

PDF generated at: 30 Jun 2025 01:02:21 UTC

View this report on HackerRank じ

Score

100% • 80 / 80

scored in TIP102: Unit 4 Version A (Standard) - Summer 2025 in 23 min 17 sec on 29 Jun 2025 17:37:08 PDT

Candidate Information

Email rajasekhar1131997@gmail.com

Test TIP102: Unit 4 Version A (Standard) - Summer 2025

Candidate Packet View ℃

Taken on 29 Jun 2025 17:37:08 PDT

Time taken 23 min 17 sec/ 90 min

Personal Member ID 126663

Email Address with CodePath rajasekhar1131997@gmail.com

Github username with CodePath Rajasekhar1131997

Invited by CodePath

Suspicious Activity detected

Code similarity

Code similarity • 1 question

Candidate Report Page 1 of 17

Skill Distribution

There is no associated skills data that can be shown for this assessment

Tags Distribution

There is no associated tags data that can be shown for this assessment

Questions

Coding Questions • 60 / 60

Status	No.	Question	Time Taken	Skill	Score	Code Quality
8	1	Move Zeroes Coding	3 min 18 sec	-	20/20 🏳	-

Candidate Report Page 2 of 17

8	2	Check if Array Is Sorted and Rotated Coding	4 min 33 - sec	20/20	-
⊗	3	Subarray Sum Equals K Coding	5 min - 4 sec	20/20	-

Multiple Choice + Debugging • 20 / 20

Status	No.	Question	Time Taken	Skill	Score	Code Quality
8	4	What is the time complexity of complex_function()? Multiple Choice	1 min 41 sec	-	5/5	-
⊗	5	Which of the following data structures/algorithmic techniques would be most appropriate for implementing this function? Multiple Choice	1 min 21 sec	-	5/5	-
8	6	What is the output of the following code? Multiple Choice	2 min 49 sec	-	5/5	-
8	7	Fing the bug Coding	3 min 2 sec	-	5/5	-

1. Move Zeroes

Candidate Report Page 3 of 17

Language used: Python 3

Coding

Question description

Given a 0-indexed integer array nums of length n and an integer target, write a function count_pairs() that returns the number of pairs (i, j) where 0 <= i < j < n, and nums[i] + nums[j] < target

```
Input: nums = [-1,1,2,3,1], target = 2
Output: 3
Explanation: There are 3 pairs of indices that satisfy the conditions in the statement:
- (0, 1) since 0 < 1 and nums[0] + nums[1] = 0 < target
- (0, 2) since 0 < 2 and nums[0] + nums[2] = 1 < target
- (0, 4) since 0 < 4 and nums[0] + nums[4] = 0 < target

Note that (0, 3) is not counted since nums[0] + nums[3] is not strictly less than the target.
```

Candidate's Solution

```
1 #!/bin/python
2
3 import math
4 import os
5 import random
6 import re
7 import sys
8 import ast
9
10
11
12 #
13 # Complete the 'count pairs' function below.
14 #
15 # The function is expected to return an INTEGER.
16 # The function accepts following parameters:
17 # 1. INTEGER ARRAY nums
      2. INTEGER target
18 #
19 #
20
```

Candidate Report Page 4 of 17

```
21 def count pairs(nums, target):
        new nums = sorted(nums)
22
23
        count = 0
        left = 0
24
        right = len(new_nums) - 1
25
        while left < right:</pre>
26
27
            if new nums[left] + new nums[right] < target:</pre>
                count += (right-left)
28
29
                left += 1
30
            else:
31
                right -= 1
32
        return count
33
   if __name__ == '__main ':
34
35
        outfile = open(os.environ['OUTPUT_PATH'], 'w')
36
        input data = sys.stdin.read().strip().splitlines()
37
38
        results = []
39
40
        for line in input data:
41
            # Convert the line to list of lists
            nums, target = eval(line)
42
43
            result = count pairs(nums, target)
            results.append(result)
44
45
46
        for res in results:
47
            outfile.write(str(res) + '\n')
48
        outfile.close()
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Testcase 0	Easy	Hidden	Success	0	0.0294 sec	10.9 KB
Single Pair Less Than Target	Easy	Hidden	Success	0	0.0297 sec	10.8 KB
All Elements Form Valid Pairs	Easy	Hidden	Success	0	0.0283 sec	10.9 KB

Candidate Report Page 5 of 17

No Valid PairsEasyHiddenSuccess00.0271 sec10.9 KBEmpty ArrayEasyHiddenSuccess00.0282 sec10.6 KBSingle ElementEasyHiddenSuccess00.0286 sec10.9 KBAll Elements Greater Than or Equal to TargetEasyHiddenSuccess00.028 sec10.8 KBAll Elements Less Than Target, Multiple OccurrencesEasyHiddenSuccess00.0266 sec10.9 KBDuplicates with Same ResultEasyHiddenSuccess00.0288 sec10.9 KBPass/Fail CaseEasyHiddenSuccess200.0301 sec10.8 KB						
Empty Array Easy Hidden Success 0 sec 10.6 KB Single Element Easy Hidden Success 0 0.0286 sec 10.9 KB All Elements Greater Than or Equal to Target Easy Hidden Success 0 0.028 sec 10.8 KB All Elements Less Than Target, Multiple Occurrences Duplicates with Same Result Easy Hidden Success 0 0.0288 sec 10.9 KB Pass/Fail Case Easy Hidden Success 20 0.0301 10.8 KB	No Valid Pairs	Easy	Hidden	Success	0	10.9 KB
All Elements Greater Than or Easy Hidden Success O O O O O O O O O O O O O O O O O O	Empty Array	Easy	Hidden	Success	0	10.6 KB
Greater Than or Equal to Target All Elements Less Than Target, Multiple Occurrences Duplicates with Same Result Easy Hidden Success 0 0.028 sec 10.8 KB Hidden Success 0 0.0266 sec 10.9 KB Occurrences Duccess 0 0.0288 sec 10.9 KB	Single Element	Easy	Hidden	Success	0	10.9 KB
Than Target, Multiple Occurrences Easy Hidden Success 0 0.0266 sec 10.9 KB Duplicates with Same Result Easy Hidden Success 0 0.0288 sec 10.9 KB	Greater Than or	Easy	Hidden	Success	0	10.8 KB
Same Result Fass/Fail Case Easy Hidden Success U Success U O.0301 10.8 KB	Than Target, Multiple	Easy	Hidden	Success	0	10.9 KB
Pass/Fail Case Easv Hidden Success 20 10.8 KB		Easy	Hidden	Success	0	10.9 KB
	Pass/Fail Case	Easy	Hidden	Success	20	10.8 KB

! No comments.

2. Check if Array Is Sorted and Rotated

⊘ Correct

Coding

Question description

Given an array nums, return True if the array was originally sorted in non-decreasing order, then rotated **some** number of positions (including zero). Otherwise, return False.

There may be **duplicates** in the original array.

Note: Rotating an array by a certain number of positions means shifting each element that many positions to the right (or left). When shifted one position to the right, the last element in the array becomes the first element in the array. Formally, an array A rotated by x positions results in an array B of the same length such that A[i] == B[(i+x) % A.length], where % is the modulo operation.

Example 1:

Input: nums = [3,4,5,1,2]

Output: True

Explanation: [1,2,3,4,5] is the original sorted array.

You can rotate the array by x = 3 positions to begin on the the element of value 3: [3,4,5,1,2].

Example 2:

Input: nums = [2,1,3,4]

Output: False

Explanation: There is no sorted array once rotated that can make nums.

Example 3:

Input: nums = [1,2,3]

Output: true

Explanation: [1,2,3] is the original sorted array.

You can rotate the array by x = 0 positions (i.e. no rotation) to make nums.

Candidate's Solution

Language used: Python 3

```
#!/bin/python

import math
import os
import random
import re
import sys
import ast
```

Candidate Report Page 7 of 17

```
11
12 #
13 # Complete the 'is_sorted_rotated' function below.
14 #
15 # The function is expected to return a BOOLEAN.
16 # The function accepts INTEGER ARRAY nums as parameter.
17 #
18
19 def is sorted rotated(nums):
       if len(nums) < 2:
20
21
           return True
       drops = 0
22
23
       for i in range(len(nums)):
24
           if nums[i] > nums[(i+1) % len(nums)]:
25
               drops += 1
26
               if drops > 1:
27
                    return False
28
       return True
29
30
   if name == ' main ':
31
       outfile = open(os.environ['OUTPUT_PATH'], 'w')
32
33
       input data = sys.stdin.read().strip().split('\n')
34
35
       for line in input data:
36
           nums = ast.literal eval(line.strip())
37
           result = is sorted rotated(nums)
           outfile.write(str(result) + '\n')
38
39
       outfile.close()
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Basic Case	Easy	Hidden	Success	0	0.0381 sec	10.9 KB
Standard Case without Rotation	Easy	Hidden	Success	0	0.0273 sec	10.9 KB
No Rotation Needed	Easy	Hidden	Success	0	0.0342 sec	10.6 KB

Candidate Report Page 8 of 17

Single Element	Easy	Hidden	Success	0	0.0296 sec	10.9 KB
Two Elements Sorted	Easy	Hidden	Success	0	0.0274 sec	10.9 KB
Two Elements Not Sorted	Easy	Hidden	Success	0	0.0313 sec	10.9 KB
All Identical Elements	Easy	Hidden	Success	0	0.029 sec	10.9 KB
Array Already Sorted with Rotation	Easy	Hidden	Success	0	0.028 sec	10.9 KB
Empty Array	Easy	Hidden	Success	0	0.0285 sec	11 KB
Pass/Fail Case	Easy	Hidden	Success	20	0.0374 sec	10.8 KB

No comments.

3. Subarray Sum Equals K

⊘ Correct

Coding

Question description

Given an array of integers nums and an integer k, return the total number of continuous subarrays whose sum equals to k.

Candidate Report Page 9 of 17

```
Example 1:
Input: [1,1,1], 2
Output: 2

Example 2:
Input: [1, 2, 3], 7
Output: 0
```

Candidate's Solution

Language used: Python 3

```
1 #!/bin/python
 2
 3 import math
 4 import os
 5 import random
 6 import re
 7 import sys
 8 import ast
9 import json
10
11
12
13 #
14 # Complete the 'subarray_sum' function below.
15 #
16 # The function is expected to return an INTEGER.
17 # The function accepts following parameters:
      1. INTEGER ARRAY nums
18 #
      2. INTEGER k
19 #
20 #
21
22 def subarray_sum(nums, k):
23
        frequency = \{0:1\}
24
        running sum = 0
       count = 0
25
       for num in nums:
26
27
            running_sum += num
28
            count += frequency.get(running_sum-k, 0)
29
            frequency[running sum] = frequency.get(running sum, 0) + 1
30
        return count
```

Candidate Report Page 10 of 17

```
31
32 if __name__ == '__main__':
33
       outfile = open(os.environ['OUTPUT PATH'], 'w')
       input_data = sys.stdin.read().strip().splitlines()
34
35
        results = []
36
37
       for line in input_data:
38
           parts = json.loads(f"[{line}]")
39
           nums = parts[0]
40
           k = parts[1]
41
           result = subarray_sum(nums, k)
42
43
            results.append(result)
44
       for res in results:
45
           outfile.write(str(res) + '\n')
46
47
       outfile.close()
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Basic Case	Easy	Hidden	Success	0	0.0293 sec	10.9 KB
Target Sum Found	Easy	Hidden	Success	0	0.0305 sec	11 KB
Multiple Subarrays for Target 0	Easy	Hidden	Success	0	0.0307 sec	10.9 KB
Single Element Equal to k	Easy	Hidden	Success	0	0.032 sec	11 KB
No Valid Subarrays	Easy	Hidden	Success	0	0.0324 sec	11 KB

Candidate Report Page 11 of 17

Negative Numbers	Easy	Hidden	Success	0	0.0543 sec	11 KB
All Zeros	Easy	Hidden	Success	0	0.0307 sec	11 KB
Target Sum Greater than Sum of All Elements	Easy	Hidden	Success	0	0.0323 sec	10.8 KB
Large k Value	Easy	Hidden	Success	0	0.0324 sec	11 KB
Alternating Positive and Negative Values	Easy	Hidden	Success	0	0.0293 sec	10.9 KB
All Negative Elements, Target is Negative	Easy	Hidden	Success	0	0.0315 sec	10.9 KB
Pass/Fail Case	Easy	Hidden	Success	20	0.03 sec	11 KB

No comments.

4. What is the time complexity of complex_function()?

⊘ Correct

Multiple Choice

Question description

Candidate Report Page 12 of 17

What is the time complexity of complex function()?

```
def complex_function(nums):
   total = 0
   for i in range(len(nums)):
      for j in range(i, len(nums)):
       if nums[i] < nums[j]:
        total += nums[j] - nums[i]
   return total</pre>
```

Candidate's Solution

Options: (Expected answer indicated with a tick)

O(1)	
O(log n)	
O(n)	
O(n^2)	\otimes
① No comments.	

5. Which of the following data structures/algorithmic techniques would be most appropriate for implementing this function?

⊘ Correct

Candidate Report Page 13 of 17

Multiple Choice

Question description

The function find_mode () takes in a list of elements lst and returns the mode of the the list. If there are multiple modes, it returns them all as a list. If there is a single mode it returns the mode as a single value. The mode is the element that occurs most often in the list.

Which of the following data structures/algorithmic techniques would be most appropriate for implementing this function?

```
# Example usage:
nums1 = [1, 2, 2, 3, 4]
print(find_mode(nums1)) # Output: 2

nums2 = [1, 2, 2, 3, 3, 4]
print(find_mode(nums2)) # Output: [2, 3]

nums3 = [1, 2, 3, 4, 5]
print(find_mode(nums3)) # Output: [1, 2, 3, 4, 5] (all values are unique)
```

Candidate's Solution

Options: (Expected answer indicated with a tick)

stack	
queue	
two pointer	

Candidate Report Page 14 of 17

frequency map

No comments.

6. What is the output of the following code?

Multiple Choice

Question description

```
def process_numbers(nums, threshold):
  stack = []
  for num in nums:
    if num < threshold:
      stack.append(num)
    elif num <= 10 and stack:
      stack.pop()
  return stack
print(process_numbers([3, 5, 1, 9, 6, 15], 8))
```

Candidate's Solution

Options: (Expected answer indicated with a tick)

[5, 1, 6]

[3, 5, 6]

Candidate Report Page 15 of 17

7. Fing the bug

⊘ Correct

Coding

Question description

The following code incorrectly implements is_anagram() . When implemented correctly, is_anagram() should accept two strings s and t and return True if s and t are anagrams of each other. Otherwise, it should return False .

An anagram is a word or phrase formed by rearranging the letters of a different word or phrase, using all the original letters exactly once.

Identify any bug(s) within the given implementation and correct the code so that it successfully passes the provided test cases.

Candidate's Solution

Language used: Python 3

```
#!/bin/python

import math

import os

import random

import re

import sys

import ast

def is_anagram(s, t):

if len(s) != len(t):

return False
```

Candidate Report Page 16 of 17

```
12
13
       s_freq = {}
14
       t_freq = {}
15
16
       for char in s:
17
            s_freq[char] = s_freq.get(char, 0) + 1
18
19
       for char in t:
            t_freq[char] = t_freq.get(char, 0) + 1
20
21
22
        return s_freq == t_freq
   if __name__ == '__main__':
23
       input data = sys.stdin.read().strip()
24
25
       input_list = ast.literal_eval(input_data)
26
       s = input_list[0]
27
28
       t = input list[1]
29
30
        result = is anagram(s, t)
       print(result)
31
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Pass/Fail Case	Easy	Hidden	Success	5	0.026 sec	10.8 KB

• No comments.

Candidate Report Page 17 of 17