Lecture #12: Looking Backward Before First Hour Exam: Postulate

Postulates, in the same order as in McQuarrie.

- 1. $\Psi(r,t)$ is the state function: it tells us everything we are allowed to know
- 2. For every observable there corresponds a <u>linear</u>, Hermitian Quantum Mechanical operator
- 3. Any *single* measurement of the property \hat{A} only gives *one* of the eigenvalues of \hat{A}
- 4. Expectation values. The average over many measurements on a system that is in a states that is completely specified by a specific $\Psi(x,t)$.
- 5. TDSE

We will discuss these, and their consequences, in detail now.

Postulate 1.

The state of a Quantum Mechanical system is *completely* specified by $\Psi(\mathbf{r},t)$

* $\Psi \cdot \Psi dxdydz$ is the probability that the particle lies within the volume element dxdydz that is centered at

$$\vec{\mathbf{r}} = x\hat{i} + y\hat{j} + z\hat{k}$$
 (\hat{i} , \hat{j} , and \hat{k} are unit vectors)

* Ψ is "well behaved"

normalizable (in either of two senses: what are these two senses?) square integrable [usually requires that $\lim \psi(x) \to 0$]

$$\left\{
 \begin{array}{l}
 \text{continuous} \\
 \text{single-valued} \\
 \text{finite everywhere}
 \end{array}
 \right\} \psi \text{ and } \frac{d\psi}{dx}$$

When do we get to break some of the rules about "well behaved"? (from <u>non-physical but illustrative</u> problems)?

*A finite step in V(x) causes discontinuity in
$$\frac{\partial^2 \psi}{\partial x^2}$$

*A δ -function (infinite sharp spike) and infinite step in V(x) cause a discontinuity in

$$\frac{\partial \Psi}{\partial x}$$

Nothing can cause a discontinuity in ψ .

When
$$V(x) = \infty$$
, $\psi(x) = 0$. Always! [Why?]

Postulate 2

For every observable quantity in Classical Mechanics there corresponds a linear, Hermitian Operator in Quantum Mechanics.

linear means $\hat{A}(c_1\psi_1 + c_2\psi_2) = c_1\hat{A}\psi_1 + c_2\hat{A}\psi_2$. We have already discussed this.

Hermitian is a property that ensures that every observation results in a *real* number (not imaginary, not complex)

A Hermitian operator satisfies

$$\int_{-\infty}^{\infty} f^*(\hat{A}g) dx = \int_{-\infty}^{\infty} g(\hat{A} * f *) dx$$

$$A_{fg} = (A_{gf})^* \quad \text{(useful short-hand notation)}$$

where f and g are well-behaved functions.

This provides a very useful prescription for how to "operate to the left".

Suppose we replace g by f to see how Hermiticity ensures that any measurement of an observable quantity must be real.

$$\int_{-\infty}^{\infty} f * \widehat{A} f dx = \int_{-\infty}^{\infty} f \widehat{A} * f * dx \text{ from the definition of Hermitian}$$
$$A_{ff} = (A_{ff})^*$$

The LHS is just $\langle \hat{A} \rangle_f$, the expectation value of \hat{A} in state f.

The RHS is just LHS*, which means

$$LHS = LHS*$$

thus $\langle \widehat{A} \rangle_f$ is real.

Non-Lecture

Often, to construct a Hermitian operator from a non-Hermitian operator, $\hat{A}_{\text{non-Hermitian}}$, we take

$$\hat{A}_{\text{QM}} = \frac{1}{2} (\hat{A}_{\text{non-Hermitian}} + \hat{A} *_{\text{non-Hermitian}}).$$

OR, when an operator $\hat{C} = \hat{A}\hat{B}$ is constructed out of non-commuting factors, e.g.

$$[\hat{A}, \hat{B}] \neq 0$$
.

Then we might try $\hat{C}_{\text{Hermitian}} = \frac{1}{2} (\hat{A}\hat{B} + \hat{B}\hat{A})$.

Angular Momentum

Classically

$$\vec{\ell} = \hat{r} \times \hat{p} = \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ p_x & p_y & p_z \end{pmatrix}$$

 $\ell_x = yp_z - zp_y$

Does order matter?

which is a good thing because the standard way for compensating for non-commutation,

$$\hat{r} \times \hat{p} + \hat{p} \times \hat{r} = 0$$

fails, so we would not be able to guarantee Hermiticity this way

End of Non-Lecture

Postulate 3

Each measurement of the observable quantity associated with \hat{A} gives one of the eigenvalues of \hat{A} .

 $\hat{A}\psi_n = a_n\psi_n$ the set of all eigenvalues, $\{a_n\}$, is called **spectrum** of \hat{A}

Measurements:

Measurement causes an arbitrary ψ to "collapse" into one of the eigenstates of the measurement operator.

Postulate 4

For a system in *any* state normalized to 1, ψ , the average value of \hat{A} is $\langle \hat{A} \rangle \equiv \int_{-\infty}^{\infty} \psi * \hat{A} \psi d\tau$. (d τ means integrate over all coordinates).

We can combine postulates 3 and 4 to get some very useful results.

1. <u>Completeness</u> (with respect to each operator)

$$\psi = \sum_{i} c_i \psi_i$$
 expand ψ in a "complete basis set" of eigenfunctions, ψ_i (many choices of "basis sets")

Most convenient to use all eigenstates of $\hat{A} \left\{ \psi_i \right\}, \left\{ a_i \right\}$ We often use a complete set of eigenstates of $\hat{A} \left\{ \psi_n^A \right\}$ as "basis states" for the operator \hat{B} even when the $\left\{ \psi_n^A \right\}$ are *not eigenstates* of \hat{B} .

2. Orthogonality

If ψ_i, ψ_j belong to $a_i \neq a_j$, then $\int dx \psi_i^* \psi_j = 0$. Even when we have a *degenerate* eigenvalue, where $a_i = a_j$, we can construct orthogonal functions. For example:

 $\hat{A}\psi_1 = a_1\psi_1$, $\hat{A}\psi_2 = a_1\psi_2$, ψ_1,ψ_2 are normalized but not necessarily orthogonal.

NON-Lecture

Construct a pair of normalized and orthogonal functions starting from ψ_1 and $\psi_2.$

Schmidt orthogonalization

$$S \equiv \int dx \psi_1^* \psi_2 \neq 0$$
, the overlap integral $\psi_2' = N(\psi_2 + a\psi_1)$, constructed to be orthogonal to ψ_1
$$\int dx \psi_1^* \psi_2' = N \int dx \psi_1^* (\psi_2 + a\psi_1)$$
$$= N(S+a).$$

If we set a = -S, ψ'_2 is orthogonal to ψ_1 . We must normalize ψ'_2 .

$$1 = \int dx \psi_2'^* \psi_2' = |N|^2 \int dx (\psi_2^* - S^* \psi_1^*) (\psi_2 - S \psi_1)$$
$$= |N|^2 \left[1 - 2|S|^2 + |S|^2 \right]$$
$$N = \left[1 - |S|^2 \right]^{-1/2}$$
$$\psi_2' = \left[1 - |S|^2 \right]^{-1/2} (\psi_2 - S \psi_1)$$

 ψ'_2 is normalized to 1 and orthogonal to ψ_1 . This turns out to be a *very* useful trick.

"Complete orthonormal basis sets"

Next we want to compute the $\{c_i\}$ and the $\{P_i\}$. P_i is the probability that an experiment on ψ yields the ith eigenvalue.

$$\Psi = \sum_{i} c_{i} \Psi_{i}$$

(ψ is any normalized state)

Left multiply and integrate by ψ_j^* (which is the complex conjugate of the eigenstate of \hat{A} that belongs to eigenvalue a_i).

$$\int dx \psi_j^* \psi = \int dx \psi_j^* \sum_i c_i \psi_i$$

$$= \sum_i c_i \delta_{ji}$$

$$c_j = \int dx \psi_j^* \psi \text{ (so we can compute all } \{c_i\}\text{)}$$

What about

$$\langle \hat{A} \rangle = \sum_{i} P_{i} a_{i}$$

$$\int dx \psi * \hat{A} \psi = \int dx \left[\sum_{i} c_{i}^{*} \psi_{i}^{*} \right] \hat{A} \left[\sum_{j} c_{j} \psi_{j} \right]$$

$$= \int dx \left[\sum_{i} c_{i}^{*} \psi_{i}^{*} \right] \left[\sum_{j} a_{j} c_{j} \psi_{j} \right]$$

Orthonormality kills all terms in the sum over j except j = i.

$$\int dx \psi * \widehat{A} \psi = \sum_{i} |c_{i}|^{2} a_{i}$$

thus $\langle \hat{A} \rangle = \sum_{i} |c_{i}|^{2} a_{i}$

$$P_i = \left| c_i \right|^2 = \left| \int dx \psi_i^* \psi \right|^2$$

so the "mixing coefficients" in ψ

$$\psi = \sum c_i \psi_i$$

become "fractional probabilities" in the results of repeated measurements of A.

$$\langle \hat{A} \rangle = \sum P_i a_i$$

$$P_i = \left| \int dx \psi_i^* \psi \right|^2.$$

What does the $[\hat{A}, \hat{B}]$ commutator tell us about

- * the possibility for simultaneous eigenfunctions
- * $\sigma_A \sigma_B$?
- 1. If $[\hat{A}, \hat{B}] = 0$, then all non-degenerate eigenfunctions of \hat{A} are eigenfunctions of \hat{B} (see page 10).
- 2. If $[\hat{A}, \hat{B}] = \text{const} \neq 0$

$$\sigma_A^2 \sigma_B^2 \ge \frac{1}{4} \left(\int dx \psi * [A, B] \psi \right)^2 > 0 \text{ (and real)}$$
note that $[\hat{x}, \hat{p}] = i\hbar$

this gives

$$\sigma_{p_x} \sigma_x \ge \frac{\hbar}{2}$$
 (see page 11)

NON-LECTURE

Suppose 2 operators commute

$$\lceil \hat{A}, \hat{B} \rceil = 0$$

Consider the set of wavefunctions $\{\psi_i\}$ that are eigenfunctions of observable quantity \hat{A} .

$$\widehat{A}\psi_{i} = a_{i}\psi_{i} \qquad \{a_{i}\} \text{ are real}$$

$$0 = \int dx \psi_{j}^{*} \left[\widehat{A}, \widehat{B}\right] \psi_{i} = \int dx \psi_{j}^{*} \left(\widehat{A}\widehat{B} - \widehat{B}\widehat{A}\right) \psi_{i}$$

$$= \int dx \psi_{j}^{*} \widehat{A}\widehat{B}\psi_{i} - \int dx \psi_{j}^{*} \widehat{B}\widehat{A}\psi_{i}$$

$$= a_{j} \int dx \psi_{j}^{*} \widehat{B}\psi_{i} - a_{i} \int dx \psi_{j}^{*} \widehat{B}\psi_{i}$$

$$= (a_{j} - a_{i}) \int dx \psi_{j}^{*} \widehat{B}\psi_{i}$$

$$0 = (a_{j} - a_{i}) \int dx \psi_{j}^{*} \widehat{B}\psi_{i}$$

if $a_j \neq a_i \rightarrow B_{ji} = 0$ this implies that ψ_i and ψ_j are eigenfunctions of \hat{B} that belong to different eigenvalues of \hat{B}

if $a_j = a_i \rightarrow B_{ji} \neq 0$ This implies that we can construct mutually orthogonal eigenfunctions of \hat{B} from the set of degenerate eigenfunctions of \hat{A} .

All nondegenerate eigenfunctions of \hat{A} are eigenfunctions of \hat{B} and eigenfunctions of \hat{B} can be constructed out of degenerate eigenfunctions of \hat{A} .

Some important topics:

0. Completeness.

- 1. For a Hermitian Operator, all non-degenerate eigenfunctions are orthogonal and the non-degenerate ones can be made to be orthonormal.
- 2. Schmidt orthogonalization
- 3. Are eigenfunctions of \hat{A} eigenfunctions of \hat{B} if $[\hat{A}, \hat{B}] = 0$?
- 4. $[\hat{A}, \hat{B}] \neq 0 \Rightarrow$ uncertainty principle free of any thought experiments.
- 5. Why do we define \hat{p} as $-i\hbar \frac{\partial}{\partial x}$?
- 6. Express non-eigenstate as linear combination of eigenstates.
- 0. <u>Completeness.</u> Any arbitrary ψ can be expressed as a linear combination of functions that are members of a "complete basis set."

For a particle in box

$$\Psi_n = \left(\frac{2}{a}\right)^{1/2} \sin\left(\frac{n\pi}{a}x\right)$$

$$E_n = n^2 \frac{h^2}{8ma^2}$$

complete set $n = 1, 2, ... \infty$ What do we call these ψ_n in a non-QM context?

$$\Psi = \sum_{i} c_{i} \Psi_{i}, \quad c_{i} = \int dx \Psi_{i}^{*} \Psi$$

To obtain the set of $\{c_i\}$, left-multiply ψ by Ψ_i^* and integrate. Exploit orthonormality of the basis set $\{\psi_i\}$.

Fourier series: any arbitrary, well-behaved function, defined on a finite interval (0,a), can be decomposed into orthonormal Fourier components.

$$f(x) = \frac{1}{2}a_0 + \sum_{n=0}^{\infty} \left(a_n \cos \frac{n\pi x}{a} + b_n \sin \frac{n\pi x}{a} \right).$$

For our usual $\psi(0) = \psi(a) = 0$ boundary conditions, all of the $a_n = 0$. We can use particle in box functions $\{\psi_n\}$ to express any ψ where $\psi(0) = \psi(a) = 0$. Another kind of boundary condition is periodic (e.g. particle on a ring) $\psi(x + a) = \psi(x)$ where a is the circumference of the ring. Then, for the $0 \le x \le a$ interval, we need both sine and cosine Fourier series.

1. <u>Hermitian Operator</u>

If \hat{A} is Hermitian, all of the non-degenerate eigenstates of \hat{A} are orthogonal and all of the degenerate ones can be made orthogonal.

If \hat{A} is Hermitian

$$\int dx \psi_i^* \underbrace{\widehat{A}\psi_j}_{a_j \psi_j} = \int dx \psi_j \underbrace{\widehat{A}^*\psi_i^*}_{a_i^* \psi_i^*}$$

$$a_i^* = a_i \text{ because } \widehat{A} \text{ corresponds to a classically observable quantity}$$

rearrange

$$(a_j - a_i) \int dx \quad \psi_i^* \psi_j = 0$$
order of these doesn't matter

either $a_j = a_i$ (degenerate eigenvalue)

OR

when $a_i \neq a_i \psi_i$ is orthogonal to ψ_i .

Now, when ψ_i and ψ_j belong to a degenerate eigenvalue, they can be made to be orthogonal, yet remain eigenfunctions of \hat{A} .

$$\widehat{A}\left(\sum_{i} c_{i} \psi_{i}\right) = a_{j} \left(\sum_{i} c_{i} \psi_{i}\right)$$

for any linear combination of degenerate eigenfunctions.

Find the correct linear combination. Easy to get a computer to find these orthogonalized functions.

Non-Lecture

2. Schmidt orthogonalization

We can construct a set of mutually orthogonal functions out of a set of non-orthogonal degenerate eigenfunctions.

Consider two-fold degenerate eigenvalue a_1 with non-orthogonal eigenfunctions, ψ_{11} and ψ_{12} .

Construct a new pair of <u>orthogonal</u> eigenfunctions that belong to eigenvalue a_1 of \hat{A} .

overlap
$$S_{11,12} = \int \psi_{11}^* \psi_{12}$$

 $\psi'_{11} \equiv \psi_{11}$
 $\psi'_{12} \equiv N \left[\psi_{12} - S_{11,12} \psi_{11} \right]$

Check for orthogonality:

$$\int dx \psi_{11}^{\prime *} \psi_{12}^{\prime} = N \left[\int dx \psi_{11}^{*} \psi_{12} - S_{11,12} \int dx \psi_{11}^{*} \psi_{11} \right]$$
$$= N \left[S_{11,12} - S_{11,12} \right] = 0.$$

Find normalization constant:

$$1 = \int dx \psi_{12}^{\prime \prime} \psi_{12}^{\prime}$$

$$= |N|^{2} \begin{bmatrix} \int dx \psi_{12}^{*} \psi_{12} + |S_{11,12}|^{2} \int dx \psi_{11}^{*} \psi_{11} \\ -\int dx \psi_{12}^{*} S_{11,12} \psi_{11} - \int dx S_{11,12}^{*} \psi_{11}^{*} \psi_{12} \end{bmatrix}$$

$$= |N|^{2} \left[1 + |S_{11,12}|^{2} - |S_{11,12}|^{2} - |S_{11,12}|^{2} \right]$$

$$= |N|^{2} \left[1 - |S_{11,12}|^{2} \right]$$

$$N = \left[1 - |S_{11,12}|^{2} \right]^{-1/2}$$

$$\psi_{12}^{\prime} = \left[1 - |S_{11,12}|^{2} \right]^{-1/2} \left[\psi_{12} - S_{11,12} \psi_{11} \right]$$

Now we have a complete set of orthonormal eigenfunctions of \hat{A} . Extremely convenient and useful.

End of Non-Lecture

3. Are eigenfunctions of \hat{A} also eigenfunctions of \hat{B} if $[\hat{A}, \hat{B}] = 0$?

$$\widehat{A}\widehat{B} = \widehat{B}\widehat{A}$$

$$\widehat{A}(\widehat{B}\psi_i) = \widehat{B}(\widehat{A}\psi_i) = a_i(\widehat{B}\psi_i)$$

thus $\hat{B}\psi_i$ is eigenfunction of \hat{A} belonging to eigenvalue a_i . If a_i is non-degenerate, $\hat{B}\psi_i = c\psi_i$, thus ψ_i is also an eigenfunction of \hat{B} .

We can arrange for one set of functions $\{\psi_i\}$ to be simultaneously eigenfunctions of \hat{A} and \hat{B} when $[\hat{A}, \hat{B}] = 0$.

This is very convenient. For example: n_x , n_y , n_z for 3D box and eigenvalues of \widehat{J}^2 and \widehat{J}_z for rigid rotor. Another example: 1D box has non-degenerate eigenvalues. Thus every eigenstate of \hat{H} is an eigenstate of a symmetry operator that commutes with \hat{H} .

 $[\hat{A}, \hat{B}] \neq 0 \Rightarrow$ uncertainty principle free of any thought expt. 4.

Suppose 2 operators do not commute

$$\lceil \hat{A}, \hat{B} \rceil = \hat{C} \neq 0.$$

It is possible (we will not do it) to prove, for any Quantum Mechanical state ψ

$$\sigma_A^2 \sigma_B^2 \ge -\frac{1}{4} \left(\int dx \psi * \hat{C} \psi \right)^2 \ge 0.$$

Consider a specific example:

$$\hat{A} = \hat{x}$$

$$\hat{A} = \hat{x}$$

$$\hat{B} = \hat{p}_x$$

$$[\hat{x}, \hat{p}_x] f(x) = \hat{x} \hat{p}_x f - \hat{p}_x \hat{x} f$$

$$= x(-i\hbar) \frac{\partial}{\partial x} f - (-i\hbar) \frac{\partial}{\partial x} (xf)$$

$$= (-i\hbar) [xf' - f - xf']$$

$$= +i\hbar f$$

$$\therefore [\hat{x}, \hat{p}_x] = +i\hbar \hat{I}$$

$$\text{unit}$$

$$\text{operator}$$

so the above (unproved) theorem says

$$\sigma_x^2 \sigma_{p_x}^2 \ge -\frac{1}{4} \left[i\hbar \underbrace{\int dx \psi * \psi}_{=1} \right]^2 = -(-1)\frac{\hbar^2}{4}$$

$$\sigma_x \sigma_p \ge +\frac{\hbar}{2} \qquad \text{Heisenberg uncertainty principle}$$

This is better than a thought experiment because it comes from the mathematical properties of operators rather than being based on how good one's imagination is in defining an experiment to measure x and p_x simultaneously.

Non-Lecture

5. Why do we define
$$\hat{p}$$
 as $\hat{p} = -i\hbar \frac{\partial}{\partial x}$?

Is the -i needed? Why not +i?

$$\langle \hat{p} \rangle = -i\hbar \int_{-\infty}^{\infty} dx \psi * \frac{d}{dx} \psi$$

which must be real, $\langle \hat{p} \rangle = \langle \hat{p} \rangle^*$. But is it?

thus $\langle p \rangle = \langle p \rangle^*$, *i* is needed in \hat{p} .

i vs. -i is an arbitrary phase choice, supported by a physical argument.

Suppose we have

$$\psi = e^{ikx}$$

$$\hat{p}\psi = -i\hbar(ik)e^{ikx} = +\hbar ke^{ikx}$$
we like to associate $\langle \hat{p} \rangle$ with $+\hbar k$ rather than $-\hbar k$.

6. Suppose we have a non-eigenstate ψ for the particle in a box

for example,

Normalize this

$$\int_0^a dx \ \psi * \psi = 1 = N^2 \int_0^a dx \ x^2 (x - a)^2 (x - a/2)^2$$

find that
$$N = \left(\frac{840}{a^7}\right)^{1/2}$$
.

Now expand this function in the $\psi_n = \left(\frac{2}{a}\right)^{1/2} \sin \frac{n\pi x}{a}$ basis set.

$$\Psi = \sum_{n=1}^{\infty} c_n \Psi_n$$
 find the c_n

Left multiply by ψ_m^* and integrate

$$\int dx \psi_m^* \psi = \sum_{n=1}^{\infty} c_n \int dx \, \underline{\psi}_m^* \underline{\psi}_n = c_m$$

$$c_{m} = (840)^{1/2} a^{-7/2} \left(\frac{2}{a}\right)^{1/2} \int_{0}^{a} dx \underbrace{x(x-a)(x-a/2)}_{\text{odd with respect to } \atop 0,a \text{ interval}} \sin \frac{m\pi x}{a}_{\text{needs to be odd on } 0,a \atop \text{too in order to have an even integrand}}$$

thus $c_m = 0$ for all odd-m

$$m = 2n - 1$$
 $n = 1,2, ...$
 $c_{2n-1} = 0$
 $c_{2n} \neq 0$ find them

5.61 Fall 2017 page 15 Lecture #12

$$c_{2n} = \frac{(1680)^{1/2}}{a^4} \int_0^a dx \left(x^3 - \frac{3}{2} a x^2 + \frac{a^2}{2} x \right) \sin \frac{2n\pi x}{a}$$
change variables $y = \frac{2n\pi x}{a}$

$$= \frac{1680^{1/2}}{a^4} \int_0^{2n\pi} dy \left[\left(\frac{a}{2n\pi} \right)^3 y^3 - \frac{3}{2} a \left(\frac{a}{2n\pi} \right)^2 y^2 + \frac{a^2}{2} \left(\frac{a}{2n\pi} \right) y \right] \left(\frac{a}{2n\pi} \right) \sin y$$

steps skipped

$$c_{2n} = 1680^{1/2} \frac{6}{(2n\pi)^3} = 0.9914 \ n^{-3}$$

 $c_2 \approx 1$ as expected from general shape of ψ .

Now that we have $\{c_n\}$, we can compute $\langle E \rangle = \int dx \ \psi * \widehat{H} \psi = \sum_{n=1}^{\infty} \underbrace{P_n}_{\text{prob}} E_n$

$$P_n = c_n^2$$

$$\langle E \rangle = \sum_{n=1}^{\infty} |E_{2n}| |c_{2n}|^2 = E_1 \sum_{n=1}^{\infty} (2n)^2 [0.9914n^{-3}]^2$$

$$= 4E_1(0.983)\sum_{n=1}^{\infty} n^{-4} \approx 4E_1$$
 (Is this a surprise for a function constructed to resemble ψ_2 where E_2 =

End of Non-Lecture

MIT OpenCourseWare https://ocw.mit.edu/

5.61 Physical Chemistry Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.