1 points

A term life insurance policy offered to employees at a software engineering firm will pay a beneficiary a certain sum of money should the policyholder die an untimely death. Suppose a recent female graduate who is 22 years old joins this firm. They by a \$250.00 19937. Cerm life insurance policy for \$350. According to the National Vital Statistics Report, the probability that a female will survive the year at 22 years of age is 0.99937. Compute the expected value of this policy to the insurance company.

Expected Value: $E(X) = \sum X \cdot P(X)$

$$E(X) = 250,000(1_0.998937) = $265.75$$

Question 3

In the discrete probability distribution below, calculate the value of $f_{_{\boldsymbol{X}}}(3)$:

X	$P(X \leq x)$	f
0	0.05	0.05
1	0.15	0.10
2	0.35	0.20
3	0.45	0.10
4	0.79	0.34
5	1	0.21

$$f_{x}(3) = 0.10$$

In the discrete probability distribution below, calculate the value of $F_{_{_{\boldsymbol{Y}}}}(3)$:

Х	P(X)
0	0.2
1	0.1
2	0.3
3	0.15
4	0.18
5	0.07

$$F_{x}(3) = 0.2 + 0.1 + 0.3 + 0.15$$

= 0.75

Question 5
Which random variables below are discrete? Select <u>all</u> that apply. ✓ A. The number of students that have the latest iPhone. ✓ B. The number of iPhones sold in a week at a local Apple store. ☐ C. The weight of various iPhone models. ☐ D. The amount of time students spend on their iPhones (instead of studying!). ✓ E. The number of defective iPhones in a shipment of 100 phones.
Question 6
Which random variables below are continuous? Select <u>all</u> that apply. ☐ A. The number of students that have the latest iPhone. ☐ B. The number of iPhones sold in a week at a local Apple store. ☑ C. The weight of various iPhone models. ☑ D. The amount of time students spend on their iPhones (instead of studying!). ☐ E. The number of defective iPhones in a shipment of 100 phones.

Question 8

Compute the standard deviation of the discrete probability distribution. Round to two decimal places.

<u>X</u>	<u>P(X)</u>
1	0.5
2	0.1
3	0
4	0.22
5	0.10
6	0.08

Standard distribution: S.D = Variance : 0

$$O^2 = E(X - \mu)^2 \cdot P(X)$$

.
$$\mu = 1(0.5)_{+} 2(0.7)_{+} 3(0)_{+} 4(0.22)_{+} 5(0.70)_{+} 6(0.08) = 2.56$$

$$+ (5 - 2.56)^{2}(0.10) + (6 - 2.56)^{2}(0.08)$$

$$= 5.44544$$

The table below gives all possible values of the random variable X and their respective probabilities, P(X). Calculate the mean of the random variable, X. Do not round your

Χ	P(X)
0	0.1
2	0.3
7	0.45
12	0.15

$$\mu = 00.1_{+} 2(0.3)_{+} 7(0.45)_{+} 12(0.15) = 5.55$$

Ouestion 7 1 points Save Answ Use the joint distribution of X and Y to compute E(X). Do not round decimals at all. \boldsymbol{x} 1 3 4 0 0.22 0.060.060.100.100.100.040.040.28 0.400.100 0.50 0 0.14 0.50 0.26 0.1 E(X) = 1(0.5) + 2(0.26) + 3(0.1) + 4(0.14) = 1.88

$$Var(X) = (1_{1.88})^{2}(0.5)_{+} (2_{1.88})^{2}(0.26)_{+} (3_{1.88})^{2}(0.1)_{+} (4_{1.88})^{2}(0.14)$$

$$= 1.1456$$

$$\frac{P(Y=2 \mid X=3)}{X=3} = \frac{P(Y=2 \cap X=3)}{X=3} = \frac{0.04}{0.1} = 0.4 = \frac{2}{5}$$

E(Y) = 1(0.22) + 2(0.28) + 3(0.5) = 2.28

$$P(Y=1|X=L) = 0.1 = 5$$

E(X)E(Y) = (1.88)(2.28) = 4.2864

Given the transformation Z = XY, find P(Z = 2):

	x				
P((x,y)	1	2	3	4
	1	0	0.06	0.06	0.10
y	2	0.10	0.10	0.04	0.04
	3	0.40	0.10	0	0

$$Z = XY$$

Question 10

Compute the standard deviation of the discrete probability distribution. Round to two decimal places.

<u>X</u>	<u>P(X)</u>
0	0.2
1	0
2	0.3
3	0.1
4	0.15
5	0.25

$$\mu = 0(0.2) + 1(0) + 2(0.3) + 3(0.1) + 4(0.15) + 5(0.25) = 2.75$$

$$\mathfrak{S}^2 = \sum (x_{\mu})^2 \cdot P(x)$$

= $(0.8.75)^2 (0.8)$

$$= (0_{2}.75)^{2}(0.2)_{+} (1_{2}.75)^{2}(0)_{+} (2_{2}.75)^{2}(0.3)_{+} (1_{2}.75)^{2}(0.15)_{+} (5_{2}.75)^{2}(0.25)$$

$$O = \sqrt{3.1875} = 1.79$$

$$0' = 13.1819 = 1.19$$