多因子趋势模型期货调仓策略-基于RQAlpha回测框架*

回测流程示意图	2
回测框架指标函数	3
期货future_account对象	3
期货position对象	3
期货instrument对象	3
仓位控制指标函数	4
市值仓位控制	4
记录历史头寸	4
Mean-Variance优化	7
方案一: 仓位同比放大	7
方案二: 直接单数优化	8
时间序列转换	8
高维因子 X	8
预测目标 Y	9
基础模型构建	10
优化目标	10
数据对齐	10
预测方法	10
超参数清单	11
策略控制	11
仓位控制	11
模型控制	11
实验比较	12

^{*} RQAlpha提供的离线版期货回测功能限制较多,本文提供一个策略示例。

回测流程示意图

回测框架指标函数

期货future_account对象

7/1 3/2			
属性	类型	注释	本文记号
cash	float	可用资金	Cache(t) 表示 t 时刻账户可用资金额
market_value	float	投资组合当前所有期货仓位的名 义市值 的加总	MarketValue(t) 表示 t 时刻投资组合的 市值
holding_pnl	float	当日浮动盈亏	
realized_pnl	float	当日平仓盈亏	
transaction_cost	float	当日费用	TransCost(t) 表示 t 时刻交易费用
positions	dict	一个包含期货子组合仓位的字典,以order_book_id作为键,position对象作为值	
margin	float	已占用保证金	Margin All(t) 表示 t 时刻保证金总额
buy_margin	float	多头保证金	
sell_margin	float	空头保证金	

期货position对象

属性	类型	注释	本文记号
order_book_id	str	合约代码	
market_value	float	当前仓位的名义价值。可为负。	MarketValueSingle(n,t) 表示 t 时刻资产 n 的市值
buy_quantity	int	多头持仓	LotOfBuy(n,t) 表示 t 时刻资产 n 的多 头数
sell_quantity	int	空头持仓	Lot Of Sell(n,t) 表示 t 时刻资产 n 的空 头数

期货instrument对象

参数	类型	说明	本文记号
order_book_id	str	期货代码,期货的独特的标识符	
margin_rate	float	期货合约最低保证金率	MarginRatio(n) 第n个资产的保证金率
contract_multipli er	float	合约乘数,例如沪深300股指期货的乘数为300.0	Multiplier(n) 第n个资产的合约乘数

仓位控制指标函数

市值仓位控制

1. 多空标量 †

Lot(n) 第n个资产的下单手数,初始时刻Lot(n)为 0

 $SignLS(n) \in \{+1 (Long), -1 (Short)\}$

定义多空标量 V(n) = Lot(n) * SignLS(n), 后面记作 V_n

2. 下单基数

Base(n) = Multiplier(n) * Lot(n)

3. 下单额

$$Money(n) = Price(n) * Base(n)$$

4. 保证金额

$$Margin(n) = Money(n) * Margin Ratio(n)$$

5. t 时刻的账户名义价值

AccountValue(t) = Cache(t) + MarketValue(t)

6. 投资总体杠杆率

Leverage Ratio(n) = 1.0 ÷ Margin Ratio(n) 为期货合约n的杠杆率,为合约给定。

GLRatio 为资金账户的全局杠杆率,即下一时刻下单额与总资金量的杠杆比例

$$\sum_{n} Money(n) < AccountValue(t) * GLRatio$$

满足上式的充分条件为 $GLRatio < = Max_n(LeverageRatio(n))$

调仓的目标Lot(n,t)只与当前账户名义价值有关,我们的后续策略只与1-6指标有关。

记录历史头寸

RQAlpha结算的平仓操作优先昨日头寸,几个方面需要对合约的历史头寸进行跟踪:

- 1. 同一个合约,方向不变的头寸,只做增量性开仓
- 2. 对盈利较多的头寸平仓补充现金账户
- 3. 对亏损较多的头寸平仓避免击穿

目前RQAlpha回测框架只提供四种操作函数,暂无法完成补保证金操作,调仓周期内监控合约并

[†]在本策略中约定不同时持有单—instrument的多头和空头

重新建仓。sell_close(平多仓) sell_open(卖开) buy_close(平空仓) buy_open(买开)

7. 头寸列表

 $TransList(n) = [(t_1, -1or1, N), ...]$,是一个三元组列表提供(时刻,多空标记, 成交手数)的一个 跟踪列表。

天级别策略下单的基本约定:

- 1. 一个报价内,不同时持有空头和多头
- 2. 一个报价内,不同时反向操作 (平买 and 买开)和 (平卖 and 卖开)

TransList(n) 表内的每个三元组第二个元素都是-1或者都是1,该列表按时刻大小正序排列。

8. 合约头寸持有期 (t_s, t_e) 内的收益计算

	TransList(n) 为空头记录	TransList(n) 为多头记录
Lot Of Buy(n,t) > 0	清空TransList(n)列表,增加多头记录	增加多头记录 or 减少最远时刻的订单头寸
Lot Of Sell(n,t) > 0	增加空头记录 or 减少最远时刻的订单头寸	清空TransList(n)列表,增加空头记录
Lot Of Buy(n,t) = 0 $Lot Of Sell(n,t) = 0$	清空列表	清空列表

TransList(n) 中的某个头寸记录 $(t_s, SignLS(n, t_s), Lot(n, t_s))$

值得注意的是,这里的 $SignLS(n,t_s)$, $Lot(n,t_s)$ 与1-6式中的标记相同,但含义不同,也不应是同一个变量。在1-6式中,这两个含义分别是合约的"多空标记"和"下单手数"的仓位目标指标 或者 仓位累计指标。这儿我们沿用这两个数学标记,指的是历史时刻 t_s 成交的"多空标记"和"手数"。我们可从列表TransList(n)中获取头寸建仓时间,并利用下面的公式计算收益:

 $Delta(n, t_s, t_e) = [Price(n, t_e) - Price(n, t_s)] * SignLS(n, t_s)$

 $DeltaRatio(n, t_s, t_e) = [Price(n, t_e) / Price(n, t_s) - 1] * SignLS(n, t_s)$

 $RevenueRatio(n,t_s,t_e) = Max(DeltaRatio(n,t_s,t_e), -MarginRatio(n))$

 $Revenue(n,t_s,t_e) = RevenueRatio(n,t_s,t_e)*Lot(n,t_s)$

9. 盈亏率与平仓操作

 $\epsilon_{mrr} \, > \, Delta\,Ratio\,(n,t_s,t_e) \, / \, |Margin\,Ratio\,(n)| \, > \, \epsilon_{mdr} \, , \, 0 \, > \, \epsilon_{mdr} > - \, 1$

emdr 最大亏损率 Maximal Deficit Ratio 表示保证金的最高亏损比例,如果亏损超过该比例,则补足保证金。在RQAlpha框架现有版本中,我们先执行平仓指令。

emrr 最大收益率 Maximal Revenue Ratio 表示保证金的最高收益比例,如果收益超过该比例则执行平仓,以撤回现金到现金账户。

也就是说,TransList(n)列表中的每一笔交易记录,满足 $DeltaRatio(n,t_s,t_e)$ / $|MarginRatio(n)| > \epsilon_{mrr}$ 或者 $DeltaRatio(n,t_s,t_e)$ / |MarginRatio(n)| < ϵ_{mdr} , 则平仓 V_n^{t-1} ($V_n^{t-1} < 0$ 平卖, $V_n^{t-1} > 0$ 平买)

10. 账户名义可用余额

设置 Surplus(t) 为账户名义可用余额,由两部分构成:

- 1. 当前现金账户 —— Cache(t)
- 2. 多头和空头的平仓市值 —— 即满足 (9) 的所有平仓合约头寸市值

11. 仓位调整向量 和 调仓操作表

调仓向量定义为 $\delta_{v}(n) = V_{n}^{t} - V_{n}^{t-1}$

其中 V_n^t, V_n^{t-1} 分别代表调仓目标仓位和当前仓位的"多空向量"。

	$V_n^{t-1} < 0$	$V_n^{t-1} > 0$	$V_n^{t-1} = 0$
$\delta_{v}(n) < 0$	卖开 $ \delta_{v}(n) $ 手	平买 $min(\delta_{v}(n) , V_{n}^{t-1})$ 手 补 $max(V_{n}^{t-1} - \delta_{v}(n) , 0)$ 手多头保证金 卖开 $-min(0, V_{n}^{t})$ 手	卖开 $ \delta_{V}(n) $ 手
$\delta_{V}(n) > 0$	平卖 $min(\delta_{V}(n) , V_{n}^{t-1})$ 手 补 $max(V_{n}^{t-1} - \delta_{V}(n) , 0)$ 手空头保证金 买开 $min(0, V_{n}^{t})$ 手	买开 $ \delta_{v}(n) $ 手	买开 $ \delta_{V}(n) $ 手

Mean-Variance优化

1. 资产的预期收益

$$R_n^t = Ret(n,t), R = [R_0^t, R_1^t, \dots, R_{n-1}^t]^T$$

2. 预期收益的协方差

$$Co\,v_{ij}^t = Co\,v(i,j,t)$$

当我们接受了 N 个资产的报价序列,这两组预测值则由模型根据报价序列给定。

方案一: 仓位同比放大

1. 优化得到仓位比例 w

$$\sum_{i=1}^{N} R_{i}^{t*}w(i) - riskcoef* \sum_{i=1}^{N} \sum_{j=1}^{N} Cov_{ij}^{t*}w(i)*w(j), \quad s.t. \sum_{i} \|w(i)\|_{1} = 1$$

2. 得到多空方向标量

头寸方向由仓位比例的w的正负号确定 SignLS(n) = Sign(w(n))

头寸的比例满足如下关系

$$V_n = Lot(n) * Sign(w(n)), \; BaseP(n) = Multiplier(n) * V_n, \; BaseP(n) = w(n) * coef,$$

确定 coef 的值:

Base(n) = ||BaseP(n)||

Money(n) = Price(n) * Base(n)

$$\sum_{n} Money(n) < AccountValue(t) * GLRatio$$

我们得到如下关系:

$$coef < \{AccountValue(t)*GLRatio\} / \sum_{n} \left\{Price(n)*\|w(n)\|\right\}$$

进而:

 $V_n = [w(n)*coef / Multiplier(n)]$ 为正向下取整,为负则向上取整。

方案二: 直接单数优化

方案一的优化在最终取整过程中会带来一定的偏差,我们不妨直接优化下单手数。

$$\sum_{i=1}^{N} R_i^t * Multiplier(i) * V_i - riskcoef * \sum_{i=1}^{N} \sum_{j=1}^{N} Cov_{ij}^t * Multiplier(i) * V_i * Multiplier(j) * V_j$$

$$s.t. \sum_{i} Price(i)*Multiplier(i)*\|V_i\|_1 < Account Value(t)*GLRatio$$

时间序列转换

高维因子X

之前的一个部分需要的两组变量 R, Cov 由下面的算法流程完成。

1. 保留 T 窗口内 N 个资产的价格序列

资产
$$N-1$$
 为 $P_{N-1}^0, \ldots, P_{N-1}^{T-3}, P_{N-1}^{T-2}, P_{N-1}^{T-1}$

资产
$$N-2$$
 为 $P_{N-2}^0,\ldots,P_{N-2}^{T-3},P_{N-2}^{T-2},P_{N-2}^{T-1}$

资产
$$N-3$$
 为 $P_{N-3}^0, \ldots, P_{N-3}^{T-3}, P_{N-3}^{T-2}, P_{N-3}^{T-1}$

. . .

2. TA-LIB 扩展

TA-LIB 提供 MA、ROC、MACD 等几十种技术指标,每一个函数,

输入两个参数:

series 是一个价格序列, period 区间长度。

输出一组序列:

series 相同长度的序列,但是对"头部"不满足 period 时间段要求的返回nan

因而一个时间序列,经过 TA-LIB 扩展,得到一个多维向量(矩阵)序列。

- 3. 合并多个 period 的 "多维向量(矩阵)序列" 多个 period 参数经过上述过程,将会产出多个"多维向量(矩阵)序列",按时间戳对齐它们 完成维度扩展。
- 4. 合并多个资产的"多维向量(矩阵)序列"

将 N 个资产价格的"多维向量(矩阵)序列",按时间戳对齐它们,再次完成维度扩展。

综合上述过程,N个长度为T的资产价格序列,利用K个 TA-LIB 函数进行扩展,S个 period 参数,那么我们可以得到一个维度为 (N*S*K,T) 因子矩阵。

限制条件和合法区间为 T < 2*period, [-period:],后续补充对 TA-LIB 扩展包的说明。上述去除掉 nan数值的数据,得到一个 (NSK,T') 因子矩阵。

预测目标 Y

1. 资产价格的收益序列

定义 Log 收益比率为 $LogRatio_{t+1} = Log(P_{t+1}) - Log(P_t)$,一段 N 长度时间内的 Log 收益比率和记为 $\sum_{t=0}^{N-1} LogRatio_{t+1}$ 。通常计算周期为目标时间戳的下面一个月。

基础模型构建

优化目标

优化问题的目标函数为 $argmin_W \|X_{(T',NSK)}W_{(NSK,L)} - Y_{(T',L)}\|_2^2 + \lambda \|W\|_1$,其中,X为因子矩阵,W为参数矩阵,Y为目标值矩阵。

数据对齐

预测方法

获得上述优化公式的解 $\hat{W}_{(NSK,L)}$,则结果为 $X_{pred}\hat{W}_{(NSK,L)}$ 的均值。

超参数清单

策略控制

符号	说明
backtest_starting_date	开始时间
backtest_end_date	结束时间
factor_model_cycle	模型训练周期 [天、周、月]
portfolio_adjust_cycle	组合调仓周期 [天、周、月]
future_starting_cache	期货账户初始资金
symbol_list	期货连续合约symbol列表

仓位控制

符号	说明
GLRatio	全局杠杆率,满足如下不等式 $GLRatio <= Max_n(LeverageRatio(n))$
ϵ_{mdr} Maximal Deficit Ratio ϵ_{mrr} Maximal Revenue Ratio	历史头寸的平仓信号阈值 最大亏损率,最大收益率

模型控制

符号	说明
lookback_window	回望窗口

实验比较

