Lemma. If A is a subset of a metric space, then $A^{\circ} = (A^{\circ})^{\circ}$. REA () Fryo with B(xx) CA

() Fryo with B(xx) NAC = \$ Proof: () 2 f Ac () 2 E (Ac)c. A point & is called an accumulation point Sola met A if every open ball $B(x_m)$ contains an element of A distinct from x_i , i.e., $B(x_m) \cap (A \mid \{x_i\}) = \phi$ for each x > 0. Notice that z need not be an element of A. Every accumulation point of a net is automatically a closure point of that set. The set of accumulation points of A is called the derived set of A, and in denoted by A'. A=AUA'. A ref is closed iff if contains its accumulation A requence $\{x_n\}$ of a metric obace (X,d) if is said to be convergent to $x \in X$ ($\lim x_n = x$) if $\lim d(x_n,x) = 0$.

Thm. Let A be a subset of a metale space (X,d). Then a point xXX belongs to & A iff I a prequence {xny of A S.t. $\lim_{n \to \infty} x_n = x$.

Moreover, if n is an accumulation boint of A, then I a requence of A with distinct teams that converges to 2. Proof: Assume that $\alpha \in A$. For each n, pick $\alpha \notin A$ nuch that $d(x,x_n) < \frac{1}{n}$. Then the sequence $\{x_n\}$ of A satisfies lim xn=x. Whereas, if a sequence English sangles lim xn=x, then for each 170 F some k s.t. d(x, 2n) < r for n>k. Thus, B(2rr) () A + 0 for each r>0, and 80 x E A. Next, assume that $x \in A'$. Shart with choosing some $x \in A$ s.t. $x \neq x$ and $d(x_1x_1) < 1$. Now, Enduhrely, of 29,22,..., 2n ∈ (A\{2\}) have been choosen, pick 241 EA Exy s.t. $d(x,x_{n+1}) < \min\{\frac{1}{n+1}, d(x,x_n)\}$. Then Early is a sequence of A satisfying 2n + 2m if n + m and lim 2n = 2.

A point $x \in X$ is called a boundary point of a set A if every open ball of $x \in X$ contains points from A and A', i.e., if B(x,x) () A + \$\phi\$ and B(x,x) () A^c + \$\phi\$ for all 770. The set of all boundary points of a set A is denoted by DA and is called the boundary of A. By the defi, DA: DA: DA holds for every subject A of X. DA-ANAC

Def? A f? f: (X,d) -- (Y, P) between two metric spaces is raid to be continuous at a point a eX if for every 270

3 8>0 (defending on 2) s.t. Q(f(z),f(a))<2 whenever $d(x,a) \geq \delta$. The for of its said to be continuous on X (or simply continuous) if f is continuous at every point of X. Thm: For a f: f: (x,d) -> (Y, P) bet? two metric spaces, the following statements are equivalent: i) f is continuous on X.

i) f (O) is an open subret of Y.

ii) O is an open subret of Y.

lim $x_n = x$ holds in X, then

lim $f(x_n) = f(x)$ holds in Y. iv) f(A) C f(A) holds for every subset of A of X. v) f'(C) is a clored subret of X whenever (C) is clored ombret of Y.