JEE MAIN (2023-24) Mock Test Series

Paper - 06

DURATION: 180 Minutes

M. MARKS: 300

ANSWER KEY

PHYSICS (3) 2. **(2)** 3. **(3)** 4. **(2)** 5. **(4) (4)** 7. **(3) (1)** 9. **(2)** 10. **(3)** 11. **(1) 12. (1) 13. (2) 14. (3)** 15. **(4) 16. (1) 17. (3)** 18. **(4) 19. (2)** 20. **(2)** 21. **(8)** 22. **(5)** 23. **(8)** 24. **(6) 25. (2) 26. (4)** 27. **(10)** 28. **(5)**

29. (494)

(27)

30.

CHEMISTRY		
31.	(2)	
32.	(2)	
33.	(1)	
34.	(1)	
35.	(4)	
36.	(2)	
37.	(4)	
38.	(2)	
39.	(3)	
40.	(4)	
41.	(1)	
42.	(1)	
43.	(2)	
44.	(3)	
45.	(4)	
46.	(2)	
47.	(3)	
48.	(4)	
49.	(1)	
50.	(3)	
51.	(5)	
52.	(8)	
53.	(2)	
54.	(5)	
55.	(1)	
56.	(5)	
57.	(5)	
58.	(5)	
59.	(8)	
60.	(59)	

/1	4.45
61.	(4)
62.	(2)
63.	(3)
64.	(4)
65.	(2)
66.	(1)
67.	(3)
68.	(3)
69.	(2)
70.	(4)
71.	(1)
72.	(1)
73.	(2)
74.	(4)
<i>75</i> .	(4)
76.	(2)
77.	(3)
78.	(3)
79.	(4)
80.	(1)
81.	(8)
82.	(2)
83.	(3)
84.	(3)
85.	(2)
86.	(12)
87.	(48)
88.	(900)
89.	(30)
90.	(191)

SECTION-I (PHYSICS)

1. (3)

Two surfaces are formed in the capillary Since force due to surface tension becomes twice $\therefore h' = 2h$

2. (2)

$$\Delta KE = \Delta PE \text{ and } \overrightarrow{p_i} = \overrightarrow{p_f}$$

$$\frac{J^2}{2m} = \frac{1}{2}kx^2 + \frac{J^2}{2(5m)}$$

$$\Rightarrow x = \frac{2J}{\sqrt{5 mk}} = \frac{2 \times 10}{\sqrt{5 \times 1 \times 1000}}$$

$$=\frac{2}{\sqrt{50}}=\frac{\sqrt{2}}{5}$$
 m

3. (3

As the detector moves from Q along x-axis, maxima are observed when $\Delta x = 4\lambda$, 3λ , 2λ , λ

At first minima from Q, $\Delta x = \frac{7\lambda}{2}$

$$\sqrt{x^2 + (4\lambda)^2} - x = \frac{7\lambda}{2}$$

$$\Rightarrow x = \frac{15\lambda}{28}$$

4. (2)

$$\begin{split} V_c &= \int_0^R -4\pi r^2 dr \times \frac{1}{r} \times \frac{G}{r} \\ M &= \int_0^R 4\pi r^2 dr \times \frac{1}{r} = 4\pi \times \frac{R^2}{2} \\ V_c &= \int_0^R -(4\pi r^2 dr) \times \frac{1}{r} \times \frac{G}{r} = -\frac{2GM}{R} \end{split}$$

5. (4)

Both voltmeters are parallel.

Both the voltmeters A and B are effectively in parallel and hence give the same reading every time.

6. (4)

Work done by a gas in a cyclic process is negative if P-V graph is in anticlockwise sequence.

$$W_{\text{by gas}} = -\frac{1}{2} \times 1 \times 40 = -20 \text{ J}$$

7. (3)

$$u = u_s + u_i$$

Total energy of the system = $u_1 + u_2 + u_{12}$

$$=\frac{{q_1}^2}{8\pi\varepsilon_0 a}+\frac{{q_2}^2}{8\pi\varepsilon_0 b}+q_1 V_2$$

$$=\frac{{q_1}^2}{8\pi\epsilon_0 a}+\frac{{q_2}^2}{8\pi\epsilon_0 b}+\frac{q_1.q_2}{4\pi\epsilon_0 b}$$

8. (1)

Use KVL

Let a charge q flow in circuit in clockwise direction

By loop law.

$$\frac{q_1 - q}{C} + \frac{q_2 - q}{2C} + \frac{q_3 - q}{3C} + \frac{q_4 - q}{4C} = 0$$

$$\Rightarrow q_1 = \text{CV}, \ q_2 = 4\text{CV}, \ q_3 = 9\text{CV}, \ q_4 = 16\text{CV}$$

$$q = \frac{24}{5}\text{CV}$$

$$V_1 = \left| \frac{q_1 - q}{c} \right| = \frac{19V}{5}$$

$$V_2 = \left| \frac{q_2 - q}{2c} \right| = \frac{2V}{5}$$

$$V_3 = \left| \frac{q_3 - q}{3c} \right| = \frac{7V}{5}$$

$$V_4 = \left| \frac{q_4 - q}{4c} \right| = \frac{14V}{5}$$

9. (2

$$\gamma = \frac{1}{V} \frac{dV}{dT}$$

$$\gamma = \frac{1}{V} \frac{dV}{dT}, PT^2 = \text{Constant}$$

$$\Rightarrow T^3 = kV$$

$$\Rightarrow 3T^2 = k \frac{dV}{dT} \Rightarrow \frac{3T^2}{k} = \frac{dV}{dT}$$

$$\Rightarrow \frac{3T^2}{kT^3}k = \frac{1}{V}\frac{dV}{dT} = \frac{3}{T}$$

10. (3)
$$\frac{dr}{dt} = R\sqrt{\frac{2g}{r}}$$

$$u = \sqrt{2gR}$$

$$\frac{1}{2}mv^2 - \frac{GMm}{r} = \frac{1}{2}mu^2 - \frac{GMm}{R}$$

$$\Rightarrow v = R\sqrt{\frac{2g}{r}}$$

$$\Rightarrow \frac{dr}{dt} = R\sqrt{\frac{2g}{r}}$$

$$\Rightarrow \frac{dr}{dt} = R\sqrt{\frac{2g}{r}}$$

$$\Rightarrow \int_{R}^{4R} \sqrt{r} \, dr = R\sqrt{2g} \int_{0}^{t} dt$$

$$\Rightarrow t = \frac{7}{3}\sqrt{\frac{2R}{g}}$$

11. (1)
$$q = \int i \, dt$$

$$q = \int_0^{\tau} i \, dt = \int_0^{\tau} l_{\text{max}} \left(1 - e^{-\frac{t}{\tau}} \right) dt$$

$$q = \frac{l_{\text{max}} \tau}{e}$$

12. (1)

$$x^{2} = 4y$$

 $2xv_{x} = 4v_{y}$
 $v_{x}^{2} + xa_{x} = 2a_{y}$
At (0, 0)
 $ax = 0|\vec{v}| = 0$
 $a_{y} = \frac{v_{x}^{2}}{2}$

13. (2)
$$\Delta Q = nC_P \Delta T$$

$$2500 \text{ J}$$

$$5$$

$$\Delta Q = nC_P \Delta T$$

$$\Delta Q = nC_P \Delta T$$

$$C_P = \left(\frac{f}{2} + 1\right)R$$

14. (3)

$$kx = 3mg \sin \theta$$

 $kx = 3mg \sin \theta$

$$x = \frac{3mg\sin\theta}{k}$$

15. (4)
$$R = \frac{mv}{qB}$$

$$\therefore \operatorname{Area}(A) = \pi R^2 = \frac{\pi (mv)^2}{(qB)^2}$$

16. (1)
At equilibrium
$$\Delta x_1 = \frac{mg}{k}$$

$$\Delta x_2 = \frac{mg}{2k}$$

$$\Rightarrow \max . \Delta x_2 = 2\Delta x_2 = \left(\frac{mg}{k}\right)$$

17. (3)
Use dipole
$$dq = \lambda_0 \sin \phi \, a \, d\phi$$

$$|\overrightarrow{dp}| = dq \times 2a - 2a^2 \lambda_0 \sin \phi d\phi$$

$$|\overrightarrow{dp}| = 2a^2 \lambda_0 \sin \phi d\phi \Big[\cos \phi \, \hat{i} + \sin \phi \, \hat{j} \Big]$$

$$d\vec{\tau} = \overrightarrow{dp} \times \vec{E}$$

$$d\vec{\tau} = 2a^2 \lambda_0 d\phi \Big[\sin \phi \cos \phi \, \hat{i} + \sin^2 \phi \, \hat{j} \Big] \times$$

$$\Big[E_0 \hat{i} + E_0 \hat{j} \Big]$$

$$\int d\vec{\tau} = \int_0^{\pi} 2a^2 \lambda_0 E_0 d\phi \Big[\sin \phi \cos \phi - \sin^2 \phi \Big] \hat{k}$$

$$= 2a^2 \lambda_0 E_0 \Big[\int_0^{\pi} \sin \phi \cos \phi d\phi - \int_0^{\pi} \sin^2 \phi d\phi \Big] \hat{k}$$

$$= 2a^2 \lambda_0 E_0 \Big[\int_0^{\pi} \frac{\sin^2 \phi}{2} d\phi - \int_0^{\pi} \left(\frac{1 - \cos 2\phi}{2} \right) d\phi \Big] \hat{k}$$

$$= 2a^2 \lambda_0 E_0 \Big[0 - \frac{\pi}{2} \Big] \hat{k} = a^2 \lambda_0 \pi E_0 \hat{k}$$

18. (4)

$$V_y^A = V_y^B$$

$$10 \times \sin 37^\circ = (V)\sin 53^\circ$$

$$\Rightarrow 10 \times \frac{3}{5} = (V) \times \frac{4}{5}$$

$$\Rightarrow V = \frac{15}{2} \text{ m/s}$$

Power is zero when $\vec{F} \cdot \vec{v} = 0$

Now
$$\vec{F} = \frac{q\sigma}{\varepsilon_0}(-\hat{j})$$

$$\vec{v} = v \cos \alpha \hat{i} + \left(v \sin \alpha - \frac{q \sigma t}{m \epsilon_0} \right) \hat{j}$$

$$\vec{F}.\vec{v} = \left(v\sin\alpha - \frac{q\sigma t}{m\varepsilon_0}\right).\frac{q\sigma}{\varepsilon_0} = 0$$

$$t = \frac{mv\sin\alpha\varepsilon_0}{a\sigma}$$

20. (2)

Let a = maximum acceleration of A.

Under no slip condition acceleration of B is also

FBD of A w.r.t ground

$$\Sigma F_{v} = 0$$

$$\therefore \frac{N}{\sqrt{2}} = mg + \frac{\mu N}{\sqrt{2}}$$

$$\sum \frac{NF_x}{\sqrt{2}} + \frac{\mu N}{\sqrt{2}} = ma$$

Solving these two equations, we get

$$a = g\left(\frac{1+\mu}{1-\mu}\right)$$

21. (8)

$$qv = \Delta$$
 K.E. and $\lambda \propto \frac{1}{V}$

$$\lambda = \frac{h}{\sqrt{2 \, emV_1}}$$

$$\frac{\lambda}{3} = \frac{h}{\sqrt{2 em(V_1 + V_2)}}$$

$$\therefore 3 = \sqrt{\frac{V_1 + V_2}{V_1}}$$

$$\Rightarrow \frac{V_1}{V_2} = \frac{1}{8}$$

$$\omega = 10 \text{ rad/s}$$

From Eqn.
$$a = -100x' = -\omega^2 x'$$

$$\Rightarrow \omega = 10$$

Time period of motion is, $T = \frac{2\pi}{\omega} = \frac{2\pi}{10} = \frac{\pi}{5}$

Then,
$$t = \frac{T}{4} = \frac{\pi}{20} = \frac{\pi}{20}$$

$$\therefore \quad \frac{\alpha}{4} = \frac{20}{4} = 5$$

23. (8)

 v_m (just before collision) = $2\sqrt{2gh_0}$

 v_m (just before collision) = $2\sqrt{2gh_0}$

$$\Rightarrow v_{3m}$$
 (just after collision) = $\left(\frac{v_m}{5}\right)$

$$a_{3m} = \frac{g}{5}$$
 (Downward)

$$\Rightarrow H_{\text{max}} = \frac{(v_{3m})^2}{a_{3m}} = \frac{4h_0}{5} = 8 \text{ cm}$$

24. (6

$$i = \frac{Bvl}{R_{eq}}; F = iBl$$

$$i = \frac{Bvl}{R_{eq}} = \frac{3 \times 2 \times 2}{12} = 1 \text{ A}$$

$$F = iBl = 1 \times 3 \times 2 = 6 \text{ N}$$

25. (2)

$$V = \frac{kq}{R}$$

$$\frac{kq_A}{R} + \frac{kq_B}{2R} = 2V \qquad \dots (1)$$

$$\frac{kq_A}{2R} + \frac{kq_B}{2R} = \frac{3}{2}V \qquad \dots (2)$$

From equation (1) and (2), $\frac{q_A}{q_B} = \frac{1}{2}$

After *B* is earthed $V_B = 0$

$$\therefore q_B = -q_A$$

After earthing

$$V_A - V_B = kq_A \left[\frac{1}{R} - \frac{1}{2R} \right] = \frac{kq_A}{2R}$$

Putting $q_B = 2q_A$ in equation (1)

$$\frac{kq_A}{2R} = \frac{V}{2}, V_A - V_B = \frac{V}{2}$$

$$V_B = 0 \Longrightarrow V_A = \frac{V}{2}$$

26. (4)

 $\overrightarrow{L_i} = \overrightarrow{L_f}$ (About point on horizontal surface)

$$\Rightarrow \frac{mR^2}{2}\omega_0 = 2\left(\frac{3}{2}mR^2\right)\omega$$

$$\Rightarrow \omega = \frac{\omega_0}{6}$$

$$\Rightarrow V_{\rm cm} = \frac{R\omega_0}{6} \Rightarrow J = \frac{mR\omega_0}{6}$$

$$\Rightarrow$$
 J = $\frac{(2)(1)12}{6}$ = 4 kg·m/s

For solenoid $B = \mu_0 nI$

Resistance
$$R_0 = (2\pi r) \times 400 \frac{1}{100}$$

$$n = \text{(no. of turns per unit length)} = \frac{400}{20} \times 100$$

$$\Rightarrow n = 2000$$

$$\therefore B = \frac{\mu_0 \times 2000 \times E_0 \times 100}{2\pi r \times 400}$$

$$\Rightarrow E_0 = \frac{1}{10} \times 2\pi \times \frac{1}{100} \times \frac{400}{4\pi \times 10^{-7} \times 2000 \times 100}$$

$$\Rightarrow E_0 = 10 \text{ volts}$$

28. (5)

$$\tan \theta = \frac{a}{g}$$

$$\tan\alpha = \frac{a}{g} = \frac{2}{10} = \frac{1}{5}$$

$$\alpha = \tan^{-1}\left(\frac{1}{5}\right) = \tan^{-1}\left(\frac{1}{x}\right)$$

i.e.
$$x = 5$$

29. (494)

Energy of incident photons

=
$$13.6 Z^2$$

= 13.6×2^2
= 54.4 eV

Max K.E. of photoelectrons

$$= 54.4 - 5$$

= 49.4 eV

Stopping potential = 49.4 volt

$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

SECTION-II (CHEMISTRY)

31. (2)

In compound 'Y', 4 g of A will combine with $\frac{7}{3} \times 12 = 28$ g of B, and hence, 8 g of A will combine with $2 \times 28 = 56$ g of B.

$$V_{n,z} = 2.188 \times 10^6 \frac{z}{n} m/s$$

Or,
$$1094 \times 10^3 = 2.188 \times 10^6 \times \frac{z}{4} \Rightarrow z = 2$$

$$\Rightarrow$$
 He⁺ion

33. (1)

For minimum work in compression, the process must be reversible.

$$w = -nRT.ln \frac{P_1}{P_2} = -\frac{16}{32} \times 8.3 \times 300 \times ln \frac{1.01325 \times 10^3}{1.01325 \times 10^5}$$
$$= +2727 J$$

$$\frac{P^{\circ} - P}{P} = \frac{n_1}{n_2} \Rightarrow \frac{1}{99} = \frac{w/180}{500/18} \Rightarrow w = 50.5 \text{gm}$$

$$\frac{1}{2} \operatorname{Hg}_{2} \operatorname{Cl}_{2}(s) + e^{-} \to \operatorname{Hg}(1) + \operatorname{Cl}^{-}(\operatorname{aq})$$

$$4C_3H_6 + 6NO \rightarrow 4C_3H_3N + 6H_2O + N_2$$

$$n_{C_3H_6} = \frac{420}{42} = 10$$
 moles

4 moles
$$C_3H_6 = 4$$
moles C_3H_3N

$$\therefore$$
 10 moles C₃H₆ = 10 moles C₃H₆N = 10 × 53 = 530 kg.

37. (4)

$$n_{eq}H_2O_2 = n_{eq}KMnO_4$$

or
$$\frac{1 \times \frac{x}{100}}{34} \times 2 = \frac{x \times N}{1000} \Rightarrow N = 0.588$$

38. (2)

Apply Fajans' rule.

Covalent character:

$$\overset{4+}{\text{C}}\overset{3+}{\text{Cl}_4}>\overset{2+}{\text{BeCl}_2}>\overset{\oplus}{\text{LiCl}}$$

39. (3)

In N_2^{\oplus} , there is one unpaired electron in bonding MO (i.e., s $2p_z^l$)

40. (4)

Lesser is the positive charge, higher is the radius. Moreover the size increases down the group. Therefore,

$$Na^{\oplus} > Li^{\oplus} > Mg^{2+} > Be^{2+}$$

$$Na^{+} = 102 \text{ pm}$$

$$Li^+ = 76 \text{ pm}$$

$$Mg^{2+}\!=72\;pm$$

$$Be^{2+}\!=31pm$$

41. (1)

E₂ reaction

42. (1)

$$CH_3-O-CH=CH_2$$
 and $CH_3-CH_2-C-H \Rightarrow C_3H_6O$

Methyl vinyl ether

43. (2

$$(A) \xrightarrow{C_3H_3MgBr \\ H_2O} HO$$

$$(A) \xrightarrow{Conc. H_3SO_4} \xrightarrow{O_3, Zn, H_2O} Product$$

44.

(3)

45. (4)

Molecule having almost negligible tendency to form hydrogen bonds is HI as hydrogen bonding depends on two factors:

- (i) Higher electronegativity of X in HX
- (ii) Small size of X

Electronegativity of I is low and its size is also large. Therefore, both the factors fail here. Hence, no hydrogen bonding is present in HII.

46. (2)

Both are enantiomers.

47. (3)

48. (4)

Maltose is composed of two units of a-D glucose which are joined through $C_1 - C_4$ glycosidic linkage.

49. (1)

$$Ph - C = O H_{2}N - OH \xrightarrow{H^{\oplus}} Ph - C = N - OH$$

$$H \qquad H \qquad (A)$$

$$P_{2}O_{3} \longrightarrow Ph - C = N$$

$$dehydrating \qquad Ph - C = N$$

50. (3)

51. (5

$$\frac{160}{96} = \frac{2 \times n}{2 + n} \Rightarrow n = 10 \Rightarrow \text{ Oxidation state of Br}$$
in unknown product = 5

Heat released by $\frac{6.3}{64000}$ mole haemoglobin = $25 \times 4.2 \times 0.03 = 3.15$ J

- ∴ Heat released per mole haemoglobin $= \frac{3.15 \times 64000}{6.3} = 32000 \text{ J}$
- ∴ Heat released per mole $O_2 = \frac{32000}{4} = 8000 \text{ J}$

$$\Delta T_f = K_f \cdot m$$

 $Hg(CN)_2 + mCN^- \rightleftharpoons Hg(CN)_{m+2}^{m-}$

0.1 mole 0.2 mole 0

Final 0 (0.2–0.1 m) mole 0.1 mole

For KCN solution: $0.80 = K_f \times 0.2 \times 2$

Final effective molality = (0.2-0.1 m) + 0.1 + 0.2

= 0.5 - 0.1 m

Now, $0.60 = K_f \times (0.5-0.1 \text{ m})$

From (1) and (2): m = 2

54. (5)

55. (1)

Carbon 1 is anomeric carbon.

$$\left[\begin{array}{c} \oplus \\ Fe \left(\begin{array}{c} 0 \\ H_2O \end{array} \right)_5 \begin{array}{c} +1 \\ NO \end{array} \right]^{2+}$$

$$Fe^{+1} = 3d^64s^1$$

Since (NO) is strong ligand, so one pairing occurs.

It has sp^3 d^2 hybridization with octahedral geometry according to CFT, e^- distribution is as follow:

57. (5)

(i), (ii), (iii), (iv) and (v)

$$\bigcirc, \stackrel{O}{\swarrow}_{Cl} \xrightarrow{AlCl_3}, \bigcirc$$

58. (5

$$\ddot{N}H_{2}, \qquad \ddot{N}H_{1}, \qquad \ddot{N}H_{1}, \qquad \ddot{N}H_{2}, \qquad \ddot{N$$

59. (8)

 $H_3C - CH \stackrel{\bullet}{=} CH - CH \stackrel{\bullet}{=} CH - CH \stackrel{\bullet}{=} CH - Ph$ Total stereoisomer = $2^3 = 8$

60. (59)

$$K = Ae^{-Ea/RT}$$

$$\ln\left(\frac{2K_1}{K_1}\right) = \frac{Ea}{R} \left(\frac{1}{300} - \frac{1}{309}\right)$$

$$Ea = \frac{0.3 \times 8.3 \times 2.3 \times 300 \times 309}{9} \approx 59 \text{ kJ mol}^{-1}$$

SECTION-III (MATHEMATICS)

$$\frac{\left(2x-5\right)}{x\left(x+1\right)} \ge 0;$$

$$\therefore a^x > 0$$
 and $\cos x - 2 < 0$

Put
$$\log_3(x-1) = t$$

$$\Rightarrow t = 2 + \frac{1}{t^2} - 2t$$

$$\Rightarrow 3t^3 - 2t^2 - 1 = 0$$

$$(t-1)(3t^2+t+1)=0$$

$$\Rightarrow t = 1 : x = 4$$

$$\alpha + \frac{1}{\alpha} \ge 2, \beta + \frac{1}{\beta} \ge 2$$

 \Rightarrow both the roots are real and greater than 2.

$$\Rightarrow \begin{cases} 4-10-a \ge 0 \\ 25+4a \ge 0 \Rightarrow a \in \left[\frac{-25}{4}, -6\right] \\ \frac{5}{2} > 2 \end{cases}$$

64. (4)

$$t_r = \frac{r(r+1)(2r+1)4}{6r^2(r+1)^2} = \frac{2(2r+1)}{3r(r+1)} = \frac{2}{3} \left[\frac{1}{r} + \frac{1}{r+1} \right]$$

$$S_n = \frac{2}{3} \sum_{r=1}^{n} (-1)^r \left(\frac{1}{r} + \frac{1}{r+1} \right)$$

$$\Rightarrow$$

$$S_{\infty} = \frac{2}{3} \left[\left(-1 + \frac{1}{2} - \frac{1}{3} + \dots \right) + \left(-\frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots \right) \right]$$
$$= \frac{2}{3} \left[-1 \right]$$

The given equation is $(z^2 + z + 1) (z^2 + 1) = 0$. $z = \pm I$, w, w^2 , w being an imaginary cube root of unity. Thus, |z| = 1

$$\left(y + 3x^2y^2e^{x^3}\right)dx = xdy$$

$$\Rightarrow \frac{dy}{dx} = \frac{y + 3x^2y^2e^{x^3}}{x}$$

$$\Rightarrow \frac{dy}{dx} - \frac{y}{x} = y^2 \left(3x^{e^{x^3}} \right)$$

$$\Rightarrow \frac{1}{v^2} \frac{dy}{dx} - \frac{1}{xy} = 3x^{e^{x^3}}$$

Put
$$-\frac{1}{y} = t \Rightarrow \frac{dt}{dx} + \frac{t}{x} = 3x^{e^{x^3}}$$

I.F.
$$=e^{\int \frac{dx}{x}} = x$$

$$-\frac{1}{y} = t \frac{dt}{dx} + \frac{t}{x} = 3x^{e^{x^3}}$$

$$(I.F.) = e^{\int \frac{dx}{x}} = x$$

$$\frac{d}{dx}(tx) = 3x_2e^{x^3}$$

$$\Rightarrow tx = \int 3x^2 e^{x^3} dx$$

$$\Rightarrow \frac{-x}{y} = e^{x^3} + c$$

Alternate solution

$$\frac{ydx - xdy}{y^2} + e^{x^3} \cdot d\left(x^3\right) = 0$$

$$\frac{x}{y} + e^{x^3} = c$$

$$I = \int \sqrt{\frac{x-1}{x+1}} \times \frac{1}{x^2} dx$$

Put
$$\frac{1}{x} = \cos 2\theta \Rightarrow -\frac{dx}{x^2} = -2\sin 2\theta d\theta$$

$$I = \int \sqrt{\frac{1 - \cos 2\theta}{1 + \cos 2\theta}} 2\sin 2\theta \ d\theta$$

$$= \int 4\sin^2\theta \ d\theta = 2\int (1-\cos 2\theta)d\theta$$
$$= 2\theta - \sin 2\theta + C = \cos^{-1}\left(\frac{1}{x}\right) - \sqrt{1-\frac{1}{x^2}} + C$$

68. (3)
$$\lim_{x \to \frac{\pi}{2}} \tan^{2} x \left(\sqrt{2 \sin^{2} x + 3 \sin x + 4} - \sqrt{\sin^{2} x + 6 \sin x + 2} \right)$$

$$= \lim_{x \to \frac{\pi}{2}} \tan^{2} x \left(\frac{2 \sin^{2} x + 3 \sin x + 4 - \left(\sin^{2} x + 6 \sin x + 2\right)}{\sqrt{2 \sin^{2} x + 3 \sin x + 4} + \sqrt{\sin^{2} x + 6 \sin x + 2}} \right)$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{1}{\cos^{2} x} \frac{\left(\sin^{2} x - 3 \sin x + 2\right)}{\sqrt{2 + 3 + 4} + \sqrt{1 + 6 + 2}}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{1}{6} \left[\frac{\sin^{2} x - 3 \sin x + 2}{\cos^{2} x} \right] \left(\frac{0}{0} \text{ form} \right)$$
(Use *L'* Hospital rule)
$$= \frac{1}{6} \lim_{x \to \frac{\pi}{2}} \frac{2 \sin x \cos x - 3 \cos x}{2 \cos x \left(-\sin x\right)}$$

$$= \frac{1}{6} \lim_{x \to \frac{\pi}{2}} \frac{2 \sin x - 3}{-2 \sin x} = \left(\frac{1}{6}\right) \left(\frac{1}{2}\right) = \frac{1}{12}$$

69. (2)
$$\Delta = \begin{vmatrix} S_0 & S_1 & S_2 \\ S_1 & S_2 & S_3 \\ S_2 & S_3 & S_4 \end{vmatrix}$$

$$= \begin{vmatrix} 3 & \alpha + \beta + \gamma & \alpha^2 + \beta^2 + \gamma^2 \\ \alpha + \beta + \gamma & \alpha^2 + \beta^2 + \gamma^2 & \alpha^3 + \beta^3 + \gamma^3 \\ \alpha^2 + \beta^2 + \gamma^2 & \alpha^3 + \beta^3 + \gamma^3 & \alpha^4 + \beta^4 + \gamma^4 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \end{vmatrix}^2 = (\alpha - \beta)^2 (\beta - \gamma)^2 (\gamma - \alpha)^2$$

70. (4)

Total *n*-digit numbers using 1, 2 or $3 = 3^n$ total *n*-digit numbers using any two digits out of 1, 2 or $3 = {}^{3}C_{2} \times 2^{n} - 6 = 3 \times 2^{n} - 6$ total *n*-digit numbers using only one digit of 1, 2 or 3 = 3

 \therefore the numbers containing all three of the digits 1, 2 and 3 at least once = $3^n - (3 \times 2^n - 6) - 3$ = $3^n - 3 \cdot 2^n + 3$

71. (1)
$$\begin{vmatrix} x^3 + 1 & x^2y & x^2z \\ xy^2 & y^3 + 1 & y^2z \\ xz^2 & yz^2 & z^3 + 1 \end{vmatrix} = \begin{vmatrix} x^3 & x^2y & x^2z \\ xy^2 & y^3 + 1 & y^2z \\ xz^2 & yz^2 & z^3 + 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & x^2y & x^2z \\ 0 & y^3 + 1 & y^2z \\ 0 & yz^2 & z^3 + 1 \end{vmatrix}$$

$$= \begin{vmatrix} x^2 & x^2y & x^2z \\ y^2 & y^3 + 1 & y^2z \\ z^2 & yz^2 & z^3 + 1 \end{vmatrix} + (y^3 + 1)(z^3 + 1) - y^3z^3$$

$$= x \begin{vmatrix} x^2 & 0 & 0 \\ y^2 & 1 & 0 \\ z^2 & 0 & 1 \end{vmatrix} + y^2z^3 + z^3 + y^3 + 1 - y^3z^3$$

$$= x^3 + y^3 + z^3 + 1$$
Given, $x^3 + y^3 + z^3 + 1 = 30 \Rightarrow x^3 + y^3 + z^3 = 29$
As, $29 = 3^3 + 1^3 + 1^3$, then solutions are $(3, 1, 1)$, $(1, 3, 1)$, $(1, 1, 3)$
Sum of all the possible values of x is $= 3 + 1 + 1 = 3$

72. (1) $|A| = 2; A^{2011} - 5A^{2010} = A^{2010} (A - 5I)$ $\therefore |A^{2011} - 5A^{2010}| = 2^{2010} \begin{vmatrix} -2 & 11 \\ 2 & 3 \end{vmatrix}$ $= 2^{2010} (-28) = -2^{2012} 7$

73. (2) $f(x) = \operatorname{sgn}(x - x^4 + x^7 - x^8 - 1)$ For $x \in (0, 1)$; x - 1 < 0, $x^7 - x^4 < 0$ $\therefore x - x^4 + x^7 - x^8 - 1 < 0$ For $x \in (1, \infty)$; $x < x^4$, $x^7 < x^8$ $\therefore x - x^4 + x^7 - x^8 - 1 < 0$] Also for x = 1; $x - x^4 + x^7 - x^8 - 1 = -1$ Thus $x - x^4 + x^7 - x^8 - 1 < 0$ for all $x \in R^+$ Hence $\operatorname{sgn}(x - x^4 + x^7 - x^8 - 1) = -1 \ \forall \ x \in R^+$ Therefore f(x) is many-one and into

74. (4)
$$\lim_{x \to \frac{\pi}{2}} \frac{(1 - \sin x) (8x^3 - \pi^3) \cos x}{(\pi - 2x)^4}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{\left(1 - \cos\left(\frac{\pi}{2} - x\right)\right) (2x - \pi) \left(4x^2 + \pi^2 + 2\pi x\right) \sin\left(\frac{\pi}{2} - x\right)}{16\left(\frac{\pi}{2} - x\right)^4}$$

$$= \lim_{h \to 0} \frac{\left(1 - \cos h\right) (-2h) \sin h}{16h^4} \lim_{x \to \frac{\pi}{2}} \left(4x^2 + \pi^2 + 2\pi x\right)$$

$$= \lim_{h \to 0} \frac{\left(1 - \cos h\right) (-2h) \sin h}{16h^4} \lim_{x \to \frac{\pi}{2}} \left(4x^2 + \pi^2 + 2\pi x\right)$$

$$= \lim_{h \to 0} \frac{\left(1 - \cos h\right) \left(4h^4 - \frac{\pi}{2}\right) \sin h}{16h^4} \lim_{x \to \frac{\pi}{2}} \left(4x^2 + \pi^2 + 2\pi x\right)$$

$$= \lim_{h \to 0} \frac{\left(1 - \cos h\right) \left(4h^4 - \frac{\pi}{2}\right) \sin h}{16h^4} \lim_{x \to \frac{\pi}{2}} \left(4x^2 + \pi^2 + 2\pi x\right)$$

$$= -\left(3\pi^2\right) \lim_{h \to 0} \frac{2\sin^2 \frac{h}{2}}{32\frac{h^2}{4}}$$

$$= -\frac{3\pi^2}{16}$$

75. (4)
$$f(x) = \begin{cases} 2\sqrt{1-x^2}, & x \le 0 \\ 0, & x > 0 \end{cases}$$

Clearly, f(x) is discontinuous, hence non-differentiable at x = 0.

76. (2)

$$\cos(A-B) = \frac{3}{5} \& \tan A \tan B = 2$$

 $\cos A \cos B + \sin A \sin B = \frac{3}{5}$

$$\Rightarrow$$
 $(1 + \tan A \tan B) \cos A \cos B = \frac{3}{5}$

$$\Rightarrow (1+2) \times \cos A \cos B = \frac{3}{5}$$

$$\Rightarrow \cos A \cos B = \frac{1}{5}$$

$$\therefore \sin A \sin B = \frac{3}{5} - \frac{1}{5} = \frac{2}{5}$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B = \frac{1}{5} - \frac{2}{5} = \frac{-1}{5}$$

77. (3) Let position vector of *A* be origin Position vector of $M = \frac{\vec{c}}{3}$ Position vector of $N = (-\vec{c} + 2\vec{b})$

$$\therefore$$
 equation of line *BC* is $\vec{r} = \vec{b} + \lambda (\vec{b} - \vec{c})$

$$\therefore$$
 equation of line AB is $\vec{r} = \vec{0} + \mu \vec{b}$

$$\therefore$$
 equation of line MN is $\vec{r} = \frac{\vec{c}}{3} + t \left(\frac{4\vec{c}}{3} - 2\vec{b} \right)$

$$\Rightarrow \mu = -2t, 0 = \frac{1}{3} + \frac{4}{3}t$$

Which gives $\mu = \frac{1}{2}$

 \Rightarrow Position vector of X is $\frac{\vec{b}}{2}$.

78. (3)

$$\frac{x}{2} = \frac{y}{3} = \frac{z}{5}$$
(i)

$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
(ii)

$$\hat{a} + \hat{b} = \frac{2\hat{i} + 3\hat{j} + 5\hat{k}}{\sqrt{38}} + \frac{\hat{i} + 2\hat{j} + 3\hat{k}}{\sqrt{14}}$$

 \Rightarrow (A) and (B) will be incorrect

Let the dr's of line \perp to (1) and (2) be a, b, c

$$\Rightarrow 2a + 3b + 5c = 0$$
(iii) and

$$a + 2b + 3c = 0$$
(iv)

$$\therefore \frac{a}{9-10} = \frac{b}{5-6} = \frac{c}{4-3}$$

$$\Rightarrow \frac{a}{-1} = \frac{b}{-1} = \frac{c}{1}$$

$$\Rightarrow \frac{a}{1} = \frac{b}{1} = \frac{c}{-1}$$

 \therefore equation of line passing through (0, 0, 0) and is \perp_r to the lines (1) and (2) is

$$\frac{x}{1} = \frac{y}{1} = \frac{z}{-1}$$

$$I = \int \sqrt{\frac{1 - \cos x}{\cos \alpha - \cos x}} \, dx$$

$$0 < \alpha < x < \pi$$

$$= \int \frac{\sqrt{2}\sin\frac{x}{2}dx}{\sqrt{2\cos^2\frac{\alpha}{2} - 1 - 2\cos^2\frac{x}{2} + 1}}$$

$$=\int \frac{\sin\frac{x}{2}dx}{\sqrt{\cos^2\frac{\alpha}{2} - \cos^2\frac{x}{2}}}$$

Put
$$\cos \frac{x}{2} = t \Rightarrow -\frac{1}{2} \sin \frac{x}{2} dx = dt$$

$$\Rightarrow I = \int \frac{-2dt}{\sqrt{\cos^2 \frac{\alpha}{2} - t^2}} = -2\sin^{-1} \left(\frac{\cos \frac{x}{2}}{\cos \frac{\alpha}{2}}\right) + C$$

The equation of required hyperbola is

$$\frac{\left(\frac{2x - y + 4}{\sqrt{5}}\right)^2}{\left(\frac{\sqrt{2}}{2}\right)^2} - \frac{\left(\frac{x + 2y - 3}{\sqrt{5}}\right)^2}{\left(\frac{1}{\sqrt{3}}\right)^2} = 1$$

$$\Rightarrow x^2 - 4xy - 2y^2 + 10x + 4y = 0$$

Since centre of hyperbola is intersection of axis C (-1, 2) and foci lies on T.A. at a distance ae from centre

$$\therefore$$
 focus $((-1 \pm ae \cos \theta), (2 \pm ae \sin \theta))$

transverse axis slope = $-\frac{1}{2}$

We get
$$\cos \theta = \frac{-2}{\sqrt{5}}, \sin \theta = \frac{1}{\sqrt{5}}$$

$$\Rightarrow \left(-1\mp\frac{2}{\sqrt{6}},2\pm\frac{1}{\sqrt{6}}\right)$$

81. (8)

Solving given curves

$$x^2 + 2 = 2|x| - \cos \pi x$$

$$\Rightarrow x^2 - 2|x| + 2 = -\cos \pi x$$

$$\Rightarrow (|x|-1)^2 + 1 = -\cos \pi x$$

$$\Rightarrow x = \pm 1$$

$$\int_{-1}^{1} \left(x^2 + 2 - 2|x| + \cos \pi x \right) dx = \frac{8}{3}$$

$$\frac{dx}{dy} + \frac{x^2}{y^2} - \frac{x}{y} + 1 = 0$$

Put
$$x = vv$$

$$\Rightarrow \frac{dx}{dy} = v + y \frac{dv}{dy}$$

$$\therefore v + y \frac{dv}{dv} + v^2 - v + 1 = 0$$

$$\Rightarrow -y \frac{dv}{dv} = (1+v^2)$$

$$\Rightarrow \frac{dv}{v^2+1} = -\frac{dy}{v}$$

Integrating

$$\tan^{-1} v + c = -\ln v$$

$$\Rightarrow \tan^{-1}\left(\frac{x}{y}\right) + \ln y + c = 0$$

Where c is arbitrary constant

83. (3)

Let
$$\vec{b} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$$
, $\vec{a} \times \vec{b} = \hat{j} - \hat{k}$

$$\Rightarrow \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ \alpha & \beta & \gamma \end{vmatrix} = \hat{j} - \hat{k}$$

$$\Rightarrow \beta - \gamma = 0, \alpha - \gamma = 1, \alpha - \beta = 1$$

$$\Rightarrow \beta = \gamma, \alpha = 1 + \gamma, \alpha = 1 + \beta, \vec{a} \cdot \vec{b} = 1$$

$$\Rightarrow \alpha + \beta + \gamma = 1, \Rightarrow \beta + 1 + \beta + \beta = 1$$

$$\Rightarrow \beta = 0$$

$$\alpha = 1, \gamma = 0,$$

$$\vec{b} = \hat{i}$$

84. (3

Eliminating n we have $(l^2 + m^2) - (l + m)^2 = 0$

$$\therefore 2lm = 0$$

When l = 0 then m + n = 0

$$\therefore \quad \frac{l}{0} = \frac{m}{1} = \frac{m}{-1} \qquad \dots (1)$$

When m = 0 then 1 + n = 0

$$\therefore \quad \frac{l}{1} = \frac{m}{0} = \frac{n}{-1} \qquad \dots (2)$$

$$\therefore$$
 D.R.'s are 0, 1, -1 and 1, 0, -1

$$\therefore \cos \theta = \frac{0.1 + 1.0 + 1}{\sqrt{1 + 1}\sqrt{1 + 1}} = \frac{1}{2}$$

$$\theta = \frac{\pi}{3}$$

85. (2)

Equation of AU is

$$y - y_1 = \frac{0 - y_1}{3 - x_1} (x - x_1)$$

So that the coordinates of *C* are $\left(0, \frac{3y_1}{\left(3-x_1\right)}\right)$

Similarly, the coordinates of D are $\left(0, \frac{6y_1}{\left(6 - x_1\right)}\right)$

Now, equation of AD is $\frac{x}{3} + \frac{y(6-x_1)}{6y_1} = 1$...(i)

and equation of OU is $y_1x = x_1y$...(ii)

Solving (i) and (ii), we get

$$\frac{x_1 y}{3y_1} + \frac{y(6 - x_1)}{6y_1} = 1$$

$$\Rightarrow y(2x_1 + 6 - x_1) = 6y_1$$

$$\Rightarrow y = \frac{6y_1}{6 + x_1} \Rightarrow x = \frac{6x_1}{6 + x_1}$$

Hence, the coordinates of *V* are $\left(\frac{6x_1}{6+x_1}, \frac{6y_1}{6+x_1}\right)$

Therefore, equation of CV is

$$y - \frac{3y_1}{3 - x_1} = \frac{\frac{6y_1}{6 + x_1} - \frac{3y_1}{3 - x_1}}{\frac{6x_1}{6 + x_1} - 0} (x - 0)$$

$$\Rightarrow y = \frac{3y_1}{3 - x_1} - \frac{9x_1y_1}{6x_1(3 - x_1)} x$$

$$\Rightarrow y = \frac{3y_1}{3 - x_1} \left(1 - \frac{x}{2} \right)$$

Which passes through the point (2, 0) for all values of (x_1, y_1)

86. (12)

$$x_3 + 5x_2 + px + q = 0 \underbrace{\qquad \qquad \beta}_{x_1}$$

$$\Rightarrow \alpha + \beta + x_1 = -5, \quad \alpha\beta + \beta x_1 + \alpha x_1 = p$$
.....(1)

$$x_{3}+7x_{2}+px+r=0 \xrightarrow{\alpha} \beta$$

$$\Rightarrow \alpha+\beta+x_{2}=-7, \alpha\beta+\beta x_{2}+\alpha x_{2}=p \qquad(2)$$

$$\alpha\beta+\beta x_{1}+\alpha x_{1}=p$$

$$\Rightarrow \frac{\alpha\beta+\beta x_{2}+\alpha x_{2}=p}{\alpha(x_{1}-x_{2})+\beta(x_{1}-x_{2})=0}$$

$$\Rightarrow (x_{1}-x_{2})(\alpha-\beta)=0 [x_{1}\neq x_{2}]$$

$$\therefore \alpha+\beta=0$$

$$\Rightarrow x_{1}=-5$$

$$\Rightarrow x_{2}=-7$$

87. (48)

$$f(x) = \sqrt{-\log_{\frac{x+4}{2}} \left(\log_2 \frac{2x-1}{3+x}\right)}$$

For domain: $\log_{\frac{x+4}{2}} \left(\log_2 \frac{2x-1}{3+x} \right) \le 0$

Case I
$$0 < \frac{x+4}{2} < 1$$

$$\Rightarrow$$
 $-4 < x < -2$ A

then
$$\log_{\frac{x+4}{2}} \left(\log_2 \frac{2x-1}{3+x} \right) \le 0$$

$$\Rightarrow \log_2 \frac{2x-1}{3+x} \ge 1$$

$$\Rightarrow \frac{2x-1}{3+x} \ge 2$$

$$\Rightarrow x < -3$$

$$\Rightarrow$$
 on $A \cap B$ $x \in (-4, -3)$ (i)

Case-II

$$\frac{x+4}{2} > 1 \text{ or } x > -2$$
A

$$\log_{\frac{x+4}{2}} \left(\log_2 \frac{2x-1}{3+x} \right) \le 0$$

$$\Rightarrow 0 < \log_2 \frac{2x-1}{3+x} \le 1$$

$$\Rightarrow 1 < \frac{2x-1}{3+x} \le 2$$

$$\Rightarrow x \in (4, \infty)$$
(ii)

$$\therefore$$
 (i) \cup (ii)

Domain $x \in (-4, -3) \cup (4, \infty)$

$$a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225$$

 $\Rightarrow 3(a_1 + a_{24}) = 225$

(sum of terms equidistant from beginning and end are equal) $a_1 + a_{24} = 75$

Now
$$a_1 + a_2 + \dots + a_{23} + a_{24} = \frac{24}{2} [a_1 + a_{24}]$$

= $12 \times 75 = 900$

$$\int_{1}^{2} x \cdot x^{x^2} \left(1 + 2\ln x \right) dx$$

$$x^{x^2} = t$$

$$x^2 \ln x = \ln t$$

$$\left(x^2 \cdot \frac{1}{x} + \ln x \cdot 2x\right) dx = \frac{1}{t} dt$$

$$\left(x+2\ln x\right)dx = \frac{1}{t}dt$$

$$= \int t \cdot \frac{1}{t} dt$$

$$= t = \left(x^{x^2}\right)_1^2 = 2^4 - 1 = 15$$

90. (191)

Let No. of children of John & Angelina = y

$$\therefore x + (x+1) + y = 24$$

$$y = 23 - 2x$$

Number of fights

$$F = x(x+1) + x(23-2x) + (x+1)(23-2x)$$

$$F = -3x^2 + 45x + 23$$

$$\frac{dF}{dx} = 0 \implies -6x + 45 = 0$$

$$\Rightarrow x = 7.5$$

But 'x' will be integral.

$$\operatorname{check} x = 8 \text{ or } x = 7$$

$$F = 191$$