MECÂNICA VETORIAL Newton, 1687.

LEI Ixxi

Todo o corpo mantém o seu estado de repouso ou de movimento uniforme segundo uma linha recta, se não for compelido a mudar o seu estado por forças nele impressas.

Quantidade de movimento:

$$\vec{p} = \vec{m}$$

p = m3 (ou momento linear)

LEI IIxxii

A mudança no movimento*20 é proporcional à força motora impressa e faz-se na direcção da linha recta segundo a qual a força motora é impressa.²¹

²⁰ Introduzi o símbolo * a recordar que deve entender-se sempre "quantidade de movimento".

Analiticamente, $d\vec{p} = \vec{F} dt$.

$$d\vec{p} = \vec{F} dt \longrightarrow \vec{p}_{i} + \vec{f}_{i} + \vec{$$

PESO. Força da gravidade
$$\sqrt{\hat{g}}$$
 $\sqrt{\hat{g}}$ $\sqrt{\hat{g}}$

LEI IIIxxiii

A toda a acção opõe-se sempre uma igual reacção. Isto é, as acções mútuas de dois corpos um sobre o outro são sempre iguais e opostas.

lei de ação e reação
$$1$$
 \overrightarrow{F}_{12} $|\overrightarrow{F}_{12}| = |\overrightarrow{F}_{21}|$ $|\overrightarrow{F}_{12}| \in \overrightarrow{F}_{21}|$ na mesma direção mas sentidos opostos

Forças de atrito.

@ atrito estático. $U_{A/B} = 0$ (assuperfícies não) deslizam

Fe pode ter qualquer direção tangente (as superç.)

(plano tangente)

Fel pode ter qualquervalor, menor que um valor máximo:

Me = coeficiente de atrito estático (próprio das)

(b) atrito cinético.
$$V_{A/B} \neq 0$$

$$\Rightarrow F_c = -\mu_c R_n \hat{e}$$
onde \hat{e} \hat{e} na direção de $V_{A/B} = V_{A/B} \hat{e}$

Mc = coeficiente de atrito cinético

FORÇAS EM CORDAS (CABOS)

Diagrama de corpo livre (forças externas) 3 = constante ou: 71770 7

Exemplo. Pêndulo simples. Pequena esfera de massa m, pendurada dum fio de comprimentos

1 grav de liberdade:
$$-9(+)$$

 $w = 0$, $\propto = \dot{w}$
movimento circular (raio l)

$$\begin{cases} Q_t = L \times \\ Q_n = L \omega^2 \end{cases}$$

corpo livre (espera)

 $\sum f + mg = ma$ $\begin{cases} \sum forcas_t = ma_t \\ \sum forcas_n = ma_n \end{cases}$

 $\begin{cases} -mg \sin \theta = ml \times \longrightarrow \boxed{x = -2 \sin \theta} \\ T - mg \cos \theta = ml w^{2} \qquad \text{equocao de mavimento} \\ \times = \omega \frac{dx}{d\theta} \end{cases}$