Grundbegriffe der Informatik Tutorium 36

Termin 6 | 02.12.2016 Thassilo Helmold

Inhalt

Funktionen von Funktionen

Speicher

MIMA

ZENO'S ADVENT CALENDAR

Abbildung: https://www.xkcd.com/994/

Zum letzten Übungsblatt

- Vollständige Induktion: Die Induktionsvoraussetzung lautet "für ein i gilt...".
 - Für alle i zeigt ihr es erst in der Induktion!
- Kaum jemand hat das richtig gemacht, es ist aber wirklich essentiell. Wer das bei der Klausur falsch macht, verschenkt einfache Punkte!
- Folgendes ist **nicht** korrekt, um A zu zeigen: $A \implies B$, B ist wahr. Also ist auch A wahr. Hier bedarf es Äquivalenz, damit aus B auch A folgt!

02 12 2016

In the previous episode of GBI...

Rückblick: Codierungen

- Codierungen: Injektive Abbildungen (meist Homomorphismen)
- ε-Freiheit, Präfixfreiheit
- Einfaches decodieren für präfixfreie Homomorphismen
- Huffman-Codierungen: Präfixfreie Codes mit optimaler Länge

Wahr oder falsch?

- Das Zweierkomplement ist gut zum RechnenW
- Jeder Homomorphismus ist präfixfrei
- Jede Huffman-Codierung ist präfixfrei
- Jeder ε-freie Homomorphismus ist präfixfrei
 Jeder präfixfreie Homomorphismus ist ε-frei
- Präfixfreie Codes sind einfach zu decodieren.

\λ/

F

Aber:

Wir zeigen nun:

Alle Vögel haben die gleiche Farbe!

Achtung: Dieser Beweis enthält selbstverständlich einen Fehler!

Dazu verwenden wir **vollständige Induktion** und zeigen die folgende, äquivalente Aussage:

 $\forall n \in \mathbb{N}_+$: In jeder Menge, die genau n Vögel enthält, haben alle Vögel die gleiche Farbe.

 $\forall n \in \mathbb{N}_+$: In jeder Menge, die genau *n* Vögel enthält, haben alle Vögel die gleiche Farbe.

Induktionsanfang

n = 1: Wenn eine Menge genau 1 Vogel enthält, dann haben offensichtlich alle Vögel die gleiche Farbe.

Induktionsvoraussetzung

Für ein beliebiges aber festes n gelte: In jeder Menge, die genau n Vögel enthält, haben alle Vögel die gleiche Farbe.

02 12 2016

Induktionsschluss

Man zeige die Aussage für n+1: Sei also M eine Menge, die genau n+1 Vögel enthalte. Man stelle sich vor, dass die Vögel alle nebeneinander sitzen:

Induktionsschluss

Die Vögel 1, 2, ..., *n* bilden eine Menge mit genau *n* Vögeln. Also haben sie nach Induktionsvoraussetzung alle die gleiche Farbe.

Die Vögel 2, 3, ..., n+1 bilden auch eine Menge mit genau n Vögeln. Also haben nach Induktionsvoraussetzung auch diese alle die gleiche Farbe. Folglich haben auch die Vögel 1 und n+1 die gleiche Farbe, also haben alle Vögel die gleiche Farbe.

Vogelfarben: Auflösung

Das Bild ist zwar außerordentlich hübsch, suggeriert aber leider etwas, was nicht immer stimmt: Für n = 2 überlappen sich die Teilmengen "ohne den ersten" und "ohne den letzten" Vogel nicht. Es ist also nicht erzwungen, dass beide Vögel die gleiche Farbe haben. (Und das macht "alles weitere" auch kaputt: Wenn nicht immer 2 Vögel die gleiche Farbe haben, dann auch nicht immer 3 Vögel, usw.)

02 12 2016

Funktionen von Funktionen

Speicher

MIMA

Funktionen

Definition

Seien A und B Mengen. Mit B^A bezeichnen wir die Menge aller Abbildungen von A nach B, also

$$B^A = \{f \mid f : A \to B\}$$

Man kann sich das wie eine Tabelle vorstellen. Wir wählen für jedes $a \in A$ ein $b \in B$.

Beobachtung

Für endliche Mengen A und B gilt:

$$|B^A| = |B|^{|A|}$$

Wir wollen aus einer Ziffernfolge (Wort aus Z_{10}^*) Ziffern herausfiltern, die eine bestimmte Eigenschaft haben:

Gerade

$$filter_{even}: Z_{10}^* \to Z_{10}^*$$

$$\varepsilon \mapsto \varepsilon$$

$$z \cdot v \mapsto \begin{cases} z \cdot filter_{even}(v) & \text{falls } z \in \{2, 4, 6, 8, 0\} \\ filter_{even}(v) & \text{sonst} \end{cases}$$

$$\text{wobei } z \in Z_{10} \text{ und } v \in Z_{10}^*$$

Wir wollen aus einer Ziffernfolge (Wort aus Z_{10}^*) Ziffern herausfiltern, die eine bestimmte Eigenschaft haben: Ungerade

$$filter_{odd}: Z_{10}^* \to Z_{10}^*$$
 $\varepsilon \mapsto \varepsilon$

$$z \cdot v \mapsto \begin{cases} z \cdot filter_{odd}(v) & \text{falls } z \in \{1, 3, 5, 7, 9\} \\ filter_{odd}(v) & \text{sonst} \end{cases}$$
wobei $z \in Z_{10}$ und $v \in Z_{10}^*$

Wir wollen aus einer Ziffernfolge (Wort aus Z_{10}^*) Ziffern herausfiltern, die eine bestimmte Eigenschaft haben:

Löst die Ungleichung $x^2 - 3 * x < 20$

$$filter_{solves}: Z_{10}^* \to Z_{10}^*$$

$$\varepsilon \mapsto \varepsilon$$

$$z \cdot v \mapsto \begin{cases} z \cdot filter_{solves}(v) & \text{falls } z^2 - 3 * z < 20 \\ filter_{solves}(v) & \text{sonst} \end{cases}$$

$$\text{wobei } z \in Z_{10} \text{ und } v \in Z_{10}^*$$

Aufgabe

Schreibt die Funktionen zum Filtern aller Ziffern...

- > 5
- < 5
- < 2 oder > 7
- ... die perfekt sind
- ... die sich ausmalen lassen

Nein, das wäre natürlich Unsinn!

Alle Funktionen unterscheiden sich nur an einer Stelle: Der Bedingung, die erfüllt sein muss, damit die Ziffer in das Ergebnis mit aufgenommen wird.

Filter

Definiere stattdessen eine universelle Filter-Funktion:

$$filter_p: Z_{10}^* o Z_{10}^*$$
 $\varepsilon \mapsto \varepsilon$

$$z \cdot v \mapsto \begin{cases} z \cdot filter_p(v) & \text{falls } p(v) = \mathbf{w} \\ filter_p(v) & \text{sonst} \end{cases}$$
wobei $z \in Z_{10}$ und $v \in Z_{10}^*$

Für alle

$$p: Z_{10} \to \mathbb{B}$$

13

Filter

Definiere beispielsweise nun:

$$even: Z_{10} \to \mathbb{B}, z \mapsto \begin{cases} \mathbf{w} & \text{falls } z \in \{2, 4, 6, 8, 0\} \\ \mathbf{f} & \text{sonst} \end{cases}$$

Dann ist $filter_{even}(123456) = 135$

Auch für alle anderen Filter müssen wir nur noch die *p*-Funktionen definieren, was viel einfacher und kürzer ist als jedes Mal die ganze Filter-Funktion neu zu definieren.

Charakteristische Funktion

Sei M eine abzählbar unendliche Menge und $L \subseteq M$.

Definition

Die Charakteristische Funktion einer (Teil-) Menge ${\it L}$ ist die Funktion

$$C_{L}: M \to \{0, 1\}$$

$$x \mapsto \begin{cases} 1 & x \in L \\ 0 & x \notin L \end{cases}$$

Also gilt $C_L \in \{0, 1\}^M$

Klar ist außerdem: Es gibt eine Bijektion *C* zwischen Mengen und Charakteristischen Funktionen:

$$C: 2^M \rightarrow \{0, 1\}^M, L \mapsto C_L$$

Charakteristische Funktion

Jetzt können wir auf diesen Funktionen äquivalente Operationen wie auf Mengen definieren...

Vereinigung:
$$V: \{0, 1\}^M \times \{0, 1\}^M \rightarrow \{0, 1\}^M$$

Beispielbild für
$$L_1 = \{a, c, d\}$$
 und $L_2 = \{b, c\}$

Charakteristische Funktion

Jetzt können wir auf diesen Funktionen äquivalente Operationen wie auf Mengen definieren...

Vereinigung: $V: \{0, 1\}^M \times \{0, 1\}^M \rightarrow \{0, 1\}^M$

Wie definiert man $V(f_1, f_2)$? Zum Beispiel so:

$$V: \{0, 1\}^{M} \times \{0, 1\}^{M} \to \{0, 1\}^{M}$$
$$(f_{1}, f_{2}) \mapsto (x \mapsto \max(f_{1}(x), f_{2}(x)))$$

Oder so: $V(f_1, f_2)(x) = \max(f_1(x), f_2(x))$

Wir haben gesehen:

- Eine Abbildung, die eine Funktion auf einen Wert abbildet
- Eine Abbildung, die einen Wert auf eine Funktion abbildet

Gleich werden wir das kombinieren!

(Hinweis: Abbildung und Funktion sind hier synonyme Begriffe!)

Funktionen von Funktioner

Speicher

MIMA

Bit vs Byte

Definition

Eine **Bit** ist ein Zeichen des Alphabets {0, 1}

Ein Wort aus 8 Bits wird Byte genannt.

Definition

Ein *Speicher m* bildet Adressen (*Adr*) auf Werte (*Val*) ab.

Also $m \in Val^{Adr}$

Hier interessiert uns nicht die konkrete Realisierung der Speicherung, sondern nur die abstrakte Funktionsweise.

Hinweis

Im Umgang mit Speicher benutzen wir hier nur Zahlen im Binärsystem.

D.h. $Adr = 2^k$, $Val = 2^l$ $k, l \in \mathbb{N}_+$.

Speicher

Methoden:

memread (*m*, *adr*) um eine Zelle zu lesen. *memwrite* (*m*, *adr*, *val*) um in eine Zelle zu schreiben.

$$memread: Val^{Adr} \times Adr \rightarrow Val$$
$$(m, a) \mapsto m(a)$$

memwrite :
$$Val^{Adr} \times Adr \times Val \rightarrow Val^{Adr}$$

 $(m, a, v) \mapsto m'$

Mit

$$m'(a') = \begin{cases} v & \text{falls } a' = a \\ m(a') & \text{falls } a' \neq a \end{cases}$$

Speicher

Beispiel

$$memread(m, 01) = 00000111$$

Speicher m		
00	00101000	
01	00000111	
10	10010110	
11	00100101	

Zustand bei t = 0

Speicher

Beispiel

```
\begin{split} \textit{memread}(\textit{m}, 01) &= 00000111 \\ \textit{memwrite}(\textit{m}, 01, 11111100) \\ \textit{memread}(\textit{memwrite}(\textit{m}, 01, 11111100), 01) &= 11111100 \end{split}
```

Speicher m		
00	00101000	
01	11111100	
10	10010110	
11	00100101	

Zustand bei t = 1

Funktionen von Funktionen

Speicher

MIMA

MIMA

Die MIMA ist ein idealisierter Prozessor.

Eigenschaften

- Adressen sind 20 Bit lang
- "Werte" sind 24 Bit lang
- Befehlscodierungen:
 - 4 Bit für den OpCode und 20 Bit für einen Parameter (Adresse / Konstante)
 - 8 Bit Befehl (Rest irrelevant)

Befehlsformate

Wichtige Register

- *IAR* : InstruktionsAdressRegister : Speichert Adresse des aktuell auszuführenden Befehls.
- IR: InstruktionsRegister : Speichert den auszuführenden Befehl.
- SAR: SpeicherAdressRegister : Enthält die Adresse eines Wertes, der aus dem Speicher gelesen werden soll.
- SDR: Speicher Daten Register: Enthält einen Wert, der aus dem Speicher geladen wurde.

23

Aufbau

Befehlsholphase

1 IAR \rightarrow SAR und IAR \rightarrow X Befehlsadresse dem Speicher übergeben und Zähler zum Erhöhen an ALU geben.

2 Eins \rightarrow Y 1-Wert für Erhöhung des Zählers an ALU geben.

3 ALU aufaddieren (Z=X+Y) Nächste Befehlsadresse berechnen.

4 $Z \rightarrow IAR$ Adresse für nächste Runde speichern.

5 SDR \rightarrow IR Wert zur angefragten Adresse erhalten.

Befehle

Die MIMA besitzt einen Befehlssatz mit möglichen Befehlen. Andere Befehle (oder Varianten) werden NICHT unterstützt und können daher nicht verwendet werden!

- Rechenoperationen
 - ADD adr
 - AND, OR, XOR adr
 - NOT, RAR (keine Paramter)
- Zugriffsoperationen
 - LDC const (const ist dabei eine **20-Bit** Konstante)
 - LDV, STV adr
 - LDIV, STIV adr
- Vergleichsoperation: EQL adr (-1 wenn gleich, 0 sonst)
- Sprünge
 - JMP adr
 - JMN adr (Jump if negative)
- HALT

Bemerkungen

Indirekte Adressierung

	Hauptspeicher					
	Akku	• • •	M(46)		M(81)	• • •
initial	?		81		25	
LDV 46						
	81		81		25	
LDIV 46						
	25		81		25	

HALT

Jedes Programm muss mit HALT enden! Sonst läuft das Programm endlos weiter!

Negative Konstanten

Negative Konstanten können nicht mit LDC geladen werden. Warum? Unser Akku ist 24 Bit breit, aber wir können nur in die hinteren 20 Bit laden!

Negative Zahlen

Aufgabe

Schreibe ein Programm, das von einer an Adresse a₁ gegebenen positiven Zahl das Zweierkomplement berechnet und an Adresse a_2 ablegt.

Negative Zahlen

Aufgabe

Schreibe ein Programm, das von einer an Adresse a_1 gegebenen positiven Zahl das Zweierkomplement berechnet und an Adresse a_2 ablegt.

Lösung

LDV a₁

NOT

STV a₂

LDC 1

ADD a_2

STV a₂

Beispiele

Beispiele zur Umsetzung von Answeisungen aus Hochsprachen: Siehe Übung

Übung: Modulo

Schreibe ein Programm, das eine an Speicheradresse a_1 gegebenen Zahl Modulo R rechnet und an Adresse a_2 ablegt.

- Modulo 2
- Modulo 3

Lösung: Modulo 2

Lösung: Modulo 3

```
start: LDC 1
     STV One
     LDC 3
     NOT
     ADD One
     STV MThree
while: LDV MThree
     ADD a_1
     JMN abschluss
     STV a<sub>1</sub>
     JMP while
ende: LDC 3
     ADD a<sub>1</sub>
     HALT
```

Was ihr nun wissen solltet

- Speicher Abbildungen, die Abbildungen auf Abbildungen abbilden!
- Wie ein einfacher Prozessor aufgebaut ist
- Wie man die MIMA für einfache Aufgaben nutzt

Was nächstes Mal kommt

Grammatik ist schwer - aber nicht bei uns!

AN x64 PROCESSOR IS SCREAMING ALONG AT BILLIONS OF CYCLEG PER SECOND TO RUN THE XNU KERNEL, WHICH IS FRANTICALLY WORKING THROUGH ALL THE POSIX-SPECIFIED ABSTRACTION TO CREATE THE DARWIN SYSTEM UNDERLYING OS X, WHICH IN TURN IS STRAINING ITSELF TO RUN FIREFOX AND ITS GECKO RENDERER, WHICH CREATES A FLASH OBJECT WHICH RENDERS DOZENS OF VIDEO FRAMES EVERY SECOND

BECAUSE I WANTED TO SEE A CAT JUMP INTO A BOX AND FALL OVER.

I AM A GOD.

Abbildung: https://www.xkcd.com/676/

Danksagung

Dieser Foliensatz basiert in Teilen auf Folien von:

Philipp Basler Nils Braun Dominik Doerner Ou Yue