Math 8851. Homework #1. To be completed by Thu, Feb 2

- 1. Prove the Schreier Subgroup Lemma (the statement is recalled below) without the extra assumption $1 \in T$. **Note:** You just need to slightly adjust the proof from class (where we assumed that $1 \in T$).
- 2. Let F = F(X) for some set X and H a subgroup of F. Prove that H always has a Schreier transversal in F (with respect to X) in two different ways as follows:
 - (a) Using Zorn's lemma
 - (b) Using suitable total order on F.

Hint for (b): Choose an arbitrary total order on $X \sqcup X^{-1}$ and consider the corresponding lexicographical order on F: given two elements $f \neq f' \in F$, put f < f' if one of the following holds:

- (i) l(f) < l(f'), where $l(\cdot)$ is the word length
- (ii) l(f) = l(f'), and if f and f' first differ in k^{th} position, then the k^{th} symbol in f is smaller than the k^{th} symbol in f'.

Then form a transversal by choosing the smallest element in each right coset of H.

- 3. Let F = F(x, y) be the free group on two generators. Consider the following two subgroups of F:
 - (a) H = [F, F], the commutator subgroup of F
 - (b) $H = \text{Ker } \pi$ where π is the epimorphism from F onto S_3 (symmetric group on 3 letters) which sends x to (12) and y to (23).

For each of these subgroups do the following:

- (i) Find a Schreier transversal T for H (with respect to $X = \{x, y\}$).
- (ii) Draw the Schreier graph $Sch(H \setminus F, X)$ and the maximal tree \mathcal{T} in $Sch(H \setminus F, X)$ corresponding to T (we will define the natural bijection between the Schreier transversals and maximal trees in class on Monday, Jan 29)
- (iii) Use the strong Nielsen-Schreier Theorem (the statement is recalled below) to find a free generating set for H.
- 4. Prove the Schreier index formula: If F is a free group of finite rank and H a subgroup of F of finite index, then

$$rk(H) - 1 = (rk(F) - 1) \cdot [F : H].$$

Hint: Count the number of vertices and edges in the Schreier graph $Sch(H \setminus F, X)$ and use the fact that $H \cong \pi_1(Sch(H \setminus F, X))$.

5. Use the Schreier Subgroup lemma to find a generating set with 2 elements for the alternating group A_n .

Lemma (Schreier Subgroup Lemma). Let G be a group, H a subgroup of G, S a generating set for G and T a right transversal for H in G. Then H is generated by the set

$$U = U(S,T) = \{st \cdot \overline{st}^{-1} : s \in S, t \in T\}$$

where \overline{g} is the unique element of T such that $H\overline{g} = Hg$.

Theorem (Strong Nielsen-Schreier Theorem). Let H a subgroup of F(X), and let T be a (right) Schreier transversal for H (with respect to X). For every $x \in X$ and $t \in T$ let $h_{x,t} = xt \cdot \overline{xt}^{-1}$. Let

$$I = \{(x, t) \in X \times T : h_{x,t} \neq 1\}.$$

Then the elements $\{h_{x,t}:(x,t)\in I\}$ are all distinct and form a free generating set for H.