Math 131A Homework 1

Jiaping Zeng

8/3/2020

1.1 Prove $1^2 + 2^2 + ... + n^2 = \frac{1}{6}n(n+1)(2n+1)$ for all positive integers n.

Answer: By induction.

Base case (n = 1): $1 = \frac{1}{6}(1+1)(2+1) \implies 1 = 1$ which is true.

Inductive step: Assume $1^2+2^2+\ldots+n^2=\frac{1}{6}n(n+1)(2n+1)$ is true, we want to show that $1^2+2^2+\ldots+n^2+(n+1)^2=\frac{1}{6}(n+1)(n+2)(2n+3)$ is true. We can do so by adding $(n+1)^2$ to both sides of the equation as follows:

$$1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2} = \frac{1}{6}n(n+1)(2n+1) + (n+1)^{2}$$

Factoring out (n+1) from both terms on the right hand side:

$$1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2} = (n+1)(\frac{1}{6}n(2n+1) + (n+1))$$

$$\implies 1^2 + 2^2 + \dots + n^2 + (n+1)^2 = (n+1)(\frac{1}{6}n(2n+1) + (n+1))$$

- 1.9 (a) Decide for which integers the inequality $2^n > n^2$ is true.
 - (b) Prove your claim in (a) by mathematical induction.
- 1.11 For each $n \in \mathbb{N}$, let P_n denote the assertion " $n^2 + 5n + 1$ is an even integer."
 - (a) Prove P_{n+1} is true whenever P_n is true.
 - (b) For which n is P_n actually true? What is the moral of this exercise?
- 3.1
- 3.6
- 3.7
- 3.8
- 4.6
- 4.7

4.8

4.14

4.15

4.16

P1 Write down the converse and the contrapositive of the following statement regarding a real number x:

If
$$x > 0$$
, then $x^2 - x > 0$.

Then determine which (if any) of the three statements are true for all real numbers x.

Answer: Converse: if $x^2 - x > 0$, then x > 0, which is false by counterexample x = -1. Contrapositive: if $x^2 - x \le 0$, then $x \le 0$, which is false by counterexample x = 1.

P2 Prove that $\sqrt{3}$ is not rational.

Answer: By contradiction. Suppose $\sqrt{3}$ is rational, then by definition of rational numbers, there must exist $p,q\in\mathbb{Z}$ such that $\frac{p}{q}=\sqrt{3}$. By rearranging we have $p=\sqrt{3}q$; however, since $\sqrt{3}$ is not an integer, $\sqrt{3}q$ is also not an integer. Then by extension p is not an integer, which contradicts our initial assumption. Therefore $\sqrt{3}$ is not rational.