UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA

Laboratorio de Cálculo Diferencial

Nombre del Alumno	Diego Joel Zúñiga Fragoso Grupo		511
Fecha de la Práctica	21/09/2022	No Práctica	7
Nombre de la Práctica	Funciones		
Unidad	Funciones Algebraicas		

OBJETIVOS. Reforzar el conocimiento que se tiene acerca de las funciones algebraicas, no sólo de forma teórica sino también de manera gráfica

EQUIPO Y MATERIALES. Computadora con Office y algún software que grafique funciones como: Graph, Scientific Workplace o JK Graph

DESARROLLO

I. Funciones polinomiales

1.
$$f(x) = -4x + 8$$

Grado	No.	No.	Factorización máxima	Gráfica	Intersecciones
Grado	veces que crece y decrece	factores de primer grado	Pactorización maxima	Granca	con el eje X
1	Decrece en todo su dominio	1	-4x + 8 = -4(x-2)	3 -2 -1 0 1 3 4 5	x = 2

$$2. \quad f(x) = x^2 - 6x + 8$$

H,						
	Grado	No.	No.	Factorización máxima	Gráfica	Intersecciones
		veces	factores			con el eje X
		que	de			

	crece y decrece	primer grado			
2	Decrece 1 vez Crece 1 vez	2	$x^2 - 6x + 8 = (x - 2)(x - 4)$	-6 -4 -2 0 4 8 8 10 C	x = 2 x = 4

3. $f(x) = 3x^2 - 5x + 6$

Grado	No. veces que crece y decrece	No. factores de primer grado	Factorización máxima	Gráfica	Intersecciones con el eje X
2	Decrece 1 vez Crece 1 vez	2	No se puede factorizar más	20 -15 -10 -5 0 5 10 15	No hay
				-5-	

4. $f(x) = 2x^3 + 7x^2 - 5x - 4$

Grado	No. veces	No.	Factorización máxima	Gráfica	Intersecciones
	que crece	factores de			con el eje X
	y decrece	primer			
		grado			

5.
$$f(x) = 6x^4 + 7x^3 - x$$

Grado	No. veces que crece y decrece	No. factores de primer grado	Factorización máxima	Gráfica	Intersecciones con el eje X
4	Decrece 2 veces Crece 2 veces	3	$6x^4 + 7x^3 - x = x(2x+1)(3x-1)(x+1)$	-2 0 2 4 0	x = 1/3 $x = -1/2$ $x = -1$ $x = 0$

Expresa la relación que hay entre el grado del polinomio, la forma de la gráfica y las intersecciones con el eje X Cuando el grado del polinomio es par, la grafica se ve como una gran parábola y no es suprayectiva, en cambio, cuando es impar es suprayectiva.

II. Funciones valor absoluto.

Grafica cada una de las funciones valor absoluto y también la misma función sin valor absoluto. Compáralas y concluye ¿Qué relación existe entre una función y el valor absoluto de la misma función?

1. $f(x) = x + 5$	$\int f(x) = x+5 $

$$2. \quad f(x) = x^2 - 4$$

$$f(x) = \left| x^2 - 4 \right|$$

$$3. \quad f(x) = \frac{x}{2x}$$

$$f(x) = \frac{|x|}{2x}$$

$$4. \quad f(x) = \frac{1}{2x}$$

$$f(x) = \left| \frac{1}{2x} \right|$$

$$5. \quad f(x) = 4x - 3$$

$$f(x) = |4x| - 3$$

¿Qué relación existe entre una función y el valor absoluto de la misma función?

Cuando los valores de f(x) son mayores o iguales a 0, no sufre ningún cambio, pero cuando da negativo, por la misma propiedad del valor absoluto se convierten en positivo.

III. Funciones racionales.

Grafica las funciones e indica la posición de la asíntota vertical. ¿Qué relación existe entre las asíntotas y la función

Función	Ecuación de las asíntotas
$1. f(x) = \frac{1}{x}$	x = 0
$2. f(x) = \frac{x}{x^2 - 1}$	x = 1 $x = -1$
$3. f(x) = \frac{3}{x-2}$	x = 2
4. $f(x) = \frac{1}{(x-1)^2}$	x = 1
$5. f(x) = \frac{5x}{x^2 + 4}$	No hay asíntota

IV. Funciones raíz cuadrada.

Grafica las funciones e indica la relación que tienen con las ecuaciones de las cónicas. Gráfica y dominio de cada función Función $1. \quad f(x) = \sqrt{x}$ $domf = [0, \infty)$ $2. \quad f(x) = \sqrt{x+2}$ $domf = [-2, \infty)$ 3. $f(x) = \sqrt{25 - x^2}$ domf = [-5, 5]

 $dom f = \mathbb{R}$

5.
$$f(x) = -\sqrt{x^2 - 1}$$

Verifica y Relaciona las funciones con sus gráficas. Coloca la ecuación bajo cada gráfica V.

1. $f(x) = -x^2 + x$	1.	f(x)	$=-x^2$	+x
----------------------	----	------	---------	----

2.
$$f(x) = x^3 - 3x^2 + 7$$

3.
$$f(x) = \frac{x-1}{x^2 - 2}$$

4.
$$f(x) = x^5 - 2x^3 + 7x^2$$

5.
$$f(x) = x^2 - 2x - 3$$

6.
$$f(x) = 2x - 8$$

7.
$$f(x) = \frac{3-x}{2-x}$$

8.
$$f(x) = -3x^4 + 7x^2 + 3x$$

$$f(x) = \frac{x-1}{x^2 - 2}$$

$$f(x) = x^3 - 3x^2 + 7$$
?

$$f(x) = -x^2 + x$$

CONCLUSIONES.

Gracias a esta práctica pude comprender más acerca del comportamiento de las funciones fraccionarias y radicales, y como observando la función se puede predecir el como se verá reflejado en la gráfica. Fue una práctica con mucho aprendizaje y relativamente sencilla de elaborar.

EVALUACIÓN DE LA PRÁCTICA

Se evaluará el documento con los datos solicitados, las gráficas y conclusiones enviado a través del Campus Virtual