Estimating and penalizing preference shifts induced by recommender systems

Micah Carroll, Dylan Hadfield-Menell, Stuart Russell, Anca Dragan

Preference influence? Preliminaries

User dynamics

RS policy (i.e. the algorithm)

Other factors (UI, content-creators etc.)

Long-term-"value" systems

System will actively try to change the user by default!

Long-term-"value" systems

Preference shifts are assumed to be intrinsically value-less

**Misalignment!

Make you easier to satisfy:

- Make you like common things
- Make you more predictable
 - Stabilize your preferences
 - Lead your choices to be less exploratory

Myopic systems can still cause preference shifts

While myopia guarantees no active manipulation, it can still cause unwanted influence.

(Myopia is misaligned too)

[Chaney et. al, 2017] How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility [Jiang et. al, 2019] Degenerate Feedback Loops in Recommender Systems

[Mansoury et. al, 2020] Feedback Loop and Bias Amplification in Recommender Systems

What I'll be talking about

1. Method for estimating preference shifts that would be induced by a policy

2. Framework for comparing induced shifts to "safe shifts"...

...which can be used to penalize RL training to actively avoid unwanted shifts

Preference influence? Preliminaries

Preference influence? Preliminaries

Policy-induced preference shifts

Learning model of human preference dynamics

True Value

 r_t^*

Assume human *choice model* is known

(Boltzmann rational)

Engagement Value
$$\hat{r}_t^{u_t} = u_t^T x_t$$

Estimating counterfactual internal states

350

Given $s_{0:T}^{\pi}, x_{0:T}^{\pi}$, estimate $u_{0:T}^{\pi'}$

Timestep

Under $\pi!$

0

Oracle access to internal state dynamics

Preferences u_t

Beliefs

Psychological state

. . .

Internal state z_t

- Smoothing $P(z_0 | s_{0:T}^{\pi}, x_{0:T}^{\pi})$
 - Forward prediction $P(z_t^{\pi'}|z_0)$

Given $s_{0:T}^{\pi}, x_{0:T}^{\pi}$, estimate $\mathbf{z}_{0:T}^{\pi'}$

We don't have access to internal state dynamics!

Approximating NHMM tasks without known dynamics

Approximating NHMM tasks without known dynamics

- Future preferences u_t
- Initial preferences u_0
- Counterfactual preferences (under different recsys policy π'): $u_t^{\pi'}$

Learning model of human preference dynamics

Policy-induced preference shifts

RL RS-induced preference shifts

High engagement

Likely undesirable shifts?

Myopic RS-induced preference shifts

Medium engagement

Potentially undesirable shifts?

High engagement

Likely undesirable shifts?

What preference shifts do we want?

Ideally, what would we want?

- No influence from RS
- Behavior under full information
- User acting in the interest of their "best-self"

"Desirable" shifts?

Ideally, what would we want?

"best-self"

Ideally, what would we want?

Realistically, what can we do?

"Natural preference shifts" (NPS)

Realistically, what can we do?

A framework for creating conservative metrics for a policy π 's degree of unwanted preference shift

What preference shifts do we want?

What I'll be talking about

1. Method for estimating preference shifts that would be induced by a policy

2. Framework for comparing induced shifts to "safe shifts"...

...which can be used to penalize RL training to actively avoid unwanted shifts

Using proxies to obtain manipulation-penalized RL system

Experiments

0. Setup

1. Method for estimating policy-induced preference shifts

2. Framework for comparing induced shifts to "safe shifts"...

...which can be used to penalize RL training to actively avoid unwanted shifts

Experimental setup assumptions

Simulated Human Model

Simulated Human Model

Experiments

1. Method for estimating policy-induced preference shifts

2. Framework for comparing induced shifts to "safe shifts"...

...which can be used to penalize RL training to actively avoid unwanted shifts

Estimation of policy-induced shifts

Can we predict preference shifts under never-deployed policy π' from historical data?

Experiments

1. Method for estimating policy-induced preference shifts

2. Framework for comparing induced shifts to "safe shifts"...

...which can be used to penalize RL training to actively avoid unwanted shifts

Preference distances and RL training

Results

 $\hat{r}^{u_t^*}$

Avg.

2.05

2.97

Oracle Training

		Unpenalized		Penalized	
		Myopic	RL	Myopic	RL
Oracle Eval	$\hat{r}^{u_t^{\pi}}$	5.71	7.49	6.20	5.28
	\hat{r}^{u_0}	1.99	-0.08	3.61	6.21
	$\hat{r}^{u_t^*}$	2.01	-1.09	3.10	4.57
Or	Avg.	3.23	2.11	4.30	5.35

Oracle Training Training in Simulation Unpen. Penal. Unpen. Penal. $\hat{r}^{u_t^{\pi}}$ 7.49 5.28 5.48 6.40 Oracle Eval \hat{r}^{u_0} -1.24 5.61 -0.08 6.21 $\hat{r}^{u_t^*}$ -1.09 4.57 4.43 -1.83 Avg. 2.11 5.35 1.12 5.84 $\hat{r}^{u_t^{\pi}}$ Estimated E. 5.58 5.42 6.49 5.78 \hat{r}^{u_0} 5.57 -0.80 4.94 1.28

1.48

2.39

3.88

4.95

4.41

5.05

Key takeaway

in order to ethically use recommender systems at scale, we may need to take active steps to **measure** and **penalize** how such systems shift users' internal states

Thank you!