Problem

Show that every graph with two or more nodes contains two nodes that have equal degrees.

Step-by-step solution

Step 1 of 1

Let us consider a graph G which has at least one edge and without having any loops or cycles in the graph. In graph G we would prove that there are at least two nodes with degree 1 i.e. with equal degree. This conclusion would be taken forward for a graph with 2 or more nodes.

In a graph G we must get a node, say V_1 at which only one edge is incident, i.e. degree(V1)=1. Let E_1 be this edge which is incident at V_1 . Since G has no cycles other end of E_1 is not V_1 . Let it be V_2 . If there exists no other edges which is incident at V_2 then degree(V2)=1.

Otherwise let E_2 be the edge which is incident at V_2 . Arguing similar way and proceeding in this way we get a node V_k having degree 1 and is equal to degree of V_1 . Thus we get that graph G has at least two nodes of degree 1. Thus two nodes have the same degrees in a graph with two or more nodes.

Comment