# 量子力学ノート とが

# 1. 2021/4/21

#### 1.1. 要点

1次元の直線上を動く質量 m の粒子の波動関数  $\Psi:\mathbb{R}^2 \to \mathbb{C}$  は Schrödinger 方程式

$$i\hbar \frac{\partial \Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x,t)\Psi(x,t)$$

を満たす. ただし  $V: \mathbb{R}^2 \to \mathbb{R}$  はポテンシャル,  $\hbar$  は換算プランク定数, i は虚数単位.

暗黙の了解として,  $\Psi$  とその n 次導関数は  $x \to +\infty$  で 0 に収束するものとする.

ある  $\Psi$  が Schrödinger 方程式を満たすなら、定数 A をかけた  $A\Psi$  も Schrödinger 方程式を満たす (計算 1).

 $\Psi$  が Schrödinger 方程式を満たすとき, $\int_{-\infty}^{\infty} \left|\Psi(x,t)\right|^2 \mathrm{d}x$  は t に依存しない(計算 2).

ある解 $\Psi$ があったときに、定数をかけて

$$\int_{-\infty}^{\infty} \left| \Psi'(x,t) \right|^2 dx = 1$$

を満たす解 $\Psi'$ を見つける操作を、正規化という.

波動関数  $\Psi(x,t)$  で表される粒子の「座標の期待値」 $\langle x \rangle$  を

$$\langle x \rangle = \int_{-\infty}^{\infty} x |\Psi(x,t)|^2 dx$$
$$= \int_{-\infty}^{\infty} \Psi^*[x] \Psi dx$$

(ただし $\Psi^*$ は $\Psi$ の共役複素数)で定義する.  $\langle x \rangle$  の時間微分を計算すると

$$\frac{\mathrm{d}\langle x\rangle}{\mathrm{d}t} = -\frac{i\hbar}{m} \int_{-\infty}^{\infty} \Psi^* \frac{\partial \Psi}{\partial x} \mathrm{d}x$$

となり(計算 3),これが粒子の「速度の期待値」 $\langle v \rangle$  となる.これに m をかけた「運動量の期待値」 $\langle p \rangle = m \langle v \rangle$  は

$$\langle p \rangle = \int_{-\infty}^{\infty} \Psi^* \left[ -i\hbar \frac{\partial}{\partial x} \right] \Psi dx$$

となる.  $\langle x \rangle$  の定義中の x, および  $\langle p \rangle$  の定義中の  $-i\hbar\frac{\partial}{\partial x}$  は作用素とみなせる. こうして x,p の関数 Q(x,p) として表せる任意の物理量の期待値が

$$\langle Q(x,p)\rangle = \int_{-\infty}^{\infty} \Psi^* \left[ Q\left(x, -i\hbar \frac{\partial}{\partial x}\right) \right] \Psi dx$$

と書ける.

座標xと運動量pの標準偏差をそれぞれ $\sigma_x$ , $\sigma_p$ とすると,

$$\sigma_x \sigma_p \ge \frac{\hbar}{2}$$

が成り立つ.

### 1.2. 計算1

 $\Psi$ が Schrödinger 方程式を満たすとする. A を定数とすると

$$i\hbar \frac{\partial}{\partial t} (A\Psi) = A \cdot i\hbar \frac{\partial \Psi}{\partial t}$$

$$= A \cdot \left( -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V\Psi \right)$$

$$= -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} (A\Psi) + V(A\Psi)$$

より  $A\Psi$  も Schrödinger 方程式を満たす.

# 1.3. 計算 2

Schrödinger 方程式を変形すると

$$\frac{\partial \Psi}{\partial t} = \frac{i\hbar}{2m} \frac{\partial^2 \Psi}{\partial x^2} - \frac{i}{\hbar} V \Psi$$

となり, 両辺の複素共役をとると

$$\frac{\partial \Psi^*}{\partial t} = -\frac{i\hbar}{2m} \frac{\partial^2 \Psi^*}{\partial x^2} + \frac{i}{\hbar} V \Psi^*$$

となる. これより

$$\begin{split} \frac{\partial}{\partial t} \big( \varPsi^* \varPsi \big) &= \varPsi^* \frac{\partial \varPsi}{\partial t} + \frac{\partial \varPsi^*}{\partial t} \varPsi \\ &= \varPsi^* \bigg( \frac{i\hbar}{2m} \frac{\partial^2 \varPsi}{\partial x^2} - \frac{i}{\hbar} V \varPsi \bigg) + \bigg( -\frac{i\hbar}{2m} \frac{\partial^2 \varPsi^*}{\partial x^2} + \frac{i}{\hbar} V \varPsi^* \bigg) \varPsi \\ &= \frac{i\hbar}{2m} \bigg( \varPsi^* \frac{\partial^2 \varPsi}{\partial x^2} - \frac{\partial^2 \varPsi^*}{\partial x^2} \varPsi \bigg) \end{split}$$

である. ここで

$$\begin{split} \frac{\partial}{\partial x} \bigg( \varPsi^* \frac{\partial \varPsi}{\partial x} - \frac{\partial \varPsi^*}{\partial x} \varPsi \bigg) &= \varPsi^* \frac{\partial^2 \varPsi}{\partial x^2} + \frac{\partial \varPsi^*}{\partial x} \cdot \frac{\partial \varPsi}{\partial x} - \left( \frac{\partial \varPsi^*}{\partial x} \cdot \frac{\partial \varPsi}{\partial x} + \frac{\partial^2 \varPsi^*}{\partial x^2} \varPsi \right) \\ &= \varPsi^* \frac{\partial^2 \varPsi}{\partial x^2} - \frac{\partial^2 \varPsi^*}{\partial x^2} \varPsi \end{split}$$

に注意すると,

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{\infty} |\Psi|^2 \mathrm{d}x = \int_{-\infty}^{\infty} \frac{\partial}{\partial t} (\Psi^* \Psi) \mathrm{d}x$$
$$= \frac{i\hbar}{2m} \left[ \Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi \right]_{-\infty}^{\infty}$$
$$= 0$$

を得るので,  $\int_{-\infty}^{\infty} |\Psi|^2 dx$  が t に依存しないことが分かる.

### 1.4. 計算3

計算2の途中式を流用すると

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \langle x \rangle &= \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{\infty} x \left| \Psi \right|^{2} \mathrm{d}x \\ &= \int_{-\infty}^{\infty} x \cdot \frac{\partial}{\partial t} \left( \Psi^{*} \Psi \right) \mathrm{d}x \\ &= \frac{i\hbar}{2m} \int_{-\infty}^{\infty} x \cdot \frac{\partial}{\partial x} \left( \Psi^{*} \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^{*}}{\partial x} \Psi \right) \mathrm{d}x \end{split}$$

となり, 部分積分により

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle x\rangle = \frac{i\hbar}{2m} \Biggl( \Biggl[ x \Biggl( \Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi \Biggr) \Biggr]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \Biggl( \Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi \Biggr) \mathrm{d}x \Biggr)$$
$$= -\frac{i\hbar}{2m} \int_{-\infty}^{\infty} \Biggl( \Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi \Biggr) \mathrm{d}x$$

となる. ここで部分積分

$$\int_{-\infty}^{\infty} \frac{\partial \Psi^*}{\partial x} \Psi dx = \left[ \Psi^* \Psi \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \Psi^* \frac{\partial \Psi}{\partial x} dx$$
$$= -\int_{-\infty}^{\infty} \Psi^* \frac{\partial \Psi}{\partial x} dx$$

に着目すると

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle x\rangle = -\frac{i\hbar}{m} \int_{-\infty}^{\infty} \Psi^* \frac{\partial \Psi}{\partial x} \mathrm{d}x$$

が得られる.

# 2. 2021/4/22

### 2.1. 問題 1.9

$$\Psi(x,t)=Ae^{-a\left[\left(mx^2/\hbar
ight)+it
ight]}$$
 より  $\left|\Psi(x,t)
ight|^2=\Psi(x,t)\Psi^*(x,t)=A^2e^{-2amx^2/\hbar}$  なので

$$\int_{-\infty}^{\infty} |\Psi(x,t)|^2 dx = A^2 \int_{-\infty}^{\infty} e^{-\frac{2am}{\hbar}x^2} dx$$
$$= A^2 \sqrt{\frac{\pi\hbar}{2am}}$$

よって, 
$$\int_{-\infty}^{\infty} \left|\Psi(x,t)\right|^2 \mathrm{d}x = 1$$
 となるためには  $A = \left(\frac{2am}{\pi\hbar}\right)^{\frac{1}{4}}$  であればよい.

₩を微分すると

$$\frac{\partial \Psi}{\partial t} = -ia\Psi$$

$$\frac{\partial \Psi}{\partial x} = -\frac{2amx}{\hbar}\Psi$$

$$\frac{\partial^2 \Psi}{\partial x^2} = \frac{2am(2amx^2 - \hbar)}{\hbar^2}\Psi$$

となるので、Schrödinger 方程式より

$$\hbar a \Psi = -rac{\hbar^2}{2m} \cdot rac{2am \left(2am x^2 - \hbar
ight)}{\hbar^2} \Psi + V \Psi$$

Vについて解いて  $V(x) = 2a^2mx^2$ .

$$\left|\varPsi\right|^{2} は正規分布  $N\!\!\left(0,\sqrt{\frac{\hbar}{4am}}\right)$  の密度関数なので、 $\left\langle x\right\rangle = 0,\;\sigma_{x} = \sqrt{\frac{\hbar}{4am}},\;\left\langle x^{2}\right\rangle = \sigma_{x}^{2} = \frac{\hbar}{4am}$$$

$$-i\hbar\frac{\partial\varPsi}{\partial x}=(\mathrm{const})x\varPsi\ \mathrm{$\downarrow$}\ \mathrm{0,}\ \langle p\rangle=(\mathrm{const})\int_{-\infty}^{\infty}\varPsi^*x\varPsi\mathrm{d}x=0.$$

$$\begin{split} \left\langle p^{2}\right\rangle &= \int_{-\infty}^{\infty} \varPsi^{*} \left(-h^{2} \frac{\partial^{2} \varPsi}{\partial x^{2}}\right) \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \varPsi^{*} \left(-2am \left(2am x^{2} - \hbar\right) \varPsi\right) \mathrm{d}x \\ &= -2am \left(2am \left\langle x^{2}\right\rangle - \hbar\right) \\ &= \hbar am \end{split}$$

$$\sigma_x = \sqrt{\frac{\hbar}{4am}}, \ \sigma_p = \sqrt{\hbar am} \ \sharp \ \emptyset \ \sigma_x \cdot \sigma_p = \sqrt{\frac{\hbar}{4am} \cdot \hbar am} = \frac{\hbar}{2}.$$

#### 2.2. 問題 1.15

Schrödinger 方程式より

$$\begin{split} \frac{\partial \varPsi_1^*}{\partial t} &= -\frac{i\hbar}{2m} \frac{\partial^2 \varPsi_1^*}{\partial x^2} + \frac{i}{\hbar} V \varPsi_1^* \\ \frac{\partial \varPsi_2}{\partial t} &= \frac{i\hbar}{2m} \frac{\partial^2 \varPsi_2}{\partial x^2} - \frac{i}{\hbar} V \varPsi_2 \\ \therefore \frac{\partial}{\partial t} (\varPsi_1^* \varPsi_2) &= \frac{i\hbar}{2m} \left( \frac{\partial^2 \varPsi_1^*}{\partial x^2} \varPsi_2 - \varPsi_1^* \frac{\partial^2 \varPsi_2}{\partial x^2} \right) \end{split}$$

よって

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{\infty} & \Psi_1 * \Psi_2 \, \mathrm{d}x = \frac{i\hbar}{2m} \int_{-\infty}^{\infty} \left( \frac{\partial^2 \Psi_1 *}{\partial x^2} \Psi_2 - \Psi_1 * \frac{\partial^2 \Psi_2}{\partial x^2} \right) \mathrm{d}x \\ &= \frac{i\hbar}{2m} \left[ \frac{\partial \Psi_1 *}{\partial x} \Psi_2 - \Psi_1 * \frac{\partial \Psi_2}{\partial x} \right]_{-\infty}^{\infty} \\ &= 0 \end{split}$$

## 2.3. 要点

t に依存しない  $\psi(x)$  と x に依存しない  $\varphi(t)$  を用いて  $\Psi(x,t) = \psi(x)\varphi(t)$  と表せると仮定すると,  $\frac{\partial \Psi}{\partial t} = \psi \frac{\mathrm{d} \varphi}{\mathrm{d} t}$ ,  $\frac{\partial^2 \Psi}{\partial x} = \frac{\mathrm{d}^2 \psi}{\mathrm{d} x^2} \varphi$  より Schrödinger 方程式は

$$i\hbar\psi\frac{\mathrm{d}\varphi}{\mathrm{d}t} = -\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2}\varphi + V\psi\varphi$$

となり、両辺を  $\psi \varphi$  で割って

$$i\hbar \frac{1}{\varphi} \frac{\mathrm{d}\varphi}{\mathrm{d}t} = -\frac{\hbar^2}{2m} \frac{1}{\psi} \frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + V$$

とすると左辺は  $\varphi$ , 右辺は  $\psi$  だけの式になるから, ある定数 E が存在して

$$i\hbar \frac{1}{\varphi} \frac{\mathrm{d}\varphi}{\mathrm{d}t} = E$$
$$-\frac{\hbar^2}{2m} \frac{1}{\psi} \frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + V = E$$

よって、時間に依存しない Schrödinger 方程式

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + V\psi = E\psi$$

を解けば,そこに  $i\hbar\frac{\mathrm{d}\varphi}{\mathrm{d}t}=E\varphi$  の解である  $\varphi=e^{-iEt/\hbar}$  をかけることで  $\Psi$  が得られる.

# 3. 2021/4/23

### 3.1. 要点

$$V(x) = \begin{cases} 0 & (0 \le x \le a) \\ \infty & (\text{otherwise}) \end{cases}$$

とする.  $\psi(0)=\psi(a)=0$  として  $0\leq x\leq a$  の範囲で時間に依存しない Schrödinger 方程式  $-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2}=E\psi$  を解くと,n を正の整数として

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$$

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$$

が得られる (計算1).

波動関数 $\Psi$ の初期状態 $\Psi(x,0)$ が与えられれば、フーリエ級数展開によって

$$\Psi(x,0) = \sum_{n=1}^{\infty} c_n \psi_n(x)$$

と表すことで

$$\Psi(x,t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-iE_n t/\hbar}$$

が得られる.

#### 3.2. 計算1

 $k = \frac{\sqrt{2mE}}{\hbar}$  とおくと時間に依存しない Schrödinger 方程式は

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} = -k^2 \psi$$

と表せるので,一般解は

$$\psi(x) = A\sin kx + B\cos kx$$

ここで  $\psi(0)=A\sin 0+B\cos 0=B$ で、 $\psi(0)=0$ なので B=0. よって  $\psi(x)=A\sin kx$  だが、 $\psi(a)=0$ なのである整数 n が存在して  $ka=n\pi$ . よって解は 定数 A と整数 n を用いて  $A\sin\left(\frac{n\pi}{a}x\right)$  と表せる.

n=0 のときは  $\psi(x)=0$  となってしまうので不適.また n が負のときは定数 A'=-A と正の整数 n'=-n を用いて  $\psi(x)=A'\sin\!\left(\!\frac{n'\pi}{a}x\!\right)$  と表せるので,n が正の整数のときだけを考えればよい.

$$\left|\psi\right|^2 = A^2 \sin^2\left(\frac{n\pi}{a}x\right)$$
を  $0 \le x \le a$  で積分すると

$$A^{2} \int_{0}^{a} \sin^{2}\left(\frac{n\pi}{a}x\right) dx = A^{2} \int_{0}^{a} \frac{1 - \cos\left(\frac{2n\pi}{a}x\right)}{2} dx$$
$$= A^{2} \left[\frac{1}{2}x - \frac{a}{4n\pi}\sin\left(\frac{2n\pi}{a}x\right)\right]_{0}^{a}$$
$$= A^{2} \cdot \frac{a}{2}$$

より,  $\int_0^a \left|\psi(x)\right|^2 \mathrm{d}x = 1$  となるためには  $A = \pm \sqrt{\frac{2}{a}}$  であればよい. ただし物理学の観点で

は  $A = \sqrt{\frac{2}{a}}$  のときを考えれば十分らしい.

さて, $k=\frac{\sqrt{2mE}}{\hbar}$ と  $ka=n\pi$  より E としてありえる値は  $E_n=\frac{n^2\pi^2\hbar^2}{2ma^2}$  であり, 各  $E_n$  に対応する  $\psi$  は  $\psi_n(x)=\sqrt{\frac{2}{a}}\sin\!\left(\frac{n\pi}{a}x\right)$  である. これが今回の V に対する時間に依存しない Schrödinger 方程式の解である.

#### 3.3. 問題 2.4

$$\langle x \rangle = \int_0^a x \left| \psi_n(x) \right|^2 dx$$

$$= \frac{2}{a} \int_0^a x \sin^2 \left( \frac{n\pi}{a} x \right) dx$$

$$= \frac{1}{a} \left( \int_0^a x \sin^2 \left( \frac{n\pi}{a} x \right) dx + \int_0^a (a - x) \sin^2 \left( \frac{n\pi}{a} x \right) dx \right)$$

$$= \int_0^a \sin^2 \left( \frac{n\pi}{a} x \right) dx$$

$$= \frac{a}{2}$$

$$\begin{split} \left\langle x^2 \right\rangle &= \int_0^a x^2 \left| \psi_n(x) \right|^2 \mathrm{d}x \\ &= \frac{2}{a} \int_0^a x^2 \sin^2 \left( \frac{n\pi}{a} x \right) \mathrm{d}x \\ &= \frac{1}{a} \int_0^a x^2 \left( 1 - \cos \left( \frac{2n\pi}{a} x \right) \right) \mathrm{d}x \\ &= \frac{1}{a} \int_0^a x^2 \mathrm{d}x - \frac{1}{a} \int_0^a x^2 \cos \left( \frac{2n\pi}{a} x \right) \mathrm{d}x \\ &= \frac{a^2}{3} - \frac{1}{a} \left( \frac{a}{2n\pi} \left[ x^2 \sin \left( \frac{2n\pi}{a} x \right) \right]_0^a - \frac{a}{n\pi} \int_0^a x \sin \left( \frac{2n\pi}{a} x \right) \mathrm{d}x \right) \\ &= \frac{a^2}{3} + \frac{1}{n\pi} \left( -\frac{a}{2n\pi} \left[ x \cos \left( \frac{2n\pi}{a} x \right) \right]_0^a + \frac{a}{2n\pi} \int_0^a \cos \left( \frac{2n\pi}{a} x \right) \mathrm{d}x \right) \\ &= \frac{a^2}{3} - \frac{a^2}{2n^2\pi^2} \\ &\langle p \rangle = \int_0^a \psi_n^*(x) \left( -i\hbar \frac{\mathrm{d}}{\mathrm{d}x} \psi_n(x) \right) \mathrm{d}x \\ &= \int_0^a \sqrt{\frac{2}{a}} \sin \left( \frac{n\pi}{a} x \right) \left( -i\hbar \cdot \frac{n\pi}{a} \sqrt{\frac{2}{a}} \cos \left( \frac{n\pi}{a} x \right) \right) \mathrm{d}x \\ &= \frac{2n\pi i \hbar}{a^2} \int_0^a \sin \left( \frac{n\pi}{a} x \right) \cos \left( \frac{n\pi}{a} x \right) \mathrm{d}x \\ &= \frac{n\pi i \hbar}{a^2} \int_0^a \sin \left( \frac{2n\pi}{a} x \right) \mathrm{d}x \\ &= 0 \end{split}$$

$$\langle p^2 \rangle = \int_0^a \psi_n^*(x) \left( -\hbar^2 \frac{\mathrm{d}^2}{\mathrm{d}^2 x} \psi_n(x) \right) \mathrm{d}x$$

$$= \int_0^a \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) \left( \hbar^2 \cdot \frac{n^2 \pi^2}{a^2} \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) \right) \mathrm{d}x$$

$$= \frac{2n^2 \pi^2 \hbar^2}{a^3} \int_0^a \sin^2\left(\frac{n\pi}{a}x\right) \mathrm{d}x$$

$$= \frac{n^2 \pi^2 \hbar^2}{a^2}$$

$$\begin{split} \sigma_x &= \sqrt{\left\langle x^2 \right\rangle - \left\langle x \right\rangle^2} \\ &= \sqrt{\frac{a^2}{3} - \frac{a^2}{2n^2\pi^2} - \frac{a^2}{4}} \\ &= a\sqrt{\frac{1}{12} - \frac{1}{2n^2\pi^2}} \\ \sigma_p &= \sqrt{\left\langle p^2 \right\rangle - \left\langle p \right\rangle^2} \\ &= \frac{n\pi\hbar}{a} \end{split}$$

より  $\sigma_x\sigma_p=\hbar\sqrt{\frac{n^2\pi^2}{12}-\frac{1}{2}}$ 、これは n=1 のとき最小値  $\hbar\sqrt{\frac{\pi^2}{12}-\frac{1}{2}}=0.568\hbar$  をとるので不確定性原理は成り立っている.