ARQUITECTURAS COGNITIVAS

Luís Morgado
ISEL-ADEETC

COMPARAÇÃO DE TIPOS DE ARQUITECTURA

ARQUITECTURA REACTIVA

- Sub-simbólica
- Contínua
- Independente de modelos internos
- Complexidade computacional baixa
- Tempo de resposta baixo
- Soluções sub-óptimas

ARQUITECTURA DELIBERATIVA

- Simbólica
- Discreta
- Dependente de modelos internos
- Complexidade computacional alta
- Tempo de resposta alto
- Soluções óptimas

EVOLUÇÃO DE ARQUITECTURAS DE AGENTE

~1960

- ARQUITECTURAS SIMBÓLICAS

Agentes utilizam raciocínio simbólico para decidir o que fazer

~1980

ARQUITECTURAS REACTIVAS

 Problemas com as arquitecturas simbólicas levaram à procura de novas soluções, nomeadamente inspiradas na biologia de organismos com mecanismos cognitivos mais simples que os mecanismos cognitivos humanos

~1990

ARQUITECTURAS HÍBRIDAS

 Tentativa de combinar o melhor das arquitecturas simbólicas e reactivas

ARQUITECTURA HÍBRIDA

INTEGRAÇÃO DE REACÇÃO E DELIBERAÇÃO

ARQUITECTURA HÍBRIDA

PLANEAMENTO

- Abrange horizontes temporais longos
 - Requer conhecimento global
- Computacionalmente intensivo
 - Deve ser dissociado da execução em tempo-real
- Adequado para deliberação de carácter global
 - Selecção de objectivos
 - Selecção de estratégias de acção

REACÇÃO

- Abrange horizontes temporais curtos
 - Requer informação sensorial local
- Computacionalmente eficiente
 - Resposta em tempo-real

ARQUITECTURA HÍBRIDA NÍVEIS DE COMPETÊNCIA

TIPO DE PROCESSO NÍVEL DE COMPETÊNCIA

Estratégico

Táctico

Executivo

ARQUITECTURA HÍBRIDA

INTEGRAÇÃO DE NÍVEIS - ABSTRACÇÃO E MODULARIZAÇÃO

NÍVEIS DE COMPETÊNCIA

NÍVEL ESTRATÉGICO

- Processamento deliberativo abstracto
 - Representação de conhecimento simbólico
 - Lógica, inferência
 - Modelos do mundo com diferentes níveis de abstracção
 - Planos abstractos e bibliotecas de planos
- Alta complexidade computacional
- Tempo de resposta elevado

```
plano(Objectivo, PreCond, Esquema) :-
   Objectivo = recolher(PosAlvo),
   PreCond = [elemento(alvo, PosAlvo)],
   Esquema = [
        mover(PosAlvo),
        pegar(PosAlvo)
].
```

NÍVEIS DE COMPETÊNCIA

NÍVEL TÁCTICO

- Segue directivas do nível estratégico
- Processamento deliberativo específico
 - Suportado em modelos internos do mundo
 - Raciocínio prático
 - Orientado para a acção
- Processamento adaptativo
 - Formação de modelos internos do mundo
 - Mecanismos de valor
 - Aprendizagem
- Alta complexidade computacional
- Tempo de resposta elevado

NÍVEIS DE COMPETÊNCIA

- NÍVEL EXECUTIVO
 - Segue directivas do nível táctico
 - Processamento reactivo
 - Reacções
 - Reflexos
 - Taxias

- Valorização reactiva
- Baixa complexidade computacional
- Tempo de resposta baixo
 - Operação em tempo-real

ARQUITECTURA HÍBRIDA INTEGRAÇÃO ENTRE NÍVEIS DE COMPETÊNCIA

ORGANIZAÇÃO HORIZONTAL

ORGANIZAÇÃO VERTICAL

ARQUITECTURA HÍBRIDA INTEGRAÇÃO ENTRE NÍVEIS

ORGANIZAÇÃO HORIZONTAL

• Várias camadas interagem com o ambiente

• Problemas:

- Múltiplas interacções entre níveis
- Necessário controlo de coordenação

ARQUITECTURA TouringMachines

3 camadas geradoras de comportamento

Camada reactiva

- Comportamento reactivo
- Resposta imediata às mudanças no ambiente de
- Regras estímulo-resposta

Camada de planeamento

- Comportamento pró-activo
- Utiliza uma biblioteca de planos genéricos (esquemas)

Camada de modelação

- Representa as diversas entidades do mundo
- Prevê conflitos e gera objectivos para resolver esses conflitos

Sensors Planning Layer (P) Reactive Layer (R) Context-activated Control Rules

Subsistema de controlo

 Conjunto de regras que determinam qual das camadas deve ter controlo sobre o agente

ARQUITECTURA TouringMachines

Exemplo de extensão da arquitectura: problemas?

ARQUITECTURA TouringMachines

Vantagens

- Simplicidade conceptual
- Modularidade

Desvantagens

- Competição entre camadas
 - Dificuldade em garantir comportamento coerente
- Controlo de coordenação
 - Decide qual a camada que tem o controlo em cada instante
 - Controlo centralizado tem problemas
 - Na concepção do agente é necessário considerar todas as possíveis interacções entre camadas
- Dificuldade de extensão
 - Devido à interdependência entre camadas

ARQUITECTURA HÍBRIDA INTEGRAÇÃO ENTRE NÍVEIS

ORGANIZAÇÃO VERTICAL

 Apenas uma camada interage com o ambiente

• Problemas:

- Integração entre níveis
- Tolerância a falhas devido a interdependência entre níveis

3 Níveis de controlo

Fluxo de controlo

Ascendente

- Activação de pedidos
- Se um nível não é competente o controlo é transferido para o nível superior

Descendente

- Definição de objectivos a concretizar
- Utilização de capacidades de um nível inferior para concretização de objectivos

BBL – Behaviour Based Layer

LPL – Local Planning Layer

CPL – Cooperative Planning Layer

KB – Knowledge Base

SG – Situation recognition and Goal activation function

PS – Planning and Scheduling function

Camada comportamental (BBL)

- Regras situação acção
- Acções adequadas a situações com restrições temporais críticas
- Comportamentos podem ser activados quer pela camada comportamental (BBL), quer pela camada de planeamento (LPL)
- Processamento rápido dos comportamentos

Camada de planeamento local (LPL)

- Comportamento orientado por objectivos
- Planeamento
 - Geração de planos para concretização de objectivos
- Escalonamento
 - Sequenciação de acções para execução

Camada planeamento cooperativo (CPL)

- Planeamento e cooperação com outros agentes
- Agentes têm estratégias de negociação autónomas

ESCALONAMENTO DE OBJECTIVOS

- 1. If layer i is competent for (S,G), continue with step 2; otherwise send an upward activation request request (do(S,G)) to SG_{i+1} ; RETURN
- 2. Add G to the set \mathcal{G}_i .
- 3. Select an element $G' \in \mathcal{G}_i$ for being pursued next and devise a partial plan P' for achieving G' given the current intention structure \mathcal{I}_i .
- 4. Compute the modified intention structure \mathcal{I}'_i and thus, the next commitment.

KB – Knowledge Base

SG – Situation recognition and Goal activation function

PS – Planning and Scheduling function

Vantagens

- Complexidade de interacção entre camadas é reduzida
- Modularidade
- Maior facilidade de extensão

Desvantagens

- Redução de flexibilidade
 - Transferência de controlo ocorre apenas entre camadas
- Menor tolerância a falhas
 - Falhas em qualquer das camadas pode comprometer o comportamento global do agente

VEÍCULOS AUTÓNOMOS

DARPA URBAN CHALLENGE - STANFORD JUNIOR VEHICLE

VEÍCULOS AUTÓNOMOS

PROCESSAMENTO SENSORIAL E PLANEAMENTO AUTOMÁTICO

VEÍCULOS AUTÓNOMOS

DARPA URBAN CHALLENGE – STANFORD JUNIOR VEHICLE

ARQUITECTURA DE AGENTES INTELIGENTES

SUBSISTEMA REACTIVO

- Respostas, internas ou externas, acontecem sempre que o respectivo conjunto de pré-condições seja satisfeito (desde que não exista inibição da resposta por outro mecanismo)
- Este principio de activação automática é independente da forma como o sistema é implementado (rede neuronal, conjunto de regras condição-acção ou simplesmente um conjunto de ligações num circuito)
- O que fazer quando o conjunto condições-acções inicial é sujeito a novas situações para as quais não possui respostas satisfatórias ?

ARQUITECTURA DE AGENTES INTELIGENTES

SUBSISTEMA DELIBERATIVO

- Capaz de gerar novas combinações de acções para actuar perante novos contextos
- Em geral o espaço de novas opções tem complexidade combinatória - não é possível a utilização do ambiente para a experimentação
- A procura de soluções é feita através de simulação interna com base num modelo interno (representação do mundo)
- Tal como o subsistema reactivo, o subsistema deliberativo pode apresentar alguma limitação na resposta a novos contextos, nomeadamente na gestão e utilização dos recursos cognitivos (e.g. memória, processamento)

ARQUITECTURA DE AGENTES INTELIGENTES

SUBSISTEMA ADAPTATIVO

- Não deve ser assumido que um agente inteligente tenha uma arquitectura fixa
- Os processos internos podem incluir aprendizagem e desenvolvimento de novas capacidades que podem levar a mudanças na arquitectura
- Importante a capacidade de adaptação a novas circunstâncias
 - Adaptação operacional
 - E. g. Aprendizagem por reforço
 - Adaptação estrutural (evolução)
 - E. g. Algoritmos genéticos

ARQUITECTURA COGNITIVA HÍBRIDA

ARQUITECTURA COGNITIVA

HIERARQUIA DE NÍVEIS DE PROCESSAMENTO

CAMADA

TIPO DE PROCESSO

Estratégico

Táctico

Executivo

ARQUITECTURA COGNITIVA

HIERARQUIA DE OBJECTIVOS A MÚLTIPLOS NÍVEIS DE PROCESSAMENTO

TIPO DE PROCESSO	TIPO DE OBJECTIVO
Introspectivo	Objectivos criativos
Estratégico	Objectivos de optimização
Táctico	Objectivos de concretização
Executivo	Necessidades imediatas

ARQUITECTURA COGNITIVA

SUBSISTEMA META-DELIBERAÇÃO

- Realiza a monitorização e controlo dos subsistemas deliberativo, adaptativo e reactivo
- Ao operar a um nível mais elevado, este subsistema é capaz de manter uma panorâmica dos processos, problemas e decisões analisados pelo mecanismo deliberativo e das respostas adaptativas e reactivas
- Realiza uma análise mais geral e de médio longo prazo em relação aos objectivos do agente, alguns dos quais podem ser pré-determinados ou gerados a partir de um contexto de interacção social (e.g. adopção de objectivos)

ARQUITECTURA HÍBRIDA

• INTEGRAÇÃO ENTRE NÍVEIS DE PROCESSAMENTO

- Informação sensorial integrada a diferentes níveis de representação interna
- Controlo hierárquico
 - Motivação
 - Comandos
 - Foco de atenção

MODOS COMPORTAMENTAIS

- INTENCIONAL
 - Nível deliberativo determina comportamento
 - Regulação do foco de atenção

AUTOMÁTICO

- Iniciado independentemente do controlo deliberativo
- Resulta da activação de diferentes esquemas comportamentais
- Pode alterar o foco de atenção

ARQUITECTURA HÍBRIDA

Vantagens

- Comportamentos óptimos ou sub-óptimos
- Possibilidade de processamento assíncrono
 - Camadas podem operar de forma independente
- Modularidade
- Reactividade
 - Resposta rápida a estímulos do ambiente
 - Operação em tempo-real

Desvantagens

- Problema da integração entre camadas
- Complexidade estrutural

REFERÊNCIAS

[Wooldridge, 2002]

M. Wooldridge, An Introduction to Multi-Agent Systems, John Wiley & Sons, 2002

[Murphy, 2000]

R. Murphy, An Introduction to AI Robotics, MIT Press, 2000

[Albus et al., 2002]

J. Albus et al., 4D/RCS: A Reference Model Architecture For Unmanned Vehicle Systems, National Institute of Standards and Technology, 2002

[Ferguson, 1992]

I. Ferguson, *TouringMachines: Autonomous Agents with Attitudes*, Technical Report 250, University of Cambridge, 1992

[Fischer et al., 1994]

K. Fischer, J. Muller, M. Pischel, *Unifying Control in a Layered Agent Architecture*, German Research Center for Artificial Intelligence, 1994

[Montemerlo, 2008]

M. Montemerlo et al., Junior: The Stanford Entry in the Urban Challenge, Stanford Artificial Intelligence Lab, 2008