Financial Frictions and Pollution Abatement Over the Life Cycle of Firms

Min Fang¹ Po-Hsuan Hsu² Chi-Yang Tsou³

¹University of Florida ²National Tsing Hua University ³University of Manchester

June 2025 @ WFA Snowbird

- ▶ It is tough to motivate firms to do pollution abatement, especially smaller ones
 - * Abatement is not profit-generating, but for avoiding regulatory/social-image penalties
 - * Most abatement activities are operating costs (80% by EPA), which do not build into capital
 - * The return to abatement scales with production; per unit cost is high if the firm is small

- It is tough to motivate firms to do pollution abatement, especially smaller ones
 - * Abatement is not profit-generating, but for avoiding regulatory/social-image penalties
 - * Most abatement activities are operating costs (80% by EPA), which do not build into capital
 - * The return to abatement scales with production; per unit cost is high if the firm is small
- ▶ How do the above properties affect firms' pollution abatement choices?
 - * Our findings: Strong sorting of abatement, investment, total emission, and emission intensity over size, age, and other financial friction indicators (the life cycle of firm growth)

- ▶ It is tough to motivate firms to do pollution abatement, especially smaller ones
 - * Abatement is not profit-generating, but for avoiding regulatory/social-image penalties
 - * Most abatement activities are operating costs (80% by EPA), which do not build into capital
 - * The return to abatement scales with production; per unit cost is high if the firm is small
- How do the above properties affect firms' pollution abatement choices?
 - * Our findings: Strong sorting of abatement, investment, total emission, and emission intensity over size, age, and other financial friction indicators (the life cycle of firm growth)
 - * This indicates joint roles played by the above properties:
 - (1) penalty-avoiding, (2) non-collateralizability, and (3) increasing-return-to-scale

- It is tough to motivate firms to do pollution abatement, especially smaller ones
 - * Abatement is not profit-generating, but for avoiding regulatory/social-image penalties
 - * Most abatement activities are operating costs (80% by EPA), which do not build into capital
 - * The return to abatement scales with production; per unit cost is high if the firm is small
- ▶ How do the above properties affect firms' pollution abatement choices?
 - * Our findings: Strong sorting of abatement, investment, total emission, and emission intensity over size, age, and other financial friction indicators (the life cycle of firm growth)
 - * This indicates joint roles played by the above properties:
 (1) penalty-avoiding, (2) non-collateralizability, and (3) increasing-return-to-scale
- ▶ This paper aims to evaluate the joint roles of these properties to see:
 - 1. Detailed mechanisms, aggregate outcomes, and welfare implications
 - 2. Design of environmental policies with financial interventions

Summary of the Paper

- **Empirical Evidence:** Pecking order of investment and abatement
 - * Smaller, younger, or more constrained firms prefer capital investment to pollution abatement, generating smaller total emissions, but are much dirtier with high emission intensity
 - * As they accumulate more net worth, their abatement accelerates and emission intensity reduces.

Summary of the Paper

- **Empirical Evidence:** Pecking order of investment and abatement
 - * Smaller, younger, or more constrained firms prefer capital investment to pollution abatement, generating smaller total emissions, but are much dirtier with high emission intensity
 - * As they accumulate more net worth, their abatement accelerates and emission intensity reduces.
- ▶ Quantitative Model: GE heterogeneous firms with financial constraints
 - * Formalize the joint link between abatement, investment, emission, and dirtiness
 - * Key mechanism: Tradeoff between growth and penalty with financial frictions (FFs)

Summary of the Paper

- **Empirical Evidence:** Pecking order of investment and abatement
 - * Smaller, younger, or more constrained firms prefer capital investment to pollution abatement, generating smaller total emissions, but are much dirtier with high emission intensity
 - * As they accumulate more net worth, their abatement accelerates and emission intensity reduces.
- ▶ **Quantitative Model:** GE heterogeneous firms with financial constraints
 - * Formalize the joint link between abatement, investment, emission, and dirtiness
 - * Key mechanism: Tradeoff between growth and penalty with financial frictions (FFs)

Quantitative Implications:

- * FFs make the economy 15% dirtier; mainly because of smaller and younger firms
- * FFs make regulation sub-optimal at any level: aggregate welfare gain 40% ↓.
- * Non-preferential green loans that require abatement expense certificates are:

 (1) mainly greenwashed, (2) but still very effective!

A Pecking Order of Pollution Abatement

and Capital Investment

Data and Measurements

Data Sources: toxic emission, pollution abatement, env. litigation, and balance sheets

- Toxic Release Inventory (TRI) Database
- ▶ Pollution Prevention (P2) Database
- Enforcement and Compliance History Online (ECHO) system
- ▶ National Establishment Time-Series (NETS) Database → Aggregated to firm-level
- CRSP, Compustat, and others (BEA, BLS, FRED)

Data and Measurements

Data Sources: toxic emission, pollution abatement, env. litigation, and balance sheets

- Toxic Release Inventory (TRI) Database
- ► Pollution Prevention (P2) Database
- Enforcement and Compliance History Online (ECHO) system
- ▶ National Establishment Time-Series (NETS) Database → Aggregated to firm-level
- CRSP, Compustat, and others (BEA, BLS, FRED)

Variables of Interests:

- ► Abatement: sum up the number of **new source reduction operating activities**
- Emission intensity: sum up raw emissions normalized by sales
- Financial constraints: total assets, property, plant, and equipment, age, and SA
- ▶ Other firm characteristics: sales, cash, Tobin's Q, etc

Firm Size (N)

	(1) Log(Abate)	(2) Log(Emi.)	(3) Log(Emi./Sales)	(4) Inv. Rate			
Panel A: Net Worth							
Log N	0.25***	0.85***	-0.84***	-0.02***			
[t]	[3.55]	[5.93]	[-5.88]	[-2.59]			
Panel B: Total Assets							
Log AT	0.24***	0.78***	-0.73***	-0.02***			
[t]	[3.56]	[5.62]	[-5.17]	[-3.11]			
Panel C: Capital							
Log K	0.26***	0.75***	-0.60***	-0.04***			
[t]	[3.63]	[5.12]	[-4.18]	[-6.83]			
Panel D: Employee							
Log EMP	0.25***	0.72***	-0.64***	-0.02***			
[t]	[3.99]	[5.50]	[-4.99]	[-4.20]			
Observations	8,873	18,497	18,484	19,718			
R-squared	0.71	0.83	0.80	0.49			
4							

^{*}Firm FE, Time FE, Cluster SE All Included

Further Validations:

- Pecking Order on Size using Imputed Abatement Expenditures
- Pecking Order on Age using incorporation, WorldScope, and Compustat ages
- Pecking Order on Financial Indicators using Whited-Wu'06 and Hadlock-Pierce'10

Further Validations:

- Pecking Order on Size using Imputed Abatement Expenditures
- Pecking Order on Age using incorporation, WorldScope, and Compustat ages
- ▶ Pecking Order on Financial Indicators using Whited-Wu'06 and Hadlock-Pierce'10

Additional Results:

- Peking Order in Two Dimensions (Consistent with the model)
- Pecking Order on Capital Investment related to Abatement

Further Validations:

- Pecking Order on Size using Imputed Abatement Expenditures
- Pecking Order on Age using incorporation, WorldScope, and Compustat ages
- Pecking Order on Financial Indicators using Whited-Wu'06 and Hadlock-Pierce'10

Additional Results:

- Peking Order in Two Dimensions (Consistent with the model)
- Pecking Order on Capital Investment related to Abatement

Takeaway: Strong sorting of abatement, investment, total emission, and emission intensity over size, age, and other financial friction indicators (the life cycle of firm growth)

A GE Heterogeneous Firm Model

of Pollution Abatement and Capital Investment

under Financial Frictions

Production and Pollution

▶ Production: $y_{jt} = z_{jt}k_{jt}^{\alpha}$ | Pollution: $e_{jt} = y_{jt} \times \frac{\bar{e}}{1 + \gamma a_{jt}}$ | Regulatory penalty: $\tau_{jt}e_{jt}$

Production and Pollution

▶ Production: $y_{jt} = z_{jt}k_{jt}^{\alpha}$ | Pollution: $e_{jt} = y_{jt} \times \frac{\bar{e}}{1 + \gamma a_{jt}}$ | Regulatory penalty: $\tau_{jt}e_{jt}$

Financial Frictions and Decisions

- ► Collateral constraint: $b_{it+1} \le \theta k_{it+1}$ | Cannot issue equity: $d_{it+1} \ge 0$
- ► Choices: debt b_{jt+1} , capital k_{jt+1} , and abatement $a_{jt+1} \ge 0$

Production and Pollution

▶ Production: $y_{jt} = z_{jt}k_{jt}^{\alpha}$ | Pollution: $e_{jt} = y_{jt} \times \frac{\bar{e}}{1 + \gamma a_{jt}}$ | Regulatory penalty: $\tau_{jt}e_{jt}$

Financial Frictions and Decisions

- ► Collateral constraint: $b_{it+1} \le \theta k_{it+1}$ | Cannot issue equity: $d_{it+1} \ge 0$
- ► Choices: debt b_{jt+1} , capital k_{jt+1} , and abatement $a_{jt+1} \ge 0$

Recursive Problem for Firms (π_d as exogenous exit risk)

$$\begin{split} v(z_{jt},n_{jt}) &= \max_{a_{jt+1},k_{jt+1},b_{jt+1}} d_{jt} + \mathbf{E_t} \Big\{ \Lambda_{t,t+1} \Big[\pi_d n_{jt+1} + (1-\pi_d) v(z_{jt+1},n_{jt+1}) \Big] \Big\} \\ d_{jt} &\equiv n_{jt} - k_{jt+1} - a_{jt+1} + \frac{b_{jt+1}}{1+r_t} \geq 0, \\ n_{jt+1} &\equiv z_{jt+1} k_{jt+1}^{\alpha} + (1-\delta) k_{jt+1} - \tau_{jt+1} e_{jt+1} - b_{jt+1}, \end{split}$$

Production and Pollution

▶ Production: $y_{jt} = z_{jt}k_{jt}^{\alpha}$ | Pollution: $e_{jt} = y_{jt} \times \frac{\bar{e}}{1 + \gamma a_{jt}}$ | Regulatory penalty: $\tau_{jt}e_{jt}$

Financial Frictions and Decisions

- ► Collateral constraint: $b_{it+1} \le \theta k_{it+1}$ | Cannot issue equity: $d_{it+1} \ge 0$
- ► Choices: debt b_{jt+1} , capital k_{jt+1} , and abatement $a_{jt+1} \ge 0$

Recursive Problem for Firms (π_d as exogenous exit risk)

$$\begin{split} v(z_{jt}, n_{jt}) &= \max_{a_{jt+1}, k_{jt+1}, b_{jt+1}} d_{jt} + \mathbf{E_t} \Big\{ \Lambda_{t,t+1} \Big[\pi_d n_{jt+1} + (1 - \pi_d) v(z_{jt+1}, n_{jt+1}) \Big] \Big\} \\ d_{jt} &\equiv n_{jt} - k_{jt+1} - a_{jt+1} + \frac{b_{jt+1}}{1 + r_t} \geq 0, \\ n_{jt+1} &\equiv z_{jt+1} k_{jt+1}^{\alpha} + (1 - \delta) k_{jt+1} - \tau_{jt+1} e_{jt+1} - b_{jt+1}, \end{split}$$

Households Welfare

 $ightharpoonup W_t = logC_t - \zeta logE_t$, ζ stands for disutility from pollution

- ▶ Def: $\mu_t(z, n)$: Lagrange multiplier on collateral constraints
- Def: $\lambda_t(z, n)$: Lagrange multiplier on nonnegative dividend

- ▶ Def: $\mu_t(z, n)$: Lagrange multiplier on collateral constraints
- ▶ Def: $\lambda_t(z, n)$: Lagrange multiplier on nonnegative dividend
- ► FOC for Capital Investment:

$$\underbrace{ \frac{1 + \lambda_t(z, n)}{\text{marginal cost}} } = \mathbf{E}_t \bigg\{ \Lambda' \bigg[\left(\pi_d + (1 - \pi_d)(1 + \lambda_{t+1}(z', n')) \right) \\ \times \underbrace{ \left(\left(1 - \frac{\tau' \bar{e}}{1 + \gamma a'} \right) MPK(z', k') + (1 - \delta) \right)}_{\text{[1.] marginal benefit from production]}} \bigg] \bigg\} + \underbrace{\theta \mu_t(z, n)}_{\text{[2.] relax borrowing constraint]}}$$

- ▶ Def: $\mu_t(z, n)$: Lagrange multiplier on collateral constraints
- ▶ Def: $\lambda_t(z, n)$: Lagrange multiplier on nonnegative dividend
- ► FOC for Capital Investment:

$$\underbrace{ 1 + \lambda_t(z, n) }_{\text{marginal cost}} = \mathbf{E}_t \bigg\{ \Lambda' \bigg[\left(\pi_d + (1 - \pi_d) (1 + \lambda_{t+1}(z', n')) \right) \\ \times \underbrace{ \left(\left(1 - \frac{\tau' \bar{e}}{1 + \gamma a'} \right) MPK(z', k') + (1 - \delta) \right)}_{\text{[1.] marginal benefit from production]} \bigg] \bigg\} + \underbrace{\theta \mu_t(z, n)}_{\text{[2.] relax borrowing constraint]}}$$

FOC for Pollution Abatement:

$$\underbrace{1 + \lambda_t(z, n)}_{\text{marginal cost}} \ge \mathbf{E}_t \left\{ \Lambda' \left[\left(\pi_d + (1 - \pi_d)(1 + \lambda_{t+1}(z', n')) \right) \underbrace{\frac{\gamma \tau' \bar{\mathbf{e}}}{(1 + \gamma a')^2} z' k'^{\alpha}}_{\text{[3,] marginal benefit of abatement]}} \right] \right\}$$

Marginal Benefit of Capital Investment

- 1. Increase the production scale and generate more revenue
- 2. Grow the firm's net worth and relax the borrowing constraint
- 3. Larger production scale lowers the per-unit cost of abatement

Marginal Benefit of Capital Investment

- 1. Increase the production scale and generate more revenue
- 2. Grow the firm's net worth and relax the borrowing constraint
- 3. Larger production scale lowers the per-unit cost of abatement

Marginal Benefit of Pollution Abatement

1. Lower the expected regulatory penalty on total emissions

Marginal Benefit of Capital Investment

- 1. Increase the production scale and generate more revenue
- 2. Grow the firm's net worth and relax the borrowing constraint
- 3. Larger production scale lowers the per-unit cost of abatement

Marginal Benefit of Pollution Abatement

1. Lower the expected regulatory penalty on total emissions

Links to the Three Properties of Abatement

- 1. Penalty-avoiding: Firms have incentives to do operating abatement
- 2. Non-collateralizability: Less attractive than capital investment when financially constrained
- 3. Increasing-return-to-scale: Less attractive when production scale is small

Decision Rules: Investment vs Abatement

Decision Rules: Total Emission vs Emission Intensity

Decision Rules: Comparison with the Data

Validations of the Three Key Properties

- 1. Penalty-avoiding: Firms have incentives to do operating abatement
 - * Firm-level data collected on environmental regulatory litigation
 - * Correlation: Dirtier firms receive more litigation, and penalties scale with total emissions
 - * We target the litigation moments in the following quantitative analysis
- 2. Non-collateralizability: Less attractive than capital investment when financially constrained
 - * The quasi-natural event of the passage of anti-recharacterization laws
 - * Evidence: Induced pollution abatement when collateral constraint is relaxed
 - * More constrained firms significantly increase abatement more
- 3. Increasing-return-to-scale: Less attractive when production scale is small
 - * The quasi-natural event of natural disasters destroying industry peers' factories
 - * Evidence: Sales grows but emission intensity decreases
 - * Firms significantly benefit more from the increasing returns to scale of abatement

Quantitative Analysis

Parameterization

Symbols	Descriptions	Values	Sources		
Fixed Parameters					
$oldsymbol{eta}$	Discount factor	0.96	Annual Frequency		
α	Capital share	0.55	DRS of Two-thirds		
δ_k	Capital depreciation rate	0.10	BEA Data		
ζ	Dis-utility of pollution emission	0.17	Uncalibrated		
Fitted Para	ameters				
$ ho_z$	Productivity persistence (fixed)	0.90	Targeted Moments		
σ_{z}	Productivity volatility	0.03	Targeted Moments		
π_d^-	Exogenous exit risk	0.087	Targeted Moments		
$n_{\rm o}$	Net worth of entry	2.50	Targeted Moments		
θ_k	Collateral constraint	0.40	Targeted Moments		
ē	Highest emission intensity	10.0	Targeted Moments		
γ	Elasticity of abatement into intensity	5.0	Targeted Moments		
$\mu^{ au}$	Mean of pollution penalty	0.01	Targeted Moments		
$\sigma^{ au}$	Volatility of pollution penalty	0.01	Targeted Moments		

Moments

Moments	Data	Model
Output and Finance		
1-year autocorrelation of output	0.89	0.90
3-year autocorrelation of output	0.69	0.71
5-year autocorrelation of output	0.53	0.56
Size ratio of entrant relative to average	0.28	0.28
Annual exit rate of firms	0.09	0.09
Mean of debt/asset ratio	0.34	0.34
Pollution and Abatement		
Mean of emission intensity	5.38	4.16
Median of emission intensity	5.66	4.45
Standard deviation of emission intensity	3.05	1.82
P75/P25 of emission intensity	1.98	1.56
Ratio of zero pollution penalty	0.40	0.40
Mean of pollution penalty	0.01	0.01
Standard deviation of pollution penalty	0.01	0.01

Effects of Financial Frictions I: Distribution

Implication on Distribution:

- ► Financial frictions inhibit firms from growing ⇒ Lower abatement
- ► Lower abatement ⇒ Higher emission intensity

Effects of Financial Frictions II: Aggregation

Outcomes	Output	Capital	Consump.	Abatement	Emission	Intensity
Frictionless	4.8	17.0	2.9	0.17	25.4	5.4
Baseline	4.0	13.2	2.6	0.14	23.1	6.2
% Changes	-20%	-29%	-12%	-21%	-10%	+13%

- Financial frictions inhibit firms from growing large and growing clean
 - * Lower abatement ⇒ Higher emission intensity
 - * Lower output ⇒ Lower total emission
 - * Quantitatively speaking, the economy is about 13% dirtier, though total emission is lower

Effects of Financial Frictions III: Optimal Regulation and Welfare

Optimal Penalty Implications:

- * Off-setting between consumption loss and environmental gain
- * A higher optimal penalty for the economy without financial frictions
- * Aggregate gain of regulation policy is reduced by about 40% (3% vs 1.8%)

Green Loan Policy: Implementation

- A (tiny) green loan intervention by modifying the collateral constraint
- ► Commitment for the abatement as additional collateral for the green loan application
- ▶ The new collateral constraint with the case $\theta_a = 1$

$$b_{jt+1} \leq \theta_k k_{jt+1} + \frac{\theta_a a_{jt+1}}{2}$$

Policy Implications of Green Lending:

- 1. Relax financial frictions
- 2. Moral hazard induced by green washing
- 3. Overall quantitative assessment

Green Loan Policy: Decision Rules and Distributions

Green Loan Policy: Aggregate Effects

Panel A: Allocation	n of Green Lo	oans				
Outcomes	Total $\sum b$	Green $\sum b_g$	Used $\frac{\sum \Delta a}{\sum b_g}$	Washed $\frac{\sum \Delta k}{\sum b_g}$	$\mathrm{New} \sum \theta_k \Delta k$	
Baseline	5.30	0.00	-	-	-	
Green Loan	5.37	0.04	0.002	0.038	0.03	
% to Total $\sum b$	+1.32%	+0.75%	+0.04%	+0.71%	+0.56%	
% to Green $\sum b_g$	-	-	5%	95%	75%	
Panel B: Aggregate Effects of Green Loan Policies						
Outcomes	Output	Capital	Consump.	Abatement	Emission	Emission Intensity
Baseline	4.04	13.25	2.58	0.137	23.14	6.16
Green Loan	4.06	13.32	2.59	0.139	23.11	6.12
% Changes	+0.5%	+0.5%	+0.4%	+1.5%	-0.1%	-0.6%

- ► The (tiny) green loan is quite effective, though mostly washed
- ▶ The gains are mainly from the constrained, smaller, and younger firms

Conclusion

- Theory-guided empirical work on corporate environmental decisions
- Key findings:
 - * Financial constraints significantly affect abatement investment
 - * Constrained firms prioritize physical capital over abatement
- General equilibrium model to quantitatively account for:
 - * Firm life-cycle patterns, the trade-off between investment and abatement
 - * Substantially less welfare gain from regulation due to financial frictions
- Policy suggestions:
 - * Credit intervention policies (works well even under imperfect monitoring)