The PageRank Citation Ranking: Bring Order to the web

Lawrence Page, Sergey Brin, Rajeev Motwani and Terry Winograd

https://web.eecs.umich.edu/~michjc/eecs584/notes/lecture19-pagerank.ppt

https://cis.temple.edu/~vasilis/Courses/CIS664/Papers/An-google.ppt

Book:

The top ten algorithms in data mining Vipin Kumar CRC Press, 2009

Motivation and Introduction

Why is Page Importance Rating important?

- New challenges for information retrieval on the World Wide Web.
- Huge number of web pages: 150 million by 1998
 1000 billion by 2008
- Diversity of web pages: different topics, different quality, etc.

What is PageRank?

 A method for rating the importance of web pages objectively and mechanically using the link structure of the web.

The History of PageRank

PageRank was developed by Larry Page (hence the name *Page*-Rank) and Sergey Brin.

It is first as part of a research project about a new kind of search engine. That project started in 1995 and led to a functional prototype in 1998.

Shortly after, Page and Brin founded Google. 16 billion...

Link Structure of the Web

150 million web pages → 1.7 billion links

Backlinks and Forward links:

- A and B are C's backlinks
- >C is A and B's forward link

Intuitively, a webpage is important if it has a lot of backlinks.

What if a webpage has only one link off www.yahoo.com?

Simplified PageRank algorithm

Assume four web pages: **A**, **B**,**C** and **D**. Let each page would begin with an estimated PageRank of 0.25.

$$PR(A) = PR(B) + PR(C) + PR(D).$$

$$PR(A) = \frac{PR(B)}{2} + \frac{PR(C)}{1} + \frac{PR(D)}{3}.$$

L(A) is defined as the number of links going out of page A. The PageRank of a page A is given as follows:

$$PR(A) = \frac{PR(B)}{L(B)} + \frac{PR(C)}{L(C)} + \frac{PR(D)}{L(D)}.$$

A Simple Version of PageRank

$$P(i) = \sum_{(j,i)\in E} \frac{P(j)}{O_j} \tag{6.1}$$

where O_j is the number of out-links of page j. Mathematically, we have a system of n linear equations [Equation (6.1)] with n unknowns. We can use a matrix to represent all the equations. As a notational convention, we use bold and italic letters to represent matrices. Let P be an n-dimensional column vector of PageRank values, that is,

$$P = (P(1), P(2), \dots, P(n))^T$$

Let A be the adjacency matrix of our graph with

$$A_{ij} = \begin{cases} \frac{1}{O_i} & \text{if } (i, j) \in E\\ 0 & \text{otherwise} \end{cases}$$
 (6.2)

We can write the system of n equations with

$$\boldsymbol{P} = \boldsymbol{A}^T \boldsymbol{P} \tag{6.3}$$

An example of Simplified PageRank

$$A = M = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} yahoo \\ Amazon \\ Microsoft \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

$$\begin{bmatrix} 1/3 \\ 1/2 \\ 1/6 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

PageRank Calculation: first iteration

An example of Simplified PageRank

$$A = M = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 5/12 \\ 1/3 \\ 1/4 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/2 \\ 1/6 \end{bmatrix}$$

PageRank Calculation: second iteration

An example of Simplified PageRank

$$A = M = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 3/8 \\ 11/24 \\ 1/6 \end{bmatrix} \begin{bmatrix} 5/12 \\ 17/48 \\ 11/48 \end{bmatrix} \dots \begin{bmatrix} 2/5 \\ 2/5 \\ 1/5 \end{bmatrix}$$

Convergence after some iterations

A Problem with Simplified PageRank

A loop:

During each iteration, the loop accumulates rank but never distributes rank to other pages!

An example of the Problem

$$A = M = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} yahoo \\ Amazon \\ Microsoft \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

$$\begin{bmatrix} 1/3 \\ 1/6 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

An example of the Problem

$$A=M = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} yahoo \\ Amazon \\ Microsoft \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

$$\begin{bmatrix} 1/4 \\ 1/6 \\ 7/12 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/6 \\ 1/2 \end{bmatrix}$$

An example of the Problem

$$\begin{bmatrix} 5/24 \\ 1/8 \\ 2/3 \end{bmatrix} \begin{bmatrix} 1/6 \\ 5/48 \\ 35/48 \end{bmatrix} \dots \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Random Walks in Graphs

- The Random Surfer Model
 - The simplified model: the standing probability distribution of a random walk on the graph of the web. simply keeps clicking successive links at random
- The Modified Model
 - The modified model: the "random surfer" simply keeps clicking successive links at random, but periodically "gets bored" and jumps to a random page based on the distribution of E

Modified Version of PageRank

$$P = A^{T} P$$

$$\downarrow$$

$$P = \left((1 - d) \frac{E}{n} + dA^{T} \right) P$$
(6.6)

where E is ee^T (e is a column vector of all 1's) and thus E is an $n \times n$ square matrix of all 1's. n is the total number of nodes in the Web graph and 1/n is the probability of jumping to a random page. Note that Equation (6.6) assumes that A has already been made a stochastic matrix. After scaling, we obtain

$$\mathbf{P} = (1 - d)\mathbf{e} + d\mathbf{A}^T \mathbf{P} \tag{6.7}$$

This gives us the PageRank formula for each page *i*:

$$P(i) = (1 - d) + d \sum_{j=1}^{n} A_{ji} P(j)$$
(6.8)

PageRank algorithm including damping factor

Assume page A has pages B, C, D ..., which point to it. The parameter d is a damping factor which can be set between 0 and 1. Usually set d to 0.85 (or 0.8). The PageRank of a page A is given as follows:

$$PR(A) = 1 - d + d\left(\frac{PR(B)}{L(B)} + \frac{PR(C)}{L(C)} + \frac{PR(D)}{L(D)} + \cdots\right)$$

An example of Modified PageRank

$$M = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} yahoo \\ Amazon \\ Microsoft \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

$$d = 0.8$$

$$\begin{bmatrix} 0.333 \\ 0.333 \\ 0.333 \end{bmatrix} \begin{bmatrix} 0.333 \\ 0.200 \\ 0.467 \end{bmatrix} \begin{bmatrix} 0.280 \\ 0.200 \\ 0.520 \end{bmatrix} \begin{bmatrix} 0.259 \\ 0.179 \\ 0.563 \end{bmatrix} \dots \begin{bmatrix} 7/33 \\ 5/33 \\ 21/33 \end{bmatrix}$$

Dangling Links

- Links that point to any page with no outgoing links
- Most are pages that have not been downloaded yet
- Affect the model since it is not clear where their weight should be distributed
- Do not affect the ranking of any other page directly
- Can be simply removed before pagerank calculation and added back afterwards

PageRank Implementation

PageRank-Iterate(*G*)

$$P_0 \leftarrow e/n$$

$$k \leftarrow 1$$

repeat

$$P_k \leftarrow (1-d)e + dA^T P_{k-1};$$

$$k \leftarrow k + 1$$
;

until
$$||P_k - P_{k-1}||_1 < \varepsilon$$

return P_k

Convergence Property

- PR (322 Million Links): 52 iterations
- PR (161 Million Links): 45 iterations
- Scaling factor is roughly linear in *logn*

Convergence of PageRank Computation

Conclusion

- PageRank is a global ranking of all web pages based on their locations in the web graph structure
- PageRank uses information which is external to the web pages – backlinks
- Backlinks from important pages are more significant than backlinks from average pages
- The structure of the web graph is very useful for information retrieval tasks.