Reg. No.							
----------	--	--	--	--	--	--	--

B.Tech. DEGREE EXAMINATION, MAY 2024

Third Semester

18MAB201T – TRANSFORMS AND BOUNDARY VALUE PROBLEMS

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

TA.T	-4
-13	ote:

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i)
- (ii)

(ii)		over to hall invigilator at the end of 40 th minute. Part - B & Part - C should be answered in answer booklet.				
Time:	: 3 1	hours	Max.	Marl	ks: 1	00
		$PART - A (20 \times 1 = 20 Marks)$ Answer ALL Questions	Marks	BL	со	PO
	1.	The degree of the PDE $\frac{d^2y}{dx^2} + 2y = \left(\frac{dy}{dx}\right)^3$		1	1	1
14		(A) 1 (C) 3 (B) 2 (D) 4				
	2.	The partial derivative $\frac{\partial^2 z}{\partial x \partial y}$ can be denoted as	1	1	1	2
		(A) q (C) s (B) r (D) t				
	3.	In a solution, the number of arbitrary constants is equal to the independent variables is known as (A) Particular integral (B) Singular integral (C) General integral (D) Complete integral	number of 1	1	1	2
	4.	The PDE $f(x, p) = g(y, q)$ is called as	1	2	1	2
	9	(A) Lagrange's equation(B) Clairaut's equation(C) Separable equation(D) Laplace equation				
	5.	Sinx is a periodic function with period (A) $\pi/2$ (B) π (C) 2π (D) 3π	1	1	2	1
	6.	Which of the following function is an odd function? (A) $x \sin x$ (B) $x \cos x$ (C) $x e^x$ (D) $x \log x$	1	1	2	1
	7.	If $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$, then the function $f(x)$ is	1	1	2	2
		(A) Odd (B) Even (C) Neither odd nor even (D) Periodic				

8.	The value of b_n in the Fourier series expansion of $f(x)=x^2$ in $(-1,1)$ is (A) $1/3$ (B) $\pi/3$ (C) π (D) 0	1	1	2	2
9.	How many initial and boundary conditions are required to solve $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$	1	1	3	1
	(A) Two (B) Three (C) Four (D) Five				
10.	One dimensional wave equation is used to find (A) Temperature (B) Time (C) Displacement (D) Mass	1	1	3	1
11.	The classification of the PDE $u_{xx} + 3u_{xy} + 4u_{yy} = \sin x$ is (A) Elliptic (B) Parabolic	1	2	3	1
	(C) Hyperbolic (D) Deterministic				
12.	The tension T caused by stretching the string before fixing it at the end points is	1	I	3	1
	(A) Large (B) Decreasing (C) Constant (D) Zero				
	If $F[f(x)] = F(s)$ and a>0 then $F[f(ax)] = $	1	2	4	2
	(A) $\frac{1}{a}F\left(\frac{a}{s}\right)$ (B) $\frac{1}{a}F\left(\frac{s}{a}\right)$ (C) $\frac{1}{s}F\left(\frac{s}{a}\right)$ (D) $\frac{1}{s}F\left(\frac{a}{s}\right)$				
	(C) $\frac{1}{s}F\left(\frac{s}{a}\right)$ (D) $\frac{1}{s}F\left(\frac{a}{s}\right)$	56			
14.	If $f(x) = e^{-ax}$, $a > 0$, then $F_s[e^{-ax}]$ is	1	2	4	2
	(A) $\sqrt{\frac{\pi}{2}} \left(\frac{a}{s^2 + a^2} \right)$ (B) $\sqrt{\frac{2}{\pi}} \left(\frac{a}{s^2 + a^2} \right)$				
	(C) $\sqrt{\frac{\pi}{2}} \left(\frac{s}{s^2 + a^2} \right)$ (D) $\sqrt{\frac{2}{\pi}} \left(\frac{s}{s^2 + a^2} \right)$				
15.	The Fourier sine transform of $1/x$ is (A) $\sqrt{2}$ (B) $\sqrt{4}$	1	2	4	2
	(A) $\sqrt{\frac{2}{\pi}}$ (B) $\sqrt{\frac{4}{\pi}}$ (C) $\sqrt{\frac{\pi}{2}}$ (D) $\sqrt{\frac{\pi}{4}}$				
	$\sqrt{\frac{\pi}{2}} \qquad \qquad (D) \sqrt{\frac{\pi}{4}}$				
16.	Fourier cosine transform of f(x)sinax is	1	2	4	2
	(A) $\frac{1}{2} [F_c(a-s) + F_c(a+s)]$ (B) $\frac{1}{2} [F_c(a-s) - F_c(a+s)]$ (C) $\frac{1}{2} [F_c(a-s) + F_s(a+s)]$ (D) $\frac{1}{2} [F_s(a-s) - F_s(a+s)]$				
	$\frac{1}{2} \left[F_c(a-s) + F_s(a+s) \right] \qquad (D) \frac{1}{2} \left[F_s(a-s) - F_s(a+s) \right]$				

- 17. The value of $z\left[\sqrt{2}\right]$ is

(A) $\frac{z}{z-1}$ (C) $\frac{\sqrt{2}z}{z-1}$

- 18. z-transform of $f(n) = \frac{1}{9^n}$ is

2

5

- (A) $\frac{9z}{z-1}$ (C) $\frac{9z}{9z-1}$

- 19. The value of $z^{-1}[e^{1/z}]$ is
- (B) $\frac{1}{(n+1)!}$ (D) $\frac{1}{n!}$

(C) $\frac{1}{n}$

- 20. Poles of $F(z) = \frac{z}{(z+1)(z-2)}$ are

1

(A) z = 1, -2

(C) z = -1, -2

- (B) z = -1, 2(D) z = 1, 2
- $PART B (5 \times 4 = 20 Marks)$ Answer ANY FIVE Questions

21. Find the complete integral of $z = px + qy + \sqrt{pq}$

22. Find the root mean square value of $f(x) = x^2$ in $(-\pi, \pi)$.

- 23. What are the assumptions to be made to derive the one dimensional wave equation?

24. Find the Fourier sine transform of $f(x) = xe^{-ax}$.

25. If $F(z) = \frac{10z}{(z-1)(z-2)}$, then find f(0).

26. Find the complete integral of $p^2 + q^2 = x + y$.

- 3 3 27. A bar, 10 cm long with insulated sides, has its ends A and B kept at 20°C and 90°C until steady state conditional prevail, find u(x).

$PART - C (5 \times 12 = 60 Marks)$ Answer ALL Questions

Marks BLCO PO

28. a. Solve
$$(D^2 - 2DD')z = x^3y + e^{2x}$$
.

b. Solve
$$x(z^2 - y^2)p + y(x^2 - z^2)q = z(y^2 - x^2)$$
.

3

29. a. Find the Fourier series of
$$f(x)=x^2$$
 in $(-\pi, \pi)$ and hence find the sum of the series $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} \dots$

b. Prove that
$$f(\theta) = 0.75 + 0.37\cos\theta - 1.004\sin\theta$$
 from the following data, where $\theta = \frac{2\pi x}{T}$.

		1					
x	0	T/6	T/3	T/2	2T/3	5T/6	Т
f(x):	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

30. a. A string is stretched and fixed to two points x=0 and x=1 apart. Motion is started by displacing the string into the form $y = k(lx - x^2)$ from which it is released at time t=0. Find the displacement y(x,t).

b. Solve
$$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$$
 subject to

(i)
$$u(0,t) = 0$$
, for $t \ge 0$

(ii)
$$u(l,t) = 0$$
, for $t \ge 0$

(iii)
$$u(x,0) = \pi x, 0 < x < l$$

31. a. Prove that $e^{-x^2/2}$ is a self-reciprocal function under Fourier transform.

b. Find the Fourier sine transform of $f(x) = e^{-ax}$ and hence evaluate

(i)
$$\int_0^\infty \frac{x \sin mx}{x^2 + a^2} dx$$

(ii)
$$\int_0^\infty \frac{x^2}{\left(x^2 + a^2\right)^2} dx$$

32. a. Find
$$Z^{-1}\left(\frac{z^2-3z}{(z-5)(z+2)}\right)$$
 by using residue theorem.

b. Solve
$$y(n+2)-3y(n+1)-10y(n) = 0$$
, given $y(0)=1, y(1)=0$ using z-transform.