Kinetyka fałdowania RNA

Analiza barier energetycznych programem barriers

- 1. Otwórz formularz wersji online programu barriers.
- 2. Użyj opcji domyślnych oraz sekwencji tRNA-lle:

>tRNA_Ile_AAT

GGCCGGTTAGCTCAGTTGGTCAGAGCGTGGTGCTAATAACGCCAAGGTCGCGGGTTCGATC

CCCGTACGGGCCA

- 3. Na podstawie otrzymanych wyników określ i zapisz do protokołu:
 - a. ile struktur alternatywnych zostało przewidzianych
 - b. jaka jest energia swobodna struktury MFE
- 4. Oblicz wartość bariery energetycznej związanej z przejściem od struktury 9 do 1 oraz od struktury 49 do 1. Zapisz do protokołu, które z tych przejść jest "łatwiejsze"?
- 5. Zwizualizuj ścieżki refałdowania ze struktury 8 do 1 oraz ze struktury 43 do 1 w postaci filmu. Zwróć uwagę na ilość stanów przejściowych oraz barier energetycznych w ścieżce refałdowania. Wyjaśnij w protokole dlaczego jedno z tych przejść jest łatwiejsze od drugiego.
- 6. Na stronie z wynikami użyj programu treekin w celu wizualizacji dynamiki przejść strukturalnych pomiędzy konformacjami. Na początek użyj domyślnie ustawionej struktury jako konformacji wyjściowej. Zapisz do protokołu która z konformacji będzie mogła współwystępować z konformacją 1? Jaki będzie ich stosunek ilościowy? Po jakim czasie zostanie osiągnięta równowaga pomiędzy konformacjami?
- 7. Następnie ustaw jako konformację wyjściową strukturę 49. Zapisz do protokołu czy zmiana konformacji wyjściowej zmieniła końcowy wynik symulacji (stosunek konformacji, czas osiągnięcia równowagi)? Wyjaśnij dlaczego.

Analiza heatmap fałdowania RNA programem RNA2Dlandscape

1. W pliku 2d_sek.in znajduje się sekwencja RNA oraz dwie struktury: rozpleciona, otwarta struktura oraz jedna z alternatywnych struktur podanej sekwencji.

```
GGGCGCGGUUCGCCUCCGCUAAAUGCGGAAGAUAAAUUGUGUCU
```

2. Przeprowadź analizę programem RNA2Dfold z pakietu ViennaRNA. Otwórz folder, w którym zapisany jest plik 2d_sek.in, kliknij prawym przyciskiem myszy w białe pole okna i wybierz "Otwórz w terminalu / Open in terminal". Wpisz komendę:

```
RNA2Dfold -p < 2d sek.in > 2d sek.out
```

- 3. Otwórz plik wynikowy 2d_sek.out. Jaką energię ma podana przez nas struktura? Czy program zidentyfikował strukturę o mniejszej energii niż podana? Jeżeli tak, podaj znalezioną strukturę i wartość jej energii.
- 4. W pliku 2d_sek.in zamień otwartą strukturę (same kropki) na tę zidentyfikowaną przez program, jako o najniższej energii. Zapisz plik i ponownie uruchom analizę programem RNA2Dfold poleceniem z punktu 2.
- 5. Aby stworzyć mapę energetyczną alternatywnych struktur naszego RNA należy uruchomić skrypt 2D_landscape_pf.gri, który jest częścią pakietu ViennaRNA. Uruchom polecenie:

```
gri /home/student/ViennaRNA-2.4.12/misc/2Dlandscape pf.gri 2d sek.out
```

6. Otwórz plik wynikowy 2d_sek.out.ps. Co przedstawiają niebieskie pola na wykresie? Jaka ścieżka przekształcenia struktury RNA jest korzystniejsza: bezpośrednia czy pośrednia? Wyjaśnij krótko dlaczego.

Analiza ko-transkrypcyjnego fałdowania RNA programem kinwalker

- 1. W pliku PUR.fasta znajduje się sekwencja ryboprzełącznika purynowego oraz dwie struktury otwarty łańcuch oraz jedna z alternatywnych struktur dla naszej sekwencji.
- 2. Przeprowadź analizę ko-transkrypcyjnego fałdowania ryboprzełącznika purynowego programem kinwalker. W tym celu w konsoli wpisz polecenie:

```
kinwalker < PUR.fasta > PUR out.txt
```

- 3. Otwórz powstały plik wynikowy. Jak dużo zmian konformacyjnych zostało zidentyfikowanych?
- 4. W pierwszej kolumnie za strukturą znajduje się energia struktury. Czy podana przez nas struktura alternatywna jest strukturą o najniższej energii?
- 5. W drugiej kolumnie znajduje się wartość opisująca barierę energetyczną. Czy możemy zidentyfikować miejsce, gdzie bariera ta ulega dużej zmianie (wartość między kolejnymi linijkami)? Czy ma to związek z ustalaniem się struktury aptameru ryboprzełącznika?
- 6. Jaki element struktury, mający bezpośredni wpływ na odbywającą się transkrypcję, ulega zmianie podczas wydarzenia z punktu 5?