Taller de Topología Algebraica, Lectura 7: El Grupo Fundamental de \mathbb{S}^1

Cristo Alvarado

24 de septiembre de 2024

 $\pi(\mathbb{S}^1)$

Lo hecho en la parte anterior sobre espacios recubridores será utilizado para caracterizar en su totalidad el grupo fundamental del círculo \mathbb{S}^1 .

Definición 7.1

Sea $\omega:I\to\mathbb{S}^1$ el bucle con base (1,0) que va alrededor del circulo exactamente una vez, es decir:

$$\omega(s) = (\cos 2\pi s, \sin 2\pi s), \quad \forall s \in I$$

Para cada $n \in \mathbb{Z}$ se define:

$$\omega_n(s) = (\cos 2\pi ns, \sin 2\pi ns), \quad \forall s \in I$$

es decir, este bucle da n-vueltas alrededor del círculo cuando t varía de 0 a 1.

Ejercicio 7.1

Pruebe que:

$$[\omega]^n = [\omega_n], \quad \forall n \in \mathbb{Z}$$

donde $[\omega]^n$ es el producto de la clase con representante ω n-veces.

Demostración:

Ejercicio.

Para la demostración del teorema, lo se se hará es que dado un camino $f:I\to\mathbb{S}^1$, se comparará al mismo con los caminos que genera la función recubridora $p:\mathbb{R}\to\mathbb{S}^1$

$$p(s) = (\cos 2\pi s, \sin 2\pi s), \quad \forall s \in I$$

este mapeo puede ser visualizado como una helicoide en \mathbb{R}^3 .

Observación 7.1

Veamos que

$$\omega_n = p \circ \widetilde{\omega}_n, \quad \forall n \in \mathbb{Z}$$

donde $\widetilde{\omega}_n: I \to \mathbb{R}$ es la función tal que $s \mapsto ns$. Básicamente esta función controla el número de giros adicionales que va a dar la helicoide en un solo intervalo de longitud 1. El signo de n determina el sentido de giro de la helicoide.

Note que $\widetilde{\omega}_n$ es un levantamiento de ω_n , para todo $n \in \mathbb{Z}$.

Para determinar el grupo fundamental del círculo, se estudiará como es que los caminos en \mathbb{S}^1 se levantan a \mathbb{R} .

Teorema 7.1

El grupo fundamental $\pi(\mathbb{S}^1, (1, 0))$ es cíclico infinito generado por $[\omega]$.

Demostración:

Sea $f: I \to \mathbb{S}^1$ un bucle con punto base $x_0 = (1,0)$. Por el lema ?? existe un levantamiento \tilde{f} empezando en 0. Este camino termina en algún entero $n \in \mathbb{Z}$ pues al ser levantamiento se cumple que

$$f = p \circ \widetilde{f}$$

luego, para s = 1:

$$p(\widetilde{f}(1)) = p \circ \widetilde{f}(1) = f(1) = x_0$$

y,

$$p^{-1}(x_0) = \mathbb{Z} \subseteq \mathbb{R}$$

Por tanto, debe existir $n \in \mathbb{Z}$ tal que $\widetilde{f}(1) = n$. Así \widetilde{f} es un camino que va de 0 a n. Otro camino que también hace lo mismo es $\widetilde{\omega}_n$. Además

$$\widetilde{f} \sim \widetilde{\omega}_r$$

tomando la función continua $\widetilde{F}: I \times I \to \mathbb{R}$, $\widetilde{F}(t,s) = (1-t)\widetilde{f}(s) + t\widetilde{\omega}_n(s)$, para todo $s,t \in I$. Tomando $F(s,t) = p \circ \widetilde{F}(s,t)$ resulta en que $f \sim \omega_n$ (si le quedan dudas, es fácil de verificar que se cumple lo anterior), luego $[f] = [\omega_n] = [\omega]^n$. Se sigue entonces que $\pi(\mathbb{S}^1, (1,0))$ es generado por $[\omega]$.

Para ver que es cíclico infinito, veamos que para el bucle anterior el entero n es único. Suponga que [f] está determinado por $[\omega_n]$ y $[\omega_m]$, es decir que

$$f \sim \omega_n$$
 y $f \sim \omega_m$

con $m \in \mathbb{Z}$. Se sigue que $\omega_n \sim \omega_m$. Por el lema ?? se tiene que $\widetilde{\omega}_n \sim \widetilde{\omega}_m$. En particular, tienen el mismo punto terminal, por lo que

$$m = \widetilde{\omega}_m(1) = \widetilde{\omega}_n(1) = n$$

así, n = m. Se sigue entonces que el orden de $[\omega]$ no puede ser finito ya que en caso contrario f tendría al menos dos representaciones con este mismo generador de $\pi(\mathbb{S}^1, (1, 0))$.

Por lo tanto $\pi(\mathbb{S}^1, (1,0))$ es un grupo cíclico infinito generado por $[\omega]$, luego es isomorfo a \mathbb{Z} . Así:

$$\pi(\mathbb{S}^1,(1,0))\cong\mathbb{Z}$$

Aplicaciones

Observación 7.2

Podemos ver el círculo como subconjunto de $\mathbb C$ dado por:

$$\mathbb{S}^1 = \left\{ x + iy \in \mathbb{C} \middle| x^2 + y^2 = 1 \right\}$$

en particular, $1 \in \mathbb{S}^1$ y el espacio \mathbb{S}^1 es arco-conexo, por lo que la elección del punto para calcular el grupo fundamental es independiente del elemento de \mathbb{S}^1 .

Como aplicación de los resultados anteriores, tenemos el siguiente teorema:

Teorema 7.2 (Teorema fundamental del álgebra)

Todo polinomio no constante con coeficientes en $\mathbb C$ tiene una raíz en $\mathbb C$.

Demostración:

Sea $p:\mathbb{C}\to\mathbb{C}$ un polinomio. Sin pérdida de generalidad, podemos asumir que

$$p(z) = z^n + a_1 z^{n-1} + \dots + a_n$$

donde $a_1, ..., a_n \in \mathbb{C}$, con $n \geq 0$. Si n = 0 entonces $p(z) = 1, \forall z \in \mathbb{C}$ (estamos diciendo que el polinomio p es mónico).

Supongamos que p no tiene raíces en \mathbb{C} . Para cada $r \geq 0$ se define la función $f_r: I \to \mathbb{C}$ por:

$$f_r(s) = \frac{p(re^{2\pi is})/p(r)}{|p(re^{2\pi is})/p(r)|}, \quad \forall s \in I$$

la cual es un bucle en el círculo unitario $\mathbb{S}^1 \subseteq \mathbb{C}$ con base en 1. Se tiene que f_0 es el bucle constante con base en 1, por lo que $[f_0]$ es la identidad de $\pi(\mathbb{S}^1, 1)$. Afirmamos que

$$f_r \sim f_0$$

para todo r>0. En efecto, sea r>0 y $F:I\times I\to \mathbb{S}^1$ dada por:

$$F(t,s) = f_{rt}(s), \quad \forall s, t \in I$$

Es claro de la definición de f_r que F(t,s) es continua. Veamos que:

$$F(0,s) = f_0(s)$$
 y $F(1,s) = f_r(s)$, $\forall s \in I$

Y además:

$$F(t,0) = f_{rt}(0) = 1$$
 y $F(t,1) = f_{rt}(1) = 1$, $\forall t \in I$

(pues todos los bucles tienen como punto base a 1). Por tanto, $f_0 \sim f_r$ para todo $r \geq 0$. Se sigue pues que

$$[f_0] = [f_r], \quad \forall r \ge 0$$

es decir que $[f_r]$ es la identidad de $\pi(\mathbb{S}^1, 1)$ para todo $r \geq 0$.

Fijemos ahora r > 0 tal que

$$r > \max\{|a_1| + \dots + |a_n|, 1\}$$

Entonces si $z \in \mathbb{C}$ es tal que ||z|| = r, tenemos que

$$t |a_1 z^{n-1} + \dots + a_n| \le |a_1 z^{n-1} + \dots + a_n|$$

$$|a_1 z^{n-1} + \dots + a_n| \le |a_1 z^{n-1}| + \dots + |a_n|$$

$$< (|a_1| + \dots + |a_n|) |z|^{n-1}$$

$$< |z|^n$$

$$\Rightarrow |a_1 z^{n-1} + \dots + a_n| < |z|^n$$

$$\Rightarrow 0 < |z|^n - |a_1 z^{n-1} + \dots + a_n|$$

para todo $t \in I$, lo cual implica que

$$t |a_1 z^{n-1} + \dots + a_n| < |z|^n, \quad \forall t \in I$$

Por tanto, el polinomio

$$p_t(z) = z^n + t \left(a_1 z^{n-1} + \dots + a_n \right), \quad \forall z \in \mathbb{C}$$

no tiene raíces cuando ||z|| = r (círculo centrado en 0 de radio r) y cuando $t \in I$, pues si z y t cumplen estas condiciones se sigue que:

$$|p_t(z)| = |z^n + t(a_1 z^{n-1} + \dots + a_n)|$$

 $\ge |z|^n - t|a_1 z^{n-1} + \dots + a_n|$
 > 0

Definimos la función $G: I \times I \to \mathbb{C}$ dada por:

$$G(t,s) = \frac{p_t(re^{2\pi is})/p_t(r)}{|p_t(re^{2\pi is})/p_t(r)|}, \quad \forall s, t \in I$$

Esta función es tal que $f_r \sim \omega_n$. En efecto, esta función es continua y cumple que:

$$F(0,s) = \frac{p_0(re^{2\pi is})/p_0(r)}{|p_0(re^{2\pi is})/p_0(r)|}$$

$$= \frac{r^n e^{2\pi ins}/r^n}{|r^n e^{2\pi ins}/r^n|}$$

$$= e^{2\pi ins}$$

$$= \cos(2\pi ns) + i\sin(2\pi ns)$$

$$= \omega_n(s), \quad \forall s \in I$$

y,

$$F(1,s) = \frac{p_1(re^{2\pi is})/p_1(r)}{|p_1(re^{2\pi is})/p_1(r)|}$$
$$= \frac{p(re^{2\pi is})/p(r)}{|p(re^{2\pi is})/p(r)|}$$
$$= f_r(s), \quad \forall s \in I$$

(el hecho ed que los extremos que se quedan fijos se verifica rápidamente). Anteriormente se probó que ω_n es tal que

$$[\omega_n] = [\omega]^n$$

por ende,

$$[f_r] = [\omega]^n$$

pero $[f_r] = [f_0]$ es la identidad del grupo, así que n = 0. Luego

$$p(z) = 1, \quad \forall z \in \mathbb{C}$$

esto es, el único polinomio que no tiene raíces en $\mathbb C$ es el polinomio constante no cero.

Ahora un resultado familiar enunciado al inicio del taller:

Teorema 7.3 (Teorema del punto fijo de Brower para dimensión 2)

Toda función continua $f: \mathbb{D}^2 \to \mathbb{D}^2$ tiene un punto fijo, es decir existe $z \in \mathbb{D}^2$ tal que f(z) = z, donde:

 $\mathbb{D}^{2} = \left\{ (x, y) \in \mathbb{R}^{2} \middle| x^{2} + y^{2} \le 1 \right\}$

Demostración:

Suponga que para todo $z\in\mathbb{D}^2$ se tiene que $f(z)\neq z$. Definimos la función $r:\mathbb{D}^2\to\mathbb{S}^1$ dada como sigue:

• Sea $z=(x,y)\in\mathbb{D}^2.$ Considere la función $l_x:]0,\infty[\to\mathbb{R}^2$ dada por:

$$l_z(t) = (1-t)f(z) + tz = ((1-t)f_1(x,y) + tx, (1-t)f_2(x,y) + ty)$$

(es la recta que comienza en f(z) y va en dirección de z) donde $f(z)=(f_1(z),f_2(z))$. Por el teorema del valor medio se tiene que existe un único $t_x \in]0,\infty[$ tal que

$$||l_z(t_z)|| = 1$$

En efecto, como $l_z\left(\frac{1}{2}\right) = \frac{f(z)+z}{2}$, este punto es tal que no puede tener norma igual a 1, ya que en caso contrario:

$$\|\frac{f(z)+z}{2}\| = 1 \Rightarrow \|f(z)+z\| = 2$$

 $\Rightarrow 2 \le \|f(z)\| + \|z\| \le 2$
 $\Rightarrow \|f(z)\| = \|z\| = 1$

por ende, ||f(z)|| + ||z|| = ||f(z) + z|| así que deben ser coolineales. Como tienen la misma norma, entonces deben ser el mismo, lo cual no puede suceder ya que $f(z) \neq z$. Por tanto

$$l_z\left(\frac{1}{2}\right) < 1$$

y,

$$\lim_{t \to \infty} ||l_z(t)|| = \infty$$

del teorema del valor medio se sigue la existencia de tal $t_x \in]0, \infty[$. Este elemento está determinado por una de las raíces con $t \in]0, \infty[$ de la ecuación:

$$||l_z(t)|| = 1 \iff ||l_x(t)||^2 = 1$$

$$\iff ||((1-t)f_1(x,y) + tx, (1-t)f_2(x,y) + ty)||^2 = 1$$

$$\iff ((1-t)f_1(x,y) + tx)^2 + (1-t)f_2(x,y) + ty)^2 = 1$$

el cual es un polinomio de grado 2. Por tanto, la aplicación $z\mapsto t_z$ es una función continua. Así, la aplicación $z\mapsto l_z(t_z)$ es una función continua (por ser composición de funciones continuas). Hacemos entonces $r(z)=l_z(t_z)$ la cual es continua y es tal que $t_z>0$.

■ Si $z \in \mathbb{D}^2$ es tal que ||z|| = 1, entonces r(z) = z (pues la función l_z solo pasa por un $t \in]0, \infty[$ tal que $||l_z(t)|| = 1$, en particular debe pasar por z).

Por los dos incisos anteriores, $r: \mathbb{D}^2 \to \mathbb{S}^1$ es una función continua siendo $\mathbb{S}^1 \subseteq \mathbb{D}^2$. Se tiene que r es una retracción de \mathbb{D}^2 . En particular, se sabe que la función

$$r_*: \pi(\mathbb{D}^2, (1,0)) \to \pi(\mathbb{S}^1, (1,0))$$

es un epimorfismo. Pero como \mathbb{D}^2 tiene forma de estrella respecto a (0,0) se tiene que \mathbb{D}^2 es contraíble a un punto, luego es simplemente conexo. Así que

$$\pi(\mathbb{D}^2, (1,0)) = \langle e \rangle$$

y,

$$\pi(\mathbb{S}^1,(1,0))\cong\mathbb{Z}$$

por ende, r_* no puede ser epimorfismo, lo cual es una contradicción. De esta forma se sigue que debe existir $z \in \mathbb{D}^2$ tal que f(z) = z.

El hecho de que $\pi(\mathbb{S}^1) \cong \mathbb{Z}$ puede ser usado para probar el siguiente resultado:

Teorema 7.4 (Teorema de Borsuk-Ulam en dimensión 2)

Para cada función continua $f: \mathbb{S}^2 \to \mathbb{R}^2$ existen un par de puntos antipodales $x, -x \in \mathbb{S}^2$ tales que

$$f(x) = f(-x)$$

donde

$$\mathbb{S}^{2} = \left\{ (x, y, z) \in \mathbb{R}^{3} \middle| x^{2} + y^{2} + z^{2} = 1 \right\}$$

Demostración:

Sea $f: \mathbb{S}^2 \to \mathbb{R}^2$ una función continua tal que

$$f(x) \neq f(-x), \quad \forall x \in \mathbb{S}^2$$

Podemos definir entonces una función $g: \mathbb{S}^2 \to \mathbb{S}^1$ tal que

$$g(x) = \frac{f(x) - f(-x)}{\|f(x) - f(-x)\|}, \quad \forall x \in \mathbb{S}^2$$

considerando a \mathbb{S}^1 como subconjunto de \mathbb{R}^2 es decir:

$$\mathbb{S}^{1} = \left\{ (x, y) \in \mathbb{R}^{3} \middle| x^{2} + y^{2} = 1 \right\}$$

Definimos ahora el bucle $\eta:I\to\mathbb{S}^2$ como:

$$\eta(s) = (\cos 2\pi s, \sin 2\pi s, 0)$$

y hacemos

$$h = g \circ \eta$$

éste es un bucle en \mathbb{S}^1 . Como -g(x)=g(-x) para todo $x\in\mathbb{S}^2$, se tiene que

$$h(s+1/2) = g \circ \eta(s+1/2)$$

$$= g(\cos(2\pi s + \pi), \sin(2\pi s + \pi), 0)$$

$$= g(-\cos 2\pi s, -\sin 2\pi s, 0)$$

$$= g(-(\cos 2\pi s, \sin 2\pi s, 0))$$

$$= -g \circ \eta(s)$$

$$= -h(s), \quad \forall s \in [0, 1/2]$$

El camino h puede ser levantado a un camino $\tilde{h}: I \to \mathbb{R}$ empezando en cero, para el que se cumple que:

$$p \circ \widetilde{h} = h$$

siendo p la función tal que $s \mapsto (\cos 2\pi s, \sin 2\pi s)$. En particular,

$$p(\widetilde{h}(s+1/2)) + p(\widetilde{h}(s)) = h(s+1/2) + h(s) = 0$$

para todo $s \in [0, 1/2]$. Esto es:

$$\begin{split} 0 &= \left(\cos 2\pi \widetilde{h}(s+1/2), \sin 2\pi \widetilde{h}(s+1/2)\right) + \left(\cos 2\pi \widetilde{h}(s), \sin 2\pi \widetilde{h}(s)\right) \\ &= \left(\cos 2\pi \widetilde{h}(s+1/2) + \cos 2\pi \widetilde{h}(s), \sin 2\pi \widetilde{h}(s+1/2) + \sin 2\pi \widetilde{h}(s)\right) \\ &= \left(2\cos \frac{2\pi (\widetilde{h}(s+1/2) + \widetilde{h}(s))}{2}\cos \frac{2\pi (\widetilde{h}(s+1/2) - \widetilde{h}(s))}{2}\right. \\ &\quad , 2\sin \frac{2\pi (\widetilde{h}(s+1/2) + \widetilde{h}(s))}{2}\cos \frac{2\pi (\widetilde{h}(s+1/2) - \widetilde{h}(s))}{2}\right) \\ &= \left(2\cos \pi (\widetilde{h}(s+1/2) + \widetilde{h}(s))\cos \pi (\widetilde{h}(s+1/2) - \widetilde{h}(s))\right. \\ &\quad , 2\sin \pi (\widetilde{h}(s+1/2) + \widetilde{h}(s))\cos \pi (\widetilde{h}(s+1/2) - \widetilde{h}(s))\right) \end{split}$$

la única forma de que esto sea cero, es que

$$\cos \pi (\widetilde{h}(s+1/2) - \widetilde{h}(s)) = 0 \iff \widetilde{h}(s+1/2) - \widetilde{h}(s) = \frac{q(s)}{2}$$

donde $q(s) \in \mathbb{Z}$ es un impar, para todo $s \in I$. Pero la función $q:[0,1/2] \to \mathbb{Z}$ es continua, por lo que debe ser constante. Así que:

$$\widetilde{h}(s+1/2) - \widetilde{h}(s) = \frac{q}{2}$$

para algún $q \in \mathbb{Z}$. En particular:

$$\widetilde{h}(1) = \widetilde{h}(1/2) + \frac{q}{2}$$

$$= \left(\widetilde{h}(0) + \frac{q}{2}\right) + \frac{q}{2}$$

$$= \widetilde{h}(0) + q$$

$$= q$$

por ende, $h \sim \omega_q$. En particular esto implica que h no es homotópica a una función contante ya que q es impar (la única forma en que fuera homotópica a una función constante es si q = 0).

Pero η es homotópica a la función $g, s \mapsto (0,0,1)$ que es constante. Para ello, tome la función $F: I \times I \to \mathbb{S}^2$ dada por:

$$F(s,t) = \left(\cos 2\pi s \cos \frac{\pi t}{2}, \sin 2\pi s \cos \frac{\pi t}{2}, \sin \frac{\pi t}{2}\right)$$

(claramente esta función está bien definida y es continua), para la cual se cumple que:

$$F(s,0) = (\cos 2\pi s \cos 0, \sin 2\pi s \cos 0, 0)$$
$$= (\cos 2\pi s \cos, \sin 2\pi s, 0)$$
$$= \eta(s), \quad \forall s \in I$$

y,

$$F(s,1) = \left(\cos 2\pi s \cos \frac{\pi}{2}, \sin 2\pi s \cos \frac{\pi}{2}, \sin \frac{\pi}{2}\right)$$
$$= (0,0,1)$$

con lo que se tiene la homotopía deseada. Así, también debe suceder que $g \circ \eta$ sea homotópica a una función constante, es decir que h es homotópica a una función constante, lo cual contradice lo probado anteriormente.

Así que, existe $x \in \mathbb{S}^2$ tal que

$$f(x) = f(-x)$$

Corolario 7.1

Si \mathbb{S}^2 es escrito como la unión de tres conjuntos cerrados $A_1, A_2, A_3 \subseteq \mathbb{S}^2$, entonces uno de estos debe tener un par de puntos antipodales $\{x, -x\}$.

Demostración:

Sean $A_1, A_2, A_3 \subseteq \mathbb{S}^2$ conjuntos tales que

$$\mathbb{S}^2 = A_1 \cup A_2 \cup A_3$$

para cada i = 1, 2 definimos la función $d_i : \mathbb{S}^2 \to \mathbb{R}$ dada por:

$$d_i(x) = \inf \left\{ \|x - y\| \middle| y \in A_i \right\}$$

se sabe que esta es una función continua por cursos de análisis matemático. Por el teorema de Borsuk-Ulam, para la función $f: \mathbb{S}^2 \to \mathbb{R}^2$ continua dada por:

$$f(x) = (d_1(x), d_2(x))$$

existen un par de puntos antipodales $x, -x \in \mathbb{S}^2$ tales que:

$$f(x) = f(-x) \Rightarrow d_1(x) = d_1(-x) \text{ y } d_2(x) = d_2(-x)$$

Se tienen dos casos:

- $d_1(x) = d_1(-x) = 0$ o $d_2(x) = d_2(-x) = 0$, en el primer caso se sigue que al ser A_1 cerrado, entonces $x, -x \in A_1$. De forma análoga en el segundo caso se sigue que $x, -x \in A_2$.
- $d_1(x) = d_1(-x) > 0$ y $d_2(x) = d_2(-x) > 0$. Como los conjuntos A_1 y A_2 son cerrados, forzosamente debe suceder que $x, -x \notin A_1, A_2$. Por tanto, $x, -x \in A_3$ ya que \mathbb{S}^2 es la unión de los A_i .

por los dos incisos anteriores se tiene el resultado.