קווים לפתרון שאלות בממ"ן 12 סמסטר 2013ב

שאלה 3

- א. כדי להוכיח שהמכונה M עוצרת על כל קלט, נראה שכל שלב של המכונה M מסתיים. אין במכונה M אפשרות של חישוב אינסופי.
 - ω בשלב 1 עוברים על המילים לפי הסדר הלקסיקוגרפי עד שמגיעים למילה
- ונמצא w היא מילה מעל האלפבית, ועוברים על המילים לפי סדר. לכן חייב להיות שנגיע ל-w ונמצא את המיקום שלה בסדר הלקסיקוגרפי. (נמצא את i).
 - .iה המחרוזת מדפיס את עד שהוא עד E את מריצים 2 בשלב
- E- מכיוון שהשפה $HALT-ALL_{
 m TM}$ אינסופית (יש אינסוף מכונות שעוצרות על כל קלט שלהן), ו-iמפיק את השפה הזו, אז חייב להיות שתודפס המחרוזת ה-i.
- מחרוזת זו היא מילה ששייכת לשפה $HALT\text{-}ALL_{\mathsf{TM}}$. היא תיאור של מכונה A שעוצרת על כל קלט שלה. לכן בשלב 3, כאשר מריצים את A על w, בהכרח A תעצור (במצב המקבל או במצב הדוחה), ואז גם המכונה M תעצור.
- AMב. מכיוון שM היא מכונה שעוצרת על כל קלט שלה, אז M שייכת לשפה Mב. מכיוון שMלכן יש מספר Mכך שהמחרוזת ה-Mלכן יש מספר Mכך שהמחרוזת ה-Mלכן יש מספר Mכן יש מספר Mכר מדפיס היא Mכר.
- ג. כאשר נריץ את M על המילה w שהיא המילה ה-j לפי הסדר הלקסיקוגרפי, נמצא בשלב 1 של בעלב 1 את המספר j- את המספר j- בשלב 2 נריץ את j- עד להדפסת המחרוזת ה-j שרשלב 2 נריץ את j- עד להדפסת המחרוזת המספר j- בשלב 3 נריץ את j- על j- אם j- מקבלת את j- את j- דוחה j- את j-
 - . או סתירה את M מקבלת את w אם ורק אם M דוחה את M. או סתירה

שאלה 4

 $:HALT_{\mathrm{TM}}$ מכריעה מכריעה לשפה אפשר לבנות אפשר לשפה R לשפה מכריעה לשפה נראה שאם יש מכונה מכריעה W היא מכונת טיורינג ו-W מילה כאשר M היא מכונת טיורינג ו-W

- $q_{
 m accept}$ מוחלפת בכניסה ל- $q_{
 m accept}$ מוחלפת בכניסה ל- $q_{
 m accept}$.1
 - $A_{\rm TM}$ שייכת ל $<\!\!K,\,w\!\!>$ שייכת ל-2 בעזרת המכונה R קבע לא, דחה."

שאלה 5

א. אפשר להשתמש במשפט Rice.

תהיה השפה של התיאורים של מכונות טיורינג שיש בשפה שהן מזהות פחות מ-50 מילים. Pיש מכונות טיורינג שהתיאור שלהן שייך ל-Pויש מכונות שהתיאור שלהן לא שייך ל-

אם שתי מכונות מזהות אותה השפה, אז או שהתיאורים של שתיהן שייכים ל-P או שהתיאורים של שתיהן לא שייכים ל-P.

A איננה לשפה P איננה לשפה P ,Rice לפי

ב. אי אפשר להשתמש במשפט Rice, משום שתכונת השייכות ל-B איננה תכונה של השפה, שמכונה מזהה, אלא תכונה של המכונה עצמה - ייתכנו שתי מכונות שמזהות אותה השפה, ואחת מהן שייכת ל-B ואילו השנייה איננה שייכת ל-B.

דוגמה : תהייה M_1 ו- M_2 שתי מכונות שמקבלות כל מילה מעל אלפבית נתון - השפה של הייה M_2 שתיהן היא Σ^*

.B-ט פייכת אחד. לכן אייכת אחד. לכן M_1 נכנסת מיד למצב המקבל - על כל קלט היא מבצעת צעד אחד. לכן M_1 קוראת את הקלט עד שהיא מגיעה לסמל הרווח שמימין למילת הקלט, ואז נכנסת למצב M_2 המקבל. על כל מילה M_1 היא מבצעת M_2 צעדים. לכן M_2 לא שייכת ל- M_2

: Rice ג. אפשר להשתמש במשפט

תהיה השפה של כל התיאורים של מכונות טיורינג שהשפה שהן מזהות היא שפה כריעה. P- יש מכונות טיורינג שהתיאור שלהן שייך ל-P- ויש מכונות שהתיאור שלהן לא שייך ל-P- או שתי מכונות מזהות אותה השפה, אז או שהתיאורים של שתיהן שייכים ל-P- או שהתיאורים של שתיהן לא שייכים ל-P-.

C איננה לשפה P איננה לשפה P איננה לשפה איננה לפי

שאלה 6

 \cdot מילה w- מילה אוטומט פופי א אוטומט אוטומט ו-A מילה אוטר קלט אויעל קלט אויעל קלט

- A סמן את המצב ההתחלתי של A
- : k עד i-ט $w = w_1 w_2 \cdots w_k$ מ-1. מ-2.
- w_i את כל מצב מסומן q, סמן את כל המצבים שאפשר להגיע אליהם מq על-ידי קריאת ,q אם אין אפשרות להגיע לq עצמו ממצב מסומן על-ידי קריאת , w_i הסר את הסימון מ
 - 4. בדוק האם יש מצב מקבל בקבוצת המצבים המסומנים. אם כן, קבל. אם לא, דחה. $^{\prime\prime}$

הרעיון: לכל תחילית v של של w, לאחר קריאת v, מסומנת קבוצת המצבים שבהם האוטומט יכול להימצא לאחר שהוא קרא את v.

לאחר שהסתיימה קריאת w כולה, בודקים האם בקבוצת המצבים המסומנים כרגע (המצבים שבהם האוטומט יכול להימצא לאחר קריאת w כולה) יש מצב מקבל. אם כן, יש מסלול חישוב על w שמסתיים במצב מקבל. אם לא, אין מסלול חישוב כזה.

המקום הנדרש ליניארי בגודל הקלט. (צריכים להיות מסוגלים לסמן מצבים).

שאלה 7

 $:INFINITE_{\mathsf{TM}}$ ל-

: מחרוזת היא מחרוזת אייעל קלט < היא מכונת אייעל קלט < היא מחרוזת כאשר <

: בנה את המכונה M_1 הבאה .1

x ייעל קלט = M_1

- wעל את M אם M אם M קיבלה את M או M את M
 - $".<M_1>$ את .2

- שייכת ל< אז M_1 שייכת ל< אז או או הסבר אייכת ל< שייכת ל< שייכת ל< אז או הסבר אויכת ל< שייכת ל-

אם $<\!\!M_1\!\!>$ לא שייכת ל- M_1 , אז M_1 לא מקבלת אף קלט שלה, ולכן אייכת ל- M_1 לא שייכת ל- M_1 . וואדור M_1

 $\pm INFINITE_{\mathsf{TM}}$ ב. רדוקצית מיפוי של A_{TM} למשלימה של

: באשר M היא מכונת טיורינג ו-w היא מחרוזת <

: בנה את המכונה M_2 הבאה .1

:x ייעל קלט $=M_2$

- על |x| צעדים. M את M צעדים. 1
- xי.(x אחרת, קבל (את א); אחרת, דחה (את x); אחרת, קבל (את x).
 - $".<M_2>$ את .2

היא y שייכת ל-M, w שייכת עדים, אז y מספר צעדים y כך שלאחר ש-M רצה y צעדים, היא M_1 מקבלת את M_2 לכן על קלט M_2 כך ש- M_2 עדחה, ולכן M_2 לא שייכת ל- M_2 עדים, היא לא לכל מספר צעדים M_2 לא שייכת ל- M_2 אז לכל מספר צעדים M_2 לאחר ש- M_3 רצה ע צעדים, היא לא M_2 מקבלת את M_2 לכן M_2 תקבל כל קלט M_2 ולכן M_2 שייכת ל- M_2 שייכת ל- M_3

ג. $INFINITE_{\rm TM}$ איננה מזוהה-טיורינג, כי הרדוקציה של סעיף ב היא גם רדוקציה של המשלימה איננה $INFINITE_{\rm TM}$, והמשלימה של $A_{\rm TM}$ איננה מזוהה-טיורינג.

המשלימה של סעיף א היא היא איננה מזוהה-טיורינג, כי הרדוקציה איננה $INFINITE_{
m TM}$ איננה מזוהה-טיורינג. של המשלימה של $A_{
m TM}$ איננה מזוהה-טיורינג.