# **Typical Analysis Workflow**

**Justin Stevens** 



#### Big picture analysis strategy

**Goal:** obtain pure sample of  $\gamma p \rightarrow \eta \pi^0 p$ to study contributing amplitudes

#### **Necessary steps:**

- Choose appropriate ReactionFilter and Kinematic Fit options
- Apply selection criteria (i.e. cuts) which efficiently reject background but keep signal of interest
- Statistically subtract remaining background, not removed by cuts
- Measure yield for cross section or fit angular distributions for beam asymmetry or amplitude analysis





#### How to reconstruct your final state?

| Mode  ✓ Neutral modes |                    | Fraction ( $\Gamma_i$ $/\Gamma$ ) |
|-----------------------|--------------------|-----------------------------------|
| $\Gamma_1$            | neutral modes      | $(72.12 \pm 0.34)\%$              |
| $\Gamma_2$            | 2 γ                | $(39.41 \pm 0.20)\%$              |
| $\Gamma_3$            | $3~\pi^0$          | $(32.68 \pm 0.23)\%$              |
| ▼ Charged modes       |                    |                                   |
| $\Gamma_8$            | charged modes      | $(27.89 \pm 0.29)\%$              |
| $\Gamma_9$            | $\pi^+\pi^-\pi^0$  | $(22.92\pm0.28)\%$                |
| $\Gamma_{10}$         | $\pi^+\pi^-\gamma$ | $(4.22 \pm 0.08)\%$               |



- Exclusive: if possible, reconstruct all final state particles!
- Decay modes:
  - Typically lower efficiency for each final state gamma, pi, K, proton
  - Common question: should you mass constrain in the kinematic fit?
- Comparison of multiple decay modes provides systematic cross check (major strength of GlueX)

#### ReactionFilter + Kinematic Fit

- \* Reminder that KinFit will force mass peaks, even when they don't exist...
- \* What other ways can you get 4 photons?
  - \* Generate gp -> eta pi0 p and gp -> pi0 pi0 p and look at mass spectra
- \* General: leave at least one mass un-constrained, so you can fit or side-band subtract from the peak

#### Event selection 101

- \* Reminder of cuts applied in ReactionFilter (Beni's talk)?
  - \* Loose mass windows, loose timing cuts, KinFit convergence
- \* What additional cuts are common and why are they needed?
  - \* KinFit Chi2/NDF, PID, beam energy, unused showers...
- \* How do you know what cuts to use?
  - \* Study in simulation! Efficiency vs Purity

#### Studying backgrounds with bggen

- \* What is bggen?
  - \* Inclusive MC generator for "all" photoproduction processes...
- \* In simulation we can cheat and sort events by topology
- \* Some example plots to show topologies are different: 2g masses (shuffled g's), KinFit Chi^2, unused showers
  - With large bggen MC samples need to tag events by their "thrown topology" to identify background sources
  - Information already in Analysis TTree format:
    - DSelector library creates a unique TString: NumFinalState[Decaying]
    - e.g.  $\gamma p \to \pi^0 \eta p$  with  $\eta \to \gamma \gamma$  and  $\pi^0 \to \gamma \gamma$  corresponds to the TString:  $4\gamma p[\pi^0, \eta]$

#### Studying backgrounds with bggen

- \* What is bggen?
  - \* Inclusive MC generator for "all" photoproduction processes...
- \* In simulation we can cheat and sort events by topology
- \* Some example plots to show topologies are different: 2g masses (shuffled g's), KinFit Chi^2, unused showers





## Common background topologies

- **Shuffled photons** or charged particles
- Non-exclusive:
  - (Final state of interest) + γ or pi0
  - (Final state of interest) + pi+ pi-
- Mis-identified charged particle (K < -> pi)







## Common background topologies

- Shuffled photons or charged particles
- Non-exclusive:
  - (Final state of interest) + γ or pi0
  - (Final state of interest) + pi+ pi-
- Mis-identified charged particle (K < -> pi)







## What might bggen be missing?

- \* Meson resonances: a's, b's, f's, h's, etc.
- \* Baryon excitations:









#### Simulating specific backgrounds

- \* Assuming you know what relevant background topologies are, how can you more accurately simulate them?
- \* Generate 10k events (interactively) and study distributions (gen\_amp or genr8?)
  - \* e.g. gp -> b1 p, b1 -> omega pi0 -> 5g
  - \* e.g. gp -> Delta+ eta

#### Simulation of signal process

- \* Generating specific signal MC instead of using what's in bggen
  - \* better physics model: t-slope, beam energy dependence, angular distributions, etc.
- \* What to study with signal MC
  - \* Efficiency vs M(etapi) and -t
  - \* Mass resolutions vs M(etapi) and -t
  - \* Compare lab angle kinematic distributions (p vs theta) for each particle -> detector effects

#### Subtracting remaining backgrounds

- \* Basic premise for statistical background subtraction, what are the assumptions...
- \* Accidental subtraction
- \* Sideband subtraction
- \* Etc.

\* After subtraction can compare signal MC and data

#### What type of trees should I use?

- \* PART format tree (1 entry per event)
  - \* Output of ReactionFilter, input to DSelector
- \* Flat tree (1 entry per combo)
- \* FSRoot (1 entry per combo): see Malte's talk

#### Some general suggestions

- \* Reduce dataset footprint whenever possible
  - \* Write subset of analysis trees with first pass event selection with DSelector or FlattenFSRoot
  - \* Goal is to iterate and make plots quickly
- \* Systematic variation: try two analysis options which you expect to give the same result and compare (e.g. 0/90 vs -45/45, different decay modes, etc.)
- \* Others?



# Thrown Topology in DSelector

- With large bggen MC samples need to tag events by their "thrown topology" to identify background sources
- Information already in Analysis TTree format:
  - Recent update to DSelector library create a unique TString: NumFinalState[Decaying]
  - e.g. γp → π<sup>0</sup>ηp with η→γγ and π<sup>0</sup>→γγ corresponds to the TString: 4γp[π<sup>0</sup>,η]

Fill histogram with events that pass DSelector cuts corresponding to different "ThrownTopology"

Identify dominant backgrounds topologies





# Thrown Topology in DSelector

- With large bggen MC samples need to tag events by their "thrown topology" to identify background sources
- Information already in Analysis TTree format:
  - Recent update to DSelector library create a unique TString: NumFinalState[Decaying]
  - e.g.  $\gamma p \to \pi^0 \eta p$  with  $\eta \to \gamma \gamma$  and  $\pi^0 \to \gamma \gamma$  corresponds to the TString:  $4\gamma p[\pi^0, \eta]$

Once Identified dominant backgrounds topologies, fill invariant mass histogram

Can study how modifying cuts changes topologies and mass dependence



1.2

1.6

1.8

M<sub>nπ⁰</sub> (GeV)

ηπ<sup>0</sup> Invariant Mass

8.0

# Thrown Topology in DSelector

- Note: Currently for decaying particles onlyπ<sup>0</sup> keeps how many decayed, for others only flag if ≥ 1 in topology (eg. η, η', etc.)
- Please try out Analysis How To and provide feedback, next step will be to create DHistogramAction to simplify

