

IUT - Département Informatique

Théorie des langages

Maths 2013-2014

Devoir Surveillé

Sans documents, durée 1h30

1 Grammaires algébriques

 $\boxed{\mathbf{1}}$ Soit la grammaire $\mathcal G$ ci dessous, d'axiome S

$$\left| \begin{array}{ccc|c} S & \to & aSa & T & \to & bTb \\ S & \to & T & T & \to & \epsilon \end{array} \right|$$

- 1. Dessinez l'arbre de dérivation du mot aabbaa.
- 2. Quel est le langage engendré par G?

2 Les **palindromes** sont des mots qui se lisent de la même façon dans les 2 sens). Par exemple $\epsilon, aaa, abba, aaabbaaa$ sont des palindromes.

- 1. Donnez une grammaire pour les palindromes sur $A=\{a,b\}$
- 2. Montrez l'arbre de dérivation du mot babab.

3 Dans le manuel d'un langage de programmation, la syntaxe des *instructions* est définie ainsi

à partir des conditions, des affectations etc.

- 1. Montrez que cette grammaire est ambigüe
- 2. Proposez une modification du langage pour éviter ce problème.

4 Soit \mathcal{G}_1 , \mathcal{G}_2 les grammaires - d'axiomes respectifs - S_1 et S_2 , qui reconnaissent deux langages algébriques L_1 et L_2 . Montrez comment, en y ajoutant un axiome S et quelques règles, on peut construire des grammaires pour :

- 1. le produit par concaténation L_1L_2 ,
- 2. I'union $L_1 + L_2$,
- 3. l'étoile L_1^* .

2 Langages rationnels

Donnez un automate déterministe sur l'alphabet $A = \{a, b, c\}$ qui reconnaisse le langage L_1 des mots qui commencent par le préfixe ab.

[6] Même question pour L_2 , les mots qui finissent par le suffixe bc.

7 Expliquez comment construire un automate qui reconnait l'intersection de deux langages rationnels, en l'illustrant sur le cas de $L_1 \cap L_2$.

3 Expressions régulières

 $\fbox{\bf 8}$ Par définition, l'étoile de Kleene d'un langage L est

$$L^* = \epsilon + L + L^2 + L^3 + \dots$$

Prouvez que pour tout L:

$$L^* = \epsilon + LL^* \tag{1}$$

$$L^*L^* = L^* \tag{2}$$

$$(L^*)^* = L^* (3)$$

9 Est-ce que $(L_1 + L_2)^* = L_1^* + L_2^*$? (justifiez).

 $\boxed{\mathbf{10}}$ Soit \mathcal{A} l'automate non-déterministe ci-dessous, où l'état 0 est initial, et 3 est final.

- 1. Quelles équations entre le langage L reconnu par A et L_0, L_1, \ldots (liés aux états).
- 2. En déduire une expression régulière pour L.