Fig. 1

Lanes 1 & 10, marker proteins; lane 2 untreated mbh; lane 3, 50°C, lane 4, 60°C, lane 5, 70°C; lane 6, 80°C; lane 7, 90°C; lane 8, 100°C; lane 9, Protease M.

Lanes 1 & 10, marker proteins; lane 2 untreated mbh; lane 3, pH2, lane 4, pH4, lane 5, pH6; lane 6, pH8; lane 7, pH10; lane 8, pH12; lane 9, Protease M.

Fig. 3

Lanes 1 & 10, marker proteins; lane 2 untreated mbh; lanes 3 - 8, Rokko digest (20mg.ml⁻¹ - 0.1mg.ml⁻¹), lane 9, Rokko (1mg.ml⁻¹).

Fig. 4

Lanes 1 & 9, marker proteins; lane 2 untreated mbh; lane 3, 2% SDS; lane 4, 1% SDS; lane 5, 0.5% SDS; lane 6, 0.25% SDS; lane 7, mbh + 2% SDS; lane 8, Rokko (20mg.ml⁻¹).

Lanes 1 & 10, marker proteins; lanes 2 & 3, mbh; lanes 4 - 6, mbh pellet; lanes 7 - 9, mbh supernatant.

Fig.7

Lanes 1 & 10, marker proteins; lane 2, untreated mbh; lane 3, Protease G digest; lane 4, Protease G; lane 5, Protease R digest; lane 6, Protease R; lane 7, Protease C digest; lane 8, Protease C; lane 9, rec. mouse PrP.

Fig. 9

Fig. 10

1 2

Fig. 11

3

Fig. 12

FIGURE 13.A

FIGURE 13.81

8 8 8 8 \$2 Mel ATG SG BB GG-7 GG. 855 E S 78 E Asn 82 **&** Kal CIT AG AG A So 5 ₹ 表 S Aa GCT A Sc **₽** 23 ZZ Z ZY CTA ¥¥ £89 얼벌 FX S ₽ S ક્ક SG SE **₹**8 ₽ 55 Val GTG **₹**8 <u>₹</u> 8 3 E **A** C € **₹** ₹ <u> 홍 왕 첫</u> ¥ \$ ₹ **ま**る **8** 60 80 Z & B ĕ Ş **⊒** } ¥2 14 ද සි 15G 15 SE ₽ Ş 동강 **S 8 8 8 12** & \$2 Ag Bg S S Aa SCG Ser <u>₹</u> ₽ SS AG Se ASC AS Asp Asp ද දි Ser \$@**¥** YI & \$₹ **₹ 8** 800 800 £\$\$ \$₹5 8 & 8 S <u>\$</u> ₹ මි <u>ඉ</u>ලි ₹ ¥ **₹**5 క్ క్ర Pal C∏ SCT AB ¥8.50 2002 ¥C ¥ AS A 3 E VI E . ල්ලි ප් Ser AGC **2** € A Fe Ata CCT a SC # SC ¥G ₹ 3 E A C _{ල්} පු & 5 C 73 配工 Ser AGC Ser 1C1 Ser AGC Ala GCT P & M Val GTA <u>타</u>2 **∌** § **₹**3 ₹5 001 SC 45 క్ కే Ser Ser <u>₹</u>§ දීල් ස Asn AGC 8 8 8 न् इ 2 7 E a Ac Ac <u>ફ</u> કું 7¥ <u>₹</u> **8**€ ATC . 38 SC 38 SC A **12** & క్ కే දු දු දු පු **₹**8 Ser TCT శ్రస్త 21 **X**3 ් දි _{ණි}පු ළු පු ප් 25 25 25 శ్రి స్ట ¥c ¥c **7 2 3 3 3** ල් ප් 정보 **₽**88 Val GT \$₹ 35 **₽** 55 를 것 당 8 8 8 So Met ATG Ser Vec £ 8 § § § 2 z E 三三 **3** E 8 4 8 AGC Ser Met ATG ₹ <u>5</u> S & SE Val GTC 전 2일. Met ATG S€ 101 **₹8 ₽** As as CCT AS AC ₽ 85 द्ध Val GTC **ප**ිපි STC GTC 정치 වූදු a F A Ket 8 5 5 8 ල් ල් දු පු පු <u>≱</u> Ş C €. ఠ ₹<u>₹</u> 35 Z€ 10 € ₽ 55 B 2 € S 8 8 S 2g 1CC Val CTT **⊋**8 85 F 85 \$2,5 549 1074 8 849 86 ₹ 924

260 Ser Phe Tyr Tyr Gly Lys Gly Leu 11e Asn TCT TTC TAC TAT GGA ANA GGG CTG ATC AAC 250 Gin
Leu Giu Asn Thr Thr Thr Lys Leu Gly Asp
TTA GAA AAC ACC ACT ACA AAA CTT GGT GAT Gin Val Arg Ser Ser 1149 CAA GTC CGC AGC AGT

270
Val Gin Ala Ala Ala Gin OC
TERM
1224 GTA CAG GCG GCA GCT CAG TAA AACATAAAAAACGGGCTTGGCCCCGGCGGTTTTTATTTTTCTTCCTCCGGCATGTTCAATCCGGCTCC

1316 ATAATCGACGGATGGCTCCCTCTGAAAATTTTAACGAGAAACGGGGGTTGACCCGGCTCAGTCCCGTAACGGCCAAGTCCTGAAACGTCTCAATCGCCG

1416 CTTCCCGGTTTCCGGTCAACCCTAATGCCGTAACGGTCGGCGCGTTTTCCTGATACCGGGAGGGCGATTCGTAATCGGATC

CONSERVED RESIDUES IN SUBTILISINS FROM BACILLUS AMYLOLIQUEFACIENS . . A P A . H . . G 41 DL...GGAS. . N . H G T H V A G T . A A L N N S I G V L G V A P S A . L Y A V K V L G A . G 101 . G . E W A . N . 150 241

.YG.GL.N..

		•
	64 64 64	0000
	***	ннен
	w w w * `	S S F S
	SSAF	2222
	0 0 0 W	2202
30	нннн	មានមន្ត
	o	~ ~ ~ ~
	SSEF	***
	0000	> H > F
	нныч	# # # #
		20000
	KKKK .	**
	>>>	>>>>
	KKKK	***
	>>>>	HHH E
	ZZZO	0000
	ហ ហ ≰ ហ	
	0000	ស ស ប ប
-	HHHH	2022
0	0 0 0 0 0 P M M M	2000 2000 2000
~	0004	OGHO
	SSAN	4 + 4 4
	E E O E	AAZU
	4466	
	AKKA	B B 4 *
	4444	P4 P4 P4 P4
10	**	8 8 8 8
	KKKQ.	₽₽ ₹₽
	нннь	>>>>
	001K	
	00 00 00	00 00 00 0
	>ннн`	* *
	0000	0 0 0 0
	***	0 0 0.c
	ക 24 24 24	4 # > 0
	> > >	>>>
	ខ្លួក ខ្	KZZ 2
	aaaa	្នគងគ

COMPARISON OF SUBTILISIN SEQUENCES FROM:

B.amyloliquefaciens B.subtilis B.licheniformis B.lentus 日日日耳

3

医医医医

2 2 5 C

80 80 80

F 80 80

00

K K K

~

Ø

Ø

0 0

Z

121

Ø

**	
**	ZHZW
ZZZ>	н г г г
>>>	###
0000	KKKK
ннны	2 2 2 2 C
ខាត់ខាត	HHHK
ANKK	ннн⊳
\mathbf{o} \mathbf{o} \mathbf{o} \mathbf{o}	ныны
> < > ×	**
0 0 0 0 0	9 K K K K
190 8 8 8 8 8 8	230 230 2444 2444
[24 [24 [24 [24	o o o o
ស ស ស ស	**
**	>>>>
RRRR	
OOZZ	89 84 84
ZZOZ	SESE
SSSS	4444
8 8 8 Q	_ xxx
180 V V V V V V V V V V V V V V V V V V V	2 2
4 > > > #	н н н н й
**	0000
0000	ZZZZ
>>>	E E K
***	4440
нння	0044
> H > K	
. 8 8 8 2	K
	ZOZO
44440	00000
HKKKK	226
0444	4444
4444	4444
	0000
0 0 0 0 > > H H	.aa*a
P	8
	•
S S S S	>><>
161 8 8 8 7 8 7	40000
	400000

270 V Q A A A Q V Q A A A Q V E A A A Q A E A A T R

1111 000 0 000 0 000

2002

SARE

Initial evaluation results

MC-A

MC-3

MC-4

m mbh 2 4 6 8 10 12 P

m mbh 2 4 6 8 10 12 P m $\,$

m mbh 2 4 6 8 10 12 P m

Comparison with Properase

Properase 60°C 30 minutes

MC-A 50°C 30 minutes

m 2 4 6 8 10 12 P rPrP m

MC-3 50°C 30 minutes

m 2 4 6 8 10 12 P rPrP m

m 2 4 6 8 10 12 PrPrP m

MC-4 50°C 30 minutes

m mbh 2 4 6 8 10 12 P m

Comparison with Properase

Properase 60°C 30 minutes

MC-3 60°C 30 minutes

2 4 6 8 10 12 P rPrP m

m 2 4 6 8 10 12 P rPrP m

m 2 4 6 8 10 12 P rPrP m

Temperature profiling with MC-3

50°C 30 minutes

m 2 4 6 8 10 12 P rPrP m

60°C 30 minutes

m 2 4 6 8 10 12 P rPrP m

70°C 30 minutes

m 2 4 6 8 10 12 P rPrP m

80°C 30 minutes

1 2 4 6 8 10 12 P rPrP m

Detection with PAb2

mbh pH 2-12 digested at 50°C 30 minutes

Detected with a chemiluminescent detection substrate (Pierce)

pH 10

Monomer bands at 1:20 dilution HMW bands across dilution range

pH 12

1:4

m

No monomer bands

HMW bands much reduced across dilution range

Comparison with Proteinase K

m 2 4 6 8 10 12 P rPrP m

Incomplete digestion pH12 however no clear monomers Characteristic PrPSc monomer bands pH 2-10 HMW bands present pH 2-12

The new proteases are better at removing both the monomer and HMW bands than Proteinase K