Let de le a fundamental discriminant.

Class rumber formula:

$$L(1, \chi_d) = \frac{2\pi}{w \sqrt{|d|}} h(d) \qquad w = \begin{cases} 2 & d < -4 \\ 4 & d = -4 \\ 6 & d = -3 \end{cases}$$

Proposition: Let de de le a fundamental discriminant. Then every quadratic form of discriminant d has exactly w automorphisms.

Lemma: The set of automorphs of a given primitive quadratic form Q = [a,b,c] (with disc(Q) = d) equals:

$$\begin{cases} \left(\frac{t-bu}{2} - cu \right) \\ au \frac{t+bu}{2} \end{cases} : t, u \in \mathbb{Z}, t^2 - du = 4 \end{cases} \subseteq SL_1(\mathbb{Z})$$

Note:
$$\frac{t-bu}{2} \cdot \frac{t+bu}{2} + acu^2 = \frac{t^2-b^2u^2+4acu^2}{4} = \frac{t^2-du}{4} = 1$$

Proof: We only show every automorph is of this form.

Set
$$g = \begin{pmatrix} \alpha & \beta \\ 3 & \delta \end{pmatrix}$$
 $Q = \begin{pmatrix} \alpha & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix}$

Notice that, $\operatorname{disc}(Q) = \operatorname{disc}(\frac{t}{2}Qg)$, the last quality is redundant.

redundant. We also note:
$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL(2)$$
 $\Delta \delta + \beta \gamma = 1 + 2\beta \gamma$

$$(*) \Leftarrow$$

$$\begin{cases} a x^2 + b x + c y^2 = 0 \\ 2ax \beta + b(1+2\beta \gamma) + 2c \gamma \delta = b \end{cases}$$

$$(a) \begin{cases} ax^2 + bxy + cy^2 = 0 \\ ax\beta + b\beta\gamma + c\gamma\delta = 0 \end{cases}$$

$$0 \times \beta - 0 \times \alpha.$$

$$C \beta \gamma^{2} - C \alpha \gamma \delta = \alpha \beta \qquad \forall \delta = \beta \gamma + 1.$$

$$A \beta + C \gamma = 0.$$

$$0 \times \delta - 0 \times \gamma$$

$$A \alpha^{2} \delta - \alpha \alpha \beta \gamma + b \alpha \gamma \delta - b \beta \gamma^{2} = \alpha \delta$$

$$A \alpha (\alpha \delta - \beta \gamma) + b \gamma (\alpha \delta - b \beta) = \alpha \delta$$

$$A \alpha + b \gamma = \alpha \delta$$

$$A \alpha + b \gamma = \alpha \delta$$

$$A (\alpha - \delta) + b \gamma = 0$$

$$A \beta + C \gamma = 0$$

$$A \beta + C$$

Then $1 = \alpha \delta - \beta \gamma = \alpha (\alpha + bu) + \alpha cu^2 = \alpha^2 + bu \cdot \alpha + \alpha cu^2$ $\Rightarrow (2\alpha + bu)^2 + (4\alpha c - b^2) u^2 = 4.$ Then set $t = 2\alpha + bu \in \mathbb{Z}$. $t^2 - du^2 = 4$.

The inverse part is a direct calculation

Proof of Proposition:

When
$$d < -4$$
, $t^2 - du^2 = 4$ only has solutions $(\pm 2, 0)$

When
$$d=-4$$
, $t^2-du^2=4 \sim t^2+4u^2=4$.

There one solutions:
$$(\pm 2,0)$$
, $(0,\pm 1)$

When
$$d=-3$$
, $t^2-du^2=4 \sim t^2+3u^2=4$.

Solutions:
$$(\pm 2,0)$$
 $(\pm 1,\pm 1)$

Définition: Let Q be a quadratic form with disc(Q) = d.

Let 121 be an integer.

$$R_{Q}(n) := \# \{ (x,y) \in \mathbb{Z} \times \mathbb{Z} : Q(xy) = n \}$$

 $R_{Q}^{*}(n) := \#\{(xy) \in \mathbb{Z} \times \mathbb{Z} : Q(xy) = n \text{ and } (xy) = 1\}$ If (x,y)=n, (x,y) is a representation of n. Q(x,y)=n with (x,y)=1, (x,y) is a proper representation of n. Note: when d<0, Q(xy) is positive definite $\Rightarrow 0 \leq R_{\infty}^{*}(n) \leq R_{\infty}(n) < \infty.$ Définition: Let d'be a fundamental discriminant. Perote by Sd a set of quadratic forms s.t. (1) $Q_1, Q_2 \in Sd \Rightarrow Q_1 + Q_2$. (2) #Sd = h(d)Définition: Let d>1 be a fundamental discriminat and N>1

be an integer. Let is a be a fixed set.

 $R(n; d) = \sum_{Q \in Sd} R_Q(n)$ $R^{\star}(n;d) = \sum_{Q \in Sd} R_{Q}^{\star}(n).$

Note: R(n; d), R*(n; d) are independent on the choice of Sd.

Theorem: Let
$$n>0$$
 and $(n,d)=1$. Then:

 $R(n;d)=W\sum_{m|n}\left(\frac{d}{m}\right)\leftarrow k_{mach} s_{ynbn}!$

Lemma: Assume $(n,d)=1$. There is a $w-tv-1$ map from

 $M_1=\left\{ < Q, x,y >: Q \in Sd, Q(x,y)=n, (x,y)=1 \right\}$

and
 $M_2=\left\{ l: 0 \le l \le 2n-1, l^2 \le d \pmod{4n} \right\}$

Proof: Take $< Q, x,y > \in M_1$
 $(x,y)=1 \Rightarrow con \ \text{find} \ s,t \in \mathbb{Z} \ \text{s.t.} \ Xs-yt=1$.

More over, con find $s_0, t_0 \in \mathbb{Z} \ \text{s.t.} \ S=S_0+hy \ h\in \mathbb{Z}$.

 $Xs-yt=1 \Rightarrow \left(\begin{matrix} x & t \\ y & s \end{matrix} \right) \in SL_2(\mathbb{Z})$

Consider $Q \mapsto \left(\begin{matrix} x & y \\ t & s \end{matrix} \right) Q\left(\begin{matrix} x & t \\ y & s \end{matrix} \right) = \left[\begin{matrix} n,l \\ \frac{\varrho-d}{4n} \end{matrix} \right]$

Here $l=2axr+b(xs+yr)+2cys$.

 $=2axr_0+b(xs+yr_0)+2cys_0+2hn$.

Then fore, by modifying, h , we can make $0 \le l \le 2n-1$

Then we get a map:

 $f: M_1 \mapsto M_2 = \langle Q, x,y > l > l$.

Remark: If
$$F(\langle Q, x, y \rangle) = \ell$$
, we can find s.t. $e^{\gamma}Z$ s.t. $\binom{x \ y}{s \ t} = \binom{n \ \frac{3}{2}}{s \ m}$ $m = \frac{\ell^2 - d}{4n}$.

D. F is onto. Take $l \in M_2$, can find m s.t. $\ell^2 - d = 4n m$.

Then $\ell^1 - 4nm = d \Rightarrow [n, \ell, m]$ is a primitive $((n, d) = 1)$ quadratic form of discriminant d .

Then we can find $Q \in Sd$ s.t. $Q \sim [n, \ell, m]$

That is, can find $g \in Sd(2)$ c.t. $f_2Q = \binom{n \ \frac{3}{2}}{s \ m}$

Write $g = \binom{x \ r}{y \ s} \Rightarrow Q(x, y) = n$.

 $g \in Sl_2(2) \Rightarrow (x_1y) = 1$
 $\Rightarrow F(\langle Q, x_1y \rangle) = \ell$.

Suppose that $F(\langle Q, x_1y \rangle) = F(\langle Q', x', y' \rangle) = \ell$.

Then $Q \sim Q' \sim [n, \ell, \frac{\ell^2 - d}{4n}] = [n, \ell, m]$

This will force $Q = Q'$, as Sd only contain inequivalent.

quadratic forms.

by Remark, for
$$\langle Q, x, y \rangle$$
, on find $\begin{pmatrix} x & y \\ y & s \end{pmatrix} \in SL_1(2)$ s.t.

$$\begin{pmatrix} x & y \\ y & s \end{pmatrix} = \begin{pmatrix} x & \frac{1}{2} \\ \frac{1}{2} & m \end{pmatrix}$$

By Remark, for $\langle Q, x', y' \rangle$, on find $\begin{pmatrix} x' & x' \\ y' & s' \end{pmatrix} \in SL_2(2)$ s.t.

$$\begin{pmatrix} x' & y' \\ 1' & s' \end{pmatrix} Q \begin{pmatrix} x' & r' \\ y' & s' \end{pmatrix} = \begin{pmatrix} x' & y' \\ \frac{1}{2} & m \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} x & y \\ y & s \end{pmatrix} Q \begin{pmatrix} x & r \\ y' & s' \end{pmatrix} = \begin{pmatrix} x' & y' \\ x' & s' \end{pmatrix} Q \begin{pmatrix} x' & r' \\ y' & s' \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} x & r \\ y & s \end{pmatrix} \begin{pmatrix} x' & r' \\ y' & s' \end{pmatrix} = \begin{pmatrix} x' & y' \\ x' & s' \end{pmatrix} Q \begin{pmatrix} x' & r' \\ x' & s' \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} x & r \\ y & s \end{pmatrix} \begin{pmatrix} x' & r' \\ x' & s \end{pmatrix} \begin{pmatrix} x' & r \\ x' & s \end{pmatrix} \begin{pmatrix} x' & r \\ x' & s \end{pmatrix} = \begin{pmatrix} x' & y \\ x' & s \end{pmatrix} \begin{pmatrix} x & r \\ x' & s \end{pmatrix} \begin{pmatrix} x' & r \\ x' & s \end{pmatrix} \begin{pmatrix} x' & r \\ x' & s \end{pmatrix} \begin{pmatrix} x' & r \\ x' & s \end{pmatrix} \begin{pmatrix} x' & r \\ x' & s \end{pmatrix} \begin{pmatrix} x' & r \\ x' & s \end{pmatrix} \begin{pmatrix} x' & x' \\ x' & s \end{pmatrix} \begin{pmatrix} x' & x$$

Note: 0 < < > > n - 1

$$\Rightarrow F(\langle Q, x', y' \rangle) = l = F(\langle Q, x, y \rangle)$$

$$\Rightarrow F \text{ is exactly } w-to-1$$