uns nicht um das Runden kümmern.

- MergeSort(A, 1, n) für Feld A[1..n]
- T(m) = maximale Laufzeit bei Eingabe A, p, r mit r p + 1 = m

Wir nehmen an, dass n eine

Zweierpotenz ist, d.h. wir

müssen uns nicht um das

Runden kümmern.

Teile & Herrsche

MergeSort(Array A, p, r)

1. if
$$p < r$$
 then

2.
$$q \leftarrow \lfloor (p+r)/2 \rfloor$$

3.
$$MergeSort(A, p, q)$$

4. MergeSort(
$$A$$
, $q + 1$, r)

5. Merge(A, p, q, r)

Laufzeit:

1

1

1 + T(n/2)

$$1 + T(n/2)$$

- MergeSort(A, 1, n) für Feld A[1..n]
- T(m) = maximale Laufzeit bei Eingabe A, p, r mit r p + 1 = m

MergeSort(Array A, p, r)

1. if
$$p < r$$
 then

2.
$$q \leftarrow \lfloor (p+r)/2 \rfloor$$

3.
$$MergeSort(A, p, q)$$

4. MergeSort(
$$A$$
, $q + 1$, r)

Merge(A, p, q, r)

Laufzeit:

1

1

1 + T(n/2)

1 + T(n/2)

 $\leq c'n$

c' ist genügend große Konstante

- MergeSort(A, 1, n) für Feld A[1..n]
- T(m) = maximale Laufzeit bei Eingabe A, p, r mit r p + 1 = m

MergeSort(Array A, p, r)

1. if
$$p < r$$
 then

$$2. q \leftarrow \lfloor (p+r)/2 \rfloor$$

3.
$$MergeSort(A, p, q)$$

4. MergeSort(
$$A$$
, $q + 1$, r)

$$Merge(A, p, q, r)$$

Laufzeit:

1

1

$$1 + T(n/2)$$

$$1 + T(n/2)$$

$$\leq c'n$$

$$\leq 2T(n/2) + cn$$

$$c \ge c' + 4$$

- MergeSort(A, 1, n) für Feld A[1..n]
- T(m) = maximale Laufzeit bei Eingabe A, p, r mit r p + 1 = m

Laufzeit als Rekursion

$$T(n) \le \begin{cases} C & \text{, falls } n = 1\\ 2T(n/2) + cn & \text{, falls } n > 1 \end{cases}$$

Wobei c, C geeignete Konstanten sind

Auflösen von $T(n) \le 2 T(n/2) + cn$ (Intuition)

n cn

Satz 5

Algorithmus MergeSort hat eine Laufzeit von $\mathbf{O}(n \log n)$.

Beweis

Wir zeigen den Satz nur für den Fall, dass n eine Zweierpotenz ist.

Satz 5

Algorithmus MergeSort hat eine Laufzeit von $\mathbf{O}(n \log n)$.

- Wir zeigen den Satz nur für den Fall, dass n eine Zweierpotenz ist.
- Die Laufzeit für T(1) und T(2) ist konstant. Sei also $T(2) \le C'$ und $C^* \ge \max\{c, C'\}$. Wir zeigen per Induktion, $T(n) \le C^* n \log n$ für alle $n \ge 2$

Satz 5

Algorithmus MergeSort hat eine Laufzeit von $\mathbf{O}(n \log n)$.

- Wir zeigen den Satz nur für den Fall, dass n eine Zweierpotenz ist.
- Die Laufzeit für T(1) und T(2) ist konstant. Sei also $T(2) \le C'$ und $C^* \ge \max\{c, C'\}$. Wir zeigen per Induktion, $T(n) \le C^* n \log n$ für alle $n \ge 2$
- (I.A.) für n = 2 gilt $T(2) \le C' \le C^* 2 \log 2$.

Satz 5

Algorithmus MergeSort hat eine Laufzeit von $\mathbf{0}(n \log n)$.

- Wir zeigen den Satz nur für den Fall, dass n eine Zweierpotenz ist.
- Die Laufzeit für T(1) und T(2) ist konstant. Sei also $T(2) \le C'$ und $C^* \ge \max\{c, C'\}$. Wir zeigen per Induktion, $T(n) \le C^* n \log n$ für alle $n \ge 2$
- (I.A.) für n = 2 gilt $T(2) \le C' \le C^* 2 \log 2$.
- (I.V.) Für Eingabelänge m < n, m Zweierpotenz, ist die Laufzeit $T(m) \le C^* m \log m$

Satz 5

Algorithmus MergeSort hat eine Laufzeit von $\mathbf{O}(n \log n)$.

- Wir zeigen den Satz nur für den Fall, dass n eine Zweierpotenz ist.
- Die Laufzeit für T(1) und T(2) ist konstant. Sei also $T(2) \le C'$ und $C^* \ge \max\{c, C'\}$. Wir zeigen per Induktion, $T(n) \le C^* n \log n$ für alle $n \ge 2$
- (I.A.) für n = 2 gilt $T(2) \le C' \le C^* 2 \log 2$.
- (I.V.) Für Eingabelänge m < n, m Zweierpotenz, ist die Laufzeit $T(m) \le C^* m \log m$

Satz 5

Algorithmus MergeSort hat eine Laufzeit von $\mathbf{O}(n \log n)$.

Beweis (Fortsetzung)

• (I.S.) Sei n eine Zweierpotenz. Es gilt $T(n) \le 2 T(n/2) + cn$. Nach (I.V.) gilt $T(n) \le 2 C^* \frac{n}{2} \log(n/2) + cn$

Satz 5

Algorithmus MergeSort hat eine Laufzeit von $\mathbf{0}(n \log n)$.

Beweis (Fortsetzung)

• (I.S.) Sei n eine Zweierpotenz. Es gilt $T(n) \le 2 T(n/2) + cn$. Nach (I.V.) gilt $T(n) \le 2 C^* \frac{n}{2} \log(n/2) + cn$ $\le C^* n(\log(n) - 1) + cn$

Satz 5

Algorithmus MergeSort hat eine Laufzeit von $\mathbf{0}(n \log n)$.

Beweis (Fortsetzung)

• (I.S.) Sei n eine Zweierpotenz. Es gilt $T(n) \le 2 T(n/2) + cn$. Nach (I.V.) gilt $T(n) \le 2 C^* \frac{n}{2} \log(n/2) + cn$ $\le C^* n(\log(n) - 1) + cn$ $\le C^* n(\log(n) - 1) + C^*n$ $\le C^* n \log(n)$

Satz 5

Algorithmus MergeSort hat eine Laufzeit von $\mathbf{0}(n \log n)$.

Beweis (Fortsetzung)

• (I.S.) Sei n eine Zweierpotenz. Es gilt $T(n) \le 2 T(n/2) + cn$. Nach (I.V.) gilt $T(n) \le 2 C^* \frac{n}{2} \log(n/2) + cn$ $\le C^* n(\log(n) - 1) + cn$ $\le C^* n(\log(n) - 1) + C^*n$ $\le C^* n \log(n)$

• Also gilt $T(n) = \mathbf{0}(n \log n)$, [da für $n \ge n_0 = 2$, $T(n) \le C^* n \log n$ ist]

Satz 5

Algorithmus MergeSort hat eine Laufzeit von $\mathbf{0}(n \log n)$.

Beweis (Fortsetzung)

• (I.S.) Sei n eine Zweierpotenz. Es gilt $T(n) \le 2 T(n/2) + cn$. Nach (I.V.) gilt $T(n) \le 2 C^* \frac{n}{2} \log(n/2) + cn$ $\le C^* n(\log(n) - 1) + cn$ $\le C^* n(\log(n) - 1) + C^*n$ $\le C^* n \log(n)$

• Also gilt $T(n) = \mathbf{O}(n \log n)$, [da für $n \ge n_0 = 2$, $T(n) \le C^* n \log n$ ist]

(Falsche) Behauptung

MergeSort hat Laufzeit $\mathbf{O}(n)$.

(Falscher) Beweis

- Wir zeigen die Aussage nur für den Fall, dass n eine Zweierpotenz ist.
- Die Laufzeit für T(1) und T(2) ist $\mathbf{0}(1)$. Wir zeigen per Induktion, $T(n) = \mathbf{0}(n)$ für alle $n \ge 2$.
- (I.A.) für n = 2 gilt $T(2) = \mathbf{0}(1)$.
- (I.V.) Für Eingabelänge m < n, m Zweierpotenz, ist die Laufzeit $T(m) = \mathbf{0}(m)$.
- (I.S.) Sei n eine Zweierpotenz. Es gilt $T(n) = 2 T(n/2) + \mathbf{O}(n)$. Nach (I.V.) gilt $T(n) = 2 \mathbf{O}(n) + \mathbf{O}(n) = \mathbf{O}(n)$
- Also gilt $T(n) = \mathbf{O}(n)$.

(Falsche) Behauptung

MergeSort hat Laufzeit $\mathbf{O}(n)$.

(Falscher) Beweis

- Wir zeigen die Aussage nur für den Fall, dass n eine Zweierpotenz ist.
- Die Laufzeit für T(1) und T(2) ist $\mathbf{O}(1)$. Wir zeigen per Induktion, $T(n) = \mathbf{O}(n)$ für alle n > 2.
- (I.A.) für n = 2 gilt $T(2) = \mathbf{0}(1)$.
- (I.V.) Für Eingabelänge m < n, m Zweierpotenz, ist die Laufzeit $T(m) = \mathbf{0}(m)$.
- (I.S.) Sei n eine Zweierpotenz. Es gilt $T(n) = 2 T(n/2) + \mathbf{O}(n)$. Nach (I.V.) gilt $T(n) = 2 \mathbf{O}(n) + \mathbf{O}(n) = \mathbf{O}(n)$
- Also gilt $T(n) = \mathbf{O}(n)$.

Wo liegt der Fehler?

- A) Im Induktionsanfang
- In der Induktionsvoraussetzung
- C) Im Induktionsschluss
- Der Beweis ist korrekt. Die Behauptung stimmt nicht, wenn *n* keine Zweierpotenz ist.

Wodurch unterscheiden sich Teile & Herrsche Algorithmen?

- Die Anzahl der Teilprobleme
- Die Größe der Teilprobleme
- Den Algorithmus f
 ür das Zusammensetzen der Teilprobleme
- Den Rekursionsabbruch

Wodurch unterscheiden sich Teile & Herrsche Algorithmen?

- Die Anzahl der Teilprobleme
- Die Größe der Teilprobleme
- Den Algorithmus für das Zusammensetzen der Teilprobleme
- Den Rekursionsabbruch

Wann lohnt sich Teile & Herrsche?

Kann durch Laufzeitanalyse vorhergesagt werden

Laufzeiten der Form

$$T(n) = a \cdot T(n/b) + f(n)$$

(und T(1) = const)

Laufzeiten der Form

$$T(n) = a \cdot T(n/b) + f(n)$$

Anzahl Unterprobleme

(und
$$T(1) = const$$
)

Laufzeiten der Form

Größe der Unterprobleme (bestimmt Höhe des Rekursionsbaums)

(und T(1) = const)

Laufzeiten der Form

Größe der Unterprobleme (bestimmt Höhe des Rekursionsbaums)

(und T(1) = const)

Laufzeiten der Form

Größe der Unterprobleme (bestimmt Höhe des Rekursionsbaums)

(und T(1) = const)

Welche unterschiedlichen Fälle gibt es?

Beispiel MergeSort:

Größe der Unterprobleme (bestimmt Höhe des Rekursionsbaums)

(und T(1) = const)

(n Zweierpotenz)

Weiteres Beispiel

- Problem: Finde Element in sortiertem Feld
- Eingabe: Sortiertes Feld A, gesuchtes Element $b \in A[1, ..., n]$
- Ausgabe: Index i mit A[i] = b

BinäreSuche(A, b, p, r)

- 1. if p = r then return p
- 2. else
- 3. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 4. **if** $b \le A[q]$ **then return** BinäreSuche(A, b, p, q)
- 5. **else return** BinäreSuche(A, b, q + 1, r)

BinäreSuche(A, b, p, r)

- 1. if p = r then return p
- 2. else
- 3. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 4. **if** $b \le A[q]$ **then return** BinäreSuche(A, b, p, q)
- 5. **else return** BinäreSuche(A, b, q + 1, r)

Aufruf

BinäreSuche(A, b, 1, n)

BinäreSuche(A, b, p, r)

- 1. if p = r then return p
- 2. else
- 3. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 4. **if** $b \le A[q]$ **then return** BinäreSuche(A, b, p, q)
- 5. **else return** BinäreSuche(A, b, q + 1, r)

2 7 10 11 23 34 47

BinäreSuche(A, b, p, r)

- 1. if p = r then return p
- 2. else
- 3. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 4. **if** $b \le A[q]$ **then return** BinäreSuche(A, b, p, q)
- 5. **else return** BinäreSuche(A, b, q + 1, r)

BinäreSuche(A, b, p, r)

- 1. if p = r then return p
- 2. else
- $\boxed{3. \quad q \leftarrow \lfloor (p+r)/2 \rfloor}$
- 4. **if** $b \le A[q]$ **then return** BinäreSuche(A, b, p, q)
- 5. **else return** BinäreSuche(A, b, q + 1, r)

BinäreSuche(A, b, p, r)

- 1. if p = r then return p
- 2. else
- 3. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 4. **if** $b \le A[q]$ **then return** BinäreSuche(A, b, p, q)
- 5. **else return** BinäreSuche(A, b, q + 1, r)

2 7 10 11 23 34 47
$$p = 5$$
 $r = 7$

BinäreSuche(A, b, p, r)

- 1. if p = r then return p
- 2. else
- $\boxed{3. \quad q \leftarrow \lfloor (p+r)/2 \rfloor}$
- 4. **if** $b \le A[q]$ **then return** BinäreSuche(A, b, p, q)
- 5. **else return** BinäreSuche(A, b, q + 1, r)

2 7 10 11 23 34 47
$$p = 5$$
 $q = 6$ $r = 7$

BinäreSuche(A, b, p, r)

- 1. if p = r then return p
- 2. else
- 3. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 4. **if** $b \le A[q]$ **then return** BinäreSuche(A, b, p, q)
- 5. **else return** BinäreSuche(A, b, q + 1, r)

$$p = 5 \ r = 6$$

BinäreSuche(A, b, p, r)

- 1. if p = r then return p
- 2. else
- $\boxed{3. \quad q \leftarrow \lfloor (p+r)/2 \rfloor}$
- 4. **if** $b \le A[q]$ **then return** BinäreSuche(A, b, p, q)
- 5. **else return** BinäreSuche(A, b, q + 1, r)

2 7 10 11 23 34 47
$$p = 5 r = 6$$
$$q = 5$$

BinäreSuche(A, b, p, r)

- 1. if p = r then return p
- 2. else
- 3. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 4. **if** $b \le A[q]$ **then return** BinäreSuche(A, b, p, q)
- 5. **else return** BinäreSuche(A, b, q + 1, r)

2 7 10 11 23 34 47

$$p = 5$$

$$r = 5$$

BinäreSuche(A, b, p, r)

- 1. if p = r then return p
- 2. else
- 3. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 4. **if** $b \le A[q]$ **then return** BinäreSuche(A, b, p, q)
- 5. **else return** BinäreSuche(A, b, q + 1, r)

2 7 10 11 23 34 47

$$p = 5$$
$$r = 5$$

Satz 6

Algorithmus BinäreSuche(A, b, p, r) findet den Index einer Zahl b in einem sortierten Feld A[p..r], sofern b in A[p..r] vorhanden ist.

Beweis

• Wir zeigen die Korrektheit per Induktion über n = r - p. Ist n < 0, so ist nichts zu zeigen. Wir nehmen an, dass b in A[p..r] ist, da es sonst nichts zu zeigen gibt.

Satz 6

Algorithmus BinäreSuche(A, b, p, r) findet den Index einer Zahl b in einem sortierten Feld A[p..r], sofern b in A[p..r] vorhanden ist.

- Wir zeigen die Korrektheit per Induktion über n = r p. Ist n < 0, so ist nichts zu zeigen. Wir nehmen an, dass b in A[p..r] ist, da es sonst nichts zu zeigen gibt.
- (I.A.) Für n = 0, d.h. p = r, gibt der Algorithmus p zurück. Dies ist der korrekte (weil einzige) Index.

Satz 6

Algorithmus BinäreSuche(A, b, p, r) findet den Index einer Zahl b in einem sortierten Feld A[p..r], sofern b in A[p..r] vorhanden ist.

- Wir zeigen die Korrektheit per Induktion über n = r p. Ist n < 0, so ist nichts zu zeigen. Wir nehmen an, dass b in A[p..r] ist, da es sonst nichts zu zeigen gibt.
- (I.A.) Für n = 0, d.h. p = r, gibt der Algorithmus p zurück. Dies ist der korrekte (weil einzige) Index.
- (I.V.) Für alle r, p mit m = r p und $0 \le m \le n$ findet BinäreSuche(A, b, p, r) den Index einer Zahl b in einem sortierten Feld A[p..r], sofern b im Feld vorhanden ist.

Satz 6

Algorithmus BinäreSuche(A, b, p, r) findet den Index einer Zahl b in einem sortierten Feld A[p..r], sofern b in A[p..r] vorhanden ist.

Beweis

• (I.V.) Für alle r, p mit m = r - p und $0 \le m \le n$ findet BinäreSuche(A, b, p, r) den Index einer Zahl b in einem sortierten Feld A[p..r], sofern b im Feld vorhanden ist.

Satz 6

Algorithmus BinäreSuche(A, b, p, r) findet den Index einer Zahl b in einem sortierten Feld A[p..r], sofern b in A[p..r] vorhanden ist.

- (I.V.) Für alle r, p mit m = r p und $0 \le m \le n$ findet BinäreSuche(A, b, p, r) den Index einer Zahl b in einem sortierten Feld A[p..r], sofern b im Feld vorhanden ist.
- (I.S.) Wir betrachten den Aufruf von BinäreSuche für beliebige p, r mit n+1=r-p. Da n+1>0 folgt p< r und der Algorithmus führt den **else**-Fall aus. Dort wird q auf $\lfloor (p+r)/2 \rfloor$ gesetzt.

Satz 6

Algorithmus BinäreSuche(A, b, p, r) findet den Index einer Zahl b in einem sortierten Feld A[p..r], sofern b in A[p..r] vorhanden ist.

- (I.V.) Für alle r, p mit m = r p und $0 \le m \le n$ findet BinäreSuche(A, b, p, r) den Index einer Zahl b in einem sortierten Feld A[p..r], sofern b im Feld vorhanden ist.
- (I.S.) Wir betrachten den Aufruf von BinäreSuche für beliebige p, r mit n+1=r-p. Da n+1>0 folgt p< r und der Algorithmus führt den **else**-Fall aus. Dort wird q auf $\lfloor (p+r)/2 \rfloor$ gesetzt. Es gilt $q \geq p$ und q < r. Ist $b \leq A[q]$, so wird BinäreSuche rekursiv für A[p..q] aufgerufen.

Satz 6

Algorithmus BinäreSuche(A, b, p, r) findet den Index einer Zahl b in einem sortierten Feld A[p..r], sofern b in A[p..r] vorhanden ist.

- (I.V.) Für alle r, p mit m = r p und $0 \le m \le n$ findet BinäreSuche(A, b, p, r) den Index einer Zahl b in einem sortierten Feld A[p..r], sofern b im Feld vorhanden ist.
- (I.S.) Wir betrachten den Aufruf von BinäreSuche für beliebige p, r mit n+1=r-p. Da n+1>0 folgt p< r und der Algorithmus führt den **else**-Fall aus. Dort wird q auf $\lfloor (p+r)/2 \rfloor$ gesetzt. Es gilt $q \geq p$ und q < r. Ist $b \leq A[q]$, so wird BinäreSuche rekursiv für A[p..q] aufgerufen. Da A[p..r] sortiert ist, liegt b in A[p..q]. Damit folgt aus (I.V.), dass der Index von b gefunden wird.

Satz 6

Algorithmus BinäreSuche(A, b, p, r) findet den Index einer Zahl b in einem sortierten Feld A[p..r], sofern b in A[p..r] vorhanden ist.

- (I.V.) Für alle r, p mit m = r p und $0 \le m \le n$ findet BinäreSuche(A, b, p, r) den Index einer Zahl b in einem sortierten Feld A[p..r], sofern b im Feld vorhanden ist.
- (I.S.) Wir betrachten den Aufruf von BinäreSuche für beliebige p, r mit n+1=r-p. Da n+1>0 folgt p< r und der Algorithmus führt den **else**-Fall aus. Dort wird q auf $\lfloor (p+r)/2 \rfloor$ gesetzt. Es gilt $q \geq p$ und q < r. Ist $b \leq A[q]$, so wird BinäreSuche rekursiv für A[p..q] aufgerufen. Da A[p..r] sortiert ist, liegt b in A[p..q]. Damit folgt aus (I.V.), dass der Index von b gefunden wird. Ist b > A[q], so wird BinäreSuche rekursiv für A[q+1..r] aufgerufen. Da A[p..r] sortiert ist, liegt b in A[q+1..r].

Satz 6

Algorithmus BinäreSuche(A, b, p, r) findet den Index einer Zahl b in einem sortierten Feld A[p..r], sofern b in A[p..r] vorhanden ist.

- (I.V.) Für alle r, p mit m = r p und $0 \le m \le n$ findet BinäreSuche(A, b, p, r) den Index einer Zahl b in einem sortierten Feld A[p..r], sofern b im Feld vorhanden ist.
- (I.S.) Wir betrachten den Aufruf von BinäreSuche für beliebige p,r mit n+1=r-p. Da n+1>0 folgt p< r und der Algorithmus führt den **else**-Fall aus. Dort wird q auf $\lfloor (p+r)/2 \rfloor$ gesetzt. Es gilt $q \geq p$ und q < r. Ist $b \leq A[q]$, so wird BinäreSuche rekursiv für A[p..q] aufgerufen. Da A[p..r] sortiert ist, liegt b in A[p..q]. Damit folgt aus (I.V.), dass der Index von b gefunden wird. Ist b > A[q], so wird BinäreSuche rekursiv für A[q+1..r] aufgerufen. Da A[p..r] sortiert ist, liegt b in A[q+1..r]. Damit folgt aus (I.V.), dass der Index von b gefunden wird.

Satz 6

Algorithmus BinäreSuche(A, b, p, r) findet den Index einer Zahl b in einem sortierten Feld A[p..r], sofern b in A[p..r] vorhanden ist.

- (I.V.) Für alle r, p mit m = r p und $0 \le m \le n$ findet BinäreSuche(A, b, p, r) den Index einer Zahl b in einem sortierten Feld A[p..r], sofern b im Feld vorhanden ist.
- (I.S.) Wir betrachten den Aufruf von BinäreSuche für beliebige p,r mit n+1=r-p. Da n+1>0 folgt p< r und der Algorithmus führt den **else**-Fall aus. Dort wird q auf $\lfloor (p+r)/2 \rfloor$ gesetzt. Es gilt $q \geq p$ und q < r. Ist $b \leq A[q]$, so wird BinäreSuche rekursiv für A[p..q] aufgerufen. Da A[p..r] sortiert ist, liegt b in A[p..q]. Damit folgt aus (I.V.), dass der Index von b gefunden wird. Ist b > A[q], so wird BinäreSuche rekursiv für A[q+1..r] aufgerufen. Da A[p..r] sortiert ist, liegt b in A[q+1..r]. Damit folgt aus (I.V.), dass der Index von b gefunden wird.

BinäreSuche(A, b, p, r)

- 1. if p = r then return p
- 2. else
- 3. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 4. **if** $b \le A[q]$ **then return** BinäreSuche(A, b, p, q)
- 5. **else return** BinäreSuche(A, b, q + 1, r)

Laufzeit:

$$T(n)$$
, wobei $n = r - p + 1$ ist

BinäreSuche(A, b, p, r)

- 1. if p = r then return p
- 2. else
- 3. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 4. **if** $b \le A[q]$ **then return** BinäreSuche(A, b, p, q)
- 5. **else return** BinäreSuche(A, b, q + 1, r)

Laufzeit:

1

$$T(n)$$
, wobei $n = r - p + 1$ ist

BinäreSuche(A, b, p, r)

- 1. if p = r then return p
- 2. else
- 3. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 4. **if** $b \le A[q]$ **then return** BinäreSuche(A, b, p, q)
- 5. **else return** BinäreSuche(A, b, q + 1, r)

Laufzeit:

1

1

$$T(n)$$
, wobei $n = r - p + 1$ ist

BinäreSuche(A, b, p, r)

- 1. if p = r then return p
- 2. else
- 3. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 4. **if** $b \le A[q]$ **then return** BinäreSuche(A, b, p, q)
- 5. **else return** BinäreSuche(A, b, q + 1, r)

Laufzeit:

1

1

1

$$T(n)$$
, wobei $n = r - p + 1$ ist

BinäreSuche(A, b, p, r)

- 1. if p = r then return p
- 2. else
- 3. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 4. **if** $b \le A[q]$ **then return** BinäreSuche(A, b, p, q)
- 5. **else return** BinäreSuche(A, b, q + 1, r)

Laufzeit:

1

1

1

$$1 + T(\lceil n/2 \rceil)$$

$$T(n)$$
, wobei $n = r - p + 1$ ist

BinäreSuche(A, b, p, r)

- 1. if p = r then return p
- 2. else
- 3. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 4. **if** $b \le A[q]$ **then return** BinäreSuche(A, b, p, q)
- 5. **else return** BinäreSuche(A, b, q + 1, r)

Laufzeit:

1

1

1

1 + T([n/2])

 $1 + T(\lfloor n/2 \rfloor)$

$$T(n)$$
, wobei $n = r - p + 1$ ist

BinäreSuche(A, b, p, r)

- 1. if p = r then return p
- 2. else
- 3. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 4. **if** $b \le A[q]$ **then return** BinäreSuche(A, b, p, q)
- 5. **else return** BinäreSuche(A, b, q + 1, r)

Laufzeit:

1

1

1

1 + T([n/2])

 $1 + T(\lfloor n/2 \rfloor)$

$$5 + \max\{T([n/2]), T([n/2])\}$$

$$T(n) = \begin{cases} 1 & \text{, falls } n = 1\\ 5 + \max\{T(\lceil n/2 \rceil), T(\lfloor n/2 \rfloor)\} & \text{, falls } n > 1 \end{cases}$$

Beispiel BinäreSuche:

Größe der Unterprobleme (bestimmt Höhe des Rekursionsbaums)

(und
$$T(1) = const$$
)

(n Zweierpotenz)

Auflösen von $T(n) \le T(n/2) + c$ (Intuition; wir ignorieren Runden)

n

 $\boldsymbol{\mathcal{C}}$

Auflösen von $T(n) \le T(n/2) + c$ (Intuition; wir ignorieren Runden)

Auflösen von $T(n) \le T(n/2) + c$ (Intuition; wir ignorieren Runden)

Auflösen von $T(n) \le T(n/2) + c$ (Intuition; wir ignorieren Runden)

Auflösen von $T(n) \le T(n/2) + c$ (Intuition; wir ignorieren Runden)

Auflösen von $T(n) \le T(n/2) + c$ (Intuition; wir ignorieren Runden)

Satz 7

Algorithmus BinäreSuche hat eine Laufzeit von $O(\log n)$.

Beweis

• Wir zeigen per Induktion, $T(n) \le 5 \lceil \log n \rceil + 1$.

Satz 7

Algorithmus BinäreSuche hat eine Laufzeit von $O(\log n)$.

- Wir zeigen per Induktion, $T(n) \le 5 \lceil \log n \rceil + 1$.
- (I.A.) für n = 1 gilt $T(1) = 1 = 5 \lceil \log n \rceil + 1$.

Satz 7

Algorithmus BinäreSuche hat eine Laufzeit von $O(\log n)$.

- Wir zeigen per Induktion, $T(n) \le 5 \lceil \log n \rceil + 1$.
- (I.A.) für n = 1 gilt $T(1) = 1 = 5 \lceil \log n \rceil + 1$.
- (I.V.) Für Eingabelänge m < n ist die Laufzeit $T(m) \le 5\lceil \log m \rceil + 1$.

Satz 7

Algorithmus BinäreSuche hat eine Laufzeit von $O(\log n)$.

- Wir zeigen per Induktion, $T(n) \le 5 \lceil \log n \rceil + 1$.
- (I.A.) für n = 1 gilt $T(1) = 1 = 5 \lceil \log n \rceil + 1$.
- (I.V.) Für Eingabelänge m < n ist die Laufzeit $T(m) \le 5\lceil \log m \rceil + 1$.
- (I.S.) Wir wissen: $T(n) \le \max\{T(\lceil n/2 \rceil), T(\lceil n/2 \rceil)\} + 5$. Nach (I.V.) gilt somit: $T(n) \le \max\{5\lceil \log(\lceil n/2 \rceil)\}, 5\lceil \log(\lceil n/2 \rceil)\} + 1 + 5 \le 5\lceil \log(\lceil n/2 \rceil)\} + 1 + 5$

Satz 7

Algorithmus BinäreSuche hat eine Laufzeit von $O(\log n)$.

- Wir zeigen per Induktion, $T(n) \le 5 \lceil \log n \rceil + 1$.
- (I.A.) für n = 1 gilt $T(1) = 1 = 5 \lceil \log n \rceil + 1$.
- (I.V.) Für Eingabelänge m < n ist die Laufzeit $T(m) \le 5\lceil \log m \rceil + 1$.
- (I.S.) Wir wissen: $T(n) \le \max\{T(\lceil n/2 \rceil), T(\lceil n/2 \rceil)\} + 5$. Nach (I.V.) gilt somit: $T(n) \le \max\{5\lceil \log(\lceil n/2 \rceil)\}, 5\lceil \log(\lceil n/2 \rceil)\} + 1 + 5 \le 5\lceil \log(\lceil n/2 \rceil)\} + 1 + 5$ Ist n gerade, so gilt $\lceil \log(\lceil n/2 \rceil)\rceil = \lceil \log(n/2)\rceil = \lceil \log(n) 1 \rceil = \lceil \log(n)\rceil 1$. Somit folgt $T(n) \le 5\lceil \log n \rceil + 1$.

Satz 7

Algorithmus BinäreSuche hat eine Laufzeit von $O(\log n)$.

- Wir zeigen per Induktion, $T(n) \le 5 \lceil \log n \rceil + 1$.
- (I.A.) für n = 1 gilt $T(1) = 1 = 5 \lceil \log n \rceil + 1$.
- (I.V.) Für Eingabelänge m < n ist die Laufzeit $T(m) \le 5\lceil \log m \rceil + 1$.
- (I.S.) Wir wissen: $T(n) \le \max\{T(\lceil n/2 \rceil), T(\lceil n/2 \rceil)\} + 5$. Nach (I.V.) gilt somit: $T(n) \le \max\{5\lceil \log(\lceil n/2 \rceil)\rceil, 5\lceil \log(\lceil n/2 \rceil)]\} + 1 + 5 \le 5\lceil \log(\lceil n/2 \rceil)\rceil + 1 + 5$ Ist n gerade, so gilt $\lceil \log(\lceil n/2 \rceil)\rceil = \lceil \log(n/2)\rceil = \lceil \log(n) 1 \rceil = \lceil \log(n)\rceil 1$. Somit folgt $T(n) \le 5\lceil \log n \rceil + 1$. Ist n ungerade, so gilt $\lceil \log(\lceil n/2 \rceil)\rceil = \lceil \log((n+1)/2)\rceil = \lceil \log((n+1)/2)$

Satz 7

Algorithmus BinäreSuche hat eine Laufzeit von $O(\log n)$.

- Wir zeigen per Induktion, $T(n) \le 5 \lceil \log n \rceil + 1$.
- (I.A.) für n = 1 gilt $T(1) = 1 = 5 \lceil \log n \rceil + 1$.
- (I.V.) Für Eingabelänge m < n ist die Laufzeit $T(m) \le 5\lceil \log m \rceil + 1$.
- (I.S.) Wir wissen: $T(n) \le \max\{T(\lceil n/2 \rceil), T(\lceil n/2 \rceil)\} + 5$. Nach (I.V.) gilt somit: $T(n) \le \max\{5\lceil \log(\lceil n/2 \rceil)\rceil, 5\lceil \log(\lceil n/2 \rceil)]\} + 1 + 5 \le 5\lceil \log(\lceil n/2 \rceil)\rceil + 1 + 5$ Ist n gerade, so gilt $\lceil \log(\lceil n/2 \rceil)\rceil = \lceil \log(n/2)\rceil = \lceil \log(n) 1 \rceil = \lceil \log(n)\rceil 1$. Somit folgt $T(n) \le 5\lceil \log n \rceil + 1$. Ist n ungerade, so gilt $\lceil \log(\lceil n/2 \rceil)\rceil = \lceil \log((n+1)/2)\rceil = \lceil \log(n+1) 1 \rceil = \lceil \log(n)\rceil 1$.
- Somit folgt auch hier $T(n) \le 5 \lceil \log n \rceil + 1$.

Satz 7

Algorithmus BinäreSuche hat eine Laufzeit von $O(\log n)$.

- Wir zeigen per Induktion, $T(n) \le 5 \lceil \log n \rceil + 1$.
- (I.A.) für n = 1 gilt $T(1) = 1 = 5 \lceil \log n \rceil + 1$.
- (I.V.) Für Eingabelänge m < n ist die Laufzeit $T(m) \le 5\lceil \log m \rceil + 1$.
- (I.S.) Wir wissen: $T(n) \le \max\{T(\lceil n/2 \rceil), T(\lceil n/2 \rceil)\} + 5$. Nach (I.V.) gilt somit: $T(n) \le \max\{5\lceil \log(\lceil n/2 \rceil)\rceil, 5\lceil \log(\lceil n/2 \rceil)]\} + 1 + 5 \le 5\lceil \log(\lceil n/2 \rceil)\rceil + 1 + 5$ Ist n gerade, so gilt $\lceil \log(\lceil n/2 \rceil)\rceil = \lceil \log(n/2)\rceil = \lceil \log(n) 1 \rceil = \lceil \log(n)\rceil 1$. Somit folgt $T(n) \le 5\lceil \log n \rceil + 1$. Ist n ungerade, so gilt $\lceil \log(\lceil n/2 \rceil)\rceil = \lceil \log((n+1)/2)\rceil = \lceil \log(n+1) 1 \rceil = \lceil \log(n)\rceil 1$.
- Somit folgt auch hier $T(n) \le 5 \lceil \log n \rceil + 1$.

Binäre Suche vs. lineare Suche

Laufzeit	10	100	1,000	10,000	100,000
n	10	100	1,000	10,000	100,000
$\log n$	3	6	10	13	17

Beobachtung

- n wächst sehr viel stärker als $\log n$
- Binäre Suche effizient für riesige Datenmengen
- In der Praxis ist log n fast wie eine Konstante

Weiteres Beispiel: Zähle Auftreten eines Schlüssel

Count(Array *A*, Key *k*)

- 1. $c \leftarrow 0$
- 2. **for** $j \leftarrow 1$ **to** length[A] **do**
- 3. if A[j] = k then $c \leftarrow c + 1$
- 4. return c

CountRec(Array A, Key k, Int n)

- 1. If n = 1 then $c \leftarrow 0$
- 2. **else** $c \leftarrow \text{CountRec}(A, k, n 1)$
- 3. If A[n] = k then $c \leftarrow c + 1$
- 4. return c

CountRec(Array A, Key k, Int p, r)

- 1. If p = r then
- 2. If A[p] = k then $c \leftarrow 1$
- 3. else $c \leftarrow 0$
- 4. else
- 5. $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 6. $c \leftarrow \text{CountRec}(A, k, p, q)$
- 7. $c \leftarrow c + \text{CountRec}(A, k, q + 1, r)$
- 8. return c

Was sind die Laufzeiten/Rekurrenzen dieser Algorithmen?