In [1]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

In [2]: df = pd.read_csv('/Users/yash/Downloads/Experience-Salary.csv')

In [3]: df

Out[3]:

	exp(in months)	salary(in thousands)
0	18.290293	16.521825
1	17.023407	11.666234
2	26.343613	23.167255
3	19.105834	20.877145
4	27.742516	23.166236
995	22.161741	24.666502
996	32.266497	24.160270
997	17.039030	19.903797
998	25.222124	21.974413
999	16.418028	19.634787

1000 rows × 2 columns

```
In [4]: plt.scatter(df['exp(in months)'],df['salary(in thousands)'])
Out[4]: <matplotlib.collections.PathCollection at 0x13d2c9c50>
```

```
40
           30
           20
           10
            0
                             10
                                          20
                 0
                                                        30
                                                                     40
                                                                                  50
In [5]: df.shape
```

```
In [93]: x_final
 Out[93]: array([[ 1.
                                18.29029332],
                    1.
                                17.02340669],
                  [ 1.
                                26.34361348],
                                 17.03902988],
                  [ 1.
                                 25.22212418],
                  [ 1.
                  [ 1.
                                 16.41802763]])
 In [94]: |x_trans = np.transpose(x_final)
 In [98]: beta= np.linalg.inv(x_final.T.dot(x_final)).dot(x_final.T).dot(y)
 In [99]: beta # parameters b0, b1
 Out[99]: array([[5.19871856],
                  [0.82284666]])
In [111]: | #testing
          # x_test = np.array([[1,18.290293],[1,17.023407]],dtype='float')
          # x_test
Out[111]: array([[ 1.
                            , 18.290293],
                            , 17.023407]])
                  [ 1.
In [114]: y_pred = x_final.dot(beta) # testing on the same data,
In [115]: y_pred
                  [28.02655563],
                  [31.25923615],
                  [16.87194932].
                  [29.82886015],
                  [32.22209514],
                  [27.31179205],
                  [39.35821682],
                  [31.69535009],
                  [33.78295173],
                  [27.83928797],
                  [26.39628385],
                  [35.58259329],
                  [24.73886029],
                  [25.02396459],
                  [18.4743638],
                  [24.33201241],
                  [26.28875744],
                  [27.90861648],
                  [24.05927269],
                  [21.69817732],
```

```
In [119]: plt.plot(x_final,y_pred,'r--',label='regression line') # plot the b
plt.plot(x_final,y,'bo')
plt.legend()
plt.show()
```



```
In [ ]:
```