A Network Model for Dynamic Textual Communications with Application to Government Email Corpora

Bomin Kim¹ Aaron Schein³ Bruce Desmarais ¹ Hanna Wallach^{2,3}

¹ The Pennsylvania State University

² Microsoft Research NYC

³ University of Massachusetts Amherst

June 9, 2017

Interaction-Partitioned Topic Model (IPTM)

- ► Probablistic model for time-stamped textual communications (e.g. emails, cosponsorship of bills, international sanctions)
- ▶ Integration of two generative models:
 - Latent Dirichlet allocation (LDA) for topic-based contents
 - Dynamic exponential random graph model (ERGM) for ties
- ▶ IPTM assigns each topic to an "interaction pattern," which is governed by a set of dynamic network features

"who communicates with whom about what, and when?"

Content Generating Process: LDA (Blei et al., 2003)

- ▶ For each topic k = 1, ..., K:
 - 1. Topic-word distribution $\phi^{(k)} \sim \mathsf{Dirichlet}(\beta, \mathbf{u})$
 - A topic k is characterized by a discrete distribution over V word types with probability vector $\phi^{(k)}$.
 - 2. Topic-IP distribution $c_k \sim \mathsf{Uniform}(1,C)$
 - Each topic is associated with a single interaction pattern.
- For each document d = 1, ..., D:
 - 3-1. Document-topic distribution $oldsymbol{ heta}^{(d)} \sim \mathsf{Dirichlet}(lpha, oldsymbol{m})$
 - A document d is characterized by a discrete distribution over K topics with probability vector $\boldsymbol{\theta}^{(d)}$.
 - 3-2. For each word in a document n=1 to $N^{(d)}$:
 - (a) Choose a topic $z_n^{(d)} \sim \mathsf{Multinomial}(\pmb{\theta}^{(d)})$
 - (b) Choose a word $w_n^{(d)} \sim \mathsf{Multinomial}(\phi^{(z_n^{(d)})})$
 - 3-3 Calculate the distribution of interaction patterns within a document:

$$p_c^{(d)} = \left(\sum_{k:c,-c} N^{(k|d)}\right) / N^{(d)},\tag{1}$$

Dynamic Network Features (Perry and Wolfe, 2012)

9 different effects as components of $\boldsymbol{x}_t^{(c)}(i,j)$, (intercept, outdegree, indegree, send, receive, 2-send, 2-receive, sibling, and cosibling) to measure popularity, centrality, reciprocity, and transitivity

$$\lambda_{ij}^{(d)}(t) = \sum_{c=1}^{C} p_c^{(d)} \cdot \exp\left\{\lambda_0^{(c)} + \boldsymbol{b}^{(c)T} \boldsymbol{x}_t^{(c)}(i,j)\right\},\tag{2}$$

$$\lambda_{iJ}^{(d)}(t) = \sum_{c=1}^{C} p_c^{(d)} \cdot \exp\left\{\lambda_0^{(c)} + \frac{1}{|J|} \sum_{j \in J} \boldsymbol{b}^{(c)T} \boldsymbol{x}_t^{(c)}(i,j)\right\}. \tag{3}$$

Tie Generating Process

1. (Data augmentation) For each sender $i \in \{1,...,A\}$, create binary receiver vector of length A-1, $J_i^{(d)}$, by applying the non-empty Gibbs measure to every $j \in \mathcal{A}_{\backslash i}$.

$$\mathsf{P}(J_i^{(d)}) = \frac{1}{Z(\delta, \log(\lambda_i^{(d)}))} \exp\Big\{ \log \Big(\mathsf{I}(\sum_{j \in \mathcal{A}_{\backslash i}} J_{ij}^{(d)} > 0) \Big) + \sum_{j \in \mathcal{A}_{\backslash i}} (\delta + \log(\lambda_{ij}^{(d)})) \Big\}$$

2. For every sender $i \in \mathcal{A}$, generate the time increments

$$\Delta T_{iJ_i} \sim \mathsf{Exp}(\lambda_{iJ_i}^{(d)}).$$
 (5)

3. Set timestamp, sender, and receivers simultaneously (NOTE: $t^{(0)}=0$):

$$\begin{split} t^{(d)} &= t^{(d-1)} + \min(\Delta T_{iJ_i}), \\ i^{(d)} &= i_{\min(\Delta T_{iJ_i})}, \\ J^{(d)} &= J_{i^{(d)}}. \end{split} \tag{6}$$

Inference - Pseudocode

Algorithm 1 MCMC

```
set initial values \mathcal{Z}^{(0)}, \mathcal{C}^{(0)}, and (\mathcal{B}^{(0)}, \delta^{(0)})
for o=1 to O do
     for n=1 to n_1 do
          optimize \alpha and m using hyperparameter optimization in [?]
     end
     for d=1 to D do
          for i \in \mathcal{A}_{\setminus i_{\alpha}^{(d)}} do
          sample the augmented data J_i^{(d)}
          end
          for n=1 to N^{(d)} do
           draw of z_n^{(d)} \sim \mathsf{Multinomial}(p^{\mathcal{Z}})
          end
     end
     for k=1 to K do
      draw C_k \sim \mathsf{Multinomial}(p^{\mathcal{C}})
     end
     for n=1 to n_2 do
          sample \mathcal{B} using M-H
```

Data: North Carolina Dare county email data

▶ D=1456 emails between A=27 county government managers, covering 2 month periods (October 1 - November 30) in 2013

Effect of Hurricane Sandy

IPTM Result

Conclusion

- ▶ Joint modeling of ties (sender, receiver, time) and contents
- ▶ Allowance of multicast multiple senders and/or receivers
- ▶ Possible application to