Reinforcement Learning

Roberto Capobianco

Recap

Finite-Horizon MDPs

Slightly different formulation:

(S, A, R, T,
$$\mathbf{H}$$
, $\boldsymbol{\mu}_{\mathbf{0}}$)

(time-horizon) $H \ge 0$ and $s_e \sim \mu_e$ (initial state distribution)

We consider time-dependent policies π

$$\pi = \{\pi_0, \pi_1, \pi_2...\pi_{H-1}\}$$

Actions might be different for the same state depending on t Very common in control!

Finite-Horizon MDP: V & Q

$$V_h^{\pi}(s) = \mathbb{E}_{\pi}[\sum_{\square=h}^{H-1} r(s_{\square}, a_{\square})]$$

where $s_h = s$, $a_{\square} = \pi_{\square}(s_{\square})$ and $s_{\square+1} \sim P(.|s_{\square}, a_{\square})$

$$Q_h^{\pi}(s,a) = \mathbb{E}_{\pi}[\underline{\Sigma}_{\square=h}^{H-1}r(s_{\square},a_{\square})]$$
 where $s_h=s$, $a_h=a$, $a_{\square}=\pi_{\square}(s_{\square})$ and $s_{\square+1}\sim P(.|s_{\square},a_{\square})$

Finite-Horizon MDP: Bellman Equation

$$Q_{h}^{\pi}(s,a) = r(s,a) + \mathbb{E}_{s, p(.|s,a)} [V_{h+1}^{\pi}(s')]$$

Finding the Optimal Policy

$$\pi^* = \{\pi_0^*, \pi_1^*, \pi_2^* \dots \pi_{H-1}^*\}$$

Let's reason backwards in time and apply dynamic programming:

$$Q_{H-1}^{*}(s,a) = r(s,a)$$

$$\pi_{H-1}^{*}(s) = \operatorname{argmax}_{a} Q_{H-1}^{*}(s,a)$$

$$V_{H-1}^{*}(s) = \operatorname{max}_{a} Q_{H-1}^{*}(s,a) = Q_{H-1}^{*}(s,\pi_{H-1}^{*}(s))$$

Control Problems

So far, we assumed discrete state and action spaces, but what about cartpole:

- **state:** angular pos & vel, linear pos & vel
- action/control: force applied on the cart
- goal: find the control policy which minimizes the long term cost c

Optimal Control

Given a dynamical system with a non-linear transition function f, state x in \mathbb{R}^d and control u in \mathbb{R}^k , we want to find a control policy π such that

minimize
$$\mathbb{E}_{\pi}[c_{H}(x_{H}) + \sum_{h=0}^{H-1}c_{h}(x_{h}, u_{h})]$$

where $u_{h}=\pi(x_{h})$ and $x_{0} \sim \mu_{0}$

Now this seems very familiar! Can we treat it as a Finite-Horizon MDP

Bellman's Curse of Dimensionality

- n-dimensional (discrete) state space
- The number of states grows exponentially in n

In practice discretization is useful, but it is only computationally feasible up to 5 or 6 dimensional state spaces

Let's try to work directly in continuous space, starting from simplified problems

Linear Systems

Consider a system of this kind:

$$x_{t+1} = Ax_t + Bu_t$$

This is our transition function!

- x₊ state at time t
- u₊ control (i.e., action) at time t

A in $\mathbb{R}^{d\times d}$, B in $\mathbb{R}^{d\times k}$

Quadratic Cost Function

Consider a cost function of this kind

$$c(x_t, u_t) = x_t^T Q x_t + u_t^T R u_t$$
 alternative notation $g(x_t, u_t)$

- ullet Q in $\mathbb{R}^{d\times d}$ and R in $\mathbb{R}^{k\times k}$ square matrices
- Q and R positive definite

As a result, there is a non-zero cost for any non-zero state with all-zero control

LQR algorithm

- Initialize P_µ (at 0 or Q)
- Starting from h = H-1, backwards
 - \circ Set $K_{h}^{*} = -(R+B^{T}P_{h+1}B)^{-1}B^{T}P_{h+1}A$
 - \circ Compute u = $\pi_h^*(x_t) = K_h^*x_t$

 - \circ Set $J_h^* = x_t^T P_h x_t$

This is the Value Iteration update done in closed form: it is always the same and solves this particular continuous-state system with a quadratic cost

LQR Extensions

Extensions to the LQR make it more generally applicable to:

- Affine systems
- Systems with stochasticity
- Regulation around non-zero fixed point for non-linear systems
- Trajectory following for non-linear systems
- ...

End Recap

Policy Iteration

- Outputs policies at every iteration: $\{\pi_0, \pi_1, \pi_2...\pi_T\}$
- Different from Value Iteration that was outputting values

Procedure:

- 1. Start with a random guess $\pi_{_{\Theta}}$ (can be deterministic or stochastic)
- 2. For t=0,...,T: $Q^{\pi}(s_t,a) = r_t + \gamma \mathbb{E}_{s, p(\cdot|s,a)}[V^{\pi}(s')]$
 - a. Do **policy evaluation** and compute $Q^{\pi t}$ for all s,a
 - b. Do **policy improvement** as $\pi_{t+1} = \operatorname{argmax}_{a} Q^{\pi t}(s,a)$ for all s

This algorithm only makes progress, and the performance progress of the policy is monotonic

State Visitation Probability

What's the probability of visiting state s, a at time t according to π starting at s₀?

$$d_{s0}^{\pi}(s,a) = (1-\gamma) \sum_{h=0}^{\infty} \gamma^{h} \gamma_{h}^{\pi}(s,a;s_{0})$$

$$\mathbb{P}^{\pi}_{t}(s,a;s_{0}) = \sum_{a_{0},s_{1},a_{1},...,s_{t-1},a_{t-1}} \mathbb{P}^{\pi}(s_{0},a_{0},...s_{t}=s,a_{t}=a)$$

$$\mathbb{P}^{\pi}(s_{0}, a_{0}, \dots s_{t}, a_{t}) = \pi(a_{0}|s_{0}) p(s_{1}|s_{0}, a_{0}) \pi(a_{1}|s_{1}) p(s_{2}|s_{1}, a_{1}) \dots p(s_{t}|s_{t-1}, a_{t-1}) \pi(a_{t}|s_{t})$$

State Visitation Probability

What's the probability of visiting state s, a at time t according to π starting at s₀?

$$d^{\pi}_{s0}(s,a) = (1-\gamma) \sum_{h=0}^{\infty} \gamma^{hp\pi}_{h}(s,a;s_{0})$$

Note that d_{s0}^{π} is an infinite mixture

$$\mathbb{P}^{\pi}_{t}(s,a;s_{0}) = \sum_{a_{0},s_{1},a_{1},...,s_{t-1},a_{t-1}} \mathbb{P}^{\pi}(s_{0},a_{0},...s_{t}=s,a_{t}=a)$$

$$\mathbb{P}^{\pi}(s_{0}, a_{0}, \dots s_{t}, a_{t}) = \pi(a_{0}|s_{0}) p(s_{1}|s_{0}, a_{0}) \pi(a_{1}|s_{1}) p(s_{2}|s_{1}, a_{1}) \dots p(s_{t}|s_{t-1}, a_{t-1}) \pi(a_{t}|s_{t})$$

What if the state-space is large and we cannot do exact or iterative policy evaluation for all states?

What if the state-space is large and we cannot do exact or iterative policy evaluation for all states?

What if the state-space is large **or continuous** and we cannot do exact or iterative policy evaluation for all states?

What if the state-space is large and we cannot do exact or iterative policy evaluation for all states?

Assumptions: the (infinite-horizon) MDP is still known, but the state-space is too large to just enumerate all states and compute $V^{\pi}(s)$

What if the state-space is large and we cannot do exact or iterative policy evaluation for all states?

Assumptions:

(S, A, R, T,
$$\gamma$$
, $\mu_{\rm o}$) is given
 Q is in [0, $1/(1-\gamma)$]

ullet Outputs policies at every iteration: $\{\pi_{_0},\ \pi_{_1},\ \pi_{_2}...\pi_{_{
m T}}\}$

Procedure:

- 1.~ Start with a random guess $\pi_{_{0}}$
- 2. For t=0,...,T:
 - a. Do **policy evaluation** and compute $Q^{\Lambda \pi t}$ for all s,a

$$Q^{\Lambda\pi}(s_t,a) = r_t + \gamma \mathbb{E}_{s, \sim p(.|s,a)} [V^{\Lambda\pi}(s')]$$

• Outputs policies at every iteration: $\{\pi_{_{0}},\ \pi_{_{1}},\ \pi_{_{2}}...\pi_{_{T}}\}$

Procedure:

- 1.~ Start with a random guess $\pi_{_{\scriptscriptstyle{0}}}$
- 2. For t=0,...,T:
 - a. Do **policy evaluation** and compute $Q^{\Lambda \pi t}$ for all s,a

$$Q^{\Lambda\pi}(s_t,a) = r_t + \gamma \mathbb{E}_{s, p(\cdot, s,a)} [V^{\Lambda\pi}(s')]$$

b. Do **policy improvement** as $\pi_{t+1} = \operatorname{argmax}_a Q^{\wedge \pi^t}(s,a)$ for all s argmax is still doable, we can still enumerate actions or discretize them

We build an **approximation** $V^{\Lambda\pi}$ of the true value function V^{π} If the approximation is close to the true value, then the optimal policy will be close-to-optimal

We build an **approximation** $V^{\Lambda\pi}$ of the true value function V^{π} If the approximation is close to the true value, then the optimal policy will be close-to-optimal

Error bounds exist, but we will skip them for your happiness
:)

We build an **approximation** $V^{\Lambda\pi}$ of the true value function V^{π} If the approximation is close to the true value, then the optimal policy will be close-to-optimal

Approximation for large state-spaces is needed to generalize among states and avoid looking at the whole S

We build an **approximation V^{n\pi}** of the true value function V^{π} If the approximation is close to the true value, then the optimal policy will be close-to-optimal

Approximation for large state-spaces is needed to generalize among states and avoid looking at the whole S

We use a function approximator

We build an **approximation V^{n\pi}** of the true value function V^{π} If the approximation is close to the true value, then the optimal policy will be close-to-optimal

Approximation for large state-spaces is needed to generalize among states and avoid looking at the whole S

We use a function approximator

e.g., linear approximators, neural nets, non-parametric, etc.

To be fair, we can directly approximate Q, so let's do that

To be fair, we can directly approximate Q, so let's do that

Note that this also means that we can also get rid of the assumption of knowing the MDP

To be fair, we can directly approximate Q, so let's do that What do we need?

Data and Least Square Regression

To be fair, we can directly approximate Q, so let's do that What do we need?

DATA $D = \{s_i, a_i, y_i\}_{i=1}^{N}$ with y being our label!

with those we can then use least-square regression to extract a function Q in the family of functions

$$SxA \rightarrow [0, 1/(1-\gamma)]$$

Data and Least Square Regression

To be fair, we can directly approximate Q, so let's do that What do we need?

DATA
$$D = \{s_i, a_i, y_i\}_{i=1}^{N}$$
 with y being our label!

with those we can then use least-square regression to extract a function Q in the family of functions

Q:
$$SxA \rightarrow [0, 1/(1-\gamma)]$$

$$\operatorname{argmin}_{Q \text{ in } Q} \sum_{i=1}^{N} (Q(s_i, a_i) - y_i)^2$$

Data and Least Square Regression

$$\operatorname{argmin}_{Q \text{ in } Q} \sum_{i=1}^{N} (Q(s_i, a_i) - y_i)^2$$

This is just a regression problem, which

- is numerically tractable
- has generalization bounds

Supervised Learning Digression

Supervised Learning

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

Supervised Learning: Regression

Given a **data distribution** from which we sample points x_i and labels $y_i = f(x_i) + \epsilon_i$, with $\mathbb{E}[\epsilon_i] = 0$ and $|\epsilon_i| \le c$, we want to approximate f using a finite set of data (dataset):

$$f^{\wedge} = \operatorname{argmin}_{f^{\wedge} \text{ in } F} \sum_{i=1}^{N} (f^{\wedge}(x_{i}) - y_{i})^{2}$$
with $F = \{f^{\wedge}: X - > \mathbb{R}\}$

Supervised Learning: Regression

Given a **data distribution D** from which we sample points x_i and labels $y_i = f(x_i) + \epsilon_i$, with $\mathbb{E}[\epsilon_i] = 0$ and $|\epsilon_i| \le c$, we want to approximate f using a finite set of data (dataset):

```
Empirical f^{\wedge} = \operatorname{argmin}_{f^{\wedge} \text{ in } F} \sum_{i=1}^{N} (f^{\wedge}(x_i) - y_i)^2

Risk With F = \{f^{\wedge}: X - > \mathbb{R}\}
```

We can generalize under the same data distribution

$$\mathbb{E}_{x\sim D}(f^{\Lambda}(x)-f(x))^2 \leq \delta$$
 with δ small

Supervised Learning: Distribution Mismatch

$$\mathbb{E}_{\mathbf{x} \sim \mathbf{D}}$$
, $(f^{\wedge}(\mathbf{x}) - f(\mathbf{x}))^2$ can be huge!
If $\mathbf{D}' \neq \mathbf{D}$

End Supervised Learning Digression

Credits: Wen Sun

Green dots: (s, a) from π^t Red dots: (s, a) from π^{t+1}

Credits: Wen Sun

Green dots: (s, a) from π^t Red dots: (s, a) from π^{t+1}

Credits: Wen Sun

Green dots: (s, a) from π^t Red dots: (s, a) from π^{t+1}

Credits: Wen Sun

Green dots: (s, a) from π^t

Red dots: (s, a) from π^{t+1}

We cannot guarantee anymore monotonic improvement!

Our estimation is only good under $d_{\mu 0}^{\ \pi}$ and to make sure we have monotonic improvement we need a strong coverage assumption

2 steps:

- 1. Roll-in
- 2. Roll-out & compute supervision targets

2 steps:

- 1. Roll-in
- 2. Roll-out & compute supervision targets

We want to sample our $(s,a) \sim d_{s0}^{\pi}(s,a) = (1-\gamma) \sum_{h=0}^{\infty} \gamma^{h} \gamma_{h}^{\pi}(s,a;s_{0})$

Sampling From Mixtures

$$p = (1-\alpha)p_1 + \alpha p_2$$

- Flip a coin with probability $[\alpha, 1-\alpha]$
- Commit to a specific p_i based on that and sample from p_i

2 steps:

- 1. Roll-in
- 2. Roll-out & compute supervision targets

We want to sample our $(s,a) \sim d_{s0}^{\pi}(s,a) = (1-\gamma) \sum_{h=0}^{\infty} \gamma^{h} \gamma_{h}^{\pi}(s,a;s_{0})$

• Sample h from $\gamma^h(1-\gamma)$, thus committing to a specific $\mathbb{P}^{\pi}_h(s,a;s_0)$

2 steps:

1. Roll-in

2. Roll-out & compute supervision targets

We want to sample our $(s,a) \sim d_{s0}^{\pi}(s,a) = (1-\gamma) \sum_{h=0}^{\infty} \gamma^{hp} \eta_{h}(s,a;s_{0})$

- Sample h from $\gamma^h(1-\gamma)$, thus committing to a specific $\mathbb{P}^\pi_h(s,a;s_0)$
- Follow π for h timesteps starting from $\mathbf{s_0} \sim \mu_{\mathrm{0}}$ and get $\mathbf{s_h}, \, \mathbf{a_h}$

- 2 steps:
- 1. Roll-in
- 2. Roll-out & compute supervision targets

Given s, a, how do we estimate $Q^{\pi}(s,a)$?

- 2 steps:
- 1. Roll-in
- 2. Roll-out & compute supervision targets

Given s, a, how do we estimate $Q^{\pi}(s,a)$?

$$Q^{\pi}(s_{t}, a_{t}) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r_{h} | (s_{0}, a_{0}) = (s_{t}, a_{t}), a_{h+1} = \pi(s_{h}), s_{h+1} \sim p(. | s_{h}, a_{h})\right]$$

$$Q^{\pi}(s_{t}, a) = r_{t} + \gamma \mathbb{E}_{s, \sim p(. | s, a)} \left[V^{\pi}(s_{t}, a) = r_{t} + \gamma \mathbb{E}_{s, \sim p(. | s, a)}\right]$$

- 2 steps:
- 1. Roll-in
- 2. Roll-out & compute supervision targets

Given s, a, how do we estimate $Q^{\pi}(s,a)$?

$$Q^{\pi}(s_{t}, a_{t}) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r_{h} | (s_{0}, a_{0}) = (s_{t}, a_{t}), a_{h+1} = \pi(s_{h}), s_{h+1} \sim p(.|s_{h}, a_{h})\right]$$

How do we get an unbiased estimate of this?

- 2 steps:
- 1. Roll-in
- 2. Roll-out & compute supervision targets

Given s, a, how do we estimate $Q^{\pi}(s,a)$?

$$Q^{\pi}(s_{t}, a_{t}) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r_{h} | (s_{0}, a_{0}) = (s_{t}, a_{t}), a_{h+1} = \pi(s_{h}), s_{h+1} = \pi(s_{h}$$

Sample many times and average!

- 2 steps:
- 1. Roll-in
- 2. Roll-out & compute supervision targets

Given s, a, how do we estimate $Q^{\pi}(s,a)$?

$$Q^{\pi}(s_{+}, a_{+}) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r_{h} | (s_{0}, a_{0}) = (s_{+}, a_{+}), a_{h+1} = \pi(s_{h}), s_{h+1} \sim p(.|s_{h}, a_{h})\right]$$

Sample many times and average!

 π

- 2 steps:
- 1. Roll-in
- 2. Roll-out & compute supervision targets

Given s, a, how do we estimate $Q^{\pi}(s,a)$?

$$Q^{\pi}(s_{+}, a_{+}) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r_{h} | (s_{0}, a_{0}) = (s_{+}, a_{+}), a_{h+1} = \pi(s_{h}), s_{h+1} \sim p(.|s_{h}, a_{h})\right]$$

Easier said than done :(

Infinite horizon!

- 2 steps:
- 1. Roll-in
- 2. Roll-out & compute supervision targets

Given s, a, how do we estimate $Q^{\pi}(s,a)$?

$$Q^{\pi}(s_{t}, a_{t}) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r_{h} | (s_{0}, a_{0}) = (s_{t}, a_{t}), a_{h+1} = \pi(s_{h}), s_{h+1} \sim p(.|s_{h}, a_{h})\right]$$

Use γ as a sampling factor again to choose an horizon

- 2 steps:
- 1. Roll-in
- 2. Roll-out & compute supervision targets

Given s, a, how do we estimate $Q^{\pi}(s,a)$?

- Start at s,a
- Repeat:
 - Get r(s,a)
 - ∘ With probability 1-γ terminate and return y=∑γʰrˌ
 - Execute action and get in s'

- 2 steps:
- 1. Roll-in
- 2. Roll-out & compute supervision targets

Given s, a, how do we estimate $Q^{\pi}(s,a)$?

- Start at s,a
- Repeat:
 - Get r(s,a)
 - ∘ With probability 1-γ terminate and return y=∑γʰrˌ
 - Execute action and get in s'

$$D = \{s_i, a_i, y_i\}_{i=1}^{N}$$