ENGR 507 (Spring 2025) S. Alghunaim

# 10. Special convex optimization problems

- linear programs
- piecewise-linear minimization
- quadratic optimization
- geometric programming
- semidefinite programs
- quasiconvex optimization

### Linear program

a linear program (LP) is an optimization problem of the form

minimize (or maximize) 
$$\sum_{j=1}^n c_j x_j$$
 subject to 
$$\sum_{j=1}^n a_{ij} x_j \leq b_i, \quad i=1,\dots,m$$
 
$$\sum_{i=1}^n g_{ij} x_j \leq h_i, \quad i=1,\dots,p$$

- n optimization variables  $x_1, \ldots, x_n$
- coefficients  $c_j, a_{ij}, g_{ij}, h_i, b_i$  are given
- convex problem with linear objective and linear/affine constraints

# LP in compact form

minimize (or maximize) 
$$c^T x$$
  
subject to  $Ax \le b$   
 $Gx \le h$ 

- A is an  $m \times n$  matrix with entries  $a_{ij}$
- G is an  $p \times n$  matrix with entries  $g_{ij}$

$$\bullet \ b = (b_1, \ldots, b_m)$$

$$\bullet \ \ h=(h_1,\ldots,h_p)$$

• 
$$c = (c_1, \ldots, c_n)$$

# **Example: diet problem**

ullet create meal with at least 12 units of protein, 9 units of iron, 15 units of thiamine

| food | protein  | iron     | thiamine | cost (cents/g) |
|------|----------|----------|----------|----------------|
| A    | 2 unit/g | 1 unit/g | 1 unit/g | 30             |
| В    | 1 unit/g | 1 unit/g | 3 unit/g | 40             |

• how many grams of each food should be used to minimize the cost of the meal?

the problem can formulated as

minimize 
$$30x_1 + 40x_2$$
  
subject to  $2x_1 + x_2 \ge 12$   
 $x_1 + x_2 \ge 9$   
 $x_1 + 3x_2 \ge 15$   
 $x_1, x_2 \ge 0$ 

where  $x_1$  and  $x_2$  are the number of grams of food A and B used in the meal

# **Example: alloy mixture**

we are given four alloys that have the metal properties listed in the below table

| property     | alloy 1 | alloy 2 | alloy 3 | alloy 4 |
|--------------|---------|---------|---------|---------|
| % of iron    | 70      | 25      | 40      | 20      |
| % of nickel  | 10      | 15      | 50      | 50      |
| % of cobalt  | 20      | 60      | 10      | 30      |
| cost (\$/kg) | 22      | 18      | 25      | 24      |

- goal is to create new alloy mixture with 40% iron, 35% nickel, 25% cobalt
- what proportions of the alloys should be blended together while minimizing cost?

- let  $x_i$  be the proportion of alloy i that is used to produce the new alloy
- the problem can be formulated as

$$\begin{array}{ll} \text{minimize} & 22x_1+18x_2+25x_3+24x_4\\ \text{subject to} & 0.7x_1+0.25x_2+0.4x_3+0.2x_4=0.4\\ & 0.1x_1+0.15x_2+0.5x_3+0.5x_4=0.35\\ & 0.2x_1+0.6x_2+0.1x_3+0.3x_4=0.25\\ & x_1+x_2+x_3+x_4=1\\ & x_1,x_2,x_3,x_4\geq 0 \end{array}$$

## **Example: wireless communication**



- n "mobile" users
- user i transmits signal to base station with power p<sub>i</sub> and attenuation factor of β<sub>i</sub>
   signal power received at the base station from user i is β<sub>i</sub>p<sub>i</sub>
- total power received from all other users is considered interference

   the interference for user i is ∑<sub>i≠i</sub> β<sub>i</sub>p<sub>j</sub>
- for reliable communication with user i, signal-to-interference ratio must exceed  $\gamma_i$
- goal is to minimize total power transmitted by all users subject to having reliable communications for all users

#### **Problem formulation**

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^n p_i \\ \text{subject to} & \frac{\sum_{i=1}^n \beta_i p_i}{\sum_{j\neq i} \beta_j p_j} \geq \gamma_i, \quad i=1,\dots,n \\ & p_i \geq 0, \quad i=1,\dots,n \end{array}$$

#### LP formulation

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^n p_i \\ \text{subject to} & \beta_i p_i - \gamma_i \sum_{j \neq i} \beta_j p_j \geq 0, \quad i = 1, \dots, n \\ & p_i \geq 0, \quad i = 1, \dots, n \end{array}$$

# **Example: assignment problem**

- we want to match N people to N tasks
- each person is assigned to one task (each task assigned to one person)
- cost of assigning person i to task j is  $c_{ij}$
- variable  $x_{ij} = 1$  if person i is assigned to task j;  $x_{ij} = 0$  otherwise

#### Combinatorial formulation

$$\begin{split} \text{minimize} & \quad \sum_{i=1}^{N} \sum_{j=1}^{N} c_{ij} x_{ij} \\ \text{subject to} & \quad \sum_{i=1}^{N} x_{ij} = 1, \quad j = 1, \dots, N \\ & \quad \sum_{j=1}^{N} x_{ij} = 1, \quad i = 1, \dots, N \\ & \quad x_{ij} \in \{0,1\}, \quad i,j = 1, \dots, N \end{split}$$

N! possible assignments (e.g., 10! = 3628800)

#### LP formulation

$$\begin{array}{ll} \text{minimize} & \sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}c_{ij}x_{ij} \\ \text{subject to} & \sum\limits_{i=1}^{N}x_{ij}=1, \quad j=1,\ldots,N \\ & \sum\limits_{j=1}^{N}x_{ij}=1, \quad i=1,\ldots,N \\ & 0 \leq x_{ij} \leq 1, \quad i,j=1,\ldots,N \end{array}$$

- we have *relaxed* the constraints  $x_{ij} \in \{0, 1\}$
- it can be shown that the solution  $x_{ii}^{\star} \in \{0, 1\}$
- hence, we can solve this hard combinatorial problem efficiently by solving an LP

linear programs SA\_ENGR507 10.10

# **Polyhedron**

a ployhedron is the intersection of finitely many halfspaces

$$a_1^T x \le b_1, \dots, a_m^T x \le b_m$$

in matrix notation, a polyhedron can be defined as

$$\mathcal{P} = \{ x \in \mathbb{R}^n \mid Ax \le b \}$$





# **Extreme points**

 $x \in \mathcal{P}$  is an *extreme point* of  $\mathcal{P}$  if it *cannot* be written as convex combination

$$x = \theta y + (1 - \theta)z, \quad \theta \in (0, 1)$$

for some  $y, z \in \mathcal{P}$ 



- $\hat{x}$  is an extreme point
- $\bar{x}$  and  $\tilde{x}$  are not extreme points

## Geometrical interpretation of LP

$$\begin{array}{ll} \text{minimize (or maximize)} & c^T x \\ & \text{subject to} & Ax \leq b \end{array}$$



- dashed lines are level sets  $c^T x = \alpha$  for different  $\alpha$
- feasible set is a polyhedron
- the optimal solutions occur at an extreme point

### **Outline**

- linear programs
- piecewise-linear minimization
- quadratic optimization
- geometric programming
- semidefinite programs
- quasiconvex optimization

### Piecewise-linear minimization

#### Piecewise-linear function

$$f(x) = \max_{i=1,\dots,m} (a_i^T x + b_i)$$

- $a_i \in \mathbb{R}^n$  and  $b_i \in \mathbb{R}$
- piecewise-linear function is a pointwise maximum of affine functions



#### Piecewise-linear minimization

minimize 
$$f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$$

## **Equivalent LP formulation**

minimize 
$$t$$
 subject to  $a_i^T x + b_i \le t$ ,  $i = 1, \ldots, m$ 

- with additional variable  $t \in \mathbb{R}$
- for fixed x, the optimal t is t = f(x)

#### Matrix form

$$\begin{array}{ll} \text{minimize} & \tilde{c}^T\!\tilde{x} \\ \\ \text{subject to} & \tilde{A}\tilde{x} \leq \tilde{b} \end{array}$$

where

$$\tilde{x} = \begin{bmatrix} x \\ t \end{bmatrix}, \quad \tilde{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \tilde{A} = \begin{bmatrix} a_1^T & -1 \\ \vdots & \vdots \\ a_m^T & -1 \end{bmatrix}, \quad \tilde{b} = \begin{bmatrix} -b_1 \\ \vdots \\ -b_m \end{bmatrix}$$

# $\ell_1$ -Norm approximation

minimize 
$$||Ax - b||_1$$

- $A \in \mathbb{R}^{m \times n}$  and  $b \in \mathbb{R}^m$
- for a vector  $y \in \mathbb{R}^m$ , we have

$$||y||_1 = \sum_{i=1}^m |y_i| = \sum_{i=1}^m \max\{y_i, -y_i\}$$

### **Equivalent LP formulation**

with variables  $x \in \mathbb{R}^n$  and  $u \in \mathbb{R}^m$ 

# **Robust curve fitting**

fit data points  $(z_i, y_i)$  to the straight line  $x_1 + x_2z \approx y$  using  $\ell_1$ -norm:

minimize 
$$||Ax - b||_1$$

where

$$A = \begin{bmatrix} 1 & z_1 \\ \vdots & \vdots \\ 1 & z_m \end{bmatrix}, \quad b = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- red circles represent the data
- blue dotted line from minimizing  $||Ax b||^2$
- black line from minimizing  $||Ax b||_1$
- ullet  $\ell_1$ -norm more robust to outliers



# Interview scheduling

- a company needs to schedule job interviews for n candidates  $(1, 2, \ldots, n)$
- candidate i is scheduled to be the ith interview
- the starting time of candidate i must be in the interval  $[\alpha_i, \beta_i]$ , where  $\alpha_i < \beta_i$
- goal is to find n starting times of interviews so that the minimal starting time difference between consecutive interviews is maximal

piecewise-linear minimization SA\_ENGR507 10.18

- let t<sub>i</sub> denote the starting time of interview i
- the objective function is the minimal difference between consecutive starting times:

$$f(t) = \min\{t_2 - t_1, t_3 - t_2, \dots, t_n - t_{n-1}\},\$$

#### **Problem formulation**

maximize 
$$\min\{t_2-t_1,t_3-t_2,\ldots,t_n-t_{n-1}\}$$
  
subject to  $\alpha_i \leq t_i \leq \beta_i, \quad i=1,2,\ldots,n,$ 

with variable  $t \in \mathbb{R}^n$ 

#### **Equivalent LP**

maximize 
$$s$$
 subject to  $t_{i+1}-t_i \geq s, \quad i=1,2,\ldots,n-1$   $\alpha_i \leq t_i \leq \beta_i, \quad i=1,2,\ldots,n,$ 

with variables  $t \in \mathbb{R}^n$  and  $s \in \mathbb{R}$ 

### **Outline**

- linear programs
- piecewise-linear minimization
- quadratic optimization
- geometric programming
- semidefinite programs
- quasiconvex optimization

## Quadratic optimization

### Quadratic program (quadratic optimization problem)

minimize 
$$(1/2)x^TQx + r^Tx$$
  
subject to  $Ax \le b$   
 $Gx = h$ 

- $O \in \mathbb{S}_{++}^n$ , so objective is convex quadratic
- $r \in \mathbb{R}^n$ ,  $A \in \mathbb{R}^{m \times n}$ ,  $G \in \mathbb{R}^{p \times n}$ ,  $h \in \mathbb{R}^p$ , and  $b \in \mathbb{R}^m$
- minimize a convex quadratic function over a polyhedron

#### Quadratically constrained quadratic problem (QCQP)

minimize 
$$(1/2)x^TQ_0x + r_0^Tx + s_0$$
 subject to 
$$(1/2)x^TQ_ix + r_i^Tx \le 0, \quad i = 1, \dots, p$$
 
$$Ax = b$$

- $Q_i \in \mathbb{S}_{++}^n$  (i = 0, 1, ..., m) are positive semidefinite
- feasible set is intersection of n ellipsoids and an affine set

## **Examples**

### Least squares

minimize 
$$||Ax - b||^2 = x^T A^T A x - 2b^T A x + b^T b$$

#### Constrained least squares

minimize 
$$\|Ax - b\|^2$$
  
subject to  $Gx = h$   
 $l_i \le x_i \le u_i, \quad i = 1, \dots, n$ 

this problem has no simple analytical solution

# **Example: power distribution (aggregator model)**

- in electricity markets, an aggregator
  - buys wholesale p units of power (Megawatt) from power distribution utilities
  - and resells this power to a group of *n* business or industrial customers
- the *i*th customer, i = 1, ..., n, would ideally wants  $p_i$  Megawatts
- the customer i does not want to receive more or less power than needed
- the customer dissatisfaction can be modeled as

$$f_i(x_i) = c_i(x_i - p_i)^2, \quad i = 1, ..., n$$

 $x_i$  is power given to customer i;  $c_i$  is a given customer parameter

- the aggregator problem is finding the power allocations  $x_i$ , i = 1, ..., n, such that
  - the average customer dissatisfaction is minimized,
  - the whole power *p* is sold,
  - and that the dissatisfaction level is no greater than a contract level, say d
- the aggregator problem is

$$\begin{aligned} & \min \text{minimize} & & \frac{1}{n} \sum_{i=1}^n c_i (x_i - p_i)^2 \\ & \text{subject to} & & \sum_{i=1}^n x_i = p, \\ & & & c_i (x_i - p_i)^2 \leq d, \quad i = 1, \dots, n \\ & & & x_i \geq 0, \quad i = 1, \dots, n \end{aligned}$$

this is a QCQP

quadratic optimization SA = ENGR507 10.23

# **Example: portfolio optimization**

we want to invest on n stocks to achieve a good return while minimizing risks of losses

- let  $x_i \ge 0$  be the proportion of investment on stock i
- let  $r_i$  be the return for stock i; we assume that the expected returns are known,

$$\mu_j = \mathbb{E}(r_j), \quad j = 1, 2, \dots, n,$$

and that the covariances of all the pairs of variables are also known,

$$\sigma_{i,j}^2 = \mathbb{E}[(r_i - \mu_i)(r_j - \mu_j)], \quad i, j = 1, 2, \dots, n$$

(typically, the mean and variance are estimated from historical data)

- a high variance indicates high risk; a low variance indicates low risk
- positive covariance  $\sigma_{ii}^2 > 0$  means stocks i and j prices move in the same direction
- a negative  $\sigma_{ij}^2 < 0$  means they one change in opposite direction

quadratic optimization SA\_ENGR507 10.24

• the overall return is the random variable

$$R = \sum_{j=1}^{n} x_j r_j$$

whose expectation and variance are given by

$$\mathbb{E}(R) = \mu^T x$$
,  $Var(R) = x^T \Sigma x$ 

- $\mu = (\mu_1, \mu_2, \dots, \mu_n)$
- $\Sigma$  is the covariance matrix whose elements are  $\Sigma_{i,j} = \sigma_{i,j}$
- the covariance matrix is always positive semidefinite

### Portfolio problem QP formulation:

minimize 
$$x^T \Sigma x$$
  
subject to  $\mu^T x \ge \alpha$   
 $\mathbf{1}^T x = 1$   
 $x \ge 0$ 

where  $\alpha$  is the minimal return value

### Portfolio problem QCQP formulation:

$$\begin{array}{ll} \text{maximize} & \mu^T x \\ \text{subject to} & x^T \Sigma x \leq \beta \\ & \mathbf{1}^T x = 1 \\ & x \geq 0 \end{array}$$

where  $\beta$  is the upper bound on the risk

### **Outline**

- linear programs
- piecewise-linear minimization
- quadratic optimization
- geometric programming
- semidefinite programs
- quasiconvex optimization

# Monomials and posynomials

#### Monomial function

$$f(x) = cx_1^{a_1}x_2^{a_2}\dots x_n^{a_n}, \quad \text{dom } f = \mathbb{R}_{++}^n$$

c > 0 and each  $a_i \in \mathbb{R}$  can be any number

### Posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \dots x_n^{a_{nk}}, \quad \text{dom } f = \mathbb{R}_{++}^n$$

each  $c_k > 0$ 

# **Example**

- wireless cellular network with n paired transmitters and receivers
- $p_1, \ldots, p_n$  are the transmit powers for these pairs
- each transmitter i is intended to communicate with its corresponding receiver i
- the signal to interference plus noise ratio (SINR) for each receiver is:

$$\gamma_i = \frac{S_i}{l_i + \sigma_i}, \quad i = 1, \dots, n,$$

- $-S_i$  represents the power of the desired signal received from transmitter i
- $l_i$  is the combined interference from all other transmitters
- $\sigma_i$  is the receiver's noise power

• the Rayleigh fading model suggests that the  $S_i$  is a linear function of  $p_1, \ldots, p_n$ :

$$S_i = G_{ii}p_i, \quad i = 1, \ldots, n,$$

and

$$l_i = \sum_{i \neq i} G_{ij} p_j,$$

where  $G_{ij}$  are the known path gains from transmitter j to receiver i

• therefore, the SINR expressions in terms of the powers  $p_1, \ldots, p_n$  are:

$$\gamma_i(p) = \frac{G_{ii}p_i}{\sigma_i + \sum_{j \neq i} G_{ij}p_j}, \quad i = 1, \dots, n,$$

• while the SINR functions aren't posynomials, their inverses are:

$$\gamma_i^{-1}(p) = \frac{\sigma_i}{G_{ii}} p_i^{-1} + \sum_{j \neq i} \frac{G_{ij}}{G_{ii}} p_j p_i^{-1}, \quad i = 1, \dots, n$$

## Generalized posynomials

a generalized posynomial is obtained from posynomials by various operations like

- addition
- multiplication
- pointwise maximum
- · raising to a specific power

#### Example

$$f(x) = \max(2x_1^{2.3}x_2^7, x_1x_2x_3^{3.14}, \sqrt{x_1 + x_2^3})$$

this function qualifies as a generalized posynomial

# Introducing variables

### Max of posynomial

$$f(x) = \max(f_1(x), f_2(x))$$

- both  $f_1$  and  $f_2$  are posynomials
- for some t > 0, the inequality  $f(x) \le t$  can be broken down into two inequalities:

$$f_1(x) \le t$$
 and  $f_2(x) \le t$ 

### Power of posynomial constraint

$$(f(x))^a \le t$$

- f being a regular posynomial; t > 0 and a > 0
- equivalent to:

$$f(x) \le t^{1/a}$$
 or  $g(x,t) = t^{-1/\alpha} f(x) \le 1$ 

# Geometric program (GP)

minimize 
$$f(x)$$
  
subject to  $g_i(x) \le 1$ ,  $i = 1, \dots, m$   
 $h_i(x) = 1$ ,  $i = 1, \dots, p$ 

- $f, g_1 \dots, g_m$  are posynomials
- $h_1, \ldots, h_p$  are monomials
- its domain is inherently set as  $\mathcal{D} = \mathbb{R}^n_{++}$  (implicit constraint x > 0)

## **Example**

consider the optimization problem:

maximize 
$$x/y$$
 subject to  $2 \le x \le 3$  
$$x^2 + 3y/z \le \sqrt{y}$$
 
$$x/z = z^2$$

where  $x, y, z \in \mathbb{R}$  and implicitly x, y, z > 0

• the problem can be recast into the standard GP form:

$$\begin{array}{ll} \text{minimize} & x^{-1}y\\ \text{subject to} & 2x^{-1} \leq 1\\ & (1/3)x \leq 1\\ & x^2y^{-1/2} + 3y^{1/2}z^{-1} \leq 1\\ & xy^{-1}z^{-2} = 1 \end{array}$$

### Change of variable

- geometric programs are generally not convex optimization problems
- but, they can be recast into convex forms through suitable transformations

**Change of variable:**  $y_i = \log x_i$  ( $x_i = e^{y_i}$ ); take logarithm of cost, constraints

• monomial  $f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}$  can be transformed to

$$f(y) = e^{a^T y + \log c} \iff \log f(y) = a^T y + b, \quad (b = \log c)$$

• posynomials  $f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$  can be transformed to

$$f(y) = \sum_{k=1}^K e^{a_k^T y + \log c_k} \iff \log f(y) = \log(\sum_{k=1}^K e^{a_k^T y + b}), \quad (b_k = \log c_k)$$

with 
$$a_k = (a_{1k}, \ldots, a_{nk})$$

### Geometric program in convex form

applying the logarithm to the objective/constraint functions results in

$$\begin{split} & \text{minimize} & & \bar{f}(y) = \log\left(\sum_{k=1}^{K_0} e^{a_{0k}^T y + b_{0k}}\right) \\ & \text{subject to} & & \bar{g}_i(y) = \log\left(\sum_{k=1}^{K_i} e^{a_{ik}^T y + b_{ik}}\right) \leq 0, \quad i = 1, \dots, m \\ & & \bar{h}_i(y) = h_i^T y + d_i = 0, \quad i = 1, \dots, p \end{split}$$

- $\bar{f}$  and  $\bar{g}_i$  functions are convex, and  $\bar{h}_i$  functions are affine
- thus, this optimization problem is convex
- we call it geometric program in convex form
- the original form is called geometric program in posynomial form

### **Example**

- consider a cylindrical liquid storage tank with height, h, and diameter, d
- unlike the main body of the tank, its base is made from a distinct material
- assume the height of base remains unchanged irrespective of tank's height
- $V_{\text{tank}}$  is the volume of the tank
- ullet  $V_{
  m supp}$  is the volume supplied within a designated time frame
- total costs associated with manufacturing/operating the tank over a set duration (e.g., a year) is divided into
  - filling cost
  - construction cost
- goal is to minimize cost subject to some constraints

geometric programming SA — ENGR507 10.36

### Filling costs

$$C_{\text{fill}}(d,h) = \alpha_1 \frac{V_{\text{supp}}}{V_{\text{tank}}} = c_1 h^{-1} d^{-2}$$

- $\alpha_1$  is a positive constant (in dollars), and  $c_1 = \frac{4\alpha_1 V_{\rm supp}}{\pi}$
- ullet tied to supplying a certain volume,  $V_{\text{supp}}$ , of a liquid within the time-frame
- ullet  $V_{ ext{supp}}/V_{ ext{tank}}$  determines the frequency of tank refilling; hence its cost
- as the volume of the tank diminishes relative to the supply volume, filling costs rise

#### Construction costs:

$$C_{\text{constr}}(d, h) = c_2 d^2 + c_3 dh,$$

- $c_2=\alpha_2\frac{\pi}{4}$  and  $c_3=\alpha_3\pi$  ( $\alpha_2,\alpha_3$  are +ve dollar-per-square-meter constants)
- include the expenses of constructing the tank's and its base
- the base's cost is proportional to its area,  $\frac{\pi d^2}{4}$
- the tank's cost correlates with its surface area,  $\pi dh$

#### **Total cost**

$$C_{\text{total}}(d, h) = C_{\text{fill}}(d, h) + C_{\text{constr}}(d, h)$$
$$= c_1 h^{-1} d^{-2} + c_2 d^2 + c_3 dh$$

this posynomial objective function is subject to constraints such as upper and lower limits on the diameter and height, represented as:

$$0 < d \le d_{\max}, \quad 0 < h \le h_{\max}$$

#### **GP** formulation

minimize 
$$c_1h^{-1}d^{-2}+c_2d^2+c_3dh$$
  
subject to  $0 < d_{\max}^{-1}d \le 1$   
 $0 < h_{\max}^{-1}h \le 1$ 

with variables d, h

### **Outline**

- linear programs
- piecewise-linear minimization
- quadratic optimization
- geometric programming
- semidefinite programs
- quasiconvex optimization

## Semidefinite program

a *linear matrix inequality* (LMI) constrains a vector of variables  $x \in \mathbb{R}^n$  as

$$F(x) = F_0 + \sum_{i=1}^{m} x_i F_i \le 0$$
 (10.1)

with symmetric coefficient matrices  $F_0, \ldots, F_n$  of size  $m \times m$ 

a **semidefinite program** (SDP) is a particular type of convex optimization problem:

minimize 
$$c^T x$$
  
subject to  $F(x) = F_0 + \sum_{i=1}^n x_i F_i \le 0$  (10.2)

- $x \in \mathbb{R}^n$  is the optimization variable and  $c \in \mathbb{R}^n$
- each  $F_i$  is a known  $m \times m$  symmetric matrices
- if  $F_0, F_1, \dots, F_m$  are diagonal matrices the SDP becomes a linear program

### **General form SDP**

minimize 
$$c^Tx$$
 subject to  $F^{(i)}(x)=x_1F_1^{(i)}+\cdots+x_nF_n^{(i)}+F_0^{(i)}\preceq 0,\quad i=1,\ldots,K$   $Gx\leq h$   $Ax=b$ 

can be equivalently represented as an SDP

minimize 
$$c^T x$$
  
subject to  $\operatorname{diag}(Gx - h, F^{(1)}(x), \dots, F^{(K)}(x)) \leq 0$   
 $Ax = b$ 

semidefinite programs SA — ENGR507 10.40

# Example: maximum eigenvalue minimization

minimize 
$$\lambda_{\max}(F(x))$$

- the function  $\lambda_{\max}(\cdot)$  is nonconvex
- this problem can be equivalently reformulated as:

minimize 
$$t$$
 subject to  $F(x) - tI \leq 0$ 

where the variables are  $x \in \mathbb{R}^n$  and  $t \in \mathbb{R}$ 

• this is a specific instance of an SDP in the augmented (vector) variable:

$$\hat{x} = \begin{bmatrix} t \\ x \end{bmatrix}, \quad \hat{c} = (1, 0, \dots, 0), \quad \hat{F}(\hat{x}) = F(x) - tI$$

# Example: spectral matrix norm minimization

minimize 
$$||A(x)||_2$$

- $A(x) = A_0 + x_1 A_1 + \dots + x_n A_n \in \mathbb{R}^{p \times m}$
- this problem is equivalent to the following SDP:

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & \left[ \begin{array}{cc} tI_m & A^T(x) \\ A(x) & tI_p \end{array} \right] \succeq 0 \\ \end{array}$$

with decision variables  $x \in \mathbb{R}^n$  and  $t \in \mathbb{R}$   $(t \ge 0)$ 

• to show this, recall that the spectral norm is

$$\|A(x)\|_2 = \sqrt{\lambda_{\max}(A^T(x)A(x))}$$

· it follows that

$$||A(x)||_2 \le t \iff A^T(x)A(x) \le t^2 I, \quad t \ge 0$$

• using the Schur complement rule, this matrix inequality is same as

$$\left[\begin{array}{cc} t^2 I_m & A^T(x) \\ A(x) & I_p \end{array}\right] \succeq 0 \iff \left[\begin{array}{cc} t I_m & A^T(x) \\ A(x) & t I_p \end{array}\right] \succeq 0$$

right inequality obtained by congruence transformation with

$$\operatorname{diag}(1/\sqrt{t}I_m, \sqrt{t}I_p)$$

for t > 0

## **Example: Frobenius norm minimization**

minimize 
$$||A(x)||_F^2$$

equivalent to SDP:

$$\begin{array}{ll} \text{minimize} & \operatorname{tr}(Y) \\ \text{subject to} & \left[ \begin{array}{cc} Y & A(x) \\ A^T(x) & I_m \end{array} \right] \succeq 0$$

where the variables are  $x \in \mathbb{R}^n$  and  $Y \in \mathbb{R}^{p \times p}$  is positive semidefinite

• the equivalence of this formulation can be established by noting the relationship:

$$||A(x)||_F^2 = \text{tr}(A(x)A^T(x))$$

• using the Schur complement, the matrix condition can be written as:

$$\left[\begin{array}{cc} Y & A(x) \\ A^{T}(x) & I_{m} \end{array}\right] \succeq 0 \iff A(x)A^{T}(x) \preceq Y$$

this validation links the original objective with the SDP representation

### **Outline**

- linear programs
- piecewise-linear minimization
- quadratic optimization
- geometric programming
- semidefinite programs
- quasiconvex optimization

#### **Quasiconvex function**

 $f: \mathbb{R}^n \to \mathbb{R}$  is *quasiconvex* if its domain and all of its sublevel sets

$$S_{\gamma} = \{x \mid f(x) \le \gamma\}$$

are convex for every real number  $\gamma$ 

- every convex function naturally possesses convex level sets
- there exist non-convex functions that have convex level sets
- a function is *quasiconcave* if its negative (-f) is quasiconvex
- a function that's both quasiconvex and quasiconcave is called quasilinear
  - both their domain and each level set  $\{x \mid f(x) = \alpha\}$  are convex

### **Graphical illustration**

quasiconvex function that is non-convex



- $S_{\alpha} = [a, b]$  is convex
- $S_{\alpha} = (\infty, c)$  is convex

# **Examples**

- $f(x) = \sqrt{|x|}$  is nonconvex, but it is quasiconvex
  - when  $\gamma < 0$ , then  $S_{\gamma} = \emptyset$
  - for  $\gamma \ge 0$ , the sublevel set is given by:

$$\mathcal{S}_{\gamma} = \{x \mid \sqrt{|x|} \leq \gamma\} = \{x \mid |x| \leq \gamma^2\} = [-\gamma^2, \gamma^2]$$

- $\log x$  over  $\mathbb{R}_{++}$  is both quasiconvex and quasiconcave, making it quasilinear
- $\operatorname{ceil}(x) = \inf\{z \in \mathbb{Z} \mid z \ge x\}$ , is quasiconvex and quasiconcave
- the nonconvex  $f(x_1, x_2) = x_1 x_2$  is quasiconcave on  $\mathbb{R}^2_+$  but not on  $\mathbb{R}^2$

the function

$$f(x) = \frac{a^T x + b}{c^T x + d}, \quad \text{dom } f = \{x \in \mathbb{R}^n \mid c^T x + d > 0\}, c \neq 0$$

is quasiconvex since

$$S_{\gamma} = \{x \mid f(x) \le \gamma\} = \{x \in \mathbb{R}^n \mid (a - \gamma c)^T x + (b - \gamma d) \le 0\}$$

is a convex set

• given points  $a, b \in \mathbb{R}^n$ , the function

$$f(x) = \frac{\|x - a\|}{\|x - b\|}$$

is quasiconvex since its sublevel set represents the halfspace where the distance to a is less than or equal to the distance to b

quasiconvex optimization SA = ENGR507 10.48

### Properties of quasiconvex function

• f is quasiconvex iff dom f is convex and for any  $x, y \in dom f$  with  $0 \le \theta \le 1$ ,

$$f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}$$



• a differentiable f with convex domain is quasiconvex if and only if

$$f(y) \le f(x) \Longrightarrow \nabla f(x)^T (y - x) \le 0$$

• a sum of quasiconvex functions is not necessarily quasiconvex

### **Examples**

• the cardinality  $x \in \mathbb{R}^n$ , denoted  $\operatorname{card}(x)$ , is the no. of its non-zero entries  $\operatorname{card}(x)$  is quasiconcave on  $\mathbb{R}^n_+$  but not on  $\mathbb{R}^n$ ; this stems from the fact:

$$card(x + y) \ge min\{card(x), card(y)\},\$$

valid for non-negative vectors x, y

the rank is quasiconcave on positive semidefinite matrices since

$$rank(X + Y) \ge min\{rank X, rank Y\}$$

holds for positive semidefinite matrices X, Y

### **Quasiconvex optimization**

a quasiconvex optimization problem in standard form is represented as

minimize 
$$f(x)$$
  
subject to  $g_i(x) \le 0, \quad i = 1, \dots, m$  (10.3)  
 $Ax = b$ 

- the objective f is quasiconvex
- g<sub>i</sub> are convex
- can have locally optimal points that are not (globally) optimal

# Convex representation of sublevel sets of f

if f is quasiconvex, there exists a family of functions  $\phi_t(x)$  such that:

- $\phi_t(x)$  os convex in x for fixed t
- *t*-sublevel set of f is 0-sublevel set of  $\phi_t(x)$ :

$$f(x) \le t \iff \phi_t(x) \le 0$$

where for every x, we have  $\phi_s(x) \leq \phi_t(x)$  for any  $s \geq t$ 

### Example

$$f(x) = \frac{p(x)}{q(x)}$$

with p convex, q concave, and  $p(x) \ge 0$ , q(x) > 0 on dom f can take  $\phi_t(x) = p(x) - tq(x)$ :

- for  $t \ge 0$ ,  $\phi_t$  convex in x
- $p(x)/q(x) \le t$  if and only if  $\phi_t(x) \le 0$

## Quasiconvex optimization via convex feasibility problems

find 
$$x$$
 subject to  $\phi_t(x) \leq 0$  
$$f_i(x) \leq 0, \quad i=1,\ldots,m$$
  $Ax=b$ 

- if feasible then  $p^* \le t$ ;  $p^*$  is optimal solution of original quasiconvex problem
- if infeasible, then  $p^* \ge t$ ;

#### Bisection for quasiconvex problems

**given:**  $l \le p^{\star}, u \ge p^{\star}$  and a tolerance  $\epsilon > 0$ 

#### repeat

- 1.  $t := \frac{l+u}{2}$
- 2. evaluate the convex feasibility problem
- 3. if feasible, set u := t; else, set l := t

until 
$$u - l \le \epsilon$$

### References and further readings

- S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004. (chapters 2.2.1, 2.2.4, 4.3)
- G. C. Calafiore and L. El Ghaoui. Optimization Models. Cambridge University Press, 2014. (chapter 9).

references SA\_ENGR507 10.54