Métodos de Determinação de Raízes de Equações

Gilberto de Miranda Jr.

10/08/2018

*(Extraído de Ruggiero e Lopes)

Isolamento de raízes

- · A primeira parte do esforço consiste em isolar a raíz através de estudo técnico e teórico.
- Para garantir que exista pelo menos uma raíz no intervalo é preciso observar o resultado:

Teorema 3.1: Se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é $f(a) \cdot f(b) < 0$, então o intervalo conterá, no mínimo, uma raiz da equação f(x) = 0, em outras palavras haverá, no mínimo, um número & $\in (a, b)$ tal que f(&) = 0 (Figura 3.1).

Refinamento das raízes

- Há diversos métodos de isolamento, todos eles de perfomances diferentes, mas similares.
- Trabalharemos do mais elementar para os mais requintados.
- Alguns remontam à antiguidade.
- Começaremos pelo método da bisseção, o mais elementar, cujo raciocínio é sempre subdividir o intervalo que contém a raíz ao meio.
- Não é, obviamente, o mais eficiente, mas é muito simples de implantar.

Método da bisseção

Figura 2.13

Pseudo-código (Algoritmo)

ALGORITMO 1

Seja f(x) contínua em [a, b] e tal que f(a)f(b) < 0.

- 1) Dados iniciais:
 - a) intervalo inicial [a, b]
 - b) precisão ε
- 2) Se $(b-a) < \varepsilon$, então escolha para \overline{x} qualquer $x \in [a, b]$. FIM.
- 3) k = 1
- 4) M = f(a)
- $5) \quad x = \frac{a+b}{2}$
- 6) Se Mf(x) > 0, faça a = x. Vá para o passo 8.
- 7) b = x
- 8) Se $(b-a) < \varepsilon$, escolha para \overline{x} qualquer $x \in [a, b]$. FIM.
- 9) k = k + 1. Volte para o passo 5.

Método regula-falsi

• Encontrado no *Papiro de Rhind* que data de 1650 a.c.

Método regula-falsi

Pseudo-código (Algoritmo)

Seja f(x) contínua em [a, b] e tal que f(a)f(b) < 0.

- Dados iniciais
 - a) intervalo inicial [a, b]
 - b) precisões ε_1 e ε_2
- 2) Se $(b-a) < \varepsilon_1$, então escolha para \bar{x} qualquer $x \in [a, b]$. FIM.

se
$$|f(a)| < \varepsilon_2$$

ou se $|f(b)| < \varepsilon_2$ escolha a ou b como \overline{x} . FIM.

- 3) k = 1
- 4) M = f(a)

5)
$$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

- 6) Se $|f(x)| < \varepsilon_2$, escolha $\overline{x} = x$. FIM.
- 7) Se Mf(x) > 0, faça a = x. Vá para o passo 9.
- b = x
- 9) Se b a < ϵ_1 , então escolha para \bar{x} qualquer $x \in (a, b)$. FIM.
- 10) k = k + 1. Volte ao passo 5.

Exercícios

Testar os códigos para:

(a)
$$f(x) = 2x^3 - 4x^2 + 3x$$
, [-1,1]

(b)
$$f(x) = cos(x) - x$$
, [0,1]

Solução: Método de Illinois

$$c_k = rac{rac{1}{2}f(b_k)a_k - f(a_k)b_k}{rac{1}{2}f(b_k) - f(a_k)}$$

$$c_k = rac{f(b_k)a_k - rac{1}{2}f(a_k)b_k}{f(b_k) - rac{1}{2}f(a_k)}$$