Transformers - Mathematical derivation.

From the paper Attention is all you need, Vaswani et al. 2017

Input: X; ERa. (Xi) 15isn.

(1) Multi-head attention

Attention vectors are computed from each input Xi, 1<i<1, and independently for each "head" h, 1 < h < H.

Keys: $k_h(x_i) = W_{h,k}^T X_i$ previes: $q_h(x_i) = W_{h,q}^T x_i$ values: $V_h(x_i) = W_{h,q}^T x_i$

D Attention seights
For all 151, jen, 15h = H, $\alpha_h(i,j) = Softmax (19h(xi) K(xj))$

where Softmax (\$\frac{1}{2!} e^{\frac{2}{2}i} (e^{\frac{2}{4}}, ..., e^{\frac{2}{n}}).

3 Mixture of Valuer

Define for all $1 \le i \le n$ $u_i = \sum_{h=1}^{H} W_{u,h}^{\top} \left(\sum_{j \le i}^{n} d_h(i,j) \nabla_h(x_j) \right)$

. Layer normalization of the (li). In head h.

(4) outputs.

≥ Ui ← Layer norm (ui + xi).

. For all $1 \le i \le n$ $3i = W_{2,1}^T \circ (W_{2,2}^T \circ i)$. Layer normalization of the (2i).

Zi = Layer norm (2, +u).

N= Box (V-HV) + P2 empirical empirical std mean Layer normalization of a vector (5,...,5,)=v:

Steps 1 to 4 provide a Regression function $T_0: (\chi_{1,...},\chi_n) \mapsto (21,...,2n)$. In practice, a Transformer network is given by: Too...oTo.

(3) Rositional encoding.

Inputs are considered as unordered vectors to compute and assign attention weights. If input data are sequential (i.e. i refers to a time index), several

additional positional en codings have been considered.

Sinusoidal: $(x_i, e_i)^T$ e_i , i-th canonical vector of \mathbb{R}^1 . $g_{k,2i} = \sin\left(\frac{k}{3^{2i/4}}\right)$; $g_{k,2i+1} = \cos\left(\frac{k}{3^{2i/4}}\right)$ $g_{k,2i} = \sin\left(\frac{k}{3^{2i/4}}\right)$; $g_{k,2i+1} = \cos\left(\frac{k}{3^{2i/4}}\right)$

(6) Connection to RNN - Time Devies.

Next Session!

Transformers for time series - Similarities with "LSTN"

From the paper LSTM as a dynamically computed element-wise weighted sum, Lévy et al. (2018).

Long short term memory (1997, LSTN) are very popular networks to perform prediction for time series.

In this case, the data $(X_t)_{t>0}$ are sequential and t stands for time. The prediction of a new data is based on intermediate representation $\{(c_t,h_t)\}_{t>0}$ computed necunsively:

$$C_{b} = \sigma \left(W_{1} h_{t-1} + W_{2} X_{t} \right) \quad | \quad \text{Content layer}$$

$$i_{t} = \sigma \left(W_{3} h_{t-1} + W_{4} X_{t} \right) \quad | \quad \text{Temory Layer}$$

$$f_{t} = \sigma \left(W_{5} h_{t-1} + W_{5} X_{t} \right) \quad | \quad \text{Temory Layer}$$

$$O_{t} = \sigma \left(W_{1} h_{t-1} + W_{3} X_{t} \right) \quad | \quad \text{Output layer}$$

$$h_{t} = O_{t} \sigma \left(C_{t} \right)$$

 $C_t = \sum_{i=0}^{t} i_j \left(\prod_{k \in A_i} f_k \right) C_j$ Recursive formulation of (*):

Proof: Assume that the result holds at t.

$$C_{t+1} = \lambda_{t+1} C_{t+1} + \beta_{t+1} C_{t}$$

$$= \lambda_{t+1} C_{t+1} + \beta_{t+1} C_{t+1}$$

In lévy et al., authors simplified a sit the LSTY to understand the element-wise veighted sum.

Assume to simplify that
$$\begin{cases} \widetilde{c}_{t} = \sigma(W_{1}X_{t}) \\ i_{t} = \sigma(W_{2}X_{t}) \\ f_{t} = \sigma(W_{3}X_{t}) \end{cases}$$

Then,
$$c_{z} = \int_{j=0}^{z} \frac{t}{j!} \frac{$$

Reminder for the Transformers: $U_i = \sum_{h=1}^{H} W_{u,h} \left(\sum_{j=1}^{h} \alpha_h(i,j) \sigma_h(x_j) \right)$

Important difference: In 1871, If I so that attention weights decrease (fast) in the past!