Question-9-9.3-25

EE24BTECH11035 - KOTHAPALLI AKHIL

Question:

Using the method of integration, find the area of the region bounded by the lines 3x - 2y + 1 = 0.2x + 3y - 21 = 0 and x - 5y + 9 = 0.

Solution:

The general form of line equation in matrix form is $h^T + m = 0$ Writing the Given lines in the form of matrices,

Line Equation	h value	m
3x - 2y + 1 = 0	$\begin{pmatrix} 3 \\ -2 \end{pmatrix}$	1
2x + 3y - 21 = 0	$\begin{pmatrix} 2\\3 \end{pmatrix}$	-21
x - 5y + 9 = 0	$\begin{pmatrix} 1 \\ -5 \end{pmatrix}$	9

TABLE 0: Lines and their parameters

Solving The Line equations to get points of intersections, By Solving First two equations, We get point of intersection as,

$$P_1 = \begin{pmatrix} \frac{36}{13} \\ \frac{121}{26} \end{pmatrix} \tag{1}$$

Similarly,

$$P_2 = \begin{pmatrix} 6 \\ 3 \end{pmatrix}, P_3 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \tag{2}$$

Equation for the Line Between P_1 and P_2 :

$$m_1 = \frac{3 - \frac{121}{26}}{6 - \frac{36}{13}} = -\frac{43}{52} \tag{3}$$

$$y - 3 = -\frac{43}{52}(x - 6) \tag{4}$$

Equation for the Line Between P_2 and P_3 :

$$m_2 = \frac{2-3}{1-6} = \frac{1}{5} \tag{5}$$

$$y - 3 = \frac{1}{5}(x - 6) \tag{6}$$

Equation for the Line Between P_3 and P_1 :

$$m_3 = \frac{\frac{121}{26} - 2}{\frac{36}{13} - 1} = \frac{69}{52} \tag{7}$$

$$y - 2 = \frac{69}{52}(x - 1) \tag{8}$$

We now calculate the area using the definite integral:

$$A = \int_{x_1}^{x_2} (f(x) - g(x)) \ dx \tag{9}$$

$$A = \int_{1}^{6} \left(\left(-\frac{43}{52}(x - 6) + 3 \right) - \left(\frac{1}{5}(x - 6) + 3 \right) \right) dx \tag{10}$$

$$A = \int_{1}^{6} \left(-\frac{43}{52}x + \frac{43 \cdot 6}{52} - \frac{1}{5}x + \frac{6}{5} \right) dx \tag{11}$$

$$A = \left[-\frac{43}{104}x^2 + \frac{43 \cdot 6}{52}x - \frac{1}{10}x^2 + \frac{6}{5}x \right]_1^6$$
 (12)

Substituting the limits,

$$A = 6.5$$
 square units (13)

Thus, the area of the region bounded by the lines is 6.5 square units.

Fig. 0: Area enclosed between the 3 Lines