解释结构模型

学习要点

解释结构模型是用于分析复杂要素间关联结构的一种专门研究方法,作用是能够利用系统要素之间已知的零乱关系,揭示出的统力。解释结构模型法的具体操是人们。解释结构模型法的关系,通过矩阵做进一步运算,并推导出结论来解释系统结构的关系。

介绍解释结构模型的基本概念;论述了解释结构模型法应用体步骤。通过学习,应了解释结构模型的基本概念,明确有例图、邻接矩阵和可达矩阵的含义,掌握解释结构模型法应用的步骤,熟练运用解释结构模型法分析解决具体问题。

第一节 解释结构模型的基本概念

- 一、系统结构的基本表达方式
- 系统结构的表达方式包括集合、有向图和矩阵三种相互对应的方式。
- 1、系统结构的集合表达
- 设系统由 $n (n \ge 2)$ 个要素 $(S_1, S_2, ..., S_n)$ 组成,其集合为S, 则有 $S = \{S_1, S_2, ..., S_n\}$
- 二元关系是根据系统的性质和研究的目的所约定的一种需要讨论的,存在于系统中的两个要素 $\{S_i, S_j\}$ 之间的关系 R_{ij} ,简记为R。通常有影响关系、因果关系、包含关系、隶属关系以及各种可以比较的关系(如大小、先后、轻重、优劣等)。

- 二元关系是结构分析中所要讨论的系统构成要素间的基本关系,一般有以下三种情形:
- ① S_i 与 S_j 间有某种二元关系R,即 S_iRS_j
- ② S_i 与 S_j 间无某种二元关系R,即 $S_i\bar{R}S_j$
- ③ S_i 与 S_j 间某种二元关系R不明,即 $S_i \tilde{R} S_j$
- 有时,对系统的任意构成要素 S_i 与 S_j 来说,既有 S_iRS_j ,又有 S_jRS_i ,这种相互关联的二元关系叫强连接关系。具有强连接关系的各要素之间存在替换性。

例3-1

某系统由七个要素 $(S_1, S_2, ..., S_7)$ 组成。经过两两判断认为, S_2 影响 S_1 , S_3 影响 S_4 , S_4 影响 S_5 , S_7 影响 S_2 , S_4 和 S_6 相互影响。这样,该系统的基本结构可用要素集合S和二元关系集合 R_b 来表达,其中 $S=(S_1, S_2, S_3, S_4, S_5, S_6, S_7)$

 R_b $\neq \{(S_2, S_1), (S_3, S_4), (S_4, S_5), (S_7, S_2), (S_4, S_6), (S_6, S_4)\}$

- 2、系统结构的有向图表达
- ■有向图——由节点和连接各节点的有向弧(箭线)两部分组成

3、系统结构的矩阵表达

(1) 邻接矩阵

对于一个有向图,我们可以用一个 $m \times m$ 方形矩阵来表示。m为系统要素的个数。矩阵的每一行和每一列对应图中一个节点(系统要素)。规定,要素 S_i 对 S_j 有影响时,矩阵元素 a_{ij} 为1,要素 S_i 对 S_j 无影响时,矩阵元素 a_{ij} 为0。即

$$a_{ij} = \begin{cases} 1 & \exists S_i \forall S_j \in \mathbb{N}, \\ 0 & \exists S_i \forall S_j \in \mathbb{N}, \end{cases}$$
 (1)

对于图1中, m=3即可构成一个3×3的方形矩阵, 表示为:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

根据式(1)则用矩阵表示为:

$$T \begin{bmatrix} M & S \\ T \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ S \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \end{bmatrix}$$

上述这种与有向图形对应的,并用1和0表现元素的矩阵称为邻接矩阵

邻接矩阵的性质

邻接矩阵描述了系统各要素之间直接关系,它具有如下性质:

- 1. 邻接矩阵和有向图是同一系统结构的两种不同表达形式。 矩阵与图——对应,有向图确定,邻接矩阵也就唯一确定。 反之,邻接矩阵确定,有向图也就唯一确定。
- 2. 邻接矩阵的矩阵元素只能是1和0,它属于布尔矩阵。布尔矩阵的运算主要有逻辑和运算以及逻辑乘运算,即:

$$0 + 0 = 0$$
 $0 + 1 = 1$ $1 + 1 = 1$
 $1 \times 0 = 0$ $0 \times 1 = 0$ $1 \times 1 = 1$

3. 在邻接矩阵中,如果第j列元素全部都为0,则这一列所对应的要素 S_j 可确定为该系统的输入端。例如,上述矩阵A中,对应 S_1 列全部为0,要素 S_1 可确定为系统的输入端。

- 4. 在邻接矩阵中,如果第i行元素全部都为0,则这一行所对应的要素 S_i 可确定为该系统的输出端。例如,上述矩阵A中,对应 S_5 行全部为0,要素 S_5 可确定为系统的输出端。
- 5. 计算 A^{K} ,如果A 矩阵元素中出现 $a_{ij}=1$,则表明从系统要素 S_{i} 出发,经过k条边可达到系统要素 S_{j} 。这时我们说系统要素 S_{i} 与 S_{i} 之间存在长度为k的通道。如上述矩阵

矩阵 A^2 表明,从系统要素 S_1 出发经过长度为2的通道分别到达系统要素 S_2 。同时,系统要素 S_3 和 S_4 也分别有长度为2的通道到达系统要素 S_5 。它们分别为:

$$(1) \to (4) \to (2); (3) \to (4) \to (5); (4) \to (3) \to (5)$$

计算出矩阵 A³得到:

矩阵 A^3 表明,从系统要素 S_1 出发经过长度为3的通道到 达系统要素 S_5 。它就是① \rightarrow ② \rightarrow ⑤或者① \rightarrow ②

(2) 可达矩阵

如果一个矩阵,仅其对角线元素为1,其他元素均为0,这样的矩阵称为单位矩阵,用I表示。根据布尔矩阵运算法则,可以证明:

$$(A+I)^2 = I + A + A^2$$

同理可以证明:

$$(A+I)^k = I + A + A^2 + ... + A^k$$

如果系统A满足条件

$$(A+I)^{k-1} \neq (A+I)^k = (A+I)^{k+1} = M$$

则称M为系统A的可达矩阵。可达矩阵表示从一个要素到另一个要素是否存在连接的路径。

(3) 缩减矩阵

根据强连接关系的可替换性,在已有的可达矩阵M中,将具有强连接关系的一组要素看作一个要素,保留其中的某个代表要素,删除掉其余要素及其在M中的行和列,即得到该可达矩阵M的缩减矩阵M'

(4) 骨架矩阵

对于给定系统,A的可达矩阵M是唯一的,但实现某一可达矩阵M的邻接矩阵A可以具有多个。我们把实现某一可达矩阵M、具有最小二元关系个数(1元素最少)的邻接矩阵叫做M的最小实现二元关系矩阵,或称之为骨架矩阵,记作A'

第二节 解释结构模型法应用的步骤

一、ISM方法的基本步骤

ISMI方法的作用是把任意包含许多离散的,无序的静态的系统,利用系统要素之间已知的、但凌乱的的关系,揭示出系统的内部结构。其基本方法是先用图形和矩阵描述各种已知的关系,在 矩阵的基础上再进一步运算、推导来解释系统结构的特点。其基本步骤如下:

- (1) 建立系统要素关系表
- (2) 根据系统要素关系表,作出相应的有向图,并建立邻接矩阵;
 - (3) 通过矩阵运算求出该系统的可达矩阵M;
 - (4) 对可达矩阵M进行区域分解和级间分解;
 - (5) 建立系统结构模型。

例3-1

某系统由七个要素 $(S_1, S_2, ..., S_7)$ 组成。经过两两判断认为, S_2 影响 S_1 , S_3 影响 S_4 , S_4 影响 S_5 , S_7 影响 S_2 , S_4 和 S_6 相互影响。这样,该系统的基本结构可用要素集合S和二元关系集合 R_b 来表达,其中 $S=(S_1, S_2, S_3, S_4, S_5, S_6, S_7)$

 R_b $\neq \{(S_2, S_1), (S_3, S_4), (S_4, S_5), (S_7, S_2), (S_4, S_6), (S_6, S_4)\}$

		S 1	S2	\$3	\$4	S 5	S 6	S7
	S 1	0	0	0	0	0	0	0
	S2	1	0	0	0	0	0	0
邻接矩阵A	\$3	0	0	0	1	0	0	0
	S4	0	0	0	0	1	1	0
	S 5	0	0	0	0	0	0	0
	S6	0	0	0	1	0	0	0
	S7	0	1	0	0	0	0	0

		S 1	S 2	S 3	\$4	\$5	S6	S7
	S 1	1	0	0	0	0	0	0
	S2	1	1	0	0	0	0	0
	\$3	0	0	1	1	1	1	0
可达矩阵M	S4	0	0	0	1	1	1	0
	\$5	0	0	0	0	1	0	0
	S 6	0	0	0	1	1	1	0
	S7	1	1	0	0	0	0	1

区域划分

i	R(S _i) 可达集	A(S _i) 先行集	$C=R(S_i)\cap A(S_i)$	C=A (起点)
1	1	1,2,7	1	
2	1,2	2,7	2	
3/	3,4,5,6	3	3	V
4	4,5,6	3,4,6	4,6	
5	5	3,4,5,6	5	
6	4,5,6	3,4,6	4,6	
7	1,2,7	7	7	V

1									
			\$3	S4	S5	S 6	S 1	S2	S 7
		S 3	1	1	1	1	0	0	0
		S4	0	1	1	1	0	0	0
		S 5	0	0	1	0	0	0	0
	区域划分	S6	0	1	1	1	0	0	0
		S 1	0	0	0	0	1	0	0
		S2	0	0	0	0	1	1	0
		S 7	0	0	0	0	1	1	1

按区域进行级位划分

j	R(S _i)	$A(S_i)$	$C=R(S_i)\cap A(S_i)$	C=R
				(终点)
3	3,4,5,6	3	3	
4	4,5,6	4,5,6 3,4,6 4,6		
5	5	3,4,5,6	5	√ L1
6	4,5,6	3,4,6	4,6	

去掉5

jí	$R(S_i)$	$A(S_i)$	$C=R(S_i)\cap A(S_i)$	C=R
				(终点)
3	3,4,6	3	3	
4	4,6	3,4,6	4,6	√ L2
6	4,6	3,4,6	4,6	√ L2

去掉4,6

j	$R(S_i)$	$A(S_i)$	$C=R(S_i)\cap A(S_i)$	C=R	
				(终点)	
3	3	3	3	√ L3	

类似的,对另一区域进行级位划分

į	R(S _i)	A(S _i)	$C=R(S_i)\cap A(S_i)$	C=R (终点)
1	1	1,2,7	1	√ L1
2 /	1,2	2,7	2	
7	1,2,7	7	7	

去掉1

i	R(S _i)	A(S _i)	$C=R(S_i)\cap A(S_i)$	C=R (终点)
2	2	2,7	2	√ L2
7	2,7	7	7	

去掉2

i	R(S _i)	$A(S_i)$	$C=R(S_i)\cap A(S_i)$	C=R (终点)
7	7	7	7	√ L3

1										
				S5	S4	S6	\$3	S 1	S2	S7
		L1	\$5	1	0	0	0	0	0	0
		L2	\$4	1	1	1	0	0	0	0
		L2	S6	1	1	1	0	0	0	0
	按级位重 新写M	L3	\$3	1	1	1	1	0	0	0
		L1	S 1	0	0	0	0	1	0	0
		L2	S2	0	0	0	0	1	1	0
		L3	S 7	0	0	0	0	1	1	1

1									
				S5	S4	\$3	S 1	S2	S7
		L1	\$5	0	0	0	0	0	0
		L2	\$4	1	0	0	0	0	0
	提取骨架 矩阵A'	L3	\$3	0	1	0	0	0	0
		L1	\$1	0	0	0	0	0	0
\\		L2	S2	0	0	0	1	0	0
		L3	S 7	0	0	0	0	1	0

