Ezra Cohen lab 8

August 1, 2021

task 1

```
[5]: library(ggplot2)
library(MASS)
ggplot(data=Boston) + aes(x=rm, y=medv) + geom_point() + __

->geom_smooth(method="lm", se=FALSE)
```

`geom_smooth()` using formula 'y ~ x'


```
[6]: ggplot(data=Boston) + aes(x=crim, y=medv) + geom_point() + ⊔

⇒geom_smooth(method="lm", se=FALSE)
```

[`]geom_smooth()` using formula 'y ~ x'

task 2

[7]: hist(Boston\$crim)

#In most places the crime rate is very low from 0 to 10, there are a couple of \rightarrow places with the crime rate being from 10 to 30, but after that from 30 to 80 \rightarrow there are incredibly few places with crime rates that high and these are the \rightarrow outliers, especially those on the high end from 50 to 80 where there are \rightarrow even less places then there are from 30 to 50 and the crime rate is \rightarrow incredibly high in those places

Histogram of Boston\$crim

task 3

[27]: lmout<-lm(formula=medv ~ crim,data=Boston)
summary(lmout)</pre>

Call:

lm(formula = medv ~ crim, data = Boston)

Residuals:

Min 1Q Median 3Q Max -16.957 -5.449 -2.007 2.512 29.800

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
     (Intercept) 24.03311
                           0.40914 58.74 <2e-16 ***
                -0.41519
                           0.04389
                                     -9.46 <2e-16 ***
     crim
     ---
     Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
     Residual standard error: 8.484 on 504 degrees of freedom
     Multiple R-squared: 0.1508, Adjusted R-squared: 0.1491
     F-statistic: 89.49 on 1 and 504 DF, p-value: < 2.2e-16
     task 4
[28]: | lmout2<-lm(formula=medv ~ crim + rm + dis,data=Boston)
     summary(lmout2)
     Call:
     lm(formula = medv ~ crim + rm + dis, data = Boston)
     Residuals:
        Min
                 1Q Median
                                3Q
                                       Max
     -21.247 -2.930 -0.572 2.390 39.072
     Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
     (Intercept) -29.45838 2.60010 -11.330 < 2e-16 ***
                 -0.25405
                          0.03532 -7.193 2.32e-12 ***
     crim
     rm
                  8.34257
                            0.40870 20.413 < 2e-16 ***
                  0.12627 0.14382 0.878
     dis
                                                0.38
     Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
     Residual standard error: 6.238 on 502 degrees of freedom
     Multiple R-squared: 0.5427,
                                 Adjusted R-squared: 0.5399
     F-statistic: 198.6 on 3 and 502 DF, p-value: < 2.2e-16
     task 5
```

5

#The adjusted r-squared value is only about .54 which is about 55%, so that $_{f L}$ \rightarrow indicates that there is some correlation but not necessarily that it is a $_{\sqcup}$ →very high correlation send it is only just above 50%, but the r-squared \rightarrow value needs to be examined on a case-by-case basis since there is no set \sqcup \rightarrow amount that is a good value, the P value was 2.2e-16 Which is quite good (I_{\sqcup} \rightarrow did look up on Google if this was a good P value since I didn't know exactly. →what it meant by 2.2e - 16) and it is below .05 which shows that there is →correlation and that this would be unlikely for the data to have been like this if we knew that there was no factor that was causing them to be this ⇒correlated, the coefficients are the intercep, crim rm and dis, we can see → that the P value for all of them except distance the last 1 are extremely ___ → significant meaning that we can reject the null hypothesis, the book really ⊔ \rightarrow didn't go over the rest of the stuff for the coefficients so I Googled it, → the estimate gives the intercept and slopes, The standard error is about how →much the predicted values differ from the actual values and it seems like → that should be low if we want to say there is probably correlation, and all_ → the standard errors other than the intercept Are quite low so it again_ →supports the fact that there is a likely correlation, the t value is used to⊔ \rightarrow calculate the P value and while I don't fully understand how to interpret it ⇒ since I know that the P values are very significant for each of them I think $\hookrightarrow I$ can safely say that the T values are all good enough to reject the null_ →hypothesis again with the exclusion of distance which has a bad p value

task 6

[29]: predDF <- data.frame(crim = 0.26, dis=3.2, rm=6.2)

task 7

[31]: predict(lmout2, predDF)

1: 22.6035475000185