Syriatel Take Home Assignment

Tasneem Hosen 14/10/2021

Table of Contents

Introduc	tion	4
Data Ex	ploration & preparation	5
1. Re	eading and discovering the dataset	5
1.1	Dataset Documentation	5
1.2	Discover categorical variables unique values	6
1.3	Discover the min and max values of our target	6
2. Da	ata Preparation	7
2.1	Drop all records that have salary equal to 0	7
2.2	Convert non numerical values to categorical ones	7
2.3	Drop unnecessary columns like jobId	7
3. Fe	atures Analyze and Visualization	8
3.1	Salary Distribution	8
3.2	Fetures Distribution	9
3.3	Study features correlation	15
Modelin	g	17
Key find	lings	17
Next Ste	ep	17
Conclus	ion	18

Figures Table

#	Title						
Fig 1	dataset snapshot						
Fig 2	dataset info						
Fig 3	dataset records with 0 salary						
Fig 4	dataset info after dropping records with 0 salary						
Fig 5	dataset info after data type converting						
Fig 6	a. salary density plot						
	b. salary box plot						
Fig 7	a. jopType pie plot						
	b. jopType & salary box plot						
Fig 8	a. degree pie plot						
	b. degree & salary box plot						
Fig 9	a. major pie plot						
	b. major & salary box plot						
Fig 10	a. industry pie plot						
	b. industry & salary box plot						
Fig 11	a. yearsExperience density plot						
	b. yearsExperience & salary line plot						
Fig 12	a. milesFromMetropolis density plot						
	b. milesFromMetropolis & salary line plot						
Fig 13	salary/ features heat map						
Fig 14	dataset after onehotencoding						

Tables

#	Title
Table 1	Models' MSE

Introduction

This report has been prepared in order to submit the 'Syriatel Take Home Assignment' assignment for AI specialist position.

The applicant:

- * Tasneem Hosen
- * tasnemhosen91@gmail.com
- * +963982052471.

The objective:

Is to use the available information in the job posting to try to predict the salary for the position.

Data Exploration & preparation

1. Reading and discovering the dataset

1.1 Dataset Documentation

dataset name: jobs_train.csv, you can download it here

Our dataset contains 9 main columns and 900,000 record

First 5 rows

		jobld	companyld	jobType	degree	major	industry	yearsExperience	milesFromMetropolis	salary
Ī	0 JC	OB1362685006848	COMP14	MANAGER	MASTERS	MATH	FINANCE	24	36	158
	1 JC	DB1362685403468	COMP36	JANITOR	NONE	NONE	FINANCE	3	4	73
	2 JC	DB1362684563560	COMP56	MANAGER	HIGH_SCHOOL	NONE	SERVICE	11	23	103
	3 JC	DB1362684814664	COMP28	JANITOR	NONE	NONE	EDUCATION	22	42	63
	4 JC	DB1362685123815	COMP48	CEO	DOCTORAL	NONE	OIL	15	66	129

Fig 1: dataset snapshot

We can notice that in our dataset we have:

- Numeric variables: yearsExperience, milesFromMetropolis, salary
- Categorical variables: jobId, companyId, jobType, degree, major, industry
- Target: salary

```
Data columns (total 9 columns):
 # Column
                                    Non-Null Count
                                                            Dtype
                          900000 non-null object
900000 non-null object
900000 non-null object
900000 non-null object
---
 0 jobId
      Journ
companyId
 1
 2 jobType
      degree 900000 non-null object
major 900000 non-null object
industry 900000 non-null object
yearsExperience 900000 non-null int64
     degree
      milesFromMetropolis 900000 non-null int64
       salary
                                    900000 non-null int64
dtypes: int64(3), object(6)
```

Fig 2: dataset info

1.2 Discover categorical variables unique values

jobType:

['MANAGER', 'JANITOR', 'CEO', 'CTO', 'JUNIOR', 'CFO', 'VICE_PRESIDENT', 'SENIOR']

degree:

['MASTERS', 'NONE', 'HIGH_SCHOOL', 'DOCTORAL', 'BACHELORS']

major:

['MATH', 'NONE', 'BIOLOGY', 'COMPSCI', 'CHEMISTRY', 'LITERATURE', 'BUSINESS', 'P HYSICS', 'ENGINEERING']

industry:

['FINANCE', 'SERVICE', 'EDUCATION', 'OIL', 'WEB', 'AUTO', 'HEALTH']

jobId:

all are unique, we are not going to use it as a feature.

companyId:

Has 63 unique values

1.3 Discover the min and max values of our target

The minimum salary value is: 0

The maximum salary value is: 301

We find that only 5 records are with 0 value for salary

	jobld	companyld	jobType	degree	major	industry	yearsExperience	miles From M etropolis	salary
17780	JOB1362684903671	COMP34	JUNIOR	NONE	NONE	OIL	1	25	0
331320	JOB1362685235843	COMP40	VICE_PRESIDENT	MASTERS	ENGINEERING	WEB	3	29	0
362948	JOB1362685223816	COMP42	MANAGER	DOCTORAL	ENGINEERING	FINANCE	18	6	0
537203	JOB1362685059763	COMP25	сто	HIGH_SCHOOL	NONE	AUTO	6	60	0
807172	JOB1362684438246	COMP44	JUNIOR	DOCTORAL	MATH	AUTO	11	7	0

Fig 3: dataset records with 0 salary

2. Data Preparation

2.1 Drop all records that have salary equal to 0

Int64Index: 899995 entries, 0 to 899999						
Data	columns (total 9 colu	umns):				
#	Column	Non-Nu	ll Count	Dtype		
0	jobId	899995	non-null	object		
1	companyId	899995	non-null	object		
2	jobType	899995	non-null	object		
3	degree	899995	non-null	object		
4	major	899995	non-null	object		
5	industry	899995	non-null	object		
6	yearsExperience	899995	non-null	int64		
7	milesFromMetropolis	899995	non-null	int64		
8	salary	899995	non-null	int64		

Fig 4: dataset info after dropping records with 0 salary

2.2 Convert non numerical values to categorical ones

Fig 5: dataset info after data type converting

2.3 Drop unnecessary columns like jobId

3. Features Analyze and Visualization

3.1 Salary Distribution

We are going to plot density plot and boxplot in order to discover our target distribution

Fig 6: a. salary density plot b. salary box plot

- Salary values are a bit equale distribution between 100 and 150
- Salary values are a bit outlier for values less than 50 and more than 200

3.2 Fetures Distribution

For each categorical feature we are going to plot the feature distribution in two cases:

- a. Feature distribution among the dataset (pie plot)
- b. Feature distribution with our target (salary) (boxplot)

jobType

Fig 7: a. jopType pie plot

b. jopType & salary box plot

- SENIORs: represent the biggest slice in our dataset 12.59 %
- CFOs: represent the smallest slice in our dataset 12.44 %
- CEOs: take the highest salaries
- JANITORs: take the lowest salaries

degree

Fig 8: a. degree pie plot

b. degree & salary box plot

- HIGH_SCHOOL: represents the biggest slice in our dataset 23.69 %
- MASTERS: represents the smallest slice in our dataset 17.53 %
- DOCTORAL: takes the highest salaries
- NONE: takes the lowest salaries

major

Fig 9: a. major pie plot

b. major & salary box plot

- NONE: represents the biggest slice in our dataset 23.69 %
- MATH: represents the smallest slice in our dataset 17.53 %
- BUSINESS and ENGINEERING: take the highest salaries
- NONE: takes the lowest salaries

industry

Fig 10: a. industry pie plot

b. industry & salary box plot

- WEB: represents the biggest slice in our dataset 23.69 %
- SERVICE: represents the smallest slice in our dataset 17.53 %
- FINANCE and OIL: take the highest salaries
- EDUCATION and SERVICE: take the lowest salaries

For each numerical feature we are going to plot the feature distribution in two cases:

- a. Feature distribution among the dataset (density plot)
- b. Feature distribution with our target (salary) (line plot)

yearsExperience

Fig 11: a. yearsExperience density plot

b. yearsExperience & salary line plot

- Years of experience: 0 and near to 25
- Positive correlation between salary and years of experience

miles From Metropolis

Fig 12: a. milesFromMetropolis density plot
b. milesFromMetropolis & salary line plot

- Miles From Metropolis: between 0 and near to 100
- Negative correlation between salary and miles From metropolis

3.3 Study features correlation

Finally we are going to plot heat map to discover the correlation between salary and the features, but first we need to encode categorical data to numerical one

Fig 13: salary/ features heat map

- Positive correlation between salary and years' experience
- Negative correlation between salary and miles from metropolis

4. Fit the dataset to match the learning algorithm needs then split it

4.1 Apply OneHotEncoding on categorical features

	yearsExperience	$miles From {\bf Metropolis}$	salary	$companyId_COMP0$	companyId_COMP1	$companyId_COMP10$	$companyld_COMP11$	companyId_COMP12
0	24	36	158	0	0	0	0	0
1	3	4	73	0	0	0	0	0
2	11	23	103	0	0	0	0	0
3	22	42	63	0	0	0	0	0
4	15	66	129	0	0	0	0	0
899995	21	40	127	0	0	0	0	0
899996	20	24	129	0	0	0	0	0
899997	21	48	127	0	0	0	0	0
899998	5	78	46	0	0	0	0	0
899999	22	64	119	0	0	0	0	0

Fig 14: dataset after onehotencoding

4.2 Split the dataset into trainig and test sets

Modeling

I applied the following regression algoritms and print their MSE to find the best one:

- 1. LinearRegression
- 2. SGDRegressor
- 3. GradientBoostingRegressor
- 4. DecisionTreeRegressor
- 5. RandomForestRegressor

The results where:

Algorithm	MSE
LinearRegression	385.36
SGDRegressor	9658.03
GradientBoostingRegressor	375.33
DecisionTreeRegressor	700.48
RandomForestRegressor	448.14

Table 1: Models' MSE

Key findings

After the final check I used GradientBoostingRegressor where it is an iterative Optimization algorithm used to find the minimum value for a function (usually loss function).

According the result it is necessary to apply one of the optimization algorithm to achive less MSE

Next Step

The most important next steps are:

- 1- make all the data analyze, preprocessing and visualization processes as functions, and create a python module for each step to make our code professional, clean, and reusable.
- 2- create a python package contains these modules
- 3- extract a requirement.txt file which will contain all the needed packages in order to share this code easily
- 4- In this solution I did not apply any scalar technique, any outlier processing, any hyperparameter tuning. We need to apply them to achieve more accuracy and choose best hyperparameters.

Conclusion

In order to solve this problem I used:

- Python 3.7, jupyter notebook
- When I faced some problems with memory allocate during training the model I used to solve the problem with work on google colab notebook
- Some internet search