Разработка программных средств визуализации и анализа тропических многочленов Пьюзо

Шкурат Данил Евгеньевич

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н., профессор Кривулин Н.К. Рецензент: научный сотрудник, Санкт-Петербургский филиал АО «КБ «Луч» Губанов С.А.

Тропическая математика

Тропическая математика — относительно новый раздел математики, появившийся в 60-ых годах. Изначально развивался в контексте дискретной математики и оптимизации, но сейчас применяется и в других науках: информатике, биологии, экономике и др.

Тропическая математика

Многие нелинейные в обычном смысле задачи, представленные в терминах тропической математики, становятся линейными и сводятся к решению линейных векторых уравнений, нахождению собственных чисел и векторов матриц, и к другим алгебраическим задачам (Кривулин, 2009, Методы идепотентной алгебры в задачах моделирования и анализа сложных систем).

Тропический многочлен

$$a_i \in X$$

Definition

$$P(x) = \bigoplus_{i} a_i \otimes x^i \tag{1}$$

$$\max_{i}(i \cdot x + a_i) \tag{2}$$

Тропический многочлен

 $a_i \in X$

Definition

$$P(x) = \bigoplus_{i} a_i \otimes x^i \tag{1}$$

$$\max_{i}(i \cdot x + a_i) \tag{2}$$

Значения показателя степени i могут быть целыми (тропический многочлен Лорана), рациональными (тропический многочлен Пьюзо), и действительными (обобщённый тропический многочлен Пьюзо) (Кривулин, 2021).

Тропический многочлен

 $a_i \in X$

Definition

$$P(x) = \bigoplus_{i} a_i \otimes x^i \tag{1}$$

$$\max_{i}(i \cdot x + a_i) \tag{2}$$

Значения показателя степени i могут быть целыми (тропический многочлен Лорана), рациональными (тропический многочлен Пьюзо), и действительными (обобщённый тропический многочлен Пьюзо) (Кривулин, 2021). Применяются в задачах обработки изображений (Ли, 1992), криптографии (Григорьев, Шпильрен, 2014) и др.

Тропические рациональные функции

Тропическая рациональная функция — тропическое частное двух тропических полиномов.

Definition

$$R(x) = \frac{P(x)}{Q(x)} \quad P(x) = \bigoplus_{i} a_i \otimes x^i \quad Q(x) = \bigoplus_{j} b_j \otimes x^j \quad (3)$$

$$\max_{i}(i \cdot x + a_i) - \max_{j}(j \cdot x + b_j) \tag{4}$$

Применяются в моделях нейронных сетей (Zhang, Naizat, Lim, 2018).

Тропические рациональные функции

Тропическая рациональная функция — тропическое частное двух тропических полиномов.

Definition

$$R(x) = \frac{P(x)}{Q(x)} \quad P(x) = \bigoplus_{i} a_i \otimes x^i \quad Q(x) = \bigoplus_{j} b_j \otimes x^j \quad (3)$$

$$\max_{i}(i \cdot x + a_i) - \max_{j}(j \cdot x + b_j) \tag{4}$$

Применяются в моделях нейронных сетей (Zhang, Naizat, Lim, 2018).

Проблемы

 Известно, что рациональные функции не являются выпуклыми, поэтому задача нахождения экстремумов таких функций является нетривиальной. Для решения таких задач будут полезными средства визуализации.

Проблемы

- Известно, что рациональные функции не являются выпуклыми, поэтому задача нахождения экстремумов таких функций является нетривиальной. Для решения таких задач будут полезными средства визуализации.
- Представления действительных и рациональных чисел в большинстве языков программирования не являются точными. Системы компьютерной алгебры используют другое представления и поэтому они более приспособлены для проведения расчётов.

Проблемы

- Известно, что рациональные функции не являются выпуклыми, поэтому задача нахождения экстремумов таких функций является нетривиальной. Для решения таких задач будут полезными средства визуализации.
- Представления действительных и рациональных чисел в большинстве языков программирования не являются точными. Системы компьютерной алгебры используют другое представления и поэтому они более приспособлены для проведения расчётов.
- Большинство систем компьютерной алгебры не поддерживают тропическую алгебру без дополнительных расширений/библиотек/кода.

Задачи

• Разработать приложение, визуализирующее тропические многочлены и тропические рациональные функции.

Задачи

- Разработать приложение, визуализирующее тропические многочлены и тропические рациональные функции.
- Обеспечить ввод функций и многочленов «на языке» тропической математики.

Задачи

- Разработать приложение, визуализирующее тропические многочлены и тропические рациональные функции.
- Обеспечить ввод функций и многочленов «на языке» тропической математики.
- Избавиться от ошибок, связанных с представлением действительных чисел.

Обзор существующих решений

• Gfan — создавалась для работы с веерами Грёбнера; открытый исходный код; не обновлялась с сентября 2017 года, последняя версия — 0.6.2.

Обзор существующих решений

- Gfan создавалась для работы с веерами Грёбнера; открытый исходный код; не обновлялась с сентября 2017 года, последняя версия 0.6.2.
- tropical.lib библиотека для стороннего программного обеспечения Singular, для полноценной работы необходима библиотека polymake.lib и программа gfan; недоступна в России*.

Обзор существующих решений

- Gfan создавалась для работы с веерами Грёбнера; открытый исходный код; не обновлялась с сентября 2017 года, последняя версия 0.6.2.
- tropical.lib библиотека для стороннего программного обеспечения Singular, для полноценной работы необходима библиотека polymake.lib и программа gfan; недоступна в России*.
- jinvariant.lib библиотека, использовавшая для доказательства результатов в (Katz, Markwig, Markwig, 2007) и (Katz, Markwig, Markwig, 2008); для её работы необходимы библиотеки tropical.lib и polymake.lib; библиотека эта для конкретного программного обеспечения Singular, но некоторые функции поддерживают polymake и topcom; недоступна в России*.

Обзор существующих решений (продолжение)

 TropicalSurfaces — программное обеспечение, предназначенное для изображения тропических поверхностей в трёхмерном пространстве; недоступна в России.

Обзор существующих решений (продолжение)

- TropicalSurfaces программное обеспечение, предназначенное для изображения тропических поверхностей в трёхмерном пространстве; недоступна в России.
- Math Partner система компьютерной алгебры, поддерживающая тропическую алгебру; использует $(\max,+)$ -, $(\min,+)$ -, (\max,\min) -, (\min,\max) -, (\min,∞) -, (\max,∞) -, (\min,∞) алгебры на множествах \mathbb{Z} , $\mathbb{R}64$, \mathbb{R} ; недоступна в России.

• Облегчить разработку других приложений, использующих тропическую математику;

- Облегчить разработку других приложений, использующих тропическую математику;
- предоставить инструмент для аппроксимаций выпуклых функций тропическими многочленами;

- Облегчить разработку других приложений, использующих тропическую математику;
- предоставить инструмент для аппроксимаций выпуклых функций тропическими многочленами;
- предоставить инструмент для аппроксимаций элементарных непрерывных функций тропическими рациональными функциями;

- Облегчить разработку других приложений, использующих тропическую математику;
- предоставить инструмент для аппроксимаций выпуклых функций тропическими многочленами;
- предоставить инструмент для аппроксимаций элементарных непрерывных функций тропическими рациональными функциями;
- предоставить функционал для решения некоторых задач оптимизации;

- Облегчить разработку других приложений, использующих тропическую математику;
- предоставить инструмент для аппроксимаций выпуклых функций тропическими многочленами;
- предоставить инструмент для аппроксимаций элементарных непрерывных функций тропическими рациональными функциями;
- предоставить функционал для решения некоторых задач оптимизации;
- использовать действительные значения чисел, вместо представлений как double, для точности расчётов.

Выбор языка и средств разработки

Для реализации библиотеки был выбран язык $\mathrm{C}\#\ 10.0$ на платформе . $\mathrm{NET}\ 6.0$. Целевой ОС нет.

Выбор языка и средств разработки

Для реализации библиотеки был выбран язык C# 10.0 на платформе .NET 6.0. Целевой OC нет.

В качестве интегрированной среды разработки выбрана MS Visual Studio 2022.

Выбор языка и средств разработки

Для реализации библиотеки был выбран язык $C\#\ 10.0$ на платформе . $NET\ 6.0$. Целевой OC нет.

В качестве интегрированной среды разработки выбрана MS Visual Studio 2022.

Система контроля версий — GitHub, там же хранится исходный код.

TDD

TDD (test-driven development) — разработка через тестирование — техника разработки программного обеспечения, заключающася в написании тестов до реализации функционала. Следующие функции реализуются только при успешном прохождении тестов для прошлых. Такой подход увеличивает модульность кода, обеспечивает безопасность и гарантирует некоторую уверенность в том, что обновления не сломают то, что хорошо работало в старых версиях.

AngouriMath

AngouriMath — система компьютерной алгебры с открытым исходным кодом. Мы будем использовать её для разработки наших проектов.

AngovriMath

Symbolic algebra in .NET

Реализация тропической алгебры

```
public abstract class Algebra {
  readonly Number.Real zero;
  readonly Number.Real one;
  virtual public Number.Real Zero { get => zero; }
  virtual public Number.Real One { get => one; }
  public abstract Entity Calculate(Entity expr);
  protected abstract Entity Parse(Entity expr);
}
```

Паттерн Singleton

```
public class MaxPlus:Algebra {
 private static MaxPlus instance;
 public static MaxPlus Instance {
      get {
        instance ??= new MaxPlus();
        return instance;
 protected MaxPlus() { }
```

Вычисление выражений

```
override public Entity Calculate(Entity expr) {
    Entity res = Parse(expr);
    if(res is not Entity Matrix) {
        res = res.EvalNumerical().RealPart;
    return res:
override protected Entity Parse(Entity expr)
=> expr switch {
   Number Real r => r.
   Entity Matrix m => m.
   Sumf(Entity, Matrix matrixA, Entity, Matrix matrixB) => TropicalMatrixOperations. TropicalMatrixAddition(matrixA, matrixB, instance).
    Sumf(var a, var b) => sum(a, b),
   Powf(var a, var b) => Parse(a) * b.EvalNumerical().RealPart,
   Mulf(Number Real scalar, Entity Matrix matrix) => TropicalMatrixOperations.TropicalMatrixScalarMultiplication(matrix, scalar, instance)
    Mulf(Entity, Matrix matrix, Number, Real scalar) => Tropical MatrixOperations, Tropical MatrixScalar Multiplication (matrix, scalar, instance)
    Mulf(Entity, Matrix matrixA, Entity, Matrix matrixB) when matrixA, IsScalar | matrixB, IsScalar
                                                 => TropicalMatrixOperations.TropicalMatrixScalarMultiplication(matrixA, matrixB, instance),
    Mulf(Entity, Matrix matrixA, Entity, Matrix matrixB) => Tropical MatrixOperations, Tropical MatrixMultiplication(matrixA, matrixB, instance)
    Mulf(var a, var b) => Parse(a) + Parse(b),
    Divf(var a, var b) => Parse(a) - Parse(b).
```

• Арргох — для аппроксимации функций,

- Арргох для аппроксимации функций,
- MatrixExtension класс расширений для матриц,

- Арргох для аппроксимации функций,
- MatrixExtension класс расширений для матриц,
- Optimization для решения задач оптимизации,

- Approx для аппроксимации функций,
- MatrixExtension класс расширений для матриц,
- Optimization для решения задач оптимизации,
- TropicalMatrixOperations для проведения операций над тропическими матрицами и векторами,

Классы библиотеки

- Арргох для аппроксимации функций,
- MatrixExtension класс расширений для матриц,
- Optimization для решения задач оптимизации,
- TropicalMatrixOperations для проведения операций над тропическими матрицами и векторами,
- TropicalPolynomial для создания тропических полиномов, рациональных функций и вычисления их значений в точке.

 Интерпретировать полиномы, записанные на языке тропической математики;

- Интерпретировать полиномы, записанные на языке тропической математики;
- вычислять значения рациональных функций;

- Интерпретировать полиномы, записанные на языке тропической математики;
- вычислять значения рациональных функций;
- строить графики тропических полиномов;

- Интерпретировать полиномы, записанные на языке тропической математики;
- вычислять значения рациональных функций;
- строить графики тропических полиномов;
- строить графики обыкновенных функций;

- Интерпретировать полиномы, записанные на языке тропической математики;
- вычислять значения рациональных функций;
- строить графики тропических полиномов;
- строить графики обыкновенных функций;
- строить графики тропических рациональных функций;

- Интерпретировать полиномы, записанные на языке тропической математики;
- вычислять значения рациональных функций;
- строить графики тропических полиномов;
- строить графики обыкновенных функций;
- строить графики тропических рациональных функций;
- строить графики функции ошибки при сравнении функций;

 выбирать наилучшую полиномиальную пару для аппроксимации;

- выбирать наилучшую полиномиальную пару для аппроксимации;
- аппроксимировать выпуклые функции с помощью тропических многочленов;

- выбирать наилучшую полиномиальную пару для аппроксимации;
- аппроксимировать выпуклые функции с помощью тропических многочленов;
- аппроксимировать функции с помощью тропических рациональных функций.

Выбор языка и средств разработки

Для реализации данного проекта был выбран язык C# 10.0 на платформе .NET 6.0. Целевая платформа — MS Windows 10, конфигурация — AnyCPU.

Выбор языка и средств разработки

Для реализации данного проекта был выбран язык C#10.0 на платформе .NET~6.0. Целевая платформа — MS Windows 10, конфигурация — AnyCPU.

В качестве интегрированной среды разработки выбрана MS Visual Studio 2022.

Выбор языка и средств разработки

Для реализации данного проекта был выбран язык C# 10.0 на платформе .NET 6.0. Целевая платформа — MS Windows 10, конфигурация — AnyCPU.

В качестве интегрированной среды разработки выбрана MS Visual Studio 2022.

Система контроля версий — GitHub, там же хранится исходный код.

Аппроксимация функций тропическими рациональными функциями

Аппроксимация выпуклых функций тропическими многочленами сводится к решению тропического уравнения вида

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
.

.

Аппроксимация функций тропическими рациональными функциями

Аппроксимация выпуклых функций тропическими многочленами сводится к решению тропического уравнения вида

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
.

Аппроксимация рациональными функциями сводится к решению уравнения вида

$$Ax = By$$
.

Для решения уравнений используются методы и процедуры разработанные в (Кривулин, 2009; Кривулин, 2023).

Зачем оставлять аппроксимацию полиномами?

 Метод для элементарных непрерывных функций может справиться хуже, чем метод для выпуклых функций.

Зачем оставлять аппроксимацию полиномами?

- Метод для элементарных непрерывных функций может справиться хуже, чем метод для выпуклых функций.
- Оценка сложности метода аппроксимации элементарных непрерывных функций пока ещё не получена, в то время как сложность аппроксимации выпуклых функций можно найти.

Зачем оставлять аппроксимацию полиномами?

- Метод для элементарных непрерывных функций может справиться хуже, чем метод для выпуклых функций.
- Оценка сложности метода аппроксимации элементарных непрерывных функций пока ещё не получена, в то время как сложность аппроксимации выпуклых функций можно найти.
- Даже в самом лучшем случае (при подборе такого x_0 , при котором $\Delta=\mathbb{1}$) метод аппроксимации выпуклых функций справляется быстрее за счёт меньшего количества операций.

Ручной ввод

Рис. 1: Приложение во время работы

Аппроксимация тропическим полиномом

Рис. 2: Аппроксимация полиномом со степенями от -5 до 5

Аппроксимация тропической рациональной функцией

Рис. 3: Аппроксимация функции тропической рациональной функцией со степенями от -10 до 10

Выводы

- Разработана библиотека с открытым исходным кодом для вычислений в терминах тропической математики, не зависящей от других программ.
- Разработано приложение аппроксимирующее, функции с помощью тропической математики, и визуализирующее тропические рациональные функции, тропические полиномы и функции ошибки аппроксимации.
- Продемонстрировано использование бибилиотеки при решении задач аппроксимации и оптимизации.