Curso: Engenharia de Computação

Sistemas de Comunicações Móveis

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br

Tipos de Sistemas de Comunicações Móveis

Elementos

- 1. Transmissores/Receptores
- 2. Estações repetidoras

Transmissores/receptores - transceptores

- Terminais de usuário
- Quanto à portabilidade: fixos, móveis ou portáteis
- Quanto à frequência/modulação: HF-SSB, VHF-FM ou UHF-FM

HF	Onda ionosférica acima da distância	Comunicação muito dependente do					
3 - 30 MHz	mínima; onda de superfície a	comportamento da ionosfera; onda					
	distâncias curtas.	de superfície bastante atenuada.					
VHF	Propagação em visibilidade; difração;	Efeitos de refração; difração pelo					
30 - 300 MHz	tropodifusão (ondas espaciais).	relevo; espalhamento troposférico.					
UHF	Propagação em visibilidade; difração;	Efeitos de refração; multipercursos e					
300 - 3000 MHz	reflexão e tropodifusão.	dutos (faixa alta); difração e					
		obstrução pelo relevo e vegetação.					

Estações repetidoras

- Conjunto de equipamentos (um receptor, um transmissor, uma antena e um duplexador) que recebem um sinal e o retransmitem para terminais em uma área de cobertura
- Normalmente operam em uma frequência para recepção (RX) e outra frequência para transmissão (TX) – a diferença entre elas é chamada de offset
- Possuem potência elevada e são instaladas em torres para liberar o sinal de obstáculos

Estações repetidoras

tx

Canais

tx	rx
f1	<i>f</i> 2
f3	f4
f5	<i>f</i> 6

Exploração do serviço

- Constituídas redes operacionais com terminais de usuário
- Alocados canais para as redes operacionais
- Os terminais de usuário são sintonizados nos respectivos canais operacionais – o terminal sincronizado em um canal 'escuta' todas as conversas
- Um terminal pode ser sintonizado em várias redes diferentes
- Comunicação típica em grupo

Exploração do serviço

ibmec.br

Sistemas troncalizados

Exploração do serviço

Sistemas trunking

Elementos

- 1. Transmissores/Receptores
- 2. Estações repetidoras
- 3. Central de controle

Padrão TETRA Terrestrial Trunked Radio

- Padrão europeu desenvolvido para aplicações de radiocomunicação em geral
- Utiliza método de acesso TDMA com modulação DQPSK-4, permitindo quatro canais de voz em um canal de largura de 25 kHz.
- Suporta uma taxa de dados para uma portadora de 36 kbps.
- Cada canal pode suportar conversação utilizando-se de um codificador ACELP (Algebraic Code Exited Linear Prediction), agregando correção de erros.
- Consiste de frames, cada um contendo quatro espaços de tempo (slots).

Técnicas de acesso

- As técnicas de acesso são utilizadas para permitir o compartilhamento de uma determinada faixa de radiofrequência entre vários terminais móveis.
- O compartilhamento objetiva maximizar o número de usuários simultâneos nessa faixa de frequências
- As técnicas mais elementares são a TDD (Time Division Duplexing) e FDD (Frequency Division Duplexing) para comunicação bidirecional

Técnicas de acesso

- Três métodos de acesso ao meio se destacaram nos sistemas de comunicação móveis diferenciados apenas pela manipulação adequada da frequência, tempo ou código:
 - > Múltiplo Acesso por Divisão de Frequência (FDMA);
 - > Múltiplo Acesso por Divisão de Tempo (TDMA);
 - > Múltiplo Acesso por Divisão de Código (CDMA).

Método FDMA

- A maneira usual de se realizar um esquema FDMA é através da associação de um canal a cada portadora (SCPC)
- O número de canais é função da largura de cada canal
- Dentre os canais disponíveis, uma pequena porção é dedicada a canais de controle, sendo os demais utilizados para tráfego de voz
- Os canais são atribuídos às EM pode demanda

Método FDMA

Método TDMA

- A banda disponível é alocada a cada usuário por determinado intervalo de tempo, denominado slot. Em cada slot de tempo apenas um usuário terá acesso a toda (ou grande parte) da banda.
- Uma única portadora é compartilhada em vários slots de tempo, ou seja, é compartilhada por vários usuários, cada qual em seu instante determinado.

Método FDMA

Método CDMA

- Todos os usuários podem transmitir simultaneamente, nas mesmas frequências e utilizando toda a banda disponível.
- A cada usuário é designado um código, de forma que sua transmissão possa ser identificada. Os códigos dos usuários têm baixa correlação.

Método FDMA

Análise comparativa de FDMA, TDMA e CDMA

Camaataniatiaas	Técnica de acesso múltiplo							
Características	FDMA	TDMA	CDMA					
tecnologia	simples e dominada há largos anos	mais complexa, nomeadamente em termos de controlo global, mas atualmente dominada	a mais complexa de todas					
sincronização entre estações	não necessária	crítica para o bom funcionamento do sistema	não necessária					
intermodulação entre canais	introduzida pelo repetidor, sobretudo à saída do amplificador de potência	só está presente uma portadora no repetidor: o canal pode ser igualizado	introduzida pelo repetidor, sobretudo à saída do amplificador de potência					
eficiência de potência	mais baixa: o repetidor tem de operar abaixo da saturação	elevada: o repetidor pode operar próximo da saturação	mais baixa: o repetidor tem de operar abaixo da saturação					
controle de potência da ligação ascendente	necessária em ligações muito afetadas por interferências por intermodulação	não necessária	necessária em todas as ligações para não privilegiar nenhum canal					
memorização de informação	não necessária	necessário armazenar grandes quantidades de informação: aumenta o atraso total	não necessária					

Análise comparativa de FDMA, TDMA e CDMA

Canaataniatiaaa	Técnica de acesso múltiplo							
Características	FDMA	TDMA	CDMA					
capacidade total do sistema	limite rígido imposto pela banda total do sistema	limite rígido imposto pelo débito total do sistema	limitado apenas pela interferência aceitável, mas sem limite rígido de canais					
capacidade dos canais de tráfego	permite canais de banda larga, desde que não seja ultrapassada a banda total do sistema	permite canais de débito elevado, desde que não seja ultrapassado o débito total do sistema	difícil suportar canais de débito mais elevado: exige, por exemplo, códigos múltiplos					
ajuste dinâmico de tráfego	difícil ajustar dinamicamente o tráfego: exige emissão e recepção com banda variável	fácil ajustar dinamicamente o tráfego: basta atribuir intervalos de tempo de maior ou menor duração	fácil ajustar dinamicamente o tráfego: basta variar o comprimento do código utilizado pelo canal					
aproveitamento de pausas de comunicação	difícil gerir a activação / desativação canais para aproveitar as pausas	utilizadas técnicas de interpolação de voz (DSI , <i>Digital Speech Interpolation</i>)	aproveitamento intrínseco: basta não transmitir o sinal para reduzir a interferência sobre outros canais					
reconfiguração de tráfego no satélite	difícil reconfigurar cobertura e serviços: interconexão complexa no domínio das frequências	fácil reconfigurar cobertura e serviços: interconexão simples no domínio dos tempos	relativamente dificil reconfigurar cobertura e serviços: exige descodificar todos os canais					
comutação dinâmica a bordo	praticamente inviável	permite comutação dinâmica do tráfego entre estações: comuta rajadas de tráfego	pouco adaptado a técnicas de comutação a bordo: exige descodificar todos os canais					

Padrão APCO

- Desenvolvido pela APCO (Association of Public Safety Communications Officials), dos Estados Unidos
- O sistema P25 é dividido em duas fases: a primeira, usa o **método FDMA**, com canal de 12.5KHz e a segunda, usa o **método TDAM**, com canal de 12.5KHz porém, ofertando a eficiência espectral de 6.25 KHz.
- Utiliza correção de erro, totalizando **9,6 kbps** de taxa de transmissão.
- A faixa compreende 821-824/866-869 MHz em canais duplex. Nos Estados Unidos já operam na faixa 700 MHz.
- Sinal de voz **utiliza a técnica PCM**, para depois ser entregue ao vocoder que emprega técnica *Improved Multiband Excitation* (IMBE) para compressão dos sinais de voz a 4,4 kbit/s.

Sinalização em sistemas trunking

- O controle do sistema é realizado pela troca de mensagens de dados entre o móvel e o repetidor.
- Esta sinalização de dados ocorre simultaneamente com a voz na freqüência sub-audível de 150 Hz, eliminando a necessidade de um canal de controle.
- Handshaking: Quando um móvel realiza uma chamada, um pacote de dados de solicitação de serviço é enviado ao repetidor e quando o repetidor detecta essa mensagem, transmite uma mensagem de volta ao móvel informando-lhe que ele acessou o sistema com sucesso.
- O repetidor é retido durante o período de duração da chamada de modo que uma chamada não seja interrompida.

Sinalização em sistemas trunking

Mobile-to-Repeater Data Message											
Sync	Area	Repeater		Home Repeater of Called Unit		ID cod	ID code of called unit		Pass	Error	
		In use								Character	Check bits
Mobile-to-Repeater Data Message (Repeater Busy)											
		5	Sync	Area	Go-To Repeater for called unit	Home Repeater of Called Unit	ID Code of Called Unit	Free Repeater	Error Check bits		
Mobile-to-Repeater Data Message (Repeater Idle)											
		S	Sync	Area	Repeater	Repeater	255	Repeater	Error		
					Number	Number		Number	Check bits		

- Célula é a área geográfica iluminada por uma ERB (Estação Rádio Base) dentro da qual a recepção do sinal atende as especificações do sistema.
- Possibilita o re-uso de canais.
- A configuração celular final deve atender basicamente a dois objetivos: cobertura e vazão de tráfego.
- Cobertura: corresponde à fração da área de serviço em que o sinal tem qualidade acima da mínima especificada ou tolerável.
- Vazão de tráfego: é a função da quantidade de canais disponíveis nas células, da taxa média de chamadas, da ocupação média de canais, das probabilidades de congestionamento (bloqueio) e de perda de conexão (ligação) durante deslocamentos intercelulares.

- Célula é a área geográfica iluminada por uma ERB (Estação Rádio Base) dentro da qual a recepção do sinal atende as especificações do sistema.
- Possibilita o re-uso de canais.
- A configuração celular final deve atender basicamente a dois objetivos: cobertura e vazão de tráfego.
- Cobertura: corresponde à fração da área de serviço em que o sinal tem qualidade acima da mínima especificada ou tolerável.
- Vazão de tráfego: é a função da quantidade de canais disponíveis nas células, da taxa média de chamadas, da ocupação média de canais, das probabilidades de congestionamento (bloqueio) e de perda de conexão (ligação) durante deslocamentos intercelulares.

- CCC Central de Comutação e Controle, <u>processador central</u> do sistema com a função de controlar e comutar as chamadas do sistema, além de realizar todo o processamento de uma central digital mais as funções específicas do sistema celular
- **ERB** Estação Rádio-Base, responsável pela <u>área de cobertura</u> através de suas <u>antenas</u>, além de prover a <u>interligação</u> <u>das EMs com a CC</u> através de links de comunicação em RF
- EM ou TM Estação Móvel

Interligação com a rede móvel terrestre

Observações gerais

- **HLR** *Home Location Register*, contém todos os dados do assinante móvel, tais como: identidade, serviços suplementares e informações sobre localizações necessárias para o encaminhamento das chamadas de entrada
- Roaming o uso do sistema pela EM fora da área de serviço original
- Handoff quando a EM desloca-se de uma célula para outra durante o estado de conversação, a ERB verifica que o nível do sinal da EM está diminuindo e então informa ao sistema, o qual irá procurar entre as células vizinhas qual possui o melhor sinal.

Geometria celular

Propagação sob condições ideais

Geometria celular

Greometria de padrões regulares

Evolução dos sistemas móveis celulares

Padrão LTE Long Term Evolution

- O LTE é a próxima etapa principal nas comunicações móveis por rádio e foi introduzida no *Release 8* do 3GPP (*3rd Generation Partnership Project*).
- O 3GPP une seis organizações de desenvolvimento de padrões de telecomunicações (ARIB, ATIS, CCSA, ETSI, TTA, TTC), conhecidas como "parceiros organizacionais", e fornece aos seus membros um ambiente estável para produzir os relatórios e especificações que definem tecnologias 3GPP.

Objetivos do padrão LTE

- Desempenho e capacidade
 - → Taxas de pico downlink > 100 Mbps
 - → Latência < 10 ms
- Simplicidade
 - → Suporta portadoras com largura de banda flexível, de menos de 5 MHz até 20MHz
 - → Métodos de acesso FDD Frequency Division Duplex ou TDD -Time Division Duplex
 - → Produtos de construção simplificada e gerenciamento da próxima geração
- Ampla variedade de terminais

IBMEC.BR

- f)/IBMEC
- in IBMEC
- @IBMEC_OFICIAL
- @@IBMEC

