* Stationary Wowes *

- > What is a stationary wave?

 > when 2 progressive waves of the same wavelength, frequency
 and amplitude, travelling along the same path but in
 opposite directions superimpose, a stationary wave

 (standing wave) is produced

 (standing wave) is produced
 - ① * It's made of nodes (minimum displacement) and antinodes (maximum displacement)
 - @ * no energy is transported through the medium.
 - (3) * All the particles vibrate with the same prequency/
 - (4) * Particles in the same loop are in the same phase phase of 180°/17 rad.
 - (5) * The distance between 2 consecutive nodes antinodes in 1/2.
 - 6) * Each particle has a different amplitude.

Q-2)	Distinguish between progressive	and stationary waves	
	Pupayenine	Stationary	
	Progressive.	Section (cong.	
*	energy is transferred through the medium.	* energy is not transferred	
	median.		
*	The amplitude is the same (it's fixed)	* each particle has a different amplitude	
	1 14		
*	There's a phase difference	* In a loop, particles have O phase	
	between each particle.	difference. Between 2 consequetty	
		phase difference is TT (180°)	
Q-3)	Experiments to show formation of stationary waves,		
()	2-15 CM 0 CTQMC		
(71)	ROPE ON A STRING		
	Attach one end of a rope to a vibrator driven		
	by a signal generator. The other end hangs over a pulley		
	and weights maintain tension in the straing. The wave will		
	travel along the scope, and then will be reflected from		
	the free end attached to the weights.		
	By adjusting the frequency of the vibrations, a stable pattern can be created. signal generator		
	A weight vibrator		
	A stroboscope is set to the same prequency as the vibrator, so		
	the movement of the struing can be seen in slow motion &		
	it's easy to see the opposite movements of 2 adjacent loops.		
	, , , , , , , , , , , , , , , , , , , ,		

(B) USING MICROWAVES

which will reflect the microwaves back to the source move a probe reciever in the space between the transmitter and the metal plate

metal plate

microwave transmitter

microwave transmitter

another

Positions of high + low intensity will be observed. These will be the nodes and antinodes.

(c) USING SOUND WAVES

generate longitudinal sound waves. Direct it at a reflecting sheet that will reflect the sound waves.

between the loudspeaker and the reflecting sheet.

The waveform can be observed on the c.r.o.

	Date: / /		
Q-4)	what are free and forced vibrations?		
	Vibrations.		
	7,117,2000		
	Free vibrations Forced vibrations		
7	when a body capable of > To make a body vibrate at any		
	vibrating is once disturbed desired prequency, we continually		
	* left to itself, it performs apply a force of that prequency.		
	free vibrations. These are forced vibrations.		
· · · · · · · · · · · · · · · · · · ·	The frequency of free > The amplitude of forced		
	vibrations is known as vibrations depends on the		
	natural frequency. difference between the applied		
	and natural frequency		
0-6)	1. Wat in managines ?		
	Resonance is a particular case of forced vibrations when		
	the applied prequency is equal to the natural prequency		
b l	of the body. At resonance, the amplitude of the vibrations is		
	maximum.		
	Eup orregente		
0-6)	Vibrations of air columns.		
	dir column closed at one end		
	== - tuning fork antinode		
	aire $l_1 = \lambda/4$		
	column \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	noole $f_1 = V/\lambda = V/4/21$		
	Esince the closed end?		
	12 = 32/4 1 = 3811 Ewill always have a node,}		
	$\lambda = 412$ = 120x \(\xi \) and the open an \(\xi \)		
	¿ antinoole, opp		
	$f_2 = 3V$ $V = 3A$ [harmonics are $\frac{3}{4}$		
	= 3e1 Tournois 3nd harmonic		
	= 3rd norm		
	5		

Air column exerced at both ends.

Fi = V/2 = V/2l -> fundamental

l = >

Both, ODD and EVEN harmonics are present.

f2 = 2f1

second harmonic.

- Fundamental frequency is the simplest mode of vibrations.
- * Harmonics are multiples of the fundamental frequency.

Q-7) Finding speed of sound in air.

END CORRECTION

In case of a stationary wave formed in a tube, the antinode is formed slightly above the open end of the tube. at a distance of 0-3d (d=diameter of tube).

This is added to the length of the tube and can be eliminated by repeating the experiment twice.

 $\ell_1 = \frac{\lambda}{4}$: $\lambda = 4\ell_1$ f = Frequency of air column

= frequency of tuning fork

 $V = f\lambda = f \times 4\ell_1$

$$\ell_2 = 3\lambda \quad \therefore \quad \lambda = 4\ell_2$$

$$V = f\lambda = f \times 4\ell_2$$

To eliminate end convection.

$$V = f\lambda = \left\{ f \times 2(l_2 - l_1) \right\}$$