Solutions to Ireland, Rosen "A Classical Introduction to Modern Number Theory"

Richard Ganaye

August 29, 2023

Chapter 9

Ex. 9.1 If $\alpha \in \mathbb{Z}[\omega]$, show that α is congruent to either 0, 1, or -1 modulo $1 - \omega$.

```
Proof. Let \lambda = 1 - \omega, and \alpha = a + b\omega \in D = \mathbb{Z}[\omega], a, b \in \mathbb{Z}. \omega \equiv 1 \pmod{\lambda}, so \alpha \equiv a + b \pmod{\lambda}, \alpha \equiv c \pmod{c} = a + b \in \mathbb{Z}. c \equiv 0, 1, -1 \pmod{3}, and since \lambda \mid 3, z \equiv 0, 1, -1 \pmod{\lambda}. Every \alpha \in D is congruent to either 0, 1, or -1 \pmod{\lambda} = 1 - \omega. The classes of 0, 1, -1 in D/\lambda D are distinct. Indeed, 1 \not\equiv -1 \pmod{\lambda}, if not \lambda \mid 2, so 2 = \lambda \lambda', N(2) = N(\lambda)N(\lambda'), thus 4 = 3N(\lambda'), so 3 \mid 4, which is nonsense. \pm 1 \equiv 0 \pmod{\lambda} implies \lambda \mid 1, so \lambda would be a unit, in contradiction with \lambda prime. So there exist exactly three classes modulo \lambda in D : |D/\lambda D| = 3 = N(\lambda).
```

Ex. 9.2 From now on we shall set $D = \mathbb{Z}[\omega]$ and $\lambda = 1 - \omega$. For μ in D show that we can write $\mu = (-1)^a \omega^b \lambda^c \pi_1^{a_1} \pi_2^{a_2} \cdots \pi_t^{a_t}$, where a, b, c, and the a_i are nonnegative integers and the π_i are primary primes.

Proof. Let S the set containing $\lambda = 1 - \omega$ and all primary primes. We show that

- (a) every prime in D is associate to a prime in S,
- (b) no two primes in S are associate.

Let π be a prime in D. There are three cases.

- If $N(\pi) = 3$, then π is associate to $\lambda \in S$, thus $\pi \in \{1 \omega, -1\omega, -2 \omega, 2 + \omega, 1 + 2\omega, -1 2\omega\}$, and no associate of λ is primary.
- If $N(\pi) = q^2$, where $q \equiv -1 \pmod{3}$, q > 0, is a rational prime, then π is associate to q (Proposition 9.1.2), and q is a primary prime. The primes associate to q are $q, -q, \omega q, -\omega q, -q \omega q, q + \omega q$, so only q is primary.
- If $N(\pi) = p$, where $p \equiv 1 \pmod{4}$, then the proposition 9.1.4. shows that among the associates to π exactly one is primary.

Moreover, the norm of two primes belonging to two different cases are distinct, so two such primes are not associate.

By Theorem 3, Chapter 1, as $D = \mathbb{Z}[\omega]$ is a principal ideal domain, every $\mu \in D$ is of the form

$$\mu = u \prod_{\pi \in S} \pi^{e(\pi)},$$

where u is a unit, so $u = (-1)^a \omega^b$. Thus

$$\mu = (-1)^a \omega^b \lambda^c \pi_1^{a_1} \pi_2^{a_2} \cdots \pi_t^{a_t},$$

where the π are primary primes, and a, b, c and the a_i are nonnegative integers.

Ex. 9.3 Let γ a primary prime. To evaluate $\chi_{\gamma}(\mu)$ we see, by Exercise 2, that it is enough to evaluate $\chi_{\gamma}(-1), \chi_{\gamma}(\omega), \chi_{\gamma}(\lambda)$, and $\chi_{\gamma}(\pi)$, where π is a primary prime. Since $-1 = (-1)^3$ we have $\chi_{\gamma}(-1) = 1$. We now consider $\chi_{\gamma}(\omega)$. Let $\gamma = a + b\omega$ and set a = 3m - 1 and b = 3n. Show that $\chi_{\gamma}(\omega) = \omega^{m+n}$.

Proof. Let $\gamma = a + b\omega = 3m - 1 + 3n\omega$. Then $\chi_{\gamma}(\omega) = \omega^{\frac{N(\gamma)-1}{3}}$ (remark (b) of Theorem 1).

$$N(\gamma) - 1 = (3m - 1)^{2} + (3n)^{2} - 3n(3m - 1) - 1$$
$$= 9m^{2} - 6m + 9n^{2} - 9nm + 3n$$
$$\frac{N(\gamma) - 1}{3} = 3m^{2} - 2m + 3n^{2} - 3nm + n \equiv n + m$$
[3]

Thus, for $\gamma = a + b\omega = 3m - 1 + 3n\omega$,

$$\chi_{\gamma}(\omega) = \omega^{\frac{N(\gamma)-1}{3}} = \omega^{n+m}$$

Ex. 9.4 (continuation) Show that $\chi_{\gamma}(\omega) = 1, \omega$, or ω^2 according to whether γ is congruent to 8,2, or 5 modulo 3λ . In particular, if q is a rational prime, $q \equiv 2 \pmod{3}$, then $\chi_q(\omega) = 1, \omega$, or ω^2 according to whether $q \equiv 8, 2$, or 5 (mod 9). [Hint: $\gamma = a + b\omega = -1 + 3(m + n\omega)$, and so $\gamma \equiv -1 + 3(m + n) \pmod{3\lambda}$.]

Proof. $\lambda = 1 - \omega$, so $\omega \equiv 1 \pmod{\lambda}$. Thus

$$m + n\omega \equiv m + n \pmod{\lambda}$$
$$3(m + n\omega) \equiv 3(m + n) \pmod{3\lambda}$$
$$\gamma = -1 + 3(m + n\omega) \equiv -1 + 3(m + n) \pmod{3\lambda}$$

Moreover $9 = 3\lambda\bar{\lambda} \equiv 0 \pmod{3\lambda}$, thus γ is congruent modulo 3λ to an integer between 0 and 8 of the form 3k - 1: $\gamma \equiv 8, 2$ or 5 (mod 3λ).

By Ex. 9.3, $\chi_{\gamma}(\omega) = 1 \iff m + n \equiv 0$ [3], and $m + n \equiv 0$ [3] implies $m + n = 3k, k \in \mathbb{Z}$, so $\gamma \equiv -1 + 9k \equiv -1 \equiv 8$ [3 λ].

Conversely, if $\gamma \equiv 8 \equiv -1$ [3 λ], then $3\lambda \mid 3(m+n)$, so $\lambda \mid m+n$, and $N(\lambda) \mid N(m+n)$, $3 \mid (m+n)^2$, thus $3 \mid m+n$, $m+n \equiv 0$ [3], and so $\chi_{\gamma}(\omega) = 1$. The two other cases are similar, so we obtain

$$\chi_{\gamma}(\omega) = 1 \iff m + n \equiv 0 \ [3] \iff \gamma \equiv 8 \ [3\lambda],$$

$$\chi_{\gamma}(\omega) = \omega \iff m + n \equiv 1 \ [3] \iff \gamma \equiv 2 \ [3\lambda],$$

$$\chi_{\gamma}(\omega) = \omega^2 \iff m + n \equiv 2 \ [3] \iff \gamma \equiv 5 \ [3\lambda].$$

If $\gamma = q$ is a rational prime, $q \equiv 8$ [9] implies $q \equiv 8$ [3 λ], since $3\lambda \mid 9 = 3\lambda \bar{\lambda}$, thus $\chi_q(\omega) = 1$.

Conversely, if $\chi_q(\omega) = 1$, then $q \equiv 8$ [3 λ], $q - 8 = \mu(3\lambda)$, $\mu \in D$, therefore $(q - 8)^2 = N(\mu)3^3$, $3^3 \mid (q - 8)^2$, thus $3^2 \mid q - 8$ and so $q \equiv 8$ [9]. The two other cases are similar.

$$\chi_q(\omega) = 1 \iff q \equiv 8 \ [9],$$

 $\chi_q(\omega) = \omega \iff q \equiv 2 \ [9],$
 $\chi_q(\omega) = \omega^2 \iff q \equiv 5 \ [9].$

Ex. 9.5 In the text we stated Eisenstein's result $\chi_{\gamma}(\lambda) = \omega^{2m}$. Show that $\chi_{\gamma}(3) = \omega^{2n}$.

Proof. Here $\gamma = (3m-1) + 3n\omega$.

Note that $(1 - \omega)^2 = -3\omega$, thus $\chi_{\gamma}((1 - \omega)^2) = \chi_{\gamma}(-1)\chi_{\gamma}(3)\chi_{\gamma}(\omega)$. Using Eisenstein's result (see a proof in Ex.24-26),

$$\chi_{\gamma}((1-\omega)^2) = \chi_{\gamma}(\lambda^2) = \chi_{\gamma}(\lambda)^2 = \omega^{4m} = \omega^m.$$

As $-1 = (-1)^3$, $\chi_{\gamma}(-1) = 1$. Finally $\chi_{\gamma}(\omega) = \omega^{m+n}$ by Exercise 9.3. Thus

$$\omega^m = \chi_{\gamma}(3)\omega^{m+n}, \qquad \chi_{\gamma}(3) = \omega^{-n} = \omega^{2n}.$$

In conclusion,

$$\chi_{\gamma}(3) = \omega^{2n}.$$

Ex. 9.6 Prove that

(a) $\chi_{\gamma}(\lambda) = 1$ for $\gamma \equiv 8, 8 + 3\omega, 8 + 6\omega$ [9].

(b)
$$\chi_{\gamma}(\lambda) = \omega$$
 for $\gamma \equiv 5, 5 + 3\omega, 5 + 6\omega$ [9].

(c)
$$\chi_{\gamma}(\lambda) = \omega^2$$
 for $\gamma \equiv 2, 2 + 3\omega, 2 + 6\omega$ [9].

Proof. Here $\gamma = -1 + 3(m + n\omega)$ is a primary prime, and $\chi_{\gamma}(\lambda) = \omega^{2m}$.

$$\chi_{\gamma}(\lambda) = 1 \iff m \equiv 0 \ [3] \Rightarrow \gamma \equiv 8 + 3n\omega \ [9] \Rightarrow \gamma \equiv 8, 8 + 3\omega, 8 + 6\omega \ [9]$$

 $\chi_{\gamma}(\lambda) = \omega \iff m \equiv 2 \ [3] \Rightarrow \gamma \equiv 5 + 3n\omega \ [9] \Rightarrow \gamma \equiv 5, 5 + 3\omega, 5 + 6\omega \ [9]$
 $\chi_{\gamma}(\lambda) = \omega^2 \iff m \equiv 1 \ [3] \Rightarrow \gamma \equiv 2 + 3n\omega \ [9] \Rightarrow \gamma \equiv 2, 2 + 3\omega, 2 + 6\omega \ [9]$

As $\chi_{\gamma}(\lambda) \in \{1, \omega, \omega^2\}$, these 9 cases are the only possibilities. Moreover these 9 cases are mutually exclusive, since 9 doesn't divide any difference. Thus the reciprocals are true.

$$\chi_{\gamma}(\lambda) = 1 \iff \gamma \equiv 8, 8 + 3\omega, 8 + 6\omega [9]$$

$$\chi_{\gamma}(\lambda) = \omega \iff \gamma \equiv 5, 5 + 3\omega, 5 + 6\omega [9]$$

$$\chi_{\gamma}(\lambda) = \omega^2 \iff \gamma \equiv 2, 2 + 3\omega, 2 + 6\omega [9]$$

Ex. 9.7 Find primary primes associate to $1-2\omega, -7-3\omega$, and $3-\omega$.

Proof.:

• $(1-2\omega)\omega = 2+3\omega \equiv 2 \pmod{3}$, so $2+3\omega$ is primary, and associate to $1-2\omega$. $N(2+3\omega) = 7$ and 7 is a rational prime, thus $2+3\omega$ is a primary prime.

- $-7 3\omega \equiv 2 \pmod{3}$. $N(-7 - 3\omega) = 37$ and 37 is a rational prime, thus $-7 - 3\omega$ is a primary prime.
- $(3 \omega)\omega^2 = -4 3\omega \equiv 2 \pmod{3}$, so $-4 3\omega$ is primary, and associate to 3ω . $N(-4 - 3\omega) = 13$ and 13 is a rational prime, thus $-4 - 3\omega$ is a primary prime.

Ex. 9.8 Factor the following numbers into primes in D: 7, 21, 45, 22, and 143.

Proof. $7 = N(2 + 3\omega)$, thus $7 = (2 + 3\omega)(2 + 3\omega^2) = (2 + 3\omega)(-1 - 3\omega)$, where $2 + 3\omega$ and $-1 - 3\omega$ are primes in D, since their norm is a prime integer. Since these primes are primary, they are not associate.

$$21 = 3 \times 7 = -\omega^2 \lambda^2 (2 + 3\omega)(-1 - 3\omega)$$
 since $3 = -\omega^2 (1 - \omega)^2$.
 $45 = 3^2 \times 5 = \omega \lambda^4 5$, where $5 \equiv 2 \pmod{3}$ is a primary prime in D .
 $22 = 2 \times 11$, where 2 and 11 are primes in D .
 $143 = 11 \times 13 = 11(-4 - 3\omega)(-4 - 3\omega^2) = 11(-4 - 3\omega)(-1 + 3\omega)$.

Ex. 9.9 Show that $\overline{\alpha} \neq 0$, the residue class of α , is a cube in the field $D/\pi D$ iff $\alpha^{(N\pi-1)/3} \equiv 1 \pmod{\pi}$. Conclude that there are $(N\pi-1)/3$ cubes in $(D/\pi D)^*$.

Solution 1:

Proof. Let π be a prime in D, $N\pi \neq 3$, and $\alpha \in D$, $\pi \nmid \alpha$.

$$\overline{\alpha}$$
 is a cube in $(D/\pi D)^*$
 $\iff x^3 \equiv \alpha \pmod{\pi}$ has a solution in D

$$\iff \chi_{\pi}(\alpha) = 1$$
 (by Prop. 9.3.3(a))

$$\iff \alpha^{\frac{N\pi-1}{3}} \equiv 1 \pmod{\pi}$$

$$\iff \overline{\alpha}^{\frac{N\pi-1}{3}} = \overline{1}.$$

The cubes in $(D/\pi D)^*$ are then the roots of the polynomial $f(x) = x^{\frac{N\pi-1}{3}} - \overline{1}$ in $D/\pi D$.

Let q be the cardinal of the field $D/\pi D$. Since $q=|D/\pi D|=N\pi$, $\frac{N\pi-1}{3}\mid q-1$, $f(x)\mid x^{q-1}-1\mid x^q-x$. By Corollary 2 of Proposition 7.1.1, f has $\deg(f)=\frac{N\pi-1}{3}$ roots. Conclusion: there are exactly $\frac{N\pi-1}{3}$ cubes in $(D/\pi D)^*$.

Solution 2:

Proof. Let $\varphi:(D/\pi D)^*\to (D/\pi D)^*$ be the group homomorphism defined by $\varphi(x)=x^3$. Then $\operatorname{im}(\varphi)$ is the set of cubes in $(D/\pi D)^*$.

The equation $x^3 = \overline{1}$ has three distinct solutions $\overline{1}, \overline{\omega}, \overline{\omega}^2$ in $D/\pi D$ if $N\pi \neq 3$ (see the demonstration of Proposition 9.3.1).

Thus $\ker(\varphi) = \{\overline{1}, \overline{\omega}, \overline{\omega}^2\}$ and $|\ker(\varphi)| = 3$. Therefore $|\operatorname{im}(\varphi)| = |(D/\pi D)^*|/|\ker(\varphi)| = (N\pi - 1)/3$. There exist exactly $\frac{N\pi - 1}{3}$ cubes in $(D/\pi D)^*$.

Note: if $N\pi = 3$, that is to say, if π is associate to $1 - \omega$, $D/\pi D = \{\overline{0}, \overline{1}, \overline{2}\}$. As $\overline{1}^3 = \overline{1}, \overline{2}^3 = \overline{2}$, all the elements of $(D/\pi D)^*$ are cubes.

Ex. 9.10 What is the factorisation of $x^{24} - 1$ in D/5D.

Proof.
$$|(D/5D)^*| = N(5) - 1 = 24$$
, thus $x^{24} - 1 = \prod_{\alpha \in (D/5D)^*} (x - \alpha)$.

Proof. $|(D/5D)^*| = N(5) - 1 = 24$, thus $x^{24} - 1 = \prod_{\alpha \in (D/5D)^*} (x - \alpha)$. (where the $\alpha \in (D/5D)^*$ are of the form $\alpha = a + b[\omega], \ 0 \le a < 5, 0 \le b < 5, (a, b) \ne \Box$ (0,0)).

Ex. 9.11 How many cubes are there in D/5D ?

Proof. By Exercise 9.9, there exist (N(5)-1)/3=8 cubes in $(D/5D)^*$ (and $0=0^3$ is a cube).

Ex. 9.12 Show that $\omega \lambda$ has order 8 in D/5D and that $\omega^2 \lambda$ has order 24. [Hint : Show first that $(\omega \lambda)^2$ has order 4.]

Proof. If $\alpha = (\omega \lambda)^2$, then

$$\alpha = (\omega \lambda)^2 = \omega^2 (1 - \omega)^2 = \omega^2 (1 + \omega^2 - 2\omega) = -3\omega^3 = -3.$$

So $\alpha^2 = 9 \equiv -1 \pmod{5}$, $\alpha^4 \equiv 1 \pmod{5}$ and $\alpha^2 \not\equiv 1 \pmod{5}$, thus the class of $\alpha = (\omega \lambda)^2$ has order 4 in $(D/5D)^*$, and this implies that $\omega \lambda$ has order 8.

Let $\beta = \omega^2 \lambda$. $|(D/5D)^*| = 24$, thus $|\beta|^{24} = 1$ (where $|\beta|$ is the class of β in D/5D.) To verify that $[\beta]$ has order 24, it is sufficient to show that $[\beta]^8 \neq 1$, $[\beta]^{12} \neq 1$.

 $\beta^8 = \omega^{16} \lambda^8 = \omega \lambda^8 = (\omega \lambda)^8 \omega^2 \equiv \omega^2 \not\equiv 1 \pmod{5}.$ $\beta^{12} = (\omega^2 \lambda)^{12} = \lambda^{12} = (\omega \lambda)^{12} \equiv (\omega \lambda)^4 \equiv -1 \pmod{5} \text{ (since } (\omega \lambda) \text{ has order 8 in }$ D/5D).

Conclusion: $\omega \lambda$ has order 8, $\omega \lambda^2$ has order 24 in $(D/5D)^*$.

Ex. 9.13 Show that π is a cube in D/5D iff $\pi \equiv 1, 2, 3, 4, 1 + 2\omega, 2 + 4\omega, 3 + \omega$, or $4 + 3\omega \pmod{5}$.

Proof. Let $\pi \in D$, $[\pi] \neq 0$. Then $[\pi]$ is a cube in D/5D iff $[\pi]^{(q^2-1)/3} = 1$, with q = 5, namely $[\pi]^8 = 1$ (Prop. 7.1.2, where $3 \mid q^2 - 1 = 24 = |(D/5D)^*|$).

By Exercise 9.12, the class of $\gamma = \omega \lambda$ has order 8, thus the 8 elements $[\gamma]^k$, $0 \le k \le 7$ are distinct roots of the polynomial $x^8 - 1$, which has at most 8 roots. Therefore the subgroup of cubes in $(D/5D)^*$ is

$$\{1, [\gamma], [\gamma]^2, \dots, [\gamma]^7\}.$$

$$\gamma = \omega(1 - \omega) = \omega + 1 + \omega = 1 + 2\omega, \text{ so}$$

$$\gamma^0 = 1$$

$$\gamma^1 = 1 + 2\omega$$

$$\gamma^2 \equiv -3 \equiv 2 \text{ [5]} \quad \text{(Ex. 9.12)}$$

$$\gamma^3 = -3 - 6\omega \equiv 2 + 4\omega \text{ [5]}$$

$$\gamma^4 \equiv -1 \equiv 4 \text{ [5]}$$

$$\gamma^5 \equiv -1 - 2\omega \equiv 4 + 3\omega \text{ [5]}$$

$$\gamma^6 \equiv 3 \text{ [5]}$$

$$\gamma^7 \equiv 3 + 6\omega \equiv 3 + \omega \text{ [5]}$$

Conclusion: If $\pi \not\equiv 0 \pmod{5}$, $\pi \equiv \alpha^3 \pmod{5}$, $\alpha \in D$ iff

$$\pi \equiv 1, 2, 3, 4, 1 + 2\omega, 2 + 4\omega, 3 + \omega, 4 + 3\omega$$
 [5].

Ex. 9.14 For which primes $\pi \in D$ is $x^3 \equiv 5 \pmod{\pi}$ solvable ?

Proof. If π is associate to 5, then $5^3 \equiv 0 \equiv 5 \pmod{\pi}$, so $x^3 \equiv 5 \pmod{\pi}$ is solvable. If π is a primary prime not associate to 5, the Law of Cubic Reciprocity gives

$$5 \equiv x^{3} \ [\pi], x \in D \iff \chi_{\pi}(5) = 1$$

$$\iff \chi_{5}(\pi) = 1$$

$$\iff \pi \text{ is a cube in } D/5D$$

$$\iff \pi \equiv 1, 2, 3, 4, 1 + 2\omega, 2 + 4\omega, 3 + \omega, 4 + 3\omega \ [5]$$

(see Ex. 9.13)

Conclusion: the equation $5 \equiv x^3 [\pi], x \in D$ is solvable iff the primary prime associate to π is congruent modulo 5 to $1, 2, 3, 4, 1 + 2\omega, 2 + 4\omega, 3 + \omega, 4 + 3\omega$ (or 0).

Examples:

- q=23 is a primary prime congruent to 3 modulo 5, thus the equation $x^3\equiv 5\pmod{23}$ has a solution $x\in D$ (x=19).
- $-4 3\omega$ is the primary prime associate to the prime 3ω , and $-4 3\omega \equiv 1 + 2\omega$ (mod 5), thus the equation $x^3 \equiv 5 \pmod{3 \omega}$ has a solution $a + b\omega \in \mathbb{Z}[\omega]$.

Indeed, $7^3 \equiv 8^3 \equiv 11^3 \equiv 5 \pmod{13}$, and $3 - \omega \mid 13$, so $7^3 \equiv 8^3 \equiv 11^3 \equiv 5 \pmod{3 - \omega}$.

Ex. 9.15 Suppose that $p \equiv 1 \pmod{3}$ and that $p = \pi \overline{\pi}$, where π is a primary prime in D. Show that $x^3 \equiv a \pmod{p}$ is solvable in \mathbb{Z} iff $\chi_{\pi}(a) = 1$. We assume that $a \in \mathbb{Z}$.

Proof. Since $\pi \mid p$, if $x^3 \equiv a \pmod{p}$, $x \in \mathbb{Z}$, then $x^3 \equiv a \pmod{\pi}$, thus $\chi_{\pi}(a) = 1$.

Conversely, suppose that $\chi_{\pi}(a) = 1$. Then the equation $y^3 \equiv a \pmod{\pi}$ has a solution $y = u + v\omega$, $u, v \in \mathbb{Z}$. Moreover, the class of y has a representative $x \in \mathbb{Z}$ modulo π (see the proof of Proposition 9.2.1):

$$y \equiv x \pmod{\pi}, x \in \mathbb{Z}.$$

So $x^3 \equiv a \pmod{\pi}$ has a solution $x \in \mathbb{Z}$.

Thus $\pi \mid x^3 - a$, $N(\pi) = p \mid (x^3 - a)^2$, therefore $p \mid x^3 - a$ in \mathbb{Z} , and so $x^3 \equiv a \pmod{p}$. Conclusion: if $p \equiv 1 \pmod{3}$, $p = \pi \overline{\pi}$, where π is a primary prime, and $a \in \mathbb{Z}$,

$$\exists x \in \mathbb{Z}, \ x^3 \equiv a \pmod{p} \iff \chi_{\pi}(a) = 1.$$

In other words, $x^3 \equiv a \pmod{\pi}$ is solvable in D iff it is solvable in \mathbb{Z} .

Ex. 9.16 Is $x^3 \equiv 2 - 3\omega \pmod{11}$ solvable? Since D/11D has 121 elements this is hard to resolve by straightforward checking. Fill in the details of the following proof that it is not solvable. $\chi_{\pi}(2-3\omega) = \chi_{2-3\omega}(11)$ and so we shall have a solution iff $x^3 \equiv 11 \pmod{2-3\omega}$ is solvable. This congruence is solvable iff $x^3 = 11 \pmod{7}$ is solvable in \mathbb{Z} . However, $x^3 \equiv a \pmod{7}$ is solvable in \mathbb{Z} iff $a \equiv 1$ or $b \pmod{7}$.

Warning: false sentence, since

$$N(2-3\omega) = (2-3\omega)(2-3\omega^2) = 4+9-6(\omega+\omega^2) = 4+9+6 = 19$$
 (and not 7!).

Proof. Since 19 is a rational prime, and since $\pi = 2 - 3\omega$ and 11 are primary primes, by the Law of Cubic Reciprocity, and by Exercise 9.15 (with $p = 11 \equiv 1 \pmod{3}$),

$$\exists x \in D, \ 2 - 3\omega \equiv x^3 \ [11] \iff \chi_{11}(2 - 3\omega) = 1$$

$$\iff \chi_{2 - 3\omega}(11) = 1$$

$$\iff \exists x \in D, \ x^3 \equiv 11 \ [2 - 3\omega]$$

$$\iff \exists x \in \mathbb{Z}, \ x^3 \equiv 11 \ [19]$$

Moreover, by Proposition 7.1.2 (with p = 19, $d = (p - 1) \land 3 = 3$, (p - 1)/d = 6),

$$\exists x \in \mathbb{Z}, \ x^3 \equiv 11 \ [19] \iff 11^6 \equiv 1 \pmod{19},$$

which is true: $11^6 = 121^3 = (19 \times 6 + 7)^3 \equiv 49 \times 7 \equiv 11 \times 7 \equiv 77 \equiv 1$ [19].

Conclusion: there exists $x \in D$ such that $2 - 3\omega \equiv x^3 \pmod{11}$.

With some computer code, we find a solution $x = 1 + 8\omega$ (and its associates $\omega^2 x = 7 - \omega$, $\omega x = -8 - 7\omega \equiv 3 + 4\omega \pmod{11}$):

$$x^3 = (1 + 8\omega)^3 = 321 - 168\omega \equiv 2 - 3\omega \pmod{11}.$$

Note: The sentence becomes true if we replace $2 - 3\omega$ by the primary prime $2 + 3\omega$. Since $N(2 + 3\omega) = 7$, with the same reasoning,

$$\exists x \in D, \ 2 + 3\omega \equiv x^3 \ [11] \iff \chi_{2+3\omega}(11) = 1$$

$$\iff \exists x \in D, \ x^3 \equiv 11 \ [2 + 3\omega]$$

$$\iff \exists x \in \mathbb{Z}, \ x^3 \equiv 11 \equiv 4 \ [7]$$

$$\iff 4^2 \equiv 1 \pmod{7}$$

but $4^2 \equiv 2 \not\equiv 1 \pmod{7}$, so the equation $x^3 \equiv 2 + 3\omega \pmod{11}$ is not solvable. $(x^3 \equiv a \pmod{11})$ is solvable in \mathbb{Z} iff $a^{\frac{7-1}{3}} = a^2 \equiv 1 \pmod{7}$ iff $a \equiv \pm 1 \pmod{7}$.)

Ex. 9.17 An element $\gamma \in D$ is called primary if $\gamma \equiv 2 \pmod{3}$. If γ and ρ are primary, show that $-\gamma \rho$ is primary. If γ is primary, show that $\gamma = \pm \gamma_1 \gamma_2 \dots \gamma_t$, where the γ_i are (not necessarily distinct) primary primes.

Proof. If $\gamma \equiv 2, \rho \equiv 2 \pmod{3}$, then $-\gamma \rho \equiv -2 \times 2 \equiv 2 \pmod{3}$, so $-\gamma \rho$ is primary.

By Ex. 9.2, γ can be written

$$\gamma = (-1)^a \omega^b \lambda^c \pi_1^{a_1} \cdots \pi_t^{a_t},$$

where $\pi_i \equiv 2 \pmod{3}, a \in \{0, 1\}, b \in \{0, 1, 2\}.$

As $\pi_i \equiv -1 \pmod 3$, and $\gamma \equiv -1 \pmod 3$, we obtain $\omega^b \lambda^c \equiv \pm 1 \pmod 3$. We prove that b=c=0.

Note that $\lambda^2 = (1 - \omega)^2 = -3\omega \equiv 0 \pmod{3}$. If $c \geq 2$, we would obtain $\gamma \equiv 0 \pmod{3}$, in contradiction with the hypothesis, thus c = 0 or c = 1.

If c=1,

$$\omega^b \lambda^c \in \{1 - \omega, \omega(1 - \omega), \omega^2(1 - \omega)\} = \{1 - \omega, 1 + 2\omega, -2 - \omega\}.$$

Since $1 - \omega \not\equiv \pm 1, 1 + 2\omega \not\equiv \pm 1, -2 - \omega \not\equiv \pm 1 \pmod{3}$, this is impossible, so c = 0.

Then $\omega^b \equiv \pm 1 \pmod{3}$, where $\omega^b \in \{1, \omega, -1 - \omega\}$. Since $\omega \not\equiv \pm 1 \pmod{3}$, and $-1 - \omega \not\equiv \pm 1 \pmod{3}$, then $\omega^b = 1, 0 \le b \le 2$, thus b = 0.

Finally, $\gamma = (-1)^a \pi_1^{a_1} \cdots \pi_t^{a_t}$.

Conclusion: Every primary $\gamma \in D$ is under the form

$$\gamma = \pm \gamma_1 \gamma_2 \cdots \gamma_t,$$

where the γ_i are primary primes.

Ex. 9.18 (continuation) If $\gamma = \pm \gamma_1 \gamma_2 \cdots \gamma_t$ is a primary decomposition of the primary element γ , define $\chi_{\gamma}(\alpha) = \chi_{\gamma_1}(\alpha)\chi_{\gamma_2}(\alpha)\cdots\chi_{\gamma_t}(\alpha)$. Prove that $\chi_{\gamma}(\alpha) = \chi_{\gamma}(\beta)$ if $\alpha \equiv \beta \pmod{\gamma}$ and $\chi_{\gamma}(\alpha\beta) = \chi_{\gamma}(\alpha)\chi_{\gamma}(\beta)$. If ρ is primary, show that $\chi_{\rho}(\alpha)\chi_{\gamma}(\alpha) = \chi_{-\rho\gamma}(\alpha)$.

Proof. If $\alpha \equiv \beta$ [γ], then $\alpha \equiv \beta$ (mod γ_i), $1 \le i \le t$, so $\chi_{\gamma_i}(\alpha) = \chi_{\gamma_i}(\beta)$, thus $\chi_{\gamma}(\alpha) = \chi_{\gamma}(\beta)$.

By Proposition 9.3.3,

$$\chi_{\gamma}(\alpha\beta) = \chi_{\gamma_{1}}(\alpha\beta)\chi_{\gamma_{2}}(\alpha\beta)\cdots\chi_{\gamma_{t}}(\alpha\beta)$$

$$= \chi_{\gamma_{1}}(\alpha)\chi_{\gamma_{2}}(\alpha)\cdots\chi_{\gamma_{t}}(\alpha)\chi_{\gamma_{1}}(\beta)\chi_{\gamma_{2}}(\beta)\cdots\chi_{\gamma_{t}}(\beta)$$

$$= \chi_{\gamma}(\alpha)\chi_{\gamma}(\beta)$$

Finally, if $\rho = \pm \rho_1 \rho_2 \cdots \rho_l$ is primary, then $-\rho \gamma = \pm \rho_1 \rho_2 \cdots \rho_l \gamma_1 \gamma_2 \cdots \gamma_t$ is primary by Ex. 9.17, therefore

$$\chi_{-\rho\gamma}(\alpha) = (\chi_{\rho_1}\chi_{\rho_2}\cdots\chi_{\rho_l}\chi_{\gamma_1}\chi_{\gamma_2}\cdots\chi_{\gamma_t})(\alpha) = \chi_{\rho}(\alpha)\chi_{\gamma}(\alpha).$$

Note: The unit -1 is primary by definition, and -1 is the opposite of the empty product, so for all α in D, $\chi_{-1}(\alpha) = 1$ by definition. The result of the exercises remain true if we accept the unit -1 as a primary element.

Ex. 9.19 Suppose that $\gamma = A + B\omega$ is primary and that A = 3M - 1 and B = 3N. Prove that $\chi_{\gamma}(\omega) = \omega^{M+N}$ and that $\chi_{\gamma}(\lambda) = \omega^{2M}$.

Proof. We verify first that if $\gamma = -\gamma_1 \gamma_2$, with

$$\gamma = A + B\omega, \qquad A = 3M - 1, \qquad B = 3N, \\ \gamma_1 = A_1 + B_1\omega, \quad A_1 = 3M_1 - 1, \quad B_1 = 3N_1, \\ \gamma_2 = A_2 + B_2\omega, \quad A_2 = 3M_2 - 1, \quad B_2 = 3N_2,$$

then $M \equiv M_1 + M_2 \pmod{3}, N \equiv N_1 + N_2 \pmod{3}$.

$$-\gamma_1\gamma_2 = -A_1A_2 + B_1B_2 + (-A_1B_2 - A_2B_1 + B_1B_2)\omega = A + B\omega,$$

therefore

$$3M - 1 = A = -A_1A_2 + B_1B_2 \equiv 3(M_1 + M_2) - 1 \pmod{9},$$

thus $M \equiv M_1 + M_2 \pmod{3}$.

$$3N = B = -A_1B_2 - A_2B_1 + B_1B_2 \equiv 3(N_1 + N_2) \pmod{9},$$

thus $N \equiv N_1 + N_2 \pmod{3}$.

By induction, if $\gamma = \pm \gamma_1 \gamma_2 \cdots \gamma_t = (-1)^{t-1} \gamma_1 \gamma_2 \cdots \gamma_t$, where $\gamma_i = A_i + B_i \omega, A_i = 3M_i - 1, B_i = 3N_i$, then

$$M \equiv M_1 + \dots + M_t \pmod{3}, N \equiv N_1 + \dots + N_t \pmod{3}.$$

By Exercise 9.3,

$$\chi_{\gamma}(\omega) = \chi_{\gamma_1}(\omega) \cdots \chi_{\gamma_t}(\omega)$$

$$= \omega^{M_1 + N_1} \cdots \omega^{M_t + N_t}$$

$$= \omega^{(M_1 + \cdots + M_t) + (N_1 + \cdots + N_t)}$$

$$= \omega^{M + N},$$

and by Eisenstein's result,

$$\chi_{\gamma}(\lambda) = \chi_{\gamma_1}(\lambda) \cdots \chi_{\gamma_t}(\lambda)$$

$$= \omega^{2M_1} \cdots \omega^{2M_t}$$

$$= \omega^{2(M_1 + \cdots + M_t)}$$

$$= \omega^{2M}.$$

Conclusion: if $\gamma = 3M - 1 + 3N\omega$, then

$$\chi_{\gamma}(\omega) = \omega^{M+N}, \chi_{\gamma}(\lambda) = \omega^{2M}.$$

Ex. 9.20 If γ and ρ are primary, show that $\chi_{\gamma}(\rho) = \chi_{\rho}(\gamma)$.

Important note: The following solution assumes that $\chi_{\pi_2}(\pi_1) = \chi_{\pi_1}(\pi_2)$ for any pair π_1, π_2 of primary primes. But Theorem 1 uses the hypothesis $N(\pi_1) \neq N(\pi_2)$ to prove Cubic Reciprocity.

We can complete the proof in the case where $N(\pi_1) = N(\pi_2)$. Since π_1, π_2 are primary primes, then $\pi_1 = \pi_2$ or $\pi_1 = \overline{\pi_2}$.

In the case $\pi_1 = \pi_2$, then $\chi_{\pi_2}(\pi_1) = 0 = \chi_{\pi_1}(\pi_2)$.

To prove that $\left(\frac{\overline{\pi}}{\pi}\right) = \left(\frac{\pi}{\pi}\right)$, we begin with a particular case of the proposition:

Lemma. Let $n \in \mathbb{Z}$ be a primary element in A, and let π be a primary prime such that $N(\pi) = p \equiv 1 \pmod{3}$. Then

$$\left(\frac{n}{\pi}\right)_3 = \left(\frac{\pi}{n}\right)_3.$$

Proof. If $p \mid n$, then $\left(\frac{n}{\pi}\right)_3 = 0 = \left(\frac{\pi}{n}\right)_3$. Now we assume that $p \wedge n = 1$. The decomposition of n is of the form

$$n = \pm p_1 \cdots p_s q_1 \cdots q_r \ (p_i \equiv 1 \ [3], q_j \equiv -1 \ [3])$$

= $\pm \pi_1 \overline{\pi_1} \cdots \pi_s \overline{\pi}_s q_1 \cdots q_r$,

where $\pi_i, \overline{\pi_i} (1 \le i \le s)$ and $q_i (1 \le j \le r)$ are primary prime.

Since $N(\pi_i) = p \neq p_i$ and $N(\pi) = p \neq N(q_j) = q_j^2$, Theorem 1 shows that

$$\left(\frac{n}{\pi}\right)_3 = \left(\frac{\pi_1}{\pi}\right)_3 \left(\frac{\overline{\pi_1}}{\pi}\right)_3 \cdots \left(\frac{\pi_s}{\pi}\right)_3 \left(\frac{\overline{\pi_s}}{\pi}\right)_3 \left(\frac{q_1}{\pi}\right)_3 \cdots \left(\frac{q_r}{\pi}\right)_3 \\
= \left(\frac{\pi}{\pi_1}\right)_3 \left(\frac{\pi}{\overline{\pi_1}}\right)_3 \cdots \left(\frac{\pi}{\pi_s}\right)_3 \left(\frac{\pi}{\overline{\pi_s}}\right)_3 \left(\frac{\pi}{\overline{q_1}}\right)_3 \cdots \left(\frac{\pi}{\overline{q_r}}\right)_3 \\
= \left(\frac{\pi}{n}\right)_3.$$

We can now remove the useless hypothesis $N(\pi_1) \neq N(\pi_2)$ in Theorem 1.

Proposition. Let π_1, π_2 be primary primes. Then

$$\left(\frac{\pi_2}{\pi_1}\right)_3 = \left(\frac{\pi_1}{\pi_2}\right)_3.$$

Proof. By theorem 1, it remains only the case where $N(\pi_1) = N(\pi_2)$.

If $\pi_1 = \pi_2$, then $\left(\frac{\pi_2}{\pi_1}\right)_3 = \left(\frac{\pi_1}{\pi_2}\right)_3 = 0$. If $\pi_1 \neq \pi_2$, since π_1 et π_2 are primary, then π_1, π_2 are primes such that $N(\pi_1) = \frac{\pi_1}{\pi_2}$ $N(\pi_2) = p \equiv 1 \pmod{3}$, and $\pi_2 = \overline{\pi_1}$. Writing $\pi = \pi_1$, it is sufficient to prove

$$\left(\frac{\overline{\pi}}{\pi}\right)_3 = \left(\frac{\pi}{\overline{\pi}}\right)_3$$
.

We use the "Evans' trick" (see [Lemmermayer, Reciprocity Laws p. 215]). The element $n = -(\pi + \overline{\pi})$ is a rationnal integer, which is primary. The Lemma gives then

$$\left(\frac{\overline{\pi}}{\pi}\right)_3 = \left(\frac{\pi + \overline{\pi}}{\pi}\right)_3$$

$$= \left(\frac{-\pi - \overline{\pi}}{\pi}\right)_3$$

$$= \left(\frac{\pi}{-\pi - \overline{\pi}}\right)_3$$

$$= \left(\frac{\overline{\pi}}{-\pi - \overline{\pi}}\right)_3$$

$$= \left(\frac{\overline{\pi}}{-\pi - \overline{\pi}}\right)_3$$

$$= \left(\frac{-\pi - \overline{\pi}}{\overline{\pi}}\right)_3$$

$$= \left(\frac{\pi}{\overline{\pi}}\right)_3$$

$$= \left(\frac{\pi}{\overline{\pi}}\right)_3$$

We can now give the solution of Exercise 9.20.

Proof. ρ, γ are written

$$\rho = \pm \rho_1 \rho_2 \cdots \rho_l,$$

$$\gamma = \pm \gamma_1 \gamma_2 \cdots \gamma_m,$$

where ρ_i, γ_i are primary primes. By the law of Cubic Reciprocity, we obtain

$$\chi_{\gamma}(\rho) = \prod_{j=1}^{m} \chi_{\gamma_{j}}(\rho)$$

$$= \prod_{j=1}^{m} \prod_{i=1}^{l} \chi_{\gamma_{j}}(\rho_{i})$$

$$= \prod_{i=1}^{l} \prod_{j=1}^{m} \chi_{\gamma_{j}}(\rho_{i})$$

$$= \prod_{i=1}^{l} \prod_{j=1}^{m} \chi_{\rho_{i}}(\gamma_{j})$$

$$= \prod_{i=1}^{l} \chi_{\rho_{i}}(\gamma)$$

$$= \chi_{\rho}(\gamma).$$

(if $\gamma=-1$, or $\rho=-1$, some products are empty, but the result remains true: $\chi_{-1}(\rho)=1=\chi_{\rho}(-1)$.)

Ex. 9.21 If γ is primary, show that there are infinitely many primary primes π such that $x^3 \equiv \gamma \pmod{\pi}$ is not solvable. Show also that there are infinitely many primary primes π such that $x^3 \equiv \omega \pmod{\pi}$ is not solvable and the same for $x^3 \equiv \lambda \pmod{\pi}$. (Hint: Imitate the proof of Theorem 3 of Chapter 5.)

Proof. a) As some primary elements of D may be cubes, by example $53 + 36\omega = (-1 + 3\omega)^3$, we must of course suppose that γ is not the cube of some element of D (in the contrary case $x^3 \equiv \gamma \pmod{\pi}$ is solvable for all prime π).

Note first that for all primes π in D, there exists $\sigma \in D$ such that $\chi_{\pi}(\sigma) = \omega$. Indeed, there exist $(N\pi - 1)/3$ cubes in $(D/\pi D)^*$, which has $N\pi - 1$ elements, so there exists an element $\overline{\tau} \in (D/\pi D)^*$ which is not a cube, therefore there exists $\tau \in D$ such that $\chi_{\pi}(\tau) \neq 1$. If $\chi_{\pi}(\tau) = \omega$, we put $\sigma = \tau$ and if $\chi_{\pi}(\tau) = \omega^2$, we put $\sigma = \tau^2$. In the two cases, $\chi_{\pi}(\sigma) = \omega$.

Let $\gamma \in D$, where γ is primary. Then $\gamma = \pm \gamma_1^{n_1} \gamma_2^{n_2} \cdots \gamma_p^{n_p}$, where the γ_i are distinct primary primes. Write $n_i = 3q_i + r_i$, $r_i \in \{0, 1, 2\}$. Then grouping in γ' the γ^{r_i} such that $r_i \neq 0$, we can write $\gamma = \delta^3 \gamma', \gamma' = \gamma_1^{r_1} \gamma_2^{r_2} \cdots \gamma_l^{r_l}, r_i \in \{1, 2\}, \delta = \pm \gamma_1^{q_1} \cdots \gamma_p^{n_p} \in D$ (-1 is a cube). Since by hypothesis γ is not a cube, $l \geq 1$. Moreover the equation $x^3 \equiv \gamma \pmod{\pi}$ is solvable iff $x^3 \equiv \gamma' \pmod{\pi}$ is solvable. We may then suppose that

$$\gamma = \gamma_1^{r_1} \gamma_2^{r_2} \cdots \gamma_l^{r_l}, 1 \le r_i \le 2,$$

without cubic factors.

Note that the γ_i are not associate to $\lambda = 1 - \omega$ (see Ex. 9.17).

Let $A = \{\lambda_1, \lambda_2, \dots, \lambda_k\}$ a set (possibly empty) of distinct primary primes λ_i (therefore they are not associate), and not associate neither to $\gamma_i, 1 \leq i \leq l$, nor to $\lambda = 1 - \omega$.

We will show that we can find a primary prime λ_{k+1} distinct of the λ_i with the same properties and such that the equation $x^3 \equiv \lambda \pmod{\lambda_{k+1}}$ is not solvable. This will prove the existence of infinitely many primes π such that the equation $x^3 \equiv \lambda \pmod{\pi}$ is not solvable.

Using the initial note, let $\sigma \in D$ such that $\chi_{\gamma_l}(\sigma) = \omega$. As D is a principal ideal domain, the Chinese Remainder Theorem is valid. Since $3 = \lambda \overline{\lambda} = -\omega^2 \lambda^2$ is relatively prime to γ_i, λ_i , there exists $\beta \in D$ such that

$$\beta \equiv 2 \ [3],$$

$$\beta \equiv 1 \ [\lambda_i] \qquad (1 \le i \le k),$$

$$\beta \equiv 1 \ [\gamma_i] \qquad (1 \le i \le l - 1),$$

$$\beta \equiv \sigma \ [\gamma_l].$$

The first equation show that β is primary, so $\beta = (-1)^{m-1}\beta_1 \dots \beta_m$, where the β_i are primary primes.

By Exercise 9.20,

$$\chi_{\beta}(\gamma) = \chi_{\beta}(\gamma_1)^{r_1} \cdots \chi_{\beta}(\gamma_l)^{r_l} = \chi_{\gamma_1}(\beta)^{r_1} \cdots \chi_{\gamma_l}(\beta)^{r_l}.$$

As $\chi_{\gamma_i}(1) = 1$ $(1 \le i \le l-1)$, and $\chi_{\gamma_l}(\beta) = \chi_{\gamma_l}(\sigma) = \omega$, we obtain $\chi_{\beta}(\gamma) = \omega^{r_l} \ne 1$, since $r_l = 1$ or $r_l = 2$.

By Exercise 9.18, $\chi_{\rho}(\alpha)\chi_{\gamma}(\alpha) = \chi_{-\rho\gamma}(\alpha)$, with primary ρ, γ , so by induction, as $\beta = (-1)^{m-1}\beta_1 \cdots \beta_m$,

$$\chi_{\beta}(\gamma) = \chi_{\beta_1}(\gamma) \cdots \chi_{\beta_m}(\gamma) \neq 1.$$

Thus there exists a subscript j such that $\chi_{\beta_i}(\gamma) \neq 1$.

We can then take $\lambda_{k+1} = \beta_j$. Indeed, since $\beta \equiv 1$ [λ_i] and $\beta \not\equiv 0$ [γ_i], β_j is distinct of the λ_i and γ_i , and β_j is not associate to λ since $\beta \equiv 2 \pmod{3}$.

As $\chi_{\lambda_{k+1}}(\gamma) \neq 1$, the equation $x^3 \equiv \gamma$ [λ_{k+1}] is not solvable, so λ_{k+1} is convenient.

Conclusion: if $\gamma \in D$ is primary and is not a cube in D, there exist infinitely many primes $\pi \in D$ such that the equation $x^3 \equiv \gamma$ $[\pi]$ is not solvable.

b) We show that $x^3 \equiv \omega$ [π] has no solution for infinitely many primes π .

To initialize the induction, we display such a prime π , namely $\pi = 2 + 3\omega$. Indeed, $N(\pi) = 4 + 9 - 6 = 7$, 7 is a rational prime, so π is a primary prime in D, of the form $\pi = 3m - 1 + 3n\omega$, with n = m = 1, so $\chi_{\pi}(\omega) = \omega^{m+n} = \omega^2 \neq 1$: the equation $x^3 \equiv \omega$ $[\pi]$ is not solvable. Moreover π is not associate to $\lambda = 1 - \omega$.

Suppose now the existence of a set $A = \{\lambda_1, \lambda_2, \dots, \lambda_l\}, l \geq 1$, of distinct primary primes λ_i , not associate to λ and such the equation $x^3 \equiv \omega$ $[\lambda_i]$ is not solvable for each $i, 1 \leq i \leq l$. We will show that we can add a prime λ_{l+1} to the set A with the same properties.

Let

$$\beta = 3(-1)^{l-1}\lambda_1 \cdots \lambda_l - 1.$$

 $(-1)^{l-1}\lambda_1\cdots\lambda_l$ is primary, so $(-1)^{l-1}\lambda_1\cdots\lambda_l=3m-1+3n\omega,\ m,n\in\mathbb{Z}.$

 $\beta = 3(3m - 1 + 3n\omega) - 1 = 3(3m - 1) - 1 + 9n\omega = 3M - 1 + 3N\omega$, where M = 3m - 1, N = 3n. By Exercise 9.19,

$$\chi_{\beta}(\omega) = \omega^{M+N} = \omega^{3m-1+3n} = \omega^2 \neq 1.$$

As $\beta = \pm \beta_1 \cdots \beta_m$, where the β_i are primary primes, $\chi_{\beta}(\omega) = \chi_{\beta_1}(\omega) \cdots \chi_{\beta_m}(\omega) \neq 1$, so there exists a subscript i such that $\chi_{\beta_i}(\omega) \neq 1$.

Since $\beta = 3(-1)^{l-1}\lambda_1 \cdots \lambda_l - 1$, β_i is associate neither to λ_i nor to λ . Moreover $\chi_{\beta_i}(\omega) \neq 1$, thus the equation $x^3 \equiv \omega$ $[\beta_i]$ is not solvable: $\lambda_{l+1} = \beta_i$ is convenient.

Conclusion: the equation $x^3 \equiv \omega$ [π] is not solvable for infinitely many primes π .

c) We show that $x^3 \equiv \lambda$ [π] has no solution for infinitely many primes π .

To initialize the induction, we display such a prime π , namely $\pi = -4 + 3\omega$. Indeed, $N(\pi) = 16 + 9 + 12 = 37$, 37 is a rational prime, so π is a primary prime in D, of the form $\pi = 3m - 1 + 3n\omega$, with m = -1, n = 1, so $\chi_{\pi}(\lambda) = \omega^{2m} = \omega \neq 1$: the equation $x^3 \equiv \lambda$ $[\pi]$ is not solvable.

Suppose now the existence of a set $A = \{\lambda_1, \lambda_2, \dots, \lambda_l\}, l \geq 1$, of distinct primary primes λ_i , not associate to λ and such the equation $x^3 \equiv \lambda \ [\lambda_i]$ is not solvable. We will show that we can add a prime λ_{l+1} to the set A with the same properties.

Let

$$\beta = 3(-1)^{l-1}\lambda_1 \cdots \lambda_l - 1.$$

 $(-1)^{l-1}\lambda_1\cdots\lambda_l$ is primary, so $(-1)^{l-1}\lambda_1\cdots\lambda_l=3m-1+3n\omega,\ m,n\in\mathbb{Z}.$

 $\beta = 3(3m-1+3n\omega)-1 = 3(3m-1)-1+9n\omega = 3M-1+3N\omega$, where M=3m-1, N=3n. By Exercise 9.19,

$$\chi_{\beta}(\lambda) = \omega^{2M} = \omega^{2(3m-1)} = \omega \neq 1.$$

As $\beta = \pm \beta_1 \cdots \beta_m$, where the β_i are primary primes, $\chi_{\beta}(\omega) = \chi_{\beta_1}(\omega) \cdots \chi_{\beta_m}(\omega) \neq 1$, so there exists a subscript i such that $\chi_{\beta_i}(\lambda) \neq 1$.

Since $\beta = 3(-1)^{l-1}\lambda_1 \cdots \lambda_l - 1$, β_i is associate neither to λ_i nor to λ . Moreover $\chi_{\beta_i}(\lambda) \neq 1$, thus the equation $x^3 \equiv \lambda$ $[\beta_i]$ is not solvable : $\lambda_{l+1} = \beta_i$ is convenient.

Conclusion: the equation $x^3 \equiv \lambda [\pi]$ is not solvable for infinitely many primes π .

Ex. 9.22 (continuation) Show in general that if $\gamma \in D$ and $x^3 \equiv \gamma \pmod{\pi}$ is solvable for all but finitely finitely many primary primes π , then γ is a cube in D.

Proof. Let $\gamma \in D$ and suppose that γ is not a cube in D. We will show that the equation $x^3 \equiv \gamma$ $[\pi]$ is not solvable for infinitely primes $\pi \in D$.

By Exercise 9.2, we can write

$$\gamma = (-1)^u \omega^v \lambda^w \gamma_1^{n_1} \cdots \gamma_p^{n_p},$$

where the γ_i are distinct primary primes, not associate to λ . Let $v=3q+b, w=3q'+c, n_i=3q_i+r_i$, with the remainders b,c,r_i in $\{0,1,2\}$. Grouping the factors with null remainders, we obtain $\gamma=\delta^3\gamma', \gamma'=\omega^b\lambda^c\gamma_1^{r_1}\cdots\gamma_l^{r_l}$, with b,c,r_i in $\{1,2\},\delta\in D,l\geq 0$ (-1 is a cube).

Moreover the equation $x^3 \equiv \gamma$ [π] is solvable iff the equation $x^3 \equiv \gamma'$ [π] is solvable. So we may suppose that

$$\gamma = \omega^b \lambda^c \gamma_1^{r_1} \cdots \gamma_l^{r_l}, \qquad b \in \{1, 2\}, c \in \{1, 2\}, r_i \in \{1, 2\},$$

without cubic factors.

• Case 1: l > 1.

Let $A = \{\lambda_1, \dots, \lambda_k\}$ a possibly empty set of distinct primary primes λ_i , distinct of the γ_i , not associate to λ , and such that the equation $x^3 \equiv \gamma$ $[\lambda_i]$ is not solvable. We will show that we can add a prime λ_{k+1} with the same properties.

Suppose that $l \geq 1$. We have proved in Ex. 9.21 that there exists $\sigma \in D$ such that $\chi_{\gamma_l}(\sigma) = \omega$. Since $9, \lambda_i, \gamma_j$ are relatively prime, there exists $\beta \in D$ such that

$$\beta \equiv -1 [9]$$

$$\beta \equiv 1 [\lambda_i], 1 \le i \le k$$

$$\beta \equiv 1 [\gamma_i], 1 \le i \le l - 1$$

$$\beta \equiv \sigma [\gamma_l]$$

 $\beta \equiv -1$ [9], thus $\beta \equiv -1$ [3] : β is primary, of the form $\beta = 3M - 1 + 3N\omega$. $\beta = 3M - 1 + 3N\omega \equiv -1$ [9], so $3M + 3N\omega \equiv 0$ [9], $M + N\omega \equiv 0$ [3], thus $3 \mid M, 3 \mid N$.

By Exercise 9.18,

$$\chi_{\beta}(\omega) = \omega^{M+N} = 1$$

$$\chi_{\beta}(\lambda) = \omega^{2M} = 1$$

As β and γ_i are primary, $\chi_{\beta}(\gamma_i) = \chi_{\gamma_i}(\beta) = \chi_{\gamma_i}(1) = 1 \ (1 \le i \le l-1).$

$$\chi_{\beta}(\gamma) = \chi_{\beta}(\omega)^b \chi_{\beta}(\lambda)^c \chi_{\beta}(\gamma_1)^{r_1} \cdots \chi_{\beta}(\gamma_l)^{r_l} = \chi_{\beta}(\gamma_l)^{r_l} = \chi_{\gamma_l}(\beta)^{r_l} = \chi_{\gamma_l}(\sigma)^{r_l} = \omega^{r_l} \neq 1$$
, since $r_l \in \{1, 2\}$.

 $\beta = \pm \beta_1 \cdots \beta_m$, with β_i primary primes, therefore

$$\chi_{\beta}(\gamma) = (\chi_{\beta_1} \cdots \chi_{\beta_m})(\gamma) \neq 1.$$

Thus there exists a subscript i such that $\chi_{\beta_i}(\gamma) \neq 1$, so $x^3 \equiv \gamma$ $[\beta_i]$ is not solvable. Moreover $\beta \equiv 1$ $[\gamma_i]$, so β_i is not associate to any γ_j . Similarly, β_i is not associate to any γ_j , and $\beta \equiv -1$ [9], therefore β_i is not associate to λ . So $\lambda_{k+1} = \beta_i$ is convenient.

There exist infinitely many π such that $x^3 \equiv \gamma$ $[\pi]$ is not solvable.

• Case 2: l = 0, so $\gamma = \omega^b \lambda^c$, $1 \le b \le 2, 1 \le c \le 2$. $\pi_0 = 2 - 3\omega$ is a primary prime $(N(\pi_0) = 19)$.

Let $A = \{\lambda_1, \ldots, \lambda_k\}$ a possibly empty set of distinct primary primes $\lambda_i \neq \pi_0$ such that the equation $x^3 \equiv \gamma \ [\lambda_i]$ is not solvable. We will show that we can add a prime λ_{k+1} with the same properties.

Let
$$\beta = 9(-1)^{k-1}\lambda_1 \cdots \lambda_k + 2 - 3\omega$$
.

 $\beta \equiv 2$ [3] : β is primary.

Moreover $(-1)^{k-1}\lambda_1\cdots\lambda_k$ is primary, so

$$(-1)^{k-1}\lambda_1\cdots\lambda_k=3m-1+3n\omega, m\in\mathbb{Z}, n\in\mathbb{Z}.$$

Then

$$\beta = 9(3m - 1 + 3n\omega) + 2 - 3\omega$$

$$= 27m - 7 + (27n - 3)\omega$$

$$= 3(9m - 2) - 1 + 3(9n - 1)\omega$$

$$= 3M - 1 + 3N\omega,$$

where M = 9m - 2, N = 9n - 1. Therefore

$$\chi_{\beta}(\omega) = \omega^{M+N} = \omega^{9m-2+9n-1} = 1$$
$$\chi_{\beta}(\lambda) = \omega^{2M} = \omega^{2(9m-2)} = \omega^2 \neq 1$$

 $\beta = \pm \beta_1 \cdots \beta_m$, where the β_i are primary primes.

$$\chi_{\beta}(\gamma) = \chi_{\beta}(\omega)^b \chi_{\beta}(\lambda)^c = \omega^{2c} \neq 1 \text{ since } c = 1 \text{ or } c = 2.$$

$$\chi_{\beta}(\gamma) = (\chi_{\beta_1} \cdots \chi_{\beta_m})(\gamma) \neq 1.$$

Thus there exists a subscript i such that $\chi_{\beta_i}(\gamma) \neq 1$, so $x^3 \equiv \gamma$ [β_i] is not solvable.

As $\beta_i \mid \beta = 9(-1)^{k-1}\lambda_1 \cdots \lambda_k + 2 - 3\omega$, if $\beta_i = \lambda_j$ for some subscript j, $\lambda_j \mid \pi_0 = 2 - 3\omega$, so $\lambda_j = \pi_0$, which is a contradiction, thus $\beta_i \notin A$. Similarly, if $\beta_i = \pi_0 = 2 - 3\omega$, then $\pi_0 \mid 9\lambda_1 \cdots \lambda_k$, and π_0 is relatively prime to λ , so $\pi_0 = \lambda_j$ for some subscript j: this is a contradiction, thus $\beta_i \neq \pi_0$. $\lambda_{k+1} = \beta_i$ is convenient.

So there exist infinitely many π such that $x^3 \equiv \gamma$ [π] is not solvable.

• Conclusion:

if γ is not a cube in D, there exist infinitely many primes π such that $x^3 \equiv \gamma$ $[\pi]$ is not so able.

By contraposition, if the equation $x^3 \equiv \gamma$ [π] is solvable for every prime π , at the exception perhaps of the primes in a finite set, then γ is a cube in D.

Ex. 9.23 Suppose that $p \equiv 1 \pmod{3}$. Use Exercise 5 to show that $x^3 \equiv 3 \pmod{p}$ is solvable in \mathbb{Z} iff p is of the form $4p = C^2 + 243B^2$.

Proof. Let p be a rational prime, $p \equiv 1 \pmod{3}$, then $p = \pi \overline{\pi}$, where $\pi \in D$ is a primary prime : $\pi = a + b\omega = 3m - 1 + 3n\omega$.

• Suppose that there exists $x \in \mathbb{Z}$ such that $x^3 \equiv 3 \pmod{p}$. Then $x^3 \equiv 3 \pmod{\pi}$, so $\chi_{\pi}(3) = 1$. By Exercise 9.5, $\omega^{2n} = \chi_{\pi}(3) = 1$, thus $3 \mid n$, therefore $9 \mid b = 3n$, namely $b = 9B, B \in \mathbb{Z}$.

 $p = N\pi = a^2 + b^2 - ab, 4p = (2a - b)^2 + 3b^2 = C^2 + 243B^2$, where C = 2a - b, B = b/9. So there exists $C, B \in \mathbb{Z}$ such that $4p = C^2 + 243B^2$.

• Conversely, suppose that there exist $C, B \in \mathbb{Z}$ such that $4p = C^2 + 243B^2$.

As $4p = (2a - b)^2 + 3b^2 = C^2 + 3(9B)^2$, from the unicity proved in Exercise 8.13, we obtain $b = \pm 9B$, so $9 \mid b = 3n, 3 \mid n$, and $\chi_{\pi}(3) = \omega^{2n} = 1$.

Thus there exists $x \in D$ such that $x^3 \equiv 3 \pmod{\pi}$. As $p \equiv 1 \pmod{3}$, $D/\pi D = \{\overline{0}, \dots, \overline{p-1}\}$, so there exists $h \in \mathbb{Z}$ such that $x \equiv h \pmod{\pi}$, and $h^3 \equiv 3 \pmod{\pi}$.

Therefore $p = N\pi \mid N(h^3 - 3)$, namely $p \mid (h^3 - 3)^2$, where p is a rational prime, thus $p \mid h^3 - 3$: there exists $x \in \mathbb{Z}$ such that $x^3 \equiv 3 \pmod{p}$.

Moreover $4p = C^2 + 243B^2$ implies $p \equiv 1 \pmod{3}$.

$$(p\equiv 1\ [3]\ \mathrm{and}\ \exists x\in\mathbb{Z},\ x^3\equiv 3\ [p])\iff \exists C\in\mathbb{Z}, \exists B\in\mathbb{Z},\ 4p=C^2+243B^2.$$

Ex. 9.24 Let $\pi = a + b\omega$ be a complex primary element of $D = \mathbb{Z}[\omega]$. Put $a = 3m - 1, b = 3n, p = N(\pi)$.

- (a) $(p-1)/3 \equiv -2m + n \pmod{3}$.
- (b) $(a^2 1)/3 \equiv m \pmod{3}$.
- (c) $\chi_{\pi}(a) = \omega^m$.
- (d) $\chi_{\pi}(a+b) = \omega^{2n}\chi_{\pi}(1-\omega)$.

Lemma. Let $a \in \mathbb{Z}$, $a \equiv -1 \pmod{3}$, and $b \in \mathbb{Z}$ such that $a \wedge b = 1$. Then $\chi_a(b) = 1$.

Proof. (of Lemma.)

If q is a rational prime, $q \equiv 2 \pmod{3}$, and $q \wedge b = 1$, then $\chi_q(b) = 1$ (Prop. 9.3.4, Corollary).

If p is a rational prime, $p \equiv 1 \pmod{3}$ and $p \wedge b = 1$, then $p = \pi \overline{\pi}$, with π primary prime in D (and also $\overline{\pi}$), and by definition of χ_p , $\chi_p(b) = \chi_{\pi}(b)\chi_{\overline{\pi}}(b)$.

As $\chi_{\overline{\pi}}(b) = \chi_{\overline{\pi}}(\overline{b}) = \overline{\chi_{\pi}(b)}$ (Prop. 9.3.4(b)), then $\chi_p(b) = \chi_{\pi}(b)\chi_{\overline{\pi}}(b) = \chi_{\pi}(b)\overline{\chi_{\pi}(b)} = 1$.

a has a decomposition in prime factors of the form :

$$a = \pm q_1 q_2 \cdots q_k p_1 p_2 \cdots p_l = \pm q_1 q_2 \cdots q_k \pi_1 \overline{\pi_1} \pi_2 \overline{\pi_2} \cdots \pi_l \overline{\pi_l},$$

where $q_i \equiv -1, p_j \equiv 1 \pmod{3}$, and the π_k are primary primes (since all these elements are primary, the symbol \pm is $(-1)^{k-1}$). Thus, by definition of χ_a ,

$$\chi_a(b) = \chi_{q_1}(b) \cdots \chi_{q_k(b)} \chi_{\pi_1}(b) \chi_{\overline{\pi_1}}(b) \cdots \chi_{\pi_l}(b) \chi_{\overline{\pi_l}}(b) = 1.$$

The result remains true if a = -1: then, by definition, $\chi_a(b) = 1$.

Proof. (of Ex 9.24.) By hypothesis, π is a primary element, so $\pi = 3m - 1 + 3n\pi$, $m, n \in \mathbb{Z}$. We don't suppose in this proof that π is a prime element, so $p = N(\pi)$ is not necessarily prime.

(a) $p-1 = (3m-1)^2 + (3n)^2 - 3n(3m-1) - 1 \equiv -6m + 3n \pmod{9}$, thus $\frac{p-1}{3} \equiv -2m + n \pmod{3}.$

(b) $a^2 - 1 = (3m - 1)^2 - 1 \equiv -6m \pmod{9}$, thus

$$\frac{a^2 - 1}{3} \equiv m \pmod{3}.$$

(c) As π , a are primary, by Exercise 9.20, $\chi_{\pi}(a) = \chi_{a}(\pi)$.

Since $\pi \equiv b\omega \pmod{a}$, $\chi_a(\pi) = \chi_a(b)\chi_a(\omega)$.

By Exercise 9.18, as a = 3m - 1, $\chi_a(\omega) = \omega^{M+N}$, where M = m, N = 0, so

$$\chi_a(\omega) = \omega^m$$
.

Here a is relatively prime to b in \mathbb{Z} : if a rational prime r divides a,b, then $r\mid\pi$ in D, thus $r\mid\overline{\pi}$, so $r^2\mid\pi\overline{\pi}=p$ in D, thus $r^2\mid p$ in \mathbb{Z} , which is absurd. The Lemma gives then $\chi_a(b)=1$.

We conclude that $\chi_a(b) = 1$, $\chi_a(\omega) = \omega^m$, so $\chi_\pi(a) = \chi_a(\pi) = \chi_a(b)\chi_a(\omega) = \omega^m$.

$$\chi_{\pi}(a) = \omega^m$$
.

$$a+b = [(a+b)\omega]\omega^{-1},$$

and

$$(a+b)\omega = (a+b\omega) + a\omega - a \equiv a(\omega - 1) \pmod{\pi},$$

thus

$$a + b \equiv -a(1 - \omega)\omega^{-1} [\pi],$$

$$\chi_{\pi}(a+b) = \chi_{\pi}(1-\omega)\chi_{\pi}(a)\chi_{\pi}(\omega)^{-1},$$

 $\chi_{\pi}(a) = \omega^m$ by (c), and $\chi_{\pi}(\omega) = \omega^{m+n}$ (as in Ex. 9.3), thus

$$\chi_{\pi}(a+b) = \omega^{2n} \chi_{\pi}(1-\omega).$$

Ex. 9.25 Show that $\chi_{a+b}(\pi)$ may be computed as follows.

(a) $\chi_{a+b}(\pi) = \chi_{a+b}(1-\omega)$.

(b) $\chi_{a+b}(\pi) = \omega^{2(m+n)}$.

Proof. (a) $\pi = a + b\omega$ and $a \equiv -b \pmod{a+b}$, thus $\pi \equiv -b(1-\omega) \pmod{a+b}$. So

$$\chi_{a+b}(\pi) = \chi_{a+b}(b)\chi_{a+b}(1-\omega).$$

Since $a \wedge b = 1$, $(a + b) \wedge b = 1$: as in Ex. 9.24, $\chi_{a+b}(b) = 1$. So

$$\chi_{a+b}(\pi) = \chi_{a+b}(1-\omega).$$

(b) Since the character χ_{a+b} has order 3,

$$\chi_{a+b}(1-\omega) = (\chi_{a+b}((1-\omega)^2))^2$$

= $(\chi_{a+b}(-3\omega))^2$
= $[\chi_{a+b}(3)\chi_{a+b}(\omega)]^2$

 $\chi_{a+b}(3) = 1$ because $(a+b) \wedge 3 = (3(m+n) - 1) \wedge 3 = 1$.

$$\chi_{a+b}(\omega) = \omega^{m+n}$$
 (Ex. 9.19).

Conclusion:

$$\chi_{a+b}(1-\omega) = \omega^{2(m+n)}.$$

Ex. 9.26 Combine the previous two exercises to conclude that $\chi_{\pi}(1-\omega) = \omega^{2m}$.

Proof. Since π and a+b are primary elements of D, by Exercise 9.20,

$$\chi_{\pi}(a+b) = \chi_{a+b}(\pi).$$

By Exercises 9.24 and 9.25,

$$\chi_{\pi}(a+b) = \omega^{2n}\chi_{\pi}(1-\omega)$$

$$\chi_{a+b}(\pi) = \omega^{2(m+n)}$$

Thus $\omega^{2n}\chi_{\pi}(1-\omega)=\omega^{2(m+n)}$. Consequently

$$\chi_{\pi}(1-\omega) = \omega^{2m}.$$

Ex. 9.27 Let $\pi = a + bi$ be a primary irreducible in $\mathbb{Z}[i], b \neq 0$. Show

(a)
$$a \equiv (-1)^{(p-1)/4} \pmod{4}, p = N(\pi).$$

(b)
$$b \equiv (-1)^{(p-1)/4} - 1 \pmod{4}$$
.

(Wrong sentence for (b) in an older edition.)

Proof. Let $\pi = a + bi$ a primary prime in $\mathbb{Z}[i]$, $b \neq 0$, such that $p = N(\pi)$:

$$p = \pi \bar{\pi} = a^2 + b^2 \equiv 1$$
 [4].

By Lemma 6, Section 7, a is odd, b even, and

$$(a \equiv 1 \ [4], b \equiv 0 \ [4]) \text{ or } (a \equiv 3 \ [4], b \equiv 2 \ [4]).$$

- (a) Case 1: $a \equiv 1$ [4], $b \equiv 0$ [4]. Then a = 4A + 1, b = 4B, $A, B \in \mathbb{Z}$, so $(a^2 + b^2 1)/4 = 4A^2 + 4B^2 + 2A$ is even: $(-1)^{(p-1)/4} = (-1)^{(a^2+b^2-1)/4} = 1$, and $a \equiv 1$ [4], thus $a \equiv (-1)^{(p-1)/4}$ [4].
 - Case 2: $a \equiv 3$ [4], $b \equiv 2 \pmod{4}$. a = 4A + 3, b = 4B + 2, $a^2 + b^2 - 1 = 16A^2 + 24A + 9 + 16B^2 + 16B + 4 - 1 \equiv 4$ [8], so $(a^2 + b^2 - 1)/4 \equiv 1$ [2], $(-1)^{(p-1)/4} = (-1)^{(a^2 + b^2 - 1)/4} = -1$, and $a \equiv -1$ [4], thus $a \equiv (-1)^{(p-1)/4}$ [4].

In both cases,

$$a \equiv (-1)^{(p-1)/4} [4].$$

(b) In every case, $b \equiv a - 1$ [4], thus

$$b \equiv (-1)^{(p-1)/4} - 1$$
 [4].

In other words, for all primary primes $\pi = a + bi$ such that $N(\pi) = p$,

$$\begin{split} p &\equiv 1 \ [8] \iff \pi \equiv 1 \ [4], \\ p &\equiv 5 \ [8] \iff \pi \equiv 3 + 2i \ [4]. \end{split}$$

Ex. 9.28 The notation being as in Exercise 27 show $\chi_{\pi}(\overline{\pi}) = \chi_{\pi}(2)\chi_{\pi}(a)$.

Proof. $\pi = a + bi, \overline{\pi} = a - bi = 2a - \pi \equiv 2a [\pi]$, thus, by Proposition 9.8.3 (e):

$$\chi_{\pi}(\overline{\pi}) = \chi_{\pi}(2a) = \chi_{\pi}(2)\chi_{\pi}(a).$$

Ex. 9.29 By Exercise 9.27, $a(-1)^{(p-1)/4}$ is primary. Use biquadratic reciprocity to show $\chi_{\pi}(a(-1)^{(p-1)/4}) = (-1)^{(a^2-1)/8}$.

Proof. $a \equiv (-1)^{(p-1)/4}$ [4] (Ex. 9.27(a)), $a(-1)^{(p-1)/4} \equiv 1$ [4], thus $a(-1)^{(p-1)/4}$ is primary (if $a \neq \pm 1$).

If $a = \pm 1$ is an unit, $a(-1)^{(p-1)/4} = 1$ and $\chi_{\pi}(a(-1)^{(p-1)/4}) = 1 = (-1)^{(a^2-1)/8}$, so we can suppose that a is not an unit.

As $a(-1)^{(p-1)/4} \equiv 1 \pmod{4}$, the Law of Biquadratic Reciprocity (Prop. 9.9.8) gives

$$\chi_{\pi}(a(-1)^{(p-1)/4}) = \chi_{a(-1)^{(p-1)/4}}(\pi)$$

$$= \chi_{a}(\pi) \quad (\text{Prop.9.8.3(f)})$$

$$= \chi_{a}(a+bi)$$

$$= \chi_{a}(bi)$$

$$= \chi_{a}(b)\chi_{a}(i).$$

As $a \wedge b = 1$ (since $p = a^2 + b^2$), $\chi_a(b) = 1$ (Prop. 9.8.5, with $a \neq 1$), so

$$\chi_{\pi}(a(-1)^{(p-1)/4}) = \chi_a(i).$$

If $a \equiv 1$ [4], Proposition 8.9.6 gives $\chi_a(i) = (-1)^{(a-1)/4}$. Write a = 4A + 1, $A \in \mathbb{Z}$. Then

$$(-1)^{(a^2-1)/8} = (-1)^{2A^2+A} = (-1)^A = (-1)^{(a-1)/4} = \chi_a(i).$$

If $a \equiv -1$ [4], then $\chi_a(i) = \chi_{-a}(i) = (-1)^{(-a-1)/4}$ by the same proposition. Write $a = 4A - 1, A \in \mathbb{Z}$. Then

$$(-1)^{(a^2-1)/8} = (-1)^{2A^2-A} = (-1)^{-A} = (-1)^{(-a-1)/4} = \chi_a(i).$$

So, for each odd $a, a \neq \pm 1$,

$$\chi_a(i) = i^{(a^2 - 1)/8}.$$

Conclusion: if $\pi = a + bi$ is a primary irreducible such that $N(\pi) = p$, then

$$\chi_{\pi}(a(-1)^{(p-1)/4}) = (-1)^{(a^2-1)/8}.$$

Ex. 9.30 Use the preceding two exercises to show $\chi_{\pi}(\overline{\pi}) = \chi_{\pi}(2)(-1)^{(a^2-1)/8}$.

Proof. By Exercises 9.28, 9.29, and $\chi_{\pi}(-1) = (-1)^{(a-1)/2}$ (Prop. 9.8.3(d)),

$$\chi_{\pi}(\overline{\pi}) = \chi_{\pi}(2)\chi_{\pi}(a)$$

$$= \chi_{\pi}(2)\chi_{\pi}(a(-1)^{(p-1)/4})(\chi_{\pi}(-1))^{(p-1)/4}$$

$$= \chi_{\pi}(2)(-1)^{(a^{2}-1)/8}((-1)^{(a-1)/2})^{(p-1)/4}$$

$$= \chi_{\pi}(-2)(-1)^{(a^{2}-1)/8}((-1)^{(a-1)/2})^{(p+3)/4}$$

$$= \chi_{\pi}(-2)(-1)^{(a^{2}-1)/8}(-1)^{((a-1)/2)((p+3)/4)}.$$

If $a \equiv 1 \pmod{4}$, then $(-1)^{(a-1)/2} = 1$.

If $a \equiv 3 \pmod{4}$, then $b \equiv 2 [4]$:

$$a = 4A + 3, b = 4B + 2, p + 3 = a^2 + b^2 + 3 = (4A + 3)^2 + (4B + 2)^2 + 3 \equiv 0$$
 [8],

so $(p+3)/4 \equiv 0$ [2].

In both cases $(-1)^{((a-1)/2)((p+3)/4)} = 1$, and so

$$\chi_{\pi}(\overline{\pi}) = \chi_{\pi}(-2)(-1)^{(a^2-1)/8}.$$

Ex. 9.31 Let p be prime, $p \equiv 1 \pmod{4}$. Show that $p = a^2 + b^2$ where a and b are uniquely determined by the conditions $a \equiv 1 \pmod{4}$, $b \equiv -((p-1)/2)!a \pmod{p}$.

Proof. Recall the following lemma:

Lemma:

Let p be a prime, $p \equiv 1$ [4], then $\left[\left(\frac{p-1}{2}\right)!\right]^2 \equiv -1$ [p]. By Wilson's theorem (Prop. 4.1.1, Corollary), $(p-1)! \equiv -1$ [p].

$$-1 \equiv (p-1)! = 1.2.\cdots \cdot \left(\frac{p-1}{2}\right) \left(\frac{p+1}{2}\right) \cdots (p-2)(p-1)$$

$$\equiv 1.2.\cdots \frac{p-1}{2} \left[-\left(\frac{p-1}{2}\right)\right] \cdots (-2)(-1)$$

$$\equiv (-1)^{(p-1)/2} \left[\left(\frac{p-1}{2}\right)!\right]^2$$

$$\equiv \left[\left(\frac{p-1}{2}\right)!\right]^2 [p],$$

since $p \equiv 1$ [4].

• We show that there exists a pair $a, b \in \mathbb{Z}$ which verifies the sentence.

By lemma 5 section 7, as $p \equiv 1$ [4], there exists an irreducible π such that $N(\pi) = p$, and we can choose π such that $\pi = A + Bi$ is primary (lemma 7 section 7), so A is odd.

If $A \equiv 1 \pmod{4}$, we take a = A, and if $A \equiv 3 \pmod{4}$, we take a = -A: then $a \equiv 1 \pmod{4}$.

Let
$$u = (\frac{p-1}{2})!$$
. Then $0 \equiv p = A^2 + B^2 \pmod{p}, B^2 \equiv -A^2 \equiv (uA)^2 \pmod{p}$.

 $p \mid (B - uA)(B + uA)$, thus $B \equiv \pm uA \pmod{p}$.

Since $a = \pm A$, $B \equiv \pm ua \pmod{p}$.

If $B \equiv -ua \pmod{p}$, we take b = B, if not b = -B.

Then a, b are such that $p = a^2 + b^2, a \equiv 1$ [4], $b \equiv -((p-1)/2)! a$ [p].

• Unicity of the pair (a, b) such that

$$p = a^2 + b^2, a \equiv 1$$
 [4], $b \equiv -((p-1)/2)! a$ [p].

Suppose that c, d are such that $p = c^2 + d^2, c \equiv 1$ [4], $d \equiv -((p-1)/2)!c$ [p].

Let $\pi = a + ib$, $\lambda = c + id$. As $p = N\pi = N\lambda$ is a rational prime, π and λ are primes in D, and $p = \pi \overline{\pi} = \lambda \overline{\lambda}$, thus λ is associate to π or $\overline{\pi}$.

$$\lambda \in \{\pi, -\pi, i\pi, -i\pi, \overline{\pi}, -\overline{\pi}, i\overline{\pi}, -i\overline{\pi}\}.$$

As a, c are odd, and b, d even, it remains only the possibilities $\lambda = \pm \pi, \lambda = \pm \overline{\pi}$, thus $c = \pm a$. Moreover $a \equiv c \equiv 1$ [4], thus a = c, and $d \equiv -((p-1)/2)!c \equiv -((p-1)/2)!a \equiv b$ [p].

$$p = a^2 + b^2 = a^2 + d^2$$
, so $d = \pm b$, and $d \equiv b$ [p].

If d=-b, then $p\mid 2b$, thus $p\mid b$, and also $p\mid a$, so $p^2\mid a^2+b^2=p$: this is impossible. So a=b, c=d. Unicity is proved.

Conclusion: if $p \equiv 1$ [4], there exists an unique pair a, b such that

$$p = a^2 + b^2, a \equiv 1 \pmod{4}, b \equiv -((p-1)/2)!a \pmod{p}.$$

Ex. 9.32 Let p be a prime, $p \equiv 1 \pmod{4}$ and write $p = \pi \overline{\pi}, \pi \in \mathbb{Z}[i]$. Show $\chi_p(1+i) = i^{(p-1)/4}$.

Proof.

$$\chi_p(1+i) = \chi_{\pi}(1+i)\chi_{\bar{\pi}}(1+i)$$

$$= \chi_{\pi}(1+i)\overline{\chi_{\pi}(1-i)} \qquad \text{(Prop. 9.8.3(c))}$$

$$= \frac{\chi_{\pi}(1+i)}{\chi_{\pi}(1-i)} = \chi_{\pi}(i) \qquad \text{(since } (1-i)i = 1+i)$$

$$= i^{\frac{p-1}{4}}.$$

The last equality is a consequence of the definition of χ_{π} : $\chi_{\pi}(i) \equiv i^{\frac{p-1}{4}} \pmod{\pi}$, and the classes of $1, i, i^2, i^3$ modulo π are distinct.

Ex. 9.33 Let q be a positive prime, $q \equiv 3 \pmod{4}$. Show $\chi_q(1+i) = i^{(q+1)/4}$. [Hint: $(1+i)^{q-1} \equiv -i \pmod{q}$.]

The sentence is false and must be replaced by

$$\chi_q(1+i) = (-i)^{(q+1)/4} = i^{-(q+1)/4}.$$

We verify this on the example q = 11:

$$\chi_q(1+i) \equiv (1+i)^{(q^2-1)/4}$$

$$\equiv (1+i)^{30}$$

$$\equiv -2^{15}i \equiv -32i \equiv i \pmod{11},$$

so $\chi_{11}(1+i)=i$, and $i^{(-q-1)/4}=i^{-3}=i$ (but $i^{(q+1)/4}=-i$).

Proof. Write
$$q = 4k + 3, k \in \mathbb{N}$$
.
As $(1+i)^2 = 2i$, $(1+i)^{q-1} = (2i)^{(q-1)/2}$.
 $2^{(q-1)/2} \equiv \binom{2}{q} [q]$ et $\binom{2}{q} = (-1)^{(q^2-1)/8} = (-1)^{2k^2+3k+1} = (-1)^{k+1}$
 $i^{(q-1)/2} = i^{2k+1} = (-1)^k i$.
So

$$(1+i)^{q-1} \equiv -i \ [q].$$

$$N(q) = q^2, \text{ so } \chi_q(1+i) \equiv (1+i)^{(q^2-1)/4} = [(1+i)^{q-1}]^{(q+1)/4} \equiv (-i)^{(q+1)/4} \ [q]:$$

$$\chi_q(1+i) = (-i)^{(q+1)/4} = i^{(-q-1)/4}.$$

Ex. 9.34 Let $\pi = a + bi$ be a primary irreducible, (a, b) = 1. Show

- (a) if $\pi \equiv 1 \pmod{4}$, then $\chi_{\pi}(a) = i^{(a-1)/2}$.
- (b) if $\pi \equiv 3 + 2i \pmod{4}$, then $\chi_{\pi}(a) = -i^{(-a-1)/2}$.

Proof. Let $\pi=a+bi$ be a primary irreducible, with $a\wedge b=1,$ so $b\neq 0$: we can apply the result of Exercise 9.29:

$$\chi_{\pi}(a(-1)^{(p-1)/4}) = (-1)^{(a^2-1)/8}.$$

(a) Suppose that $\pi \equiv 1$ [4].

Then $a \equiv 1$ [4], $b \equiv 0$ [4], a = 4A + 1, b = 4B, $A, B \in \mathbb{Z}$. As $\chi_{\pi}(-1) = (-1)^{(a-1)/2}$,

$$\chi_{\pi}(a) = (-1)^{\frac{a-1}{2}\frac{p-1}{4}} (-1)^{\frac{a^2-1}{8}},$$

where

$$p = N\pi = a^2 + b^2, (-1)^{(p-1)/4} = (-1)^{\frac{a^2-1}{4} + \frac{b^2}{4}} = (-1)^{4A^2 + 2A + 4B^2} = 1,$$

thus $(-1)^{\frac{a-1}{2}\frac{p-1}{4}} = 1$.

$$\chi_{\pi}(a) = (-1)^{(a^2-1)/8} = (-1)^{2A^2+A} = (-1)^A = (-1)^{(a-1)/4} = i^{(a-1)/2}.$$

Conclusion: if $\pi \equiv 1$ [4], $\chi_{\pi}(a) = i^{(a-1)/2}$.

(b) Suppose that $\pi \equiv 3 + 2i$ [4].

Then $a \equiv 3$ [4], $b \equiv 2$ [4], a = 4A + 3, b = 4B + 2, $A, B \in \mathbb{Z}$. As in (a),

$$\chi_{\pi}(a) = (-1)^{\frac{a-1}{2}\frac{p-1}{4}}(-1)^{\frac{a^2-1}{8}},$$

where $a^2 + b^2 - 1 = 16A^2 + 24A + 16B^2 + 16B + 12 \equiv 4$ [8], so $\frac{a^2 + b^2 - 1}{4} \equiv 1$ [2], thus $(-1)^{(p-1)/4} = (-1)^{(a^2 + b^2 - 1)/4} = -1$.

$$(-1)^{\frac{a-1}{2}\frac{p-1}{4}} = (-1)^{\frac{a-1}{2}} = (-1)^{2A+1} = -1,$$

$$\frac{a^2 - 1}{8} = 2A^2 + 3A + 1, (-1)^{(a^2 - 1)/8} = (-1)^{3A + 1} = (-1)^{A + 1} = (-1)^{(a + 1)/4}$$

$$\chi_{\pi}(a) = -(-1)^{(a+1)/4} = -i^{(a+1)/2}$$

Moreover

$$\frac{a+1}{2} \equiv \frac{-a-1}{2} \ [4] \iff a+1 \equiv -a-1 \ [8] \iff 2a \equiv -2 \ [8] \iff a \equiv 3 \ [4],$$

thus $i^{(a+1)/2} = i^{(-a-1)/2}$.

Conclusion: if $\pi \equiv 3 + 2i$ [4], $\chi_{\pi}(a) = -i^{(-a-1)/2}$.

Ex. 9.35 If $\pi = a + bi$ is as in Exercise 9.34 show $\chi_{\pi}(a)\chi_{\pi}(1+i) = i^{(3(a+b-1))/4}$. [Hint: a(1+i) = a+b+i(a+bi). Generalize Exercises 32 and 33 to any integer $\equiv 1 \pmod{4}$ and use Proposition 9.9.8. Note $a+b \equiv 1 \pmod{4}$.]

Proof. We give a generalization of Exercises 9.32 and 9.33: if $n \equiv 1$ [4], $n \neq 1$, then $\chi_n(1+i) = i^{(n-1)/4}$.

By Exercises 9.32 and 9.33, we know that if $p \equiv 1$ [4] is a rational prime, then

$$\chi_p(1+i) = i^{(p-1)/4},$$

and if $q \equiv 3$ [4], in other words $-q \equiv 1$ [4], where q is a rational prime, then

$$\chi_{-q}(1+i) = \chi_q(1+i) = i^{(-q-1)/4}.$$

Let $n \in \mathbb{Z}$, $n \equiv 1$ [4], $n \neq 1$.

If n > 0, $n = q_1q_2 \cdots q_kp_1p_2 \cdots p_l$, where $q_i \equiv -1$ [4], $p_i \equiv 1$ [4], thus k is odd.

If n < 0, $n = -q_1q_2 \cdots q_kp_1p_2 \cdots p_l$, with k odd. In both cases,

$$n = (-q_1)(-q_2)\cdots(-q_k)p_1p_2\cdots p_l,$$

so we can write

$$n = s_1 s_2 \cdots s_N$$
, where $s_i = -q_i, 1 \le i \le k, s_i = p_{i-k}, k+1 \le i \le k+l = N$,

where $s_i \equiv 1$ [4], $1 \le i \le N$.

$$\chi_n(1+i) = \chi_{-q_1}(1+i) \cdots \chi_{-q_k}(1+i)\chi_{p_1}(1+i) \cdots \chi_{p_l}(1+i)$$

$$= i^{(-q_1-1)/4} \cdots i^{(-q_k-1)/4} i^{(p_1-1)/4} \cdots i^{(p_l-1)/4}$$

$$= i^{(s_1-1)/4} \cdots i^{(s_N-1)/4}$$

$$= i^{\sum_{i=1}^{N} \frac{s_i-1}{4}}$$

$$= i^{(n-1)/4},$$

the last equality resulting of Exercise 9.44.

Conclusion: if $n \in \mathbb{Z}$, $n \equiv 1$ [4], $n \neq 1$, then $\chi_n(1+i) = i^{(n-1)/4}$.

Let $\pi = a + bi$, $a \wedge b = 1$ a primary irreducible. As a(1+i) = a + b + i(a+bi), $a(1+i) \equiv a + b \ [\pi]$, so

$$\chi_{\pi}(a)\chi_{\pi}(1+i) = \chi_{\pi}(a+b).$$

As $\pi = a + bi$ is primary, $a + b \equiv 1$ [4].

If a + b = 1, then $\chi_{\pi}(a)\chi_{\pi}(1+i) = \chi_{\pi}(a+b) = 1 = i^{3(a+b-1)/4}$. If not, the Law of Biquadratic Reciprocity (Proposition 9.9.8) gives

$$\chi_{\pi}(a+b) = \chi_{a+b}(\pi).$$

Now $b \equiv -a \pmod{a+b}$, so $a+bi \equiv a(1-i) \equiv -ia(1+i) \pmod{a+b}$. Therefore

$$\chi_{a+b}(\pi) = \chi_{a+b}(-1)\chi_{a+b}(a)\chi_{a+b}(i)\chi_{a+b}(1+i).$$

Since $n \equiv 1$ [4], $\chi_n(i) = (-1)^{(n-1)/4}$ (Prop.9.8.6), thus

$$\chi_n(-1) = \chi_n(i^2) = (-1)^{\frac{n-1}{2}} = 1.$$

Consequently, since $a + b \equiv 1$ [4], $\chi_{a+b}(-1) = 1$.

As $a \wedge b = 1$, $(a + b) \wedge a = 1$, thus $\chi_{a+b}(a) = 1$ (Prop 9.8.5). $a + b \equiv 1$ [4], thus $\chi_{a+b}(i) = (-1)^{(a+b-1)/4}$ (Prop. 9.8.6).

From the first part of this proof, $\chi_{a+b}(1+i) = i^{(a+b-1)/4}$, so

$$\chi_{a+b}(\pi) = \chi_{a+b}(-1)\chi_{a+b}(a)\chi_{a+b}(i)\chi_{a+b}(1+i)$$

$$= (-1)^{(a+b-1)/4}i^{(a+b-1)/4}$$

$$= i^{(a+b-1)/2}i^{(a+b-1)/4}$$

$$= i^{3(a+b-1)/4}$$

Conclusion: if $\pi = a + bi$ is a primary irreducible, such that $a \wedge b = 1$, then

$$\chi_{\pi}(a)\chi_{\pi}(1+i) = i^{3(a+b-1)/4}$$

Remove the restriction (a,b) = 1 in Exercise 9.34.

Proof. Suppose that $q = a \land b > 1$. Then $a = qa', b = qb', a', b' \in \mathbb{Z}$, so $\pi = q(a' + ib')$.

As π is irreducible, and as q is not an unit, u = a' + b'i is an unit, and so $\pi = uq$ is associate to q: the rational integer q is then a prime in D, so a rational prime $q \equiv 3$ $\pmod{4}$.

If $u = \pm i$, then $\pi = \pm q = a + bi$ is such that b is odd, in contradiction with π primary. Thus $u = \pm 1$, and $\pi = \varepsilon q$, $\varepsilon = \pm 1$. As π is primary, $\varepsilon = -1$, so $\pi = -q$.

Then $\chi_{\pi}(a) = \chi_{-q}(-q) = 0$, the result of Ex. 34 is false if b = 0.

Conclusion: if $\pi = a + bi$ is a primary irreducible, and $b \neq 0$, then

(a) if
$$\pi \equiv 1$$
 [4], $\chi_{\pi}(a) = i^{(a-1)/2}$,

(b) if $\pi \equiv 3 + 2i$ [4], $\chi_{\pi}(a) = -i^{(-a-1)/2}$.

Ex. 9.37 Combine Exercises 32, 33, 34, and 35 to show $\chi_{\pi}(1+i) = i^{(a-b-b^2-1)/4}$. Show that this result implies Exercise 26 of Chapter 5 "the biquadratic character of 2").

Lemma. If $\pi = a + bi$ is a primary prime, then

$$\chi_{\pi}(i) = i^{\frac{-a+1}{2}}.$$

Proof. (of Lemma.) Let $\pi = a + bi$ a primary prime in $\mathbb{Z}[i]$.

• If $\pi = -q$, where $q \equiv 3 \pmod{4}$, q > 0 is a rational prime, then a = -q, b = 0. By definition of the quartic character,

$$\chi_q(i) = i^{\frac{N(q)-1}{4}} = i^{\frac{q^2-1}{4}}.$$

Write $-q = a = 4k + 1, k \in \mathbb{Z}$. Then

$$\frac{q^2 - 1}{4} = 4k^2 + 2k$$
$$\equiv 2k = \frac{a - 1}{2} \pmod{4}.$$

Therefore

$$\chi_{-q}(i) = \chi_q(i) = i^{\frac{q^2 - 1}{4}} = i^{\frac{a - 1}{2}} = \left(\frac{1}{i}\right)^{\frac{-a + 1}{2}} = (-i)^{\frac{-a + 1}{2}} = (-1)^{\frac{-a + 1}{2}}i^{\frac{-a + 1}{2}} = i^{\frac{-a + 1}{2}},$$

since
$$(-1)^{\frac{-a+1}{2}} = (-1)^{-2k} = 1$$
.

Suppose now that $N(\pi) = p$, where $p \equiv 1 \pmod{4}$ is a rational prime. Then

$$\chi_{\pi}(i) = i^{\frac{N(\pi)-1}{4}} = i^{\frac{p-1}{4}}.$$

Since $\pi = a + bi$ is primary, there are two cases.

• If $a \equiv 1 \pmod{4}$, $b \equiv 0 \pmod{4}$, then a = 4A + 1, b = 4B, $A, B \in \mathbb{Z}$.

$$\frac{p-1}{4} = \frac{a^2 + b^2 - 1}{4}$$

$$= \frac{16A^2 + 8A + 16B^2}{4}$$

$$= 4A^2 + 2A + 4B^2$$

$$\equiv 2A = \frac{a-1}{2}$$

Therefore

$$\chi_{\pi}(i) = i^{\frac{p-1}{4}} = i^{\frac{a-1}{2}} = \left(\frac{1}{i}\right)^{\frac{-a+1}{2}} = (-i)^{\frac{-a+1}{2}} = (-1)^{\frac{-a+1}{2}}i^{\frac{-a+1}{2}} = i^{\frac{-a+1}{2}},$$

since
$$(-1)^{\frac{-a+1}{2}} = (-1)^{-2A} = 1$$
.

• If $a \equiv 3 \pmod{4}$, $b \equiv 2 \pmod{4}$, then a = 4A - 1, B = 4B + 2, $A, B \in \mathbb{Z}$.

$$\frac{p-1}{4} = \frac{a^2 + b^2 - 1}{4}$$

$$= \frac{16A^2 - 8A + 16B^2 + 16B + 4}{4}$$

$$= 4A^2 - 2A + 4B^2 4B + 1$$

$$\equiv -2A + 1 = \frac{-a+1}{2} \pmod{4}$$

Therefore $\chi_{\pi}(i) = (-1)^{\frac{-a+1}{4}}$.

The equality $\chi_{\pi}(i) = (-1)^{\frac{-a+1}{4}}$ is verified for all primary primes π .

Proof. (of Ex.9.37) Let $\pi = a + ib$ be a primary irreducible in $\mathbb{Z}[i]$.

• If b = 0, then $\pi = a \in \mathbb{Z}$. As π is primary, $\pi = -q, q \equiv 3 \pmod{4}$, where q is a rational prime, so a = -q, b = 0. By Ex. 9.32 (or its generalization 9.35),

$$\chi_{\pi}(1+i) = \chi_{-q}(1+i) = i^{(-q-1)/4} = i^{(a-b-b^2-1)/4}$$

• If $b \neq 0$, then $a \wedge b = 1$ (see Ex. 9.36), and by Ex. 9.35,

$$\chi_{\pi}(a)\chi_{\pi}(1+i) = i^{3(a+b-1)/4}.$$

• If $\pi \equiv 1$ [4], $a \equiv 1$ [4], $b \equiv 0$ [4]: $a = 4A + 1, b = 4B, A, B \in \mathbb{Z}$. By Ex. 9.34(a),

$$\chi_{\pi}(a) = i^{(a-1)/2}, \chi_{\pi}(a)^{-1} = (-i)^{(a-1)/2} = i^{(a-1)/2}.$$

$$\chi_{\pi}(1+i) = i^{3\frac{a+b-1}{4} - 2\frac{a-1}{4}}$$
$$= i^{\frac{a+3b-1}{4}}$$
$$= i^{\frac{a-b-b^2-1}{4}}.$$

since
$$\left(\frac{a+3b-1}{4}\right) - \left(\frac{a-b-b^2-1}{4}\right) = b + \frac{b^2}{4} = 4B + 4B^2 \equiv 0$$
 [4].

• If $\pi \equiv 3 + 2i$ [4], $a \equiv 3$ [4], $b \equiv 2$ [4] : $a = 4A - 1, b = 4B + 2, A, B \in \mathbb{Z}$. By Ex. 9.34(b),

$$\chi_{\pi}(a) = -i^{(-a-1)/2}, \chi_{\pi}(a)^{-1} = -i^{(a+1)/2} = i^{(a-3)/2},$$

so

$$\chi_{\pi}(1+i) = i^{(3a+3b-3+2a-6)/4} = i^{(5a+3b-9)/4}.$$

Now
$$\frac{1}{4}[(a-b-b^2-1)-(5a+3b-9)] = \frac{1}{4}(-4a-4b-b^2+8) = -a-b+2-\frac{b^2}{4} = -4A+1-4B-2+2-(2B+1)^2 \equiv 0$$
 [4], thus $\chi_{\pi}(1+i)=i^{(a-b-b^2-1)/4}$.

Conclusion: if $\pi = a + ib$ is primary irreducible, then

$$\chi_{\pi}(1+i) = i^{(a-b-b^2-1)/4}$$

Second part: the biquadratic character of 2 (see Ex. 5.25 to 5.28).

Let $p \equiv 1$ [4]. Then $p = N(\pi)$, where $\pi = a + bi$ is a primary prime.

We show first that $\chi_{\pi}(2) = i^{\frac{ab}{2}}$.

Since $2 = i^3 (1+i)^2$, the first part of the exercise, and the Lemma, give

$$\chi_{\pi}(2) = \chi_{\pi}(i)^{3} \chi_{\pi}(1+i)^{2}$$
$$= i^{\frac{3(-a+1)}{2}} i^{\frac{a-b-b^{2}-1}{2}}$$
$$= i^{1-a-(b+1)\frac{b}{2}}$$

Since π is primry, $a \equiv b + 1 \equiv -b + 1 \pmod{4}$, therefore

$$1 - a - (b+1)\frac{b}{2} \equiv -b - (b+1)\frac{b}{2}$$

$$\equiv \frac{b}{2}(-b-3)$$

$$\equiv \frac{b}{2}(-b+1)$$

$$\equiv \frac{ab}{2} \pmod{4},$$

so $\chi_{\pi}(2) = i^{\frac{ab}{2}}$.

Now we show that p is of the form $p = A^2 + 64b^2$ if and only if $p \equiv 1 \pmod{4}$ and if $x^4 \equiv 2$ has a solution $x \in \mathbb{Z}$.

If $p=A^2+64B^2=A^2+(8B)^2$, then the prime number p is a sum of two squares, and $p\neq 2$, therefore $p\equiv 1\pmod 4$. Since $p=A^2+64b^2$, A is odd. Put b=8B, and a=A if $A\equiv 1\pmod 4$, a=-A if $A\equiv -1\pmod 4$. Then $\pi=a+bi$ is such that $N(\pi)=a^2+b^2=p$, and $a\equiv 1,b\equiv 0\pmod 4$, therefore π is a primary prime. Then

$$\chi_{\pi}(2) = i^{\frac{ab}{2}} = i^{4aB} = 1.$$

Therefore there exists $\alpha \in D$ such that $2 \equiv \alpha^4 \pmod{\pi}$. As $D/\pi D$ is the set of classes of $0, 1, \dots, p-1$, there exists $x \in \mathbb{Z}$ such that $x \equiv \alpha \pmod{\pi}$, so $2 \equiv x^4 \pmod{\pi}$.

Then $p = N(\pi) \mid N(x^4 - 2) = (x^4 - 2)^2$, thus $p \mid x^4 - 2$, in other words $2 \equiv x^4 \pmod{p}$.

Conversely, suppose that $p \equiv 1 \pmod{4}$ and that 2 is a biquadratic residue modulo p. As $p \equiv 1 \pmod{4}$, $p = \pi \overline{\pi}$, where $\pi = a + bi$ is a primary prime. Since $2 \equiv x^4 \pmod{p}$ for some $x \in \mathbb{Z}$, then $2 \equiv x^4 \pmod{\pi}$, so $\chi_{\pi}(2) = 1$. Moreover

$$1 = \chi_{\pi}(2) = i^{\frac{ab}{2}}.$$

Since a is odd, 8 | b, therefore $p = A^2 + 64b^2$, where A = a, B = b/8.

Conclusion:

$$\exists (A,B) \in \mathbb{Z}^2, \ p = A^2 + 64B^2 \iff (p \equiv 1 \ [4] \text{ and } \exists x \in \mathbb{Z}, \ x^4 \equiv 2 \ [p]).$$

Ex. 9.38 Prove part (d) of Proposition 9.8.3.

Proposition 9.8.3(d) If π is a primary irreducible then $\chi_{\pi}(-1) = (-1)^{(a-1)/2}$, where $\pi = a + bi$.

Proof. Let $\pi = a + bi$ a primary irreducible. Then a is odd, and b is even, and $N(\pi) = a^2 + b^2$. Then

$$\chi_{\pi}(-1) = (-1)^{\frac{N(\pi)-1}{4}} = (-1)^{\frac{a^2-1}{4} + \frac{b^2}{4}} = [(-1)^{\frac{a+1}{2}}]^{\frac{a-1}{2}} (-1)^{\frac{b^2}{4}}.$$

By Lemma 6, section 7, $a \equiv 1$ [4], $b \equiv 0$ [4], or $a \equiv 3$ [4], $b \equiv 2$ [4].

• If $a \equiv 1$ [4], $b \equiv 0$ [4], then $(-1)^{\frac{a+1}{2}} = -1$, $(-1)^{\frac{b^2}{4}} = +1$, so

$$\chi_{\pi}(-1) = (-1)^{\frac{a-1}{2}}.$$

• If $a \equiv 3$ [4], $b \equiv 2$ [4], then $(-1)^{\frac{a+1}{2}} = 1$, $(-1)^{\frac{b^2}{4}} = -1$, so

$$\chi_{\pi}(-1) = -1 = (-1)^{\frac{a-1}{2}}.$$

Conclusion: if π is a primary irreducible in $\mathbb{Z}[i]$, then

$$\chi_{\pi}(-1) = (-1)^{(a-1)/2}.$$

Ex. 9.39 Let $p \equiv 1 \pmod{6}$ and write $4p = A^2 + 27B^2$, $A \equiv 1 \pmod{3}$. Put m = (p-1)/6. Show $\binom{3m}{m} \equiv -1 \pmod{p} \iff 2 \mid B$.

Proof. Let p a rational prime, $p \equiv 1 \pmod{6}$. As $p \equiv 1 \pmod{3}$, we know from Theorem 2, Chapter 8, that there are integers A and B such that $4p = A^2 + 27B^2$, $A \equiv 1 \pmod{3}$, and that A is uniquely determined by these conditions.

Then A, B are of opposite parity. If we take $a = \frac{A+3B}{2}, b = 3B$, then $A = 2a-b, B = \frac{b}{3}$, and $4p = (2a-b)^2 + 3b^2$, so $p = a^2 - ab + b^2$. If $\pi = a + b\omega$, then $N(\pi) = p$. Since $A = 2a - b \equiv 1$ [3], and $b = 3B \equiv 0$ [3], then $a \equiv -1$ [3], so π is a primary prime.

• Suppose that $2 \mid B$. Since $p = a^2 - ab + b^2$ is odd, and b = 3B.

$$2 \mid B \iff 2 \mid b \iff (b \equiv 0 \mid 2], a \equiv 1 \mid 2]) \iff \pi \equiv 1 \mid 2].$$

By Proposition 9.6.1,

$$\pi \equiv 1$$
 [2] $\iff x^3 - 2$ is solvable in $D \iff \chi_{\pi}(2) = 1$.

Therefore

$$2 \mid B \iff \chi_{\pi}(2) = 1.$$

Here χ_{π} is of order 3, so $\chi_{\pi}^2 \neq \varepsilon$. By Exercise 8.6,

$$J(\chi_{\pi}, \chi_{\pi}) = \chi_{\pi}(2)^{-2} J(\chi_{\pi}, \rho),$$

where ρ is the Legendre's character.

In this case, $2 \mid B$, $\chi_{\pi}(2) = 1$, so $J(\chi_{\pi}, \chi_{\pi}) = J(\chi_{\pi}, \rho)$, and by Lemma 1 section 4, where $p \equiv 1$ [3] and $p = N(\pi)$,

$$\pi = a + b\omega = J(\chi_{\pi}, \chi_{\pi}) = J(\chi_{\pi}, \rho).$$

By Exercise 8.15,

$$N(y^2 = x^3 + 1) = p + A,$$

and the Exercise 8.27(b) gives

$$N(y^2 = x^3 + 1) = N(y^2 + x^3 = 1) = p + 2 \operatorname{Re} J(\chi_{\pi}, \rho).$$

thus

$$A = 2 \operatorname{Re} J(\chi_{\pi}, \rho) = 2 \operatorname{Re} \pi = 2a - b.$$

Moreover, since $J(\chi_{\pi}, \rho) = \pi = a + b\omega$, by Exercise 8.27(c),

$$2a - b \equiv -\binom{(p-1)/2}{(p-1)/3}.$$

Therefore

$$-A \equiv \binom{(p-1)/2}{(p-1)/3} = \binom{(p-1)/2}{(p-1)/2 - (p-1)/6} = \binom{(p-1)/2}{(p-1)/6} = \binom{3m}{m} \pmod{p},$$

where m = (p-1)/6. Since $A \equiv 1 \pmod{3}$,

$$\binom{3m}{m} \equiv -1 \pmod{p}.$$

• Conversely, suppose that $\binom{3m}{m} \equiv -1 \pmod{p}$. Then $A = 2a - b \equiv -\binom{3m}{m} \pmod{p}$. Write $J(\chi_{\pi}, \rho) = c + d\omega$. By Exercise 8.27(c), $2c - d \equiv -\binom{3m}{m} \pmod{p}$. thus

$$2a - b \equiv 2c - d \pmod{p}.$$

Since $|J(\chi_{\pi}, \rho)| = \sqrt{p}$,

$$4p = (2a - b)^2 + 3b^2 = (2c - d)^2 + 3d^2.$$

thus $d \equiv \pm b \pmod{p}$.

By Exercise 8.6,

$$\pi = J(\chi_{\pi}, \chi_{\pi}) = \chi_{\pi}(2)^{-2} J(\chi_{\pi}, \rho),$$

Here χ_{π} is of order 3, therefore $\chi_{\pi}(2)^{-2} = \chi_{\pi}(2) \in \{1, \omega, \omega^2\}$, so

$$\pi = J(\chi_{\pi}, \chi_{\pi}) = \chi_{\pi}(2)J(\chi_{\pi}, \rho).$$

If $\chi_{\pi}(2) = \omega$, then $a + b\omega = \omega(c + d\omega) = -d + \omega(c - d)$. Then $a = -d \equiv \pm b \pmod{p}$. As $a \equiv -b\omega \pmod{\pi}$, we would have $-b\omega \equiv \pm b \pmod{\pi}$. Here $\pi \nmid b$, otherwise $p = N(\pi) \mid N(b) = b^2$, so $p \mid b$, and $p = a^2 - ab + b^2$, so $p \mid a$, and $p^2 \mid p$, which is a nonsense. Therefore $\pi \mid \omega \pm 1$, where π is a primary prime: it's impossible: $\omega + 1$ is a unit and $\omega - 1$ is prime, so $\pi \mid \omega - 1 = -\lambda$ implies that π and λ are associate, in contradiction with $N(\pi) = p \neq 3 = N(\pi)$.

If
$$\chi_{\pi}(2) = \omega^2$$
, then $a + b\omega = \omega^2(c + d\omega) = (d - c) - \omega c$, so $a = d - c$, $b = -c$.

Reasoning modulo $\overline{\pi} = a + b\omega^2 = (a - b) + b\omega$, where $\overline{\pi} \mid \pi \overline{\pi} = p$, we obtain

$$d = a - b \equiv -b\omega \pmod{\overline{\pi}},$$

where $d \equiv \pm b \pmod{\overline{\pi}}$, so $-b\omega \equiv \pm b \pmod{\overline{\pi}}$. Since $N(\overline{\pi}) = p$, we obtain the same contradiction as above.

So $\chi_{\pi}(2) = 1$, and the previously proved equivalence $2 \mid B \iff \chi_{\pi}(2) = 1$ show that $2 \mid B$.

Conclusion:

$$\binom{(p-1)/2}{(p-1)/6} \equiv -1 \pmod{p} \iff 2 \mid B.$$

Ex. 9.40 Let $p \equiv 1 \pmod{6}$, and put $p = \pi \overline{\pi}$ where π is primary. Write $\pi = a + b\omega$ and show

- (a) If $\chi_{\pi}(2) = \omega$ then $2b a \equiv -\binom{3m}{m} \pmod{p}$.
- (b) If $\chi_{\pi}(2) = \omega^2$ then $a + b \equiv {3m \choose m} \pmod{p}$.
- (c) If $\chi_{\pi}(2) = \omega$ put A = 2a b, B = b/3. Show $(A 9B)/2 \equiv {3m \choose m} \pmod{p}$.
- (d) If $\chi_{\pi}(2) = \omega^2$ put 2a b = A and B = -b/3. Show $(A 9B)/2 \equiv {3m \choose m} \pmod{p}$.
- (e) Show that the "normalization" of B in (c) and (d) is equivalent to $A \equiv B \pmod{4}$. [Recall $\chi_{\pi}(2) \equiv \pi \pmod{2}$ by cubic reciprocity.]

Proof. Here $p=6m+1, m\in\mathbb{Z}$, and $p=\pi\overline{\pi}$, where $\pi=a+b\omega$ is a primary prime. We have proved in Exercise 39 that

$$\pi = J(\gamma_{\pi}, \gamma_{\pi}) = \gamma_{\pi}(2)J(\gamma_{\pi}, \rho). \tag{1}$$

Write $J(\chi_{\pi}, \rho) = c + d\omega$. The Exercise 8.27(c) shows that

$$2c - d \equiv -\binom{3m}{m} \pmod{p}. \tag{2}$$

(a) If $\chi_{\pi}(2) = \omega$, then (1) gives

$$a + b\omega = \omega(c + d\omega) = -d + \omega(c - d),$$

so a = -d, b = c - d, therefore the equality (2) gives

$$2b - a = 2(c - d) + d = 2c - d \equiv -\binom{3m}{m} \pmod{p}.$$

(b) If $\chi_{\pi}(2) = \omega^2$, then

$$a + b\omega = \omega^2(c + d\omega) = d - c - c\omega,$$

so a = d - c, b = -c, and

$$a+b=d-2c \equiv \binom{3m}{m} \pmod{p}.$$

(c) Suppose that $\chi_{\pi}(2) = \omega$, and put A = 2a - b, B = b/3, so

$$4p = A^2 + 27B^2$$
, $A \equiv 1$ [3],

which shows that A, B have opposite parities. Then, by part (a),

$$\frac{A-9B}{2} = \frac{2a-b-3b}{2}$$
$$= a-2b$$
$$\equiv {3m \choose m} \pmod{p}$$

(d) Suppose that $\chi_{\pi}(2) = \omega^2$, and put A = 2a - b, B = -b/3, so we have again

$$4p = A^2 + 27B^2$$
, $A \equiv 1$ [3].

In this case, by part (b)

$$\frac{A-9B}{2} = \frac{2a-b+3b}{2}$$

$$= a+b$$

$$\equiv {3m \choose m} \pmod{p}$$

(e) The conditions $4p = A^2 + 27B^2$, $A \equiv 1$ [3], determine A, B, except the sign of B. So $4p = A^2 + 27B^2 = (2a - b)^2 + 3b^2$, implies A = 2a - b and $B = \pm \frac{b}{3}$.

By Exercise 39, since A, B have same parity, the condition A, B odd is equivalent to $\chi_{\pi}(2) \in \{\omega, \omega^2\}$. We choose this sign of B so that

$$\frac{A - 9B}{2} \equiv \binom{3m}{m} \pmod{p}.$$

By parts (d) and (e), where A, B are odd, this choice is given by B = b/3 if $\chi_{\pi}(2) = \omega$, and B = -b/3 if $\chi_{\pi}(2) = \omega^2$. We show that these conditions are equivalent to $A \equiv B \pmod{4}$.

• If $\chi_{\pi}(2) = \omega$, then A = 2a - b, B = b/3.

By cubic reciprocity, $\chi_{\pi}(2) \equiv \pi \pmod{2}$ (see section 6). Here $\chi_{\pi}(2) = \omega$, so $\omega \equiv a + b\omega \pmod{2}$, therefore $a \equiv 0 \pmod{2}$, $b \equiv 1 \pmod{2}$,

$$A = 2a - b \equiv -b \equiv \frac{b}{3} = B \pmod{4},$$

so $A \equiv B \pmod{4}$.

• If $\chi_{\pi}(2) = \omega^2$, then A = 2a - b, B = -b/3. In this case,

$$\omega^2 = -1 - \omega \equiv a + b\omega \pmod{2}$$
,

therefore $a \equiv 1 \equiv b \pmod{2}$, and

$$A = 2a - b \equiv 2 - b \equiv b \equiv -\frac{b}{3} = B \pmod{4}.$$

In both cases, the choice of the sign of B implies that $A \equiv B \pmod{4}$.

Conversely, suppose that $A \equiv B \pmod{4}$. Write $B = \varepsilon \frac{b}{3}$, where $\varepsilon = \pm 1$. Then $A \equiv B \pmod{4}$ gives

$$2a - b \equiv \varepsilon \frac{b}{3} \equiv -\varepsilon b \pmod{4},$$

thus $a \equiv \frac{1-\varepsilon}{2}b \pmod{2}$. Then

$$\chi_{\pi}(2) \equiv \pi = a + b\omega$$

$$\equiv b \left(\frac{1 - \varepsilon}{2} + \omega\right) \pmod{2}$$

If $\chi_{\pi}(2) = \omega$, since b = 3B is odd, $\frac{1-\varepsilon}{2} \equiv 0 \pmod{2}$, therefore $\varepsilon = 1$, and $B = \frac{b}{3}$. If $\chi_{\pi}(2) = \omega^2 = -1 - \omega$, $\frac{1-\varepsilon}{2} \equiv 1 \pmod{2}$, therefore $\varepsilon = -1$, and $B = -\frac{b}{3}$.

The normalisation given in parts (c) and (d) for the choice of the sign of B is equivalent to $A \equiv B \pmod 4$ (where A, B are odd).

Ex. 9.41 Let $p \equiv 1 \pmod{6}$, $4p = A^2 + 27B^2$, $A \equiv 1 \pmod{3}$, A and B odd. Put $\pi = a + b\omega$, 2a - b = A, b = 3B. Let χ_{π} be the cubic residue character.

(a) If $\chi_{\pi}(2) = \omega$ show $N(x^3 + 2y^3 = 1) = p + 1 + 2b - a \equiv 0 \pmod{2}$.

(b) If $\chi_{\pi}(2) = \omega^2$ show $N(x^3 + 2y^3 = 1) = p + 1 - a - b \equiv 0 \pmod{2}$.

(c) Show that if $A \equiv B \pmod{4}$, then assuming $\chi_{\pi}(2) \neq 1$, one has $\chi_{\pi}(2) = \omega$.

(d) If $\chi_{\pi}(2) \neq 1, A \equiv B \pmod{4}$ then

$$2^{(p-1)/3} \equiv (-A - 3B)/6B \equiv (A + 9B)/(A - 9B) \pmod{\pi}.$$

(This generalization of Euler's criterion is due to E.Lehmer [174]. See also K. Williams [243].)

Proof. With the help of Theorem 1, Chapter 8, we obtain, writing $\chi_{\pi}(2) = \omega^{k}$,

$$\begin{split} N(x^3 + 2y^3 &= 1) = \sum_{a+2b=1} N(x^3 = a) N(y^3 = b) \\ &= \sum_{a+2b=1} \left(\sum_{i=0}^2 \chi_\pi^i(a) \right) \left(\sum_{j=0}^2 \chi_\pi^j(b) \right) \\ &= \sum_{i=0}^2 \sum_{j=0}^2 \sum_{a+2b=1} \chi_\pi^i(a) \chi_\pi^j(b) \\ &= \sum_{i=0}^2 \sum_{j=0}^2 \sum_{a+b'=1} \chi_\pi^i(a) \chi_\pi^j(2^{-1}b') \\ &= \sum_{i=0}^2 \sum_{j=0}^2 \chi_\pi(2)^{-j} J(\chi_\pi^i, \chi_\pi^j) \\ &= \sum_{i=0}^2 \sum_{j=0}^2 \omega^{-kj} J(\chi_\pi^i, \chi_\pi^j) \\ &= p + \omega^{-k} J(\chi_\pi^2, \chi_\pi) + \omega^{-2k} J(\chi_\pi, \chi_\pi^2) \\ &+ \omega^{-k} J(\chi_\pi, \chi_\pi) + \omega^{-2k} J(\chi_\pi^2, \chi_\pi^2) \\ &= p - \omega^{-k} \chi_\pi(-1) - \omega^{-2k} \chi_\pi(-1)^2 + 2 \operatorname{Re} \left(\omega^{-k} J(\chi_\pi, \chi_\pi) \right) \\ &= p - \omega^{-k} - \omega^{-2k} + 2 \operatorname{Re} \left(\omega^{-k} J(\chi_\pi, \chi_\pi) \right). \end{split}$$

(a) If
$$\chi_{\pi}(2) = \omega$$
, then $k = 1$. Using $\chi_{\pi}^2 = \chi_{\pi}^{-1} = \overline{\chi_{\pi}}$, we obtain

$$N(x^3 + 2y^3 = 1) = p + 1 + 2 \operatorname{Re} (\omega^2 J(\chi_{\pi}, \chi_{\pi}))$$

= $p + 1 + 2 \operatorname{Re} (\omega^2 \pi)$,

since $J(\chi_{\pi}, \chi_{\pi}) = \pi$ (Lemma 1, section 4).

$$\omega^{2}\pi = \omega^{2}(a + b\omega) = b - a - \omega a,$$

$$2 \operatorname{Re}(\omega^{2}\pi) = (b - a - \omega a) + (b - a - \omega^{2}a) = 2b - 2a + a = 2b - a.$$

therefore

$$N(x^3 + 2y^3 = 1) = p + 1 + 2b - a$$
 (if $\chi_{\pi}(2) = \omega$).

Since in then case $\chi_{\pi}(2) = \omega$, then $a \equiv 0 \pmod{2}$ (see Ex. 39, part (e)), so $p+1+2b-a \equiv 0 \pmod{2}$.

(b) If
$$\chi_{\pi}(2) = \omega^2 = \omega^{-1}$$
, then $k = -1$, and

$$N(x^3 + 2y^3 = 1) = p + 1 + 2\operatorname{Re}(\omega\pi),$$

with

$$\omega \pi = \omega(a + b\omega) = -b + (a - b)\omega,$$

$$2 \operatorname{Re} (\omega \pi) = (-b + (a - b)\omega) + (-b + (a - b)\omega^2) = -2b - (a - b) = -a - b$$

therefore

$$N(x^3 + 2y^3 = 1) = p + 1 - a - b$$
 (if $\chi_{\pi}(2) = \omega^2$).

- (c) Suppose that $A \equiv B \pmod{4}$, and $\chi_{\pi}(2) \neq 1$. By hypothesis, b = 3B, and this implies by Exercise 40 (e) that $\chi_{\pi}(2) = \omega$ (if not, $\chi_{\pi}(2) = \omega_2$, and $A \equiv B \pmod{4}$ gives B = -b/3).
- (d) Suppose that $\chi_{\pi}(2) \neq 1, A \equiv B \pmod{4}$. By part (c), $\chi_{\pi}(2) = \omega$. Since 2a b = A, B = b/3, then $a = \frac{A+3B}{2}, b = 3B$.

Starting from $a + b\omega \equiv 0 \pmod{\pi}$, we obtain

$$3B\omega \equiv -\frac{A+3B}{2} \pmod{\pi}.$$

Since $pa = a^2 - ab + b^2$, a is relatively prime with p, therefore $\pi \wedge b = 1$, so $\pi \wedge B = 1$, and $\pi \wedge 6 = 1$, since $p \equiv 1 \pmod{6}$, thus

$$\chi_{\pi}(2) = \omega \equiv \frac{-A - 3B}{6B} \pmod{\pi},$$

where we must read in this fraction the product of A + 3B by the inverse modulo p of 6B. By definition, using $N(\pi) = p$,

$$\chi_{\pi}(2) \equiv 2^{\frac{p-1}{3}} \pmod{\pi},$$

SO

$$2^{\frac{p-1}{3}} \equiv \frac{-A-3B}{6B} \pmod{\pi}.$$

Moreover, since $4p = A^2 + 27B^2$, $A^2 + 27B^2 \equiv 0 \pmod{p}$, therefore

$$6B(A+9B) + (A+3B)(A-9B) \equiv 0 \pmod{p}.$$

If $p \mid A - 9B$, since $p \nmid 6B$, this equality implies that $p \mid A + 9B$, therefore $p \mid (A - 9B) + (A + 9B) = 2A$, which is false. Therefore $A - 9B \not\equiv 0 \pmod{p}$, and

$$2^{\frac{p-1}{3}} \equiv \frac{-A - 3B}{6B} \equiv \frac{A + 9B}{A - 9B} \pmod{\pi}.$$

Note: By a usual argument, if $h \in \mathbb{Z}$, $2^{\frac{p-1}{3}} \equiv h \pmod{\pi} \iff 2^{\frac{p-1}{3}} \equiv h \pmod{p}$. Note that the hypothesis $\chi_{\pi}(2) \neq 1$ means that 2 is not a cubic residue modulo p, which is equivalent to A, B odd by Exercise 39. We can conclude

Suppose that $p \equiv 1 \pmod{6}$, and let (A, B) be the unique solution of $4p = A^2 + 27B^2$ such that $A \equiv 1 \pmod{3}$, and $B \equiv A \pmod{4}$ if B odd, and B > 0 otherwise.

If B is even, then 2 is a cubic residue modulo p, and $2^{\frac{p-1}{3}} = 1$.

If B is odd, then 2 is not a cubic residue modulo p, and B satisfies $B \equiv A \pmod{4}$. Writing $a = \frac{A+3B}{2}, b = 3B$, and $\pi = a + b\omega$, then $\chi_{\pi}(2) = \omega$, and

$$2^{\frac{p-1}{3}} \equiv \frac{A+9B}{A-9B} \pmod{p}.$$

The three roots of x^3-1 in \mathbb{F}_p are $1, \frac{A+9B}{A-9B}, \frac{A-9B}{A+9B}$. Here 2 is not a cubic residue modulo p, and $2^{\frac{p-1}{3}}$ is also a cubic root of unity modulo p, so $2^{\frac{p-1}{3}} \equiv \frac{A\pm 9B}{A\mp 9B} \pmod{p}$. The proposition explicits the choice of the sign of B which gives $2^{\frac{p-1}{3}} \equiv \frac{A+9B}{A-9B} \pmod{p}$.

Numerical example: Let p be the prime 967. If we decompose p on the form $p=\pi\overline{\pi}$, we obtain $\pi=a+b\omega=-34-27\omega$. To obtain these result without tries, I find k=682 such that $p\mid k^2+3$ with the Tonelli-Shanks algorithm, and I compute $\gcd(p,k+1+2\omega)=a+b\omega$, where $a+b\omega$ is primary, with a small Python program using the class of elements in $\mathbb{Z}[\omega]$ and the Euclid algorithm in $\mathbb{Z}[\omega]$. This gives the decompositions

$$967 = p = a^2 - ab + b^2 = 34^2 - 34 \times 27 + 27^2,$$

and

$$3868 = 4p = (2a - b)^2 + 3b^2 = A^2 + 27B^2 = 41^2 + 27 \times 9^2,$$

where $A \equiv 1 \pmod{3}$, and I choose the sign of B such that $B \equiv A \pmod{4}$. We obtain A = -41, B = -9, and a, b must verify A = 2a - b, B = b/3.

Then $\chi_{\pi}(2) = \omega$, where $\pi = -41 - 9\omega$. In \mathbb{F}_{967} , the cubic roots of unity modulo p are 1,142,824: $142^3 \equiv 824^3 \equiv 1 \pmod{967}$.

Here $(A + 9B)(A - 9B)^{-1} = 142$, and we verify with a fast exponentiation that $2^{\frac{p-1}{3}} = 2^{322} \equiv 142 \pmod{967}$.

I give here an extract of a table obtained with this program, which for each p gives A, B such that $4p = A^2 + 27B^2, A \equiv 1 \pmod{3}$ and such that $B \equiv A \pmod{4}$ if A, B odd, and $\pi = a + b\omega$ satisfies $\chi_{\pi}(2) = \omega$ (or $\chi_{\pi}(2) = 1$ if A, B even, which corresponds to the case $a \equiv 1, b \equiv 0 \pmod{2}$).

p	A	B	$\pi = a + b\omega$	a%2	b%2	$2^{\frac{p-1}{3}} \% p$	$\frac{A-9B}{A+9B}$	$\chi_{\pi}(2)$
787	31	-9	$2-27\omega$	0	1	379	379	ω
811	-56	-2	$-31-6\omega$	1	0	1	130	1
823	-5	11	$14 + 33\omega$	0	1	648	648	ω
829	7	11	$20 + 33\omega$	0	1	125	125	ω
853	-35	9	$-4+27\omega$	0	1	632	632	ω
859	13	-11	$-10-33\omega$	0	1	260	260	ω
877	-59	1	$-28+3\omega$	0	1	594	594	ω
883	-47	-7	$-34-21\omega$	0	1	545	545	ω
907	19	11	$26 + 33\omega$	0	1	384	384	ω
919	52	-6	$17-18\omega$	1	0	1	52	1
937	61	1	$32 + 3\omega$	0	1	614	614	ω
967	-41	-9	$-34-27\omega$	0	1	142	142	ω
991	61	-3	$26-9\omega$	0	1	113	113	ω
997	10	-12	$-13-36\omega$	1	0	1	692	1

As a verification I compute $\chi_{\pi}(2)$ with a fast exponentiation in $\mathbb{Z}[\omega]$: $\chi_{\pi}(2) = 2^{\frac{p-1}{3}} \pmod{\pi}$.

We obtain the primary prime μ such that $N(\mu) = p, \chi_{\mu}(2) = \omega^2$ by taking the conjugate of π . For instance, with p = 787, $\pi = 2 - 27\omega$ satisfies $\chi_{\pi}(2) = \omega$, therefore $\chi_{\pi}(2) = \chi_{29+27\omega} = \omega^2$.

The lines where $\chi_{\pi}(2) = 1$, corresponding to the case where A, B are even (or equivalently a odd, b even), give the decomposition $p = x^2 + 27y^2$, (x = A/2, y = B/2). For instance $997 = 5^2 + 27 \times 6^2$. If p is prime,

 $\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z}, \ p = x^2 + 27y^2 \iff p \equiv 1 \pmod{3} \text{ and } \exists a \in \mathbb{Z}, \ 2 \equiv a^3 \pmod{p}.$

Ex. 9.42 The notation being as in Section 12 show that the minimal polynomial of $g(\chi_{\pi})$ is $x^3 - 3px - Ap$.

Note: we must read "the minimal polynomial of $G = g(\chi_{\pi}) + \overline{g(\chi_{\pi})}$ is $x^3 - 3px - Ap$ ".

Proof. Write $f(x) = \sum_{i=0}^{3} a_i x^i = x^3 - 3px - Ap$. Then $a_3 = 1$, $p \mid a_0 = Ap$, $p \mid a_1 = -3p$, $p \mid a_2 = 0$.

Moreover, since $4p = A^2 + 27B^2$, $p \nmid A$, therefore $p^2 \nmid a_0$.

The Eisenstein's Irreducibility Criterion (Ex. 6.23) shows that f(x) is irreducible over \mathbb{Q} . By section 12, G is a root of f, so f is the minimal polynomial of G.

Ex. 9.43 Find the local maxima and minima of $x^3 - 3px - Ap$ and show that each of the intervals $(-2\sqrt{p}, -\sqrt{p}), (-\sqrt{p}, \sqrt{p}), (\sqrt{p}, 2\sqrt{p})$ contains exactly one of the values $2\text{Re}(\omega^k g(\chi_{\pi})), \ k = 0, 1, 2.$

Proof. Write $\chi = \chi_{\pi}$, and for $k \in \{0, 1, 2\}$,

$$G_k = 2\operatorname{Re}(\omega^k g(\chi)) = \omega^k g(\chi) + \overline{\omega}^k \overline{g(\chi)},$$

so $G = G_0$. As in section 12, since $g(\chi)^3 = p\pi$, and $|g(\chi)|^2 = p$,

$$G_k^3 = g(\chi)^3 + \overline{g(\chi)}^3 + 3\omega^{2k}g(\chi)^2\overline{g(\chi)} + 3\omega^kg(\chi)\overline{\omega}^{2k}\overline{g(\chi)}^2$$

$$= p\pi + p\overline{\pi} + 3g(\chi)\overline{g(\chi)}(\omega^kg(\chi) + \overline{\omega}^k\overline{g(\chi)}$$

$$= 3pG_k + p(2a - b)$$

$$= 3pG_k + pA$$

So G_0, G_1, G_2 are the three roots of $f(x) = x^3 - 3px - Ap$.

 $f'(x) = 3(x^2 - p) < 0$ iff $-\sqrt{p} < x < \sqrt{p}$. f is decreasing on $[-\sqrt{p}, \sqrt{p}]$, and increasing on $]-\infty, -\sqrt{p}[$, and on $[\sqrt{p}, +\infty[$.

Since $4p = A^2 + 27B^2$, $|A| < 2\sqrt{p}$, therefore

$$f(\sqrt{p}) = p\sqrt{p} - 3p\sqrt{p} - Ap$$
$$= -p(2\sqrt{p} + A) < 0,$$

and

$$f(-\sqrt{p}) = -p\sqrt{p} + 3p\sqrt{p} - Ap$$
$$= p(2\sqrt{p} - A) > 0.$$

Since $\lim_{x\to -\infty} f(x) = -\infty$ and $\lim_{x\to +\infty} f(x) = +\infty$, the intermediate value theorem shows that f has a unique root in each of the intervals $]-\infty, -\sqrt{p}[,]-\sqrt{p}, \sqrt{p}[,[\sqrt{p},+\infty[$. Moreover

$$f(2\sqrt{p}) = 8p\sqrt{p} - 6p\sqrt{p} - Ap = p(2\sqrt{p} - A) > 0,$$

$$f(-2\sqrt{p}) = -8p\sqrt{p} + 6p\sqrt{p} - Ap = p(-2\sqrt{p} - A) < 0,$$

therefore f has a unique root in each of the intervals $]-2\sqrt{p},-\sqrt{p}[,]-\sqrt{p},\sqrt{p}[,[\sqrt{p},2\sqrt{p}[,]-\sqrt{p}]]$

Ex. 9.44 Let $n \in \mathbb{Z}$, $n = s_1 \cdots s_t$, $n \equiv 1 \pmod{4}$, $i = 1, \dots, t$. Show $(n-1)/4 \equiv \sum_{i=1}^{t} (s_i - 1)/4 \pmod{4}$.

Proof. If $n = st, s \equiv 1, t \equiv 1$ [4], then $s = 4k + 1, t = 4l + 1, k, t \in \mathbb{Z}$, so

$$n = (4k+1)(4l+1) = 16kl+4k+4l+1, \frac{n-1}{4} = 4kl+k+l \equiv k+l = \frac{s-1}{4} + \frac{l-1}{4} \ [4].$$

Reasoning by induction on t, suppose that every product of t factors $n = s_1 s_2 \cdots s_t$, where $s_i \equiv 1$ [4] verifies

$$\frac{n-1}{4} \equiv \sum_{i=1}^{t} \frac{s_i - 1}{4} [4].$$

If $n' = s_1 s_2 \cdots s_t s_{t+1} = n s_{t+1}, s_i \equiv 1[4]$, then $n \equiv 1, s_{t+1} \equiv 1$ [4], so

$$\frac{n'-1}{4} \equiv \frac{n-1}{4} + \frac{s_{t+1}-1}{4} \equiv \sum_{i=1}^{t} \frac{s_i-1}{4} + \frac{s_{t+1}-1}{4} \equiv \sum_{i=1}^{t+1} \frac{s_i-1}{4}$$
 [4].

Conclusion: if $n = s_1 s_2 \cdots s_t$, $s_i \equiv 1[4]$, alors $\frac{n-1}{4} \equiv \sum_{i=1}^t \frac{s_i-1}{4}[4]$.

Ex. 9.45 Let $\pi = a + bi \in \mathbb{Z}[i]$ and $q \equiv 3$ [4] a rational prime. Show $\pi^q \equiv \overline{\pi}$ [4].

Proof. Let $\pi = a + bi \in \mathbb{Z}[i]$, and $q \equiv 3$ [4] a rational prime.

As $\binom{q}{k} \equiv 0 \pmod{q}$ for $1 \leq k \leq q-1$, the Fermat's Little Theorem gives

$$\pi^{q} = (a+bi)^{q}$$

$$\equiv a^{q} + b^{q}i^{q} [q]$$

$$\equiv a + bi^{3} [q]$$

$$= a - bi$$

$$= \overline{\pi}$$

Conclusion: $\pi^q \equiv \bar{\pi} [q] (\pi \in \mathbb{Z}[i], \text{ and } q \equiv 3 [4])$