

Physics Year 12: Formulae and Constants Sheet

Reproduced by kind permission of The Curriculum Council

Area of Study: Movement

Average velocity
$$v_{av} = \frac{s}{t} = \frac{v+u}{2}$$

Acceleration
$$a = \frac{v - u}{t}$$

Momentum
$$p = mv$$

Force
$$F = ma$$

Work done
$$W = F_S$$

Kinetic energy
$$E_k = \frac{1}{2} m v^2$$

Gravitational potential energy
$$E_p = mgh$$

Equations of motion
$$a = \frac{v - u}{t}; \quad s = ut + \frac{1}{2}at^2; \quad v^2 = u^2 + 2as$$

Centripetal acceleration
$$a = \frac{v^2}{r}$$

Centripetal force
$$F = ma = \frac{mv^2}{r}$$

Newton's Law of Universal
$$F = G \frac{m_1 m_2}{r^2}$$

Gravitational field strength
$$g = G \frac{M}{r^2}$$

Area of Study: Structure and Materials

Moment of a force
$$M = rF$$

Principle of moments
$$\Sigma M = 0$$

Stress
$$=\frac{F}{A}$$

Strain =
$$\frac{\Delta \ell}{\ell}$$

Young's Modulus
$$Y = \frac{F/A}{\Delta \ell / \ell}$$

Electric Power Area of Study:

Power
$$P = \frac{W}{t} = VI$$

Electric current
$$I = \frac{C}{t}$$

Work
$$W = qV$$

Ohm's Law
$$V = IR$$

Resistances in Series
$$R_{T} = R_{1} + R_{2}...$$

Resistances in Parallel
$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} \dots$$

Magnetic flux
$$\Phi = BA$$

Electromagnetic induction
$$\begin{aligned} & \text{emf =- N} \ \frac{(\Phi_2 - \Phi_1)}{t} \\ & \text{emf = } \ell \lor B \end{aligned}$$

$$emf = \ell v B$$

Magnetic force
$$F = I \ell B$$

Transformer turns ratio
$$\frac{V_{s}}{V_{p}} \; = \frac{N_{s}}{N_{p}} \label{eq:vs}$$

Area of Study: Sound Waves

Period
$$T = \frac{1}{f}$$

Speed, frequency, wavelength
$$v = f\lambda$$

Beats
$$f_{\text{beat}} = |f_2 - f_1|$$

Intensity and levels Decibel(dB) change =
$$10 \log_{10} \left(\frac{I}{I_0} \right)$$

Where
$$\,I_0^{}\,$$
 is taken as the hearing threshold $\,$ = $\,10^{-12}$ W $\,$ m $^{-2}$

Standing waves nodal separation
$$=\frac{\lambda}{2}$$

Area of Study: **Atomic Physics**

Energy of photons
$$E = hf$$

Magnetic force
$$F = qvB$$

Physical Constants

Speed of light in air	C	=	$3.00 \times 10^8 \text{ m s}^{-1}$
Electron charge	e	=	-1.60 x 10 ⁻¹⁹ C
Mass of electron	m_{e}	=	9.11 x 10 ⁻³¹ kg
Planck's constant	h	=	$6.63 \times 10^{-34} \text{ J s}$
Universal gravitational constant	G	=	6.67 x 10 ⁻¹¹ N m ² kg ⁻²
Electron volt	1 eV	<i>/</i> =	1.60 x 10 ⁻¹⁹ J
Mass of proton	$m_{\scriptscriptstyle p}$	=	1.67 x 10 ⁻²⁷ kg

Physical Data

Acceleration due to gravity on Earth	g	=	9.80 m s ⁻²
Acceleration due to gravity on the Moon	$g_{\scriptscriptstyle M}$	=	1.62 m s ⁻²
Radius of the Earth	$R_{\scriptscriptstyle E}$	=	6.37 x 10 ⁶ m
Mass of the Earth	$\mathbf{M}_{\scriptscriptstyle \mathrm{E}}$	=	5.98 x 10 ²⁴ kg
Radius of the Sun	R_s	=	6.96 x 10 ⁸ m
Mass of the Sun	\mathbf{M}_{S}	=	1.99 x 10 ³⁰ kg
Radius of the Moon	$R_{\scriptscriptstyle M}$	=	1.74 x 10 ⁶ m
Mass of the Moon	$\mathbf{M}_{\scriptscriptstyle M}$	=	$7.35 \times 10^{22} \text{ kg}$
Earth-Moon distance			3.84 x 10 ⁸ m
Earth-Sun distance			1.50 x 10 ¹¹ m
Tonne	1 tonne	=	1.00 x 10 ³ kg

${\bf Speed\ of\ sound\ in\ selected\ substances}$

Substance	Velocity	Substance	Velocity	Substance	Velocity
	m s ⁻¹		m s⁻¹		m s ⁻¹
Gases (25°C, 101.3 k	Pa)	Liquids (25°C)		Solids (thin rods)	
air, dry	3.46×10^{2}	glycerol	1.90×10^{3}	aluminium	5.00×10^3
carbon dioxide	2.69×10^{2}	kerosene	1.32×10^{3}	brass	3.48×10^3
helium	9.85×10^{2}	water, distilled	1.50×10^{3}	brick	3.65×10^3
nitrogen	3.49×10^{2}	water, sea	1.53×10^3	copper	3.81×10^3
oxygen	3.30×10^{2}			iron	5.20×10^{3}

Young's modulus and the breaking stress for selected materials.

Material	Young modulus x 10 ¹¹ Pa	Breaking stress x 10° Pa
aluminium	0.70	2.4
copper	1.16	4.9
brass	0.90	4.7
iron (wrought)	1.93	3.0
mild steel	2.10	11.0
glass	0.55	10
tungsten	4.10	20
bone	0.17	1.8

Electromagnetic spectrum

Note: 1. Shaded areas represent regions of overlap.

2. Gamma rays and X-rays occupy a common region.

Mathematical expressions

Given
$$ax^2 + bx + c = 0$$
, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Prefixes of the Metric System

Factor	Prefix	Symbol	Factor	Prefix	Symbol
10^{12}	tera	Т	10-3	milli	m
10^{9}	giga	G	10-6	micro	μ
10^6	mega	M	10-9	nano	n
10^{3}	kilo	k	10-12	pico	p