Année scolaire 2018 - 2019

Classe: T^{leC}

Heure: 4 heures

DISCIPLINE: MATHÉMATIQUES

DEVOIR DU DEUXIEME TRIMESTRE

SITUATION D'ÉVALUATION

Contexte:

On crée une ville nouvelle d'architecture futuriste, dans la banlieue de Cotonou . Les réservoirs d'eau portable sont des cylindres «habillés» par des cônes métalliques de hauteur h et de base R.On en donne une représentation en perspective.

- \bullet le cylindre droit, qui contient l'eau, est à l'intérieur du cône à pour hauteur OO'=x
- Le cône de hauteur h=60m et le cylindre ont même plan de base et même plan de base et même axe
- Le point I est sur le cercle de rayon R = OI = 30m tel que le triangle 0IJ est un triangle rectangle isocèle en O et le cercle qui est le bord de la base supérieure du cylindre doit être inclus dans le bord du cône.

•
$$\vec{i} = \frac{1}{30} \overrightarrow{OI}$$
, $\vec{j} = \frac{1}{30} \overrightarrow{OJ}$ et $\vec{k} = \frac{1}{60} \overrightarrow{OS}$

- Un robinet R_1 est placé au point A tel que $\overrightarrow{OA} = \frac{1}{60}\overrightarrow{OI} + \frac{\sqrt{3}}{60}\overrightarrow{OJ} + \frac{1}{60}\overrightarrow{OS}$
- \bullet Soit A le point d'intersection du cylindre et du segment [SI]

Audrey, élève en classe de terminal scientifique désire déterminer la hauteur du cylindre pour laquelle le volume de ce cylindre est maximal

Problème 1

- 1. Détermine les coordonnées du points A
- 2. Démontre que $(0; \vec{i}, \vec{j}, \vec{k})$ est un repère orthonormé directe
- 3. Justifie que S est le barycentre des points pondérés (E,2),(F,-4),(G,2) et (H,-4)
- 4. Détermine l'ensemble (r) de points M du plan rapporté au repère $(S;\overrightarrow{OI},\overrightarrow{OJ})$ tels que $2ME^2-4MF^2+2MG^2-4MH^2=-5$ avec SG=30
- 5. Le robinet R_2 est placé au point B image du point A par l'application $s_1 \circ s_2$ ou s_1 est la réflexion de plan (SOI) et s_2 la réflexion du plan (OIJ)
- 6. Justifie que $s_1 \circ s_2$ est un demi-tour dont tu préciseras l'axe (Δ)
- 7. Détermine les coordonnées du point B
- 8. Calcul V'-V en fonction de x ou V' le volume du cône

Problème 2

 θ est un nombre réel appartenant à l'intervalle $[0,\pi]$ En réalité, les points M_1 et M_2 sont les points images des solutions respectives Z_1 et Z_2 de l'équation

$$E_{\theta}: z^2 - (2+2i)(1+e^{i\theta})z + e^{i\theta}(2+2i)^2 = 0$$

- 1. Démontre que le discriminant de l'équation E_{θ} est : $(2+2i)^2(1-e^{i\theta})^2$ puis résous dans \mathbb{C} , l'équation E_{θ} .
- 2. On note z_1 la solution de E_θ indépendante de θ
 - (a) Exprime z_2 en fonction de z_1
 - (b) En déduis que le triangle OM_1M_2 est isocèle en un point à préciser.

- (c) Pour quelle valeur de θ les points M_1 et M_2 sont symétriques par rapport à l'axe des imaginaires purs?
- 3. Pour tout entiers naturel n non nul, on considère les nombres :

$$a_n = 4 \times 10^n - 1$$

$$b_n = 2 \times 10^n - 1$$

$$c_n = 2 \times 10^n + 1$$

- 4. Démontre que , pour tout entier naturel non nul n, a_n et c_n sont divisibles par 3 et b_n n'est pas divisible par 3
- 5. L'entier b_3 est-il premier?
- 6. (a) Démontre que pour tout entier naturel non nul, $a_{2n}=c_nb_n$
 - (b) En deduire la décomposition de a_6 en produit de factuers premiers.
- 7. Démontre que , pour tout entier n non nul on a

$$PGCD(b_n, c_n) = PGCD(b_n, 2)$$

- 8. Soit l'équation $(E): b_3x + c_3y = 1$ d'inconnues les entiers relatifs x et y
 - (a) Justifie que l'équation (E) admet au moins une solution
 - (b) Résous l'équation (E)

<u>Problème 3</u>

Pour la mise en œuvre du plan, Audrey propose à son père père d'étudier les variations de f

Partie A

9. Soit u la fonction définie par:

$$u(x) = 2x^3 - 3x^2 + 2$$

10. Montre que l'équation u(x) = 0 admet une solution unique α dans \mathbb{R} et que

$$\frac{-4}{3} < \alpha < \frac{-2}{3}$$

11. Donner le signe de u(x)

Partie B

Soit la fonction f définie par:

$$\begin{cases} f(x) = \frac{x^3 - x - 1}{x - 1} & six \le 0\\ f(x) = \frac{1}{x + \sqrt{1 + x^2}} & six > 0 \end{cases}$$

- 12. Étudie la continuité de f en 0.
- 13. Étudie la dérivabilité de f en 0 puis donner une interprétation géométrique des résultats.
- 14. Précise l'intervalle de \mathbb{R} sur lequel f est dérivable.
- 15. (a) Démontre que $f'(x) = \frac{u(x)}{(x-1)^2}$ pour x < 0
 - (b) Déduis-en le signe de f'(x) pour $x \leq 0$
 - (c) Résous l'équation $x+\sqrt{1+x^2}=0$ et déduis-en le sens de variation de f sur $[0,+\infty[$
- 16. (a) Calcule les limites de f aux bornes de sont ensemble de définition.
 - (b) dresse le tableau de variation de f sur \mathbb{R}
 - (c) Etudie les branches infinies de (c)
- 17. Montre que $f(\alpha)=\frac{1}{2}(3\alpha+1-\frac{3}{\alpha-1})$ et que $\frac{2}{15}< f(\alpha)<\frac{2}{5}$ trace la courbe représentation (C) de f

Partie C

Soit g la restriction de f sur $]0; +\infty[$ vers $I = f(]0; +\infty[)$

- 18. Détermine I
- 19. (a) Démontre que g admet une application réciproque g^{-1}
 - (b) Etudie la continuité et la dérivabilité de g^{-1} dans le même sur son ensemble de définition
 - (c) Tracer la courbe représentative de g^{-1} dans le même repèreque (C)

4

(d) Expliciter g^{-1} , $\forall x \in I$