AKDENİZ UNIVERSITY CSE 211 – Digital Design

Name, Last name: Emre Topcu Student No: 20220808011

LAB03 Assignment

Your task is to design a decoder circuit that runs a 7-segment display. The circuit must show the numbers from 0 to 9 that is controlled with 4-bit input (ABCD). The steps you should do as follows.

- 1. Fill the truth table in page 2 based on the led statuses given in the picture above.
- 2. **Fill the Karnough Maps** on the page 3 to obtain the simplest Boolean function for each LED (from **a** to **g**) of the 7-segment display. We did first 3 LED (a,b,c) in the Lab class. Fill the karnough maps in page 3 and write the functions you obtained to the last raw of each K-Map table. For each rectangle use different colors on the rectangles to make the table easy to understand (Example tables is given in the first K-Map which is for Fa, Fb, Fc). (To add rectangle you can copy and paste existing ones)

PS: Upload the completed version of this file as a single .pdf file.

3. Finally, design the Boolean functions on Proteus Design Suite. (Use JUMPERS as we did in the lab!). Upload the project file. 7 Segment display must show all the digits (0-9) correctly corresponding to BCD input. A base design file is given in the assignment.

PS: Don't forget to fill your name and student number.

Truth Table

		Inp	uts			Outputs (Seven Segment Led Pins)						
Digit	A	В	C	D	a	b	с	d	e	f	g	
0	0	0	0	0	1	1	1	1	1	1	0	
1	0	0	0	1	0	1	1	0	0	0	0	
2	0	0	1	0	1	1	0	1	1	0	1	
3	0	0	1	1	1	1	1	1	0	0	1	
4	0	1	0	0	0	1	1	0	0	1	1	
5	0	1	0	1	1	0	1	1	0	1	1	
6	0	1	1	0	1	0	1	1	1	1	1	
7	0	1	1	1	1	1	1	0	0	0	0	
8	1	0	0	0	1	1	1	1	1	1	1	
9	1	0	0	1	1	1	1	1	0	1	1	

AB CD	00		01		11		10	
00	Ц	1		1		1		1
01		1		0		1		0
11		X		X		X		X
10	П	1		1		X		X
$F_b = C'D' + CD + B'$								

AB CD	00	01		11		10		
00	1	1		1		0		
01	1	1		1		1		
11	X	X		X		X		
10	1	1		X		X		
$F_c = \mathbf{C'} + \mathbf{D} + \mathbf{B}$								

AB CD	00		01		11			10		
00	1		0		I	1	I	1		
01	0		1			0		1	П	
11	X		X	П		X		X		
10	1		1			X		X		
$F_d = A + B'D' + B'C + CD' + BC'D$										

AB CD	CD 00 01		11	10				
00	1	0	0	1				
01	0	0	0	1				
11	X	X	X	X				
10	1	0	X	X				
$F_e = B'D' + CD'$								

AB CD	00			00 01			10	
00		1		0	0		0	
01	ı	1	Γ	1	0		1	
11		X		X	X		X	
10		1		1	X		X	
$F_f = C'D' + A + BC' + BD'$								

AB CD	00	00 01		10				
00	0	0	1	1				
01	1	1	0	1				
11	X	X	X	X				
10	1	1	X	X				
$F_g = A + BC' + CD' + CB'$								