SUMSTATS

Description of GWAS summary statistics

The repository shows how to provide input for PW-pipeline, FM-pipeline including GCTA, and possibly others here.

Briefly, the format has the following columns,

Column	Name	Description
1	SNP	RSid
2	A1	Effect allele
3	A2	Other allele
4	freqA1	A1 frequency
5	beta	effect estimate
6	se	standard error of effect
7	P	P-value
8	N	sample size
9*	chr	chromosome
10*	pos	position

^{*} These two columns can be obtained from https://genome.ucsc.edu/ as shown below.

It might be worthwhile to check for options with the sumstats as defined in ldsc, https://github.com/bulik/ldsc, and particularly its munge_sumstats.py utility.

Information from UCSC

The chromosomal positions for the current build can be downloaded from the UCSC website, which should be helpful for GWAS summary statistics either using chromosomal positions from different build or without these at all.

```
wget http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/snp150.txt.gz gunzip -c snp150.txt.gz | \ awk '\{split(\$2,a,"_");sub(/chr/,"",a[1]);print a[1],\$4,\$5\}' | \ sort -k3,3 > snp150.txt
```

where it first obtains build 37 positions, sorts them by RSid into the file snp150.txt.

Examples

BMI

We take data reprted by Locke, et al. (2015) as example which requires build 37 positions from UCSC described above.

```
# GWAS summary statistics
wget
http://portals.broadinstitute.org/collaboration/giant/images/1/15/SNP gwas mc
merge nogc.tbl.uniq.gz
gunzip -c SNP gwas mc merge nogc.tbl.uniq.gz
awk 'NR>1' | \
sort -k1,1 | \
join -11 -23 - snp150.txt | \
awk '($9!="X" && $9!="Y" && $9!="Un")' > bmi.txt
where file containing the GWAS summary statistics is downloaded, its header dropped,
sorted and positional information added leading to a file named bmi.txt. We also filter out
nonautosomal SNPs.
The list of 97 SNPs can be extracted as follows.
R --no-save <<END
library(openxlsx)
xlsx <- "https://www.nature.com/nature/journal/v518/n7538/extref/nature14177-
s2.xlsx"
snps <- read.xlsx(xlsx, sheet = 4, colNames=FALSE, skipEmptyRows = FALSE,</pre>
cols = 1, rows = 5:101)
snplist <- sort(as.vector(snps[,1]))</pre>
write.table(snplist, file="97.snps", row.names=FALSE, col.names=FALSE,
quote=FALSE)
END
T<sub>2</sub>D
The data was reported by Scott, et al. (2017),
R -q --no-save <<END
library(openxlsx)
library(dplyr)
xlsx <-
"http://diabetes.diabetesjournals.org/highwire/filestream/79037/field_highwir
e_adjunct_files/1/DB161253SupplementaryData2.xlsx"
# Supplementary Table 3. Results for established, novel and additional
distinct signals from the main analysis.
ST3 <- read.xlsx(xlsx, sheet = 3, colNames=TRUE, skipEmptyRows = FALSE, cols
= 1:20, rows = 2:130) %>%
       rename(P="p-value.in.stage.1") %>% within(
       {
          beta=log(OR)
          L <- as.numeric(substr(CI,1,4))</pre>
          U <- as.numeric(substr(CI,6,9))</pre>
          se=abs(log(L)-log(U))/3.92
       }) %>% select(
          SNP=rsid,
```

```
A1=EA,
          A2=NEA,
          freqA1=EAF,
          beta,
          se,
          Ρ,
          N=Sample.size,
          chr=Chr,
          pos=Position b37
write.table(ST3, file="ST3", row.names=FALSE, col.names=FALSE, quote=FALSE)
# Supplementary Table 4. BMI-unadjusted association analysis model
ST4 <- read.xlsx(xlsx, sheet = 4, colNames=TRUE, skipEmptyRows = FALSE, cols
= 1:12, rows = 3:132) %>% rename(
          "CI"="CI.95%",
          "P"="P-value") %>% within(
       {
          beta=log(OR)
          L <- as.numeric(substr(CI,1,4))</pre>
          U <- as.numeric(substr(CI,6,9))</pre>
          se=abs(log(L)-log(U))/3.92
          P=2*(1-pnorm(abs(beta/se)))
       }) %>% select(
          SNP=rsid,
          A1=allele1,
          A2=allele2,
          freqA1=freq1,
          beta,
          se,
          Ρ,
          Ν,
          chr,
          pos=position b37
write.table(ST4, file="ST4", row.names=FALSE, col.names=FALSE, quote=FALSE)
END
```

where we generate data based on the paper's supplementary tables ST3 and ST4; the former is in line with the paper (by specifying _db=depict and p_threshold=0.00001 when calling PW-pipeline).

References

GIANT (Genetic Investigation of ANthropometric Traits) data

Locke AE, et al. (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518(7538):197-206. doi: 10.1038/nature14177

DIAGRAM (DIAbetes Genetics Replication And Meta-analysis) data

Scott R, et al. (2017) An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes 66:2888–2902.