

Задача А. Дерево на Поле Чудес

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды 512 мегабайт Ограничение по памяти:

На поле чудес в стране дураков растёт дерево с N вершинами. Каждая вершина занумерована целым числом 1 до N. Также в каждой вершине растут одна или две монетки.

Алиса играет на дереве в следующую игру для одного игрока. Сначала Алиса выбирает одну вершину дерева и ставит на неё фишку. После этого повторяется следующее действие:

Алиса забирает ровно одну монетку с вершины, на которой фишка находится сейчас, после чего выбирает одну вершину, смежную с данной, в которой ещё есть монетки, и перемещает фишку в эту вершину. Если ни в одной соседней вершине нет монетки, игра заканчивается.

Какое наибольшее количество монеток Алиса соберёт за время игры?

Формат входных данных

Входные данные состоят из не более, чем 50 тестовых примеров.

В первой строке каждого тестового примера указано количество вершин дерева $N \ (2 \le N \le 10^5)$.

Вторая строка задаёт расположение монет на вершинах дерева и состоит из N символов. Если i-й символ равен 1, то в i-й вершине лежит одна монетка, если i-й символ равен 2 — то две монетки.

Последующие N-1 строк задают граф. i-я из этих строк содержит число p_i ($1 \le p_i \le i$) — номер вершины, соединённой с i+1-й вершиной.

Входные данные заканчиваются тестовым примером с N=0, обрабатывать который не требу-

Формат выходных данных

Для каждого тестового примера в отдельной строке выведите одно число — наибольшее количество монеток, которые Алиса соберёт во время игры.

стандартный ввод	стандартный вывод
2	3
12	5
1	5
5	5
11212	
1	
2	
3	
4	
7	
2122212	
1	
1	
1	
1	
1	
1	
5	
21212	
1	
2	
3	
4	
0	

Задача В. Склады СберМаркет

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Поддержка работы крупного онлайн-магазина, доставляющего товары по всей стране, такого, как СберМаркет, требует организации огромных складов. Склады расположены под землёй и обслуживаются автоматическими тележками. На некоторых участках тележки должны подниматься на поверхность. Для этого устанавливаются специальные впуско-выпускные ворота.

На участке 1 × 1 километр допустимы следующие конфигурации установки ворот:

Для СберМаркета оборудуется новый центральный склад. Территория склада представляет собой огороженный прямоугольник w на h километров. В каждом секторе размера 1×1 километр нужно разместить одну из 6 конфигураций ворот.

Из стороны, где располагаются ворота, проведены фиолетовые стрелочки.

Автоматические тележки двигаются строго по прямой от одних ворот до других; в случае встречи двух тележек, едущих навстречу, они разъезжаются с помощью системы предотвращения столкновений и продолжают двигаться по той же прямой каждая в прежнем направлении.

Автоматические тележки могут выезжать из любых ворот и въезжать в любые ворота; также в конфигурациях 5 и 6 тележка может проехать между воротами по вертикали для конфигурации 5 и по горизонтали для конфигурации 6.

Если тележка попадает в ворота с обратной стороны или врезается в ограждение склада, происходит авария.

Требуется указать для каждого сектора склада, какая из 6 конфигураций ворот должна в нём располагаться, чтобы аварии были невозможны.

Формат входных данных

Первая строка входных данных содержит два целых числа w и h $(1 \leqslant w, h \leqslant 10^3)$ — ширина и высота склада СберМаркета.

Формат выходных данных

Выведите h строк, в каждой строке w чисел в диапазоне от 1 до 6, разделённые пробелами — номера конфигураций ворот в соответствующих квадратах склада. Если ответов несколько, выведите любой.

Если расположить ворота без риска аварий невозможно, выведите -1.

стандартный ввод	стандартный вывод
2 3	3 4
	6 6
	2 1
4 4	3 5 5 4
	6 3 4 6
	6 2 1 6
	2 5 5 1

Задача С. Ревакцинация

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 3 секунды Ограничение по памяти: 512 мегабайт

В медицинском агентстве Байтландии одобрены N различных вариантов вакцины. После ревакцинации i-м вариантом уровень антител x, определённый до ревакцинации, меняется на $a_ix + b_i$. Всего можно ревакцинировать двумя **различными** вариантами вакцины. Для составления рекомендаций врачам по ревакцинации требуется отвечать на запросы следующего типа:

Задан изначальный уровень антител x, определить, каков может быть максимальный уровень антител после завершения процесса ревакцинации (то есть после того, как оба выбранных варианта были применены).

Формат входных данных

Первая строка входных данных содержит одно целое число N ($2 \le N \le 10^5$) — количество вакцин, зарегистрированных в Медицинском агентстве Байтландии. Каждая из последующих n строк содержит по два целых числа a_i и b_i ($-10^6 \le a_i \le 10^6$, $-10^{12} \le b_i \le 10^{12}$. Следующая строка содержит одно целое число Q ($1 \le Q \le 10^5$). Каждая из последующих Q строк содержит по одному целому числу x_i — начальный уровень антител в i-м запросе ($-10^6 \le x_i \le 10^6$, все x_i попарно различны).

Формат выходных данных

Для каждого запроса выведите одно целое число — максимальный уровень антител, который достижим для заданного уровня антител при ревакцинации двумя различными компонентами.

стандартный ввод	стандартный вывод
4	85
-2 1	47
1 1	8087
-2 0	
2 1	
3	
21	
-11	
-2021	

Задача D. Яндекс.Панорамы космоса

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды 512 мегабайт Ограничение по памяти:

Для того, чтобы построить карты на Яндекс-панорамах, используются специальные автомобили, оборудованные фотоаппаратурой, которые ездят по дорогам страны и фотографируют окружающие пейзажи.

Но в рамках нового проекта Яндекс.Космос планируется добавить на Яндекс.Панорамы фотографии из дальнего космоса. Автомобили в космос отправлять уже не оригинально, так что для этого был разработан специальный космический аппарат «Яндекспутник». Аппарат пролетает через пояс астероидов и делает снимки по следующему алгоритму.

- 1. Изначально количество снимков равно 0;
- 2. Окрестности пояса астероидов представляются как такое подпространство трёхмерного декартовое пространства, что координаты x, y, z принимают значение от 0 до 10^9 .
- 3. Космический аппарат летит по орбите, задаваемой уравнением $(ax+by+z)^2+cx+dy+ez+1=n$
- 4. Точки съёмки расположены в точках орбиты, обладающим следующим свойством: все координаты являются целыми неотрицательными числами, а их произведение равно фиксированному целому числу L.
- 5. Фотография, сделанная в точке съёмки с координатами x, y и z, передаётся на Землю за xсекунд (на время этих x секунд включается мощный передатчик).

Требуется вычислить суммарное время работы мощного передатчика за время картографирования пояса астероидов.

Формат входных данных

В первой строке заданы 5 целочисленных значений – соответствующие координаты a, b, c, d, e $(1 \le a, b, c, d, e \le 30).$

В следующей строке заданы значения n и L ($1 \le n \le 10^9$, $0 \le L \le 10^{18}$).

Гарантируется, что минимальное расстояние между любыми двумя соседними точками съёмки в любой из проекций не превосходит 200.

Формат выходных данных

Выведите одно целое число — суммарное время работы передатчика.

Примеры

стандартный ввод	стандартный вывод
3 1 10 8 1	1
1000 0	
3 1 10 8 1	1440
1000000000 40019525280	

Замечание

Во втором примере одна из точек съёмки — (1440, 1059, 26243).

Задача Е. Сложи и посчитай

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

У Байтики есть выпуклый многоугольник с N вершинами, вырезанный из бумаги.

Байтика L раз сделала следующее действие:

- Построила вектор v из точки (x_b, y_b) , пересекающий текущую конструкцию по отрезку ненулевой длины.
- \bullet Сложила имеющуюся конструкцию по линии пересечения вправо от направления вектора v.

В получившейся у Байтики конструкции каждой точке соответствует от 1 до 2^L слоёв бумаги. Для каждого из чисел $1,2,\dots 2^L$ выведите одно вещественное число — суммарную площадь части, на которой перекрываются i слоёв бумаги.

Формат входных данных

Первая строка входных данных содержит два целых числа N и L ($3 \le N \le 30$, $1 \le L \le 5$).

Каждая из последующих N точек содержит по два целых числа x_i и y_i ($-1000 \leqslant x_i, y_i \leqslant 1000$). Точки даются в порядке обхода против часовой стрелки.

Каждая из последующих L строк содержит по четыре целых числа x_b, y_b и x_e, y_e соответственно $(-1000 \leqslant x_b, y_b, x_e, y_e \leqslant 1000)$ — координаты начала и конца соответствующего вектора.

Гарантируется, что многоугольник выпуклый, что никакие две вершины многоугольника не совпадают, никакие три вершины многоугольника не коллинеарны, что ни у какого вектора начало не совпадает с концом и что вектор всегда пересекает текущую конструкцию по отрезку ненулевой длины.

Формат выходных данных

Выведите 2^L строк, i-я из этих строк должна содержать одно вещественное число — площадь части конструкции, на которой перекрываются i слоёв бумаги, с абсолютной или относительной погрешностью не хуже 10^{-4} .

стандартный ввод	стандартный вывод
4 1	3.00000000000
-1 -1	0.50000000000
1 -1	
1 1	
-1 1	
-1 0 0 1	
3 1	6.00000000000
0 1	3.00000000000
6 1	
3 5	
0 3 5 3	
4 2	389.775459017107
29 34	492.497392672239
69 21	70.243251879471
80 82	0.00000000000
38 54	
49 33 -102 -58	
64 59 -602 -25	

Задача F. Дерево бонсай

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Всеволод – бывший олимпиадник, раньше на соревнованиях он испытывал широкий спектр эмоций: волнения, азарт, радость от победы, но сейчас все это в прошлом. Сейчас, в воскресный дождливый день, он сидит на своем широком диване напротив камина и читает книгу. Его взгляд падает на ветвленный пожилой бонсай...

Бонсай Всеволода – подвешенное двоичное дерево, каждая вершина которого является листом или имеет ровно два потомка. Корень дерева имеет номер 1, а все оставшиеся вершины пронумерованы числами от 2 до N. В каждом листе изначально записано число 1. *Интересностью* вершины назовем наибольший общий делитель чисел, записанных в листах, лежащих в поддереве заданной вершины. Требуется отвечать на запросы следующих видов:

- 1. Умножить число, записанное в вершине v на x, гарантируется, что v лист;
- 2. Вывести интересность вершины v по модулю $10^9 + 7$.

Формат входных данных

В первой строке входных данных содержатся числа N и Q $(1 \le N, Q \le 3 \cdot 10^5)$ – размер дерева и количество запросов, соответственно.

В следующей строке записано N-1 число p_i – номера предков вершин с номерами $2,3,\ldots,N$ соответственно $(1 \leq p_i \leq N)$.

Далее в M строках описаны запросы, отвечать на которые требуется последовательно, каждый запрос относится к одному из двух типов. «1 v x» значит, что число в листе с номером v умножить на x ($1 \le v \le N$, $1 \le x \le 10^6$). А запрос вида «2 v» означает, что надо вывести интересность вершины с номером v по модулю $10^9 + 7$ ($1 \le v \le N$).

Формат выходных данных

Для каждого запроса типа 2 в отдельной строке выведите интересность сооответствующей вершины по модулю $10^9 + 7$.

стандартный вывод
1
13
13
2
26
13

Задача G. Спидран по Pac-Man

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Недавно Федя стал победителем всероссийской олимпиады, проходившей в офисе 1С в Москве, и ему выплатили большую премию. Он не знал, куда ее потратить, поэтому решил скупать редкие устройства и пытаться пройти на них новейшие компьютерные игры. И вот недавно 1С gaming выпустила игру под названием «Сибирский РасМап» для устройств, совместимых с Siemens SL45. Потратив половину премии на покупку раритетного устройства в рабочем состоянии, Федя поставил игру и приступил к делу. Дело в том, что Федя – *спидраннер*, то есть он занимается скоростным прохождением видеоигр. Федя, конечно же, и сам мог придумать оптимальную стратегию для прохождения этой игры, но он занят просмотром «Милого во Франксе».

В «Сибирском Рас-Мап» игрок управляет Рас-Мап — главным героем, который изначально находится в левой верхней клетке прямоугольного поля размером $r \times c$ клеток, в каждой из которых находится по одной точке. Рас-Мап должен съесть все точки, после чего прийти в клетку, лежащую в a-й строке и b-м столбце, на этом игра и закончится. Если хотя бы раз за игру Рас-Мап побывает в какой-то клетке, то он автоматически съест точку, в ней находящуюся. Требуется вывести строку, состоящую из символов 'U', 'L', 'D', 'R', обозначающую последовательность ходов, которые должен совершить Рас-Мап для того, чтобы пройти игру. **Эта строка должна иметь минимально возможную длину.**

Символ 'U', обозначает, что Рас-Мап должен переместиться в клетку, которая находится над клеткой, в которой он сейчас находится, 'D' обозначает переход вниз, 'L' — влево, 'R' — вправо. Стро-ки нумеруются сверху-вниз, а строки — слева-направо. Нумерация строк и столбцов начинается с единицы, так что стартовая клетка имеет номер строки и столбца, равный 1.

Формат входных данных

В первой строке задано единственное число t (1 \leqslant t \leqslant 600) – количество наборов входных данных.

В каждой из последующих t строк задан один тестовый пример, состоящий из четырёх целых чисел r и c ($2 \le r, c \le 5000$), а потом a и b ($1 \le a \le r, 1 \le b \le c, a \cdot b \ne 1$).

Так же гарантируется, что сумма значений $r \cdot c$ по всем входным данным не превосходит $3 \cdot 10^6$.

Формат выходных данных

Для каждого набора данных в отдельной строке выведите строку, состоящую из символов 'L', 'R', 'D', 'U', записанную без пробелов — ответ на задачу. Если вариантов ответа несколько, выведите любой.

стандартный ввод	стандартный вывод
2	RRDDLLUR
3 3 2 2	DRU
2 2 1 2	
1	DRRULR
2 3 1 3	

Задача Н. Самый умный

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

В небезызвестном лицее $«mpu семер<math>\kappa u$ » учатся N учеников, каждый из которых изначально считает себя самым умным. Ученики занумерованы последовательными целыми числами от 1 до N.

Потом происходят M уроков, по одному уроку каждый день. Каждый урок описывается тройкой чисел (p, x, y), где $1 \leq p, x, y \leq N$.

На урок приходит учительница и спрашивает у ученика с номером p, кого он считает самым умным, тот ей честно отвечает, что самый умный ученик имеет номер q. Далее, если p=q, то ученика вызывают к доске, а иначе учительница спрашивает уже у ученика с номером q, кто самый умный и процесс продолжается в том же ключе. В конце концов учительница либо кого-нибудь вызывает к доске, либо после того, как задаст вопрос некоторому ученику второй раз, устраивает скандал. После этого урока ученик с номером x кардинально меняет свое мнение и впоследствии считает самым умным ученика с номером y. Для каждого числа i от 1 до M выведите номер ученика, которого вызовут к доске в i-й день, а также количество вопросов, которые при этом задаст учительница, или -1, если учительница устроит скандал.

Формат входных данных

В первой строке входного файла содержатся числа N и M ($1 \leq N, M \leq 3 \cdot 10^5$). Каждая из последующих M строк содержит по три целых числа p, x и y ($1 \leq p, x, y \leq N$).

Формат выходных данных

В последующих M строках требуется вывести результаты опросов учеников для каждого дня. Если учительница в i-й день устроит скандал, выведите в i-й строке число -1. Иначе, выведите пару чисел — номер ученика, которого вызвали к доске в i-й день и количество заданных вопросов соответственно.

стандартный ввод	стандартный вывод
3 4	1 1
1 2 3	3 2
2 3 2	-1
2 2 1	1 3
3 1 2	

Задача І. Хорошие раскраски – 3

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Это интерактивная задача.

Маленький Ильдар очень любит раскраски. В этот замечательный день к нему в гости приехал Кирилл. Кирилл недавно выиграл олимпиаду и в подарок ему предоставили премию. К сожалению, премия была не очень большой, но Кирилл все же очень хотел порадовать маленького Ильдара, поэтому купил ему t тетрадных листов 100×100 клеток и два карандаша красного и черного цвета. Ильдар принял подарок и разукрасил все свои листы в два цвета, но Кириллу рисунки решил не показывать, а сыграть с ним в игру.

Кириллу предлагается найти четыре одноцветные клетки, центры которых образуют прямоугольник, стороны которого параллельны линиям сетки. Он может спрашивать у Ильдара, в какой цвет он покрасил какую-нибудь клетку, но, чтобы играть было интереснее, ему разрешается задать не более, чем 15 вопросов. Они играют t партий, причем каждый раз на новом листе.

Протокол взаимодействия

В первой строке будет записано одно число t ($t \le 2000$) – количество игр, которые хотят провести Ильдар и Кирилл, все игры **независимы** друг от друга и будут проводиться на разных листах.

Чтобы задать вопрос про очередную клетку, следует вывести ? x y в отдельной строке, где x и y – номер строки и столбца, где лежит данная клетка ($1 \le x, y \le 100$). На каждый ваш вопрос Ильдар будет отвечать символом B или R, в зависимости от того, в какой цвет покрасил соответствующую клетку (B – черный, R – красный). Если число вопросов превысило 15 или клетка лежит за границами листа, Ильдар ответит FAIL.

Когда вы будете готовы назвать четыре одноцветные клетки, выведите $! x_1 y_1 x_2 y_2$ в отдельной строке, сообщая, что клетки $(x_1,y_1), (x_1,y_2), (x_2,y_1), (x_2,y_2)$ покрашены в одинаковый цвет (разумеется, $1 \le x_1, y_1, x_2, y_2 \le 100, x_1 \ne x_2, y_1 \ne y_2$). После этого Ильдар ответит Вам ОК или FAIL в зависимости от того, угадали вы или нет. Если он ответил ОК, то автоматически вы начинаете играть следующую партию.

В случае если Ильдар вам выведет FAIL после какого либо вашего запроса (первого или второго типа), Вам следует немедленно завершить работу вашей программы. В противном случае вместо вердикта WA Вы можете получить другие значения ошибки (TL, RE, IL).

Обратите внимание, что в данной задаче интерактор является адаптивным, то есть состояние раскраски всегда консистентно уже сделанным запросам, но в остальном может меняться в процессе работы.

стандартный ввод	стандартный вывод
1	? 1 1
R	? 1 2
В	? 1 3
R	? 3 1
R	? 3 3
R	! 1 1 2 2
ОК	: 1 1 2 2

Замечание

Для корректной работы программы после каждой операции вывода запроса или вывода ответа требуется выводить символ переноса строки, а также очищать буфер вывода, то есть делать следующие операции:

- В языке Pascal: flush(output);
- В C/C++: fflush(stdout) или cout.flush();
- B Java: System.out.flush();
- В Python: sys.stdout.flush() из библиотеки sys;
- B C#: Console.Out.Flush();

Задача Ј. Лестница деда Василия

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

За долгое время жизни в деревне у деда Василия накопилось большое количество поленьев. Они стоят в один ряд во дворе, для каждой из них хозяйственный дед измерил высоту и пронумеровал их от 1 до n.

Теперь ему захотелось часть из них пустить в дело, а именно построить лестницу, такую, чтобы она начиналась с полена высотой 1 и далее каждая последующая была выше предыдущей на 1. Дед решил, что нужно выбрать несколько поленьев соответствующей высоты, извлечь их из ряда и соорудить лестницу.

Так как поленьев во дворе много, то Василий не хочет сильно нарушать их исходный порядок и будет брать поленья таким образом, что после постройки лестницы в исходном ряду будет не более одного пустого места, то есть все выбранные поленья для будущей лестницы должны образовывать непрерывный отрезок от l-й до r-й.

Теперь Василий не может заснуть, так как задумался: а насколько высокую лестницу он сможет сделать при таких условиях?

Формат входных данных

В первой строке находится одно целое число $n\ (1\leqslant n\leqslant 3*10^5)$ — количество поленьев во дворе дела Василия.

Во второй строке содержится n целых чисел a_i через пробел, где a_i — высота i-го полена в ряду $(1\leqslant a_i\leqslant n).$

Формат выходных данных

Вывести одно число — высоту наибольшей возможной лестницы, которую можно построить при условии, что все выбранные для её постройки поленья образуют непрерывный отрезок в исходном ряду.

Пример

стандартный ввод	стандартный вывод
19	8
9 5 2 1 3 4 7 2 5 6 5 8 1 3 7 2 4 10 1	

Замечание

В примере из условия можно взять поленья из отрезка от 2 до 6, получится лестница высоты 5. Можно взять поленья из отрезка от 4 до 10, получится лестница высоты 7. Но самая большая лестница получится, если взять отрезок от 10 до 17. Тогда высота лестницы будет равна 8.

Задача К. Бутерброды

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Раньше Саша был олимпиадником, но из-за того, что он живет не в столице, а в небольшом городе K, он не смог на этом заработать денег, и теперь ему приходится работать поваром в студенческой столовой. Сейчас Саша занят составлением рецептов бутербродов, которые в будущем он планирует подавать на завтрак. Изначально перед ним лежит K кусков хлеба и он совершает с ними N последовательных операций, каждая из которых относится к одному из следующих типов:

- 1. Саша берет ингредиент x из холодильника и кладет сверху на i-й бутерброд;
- 2. Саша снимает с i-го бутерброда верхний ингредиент и возвращает его в холодильник;
- 3. Саше начинает казаться, что i-й и j-й бутерброды слишком сильно отличаются по размеру, поэтому он начинает перекладывать ингредиенты с большего бутерброда на меньший, пока разница их размеров станет не больше, чем 1.

Требуется написать программу, которая выведет количество различных бутербродов, которые получались у Саши в ходе составления рецептов. Пустой бутерброд не считается бутербродом. Бутерброды, которые получаются в процессе выполнения операции третьего типа, также следует принимать во внимание.

Два бутерброда считаются различными, если у них различается число ингредиентов или их порядок (то есть существует такое i что на i-м сверху месте расположены ингредиенты разного типа).

Формат входных данных

В первой строке указаны два числа K и N ($K \leq 20, N \leq 3 \cdot 10^5$) – количество кусков хлеба, лежащих перед Сашей и количество действий, соотвественно.

В последующих N строках описаны действия, совершенные Сашей. Каждая строка начинается с числа 1, 2 или 3, обознчающих тип операции. Если операция имеет тип 1, то после написаны два целых числа i и x ($1 \le i \le K, 1 \le x \le 10^9$) — номер бутерброда и ингредиента, соотвественно. Для операции типа 2 записано одно целое число i ($1 \le i \le K$) — номер бутерброда. Гарантируется, что на этом бутерброде есть хотя бы один игредиент. Наконец, для операций типа 3 записана пара целых чисел i и j ($1 \le i, j \le K, i \ne j$) — номера бутербродов, которые надо «уравнять».

Формат выходных данных

Вывести требуется единственное число – ответ на задачу.

стандартный ввод	стандартный вывод
3 5	4
1 1 3	
1 1 3	
3 2 1	
1 2 7	
1 3 7	

Задача L. Чай с молоком

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Чай без молока — деньги на ветер

В торговом автомате есть N ёмкостей. Каждая ёмкость заполнена смесью чая и молока в различной пропорции, то есть в i-й ёмкости смешаны t_i миллилитров чая и m_i миллилитров молока.

Автомат может наливать чай с молоком в любых пропорциях, смешивая напитки из разных ёмкостей (разумеется, не более того, что залито в ёмкость изначально).

То есть, если налить a_i -ю долю i-й ёмкости $(0 \leqslant a_i \leqslant 1)$, то получается смесь, состоящая из $\sum\limits_{i=1}^N a_i \cdot t_i$ миллилитров чая и $\sum\limits_{i=1}^N a_i \cdot m_i$ миллилитров молока.

Покупатель хочет заказать x+y миллилитров напитка в соотношении x миллилитров чая и y миллилитров молока. Если автомат может выполнить этот заказ, то пара чисел (x,y) называется выполнимой.

По заданному набору значений t_i и m_i найдите количество выполнимых пар, в которых и x, и y являются **целыми положительными** числами.

Так как количество может быть очень большим, выведите остаток от его деления на $10^9 + 7$.

Формат входных данных

Первая строка входных данных содержит одно целое число N ($1 \le N \le 10^5$). Каждая из последующих N строк содержит по два целых числа t_i и m_i — количество чая и молока в смеси из i-й ёмкости ($1 \le t_i, m_i \le 10^9$).

Формат выходных данных

Выведите одно целое число — остаток от деления количества выполнимых пар, оба элемента в которых являются целыми положительными числами, на $10^9 + 7$.

стандартный ввод	стандартный вывод
4	254
1 2	
2 4	
11 21	
20 21	