SUPPLEMENTARY MATERIAL ON SZEGŐ THEOREMS

MIKHAIL BASOK, VIRGINIA INTEGRABLE PROBABILITY SUMMER SCHOOL 2019

1. Let $w: \mathbb{T} \to \mathbb{R}_{\geq 0}$ be a real symmetric (i.e., $w(\overline{z}) = w(z)$) weight on the unit circle $\mathbb{T} = \{z: |z| = 1\}$. The Hilbert space $L^2(\mathbb{T}, \frac{1}{2\pi}w(z)|dz|)$ is defined in a usual way:

$$\langle f, g \rangle_w := \frac{1}{2\pi} \int_{\mathbb{T}} f(z) \overline{g(z)} w(z) |dz|.$$

Orthogonal (with respect to w) polynomials $\Phi_0, \Phi_1, \Phi_2, \ldots$ are defined recursively by

$$\Phi_0(z) = 1,$$

$$\Phi_n(z) = z^n + \dots, \qquad \langle \Phi_n(z), z^m \rangle_w = 0.$$

In other words, Φ_0, Φ_1, \ldots is the result of the orthogonalization procedure applied to the system $1, z, z^2, \ldots$ in $L^2(\mathbb{T}, \frac{1}{2\pi}w(z)|dz|)$. The symmetry condition $w(\overline{z}) = w(z)$ implies that the coefficients of Φ_n are real: $\Phi_n(z) = \overline{\Phi_n(\overline{z})}$.

Set $\Phi_n^*(z) := z^n \Phi_n(z^{-1})$. It is straightforward to check that Φ_n^* is the only polynomial of degree at most n such that $\Phi_n^*(0) = 1$ and $\Phi_n^* \perp z^m$ if $1 \le m \le n$.

2. Given $n \ge 0$ consider the polynomial $z\Phi_n(z)$. Properties of Φ_n immediately implies that $z\Phi_n(z)$ is monic and is orthogonal to z^m if $1 \le m \le n$. Thus we should have

$$z\Phi_n(z) = \Phi_{n+1}(z) + \alpha_n \Phi_n^*(z). \tag{1}$$

for some constant α_n . Substituting z=0 we find that

$$\alpha_n = -\Phi_{n+1}(0).$$

Coefficients α_n are called *Verblunsky coefficients* and (1) is called *Szegő recurrence relation*. It easily follows from (1) that

$$\|\Phi_n\|_w^2 = \|\Phi_{n+1}\|_w^2 + \alpha_n^2 \|\Phi_n\|_w^2$$

and hence

$$\beta_n := \|\Phi_n\|_w^2 = \|\Phi_0\|_w^2 \prod_{j=0}^{n-1} (1 - |\alpha_j|^2).$$

3. Let us introduce another Hilbert space, the Hardy space H^2 in the unit disc:

$$H^{2} := \{ f(z) = \sum_{j>0} \widehat{f}_{j} z^{j} \mid ||f||_{H^{2}}^{2} := \sum_{j>0} |\widehat{f}_{j}|^{2} < \infty \}.$$
 (2)

Alternatively one can say that H^2 is the (closed) span of $1, z, z^2, \ldots$ in $L^2(\mathbb{T}, \frac{1}{2\pi}|dz|)$ and one has

$$||f||_{H^2}^2 = \frac{1}{2\pi} \int_{\mathbb{T}} |f(z)|^2 |dz|.$$

Note that $H^2 \subset L^2(\mathbb{T}, \frac{1}{2\pi}|dz|)$ is exactly the space of square integrable functions on \mathbb{T} that admit holomorphic continuations to the unit disc. Let $P_+: L^2(\mathbb{T}, \frac{1}{2\pi}|dz|) \to H^2$ be the orthogonal projection (*Riesz projector*).

4. Given a weight w on \mathbb{T} one can define the *Toeplitz operator* with symbol w:

$$T(w): H^2 \to H^2, \qquad T(w)f := P_+(w \cdot f).$$

If $w = \sum_{j \in \mathbb{Z}} \widehat{w}_j z^j$ is the Fourier series of w, then T(w) can be written as

$$T(w) \sim \begin{pmatrix} \widehat{w}_0 & \widehat{w}_1 & \widehat{w}_2 & \ddots \\ \widehat{w}_{-1} & \widehat{w}_0 & \widehat{w}_1 & \ddots \\ \widehat{w}_{-2} & \widehat{w}_{-1} & \widehat{w}_0 & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix} \text{ in the basis } 1, z, z^2, \dots$$

5. Let $Q_n: H^2 \to H^2$ be the orthogonal projection onto the span Q_nH^2 of $1, z, \ldots, z^n$ in H^2 and $R_n:=\mathrm{Id}-Q_n$. The determinants of *finite size* matrices $Q_nT(w)Q_n$ (viewed as operators on the span Q_nH^2) can be easily expressed via the norms β_n of orthogonal polynomials (see paragraph 2):

$$\det_{Q_n H^2} Q_n T(w) Q_n = \beta_0 \cdot \beta_1 \cdot \ldots \cdot \beta_n.$$
 (3)

To prove (3) just consider the matrix $Q_nT(w)Q_n$ in the basis Φ_0,\ldots,Φ_n .

- **6.** From now onwards, assume that $w(z) = |D(z)|^2$ where D is holomorphic function in the unit disc and, moreover, an outer function. This means that $\operatorname{Re} \log D$ is a harmonic extension of $\frac{1}{2} \log w$ from T to the unit disc and Im log D is the harmonic conjugate to this harmonic extension; in particular we assume that $\log w$ is integrable on \mathbb{T} .
- 7. There is a natural way to interpret Φ_n^* as a solution to some extremal problem. Namely, let us consider a problem of minimizing

$$\frac{1}{2\pi} \int_{\mathbb{T}} |\Phi(z)|^2 w(z)|dz| \tag{4}$$

over all polynomials Φ such that $\deg \Phi \leq n$ and $\Phi(0) = 1$. One can think of this minimum as of the distance between 0 and the affine hyperplane in Q_nH^2 defined by the condition $\Phi(0) = 1$. Clearly, this distance is achieved on the unique vector which is orthogonal to z, z^2, \ldots, z^n , the polynomial Φ_n^* .

8. If we drop the condition that Φ is a polynomial, then the minimum of (4) is attained on the function $\Phi(z) := D(0)/D(z)$ (recall that we have $w(z) = |D(z)|^2$ and the outer function D(z) does not vanish in the unit disc). Indeed, a straightforward computation shows that D(0)/D(z) is orthogonal to z, z^2, \ldots :

$$\frac{1}{2\pi} \int_{\mathbb{T}} (D(z))^{-1} \overline{z}^k w(z) |dz| \ = \ \frac{i}{2\pi} \int_{\mathbb{T}} \overline{D(z) z^{k-1} dz} \ = \ 0.$$

This leads to the following result:

Theorem 1 (first Szegő theorem). In the setup described above one has

- (1) $\beta_n = \|\Phi_n^*\|_w^2 \to |D(0)|^2$ as $n \to \infty$; (2) $\Phi_n^*(z) \to D(0)/D(z)$ as $n \to \infty$, uniformly on compact subsets of the unit disc.

9. Assume now that D(0) = 1 (this can be achieved just by a renormalization of the weight). Then $\beta_n \to 1$ and it is reasonable to ask if one can compute the Fredholom determinant $\det T(z) = \lim_{n \to \infty} \det_{Q_n H^2} Q_n T(w) Q_n = \prod_{j=0}^{+\infty} \beta_j$ of the Toeplitz operator T(w), see (3). The answer to this question is provided by

Theorem 2 (second (or strong) Szegő theorem). Assume that $\frac{d}{dz} \log D$ is square integrable on the unit disc and let $\log D(z) = \sum_{k\geq 0} L_k z^k$. Then we have

$$\prod_{j=0}^{+\infty} \beta_j = \det T(w) = \exp \left[\sum_{k \ge 1} k |L_k|^2 \right] = \exp \left[\frac{1}{\pi} \int_{\{z: |z| < 1\}} \left| \frac{D'(z)}{D(z)} \right|^2 dA(z) \right].$$

The aim of the next paragraphs is to sketch the proof of this theorem that is due to Borodin and Okunkov. The fact that the two last quantities match is a straightforward computation, thus it remains to show that $\det T(w) = \exp\left[\sum_{k>1} k|L_k|^2\right]$.

10. Given a (say, bounded) function $a: \mathbb{T} \to \mathbb{C}$, let us introduce the Hankel operator

$$H(a): H^2 \to H^2, \qquad (H(a)f)(z) := P_+(\overline{z}a(z) \cdot f(\overline{z})).$$
 (5)

If $a = \sum_{j \in \mathbb{Z}} \widehat{a}_j z^j$, then

$$H(a) \sim \begin{pmatrix} \widehat{a}_1 & \widehat{a}_2 & \widehat{a}_3 & \ddots \\ \widehat{a}_2 & \widehat{a}_3 & \widehat{a}_4 & \ddots \\ \widehat{a}_3 & \widehat{a}_4 & \widehat{a}_5 & \ddots \\ \vdots & \vdots & \ddots & \ddots \end{pmatrix} \text{ in the basis } 1, z, z^2, \dots$$

For shortness, denote $\widetilde{a}(z) := a(\overline{z}), z \in \mathbb{T}$. It is easy to see that

$$a(z)f(z) = (T(a)f)(z) + \overline{z}(H(\widetilde{a})f)(\overline{z}),$$

which implies the following identity:

$$T(a_1 a_2) = T(a_1) T(a_2) + H(a_1) H(\widetilde{a}_2). \tag{6}$$

Using this relation we conclude that, if a_1 is anti-holomorphic or a_2 is holomorphic in the unit disc, then

$$T(a_1 a_2) = T(a_1) T(a_2). (7)$$

In particular, in these cases one has $T(a_1^{-1}) = T(a_1)^{-1}$ and $T(a_2^{-1}) = T(a_2)^{-1}$.

11. The key trick. Due to (7) we have $T(w) = T(\overline{D}D) = T(\overline{D})T(D)$. It follows that

$$T(D^{-1})T(w)T(\overline{D}^{-1}) = (T(D^{-1})T(\overline{D}))(T(D)T(\overline{D}^{-1}))$$

$$= T(\overline{b})^{-1}T(b)^{-1} = (T(b)T(\overline{b}))^{-1},$$
(8)

where $b:=\overline{D}^{-1}D$. Note that both operators $T(D^{-1})$ and $T(\overline{D}^{-1})$ are triangular in the basis $1,z,z^2,\ldots$ with diagonal entries $D(0)^{-1}=\overline{D}^{-1}(0)=1$. Therefore,

$$\det_{Q_n H^2} Q_n T(w) Q_n = \det_{Q_n H^2} Q_n T(D^{-1}) T(w) T(\overline{D}^{-1}) Q_n$$

$$= \det_{Q_n H^2} Q_n \left(T(b) T(\overline{b}) \right)^{-1} Q_n. \tag{9}$$

Since $b\bar{b} = 1$, the identity (6) implies

$$T(b)T(\overline{b}) = \operatorname{Id} - H(b)H(b)^*. \tag{10}$$

Provided the Fourier coefficients of the function $b = \overline{D}^{-1}D$ decay fast enough (which is always the case if D is smooth enough and does not vanish on \mathbb{T}), the Hankel operator H(b) is Hilbert–Schmidt and hence $H(b)H(b)^*$ is a trace class operator. In this situation, the Jacobi identity allows one to rewrite (9) in the following form:

$$\det_{Q_n H^2} Q_n T(w) Q_n \ = \ \frac{\det_{R_n H^2} (\operatorname{Id} - R_n H(b) H(b)^* R_n)}{\det (\operatorname{Id} - H(b) H(b)^*)} \,,$$

recall that $R_n = \mathrm{Id} - Q_n$. Passing to the limit $n \to \infty$, one gets

$$\det T(w) = \lim_{n \to \infty} \det_{Q_n H^2} Q_n T(w) Q_n = (\det(\operatorname{Id} - H(b)H(b)^*))^{-1}.$$
 (11)

12. To compute the last determinant we use the Helton-Howe formula:

Theorem 3. Let A, B be bounded operators on a Hilbert space such that [A, B] is a trace class operator. Then $e^A e^B e^{-A} e^{-B} - \operatorname{Id}$ is a trace class operator and

$$\det e^A e^B e^{-A} e^{-B} = \exp(\operatorname{Tr}[A, B]).$$

It is easy to see that

$$\operatorname{Id} - H(b)H(b)^* = T(b)T(\overline{b}) = T(\overline{D}^{-1})T(D)T(\overline{D})T(D^{-1})$$

and (7) implies that $T(D) = e^{T(\log D)}$ and $T(\overline{D}) = e^{T(\log \overline{D})}$. Therefore,

$$\det(\operatorname{Id} - H(b)H(b)^*) = \exp(-\operatorname{Tr}[T(\log \overline{D}), T(\log D)]).$$

Due to (7) and (10) we also have

$$[T(\log \overline{D}), T(\log D)] = \operatorname{Id} - T(\log D)T(\log \overline{D}) = H(\log D)H(\log D)^*.$$

Finally, a straightforward computation implies that

$$Tr(H(\log D)H(\log D)^*) = \sum_{k \ge 0} k|L_k|^2$$

and we are done.

References:

- Alexei Borodin and Andrei Okounkov. A Fredholm determinant formula for Toeplitz determinants. arXiv:math/9907165
- Barry Simon, OPUC on one foot. arXiv:math/0502485
- Barry Simon, Orthogonal Polynomials on the Unit Circle. AMS Colloquium Publications, Volume 54.
- Percy Deift, Alexander Its, and Igor Krasovsky. Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model. Some history and some recent results. arXiv:arXiv:1207.4990