second dz

i.vdovin1

September 2022

1 Интерполяционный многочлен Лагранжа

Примечание: График f обозначен красным цветом

График P_5 обозначен синим цветом График P_{20} обозначен чёрным цветом

Для начала проверим корректность многочлена Лагранжа. Построим его для полинома $x^5 + 2$. И для полинома x + 2. Для P_5 , P_{20} они должны совпадать на отрезке [-1; 1] в независимости от выбранных данных. На 2 графике точки стоят по приколу, они ничего значат, они остались с предыдущих вычислений

Значения полностью совпадают и графики накладываются друг на друга. В таблице это наглядно видно. Построим Интерполяционный многочлен Лагранжа на промежутке [-1; 1], По заданной формуле. Узлов будет 5 и 20. Очевидно, что в точках по которым мы строили многочлен, функция будет совпадать. Поэтому создаём множество значений на отрезке [-1; 1] с помощью функции пр.linspace(). Получаем следующий результат. Картинки нумеруются слева-направо. На 1ой картинке графики P_5 и f. На 2ой картинке графики P_{20} и f. На 3ей сразу все 3 графика

Тут видно, что значение P_5 отличается не так сильно от значения функции. Значения же P_{20} имеет достаточно большие колебания, которые очень быстро растут на концах отрезка. Поэтому видно, что узлы P_5 использовать лучше, чем P_{20} Я ещё запустил из интереса для P_{40} и P_3 . Вот что получилось:

Собственно ниче неожиданного не произошло, идём далее

2 Узлы Чебышёва

Сгенерируем узлы Чебышёва для отрезка [-1; 1]. И сформируем полином по ним. А потом запустим его на значениях, которые мы сгенерировали до этого.

Построив по узлам Чебышёва, ситуация меняется. Теперь P_{20} становится выгоднее P_5 . И чем больше у нас узлов, тем более точное приближение мы получим