関数・論理型プログラミング実験 論理型演習第3回 (通算第13回)

松田 一孝

TA: 武田広太郎 寺尾拓

これまでの流れ

- o 第1回 (6/24)
 - ◆ Prologの使い方
- 0 第2回 (7/1)
 - ◆ Prologの評価メカニズム
- o 第3回 (7/8)
 - ◆ いろいろな探索
- o 第4回(7/15)
 - ◆ 関数論理型言語Curry

今日の話

- o いろいろな探索手法を学ぶ
 - ◆ 深さ優先探索 (Depth-First Search)
 - ◆ 幅優先探索 (Breadth-First Search)
 - ◆ 反復深化 (Iterative Deepening)
 - ◆ A*

12511

- o Prologの探索は深さ優先
 - ◆ 特徴を知ることでより活用可
- いくつかのシステムでは探索木を 取り出し、操作できる
 - ◆ 例
 - * Haskell O Monad Plus
 - * Curry Oget Search Tree
 - o getSearchTree :: a -> IO (SearchTree a)
 - ◆ これらをさらに活用できるように
- o そうでなくとも探索は重要

Haskellでの実装例

```
data SearchT a
    = SNone | SUnit a
    | SOr (SearchT a) (SearchT a)
dfs:: SearchT a -> Maybe a
dfs t = go [t]
 where
                 = Nothing
    go (SNone:x) = go x
    go (SUnit a:x) = Just a
    go (SOr 1 r:x) = go (1:r:x)
```

利点·欠点

- 0 利点
 - ◆ 実装が容易
 - * スタック
 - o 関数呼出のスタックを利用可
 - ◆ 空間効率がよい
 - * 「深さ」分だけあればよい
- 0 欠点
 - ◆あるはずの解が発見できない
 - * 無限に深い部分木 (前回参照)
 - ◆ 「最短で到達」する解を探すには 不向き

Haskellでの実装例

```
data SearchT a
     = SNone | SUnit a
      | SOr (SearchT a) (SearchT a)
bfs :: SearchT a -> Maybe a
bfs t = go [t] []
  where
                           = Nothing
     go [] []
     go [] y = go (reverse y) []
go (SNone:x) y = go x y
go (SUnit a:x) y = Just a
go (SOr l r:x) y = go x (r:l:y)
```

遅延評価を活用した版

```
bfs:: SearchT a -> Maybe a
bfs t = case [x | SUnit x <- queue ] of
           a: -> Just a
 where
   queue = t:runBFS 1 queue
   runBFS n ts
       n == 0 = []
n > 0 =
       case ts of
         SOr t1 t2:ts' -> t1:t2:runBFS (n+1) ts'
         :ts'
                       -> runBFS (n-1) ts'
```

利点·欠点

- 0 利点
 - ◆ 実装が比較的容易
 - * dfsのスタックの代わりにキュー
 - ◆ みつかった解は最短手順で到達可
 - ◆ 解があれば必ず発見
 - * 無限の木があっても動く
- o 欠点
 - ◆ 空間効率が悪い

幅優先探索の空間効率

o キューのサイズは幅程度

空間効率は大事

- o かかる時間が 1時間, 2時間, 3時間, …
 - ◆ 基本「同じマシン」で実行でき、 待つ時間が増えるだけ
- o 使用するメモリが 1GB, 2GB, 3GB, …
 - ◆ 途中で「今つかっているマシン」では (現実的に)終わらなくなる
 - ★ メモリのサイズを増やすのは 待つ時間を増やすのより難しい

- 0 利点
 - ◆ 幅優先探索のように
 - * 解があれば必ず発見
 - 無限の木があっても
 - * みつかった解は最短手順で到達可
 - ◆ 深さ優先探索のように
 - * 空間計算量は深さ分程度

Haskellでの実装例

```
iddfs :: SearchT a -> Maybe a
iddfs t = foldr (\a _ -> Just a) Nothing
             $ concatMap (go [(t, 0)]) [1...]
  where
                        limit = | |
    go ((SNone, _):x) limit = go x limit
    go ((SUnit \overline{a}, _):x) limit = [a]
    go((SOr l r, n):x) limit =
        if n < limit then
          go ((1, n+1):(r, n+1):x) limit
        else
          go x limit
```

遅くない?

- o 何度もDFSを実行

 - ◆ 同じノードを何度も何度も辿る ◆ が, 辿ったノードを覚えておくにはやっぱり幅程度の空間コストがかかる

遅くな!!

- o 実は同じノードを複数回辿るオーバヘッドは木の高さ程度
 - ◆ 高さnの完全二分木について
 - * 深さ優先探索のノードを辿る回数 1 + 2 + 4 + ··· + 2ⁿ = 2ⁿ⁺¹ - 1
 - * 反復深化法のノードを辿る回数 $n + (n-1)2 + (n-2)4 + \cdots + 2^n$ $\leq n(1 + 2 + 4 + \cdots + 2^n)$ $= n(2^{n+1} 1)$

小まとめ

- o 深さ優先探索
- o幅優先探索
- 0 反復深化法

これまでの方法

- ο 問題と独立
- o 枝に重みなし

例:口ボットの移動

例:口ボットの移動

幅優先探索 (Dijkstra法)

アプローチ1

- ブールまで「近そう」なやつから 優先的に探索 (最良優先探索)
 - ▼「近そう」:障害物がなかった場合の距離* xy座標の差の絶対値の和
- o 幅優先でキューのかわりに 優先度付きキューを使う

問題点

o 最短性が失われる場合がある

問題点

ο 最短性が失われる場合がある

アプローチ2

- 「これまでの距離」+「ゴールまでの距離の見積り」が小さいものを優先して探索
 - ◆ ゴールまでの距離の見積り: 障害物がなかった場合の距離
 - ◆ 実はこの場合は 最短経路がきちんと求まる

A*探索

しかしh*は未知 (gは探索の過程でわかる)

f*(x) = g(x) + h*(x)g: ロボからの距離

h*: 宝への距離 が小さい×を優先し選ぶのがベスト

↓このとき解の最短性が保証

注意
$$f(x) = g(x) + h(x)$$

g:スタートからxまでの距離

- 一般には同じ接点を何度も巡る必要
 - ◆ 再び巡ったほうがfが小さくなる
 - ◆ そうする必要がないための条件 $|h(x)-h(y)| \leq dist(x, y)$

注意
$$f(x) = g(x) + h(x)$$

g:スタートからxまでの距離

- 一般には同じ接点を何度も巡る必要
 - ◆ 再び巡ったほうがfが小さくなる
 - ◆ そうする必要がないための条件 $|h(x)-h(y)| \leq dist(x, y)$

注意
$$f(x) = g(x) + h(x)$$

g:スタートからxまでの距離

- 一般には同じ接点を何度も巡る必要
 - ◆ 再び巡ったほうがfが小さくなる
 - ◆ そうする必要がないための条件 $|h(x) - h(y)| \leq dist(x, y)$

注意
$$f(x) = g(x) + h(x)$$

$$g: スタートからxまでの距離$$

- 一般には同じ接点を何度も巡る必要
 - ◆ 再び巡ったほうがfが小さくなる
 - ◆ そうする必要がないための条件 $|h(x)-h(y)| \leq dist(x, y)$

注意
$$f(x) = g(x) + h(x)$$

g:スタートからxまでの距離

- 一般には同じ接点を何度も巡る必要
 - ◆ 再び巡ったほうがfが小さくなる
 - ◆ そうする必要がないための条件 $|h(x)-h(y)| \leq dist(x, y)$

注意
$$f(x) = g(x) + h(x)$$

g:スタートからxまでの距離

- 一般には同じ接点を何度も巡る必要
 - ◆ 再び巡ったほうがfが小さくなる
 - ◆ そうする必要がないための条件 $|h(x)-h(y)| \leq dist(x, y)$

IDA*

- o A*に反復深化のアイデアを適用
 - ◆ 途中で打ち切る深さ優先探索を 繰り返す
 - ◆ ただし、深さの代わりに fを打ち切りに利用する
 - * 最初はlimit = f(初期状態)
 - * f(x) > limitな分岐は打ち切る
 - * 打ち切られたノードxについて, 最小のf(x)を次のlimitとする

まとめ

- o いろいろな探索手法を紹介
 - ◆ 深さ優先探索 (Depth-First Search)
 - ◆ 幅優先探索 (Breadth-First Search)
 - ◆ 反復深化 (Iterative Deepening)
 - ◆ A*

第13回レボート課題締切 7/22 13:00

注意

- o 今日の課題はPrologで 解かなくてもよい
 - ◆ HaskellやOCamlでも可
 - ◆ もちろん、Prologで解いてもよい * が何かうれしいことがあるわけではない
 - ◆ 他の言語はダメ
 - * この講義は 「関数・論理型プログラミング実験」

開

- o 探索木のデータを適当に与え, DFS, BFS, 反復深化を実装し比較せよ ◆無限に深い部分木がある場合も考察せ

Haskellの場合

```
data SearchT a
    = SNone | SUnit a
      SOr (SearchT a) (SearchT a)
```

(OCamlの場合は無限木を表現するために一工夫必要)

問2

- 問1の探索木を用いて 全ての「自然数の有限リスト」 を列挙する処理を実装せよ
 - ◆ ヒント
 - * SearchT [Int]を返す関数を実装
 - Haskellなら SearchTがMonadPlusのインスタンスと できることを利用する
 - ο 第8回問2も参考
 - 直接「全ての『自然数の有限リスト』 からなる無限リスト」を返そうとする と大変である。余裕があれば確認せよ。

34

牌3

- o 例で出したロボの移動の問題について 様々の探索手法を実装し比較を行え
 ◆ ロボの位置, ゴールの位置は座標の組
 - で与えよ
 - ◆ 障害物の位置は座標の組のリストで与
 - ◆ 口ボは上下左右に1マスずつ移動できる
 - ◆ 少なくとも、以下の2つは実装すること
 - * A*
 - * A*、IDA*以外の探索法

開4

- 問3で
 - ◆ ロボの移動を上下左右斜め8方向にした 場合(主将と同じ動き) ◆ ロボの移動を桂馬とび(8方向)にした
 - - * A*のhが「ゴールまでの座標差」では ダメなことに注意

問5

o 問4でロボが王将の動きをする場合, 探索手法によっては,ロボが無駄に斜めに移動する場合がある。これを防ぐ にはどうすればよいか議論せよ.

杂展

- o 15パズルの解答手順を求めるプログラ ムを書け ◆ 様々な探索アルゴリズムを使用し比較

1	2	3	4
5	6	7	80
9	10	11	12
13	14	15	

次回はCurry

- o 講義ではMCCを使う
 - ◆ http://danae.uni-muenster.de/~lux/curry/
 - * 使えるようにしておくこと
 - o 以下で手にはいる版を使う

```
darcs get —lazy \
http://danae.uni-muenster.de/~lux/curry/darcs/curry
```

- o noweb等必要なものは適宜インストールせよ
- ◆ 他の処理系
 - * http://www-ps.informatik.uni-kiel.de/currywiki/implementations/overview