DAC0800/DAC0801/DAC0802 8-Bit Digital-to-Analog Converters

General Description

The DAC0800 series are monolithic 8-bit high-speed current-output digital-to-analog converters (DAC) featuring typical settling times of 100 ns. When used as a multiplying DAC, monotonic performance over a 40 to 1 reference current range is possible. The DAC0800 series also features high compliance complementary current outputs to allow differential output voltages of 20 Vp-p with simple resistor loads as shown in *Figure 1*. The reference-to-full-scale current matching of better than ± 1 LSB eliminates the need for full-scale trims in most applications while the nonlinearities of better than $\pm 0.1\%$ over temperature minimizes system error accumulations.

The noise immune inputs of the DAC0800 series will accept TTL levels with the logic threshold pin, V_{LC} , grounded. Changing the V_{LC} potential will allow direct interface to other logic families. The performance and characteristics of the device are essentially unchanged over the full $\pm 4.5 V$ to $\pm 18 V$ power supply range; power dissipation is only 33 mW with $\pm 5 V$ supplies and is independent of the logic input states.

The DAC0800, DAC0802, DAC0800C, DAC0801C and DAC0802C are a direct replacement for the DAC-08, DAC-08A, DAC-08C, DAC-08E and DAC-08H, respectively.

Features

■ Fast settling output current

100 ns

■ Full scale error

±1 LSB

■ Nonlinearity over temperature

±0.1%

■ Full scale current drift

±10 ppm/°C

■ High output compliance

-10V to +18V

- Complementary current outputs
 Interface directly with TTL, CMOS, PMOS and others
- 2 quadrant wide range multiplying capability
- Wide power supply range

±4.5V to ±18V

■ Low power consumption

33 mW at ±5V

TL/H/5686-1

■ Low cost

Typical Applications

FIGURE 1. ± 20 Vp.p Output Digital-to-Analog Converter (Note 4)

Ordering Information

Non-Linearity	Temperature	Order Numbers										
rton-zatozaty	Range	J Package	(J16A)*	N Package	(N16A)*	SO Package (M16A)						
±0.1% FS	-55°C ≤ TA ≤ +125°C	DAC0802LJ	DAC-08AQ									
±0.1% FS	0°C ≤ TA ≤ +70°C	DAC0802LCJ	DAC-08HQ	DAC0802LCN	DAC-08HP	DAC0802LCM						
±0.19% FS	-55°C ≤ TA ≤ +125°C	DAC0800LJ	DAC-08Q									
±0.19% FS	0°C ≤ TA ≤ +70°C	DAC0800LCJ	DAC-08EQ	DAC0800LCN	DAC-08EP	DAC0800LCM						
±0.39% FS	0°C ≤ T _A ≤ +70°C	DAC0801LCJ	DAC-08CQ	DAC0801LCN	DAC-08CP	DAC0801LCM						

*Devices may be ordered by using either order number.

A

Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage (V $^+$ – V $^-$) \pm 18V or 36V Power Dissipation (Note 2) 500 mW

Reference Input Differential Voltage
(V14 to V15)

Reference Input Common-Mode Range
(V14, V15)

Reference Input Current

Logic Inputs

V to V+

V to V+

V to V+

V to V +

V to V
V t

Logic Inputs V^- to V^- plus 36V Analog Current Outputs ($V_S^- = -15V$) 4.25 mA ESD Susceptibility (Note 3) TBD V Storage Temperature -65° C to $+150^{\circ}$ C

Lead Temp. (Soldering, 10 seconds)		
Dual-In-Line Package (plastic)	. :	260°C
Dual-In-Line Package (ceramic)	;	300°C
Surface Mount Package		
Vapor Phase (60 seconds)		215°C
Infrared (15 seconds)		220°C

Operating Conditions (Note 1)

	CALIST	max	011110
Temperature (T _A)			
DAC0802L	-55	+125	٠C
DAC0800L	-55	+ 125	°C
DAC0800LC	0	+70	٠C
DAC0801LC	0	+70	•C
DAC0802LC	0	+70	٠C

Electrical Characteristics The following specifications apply for V_S = ±15V, I_{REF} = 2 mA and T_{MIN} ≤ T_A ≤ T_{MAY} unless otherwise specified. Output characteristics refer to both I_{OUT} and I_{OUT}.

Symbol	Parameter	Conditions		C0802L C0802L			C0800		D/	rc	Unite	
Symbol	i diamotoi		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
	Resolution Monotonicity Nonlinearity		8	-	8 8 ±0,1	8	8 8	8 8 ±0.19	8		8 8 ±0.39	Bits Bits %FS
t ₈		To ± 1/2 LSB, All Bits Switched "ON" or "OFF", TA = 25°C DAC0800L DAC0800LC		100	135		100 100	135 150		100	150	ns ns
tPLH, tPHL	Propagation Delay Each Bit All Bits Switched	T _A =25°C		35 35	60 60		35 35	60 60		35 35	60 60	ns ns
TCIFS	Full Scale Tempco			±10	±50		±10	±50		±10		ppm/°C
Voc	Output Voltage Compliance	<1/2 LSB, R _{OUT} > 20 MΩ Typ	-10		18	-10		18	-10		18	٧
I _{FS4}	Full Scale Current	$V_{REF} = 10.000V, R14 = 5.000 k\Omega$ R15 = 5.000 k Ω , $T_A = 25$ °C	1.984	1.992	2.000	1.94	1.99	2.04	1,94	1.99	2.04	mA
IFSS	Full Scale Symmetry	IFS4-IFS2		±0.5	±4.0		±1	±8.0	L	±2	±16	μА
Izs	Zero Scale Current			0.1	1.0		0.2	2.0		0.2	4.0	μΑ
FSR	Output Current Range	V-=-5V V-=-8V to -18V	0	2.0 2.0	2.1 4.2	00	2.0 2.0	2.1 4.2	0	2.0 2.0	2.1 4.2	mA mA
VIL VIH	Logic Input Levels Logic "0" Logic "1"	V _{LC} =0V	2.0		8,0	2.0		0.8	2.0		0.8	V
կ <u>լ</u> կн	Logic Input Current Logic "0" Logic "1"	$V_{LG} = 0V$ -10V \leq V _{IN} \leq + 0.8V 2V \leq V _{IN} \leq + 18V		-2,0 0.002	-10 10		-2.0 0.002	-10 10		-2.0 0.002	-10 10	μA μA
V _{IS}	Logic Input Swing	V-=-15V	-10		18	-10		18	-10		18	V
V _{THR}	Logic Threshold Range	V _S = ±15V	-10		13.5	-10		13.5	-10		13.5	V
I ₁₆	Reference Blas Current		1	−1.0	-3.0	L	-1.0	-3.0	 	-1.0	-3.0	μΑ
di/dt	Reference Input Slew Rate	(Figure 12)	4.0	8.0		4.0	8.0	ļ	4,0	8.0		mA/μs
PSSI _{FS} +	Power Supply Sensitivity	4.5V≤V+≤18V		0.0001			0.0001		↓—	0.0001	0.01	%/%
PSSI _{FS}		-4.5V≤V-≤18V I _{REF} =1mA		0.0001	0.01		0.0001	0.01		0.0001	0.01	%/%
1+ I-	Power Supply Current	$V_S = \pm 5V$, $I_{REF} = 1$ mA		2,3 -4,3	3.8 -5.8		2.3 -4.3	3.8 -5.8		2.3 -4.3	3.8 -5.8	mA mA
 -		V _S =5V, -15V, I _{REF} =2 mA		2.4 -6.4	3.8 -7.8		2.4 -6.4	3.8 7.8		2.4 6.4	3.8 -7.8	mA mA
 i+ l-		V _S = ± 15V, I _{REF} =2 mA		2.5 -6.5	3.8 7.8		2.5 -6.5	3,8 -7,8		2.5 -6.5	3.8 -7.8	mA mA

Electrical Characteristics (Continued)

T-51-09-10

The following specifications apply for $V_S = \pm 15V$, $I_{REF} = 2$ mA and $I_{MIN} \le I_A \le I_{MAX}$ unless otherwise specified. Output characteristics refer to both I_{OUT} and I_{OUT} .

Symbol	Parameter	Conditions		AC0802 AC0802			AC0800 AC0800		D.	AC0801	LC	Unite
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
PD	Power Dissipation	±5V, I _{REF} =1 mA 5V, -15V, I _{REF} =2 mA ±15V, I _{REF} =2 mA		33 108 135	48 136 174		33 108 135	48 136 174		33 108 135	48 136 174	mW mW mW

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.

Note 2: The maximum junction temperature of the DAC0800, DAC0801 and DAC0802 is 125°C. For operating at elevated temperatures, devices in the Dual-in-Line J package must be derated based on a thermal resistance of 100°C/W, junction-to-ambient, 175°C/W for the molded Dual-in-Line N package and 100°C/W for the Small Outline M package.

Note 3: Human body model, 100 pF discharged through a 1.5 k Ω resistor.

Note 4: Pin-out numbers for the DAC080X represent the Dual-In-Line package. The Small Outline package pin-out differs from the Dual-In-Line package.

Connection Diagrams

See Ordering Information

Block Diagram (Note 4)

TL/H/5888-2

Typical Performance Characteristics

Curve 1: C_0 =15 pF, V_{IN} =2 Vp-p centered at 1V.

Curve 2: C_C =15 pF, V_{IN} =50 mVp-p centered at 200 mV.

Curve 3: C_C =0 pF, V_{IN} =100 mVp-p at 0V and applied through 50 Ω connected to pin 14.2V applied to R14.

Note, Positive common-mode range is always (V+) - 1.5V

Note. B1–B8 have identical transfer characteristics. Bits are fully switched with less than $\frac{1}{2}$ LS8 error, at less than ± 100 mV from actual threshold. These switching points are guaranteed to lie between 0.8 and 2V over the operating temperature range ($V_{\rm LC}=0$ V).

TL/H/5686-4

Equivalent Circuit

V_{CC} - POSITIVE POWER SUPPLY (V)

FIGURE 2

TL/H/5686-15

Typical Applications (Continued)

 $\frac{+V_{REF}}{R_{REF}} \times \frac{255}{256}$ $I_0 + \overline{I_0} = I_{FS}$ for all logic states For fixed reference, TTL operation, typical values are: $V_{REF} = 10.000V$ R_{REF} = 5.000k R16 ≈ R_{REF} $C_{\rm C} = 0.01 \, \mu {\rm F}$ VLC = 0V (Ground)

TL/H/5686-5 FIGURE 3. Basic Positive Reference Operation (Note 4)

FIGURE 4. Recommended Full Scale Adjustment Circuit (Note 4)

 $\frac{-V_{REF}}{R_{REF}} \times \frac{255}{256}$

FIGURE 5. Basic Negative Reference Operation (Note 4)

Typical Applications (Continued)

T-51-09-10

TL/H/5686~18

	B 1	B2	B 3	B4	B 5	В6	B 7	В8	l _O mA	lo mA	Eo	Eo
Full Scale	1	1	1	1	1	1	1	1	1.992	0.000	-9.960	0.000
Full Scale-LSB	1	1	1	1	1	1	1	0	1.984	0.008	-9.920	-0.040
Half Scale + LSB	1	0	0	0	0	0	0	1	1.008	0.984	-5.040	-4.920
Haif Scale	1	0	0	0	0	0	0	0	1.000	0.992	-5.000	-4.960
Half Scale - LSB	Ó	1	1	1	1	1	1	1	0.992	1.000	-4.960	-5,000
Zero Scale + LSB	0	0	0	0	0	0	0	1	0.008	1.984	-0.040	-9.920
Zero Scale	0	0	0	0	0	0	0	0	0.000	1.992	0,000	-9.960

FIGURE 6. Basic Unipolar Negative Operation (Note 4)

	B 1	B2	B 3	B4	B 5	B6	В7	B8	Εo	Εo
Pos. Full Scale	1	1	1	1	1	1	1	1	-9.920	+10.000
Pos. Full Scale - LSB	1	1	1	1	1	1	1	0	-9.840	+9,920
Zero Scale + LSB	1	0	0	0	0	0	0	1	-0.080	+0.160
Zero Scale	1	0	0	0	0	0	0	0	0.000	+0,080
Zero Scale - LSB	0	1	1	1	1	1	1	1	+0,080	0.000
Neg. Full Scale + LSB	0	0	0	0	0	0	0	1	+9.920	-9.840
Neg. Full Scale	0	0	0	0	0	0	0	0	+10.000	-9.920

FIGURE 7. Basic Bipolar Output Operation (Note 4)

if $R_L = \overline{R_L}$ within $\pm 0.05\%$, output is symmetrical about ground

	B 1	B 2	В3	В4	B 5	B 6	B 7	B8	Eo
Pos. Full Scale	1	1	1	1	1	1	1	1	+9.960
Pos. Full Scale - LSB	1	1	1	1	1	1	1	0	+9.880
(+)Zero Scale	1	0	0	0	0	0	0	0	+0.040
(-)Zero Scale	0	1	1	1	1	1	1	1	-0.040
Neg. Full Scale + LSB	0	0	0	0	0	0	. 0	1	-9.880
Neg. Full Scale	0	0	0	0	0	0	0	0	-9.960

FIGURE 8. Symmetrical Offset Binary Operation (Note 4)

TL/H/5686-20

TL/H/5686-19

Typical Applications (Continued)

For complementary output (operation as negative logic DAC), connect inverting input of op amp to $\overline{l_O}$ (pin 2), connect l_O (pin 4) to ground.

FIGURE 9. Positive Low Impedance Output Operation (Note 4)

entary output (operation as a negative logic DAC) connect non-inverting input of op am to $\overline{l_0}$ (pin 2); connect l_0 (pin 4) to ground.

FIGURE 10. Negative Low Impedance Output Operation (Note 4)

Note. Do not exceed negative logic input range of DAC. FIGURE 11. Interfacing with Various Logic Families

Typical values: $R_{IN}=5k$, $+V_{IN}=10V$

FIGURE 12. Pulsed Reference Operation (Note 4)

FIGURE 15. A Complete 2 μs Conversion Time, 8-Bit A/D Converter (Note 4)