

1. Como $-pi\pi\approx-3{,}14$ temos que a representação aproximada do intervalo e dos números inteiros apresentados é:

Assim, o menor inteiro que pertence ao intervalo é -3.

Resposta: Opção B

Prova de Matemática, 9.º ano - 2021

2. Representando os conjuntos A e B na reta real, como $\sqrt{97} < 10$ temos:

Assim temos que $[-1,10] \cup \left[\sqrt{97},15\right] = [-1,15]$

Prova Final 3.º Ciclo – 2019, Época especial

3. Como $2\pi \approx 6{,}283$ temos que $6{,}27 < 6{,}28 < 2\pi;$ e como $2\sqrt{10} \approx 6{,}325,$ temos que $6{,}32 < 2\sqrt{10} < 6{,}33$

Assim, de entre os números apresentados, o único que pertencente ao conjunto I é 6,32.

Resposta: Opção C

Prova Final 3.º Ciclo - 2019, 2.ª fase

4. Como $-\sqrt{250}\approx -15.8$, temos que o menor número inteiro que pertence ao intervalo é 15.

Por outro lado, como o intervalo é aberto no limite superior, 3 não é um elemento do conjunto definido pelo intervalo, pelo que o maior número inteiro que pertence a este conjunto de números reais é 2.

Prova Final 3.º Ciclo - 2019, 1.ª fase

5. Como $20^3 = 8000$, temos que $\left[0, \sqrt[3]{8000}\right] \cap \left]20, +\infty\right]$ é o conjunto vazio $\left(20 \in \left[0, \sqrt[3]{8000}\right], \text{ mas } 20 \notin \left]20, +\infty\right]$, porque o intervalo é aberto).

Assim, como $\sqrt[3]{8001} > 20$, temos que $\left[0, \sqrt[3]{8001}\right] \cap \left]20, +\infty\right]$ não é o conjunto vazio, e como não existem números inteiros maiores que 8000 e menores 8001, temos que o menor número natural, n tal que $\left[0, \sqrt[3]{n}\right] \cap \left]20, +\infty\right[$ é um conjunto não vazio, é o número 8001

Prova Final 3.º Ciclo – 2018, Época especial

6. Como $\pi \approx 3{,}14$ e $\sqrt{10} \approx 3{,}16$, representando na reta real os conjuntos A e B, temos:

Assim temos que:

$$A \cap B = \left] - \infty, \sqrt{10} \right[\cap [\pi, 5] = \left[\pi, \sqrt{10} \right[$$

Prova Final 3.º Ciclo - 2018, 2.ª fase

7. Para que] $-\infty, \sqrt{n}[\cup]41, +\infty[=\mathbb{R}, \text{ tem que se verificar } \sqrt{n}>41$

Como $41^2 = 1681$, temos que:

- $\sqrt{1681} = 41 \ (\sqrt{1681} \not> 41)$
- $\sqrt{1682} > 41 \ (\sqrt{1682} \approx 41.01)$

Ou seja o menor valor natural para n é o 1682.

Prova Final 3.º Ciclo - 2018, 1.ª fase

8. Como o conjunto $A \cap \mathbb{Z}$ tem sete elementos, os sete elemento são três pares de números inteiros simétricos e o zero, ou seja A = [-3,3], e assim $A \cap \mathbb{Z} = \{-3,-2,-1,0,1,2,3\}$, como se ilustra na representação seguinte:

Assim, para que o conjunto $[-n,n]\cap \mathbb{Z}$ tenha 7 elementos, o valor de n é 3

Prova Final 3.º Ciclo – 2017, Época especial

9. Representando na reta real o conjunto [-2,1], temos:

Assim, podemos verificar que, como o intervalo é aberto no limite superior, $1 \notin [-2,1[$, e assim vem que:

$$X = [-2,1[\cap \mathbb{Z} = \{-2, -1, 0\}]$$

Resposta: Opção B

Prova Final 3.º Ciclo - 2017, 2.ª fase

10. Como $\frac{9}{4}=2,25$ e $\sqrt{5}\approx 2,24$, temos que $\sqrt{5}<\frac{9}{4}$ e assim, representando na reta real os dois intervalos indicados na definição do conjunto, vem que:

Assim temos que $\left]-1,\frac{9}{4}\right]\cap\left[\sqrt{5},3\right]=\left[\sqrt{5},\frac{9}{4}\right]$

Resposta: Opção C

Prova Final 3.º Ciclo - 2017, 1.ª fase

11. Como $\pi \approx 3.14$ e $\sqrt{60} + \sqrt{\pi} \approx 9.51$, representando na reta real o intervalo $\left[\pi, \sqrt{60} + \sqrt{\pi}\right]$, e os números naturais que pertencem a este conjunto, temos:

Assim, podemos verificar que o conjunto dos números naturais que pertencem ao intervalo $\left[\pi, \sqrt{60} + \sqrt{\pi}\right]$ é:

$$\{4,5,6,7,8,9\}$$

Prova Final 3.º Ciclo – 2016, Época especial

12. Determinar o menor número natural para o qual $\frac{n}{0,4}$ também é um número natural, pode ser conseguido, substituindo sucessivamente n por valores naturais:

•
$$n = 1 \rightarrow \frac{1}{0.4} = 2.5$$

•
$$n=2 \to \frac{2}{0.4} = 5$$

Assim, o valor de n é 2 e, representando o intervalo $\left[-1; \frac{2}{0,4}\right]$, ou seja, [-1,5], temos:

Desta forma, podemos verificar que o conjunto dos números inteiros que pertencem ao intervalo [-1,5] é $\{-1,0,1,2,3,4,5\}$, ou seja existem, neste intervalo, 7 números inteiros.

Prova Final 3.º Ciclo - 2016, 2.ª fase

13. Para que o intervalo $A=[1,\sqrt{n}[$ tenha 28 números naturais, $\sqrt{n}>28$, porque como o intervalo é aberto à direita, $\sqrt{n}\notin A$

Assim, como $28^2=784$, temos que o menor número natural que verifica a condição $\sqrt{n}>28$ é:

$$n = 28^2 + 1 = 784 + 1 = 785$$

Prova Final 3.º Ciclo - 2016, 1.ª fase

14. Como $-\sqrt{2} \approx -1{,}1414$ e $\sqrt{3} \approx 1{,}7321$, representando na reta real o intervalo $]-\sqrt{2}{,}\sqrt{3}[$, e os números inteiros que pertencem a este conjunto, temos:

Assim, podemos verificar que o conjunto dos números inteiros que pertencem ao intervalo $\left]-\sqrt{2},\sqrt{3}\right[$ é

$$\{-1,0,1\}$$

Prova Final 3.º Ciclo – 2015, Época especial

15. Representando o conjunto $A\cap B$ na reta real, temos:

Assim temos que $A \cap B = [0,4] \cup [3,+\infty] = [3,4]$

Resposta: Opção C

Prova Final 3.º Ciclo - 2015, 1.ª fase

 ${\it mat.absolutamente.net}$

- 16. Analisando as quatro hipóteses temos que:
 - -3 é um número inteiro e como $-3 > -\pi$, logo $-3 \in [-\pi, +\infty[$
 - -4 é um número inteiro, mas como $-4 < -\pi$, logo $-4 \notin [-\pi, +\infty[$
 - $-\pi \in [-\pi, +\infty[$, mas $-\pi$ não é um número inteiro
 - $-\pi 1 \notin [-\pi, +\infty[$, e também não é um número inteiro

Assim, das opções apresentadas, -3 é o único número que satisfaz as duas condições impostas.

Resposta: Opção A

Prova Final 3.º Ciclo - 2014, 2.ª chamada

17. Representando o conjunto na reta real, temos:

Assim temos que $]0,3[\cup]2,5[=]0,5[$

Resposta: Opção $\bf A$

Prova Final 3.º Ciclo - 2014, 1.ª chamada

18. Representando na reta real o intervalo]-2,1], e os números inteiros que pertencem a este conjunto, temos:

Assim, podemos verificar que $A = \{-1,0,1\}$

Resposta: Opção C

Prova Final 3.º Ciclo - 2013, 2.ª chamada

19. Como $-\sqrt{15}\approx -3.87$, representando na reta real o intervalo] $-\sqrt{15}$; 0,9], e os números inteiros que pertencem a este conjunto, temos:

Assim, podemos verificar que

- o menor número inteiro que pertence ao conjunto $A \notin -3$
- ullet o maior número inteiro que pertence ao conjunto $A \not\in 0$

Prova Final 3.º Ciclo - 2013, 1.ª chamada

20. Representando o conjunto $A \cap B$ na reta real, temos:

Assim temos que $A \cap B =]-1, +\infty[\cap]-4,2] =]-1,2]$

Resposta: Opção B

Prova Final $3.^{\rm o}$ Ciclo - 2012, $1.^{\rm a}$ chamada

21. Podemos afirmar que:

- $-3.15 \notin A$, porque $-3.15 < -\pi$ e todos os elementos do conjunto A são maiores que $-\pi$
- $-\pi \notin A$, porque o conjunto A é um intervalo aberto em $-\pi$, ou seja $-\pi$ não é um elemento deste conjunto
- $\pi \notin A$, porque todos os elementos do conjunto A são números negativos
- $-3.14 \in A$, porque $-\pi < -3.14 \le -1$

Assim, de entre as opções apresentadas, -3.14 é o único elemento do conjunto A

Resposta: Opção D

Teste Intermédio 9.º ano - 10.5.2012

22. Representando o conjunto A, temos:

Assim, podemos verificar que, de entre os valores apresentados apenas o 3 pertence ao conjunto A

Resposta: Opção C

Exame Nacional 3.º Ciclo - 2011, Época Especial

23. Como $-\pi \approx -3,1416$, representando na reta real o intervalo $[-\pi,0]$, e os números das hipóteses apresentadas, temos:

Assim, podemos verificar que, de entre as opções apresentadas, -4 é o menor inteiro, mas não pertence ao intervalo indicado e $-\pi$ é o menor número que pertence ao intervalo, mas não é um número inteiro, pelo que a resposta correta é -3

Resposta: Opção C

Exame Nacional 3.º Ciclo - 2011, 2.ª Chamada

24. Como $-\sqrt{5}\approx -2{,}2361$, representando na reta real o conjunto $A=[-\sqrt{5}{,}1[$, temos:

Assim, podemos verificar que, como o intervalo é aberto no limite superior, $1 \notin A$, pelo que

$$A\cap\mathbb{Z}=\{-2,-1,\!0\}$$

Exame Nacional 3.º Ciclo - 2011, 1.ª Chamada

25. Como $-\sqrt{3} \approx -1.73$, representando na reta real o intervalo $[-\sqrt{3},2]$, temos:

Assim, verificando que, como o intervalo é aberto no limite superior, $2 \notin [-\sqrt{3},2[$, vem que o conjuntos dos números inteiros relativos que pertencem ao intervalo $[-\sqrt{3},2[$, é

$$\{-1,0,1\}$$

Teste Intermédio 9.º ano - 17.05.2011

26. Representando o conjunto $A \cup B$ na reta real, temos:

Assim temos que $A \cup B =]-1,2[\cap]-3,0[=]-3,2[$

Ou seja, $A \cup B$ é o conjunto de todos os números reais maiores que -3 e menores que 2, o que pode ser representado por

$$\{x \in \mathbb{R} : x > -3 \land x < 2\}$$

Resposta: Opção D

Teste Intermédio 9.º ano - 07.02.2011

27. Representando os dois intervalos indicados na definição do conjunto C na reta real, temos:

Assim temos que $[-\pi,3]\cap]1, +\infty[=]1,3]$

Resposta: Opção A

Exame Nacional 3.º Ciclo - 2010, 1.ª Chamada

28. Como $-\sqrt{2}\approx -1.41$ e $\sqrt{2}\approx 1.41$, representando os dois intervalos indicados na definição do conjunto P na reta real , temos:

Assim temos que $[-3,\!\sqrt{2}]\cap[-\sqrt{2},+\infty[=[-\sqrt{2},\!\sqrt{2}]$

Resposta: Opção A

Teste Intermédio 9.º ano – 11.05.2010

29. Como $\pi \approx 3,14159$, representando na reta real o intervalo] $-2,\pi$], e os números indicados nas opções, temos:

Assim, podemos verificar que

- $4 \notin I$, logo $\left\{-\frac{3}{2}, 2, 4\right\} \not\subset I$
- $-2 \notin I$, logo $\{-2, -1, 2\} \not\subset I$
- $-4 \notin I$, logo $\{-4, -1, 0\} \not\subset I$
- e que $\left\{-\frac{3}{2},0,1\right\} \subset I$

Resposta: Opção B

Teste Intermédio 9.º ano – 03.02.2010

30. Como $\sqrt{2}\approx 1{,}41$, representando os dois intervalos indicados na definição do conjunto B na reta real, temos:

Assim temos que $B=[-1;1,\!42\ [\,\cap\,\,]\sqrt{2},+\infty\big[=\big]\sqrt{2};1,\!42\big[$

Teste Intermédio $9.^{\rm o}$ ano — 03.02.2010

31. Como conjunto $A=[\sqrt{2},+\infty[$, um número pertence ao conjunto A se for maior ou igual a $\sqrt{2}$

Assim podemos verificar que

- $1.4 \times 10^{-2} = 0.014$, logo $0.014 < \sqrt{2}$, pelo que $1.4 \times 10^{-2} \notin A$
- $1.4 \times 10^0 = 1.4$, logo $1.4 < \sqrt{2}$, pelo que $1.4 \times 10^0 \notin A$
- $1.4 \times 10^{-1} = 0.14$, logo $0.14 < \sqrt{2}$, pelo que $1.4 \times 10^{-1} \notin A$

E ainda que $1.4 \times 10 = 14$, logo $14 > \sqrt{2}$, pelo que $1.4 \times 10 \in A$

Resposta: Opção D

Exame Nacional 3.º Ciclo - 2009, 2.ª Chamada

- 32. Como $\sqrt{5}$ é uma dízima infinita não periódica (um número irracional) e nas opções (C) e (D) estão representados dois conjuntos com 2 elementos que são números racionais podemos afirmar que
 - $\sqrt{5} \notin \{2,22;2,23\}$
 - $\sqrt{5} \notin \{2,23;2,24\}$

Como $\sqrt{5} \approx 2,236$, representando na reta real os intervalos das opções (A) e (B), temos:

Logo podemos verificar que $\sqrt{5} \in]2,23;2,24[$

Resposta: Opção B

Teste Intermédio 9.º ano – 09.02.2009

33. Representando os dois intervalos indicados na definição do conjunto B na reta real, temos:

Como $\pi < 3.15$ temos que $B = [\pi; 3.15]$

Teste Intermédio 9.º ano – 09.02.2009

34. Como $-\sqrt{10}\approx -3{,}16$, representando na reta real o intervalo $\left[-\sqrt{10},-\frac{1}{2}\right]$, temos:

Assim, observando que $-4 \notin \left[-\sqrt{10}, -\frac{1}{2}\right]$, podemos verificar que o menor número inteiro pertencente a este intervalo é -3

Resposta: Opção B

Exame Nacional 3.º Ciclo - 2008, 2.ª Chamada

35. Pela observação da representação gráfica do intervalo podemos verificar que representa todos os números reais maiores que -1 e menores ou iguais a 4, ou seja,

$$\left\{ x \in \mathbb{R} : x > -1 \ \land x \le 4 \right\}$$

Resposta: Opção B

Exame Nacional 3.º Ciclo - 2008, 1.ª Chamada

36. Como $-\frac{2}{3} \approx -0.666$ e $\sqrt{10} \approx 3.16$, representando o conjunto interseção e o conjunto $\left[-\frac{2}{3}, \sqrt{10}\right]$ na reta real, temos:

Assim temos que o conjunto I é um intervalo aberto no extremo inferior, localizado no número real zero, e cujo extremo superior deve ser superior ou igual a $\sqrt{10}$

Ou seja, verificando cada uma das hipóteses apresentadas, temos que

- $\bullet \ [0,+\infty[\ \cap \ \left[-\frac{2}{3},\!\sqrt{10}\right] = \left[0,\!\sqrt{10}\right]$
- $\bullet \left[-\frac{2}{3}, 0 \right] \cap \left[-\frac{2}{3}, \sqrt{10} \right] = \left[-\frac{2}{3}, 0 \right]$
- $\left[-\frac{2}{3}, +\infty\right[\cap \left[-\frac{2}{3}, \sqrt{10}\right] = \left[-\frac{2}{3}, \sqrt{10}\right]$

E também, que $]0,+\infty[\,\cap\,\left[-\frac{2}{3},\!\sqrt{10}\,\right]=\left]0,\!\sqrt{10}\right]$

Resposta: Opção A

Teste Intermédio 9.º ano - 07.05.2008

37. Representando os dois intervalos indicados na definição do conjunto A na reta real, temos:

Como 3,141 < π temos que A=]-2;3,141[

Teste Intermédio $9.^{\rm o}$ ano – 31.01.2008

38. Como $-\pi \approx -3.14$ e $\frac{1}{3} \approx 0.33$, representando na reta real o intervalo $\left[-\pi, \frac{1}{3}\right]$, temos:

Assim, vem que o conjuntos dos números inteiros relativos que pertencem ao intervalo $\left[-\pi, \frac{1}{3}\right[$, é

$$\{-3, -2, -1, 0\}$$

Exame Nacional 3.º Ciclo - 2007, 2.ª Chamada

39. Representando o conjunto $A \cup B$ na reta real, temos:

Assim temos que $A \cup B =]-\infty, 2[\cup[-3, +\infty[=]-\infty, +\infty[$

Resposta: Opção C

Exame Nacional 3.º Ciclo - 2007, 1.ª Chamada

40. Como $\pi \approx 3,14$ e $\sqrt{10} \approx 3,16$, representando os dois intervalos indicados na definição do conjunto A na reta real , temos:

Como $\pi < \sqrt{10}$ temos que $A = [\pi,7] \cap \left] \sqrt{10}, +\infty \right[= \left] \sqrt{10},7 \right]$

Exame Nacional 3.º Ciclo - 2006, 2.ª Chamada

41. Como conjunto $A = [\pi, +\infty[$, um número pertence ao conjunto A se for maior ou igual a π

Assim podemos verificar que

- $3.1 \times 10^{-2} = 0.031$, e $0.031 < \pi$, pelo que $3.1 \times 10^{-2} \notin A$
- $3.1 \times 10^0 = 3.1$, e $3.1 < \pi$, pelo que $3.1 \times 10^0 \notin A$
- $3.1 \times 10^{-1} = 0.31$, e $0.31 < \pi$, pelo que $3.1 \times 10^{-1} \notin A$

E ainda que $3.1 \times 10^1 = 31$, e $31 > \pi$, pelo que $3.1 \times 10^1 \in A$

Resposta: Opção D

Exame Nacional 3.º Ciclo - 2006, 1.ª Chamada

- 42.
 - 42.1. Como $-\frac{7}{3} \approx -2{,}33$, representando na reta real o intervalo $\left[-\frac{7}{3}{,}3\right[$, temos:

Assim, verificando que, como o intervalo é aberto no limite superior, $3 \notin \left[-\frac{7}{3}, 3 \right[$, vem que o conjuntos dos números inteiros relativos que pertencem ao intervalo $\left[-\frac{7}{3}, 3 \right[$, é

$$\{-2, -1, 0, 1, 2\}$$

42.2. Como $\pi \approx 3,14$, representando o conjunto os dois intervalos na reta real, temos:

Assim temos que] $-2,\pi$] \cup $\left[-\frac{7}{3},3\right[=\left[-\frac{7}{3},\pi\right]$

Exame Nacional 3.º Ciclo - 2005, 2.ª Chamada

43. Como o conjunto A contém números maiores que 1, tem que resultar da união do intervalo [-1,1[com outro conjunto que contenha números superiores a 1. Logo as opções (A) e (B) pelo que podemos afirmar que as igualdades das opções (A) e (B) não são verdadeiras.

Devemos ainda considerar que o conjunto A não contém números menores que -1, pelo que não pode resultar da união do intervalo [-1,1[com outro conjunto que contenha números superiores a menores que -1, como está expresso na igualdade da opção (C).

Desta forma, de entre as opções apresentadas, a única forma de escrever o conjunto A é $A = [-1,1[\,\cup\,\,]-\frac{1}{2},+\infty[$, como se pode verificar representando os dois conjuntos na reta real:

Resposta: Opção D

Exame Nacional 3.º Ciclo - 2005, 1.ª Chamada