Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 17

Math 237 – Linear Algebra

Fall 2017

Version 5
Show all work. Answers without work

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Does span
$$\left\{ \begin{bmatrix} 2\\-1\\4 \end{bmatrix}, \begin{bmatrix} 3\\12\\-9 \end{bmatrix}, \begin{bmatrix} 1\\4\\-3 \end{bmatrix}, \begin{bmatrix} -4\\2\\-8 \end{bmatrix} \right\} = \mathbb{R}^3$$

Solution: Since

RREF
$$\begin{bmatrix} 2 & 3 & 1 & -4 \\ -1 & 12 & 4 & 2 \\ 4 & -9 & -3 & -8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 1/3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

has a zero row, the vectors fail to span \mathbb{R}^3 .

Standard V4.

Let W be the set of all polynomials of even degree. Determine if W is a subspace of the vector space of all polynomials.

Solution: W is closed under scalar multiplication, but not under addition. For example, $x - x^2$ and x^2 are both in W, but $(x - x^2) + (x^2) = x \notin W$.

Determine if the set $\left\{ \begin{bmatrix} 3\\-1\\2 \end{bmatrix}, \begin{bmatrix} 2\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\4\\-1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^3 .

Solution:

RREF
$$\left(\begin{bmatrix} 3 & 2 & 1 \\ -1 & 0 & 4 \\ 2 & 2 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.

Additional Notes/Marks