

State of the Art Biosensor Techniques and their Utility for Molecular Communication Receivers

Research Internship, Yan Wang Friedrich-Alexander University Erlangen-Nuremberg, Germany February 27, 2022

Agenda

- 1. Introduction
- 2. Non-invasive: Optical Methods
- 3. Enzyme-based: Impedance Spectroscopy
- 4. Enzyme-based: Electrochemistry Method
- 5. Conclusions
- 6. References

Introduction

Background of Diabetes

Types of diabetes.

Growing numbers of people with diabetes.

Communication System

Traditional communication system

Molecular communication system

Our Research

Different modulation methods

Process at the receiver

Non-invasive: Optical Methods

Theory

- Optical reflectometry: intensity of reflected light proportional to GC
- Optical transimission: intensity of transmitted light proportional to GC

Example of Near Infrared

- Glucose absorbance value higher than water at wavelength 1500nm-1800nm
- Transmittance as measurement method
- Transmitted light converted to electric current by photodiode
- Beer Lambert Law:

$$I = I_0 e^{-A} \tag{1}$$

$$A = k * l * C \tag{2}$$

Implementation

GC-voltage at λ =1550nm

GC-voltage at λ =1300nm

- At λ =1550nm, each 50mg/dl increasing of GC,n3mV raising in photodiode voltage
- Increasing GC results in increasing vlotage, means that main absorbent is water

Optical Methods Analysis based on Calrke Erro Grid

method	data	advantage	disadvantage
NIR	A:75% B:25%	intensity is proportional to glucose molecule	high scattering level
MIR		glucose molecule absorption stronger	limited penetration
FIR	A:81% B:19%	frequent calibration is not required	depends on temprature and substance thickness
Occlusion	A:69.7% B:25.7%	enhancement of robustness	
МНС	A:90% B:10%	use well-known various parameters	sensitive to temperature and sweat

- MIR with 2500nm-10000nm
- FIR with 8000nm-14000nm
- Occlusion: pressure applied by using pneumatic cuff to cease blood flow for few seconds
- Metabolic heat Conformation: $[GLU] = F(heatgenerated, bloodflowrate, Hb, HbO_2)$

Occlusion signals

MHC-deveice

R-Clarke Erro Grid Occlusion-Clarke Erro Grid

- good performances in real-time, suitable for CCM
- effected by fat, protein, water in body

Enzyme-based: Impedance Spectroscopy

Theory

- Glucose converted to ATP
- ATP controls ion pump channel
- Ion permitivity of cell membrane changes
- Detected by field-effect transistor

Model of Impedance Spectroscopy

Proposed combination of metal electrodes, a layer of GO_x biomolecular assembl, and SWCNT Channel in FET

Comprehensive glucose sensing mechanism

Bare transistor:

$$I_D = \beta (2V_{GT}V_D - V_D^2)/(1 + V_D/V_c)$$
(3)

• Transistor with solution:

$$V_{GT1} = V_{GT} + V_{PBS} - V_T \tag{4}$$

$$I_D = \left[2(V_{GT1}V_D) - V_D^2 \right] / (1 + V_D/V_c) \tag{5}$$

FAU, Erlangen, Germany | Final presentation

(8)

Comprehensive glucose sensing mechanism

• Transistor with glucose:

$$I_D = [2(V_{GT1} + V_{glucose})V_D - V_D^2]/(1 + V_D/V_c)$$
(6)

• Glucose concentration against gate voltage:

$$V_{glucose}(C) = 1.42V - \exp(-0.1C)$$
 (7)

• Drain current to glucose concentration:

$$I_D = [2(V_{GT1} + 1.42V - \exp(-0.1C))V_D - V_D^2]/(1 + V_D/V_c)$$

Comprehensive glucose sensing mechanism

Involved reactions:

$$O_2 + \beta - D - Glucose \xrightarrow{GOx} H_2O_2 + D - glucose - \beta - lactone$$
 (9)

$$H_2O + D$$
-glucose- β -lactone $\longrightarrow H^+ + D$ -gluconate (10)

$$H_2O_2 \xrightarrow{0.7V} O_2 + 2H^+ + 2e^-$$
 (11)

Analysis of results

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$
(12)

Michaelis-Menten kinetics:

$$\frac{\mathrm{d}[E]}{dt} = (k_2 + k_3)[ES] - k_1[E][S] \tag{13}$$

$$\frac{d[E]}{dt} = (k_2 + k_3)[ES] - k_1[E][S]$$
 (13)
$$\frac{d[S]}{dt} = k_3[ES] - k_1[E][S]$$
 (14)

$$\frac{\mathrm{d}[ES]}{dt} = k_1[E][S] - (k_2 + k_3)[ES] \qquad (15)$$

$$\frac{\mathrm{d}[P]}{dt} = k_2[ES] \tag{16}$$

February 27, 2022 FAU. Erlangen, Germany Final presentation

Simulation

Enzyme-based: Electrochemistry Method

Theory

- 1st-generation: GOx-catalyzed oxidation of glucose, measure generated H_2O_2 by the enzyme or the consume of O_2
- 2nd-generation: O₂ replaced, a sythetic electron recipient
- 3rd-generation: direct electron transfer (DET)

Model of Electrochemistry Biosensor

Involved reactions:

$$O_2 + 4H^+ + 4e^-(CNT) \longrightarrow H_2O_2 + 2H^+ + 2e^-(CNT) \longrightarrow 2H_2O$$

$$GOx(FAD)^{CNT} + \beta - D - Glucose \longrightarrow GOx(FADH_2)^{CNT} + D - glucose - 1.5 - lactone$$

$$(17)$$

(18) (19)

$$GOx(FADH2)^{CNT} + O2 \longrightarrow GOx(FAD)^{CNT} + H2O2$$

$$FAD + 2H+ + 2e- \longleftrightarrow FADH2$$
(6)

(20)

Analysis of Model

Cyclic voltammetry

- Investigate the reduction and oxidation processes of molecular species
- Peak potential and peak current:

$$\delta E_p = E_{pa} - E_{pc} = 0.059/n \tag{21}$$

$$i_p = (2.69 \times 10^5) n^{3/2} SD^{1/2} Cv^{1/2}$$
 (22)

• O_2 -free solutions: exist a pair of peaks

• Glucose added into O_2 -free solution: not effect the result of the electroactivity

• O₂-containing solutions with only FAD

FAU, Erlangen, Germany February 27, 2022 Final presentation

CV of FAD

• O_2 -containing solutions also with glucose: electrochemical peak current of Oxygen decrease

February 27, 2022 FAU, Erlangen, Germany Final presentation

assumption:

$$i_{ptotal} = (2.69 \times 10^{5}) n^{3/2} SD^{1/2} C_{O_2} v^{1/2} + i_{FAD}$$

$$C_{O_2 electro} = C_{O_2} - v_{O_2 consumed} = C_{O_2} - k \times log C_{glucose}$$

$$i_{pnew} = (2.69 \times 10^{5}) n^{3/2} SD^{1/2} C_{O_2 electro} v^{1/2} + i_{FAD}$$

$$\delta i_p = (2.69 \times 10^{5}) n^{3/2} SD^{1/2} (C_{O_2} - k \times log C_{glucose}) v^{1/2}$$
(25)

February 27, 2022 FAU, Erlangen, Germany Final presentation

Conclusions

Conclusions

- ▶ Optical methods: change in the refractive index, light absorption, or fluorescence of glucose
 - Detecting glucose changes in real-time
 - Sensitive to other components in the body
- ► Enzyme-based methods:
 - Impedance spectroscopy: change of impedance proportional to GC
 - Electrochemistry: electrical signal generated by the oxidation of glucose directly measured
 - High-precision
 - Instability due to enzyme, susceptible to denaturation and inactivation over time
- ► Further work: evaluation of the reconstruction accuracy for molecule concentration signals (pulse position modulated signals, concentration shift keying modulated signals, etc., for receivers with fixed operators

Thank You for Your Attention!

February 27, 2022 FAU, Erlangen, Germany Final presentation

Thank You for Your Attention!

Questions?