High-dimension Gaussians

Separating Gaussians
Fitting Spherical Gaussian to Data

Amit Waisel

Separating Gaussians

- Heterogeneous data coming from multiple sources
- Gaussian mixture model $p(x) = w_1p_1(x) + w_2p_2(x)$
- Parameter estimation problem: given access to samples from the overall density p, reconstruct the parameters for the distribution (mean and variance for each distribution: $\mu_1, \mu_2, \sigma_1, \sigma_2$)
- Mixed-density function
 - Gaussian p_i has its own mean μ_i and variance σ_i
 - Defines the probability to sample Gaussian's p_i 's distribution

MVN – Multivariant Normal Distribution

- Defined over vectors, not scalars
- Intuition: each coordinate in the random vector is sampled from a normal distribution

K-means

- We are given n vectors x_1, \dots, x_n and a number k
- We would like to partition the vectors into k sets, and with each set we associate a "center" μ_i
- The goal is to minimize the objective function $\min_{\mu_1,\dots,\mu_k,S_1,\dots,S_k} \sum_{j=1}^k \sum_{i \in S_j} \lVert x_i \mu_i \rVert^2$
- We assumed that each point has to be classified to a specific cluster.
 - This is a "hard" decision, since we need to decide for each point a single cluster.
 - We have to make some assumptions (distance between the means), in order to make this problem easier

GMM - Gaussian Mixture Model

- We have k Gaussian distributions, and a mixing distribution.
 - The mixing distribution gives a probability to each cluster
- To generate a point, we sample a Gaussian given the mixture distribution, and then sample the selected Gaussian to generate the point

GMM - Gaussian Mixture Model

- We have k unknown clusters $S_1, ..., S_k$ where $S_i \sim N(\mu_i, \sigma_i^2)$
- Each point originates from cluster j with probability p_j
- The density function for cluster j is $f_j(x) = \frac{1}{\left(\sqrt{2\pi\sigma_j^2}\right)^d} \cdot e^{\frac{\left(x-\mu_j\right)^2}{2\sigma_j^2}}$

Separating Gaussians

- Original objective: separate the samples into their original Gaussian distributions
- Women can be high, men can be low and we might not be able to know for sure if a specific sample belongs to a male or a female.
 - We can't know for sure (with high probability) whether a point belongs to a specific Gaussian
- Alternative objective:
 - More difficult: mixture of two Gaussians in <u>high-dimensions</u> (d-dimension space), rather than 1-dimension
 - Easier: we assume the means are well-separated compared to the variances

Separating Gaussians

- We will focus on a mixture of two spherical unit-variance Gaussians whose means are separated by a distance $\Omega(d^{\frac{1}{4}})$
 - Goal: Prove that using those assumptions, we can know with high confidence the origin of a given sample. This is k-means with k=2.
- Simple solution: Calculate the distance between all pairs of points.
 - Points whose distance apart is smaller are from the same Gaussian
 - Points whose distance is larger are from different Gaussians

- Reminder: Gaussian Annulus Theorem
 - For a d-dimensional spherical Gaussian with unit variance in each direction, for any $\beta \leq \sqrt{d}$, all but at most $3e^{-c_1\beta^2}$ of the probability mass lies within the annulus $\sqrt{d}-\beta \leq |x| \leq \sqrt{d}+\beta$, where c is a fixed positive constant
 - A fixed value for β is good for fixed number of sampled points
- Reminder: Volume near the equator
 - For any unit-length vector v defining "north", most of the volume of the unit ball lies in the thin slab of points whose dot-product with v has magnitude $O\left(\frac{1}{\sqrt{d}}\right)$
 - At least $1-\frac{2}{c}e^{-\frac{c^2}{2}}$ fraction of the volume of the d-dimensional unit ball, has $|x_1| \le \frac{c}{\sqrt{d-1}} \le O(1)$

- Most of the Gaussian's probability mass lies on an annulus of width $O(\beta)$ at radius \sqrt{d} from the origin
- Most of its probability mass lies in a $O\left(\frac{1}{\sqrt{d}}\right)$ -width slab on the equator
 - For simplicity assume it is a constant, O(1)

- Consider one spherical <u>unit-variance</u> Gaussian centered at the <u>origin</u>
 - $\mu = (0, ..., 0)$
 - $\sigma^2 = 1$
 - Density function is $f(x) = \frac{1}{\sqrt{2\pi}^d} \cdot e^{-\frac{x^2}{2}}$ (for $e^{-\frac{x^2}{2}} = \prod_i e^{-\frac{x_i^2}{2}}$)
- Almost all of the mass is within the slab $\{x \mid -\text{const} \le x_1 \le \text{const}\}$

- Pick a random point x from the Gaussian
- Rotate the coordinate system to make the first axis align with x
- Pick an independent sample y
 - y is located on the equator, with high probability, considering x as the north pole
 - y's component along x's direction, is O(1) with high probability

- y is nearly-perpendicular to x
 - $|x y|^2 \approx |x|^2 + |y|^2$
- x is considered as the "north pole"

•
$$x = (\sqrt{d} \pm O(\beta), 0, 0, \dots, 0)$$

- y is nearly on the equator, we can further rotate the coordinate system so that the component of y that is perpendicular to the axis of the "north pole", is in the second coordinate
 - $y = (O(1), \sqrt{d} \pm O(\beta), 0, 0, ..., 0)$
- $|x y|^2 = 2d \pm O(\beta \sqrt{d})$ with high probability

- Consider two spherical unit-variance Gaussians with centers p,q separated by a distance Δ
- We want to prove that every two random points, each selected from a different Gaussian, will have significant distance between them

•
$$\approx \sqrt{\Delta^2 + 2d \pm O(\beta\sqrt{d})}$$

- Pick x from the 1st Gaussian and rotate the coordinate system so x will be the north pole
 - Let z be the north pole of the $2^{\rm nd}$ spherical Gaussian, using the same coordinate system
- Pick y from the 2nd Gaussian
 - Most of the 2nd Gaussian's mass is within O(1) of the equator perpendicular to q-z
 - Most of the 2nd Gaussian's mass is within O(1) of the equator perpendicular to q-p

- The distance |z y| is $O(\sqrt{2d})$
 - Two samples from the same Gaussian
- High-dimension Pythagorean Theorem

•
$$|x - y|^2 \approx \Delta^2 + |z - q|^2 + |q - y|^2 \approx \Delta^2 + 2d \pm O(\beta \sqrt{d})$$

•
$$|z - q|^2 \approx |q - y|^2 \approx \left(\sqrt{d} \pm O(\beta)\right)^2 \approx d \pm O(\beta\sqrt{d}) + \beta^2$$

Sample distances - assumptions

- We have to ensure that the distance between two points picked <u>from the same Gaussian</u> are closer to each other, than two points picked <u>from different Gaussians</u>
 - The upper limit of the distance between a pair of points from the same Gaussian is at most the lower limit of the distance between points from different Gaussians
- Squared-distance between two points picked from the same Gaussian
 - $2d \pm O(\beta\sqrt{d})$
- Squared-distance between two points picked <u>from different Gaussians</u>
 - $\Delta^2 + 2d \pm O(\beta\sqrt{d})$
- $2d \pm O(\beta\sqrt{d}) \le \Delta^2 + 2d \pm O(\beta\sqrt{d})$ holds for $\Delta \in \omega^{\left(d^{\frac{1}{4}}\right)}$, as needed

Separating Gaussians - algorithm

- Calculate all pairwise distances between points
- The cluster of smallest pairwise distances must come from a single Gaussian
 - Remove these points
- The remaining points come from the second Gaussian
- We used a constant β . What happens if we take n samples?
 - Any fixed β will not be good enough. β has to be dependent on n
 - $\beta = O(\sqrt{\ln n})$ is a good value for the annulus-theorem equation
 - The probability to sample the annulus is $1-3e^{-c_1\beta^2}=1-\frac{3}{n^{c_1}}=1-\frac{1}{poly(n)}$

Sample distances – one Gaussian, *n* samples

- y is nearly-perpendicular to x
 - $|x y|^2 \approx |x|^2 + |y|^2$
- x is considered as the "north pole"

•
$$x = (\sqrt{d} \pm O(\sqrt{\ln n}), 0, 0, \dots, 0)$$

- y is nearly on the equator, we can further rotate the coordinate system so that the component of y that is perpendicular to the axis of the "north pole", is in the second coordinate
 - $y = (O(1), \sqrt{d} \pm O(\sqrt{\ln n}), 0, 0, ..., 0)$
- $|x y|^2 = 2d \pm O(\sqrt{\ln n} \sqrt{d})$ with high probability

Sample distances – two Gaussians, n samples

- The distance |z y| is $O(\sqrt{2d})$
 - Two samples from the same Gaussian
- High-dimension Pythagorean Theorem

•
$$|x - y|^2 \approx \Delta^2 + |z - q|^2 + |q - y|^2 \approx \Delta^2 + 2d \pm O(\sqrt{\ln n} \sqrt{d}) + O(\ln n)$$

•
$$|z - q|^2 \approx |q - y|^2 \approx \left(\sqrt{d} \pm O\left(\sqrt{\ln n}\right)\right)^2 \approx d \pm O\left(\sqrt{\ln n}\sqrt{d}\right) + O(\ln n)$$

Sample distances – assumptions, *n* samples

- We have to ensure that the distance between two points picked <u>from the same Gaussian</u> are closer to each other, than two points picked <u>from different Gaussians</u>
 - The upper limit of the distance between a pair of points from the same Gaussian is at most the lower limit of the distance between points from different Gaussians
- Squared-distance between two points picked from the same Gaussian
 - $2d \pm O(\sqrt{\ln n} \sqrt{d})$
- Squared-distance between two points picked <u>from different Gaussians</u>
 - $\Delta^2 + 2d \pm O(\sqrt{\ln n} \sqrt{d})$
- $2d \pm O(\sqrt{\ln n}\sqrt{d}) \le \Delta^2 + 2d \pm O(\sqrt{\ln n}\sqrt{d})$ holds for $\Delta \in \omega\left((d \cdot \ln n)^{\frac{1}{4}}\right)$

Fitting a Spherical Gaussian to Data

- Given d-dimensional sample points x_1, \dots, x_n , our objective is to find a spherical Gaussian that best fits those points
 - Find the distributions' mean μ and variance σ^2
- Let f be a Gaussian with mean μ and variance σ^2
 - μ is a d-dimensional vector, containing the mean values for each dimension

Fitting a Spherical Gaussian to Data

- f's density function is $f(x) = \frac{1}{\left(\sqrt{2\pi\sigma^2}\right)^d} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ (remember: x, μ are vectors)
- Definition: MLE (Maximal Likelihood Estimator) of a set samples x_1, \dots, x_n is the density function f that maximizes the above probability density
- We want the Gaussian which gives us the highest probability to get the data $x_1, ... x_n$ under its density function f(x).
 - The density function becomes a function of μ , σ instead of x, because we want to maximize the likelihood

•
$$F(\mu, \sigma) = f(x_1, ..., x_n) = \frac{1}{(2\pi\sigma^2)^{\frac{dn}{2}}} \cdot \prod_{i=1}^n \left[e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} \right]$$
 where $x_1, ..., x_n$ are vectors

MLE– mean value μ

- Let $x_1, ..., x_n$ be samples in d-dimensional space. We will prove that $(x_1 \mu)^2 + \cdots + (x_n \mu)^2$ is minimized when μ is the centroid of $x_1, ..., x_n$
 - Why minimize? $F(\mu,\sigma)=c\cdot e^{\frac{-(x_1-\mu)^2+\cdots+(x_n-\mu)^2}{2\sigma^2}}$, so maximizing F's value is minimizing $(x_1-\mu)^2+\cdots+(x_n-\mu)^2$
- Proof: We would like to find the minimal point of the sum, by finding its derivative
 - Note that every part of the sum is a vector, its first coordinate is the derivative by μ_1 .
 - ullet Each row is a different derivative, and we have d derivatives in total
 - $-2(x_1 \mu) \dots 2(x_n \mu) = 0$
 - Solving for μ gives $\mu = \frac{1}{n}(x_1 + \dots + x_n)$

MLE – variance σ^2

- We would like to find the MLE of σ^2 for f
- Let μ be the real centroid.
- Let $w = \frac{1}{2\sigma^2}$ and $a = \sum_{i=1}^n (x_i \mu)^2$ (for simplicity)
- The density function is $\operatorname{now} f(x) = \left[\frac{v}{\pi}\right]^{\frac{dn}{2}} \cdot e^{-av}$
 - To find its maximal value, we will find the derivative of $\ln f(x)$
 - $\frac{dn}{2v} a = 0$
 - $\sigma = \frac{\sqrt{a}}{\sqrt{nd}}$
- σ is the square root of the average coordinate distance squared of the samples to their mean (the definition of standard deviation!)