OVERLAPPING OPEN CLUSTERS NGC 1750 AND NGC 1758 BEHIND THE TAURUS DARK CLOUDS. II. CCD PHOTOMETRY IN THE VILNIUS SYSTEM

V. Straižys¹, A. Kazlauskas¹, A. Černiauskas¹, R. P. Boyle², F. J. Vrba³, A. G. Davis Philip⁴, V. Laugalys¹, K. Černis¹ and F. Smriglio⁵

- ¹ Institute of Theoretical Physics and Astronomy, Vilnius University, Goštauto 12, Vilnius 2600, Lithuania
- ² Vatican Observatory Research Group, Steward Observatory, Arizona University, Tucson, Arizona 85721, U.S.A.
- ³ U.S. Naval Observatory, P.O. Box 1149, Flagstaff, Arizona 86002, U.S.A.
- ⁴ Union College and Institute for Space Observations, 1125 Oxford Place, Schenectady, NY 12308, U.S.A.
- ⁵ Specola Vaticana, I-00120, Vatican City State, Italy

Received July 15, 2003.

Abstract. Seven-color photometry in the *Vilnius* system has been obtained for 420 stars down to V=16 mag in the area containing the overlapping open clusters NGC 1750 and NGC 1758 in Taurus. Spectral and luminosity classes, color excesses, interstellar extinctions and distances are given for 287 stars. The classification of stars is based on their reddening-free Q-parameters. 18 stars observed photoelectrically were used as standards. The extinction vs. distance diagram exhibits the presence of one dust cloud at a distance of 175 pc which almost coincides with a distance of other dust clouds in the Taurus complex. The clusters NGC 1750 and NGC 1758 are found to be at the same distance of \sim 760 pc and may penetrate each other. Their interstellar extinction A_V is 1.06 mag which corresponds to $E_{B-V}=0.34$ mag.

Key words: techniques: photometric: Vilnius photometric system – stars: fundamental parameters, classification – ISM: extinction, dust clouds – open clusters: individual objects: NGC 1750, NGC 1758

including suggestions for reducing	this burden, to Washington Headquuld be aware that notwithstanding ar		rmation Operations and Reports	s, 1215 Jefferson Davis	Highway, Suite 1204, Arlington
1. REPORT DATE 2003		2. REPORT TYPE N/A		3. DATES COVE	RED
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER
11 0 1	Clusters NGC 1750 CD Photometry in t		hind the Taurus	5b. GRANT NUN	MBER .
Dark Clouds. 11. C	CD I notometry in t	me viimus System		5c. PROGRAM E	ELEMENT NUMBER
6. AUTHOR(S)				5d. PROJECT NU	JMBER
				5e. TASK NUME	BER
				5f. WORK UNIT	NUMBER
	ZATION NAME(S) AND AD AD OF COMMENTAL AND AD	` /	nue, N.W.	8. PERFORMING REPORT NUMB	G ORGANIZATION ER
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited			
13. SUPPLEMENTARY NO	OTES				
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	29	RESPONSIBLE PERSON

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

Report Documentation Page

Form Approved OMB No. 0704-0188

1. INTRODUCTION

NGC 1750 and NGC 1758 are a pair of partly overlapping open clusters in Taurus, first investigated in the Vilnius photometric system by Straižys, Černis & Meištas (1992, hereafter Paper I). Photoelectric photometry of 116 stars down to 13th magnitude has revealed that the clusters are at 510 and 680 pc distances, respectively. Interstellar reddening E_{B-V} of both clusters was found to be close to 0.4 mag. The distance of the dust layer responsible for the reddening was found to be at 175 pc. The reality of the clusters was verified by their photometric distances and proper motions of the cluster members.

Paper I has increased the interest in this pair of clusters. In a series of papers Galadi-Enriquez et al. (1998a,b,c) have confirmed the reality of the two clusters. Their investigation was based on stellar photometry in the UBVRI photometric system by CCD and photographic techniques down to 18–20 mag and on the proper motions of stars based on a plate collection covering a broad range of epochs (from 1891 to 1994). The lists of NGC 1750 and NGC 1758 members down to V=15 mag were composed containing 79 and 57 stars respectively. For both clusters the reddening $E_{B-V}=0.34$ mag, based on the member stars measured by Straižys et al. (1992) in the Vilnius system and by the authors in the Strömgren system. The distances to the clusters were found to be 630 pc and 760 pc. Another proper motion study in the area was published by Tian et al. (1998).

Trying to obtain an independent criterion of membership to both clusters, based on photometric classification of stars in terms of MK spectral and luminosity classes, we have started a new investigation of the cluster area in the Vilnius system by CCD photometry, extending photometric classification down to a fainter limit in comparison to Paper I. Although the preliminary results of the present study were known already in 1995–1996, the publication was delayed due to problems of flat-fielding and CCD non-linearity.

2. CCD OBSERVATIONS, REDUCTIONS AND RESULTS

CCD exposures of two areas centered on NGC 1750 and NGC 1758 were obtained by R. P. Boyle and F. J. Vrba in 1994 with the 1-meter Ritchey telescope of the Flagstaff Station of the U.S. Naval Observatory. A nitrogen-cooled Tektronix chip of 2048×2048 pixels

giving an area of $23' \times 23'$ was used. The filters of the Vilnius system were combined from two sets. The passbands U, P, Y and V were set up by square glass filters of 80×80 mm and the passbands X, Z and S were set up by round interference filters of 60 mm diameter. The glass filters covered the whole CCD area without vignetting $(23' \times 23' \text{ field})$. The interference filters gave an unvignetted field of 20' diameter. The exposure lengths were from 45 min for U to 4 min for Z, V and S.

For reductions the standard routines of the IRAF 2.11 software package were used. Instrumental CCD magnitudes were obtained by using aperture photometry. Flat-fielding corrections were obtained from twilight exposures with corrections obtained from multiple exposures of the standard field – open cluster M 67 (for more details see Laugalys et al. 2003). A small non-linearity in the CCD response was found and taken into account. Stars with non-symmetrical images were excluded from photometry.

The measured stars are identified in Figures 1 and 2. Figure 3 shows the rms errors σ for the magnitude V and six color indices calculated from the signal-to-noise ratios. For the stars brighter than ~ 14.5 mag the values of σ in all colors are < 0.01 mag. For these stars a good classification accuracy is expected. For the majority of stars down to 15.5 mag σ does not exceeds 0.02 mag: their classification should be also of reasonable accuracy.

Instrumental V magnitudes and U-V, P-V, X-V, Y-V, Z-V and V-S color indices were transformed to the standard Vilnius system by color equations obtained for the cluster M 67 observed during the same nights, as the NGC 1750/1758 area. The zero points of the transformation equations were fixed by 18 stars of magnitudes 11–13 measured photoelectrically by A. Kazlauskas and V. Laugalys with the 1.5-meter telescope at Mount Lemmon (Arizona) in 2001 (Table 1).

The results of photometry for 420 stars are given in Table 2 which lists the identification number, the coordinates for 2000.0, V magnitudes and six Vilnius color indices. The last three columns contain spectral types determined photometrically, interstellar extinctions and distances. Their determination is described in the next section.

Fig. 1. Identification chart of the NGC 1750/1758 area, western part.

Fig. 2. Identification chart of the NGC 1750/1758 area, eastern part.

Fig. 3. Instrumental errors of magnitudes and color indices as a function of the magnitude V.

Table 1. Results of photoelectric photometry of standard stars. The numbers correspond to Table 2 and Figures

	g	2	7	7	7	7	က	7	က	7	7	2	7	2	က	7	7	7	7
	$\sigma(V-S)$	0.009	0.008	0.012	0.009	0.007	0.010	0.021	0.009	0.009	0.010	0.008	0.013	0.009	0.016	0.010	0.009	0.014	0.010
	$\sigma(Z-V)$	0.008	0.007	0.009	0.011	0.007	0.007	0.010	0.007	0.008	0.009	0.007	0.007	0.014	0.011	0.009	0.008	0.009	0.009
	$\sigma(Y-V)$	0.011	0.007	0.008	0.007	0.007	0.010	0.009	0.000	0.007	0.008	0.007	0.007	0.018	0.013	0.008	0.008	0.014	0.011
	$\sigma(X-V)$	0.009	0.008	0.009	0.008	0.008	0.007	0.009	0.007	0.008	0.008	0.008	0.010	0.010	0.013	0.009	0.013	0.013	0.008
3	$\sigma(P-V)$	900.0	0.000	0.012	900.0	0.000	0.005	0.008	0.007	0.006	0.006	0.006	0.006	0.013	0.009	0.006	0.008	0.002	900.0
	$\sigma(U-V)$	0.008	0.007	0.009	0.007	0.000	0.006	0.009	0.006	0.008	0.008	0.000	0.007	0.013	0.009	0.010	0.010	0.008	0.007
	σV	0.009	0.008	0.008	0.008	0.008	0.007	0.010	0.007	0.009	0.009	0.011	0.008	0.014	0.009	0.009	0.008	0.009	0.008
	$N^{-}S$	0.685	0.344	0.410	0.385	0.410	0.452	0.447	0.380	0.414	0.408	0.411	0.395	0.440	0.589	0.418	0.764	0.510	0.335
	Z- V	0.270	0.150	0.185	0.152	0.183	0.179	0.184	0.167	0.186	0.193	0.174	0.182	0.188	0.236	0.201	0.350	0.219	0.153
	Y- V	0.742	0.427	0.507	0.446	0.486	0.492	0.527	0.464	0.503	0.501	0.487	0.449	0.499	0.654	0.523	0.769	0.570	0.418
	X- V	1.582	0.890	1.121	0.956	1.023	1.132	1.192	1.044	1.131	1.162	1.009	1.019	1.082	1.389	1.140	1.941	1.251	0.968
	P- V	2.227	1.722	2.040	1.748	1.926	2.012	2.071	1.947	2.029	2.079	1.909	1.903	1.987	2.058	2.030	2.849	2.016	1.878
and 2.	N-N	2.812	2.412	2.765	2.411	2.788	2.714	2.781	2.631	2.741	2.762	2.744	2.633	2.766	2.674	2.740	3.339	2.666	2.577
-	Λ	12.738	11.227	12.576	11.238	11.087	12.025	12.923	12.090	12.724	12.328	10.807	11.952	12.095	13.280	12.585	12.515	12.979	11.986
	No.	128.	137.	146.	154.	161.	197.	204.	216.	219.	223.	225.	235.	275.	324.	350.	391.	403.	413.

 Table 2. Results of CCD photometry.

r	500 780 510 1030 1030 1480 2020 790 1130 610 620 620 1480 920 770 770	740
A_V mag	1.04 1.08 0.75 1.08 1.08 0.95 1.16 1.28 0.92 1.16 1.08 0.93 1.12 0.92 1.12	0.87
Photom. sp. type	f/g f/g f/g f/g f/g f/g f/g f/g	f8 V
V-S mag	0.586 0.753 0.700 0.700 0.640 0.736 0.653 0.623	0.694
Z-V mag	0.318 0.318 0.210 0.230 0.276 0.523 0.523 0.193 0.145 0.212 0.145 0.244 0.244 0.244 0.252 0.239 0.239 0.252 0.252	0.229
Y-V mag	0.734 0.819 0.605 0.737 0.774 1.060 1.060 0.722 0.842 0.603 0.603 0.603 0.603 0.603 0.603 0.731 0.591 0.591 0.591 0.593	0.721
X-V mag	1.599 1.871 1.406 1.676 1.716 2.447 2.287 1.522 0.880 1.334 1.391 1.608 1.608 1.223 1.091 1.223 1.667 1.223 1.667	1.591
P-V mag	2.206 2.322 2.3201 2.3201 2.3232 2.333 2.333 2.236 2.097 2.234 2.234 2.234 2.234 2.234 2.234 2.234 2.234 2.234 2.234 2.3	2.251
U-V mag	2.880 2.880 2.880 2.892 2.990 2.990 2.322 2.322 2.741 2.322 2.741	2.804
V mag	15.449 12.629 13.884 15.150 15.150 15.798 15.499 14.838 16.049 17	
δ(2000)	23 39 44 23 43 12 23 44 18 23 43 12 23 43 12 23 43 17 23 43 17 23 43 17 23 43 23 23 43 33 23 43 33 23 43 33 23 44 42 23 45 27 23 46 11 23 45 27 23 46 11 23 47 27 23 48 09 23 48 09 23 48 09 23 48 09 23 48 09 23 48 09 23 48 09	39
$\alpha(2000)$ h m s	0 0	ာ က
No.	1.9.8.4.7.9.7.8.9.0.1.9.8.4.7.9.9.9.9.1.9.8.4.7.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	30.

Table 2 (continued)

r	1210	380	200	1210	710	840	092		1280	720			092		620		710	580		029	420	630			570			
AV mag	1.16	1.08 0.96	1.37	1.54	1.29	0.87	0.87	,	0.99	1.25			0.79		1.12		1.62	1.29		1.08	0.92	1.08			0.87			
Photom. sp. type		80 85 V						<i>5</i> 0.	k0 IV	P8 V	1 5:	f8:	a6 V	g0	$g_0 V$	g1:	78 V	a8 V					g0/5				k1/2 III:	g0/5
V-S mag	0.615	0.749	0.656	0.576	0.659	0.329	0.352	0.929	0.830	0.346	0.666	0.607	0.368	0.708	0.722	0.769	0.674	0.542	0.930	0.723	0.684	0.618	0.778	0.791	0.643	0.868	0.986	0.716
Z-V mag	0.333	0.305	0.309	0.391	$0.312 \\ 0.496$	0.139	0.146	0.322	0.431	0.160	0.290	0.525	0.168	0.224	0.314	0.422	0.375	0.199	0.312	0.268	0.249	0.249	0.327	0.329	0.255	0.299	0.386	0.273
Y-V mag	0.742	0.797	0.788	0.869	0.831	0.413	0.434	0.999	0.949	0.386	0.835	1.001	0.453	0.679	0.798	0.959	0.900	0.605	0.914	0.767	0.727	0.725	0.877	0.904	0.716	0.813	0.945	0.734
X-V mag	1.551	1.800 1.884	1.648	1.732	$\frac{1.721}{2.654}$	0.910	0.976	2.223	2.280	0.820	1.664	1.830	1.066	1.587	1.795	2.109	1.865	1.344	2.091	1.695	1.583	1.511	1.996	1.995	1.567	2.125	2.539	1.727
P-V mag	2.208	2.455	2.276	2.354	2.318 3.681	1.818	1.909	3.259	3.243	1.533	2.284	2.589	1.997	2.234	2.421	2.733	2.451	2.160	2.934	2.430	2.228	2.180	2.572	2.687	2.195	3.027	3.565	2.285
U- V mag	2.970	$\frac{3.107}{3.109}$	2.900	2.915	2.935 4.378	2.472	2.590	4.043	3.823	2.123	3.016	3.049	2.667	2.929	3.008	3.390	3.014	2.867	3.779	3.113	2.806	2.867	3.353	3.133	2.761	3.455	4.425	2.965
V mag	15.082	$\frac{14.070}{13.842}$	14.085	15.852	14.652 15.543	11.594	11.666	15.513	14.626	10.605	14.502	15.486	12.194	14.915	14.383	15.212	14.886	12.487	15.842	12.917	13.037	13.580	15.562	14.352	13.657	15.924	15.727	15.837
δ(2000)	43	$23 \ 42 \ 13$	43	$\frac{36}{2}$	£ 5	47	47	47	40	35	33	41	47	38	39	37	40	35	43	39	48	33	50	37	44	39	35	35
$lpha(2000) \ m h \ m \ s$	က	5.341.0	က	က	ಬ ಆ	က	က	က	က	က	ಉ	೧೦	ಣ	ಬ	ಉ	က	က	က	က	ಣ	ಣ	က	က	က	က	က	က	က
No.	31.	33.	34.	35.	3.7.	38.	39.	40.	41.	42.	43.	44.	45.	46.	47.	48.	49.	20.	51.	52.	53.	54.	55.	56.	57.	58.	59.	.09

332

.	I																										
	r	2630	860	1110		770	2380		6580	840		1460		1530	275		940	3	730	360	220	420		850	069	450	1130
	$\frac{AV}{ ext{mag}}$	0.67	1.12	0.92		0.67	1 46	2	1.04	1.12		0.83		1.29	0.79		1.08	7	1.12	1.08	1.04	0.62		0.96	1.12	1.33	1.04
	Photom. sp. type	f8/g2 k0 IV	a2/5m	a3 V	g/k g/k	5/ H	$\frac{g0}{f0}$	k ii	k1 III	$_{ m b9.5~V}$	&	k0 III	£	$_{ m g5~III}$	69 V	g/k	f5 V	,	ax <	88 V	f5 V:	k4 V	ы	a0 V	a8 V	k0 V	f5 IV
	V-S mag	0.802	0.411	0.368	0.931	0.612	0.682	0.941	0.943	0.317	0.570	0.934	0.639	0.916	0.825	0.961	0.701	0.355	0.477	0.860	0.664	1.028	0.884	0.333	0.480	0.943	0.658
	Z-V mag	$0.460 \\ 0.357$	0.155	0.308	0.324	0.244	$0.227 \\ 0.264$	0.288	0.396	0.151	0.222	0.398	0.329	0.329	0.323	0.321	0.207	0.127	0.178	0.348	0.234	0.481	0.438	0.118	0.190	0.435	0.294
	Y-V mag	1.104	0.503	0.442	0.800	0.657	0.690	0.943	1.001	0.419	0.630	0.969	0.824	0.967	0.806	1.011	0.717	0.401	0.558	0.870	0.710	0.890	1.083	0.403	0.556	0.959	0.706
	X-V mag	2.301 2.229	1.145	$\frac{3.141}{1.006}$	2.183	1.470	$\begin{array}{c} 1.638 \\ 1.433 \end{array}$	2.138	2.560	0.874	1.481	2.431	1.642	2.247	1.988	2.456	1.589]	1.257	2.073	1.550	2.476	2.410	0.858	1.261	2.272	1.527
	P-V mag	3.107 2.917	$\frac{2.031}{4.370}$	1.928	2.711	2.107	2.226	2.743	3.600	1.701	2.116	3.513	2.270	3.073	2.776	3.254	2.301	1.597	2.086	2.858	2.186	3.545	3.277	1.693	2.094	3.203	2.213
	U- V mag	3.927 3.675	2.730	2.693	3.548	2.699	$\frac{2.919}{3.067}$	3.573	4.297	2.344	2.756	4.150	2.993	3.782	3.294	3.969	$\frac{2.992}{2.92}$	2.197	2.762	3.372	2.819	4.064	4.179	2.351	2.795	3.865	2.875
	V mag	15.296 15.870	12.199	14.062 12.551	15.789	14.008	15.462	15.990	15.834	11.344	15.900	12.362	15.042	13.118	13.688	15.406	14.455	10.899	12.835	14.365	13.962	15.616	15.573	11.217	12.723	15.492	13.812
	$\delta(2000)$	23 48 09 23 36 58	37	45 45	35	42	33 40	37	45	41	42	36	49	32	37	44	45	44	38	45	35	51	49	46	44	35	31
	$lpha(2000) \ m h \ m \ s$	5 3 53.6 5 3 54.0	3 54 2 54	3 55 5	ယ	3 56	25 25 27 25 27 25	3 56	3 57	3 57	3 57	3 58	3 58	3 58	3 58	3 58	3 50 1	3 59	3 59	3 59	3 59	4 00	4 00	4 00	4 00	4 00	4 01.
	No.	61. 62.	63.	04. 65.	66. 67		69. 70	15	72.	73.	74.	75.	.92	77.	78.	79.	80.	<u>81</u> .	85.	83.	84.	85.	86.	87.	88.	89.	90.

Table 2 (continued)

1																																
	r	bc	1280		8400	920	7480	2010	820	1720	200	3090	720	1040		1240	750	1180	5940	970		1790	720						710		1000	
1 2	AV	mag	1.37		0.58	0.87	0.46	0.00	1.00	0.67	1.04	0.71	1.04	1.16		1.25	1.12	1.25	0.79	0.92		2.33	1.08						1.12		1.08	
3	Photom.	sp. type	g8 IV	f3	$\mathbf{k}0$ III	$\mathrm{g}_{1}\mathrm{V}$	$\tilde{k}2$ III	a1 V	$g_0 V$	V 9 1	m g0~V	$\stackrel{ ext{a}}{6}$ V	f5 V	A 77	g0/4	$g_{\rm S}$ IV	Y 04	a8 V	k3 III	g0 V	$g_0/3$	k2 III	f2 IV	$_{ m 12/g0}$	$f_5/8$:	f/g	a5	g2/4:	f5 V	g3/5	$\sim 10^{-1}$	£8
	S– N	mag	0.888	0.661	0.969	0.755	0.919	0.371	0.772	0.665	0.712	0.366	0.650	0.690	0.770	0.923	0.549	0.531	1.042	0.748	0.602	1.112	0.592	0.621	0.544	0.671	0.434	0.910	0.639	0.734	0.756	0.738
	Z- V	mag	0.390	0.238	0.323	0.253	0.423	0.144	0.290	0.231	0.301	0.138	0.263	0.283	0.277	0.356	0.222	0.206	0.489	0.288	0.356	0.472	0.230	0.273	0.432	0.250	0.194	0.242	0.263	0.292	0.302	0.221
	Y– V	mag	0.945	0.686	0.908	0.755	0.964	0.417	0.774	0.644	0.781	0.431	0.714	0.785	0.717	0.961	0.610	0.588	1.100	0.749	0.842	1.217	0.000	0.728	0.962	0.721	0.554	0.774	0.730	0.807	0.784	0.769
	X-V	mag	2.227	1.518	2.368	1.713	2.565	0.917	1.760	1.427	1.691	1.026	1.539	1.683	1.614	2.237	1.350	1.303	2.842	1.699	1.814	3.103	1.426	1.540	1.883	1.563	1.202	1.927	1.542	1.772	1.736	1.625
	P– V	mag	3.050	2.207	3.244	2.351	3.168	1.740	2.331	2.115	2.350	1.916	2.193	2.352	2.345	3.078	2.131	2.126	4.158	2.274	2.356	4.347	2.113	2.124	2.489	2.187	2.048	2.570	2.145	2.373	2.381	2.221
	N-N	mag	3.760	2.808	3.863	2.865	3.752	2.416	2.930	2.680	2.898	2.596	2.831	2.956	2.682	3.712	2.778	2.869	4.680	2.868	3.138	5.165	2.794	2.836	3.367	2.960	2.779	3.299	2.756	3.050	2.951	2.793
	Λ	mag	15.006	15.442	15.897	15.078	15.431	13.478	14.884	15.446	13.863	15.158	13.826	15.138	15.839	14.820	13.203	14.023	15.155	15.155	15.515	14.190	12.658	15.615	15.952	15.381	12.861	16.014	13.877	15.480	15.179	15.458
	$\delta(2000)$	0 / 1/	51	42	40	39	34	37	36	37	40	42	40	51	37	34	30	51	35	38	47	44	42	31	$23\ 47\ 28$	33	43	48	43	51	42	42
	lpha(2000)	h m s	4 01	402	4 02	402	402	403	4 03	4 03	4 04	4 04	4 04	4 04	4 05	4 05	405	4 06	4 06	4 06	4 07	4 07	4 07	4 08	5409.0	4 09	4 09	4 09	4 11	4 11	4 11	4 12
	No.		91.	92.	93.	94.	95.	.96	97.	98.	99.	100.	101.	102.	103.	104.	105.	106.	107.	108.	109.	110.	111.	112.	113.	114.	115.	116.	117.	118.	119.	120.

Table 2 (continued)

`								
r pc	850	700	990 980 920 780	780 960 1690 840	620 2160	860 820 820	600 730 830	830 510 890 650 1000 820 730
AV mag	1.08	0.71	$\frac{1.37}{0.92}$	0.92 0.71 0.71	1.04	$\frac{1.16}{0.92}$	$\frac{1.12}{0.87}$	1.00 1.37 1.04 0.79 1.21 0.75
Photom. sp. type	f8 g/k a3 V	g5 g2 V: a5m:	12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	g2 V f7 IV-V f5 V	f8 V k4/5 b7 V	b9 V f6 V f2/8	f5 V g5 V f7 V g7	65 V 86 V 65 V 67 V 19 IV-V a5 V:
V-S mag	0.755 0.901 0.379	0.757 0.712 0.527	0.758 0.684 0.664	0.740 0.616 0.648	0.685 1.384	0.341 0.635 0.676	0.696 0.836 0.690 0.813	0.630 0.893 0.423 0.600 0.471 0.749 0.433
Z-V mag	0.275 0.388 0.181	$\begin{array}{c} 0.306 \\ 0.262 \\ 0.168 \end{array}$	0.295 0.265 0.266	0.292 0.282 0.282	0.283 0.623 0.148	$0.153 \\ 0.276 \\ 0.181$	$0.257 \\ 0.281 \\ 0.312 \\ 0.287$	0.259 0.351 0.182 0.253 0.197 0.309 0.183
Y-V mag	0.736 0.819 0.484	0.815 0.720 0.539	0.827 0.733 0.729	0.783 0.668 0.688	0.764 0.764 1.497 0.416	0.419 0.701 0.668	0.734 0.777 0.794 0.859	0.703 0.922 0.501 0.648 0.561 0.818
X-V mag	1.627 2.137 1.057	1.789 1.656 1.334	1.759 1.597 1.560	2.517 1.799 1.529	1.660 3.873 0.812	0.858 1.490 1.367	$1.593 \\ 1.830 \\ 1.675 \\ 1.932$	1.515 2.108 1.125 1.424 1.200 1.791
PV mag	2.199 2.899 1.979	2.329 2.248 2.189	2.386 2.232 2.223	3.500 2.449 2.307 9.000	2.304 5.248 1.435	1.713 2.132 2.055	2.260 2.589 2.325 2.714	2.201 2.866 2.036 2.111 2.079 2.444 1.894
U-V mag	2.779 3.422 2.680	2.886 2.855 2.941	2.931 2.815 2.873	4.158 3.033 2.995 9.786	2.897 6.255 1 946	2.416 2.720 2.757	$\begin{array}{c} 2.908 \\ 3.084 \\ 2.905 \\ 3.240 \end{array}$	2.824 3.436 2.773 2.759 2.863 3.076 2.538
V mag	15.495 15.370 12.121	15.273 14.449 14.859	15.241 12.729 13.683	14.101 15.436 15.048	13.990 12.276 12.276	11.229 14.077 15.701	13.528 15.184 14.701 15.113	14.091 15.086 12.584 13.367 13.416 14.215 11.879
$\delta(2000)$	36 36 40	$\begin{array}{c} 39 \\ 31 \\ 32 \\ \end{array}$	46 48 47 87	49 49 49 49	44 43 43 43 43	41 36 39	$\begin{array}{c} 41 \\ 44 \\ 45 \end{array}$	23 47 40 23 35 51 23 50 36 23 36 40 23 52 12 23 47 55 23 36 22
$\alpha(2000)$	4 12.	4 4 13. 4 13.	4 4 4 4 2 4 4 4 2 4 4 4	4 4 4 4 4 15 4 15 7 15	4 4 4 4 5.15.15	4 16. 4 16. 4 16.	4 17. 4 17. 4 17. 4 17.	5 4 17.5 5 4 18.4 5 4 18.9 5 4 18.9 5 4 19.0 5 4 19.1
No.	121. 122. 123.	124. 125.	127. 128. 129.	130. 132. 132.	134. 135.	137. 138. 139.	140. 141. 142. 143.	144. 145. 146. 147. 149. 150.

(F)			
ntinue	r	1170 810 1230 820 820 820 1490 600 930 590 740 720 720 670 720 670 670 850 1210 850	
Table 2 (continued)	A_V mag	1.04 0.96 0.96 1.29 1.29 1.00 1.00 1.00 1.10	
Tab	Photom. sp. type	## ## ## ## ## ## ## ## ## ## ## ## ##	
	V-S mag	0.695 0.386 0.914 0.9382 0.638 0.638 0.638 0.638 0.638 0.947 1.000 0.722 0.947 0.947 0.657 0.657 0.657 0.653 0.653 0.653 0.785 0.785 0.785 0.785	
	Z-V mag	0.258 0.153 0.153 0.153 0.153 0.282 0.257 0.250 0.253 0.238 0.238 0.238 0.238 0.238 0.203 0.318 0.308	
	Y-V mag	0.708 0.419 1.025 0.419 0.447 0.746 0.629 0.629 0.620 0.620 0.749 0.829 1.077 0.829 0.737 0.804 0.737 0.807 0.807 0.807 0.959 0.959 0.959 0.959 0.959	
	X-V mag	1.495 0.902 2.341 0.934 1.564 1.340 1.359 1.359 1.440 1.440 1.440 1.440 1.440 1.440 1.753 1.753 1.753 1.767	
	P-V mag	2.150 1.774 1.774 1.765 1.765 1.765 1.909 2.103 3.334 1.909 3.334 2.253 3.529 3.529 3.529 3.777 2.627 3.747	
	U- V mag	2.803 2.7424 2.7424 2.7424 2.7424 2.7424 2.7439 2.7	
	$\frac{N}{N}$	14.884 11.507 14.879 11.249 15.395 13.651 14.090 14.860 13.224 11.092 14.370 15.388 15.388 14.915 14.915 14.915 15.288 13.555 14.005 15.288 15.288 15.288	
	$\delta(2000)$	23 35 02 23 43 58 23 34 28 23 35 27 23 35 27 23 37 20 23 37 20 23 37 20 20 23 37 20 20 20 20 20 20 20 20 20 20 20 20 20	
	$lpha(2000) \ m h \ m \ s$	cccccccccccccccccccccccccccccccccccc	
	No.	151. 152. 153. 154. 156. 166. 167. 177. 177. 176. 177. 177. 17	

_
(continued)
Table 2

AV r		1.08 780 0.96 730 1.16 740 1.00 820	, ,	0.79 1300 1.04 680 1.33 830 1.08 720 1.75 760 0.96 232 0.79 1310	
Photom. A sp. type m					
V-S Ph mag sp.				$\begin{array}{cccc} 0.721 & 1 & \\ 0.601 & f8 & V \\ 0.426 & a5 & V \\ 0.679 & f5 & V \\ 0.729 & g0 & V \\ 0.821 & f9 & V \\ 0.769 & g4 & V \\ 0.734 & f8 & V \\ 0.734 & f8 & V \\ \end{array}$	
Z-V mag				0.357 0.254 0.181 0.302 0.350 0.325 0.325	
YV mag				0.888 0.703 0.502 0.783 0.791 0.945 0.801	
X-V mag		7 	0-	1.745 1.545 1.111 1.111 1.109 1.716 3 1.997 3 1.841 3 1.507	00-
/ P-V				2.409 2.206 3.2206 3.2256 3.72256 3.72350 3.72350 3.7236 3.7236 3.7236 3.7236 3.7236 3.7236 3.7236	
$\frac{D-N}{g}$	555 259 200 200	0460 06460 7257	000 000 000 000	50 5.024 58 2.713 23 2.705 34 2.878 76 2.887 40 3.268 87 3.125 78 2.674	38 85 77 13 13 13
() V ma	15.0 15.4 14.4	241 13.61 2.41 2.05 4.10.0	15.1 15.7 11.3	244 258 33 33 12.0 33 14.4 32 15.2 15.2 15.3 15.3 15.3	15.00 10.00 10.00 10.00 10.00
δ (2000)	49 43 64 64 64 64 64 64	00000000000000000000000000000000000000	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	23 45 4 23 52 1 23 40 3 23 40 3 23 49 3 23 49 3 23 47 3	84448888888888888888888888888888888888
lpha(2000) h m s	4 29 4 29 4 29 7 29	4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 4 4 4 0 6 6 6 6 6 0 0 1 1 1	5 4 31.3 5 4 31.3 5 4 31.4 5 4 31.6 5 4 31.8 5 4 32.0	4 4 4 4 4 4 4 4 6 5 5 5 5 5 5 6 6 6 6 6
No.	181. 182. 183.	185. 186. 187. 189.	191. 192. 193.	199. 198. 198. 200. 201.	203 204. 205. 206.

Table 2 (continued)

r	870	910	1700 750	089	930	480	720	089		590	099	2030		069	620	099	400	007	840	1390	1	1150	1650
A_V mag	1.21	1.50	$\frac{1.00}{0.92}$	1.29	1.08	1.04	0.83	0.96		1.29	1.12	1.21		1.37	1.08	1.16	70	1.04	0.90	1.16	1	1.33	1.21
Photom. sp. type	$^{\mathrm{a5}}_{\mathrm{f0/5}}$		k0 IV a5 V													$g_0 V$							
V-S mag	$0.468 \\ 0.609$	$0.711 \\ 0.780$	$0.852 \\ 0.356$	0.796	0.405	0.721	0.589	$0.952 \\ 0.414$	0.442	0.397	0.607	0.952	0.779	0.703	0.633	0.717	0.440	0.057	0.367	0.618	0.692	0.651	$\begin{array}{c} 0.837 \\ 0.610 \end{array}$
Z-V mag	$\begin{array}{c} 0.216 \\ 0.264 \end{array}$	$0.358 \\ 0.486$	$\begin{array}{c} 0.422 \\ 0.167 \end{array}$	0.364	0.195	0.312	0.218	$\begin{array}{c} 0.391 \\ 0.182 \end{array}$	0.339	0.191	0.258	0.403	$0.416 \\ 0.377$	0.330	0.272	0.337	0.412	0.250	0.178	0.262	$\begin{array}{c} 0.153 \\ 0.153 \end{array}$	0.324	$0.326 \\ 0.326$
Y-V mag	$0.543 \\ 0.668$	$\begin{array}{c} 0.856 \\ 0.994 \end{array}$	$0.936 \\ 0.473$	0.866	0.511	0.798	0.605	0.504	0.339	0.480	0.689	1.062	0.940	0.809	0.716	0.814	0.404	0.700	0.447	0.696	0.621	0.784	$0.800 \\ 0.750$
X-V mag	1.174 1.414	$\begin{array}{c} 1.772 \\ 2.141 \end{array}$	$2.279 \\ 1.044$	$\frac{1.886}{2.231}$	1.127	1.778	1.344	$\frac{2.407}{1.176}$	2.478	0.958	1.458	2.505	1.976	1.696	1.567	1.745	1.050	1.495	1.009	1.466	1.395	1.613	1.809 1.560
P-V mag	2.052 2.130	$2.394 \\ 2.820$	$\frac{3.162}{1.962}$	2.527	2.047	2.489	2.085	$\frac{3.288}{2.070}$	2.080	1.881	2.151	3.502	2.644	2.297	2.222	2.423	7.384	2.141	1.911	2.134	2.040	2.220	$2.706 \\ 2.209$
U-V mag	2.810 2.782	$2.973 \\ 3.282$	$3.808 \\ 2.652$	$\frac{3.145}{3.475}$	2.748	3.130	2.749	$3.749 \\ 2.760$	2.797	2.724	2.775	4.182	3.278	2.923	2.858	2.983	5.00g	2.703	2.613	2.791	2.718	2.910	$3.256 \\ 2.801$
V mag	12.712 13.807	15.200 16.023	15.252 12.089	15.050	12.731	13.859	13.115	16.031 12.336	13.020	10.833	13.319	13.453	15.846	14.165	13.554	14.560	15.890	13.705	11.970	14.971	16.016	15.128	16.033 15.804
δ(2000) ° ' ''	23 50 14 23 50 08		55 55 54	202	52	46	$\frac{34}{2}$	37 42	$\overline{49}$	49	51	42	48	46	36	27	44	ۍ ن	44	36	34	46	47 42
lpha(2000) h m s	4 33. 4 33.	5433.5 5433.6	4 33.	4 34.	4 35.	4 35.	4 35.	4 36. 4 36.	4 36.	4 36.	4 36.	4 36.	4 37.	4 37.	4 38.	4 38.	4 58.	4 59.	4 39.	4 39.	4 39.	4 39.	4 39. 4 39.
No.	211. 212.	213. $214.$	215.216.	217.	219.	220.	221.	222. 223.	224.	225.	226.	227.	228. 220.	230.	231.	232.	233.	254.	235.	236.	237.	238.	239. 240.

Table 2 (continued)

、 I	ı	1
	r	1790 950 670 840 840 850 850 850 850 890 890 880 820 1280 770 900 770 900
	AV mag	1.21 1.04 1.08 1.08 1.08 1.00 1.00 1.00 1.00 1.00
	Photom. sp. type	g8 III f6 V a3 V a3 V g0 V f0 V f1/2 III f0 IV f3 V f5 V f5 V f5 V f6 V f6 V f6 V f7/8 V f7/8 V f6 V f7/8 V f7/8 V f6 V f7/8 V f7/8 V f7/8 V f7 V f8
	V- S mag	0.892 0.571 0.660 0.417 0.327 0.543 0.728 0.543 0.728 0.558 0.589 0.602 0.613 0.613 0.613 0.613 0.613 0.613 0.613 0.707 0.613 0.707 0.613 0.707 0.613 0.707 0.613 0.707 0.613 0.707 0.613 0.707 0.613
	Z-V mag	0.381 0.246 0.297 0.192 0.282 0.282 0.238 0.307 0.290 0.204 0.269 0.269 0.269 0.269 0.269 0.269 0.277 0.304 0.304 0.304 0.304 0.269 0.304 0.304 0.304 0.304 0.304
	Y- V mag	0.998 0.653 0.743 0.730 0.730 0.730 0.640 0.805 0.608 0.702 0.702 0.702 0.702 0.703 0.
	X-V mag	2.350 1.403 1.564 1.108 0.981 1.457 1.352 1.347 1.352 1.715 1.475 1.456 1.677 1.893 1.241 1.659 1.368 1.368 1.368
3	P-V mag	3.271 2.164 2.164 2.128 2.128 2.144 2.154 2.139 2.139 2.140 2.139 2.140 2.140 2.140 2.143 2.143 2.143 2.143 2.143 2.143 2.143 2.143 2.143 2.143 2.143 2.143 2.143 2.143 2.144
	U- V mag	3.959 2.881 2.881 2.883 3.036 3.036 3.036 3.036 3.036 3.036 3.047
	V mag	13.270 13.245 13.245 12.245 15.728 15.728 15.728 15.017 15.363 15.350 15.350 15.350 15.350 17.968 17.968 17.969 17
	$\delta(2000)$	23 23 24 44 46 25 25 25 25 25 25 25 25 25 25 25 25 25
	$lpha(2000) \ m h \ m \ s$	5 2 3 4
	No.	241. 241. 241. 241. 241. 241. 241. 241.

Table 2 (continued)

(panin	r	bc	860	810	930	220	870	006	180	750			710	870		880	569	560	029		720	820	140	950	920	220	930	445	328	130	980 800
	AV	mag	1:16																												$1.41 \\ 0.79$
Table		sp. type					$\tilde{a}2 V$				g/k	g0 IV-V	£2 V	V 84		$_{ m g3}$ V															a7 V f6 V
	$S^{-}\Lambda$																														$0.505 \\ 0.653$
	Λ – Z	mag	0.271	0.194	0.188	0.362	0.177	0.212	0.323	0.253	0.324	0.348	0.244	0.294	0.318	0.320	0.399	0.346	0.401	0.508	0.356	0.213	0.367	0.339	0.180	0.310	0.249	0.296	0.245	0.221	$\begin{array}{c} 0.231 \\ 0.246 \end{array}$
	Y– V	mag	0.719	0.551	0.499	0.896	0.499	0.586	0.765	0.636	0.863	0.851	0.632	0.770	0.789	0.718	0.910	0.835	1.006	1.067	0.859	0.541	0.961	0.822	0.456	0.798	0.691	0.793	0.657	0.639	$\begin{array}{c} 0.610 \\ 0.670 \end{array}$
	X-X	mag	1.504	1.210	1.101	1.893	1.062	1.289	1.629	1.338	1.955	1.908	1.340	1.643	1.550	1.754	2.102	1.889	2.146	2.078	1.883	1.200	2.216	1.900	0.963	1.729	1.488	1.726	1.382	1.386	$\begin{array}{c} 1.313 \\ 1.491 \end{array}$
	P-V	mag	2.152	2.091	2.013	2.693	1.967	2.099	2.301	2.117	2.525	2.577	2.083	2.279	2.154	2.388	2.890	2.620	2.835	2.783	2.529	2.041	3.047	2.612	1.884	2.363	2.121	2.396	2.065	2.090	$2.114 \\ 2.145$
	Λ - Λ	mag	2.790	2.808	2.720	3.297	2.744	2.798	2.967	2.820	3.150	3.262	2.734	2.862	2.862	3.063	3.435	3.205	3.418	3.401	3.097	2.759	3.757	3.198	2.614	2.914	2.813	3.017	2.802	2.716	$\begin{array}{c} 2.807 \\ 2.740 \end{array}$
	7	mag	14.121	12.307	12.525	15.275	12.095	13.408	15.124	13.315	15.886	15.607	13.216	14.783	15.925	15.089	14.058	14.590	15.603	15.873	15.133	12.887	13.805	15.574	11.937	14.858	15.894	13.401	15.280	15.664	12.769 13.913
	$\delta(2000)$	11 1 0	46	49	44	51	49	49	41	44	45	36	45	45	46	45	40	45	50	48	42	41	38	36	45	48	40	44	48	38	$\begin{array}{c} 23 \ 49 \ 54 \\ 23 \ 36 \ 50 \end{array}$
	$\dot{lpha}(2000)$	h m s	4 45.	4 45.	4 46.	4 46.	4 46.	4 46.	4 47.	4 47.	4 47.	4 48.	4 48.	4 48.	4 49.	4 49.	4 49.	4 49.	4 49.	4 49.	4 50.	4 50.	4 50.	4 50.	4 50.	4 50.	4 50.	4 51.	4 52.	4 52.	5452.8 5452.9
	No.		271.	272.	273.	274.	275.	276.	277.	278.	279.	280.	281.	282.	283.	284.	285.	286.	287.	288.	289.	290.	291.	292.	293.	294.	295.	296.	297.	298.	299. 300.

Table 2 (continued)

- 1		-																														
	r	bc	1550	390		320	890		029	1130	1010		1100	930		810	1200		970	810	1240	730		569	315	840	840	1030	1540		300)
	AV	mag	1.37	1.16		1.54	1.12		1.04	0.75	1.25		1.54	0.96		1.62	1.16		1.00	1.16	0.54	0.83		1.62	1.16	0.96	1.04	0.92	1.25		1 16	7.10
3	Photom.	sp. type	a3 V	$g_1^{1}V$	g_0	k1 V	V II	f/g	69 V	V 64	a1 V	<i>₽</i> 0	77 V	$g_0 V$	£0	V 77	f3 V	$^{\mathrm{g}}_{2}$	$g_0 V$	g 0 V	$g_1 V$	f3 V	ಶು	g8 V	k1 V	f3 IV-V	7. Y	V 0 1	a6 IV-V	4 1	g Lo V	NO V
	S – Λ	mag	0.472	0.699	0.724	0.965	0.596	0.688	0.308	0.656	0.367	0.873	0.618	0.699	0.753	0.687	0.687	0.767	0.781	0.729	0.631	0.573	0.989	0.883	0.875	0.582	0.672	0.470	0.420	0.651	0.692	2.0.0
	Λ – Z	mag	0.198	0.388	0.293	0.443	0.255	0.369	0.140	0.260	0.189	0.298	0.366	0.298	0.463	0.345	0.280	0.375	0.304	0.291	0.323	0.281	0.376	0.434	0.436	0.238	0.292	0.216	0.228	0.192	0.321	U-141
	Λ - Λ	mag	0.552	0.832	0.770	1.016	0.641	0.920	0.403	0.703	0.489	0.866	0.868	0.762	1.082	0.887	0.738	0.808	0.773	0.808	0.684	0.662	0.949	1.004	0.934	0.649	0.746	0.562	0.562	0.686	$0.915 \\ 0.921$	U.361
	X-X	mag	1.171	1.805	1.596	2.418	1.342	1.682	0.780	1.519	1.047	2.042	1.722	1.674	2.218	1.846	1.569	1.892	1.708	1.793	1.592	1.412	2.263	2.251	2.265	1.397	1.571	1.252	1.200	1.424	$\frac{1.871}{2.188}$	7.100
	P– V	mag	2.049	2.507	2.169	3.412	2.062	2.209	1.540	2.154	1.971	2.960	2.343	2.313	2.846	2.476	2.232	2.483	2.387	2.464	2.205	2.081	3.002	3.162	3.147	2.064	2.161	2.081	2.063	2.042	2.484 3.137	0.101
	Λ - Λ	mag	2.784	3.024	2.774	4.114	2.735	2.832	2.210	2.669	2.715	3.471	2.954	2.833	3.545	3.040	2.832	3.116	2.960	3.061	2.779	2.700	3.784	3.786	3.711	2.709	2.726	2.827	2.850	2.720	2.956	9.101
	7	mag	.72	.52	2	.17	92.	0	.61	.11	.28	.98	.64	.10	.02	90:	.05	.63	.23	9	39	.65	.92	.27	.75	29	55	89.	.93	.49	16.050	.±
	$\delta(2000)$	11 1 0	55	42	47	38	56	46	45	35	48	54	52	44	49	50	40	48	40	48	44	44	42	56	49	52	43	51	53	45	23 50 47 23 44 15	1 4
	$\dot{lpha}(2000)$	h m s	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	ည	ည	ည	ည	ည	ည	ಬ	ည	ಬ	5 5 03.3 7 7 03.3	.
	No.		301.	302.	303.	304.	305.	306.	307.	308.	309.	310.	311.	312.	313.	314.	315.	316.	317.	318.	319.	320.	321.	322.	323.	324.	325.	326.	327.	328.	329. 330	. 000.

Table 2 (continued)

	r	bc	830		820		630	640	3930		470					069	086	200	069	2120	1020	720	1640			2620	1020	1160	320	1070	•	480
	AV	mag	1.58		1.08		1.04	0.92	1.87		1.37					1.04	1.04	1.04	0.79	0.92	0.96	1.12	0.92			1.41	1.62	1.37	1.58	1.21	,	0.92
3	Photom.	sp. type	g1/2 V:	f/g	f5 V	$g_0 \text{ IV-V}$	a5 V	m g0~V	$g_{ m g}$		$\bar{\mathbf{k}}0$ IV	_) 50	$\mathrm{f5/g0}$	$\tilde{\Lambda}$ 9	${ m g2~V}$	V 31	£5 ∨	VI OJ	f5 V	a7 V	${ m g2~IV-V}$	f8/g5	$_{ m f8/g2}$	k0/1 III	k0 IV	$_{ m g8~IV}$	y 8g	f5 V	65/g	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$S^-\Lambda$	mag	0.773	0.742	0.612	0.602	0.420	0.691	0.866	0.802	0.953	0.776	0.685	0.959	0.610	0.656	0.856	0.600	0.595	0.539	0.629	0.422	0.764	0.758	0.773	1.027	0.986	0.951	0.923	0.673	0.659	0.648
	Z-V	mag	0.412	0.470	0.280	0.349	0.186	0.283	0.507	0.333	0.414	0.410	0.378	0.382	0.311	0.304	0.316	0.304	0.241	0.194	0.254	0.235	0.298	0.468	0.348	0.471	0.463	0.364	0.406	0.293	0.231	0.313
	Y- V	mag	0.932	0.986	0.723	0.772	0.499	0.750	1.116	0.839	1.029	0.946	0.942	0.883	0.691	0.728	0.811	0.706	0.646	0.562	0.686	0.539	0.780	0.990	0.895	1.131	1.092	0.987	0.987	0.748	0.673	0.716
	$\Lambda - X$	mag	2.040	1.991	1.485	1.660	1.103	1.653	2.499	1.792	2.472	2.082	1.917	2.019	1.550	1.530	1.807	1.505	1.385	1.203	1.449	1.148	1.815	2.055	1.848	2.714	2.598	2.332	2.269	1.573	1.410	1.555
	P-V	mag	2.701	2.671	2.096	2.379	1.980	2.335	3.418	2.408	3.449	2.855	2.557	2.764	2.137	2.134	2.499	2.121	2.047	2.021	2.106	2.007	2.466	2.982	2.547	3.722	3.601	3.162	3.086	2.202	2.023	2.202
	N-N	mag	3.279	3.152	2.694	2.930	2.635	2.891	4.058	2.905	4.125	3.395	3.038	3.201	2.735	2.713	3.067	2.717	2.660	2.776	2.706	2.714	3.112	3.405	3.034	4.403	4.281	3.826	3.761	2.791	2.735	2.785
	Λ	mag	9	15.719	C.	\circ	ος)	S	<u>_</u>	_	∞	∞	∞	0	IJ	∞	\mathbf{r}	~	寸	9	ıσ	\mathbf{r}	~	∞	C	_	<u>_</u>	<u>_</u>	9	σο	ຕຸ	C.
	$\delta(2000)$	11 1 0	53	235334	44	55	56	46	52	45	48	47	39	44	48	44	38	48	38	37	55	45	49	55	53	39	42	38	43	55	37	47
	lpha(2000)	h m s	5 03.	5503.9	5 03.	5 04.	5 05.	5 05.	5 05.	5 06.	5 06.	5 07.	5 07.	5 08.	5 08.	5 08.	5 09.	5 09.	5 09.	5 09.	5 09.	5 09.	5 10.	5 10.	5 111.	5 12.	5 12.	5 12.	5 12.	5 12.	5 13.	5 13.
	No.		331.	332.	333.	334.	335.	336.	337.	338.	339.	340.	341.	342.	343.	344.	345.	346.	347.	348.	349.	350.	351.	352.	353.	354.	355.	356.	357.	358.	359.	360.

Table 2 (continued)

(r pc	870 590 1140 930 179 1260 790 1890 1800 1200 1200 1500 640 640	
	A_V mag	1.12 1.12 1.16 0.96 1.29 1.29 1.29 1.29 1.04 1.04	
	Photom. sp. type	81/5 18/82 18/82 19/	ľ
	V-S mag	0.628 0.644 0.311 0.825 0.825 0.726 0.738 0.680 0.720 0.663 0.663 0.663 0.663 0.720 0.720 0.720 0.720 0.720 0.732 0.732	0.650
	Z-V mag	0.404 0.440 0.1659 0.259 0.315 0.329 0.424 0.424 0.268 0.369 0.351 0.252 0.253 0.253 0.253 0.253	0.394
	Y-V mag	0.766 0.854 0.854 0.782 0.782 0.782 0.905 0.905 0.752 0.854 0.757 0.757 0.980 0.765 0.765 0.765	0.874
	X-V mag	1.686 1.703 1.703 1.595 1.844 1.822 1.667 1.971 1.759 1.788 1.788 1.788 1.788 1.788 1.674 1.774 1.718 1.923 1.666 1.789 1.580	1.682
	P-V mag	2.334 2.334 1.691 1.691 1.691 1.691 2.326 2.326 3.110 3.110 3.124	2.284
	U- V mag	2.887 2.9111 2.370 2.904 3.050 3.050 3.050 3.050 3.050 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004	2.901
	V mag	14.673 16.011 11.182 15.945 16.007 16.007 17.94 17.710 17.	` .
	$\delta(2000)$	23 47 29 23 55 42 23 55 42 23 55 42 23 55 42 23 55 19 23 55 19 23 55 00 23 55 00 25	44
	$lpha(2000) \ m h \ m \ s$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 25.
	No.	361. 362. 362. 363. 363. 363. 363. 363. 363	390.

Table 2 (continued)

maca)	r	pc	155	850	110		950	810		9		980	260	160	730	001	890			950	230	096	940	290	870		800	560	380	092	130
			•	-0	2		ä			Ğ	ر ج	i		`	-	 i				•	•	•		_,						_	4
table 2 (confinaca)	AV	mag	0.46	1.33	1.29		0.62	0.96		Ç	1.43	1.29	1.00	0.92	0.00	1.12	1.04			0.92	1.08	0.62	0.67	1.12	0.71		1.00	0.75	1.58	0.96	1.33
Tan	Photom.	sp. type	k1 V	$g_2/3 \text{ V}$	k0'IV	g/k	fš V	$^{ m g0}$ V	30 00 00 00 00 00 00 00 00 00 00 00 00 0	18	go 111	go .	f3 V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V 0 1	m g0~V	${ m g0~V}$	4 -1	ъ	V 9 1	$^{ m g5}$ V	$g_5 V$	7 LJ	$\mathrm{g}_2 \mathrm{V}$	a4 V	f/g	$g_0 V$	V 94	g4 V	a7 V	$^{ m g5}_{ m f}$
	S – Λ	mag	0.754	0.706	0.885	0.809	0.659	0.722	0.370	0.818	0.902	0.745	0.634	0.702	0.517	0.780	0.695	0.401	0.884	0.668	0.783	0.783	0.656	0.737	0.337	0.588	0.696	0.625	0.921	0.422	$0.919 \\ 0.599$
	Z-V	mag	0.352	0.345	0.433	0.361	0.208	0.285	0.275	0.207	0.350	0.359	0.238	0.276	0.213	0.287	0.325	0.335	0.354	0.311	0.376	0.285	0.237	0.356	0.150	0.472	0.310	0.237	0.364	0.189	$\begin{array}{c} 0.362 \\ 0.212 \end{array}$
	Y- V	mag	0.759	0.879	1.011	0.826	0.608	0.760	0.518	0.000	0.955	0.841	0.657	0.728	0.566	0.800	0.777	0.472	0.870	0.696	0.833	0.719	0.657	0.834	0.414	0.840	0.770	0.661	0.946	0.505	$0.985 \\ 0.636$
	N-X	mag	1.952	1.892	2.332	1.910	1.343	1.696	1.086	1.407	2.243	1.798	1.412	1.578	1.257	1.750	1.709	1.127	2.054	1.476	1.917	1.781	1.481	1.831	0.953	1.669	1.704	1.440	2.228	1.171	$2.344 \\ 1.367$
	P– V	mag	2.870	2.655	3.080	2.510	2.033	2.341	$\frac{2.028}{0.18}$	2.013	3.024	2.573	2.007	2.158	2.011	2.428	2.362	1.994	2.780	2.105	2.693	2.404	2.076	2.505	1.878	2.195	2.414	2.060	2.964	2.041	$3.157 \\ 1.963$
	U- V	mag	3.350	3.204	3.931	2.986	2.545	2.900	2.766	2.576	3.783 9.004	3.094	2.578	2.714	2.665	3.017	2.904	2.663	3.361	2.661	3.279	2.997	2.657	3.068	2.588	2.837	2.994	2.640	3.711	2.775	$3.869 \\ 2.690$
	7	mag	ŭ	ij	0	Q.	ŭ	∞̈́.	<u>.</u>	ء نح	i i	Ξ,	σŏ, ö	Ċį.	Ŏ,	9	Õ	οŏ	Ŏ.	4	Ō,	Ϋ́	4.	ĭΫ	Q.	οŏ	∞	Õ	Ò	$\vec{\mathbf{v}}$	15.313 15.789
	$\delta(2000)$	11 1 0	42	52	40	43	49	38	53	40	444	$\frac{1}{2}$	41	42	44	45	49	52	46	52	51	45	41	48	48	51	49	48	45	46	$23\ 46\ 52$ $23\ 45\ 06$
	lpha(2000)	h m s	5 26	5 27	5 27	5 27	5 27	5 27	$\frac{5}{2}$	22.20	52.7	67. 9	$\frac{5}{2}$	5 30	530	5 31	5 32	5 32	5 32	5 32	5 32	5 33	5 33	5 33	5 34	5 34	5 35	5 37	5 37	5 38	5540.2 5540.2
	No.		391.	392.	393.	394.	395.	396.	397.	398.	399.	400.	401.	402.	403.	404.	405.	406.	407.	408.	409.	410.	411.	412.	413.	414.	415.	416.	417.	418.	419. $420.$

344

3. TWO-DIMENSIONAL CLASSIFICATION, INTERSTELLAR EXTINCTIONS AND DISTANCES

For two-dimensional classification of stars in terms of MK spectral types we have used the COMPAR program written by A. Kazlauskas. The program compares interstellar reddening-free Q-parameters of program stars with a set of 8500 comparison stars. The Q-parameters for each star are defined by the equation:

$$Q_{1234} = (m_1 - m_2) - (E_{12}/E_{34})(m_3 - m_4), \tag{1}$$

and

$$E_{k,\ell} = (m_k - m_\ell)_{\text{reddened}} - (m_k - m_\ell)_{\text{intrinsic}}.$$
 (2)

where m are the magnitudes in four (sometimes three) passbands, $m_1 - m_2$ and $m_3 - m_4$ are the two color indices and E_{12} and E_{34} are the corresponding color excesses. In the medium-band Vilnius system the ratios of color excesses depend slightly on spectral and luminosity classes, and this dependence is taken into account. In calculating the Q-parameters, we used the color excess ratios E_{12}/E_{34} corresponding to the normal interstellar extinction law (see Straižys 1992). The extinction law, i.e., the dependence of the extinction on the wavelength, is known to be normal in the Taurus areas which does not contain dense molecular clouds. The matching of Q-parameters leads to a selection of some standard stars which have a set of Qs most similar to those of the program star. The match quality is characterized by

$$\sigma Q = \pm \sqrt{\frac{\sum_{n} \Delta Q_{i}^{2}}{n}},\tag{3}$$

where ΔQ are differences of corresponding Q-parameters of the program star and the standard, n is a number of the compared Q-parameters (in our case, n=14). If the σQ value is sufficiently small (i.e., the Q differences between the program and the standard star are small), the spectral and luminosity classes of the closest star may be prescribed to the program star. For photometry of Population I stars measured with the 1% accuracy, σQ is usually of the order of $\pm (0.01-0.02)$ mag. In most cases, for the program star we have accepted the average spectral and luminosity classes of the three best fitted standard stars. The classification was considered to be acceptable if σQ was ≤ 0.03 mag. The stars with ≥ 0.035 were suspected to be either unresolved binaries or peculiar stars.

The last three columns of Table 2 give the photometric spectral types, interstellar extinctions and distances of the stars. The lower case letters are used to indicate that our spectral types are determined from photometry using the calibration in MK spectral types. Interstellar extinctions were determined from color excesses:

$$A_V = R_{YV} \times E_{Y-V},\tag{4}$$

where

$$E_{Y-V} = Y - V - (Y - V)_0. (5)$$

The intrinsic color indices $(Y-V)_0$ were taken from Straižys (1992, Tables 66–69) corresponding to the given MK spectral type. The normal value of the coefficient $R_{YV} = 4.16$ was used. The distances r in parsecs, given in Table 2, are calculated by the equation

$$5\log r = V - M_V + 5 - A_V. (6)$$

Absolute magnitudes were taken from the MK type versus M_V tabulation by Straižys (1992), adjusted to the Hyades distance modulus of $V - M_V = 3.3$. The values of distances at r > 300 pc are rounded off to the nearest number multiple of 10.

Using the same method we have also classified all stars from Paper I. Their newly determined spectral types, A_V and r values are listed in Table 3.

Figure 4 shows the extinctions A_V plotted as a function of distances r for the 287 stars from Table 2 (dots) and for 95 stars from Table 3 (circles). 18 stars are common between the two lists – they are plotted according to their data from Table 2, since we consider that CCD photometry is more accurate than photoelectric photometry near the limiting magnitude.

It is evident that the extinction run with distance for the stars from both lists in the overlapping part of the graph is in perfect agreement. Paper I stars give information on extinction from the Sun up to $\sim\!500$ pc, and the CCD stars extend the information to distances larger than 1 kpc. The graph exhibits the same extinction level from 300 pc up to 8 kpc. This confirms the conclusion of Paper I that the extinction in this direction originates in a single dust cloud which belongs to the Taurus-Auriga star forming complex.

The distance of the cloud can be estimated using the nearest reddened stars and the most distant unreddened stars, taking into account a distance error of 25%. The closest reddened star appears

Table 3. New photometric quantification, extinctions and distances of stars from Paper I. Numbers are from Paper I.

No.	Photom.	$A_{oldsymbol{V}}$	r	No.	Photom.	A_{V}	r
	sp. type	mag	pc		sp. type	mag	pc
1.	b6 III-IV	1.25	570	43.	b3 IV	1.08	870
2.	$\mathrm{b}3\mathrm{V}$	1.25	700	44.	$\mathrm{b9V}$	1.16	610
3.	$b3\mathrm{IV}\text{-V}$	1.21	950	45.	b6 IV	1.21	760
4.	m g5V	0.00	78	46.	b9 III	1.25	710
5.	m g9III	1.12	215	47.	b9 IV	0.92	760
6.	${ m f6~V}$	0.00	161	48.	b7 IV	1.21	610
7.	$\mathrm{b8V}$	0.92	380	49.	k3 III	1.46	690
9.	$\mathrm{f5V}$	0.67	171	50.	b7 IV	1.16	680
10.	$\mathrm{b3V}$	0.96	320	51.	b8 V	1.25	720
11.	${ m a3V}$	0.62	340	52.	b7 V	1.25	500
12.	${ m a1V}$	0.92	243	53.	k1 III	0.62	217
13.	${ m f2~V}$	0.75	242	54.	b8 V	0.96	640
14.	${ m a0V}$	1.04	610	55.	m g2V	0.00	157
15.	b9 III	0.79	225	56.	b8 V	1.16	540
16.	${ m k}0{ m III}$	1.00	550	58.	${ m a0IV\text{-}V}$	1.08	980
17.	m g0IV	0.92	154	59.	${ m a7V}$	0.58	730
18.	f2 III	0.79	153	62.	b6 IV	1.12	680
19.	$\mathrm{b}9.5\mathrm{V}$	1.04	36 0	63.	${ m a1IV}$	1.25	780
22.	b4 V	1.46	450	64.	${ m g6IV}$	0.58	660
23.	${ m a5V}$	0.42	208	65.	f0 IV:	0.87	970
24.	b7 V	0.87	650	66.	$\mathrm{b9V}$	1.08	740
26.	${ m a0V}$	0.58	370	67.	${f a2V}$	0.96	970
27.	m g2V	0.00	139	69.	${ m a6V}$	0.83	800
28.	m b9.5IV	0.75	232	70.	$a0\mathrm{IV}\text{-V}$	1.29	63 0
29.	$b8.5\mathrm{IV}$	1.16	680	71.	${ m a3V}$	0.83	890
30.	$_{ m b6IV}$	1.12	610	72.	${ m a1V}$	1.37	450
31.	$\mathrm{b8.5V}$	0.96	470	74.	m f0~V	1.29	710
32.	b8 IV	1.41	680	75.	${ m a}8{ m V}$	1.16	670
34.	${ m f2IV\text{-}V}$	0.67	224	76.	${ m f6~V}$	0.75	730
35.	$^{_{2}}\mathrm{k}2\mathrm{III}$	0.58	300	77.	${ m a6V}$	1.21	900
36.	$f5~\mathrm{V}$	0.08	155	78.	$a7\mathrm{IV}$	1.12	1160
37.	${ m k}3.5{ m III}$	1.21	181	79.	$\mathrm{a}2\mathrm{V}$	0.83	790
38.	$\mathrm{b}7.5\mathrm{IV}$	1.46	550	81.	${ m a1V}$	1.21	450
39.	f8 V	0.00	137	82.	${ m a5V}$	1.12	760
40.	$\mathrm{b7V}$	1.33	510	83.	${ m a7V}$	0.79	660
42.	$\mathrm{b}7.5\mathrm{V}$	1.25	420	84.	${ m a5V}$	0.87	940

Table 3 (continued)

No.	Photom.	A_{V}	r	No.	Photom.	A_{V}	r
	sp. type	mag	pc		sp. type	mag	pc
85.	f0 V	0.96	900	102.	b8 V	0.92	310
86.	a8 V	0.87	1040	104.	a1 III	1.16	35 0
88.	${ m a5~V}$	0.75	940	105.	${ m f2V}$	0.00	47
90.	f3 III-IV	0.25	214	107.	b3 IV	1.62	56 0
91.	$\mathrm{b9V}$	1.04	670	108.	m g5V	0.00	43
92.	${ m a4~V}$	0.83	950	109.	m g5V	0.00	43
93.	${ m k0III}$	0.17	165	110.	m g6V	0.00	50
94.	b9 IV	0.96	580	111.	$\mathrm{b5V}$	1.16	39 0
95.	m g9IV	0.92	151	112.	$\mathrm{b4V}$	1.50	750
96.	b6 V	0.83	710	113.	a7 III:	1.04	241
98.	${ m a4V}$	0.79	550	115.	${ m a1V}$	0.79	239
99.	m f9~V	0.00	90				

at 151 pc, and this gives a cloud distance of 151/0.75 = 201 pc. The most distant star with small reddening ($A_V < 0.25$ mag) is seen at 214 pc, and this gives a cloud distance of 214/1.25 = 171 pc. The average value of the two determinations is 186 pc. The statistical significance of this distance determination is relatively low, since it is based on the single reddened and unreddened stars. However, within rms errors this distance coincides with the distance of Taurus clouds determined in our earlier papers (Straižys & Meištas 1980, Meištas & Straižys 1981, Černis 1987).

The average extinction of all plotted stars, more distant than the cloud, is 1.15 mag with a scatter to both sides of ± 0.6 mag. According to our estimate, the A_V error is about ± 0.15 mag only. Consequently, the observed amplitude is a result of the real extinction variations across the investigated area. The largest extinction $(A_V = 2.33 \text{ mag})$ is found for the k2 III star No. 110, but classification of this star is of low accuracy $(\sigma Q > 0.04 \text{ mag})$.

The apparent changes of distribution of points along the distance in Figure 4 can be explained by several factors acting at the same time – the real fall of star density with increasing distance from the galactic plane, the real concentration of stars at the cluster distances and the apparent diminution of low luminosity stars and the stars affected by interstellar extinction due to the limiting magnitude effect.

Fig. 4. The dependence of interstellar extinction A_V on distance. Dots are for CCD photometry and circles are for photoelectric photometry. The arrows at the right edge are for the stars whose distances exceed 2.5 kpc.

The last effect is demonstrated in Figure 4 by the limiting magnitude curves for V=15 mag and for absolute magnitudes corresponding to F0V, G0V and K0V stars. The stars of these spectral types in Figure 4 are seen only below the corresponding curves. Most of the stars more distant than 2 kpc are G5–K3 giants.

4. DISTANCES TO THE CLUSTERS AND CONCLUSIONS

For estimation of the distances to the clusters NGC 1750 and NGC 1758 we have used the lists of the cluster members from Paper III by Galadi-Enriquez et al. (1998c). In Table 3 we find 42 members of NGC 1750 and 40 members of NGC 1758 with sufficiently accurate classification and distances. The average distances of these stars are: 740±90 pc for NGC 1750 and 793±100 pc for NGC 1758. Thus, the distances of both clusters coincide within the determination errors.

Fig. 5. Intrinsic color magnitude diagram for the members of the clusters NGC 1750 (dots) and NGC 1758 (crosses).

Both clusters show the same value of extinction $A_V = 1.06$ mag with the standard deviations of ± 0.16 mag and ± 0.19 mag for NGC 1750 and NGC 1758 members, respectively. This corresponds to $E_{B-V} = 0.34$ mag in full agreement with the value obtained by Galadi-Enriquez et al. (1998c).

Another possibility to measure distances of the clusters is based on their HR diagrams. Figure 5 shows the V_0 vs. $(Y-V)_0$ diagram for the cluster members. Here $V_0 = V - A_V$ and $(Y-V)_0 = Y-V - E_{Y-V}$, i.e., magnitudes and color indices of stars are plotted after exclusion of their individual extinctions and reddenings. 49 members of NGC 1750 are plotted as dots, and 40 members of NGC 1758 as crosses. The three brightest stars were too bright for CCD photometry: their classification was based on photoelectric photometry (Table 3). The line is the zero-age main sequence (ZAMS) fitted

to the unevolved part of the cluster sequence with a true distance modulus of V_0 – $M_V = 9.4$.

The following conclusions can be drawn from the HR diagram of the clusters.

- (1) The stars of both clusters form the same sequence with the width about 1 mag in V_0 . This means that distances of both clusters are more or less the same. The scatter of points may be caused by evolutionary effects, unresolved duplicity, different axial rotation velocities and rotation axes orientations or different chromospheric activity.
- (2) The ZAMS line shows that the true distance modulus V_0 – $M_V = 9.4$ mag is valid for the common sequence of the clusters. The stars brighter than $V_0 = 12$ show evolutionary deviation upwards. This distance modulus gives a common distance of both clusters of 758 pc, in good accordance with the average distances of the cluster stars.
- (3) We also attempted to plot a HR diagram for both clusters without exclusion of interstellar extinction A_V and reddening E_{Y-V} . In this case the scatter of points in the sequence is much larger, which is undoubtedly caused by the reddening differences across the cluster faces.

The distance of the double cluster found in the present paper is larger than the preliminary distances of both clusters found in Paper I. This increase of distance may be explained by the fact that the limiting magnitude of Paper I was too low to reach the majority of member stars in both clusters. Thus, the distance determination was based mainly on evolved stars. Also, the accuracy of photoelectric photometry of Paper I for the stars of magnitudes 12–13, close to the limiting magnitude, was relatively low and their classification uncertain.

Thus, there are strong arguments that both clusters are at the same distance and show the same interstellar reddening. A similar conclusion has been made by Galadi-Enriquez et al. (1998a) in their first paper: it was not possible to distinguish the single or double nature of the cluster from their UBVRI photometry. However, proper motion studies of Galadi-Enriquez et al. (1998b,c) and Tian et al. (1998) show the presence here of two populations with somewhat different directions of movement. Thus, the presence of two clusters in this direction seems to be real. However, it is not excluded that they penetrate each other.

ACKNOWLEDGMENTS. The Lithuanian authors are grateful to the National Science Council of Taiwan and the Ministry of Education and Science of Lithuania for support.

REFERENCES

Černis K. 1987, Ap&SS, 133, 355

Galadi-Enriquez D., Jordi C., Trullols E., Ribas I. 1998a, A&A, 333, 471

Galadi-Enriquez D., Jordi C., Trullols E., Guibert J., Tian K. P., Zhao J. L. 1998b, A&AS, 131, 239

Galadi-Enriquez D., Jordi C., Trullols E. 1998c, A&A, 337, 125

Laugalys V., Boyle R. P., Kazlauskas A., Vrba F. J., Philip A. G. D., Straižys V. 2003, Baltic Astronomy, 12, No. 4 (in press)

Meištas E., Straižys V. 1981, Acta Astron., 31, 85

Straižys V. 1992, *Multicolor Stellar Photometry*, Pachart Publishing House, Tucson, Arizona

Straižys V., Černis K., Meištas E. 1992, Baltic Astronomy, 1, 125 (Paper I)

Straižys V., Meištas E. 1980, Acta Astron., 30, 541

Tian K.-P., Zhao J.-L., Shao Zh.-Y., Stetson P. B. 1998, A&AS, 131, 89