FTK3, WS~2023/244. Übungsblatt für den 24.11.2023

- 1. In den beiligenden Textfiles findest du Vorschläge für DSA Domain Parameter. Finde den einzigen Vorschlag, der alle Anforderungen erfüllt, und erkläre für jeden anderen Vorschlag, wo jeweils das Problem liegt.
- 2. Du erhältst von Alice die DSA-Signatur (r_1, s_1) der Nachricht m_1 mit dem Hashwert h_1 und die DSA-Signatur (r_2, s_2) der Nachricht m_2 mit dem Hashwert h_2 . Alices DSA-Parameter und Public Key sind (p, ω, g, A) , als Hashfunktion wurde SHA-256 verwendet. Alle Parameter finden sich im beiligenden Textfile.
 - (a) Berechne Alices Private Key.
 - (b) Prüfe, ob der berechnete Private Key zum Public Key passt.
- 3. Du wählst als Schnorr-Parameter eine Hashfunktion deiner Wahl, die Gruppe \mathbb{Z}_p^* mit p=6277 und g=2004 mit der Ordnung $\omega=523$ in \mathbb{Z}_p^* . Als Private Key wählst du $\alpha=213$.
 - (a) Berechne deinen Public Key.
 - (b) Berechne mit deinem Private Key eine Signatur für die Nachricht "Hello World".
 - (c) Prüfe mit deinem Public Key die Signatur.
- 4. Gegeben ist die elliptische Kurve ε : $y^2 = x^3 4x + 4$ über \mathbb{R} .
 - (a) Sind (-2,2) und (-1,7) Punkte auf ε ?
 - (b) Berechne wenn möglich die y-Koordinate von (8, y) und von (-8, y).
- 5. Gegeben ist die elliptische Kurve ε : $y^2=x^3+2x+4$ über $\mathbb R$ und die Punkte P und Q auf ε . Berechne P+Q und überprüfe, ob das Ergebnis ein Punkt auf der Kurve ist.
 - (a) P = (-1, 1), Q = (2, 4)
 - (b) P = (-1, 1), Q = (-1, 1)
 - (c) P = (-1, 1), Q = (-1, -1)
- 6. Gegeben ist die elliptische Kurve ε : $y^2=x^3-8x+8$ über $\mathbb R$ und die Punkte $P=(1,1),\ Q=(-2,-4)$ und $R=(\frac{34}{9},-\frac{152}{27})$ auf ε . Berechne
 - (a) (P+Q)+R
 - (b) P + (Q + R)
- 7. Bestimme die endliche Ordnung von P=(1,2) auf der elliptischen Kurve ε : $y^2=x^3+x+2$ über \mathbb{R} .
- 8. Finde ein Tool zum Zeichnen von elliptischen Kurven über $\mathbb R$ und zeichne alle Kurven dieses Übungszettels.