Chapitre 4 - Calcul différentiel

Dans tout le chapitre, E, F, G sont des \mathbb{R} -evn de dim $< +\infty$ non nulles (avec $n = \dim E$, $p = \dim F$), U désigne un ouvert de E et I un intervalle ouvert de \mathbb{R} .

1. Dérivation d'une fonction d'une variable réelle à valeurs vectorielles

<u>Définition</u>: Soit I un ouvert non vide de \mathbb{R} , $f:I\subset\mathbb{R}\to F$. On dit que f est **dérivable** en a si le taux d'accroissement

$$\frac{1}{t} \big(f(a+t) - f(a) \big)$$

admet une limite finie $\ell \in F$ lorsque $t \to 0$ ($t \ne 0$). Sa limite ℓ est alors appelée **vecteur dérivé** de f en a et noté f'(a).

<u>Définition</u>: Une fonction $f: I \subset \mathbb{R} \to F$ est dite dérivable si elle l'est en tout point de l'ouvert non vide I. On peut alors introduire l'application $f': I \to F$ appelée fonction dérivée de f.

$$t \mapsto f'(t)$$

<u>Théorème</u>: Soient $B=(e_1,\ldots,e_p)$ une base de F et $f:I\subset\mathbb{R}\to F$ de fonction coordonnées f_1,\ldots,f_p dans la base B. On a équivalence entre :

- (i) f est dérivable sur I
- (ii) Les fonctions f_1, \dots, f_p sont dérivables sur I

De plus, si tel est le cas, on a

$$\forall t \in I, f'(t) = \sum_{k=1}^{p} f'_k(t)e_k$$

Proposition:

Soient $f,g:I\to F$ deux fonctions dérivables sur I. Pour tout $\lambda\in\mathbb{R}$, la fonction $\lambda f+g$ est aussi dérivable sur I et

$$\forall t \in I, (\lambda f + g)'(t) = \lambda f'(t) + g'(t)$$

2. <u>Différentielle d'une fonction</u>

1) Développement limité à l'ordre 1

<u>Définition:</u>

Soient $f:U\subset E\to F$ et $a\in U$. On dit que f admet un développement limité à l'ordre 1 en a s'il existe une application linéaire $u:E\to F$ et une fonction ε définie au voisinage de 0_E telle que

$$f(a+h) = f(a) + u(h) + ||h|| \varepsilon(h)$$
, avec $\varepsilon(h) \xrightarrow[h \to 0_F]{} 0_F$

On notera alors f(a + h) = f(a) + u(h) + o(||h||) lorsque $h \to 0_E$.

Exemple:

Pour
$$f:\mathbb{R}^2 \to \mathbb{R}$$
 , prenons $\|\ \|_2$ sur \mathbb{R}^2 .
$$(x,y) \mapsto f(x,y)$$
 f admet un DL_1 en $(0,0)$ ssi $\exists a,b \in \mathbb{R}$ tq
$$f(h_1,h_2) = f(0,0) + ah_1 + bh_2 + \mathop{o}_{(h_1,h_2) \to (0,0)} (\|(h_1,h_2)\|)$$

<u>Proposition</u>: Soient $f: U \subset E \to F$ et $a \in E$. Si f admet un développement limité à l'ordre 1 en a, il y a unicité de l'application linéaire u décrivant le développement limité.

2) Différentiabilité en un point

<u>Définition</u>: Soit $f:U\subset E\to F$. On dit que f est **différentiable** en $a\in U$ s'il existe une application linéaire $u:E\to F$ telle que :

$$\lim_{\substack{h \to 0_E \\ h \neq 0_E}} \frac{\|f(a+h) - f(a) - u(h)\|_F}{\|h\|_E} = 0_E$$

Remarque: Puisque nous sommes dans des evn de dim finie, toutes les normes sont équivalentes et la notion de limite est invariante par passage à une norme équivalente, donc on peut choisir les normes que l'on veut sur E et F. Ainsi on marquera donc $\|\cdot\|$ pour toutes les normes dans la suite du cours.

<u>Proposition</u>: Soient $f:U\subset E\to F$ et $a\in U$. On a équivalence entre :

- (i) f est différentiable en a
- (ii) f admet un développement limité à l'ordre 1 en a.

<u>Proposition</u>: Si f est différentiable en a, l'application linéaire u est unique. On la note $\mathrm{d}f(a)$, appelée différentielle de f en a.

Exemple:

- 1) Soit $f: E \to F$ une fonction constante (telle que $\forall x \in E, f(x) = C$) Soit $a \in E, \forall h \in E, f(a+h) = C = f(a) = f(a) + \underbrace{0_F}_{u(h)} + \underbrace{0_F}_{\|h\| \times 0_F}$ Donc $f(a+h) = f(a) + u(h) + \|h\| \varepsilon(h)$ avec $\varepsilon: h \mapsto 0_F$ et $u: E \to F, h \mapsto 0_F$ Comme $u \in \mathcal{L}(E,F)$, ceci montre que f admet un DL_1 en a donc f est différentiable en a et $\mathrm{d}f(a) = u = 0_{\mathcal{L}(E,F)}$
- 2) Soit $f: E \to F$ linéaire. Soit $a \in E, \forall h \in E,$ f(a+h) = f(a) + f(h) = f(a) + f(h) + f(h) = f(h) + f(h) + f(h) + f(h) = f(h) + f(h) + f(h) + f(h) = f(h) + f(h) + f(h) = f(h) + f(h) + f(h) + f(h) + f(h) = f(h) + f(

<u>Théorème</u>: Soit $f: U \subset E \to F$. Si f est différentiable en $a \in U$, alors f est continue en a.

<u>Proposition</u>: Soient I un intervalle ouvert non vide de $\boxed{\mathbb{R}}$, $a \in I$ et $f: I \to F$. On a équivalence entre :

- (i) f est différentiable en a,
- (ii) f est dérivable en a.

Dans ce cas, on a alors

$$df(a): \mathbb{R} \to F$$
 et $f'(a) = df(a)(1)$
 $h \mapsto hf'(a)$

Où
$$f'(a) = \lim_{t \to 0} \frac{1}{t} (f(a+t) - f(a)).$$

3) Fonctions différentiables

<u>Définition</u>: Une fonction $f:U\subset E\to F$ est dite **différentiable** (sur U) si elle est différentiable en tout point de a de U. L'application

$$df: U \to \mathcal{L}(E, F)$$

 $a \mapsto df(a)$

est alors appelée différentielle de f.

<u>Théorème</u>: Les fonctions différentiables sont continues.

<u>Proposition</u>: Si $f: E \to F$ est constante, alors f est différentiable et sa différentielle est l'application nulle: pour tout $a \in E$, df(a) = 0, où 0 = 0.

<u>Proposition</u>: Si $f: E \to F$ est linéaire, alors f est différentiable et sa différentielle est constante :

$$\forall a \in E, df(a) = f$$

Exemple:

<u>Proposition</u>: Soient I un intervalle ouvert (non vide) de \mathbb{R} et $f:I\subset\mathbb{R}\to F$. On a l'équivalence :

f est différentiable $\Leftrightarrow f$ est dérivable