Answer these questions in your Blue Book (this test paper will not be graded). Make sure to start each question on a new page. No calculators, cell phones, or anything else with a battery. Make sure to read all directions and show all your work. Answers missing work will lose points.

- 1. (a) Find the slope of the line $3y 2x + 100\pi = 0$.
 - (b) Write the equation of the line through the point $(1, \sqrt{2})$ and parallel to the line $3y 2x + 100\pi = 0$.
 - (c) Write the equation of the circle centered at (-3,4) that passes through the point (0,0).
- 2. Find the limits for parts (a)-(c) (make sure to show you work).
 - (a) $\lim_{x \to 3} \frac{x-3}{x^2 5x + 6}$.
 - (b) $\lim_{t\to 0} \frac{\sqrt{t+1}-1}{t}$.
 - (c) $\lim_{h\to 0} \frac{\frac{2}{x+h} \frac{2}{x}}{h}$.
 - (d) Write down a function f(x) so that f'(x) = the limit from Part (c). What is the domain of f(x)?
- 3. For this question $f(x) = \begin{cases} \frac{x^2 1}{x + 1}, & \text{if } x < -1 \\ 2x, & \text{if } -1 < x \le 1 \\ x^3 2x + 1, & \text{if } 1 < x \end{cases}$
 - (a) List all values where f(x) is discontinuous.
 - (b) Explain your answer(s) to part (b), showing that you know what it means for a function to be continuous at the point x = a.
- 4. For this question, you may use any (correct) method to find the indicated derivatives.
 - (a) For $f(x) = \sqrt{x}(\sqrt{x} + 2x)$, find f'(x) and f'(4). (Simplify your answer for f'(4).)
 - (b) For $y = x^2 + \frac{1}{x} + \cos(x)$, find $\frac{dy}{dx}$.
 - (c) For $g(t) = 100t^{500}$, find g'(1).
 - (d) For $h(u) = \frac{\sin(u)}{u}$, find h'(u).
- 5. Find the equation for the line tangent to $f(x) = (\frac{\pi}{4} x)\cos(x)$ at $x = \frac{\pi}{4}$, (You must evaluate/simplify trigonometric expressions for this question).

(a)
$$3y - 2x + 100\pi = 0$$

 $3y = 2x - 100\pi$
 $y = \frac{2}{3}x - \frac{100\pi}{3}$
so the slope is $\frac{2}{3}$ (+5)
(b) $y - \sqrt{2} = \frac{2}{3}(x - 1)$ (+5)
(c) radius = $\sqrt{(-3 - 0)^2 + (4 - 0)^2}$

(c) radius =
$$\sqrt{(-3-0)^2 + (4-0)^2}$$

= $\sqrt{9 + 16}$
= $\sqrt{25}$
= 5
So an eqn of the circle would be:
 $(x+3)^2 + (y-4)^2 = 25$ (+5)

(a)
$$\lim_{x \to 3} \frac{x-3}{x^2-5x+6} = \lim_{x \to 3} \frac{x-3}{(x-3)(x-2)}$$

$$= \lim_{x \to 3} \frac{1}{x-2}$$

$$= \frac{1}{3-2} = \boxed{1} +5$$

(b) soll: use the conjugate trick:

$$\lim_{t\to 0} \frac{\sqrt{t+1}-1}{t} = \lim_{t\to 0} \frac{(\sqrt{t+1}-1)(\sqrt{t+1}+1)}{t}$$

$$= \lim_{t\to 0} \frac{(\sqrt{t+1})^2-1}{t(\sqrt{t+1}+1)}$$

$$= \lim_{t\to 0} \frac{t+1-1}{t(\sqrt{t+1}+1)} = \lim_{t\to 0} \frac{t+1-1}$$

next page

$$= \lim_{t \to 0} \frac{t}{t(\sqrt{t+i'+1})} \stackrel{\text{AET}}{=} \lim_{t \to 0} \frac{1}{\sqrt{t+i'+1}}$$

$$= \frac{1}{\sqrt{1'+1}} = \frac{1}{2} (+5)$$

(this solution is for future reference. Check it out after we learn the Cham Rule") SOL 2: OR notice this limit looks like the derivative of some function at a point. Let $f(t) = \sqrt{t+1} = (t+1)^{1/2}$

Then notice:
$$f'(\mathbf{a}) = \lim_{t \to \mathbf{0}} \frac{\sqrt{t+1} - \sqrt{0+1}}{t}$$

$$= \lim_{t \to \mathbf{0}} \frac{\sqrt{t+1} - 1}{t}$$

$$= \lim_{t \to \mathbf{$$

Soll:
$$\lim_{h \to 0} \frac{\frac{2}{x+h} - \frac{2}{x}}{h} = \lim_{h \to 0} \frac{\frac{2x}{x(x+h)} - \frac{2}{x(x+h)}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{2x - 2(x+h)}{x(x+h)}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{2x - 2x - 2h}{x(x+h)}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{2x - 2x - 2h}{x(x+h)}}{h \times (x+h)}$$

$$= \lim_{h \to 0} \frac{-2h}{h \times (x+h)} = \frac{-2}{x^2}$$

SOL 2: (basically do part (d) and then finish)

Notice this limit is of the form of the definition of the derivative of some function. Let
$$f(x) = \frac{2}{x} = 2x^{-1}$$

then
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{2}{x+h} - \frac{2}{x}$$

$$= \lim_{h \to 0} \frac{x+h}{h} - \frac{2}{x}$$
This is the limit we are trying to find. So now use the short at formulas.

(d)
$$f(x) = \frac{2}{x}$$
 The domain of f is $\begin{cases} \begin{cases} x \in \mathbb{R} \mid x \neq 0 \end{cases} \end{cases}$ $(-\infty, 0) \cup (0, \infty) \end{cases}$ all of these are just different notations for the same thing.

OR

All real numbers except $x = 0$

(3) (a)
$$x = -1$$
 and $x = 1$ (+10)

(b)
$$f$$
 is discontinuous at $x=-1$ because $f(-1)$ does not exist! $(x=-1)$ is not part of the domain of the function) $(+5)$

Remember: A function f is continuous at x=a if

(1) f(a) is defined (that is, a is in the domain of f)

(2) $\lim_{x\to a} f(x) = f(a)$ (3) $\lim_{x\to a} f(x) = f(a)$

So at
$$x=-1$$
 the function did not satisfy (1).

f is discontinuous at
$$X = 1$$
: why?

notice $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} 2x = 2$
 $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (x^{3} - 2x + 1) = 0$

2 \$\pm\$ 0 \$\so \text{this tells us } \lim_{\text{X} \to 1} f(x) \text{ does NOT exist} \\
\text{therefore (2) is not satisfied and hence}
\[
\text{f is discontinuous at } \times 1. \text{ (+5)}
\]

(4)
$$f(x) = \sqrt{x} (\sqrt{x} + 2x)$$

$$= x^{1/2} (x^{1/2} + 2x)$$

$$= x^{1/2} + 2x^{1+1/2}$$

$$= x + 2x^{3/2}$$

$$f'(x) = 1 + 2(\frac{3}{2})x^{1/2} = 1 + 3x^{1/2} = 1 + 3\sqrt{x}$$

$$f'(y) = 1 + 3\sqrt{y} = 1 + 3 \cdot 2 = 7$$
(b)
$$\frac{dy}{dx} = 2x + (-1)x^{-2} - \sin(x)$$

$$\frac{dy}{dx} = 7x - x^{-2} - \sin(x)$$

so
$$\frac{dy}{dx} = 2x - x^{-2} - \sin(x)$$
 (+5)

(c)
$$g'(t) = 100.500 t$$
 $q'(1) = 50000$ $(+5)$

(d)
$$h'(u) = \frac{u \cos(u) - \sin(u)}{u^2}$$
 (+5)

$$f(\frac{\pi}{4}) = 0 (+5)$$

$$f'(x) = (\frac{\pi}{4} - x)(-sm(x)) + cos(x)(-1)(+5)$$

$$f'(\frac{\pi}{4}) = cos(\frac{\pi}{4})(-1) = -\frac{\sqrt{2}}{2} + 5$$

$$y - 0 = -\frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right)$$
OR

$$y = -\sqrt{2} \times + \frac{\pi\sqrt{2}}{8}$$

.

.....