Trabajo Práctico N° 4.2: Vectores (Parte 2).

Ejercicio 1.

- (a) Dado un vector de enteros de, a lo sumo, 500 valores, realizar un módulo que reciba dicho vector y un valor n y retorne si n se encuentra en el vector o no.
- **(b)** *Modificar el módulo del inciso (a) considerando, ahora, que el vector se encuentra ordenado de manera ascendente.*

```
rogram TP4_E1;
num_total=<mark>500</mark>;
 t_numero=1..num_total;
t_vector_numeros=array[t_numero] of int16;
procedure cargar_vector_numeros(var vector_numeros: t_vector_numeros);
i: t_numero;
for i:= 1 to num total do
   vector_numeros[i]:=random(1000);
function_buscar_desordenado_vector_numeros(vector_numeros: t_vector_numeros; num: int16):
 pos: int16;
 pos:=1;
 while ((pos<=num_total) and (vector_numeros[pos]<>num)) do
 buscar_desordenado_vector_numeros:=(pos<=num_total);</pre>
procedure ordenar_vector_numeros(var vector_numeros: t_vector_numeros);
 i, j, k: t_numero;
 item: int16;
 for i:= 1 to (num_total-1) do
   k:=i;
   for j:= (i+1) to num_total do
     if (vector_numeros[j]<vector_numeros[k]) then</pre>
       k:=j;
   if (k<>i) then
     item:=vector_numeros[k];
     vector numeros[k]:=vector numeros[i];
     vector_numeros[i]:=item;
function_buscar_ordenado_vector_numeros(vector_numeros: t_vector_numeros; num: int16):
 pos: int16;
```

```
pos:=1;
  while ((pos<=num_total) and (vector_numeros[pos]<num)) do</pre>
   pos:=pos+1;
  buscar_ordenado_vector_numeros:=((pos<=num_total) and (vector_numeros[pos]=num));</pre>
  vector_numeros: t_vector_numeros;
  num: int16;
  randomize;
  cargar_vector_numeros(vector_numeros);
  num:=random(1000);
  textcolor(green); write('¿El número '); textcolor(yellow); write(num); textcolor(green);
write(' se encontró en el vector (desordenado)?: '); textcolor(red);
writeln(buscar_desordenado_vector_numeros(vector_numeros,num));
 ordenar_vector_numeros(vector_numeros);
 textcolor(green); write('¿El número '); textcolor(yellow); write(num); textcolor(green);
write(' se encontró en el vector (ordenado)?: '); textcolor(red);
write(buscar_ordenado_vector_numeros(vector_numeros,num));
end.
```

Ejercicio 2.

Realizar un programa que resuelva los siguientes incisos:

- (a) Lea nombres de alumnos y los almacene en un vector de, a lo sumo, 500 elementos. La lectura finaliza cuando se lee el nombre "ZZZ", que no debe procesarse.
- **(b)** Lea un nombre y elimine la primera ocurrencia de dicho nombre en el vector.
- (c) Lea un nombre y lo inserte en la posición 4 del vector.
- (d) Lea un nombre y lo agregue al vector.

Nota: Realizar todas las validaciones necesarias.

```
rogram TP4_E2;
 nombres_total=500;
 nombre_salida='ZZZ';
 pos_corte=4;
 t_nombre=1..nombres_total;
 t_vector_nombres=array[t_nombre] of string;
procedure inicializar_vector_nombres(var vector_nombres: t_vector_nombres);
 i: t_nombre;
 for i:= 1 to nombres total do
   vector_nombres[i]:='';
function random_string(length: int8): string;
 i: int8;
 string_aux: string;
 string_aux:='';
 for i:= 1 to length do
   string_aux:=string_aux+chr(ord('A')+random(2<u>6</u>));
 random_string:=string_aux;
procedure leer_nombre(var nombre: string);
i: int16;
 i:=random(100);
 if (i=0) then
   nombre:=nombre salida
   nombre:=random_string(5+random(6));
procedure cargar_vector_nombres(var vector_nombres: t_vector_nombres; var nombres: int16);
 nombre: string;
begin
 leer nombre(nombre);
 while ((nombre<>nombre_salida) and (nombres<nombres_total)) do</pre>
   nombres:=nombres+1;
```

```
vector_nombres[nombres]:=nombre;
   leer_nombre(nombre);
<u>function_buscar_desordenado_vector_nombres(</u>vector_nombres: t_vector_nombres; nombres: int16;
nombre: string): int16;
 pos: int16;
begin
 pos:=1;
 while ((pos<=nombres) and (vector_nombres[pos]<>nombre)) do
   pos:=pos+1;
 if (pos<=nombres) then</pre>
   buscar_desordenado_vector_nombres:=pos
   buscar_desordenado_vector_nombres:=-1;
procedure eliminar_vector_nombres(var vector_nombres: t_vector_nombres; var nombres: int16;
nombre: string; pos: int16);
 i: t_nombre;
 if ((pos>=1) and (pos<=nombres)) then</pre>
   for i:= pos to (nombres-1) do
     vector_nombres[i]:=vector_nombres[i+1];
   nombres:=nombres-1;
procedure insertar_vector_nombres(var vector_nombres: t_vector_nombres; var nombres: int16;
nombre: string; pos: int16);
 i: t_nombre;
  if ((nombres<nombres_total) and ((pos>=1) and (pos<=nombres))) then</pre>
    for i:= nombres downto pos do
     vector_nombres[i+1]:=vector_nombres[i];
   vector_nombres[pos_corte]:=nombre;
   nombres:=nombres+1;
procedure agregar_vector_nombres(var vector_nombres: t_vector_nombres; var nombres: int16;
nombre: string);
  if (nombres<nombres_total) then</pre>
   nombres:=nombres+1;
   vector_nombres[nombres]:=nombre;
procedure imprimir_vector_nombres(vector_nombres: t_vector_nombres; nombres: int16);
 i: int16;
 for i:= 1 to nombres do
   textcolor(green); write('Elemento ',i,' del vector: '); textcolor(red);
writeln(vector nombres[i]);
 vector_nombres: t_vector_nombres;
 nombre: string;
 nombres: int16;
```

```
randomize;
  nombres:=0;
  inicializar_vector_nombres(vector_nombres);
  writeln(); textcolor(red); writeln('INCISO (a):'); writeln();
  cargar_vector_nombres(vector_nombres, nombres);
  if (nombres>0) then
    imprimir_vector_nombres(vector_nombres, nombres);
    writeln(); textcolor(red); writeln('INCISO (b):'); writeln();
    nombre:=vector_nombres[1+random(nombres)];
    eliminar_vector_nombres(vector_nombres,nombres,nombre,buscar_desordenado_vector_nombres(ve
ctor_nombres,nombres,nombre));
    imprimir_vector_nombres(vector_nombres, nombres);
    writeln(); textcolor(red); writeln('INCISO (c):'); writeln();
    nombre:=random_string(5+random(6));
    insertar_vector_nombres(vector_nombres,nombres,nombre,pos_corte);
    imprimir_vector_nombres(vector_nombres, nombres);
    writeln(); textcolor(red); writeln('INCISO (d):'); writeln();
    nombre:=random_string(5+random(6));
    agregar_vector_nombres(vector_nombres,nombre);
    imprimir_vector_nombres(vector_nombres, nombres);
```

Ejercicio 3.

Una empresa de transporte de caudales desea optimizar el servicio que brinda a sus clientes. Para ello, cuenta con información sobre todos los viajes realizados durante el mes de marzo. De cada viaje, se cuenta con la siguiente información: día del mes (de 1 a 31), monto de dinero transportado y distancia recorrida por el camión (medida en kilómetros).

- (a) Realizar un programa que lea y almacene la información de los viajes (a lo sumo, 200). La lectura finaliza cuando se ingresa una distancia recorrida igual a 0 km, que no debe procesarse.
- **(b)** Realizar un módulo que reciba el vector generado en (a) e informe:
- El monto promedio transportado de los viajes realizados.
- La distancia recorrida y el día del mes en que se realizó el viaje que transportó menos dinero.
- La cantidad de viajes realizados cada día del mes.
- (c) Realizar un módulo que reciba el vector generado en (a) y elimine todos los viajes cuya distancia recorrida sea igual a 100 km.

Nota: Para realizar el inciso (b), el vector debe recorrerse una única vez.

```
rogram TP4_E3;
 dia_ini=1; dia_fin=31;
 viajes_total=200;
 distancia_salida=0;
 distancia corte=100;
 t_viaje=1..viajes_total;
 t_dia=dia_ini..dia_fin;
 t_registro_viaje=record
   dia: t_dia;
   monto: real;
  distancia: real;
 t_vector_viajes=array[t_viaje] of t_registro_viaje;
 t_vector_cantidades=array[t_dia] of int16;
procedure inicializar_vector_cantidades(var vector_cantidades: t_vector_cantidades);
i: t_dia;
 for i:= dia_ini to dia_fin do
   vector_cantidades[i]:=0;
procedure leer_viaje(var registro_viaje: t_registro_viaje);
i: int8;
 i:=random(101);
 if (i=0) then
   registro_viaje.distancia:=distancia_salida
 else if (i<=50) then
```

```
registro_viaje.distancia:=distancia_corte
    registro_viaje.distancia:=1+random(1000);
  if (registro_viaje.distancia<>distancia_salida) then
    registro_viaje.dia:=dia_ini+random(dia_fin);
    registro_viaje.monto:=1+random(100);
procedure cargar_vector_viajes(var vector_viajes: t_vector_viajes; var viajes: int16);
 registro_viaje: t_registro_viaje;
  leer_viaje(registro_viaje);
  while ((registro_viaje.distancia<>distancia_salida) and (viajes<viajes_total)) do</pre>
    viajes:=viajes+1;
    vector_viajes[viajes]:=registro_viaje;
   leer_viaje(registro_viaje);
procedure actualizar_minimo(monto: real; dia: t_dia; distancia: real; var monto_min: real; var
dia_min: int8; var distancia_min: real);
  if (monto<monto_min) then</pre>
   monto_min:=monto;
    dia min:=dia;
   distancia_min:=distancia;
procedure calcular informar vector viajes(vector viajes: t vector viajes: viajes: int16);
 vector_cantidades: t_vector_cantidades;
  i: t_viaje;
  j: t_dia;
 dia_min: int8;
  monto_total, monto_prom, monto_min, distancia_min: real;
  monto_total:=0; monto_prom:=0;
  monto_min:=9999999; distancia_min:=0; dia_min:=0;
  inicializar_vector_cantidades(vector_cantidades);
  for i:= 1 to viajes do
    monto_total:=monto_total+vector_viajes[i].monto;
    actualizar_minimo(vector_viajes[i].monto,vector_viajes[i].dia,vector_viajes[i].distancia,m
onto_min,dia_min,distancia_min);
   vector_cantidades[vector_viajes[i].dia]:=vector_cantidades[vector_viajes[i].dia]+1;
  monto_prom:=monto_total/viajes;
  textcolor(green); write('El monto promedio de los viajes realizados es $'); textcolor(red);
writeln(monto_prom:0:2);
  textcolor(green); write('La distancia recorrida y el día del mes en que se realizó el viaje
que transportó menos dinero son '); textcolor(red); write(distancia_min:0:2);
textcolor(green); write(' y '); textcolor(red); write(dia_min); textcolor(green); writeln(',
respectivamente');
  for j:= dia_ini to dia_fin do
   textcolor(green); write('La cantidad de viajes realizados el día ',j,' del mes de marzo es
 ); textcolor(red); writeln(vector_cantidades[j]);
procedure buscar_desordenado_vector_viajes(vector_viajes: t_vector_viajes; viajes: int16; var
pos: int16);
 while ((pos<=viajes) and (vector viajes[pos].distancia<>distancia corte)) do
```

```
pos:=pos+1;
  if (pos>viajes) then
   pos:=-1;
procedure eliminar_vector_viajes(var vector_viajes: t_vector_viajes; var viajes: int16; pos:
int16);
 i: t_viaje;
  if ((pos>=1) and (pos<=viajes)) then</pre>
   for i:= pos to (viajes-1) do
     vector_viajes[i]:=vector_viajes[i+1];
   viajes:=viajes-1;
procedure buscar_eliminar_vector_viajes(var vector_viajes: t_vector_viajes; var viajes:
int16);
  pos: int16;
  pos:=0;
  buscar_desordenado_vector_viajes(vector_viajes, viajes, pos);
  while ((pos>=1) and (pos<=viajes)) do</pre>
    eliminar_vector_viajes(vector_viajes, viajes, pos);
    buscar_desordenado_vector_viajes(vector_viajes,viajes,pos);
procedure imprimir_vector_viajes(vector_viajes: t_vector_viajes; viajes: int16);
 i: int16;
  for i:= 1 to viajes do
    textcolor(green); write('Elemento ',i,' del vector (elemento distancia): ');
textcolor(red); writeln(vector_viajes[i].distancia:0:2);
  vector_viajes: t_vector_viajes;
  viajes: int16;
  randomize;
  writeln(); textcolor(red); writeln('INCISO (a):'); writeln();
  cargar_vector_viajes(vector_viajes, viajes);
  if (viajes>0) then
    imprimir_vector_viajes(vector_viajes, viajes);
    writeln(); textcolor(red); writeln('INCISO (b):'); writeln();
    calcular_informar_vector_viajes(vector_viajes, viajes);
    writeln(); textcolor(red); writeln('INCISO (c):'); writeln();
    buscar_eliminar_vector_viajes(vector_viajes, viajes);
    imprimir_vector_viajes(vector_viajes, viajes);
 nd.
```

Ejercicio 4.

Una cátedra dispone de información de sus alumnos (a lo sumo, 1000). De cada alumno, se conoce número de alumno, apellido y nombre y cantidad de asistencias a clase. Dicha información se encuentra ordenada por número de alumno de manera ascendente. Se pide:

- (a) Un módulo que retorne la posición del alumno con un número de alumno recibido por parámetro. El alumno seguro existe.
- (b) Un módulo que reciba un alumno y lo inserte en el vector.
- (c) Un módulo que reciba la posición de un alumno dentro del vector y lo elimine.
- (d) Un módulo que reciba un número de alumno y elimine dicho alumno del vector.
- **(e)** Un módulo que elimine del vector todos los alumnos con cantidad de asistencias en 0.

Nota: Realizar el programa principal que invoque los módulos desarrollados en los incisos previos con datos leídos de teclado.

```
program TP4_E4;
 alumnos_total=1000;
 numero_salida=-1;
 asistencias_corte=0;
 t alumno=1..alumnos total;
 t_registro_alumno=record
   numero: int16;
   apellido: string;
   nombre: string;
   asistencias: int8;
 t_vector_alumnos=array[t_alumno] of t_registro_alumno;
function random_string(length: int8): string;
 i: int8;
 string_aux: string;
 string_aux:='';
 for i:= 1 to length do
   string_aux:=string_aux+chr(ord('A')+random(26));
 random_string:=string_aux;
procedure leer_alumno(var registro_alumno: t_registro_alumno);
 i: int8;
 i:=random(100);
 if (i=0) then
   registro_alumno.numero:=numero_salida
   registro_alumno.numero:=1+random(high(int16));
 if (registro alumno.numero<>numero salida) then
```

```
registro_alumno.apellido:=random_string(5+random(6));
    registro_alumno.nombre:=random_string(5+random(6));
    registro_alumno.asistencias:=random(100);
function buscar_ordenado1_vector_alumnos(vector_alumnos: t_vector_alumnos; alumnos, numero:
int16): int16;
 pos: int16;
 pos:=1;
 while ((pos<=alumnos) and (vector_alumnos[pos].numero<numero)) do</pre>
   pos:=pos+1;
 buscar_ordenado1_vector_alumnos:=pos;
procedure insertar_vector_alumnos(var vector_alumnos: t_vector_alumnos; var alumnos: int16;
registro_alumno: t_registro_alumno; pos: int16);
 i: t_alumno;
  if ((alumnos<alumnos_total) and ((pos>=1) and (pos<=alumnos))) then</pre>
    for i:= alumnos downto pos do
     vector_alumnos[i+1]:=vector_alumnos[i];
  if ((alumnos<alumnos_total) and ((pos>=1) and (pos<=alumnos+1))) then</pre>
    vector_alumnos[pos]:=registro_alumno;
   alumnos:=alumnos+1;
procedure cargar_vector_alumnos(var vector_alumnos: t_vector_alumnos; var alumnos: int16);
 registro_alumno: t_registro_alumno;
 pos: int16;
 pos:=0;
  leer_alumno(registro_alumno);
 while ((registro_alumno.numero<>numero_salida) and (alumnos<alumnos_total)) do</pre>
    pos:=buscar_ordenado1_vector_alumnos(vector_alumnos, alumnos, registro_alumno.numero);
    insertar_vector_alumnos(vector_alumnos, alumnos, registro_alumno, pos);
   leer_alumno(registro_alumno);
function calcular_a(vector_alumnos: t_vector_alumnos; alumnos, numero: int16): int16;
 calcular_a:=buscar_ordenado1_vector_alumnos(vector_alumnos,alumnos,numero);
procedure calcular_b(var vector_alumnos: t_vector_alumnos; var alumnos: int16;
registro_alumno: t_registro_alumno);
 pos: int16;
 pos:=0;
 if (alumnos<alumnos_total) then</pre>
   pos:=buscar_ordenado1_vector_alumnos(vector_alumnos,alumnos,registro_alumno.numero);
   insertar_vector_alumnos(vector_alumnos, alumnos, registro_alumno, pos);
procedure calcular_c(var vector_alumnos: t_vector_alumnos; var alumnos: int16; pos: int16);
 i: t_alumno;
  if ((pos>=1) and (pos<=alumnos)) then</pre>
```

```
for i:= pos to (alumnos-1) do
     vector_alumnos[i]:=vector_alumnos[i+1];
   alumnos:=alumnos-1;
function buscar_ordenado2_vector_alumnos(vector_alumnos: t_vector_alumnos; alumnos, numero:
int16): int16;
 pos: int16;
 pos:=1;
 while ((pos<=alumnos) and (vector_alumnos[pos].numero<numero)) do</pre>
   pos:=pos+1;
  if ((pos<=alumnos) and (vector_alumnos[pos].numero=numero)) then</pre>
   buscar_ordenado2_vector_alumnos:=pos
   buscar_ordenado2_vector_alumnos:=-1;
procedure calcular_d(var vector_alumnos: t_vector_alumnos; var alumnos: int16; numero: int16);
 calcular_c(vector_alumnos,alumnos,buscar_ordenado2_vector_alumnos(vector_alumnos,alumnos,num
ero));
procedure buscar_desordenado_vector_alumnos(vector_alumnos: t_vector_alumnos; alumnos: int16;
var pos: int16);
begin
 while ((pos<=alumnos) and (vector_alumnos[pos].asistencias<>asistencias_corte)) do
   pos:=pos+1;
 if (pos>alumnos) then
   pos:=-1;
procedure calcular e(var vector alumnos: t vector alumnos; var alumnos: int16);
 pos: int16;
 pos:=1;
 buscar_desordenado_vector_alumnos(vector_alumnos,alumnos,pos);
 while ((pos>=1) and (pos<=alumnos)) do</pre>
    calcular_c(vector_alumnos,alumnos,pos);
   buscar_desordenado_vector_alumnos(vector_alumnos, alumnos, pos);
 registro_alumno: t_registro_alumno;
 vector_alumnos: t_vector_alumnos;
 alumnos, pos, numero: int16;
  randomize;
 alumnos:=0;
 cargar_vector_alumnos(vector_alumnos,alumnos);
  if (alumnos>0) then
    writeln(); textcolor(red); writeln('INCISO (a):'); writeln();
    numero:=1+random(high(int16));
    textcolor(green); write('La posición en el vector del alumno con número de alumno ');
textcolor(yellow);    write(numero);    textcolor(green);    write(' es ');    textcolor(red);
writeln(calcular_a(vector_alumnos,alumnos,numero));
    writeln(); textcolor(red); writeln('INCISO (b):'); writeln();
    leer_alumno(registro_alumno);
    calcular_b(vector_alumnos,alumnos,registro_alumno);
    writeln(); textcolor(red); writeln('INCISO (c):'); writeln();
    pos:=1+random(alumnos);
    calcular_c(vector_alumnos,alumnos,pos);
    writeln(); textcolor(red); writeln('INCISO (d):'); writeln();
    numero:=1+random(high(int16));
```

```
calcular_d(vector_alumnos,alumnos,numero);
  writeln(); textcolor(red); writeln('INCISO (e):'); writeln();
  calcular_e(vector_alumnos,alumnos);
  end;
end.
```

Ejercicio 5.

La empresa Amazon Web Services (AWS) dispone de la información de sus 500 clientes monotributistas más grandes del país. De cada cliente, conoce la fecha de firma del contrato con AWS, la categoría del monotributo (entre la A y la F), el código de la ciudad donde se encuentran las oficinas (entre 1 y 2400) y el monto mensual acordado en el contrato. La información se ingresa ordenada por fecha de firma de contrato (los más antiguos primero, los más recientes últimos). Realizar un programa que lea y almacene la información de los clientes en una estructura de tipo vector. Una vez almacenados los datos, procesar dicha estructura para obtener:

- Cantidad de contratos por cada mes y cada año, y año en que se firmó la mayor cantidad de contratos.
- Cantidad de clientes para cada categoría de monotributo.
- Código de las 10 ciudades con mayor cantidad de clientes.
- Cantidad de clientes que superan, mensualmente, el monto promedio entre todos los clientes.

```
rogram TP4_E5;
 clientes_total=500;
 ciudades_total=2400;
 mes_ini=1; mes_fin=12;
 anio_ini=2001; anio_fin=2020;
 cat_ini='A'; cat_fin='F';
 ciudad_ini=1; ciudad_fin=10;
 t_cliente=1..clientes_total;
 t_mes=mes_ini..mes_fin;
 t_anio=anio_ini..anio_fin;
 t_categoria=cat_ini..cat_fin;
 t_ciudad1=1..ciudades_total;
 t_ciudad2=ciudad_ini..ciudad_fin;
 t_registro_cliente=<mark>rec</mark>ord
    fecha: int16;
    categoria: t_categoria;
   ciudad: t_ciudad1;
   monto: real;
  t_registro_ciudad=record
    ciudad: int16;
   clientes: int16;
  t_vector_clientes=array[t_cliente] of t_registro_cliente;
 t_vector_meses=array[t_mes] of int16;
 t_vector_anios=array[t_anio] of int16;
 t_vector_categorias=array[t_categoria] of int16;
 t_vector_ciudades1=array[t_ciudad1] of int16;
 t_vector_ciudades2=array[t_ciudad2] of t_registro_ciudad;
procedure inicializar_vectores(var vector_meses1, vector_meses2: t_vector_meses; var
vector_anios: t_vector_anios;            <mark>var</mark> vector_categorias: t_vector_categorias;            <mark>var</mark>
vector_ciudades1: t_vector_ciudades1; var vector_ciudades2: t_vector_ciudades2);
 i: t_mes;
 j: t_anio;
 k: t_categoria;
 l: t_ciudad1;
```

```
m: t_ciudad2;
  for i:= mes_ini to mes_fin do
   vector_meses1[i]:=0;
   vector_meses2[i]:=0;
 for j:= anio_ini to anio_fin do
   vector anios[j]:=0;
  for k:= cat_ini to cat_fin do
   vector_categorias[k]:=0;
  for l:= 1 to ciudades_total do
   vector_ciudades1[l]:=0;
  for m:= ciudad_ini to ciudad_fin do
   vector_ciudades2[m].ciudad:=0;
   vector_ciudades2[m].clientes:=0;
procedure leer_cliente(var registro_cliente: t_registro_cliente);
 registro_cliente.fecha:=(anio_ini*12-1)+random((anio_fin-anio_ini+1)*12);
 registro_cliente.categoria:=chr(ord(cat_ini)+random(6));
 registro_cliente.ciudad:=1+random(ciudades_total);
 registro_cliente.monto:=1+random(100);
function buscar_ordenado_vector_clientes(vector_clientes: t_vector_clientes; clientes, fecha:
int16): int16;
 pos: int16;
 pos:=1:
 while ((pos<=clientes) and (vector_clientes[pos].fecha<fecha)) do</pre>
   pos:=pos+1;
 buscar_ordenado_vector_clientes:=pos;
procedure insertar_vector_clientes(var vector_clientes: t_vector_clientes; var clientes:
int16; registro_cliente: t_registro_cliente; pos: int16);
 i: t_cliente;
 if ((clientes<clientes_total) and ((pos>=1) and (pos<=clientes))) then</pre>
   for i:= clientes downto pos do
     vector_clientes[i+1]:=vector_clientes[i];
 if ((clientes<clientes_total) and ((pos>=1) and (pos<=clientes+1))) then</pre>
   vector_clientes[pos]:=registro_cliente;
   clientes:=clientes+1;
procedure cargar_vector_clientes(var vector_clientes: t_vector_clientes; var monto_prom:
 registro_cliente: t_registro_cliente;
 i: t_cliente;
 clientes, pos: int16;
 monto_total: real;
 clientes:=0; pos:=0;
 monto_total:=0;
  for i:= 1 to clientes_total do
   leer_cliente(registro_cliente);
   pos:=buscar_ordenado_vector_clientes(vector_clientes,clientes,registro_cliente.fecha);
   insertar_vector_clientes(vector_clientes, clientes, registro_cliente, pos);
   monto_total:=monto_total+vector_clientes[i].monto;
```

```
monto_prom:=monto_total/clientes_total;
procedure agregar_vector_meses1(fecha: int16; var vector_meses1: t_vector_meses);
 vector_meses1[(fecha mod 12)+1]:=vector_meses1[(fecha mod 12)+1]+1;
procedure agregar_vector_anios(fecha: int16;    var vector_anios: t_vector_anios);
 vector_anios[fecha div 12]:=vector_anios[fecha div 12]+1;
procedure agregar_vector_categorias(categoria: t_categoria; var vector_categorias:
t_vector_categorias);
 vector_categorias[categoria]:=vector_categorias[categoria]+1;
procedure agregar_vector_ciudades1(ciudad: t_ciudad1; var vector_ciudades1:
t_vector_ciudades1);
begin
 vector_ciudades1[ciudad]:=vector_ciudades1[ciudad]+1;
procedure agregar_vector_meses2(fecha: int16; monto, monto_prom: real; var vector_meses2:
t_vector_meses);
  if (monto>monto_prom) then
   vector_meses2[(fecha mod 12)+1]:=vector_meses2[(fecha mod 12)+1]+1;
procedure actualizar_maximo(vector_anios: t_vector_anios; var anio_max: int16);
 i: t_anio;
 num_max: int16;
  num_max:=low(int16);
  for i:= anio_ini to anio_fin do
    if (vector_anios[i]>num_max) then
     num_max:=vector_anios[i];
     anio_max:=i;
function_buscar_ordenado_vector_ciudades2(vector_ciudades2: t_vector_ciudades2; ciudades,
clientes: int16): int16;
 pos: int16;
 pos:=1;
 while ((pos<=ciudades) and (vector_ciudades2[pos].clientes>clientes)) do
   pos:=pos+1;
 buscar_ordenado_vector_ciudades2:=pos;
procedure insertar_vector_ciudades2(var vector_ciudades2: t_vector_ciudades2; var ciudades:
int16; registro_ciudad: t_registro_ciudad; pos: int16);
 i: t_ciudad2;
begin
  if ((ciudades<ciudad_fin) and ((pos>1) and (pos<=ciudades))) then</pre>
   for i:= ciudades downto pos do
     vector_ciudades2[i+1]:=vector_ciudades2[i];
  if ((ciudades<ciudad fin) and ((pos>1) and (pos<=ciudades+1))) then</pre>
    vector ciudades2[pos]:=registro ciudad;
   ciudades:=ciudades+1;
procedure actualizar_maximos(vector_ciudades1: t_vector_ciudades1; var vector_ciudades2:
t_vector_ciudades2);
```

```
registro_ciudad: t_registro_ciudad;
  i: t_ciudad1;
  ciudades, pos: int16;
begin
  ciudades:=0; pos:=0;
  for i:= 1 to ciudades_total do
    pos:=buscar_ordenado_vector_ciudades2(vector_ciudades2,ciudades,vector_ciudades1[i]);
    if (pos<=ciudad_fin) then</pre>
      if (ciudades=ciudad_fin) then
       ciudades:=ciudades-1;
      registro_ciudad.ciudad:=i;
      registro_ciudad.clientes:=vector_ciudades1[i];
      insertar_vector_ciudades2(vector_ciudades2,ciudades,registro_ciudad,pos);
procedure procesar_vector_clientes(vector_clientes: t_vector_clientes; monto_prom: real; var
vector_meses1, vector_meses2: t_vector_meses; var vector_anios: t_vector_anios; var anio_max:
int16; var vector_categorias: t_vector_categorias; var vector_ciudades1: t_vector_ciudades1;
var vector_ciudades2: t_vector_ciudades2);
 i: t_cliente;
  for i:= 1 to clientes_total do
    agregar_vector_meses1(vector_clientes[i].fecha,vector_meses1);
    agregar_vector_anios(vector_clientes[i].fecha, vector_anios);
    agregar_vector_categorias(vector_clientes[i].categoria,vector_categorias);
    agregar_vector_ciudades1(vector_clientes[i].ciudad, vector_ciudades1);
    agregar_vector_meses2(vector_clientes[i].fecha,vector_clientes[i].monto,monto_prom,vector_
meses2);
  actualizar_maximo(vector_anios,anio_max);
  actualizar_maximos(vector_ciudades1,vector_ciudades2);
procedure imprimir_vector_meses(vector_meses: t_vector_meses);
 i: t_mes;
  for i:= mes_ini to mes_fin do
    textcolor(green); write('Mes ',i,': '); textcolor(red); writeln(vector_meses[i]);
procedure imprimir_vector_anios(vector_anios: t_vector_anios);
 i: t_anio;
  for i:= anio_ini to anio_fin do
    textcolor(green); write('Año ',i,': '); textcolor(red); writeln(vector_anios[i]);
procedure imprimir_vector_categorias(vector_categorias: t_vector_categorias);
 i: t_categoria;
  for i:= cat_ini to cat_fin do
    textcolor(green); write('Categoría ',i,': '); textcolor(red);
writeln(vector_categorias[i]);
```

```
procedure imprimir_vector_ciudades(vector_ciudades: t_vector_ciudades2);
 i: t_ciudad2;
  for i:= ciudad_ini to ciudad_fin do
    textcolor(green); write('Ciudad ',i,': '); textcolor(red);
writeln(vector_ciudades[i].ciudad);
  vector_clientes: t_vector_clientes;
  vector_meses1, vector_meses2: t_vector_meses;
  vector_anios: t_vector_anios;
  vector_categorias: t_vector_categorias;
  vector_ciudades1: t_vector_ciudades1;
  vector_ciudades2: t_vector_ciudades2;
  anio_max: int16;
  monto_prom: real;
  randomize;
  anio_max:=0;
  monto_prom:=0;
  inicializar_vectores(vector_meses1, vector_meses2, vector_anios, vector_categorias, vector_ciuda
des1,vector_ciudades2);
  cargar_vector_clientes(vector_clientes, monto_prom);
  procesar_vector_clientes(vector_clientes,monto_prom,vector_meses1,vector_meses2,vector_anios
,anio_max,vector_categorias,vector_ciudades1,vector_ciudades2);
  writeln(); textcolor(red); writeln('La cantidad de contratos para cada mes es '); writeln();
  imprimir_vector_meses(vector_meses1);
  writeln(); textcolor(red); writeln('La cantidad de contratos para cada año es '); writeln();
  imprimir_vector_anios(vector_anios);
  writeln(); textcolor(red); write('El año en que se firmó la mayor cantidad de contratos es
 ); textcolor(red); writeln(anio_max); writeln();
 writeln(); textcolor(red); writeln('La cantidad de clientes para cada categoría de
monotributo es '); writeln();
  imprimir_vector_categorias(vector_categorias);
  writeln(); textcolor(red); writeln('Los códigos de las 10 ciudades con mayor cantidad de
clientes son '); writeln();
  imprimir_vector_ciudades(vector_ciudades2);
  writeln(); textcolor(red); writeln('La cantidad de clientes que superan, mensualmente, el
monto promedio entre todos los clientes es '); writeln();
  imprimir_vector_meses(vector_meses2);
```

Ejercicio 6.

La compañía Canonical Llt. desea obtener estadísticas acerca del uso de Ubuntu Linux en La Plata. Para ello, debe realizar un programa que lea y almacene información sobre las computadoras con este sistema operativo (a lo sumo, 10000). De cada computadora se conoce: código de computadora, la versión de Ubuntu que utiliza (18.04, 17.10, 17.04, etc.), la cantidad de paquetes instalados y la cantidad de cuentas de usuario que posee. La información debe almacenarse ordenada por código de computadora de manera ascendente. La lectura finaliza al ingresar el código de computadora -1, que no debe procesarse. Una vez almacenados todos los datos, se pide:

- Informar la cantidad de computadoras que utilizan las versiones 18.04 o 16.04.
- Informar el promedio de cuentas de usuario por computadora.
- Informar la versión de Ubuntu de la computadora con mayor cantidad de paquetes instalados.
- Eliminar la información de las computadoras con código entre 0 y 500.

```
rogram TP4_E6;
 computadoras_total=10000;
 computadora_salida=-1;
 version_corte1='18.04'; version_corte2='16.04';
 computadora_corte1=0; computadora_corte2=500;
 t_computadora=1..computadoras_total;
 t_registro_computadora=record
   computadora: int16;
   version: string;
   paquetes: int16;
   cuentas: int16;
  t_vector_computadoras=array[t_computadora] of t_registro_computadora;
procedure leer_computadora(var registro_computadora: t_registro_computadora);
 vector_versiones: array[1..4] of string=('18.04', '17.10', '17.04', '16.04');
 i: int8;
 i:=random(100);
  if (i=0) then
   registro_computadora.computadora:=computadora_salida
   registro_computadora.computadora:=1+random(high(int16));
  if (registro_computadora.computadora<>computadora_salida) then
    registro_computadora.version:=vector_versiones[1+random(4)];
   registro_computadora.paquetes:=1+random(100);
    registro_computadora.cuentas:=1+random(100);
function buscar_ordenado_vector_computadoras(vector_computadoras: t_vector_computadoras;
computadoras, computadora: int16): int16;
 pos: int16;
  while ((pos<=computadoras) and (vector_computadoras[pos].computadora<computadora)) do</pre>
   pos:=pos+1;
```

```
buscar_ordenado_vector_computadoras:=pos;
procedure insertar_vector_computadoras(var vector_computadoras: t_vector_computadoras; var
computadoras: int16; registro_computadora: t_registro_computadora; pos: int16);
  i: t_computadora;
  if ((computadoras<computadoras_total) and ((pos>=1) and (pos<=computadoras))) then</pre>
    for i:= computadoras downto pos do
      vector_computadoras[i+1]:=vector_computadoras[i];
  if ((computadoras<computadoras_total) and ((pos>=1) and (pos<=computadoras+1))) then</pre>
    vector_computadoras[pos]:=registro_computadora;
    computadoras:=computadoras+1;
procedure cargar_vector_computadoras(var vector_computadoras: t_vector_computadoras; var
computadoras: int16);
  registro_computadora: t_registro_computadora;
  pos: int16;
  pos:=0;
  leer_computadora(registro_computadora);
  while ((registro_computadora.computadora<>computadora_salida) and
(computadoras<computadoras_total)) do</pre>
   pos:=buscar_ordenado_vector_computadoras(vector_computadoras,computadoras,registro_computa
dora.computadora);
    insertar_vector_computadoras(vector_computadoras,computadoras,registro_computadora,pos);
    leer_computadora(registro_computadora);
procedure actualizar_maximo(paquetes: int16; version: string; var paquetes_max: int16; var
version_max: string);
  if (paquetes>paquetes_max) then
    paquetes_max:=paquetes;
    version_max:=version;
procedure eliminar_vector_computadoras(var vector_computadoras: t_ve<u>ctor_computadoras; var</u>
computadoras: int16; pos: int16);
 i: t_computadora;
  if ((pos>=1) and (pos<=computadoras)) then</pre>
   for i:= pos to (computadoras-1) do
      vector_computadoras[i]:=vector_computadoras[i+1];
    computadoras:=computadoras-1;
procedure procesar_vector_computadoras(var vector_computadoras: t_vector_computadoras; var
computadoras, versiones_corte: int16; var cuentas_prom: real; var version_max: string);
  pos: int16;
  computadoras_aux, cuentas_total, paquetes_max: int16;
  computadoras_aux:=computadoras;
  cuentas_total:=0;
  paquetes_max:=low(int16);
  while ((pos>=1) and (pos<=computadoras)) do</pre>
```

```
if ((vector_computadoras[pos].version=version_corte1) or
(vector_computadoras[pos].version=version_corte2)) then
      versiones_corte:=versiones_corte+1;
    cuentas_total:=cuentas_total+vector_computadoras[pos].cuentas;
    actualizar_maximo(vector_computadoras[pos].paquetes,vector_computadoras[pos].version,paque
tes_max,version_max);
    if ((vector_computadoras[pos].computadora>computadora_corte1) and
(vector_computadoras[pos].computadora<computadora_corte2)) then</pre>
      eliminar_vector_computadoras(vector_computadoras,computadoras,pos);
     pos:=pos-1;
    pos:=pos+1;
  cuentas_prom:=cuentas_total/computadoras_aux;
  vector_computadoras: t_vector_computadoras;
  computadoras, versiones_corte: int16;
  cuentas_prom: real;
  version_max: string;
  randomize;
  computadoras:=0;
  versiones_corte:=0;
  cuentas_prom:=0;
  version_max:='';
  cargar_vector_computadoras(vector_computadoras,computadoras);
  if (computadoras>0) then
   procesar_vector_computadoras(vector_computadoras,computadoras,versiones_corte,cuentas_prom
.version max);
    textcolor(green); write('La cantidad de computadoras que utilizan las versiones ');
textcolor(yellow);    write(version_corte1);    textcolor(green);    write(' o ');    textcolor(yellow);
write(version_corte2); textcolor(green); write(' es '); textcolor(red);
writeln(versiones_corte);
    textcolor(green); write('El promedio de cuentas de usuario por computadora es ');
textcolor(red); writeln(cuentas_prom:0:2);
    textcolor(green); write('La versión de Ubuntu de la computadora con mayor cantidad de
paquetes instalados es '); textcolor(red); write(version_max);
```

Ejercicio 7.

Continuando con los 3 ejercicios adicionales de la Guía opcional de actividades adicionales, ahora, se utilizarán vectores para almacenar la información ingresada por teclado. Consideraciones importantes:

- Los datos ingresados por teclado se deberán almacenar en una estructura de tipo vector apropiada. Dado que, en ninguno de los ejercicios se indica la cantidad máxima de datos a leer, para poder utilizar un vector, asumir que, en todos los casos, se ingresarán, a lo sumo, 5000 datos (donde cada dato será, o bien, una inversión, un alumno o un tanque de agua, según lo indica cada ejercicio).
- Una vez leídos y almacenados los datos, deberán procesarse (recorrer el vector) para resolver cada inciso. Al hacerlo, deberán reutilizarse los módulos ya implementados en la práctica anterior. En la medida de lo posible, el vector deberá recorrerse una única vez para resolver todos los incisos.

Ejercicio 1:

```
rogram TP4_E7a;
 empresa_salida=100;
 monto_corte=50000.0;
 empresas_total=5000;
 t_empresa=1..empresas_total;
 t_registro_empresa=record
   empresa: int16;
   inversiones: int16:
   monto_total: real;
 t_vector_empresas=array[t_empresa] of t_registro_empresa;
procedure leer_inversiones(empresa, inversiones: int16;    var monto_total: real);
 i: int16;
 monto: real;
 monto_total:=0;
  for i:= 1 to inversiones do
   monto:=1+random(1000);
   monto_total:=monto_total+monto;
procedure leer_empresa(var registro_empresa: t_registro_empresa);
 i: int8;
begin
 i:=random(100);
  if (i=0) then
   registro_empresa.empresa:=empresa_salida
    registro_empresa.empresa:=1+random(high(int16));
  registro_empresa.inversiones:=1+random(1000);
 leer_inversiones(registro_empresa.empresa,registro_empresa.inversiones,registro_empresa.mont
o_total);
procedure cargar_vector_empresas(var vector_empresas: t_vector_empresas; var empresas: int16);
```

```
registro_empresa: t_registro_empresa;
   leer_empresa(registro_empresa);
    empresas:=empresas+1;
    vector_empresas[empresas]:=registro_empresa;
 until (vector_empresas[empresas].empresa=empresa_salida);
procedure calcular_a(empresa, inversiones: int16; monto_total: real);
 textcolor(green); write('El monto promedio de las inversiones de la empresa ');
textcolor(yellow); write(empresa); textcolor(green); write(' es '); textcolor(red);
writeln(monto_total/inversiones:0:2);
procedure calcular_b(monto_total: real; empresa: int16; var monto_max: real; var empresa_max:
int16);
  if (monto_total>monto_max) then
   monto_max:=monto_total;
    empresa_max:=empresa;
procedure calcular_c(monto_total: real; var empresas_corte: int16);
 if (monto_total>monto_corte) then
   empresas_corte:=empresas_corte+1;
procedure procesar_vector_empresas(vector_empresas: t_vector_empresas; empresas: int16; var
empresa_max, empresas_corte: int16);
  i: t_empresa;
  monto_max: real;
  monto_max:=-9999999;
  for i:= 1 to empresas do
    if (vector_empresas[i].inversiones>0) then
     calcular_a(vector_empresas[i].empresa,vector_empresas[i].inversiones,vector_empresas[i].
monto_total);
     calcular_b(vector_empresas[i].monto_total,vector_empresas[i].empresa,monto_max,empresa_m
ax);
      calcular_c(vector_empresas[i].monto_total,empresas_corte);
 vector_empresas: t_vector_empresas;
  empresas, empresa_max, empresas_corte: int16;
  randomize:
  empresas:=0;
  empresa_max:=0;
  empresas_corte:=0;
  cargar_vector_empresas(vector_empresas,empresas);
  procesar_vector_empresas(vector_empresas,empresas,empresas_max,empresas_corte);
  textcolor(green); write('El código de la empresa con mayor monto total invertido es ');
textcolor(red); writeln(empresa_max);
  textcolor(green); write('La cantidad de empresas con inversiones de más de $');
textcolor(yellow);    write(monto_corte:0:2);    textcolor(green);    write(' es ');    textcolor(red);
write(empresas_corte);
```

Ejercicio 2:

```
program TP4_E7b;
uses crt;
 condicion_i='I'; condicion_r='R';
 autoeva_total=5;
 nota_incumple=-1;
 legajo_salida=-1;
 nota_corte=4;
 promedio_corte=6.5;
 nota_cero=0;
 nota_diez=10;
 presente_corte=0.75;
 alumnos_total=5000;
 t_alumno=1..alumnos_total;
 t_registro_alumno=record
   legajo: int16;
   condicion: char;
   presente: int8;
   nota_total: int8;
   notas_cero: int8;
   notas_diez: int8;
 t_vector_alumnos=array[t_alumno] of t_registro_alumno;
procedure leer_notas(var presente, nota_total, notas_cero, notas_diez: int8);
 i, nota: int8;
 presente:=0; nota_total:=0; notas_cero:=0; notas_diez:=0;
  for i:= 1 to autoeva_total do
   nota:=nota_incumple+random(12);
   if ((nota<>nota_incumple) and (nota>=nota_corte)) then
     presente:=presente+1;
   if (nota<>nota_incumple) then
     nota_total:=nota_total+nota;
   if (nota=nota_cero) then
     notas_cero:=notas_cero+1;
   if (nota=nota_diez) then
     notas_diez:=notas_diez+1;
procedure leer_alumno(var registro_alumno: t_registro_alumno);
 vector_condiciones: array[1..2] of char=(condicion_i, condicion_r);
 i: int8;
 i:=random(100);
 if (i=0) then
   registro_alumno.legajo:=legajo_salida
   registro_alumno.legajo:=1+random(high(int16));
 if (registro_alumno.legajo<>legajo_salida) then
   registro_alumno.condicion:=vector_condiciones[1+random(2)];
   leer_notas(registro_alumno.presente,registro_alumno.nota_total,registro_alumno.notas_cero,
registro_alumno.notas_diez);
procedure cargar_vector_alumnos(var vector_alumnos: t_vector_alumnos; var alumnos: int16);
registro_alumno: t_registro_alumno;
 leer_alumno(registro_alumno);
 while (registro_alumno.legajo<>legajo_salida) do
```

```
alumnos:=alumnos+1;
    vector_alumnos[alumnos]:=registro_alumno;
    leer_alumno(registro_alumno);
procedure calcular_ab(condicion: char; presente: int8; var ingresantes_total,
ingresantes_parcial, recursantes_total, recursantes_parcial: int16);
  if (condicion=condicion_i) then
   if (presente>=presente_corte*autoeva_total) then
     ingresantes_parcial:=ingresantes_parcial+1;
    ingresantes_total:=ingresantes_total+1;
    if (presente>=presente_corte*autoeva_total) then
     recursantes_parcial:=recursantes_parcial+1;
    recursantes_total:=recursantes_total+1;
procedure calcular_c(presente: int8; var alumnos_autoeva: int16);
begin
  if (presente=autoeva_total) then
   alumnos_autoeva:=alumnos_autoeva+1;
procedure calcular_d(nota_total: int8; var alumnos_corte: int16);
  if (nota_total/autoeva_total>promedio_corte) then
   alumnos_corte:=alumnos_corte+1;
procedure calcular_e(notas_cero: int8; var alumnos_cero: int16);
 if (notas_cero>=1) then
   alumnos_cero:=alumnos_cero+1;
<mark>procedure calcular_f(</mark>notas_diez: int8; legajo: int16; <mark>var</mark> notas_diez_max1, notas_diez_max2:
int8; var legajo_diez_max1, legajo_diez_max2: int16);
  if (notas_diez>notas_diez_max1) then
    notas_diez_max2:=notas_diez_max1;
    legajo_diez_max2:=legajo_diez_max1;
    notas_diez_max1:=notas_diez;
    legajo_diez_max1:=legajo;
    if (notas_diez>notas_diez_max2) then
     notas_diez_max2:=notas_diez;
      legajo_diez_max2:=legajo;
procedure calcular_g(notas_cero: int8; legajo: int16; var notas_cero_max1, notas_cero_max2:
int8; var legajo_cero_max1, legajo_cero_max2: int16);
  if (notas_cero>notas_cero_max1) then
    notas_cero_max2:=notas_cero_max1;
    legajo_cero_max2:=legajo_cero_max1;
    notas_cero_max1:=notas_cero;
   legajo_cero_max1:=legajo;
    if (notas_cero>notas_cero_max2) then
```

```
notas_cero_max2:=notas_cero;
      legajo_cero_max2:=legajo;
procedure procesar_vector_alumnos(vector_alumnos: t_vector_alumnos; alumnos: int16; var
ingresantes_parcial, ingresantes_total, recursantes_parcial, recursantes_total,
alumnos_autoeva, alumnos_corte, alumnos_cero, legajo_diez_max1, legajo_diez_max2,
legajo_cero_max1, legajo_cero_max2: int16);
 i: t_alumno;
  notas_diez_max1, notas_diez_max2, notas_cero_max1, notas_cero_max2: int8;
begin
  notas_diez_max1:=0; notas_diez_max2:=0;
  notas_cero_max1:=0; notas_cero_max2:=0;
  for i:= 1 to alumnos do
    calcular_ab(vector_alumnos[i].condicion,vector_alumnos[i].presente,ingresantes_total,ingre
santes_parcial,recursantes_total,recursantes_parcial);
    calcular_c(vector_alumnos[i].presente,alumnos_autoeva);
    calcular_d(vector_alumnos[i].nota_total,alumnos_corte);
    calcular_e(vector_alumnos[i].notas_cero,alumnos_cero);
    calcular_f(vector_alumnos[i].notas_diez,vector_alumnos[i].legajo,notas_diez_max1,notas_die
z_max2,legajo_diez_max1,legajo_diez_max2);
    calcular_g(vector_alumnos[i].notas_cero,vector_alumnos[i].legajo,notas_cero_max1,notas_cer
o_max2,legajo_cero_max1,legajo_cero_max2);
 vector_alumnos: t_vector_alumnos;
 alumnos, ingresantes_parcial, ingresantes_total, recursantes_parcial, recursantes_total,
alumnos_autoeva, alumnos_corte, alumnos_cero, legajo_diez_max1, legajo_diez_max2,
legajo_cero_max1, legajo_cero_max2: int16;
  randomize;
  alumnos:=0;
  ingresantes_parcial:=0; ingresantes_total:=0;
  recursantes_parcial:=0; recursantes_total:=0;
  alumnos_autoeva:=0;
  alumnos_corte:=0;
  alumnos_cero:=0;
  legajo_diez_max1:=0; legajo_diez_max2:=0;
  legajo_cero_max1:=0; legajo_cero_max2:=0;
  cargar_vector_alumnos(vector_alumnos,alumnos);
  if (alumnos>0) then
    procesar_vector_alumnos(vector_alumnos,alumnos,ingresantes_parcial,ingresantes_total,recur
santes_parcial,recursantes_total,alumnos_autoeva,alumnos_corte,alumnos_cero,legajo_diez_max1,l
egajo_diez_max2,legajo_cero_max1,legajo_cero_max2);
    if (ingresantes_total>0) then
      textcolor(green); write('La cantidad de alumnos INGRESANTES en condiciones de rendir el
parcial y el porcentaje sobre el total de alumnos INGRESANTES son '); textcolor(red);
write(ingresantes_parcial); textcolor(green); write(' y '); textcolor(red);
write(ingresantes_parcial/ingresantes_total*100:0:2);    textcolor(green);    writeln('%,
respectivamente');
      textcolor(red); writeln('No hay alumnos INGRESANTES (I)');
    if (recursantes_total>0) then
      textcolor(green); write('La cantidad de alumnos RECURSANTES en condiciones de rendir el
parcial y el porcentaje sobre el total de alumnos RECURSANTES son '); textcolor(red);
write(recursantes_parcial); textcolor(green); write(' y '); textcolor(red);
```

```
write(recursantes_parcial/recursantes_total*100:0:2);    textcolor(green);    writeln('%,
respectivamente');
      textcolor(red); writeln('No hay alumnos RECURSANTES (R)');
    textcolor(green); write('La cantidad de alumnos que aprobaron todas las autoevaluaciones
es '); textcolor(red); writeln(alumnos autoeva);
    textcolor(green); write('La cantidad de alumnos cuya nota promedio fue mayor a ');
textcolor(yellow);    write(promedio_corte:0:2);    textcolor(green);    write(' puntos es ');
textcolor(red); writeln(alumnos_corte);
    textcolor(green); write('La cantidad de alumnos que obtuvieron cero puntos en, al menos,
una autoevaluación es '); textcolor(red); writeln(alumnos_cero);
textcolor(green); write('Los legajos de los dos alumnos con mayor cantidad de
autoevaluaciones con nota 10 (diez) son '); textcolor(red); write(legajo_diez_max1);
textcolor(green); write(' y '); textcolor(red); writeln(legajo_diez_max2);
    textcolor(green); write('Los legajos de los dos alumnos con mayor cantidad de
autoevaluaciones con nota 0 (cero) son '); textcolor(red); write(legajo_cero_max1);
textcolor(green); write(' y '); textcolor(red); write(legajo_cero_max2);
    textcolor(red); write('No hay alumnos INGRESANTES (I) o RECURSANTES (R)');
```

Ejercicio 3:

```
program TP4_E7c;
uses crt;
 tanque_r='R'; tanque_c='C';
 tanque_salida='Z';
 alto_corte=1.40;
 volumen_corte=800.0;
 tanques_total=5000;
 t_tanque=1..tanques_total;
 t_registro_tanque=record
   tanque: char;
   ancho: real;
   largo: real;
   radio: real;
   volumen: real;
 t_vector_tanques=array[t_tanque] of t_registro_tanque;
procedure leer tangue(var registro tangue: t registro tangue);
 vector_tanques: array[1..2] of char=(tanque_r, tanque_c);
 i: int8;
 i:=random(100);
 if (i=0) then
   registro tanque.tanque:=tanque salida
   registro_tanque.tanque:=vector_tanques[1+random(2)];
 if (registro_tanque.tanque<>tanque_salida) then
   if (registro_tanque.tanque=tanque_r) then
     registro_tanque.ancho:=1+random(391)/10;
     registro tanque.largo:=1+random(391)/10;
```

```
registro tanque.alto:=1+random(21)/10;
      registro_tanque.volumen:=registro_tanque.ancho*registro_tanque.largo*registro_tanque.alt
ο;
      registro_tanque.radio:=-1;
      registro_tanque.radio:=1+random(391)/10;
      registro tanque.alto:=1+random(21)/10;
      registro_tanque.volumen:=pi*registro_tanque.radio*registro_tanque.radio*registro_tanque.
alto;
      registro_tanque.ancho:=-1;
      registro_tanque.largo:=-1;
procedure cargar_vector_tanques(var vector_tanques: t_vector_tanques; var tanques: int16);
 registro_tanque: t_registro_tanque;
begin
  leer_tanque(registro_tanque);
  while (registro_tanque.tanque<>tanque_salida) do
   tanques:=tanques+1;
   vector_tanques[tanques]:=registro_tanque;
   leer_tanque(registro_tanque);
procedure calcular_a(volumen: real; var volumen_max1, volumen_max2: real);
  if (volumen>volumen_max1) then
    volumen_max2:=volumen_max1;
   volumen_max1:=volumen;
    if (volumen>volumen_max2) then
      volumen_max2:=volumen;
procedure calcular_bc(tanque: char; volumen: real; var volumen_total_c, volumen_total_r: real;
var tanques_c, tanques_r: int16);
  if (tanque=tanque_c) then
    volumen_total_c:=volumen_total_c+volumen;
    tanques_c:=tanques_c+1;
    volumen_total_r:=volumen_total_r+volumen;
    tanques_r:=tanques_r+1;
procedure calcular_d(alto: real; var tanques_corte_alto: int16);
  if (alto<alto_corte) then</pre>
    tanques_corte_alto:=tanques_corte_alto+1;
procedure calcular_e(volumen: real; var tanques_corte_volumen: int16);
  if (volumenvolumen corte) then
    tanques_corte_volumen:=tanques_corte_volumen+1;
procedure procesar_vector_tanques(vector_tanques: t_vector_tanques; tanques: int16; var
volumen_max1, volumen_max2, volumen_total_c, volumen_total_r: real; var tanques_c, tanques_r,
tanques_corte_alto, tanques_corte_volumen: int16);
```

```
i: t_tanque;
  for i:= 1 to tanques do
    calcular_a(vector_tanques[i].volumen,volumen_max1,volumen_max2);
    calcular_bc(vector_tanques[i].tanque,vector_tanques[i].volumen,volumen_total_c,volumen_tot
al_r,tanques_c,tanques_r);
    calcular_d(vector_tanques[i].alto,tanques_corte_alto);
    calcular_e(vector_tanques[i].volumen,tanques_corte_volumen);
  vector_tanques: t_vector_tanques;
  tanques, tanques_c, tanques_r, tanques_corte_alto, tanques_corte_volumen: int16;
  volumen_max1, volumen_max2, volumen_total_c, volumen_total_r: real;
  randomize;
  tanques:=0;
  volumen_max1:=0; volumen_max2:=0;
  tanques_c:=0; volumen_total_c:=0;
  tanques_r:=0; volumen_total_r:=0;
  tanques_corte_alto:=0;
  tanques_corte_volumen:=0;
  cargar_vector_tanques(vector_tanques, tanques);
  if (tanques>0) then
    procesar_vector_tanques(vector_tanques,tanques,volumen_max1,volumen_max2,volumen_total_c,v
olumen_total_r,tanques_c,tanques_r,tanques_corte_alto,tanques_corte_volumen);
    textcolor(green); write('El volumen de los mayores tanques vendidos es '); textcolor(red);
write(volumen_max1:0:2); textcolor(green); write(' y '); textcolor(red);
writeln(volumen max2:0:2);
    if (tanques_c>0) then
      textcolor(green); write('El volumen promedio de todos los tanques cilíndricos (C)
vendidos es '); textcolor(red); writeln(volumen_total_c/tanques_c:0:2);
     textcolor(red); writeln('No hay tanques cilindricos (C) vendidos');
    if (tanques_r>0) then
      textcolor(green); write('El volumen promedio de todos los tanques rectangulares (R)
vendidos es '); textcolor(red); writeln(volumen_total_r/tanques_r:0:2);
      textcolor(red); writeln('No hay tanques rectangulares (R) vendidos');
    textcolor(green); write('La cantidad de tanques cuyo alto es menor a ');
textcolor(yellow);    write(alto_corte:0:2);    textcolor(green);    write(' metros es ');
textcolor(red);    writeln(tanques_corte_alto);
    textcolor(green); write('La cantidad de tanques cuyo volumen es menor a ');
textcolor(yellow);    write(volumen_corte:0:2);    textcolor(green);    write(' metros cúbicos es ');
textcolor(red); write(tanques_corte_volumen);
    textcolor(red); write('No hay tanques cilíndricos (C) o rectangulares (R) vendidos');
```