Code No: RT42022C

Set No. 1

IV B.Tech II Semester Regular/Supplementary Examinations, April - 2018 SPECIAL ELECTRICAL MACHINES

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B

		PART-A (22 Marks)	
1.	a)	Why the number of stator and rotor poles are not same in Switched Reluctance	
		motors? Explain.	[4]
	b)	Differentiate between Stepper motors and Switched Reluctance motors.	[4]
	c)	Compare between permanent magnets and electro magnets.	[4]
	d)	What is a BLDC motor? Mention their advantages.	[4]
	e)	Explain the principle of linear induction motor.	[3]
	f)	List the motors used in electric traction.	[3]
		PART-B (3x16 = 48 Marks)	
2.	a)	Discuss the merits of Switched Reluctance motors compared to induction	
		motors.	[8]
	b)	Explain the torque production mechanism in Switched Reluctance motors.	[8]
3.	a)	List and discuss different types and applications of stepper motors.	[8]
	b)	Define the terms with respect to a stepper motor: stator pole pitch, rotor pole	
		pitch and step angle.	[4]
	c)	For a three-phase 12/8 VR stepper motor, calculate stator pole pitch, rotor pole	
		pitch and full step angle.	[4]
4.		What are the advantages of PM DC machines? Draw and explain the	
		constructional details of a permanent magnet DC machine.	[16]
5.	a)	What is a commutator? What is its need in electrical machines? Compare	
		between mechanical and electronic commutators.	[8]
	b)	Prove that the PM BLDC machines have 15% more power density than the	
		PMSM.	[8]
6.		What are linear motors? Explain different types and applications of linear	
0.		motors.	[16]
		motors.	[10]
7.	a)	Discuss the main characteristics of traction drives.	[8]
	b)	Discuss the application of Linear Induction Motors for electric traction.	[8]

Code No: **RT42022C**

Set No. 2

IV B.Tech II Semester Regular/Supplementary Examinations, April - 2018 SPECIAL ELECTRICAL MACHINES

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

> Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B ****

		PART-A (22 Marks)	
1.	a)	Define the term Reluctance. Also derive the relation between reluctance and inductance.	[4]
	b)	Define step angle of a Stepper motor. For a three-phase 12/8 VR stepper motor, calculate step angle.	[4]
	c)	Discuss the advantages of permanent magnet DC motor over conventional DC motors.	[4]
	d)	Compare between BLDC motor and PMSM.	[4]
	e)	List the applications of linear induction motors.	[3]
	f)	Why DC series motor is better suitable for traction than DC shunt motor?	[3]
		$\underline{\mathbf{PART-B}} \ (3x16 = 48 \ Marks)$	
2.		What is the need for power converter in the operation of Switched Reluctance	
		motors? Explain any two power converters for a three-phase, 6/4 Switched Reluctance motor.	[16]
3.	a) b)	With a block diagram, explain the open loop control of a stepper motor. Explain the torque production in variable reluctance stepper motors.	[8] [8]
1.	a) b)	What is a PMDC motor? Explain its working. Derive the expression for torque of a PMDC motor.	[8] [8]
5.		What are the merits of brushless DC motors? With a neat block diagram, explain the closed loop control of a BLDC motor.	[16]
5.	a) b)	Compare between Linear synchronous motor and Linear Induction motor. Explain the working of linear induction motor.	[8] [8]
7.	a) b)	Compare between DC traction and AC traction. A train driven by separately excited dc motors has better co-efficient of adhesion than driven by separately excited dc motors has better co-efficient of adhesion than driven by separately find the statement.	[8]
		adhesion than driven by series motor. Justify the statement. Draw the simplified speed/time curve for the main line services and show all necessary periods	[8]

Code No: **RT42022C**

Set No. 3

IV B.Tech II Semester Regular/Supplementary Examinations, April - 2018 SPECIAL ELECTRICAL MACHINES

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B

PART-A (22 Marks)

		PARI-A (22 Marks)	
1.	a)	List the advantages and applications od Switched Reluctance Motors.	[4]
	b)	What are the differences between a Stepper motor and a Servo motor?	[4]
	c)	List the main limitations of permanent magnet machines.	[4]
	d)	Write the shape of back EMFs of a BLDC motor.	[3]
	e)	Define and explain Goodness factor.	[4]
	f)	What are the advantages of electric traction?	[3]
		$\underline{\mathbf{PART-B}} \ (3x16 = 48 \ Marks)$	
2.	a)	What is the need for rotor position sensor in the control of Switched Reluctance	
		motors? Explain the working of hall sensors.	[8]
	b)	Explain the control of Switched Reluctance motor using asymmetric power	
		converter.	[8]
3.	a)	What are Hybrid stepper motors? Explain their working.	[8]
	b)	Compare between open loop and closed loop control of stepper motors.	[8]
4.	a)	What is a PMDC motor? Draw and explain its equivalent circuit.	[8]
4.	b)	Discuss the advantages and applications of PM DC motors.	[8]
	U)	Discuss the advantages and applications of TWI De motors.	լսյ
5.	a)	Compare between BLDC motors and PMSMs.	[8]
	b)	Discuss the advantages and applications of BLDC motors.	[8]
6.		With a neat diagram, explain the construction of linear synchronous motor.	
·.		Also list their applications.	[16]
7.	a)	Discuss different supply systems used in electric traction.	[8]
	b)	Draw and explain a typical Speed –Time curve for train movement.	[8]
		± ** ±	

Code No: **RT42022C**

Set No. 4

IV B.Tech II Semester Regular/Supplementary Examinations, April - 2018 SPECIAL ELECTRICAL MACHINES

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B

		PART-A (22 Marks)	
1.	a)	Explain the operating principle of Switched Reluctance Motors.	[4]
	b)	List and discuss the applications of Stepper motors.	[4]
	c)	List the applications of PMDC motors.	[4]
	d)	What is the need for position sensor in BLDC motor?	[4]
	e)	List different types of Linear motors.	[3]
	f)	What are the motors used in electric traction?	[3]
		$\underline{\mathbf{PART-B}}\ (3x16 = 48\ Marks)$	
2.	a)	Draw and discuss the shape of phase inductance of a Switched Reluctance	
	• `	motor with respect to rotor position.	[8]
	b)	List and discuss various advantages and applications of Switched Reluctance	FO1
		motors.	[8]
3.	a)	With a neat diagram, explain the constructional details of a variable reluctance	
		stepper motor.	[8]
	b)	Explain torque production in stepper motor. What is the effect of hybrid	[8]
		stepping in the torque production?	
4.	a)	What are moving coil motors? Explain its working and list their applications.	[8]
	b)	What are electromagnets? Discuss the advantages and disadvantages of	L-3
		permanent magnets over electromagnets.	[8]
5.	a)	Draw and discuss the back emf waveforms of a three phase BLDC motor.	[6]
٠.	b)	With a neat schematic diagram, explain the sensorless control of a three phase	[0]
	,	BLDC motor.	[10]
_			
6.		Discuss the construction, principle of operation and various applications of liner	[17]
		induction motor.	[16]
7.		What are tractions drives? Explain the use of single sided linear induction motor	
		for traction drives.	[16]