

Problem A Pac-Man

Time limit: 1 second

Memory limit: 1024 megabytes

Problem Description

Pac-Man is a maze-chase video game developed in 1980s. The player controls the character "Pac-Man" to eat dots in a maze while avoiding enemy characters "ghosts." All characters may move in four directions: up, down, left, right. The game ends in two conditions:

- Pac-Man eats all dots in the maze. In this case, the player wins.
- Any ghost catches Pac-Man. In this case, the player loses.

Figure 1: Pac-Man gameplay (image from Wikipedia)

Adam is learning how to create games with modern programming tools. To practice the skills, he tries to make an imitation of the Pac-Man game with some modification. In Adam's game, the playable character is a "ghost," and the enemy character is "Pac-Man." Since he changes the roles of the ghost and Pac-Man, he also changes the ending conditions of the game.

- Pac-Man eats all dots in the maze. In this case, the player loses.
- The ghost controlled by the player catches Pac-Man. In this case, the player wins.

Adam has almost developed the first full functioning version of his game. He wants to test his game and creates a simple stage for testing. The maze of the stage is based on 10-by-10 grid. We label the cell lying at the intersection of row r and column c with (r,c). In this problem, rows and columns are numbered from 0 to 9. Each grid cell contains exact one dot. The exterior boundary of the grid are walls. No characters may move to the area outside of the grid. Inside the grid, there are no walls or obstacles. All characters may move freely from a cell to any cell adjacent to it. Note that two grid cells (r_1, c_1) and (r_2, c_2) are adjacent to each other if and only if $|r_1 - r_2| + |c_1 + c_2| = 1$.

Adam has to prepare the movements of Pac-Man for the testing. He needs a set of trajectory with diversity, but any of the trajectories must satisfy the following requirements.

- Pac-Man can eat all dots in the maze if it follows the trajectory.
- Pac-Man moves at most 10000 steps.

Adam needs your help to generate a trajectory starting at cell (x, y). Please write a program to generate a trajectory of Pac-Man satisfying all requirements above and starting at cell (x, y).

Input Format

The input has exactly one line which consists of two integers x and y separated by a blank. You are asked to generate a trajectory starting at cell (x, y).

Output Format

You must output a requested trajectory in the following format. The trajectory is represented by m+1 lines where m is the number of steps of the trajectory. The i-th line contains two integers r_i and c_j . Pac-Man will be in cell (r_i, c_i) after moving i steps along the trajectory.

Technical Specification

- $m \le 10000$
- $x, y, r_i, c_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ for $i \in \{1, 2, \dots, m+1\}$.
- Cells (r_i, c_i) and (r_{i+1}, c_{i+1}) are adjacent to each other for $i \in \{1, 2, \dots, m\}$.
- $\{(r_1, c_1)\} \cup \{(r_2, c_2)\} \cup \cdots \cup \{(r_{m+1}, c_{m+1})\}$

Sampl	le]	Inpu	\mathbf{t}	1	
~			•	_	

Sample Output 1

0 0	0 0
	0 1
	0 2
	0 3
	0 3 0 4
	0 5
	9 3
	9 2
	9 1
	9 0

Note

The sample output section does not contain the correct output, since it ignores a large part of the answer. Please download the correct sample test cases from the judge system.

Problem B Folding

Time limit: 1 second

Memory limit: 1024 megabytes

Problem Description

There is a transparent tape. Its length is exact one meter (10^9 nanometers). In this problem, all numbers are integers, and we use a number to denote a position on the tape. The number p denote the position of the point has a distance p nanometers from the head of tape.

Bob is a master dyer, so he can color the tape precisely in nanometer scale. He colors two sectors $[p_1, q_1]$ and $[p_2, q_2]$ into red. The color of the tape at the position in the range from p_1 to q_1 is red. The color of the tape at the position in the range from p_2 to q_2 is also red. And the rest part remains transparent.

To verify Bob's skill, we ask Ben, the tape folding master, to help us. Ben can fold the tape perfectly at any position. If Ben fold the tape at x, then the new position of a certain point p will be one of the following cases.

- If p = x, then it becomes the new head of tape, i.e, it becomes 0.
- If p > x, then it becomes p x.
- If p < x, then it becomes x p.

After Ben folds the tape, we measure the total length of the red part of the new tape. If the red part has the expected length, then we will believe Bob and Ben are both masters in their skills. Obviously, the color of some position of the new tape is determined by the colors of the corresponding positions of the old tape. A position of the new tape is colored in red if one of the corresponding positions in the old tape is colored in red.

Bob has already colored the tape, and Ben has proposed the positions to be folded. Please write a program to compute the expected lengths colored in red.

Input Format

The first line contains four integers p_1, q_1, p_2, q_2 separated by blanks. Bob has colored the sectors $[p_1, q_1]$ and $[p_2, q_2]$. The second line contains an integer q indicating the number of positions to be folded by Ben. Each of the remaining q lines contains an integer x indicating the positions to be folded by Ben.

Output Format

For each position, output the expected total length of the new tape where are colored in red.

- $0 \le p_1 < q_1 < p_2 < q_2 \le 10^9$
- $0 \le x \le 10^9$

• $q \le 10^6$

Sample Input 1

1 3	8	9				
10						
1						
2						
2 3 4						
5						
6						
7						
8						
9						
10						

Sample Output 1

3	
2	
3	
3	
2	
3	
3	
3	
3	
3	

Problem C Circles

Time limit: 2 seconds

Memory limit: 1024 megabytes

Problem Description

There are n magical circles on a plane. They are centered at $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, respectively. In the beginning, the radius of each circle is 0. The radius of all magical circles will grow at the same rate until they touch another magical circle. Write a program calculate the total area of the sum of all magical circles at the end of growing.

Input Format

The first line contains an integer n to indicate the number of magical circles. The i-th of the following n lines contains two integers x_i and y_i indicating that the i-th magical circle is centered at (x_i, y_i) .

Output Format

Output the total area of the circles. A relative error of 10^{-6} is acceptable.

Technical Specification

- $n \le 2000$
- $x_i, y_i \in [-10^5, 10^5]$ for $i \in \{1, 2, \dots, n\}$.

Sample Input 1

5	ampie mput i
4	
0	0
1	0
1	1
0	1

Sample Output 1

3.14159265359

Almost blank page

Problem D Last Will

Time limit: 1 second

Memory limit: 1024 megabytes

Problem Description

David is a farmer and has a large farm. The shape of the farm is a square. A square is a quadrilaterial that has four equal sides and four equal angles. The length of any side of David's farm is one kilometer, so the area of his farm is slightly greater than the total area of 140 standard football fields.

David is old and very ill. He feels that his time has come. He worries that his spouse Dora and his three children, Alice, Bob, and Cliff, will have a dispute over the ownership of the farm after he passes away. He plans to divide the farm into four parts, then he allocates each part to one of his family members. He decides to write his last will as follows.

- 1. Assume that the shape of the farm is a square ABCD where $A=(0,0),\ B=(1,0),\ C=(1,1),\ D=(0,1).$
- 2. Let E = (0.5, 0), F = (1, 0.5), G = (0.5, 1), H = (0, 0.5) be the midpoints of \overline{AB} , \overline{BC} , \overline{CD} , \overline{DA} , respectively.
- 3. Let area(PRQS) to denote the area of the quadrilaterial PQRS.
- 4. Please find a point X strictly inside the square ABCD such that area(AEXH): area(BFXE): area(CGXF) = p:q:r.
- 5. Allocate the land in AEXH, BFXE, CGXF, DHXG to Alice, Bob, Cliff and Dora, respectively.

David is still adjusting the numbers p, q, r, and his lawyer, Reed, has to read David's last will carefully. Reed finds that it is impossible to find such point X if David gives an improper set of the numbers such as p = 1, q = 2, r = 1. However, there are proper sets of the numbers p, q, r that allow us to find the point X satisfying David's last will. For instance, let p:q:r=2:3:2, the following figure shows a possible position of X.

Figure 2: area(AEXH) : area(BFXE) : area(CGXF) = 2 : 3 : 2

Please write a program to help Reed to determine whether it is possible to find the point X satisfying David's last will for a given set of numbers p, q, r. If possible, please give a possible position of X to Reed.

Input Format

The input contains one line only. The line contains three positive integers p, q, r separated by blanks.

Output Format

If there does not exist a point X satisfying David's last will, then output -1 on a line. Otherwise, output two irreducible fractions x and y such that (x, y) can be the point X satisfying David's last will. You must output an irreducible fraction $t = \frac{n}{d}$ as n/m and use a blank to separate x and y.

Note: the numerator and the denominator of any irreducible fraction are integers and do not have common divisors other than 1 and -1.

Technical Specification

• $p, q, r \in \{1, 2, \dots, 10^6\}$

Sample Input 1	Sample Output 1
1 1 1	1/2 1/2
Sample Input 2	Sample Output 2
1 2 1	-1
Sample Input 3	Sample Output 3
2 3 2	1/4 3/4

Problem E Eric's Work

Time limit: 2 seconds

Memory limit: 1024 megabytes

Problem Description

A binary string is a string consisting of only 0's and 1's. Eric's boss, Elsa, gives him a binary string s of length 20. She asks Eric to modify s into another binary string t within D days.

Eric really hates this task, so Eric never modifies more than one character in a day. However, Eric must show Elsa his daily progress. That is, Eric must modify some character of the string. Therefore, the only possible way for Eric is to modify exact one character in a day.

It is obviously cheating to modify a character to any character other than 0 and 1. Moreover, Elsa has a good memory, so Eric will be caught cheating if he modifies the string into the same binary string twice. That is, before Eric modify the string into t, no modification results can be the same string. For the same reason, Eric cannot modify the string into s, the string given by Elsa.

Eric wants to spend as much time as possible. He is wondering if he can spend exact D days to modify the string s into t. Please write a program to help Eric.

Input Format

The input contains three lines. The first line contains a binary string s. The second line contains a binary string t. The third line contains an integer D. Elsa asks Eric to modify the binary string s into t within D days.

Output Format

If there is no way to do what Eric wants, then output -1 on a line. Otherwise, output D lines to represent one possible way. The i-th of them contains a binary string which is the result of the modification on the i-th day.

Technical Specification

- s and t consist of only 0's and 1's.
- The length of s and the length of t are both 20.
- $1 \le D \le 500000$

Sample Input 2

Sample Output 2

$2020\ \mathrm{ICPC}$ Taiwan Online Programming Contest

0000000001111111111	
10000000001111111111	
5	

0000000001111111110	
00000001001111111110	
10000001001111111110	
10000000001111111110	
10000000001111111111	

Problem F Homework

Time limit: 3 seconds

Memory limit: 1024 megabytes

Problem Description

There are n children (numbered from 1 to n) who are learning the arithmetic operations, which include addition "+", subtraction "-", multiplication "×", and division "÷", on rational numbers. Each child has a paper sheet with only one zero on it. Their teacher, Frank, will give out q operations. The i-th operation consists of an operator c_i and an integer x_i . However, Frank only wants some children to perform the operation. Only children $\ell_i, \ell_{i+1}, \ldots, r_i$ are asked to append the operator c_i and the number x_i to their paper sheet. After Frank's assignment, every child has an expression to evaluate.

For example, let n = 3, q = 2, c_1 be "+", $x_1 = 1$, $\ell_1 = 1$, $r_1 = 2$, c_2 be "-", $x_2 = 2$, $\ell_2 = 2$, $r_2 = 3$. The expressions of children 1, 2 and 3 are 0 + 1, 0 + 1 - 2 and 0 - 2, respectively.

However, Frank is really lazy and wants to verify the answers quickly. So he asks you to calculate the sums of the values of all children's expressions. If the value of the expression assigned to child i is $\frac{a_i}{b_i}$, then you have to use $a \times b^{-1} \mod 10^9 + 7$ instead. b^{-1} is any number satisfying $b \times b^{-1} \equiv 1 \mod 10^9 + 7$. If the sum is greater than $10^9 + 6$, then return the sum modulo $10^9 + 7$ to Frank.

Note: The arithmetic operations has PEMDAS rule, that is, Multiplication/Division before Addition/Subtraction.

Input Format

The first line contains two integers n and q separated by a blank. The i-th of following q lines contains ℓ_i, r_i, c_i, x_i separated by blanks. For convenience, we use * and / to represent multiplication and division operators, respectively.

Output Format

Output the number that you should return to Frank.

- $1 \le n \le 10^5$
- $1 \le q \le 10^5$
- $\ell_i, r_i \in [1, n]$ for $1 \le i \le q$.
- $c_i \in \{+, -, *, /\}$ for $1 \le i \le q$.
- $x_i \in [0, 10^9 + 7)$ for $1 \le i \le q$.

$2020\ \mathrm{ICPC}$ Taiwan Online Programming Contest

Sample Input 1

Sam	ple	Out	put	1

\sim	~	-1	••	P	<i>1</i> 0 <u>1</u>			
3	2							
1	2	+	1					
2	3	-	2					

Problem G Cactus

Time limit: 10 seconds Memory limit: 1024 megabytes

Problem Description

Input Format

Output Format

Almost blank page

Problem H

In The Name Of Confusion

Time limit: 10 seconds Memory limit: 1024 megabytes

Problem Description

There's no such thing as public opinion.

Jordan Ellenberg, American Mathematician

In K City lives n residents, they want to build a connection network with each other. However, some residents want the network wire coloured black while the others want the wire coloured white. The opinion of resident i can be quantified as a number a_i . If we build a network wire between residents i and j, the cost of this wire will be $a_i \times a_j$.

The mayor of K City wants to network built such that:

- 1. There is exactly n-1 wire used.
- 2. For any two different residents i and j, there exists a sequence p_1, \dots, p_k such that $p_1 = i$, $p_k = j$ and residents p_ℓ and $p_{\ell+1}$ share a wire for $1 \le \ell < k$.

In other words, the network should be a tree.

You, the renowned mathematician of K City, want to know not only the *minimum* cost to build the network. In the name of confusion, you also want to know the *maximum* cost!

Input Format

The first line begins with a number n indicating the number of residents. The second line contains n numbers a_1, a_2, \ldots, a_n . The opinion of resident i is the quantified as a_i .

Output Format

Output two numbers separated by a blank in a line. The numbers are the *minimum* cost and the *maximum* cost to build the network, respectively. Since the numbers may be extremely large, you have to modulo the answer with $10^9 + 7$. Please note that the modulo of a number (defined by Donald Knuth) is $a \mod b = a - b \lfloor \frac{a}{b} \rfloor$. The number output should be non-negetive.

- $1 < n < 10^6$
- $|a_i| \le 10^6$

Samp	le 1	[nn	11t.	1
Samp	10 1	ш	\mathbf{u}	_

Sample Input 2

-5 -10 -7 -7 -3 -1 -7 -5 -8 -6

999999779 183

Sample Input 3

Sample Output 3

0 0

Sample Input 4

Sample Output 4

0 540

Problem I Table Tennis

Time limit: 4 seconds

Memory limit: 1024 megabytes

Problem Description

Input Format

Output Format