题号	_	=	131	四	五.	六	总	分
得分								

得分	评阅人

一、选择题(共 10 小题,每小题 2 分,共 20 分,答案请填入下表格中。)

题号	1	2	3	4	5	6	7	8	9	10
答案										

1. 函数 $f(x) = \sin 2x$ 的原函数是 ()。

A.
$$\frac{1}{2}\sin 2x$$

A.
$$\frac{1}{2}\sin 2x$$
 B. $\frac{1}{2}\cos 2x$ C. $-\cos^2 x$ D. $2\cos 2x$

C.
$$-\cos^2 x$$

2. $x^2 dx = md(4 + 2x^3)$, \emptyset m = (

A.
$$\frac{1}{6}$$

B.
$$\frac{1}{4}$$

C.
$$\frac{1}{3}$$

A. $\frac{1}{6}$ B. $\frac{1}{4}$ C. $\frac{1}{2}$ D. $\frac{1}{2}$ o

3. 若 f(x) 为连续函数,且 $\int f(x)dx = F(x) + C$,则有()。

A.
$$\int f(2x)dx = F(2x) + C$$

A.
$$\int f(2x)dx = F(2x) + C$$
; B. $\int f(x^2)x dx = F(x^2) + C$;

$$C. \quad \int f(e^x) e^x dx = F(e^x) + C$$

C. $\int f(e^x) e^x dx = F(e^x) + C;$ D. $\int f(\cos x) \sin x dx = F(\cos x) + C$

4. 函数 $f(x, y) = x\sqrt{x^2 + y^2 - 1} + y \ln(2 - x^2 - y^2)$ 的定义域是(

A.
$$\{(x,y) | 1 \le x^2 + y^2 < 2\}$$
; B. $\{(x,y) | 1 < x^2 + y^2 < 2\}$;

B.
$$\{(x,y)|1 < x^2 + y^2 < 2\}$$
;

C.
$$\{(x,y) | 1 < x^2 + y^2 \le 2\}$$
; D. $\{(x,y) | 1 \le x^2 + y^2 \le 2\}$.

D.
$$\{(x,y) | 1 \le x^2 + y^2 \le 2 \}$$

5. 微分方程 $x(\frac{d^2y}{dx^2}) + (\frac{dy}{dx})^3 + \cos(xy) = 0$ 的阶数为 ()。

6. 极限 $\lim_{(x,y)\to(1,1)} \frac{x-y}{\sqrt{x-\sqrt{y}}}$ 之值为(

7. 定积分 $\int_{-1}^{1} |x| dx = ($)。

A. 2 B. 1 C. $\frac{1}{2}$ D. 0.

8. 函数 $z = x^2 + y^2$ 在 (1,2) 处的全微分是 ()。

A. dx + dy B. 2dx + 4dy C. $\frac{1}{2}(dx + 2dy)$ D. $\frac{1}{3}(dx + 2dy)$.

9. 设 D: $1 \le x^2 + y^2 \le 4$,则 $\iint_D dx dy = ($)。
A. 5π ; B. 4π ; C. 3π ; D. π 。.

10. 差分 $\Delta(x^2-1)=$ ()。 A. 2x+1; B. 2x; C. 2x-1; D. 2.

得分	评阅人

$$1. \left[\int e^{-x^2+1} dx \right]' = \underline{\qquad} \circ$$

1.
$$\left[\int e^{-x^2+1} dx\right]' = \underline{\qquad}_{\circ}$$
 2. $\frac{d}{dx} \int_{0}^{2x} \sqrt{2+t^2} dt = \underline{\qquad}_{\circ}$

3. 设
$$u = e^{xy}$$
则 $\frac{\partial^2 u}{\partial y^2} = _____$ 。 4. $\int (\frac{1}{\sqrt{1-x^2}} - 3e^x) dx = ____$ 。

4.
$$\int (\frac{1}{\sqrt{1-x^2}} - 3e^x) dx = ____.$$

5.
$$\frac{\Gamma(5)}{\Gamma(3)} =$$
______ \circ

6. 若
$$f(x, y) = 3x^2y$$
,则 $f'_x(-1, 1) = _____$ 。

- 7. $\triangle(x_0, y_0)$ 是可微函数 z = f(x, y) 的驻点,则该点满足。
- 8. 方程 $x^2 + y^2 = 4y$ 在空间中表示的图形名称是 ______。

得分	评阅人

三、计算题 I (共 4 小题,每小题 6 分,共 24 分)

- 1. 计算不定积分 $\int \frac{\sqrt{x-1}}{x} dx$ 。
- 2. 方程 $xy + 2z = e^z$ 确定 $z \neq x$, y 的函数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 。
- 3. 求曲线 $y = \sqrt{x}$ 与直线 y = x 所围成的平面图形面积。

 $\int_0^1 x e^{-x} dx$

得分	评阅人

- 得分 评阅人 四、计算题 II (共 3 小题,每小题 8 分,共 24 分) 求二重积分 $\iint_D (x+4y)d\sigma$,其中积分区域 D 是由曲线 y=x与直线 y=2x 及 x=1 所 围成的区域。
- 2. 求微分方程 y' = 2xy + 4x 的通解。

I	得分	评阅人

五、应用题(共1小题,每小题10分,共10分)

某厂生产的两个产品同时在市场销售,售价分别为 14 元和 10 元,产量分别为 x和 y , 总成本函数为 $C = 450 + 6x + 4y + 0.01(2x^2 + 3y^2)$ 元. 试问:该厂如何确定两产品的产量 x和 y , 才能使工厂获得的总利润最大? 最大利润又是多少?

得分	评阅人

六、验证题(共1小题,每小题6分,共6分)

设方程 F(x-z,y-z)=0 确定了隐函数 z=f(x,y) , F(u,v) 有连续的偏导数,且 $F'_u(u,v) + F'_v(u,v) \neq 0$,证明: $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$ 。