$$\frac{CMOS}{\Rightarrow} \Rightarrow Pull up & pull down$$

$$\Rightarrow implementation of -Do, \Rightarrow o, \Rightarrow o, \Rightarrow o$$

$$\frac{Transistors}{NMOS} \Rightarrow \int_{0}^{\infty} \frac{S=0}{b} = 0$$

$$S=0 \quad a - b$$

$$VDD \quad S=0 \quad a - b$$

CMOS is always dual (Pull up/Pull down)
-ensures to never hove a short circuit from VDD to GND

NOR		\DD
a b	5	a-d
0 0	0	, ,
0 1 0	0	6-d
) 1	0	
		a-1-1-6

NOT=2 NOR=4 NAND=4 AND=NAND+NOT=6 OR=NOR+NOT=6 H & transistors

$$\frac{POS}{f = (\overline{A} + C)(\overline{C} + B)}$$

$$S = \left[\left(\frac{\overline{A} + C}{X} \right) \left(\frac{\overline{C} + B}{C} \right)^{\frac{1}{2}} \right]$$

$$= \left[\overline{X} + \overline{Y} \right]'$$

$$= \left[\overline{A} + C + C + B \right]'$$

$$\widehat{A}$$
 \overline{C}
 B
 C

$$\frac{A}{C}$$
 $\frac{B}{C}$