II Cosinus et Sinus

1. Généralités

Définition. Soit t un nombre réel, et M son image sur le cercle trigonométrique : autrement dit M est le point de $\mathcal C$ tel que l'angle orienté $\left(\overrightarrow{\iota};\overrightarrow{OM}\right)=t$ (modulo 2π). Le cosinus de t (noté $\cos(t)$ ou $\cos t$) est l'abscisse de M et le sinus de t (noté $\sin(t)$ ou $\sin t$) est l'ordonnée de M

Propriété. Pour tout réel t et tout entier relatif k on a :

- \bullet $-1 \le \cos t \le 1$
- $\cos(t + k \times 2\pi) = \cos t$
- $\bullet -1 \le \sin t \le 1$
- $\sin(t + k \times 2\pi) = \sin t$
- $\bullet \cos^2 t + \sin^2 t = 1$

Propriété. On a les valeurs suivantes :

t	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos t$						
$\sin t$						

Définition. Étant donnés deux vecteurs non nuls \overrightarrow{u} et \overrightarrow{v} on définit le cosinus et le sinus de l'angle orienté $(\overrightarrow{u}; \overrightarrow{v})$ (notés $\cos(\overrightarrow{u}; \overrightarrow{v})$ et $\sin(\overrightarrow{u}; \overrightarrow{v})$) comme le cosinus et le sinus de leur mesure principale.

2. Angles associés

Propriété. Pour tout $t \in \mathbb{R}$ on a les formules suivantes

Bilan. Placer sur le cercle trigonométrique les cosinus et sinus des angles de mesures $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$ et de leurs angles associés. (voir livre p 293).

