

What is claimed is:

1 1. A method for manufacturing an inkjet printhead
2 comprising:

3 providing a substrate and a porous material;
4 forming a heating layer on the substrate;
5 forming a conductive layer on the substrate, wherein
6 the conductive layer conducts a current to the
7 heating layer, and a heating area is defined by
8 the conductive layer and the heating layer;

9 forming a chamber for storing liquid above the
10 heating area, wherein the chamber includes a
11 first side and a second side, the first side
12 faces the heating area, the second side is
13 connected to the first side, and the chamber is
14 formed with an exit, from which the liquid is
15 dispensed, on the second side; and

16 placing the porous material on the chamber so that
17 the liquid flows into the chamber therethrough.

1 2. The method as claimed in claim 1, wherein the
2 chamber is formed by light-sensitive polymer via exposure
3 and developing.

1 3. The method as claimed in claim 2, wherein the
2 light-sensitive polymer is a dry film or a liquid
3 photoresist.

1 4. The method as claimed in claim 3, wherein the
2 porous material is adhered to the light-sensitive polymer

3 by hot press, and the light-sensitive polymer is used as
4 an adhesive layer for the porous material.

1 5. The method as claimed in claim 1, wherein the
2 chamber is formed by electroplating metal.

1 6. The method as claimed in claim 5, wherein the
2 metal is Ni.

1 7. The method as claimed in claim 5, further
2 comprising forming an adhesive layer on the chamber after
3 forming the chamber.

1 8. The method as claimed in claim 7, wherein the
2 adhesive layer comprises metal with low melting point.

1 9. The method as claimed in claim 7, wherein the
2 adhesive layer is formed by electroplating or screen
3 printing.

1 10. The method as claimed in claim 7, wherein the
2 adhesive layer is covered by the porous material via hot
3 press so that the porous material is adhered to the
4 adhesive layer.

1 11. An inkjet printhead comprising:
2 a substrate;
3 a heating layer disposed on the substrate to
4 dispense liquid;
5 a conductive layer disposed on the substrate to
6 conduct a current to the heating layer, wherein
7 a heating area is defined by the conductive
8 layer and the heating layer;

9 a chamber, disposed on the heating area, having a
10 first side and a second side, wherein the first
11 side faces the heating area, the second side is
12 connected to the first side, and the chamber is
13 formed with an exit, from which the liquid is
14 dispensed, on the second side; and
15 a porous material disposed on the substrate, wherein
16 the liquid flows into the chamber through the
17 porous material.

1 12. The inkjet printhead as claimed in claim 11,
2 wherein the chamber is light-sensitive polymer.

1 13. The inkjet printhead as claimed in claim 11,
2 wherein the chamber is metal.

1 14. The inkjet printhead as claimed in claim 13,
2 further comprising an adhesive layer disposed between the
3 chamber and the porous material.

1 15. The inkjet printhead as claimed in claim 11,
2 further comprising a nozzle plate disposed on the second
3 side of the chamber.

1 16. A method for manufacturing an inkjet printhead
2 comprising:

3 providing a substrate, a porous material, and a
4 nozzle plate;
5 forming a heating layer on the substrate;
6 forming a conductive layer on the substrate, wherein
7 the conductive layer conducts a current to the

8 heating layer, and a heating area is defined by
9 the conductive layer and the heating layer;
10 forming an adhesive layer on the conductive layer;
11 placing the porous material on the adhesive layer to
12 form a chamber for storing liquid, wherein the
13 liquid flows into the chamber through the
14 porous material, the chamber includes a first
15 side and a second side, the first side faces
16 the heating area so that the liquid in the
17 chamber is located above the heating area, and
18 the second side is connected to the first side;
19 and
20 adhering the nozzle plate to the second side of the
21 chamber, wherein the nozzle plate includes at
22 least one orifice.

1 17. The method as claimed in claim 16, wherein the
2 adhesive layer comprises light-sensitive polymer.

1 18. The method as claimed in claim 16, wherein the
2 porous material includes a groove by cutting to form the
3 chamber before placing on the adhesive layer.

1 19. An inkjet printhead comprising:
2 a substrate;
3 a heating layer disposed on the substrate to
4 dispense liquid;
5 a conductive layer disposed to conduct a current to
6 the heating layer, wherein a heating area is
7 defined by the conductive layer and the heating
8 layer;

9 an adhesive layer disposed on the conductive layer;
10 a porous material, disposed on the substrate,
11 including a chamber, wherein the liquid flows
12 to the chamber through the porous material, the
13 chamber has a first side and a second side, the
14 first side faces the heating area so that the
15 liquid in the chamber is located above the
16 heating area, and the second side is connected
17 to the first side; and
18 a nozzle plate, disposed on the second side of the
19 chamber, including at least one orifice.