Supervised Machine Learning: Pattern Classification Bayes Classifier

Classification using Reference Template Methods

- For a test example, a distance measure is computed with the reference template of each class
- The class of the reference template with least distance is assigned to the test pattern
- When mean vector and covariance matrix is used as reference template for each class, Mahalanobis distance is used
- Mahalanobis distance gives the notion that distance measure is computed between a test example and the distribution (density) of a class
 - Distribution (density) of class: All the training examples are drawn from that distribution
 - Density here is normal (Gaussian) density
- In other way, we are interested to estimate probability of class, $P(C_i | \mathbf{x})$
 - Given the test example \mathbf{x} , what is the probability that it belongs to i^{th} class (C_i)
- Solution: Bayes classifier

Bayes Classifier

- Let C_1 , C_2 , ..., C_i , ..., C_M be the M classes
 - Each class has N_i number of training examples
- Given: a test example x
- To Compute:
 - Probability of class, $P(C_i | \mathbf{x})$
- Bayes decision rule:

- Prior: Prior information of a class
 - Example: Human data Each person is represented using height and weight
 - Assume that data is collected from primary school
 - Adult: Teachers and staff
 - Child: Students
 - What is the prior information about persons in primary school?
 - Probability of Child is more than Adult
 - If the human data is collected irrespective of any location
 - Prior probabilities of Adult and Child are same

Bayes Classifier

- Let C_1 , C_2 , ..., C_i , ..., C_M be the M classes
 - Each class has N_i number of training examples
- Given: a test example x
- To Compute:
 - Probability of class, $P(C_i | \mathbf{x})$
- Bayes decision rule:

- Prior: Prior information of a class $P(C_i) = \frac{N_i}{N}$
 - where, N is total number of training examples
- Likelihood of a class: Given the training data of a class (C_i) , what is the likelihood that \mathbf{x} is coming that class
 - It follows the distribution of the data of a class
- Total probability: Evidence/probability that x exists

$$p(\mathbf{x}) = \sum_{i=1}^{M} p(\mathbf{x} \mid C_i) P(C_i)$$

 Out of all the samples, what is the probability of the sample we are looking at

Probability Theory and Bayes Rule

- P(A): Probability of an event A
- The sample space is partitioned into C_1 , C_2 , ..., C_i , ..., C_M where each partitions are disjoint
 - Example:
 - Data space is sample space
 - Each class is my partitions
- Let x be an event defined in sample space
 - Example: A finite data points
 (training data) are the event \mathbf{x}

• $P(\mathbf{x})$: Total probability i.e. joint probability of \mathbf{x} and C_i , $P(\mathbf{x}, C_i)$, for all i

$$P(\mathbf{x}) = \sum_{i=1}^{M} p(\mathbf{x}, C_i)$$

Probability Theory and Bayes Rule

Conditional probability:

$$p(\mathbf{x} \mid C_i) = \frac{p(\mathbf{x}, C_i)}{P(C_i)}$$
 (1)

• Rewriting (1)

$$p(\mathbf{x}, C_i) = p(\mathbf{x} \mid C_i) P(C_i)$$
 (3)

• $P(\mathbf{x})$: Total probability i.e. joint probability of \mathbf{x} and C_i , $P(\mathbf{x}, C_i)$, for all i

$$P(\mathbf{x}) = \sum_{i=1}^{M} p(\mathbf{x}, C_i) = \sum_{i=1}^{M} p(\mathbf{x} \mid C_i) P(C_i)$$

• $P(\mathbf{x})$ is marginal probability – probability of \mathbf{x} is obtained by marginalising over all the events C_r , where i=1,2,...,M

Probability Theory and Bayes Rule

$$p(\mathbf{x} \mid C_i) = \frac{p(\mathbf{x}, C_i)}{P(C_i)}$$
 (1)

$$p(\mathbf{x}, C_i) = P(C_i | \mathbf{x}) P(\mathbf{x})$$
 (4)

$$p(\mathbf{x}, C_i) = p(\mathbf{x} \mid C_i) P(C_i)$$
 (3)

$$p(\mathbf{x}, C_i) = P(C_i | \mathbf{x}) P(\mathbf{x})$$
 (4)

- From (3) and (4): $p(\mathbf{x}, C_i) = P(C_i | \mathbf{x})P(\mathbf{x})$ (4)
- Bayes decision rule:

$$P(C_i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid C_i)P(C_i)}{P(\mathbf{x})}$$

Bayes Classifier

- Let C_1 , C_2 , ..., C_i , ..., C_M be the M classes
 - Each class has N_i number of training examples
- Given: a test example x
- To Compute:
 - Probability of class, $P(C_i | \mathbf{x})$
- Bayes decision rule:

- Likelihood of a class (Class conditional density) follows the distribution of the data of a class
- Computation of likelihood of a class (class conditional density) depends on the
 - distribution of the data (i.e. data follows some distribution) and
 - the parameters of that distribution
- Bayes decision rule can be given as $P(\theta_i | \mathbf{x}) = \frac{p(\mathbf{x} | \theta_i)P(C_i)}{P(\mathbf{x})}$
 - θ_i is the parameters of the distribution of class C_i estimated from training data of that class

Parameter Estimation from Training Data: Maximum Likelihood (ML) Method

• Given: Training data for a class C_i : having N_i samples

$$\mathcal{D}_{i} = \{\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{n}, ..., \mathbf{x}_{Ni}\}, \mathbf{x}_{n} \in \mathbb{R}^{d}$$

- Data of a class C_{i} is sampled from a distribution, which is defined by parameter vector: $\mathbf{\theta}_i = [\theta_{i1}, \theta_{i2}, ..., \theta_{iK}]^T$ of that distribution
 - Data of a class C_i is now represented by parameter vector, θ_i
- Unknown: θ_i
- Likelihood of training data (Total data likelihood) for a given θ_i :

$$p(\mathsf{D}_i \mid \boldsymbol{\theta}_i) = \prod_{i=1}^{N_i} p(\mathbf{x}_i \mid \boldsymbol{\theta}_i)_{N_i}$$

- $p(\mathsf{D}_i \mid \boldsymbol{\theta}_i) = \prod_{n=1}^{N_i} p(\mathbf{x}_n \mid \boldsymbol{\theta}_i)$ Log likelihood: $\mathsf{L}(\boldsymbol{\theta}_i) = \ln p(\mathsf{D}_i \mid \boldsymbol{\theta}_i) = \sum_{i=1}^{N_i} \ln p(\mathbf{x}_n \mid \boldsymbol{\theta}_i)$
 - Advantage of applying monotonous increasing function, ln(.):
 - Likelihood of an example is very small value. Product of small values lead to 0. It converts product of likelihoods into sum of likelihoods
 - Simplifies computation for certain forms of distribution

Parameter Estimation from Training Data: Maximum Likelihood (ML) Method

Parameter Estimation from Training Data: Maximum Likelihood (ML) Method

• Given: Training data for a class C_i : having N_i samples

$$\mathcal{D}_{i} = \{\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{n}, ..., \mathbf{x}_{Ni}\}, \mathbf{x}_{n} \in \mathbb{R}^{d}$$

- Data of a class C_i is sampled from a distribution, which is defined by parameter vector: $\mathbf{\theta}_i = [\theta_{i1}, \ \theta_{i2}, ..., \ \theta_{iK}]^{\mathsf{T}}$ of that distribution
 - Data of a class C_i is now represented by parameter vector, θ_i
- Unknown: θ_i
- Likelihood of training data (Total data likelihood) for a given θ_i :

$$p(\mathsf{D}_i \mid \boldsymbol{\theta}_i) = \prod p(\mathbf{x}_n \mid \boldsymbol{\theta}_i)$$

- Log likelihood: $L(\boldsymbol{\theta}_i) = \ln p(\boldsymbol{D}_i | \boldsymbol{\theta}_i) = \sum_{n=1}^{N_i} \ln p(\boldsymbol{x}_n | \boldsymbol{\theta}_i)$
- Choose the parameters for which the total data likelihood (log likelihood) is maximum:

$$\mathbf{\theta}_{i_{\mathrm{ML}}} = \underset{\mathbf{\theta}_{i}}{\mathrm{arg \, max}} \, \mathsf{L}(\mathbf{\theta}_{i})$$

Probability Distribution

- Data of a class is represented by a probability distribution
- For a class whose data is considered to be forming a single cluster, it can be represented by a normal or Gaussian distribution
- Gaussian distribution is a unimodal distribution
 - Single mode or single peak
- Univariate Gaussian distribution:
 - Univariate data means 1-dimensional data

$$p(x) = N(x \mid \mu, \sigma)$$

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- μ is the mean
- σ^2 is the variance

Probability Distribution

- Data of a class is represented by a probability distribution
- For a class whose data is considered to be forming a single cluster, it can be represented by a normal or Gaussian distribution
- Gaussian distribution is a unimodal distribution
 - Single mode or single peak
- Multivariate Gaussian distribution:
 - Multivariate data means d-dimensional data
 - Bivariate Gaussian distribution
 - Bivariate data means 2-dimensional data

Multivariate Gaussian Distribution

Data in d-dimensional space

$$p(\mathbf{x}) = N(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$= \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

- $-\mu$ is the mean vector
- $-\Sigma$ is the covariance matrix
- Bivariate Gaussian distribution: *d*=2

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \mathbf{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = \begin{bmatrix} E[x_1] \\ E[x_2] \end{bmatrix}$$

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} E[(x_1 - \mu_1)^2] & E[(x_1 - \mu_1)(x_2 - \mu_2)] \\ E[(x_2 - \mu_2)(x_1 - \mu_1)] & E[(x_2 - \mu_2)^2] \end{bmatrix}$$

Maximum Likelihood (ML) Method for Parameter Estimation of Multivariate Gaussian Distribution

• Given: Training data for a class C_i having N_i samples

$$\mathcal{D}_{i} = \{\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{n}, ..., \mathbf{x}_{Ni}\}_{i} \mathbf{x}_{n} \in \mathbb{R}^{d}$$

- Data of a class C_{i} is coming from Gaussian distribution
 - Training data of a class C_i is represented by parameter vector: $[\boldsymbol{\mu}_i \ \boldsymbol{\Sigma}_i]^{\mathsf{T}}$, of Gaussian distribution
- Unknown: μ_i and Σ_i
- Likelihood of training data (Total data likelihood) for a given μ_i and Σ_i : $p(D \mid \mu_i, \Sigma_i) = \prod_{i=1}^{N_i} p(\mathbf{x}_n \mid \mu_i, \Sigma_i)$
- Log likelihood: $L(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) = \ln p(\boldsymbol{\mathsf{D}}_i | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) = \sum_{n=1}^{N_i} \ln p(\boldsymbol{\mathsf{x}}_n | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$
- Choose the parameters for which the total data likelihood (log likelihood) is maximum:

$$\mathbf{\mu}_{i_{\text{ML}}}, \mathbf{\Sigma}_{i_{\text{ML}}} = \underset{\mathbf{\mu}_{i}, \mathbf{\Sigma}_{i}}{\operatorname{arg max}} \mathbf{L}(\mathbf{\mu}_{i}, \mathbf{\Sigma}_{i})$$

ML Method for Parameter Estimation of Multivariate Gaussian Distribution

- Parameters of Gaussian distribution of class C_i : μ_i and Σ_i
- Likelihood for a single example, \mathbf{x}_n :

$$p(\mathbf{x}_n \mid \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}_i|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_i)^\mathsf{T} \boldsymbol{\Sigma}_i^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_i)\right)$$

ullet Log likelihood for total training data of class $C_{_i}$,

$$\mathcal{D}_i = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}:$$

$$\mathcal{D}_{i} = \{\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{N}\}:$$

$$L(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) = \ln p(D_{i} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) = \ln \prod_{n=1}^{N_{i}} p(\mathbf{x}_{n} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) = \sum_{n=1}^{N_{i}} \ln p(\mathbf{x}_{n} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i})$$

$$= \sum_{i=1}^{N_i} -\frac{1}{2} \ln \left| \mathbf{\Sigma}_i \right| - \frac{d}{2} \ln 2\pi - \frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_i)^{\mathsf{T}} \mathbf{\Sigma}_i^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_i)$$

• Setting the derivatives of $\mathcal{L}(\mu_i, \Sigma_i)$ w.r.t. μ_i and Σ_i to zero, we get:

$$\frac{\partial L(\mu_i, \Sigma_i)}{\partial \mu_i} = 0 \qquad \frac{\partial L(\mu_i, \Sigma_i)}{\partial \Sigma_i} = 0$$

ML Method for Parameter Estimation of Multivariate Gaussian Distribution

- Parameters of Gaussian distribution of class C_i : μ_i and Σ_i
- Likelihood for a single example, \mathbf{x}_n :

$$p(\mathbf{x}_n \mid \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}_i|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_i)^\mathsf{T} \boldsymbol{\Sigma}_i^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_i)\right)$$

ullet Log likelihood for total training data of class $C_{_i}$,

$$\mathcal{D}_i = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$$

$$\mathcal{D}_{i} = \{\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{N}\}:$$

$$L(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) = \ln p(D_{i} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) = \ln \prod_{n=1}^{N_{i}} p(\mathbf{x}_{n} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) = \sum_{n=1}^{N_{i}} \ln p(\mathbf{x}_{n} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i})$$

$$= \sum_{n=1}^{N_i} -\frac{1}{2} \ln \left| \boldsymbol{\Sigma}_i \right| - \frac{d}{2} \ln 2\pi - \frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_i)^{\mathsf{T}} \boldsymbol{\Sigma}_i^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_i)$$

• Setting the derivatives of $\mathcal{L}(\mu_{i'}, \Sigma_{i})$ w.r.t. μ_{i} and Σ_{i} to

zero, we get:
$$\mu_{i_{\text{ML}}} = \frac{1}{N_{i}} \sum_{n=1}^{N_{i}} \mathbf{x}_{n} \qquad \Sigma_{i_{\text{ML}}} = \frac{1}{N_{i}} \sum_{n=1}^{N_{i}} (\mathbf{x}_{n} - \mu_{i_{\text{ML}}}) (\mathbf{x}_{n} - \mu_{i_{\text{ML}}})^{\mathsf{T}}$$

Bayes Classifier with Unimodal Gaussian Density – Training Process

- Let C_1 , C_2 , ..., C_i , ..., C_M be the M classes
- Let $\mathcal{D}_1, \ \mathcal{D}_2, \ \dots, \ \mathcal{D}_l, \ \dots, \ \mathcal{D}_M$ be the training data for M classes
- Let each class having N_i number of training examples
- Estimate the parameters

$$- \boldsymbol{\theta}_{1} = [\boldsymbol{\mu}_{1} \boldsymbol{\Sigma}_{1}]^{\mathsf{T}},$$

$$- \boldsymbol{\theta}_{2} = [\boldsymbol{\mu}_{2} \boldsymbol{\Sigma}_{2}]^{\mathsf{T}},$$

$$- \dots,$$

$$- \boldsymbol{\theta}_{i} = [\boldsymbol{\mu}_{i} \boldsymbol{\Sigma}_{i}]^{\mathsf{T}},$$

$$- \dots,$$

- $\theta_{M} = [\mu_{M} \Sigma_{M}]^{T}$ for each of the classes
- Number of parameters to be estimated for each class is dependent on dimensionality of the data space d
 - Number of parameters for each class: d + (d(d+1))/2

Bayes Classifier with Unimodal Gaussian Density – Training Process

- Let C_1 , C_2 , ..., C_i , ..., C_M be the M classes
- Let $\mathcal{D}_1, \ \mathcal{D}_2, \ \dots, \ \mathcal{D}_l, \ \dots, \ \mathcal{D}_M$ be the training data for M classes
- Compute sample mean vector and sample covariance matrix from training data of class 1, $\theta_1 = [\mu_1 \ \Sigma_1]^T$
- Compute sample mean vector and sample covariance matrix from training data of class 2, $\theta_2 = [\mu_2 \ \Sigma_2]^T$,
- ...,
- Compute sample mean vector and sample covariance matrix from training data of class M, $\boldsymbol{\theta}_{\!\scriptscriptstyle M} = [\boldsymbol{\mu}_{\!\scriptscriptstyle M} \, \boldsymbol{\Sigma}_{\!\scriptscriptstyle M}]^{\mathsf{T}}$

Bayes Classifier with Unimodal Gaussian Density: Classification

- For a test example x:
 - likelihood of x generated from each of the classes $p(\mathbf{x}|\mathbf{\mu}_i, \mathbf{\Sigma}_i)$ and class posterior probability $P(\mathbf{\mu}_i, \mathbf{\Sigma}_i | \mathbf{x})$ is computed

$$P(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i} \mid \mathbf{x}) = \frac{p(\mathbf{x} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) P(C_{i})}{P(\mathbf{x})}$$

Bayes Classifier with Unimodal Gaussian Density: Classification

- For a test example x:
 - likelihood of x generated from each of the classes $p(\mathbf{x}|\mathbf{\mu}_i, \mathbf{\Sigma}_i)$ and class posterior probability $P(\mathbf{\mu}_i, \mathbf{\Sigma}_i | \mathbf{x})$ is computed

$$P(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i} \mid \mathbf{x}) = \frac{p(\mathbf{x} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) P(C_{i})}{\sum_{i=1}^{M} p(\mathbf{x} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) P(C_{i})}$$

– Assign the label of class for which $P(\mu_i, \Sigma_i | \mathbf{x})$ is maximum

Class label =
$$\underset{i}{\operatorname{arg max}} P(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i} \mid \mathbf{x})$$

Bayes Classifier with Unimodal Gaussian Density: Classification

- For a test example x:
 - likelihood of \mathbf{x} generated from each of the classes $p(\mathbf{x}|\mathbf{\mu}_i, \mathbf{\Sigma}_i)$ or class posterior probability $P(\mathbf{\mu}_i, \mathbf{\Sigma}_i|\mathbf{x})$ is computed
 - Assign the label of class for which $P(\mu_i, \Sigma_i | \mathbf{x})$ is maximum

22

Height	Weight	Class
90	21.5	0
95	23.67	0
100	32.45	0
116	38.21	0
98	28.43	0
108	36.32	0
104	27.38	0
112	39.28	0
121	35.8	0
92	23.56	0
152	46.8	1
178	78.9	1
163	67.45	1
173	82.9	1
154	52.6	1
168	66.2	1
183	90	1
172	82	1
156	45.3	1
161	59	1

Training Phase:

– Compute sample mean vector and sample covariance matrix from training data of class 0 (Child) μ_0 = [103.60 30.66]

$$\Sigma_0 = \begin{bmatrix} 109.38 & 61.35 \\ 61.35 & 43.54 \end{bmatrix}$$

– Prior probability for class 0 (Child):

$$P(C_0)=10/20=0.5$$

Height	Weight	Class
90	21.5	0
95	23.67	0
100	32.45	0
116	38.21	0
98	28.43	0
108	36.32	0
104	27.38	0
112	39.28	0
121	35.8	0
92	23.56	0
152	46.8	1
178	78.9	1
163	67.45	1
173	82.9	1
154	52.6	1
168	66.2	1
183	90	1
172	82	1
156	45.3	1
161	59	1

- Training Phase:
 - Compute sample mean vector and sample covariance matrix from training data of class 0 (Child) μ_0 = [103.60 30.66]

$$\Sigma_0 = \begin{bmatrix} 109.38 & 61.35 \\ 61.35 & 43.54 \end{bmatrix}$$

– Prior probability for class 0 (Child):

$$P(C_0)=10/20=0.5$$

– Compute sample mean vector and sample covariance matrix from training data of class 1 (Adult) μ_1 = [166.00 67.12]

$$\Sigma_{1} = \begin{bmatrix} 110.67 & 160.53 \\ 160.53 & 255.49 \end{bmatrix}$$

Prior probability for class 1 (Adult):

$$P(C_1)=10/20=0.5$$

$$\mu_0 = [103.60 \ 30.66]$$

$$\Sigma_0 = \begin{bmatrix} 109.38 & 61.35 \\ 61.35 & 43.54 \end{bmatrix} \quad \begin{array}{c} \text{Class} \\ 0 \\ \end{array}$$

$$Prior: P(C_0) = 0.5$$

$$\mu_1 = [166.00 \ 67.12]$$

$$\Sigma_1 = \begin{bmatrix} 110.67 & 160.53 \\ 160.53 & 255.49 \end{bmatrix}$$
Prior: $P(C_1) = 0.5$

Test Phase - Classification:

$$p(\mathbf{x}, C_i) = P(C_i | \mathbf{x}) P(\mathbf{x}) \tag{4}$$

$$\mu_0 = [103.60 \ 30.66]$$

$$\Sigma_0 = \begin{bmatrix} 109.38 & 61.35 \\ 61.35 & 43.54 \end{bmatrix}$$
Class
0

Prior:
$$P(C_0) = 0.5$$

$$\mu_1 = [166.00 \ 67.12]$$

$$\Sigma_1 = \begin{bmatrix} 110.67 & 160.53 \\ 160.53 & 255.49 \end{bmatrix}$$
Class
1

Prior: $P(C_1) = 0.5$

• Test Phase - Classification:

$$p(\mathbf{x}, C_i) = P(C_i | \mathbf{x}) P(\mathbf{x})$$
 (4)

- Compute a posterior probability for class 0 (Child): $p(\mathbf{x}, C_i) = P(C_i | \mathbf{x})P(\mathbf{x})$ (4)
- Compute a posterior probability for class 1 (Adult): $p(\mathbf{x}, C_i) = P(C_i | \mathbf{x})P(\mathbf{x})$ (4)

Class label of x = Adult

- The relation between examples and class can be captured in a statistical model
 - Bayes classifier
 - Data is represented by any distribution
 - If the underlying distribution (density) of data is known, then Bayes classifier is the minimum error classifier
- Statistical model:
 - Example distribution: Unimodal Gaussian density
 - Univariate

$$p(x) = N(x | \mu, \sigma)$$

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- μ is the mean
- σ^2 is the variance

- The relation between examples and class can be captured in a statistical model
 - Bayes classifier
 - Data is represented by any distribution
- Statistical model:
 - Example distribution: Unimodal Gaussian density
 - Univariate
 - Multivariate (Bivariate when the dimension is 2)

$$p(\mathbf{x}) = N(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$= \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathbf{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \quad \mathbf{\Sigma} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{bmatrix}$$

- μ is the mean vector
- Σ is the covariance matrix

- The relation between examples and class can be captured in a statistical model
 - Bayes classifier
 - Data is represented by any distribution
- Statistical model:
 - Example distribution: Unimodal Gaussian density
 - Univariate
 - Multivariate

- The relation between examples and class can be captured in a statistical model
 - Bayes classifier
 - Data is represented by any
- Statistical model:
 - Example distribution:
 Unimodal Gaussian density
 - Univariate
 - Multivariate

- The real world data need not be unimodal
 - The shape of the density can be arbitrary
 - Bayes classifier?
- Multimodal density function

Text Books

J. Han and M. Kamber, *Data Mining: Concepts and Techniques*, Third Edition, Morgan Kaufmann Publishers, 2011.

- 2. S. Theodoridis and K. Koutroumbas, *Pattern Recognition*, Academic Press, 2009.
- 3. C. M. Bishop, *Pattern Recognition and Machine Learning*, Springer, 2006.