

D. Ferone¹, P. Festa¹, F. Guerriero² September 7th, 2016

¹Department of Mathematics and Applications, University of Napoli, Federico II

²Department of Mechanical, Energetic and Management Engineering, University of Calabria

Shortest Path Tour Problem

Let G = (V, A, C) be a directed graph, where

- $V = \{1, \dots, n\}$ is a set of nodes;
- $A = \{(i, j) \in V \times V \mid i, j \in V \land i \neq j\}$ is a set of m arcs;
- $C: A \to \mathbb{R}^+ \cup \{0\}$ is a function that assigns a nonnegative length c_{ij} to each arc $(i, j) \in A$;

Definition

The SPTP consists in finding a shortest path from a source node s to a destination node d, by ensuring that at least one node of each node subset T_1,\ldots,T_N , where $T_h\cap T_l=\emptyset$, $\forall \ h,l=1,\ldots,N,\ h\neq l$, is crossed according to the sequence wherewith the subsets are ordered.

Constrained Shortest Path Tour Problem

An integer capacity $u_{ij} \geq 1$ is associated with each arc $(i,j) \in A$. It denotes the maximum number of times that arc (i,j) can be traversed in any CSPTP solution.

Theorem

If $u_{ij} = 1$ for all $(i, j) \in A$, the resulting CSPTP is **NP**-hard.

Hamiltonian Path problem (HAM-PATH) \leq_m^p CSPTP.

HAM-PATH	$\langle G = (V, A, C), s, d \rangle$
CSPTP	$\langle G' = (V', A', C'), s^-, d^+, \{T_h\}_{h=1,\dots,n+1} \rangle$

$$\begin{array}{|c|c|c|c|} \hline \text{HAM-PATH} & \langle G = (V,A,C),s,d \rangle \\ \hline \hline \text{CSPTP} & \langle G' = (V',A',C'),s^-,d^+,\{T_h\}_{h=1,\dots,n+1} \rangle \\ \hline \end{array}$$

- for each node $i \in V$,
 - insert in V' nodes i^- and i^+ ;
 - insert in A' arc (i^-, i^+) with cost 0;

$$\begin{array}{|c|c|c|c|} \hline \text{HAM-PATH} & \langle G = (V,A,C),s,d \rangle \\ \hline \\ \hline \text{CSPTP} & \langle G' = (V',A',C'),s^-,d^+,\{T_h\}_{h=1,\dots,n+1} \rangle \\ \hline \end{array}$$

- for each node $i \in V$,
 - insert in V' nodes i^- and i^+ ;
 - insert in A' arc (i^-, i^+) with cost 0;
- for each arc $(i,j) \in A$ and for each $k=2,\ldots,|V|$,
 - insert in V' node ij^k ;
 - insert in T_k node ij^k ;
 - insert in A' arc (i^+, ij^k) with cost c_{ij} and arc (ij^k, j^-) with cost 0;

$$\begin{array}{|c|c|c|c|} \hline \text{HAM-PATH} & \langle G = (V,A,C),s,d \rangle \\ \hline \hline \text{CSPTP} & \langle G' = (V',A',C'),s^-,d^+,\{T_h\}_{h=1,\dots,n+1} \rangle \\ \hline \end{array}$$

- for each node $i \in V$,
 - insert in V' nodes i^- and i^+ ;
 - insert in A' arc (i^-, i^+) with cost 0;
- for each arc $(i, j) \in A$ and for each k = 2, ..., |V|,
 - insert in V' node ij^k ;
 - insert in T_k node ij^k ;
 - insert in A' arc (i^+, ij^k) with cost c_{ij} and arc (ij^k, j^-) with cost 0;
- set $T_1 = \{s^-\}$ and $T_{|V|+1} = \{d^+\}$.

Lemma (3)

There exists a feasible path $P = i_1, i_2, \dots, i_k$, $k \le n$, in

$$\langle G = (V, A, C), s, d \rangle$$
,

if and only if in

$$\langle G' = (V', A', C'), s^-, d^+, \{T_h\}_{h=1,\dots,n+1} \rangle$$

there exists a path tour P' from i_1^- to i_k^+ , such that

$$P' = \left\{ \bigoplus_{l=1}^{k-1} \left(i_l^-, i_l^+, i_l i_{l+1}^{l+1} \right), i_k^-, i_k^+ \right\}.$$

Proof.

 \Rightarrow Suppose that there exists in G a feasible path $P=\{i_1,i_2,\ldots,i_k\}$, $k\leq n$. Then, by construction there exists in A' an arc (i_l^-,i_l^+) , for each $l=1,\ldots,k$.

Proof.

 \Rightarrow Suppose that there exists in G a feasible path $P=\{i_1,i_2,\ldots,i_k\}$, $k\leq n$. Then, by construction there exists in A' an arc (i_l^-,i_l^+) , for each $l=1,\ldots,k$.

Moreover, for each arc (i_l,i_{l+1}) in P, there exist arcs $(i_l^+,i_li_{l+1}^q)$ and $(i_li_{l+1}^q,i_{l+1}^-)$ for each $q=2,\ldots,n$.

Proof.

 \Rightarrow Suppose that there exists in G a feasible path $P=\{i_1,i_2,\ldots,i_k\}$, $k\leq n$. Then, by construction there exists in A' an arc (i_l^-,i_l^+) , for each $l=1,\ldots,k$.

Moreover, for each arc (i_l,i_{l+1}) in P, there exist arcs $(i_l^+,i_li_{l+1}^q)$ and $(i_li_{l+1}^q,i_{l+1}^-)$ for each $q=2,\ldots,n$.

Therefore, there must exist also arcs $(i_l^+, i_l i_{l+1}^{l+1})$ and $(i_l i_{l+1}^{l+1}, i_{l+1}^{-})$.

Proof.

 \Leftarrow Conversely, suppose that there exists in G' the path P', whereas path P is not present in G. This last situation occurs if either at least one node $i_l \notin V$ or at least one arc $(i_l, i_{l+1}) \notin A$.

If a node $i_l \not\in V$, then nodes i_l^- and i_l^+ would not be in V', which is not true. Similarly, if an arc $(i_l,i_{l+1}) \not\in A$, then arcs $(i_l^+,i_li_{l+1}^{l+1})$ and $(i_li_{l+1}^{l+1},i_{l+1}^-)$ would not be in A' and this contradicts the hypothesis of existence of path P'.

Proof

Theorem

The described procedure is a polynomially computable function f() that transforms any instance $\mathcal{I}_{\text{HAM-PATH}}$ of HAM-PATH in an instance $\mathcal{I}_{\text{CSPTP}}$ of the CSPTP.

Existing approach

The CSPTP can be reduced to the Path Avoiding Forbidden Pairs Problem (PAFPP), where $F \subseteq \{ (v, w) \in V \times V \mid v \neq w \}$:

$$\min \sum_{(i,j)\in A} c_{ij} x_{ij}$$

s.t.

$$\sum_{j \in FS(i)} x_{ij} - \sum_{j \in BS(i)} x_{ji} = \begin{cases} 1, & i = s; \\ -1, & i = d; \\ 0, & \text{otherwise}; \end{cases}$$

$$\sum_{j \in BS(a)} x_{ja} + \sum_{j \in BS(b)} x_{jb} \le 1 \qquad \forall (a,b) \in F$$

$$x_{ij} \in \{0,1\} \qquad \forall (i,j) \in A.$$

The CSPTP can be reduced to the Path Avoiding Forbidden Pairs Problem (PAFPP), where $F \subseteq \{ (v, w) \in V \times V \mid v \neq w \}$:

$$\min \sum_{(i,j)\in A} c_{ij} x_{ij}$$

s.t.

$$\sum_{j \in FS(i)} x_{ij} - \sum_{j \in BS(i)} x_{ji} = \begin{cases} 1, & i = s; \\ -1, & i = d; \\ 0, & \text{otherwise}; \end{cases}$$

$$\frac{\sum_{j \in BS(a)} x_{ja} + \sum_{j \in BS(b)} x_{jb} \le 1}{x_{ji} \in \{0, 1\}} \qquad \forall (a, b) \in F$$

$$\forall (i, j) \in A.$$

At a generic iteration *t*:

• solve the relaxed Shortest Path Problem (e.g. Dijkstra);

At a generic iteration *t*:

- solve the relaxed Shortest Path Problem (e.g. Dijkstra);
- if does not contain any forbidden pair, is feasible for CSPTP;

At a generic iteration *t*:

- solve the relaxed Shortest Path Problem (e.g. Dijkstra);
- if does not contain any forbidden pair, is feasible for CSPTP;
- else, let (a_k, b_k) be a violated forbidden pair;

At a generic iteration *t*:

- solve the relaxed Shortest Path Problem (e.g. Dijkstra);
- if does not contain any forbidden pair, is feasible for CSPTP;
- else, let (a_k, b_k) be a violated forbidden pair;
- generate two subproblems: in the first one remove the node a_k , in the second one remove the node b_k .

At a generic iteration t:

- solve the relaxed Shortest Path Problem (e.g. Dijkstra);
- if does not contain any forbidden pair, is feasible for CSPTP;
- else, let (a_k, b_k) be a violated forbidden pair;
- generate two subproblems: in the first one remove the node a_k , in the second one remove the node b_k .

Very simple, but the preprocessing time is too long!

New approach

• Solve the problem on the original graph;

- Solve the problem on the original graph;
- a path tour is a concatenation of simple paths $T_i \leadsto T_{i+1}$ for $i=1,\dots,N-1$;

- Solve the problem on the original graph;
- a path tour is a concatenation of simple paths $T_i \leadsto T_{i+1}$ for $i=1,\dots,N-1$;
- an arc repetition can occur only in two different subpaths $T_i \leadsto T_{i+1}$ and $T_j \leadsto T_{j+1}$, with $i \neq j$.

- Solve the problem on the original graph;
- a path tour is a concatenation of simple paths $T_i \leadsto T_{i+1}$ for $i=1,\ldots,N-1$;
- an arc repetition can occur only in two different subpaths $T_i \leadsto T_{i+1}$ and $T_j \leadsto T_{j+1}$, with $i \neq j$.

Solution infeasible because (v, w) crossed both in $T_i \rightsquigarrow T_{i+1}$ and $T_j \rightsquigarrow T_{j+1}$ Impose solution does not contain (v, w) in $T_i \rightsquigarrow T_{i+1}$

Function BB($G = \langle V, A, C \rangle, s, d, \{T_i\}_{i=1,...,N}$)

- $\textbf{1} \; \mathsf{ShortestPaths} \leftarrow \mathsf{FLOYDWarshall}(G)$
- $\mathbf{z} \ x \leftarrow \mathsf{DP}(V, A, s, \{T_i\}_{i=1,\dots,N},)$
- ${f 3}$ if x is feasible then
- $\mathbf{4}$ return (x, z(x))

Function BB($G = \langle V, A, C \rangle, s, d, \{T_i\}_{i=1,...,N}$)

```
ShortestPaths ← FLOYDWARSHALL(G)
x \leftarrow \mathsf{DP}(V, A, s, \{T_i\}_{i=1}, N, N)
\mathbf{3} if x is feasible then
         return (x, z(x))
5
6 for i \leftarrow 1 to N-1 do
         foreach v \in T_i do
              foreach w \in T_{i+1} do
                    Paths[i] \leftarrow Paths[i] \cup \{ShortestPaths[v][w]\}
9
10
11 Q \leftarrow \mathsf{GENERATENODES}(x, Paths, [\emptyset]_{i=1}^{N-1})
12 x^* \leftarrow \text{Nil}; z(x^*) \leftarrow +\infty
```


Function BB($G = \langle V, A, C \rangle, s, d, \{T_i\}_{i=1,...,N}$)

 $_{13}$ while Q is not empty do

- $Node \leftarrow \mathsf{POP}(Q)$
- 15 $i \leftarrow Node.index$
- $A \leftarrow A \setminus Node.costraints[i]$

Function BB($G = \langle V, A, C \rangle, s, d, \{T_i\}_{i=1,\dots,N}$)

```
while Q is not empty do

Node \leftarrow POP(Q)

i \leftarrow Node.index

A \leftarrow A \setminus Node.costraints[i]

foreach v \in T_i do

Node.paths[i] \leftarrow Node.paths[i] \cup \{ \mathsf{DIJKSTRA}(G, v, w) \}
```


Function BB($G = \langle V, A, C \rangle, s, d, \{T_i\}_{i=1,...,N}$)

```
while Q is not empty do
         Node \leftarrow Pop(Q)
14
        i \leftarrow Node.index
15
         A \leftarrow A \setminus Node.costraints[i]
16
         foreach v \in T_i do
17
              foreach w \in T_{i+1} do
18
                   Node.paths[i] \leftarrow Node.paths[i] \cup \{ \mathsf{DIJKSTRA}(G, v, w) \}
19
         x \leftarrow \mathsf{DP}(Node.paths)
20
         A \leftarrow A \cup Node.costraints[i]
21
```

14

15

16

17

18

19

20

21

22

23

24

25

26

Function BB($G = \langle V, A, C \rangle, s, d, \{T_i\}_{i=1,...,N}$)

```
while Q is not empty do
     Node \leftarrow Pop(Q)
     i \leftarrow Node.index
     A \leftarrow A \setminus Node.costraints[i]
     foreach v \in T_i do
          foreach w \in T_{i+1} do
               Node.paths[i] \leftarrow Node.paths[i] \cup \{ \mathsf{DIJKSTRA}(G, v, w) \}
     x \leftarrow \mathsf{DP}(Node.paths)
     A \leftarrow A \cup Node.costraints[i]
      if x is feasible then
          if z(x) < z(x^*) then
               x^* \leftarrow x, z(x^*) \leftarrow z(x)
     else if z(x) < z(x^*) then
          Q \leftarrow Q \cup \mathsf{GENERATENODES}(x, Node.paths, Node.constraints)
return (x^*, z(x^*))
```


Function GenerateNodes(x, paths, contraints)

- $\mathbf{1}\ ((v,w),i,j) \leftarrow \mathsf{FIND}(x)$
- 2 $Node_1 \leftarrow \mathsf{GENERATENODE}(paths, contraints, i, v, w)$
- $\mathbf{3}\ Node_2 \leftarrow \mathsf{GENERATENODE}(paths, contraints, j, v, w)$
- 4 return $\{Node_1, Node_2\}$

Function GenerateNodes(x, paths, contraints)

- $\mathbf{1}\ ((v,w),i,j) \leftarrow \mathsf{FIND}(x)$
- $\mathbf{2} \ Node_1 \leftarrow \mathsf{GENERATENODE}(paths, contraints, i, v, w)$
- $solution{ Node}{a} \leftarrow \mathsf{GENERATENODE}(paths, contraints, j, v, w)$
- 4 return $\{Node_1, Node_2\}$

Function GenerateNode(paths, constraints, i, v, w)

- 1 $Node.paths \leftarrow paths$
- 2 $Node.constraints \leftarrow constraints$
- 3 $Node.constraints[i] \leftarrow Node.constraints[i] \cup \{(v,w)\}$
- 4 $Node.paths[i] \leftarrow \emptyset$
- 5 $Node.index \leftarrow i$
- $\mathbf{6}$ return Node

Experimental results

Test environment

- Implemented in C++, and compiled with g++ (Ubuntu 5.2.1-22ubuntu2) 5.2.1 Flag: -std=c++14;
- running times reported are UNIX real wall-clock times in seconds.
- experiments were run on S.Co.P.E. (Unina), a cluster of nodes, each of them with two processors Intel Xeon E5-4610v2@2.30 Ghz.

Test problems

• Complete graphs with $n \in \{100, \dots, 1000\}$ with a step of 50, the number N of sets $\{T_i\}_{i=1}^N$ is 25%n and 35%n nodes belong to any T_i ;

Test problems

- Complete graphs with $n \in \{100, \dots, 1000\}$ with a step of 50, the number N of sets $\{T_i\}_{i=1}^N$ is 25%n and 35%n nodes belong to any T_i ;
- Grid graphs in $\{5 \times 20, 7 \times 15, 9 \times 9, 10 \times 10, 10 \times 40, 14 \times 30\}$. Nodes belong to any T_i is 35%n, and $N \in \{15, 16, 17, 18, 19\}$ (in percentage of n);

Test problems

- Complete graphs with $n \in \{100, \dots, 1000\}$ with a step of 50, the number N of sets $\{T_i\}_{i=1}^N$ is 25%n and 35%n nodes belong to any T_i ;
- Grid graphs in $\{5 \times 20, 7 \times 15, 9 \times 9, 10 \times 10, 10 \times 40, 14 \times 30\}$. Nodes belong to any T_i is 35%n, and $N \in \{15, 16, 17, 18, 19\}$ (in percentage of n);
- Random graphs with $n \in \{250, 500, 750, 1000\}$ and $m \in \{10, 20, 30, 40, 50, 60, 70, 80, 90, 100\}\%n(n-1)$, N = 25%n and 35%n nodes belong to any T_i .

Empirical evalution

Random

Performance profiles of BB and B&B^{new} algorithms for optimal solutions.

Empirical evalution

Exact random

Feasible grid

Time comparison

Time comparison

Time comparison

Conclusions and future work

 B&B^{new} improves the results of BB: it is faster and needs less memory;

Conclusions and future work

- B&B^{new} improves the results of BB: it is faster and needs less memory;
- it has very good performances expecially on dense graphs;

Conclusions and future work

- B&B^{new} improves the results of BB: it is faster and needs less memory;
- it has very good performances expecially on dense graphs;
- as future work, we are investigating further variants of the problem resulting from the introduction of further constraints defined on the arcs and/or on the nodes of the graph.

01000101 01001110 01000100 (E N D)

Thank you.

Theorem

The described procedure is a polynomially computable function f() that transforms any instance $\mathcal{I}_{\text{HAM-PATH}}$ of HAM-PATH in an instance $\mathcal{I}_{\text{CSPTP}}$ of the CSPTP.

Theorem

The described procedure is a polynomially computable function f() that transforms any instance $\mathcal{I}_{\text{HAM-PATH}}$ of HAM-PATH in an instance $\mathcal{I}_{\text{CSPTP}}$ of the CSPTP.

Proof.

 \Rightarrow By hypothesis, there exists in G a Hamiltonian path $P=\{i_1,i_2,\cdots,i_n\}$, where $i_1=s$ and $i_n=d$. We have already shown in Lemma 3 that there exists in G' a path

$$P' = \left\{ \bigoplus_{l=1}^{n-1} \left(i_l^-, i_l^+, i_l i_{l+1}^{l+1} \right) i_n^-, i_n^+ \right\},\,$$

where $i_1^- = s^-$ and $i_n^+ = d^+$.

Theorem

The described procedure is a polynomially computable function f() that transforms any instance $\mathcal{I}_{\text{HAM-PATH}}$ of HAM-PATH in an instance $\mathcal{I}_{\text{CSPTP}}$ of the CSPTP.

Proof.

 $\Rightarrow P'$ is a feasible constrained path tour from s^- to d^+ . In fact, let us suppose that P' is not feasible. This can happen if at least one of the following cases occurs: 1) P' crosses some arcs more than once; 2) P' does not involve any node in some node subsets T_i , $i=1,\ldots,n+1$; 3) P' involves at least a node for each T_i , $i=1,\ldots,n+1$, but not successively and sequentially.

Theorem

The described procedure is a polynomially computable function f() that transforms any instance $\mathcal{I}_{\text{HAM-PATH}}$ of HAM-PATH in an instance $\mathcal{I}_{\text{CSPTP}}$ of the CSPTP.

Proof.

 \Rightarrow Suppose that P' crosses some arcs twice. Since only nodes of type i^- are such that $|FS(i^-)| > 1$, if some arc is involved at least twice, it must be some arc of type (i^-, i^+) . Nevertheless, if this is the case, then necessarily node i must be involved by P at least twice and this contradicts the hypothesis of P as Hamiltonian path.

Theorem

The described procedure is a polynomially computable function f() that transforms any instance $\mathcal{I}_{\text{HAM-PATH}}$ of HAM-PATH in an instance $\mathcal{I}_{\text{CSPTP}}$ of the CSPTP.

Proof.

 \Rightarrow Finally, cases 2) and 3) can not ever occur by construction. In fact, path P' starts at $s^- \in T_1$ and ends in $d^+ \in T_{n+1}$. Then, it involves successively and sequentially all nodes $i_l i_{l+1} {}^{l+1}$, for each $l=1,\ldots,n-1$, and each node $i_l i_{l+1} {}^{l+1}$ belongs to T_{l+1} .

 \Leftarrow By hypothesis, there exists in G' a feasible constrained path tour from s^- to d^+ .

Remember that by construction, it holds that

- for each node $i^- \in V'$, $FS(i^-) = \{i^+\}$;
- for each node $i^+ \in V'$, $FS(i^+) = \{ij^k \mid k = 2, ..., n\}$;
- for each node $ij^k \in V'$, $FS(ij^k) = \{j^-\}$.

Therefore, path P' must be necessarily as follows

$$P' = \left\{ \bigoplus_{l=1}^{n-1} \left(i_l^-, i_l^+, i_l i_{l+1}^{l+1} \right) i_n^-, i_n^+ \right\},\,$$

where $i_1^- = s^-$ and $i_n^+ = d^+$.

 \Leftarrow In fact, if for some $k=2,\ldots,n$, $k\neq l+1$, P' contains a subpath

$$i_l, i_{l+1}, i_l i_{l+1}^k,$$

then P' would not be feasible, because it would violate the constraint of successively and sequentially passing through at least one node of the node subsets T_i . Finally, if P' involves a smaller number of nodes, then for some subset T_i , no node in T_i would be crossed. Similarly, if P' involves a higher number of nodes, then P' would cross at least one arc more than once.

 \Leftarrow From Lemma 3, it follows that there exists in G a path $P = \{i_1, i_2, \dots, i_n\}$, such that $i_1 = s$ and $i_n = d$.

P must be Hamiltonian. In fact, let us suppose that P is not Hamiltonian. Since P visits exactly n nodes, there must be i_j and $i_k, j, k \in \{1, \dots, n \mid j \neq k\}$, such that $i_j = i_k$. But this implies that P' crosses arcs (i_j^-, i_j^+) and (i_k^-, i_k^+) such that $(i_j^-, i_j^+) \equiv (i_k^-, i_k^+)$ and this contradicts the hypothesis of feasibility of the constrained path tour P'.

The Hamiltonian path P in G and the constrained path tour P' in G' have the same length by construction and by the definition of cost functions C and C', respectively. \square