Learning Deep Latent-variable MRFs with Amortized Bethe Free Energy Minimization

Sam Wiseman

Motivating Questions

- How good are popular approximate inference methods at learning deep structured models with discrete latent variables?
- Are there learning objectives for such models that don't require sampling-based gradient estimators?

Main Idea

- Use a learning objective based on the Bethe free energy (BFE) approximation to the partition function.
- The BFE approximation can be computed exactly for many models of interest.
- This is only an advantageous approximation for undirected models (i.e., MRFs).

Bethe Approximations

Notation:

- Denote a factor graph by $\mathcal{G} = (\mathcal{V} \cup \mathcal{F}, \mathcal{E})$.
- $m{x}$: observed variables in $m{\mathcal{V}}$
- $oldsymbol{z}$: latent variables in ${\mathcal V}$
- \boldsymbol{x}_{α} : subvector of \boldsymbol{x} associated with factor α
- Ψ_{α} : potential func. associated with factor α
- $\mathbf{Z}(\boldsymbol{\theta}) = \sum_{\boldsymbol{x}'} \sum_{\boldsymbol{z}'} \prod_{\alpha} \Psi_{\alpha}(\boldsymbol{x}'_{\alpha}, \boldsymbol{z}'_{\alpha}; \boldsymbol{\theta})$
- $\mathbf{Z}(\boldsymbol{x}, \boldsymbol{\theta}) = \sum_{\boldsymbol{z}'} \prod_{\alpha} \Psi_{\alpha}(\boldsymbol{x}_{\alpha}, \boldsymbol{z}'_{\alpha}; \boldsymbol{\theta})$
- **BFE** (Bethe, 1935; Yedidia et al., 2001):

$$F(\boldsymbol{\tau}) = \text{KL}[q_{\boldsymbol{\tau}}(\boldsymbol{x}, \boldsymbol{z}) || P(\boldsymbol{x}, \boldsymbol{z}; \boldsymbol{\theta})] - \log Z(\boldsymbol{\theta})$$

$$= \sum_{\alpha} \sum_{\boldsymbol{x}'_{\alpha}, \boldsymbol{z}'_{\alpha}} \boldsymbol{\tau}_{\alpha}(\boldsymbol{x}'_{\alpha}, \boldsymbol{z}'_{\alpha}) \log \frac{\boldsymbol{\tau}_{\alpha}(\boldsymbol{x}'_{\alpha}, \boldsymbol{z}'_{\alpha})}{\Psi_{\alpha}(\boldsymbol{x}'_{\alpha}, \boldsymbol{z}'_{\alpha})}$$

$$- \sum_{v \in \mathcal{V}} (\text{ne}(x_v) - 1) \sum_{x'_{\alpha}} \boldsymbol{\tau}(x'_v) \log \boldsymbol{\tau}(x'_v)$$

• $\boldsymbol{\tau}_{\alpha}(\boldsymbol{x}_{\alpha},\boldsymbol{z}_{\alpha})$: (pseudo) marginal associated with factor α

Partition Function Approximation:

- Let $\mathcal C$ contain all locally consistent, (pseudo) marginals.
- For a tree, $\min_{\boldsymbol{\tau} \in \mathcal{C}} F(\boldsymbol{\tau}) = -\log Z(\boldsymbol{\theta})$.
- Otherwise, $\min_{\boldsymbol{\tau} \in \mathcal{C}} F(\boldsymbol{\tau}) \approx -\log Z(\boldsymbol{\theta})$.
- Loopy BP finds stationary points of $\min_{\boldsymbol{\tau} \in \mathcal{C}} F(\boldsymbol{\tau})$ (Yedidia et al., 2001).

Why the BFE is Attractive

- Only linear in the number of factors!
- But, having a large number of low-degree factors is only interesting for MRFs (c.f., products of experts (Hinton, 2002) and Figure 1).

Flavors of High-order HMM

A BFE-based Objective

• Replace clamped and unclamped partition functions in the log marginal with their BFE approximations:

$$-\log p(\boldsymbol{x}; \boldsymbol{\theta}) = -Z(\boldsymbol{x}, \boldsymbol{\theta}) + Z(\boldsymbol{\theta})$$

$$\approx \min_{\boldsymbol{\tau}_{\boldsymbol{x}} \in \mathcal{C}} F_{\boldsymbol{x}}(\boldsymbol{\tau}_{\boldsymbol{x}}) - \min_{\boldsymbol{\tau} \in \mathcal{C}} F(\boldsymbol{\tau})$$

• Gives rise to a saddle-point objective:

$$\min_{\boldsymbol{\theta}} \ell_F(\boldsymbol{\theta}) = \min_{\boldsymbol{\theta}} [\min_{\boldsymbol{\tau_x} \in \mathcal{C}} F_{\boldsymbol{x}}(\boldsymbol{\tau_x}) - \min_{\boldsymbol{\tau} \in \mathcal{C}} F(\boldsymbol{\tau})]$$

$$= \min_{\boldsymbol{\theta}, \boldsymbol{\tau_x} \in \mathcal{C}} \max_{\boldsymbol{\tau} \in \mathcal{C}} [F_{\boldsymbol{x}}(\boldsymbol{\tau_x}) - F(\boldsymbol{\tau})]$$

• We train inference networks f, f_x to output approximate minimizers of $F(\tau)$ and $F_x(\tau_x)$.

Constraining Optimization

- Local consistency and sum-to-one constraints are linear and can be eliminated:
- $\tau \leftarrow VV^+f(\mathcal{G}; \phi) + \hat{\tau}$, where V is a basis for the null space of the constraint matrix and $\hat{\tau}$ is feasible.
- We impose a linear penalty on negative elements of $\boldsymbol{V}\boldsymbol{V}^+f(\mathcal{G};\,\boldsymbol{\phi})+\hat{\boldsymbol{\tau}}.$

Experiments

- Model: 2nd or 3rd order neural HMM, K=20
- Data: Penn Treebank sentences, length ≤ 20
- We compare BFE minimization with VAE variants on true held-out PPL.

Model Parameterizations

Directed/VAE models:

- Neural directed HMM: emission and transition distributions parameterized by residual feed-forward nets.
- Mean-field (MF) inference net: BLSTM over input into linear decoder for each token.
- First-order (FO) inference net: 1st order neural HMM, but also conditions on averaged BLSTM states of input.

MRF/Bethe models:

- Pairwise HMM MRF: transition factors are residual feed-forward function of distance; emissions are the same as directed version.
- Bethe inference net: BLSTM over discrete representation of MRF edges and associated potentials into linear to predict marginals.

Results

	PPL	$\overline{\mathrm{ELBO}/\ell_F}$
2nd Order HMM		
MF VAE + BL	348.06	7318.82
MF IWAE, $L = 5$	338.07	7224.11
MF IWAE, $L = 10$	328.42	7087.25
FO HMM VAE	286.40	298.08
Exact	160.62	N/A
ℓ_F + true marginals	151.78	125.10
$\ell_F + f, f_x$	243.43	308.33
Exact	149.27	N/A
3rd Order HMM		
MF VAE + BL	350.98	7382.30
MF IWAE, $L = 5$	346.57	7290.14
MF IWAE, $L = 10$	335.24	7273.60
FO HMM VAE	270.25	274.12
Exact	159.78	N/A
ℓ_F + true marginals	170.07	152.88
$\ell_F + f, f_x$	253.35	254.54
Exact	141.71	N/A

ELBO Gradient Variance

