1 Canonical Forms

1.1 Review

1.1.1 Strategy to Find the Intersection of Two Subspaces

Suppose $W_1 = \operatorname{span}\{x_1, \dots, x_k\}$ and $W_2 = \operatorname{span} y_1, \dots, y_l$.

We want to find all the solutions of

$$\sum_{i=1}^{k} \lambda_i x_i = \sum_{j=1}^{l} \mu_j y_j.$$

These form a homogeneous system of equations, and we know how to solve it!

1.1.2 Strategy for Finding Jordan Canonical Basis

Fix an eigenvalue λ and find the dot diagram for $T|_{K_{\lambda}}$.

- 1. First find $(T \lambda I)^3 v_1 \in \ker(T \lambda I) \cap (\operatorname{im}(T \lambda I)^3)$.
- 2. Solve for v_1 , thus obtaining the first cycle.
- 3. Extend to a basis $(T-\lambda I)^3 v_1$, $(T-\lambda I)^2$, $(T-\lambda I)^2 v_3$, $\cdots \in \ker(T-\lambda I) \cap \operatorname{im}(T-\lambda I)^2$
- 4. Repeat the procedure for v_2, v_3, \ldots

2 Canonical Forms

Theorem 2.1

Let $A, B \in M_{n \times n}(\mathbb{F})$ be such that their characteristic polynomial split.

Then A, B are similar if and only if they have the same JCF (up to the reordering of blocks).

Remark 2.2. This is a useful method to test the similarity of matrices.

Proof.

First note the following observations:

- 1. A is similar to its Jordan Canonical form, because $[L_A]_{\beta} = J_A$ for some basis β .
- 2. If J_1 and J_2 are matrices in JCF, then they are similar to each other.
- 3. If J_1, J_2 are matrices in JCF corresponding to the same linear transfromation, then they are similar to each other (the basis can be reordered).

Let $\sim: M_{n \times n}(\mathbb{F}) \times M_{n \times n}(\mathbb{F}) \to M_{n \times n}(\mathbb{F})$ denote the relation

By the first observation, A is similar to J_A and B is similar to J_B .

If A, B are similar, then $A \sim B$, but $A \sim J_A$ and $B \sim J_B$, and hence $J_A \sim J_B$.

Suppose, on the other hand, that $J_A \sim J_B$ are the same up to reordering of blocks, and thus J_A and J_B are similar to each other by the second observation.

3 Review of Polynomials

Let \mathbb{F} be a field.

Let $\mathbb{F}[x]$ denote the polynomials over \mathbb{F} .

We define a polynomial as a formal expression $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, where $a_i \in \mathbb{F}$ and $n \geq 0$.

Two polynomials are equal to each other if and only if all coefficients of the terms with the same power are equal.

A polynomial f(x) can be evaluated at any element $c \in \mathbb{F}$ so that $f(c) = \sum_{i=1}^{n} a_i c^i \in \mathbb{F}$.

Polynomials are not the same as polynomial-functions, because the polynomials may be equal while the corresponding polynomial-functions are not.

For example, $f(x) = x^3 - x$ over $\mathbb{F} = \mathbb{Z}_2$ gives the zero function.

Definition 3.1. If $a_n \neq 0$, the degree of a polynomial is defined as deg f = n.

e.g. deg f = 0 if and only if $f(x) = a_0 \neq 0$.

Convention: $deg 0 = -\infty$

The following properties hold:

- $\deg(fg) = \deg(f) + \deg(g)$
- $\deg(f+g) \leq \max\{\deg(f), \deg(g)\}$

Definition 3.2. If the leading coefficient a_n is such that $a_n = 1$, f(x) is said to be *monic*.

3.1 Division Algorithm

If f(x), $g(x) \in \mathcal{P}(\mathbb{F})$ and $g(x) \neq 0$, then there exist q(x) and $r(x) \in \mathcal{P}(\mathbb{F})$ such that f(x) = q(x)g(x) + r(x) such that $\deg(r) < \deg(g)$.

These q, r can be found by long division.

Lemma 3.3

If
$$a \in \mathbb{F}$$
 and $f(a) = 0$, then $(x - a)|f(x)$.

Proof.

We use the Factor Theorem.

Note that f(x) = f(x)(x-a) + r(a), where $\deg(r) \le 0$, so r is constant.

We evaluate it at a: f(a) = 0 + r(a), and hence r(a) = 0, which means that r(x) = 0. \square

Lemma 3.4

If $a_1, \ldots, a_s \in \mathbb{F}$ are distinct zeroes of f(x), then $\prod_{i=1}^s (x - a_i) | f(x)$.

Thus, $\deg f \geq s$, so f(x) can have at most $\deg f$ zeroes.

Definition 3.5. We say that $f \in \mathbb{F}[x]$ is irreducible if deg f > 0 and it cannot be written as a product of two polynomials of lesser positive degree.

e.g. x-a is irreducible for all $a \in \mathbb{F}$. x^2+1 is irreducible over \mathbb{R} .

More generally, a quadratic or cubic polynomial is irreducible if and only if there is no zero in \mathbb{F} .

For the polynomial of degree greater than or equal to 4.

e.g. $(x^p - p) \in \mathbb{F}[\mathbb{Q}]$ is irreducible for all p prime.

Example 3.6

Over \mathbb{Z}_2 , we know by plugging in 0 and 1 that $x^3 + x + 1$ is irreducible.

However, since over \mathbb{Z}_2 we have $(a+b)^2 = a^2 + b^2$, then $x^4 + x^2 + 1 = (x^2 + x + 1)^2$.

Definition 3.7. Two nonzero polynomials are relatively prime if there is no polynomial of positive degree dividing both of them.

Example 3.8

Over \mathbb{Z}_2 , we know that x^3+x+1 and x^4+x^2+1 are relatively prime, because x^3+x+1 is irreducible, and thus the only factor of positive degree is x^3+x+1 . However, $(x^3+x+1)|x^4+x^2+1$, since the quotient would be linear (but x^4+x^2+1 has no zeroes).

Remark 3.9. In this way we see that distinct monic irreducible polynomials are relatively prime.

Theorem 3.10

If f(x), g(x) are relative prime, three exists u(x) and $v(x) \in \mathbb{F}[x]$ such that f(x)u(x)+g(x)v(x)=1.

Lemma 3.11

Suppose that f and g are polynomials that are relatively prime and f|gh. Then f|h.

Proof.

We know that 1 = fu + gv, and therefore h = fuh + ghv, which means that f|h.

Theorem 3.12

If $\phi(x)$ is irreducible and $\phi(x)|f(x)g(x)$, then $\phi(x)|f(x)$ or $\phi(x)|g(x)$.

Theorem 3.13 (Unique Factorisation)

If $f(x) \neq 0$, we can write $f(x) = c \prod_{i=1}^{n_s} \phi_s(x)^{n_s}$, where $c \in \mathbb{F} \setminus \{0\}$ and $\phi_i(x)$ are distinct monic irreducible polynomials with $n_i \geq 1$.

The factorisation is unique up to the ordering of the factors.

Example 3.14

Factor into irreducible polynomials over $\mathbb{F} = \mathbb{Z}_3 \ x^4 + x^2 + 1 = x^4 - 2x^2 + 1 = (x^2 - 1)^2$.

Remark 3.15. If $f(x) \neq 0$ and $f(x) = c \prod_{i=1}^{n_s} \phi_s(x)^{n_s}$, then the possible factors of f(x) are $d \prod_{i=1}^{k_s}$ for $0 \leq k_i \leq n_i$ and $d \in \mathbb{F} \setminus \{0\}$.

4 Minimal Polynomials

Let V be a finite dimensional vector space over \mathbb{F} .

Suppose that $T \in \text{End}(V)$ has a characteristic polynomial f(t) with $\deg(f) = \dim$.

Recall that by Cayley-Hamilton Theorem we have that f(T) = 0.

Note that, however, f might not be monic, so we can rescale it in such a way that there exists a monic polynomial g of degree dim V such that g(T) = 0.

Definition 4.1. A minimal polynomial of T is a monic polynomial of the least degree such that p(T) = 0.

Remark 4.2. Note that $1 \leq \deg(p) \leq \dim V$.

By Cayley-Hamilton Theorem, a minimal polynomial exists.

e.g. If $\dim V = n$ and T = I, then t - 1 is a minimal polynomial of T.

Example 4.3

For $V = \mathbb{F}^2$, $A \in M_{2\times 2}(\mathbb{F})$ such that $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, then the characteristic polynomial is a minimal polynomial, because $A - \lambda I \neq 0$ for all $c \in \mathbb{F}$.