PW/TP 19-20: Calculus of Variations

Find the curve Y = y(x) with $y(x_1) = y_1$, and $y(x_2) = y_2$ such that for some given function F(x, y, y'), $\int_{x_1}^{x_2} F(x, y, y') dx$ an extremum is (1)

Euler's Equation: y = y(x) satisfies $\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial F}{\partial y'} \right) - \frac{\partial F}{\partial y} = 0$. if F(x, y, y') = F(y, y'): $\leftrightarrow F - y' \frac{\partial F}{\partial y'} = c$

Generalizations for other functionals

1) Integrand $F(t, x_1, x_2, \dot{x}_1, \dot{x}_2)$

The Euler's equation becomes the system
$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial F}{\partial \dot{x}_1} \right) - \frac{\partial F}{\partial x_1} = 0 \\ \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial F}{\partial \dot{x}_2} \right) - \frac{\partial F}{\partial x_2} = 0 \end{cases}$$

This can be generalized for $F(t, x_1, x_2, \dots, x_n, \dot{x}_1, \dot{x}_2, \dots, \dot{x}_n)$, to $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial F}{\partial \dot{x}_k} \right) - \frac{\partial F}{\partial x_k} = 0$, $\forall k = 1, \dots, n$

2) Integrand F(x, y, y', y'')

The Euler's equation becomes:
$$\frac{\partial F}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial F}{\partial y'} \right) + \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left(\frac{\partial F}{\partial y''} \right)$$

This can be generalized for $F(x, y, y', y'', \dots, y^{(n)})$, to

$$\frac{\partial F}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial F}{\partial y'} \right) + \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left(\frac{\partial F}{\partial y''} \right) - \frac{\mathrm{d}^3}{\mathrm{d}x^3} \left(\frac{\partial F}{\partial y'''} \right) + \dots + (-1)^n \frac{\mathrm{d}^n}{\mathrm{d}x^n} \left(\frac{\partial F}{\partial y^{(n)}} \right)$$

Exercise 1. Find the extremal for the functional $I = \int_0^1 (1 + (y'')^2) dx$ satisfying the end conditions y(0) = 0, y'(0) = 1, y(1) = 1, y'(1) = 0.

Exercise 2. Find the function which creates a stationary value for the functional $I = \int_0^{\pi/2} (y'^2 + 2xyy') dx$ satisfying the end conditions $y(0) = y_0$ and $y\left(\frac{\pi}{2}\right) = y_1$.

Exercise 3. Find the curve joining the points (0,0) and (1,0) for which the functional $I = \int_0^1 (y'')^2 dx$ is a minimum and y is subject to the conditions y'(0) = a and y'(1) = b, where a, b are given constants.

Exercise 4. Find a stationary value for the functional $I=\int_0^{\pi/2} \left[(\dot{x_1})^2+(\dot{x_2})^2+2x_1x_2\right]\mathrm{d}t$ subject to the end point conditions $x_1(0)=0,\,x_1\left(\frac{\pi}{2}\right)=1,x_2(0)=0,x_2\left(\frac{\pi}{2}\right)=-1$.

1

Exercise 5. Find the extremal for the functional $I = \int_0^1 (y'(x)z'(x) + y(x)^2) dx$ subject to the conditions y(0) = z(0) = 0 and y(1) = z(1) = 1.

Exercise 6. Find the extremal for the functional $I = \int_0^{\frac{\pi}{4}} (4y_1^2 + y_2^2 + y_1'y_2') dx$ subject to the conditions $y_1(0) = 1, y_1\left(\frac{\pi}{4}\right) = 0$ and $y_2(0) = 0, y_2\left(\frac{\pi}{4}\right) = 1$.

Exercise 7. Find the extremal for the functional $I = \int_{x_0}^{x_1} (y^2 - (y'')^2) dx$.

Lagrange multipliers

If we want to keep at te same time $\int_{x_1}^{x_2} G(x, y, y') dx$ equal to some constant, (1) can be rewritten as: $\int_{x_1}^{x_2} (F + \lambda G) dx$

Exercise 8. Find w = w(x) such that the functional $I = \int_0^{\pi/2} w^2(x) dx$ is to be minimum, where w is subject to the constraints $\frac{dw}{dx} + y - (y - z)^2 y = 0$, $\frac{dy}{dx} - w = 0$ with w, y, z subject to the boundary conditions

$$y(0) = 0, z(0) = 0, w(0) = 1, y(\pi/2) = 1, z(\pi/2) = 1, w(\pi/2) = 0.$$

Exercise 9. Find a function y(x) for which $\int_0^{\pi} (y'^2 - y^2) dx$ if $\int_0^{\pi} y dx = 1$ and y(0) = 0, $y(\pi) = 1$.

Exercise 10. Find the extremal curves y = y(x) of $\int_0^1 y'^2 dx$, such that $y(0) = y(\pi) = 0$, and $\int_0^1 y^2 dx = 2$.

Natural boundary conditions

If one or both of the end point conditions $y(x_1) = y_1$ and $y(x_2) = y_2$ are not prescribed (when one or both ends can vary), we use the natural boundary conditions or transversality conditions:

$$\frac{\partial F}{\partial y'}|_{x=x_1}$$
 and $\frac{\partial F}{\partial y'}|_{x=x_2}$

Exercise 11. Find the curve y = y(x) producing the shortest distance between the points x_0 and x_1 subject to natural boundary conditions.

Exercise 12. Find the extremum for the functional $I = \int_1^2 [y' + x^2(y')^2] dx$ with boundary conditions y(1) = 1, y(2) = 2. Define also the natural boundary conditions for this problem.

Exercise 13. Find the extremum for the functional $I = \int_0^{\pi} [y'^2 + 2y \sin x] dx$ with boundary conditions y(0) = 0, $y(\pi) = 0$. Define also the natural boundary conditions for this problem.

Exercise 14. Determine the stationary functions associated with the integral $I = \int_0^1 [(y')^2 - 2\alpha yy' - 2\beta y'] dx$ where α and β are constants, in each of the following situations:

- The end conditions y(0) = 0 and y(1) = 1 are preassigned.
- Only the end condition y(0) = 0 is preassigned.

- Only the end condition y(1) = 1 is preassigned.
- No end conditions are preassigned.