Master Method

Let T(n) be a monotonically increasing function (a function that is increasing and non-decreasing).

If the recurrence is of the form $T(n) = aT(n/b) + \Theta(n^k log^p n)$, given $a \ge 1, b > 1, k \ge 0$ and p is a real number, then the complexity is defined as:

1) If
$$a > b^k$$
, then $T(n) = \Theta(n^{\log_b^a})$

2) If
$$a=b^k$$
 a. If $p>-1$, then $T(n)=\Theta(n^{\log_b^a}log^{p+1}n)$ b. If $p=-1$, then $T(n)=\Theta(n^{\log_b^a}loglogn)$ c. If $p<-1$, then $T(n)=\Theta(n^{\log_b^a})$

3) If
$$a < b^k$$
 a. If $p \ge 0$, then $T(n) = \Theta(n^k log^p n)$ b. If $p < 0$, then $T(n) = O(n^k)$