Applicant: Alexander Franz Atty's Docket No.: 16113-1230001/GP-038-00-US

Serial No.: 10/647,203 Filed: August 21, 2003

Page : 2 of 7

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

Claims 1-54 (Canceled).

55. (New) A computer-implemented method for identifying compounds in text, comprising:

extracting a vocabulary of tokens from text;

iterating from n > 2 down to n = 2 where n decreases by one each iteration and in each iteration performing the actions of:

identifying a plurality of unique n-grams in the text, each n-gram being an occurrence in the text of n sequential tokens, each token being found in the vocabulary;

dividing each n-gram into n-1 pairs of two adjacent segments, where each segment consists of at least one token;

for each n-gram, calculating a likelihood of collocation for each pair of segments of the n-gram and determining a score for the n-gram based on a lowest calculated likelihood of collocation;

identifying a set of n-grams having scores above a threshold; and adding the identified set of n-grams as compound tokens to the vocabulary and removing constituent tokens that occur in the added compound tokens from the vocabulary.

56. (New) The method of claim 55 where calculating a likelihood of collocation for each pair of segments of the n-gram comprises determining a likelihood ratio λ for each pair of segments that is computed in accordance with the formula:

Atty's Docket No.: 16113-1230001/GP-038-00-US Applicant : Alexander Franz

Serial No.: 10/647,203 : August 21, 2003

Page

$$\lambda = \frac{L(H_i)}{L(H_s)}$$

where $L(H_i)$ is a likelihood of observing H_i under an independence hypothesis, $L(H_c)$ is a likelihood of observing H_c under a collocation hypothesis, and H is a pair of segments.

57. (New) The method of claim 56 where the $L(H_c)$ is computed for each pair of segments, t_1 , t_2 , in each n-gram in accordance with the formula:

$$\underset{L(H,)}{\operatorname{arg\,max}} \frac{L(t_1, t_2 \, form \, compound)}{L(n - gram \, does \, not \, form \, compound)}.$$

- 58. (New) The method of claim 56 where, for each pair of segments, t_1 , t_2 , in each ngram, the independence hypothesis comprises $P(t_1 | t_1) = P(t_2 | \overline{t_1})$ and the collocation hypothesis comprises $P(t_2 | t_1) > P(t_2 | \overline{t_1})$.
- 59. (New) The method of claim 55 where identifying a plurality of unique n-grams in the text comprises skipping n-grams appearing in a list of known compounds.
- 60. (New) A computer program product, encoded on a computer-readable medium, operable to cause data processing apparatus to perform operations comprising: extracting a vocabulary of tokens from text;

iterating from n > 2 down to n = 2 where n decreases by one each iteration and in each iteration performing the actions of:

identifying a plurality of unique n-grams in the text, each n-gram being an occurrence in the text of n sequential tokens, each token being found in the vocabulary;

dividing each n-gram into n-1 pairs of two adjacent segments, where each segment consists of at least one token;

Attv's Docket No.: 16113-1230001/GP-038-00-US

Applicant : Alexander Franz Serial No. : 10/647,203 Filed : August 21, 2003

Page : 4 of 7

for each n-gram, calculating a likelihood of collocation for each pair of segments of the n-gram and determining a score for the n-gram based on a lowest calculated likelihood of collocation:

identifying a set of n-grams having scores above a threshold; and adding the identified set of n-grams as compound tokens to the vocabulary and removing constituent tokens that occur in the added compound tokens from the vocabulary.

61. (New) The program product of claim 60 where calculating a likelihood of collocation for each pair of segments of the n-gram comprises determining a likelihood ratio λ for each pair of segments that is computed in accordance with the formula:

$$\lambda = \frac{L(H_i)}{L(H_c)}$$

where $L(H_i)$ is a likelihood of observing H_i under an independence hypothesis, $L(H_c)$ is a likelihood of observing H_c under a collocation hypothesis, and H is a pair of segments.

62. (New) The program product of claim 61 where the L(H_c) is computed for each pair of segments, t₁, t₂, in each n-gram in accordance with the formula:

$$\underset{L(H_1)}{\operatorname{arg\,max}} \frac{L(t_1, t_2 form \, compound)}{L(n - gram \, does \, not \, form \, compound)}.$$

- 63. (New) The program product of claim 61 where, for each pair of segments, t_1 , t_2 , in each *n*-gram, the independence hypothesis comprises $P(t_2 \mid t_1) = P(t_2 \mid \overline{t_1})$ and the collocation hypothesis comprises $P(t_2 \mid t_1) > P(t_2 \mid \overline{t_1})$.
- 64. (New) The program product of claim 60 where identifying a plurality of unique n-grams in the text comprises skipping n-grams appearing in a list of known compounds.

Applicant: Alexander Franz Atty's Docket No.: 16113-1230001/GP-038-00-US

Serial No.: 10/647,203 Filed: August 21, 2003

Page : 5 of 7

65. (New) A system comprising:

a computer readable medium including a program product; and one or more processors configured to execute the program product and perform operations comprising:

extracting a vocabulary of tokens from text:

iterating from n > 2 down to n = 2 where n decreases by one each iteration and in each iteration performing the actions of:

identifying a plurality of unique n-grams in the text, each n-gram being an occurrence in the text of n sequential tokens, each token being found in the vocabulary;

dividing each n-gram into n-1 pairs of two adjacent segments, where each segment consists of at least one token;

for each *n*-gram, calculating a likelihood of collocation for each pair of segments of the *n*-gram and determining a score for the *n*-gram based on a lowest calculated likelihood of collocation:

identifying a set of n-grams having scores above a threshold; and adding the identified set of n-grams as compound tokens to the vocabulary and removing constituent tokens that occur in the added compound tokens from the vocabulary.

66. (New) The system of claim 65 where calculating a likelihood of collocation for each pair of segments of the n-gram comprises determining a likelihood ratio λ for each pair of segments that is computed in accordance with the formula:

$$\lambda = \frac{L(H_i)}{L(H_c)}$$

where $L(H_t)$ is a likelihood of observing H_t under an independence hypothesis, $L(H_c)$ is a likelihood of observing H_c under a collocation hypothesis, and H is a pair of segments.

Attv's Docket No.: 16113-1230001/GP-038-00-US

Applicant: Alexander Franz Serial No.: 10/647,203 Filed: August 21, 2003

Page : 6 of 7

67. (New) The system of claim 66 where the L(H_c) is computed for each pair of segments, t₁, t₂, in each n-gram in accordance with the formula:

$$\underset{L(H_i)}{\operatorname{arg\,max}} \frac{L(t_1, t_2 form \ compound)}{L(n - gram \ does \ not \ form \ compound)}.$$

- 68. (New) The system of claim 66 where, for each pair of segments, t_1 , t_2 , in each n-gram, the independence hypothesis comprises $P(t_2 \mid t_1) = P(t_2 \mid \overline{t_1})$ and the collocation hypothesis comprises $P(t_2 \mid t_1) > P(t_2 \mid \overline{t_1})$.
- 69. (New) The system of claim 65 where identifying a plurality of unique n-grams in the text comprises skipping n-grams appearing in a list of known compounds.