CSC336 Tutorial 3 – Matrices, operation counts, GE/LU

QUESTION 1 Show that the product of lower triangular (l.t.) matrices is a lower triangular matrix.

PROOF: First consider a l.t. matrix L of size $n \times n$ and a $n \times 1$ vector x, whose first k components are 0. Which components of Lx are 0?

$$\begin{pmatrix} l_{1,1} & 0 & \dots & 0 \\ l_{2,1} & l_{2,2} & 0 & \dots & 0 \\ l_{3,1} & l_{3,2} & l_{3,3} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ l_{n,1} & l_{n,2} & l_{n,3} & \dots & l_{nn} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ x_{k+1} \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^n l_{1,j}x_j \\ \sum_{j=1}^n l_{2,j}x_j \\ \vdots \\ \sum_{j=1}^n l_{i,j}x_j \\ \vdots \\ \sum_{j=k+1}^n l_{i,j}x_j \\ \vdots \\ \sum_{j=k+1}^n l_{i,j}x_j \end{pmatrix}$$

Tut3 – Matrices, operation counts, GE/LU

© C. Christara, 2011–16

Tut3 – Matrices, operation counts, GE/LU

© C. Christara, 2011–16

$$\begin{array}{l} \text{[because (\dagger) } x_j = 0, \forall j \leq k \\ \text{and (\dagger\dagger) } l_{i,j} = 0, \forall i < j] \end{array} = \stackrel{(\dagger\dagger)}{\left(\begin{array}{c} 0 \\ \vdots \\ 0 \\ \sum_{j=k+1}^n l_{k+1,j} x_j \\ \vdots \\ \sum_{j=k+1}^n l_{nj} x_j \end{array} \right) }$$

Thus, components $1, \ldots, k$ of Lx are 0.

Now consider two l.t. matrices L_1, L_2 . Column j of the product L_1L_2 is the product of L_1 times the *j*th column of L_2 , the latter being a vector, whose first j-1 components are 0. Therefore the first j-1 elements in column j of L_1L_2 are 0. Since this holds for any j = 1, ..., n, the product of L_1, L_2 is l.t.

General note: Assume A and B have appropriate dimensions, so that the matrixmatrix product AB is defined. The *j*th column of the matrix-matrix product AB is the matrix-vector product of A with the jth column of B.

2

QUESTION 2 Show that the product of unit lower triangular (u.l.t.) matrices is a unit lower triangular matrix.

PROOF: First consider a u.l.t. matrix L of size $n \times n$ and a $n \times 1$ vector x, whose first k components are 0, and whose k + 1st component is 1, i.e. $x_{k+1,k+1} = 1$.

As in Question 1, components $1, \ldots, k$ of Lx are 0. Moreover,

$$(Lx)_{k+1,k+1} = \sum_{j=k+1}^{n} l_{k+1,j} x_j = (\dagger) l_{k+1,k+1} x_{k+1} = (\dagger\dagger) 1$$
, because

$$(\dagger)l_{k+1,j} = 0, \forall j > k+1 \text{ and }$$

$$(\dagger\dagger)l_{k+1,k+1} = 1, x_{k+1} = 1.$$

Now consider two u.l.t. matrices L_1, L_2 . As in Question 1, the first j-1 elements in column j of L_1L_2 are 0. Moreover, from $(Lx)_{k+1,k+1} = 1$ shown above, the jth element in column j of L_1L_2 is 1. Since this holds for any $j=1,\ldots,n$, the product of L_1, L_2 is u.l.t.

[because (†)
$$x_j = 0, \forall j \leq k$$
 and $(\dagger \dagger) l_{i,j} = 0, \forall i < j$]

[because (†) $x_j = 0, \forall j \leq k$ and $(\dagger \dagger) l_{i,j} = 0, \forall i < j$]

[because (†) $x_j = 0, \forall j \leq k$ and $(\dagger \dagger) l_{i,j} = 0, \forall i < j$]

[because (†) $x_j = 0, \forall j \leq k$ and $(\dagger \dagger) l_{i,j} = 0, \forall i < j$]

[because (†) $x_j = 0, \forall j \leq k$ and let $X = L^{-1}$. We have $LX = I$

[because (†) $x_j = 0, \forall j \leq k$ and let $X = L^{-1}$. We have $LX = I$

[because (†) $x_j = 0, \forall j \leq k$ and let $X = L^{-1}$. We have $LX = I$

[because (†) $x_j = 0, \forall j \leq k$ and let $X = L^{-1}$. We have $LX = I$

[because (†) $x_j = 0, \forall j \leq k$ and let $X = L^{-1}$. We have $LX = I$

[because (†) $x_j = 0, \forall j \leq k$ and let $X = L^{-1}$. We have $LX = I$

[because (†) $x_j = 0, \forall j \leq k$ and let $X = L^{-1}$. We have $LX = I$

[because (†) $x_j = 0, \forall j \leq k$ and let $X = L^{-1}$. We have $LX = I$

[converge (*) $X = L^{-1}$ and let $X = L^{-1}$. We have $LX = I$

[converge (*) $X = L^{-1}$ and let $X = L^{-1}$. We have $LX = I$

[converge (*) $X = L^{-1}$ and let $X = L^{-1}$ and let $X = L^{-1}$. We have $LX = I$

[converge (*) $X = L^{-1}$ and let $X = L^{-1}$ and let

Note that e_i is the jth column of I (identity).

Let also $X_{*,i}$ be the jth column of X.

Then
$$LX_{*,j} = e_j, \forall j = 1, ..., n$$
.

Thus, by solving $LX_{*,j} = e_j, j = 1, \dots, n$, we can compute X.

Since L is l.t., the systems $LX_{*,j} = e_j, j = 1, \dots, n$, are solved by forward substitution.

4

Consider applying forward substitution to $LX_{*,i} = e_i$

$$\begin{array}{lll} x_{1,j} &=& 0/l_{1,1} = 0 \\ x_{2,j} &=& (0-l_{2,1}x_{1,j})/l_{2,2} = 0 \\ &\vdots \\ x_{j-1,j} &=& (0-l_{j-1,1}\cdot 0 - l_{j-1,2}\cdot 0 - \ldots - l_{j-1,j-2}\cdot 0)/l_{j-1,j-1} = 0 \\ x_{j,j} &=& (1-0-\ldots)/l_{j,j} = 1/l_{j,j} \\ x_{j+1,j} & \text{possibly non zero} \\ &\vdots \end{array}$$

Tut3 – Matrices, operation counts, GE/LU

© C. Christara, 2011–16

QUESTION 5 Obtain the operation counts for computing the product of matrices C = $A \cdot B$, where $A \in \mathcal{R}^{l \times m}$, $B \in \mathcal{R}^{m \times n}$, by the standard matrix-matrix multiplication algorithm,

ANSWER: Note: $c_{i,j} = \sum_{k=1}^{m} a_{i,k} b_{k,j}, C \in \mathcal{R}^{l \times n}$.

Operation counts: $l \cdot n \cdot m$ flops. (1 flop = 1 addition + 1 multiplication)

Tut3 – Matrices, operation counts, GE/LU

© C. Christara, 2011–16

Thus, $x_{i,j} = 0, i = 1, \dots, j-1$, and this holds $\forall j$. And thus, $x_{i,j} = 0, \forall i < j$, i.e. X is l.t.

5

6

QUESTION 4 *Show that the inverse of a u.l.t. matrix is a u.l.t. matrix.*

PROOF: Consider a u.l.t. matrix L and let $X = L^{-1}$. We have LX = I, as in Question 3. Consider applying forward substitution to $LX_{*,j} = e_j$. The results of Question 3 still hold, i.e. X is l.t., and, moreover, $x_{i,j} = 1/l_{i,j} = 1/1 = 1$. Since this holds for $j = 1, \ldots, n, X$ is u.l.t.

QUESTION 6 Obtain the operation counts for computing $A \cdot B \cdot C$ as $(A \cdot B) \cdot C$ or as $A \cdot (B \cdot C)$, where $A \in \mathbb{R}^{1 \times n}$, $B \in \mathbb{R}^{n \times 1}$, $C \in \mathbb{R}^{1 \times n}$.

7

8

ANSWER:

$$\begin{split} 1. & (A \cdot B) \cdot C; \\ & A \cdot B \to 1 \cdot n \cdot 1 = n \text{ flops,} \\ & (AB) \cdot C \to 1 \cdot 1 \cdot n = n \text{ flops, } 2n \text{ flops in total.} \end{split}$$

2. $A \cdot (B \cdot C)$: $B \cdot C \to n \cdot 1 \cdot n = n^2$ flops, $A \cdot (BC) \to 1 \cdot n \cdot n = n^2$ flops, $2n^2$ flops in total.

For n > 1, $(A \cdot B) \cdot C$ is much faster than $A \cdot (B \cdot C)$.

QUESTION 7 Obtain the operation counts for computing $A \cdot B \cdot C$ as $(A \cdot B) \cdot C$ or as $A \cdot (B \cdot C)$, where $A \in \mathcal{R}^{k \times l}$, $B \in \mathcal{R}^{l \times m}$, $C \in \mathcal{R}^{m \times n}$.

ANSWER:

$$\begin{array}{l} 1. \ (A \cdot B) \cdot C : \\ A \cdot B \to k \cdot l \cdot m \ \text{flops,} \\ (AB) \cdot C \to k \cdot m \cdot n \ \text{flops } k \cdot m \cdot (l+n) \ \text{flops in total.} \end{array}$$

2.
$$A \cdot (B \cdot C)$$
:
 $B \cdot C \to l \cdot m \cdot n$ flops, $BC \in \mathcal{R}^{l \times n}$
 $A \cdot (BC) \to k \cdot l \cdot n$ flops, $l \cdot n \cdot (k+m)$ flops in total.

In general, we cannot tell which one is faster. For particular cases, one or the other is preferred. (A dynamic programming algorithm that finds the most efficient *Matrix Chain Multiplication* may be covered in CSC373 "Algorithm Design and Analysis".) Examples:

•
$$k = 3, l = 5, m = 3, n = 2, 3 \cdot 3 \cdot (5 + 2) = 63 > 60 = 5 \cdot 2 \cdot (3 + 3).$$

•
$$k = 3, l = 3, m = 5, n = 2, 3 \cdot 5 \cdot (3+2) = 75 > 48 = 3 \cdot 2 \cdot (3+5).$$

•
$$k = 2, l = 3, m = 5, n = 3, 2 \cdot 5 \cdot (3+3) = 60 < 63 = 3 \cdot 3 \cdot (2+5).$$

Tut3 - Matrices, operation counts, GE/LU

© C. Christara, 2011–16

 $y_{j+2,j} = (0 - l_{j+2,j}y_{j,j} - l_{j+2,j+1}y_{j+1,j})/l_{j+2,j+2}$ \vdots $y_{n,j} = (0 - l_{n,j}y_{j,j} - \dots - l_{n,n-1}y_{n-1,j})/l_{n,n}$

thus no cost to compute them, and $y_{n,n} = 1/1 = 1$ (no cost).

We need approximately $1+2+\cdots+(n-j)=\sum_{i=1}^{n-j}i=(n-j)(n-j+1)/2$ adds and mults (flops).

Apply forward substitution to $LY_{*,n} = e_n$: Unknowns $y_{1,n}$ through $y_{n-1,n}$ will be 0,

Apply forward substitution to $Ly_j = e_j$: Unknowns $y_{1,j}$ through $y_{j-1,j}$ will be 0, thus no cost to compute them, and $y_{i,j} = 1/l_{i,j} = 1/1 = 1$ (no cost). Unknowns $y_{j+1,j}$

 $y_{i+1,j} = (0 - l_{i+1,j}y_{i,j})/l_{i+1,j+1} = -l_{i+1,j}$

Total flops for forward substitutions:

through $y_{n,j}$ require computation.

$$\sum_{j=1}^{n} \frac{(n-j)(n-j+1)}{2} = \sum_{j=1}^{n-1} \frac{j(j+1)}{2} = \sum_{j=1}^{n-1} \frac{j^2}{2} + \sum_{j=1}^{n-1} \frac{j}{2}$$
$$= \frac{1}{2} \left[\frac{(n-1)n(2n-1)}{6} + \frac{n(n-1)}{2} \right]$$

11

12

Tut3 - Matrices, operation counts, GE/LU

© C. Christara, 2011–16

QUESTION 8 Let $A \in \mathbb{R}^{n \times n}$ be invertible. Using GE/LU, give an algorithm for computing the inverse of A, that requires n^3 flops.

ANSWER: Let $X = A^{-1}$ be the inverse of A (invertible). Then $AX = \mathbf{I}$. Express $AX = \mathbf{I}$ as

$$A \cdot [X_{*,1}X_{*,2}\cdots X_{*,n}] = [e_1e_2\cdots e_n]$$

where $X_{*,j}$ is the j-th column of X, and e_j the unit vector with "1" at row j. This means that

$$A \cdot X_{*,j} = e_j$$

So to compute X, it suffices to compute the column vectors $X_{*,j}$; i.e. to solve n linear systems with the same matrix A and different right sides, namely $e_j, j = 1, \ldots, n$. So we perform LU decomposition to A and apply forward-and-backward substitutions to $LY_{*,j} = e_j, UX_{*,j} = Y_{*,j}, j = 1, \ldots, n$.

Operation counts:

$$\frac{n^3}{3} + n \cdot 2 \cdot \frac{n^2}{2} = \frac{4n^3}{3}$$

Actually, we can do better.

Assume we compute the LU factorization of A, A = LU.

 $pprox rac{n^3}{6}$

Apply backward substitution to $UX_{*,j} = Y_{*,j}$: $n^2/2$ flops (adds and mults).

(Note: $Y_{*,j}$ does not have special structure.)

Total flops for b/s: $nn^2/2 = n^3/2$ flops.

Total flops for inverse:

$$\frac{n^3}{3}$$
 (LU) $+\frac{n^3}{6}$ (F/S) $+n \cdot \frac{n^2}{2}$ (B/S) $=n^3$

QUESTION 9 Given a nonsingular matrix $A \in \mathbb{R}^{n \times n}$ and a matrix $B \in \mathbb{R}^{n \times k}$, find an efficient way to compute $A^{-1}B$.

ANSWER: Two ways of computing $A^{-1}B$:

- 1. Computing A^{-1} costs n^3 flops. Computing the matrix-matrix product $A^{-1}B$ costs n^2k . Total n^3+n^2k flops.
- 2. Alternatively, we can compute the solution to AX = B. Note that the solution is a matrix $X \in \mathbb{R}^{n \times k}$.

Let $X_{*,j}$, $j=1,\ldots,k$, be the jth column of X, and $B_{*,j}$, $j=1,\ldots,k$, the jth column of B. Apply LU factorization to A ($n^3/3$ flops), and obtain the L and U factors of A. Then, for each $j=1,\ldots,k$, do forward and backward substitutions $LY_{*,j}=B_{*,j}$, $UX_{*,j}=Y_{*,j}$ (n^2k flops). Total $n^3/3+n^2k$ flops, clearly less than the flops in 1.

If k is of lesser order than n, then approach 2 is about 3 times faster than approach 1. If k is much larger than n, then approach 2 is still faster than approach 1. Never compute the inverse A^{-1} unless the inverse itself is explicitly required.

Tut3 - Matrices, operation counts, GE/LU

13

© C. Christara, 2011-16