THE TRAGEDY OF FLIGHT: A COMPREHENSIVE CRASH ANALYSIS

INTRODUCTION:

An airplane crash analysis is a detailed investigation into the causes of an aviation accident. The goal of an airplane crash analysis is to identify any factors that contributed to the accident, with the ultimate goal of improving safety and preventing future accidents. The process of conducting an airplane crash analysis typically involves the collection and analysis of a wide range of data, including information about the aircraft and its systems, the operators, and any other relevant factors. This data is typically collected from Kaggle. Once the data has been collected, it is analysed through tableau, to identify any potential causes of the accident. The results of an airplane crash analysis are typically published in a report, which may include recommendations for improving safety and preventing similar accidents in the future. These recommendations may be implemented by the relevant authorities or industry organizations is as safe as possible. This field of study is considered accident survivability or crashworthiness. Current crashworthiness standards focus on various systems that aim to increase the safety of the aircraft crash. Accident survivability is synonymous with the word crashworthiness, and is analysed by the acronym CREEP which stands for Container, Restraint, Environment, Energy Absorption, and Post-Crash Factors (Davis, 2008). When evaluating a crash, investigators analyse each component of CREEP to rate the accident as survivable, non-survivable, or partially survivable. A survivable crash is one in which each facet of CREEP is within human tolerances. A nonsurvivable accident is where one or more components of CREEP cause a life threatening injury for all occupants of the aircraft. A partially survivable

accident is one in which some components of CREEP exceed human tolerance in part or some of the aircraft, but are within human tolerances for the remaining parts. When evaluating all potential aviation accidents, the current survivability standard has significant short falls and does not address many survivability considerations that could be experienced during an accident. United States Code of Federal Regulations (U.S. CFR) define an aircraft accident as "an occurrence associated with the operation of an aircraft which takes place between the time any person boards the aircraft with the intention of flight and all such persons have disembarked, and in which any person suffers death or serious injury, or which the aircraft receives substantial damage" (Definitions, 2010). Lap-held infants and unrestrained cargo are not directly addressed by CREEP, although they may contribute to accident survivability. While CREEP focuses on crashworthiness, there is much more to aviation survivability than what happens during a crash. By only focusing on a vehicle's impact with terrain, many types of aviation accidents and survivability concepts are not captured. Uncontained engine failures and fires have the potential to cause serious injury or death to the occupants of an aircraft, while not necessarily causing the aircraft to crash. Crashworthiness does not address the survivability of occupants that egress the aircraft prior to impact with terrain such as aircraft equipped with ejection seats, escape capsules, or occupants that can bail out using parachutes.

Problem definition & design thinking

2.1 empathy map

2.2 Ideation & Brainstorming Map

RESULT

Advantages & disadvantages

He fastest and easiest way to move people or goods by aircrafts such as aeroplanes, the helicopter is Air transportation. Though it has some limitations like it cannot be used for rural areas especially in India, where still some regions are undeveloped to use airways service means it's not helpful for door to door service. Apart from this air transport is helpful in the movement of cargo and humans in the fastest way which makes it easy to connect globally to every part of the world which promotes economic growth around the world.

Some aircrafts widely used in defence mostly in every country across the world. Every nation has developed armed services which primarily look at aerial warfare. Some aircrafts used for defence are jet planes, helicopters, etc. These are helpful during natural calamities like floods, earthquakes etc. Primarily the main objective of air transport is to not only move people easily to distant places faster but to also develop trade faster which boosts employment and help nations to grow. As air transport is rapid and sustainable which is its main

advantages but it comes with a few disadvantages also. Let's discuss some of its advantages and disadvantages.

Air transport is fast. Airplanes currently reach high speeds in flight and this reduces shipping times. This is beneficial for any product, especially for food and pharmaceutical or medical material that requires specific storage and temperature condition .It is reliable. There are relative legislations in the air transport that guarantee that it is a safe transport and that our shipment will not suffer any type of deterioration.

It arrives everywhere. Through air transport you can reach any destination, within normal conditions and as long as it is not a danger. There are several models of air transport such as airplanes, helicopters and drones. Pilot error is the number one cause of aviation accidents. Piloting an aircraft requires lengthy training, a knowledge of the mechanical components of an aircraft, and hand-eye coordination skills to effectively and safely manoeuvre an aircraft the main benefits are focused on the speed of the service, as well as reliability for delivery, while the main drawback is its high cost. Major airlines (scheduled service) experienced no on board fatalities and had a fatal accident rate of 0.0 per 100,000 flight hours in 2021. This contrasts sharply with general aviation, which experienced 341 on board fatalities and had a fatal accident rate of 0.951 per 100,000 flight hours.

Applications

• Equipment Failure/Malfunction

Defects in aircraft can be caused by design flaw, manufacturer flaw, or wear and tear from use. Although inspections are performed on the airplane before and after flights, accidents still result from faulty equipment and malfunctioning components.

• Human Error

From mechanics and ground crew to flight attendants and air traffic controllers, these professionals all play an important role in the maintenance and safe operation of the aircraft. The Federal Aviation Administration (FAA) looks at the training each person has received, the attention to detail that was provided before the flight took off, the communication that exists before air traffic control, the ground crew, and the pilot to determine if human error contributed to the cause of the accident.

• Mid-air Collisions

Mid-air collisions are less common than other types of aviation accidents, because the FAA uses the most up-to-date technology for its air traffic control system, which monitors airliners in the United States. In addition, airliners are required to have TCAS II collision-avoidance systems, which detect potential collisions with other transponder-equipped aircraft and advise pilots to climb or dive in response. When these devices malfunction or are ignored, accidents can occur.

Pilot Error

Pilots are responsible for the safe transportation of their passengers. At times, rarely, pilots fail to comply with proper procedures in the operation of an aircraft.

Weather

Unpredictable weather, such as shear gusts of winds, freezing ice storms, thunderstorms and lightning, and more, can affect both small and large airplanes. Before airplanes can fly in freezing weather, they are de-iced, and all airplanes are required to have forward-looking radar wind-shear detectors on board.

Conclusion

The primary reason flight attendants are on an aircraft is for safety, so if one of them asks you to do something like fasten your seat belts, do it first and ask questions later

Before getting too invested in the causes of aircraft injuries, let's take a moment to clarify the terminology. "Aviation accidents" are not solely confined to planes crashing. This category includes other aircraft such as helicopters, ultra-lights, gliders, etc. Aviation accidents may not necessarily involve aircraft crashes.

Occasionally passengers fall while boarding airlines, have health issues while onboard, or sustain injuries from turbulence.

If you are injured in any type of aviation accident, you may be eligible for civil damages from the responsible party. The <u>airplane attorneys</u> at Wilson Kehoe Winingham have experience flying and understand aviation accidents. This knowledge helps us to determine fault in your case and ultimately helps you through any legal action that needs to be taken.

FUTURE SCOPE

Mobility and its pillars of transport (air, inland and maritime) are at the very center of our socio-economic fabric. They underpin social connections and facilitate access to goods and services, including trade, jobs, health care and education. In today's world, mobility by air, road and water is all about efficiencies, speed, interconnectivity and accessibility by all. However, this raises the issue about sustainability. The UN predicts that by 2050 two thirds of

the world population will live in cities1. How can we adapt and enhance today's already-stretched mobility system for it to respond to our expectations and increased demands? How can mobility be reinvigorated for it to be sustainable and support the 2030 Agenda of Sustainable Development and its 17 Sustainable Development Goals (SDGs)

For a start, mobility actors should come together in a shared vision. This is where the World Bank-led Sustainable Mobility for All (SuM4All) steps in. For the first time ever, the SuM4All provides the transport sector and its modes of transport with the opportunity to speak with one voice and jointly unpack a Roadmap of Actions that is tailored to countries and cities to implement on a voluntary basis. The SuM4All includes all modes of transport, including aviation. Aviation facilitates access to countries and cities, increases multi layered efficiencies in travel and makes safety and security in travel top priorities. The aviation sector is rapidly taking gender equality at heart.

APPENDIX

547 0 548 0 549 0 550 0	06-25-1958 06-27-1958 07-09-1958		Indian Airlines		Convair CV-44(27	19	0				
548 0 549 0 550 0	06-27-1958 07-09-1958	Near Chicopee						U				
549 0 550 0	7-09-1958		MARKATA ILO		Douglas C-47A	7	7	0				
50 0			Willitary - U.S.	Westover AFB	Boeing KC-135	15	15	0				
1000		Dhaka, Baangl	Indian Airlines		Douglas C-47A	3	3	0				
51 0	18-09-1958	Benghazi, Liby	Central African	Wadi Halfa - B	Vickers Viscou	54	36	0				
	8-12-1958	Sakiya Saugye	All Nippon Airv	Tokyo - Nagoy	Douglas DC-3	33	33	0				
552 0	8-12-1958	Maraso Bay, E	LANSA		Douglas DC-4	10	10	0				
553 0	8-14-1958	North AtlantiOd	KLM Royal Du	Amsterdam - S	Lockheed 1049	99	99	0				
554 0	8-15-1958	Nantucket, Ma	Northeast Airlin	New York City	Convair CV-240	34	24	0				
555 0	8-15-1958	Near Chita, Ru	Aeroflot		Tupolev TU-104	64	64	0				
556 0	9-02-1958	Sasnashen, Ru	Military - U.S.	Air Force	Lockheed C-13	17	17	0				
557 0	9-02-1958	London, Englar	Independent A	ir Travel	Vickers 621 Vi	3	3	4				
558 0	9-02-1958	Off Guam	Military - U.S.	Guam - Clark	Douglas C-124	19	19	0				
559 0	9-05-1958	Campina Grane	Loide Aereo Na	acional	Curtiss C-46A-	18	13	0				
60 0	9-08-1958	Near Fairchild.	Military - U.S.	Air Force / U.S	Boeing B-52 / I	16	13	0				
61 0	9-09-1958	Mount Oyama,	Flying Tiger Lir	ne	Lockheed L-10	8	8	0				
62 0	9-15-1958	Triel, France	Military - U.S.	Air Force	Lockheed C-13	15	15	0				
63 0	9-29-1958	Over the Medit	Middle East Ai	Beirut - Rome	Avro 685 York	5	5	0				
64 1	10-09-1958	Payette, Idaho	Military - U.S.	Air Force	Fairchild C-123	19	19	0				
665 1	14-10-1958	Mt. Alto del Ce	Linea Aeropos	tal Venezolana	Lockheed 1049	23	23	0				

4	A	В	C	D	E	F	G	H	1	J	K	L	M	N	0	II.
4238	03-18-1994	Spokane, Wa	s Salair	Spokane - Po	or Douglas DC-30	2	2	0								
4239	03-18-1994	Key West, FI	Chalk's Inter	na Key West Ha	arl Grumman G-7:	2	2	0								
4240	03-21-1994	Weipa, Austr	al Aurukun Air	Services	Britten-Norman	6	6	0								
4241	03-23-1994	Near Bogota,	(Orion - Air Ta	ax Manaus - Bo	gcCessna 650 Ci	4	4	0								
4242	06-02-1994	Near Campbe	It Military - Roy	ya Aldergrove A	B Boeing Vertol (29	29	0								
4243	03-23-1994	Near Mezhdu	Aeroflot Rus	sia Moscow - Ho	n Airbus A310-3(75	75	0								
4244	03-23-1994	Near Fayette	il Military - U.S	S. Air Force / Mi	lit GD F-16D / Lo	7	0	23								
4245	04-03-1994	Lamoille, Nev	a Air Taxi - El	Aero Services Ir	nc Bell 206B3	5	5	0								
4246	04-04-1994	Amsterdam, I	KLM Cityhop	pe Amsterdam -	CSaab 340B	24	3	0								
4247	04-06-1994	Ambato, Ecu	TAME	Taura - Latac	ui de Havilland Ca	17	17	0								
4248	04-06-1994	Kigali, Rwand	a Rwanda Gov	en Tanzania - K	ig: Dassault Falco	12	12	0								
4249	04-14-1994	Northern Iraq	Military - U.S	S. Army / Militar	y Sikorsky UH-6	26	26	0								
4250	04-25-1994	Nanga Pinoh,	I Dirgantara A	ir : Pontianak - N	Na Britten Normar	11	11	0								
4251	04-26-1994	Near Komaki,	China Airline	s Taipe - Nago	ya Airbus A300B4	271	264	0								
4252	04-27-1994	Stratford, Cor	r Action Airline	es AtlantiCity, N	J Piper PA-31-35	9	8	0								
4253	04-29-1994	Near El Rosa	Lineas Aerea	as Furatena - Q	ui Cessna 208 Ca	9	8	0								
4254	05-07-1994	Sao Gabriel,	3 Rico Taxi Ae	ro Sao Paulo -	Sa Embraer 110 E	16	8	0								
4255	05-23-1994	Loma Linda, (C Arall	San Jose - V	ill Pilatus Britten-	11	4	0								
4256	05-28-1994	Near Villavice	n Transoriente	C Villavicencio	- I Douglas DC-3	29	7	0								
4257	08-07-1994	Kodiak, Alask	a Air Taxi - Uy	ak Sightseeing	de Havilland DI	7	6	0								-