GLS UNIVERSITY

Bachelor of Computer Applications (BCA) (Core Course) Semester-III

210301302 DATA STRUCTURES

1. Course Objective:

- To learn the systematic way of solving problems.
- To understand the different methods of organizing large amounts of data.
- To efficiently implement the different data structures.
- To efficiently implement solutions for specific problem prerequisites.

2. Course Duration:

The course will have sessions which are divided into five modules. Each module consists of nine sessions of 60 minutes each and carries a weightage of 20%.

3. Course Contents:

Module No.	Modules/Sub-Modules	No. of Sessions	Marks Weightage
I	Introduction to Data Structure	09	20%
	 Basic concept of data, Problem analysis Algorithm Analysis Space Complexity(Average, best and worst case analysis) Time Complexity(Average, best and worst case analysis) Data types primitive and non-primitive Types of Data Structure: Linear and Non- Linear Hashing Introduction to hashing Hash Table Hashing Applications Arrays: Representation of single and multidimensional arrays Sparse matrix and its representation Lower and upper triangular matrices and Tri diagonal matrices and representation 	09	2070
II	Stack and Queue Stack Introduction to Stack Operations on Stack Stack Applications: Infix, Postfix, Prefix expressions Evaluation of postfix expressions Conversion between infix, prefix and postfix Queue	09	20%

		I	1
	 Representation of Queue 		
	 Operations on Queue 		
	 Implementation of Queue 		
	 Types of Queue 		
	 Simple Queue 		
	 Circular Queue 		
	 Introduction to Priority Queue 		
	 Introduction to Double-Ended Queue 		
	 Applications of Queue 		
III	Linked List	09	20%
1111	Introduction to Linked List	09	20%
	 Operations on Linked List 		
	o Inserting node (beginning, end, between)		
	o Deletion (beginning, end, between)		
	o Display Linked List		
	Types of Linked List		
	 Singly Linked List 		
	 Doubly Linked List 		
	 Circular Linked List 		
	 Linked implementation of Stack 		
	• Linked implementation of Queue		
	Applications of Linked List		
IV	Tree and Graph	09	20%
	• Trees		
	o Definition		
	o Terminology		
	 Representation 		
	Binary Tree		
	 Representation 		
	o Traversal: Inorder, Preorder, Postorder		
	 Insertion and Deletion 		
	Binary Search Tree		
	AVL/ Height Balanced Tree		
	Threaded Binary Tree		
	• Graph		
	 Definition 		
	 Terminology 		
	 Representation 		
	 Adjacency Matrix and List 		
	 Graph Operations 		
	o BFS		
	o DFS		
	 Spanning Tree 		
	 Minimal spanning tree 		
	 Shortest path 		
V	Sorting, Searching & Hashing	09	20%
	 Sorting Techniques 		
	 Selection Sort 		
	 Bubble Sort 		

	 Merge Sort
	o Quick Sort
Searching Techniques	
	 Linear/Sequential Search
	o Binary Search

4. Teaching Methods:

The following pedagogical tools will be used to teach this course:

- 1. Lectures and Discussions
- 2. Assignments and Practical Demos
- 3. Problem Solving

5. Evaluation:

The students will be evaluated on a continuous basis and broadly follow the scheme given below:

1.	Assignments / Presentations	30% (Internal Assessment)
2.	Internal Examination	20% (Internal Assessment)
3.	External Examination	50% (External Assessment)

6. Basic Text Books:

Sr. No	Author/s	Name of the book	Publisher	Edition
T1	Varsha H. Patil	Data Structures using C++	Oxford	Latest

7. Reference Books:

Sr. No	Author/s	Name of the book	Publisher	Edition
R1	-	Data Structures through C++	Mc Graw Hill	Latest

8. List of Journals / Periodicals / Magazines / Newspapers etc.:

Sr. No	Link	
1	E-book data structure using C++ by Yashwant Kanetkar	
2	2 http://nptel.ac.in/courses/106102064/1	
3	http://nptel.ac.in/courses/106102064/2	
4	http://nptel.ac.in/courses/106102064/3	
5	http://nptel.ac.in/courses/106102064/4	

9. Session Plan:

Session	Topics / Chapters	
No.		
1	Introduction to Data Structures	
2	Basic concept of data, Problem analysis	
3-4	Algorithm Analysis	
	Space Complexity & Time Complexity	
5	Data types primitive and non-primitive	
6	Types of Data Structure: Linear and Non-Linear	

7	Hashing and Array representation		
8	Sparse matrix and its representation		
9	Lower and upper triangular matrices and Tri diagonal matrices		
10	Introduction to Stack		
11	Operations on Stack		
12-13	Stack Applications: Infix, Postfix, Prefix expression, Evaluation of postfix expressions		
14	Conversion between infix, prefix and postfix		
15	Representation of Queue & Operations on Queue		
16	Implementation of Queue		
17-18	Types of Queue & Applications of Queue		
19	Introduction to Linked List		
20-21	Operations on Linked Lis		
22-25	Types of Linked List		
26	Linked implementation of Stack		
27	Linked implementation of Queue, Applications of Linked List		
28	Trees: Definition, Terms, Representation		
29-30	Binary Tree: Representation, Traversal: Inorder, Preorder, Postorder, Insertion and Deletion		
31	Binary Search Tree, AVL/ Height Balanced Tree		
32	Threaded Binary Tree		
33	Graph: Definition, Terms, Representation, Adjacency Matrix and List		
34	BFS & DFS		
35-36	Spanning Tree, Minimum Spanning Tree, Shortest path		
37	Introduction to Sorting Techniques		
38	Insertion Sort		
39	Bubble Sort		
40	Selection Sort		
41	Merge Sort		
42	Introduction to Searching Techniques		
43-45	Linear/Sequential Search, Binary Search		

10. Learning Outcome:

Upon the completion of this course, students will be able to:

- Differentiate primitive and non-primitive structures.
- Design and apply appropriate data structures for solving computing problems.
- Apply sorting and searching algorithms to the small and large data sets using OOPS.
- Familiarize with other complex data structures such as graph, tree.
- Build test cases to analyze their solutions to make adjustments.