Normalizzatore e teorema di Cayley

di Gabriel Antonio Videtta

Nota. Nel corso del documento per (G,\cdot) si intenderà un qualsiasi gruppo.

Sia $X=\{H\subseteq G\mid H\le G\}$ l'insieme dei sottogruppi di G. Allora si può costruire un'azione $\varphi:G\to S(X)$ in modo tale che:

$$g \stackrel{\varphi}{\mapsto} [H \mapsto gHg^{-1}]$$
.

Si definisce **normalizzatore** lo stabilizzatore di un sottogruppo H (e si indica con $N_G(H)$), mentre Orb(H) è l'insieme dei **coniugati** di H. In particolare $N_G(H)$ è il massimo sottogruppo per inclusione in cui H è normale.

Si osserva ora in modo cruciale che $H \leq G$ se e solo se $Orb(H) = \{H\}$, e quindi se e solo se $N_G(H) = G$. Analogamente si osserva che H è normale se e solo se:

$$H = \bigcup_{h \in H} \operatorname{Cl}(h).$$

Si illustra adesso un risultato principale della teoria dei gruppi che mette in relazione ogni gruppo con il proprio gruppo di bigezioni, ed ogni gruppo finito con i sottogruppi dei gruppi simmetrici.

Teorema (di Cayley). Ogni gruppo è isomorfo a un sottogruppo del suo gruppo di bigezioni. In particolare, ogni gruppo finito G è isomorfo a un sottogruppo di un gruppo simmetrico.

Dimostrazione. Si consideri l'azione $\varphi: G \to S(G)$ tale per cui:

$$g \stackrel{\varphi}{\mapsto} [h \mapsto gh]$$
.

Si mostra che φ è fedele². Sia infatti $\varphi(g) = \text{Id}$; allora vale che $ge = e \implies g = e$. Quindi Ker φ è banale, e per il Primo teorema di isomorfismo vale che:

$$G \cong \operatorname{Im} \varphi \leq S(G)$$
.

Se G è finito, S(G) è isomorfo a S_n , dove n := |G|, e quindi $\operatorname{Im} \varphi$ è a sua volta isomorfo a un sottogruppo di S_n , da cui la tesi.

¹Tale azione prende il nome di **rappresentazione regolare a sinistra**. Si può infatti definire un'azione analoga a destra ponendo $g \mapsto \left[h \mapsto hg^{-1} \right]$, costruendo dunque una *rappresentazione regolare* a destra.

 $^{^2\}mathrm{L'azione}~\varphi$ è molto più che fedele; è infatti innanzitutto libera.

Si presentano adesso due risultati interessanti legati ai sottogruppi normali di un gruppo G.

Proposizione. Sia $H \leq G$. Allora, se [G:H] = 2, H è normale in G.

Dimostrazione. Poiché [G:H]=2, le uniche classi laterali sinistre rispetto ad H in G sono H e $gH=G\setminus H$, dove $g\notin H$. Analogamente esistono due sole classi laterali destre, H e $Hg=G\setminus H$. In particolare gH deve obbligatoriamente essere uguale a Hg, e quindi $gHg^{-1}=H$, da cui la tesi.

Proposizione. Siano $K \leq H \leq G$. Allora, se H è normale in G e K è caratteristico in H, K è normale in G.

Dimostrazione. Sia $\varphi_g \in \text{Inn}(G)$. Poiché H è normale in G, $\varphi_g(H) = H$. Pertanto si può considerare la restrizione di φ_g su H, $\varphi_g|_H$. In particolare $\varphi_g|_H$ è un automorfismo di Aut(H), e quindi, poiché K è caratteristico in H, $\varphi_g|_H(K) = K$, da cui si deduce che $gKg^{-1} = K$ per ogni $g \in G$.