Willmore Energy and Bifurcation

Peter McGrath*, Andy Sageman-Furnas*, and Henrik Schumacher*

November 6, 2021

Abstract

MSC-2020 classification: 49Q10; 53A05; 53A31

1 Introduction

2 Notation

Andy: Andy is speaking. Peter: Peter is speaking. Henrik: Henrik is speaking. FiXme Note:
Would be a
good idea to
give a
preliminary
sketch of
what we
want to
achieve
here...

symbol	meaning
\mathbb{R}^3	$\bar{\mathbb{R}}^3 := \mathbb{R}^3 \cup \{\infty\}$
C	$C := \{ f \in C^2(M; \mathbb{R}^3) \}$
$ar{\mathcal{C}}$	$\bar{C} := \{ f \in C^2(M; \mathbb{R}^3) \}$
Möb(3)	group of conformal transformations on $\bar{\mathbb{R}}^3$
vol_f	Riemannian volume density induced by $f \in C$ on M
$\mathcal{A}\colon \mathcal{C} o \mathbb{R}$	area functional $\mathcal{A}(f) := \int_{M} \operatorname{vol}_{f}$.
ω	$\omega \in \Omega^2(\mathbb{R}^3), \ \omega _x \coloneqq \frac{1}{3} \int_M^{\infty} \sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^3 \epsilon_{ijk} x_i \mathrm{d}x_j \wedge \mathrm{d}x_k, \text{ where}$
	ϵ_{ijk} denotes the Levi-Civita symbol. Observe that $d\omega = \text{vol}_{\mathbb{R}^3} :=$
	$dx_1 \wedge dx_2 \wedge dx_3$.
$\mathcal{V}\colon C \to \mathbb{R}$	enclosed volume functional $V(f) := \frac{1}{3} \int_M f^* \omega$

^{*-}please insert your affiliation here-

^{†-}please insert your affiliation here-

[‡]Chemnitz University of Technology, Faculty of Mathematics, 09107 Chemnitz, Germany, henrik.schumacher@math.tu-chemnitz.de

3 Group action

Let M be a closed, 2-dimensional, oriented manifold and denote the space of embeddings of M into \mathbb{R}^3 by C. Note that by restricting the regularity of surfaces to some Banach space, say $C \subset C^2(M; \mathbb{R}^3)$ for the moment, C can be interpreted as an open set in a Banach space. The tangent space of C at a given point $f \in C$ is the space of \mathbb{R}^3 -valued vector fields (not necessarily tangent to f):

$$T_fC=C=C^2(M;\mathbb{R}^3).$$

The Lie group G = M"ob(3) acts on C, i.e., each $g \in G$ induces a diffeomorphism

$$L_q: C \to C$$
, $L_q(f) = g \circ f$.

We can evaluate the fundamental vector fields of the group action of G on G at a given point $f \in G$: Each element $\xi \circ f \operatorname{Lie}(G) = T_1 G$ has a fundamental vector field K_{ξ} defined by

$$(K_{\xi}|_f)(x) := \frac{\mathrm{d}}{\mathrm{d}t} L_{\exp(t\,\xi)}(f)\big|_{t=0}$$
 for each $x \in M$.

By the chain rule, we have

$$(K_{\varepsilon}|_f)(x) = K_{\varepsilon}^{\mathbb{R}^3}|_{f(x)}.$$
 (1)

For example, if $\xi \in \text{Lie}(SO(3)) \subset \text{Lie}(G)$ (it's nothing else but an antisymmetric 3×3 matrix), then

$$(K_{\varepsilon}|_f)(x) = \xi \cdot f(x),$$

where \cdot denotes the matrix-vector product. If $v \in \mathbb{R}^3 \cong \text{Lie}(\mathbb{R}^3) \subset \text{Lie}(G)$ is a generator of a translation, then

$$(K_{\varepsilon}|_f)(x) = v.$$

For an infinitesimal dilation $\lambda \in \mathbb{R} = \text{Lie}(\mathbb{R}_{>0}) \subset \text{Lie}(G)$, the fundamental vector field looks like this:

$$(K_{\xi}|_f)(x) = \lambda f(x).$$

4 Questions

4.1 Andy: I do not have any intuition about preservation 'up to first order'.

Henrik: Through a somewhat intransparent process (in the sense that I did not present their derivation in the *Mathematica* notebook), I was able to determine the fundamental vector fields

 $K^{\mathbb{R}^3}$ for the three "infinitesimal boosts" $u, v, w \in \text{Lie}(G)$, i.e. for three further generators that complement $\text{Lie}(SO(3)) \oplus \text{Lie}(\mathbb{R}^3) \oplus \text{Lie}(\mathbb{R}_{>0}) \subset \text{Lie}(G)$, so that we obtain a full basis of Lie(G). In the notebook, I denoted these three fundamental vector fields by U, V, W, i.e.,

$$U(x) := K_u^{\mathbb{R}^3}|_x = \begin{pmatrix} x_1^2 - x_2^2 - x_3^2 \\ 2x_1x_2 \\ 2x_1x_3 \end{pmatrix},$$

$$V(x) := K_v^{\mathbb{R}^3}|_x = \begin{pmatrix} 2x_2x_1 \\ x_2^2 - x_3^2 - x_1^2 \\ 2x_2x_3 \end{pmatrix},$$

$$W(x) := K_w^{\mathbb{R}^3}|_x = \begin{pmatrix} 2x_3x_1 \\ 2x_3x_2 \\ x_3^2 - x_1^2 - x_2^2 \end{pmatrix}.$$

Thus by (1), we have

$$K_{u|f} = U \circ f$$
, $K_{v|f} = V \circ f$, and $K_{w|f} = W \circ f$.

We can now study area $\mathcal{A}\colon C\to\mathbb{R}$ and enclosed volume $\mathcal{V}\colon C\to\mathbb{R}$ along an orbit $O\coloneqq (Gf)$ of G. By the chain rule we have for each differentiable curve $g\colon]-\epsilon,\epsilon[\to G$ with g(0)=1 and $g'(0)\in \mathrm{Lie}(G)$ that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left. \mathcal{A}(L_{g(t)}(f)) \right|_{t=0} = D \left. \mathcal{A}(f) \left(K_{\xi} |_f \right) \right.$$

and analogously

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{V}(L_{g(t)}(f))\big|_{t=0} = D \mathcal{V}(f) (K_{\xi}|_f).$$

And what I did in the notebook is just checking for each torus f of revolution with circular contour (TRCC for short) that

$$D\mathcal{A}(f)(K_{\nu}|_{f}) = 0, \tag{2}$$

$$D\mathcal{A}(f)(K_n|_f) = 0, (3)$$

$$D\mathcal{A}(f)(K_w|_f) = 0, (4)$$

$$D\mathcal{V}(f)\left(K_{u}|_{f}\right) = 0,\tag{5}$$

$$D\mathcal{V}(f)(K_v|_f) = 0, (6)$$

$$D\mathcal{V}(f)(K_{w}|_{f}) = 0. \tag{7}$$

I did so by parameterizing the torus by

$$f(\varphi, \vartheta) \begin{pmatrix} \cos(\varphi)(r\cos(\vartheta) + R) \\ \sin(\varphi)(r\cos(\vartheta) + R) \\ r\sin(\vartheta) \end{pmatrix} \text{ with some } R > 0 \text{ and some } r > 0.$$

We know that

$$D\mathcal{A}(f)X = \int_{M} \langle H_f, X \rangle \operatorname{vol}_f$$
 and $D\mathcal{A}(f)X = \int_{M} \langle v_f, X \rangle \operatorname{vol}_f$,

where H_f and v_f are mean curvature vector and outward pointing normal of f. Observe that

$$\operatorname{vol}_f = r \, \sqrt{(R + r \cos(\vartheta))^2}, \quad v_f = \frac{\partial}{\partial r} f(\varphi, \theta) = \begin{pmatrix} \cos(\vartheta) \, \cos(\varphi) \\ \cos(\vartheta) \, \sin(\varphi) \\ \sin(\vartheta) \end{pmatrix} \quad \text{and} \quad H_f(\varphi, \vartheta) = h(\theta) \, v_f,$$

where $h(\theta)$ denotes the magnitude of the mean curvature vector which – by rotation symmetry – does not depend on the angle φ . Thus, we can write down the (2)–(7) explicitly. Then we just have to exploit symmetry properties of the trigonometric functions sin and cos.

Of course, this does not necessarily imply that \mathcal{A} and \mathcal{V} are constant on the whole orbit O = (Gf), not even on an arbitrarily small neighborhood of f. While the boost $\exp(tw)$ "in z-direction" (along the axis of revolution) sends a TRCC to a TRCC (the contour has to be circular again and boosting along the axis of revolution preserves rotation symmetry; the parameterization might change considerably, but we are not interested in the parameterization, right?), the boosts $\exp(tu)$ and $\exp(tv)$ along the x and y direction should deform TRCC into Dupin cyclides. And so I do not expect that $\exp(tu)$, $\exp(tv)$ preserve both area and volume. But I could be wrong.

4.2 Andy: With your symbolic setup in *Mathematica* Henrik, is it easy to look at the 2nd order change? Maybe we will even see what makes the Clifford torus isoperimetric ratio so special?

Henrik: Could be worth a try. Computing the Hessian at a critical point is typically not that difficult because it actually does not depend on the employed Riemannian metric and its connection:

Denote the orbit of f under G by $O = L_G(f)$. The fundamental vector fields K span the tangent space T_fO . If $\mathcal{F}: O \to \mathbb{R}$ is twice differentiable, then for any Riemannian metric h on O we have

$$\operatorname{Hess}^h(\mathcal{F})(K_\xi,K_\eta) = \left(K_\xi K_\eta \,\mathcal{F}\,\right)|_f - \operatorname{d}\mathcal{F}(f) \,\nabla_{K_\xi}^h K_\eta, \quad \text{ for all } \xi,\eta \in \operatorname{Lie}(G),$$

where ∇^h is the Levi-Civita connection of h. So in general, the result depends on the choice of a metric! But if $d\mathcal{F}|f=0$ (like in the cases $\mathcal{F}=\mathcal{A}|_O$ and $\mathcal{F}=\mathcal{V}|_O$ for example), then the metric-dependent term just vanishes and we get

$$\operatorname{Hess}^h(\mathcal{F})(f)(K_{\xi},K_{\eta})=\big(K_{\xi}K_{\eta}\,\mathcal{F}\,\big)|_f.$$

And we (or rather Mathematica) should be able to compute the latter, once we have figured out how the exponentials for the infinitesimal boost u, v, w actually look like . . .

Caution: If I am not mistaken, this does not imply

$$(K_{\xi}K_{\eta}\mathcal{A})|_{f} = D^{2}\mathcal{A}(f)(K_{\xi}, K_{\eta}),$$

where D^2 denotes the second derivative on the surrounding Banach space! This has to do with the fact that the orbit is a curved submanifold of C and that $D\mathcal{A}(f)\neq 0$. (We only know that $D\mathcal{A}(f)$ vanishes when multiplied against fundamental vector fields $K_u|_f$, $K_v|_f$, $K_w|_f$ (and against any fundamental vector fields of the group of Euclidean motions, of course).