Trabajo práctico 1: Optimización y Redes Neuronales

Juan José Cordero Gómez Escuela de computación Instituto Tecnológico de Costa Rica Luis Diego Hidalgo Blanco Escuela de computación Instituto Tecnológico de Costa Rica Ricardo Sánchez Alpizar Escuela de computación Instituto Tecnológico de Costa Rica

2. (30 PUNTOS) PERCEPTRÓN MULTI-CAPA PARA DETECCIÓN DE GLAUCOMA EN IMÁGENES DE FONDO DE OJO

1.a) Ejecute el entrenamiento 10 veces por 15 épocas por corrida, y reporte la tasa de aciertos tasa de aciertos, falsos positivos y falsos negativos promedio y su desviación estándar para esas 10 corridas.

Para empezar, se presenta una tabla resumen de la ejecución de 10 corridas utilizando el perceptrón multi-capa con distintos valores para el LR:

 $TABLE \ I \\ RESUMEN DE RESULTADOS PARA \ MLP CON DIFERENTES \ LR.$

Iteración	LR	# Aciertos	# Fallos	Falsos positivos	Falsos negativos	Precisión (%)
1	0.1	105	105	105	0	50.0
2	0.1	105	105	105	0	50.0
3	0.01	185	25	22	3	88.0952
4	0.01	167	43	0	43	79.5238
5	0.03	126	84	84	0	60.0
6	0.03	117	93	93	0	55.7143
7	0.001	129	81	79	2	61.4286
8	0.001	113	97	97	0	53.8095
9	0.003	155	55	52	3	73.8095
10	0.003	179	31	13	18	85.2381

Seguidamente, se muestra una tabla con la ejecución de 10 corridas empleando únicamente el factor de LR = 0.01:

TABLE II RESUMEN DE RESULTADOS PARA MLP CON UN LR CONSTANTE DURANTE $10\ \mathrm{PRUEBAS}.$

Iteración	LR	# Aciertos	# Fallos	Falsos positivos	Falsos negativos	Precisión (%)
1	0.01	184	26	20	6	87.619
2	0.01	184	26	20	6	87.619
3	0.01	177	33	28	5	84.2857
4	0.01	188	22	6	16	89.5238
5	0.01	156	54	53	1	74.2857
7	0.01	164	46	45	1	78.0952
6	0.01	163	47	45	2	77.619
8	0.01	133	77	77	0	63.3333
9	0.01	175	35	0	35	83.3333
10	0.01	188	22	3	19	89.5238
Desviación	estánd	ar: 17.4789.				

3. (40 PUNTOS) REDES CONVOLUCIONALES PARA DETECCIÓN DE GLAUCOMA EN IMÁGENES DE FONDO DE OJO

1. (20 puntos) Implemente el filtro de "Unsharp masking" para la mejora de las imágenes, según lo especificado en el material del curso.

a) Compruebe y comente su uso para las imágenes de fondo de ojo, mostrando los resultados. Use al menos dos valores distintos de la ganancia λ .

: El filtro de unsharp masking, realza los bordes de las imágenes y ayuda en los modelos de clasificación de imágenes. Para aplicar este filtro, se emplea la siguiente formula:

$$G = U + (U * N) \times \lambda$$

Donde:

U =Imagen original.

 $\lambda =$ Coeficiente de ganancia.

N =Núcleo Gaussiano de desenfoque (blur).

(U * N) implica la convolución entre la imagen original y el filtro Gaussiano de desenfoque (blur).

El detalle del código empleado se encuentra en Jupyter notebook llamado: TP1 - UnsharpMask-AlexNet.ipynb.

Una vez implementado el código esto es un ejemplo de la salida obtenida al emplear diferentes coeficientes de ganancia:

Fig. 1. Ejemplo de uso de filtro de Unsharp masking.

Como se puede observar diferentes valores del coeficiente de ganancia λ resultan en diferentes saturaciones, es necesario realizar el ajuste según el objetivo del modelo y acorde a las imágenes del data set.

Con $\lambda=10$ parece ser un balance adecuado donde es evidente el realse de los bordes con respecto a la imagen original.

El $\lambda=5$ parece tener un efecto poco perceptible que podría no aportar mucho al procesamiento del modelo.

Por otro lado el $\lambda=40$ luce bastante saturado lo cual podría ser perjudicial para el modelo en términos del "ruido" que se observa en la figura 1.

2. (20 puntos) Implemente manualmente (especificando las capas) en pytorch la arquitectura de AlexNet. Entrene la red usando el conjunto de datos de imágenes de fondo de ojo. Calibre los hiper-parámetros necesarios para obtener los mejores resultados posibles y repórtelos. Ejecute el entrenamiento 10 veces por 15 épocas por corrida, y reporte la tasa de aciertos, falsos positivos y falsos negativos promedio y su desviación estándar para esas 10 corridas.

b) Compare los resultados respecto a lo obtenido con el perceptrón multi-capa y coméntelos.

- : Se procede a realizar varias pruebas con el modelo con el fin de encontrar un learning rate (LR) que más lo beneficia y produce resultados más precisos, para lo cual se prueban dos veces los siguientes LR:
 - 0.0
 - 0.01
 - 0.03
 - 0.001
 - 0.003

Los resultados de ambas pruebas son promediados para determinar el LR más efectivo para el modelo.

El detalle de cada entrenamiento y prueba del modelo se encuentra en el Jupyter notebook llamado: TP1 - UnsharpMask-AlexNet.ipynb.

A continuación se muestra el resumen de los resultados, todas las pruebas se realizaron con 210 imágenes, tabla: III:

TABLE III
RESUMEN DE RESULTADOS PARA ALEXNET CON DIFERENTES LR.

Iteración	LR	# Aciertos	# Fallos	Falsos positivos	Falsos negativos	Precisión (%)
1	0.1	178	32	29	3	84.7619
2	0.1	169	41	11	30	80.4762
3	0.01	204	6	5	1	97.1429
4	0.01	196	14	13	1	93.3333
5	0.03	192	18	11	7	91.4286
6	0.03	187	23	13	10	89.0476
7	0.001	197	13	10	3	93.8095
8	0.001	200	10	6	4	95.2381
9	0.003	199	11	8	3	94.7619
10	0.003	201	9	5	4	95.7143
Desviación	estánda	r: 10.6212.				

De la tabla anterior se puede identificar el LR de 0.01 como uno de los que mejores resultados produce, por lo que se procede a hacer 10 repeticiones con dicho LR y a calcular la desviación estándar del mismo:

TABLE IV
RESUMEN DE RESULTADOS PARA ALEXNET CON UN LR CONSTANTE
DURANTE 10 PRUEBAS.

Iteración	LR	# Aciertos	# Fallos	Falsos positivos	Falsos negativos	Precisión (%)				
1	0.01	201	9	9	0	95.7143				
2	0.01	200	10	8	2	95.2381				
3	0.01	200	10	8	2	95.2381				
4	0.01	199	11	6	5	94.7619				
5	0.01	199	11	10	1	94.7619				
6	0.01	1898	21	20	1	90				
7	0.01	194	16	3	13	92.381				
8	0.01	202	8	5	3	96.1905				
9	0.01	197	13	3	10	93.8095				
10	0.01	202	8	8	0	96.1905				
Desviación	Desviación estándar: 3.8483.									

Como es de esperar los resultados empleando el mismo LR son bastante consistentes, aún cuando han sido entrenados tomando diferentes muestras de imágenes y por cada corrida se realiza un reinicio de kernel con el de que las corridas sean lo más "limpias" posibles.

Finalmente y con el fin de facilitar la interpretación de resultados se unifican los resultados de cada pila de pruebas por cada modelo.

A continuación los resultados empleando diferentes LR en cada modelo:

TABLE V
COMPARACIÓN DE MLP Y ALEXNET CON LR DIFERENTES.

Iter.	LR	MLP	AlexNet	MLP	AlexNet	MLP	AlexNet	MLP	AlexNet	MLP	AlexNet	Diferencia (%)	Dif. Prom. (%)
itei.	LK	# Acie	rtos	# Fallo	6	Falsos	pos.	Falsos	neg.	Precisión			Dil. 110iii. (%)
1	0.1	105	201	105	9	105	9	0	0	50	95.7143	45.7143	45,4762
2	0.1	105	200	105	10	105	8	0	2	50	95.2381	45.2381	4534702
3	0.01	185	200	25	10	22	8	3	2	88.0952	95.2381	7.1429	11.1905
4	0.01	167	199	43	11	0	6	43	5	79.5238	94.7619	15.2381	11.1503
5	0.03	126	199	84	11	84	10	0	1	60	94.7619	34.7619	34,5238
6	0.03	117	1898	93	21	93	20	0	1	55.7143	90	34.2857	34.3236
7	0.001	129	194	81	16	79	3	2	13	61.4286	92.381	30.9524	36,6667
8	0.001	113	202	97	8	97	5	0	3	53.8095	96.1905	42.381	30.0007
9	0.003	155	197	55	13	52	3	3	10	73.8095	93.8095	20	15,4762
10	0.003	179	202	31	8	13	8	18	0	85.2381	96.1905	10.9524	13,4702

En general como se puede observar en la tabla anterior los resultados entre cada modelo con el mismo LR varian sustancialmente, en en algunos casos con una diferencia promedio de hasta un 45% (diferencia promediada entre las dos iteraciones empleando el mismo LR). A excepción del caso del LR 0.001, donde el MLP muestra el mejor comportamiento y aquí la diferencia promedio es de un 11%.

Dado que el las iteraciones con el LR de un 0.001 presentan la menor diferencia promedio entre modelos, se procede a realizar 10 corridas de ambos modelos con el mismo LR para efectos de comparación y cálculo de la desviación estándar en términos más semejantes:

TABLE VI COMPARACIÓN DE MLP Y ALEXNET CON LR CONSTANTE.

Iteración	LR	MLP	AlexNet	MLP	AlexNet	MLP	AlexNet	MLP	AlexNet	MLP	AlexNet
Iteración	LK	# Aciertos		# Fallos		Falsos positivos		Falsos negativos		Precisión (%)	
1	0.01	184	201	26	9	20	9	6	0	87.619	95.7143
2	0.01	184	200	26	10	20	8	6	2	87.619	95.2381
3	0.01	177	200	33	10	28	8	5	2	84.2857	95.2381
4	0.01	188	199	22	11	6	6	16	5	89.5238	94.7619
5	0.01	156	199	54	11	53	10	1	1	74.2857	94.7619
6	0.01	164	189	46	21	45	20	1	1	78.0952	90
7	0.01	163	194	47	16	45	3	2	13	77.619	92.381
8	0.01	133	202	77	8	77	5	0	3	63.3333	96.1905
9	0.01	175	197	35	13	0	3	35	10	83.3333	93.8095
10	0.01	188	202	22	8	3	8	19	0	89.5238	96.1905
Desviación estándar:		17.4789	3.8483								

De los resultados anteriores se puede concluir que aún usando el LR más efectivo en el modelo del MLP, AlexNet sigue siendo un modelo más superior para resolver el problema de detección de glaucoma en las imágenes de fondo de ojo.