

Formation JavaScript

Romain Bohdanowicz

Twitter:@bioub

http://formation.tech/

Introduction

Présentations

Romain Bohdanowicz

Ingénieur EFREI 2008, spécialité en Ingénierie Logicielle

Expérience

Formateur/Développeur Freelance depuis 2006 Plus de 8000 heures de formation animées

Langages

Expert: HTML / CSS / JavaScript / PHP / Java

Notions: C / C++ / Objective-C / C# / Python / Bash / Batch

Certifications

PHP 5 / PHP 5.3 / PHP 5.5 / Zend Framework 1

Particularités

Premier site web à 12 ans (HTML/JS/PHP), Triathlète à mes heures perdues

Et vous?

Langages ? Expérience ? Utilité de cette formation ?

JavaScript IDEs

Version orientée Web de IntelliJ IDEA de l'éditeur JetBrains https://www.jetbrains.com/webstorm/

Licence: Commercial
 Licence entre 35 à 129 euros par an selon le profil et l'ancienneté.

 Version d'essai 30 jours.

Plugins:

Annuaire (642 en novembre 2016) : https://plugins.jetbrains.com/webStorm Langage de création : Java

Node js
There are no tasks to run before launch Node.js Node.js Remote Debug Nodeunlt PhoneGap/Cordova Spy-js Spy-js Spy-js for Node.js Show this page Activate tool window There are no tasks to run before launch

JavaScript IDEs - Atom

 IDE créé par Github, tourne sous Electron (Chromium + Node.js)

https://atom.io

► Licence : MIT

La licence open-source la plus permissive

Plugins:

Annuaire (5232 en novembre 2016) : https://atom.io/packages

Langage de création : JavaScript sous Node.js

Exemples: atom-ternjs, linter, JavaScript Snippets, autocomplete+, autoprefixer...)

JavaScript IDEs - Atom

JavaScript IDEs - Visual Studio Code

 IDE créé par Microsoft, tourne sous Electron (Chromium + Node.js)

http://code.visualstudio.com/

► Licence : MIT

La licence open-source la plus permissive

Plugins:

Annuaire (1867 en novembre 2016) : https://marketplace.visualstudio.com/VSCode Langage de création : JavaScript sous Node.js

Documentation
 https://code.visualstudio.com/docs

JavaScript IDEs - Visual Studio Code

JavaScript IDEs - Visual Studio Code

EditorConfig

- Permet de standardiser les configs des IDEs sur l'indentation et les retours à la ligne http://editorconfig.org
- Supporté par la plupart des IDE
- Il suffit de créer un fichier .editorconfig à la racine d'un projet

```
# EditorConfig is awesome: http://EditorConfig.org

# top-most EditorConfig file
root = true

# Unix-style newlines with a newline ending every file
[*]
end_of_line = lf
insert_final_newline = true
charset = utf-8
indent_style = space
indent_size = 4

# HTML + JS files
[*.{html,js}]
indent_size = 2
```


JavaScript

JavaScript - Introduction

- Langage créé en 1995 par Netscape
- Objectif: permettre le développement de scripts légers qui s'exécutent une fois le chargement de la page terminé
- Exemples de l'époque :
 - Valider un formulaire
 - Permettre du rollover
- Netscape ayant un partenariat avec Sun, nomma le langage JavaScript pour qu'il soit vu comme le petit frère de Java (dont il est inspiré syntaxiquement)
- Fin 1995 Microsoft introduit JScript dans Internet Explorer
- Une norme se créé en 1997 : ECMAScript

JavaScript - ECMAScript

- JavaScript est une implémentation de la norme ECMAScript 262
- La norme la plus récente est ECMAScript 2016, aussi appelée ECMAScript 7 ou ES7 (juin 2016) http://www.ecma-international.org/ecma-262/7.0/
- Le langage a très fortement évolué avec ECMAScript 2015 / ECMAScript 6 / ES6 (juin 2015)
 http://www.ecma-international.org/ecma-262/6.0/
- Navigateur actuels (octobre 2016) ~ 90% d'ES6
 Node.js 6 ~ 90% d'ES6
 Internet Explorer 11 ~ 10% d'ES6
- Pour connaître la compatibilité des moteurs JS : http://kangax.github.io/compat-table/
- Pour découvrir les nouveautés d'ECMAScript 2015 / ES6 http://es6-features.org/
- Pour développer dès aujourd'hui en ES6 ou ES7 et exécuter le code sur des moteurs plus anciens on peut utiliser des :
 - Compilateurs ou transpilateurs : Babel, Traceur, TypeScript... Transforment la syntaxe ES6 en ES5
 - Bibliothèques de polyfills : core-js, es6-shim, es7-shim... Recréent les méthodes manquante en JS

JavaScript - ECMAScript

JavaScript - Documentation

 La norme manque d'exemples et d'information sur les implémentations :

http://www.ecma-international.org/ecma-262/7.0/

 Mozilla fournit une documentation open-source sur le langage JavaScript et sur les APIs Web (utiliser la version anglaise qui est plus à jour):

https://developer.mozilla.org/en-US/docs/Web/JavaScript

 DevDocs permet de retrouver la documentation de Mozilla en mode hors-ligne

http://devdocs.io/javascript/

JavaScript - Syntaxe

- La syntaxe s'inspire de Java (lui même inspiré de C)
- JavaScript est sensible à la casse, attention aux majuscules/ minuscules!
- Les instructions se termine au choix par un point-virgule ou un retour à la ligne (même si les conventions incitent à la l'utilisation du point-virgule)
- 3 types de commentaires
 - // le commentaire s'arrête à la fin de la ligne
 - /* commentaire ouvrant/fermant */
 - /** Documentation */

JavaScript - Identifiants

- Les identifiants (noms de variables, de fonctions) doivent respecter les règles suivantes :
 - Contenir uniquement lettres Unicode, Chiffres, \$ et _
 - Ne commencent pas par un chiffre

Bonnes pratiques :

- ne pas utiliser d'accents (passage d'un éditeur à un autre)
- séparer les mots dans l'identifiant par des majuscules (camelCase), ou des _ (snake_case)
- → les identifiants qui commencent par des \$ ou _ sont utiliser par certaines conventions

Exemples:

- Validesi, maVariable, \$div, v1, prénom
- Invalides1var, ma-variable

JavaScript - Mots clés

- Mots clés (ES7) :
 - break, case, catch, class, const, continue, debugger, default, delete, do, else, export, extends, finally, for, function, if, import, in, instanceof, new, return, super, switch, this, throw, try, typeof, var, void, while, with, yield
- Mots clés (mode strict) : let, static
- Réservés pour une utilisation future : enum, await
- Réservés pour une utilisation future (mode strict):
 implements, interface, package, private, protected, public

JavaScript - Types

- Voici les types primitifs en JS
 - number
 - boolean
 - string
- Les types complexes
 - object
 - array
- Les types spéciaux
 - undefined
 - null

JavaScript - Types

Différence primitifs / complexes

En cas d'affectation ou de passage de paramètres, les primitifs ne sont pas modifiés, contrairement aux complexes

```
var boolean = false;
var number = 0;
var string = '';
var object = {};
var array = [];
var modify = function(b, n, s, o, a) {
 b = true;
 n = 1:
 s = 'Romain';
 o.prenom = 'Romain'; // object sera modifié également
  a.push('Romain'); // array sera modifié également
};
modify(boolean, number, string, object, array);
console.log(boolean); // false
console.log(number); // 0
console.log(string); // ''
console.log(object); // { prenom: 'Romain' }
console.log(array); // [ 'Romain' ]
```

JavaScript - Number

- Pas de type spécifique pour les entiers ou les non-signés
- Implémentés en 64 bits en précision double
- Infinity et NaN sont 2 valeurs particulières de type number

```
// decimal
console.log(11); // 11
console.log(11.11); // 11.11
// binary
console.log(0b11); // 3 (ES6)
// octal
console.log(011); // 9
console.log(0011); // 9 (ES6)
// hexadecimal
console log(0x11); // 17
// exponentiation
console.log(1e3); // 1000
console.log(typeof 0); // number
```

JavaScript - NaN

- NaN est une valeur de type number pour les opérations impossibles (convertions, nombres complexes...)
- Une comparaison avec NaN donne systématiquement false (y compris NaN === NaN)

```
console.log(NaN); // NaN
console.log(Math.sqrt(-1)); // NaN
console.log(Number('abc')); // NaN
console.log(Number(undefined)); // NaN
console.log(typeof Math.sqrt(-1)); // number
console.log(NaN == NaN); // false
console.log(NaN === NaN); // false
console.log(isNaN(Math.sqrt(-1))); // true
console.log(Number.isNaN(Math.sqrt(-1))); // true (ES6)
console.log(isFinite(Math.sqrt(-1))); // false
console.log(Number.isFinite(Math.sqrt(-1))); // false (ES6)
console.log(0 < NaN); // false</pre>
console.log(0 > NaN); // false
console.log(0 == NaN); // false
console.log(0 === NaN); // false
```

JavaScript - Infinity

 Infinity est une valeur de type number, une division par zéro est donc possible en JS

```
console.log(Infinity); // Infinity
console.log(1 / 0); // Infinity

console.log(typeof (1 / 0)); // number

console.log(isFinite(1 / 0)); // false
console.log(Number.isFinite(1 / 0)); // false (ES6)

console.log(isNaN(1 / 0)); // false
console.log(Number.isNaN(1 / 0)); // false (ES6)

console.log(0 < Infinity); // true
console.log(0 > Infinity); // false
console.log(0 == Infinity); // false
console.log(0 == Infinity); // false
```

JavaScript - Déclaration de variable

Mot clé var

Contrairement à certains langages, on ne déclare pas le type au moment de la création

```
var firstName = 'Romain';
var lastName = 'Bohdanowicz';
```

Déclaration sans var

En cas de déclaration sans le mot clé var, la variable devient globale. Le mode strict apparu en ECMAScript 5 empêche ce comportement.

ECMAScript 6

En ES6 une variable peut également se déclarer avec le mot clé let (portée de block), ou const (constante)

JavaScript - Undefined

Un identifiant qui n'est pas déclaré est typé undefined

```
var firstName;
console.log(firstName === undefined); // true
console.log(typeof firstName); // 'undefined'

console.log(lastName === undefined); // ReferenceError: lastName is not defined
console.log(typeof lastName); // 'undefined'
```


Affectation

Nom	Opérateur composé	Signification
Affectation	x = y	x = y
Affectation après addition	x += y	x = x + y
Affectation après soustraction	x -= y	x = x - y
Affectation après multiplication	x *= y	x = x * y
Affectation après division	x /= y	x = x / y
Affectation du reste	x %= y	x = x % y
Affectation après exponentiation	x **=y	x = x ** y

Comparaison

Opérateur	Description	Exemples qui renvoient true
Égalité (==)	Renvoie true si les opérandes sont égaux après conversion en valeurs de mêmes types.	3 == var1 "3" == var1 3 == '3'
Inégalité (!=)	Renvoie true si les opérandes sont différents.	var1 != 4 var2 != "3"
Égalité stricte (===)	Renvoie true si les opérandes sont égaux et de même type. Voir Object.is() et égalité de type en JavaScript.	3 === var1
Inégalité stricte (!==)	Renvoie true si les opérandes ne sont pas égaux ou s'ils ne sont pas de même type.	var1 !== "3" 3 !== '3'
Supériorité stricte (>)	Renvoie true si l'opérande gauche est supérieur (strictement) à l'opérande droit.	var2 > var1 "12" > 2
Supériorité ou égalité (>=)	Renvoie true si l'opérande gauche est supérieur ou égal à l'opérande droit.	var2 >= var1 var1 >= 3
Infériorité stricte (<)	Renvoie true si l'opérande gauche est inférieur (strictement) à l'opérande droit.	var1 < var2 "2" < "12"
Infériorité ou égalité (<=)	Renvoie true si l'opérande gauche est inférieur ou égal à l'opérande droit.	var1 <= var2 var2 <= 5

Arithmétiques

En plus des opérations arithmétiques standards (+, -, *, /), on trouve en JS :

Opérateur	Description	Exemple
Reste (%)	Opérateur binaire. Renvoie le reste entier de la division entre les deux opérandes.	12 % 5 renvoie 2.
Incrément (++)	Opérateur unaire. Ajoute un à son opérande. S'il est utilisé en préfixe (++x), il renvoie la valeur de l'opérande après avoir ajouté un, s'il est utilisé comme opérateur de suffixe (x++), il renvoie la valeur de l'opérande avant d'ajouter un.	Si x vaut 3, ++x incrémente x à 4 et renvoie 4, x++ renvoie 3 et seulement ensuite ajoute un à x.
Décrément ()	Opérateur unaire. Il soustrait un à son opérande. Il fonctionne de manière analogue à l'opérateur d'incrément.	Si x vaut 3,x décrémente x à 2 puis renvoie2, x renvoie 3 puis décrémente la valeur de x.
Négation unaire (-)	Opérateur unaire. Renvoie la valeur opposée de l'opérande.	Si x vaut 3, alors -x renvoie -3.
Plus unaire (+)	Opérateur unaire. Si l'opérande n'est pas un nombre, il tente de le +"3" renvoie 3. convertir en une valeur numérique. +true renvoie 1	
Opérateur d'exponentiation (**) (puissance)	Calcule un nombre (base) élevé à une puissance donnée (soit basepuissance)	2 ** 3 renvoie 8 10 ** -1 renvoie -1

Logiques

Opérateur	Usage	Description
ET logique (&&)	expr1 && expr2	Renvoie expr1 s'il peut être converti à false, sinon renvoie expr2. Dans le cas où on utilise des opérandes booléens, && renvoie true si les deux opérandes valent true, false sinon.
OU logique ()	expr1 expr2	Renvoie expr1 s'il peut être converti à true, sinon renvoie expr2. Dans le cas où on utilise des opérandes booléens, renvoie true si l'un des opérandes vaut true, si les deux valent false, il renvoie false.
NON logique (!)	!expr	Renvoie false si son unique opérande peut être converti en true, sinon il renvoie true.

Concaténation

```
console.log("ma " + "chaîne"); // affichera "ma chaîne" dans la console
```

Ternaire

```
var statut = (âge >= 18) ? "adulte" : "mineur";
```

- Voir aussi
 Opérateurs binaires, in, instanceof, delete, typeof...
- Attention au '+' qui donne priorité à la concaténation

```
console.log("1" + "1" + "1"); // "111"
console.log("1" + "1" + 1 ); // "111"
console.log("1" + 1 + 1 ); // "111"
console.log( 1 + 1 + "1"); // "21"
```


Priorités

Type d'opérateur	Opérateurs individuels
membre	. []
appel/création d'instance	() new
négation/incrémentation	! ~ - + ++ typeof void delete
multiplication/division	* / %
addition/soustraction	+ -
décalage binaire	<< >> >>>
relationnel	< <= > >= in instanceof
égalité	== != === !==
ET binaire	&
OU exclusif binaire	Λ
OU binaire	
ET logique	&&
OU logique	
conditionnel	?:
assignation	= += -= *= /= %= <<= >>= &= ^= =
virgule	,

JavaScript - Conversions

Conversions implicites

```
console.log(3 * '3'); // 9
console.log(3 + '3'); // '33'
console.log(!'texte'); // false
```

Conversions explicites

```
console.log(parseInt('33.33')); // 33
console.log(parseFloat('33.33')); // 33.33
console.log(Number('33.33')); // 33.33
console.log(Boolean('texte')); // true
console.log(String(33.33)); // '33.33'
```

JavaScript - API

Standard Built-in Objects

Les objets prédéfinies par le langages, voir la doc de Mozilla pour une liste exhaustive

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects

Ex: String, Array, Date, Math, RegExp, JSON...

JavaScript - Tableaux

Structure et API

En JS les tableaux ne sont pas des structures de données mais un type d'objet (une « classe »).

```
var firstNames = ['Romain', 'Eric'];
console.log(firstNames.length); // 2
console.log(firstNames[0]); // Romain
console.log(firstNames[firstNames.length - 1]); // Eric
// boucler sur tous les éléments (ES5)
firstNames.forEach(function(firstName) {
 console.log(firstName); // Romain Eric
});
var newLength = firstNames.push('Jean'); // ajoute Jean à la fin
var last = firstNames.pop(); // retire et retourne le dernier (Jean)
var newLength = firstNames.unshift("Jean") // ajoute Jean au début
var first = firstNames.shift(); // retire et retourne le premier (Jean)
var pos = firstNames.indexOf("Romain"); // indice de l'élément
var removedItem = firstNames.splice(pos, 1); // suppression d'un élément à
partir de l'indice pos
var shallowCopy = firstNames.slice(); // copie d'un tableau
```

JavaScript - Structures de contrôle

→ if ... else

```
if (typeof console === 'object') {
    console.log('console est un objet');
}
else {
    // oups
}
```

switch

```
switch (alea) {
    case 0:
        console.log('zéro');
        break;
    case 1:
    case 2:
    case 3:
        console.log('un, deux ou trois');
        break;
    default:
        console.log('entre quatre et neuf');
}
```

JavaScript - Structures de contrôle

while

```
var alea = Math.floor(Math.random() * 10);
while (alea > 0) {
   console.log(alea);
   alea = parseInt(alea / 2);
}
```

→ do ... while

```
do {
    var alea = Math.floor(Math.random() * 10);
}
while (alea % 2 === 1);
console.log(alea);
```

for

```
for (var i=0; i<10; i++) {
    aleas.push(Math.floor(Math.random() * 10));
}
console.log(aleas.join(', ')); // 6, 6, 7, 0, 5, 1, 2, 8, 9, 7</pre>
```


Fonctions en JavaScript

Fonctions en JavaScript - Introduction

- JavaScript est très consommateur de fonctions
 - réutilisation / factorisation
 - récursivité
 - fonction de rappel / écouteur
 - closure
 - module

Fonctions en JavaScript - Syntaxe

Function declaration

```
function addition(nb1, nb2) {
   return Number(nb1) + Number(nb2);
}
console.log(addition(2, 3)); // 5
```

Anonymous function expression

```
var addition = function (nb1, nb2) {
   return Number(nb1) + Number(nb2);
};
console.log(addition(2, 3)); // 5
```

Named function expression

```
var addition = function addition(nb1, nb2) {
   return Number(nb1) + Number(nb2);
};
console.log(addition(2, 3)); // 5
```

Fonctions en JavaScript - Function Declaration

- En JavaScript, les fonctions et variables sont hissées (hoisted) au début de la portée dans laquelle elles ont été déclarée.
- Il est donc possible d'appeler une fonction avant sa déclaration
- Pas d'erreur en cas de redéclaration de fonctions, la seconde écrase la première

```
function hello() {
  return 'Hello 1';
}

console.log(hello()); // 'Hello 2'

function hello() {
  return 'Hello 2';
}
```

Fonctions en JavaScript - Function Expression

- Avec une function expression, la variable est hissée en début de portée
- Mais la fonction est créée au moment où l'expression s'exécute

```
var hello = function () {
   return 'Hello 1';
};

console.log(hello()); // 'Hello 1'

var hello = function () {
   return 'Hello 2';
};
```

Fonctions en JavaScript - Constantes

 En ES6 on pourrait même empêcher la redéclaration grace au mot clé const

```
const hello = function () {
   return 'Hello 1';
};

console.log(hello());

// SyntaxError: Identifier 'hello' has already been declared
const hello = function () {
   return 'Hello 2';
};
```

Fonctions en JavaScript - Named Function Expression

Anonymous function expression vs Named function expression

Fonctions en JavaScript - Paramètres

Paramètres

Comme pour les variables, on ne déclare pas les types des paramètres d'entrées et de retours.

Les paramètres ne font pas partie de la signature de la fonction, seul l'identifiant compte, on peut donc appeler une fonction avec plus ou moins de paramètres que prévu.

```
var sum = function(a, b) {
   return a + b;
};

console.log(sum(1, 2)); // 3
console.log(sum('1', '2')); // '12'
console.log(sum(1, 2, 3)); // 3
console.log(sum(1)); // NaN
```

Fonctions en JavaScript - Exceptions

Exceptions

En cas d'utilisation anormale d'une fonction, on peut sortir en lançant une exception.

- N'importe quel type peut être envoyé via le mot clé throw, mais privilégier les objets de type Error et dérivés qui interceptent les fichiers, pile d'appel et numéro de lignes.
- On ne peut pas lancer intercepter une exception avec try..catch si elle est lancée dans un callback asynchrone

```
var sum = function(a, b) {
   if (typeof a !== 'number' && typeof b !== 'number') {
     throw new Error('sum needs 2 number')
   }
   return a + b;
};

try {
   sum('1', '2'); // sum needs 2 number
}
catch (e) {
   console.log(e.message);
}
```

Fonctions en JavaScript - Valeur par défaut

Valeur par défaut

Les paramètres non renseignées lors de l'appel d'une fonction reçoivent la valeur undefined.

```
// using undefined
var sum = function(a, b, c) {
   if (c === undefined) {
      c = 0;
   }
   return a + b + c;
};

console.log(sum(1, 2)); // 3

// using or
var sum = function(a, b, c) {
   c = c || 0;
   return a + b + c;
};

console.log(sum(1, 2)); // 3
```

Fonctions en JavaScript - Paramètres non déclarés

Fonction Variadique

Pour récupérer les paramètres supplémentaires (non déclarés), on peut utiliser la variable arguments. Cette variable n'étant pas un tableau, on ne peut pas utiliser les fonctions du type Array (même si des astuces existent).

```
var sum = function(a, b) {
  var result = a + b;

for (var i=2; i<arguments.length; i++) {
    result += arguments[i];
  }

return result;
};

console.log(sum(1, 2, 3, 4)); // 10</pre>
```

Fonctions en JavaScript - Imbrication

Fonctions imbriquées

En JavaScript on peut imbriquer les fonctions, la portée d'une fonction étant la fonction qui la contient.

```
var sumArray = function(array) {
  var sum = function(a, b) {
    return a + b;
  };
  return array.reduce(sum);
};

console.log(sumArray([1, 2, 3, 4])); // 10
console.log(typeof sum); // 'undefined'
```

Fonctions en JavaScript - Portées

Portées

Lorsque l'on imbrique des fonctions, les portées supérieures restent accessibles.

```
var a = function() {
  var b = function() {
    var c = function() {
      console.log(typeof a); // function
      console.log(typeof b); // function
      console.log(typeof c); // function
    };
  c();
  };
  b();
};
a();
```

Fonctions en JavaScript - Closure

Closure

Si 2 fonctions sont imbriquées et que la fonction interne est appelée en dehors (par valeur de retour ou asynchronisme), on parle de closure.

La portée des variables au moment du passage dans la fonction externe est sauvegardée.

```
var logClosure = function(msg) {
   return function() {
      console.log(msg);
                                                                                                   ▶ <a> ↑ ↑ ↑</a>
                                                              dosure.js ×
                                                                                                                             Async
   };
                                                                1 var logClosure = function(msg) {
                                                                                                   ▶ Watch
                                                                   return function() {
};

    Call Stack

                                                                     console.log(msg);
                                                                                                   (anonymous function)
                                                                                                                                           closure.js:3
                                                                                                     (anonymous function)
                                                                                                                                           closura.js:8
var logHello = logClosure('Hello');
                                                                7 var logHello = logClosure('Hello');
                                                                                                              Paused on a JavaScript breakpoint.
logHello();
                                                                8 logHello();

▼ Scope

                                                                                                   ▼ Local
                                                                                                     ► this: Window
                                                                                                   ♥ Closure (logClosure)
                                                                                                      msg: "Hello"

▼ Global

                                                                                                                                               Window
                                                                                                      Infinity: Infinity
                                                                                                     ► AnalyserNode: function AnalyserNode()
                                                                                                     ► AnimationEvent: function AnimationEvent()
```

Fonctions en JavaScript - Exemple de Closure

Sans Closure

```
// affiche 4 4 4 dans 1 seconde
for(var i = 1; i <= 3; i++) {
    setTimeout(function() {
        console.log(i);
    }, 1000);
}</pre>
```

Avec Closure

```
// affiche 1 2 3 dans 1 seconde
for(var i = 1; i <= 3; i++) {
    setTimeout(function(rememberI) {
        return function() {
            console.log(rememberI);
        };
    }(i), 1000);
}</pre>
```

Fonctions en JavaScript - Callbacks

Callback

Lorsqu'un fonction est passée en paramètre d'entrée d'une autre fonction en vue d'être appelée plus tard, on parle de callback.

Callback synchrone / asynchrone

Une fonction recevant un callback peut être synchrone, c'est à dire qu'elle doit s'exécuter entièrement avant d'appeler les instructions suivantes, ou asynchrone ce qui signifie que la fonction sera appelée dans un prochain passage de la « boucle d'événements »

```
var firstNames = ['Romain', 'Eric'];

firstNames.forEach(function(firstName) {
   console.log(firstName);
});

setTimeout(function() {
   console.log('Hello in 100ms');
}, 100);
```

Fonctions en JavaScript - Callback Synchrone

API recevant un callback synchrone

```
var firstNames = ['Romain', 'Eric'];
var forEachSync = function(array, callback) {
  for (var i=0; i<array.length; i++) {</pre>
    callback(array[i], i, array);
};
forEachSync(firstNames, function(firstName) {
  console.log(firstName);
});
console.log('After forEachSync');
// Outputs :
// Romain
// Eric
// After forEachSync
```

Fonctions en JavaScript - Callback Asynchrone

API recevant un callback asynchrone

```
var firstNames = ['Romain', 'Eric'];
var forEachASync = function(array, callback) {
  for (var i=0; i<array.length; i++) {</pre>
    setTimeout(callback, 0, array[i], i, array);
};
forEachASync(firstNames, function(firstName) {
  console.log(firstName);
});
console.log('After forEachASync');
// Outputs :
// After forEachASync
// Romain
// Eric
```

Fonctions en JavaScript - Boucle d'événements

- Les moteurs JS sont par défaut mono-thread et mono-processus, ils ne peuvent donc exécuter qu'une seule tâche à la fois.
- Une boucle d'événements permet de passer d'un callback à l'autre de manière très performante, ex : traiter le clic d'un bouton entre 2 étapes d'une animation
- JavaScript est non-bloquant, il stocke les événements à traiter sous la forme d'une file de message et appellera les callbacks lorsqu'il sera disponible
- Bonne pratique : les callbacks doivent avoir un temps d'exécution court pour ne pas ralentir l'appel des callbacks suivants

```
setTimeout(function() {
    console.log('1 fois dans 3 secondes');
}, 3000);

var intervalId = setInterval(function() {
    console.log('toutes les 2 secondes');
}, 2000);

setTimeout(function() {
    console.log('Bye bye');
    clearInterval(intervalId);
}, 15000);
```

Fonctions en JavaScript - Boucle d'événements

Boucle d'événements

Lorsqu'un programme JS est démarré, il tourne dans une boucle d'événements. Tant qu'il y a des appels en cours dans la pile d'appels, où des callbacks en attente dans la file de callback, on ne passe pas à la prochain itération. Dans le navigateur, un seul thread est en charge du JavaScript et du rendu, pour un rendu à 60FPS il faut qu'un passage dans la boucle JS + rendu ne dépasse pas 16,67ms.

What the heck is the event loop anyway? | JSConf EU 2014 https://www.youtube.com/watch?v=8aGhZQkoFbQ

Fonctions en JavaScript - Boucle d'événements

Boucle d'événements


```
setInterval(function interval() {
  console.log('interval 1ms')
}, 1000);

setTimeout(function timeout() {
  console.log('timeout 2ms')
}, 2000);
```

Fonctions en JavaScript - API Function

Object function

```
var contact = {
    prenom: 'Romain',
    nom: 'Bohdanowicz'
};

function saluer(prenom) {
    return 'Bonjour ' + prenom + ' je suis ' + this.prenom;
}

console.log(saluer('Eric')); // Bonjour Eric je suis undefined
console.log(saluer.call(contact, 'Eric')); // Bonjour Eric je suis Romain
console.log(saluer.apply(contact, ['Eric'])); // Bonjour Eric je suis Romain
```

Fonctions en JavaScript - Modules

Module

Contrairement à Node.js, il n'y a pas de portée de fichier dans le navigateur, pour éviter les conflits de nom, on utilise généralement des fonctions anonymes pour créer une portée de fichier, c'est la notion de Module.

Immediately Invoked Function Expression (IIFE)
 Lorsque

```
(function($, global) {
   'use strict';

function MonBouton(options) {
    this.options = options || {};
    this.value = options.value || 'Valider';
}

MonBouton.prototype.creer = function(container) {
    $(container).append('<button>'+this.value+'</button>')
};

global.MonBouton = MonBouton;
}(jQuery, window));
```

Fonctions en JavaScript - Exercice

Jeu du plus ou moins

- Générer un entier aléatoire entre 0 et 100 (API Math sur MDN)
- Demander et récupérer la saisie, afficher si le nombre est plus grand, plus petit ou trouvé (API Readline sur Node.js)
- Pouvoir trouver en plusieurs tentative (problème d'asynchronisme)
- Stocker les essais dans un tableau et les réafficher entre chaque tour (API Array sur MDN)
- Afficher une erreur si la saisie n'est pas un nombre (API Number sur MDN)

JavaScript Orienté Objet

JavaScript Orienté Objet - Introduction

Paradigme

Par opposition à un modèle objet orienté classe, le modèle objet de JavaScript est orienté prototype

Classe

La notion de classe ou d'interface n'existe pas (seulement dans les docs où sous la forme de sucre syntaxique)

Modèle statique vs Modèle dynamique

Il n'y a pas de définition statique du type d'un objet, l'ajout de propriété où de méthode se fait dynamiquement à la création de l'objet

JavaScript Orienté Objet - Objets préinstanciés

▸ Il y a un certain nombre d'objet définis au niveau du langage

```
Math.random();
JSON.stringify({});
console.log(typeof Math); // object
console.log(typeof JSON); // object
```

 D'autres par l'environnement d'exécution (Node.js, Navigateur, Mobile...)

```
console.log(typeof console); // object (dans le navigateur et Node.js)
console.log(typeof document); // object (dans le navigateur)
```

JavaScript Orienté Objet - Extensibilité

Extensibilité

On peut étendre (sauf verrou), n'importe quel objet. Etendre les objets standards est cependant considéré comme une mauvaise pratique (sauf polyfill). Attention à la casse lorsque vous modifiez une propriété.

```
Math.sum = function(a, b) {
  return a + b;
};
console.log(Math.sum(1, 2)); // 3
```

On peut également modifier ou supprimer des propriétés

```
var randomBackup = Math.random;
Math.random = function() {
   return 0.5;
};

console.log(Math.random()); // 0.5
Math.random = randomBackup;
console.log(Math.random()); // quelque chose aléatoire comme 0.24554522

delete Math.sum;
console.log(Math.sum); // undefined
```

JavaScript Orienté Objet - Objets ponctuels

Création d'un objet avec l'objet global Object :

```
var instructor = new Object();
instructor.firstName = 'Romain';
instructor.hello = function() {
    return 'Hello my name is ' + this.firstName;
};
console.log(instructor.hello()); // Hello my name is Romain
```

 Création d'un objet avec la syntaxe Object Literal (recommandé):

```
var instructor = {
    firstName: 'Romain',
    hello: function() {
       return 'Hello my name is ' + this.firstName;
    }
};
console.log(instructor.hello()); // Hello my name is Romain
```

JavaScript Orienté Objet - Opérateurs

- Accès aux objets possible :
 - Avec l'opérateur.
 - Avec des crochets

```
var instructor = {
    firstName: 'Romain',
    hello: function() {
        return 'Hello my name is ' + this.firstName;
    }
};

instructor.firstName = 'Jean';
console.log(instructor.hello()); // Hello my name is Jean

instructor['firstName'] = 'Eric';
console.log(instructor['hello']()); // Hello my name is Eric
```

JavaScript Orienté Objet - Fonction Constructeur

En utilisant une fonction constructeur (avec closure):

```
var Person = function (firstName) {
    this.firstName = firstName;
    this.hello = function () {
        // firstName existe aussi grâce à la closure
        return 'Hello my name is ' + this.firstName;
    };
};
var instructor = new Person('Romain');
console.log(instructor.hello()); // Hello my name is Romain
console.log(typeof instructor); // object
console.log(instructor instanceof Object); // true
console.log(instructor instanceof Person); // true
for (var prop in instructor) {
    if (instructor.hasOwnProperty(prop)) {
        console.log(prop); // firstName puis hello
```

JavaScript Orienté Objet - Fonction Constructeur

En utilisant une fonction constructeur + son prototype :

```
var Person = function(firstName) {
    this.firstName = firstName;
};
Person.prototype.hello = function () {
    return 'Hello my name is ' + this.firstName;
};
var instructor = new Person('Romain');
console.log(instructor.hello()); // Hello my name is Romain
console.log(typeof instructor); // object
console.log(instructor instanceof Object); // true
console.log(instructor instanceof Person); // true
for (var prop in instructor) {
    if (instructor.hasOwnProperty(prop)) {
        console.log(prop); // firstName
```

JavaScript Orienté Objet - Héritage

En utilisant une fonction constructeur + son prototype :

```
var Instructor = function(firstName, speciality) {
   Person apply (this, arguments); // héritage des propriétés de l'objet (recopie
dynamique)
    this.speciality = speciality;
Instructor.prototype = new Person; // héritage du type
// Redéfinition de méthode
Instructor.prototype.hello = function() {
   // Appel de la méthode parent
    return Person.prototype.hello.call(this) + ', my speciality is ' + this.speciality;
};
var instructor = new Instructor('Romain', 'JavaScript');
console.log(instructor.hello()); // Hello my name is Romain
console.log(typeof instructor); // object
console.log(instructor instanceof Object); // true
console.log(instructor instanceof Person); // true
console.log(instructor instanceof Instructor); // true
for (var prop in instructor) {
    if (instructor.hasOwnProperty(prop)) {
        console.log(prop); // firstName, speciality
```

JavaScript Orienté Objet - Prototype

Définition Wikipedia :

La programmation orientée prototype est une forme de programmation orientée objet sans classe, basée sur la notion de prototype. Un prototype est un objet à partir duquel on crée de nouveaux objets.

- Comparaison des modèles à classes et à prototypes
 - Objets à classes :
 - Une classe définie par son code source est statique;
 - Elle représente une définition abstraite de l'objet;
 - Tout objet est instance d'une classe;
 - L'héritage se situe au niveau des classes.
 - Objets à prototypes :
 - Un prototype défini par son code source est mutable;
 - Il est lui-même un objet au même titre que les autres;
 - Il a donc une existence physique en mémoire;
 - Il peut être modifié, appelé;
 - Il est obligatoirement nommé;
 - Un prototype peut être vu comme un exemplaire modèle d'une famille d'objet;
 - Un objet hérite des propriétés (valeurs et méthodes) de son prototype;

JavaScript Orienté Objet - Prototype

- En ECMAScript/JavaScript, l'écriture foo.bar s'interprète de la façon suivante :
 - 1. Le nom foo est recherché dans la liste des identifieurs déclarés dans le contexte d'appel de fonction courant (déclarés par var, ou comme paramètre de la fonction);
 - 2. S'il n'est pas trouvé:
 - Continuer la recherche (retour à l'étape 1) dans le contexte de niveau supérieur (s'il existe),
 - Sinon, le contexte global est atteint, et la recherche se termine par une erreur de référence.
 - 3. Si la valeur associée à foo n'est pas un objet, il n'a pas de propriétés ; la recherche se termine par une erreur de référence.
 - 4. La propriété bar est d'abord recherchée dans l'objet lui-même ;
 - 5. Si la propriété ne s'y trouve pas :
 - Continuer la recherche (retour à l'étape 4) dans le prototype de cet objet (s'il existe);
 - Si l'objet n'a pas de prototype associé, la valeur indéfinie (undefined) est retournée;
 - 6. Sinon, la propriété a été trouvée et sa référence est retournée.

JavaScript Orienté Objet - JSON

- JSON, JavaScript Object Notation est la sérialisation d'un objet JavaScript
- Seuls les types string, number, boolean, array et regexp sont sérialisable, les fonctions et prototype sont perdus
- On se sert de ce format pour échanger des données entre 2 programmes ou pour créer de la config
- Le format résultant est proche de Object Literal, les clés sont obligatoirement entre guillemets "", un code JSON est une syntaxe Object Literal valide

JavaScript Orienté Objet - JSON

 JavaScript depuis ECMAScript 5 fourni l'objet global JSON qui contient 2 méthodes, parse (désérialiser) et stringify (sérialiser)

```
var contact = {
    prenom: 'Romain',
    nom: 'Bohdanowicz'
};

var json = JSON.stringify(contact);
console.log(json); // {"prenom":"Romain","nom":"Bohdanowicz"}

var object = JSON.parse(json);
console.log(object.prenom); // Romain
```

JavaScript Orienté Objet - Exercice

- Reprendre le jeu du plus ou moins
- Créer une fonction constructeur Jeu recevant un objet en paramètres d'entrée
- Créer une méthode jouer() tel que le code suivant soit fonctionnel

```
'use strict';
const Jeu = ...;
const jeu = new Jeu({
   min: 0,
   max: 100
});
jeu.jouer();
```


ECMAScript 5.1

ECMAScript 5.1 - Introduction

- Après ECMAScript 3, le groupe ECMAScript avance sur une nouvelle version, ECMAScript 4 qui inclut notamment les classes et les types.
- ES4 sera supporté par ActionScript (AS3) mais jamais par les navigateurs qui travaillent à une version 3.1 qui s'appellera 5 puis 5.1 après corrections pour ne pas prêter à confusion.
- Compatibilité

CH13+, FF4+, SF5.1+, OP11.6+, IE9+ (10+ pour le mode strict, 8+ pour l'objet global JSON)

http://kangax.github.io/compat-table/es5/

Aperçu des nouvelles fonctionnalités
 https://dev.opera.com/articles/introducing-ecmascript-5-1/

- Le mode strict est un mode d'exécution apparu en ECMAScript
 5.1 qui vient limiter un certain nombre de mauvaises pratiques ou de problèmes de sécurité.
- Par opposition au mode strict (strict mode), on parle parfois de sloppy mode

https://developer.mozilla.org/en-US/docs/Glossary/Sloppy_mode

- Activer le mode strict
 - Globalement

```
'use strict';
// ... code strict...
```

A partir d'une ligne

```
// ... code sloppy ...
'use strict';
// ... code strict...
```

Dans une fonction

```
(function () {
  'use strict';
  // ... code strict ...
}());
```


- Mots clés réservés
 - Sloppy Mode

```
var let = 'Hello';
console.log(let);
```

```
'use strict';

var let = 'Hello'; // SyntaxError: Unexpected strict mode reserved word
console.log(let);
```


- Oubli du mot clé var
 - Sloppy Mode

```
(function() {
   // firstName est globale
   firstName = 'Romain';
}());
console.log(firstName); // Romain
```

```
(function() {
  'use strict';
  // ReferenceError: firstName is not defined
  firstName = 'Romain';

  // ReferenceError: i is not defined
  for (i=0; i<10; i++) {}
}());</pre>
```


- Désactivation de with
 - Sloppy Mode

```
var int, floor = function(n) {
  return parseInt(String(n));
};
with (Math) {
  int = floor(random() * 101); // floor global ? Math.floor ?
}
console.log(int); // 42
```

```
'use strict';

var entier, floor = function(n) {
   return parseInt(String(n));
};

with (Math) { // SyntaxError: Strict mode code may not include a with statement
   entier = floor(random() * 101);
}

console.log(entier); // 42
```


- Pas d'identifiant dans eval
 - Sloppy Mode

```
eval('var sum = 1 + 2');
console.log(sum); // 3
```

```
'use strict';
eval('var sum = 1 + 2');
console.log(sum); // ReferenceError: sum is not defined
```


- Supprimer des variables
 - Sloppy Mode

```
var firstName = 'Romain';
var contact = {
  firstName: 'Romain'
};

delete contact.firstName;
console.log(contact.firstName); // undefined

delete firstName;
console.log(firstName); // Romain
```

```
'use strict';

var firstName = 'Romain';
var contact = {
   firstName: 'Romain'
};

delete contact.firstName;
console.log(contact.firstName); // undefined

delete firstName; // SyntaxError: Delete of an unqualified identifier in strict mode.
console.log(firstName); // Romain
```


Utilisation de this

Sloppy Mode

```
var Contact = function(firstName) {
   this.firstName = firstName;
};

var contact = Contact('Romain');

console.log(global.firstName); // Romain (Node.js)
console.log(window.firstName); // Romain (Browser)
```

```
'use strict';

var Contact = function(firstName) {
   this.firstName = firstName; // TypeError: Cannot set property 'firstName' of
   undefined
};

var contact = Contact('Romain');

console.log(global.firstName); // undefined
   console.log(window.firstName); // undefined
```

ECMAScript 5.1 - Immutable globals

Nouvelles variables globales non modifiables

```
console.log(undefined);
console.log(NaN);
console.log(Infinity);
```

ECMAScript 5.1 - Array

Programmation fonctionnelle

Paradigme de programmation dans lequel les fonctions ont un rôle central et viennent remplacer les concepts de programmation impérative comme les variables, boucles, etc...

Tableaux

Le type Array contient depuis ES5 quelques fonction qui permettent ce type de programmation (filter, map, sort, reverse, reduce, forEach...)

```
var firstNames = ['Eric', 'Romain', 'Jean', 'Eric', 'Jean'];

firstNames
    .filter(firstName => firstName.length === 4) // filtre ceux de 4 lettres
    .map(firstName => firstName.toUpperCase()) // transforme en majuscule
    .sort() // trie croissant
    .reverse() // inverse l'ordre
    .reduce((firstNames, firstName) => { // dédoublone
        if (!firstNames.includes(firstName)) {
            firstNames.push(firstName)
        }
        return firstNames;
    }, [])
    .forEach(firstName => console.log(firstName)); // affiche

// Outputs :
// JEAN
// ERIC
```

ECMAScript 5.1 - Function.prototype.bind

 La méthode bind d'une fonction retourne une nouvelle fonction sur laquelle sera liée une nouvelle valeur this

```
var contact = {
  firstName: 'Romain'
};

var hello = function() {
  return 'Hello my name is ' + this.firstName;
};

console.log(hello()); // Hello my name is undefined
var helloContact = hello.bind(contact);
console.log(helloContact()); // Hello my name is Romain
```

ECMAScript 5.1 - JSON

 JavaScript depuis ECMAScript 5 fourni l'objet global JSON qui contient 2 méthodes, parse (désérialiser) et stringify (sérialiser)

```
var contact = {
    prenom: 'Romain',
    nom: 'Bohdanowicz'
};

var json = JSON.stringify(contact);
console.log(json); // {"prenom":"Romain","nom":"Bohdanowicz"}

var object = JSON.parse(json);
console.log(object.prenom); // Romain
```

ECMAScript 5.1 - get syntax

 On peut masquer une méthode derrière une propriété en lecture

```
var contact = {
  firstName: 'Romain',
  lastName: 'Bohdanowicz',
  get fullName() {
    return this.firstName + ' ' + this.lastName;
  }
};
console.log(contact.fullName); // Romain Bohdanowicz
```

ECMAScript 5.1 - set syntax

 On peut également masquer une méthode derrière l'écriture d'une propriété

```
var contact = {
  firstName: 'John',
  lastName: 'Doe',
  set fullName(fullName) {
    var parts = fullName.split(' ');
    this.firstName = parts[0];
    this.lastName = parts[1];
  }
};

contact.fullName = 'Romain Bohdanowicz';
console.log(contact.firstName); // Romain
console.log(contact.lastName); // Bohdanowicz
```

ECMAScript 5.1 - Object.getPrototypeOf

 Object.getPrototypeOf permet de retrouver le prototype d'un objet déjà instancié

```
var Person = function (firstName) {
   this.firstName = firstName;
};

Person.prototype.hello = function () {
   return 'Hello my name is ' + this.firstName;
};

var instructor = new Person('Romain');
console.log(Object.getPrototypeOf(instructor)); // Person { hello: [Function] }
console.log(Person.prototype); // Person { hello: [Function] }
```

ECMAScript 5.1 - Object.defineProperty

Permet une définition plus fine d'une propriété

```
var contact = { firstName: 'Romain' };
Object.defineProperty(contact, 'lastName', {
  value: 'Bohdanowicz',
  writable: false.
  enumerable: false,
  configurable: false
});
// writable: false
contact.lastName = 'Doe';
console.log(contact.lastName); // Bohdanowicz
// enumerable: false
for (var prop in contact) {
  console.log(prop); // firstName
// enumerable: false
console.log(JSON.stringify(contact)); // {"firstName":"Romain"}
// configurable: false
try {
  Object.defineProperty(contact, 'lastName', { value: 'Doe' });
catch (e) {
  console.log(e.message); // Cannot redefine property: lastName
```

ECMAScript 5.1 - Object.defineProperty

 En mode strict, une propriété en lecture seule lance une exception en écriture.

```
'use strict';
var contact = {
  firstName: 'Romain'
};
Object.defineProperty(contact, 'lastName', {
  value: 'Bohdanowicz',
 writable: false,
  enumerable: false,
  configurable: false
});
// writable: false
try {
  contact.lastName = 'Doe';
catch (e) {
  console.log(e.message); // Cannot assign to read only property 'lastName' of
object '#<0bject>'
```

ECMAScript 5.1 - Object.defineProperty

 On peut masquer des méthodes derrière des propriétés en lecture/écriture

```
var contact = {
 firstName: 'Romain',
 lastName: 'Bohdanowicz'
};
Object.defineProperty(contact, 'fullName', {
  set: function(fullName) {
    var parts = fullName.split(' ');
    this.firstName = parts[0];
    this.lastName = parts[1];
  },
  get: function() {
    return this.firstName + ' ' + this.lastName;
});
console.log(contact.fullName); // Romain Bohdanowicz
contact.fullName = 'John Doe':
console.log(contact.firstName); // John
console.log(contact.lastName); // Doe
```

ECMAScript 5.1 - Object.keys

 Object.keys permet de lister les propriétés propres et énumérables

```
var Person = function (firstName) {
   this.firstName = firstName;
};

Person.prototype.hello = function () {
   return 'Hello my name is ' + this.firstName;
};

var instructor = new Person('Romain');
console.log(Object.keys(instructor)); // [ 'firstName' ]
```

ECMAScript 5.1 - Object.preventExtensions

Il est possible d'empêcher l'extension d'un objet

```
var contact = {
   firstName: 'Romain'
};

Object.preventExtensions(contact);
console.log(Object.isExtensible(contact)); // false

contact.name = 'Bohdanowicz';
console.log(contact.name); // undefined
```

ECMAScript 5.1 - Object.preventExtensions

 En mode strict, écrire dans un objet non-extensible provoque une exception

```
'use strict';

var contact = {
   firstName: 'Romain'
};

Object.preventExtensions(contact);
console.log(Object.isExtensible(contact)); // false

contact.name = 'Bohdanowicz';
console.log(contact.name); // TypeError: Can't add property name, object is not extensible
```

ECMAScript 5.1 - Verrous

Résumé des appels aux méthodes Object.preventExtensions,
 Object.seal et Object.freeze

Function	L'objet devient non extensible	configurable à false sur chaque propriété	writable à false sur chaque propriété
Object.preventExtensions	Oui	Non	Non
Object.seal	Oui	Oui	Non
Object.freeze	Oui	Oui	Oui

ECMAScript 5.1 - Héritage en ES5

 Grâce à Object.create, l'héritage se fait sans dupliquer les propriétés dans le prototype.

```
var Instructor = function (firstName, speciality) {
 Person apply(this, arguments); // héritage des propriétés de l'objet (recopie
dynamique)
  this.speciality = speciality;
};
Instructor.prototype = Object.create(Person.prototype); // héritage du type et des
méthodes
Instructor.prototype.constructor = Instructor;
// Redéfinition de méthode
Instructor.prototype.hello = function () {
  // Appel de la méthode parent
  return Person.prototype.hello.call(this) + ', my speciality is ' +
this speciality;
};
var instructor = new Instructor('Romain', 'JavaScript');
console.log(instructor.hello()); // Hello my name is Romain
console.log(typeof instructor); // object
console.log(instructor instanceof Object); // true
console.log(instructor instanceof Person); // true
console.log(instructor instanceof Instructor); // true
console.log(instructor.constructor);
```


ECMAScript 6

ECMAScript 6 - Introduction

 ECMAScript 6, aussi connu sous le nom ECMAScript 2015 ou ES6 est la plus grosse évolution du langage depuis sa création (juin 2015)

http://www.ecma-international.org/ecma-262/6.0/

- Le langage est enfin adapté à des application JS complexes (modules, promesses, portées de blocks...)
- Pour découvrir les nouveautés d'ECMAScript 2015 / ES6 http://es6-features.org/

ECMAScript 6 - Compatibilité

- Compatibilité (novembre 2016) :
 - Dernière version de Chrome/Opera, Edge, Firefox, Safari : ~ 90%
 - Node.js 6 et 7 : ~ 90% d'ES6
 - Internet Explorer 11 : ~ 10% d'ES6
- Pour connaître la compatibilité des moteurs JS : http://kangax.github.io/compat-table/
- Pour développer dès aujourd'hui en ES6 ou ES7 et exécuter le code sur des moteurs plus anciens on peut utiliser des :
 - Compilateurs ou transpilateurs : Babel, Traceur, TypeScript... Transforment la syntaxe ES6 en ES5
 - Bibliothèques de polyfills : core-js, es6-shim, es7-shim... Recréent les méthodes manquante en JS

ECMAScript 6 - Portées de bloc

 On peut remplacer le mot-clé var, par let et obtenir ainsi une portée de bloc

```
for (var i=0; i<3; i++) {}
console.log(typeof i); // number

for (let j=0; j<3; j++) {}
console.log(typeof j); // undefined</pre>
```

ECMAScript 6 - Portées de bloc fonction

 La portée de bloc s'applique également aux fonction en mode strict

```
'use strict';
if (true) {
  function test() {}
  console.log(typeof test); // function
}
console.log(typeof test); // undefined
```

ECMAScript 6 - new.target

- A l'instar de arguments, new.target est créé automatiquement lors de l'appel à une fonction fait avec new
- Contient la fonction utilisé ou undefined si pas d'appel avec new

```
var Contact = function() {
   console.log(new.target);
};

var c1 = new Contact(); // [Function: Contact]
var c2 = Contact(); // undefined
```

ECMAScript 6 - Fonctions fléchées

Les fonctions fléchés sont plus courtes syntaxiquement

```
var firstNames = ['Eric', 'Romain', 'Jean', 'Eric', 'Jean'];

firstNames.filter(firstName => firstName.length === 4)
   .map(firstName => firstName.toUpperCase())
   .sort()
   .reverse()
   .reduce((firstNames, firstName) => {
      if (!firstNames.includes(firstName)) {
        firstNames.push(firstName)
      }
    return firstNames;
   }, [])
   .forEach(firstName => console.log(firstName));
```

ECMAScript 6 - Fonctions fléchées

- Les fonctions fléchés ne lient pas les variables this, arguments ou new.target
- Elles ne doivent pas être utilisée pour déclarer des méthodes!

```
var contact = {
  firstName: 'Romain',
  helloAsyncFunctionExpression: function() {
    setTimeout(function() {
      console.log('Hello my name is ' + this.firstName);
    }, 1000);
  },
  helloAsyncArrow: function() {
    setTimeout(() => {
      console.log('Hello my name is ' + this.firstName);
    }, 1000);
  }
};
contact.helloAsyncFunctionExpression(); // Hello my name is undefined contact.helloAsyncArrow(); // Hello my name is Romain
```

ECMAScript 6 - Default Params

- Les paramètres d'entrées peuvent maintenant recevoir un valeur par défaut si rien ne leur est transmis
- La valeur par défaut peut être un appel à une fonction une création d'objet

```
var sum = function(a, b, c = 0) {
    return a + b + c;
};

console.log(sum(1, 2, 3)); // 6
console.log(sum(1, 2)); // 3

var frDate = function(date = new Date()) {
    var day = (date.getDate() < 10) ? '0' + date.getDate() : date.getDate();
    var month = (date.getMonth() + 1 < 10) ? '0' + (date.getMonth() + 1) :
    date.getMonth() + 1;
    var year = date.getFullYear();
    return day + '/' + month + '/' + year;
};

console.log(frDate(new Date('1985-10-01'))); // 01/10/1985
console.log(frDate()); // 14/11/2016</pre>
```

ECMAScript 6 - Rest Parameters

 Un Rest parameter permet de récupérer des arguments multiple dans une seul variable de type Array.

```
var sum = function(a, b, ...c) {
  var result = a + b;

  c.forEach(n => result += n);

  return result;
};

var sum = function(...n) {
  return n.reduce((a, b) => a + b);
};

console.log(sum(1, 2, 3, 4)); // 10
```

ECMAScript 6 - Spread Parameter

 Le Spread parameter permet de renseigner plusieurs arguments avec un seul paramètres de type Array

```
var sum = function(a, b, c, d) {
  return a + b + c + d;
};
var nbs = [1, 2, 3, 4];
console.log(sum(...nbs)); // 10
```

ECMAScript 6 - Boucle for..of

 Permet de boucler sur des objets itérables (Array, Map, Set, String, TypedArray, arguments)

```
var firstNames = ['Romain', 'Eric'];
for (let firstName of firstNames) {
  console.log(firstName);
}
```

ECMAScript 6 - Symbol

- Symbol est un nouveau type primitif qui n'a pas de syntaxe litéral, seul l'appel à la fonction Symbol est possible
- 2 appel successif à Symbol donneront 2 valeurs uniques

```
var locale = {
  fr_FR: Symbol(),
  en_US: Symbol()
var translations = {
  [locale.fr_FR]: {
    'hello': 'bonjour',
    'cat': 'chat'
  [locale.en_US]: {
    'hello': 'hello',
    'cat': 'cat'
};
var translate = function (key, locale = locales.en_US) {
  return translations[locale][key];
};
console.log(translate('hello', locale.fr_FR)); // bonjour
```

ECMAScript 6 - Symbol

 Symbol permet également de redéfinir des comportements du langage, comme la boucle for..of avec Symbol.iterator

```
class Collection {
  constructor() {
    this.list = [];
  add(elt) {
    this.list.push(elt);
    return this;
 *[Symbol.iterator]() {
    for (let elt of this.list) {
      yield elt;
let firstNames = new Collection();
firstNames.add('Romain').add('Eric');
for (let firstName of firstNames) {
  console.log(firstName); // Romain Eric
```

ECMAScript 6 - Exercice

- Reprendre le jeu du plus ou moins
- Le transformer en utilisant les mots clés class, let et les fonctions fléchées

JavaScript inventé en 1995 par Netscape

Objectif : créer des interactions côté client, après chargement de la page Exemple de l'époque :

- Menu en rollover (image ou couleur change au survol)
- Validation de formulaire

JavaScript aujourd'hui

- Permet la création d'application front-end, back-end, en ligne de commande, application de bureau
- Ces applications peuvent contenir plusieurs centaines de milliers de lignes de codes
- Il faut faciliter le travail collaboratif, en plusieurs fichiers et en limitant les risques de conflit

Immediately-invoked function expression (IIFE)

```
// jquery-button.js
(function($, global) {
    'use strict';

function MonBouton(options) {
        this.options = options || {};
        this.value = options.value || 'Valider';
    }

MonBouton.prototype.creer = function(container) {
        $(container).append('<button>'+this.value+'</button>')
};

global.MonBouton = MonBouton;
}(jQuery, window));
```

- Une fonction expression anonyme appelée immédiatement
 - Limite la portée des variables
 - Permet de renommer localement des dépendances

Utilisation

```
<!DOCTYPE html>
<html lang="fr">
<head>
    <meta charset="UTF-8">
    <title>Exemple</title>
</head>
<body>
    <div id="container"></div>
    <script src="http://code.jquery.com/jquery-1.11.3.min.js"></script>
    <script src="jquery-button.js"></script>
    <script>
        var button = new MonBouton({
            value: 'Cliquez ici'
        });
        button.creer('#container');
    </script>
</body>
</html>
```

Inconvénients

- L'ordre d'inclusion des scripts doit être connu (ici jQuery avant jquery-button)
- Les modules reçoivent leur dépendances via des variables globales (jQuery, window)
- Les modules exposent leur code via des variables globales (global.MonBouton)

Modules YUI

Yahoo User Interface library (plus maintenue depuis mi-2014) Première bibliothèque à introduire la notion de modules http://yuilibrary.com/yui/docs/yui/create.html

```
// yui-button.js
YUI().add('mon-bouton', function (Y) {
   'use strict';

function MonBouton(options) {
    this.options = options || {};
    this.value = options.value || 'Valider';
   }

MonBouton.prototype.creer = function(container) {
    Y.one(container).append('<button>'+this.value+'</button>')
   };

Y.MonBouton = MonBouton;
}, '0.0.1', {
   requires: ['node']
});
```

- Un module YUI décrit ses dépendances (requires: ['node'] pour accéder aux méthodes on et append)
- Pas d'utilisation de variables globales

Utilisation

```
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Exemple</title>
</head>
<body>
    <div id="container"></div>
    <script src="http://yui.yahooapis.com/3.18.1/build/yui/yui-min.js"></script>
    <script>
        YUI({
            modules: {
                'mon-bouton': 'yui-button.js'
        }).use('mon-bouton', function (Y) {
            var button = new Y.MonBouton({
                value: 'Cliquez ici'
            });
            button.creer('#container');
        });
    </script>
</body>
</html>
```


CommonJS

Projet visant à créer des API communs pour du développement JavaScript hors navigateur (console, GUI...)

Exemple: standardiser l'accès aux fichiers

Le projet propose une norme pour le chargement de modules utilisé entre autre par Node.js

http://www.commonjs.org/specs/modules/1.0/

Création d'un module

```
// calculette.js
exports.ajouter = function(nb1, nb2) {
  return Number(nb1) + Number(nb2);
};
```

 Les modules commons JS exposent à l'intérieur d'un module une variable exports de type object (et qui peut être écrasée si besoin)

Utilisation

```
// main.js
var calc = require('./Calculette');
console.log(calc.ajouter(2, 3)); // 5
```

- CommonJS propose une méthode require pour le chargement de modules, dont le retour correspond à la variable exports
- Cependant CommonJS ne s'applique pas au navigateur où le chargement de fichiers se fait via la balise script

- Browserify
 - Permet de charger des modules CommonJS côté client.
- Installation:
 npm install -g browserify
- Transormation en code client : browserify main.js > calculette-browser.js

Asynchronous Module Definition

CommonJS ne permettant pas d'exécuter de charger des modules côté client, AMD est né.

RequireJS

Plusieurs bibliothèques permettent de charger des modules AMD, RequireJS est la plus connue.

http://requirejs.org/

 RequireJS définie 2 fonctions globales require et define. define permet de définir un module, require est le point d'entrée de l'application.


```
// number-converter.js
define(function() {
    var exports = {};

    exports.convert = function(nb) {
        return Number(nb);
    };

    return exports;
});
```

```
// calculette.js
define(['number-converter'], function(numberConverter) {
  var exports = {};
  exports.ajouter = function(nb1, nb2) {
    return numberConverter.convert(nb1) + numberConverter.convert(nb2);
  };
  return exports;
});
```


ECMAScript 2015 / ECMAScript 6

La nouvelle version de JavaScript prévoit une syntaxe pour l'utilisation de module. A l'heure actuelle (juillet 2015), ni les navigateurs ni Node.js ou io.js ne supportent cette syntaxe.

Babel / Traceur

Babel et Traceur sont des bibliothèques qui permettent de transpiler du code ES6 en ES5 et ainsi l'utiliser sur les moteurs actuels.

Installation:

npm install -g babel

 Utilisation (toutes les sources du répertoires src vers le répertoire dist) :

babel src --out-dir dist/


```
// src/number-converter.js
var exports = {};

exports.convert = function(nb) {
   return Number(nb);
};

export default exports;
```

```
// src/calculette.js
import numberConverter from './number-converter';

var exports = {};

exports.ajouter = function(nb1, nb2) {
   return numberConverter.convert(nb1) + numberConverter.convert(nb2);
};

export default exports;
```

```
// src/main.js
import calc from './calculette';
console.log(calc.ajouter(2, 3)); // 5
```


Universal Module Definition

L'objectif d'UMD est de proposer des modules compatibles CommonJS, AMD ou en utilisant des variables globales si le contexte ne permet pas d'utiliser les 2 précédents.

https://github.com/umdjs/umd

```
// number-converter.is
(function (root, factory) {
  if (typeof exports === 'object') {
   // CommonJS
   module.exports = factory();
 } else if (typeof define === 'function' && define.amd) {
   // AMD
   define(function () {
     return (root.numberConverter = factory());
   });
 } else {
   // Global Variables
    root.numberConverter = factory();
}(this, function () {
 var exports = {};
  exports.convert = function(nb) {
    return Number(nb);
 };
 return exports;
}));
```

```
// calculette.js
(function (root, factory) {
  if (typeof exports === 'object') {
   // CommonJS
    module.exports = factory(require('./number-converter'));
 } else if (typeof define === 'function' && define.amd) {
   // AMD
    define(['./number-converter'], function (numberConverter) {
      return (root.calculette = factory(numberConverter));
   });
 } else {
   // Global Variables
    root.calculette = factory(root.numberConverter);
}(this, function (numberConverter) {
  var exports = {};
  exports.ajouter = function(nb1, nb2) {
    return numberConverter.convert(nb1) +
numberConverter.convert(nb2):
 };
  return exports;
}));
```


System.js

System.js est un loader universel qui sait charger des modules CommonJS, AMD, ES6 et IIFE dans les navigateurs et sous node.js https://github.com/systemjs/systemjs

JavaScript Asynchrone

JavaScript Asynchrone - Introduction

Boucle d'événement

Comme vu précédemment, le code JavaScript s'exécute au sein d'une boucle appelée « boucle d'événement ». Ceci permet de différer l'exécution d'une partie d'une code au moment où une interaction se produit (ex : clic, fin de chargement, reception de données, requêtes HTTP, lecture de fichier).

Avantages

- Gestion de la concurrence simplifiée
- Performance

Inconvénients

- Perte de contexte (mot clé this)
- Callback Hell

Où est this?

Dans l'exemple ci-dessous on mélange code objet et programmation asynchrone. Problème, au moment où le callback est appelé (dans un prochain passage de la boucle d'événement), le moteur JavaScript perd la référence sur l'objet this qui était attaché à la méthode helloAsync.

```
var contact = {
  firstName: 'Romain',
  helloAsync: function() {
    setTimeout(function() {
      console.log('Hello my name is ' + this.firstName);
    }, 1000)
  }
};
contact.helloAsync(); // Hello my name is undefined
```


Solution 1 : Sauvegarder this dans la portée de closure
 La valeur de this peut être sauvegardée dans la portée de closure, la variable
 s'appelle généralement that (ou _this, self, me...)

```
var contact = {
  firstName: 'Romain',
  helloAsync: function() {
    var that = this;
    setTimeout(function() {
       console.log('Hello my name is ' + that.firstName);
    }, 1000)
  }
};
contact.helloAsync(); // Hello my name is Romain
```


Solution 2 : Function.bind (ES5)

La méthode bind du type function retourne une fonction dont la valeur de this ne peut être modifiée.

```
var contact = {
  firstName: 'Romain',
  helloAsync: function() {
    setTimeout(function() {
       console.log('Hello my name is ' + this.firstName);
    }.bind(this), 1000)
  }
};
contact.helloAsync(); // Hello my name is Romain
```

```
var contact = {
  firstName: 'Romain',
  hello: function() {
    console.log('Hello my name is ' + this.firstName);
  },
  helloAsync: function() {
    setTimeout(this.hello.bind(this), 1000);
  }
};

contact.helloAsync(); // Hello my name is Romain
```


Solution 3 : Arrow Function (ES6)

Les fonctions fléchées ne lient pas de valeur pour this, ce qui permet au callback de retrouvé la valeur de la fonction parent.

```
var contact = {
  firstName: 'Romain',
  helloAsync: function() {
    setTimeout(() => {
      console.log('Hello my name is ' + this.firstName);
    }, 1000)
  }
};
contact.helloAsync(); // Hello my name is Romain
```

JavaScript Asynchrone - Callback Hell

Callback Hell

A force le code JavaScript a tendance à s'imbriquer, ici une simple copie de fichier nécessite de lire le fichier de manière asynchrone puis de l'écrire.

```
const fs = require('fs');
const path = require('path');
const file = 'index.html';
const distDirPath = path.join(__dirname, 'dist');
const srcDirPath = path.join(__dirname, 'src');
const srcFilePath = path.join(srcDirPath, file);
const distFilePath = path.join(distDirPath, file);
fs.readFile(srcFilePath, (err, data) => {
  if (err) {
    return console.log(err);
 fs.writeFile(distFilePath, data, (err) => {
    if (err) {
      return console.log(err);
    console.log(`File ${file} copied.`);
 });
});
```

JavaScript Asynchrone - Async

Async

La bibliothèque Async contient un certain nombre de méthodes pour simplifier les problématiques d'asynchronisme, ici waterfall appelle le premier callback, passe le résultat au second puis appelle le dernier callback, ou directement le dernier en cas d'erreur.

```
const fs = require('fs');
const path = require('path');
const async = require('async');
const file = 'index.html';
const distDirPath = path.join(__dirname, 'dist');
const srcDirPath = path.join(__dirname, 'src');
const srcFilePath = path.join(srcDirPath, file);
const distFilePath = path.join(distDirPath, file);
async.waterfall([(callback) => {
 fs.readFile(srcFilePath, callback);
}, (data, callback) => {
 fs.writeFile(distFilePath, data, callback);
}], (err) => {
  if (err) {
    return console.log(err);
  console.log(`File ${file} copied.`);
});
```

JavaScript Asynchrone - Promesses

Exemple avancé

Les promesses sont un concept pas si nouveau en JavaScript, on les retrouve dans jQuery depuis la version 1.5 (deferred object).

Elle permet de gagner en lisibilité en remettant à plat un code asynchrone, tout en offrant la possibilité à du code asynchrone d'utiliser les exceptions.

On peut les utiliser grace à des bibliothèques comme bluebird ou q, ou bien nativement depuis ES6.

```
const fsp = require('fs-promise');
const path = require('path');

const file = 'index.html';
const distDirPath = path.join(__dirname, 'dist');
const srcDirPath = path.join(__dirname, 'src');
const srcFilePath = path.join(srcDirPath, file);
const distFilePath = path.join(distDirPath, file);

fsp.readFile(srcFilePath)
   .then(content => fsp.writeFile(distFilePath, content))
   .then(() => console.log(`File ${file} copied.`))
   .catch(console.log);
```

JavaScript Asynchrone - Promesses

Exemple avancé

5 callbacks imbriqués et une gestion d'erreur intermédiaire puis finale avec les promesses

```
const fsp = require('fs-promise');
const path = require('path');

const file = 'index.html';
const distDirPath = path.join(__dirname, 'dist');
const srcDirPath = path.join(__dirname, 'src');
const srcFilePath = path.join(srcDirPath, file);
const distFilePath = path.join(distDirPath, file);

fsp.stat(distDirPath)
    .catch(err => fsp.mkdir(distDirPath))
    .then(() => fsp.readFile(srcFilePath))
    .then(content => fsp.writeFile(distFilePath, content))
    .then(() => console.log(`File ${file} copied.`))
    .catch(console.log);
```

JavaScript Asynchrone - Observables

Observables

Les promesses ont leur limite, il faut recréer une promesse si elle se répète, il est également impossible de les annuler. Dans ce cas la tendance est aux bservables, via la bibliothèque rxJS et bientôt intégrés au langage. On parle de Reactive Programming

Angular 2 intègre rxJS par défaut

JavaScript Asynchrone - Exercice

- Remplacer les appels à Mongoose par l'utilisation de Promesse
- Utiliser les méthodes then et catch