Existența și unicitatea soluției problemei Cauchy pentru ecuații diferențiale scalare de ordin 1 (Partea a II-a)

Curs Nr. 3

Demonstrația Teoremei Cauchy-Picard

Demonstrația unicității soluției teoremei Cauchy-Picard

Fie $\phi(\cdot): I_1 \to \mathbb{R}, \ \psi(\cdot): I_2 \to \mathbb{R}$ soluții ale problemei Cauchy (f, t_0, x_0) .

$$\phi(t_0) = \psi(t_0) = x_0 (t_0, x_0) \in I_1, \ \Gamma_{\phi} \subset D_1 (t_0, x_0) \in I_2, \ \Gamma_{\psi} \subset D_2$$

Din **Lema 2** (de reprezentare integrală a soluției) avem:

$$\phi(t) = x_0 + \int_{t_0}^t f(s, \phi(s)) \, \mathrm{d}s$$
$$\forall t \in I_1 \cap I_2.$$
$$\psi(t) = x_0 + \int_{t_0}^t f(s, \psi(s)) \, \mathrm{d}s$$

Calculăm pentru $t \in I_1 \cap I_2$:

$$|\phi(t) - \psi(t)| = \left| \int_{t_0}^t (f(s, \phi(s)) - f(s, \psi(s))) \, ds \right| \le \int_{t_0}^t \underbrace{f(s, \phi(s)) - f(s, \psi(s))}_{\le L|\phi(s) - \psi(s)|} \, ds \le L \int_{t_0}^t |\phi(s) - \psi(s)| \, ds$$

Notăm
$$\theta(t) = \int_{t_0}^{t} |\phi(s) - \psi(s)| ds$$
.

Pentru a demonstra unicitatea trebuie să arătăm că $\theta(t) = 0 \Rightarrow \theta'(t) = |\phi(t) - \psi(t)|$.

$$\theta'(t) \le L\theta(t) \Rightarrow \theta'(t) - L\theta(t) \le 0 / \cdot e^{-L(t-t_0)}$$

$$\iff \theta'(t)e^{-L(t-t_0)} - L\theta(t)e^{-L(t-t_0)} \le 0$$

$$\iff \underbrace{(\theta(t)e^{-L(t-t_0)})'}_{g(t)} \le 0$$

g(t) are derivata < 0, deci este descrescătoare. Deoarece θ este modul, iar exponențiala ≥ 0 , avem pentru $t \geq t_0 : 0 \leq g(t) \leq g(t_0), \ \forall t \in [t_0, t_0 + \alpha]$, unde $I_1 \cap I_2 = [t_0 - \alpha, t_0 + \alpha]$. Dar,

$$\begin{split} g(t_0) &= \theta(t_0) \cdot e^{-L(t-t_0)} = |\phi(t_0) = \psi(t_0)| = 0 \Rightarrow 0 \le g(t) \le 0 \Rightarrow \\ g(t) &= 0, \ \forall t \in [t_0, t_0 + \alpha] \Rightarrow \theta(t) = 0 \Rightarrow \phi(t) = \psi(t), \ \forall t \in [t_0, t_0 + \alpha] \end{split}$$

Atât existența cât și unicitatea au fost demonstrate pe jumătate de interval. La fel se procedează și pentru $t \in [t_0 - \alpha, t_0]$

Aplicație (pentru seminar)

Fie ecuația $\frac{dx}{dt} = \frac{3}{2}\sqrt[3]{x}$, definită de câmpul vectorial $f(\cdot,\cdot): \mathbb{R}^2 \to \mathbb{R}, \ f(t,x) = \frac{3}{2}\sqrt[3]{x}$.

a) Verifică f condițiile teoremei Cauchy-Picard pe \mathbb{R}^2 , $\forall (t_0, x_0) \in \mathbb{R}^2$? (Se poate construi dreptunghiul - D_1 - astfel încât funcția să îndeplinească condițiile teoremei ?)

b) Demonstrați că problema Cauchy (f,0,0) nu are soluție unică.

Obs. Teorema nu are și reciprocă.

Existența soluției maximale Necesitatea determinării soluției maximale (exemplu)

Considerăm problema Cauchy:
$$\begin{cases} \frac{dx}{dt} = \alpha(1+x^2) \\ x(0) = 0 \end{cases}, \ (t,x) \in \mathbb{R}^2.$$

$$\begin{split} \frac{dx}{1+x^2} &= \alpha dt \Rightarrow arctg(x) = \alpha t + k, \ k \in \mathbb{R} \\ arctg(0) &= 0 + k \Rightarrow k = 0 \Rightarrow \text{soluția este } arctg(x) = \alpha t \Rightarrow x = tg(\alpha t), \ \alpha t \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ x(t) &= tg(\alpha t), \ t \in \left(-\frac{\pi}{2\alpha}, \frac{\pi}{2\alpha}\right) \end{split}$$

Deci intervalul pe care este definită soluția se restrânge.

Teorema de existență a soluției maximale

Considerăm problema Cauchy $(f, t_0, x_0), t_0 \in [a, b]$ (nu e necesar ca intervalul să fie simetric în jurul lui t_0 cu $f(\cdot,\cdot):D=[a,b]\times\mathbb{R}\subset\mathbb{R}^2\to\mathbb{R},\ f$ continuă, $\frac{\partial f}{\partial x} \text{ este continuă, } [a,b] \times [x_0-\beta,x_0+\beta] \subset D, \ \forall \beta>0, \ f \text{ are creştere liniară, adică} \ \exists A,B\geq 0 \text{ astfel încât } |f(t,x)|\leq A|x|+B, \ \forall x\in\mathbb{R}, \ \forall t\in[a,b]. \ \hat{\text{In aceste}}$ condiții, problema Cauchy (f, t_0, x_0) are soluție $\phi : [a, b] \to \mathbb{R}$, iar aceasta este unică.

Demonstratie:

Considerăm $(\phi_i)_{i\geq 0}$ șirul de funcții din teorema Cauchy-Picard, extinse la intervalul [a, b]. Practic avem:

$$\phi_0(t) = x_0, \ \forall t \in [a, b]$$

$$\phi_{i+1}(t) = x_0 + \int_{t_0}^{t} f(s, \phi_i(s)) \, ds, \ \forall t \in [a, b].$$

 $\phi_{i+1}(t) = x_0 + \int_{t_0}^t f(s, \phi_i(s)) \, \mathrm{d}s, \ \forall t \in [a, b].$ Pentru ca $\phi: [a, b] \to \mathbb{R}(\phi_i \xrightarrow[i \to \infty]{} \phi)$ să fie soluție pe întreg intervalul [a, b] este suficient să arătăm că șirul $(\phi_i)_{i \geq 0}$ este mărginit în sensul următor:

$$\exists C_1, C_2 \ge 0 \text{ astfel } \hat{\text{incât}} |\phi_i(t)| \le C_1 e^{C_2(t-t_0)}, \ \forall t \in [a, b]$$

Pentru
$$i=0$$
 avem $|\phi_i(t)|=|x_0|$. Deci alegem $C_1\geq |x_0|$ şi $C_2\geq 0$.

Presupunem că am găsit C_1 și C_2 pentru ϕ_i și le verificăm în condiția de mărginire pentru ϕ_{i+1} , pentru $t \in [t_0, b]$. Pentru $t \in [a, t_0]$ se reia același raționament.

$$|\phi_{i+1}(t)| \leq |x_0| + \left| \int_{t_0}^t f(s,\phi(s)) \, \mathrm{d}s \right| \leq |x_0| + \int_{t_0}^t \underbrace{|f(s,\phi(s))|}_{\leq A|\phi_i(s)|+B} \, \mathrm{d}s \leq$$

$$\leq |x_0| + \int_{t_0}^t (A|\phi_i(s)|+B) \, \mathrm{d}s = |x_0| + B(t-t_0) + A \int_{t_0}^t \underbrace{|\phi_i(s)|}_{\leq C_1 \cdot e^{C_2(s-t_0)}} \, \mathrm{d}s \leq$$

$$\leq |x_0| + B(t-t_0) + AC_1 \int_{t_0}^t e^{C_2(s-t_0)} \, \mathrm{d}s =$$

$$= |x_0| + B(t-t_0) + AC_1 \frac{L}{C_2} e^{C_2(s-t_0)} \Big|_{t_0}^t =$$

$$= |x_0| + B(t-t_0) + \frac{AC_1}{C_2} \left(e^{C_2(t-t_0)} - 1 \right) =$$

$$= |x_0| + B(t-t_0) - \frac{AC_1}{C_2} + \frac{AC_1}{C_2} e^{C_2(t-t_0)}$$

Ne trebuie inegalitatea: $|\phi_{i+1}(t)| \leq C_1 e^{C_2(t-t_0)}$.

Aceasta rezultă din:
$$\begin{cases} |x_0| + B(t - t_0) - \frac{AC_1}{C_2} = 0 \Rightarrow C_1 = |x_0| + B(t - t_0), \ \forall t \in [t_0, b] \\ \frac{AC_1}{C_2} = C_1 \Rightarrow C_2 = A \end{cases}$$

Analog, pentru
$$t \in [a, t_0] \Leftarrow \begin{cases} C_2 = A \\ C_1 = |x_0| + B(t - t_0) \end{cases}$$
.

Deci alegem $C_2 = A, C_1 = |x_0| + B|t - t_0|$

Metode de aproximare a soluției problemei Cauchy

Se dă problema Cauchy:

$$\begin{cases} \frac{dx}{dt} = f(t, x) \\ x(t_0) = x_0 \end{cases}$$
 (1)

Presupunem f continuă și $\frac{\partial f}{\partial x}$ mărginită (sau spunem că f este Lipschitz în raport cu al doilea argument).

1. ŞIRUL APROXIMĂRILOR SUCCESIVE din teorema Cauchy-Picard Se construiesc funcțiile $(\phi_i)_{i\geq 0}$.

2. Avem problema Cauchy (1) și pentru $t_0 + T$ determinăm aproximarea soluției în $t_0 + T \approx x(t_0 + T)$.

Se împarte intervalul $[t_0,t_N]$ și se calculează pentru t_k valorile $x_k.$

h>0 este dat și reprezintă distanța dintre două puncte

$$N = \frac{T}{H}$$

$$t_k = t_{k-1} + h$$

$$t_k = t_0 + h, \ \forall k = \overline{0, N}$$

$$x_0 = x(t_0)$$

Din **Lema 2** avem pe $[t_k, t_{k+1}]$:

$$\phi(t_{k+1}) = \phi(t_k) + \int_{t_k}^{t_{k+1}} f(s, \phi(s)) ds.$$

Dacă se aplică o teoremă de medie, se obține că:

$$\exists \xi \in [t_k, t_{k+1}] \text{ astfel } \hat{\text{incat}} \int_{t_k}^{t_{k+1}} f(s, \phi(s)) \, \mathrm{d}s = f(\xi, \phi(\xi)) \, \mathrm{d}s \Rightarrow$$
$$\phi(t_{k+1}) = \phi(t_k) = hf(\xi, f(\xi)).$$

Atunci când aproximăm integrala, nu luăm întreaga arie, ci doar dreptunghiul.

SCHEMA EULER explicită de calcul a aproximărilor $(x_k)_{k=\overline{0,N}}$:

$$\begin{cases} x_0 \text{ din problema Cauchy} \\ x_{k+1} = x_k + hf(t_k, x_k), \ k = \overline{0, N-1} \end{cases}$$
 (2)

Trebuie să arătăm că acest șir converge la soluție.

pentru k+1.

Lema 3: Fie $(x_k)_{k=\overline{0,N}}$ şirul aproximărilor din (2) şi $M=\sup_{(t,x)\in D_f}|f(t,x)|$ constanta de mărginire a lui f pe D_f . Atunci avem: $|x_k-x_0|\leq Mkh$.

Demonstrație (prin inducție până la N): $\underline{k=1}$ $|x_1-x_0|=|x_0+hf(t_0,x_0)-x_0|=h|f(t_0,x_0)|\leq Mh=M\cdot 1\cdot h.$ Presupunem propoziția adevărată până la k $(i=\overline{1,k})$ și o demonstrăm

$$|x_{k+1}-x_0| = |x_k+hf(t_k,x_k)-x_0| \le |x_k-x_0|+h|f(t_k,x_k)| = Mkh+hM = M(k+1)h. \blacksquare$$