Clase 1: Leyes de Newton y dinámica de la órbita

Fundamentos de ingeniería de control de nanosatélites **Ing. Franklin Ticona**

Universidad Católica Boliviana San Pablo sede La Paz

Junio 2023

Leyes de Newton

- ▶ **Primera ley.** A menos que una fuerza actúe sobre una partícula, la partícula mantendrá su movimiento con una velocidad inercial constante.
- ▶ **Segunda ley.** Dado el vector F suma de todas las fuerzas actuando sobre una partícula de masa m, con una posición inercial r. Si se asume que \mathcal{N} es un sistema de referencia inercial, entonces:

$$F = rac{N}{dt}(m\dot{r})$$

▶ **Tercera ley.**- Si la masa m_1 ejerce una fuerza F_{21} en una masa m_2 , entonces la fuerza F_{12} experimentada por la fuerza m_1 debido a la interacción con la masa m_2 está dada por:

$${\it F}_{12} = -{\it F}_{21}$$

Leyes de Newton

Ley de Gravitación universal

Dadas las partículas de masa m_1 y m_2 , la fuerza mutua atractiva entre estas está dada por:

$$extbf{\emph{F}}_{12} = - extbf{\emph{F}}_{21} = rac{Gm_1m_2}{| extbf{\emph{r}}_{12}|^2}rac{ extbf{\emph{r}}_{12}}{| extbf{\emph{r}}|_{12}}$$

Problema 1.- Si $r := r_{12}$, hallar el modelo matemático que gobierna la cinemática de órbita de un satélite en el planeta tierra, considerando:

$$\mathbf{r}(t=0) = \begin{bmatrix} \sqrt{7000} \\ 0 \\ 0 \end{bmatrix} [Km], \qquad \dot{\mathbf{r}}(t=0) = \begin{bmatrix} \sqrt{7.6408} \\ 0 \end{bmatrix} \begin{bmatrix} \frac{Km}{s} \end{bmatrix}$$

Problema 2.- Dado el programa base, simular el modelo matemático en Simulink.

Sistemas de coordenadas

La cinemática de órbita de un satélite sujeto al problema de los dos cuerpos y con órbita elíptica puede ser descrito por los **elementos de órbita**:

$$\{a, e, i, \Omega, \omega, M_0\}$$

Donde:

- ▶ a es el semieje mayor de la elipse.
- ▶ e excentricidad de la elipse. $\{\Omega, i, \omega\}$ son los ángulos de Euler 3-1-3 que definen la rotación del plano de la órbita.
- ightharpoonup y M_0 la anomalía media inicial.

Sistemas de coordenadas

Figura: Sistema de coordenadas 1

Sistemas de coordenadas

Figura: Sistema de coordenadas 2

Igualdades muy útiles

Ecuación VIS-VIVA

El módulo de la velocidad de una partícula en una órbita elíptica satisface:

$$|\dot{\mathbf{r}}|^2 = |\mathbf{v}|^2 = \mu \left(\frac{2}{|\mathbf{r}|} - \frac{1}{\mathsf{a}}\right)$$

Con
$$\mu = GM = 398600 \left[\frac{Km^3}{s^2} \right]$$

Sea r_a la longitud del apogeo, r_p longitud del perigeo y e eccentricidad de la elipse:

$$e = \frac{r_a - r_p}{r_a + r_p}, \qquad a = \frac{r_a + r_p}{2}$$

Problema 3.- Simular una órbita con apogeo de 10000[Km] y perigeo de 7000[Km].

Dinámica de órbita

¿Cómo obtenemos una órbita deseada dadas las condiciones iniciales ${}^{\mathcal{N}}\mathbf{r}(0), {}^{\mathcal{N}}\mathbf{r}(0)$?

Sistemas de referencia

Sistemas de referencia de órbita: $\mathcal{H}_1 = \{i_r, i_\theta, i_h\}$, $\mathcal{H}_2 = \{i_n, i_v, i_h\}$. Así, la ecuación VIS-VISA:

$$\mathcal{H}_{2}\dot{m{r}}=egin{bmatrix} \mathcal{H}_{2} \ \sqrt{\mu\left(rac{2}{|m{r}|}-rac{1}{m{a}}
ight)} \ 0 \end{bmatrix}, \qquad \mathcal{N}\dot{m{r}}=[NH_{1}][H_{1}H_{2}]^{\mathcal{H}_{2}}\dot{m{r}}$$

¿Cómo computar $[NH_1]$ y $[H_1H_2]$?

$$[H_2H_1] = \begin{bmatrix} \frac{1}{\sqrt{1+e^2+2e\cos f}} \begin{bmatrix} 1+e\cos f & e\sin f \\ -e\sin f & 1+e\cos f \end{bmatrix} & \mathbf{0}_{2\times 1} \\ \mathbf{0}_{1\times 2} & 1 \end{bmatrix}$$

Algorithm Cómputo de H_1N

Entrada: r, \dot{r} (expressions en \mathcal{N})

Salida: $[H_1N]$

1:
$$i_r = r/|r|$$

$$i_h = \frac{r \times r}{|r \times \dot{r}|}$$

3:
$$extbf{\emph{i}}_{ heta} = extbf{\emph{i}}_{ heta} imes extbf{\emph{j}}_{ heta}$$

2:
$$\mathbf{i}_{h} = \frac{\mathbf{r} \times \mathbf{r}^{T}}{|\mathbf{r} \times \mathbf{r}|}$$

3: $\mathbf{i}_{\theta} = \mathbf{i}_{h} \times \mathbf{i}_{r}$
4: $[H_{1}N] = \begin{bmatrix} \mathbf{i}_{r}^{T} & \mathbf{i}_{\theta}^{T} & \mathbf{i}_{h}^{T} \end{bmatrix}$

En el apogeo y perigeo $[H_1H_2] = [I_{3\times3}].$

Problema 4.-

Simular la órbita de un satélite con apogeo de 10000[Km], perigeo de 7000[Km]. $\Omega = 0[deg]$, i = 30[deg] y $\theta(t = 0) = 0[deg]$ (el satélite comienza su movimiento desde el perigeo).

Nota.- El valor inicial de $[NH_1]$ puede computarse con la función:

Euler3132C([
$$\Omega$$
; i ; θ ($t = 0$)])'

No olvides añadir las carpetas y subcarpetas de la carpeta libraries.

Perturbaciones de la órbita

Perturbación J2

Las ecuaciones diferenciales que gobiernan la propagación de órbita de un satélite en LEO considerando el efecto de perturbación J2 son:

$$\ddot{\mathbf{r}} = -\frac{\mu}{|\mathbf{r}|^3}\mathbf{r} - \frac{3}{2}J_2\frac{\mu}{|\mathbf{r}|^2}\left(\frac{r_{eq}}{|\mathbf{r}|}\right)^2$$

Con $r_{eq} = 6378[Km]$ radio medio de la tierra, $J_2 = 1082.63 \cdot 10^{-6}$.

Problema 5 (final).- Simular la órbita de un satélite con cualquier $\Omega, \theta(0)$, inclinación i=30[deg] cuyo apogeo sea de 6828[Km] y perigeo de 6820[Km] bajo los efectos de la perturbación J2.