Jupyter Notebook Viewer
 2018/09/23 17:15
 Jupyter Notebook Viewer
 2018/09/23 17:15

jupyter_num_calc (/github/daddygongon/jupyter_num_calc/tree/master)
/ numerical_calc (/github/daddygongon/jupyter_num_calc/tree/master/numerical_calc)

Table of Contents

- 1 概要
- 2 pythonの標準関数による解法
- 3 二分法とNewton法の原理
- 3.1 二分法(bisection)
- 3.2 Newton法(あるいはNewton-Raphson法)
- 4 二分法とNewton法のコード
- 4.1 二分法(bisection)
- 4.2 Newton法(あるいはNewton-Raphson法)
- 5 収束性と安定性
- 6 収束判定条件
- 6.0.0.1 ϵ, δ を説明するための図
- 7 2変数関数の場合
- 8 2018年度課題
- 9 例題:二分法とNewton法の収束性
- 9.0.1 解答例

代数方程式(fsolve)

file:/Users/bob/Github/TeamNishitani/jupyter_num_calc/fsolve https://github.com/daddygongon/jupyter_num_calc/tree/master/notebooks_python cc by Shiqeto R. Nishitani 2017-8

概要

代数方程式の解f(x) = 0を数値的に求めることを考える。標準的な

二分法(bisection method)とニュートン法(Newton's method)

の考え方と例を説明し,

収束性(convergency)と安定性(stability)

について議論する. さらに収束判定条件について言及する.

二分法のアイデアは単純、中間値の定理より連続な関数では、関数の符号が変わる二つの変数の間には根が必ず存在する。したがって、この方法は収束性は決して高くはないが、確実、一方、Newton法は関数の微分を用いて収束性を速めた方法である。しかし、不幸にして収束しない場合や微分に時間がかかる場合があり、初期値や使用対象には注意を要する。

pythonの標準関数による解法

pythonでは代数方程式の解は、solveで求まる.

$$x^2 - 4x + 1 = 0$$

の解を考える。未知の問題では時として異常な振る舞いをする関数を相手にすることがあるので、先ずは関数の概形を見ることを常 に心がけるべき。

```
In [1]: import matplotlib.pyplot as plt import numpy as np

from sympy import *

x = symbols('x')

def func(x):
    return x**2-4*x+1

x = np.linspace(-1, 5, 100) #0から2nまでの範囲を100分割したnumpy配列
y = func(x)
plt.plot(x, y, color = 'b')

plt.plot(0, 0, "o", color = 'k')
# plot((x1, x2), [y1, y2), color='k', linestyle='-', linewidth=2)
plt.hlines(0, -1, 5, color='k', linestyle='-', linewidth=2)
plt.vlines(0, -4, 6, color='k', linestyle='-', linewidth=2)
plt.vlines(0, -4, 6, color='k', linestyle='-', linewidth=2)
plt.prid()
```


plt.show()

[0.26794919]

もし、解析解が容易に求まるなら、その結果を使うほうがよい. pythonの解析解を求めるsolveは、sympyから呼び出して、

```
In [12]: from sympy import *
    x = symbols('x')
    def func(x):
        return x**2-4*x+1
    pprint(solve(func(x), x))
[-\sqrt{3} + 2, \sqrt{3} + 2]
```

と即座に求めてくれる。数値解は以下の通り求められる。 コメントを外してみてください。 ちょっと注意が必要ということがわかるでしょうか?

```
In [14]: from scipy.optimize import fsolve
def func(x):
    return x**2-4*x+1

pprint(fsolve(func, 0.0))
# pprint(fsolve(func, 2.0))
# pprint(fsolve(func, [0, 5]))
```

1 / 12 ページ

Jupyter Notebook Viewer 2018/09/23 17:15

二分法とNewton法の原理

二分法(bisection)

二分法は領域の端 x_1, x_2 で関数値 $f(x_1), f(x_2)$ を求め、中間の値を次々に計算して、解を囲い込んでいく方法である。

$$x_1$$
 x_2 $f(x_1)$ $f(x_2)$

In [10]: import matplotlib.pyplot as plt import numpy as np

def func(x): return x**2-4*x+1

x = np.linspace(0, 0.8, 100) #0から2nまでの範囲を100分割したnumpy配列
y = func(x)
plt.plot(x, y)

plt.plot(0, func(0), "o", color = 'r')
plt.plot(0.8, func(0.8), "o", color = 'r')
plot([x1, x2], [y1, y2], color='k', linestyle='-', linewidth=2)
plt.hlines(0, 0, 0.8, color='k', linestyle='-', linewidth=2)
plt.vlines(0, -2, 1, color='k', linestyle='-', linewidth=2)
plt.grid()
plt.show()

Newton法(あるいはNewton-Raphson法)

Newton法は最初の $点x_1$ から接線をひき、それがx軸(y=0)と交わった点を新たな $点x_2$ とする。さらにそこでの接線を求めて...

という操作を繰り返しながら解を求める方法である。関数の微分をdf(x)とすると、これらの間には

$$x_{i+1} = x_i + ...$$

という関係が成り立つ

```
In [11]: import matplotlib.pyplot as plt
         import numpy as np
         from sympy import *
         x = symbols('x')
         def func(x):
             return x**2-4*x+1
         def df(x):
             return diff(func(x), x)
         pprint(df(x))
         x1 = 1.0
         df(x).subs(x, x1)*(x-x1)+func(x1)
         def line f(x, x1):
            return df(x).subs(x, x1)*(x-x1)+func(x1)
         pprint(line f(x, 1.0))
         x0 = 0.0
         x1 = 1.0
         y0 = line_f(x, x1).subs(x, x0)
         y1 = line_f(x, x1).subs(x, x1)
         print(y0, y1)
         yy0 = line_f(x, x0).subs(x, x0)
         yy1 = line_f(x, x0).subs(x, x1)
         print(yy0, yy1)
         2 \cdot x - 4
         -2.0·x
         0 -2.00000000000000
         1.0000000000000 -3.0000000000000
In [12]: x = np.linspace(x0-0.05, x1+0.05, 100)
         y = func(x)
         plt.plot(x, y)
         plt.plot(x0, func(x0), "o", color = 'r')
         plt.plot(x1, func(x1), "o", color = 'r')
         # plot([x1, x2], [y1, y2], color='k', linestyle='-', linewidth=2)
         plt.hlines(0, x0, x1, color='k', linestyle='-', linewidth=2)
         plt.vlines(0, -3.5,1.5, color='k', linestyle='-', linewidth=2)
         plt.plot([x0, x1], [y0, y1], color='b', linestyle='--', linewidth=1)
         plt.plot([x0, x1], [yy0, yy1], color='r', linestyle='--', linewidth=1)
         plt.grid()
```


plt.show()

2018/09/23 17:15

 Jupyter Notebook Viewer
 2018/09/23 17:15
 Jupyter Notebook Viewer
 2018/09/23 17:15

 x_1 $f(x_1)$ $df(x_1)$

二分法とNewton法のコード

二分法(bisection)

```
In [25]: x1, x2 = 0.0, 0.8
        f1, f2 = func(x1), func(x2)
        print('%-6s %-6s %-6s %-6s' % ('x1','x2','f1','f2'))
        print('%-6.3f %-6.3f %-6.3f %-6.3f' % (x1,x2,f1,f2))
        for i in range(0, 5):
           x = (x1 + x2)/2
            f = func(x)
            if (f*f1>=0.0):
                x1, f1 = x, f
            else:
                x2, f2 = x, f
            print('%-6.3f %-6.3f %-6.3f %-6.3f' % (x1,x2,f1,f2))
        0.000 0.800 1.000 -1.560
        0.000 0.400 1.000 -0.440
        0.200 0.400 0.240 -0.440
        0.200 0.300 0.240 -0.110
        0.250 0.300 0.062 -0.110
        0.250 0.275 0.062 -0.024
```

Newton法(あるいはNewton-Raphson法)

```
In [15]: import matplotlib.pyplot as plt
        import numpy as np
       from sympy import *
       x = symbols('x')
       def func(x):
           return x**2-4*x+1
       def df(x):
          return diff(func(x), x)
In [24]: x1 = 1.0
       f1 = func(x1)
       print('%-15.10f %-24.25f' % (x1,f1))
        for i in range(0, 5):
          x1 = x1 - f1 / df(x).subs(x,x1)
          f1 = func(x1)
           print('%-15.10f %-24.25f' % (x1,f1))
       1.00000000000
                     0.0000000000
                    0.2500000000
                     0.0625000000000000000000000
       0.2678571429
                     0.0003188775510204081378197
       0.2679491900
                    0.0000000084726737969074341
```

収束性と安定性

実際のコードの出力からも分かる通り、解の収束の速さは2つの手法で極端に違う。2分法では一回の操作で解の区間が半分になる。このように繰り返しごとに誤差幅が前回の誤差幅の定数(< 1)倍になる方法は1次収束(linear convergence)するという。Newton 法では関数・初期値が素直な場合 f'(x) <> 0)に、収束が誤差の2乗に比例する2次収束を示す。以下はその導出をMapleで示した。

maple

> restart; ff:=subs(xi-x[f]=ei,series(f(xi),xi=x[f],4));

$$ff := f\left(x_{f}\right) + D\left(f\right)\left(x_{f}\right)ei + \frac{1}{2}D^{(2)}\left(f\right)\left(x_{f}\right)ei^{2} + \frac{1}{6}D^{(3)}\left(f\right)\left(x_{f}\right)ei^{3} + O\left(ei^{4}\right)$$

maple

> dff:=subs({0=x[f],x=ei},series(diff(f(x),x),x,3));

$$dff := D(f)(x_f) + D^{(2)}(f)(x_f)ei + \frac{1}{2}D^{(3)}(f)(x_f)ei^2 + O(ei^3)$$

maple

> ei1:=ei-ff/dff;

$$eil := ei - \frac{f(x_f) + D(f)(x_f) ei + \frac{1}{2}D^{(2)}(f)(x_f) ei^2 + \frac{1}{6}D^{(3)}(f)(x_f) ei^3 + O(ei^4)}{D(f)(x_f) + D^{(2)}(f)(x_f) ei + \frac{1}{2}D^{(3)}(f)(x_f) ei^2 + O(ei^3)}$$

maple

> ei2:=simplify(convert(ei1,polynom));

$$ei2 := \frac{1}{3} \frac{3 D^{(2)}(f)(x_f) ei^2 + 2 D^{(3)}(f)(x_f) ei^3 - 6 f(x_f)}{2 D(f)(x_f) + 2 D^{(2)}(f)(x_f) ei + D^{(3)}(f)(x_f) ei^2}$$

maple

> ei3:=series(ei2,ei,3);

$$ei3 := -\frac{f(x_f)}{D(f)(x_f)} + \frac{f(x_f)(D^{(2)})(f)(x_f)ei}{(D(f)(x_f))^2} + \frac{1}{6} \frac{3(D^{(2)})(f)(x_f) + 3\frac{f(x_f)(D^{(3)})(f)(x_f)}{D(f)(x_f)} - 6\frac{f(x_f)((D^{(2)})(f)(x_f))^2}{(D(f)(x_f))} ei^2 + O(ei^3)}{(D(f)(x_f))}$$

maple

> subs(f(x[f])=0,ei3);

$$\frac{1}{2} \frac{D^{(2)}\left(f\right)\left(x_{f}\right) e i^{2}}{D\left(f\right)\left(x_{f}\right)} + O\left(e i^{3}\right)$$

注意すべきは、この収束性には一回の計算時間の差は入っていないことである。 Newton法で解析的に微分が求まらない場合、数値的に求めるという手法がとられるが、これにかかる計算時間はばかにできない。 二分法を改良した割線法(secant method)がより速い場合がある(NumRecipe9章参照).

二分法では、収束は遅いが、正負の関数値の間に連続関数では必ず解か存在するという意味で解が保証されている。しかし、 Newton法では、収束は速いが、必ずしも素直に解に収束するとは限らない、解を確実に囲い込む、あるいは解に近い値を初期値に 選ぶ手法が種々考案されている。解が安定であるかどうかは、問題、解法、初期値に大きく依存する、収束性と安定性のコントロー ルが数値計算のツボとなる。

収束判定条件

どこまで値が解に近づけば計算を打ち切るかを決める条件を収束判定条件と呼ぶ、以下のような条件がある。

 手法
 判定条件
 解説

 e(イプシロン、epsilon)法
 δ(デルタ、delta)法

 占部法
 \$\left f(x_[i+1])\right > \left f(x_]\right \(x_i \) \right \(x_

 Jupyter Notebook Viewer
 2018/09/23 17:15
 Jupyter Notebook Viewer
 2018/09/23 17:15

 ϵ, δ を説明するための図

```
In [63]: import matplotlib.pyplot as plt
         import numpy as np
        def func(x):
            return 0.4*(x**2-4*x+1)
        x1=0.25
        x0=0.4
        x = np.linspace(0.2, 0.4, 100)
        y = func(x)
        plt.plot(x, y, color = 'k')
        plt.plot(x1, func(x1), "o", color = 'r')
        plt.plot(x0, func(x0), "o", color = 'r')
        plt.plot([0.2,0.45],[0,0], color = 'k')
        plt.plot([x1,x0],[func(x1),func(x1)], color = 'b')
        plt.plot([x0,x0],[func(x0),func(x1)], color = 'b')
        plt.text(0.41, -0.07, r'$\epsilon$', size='24')
        plt.text(0.32, 0.05, r'$\delta$', size='24')
        plt.grid()
        plt.show()
```


2変数関数の場合

2変数の関数では、解を求める一般的な手法は無い、この様子は実際に2変数の関数で構成される面の様子をみれば納得されよう。

 ${x = -0.07540291160, y = 0.1229854420}$

```
In [13]: %matplotlib notebook
         from mpl_toolkits.mplot3d import Axes3D
         import matplotlib.pyplot as plt
         import numpy as np
         def f(x,y):
             return 4*x+2*y-6*x*y
         def g(x,y):
             return 10*x-2*y+1
         x = np.arange(-3, 3, 0.25)
         y = np.arange(-3, 3, 0.25)
         X, Y = np.meshgrid(x, y)
         Z1 = f(X,Y)
         Z2 = g(X,Y)
         fig = plt.figure()
         plot3d = Axes3D(fig)
         plot3d.plot_surface(X,Y,Z1)
         plot3d.plot_surface(X,Y,Z2, color='r')
         plt.show()
```


2018年度課題

- 1. 次に示した例題:二分法とNewton法の収束性および解答例を写して、pythonが動作することを確認せよ.
- 2. 対象の関数を $f(x) = \exp(-x) 2\exp(-2x)$ として解答せよ. 提出は2.だけでよい.

ただし、func、dfuncは以下を使え、下の「exp関数に関する注意」参照

```
In [19]: def func(x):
    return np.exp(-x)-2*np.exp(-2*x)

def df(x):
    return -np.exp(-x) + 4*np.exp(-2*x)
```

例題:二分法とNewton法の収束性

代数方程式に関する次の課題に答えよ. (2004年度期末試験)

- 1. $\exp(-x) = x^2$ を二分法およびニュートン法で解け.
- 2. n回目の値 x_n と小数点以下10桁まで求めた値 $x_f = 0.7034674225$ との差 Δx_n の絶対値(abs)の $\log \epsilon n$ の関数としてプロットし、その収束性を比較せよ、また、その傾きの違いを両解法の原理から説明せよ.

解答例

- funcで関数を定義。
- 関数をplotして概形を確認。
- 組み込みコマンドで正解を確認しておく。

0.7034674224983916520498186018599021303429

テキストからプログラムをコピーして走らせてみる。環境によっては、printf分の中の"\"が文字化けしているので、その場合は 修正して使用せよ。

- プロットのためにリストをres1で作成している。
- 同様にNewton法での結果をres2に入れる。
- res1, res2を片対数プロットして同時に表示。

2分法で求めた解は、Newton法で求めた解よりもゆっくりと精密解へ収束している。これは、二分法が原理的に計算回数について一次収束なのに対して、Newton法は2次収束であるためである。解の差 (δ) だけでなく、関数値 $f(x),\epsilon$ をとっても同様の振る舞いを示す。

```
In [1]: import matplotlib.pyplot as plt
import numpy as np
from sympy import *

x = symbols('x')

def func(x):
    return exp(-x)-x**2

def df(x):
    return diff(func(x), x)
print(df(x))
```

-2*x - exp(-x)

Jupyter Notebook Viewer 2018/09/23 17:15


```
In [18]: from scipy.optimize import fsolve
x0 = fsolve(func, 0.0)[0]
x0
```

Out[18]: 0.70346742249839178

```
Jupyter Notebook Viewer
                                                                                               2018/09/23 17:15
   In [14]: x1, x2 = 0.0, 1.0
            f1, f2 = func(x1), func(x2)
            print('%+15s %+15s %+15s %+15s' % ('x1','x2','f1','f2'))
            print('%+15.10f %+15.10f %+15.10f' % (x1,x2,f1,f2))
            list_bisec = [[0],[abs(x1-x0)]]
            for i in range(0, 20):
               x = (x1 + x2)/2
                f = func(x)
               if (f*f1>=0.0):
                   x1. f1 = x. f
                   list_bisec[0].append(i)
                   list bisec[1].append(abs(x1-x0))
                else:
                   x2. f2 = x. f
                   list_bisec[0].append(i)
                   list_bisec[1].append(abs(x2-x0))
                print('%+15.10f %+15.10f %+15.10f' % (x1,x2,f1,f2))
            list_bisec
            print()
              +0.0000000000
                            +1.0000000000
                                          +1.0000000000
                                                          -0.6321205588
              +0.5000000000 +1.0000000000
                                          +0.3565306597 -0.6321205588
              +0.5000000000 +0.7500000000 +0.3565306597
                                                          -0.0901334473
              +0.6250000000
                            +0.7500000000
                                           +0.1446364285
                                                          -0.0901334473
              +0.6875000000 +0.7500000000 +0.0301753280 -0.0901334473
              +0.6875000000 +0.7187500000 +0.0301753280 -0.0292404858
              +0.7031250000 +0.7187500000 +0.0006511313 -0.0292404858
              +0.7031250000 +0.7109375000 +0.0006511313 -0.0142486319
              +0.7031250000
                            +0.7070312500 +0.0006511313
                                                         -0.0067872536
              +0.7031250000 +0.7050781250 +0.0006511313 -0.0030651888
              +0.7031250000 +0.7041015625 +0.0006511313 -0.0012063109
              +0.7031250000 +0.7036132812 +0.0006511313 -0.0002774104
              +0.7033691406 +0.7036132812 +0.0001869053 -0.0002774104
              +0.7033691406 +0.7034912109 +0.0001869053 -0.0000452413
              +0.7034301758 +0.7034912109 +0.0000708348 =0.0000452413
              +0.7034606934 +0.7034912109 +0.0000127975 -0.0000452413
              +0.7034606934
                            +0.7034759521 +0.0000127975
                                                         -0.0000162218
              +0.7034606934 +0.7034683228 +0.0000127975 -0.0000017121
              +0.7034645081 +0.7034683228 +0.0000055427 -0.0000017121
              +0.7034664154
                            +0.7034683228 +0.0000019153 -0.0000017121
              +0.7034673691 +0.7034683228 +0.0000001016 -0.0000017121
   In [15]: x1 = 1.0
```

```
In [15]: x1 = 1.0
    fl = func(x1)
    list_newton = [[0],[x1]]
    print('%-15.10f %+24.25f' % (x1,f1))
    for i in range(0, 4):
        x1 = x1 - fl / df(x1)
        fl = func(x1)
        print('%-15.10f %+24.25f' % (x1,f1))
        list_newton[0].append(i)
        list_newton[1].append(abs(x1-x0))

list_newton
    print()
```


exp関数に関する注意

exp関数のimport元で振る舞いが違うみたい.

ValueError: sequence too large; cannot be greater than 32

がplot作成の前段階で出る. numpyでやるときには, np.exp(-x)などとしてる.

でも、diffには通らない、そのあたり、覚悟して使う関数を決めないと、、