Package 'IAPWS95'

September 11, 2023

Title Thermophysical Properties of Water and Steam
Version 1.2.4
Description An implementation of the International Association for the Properties of Water (IAPWS) Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use and on the releases for viscosity, conductivity, surface tension and melting pressure.
Depends R (>= $3.5.0$)
License MIT + file LICENSE
LazyData true
LinkingTo Rcpp
Imports ggplot2, pander, Rcpp
RoxygenNote 7.2.3
Encoding UTF-8
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr,rmarkdown
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-09-11 11:32:34 UTC
Author Benedito Baptista [aut], Shawn Way [cre]
Maintainer Shawn Way <shawnway@yahoo.com></shawnway@yahoo.com>
R topics documented:
BT

CT	 																								10
CvfT	 																								10
CvgT	 																								11
CvTD	 																								12
CvTp	 																								13
DCrit	 																								14
dDdTTD																									14
dDdTTp	 			•		•		•		•		•			•	•		•		•		•	•		15
Dfp	 			•		•		•		•		•			•	•		•		•		•	•		16
Dfs	 • •	• •	•	•	• •	•	• •	•		•	• •	•	• •	•	•	•	•	•	•	•	• •	•	•	• •	17
DfT	 			•		•		•		•		•			•	•		•		•		•	•		17
DfTr	 		• •	•		•	• •	•		•		•	• •		•	•	• •	•	•	•		•	•		18
	 			•		•		•		•		•				•		•		•		•	•		19
Dgp	 			•		•		•		•		•				•		•		•		•	•		19
Dgs	 			٠		•		•		•		•				•		•		•		•	•		
DgT	 			٠		•		•		•		•			•	•		•		•		•	•		20
DgTr				٠		•		•		•						•		٠		•		•	•		21
Dhs	 			٠		•		•		•						•		•		•		•	٠		21
dpdDTD	 			•						•		•			•	•				•			•		22
dpdDTp	 			•		•										•				•			•		23
dpdTTD	 									•						•									24
dpdTTp	 																								25
Dph	 																								26
Dps	 																								27
DpTcteTab .	 																								28
DTh	 																								29
DTp	 																								30
DTpcteTab .	 																								31
DTs	 																								32
errorCodes	 																								33
fTD																									33
fTp	 																								34
FugaTp	 																								35
GibbsTp	 																								36
hCrit																									37
hfT																						i			37
hgT	 					•		•		•		•		•	•	•		•		•		•	•		38
hps	 			•	• •	•	• •	•	• •		• •	•	• •	•	•	•	• •	•	•	•	• •	•	•	• •	39
hpTcteTab	 			-		-				•		•	• •		•	•		•		•		•	•		40
hTD																									41
hТр hТр																									42
hTpcteTab																									43
JTcTD																									44
KapaTD																									45
																									46
pCrit																									46
phi0																									47
phi0D																									48
phi0DD	 																								49

phi0DT	. 50
phiOT	. 50
phiOTT	. 51
phir	. 52
phirD	. 53
phirDD	. 54
phirDT	. 55
phirT	. 56
phirTT	. 57
pMeltT	58
PrandtTD	. 59
pSatD	60
pSats	61
pSatT	61
pTD	62
pTr	63
Rwater	64
satTabhT	64
	65
satTabp	66
satTabpT	
satTabT	. 67
satTabTp	. 68
satTabvp	. 69
satTabvT	. 70
sCrit	. 71
sfT	. 71
sfTr	. 72
$\operatorname{sg}_{\underline{\hspace{1cm}}}^{\mathrm{T}}$. 73
sgTr	. 73
SigmaT	. 74
sph	. 75
spTcteTab	. 76
sTD	. 77
sTp	. 78
sTpcteTab	. 79
TCrit	. 80
TDh	. 80
TDp	. 81
TDs	. 82
ThrcTD	. 83
Ths	. 84
Tph	. 85
Tps	. 86
TSatD	. 87
TSatp	. 88
TSats	. 88
TTr	. 89
net .	00

4

```
90
93
94
vTp ............
   94
   95
96
```

Index 100

ВТ

Second Virial Coefficient (B), Function of Temperature

Description

The function BT(Temp,digits=9) returns the second virial coefficient, B [m3 kg-1], for a given T [K].

Usage

```
BT(Temp, digits = 9)
```

Arguments

Temp Temperature [K]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The second virial coefficient: B [m3 kg-1] and an Error Message (if an error occur: errorCodes)

```
Temp <- 500.
B_T <- BT(Temp)
B_T</pre>
```

CndTD 5

CndTD

Thermal Conductivity, Function of Temperature and Density

Description

The function CndTD(Temp,D,digits=9) calculates the Thermal Conductivity, k [W m-1 K-1] for given Temp [K] and D [kg/m3], returning the computed thermal conductivity and an error message if an error occur.

Usage

```
CndTD(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the equations developed by the International Association for the Properties of Water and Steam, valid from the triple point to the pressure of 1000 MPa and temperature of 1173.15K. http://www.iapws.org/relguide/ThCond.html

Value

The Thermal Conductivity: k [W m-1 K-1] and an Error message if necessary

```
Temp <- 500.
D <- 838.025
Cond <- CndTD(Temp,D)
Cond
```

6 CpfT

CpfT	Specific Isobaric Heat Capacity of Fluid Phase, Function of Temperature
Срії	

Description

The function CpfT(Temp,digits=9) returns the Isobaric Heat Capacity of Fluid Phase [kJ kg-1 K-1], Cpf, for given T [K].

Usage

```
CpfT(Temp, digits = 9)
```

Arguments

Temperature [K]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Isobaric Heat Capacity of Fluid Phase: Cpf [kJ kg-1 K-1] and an Error Message (if an error occur: errorCodes)

```
Temp <- 450.
Cpf <- CpfT(Temp)
Cpf</pre>
```

CpgT

CpgT Specific Isobaric Heat Capacity of Gas Phase, Function of Sture	Tempera-
--	----------

Description

The function CpgT(Temp, digits=9) returns the Isobaric Heat Capacity of Gas Phase [kJ kg-1 K-1], Cpg, for given Temp [K].

Usage

```
CpgT(Temp, digits = 9)
```

Arguments

Temp Temperature [K]
digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Isobaric Heat Capacity of Gas Phase: Cpg [kJ kg-1 K-1] and an Error Message (if an error occur: errorCodes)

```
Temp <- 450.
Cpg <- CpgT(Temp)
Cpg</pre>
```

8 CpTD

CpTD

Specific Isobaric Heat Capacity, Function of Temperature and Density

Description

The function CpTD(Temp,D,digits=9) returns the Specific Isobaric Heat Capacity, Cp [kJ kg-1 K-1], for given Temp [K] and D [kg/m3].

Usage

```
CpTD(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Specific Isobaric Heat Capacity: Cp [kJ kg-1 K-1] and an Error Message (if an error occur: errorCodes)

```
Temp <- 500.
D <- 838.025
Cp <- CpTD(Temp,D)
Cp
```

CpTp 9

CpTp Specific Isobaric Heat Capacity, Function of Temperature and Pressure	СрТр	
--	------	--

Description

The function CpTp(Temp,p,digits=9) returns the Specific Isobaric Heat Capacity, Cp [kJ kg-1 K-1], for given Temp [K] and D [kg/m3].

Usage

```
CpTp(Temp, p, digits = 9)
```

Arguments

Temp	Temperature [K]
р	Pressure [MPa]
	511. 0 1. /

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Specific Isobaric Heat Capacity: Cp [kJ kg-1 K-1] and an (if an error occur: errorCodes)

```
Temp <- 500.
p <- 10.0003858
Cp <- CpTp(Temp,p)
Cp
```

10 CvfT

CT

Third Virial Coefficient (C), Function of Temperature

Description

The function CT(Temp, digits=9) returns the third virial coefficient, C [m3 kg-1] **2, for a given Temp [K].

Usage

```
CT(Temp, digits = 9)
```

Arguments

Temperature [K]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The second virial coefficient: C [m3 kg-1]**2 and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 500.
C_T <- CT(Temp)
C_T
```

CvfT

Specific Isochoric Heat Capacity of Fluid Phase, Function of Temperature

Description

The function CvfT(Temp,digits=9) returns the Isochoric Heat Capacity of Fluid Phase [kJ kg-1 K-1], Cvf, for given Temp [K].

CvgT

Usage

```
CvfT(Temp, digits = 9)
```

Arguments

Temperature [K]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Isochoric Heat Capacity of Fluid Phase: Cvf [kJ kg-1 K-1] and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 450.
Cvf <- CvfT(Temp)
Cvf</pre>
```

CvgT

Specific Isochoric Heat Capacity of Gas Phase, Function of Temperature

Description

The function CvgT(Temp,digits=9) returns the Isochoric Heat Capacity of Gas Phase [kJ kg-1 K-1], Cvg, for given Temp [K].

Usage

```
CvgT(Temp, digits = 9)
```

Arguments

Temp Temperature [K]

digits Digits of results (optional)

12 CvTD

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Isochoric Heat Capacity of GaS Phase: Cvg [kJ kg-1 K-1] and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 450.
Cvg <- CvgT(Temp)
Cvg</pre>
```

CvTD

Specific Isochoric Heat Capacity, Function of Temperature and Density

Description

The function CvTD(Temp,D,digits=9) returns the Specific Isochoric Heat Capacity, Cv [kJ kg-1 K-1], for given Temp [K] and D [kg/m3].

Usage

```
CvTD(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

CvTp

Value

The Specific Isochoric Heat Capacity: Cv [kJ kg-1 K-1] and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 500.
D <- 838.025
Cv <- CvTD(Temp,D)
Cv
```

CvTp

Specific Isochoric Heat Capacity, Function of Temperature and Pressure

Description

The function CvTp(Temp,p,digits=9) returns the Specific Isochoric Heat Capacity, Cv [kJ kg-1 K-1], for given Temp [K] and D [kg/m3].

Usage

```
CvTp(Temp, p, digits = 9)
```

Arguments

Temp Temperature [K]
p Pressure [MPa]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Specific Isochoric Heat Capacity: Cv [kJ kg-1 K-1] and an Error Message (if an error occur: errorCodes)

14 dDdTTD

Examples

```
Temp <- 500.
p <- 10.0003858
Cv <- CvTp(Temp,p)
Cv
```

DCrit

Water Critical Density

Description

The function DCrit() returns the water density at the critical point [kg m-3].

Usage

```
DCrit()
```

Value

The Water Critical Density: Dc [kg m-3]

Examples

```
DC <- DCrit()
DC</pre>
```

dDdTTD

Density Derivative with respect to Temperature, Function of Temperature and Density

Description

The function dDdTTD(Temp,D,digits=9) returns the pressure derivative with respect to Density, dpdD, for given Temp [K] and D [kg m-3].

Usage

```
dDdTTD(Temp, D, digits = 9)
```

Arguments

Temp Temperature [K] D Density [kg m-3]

digits Digits of results (optional)

dDdTTp 15

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Density Derivative with respect to T: dD/dTemp [kg m-3 K-1] and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 500.
D <- 838.025
dDdTemp <- dDdTTD(Temp,D)
dDdTemp
```

dDdTTp

Density Derivative with respect to Temperature, Function of Temperature and Pressure

Description

The function dDdTTp(Temp,p,digits=9) returns the Density derivative with respect to Temperature, dDdTemp, for given Temp [K] and p [MPa].

Usage

```
dDdTTp(Temp, p, digits = 9)
```

Arguments

Temp Temperature [K]
p Pressure [MPa]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Density derivative with respect to Temp: dD/dTemp [kg m-3 K-1] and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 500.
p <- 10.0003858
dDdTemp <- dDdTTp(Temp,p)
dDdTemp
```

Dfp

Saturated Liquid Density, Funtion of Pressure

Description

The function Dfp(p,digits=9) returns the saturated liquid density [kg m-3], Df, for given p [MPa].

Usage

```
Dfp(p, digits = 9)
```

Arguments

```
p Pressure [ MPa ]
digits Digits of results (optional)
```

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The saturated liquid density: Df [kg m-3] and an Error Message (if an error occur: errorCodes)

```
p <- 0.932203564
Df <- Dfp(p)
Df
```

Dfs 17

Dfs

Saturated Liquid Density, Function of Entropy

Description

The function Dfs(s,digits=9) returns the saturated liquid density [kg m-3], Df, for given s [kJ kg-1 K-1].

Usage

```
Dfs(s, digits = 9)
```

Arguments

```
s Entropy [kJ kg-1 K-1]
digits Digits of results (optional)
```

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The saturated Liquid density: Df [kg m-3] and an Error Message (if an error occur: errorCodes)

Examples

```
s <- 2.10865845
Df <- Dfs(s)
Df
```

DfT

Saturated Liquid Density, Function of Temperature

Description

The function DfT(Temp,digits=9) returns the saturated liquid density [kg m-3], Df, for given Temp[K].

Usage

```
DfT(Temp, digits = 9)
```

DfTr

Arguments

Temp Temperature [K]
digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The saturated liquid density: Df [kg m-3] and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 450.
Df <- DfT(Temp)
Df</pre>
```

DfTr

Liquid Water Density at Triple Point

Description

The function DfTr() returns the Water Liquid Density at Triple Point.

Usage

```
DfTr()
```

Value

```
Triple Point Liquid Density: DfTr [kg m-3]
```

```
DfTrip <- DfTr()
DfTrip</pre>
```

Dgp

Dgp

Saturated Gas Density, Function of Pressure

Description

The function Dgp(p,digits=9) returns the saturated gas density [kg m-3], Dg, for given p [MPa].

Usage

```
Dgp(p, digits = 9)
```

Arguments

```
p Pressure [ MPa ]
```

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The saturated gas density: Dg [kg m-3] and an Error Message (if an error occur: errorCodes)

Examples

```
p <- 0.932203564
Dg <- Dgp(p)
Dg
```

Dgs

Saturated Gas Density, Function of Entropy

Description

The function Dgs(s,digits=9) returns the saturated gas density [kg m-3], Dg, for given s [kJ kg-1 K-1].

Usage

```
Dgs(s, digits = 9)
```

DgT

Arguments

```
s Entropy [kJ kg-1 K-1]
digits Digits of results (optional)
```

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The saturated Gas density: Dg [kg m-3] and an Error Message (if an error occur: errorCodes)

Examples

```
s <- 5.4731
Dg <- Dgs(s)
Dg
```

DgT

Saturated Gas Density, Function of Temperature

Description

The function DgT(Temp, digits=9) returns the saturated gas density [kg m-3], Dg, for given Temp [K].

Usage

```
DgT(Temp, digits = 9)
```

Arguments

Temp Temperature [K]
digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

DgTr 21

Value

The saturated gas density: Dg [kg m-3] and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 450.
Dg <- DgT(Temp)
Dg</pre>
```

 DgTr

Water Gas Density at Triple Point

Description

The function DgTr() returns the Water Gas Density at Triple Point.

Usage

```
DgTr()
```

Value

```
Triple Gas Density: DgTr [ kg m-3 ]
```

Examples

```
DgTrip <- DgTr()
DgTrip</pre>
```

Dhs

Density, Function of Enthalpy and Entropy

Description

The function Dhs(h,s,digits=9) returns the water density, D [kg m-3], for given h [kJ k-1] and s [kJ k-1 K-1].

Usage

```
Dhs(h, s, digits = 9)
```

dpdDTD

Arguments

h	Enthalpy [kJ kg-1]
S	Entropy [kJ kg-1 K-1]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

```
The Density: D [ kg m-3 ] and an Error Message (if an error occur: errorCodes)
```

Examples

```
h <- 977.181624
s <- 2.56690919
D_hs <- Dhs(h,s)
D_hs
```

dpdDTD

Pressure Derivative with respect to Density, Function of Temperature and Density

Description

The function dpdDTD(Temp,D,digits=9) returns the pressure derivative with respect to Density, dpdD, for given T [K] and D [kg m-3].

Usage

```
dpdDTD(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]
digits	Digits of results (optional)

dpdDTp 23

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The pressure derivative with respect to D: dp/dD [MPa kg-1 m3] and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 500.
D <- 838.025
dpdD <- dpdDTD(Temp,D)
dpdD
```

dpdDTp

Pressure Derivative with respect to Density, Function of Temperature and Pressure

Description

The function dpdDTp(Temp,p) returns the pressure derivative with respect to Density, dpdD, for given Temp [K] and p [MPa].

Usage

```
dpdDTp(Temp, p, digits = 9)
```

Arguments

Temp Temperature [K]
p Pressure [MPa]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

24 dpdTTD

Value

The pressure derivative with respect to d: dp/dD [MPa kg-1 m3] and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 500.
p <- 10.0003858
dpdD <- dpdDTp(Temp,p)
dpdD
```

dpdTTD

Pressure Derivative with Respect to Temperature, Function of Temperature and Density

Description

The function dpdTTD(Temp,D,digits=9) returns the pressure derivative with respect to Temperature, dpdT, for given Temp [K] and D [kg/m3].

Usage

```
dpdTTD(Temp, D, digits = 9)
```

Arguments

Temp Temperature [K]
D Density [kg m-3]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The pressure derivative with respect to Temp: dp/dTemp [MPa K-1] and an Error Message (if an error occur: errorCodes)

dpdTTp 25

Examples

```
Temp <- 500.
D <- 838.025
dpdTemp <- dpdTTD(Temp,D)
dpdTemp
```

dpdTTp

Pressure Derivative with respect to Temperature, Function of Temperature and Pressure

Description

The function dpdTTp(Temp,p,digits=9) returns the pressure derivative with respect to Temperature, dpdTemp, for given Temp [K] and p [MPa].

Usage

```
dpdTTp(Temp, p, digits = 9)
```

Arguments

Temp	Temperature [K]
р	Pressure [MPa]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The pressure derivative with respect to Temp: dp/dTemp [MPa K-1] and an Error Message (if an error occur: errorCodes)

```
Temp <- 500.
p <- 10.0003858
dpdTemp <- dpdTTp(Temp,p)
dpdTemp
```

26 Dph

Dph

Density, Function of Pressure and Enthalpy

Description

The function Dph(p,h,digits=9) returns the water density, D[kg m-3], for given p[MPa] and h[kJ k-1].

Usage

```
Dph(p, h, digits = 9)
```

Arguments

p	Pressure [MPa]
h	Enthalpy [kJ kg-1]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

```
The Density: D [ kg m-3 ] and an Error Message (if an error occur: errorCodes)
```

```
p <- 10.0003858
h <- 977.181624
D_ph <- Dph(p,h)
D_ph</pre>
```

Dps 27

Dps

Density, Function of Pressure and Entropy

Description

The function Dps(p,s,digits=9) returns the water density, D[kg m-3], for given p[MPa] and s[kJ k-1 K-1].

Usage

```
Dps(p, s, digits = 9)
```

Arguments

p	Pressure [MPa]
S	Entropy [kJ kg-1 K-1]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Density: D [kg m-3] and an Error Message (if an error occur: errorCodes)

```
p <- 10.0003858
s <- 2.56690919
D_ps <- Dps(p,s)
D_ps</pre>
```

28 DpTcteTab

DpTcteTab	Table of Densities, Function of Pressure for a Fixed Temperature

Description

The function DpTcteTab(p1, p2, dp, Temp) returns a table of Densities [kg m-3] for a fixed Temp [K] within a range of p [MPa]: p1:p2 [MPa]

Usage

```
DpTcteTab(p1, p2, dp, Temp)
```

Arguments

p1	first pressure value [MPa]
p2	final pressure [MPa]
dp	Pressure increment [MPa]
Temp	Temperature [K]

Details

This function provides a table of the densities [kg m-3] for a given Temp [K] within a range of p [MPa]

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

A table of Densities for fixed T and a p Interval: p1:p2.

```
p1 <- 1.0

p2 <- 10.

dp <- 1.

Temp <- 500.

TabD <- DpTcteTab(p1, p2, dp, Temp)

TabD

p1 <- 10.

p2 <- 100.

dp <- 10.

Temp <- 450.

TabD <- DpTcteTab(p1, p2, dp, Temp)
```

DTh 29

TabD

DTh

Density, Function of Temperature and Enthalpy

Description

The function DTh(Temp,h,digits=9) returns the water density, D[kg m-3], for given Temp[K] and h[kJ kg-1] (it may have two solutions for Density).

Usage

```
DTh(Temp, h, digits = 9)
```

Arguments

Temp	Temperature in Kelvin
h	Enthalpy in [kJ kg-1]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

```
The Density 1: Density_1 [ kg m-3 ]
The Density 2: Density_2 [ kg m-3 ]
Error Message (if an error occur: errorCodes)
```

```
Temp <- 500.
h <- 977.181624
D_Th <- DTh(Temp,h)
D_Th
```

30 DTp

DTp

Density, Function of Temperature and Pressure

Description

The function DTp(Temp,p,digits=9) returns the water density, D[kg m-3], for given Temp[K] and D[kg/m3].

Usage

```
DTp(Temp, p, digits = 9)
```

Arguments

Temp	Temperature [K]
p	Pressure [MPa]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

```
The Density: D [ kg m-3 ] and an Error Message (if an error occur: errorCodes)
```

```
Temp <- 500.
p <- 10.0003858
D <- DTp(Temp,p)
D
```

DTpcteTab 31

DTpcteTab	Table of Densities, Function of Temperature for Fixed Pressure

Description

The function DTpcteTab(T1, T2, dT, p) returns a table of densities [kg m-3] for a fixed p [MPa] within a range of Temp [K]: T1:T2 [K].

Usage

```
DTpcteTab(T1, T2, dT, p)
```

Arguments

T1	first Temperature value[K]
T2	final Temperature [K]
dT	Temperature increment [K]
р	Pressure [MPa]

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

A table of Densities for fixed p and a T Interval: T1:T2.

```
T1 <- 275.

T2 <- 450.
dT <- 5.
p <- 5.

TabD <- DTpcteTab(T1, T2, dT, p)

TabD

T1 <- 300.

T2 <- 500.
dT <- 10.
p <- 10.

TabD <- DTpcteTab(T1, T2, dT, p)

TabD
```

DTs

DTs

Density, Function of Temperature and Entropy

Description

The function DTs(Temp,s,digits=9) returns the water density, D [kg m-3], for given Temp [K] and s [kJ k-1 K-1].

Usage

```
DTs(Temp, s, digits = 9)
```

Arguments

Temp	Temperature [K]
S	Entropy [kJ kg-1 K-1]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Density: D [kg m-3] and an Error Message (if an error occur: errorCodes)

```
Temp <- 500.
s <- 2.56690919
D_Ts <- DTs(Temp,s)
D_Ts
```

errorCodes 33

errorCodes	Error Codes
------------	-------------

Description

Error codes due values out of validity range, incorrect inputs, and/or convergence issues

Usage

errorCodes

Format

An object of class data. frame with 21 rows and 2 columns.

Source

errorCodes.rda

fTD

Helmholtz Free Energy, Function of Temperature and Density

Description

The function fTD(T,D,digits=9) returns the Helmholtz Free Energy, f[kJ kg-1], for given Temp [K] and D[kg/m3].

Usage

```
fTD(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

34 fTp

Value

The Helmholtz Free Energy: f [kJ kg-1] and an Error Message if an error occur: errorCodes

Examples

```
Temp <- 500.
D <- 838.025
f <- fTD(Temp,D)
f
```

fTp

Helmholtz Free Energy, Function of Temperature and Pressure

Description

The function fTp(Temp,p,digits=9) returns the Helmholtz Free Energy, f [kJ kg-1], for given Temp [K] and D [kg/m3].

Usage

```
fTp(Temp, p, digits = 9)
```

Arguments

```
Temp Temperature [ K ]
p Pressure [ MPa ]
digits Digits of results (optional)
```

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Helmholtz Free Energy: f [kJ kg-1] and an Error Message (if an error occur: errorCodes)

```
Temp <- 500.
p <- 10.0003858
f <- fTp(Temp,p)
f
```

FugaTp 35

FugaTp

Fugacity, Function of Temperature and Pressure

Description

The function FugaTp(Temp,p,digits=9) returns the Fugacity,[MPa], for given Temp[K] and D[kg/m3].

Usage

```
FugaTp(Temp, p, digits = 9)
```

Arguments

Temp Temperature [K]

p Pressure [MPa]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

```
The Fugacity: Fuga [ MPa ] and an (if an error occur: errorCodes)
```

```
Temp <- 500.
p <- 10.0003858
Fuga <- FugaTp(Temp,p)
Fuga
```

36 GibbsTp

GibbsTp

Specific Gibbs Energy, Function of Temperature and Pressure

Description

The function GibbsTp(Temp,p,digits=9) returns the Specific Gibbs Energy, [MPa], for given Temp [K] and D [kg/m3].

Usage

```
GibbsTp(Temp, p, digits = 9)
```

Arguments

Temp Temperature [K]

p Pressure [MPa]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Specific Gibbs Energy: Gibbs [MPa] and an (if an error occur: errorCodes)

```
Temp <- 500.
p <- 10.0003858
Gibbs <- GibbsTp(Temp,p)
Gibbs
```

hCrit 37

hCrit

Water Critical Enthalpy

Description

@description The function hCrit() returns the water enthalpy at the critical point [kJ kg-1].

Usage

```
hCrit()
```

Value

```
The Water Critical Enthalpy: hc [kJ kg-1]
```

Examples

```
hC <- hCrit()
hC</pre>
```

hfT

Saturated Liquid Enthalpy, Function of Temperature

Description

The function hfT(Temp,digits=9) returns the saturated liquid enthalpy [kJ kg-1], hf, for given Temp [K].

Usage

```
hfT(Temp, digits = 9)
```

Arguments

 $\label{temperature} \mbox{Temperature [}\mbox{ } \mbox{K]}$

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

hgT

Value

The saturated liquid enthalpy: hf [kJ kg-1] and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 450.
hf <- hfT(Temp)
hf</pre>
```

hgT

Saturated Gas Enthalpy, Function of Temperature

Description

The function hgT(Temp, digits=9) returns the saturated gas enthalpy [kJ kg-1], hg, for given Temp [K].

Usage

```
hgT(Temp, digits = 9)
```

Arguments

Temp Temperature [K] digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The saturated gas enthalpy: hg [kJ kg-1] and an Error Message (if an error occur: errorCodes)

```
Temp <- 450.
hg <- hgT(Temp)
hg</pre>
```

hps 39

hps

Enthalpy, Function of Pressure and Entropy

Description

The function hps(p,s,digits=9) returns the water enthalpy, h [kJ kg-1], for given p [MPa] and s [kJ k-1 K-1].

Usage

```
hps(p, s, digits = 9)
```

Arguments

p	Pressure [MPa]
S	Entropy [kJ kg-1 K-1]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Enthalpy: h [kJ kg-1] and an Error Message (if an error occur: errorCodes)

```
p <- 10.0003858
s <- 2.56690919
h_ps <- hps(p,s)
h_ps</pre>
```

40 hpTcteTab

hpTcteTab

Table of Enthalpies, Function of Pressure for Fixed Temperature

Description

The function hpTcteTab(p1, p2, dp, Temp) returns a table of Enthalpies [kJ kg-1] for a fixed Temp [K] within a range of p [MPa]: p1:p2 [MPa]

Usage

```
hpTcteTab(p1, p2, dp, Temp)
```

Arguments

p1	first pressure value [MPa]
p2	final pressure [MPa]
dp	Pressure increment [MPa]
Temp	Temperature [K]

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

A table of Enthalpies for fixed T and a p Interval: p1:p2.

```
p1 <- 1.0

p2 <- 10.

dp <- 1.

Temp <- 500.

Tabh <- hpTcteTab(p1, p2, dp, Temp)

Tabh

p1 <- 10.

p2 <- 100.

dp <- 10.

Temp <- 450.

Tabh <- hpTcteTab(p1, p2, dp, Temp)

Tabh
```

hTD 41

hTD

Specific Enthalpy, Function of Temperature and Density

Description

The function hTD(Temp,D,digits=9) returns the Specific Enthalpy, h [kJ kg-1], for given Temp [K] and D [kg/m3].

Usage

```
hTD(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Specific Enthalpy: h [kJ kg-1] and an Error Message (if an error occur: errorCodes)

```
Temp <- 500.
D <- 838.025
h <- hTD(Temp,D)
h
```

hTp

hTp

Specific Enthalpy, Function of Temperature and Pressure

Description

The function hTp(Temp,p,digits=9) returns the Specific Enthalpy, h [kJ kg-1], for given Temp [K] and D [kg/m3].

Usage

```
hTp(Temp, p, digits = 9)
```

Arguments

Temp	Temperature [K]
р	Pressure [MPa]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Specific Enthalpy: h [kJ kg-1] and an Error Message (if an error occur: errorCodes)

```
Temp <- 500.
p <- 10.0003858
h <- hTp(Temp,p)
h
```

hTpcteTab 43

hTpcteTab

Table of Enthalpies, Function of Temperature and Fixed Pressure

Description

The function hTpcteTab(T1, T2, dT, p) returns a table of enthalpies [kJ kg-1] for a fixed p [MPa] within a range of Temp [K]: T1:T2 [K]

Usage

```
hTpcteTab(T1, T2, dT, p)
```

Arguments

T1	first Temperature value [K]
T2	final Temperature [K]
dT	Temperature increment [K]
р	Pressure [MPa]

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

A table of Enthalpies for fixed p and a T Interval: T1:T2.

```
T1 <- 275.

T2 <- 450.

dT <- 5.
p <- 5.

Tabh <- hTpcteTab(T1, T2, dT, p)

Tabh

T1 <- 300.

T2 <- 500.

dT <- 10.
p <- 10.

Tabh <- hTpcteTab(T1, T2, dT, p)

Tabh
```

JTcTD

JTcTD

Joule-Thomson Coefficient, Function of Temperature and Density

Description

The function JTcTD(Temp, D, digits=9) returns the Joule-Thomson coefficient for given Temp [K] and D [kg/m3].

Usage

```
JTcTD(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273. The temperature change produced during a Joule-Thomson expansion is quantified by the Joule-Thomson coefficient, which may be positive (cooling) or negative (heating).

Value

The Joule-Thomson coefficient and an Error Message (if an error occur: errorCodes)

```
Temp <- 500.
D <- 838.025
JT <- JTcTD(Temp,D)
JT
```

KapaTD 45

KapaTD	Isothermal Compressibility, Function of Temperature and Density	
•	, , , , , , , , , , , , , , , , , , ,	

Description

The function KapaTD(Temp,D,disgits=9) returns the Isothermal Compressibility, Kapa, for given Temp [K] and D [kg m-3].

Usage

```
KapaTD(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Isothermal Compressibility: Kapa [MPa-1] and an Error Message (if an error occur: error-Codes)

```
Temp <- 500.
D <- 838.025
Kapa <- KapaTD(Temp,D)
Kapa
```

pCrit

KViscTD

Kinematic Viscosity, Function of Temperature and Density

Description

The function KViscTD(Temp,D,digits=9) computes the Kinematic Viscosity [m2 s-1] for given T [K] and D [kg/m3], returning the calculated viscosity and an error message, if an error occur. errorCodes

Usage

```
KViscTD(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]

digits Digits of results (optional)

Details

This function calculates the Kinematic Viscosity that is the relation ViscTD(D, Temp)/D, valid from the triple point to the pressure of 1000 MPa and temperature of 1173.15K.

Value

The Kinematic viscosity: [m2 s-1] and an Error Message (if an error occur)

Examples

```
Temp <- 500.
D <- 838.025
KVis <- KViscTD(Temp,D)
KVis
```

pCrit

Water Critical Pressure

Description

This function pCrit() returns the water critical pressure [MPa].

Usage

```
pCrit()
```

phi0 47

Value

The Water Critical Pressure: pc [MPa]

Examples

```
pc <- pCrit()
pc</pre>
```

phi0

Ideal-Gas part of the Dimensionless Helmholtz Energy Equation, Function of Temperature and Density

Description

The function phi0(Temp,D,digits=9) returns the Ideal-gas part of the dimensionless Helmholtz Energy Equation, phi0, for given Temp [K] and D [kg/m3].

Usage

```
phi0(Temp, D, digits = 9)
```

Arguments

Temp Temperature [K] D Density [kg m-3]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Ideal-gas part of the Helmholtz Energy Equation: phi0 and an Error Message (if an error occur: errorCodes)

```
Temp <- 500.
D <- 838.025
phi_0 <- phi0(Temp,D)
phi_0
```

48 phi0D

phi0D	First Derivative of the Ideal-Gas part of the Dimensionless Helmholtz
	Energy Equation with respect to Density, Function of Density

Description

The function phi0D(D,digits=9) returns the First Derivative of the Ideal-gas part of the dimensionless Helmholtz Energy Equation for a given D [kg/m3].

Usage

```
phi0D(D, digits = 9)
```

Arguments

D Density [kg m-3]
digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The First D Derivative of Ideal-gas part of the Helmholtz Energy: phi0D and an Error Message (if an error occur: errorCodes)

```
D <- 838.025
phi_0 <- phi0D(D)
phi_0
```

phi0DD 49

phi0DD	Second Derivative of the Ideal-Gas Part of the Dimensionless
	Helmholtz Energy Equation with respect to Density, Function of Den-
	sity

Description

The function phi0DD(D,digits=9) returns the Second Derivative of the Ideal-gas part of the dimensionless Helmholtz Energy Equation for a given D [kg/m3].

Usage

```
phi0DD(D, digits = 9)
```

Arguments

```
D Density [ kg m-3 ]
digits Digits of results (optional)
```

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Second D Derivative of Ideal-gas part of the Helmholtz Energy: phi0DD and an Error Message (if an error occur: errorCodes)

```
D <- 838.025
phi_0 <- phi0DD(D)
phi_0
```

50 phi0T

-	
phi0DT	Second Derivative of the Ideal-Gas Part of the Dimensionless
	Helmholtz Energy Equation with respect to Density and Temperature

Description

The function phiODT(digits=9) returns the Second Derivative of the Ideal-gas Part of the Dimensionless Helmholtz Energy Equation with respect to Density and Temperature.

Usage

```
phi0DT(digits = 9)
```

Arguments

digits

Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Second DT Derivative of Ideal-gas Part of the Helmholtz Energy: phi0DT and an Error Message (if an error occur: errorCodes)

Examples

```
phi0_DT <- phi0DT()
phi0_DT</pre>
```

phi0T

First Derivative of the Ideal-Gas Part of the Dimensionless Helmholtz Energy Equation with respect to Temperature, Function of Temperature and Density

Description

The function phi0T(Temp,D,digits=9) returns the First Derivative of the Ideal-gas Part of the dimensionless Helmholtz Energy Equation with respect to Temperature, for given Temp [K] and D [kg/m3].

phi0TT 51

Usage

```
phi0T(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The First Temp Derivative of Ideal-gas part of the Helmholtz Energy: phi0T and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 500.
D <- 838.025
phi0_T <- phi0T(Temp,D)
phi0_T</pre>
```

phi0TT

Second Derivative of the Ideal-Gas Part of the Dimensionless Helmholtz Energy Equation with respect to Temperature, Function of Temperature and Density

Description

The function phi0TT(Temp,D,digits =9) returns the Second Derivative of the Ideal-gas Part of the Dimensionless Helmholtz Energy Equation with respect to Temperature, for given Temp [K] and D [kg/m3].

Usage

```
phi0TT(Temp, D, digits = 9)
```

52 phir

Arguments

Temp	Temperature [K]
D	Density [kg m-3]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Second Temp Derivative of Ideal-gas part of the Helmholtz Energy: phi0TT and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 500.
D <- 838.025
phi0_TT <- phi0TT(Temp,D)
phi0_TT</pre>
```

phir

Residual-Gas Part of the Dimensionless Helmholtz Energy Equation, Function of Temperature and Density

Description

The function phir (Temp, D, digits=9) returns the Residual-Gas Part of the Dimensionless Helmholtz Energy Equation for given Temp [K] and D [kg/m3].

Usage

```
phir(Temp, D, digits = 9)
```

Arguments

```
Temp Temperature [ K ]

D Density [ kg m-3 ]

digits Digits of results (optional)
```

phirD 53

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Residual-Gas Part of the Dimensionless Helmholtz Energy Equation: phir and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 500.
D <- 838.025
phir_TD <- phir(Temp,D)
phir_TD</pre>
```

phirD

First Derivative of the Residual-Gas part of the Dimensionless Helmholtz Energy Equation with respect to Density, Function of Temperature and Density

Description

The function phirD(Temp,D,digits=9) returns the First Derivative of the Residual-Gas Part of the Dimensionless Helmholtz Energy Equation for given Temp [K] and D [kg/m3].

Usage

```
phirD(Temp, D, digits = 9)
```

Arguments

ıemp	Temperature [K]
D	Density [kg m-3]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

54 phirDD

Value

The First Derivative of the Residual-Gas Part of the Dimensionless Helmholtz Energy Equation: phirD, and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 500.
D <- 838.025
phir_D <- phirD(T,D)
phir_D
```

phirDD

Second Derivative of the Residual-Gas Part of the Dimensionless Helmholtz Energy Equation with respect to Density, Function of Temperature and Density

Description

The function phirDD(Temp,D,digits=9) returns the Second Derivative of the Residual-Gas Part of the Dimensionless Helmholtz Energy Equation for given Temp [K] and D [kg/m3].

Usage

```
phirDD(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Second Derivative of the Residual-Gas Part of the Dimensionless Helmholtz Energy Equation: phirDD, and an Error Message (if an error occur: errorCodes)

phirDT 55

Examples

```
Temp <- 500.
D <- 838.025
phir_DD <- phirDD(Temp,D)
phir_DD</pre>
```

phirDT

Second Derivative of the Residual-Gas Part of the Dimensionless Helmholtz Energy Equation with respect to Density and Temperature, Function of Temperature and Density

Description

The function phirDT(Temp,D,digits=9) returns the Second Derivative of the Residual-Gas Part of the Dimensionless Helmholtz Energy Equation with respect to D and Temp, for given Temp [K] and D [kg/m3].

Usage

```
phirDT(Temp, D, digits)
```

Arguments

Temp Temperature [K]
D Density [kg m-3]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Second Derivative of the Residual-Gas Part of the Dimensionless Helmholtz Energy Equation with respect to D and Temp: phirTT, and an Error Message (if an error occur: errorCodes)

```
Temp <- 500.
D <- 838.025
phir_DT <- phirDT(Temp,D)
phir_DT</pre>
```

56 phirT

phirT	First Derivative of the Residual-Gas Part of the Dimensionless Helmholtz Energy Equation with respect to Temperature, Function of Temperature and Density

Description

The function phirT(Temp,D,digits=9) returns the First Derivative of the Residual-Gas Part of the Dimensionless Helmholtz Energy Equation with respect to Temp, for given Temp [K] and D [kg/m3].

Usage

```
phirT(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The First Derivative of the Residual-Gas Part of the Dimensionless Helmholtz Energy Equation with respect to Temp: phirT, and an Error Message (if an error occur: errorCodes)

```
Temp <- 500.
D <- 838.025
phir_T <- phirT(Temp,D)
phir_T</pre>
```

phirTT 57

phirTT	Second Derivative of the Residual-Gas Part of the Dimensionless Helmholtz Energy Equation with respect to Temperature, Function of Temperature and Density

Description

The function phirTT(Temp,D,digits=9) returns the Second Derivative of the Residual-Gas Part of the Dimensionless Helmholtz Energy Equation with respect to Temp, for given Temp [K] and D [kg/m3].

Usage

```
phirTT(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Second Derivative of the Residual-Gas Part of the Dimensionless Helmholtz Energy Equation with respect to T: phirTT, and an Error Message (if an error occur: errorCodes)

```
Temp <- 500.
D <- 838.025
phir_TT <- phirTT(Temp,D)
phir_TT</pre>
```

58 pMeltT

pMeltT

Melting Pressure, Function of Temperature

Description

The function pMeltT(Temp,digits=9) returns the water melting pressure, pMelt[MPa], for a given Temp [K].

Usage

```
pMeltT(Temp, digits = 9)
```

Arguments

Temp Temperature [K]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the equations given at the Revised Release on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance (September 2011), developed by the International Association for the Properties of Water and Steam, http://www.iapws.org/relguide/MeltSub.html. It is valid from the Temperature of 256.164 [K] to the Temperature of 715 [K].

Value

The melting pressure: pMelt [MPa] for regions III, V , VI and VII

The melting pressure: pMeltIh [MPa] for region Ih

The sublimation pressure: pSubl [MPa], below triple point Temperature

Error message (if an error occur)

```
Temp <- 275.
p_Melt <- pMeltT(Temp)
p_Melt</pre>
```

PrandtTD 59

PrandtTD	Prandt Number, Function of Temperature and Density

Description

The function PrandtTD(Temp,D,digits=9) computes the Prandt Number, i.e., the product of the dynamic viscosity by the specific isobaric heat capacity, divided by the thermal conductivity of water for given T [K] and D [kg/m3].

Usage

```
PrandtTD(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that computes the Prandt Number, valid from the triple point to the pressure of 1000 MPa and temperature of 1173.15K.

Value

```
The Prandt Number: Pr [ - ]
Error message (if an error occur)
```

```
Temp <- 500.
D <- 838.025
Pran <- PrandtTD(Temp,D)
Pran
```

pSatD

pSatD

Saturation Pressure, Function of Density

Description

The function pSatD(D,digits=9) returns the saturation pressure [MPa], pSat, for given D [kg m-3]: it may have two different values!

Usage

```
pSatD(D, digits = 9)
```

Arguments

```
D Density [ kg m-3]
digits Digits of results (optional)
```

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

```
The first saturation pressure: pSat_1 [ MPa ]
The second saturation pressure: pSat_2 [ MPa ]
An Error Message (if an error occur: errorCodes)
```

```
D <- 890.341250
p_Sat <- pSatD(D)
p_Sat

D <- 999.887406
p_Sat <- pSatD(D)
p_Sat</pre>
```

pSats 61

pSats

Saturation Pressure, Function of Entropy

Description

The function pSats(s,digits=9) returns the saturation pressure [MPa], pSat, for given s [kJ kg-1 K-1].

Usage

```
pSats(s, digits = 9)
```

Arguments

```
s Entropy [ kJ kg-1 K-1 ]
digits Digits of results (optional)
```

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The saturation pressure: pSat [MPa] and an Error Message (if an error occur: errorCodes)

Examples

```
s <- 2.10865845
p_Sat <- pSats(s)
p_Sat</pre>
```

pSatT

Saturation Pressure, Function of Temperature

Description

The function pSatT(T, digits=9) returns the saturation pressure [MPa], pSat, for given Temp [K].

Usage

```
pSatT(Temp, digits = 9)
```

pTD

Arguments

Temp	Temperature [K]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The saturation pressure: pSat [MPa] and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 450.
p_Sat <- pSatT(Temp)
p_Sat</pre>
```

pTD

Pressure, Function of Temperature and Density

Description

The function pTD(T,D,digits=9) returns the water pressure, p [MPa], for given Temp [K] and D [kg/m3], returning also an error message, if any error occur.

Usage

```
pTD(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

pTr 63

Value

The Pressure: p [MPa] and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 500.

D <- 838.025

p <- pTD(Temp,D)

p

Temp <- 647.096

D <- 322.

p <- pTD(Temp,D)

p
```

pTr

Water Pressure at Triple Point

Description

The function pTr() returns the Water Pressure at Triple Point [MPa].

Usage

```
pTr()
```

Value

```
The Triple Point Pressure: pTr [ MPa ]
```

```
pTrip <- pTr()
pTrip</pre>
```

64 satTabhT

Rwater

Water Specific Gas Constant

Description

The function Rwater() returns the Water Specific Gas Constant.

Usage

```
Rwater()
```

Value

```
Water Specific Gas Constant: R [ K-1 ]
```

Examples

```
Rw <- Rwater()
```

satTabhT

Table of Saturation Liquid Phase Enthalpies, Function of Temperature

Description

The function satTabhT(T1, T2, dT) returns a table of saturation liquid enthalpies [kJ kg-1 K-1] for a Temperature interval, T1:T2 [K].

Usage

```
satTabhT(T1, T2, dT)
```

Arguments

T1	First Temperature value [K]
T2	Final Temperature [K]
dT	Temperature increment [K]

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

satTabp 65

Value

A table of saturation fluid enthalpies, function of T

Examples

```
T1 <- 275.

T2 <- 450.
dT <- 5.

TabT <- satTabhT(T1, T2, dT)

TabT

T1 <- 300.

T2 <- 500.
dT <- 10.

TabT <- satTabhT(T1, T2, dT)

TabT
```

satTabp

Table of Saturation Densities, Enthalpies and Entropies, Function of Pressure

Description

The function satTabp(p1, p2, dp) returns a table of threee saturation properties for two phases: Density [kg/m3], Enthalpy [kJ kg-1] and Entropy [kJ kg K-1] for a Pressure interval, p1:p2 [MPa].

Usage

```
satTabp(p1, p2, dp)
```

Arguments

p1	First Pressure value [MPa]
p2	Final Pressure [MPa]
dp	Pressure increment [MPa]

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

A table of saturation D, h and s, function of p

satTabpT

Examples

```
p1 <- 1.0

p2 <- 10.

dp <- 0.5

Tabp <- satTabp(p1, p2, dp)

Tabp

p1 <- 0.1

p2 <- 10.

dp <- 0.5

Tabp <- satTabp(p1, p2, dp)

Tabp
```

satTabpT

Table of Saturation Pressures, Function of Temperature

Description

The function satTabpT(T1, T2, dT) returns a table of saturation pressures [MPa] for a Temperature interval, T1:T2 [K].

Usage

```
satTabpT(T1, T2, dT)
```

Arguments

T1	First Temperature value [K]
T2	Final Temperature [K]
dT	Temperature increment [K]

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

A table of saturation pressures, function of T

satTabT 67

Examples

```
T1 <- 275.

T2 <- 450.
dT <- 5.

TabT <- satTabpT(T1, T2, dT)

TabT

T1 <- 300.

T2 <- 500.
dT <- 10.

TabT <- satTabpT(T1, T2, dT)

TabT
```

satTabT

Table of Saturation Densities, Enthalpies and Entropies, Function of Temperature

Description

The function satTabT(T1, T2, dT) returns a table of three saturation properties for two phases: Density [kg/m3], Enthalpy [kJ kg-1] and Entropy [kJ kg K-1] for a Temperature interval, T1:T2 [K].

Usage

```
satTabT(T1, T2, dT)
```

Arguments

T1	First Temperature value [K]
T2	Final Temperature [K]
dT	Temperature increment [K]

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

A table of saturation D, h and s, function of T

68 satTabTp

Examples

```
T1 <- 275.

T2 <- 450.
dT <- 5.

TabT <- satTabT(T1, T2, dT)

TabT

T1 <- 300.

T2 <- 500.
dT <- 10.

TabT <- satTabT(T1, T2, dT)

TabT
```

satTabTp

Table of Saturation Temperatures, Function of Pressure

Description

The function satTabTp(p1, p2, dp) returns a table of Saturation Temperatures [K] for a Pressure interval, p1:p2 [MPa].

Usage

```
satTabTp(p1, p2, dp)
```

Arguments

p1	First Pressure value [MPa]
p2	Final Pressure [MPa]
dp	Pressure increment [MPa]

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

A Table of Saturation Temperatures, function of p

satTabvp 69

Examples

```
p1 <- 1.0

p2 <- 10.

dp <- 0.5

Tabp <- satTabTp(p1, p2, dp)

Tabp

p1 <- 0.1

p2 <- 10.

dp <- 0.5

Tabp <- satTabTp(p1, p2, dp)

Tabp
```

satTabvp

Table of Saturation Volumes, Enthalpies and Entropies, Function of Pressure

Description

The function satTabvp(p1, p2, dp) returns a table of three saturation properties for two phases: Specific Volume [m3 kg-1], Enthalpy [kJ kg-1] and Entropy [kJ kg K-1] for a Pressure interval, p1:p2 [MPa].

Usage

```
satTabvp(p1, p2, dp)
```

Arguments

p1	First Pressure value [MPa]
p2	Final Pressure [MPa]
dp	Pressure increment [MPa]

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

A table of saturation v, h and s, function of p

70 satTabvT

Examples

```
p1 <- 1.0

p2 <- 10.

dp <- 0.5

Tabp <- satTabvp(p1, p2, dp)

Tabp

p1 <- 0.1

p2 <- 10.

dp <- 0.5

Tabp <- satTabvp(p1, p2, dp)

Tabp
```

satTabvT

Table of Saturation Volumes, Enthalpies and Entropies, Function of of Temperature

Description

The function satTabvT(T1, T2, dT) returns a table of three saturation properties for two phases: Specific Volume [m3 kg-1], Enthalpy [kJ kg-1] and Entropy [kJ kg K-1] for a Temperature interval, T1:T2 [K].

Usage

```
satTabvT(T1, T2, dT)
```

Arguments

T1	First Temperature value [K]
T2	Final Temperature [K]
dT	Temperature increment [K]

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

A table of saturation v, h and s, function of T

sCrit 71

Examples

```
T1 <- 275.

T2 <- 450.
dT <- 5.

TabT <- satTabvT(T1, T2, dT)
TabT

T1 <- 300.
T2 <- 500.
dT <- 10.
TabT <- satTabvT(T1, T2, dT)
TabT
```

sCrit

Water Critical Entropy

Description

The function sCrit() returns the entropy at the critical point [kJ k-1 K-1].

Usage

```
sCrit()
```

Value

The Water Critical Entropy: sc [kJ kg-1 K-1]

Examples

```
sC <- sCrit()
sC</pre>
```

sfT

Saturated Liquid Entropy, Function of Temperature

Description

The function sfT(Temp,digits=9) returns the saturated liquid entropy [kJ kg-1 K-1], sf, for given Temp [K].

Usage

```
sfT(Temp, digits = 9)
```

72 sfTr

Arguments

```
Temp Temperature [ K ]
digits Digits of results (optional)
```

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The saturated liquid entropy: sf [kJ kg-1 K-1] and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 450.
sf <- sfT(Temp)
sf</pre>
```

sfTr

Liquid Water Entropy at Triple Point

Description

The function sfTr() returns the Water Liquid Entropy at Triple Point.

Usage

```
sfTr()
```

Value

```
Triple Point Liquid Entropy: sfTr [ kJ kg-1 K-1]
```

```
sfTrip <- sfTr()
sfTrip</pre>
```

sgT

sgT

Saturated Gas Entropy, Function of Temperature

Description

The function sgT(Temp,digits=9) returns the saturated gas entropy [kJ kg-1 K-1], sg, for given Temp [K].

Usage

```
sgT(Temp, digits = 9)
```

Arguments

Temp Temperature [K]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The saturated gas entropy: sg [kJ kg-1 K-1] and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 450.
sg <- sgT(Temp)
```

sgTr

Water Gas Entropy at Triple Point

Description

The function sgTr() returns the Water Gas Entropy at Triple Point.

Usage

```
sgTr()
```

74 SigmaT

Value

```
Triple Point Gas Entropy: sgTr [ kJ kg-1 K-1]
```

Examples

```
sgTrip <- sgTr()
sgTrip</pre>
```

SigmaT

Surface Tension, Function of Temperature

Description

The function SigmaT(Temp, digits=9) computes the Surface Tension [mN m-1] for a given Temp [K], returning the calculated Surface Tension and an error message, if an error occur. errorCodes

Usage

```
SigmaT(Temp, digits = 9)
```

Arguments

Temp Temperature [K]
digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the equations developed by the International Association for the Properties of Water and Steam, valid from the triple point to the critical temperature [273.13K to 647.096K]. http://www.iapws.org/relguide/Surf-H20.html

Value

The Surface Tension: Sigma [mN m-1] and an Error Message (if an error occur)

```
Temp <- 500.
Sig <- SigmaT(Temp)
Sig</pre>
```

sph 75

sph

Entropy, Function of Pressure and Enthalpy

Description

The function sph(p,h,digits=9) returns the water entropy, s[kJ kg-1 K-1], for given p[MPa] and h[kJ k-1].

Usage

```
sph(p, h, digits = 9)
```

Arguments

p	Pressure [MPa]
h	Enthalpy [kJ kg-1]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

```
The Entropy: s [ kJ kg-1 K-1 ] and an Error Message (if an error occur: errorCodes)
```

```
p \leftarrow 10.0003858

h \leftarrow 977.181624

s_ph \leftarrow sph(p,h)

s_ph
```

76 spTcteTab

spTcteTab

Table of Entropies, Function of Pressure for Fixed Temperature

Description

The function spTcteTab(p1, p2, dp, Temp) returns a table of Entropies [kJ kg-1 K-1] for a fixed Temp [K] within a range of p [MPa]: p1:p2 [MPa]

Usage

```
spTcteTab(p1, p2, dp, Temp)
```

Arguments

```
p1 "initial"first pressure value [ MPa ]
p2 final pressure [ MPa ]
dp Pressure increment [ MPa ]
Temp Temperature [ K ]
```

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

A table of Entropies for fixed Temp and a p Interval: p1:p2.

```
p1 <- 1.0

p2 <- 10.

dp <- 1.

Temp <- 500.

Tabs <- spTcteTab(p1, p2, dp, Temp)

Tabs

p1 <- 10.

p2 <- 100.

dp <- 10.

Temp <- 450.

Tabs <- spTcteTab(p1, p2, dp, Temp)

Tabs
```

*s*TD 77

sTD

Specific Entropy, Function of Temperature and Density

Description

The function sTD(Temp,D,digits=9) returns the Specific Entropy, h [kJ kg-1 k-1], for given Temp [K] and D [kg/m3].

Usage

```
sTD(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Specific Entropy: s [kJ kg-1 K-1] and an Error Message (if an error occur: errorCodes)

```
Temp <- 500.
D <- 838.025
s <- sTD(Temp,D)
```

sTp

sTp

Specific Entropy, Function of Temperature and Pressure

Description

The function sTp(Temp,p,digits=9) returns the Specific Entropy, h [kJ kg-1 K-1], for given Temp [K] and D [kg/m3].

Usage

```
sTp(Temp, p, digits = 9)
```

Arguments

Temp	Temperature [K]
р	Pressure [MPa]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Specific Entropy: s [kJ kg-1 K-1] and an Error message (if an error occur: errorCodes)

```
Temp <- 500.
p <- 10.0003858
s <- sTp(Temp,p)
s
```

sTpcteTab 79

sTpcteTab

Table of Entropies, Function of Temperature for a Fixed Pressure

Description

The function sTpcteTab(T1, T2, dT, p) returns a table of entropies [kJ kg-1 K-1] for a fixed p [MPa] within a range of T [K]: T1:T2 [K]

Usage

```
sTpcteTab(T1, T2, dT, p)
```

Arguments

T1	first Temperature value [K]
T2	final Temperature [K]
dT	Temperature increment [K]
р	Pressure [MPa]

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

A table of Entropies for fixed p and a T Interval: T1:T2.

```
T1 <- 275.

T2 <- 450.
dT <- 5.
p <- 5.
Tabs <- sTpcteTab(T1, T2, dT, p)
Tabs

T1 <- 300.
T2 <- 500.
dT <- 10.
p <- 10.
Tabs <- sTpcteTab(T1, T2, dT, p)
Tabs
```

80 TDh

TCrit

Water Critical Temperature

Description

@description The function TCrit() returns the water critical temperature [K].

Usage

```
TCrit()
```

Value

The Water Critical Temperature: Tc [K]

Examples

```
Tc <- TCrit()
Tc
```

TDh

Temperature, Function of Density and Enthalpy

Description

The function TDh(D,h,digits=9) returns the water temperature, Temp [K], for given D [kg/m3] and h [kJ kg-1].

Usage

```
TDh(D, h, digits = 9)
```

Arguments

D	Density [kg m3]
h	Enthaly in [kJ kg-1]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

TDp 81

Value

The Temperature: Temp [K] and an Error Message (if an error occur: errorCodes)

Examples

```
D <- 838.025
h <- 977.181624
T_Dh <- TDh(D,h)
T_Dh
```

TDp

Temperature, Function of Density and Pressure

Description

The function TDp(D,p,digits=9) returns the water temperature, Temp [K], for given D [kg/m3] and p [MPa].

Usage

```
TDp(D, p, digits = 9)
```

Arguments

D Density [kg m3]

p Pressure [MPa]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Temperature: Temp [K] and an Error Message (if an error occur: errorCodes)

```
D <- 838.025
p <- 10.0003858
T_Dp <- TDp(D,p)
T_Dp
```

TDs

TDs

Temperature, Function of Density and Entropy

Description

The function TDs(D,s,digits=9) returns the water temperature, Temp [K], for given D [kg/m3] and s [kJ kg-1 K-1].

Usage

```
TDs(D, s, digits = 9)
```

Arguments

D	Density [kg m3]
S	Entropy in [kJ kg-1 K-1]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Temperature: Temp [K] and an Error Message (if an error occur: errorCodes)

```
D <- 838.025
s <- 2.56690919
T_Ds <- TDs(D,s)
T_Ds
```

ThrcTD 83

ThrcTD	Isothermal Throttling Coefficient, Function of Temperature and Density

Description

The function ThrcTD(Temp,D,digits=9) returns the Isothermal Throttling Coefficient, Thrc, for given Temp [K] and D [kg m-3].

Usage

```
ThrcTD(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Isothermal Throttling Coefficient: Thrc [kJ kg-1 MPa-1] and an Error Message (if an error occur: errorCodes)

```
Temp <- 500.
D <- 838.025
Thrc <- ThrcTD(Temp,D)
Thrc
```

84 Ths

Ths

Temperature, Function of Enthalpy and Entropy

Description

The function Ths(h,s,digits=9) returns the water Temperature, Temp [K], for given h [kJ k-1] and s [kJ k-1 K-1].

Usage

```
Ths(h, s, digits = 9)
```

Arguments

h	Enthalpy [kJ kg-1]
S	Entropy [kJ kg-1 K-1]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Temperature: Temp [K] and an Error Message (if an error occur: errorCodes)

```
h <- 977.181624
s <- 2.56690919
T_hs <- Ths(h,s)
T_hs
```

Tph 85

Tph

Temperature, Function of Pressure and Enthalpy

Description

The function Tph(p,h,digits = 9) returns the water temperature, Temp[K], for given p[MPa] and h[kJ k-1].

Usage

```
Tph(p, h, digits = 9)
```

Arguments

p	Pressure [MPa]
h	Enthalpy [kJ kg-1]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Temperature: Temp [K] and an Error Message (if an error occur: errorCodes)

```
p <- 10.0003858
h <- 977.181624
T_ph <- Tph(p,h)
T_ph
```

86 Tps

Tps

Temperature, Function of Pressure and Entropy

Description

The function Tps(p,s,digits=9) returns the water temperature, Temp[K], for given p[MPa] and s[kJ k-1 K-1].

Usage

```
Tps(p, s, digits = 9)
```

Arguments

p	Pressure [MPa]
S	Entropy [kJ kg-1 K-1]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Temperature: Temp [K] and an Error Message (if an error occur: errorCodes)

```
p <- 10.0003858
s <- 2.56690919
T_ps <- Tps(p,s)
T_ps</pre>
```

TSatD 87

TSatD

Saturation Temperature, Function of Density

Description

The function TsatD(D,digits=9) returns the temperature [K], TSat, for given D [kg m-3]: it may have two different values!

Usage

```
TSatD(D, digits = 9)
```

Arguments

```
D Density [ kg m-3 ]
digits Digits of results (optional)
```

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

```
The first saturation Temperature: TSat_1 [ K ]
The second saturation pressure: TSat_2 [ K ]
An Error Message (if an error occur: errorCodes)
```

```
D <- 890.341250
T_Sat <- TSatD(D)
T_Sat

D <- 999.887406
T_Sat <- TSatD(D)
T_Sat
```

88 TSats

TSatp

Saturation Temperature, Function of pressure

Description

The function TSatp(p,digits=9) returns the temperature [K], TSat, for given p [MPa].

Usage

```
TSatp(p, digits = 9)
```

Arguments

p Pressure [MPa]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Saturation Temperature: Tsat [K] and an Error Message (if an error occur: errorCodes)

Examples

```
p <- 0.932203564
T_Sat <- TSatp(p)
T_Sat</pre>
```

TSats

Saturation Temperature, Function of Entropy

Description

The function TSats(s,digits=9) returns the temperature [K], TSat, for given s [kJ kg-1 K-1].

Usage

```
TSats(s, digits = 9)
```

TTr 89

Arguments

```
s Entropy [kJ kg-1 K-1]
digits Digits of results (optional)
```

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Saturation Temperature: Tsat [K] and an Error Message (if an error occur: errorCodes)

Examples

```
s <- 2.10865845
T_Sat <- TSats(s)
T_Sat</pre>
```

TTr

Water Temperature at Triple Point

Description

The function TTr() returns the Water Temperature at Triple Point [K]

Usage

TTr()

Value

The Triple Point Temperature: TTr [K]

```
Ttrip <- TTr()
Ttrip</pre>
```

gT

ufT

Saturated Liquid Specific Internal Energy, Function of Temperature

Description

The function ufT(Temp,digits=0). returns the saturated liquid internal energy [kJ kg-1], uf, for given Temp [K].

Usage

```
ufT(Temp, digits = 9)
```

Arguments

Temp Temperature [K]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The saturated liquid internal energy: uf [kJ kg-1] and an Error Message (if an error occur: error-Codes)

Examples

```
Temp <- 450.
uf <- ufT(Temp)
uf</pre>
```

ugT

Saturated Gas Specific Internal Energy, Function of Temperature

Description

The function ugT(Temp, digits=9) returns the saturated gas internal energy [kJ kg-1], ug, for given Temp [K].

uTD 91

Usage

```
ugT(Temp, digits = 9)
```

Arguments

Temp Temperature [K]
digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The saturated gas internal energy: ug [kJ kg-1] and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 450.
ug <- ugT(Temp)
ug</pre>
```

uTD

Specific Internal Energy, Function of Temperature and Density

Description

The function uTD(Temp,D,digits=9) returns the Specific Internal Energy, h [kJ kg-1], for given Temp [K] and D [kg/m3].

Usage

```
uTD(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]

digits Digits of results (optional)

92

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Specific Internal Energy: u [kJ kg-1] and an Error Message (if an error occur: errorCodes)

Examples

```
Temp <- 500.
D <- 838.025
u <- uTD(Temp,D)
u
```

uTp

Specific Internal Energy, Function of Temperature and Pressure

Description

The function uTp(Temp,p,digits=9) returns the Specific Internal Energy, h [kJ kg-1], for given Temp [K] and D [kg/m3].

Usage

```
uTp(Temp, p, digits = 9)
```

Arguments

Temp	Temperature [K]
p	Pressure [MPa]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Specific Internal Energy: u [kJ kg-1] and an Error message (if an error occur: errorCodes)

ViscTD 93

Examples

```
Temp <- 500.
p <- 10.0003858
u <- uTp(Temp,p)
```

ViscTD

Dynamic Viscosity, Function of Temperature and Density

Description

The function ViscTD(Temp,D,digits=9) computes the Dynamic Viscosity [Pas] for given Temp [K] and D [kg/m3], returning the computed viscosity and an error message, if an error occur. error-Codes

Usage

```
ViscTD(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]
	D: :

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the equations developed by the International Association for the Properties of Water and Steam, valid from the triple point to the pressure of 1000 MPa and temperature of 1173.15K. http://www.iapws.org/relguide/viscosity.html

Value

The Dynamic viscosity: [Pa s] and an Error Message (if an error occur)

```
Temp <- 500.
D <- 838.025
Vis <- ViscTD(Temp,D)
Vis
```

94 v*Tp*

۷p

Vapor pressure, Function of Temperature

Description

The function Vp(Temp, digits=9) returns the vapor pressure, Vp [kPa], for a given Temp [K].

Usage

```
Vp(Temp, digits = 9)
```

Arguments

Temp Temperature [K]

digits Digits of results (optional)

Details

This function solves the Wagner Equation (Wagner and Pruss (1993)) which gives one of the best fits to experimental data. It expresses reduced vapor pressure as a function of reduced temperature. This equation, for water, is valid from the temperature of 273.16 K to the critical temperature (624.096 K).

νТр

Specific Volume, Function of Temperature and Pressure

Description

The function vTp(Temp,p,digits=9) returns the Specific Volume, [m3 kg-1], for given Temp [K] and D [kg/m3].

Usage

```
vTp(Temp, p, digits = 9)
```

Arguments

Temp	Temperature [K]
р	Pressure [MPa]

digits Digits of results (optional)

wfT 95

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Specifiv Volume: v [m3 kg-1] and an (if an error occur: errorCodes)

Examples

```
Temp <- 500.
p <- 10.0003858
v <- vTp(Temp,p)
v
```

wfT

Speed of Sound of Fluid Phase, Function of Temperature

Description

The function wfT(Temp,digits=9) returns the Speed of Sound of Fluid Phase [m s-1], wf, for given Temp [K].

Usage

```
wfT(Temp, digits = 9)
```

Arguments

Temp Temperature [K]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, http://www.iapws.org/relguide/IAPWS-95.html. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Speed of Sound of Fluid Phase: wf [m s-1] and an Error Message (if an error occur: error-Codes)

96

Examples

```
Temp <- 450.
wf <- wfT(Temp)
wf</pre>
```

wgT

Speed of Sound of Gas Phase, Function of Temperature

Description

The function wgT(Temp, digits=9) returns the Speed of Sound of Gas Phase [m s-1], wg, for given Temp [K].

Usage

```
wgT(Temp, digits = 9)
```

Arguments

Temp Temperature [K]
digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Speed of Sound of Gas Phase: wg [ms-1] and an Error Message (if an error occur: errorCodes)

```
Temp <- 450.
wg <- wgT(Temp)
wg
```

wTD 97

wTD

Speed of Sound, Function of Temperature and Density

Description

The function wTD(Temp,D,digits=9) returns the Speed of Sound in water, w [m s-1], for given Temp [K] and D [kg/m3].

Usage

```
wTD(Temp, D, digits = 9)
```

Arguments

Temp Temperature [K]
D Density [kg m-3]

digits Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

```
The Speed of Sound: w [ m s-1 ]
Error message (if an error occur)
```

The Speed of Sound: w [m s-1] and an Error Message (if an error occur: errorCodes)

```
Temp <- 500.
D <- 0.435
w <- wTD(Temp,D)
w
```

98 w*Tp*

wTp

Speed of Sound, Function of Temperature and Pressure

Description

The function wTp(Temp,p,digits=9) returns the Speed of Sound, [m s-1], for given Temp [K] and D [kg/m3].

Usage

```
wTp(Temp, p, digits = 9)
```

Arguments

Temp	Temperature [K]
p	Pressure [MPa]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

```
The Speed of Sound: w [ m s-1 ] and an (if an error occur: errorCodes)
```

```
Temp <- 500.
p <- 10.0003858
w <- wTp(Temp,p)
```

ZTD 99

ZTD

Compressibility Factor, Function of Temperature and Density

Description

The function ZTD(Temp,D,digits=9) returns the Compressibility Factor, Z [-], for given Temp [K] and D [kg/m3].

Usage

```
ZTD(Temp, D, digits = 9)
```

Arguments

Temp	Temperature [K]
D	Density [kg m-3]
digits	Digits of results (optional)

Details

This function calls a Fortran DLL that solves the Helmholtz Energy Equation. in accordance with the Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (June 2014) developed by the International Association for the Properties of Water and Steam, httml. It is valid from the triple point to the pressure of 1000 MPa and temperature of 1273.

Value

The Compressibility Factor and an Error Message (if an error occur: errorCodes)

```
Temp <- 500.
D <- 838.025
z <- ZTD(Temp,D)
```

Index

* datasets errorCodes, 33	errorCodes, 4, 6–13, 15–27, 29, 30, 32, 33, 34–36, 38, 39, 41, 42, 44–57, 60–63, 72–75, 77, 78, 81–93, 95–99
BT, 4	fTD, 33
CndTD, 5	fTp, 34
CpfT, 6	FugaTp, 35
CpgT, 7 CpTD, 8	GibbsTp, 36
СрТр, 9	hCrit, 37
CT, 10	hfT, 37
CvfT, 10	hgT, 38
CvgT, 11	hps, 39
CvTD, 12	hpTcteTab, 40
CvTp, 13	hTD, 41
DCrit, 14	hTp, 42 hTpcteTab, 43
dDdTTD, 14	impeterab, 45
dDdTTp, 15	JTcTD, 44
Dfp, 16	KanaTD 45
Dfs, 17	KapaTD, 45 KViscTD, 46
DfT, 17	KV13C1D, 40
DfTr, 18	pCrit,46
Dgp, 19	phi0,47
Dgs, 19	phi0D, 48
DgT, 20	phi0DD, 49
DgTr, 21 Dhs, 21	phi0DT, 50
dpdDTD, 22	phiOT, 50
dpdDTp, 23	phioTT, 51 phir, 52
dpdTTD, 24	phirD, 53
dpdTTp, 25	phirDD, 54
Dph, 26	phirDT, 55
Dps, 27	phirT, 56
DpTcteTab, 28	phirTT, 57
DTh, 29	pMeltT, 58
DTp, 30	PrandtTD, 59
DTpcteTab, 31	pSatD, 60
DTs, 32	pSats, 61

INDEX 101

```
pSatT, 61
                                                    wTp, 98
pTD, 62
                                                     ZTD, 99
pTr, 63
Rwater, 64
satTabhT, 64
satTabp, 65
satTabpT, 66
satTabT, 67
satTabTp, 68
satTabvp, 69
satTabvT, 70
sCrit, 71
sfT, 71
sfTr, 72
sgT, 73
sgTr, 73
SigmaT, 74
sph, 75
spTcteTab, 76
sTD, 77
sTp, 78
sTpcteTab, 79
\mathsf{TCrit}, 80
TDh, 80
TDp, 81
TDs, 82
ThrcTD, 83
Ths, 84
Tph, 85
Tps, 86
TSatD, 87
TSatp, 88
TSats, 88
TTr, 89
ufT, 90
ugT, 90
uTD, 91
uTp, 92
ViscTD, 93
Vp, 94
vTp, 94
wfT, 95
wgT, 96
wTD, 97
```