

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-286131

(43)公開日 平成5年(1993)11月2日

(51)Int.Cl.⁵B 41 J 2/045
2/055
2/16

識別記号

庁内整理番号

F I

技術表示箇所

9012-2C
9012-2C

B 41 J 3/04

103 A
103 H

審査請求 未請求 請求項の数2(全5頁) 最終頁に続く

(21)出願番号

特願平4-95496

(22)出願日

平成4年(1992)4月15日

(71)出願人 000116024

ローム株式会社

京都府京都市右京区西院溝崎町21番地

(72)発明者 藤井 泰久

京都市右京区西院溝崎町21番地 ローム株式会社内

(74)代理人 弁理士 中村 茂信

(54)【発明の名称】 インクジェットプリントヘッドの製造方法及びインクジェットプリントヘッド

(57)【要約】

【目的】 P Z T 素子の高密度・高精度実装、P Z T 素子の薄膜化、P Z T 膜の低温焼成を可能にする。

【構成】 多数の個別インク路2を形成したヘッド基台1上に、ITO電極(共通電極5)付きの振動板3を接合し、個別インク路2上に位置する共通電極5上の部分にP Z Tオクチル酸塩混合物をスクリーン印刷してP Z Tを成膜し、その後にP Z T膜を焼成してP Z T素子4とし、各P Z T素子4上に個別電極6を設け、次いで各P Z T素子4を分極させる。

【特許請求の範囲】

【請求項1】多数の個別インク路を有するヘッド基台に取付けた振動板上に、PZTオクチル酸塩混合物をスピンドルコートしてPZTを成膜し、次いで個別インク路上に位置する振動板上の各部分にPZT膜が残るようなパターンでPZT膜をエッチングするか、若しくは個別インク路上に位置する振動板上の各部分にPZTオクチル酸塩混合物をスクリーン印刷してPZTを成膜し、その後にPZT膜を焼成し、更にPZT膜をそれぞれ分極させることにより振動板上にPZT素子を形成することを特徴とするインクジェットプリントヘッドの製造方法。

【請求項2】一端から他端に延びる多数の個別インク路を一定間隔を置いて形成したヘッド基台と、全ての個別インク路を覆うようにヘッド基台に取付けた振動板と、個別インク路上に位置する振動板上の部分に、PZTオクチル酸塩混合物の成膜・焼成・分極により形成したPZT素子とを備えることを特徴とするインクジェットプリントヘッド。

程度までであり、PZT素子の駆動電圧を低くするのに、これ以上薄いPZT素子を用いることができない。

②：PZT素子の作製時にPZT素子を個別インク路の圧力室サイズに切断するが、その際にチッピング等の不具合が生ずるため、切断が容易でない。

③：PZT素子のハンドリングが難しく、各圧力室に対応する振動板上の位置にPZT素子を一枚一枚接着剤で貼り付けて加圧する作業に時間が掛かり、量産性に欠ける。

10 ④：貼付したPZT素子を加圧する時に、全てのPZT素子に対して均一な加圧制御を行うのが難しく、貼付後にPZT素子の密着強度にバラツキが生ずる。甚だしい場合、実駆動中にPZT素子が剥がれることもある。

⑤：例えば図6に示すように、ヘッド基台30に形成する個別インク路31のノズル32を集結させたような高密度プリントヘッドでは、PZT素子40を実装するのが困難である。

【0005】これら問題点①～⑤を解決するためにペー

酸塩混合物の成膜・焼成・分極により形成したP Z T素子とを備えることを特徴とする。

【0009】本発明の製造方法によれば、スピンドル・エッティング又はスクリーン印刷によりP Z Tオクチル酸塩混合物を振動板上に成膜するため、P Z T素子の切断・貼付工程は不要になるだけでなく、数μm程度の非常に薄いP Z T素子を形成することができる。しかも、500°C程度の焼成温度で原料（P Z Tオクチル酸塩混合物）が原子或いは分子レベルで混合されるため、P Z T膜を低温で焼成することが可能となり、振動板及び電極の材料や振動板の厚さの選定が容易になる。

【0010】

【実施例】以下、本発明を実施例に基づいて説明する。図1は本発明の製造方法によって作製したインクジェットプリントヘッドの一部省略要部断面図である。このプリントヘッドは、基本的には図5に示した従来の構造と変わらず、複数の個別インク路2を有するヘッド基台1と、ヘッド基台1上に取付けられた振動板3と、個別インク路2に対応する振動板3上の位置に形成されたP Z T素子4とを備える。但し、P Z T素子4は実際には振動板3上に設けられた共通電極5上に形成され、P Z T素子4上には個別電極6が設けられている。

【0011】個別インク路2は、図5に示すような形状であり、ヘッド基台1の後端から前端に向かって供給路、圧力室及びノズルを有する。振動板3は全ての個別インク路2を密封するようにヘッド基台1に接合され、P Z T素子4は個別インク路2の圧力室に対応する位置にある。かかるプリントヘッドでは、共通電極5と個別電極6に電圧を印加することで、両電極5、6で挟持されたP Z T素子4に電界が加わり、P Z T素子4が変位する。この変位によって振動板3の対応部分が変形し、個別インク路2のインク容積が増減し、インク容積が減少に転じた個別インク路2のインクがノズルから吐出される。

【0012】次に、上記プリントヘッドの製造方法を図2～図4を参考して述べる。まず、図2において、ヘッド基台1に複数の個別インク路2を等間隔で形成する。個別インク路2の形状は前述したとおりである。このヘッド基台1上に、例えばITO電極付きのガラス製振動板3を陽極接合等で接合する。このITO電極が共通電極5となる。但し、共通電極5は、振動板3上に例えば白金をスクリーン印刷することにより形成してもよい。

【0013】一方、P Z Tオクチル酸塩混合物としては、オクチル酸鉛（Pbの含有量：40%）、オクチル酸ジルコニル（Zrの含有量：22.5%）、オクチル酸チタン（Tiの含有量：12.2%）を、原子比Pb : Zr : Ti = 1 : 0.53 : 0.47で混合し、これに溶剤とレジンを添加し、十分混練する。得られたP Z Tオクチル酸塩混合物の液体を、個別インク路2の圧力室に対応する振動板3上の部分にスクリーンにて所定

パターンで印刷し、P Z Tを成膜する。その後、120°Cで3時間放置し、P Z T膜中の溶媒を蒸発させ、続いて500°Cで15分程度焼成する。これにより焼結したP Z T膜をP Z T素子4とする（図3参照）。なお、1回のスクリーン印刷ではP Z T膜厚が2～3μmまであるため、厚膜にするにはスクリーン印刷・焼成の作業を繰り返す。

【0014】次いで、図4に示すように、各P Z T素子4上に例えば白金からなる個別電極6をスクリーン印刷

10 やスパッタ等によって形成する。この後、共通電極5と個別電極6に電圧を印加し、各P Z T素子4を所定方向（上下方向）に分極させる。ここで参考までに、市販されている厚さ150μmのP Z T素子、及び本発明の製造方法で得られる厚さ7μmのP Z T素子の印加電圧と歪量（変位量）とを比較してみる。P Z T素子のサイズは、共に縦（個別インク路の長手方向）×横（個別インク路の幅方向）=8×0.8mmであり、ヤング率は共に6.53×10³kgf/mm²である。又、振動板の厚さは0.05mmで、ヤング率は8×10³kgf/mm²である。そして、P Z T素子の圧電定数を3.81×10⁻⁷mm/Vとし、電界強度をV/t（厚さ）とする。

【0015】これらの条件を踏まえると共に、P Z T素子を両持梁とみなし、既知の両持梁の歪量の公式（特に示さず）に上記値を代入して歪量を計算する。その結果、本発明では10Vの電圧を印加すると0.11μmの歪量が得られるのに対し、従来では150Vでも0.045μmに過ぎないことが分かる。従って、本発明の製法によれば、P Z T素子をかなり薄膜にできることに伴って印加電圧を相当低くすることができ、省エネルギーが実現される。但し、本発明において、P Z T素子の歪生发力を強くするためには、P Z T素子のサイズは上記のように個別インク路の幅方向よりも長手方向を長くすることが好ましい。

【0016】なお、上記実施例ではスクリーン印刷を用いた場合であるが、スピンドル・エッティングを用いてP Z Tオクチル酸塩混合物からP Z T素子を形成しても同等の作用効果が得られる。又、スクリーン印刷又はスピンドル・エッティングのいずれの場合も、P Z Tオクチル酸塩混合物を成膜する構成であるため、図6に示すような高密度のプリントヘッドであっても、振動板上の所定位置にP Z T素子を実装することは容易である。

【0017】

【発明の効果】以上説明したように、本発明の製造方法（及びインクジェットプリントヘッド）は、スピンドル・エッティング又はスクリーン印刷によってP Z Tオクチル酸塩混合物を成膜し、P Z T膜を焼成・分極させることによりP Z T素子を形成するため、下記の効果を奏する。

50 （1）P Z T素子の切断・貼付工程が不要であり、生産

性が向上する。

(2) 従来の精緻 $150\mu m$ 程度の厚さに比べて、数 μm と非常に薄いPZT素子を形成することができるので、PZT素子の駆動電圧を下げることができ、省エネルギー化が達成される。

(3) 相当高密度なプリントヘッドでも、PZT素子を振動板上に高精度で実装することができる。

(4) PZT膜を 500°C 程度の低温で焼成することができるあり、振動板及び電極の材料、振動板の厚さの選定が容易になる。

(5) PZT膜の焼成時に膜中のPbが蒸発する心配がないので、Pbの損失を防ぐために焼成炉や蒸気配管等を特別仕様にする必要がない。

(6) 焼成後のPZT膜の組成、組織を均一にできる。

【図面の簡単な説明】

【図1】本発明のインクジェットプリントヘッドの一部省略要部断面図である。

【図1】

【図2】

【図3】

【図4】

【図2】本発明の製造方法における第1の工程図である。

【図3】本発明の製造方法における第2の工程図である。

【図4】本発明の製造方法における第3の工程図である。

【図5】従来例に係る圧電型インクジェットプリントヘッドの一部省略平面図である。

【図6】高密度インクジェットプリントヘッドの平面図である。

【符号の説明】

1	ヘッド基台
2	個別インク路
3	振動板
4	PZT素子
5	共通電極
6	個別電極

【図5】

【図6】

フロントページの続き

(51) Int. Cl. 5

H 01 L 41/24

識別記号

庁内整理番号

F I

技術表示箇所

9274-4M

H 01 L 41/22

A

(19)

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: **05286131 A**

(43) Date of publication of application: **02 . 11 . 93**

(51) Int. Cl

**B41J 2/045
B41J 2/055
B41J 2/16
H01L 41/24**

(21) Application number: **04095496**

(71) Applicant: **ROHM CO LTD**

(22) Date of filing: **15 . 04 . 92**

(72) Inventor: **FUJII YASUHISA**

**(54) INK JET PRINT HEAD AND PRODUCTION
THEREOF**

(57) Abstract:

PURPOSE: To enable the high density/high accuracy mounting of PZT elements, the reduction of PZT elements in thickness and the low temp. baking of PIT elements.

CONSTITUTION: A vibration plate 3 fitted with an ITO electrode (common electrode 5) is bonded to a head base stand 1 having a large number of individual ink passages 2 formed thereto and a PZT octylate mixture is applied to the parts on the common electrode 5 positioned above the individual ink passages 2 by screen printing to form PZT films which are, in turn, baked to form PZT elements 4. Individual electrodes 6 are provided on the PZT elements 4 and, thereafter, the PZT elements 4 are polarized.

COPYRIGHT: (C)1993,JPO&Japio

