Module 1

VC Dimention

▶ VC Dimension is a measure of the capacity (complexity, expressive power, richness, or flexibility) of a space of functions that can be learned by a classification algorithm.

Shattering of a set

- Let D be a dataset containing N examples for a binary classification problem with class labels 0 and 1
- Let H be a hypothesis space for the problem
- Each hypothesis h in H partitions D into two disjoint subsets as follows:

$$\{x \in D \mid h(x) = 0\}$$
 and $\{x \in D \mid h(x) = 1\}$.

Such a partition of S is called a "dichotomy" in D

Shattering of a set

- □ There are 2^N possible dichotomies in D
- To each dichotomy of D there is a unique assignment of the labels "1" and "0" to the elements of D
- S is any subset of D then, S defines a unique hypothesis h as follows:

$$h(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}$$

Total Data Points = 2

Classification

Class : A , true, 1, yes (green)

Class : B, false, 0, no (red)

Two Numbers can be classified in four different ways

Vapnik-Chervonenkis (VC) Dimension Total Data Points = 3

Three Numbers can be classified in eight different ways

Total data points N can be classified in 2^N different ways.

Shattering:

A hypothesis class H can shatter N data points if

- •A hypothesis $h \in H \rightarrow$
- •separates the positive examples from the negative ->
- •for every problem

VC Dimension:

VC dimension of a hypothesis class H is the maximum number of data points which can be shattered by H

Vapnik-Chervonenkis dimension (VC dimension)

- Let H be the hypothesis space for some machine learning problem
- The Vapnik-Chervonenkis dimension of H
 - Also called the VC dimension of H
 - Denoted by V C(H)
- Measure of the complexity (or, capacity, expressive power, richness, or flexibility) of the space H

Example:

- Let the instance space X be the set of all real numbers
- Consider the hypothesis space defined by

$$H = \{h_m : m \text{ is a real number}\},\$$

where

$$h_m$$
: IF $x \ge m$ THEN "1" ELSE "0".

Let D be a subset of X containing only a single number, say,

$$D = \{3.5\}$$

- There are 2 dichotomies for this set
- These correspond to the following assignment of class labels:

x	3.25	'
Label	0	'

\boldsymbol{x}	3.25
Label	1

- $h_4 = H$ is consistent with the former dichotomy and $h_3 = H$ is consistent with the latter.
- So, to every dichotomy in D there is a hypothesis in H consistent with the dichotomy.
- Therefore, the set D is shattered by the hypothesis space H.

\boldsymbol{x}	3.25
Label	0

x	3.25
Label	1

$$H = \{h_m : m \text{ is a real number}\},\$$

where

$$h_m$$
: IF $x \ge m$ THEN "1" ELSE "0".

Let D be a subset of X containing two elements, say, D = {3.25; 4.75}

x	3.25	4.75
Label	0	0
	(a)	

x	3.25	4.75
Label	0	1
	(b)	

\boldsymbol{x}	3.25	4.75
Label	1	0
	(c)	

x	3.25	4.75
Label	0	0
(a)		

x	3.25	4.75
Label	0	1
	(b)	

x	3.25	4.75
Label	1	0
(c)		

x	3.25	4.75
Label	1	1
	(d)	

- ▶ In these dichotomies:
 - h5 is consistent with (a)
 - h4 is consistent with (b)
 - h3 is consistent with (d)
 - O But there is no hypothesis hm > H consistent with (c)
- Thus the two-element set D is not shattered by H
- The size of the largest finite subset of X shattered by H is 1
- This number is the VC dimension of H

Can a line hypothesis class can shatter two data points?

Can a line hypothesis class can shatter three data points?

We can't find a dataset of 4 points which can be shattered by line class