

ChIP-seq hands-on

Iros Barozzi, Campus IFOM-IEO (Milan) Saverio Minucci, Gioacchino Natoli Labs

Main goals

- Becoming familiar with essential tools and formats
- Visualizing and contextualizing raw data
- Understand biases at each step of the analysis
- If something went wrong, identify which experimental step could have risen the issue
- FAQs

Overview

- Quality control
- Alignment
- Raw data visualization
- Peak calling
- Experimental validation
- At each step:
 - critical evaluation
 - understanding possible issues

Illumina website

Overview

FASTQ format

@HWI-ST880:129:C1B3JACXX:1:1101:1073:2043 1:Y:0:TGACCA GCNGGTTCCNAGTAGNNNNTTAAACGAATCCACGGCATGATGTCAGCCAGG ;8#2:-89;#2-@55####22@15>(38>;67<?=;2=:>8)=?;???7>9 @HWI-ST880:129:C1B3JACXX:1:1101:1054:2054 1:Y:0:TGACCA GANCGGAAGAGCACANGNNTGACTCCAGTCACTGACCAATCTCGTATCCCG <<#2<5=??@d<@>>#2##328@;@>??>????????<?8>?>??###### @HWI-ST880:129:C1B3JACXX:1:1101:1185:2109 1:Y:0:TGCCCA GCCATGGCGAAAGTGACCCAGAACAAGCGACAGAACTGGGGACTCGAGACG ************************************* @description @HWI-ST880:129:C1B3JACXX:1:1101:1126:2119 1:N:0:TGACCA Read/Tag GATCGGAAGAGCACACGTCTGAACTCCAGTCACTGACCAATCTCGTATGCC +description Oscores @CCBDFFDHFHDHIIJIIJJJGHJJEGIJJJFIHIJD?FAF>GHGGJBEGI @HWI-ST880:129:C1B3JACXX:1:1101:1074:2144 1:N:0:TGACCA AANGTGCACCCAAGGCTGCATCTGGGTTCTTGTGGGCAACTTGTCCTGCCA CC#4ADDFHHHHHJIJJJEIIIIJJJCGIJJJHIJIIIJJJJJJIHIBGH @HWI-ST880:129:C1B3JACXX:1:1101:1202:2148 1:Y:0:TGACCA GATCGGCCGAGCCCACGCCTGAACTCCAGTCACTCACCAATCTCGTATGCC @HWI-ST880:129:C1B3JACXX:1:1101:1065:2206 1:Y:0:TGACCA GGNGACTTGTTGCCCAGACCGAAGGGGCGCCCCGCGCGGGGGGGTCAAGCG @HWI-ST880:129:C1B3JACXX:1:1101:1117:2232 1:N:0:TGACCA GATCGGAAGAGCACACGTCTGAACTCCAGTCACTGCCCAATCTCGTATGCC @@DDDFFHHHGHGHJJHIIJGHIJIIJJJJII9:**:0?DHHGD?FGEAF

- http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
- critical evaluation of good/bad fastqc output
- what to really expect from a HiSeq lane:
 - trimming
 - contaminants evaluation
- Before we start: don't get scared, some biases can be intrinsic to the regions of the DNA you are IPing and not a technical problem

Measure	Value
Filename	good_sequence_short.txt
File type	Conventional base calls
Encoding	Illumina 1.5
Total Sequences	250000
Sequence length	40
%GC	45

```
.....
            !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopgrstuvwxyz{|}~
33
                59
                   64
                         73
                                           104
                                                         126
           Phred+33, raw reads typically (0, 40)
S - Sanger
           Solexa+64, raw reads typically (-5, 40)
X - Solexa
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
 with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
  (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```


Align only these substrings

Sequence Duplication Levels

Sequence Duplication Levels

Sequence Duplication Levels

Sequence	Count	Percentage	Possible Source
GATCGGAAGAGCACACGTCTGAACTCCAGTCACGGCTACATCTCGTATGCC	6247953	17.550569292446905	TruSeq Adapter, Index 11 (100% over 51bp)
${\tt GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAAAAAAA$	273042	0.7669780071566299	Illumina Single End Adapter 2 (100% over 33bp)
${\tt GATTGGAAGAGCACACGTCTGAACTCCAGTCACGGCTACATCTCGTATGCC}$	174424	0.4899589510781785	TruSeq Adapter, Index 11 (98% over 51bp)
${\tt GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGAAAGGAAGAGCACACGT}$	151209	0.42474775852852986	Illumina Single End Adapter 2 (100% over 33bp)
${\tt GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGAAAAAAAA$	142630	0.40064925235220267	Illumina Single End Adapter 2 (100% over 33bp)
${\tt GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGAAAAGAAGAGCACACGT}$	128825	0.3618708541980825	Illumina Single End Adapter 2 (100% over 33bp)
${\tt GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGAACGGAAGAGCACACGT}$	89158	0.2504458111282177	Illumina Single End Adapter 2 (100% over 33bp)
${\tt GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGATCGGAAGAGCACACGT}$	88087	0.24743736024643118	Illumina Single End Adapter 2 (100% over 33bp)
${\tt GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGATAGGAAGAGCACACGT}$	81694	0.2294793523218176	Illumina Single End Adapter 2 (100% over 33bp)
${\tt GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGAAAGAAGAGCACACGT}$	76940	0.2161253135804422	Illumina Single End Adapter 2 (100% over 33bp)
${\tt GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAAAGAAGAAGAGCACACGT}$	70111	0.19694257681879887	Illumina Single End Adapter 2 (100% over 33bp)
${\tt GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGAACAGAAGAGCACACGT}$	60629	0.17030753362449483	Illumina Single End Adapter 2 (100% over 33bp)
${\tt GACCGGAAGAGCACACGTCTGAACTCCAGTCACGGCTACATCTCGTATGCC}$	52991	0.14885230688772047	TruSeq Adapter, Index 11 (98% over 51bp)
${\tt GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAAAAGAAGAGCACACGT}$	51775	0.14543654939728876	Illumina Single End Adapter 2 (100% over 33bp)
${\tt GAGCGGAAGAGCACACGTCTGAACTCCAGTCACGGCTACATCTCGTATGCC}$	47082	0.13225386033265377	TruSeq Adapter, Index 11 (98% over 51bp)
$\tt GTTCGGAAGAGCACACGTCTGAACTCCAGTCACGGCTACATCTCGTATGCC$	46839	0.13157127063678623	TruSeq Adapter, Index 11 (98% over 51bp)
${\tt GAACGGAAGAGCACACGTCTGAACTCCAGTCACGGCTACATCTCGTATGCC}$	42699	0.11994196470719136	TruSeq Adapter, Index 11 (98% over 51bp)
${\tt GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGATCAGAAGAGCACACGT}$	42022	0.11804026419648224	Illumina Single End Adapter 2 (100% over 33bp)
${\tt AATCGGAAGAGCACACGTCTGAACTCCAGTCACGGCTACATCTCGTATGCC}$	39945	0.11220594815402604	TruSeq Adapter, Index 11 (98% over 51bp)

& Kmer Content

Some primer contamination!

 uniqueness depends on which regions are enriched for the protein you are immuno-precipitating

```
H3K27ac:
# reads processed: 39'897'199
# reads with at least one reported alignment: 33'984'279 (85.18%)
# reads that failed to align: 2'568'674 (6.44%)
# reads with alignments suppressed due to -m: 3'344'246 (8.38%)

H3K9me3
# reads processed: 82'402'674
# reads with at least one reported alignment: 29'278'881 (35.53%)
# reads that failed to align: 11'211'423 (13.61%)
# reads with alignments suppressed due to -m: 41'912'370 (50.86%)
```

- ▶ I use Bowtie
- no gaps
- no clipping

REF: AGCTAGCATCGTGTCGCCCGTCTAGCATACGCATGA

READ: AAAGTGTCGCC-GACTAGCTCC

> ~35-40' for 25 millions reads using 4 cores

	Gaps	Clipping
Bowtie	no	no
Bowtie2	yes	yes
Bwa	yes	yes
Novoalign	yes	yes

- bowtie -t -v 2 -m 1 -S -p 8 --phred33-quals /db/bowtie/mm9/mm9 sample.fastq sample.SAM
- -m 1 uniquely alignable reads only
- ▶ -v 2 up to two mismatches
- ▶ -S SAM output
- ▶ -p 8 uses 8 CPUs
- --phred33-quals quality scores
- /db/bowtie/mm9/mm9 the genomic index

```
@SQ
       SN:chr3 LN:159599783
രട0
       SN:chr4 LN:155630120
@S0
       SN:chr5 LN:152537259
@SQ
       SN:chr6 LN:149517037
@SQ
       SN:chr7 LN:152524553
@SQ
       SN:chr8 LN:131738871
@SQ
       SN:chr9 LN:124076172
@SQ
       SN: chrM LN: 16299
രട0
       SN:chrX LN:166650296
       SN:chrY LN:15902555
       ID:Bowtie
                      VN:0.12.7
                                      CL:"/home/gbarozzi/pipeline_chip-seg/bowtie/bowtie
-t -v 2 -m 1 -S -p 8 --phred33-guals /db/bowtie/mm9/mm9 /data/GN/LPS tolerance/H3K9me3/pipe
lines/20120608/H3K9me3 UT.fastq /data/GN/LPS tolerance/H3K9me3/pipelines/20120608/H3K9me3 U
T.SAM"
HWI-ST880:111:D1101ACXX:5:1101:1377:2207_1:N:0:ATCACG 4
                           AGGATCAAGTTTACCAACTAAACAGTCCCATATCAACTAAAGAAATAGAAG
                                                                                 81?DA:
ADBA<<DB<CBECEF:3:+32<AC<191C*)::?*CDDADD*?D?
                                               XM:i:1
HWI-ST880:111:D1101ACXX:5:1101:1567:2169 1:N:0:ATCACG 4
                                                                                   *
                           AGATGAATTTGCAAATTGCTCCTTCTAATTCGTTGAAGAATTGAGTTGGAA
                                                                                 @@@DDD
DD?FDBFBBCEE: CAGEHEFHHIIFGEFG3: E?@DBF?D<DGG@4
                                               XM: i:1
HWI-ST880:111:D1101ACXX:5:1101:1706:2181_1:N:0:ATCACG 4
                                                                                   *
                           TGCACCCTGAAGGACCTGGAATATGGCGAGAAAACTGAAAATCACGGAAAA
                                                                                 CC@FFF
XM: i:1
HWI-ST880:111:D1101ACXX:5:1101:1612:2215 1:N:0:ATCACG 4
                           AAAATGAGAAACATCCACTTGACGACTTGAAAAATGACAAAATCACTGAAA
                                                                                 @acfff
FFGHG?FHGG<FGIIGGIIIIIF@AGIGGF4DEHGIIHDHIB@FH
                                               XM:i:1
HWI-ST880:111:D1101ACXX:5:1101:1741:2198 1:N:0:ATCACG 4
                           TGTCCACTGTAGGACGTGGAATATGGCAAGAAAACTGAAAATCATGGAAAA
                                                                                 @@@DFF
EDFDDHFIJIFHIGGGGGHIFIIJJJJJHI@GHGG>BGHJ@?FHI
                                               XM:i:1
HWI-ST880:111:D1101ACXX:5:1101:1738:2226 1:N:0:ATCACG 4
                           TGAAGGACCTGGAATATGGTGAGAAAACTGAAAATTACGGAAAATGAGAAA
                                                                                 @@GFDD
FFGDBB; FECHIB?CEEGGGHCEBHGHGCCGHDBDBHG@D@<FHH
                                               XM: i:1
HWI-ST880:111:D1101ACXX:5:1101:1145:2177 1:N:0:ATCACG 16
                                                             chr10 81521146
                                                                                    255
                                   ACTTCACTCATGAAGAATGGGCTTTGCTGGATTCTTCCCAGAAGAGTNTCT
 DEFIFGEFCF@BFF9GFFBFBEAE@;FFBA>C9EFEEFDA4>F?B=4#@@?
                                                       XA:i:1 MD:Z:47C3
                                                                              NM:i:1
HWI-ST880:111:D1101ACXX:5:1101:1895:2191 1:N:0:ATCACG 4
                           ??<:AD
>?D?ADDD1A;EEEFEAFFIII@C>EEEE9ED?DC?????DDEE#
HWI-ST880:111:D1101ACXX:5:1101:1491:2180 1:N:0:ATCACG 4
                           GCGAGGAAAACTGAAAAAGGTGGAATTTTAGAAATGTCCACTGTAGGACAT
DFHH?FHEHHIIBE2AFGGGIIIGG@FDEAGGGIIIF?FEGGIII
                                               XM:i:0
```

Col	Field	Description
1	QNAME	Query template/pair NAME
2	FLAG	bitwise FLAG
3	RNAME	Reference sequence NAME
4	POS	1-based leftmost POSition/coordinate of clipped sequence
5	MAPQ	MAPping Quality (Phred-scaled)
6	CIAGR	extended CIGAR string
7	MRNM	Mate Reference sequence NaMe ('=' if same as RNAME)
8	MPOS	1-based Mate POSistion
9	TLEN	inferred Template LENgth (insert size)
10	SEQ	query SEQuence on the same strand as the reference
11	QUAL	query QUALity (ASCII-33 gives the Phred base quality)
12+	OPT	variable OPTional fields in the format TAG:VTYPE:VALUE

HWI-ST880:111:D1101ACXX:5:1101:1145:2177_1:N:0:ATCACG

_ -

chr10

81521146

255

51M

4

_

^

ACTTCACTCATGAAGAATGGGCTTTGCTGGATTCTTCCCAGAAGAGTNTCT DEFIFGEFCF@BFF9GFFBFBEAE@;FFBA>C9EFEEFDA4>F?B=4#@@?

XA:i:1

MD:Z:47C3

NM:i:1

.....

PCR duplicates

These reads are likely to have been generated by a non-random amplification process (PCR) rather than random fragmentation

(unless you have a very low genomic coverage or a very high sequencing depth)

Consider just one (or a number estimated using a statistics)

Data visualization

- ▶ UCSC genome browser: http://genome.ucsc.edu
- Very important to get acquainted with your data!
- http://genome.ucsc.edu/cgibin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserNam e=Irosbarozzi&hgS_otherUserSessionName=Epigen_2012103
 1

Peak calling

I use MACS and RSEG

Peak calling (choose the right tool)

Type of peak Example
Broad H3K27me3

Sharp CTCF
Sharp & broad Pol II

Adapted from PMID: 21934668

Peak calling

- MACS is very good in:
 - finding SHARP signals in IP versus a control (e.g. TFs)
 - finding small but reproducible differences among IPs (e.g. changes in chromatin marks after challenging the cells with toxin or drugs that span down to less than 1 kbp, Nos2 example: chr11:78,683,143-78,694,401)
- RSEG is very good at:
 - finding BROAD signals in IP versus a control (e.g. H3K9me3)
 - finding domain-level chromatin changes between different
 IPs

Peak calling: MACS

- macs14 -t IP.SAM -c input.SAM --name=IP_vs_input --format=SAM -tsize=51 --gsize=2.72e9 --wig --single-wig --pvalue=1e-5 -format=SAM --space=10
- P-value threshold: --pvalue=1e-5
- --wig --single-wig
- ▶ --format=SAM
- ▶ If you do not have any input/IgG: --nolambda

Peak calling: MACS

```
# This file is generated by MACS version 1.4.0beta
# ARGUMENTS LIST:
# name = /data/GN/LPS_tolerance/H3K9me3/pipelines/20120608/H3K9me3_UT_input
# format = AUTO
# ChIP-seq file = /data/GN/LPS tolerance/H3K9me3/pipelines/20120608/H3K9me3 UT.SAM
# control file = /data/GN/LPS_tolerance/H3K9me3/pipelines/20120608/input.SAM
# effective genome size = 2.72e+09
# band width = 100
# model fold = 10,30
# pvalue cutoff = 1.00e-05
# Range for calculating regional lambda is: 1000 bps and 10000 bps
# tag size is determined as 36 bps
# total tags in treatment: 35306835
# tags after filtering in treatment: 31964269
# maximum duplicate tags at the same position in treatment = 2
# Redundant rate in treatment: 0.09
# total tags in control: 7548269
# tags after filtering in control: 6239079
# maximum duplicate tags at the same position in control = 1
# Redundant rate in control: 0.17
\# d = 200
                                              -10*log10(pvalue)
                                                                       fold enrichment FDR(%)
chr
       start end
                       length summit tags
       3024893 3025533 641
                               227
                                               58,64 5,96
chr1
                                                              0.01
       3027041 3027971 931
                                               98.45 7.23
                                                              0.01
chr1
chr1
       3038452 3039075 624
                               195
                                       21
                                               50.36 5.96
                                                              0.01
       3040836 3041485 650
                                              62.84 7.66
chr1
                               437
                                                              0.01
chr1
       3049921 3051960 2040
                               1259
                                               296.70 9.79
                                                              0.02
chr1
       3063255 3064166 912
                               478
                                               59.95 7.23
                                                              0.01
                                               59.06 5.11
chr1
       3073382 3074064 683
                               199
                                                              0.01
chr1
       3083976 3085938 1963
                               1202
                                               89.36 5.12
                                                              0.01
chr1
       3091755 3093240 1486
                               687
                                               107.29 5.96
                                                              0.01
       3093385 3094787 1403
                                               96.55 5.96
chr1
                               425
                                                              0.01
chr1
       3103681 3104884 1204
                               424
                                               83.14 5.11
                                                              0.01
chr1
       3104902 3106417 1516
                               479
                                              144.61 6.38
                                                              0.02
                               1125
chr1
       3107371 3109646 2276
                                              190.97 6.38
                                                              0.01
```

Peak calling: RSEG

▶ IP versus random expectation (no control):

```
rseg -c mouse-mm9-size.bed -o $PWD -i 20 -v -d deadzones-k36-mm9.bed H2AK5ac_UT.tags.bed
```

IP versus control:

```
rseg-diff -c mouse-mm9-size.bed -o $PWD -i 20 -v -mode 2 -d deadzones-k36-mm9.bed H2AK5ac_UT.tags.bed input.tags.bed
```

▶ IP versus IP:

```
rseg-diff -c mouse-mm9-size.bed -o $PWD -i 20 -v -mode 3 -d deadzones-k36-mm9.bed H2AK5ac_LPS_2h.tags.bed H2AK5ac_UT.tags.bed
```

Peak calling: RSEG

```
4763346 4767675 SAMPLE-II-ENRICHED -4.64789
chr1
       4767675 4856179 NO-DIFFERENCE -0.140022 168.399 +
       4856179 4866761 SAMPLE-I-ENRICHED 6.4189 20.7655 +
chr1
chr1
       4866761 5073110 NO-DIFFERENCE -0.184952 346.578 +
       5073110 5074553 SAMPLE-II-ENRICHED -9 2.65897 +
chr1
       5074553 6444922 NO-DIFFERENCE -0.0676572 2324.09 +
chr1
       6444922 6461276 SAMPLE-II-ENRICHED -4.6525 26.7936 +
chr1
chr1
       6461757 6465605 NO-DIFFERENCE -0.626792 5.92139 +
       6465605 6470415 SAMPLE-I-ENRICHED 4.29752 8.72513 +
chr1
       6470415 6478111 UNCONFIDENT -0.893459 9.65077 +
chr1
chr1
       6478111 6482440 NO-DIFFERENCE 0.669295
chr1
       6482440 6490136 SAMPLE-II-ENRICHED -2.72145 14.3742 +
       6490136 6612791 NO-DIFFERENCE 0.325828
chr1
chr1
       6612791 6623373 SAMPLE-I-ENRICHED 4.13925 8.43716 +
       6623373 7088500 NO-DIFFERENCE -0.0190045 850.667 +
chr1
chr1
       7088500 7094272 SAMPLE-I-ENRICHED 7.2644 10.4782 +
chr1
       7094272 9535347 NO-DIFFERENCE -0.0132666 4030.17 +
chr1
       9535347 9548334 SAMPLE-I-ENRICHED 6.30858 25.5427 +
       9548334 9582004 NO-DIFFERENCE 0.0159061 63.157 +
chr1
chr1
       9582004 9583928 SAMPLE-II-ENRICHED -5.14164
```

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
Chromosome	Start	End	Domain State	Avg Count	Domain Score
chr1	10013256	10221744	ENRICHED	16.3794	112.789
chr1	10221744	11067960	BACKGROUND	3.50835	373.24
chr1	11067960	11071464	UNCONFIDENT	10.4973	1.06829
chr1	11071464	11257176	BACKGROUND	4.71847	94.9789
chr1	11257176	11272944	ENRICHED	8.98812	7.35928

Peak calling

Program	/03	terence Je	alor St	artical se	Total Control of the	ALCO COLOR OF	The real of the re	Berieta Berieta Berieta	scoring to the second	Constant	ates to d	S de	50 A BEN OF STREET	o subjected total
CisGenome	28	1.1	X*	х				х	х		х		х	conditional binomial model
Minimal ChipSeq Peak Finder	16	2.0.1			х			х				х		
E-RANGE	27	3.1			х			х				х	х	chromsome scale Poisson dist.
MACS	13	1.3.5		Х				Х			Х		Х	local Poisson dist.
QuEST	14	2.3				х		х			X**		х	chromsome scale Poisson dist.
HPeak	29	1.1		Х				Х					Х	Hidden Markov Model
Sole-Search	23	1	Х	Х				Х		Х			Х	One sample t-test
PeakSeq	21	1.01			х			х					х	conditional binomial model
SISSRS	32	1.4		Х			Х					Х		
spp package (wtd & mtc)	31	1.7		х			х		х	X'	х			
				Generating density profiles		Peak assignment		Adjustments w. control data			Significance relative to control data			

X* = Windows-only GUI or cross-platform command line interface

PMID: 20628599

X** = optional if sufficient data is available to split control data

X' = method exludes putative duplicated regions, no treatment of deletions

Peak calling

PMID: 20628599

Normalization

Can we compare datasets with a different sequencing depth?

How do we normalize on sequencing depth?

Assumption: linearity

Summary

- Quality control
- Alignment to the reference genome
- Dealing with PCR duplicates
- Data visualization
- Peak calling

Summary

```
H3K27ac:
# reads after quality filtering:
                                            39'897'199
# reads with a unique alignment on the genome: 33'984'279 (85.18%)
# reads after PCR duplicates:
                                             31'069'231 (77.87%)
H3K9me3
# reads after quality filtering:
                                 82'402'674
# reads with a unique alignment on the genome: 29'278'881 (35.53%)
# reads after PCR duplicates:
                                             26'273'699 (31.88%)
H3K4me3 (with strong PCR bias)
# reads after quality filtering:
                                 28'681'583
# reads with a unique alignment on the genome: 16'928'963 (59.02%)
# reads after PCR duplicates:
                                             2'715'994 (9.47%)
```

Experimental (qPCR) validation

- What is the efficiency of your antibody (SNR)?
- What is the fraction of the genome potentially covered by the protein of interest?
- Saturation plots

You always have the opportunity to sequence your library again and increase the depth!

FAQs: what about the control?

- Which is the best control? Ideally the best control is the IP performed in the same cells in which the protein is not expressed. This is rarely feasible. Input of the IP and IgG are equally good control.
- What if no experimental control is available? Don't worry you can run your analysis without estimating local biases. In most cases artifacts are a small fraction on the total number of enriched regions and won't dramatically affect the results.

Galaxy

https://main.g2.bx.psu.edu/

Fish the ChIPs

- A Mac GUI for ChIP-seq analysis
- http://bio.ifom-ieo-campus.it/ftc/

UCSC session

UCSC session at:

```
http://genome.ucsc.edu/cgi-
bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserNam
e=Irosbarozzi&hgS_otherUserSessionName=Epigen_2012103
1
```

- Murine macrophages
- Untreated and LPS 4h
- Pu.1, H3K4me1, H3K4me3
- Peaks coordinates in BED for Pu.1 UT can be downloaded from:
 - http://www.zeroidee.org/iros/bws_rome/Pu.1_UT/

Supplementary: manipulating files

Samtools

http://samtools.sourceforge.net/samtools.shtml

Bedtools

http://code.google.com/p/bedtools/

Picard

http://picard.sourceforge.net/

Supplementary: useful literature

- Nature Methods 6, S22 S32 (2009)
 Computation for ChIP-seq and RNA-seq studies
 Shirley Pepke, Barbara Wold & Ali Mortazavi
- Nature Reviews Genetics 10, 669-680 (October 2009)
 ChIP—seq: advantages and challenges of a maturing technology
 Park PJ
- Nat Immunol. 2011 Sep 20;12(10):918-22. doi: 10.1038/ni.2117. ChIP-Seq: technical considerations for obtaining high-quality data. Kidder BL, Hu G, Zhao K.
- PLoS One. 2010 Jul 8;5(7):e11471.
 Evaluation of algorithm performance in ChIP-seq peak detection.
 Wilbanks EG, Facciotti MT.

Supplementary: FASTQ format - replace the spaces

@HWI-ST880:129:C1B3JACXX:1:1101:1073:2043 1:Y:0:TGACCA GCNGGTTCCNAGTAGNNNNTTAAACGAATCCACGGCATGATGTCAGCCAGG ;8#2:-89;#2-@55####22@15>(38>;67<?=;2=:>8)=?;???7>9 @HWI-ST880:129:C1B3JACXX:1:1101:1054:2054 1:Y:0:TGACCA GANCGGAAGAGCACANGNNTGACTCCAGTCACTGACCAATCTCGTATCCCG <<#2<5=??@@<@>>#2##328@;@>??>????????<?8>?>??###### @HWI-ST880:129:C1B3JACXX:1:1101:1185:2109 1:Y:0:TGCCCA GCCATGGCGAAAGTGACCCAGAACAAGCGACAGAACTGGGGACTCGAGACG ************************************* @description @HWI-ST880:129:C1B3JACXX:1:1101:1126:2119 1:N:0:TGACCA Read/Tag GATCGGAAGAGCACACGTCTGAACTCCAGTCACTGACCAATCTCGTATGCC +description Oscores @CCBDFFDHFHDHIIJIIJJJGHJJEGIJJJFIHIJD?FAF>GHGGJBEGI @HWI-ST880:129:C1B3JACXX:1:1101:1074:2144 1:N:0: GACCA AANGTGCACCCAAGGCTGCATCTGGGTTCTTGTGGGCAACTTGTCCTGCCA CC#4ADDFHHHHHJIJJJEIIIIJJJCGIJJJHIJIIIJJJJJJIHIBGH @HWI-ST880:129:C1B3JACXX:1:1101:1202:2148 1:Y:0:TGACCA GATCGGCCGAGCCCACGCCTGAACTCCAGTCACTCACCAATCTCGTATGCC @HWI-ST880:129:C1B3JACXX:1:1101:1065:2206 1:Y:0:TGACCA GGNGACTTGTTGCCCAGACCGAAGGGGCGCCCCGCGCGGGGGGGTCAAGCG 1:N:0 AATCTCGTA @HWI-ST880:129:C1B3JACXX:1:1101:1117:2232 1:N:0:TGACCA GATCGGAAGAGCACACGTCTGAACTCCAGTCACTGCCCAATCTCGTATGCC @@DDDFFHHHGHGHJJHIIJGHIJIIJJJJII9:**:0?DHHGD?FGEAF