IN THE CLAIMS:

We claim:

•	•			
1	1.	A memory system comprising a plurality of memory cells arranged in an arra		
2	and fabricate	ed over a silicon carbide (SiC) substrate.		
1	2.	The memory system according to Claim 1, wherein the plurality of memory		
2	cells are a pl	lurality of T-RAM memory cells.		
t .	3.	The memory system according to Claim 2, wherein each of the plurality of T-		
2		ry cells include a first and a second vertical device, where the first vertical		
3				
	device of each of the plurality of T-RAM memory cells is a thyristor and the second vertical			
4	device of eac	ch of the plurality of T-RAM memory cells is a transfer gate.		
1	4.	The memory system according to Claim 3, wherein the two vertical devices		
2	are connecte	d by an n+ region.		
l	5.	The memory system according to Claim 2, wherein each of the plurality of T-		
2	RAM memo	ry cells has a size of less than or equal to 6F ² .		
i	6.	The memory system according to Claim 2, wherein each of the plurality of T-		
2	RAM memo	ry cells includes two vertical devices having approximately the same height.		
1	7.	The memory system according to Claim 1, wherein each of the plurality of		
2		s is configured for being operational at high temperatures and in high radiation		
3		prone environments.		
ļ	8.	The memory system according to Claim 7, wherein each of the plurality of		
-) ^ .				
-	momor y cen	memory cells is operational in a temperature range from 200 to 1000 degrees Celsius.		

The memory system according to Claim 1, wherein each of the plurality of 1 2 memory cells has a planar cell structure. 1 10. The memory system according to Claim 1, wherein the SiC substrate is a p-2 type SiC substrate. 1 11. A T-RAM array comprising a plurality of memory cells fabricated over a 2 silicon carbide (SiC) substrate. 1 12. The array according to Claim 11, wherein the SiC substrate is a p-type SiC 2 substrate. 1 13. The array according to Claim 11, wherein the plurality of memory cells are a 2 plurality of T-RAM memory cells. 1 14. The array according to Claim 13, wherein each of the plurality of T-RAM 2 memory cells includes two vertical devices having approximately the same height. 1 15. The array according to Claim 13, wherein a first vertical device of each of the 2 plurality of T-RAM memory cells is a thyristor and a second vertical device of each of the 3 plurality of T-RAM memory cells is a transfer gate. 1 16. The array according to Claim 13, wherein each of the plurality of T-RAM 2 memory cells has a size of less than or equal to 6F². 1 17. The array according to Claim 11, wherein each of the plurality of memory 2 cells is configured for being operational at high temperatures and in high radiation prone 3 environments. 1 18. The array according to Claim 17, wherein each of the plurality of memory

cells is operational in a temperature range from 200 to 1000 degrees Celsius.

2

three layers on the wafer prior to the fabricating step, wherein a first layer is provided on top

2

- of the at least one SiC layer and is an n-type layer, a second layer is provided on top of the first layer and is a p-type layer, and a third layer is provided on top of the second layer and is an n-type layer.
- The method according to Claim 21, wherein the step of fabricating each of the plurality of memory cells on the wafer includes the steps of:

 doping portions of the wafer with a first doping implant; and
 - doping portions of the wafer in proximity to the portions doped with the first doping implant with a second doping implant.

5

1

2

1

2

3

4

1

2

3

1

2

3

5

1

2

- 30. The method according to Claim 29, wherein the first doping implants is a ptype doping implant and the second doping implant is an n-type doping implant.
- 31. The method according to Claim 29, wherein the step of doping portions of the wafer with a first doping implant includes the step of using a p-type boron implant at an energy in the range of 0.5 to 2 KeV and a dosage of between 2E14/cm² and 8E14/cm² as the first doping implant.
- 32. The method according to Claim 29, wherein the step of doping portions of the wafer with a second doping implant includes the step of using an n-type arsenic implant at an energy in the range of 2 to 15 KeV and a dosage of between 8E14/cm² and 3E15/cm² as the second doping implant.
- 33. The method according to Claim 21, wherein the wafer includes a first layer formed by implanting an n+ type arsenic implant at an energy in the range of 2 to 15 KeV and a dosage of between 8E14cm² to 3E15/cm²; a second layer formed by epitaxial growth using p-type boron at a dosage of between 4E13/cm² to 1E14/cm²; and a third layer formed by epitaxial growth using n- type arsenic at a dosage of between 2E13/cm² to 8E13/cm².
- 34. The method according to Claim 29, further comprising the steps of: providing a first mask to conceal the portions of the wafer doped with the first and

1	second doping implants;		
2	etching portions of a first layer of the wafer which are not concealed by the first		
3	mask;		
4	removing the first mask and depositing a dielectric layer over the wafer; and		
5	providing a second mask and etching portions of a second layer of the wafer which		
6	are not concealed by the second mask.		
i	35. The method according to Claim 34, further comprising the steps of:		
2	etching portions of a third layer of the wafer in alignment with the etched portions of		
3	the second layer;		
4	forming a gate dielectric layer on the wafer and depositing a semiconductor material		
5	to form a semiconductor layer over the gate dielectric layer;		
6	providing a third mask and etching portions of the semiconductor layer and the gate		
7	dielectric layer which are not concealed by the third mask; and		
8	removing the third mask and etching portions of the second layer of the wafer and the		
9	dielectric layer which are not in vertical alignment with the semiconductor layer.		
1	36. The method according to Claim 35, further comprising the steps of:		
2	oxidizing surfaces which are not in vertical alignment with the semiconductor layer;		
3	providing a fourth mask and etching portions of the oxidized surfaces and the third		
4	layer of the wafer which are not concealed by the fourth mask to define first and second		
5	portions of each of the plurality of memory cells;		
6	providing a vertically aligned contact in the first and second portions of each of the		
7	plurality of memory cells; and		
8	adding an insulating material to encapsulate the first and second portions of each of		
9	the plurality of memory cells and to provide a planar structure for the array.		
1	37. The method according to Claim 36, further comprising the steps of:		
2	forming a plurality of bitlines traversing the plurality of memory cells; and		
3	forming a plurality of voltage reference lines traversing the plurality of memory cells.		

- 15 - 728-203 (YOR9-2001-0196 US1)

1	38.	The method according to Claim 21, wherein the at least one SiC layer is a p-
2	type layer.	

39. The method according to Claim 21, wherein each of the plurality of memory cells is configured for being operational at high temperatures and in high radiation prone environments.

1

2

1 40. The method according to Claim 39, wherein each of the plurality of memory 2 cells is operational in a temperature range from 200 to 1000 degrees Celsius.