Ejercicios Tema 3. Máquinas de estado finito y expresiones regulares

1. Dibuja el diagrama de estados para la máquina de estado finito cuya tabla de estados es la siguiente. Partiendo del estado s_0 , calcula la salida para la cadena de entrada 1000110.

Estados	Trai	nsición	Sa	lida
	En	trada	En	trada
	0	1	0	1
s_0	s_0	s_4	1	1
s_1	s_0	s_3	0	1
s_2	s_0	s_2	0	0
s_3	s_1	s_1	1	1
s_4	s_1	s_0	1	0

Dibuja el diagrama de estados para la máquina de estado finito cuya tabla de estados es la siguiente. Partiendo del estado inicial s_0 , calcula la salida para la cadena de entrada abbccc.

Estados	Tra	ansic	ión	S	alid	.a
	E	ntra	da	Er	ıtra	da
	a	b	\mathbf{c}	a	b	\mathbf{c}
s_0	s_0	s_3	s_2	0	1	1
s_1	s_1	s_1	s_3	0	0	1
s_2	s_1	s_1	s_3	1	1	0
s_3	s_2	s_3	s_0	1	0	1

Halla la tabla de estados para la máquina de estado finito cuyo diagrama de estados es:

4. Halla la tabla de estados para la máquina de estado finito cuyo diagrama de estados es:

¿Qué debe recordar cada estado?

Encuentra las cadenas $x \in I^*$ para las cuales la secuencia de salida termina en 1.

- 5. Construye una máquina de estado finito que modele una máquina expendedora de bebidas que acepta monedas de 5, 10 y 20 céntimos. La máquina acepta monedas hasta que se introducen 25 céntimos y devuelve cualquier cantidad que supere los 25 céntimos. Entonces, el cliente puede pulsar los botones y elegir una bebida de cola (C), una cerveza (Z) o una tónica (T).
- 6. Construye una máquina de estado finito con conjunto de entradas $I = \{0, 1\}$ que cambie los bits de lugar par de una cadena de entradas y deja los restantes sin cambiar, es decir, para una secuencia de entradas $x_1x_2x_3x_4x_5x_6x_7\cdots$ la salida es $x_1\overline{x_2}x_3\overline{x_4}x_5\overline{x_6}x_7\cdots$, siendo $\overline{x_i}$ el complemento de x_i .
- 7. Construye un autómata de estado finito con conjunto de entradas I que dada una cadena de entrada determine si dicha cadena termina o no con aba en cada uno de los casos siguientes:

a)
$$I = \{a, b\}$$

$$b) I = \{a, b, c\}$$

8. Determina si la cadena 11101 pertenece o no a cada uno de los conjuntos siguientes:

$$a) \{0,1\}^*$$

$$\begin{array}{lll} c) & \{11\}\{1\}^*\{01\}^* & e) & \{111\}^*\{0\}^*\{1\} \\ d) & \{11\}^*\{01\}^* & f) & \{111,000\}\{00, \\ \end{array}$$

$$b) \{1\}^*\{0\}^*\{1\}^*$$

$$d) \{11\}^*\{01\}^*$$

$$f)$$
 {111,000}{00,01}

Sea $I = \{x, y, z\}$, dados los lenguajes finitos $A = \{x, xy, z\}$ y $B = \{\lambda, y\}$ halla los conjuntos AB y BA.

Determina qué cadenas de cada uno de los siguientes conjuntos

$$a)~\{0\}^*$$

$$b) \{1\}\{0\}^*$$

$$c) \{01\}^*$$

$$d) \{0\}^*\{1\}^*$$

son reconocidas por el autómata cuyo diagrama de estados es

11. Halla el lenguaje reconocido por cada uno de los autómatas siguientes

•
$$F = \{s_1\}$$

$$\bullet \ F = \{s_1\}$$

•
$$F = \{s_0, s_2\}$$

•
$$F = \{s_0, s_1\}$$

•
$$F = \{s_1, s_3\}$$

Describe un autómata finito que acepte cada uno de los lenguajes siguientes:

- $L = \{a, b\}^*$
- $L = \{ (01)^n 1 / n > 0 \}$
- $L = \{abx / x \in \{a, b\}^*\}$
- $L = \{x \mid x \in \{0,1\}^* \land x \text{ no contiene el substring } 001\}$
- $L = \{abx \mid x \in \{a,b\}^* \land \text{ el número de } a'^s \text{ en } x \text{ es múltiplo de } 3\}$
- $\bullet \ L = \{abx \, / \, x \in \{a,b\}^* \wedge$ el número de a'^s en abx es múltiplo de 3}
- 13. Halla el autómata mínimo equivalente a $(S = \{s_0, s_1, s_2, s_3, s_4\}, I = \{0, 1\}, f, s_0, F = \{s_3, s_4\})$ con la tabla de transición

Estados	Trai	nsición
	En	trada
	0	1
s_0	s_1	s_2
s_1	s_2	s_3
s_2	s_2	s_4
s_3	s_3	s_3
s_4	s_4	s_4

14. Halla el autómata mínimo equivalente al autómata cuyo diagrama de transición es:

l autómata mínimo $s_5, s_6\})$ con la tabla	Estados	Tra	ansic ntra	ión la
		$\begin{bmatrix} 0 \end{bmatrix}$	1	2
	s_0	s_2	s_4	s_1
	s_1	s_1	s_6	s_0
	s_2	s_0	s_5	s_2
	s_3	s_1	s_4	s_5
	s_4	s_4	s_6	s_5
	s_5	$\begin{vmatrix} s_4 \\ c \end{vmatrix}$	s_4	s_6
	s_6	s_5	s_5	s_4