# Aplicații ale rețelelor neuro-fuzzy în estimarea costului dezvoltării software

Student: Madar Nicușor-Florin

Coordonator științific: Lect. dr. Şuter Florentina

Facultatea de Matematică și Informatică, Universitatea din București

16 septembrie 2017

# Cuprins

- 1. Introducere
- 2. Modelul COCOMO
- 3. Preliminarii
- 3.1 Logică fuzzy
- 3.2 Retele neuronale
- 4. Retele ANFIS
- 5. Rezultate
- 6. Concluzi
- 7. Bibliografie

► Estimarea costului de dezvoltare al unui proiect software este o necesitate

- Estimarea costului de dezvoltare al unui proiect software este o necesitate
- Estimările decid dacă un proiect primește finanțare, autorizație, echipa de dezvoltare, etc

- Estimarea costului de dezvoltare al unui proiect software este o necesitate
- Estimările decid dacă un proiect primește finanțare, autorizație, echipa de dezvoltare, etc
- ► Apare necesitatea metodelor de a obține estimări cât mai apropiate de realitate

► Folosim modelul COCOMO pentru a obține factorii de cost

- ► Folosim modelul COCOMO pentru a obține factorii de cost
- ► Folosind date ale unor proiecte istorice, antrenăm o rețea neuro-fuzzy

- ► Folosim modelul COCOMO pentru a obține factorii de cost
- Folosind date ale unor proiecte istorice, antrenăm o rețea neuro-fuzzy
- Analizăm rezultatele obținute peste datele de test

# Cuprins

- 1. Introducere
- 2. Modelul COCOMO
- 3. Preliminarii
- 3.1 Logică fuzzy
- 3.2 Rețele neuronale
- 4. Retele ANFIS
- 5. Rezultate
- 6. Concluzi
- 7. Bibliografie

▶ Dezvoltat în 1981 de către Barry W. Boehm [1]

- Dezvoltat în 1981 de către Barry W. Boehm [1]
- ▶ Datele pentru care formulele sale de calcul au fost extrase din 63 de proiecte

- ▶ Dezvoltat în 1981 de către Barry W. Boehm [1]
- ▶ Datele pentru care formulele sale de calcul au fost extrase din 63 de proiecte
- Estimează costul de dezvoltare în funcție de 15 multiplicatori de efort și dimensiunea estimată a proiectului în mii de linii de cod

| Caracteristică                            | Very Low | Low  | Nominal | High | Very High | Extra High |
|-------------------------------------------|----------|------|---------|------|-----------|------------|
| Fiabilitatea softului necesară            | 0.75     | 0.88 | 1.00    | 1.15 | 1.40      |            |
| Dimensiunea bazei de date                 |          | 0.94 | 1.00    | 1.08 | 1.16      |            |
| Complexitatea produslui                   | 0.70     | 0.85 | 1.00    | 1.15 | 1.30      | 1.65       |
| Constrângeri de performanță la rulare     |          |      | 1.00    | 1.11 | 1.30      | 1.66       |
| Constrâgeri de memorie                    |          |      | 1.00    | 1.06 | 1.21      | 1.56       |
| Volatilitatea mediului de mașini virtuale |          | 0.87 | 1.00    | 1.15 | 1.30      |            |
| Timpul necesar pentru schimbări           |          | 0.87 | 1.00    | 1.07 | 1.15      |            |
| Capabilitatea analiștilor                 | 1.46     | 1.19 | 1.00    | 0.86 | 0.71      |            |
| Experiență în aplicații                   | 1.29     | 1.13 | 1.00    | 0.91 | 0.82      |            |
| Capabilitatea inginerilor soft            | 1.42     | 1.17 | 1.00    | 0.86 | 0.70      |            |
| Experiență cu mașinile virtuale           | 1.21     | 1.10 | 1.00    | 0.90 |           |            |
| Experiență cu limbajul de programare      | 1.14     | 1.07 | 1.00    | 0.95 |           |            |
| Aplicarea metodelor de inginerie soft     | 1.24     | 1.10 | 1.00    | 0.91 | 0.82      |            |
| Folosirea uneltelor software              | 1.24     | 1.10 | 1.00    | 0.91 | 0.83      |            |
| Strictețea planificârii                   | 1.23     | 1.08 | 1.00    | 1.04 | 1.10      |            |

# Cuprins

- 1. Introducere
- 2. Modelul COCOMO
- 3. Preliminarii
- 3.1 Logică fuzzy
- 3.2 Rețele neuronale
- 4. Rețele ANFIS
- 5. Rezultate
- 6. Concluzi
- 7. Bibliografie

 Mulțime fuzzy – apartenența unui element la o mulțime nu mai este stabilită de către o funcție binară

- Mulțime fuzzy apartenența unui element la o mulțime nu mai este stabilită de către o funcție binară
- Apare noțiunea de funcție de apartenență

- Mulțime fuzzy apartenența unui element la o mulțime nu mai este stabilită de către o functie binară
- Apare noțiunea de funcție de apartenență

#### Definiție

$$\mu_{\mathcal{A}}: X \to [0,1] \tag{1}$$

 Sistem fuzzy – sistem ce conține una sau mai multe variabile care primește valori peste stări care sunt mulțimi fuzzy

- Sistem fuzzy sistem ce conține una sau mai multe variabile care primește valori peste stări care sunt mulțimi fuzzy
- Pentru fiecare variabilă mulțimile fuzzy sunt definite peste o mulțime universală

- Sistem fuzzy sistem ce conține una sau mai multe variabile care primește valori peste stări care sunt mulțimi fuzzy
- Pentru fiecare variabilă mulțimile fuzzy sunt definite peste o mulțime universală
- Își gasesc utilitatea în a modela variabile din lumea reală, unde orice măsurătoare are precizie finită

- Sistem fuzzy sistem ce conține una sau mai multe variabile care primește valori peste stări care sunt mulțimi fuzzy
- Pentru fiecare variabilă mulțimile fuzzy sunt definite peste o mulțime universală
- Își gasesc utilitatea în a modela variabile din lumea reală, unde orice măsurătoare are precizie finită

#### Exemplu

Presupunem o regulă pentru un termostat:

IF (temperatura este "rece") THEN (încălzirea este "mare")

 Sisteme conecționiste de calcul inspirate din modelul biologic al rețelelor neuronale

- Sisteme conecționiste de calcul inspirate din modelul biologic al rețelelor neuronale
- Sunt alcătuite din grupări de perceptroni care transmit succesiv semnale între ele

- Sisteme conecționiste de calcul inspirate din modelul biologic al rețelelor neuronale
- Sunt alcătuite din grupări de perceptroni care transmit succesiv semnale între ele
- Învățarea se bazează pe alegerea unei funcții de cost și propagarea înapoi a erorilor astfel încăt fiecare perceptron să își actualizeze ponderile



# Cuprins

- 1. Introducere
- 2. Modelul COCOMO
- 3. Preliminarii
- 3.1 Logică fuzzy
- 3.2 Rețele neuronale
- 4. Rețele ANFIS
- 5. Rezultate
- 6. Concluzi
- 7. Bibliografie

▶ Sunt un caz particular de rețele adaptive [2]

- Sunt un caz particular de rețele adaptive [2]
- Sunt construite peste un sistem de inferență fuzzy, unde regulile capătă puteri de "aprindere" (ponderi), astfel încât să aibă loc un proces de învățare



► Figura anterioară exemplifică o rețea care modelează doua reguli fuzzy if-then

- Figura anterioară exemplifică o rețea care modelează doua reguli fuzzy if-then
- Primul strat transformă variabilele de intrare x şi y în corespondenții lor fuzzy.

- Figura anterioară exemplifică o rețea care modelează doua reguli fuzzy if-then
- Primul strat transformă variabilele de intrare x şi y în corespondenții lor fuzzy.
- ► Cel de-al doilea strat înmulțește semnalele primite de la primul strat și trimite rezultatul mai departe

- Figura anterioară exemplifică o rețea care modelează doua reguli fuzzy if-then
- ▶ Primul strat transformă variabilele de intrare *x* și *y* în corespondenții lor fuzzy.
- Cel de-al doilea strat înmulțește semnalele primite de la primul strat și trimite rezultatul mai departe
- ► Al treilea strat calculează puterea de "aprindere" normalizată pentru fiecare intrare

- Figura anterioară exemplifică o rețea care modelează doua reguli fuzzy if-then
- Primul strat transformă variabilele de intrare x şi y în corespondenții lor fuzzy.
- ► Cel de-al doilea strat înmulțește semnalele primite de la primul strat și trimite rezultatul mai departe
- Al treilea strat calculează puterea de "aprindere" normalizată pentru fiecare intrare
- Stratul 4 calculează pentru fiecare putere de "aprindere" din stratul anterior rezultatul aplicării funcției, i.e.

$$O_i^4 = \bar{w}_i f_i = \bar{w}_i (p_i x + q_i y + r_i)$$
 (2)

unde  $\bar{w}_i$  este ieșirea stratului 3,  $p_i, q_i, r_i$  este mulțimea parametrilor



- Figura anterioară exemplifică o rețea care modelează doua reguli fuzzy if-then
- Primul strat transformă variabilele de intrare x şi y în corespondenții lor fuzzy.
- Cel de-al doilea strat înmulțește semnalele primite de la primul strat și trimite rezultatul mai departe
- Al treilea strat calculează puterea de "aprindere" normalizată pentru fiecare intrare
- Stratul 4 calculează pentru fiecare putere de "aprindere" din stratul anterior rezultatul aplicării funcției, i.e.

$$O_i^4 = \bar{w}_i f_i = \bar{w}_i (p_i x + q_i y + r_i)$$
 (2)

unde  $\bar{w}_i$  este ieșirea stratului 3,  $p_i, q_i, r_i$  este mulțimea parametrilor

 Stratul 5 însumează toate semnalele pe care le primește și oferă rezultatul



# Cuprins

- 1. Introducere
- 2. Modelul COCOMO
- 3. Preliminarii
- 3.1 Logică fuzzy
- 3.2 Rețele neuronale
- 4. Retele ANFIS
- 5. Rezultate
- 6. Concluzi
- 7. Bibliografie

▶ Împărțind datele în 85% date de antrenare și 15% date de test am obținut

- ▶ Împărțind datele în 85% date de antrenare și 15% date de test am obținut
- ► Eroare RMSE de 0.059

- ▶ Împărțind datele în 85% date de antrenare și 15% date de test am obținut
- ► Eroare RMSE de 0.059
- Eroare MMRE de 0.036

- ▶ Împărțind datele în 85% date de antrenare și 15% date de test am obținut
- ► Eroare RMSE de 0.059
- Eroare MMRE de 0.036
- ▶ Estimare PRED(25) de 1

- ▶ Împărțind datele în 85% date de antrenare și 15% date de test am obținut
- ► Eroare RMSE de 0.059
- Eroare MMRE de 0.036
- ▶ Estimare PRED(25) de 1



## Rezultate (antrenare)



# Rezultate (test)



▶ În cazul rețelelor neuronale clasice, folosind aceleași date, rezultatele au fost

- ▶ În cazul rețelelor neuronale clasice, folosind aceleași date, rezultatele au fost
- ► Eroare RMSE de 0.227

- ▶ În cazul rețelelor neuronale clasice, folosind aceleași date, rezultatele au fost
- ► Eroare RMSE de 0.227
- Eroare MMRE de 0.146

- ▶ În cazul rețelelor neuronale clasice, folosind aceleași date, rezultatele au fost
- ► Eroare RMSE de 0.227
- Eroare MMRE de 0.146
- ► Estimare PRED(25) de 0.83

# Rezultate (test)



### Cuprins

- 1. Introducere
- 2. Modelul COCOMO
- 3. Preliminarii
- 3.1 Logică fuzzy
- 3.2 Retele neuronale
- 4. Retele ANFIS
- 5. Rezultate
- 6. Concluzii
- 7. Bibliografie

# Concluzii (comparatie)



► Rețelele ANFIS obțin rezultate mult mai bune pentru acest set de date decât rețelele neuronale

- Rețelele ANFIS obțin rezultate mult mai bune pentru acest set de date decât rețelele neuronale
- ▶ PRED(25) de 1 vs PRED(25) de 0.83

- ► Rețelele ANFIS obțin rezultate mult mai bune pentru acest set de date decât rețelele neuronale
- ▶ PRED(25) de 1 vs PRED(25) de 0.83
- Considerăm că ANFIS este o soluție bună pentru estimările de cost

- Rețelele ANFIS obțin rezultate mult mai bune pentru acest set de date decât rețelele neuronale
- ▶ PRED(25) de 1 vs PRED(25) de 0.83
- Considerăm că ANFIS este o soluție bună pentru estimările de cost
- ► Rețelele ANFIS pot fi, în plus, ajustate și de cunoștinte expert

### Cuprins

- 1. Introducere
- 2. Modelul COCOMO
- 3. Preliminarii
- 3.1 Logică fuzzy
- 3.2 Rețele neuronale
- 4. Retele ANFIS
- 5. Rezultate
- 6. Concluzi
- 7. Bibliografie

### Bibliografie

- [1] Boehm, Barry W. (1981). Software Engineering Economics. Prentice-Hall.
- [2] Jang, J.-S.R. (1993) ANFIS: Adaptive-Network-Based Fuzzy Inference System. *IEEE Transactions On Systems, Man, And Cybernetics*, 23(3), pp. 665-685.