Generalización

Sean X_1, \ldots, X_n v.a. i.i.d. con distribución $F(x, \theta)$ y $g : \mathbb{R} \to \mathbb{R}$ una función con esperanza finita.

El método generalizado de los momentos estima a θ como la solución de

$$\frac{1}{n}\sum_{i=1}^{n}g(X_{i}) = \mathbb{E}_{\widehat{\theta}}(g(X_{1}))$$

Generalización

Sean X_1, \ldots, X_n v.a. i.i.d. con distribución $F(x, \theta)$ y $g : \mathbb{R} \to \mathbb{R}$ una función con esperanza finita.

El método generalizado de los momentos estima a θ como la solución de

$$\frac{1}{n}\sum_{i=1}^{n}g(X_{i}) = \mathbb{E}_{\widehat{\theta}}(g(X_{1}))$$

Resolvamos el siguiente ejemplo:

Sea X_1, \ldots, X_n una muestra aleatoria de una población con densidad de la forma

$$f(x,\theta) = (1-\theta)\mathbb{I}_{\left(-\frac{1}{2},0\right)}(x) + (1+\theta)\mathbb{I}_{\left(0,\frac{1}{2}\right)}(x), \qquad -1 < \theta < 1$$

Hallar un estimador de momentos para $q(\theta) = \mathbb{P}_{\theta}(X > 0)$.

Estimadores de Máxima Verosimilitud

¿Qué es la verosmilitud?

- Antes de realizar el experimento el resultado es desconocido.
- Las probabilidades nos permiten predecir un resultado desconocido a partir de parámetros conocidos: por ejemplo

$$P(resultado|\theta)$$
 por ej. caso Bernoulli $P(x|\theta) = \theta^x (1-\theta)^{(1-x)}$

En Estadística se invierte el paradigma:

- Al realizar el experimento el resultado se hace conocido: dato.
- Nos interesa cuán verosímil es que un determinado parámetro haya generado el dato.

Ejemplo

El Método Máxima Verosimilitud es uno de los procedimientos más populares.

Sea X una variable aleatoria que corresponde al valor que toma un tetraedro con caras numeradas del 1 al 4 al ser arrojado de acuerdo con la ley \mathbb{P}_{θ} . Hay dos posibilidaes: $\theta=\theta_0$ o θ_1 y los valores de $\mathbb{P}_{\theta_j}(\{i\})$ están dados por la siguiente tabla:

	x = 1	x = 2	x = 3	x = 4
$\theta = \theta_0$	0.7	0.1	0.1	0.1
$\theta = \theta_1$	0.1	0.3	0.3	0.3

Si X=1 es observado, es más probable que provenga de P_{θ_0} , dado que $P_{\theta_0}(\{1\})$ es mucho mayor que $P_{\theta_1}(\{1\})$.

Luego , estimaríamos a θ por θ_0 .

Ejemplo

Por otro lado, si X=2 o 3 o 4, es más probable que provenga de P_{θ_1} , aunque en este caso la diferencia entre las probabilidades no es tan grande como cuando X=1.

Esto sugiere como estimador de θ :

$$T(X) = \begin{cases} \theta_0 & X = 1\\ \theta_1 & X \neq 1. \end{cases}$$

Ejemplo

Por otro lado, si X=2 o 3 o 4, es más probable que provenga de P_{θ_1} , aunque en este caso la diferencia entre las probabilidades no es tan grande como cuando X=1.

Esto sugiere como estimador de θ :

$$T(X) = \begin{cases} \theta_0 & X = 1\\ \theta_1 & X \neq 1. \end{cases}$$

Esta idea puede extenderse fácilmente al caso en que \mathbb{P}_{θ} es una distribución discreta y $\theta \in \Theta \subset \mathbb{R}^k$.

Si X=x es observada, θ_1 es más probable que θ_0 si y sólo si $\mathbb{P}_{\theta_1}(\{x\}) > \mathbb{P}_{\theta_0}(\{x\})$.

Podemos estimar θ por el valor $\hat{\theta}$ que maximiza $\mathbb{P}_{\theta}(\{x\})$ sobre $\theta \in \Theta$, si tal $\hat{\theta}$ existe.

Esto se extiende en forma directa al caso de X continua.

Estimador de Máxima Verosimilitud: Caso discreto

- Modelo: $\mathcal{F} = \{p(\cdot, \theta), \theta \in \Theta\}.$
- $\mathbf{x} = x_1, \dots, x_n$ realización de X_1, \dots, X_n i.i.d. donde $X_i \sim p(\cdot, \theta)$.
- Función de verosimilitud asociada a $\mathbf{x} = x_1, \dots, x_n$:

$$L(\cdot, \mathbf{x}) : \Theta \to \mathbb{R}$$

$$L(\theta, \mathbf{x}) = \mathbb{P}_{\theta}(X_1 = x_1, \dots, X_n = x_n), X_i \sim p(\cdot, \theta)$$

 $L(\theta, \mathbf{x}) = \prod_{i=1}^{n} p(x_i, \theta),$

Estimador de Máxima Verosimilitud: Caso discreto

- Modelo: $\mathcal{F} = \{p(\cdot, \theta), \theta \in \Theta\}.$
- $\mathbf{x} = x_1, \dots, x_n$ realización de X_1, \dots, X_n i.i.d. donde $X_i \sim p(\cdot, \theta)$.
- Función de verosimilitud asociada a $\mathbf{x} = x_1, \dots, x_n$:

$$L(\cdot, \mathbf{x}) : \Theta \to \mathbb{R}$$

$$L(\theta, \mathbf{x}) = \mathbb{P}_{\theta}(X_1 = x_1, \dots, X_n = x_n), X_i \sim p(\cdot, \theta)$$

$$L(\theta, \mathbf{x}) = \prod_{i=1}^{n} p(x_i, \theta),$$

ullet Propuesta de máxima verosimilitud: $\widehat{ heta}$ es el EMV si

$$L(\widehat{\theta}(\mathbf{X}), \mathbf{X}) = \underset{\theta \in \Omega}{\operatorname{argmax}} L(\theta, \mathbf{X}).$$

o sea

$$L(\widehat{\theta}(\mathbf{X}), \mathbf{X}) \ge L(\theta, \mathbf{X})$$

Ejemplo: Bernoulli

- $(X_i)_{i\geq 1}$ i.i.d., $X_i \sim \mathcal{B}(1,\theta), \ \theta \in [0,1]$
- $L(\theta; \mathbf{x})$: probabilidad de observar $\mathbf{x} = (\mathbf{x_1}, \dots, \mathbf{x_n})$ en n lanzamientos cuando la probabilidad de cara es θ . Notemos que $x_i = 1$ o 0.
- $(X_i)_{i>1}$ i.i.d., $X_i \sim \mathcal{B}(1,\theta)$, $p(x,\theta) = \theta^x (1-\theta)^{1-x}$

$$L(\theta; \mathbf{x}) = \prod_{i=1}^{n} p(x_i, \theta)$$

$$= \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{1 - x_i} = \theta^{\sum_{i=1}^{n} x_i} (1 - \theta)^{n - \sum_{i=1}^{n} x_i}$$

$$= \theta^{n\overline{x}} (1 - \theta)^{n - n\overline{x}} = \theta^{n\overline{x}} (1 - \theta)^{n(1 - \overline{x})}$$

Ejemplo: Bernoulli

- $(X_i)_{i\geq 1}$ i.i.d., $X_i \sim \mathcal{B}(1,\theta)$, $\theta \in [0,1]$
- $L(\theta; \mathbf{x})$: probabilidad de observar $\mathbf{x} = (\mathbf{x_1}, \dots, \mathbf{x_n})$ en n lanzamientos cuando la probabilidad de cara es θ . Notemos que $x_i = 1$ o 0.
- $(X_i)_{i>1}$ i.i.d., $X_i \sim \mathcal{B}(1,\theta), \ p(x,\theta) = \theta^x (1-\theta)^{1-x}$

$$L(\theta; \mathbf{x}) = \prod_{i=1}^{n} p(x_i, \theta)$$

$$= \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{1 - x_i} = \theta^{\sum_{i=1}^{n} x_i} (1 - \theta)^{n - \sum_{i=1}^{n} x_i}$$

$$= \theta^{n\overline{x}} (1 - \theta)^{n - n\overline{x}} = \theta^{n\overline{x}} (1 - \theta)^{n(1 - \overline{x})}$$

• Maximizar $L(\theta; \mathbf{x})$ equivale a maximizar $\ell(\theta; \mathbf{x}) = \log \mathbf{L}(\theta; \mathbf{x})$ ya que \log es estrictamente creciente.

Función de Verosimilitud basada en x

Caso Bernoulli

• Maximizar $L(\theta; \mathbf{x})$ equivale a maximizar $\ell(\theta; \mathbf{x}) = \log \mathbf{L}(\theta; \mathbf{x})$

$$\ell(\theta; \mathbf{x}) = n\overline{x} \log(\theta) + n(1 - \overline{x}) \log(1 - \theta)$$

• Derivemos e igualemos a 0:

$$\frac{\partial \ell(\theta; \mathbf{x})}{\partial \theta} = \frac{n\overline{x}}{\theta} - \frac{n(1 - \overline{x})}{1 - \theta} = 0$$

- \bullet Cuando $0<\bar{x}<1$, hay un único punto crítico \bar{x}
- La derivada segunda es:

$$\frac{\partial^2 \ell(\theta; \mathbf{x})}{\partial^2 \theta} = -\frac{n\overline{x}}{\theta^2} - \frac{n(1 - \overline{x})}{(1 - \theta)^2}$$

que es siempre negativa.

Estimador de Máxima Verosimilitud: Caso discreto

Caso Bernoulli

- $L(\theta, \mathbf{x})$ tiende a 0 cuando θ tiende a 0 o a 1 (la frontera del espacio paramétrico): \overline{x} es el único máximo de θ .
- Cuando $\overline{x}=0$, $L(\theta)=(1-\theta)^n$ es estrictamente decreciente como función de θ y por lo tanto 0 es el único máximo. Análogamente si $\overline{x}=1$.
- Combinando todo esto, cada vez que se observan los datos x_1,\ldots,x_n tenemos que \overline{x} maximiza, el estimador de máxima verosimilitud es

$$\widehat{\theta} = \overline{X}$$

Observación: si el espacio paramétrico fuera $\Theta=(0,1)$, cuando $\overline{x}=0$ o 1, tenemos que el máximo no se alcanza en Θ , sin embargo el supremo en (0,1) es 1, con lo cual el EMV toma un valor fuera de (0,1), que no sería un valor razonable. Sin embargo, a medida qe n crece la probabilidad de que esto ocurra tiende a 0.

Estimador de Máxima Verosimilitud

Algunas observaciones

- Algunos textos trabajan con la clausura del espacio paramétrico $\overline{\Theta}$ en lugar de Θ . Esto es porque el máximo de $L(\theta)$ podría no existir en Θ .
- Cuando el espacio paramétrico consiste en un conjunto finito de puntos, entonces $\overline{\Theta} = \Theta$ y el MLE puede obtenerse haciendo un número finito de comparaciones.
- ullet Como hemos visto, en casos regulares, podemos trabajar con $\ell(\theta)$ en lugar de la verosimilitud y los candidatos a EMV se obtienen resolviendo

$$\frac{\partial \ell(\theta; \mathbf{x})}{\partial \theta} = 0$$

Una raíz de esto podría ser un mínimo local o global, idem máximo o un punto estacionario. También los máximos podrían ocurrir en la frontera de Θ o cuando $\|\theta\| \to \infty$.

- En algunos casos $\ell(\theta)$ no es diferenciable.
- Un MLE podría no existir o podría haber más de uno.
- Un MLE puede no tener una forma explícita.

Estimador de Máxima Verosimilitud: Caso continuo

- Modelo: $\mathcal{F} = \{f(\cdot, \theta) , \theta \in \Theta\}$, con $f(\cdot, \theta)$ función de densidad.
- $\mathbf{x}=x_1,\cdots,x_n$ realización correspondiente a X_1,\dots,X_n con $X_i\sim f(\cdot,\theta)$.
- Función de verosimilitud: $L(\cdot \; ; \; \mathbf{x} \;) : \Theta \to \mathbb{R}$

$$L(\theta; \mathbf{x}) = f_{X_1, \dots, X_n}(x_1, \dots, x_n), X_i \sim f(\cdot, \theta).$$

$$L(\theta; \mathbf{x}) = \prod_{i=1}^n f(x_i, \theta),$$

ullet Propuesta de máxima verosimilitud: $\widehat{ heta}$ es el EMV si

$$L(\widehat{\theta}(\mathbf{X}), \ \mathbf{X} \) = \underset{\theta \in \Theta}{\operatorname{argmax}} \ L(\theta, \ \mathbf{X} \) \ .$$

o sea

$$L(\widehat{\theta}(\mathbf{X}), \mathbf{X}) \ge L(\theta, \mathbf{X})$$

Ejemplo $\mathcal{E}(\lambda)$

 X_1, \dots, X_n v.a. i.i.d. $X_i \sim \mathcal{E}(\lambda), \lambda > 0$. $f(x, \lambda) = \lambda e^{-x\lambda} \mathcal{I}_{[0,\infty)}(x)$.

$$L(\lambda; \mathbf{x}) = \prod_{i=1}^{n} f(x_i, \lambda) = \prod_{i=1}^{n} \lambda e^{-x_i \lambda} \mathcal{I}_{[0,\infty)}(x_i)$$

• si $x_i \geq 0 \ \forall i$

$$L(\lambda; \mathbf{x}) = \lambda^n e^{-\lambda \sum_{i=1}^n x_i}$$

ullet Si consideramos el $\log L$, resulta

$$\ell(\lambda; \mathbf{x}) = n \log(\lambda) - \lambda \sum_{i=1}^{n} x_i$$

Derivando e igualando a 0 queda

$$\frac{n}{\lambda} - \sum_{i=1}^{n} x_i = 0 \Rightarrow \text{punto crítico es } 1/\bar{x}$$

 $\bullet \Rightarrow \widehat{\lambda} = 1/\bar{X}_n$

Ejemplo $\mathcal{N}(\mu, \sigma^2)$

$$X_1, \cdots, X_n$$
 v.a

$$X_1,\cdots,X_n$$
 v.a. i.i.d. $f\left(x,\mu,\sigma^2
ight)=rac{1}{\sqrt{2\pi\sigma^2}}\,e^{-rac{1}{2}rac{(x-\mu)^2}{\sigma^2}}$
$$L(\mu,\sigma^2;\mathbf{x}) \quad = \quad \prod_{i=1}^n f(x_i,\mu,\sigma^2)= \prod_{i=1}^n rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x_i-\mu)^2}{\sigma^2}}$$

$$L(\mu, \sigma^2; \mathbf{x}) = \prod_{i=1}^n f(x_i, \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

Ejemplo $\mathcal{N}(\mu, \sigma^2)$

$$X_1, \cdots, X_n$$
 v.a.

$$X_1, \cdots, X_n \text{ v.a. i.i.d. } f\left(x, \mu, \sigma^2\right) = \frac{1}{\sqrt{2\pi\sigma^2}} \, e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$

$$L(\mu, \sigma^2; \mathbf{x}) \quad = \quad \prod_{i=1}^n f(x_i, \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

$$X_1, \cdots, X_n$$
 v.a. i.i.d. $f(x, \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$

 $L(\mu, \sigma^2; \mathbf{x}) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{-\sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}}$

Ejemplo $\mathcal{N}(\mu, \sigma^2)$

Third
$$X\left(\mu,\sigma^{\prime}\right)$$
 X_{1},\cdots,X_{n} v.a. i.i.d. $f\left(x,\mu,\sigma^{2}\right)=\frac{1}{\sqrt{2\pi\sigma^{2}}}\,e^{-\frac{1}{2}\frac{\left(x-\mu\right)^{2}}{\sigma^{2}}}$

$$L(\mu, \sigma^2; \mathbf{x}) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{-\sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}}$$

• Tomando logaritmo y resolviendo las ecuaciones

$$\frac{\partial \ell(\mu, \sigma^2; \mathbf{x})}{\partial \mu} = 0 \quad \text{y} \quad \frac{\partial \ell(\mu, \sigma^2; \mathbf{x})}{\partial \sigma^2} = 0$$

se obtiene que los EMV de μ y σ^2 son

$$\widehat{\mu} = \bar{X}_n$$
 $\widehat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \bar{X}_n)^2}{n}$

Consideremos la matriz de derivadas segundas H

Comprobar que
$$\frac{\partial^2}{\partial \mu^2} \ell\left(\mu, \sigma^2\right) = -\frac{n}{\sigma^2}, \quad \frac{\partial^2}{\partial \left(\sigma^2\right)^2} \ell\left(\mu, \sigma^2\right) = \frac{n}{2\sigma^4} - \frac{1}{\sigma^6} \sum_{i=1}^n \left(X_i - \mu\right)^2$$

 $\frac{\partial^2}{\partial u \partial \sigma^2} \ell\left(\mu, \sigma^2\right) = \frac{\partial^2}{\partial \sigma^2 \partial u} \ell\left(\mu, \sigma^2\right) = -\frac{\sum_{i=1}^n (X_i - \mu)}{\sigma^4} = \frac{n\mu - n\bar{X}}{\sigma^4}.$

Evaluando a H en $(\hat{\mu}, \hat{\sigma}^2)$ resulta:

negativa pues $\hat{\sigma}^2 > 0$.

n
$$(\hat{\mu}, \hat{\sigma}^2)$$
 resulta

$$(\hat{\mu}, \hat{\sigma}^2)$$
 resulta:

en
$$(\hat{\mu},\hat{\sigma}^2)$$
 resulta:

que resulta una matriz diagonal y es fácil comprobar que es definida

 $\left. \frac{\partial^2}{\partial \mu^2} \ell\left(\mu, \sigma^2\right) \right|_{(\hat{\mu}, \hat{\sigma}^2)} = -\frac{n}{\hat{\sigma}^2}, \quad \left. \frac{\partial^2}{\partial \left(\sigma^2\right)^2} \ell\left(\mu, \sigma^2\right) \right|_{(\hat{\mu}, \hat{\sigma}^2)} = \frac{n}{2\hat{\sigma}^4} - \frac{n\hat{\sigma}^2}{\hat{\sigma}^6} = -\frac{n}{2\hat{\sigma}^4}$

 $\frac{\partial^2}{\partial \mu \partial \sigma^2} \ell\left(\mu, \sigma^2\right) \bigg|_{(\hat{\mu}, \hat{\sigma}^2)} = \left. \frac{\partial^2}{\partial \sigma^2 \partial \mu} \ell\left(\mu, \sigma^2\right) \right|_{(\hat{\mu}, \hat{\sigma}^2)} = \frac{n\hat{\mu} - n\hat{\mu}}{\hat{\sigma}^4} = 0.$

Invarianza de los E.M.V.

¿Cuál sería el EMV de σ en el caso anterior?

Invarianza de los E.M.V.

¿Cuál sería el EMV de σ en el caso anterior?

Sea $\lambda = h(\theta): \Theta \to \Lambda$ una función biyectiva.

Luego, la densidad $f(\mathbf{x}, \theta)$ se puede expresar en función de λ ya que $\theta = h^{-1}(\lambda)$.

Notamos la densidad de **X** como función de λ por $f^*(\mathbf{x}, \lambda)$. Se tiene

$$f^*(\mathbf{x}, \lambda) = f(\mathbf{x}, h^{-1}(\lambda))$$

Entonces,

$$L^*(\mathbf{x}, \lambda) = L(\mathbf{x}, h^{-1}(\lambda))$$

Luego, se definen los E.M.V. $\widehat{\theta}$ y $\widehat{\lambda}$ por

$$L(\mathbf{x}, \widehat{\theta}) = \max_{\theta \in \Theta} L(\mathbf{x}, \theta)$$

У

$$L^*(\mathbf{x}, \widehat{\lambda}) = \max_{\lambda \in \Lambda} L^*(\mathbf{x}, \lambda)$$

Propiedad de Invarianza del EMV

Teorema: $Si \hat{\theta}$ es E.M.V. de θ , entonces $\hat{\lambda} = h(\hat{\theta})$ es E.M.V. de λ .

En efecto:

$$L(\mathbf{x},\widehat{\theta}) = \max_{\theta \in \Theta} L(\mathbf{x},\theta) \stackrel{(1)}{=} \max_{\lambda \in \Lambda} L(\mathbf{x},h^{-1}(\lambda)) \stackrel{(2)}{=} \max_{\lambda \in \Lambda} L^*(\mathbf{x},\lambda) = L^*(\mathbf{x},\widehat{\lambda})$$
 ya que

- (1): coinciden los conjuntos $\{\theta \in \Theta\}$ y $\{h^{-1}(\lambda): \lambda \in \Lambda\}$
- (2): por definición de L^* .

Finalmente, como h es biyectiva $\widehat{\lambda} = h(\widehat{\theta})$.

Propiedad de Invarianza del EMV

Teorema: Si $\widehat{\theta}$ es E.M.V. de θ , entonces $\widehat{\lambda} = h(\widehat{\theta})$ es E.M.V. de λ .

En efecto:

$$L(\mathbf{x},\widehat{\theta}) = \max_{\theta \in \Theta} L(\mathbf{x},\theta) \stackrel{(1)}{=} \max_{\lambda \in \Lambda} L(\mathbf{x},h^{-1}(\lambda)) \stackrel{(2)}{=} \max_{\lambda \in \Lambda} L^*(\mathbf{x},\lambda) = L^*(\mathbf{x},\widehat{\lambda})$$
 ya que

- (1): coinciden los conjuntos $\{\theta \in \Theta\}$ y $\{h^{-1}(\lambda) : \lambda \in \Lambda\}$
- (2): por definición de L^* .

Finalmente, como h es biyectiva $\widehat{\lambda} = h(\widehat{\theta})$.

Ejemplo:

si X_1, \ldots, X_n son i.i.d. $X_i \sim N(\mu, 1)$, tenemos que

$$\mathbb{P}[X_1 \le x] = \mathbb{P}[X_1 - \mu \le x - \mu] = \Phi(x - \mu),$$

luego como ϕ es estrictamente creciente y \overline{X} es el EMV de μ , el estimador de máxima versosimilitud de esta probabilidad es

$$\Phi(x-\overline{X})$$

EMV

A veces las cosas se complican un poco....

• ya sea porque $L(\theta;\mathbf{x})$ no es derivable como función de θ : Caso X_1,\cdots,X_n v.a. i.i.d. $X_i\sim \mathcal{U}[0,\theta]$: familia no regular. Notar que la indicadora de la densidad depende del parámetro.

EMV de
$$\theta$$
: $\widehat{\theta} = \max(X_1, \dots, X_n)$

EMV

A veces las cosas se complican un poco....

• ya sea porque $L(\theta;\mathbf{x})$ no es derivable como función de θ : Caso X_1,\cdots,X_n v.a. i.i.d. $X_i\sim \mathcal{U}[0,\theta]$: familia no regular. Notar que la indicadora de la densidad depende del parámetro.

EMV de
$$\theta$$
: $\widehat{\theta} = \max(X_1, \dots, X_n)$

- o porque el óptimo no es tan fácil de hallar.
- ullet Tarea: explorar caso $\Gamma(\alpha,\lambda)$

Ejemplo $U[0,\theta]$

$$X_1 \dots X_n$$
, i.i.d., $X_i \sim \mathcal{U}[0, \theta]$. $f(x, \theta) = \frac{1}{\theta} \mathcal{I}_{[0, \theta]}(x)$.

$$f(x_1, \dots x_n, \theta) = \prod_{i=1}^n \frac{1}{\theta} \mathcal{I}_{[0,\theta]}(x_i) = \frac{1}{\theta^n} \prod_{i=1}^n \mathcal{I}_{[0,\theta]}(x_i)$$

Ejemplo $U[0,\theta]$

$$X_1 \dots X_n$$
, i.i.d., $X_i \sim \mathcal{U}[0, \theta]$. $f(x, \theta) = \frac{1}{\theta} \mathcal{I}_{[0, \theta]}(x)$.

$$f(x_1, \dots x_n, \theta) = \prod_{i=1}^n \frac{1}{\theta} \mathcal{I}_{[0,\theta]}(x_i) = \frac{1}{\theta^n} \prod_{i=1}^n \mathcal{I}_{[0,\theta]}(x_i)$$

$$= \begin{cases} \frac{1}{\theta^n} & \text{si} \quad 0 \le x_i \le \theta \text{ para todo } i \\ 0 & \text{otro caso} \end{cases}$$

Ejemplo $U[0,\theta]$

$$X_1 \dots X_n$$
, i.i.d., $X_i \sim \mathcal{U}[0, \theta]$. $f(x, \theta) = \frac{1}{\theta} \mathcal{I}_{[0, \theta]}(x)$.

$$f(x_1, \dots x_n, \theta) = \prod_{i=1}^n \frac{1}{\theta} \, \mathcal{I}_{[0,\theta]}(x_i) = \frac{1}{\theta^n} \prod_{i=1}^n \, \mathcal{I}_{[0,\theta]}(x_i)$$

$$= \begin{cases} \frac{1}{\theta^n} & \text{si} \quad 0 \leq x_i \leq \theta \text{ para todo } i \\ 0 & \text{otro caso} \end{cases}$$

$$= \begin{cases} \frac{1}{\theta^n} & \text{si} \quad \theta \geq \text{ máx } (x_i) \\ 0 & \text{otro caso} \end{cases}$$

Estimador de Máxima Verosimilitud: Distribución Uniforme

(¡Gracias Marina V.!!)

Gráfico de la función de verosimilitud, $f(\mathbf{x},\theta)$ correspondiente a n=8 observaciones tales que

$$\max_{1 \le i \le n} (x_i) = 5$$

.

Estimador de Máxima Verosimilitud: Distribución Uniforme

El E.M.V. de θ es

$$\widehat{\theta}_n = \max_{1 \le i \le n} (X_i)$$