2301108 CALCULUS II

Borworntat Dendumrongkul

2024

Contents

1	Differential Equation			
	1.1	Seperable Equation	2	
	1.2	Linear Equation	3	
	1.3	Bernoulli Equation	3	
2 Sequence		5		

1 Differential Equation

1.1 Seperable Equation

Definition 1.1.1 (Seperable Equation). A differential equation is called seperable if it can be written in the form

 $\frac{dy}{dx} = g(y)h(x)$

where g(y) is a function of y only and h(x) is a function of x only.

$$\frac{dy}{dx} = g(y)h(x)$$
$$\frac{dy}{g(y)} = h(x)dx$$
$$\int \frac{dy}{g(y)} = \int h(x)dx$$

Definition 1.1.2 (Implicit Solution). An implicit solution to a differential equation is a solution that is not solved for y explicitly. Answer is in the form of F(x, y) = c.

Definition 1.1.3 (Explicit Solution). An explicit solution to a differential equation is a solution that is solved for y explicitly. Answer is in the form of y = f(x).

Sometimes there are initial condition of the equation.

Theorem 1.1.1 (FTC 1). If f is continuous on [a, b], then the function f defined by

$$\frac{d}{dx} \int_{a}^{u(x)} f(t)dt = f(u(x))u'(x)$$

is continuous on [a,b] and differentiable in (a,b), and g'(x)=f(x).

Definition 1.1.4 (Integral Equation). An integral equation is an equation in which an unknown function appears under an integral sign.

We have to change the integral equation to a differential equation. Then, we can use FTC 1 to solve the differential equation.

1.2 Linear Equation

Definition 1.2.1 (Linear Equation). A differential equation is called linear if it can be written in the form

$$\frac{dy}{dx} + P(x)y = Q(x)$$

where P(x) and Q(x) are continuous functions of x.

The term "linear" refers to the fact that the unknown function y and its derivative dy/dx appear in the equation to the first power and are not multiplied together."

Definition 1.2.2 (Integrating Factor). The integrating factor for the linear differential equation

$$\frac{dy}{dx} + P(x)y = Q(x)$$

is the function I(x) defined by

$$I(x) = \exp(\int P(x)dx)$$

We can solve the linear differential equation by the formula.

$$y(x) = \frac{1}{I(x)} \left[\int I(x)Q(x)dx + C \right]$$

without any additional constraint c from integrating.

1.3 Bernoulli Equation

Definition 1.3.1 (Bernoulli Equation). A differential equation is called Bernoulli if it can be written in the form

$$\frac{dy}{dx} + P(x)y = Q(x)y^n$$

where P(x) and Q(x) are continuous functions of x.

As you can see, there is y^n in the equation which is not linear.

We have to change the Bernoulli equation to a linear equation by substitution.

$$\frac{dy}{dx} + P(x)y = Q(x)y^n$$

divides both side by y^n

$$\frac{dy}{dx}y^{-n} + P(x)y^{1-n} = Q(x)$$

Then we substitute $u = y^{1-n}$

$$\frac{du}{dy} = (1 - n)y^{-n}\frac{dy}{dx}$$

$$\frac{du}{dx} \cdot \frac{1}{1 - n} = y^{-n}\frac{dy}{dx}$$
(1.1)

Let $u = y^{1-n}$

$$\frac{du}{dx} = (1 - n)y^{-n}\frac{dy}{dx}$$

$$\frac{du}{dx} \cdot \frac{1}{1 - n} = y^{-n}\frac{dy}{dx}$$
(1.2)

Then, try to substitute the equation with u.

$$\frac{du}{dx} \cdot \frac{1}{1-n} + P(x)u = Q(x)$$

$$\frac{du}{dx} + (1-n)P(x)u = (1-n)Q(x)$$
(1.3)

Now, we can solve the equation with the linear equation method. Since the equation is linear on u.

2 Sequence

Definition 2.0.1 (Sequence). A sequence is a function whose domain is \mathbb{N}

We are considering behavior of a sequence as n becomes infinite.

$$\lim_{n\to\infty} a_n = \begin{cases} L\in\mathbb{R} & \text{convergent} \\ \pm\infty & \text{divergent} \\ \text{morethanonevalue} & \text{divergent} \end{cases}$$

Definition 2.0.2 (Sequence Notation). The sequece $\{a_1, a_2, a_3, \dots\}$ is denoted by $\{a_n\}_{n=1}^{\infty}$

Theorem 2.0.1 (Limit of Sequence). A sequence $\{a_n\}$ converges to L.

$$\lim_{n \to \infty} a_n = L$$

or

$$a_n \to Lasn \to \infty$$

if for every $\epsilon > 0$, there exists N such that

then

$$|a_n - L| < \epsilon$$