Tempered Particle Filter

presented by Pawel Langer & Laszlo Tetenyi

Edward Herbst and Frank Schorfheide

November 27, 2018

Motivation

$$s_t = \Phi(s_{t-1}, \epsilon_t; \theta)$$
 $\epsilon_t \sim F_{\epsilon}(\cdot, \theta)$
 $y_t = \Psi(s_t; \theta) + u_t$ $u_t \sim N(0, \sigma_u(\theta))$

- Accuracy of particle filters depends on proposal distribution that mutates s_{t-1} particles to s_t
- Bootstrap Particle Filter uses state-transition equation to do this - very poor practical performance
- Idea: develop a self-tuning particle filter
 - Proposal distribution updates through a sequence of Monte Carlo steps
 - Start with inflated measurement variance and gradually reduce it to nominal levels
 - Consistent and unbiased; large accuracy improvements

Motivation - Example

- Throughout the paper, evaluate performance relative to Kalman Filter on linear DSGE
- Simple New Keynesian model estimate on the Great Moderation and Great Recession
- Parameter guess at high likelihood value

	KFilter		BSPF		TPF	
	Orig	Rep	Orig	Rep	Orig	Rep
Great	-306	-306	-307.5	-307.6	-306.7	-307.4
${\sf Moderation}$			(2.044)	(1.569)	(1.04)	(1.80)
Great	-246	-246	-461	-465.64	-254	-256
Recession			(36.74)	(34.93)	(3.47)	(3.46)
Time	-	-	0.48	8.6	0.27	1.98
Particles	-	-	40000	40000	5500	5500

The Algorithm - Outline

- Initialize the particle filter:
 - Number of particles
 - r* value controls the inefficiency ratio and the variance of the weights
 - Number of Metropolis-Hastings steps
 - Starting variance for Metropolis Hastings algorithm
- 2 Tempering iterations
 - ① Correction
 - ② Selection
 - 3 Mutation
- Approximate the likelihood

The Algorithm - Step 1

Period t = 0 initialization:

- Let $N_0^{\phi} = 1$. Draw the initial particles from the distribution $p(s_0), j = 1, ..., M$.
- Let $s_0^{j,N_0^{\phi}} = s_0^j$

Period t Iterations. For t = 1, ..., T

- Start with $s_{t-1}^{j,N_{t-1}^{\phi}}$, generate $\epsilon_t^{j,1}\sim F_{\epsilon}$ and define $s_t^{j,1}=\Phi(s_{t-1}^{j,N_{t-1}^{\phi}},\epsilon_t^{j,1})$
- Compute the incremental weights:

$$w_t^{j,1} = p_1(y_t|s_t^{j,1}) \propto |\phi_{1,t} \cdot \Sigma_u^{-1}|^{\frac{1}{2}} \exp\left\{-0.5\phi_{1,t}(y_t - \Psi(s_t^{j,1}))'\Sigma_u^{-1}(y_t - \Psi(s_t^{j,1}))\right\}$$
(1

The Algorithm - Step 1 - Initialization

- Normalize the incremental weights
- Resample the particles using the above weights.
- Go to algorithm 2 to begin tempering

The Algorithm - Step 2 - Tempering Iterations

While $\phi_{n,t} < 1$ Correction

• For j = 1, ..., M and given $\phi_{n-1,t}$ define the $e_{j,t}$:

$$e_{j,t} = 0.5(y_t - \Psi(s_t^{j,n-1}))' \Sigma_u^{-1} (y_t - \Psi(s_t^{j,n-1}))$$
 (2)

• Define the inefficiency ratio as a function of ϕ_n :

InEff(
$$\phi_n$$
) = $\frac{\sum_{j=1}^{M} exp\{-2(\phi_n - \phi_{n-1})e_{j,t}\}}{\sum_{j=1}^{M} exp\{-(\phi_n - \phi_{n-1})e_{j,t}\}}$ (3)

The Algorithm - Step 2 - Continued

- If $InEff(1) < r^*$ let $\phi_{n,t} = 1$ and end do-loop
- else let $\phi_{n,t}$ be the solution to $InEff(\phi_{n,t}) = r^*$

$$w_t^{j,n}(\phi_n) = (\frac{\phi_n}{\phi_{n-1}})^{n_y/2} \exp\{-(\phi_n - \phi_{n-1})e_{j,t}\}$$
(4)

Selection

Resample the particles using the above weights

Mutation

Mutate the particles and go to algorithm 3

The Algorithm - Step 3 - Mutation

Execute N^{MH} **Metro-Hastings Steps** For $I = 1, ..., N^{MH}$

- Generate a proposed innovation $e_t^j \sim N(e_t^{j,n,l-1}, c_n^2 I_{n_\epsilon})$
- Compute acceptance rate:

$$\alpha(e_t^j|e_t^{j,n,l-1}) = \min \left\{ 1, \frac{p_n(y_t|e_t^j, s_{t-1}^{j,N_{t-1}^{\phi}})p_{\epsilon}(e_t^j)}{p_n(y_t|e_t^{j,n,l-1}, s_{t-1}^{j,N_{t-1}^{\phi}})p_{\epsilon}(e_t^{j,n,l-1})} \right\}$$
(5)

- Update the particle values based on the acceptance rate.
- Define $s_t^{j,n} = \Phi(s_{t-1}^{j,N_{t-1}^{\phi}}, \epsilon_t^{j,n,MH})$
- Update c²

The Algorithm - Final Step

• Approximate the likelihood increment:

$$p(y_t|Y_{1:t-1} = \prod_{n=1}^{N_t^{\phi}} \left(\frac{1}{M} \sum_{i=1}^{M} w_t^{j,n}\right)$$
 (6)

Asymptotic Properties

- Proof for non-adaptive versions of the TPF (tempering + mutation)
- The key is that the function of the particle swarm should approximate the pdf of observables
- Then the TPF is both unbiased and consistent (just like the BSPF)
- Without mutation, the resampling will reduce the diversity even more than in the BSPF

Example - NK

- 5 states with 1 lagged state, 3 observation equations
- Data from FRED
- Great Moderation

Example - NK Continued

- 5 states with 1 lagged state, 3 observation equations
- Data from FRED
- Great Recession

Example - NK Continued

- 5 states with 1 lagged state, 3 observation equations
- Data from FRED
- Great Recession

Figure 3: Small-Scale Model: BSPF versus TPF in 2008Q4

Smets-Wouters 2007

- First "small-scale" DSGE model on par with Bayesian VAR-s forecasts
- Several changes relative to our small NK model:
 - Standard RBC additions:
 - Investment adjustment cost + investment efficiency shock
 - Effective capital stock is lagged by a period
 - Capital utilization adjustment
 - Nominal frictions:
 - Sticky and indexed prices and wages with ARMA shocks
 - Goods and labor market are Kimball(1995) aggregated
 - Taylor rule includes potential output solving the "frictionless" economy is necessary

Smets-Wouters - Results

- Nonlinear variants of the model were very difficult to estimate
- We have 7 observables
- Only 1 mutation step

	KFilter		BSPF		TPF	
	Orig	Rep	Orig	Rep	Orig	Rep
θ_{m}	-943	-943	- 1188	-1212	- 1043	-1064
			(59.53)	(81.96)	(34.91)	(42.54)
θ_I	-956	-956	-1211	-1223	-1098	-1112
			(67.52)	(61.35)	(42.02)	(45.05)
Time (s)	-	-	1.00	5.8	6.17	3.05
Particles	-	-	40000	40000	8000	8000
Simulations	-	-	200	20	200	100

Smets Wouters -density distribution

Smets Wouters -density distribution (rep)

The Algorithm - Coding Tips

- Original code in Fortran using gensys for model solution we worked in python - we dont parallelize, but vectorize instead
- Most time is spent on the multinomial sampler and thus the mutation step is as costly as the tempering step exponential problem in sample size
- Trying to improve upon the standard multinomial sampler that is written in C and uses sequence of binomial samplers - Poisson approximations
- Useful to set a maximum number of iterations for the tempering step
- The initial variance of the particle is almost irrelevant relative to the baseline particle filter
- Rootfinding
- Tradeoff between speed and memory create shock matrix prior to loop or not

Herbst & Schorfheide