Rational design of materials with tailored functionalities

A. K. Tyagi

Chemistry Division Bhabha Atomic Research Centre Mumbai

Email: aktyagi@barc.gov.in

Materials of today and tomorrow

Indian Academy of Sciences Meeting, BHU, Varanasi (2-11-2018)

Crystallographic approach

Design of new functional materials

Metastable materials

Defects

Hybrid materials

Preparation methods

Ceramic method	Solid State Synthesis
Soft-chemical methods	Combustion synthesis, template method, polyol method, sono-chemical, miceller methods, impregnation, hydro & solvothermal methods, xero-gel method, solid state metathesis
Other methods	Intercalation / Deintercalation High pressure synthesis Vacuum heat treatment Melt and quench technique
Processing	Ink-jet printing, screen printing and spin coating

Design of materials with tailored magnetic properties and band gap

Novel synthesis of Ce³⁺ based oxides

Challenge: To develop a facile route for Ce(III) stabilization

Two steps synthesis:

- (i) Combustion method
- (ii) Vacuum heating in reducing atmosphere

CeCrO₃: A multi-functional material

- Relaxor ferroelectricity
- Antiferromagnetism
- Photocatalysis

J. Phys. Chem. C 113 (2009) 12663

Magnetic studies: Dr. S. M. Yusuf

$La_{1-x}Ce_xCrO_3$ (0.0 \leq x \leq 1.0) : A new series of solid solutions with tunable magnetic and optical properties

By a conventional solid state method only about 20 mol % of Ce³⁺ can be incorporated in LaCrO₃ lattice

Ideal solid solution formation (Orthorhombic: Sp. Gr: Pbnm)

Tunable band gap from 3.21eV to 3.04 eV

Linear trend of T_N from 282 K to 257 K

Magnetization data for La_{1-x}Ce_xCrO₃ series

Distortion Parameter calculation

$$\Delta = \left(\frac{1}{6}\right) \sum_{i=1}^{6} \left\{ (d_i - \langle d \rangle) / \langle d \rangle \right\}^2$$

Inorganic Chemistry 48 (2009) 11691

A new series of solid solution in $Pr_{1-x}Ce_xScO_3$ (0.0 $\leq x \leq 1.0$)

Close ionic radii of Pr^{3+} (1.12 Å) & Ce^{3+} (1.14 Å)

No reason to hinder the formation of $Pr_{1-x}Ce_xScO_3$ series

Gel-combustion followed by reduction

Photocatalytic degradation of Rh

Dalton Trans. 44 (2015) 16929

Preparation of CeScO₃: A multi-functional material

CeO₂ and Sc₂O₃: Limited solubility by solid state route

XRD of $Ce_{0.5}Sc_{0.5}O_{1.75}$

PL spectra of CeScO₃ and 2% Tb³⁺ doped CeScO₃

- Magnetization revealed CeScO₃ to be paramagnetic
- CeScO₃ was found to have band gap of 3.2 eV (Low band gap is due to mixing of O p, Sc d and Ce d states)
- CeScO₃ is a potential host material giving broad blue emission.

Inter-conversion between a perovskite and fluorite lattice

F m 3 m; a = 5.3409 (12) Å

CeCrO₃ does not show this inter-conversion

Inorganic Chemistry, 49 (2010) 1152

P n m a a = 5.7772 (1) Å, b = 8.0473 (1) Å

c = 5.6429(1) Å

Ce-Zr-O system (Ce₂Zr₂O_{7+x}): Oxygen storage capacitor

a = 10.5433(2) Å $\rho = 6.693 \text{ g/cc}$

Ce₂Ti₂O₇ pyrochlore does not show OSC

Applications: Redox catalysis

Chemistry of Materials 29 (2009) 5848

Oxidative dehydrogenation of ethyl benzene to yield styrene using Ce-Zr-O Catalyst

A technologically important reaction

Salient features of the reaction

- No degradation of catalyst (72 h)
- 93-95% selectivity achieved in temperature range of 450 -550°C
- Yield approximate 50 % at 550° C
- Highly reproducible

Collaborator: Dr. T. Raja, NCL Pune

Oxidative dehydrogenation of ethyl benzene to yield styrene

Palladium supported Ce-Zr-O for heterogeneous Suzuki coupling in water : A green protocol

Model Suzuki reaction:

Aryl halide	% Conversion
C ₆ H ₅ Cl	42
C_6H_5Br	97
C_6H_5I	100

ICP-AES: No leaching of Pd into the solution (below 1 ppm)

Efficient protocol for Suzuki cross coupling reaction over new support Ce-Zr-O

Use of green solvent water

Significant activity for less reactive aryl bromides.

Role of reducible support Ce-Zr-O on catalytic activity

Presence of slight Ce³⁺ on support enhances the activity

Chemistry Select 1 (2016) 2673

Suzuki cross coupling with various aryl halides & aryl boronic acids

Entry	Aryl halide	Arylboronic acid	Time (h)	Yield (%) ^b	
1	Br	(HO) ₂ B		1.3	98
2	MeO — B	(HO) ₂ B	MeO	4	99
3	Me — Br	(HO) ₂ B	Me—	3,5	96°
4	Br HO	(HO) ₂ B	HO	6	95
5	Br	(HO) ₂ B—(JOH)		5	79
б	├	(HO) ₂ B	$\rightarrow \leftarrow$	8	84
7	но	(HO) ₂ B — B(OH) ₂	Ha————————————————————————————————————	4	83
8				.6	76
9		(HOI),B		10	60
10		(HO) _E B		6	72

Collaborator: Dr. Gopinath, NCL Pune

CO oxidation: CeZrO₄₋₈ supported Pd catalysts

 $CeZrO_{4-\delta}$ was prepared by gel-combustion method Palladium (1 wt% loading) by photo-deposition technique

50 mL/min flow rate (CO: O_2 : N_2 = 1:5:19)

100% conversion was achieved at 140 °C with sustainability of the catalyst for 12 h.

Molecular Catalysis 455 (2018) 1

Design of ionic conductors

Ionic Conductivity...

$$\sigma_{dc} = \sigma_0 \exp(-E/k_B T)$$

$$\sigma_{dc} = \text{dc conductivity}$$

$$E = \text{Activation Energy}$$

$$k_{\text{B}} = \text{Boltzmann Constant}$$

$$T = \text{Temperature}$$

 σ_{dc} can be increased by

either

Increasing σ_o (increasing mobile species)

or

Decreasing E (improving degree of order)

or

Manipulating both

Raman Spectra of Nd_{2-y}Gd_yZr₂O₇

On moving from Gd₂Zr₂O₇ to Nd₂Zr₂O₇

Decrease in activation energy

Improve ionic conductivity

Decrease of no. of mobile species

Reduces the conductivity

Conductivity is maximum for $y \approx 1.0$ in $Nd_{2-y}Gd_yZr_2O_7$

J. Mater. Res. 23 (2008) 911

Improved ionic conductivity in NdGdZr₂O₇: Influence of Sc³⁺ substitution

- \triangleright Effect on ionic conductivity by aliovalent substitution (Replacing Zr^{4+} with Sc^{3+})
- > Synthesis by gel combustion method

Wavenumber (cm⁻¹)

200

300

700

Solubility till x=0.15

From impedance spectroscopy

Sample composition	Activation energy $E_a(eV)$	Pre-exponential factor A (5 cm ⁻¹ K)	923K (S-cm ⁻¹)			
X=0.00	1.011	2.26×10^4	7.97 x10 ⁻⁵			
X=0.05	1.052	9.34×10^4	1.89 x10 ⁻⁴			
X=0.10	1.061	10.23×10^4	1.88 1x10 ⁻⁴			
X=0.15	1.126	21.70 x 10 ⁴	1.73 x10 ⁻⁴			

J. Eur. Ceram. Soc. 32 (2012) 3221

✓ From (a) to (d) Nd content increases from 40 mol% to 55 mol%

Variation of properties with Nd³⁺ content

Representative Nyquist Plots

Composition	E _a (eV)	σ_0	σ [Scm ⁻¹]
			(at 973 K)
$Nd_{1.6}Zr_{2.4}O_{7.2}$	1.08(2)	3.84×10 ⁶	0.018
Nd _{1.8} Zr _{2.2} O _{7.1}	0.81(1)	8.27×10 ³	7.17×10 ⁻⁴
$\boxed{ \mathbf{Nd}_{2.0}\mathbf{Zr}_{2.0}\mathbf{O}_{7.0} }$	1.02(2)	1.53×10 ⁵	7.69×10 ⁻⁴
Nd _{2.2} Zr _{1.8} O _{6.9}	0.88(1)	2.55×10 ⁴	7.22×10 ⁻⁴

RSC Advances 6 (2016) 97566

Design of materials with tailored dielectric properties

$GdSc_{1-x}In_xO_3$ (0.0 $\leq x \leq 1.0$) system (Materials with tunable electrical properties)

➤ Altering B-site co-ordination: Changes in structure and implications on electrical properties

B-site CN: 6 (Orthorhombic sp.gr.: Pnma;
Centrosymmetric dielectric

B-site CN: 5; Hexagonal; Sp.gr.: P6₃cm; Non-centrosymmetric; Proposed ferroelectric

Synthesis: Conventional solid state; glycine-aided gel combustion (GC)

➢ GC: Increase in solubility of In³+ by 20 mol% !!!

Raman Spectroscopy

- > supports XRD results
- ➤ Interesting: No variation in modes due to A vibrations in orthorhombic phase field => Abrupt Structural change.

XRD

➤ Single-phasic orthorhombic till 80 mol% In³⁺ => Stability of In³⁺ in both 6-fold and 5-fold co-ordination

➤ Lattice parameters increase with increase in In³⁺ content

Characterisations

Thermo-mechanical analysis

➤ Net shrinkage follows the same trend as theoretical densities calculated.

Tunability of electrical behavior

- Normal dielectric behavior with high K up to 80 mol% In³⁺
- GdInO₃ shows diffuse phase transition
- GdSc_{0.1}In_{0.9}O₃ is a relaxor ferroelectric.

Subtle changes in the BO₅ polyhedra

Perhaps the distortion in BO₅ polyhedra is causing difference in electrical properties

Chemistry of Materials 24 (2012) 2186

$YIn_{1-x}Fe_xO_3$ (0.0 $\le x \le 1.0$) system: Potential lead free relaxors

Synthesis: Gel combustion method

Characterization: XRD, Raman &

dielectric studies

Hexagonal YInO₃

Fe ³⁺	increa	sing
_		

Temp	YInO ₃	10%Fe	20%Fe	30%Fe	40%Fe	50%Fe	60%Fe	70%Fe	80%Fe	90%Fe	YFeO ₃
(t)	0.8295	0.8350	0.8406	0.8463	0.8520	0.8579	0.8638	0.8698	0.8759	0.8820	0.8883
600 °C	С	С	С	С	С	С	С	С	С	С	С
750 °C	С	С	C + Hexa	Hexa	Hexa	Hexa	Hexa	Hexa	Hexa	Hexa	Hexa + Ortho
900 °C	С	Hexa	Неха	Hexa	Hexa	Hexa	Hexa	Hexa + Ortho	Hexa + Ortho	Hexa + Ortho	Ortho
1150°C	Hexa	Hexa	Hexa	Hexa	Hexa	Hexa + Ortho	Hexa + Ortho	Hexa + Ortho	Hexa + Ortho	Hexa + Ortho	Ortho
1250°C	Hexa	Hexa	Hexa	Hexa	Hexa +	Hexa +	Hexa +	Hexa +	Hexa +	Hexa +	Ortho
1230°C	- I - Au	- III	I I CAG	- III	Ortho		Ortho	Ortho	Ortho	Ortho	0.1.10

Immense bearing of temperature on phase relations

Observation of metastable phases

Single phasic

Highlights: Metastable phases, composition-structural tunability exhibited,

Potential Lead free relaxors

Inorganic Chemistry 53 (2014) 10101

FeTiTaO₆: A New Lead-Free Relaxor Ferroelectric

Dielectric data

1.997

1.989 Á

(Fe,Ti,Ta

Rutile structure Space group: $P4_2/mnm$ a = 4.655(4) and c = 3.021(2) Å

Advanced Materials 20 (2008) 1348

Systematic methodology to transform a normal dielectric material to a relaxor based material

SrTi_{1-2x}Fe_xTa_xO₃: interplay of composition, structure & cationic disorder

A tunable large dielectric permittivity achieved by optimized cation disorder in orthorhombic structure

Nature Sci. Rep., 6 (2016) 23400

Tailored materials for nuclear applications

$K_2M(PO_4)_2$ (M = Ce⁴⁺, Zr⁴⁺): Inorganic ion exchangers

CeO₈ polyhedra linked to two PO₄ groups by sharing edges and corners

3-dimensional anionic frame with composition $[Ce(PO_4)_2]^{2-}$

Monoclinic, $P2_1/n$ a = 9.1020(1) Å, b = 10.8132(1) Å $c = 7.6231(1) \text{ Å and } \beta = 111.14(1)^{\circ}$

ZrO₆ octahedra share corners with **PO**₄ tetrahedra

Two-dimensional sheets with compositions $[\mathbf{Zr}(\mathbf{PO_4})_2]^{2-}$ are stacked along the *c*-direction

Rhombohedral, P-3 a = 5.2032(1) Å, c = 9.0538(1) Å

 $K_2Ce(PO_4)_2$: Sr and $K_2Zr(PO_4)_2$: Sr converts to apatite type lattice after heat treatment, which are stable matrices for immobilisation of radioactive nuclear waste

General concluding remark

Rational design: Several examples

Structure – property correlation

Disorder, defects and distortion

Soft-chemical methods

Several applications were discussed

Acknowledgements

Indian Academy of Sciences

Colleagues and students:

Rakesh, Farheen, Vinita, Achary, Balaji, Jayakumar, Dimple, Mohsin, Patwe and Samatha

All the collaborators

Thanks for your kind attention

Zirconolite, pyrochlore, perovskite

 $(Ca_{0.2}Zr_{0.2}Nd_{1.6}Ti_2O_7)$

Ceramic-ceramic

Glass-ceramics

C-C composites

Oxide-polymer

PVA-In₂O₃

CeF₃:Tb-PMMA