# Topología

| 1 Propiedades de conjuntos y funciones @propiedades, imagen, imagen inversa                       | 5  |
|---------------------------------------------------------------------------------------------------|----|
| 1a Definición de unión disjunta @definición, unión disjunta, inclusión                            | 6  |
| 1a1 Propiedad universal de la unión disjunta @propiedad universal, unión disjunta, unión ajena    | 7  |
| 1b Definición de relación de equivalencia @definición, relación binaria, relación de equivalencia | 8  |
| 1b1 Partición por clases de equivalencia @partición, clase de equivalencia                        | 9  |
| 1b2 Relación generada por una partición @relación de equivalencia, generación, partición          | 11 |
| 2 Definición de espacio topológico @definición, espacio topológico                                | 12 |
| 2a Definición de continuidad @definición, continuidad                                             | 13 |
| 2a1 Caracterización de continuidad @caracterización, continuidad                                  | 14 |
| 2a2 Definición de homeomorfismo @definición, homeomorfismo                                        | 15 |
| 2a2a Proyección estereográfica @homeomorfismo explícito, proyección estereográfica                | 16 |
| 2a2b Restricción continua e inyectiva @contraejemplo, restricción, homeomorfismo                  | 17 |
| 2a3 Lema del pegado @cerrados, continuidad, lema del pegado                                       | 18 |
| 2b Definición de función abierta y cerrada @definición, abierta, cerrada                          | 20 |
| 2b1 Criterio para homeomorfismos @criterio, abierta, cerrada                                      | 21 |
| 2c Definición de suma topológica @definición, suma topológica, unión disjunta                     | 22 |

| 2c1 Más fina para continuidad de las inclusiones @comparación, suma topológica            | 23 |
|-------------------------------------------------------------------------------------------|----|
| 2c2 Propiedades de las inclusiones @propiedades, inclusiones, suma topológica             | 24 |
| 2c3 Caracterización de abiertos y cerrados @caracterización, abiertos, suma topológica    | 26 |
| 2c4 Propiedades de abiertos y cerrados @propiedades, abiertos, suma topológica            | 28 |
| 2c4a Propiedades de una sección @propiedades, sección                                     | 30 |
| 2c5 Criterio para identificaciones @criterio, abierta, identificación                     | 31 |
| 2c6 Producto de identificaciones @producto, abierta, identificación                       | 32 |
| 2c7 Identificación es casi homeomorfismo @homeomorfismo, identificación                   | 33 |
| 2c8 Restricción de identificaciones @restricción, identificación, criterio                | 34 |
| 2c9 Propiedad universal de las identificaciones @propiedad universal, identificación      | 35 |
| 2c10 Definición de espacio cociente @cociente, topología                                  | 37 |
| 2c10a Propiedades de saturación @definición, saturación, identificación                   | 38 |
| 2c10b Espacios cocientes T1 @espacio cociente, T1                                         | 40 |
| 2c11 Homeomorfismo inducido por una identificación @homeomorfismo, identificación         | 41 |
| 2c12 Caracterización de identificaciones @caracterización, compatibilidad, identificación | 42 |
| 2c12a Homeomorfismo inducido por funciones compatibles @compatibilidad, homeomorfismo     | 44 |
| 2c13 Criterio para identificaciones @compacto, Hausdorff, identificación                  | 45 |
| 2d Definición de topología de identificación @generación, definición                      | 46 |
|                                                                                           |    |

| 2d1 Más fina para continuidad @comparación                                                      | 47 |
|-------------------------------------------------------------------------------------------------|----|
| 2d2 Caracterización de identificaciones @caracterización, identificación                        | 48 |
| 2d3 Propiedades de las identificaciones @propiedades, composición, identificación               | 50 |
| 2d4 Criterio para identificaciones @criterio, sección                                           | 51 |
| 2d4a Propiedades de una sección @propiedades, sección                                           | 52 |
| 2d5 Criterio para identificaciones @criterio, abierta, identificación                           | 53 |
| 2d6 Producto de identificaciones @producto, abierta, identificación                             | 54 |
| 2d7 Identificación es casi homeomorfismo @homeomorfismo, identificación                         | 55 |
| 2d8 Restricción de identificaciones @restricción, identificación, criterio                      | 56 |
| 2d9 Propiedad universal de las identificaciones @propiedad universal, identificación            | 57 |
| 2d10 Definición de espacio cociente @cociente, topología                                        | 59 |
| 2d10a Propiedades de saturación @definición, saturación, identificación                         | 60 |
| 2d10b Espacios cocientes T1 @espacio cociente, T1                                               | 62 |
| 2d11 Homeomorfismo inducido por una identificación @suprayectiva, identificación, homeomorfismo | 63 |
| 2d12 Caracterización de identificaciones @caracterización, compatibilidad, identificación       | 64 |
| 2d12a Homeomorfismo inducido por funciones compatibles @compatibilidad, homeomorfismo           | 66 |
|                                                                                                 |    |

67

2d12b Funciones que preservan relación @preserva relación, continuidad

**Teorema 1.** Sean  $f: X \longrightarrow Y$  una función,  $A, A_1, A_2, \{A_\alpha\}_{\alpha \in I}$  subconjuntos de X y B,  $B_1$ ,  $B_2$ ,  $\{B_{\beta}\}_{\beta \in J}$  subconjuntos de Y, se tiene que

propiedades, imagen, imagen inversa

(i) 
$$f(X-A) \subset Y - f(A)$$
 si  $f$  es inyectiva, (viii)  $f\left(\bigcup_{\alpha \in I} A_{\alpha}\right) = \bigcup_{\alpha \in I} f(A_{\alpha})$ ,

(ii) 
$$Y - f(A) \subset f(X - A)$$
 si  $f$  es suprayec- (ix)  $f\left(\bigcap_{\alpha \in I} A_{\alpha}\right) \subset \bigcap_{\alpha \in I} f(A_{\alpha})$ , tiva, (x)  $\bigcap_{\alpha \in I} f(A_{\alpha}) \subset f\left(\bigcap_{\alpha \in I} A_{\alpha}\right)$  si  $f$  es in-

(iii) 
$$f^{-1}(Y - B) = X - f^{-1}(B)$$
, yectiva,

(iv) 
$$f(f^{-1}(B)) \subset B$$
,  $(xi)$   $f^{-1}\left(\bigcup_{\beta \in J} B_{\alpha}\right) = \bigcup_{\alpha \in J} f^{-1}(B_{\beta})$ ,

(v) 
$$B \subset f(f^{-1}(B))$$
 si  $f$  es suprayectiva,   
(xii)  $f^{-1}\left(\bigcap_{\beta \in J} B_{\beta}\right) = \bigcap_{\alpha \in J} f^{-1}(B_{\beta})$ ,   
(vi)  $A \subset f^{-1}(f(A))$ ,   
(xiii)  $A_1 \subset A_2$  implies  $f(A_1) \subset f(A_2)$ .

(vi) 
$$A \subset f^{-1}(f(A))$$
, (xiii)  $A_1 \subset A_2$  implies  $f(A_1) \subset f(A_2)$ ,  
(vii)  $f^{-1}(f(A)) \subset A$  si  $f$  as investive (viv)  $P_1 \subset P_2$  implies  $f^{-1}(P_1) \subset f^{-1}(P_2)$ 

(vii) 
$$f^{-1}(f(A)) \subset A$$
 si  $f$  es inyectiva, (xiv)  $B_1 \subset B_2$  implica  $f^{-1}(B_1) \subset f^{-1}(B_2)$ .

Demostración. Pendiente.

### Definición de unión disjunta

1a

Definición 1. Dada una famillia de conjuntos  $\{X_\lambda\}_{\lambda\in\Lambda}$ , se define su *unión ajena como el conjunto* 

$$\coprod_{\lambda \in \Lambda} X_{\lambda} = \bigcup_{\lambda \in \Lambda} X_{\lambda} \times \{\lambda\}.$$

Dada  $\mu \in \Lambda$ , la inclusión  $i_{\mu}: X_{\mu} \longrightarrow \coprod_{\lambda \in \Lambda} X_{\lambda}$  es la función definida como  $i_{\mu}(x) = (x, \mu), \ \forall x \in X_{\mu}.$ 

definición, unión disjunta, inclusión

## Propiedad universal de la unión disjunta

**Teorema 2.** Dada una familia  $\{X_{\lambda}\}_{{\lambda}\in{\Lambda}}$  de conjuntos, la unión ajena  $\coprod_{{\lambda}\in{\Lambda}} X_{\lambda}$  junto con las inclusiones  $i_{\mu}: X_{\mu} \longrightarrow \coprod_{{\lambda}\in{\Lambda}} X_{\lambda}$ ,  ${\mu}\in{\Lambda}$ , está caracterizada por la siguiente propiedad universal

(i) Dada una familia de funciones  $f_{\lambda}: X_{\lambda} \longrightarrow Y, \lambda \in \Lambda$ , existe una única función  $f: \coprod_{\lambda \in \Lambda} X_{\lambda} \longrightarrow Y$  tal que  $f \circ i_{\lambda} = f_{\lambda}, \ \forall \ \lambda$ .



Demostración. Pendiente.

1a1

propiedad universal, unión disjunta, unión ajena

### Definición de relación de equivalencia

Definición 2. Una relación binaria R en un conjunto X es cualquier subconjunto  $R \subset X \times X$ . Si  $(x,y) \in R$ , se escribirá x R y.

Definición 3. Una relación binaria R en un conjunto X se dice relación de equivalencia si

- (i)  $\forall x \in X, x R x$ ,
- (ii)  $x R y \implies y R x$ ,
- (iii)  $xRy \wedge yRz \implies xRz$ .

 $Si \times R y$  se dice que  $\times y$  y son equivalentes. Las relaciones de equivalencia se usan generalmente para considerar a todos los elementos de un conjunto con alguna propiedad como una sola entidad.

1b

definición, relación binaria, relación de equivalencia

partición, clase de equivalencia

Definición 4. Si R es una relación de equivalencia en X y  $x \in X$ , el conjunto  $Rx = \{y \in X \mid y R x\}$  se llama la clase de equivalencia de x. También se le suele denotar [x] si no hay riesgo de confusión. A la familia  $\{Rx \mid x \in X\}$  se le llamará conjunto cociente de X por R y se denotará X/R.

**Teorema 3.** Si R es una clase de equivalencia en un conjunto X, entonces:

- (i)  $\bigcup \{Rx \mid x \in X\} = X$ ,
- (ii) x R y si y sólo si Rx = Ry,
- (iii) dos clases de equivalencia son iquales o son disjuntas.

Demostración. (i) Como  $Rx \subset X$ ,  $\forall x \in X$ , entonces  $\bigcup \{Rx \mid x \in X\} \subset X$ . Recíprocamente, si  $x \in X$ , entonces x Rx, luego  $x \in Rx \subset \bigcup \{Rx \mid x \in X\}$ . Esto prueba la afirmación.

- (ii) Supóngase que x R y. Si  $z \in Rx$ , entones z R x, luego z R y y por tanto  $z \in Ry$ , luego  $Rx \subset Ry$ . Similarmente se tiene que  $Rx \subset Ry$  y por tanto Rx = Ry. Recíprocamente, si Rx = Ry, dado que x R x, entonces  $x \in Rx = Ry$ , por tanto, x R y.
- (iii) Sean Rx y Ry dos clases de equivalencia. Si  $Rx \cap Ry = \emptyset$  no hay nada que probar. Suponga existe  $z \in Rx \cap Ry$ . Entonces z Rx y z Ry y en consecuencia x Ry por transitividad, así que Rx = Ry por (ii).

**Corolario 1.** Si R es una relación de equivalencia en un conjunto X, entonces la familia  $\{Rx \mid x \in X\}$  es una partición del conjunto X

# Relación generada por una partición

**Teorema 4.** Si  $\{A_{\alpha}\}_{\alpha \in I}$  es una partición de un conjunto X, entonces la relación  $R = \bigcup \{A_{\alpha} \times A_{\alpha} \mid \alpha \in I\}$ , es una relación de equivalencia. Además, x R y si y sólo si  $x, y \in A_{\alpha}$ , para algún  $\alpha \in I$ . Más aún,  $X/R = \{A_{\alpha} \mid \alpha \in I\}$ .

Demostración. Pendiente.

1b2

relación de equivalencia, generación, partición

# Definición de espacio topológico

Definición 5. Sea X un conjunto. Una **topología** sobre Xes una familia  $\mathcal T$  de subconjuntos de X con las siguientes propiedades:

- (i)  $\varnothing, X \in \mathcal{T}$ .
- (ii) Si  $\{U_i\}_{i\in\mathcal{I}}\subset\mathcal{T}$  entonces  $\bigcup_{i\in\mathcal{I}}U_i\in\mathcal{T}$ .
- (iii) Si  $\{U_i\}_{i\in\mathcal{I}}\subset\mathcal{T}$  y  $\mathcal{I}$  es finito, entonces  $\bigcap_{i\in\mathcal{I}}U_i\in\mathcal{T}$ .

A la pareja  $(X, \mathcal{T})$  se le llama **espacio topológico**.

2

definición, espacio topológico

### Definición de continuidad

Definición 6. Dados espacios topológicos X y Y, una función  $f: X \longrightarrow Y$  se dice continua en X, si U abierto en Y implica que  $f^{-1}(U)$  es abierto en X.

2a

definición, continuidad **Teorema 5.** Sean X y Y espacios topológicos y sea  $f: X \longrightarrow Y$  una función. Son equivalentes

caracterización, continuidad

- (i) f es continua,
  - ii) U abierto en Y implica  $f^{-1}(B)$  abierto en X,
- (iii)  $f^{-1}(B^{\circ}) \subset f^{-1}(B)^{\circ}, \forall B \subset Y$ ,
- (iv)  $f(\overline{A}) \subset \overline{f(A)}$ ,  $\forall A \subset X$ ,
- (v) F cerrado en Y implica  $f^{-1}(F)$  cerrado en X.

Demostración. Pendiente.

### Definición de homeomorfismo

Definición 7. Un homeomorfismo es una función  $f: X \longrightarrow Y$  continua y biyectiva, cuya inversa también es continua. En este caso, se dice que los espacios X y Y son homeomorfos.

2a2

definición, homeomorfismo

## Proyección estereográfica

2a2a

Teorema 6. La función

$$p: S^{n} - \{N\} \longrightarrow \mathbb{R}^{n}$$

$$(x_{1}, \dots, x_{n+1}) \longmapsto \left(\frac{x_{1}}{1 - x_{n+1}}, \dots, \frac{x_{n}}{1 - x_{n+1}}\right),$$

homeomorfismo explícito, proyección estereográfica

donde  $N=(0,\ldots,0,1)$ , es un homeomorfismo con las topologías usuales y su inversa está dada por

$$p^{-1}: \mathbb{R}^n \longrightarrow S^n - \{N\}$$

$$y = (y_1, \dots, y_n) \longmapsto \left(\frac{2y_1}{|y|^2 + 1}, \dots, \frac{2y_n}{|y|^2 + 1}, \frac{|y|^2 - 1}{|y|^2 + 1}\right).$$

A este homeomorfismo se le llama proyección estereográfica.

*Demostración.* Es rutinario verificar que  $p \circ p^{-1} = \mathrm{id}_{\mathbb{R}^n}$  y que  $p^{-1} \circ p = \mathrm{id}_{S^n - \{N\}}$ . Además, p es continua por ser sus componentes funciones racionales en las variables  $x_1, \ldots, x_{n+1}$  tales que su denominador no se anula. De forma similar,  $p^{-1}$  es continua por ser sus funciones componentes productos de las variables  $y_1, \ldots, y_n$ , con la función  $1/(|y|^2 + 1)$ , la cuál es continua pues el denominador no se anula y la función norma |y| es continua. □

### Restricción continua e inyectiva

Observación. En general, si  $f: X \longrightarrow Y$  es continua e inyectiva, su restricción  $g: X \longrightarrow f(X)$ , dada por g(x) = f(x),  $\forall x \in X$ , no es necesariamente un homeomorfismo, aún cuando se tiene que g es biyectiva y continua. Considere los espacios  $X = \{0,1\}$  con la topología  $\mathcal{T}_X = \{\emptyset,\{0\},X\}$  y  $Y = \{a,b,c\}$  con la topología  $\mathcal{T}_Y = \{\emptyset,\{b\},Y\}$ . La función f definida como f(0) = c,f(1) = a, es inyectiva y continua. Sin embargo, su restricción g, dada como g(0) = a, g(1) = c, es biyectiva y continua, pero su inversa h dada por h(a) = 0, h(c) = 1 no es continua, pues  $h^{-1}(\{0\}) = \{a\}$  no es abierto en f(X) con la topología inducida por Y.

#### 2a2b

contraejemplo, restricción, homeomorfismo **Teorema 7.** Sea  $X = F_1 \cup \cdots \cup F_k$ , con  $F_i$  cerrado en X, para todo  $i \in \{1, \ldots, k\}$ . Si  $f_i : F_i \longrightarrow Y$  son funciones continuas, para todo  $i \in \{1, \ldots, k\}$  y tales que

cerrados, continuidad, lema del pegado

$$f_i|_{F_i\cap F_j}=f_j|_{F_i\cap F_j}$$
,

para todos  $i,j \in \{1,\ldots,k\}$ , entonces la función  $f:X \longrightarrow Y$  definida como  $f|_{F_i}=f_i$  es continua.

*Demostración.* Dicha función está bien definida, pues si  $x_1, x_2 \in X$  son tales que  $x_1 = x_2$ , entonces  $x_1 \in F_i$  y  $x_2 \in F_j$  para algunos  $i, j \in \{1, ..., k\}$  y  $x_1 \in F_i \cap F_j$ ,  $x_2 \in F_i \cap F_j$ . Luego  $f(x_1) = f_i(x_1)$  y  $f(x_2) = f_j(x_2)$ , por tanto,  $f(x_1) = f_i(x_1) = f_i|_{F_i \cap F_i}(x_1) = f_i|_{F_i \cap F_i}(x_2) = f_i|_{F_i \cap F_i}(x_2) = f(x_2)$ .

Sea C un cerrado en Y. Se tiene que  $f^{-1}(X) = f_1^{-1}(C) \cup \cdots \cup f_k^{-1}(C)$ . En efecto, si  $x \in f^{-1}(C)$ , entonces  $f(x) \in C$ , con  $x \in X$ . Luego, dado que  $X = \bigcup_{n=1}^k F_n$ , existe  $i \in \{1, \ldots, k\}$  tal que  $x \in F_i$  y por tanto  $f(x) = f_i(x) \in C$ . En consecuencia,  $x \in f_i^{-1}(C)$  para algún  $i \in \{1, \ldots, k\}$ , es decir,  $x \in \bigcup_{n=1}^k f_n^{-1}(C)$ . Recíprocamente, si  $x \in \bigcup_{n=1}^k f_n^{-1}(C)$ , entonces existe  $i \in \{1, \ldots, k\}$  tal que  $x \in f_i^{-1}(C)$ , por tanto,  $f_i(x) \in C$ . Necesariamente  $x \in F_i$  por elección de x, así que  $f_i(x) = f(x) \in C$ , o bien,  $x \in f^{-1}(C)$ . Esto prueba la afirmación.

Finalmente, como  $f_i$  es continua, para cada  $i \in \{1, ..., k\}$ , entonces  $f_i^{-1}(C)$  es cerrado en  $F_i$ , para cada  $i \in \{1, ..., k\}$ , pero cada  $F_i$  es cerrado en X, así que de hecho  $f_i^{-1}(C)$  es cerrado en X, para cada  $i \in \{1, ..., k\}$ . Luego  $f^{-1}(C)$ 

es cerrado en X por ser unión finita de cerrados en X. Como C fue arbitrario, entonces f debe ser continua.

## Definición de función abierta y cerrada

Definición 8. Una función  $f: X \longrightarrow Y$  se dice abierta si U abierto en X implica que f(U) es abierto en Y.

Definición 9. Similarmente, una función  $f: X \longrightarrow Y$  se dice cerrada si F cerrado en X implica que f(F) es cerrado en Y.

2b

definición, abierta, cerrada **Teorema 8.** Si una función  $f: X \longrightarrow Y$  es biyectiva, continua y abierta o cerrada, entonces f es un homeomorfismo.

criterio, abierta, cerrada

Demostración. Como f es biyectiva, existe su inversa  $g: Y \longrightarrow X$  tal que  $g \circ f = \operatorname{id}_X$ . Sea U un abierto en X y notemos que  $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U) = \operatorname{id}_X^{-1}(U) = U$  y aplicando f a ambos lados obtenemos  $g^{-1}(U) = f(U)$  por suprayectividad de f. Como f(U) es abierto por ser f una funcion abierta, entonces  $g^{-1}(U)$  es abierto. Dado que U fue un abierto arbitrario, entones g es continua y en consecuencia f es un homeomorfismo. Si f es cerrada la demostración es similar.

**Teorema 9.** Si f es un homeomorfismo, entonces f es abierta y cerrada.

*Demostración.* Sea g la inversa de f. Si U es abierto en X, entonces  $g^{-1}(U)$  es abierto en X por ser g continua, pero, de manera similar al teorema anterior, se tiene que  $g^{-1}(U) = f(U)$ , luego f(U) es abierto y se sigue que f es una función abierta. Similarmente se prueba que f es cerrada.

### Definición de suma topológica

Definición 10. Dada una familia de espacios topológicos  $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ , se puede generar un nuevo espacio topológico a partir de su unión ajena  $X=\coprod_{{\lambda}\in\Lambda}X_{\lambda}$  definida en 1a. Considerénse las inclusiones  $i_{\mu}:X_{\mu}\longrightarrow X, \mu\in\Lambda$  y sea  $\mathcal{T}_{\mu}$  la topología coinducida en X por  $X_{\mu}$  a través de  $i_{\mu}$ . Se tiene que  $\mathcal{S}=\bigcap_{{\lambda}\in\Lambda}\mathcal{T}_{\lambda}$  también es una topología sobre X. Esta topología se llamará topología de la suma en X. Al espacio X con esta topología se le llamará suma topológica de los espacios  $X_{\lambda}$ .

2c

definición, suma topológica, unión disjunta

# Más fina para continuidad de las inclusiones

2c1

**Proposición 1.** Sea  $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$  una familia de espacios topológicos y sea  ${\mathcal S}$  la topología de la suma en  $X = \coprod_{\lambda \in \Lambda} X_{\lambda}$ . Se tiene que

- (i) S hace continuas a todas las inclusiones  $i_{\lambda}: X_{\mu} \longrightarrow X$ ,
- (ii)  $\mathcal{S}$  es la topología más fina con esta propiedad.

Demostración. (i) Sea  $\mu \in \Lambda$  arbitrario pero fijo. Si U es abierto en X, entonces  $U \in \mathcal{S} = \bigcap_{\lambda \in \Lambda} \mathcal{T}_{\lambda}$ , donde  $\mathcal{T}_{\lambda}$  es la topología coinducida en X por  $X_{\lambda}$  a través de  $i_{\lambda}$ . En particular,  $U \in \mathcal{T}_{\mu}$ , luego, por definición,  $i_{\mu}^{-1}(U)$  es abierto en  $X_{\mu}$ . Por tanto,  $i_{\mu}$  es continua y como  $\mu$  fue arbitrario se tiene el resultado.

(ii) Supóngase que  $\mathcal{T}$  es una topología que hace continuas a todas las inclusiones. Si  $U \in \mathcal{T}$ , entonces  $i_{\lambda}^{-1}(U)$  es abierto en  $X_{\lambda}$ , para cada  $\lambda \in \Lambda$ , luego  $U \in \mathcal{T}_{\lambda}$ para cada  $\lambda$ , por definición de  $\mathcal{T}_{\lambda}$ . En consecuencia,  $U \in \bigcap_{\lambda \in \Lambda} \mathcal{T}_{\lambda} = \mathcal{S}$ . Como U fue arbitrario, entonces  $\mathcal{T} \subset \mathcal{S}$  y se sique que  $\mathcal{S}$  es la topología más fina que hace continua a todas las inclusiones.

comparación. suma topológica

propiedades.

inclusiones, suma topológica

**Proposición 2.** Sea  $\{X_{\lambda}\}_{{\lambda}\in{\Lambda}}$  una familia de espacios topológicos y sea  $X=\coprod_{{\lambda}\in{\Lambda}}X_{\lambda}$  su suma topológica. Si  $\mu\in{\Lambda}$ , se tiene que

(i) Si 
$$A \subset X_{\mu}$$
, entonces  $i_{\mu}^{-1}(A \times \{\mu\}) = A$ ,

(ii) Si 
$$A \subset X_{\mu}$$
, entonces  $i_{\lambda}^{-1}(A \times \{\mu\}) = \emptyset$ ,  $\forall \lambda \in \Lambda, \lambda \neq \mu$ ,

(iii) Si 
$$A \subset X_{\mu}$$
, entonces  $i_{\mu}(A) = A \times \{\mu\}$ ,

(iv) Si 
$$B \subset X$$
, entonces  $i_{\mu}^{-1}(B) \times \{\mu\} = B \cap X_{\mu} \times \{\mu\}, \ \forall \ \mu \in \Lambda$ ,

Demostración. (i) Si  $\mu \in \Lambda$  y  $A \subset X_{\mu}$ , entonces

$$x \in i_{\mu}^{-1}(A \times \{\mu\}) \iff i_{\mu}(x) \in A \times \{\mu\}$$
$$\iff (x, \mu) \in A \times \{\mu\}$$
$$\iff x \in A.$$

Esto prueba la afirmación.

(ii) Si 
$$\lambda \neq \mu$$
,  $A \subset X_{\mu}$  y existiera  $x \in i_{\lambda}^{-1}(A \times \{\mu\})$ , entonces  $(x, \lambda) \in A \times \{\mu\}$  y por tanto  $\lambda = \mu$ , contradiciendo la hipótesis.

(iii) Por (i), se tiene que  $i_{\mu}^{-1}(A \times \{\mu\}) = A$  y tomando la imagen bajo  $i_{\mu}$  en ambos lados, al ser las inclusiones suprayectivas, se tiene que  $A \times \{\mu\} = i_{\mu}(A)$ .

(iv) Sea  $\mu \in \Lambda$  y  $B \subset X$ , entonces

$$(x,\lambda) \in i_{\mu}^{-1}(B) \times \{\mu\} \iff x \in i_{\mu}^{-1}(B) \wedge \lambda \in \{\mu\} \wedge x \in X_{\mu}$$

$$\iff i_{\mu}(x) \in B \wedge \lambda = \mu \wedge x \in X_{\mu}$$

$$\iff (x,\mu) \in B \wedge \lambda = \mu \wedge (x,\lambda) \in X_{\mu} \times \{\lambda\}$$

$$\iff (x,\lambda) \in B \wedge \lambda = \mu \wedge (x,\lambda) \in X_{\mu} \times \{\mu\}$$

$$\iff (x,\lambda) \in B \cap X_{\mu} \times \{\mu\}.$$

Como  $\mu$  fue arbitrario, se tiene el resultado.

**Teorema 10.** Sea  $\{X_{\lambda}\}_{{\lambda}\in{\Lambda}}$  una familia de espacios topológicos y sea  $X=\coprod_{{\lambda}\in{\Lambda}}X_{\lambda}$  su suma topológica. Entonces

- (i) U es abierto en X si y solo si  $U \cap X_{\lambda} \times \{\lambda\}$  es abierto en  $X_{\lambda} \times \{\lambda\}$ ,  $\forall \lambda \in \Lambda$ ,
- (ii) F es cerrado en X si y solo si  $F \cap X_{\lambda} \times \{\lambda\}$  es cerrado en  $X_{\lambda} \times \{\lambda\}$ ,  $\forall \lambda \in \Lambda$ .

Demostración. (i) Si  $U \subset X$  es abierto, por definición  $U \cap X_\lambda \times \{\lambda\}$  es abierto en  $X_\lambda \times \{\lambda\}$ , para cada  $\lambda \in \Lambda$ . Supóngase que se cumple la condición. Nótese que para cada  $\lambda \in \Lambda$ , la inclusión  $i_\lambda : X_\lambda \longrightarrow X_\lambda \times \{\lambda\}$  es continua, además,  $U \cap X_\lambda \times \{\lambda\} = i_\lambda^{-1}(U) \times \{\lambda\}$  y en consecuencia  $i_\lambda^{-1}(U \cap X_\lambda \times \{\lambda\}) = i_\lambda^{-1}(i_\lambda^{-1}(U) \times \{\lambda\}) = i_\lambda^{-1}(U)$  es abierto en  $X_\lambda$ . Luego  $U \in \mathcal{T}_\lambda$  para cada  $\lambda \in \Lambda$  y por tanto  $U \in \bigcap_{\lambda \in \Lambda} \mathcal{T}_\lambda = \mathcal{S}$ , es decir, U es abierto en X.

(ii) Se tiene que

$$F \subset X$$
 es cerrado en  $X \iff X - F$  es abierto en  $X \iff (X - F) \cap X_{\lambda} \times \{\lambda\} = X_{\lambda} \times \{\lambda\} - F$  es abierto en  $X_{\lambda} \times \{\lambda\}$ ,  $\forall \lambda \in \Lambda$   $\iff F$  es cerrado en  $X_{\lambda} \times \{\lambda\}$ ,  $\forall \lambda \in \Lambda$ ,

por el punto anterior.

**Corolario 2.** Sea  $\{X_{\lambda}\}_{{\lambda}\in{\Lambda}}$  una familia de espacios topológicos y  $X=\coprod_{{\lambda}\in{\Lambda}}X_{\lambda}$  su suma topológica. Entonces

caracterización, abiertos, suma topológica (i) U es abierto en X si y sólo si  $i_{\lambda}^{-1}(U)$  es abierto en  $X_{\lambda}$ ,  $\forall \lambda \in \Lambda$ ,

(ii) F es cerrado en X si y sólo si  $i_{\lambda}^{-1}(F)$  es cerrado en  $X_{\lambda}$ ,  $\forall \lambda \in \Lambda$ .

**Teorema 11.** Si  $\{X_{\lambda}\}_{\lambda}$  es una familia de espacios topológicos y  $X=\coprod_{\lambda\in\Lambda}X_{\lambda}$  es su suma topológica, entonces

γ propiedades, abiertos, suma topológica

- (i) Si  $\mu \in \Lambda$ , entonces U es abierto en  $X_{\mu}$  si y solo si  $U \times \{\mu\}$  es abierto en  $X_{\mu} \times \{\mu\}$ .
  - (ii) Cada subespacio  $X_{\lambda} \times \{\lambda\}$  de X es abierto y cerrado en X,
- (iii) Si  $\mu \in \Lambda$  y  $U \subset X_{\mu}$ , entonces U es abierto en  $X_{\mu}$  si y solo si  $U \times \{\mu\}$  es abierto en X,
- (iv)  $i_{\lambda}: X_{\lambda} \longrightarrow X$  es una función abierta,  $\forall \lambda \in \Lambda$ .
- (v)  $i_{\lambda}: X_{\lambda} \longrightarrow X_{\lambda} \times \{\lambda\}$  es una función abierta,  $\forall \lambda \in \Lambda$ .
- (vi)  $i_{\lambda}: X_{\lambda} \longrightarrow X_{\lambda} \times \{\lambda\}$  es un homeomorfismo.

Demostración. (i) Si  $\mu \in \Lambda$  y U es abierto en  $X_{\mu}$ , entonces  $U \subset X_{\mu}$  y por (i) se tiene que  $i_{\mu}^{-1}(U \times \{\mu\}) = U$ . Luego  $U \times \{\mu\}$  debe ser abierto en la topología coinducida en X por  $X_{\mu}$  a través de  $i_{\mu}$ , es decir,  $U \times \{\mu\} \in \mathcal{T}_{\mu}$ . Más aún, si  $\lambda \neq \mu$ , por (ii) se tiene que  $i_{\lambda}^{-1}(U \times \{\mu\}) = \emptyset$ , el cual también es abierto en  $X_{\lambda}$ . En consecuencia,  $U \times \{\mu\} \in \mathcal{T}_{\lambda}$ , para cada  $\lambda \in \Lambda$ . Luego  $U \times \{\mu\} \in \bigcap_{\lambda \in \Lambda} \mathcal{T}_{\lambda} = \mathcal{S}$ , es decir,  $U \times \{\mu\}$  es abierto en X.

Supóngase ahora que  $U \times \{\mu\}$  es abierto en  $X_{\mu} \times \{\mu\}$ . Como la inclusión  $i_{\mu}$ :  $X_{\mu} \longrightarrow X$  es continua y  $i_{\mu}(X_{\mu}) = X_{\mu} \times \{\mu\}$ , entonces  $i_{\mu} : X_{\mu} \longrightarrow X_{\mu} \times \{\mu\}$ 

también es continua. Como  $U\subset X_{\mu}$ , entonces  $i_{\mu}^{-1}(U\times\{\mu\})=U$  por (i) y se sigue que U es abierto en  $X_{\mu}$ .

(ii) Corolario de 2c3. (iii) Se sigue de (i) y (ii). (iv) Se sigue de 2c2 (iii) y del punto anterior. (v). Se sigue del punto anterior. (vi) Es fácil ver que  $i_{\lambda}: X_{\lambda} \longrightarrow X_{\lambda} \times \{\lambda\}$ es biyectiva. Es además continua y abierta, luego un homeomorfismo.

propiedades, sección

**Teorema 12.** Si  $s: Y \longrightarrow X$  es una sección de  $p: X \longrightarrow Y$ , entonces

- (i) s es inyectiva,
- (ii) s es un encaje, es decir,  $Y \cong s(Y)$ .

Demostración. (i) Si  $y_1, y_2 \in Y$  son tales que  $s(y_1) = s(y_2)$ , entonces  $p(s(y_1)) = p(s(y_2))$ , pero  $p \circ s = \mathrm{id}_Y$ , en consecuencia  $y_1 = y_2$ . Luego s es inyectiva.

(ii) Sea  $r:Y\longrightarrow s(Y)$  la restricción de s al contradominio s(Y). Claro que r es biyectiva, pues es suprayectiva por construcción e inyectiva por ser s inyectiva. Más aún, r es continua, pues s es continua y  $s(Y)\subset X$ . Sea U un abierto en Y. Como p es continua, entonces  $p^{-1}(U)$  debe ser abierto en X, además

$$r^{-1}(p^{-1}(U) \cap s(Y)) = s^{-1}(p^{-1}(U) \cap s(Y)) = s^{-1}(p^{-1}(U)) \cap s^{-1}(s(Y))$$

$$= (p \circ s)^{-1}(U) \cap Y, \text{ por inyectividad de } s$$

$$= id_Y^{-1}(U) \cap Y$$

$$= U \cap Y = U$$

Tomando la imagen bajo r a ambos lados, se tiene que  $p^{-1}(U) \cap s(Y) = r(U)$ , por ser r suprayectiva. Se sigue que r(U) es un abierto en s(Y). Como U fue un abierto arbitrario de Y, entonces r es una función abierta. Luego, como r es biyectiva, continua y abierta, entonces r es un homeomorfismo por 2b1 y por tanto s es un encaje.

### Criterio para identificaciones

**Proposición 3.** Si  $f: X \longrightarrow Y$  es continua, suprayectiva y abierta o cerrada, entonces f es identificación.

*Demostración.* Si  $U \subset Y$  es tal que  $f^{-1}(U)$  es abierto en X, entonces  $U = f(f^{-1}(U))$  debe ser abierto en Y por ser f suprayectiva y abierta. Como f también es continua, entonces f debe ser identificación por 2c2. Si f es cerrada, la demostración es similar usando nuevamente 2c2.

2c5

criterio, abierta, identificación

#### Producto de identificaciones

**Proposición 4.** Si  $f_1: X_1 \longrightarrow Y_1$  y  $f_2: X_2 \longrightarrow Y_2$  son continuas, suprayectivas y abiertas, entonces  $f: X_1 \times X_2 \longrightarrow Y_1 \times Y_2$  definida como  $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$  es identificación.

Demostración. Se tiene que f es continua (munkres1975, p. 112, pendiente de agregar topología producto aquí con etiqueta generación) y también supravectiva. Más aún, f es abierta. Se sique de 2c5 que f es identificación.

#### 2c6

producto, abierta, identificación

#### Identificación es casi homeomorfismo

**Proposición 5.** Sea  $f: X \longrightarrow Y$  una función biyectiva. Entonces f es identificación si y sólo si f es homeomorfismo.

Demostración. Supongamos que f es identificación. Si U es abierto en X, entonces  $f^{-1}(f(U)) = U$  es abierto en X, luego f(U) debe de ser abierto en Y por ser f identificación. Luego f es una función abierta y como es continua y biyectiva, por  $2b1\ f$  debe ser homeomorfismo. Recíprocamente, si f es homeomorfismo, entonces f es abierta nuevamente por 2b1 y como f es continua y suprayectiva, entonces f es identificación por f

#### 2c7

homeomorfismo, identificación

**Teorema 13.** Si  $f: X \longrightarrow Y$  es identificación, B es abierto o cerrado en Y y  $A = f^{-1}(B)$ , entonces  $f|_A: A \longrightarrow B$  es identificación.

restricción, identificación, criterio

Demostración. Como f es continua, entonces  $f|_A:A\longrightarrow Y$  es continua. Más aún, como  $B\subset Y$  y  $f(A)=f(f^{-1}(B))\subset B$ , entonces  $f|_A:A\longrightarrow B$  es continua. Sea  $U\subset B$  tal que  $f|_A^{-1}(U)$  es abierto en A. Como B es abierto en Y, entonces  $f^{-1}(B)=A$  es abierto en X, por ser f continua y por tanto  $f|_A^{-1}(U)$  es abierto en X. Pero

$$f|_A^{-1}(U) = f^{-1}(U) \cap A = f^{-1}(U) \cap f^{-1}(B) = f^{-1}(U \cap B) = f^{-1}(U),$$

por ser  $U \subset B$ , así que  $f^{-1}(U)$  es abierto en X. Como f es identificación, esto implica que U es abierto en Y y por tanto U es también abierto en B, pues  $U = U \cap B$ . Como U fue arbitrario, entonces  $f|_A$  es identificación. Si B es cerrado la demostración es similar.

**Teorema 14.** Sea  $f: X \longrightarrow Y$  una función. Entonces f es identificación si y sólo si se cumplen las siguientes condiciones:

propiedad universal, identificación

- (i) f es continua.
- (ii) Una función  $g:Y\longrightarrow Z$  es continua si y sólo si  $g\circ f$  es continua.



Demostración. Supóngase primero que f es identificación. Entonces f es continua y se tiene (i). Sea  $g:Y\longrightarrow Z$  una función. Si g es continua, entonces  $g\circ f$  es continua por ser composición de funciones continuas. Si  $g\circ f$  es continua y U es un abierto en Z, se tiene que  $(g\circ f)^{-1}(U)=f^{-1}(g^{-1}(U))$  es abierto en X y por tanto  $g^{-1}(U)$  es abierto en Y por ser f identificación. Como U fue arbitrario, entonces g es continua y hemos probado (ii).

Suponga ahora que se verifican las condiciones y sean  $\mathcal{T}$  la topología en Y y  $\mathcal{T}_f$  la topología coinducida por f en Y. Defínase  $f': X \longrightarrow (Y, \mathcal{T}_f)$  como f'(x) = f(x),  $\forall x \in X$ . Se tiene que f' es continua, pues si U es abierto en  $(Y, \mathcal{T}_f)$ ,

entonces  $f'^{-1}(U) = f^{-1}(U)$ , el cual es abierto en X, pues  $\mathcal{T}_f$  hace continua a f. Más aún, se tiene que  $f' = \mathrm{id}_Y \circ f$ , donde  $\mathrm{id}_Y : (Y, \mathcal{T}) \longrightarrow (Y, \mathcal{T}_f)$ , luego

In the first time of the firs

sigue que  $\mathcal{T} = \mathcal{T}_f$ , es decir, f es una identificación.

### Definición de espacio cociente

2c10

Definición 11. Si X es un espacio topológico y  $\sim$  es una relación de equivalencia en X, se le llamará espacio cociente a  $X/\sim$  con la topología de identificación coinducida por la proyección canónica  $p:X\longrightarrow X/\sim$ . Se dirá que  $X/\sim$  tiene la topología cociente.

cociente, topología

*Definición 12.* A la proyección canónica  $p: X \longrightarrow X/\sim$  vista como identificación se le llamará *aplicación cociente.* 

Observación. Si  $x \in X$ , entonces  $p^{-1}(\{[x]\}) = [x]$ .

Definición 13. Si  $p: X \longrightarrow X/\sim$  es una aplicación cociente y  $A \subset X$ , se define la saturación de A como el conjunto  $p^{-1}(p(A))$ , que contiene a todos los puntos de A y a todos los puntos en X equivalentes a algún punto de A. Se dice que A es saturado si  $A = p^{-1}(p(A))$ .

definición, saturación, identificación

**Proposición 6.** Sea  $A \subset X$  un conjunto saturado respecto a una relaión de equivalencia  $\sim$  y sea p la respectiva aplicación cociente. Se tiene que

- (i) Si  $A \subset X$  es abierto o cerrado, entonces  $p|_A : A \longrightarrow p(A)$  es una identificación.
- (ii) Si p es abierta o cerrada, entonces  $p|_A:A\longrightarrow p(A)$  es una identificación.

*Demostración.* (i) Como A es saturado, entonces  $A = p^{-1}(p(A))$  y dado que p es identificación y A es abierto, p(A) debe ser abierto en  $X/\sim$ . Y nuevamente, como  $A = p^{-1}(p(A))$ , entonces  $p|_A : A \longrightarrow p(A)$  es una identificación por 2c8.

(ii) Sea U un abierto en A. Entonces  $U=V\cap A$ , para algún abierto V de X. Se tiene que  $p(V\cap A)=p(V)\cap p(A)$ . En efecto, en general se sabe que  $p(V\cap A)\subset p(V)\cap p(A)$ . Si  $y\in p(V)\cap p(A)$ , entonces existen  $v\in V$  y  $a\in A$  tales que p(v)=y=p(a), luego  $p(a)\in p(A)$  y por tanto  $p(v)\in p(A)$ , luego  $v\in p^{-1}(p(A))=A$ , por ser A saturado. En consecuencia,  $v\in V\cap A$  y por tanto  $y=p(v)\in p(V\cap A)$ . Esto prueba la afirmación. Luego,  $p|_A(U)=p|_A(V\cap A)=p(V\cap A)=p(V)\cap p(A)$ , donde p(V) es abierto por ser p una función abierta, así que  $p|_A(U)$  es abierto en p(A). Se sigue que  $p|_A$  es también

| una función abierta y además es continua y suprayectiva. En consecuencia, p | A |
|-----------------------------------------------------------------------------|---|
| es una identificación.                                                      |   |
|                                                                             |   |

### Espacios cocientes T1

**Teorema 15.** Si  $p: X \longrightarrow X/\sim$  es una aplicación cociente y cada elemento de  $X/\sim$  es cerrado en X, entonces  $X/\sim$  es un espacio  $T_1$ .

*Demostración.* Sea  $[x] \in X/\sim$ . Por hipótesis  $[x] \subset X$  es cerrado en X, pero  $[x] = p^{-1}(\{[x]\})$  y como p es identificación, entonces  $\{[x]\}$  debe ser cerrado en  $X/\sim$ . Se sigue que  $X/\sim$  es un espacio  $T_1$ .

#### 2c10b

espacio cociente, T1 **Proposición 7.** Sea  $f: X \longrightarrow Y$  una identificación y suprayectiva. Si se define en X la relación de equivalencia  $x_1 \sim x_2$  si y sólo si  $f(x_1) = f(x_2)$ , entonces  $X/\sim$  es homeomorfo a Y.

homeomorfismo, identificación

*Demostración.* La relación definida es una relación de equivalencia, para cualquier función f. Defínase  $\widetilde{f}: X/\sim \to Y$  como  $\widetilde{f}([x])=f(x)$ . Se tiene que festá bien definida, pues si  $[x_1]=[x_2]$  entonces  $x_1\sim x_2$ , luego  $f(x_1)=f(x_2)$ por definición de  $\sim$ , es decir,  $\widetilde{f}([x_1])=\widetilde{f}([x_2])$ . Nótese que  $\widetilde{f}\circ p=f$ , donde  $p:X\to X/\sim$  es la aplicación cociente. Se tiene que

- (i)  $\widetilde{f}$  es suprayectiva, pues dado  $y \in Y$ , existe  $x \in X$  tal que y = f(x) por suprayectividad de x, luego  $[x] \in X/\sim$  es tal que  $\widetilde{f}([x]) = f(x) = y$ ,
- (ii)  $\widetilde{f}$  es inyectiva, pues si  $[x_1], [x_2] \in X/\sim$  son tales que  $\widetilde{f}([x_1]) = \widetilde{f}([x_2])$ , entonces  $f(x_1) = f(x_2)$ , luego  $x_1 \sim x_2$  y por tanto  $[x_1] = [x_2]$ .

Existe pues la función inversa  $\widetilde{f}^{-1}$ . Como  $f=\widetilde{f}\circ p$  es continua y p es identificación, la propiedad universal de las identificaciones implica que  $\widetilde{f}$  es continua. Además, dado que  $p=\widetilde{f}^{-1}\circ f$  es continua y f es identificación, entonces  $\widetilde{f}^{-1}$  también debe ser continua. Luego  $\widetilde{f}$  es un homeomorfismo.  $\square$ 

Definición 14. Dada una función  $f: X \longrightarrow Y$ , se dice que  $g: X \longrightarrow Z$  es compatible con f si  $f(x_1) = f(x_2)$  implica que  $g(x_1) = g(x_2)$ , para cada  $x.x' \in X$ .

caracterización, compatibilidad, identificación

**Teorema 16.** Sea  $f:X\longrightarrow Y$  continua y suprayectiva. Entonces f es identificación si y sólo si para cada función continua  $g:X\longrightarrow Z$  compatible con f, existe una única función continua  $\overline{g}:Y\longrightarrow Z$  tal que  $\overline{g}\circ f=g$ .



Se dice que  $\overline{g}$  es el resultado de pasar q al cociente.

Demostración. Supóngase que f es identificación y sea  $g: X \longrightarrow Z$  una función continua compatible con f. Defínase  $\overline{g}: Y \longrightarrow Z$  como  $\overline{g}(y) = g(x)$ , donde  $x \in X$  es tal que y = f(x). Se tiene que  $\overline{g}$  está bien definida, pues si  $y_1, y_2 \in Y$  son tales que  $y_1 = y_2$ , entonces existen  $x_1, x_2 \in X$  tales que  $y_1 = f(x_1)$  y  $y_2 = f(x_2)$ , luego  $f(x_1) = f(x_2)$  y por tanto  $g(x_1) = g(x_2)$  por la compatibilidad de g con f, es decir,  $\overline{g}(y_1) = \overline{g}(y_2)$ . Nótese que  $\overline{g} \circ f = g$ .

 $x_1, x_2 \in X$  tales que  $y_1 = f(x_1)$  y  $y_2 = f(x_2)$ , luego  $f(x_1) = f(x_2)$  y por tanto

 $a(x_1) = a(x_2)$ , luego  $\overline{a}'(v_1) = \overline{a}'(f(x_1)) = a(x_1) = a(x_2) = \overline{a}(f(x_2)) = \overline{a}(v_2)$ . En consecuencia,  $\overline{q}' = \overline{q}$  y por lo tanto q es la única función bajo las hipótesis con

esta propiedad. Además, por hipótesis q es continua y f es identificación, luego la propiedad universal de las identificaciones implica que  $\overline{a}$  debe ser continua. Más

aún, si q es identificación, como f es identificación, 2c3 implica que  $\overline{q}$  también

Supóngase ahora que se verifica la condición. Defínase en X la relación de equivalencia  $x_1 \sim x_2$  si v sólo si  $f(x_1) \sim f(x_2)$  v sea  $p: X \longrightarrow X/\sim$  la aplicación cociente. Si  $f(x_1) = f(x_2)$  entonces  $x_1 \sim x_2$  y por tanto  $p(x_1) = p(x_2)$ , en consecuencia p es compatible con f y como también p es continua, por hipótesis debe existir una función continua  $\overline{p}: Y \longrightarrow X/\sim tal que p = \overline{p} \circ f$ . Por otro lado, nótese que si  $p(x_1) = p(x_2)$ , entonces  $x_1 \sim x_2$  y por tanto  $f(x_1) = f(x_2)$ , es decir, f es compatible con p. Como p es identificación, entonces la primera parte de la demostración implica que existe una función continua  $\overline{f}: X/\sim \longrightarrow Y$ 

Se tiene entonces que  $p = \overline{p} \circ \overline{f} \circ p$  y  $f = \overline{f} \circ \overline{p} \circ f$ . Afirmamos que  $\overline{f} \circ \overline{p} = \mathrm{id}_Y$ . En efecto, si  $y \in Y$ , entonces existe  $x \in X$  tal que y = f(x), luego y = f(x) = f(x) $\overline{f}(\overline{p}(f(x))) = \overline{f}(\overline{p}(y))$ . Como y es arbitrario esto prueba la afirmación. Similarmente se prueba que  $\overline{p} \circ \overline{f} = \mathrm{id}_{X/\infty}$ . Se tiene pues que  $\overline{f}$  es un homeomorfismo y por tanto identificación, y dado que p también es identificación y  $f = \overline{f} \circ p$ ,

es identificación.

tal que  $f = \overline{f} \circ p$ .

entonces f es identificación.

Si  $\overline{a}': Y \longrightarrow Z$  es una función tal que  $\overline{a}' \circ f = a$ . Si  $v_1 = v_2$ , entonces existen

# Homeomorfismo inducido por funciones compatibles

**Corolario 3.** Si  $f: X \longrightarrow Y$ ,  $g: X \longrightarrow Z$  son identificaciones, suprayectivas y compatibles entre sí, es decir,  $f(x_1) = f(x_2)$  si y solo si  $g(x_1) = g(x_2)$ ,  $\forall x_1, x_2 \in X$ , entonces  $Y \ni Z$  son homeomorfos.

Demostración. Por 2c12, como f es identificación, g es continua y g es compatible con f, entonces existe una función continua  $\overline{g}:Y\longrightarrow Z$  tal que  $\overline{g}\circ f=g$ . Similarmente, como g es identificación, f es continua y f es compatible con g, entonces existe una función continua  $\overline{f}:Z\longrightarrow Y$  tal que  $\overline{f}\circ g=f$ . Luego  $\overline{g}\circ \overline{f}\circ g=g$  y  $\overline{f}\circ \overline{g}\circ f=f$  y como f y g son suprayectivas, entonces  $\overline{g}\circ \overline{f}=\mathrm{id}_Z$  y  $\overline{f}\circ \overline{g}=\mathrm{id}_Y$ . Luego  $\overline{f}$  y  $\overline{g}$  son homeomorfismos.

2c12a

compatibilidad, homeomorfismo

### Criterio para identificaciones

**Teorema 17.** Si X es un espacio compacto, Y es un espacio de Hausdorff y  $f: X \longrightarrow Y$  es continua y suprayectiva, entonces f es identificación.

*Demostración.* Si  $F \subset X$  es cerrado, entonces F es compacto, luego f(F) es compacto en Y por ser f continua. En consecuencia, f(F) es cerrado en Y por ser Y un espacio de Hausdorff. Luego f es una función cerrada y al ser continua y suprayectiva, 2c5 implica que f es identificación.

#### 2c13

compacto, Hausdorff, identificación

# Definición de topología de identificación

Definición 15. Dados un espacio topológico X, un conjunto Y y una función  $f: X \longrightarrow Y$ , se puede dotar a Y con una topología, a saber,  $\{U \subset Y \mid f^{-1}(U) \text{ es abierto en } X\}$ . A esta topología se le llamará topología de identificación o topología coinducida en Y por X a través de f.

Definición 16. Si X y Y son espacios topológicos y  $f: X \longrightarrow Y$  es una función, se dice que f es una identificación si la topología de Y es la topología coinducida por f.

2d

generación, definición **Proposición 8.** Sea X un espacio topológico y  $f: X \longrightarrow Y$  una función. La topología de identificación en Y coinducida por f hace continua a f. Más aún, de entre todas las topologías que hacen continua a f, esta es la más fina.

comparación

*Demostración.* Sea  $\mathcal{T}_f$  la topología de identificación en Y. Si  $U \in \mathcal{T}$ , entonces  $f^{-1}(U)$  es abierto en X, por definición. Como U fue arbitrario, entonces f debe ser continua, por definición de continuidad.

Sea  $\mathcal{T}$  una topología que hace continua a f. Si  $U \in \mathcal{T}$ , entonces  $U \subset Y$  y  $f^{-1}(U)$  es abierto en X por definición de continuidad, pero esto implica que  $U \in \mathcal{T}_f$  por definición de  $\mathcal{T}_f$ . Como U fue arbitrario, entonces  $\mathcal{T} \subset \mathcal{T}_f$ , y a su vez como  $\mathcal{T}$  fue una topología arbitraria que hace continua a f, entonces  $\mathcal{T}_f$  debe ser la más fina entre ellas.

**Teorema 18.** Si  $f: X \longrightarrow Y$  es una función, son equivalentes

- (i) f es identificación.
- (ii) U es abierto en Y si y sólo si  $f^{-1}(U)$  es abierto en X.
- (iii) F es cerrado en Y si y sólo si  $f^{-1}(F)$  es cerrado en X.

Demostración. (i)  $\implies$  (ii). Si f es identificación entonces f es, en particular, continua, y por tanto U abierto en Y implica  $f^{-1}(U)$  abierto en X. Supogase ahora que  $f^{-1}(U)$  es abierto en X con  $U \subset Y$ . Entonces U es abierto en X por definición de topología de identificación. Como U fue arbitrario se tiene el resultado.

(ii)  $\implies$  (iii). Se tiene que

$$F$$
 es cerrado en  $Y \iff X - F$  es abierto en  $Y \iff f^{-1}(X - F) = Y - f^{-1}(F)$  es abierto en  $X$ , por hipótesis  $\iff f^{-1}(F)$  es cerrado en  $X$ .

- (iii)  $\implies$  (ii). Es similar al punto anterior.
- (ii)  $\implies$  (i). Sea  $\mathcal{T}$  la topología de Y. Si se verifica (ii), entonces la  $\mathcal{T}$  hace continua a f. Más aún, si hay otra topología  $\mathcal{T}'$  que hace continua a f, entonces

caracterización, identificación

Luego  $\mathcal{T}'\subset\mathcal{T}$  y como  $\mathcal{T}'$  fue arbitraria, entonces  $\mathcal{T}$  es de hecho más fina en Y que cualquier otra que haga continua a f. Es fácil verificar que sólo existe una topología sobre Y con esta propiedad y es la topología de identificación.

 $U \in \mathcal{T}$  implica que  $f^{-1}(U)$  es abierto en X, y por tanto  $U \in \mathcal{T}$  por hipótesis.

una topología sobre Y con esta propiedad y es la topología de identificación.

Luego,  $\mathcal{T}$  es la topología de identificación coinducida por f, es decir, f es una identificación.

**Proposición 9.** Sean  $f:X\longrightarrow Y$  y  $g:Y\longrightarrow Z$  funciones. Se verifican las siguientes afirmaciones

propiedades, composición, identificación

- (i)  $id_X : X \longrightarrow X$  es identificación.
- (ii) Si f y g son identificaciones, entonces  $g \circ f$  es identificación.
- (iii) Si f y  $g \circ f$  son identificaciones, necesariamente g es identificación.

Demostración. (i) Se sigue de que U es abierto en X si y sólo si  $\mathrm{id}_X(U) = U$  es abierto en X.

(ii) Como f y g son identificaciones, entonces, por 2d2,

$$U$$
 es abierto en  $Z \iff g^{-1}(U)$  es abierto en  $Y$   
 $\iff f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$  es abierto en  $X$ .

Luego  $g \circ f$  es identificación.

(iii) Se tiene que

$$U$$
 es abierto en  $Z \iff (g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$  es abierto en  $X \iff g^{-1}(U)$  es abierto en  $Y$ ,

luego g es identificación.

# Criterio para identificaciones

2d4

**Teorema 19.** Sea  $p: X \longrightarrow Y$  continua. Si existe una función continua  $s: Y \longrightarrow X$  tal que  $p \circ s = \mathrm{id}_Y$ , entonces p es una identificación.

criterio, sección

*Demostración.* Si  $U \subset Y$  es tal que  $p^{-1}(U)$  es abierto en X, entonces

$$s^{-1}(p^{-1}(U)) = (p \circ s)^{-1}(U) = id_Y(U) = U$$

es abierto, por ser s continua. Como p es también continua por hipótesis, se tiene que U es abierto en Y si y sólo si  $p^{-1}(U)$  es abierto en X, luego p es identificación.

Definición 17. A  $s: Y \longrightarrow X$  en el teorema anterior se le llama sección de p.

**Teorema 20.** Si  $s: Y \longrightarrow X$  es una sección de  $p: X \longrightarrow Y$ , entonces

- (i) s es inyectiva,
- (ii) s es un encaje, es decir,  $Y \cong s(Y)$ .

Demostración. (i) Si  $y_1, y_2 \in Y$  son tales que  $s(y_1) = s(y_2)$ , entonces  $p(s(y_1)) = p(s(y_2))$ , pero  $p \circ s = \mathrm{id}_Y$ , en consecuencia  $y_1 = y_2$ . Luego s es inyectiva.

(ii) Sea  $r:Y\longrightarrow s(Y)$  la restricción de s al contradominio s(Y). Claro que r es biyectiva, pues es suprayectiva por construcción e inyectiva por ser s inyectiva. Más aún, r es continua, pues s es continua y  $s(Y)\subset X$ . Sea U un abierto en Y. Como p es continua, entonces  $p^{-1}(U)$  debe ser abierto en X, además

$$r^{-1}(p^{-1}(U) \cap s(Y)) = s^{-1}(p^{-1}(U) \cap s(Y)) = s^{-1}(p^{-1}(U)) \cap s^{-1}(s(Y))$$

$$= (p \circ s)^{-1}(U) \cap Y, \text{ por inyectividad de } s$$

$$= id_Y^{-1}(U) \cap Y$$

$$= U \cap Y = U$$

Tomando la imagen bajo r a ambos lados, se tiene que  $p^{-1}(U) \cap s(Y) = r(U)$ , por ser r suprayectiva. Se sigue que r(U) es un abierto en s(Y). Como U fue un abierto arbitrario de Y, entonces r es una función abierta. Luego, como r es biyectiva, continua y abierta, entonces r es un homeomorfismo por 2b1 y por tanto s es un encaje.

propiedades, sección

### Criterio para identificaciones

**Proposición 10.** Si  $f: X \longrightarrow Y$  es continua, suprayectiva y abierta o cerrada, entonces f es identificación.

*Demostración.* Si  $U \subset Y$  es tal que  $f^{-1}(U)$  es abierto en X, entonces  $U = f(f^{-1}(U))$  debe ser abierto en Y por ser f suprayectiva y abierta. Como f también es continua, entonces f debe ser identificación por 2d2. Si f es cerrada, la demostración es similar usando nuevamente 2d2.

#### 2d5

criterio, abierta, identificación

#### Producto de identificaciones

**Proposición 11.** Si  $f_1: X_1 \longrightarrow Y_1$  y  $f_2: X_2 \longrightarrow Y_2$  son continuas, suprayectivas y abiertas, entonces  $f: X_1 \times X_2 \longrightarrow Y_1 \times Y_2$  definida como  $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$  es identificación.

Demostración. Se tiene que f es continua (munkres1975, p. 112, pendiente de agregar topología producto aquí con etiqueta generación) y también supravectiva. Más aún, f es abierta. Se sique de 2d5 que f es identificación.

#### 2d6

producto, abierta, identificación

#### Identificación es casi homeomorfismo

**Proposición 12.** Sea  $f: X \longrightarrow Y$  una función biyectiva. Entonces f es identificación si y sólo si f es homeomorfismo.

Demostración. Supongamos que f es identificación. Si U es abierto en X, entonces  $f^{-1}(f(U)) = U$  es abierto en X, luego f(U) debe de ser abierto en Y por ser f identificación. Luego f es una función abierta y como es continua y biyectiva, por  $2b1\ f$  debe ser homeomorfismo. Recíprocamente, si f es homeomorfismo, entonces f es abierta nuevamente por 2b1 y como f es continua y suprayectiva, entonces f es identificación por 2d5.

#### 2d7

homeomorfismo, identificación

**Teorema 21.** Si  $f: X \longrightarrow Y$  es identificación, B es abierto o cerrado en Y y  $A = f^{-1}(B)$ , entonces  $f|_A: A \longrightarrow B$  es identificación.

Demostración. Como f es continua, entonces  $f|_A:A\longrightarrow Y$  es continua. Más aún, como  $B\subset Y$  y  $f(A)=f(f^{-1}(B))\subset B$ , entonces  $f|_A:A\longrightarrow B$  es continua. Sea  $U\subset B$  tal que  $f|_A^{-1}(U)$  es abierto en A. Como B es abierto en Y, entonces  $f^{-1}(B)=A$  es abierto en X, por ser f continua y por tanto  $f|_A^{-1}(U)$  es abierto en X. Pero

$$f|_A^{-1}(U) = f^{-1}(U) \cap A = f^{-1}(U) \cap f^{-1}(B) = f^{-1}(U \cap B) = f^{-1}(U),$$

por ser  $U \subset B$ , así que  $f^{-1}(U)$  es abierto en X. Como f es identificación, esto implica que U es abierto en Y y por tanto U es también abierto en B, pues  $U = U \cap B$ . Como U fue arbitrario, entonces  $f|_A$  es identificación. Si B es cerrado la demostración es similar.

restricción, identificación, criterio **Teorema 22.** Sea  $f: X \longrightarrow Y$  una función. Entonces f es identificación si y sólo si se cumplen las siguientes condiciones:

propiedad universal, identificación

- (i) f es continua.
- (ii) Una función  $g: Y \longrightarrow Z$  es continua si y sólo si  $g \circ f$  es continua.



Demostración. Supóngase primero que f es identificación. Entonces f es continua y se tiene (i). Sea  $g:Y\longrightarrow Z$  una función. Si g es continua, entonces  $g\circ f$  es continua por ser composición de funciones continuas. Si  $g\circ f$  es continua y U es un abierto en Z, se tiene que  $(g\circ f)^{-1}(U)=f^{-1}(g^{-1}(U))$  es abierto en X y por tanto  $g^{-1}(U)$  es abierto en Y por ser f identificación. Como U fue arbitrario, entonces g es continua y hemos probado (ii).

Suponga ahora que se verifican las condiciones y sean  $\mathcal{T}$  la topología en Y y  $\mathcal{T}_f$  la topología coinducida por f en Y. Defínase  $f': X \longrightarrow (Y, \mathcal{T}_f)$  como f'(x) = f(x),  $\forall x \in X$ . Se tiene que f' es continua, pues si U es abierto en  $(Y, \mathcal{T}_f)$ ,

entonces  $f'^{-1}(U) = f^{-1}(U)$ , el cual es abierto en X, pues  $\mathcal{T}_f$  hace continua a f. Más aún, se tiene que  $f' = \mathrm{id}_Y \circ f$ , donde  $\mathrm{id}_Y : (Y, \mathcal{T}) \longrightarrow (Y, \mathcal{T}_f)$ , luego

In the first time of the firs

sigue que  $\mathcal{T} = \mathcal{T}_f$ , es decir, f es una identificación.

### Definición de espacio cociente

2d10

Definición 18. Si X es un espacio topológico y  $\sim$  es una relación de equivalencia en X, se le llamará espacio cociente a  $X/\sim$  con la topología de identificación coinducida por la proyección canónica  $p:X\longrightarrow X/\sim$ . Se dirá que  $X/\sim$  tiene la topología cociente.

cociente, topología

*Definición 19.* A la proyección canónica  $p: X \longrightarrow X/\sim$  vista como identificación se le llamará *aplicación cociente.* 

Observación. Si  $x \in X$ , entonces  $p^{-1}(\{[x]\}) = [x]$ .

Definición 20. Si  $p: X \longrightarrow X/\sim$  es una aplicación cociente y  $A \subset X$ , se define la saturación de A como el conjunto  $p^{-1}(p(A))$ , que contiene a todos los puntos de A y a todos los puntos en X equivalentes a algún punto de A. Se dice que A es saturado si  $A = p^{-1}(p(A))$ .

definición, saturación, identificación

**Proposición 13.** Sea  $A \subset X$  un conjunto saturado respecto a una relaión de equivalencia  $\sim$  y sea p la respectiva aplicación cociente. Se tiene que

- (i) Si  $A \subset X$  es abierto o cerrado, entonces  $p|_A : A \longrightarrow p(A)$  es una identificación.
- (ii) Si p es abierta o cerrada, entonces  $p|_A:A\longrightarrow p(A)$  es una identificación.

*Demostración.* (i) Como A es saturado, entonces  $A = p^{-1}(p(A))$  y dado que p es identificación y A es abierto, p(A) debe ser abierto en  $X/\sim$ . Y nuevamente, como  $A = p^{-1}(p(A))$ , entonces  $p|_A : A \longrightarrow p(A)$  es una identificación por 2d8.

(ii) Sea U un abierto en A. Entonces  $U=V\cap A$ , para algún abierto V de X. Se tiene que  $p(V\cap A)=p(V)\cap p(A)$ . En efecto, en general se sabe que  $p(V\cap A)\subset p(V)\cap p(A)$ . Si  $y\in p(V)\cap p(A)$ , entonces existen  $v\in V$  y  $a\in A$  tales que p(v)=y=p(a), luego  $p(a)\in p(A)$  y por tanto  $p(v)\in p(A)$ , luego  $v\in p^{-1}(p(A))=A$ , por ser A saturado. En consecuencia,  $v\in V\cap A$  y por tanto  $y=p(v)\in p(V\cap A)$ . Esto prueba la afirmación. Luego,  $p|_A(U)=p|_A(V\cap A)=p(V\cap A)=p(V)\cap p(A)$ , donde p(V) es abierto por ser p una función abierta, así que  $p|_A(U)$  es abierto en p(A). Se sigue que  $p|_A$  es también

| una función abierta y además es continua y suprayectiva. En consecuencia, p | A |
|-----------------------------------------------------------------------------|---|
| es una identificación.                                                      |   |
|                                                                             |   |

### Espacios cocientes T1

**Teorema 23.** Si  $p: X \longrightarrow X/\sim$  es una aplicación cociente y cada elemento de  $X/\sim$  es cerrado en X, entonces  $X/\sim$  es un espacio  $T_1$ .

*Demostración.* Sea  $[x] \in X/\sim$ . Por hipótesis  $[x] \subset X$  es cerrado en X, pero  $[x] = p^{-1}(\{[x]\})$  y como p es identificación, entonces  $\{[x]\}$  debe ser cerrado en  $X/\sim$ . Se sigue que  $X/\sim$  es un espacio  $T_1$ .

#### 2d10b

espacio cociente,

**Proposición 14.** Sea  $f: X \longrightarrow Y$  una identificación y suprayectiva. Si se define en X la relación de equivalencia  $x_1 \sim x_2$  si y sólo si  $f(x_1) = f(x_2)$ , entonces  $X/\sim$  es homeomorfo a Y.

suprayectiva, identificación, homeomorfismo

*Demostración.* La relación definida es una relación de equivalencia, para cualquier función f. Defínase  $\widetilde{f}: X/\sim \to Y$  como  $\widetilde{f}([x])=f(x)$ . Se tiene que festá bien definida, pues si  $[x_1]=[x_2]$  entonces  $x_1\sim x_2$ , luego  $f(x_1)=f(x_2)$ por definición de  $\sim$ , es decir,  $\widetilde{f}([x_1])=\widetilde{f}([x_2])$ . Nótese que  $\widetilde{f}\circ p=f$ , donde  $p:X\to X/\sim$  es la aplicación cociente. Se tiene que

- (i)  $\widetilde{f}$  es suprayectiva, pues dado  $y \in Y$ , existe  $x \in X$  tal que y = f(x) por suprayectividad de x, luego  $[x] \in X/\sim$  es tal que  $\widetilde{f}([x]) = f(x) = y$ ,
- (ii)  $\widetilde{f}$  es inyectiva, pues si  $[x_1], [x_2] \in X/\sim$  son tales que  $\widetilde{f}([x_1]) = \widetilde{f}([x_2])$ , entonces  $f(x_1) = f(x_2)$ , luego  $x_1 \sim x_2$  y por tanto  $[x_1] = [x_2]$ .

Existe pues la función inversa  $\widetilde{f}^{-1}$ . Como  $f=\widetilde{f}\circ p$  es continua y p es identificación, la propiedad universal de las identificaciones implica que  $\widetilde{f}$  es continua. Además, dado que  $p=\widetilde{f}^{-1}\circ f$  es continua y f es identificación, entonces  $\widetilde{f}^{-1}$  también debe ser continua. Luego  $\widetilde{f}$  es un homeomorfismo.

*Definición 21*. Dada una función  $f: X \longrightarrow Y$ , se dice que  $g: X \longrightarrow Z$  es compatible con f si  $f(x_1) = f(x_2)$  implica que  $g(x_1) = g(x_2)$ , para cada  $x.x' \in X$ .

caracterización, compatibilidad, identificación

**Teorema 24.** Sea  $f:X\longrightarrow Y$  continua y suprayectiva. Entonces f es identificación si y sólo si para cada función continua  $g:X\longrightarrow Z$  compatible con f, existe una única función continua  $\overline{g}:Y\longrightarrow Z$  tal que  $\overline{g}\circ f=g$ .



Se dice que  $\overline{g}$  es el resultado de pasar q al cociente.

Demostración. Supóngase que f es identificación y sea  $g: X \longrightarrow Z$  una función continua compatible con f. Defínase  $\overline{g}: Y \longrightarrow Z$  como  $\overline{g}(y) = g(x)$ , donde  $x \in X$  es tal que y = f(x). Se tiene que  $\overline{g}$  está bien definida, pues si  $y_1, y_2 \in Y$  son tales que  $y_1 = y_2$ , entonces existen  $x_1, x_2 \in X$  tales que  $y_1 = f(x_1)$  y  $y_2 = f(x_2)$ , luego  $f(x_1) = f(x_2)$  y por tanto  $g(x_1) = g(x_2)$  por la compatibilidad de g con f, es decir,  $\overline{g}(y_1) = \overline{g}(y_2)$ . Nótese que  $\overline{g} \circ f = g$ .

 $x_1, x_2 \in X$  tales que  $y_1 = f(x_1)$  y  $y_2 = f(x_2)$ , luego  $f(x_1) = f(x_2)$  y por tanto

 $a(x_1) = a(x_2)$ , luego  $\overline{a}'(v_1) = \overline{a}'(f(x_1)) = a(x_1) = a(x_2) = \overline{a}(f(x_2)) = \overline{a}(v_2)$ . En consecuencia,  $\overline{q}' = \overline{q}$  y por lo tanto q es la única función bajo las hipótesis con

esta propiedad. Además, por hipótesis q es continua y f es identificación, luego la propiedad universal de las identificaciones implica que  $\overline{a}$  debe ser continua. Más aún, si q es identificación, como f es identificación, 2d3 implica que  $\overline{q}$  también

> Supóngase ahora que se verifica la condición. Defínase en X la relación de equivalencia  $x_1 \sim x_2$  si v sólo si  $f(x_1) \sim f(x_2)$  v sea  $p: X \longrightarrow X/\sim$  la aplicación cociente. Si  $f(x_1) = f(x_2)$  entonces  $x_1 \sim x_2$  y por tanto  $p(x_1) = p(x_2)$ , en consecuencia p es compatible con f y como también p es continua, por hipótesis debe existir una función continua  $\overline{p}: Y \longrightarrow X/\sim tal que p = \overline{p} \circ f$ . Por otro lado, nótese que si  $p(x_1) = p(x_2)$ , entonces  $x_1 \sim x_2$  y por tanto  $f(x_1) = f(x_2)$ , es decir, f es compatible con p. Como p es identificación, entonces la primera parte de la demostración implica que existe una función continua  $\overline{f}: X/\sim \longrightarrow Y$

> Se tiene entonces que  $p = \overline{p} \circ \overline{f} \circ p$  y  $f = \overline{f} \circ \overline{p} \circ f$ . Afirmamos que  $\overline{f} \circ \overline{p} = \mathrm{id}_Y$ . En efecto, si  $y \in Y$ , entonces existe  $x \in X$  tal que y = f(x), luego y = f(x) = f(x) $\overline{f}(\overline{p}(f(x))) = \overline{f}(\overline{p}(y))$ . Como y es arbitrario esto prueba la afirmación. Similarmente se prueba que  $\overline{p} \circ \overline{f} = \mathrm{id}_{X/\infty}$ . Se tiene pues que  $\overline{f}$  es un homeomorfismo y por tanto identificación, y dado que p también es identificación y  $f = \overline{f} \circ p$ ,

es identificación.

tal que  $f = \overline{f} \circ p$ .

entonces f es identificación.

Si  $\overline{a}': Y \longrightarrow Z$  es una función tal que  $\overline{a}' \circ f = a$ . Si  $v_1 = v_2$ , entonces existen

# Homeomorfismo inducido por funciones compatibles

**Corolario 4.** Si  $f: X \longrightarrow Y$ ,  $g: X \longrightarrow Z$  son identificaciones, suprayectivas y compatibles entre sí, es decir,  $f(x_1) = f(x_2)$  si y solo si  $g(x_1) = g(x_2)$ ,  $\forall x_1, x_2 \in X$ , entonces Y y Z son homeomorfos.

Demostración. Por 2d12, como f es identificación, g es continua y g es compatible con f, entonces existe una función continua  $\overline{g}:Y\longrightarrow Z$  tal que  $\overline{g}\circ f=g$ . Similarmente, como g es identificación, f es continua y f es compatible con g, entonces existe una función continua  $\overline{f}:Z\longrightarrow Y$  tal que  $\overline{f}\circ g=f$ . Luego  $\overline{g}\circ \overline{f}\circ g=g$  y  $\overline{f}\circ \overline{g}\circ f=f$  y como f y g son suprayectivas, entonces  $\overline{g}\circ \overline{f}=\operatorname{id}_Z$  y  $\overline{f}\circ \overline{g}=\operatorname{id}_Y$ . Luego  $\overline{f}$  y  $\overline{g}$  son homeomorfismos.

2d12a

compatibilidad, homeomorfismo

# Funciones que preservan relación

*Definición 22*. Si R y S son relaciones en dos conjuntos X y Y, respectivamente, se dice que f preserva relaciones si x R x' implica que f(x) S f(x'),  $\forall$   $x \in X$ .

**Corolario 5.** Sean R y S relaciones en dos espacios X y Y, respectivamente y sean  $p_X$ ,  $p_Y$  las respectivas aplicaciones cociente. Si  $f: X \longrightarrow Y$  es continua y preserva relaciones, entonces existe una única función continua  $f_*: X/R \longrightarrow Y/S$  tal que  $f_* \circ p_X = p_Y \circ f$ . Es decir, tal que el siguiente diagrama conmuta



*Demostración.* Se sigue de 2d12 tomando  $g = p_Y \circ f$ .

2d12b

preserva relación, continuidad

### Criterio para identificaciones

**Teorema 25.** Si X es un espacio compacto, Y es un espacio de Hausdorff y  $f: X \longrightarrow Y$  es continua y suprayectiva, entonces f es identificación.

*Demostración.* Si  $F \subset X$  es cerrado, entonces F es compacto, luego f(F) es compacto en Y por ser f continua. En consecuencia, f(F) es cerrado en Y por ser Y un espacio de Hausdorff. Luego f es una función cerrada y al ser continua y supravectiva, 2d5 implica que f es identificación.

#### 2d13

compacto, Hausdorff, identificación