苏州大学《线性代数》课程试卷库(第十五卷)共4页										
学院				专业	成绩					
年级			学号_		姓名		日期			
题号	_		=	四	五.	六	七	八	九	
得分										
一、选择题: (每题 3 分, 共计 15 分)										
1、已知 $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$,则 $A^* =$										
$ (A) \begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix} \qquad (B) \begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix} \qquad (C) \begin{pmatrix} 4 & 2 \\ 3 & 1 \end{pmatrix} \qquad (D) \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} $										
2、设 n 阶矩阵 A 与 B 相似,则下列结论必成立的是 [] (A) $\lambda E - A = \lambda E - B$,其中 λ 为 A 与 B 的特征值										
(B) 对于任意常数 t ,有 $ tE-A = tE-B $										
(C) 存在对角矩阵 Λ ,使得 Λ 与 B 都相似于 Λ										
(D) 当 λ_0 是 A 与 B 的特征值时, n 元齐次线性方程组($\lambda_0 E - A$) $x = 0$ 与										
$(\lambda_0 E - B)x = 0 同解$										
3 、设 A 为 n 阶矩阵,且 $A^k = 0$ (k 为正整数),则								[]	
 (A) A = 0 (B) A 有一个不为零的特征值 (C) A 的特征值全为零 (D) A 有 n 个线性无关的特征向量 										
4、设 A	4 为 n 阶	方阵, <i>r</i>	(A) = n -	-3,且向	可量组 α_1	α_2, α_3	是 $Ax = 0$	的三个组	线性	
无关的	无关的解向量,则 $Ax = 0$ 的基础解系可以是[]									

(A) $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_1$ (B) $\alpha_2 - \alpha_1$, $\alpha_3 - \alpha_2$, $\alpha_1 - \alpha_3$

(A) 任何一个向量(B) 没有一个向量(C) 至少有一个向量(D) 至多有一个向量

组内其余向量线性表示。

(C) $2\alpha_2 - \alpha_1, \frac{1}{2}\alpha_3 - \alpha_2, \ \alpha_1 - \alpha_3$ (D) $\alpha_1 + \alpha_2 + \alpha_3, \ \alpha_3 - \alpha_2, -2\alpha_3 - \alpha_1$

5、设向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ ($n \ge 2$) 线性相关,那么向量组内 [] 可由向量

- 二、填空题: (每题 3 分, 共计 15 分)
- 1、设向量 $\alpha = (1, a, b)$ 与 $\beta = (2, 2, 2)$, $\gamma = (3, 1, 3)$ 都正交,则 $a = ______$, $b = ______$ 。
- 2、设 A , B 为 3 阶方阵,且 $\left|A\right|=-1$, $\left|B\right|=2$,则 $\left|2(A^TB^{-1})^2\right|=$ _____。
- 3、设 4 阶方阵 A 的秩为 2,则其伴随阵 A^* 的秩是_____。
- 4、线性方程组 $\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = \lambda & \text{当} \lambda = ___ \text{时,有无穷多组解。} \\ x_1 + x_2 + \lambda x_3 = \lambda^2 \end{cases}$
- 5、设 3 阶方阵 A 的三个特征值为 1, 2, 3, 则 A^*A^{-1} 的三个特征值为______,
- 三、(10 分) 计算行列式 $D_4 = \begin{vmatrix} 2 & -5 & 1 & 2 \\ -3 & 7 & -1 & 4 \\ 5 & -9 & 2 & 7 \\ 4 & -6 & 1 & 2 \end{vmatrix}$

四、(10分)设方阵
$$A = \begin{pmatrix} 1 & 2 & 0 \\ -2 & -5 & 2 \\ -4 & -10 & 3 \end{pmatrix}$$
,

1、证明: A可逆; 2、求 $(A^*)^{-1}$; 3、解矩阵方程 $A^*X = A + A^{-1}$.

五、(10 分) 设线性方程组
$$\begin{cases} x_1 + 2x_2 + 3x_3 + 3x_4 + 7x_5 &= 0 \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 &= 0 \\ x_2 + 2x_3 + 2x_4 + 6x_5 &= 0 \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 &= 0 \end{cases}$$

用基础解系表示方程组的全部解

六、
$$(10 分)$$
 向量组 $A: \alpha_1 = (1, -2, -1, -2, 2), \alpha_2 = (4, 1, 2, 1, 3),$ $\alpha_3 = (2, 5, 4, -1, 0), \alpha_4 = (1, 1, 1, 1, \frac{1}{3}),$

- (1) 证明向量组 α_1 , α_2 , α_3 , α_4 线性相关;
- (2) 求向量组的一个极大无关组;
- (3) 将其余向量用极大无关组线性表示。

七、(10分)设
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
, 求 A 特征值和特征向量;

八、(10分)利用正交变换将二次型 $f = x^2 + 2y^2 - 4xy$ 化为标准型。

九、(10 分) 设非零数 λ_0 是正交矩阵 A 的一个特征值,

证明: $\frac{1}{\lambda_0}$ 也是 A 的特征值