

Unless otherwise specified the course lectures and meeting times are Tuesday and Thursday 12pm to 1:20pm in the NVIDIA Auditorium in the Huang Engineering Center. (map)

This is the syllabus for the **Spring 2017** iteration of the course. The syllabus for the Winter 2016 and Winter 2015 iterations of this course are still available.

Event Type	Date	Description	Course Materials
Lecture 1	Tuesday April 4	Course Introduction Computer vision overview Historical context Course logistics	[slides] [video]
Lecture 2	Thursday April 6	Image Classification The data-driven approach K-nearest neighbor Linear classification I	[slides] [video] [python/numpy tutorial] [image classification notes] [linear classification notes]
Lecture 3	Tuesday April 11	Loss Functions and Optimization Linear classification II Higher-level representations, image features Optimization, stochastic gradient descent	[slides] [video] [linear classification notes] [optimization notes]
Lecture 4	Thursday April 13	Introduction to Neural Networks Backpropagation Multi-layer Perceptrons The neural viewpoint	[slides] [video] [backprop notes] [linear backprop example] [derivatives notes] (optional) [Efficient BackProp] (optional) related: [1], [2], [3] (optional)
Lecture 5	Tuesday April 18	Convolutional Neural Networks History Convolution and pooling ConvNets outside vision	[slides] [video] ConvNet notes
Lecture 6	Thursday April 20	Training Neural Networks, part I Activation functions, initialization, dropout, batch normalization	[slides] [video] Neural Nets notes 1 Neural Nets notes 2 Neural Nets notes 3 tips/tricks: [1], [2], [3] (optional) Deep Learning [Nature] (optional)
A1 Due	Thursday April 20	Assignment #1 due kNN, SVM, SoftMax, two-layer network	[Assignment #1]
Lecture 7	Tuesday April 25	Training Neural Networks, part II Update rules, ensembles, data augmentation, transfer learning	[slides] [video] Neural Nets notes 3
Proposal due	Tuesday April 25	Couse Project Proposal due	[proposal description]
Lecture 8	Thursday April 27	Deep Learning Software Caffe, Torch, Theano, TensorFlow, Keras, PyTorch, etc	[slides] [video]
Lecture 9	Tuesday May 2	CNN Architectures AlexNet, VGG, GoogLeNet, ResNet, etc	[slides] [video] AlexNet, VGGNet, GoogLeNet, ResNet
Lecture 10	Thursday May 4	Recurrent Neural Networks RNN, LSTM, GRU Language modeling Image captioning, visual question answering Soft attention	[slides] [video] DL book RNN chapter (optional) min-char-rnn, char-rnn, neuraltalk2
A2 Due	Thursday May 4	Assignment #2 due Neural networks, ConvNets	[Assignment #2]
Midterm	Tuesday May 9	In-class midterm Location: Various (not our usual classroom)	
Lecture 11	Thursday May 11	Detection and Segmentation Semantic segmentation Object detection Instance segmentation	[slides] [video]
Lecture 12	Tuesday May 16	Visualizing and Understanding Feature visualization and inversion Adversarial examples DeepDream and style transfer	[slides] [video] DeepDream neural-style fast-neural-style
Milestone	Tuesday May 16	Course Project Milestone due	
Lecture 13	Thursday May 18	Generative Models PixelRNN/CNN Variational Autoencoders Generative Adversarial Networks	[slides] [video]
Lecture 14	Tuesday May 23	Deep Reinforcement Learning Policy gradients, hard attention Q-Learning, Actor-Critic	[slides] [video]
Guest Lecture	Thursday May 25	Invited Talk: Song Han Efficient Methods and Hardware for Deep Learning	[slides] [video]
A3 Due	Friday May 26	Assignment #3 due	[Assignment #3]
Guest Lecture	Tuesday May 30	Invited Talk: Ian Goodfellow Adversarial Examples and Adversarial Training	[slides] [video]
Lecture 16	Thursday June 1	Student spotlight talks, conclusions	[slides]
Poster Due	Monday June 5	Poster PDF due	[poster description]
Poster Presentation	Tuesday June 6		
Final Project Due	Monday June 12	Final course project due date	[reports]

