- 1. Show that tabular methods such as presented in Part I of this book are a special case of linear function approximation. What would the feature vectors be?
 - The feature would be an indicator of the state: the feature vector's length would be equal to the number of states, and $x(s_i)$ would be a vector that contains 1 at the i^{th} coordinate and 0 at the others. The weight vector would also have the same length as the number of states. The i^th weight would be our value estimate for s_i . When we're doing the update, the gradient of $x(s_i)$ is 0 everywhere except for coordinate i, where it's 1, so we would only update the weight for the current state.
- 2. Why does (9.17) define $(n+1)^k$ distinct features for dimension k?

 For each state s_j , we choose one of n+1 options: $s_j^0, s_j^1, \ldots, s_j^n$. There are k states, we make a choice for each them: we can do that $((n+1)^k)$ -many ways.