[86.03/66.25] Dispositivos Semiconductores

Transistor JFET

Transistor Canal P: Polarización

Un transistor JFET de canal P con parámetros $V_p = 1,5$ V; $I_{DSS} = 10$ mA; y $\lambda = 0,02$ V⁻¹; forma parte del siguiente circuito donde $V_{DD} = 5$ V; $R_{G1} = 1$ M Ω ; $R_{G2} = 2$ M Ω y R = 500 Ω . El diodo Zener del circuito tiene una tensión $V_z = 2,4$ V con $I_{Zmin} = 10$ µA y $I_{Zmax} = 400$ mA.

• Hallar el punto de polarización del transistor.

Referencias

Transistor MOS canal P $V_p = 1,5 \text{ V}$ $I_{DSS} = 10 \text{ mA}$ $\lambda = 0,02 \text{ V}^{-1}$ $V_{DD} = 5 \text{ V}; R = 500 \Omega$ $R_{GI} = 1 \text{ M}\Omega; R_{G2} = 2 \text{ M}\Omega$

Diodo Zener $V_z = 2,4 \text{ V}$ $I_{Zmin} = 10 \mu\text{A}$ $I_{Zmax} = 400 \text{ mA}$

Resolvemos la "malla de entrada"...

M1: $V_{DD} - V_{RG1} - V_{RG2} = 0$ M2: $V_{DD} - V_{Z} + V_{DS} - V_{R} = 0$

N1:
$$I_{RG1} = I_{RG2} = I_{RG}$$

M3:
$$V_{R1} - V_{Z} + V_{GS} = 0$$

De M1 y N1 despejamos:

$$\begin{split} V_{DD} &= V_{RG1} + V_{RG2} \\ V_{DD} &= I_{RG1} R_{G1} + I_{RG2} R_{G2} \\ V_{DD} &= I_{RG} (R_{G1} + R_{G2}) \\ I_{RG} &= \frac{V_{DD}}{R_{G1} + R_{G2}} \end{split}$$

$$V_{G} = V_{RG2} = I_{RG2} R_{G2}$$

$$V_{G} = V_{DD} \frac{R_{G2}}{R_{G1} + R_{G2}}$$

$$V_{G} = 3.33 \text{ V}$$

$$V_{S} > V_{D}(V_{DS} < 0)$$
 $I_{D} < 0$
 $0 < V_{GS} < V_{P}(V_{P} > 0)$
Sat: $V_{GS} < V_{P}$; $V_{DS} < V_{GS} - V_{P}$

Transistor MOS canal P $V_p = 1,5 \text{ V}$ $I_{DSS} = 10 \text{ mA}$ $\lambda = 0,02 \text{ V}^{-1}$ $V_{DD} = 5 \text{ V}; R = 500 \Omega$ $R_{G1} = 1 \text{ M}\Omega; R_{G2} = 2 \text{ M}\Omega$

Diodo Zener $V_Z = 2,4 \text{ V}$ $I_{Zmin} = 10 \mu\text{A}$ $I_{Zmax} = 400 \text{ mA}$

Resolvemos la "malla de entrada"...

M1:
$$V_{DD} - V_{RG1} - V_{RG2} = 0$$

M2: $V_{DD} - V_{Z} + V_{DS} - V_{R} = 0$

M2:
$$V_{DD} - V_Z + V_{DS} - V_R = 0$$

$$\frac{\text{Diodo Zener}}{V_Z} = 2,4 \text{ V}$$
$$I_{Zmin} = 10 \text{ } \mu\text{A}$$
$$I_{Zmax} = 400 \text{ } \text{mA}$$

 $V_c > V_D(V_D < 0)$

 $0 < V_{cs} < V_{p}(V_{p} > 0)$

Sat: $V_{GS} < V_{P}$; $V_{DS} < V_{GS} - V_{P}$

Transistor MOS canal P

 $V_{0} = 1.5 \text{ V}$

 $I_{DSS} = 10 \text{ mA}$ $\lambda = 0.02 \text{ V}^{-1}$

 $V_{DD} = 5 \text{ V}; R = 500 \Omega$ $R_{c_1} = 1 \text{ M}\Omega$; $R_{c_2} = 2 \text{ M}\Omega$

$$V_{DD}$$

Calculamos la corriente del transistor...

M1:
$$V_{DD} - V_{RG1} - V_{RG2} = 0$$

M2: $V_{DD} - V_{Z} + V_{DS} - V_{R} = 0$

N1:
$$I_{RG1} = I_{RG2} = I_{RG}$$

M3:
$$V_{R1} - V_{7} + V_{GS} = 0$$

$$V_G = V_{DD} \frac{R_{G2}}{R_{G1} + R_{G2}} = 3.33 \text{ V}$$

$$0 < V_{GS} = 0.73 \text{ V} < V_P$$

Suponemos saturación y efecto de modulación del largo del canal despreciable...

$$I_D = -I_{Dss} \left(1 - \frac{V_{GS}}{V_D} \right)^2 = -2.61 \text{ mA}$$

... ¡luego debemos corroborarlo!

$$V_{S} > V_{D}(V_{DS} < 0)$$
 $I_{D} < 0$
 $0 < V_{GS} < V_{P}(V_{P} > 0)$
Sat: $V_{GS} < V_{P} : V_{DS} < V_{GS} - V_{P}$

$V_{p} = 1.5 \text{ V}$ $I_{DSS} = 10 \text{ mA}$ $\lambda = 0.02 \text{ V}^{-1}$ $V_{DD} = 5 \text{ V}; R = 500 \Omega$ $R_{GI} = 1 \text{ M}\Omega; R_{GI} = 2 \text{ M}\Omega$

Transistor MOS canal P

$$\frac{\text{Diodo Zener}}{V_Z} = 2,4 \text{ V}$$
$$I_{Zmin} = 10 \text{ } \mu\text{A}$$
$$I_{Zmax} = 400 \text{ } \text{mA}$$

Resolvemos para V_{DS} ...

M1:
$$V_{DD} - V_{RG1} - V_{RG2} = 0$$

M2: $V_{DD} - V_{Z} + V_{DS} - V_{R} = 0$

M2:
$$V_{DD} - V_Z + V_{DS} - V_R = 0$$

N1:
$$I_{RG1} = I_{RG2} = I_{RG}$$

M3:
$$V_{R1} - V_{Z} + V_{GS} = 0$$

$$V_G = V_{DD} \frac{R_{G2}}{R_{G1} + R_{G2}} = 3.33 \text{ V}$$

 $0 < V_{GS} = 0.73 \text{ V} < V_{P}$

$$I_D = -I_{Dss} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = -2.61 \text{ mA}$$

Calculamos la tensión de *Drain*:

$$\begin{split} &V_{D} = V_{R} = I_{R} \cdot R = -I_{D} \cdot R \\ &V_{D} = 2.61 \text{ mA} \cdot 0.5 \text{ k} \Omega = 1.31 \text{ V} \\ &V_{DS} = V_{D} - V_{S} = V_{D} - (V_{DD} - V_{Z}) \\ &V_{DS} = 1.31 \text{ V} - 5 \text{ V} + 2.4 \text{ V} = -1.29 \text{ V} \end{split}$$

 $V_{S} > V_{D}(V_{DS} < 0)$ $I_{D} < 0$ $0 < V_{GS} < V_{P}(V_{P} > 0)$ Sat: $V_{GS} < V_{P}$; $V_{DS} < V_{GS} - V_{P}$

Transistor MOS canal P $V_p = 1,5 \text{ V}$ $I_{DSS} = 10 \text{ mA}$ $\lambda = 0,02 \text{ V}^{-1}$ $V_{DD} = 5 \text{ V}; R = 500 \Omega$ $R_{GI} = 1 \text{ M}\Omega; R_{GI} = 2 \text{ M}\Omega$

$\frac{\text{Diodo Zener}}{V_Z} = 2,4 \text{ V}$ $I_{Zmin} = 10 \text{ } \mu\text{A}$ $I_{Zmax} = 400 \text{ } \text{mA}$

Verificamos...

M2:
$$V_{DD} - V_{RG1} - V_{RG2} - 0$$

M1:
$$V_{DD} - V_{RG1} - V_{RG2} = 0$$

$$_{RG2}$$
 – $_{U}$ –

$$V_{S} > V_{D}(V_{DS} < 0)$$

$$I_{D} < 0$$

$$0 < V_{S} < V_{S}(V_{DS} < 0)$$

 $0 < V_{cs} < V_{p}(V_{p} > 0)$ Sat: $V_{GS} < V_{P}$; $V_{DS} < V_{GS} - V_{P}$

N1:
$$I_{RG1} = I_{RG2} = I_{RG}$$

M3:
$$V_{R1} - V_{Z} + V_{GS} = 0$$

$$V_{GS} = 0$$

Transistor MOS canal P

$$V_G = V_{DD} \frac{R_{G2}}{R_{C1} + R_{C2}} = 3.33 \text{ V}$$

 $I_{DSS} = 10 \text{ mA}$ $\lambda = 0.02 \text{ V}^{-1}$

$$0 < V_{GS} = 0.73 \text{ V} < V_{P}$$

$$V_{DD}$$

 $V_{DD} = 5 \text{ V}; R = 500 \Omega$ $R_{GI} = 1 \text{ M}\Omega$; $R_{GI} = 2 \text{ M}\Omega$

Diodo Zener

 $V_{0} = 1.5 \text{ V}$

Verificamos saturación...

 $I_D = -I_{Dss} \left(1 - \frac{V_{GS}}{V_D} \right)^2 = -2.61 \text{ mA}$

 $V_{z} = 2.4 \text{ V}$ $I_{z_{min}} = 10 \, \mu A$ $I_{Zmax} = 400 \text{ mA}$

$$V_{DS}$$
=-1.29 V < V_{GS} - V_{P} =-0.77 V ...y el EMLC despreciable...

$$1 - \lambda (V_{DS} - V_{DS}) = 1.0104 \approx 1$$

...y que el Zenner funciona: $10 \mu A < I_z = -I_D = 2.61 \text{ mA} < 400 \text{ mA}$

$$R_{G1}$$
 R_{G2}
 V_{GS}
 V_{D}

JFET Canal P: Polarización

En resumen...

M1:
$$V_{DD} - V_{RG1} - V_{RG2} = 0$$

M2: $V_{DD} - V_{Z} + V_{DS} - V_{R} = 0$
N1: $I_{RG1} = I_{RG2} = I_{RG}$
M3: $V_{R1} - V_{Z} + V_{GS} = 0$
 $V_{G} = V_{DD} \frac{R_{G2}}{R_{G1} + R_{G2}} = 3.33 \text{ V}$
 $0 < V_{GS} = 0.73 \text{ V} < V_{P}$
 $I_{D} = -I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2} = -2.61 \text{ mA}$
 $V_{DS} = -1.29 \text{ V} < V_{DS_{sat}}$

Transistor MOS canal P $V_p = 1,5 \text{ V}$ $I_{DSS} = 10 \text{ mA}$ $\lambda = 0,02 \text{ V}^{-1}$ $V_{DD} = 5 \text{ V}; R = 500 \Omega$ $R_{GI} = 1 \text{ M}\Omega; R_{GI} = 2 \text{ M}\Omega$

Diodo Zener $V_z = 2,4 \text{ V}$ $I_{Zmin} = 10 \text{ } \mu\text{A}$ $I_{Zmax} = 400 \text{ } \text{mA}$

14