Análisis Matemático II

Tema 1: Sucesiones de funciones

22-23 de febrero y 2 de marzo

Convergencia puntual

2 Convergencia uniforme

Relación con otras propiedades

Concepto de sucesión de funcione

Una sucesión de elementos de un conjunto $\mathcal{F} \neq \emptyset$ es una aplicación de $\mathbb N$ en $\mathcal F$

Si A un conjunto no vacío, sea $\mathcal{F}(A)$ el conjunto de todas las funciones de A en $\mathbb R$

Entonces, una sucesión de funciones de A en $\mathbb R$ es una aplicación de $\mathbb N$ en $\mathcal F(A)$

Tal sucesión asocia, a cada $n\in\mathbb{N}$, el n-ésimo término de la sucesión que será una función $f_n:A\to\mathbb{R}$ y entonces la sucesión se denota por $\{f_n\}$

Definir una sucesión $\{f_n\}$ de funciones de A en $\mathbb R$ equivale a definir, para cada $n\in\mathbb N$, y cada $x\in A$, un número real $f_n(x)$

Convergencia puntual

Convergencia puntual y límite puntual

 $A \neq \emptyset$, $\{f_n\}$ sucesión de funciones de A en \mathbb{R}

Se dice que $\{f_n\}$ converge en un punto $x\in A$ cuando la sucesión de números reales $\{f_n(x)\}$ es convergente

Si esto ocurre para todo $x \in C$, con $\emptyset \neq C \subset A$ y definimos $f: C \to \mathbb{R}, \qquad f(x) = \lim_{n \to \infty} f_n(x) \ \, \forall x \in C$

se dice que $\{f_n\}$ converge puntualmente a f en C y que f es el límite puntual de $\{f_n\}$ en C

Sea $C_p = \left\{x \in A : \{f_n(x)\} \text{ converge}\right\}$ y $F(x) = \lim_{n \to \infty} f_n(x)$ $\forall x \in C_p$ Si $\{f_n\}$ converge puntualmente a f en C, entonces $C \subset C_p$ y f(x) = F(x) $\forall x \in C$ Se dice que C_p es el campo de convergencia puntual de $\{f_n\}$

Ejemplo de convergencia puntual

Potencias de exponente natural: convergencia puntual

En el caso $A=\mathbb{R}$, sea $\{\varphi_n\}$ la sucesión de funciones dada por

$$\varphi_n(x) = x^n \quad \forall x \in \mathbb{R}, \quad \forall n \in \mathbb{N}$$

Para $x \in \mathbb{R}$, se tiene: $\{x^n\}$ converge \iff $-1 < x \leqslant 1$

El campo de convergencia puntual de $\{\varphi_n\}$ es el intervalo]-1,1]

en el que $\{\varphi_n\}$ converge puntualmente a la función $\varphi:]-1,1]\to\mathbb{R}$ dada por

$$\varphi(1) = 1 \qquad \qquad \mathbf{y} \qquad \qquad \varphi(x) = 0 \quad \forall \, x \in]-1,1[$$

Vemos que $\{\varphi_n\}$ converge puntualmente en un conjunto $C \subset \mathbb{R}$ si, y sólo si, $C \subset]-1,1]$, en cuyo caso,

el límite puntual de
$$\{\varphi_n\}$$
 en C es $\varphi\big|_C$

Por ejemplo, $\{\varphi_n\}$ converge puntualmente a cero en]-1,1[

 φ_n es continua en]-1,1] para todo $n\in\mathbb{N}$, pero φ no es continua en 1

Definición de convergencia uniforme

Notación para todo lo que sigue

 $A\neq\emptyset\text{ , }\{f_n\}\text{ sucesión de funciones de }A\text{ en }\mathbb{R}$ $C\text{ subconjunto no vacío de }A\text{ y }f:C\to\mathbb{R}\text{ una función}$

Convergencia uniforme

 $\{f_n\}$ converge puntualmente a f en C cuando:

$$\forall x \in C$$
, $\forall \varepsilon > 0 \quad \exists \ m \in \mathbb{N} : n \geqslant m \quad \Rightarrow \quad |f_n(x) - f(x)| < \varepsilon$

Se dice que $\{f_n\}$ converge uniformemente a f en C cuando:

$$\forall \varepsilon > 0 \quad \exists \ m \in \mathbb{N} : \ n \geqslant m \quad \Rightarrow \quad \left| f_n(x) - f(x) \right| < \varepsilon \quad \forall x \in C$$

En tal caso se tiene:

- ullet $\{f_n\}$ converge puntualmente a f en C
- $\bullet \quad \emptyset \neq D \subset C \quad \Longrightarrow \quad \{f_n\} \ \ \text{converge uniformemente en} \ \ D \ \ \text{a} \ \ f \, \big|_D$

Ejemplo de convergencia uniforme

Potencias de exponente natural: convergencia uniforme

$$\varphi_n(x) = x^n \quad \forall x \in \mathbb{R}, \quad \forall n \in \mathbb{N}$$

converge puntualmente en $\,]-1,1]\,$ a la función $\,\varphi:]-1,1]\to \mathbb{R}\,$ dada por

$$\varphi(1) = 1 \qquad \qquad \mathbf{y} \qquad \qquad \varphi(x) = 0 \quad \forall \, x \in \,]-1,1[$$

- ullet $\{arphi_n\}$ no converge uniformemente a cero en $\,]-1,1[\,$
- ullet Por tanto, $\{ arphi_n \}$ no converge uniformemente a arphi en]-1,1]
- En general, la convergencia puntual no implica la convergencia uniforme
- Fijado $r \in \mathbb{R}^+$ con r < 1, se tiene que $\{\varphi_n\}$ converge uniformemente a cero en [-r,r]
- En general, no se puede hablar de un "campo de convergencia uniforme"

Primer criterio de convergencia uniforme

Caracterización de la convergencia uniforme

 $\{f_n\}$ converge uniformemente a f en C si, y sólo si,

existe una sucesión $\{\rho_n\}$ en \mathbb{R} , con $\{\rho_n\} \to 0$, y un $m \in \mathbb{N}$, tales que:

$$n \geqslant m \implies |f_n(x) - f(x)| \leqslant \rho_n \quad \forall x \in C$$

Consecuencia que más se usa en la práctica

Si existe una sucesión $\{
ho_n\}$ en $\mathbb R$ tal que

$$\{\rho_n\}\to 0 \qquad \qquad |f_n(x)-f(x)|\leqslant \rho_n \quad \forall x\in C\,, \quad \forall\, n\in\mathbb{N}$$
 entonces $\{f_n\}$ converge uniformemente a f en C

Ejemplo

$$g_n(x) = \frac{x}{1 + n^2 x^2}$$
 $\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}$
 $|g_n(x)| \le 1/(2n)$ $\forall x \in \mathbb{R} \ \forall n \in \mathbb{N}$

Por tanto, $\{g_n\}$ converge uniformemente a cero en $\mathbb R$

Segundo criterio de convergencia uniforme

Otra caracterización de la convergencia uniforme

 $\{f_n\}$ converge uniformemente a f en C si, y sólo si, para toda sucesión $\{x_n\}$ de puntos de C, se tiene que $\left\{f_n(x_n)-f(x_n)\right\}\to 0$

Consecuencia que más se usa en la práctica

Si existe una sucesión $\{x_n\}$ de puntos de C tal que $\left\{f_n(x_n)-f(x_n)\right\}$ no converge a 0, entonces $\{f_n\}$ no converge uniformemente a f en C

Ejemplo

En el caso A=[0,1], para cada $n\in\mathbb{N}$ definimos:

$$h_n(x) = n^2 x (1 - nx) \quad \forall x \in \left[0, \frac{1}{n}\right] \quad \text{y} \quad h_n(x) = 0 \quad \forall x \in \left[\frac{1}{n}, 1\right]$$

 $\{h_n\}$ converge puntualmente a cero en [0,1], pero no uniformemente

Criterio de Cauchy

Condición de Cauchy uniforme

Se dice que $\{f_n\}$ es uniformemente de Cauchy en C cuando:

$$\forall \varepsilon > 0 \ \exists \ m \in \mathbb{N} : p, q \geqslant m \quad \Rightarrow \quad |f_p(x) - f_q(x)| < \varepsilon \quad \forall x \in C$$

Si $\{f_n\}$ converge uniformemente en C, entonces

 $\{f_n\}$ es uniformemente de Cauchy en C

Criterio de Cauchy para la convergencia uniforme

Si $\{f_n\}$ es uniformemente de Cauchy en C,

entonces $\{f_n\}$ converge uniformemente en C

Convergencia uniforme y continuidad

La convergencia uniforme preserva la continuidad

Sea A un espacio topológico, $x_0 \in A$

y $\{f_n\}$ una sucesión de funciones de A en $\mathbb R$ que converge uniformemente, en un entorno U del punto x_0 , a una función $f:U\to\mathbb R$.

Si f_n es continua en x_0 para todo $n \in \mathbb{N}$, entonces f es continua en el punto x_0 .

Convergencia uniforme y derivación

La convergencia uniforme no preserva la derivabilidad

$$\psi_n(x) = \sqrt{x^2 + \frac{1}{n^2}} \quad \forall x \in \mathbb{R}, \quad \forall n \in \mathbb{N}$$

 ψ_n es de clase C^∞ en $\mathbb R$, y la sucesión $\{\psi_n\}$ converge uniformemente en $\mathbb R$ a la función valor absoluto, que no es derivable en el origen

Convergencia uniforme y derivación

Dado un intervalo acotado no trivial $I\subset\mathbb{R}$, y una sucesión $\{f_n\}$ de funciones de I en \mathbb{R} , supongamos que:

- f_n es derivable en I, para todo $n \in \mathbb{N}$
- $\{f_n'\}$ converge uniformemente en I a una función $g:I \to \mathbb{R}$
- $\{f_n\}$ converge en un punto $a \in I$

Entonces $\{f_n\}$ converge uniformemente en I a una función $f:I\to\mathbb{R}$ que es derivable en I con f'(x)=g(x) para todo $x\in I$

Convergencia uniforme e integración

Permutación de la integral con el límite uniforme

Sean $a,b\in\mathbb{R}$ con a< b, y $\{f_n\}$ una sucesión de funciones continuas de [a,b] en \mathbb{R} , que converge uniformemente en [a,b] a una función $f:[a,b]\to\mathbb{R}$. Se tiene entonces:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx$$

No basta la convergencia puntual a una función continua

$$h_n(x) = n^2 x (1 - nx) \quad \forall x \in \left[0, \frac{1}{n}\right] \quad \text{y} \quad h_n(x) = 0 \quad \forall x \in \left[\frac{1}{n}, 1\right]$$

 $\{h_n\}$ converge puntualmente a cero en [0,1], pero

$$\int_{0}^{1} h_{n}(x) dx = \frac{1}{6} \qquad \forall n \in \mathbb{N}$$