Assignment-based Subjective Questions

- 1. From your analysis of the categorical variables from the dataset, what could you infer about their effect on the dependent variable?
 - a. Categorical Variables and their effects:
 - i. **Season**: Total number of bike users are maximum in Fall and minimum in Spring.
 - ii. Year: Total bike users increased significantly by more than 30% in 2019
 - **Month:** Bike users are significantly less in Janauary, whereas it increases more than 50% in March, after that the total bike users are almost same till October, after that there is a steep decline.
 - iv. Holiday: People use marginally less bike on holidays.
 - v. <u>Weather:</u> The number of bike users decreases by more than 40% when it's snow fall in comparison to when the weather is clear.
- 2. Why is it important to use drop_first=True during dummy variable creation?
 - a. It's important because doing so will drop the first category while creating the dummy variable and thereby reducing the number of columns by one.
- 3. Looking at the pair-plot among the numerical variables, which one has the highest correlation with the target variable?
 - a. Pair plot reveals that "Feel Temperature" has the highest correlation with the target variable.
- 4. How did you validate the assumption of Linear Regression after building the model on the training set?
 - a. Linear relationship by looking at the Scatter plot.
 - b. By visualizing the plots between predicted values and test set.

General Subjective Questions

1) Explain the linear regression algorithm in detail.

- a) It's a Supervised learning model, used when there is a linear relationship between independent and target variables.
- b) Assumptions of a linear regression:
 - i) Linear relationship.
 - ii) Multivariate normality.
 - iii) No or little multicollinearity.
 - iv) No auto-correlation.
 - v) Homoscedasticity.
- c) Equation: $Y = \beta 0 + \beta 1X1 + \beta 2X2 + ... + \beta pXp + \epsilon$
 - (1) Y = Target Variable
 - (2) X1, X2,..., Xp = Independent Variables or Features
 - (3) β 0 = Intercept or Constant
 - (4) βp = Coefficients
 - (5) ϵ = Error Term

2) Explain the Anscombe's quartet in detail.

- a) It has four data sets, all having identical descriptive statistics but different distributions. Each data sets contains 11 data points.
- b) It demonstrates the importance of charting the data for analysis because seemingly similar data in a table can be actually quite different in terms of distributions.

			Aı	nscombe's Data	1			
Observation	x1	y1	x2	у2	x3	y3	x4	y4
1	10	8.04	10	9.14	10	7.46	8	6.58
2	8	6.95	8	8.14	8	6.77	8	5.76
3	13	7.58	13	8.74	13	12.74	8	7.71
4	9	8.81	9	8.77	9	7.11	8	8.84
5	11	8.33	11	9.26	11	7.81	8	8.47
6	14	9.96	14	8.1	14	8.84	8	7.04
7	6	7.24	6	6.13	6	6.08	8	5.25
8	4	4.26	4	3.1	4	5.39	19	12.5
9	12	10.84	12	9.13	12	8.15	8	5.56
10	7	4.82	7	7.26	7	6.42	8	7.91
11	5	5.68	5	4.74	5	5.73	8	6.89
			Sur	nmary Statistic	es			
N	11	11	11	11	11	11	11	11
mean	9.00	7.50	9.00	7.500909	9.00	7.50	9.00	7.50
SD	3.16	1.94	3.16	1.94	3.16	1.94	3.16	1.94
r	0.82		0.82		0.82		0.82	

Source: https://builtin.com/data-science/anscombes-quartet

3) What is Pearson's R?

- a) It is known by many different names, such as:
 - i) Pearson correlation coefficient (PCC)
 - ii) Pearson product-moment correlation coefficient (PPMCC)
 - iii) Bivariate Correlation.
- b) It measures the linear correlation between two sets of data. It is the covariance of two variables, divided by the product of their standard deviations.
- c) The Pearson's correlation coefficient varies between -1 and +1 where:
 - i) r = 1 means the data is perfectly linear with a positive slope (i.e., both variables tend to change in the same direction)
 - ii) r = -1 means the data is perfectly linear with a negative slope (i.e., both variables tend to change in different directions)
 - iii) r = 0 means there is no linear association
 - iv) r > 0 < 5 means there is a weak association
 - v) r > 5 < 8 means there is a moderate association
 - vi) r > 8 means there is a strong association

4) What is scaling? Why is scaling performed? What is the difference between normalized scaling and standardized scaling?

- a) Scaling: It is a data pre-processing step used to normalise data within a specific range by applying it to independent variables.
- b) It helps in accelerating calculations in algorithms. It easy for a model to learn and understand the problem when the data fed to the model is scaled.
- c) Normalized Scaling: It brings all of the data in the range of 0 and 1.
- d) Standardized Scaling: Standardization replaces the values by their Z scores. It brings all of the data into a standard normal distribution which has mean (μ) zero and standard deviation one (σ).

5) You might have observed that sometimes the value of VIF is infinite. Why does this happen?

- a) A Variance Inflation Factor (VIF) index measure of how much collinearity increases the variance of an estimated regression coefficient.
- b) When VIF is infinite, it means that there is a perfect correlation between two independent variables.

6) What is a Q-Q plot? Explain the use and importance of a Q-Q plot in linear regression.

a) Using the Quantile-Quantile (Q-Q) plot, we can visually determine whether a set of data is likely to have originated from a theoretical distribution like the Normal, Exponential, or Uniform distribution.

- b) This is useful when performing a linear regression because it allows us to verify using a Q-Q plot that the training and test data sets are from populations with similar distributions.
- c) Steps to make a Q-Q plot:
 - i) Order the items from smallest to largest.
 - ii) Draw a normal distribution curve.
 - iii) Divide the curve into n+1 segments. Here, n= number of items.
 - iv) Find the z-value (cut-off point) for each segment.
 - v) Plot your data set values against your normal distribution cut-off points.