Lógica Combinacional

OdC 2021

Minitérminos y maxitérminos

Minitérminos y maxitérminos para tres variables binarias

x	y	z	Minitérminos		Maxitérminos		
			Términos	Designación	Términos	Designación	
0	0	0	x'y'z'	m_0	x + y + z	M_0	
0	0	1	x'y'z	m_1	x + y + z'	M_1	
0	1	0	x'yz'	m_2	x + y' + z	M_2	
0	1	1	x'yz	m_3	x + y' + z'	M_3	
1	0	0	xy'z'	m_4	x' + y + z	M_4	
1	0	1	xy'z	m_5	x' + y + z'	M_5	
1	1	0	xyz'	m_6	x' + y' + z	M_6	
1	1	1	xyz	m_7	x' + y' + z'	M_7	

Las funciones booleanas expresadas como suma de minitérminos o producto de maxitérminos están en **forma canónica**.

Programmable Logic Array (PLA)

Completa

Simplificada

Configurada

Ejercicio 1

Un detector de paridad impar de 4 entradas y una salida funciona de la siguiente manera: si la cantidad de entradas con valor '1' es impar la salida se pone en '1', en el resto de los casos la salida toma valor '0'.

- a) Construir la tabla de verdad para dicho sistema.
- b) Obtener la ecuación lógica como suma de minitérminos y producto de maxitérminos (funciones canónicas).
- c) Implementar el sistema con compuertas NAND de la cantidad de entradas requeridas.
- d) Implementar el sistema con una PLA.

Ejercicio 1 - a)

Un detector de paridad impar de 4 entradas y una salida funciona de la siguiente manera: si la cantidad de entradas con valor '1' es impar la salida se pone en '1', en el resto de los casos la salida toma valor '0'.

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Ejercicio 1 - b)

Ecuación lógica como suma de minitérminos (suma de productos):

$$S = A'B'C'D + A'B'CD' + A'BC'D' + A'BCD + AB'C'D' + AB'CD+$$

$$ABC'D + ABCD'$$

Ecuación lógica como producto de maxitérminos (producto de sumas):

$$S = (A+B+C+D)*(A+B+C'+D')*(A+B'+C+D')*(A+B'+C'+D)*(A'+B+C+D')$$

$$*(A'+B+C'+D)*(A'+B'+C+D)*(A'+B'+C'+D')$$

	_		_	
Α	В	С	D	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Ejercicio 1 - c)

A partir de la ecuación lógica como suma de minitérminos:

S = A'B'C'D + A'B'CD' + A'BC'D' + A'BCD + AB'C'D' + AB'CD + ABC'D + ABCD' Negando 2 veces S (S" = S) se obtiene:

S" = (A'B'C'D + A'B'CD' + A'BC'D' + A'BCD + AB'C'D' + AB'CD + ABC'D + ABCD')"
S = ((A'B'C'D)'*(A'B'CD')'*(A'BC'D')'*(A'BCD)'*(AB'C'D')'*(ABC'D)'*(ABC'D)'*(ABC'D')')

Ejercicio 1 - c)

S = ((A'B'C'D)'*(A'B'CD')'*(A'BC'D')'*(A'BCD)'* (AB'C'D')'*(AB'CD)'*(ABC'D)'*(ABCD')')'

Ejercicio 1 - d)

Ecuación lógica como suma de minitérminos (suma de productos):

S = A'B'C'D + A'B'CD' + A'BC'D' + A'BCD + AB'C'D' + AB'CD+ABC'D + ABCD'

Ejercicio 2

Un sistema digital recibe información en forma de palabras de 5 bits (**ABCDE**) en un código protegido contra errores, de tal forma que cualquier dato que se reciba debe contener 3 y sólo 3 bits en '1'. Diseñar un circuito con las entradas **ABCDE** y una salida **err** que se activa por bajo cuando se recibe un dato incorrecto.

- a) Construir la tabla de verdad para dicho sistema.
- b) Obtener la ecuación lógica como suma de minitérminos y producto de maxitérminos (funciones canónicas).
- c) Implementar el sistema con una PLA.

Ejercicio 2 - a)

Α	В	С	D	E	err
0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	1	0	0
0	0	0	1	1	0
0	0	1	0	0	0
0	0	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	0	1	0
0	1	0	1	0	0
0	1	0	1	1	1
0	1	1	0	0	0
0	1	1	0	1	1
0	1	1	1	0	1
0	1	1	1	1	0

Α	В	С	D	E	err		
1	0	0	0	0	0		
1	0	0	0	1	0		
1	0	0	1	0	0		
1	0	0	1	1	1		
1	0	1	0	0	0		
1	0	1	0	1	1		
1	0	1	1	0	1		
1	0	1	1	1	0		
1	1	0	0	0	0		
1	1	0	0	1	1		
1	1	0	1	0	1		
1	1	0	1	1	0		
1	1	1	0	0	1		
1	1	1	0	1	0		
1	1	1	1	0	0		
1	1	1	1	1	0		