Association Analysis and Sequence Mining

Thanks to [Tan, Steinbach, Kumar]

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an
- E.g. s({Milk, Bread, Diaper}) = 2/5

• Frequent Itemset

 An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Association Rule Mining

• Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 $\{Diaper\} \rightarrow \{Beer\},\$ {Milk, Bread} → {Eggs,Coke}, $\{Beer, Bread\} \rightarrow \{Milk\},\$

Implication means co-occurrence, not causality!

Definition: Association Rule

Association Rule

- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

 $\{Milk, Diaper\} \Rightarrow Beer$

• Measures how often items in Y appear in transactions that contain X
$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk,Diaper,Beer})}{\sigma(\text{Milk,Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

$$\begin{split} & \{\text{Milk,Diaper}\} \rightarrow \{\text{Beer}\} \ (\text{s=0.4, c=0.67}) \\ & \{\text{Milk,Beer}\} \rightarrow \{\text{Diaper}\} \ (\text{s=0.4, c=1.0}) \\ & \{\text{Diaper,Beer}\} \rightarrow \{\text{Milk}\} \ (\text{s=0.4, c=0.67}) \\ & \{\text{Beer}\} \rightarrow \{\text{Milk,Diaper}\} \ (\text{s=0.4, c=0.67}) \\ & \{\text{Diaper}\} \rightarrow \{\text{Milk,Beer}\} \ (\text{s=0.4, c=0.5}) \\ & \{\text{Milk}\} \rightarrow \{\text{Diaper,Beer}\} \ (\text{s=0.4, c=0.5}) \\ \end{split}$$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \left[\begin{pmatrix} d \\ k \end{pmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{pmatrix} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R = 602 rules

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Factors Affecting Complexity

Illustrating Apriori Principle

Bread

Coke

Beer

Diaper

4

Minimum Support = 3

If every subset is considered,

With support-based pruning, 6 + 6 + 1 = 13

 ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$

Items (1-itemsets)

Itemset

{Bread,Milk}

(Bread, Beer)

[Milk,Beer]

{Milk,Diaper} {Beer,Diaper}

{Bread,Diaper}

3

V

{Bread,Milk,Diaper}

Itemset

Pairs (2-itemsets)

or Eggs)

(No need to generate

candidates involving Coke

Triplets (3-itemsets)

Count

- Method:
 - Let k=1

Apriori Algorithm

- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
- Generate length (k+1) candidate itemsets from length k frequent itemsets
- Prune candidate itemsets containing subsets of length k that are infrequent
- Count the support of each candidate by scanning the DB
- Eliminate candidates that are infrequent, leaving only those that are frequent

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Alternative Methods for Frequent Itemset Generation

- Representation of Database
 - horizontal vs vertical data layout

Horizontal Data Layout

	•
TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

Α	В	C	ם	Е
1	1	2	2	1
4	2	3	4	3 6
5	2 5	2 3 4 8 9	2 4 5 9	6
6	7	8	9	
7	8	9		
4 5 6 7 8 9	10			
9				

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L – f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

$ABC \rightarrow D$,	$ABD \rightarrow C$,	$ACD \rightarrow B$,	$BCD \rightarrow A$
$A \rightarrow BCD$,	$B \rightarrow ACD$,	$C \rightarrow ABD$,	$D \rightarrow ABC$
$AB \rightarrow CD$,	$AC \rightarrow BD$,	$AD \rightarrow BC$,	$BC \rightarrow AD$
$BD \rightarrow AC$,	$CD \rightarrow AB$,		

• If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an antimonotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

- But confidence of rules generated from the same itemset has an anti-monotone property
- e.g., L = {A,B,C,D}:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

 Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

join(CD=>AB,BD=>AC)
 would produce the candidate
 rule D => ABC

 Prune rule D=>ABC if its subset AD=>BC does not have high confidence

Effect of Support Distribution

Many real data sets have skewed support distribution

Support distribution of a retail data set

Effect of Support Distribution

- How to set the appropriate *minsup* threshold?
 - If minsup is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
 - If minsup is set too low, it is computationally expensive and the number of itemsets is very large
- Using a single minimum support threshold may not be effective

Pattern Evaluation

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - Redundant if $\{A,B,C\}$ → $\{D\}$ and $\{A,B\}$ → $\{D\}$ have same support & confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support & confidence are the only measures used

Statistical-based Measures

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

Computing Interestingness Measure

 Given a rule X → Y, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $X \rightarrow Y$

	Y	Y	
Х	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f+0	ΙΤΙ

 f_{11} : support of X and Y f_{10} : support of \overline{X} and \overline{Y} f_{01} : support of \overline{X} and Y

 f_{00} : support of \overline{X} and \overline{Y}

Used to define various measures

 support, confidence, lift, Gini, J-measure, etc.

	#	Measure	Formula
There are lots of	1	φ-coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
measures proposed	2	Goodman-Kruskal's (λ)	$\frac{\sum_{j \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{k} P(A_{j}) - \max_{k} P(B_{k})}$
in the literature	3	Odds ratio (\alpha)	$P(A,B)P(\overline{A},\overline{B})$ $P(A,B)P(\overline{A},B)$
	4	Yule's Q	$\frac{P(A,B)P(\overline{AB}) - P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB}) + P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha - 1}{\alpha + 1}$
	5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,B)P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
Some measures are	6	Kappa (κ)	n (a p) n (a p) n (a p (a p) n (a p (a p)
good for certain	_	NE 1 T- F (3.6)	$\frac{P(A_1B)+P(A_2B)-P(A)P(B)-P(A)}{1-P(A)P(B)-P(A)P(B)}$ $\sum_i \sum_j P(A_i,B_j) \log \frac{P(A_i,B_j)}{P(A_i)P(B_i)}$
applications, but not	7	Mutual Information (M)	$\min(-\sum_{i} P(A_i) \log P(A_i), -\sum_{j} P(B_j) \log P(B_j))$ $P(B A)$
for others	8	J-Measure (J)	$\max \left(P(A,B) \log(\frac{P(B A)}{P(B)}) + P(A\overline{B}) \log(\frac{P(\overline{B} A)}{P(\overline{B})}), \right.$
			$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(A)})$
Mile of automic aleased	9	Gini index (G)	$\max \left(P(A)[P(B A)^{2} + P(\overline{B} A)^{2}] + P(\overline{A})[P(B \overline{A})^{2} + P(\overline{B} \overline{A})^{2}] \right)$
What criteria should			$-P(B)^{2} - P(\overline{B})^{2}$,
we use to determine whether a measure			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
			$-P(A)^{2}-P(\overline{A})^{2}$
is good or bad?	10	Support (s) Confidence (c)	P(A,B)
	12	Laplace (L)	$\max(P(B A), P(A B))$ $\max\left(\frac{NP(A,B)+1}{NP(B)+1}, \frac{NP(A,B)+1}{NP(B)+2}\right)$
NATIONAL CONTRACTOR OF THE CON		_ ` '	
What about Apriori- style support based	13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
pruning? How does	14	Interest (I) cosine (IS)	P(A)P(B) $P(A,B)$
it affect these		, ,	$\sqrt{P(A)P(B)}$
measures?	16 17	Piatetsky-Shapiro's (PS) Certainty factor (F)	P(A,B) - P(A)P(B)
mododios:	18	Added Value (AV)	$\max \left(\frac{P(B A) - P(B)}{1 - P(B)}, \frac{P(A B) - P(A)}{1 - P(A)} \right) \\ \max(P(B A) - P(B), P(A B) - P(A))$
	19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(A)P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
	20	Jaccard (()	P(A.B)
	21	Klosgen (K)	$\frac{\overline{P(A)+P(B)-P(A,B)}}{\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))}$
	_		

Advanced concepts

Examples of Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)	
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc	
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc	
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors	
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C	

Formal Definition of a Sequence

 A sequence is an ordered list of elements (transactions)

$$s = < e_1 e_2 e_3 ... >$$

Each element contains a collection of events (items)

$$e_i = \{i_1, i_2, ..., i_k\}$$

- Each element is attributed to a specific time or location
- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Examples of Sequence

- Web sequence:
 - < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >
- Sequence of initiating events causing the nuclear accident at 3-mile Island:

(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

- < {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>
- Sequence of books checked out at a library:

<{Fellowship of the Ring} {The Two Towers} {Return of the King}>

Sequential Pattern Mining: Definition

- Given:
 - a database of sequences
 - a user-specified minimum support threshold, *minsup*
- Task:
 - Find all subsequences with support ≥ minsup

Formal Definition of a Subsequence

A sequence <a₁ a₂ ... a_n> is contained in another sequence <b₁ b₂ ... b_m> (m ≥ n) if there exist integers i₁ < i₂ < ... < i_n such that a₁ ⊆ b_{i1}, a₂ ⊆ b_{i2}, ..., a_n ⊆ b_{in}

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {3,5} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)

Sequential Pattern Mining: Challenge

- Given a sequence: <{a b} {c d e} {f} {g h i}>
 - Examples of subsequences: <{a} {c d} {f} {g} >, < {c d e} >, < {b} {g} >, etc.
- How many k-subsequences can be extracted from a given n-sequence?

Sequential Pattern Mining: Example

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4 1, 2 2,3,4 2,4,5
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4 4, 5
D	3	4, 5
E	1	1, 3
E	2	2. 4. 5

Minsup = 50%				
Examples of Frequent Subsequences:				
s=60% s=60% s=80% s=80% s=80% s=60% s=60% s=60% s=60%				

Generalized Sequential Pattern (GSP)

Step 1:

 Make the first pass over the sequence database D to yield all the 1element frequent sequences

Step 2:

Repeat until no new frequent sequences are found

- Candidate Generation:

 Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items

– Candidate Pruning:

• Prune candidate k-sequences that contain infrequent (k-1)-subsequences

- Support Counting:

 Make a new pass over the sequence database D to find the support for these candidate sequences

- Candidate Elimination:

• Eliminate candidate k-sequences whose actual support is less than minsup

Extracting Sequential Patterns

- Given n events: i₁, i₂, i₃, ..., i_n
- Candidate 1-subsequences:

$$\{i_1\}$$
>, $\{i_2\}$ >, $\{i_3\}$ >, ..., $\{i_n\}$ >

Candidate 2-subsequences:

$$\{i_1, i_2\}$$
>, $\{i_1, i_3\}$ >, ..., $\{i_1\} \{i_1\}$ >, $\{i_1\} \{i_2\}$ >, ..., $\{i_n\} \{i_n\}$ >

Candidate 3-subsequences:

Candidate Generation

- Base case (k=2):
 - Merging two frequent 1-sequences <\(i_1\)> and <\(i_2\)> will produce two candidate 2-sequences: <\(i_1\) \(i_2\)> and <\(i_1 i_2\)>
- General case (k>2):
 - A frequent (k-1)-sequence w₁ is merged with another frequent (k-1)-sequence w₂ to produce a candidate k-sequence if the subsequence obtained by removing the first event in w₁ is the same as the subsequence obtained by removing the last event in w₂
 - The resulting candidate after merging is given by the sequence w₁ extended with the last event of w₂.
 - If the last two events in w_2 belong to the same element, then the last event in w_2 becomes part of the last element in w_1
 - Otherwise, the last event in w_2 becomes a separate element appended to the end of w_1

Candidate Generation Examples

- Merging the sequences $w_1=<\{1\}$ {2 3} {4}> and $w_2=<\{2 3\}$ {4 5}> will produce the candidate sequence < {1} {2 3} {4 5}> because the last two events in w_2 (4 and 5) belong to the same element
- Merging the sequences $w_1=<\{1\}$ {2 3} {4}> and $w_2=<\{2\ 3\}$ {4} {5}> will produce the candidate sequence < {1} {2 3} {4} {5}> because the last two events in w_2 (4 and 5) do not belong to the same element
- We do not have to merge the sequences $w_1 = <\{1\} \{2 \ 6\} \{4\} >$ and $w_2 = <\{1\} \{2 \ \{4 \ 5\} >$ to produce the candidate $<\{1\} \{2 \ 6\} \{4 \ 5\} >$ because if the latter is a viable candidate, then it can be obtained by merging w_1 with $<\{2 \ 6\} \{4 \ 5\} >$

Timing Constraints (I)

xg: max-gap

ng: min-gap

m_s: maximum span

 $x_q = 2$, $n_q = 0$, $m_s = 4$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No

Mining Sequential Patterns with Timing Constraints

- Approach 1:
 - Mine sequential patterns without timing constraints
 - Postprocess the discovered patterns
- Approach 2:
 - Modify GSP to directly prune candidates that violate timing constraints
 - Question:
 - ◆ Does Apriori principle still hold?

Apriori Principle for Sequence Data

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	234
С	1	1, 2
С	2	2,3,4 2,4,5
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
Е	2	2, 4, 5

Suppose:

$$x_g = 1 \text{ (max-gap)}$$

$$n_g = 0 \text{ (min-gap)}$$

$$m_s = 5 \text{ (maximum span)}$$

$$minsup = 60\%$$

$$<\{2\} \{5\}> \text{ support} = 40\%$$

$$\text{but}$$

Problem exists because of max-gap constraint

No such problem if max-gap is infinite

 $\{2\}$ $\{3\}$ $\{5\}$ > support = 60%

Modified Candidate Pruning Step

- Without maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its (k-1)-subsequences is infrequent
- With maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its contiguous (k-1)-subsequences is infrequent

Contiguous Subsequences

s is a contiguous subsequence of

$$w = \langle e_1 \rangle \langle e_2 \rangle ... \langle e_k \rangle$$

if any of the following conditions hold:

- 1. s is obtained from w by deleting an item from either e₁ or e_k
- 2. s is obtained from w by deleting an item from any element \mathbf{e}_i that contains more than 2 items
- 3. s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)
- Examples: s = < {1} {2} >
 - is a contiguous subsequence of

is not a contiguous subsequence of

Timing Constraints (II)

x_g: max-gap

n_a: min-gap

ws: window size

m_s: maximum span

$$x_a = 2$$
, $n_a = 0$, ws = 1, $m_s = 5$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,6} {8} >	< {3} {5} >	No
< {1} {2} {3} {4} {5}>	< {1,2} {3} >	Yes
< {1,2} {2,3} {3,4} {4,5}>	< {1,2} {3,4} >	Yes