וּנְחַלְתֶם אוֹתָה אִישׁ כְּאַחִיו" יחזקאל מז 11"

חלוקה יעילה של משאבים Efficient Resource Division

אראל סגל-הלוי

חלוקת משאבים הומוגניים

משאבי

מחשוב:

מניות:

חלוקה הוגנת - קל

אבל לא יעיל...

מהי יעילות כלכלית?

נסביר ע"י דוגמה. שלושה אחים רוצים ללכת יחד למסעדה ומתלבטים באיזו מסעדה לבחור. כל אח מדרג את המסעדות מהכי גרועה בעיניו (1) להכי טובה בעיניו (5):

מסעדה:	א	ב	λ	Т	ה
עמי:	1	2	3	4	5
תמי:	3	1	2	5	4
רמי:	3	5	5	1	1

איזו בחירה – מבין החמש – היא לא יעילה? ---- **ב**! כי בעיני כולם, היא פחות טובה מ-ג.

יעילות כלכלית

הגדרות:

- מצב א נקרא **שיפור פארטו** (Pareto) של מצב ב, אם הוא *טוב יותר* לחלק (improvement) מהמשתתפים, וטוב *לפחות באותה מידה* לכולם.
 - בעברית: "זה נהנה וזה לא חסר".
 - אם לא (Pareto efficient) מצב נקרא **יעיל פארטו** (קיים מצב אחר שהוא שיפור-פארטו שלו.
- יעילות פארטו תנאי הכרחי לבחירה שהיא "נכונה" מנקודת-מבט כלכלית.

חלוקה לא יעילה (כנראה)

חלוקה יעילה פארטו - קל

...אבל לא הוגן

האתגר

האם תמיד קיימת חלוקה שהיא גם הוגנת וגם יעילה?

האם ייחתוך ובחריי יעיל פארטו?

:אלגוריתם

- .נשים את המשאבים על קו ישר
- נחלק את הקו כמו שמחלקים עוגה.

עצים	נפט	פלדה	
80	19	1	:עמי
79	1	20	:תמי

האם ייחתוך ובחריי יעיל פארטו?

עמי	תמי			
ים	עצ	נפט	פלדה	
50	, 30	19	1	:עמי
49.4	29.6	1	20	:תמי

התוצאה **לא יעילה**: התועלות הן (50,6,50.6) אבל אפשר לשפר ל~(59,7,59.5).

עצים	נפט	פלדה	
40 , 40	19	1	:עמי
39.3, 39.7	1	20	:תמי

יעילות אוטיליטרית

היא (utilitarian) היא חלוקה יעילה-אוטיליטרית (חלוקה יעילה-אוטיליטרים (חלוקה חלוקה הממקסמת את סכום הערכים של השחקנים:

$$\max_{X} \sum_{j=1}^{n} V_j(X_j)$$

חישוב: אפשר בפייתון.

עצים	נפט	פלדה	
80	19	1	:עמי
79	1	20	:תמי

<-- ?האם החלוקה יעילה פארטו

יעילות אוטיליטרית

משפט: כל חלוקה יעילה-אוטיליטרית (ממקסמת סכום ערכים) היא יעילה פארטו.

- **הוכחה**: נתונה חלוקה **א** הממקסמת סכום ערכים. • נניח בשלילה שהחלוקה לא יעילה פארטו.
 - אז קיימת חלוקה **ב** שהיא שיפור-פארטו שלה.
- •בחלוקה **ב**, לכל השחקנים יש ערך לפחות כמו בחלוקה **א**, ולחלק מהשחקנים יש ערך גבוה יותר.
- . בווקוה **א**, ולוולק מהשווקנים יש עון גבוה יוונו לכן בחלוקה **ב** סכום הערכים גבוה יותר – בסתירה•

לכך שחלוקה **א** ממקסמת את סכום הערכים. ***

החלוקה יעילה – אבל לא הוגנת.

חלוקה אגליטרית

היא חלוקה (egalitarian) היא חלוקה אגליטרית (אגליטרית הערך חלוקה אגליטרית הערך הקטן ביותר: הממקסמת את הערך הקטן ביותר: $\max_X \min_i V_i(X_i)$

אלגוריתם: הגדר משתנה z המייצג את הערך הקטן ביותר. פתור את בעיית האופטימיזציה הבאה:

maximize zsubject to $V_i(X_i) \ge z$ for all i in 1,...,n

עצים	נפט	פלדה	
40.25 , 39.75	19	1	:עמי
39.75, 39.25	1	20	:תמי

חלוקה אגליטרית והגינות

משפט: אם הערכים של השחקנים *מנורמלים*, כך שכל השחקנים מייחסים את אותו ערך לעוגה כולה, אז כל חלוקה אגליטרית היא פרופורציונלית.

הוכחה:

- ימת חלוקה פרופורציונלית, למשל חלוקה שבה כל n שחקן מקבל n חלקי n מכל משאב.
- יהי V ערך העוגה כולה (בעיני כולם). בחלוקה פרופ., n הערך הקטן ביותר הוא לפחות n חלקי.
 - לכן, בחלוקה *הממקסמת* את הערך הקטן ביותר, n הערך הקטן ביותר הוא לפחות V חלקי.

• לכן, חלוקה זו גם היא פרופורציונלית.

חלוקה אגליטרית ויעילות

משפט: אם כל השחקנים מייחסים ערך ג*דול מ-0* לכל משאב, אז כל חלוקה אגליטרית היא יעילה-פארטו.

הוכחה: נתונה חלוקה אגליטרית **א**, שבה הערך הקטן ביותר הוא x. נניח בשלילה שקיים לה שיפור-פארטו - חלוקה **ב**.

- בחלוקה **ב**, לכל השחקנים יש ערך לפחות x, ולחלק מהשחקנים יש ערך גדול מ-x.
- נבחר שחקן שערכו בחלוקה ב גדול מ-x. ניקח ממנו כמות קטנה מאד של משאב כלשהו, כך שערכו יישאר גדול מ-x. נחלק את המשאב שווה בשווה בין כל שאר השחקנים. קיבלנו חלוקה חדשה; נקרא לה ג.
- כל השחקנים מייחסים ערך גדול מ-0 לכל משאב, ולכן בחלוקה ג, לכל השחקנים יש ערך גדול מ-x. לכן, הערך הקטן ביותר בחלוקה ג גדול מ-x סתירה להנחה שחלוקה א ממקסמת את הערך הקטן ביותר.

חלוקה אגליטרית ויעילות

אם חלק מהשחקנים מייחסים ערך 0 לחלק מהמשאבים, אז לא כל חלוקה אגליטרית היא יעילה.

> פלדה נפט 0 100 עמי: 0 0 0 ...

- החלוקה שנותנת חצי מהפלדה לעמי, ואת כל השאר לתמי, היא אגליטרית (מדוע?).
 - .(מֹדוע?). אבל היא לא יעילה פארטו (מֹדוע?).

סדר לקסימין

הגדרה: חלוקה לקסימין-אגליטרית (-leximin) היא חלוקה הממקסמת את *וקטור* (egalitarian *הערכים המסודר מהקטן לגדול*, לפי סדר *מילוני.* כלומר: מִמקסמת את הערך הקטן ביותר;

- •בכפוף לזה, את הערך השני הכי קטן;
- . בכפוף לזה, את הערך השלישי הכי קטן; וכו'.

דוגמה:

- חלוקה עם ערכים (50, 100) טובה יותר, בסדר לקסימין, מחלוקה עם ערכים (50, 50).
 - חלוקה עם ערכים (3, 1, 3) טובה יותר, בסדר לקסימין, מחלוקה עם ערכים (1, 99, 2).

לקסימין – יעילות והגינות

משפט: כל חלוקה לקסימין-אגליטרית היא *יעילה-פארטו,* ואם הערכים מנורמלים - גם *פרופורציונלית*.

הוכחה:

- פרופורציונליות הוכחנו כבר לכל חלוקה אגליטרית.
 - נתונה חלוקה לקסימין-אגליטרית **א**. נניח בשלילה שקיים לה שיפור-פארטו - חלוקה **ב**.
 - •בחלוקה **ב**, לכל השחקנים יש ערך *לפחות* כמו ב-א, ולחלק מהשחקנים יש ערך ג*דול יותר*.
- לכן וקטור-הערכים המסודר בחלוקה ב גדול יותר,
 בסדר מילוני, מבחלוקה א סתירה להנחה שחלוקה
 א היא לקסימין-אגליטרית.

חישוב חלוקה לקסימין

- $z_{max} = \alpha$ מחשבים חלוקה אגליטרית; נניח שהמקסימום
 - (מכאן: בחלוקה לקסימין, שחקן אחד לפחות מקבל z_{max} , והשאר מקבלים לפחות z_{max}).
 - עבור כל שחקן, נחשב את הערך המקסימלי שהוא יכול לקבל, תחת האילוץ שכל שאר השחקנים מקבלים לפחות z_{max} .
 - אם הערך המקסימלי המתקבל הוא z_{max} . אז השחקן z_{max} הוא "רווי" ערכו בחלוקה לקסימין = בדיוק z_{max} .
 - נחשב חלוקה אגליטרית עבור כל השחקנים שנשארו לא רוויים, תחת האילוץ שהערך של כל השחקנים הרוויים הוא בדיוק ערך-הרווייה שלהם.
 - נמשיך כך עד שכל השחקנים הופכים להיות רוויים.

חישוב חלוקה לקסימין - דוגמה

	עצים	נפט	פלדה
א:	4	0	0
ב:	0	3	0
ג :	5	5	10
т:	5	5	10

:1 סיבוב

- .3 = ערך אגליטרי
- ערכים מקס. לשחקנים א, ב, ג, ד = 4, 3, 8.25, 8.25
 - שחקן ב רווי.

סיבוב 2: נשארו א,ג,ד.

- .4 = ערך אגליטרי
- ערכים מקס. לשחקנים• א, ג, ד = 4, 6, 6.
 - שחקן א רווי.

- **סיבוב 3**: נשארו שחקנים ג,
 - ערך אגליטרי = 5. ערכים מקס. לשחקנים ג, ד = 5, 5. כולם רוויים – סיימנו!

חישוב חלוקה לקסימין-אגליטרית – אלגוריתם

```
.1. אתחול: F=Free= קבוצת כל השחקנים (F=Free=לא רווי).
                               2. פתור את בעיית האופטימיזציה הבאה:
Maximize
such that (X_1,...,X_n) is a partition;
             v_i(X_i) = saturated value[i] for all i not in F;
            z \le v_i(X_i) for all j in F.
                          יהי בערך המקסימלי שהתקבל בבעיה זו. z<sub>max</sub>
      3. לכל שחקן j בקבוצה F, פתור את בעיית האופטימיזציה הבאה:
          V_i(X_i)
Maximize
such that (X_1,...,X_n) is a partition;
             v_i(X_i) = saturated value[i] for all i not in F;
             z_{max} \le v_i(X_i) for all j in F.
F-אם הערך המתקבל שווה לz_{max}, אז j הוא שחקן רווי: הורד אותו מ
                  .saturated_value[j]=z_{max} :ושמור את ערך-הרוויה שלו
```

4. אם הקבוצה F ריקה – סיים (כולם רוויים); אחרת – חזור לשורה 2.

משפט. האלגוריתם שהוצג למעלה מסתיים תוך n איטרציות לכל היותר.

הוכחה. מספיק להוכיח, שבכל סיבוב, לפחות שחקן חופשי אחד הופך להיות רווי.

נניח בשלילה, שבסיבוב מסויים, אף שחקן חופשי לא נעשה רווי. נסמן ב-z_{max} את הערך של בעיית המקסימיזציה הראשונה בסיבוב זה, וב-f את מספר השחקנים החופשיים.

המשמעות היא, שקיימות f חלוקות אפשריות, שבכל אחת מהן, כל השחקנים מקבלים לפחות z_{max}, כל השחקנים הרוויים מקבלים את ערך-הרוויה שלהם, ואחד מ-f השחקנים החופשיים מקבל ערך גדול ממש מ-z_{max}.

הוכחה [המשך].

ניקח את כל f החלוקות האלו, ונחשב את **הממוצע**החשבוני שלהן. החלוקה הממוצעת היא חלוקה
אפשרית, וערכי השחקנים בחלוקה הממוצעת הם
הממוצעים של ערכי השחקנים ב-f החלוקות. מכאן:

- א. בחלוקה הממוצעת, כל השחקנים הרוויים מקבלים את ערך-הרוויה;
- ב. בחלוקה הממוצעת, כל השחקנים החופשיים מקבלים ערך גדול ממש מ- z_{max}.

משתי הנקודות הללו נובע, שהערך של בעיית המקסימיזציה הראשונה בסיבוב זה היה צריך להיות גדול ממש מ- z_{max} - סתירה. **משפט**. האלגוריתם שהוצג למעלה מוצא חלוקה לקסימין-אגליטרית.

הוכחה. נסמן: $z_k = \kappa$ הערך z של בעיית המקסימום הראשונה בסיבוב k נוכיח: כל שחקן שנעשה רווי בסיבוב k מקבל בחלוקה הלקסימין ערך k. ההוכחה באינדוקציה על k.

.k=1 בסיס:

- לפי בעיית המקסימום הראשונה, קיימת חלוקה שבה
 כל שחקן מקבל לפחות ₂, ולכן ערכו בכל חלוקה
 אגליטרית הוא לפחות ₂.
- לפי בעיית המקסימום השניה, כל שחקן שנעשה רווי
 בסיבוב 1, מקבל בחלוקה אגליטרית לכל היותר z₁
 לכן, כל שחקן שנעשה רווי בסיבוב 1 מקבל בדיוק z₁

הוכחה [המשך].

- צעד: נניח שהטענה נכונה עד סיבוב k. האילוצים הנוספים לבעיות-המקסימום בסיבוב d מתייחסים לערכי הרווייה של השחקנים הרוויים. לפי הנחת האינדוקציה, ערכים אלה הם אכן הערכים ששחקנים אלה מקבלים בחלוקה לקסימין. לכן:
- לפי בעיית המקסימום הראשונה, קיימת חלוקה שבה כל שחקן לא-רווי מקבל לפחות z_k, ולכן ערכו בכל חלוקה לקסימין הוא לפחות z_k.
- לפי בעיית המקסימום השניה, כל שחקן שנעשה רווי
 בסיבוב k, מקבל בחלוקה לקסימין לכל היותר z_k.
 לכן, כל שחקן שנעשה רווי בסיבוב k מקבל בדיוק z_k.