Machine Learning

By Ghazal Lalooha

Designing A Machine Learning System

Spam Detection

From: cheapsales@buystufffromme.com

To: ghazallalooha0gmail.com

Subject: Buy now!

<u>Deal</u> of the week! <u>Buy</u> now! Rolex w4tchs - \$100 Medlcine (any kind) - \$50 Also low cost M0rgages available. From: Sullivan Kettler

To: ghazallaloohaOgmail.com Subject: Christmas dates?

Hi Ghazal,

Was talking to Nicolas about plans for Xmas. When do you get off work. Meet Dec 22? Sullivan.

Create a spam classifier

- Supervised learning:
 - x: email features
 - Selection of 100 words that represent spam or normal email, such as purchase, discount, deal, ...
 - y: spam (1) or non-spam (0)

```
From: cheapsales@buystufffromme.com
To: ghazallalooha0gmail.com
Subject: Buy now!

Deal of the week! Buy now!
Rolex w4tchs - $100
Medlcine (any kind) - $50
Also low cost M0rgages
available.
```

 Note: In practice, n more common words (10,000 to 50,000) are usually used in the training set.

Create a spam classifier

- Question: How to create a classifier with low error rate?
 - Collect a lot of data
 - Development of advanced features based on email routing information
 - Development of advanced features based on the words used in the message body.
 - For example, whether words such as <u>deal</u>, <u>deals</u> and <u>trader</u> should be considered as one word or not.
 - Development of complex algorithms to detect intentional spelling mistakes!

Error Analysis

Recommended Approach

- Selection of learning algorithm and implementation:
 - Start with a simple algorithm that can be quickly implemented.
 - Implement it and test it on the validation set.
- Learning algorithm troubleshooting:
 - Draw learning curves to understand if you need more data, more features, less regularization, etc.
- Error analysis:
 - Check the data in the validation set where the algorithm got it wrong.
 - See if there is a common feature in this data that is causing the error.

Error Analysis

- Suppose there are 500 email samples in the validation set.
- The learning algorithm has misclassified 100 emails.
- Check out these 100 examples and categorize them by things like:
 - Email type: drug, advertising, password theft
 - The clues you think can help the algorithm in classifying these emails correctly.

Drug: 12

Advertising: 4

password theft: 53

Others: 31

Deliberate spelling mistakes: 5

Unusual routing: 16

Unusual use of punctuation: 32

The Importance of Quantitative Assessments and Numbers

- Question: Should words like <u>deal</u>, <u>deals</u> and <u>trader</u> be considered the same?
 - For this purpose, you can use software related to finding the roots of words.
 (like Porter Stemmer)
- Error analysis is not helpful in these cases and the only solution is to test the above idea in practice.
- In other words, we need to numerically evaluate the performance of the algorithm in both cases on the validation set and then make a decision based on the evaluation results.
 - No word rooting: 5% error
 - By rooting words: 3% error

Error Measurement for Unbalanced Classes

Example: Cancer diagnosis

- Train a logistic regression model.
- Output: cancer (y = 1) otherwise (y = 0)
- Suppose the error of the trained model for the test set is 1%, (99% correct detection).
- Suppose in our data only 0.5% of patients actually have cancer.

```
function y = predictCancer(x)
    y = 0; % just ignore x
end;
Error: 0.5 %
```

• Unbalanced class: A class in which the ratio of the number of positive samples to the number of negative samples (or vice versa) is very small (close to zero).

Precision and Recall

Precision

 Precision: The ratio of the number of samples that are correctly diagnosed as positive to the total number of samples that are diagnosed as positive.

Recall

 Recall: The ratio of the number of samples that are correctly diagnosed as positive to the total number of samples that are truly positive.

Balance Between Precision and Recall

- Logistic regression:
 - Hypothesis: $0 \le h_{\theta}(x) \le 1$
 - Forecast:
 - y = 1: if $h_{\theta}(x) \ge 0.5$
 - y = 0: if $h_{\theta}(x) < 0.5$

- In order to increase the reliability factor, it can be predicted as follows:
 - y = 1: if $h_{\theta}(x) \ge 0.9$
 - y = 0: if $h_{\theta}(x) < 0.9$

precision increase recall decrease

Balance Between Precision and Recall

- Logistic regression:
 - Hypothesis: $0 \le h_{\theta}(x) \le 1$
 - Forecast:
 - y = 1: if $h_{\theta}(x) \ge 0.5$
 - y = 0: if $h_{\theta}(x) < 0.5$

- In order to increase the reliability factor, it can be predicted as follows:
 - y = 1: if $h_{\theta}(x) \ge 0.3$
 - y = 0: if $h_{\theta}(x) < 0.3$

precision decrease recall increase

F Score

 Question: How can you compare the precision rate and recall rate of different algorithms?

	Recall rate	Precision rate
Algorithm one	0.5	0.4
Algorithm two	0.7	0.1
Algorithm three	0.02	1.0

• F Score:

- If P = 0 or R = 0, then F Score is equal to zero.
- If P = 1 or R = 1, then F Score is equal to one.

$$2\frac{P\cdot R}{P+R}$$

F Score

 Question: How can you compare the precision rate and recall rate of different algorithms?

	Recall rate	Precision rate	F Score
Algorithm one	0.5	0.4	0.444
Algorithm two	0.7	0.1	0.175
Algorithm three	0.02	1.0	0.039

- F Score:
 - If P = 0 or R = 0, then F Score is equal to zero.
 - If P = 1 or R = 1, then F Score is equal to one.

Data for Machine Learning

Designing a Learning System with High Accuracy

• Problem: recognizing similar words (Banko and Brill, 2001)

{to, too, two}, {then, than}
For breakfast, I ate_____ eggs.

- Algorithms:
 - perceptron (logistic regression)
 - Vino
 - Memory based
 - Biz classifier

"The winner is not the one with the best algorithm. The winner is the one with the most data."

Rationale for Big Data

- Note: Having more data is only useful when the feature vector x contains enough information to estimate the output y.
 - Example 1: Fill in the blanks with the given words (yes)
 - Example 2: Estimating the house price only by having its size (no)

• A useful experiment: given the input x, can an expert predict the value of y with high confidence?

Rationale for Big Data

- Using a powerful learning algorithm with many parameters:
 - Linear or logistic regression with a very large number of features.
 - Neural network with a very large number of hidden units
 - Low training set error (1)
- Using a very large training set (reducing the risk of overfitting)
 - The error of the training set is almost equal to the error of the test set (2).
- Result (1) and (2): Low test set error. (high generalizability)