Introdução à Teoria dos Grafos

Aula 1

1. Definições e conceitos iniciais.

Definição 1. Um grafo é um par ordenado de conjuntos disjuntos (V, E) tais que E é um subconjunto de $V^{(2)}$, os pares não ordenados de V.

Observação 1. A menos que digamos o contrário, consideraremos apenas V e E finitos.

Notação 1. O conjunto V é o conjunto de vértices e E é o conjunto de arestas. Se G é um grafo, V = V(G) é o conjunto de vértices de G; e E = E(G), o conjunto de arestas.

Definição 2. Dizemos que uma aresta $\{x,y\}$ liga os vértices x e y, e a denotamos por xy ou yx. Se $xy \in E(G)$, então x e y são adjacentes ou vizinhos e x e y são incidentes com a aresta xy. Duas arestas são adjacentes se têm exatamente um vértice em comum.

Definição 3. G' = (V', E') é um subgrafo de G = (V, E) se $V' \subset V$ e $E' \subset E$. Nesse caso, escrevemos $G' \subset G$.

Definição 4. Se G', subgrafo de G, contém todas as arestas de G que ligam dois vértices em V', então G' é dito subgrafo induzido ou gerado por V' e é denotado por G[V']. Se V' = V, então G' é dito um subgrafo de extensão de G (tradução livre de "spanning").

Figura 1: Grafo G e subgrafos gerado e de extensão, respectivamente.

Notação 2. Se $W \subset V(G)$, então G - W = G[V - W] é o subgrafo de G obtido excluindo-se os vértices em W e todos as arestas incidentes com esses. Similarmente, se $E' \subset E(G)$, então G - E' = (V(G), E(G) - E'). Se $W = \{w\}$ e $E' = \{xy\}$, a notação é

simplificada para G - w e G - xy. Similarmente, se x e y são vértices não adjacentes de G, então G + xy é obtido de G unindo-se x a y.

Observação 2. Se x é um vértice de um grafo G, então, ocasionalmente, escreveremos $x \in G$, em vez de $x \in V(G)$.

Definição 5. A ordem de G é o número de vértices de G e é denotada por |G|. O tamanho de G é o número de arestas de G e é denotado por e(G).

Notação 3. Escrevemos G^n para um grafo arbitrário de ordem n. Similarmente, G(n, m) denota um grafo arbitrário de ordem n e tamanho m.

Notação 4. Dados subconjuntos disjuntos U e W do conjunto de vértices de um grafo, escrevemos E(U,W) para o conjunto de U-W arestas, isto é, para o conjunto de arestas unindo um vértice de U a um vértice em W. Ainda, e(U,W) = |E(U,W)|. Se queremos enfatizar que o grafo inicial é G, escrevemos $E_G(U,W)$ e $e_G(U,W)$.

Definição 6. Dois grafos são *isomorfos* se existe uma correspondência entre seus conjuntos de vértices que preserva adjacência. Então, G = (V, E) é isomorfo a G' = (V', E') se existe uma bijeção $\phi : V \to V'$ tal que $xy \in E$ se, e só se, $\phi(x)\phi(y) \in E'$.

Notação 5. Se G e H são grafos isomorfos, escrevemos $G\cong H$ ou, simplesmente, G=H.

Figura 2: Grafos de ordem, no máximo, 4 e tamanho 3 (a menos de isomorfismo).

Observação 3. O tamanho de um grafo de ordem n é, no mínimo, 0 e, no máximo, $\binom{n}{2}$.

Definição 7. Um grafo de ordem n e tamanho $\binom{n}{2}$ é chamado n-grafo completo e é denotado por K_n ; um n-grafo vazio E_n tem ordem n e nenhuma aresta. O grafo $E_1 = K_1$ é dito trivial.

Notação 6. Como E_n é próximo à notação usada para um grafo, frequentemente usaremos $\overline{K_n}$ para o grafo vazio de ordem n.

Definição 7. Em geral, para um grafo G = (V, E), o complemento de G é $\overline{G} = (V, V^{(2)} - E)$, então dois vértices são adjacentes em \overline{G} se, e só se, não são adjacentes em G.

Definição 8. O conjunto dos vértices adjacentes a um vértice $x \in G$ é chamado a *vizi-nhança* de x, e é denotado por $\Gamma(x)$. Ocasionalmente, chama-se $\Gamma(x)$ a vizinhança aberta de $x \in \Gamma(x) \cup \{x\}$ a vizinhança fechada de x.

Notação 7. $x \sim y$ denota que o vértice x é adjacente ao vértice y.

Definição 9. O grau de x é dado por $d(x) = |\Gamma(x)|$.

Notação 8. O grau mínimo dos vértices de um grafo G é denotado por $\delta(G)$, e o grau máximo, por $\Delta(G)$.

Definição 10. Um vértice de grau 0 é dito um vértice isolado.

Definição 11. Se $\delta(G) = \Delta(G) = k$, isto é, todo vértice de G tem grau k, então G é dito k-regular ou regular de grau k. Um grafo é regular se é k-regular para algum k. Um grafo 3-regular é dito cúbico.

Se $V(G) = \{x_1, ..., x_2\}$, então $(d(x_i))_1^n$ é uma sequência de graus de G. Usualmente, ordenamos os vértices de modo que a sequência de graus obtida dessa maneira é monótona crescente ou decrescente.

Como cada aresta tem dois vértices, a soma dos graus é exatamente o dobro do número de arestas:

$$\sum_{i=1}^{n} d(x_i) = 2e(G).$$

Em particular, a soma dos graus é par (lema do aperto de mão).

Observação 4.

$$\delta(G) \leq \lfloor 2e(G)/n \rfloor$$

$$\Delta(G) \ge \lceil 2e(G)/n \rceil.$$

Definição 12. Um caminho é um grafo P da forma $V(P) = \{x_0, x_1, ..., x_l\}, E(P) = \{x_0x_1, x_1x_2, ..., x_{l-1}x_l\}$, sendo $x_i \neq x_j$, para $i \neq j$. Os vértices x_0 e x_l são os vértices finais de P, e l = e(P) é o comprimento de P.

Notação 9. Tal caminho P é usualmente denotado por $x_0x_1...x_l$.

Observação 5. Às vezes, queremos enfatizar que P é considerado começando em x_0 e terminando em x_l , então chamamos x_0 o vértice inicial e x_l o vértice terminal de P. Um

caminho com vértice inicial x é um x-caminho.

Definição 13. Um conjunto de vértices (arestas) é *independente* se quaisquer dois elementos nunca são adjacentes; ainda, $W \subset V(G)$ consiste de vértices independentes se, e só se, G[W] é um grafo vazio. Um conjunto de caminhos é *independente* se, para quaisquer dois caminhos, todo vértice comum a ambos é um vértice final de tais caminhos.

Definição 14. Um passeio W num grafo é uma sequência alternada de vértices e arestas, digamos $x_0, e_1, x_1, e_2, ..., e_l, x_l$, onde $e_i = x_{i-1}x_i, 0 \le i \le l$, e o comprimento de W é l.

Notação 10. W é um passeio $x_0 - x_l$, denotado por $x_0x_1...x_l$.

Definição 15. Um passeio é chamado *trilha* se todas as suas arestas são distintas.

Observação 5. Um caminho é um passeio com vértices distintos.

Definição 16. Uma trilha com vértices finais coincidentes é chamada *circuito*. Se W é um passeio $x_0 - x_l$ tal que $l \ge 3$, $x_0 = x_l$ e $x_i \ne x_j$ para 0 < i, j < l, e $i \ne j$, então W é um *ciclo*.

Notação 11. Por simplicidade, denotamos o ciclo W por $x_1x_2...x_l$.

Notação 12. Frequentemente, usamos o símbolo P_l para denotar um caminho arbitrário de comprimento l, e C_l um ciclo de comprimento l.

Observação 6. Chamamos C_3 um triângulo, C_4 um quadrilátero, C_5 um pentágono, e etc. C_l é chamado l-ciclo. Um ciclo é ímpar (par) se seu comprimento é ímpar (par).

Figura 3: Os grafos $K_4, E_3, P_4, C_4 \in C_5$

Teorema 1. O conjunto de arestas de um grafo pode ser particionado em ciclos se, e só se, todo vértice tem grau par.

Demonstração. A condição é claramente necessária, uma vez que, se um grafo é a união de ciclos disjuntos e vértices isolados, um vértice contido em k ciclos tem grau 2k.

Suponha que todo vértice de um grafo G tem grau par e e(G) > 0. Seja $x_0x_1...x_l$ um caminho de comprimento máximo l em G. Como $x_0x_1 \in E(G)$, temos que $d(x_0) \geq 2$. Mas, então, x_0 tem outro vizinho y além de x_1 ; além disso, devemos ter $y = x_i$ para algum $i, 2 \leq i \leq l$, uma vez que, caso contrário, $yx_0x_1...x_l$ seria um caminho de comprimento l+1. Portanto, temos um ciclo $x_0x_1...x_i$.

Feito isso, precisamos apenas repetir o procedimento. Para formalizar, estabeleça $G_1 = G$, de forma que C_1 é um ciclo em G_1 , e defina $G_2 = G_1 - E(C_1)$. Todo vértice de G_2 tem grau par, então ou $E(G_2) = \emptyset$ ou G_2 tem um ciclo C_2 . Continuando dessa forma, encontramos ciclos sem arestas em comum $C_1, C_2, ..., C_s$ tais que $E(G) = \bigcup_{i=1}^s E(C_i)$. \square