SAMB for "CH4"

Generated on 2023-06-01 17:34 by MultiPie 1.1.2

• Generation condition

model type: tight_bindingtime-reversal type: electric

- irrep: [A1, A2]

- spinful

• Kets: dimension = 16

Table 1: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket	No.	ket	No.	ket
 1	(s,\uparrow) @C ₁	2	(s,\downarrow) @C ₁	3	(p_x,\uparrow) @C ₁	4	(p_x,\downarrow) @C ₁	5	(p_y,\uparrow) @C ₁
6	(p_y,\downarrow) @C ₁	7	(p_z,\uparrow) @C ₁	8	(p_z,\downarrow) @C ₁	9	(s,\uparrow) @H ₁	10	(s,\downarrow) @H ₁
11	(s,\uparrow) @H ₂	12	(s,\downarrow) @H ₂	13	(s,\uparrow) @H ₃	14	(s,\downarrow) @H ₃	15	(s,\uparrow) @H ₄
 16	(s,\downarrow) @H ₄								

• Sites in (primitive) unit cell:

Table 2: Site-clusters.

site	position	mapping
S_1 C_1	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]

Table 2

	site	position	mapping
S_2	H_1	$\begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$	[1,5,9,16,17,18]
	H_2	$\left(-\frac{1}{3} -\frac{1}{3} \frac{1}{3}\right)$	[2,6,11,13,21,23]
	H_3	$\begin{pmatrix} \frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \end{pmatrix}$	[3,7,12,15,19,24]
	${\rm H}_4$	$\left(-\frac{1}{3} \frac{1}{3} -\frac{1}{3}\right)$	[4,8,10,14,20,22]

• Bonds in (primitive) unit cell:

Table 3: Bond-clusters.

	bond	tail	head	n	#	b@c	mapping
B_1	b_1	C_1	H_1	1	1	$\begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} @ \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix}$	[1,5,9,16,17,18]
	b_2	C_1	H_2	1	1	$\left(-\frac{1}{3} -\frac{1}{3} \frac{1}{3} \right) @ \left(-\frac{1}{6} -\frac{1}{6} \frac{1}{6} \right)$	[2,6,11,13,21,23]
	b_3	C_1	H_3	1	1	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	[3,7,12,15,19,24]
	b_4	C_1	${ m H}_4$	1	1	$\left(-\frac{1}{3} \frac{1}{3} -\frac{1}{3}\right)$ @ $\left(-\frac{1}{6} \frac{1}{6} -\frac{1}{6}\right)$	[4,8,10,14,20,22]

• SAMB:

$$\begin{split} & \boxed{ \text{No. 1} } \quad \hat{\mathbb{Q}}_0^{(A_1)} \ [M_1, S_1] \\ & \hat{\mathbb{Z}}_1 = \mathbb{X}_1[\mathbb{Q}_0^{(a, A_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s, A_1)}] \end{split}$$

$$\begin{split} & \boxed{ \text{No. 2} } \quad \hat{\mathbb{Q}}_0^{(A_1)} \ [\text{M}_3, \text{S}_1] \\ & \hat{\mathbb{Z}}_2 = \mathbb{X}_6[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \end{split}$$

No. 4
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_4 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_2[\mathbb{Q}_0^{(s,A_1)}]$$

No. 5
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_5 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_3[\mathbb{Q}_0^{(u,A_1)}]$$

No. 6
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_6 = \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{1,2}^{(a,T_2)}] \otimes \mathbb{U}_6[\mathbb{Q}_{1,2}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_8[\mathbb{Q}_{1,0}^{(a,T_2)}] \otimes \mathbb{U}_4[\mathbb{Q}_{1,0}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_9[\mathbb{Q}_{1,1}^{(a,T_2)}] \otimes \mathbb{U}_5[\mathbb{Q}_{1,1}^{(u,T_2)}]}{3}$$

No. 7
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,0)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_7 = \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{1,0}^{(a,T_2)}(1,0)] \otimes \mathbb{U}_4[\mathbb{Q}_{1,0}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{1,1}^{(a,T_2)}(1,0)] \otimes \mathbb{U}_5[\mathbb{Q}_{1,1}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{1,2}^{(a,T_2)}(1,0)] \otimes \mathbb{U}_6[\mathbb{Q}_{1,2}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{1,2}^{(a,T_2)}(1,0)] \otimes \mathbb{U}_6[\mathbb{Q}_{1,2}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{1,2}^{(a,T_2)}(1,0)] \otimes \mathbb{U}_6[\mathbb{Q}_{1,2}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{1,2}^{(a,T_2)}(1,0)] \otimes \mathbb{U}_6[\mathbb{Q}_{1,2}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{1,2}^{(u,T_2)}(1,0)] \otimes \mathbb{Q}_6[\mathbb{Q}_{1,2}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{1,2}^{(u,T_2)}(1,0)] \otimes \mathbb{Q}_6[\mathbb{Q}_1,\mathbb{Q}_1]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_1,\mathbb{Q}_1,\mathbb{Q}_1]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_1,\mathbb{Q}_1]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_1,\mathbb{Q}_1]}{3} + \frac$$

No. 8
$$\hat{\mathbb{G}}_0^{(A_2)}(1,1)$$
 [M₂,S₁]

$$\hat{\mathbb{Z}}_8 = \mathbb{X}_5[\mathbb{Q}_0^{(a,A_2)}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 9
$$\hat{\mathbb{G}}_0^{(A_2)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_9 = \frac{\sqrt{3}\mathbb{X}_2[\mathbb{M}_{1,0}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_7[\mathbb{T}_{1,0}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_3[\mathbb{M}_{1,1}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_8[\mathbb{T}_{1,1}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{1,2}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{1,2}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{1,2}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{1,2}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(u,T_2)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{1,2}^{(u,T_2)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(u,T_2)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{1,2}^{(u,T_2)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(u,T_2)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{1,2}^{(u,T_2)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(u,T_2)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_{1,2}^{(u,T_2)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(u,T_2)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^$$

No. 10
$$\hat{\mathbb{G}}_0^{(A_2)}(1,1)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{10} = \mathbb{X}_{14}[\mathbb{Q}_0^{(a,A_2)}(1,1)] \otimes \mathbb{U}_3[\mathbb{Q}_0^{(u,A_1)}]$$

No. 11
$$\hat{\mathbb{G}}_{3}^{(A_2)}(1,-1)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{11} = \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{G}_{2,0}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_4[\mathbb{Q}_{1,0}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{16}[\mathbb{G}_{2,1}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_5[\mathbb{Q}_{1,1}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{G}_{2,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_6[\mathbb{Q}_{1,2}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{G}_{2,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_6[\mathbb{Q}_{1,2}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{G}_{2,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_6[\mathbb{Q}_{1,2}^{(u,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{G}_{2,2}^{(u,T_1)}(1,-1)] \otimes \mathbb{U}_6[\mathbb{Q}_{1,2}^{(u,T_1)}]}{3} + \frac{\sqrt{$$

Table 4: Atomic SAMB group.

group	bra	ket
M_1	$(s,\uparrow),(s,\downarrow)$	$(s,\uparrow),(s,\downarrow)$
M_2	$(s,\uparrow),(s,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$
M_3	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$
M_4	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$	$(s,\uparrow),(s,\downarrow)$

Table 5: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_1)}$	M_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0\\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$ $\begin{pmatrix} 0 & \frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2} & 0 \end{pmatrix}$
\mathbb{X}_2	$\mathbb{M}_{1,0}^{(a,T_1)}(1,-1)$	M_1	$\begin{pmatrix} 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 0 \end{pmatrix}$
\mathbb{X}_3	$\mathbb{M}_{1,1}^{(a,T_1)}(1,-1)$	M_1	$\left(egin{array}{cc} 0 & -rac{\sqrt{2}i}{2} \ rac{\sqrt{2}i}{2} & 0 \end{array} ight)$
\mathbb{X}_4	$\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)$	M_1	$ \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 \\ 0 & -\frac{\sqrt{2}}{2} \end{pmatrix} $ $ \begin{pmatrix} 0 & \sqrt{6}i & 0 & \sqrt{6}i & \sqrt{6}i & 0 \\ 0 & \sqrt{6}i & \sqrt{6}i & 6 & 0 \end{pmatrix} $
\mathbb{X}_5	$\mathbb{G}_0^{(a,A_2)}(1,1)$	M_2	$\left(\begin{array}{cccc} \sqrt{\delta i} & 0 & -\frac{\sqrt{\delta}}{6} & 0 & 0 & -\frac{\sqrt{\delta}i}{6} \end{array}\right)$
\mathbb{X}_6	$\mathbb{Q}_0^{(a,A_1)}$	$ m M_3$	$\begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \end{pmatrix}$

Table 5

symbol	type	group	form
\mathbb{X}_7	$\mathbb{Q}_0^{(a,A_1)}(1,1)$	M_3	$ \begin{pmatrix} 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}}{6} & 0 \\ \frac{\sqrt{3}i}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & -\frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_8	$\mathbb{Q}_{1,0}^{(a,T_2)}$	$ m M_4$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
\mathbb{X}_9	$\mathbb{Q}_{1,1}^{(a,T_2)}$	$ m M_4$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$
\mathbb{X}_{10}	$\mathbb{Q}_{1,2}^{(a,T_2)}$	M ₄	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{X}_{11}	$\mathbb{Q}_{1,0}^{(a,T_2)}(1,0)$	$ m M_4$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ \frac{i}{2} & 0 \\ 0 & -\frac{i}{2} \\ 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}$

Table 5

Table 5			
symbol	type	group	form
\mathbb{X}_{12}	$\mathbb{Q}_{1,1}^{(a,T_2)}(1,0)$	$ m M_4$	$\begin{pmatrix} -\frac{i}{2} & 0 \\ 0 & \frac{i}{2} \\ 0 & 0 \\ 0 & 0 \\ 0 & \frac{i}{2} \\ \frac{i}{2} & 0 \end{pmatrix}$
\mathbb{X}_{13}	$\mathbb{Q}_{1,2}^{(a,T_2)}(1,0)$	$ m M_4$	$\begin{pmatrix} 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 \\ 0 & -\frac{i}{2} \\ -\frac{i}{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$
\mathbb{X}_{14}	$\mathbb{G}_0^{(a,A_2)}(1,1)$	$ m M_4$	$\begin{pmatrix} 0 & -\frac{\sqrt{6}i}{6} \\ -\frac{\sqrt{6}i}{6} & 0 \\ 0 & -\frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{6} & 0 \\ -\frac{\sqrt{6}i}{6} & 0 \\ 0 & \frac{\sqrt{6}i}{6} \end{pmatrix}$
\mathbb{X}_{15}	$\mathbb{G}_{2,0}^{(a,T_1)}(1,-1)$	$ m M_4$	$\left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & \ -rac{i}{2} & 0 \ 0 & rac{i}{2} \ 0 & -rac{1}{2} \ rac{1}{2} & 0 \end{array} ight)$
X ₁₆	$\mathbb{G}_{2,1}^{(a,T_1)}(1,-1)$	$ m M_4$	$egin{pmatrix} \left(-rac{i}{2} & 0 \ 0 & rac{i}{2} \ 0 & 0 \ 0 & 0 \ 0 & -rac{i}{2} \ -rac{i}{2} & 0 \ \end{pmatrix}$

Table 5

symbol	type	group	form
\mathbb{X}_{17}	$\mathbb{G}_{2,2}^{(a,T_1)}(1,-1)$	$ m M_4$	$\begin{pmatrix} 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 \\ 0 & -\frac{i}{2} \\ -\frac{i}{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$

Table 6: Uniform SAMB.

symbol	type	cluster	form
\mathbb{U}_1	$\mathbb{Q}_0^{(s,A_1)}$	S_1	$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
\mathbb{U}_2	$\mathbb{Q}_0^{(s,A_1)}$	S_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$
\mathbb{U}_3	$\mathbb{Q}_0^{(u,A_1)}$	B ₁	$\begin{pmatrix} 0 & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{U}_4	$\mathbb{Q}_{1,0}^{(u,T_2)}$	B ₁	$\begin{pmatrix} \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \end{pmatrix}$

Table 6

=====	ī	ī						
symbol	type	cluster	form					
\mathbb{U}_5	$\mathbb{Q}_{1,1}^{(u,T_2)}$	В1	$ \begin{pmatrix} 0 & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \end{pmatrix} $					
\mathbb{U}_6	$\mathbb{Q}_{1,2}^{(u,T_2)}$	B_1	$ \begin{bmatrix} \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ \end{bmatrix} $					
\mathbb{U}_7	$\mathbb{T}_{1,0}^{(u,T_2)}$	B ₁	$ \begin{pmatrix} 0 & \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} \\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 \end{pmatrix} $					
\mathbb{U}_8	$\mathbb{T}_{1,1}^{(u,T_2)}$	B_1	$\begin{bmatrix} -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0\\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0\\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0\\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 \end{bmatrix}$					
\mathbb{U}_9	$\mathbb{T}_{1,2}^{(u,T_2)}$	В1	$ \begin{pmatrix} 0 & \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} \\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 \end{pmatrix} $					

Table 7: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_1)}$	0	A_1	_	_	1
2	$\mathbb{Q}_{1,0}^{(T_2)}$	1	T_2	_	0	x
3	$\mathbb{Q}_{1,1}^{(T_2)}$	1	T_2	_	1	y
4	$\mathbb{Q}_{1,2}^{(T_2)}$	1	T_2	_	2	z

Table 8: Axial harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{G}_0^{(A_2)}$	0	A_2	_	_	1
2	$\mathbb{G}_{1,0}^{(T_1)}$	1	T_1	_	0	X
3	$\mathbb{G}_{1,1}^{(T_1)}$	1	T_1	_	1	Y
4	$\mathbb{G}_{1,2}^{(T_1)}$	1	T_1	_	2	Z
5	$\mathbb{G}_{2,0}^{(T_1)}$	2	T_1	_	0	$\sqrt{3}YZ$
6	$\mathbb{G}_{2,1}^{(T_1)}$	2	T_1	_	1	$\sqrt{3}XZ$
7	$\mathbb{G}_{2,2}^{(T_1)}$	2	T_1	_	2	$\sqrt{3}XY$

 \bullet Group info.: Generator = 2001, 2010, $3^+_{\ 111},\ m_{1-10}$

Table 9: Conjugacy class.

rep. SO	symmetry operations
1	1
2001	$2_{001}, 2_{100}, 2_{010}$
3 ⁺ ₁₁₁	$\begin{vmatrix} 3_{111}^+, & 3_{1-1-1}^+, & 3_{-11-1}^+, & 3_{-1-11}^+, & 3_{111}^-, & 3_{1-1-1}^-, & 3_{-11-1}^-, & 3_{-1-11}^- \end{vmatrix}$

Table 9

rep. SO	symmetry operations
m_{110}	$m_{110}, m_{101}, m_{011}, m_{1-10}, m_{-101}, m_{01-1}$
-4^{+}_{001}	$\begin{bmatrix} -4^{+}_{001}, & -4^{+}_{100}, & -4^{+}_{010}, & -4^{-}_{001}, & -4^{-}_{100}, & -4^{-}_{010} \end{bmatrix}$

Table 10: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	1	2	2_{001}	3	2_{100}	4	2_{010}	5	3 ⁺ ₁₁₁
6	3^{+}_{1-1-1}	7	3^{+}_{-11-1}	8	3^{+}_{-1-11}	9	3^{-}_{111}	10	3^{-}_{1-1-1}
11	3^{-}_{-11-1}	12	3^{-}_{-1-11}	13	m_{110}	14	m_{101}	15	m_{011}
16	m_{1-10}	17	m_{-101}	18	m_{01-1}	19	-4^{+}_{001}	20	-4^{+}_{100}
 21	-4^{+}_{010}	22	-4^{-}_{001}	23	-4^{-}_{100}	24	-4^{-}_{010}		

Table 11: Character table.

	1	2_{001}	3^{+}_{111}	m_{110}	-4^{+}_{001}
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	2	-1	0	0
T_1	3	-1	0	-1	1
T_2	3	-1	0	1	-1

Table 12: Parity conversion.

\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
$A_1 (A_2)$	$A_2(A_1)$	E(E)	T_1 (T_2)	$T_2(T_1)$

Table 13: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_1	A_2	E	T_1	T_2
A_1	A_1	A_2	E	T_1	T_2
A_2		A_1	E	T_2	T_1
E			$A_1 + E$	$T_1 + T_2$	$T_1 + T_2$
T_1				$A_1 + E + T_2$	$A_2 + E + T_1 + T_2$
T_2					$A_1 + E + T_2$

Table 14: Anti-symmetric product, $[\Gamma \otimes \Gamma]_-$.

A_1	A_2	E	T_1	T_2
_	_	A_2	T_1	T_1

Table 15: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} 2 & 1 & 0 \end{pmatrix}$	2	$\begin{pmatrix} -2 & -1 & 0 \end{pmatrix}$	3	$\begin{pmatrix} 2 & -1 & 0 \end{pmatrix}$	4	$\begin{pmatrix} -2 & 1 & 0 \end{pmatrix}$
5	$\begin{pmatrix} 0 & 2 & 1 \end{pmatrix}$	6	$\begin{pmatrix} 0 & -2 & 1 \end{pmatrix}$	7	$\begin{pmatrix} 0 & -2 & -1 \end{pmatrix}$	8	$\begin{pmatrix} 0 & 2 & -1 \end{pmatrix}$
9	$\begin{pmatrix} 1 & 0 & 2 \end{pmatrix}$	10	$\begin{pmatrix} -1 & 0 & -2 \end{pmatrix}$	11	$\begin{pmatrix} -1 & 0 & 2 \end{pmatrix}$	12	$\begin{pmatrix} 1 & 0 & -2 \end{pmatrix}$
13	$\begin{pmatrix} -1 & -2 & 0 \end{pmatrix}$	14	$\begin{pmatrix} 0 & 1 & -2 \end{pmatrix}$	15	$\begin{pmatrix} 2 & 0 & -1 \end{pmatrix}$	16	$\begin{pmatrix} 1 & 2 & 0 \end{pmatrix}$
17	$\begin{pmatrix} 0 & 1 & 2 \end{pmatrix}$	18	$\begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$	19	$\begin{pmatrix} 1 & -2 & 0 \end{pmatrix}$	20	$\begin{pmatrix} -2 & 0 & -1 \end{pmatrix}$
21	$\begin{pmatrix} 0 & -1 & 2 \end{pmatrix}$	22	$\begin{pmatrix} -1 & 2 & 0 \end{pmatrix}$	23	$\begin{pmatrix} -2 & 0 & 1 \end{pmatrix}$	24	$\begin{pmatrix} 0 & -1 & -2 \end{pmatrix}$

Table 16: Virtual-cluster basis.

symbol	1	2	3	4	5	6	7	8	9	10
$\overline{\mathbb{Q}_0^{(A_1)}}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
-0	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	12	12	12	12	12	12
$\mathbb{Q}_{1,0}^{(T_2)}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	0	0	0	0	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$
-,-	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	0	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	0	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$
	0	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	0						
$\mathbb{Q}_{1,1}^{(T_2)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	0	0
	0	0	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	0	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	0	$-\frac{\sqrt{10}}{10}$	0
	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	0	$-\frac{\sqrt{10}}{20}$						
$\mathbb{Q}_{1,2}^{(T_2)}$	0	0	0	0	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$
	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	0	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	0	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	0	$-\frac{\sqrt{10}}{20}$
	$\frac{\sqrt{10}}{10}$	0	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$						
$\mathbb{Q}_{2,0}^{(E)}$	$-\frac{5\sqrt{39}}{156}$	$-\frac{5\sqrt{39}}{156}$	$-\frac{5\sqrt{39}}{156}$	$-\frac{5\sqrt{39}}{156}$	$-\frac{\sqrt{39}}{78}$	$-\frac{\sqrt{39}}{78}$	$-\frac{\sqrt{39}}{78}$	$-\frac{\sqrt{39}}{78}$	$\frac{7\sqrt{39}}{156}$	$\frac{7\sqrt{39}}{156}$
	$\frac{7\sqrt{39}}{156}$	$\frac{7\sqrt{39}}{156}$	$-\frac{5\sqrt{39}}{156}$	$\frac{7\sqrt{39}}{156}$	$-\frac{\sqrt{39}}{78}$	$-\frac{5\sqrt{39}}{156}$	$\frac{7\sqrt{39}}{156}$	$-\frac{\sqrt{39}}{78}$	$-\frac{5\sqrt{39}}{156}$	$-\frac{\sqrt{39}}{78}$
-	$\frac{7\sqrt{39}}{156}$	$-\frac{5\sqrt{39}}{156}$	$-\frac{\sqrt{39}}{78}$	$\frac{7\sqrt{39}}{156}$						
$\mathbb{Q}_{2,1}^{(E)}$	$\frac{3\sqrt{13}}{52}$	$\frac{3\sqrt{13}}{52}$	$\frac{3\sqrt{13}}{52}$	$\frac{3\sqrt{13}}{52}$	$-\frac{\sqrt{13}}{13}$	$-\frac{\sqrt{13}}{13}$	$-\frac{\sqrt{13}}{13}$	$-\frac{\sqrt{13}}{13}$	$\frac{\sqrt{13}}{52}$	$\frac{\sqrt{13}}{52}$
	$\frac{\sqrt{13}}{52}$	$\frac{\sqrt{13}}{52}$	$-\frac{3\sqrt{13}}{52}$	$-\frac{\sqrt{13}}{52}$	$\frac{\sqrt{13}}{13}$	$-\frac{3\sqrt{13}}{52}$	$-\frac{\sqrt{13}}{52}$	$\frac{\sqrt{13}}{13}$	$-\frac{3\sqrt{13}}{52}$	$\frac{\sqrt{13}}{13}$
	$-\frac{\sqrt{13}}{52}$	$-\frac{3\sqrt{13}}{52}$	$\frac{\sqrt{13}}{13}$	$-\frac{\sqrt{13}}{52}$						
$\mathbb{Q}_{2,0}^{(T_2)}$	0	0	0	0	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	0	0
	0	0	0	$-\frac{\sqrt{2}}{4}$	0	0	$\frac{\sqrt{2}}{4}$	0	0	0
	$-\frac{\sqrt{2}}{4}$	0	0	$\frac{\sqrt{2}}{4}$						
$\mathbb{Q}_{2,1}^{(T_2)}$	0_	0_	0	0	0_	0	0	0	$\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$
	$-\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	0	0	$-\frac{\sqrt{2}}{4}$	0	0	$\frac{\sqrt{2}}{4}$	0	$\frac{\sqrt{2}}{4}$
	0	0	$-\frac{\sqrt{2}}{4}$	0						
$\mathbb{Q}_{2,2}^{(T_2)}$	$\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	0	0	0	0	0	0
	0	0	$\frac{\sqrt{2}}{4}$	0	0	$\frac{\sqrt{2}}{4}$	0	0	$-\frac{\sqrt{2}}{4}$	0
(T.)	0	$-\frac{\sqrt{2}}{4}$	0	0					/40	/4.9
$\mathbb{Q}_{3,0}^{(T_1)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	0	0	0	0	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$
	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	0	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	0	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$

symbol	1	2	3	4	5	6	7	8	9	10
	0	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	0						
$\mathbb{Q}_{3,1}^{(T_1)}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	0	0
-0,1	0	0	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	0	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	0	$\frac{\sqrt{10}}{20}$	0
	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	0	$-\frac{\sqrt{10}}{10}$		20	10		20	
$\mathbb{Q}_{3,2}^{(T_1)}$	0	0	0	0	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	- <u>v</u>
-,	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	0	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	0	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	0	
	$-\frac{\sqrt{10}}{20}$	0	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$						
$\mathbb{Q}_{3,0}^{(T_2)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	0	0	0	0	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{1}}{10}$
	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	0	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	0	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	- ¥
	0	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	0						
$\mathbb{Q}_{3,1}^{(T_2)}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	0	0
	0	0	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	0	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	0	$-\frac{\sqrt{10}}{20}$	0
	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	0	$\frac{\sqrt{10}}{10}$						
$\mathbb{Q}_{3,2}^{(T_2)}$	0	0	0	0	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	_ <u>v</u>
	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	0	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	0	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	0	$\frac{\sqrt{1}}{10}$
	$\frac{\sqrt{10}}{20}$	0	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$						
$\mathbb{Q}_{4,0}^{(E)}$	$\frac{3\sqrt{13}}{52}$	$\frac{3\sqrt{13}}{52}$	$\frac{3\sqrt{13}}{52}$	$\frac{3\sqrt{13}}{52}$	$-\frac{\sqrt{13}}{13}$	$-\frac{\sqrt{13}}{13}$	$-\frac{\sqrt{13}}{13}$	$-\frac{\sqrt{13}}{13}$	$\frac{\sqrt{13}}{52}$	$\frac{\sqrt{1}}{52}$
	$\frac{\sqrt{13}}{52}$	$\frac{\sqrt{13}}{52}$	$\frac{3\sqrt{13}}{52}$	$\frac{\sqrt{13}}{52}$	$-\frac{\sqrt{13}}{13}$	$\frac{3\sqrt{13}}{52}$	$\frac{\sqrt{13}}{52}$	$-\frac{\sqrt{13}}{13}$	$\frac{3\sqrt{13}}{52}$	- <u>v</u>
	$\frac{\sqrt{13}}{52}$	$\frac{3\sqrt{13}}{52}$	$-\frac{\sqrt{13}}{13}$	$\frac{\sqrt{13}}{52}$						
$\mathbb{Q}_{4,1}^{(E)}$	$\frac{5\sqrt{39}}{156}$	$\frac{5\sqrt{39}}{156}$	$\frac{5\sqrt{39}}{156}$	$\frac{5\sqrt{39}}{156}$	$\frac{\sqrt{39}}{78}$	$\frac{\sqrt{39}}{78}$	$\frac{\sqrt{39}}{78}$	$\frac{\sqrt{39}}{78}$	$-\frac{7\sqrt{39}}{156}$	$-\frac{7}{1}$
	$-\frac{7\sqrt{39}}{156}$	$-\frac{7\sqrt{39}}{156}$	$-\frac{5\sqrt{39}}{156}$	$\frac{7\sqrt{39}}{156}$	$-\frac{\sqrt{39}}{78}$	$-\frac{5\sqrt{39}}{156}$	$\frac{7\sqrt{39}}{156}$	$-\frac{\sqrt{39}}{78}$	$-\frac{5\sqrt{39}}{156}$	-
	$\frac{7\sqrt{39}}{156}$	$-\frac{5\sqrt{39}}{156}$	$-\frac{\sqrt{39}}{78}$	$\frac{7\sqrt{39}}{156}$						
$\mathbb{Q}_{4,0}^{(T_1)}$	0	0	0	0	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	0	0
	0	0	0	$\frac{\sqrt{2}}{4}$	0	0	$-\frac{\sqrt{2}}{4}$	0	0	0
	$\frac{\sqrt{2}}{4}$	0	0	$-\frac{\sqrt{2}}{4}$						
$\mathbb{Q}_{4,1}^{(T_1)}$	0	0	0	0	0	0	0	0	$\frac{\sqrt{2}}{4}$	$\frac{}{4}$
	$-\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	0	0	$\frac{\sqrt{2}}{4}$	0	0	$-\frac{\sqrt{2}}{4}$	0	_ 2
	0	0	$\frac{\sqrt{2}}{4}$	0						
$\mathbb{Q}_{4,2}^{(T_1)}$	$\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	0	0	0	0	0	0

Table 16										
symbol	1	2	3	4	5	6	7	8	9	1
	0	0	$-\frac{\sqrt{2}}{4}$	0	0	$-\frac{\sqrt{2}}{4}$	0	0	$\frac{\sqrt{2}}{4}$	(
	0	$\frac{\sqrt{2}}{4}$	0	0						
$\mathbb{Q}_{5,0}^{(T_1)}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	0	0	0	0	$\frac{\sqrt{10}}{20}$	
	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	0	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	0	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	<u>v</u>
	0	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	0						
$\mathbb{Q}_{5,1}^{(T_1)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	0	
	0	0	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	0	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	0	$\frac{\sqrt{10}}{10}$	
	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	0	$\frac{\sqrt{10}}{20}$						
$\mathbb{Q}_{5,2}^{(T_1)}$	0	0	0	0	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	_
	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	0	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	0	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	0	v :
	$-\frac{\sqrt{10}}{10}$	0	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$						
$\mathbb{Q}_6^{(A_2)}$	$\frac{\sqrt{6}}{12}$	2								
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	-						
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						