

رگرسیون

۱. در مسئله رگرسیون فرض کنید

$$y = w^T \phi(x) + \epsilon$$
, $\epsilon \sim N(0, \sigma^2)$

 $y \in R$, $x \in R^d$, $\phi: R^d \to R^d$, $w \in R^{d \times 1}$, $\epsilon \in R$ بطوری که

نشان دهید

$$y \sim N(w^T \varphi(x), \sigma^2)$$

(راهنما: درباره تابع مولد گشتاور توزیع نرمال تحقیق کنید)

۲. مسئله رگرسیون خطی ساده را در نظر بگیرید (از دیدگاه آماری).

$$y_i = w_0 + w_1 x_i + \epsilon_i, \ \epsilon_i {\sim} N(0,\sigma^2), \ i = 1, \ldots, n$$

بنابر سوال قبل مى توان نتيجه گرفت

$$y_i \sim N(w_0 + w_1 x_i, \sigma^2)$$

الف) در این حالت، برآورد بیشینه درستنمایی از پارامترهای w_0,w_1,σ^2 را بدست آورید. $(w_0^{MLE},w_1^{MLE},\sigma_{MLE}^2)$

ب) بنابر قسمت الف، نشان دهيد

$$w_0^{MLE} = \bar{y} - w_1^{MLE}.\bar{x},$$
$$w_1^{MLE} = \frac{s_{xy}}{s_x^2}$$

۳. مجموعه داده زیر را در نظر بگیرید

X	Y
5	2
0	1
2	1
1	1
2	0

بنابر برآوردگرهای سوال ۲، برآوردهای w_0, w_1 و σ^2 (واریانس خطاها) را برای این مجموعه داده بدست آورید.

۴. مسئله رگرسیون چند جملهای را در نظر بگیرید بطوری که

$$y(x_n, w) = \sum_{j=0}^{M} w_j(x_n)^j, \quad n = 1, ..., N$$
 (1)

و فرض کنید تابع خطا بصورت زیر تعریف شده است

$$E(w) = 0.5 \sum_{n=1}^{N} (y(x_n, w) - t_n)^2$$
 (2)

معادله رابطه ۱ با تابع خطا رابطه ۲ را در نظر بگیرید. نشان دهید که ضرایب $w=\{w_i\}$ باید مقادیر زیر را داشته باشند تا رابطه ۲، کمینه شود.

$$\sum_{j=0}^{M} A_{ij} w_j = T_i,$$

که در آن

$$A_{ij} = \sum_{n=1}^{N} (x_n)^{i+j}, \qquad T_i = \sum_{n=1}^{N} (x_n)^i t_n$$

مقدمات

۵. مجموعه داده زیر را در نظر بگیرید

	X1	X2	X3	X4
x_1^T	2	1	1	2
x_2^T	3	0	2	4
x_3^T	4	2	3	6
x_4^T	0	1	4	8

الف) میانگین نمونهها را براساس برآوردگر سازگار میانگین جامعه بدست آورید.

ب) ماتریس کواریانس نمونه را بدست آورید و هر درایه از آن را توصیف کنید.

به فرض کنید X_1, \dots, X_n متغیرهای تصادفی مستقل و هم توزیع باشند یعنی $X_1, \dots, X_n \sim Ber(heta)$

الف) (معادل با مسئله رگرسیون لجستیک) فرض کنید نمونههای مشاهده شده x_1,\dots,x_n بهترتیب از متغیرهای تصادفی بالا داریم. در این حالت، برآورد بیشینه درستنمایی از پارامتر θ را بدست آورید ($\hat{\theta}_{MLE}$).

ب) (معادل با مسئله رگرسیون لجستیک بیزی) در حالت الف، با استفاده از دیدگاه فراوانی، مقداری از θ را برآورد کردیم تا تابع درستنمایی بیشینه شود. حال فرض کنید قصد داریم از دانش قبلی برای پارامتر θ استفاده کنیم. این عمل را با قرار دادن یک توزیع بر روی θ انجام می دهیم. چون θ پارامتر احتمال است، بنابراین باید همیشه بین θ و اباشد. یک توزیع مناسب برای θ ، توزیع بتا است یعنی

$$\theta \sim Beta(\alpha, \beta), \qquad f(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \; \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

تابع احتمال پسین $f(\theta|x_1,...,x_n)$ را بدست آورید و سپس نقطهای از θ را برآورد کنید تا این تابع بیشینه شود $(\widehat{ heta}_{MAP})$.

$$f(\theta|x_1,...,x_n) = \frac{f(x_1,...,x_n|\theta).f(\theta)}{\int_0^1 f(x_1,...,x_n|\theta).f(\theta) d\theta}$$

۷. (امتیازی) (رگرسیون خطی بیزی) فرض کنید

$$Y|X_1,\dots,X_n,\theta\sim^{iid}N(X\theta,\sigma^2I_n), i=1,\dots,n$$

$$\theta\in R^{p\times 1}$$

$$Y\in R^{n\times 1}$$

ماتریس X یک ماتریس p imes n است که سطر iام آن، X است.

الف) تابع چگالی توأم مدل بالا را بنویسید.

برای پارامتر $heta^2$ و σ^2 بصورت زیر است (conjugate) برای پارامتر σ^2 بصورت زیر است

 $\theta, \sigma^2 \sim N(\mu_0, \sigma^2 S_0)$. $Inv_Gamma(v_0, \alpha_0)$

بطوری که $S_0 \in \mathbb{R}^{p imes p}$ و S_0 اسکالر هستند و بر اساس اطلاعات پیشین، مقدار دقیقی را دریافت می کنند. (اگر هیچ اطلاعاتی موجود نباشد، از پیشینهای فاقد اطلاعات یا non-informative استفاده می شود.) در این حالت توزیع پسین $p(\theta | X_1, \dots, X_n)$ را بدست آورید.