AMENDMENTS TO THE CLAIMS

1. ((cancel	led)
		,

2. (currently amended) the method of claim 1, A method for etching a silicon		
on insulator (SOI) substrate, the method comprising:		
opening a hardmask layer formed on an SOI layer of the SOI substrate;		
<u>and</u>		
etching through said SOI layer, a buried insulator layer underneath said		
SOI layer, and a bulk silicon layer beneath said buried insulator layer using a single etch		
step, wherein said single etch step is sufficient to etch through said bulk silicon layer to a		
depth corresponding to a deep trench depth, wherein said etching is implemented with an		
HBR, NF3 and O2 etch chemistry.		

- 3. (original) The method of claim 2, wherein said etch chemistry is applied at a power of about 500 to about 1000 Watts.
- 4. (currently amended) The method of claim 12, wherein said etching is implemented at a pressure of about 10 to about 150 mTorr.
- 5. (currently amended) The method of claim 42, wherein said hardmask layer is formed at a thickness so as to accommodate a 1:1 etch selectivity with respect to said buried insulator layer and about a 5:1 to about a 35:1 etch selectivity with respect to said SOI layer and said bulk silicon layer.
- 6. (original) The method of claim 5, wherein said hardmask layer further comprises:
 - a pad nitride layer formed on said SOI layer; and
 - a borosilicate glass (BSG) oxide layer formed on said pad nitride layer.

- 7. (original) The method of claim 6, wherein said hardmask layer is formed at a thickness of about 6,000 Angstroms to about 20,000 Angstroms.
- 8. (original) The method of claim 6, wherein said hardmask layer is formed at a thickness of about 10,000 Angstroms to about 18,000 Angstroms.
- 9. (original) The method of claim 5, wherein said buried insulator layer comprises a buried oxide (BOX) layer formed at a thickness of about 120 to about 140 nanometers.

10. (cancelled)

- deep trench within a silicon on insulator (SOI) substrate, the method comprising:

 forming a hardmask layer on an SOI layer of the SOI substrate;

 patterning a desired deep trench pattern in said hardmask layer; and

 ctching through said SOI layer, a buried oxide (BOX) layer underneath

 said SOI layer, and a bulk silicon layer beneath said BOX layer using a single etch step,

 wherein said single etch step is sufficient to etch through said bulk silicon layer to a depth
 corresponding to a deep trench depth, wherein said etching is implemented with an HBR,

 NF3 and O2 etch chemistry.
- 12. (original) The method of claim 11, wherein said etch chemistry is applied at a power of about 500 to about 1000 Watts.
- 13. (currently amended) The method of claim 1011, wherein said etching is implemented at a pressure of about 10 to about 150 mTorr.

- 14. (currently amended) The method of claim 1011, wherein said hardmask layer is formed at a thickness so as to accommodate a 1:1 etch selectivity with respect to said BOX layer and about a 5:1 to about a 35:1 etch selectivity with respect to said SOI layer and said bulk silicon layer.
- 15. (original) The method of claim 14, wherein said hardmask layer further comprises:
 - a pad nitride layer formed on said SOI layer; and a borosilicate glass (BSG) oxide layer formed on said pad nitride layer.
- 16. (original) The method of claim 15, wherein said hardmask layer is formed at a thickness of about 6,000 Angstroms to about 20,000 Angstroms.
- 17. (original) The method of claim 15, wherein said hardmask layer is formed at a thickness of about 10,000 Angstroms to about 18,000 Angstroms.
- 18. (original) The method of claim 13, wherein said buried insulator layer comprises a buried oxide (BOX) layer formed at a thickness of about 120 to about 140 nanometers.