Введение в регрессионный анализ. Часть 1

Линейные модели на R, осень 2014

Вадим Хайтов, Марина Варфоломеева Каф. Зоологии беспозвоночных, СПбГУ

Мы рассмотрим

- Базовые идеи корреляционного анализа
- · Проблему двух статистических подходов: "Тестирование гипотез vs. построение моделей"
- Разнообразие статистических моделей
- Основы регрессионного анализа

Вы сможете

- Оценить взаимосвязь между измеренными величинами
- Объяснить что такое линейная модель
- Формализовать запись модели в виде уравнения
- Подобрать модель линейной регрессии
- Проверить состоятельность модели при помощи t-критерия или F-критерия
- Оценить предсказательную силу модели

Знакомимся с даными

Зависит ли уровень интеллекта от размера головного мозга?

- Было исследовано 20 девушек и 20 молодых людей (праворуких, англоговорящих, не склонных к алкоголизму, наркомании и прочим смещающим воздействиям)
- У каждого индивида определяли биометрические параметры: вес, рост, размер головного мозга (количество пикселей на изображении ЯМР сканера)
- Интеллект был протестирован с помощью IQ тестов

Пример взят из работы: Willerman, L., Schultz, R., Rutledge, J. N., and Bigler, E. (1991), "In Vivo Brain Size and Intelligence," Intelligence, 15, 223-228.

Данные представлены в библиотеке "The Data and Story Library" http://lib.stat.cmu.edu/DASL/

Посмотрим на датасет

```
brain <- read.csv("IQ_brain.csv", header = TRUE)
head(brain)</pre>
```

```
Gender FSIQ VIQ PIQ Weight Height MRINACount
## 1 Female 133 132 124
                          118
                              64.5
                                        816932
      Male 140 150 124
                               72.5
## 2
                          NA
                                       1001121
## 3
      Male 139 123 150
                          143
                               73.3
                                       1038437
## 4
      Male 133 129 128
                          172
                               68.8
                                        965353
## 5 Female 137 132 134
                          147
                               65.0
                                        951545
## 6 Female
            99 90 110
                          146
                               69.0
                                        928799
```

Вспомним: Сила и направление связи между величинами

Основы корреляционного анализа

Коэффициенты корреляции и условия их применимости

коэффициент	ФУКЦИЯ	ОСОБЕННОСТИ ПРИМЕНЕНЕНИЯ
Коэф. Пирсона	<pre>cor(x,y,method="pearson")</pre>	Оценивает связь двух нормально распределенных величин. Выявляет только лиейную составляющую взамосвязи.
Ранговые коэффициенты (коэф. Спирмена, Кэндалла)	<pre>cor(x,y,method="spirman") cor(x,y,method="kendall")</pre>	Не зависят от формы распределения. Могут оценивать связь для любых монотонных зависимостей.

Оценка достоверности коэффициентов корреляции

- Коэффициент корреляции это статистика, значение которой описывает степень взаимосвязи двух сопряженных переменных. Следовательно применима логика статистического критерия.
- · Нулевая гипотеза $H_0: r=0$
- \cdot Бывают двусторонние $H_a:r
 eq 0$ и односторонние критерии $H_a:r>0$ или $H_a:r<0$
- . Ошибка коэффициента Пирсона: $SE_r = \sqrt{rac{1-r^2}{n-2}}$
- · Стандартизованная величина $t=rac{r}{SE_r}$ подчиняется распределению Стьюдента с парметром df=n-2
- \cdot Для ранговых коэффициентов существует проблема "совпадающих рангов" (tied ranks), что приводит к приблизительной оценке r и приблизительной оценке уровня значимости.
- Достоверность коэффициента кореляции можно оценить пермутационным методом

Задание

- Определите силу и направление связи между всеми парами исследованных признаков
- Постройте точечную диаграмму, отражающую взаимосвязь между результатами IQ-теста (PIQ) и размером головного мозга (MRINACount)
- Оцените достоверность значения коэффициента корреляции Пирсона между этими двумя перменными

Hint 1: Обратите внимание на то, что в датафрейме есть пропущенные значения. Изучите, как работают с NA функуции, вычисляющие коэффициенты корреляции.

Hint 2 Для построения точечной диаграммы вам понадобится geom_point()

Решение

```
cor(brain[,2:6],
  use = "pairwise.complete.obs")
```

```
## FSIQ VIQ PIQ Weight Height
## FSIQ 1.00000 0.94664 0.934125 -0.051483 -0.08600
## VIQ 0.94664 1.00000 0.778135 -0.076088 -0.07107
## PIQ 0.93413 0.77814 1.000000 0.002512 -0.07672
## Weight -0.05148 -0.07609 0.002512 1.000000 0.69961
## Height -0.08600 -0.07107 -0.076723 0.699614 1.00000
```

```
##
## Pearson's product-moment correlation
##
## data: brain$PIQ and brain$MRINACount
## t = 2.586, df = 38, p-value = 0.01367
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.08563 0.62323
## sample estimates:
## cor
```

Решение

pl_brain <- ggplot(brain, aes(x = MRINACount, y = PIQ)) + geom_point() + xlab("Brain size") + ylab("IQ te
pl_brain</pre>

Частные корреляции

Частная корреляция - описывает связь между двумя переменными при условии, что влияние других переменных удалено.

Мы удаляем из X и Y ту часть зависимости, которая вызвана влиянием Z

```
library(ppcor)
brain_complete <- brain[complete.cases(brain),]
pcor.test(brain_complete$PIQ, brain_complete$MRINACount, brain_complete$Height, )</pre>
```

```
## estimate p.value statistic n gp Method
## 1 0.5373 0.0001637 3.769 38 1 pearson
```

Два подхода к исследованию: Тестирование гипотезы и Построение модели

Тестирование гипотезы VS построение модели

- Проведя корреляционный анализ, мы лишь ответили на вопрос "Существет ли достоверная связь между величинами?"
- Сможем ли мы, используя это знание, предсказть значения одной величины, исходя из знаний другой?

Тестирование гипотезы VS построение модели

- Простейший пример
- Между путем, пройденным автомобилем, и временем, проведенным в движении, несомнено есть связь. Хватает ли нам этого знания?
- \cdot Для расчета величины пути в зависимости от времени необходимо построить модель: S=Vt, где S зависимая величина, t независимая переменная, V параметр модели.
- Зная параметр модели (скорость) и значение независимой переменной (время), мы можем рассчитать (*смоделировать*) величину пройденного пути

Какие бывают модели?

Линейные и нелинейные модели

Линейные модели

$$y=b_0+b_1x$$

$$y = b_0 + b_1 x_1 + b_2 x_2$$

Нелинейные модели

$$y=b_0+b_1^x$$

$$y=b_0^{b_1x_1+b_2x_2}$$

Простые и многокомпонентные (множественные) модели

Простая модель

$$y=b_0+b_1x$$

Множественная модель

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \ldots + b_n x_n$$

Детерминистские и стохастические модели

модель $y_i=2+5x_i$ Два парметра: угловой коэффициент (slope) $b_1=5$; свободный член (intercept) $b_0=2$ Чему равен y при x=10?

модель $y=2+5x+\epsilon$ Появляется дополнительный член ϵ_i Он вводит в модель влияние неучтенных моделью факторов. Обычно считают, что $\epsilon\in N(0,\sigma^2)$

Модели с дискретными предикторами

Модель для данного примера имеет такой вид $response = 4.6 + 5.3I_{Level2}$ + $9.9I_{Level3}$

 I_i - dummy variable

Модель для зависимости величины IQ от размера головного

мозга

Какая из линий "лучше" описывает облако точек?

[&]quot;Essentially, all models are wrong, but some are useful" (Georg E. P. Box)

Найти оптимальную модель позволяет регрессионный анализ

Происхождение термина "регрессия"

Френсис Галтон (Francis Galton)

"the Stature of the adult offspring ... [is] ... more mediocre than the stature of their Parents" (цит. по Legendre & Legendre, 1998)

Рост *регрессирует* (возвращается) к популяционной средней

Угловой коэффициент в зависимости роста потомков от роста родителей- *коэффциент* регресси

Подбор лиии регрессии проводится с помощью двух методов

- · С помощью метода наименьших квадратов (Ordinary Least Squares) используется для простых линейных моделей
- Через подбор функции максимального правдоподобия (Maximum Likelihood) используется для подгонки сложных линейных и нелинейных моделей.

Кратко о методе максимального правдоподобия

(из кн. Zuur et al., 2009, стр. 19)

Метод наименьших квадратов

(из кн. Quinn, Keough, 2002, стр. 85)

Остатки (Residuals): $e_i = y_i - \hat{y_i}$

Линия регрессии (подобраная модель) - это та линия, у которой $\sum {e_i}^2$ минимальна.

Подбор модели методом наменьших квадратов с помощью

функци \m()

fit <- lm(formula, data)</pre>

Модель записывается в виде формулы

мо <u>д</u> ель	ФОРМУЛА
Іростая линейная регресся	Y ~ X
$\hat{l}_i = b_0 + b_1 x_i$	$Y \sim 1 + X$
	$Y \sim X + 1$
Іростая линейная регрессия	Y ~ -1 + X
без b_0 , ''no intercept'')	Y ~ X - 1
$oldsymbol{eta}_i = b_1 x_i$	
иеньшенная простая линейная регрессия	Y ~ 1
$b_0=b_0$	Y ~ 1 - X
ножественная линейная регрессия	Y ~ X1 + X2
$=b_{0}+b_{1}x_{i}+b_{2}x_{2}$	

Подбор модели методом наменьших квадратов с помощью

функци \m()

fit <- lm(formula, data)</pre>

Элементы формул для записи множественных моделей

ЭЛЕМЕНТ ФОРМУЛЫ	ЗНАЧЕНИЕ
:	Взаимодействие предикторов
	$Y \sim X1 + X2 + X1:X2$
*	Обзначает полную схему взаимодействий
	Y ~ X1 * X2 * X3
	аналогично
	$Y \sim X1 + X2 + X3 + X1:X2 + X1:X3 + X2:X3 + X1:X2:X3$
	Y ~ .
	В правой части формулы записываются все переменные из датафрейма, кроме Y

Подберем модель, наилучшим образом описывающую зависимость результатов IQ-теста от размера головного мозга

```
brain_model <- lm(PIQ ~ MRINACount, data = brain)
brain_model</pre>
```

```
##
## Call:
## lm(formula = PIQ ~ MRINACount, data = brain)
##
## Coefficients:
## (Intercept) MRINACount
## 1.74376 0.00012
```

Как трактовать значения параметров регрессионной модели?

Как трактовать значения параметров регрессионной модели?

- Угловой коэффициент (slope) показывает на сколько единиц изменяется предсказанное значение \hat{y} при изменении на одну единицу значения предиктора (x)
- Свободный член (*intercept*) величина во многих случаях не имеющая "смысла", просто поправочный коэффициент, без которого нельзя вычислить \hat{y} . *NB!* В некоторых линейных моделях он имеет смысл, например, значения \hat{y} при x=0.
- · Остатки (residuals) характеризуют влияние неучтенных моделью факторов.

Вопросы:

- 1. Чему равны угловой коэффициент и свободный член полученной модели brain_model?
- 2. Какое значеие IQ-теста предсказывает модель для человека с объемом мозга равным 900000
- з. Чему равно значение остатка от модели для человека с порядковым номером 10

Ответы

```
coefficients(brain model) [1]
## (Intercept)
         1.744
coefficients(brain_model) [2]
## MRINACount
## 0.0001203
coefficients(brain model) [1] + coefficients(brain model) [2] * 900000
## (Intercept)
##
           110
brain$PIQ[10] - fitted(brain model)[10]
      10
## 30.36
                                                                                            34/58
residuals(brain_model)[10]
```

Углубляемся в анализ модели: функция summary()

summary(brain model)

```
##
## Call:
## lm(formula = PIQ ~ MRINACount, data = brain)
## Residuals:
## Min
            10 Median 30 Max
## -39.6 -17.9 -1.6 17.0 42.3
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7437570 42.3923825
                                    0.04
                                            0.967
             0.0001203 0.0000465
                                    2.59
                                            0.014 *
## MRINACount
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 21 on 38 degrees of freedom
## Multiple R-squared: 0.15, Adjusted R-squared: 0.127
## F-statistic: 6.69 on 1 and 38 DF, p-value: 0.0137
```

Что означают следующие величины?

Estimate
Std. Error
t value
Pr(>|t|)

Оценки параметров регрессионной модели

ПАРАМЕТР	ОЦЕНКА	СТАНДАРТНАЯ ОШИБКА
$oldsymbol{eta_1}$	$b_1 = rac{\sum_{i=1}^n \left[(x_i - ar{x})(y_i - ar{y}) ight]}{\sum_{i=1}^n \left(x_i - ar{x} ight)^2}$	$SE_{b_1} = \sqrt{rac{MS_e}{\sum_{i=1}^n \left(x_i - ar{x} ight)^2}}$
	или проще	·
	$b_0 = r rac{s d_y}{s d_x}$	
β_0	$b_0=\bar{y}-b_1\bar{x}$	$SE_{b_0} = \sqrt{MS_e[rac{1}{n} + rac{ar{x}}{\sum_{i=1}^n (x_i - ar{x})^2}]}$
ϵ_i	$e_i = y_i - \hat{y_i}$	$pprox \sqrt{MS_e}$

Для чего нужны стандартные ошибки?

- Они нужны, поскольку мы оцениваем параметры по выборке
- Они позволяют построить доверительные интервалы для параметров
- Их используют в статистических тестах

Графическое представление результатов

Что это за серая область?

- Это 95% доверительная зона регрессии
- В ней с 95% вероятностью лежит регрессионная прямая, описывающая связь в генеральной совокупности
- Возникает из-за неопределенности оценок коэффициентов регрессии, вследствие выборочного характера оценок

Симулированный пример

Линии регресси, полученные для 100 выборок (по 20 объектов в каждой), взятых из одной и той же генеральной совокупности

Доверительные интервалы для коэффициентов уравнения регрессии

```
coef(brain_model)

## (Intercept) MRINACount
## 1.7437570 0.0001203

confint(brain_model)

## 2.5 % 97.5 %
## (Intercept) -84.07513478 87.5626489
## MRINACount 0.00002611 0.0002144
```

Для разных α можно построить разные доверительные интервалы

Важно! Если коэффициенты уравнения регресси - лишь приблизительные оценки параметров, то предсказать значения зависимой переменной можно только *с некоторой вероятностью*.

Какое значение IQ можно ожидать у человека с размером головного мозга 900000?

```
newdata <- data.frame(MRINACount = 900000)
predict(brain_model, newdata, interval = "confidence", level = 0.95, se = TRUE)</pre>
```

```
## $fit
## fit lwr upr
## 1 110 103.2 116.7
##
## $se.fit
## [1] 3.344
##
## $df
## [1] 38
##
# $residual.scale
## [1] 20.99
```

• При размере мозга 900000 среднее значение IQ будет, с вероятностью 95%, находиться в интервале от 103 до 117 (110 \pm 7).

Отражаем на графике область значений, в которую попадут 95% предсказанных величин IQ

Подготавливаем данные

```
brain_predicted <- predict(brain_model, interval="prediction")
brain_predicted <- data.frame(brain, brain_predicted)
head(brain_predicted)</pre>
```

```
Gender FSIQ VIQ PIQ Weight Height MRINACount
                                                 fit
                                                       lwr
                                                            upr
## 1 Female 133 132 124
                              64.5
                                        816932 99.98 56.10 143.9
                          118
      Male 140 150 124
                              72.5
                                       1001121 122.13 78.24 166.0
## 2
                         NA
## 3
      Male 139 123 150
                          143
                              73.3
                                       1038437 126.62 81.90 171.3
                              68.8
      Male 133 129 128
                          172
                                        965353 117.83 74.48 161.2
## 5 Female 137 132 134
                          147
                               65.0
                                       951545 116.17 72.96 159.4
## 6 Female
           99 90 110
                          146
                               69.0
                                        928799 113.44 70.37 156.5
```

Отражаем на графике область значений, в которую попадут 95% предсказанных величин IQ

```
pl_brain +
  geom_ribbon(data=brain_predicted, aes(y=fit, ymin=lwr, ymax=upr, fill = "Conf. area for prediction"), a
  geom_smooth(method="lm", aes(fill="Conf.interval"), alpha=0.4) +
  scale_fill_manual("Intervals", values = c("green", "gray")) +
  ggtitle("Confidence interval \n and confidence area for prediction")
```


Важно!

Модель "работает" только в том диапазоне значений независимой переменной (x), для которой она построена (интерполяция). Экстраполяцию надо применять с большой осторожностью.

45/58

Итак, что означают следующие величины?

- Estimate
- Оценки праметров регрессионной модели
- Std. Error
- Стандартная ошибка для оценок
- · Осталось решить, что такое t value, Pr(>|t|)

Проверка состоятельности модели

Существует два равноправных способа

- · Проверка достоверности оценок коэффициента b_1 (t-критерий).
- Оценка соотношения описанной и остаточной дисперсии (F-критерий).

Проверка состоятельности модели с помощью t-критерия

Модель "работает" если в генеральной совокупности $eta_1
eq 0$

Гипотеза: H: eta
eq 0 антигипотеза $H_0: eta = 0$ Тестируем гипотезу

$$t=rac{b_1-0}{SE_{b_1}}$$

Число степеней свободы: df=n-2

- Итак,
- · t value Значение t-критерия
- · Pr(>|t|) Уровень значимости

Состоятельна ли модель, описывающая связь Ю и размера

головного мозга?

PIQ = 1.744 + 0.0001202 MRINA Count

```
summary(brain_model)
```

```
##
## Call:
## lm(formula = PIO ~ MRINACount, data = brain)
##
## Residuals:
  Min 10 Median 30 Max
## -39.6 -17.9 -1.6 17.0 42.3
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7437570 42.3923825
                                     0.04
                                            0.967
## MRINACount 0.0001203 0.0000465
                                   2.59 0.014 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 21 on 38 degrees of freedom
## Multiple R-squared: 0.15, Adjusted R-squared: 0.127
## F-statistic: 6.69 on 1 and 38 DF. p-value: 0.0137
                                                                               49/58
```

Проверка состоятельности модели с помощью F-критерия

Объясненная дисперсия зависимой перменной
$$SS_{Regression} = \sum \left(\hat{y} - \bar{y}\right)^2$$
 $df_{Regression} = 1$ $MS_{Regression} = \frac{SS_{Regression}}{df}$

Остаточная дисперсия завсимой переменной $SS_{Residual} = \sum \left(\hat{y} - y_i\right)^2 \ df_{Residual} = n-2 \ MS_{Residual} = rac{SS_{Residual}}{df_{Posidual}}$

Полная дисперсия зависимой переменной $SS_{Total} = \sum \left(ar{y} - y_i
ight)^2 \ df_{Total} = n-1 \ MS_{Total} = rac{SS_{Total}}{df_{Total}}$

F критерий

Если зависимости нет, то $MS_{Regression} = MS_{Residual}$

$$F = rac{MS_{Regression}}{MS_{Residual}}$$

Логика та же, что и с t-критерием

Форма F-распределения зависит от двух параметров

$$df_{Regression}=1$$
 и $df_{Residual}=n-2$ 51/58

Оценка качества подгонки модели с помощью коэффициента детерминации

В чем различие между этми двумя моделями?

Оценка качества подгонки модели с помощью коэффициента

детерминации

Коэффициент детерминации описывает какую долю дисперсии зависимой переменной объясняет модель

$$R^2 = rac{SS_{Regression}}{SS_{Total}}$$

•
$$0 < R^2 < 1$$

$$R^2=r^2$$

Еще раз смотрим на результаты регрессионного анализа зависимости IQ от размеров мозга

```
summary(brain_model)
```

```
## Call:
## lm(formula = PIO ~ MRINACount, data = brain)
## Residuals:
   Min 10 Median 30 Max
## -39.6 -17.9 -1.6 17.0 42.3
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7437570 42.3923825
                                     0.04
                                            0.967
## MRINACount 0.0001203 0.0000465 2.59 0.014 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 21 on 38 degrees of freedom
## Multiple R-squared: 0.15, Adjusted R-squared: 0.127
## F-statistic: 6.69 on 1 and 38 DF, p-value: 0.0137
```

Adjusted R-squared - скорректированный коэффициет детерминации

Применяется если необходимо сравнить две модели с разным количеством параметров

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-k}$$

k - количество параметров в модели

Вводится штраф за каждый новый параметр

Как записываются результаты регрессионного анлиза в тексте статьи?

Мы показали, что связь между результатами теста на IQ описывается мделью вида IQ = 1.74 + 0.00012 MRINACount ($F_{1,38}$ = 6.686, p = 0.0136, R^2 = 0.149)

Summary

- · Модель простой линейной регрессии $y_i = eta_0 + eta_1 x_i + \epsilon_i$
- Параметры модели оцениваются на основе выборки
- В оценке коэффициентов регрессии и предсказанных значений существует неопределенность: необходимо вычислять доверительный интервал.
- Доверительные интервалы можно расчитать, зная стандартные ошибки.
- Состоятельность модели можно проверить при помощи t- или F-теста. ($H_0: \beta_1 = 0$)
- \cdot Качество подгонки модели можно оценить при помощи коэффициента детерминации (R^2)

Что почитать

- Гланц, 1999, стр. 221-244
- · Open Intro to Statistics: Chapter 7. Introduction to linear regression, pp. 315-353.
- · Quinn, Keough, 2002, pp. 78-110