Chapter 7

Advanced Encryption Standard (AES)

Chapter 7 Objectives

- ☐ To review a short history of AES
- To define the basic structure of AES
- □ To define the transformations used by AES
- □ To define the key expansion process
- ☐ To discuss different implementations

7-1 INTRODUCTION

The Advanced Encryption Standard (AES) is a symmetric-key block cipher published as FIPS 197 by the National Institute of Standards and Technology in December 2001.

Candidates: 21 > 15 > 5 > 1 (Rijndael: security, cost, implementation)

AES has defined three versions, with 10, 12, and 14 rounds.

Each version uses a different cipher key size (128, 192, or 256), but the round keys are always 128 bits.

AES encryption cipher

7.1.4 Data Units. Byte \rightarrow Word \rightarrow Block \rightarrow State

State

7.1.4 Continue

Figure 6.3 Block-to-state and state-to-block transformation

7.1.4 Continue

Figure 7.4 Changing plaintext to state

Text	A	Е	S	U	S	Е	S	A	M	A	T	R	I	X	Z	Z
Hexadecimal	00	04	12	14	12	04	12	00	0C	00	13	11	08	23	19	19
							Гоо	12	0C	08						
							04	04	00		Stat					
							1	12		19	Stat	e				
							14	00	11	19						

7.1.5 Structure of Each Round

7-2 TRANSFORMATIONS

To provide security, AES uses **four types of transformations**:

Substitution

Permutation

Mixing

key-adding

7.2.1 Substitution

SubBytes

The first transformation, SubBytes, is used at the encryption site. To substitute a byte, we interpret the byte as two hexadecimal digits.

The SubBytes operation involves 16 independent byte-to-byte transformations.

 Table 7.1
 SubBytes transformation table

	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
0	63	7C	77	7в	F2	6B	6F	С5	30	01	67	2В	FE	D7	AB	76
1	CA	82	С9	7D	FA	59	47	FO	AD	D4	A2	AF	9C	A4	72	C0
2	в7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
3	04	С7	23	С3	18	96	05	9A	07	12	80	E2	EB	27	В2	75
4	09	83	2C	1A	1в	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
5	53	D1	00	ED	20	FC	В1	5B	6A	СВ	BE	39	4A	4C	58	CF
6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
7	51	А3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
8	CD	0C	13	EC	5F	97	44	17	С4	A7	7E	3D	64	5D	19	73
9	60	81	4F	DC	22	2A	90	88	46	EE	В8	14	DE	5E	0В	DB
A	ΕO	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
В	E7	СВ	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	ΑE	08
C	ВА	78	25	2E	1C	A6	В4	С6	E8	DD	74	1F	4B	BD	8B	8A
D	70	3 E	В5	66	48	03	F6	0E	61	35	57	В9	86	С1	1D	9E
E	E1	F8	98	11	69	D9	8E	94	9В	1E	87	E9	CE	55	28	DF
F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	OF	В0	54	ВВ	16

 Table 7.2
 InvSubBytes transformation table

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	52	09	6A	D5	30	36	A5	38	BF	40	А3	9E	81	F3	D7	FB
1	7C	E3	39	82	9В	2F	FF	87	34	8E	43	44	C4	DE	E9	СВ
2	54	7в	94	32	A6	C2	23	3D	EE	4C	95	0B	42	FA	С3	4E
3	8 0	2E	A1	66	28	D9	24	В2	76	5B	A2	49	6D	8B	D1	25
4	72	F8	F6	64	86	68	98	16	D4	A4	5C	CC	5D	65	В6	92
5	6C	70	48	50	FD	ED	В9	DA	5E	15	46	57	A7	8D	9D	84
6	90	D8	AB	00	8C	ВС	D3	0A	F7	E4	58	05	В8	В3	45	06
7	D0	2C	1E	8F	CA	3F	OF	02	C1	AF	BD	03	01	13	8A	6B
8	3A	91	11	41	4F	67	DC	EA	97	F2	CF	CE	F0	В4	E6	73
9	96	AC	74	22	E7	AD	35	85	E2	F9	37	E8	1C	75	DF	6E
A	47	F1	1A	71	1D	29	C5	89	6F	в7	62	0E	AA	18	BE	1B
В	FC	56	3E	4B	C6	D2	79	20	9A	DB	C0	FE	78	CD	5A	F4
C	1F	DD	A8	33	88	07	С7	31	В1	12	10	59	27	80	EC	5F
D	60	51	7F	A9	19	В5	4A	0D	2D	E5	7A	9F	93	C9	9C	EF
E	A0	E0	3B	4D	AE	2A	F5	в0	С8	EB	BB	3C	83	53	99	61
F	17	2В	04	7E	ВА	77	D6	26	E1	69	14	63	55	21	0C	7D

Example 7.2

Figure 7.7 shows how a state is transformed using the SubBytes transformation. The figure also shows that the InvSubBytes transformation creates the original one. Note that if the two bytes have the same values, their transformation is also the same.

subbyte:
$$\rightarrow$$
 $\mathbf{d} = \mathbf{X} (s_{r,c})^{-1} \oplus \mathbf{y}$
invsubbyte: \rightarrow $[\mathbf{X}^{-1}(\mathbf{d} \oplus \mathbf{y})]^{-1} = [\mathbf{X}^{-1}(\mathbf{X} (s_{r,c})^{-1} \oplus \mathbf{y} \oplus \mathbf{y})]^{-1} = [(s_{r,c})^{-1}]^{-1} = s_{r,c}$

Transformation Using the GF(28) Field

AES also defines the transformation algebraically using the GF(2⁸) field with the irreducible polynomials

$$(x^8 + x^4 + x^3 + x + 1)$$

Example 7.3

Let us show how the byte 0C is transformed to FE by subbyte routine and transformed back to 0C by the invsubbyte routine.

1. subbyte:

- a. The multiplicative inverse of 0C in $GF(2^8)$ field is B0, which means **b** is (10110000).
- b. Multiplying matrix **X** by this matrix results in $\mathbf{c} = (10011101)$
- c. The result of XOR operation is $\mathbf{d} = (111111110)$, which is FE in hexadecimal.

2. invsubbyte:

- a. The result of XOR operation is $\mathbf{c} = (10011101)$
- b. The result of multiplying by matrix \mathbf{X}^{-1} is (11010000) or B0
- c. The multiplicative inverse of B0 is 0C.

7.2.2 Permutation

Another transformation found in a round is shifting, which permutes the bytes.

ShiftRows

In the encryption, the transformation is called ShiftRows.

InvShiftRows

In the decryption, the transformation is called InvShiftRows and the shifting is to the right.

Example 7.4

Figure 7.10 shows how a state is transformed using ShiftRows transformation. The figure also shows that InvShiftRows transformation creates the original state.

7.2.3 *Mixing*

We need to mix bytes to provide diffusion at the bit level.

Figure 7.11 Mixing bytes using matrix multiplication

MixColumns

The MixColumns transformation operates at the column level; it transforms each column of the state to a new column.

InvMixColumns

The InvMixColumns transformation is basically the same as the MixColumns transformation.

Example 7.5

Figure 7.14 shows how a state is transformed using the MixColumns transformation. The figure also shows that the InvMixColumns transformation creates the original one.

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \cdot \begin{bmatrix} 63 \\ F2 \\ 7D \\ D4 \end{bmatrix} = \begin{bmatrix} 62 \\ CF \\ 0C \\ 99 \end{bmatrix}$$

7.2.4 Key Adding

AddRoundKey

AddRoundKey proceeds one column at a time. AddRoundKey adds a round key word with each state column matrix.

7-3 KEY EXPANSION

To create round keys for each round, AES uses a key-expansion process. If the number of rounds is N_r , the key-expansion routine creates $N_r + 1$ 128-bit round keys from one single 128-bit cipher key.

7.3.1 Key Expansion in AES-128

Making of t_i (temporary) words $i = 4 N_r$

 Table 7.4
 RCon constants

Round	Constant (RCon)	Round	Constant (RCon)
1	(<u>01</u> 00 00 00) ₁₆	6	(<u>20</u> 00 00 00) ₁₆
2	(<u>02</u> 00 00 00) ₁₆	7	(<u>40</u> 00 00 00) ₁₆
3	(<u>04</u> 00 00 00) ₁₆	8	(<u>80</u> 00 00 00) ₁₆
4	(<u>08</u> 00 00 00) ₁₆	9	(<u>1B</u> 00 00 00) ₁₆
5	(<u>10</u> 00 00 00) ₁₆	10	(<u>36</u> 00 00 00) ₁₆

Example 7.6

Table 7.5 shows how the keys for each round are calculated assuming that the 128-bit cipher key agreed upon by Alice and Bob is (24 75 A2 B3 34 75 56 88 31 E2 12 00 13 AA 54 87)16.

 Table 7.5
 Key expansion example

Round	Values of t 's	First word in the round	Second word in the round	Third word in the round	Fourth word in the round
-		$w_{00} = 2475 \text{A}2 \text{B}3$	w_{01} = 34755688	$w_{02} = 31E21200$	$w_{03} = 13AA5487$
1	AD20177D	$w_{04} = 8955B5CE$	$w_{05} = BD20E346$	$w_{06} = 8CC2F146$	$w_{07} = 9$ F68A5C1
2	470678DB	$w_{08} = CE53CD15$	$w_{09} = 73732E53$	$w_{10} = FFB1DF15$	$w_{11} = 60D97AD4$
3	31DA48D0	$w_{12} = FF8985C5$	$w_{13} = 8$ CFAAB96	$w_{14} = 734B7483$	$w_{15} = 2475$ A2B3
4	47AB5B7D	w_{16} = B822deb8	$w_{17} = 34D8752E$	$w_{18} = 479301$ AD	$w_{19} = 54010$ FFA
5	6C762D20	$w_{20} = D454F398$	$w_{21} = E08C86B6$	$w_{22} = A71F871B$	$w_{23} = F31E88E1$
6	52C4F80D	$w_{24} = 86900B95$	$w_{25} = 661$ C8D23	$w_{26} = C1030A38$	$w_{27} = 321D82D9$
7	E4133523	$w_{28} = 62833 \text{EB}6$	$w_{29} = 049$ FB395	$w_{30} = C59CB9AD$	$w_{31} = F7813B74$
8	8CE29268	$w_{32} = \text{EE61ACDE}$	$w_{33} = \text{EAFE1F4B}$	$w_{34} = 2F62A6E6$	$w_{35} = D8E39D92$
9	0A5E4F61	$w_{36} = E43FE3BF$	$w_{37} = 0$ EC1FCF4	$w_{38} = 21A35A12$	$w_{39} = F940C780$
10	3FC6CD99	$w_{40} = DBF92E26$	$w_{41} = D538D2D2$	$w_{42} = F49B88C0$	$w_{43} = 0$ DDB4F40

Example 7.7

Each round key in AES depends on the previous round key. The dependency, however, is nonlinear because of SubWord transformation. The addition of the round constants also guarantees that each round key will be different from the previous one.

Example 7.8

The two sets of round keys can be created from two cipher keys that are different only in one bit.

Cipher Key 1: 12 45 A2 A1 23 31 A4 A3 B2 CC A<u>A</u> 34 C2 BB 77 23 Cipher Key 2: 12 45 A2 A1 23 31 A4 A3 B2 CC A<u>B</u> 34 C2 BB 77 23

Table 7.6 Comparing two sets of round keys

R.		Round key	ys for set 1			Round key	vs for set 2		B. D.
_	1245A2A1	2331A4A3	B2CCA <u>A</u> 34	C2BB7723	1245A2A1	2331A4A3	B2CCA <u>B</u> 34	C2BB7723	01
1	F9B08484	DA812027	684D8 <u>A</u> 13	AAF6F <u>D</u> 30	F9B08484	DA812027	684D8 <u>B</u> 13	AAF6F <u>C</u> 30	02
2	B9E48028	6365A00F	0B282A1C	A1DED72C	B9008028	6381A00F	0BCC2B1C	A13AD72C	17
3	A0EAF11A	C38F5115	C8A77B09	6979AC25	3D0EF11A	5E8F5115	55437A09	F479AD25	30
4	1E7BCEE3	DDF49FF6	1553E4FF	7C2A48DA	839BCEA5	DD149FB0	8857E5B9	7C2E489C	31
5	EB2999F3	36DD0605	238EE2FA	5FA4AA20	A2C910B5	7FDD8F05	F78A6ABC	8BA42220	34
6	82852E3C	B4582839	97D6CAC3	C87260E3	CB5AA788	B487288D	430D4231	C8A96011	56
7	82553FD4	360D17ED	A1DBDD2E	69A9BDCD	588A2560	EC0D0DED	AF004FDC	67A92FCD	50
8	D12F822D	E72295C0	46F948EE	2F50F523	0B9F98E5	E7929508	4892DAD4	2F3BF519	44
9	99C9A438	7EEB31F8	38127916	17428C35	F2794CF0	15EBD9F8	5D79032C	7242F635	51
10	83AD32C8	FD460330	C5547A26	D216F613	E83BDAB0	FDD00348	A0A90064	D2EBF651	52

Example 7.9

The concept of **weak keys**, as we discussed for DES in Chapter 6, does not apply to AES. Assume that all bits in the cipher key are 0s. The following shows the words for some rounds:

Pre-round:	0000000	0000000	0000000	00000000
Round 01:	62636363	62636363	62636363	62636363
Round 02:	9B9898C9	F9FBFBAA	9B9898C9	F9FBFBAA
Round 03:	90973450	696CCFFA	F2F45733	0B0FAC99
		(S &		
Round 10:	B4EF5BCB	3E92E211	23E951CF	6F8F188E

The words in the pre-round and the first round are all the same. In the second round, the first word matches with the third; the second word matches with the fourth. However, after the second round the pattern disappears; every word is different.

7-4 CIPHERS

AES uses four types of transformations for encryption and decryption. In the standard, the encryption algorithm is referred to as the cipher and the decryption algorithm as the inverse cipher.

7.4.1 Original Design

Figure 7.17 Ciphers and inverse ciphers of the original design

7.4.2 Alternative Design

Invertibility of SubBytes and ShiftRows combinations

Invertibility of MixColumns and AddRoundKey combination

Figure 7.20 Cipher and reverse cipher in alternate design

7-5 Examples

Example 7.10 Randomly selected cipher key

```
      Plaintext:
      00
      04
      12
      14
      12
      04
      12
      00
      00
      00
      13
      11
      08
      23
      19
      19

      Cipher Key:
      24
      75
      A2
      B3
      34
      75
      56
      88
      31
      E2
      12
      00
      13
      AA
      54
      87

      Ciphertext:
      BC
      02
      8B
      D3
      E0
      E3
      B1
      95
      55
      0D
      6D
      FB
      E6
      F1
      82
      41
```

Example 7.12 When the plaintext is made of all 0s

```
      Plaintext:
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
```

Example 7.13 Check the avalanche effect

```
      Plaintext 1:
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
```

Example 7.14 Using a cipher key in which all bits are 0s

```
      Plaintext:
      00
      04
      12
      14
      12
      04
      12
      00
      0c
      00
      13
      11
      08
      23
      19
      19

      Cipher Key:
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      <td
```

7-6 ANALYSIS OF AES

7.6.1 Security

AES was designed after DES. Most of the known attacks on DES were already tested on AES.

Brute-Force Attack

AES is definitely more secure than DES due to the larger-size key.

Statistical Attacks

Numerous tests have failed to do statistical analysis of the ciphertext.

Differential and Linear Attacks

There are no differential and linear attacks on AES as yet.

7.6.2 Implementation

AES can be implemented in software, hardware, and firmware. The implementation can use table lookup process or routines that use a well-defined algebraic structure.

7.6.3 Simplicity and Cost

The algorithms used in AES are so simple that they can be easily implemented using cheap processors and a minimum amount of memory.

Assignment 6, Canceled.

- Problems 17, 18, 23, 24, 26, 33 in chapter 7
- Problems 3~7 in chapter 8