BEGINNING OF TERM ONE 2023 UGANDA ADVANCED CERTIFICATE OF EDUCATION PURE MATHEMATICS

INSTRUCTIONS TO CANDIDATES:

- Attempt all the eight questions in section A and any five questions from section B.
- Clearly show all the necessary working
- Begin each answer on a fresh sheet of paper
- Silent, simple non-programmable scientific calculators may be used.

SECTION A (40 MARKS)

- 1. Solve for x, given $\log_2(11-6x) = 2\log_2(x-1) + 3$.
- 2. Differentiate $\frac{1}{\sqrt{\cos x}}$ from first principles.
- 3. Solve: $4\cos 2x + 3\sin 2x = 3$ for $0^{\circ} \le x \le 360^{\circ}$.
- 4. The lines L_1 and L_2 are given by the equations $\frac{x-3}{k} = y-4 = \frac{z-4}{-k}$ and $\frac{x-8}{1} = \frac{y-1}{3} = \frac{z-3}{3}$ respectively. Find the value of k for which L_1 and L_2 intersect and hence, find the point of intersection.
- 5. The length of a rectangular block is three times its width. If the total surface area of the block is $180 \, cm^2$, find the maximum volume.
- 6. Prove by induction: $\sum_{r=1}^{n} \frac{1}{r(r+1)} = 1 \frac{1}{n+1}$
- 7. Evaluate: $\int_{2}^{6} \frac{\sqrt{x-2}}{x} dx$

8. Show that $3x^2 + 2y^2 + 6x - 8y = 7$ is an ellipse and determine the coordinates of its centre and foci.

SECTION B (60MARKS)

- 9a) The roots of the equation $3x^2 2x + 24 = 0$ are 2α and 2β . Find an equation whose roots are α and β .
- b) Find the term independent of x: $\left(3x \frac{2}{x}\right)^9$
- c) Evaluate: $\log_8 2 + \frac{1}{2} \log_4 8$
- 10a) Find the equations of the tangent and normal to the curve $x^2 + 3y^2 = 2a^2$ at the point $\left(a, \frac{a}{\sqrt{3}}\right)$.
- Show that the gradient of the curve $y = x(x-3)^2$ is zero at the point P(1, 4) and sketch the curve. If the tangent at P cuts the curve again at Q, calculate the area contained between the chord PQ and the curve.
- 11a) Given that z = 5 2i, find the modulus of $z^* \frac{3}{z}$ where z^* is the conjugate of z.
- b) Given that $\left| \frac{3z+1}{2z-i} \right| = \sqrt{2}$, find the locus of z and describe the locus.
- 12a) The line $\frac{x+1}{2} = \frac{y+3}{a} = \frac{z+2}{3}$ lies on the plane x + 2y + bz = 3, find the values of a and b.
- b) A line and a plane are given by the equations $\frac{x+1}{2} = \frac{y-3}{5} = \frac{z+2}{-1}$ and 2x y + 3z = 20 respectively. Determine:
- i) the point of intersection of the line and the plane.

- ii) the acute angle between the line and the plane.
- 13a) Show that $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$, hence, find the exact value of $\cos 3\theta$ if $\cos \theta = -\frac{2}{3}$.
- b) Solve: $3\sin 2x + 4\cos^2 x = -1$ for $0^\circ \le x \le 180^\circ$.
- 14a) If $y = \frac{3\sin 2x + 4\cos 2x}{2x + 1}$, show that $(2x + 1)\frac{dy}{dx} + 2y = 10\cos(2x + \alpha)$.
- b) Differentiate the following:

i)
$$y = x^2 \sin\left(\frac{1}{x}\right)$$
 ii) $y = xInx^3$

- 15a) The line y = ax + 3 is a tangent to the parabola $y^2 = 4ax$, find the value of a.
- b) A tangent to the parabola $y^2 = 4ax$ at the point $P(ap^2, 2ap)$ meet the directrix at point
- Q. Point R is the foot of the perpendicular from the vertex to the tangent.
- i) Show that SP and SQ are perpendicular.
- ii) Find the locus of the mid point of OR.
- 16a) Solve the differential equation. $\frac{dy}{dx} = (y-3)(4x+3)$ given x = -1 and $y = 3(\frac{1}{e}+1)$.

b)