

General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

JSC- 13986

80-10253
NASA CR.
160711

"Made available under NASA sponsorship
in the interest of early and wide dis-
semination of Earth Resources Survey
Program information and without liability
for any use made thereof."

"AS-BUILT" DESIGN SPECIFICATION
FOR
CLASY PROGRAM MODIFICATION

Job Order 71-593

TIRF (77-0055)

(Z80-10253) AS-BUILT DESIGN SPECIFICATION
FOR CLASY PROGRAM MODIFICATION (Lockheed
Electronics Co.) 171 p HC A08/MF A01

N80-30836

CSCL 05B

Unclassified
00253

63/43

Prepared By
Lockheed Electronics Company, Inc.
Systems and Services Division
Houston, Texas

Contract NAS 9-15200

For
EARTH OBSERVATIONS DIVISION
SPACE AND LIFE SCIENCES DIRECTORATE

National Aeronautics and Space Administration
LYNDON B. JOHNSON SPACE CENTER
Houston, Texas

April 1978

LEC-12185

JSC-13986

"AS-BUILT" DESIGN SPECIFICATION
FOR
CLASY PROGRAM MODIFICATION

Job Order 71-593

TIRF (77-0055)

Prepared By

P. J. Aucoin
C. Horton

APPROVED BY

for James A Wilkinson
Philip L. Krumm, Acting Supervisor
Scientific Applications Section

Prepared By
Lockheed Electronics Company, Inc.
For

Earth Observations Division
Science and Applications Directorate

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS

April 1978

LEC-12185

CONTENTS

Section	Page
1. SCOPE.	1-1
2. APPLICABLE DOCUMENTS.	2-1
3. SYSTEM DESCRIPTION	3-1
3.1 HARDWARE DESCRIPTION	3-1
3.2 SOFTWARE DESCRIPTION	3-1
3.2.1 SOFTWARE COMPONENT NO. 1 (CLASY)	3-2
3.2.2 SOFTWARE COMPONENT NO. 2 (SETUP9)	3-4
3.2.3 SOFTWARE COMPONENT NO. 3 (READTP)	3-5
3.2.4 SOFTWARE COMPONENT NO. 4 (MULTI)	3-9
3.2.5 SOFTWARE COMPONENT NO. 5 (STATIS)	3-11
3.2.6 SOFTWARE COMPONENT NO. 6 (ADJUS)	3-13
3.2.7 SOFTWARE COMPONENT NO. 7 (TR)	3-14
3.2.8 SOFTWARE COMPONENT NO. 8 (CLPRM)	3-15
3.2.9 SOFTWARE COMPONENT NO. 9 (CLDUMP)	3-17
3.2.10 SOFTWARE COMPONENT NO. 10 (ELIM)	3-18
3.2.11 SOFTWARE COMPONENT NO. 11 (SEPER)	3-19
3.2.12 SOFTWARE COMPONENT NO. 12 (LOCK)	3-21
3.2.13 SOFTWARE COMPONENT NO. 13 (MISH)	3-22
3.2.14 SOFTWARE COMPONENT NO. 14 (CMBK10)	3-23
3.2.15 SOFTWARE COMPONENT NO. 15 (CLUST)	3-24
4. OPERATION.	4-1
Appendix	
A - CLASY SYSTEM FLOWCHART	A-1
B - CLASY SYSTEM FLOWCHART	B-1

1. SCOPE

This specification establishes the modifications to the CLASY program as specified in TIRF 77-0055, titled CLASY Program Modification.

2. APPLICABLE DOCUMENTS

The following documents form a part of this specification:

TIRF: 77-0055

Memorandum dated March 17, 1976, from Rice University, Institute of Computer Sciences (D. L. Van Rooy) to Ken Baker/TF3, NASA-JSC; Reference: documentation of SUPER-SCRAM

McCray, B.: Modifications to the CLASY Program, JSC-12602, LEC-1048, NASA/JSC (Houston), April 1977.

3. SYSTEM DESCRIPTION

3.1 HARDWARE DESCRIPTION

The CLASSY clustering program, as modified, is operational on the IBM 370-148 at Purdue LARS under the CMS370 operating system. The program utilizes the IBM Fortran IV-G compiler.

3.2 SOFTWARE DESCRIPTION

The CLASSY system of subprograms was originated by Dr. Michael Rassbach formerly a NRC post-doctoral fellow for NASA-JSC, Earth Observations Division (TF), and currently the president of ELOGIC, Inc.

CLASSY was designed and implementation as an interative statistical clustering algorithm which had theoretical promise for application to classification of earth resources (image) data acquired from the LANDSAT satellite.

The driver program for the clustering system in CLASSY. The data handling subprograms for the system are READTP and STATIS. READTP reads the input data file and writes the selected data on a disk file for acquisition by the interative statistical subprogram STATIS. STATIS operates on one pixel at a time to update cluster statistics. When a given cluster has received more than a specified number of points as assigned on a fractional, probabilistic basis, STATIS calls ADJUST to make the cluster split/combine decisions. The set of pixels is examined N times by STATIS during the clustering procedure where N is specified by the user. Statistics are printed for each cluster as it is generated, when it is significantly modified, and at the end of each iteration. At the end of selected iterations and after the last iteration, a cluster map is drawn showing the cluster assignment for each pixel.

A one-channel LARSYS tape is generated at the end of the last iteration.

The CLASSY system of subprograms consists of the main driver program, CLASSY, 57 CLASSY subprograms, 11 LARSYS subprograms and CMS370 system routines.

The overall CLASSY system is flowcharted in Appendix A. Listings of the routines are shown in Appendix B. Sample output from the CLASSY system is shown in Appendix C.

3.2.1 SOFTWARE COMPONENT NO. 1 (CLASY)

3.2.1.1 Linkages

CLASY is the driver program of the CLASY clustering system. CLASY calls SETUP9, READTP, MULTI, and CLUSMP.

3.2.1.2 Interfaces

The common blocks INFORM, CLUSR, CLUS, MISC, and STPAR and calling arguments are used in the program CLASY as interfaces with other routines in the clustering system.

3.2.1.3 Inputs

The required input to the CLASSY program consists of one set of control cards and one tape (or file) containing the multi-channel image data.

CLASSY calls SETUP9, which reads the input control cards. These cards and their functions are described in the discussion of SETUP9 (section 3.2.2.6).

The image data tape (file) is presumed to be in either of two specific formats--either "LARNSYS II" format or "UNIVERSAL" format. The tape (file) reading program in CLASSY, TAPERD, accepts either of these formats and self-determines the correct method of reading the data.

3.2.1.4 Outputs

The output from CLASSY are three disk files; two are report files and one is a one-channel data file. Interim reporting of statistical parameters and diagnostic data is provided during the iterative cluster-forming process as a brief summary on one disk file and a full report of statistical data is reported on the other disk file.

Portions of each of the report files are maps with symbolic representations of areas clustered, to form these maps each pixel is classified using the statistics (mean and covariance) from the final cluster set determined by CLASSY. The symbols on the map represent the cluster which is the most likely parent distribution for the given pixel. The map is output by subprogram CLUSMP which also produces the one-channel data tape containing a header record and the line image records of the clusters.

Sample output is shown in Appendix C.

3.2.1.5 Storage Requirement

Not applicable.

3.2.1.6 Description

CLASSY is the driver program for the clustering routines.

3.2.1.7 Flowchart

See Appendix A for system flowchart.

3.2.1.8 Listings

See Appendix B for program listing.

3.2.1.9 Restrictions

The known restrictions inherent in the program are (1) the program will not successfully execute with only one channel, (2) a data vector containing a zero value in the channel of interest will cause an error termination of the program's execution, (3) the size of the original image data set read from the input tape and placed on drum must be containable in 840,000 characters of drum storage available to the random access routines. The 840,000 character limitation can be changed by request of the Research, Test and Evaluation Support Group.

3.2.2 SOFTWARE COMPONENT NO. 2 SETUP9

3.2.2.1 Linkage

SETUP9 is called from CLASSY. SETUP9 calls NXTCHR and NUMBER, which are entry points in subroutine FIND.

3.2.2.2 Interface

Interface is accomplished through calling arguments and the following common blocks: INFORM, SUPCUM, and CLUSTR.

3.2.2.3 Inputs

Inputs are described in Section 3.2.2.6.

3.2.2.4 Output

SETUP9 writes a summary of the input to CLASSY. If an error is detected, SETUP9 writes the following message "INVALID INPUT CARD-- "IGNORED" and processing continues.

3.2.2.5 Storage Requirement

Not applicable.

3.2.2.6 Description

SETUP9 reads and analyzes all cards input to the CLASSY program. The following control cards are input to the modified CLASSY program, to be analysed by SETUP9. In all cards, the "keyword" begins in card column 1, and any parameters on the card are placed from card column 11 through 72, inclusive.

1. "CHANNEL" CARD (i.e., "CHANNEL 1,5,9,13")

The "CHANNEL" card specifies the channel numbers to be used in clustering the multi-channel data vectors.

2. "NPTS" CARD

The "NPTS" card is used to specify the number of pixels to skip between the pixels in the original data when selecting a subset of pixels for analysis. Zero is the default value.

3. "HED1" card

4. "HED2" card

These two cards may be used to specify any arbitrary heading for the printer output, including the cluster map. Any alphanumeric characters put into card columns 11-72 of these two cards will be output as a page heading.

5. "COMMENT" card

The "COMMENT" card is equivalent in use and format with the "HED1" and "HED2" cards, described above.

6. "DATE" card

This card is used to specify the date or any eight characters. Will be printed at the upper right hand corner of each page of printer output.

7. "ITER" card

The "ITER" card allows the user to specify the number of iterations through the data to be made by subroutines STATIS.

8. "MAP" card

The "MAP" card allows the user to request cluster maps on all iterium iteraitons or up to 10 specific iterations. Iterations must be entered separately; groups of numbers are not allowed.
Examples: 1,3,5,7,9

ALL

3.2.3 SOFTWARE COMPONENT NO. 3 READTP (LAST, IDATA, TOPID)

3.2.3.1 Linkage

READTP is called from CLASSY. READTP calls READ, RWRITE, CMEKR, UNIF RINIT, TAPHDR, LAREAD, FLDINT, LINERD, FDLINT and ERTRAN.

3.2.3.2 Interface

Interface is accomplished through calling arguments and the following common blocks: INFORM, CLUSTR, CLUS, MISC, and STPAR.

3.2.3.3 Inputs

Image data tape described in 3.2.1.3

LAST and TOPID - not used

IDATA - input buffer.

3.2.3.4 Output

READTP outputs the following error message:

End-Of-Tape Reached before end of field.

3.2.3.5 Storage Requirement

Not applicable.

3.2.3.6 Description

READTP performs the input image data handling functions and makes the image data available in two formats to the iterative statistical subprograms STATIS and CLUSMP.

The original image data from the designated area of the input file is stored as one continuous block of data on a randomly accessible file. This file is used as an input file by this subroutine and by the subroutine CLUSMP.

The data read from the newly created file is scrambled by reading blocks of pixels from disjoint areas of the file, scrambling the order of the pixels and writing this data to another portion of the file as continuous records to be read by subroutine STATIS.

3.2.3.7 Flowchart

See Appendix A for system flowchart.

3.2.3.8 Listings

See Appendix B for program listing.

3.2.4 SOFTWARE COMPONENT NO. 4 MULTI (PV)

3.2.4.1 Linkage

MULTI is called from CLASSY. MULTI calls DATFIX, ALFREE, CLINIT, STATIS and CLDUMP.

3.2.4.2 Interface

Interface is accomplished through calling arguments and the following common blocks: CLUS,MISC,STPAR,INFORM and CLUSTR.

3.2.4.3 Inputs

PV - Dummy array

3.2.4.4 Output

None.

3.2.4.5 Storage Requirements

Not applicable

3.2.4.6 Description

MULTI calls the routines to initialize the clustering algorithm.

3.2.4.7 Flowchart

See Appendix A for system flowchart.

3.2.4.8 Listings

See Appendix B for program listing.

3.2.5 SOFTWARE COMPONENT NO. 5 STATIS(KROTIN,PV,SUM,SKEW,KURT, OSUM,OVAR)

3.2.5.1 Linkages

**STATIS is called by MULTI. STATIS calls DISC, CLASY2, CORECT,
DOTSQ, VPV, VMTV, MPVS, ADJUST, CLDUMP, and EXP.**

3.2.5.2 Interface

**Interface is accomplished through calling arguments and the
following common blocks: CLUS, MISC, STPAR, CLUSTR, and RAND.**

3.2.5.3 Inputs

KROTIN - top node.

PV - dummy array.

3.2.5.4 Outputs

STATIS outputs two warning messages. They are: *WARNING
ON THE INDEX (KL=" , ***SUSPECTED BAD DATA POINT --STATIS**
IDO= , ROOT , VECTOR "**

SUM - sum matrix

SKEW - skewness matrix

KURT - kurtosis matrix

OSUM - old sum matrix

OVAR - old covariance matrix

3.2.5.5 Storage Requirements

Not applicable.

3.2.5.6 Description

STATIS updates the proportion, mean vector, and covariance matrix for each cluster using maximum likelihood iteration. The routine first updates these parameters with each new data point and later makes updates only after a complete pass through all of the data has been completed. STATIS also accumulates measures of multivariate skewness and kurtosis. If a cluster has subclusters the log of the likelihood ratio of the parent cluster to the subclusters is also accumulated. STATIS calls ADJUST when the weight for a given cluster has exceed a threshold value.

3.2.5.7 Flowchart

See Appendix A for system flowchart.

3.2.5.8 Listings

See Appendix B for program listing.

3.2.6 SOFTWARE COMPONENT NO. 6 ADJUST(KLIN,SUM,SKEW,KURT,OSUM, OVAR)

3.2.6.1 Linkage

Adjust is called from STATIS. ADJUST calls GET, TR, DOTSQ, SQMTX, MINV, UNIF, CLFR, TRIMTX, DENCAL, SPLIT, FREE, CLDUMP, SEPER, SUBLIM, ELIM, CORECT, JOIN, APRIOR, SQRT, ALDG, EXP, and XPRI.

3.2.6.2 Interface

Interface is accomplished through calling arguments and the following common blocks: CLUS, MISC, STPAR, CLUSTR, and JOINPR.

3.2.6.3 Inputs

KLIN - current cluster
SUM - sum matrix
SKEW - skewness matrix
KURT - kurtosis matrix
OSUM - old sum matrix
OVAR - old covariance matrix

3.2.6.4 Outputs

ADJUST prints out three brief messages concerning statistical information and three error messages. They are; "ADJUST_WEIGHT_WAS_SPFAC_CHANGE____", "STATISTICS: TRACE_SKEW_KURT_TESTS(SPLIT>0): ____", ###HAVE SPLIT_WEIGHT_SUBS____", "W/OVOL ERROR IN ADJUST: KL,W,NEW_W,VOL_____", "***EXTRAPOLATION PROBLEM IN ADJUST: ITER, INDEX(KL), VOLIN, OVOL, CVOL_____", "LOG ERROR IN ADJUST: I, IM, KL, K/VRIN=_____"

3.2.6.5 Storage Requirements

Not applicable.

3.2.6.6 Description

ADJUST subtracts off old data from the sums accumulated in STATIS and used in STATIS to calculate the proportion, mean vector, and covariance matrix for a cluster. There is also a system for extrapolating cluster parameters which is not currently used.

ADJUST forms scalar measures of multivariate skewness and kurtosis and test these against thresholds also computed in ADJUST to determine if a cluster should be split. ADJUST also does all other test for discrete restructuring of the cluster tree including tests for calls to JOIN, ELIM, SUBLIM, and SEPER.

3.2.6.7 Flowchart

See Appendix A for system flowchart.

3.2.6.8 Listings

See Appendix B for program listing.

3.2.7 SOFTWARE COMPONENT NO. 7 CLDUMP (KLHED)

CLDUMP calls CLPR to print all of the class headed by KLHED.

3.2.7.1 Linkages

CLDUMP is called by MULTI and STATIS

CLDUMP calls CLPR and ISPLIT.

3.2.7.2 Interfaces

CLDUMP uses common blocks /CLUS/, /MISC/, /STPAR/, and /CLUSTR/.

CLDUMP calls CLPR and ISPLIT.

3.2.7.3 Inputs

KLHED - Head of class of nodes.

3.2.7.4 Outputs

Message:

DUMP OF OBSERVED CLUSTERS FROM _____, _____

3.2.7.5 Storage Requirement

Not applicable.

3.2.7.6 Description

CLDUMP calls CLPR to print the statistics for each of the clusters in the portion of the tree headed by KLHED.

3.2.7.7 Flowchart

See Appendix A.

3.2.7.8 Listings

See Appendix B for program.

3.2.8 SOFTWARE COMPONENT NO. 8 CLPR (KLN,SUM,SKEW,KURT)

CLPR prints all the variables indexed by KL.

3.2.8.1 Linkages

CLPR is called by CLDUMP.

CLPR calls MORSTR, SQMTX, MINV, FREE

3.2.8.2 Interfaces

CLPR uses common blocks /CLUS/, /MISC/, and /STPAR/.

3.2.8.3 Inputs

KL - cluster index

IN - level of cluster in tree

SUM - mean array

SKEW - skewness matrix

KURT - kurtosis matrix

3.2.8.4 Outputs

A listing of the statistics for cluster KL is written to unit 6. The index and symbol for cluster is written to unit 3.

3.2.8.5 Storage Requirement

Not Applicable.

3.2.6. Description

The permanent statistics for cluster KC are written to unit 6. The mean, covariance, kurtosis, old mean and old covariance are calculated and written to unit 6. The index and symbol are written to unit 3.

3.2.8.7 Flowchart

See Appendix A.

3.2.8.8 Listings

See Appendix B for program.

3.2.9.1 SOFTWARE COMPONENT NO. 9 CLUSMP (MAP,LSTITR)

CLUSMP prints the cluster map. The cluster map has each pixel represented by a symbol representing its cluster tape.

3.2.9.1 Linkages

CLUSMP is called from **ADJUST** and **CLASSY**.

3.2.9.2 Interfaces

Interface is accomplished through the calling arguments and the following common blocks: **ARRAY**, **GLOBAL**, **CLUSTR**, **MISC**, **CLUS**, **STPAR**.

3.2.9.3 Inputs

MAP - Positive indicates a 1 channel file is to be written.

Zero indicates that the 1 channel file is not to be written.

LSTITR - Positive indicates this is the last indication.

Zero indicates this is not the last indication.

3.2.9.4 Outputs

A cluster map is written to file 3.

A cluster map is written to file 6.

One channel LARSHYS file written to file 16.

3.2.9.5 Storage Requirement

Not applicable.

3.2.9.6 Description

CLUSMP reads the data in its original format, assigns a cluster number to each pixel and creates cluster maps for the terminal (unit 3) and line printer (unit 6) and a one channel LARSHYS data tape (unit 16).

3.2.9.7 Flowchart

See Appendix A.

3.2.9.8 Listings

See Appendix B for program.

3.2.10 SOFTWARE COMPONENT NO. 10 CLUST (BIGP,NDO,KLOUT,KROTIN, SUM)

CLUST classifier each point for the purpose of generating a map.

3.2.10.1 Linkages

CLUST is called by CLUSMP.

CLUST calls ISPLIT, CORECT and DOTSO.

3.2.10.2 Interfaces

CLUST uses common block /MISC/, /STPAR/ and /BIGCOM/.

3.2.10.3 Inputs

BIGP - Input data vector

NDO - Number of data points

KLOUT - Top node of output class

KROTIN - Index of node 0

SUM - Position of sum vector is cluster

3.2.10.4 Outputs

The following error messages are written to unit 6.

::::: WARNING ::::: IN CLUST, KROT = _____

::::: WARNING ::::: IN CLUST, AT CHECKPOINT _____, KL = _____

3.2.10.5 Storage Requirement

Not applicable.

3.2.10.6 Description

CLUST determines the cluster most nearing matching each point and classifies the point as belonging to that cluster.

3.2.10.7 Flowchart

See Appendix A.

3.2.10.8 Listings

See Appendix B for program.

3.2.11 SOFTWARE COMPONENT NO. 11 DATFIX

DATFIX initializes constants in /CLUS/, /MISC/ and /STPAR/.

3.2.11.1 Linkages

DATFIX is called by MULTI.

3.2.11.2 Interfaces

DATFIX uses common blocks /CLUS/, /MISC/ and /STPAR/.

3.2.11.3 Inputs

None.

3.2.11.4 Outputs

None.

3.2.11.5 Storage Requirement

Not applicable.

3.2.11.6 Description

Constants are initialized.

3.2.11.7 Flowchart

See Appendix A.

3.2.11.8 Listings

See Appendix B for program.

3.2.12 SOFTWARE COMPONENT NO. 12 DENCAL (KL,RATIO,OLW)

DENCAL adjusts the denominator offset and proportion of KL.

3.2.12.1 Linkages

DENCAL is called by ADJUST.

3.2.12.2 Interfaces

DENCAL uses common blocks /CLUS/, /MISC/ and /STPAR/.

3.2.12.3 Inputs

KL - node to be adjusted.

RATIO - proportion of points contained by parent cluster.

3.2.12.4 Outputs

OLW - old weight.

3.2.12.5 Storage Requirement

Not applicable.

3.2.12.6 Description

New proportion = Ratio * all proportion

OLW = old W(KFATH)

Nodes are assumed to be reconnected in their new position.

3.2.12.7 Flowchart

See Appendix A.

3.2.12.8 Listings

See Appendix B for program.

3.2.13 SOFTWARE COMPONENT NO. 13 ELIM (KEL)

This routine eliminates the cluster KEL from the cluster tree and frees the storage.

3.2.13.1 Linkages

ELIM is called by ADJUST.

ELIM calls SUBLIM and TR FREE.

3.2.13.2 Interfaces

ELIM uses common blocks /CLUS/, /MISC/ and /STPAR/.

3.2.13.3 Inputs

KEL - top node to be release.

3.2.13.4 Outputs

None.

3.2.13.5 Storage Requirement

Not applicable.

3.2.13.6 Description

ELIM prints a message that the cluster has been eliminated. If the cluster has only one SUBLIM is called to eliminate it also. TRFREE is called to eliminate the cluster and its subs.

3.2.13.7 Flowchart

See Appendix A.

3.2.13.8 Listings

See Appendix B for program.

3.2.14 SOFTWARE COMPONENT NO. 14 JOIN (KAI,KBI,SUM,SKEW,KURT, OSUM,OVAR,VVV,B,A,D)

JOIN creates a parent cluster for KAI and KBI.

3.2.14.1 Linkages

JOIN is called by ADJUST.

**JOIN calls MORSTR, SQMTX, MINV, APRIOR, DENCAL, TRIMTX, CLPR
and SQRT.**

3.2.14.2 Interfaces

JOIN uses common blocks /CLUSTR/, /CLUS/, /MISC/ and /STPAR/.

3.2.14.3 Inputs

**KAI - Cluster to be joined
KBI - Cluster to be joined
SUM - Sum matrix
SKEW - Skewness matrix
KURT - Kurtosis matrix
OSUM - Old sum matrix
OVAR - Old covariance matrix
VVV - Dummy array
B - Dummy array
A - Dummy array
D - Dummy array**

3.2.14.4 Outputs

**SUM - Sum matrix
SKEW - Skewness matrix
KURT - Kurtosis matrix
OSUM - Old sum matrix
OVAR - Old covariance matrix**

3.2.14.5 Storage Requirement

Not applicable.

3.2.14.6 Description

JOIN does the following functions:

- (1) locates clusters KAI and KBI in the tree.
- (2) creates a new cluster
- (3) inserts new cluster in tree and links to subclusters.
- (4) removes KA from old tree.
- (5) remove KB from old tree.
- (6) calculates statistics for new cluster.
- (7) prints data for new clusters KAI and KBI.

3.2.14.7 Flowchart

See Appendix A.

3.2.14.8 Listings

See Appendix B for program.

3.2.15 SOFTWARE COMPONENT NO. 15 PRTREE (TOPNOD)

3.2.15.1 Linkages

PRTREE is called by ADJUST.

PRTREE calls BNI4A1.

3.2.15.2 Interfaces

PRTREE uses common block /CLUS/.

3.2.15.3 Inputs

A node tree printed on units 3 and 6.

3.2.15.5 Storage Requirement

Not applicable.

3.2.15.6 Description

PRTREE determines the location and proportion of each node of the tree. A line is printed for each level of the tree showing the nodes on that line and the proportion of points in each node relative to the total number of points.

3.2.15.7 Flowchart

See Appendix A.

3.2.15.8 Listings

See Appendix B for program.

3.2.16 SOFTWARE COMPONENT NO. 16 SEPER (KL)

SEPER removes a cluster in favor of its subclusters.

3.2.16.1 Linkages

SEPER is called by ADJUST.

SEPER calls CLPR, DENCAL, FREE.

3.2.16.2 Interfaces

SEPER uses common block /MISH/.

3.2.16.3 Inputs

KL - node to be removed.

3.2.16.4 Outputs

None.

3.2.16.5 Storage Requirement

Not applicable.

3.2.16.6 Description

SEPER brings all of the subclusters of KL up to the level of KL itself and then eliminates KL.

3.2.16.7 Flowchart

See Appendix A.

3.2.16.8 Listings

See Appendix B for program.

3.2.17 SOFTWARE COMPONENT NO.17 SPLIT (KL,SUM,SKEW,KURT,OSUM, OVAR,ORT,DSQ,SG,TAU,ERE,VER,DUM,DSG,DTAU)

SPLIT is called separate one cluster into two clusters.

3.2.17.1 Linkages

**SPLIT is called by ADJUST. SPLIT calls MORSTR, SQMTX, EIGROT,
MLT, MVEC, MTVEC, ACOM, APRIOR, MINV.**

3.2.17.2 Interfaces

SPLIT uses common blocks /MISH/ and /CMBK10/.

3.2.17.3 Inputs

**KL - node to be removed
SUM - sum matrix
SKEW - skewness matrix
KURT - kurtosis matrix
ORT - coordinate transformation
DSQ - multiple use array
ERE - multiple use array
VER - multiple use array
DUM - multiple use array
DTAU - derivative of objective function with respect to TAU.**

3.2.17.4 Outputs

**SUM - sum matrix
OSUM - old sum matrix
OVAR - old covariance matrix
DSG - E * ORT
TAU - square root of covariance matrix for subcluster A.
SG - square root of covariance matrix for subcluster B.**

3.2.17.5 Storage Requirement

Not applicable.

3.2.17.6 Description

- (1) Generate the centered versions of the variance, skewness, and kurtosis.
- (2) Shift to frame with unit inverse covariance matrix.
- (3) Initialize and make a good initial guess.
- (4) If Eigenvalue negative, adjust "good guess" temporaries.
- (5) Generate actual initial values.
- (6) Iterate to refine values.
- (7) Generate two new subclusters.
- (8) Create names and linkages for new clusters KA and KB.
- (9) Create statistics for new subclusters.

3.2.17.7 Flowchart

See Appendix A.

3.2.17.8 Listings

See Appendix B for program.

3.2.18 SOFTWARE COMPONENT NO. 18 SUBLIM (KLHED)

SUBLIM eliminates the subclusters of the node KLHED.

3.2.18.1 Linkages

SUBLIM is called by ELIM and ADJUST.

SUBLIM calls TRREE.

3.2.18.2 Interfaces

SUBLIM uses common block /MISH/.

3.2.18.3 Inputs

KLHED - parent node.

3.2.18.4 Outputs

None.

3.2.18.5 Storage Requirement

Not applicable.

3.2.18.6 Description

SUBLIM eliminates all of the subcluster for node KLHED by calling TRFREE for each one of them. SUBLIM then reset the SPFAC and PQRAT terms for KLHED.

3.2.18.7 Flowchart

See Appendix A.

3.2.18.8 Listings

See Appendix B for program.

4. OPERATION

**CLASSY is operational of the IBM 370/148 computer at LARS,
West Lafayette, Indiana.**

**CLASSY is executed by entering the following commands after
signing on the on the computer system.**

DEF STOR 2M

IPL CMS370

TAPEA (tape number)

PFILE

AA CLASSY

Control input is read from FILE FT21F002.

Output is on unit 3 and 6 which are assigned in the PFILE EXEC.

APPENDIX A

CLASSY FUNCTIONAL FLOWCHART

CLASY	SETUP9	NXTCHR
		NUMBER
READTP	RINIT TAPHDR FLDINT LINERD FDLINT RREAD RWRITE ZOR LAREAD CMERR	
MULTI	DATFILX	
ALFREE	FREE	
CLINIT	MORSTR	
STATIS	DISC RREAD CORECT DOTSQ VPV VMTV MPVS ADJUST PRTREE CLUSMP	
	CLDUMP	CLPR -ISPLIT
CLUSMP	BFINIT FDLINT CLUST	
	ISPLIT	-CORECT -DOTSQ
	RREAD	
	FSFMFL	
	WRTHED	
	WRTHED	
	RWRITE	
	WRTLN	
-CLPR	LOCK MORSTR SQMTX MINV FREE	

<u>ADJUST</u>	<u>MORSTR</u>	<u>STOFLO</u>		
	TR			
	DOTSQ			
	AMSQ			
	DAMSQ			
	DSQMTX			
	DMINV			
	UNIF	<u>NRAND</u>		
	CLPR			
	DTRMTX			
	TRIMTX			
	DENCAL			
	SPLIT	DSQMTX		
		EIGROT	FREE	
		ACOM	GET	<u>STOFLO</u>
		MLT		
		MVEC		
		MTVEC		
		ACOM		
		MORSTR		
		APRIOR		
		DMINV		
<u>FREE</u>				
	CLDUMP	CLPR		
		ISPLIT		
	SEPER	CLPR		
		DENCAL		
		FREE		
	SUBLIM	TRFREE	FREE	
	ELIM	SUBLIM	TRFREE	FREE
		TRFREE	FREE	
	CORECT			
	JOIN	MORSTR	STOFLO	
		SQMTX		
		MINV		
		APRIOR		
		DENCAL		
		TRIMTX		
		CLPR		
	APRIOR			
	PRTREE			

APPENDIX B
CLASSY LISTINGS

```

SUBROUTINE ACOM(A,B,C)
COMMON /MISC/ MQ,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
1 AMU,ODCUN,XIVFLO,XLNFLO,WADJIN,ELIMTH,SFPTH,VFAC,AMM,SBLTH,
2 INDXVL,WFAC,NPTSO,PQRATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
3 AMOMIN,AMOMAX,AMORAT,VOLLIM,BIAS,PJOIN,VRJOIN,WSIM,WDELSM,
4 RETTER,MODE,COPLEN,SPCOR
REAL*8 A(MQ,MQ),B(MQ,MQ),C(MQ,MQ)
      PAI=PI/180.
      SUM=0.
DO 13 I=1,MQ
DO 13 J=1,1
      SUM=0.
DO 12 K=1,MQ
      SUM=SUM+B(I,K)*C(K,J)+C(I,K)*B(K,J)
      A(I,J)=SUM
12   A(I,1)=SUM
      RETURN
13   END

```

AC000010
AC000020
AC000030
AC000040
AC000050
AC000060
AC000070
AC000080
AC000090
AC000100
AC000110
AC000120
AC000130
AC000140
AC000150
AC000160
AC000170

ORIGINAL PAGE IS
TYPE OR PRINTED

VLF: ADJUST FORTRAN A

SUBROUTINE ADJUST(KLIN,SUM,SKEW,KURT,OSUM,OVAR)

```

COMMON/CLUSR/THEGIN,TOTWRD,CLSNAM,IPT,NOFLD,SYM(61),
1 LNCAT,PRTNT(4),KLAC,PRTME,PROUT,TOTPIX,
2 SCRAM1,HUFPIX,HUFTOT,NHUFSD,NIDUMP,LAIJFD
3 MAXRF,AREA,NWHS,NWDHS,NPTS,LBUF,IQI,NOCYCL
    INTEGEH,TOTWRD,SYM,PRTNT,PRTME,PROUT,TOTPIX,SCRAM1,HUFPIX
1, HUFTOT,CLSNAM
DIMENSION INDEX(27),LSUHS(30),LSUPER(29),IDADJ(2A),NSYMB(12),
1 PCUM(26),PRIRCM(25),CIN(24),CTOT(23),PROP(22),SPFAC(21),
2 WADJ(20),W(19),UPROP(18),OW(17),VOLIN(16),VOLRT(15),DCON(14),
3 PORAT(13),D1SS(12),PPASS(12),PST(11),OCIN(10),PCOND(7),
4 OPRIOR(9),ODEN(8)
DIMENSION VWIN(475),GFN(999),GRFF(999),ALINK(),
    WFAL,ALINK,RVOLD,VMOTO,DOUBP,DDW
EQUivalence (LINK(1),ALINK(1)),(LINK(31),INDEX(27))
EQUivalence (LINK(31),LSUBS(30))
EQUivalence (LINK(31),LSUPFR(29)),(LINK(31),IDADJ(24)),
1 (LINK(31),NSYMB(12)),(LINK(31),PCUM(26)),(LINK(31),PRIRCM(25)),ADJ00190
2 (LINK(31),CIN(24)),(LINK(31),CTOT(23)),(LINK(31),PROP(22)),ADJ00200
3 (LINK(31),SPFAC(21)),(LINK(31),WADJ(20)),(LINK(31),W(19)),ADJ00210
4 (LINK(31),OPROP(18)),(LINK(31),OW(17)),(LINK(31),VOLIN(16)),ADJ00220
5 (LINK(31),VOLRT(15)),(LINK(31),DCON(14)),(LINK(31),PORAT(13)),ADJ00230
6 (LINK(31),D1SS(12)),(LINK(31),PPASS(12)),(LINK(31),PST(11)),ADJ00240
7 (LINK(31),OCIN(10)),(LINK(31),PCOND(7)),(LINK(31),VRIN(7)),ADJ00250
8 (LINK(31),GFN(7)),(LINK(31),OPRIOR(9)),(LINK(31),ODEN(8)),ADJ00260
9 (LINK(31),GRFF(8))
COMMON/CLUS/JUNK(12),NARL,NTOP,NTBS7M,NWANT,LINK(14000)
DIMENSION HYAR(31),LR(3),LV(3)
EQUivalence (LR(1),LVRIN),(LR(2),LKURT),
1 (LR(3),LOVARI),(LV(1),LSUM),(LV(2),LSKFW),(LV(3),LOSUM)ADJ00270
ADJ00280
ADJ00290
ADJ00300
ADJ00310
ADJ00320
ADJ00330
ADJ00340
ADJ00350
ADJ00360
ADJ00370
ADJ00380
ADJ00390
ADJ00400
ADJ00410
ADJ00420
ADJ00430
ADJ00440
ADJ00450
ADJ00460
ADJ00470
ADJ00480
ADJ00490
ADJ00500
ADJ00510
ADJ00520
ADJ00530
ADJ00540
ADJ00550
ADJ00560
ADJ00570
ADJ00580
ADJ00590
ADJ00600
ADJ00610
ADJ00620
ADJ00630
ADJ00640
ADJ00650
ADJ00660
ADJ00670
ADJ00680
ADJ00690
ADJ00700
ADJ00710
ADJ00720
ADJ00730
ADJ00740
ADJ00750
ADJ00760
ADJ00770
ADJ00780
ADJ00790

```

PURPOSE--TO MAKE MISC ADJUSTMENTS TO THE NODE CORRESPONDING TO CLASS
 (1) CHANGES CONTINUOUS STATISTICS
 (2) TESTS FOR AND INITIATES DISCRETE TRANSFORMATIONS

ADJUST WAS DESIGNED TO INCLUDE A NUMERIC EXTRAPOLATION SYSTEM THAT HAS NOT BEEN COMPLETED. PARAMETERS VACCEL, MACCEL AND PACCFL HAVE BEEN SET TO 0 TO NULLIFY THIS SYSTEM.

VALUES SMUT, VMOT, PMOT ARE CALC. BUT NOT USED

INDX IS A FLAG THAT IS NEGATIVE IF THERE HAS BEEN A COMPLETE PASS THROUGH DATA IN STATIS WITHOUT CALLING ADJUST

LINK = SIBLING NODE
 LSUB = CHILD NODE
 LSUPER = PARENT NODE

FILE: ADJUST FORTRAN A

C OVAR = OLD COVAR MATRIX MATRIX
C OVOL = VOLUME MEASURE MATRIX
C PMOT = CHANGE IN PRIOR SINCE LAST CALL TO ADJUST
C SMOT = CHANGE IN MEAN VECTOR
C SKTES = MEASURE OF SKEWNESS
C STW = STANDARDIZED WEIGHT
C TAKTES = MEASURE OF KURTOSIS
C UKKTES = MEASURE OF KURTOSIS
C VMOT = CHANGE IN VARIANCE
C VRIN = INVERSE OF COVAR MATRIX
C WAITF = AGE FACTOR. DELAYS DECISIONS UNTIL A SIGNIFICANT NUMBER OF
C ITERATIONS HAVE OCCURRED

ADJ00800
ADJ00810
ADJ00820
ADJ00830
ADJ00840
ADJ00850
ADJ00860
ADJ00870
ADJ00880
ADJ00890
ADJ00900
ADJ00910
ADJ00920
ADJ00930
ADJ00940
ADJ00950
ADJ00960
ADJ00970
ADJ00980
ADJ00990
ADJ01000
ADJ01010
ADJ01020
ADJ01030
ADJ01040
ADJ01050
ADJ01060
ADJ01070
ADJ01080
ADJ01090
ADJ01100
ADJ01110
ADJ01120
ADJ01130
ADJ01140
ADJ01150
ADJ01160
ADJ01170
ADJ01180
ADJ01190
ADJ01200
ADJ01210
ADJ01220
ADJ01230
ADJ01240
ADJ01250
ADJ01260
ADJ01270
ADJ01280
ADJ01290
ADJ01300
ADJ01310
ADJ01320
ADJ01330
ADJ01340
ADJ01350
ADJ01360
ADJ01370
ADJ01380
ADJ01390
ADJ01400
ADJ01410
ADJ01420
ADJ01430
ADJ01440
ADJ01450
ADJ01460
ADJ01470
ADJ01480
ADJ01490
ADJ01500
ADJ01510
ADJ01520
ADJ01530
ADJ01540
ADJ01550
ADJ01560
ADJ01570
ADJ01580

IF (IFIRST .EQ. 0) WRITE (6,9999) PACCEL(1),PACCEL(2).

9999 FORMAT ('MACCEL1,MACCEL2',4F10.4)
IFIRST = 1
KL=KLIN
KF=LSUPER(KL)

C GET WORKING STORAGE FOR SUBROUTINE ADJUST (MQ=NO. CHANNELS)

MQS=MQ*MQ

LMQS = 2*MQS

MJS(M)=MOS-1

C CHANGE RE:HASSRACH 3/21/77

MOP=MQ + 1

LAMORSTH(LMOS)

LEMORSTH(LMOS)

LDEMORSTR(LMOS)

LVAEMORSTA(1,MOS)

LA2 = LA/2 + 1

LR2 = LH/2 + 1

LD2 = LD/2 + 1

LVA2 = LVA/2 + 1

C CALC DIFFERENCE IN THE WEIGHT FOR CLUSTER KL (CURRENT - OLD)

DOW=W(KL)-OW(KL)

DW = DOW

FW = W(KL)

KADTY=1

IF (INDEX(KL).LT.0) EW = OW(KL)

C INDEX IS A FLAG THAT IS NEGATIVE IF THERE HAS BEEN A COMPLETE PASS
THROUGH DATA IN STATIS WITHOUT CALLING ADJUST

IF (INDEX(KL).LT.0) KADTY=2

C CALCULATE STATISTICS.

C PROPERTY,KURT SHOULD BE ADJUSTED FOR THE DISCRETE POINT

C EFFECT (SIMILAR TO SHFPFRD'S CORRECTION). THIS HAS NOT YET BEEN
DONE. BUT SHOULD NOT HAVE ANY MAJOR EFFECT. SINCE KURT IS USED
ONLY IN THE CRUDE SCAN.

STW=F4/DW

C PARAMETERS FOR SPLIT TEST

TRK=TR(KURT(KL+1),VRIN(KL+1))*STW

J = KL + 1

K = J + 0

SK=DOTSO(SKFW(KL+1),VRIN(KL+1))*STW

URK=(AMQ)(KURT(KL+1),VRIN(KL+1))*STW*STW-TRK*TRK/AMQ)*DW

TRK=(TRK-A10*(AMQ+2.1)*SQRT(DW))

C DELAY FACTOR TO GIVE YOUNG CLASSES TIME TO GROW
WAITF=1.+WAIT/DW

C ACTUAL TEST VALUES. CHI PARAMETERS ARE CHI**2 VALUES CALC. IN
CLINIT SIMILARLY FOR AND PARAMETERS.

TRKTES=TRK**2-DW*TRBND-TRCHI**WAITF

SKTES=SK-SKAND*Dw-SKCHI**WAITF

UKKTES=URK-URKHND*Dw-URKCHI**WAITF

C EXTRAPOLATE THE PARAMETERS.

C PREPARE VARIANCE AND VOLUME

102 CONTINUE

CALL DSUMTX(ALINK(LB2),VRIN(KL+1))

CALL DSUMTX(ALINK(LA2),OVAR(KL+1))

CALL DMINV(ALINK(LD2),ALINK(LVA2),ALINK(LR2),RVOL)

RVOLD=RVOL

IVOL=-DLOG(HARS(RVOLD))/AMQ-ALOG(ARS(FW))

F11F: ADJUST FORTRAN A

```

      WR=DW/DW(KL)
      WINFC=4.*DW*DOW(KL)/W(KL)**2
      ADJ01590
      ADJ01600
      ADJ01610
      ADJ01620
      ADJ01630
      ADJ01640
      ADJ01650
      ADJ01660
      ADJ01670
      ADJ01680
      ADJ01690
      ADJ01700
      ADJ01710
      ADJ01720
      ADJ01730
      ADJ01740
      ADJ01750
      ADJ01760
      ADJ01770
      ADJ01780
      ADJ01790
      ADJ01800
      ADJ01810
      ADJ01820
      ADJ01830
      ADJ01840
      ADJ01850
      ADJ01860
      ADJ01870
      ADJ01880
      ADJ01890
      ADJ01900
      ADJ01910
      ADJ01920
      ADJ01930
      ADJ01940
      ADJ01950
      ADJ01960
      ADJ01970
      ADJ01980
      ADJ01990
      ADJ02000
      ADJ02010
      ADJ02020
      ADJ02030
      ADJ02040
      ADJ02050
      ADJ02060
      ADJ02070
      ADJ02080
      ADJ02090
      ADJ02100
      ADJ02110
      ADJ02120
      ADJ02130
      ADJ02140
      ADJ02150
      ADJ02160
      ADJ02170
      ADJ02180
      ADJ02190
      ADJ02200
      ADJ02210
      ADJ02220
      ADJ02230
      ADJ02240
      ADJ02250
      ADJ02260
      ADJ02270
      ADJ02280
      ADJ02290
      ADJ02300
      ADJ02310
      ADJ02320
      ADJ02330
      ADJ02340
      ADJ02350
      ADJ02360
      ADJ02370

C   SV = CHANGE IN SUM
C   FV = EXTRAPOLATION FACTOR FOR SUM
C   EXTRAPOLATION DIFFERS FOR TWO TYPES OF STATISTICS (SGN(INDEX(RL)))
DO 103 I=1,MN
      SV(I)=SUM(I+KL)-OSUM(I+KL)
      ADJ01630
      ADJ01640
      ADJ01650
      ADJ01660
      ADJ01670
      ADJ01680
      ADJ01690
      ADJ01700
      ADJ01710
      ADJ01720
      ADJ01730
      ADJ01740
      ADJ01750
      ADJ01760
      ADJ01770
      ADJ01780
      ADJ01790
      ADJ01800
      ADJ01810
      ADJ01820
      ADJ01830
      ADJ01840
      ADJ01850
      ADJ01860
      ADJ01870
      ADJ01880
      ADJ01890
      ADJ01900
      ADJ01910
      ADJ01920
      ADJ01930
      ADJ01940
      ADJ01950
      ADJ01960
      ADJ01970
      ADJ01980
      ADJ01990
      ADJ02000
      ADJ02010
      ADJ02020
      ADJ02030
      ADJ02040
      ADJ02050
      ADJ02060
      ADJ02070
      ADJ02080
      ADJ02090
      ADJ02100
      ADJ02110
      ADJ02120
      ADJ02130
      ADJ02140
      ADJ02150
      ADJ02160
      ADJ02170
      ADJ02180
      ADJ02190
      ADJ02200
      ADJ02210
      ADJ02220
      ADJ02230
      ADJ02240
      ADJ02250
      ADJ02260
      ADJ02270
      ADJ02280
      ADJ02290
      ADJ02300
      ADJ02310
      ADJ02320
      ADJ02330
      ADJ02340
      ADJ02350
      ADJ02360
      ADJ02370

C   SV = CHANGE IN SUM OF SQUARES
C   FV = EXTR SUM OF SQUARES
134  CONTINUE
DO 104 I=1,MNS
      ALTMR(ILH2+I-1) = ALINK(LVX2+I-1)-ALINK(LAX2+I-1)
      ADJ01780
      ADJ01790
      ADJ01800
      ADJ01810
      ADJ01820
      ADJ01830
      ADJ01840
      ADJ01850
      ADJ01860
      ADJ01870
      ADJ01880
      ADJ01890
      ADJ01900
      ADJ01910
      ADJ01920
      ADJ01930
      ADJ01940
      ADJ01950
      ADJ01960
      ADJ01970
      ADJ01980
      ADJ01990
      ADJ02000
      ADJ02010
      ADJ02020
      ADJ02030
      ADJ02040
      ADJ02050
      ADJ02060
      ADJ02070
      ADJ02080
      ADJ02090
      ADJ02100
      ADJ02110
      ADJ02120
      ADJ02130
      ADJ02140
      ADJ02150
      ADJ02160
      ADJ02170
      ADJ02180
      ADJ02190
      ADJ02200
      ADJ02210
      ADJ02220
      ADJ02230
      ADJ02240
      ADJ02250
      ADJ02260
      ADJ02270
      ADJ02280
      ADJ02290
      ADJ02300
      ADJ02310
      ADJ02320
      ADJ02330
      ADJ02340
      ADJ02350
      ADJ02360
      ADJ02370

C   CALCULATE SMUT (CHG IN MEAN VECTOR), VMOT (CHG IN VARIANCE),
C   PMOT (CHG IN PUTOIN) SINCE LAST CALL TO ADJUST
C   THESE ARE INTENDED TO INDICATE RATE OF MOTION OF CLUSTER STATISTICS
C   FOR INCOMPLETE SYSTEM TO CALC. NEXT ADJUSTMENT POINT.
      SMOT=0.075*(FV(I)*WIN(KL+1))*EW/DW**2
      VMOTD=0.05*(ALINK(LVA2)+VRIN(KL+1))*FW/DW
      VMOT = VMOTD
C   WARNING: DMOT HAS NOT BEEN CALCULATED YET. NEXT LINE INVALID
      PMOT=0.01*FW**2
      ADJ01810
      ADJ01820
      ADJ01830
      ADJ01840
      ADJ01850
      ADJ01860
      ADJ01870
      ADJ01880
      ADJ01890
      ADJ01900
      ADJ01910
      ADJ01920
      ADJ01930
      ADJ01940
      ADJ01950
      ADJ01960
      ADJ01970
      ADJ01980
      ADJ01990
      ADJ02000
      ADJ02010
      ADJ02020
      ADJ02030
      ADJ02040
      ADJ02050
      ADJ02060
      ADJ02070
      ADJ02080
      ADJ02090
      ADJ02100
      ADJ02110
      ADJ02120
      ADJ02130
      ADJ02140
      ADJ02150
      ADJ02160
      ADJ02170
      ADJ02180
      ADJ02190
      ADJ02200
      ADJ02210
      ADJ02220
      ADJ02230
      ADJ02240
      ADJ02250
      ADJ02260
      ADJ02270
      ADJ02280
      ADJ02290
      ADJ02300
      ADJ02310
      ADJ02320
      ADJ02330
      ADJ02340
      ADJ02350
      ADJ02360
      ADJ02370

C   TRACE 1--ADJUST SUMMARY PRINTOUT
      TMOT = 0.
      PRINT 701,INDEX(KL),W(KL),DW(KL),SPFAC(KL),PMOT,TMOT,SMOT,VMOT
      701  FORMAT(1X,'%>%ADJUST',I4,' WIGHT',F11.1,' WAS',F11.1,
      ,     SPFAC,F12.5,',CHANGE',E11.5,IX,F11.5,IX,E11.5,IX,F11.5)
      PRINT 353,TRK,SK,URK,TRKTES,SKTES,URKTES
      353  FORMAT(1X,STATISTICS: TRACE!,F11.1,',SKEW',F11.1,',KURT',F11.1,
      1 /+10X,1T*STS (SPLITT=0): ',E11.5,6X,E11.5,6X,F11.5)
      ADJ01940
      ADJ01950
      ADJ01960
      ADJ01970
      ADJ01980
      ADJ01990
      ADJ02000
      ADJ02010
      ADJ02020
      ADJ02030
      ADJ02040
      ADJ02050
      ADJ02060
      ADJ02070
      ADJ02080
      ADJ02090
      ADJ02100
      ADJ02110
      ADJ02120
      ADJ02130
      ADJ02140
      ADJ02150
      ADJ02160
      ADJ02170
      ADJ02180
      ADJ02190
      ADJ02200
      ADJ02210
      ADJ02220
      ADJ02230
      ADJ02240
      ADJ02250
      ADJ02260
      ADJ02270
      ADJ02280
      ADJ02290
      ADJ02300
      ADJ02310
      ADJ02320
      ADJ02330
      ADJ02340
      ADJ02350
      ADJ02360
      ADJ02370

C   TRACE 2--ACTUAL ADJUST PRINT ON SELECTIVE
      IF(W(KL).GT.UNIT(4500.)*PROF(KL).OR.W(KL).LE.0.0R.DW.LE.0.0R.RVOL
      * .1F.0)CALL CLPK(KL,NAJD,SM,SKEW,KURT)
      IF(W(KL).LE.0.0R.DW.LE.0.0R.RVOL.LE.0.0D0)PRNT771,KL,W(KL),DW,RVOL
      771  FORMAT(1X,1/0RVOL FOR IN ADJUST:KL,W,NEW W,VOL,16,3E15.7)
      ADJ02010
      ADJ02020
      ADJ02030
      ADJ02040
      ADJ02050
      ADJ02060
      ADJ02070
      ADJ02080
      ADJ02090
      ADJ02100
      ADJ02110
      ADJ02120
      ADJ02130
      ADJ02140
      ADJ02150
      ADJ02160
      ADJ02170
      ADJ02180
      ADJ02190
      ADJ02200
      ADJ02210
      ADJ02220
      ADJ02230
      ADJ02240
      ADJ02250
      ADJ02260
      ADJ02270
      ADJ02280
      ADJ02290
      ADJ02300
      ADJ02310
      ADJ02320
      ADJ02330
      ADJ02340
      ADJ02350
      ADJ02360
      ADJ02370

C   NAJDJ = ADJUSTMENT CONSTANT
      NAJDJ=NAJD+1
      WK=W(KL)
      W(KL)=DW
      ADJ02010
      ADJ02020
      ADJ02030
      ADJ02040
      ADJ02050
      ADJ02060
      ADJ02070
      ADJ02080
      ADJ02090
      ADJ02100
      ADJ02110
      ADJ02120
      ADJ02130
      ADJ02140
      ADJ02150
      ADJ02160
      ADJ02170
      ADJ02180
      ADJ02190
      ADJ02200
      ADJ02210
      ADJ02220
      ADJ02230
      ADJ02240
      ADJ02250
      ADJ02260
      ADJ02270
      ADJ02280
      ADJ02290
      ADJ02300
      ADJ02310
      ADJ02320
      ADJ02330
      ADJ02340
      ADJ02350
      ADJ02360
      ADJ02370

C   STATISTICS--WEIGHT WIGHT
      KK=LSES(KL)
      ADJ02010
      ADJ02020
      ADJ02030
      ADJ02040
      ADJ02050
      ADJ02060
      ADJ02070
      ADJ02080
      ADJ02090
      ADJ02100
      ADJ02110
      ADJ02120
      ADJ02130
      ADJ02140
      ADJ02150
      ADJ02160
      ADJ02170
      ADJ02180
      ADJ02190
      ADJ02200
      ADJ02210
      ADJ02220
      ADJ02230
      ADJ02240
      ADJ02250
      ADJ02260
      ADJ02270
      ADJ02280
      ADJ02290
      ADJ02300
      ADJ02310
      ADJ02320
      ADJ02330
      ADJ02340
      ADJ02350
      ADJ02360
      ADJ02370

C   ADJUST TOTAL WIGHT IN SUBCLUSTERS. IF ANY
      ADJ02010
      ADJ02020
      ADJ02030
      ADJ02040
      ADJ02050
      ADJ02060
      ADJ02070
      ADJ02080
      ADJ02090
      ADJ02100
      ADJ02110
      ADJ02120
      ADJ02130
      ADJ02140
      ADJ02150
      ADJ02160
      ADJ02170
      ADJ02180
      ADJ02190
      ADJ02200
      ADJ02210
      ADJ02220
      ADJ02230
      ADJ02240
      ADJ02250
      ADJ02260
      ADJ02270
      ADJ02280
      ADJ02290
      ADJ02300
      ADJ02310
      ADJ02320
      ADJ02330
      ADJ02340
      ADJ02350
      ADJ02360
      ADJ02370

C   LOCATE RIGHT-MOST NODE
      IF(KK,F0,0) GO TO 109
      CHW=W(KL)-WK
      109  CTOT(KK)=CTOT(KK)+CHW
      KK=LINK(KK)
      IF(KK,NE,0) GO TO 109
      109  WR=W(KL)/DW
      INOTC = 1
      ADJ02010
      ADJ02020
      ADJ02030
      ADJ02040
      ADJ02050
      ADJ02060
      ADJ02070
      ADJ02080
      ADJ02090
      ADJ02100
      ADJ02110
      ADJ02120
      ADJ02130
      ADJ02140
      ADJ02150
      ADJ02160
      ADJ02170
      ADJ02180
      ADJ02190
      ADJ02200
      ADJ02210
      ADJ02220
      ADJ02230
      ADJ02240
      ADJ02250
      ADJ02260
      ADJ02270
      ADJ02280
      ADJ02290
      ADJ02300
      ADJ02310
      ADJ02320
      ADJ02330
      ADJ02340
      ADJ02350
      ADJ02360
      ADJ02370

C   WR= EXTRAPOLATE MEAN
C   EXF = TEMP. EXTRAPOLATION FACTOR
C   CHANGE HF: RASSHACH 3/21/77
      EXF=WINFC*VACCF1(KADTY)
      DO 113 I=1,MN
      SUM(KL+I)=WR*(SV(I)+EXF*FV(I))
      113  OSUM(KL+I)=SUM(KL+I)
      ADJ02010
      ADJ02020
      ADJ02030
      ADJ02040
      ADJ02050
      ADJ02060
      ADJ02070
      ADJ02080
      ADJ02090
      ADJ02100
      ADJ02110
      ADJ02120
      ADJ02130
      ADJ02140
      ADJ02150
      ADJ02160
      ADJ02170
      ADJ02180
      ADJ02190
      ADJ02200
      ADJ02210
      ADJ02220
      ADJ02230
      ADJ02240
      ADJ02250
      ADJ02260
      ADJ02270
      ADJ02280
      ADJ02290
      ADJ02300
      ADJ02310
      ADJ02320
      ADJ02330
      ADJ02340
      ADJ02350
      ADJ02360
      ADJ02370

```

FILE: ADJUST FORTRAN A

```

C SET NEXT ADJUSTMENT POINTS WITH MINIMUM
  DDJHP = 1. + DWFAC
  WADJ(KL)=W(KL)*(1.+DWFAC)
  TF(W(KL).LT.WSIM) WADJ(KL)=2.D0*W(KL)+WDELSM
  WRITE(6,9997) WADJ(KL),W(KL),WSIM
9997 FORMAT(1* WADJ(KL),W(KL),WSIM,7F10.1)

C DTSCHFT POINT (SHEPHARD,S) CORRECTION (TO COVARIANCE ONLY)
  DCORR=(DW+WADJ(KL))/24
  IF(KAUTY.EQ.2)DCORR=DW/12
  *** WARNING: CHANGE DO:LOOP FOR DOUBLE PRECISION ***
  DO 114 I=1,MQS,MQP
  C114 LINK(LR+I-1)=LINK(LH+I-1) + DCORR

C EXTRAPOLATE COVARIANCE
  EXF=WINFC*MACCEL(KADTY)
  ITX=0
117 DO 114 I=1,40S
  ALINK(LD2+I-1) = WR*(ALINK(LR2+I-1)) + EXF*ALINK(LVA2+I-1)
  CALL DTRMTX(OVAR(KL+1),ALINK(LD2))
  CALL DMINV(ALINK(LVA2),ALINK(LD2),ALINK(LD2),VOLIN(KL))
  EXF = EXF*.3

C EXTRAPOLATED COVARIANCE MUST BE POSITIVE DEFINITE. ELSE LOOP
  ITX=ITX+1
  IF(ITX.EQ.25)EXF=0.
  IF(VOLIN(KL).LT.0.. AND. ITX.LT.26) GO TO 117
  CVOL=ALOG(ARS(VOLIN(KL)))/AMQ-ALOG(ARS(W(KL)))

C ALSO REQUIRE NOT TOO RAPID CHANGE IN VOLUME
  TF(IHS(OVOL-CVOL).GT.VOLLTIM.AND.ITX.LT.26.AND.EXF.GT.0.)
C CHANGE RE:PASSHACH 3/21/77

C ERROR MESSAGE
  IF(ITX.GE.10)PRINT 772,ITX,INDEX(KL),VOLIN(KL),OVOL,CVOL
772  FORMAT(1*/*#*#EXTRAPOLATION PROBLEM IN ADJUST:ITEM,INDEX(
    * OVOL*,*CVOL*,14,16,3E15.7)
C CHANGE RE:PASSHACH 3/21/77

C STOP COVARIANCE MATRIX
  TF(ITX.GE.20)CALL CLPH(KL,NADJJ,SUM,SKEW,KURT)
  CALL DTRMTX(VPTN(KL+1),ALINK(LVA2))

C PROPORTION CALC/EXTRAPOLATION
  EXF=WINFC*PACCL(KADTY)
  PRK=PROP(KL)
  DEN=W(KL)-CTOT(KL)
  CINV=CIN(KL)-OCIN(KL)
  PROP(KL)=(CINV)/(DEN-ODEN(KL))

C ERROR MESSAGE--PROPORTION CALCULATION
  IF(PPROP(KL).GT.0.. AND.PROP(KL).LE.1.) GO TO 139
  PRINT A39,INDEX(KL),PRK,PROP(KL),PRIRCM(KL),W(KL),CIN(KL)
  1  OCIN(KL),CINV,W(KL),CTOT(KL),DEN,ODEN(KL)
A39 FORMAT(' ALPHA ERROR:PRK,P.CM,W,I3.4E9.4/1'          (ERROR CON
  1  3E9.4.,*W(KL),CTOT,DEN,ODEN*,4E9.4)
C CHANGE RE:PASSHACH 3/21/77

C PRINTOUT CLUSTER
  CALL CLPH(KL,NADJJ,SUM,SKEW,KURT)
  PROP(KL)=PRK
139  ALPO=ALOG(PROP(KL))
  ALPO=ALOG(OPROP(KL))
  DALP=ALP-ALPO
  PFAC=EXP(EXF*DALP)
  PROP(KL)=PROP(KL)*PFAC
  OPROP(KL)=DPROP(KL)
  PRIRCM(KL)=PRIRCM(KL)+PROP(KL)-PRK
  CIN(KL)=CINV*PFAC
  OCIN(KL)=CIN(KL)
  ODEN(KL)=(CTN(KL)/PROP(KL))*PRIRCM(KL)
  CTOT(KL)=W(KL)-ODEN(KL)

C ADJUST PROPORTIONS OF SUBS
  KK=L$UHS(KF)
141  CALL DFNCAL(KK+1./PRIRCM(KF),W(KF))
  KK=LINK(KK)
  IF(KK.NF.0) GO TO 141

C ACTUAL TEST FOR SPLITTING
C SPLIT THE CLUSTER

```

B-5

FILE: ADJUST FURTHAN A

```

C IF THFHE ARE SIHS, SKIP POSSIBLE SPLITTING OF CLUSTER
C CALLS ADJUST WHFN WEIGHT FOR A GIVEN CLUSTER EXCEUS THE THRESHOLD
C IF(LSIHRS(KL).NE.0) GO TO 200 ADJ03170
ADJ03180
ADJ03190
ADJ03200
ADJ03210
ADJ03220
ADJ03230
ADJ03240
ADJ03250
ADJ03260
ADJ03270
ADJ03280
ADJ03290
ADJ03300
ADJ03310
ADJ03320
ADJ03330
ADJ03340
ADJ03350
ADJ03360
ADJ03370
ADJ03380
ADJ03390
ADJ03400
ADJ03410
ADJ03420
ADJ03430
ADJ03440
ADJ03450
ADJ03460
ADJ03470
ADJ03480
ADJ03490
ADJ03500
ADJ03510
ADJ03520
ADJ03530
ADJ03540
ADJ03550
ADJ03560
ADJ03570
ADJ03580
ADJ03590
ADJ03600
ADJ03610
ADJ03620
ADJ03630
ADJ03640
ADJ03650
ADJ03660
ADJ03670
ADJ03680
ADJ03690
ADJ03700
ADJ03710
ADJ03720
ADJ03730
ADJ03740
ADJ03750
ADJ03760
ADJ03770
ADJ03780
ADJ03790
ADJ03800
ADJ03810
ADJ03820
ADJ03830
ADJ03840
ADJ03850
ADJ03860
ADJ03870
ADJ03880
ADJ03890
ADJ03900
ADJ03910
ADJ03920
ADJ03930
ADJ03940
ADJ03950

C GET WORKING STORAGE FOR SPLIT, CALL SPLIT, PRINT RESULTS AND
C FREE WORKING STORAGE
NSGSQ=MORSTR(LMOS)
NTAUSQ=MORSTR(LMOS)
NDIUM=MEMORSTR(1 MOS)
NDSG=MORSTR(LMOS)
NDAU=MORSTR(LMOS)
NSGSQ2 = NSGSQ/2 + 1
NTAUSQ2 = NTAUSQ/2 + 1
NDIUM2 = NDIUM/2 +
NDSG2 = NDSG/2 +
NDAU2 = NDAU/2 +
ADJ03200
ADJ03210
ADJ03220
ADJ03230
ADJ03240
ADJ03250
ADJ03260
ADJ03270
ADJ03280
ADJ03290
ADJ03300
ADJ03310
ADJ03320
ADJ03330
ADJ03340
ADJ03350
ADJ03360
ADJ03370
ADJ03380
ADJ03390
ADJ03400
ADJ03410
ADJ03420
ADJ03430
ADJ03440
ADJ03450
ADJ03460
ADJ03470
ADJ03480
ADJ03490
ADJ03500
ADJ03510
ADJ03520
ADJ03530
ADJ03540
ADJ03550
ADJ03560
ADJ03570
ADJ03580
ADJ03590
ADJ03600
ADJ03610
ADJ03620
ADJ03630
ADJ03640
ADJ03650
ADJ03660
ADJ03670
ADJ03680
ADJ03690
ADJ03700
ADJ03710
ADJ03720
ADJ03730
ADJ03740
ADJ03750
ADJ03760
ADJ03770
ADJ03780
ADJ03790
ADJ03800
ADJ03810
ADJ03820
ADJ03830
ADJ03840
ADJ03850
ADJ03860
ADJ03870
ADJ03880
ADJ03890
ADJ03900
ADJ03910
ADJ03920
ADJ03930
ADJ03940
ADJ03950

C 100) SPLIT
CALL SPLIT(KL,SUM,SKFW,KURT,NSUM,OVAR,
1 ALINK(LA2),ALINK(LA2),ALINK(LD2),ALINK(LVA2),ALINK(NSGSQ2),
2 ALINK(NTAUSQ2),ALINK(NDIUM2),ALINK(NDSG2),ALINK(NDAU2))
KC = LSIHRS(KL)
CALL PTRFF(KL)
KC=LSIHS(KL)
KC=LINK(KC)

C TRACE 4
PRINT 354, INDEX(KL),W(KL),INDEX(KC),INDEX(KDC),ITFR
354 WRITE (3,354) INDEX(KL),W(KL),INDEX(KC),INDEX(KDC),ITFR
FORMAT(1,***HAVE SPLIT*,I3,*,WEIGHT*,F4.1*,SUBS*,I3*,ITER*,I4)
ADJ03400
ADJ03410
ADJ03420
ADJ03430
ADJ03440
ADJ03450
ADJ03460
ADJ03470
ADJ03480
ADJ03490
ADJ03500
ADJ03510
ADJ03520
ADJ03530
ADJ03540
ADJ03550
ADJ03560
ADJ03570
ADJ03580
ADJ03590
ADJ03600
ADJ03610
ADJ03620
ADJ03630
ADJ03640
ADJ03650
ADJ03660
ADJ03670
ADJ03680
ADJ03690
ADJ03700
ADJ03710
ADJ03720
ADJ03730
ADJ03740
ADJ03750
ADJ03760
ADJ03770
ADJ03780
ADJ03790
ADJ03800
ADJ03810
ADJ03820
ADJ03830
ADJ03840
ADJ03850
ADJ03860
ADJ03870
ADJ03880
ADJ03890
ADJ03900
ADJ03910
ADJ03920
ADJ03930
ADJ03940
ADJ03950

C FREE STORAGE
CALL CLINMP(FL)
CALL FREE(NSGSQ,LMOS)
CALL FREE(NTAUSQ,LMOS)
CALL FREE(NDIUM,1 MOS)
CALL FREE(NDSG,LMOS)
CALL FREE(NDAU,LMOS)
GO TO 204
ADJ03500
ADJ03510
ADJ03520
ADJ03530
ADJ03540
ADJ03550
ADJ03560
ADJ03570
ADJ03580
ADJ03590
ADJ03600
ADJ03610
ADJ03620
ADJ03630
ADJ03640
ADJ03650
ADJ03660
ADJ03670
ADJ03680
ADJ03690
ADJ03700
ADJ03710
ADJ03720
ADJ03730
ADJ03740
ADJ03750
ADJ03760
ADJ03770
ADJ03780
ADJ03790
ADJ03800
ADJ03810
ADJ03820
ADJ03830
ADJ03840
ADJ03850
ADJ03860
ADJ03870
ADJ03880
ADJ03890
ADJ03900
ADJ03910
ADJ03920
ADJ03930
ADJ03940
ADJ03950

C DO NOT CHECK FOR SEPARATION OR TO ELIMINATE SUBS
C ELIMINATE THIS CLUSTER IN FAVOR OF ITS SUBCLUSTERS. IF IT IS
C SPLIT WITH SUBS GREATER THAN SPMVTH
200 IF(SPFAC(KL).LT.SPMVTH#SPCOR) GO TO 30
CALL SEPERH(KL)
ADJ03600
ADJ03610
ADJ03620
ADJ03630
ADJ03640
ADJ03650
ADJ03660
ADJ03670
ADJ03680
ADJ03690
ADJ03700
ADJ03710
ADJ03720
ADJ03730
ADJ03740
ADJ03750
ADJ03760
ADJ03770
ADJ03780
ADJ03790
ADJ03800
ADJ03810
ADJ03820
ADJ03830
ADJ03840
ADJ03850
ADJ03860
ADJ03870
ADJ03880
ADJ03890
ADJ03900
ADJ03910
ADJ03920
ADJ03930
ADJ03940
ADJ03950

C DO NOT PROCESS DELETED CLUSTER FURTHER
GO TO 349
ADJ03700
ADJ03710
ADJ03720
ADJ03730
ADJ03740
ADJ03750
ADJ03760
ADJ03770
ADJ03780
ADJ03790
ADJ03800
ADJ03810
ADJ03820
ADJ03830
ADJ03840
ADJ03850
ADJ03860
ADJ03870
ADJ03880
ADJ03890
ADJ03900
ADJ03910
ADJ03920
ADJ03930
ADJ03940
ADJ03950

C ELIMINATE THE SIHS. IF IT HAS SUBS AND EITHER
C (1) SPLITTING LESS THAN SURLIM THRESHOLD, OR
C (2) IT IS SIMILAR TO SUBS AND SPLITTING LESS THAN SPMVTH
C 30 CONTINUE
C ELIMINATE THE SUBCLUSTERS IF THEY ARE DOMINATED BY THE MAIN
C CLUSTER.
SPRN0=(SPFAC(KL)-OPRATOR(KL))/SPCOR
IF((SPRN0.LT.SRLTH.OR.OPRATOR(KL)/DW.LT.OPRATOR.AND.SPRN0
1.LT.SPMVTH).AND.LSUBS(KL).NE.0) CALL SURLIM(KL)
C ELIMINATE THIS CLUSTER (AND PERHAPS ITS COCLUSTER) IF ITS
C PROPORTION BECOMES TOO SMALL.
ADJ03800
ADJ03810
ADJ03820
ADJ03830
ADJ03840
ADJ03850
ADJ03860
ADJ03870
ADJ03880
ADJ03890
ADJ03900
ADJ03910
ADJ03920
ADJ03930
ADJ03940
ADJ03950

C ELIMINATE IF PROPORTION TOO SMALL AND ELIN PARAMETER NOELIM IS OFF
204 IF(PROP(KL).GE.ELIMTH.OR.NOELIM.NE.0) GO TO 205
CALL FLIM(KL)
ADJ03850
ADJ03860
ADJ03870
ADJ03880
ADJ03890
ADJ03900
ADJ03910
ADJ03920
ADJ03930
ADJ03940
ADJ03950

C DO NOT TRY TO PROCESS FURTHER
GO TO 349
205 KC=LSUPER(KL)
KC=LINK(KL)
ADJ03880
ADJ03890
ADJ03900
ADJ03910
ADJ03920
ADJ03930
ADJ03940
ADJ03950

C CALL JOIN IF A SIMILAR CLUSTER HAS BEEN FOUND
C CLUSTER MUST BE SELECTIVELY CHOSEN
ADJ03890
ADJ03900
ADJ03910
ADJ03920
ADJ03930
ADJ03940
ADJ03950

```

FILE: ADJUST FORTRAN A

C JOIN CONTROL PARAMETER NOJO MUST BE OFF, AND THERE MUST BE A
STRUCTURALLY VOID JOIN AVAILABLE ADJ03960
C ADJ03970
C ADJ03980
C ADJ03990
C FIND LIKELY OVERLAPS OF THIS CLUSTER WITH THOSE FURTHER DOWN THE LIST ADJ04000
C IF(W(KL).LT.UNIF(WJOIN).OR.NOJO.NE.0.OR.LINK(KL).EQ.0)
1 OR.LSUBS(KCC).EQ.KL.AND.LINK(KDC).EQ.0) GO TO 250 ADJ04010
RMIN=1.E26 ADJ04020
K=LINK(KL) ADJ04030
C DO NOT CHECK ON RANDOM BASIS CONTROLLED BY PARAMETER PJOIN. THIS IS ADJ04040
NECESSARY TO AVOID REPEATING BAD JOIN TRIES. ADJ04050
211 IF(PJOIN.LT.UNIF(1.)) GO TO 213 ADJ04060
WW=W(K)/W(KL) ADJ04070
CALL CORECT(FV,SUM(KL+1):WW,SUM(K+1)) ADJ04080
PR=(DOTSG(FV,VRIN(KL+1))+DOTSG(FV,VRIN(K+1))*WW)*.5/W(KL) ADJ04090
C CHECK DIFFERENCE IN DIAGONAL COVARIANCE MATRIX ELEMENTS. ADJ04100
C *** WARNING *** THIS CHECK IS NOT INVARIANT UNDER GENERAL LINEAR ADJ04110
TRANSFORMATION. ADJ04120
DO 212 I=1,MQ ADJ04130
TM=MAXW(I+1) ADJ04140
C THIS ERROR MIGHT OCCUR DUE TO ROUNDING ERROR. ADJ04150
1 IF(VRIN(KL+IM)*VRIN(K+IM).LE.0.) PRINT 612,I,IM,INDEX(KL),INDEX ADJ04160
1 (K),KL,K,(J,VRIN(KL+J),VRIN(K+J),J=1,MM) ADJ04170
612 FORMAT(1 LOG ERROR IN ADJUST: I,IM,KL,K/VRIN=1.215,213,217/(15 ADJ04220
1 .PF13.6)) ADJ04230
212 RR=RR+VRJOIN*(ALOG(AHS(VRIN(KL+IM)/VRIN(K+IM))+1.E-25)**2) ADJ04240
RR=RR/(1.1H*(WW-1./WW)**2+1.) ADJ04250
C THE FOLLOWING VALUES SYMMETRICALLY WEIGHTED MEASURE ADJ04260
TF(RR,GT,RMIN) GO TO 213 ADJ04270
C FIRST SO FAR, CHECK IF CLUSTER IS JOINABLE ADJ04280
KMAX=K ADJ04290
RMIN=RP
213 K=LINK(K) ADJ04300
C LOOP OVER CLUSTERS ADJ04310
IF(K.GT.0) GO TO 211 ADJ04320
C IS FIRST GOOD ENOUGH ADJ04330
TF(RMIN,GT,PLIM*AMQ) GO TO 250 ADJ04340
C DO JOIN ADJ04350
NJOE=JOIN(KL,KMAX,SUM,SKEW,KUPT,O_SUM,OVAR,LINK(LA),LINK(LB), ADJ04360
1 LINK(LD),LTMK(LVA)) ADJ04370
CALL PATHFF(KF) ADJ04380
250 CONTINUE ADJ04390
C CALCULATE SCALAR MEASUREMENTS OF SKEWNESS AND KURTOSIS TO BE USED ADJ04400
IN A TEST OF NORMALITY ADJ04410
C ZER0 OUT SKEWNESS AND KURTOSIS (ACCUMULATED ONLY 1 BLOCK AT A TIME) ADJ04420
DO 161 I=1,MQ ADJ04430
161 SKFW(KL+I)=0. ADJ04440
C DO RANGES OVER WHOLE TRIANGULAR ARRAY ADJ04450
DO 162 I=1,MM ADJ04460
162 KURT(KL+I)=0. ADJ04470
C ADJUST PLIM AND SPLITTING VARIABLES ADJ04480
C SPLITTING OF PARENT CLUSTER IS TO BE HONORED ADJ04490
SPFAC(KF)=AMAX1(SPFAC(KF)+AMIN1(SPFAC(KF)+DW*BETTER,OPRIOR(KF))) ADJ04500
PWFAT(KL)=I ADJ04510
SPFAC(KL)=-9999.9 ADJ04520
TF(LSUBS(KL).NE.0) SPFAC(KL)=APRIOR(KL) ADJ04530
OPRIOR(KL)=SPFAC(KL) ADJ04540
C VOLUME AND COEFFICIENT CALCULATIONS ADJ04550
OCON(KL)=ODCON ADJ04560
VOLIN(KL)=ABS(VOLIN(KL))*8756510763E-26*(6.283185307/W(KL))**MQ ADJ04570
VOLFT(KL)=SORT(VOLIN(KL)) ADJ04580
OW(KL)=W(KL) ADJ04590
ADJ04600
ADJ04610
ADJ04620
ADJ04630
ADJ04640
ADJ04650
ADJ04660
ADJ04670
ADJ04680
ADJ04690
ADJ04700
ADJ04710
ADJ04720
ADJ04730
ADJ04740

ORIGINAL PAGE IS
OF POOR QUALITY

FILE ADJUST - FORTRAN ADJUSTMENT PROGRAM
 C CHECK STATISTICS TYPE
 WADJ(KL) = W(KL) * (1. + DWFACT)
 IF (W(KL), LT., WSLIM) WADJ(KL) = 2.00 * W(KL) + WDFLSM
 INDEX(KL) = IAHS(INDEX(KL))
 IF (IDADJ(KL), LE., NPTSO) INDEX(KL) = -IAHS(INDEX(KL))
 WRITE (3,9994) IDADJ(KL), NPTSO, INDEX(KL), W(KL), WADJ(KL)
 WRITE (6,9995) IDADJ(KL), NPTSO, INDEX(KL), W(KL), WADJ(KL)
 9994 FORMAT (' IDADJ,NPTSO,INI)EX,W,WADJ', 3T6,2F12.2)
 9995 FORMAT (' IDADJ(KL) = NPTSO * TOTPIX
 999 CONTINUE
 C CALC WRAP-AROUND POINT
 C FREE ALL THE WORKING STORAGE FOR ADJUST
 CALL FREE(LA,LMS1)
 CALL FREE(LA,LMS2)
 CALL FREE(LD,LMS3)
 CALL FREE(LV,LMS4)
 IF (NOELIM .GT. 0) NOELIM = NOELIM - 1
 RETURN
 END

**ORIGINAL PAGE IS
OF POOR QUALITY**

FILE: ALFREE FORTRAN A

```
SUBROUTINE ALFREE (KLHED, LEN)
C THIS ROUTINE FREES THE STRING STARTED BY KLHED.
COMMON/CLUS/ JUNK(12),NARL,NTOP,NTBSZM,NWANT,LINK(14000)
IF (KLHED).EQ.0) RETURN
KL=KLHED
10 KLK=LINK(KL)
CALL FREE(KL,LFN)
KL=KLK
TF(KL)10,99,10
99 KLHED=0
RETURN
END
```

ALF00010
ALF00020
ALF00030
ALF00040
ALF00050
ALF00060
ALF00070
ALF00080
ALF00090
ALF00100
ALF00110
ALF00120

FILE: AMSO FORTMAN A

REAL FUNCTION AMSO(AM,AMET)

CALCULATES THE TRACE OF THE SQUARE OF THE MATRIX AM, RELATIVE
TO THE METRIC AMET.

AMSO = TRACE(AM*AMET*AM*AMET)

DIMENSION MXAR(3),LR(3),LV(3)

FNU)VALFNCE (LR(1),LVIN),(LR(2),LKURT),
(LR(3),LOVARI),(LV(1),LSUM),(LV(2),LSKew),(LV(3),L0SUM)

COMMON /MTSC/ MG,MM,LP,LV,NINCLS,MXAR,WTINIT,KH00T,EPS,DELT,

AMU,UDFCN,X0VFL0,X1INFLO,WADJIN,ELIMTH,SFHTH,VFAC,AMM,SBLTH,

TNDXVL,WFAC,NPTSD,PORATH,SPMVTH,DWFAC,GRACTM,AMOFAC,

AMOMIN,AMOMAX,AMORAT,VOLLIM,BIAS,PJNIN,VHJOIN,WSIM,WDELSM,

HETTER,MOLE,CURLEN,SPCOR

REAL AM(475),AMET(475)

REAL*8 AMS00,AMS00D,HOW,COL

AMGDN=0,

AMSOOD=0,

DO 20 I=1,40

DO 19 J=1,I

P0W=0.

C0L=0.

IKL0C=MXAR(I)

KJL0C=MXAR(J)

DO 10 K=1,J

POW=POW+AM(IKL0C+1)*AMET(KJL0C+1)

C0L=C0L+AM(KJL0C+1)*AMET(IKL0C+1)

IKL0C=IKL0C+1

10 KJL0C=KJL0C+1

IF(I,FO,J) GO TO 12

JP=J+1

DO 11 K=JP,1

POW=HOW+AM(IKL0C+1)*AMET(KJL0C)

C0L=C0L+AM(KJL0C)*AMET(IKL0C+1)

IKL0C=IKL0C+1

11 KJL0C=KJL0C+K

12 IF(I,FO,MM) GO TO 14

IKL0C=IKL0C+1

IP=I+1

DO 13 K=IP,MO

POW=HOW+AM(IKL0C)*AMET(KJL0C)

C0L=C0L+AM(KJL0C)*AMET(IKL0C)

IKL0C=IKL0C+K

13 KJL0C=KJL0C+K

14 CONTINUE

15 AMS00=AMS00+POW*C0L

20 AMS00D=AMS00D+HOW*C0L

AMSO0D=AMSO0+AMSO0-AMSO0D

4MS0 = AMS00

WE MUST COUNT EACH OFF-DIAGONAL TWICE. AMS00D AVOIDS DOUBLE-

COUNTING THE DIAGONAL TERMS.

RETURN

END

AMSO0010
AMSO0020
AMSO0030
AMSO0040
AMSO0050
AMSO0060
AMSO0070
AMSO0080
AMSO0090
AMSO0100
AMSO0110
AMSO0120
AMSO0130
AMSO0140
AMSO0150
AMSO0160
AMSO0170
AMSO0180
AMSO0190
AMSO0200
AMSO0210
AMSO0220
AMSO0230
AMSO0240
AMSO0250
AMSO0260
AMSO0270
AMSO0280
AMSO0290
AMSO0300
AMSO0310
AMSO0320
AMSO0330
AMSO0340
AMSO0350
AMSO0360
AMSO0370
AMSO0380
AMSO0390
AMSO0400
AMSO0410
AMSO0420
AMSO0430
AMSO0440
AMSO0450
AMSO0460
AMSO0470
AMSO0480
AMSO0490
AMSO0500
AMSO0510
AMSO0520
AMSO0530
AMSO0540

FILE: APRIOR FORTRAN A

FUNCTION APRIOR(KL)

THIS ROUTINE CALCULATES THE APRIORI PROBABILITY FOR THE CLUSTER KL AS OPPOSED TO ITS TWO SUBCLUSTERS KA AND KB. THE PROBABILITY CALCULATED HAS NOTHING TO DO WITH THE DATA, BUT CONTAINS ONLY THE USERS' BIAS IN FAVOR OF FEWER CLUSTERS. IF APRIOR IS SET TOO LARGE (WHICH IS TOO LARGE) THEN THE ALGORITHM WILL GENERATE TOO MANY CLUSTERS (I.E.: ONE CLUSTER PPER DATA POINT) EXTREMELY SMALL VALUES OF APRIOR WILL DECREASE THE NUMBER OF CLUSTERS CREATED. IN GENERAL, EXCEPT FOR EXTREMELY STATISTICALLY SENSITIVE PROBLEMS, ANY SMALL VALUE OF APRIOR IS SUFFICIENT; IN THE LIMIT OF INFINITE DATA, THE ALGORITHM WILL FIND THE CLUSTERS ANYHOW.

APRIOR MUST BE POSITIVE, TYPICALLY 3.**(-M0).

DIMENSION MXAR(31),LR(3),LV(3)

COMMON /MISC/ MU,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,

1 AMA,UDCOM,XOVFLU,XINFLU,WADJIN,ELIMTH,SPTH,VFAC,AMM,SALTH,

2 INDXVL,WFAC,NPTSU,PORATH,SPMVTH,DWFAC,GRACTH,AMOFAC,

3 AMOMIN,AMUMAX,AMOHAT,VOLLIM,BIAS,PJOIN,VRJOIN,WSIM,WDELSM,

4 HETTEX,MODE,CORLEN,SPCOR

APRIOR=VFAC*AMA+BIAS

RETURN

FND

APR00010
APR00020
APR00030
APR00040
APR00050
APR00060
APR00070
APR00080
APR00090
APR00100
APR00110
APR00120
APR00130
APR00140
APR00150
APR00160
APR00170
APR00180
APR00190
APR00200
APR00210
APR00220

ORIGINAL PAGE IS
OF POOR QUALITY

FILE: CLASY FORTRAN A

```

***** CLA00010
C
IMPLICIT INTEGER (A-Z)
COMMON /HAND/ NX
COMMON /INFORM/ HEAD(42), MAPTAP, DATAFP, SAVTAP, MAXFET
1 PAGSIZ, TAPCHK, TRNSYM, TSTSYM, MINDIV, SPLMAX, CLA00020
2 DIVSYM, THRSYM, MAXDIV, MINDIV, SPLMAX, CLA00030
3 SFHIAL, TAPESV, FILFSV, NOFLD2, NOFLD3, CLA00040
4 MAXCLS, NOCLS2, MAXFLD, NOFFT2, NOFFT4, VARSIZ, CLA00050
5 NOTHFD, NOFEAT, NOFFT, NOFET4, VARSIZ, CLA00060
6 VAKSZ?, VAKSZ4, XSIZ, NUSPEC, NOMIST, CLA00070
7 NUGRP, DIVSZ?, KEEPLV, PRTLEV, YSIZ, NOCLS3, PCTSZ, CLA00080
8 XHIGH, XLOW, SPCHAS, NOCLS3, PCTSZ, CLA00090
9 ATBLOCK(30), FFTVEC(30), FETVC2(30), HISVEC(30), INVERT(30), BESTVC(30) CLA00100
C
1 COMMON/CLUSTH/ IHEGIN, TOTWRD, CLSNAM, IPT, NOFLD, SYM(61), CLA00110
2 LNCAT, PHNT(4), KLAC, PRTME, PHOUT, TOTPPIX, CLA00120
3 SCHAM1, HUFPIX, HUFTOT, NHUFSD, NDUMP, LAUFD, CLA00130
4 MAXRF, AMFA, NWDS, NWDHS, NPTS, LAUF, IQ1, NOCYCL, CLA00140
C
1 INTEGER TOTWRD, SYM, PHNT, PRTME, PHOUT, TOTPPIX, SCHAM1, HUFPIX, HUFTOT, CLA00150
I CLSNAM, CLA00160
C
1 COMMON /ARRAY/TOP, ARRAY(1P0000), CLA00170
C
TOPID SHOULD EQUAL VALUE FOR NAREA IN CRLO, CLA00180
C
1 DIMENSION NN(1), POKAT(1), VOLIN(1), VOLRT(1), DCON(1), PPASS(1), PCOND(1), CLA00190
2 DIMENSION LSUMS(1), WADJ(1), INDEX(1), LSUPER(1), NS/MP(1), CLA00200
3 DIMENSION V21N(475), GFN(999), GNFF(999), ODFN(1), CLA00210
4 DIMENSION PST(1), PCUM(1), DISS(1), WADJ(1), OPRKOP(1), OW(1), SPFAC(1), CLA00220
5 DIMENSION PRHOM(1), OPRHOR(1), PROP(1), CIN(1), CTCT(1), OCIN(1), CLA00230
COMMON/CLUS/ JUNK(12), NAHL, NTOP, NTASZM, NWANT, LNK(14000), CLA00240
DIMENSION MXAH(31), LR(3), LV(3), CLA00250
EQUIVALENCE (LR(1),LV(1)), (LR(2),LKURT), CLA00260
1 (LR(3),LOVAR), (LV(1),LSUM), (LV(2),LSKEW), (LV(3),LOSUM), CLA00270
C
1 COMMON /MTSC/ MU, MM, LR, LV, NINCLS, MXAH, WTINTT, KROUT, EPS, DELT, CLA00280
2 AMG, ODCON, XOVFL0, XINFLO, WADJIN, ELIMTH, SFPTH, VFAC, AMM, SHLTH, CLA00290
3 INOXVL, WFAC, NPTSD, PHATH, SPMVTH, DWFC, GFACTM, AMOFAC, CLA00300
4 AMOMIN, AMOMAX, AMOHAT, VOLIM, HIAS, PJ0IN, VHJOIN, WSIM, WDELSM, CLA00310
5 HETTER, MODE, CULLEN, SPCOK, CLA00320
C
1 DIMENSION PACCEL(2), MACCEL(2), VACCEL(2), CLA00330
C
1 COMMON /STHAP/WAIT, CONLV, SKHND, SKCHT, THND, TRCHI, URKHND, URKCHI, CLA00340
I PACCEL, MACCEL, VACCEL, CLA00350
C
INITIALIZE RANDOM NUMBER GENERATOR, CLA00360
1 IX = 0, CLA00370
SET NO OF ITERATIONS THROUGH TOTAL DATA TO 10 AS A DEFAULT VALUE, CLA00380
1 NCYCL = 10, CLA00390
C
TOP = 1R000, CLA00400
C
SETUP READAD BUFFER, CLA00410
CALL READAD(30,HD0), CLA00420
C
CALL SETUPS TO READ INPUT CARDS, CLA00430
C
1 CALL SETUPS, CLA00440
FORMAT(10A4), CLA00450
C
CALL READTP TO READ CLASS AND FIELD DEFINITION CARDS AND TO HEAD, CLA00460
THE FIELDS OF DATA FROM THE IMAGE TAPE AND TO STORE DATA ON DRUM, CLA00470
C
1 NWDIS = TOTAL NO. WORDS AVAIL ON DRUM (SEE CALL TO RINIT IN READTP), CLA00480
10 CALL READTP(LAST,LTNK(200),TOPID), CLA00490
C
SET PRINT COUNTERS, CLA00500
1 PRTMF=1, CLA00510
1 PHOUT=1, CLA00520
1 LNCAT=0, CLA00530
C
CALL MULTI TO PERFORM CLUSTERING, CLA00540
TOP = 1R000, CLA00550
CALL MULTI(ARRAY(TPT)) , CLA00560
C
PRINT CLUSTER MAP, CLA00570
MAP = 1, CLA00580
CALL CLUSMP(MAP), CLA00590
1 TF(LAST,NF,1) GO TO 10, CLA00600
C

```

ORIGINAL PAGE IS
OF POOR QUALITY.

FILE: CLASY FORTRAN A

STOP
END

CLA000800
CLA000810

FILE: CLDUMP FORTRAN A

```

SUBROUTINE CLDUMP(KLHFD)
  THIS ROUTINE PRINTS OUT ALL THE CLASSES VIA ROUTINE "CLPR".
  DIMENSION INDEX(27),LSUHS(30),LSUPER(29),INADJ(28),NSYMA(12),
  1 PRIM(26),PRIRCM(25),CIN(24),CTOT(23),PROP(22),SPFAC(21),
  2 WADJ(20),W(19),UPHOP(18),OW(17),VOLIN(16),VOLRT(15),DCON(14),
  3 PORAT(13),DISS(12),PPASS(12),PST(11),OCIN(10),PCUND(7),
  4 OPRIOR(9),ODEN(8)
  DIMENSION VHTN(475),GEN(999),GREF(999),ALINK(1),
  FOUTVALNCE(ILINK(1),ALINK(1)),(LINK(3)),INDEX(27))
  FOUTVALENCE(ILINK(3)),LSUHS(30),
  FOUTVALNCE(ILINK(3)),LSUPER(29), (LINK(31),INADJ(28)),
  1 (LINK(31),NSYMA(12)), (LINK(31),PCUM(26)), (LINK(31),PRIRCM(25)),
  2 (LINK(31),CIN(24)), (LINK(31),CTOT(23)), (LINK(31),PROP(22)),
  3 (LINK(31),SPFAC(21)), (LINK(31),WADJ(20)), (LINK(31),W(19)),
  4 (LINK(31),OPROP(18)), (LINK(31),OW(17)), (LINK(31),VOLIN(16)),
  5 (LINK(31),VOLRT(15)), (LINK(31),DCON(14)), (LINK(31),PORAT(13)),
  6 (LINK(31),DISS(12)), (LINK(31),PPASS(12)), (LINK(31),PST(11)),
  7 (LINK(31),OCTIN(10)), (LINK(31),PCOND(7)), (LINK(31),VRIN(7)),
  8 (LINK(31),GFN(7)), (LINK(31),OPRIOR(9)), (LINK(31),ODEN(8)),
  9 (LINK(31),GUFF(H))
  COMMON/CLUS/ JUNK(12),NARL,NTOP,NTBS7M,NWANT,LINK(14000)
  DIMENSION NYAH(31),LR(3),LV(3)
  FOUTVALENCE(LR(1),LVRIN),(LR(2),LKURT),
  1 (LR(3),LVAR),(LV(1),LSUM),(LV(2),LSKFW),(LV(3),LOSUM)
  COMMON /MISC/ MO,MM,LP,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
  1 AMU,ODCUN,XOVEL,XUNFL,XUNFL0,WADJIN,ELTMTH,SPFTM,VFAC,AMM,SHLTH,
  2 INDXVL,WFAC,NHTSO,PURATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
  3 AMOMIN,AMOMAX,AMOPAT,VOLLIM,HIAS,PJOIN,VRJOIN,WSIM,WDELSM,
  4 HETTER,MODEF,CWLEN,SPCOR
  DIMENSION PACCF(2),MACCEL(2),VACCEL(2)
  COMMON /SIWAH/WAIT,CONLV,SKHND,SKCHI,TRHND,TRCHI,URKAND,UHKCHI,
  1 PACCEL,MACCEL,VACCEL
  COMMON/CLUSTH/ IHGIN,TOTWRD,CLSNAM,IPT,NOFLD,SYM(6),
  1 LNCAT,PHNT(4),KLPC,PRTE,PHOUT,TOTPIX,
  2 SCRAM1,HUFPIX,HUFTOT,NHUFSD,NDUMP,LRAFD
  4 MAXHF,ANFA,NWDS,NWDRS,NPTS,LHUF,I01,NOCYCL
  INTEGER TOTWRD,SYM,PRNT,PRTE,PROUT,TOTPIX,SCRAM1,HUFPIX,HUFTOT
  1 ,CLSNAM
  LOGICAL ISPLIT,IJSP
  NOFKL=0
  KLEKLF)
  WRITE(6,576) KLHFD,INDEX(KLHFD),LSUPER(KLHFD)
576 FORMAT(10 KL,INDEX,LSUPER,AT6)
  KROT=LSUPER(KL)
  KLIN=LINK(KL)
  PRINT 210,INDEX(KL),KL
210 FORMAT(10 INDEX OF OBSERVED CLUSTERS FROM,13,17)
  LEVFL=0
  GO TO 11
  4 LEVFL=LEVFL+1
  10 NSYMA(KL)=0
  11 IJSP=ISPLIT(KL)
  IF(ISPLIT(KL)) GO TO 19
  NOFKL=NOFKL+1
  NSYMA(KL)=NOFKL
  CONTINUE
  CALL CLPR(KL,LEVFL,GFN(LSUM),GFN(LSKFW),GEN(LKURT))
  IJSP=ISPLIT(KL)
  KFP=KL
  KL=LSUHS(KL)
  IF(KL,NE,0,AND,(ISPLIT(KFP),OR,PROUT,LE,2)) GO TO 9
  17 KL=LINK(KFP)
  IF(KL,NE,0,PLIN) GO TO 99
  11 TF(KL)=TF(KL)+1
  29 KL=LSUPER(KFP)
  LEVFL=LEVFL+1
  KFP=KL
  TF(KL,IF,KROT) GO TO 17
  99 PRTRP
  FINN

```

ORIGINAL PAGE IS
OF POOR QUALITY

SUBROUTINE CLINIT(KROT)

C THIS ROUTINE CONTAINS THE VARIOUS STATEMENTS NECESSARY TO
INITIALIZE THE CLUSTERING ALGORITHM.

REAL*8 XTFMP,YTFMP,ZTEMP,DURK,DURKD

DIMENSION INDEX(27),LSUBS(30),LSUPER(29),IDADJ(28),NSYMB(12),
PCUM(28),PRIRCM(25),CIN(24),CTOT(23),PROP(22),SPFAC(21),
WADJ(20),W(19),UPROP(18),OW(17),VOLIN(16),VOLAT(15),DCON(14),
PORAT(13),NTISS(12),PPASS(12),PST(11),OCIN(10),PCOND(7),
OPRIO(9),ODEN(8)

DIMENSION VWIN(675),GEN(999),GREF(999),ALINK(1),
EQUIVALENCE (LINK(1),ALINK(1)),(LINK(31),INDEX(27))
EQUIVALENCE (LINK(31),LSUAS(30))

F01(EQUIVALENCE (LINK(31),LSUPER(29)),(LINK(31),IDADJ(28)),
1 (LINK(31),NSYMB(12)),(LINK(31),PCUM(26)),(LINK(31),PRIRCM(25)),
2 (LINK(31),CIN(24)),(LINK(31),CTOT(23)),(LINK(31),PROP(22)),
3 (LINK(31),SPFAC(21)),(LINK(31),WADJ(20)),(LINK(31),W(19)),
4 (LINK(31),UPROP(18)),(LINK(31),OW(17)),(LINK(31),VOLIN(16)),
5 (LINK(31),VOLAT(15)),(LINK(31),DCON(14)),(LINK(31),PORAT(13)),
6 (LINK(31),NTISS(12)),(LINK(31),PPASS(12)),(LINK(31),PST(11)),
7 (LINK(31),OCIN(10)),(LINK(31),PCOND(7)),(LINK(31),VRIN(7)),
8 (LINK(31),GEN(7)),(LINK(31),OPRIO(9)),(LINK(31),ODEN(8)),
9 (LINK(31),GREF(4))

COMMON /CLUS/ JUNK(12),NARL,NTOP,NTHS7M,NWANT,LINK(14000)

DIMENSION MXAR(31),LH(3),LV(3),
EQUIVALENCE (LR(1),LVRIN),(LR(2),LKURT),
1 (LR(3),LOVAK),(LV(1),LSUM),(LV(2),LSKFW),(LV(3),LOSUM)

COMMON /MISC/ MO,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
1 AMO,UDCON,XOVFLO,XUNFL0,WADJIN,ELIMTH,SEPTH,VFAC,AMM,SALTH,
2 INDXUL,WFAC,NPTSO,PORATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
3 AMOMIN,AMOMAX,AMORAT,VOLLIM,HIAS,PJOIN,VRJOIN,WSIM,WDELSM,
4 BETTER,MODE,CURLEN,SPCOR

COMMON /STPAR/ WAIT,CONLV,SKHND,SKCHI,TRAND,TRCHI,URKHND,URKCHI,
1 PACCEL(2),MACCFL(2),VACCFL(2)

COMMON/CLUSTH/ IHEGIN,TOTWDN,CLSNAM,IPT,NOFLD,SYM(61),
1 LNCAT,PHNT(4),KLHC,PRTMF,PROUT,TOTPPIX,
2 SCHAM1,HUFPIX,BIIFTOT,NHUFSD,NDUMP,LHUF
3 MAXRF, AHFA, NWDS, NWDS, NPTS, LHUF, TOT, NOCYCL

INTEGER TOTLHD,SY1,PRNT,PRTMF,PROUT,TOTPPIX,SCHAM1,HUFPIX,PUFTOT
1 ,CLSNAM

COMMON /INITL/ VTNEW,DEVINI,CHANIN
CHIVAL(1)=DF*(1.-.222/DF+CONLV*SORT(.222/DF))**3

AMQ=MO

WE FIRST SET UP VARIOUS INDEX ARRAYS FOR A PARTICULAR
NUMBER OF CHANNELS MO.

SET UP THE TRIANGULAR POSITION ARRAY MXAR.

MM=1
DO 10 I=1,31
MXAR(I)=MM
10 MM=MM+1
MM=MXAR(ML+1)
AMM=MM

WE SET UP THE ORIGIN VECTORS, LR AND LV, OF THE VARIOUS ARRAYS
AND VECTORS IN A CLUSTER NODE.

NINCLS=1

***** THIS CONSTANT MUST BE SET TO THE NUMBER OF ARRAYS *****

DO 21 I=1,3
LR(I)=NINCLS
21 NINCLS=NINCLS+MM
DO 22 I=1,3
LV(I)=NINCLS
22 NINCLS=NINCLS+MO
NSCALS = 25
NINCLS=NINCLS+NSCALS-1

WE MUST ALSO SET UP SOME THRESHOLDS FOR USE BY THE STATISTICAL
SYSTEM.

SKCHI=(AM0*2.)*(AM0*4.)*CHIVAL(AM0)
URKCHI=AM0*(AM0*4.)*(AM0*6.)/(AM0-.999)*CHIVAL(AMM-1.)
THCHI=CONLV*CONLV*(AM0*(AM0*2.)*(AM0*3.)*A.)

WE NOW CREATE THE HEAD NODE OF THE CLUSTER TREE. THIS IS NOT
AN ACTUAL CLUSTER, AND DOES NOT HAVE STORAGE FOR ANY
OF THE STATISTICAL ARRAYS.

NPTSO=0
KROT=MO*KSTR(NSCALS)

CL100010
CL100020
CL100030
CL100040
CL100050
CL100060
CL100070
CL100080
CL100090
CL100100
CL100110
CL100120
CL100130
CL100140
CL100150
CL100160
CL100170
CL100180
CL100190
CL100200
CL100210
CL100220
CL100230
CL100240
CL100250
CL100260
CL100270
CL100280
CL100290
CL100300
CL100310
CL100320
CL100330
CL100340
CL100350
CL100360
CL100370
CL100380
CL100390
CL100400
CL100410
CL100420
CL100430
CL100440
CL100450
CL100460
CL100470
CL100480
CL100490
CL100500
CL100510
CL100520
CL100530
CL100540
CL100550
CL100560
CL100570
CL100580
CL100590
CL100600
CL100610
CL100620
CL100630
CL100640
CL100650
CL100660
CL100670
CL100680
CL100690
CL100700
CL100710
CL100720
CL100730
CL100740
CL100750
CL100760
CL100770
CL100780
CL100790

F11.F8 CLINIT FORTRAN A

```

C MAKE FIRST NODE START AT AN ODD NUMBER
  IF (MOD(NTOP,2) .NE. 1) NTOP = NTOP + 1
  LINK(KROT)=-262139
  LSUPFH(KROT)=-262142
  TIIADJ(KROT)=999999
  INDEX(KROT)=0
  SPFAC(KROT)=99999.
  W(KROT)=W1INIT
  IW(KROT)=W(KROT)
  PURAT(KROT)=0.
  PROB(KROT)=1.
  PROB0P(KROT)=1.
  CIN(KROT)=W(KROT)
  OCTN(KROT)=CIN(KROT)
  CTOT(KROT)=0.
  OFN(KROT)=W(KROT)
  PHTRCM(KROT)=1.

C NEXT THE INITIAL NODE IS SET UP, TOGETHER WITH SOME CONTROL THRESHOLD
  KFTH=MINSTR(NINCLS)
  DO 54 J=1,MM
    GRFF(KFIR+LVAR+J)=0.
    GRFF(KFIR+LKURT+J)=0.
  54  VFTN(KFIR+J)=0.
  DEV2WT=DEVINI*DEVINI*WTINIT
  DO 55 J=1,MV
    GRFF(KFIR+LSUM+J)=WTINIT*CHANIN
    GRFF(KFIR+LOSUM+J)=WTINIT*CHANIN
    KLJEN(KFIR+MAXR(J)+1)
    VFTN(KLJ+1)=1./DEV2WT
    GRFF(KLJ+LVAR)=DEV2WT
    GRFF(KLJ+LKURT)=(MQ+2)*DEV2WT
  55  GRFF(KFIR+LSRFW+J)=0.
  VOLHT(KFIR)=.9357622969E-13*(2.506628275*DEVINI)**MQ
  VOLIN(KFIR)=VOLAT(KFIR)**2
  VOLIN*EXP(IVCON)=(2*PI)**MQ*DET(COVARIANCE)=(2*PT/W)**MQ/DET(VRTN)
  IVCON=MQ*ALOG(WTINIT)+60.
  DCIN(KFIR)=IVCON
  W(KFIR)=WTINIT
  OV(KFIR)=W1INIT
  CTN(KFIR)=V(KFIR)
  DCIN(KFIR)=CTN(KFIR)
  TADJ(KFIR)=WADJIN
  SPFAC(KFIR)=-9999.
  DORAT(KFIR)=0.
  CTOT(KFIR)=0.
  OFN(KFIR)=V(KFIR)
  PROB(KFIR)=1.
  PROB0P(KFIR)=1.
  PHTRCM(KFIR)=1.
  LINK(KFIR)=0
  LSURS(KFIR)=0
  LSURFH(KFIR)=KROT
  LSURS(ROT)=KFIR
  TOTTRX=TOTWRD/MQ
  TADJ(KFIR)=TOTTRX
  INDEX(KFIR)=INDEXL
  PRINT 273,MQ,CONLV,TRCHI,SKCHI,URKCHI,KROT,KFIR
  273 FORMAT ('1 CONFIDENCE LEVELS',I4,' CHANNELS',F8.4,' CHISQUARES',I4,
  1      3F11.5/' ROOT',I5,' FIRST',I5)
  RETURN
  END

C ***** THIS CONSTANT MUST BE SET TO THE NUMBER OF VECTORS *****

```

ORIGINAL PAGE IS
OF POOR QUALITY

SUBROUTINE CLUSMP

THE PURPOSE OF CLUSMP IS TO PRINT THE CLUSTER MAP. THE CLUSTER MAP HAS EACH PIXEL REPRESENTED BY A SYMBOL. EACH SYMBOL REPRESENTS A CLUSTER TYPE

IMPLICIT INTEGER (A-Z)

COMMON /ARRAY/TOP, ARRAY(18000)

DIMENSION BUFER(1), COL(3,110), OUT(110), FL(8), FLDINF(6),
1 CLUSTN(110), NALK(61), NALKT(61)

COMMON /GLOBAL/HEAD(63), MAPPAP, DATAFF, SAVTAP, RMFILE,
1 RMKEY,MISFIL,HISKEY,TRFORM,ERIPTP,FRPKFY,MAPUNT,NOFILE,DRIUMAD,
2 ASAVFL,NHSUN,NHSTFI, DUPSYM, THRSYM, MAXDIV, MIN

COMMON/CLUSTR/ IHFGIN,TOTWRD,CLSNAM,IPT,NOFLD, SYM(61),
1 LNCAT, PRNT(4), KLBC, PRTME, PHOUT, TOTPPIX,
2 SCRAM1,HUFPIX,HUFTOT,NAUFSD,NDUMP,LAUFIT
3 MAXRF, AHFA, NWDS, NWDRS, NPTS, LAUF, IQI, NOCYCL

INTEGER TOTWHD,SYM,PHNT,PRTME,PHOUT,TOTPPIX,SCRAM1,BUFPIX,BUFTOT
1 ,CLSNAM

DIMENSION NTH(32)

DIMENSION TDINDEX(27),LSURS(30),LSUPER(29),IDADJ(28),NSYMA(12),
1 PCUM(26),PRIRCM(25),CIN(24),CTOT(23),PROP(22),SPFAC(21),
2 WADJ(20),W(14),OPROP(18),OW(17),VOLIN(16),VOLRT(15),DCON(14),
3 MORAT(13),DISS(12),PPASS(12),PST(11),OCIN(10),PCOND(7),
4 OPHIOR(9),ODEN(8)

DIMENSION VRIN(475),GEN(994),GREF(999)+LINK(1)

EQUIVALENCE (LINK(1),ALINK(1)),(LINK(31),INDEX(27))

EQUIVALENCE (LINK(3)),LSURS(30)

EQUIVALENCE (LINK(31),LSUPER(29)),(LINK(31),IDADJ(28)),

1 (LINK(31),NSYMA(12)),(LINK(31),PCUM(26)),(LINK(31),PRIRCM(25)),
2 (LINK(31),CIN(24)),(LINK(31),CTOT(23)),(LINK(31),PROP(22)),
3 (LINK(31),SPFAC(21)),(LINK(31),WADJ(20)),(LINK(31),W(19)),
4 (LINK(31),OPHOP(18)),(LINK(31),OW(17)),(LINK(31),VOLIN(16)),
5 (LINK(31),VOLRT(15)),(LINK(31),DCON(14)),(LINK(31),PGRAT(13)),
6 (LINK(31),DISS(12)),(LINK(31),PPASS(12)),(LINK(31),PST(11)),
7 (LINK(31),OCIN(10)),(LINK(31),PCOND(7)),(LINK(31),VRIN(7)),
8 (LINK(31),GEN(7)),(LINK(31),OPHIOR(9)),(LINK(31),ODEN(8)),
9 (LINK(31),GREF(4)),(LINK(31),NTR(31))

COMMON/CLUS/ JUNK(12),NARL,NTOP,NHSZM,NWANT,LINK(14000)

DIMENSION MXAR(31),LR(1),LV(3)

EQUIVALENCE (LR(1),LVRIN),(LR(2),LKURT),

1 (LR(3),LOVAR),(LV(1),LSUM),(LV(2),LSKEW),(LV(3),LOSUM)

COMMON /MISC/ MQ,MM,LR,LV,NINCLS,MXAR,WTINIT,KHOUT,FPS,DELT,
1 AMQ,DDCON,XOVLFL,XINFL,WADJIN,FLIMTH,SPPTH,VFAC,AMM,SHLTH,
2 INDXVL,WFAC,NPTS0,POHATH,SPMVTH,DWFAC,GRACTM,AMOFAC,

3 AMOMIN,AMOMAX,AMORAT,VOLLIM,BIAS,PJOIN,VRJOIN,WSIM,WDELSM,
4 HETTER,MONF,CORLEN,SPCOR

COMMON /STPAH/WAIT,CONLV,SKRD,SKCHI,TRND,TRCHI,URKRD,URKCHI,
1 PACCEL(?),MACCFL(?),VACCEL(?)

LOGICAL NF IN
REAL BUFRK

EQUIVALENCE (COL(1,1),ARRAY(2001))

EQUIVALENCE (OUT(1),ARRAY(2400))

EQUIVALENCE (CLUSTN(1),ARRAY(2510))

EQUIVALENCE (NALK(1),ARRAY(2620))

EQUIVALENCE (NALKT(1),ARRAY(2730))

EQUIVALENCE (BUFER(1),ARRAY(3001))

EQUIVALENCE (FLDINF(1),LINSTR),(FLDINF(4),SAMSTH),

1 (FLDINF(2),LINEND),(FLDINF(5),SAMEND),

(FLDINF(3),LININC),(FLDINF(6),SAMINC)

FIELD INFORMATION STORED AS FOLLOWS

ARRAY(1) = FIRST FIELD NAME FOR THIS CLASS

(2) = NO. OF VERTICES FOR THIS FIELD (NV)

(3)-(3+NV*2) = ACTUAL VERTEX NUMBERS

(3+NV*2) = TOTAL PIXELS FOR THIS FIELD

(4+NV*2)-(10+NV*2) = FLDINF BLOCK FOR THIS FIELD

CLM00010
CLM00020
CLM00030
CLM00040
CLM00050
CLM00060
CLM00070
CLM00080
CLM00090
CLM00100
CLM00110
CLM00120
CLM00130
CLM00140
CLM00150
CLM00160
CLM00170
CLM00180
CLM00190
CLM00200
CLM00210
CLM00220
CLM00230
CLM00240
CLM00250
CLM00260
CLM00270
CLM00280
CLM00290
CLM00300
CLM00310
CLM00320
CLM00330
CLM00340
CLM00350
CLM00360
CLM00370
CLM00380
CLM00390
CLM00400
CLM00410
CLM00420
CLM00430
CLM00440
CLM00450
CLM00460
CLM00470
CLM00480
CLM00490
CLM00500
CLM00510
CLM00520
CLM00530
CLM00540
CLM00550
CLM00560
CLM00570
CLM00580
CLM00590
CLM00600
CLM00610
CLM00620
CLM00630
CLM00640
CLM00650
CLM00660
CLM00670
CLM00680
CLM00690
CLM00700
CLM00710
CLM00720
CLM00730
CLM00740
CLM00750
CLM00760
CLM00770
CLM00780
CLM00790

FILE: CLMP FORTRAN A

DATA BLANK// 0/

***** INITIALIZE *****

994H CONTINUE
LNCFAT=0
NOFEAT = NO
IPT=1
MAXPOP = 61
DO 25 I=1,MAXPOP
25 NMLKT(I)=0

C CALL MAXIMUM BUFFER SIZE THAT IS AN EVEN NUMBER OF PIXELS
TOP = 1H0D
MAXHIF = (TOP - 3000)/NOFEAT * NOFEAT
C MXHIF = MAX BUFFER SIZE
MXHIF=3300

C *****
DO 600 IFLD=1,NOFLD

C XTRA = SEGMENTS ALREADY PROCESSED
XTOA=0
C NFIN = FALSE IF ONLY 1 PAGE NEEDED
NFTNE=.FALSE.
C NV = NO OF VERTICES FOR THIS FIELD
NV=AHRAY(IPT+1)
C TOTSAM = TOTAL PIXELS FOR THIS FIELD
TOTSAM=AHRAY(IPT+2+NV*2)

C MOVE DATA DEFINING LINES AND SAMPLES
DO 30 I=1,5
FLINIE(I)=AHRAY(IPT+2+I+NV*2)
30 CONTINUE

C BLANK OUTPUT BUFFER
DO 40 I=1,110
40 OUT(I)=BLANK

C ZERO COUNT OF POINTS IN CLUSTER
DO 45 I=1,MAXPOP
45 NMLK(I)=0

C# CHECK IF ALL OF CLUSTER MAP CAN FIT ACROSS ONE PAGE--ONLY 110
C# SYMBOLS ARE PRINTED ACROSS THE PAGE FOR EVERY LINE. THE PROGRAM
C# WILL PRINT THE ENTIRE CLUSTER MAP IN 110 SYMBOL SEGMENTS

C SET STARTING ADDRESS AND ENDING ADDRESS FOR LINE
SAMSTH=SAMSTR
ENCLM=SAMEND

C# CK FOR MORE THAN 110 SEGMENTS SPECIFIED AND RESET MAXIMUM IF NECESSARY
C NFIN = FALSE. IF 1 LINF = TRUE, IF 2 OR MORE LINES
C
60 IF (((ENCLM-SAMSTR)/SAMINC+1-XTRA).LE. 110) GO TO 80
ENCLM= ((110+XTRA)*SAMINC + SAMSTR
NFTNE=.TRUE.

C # READ 1 BUFFER OF DATA *

C TWRD = TOTAL WORDS LEFT TO BE READ
27 TWRD = TOTWD
C READ FULL BUFFER OF DATA UNLESS ONLY PARTIAL BUFFER OF DATA LEFT
NWRD = MAXBUF
IF (TWRD .LT. NWRD) NWRD = TWRD

C IFRGIN IS BEGINNING OF SCRAMBLED DATA
CALL RREAD (IFRGIN, BUFFER, NWRD, DUMMY)
NWRDS = IFRGIN + NWRD
TWRD = TWRD - NWRD
BUFAF = 1

C *** SET COLUMN HEADINGS ***

80 CONTINUE
J=0
DO 100 I=SAMSTR,SAMEND,SAMINC

CLM00800
CLM00810
CLM00820
CLM00830
CLM00840
CLM00850
CLM00860
CLM00870
CLM00880
CLM00890
CLM00900
CLM00910
CLM00920
CLM00930
CLM00940
CLM00950
CLM00960
CLM00970
CLM00980
CLM00990
CLM01000
CLM01010
CLM01020
CLM01030
CLM01040
CLM01050
CLM01060
CLM01070
CLM01080
CLM01090
CLM01100
CLM01110
CLM01120
CLM01130
CLM01140
CLM01150
CLM01160
CLM01170
CLM01180
CLM01190
CLM01200
CLM01210
CLM01220
CLM01230
CLM01240
CLM01250
CLM01260
CLM01270
CLM01280
CLM01290
CLM01300
CLM01310
CLM01320
CLM01330
CLM01340
CLM01350
CLM01360
CLM01370
CLM01380
CLM01390
CLM01400
CLM01410
CLM01420
CLM01430
CLM01440
CLM01450
CLM01460
CLM01470
CLM01480
CLM01490
CLM01500
CLM01510
CLM01520
CLM01530
CLM01540
CLM01550
CLM01560
CLM01570
CLM01580

```

      IF( I .LT. STCLM) GO TO 100
      IF( I .GT. ENCLM) GO TO 110
      J=J+1
      COL(1,J)=I/100
      COL(2,J)=MOD(I,100)/10
      COL(3,J)=MOD(I,10)
100  CONTINUE

C*          *** WRITE HEADINGS ***
110 LPTS=J
      WRITE(6,500)
      WRITE(6,510) ANRAY(IPT),TUTSAM
C*      PRINT COLUMN NUMBERS FOR CLUSTER MAP
      DO 120 I=1,3
120  WRITE(6,520)(COL(I,J),J=1,LPTS)
      WRITE(6,500)
500  FORMAT(/)
510  FORMAT(//2X,A6,//' TOTAL NUMBER OF POINTS IN THIS FIELD',I7)
520  FORMAT(9X,110I1)

C*          ***** PROCESS ONE LINE OF DATA *****
C*      DO 300 LINE=1,INSTR,LINEEND-1,ININC
C*      CALL FDLINT TO OBTAIN FIELD INTERSECTIONS FOR THIS LINE
C*      CALL FDLINT(ANRAY(IPT+2),NV,FL,LINE,SAMPS,NI)
C*      WRITE(3,9967) NI,SAMSTR,SAMINC,SAMEND,NOFFAT,IE,IH,FL(1),FL(2),
9967  FORMAT('CLIMSP',NI,SAMSTR,SAMINC,SAMEND,NOFFAT,IE,IH,FL(1),FL(2)),
1    /, 917)

C*          ***** PROCESS EACH INTERCEPT *****
DO 200 I=1,NI,2
      NOFX=0

C*      SAVE THE BEGINNING AND END NUMBERS OF THIS INTERCEPT FOR ARRAY OUTCLM01950
C*      WHICH IS PRINTED
      IH=(FL(1)-SAMSTR)/SAMINC+1
      IE=(FL(1+1)-SAMSTR)/SAMINC+1
      WRITE(3,9968) IH,IF
      IF(MOD((SAMSTR+SAMINC),NE, MOD(FL(1)+SAMINC)) IH = IH + 1
      TNPTS=(IE-IH+1)*NOFFAT
      IF(IH .GT. IE) TNPTS=0
      IF(IH .GT. IE) GO TO 140

C*      CHECK IF INTERCEPTS ARE WITHIN PRINTOUT LIMITS
      IF(FL(1) .GT. ENCLM) GO TO 140
      IF(FL(1+1) .LT. STCLM) GO TO 140
      GO TO 150

C*      THESE CARDS ARE USED TO SET UP THE OUTPUT FOR BLANK LINES OR BLANKCLM02100
C*      SPACES OR AREAS OUTSIDE OF PRINT LIMITS
140  CONTINUE
      IF(I+1 .NE. NI) WRITE(6,141)
141  FORMAT(1X)
      GO TO 200

C*      150 CONTINUE
C*      PSAVE BEGINNING AND END NUMBERS FOR ARRAY OUT IF INTERCEPT(S)
C*      EXCEEDS PRINT LIMIT
      IF(FL(1) .GE. STCLM) GO TO 152
      TH0=IH
      IH=(STCLM-SAMSTR)/SAMINC+1
      IF(MOD((SAMSTR+SAMINC),NE, MOD(STCLM,SAMINC)) IH=IH+1

C*      STORE NUMBER OF EXTRA POINTS THAT ARE IN INTERCEPT BUT ARE
C*      OUTSIDE THE PRINT LIMITS ON LEFT SIDE
      NOFX=(IH-TH0)*NOFFAT
      RUFAD=RUFAD+NOFX
152  IF(FL(1+1) .GT. ENCLM) IE=(ENCLM-SAMSTR)/SAMINC+1
C*      SET PRINT LIMITS IN THE 1-110 LIMITS WHEN THE NUMBERS WOULD EXCEEDCLM02320
C*      110 ON ANOTHER PASS THROUGH THE DATA
      IH=IE-XTRA
      IE=IE-XTRA
      IF(IH .GT. IE) GO TO 140
      NSFTS=IE-IH+1

```

FILE: CLMP FORTRAN A

NPNTS=NSETS*NOFEAT
C 155 CONTINUE
C CHECK IF NEEDED DATA IN THIS INTERCEPT IS IN TWO BUFFERS
C IF (HUFAD + NPNTS .LE. NOWRD) GO TO 170
C
C ** COMPLETE LINE IS NOT IN BUFFER **
C IS ANY OF LINE IN CURRENT BUFFER?
C DIFF = HUFAD - NOWRD
C IF (HUFAD .LT. NOWRD) GO TO 157
C
C NONE OF CURRENT LINE IS IN BUFFER. SET NEW BUFFER POINTER TO
C SKIP OVER EXTRANEOUS POINTS
C ADDRESS = ADDRESS + DIFF
C TWRD = TWRD - DIFF
C HUFAD = 1
C GO TO 155
C
C SOME OF CURRENT BUFFER IS NEEDED. MOVE IT TO BEGINNING OF BUFFER
157 KOUNT = NOWRD - HUFAD + 1
DO 160 I = 1,KOUNT
HUFER(I) = HUFER(HUFAD)
160 HUFAD = HUFAD + 1
C RESET BUFFER ADDRESS TO END OF OLD DATA
HUFAD = KOUNT + 1
C PEEP DATA INTO REMAINDER OF BUFFER
165 NOWRD = MAXRUF - HUFAD + 1
IF (TWRD .LT. NOWRD) NOWRD = TWRD
CALL KHEAD(ADDRESS,RUFER(HUFAD),NOWRD,STAT)
ADDRESS = ADDRESS + NOWRD
TWRD = TWRD - NOWRD
HUFAD = 1
C
C CALL CLUST TO OBTAIN THE CLUSTER SUBSCRIPT SO THAT THE CLUSTER
C SYMBOLS CAN BE COMPUTED FOR EACH SET OF FL'S WITHIN THE
C START(STCLM) AND END(ENDCLM)
170 CONTINUE
FORMAT (1TH,1F,CLUSTN 1-10,215/.10I7)
CALL CLUST (RUFER(HUFAD),NSETS,CLUSTN, KLRC, GEN(LSUM))
C
L=0
C
C STORE SYMBOLS FOR OUTPUT
DO 172 K=14,1F
L=L+1
NUM=CLUSTN(L)
C SET SYMBOL--THE SUBSCRIPT FOR SYM IS RESET TO 1 THROUGH MAXPOP
NTEMP = USYM(R(NUM))
JEMOD(NSYM(R(NUM))-1,MAXPOP)+1
IF (J .LE. 0) J = 47
LNCAT=MAXD(LNCAT,J)
OUT(K)=SYM(J)
C SAVE THE NUMBER OF PIXELS ASSIGNED TO THIS CLUSTER
173 NHLK(J)=NHLK(J)+1
C
180 HUFAD = HUFCT + NPNTS
C
200 CONTINUE
C
300 CONTINUE
C
C ** END OF GENERATION OF LINES FOR 1 PAGE **
C
C CHECK FOR ADDITIONAL PAGES
310 IF (.NOT. NFTN) GO TO 400
C
C MULTIPLE PAGES. RESET BOUNDARIES
XTRA=(ENCLM-SAMSTR)/SAMINC + 1
STCLM=ENCLM+1
ENDLM=SAMEND
NFTN=.FALSE.
C
C GO TO PROCESS ADDITIONAL PAGES

CLM02380
CLM02390
CLM02400
CLM02410
CLM02420
CLM02430
CLM02440
CLM02450
CLM02460
CLM02470
CLM02480
CLM02490
CLM02500
CLM02510
CLM02520
CLM02530
CLM02540
CLM02550
CLM02560
CLM02570
CLM02580
CLM02590
CLM02600
CLM02610
CLM02620
CLM02630
CLM02640
CLM02650
CLM02660
CLM02670
CLM02680
CLM02690
CLM02700
CLM02710
CLM02720
CLM02730
CLM02740
CLM02750
CLM02760
CLM02770
CLM02780
CLM02790
CLM02800
CLM02810
CLM02820
CLM02830
CLM02840
CLM02850
CLM02860
CLM02870
CLM02880
CLM02890
CLM02900
CLM02910
CLM02920
CLM02930
CLM02940
CLM02950
CLM02960
CLM02970
CLM02980
CLM02990
CLM03000
CLM03010
CLM03020
CLM03030
CLM03040
CLM03050
CLM03060
CLM03070
CLM03080
CLM03090
CLM03100
CLM03110
CLM03120
CLM03130
CLM03140
CLM03150
CLM03160

FILE: CLMP FORTRAN A

```
      GO TO 27
C 400 CONTINUE
C
C      ** END OF CLUSTER MAP **
C
C      ** PRINT COUNTS **
C
C      DO 465 I=1,MAXPOP
C      465 NALKT(I)=NALKT(I)+NALK(I)
C
C      WRTE(6,570)
C      570 FORMAT(//2X,'POINTS PER CLUSTER IN THIS FIELD',/3X,'CLUSTER',
C      * 5X,'SYMBOL',5X,'POINTS')
C
C      LNCAT=MOD(LNCAT-1,MAXPOP)+1
C
C
C      DO 580 I=1,LNCAT
C      580 WRTE(6,590)I,SYM(I),NALK(I)
C      590 FORMAT(6X,I2,10X,A1,7X,I5)
C
C      TPT=IPT+NV*2
C 600 CONTINUE
C
C      WRTE(6,HEAD)
C      WRTE(6,750)LNCAT
C      750 FORMAT(// ' TOTAL NUMBER OF CLUSTERS =',I3)
C
C      TOTPTS=TOTWRD/NOFFAT
C
C      WRTE(6,760) TOTPTS
C      760 FORMAT(// ' TOTAL NUMBER OF POINTS =',I5)
C
C      WRTE(6,770)
C      770 FORMAT(// ' CLUSTER     SYMBOL     POINTS IN CLUSTER')
C
C      DO 775 J=1,LNCAT
C      775 WRTE(6,780)J,SYM(J),NALKT(J)
C      780 FORMAT(4X,I2,9X,A1,10X,I7)
C
C      RETURN
CEND
C*
```

CLM03170
CLM03180
CLM03190
CLM03200
CLM03210
CLM03220
CLM03230
CLM03240
CLM03250
CLM03260
CLM03270
CLM03280
CLM03290
CLM03300
CLM03310
CLM03320
CLM03330
CLM03340
CLM03350
CLM03360
CLM03370
CLM03380
CLM03390
CLM03400
CLM03410
CLM03420
CLM03430
CLM03440
CLM03450
CLM03460
CLM03470
CLM03480
CLM03490
CLM03500
CLM03510
CLM03520
CLM03530
CLM03540
CLM03550
CLM03560
CLM03570
CLM03580
CLM03590
CLM03600
CLM03610

ORIGINAL PAGE IS
OF POOR QUALITY

```

SUBROUTINE CLPH(KL,IN,SUM,SKEW,KURT) CLP00010
C THIS ROUTINE PRINTS OUT ALL THE VARIABLES BELONGING TO SOME CLP00020
C CLASS INDEXED BY KL. CLP00030
C DIMENSION INDEX(27),ISUBS(30),LSUPER(29),INDIJ(2H),NSYMH(12). CLP00040
1 PCUM(26),PRIRCM(25),CIN(24),CTOT(22),PROP(22),SPFAC(21), CLP00050
2 WADJ(20),W(19),OPROP(18),OW(17),VOLIN(16),VOLHT(15),DCON(14), CLP00060
3 PORAT(13),DISS(12),PPASS(12),PST(11),OCIN(10),PCOND(7), CLP00070
4 (PRIOR(9),ODEN(8)) CLP00080
C DIMENSION VRTN(475),GEN(999),GREF(999),ALINK(1) CLP00090
C EQUIVALENCE (LINK(1),ALINK(1)),(LINK(31),INDEX(27)) CLP00100
C EQUIVALENCE (LINK(3)),LSUBS(30) CLP00110
C EQUIVALENCE (LINK(31),LSUPER(29)),(LINK(31),INDIJ(28)), CLP00120
1 (LINK(31),NSYMH(12)),(LINK(31),PCUM(26)),(LINK(31),PRIRCM(25)), CLP00130
2 (LINK(31),CIN(24)),(LINK(31),CTOT(23)),(LINK(31),PROP(22)), CLP00140
3 (LINK(31),SPFAC(21)),(LINK(31),WADJ(20)),(LINK(31),W(19)), CLP00150
4 (LINK(31),OPROP(18)),(LINK(31),OW(17)),(LINK(31),VOLIN(16)), CLP00160
5 (LINK(31),VOLHT(15)),(LINK(31),DCON(14)),(LINK(31),PORAT(13)), CLP00170
6 (LINK(31),DISS(12)),(LINK(31),PPASS(12)),(LINK(31),PST(11)), CLP00180
7 (LINK(31),OCIN(10)),(LINK(31),PCOND(7)),(LINK(31),VRTN(7)), CLP00190
8 (LINK(31),GEN(7)),(LINK(31),PRIOR(9)),(LINK(31),ODEN(8)), CLP00200
9 (LINK(31),GREF(1)),(LINK(31),NTA(31)) CLP00210
COMMON/CLUS/JUNK(12),NARL,NTOP,NTASZM,NWANT,LINK(14000) CLP00220
C DIMENSION MXAR(31),LR(3),LV(3) CLP00230
C EQUIVALENCE (LR(1),LVRIN),(LR(2),LKURT), CLP00240
1 (LR(3),LOVAR),(LV(1),LSUM),(LV(2),LSKEW),(LV(3),LOSUM) CLP00250
C COMMON /MTSC/ MO,MM,LR,LV,NINCLS,MXAR,WTINIT,KROUT,EPS,DELT, CLP00260
1 AMO,UDCON,XUVEL,XUNFL0,WADJIN,ELIMTH,SPFTK,VFAC,AMM,SBLTH, CLP00270
2 TMAXVL,WFAC,NPTSO,PQHATH,SPMVTH,DWFAC,GRACTM,AMOFAC, CLP00280
3 AMOMIN,AMOMAX,AMORAT,VOLLIM,BIAS,PJOIN,VRJOIN,WSIM,WDELSM, CLP00290
4 HETTER,MODE,COPLEN,SPCOH CLP00300
C COMMON /STPAH/WATT,CONLV,SKHND,SKCHI,TRHND,TRCHI,URKAND,URKCHI, CLP00310
1 PACCEL(2),MACCFL(2),VACCFL(2) CLP00320
REAL KTEMP(30) CLP00330
REAL SUM(1),SKEW(1),KURT(1) CLP00340
REAL AMEAN(16),DMEAN(16) CLP00350
IF(KL,F0.0) RETURN CLP00360
DHR=1. CLP00370
LPCC=LSUPER(KL) CLP00380
IF (KL .EQ. 119) LPCC = 119 CLP00390
IF (KL .EQ. 119) DHR = 0 CLP00400
IF(KL .NE. 119 .AND. INDEX(KL) .NE. 0) PRR=PROP(KL)/PRIRCM(LPCC) CLP00410
PRINT 101,IN,INDFX(KL),PRR,W(LPCC),SPFAC(KL),W(KL),OW(KL), CLP00420
1 WADJ(KL),INDIJ(KL),PROP(KL),CIN(KL),CTOT(KL),OPROP(KL),OCIN(KL), CLP00430
2 ODFN(KL),PORAT(KL),VOLIN(KL),VOLHT(KL),DCON(KL) CLP00440
101 FORMAT('10CLUSTFP',I4,' INDEX',I4,' PROPORTION',F11.5) CLP00450
1 ' W PAHENT',F4.3//,' SPLIT',F11.4/ CLP00460
2 ' WFIGH1',F12.3,2X,' WAS',F12.3/ CLP00470
3 ' 4X',ADJUST',F12.3,' IN',I6/ CLP00480
4 ' PROPORTION: PROP',F4.5,' CIN',F4.2,' CTOT',F8.2/ CLP00490
5 ' OLD PROPI',F4.5,' CIN',F7.2,' ODFN',F7.2,' DIFFER',F7.2/ CLP00500
6 ' VOLUME',F4.2,' ROOT',F4.2,' DCON',F4.2) CLP00510
LPDC=LTHK(KL) CLP00520
LPDC=LSUFS(KL) CLP00530
4412 WRITE (3,4412) KL,LPDC,LPCDC CLP00540
1 IF (LPDC .GE. 0 .AND. LPCDC .GE. 0) PRINT 102,KL,INDEX(LPDC), CLP00550
1 LINK(KL),INDFX(LPCDC),LSUBS(KL),INDFX(LPDC),LSUPER(KL),NSYMA(KL) CLP00560
102 FORMAT('10 LOCATION',I5,' LINK',I3,I5,' SUBS',I3,I5,' SUPER', CLP00570
1 I3,I5,' SYMHUL',I6) CLP00580
WHITE (6,103) INDFX(KL),NSYMA(KL) CLP00590
WHITE (3,103) INDFX(KL),NSYMA(KL) CLP00600
103 FORMAT('10 INDEX = ',I6,' SYMBOL = ',I6) CLP00610
1 PRINT 102,PST(KL),PCOND(KL),PCUM(KL),PRIRCM(KL) CLP00620
112 FORMAT('10NET PRHI',F7.2,' DIRECT',F7.2,' CUMS', CLP00630
1 F7.2,' #',F7.2) CLP00640
XTEMP = 10.**(-25) CLP00650
1 IF (PCUM(KL).LT.XTEMP.OR.PRIRCM(KL).LT.XTEMP) PRINT 104, CLP00660
1 PCUM(KL),PRIRCM(KL) CLP00670
104 FORMAT(T29,'CUMS',E10.5,' * ',F10.5,/) CLP00680
1 IF (INDEX(KL).EQ.0) RETURN CLP00690
WUSE=W(KL) CLP00700
OWUSE=OW(KL) CLP00710
IF (INDEX(KL).GE.0) GO TO 5 CLP00720
WUSE=OW(KL) CLP00730
OWUSE=W(KL) CLP00740
CLP00750
CLP00760
CLP00770
CLP00780
CLP00790

```

FILE: CLPR FORTRAN A

```

5 TRK=0.
OVSKE=0.
DO 2 I=1,MQ
L0N=LOCK(I,1)
TRK=TRK+KUHT(KL+L0N)
OVSK=OVSK+GPFF(L0SUM+KL+I)**2
OMFAN(I)=GHFF(L0SUM+I+KL)/OW(KL)
2 AMFAN(I)=SUM(I+KL)/W(KL)
PRINT 113*(AMFAN(I),I=1,MQ)
113 FORMAT(10, MFAN 1,6X,BF7.2/(12X,BF7.2))
C
MQS=MQ*MQ
C CHANGE RE:RASSHACH 3/21/77
LA=MORSTR(MQS)
C CHANGE RE:RASSHACH 3/21/77
L=RMORSTR(MQS)
CALL SOMTX(ALINK(LA),VRIN(KL+1))
CALL MINV(ALINK(LA),ALINK(LB),ALINK(LA),CVL)
DO 6 I=1,MQS
6 ALINK(LA+I-1)=ALINK(LA+I-1)/WUSE
PRINT 114*(ALINK(LA+J-1),J=1,MQ)
114 FORMAT(10, COVARIANCE 1,12F7.2/(12X,BF7.2))
DO 7 I=2,MQ
7 PRINT 105*(ALINK(LA+MQ*I+J-MQ-1),J=1,MQ)
105 FORMAT(5X,I5,2X,BF7.2/(16X,BF7.2))
C
TF(TRK,F0.0.) GO TO 150
PRINT 107*(SKEW(J,KL+I),I=1,MQ)
107 FORMAT(10, SKEW(*W) 1,1X,BF7.1/(12X,BF7.1))
GO TO 200
120 CONTINUE
DO 300 J=1,MQ
L0N=LOCK(1,J)
NL=L0N+KL
300 KTFMP(J)=KUHY(N)
PRINT 108*(KTFMP(J),J=1,MQ)
108 FORMAT(10, KURT(*W) 1,1X,2X,5F13.6/(16X,5F13.6))
DO 8 I=2,MQ
DO 300 J=1,MQ
L0N=LOCK(1,J)
LCH=L0N+KL
308 KTFMP(J)=SKURT(LCH)
PRINT 109*(KTFMP(J),J=1,MQ)
109 TF(OVSK,F0.0.,0P,OPROP(KL).EQ.OPROP(KL).AND.INDEX(KL).GT.0)
110 GO TO 200
PRINT 163*(OMFAN(I),I=1,MQ)
163 FORMAT(10, OLD MEAN 1,6X,5F13.6/(12X,5F13.6))
CALL SOMTX(ALINK(LA),GREF(L,OVAR+KL+1))
DO 156 I=1,MQS
156 ALINK(LA+I-1)=ALINK(LA+I-1)/OWIUSE
PRINT 156*(ALINK(LA+J-1),J=1,MQ)
156 FORMAT(10, OLD COVARIANCE 1,5F13.6/(16X,5F13.6))
DO 157 I=2,MQ
157 PRINT 105*(ALINK(LA+MQ*I+J-MQ-1),J=1,MQ)
200 CALL FOFF(LA,MQS)
CALL FOFF(LB,MQS)
PRINT 109
109 FORMAT(10, PTURN)
END

```

FILE: CLPRWM FORTNAM A

SUBROUTINE CLPRWM(KL,IN,SUM,SKEW,KURT)
***** THIS ROUTINE MUST BE COMPILED USING RFOR. *****
THIS ROUTINE PRINTS OUT ALL THE VARIABLES BELONGING TO SOME
CLASS INDEXED BY KL.
DIMENSION NTH(32)
DIMENSION INDEX(27),LSUHS(30),LSUPER(29),IDADJ(28),NSYMA(12),
1 PCUM(26),PRIPCM(25),CIN(24),CTOT(23),PROP(22),SPFAC(21),
2 WADJ(22),W(19),OPROP(18),OW(17),VOLIN(16),VOLRT(15),DCON(14),
3 POMAT(13),DISS(12),PPASS(12),PST(11),OCIN(10),PCOND(7),
4 OPHIOR(9),ODEN(8)
DIMENSION VRIN(475),GEN(999),GREF(999),ALINK(1)
EQUIVALENCE (LINK(1),ALINK(1)),(LINK(31),INDEX(27))
EQUIVALENCE (LINK(31),LSUHS(30))
EQUIVALENCE (LINK(31),LSUPER(29)),(LINK(31),IDADJ(28)),
1 (LINK(31),NSYMA(12)),(LINK(31),PCUM(26)),(LINK(31),PRIPCM(25)),
2 (LINK(31),CIN(24)),(LINK(31),CTOT(23)),(LINK(31),PROP(22)),
3 (LINK(31),SPFAC(21)),(LINK(31),WADJ(20)),(LINK(31),W(19)),
4 (LINK(31),OPROP(18)),(LINK(31),OW(17)),(LINK(31),VOLIN(16)),
5 (LINK(31),VOLRT(15)),(LINK(31),DCON(14)),(LINK(31),POMAT(13)),
6 (LINK(31),DISS(12)),(LINK(31),PPASS(12)),(LINK(31),PST(11)),
7 (LINK(31),OCIN(10)),(LINK(31),PCOND(7)),(LINK(31),VRIN(7)),
8 (LINK(31),GEN(7)),(LINK(31),OPHIOR(9)),(LINK(31),ODEN(8)),
9 (LINK(31),GRFF(4)),(LINK(31),NTH(31))
COMMON/CLIS/ JUNK(12),NARL,NTOP,NTH57M,NWANT,LINK(14000)
DIMENSION MYAH(31),LR(3),LV(3)
EQUIVALENCE (LR(1),VRIN),(LR(2),LKURT),
1 (LR(3),LOVAR),(LV(1),LSUM),(LV(2),LSKEW),(LV(3),LOSUM)
COMMON /MISC/ MO,MM,LH,LV,NINCLS,MXAR,WTINTT,KROOT,EPS,DELT,
1 AMU,OJCM,XOFLD,XINFLD,WADJIN,ELIMTH,SEPTH,VFAC,AMM,SHLTH,
2 INDXVL,WFAC,NPTSO,POMATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
3 AMOMIN,AMOMAX,AMOKAT,VOLLIM,HIAS,PJOIN,VRJOIN,WSIM,WDELSM,
4 RFTTEH,MDIF,COPLEN,SPCUR
COMMON /STPAH/WAIT,CUNLV,SKHND,SKCHI,THHND,TRCHI,UHKHND,URKCHI,
1 PACCF1(2),MACCEL(2),VACCFL(2)
REAL SUM(),SKEW(),KURT()
REAL AMEAN(15),OMFAN(16)
RETURN IF NO INDEX GIVEN
IF(KL,F0,0) RETURN
COMMON/CLISTR/ TREGIN,TOTWPD,CLSNAM,IPT,NFLD,SYM(61),
1 LNCAT,PNNT(4),KLRC,PRTMF,PROUT,TOTPPIX,
2 SCRAM1,HUFPTX,BUFTOT,NHUFSD,NDUMP,LAUDF
3, MAARF, ARFA, NWDS, NWDRS, NPTS, LAUF, T61, NOCYCL
INTEGER TOTWPD,SYM,PNNT,PRTMF,PROUT,TOTPPIX,SCRAM1,HUFPTX,BUFTOT
1 ,CLSNAM
PRINT GENERAL INFORMATION FOR CLUSTER
PRINT 101,IN,INDEX(KL),PROP(KL),SPFAC(KL),W(KL),OW(KL),WADJ(KL),
1 IDADJ(KL),CIN(KL),CTOT(KL),OPROP(KL),OCIN(KL),POMAT(KL),
2 VOLIN(KL),VOLRT(KL),DCON(KL)
101 FORMAT('CLUSTER',I4,' INDEX',I3,' PROPORTION',F9.6,
1 ' SPLITTING',E11.6/
2 5X,'WEIGHT',F12.3,'WAS',F12.3,
3 4X,'ADJUST',F12.3,'ID',I6/
4 5X,'PROPORTION',CIN',E12.5,' CTOT',F12.5/5X,'OLD PROP',F9.6,
5 ' CIN',F12.5,' DISTINCT',F12.5/5X,'VOLUME',E14.6,
6 ' KROOT',E14.6,' DCON',F13.7)
PRINT 112,PST(KL),PCOND(KL),PCUM(KL),PRIPCM(KL)
112 FORMAT(5X,'NET FHOM',F10.5,' DIRECT',F10.5,' CUMS',
1 F10.5,' *',F10.5)
RETURN IF KL IS ROOT NODE
TF(KL,F0,KROOT) RETURN
CALC OMFAN AND A MEAN
TRK=0.
OVSK=0.
DO 2 I=1,MO
1 TEMP = KL + LOCX(I,I)
TRK = TRK + KURT(TEMP)
OVSK=OVSK+GRFF((LSUM+KL+I)**2
OMFAN(I)=GRFF((LSUM+I+KL)/OW(KL))
2 OMFAN(I)=SUM(I+KL)/W(KL)

FILE: CLPHM FORTRAN A

```

C PRINT A MEAN(MEAN)
PRINT 130*(MEAN(I),I=1,MQ)
113 FORMAT(10 MEAN*,10X,5E13.6/(12X,5E13.6))

C GET TEMPORARY STORAGE
MUSMOS=MN
LA=MOSSTR(MN*MN)
LB=MOSSTR(MN*MN)

C CALL SOMTX(ALINK(LA),VRIN(KL+1))

C CALL MTINV(ALINK(LA)+ALINK(LB)+QLINK(LB),CVL)

C CALC A LINK
DO 6 I=1,MOS
  6 ALINK(LA+I-1)=ALINK(LA+I-1)/W(KL)

C PRINT ALINK (COVARIANCE)
C
C PRINT 116*(ALINK(LA+J-1),J=1,MQ)
114 FORMAT(10 COVARIANCE 10,5E13.6/(16X,5E13.6))
DO 7 I=2,MQ
  7 PRINT 105*(ALINK(LA+MQ*I+J-MQ-1),J=1,MQ)
105 FORMAT(11X,15.2X,5E13.6/(16X,5E13.6))

C PRINT SKEW
PRINT 107*(SKFW(KL+I),I=1,MQ)
107 FORMAT(10 SKFW(*W) 10,4X,5E13.6/(12X,5E13.6))
DO 1070 J=1,MQ
  1070 II = KL + LOCK(1,J)
  III = KURT(III)
1070 PRINT 108*(KURT(*W) 10,2X,5E13.6/(16X,5F13.6))

C
C DO H I=2,MQ
  DO 9 J = 1,MQ
    II = KL + LOCK(1,J)
    III = KURT(III)
    PRINT 105*(III)
  9 PRINT 105*(III)
C
C 150 IF(OVSK.EQ.0.) GO TO 200

C PRINT 163*(MFAN(I),I=1,MQ)
163 FORMAT(10 OLD MFAN*,6X,5E13.6/(12X,5E13.6))

C CALL SOMTX(ALINK(LA),GREF(LOVAR+KL+1))

C
C DO 156 I=1,MOS
  156 ALINK(LA+I-1)=ALINK(LA+I-1)/OW(KL)
  PRINT 156*(ALINK(LA+J-1),J=1,MQ)
156 FORMAT(10 OLD COVARIANCE 10,5E13.6/(16X,5E13.6))

C
C DO 157 I=2,MQ
  157 PRINT 105*(ALINK(LA+MQ*I+J-MQ-1),J=1,MQ)

C RETURN TEMP STORAGE
C
C 200 CALL FREE(LA+MOS)
  CALL FREE(LB+MOS)
  PRINT 109
109 FORMAT(/)
  RETURN
END

```

CLP00800
CLP00810
CLP00820
CLP00830
CLP00840
CLP00850
CLP00860
CLP00870
CLP00880
CLP00890
CLP00900
CLP00910
CLP00920
CLP00930
CLP00940
CLP00950
CLP00960
CLP00970
CLP00980
CLP00990
CLP01000
CLP01010
CLP01020
CLP01030
CLP01040
CLP01050
CLP01060
CLP01070
CLP01080
CLP01090
CLP01100
CLP01110
CLP01120
CLP01130
CLP01140
CLP01150
CLP01160
CLP01170
CLP01180
CLP01190
CLP01200
CLP01210
CLP01220
CLP01230
CLP01240
CLP01250
CLP01260
CLP01270
CLP01280
CLP01290
CLP01300
CLP01310
CLP01320
CLP01330
CLP01340
CLP01350
CLP01360
CLP01370
CLP01380
CLP01390
CLP01400
CLP01410
CLP01420
CLP01430
CLP01440
CLP01450
CLP01460
CLP01470
CLP01480
CLP01490
CLP01500
CLP01510

FILE: CLUSMP FORTNIN A

SUBROUTINE CLUSMP (NUFILE)

THE PURPOSE OF CLUSMP IS TO PRINT THE CLUSTER MAP. THE CLUSTER MAP HAS EACH PIXEL REPRESENTED BY A SYMBOL. EACH SYMBOL REPRESENTS A CLUSTER TYPE

IMPLICIT INTEGER (A-Z)

COMMON /ARRAY/TOP, ARRAY(18000)

DIMENSION IPFEAT (2)

DIMENSION HUFFH(1), COL(3,110), OUT(110), FL(8), FLDINF(6),
CLUSTN(110), NALK(6), NALKT(6)

COMMON /GLOBAL/HEAD(63), MAPTAP, DATAPE, SAVTAP, RMFILE,
RMKEY, HISFIL, HISKEY, THFORM, ERIPTP, ERPKEY, MAPUNT, NOFILE, DRUMAD,
ASAVFL, NISUN, NHSTFI, DUPSYM, THRSYM, MAXDIV, MIN

COMMON/CLUSTH/ IREGIN, TOTWRD, CLSNAM, IPT, NOFLD, SYM(6)

LNCA, PRNT(4), KLAC, PRTME, PROUT, TOTPPIX,

SCHAM1, HUFPIX, HUFTOT, NHUFSD, NDUMP, LAUFD

MAXHE, AKFA, NWDS, NWDS, NPTS, LBIF, IQ1, NOCYCL

INTEGER TOTWRD, SYM, PRNT, PRTME, PROUT, TOTPPIX, SCRAM1, BUFPPIX, BUFTOT
CLSNAM

DIMENSION NTH(32)

DIMENSION INDEX(27), LSUHS(30), LSUPER(29), IDADJ(28), NSYMB(12)

PCUM(26), PRIHCM(25), CIN(24), CTOT(23), PPROP(22), SPFAC(21)

WADJ(20), W(19), OPROP(18), OW(17), VOLIN(16), VOLRT(15), DCN(14)

PORAT(13), OISS(12), PPASS(12), PST(11), OCIN(10), PCOND(7)

OPPIOR(9), OLEN(8)

DIMENSION VRIN(475), GEN(999), GREF(999), ALINK(1)

FOUT(VALFNC (LINK(1), ALINK(1)), (LINK(31), INDEX(27))

FOUT(VALFNC (LINK(31), LSUHS(30))

FOUT(VALFNC (LINK(31), LSUPER(29)), (LINK(31), IDADJ(28)),

(LINK(31), PCUM(26)), (LINK(31), PRIHCM(25)), (LINK(31), CIN(24)),

(LINK(31), CTOT(23)), (LINK(31), PPROP(22)), (LINK(31), SPFAC(21)),

(LINK(31), WADJ(20)), (LINK(31), W(19)), (LINK(31), OPROP(18)),

(LINK(31), OW(17)), (LINK(31), VOLIN(16)), (LINK(31), VOLRT(15)),

(LINK(31), OISS(12)), (LINK(31), PPASS(12)), (LINK(31), PST(11)),

(LINK(31), OCIN(10)), (LINK(31), PCOND(7)), (LINK(31), VRIN(7)),

(LINK(31), GEN(7)), (LINK(31), OPPIOR(9)), (LINK(31), OLEN(8)),

(LINK(31), GREF(8)), (LINK(31), NTH(31))

COMMON/CLUS/ JUNK(12), NARL, NTOP, NTR57M, NWANT, LTNK(14000)

DIMENSION MXAH(31), LA(3), LV(3)

FOUT(VALFNC (LR(1), LV(1), LR(2), LKURT),

(LR(3), LQVAR), (LV(1), LSUM), (LV(2), LSKEW), (LV(3), LOSUM)

COMMON /MISC/ M0, MM, LR, LV, NINCLS, MXAP, WTINIT, KROOT, EPS, DELT,

AMN, DCN, XOVFL0, XUNFL0, WADJIN, ELIMTH, SFPTH, VFAC, AMM, SBLTH,

INDAVL, WFAC, NPTSO, PQATH, SPMVTH, DWFAC, GRACTM, AMUFAC,

ANONIN, ANOMAX, AMORAT, VOLLIM, BIAS, PJOIN, VRJOIN, WSIM, WDELSM,

RFTTH, MNDF, CURLEN, SPCOR

COMMON /STAR/ WAIT, CONLV, SKRND, SKCHI, TRND, TRCHI, URKBND, URKCHI,

1 PACEL(2), MACCFL(2), VACCEL(2)

LOGICAL NF11'

REAL HUFEN

FOUT(VALFNC (COL(1,1), ARRAY(2001)))

FOUT(VALFNC (OUT(1), ARRAY(2400)))

FOUT(VALFNC (CLUSTN(1), ARRAY(2500)))

FOUT(VALFNC (NALK(1), ARRAY(2620)))

FOUT(VALFNC (NALKT(1), ARRAY(2730)))

FOUT(VALFNC (HUFFR(1), ARRAY(3001)))

FOUT(VALFNC (FLDINF(1), LINSTR), (FLDINF(4), SAMSTR),

(FLDINF(2), LINEND), (FLDINF(5), SAMEND),

(FLDINF(3), LININC), (FLDINF(6), SAMINC))

FIELD INFORMATION STORED AS FOLLOWS

ARRAY(1) = FIRST FIELD NAME FOR THIS CLASS

(2) = NO. OF VERTICES FOR THIS FIELD (NV)

(3)-(3+NV*2) = ACTUAL VERTEX NUMBERS

(3+NV*2) = TOTAL PIXELS FOR THIS FIELD

(4+NV*2)-(10+NV*2) = FLDINF BLOCK FOR THIS FIELD

CLU000100

CLU000200

CLU000300

CLU000400

CLU000500

CLU000600

CLU000700

CLU000800

CLU000900

CLJ001000

CLU001100

CLU001200

CLU001300

CLU001400

CLU001500

CLU001600

CLU001700

CLU001800

CLU001900

CLU002000

CLU002100

CLU002200

CLU002300

CLU002400

CLU002500

CLU002600

CLU002700

CLU002800

CLU002900

CLU003000

CLU003100

CLU003200

CLU003300

CLU003400

CLU003500

CLU003600

CLU003700

CLU003800

CLU003900

CLU004000

CLU004100

CLU004200

CLU004300

CLU004400

CLU004500

CLU004600

CLU004700

CLU004800

CLU004900

CLU005000

CLU005100

CLU005200

CLU005300

CLU005400

CLU005500

CLU005600

CLU005700

CLU005800

CLU005900

CLU006000

CLU006100

CLU006200

CLU006300

CLU006400

CLU006500

CLU006600

CLU006700

CLU006800

CLU006900

CLU007000

CLU007100

CLU007200

CLU007300

CLU007400

CLU007500

CLU007600

CLU007700

CLU007800

CLU007900

FILE: CLISMP FORTRAN A

```

C* DATA BLANK// 1
C
C*          ***** INITIALIZE *****
C  IREGIN = START OF DISK AREA, TOTWRD = TOTAL WORDS OF DATA
C  PASFAD = IREGIN + TOTWRD + TOTWRD
C  ACTUAL LINE SIZE = (SAMEND-SAMSTR)/SAMINC + 1, LINE SIZE USED
C  IS SET IN HEADTP AND IS 200
C  LINSIZ = 200
C  INITIALIZE OUTPUT FILE
  IPINIT = 16
  IPCCHAN = 1
  IPFFAT(1) = 1
  IPFRMT = 1

  INPFAT=0
  IPT=1
  MAXPOP = 61
  DO 25 I=1,MAXPOP
  25 NMIRT(I)=0

C
C          *****
C  DO 600 IFLD=1,NOFLD
C
C    IPFILE = (IFLD - 1)

C  XTPA = SEGMENTS ALREADY PROCESSED
C  XTPABII
C  NFIN = FALSE IF ONLY 1 PAGE NEEDED
C  NFIN=.FALSE.
C  NV = NO. OF VERTICES FOR THIS FIELD
C  NV=ARRAY(IPT+1)
C  TOTSAM = TOTAL PIXELS FOR THIS FIELD
C  TOTSAM=ARRAY(IPT+2+NV*2)
C
C  MOVE DATA DEFINING LINES AND SAMPLES
C  DO 30 I=1,N
C    FLDINF(I)=ARRAY(IPT+2+I+NV*2)
C  30 CONTINUE
C
C  SET SAMPLE SIZE AND WHITE HEADER
C  IPSAMP = (SAMEND-SAMSTR)/SAMINC + 1
C  DEWIN(1)=IPUNITT
C  IF (NUFILE .NE. 0) CALL FSFMFL (IPUNIT,IPFILE,DUMMY)
C  IF (NUFILE .NE. 0) CALL WRTHFD (IPCHAN,IPFFAT,IPSAMP,IPFRMT,IPUNITT)
C
C  CALC BUFFER SIZE AS EVEN MULTIPLE OF LINE SIZE
C  TOP = 18000
C  TOTPIX = NV * IPSAMP
C  MAXBUF = ((TOP - 3000)/TOTPIX) * TOTPIX
C
C  MLANK OUTPUT BUFFER
C  DO 40 I=1,110
C  40 OUT(I)=MLANK
C
C  ZERO COUNT OF POINTS IN CLUSTER
C  DO 45 I=1,MAXPOP
C  45 NBLK(I)=0

C* CHECK IF ALL OF CLUSTER MAP CAN FIT ACROSS ONE PAGE--ONLY 110
C* SYMBOLS ARE PRINTED ACROSS THE PAGE FOR EVERY LINE. THE PROGRAM
C* WILL PRINT THE ENTIRE CLUSTER MAP IN 110 SYMBOL SEGMENTS
C
C  SET STARTING ADDRESS AND ENDING ADDRESS FOR LINE
  STCLM=SAMSTR
  ENCLM=SAMEND
C
C  CK FOR MORE THAN 110 SEGMENTS SPECIFIED AND RESET MAXIMUM IF NECESSARY
C  NFIN = FALSE. IF 1 LINE TRUE. IF 2 OR MORE LINES
C
C  50 IF(((ENCLM-SAMSTR)/SAMINC+1)-XTPA).LE. 110) GO TO 60
  ENCLM= ((102+XTPA)*SAMINC + SAMSTR
  NFIN=.TRUE.

C  * READ 1 BUFFER OF DATA *

```

FILE: CLUSMP FORTRAN A

```

C TWRD = TOTAL WORDS LEFT TO BE READ
60 TWRD = TOTWRD
C READ FULL BUFFER OF DATA UNLESS ONLY PARTIAL BUFFER OF DATA LEFT
NWRD = MAXWUF
IF (TWRD .LT. NWRD) NWRD = TWRD
C IFEGIN IS BEGINNING OF SCRAMBLED DATA
CALL RREAD (IFEGIN, BUFFER, NWRD, DUMMY)
ADDRESS = IFEGIN + NWRD
TWRD = TWRD - NWRD
HIFAD = 1
C *** SET COLUMN HEADINGS ***
100 CONTINUE
100 I=0
DO 100 I=SAMSTR,SAMEND,SAMINC
IF (I .LT. STCLM) GO TO 100
IF (I .GT. ENCLM) GO TO 110
J=J+1
COL (1,J)=I/100
COL (2,J)=MOD(I/100)/10
COL (3,J)=MOD(I/10)
100 CONTINUE
C *** WRITE HEADINGS ***
110 LPTS=J
WRITE (6,500)
WRITE (6,510) ARRAY (IPT), TOTSAM
C# PRINT COLUMN NUMBERS FOR CLUSTER MAP
DO 120 I=1,3
120 WRITE (6,520) (COL (I,J), J=1,LPTS)
WRITE (6,500)
500 FORMAT (/)
510 FORMAT (//21.A5//) TOTAL NUMBER OF POINTS IN THIS FIELD: 17)
520 FORMAT (5X,110I1)
C ***** PROCESS ONE LINE OF DATA *****
C# PREVLN = NO OF LINES WRITTEN ON DISK PREVIOUS TO LINE BEING WRITTEN
PREVLN = 0
DO 300 LINP=I,INSTL,LINEND,LININC
C# CALL FOLINT TO OBTAIN FIELD INTERSECTIONS FOR THIS LINE
CALL FOLINT (ARPPAY (IPT+2), NV, FL, LINF, Samps, NI)
C# ***** PROCESS EACH INTERCEPT *****
DO 200 I=1,NI+2
NOEX=0
C# SAVE THE BEGINNING AND END NUMBERS OF THIS INTERCEPT FOR ARRAY OUT
C# WHICH IS PWINTFD
IH=(FL(1)-SAMSTR)/SAMINC+1
IE=(FL(1+1)-SAMSTR)/SAMINC+1
IF (MOD((SAMSTR-SAMINC)) .NE. MOD(FL(1)+SAMINC)) IH=IH+1
TNPTS=(IE-IH+1)*NO
IF (IE .GT. IE) TNPTS=0
IF (IH .GT. IE) GO TO 174
C# CHECK IF INTERCEPTS ARE WITHIN PRINTOUT LIMITS
IF (FL(1) .GT. ENCLM) GO TO 174
IF (FL(1+1) .LT. STCLM) GO TO 174
GO TO 150
C# 150 CONTINUE
C# PESAVE BEGINNING AND END NUMBERS FOR ARRAY OUT IF INTERCEPT(S)
C# EXCEEDS PWINT LIMIT
IF (FL(1) .GE. STCLM) GO TO 152
IHO=IH
IH=(STCLM-SAMSTR)/SAMINC+1
IF (MOD((SAMSTR-SAMINC)) .NE. MOD(STCLM,SAMINC)) IH=IH+1
C# STORE NUMBER OF EXTRA POINTS THAT ARE IN INTERCEPT BUT ARE
C# OUTSIDE THE PRINT LIMITS ON LEFT SIDE
NOEX=(IH-IHO)*NO
HIFAD=HIFAD+NOEX
TNPTS = TNPTS - NOEX

```

FILE: CLUSMP FORTRAN A

```

142 IF(FL(I+1) .GT. FNCLM) IE=(FNCLM-SAMSTR)/SAMINC+1           CLU02380
C SET PRINT LIMITS IN THE I-110 LIMITS WHEN THE NUMBERS WOULD EXCEED CLU02390
C 110 ON ANOTHER PASS THROUGH THE DATA CLU02400
C XTRA=XTRA CLU02410
C IE=IE-XTRA CLU02420
C IF(IE .LT. 1) IF) GO TO 174 CLU02430
C NSFTS=IE-I+1 CLU02440
C NPNTS=NSFTS*MD CLU02450
C
C 155 CONTINUE CLU02460
C CHECK IF NEEDED DATA IN THIS INTERCEPT IS IN TWO BUFFERS CLU02470
C IF (HUFAD + NPNTS - 1 .LE. NOWRD) GO TO 170 CLU02480
C
C      ** READ NEXT RECORD **
C
C 164 NOWRD = MAXHUF CLU02490
C IF (TWRD .LT. NOWRD) NOWRD = TWRD CLU02500
C IF (INOWRD .LT. 0) GO TO 16A CLU02510
C CALL RREAD(ADDRESS,BUFFER(1),NOWRD,STAT) CLU02520
C ADDRESS = ADDRESS + NOWRD CLU02530
C TWRD = TWRD - NOWRD CLU02540
C HUFAD = INUE + 1 CLU02550
C
C CALL CLUST TO OBTAIN THE CLUSTER SUBSCRIPT SO THAT THE CLUSTER CLU02560
C SYMBOLS CAN BE COMPUTED FOR EACH SET OF FL'S WITHIN THE CLU02570
C START(STCLM) AND END(FNCLM) CLU02580
C 17A CONTINUE CLU02590
C CALL CLUST (BUFFER(HUFAD), NSFTS, CLUSTN, KLAC, GEN(ILSUM)) CLU02600
C
C L=0 CLU02610
C
C STORE SYMBOLS FOR OUTPUT CLU02620
C DO 173 K=1,I,IF CLU02630
C L=L+1 CLU02640
C NUM=CLUSTN(I) CLU02650
C SET SYMBOL--THE SUBSCRIPT FOR SYM IS RESET TO 1 THROUGH MAXPOP CLU02660
C   NTEMP = NSYMH(NUM) CLU02670
C   J=100*(NSYMH(NUM)-1)+MAXPOP+1 CLU02680
C   IF (J .LE. 0) J = 47 CLU02690
C   LNCAT=MAX0(LNCAT,J) CLU02700
C   OUT(K)=SYM(J) CLU02710
C
C SAVE THE NUMBER OF PIXELS ASSIGNED TO THIS CLUSTER CLU02720
C 173 NHLK(I)=NHLK(I)+1 CLU02730
C
C WRITE DATA ON SCRATCH DISK TO COMBINE PAGES AND WRITE LINE OF NEW FILE CLU02740
C 174 DADRES = PHEVLN * LINSIZ * XTRA * HASFAD CLU02750
C   IF (NUFILE .NE. 0) CALL RWHITE (DADRES, CLUSTN, NSFTS, DUMMY) CLU02760
C   *** PRINT LINE OF OUTPUT AND BLANK BUFFER *** CLU02770
C   WRITE (6,275) LINF, (OUT(K),K=1,LPTS) CLU02780
C   IF (LINF .LE. 4) WRITE (3,275) LINF, (OUT(K),K=1,LPTS) CLU02790
C 275 FORMAT (2X,15.2X,110A1) CLU02800
C 276 FORMAT (2X,15.2X,60A1,/,9X,50A1) CLU02810
C
C   IF (NUFILE .NE. 0) GO TO 301 CLU02820
C   DO 280 K=1,110 CLU02830
C   OUT(K) = 41ANK CLU02840
C
C 100 HUFAD = HUFAD + NPNTS CLU02850
C
C 200 CONTINUE CLU02860
C
C 300 PHEVLN = PHEVLN + 1 CLU02870
C
C 301 CONTINUE      ** END OF GENERATION OF LINES FOR 1 PAGE **
C
C CHECK FOR ADDITIONAL PAGES CLU02880
C 310 IF (.NOT. NF1N) GO TO 400 CLU02890
C
C MULTIPLE PAGES. RESET BOUNDARIES CLU02900
C XTRA=(FNCLM-SAMSTR)/SAMINC + 1 CLU02910
C STCLM=FNCLM+1 CLU02920
C FNCLM=SAMEND CLU02930
C NF1N=.FALSE. CLU02940

```

ORIGINAL PAGE IS
ON POOR QUALITY

FILE: CLUSMP FORTRAN A

```

C GO TO PROCESS ADDITIONAL PAGES
C GO TO 80
C 600 CONTINUE
C      ** WRITE DATA FROM SCRATCH DISK TO DRUM)
C
C IF (NUFILE .EQ. 0) GO TO 455
C ENDAT = INDICATOR THAT LAST RECORD HAS BEEN WRITTEN
C ENDAT =
C INCHF = 0
C DO 450 LINP = LINSTR,LINEND,LININC
C IF (LINP .GT. (LINEND-LININC)) ENDAT = -1
C ADRES = HASFAD + INCHF
C CALL NREAD (ADRES, HUFER, LINSIZ, DUMMY)
C CALL WRTLN (HUFER, ENDAT)
C WRITE (6,965) (HUFER(I),I=1,106)
9965 FORMAT (' NEW FILE',60I2,'.',60I2,'.',60I2,'.',50I2)
450 INCHF = INCHF + LININC
C
C      ** END OF CLUSTER MAP **
C
C      ** PRINT COUNTS **
C
455 DO 465 I=1,MAXPOP
465 NHLKT(I)=NHLKT(I)+NALK(I)
C
C      WRITE (6,570)
570 FORMAT(//2X,'POINTS : IN CLUSTER IN THIS FIELD',/3X,'CLUSTER',
* 5X,'SYMBOL',5X,'POINTS')
C
C      LNCAT=MIN(LNCAT-1,MAXPOP)+1
C
C DO 590 J=1,LNCAT
590 WRITE(6,590) J,SYM(J),NHLKT(J)
590 FORMAT(6X,J2,10X,A1,7X,T5)
C
C      TPT=IPT+9*PIV#?
600 CONTINUE
C
C      WRITE(6,HEAD)
C      WRITE(3,501)LNCAT
750 FORMAT(//1 TOTAL NUMBER OF CLUSTERS =1,13)
C
C      TOTPTS=TOTWPT/MO
C
C      WRITE(6,760) TOTPTS
760 FORMAT(//1 TOTAL NUMBER OF POINTS =1,15)
C
C      WRITE(6,770)
770 FORMAT(//1 CLUSTER      SYMBOL      POINTS IN CLUSTER)
C
C DO 775 J=1,LNCAT
775 WRITE(6,770) J,SYM(J),NHLKT(J)
780 FORMAT(4X,I2,9X,A1,10X,I7)
C
C      RETURN
END

```

CLU03170
 CLU03180
 CLU03190
 CLU03200
 CLU03210
 CLU03220
 CLU03230
 CLU03240
 CLU03250
 CLU03260
 CLU03270
 CLU03280
 CLU03290
 CLU03300
 CLU03310
 CLU03320
 CLU03330
 CLU03340
 CLU03350
 CLU03360
 CLU03370
 CLU03380
 CLU03390
 CLU03400
 CLU03410
 CLU03420
 CLU03430
 CLU03440
 CLU03450
 CLU03460
 CLU03470
 CLU03480
 CLU03490
 CLU03500
 CLU03510
 CLU03520
 CLU03530
 CLU03540
 CLU03550
 CLU03560
 CLU03570
 CLU03580
 CLU03590
 CLU03600
 CLU03610
 CLU03620
 CLU03630
 CLU03640
 CLU03650
 CLU03660
 CLU03670
 CLU03680
 CLU03690
 CLU03700
 CLU03710
 CLU03720
 CLU03730
 CLU03740
 CLU03750
 CLU03760
 CLU03770
 CLU03780

SURROUNIQUE CLUST(HIGP,NDG,KLOUT,KROTIN,SUM)
 THIS PROGRAM TAKES EACH INPUT POINT AND CLASSIFIES IT.
 FOR THE PURPOSE OF GENERATING A MAP.

CLUST ARGUMENTS (CLUST DRAWN FROM STATIS)

HIGP INPUT DATA VECTOR
 NDO NO. DATA POINTS
 KLOUT KL OF OUTPUT CLASS
 KROTIN ROOT VERTEX
 SUM POSITION OF SUM VECTOR IN CLUSTER.
 OUTPUT SYMBOL IS DERIVED FROM NSYMA(KL)

DIMENSION NTA(32), INDEX(27), LSURS(30), LSUPER(29), IDADJ(28), NSYMA(12),

1 PCUM(26), PRIRCM(25), CIN(24), CTOT(23), PROP(22), SPFAC(21),
 2 WADJ(20), W(19), ODROP(18), OW(17), VOLTN(16), VOLRT(15), DCON(14),
 3 PQRAT(13), DISS(12), PPASS(12), PST(11), OCIN(10), PCOND(7),
 4 UPRIOR(9), ODEN(8)

DIMENSTION VPTN(475), GEN(999), GREF(999), ALINK(1)

FNU(VALENCE(LINK(1),ALINK(1)),(LINK(31),INDEX(27)))

FNU(VALENCE(LINK(31),LSURS(30)))

FNU(VALENCE(LINK(31),LSUPER(29)),(LINK(31),IDADJ(28))),

1 ((LINK(31),NSYMA(12)),(LINK(31),PCUM(26)),(LINK(31),PRIRCM(25)),
 2 ((LINK(31),CIN(24)),(LINK(31),CTOT(23)),(LINK(31),PROP(22)),
 3 ((LINK(31),SPFAC(21)),(LINK(31),WADJ(20)),(LINK(31),W(19))),
 4 ((LINK(31),ODROP(18)),(LINK(31),OW(17)),(LINK(31),VOLIN(16))),
 5 ((LINK(31),VOLPT(15)),(LINK(31),DCON(14)),(LINK(31),PQRAT(13))),
 6 ((LINK(31),DISS(12)),(LINK(31),PPASS(12)),(LINK(31),PST(11))),
 7 ((LINK(31),OCIN(10)),(LINK(31),PCOND(7)),(LINK(31),VRIN(7))),
 8 ((LINK(31),GEN(8)),(LINK(31),UPRIOR(9)),(LINK(31),ODEN(8))),
 9 ((LINK(31),GREF(8)),(LINK(31),NTA(31)))

COMMON/CLUS/ JUNK(12), NARL, NTOP, NTBSZM, NWANT, LINK(14000)

DIMENSION MXAR(31), LR(3), LV(3)

FNU(VALENCE(LR(1),LVIN), (LR(2),LKURT),

1 (LR(3),LOVARI),(LV(1),LSUM),(LV(2),LSKEW),(LV(3),LOSUM))

COMMON /MISC/ M0, MM, LR, LV, NINCLS, MXAR, WTINIT, KROOT, EPS, DELT,

1 AM0, UDGM, XOVFL0, XUNFL0, WADJIN, ELIMTH, SEPTH, VFAC, AMM, SHLTH,

2 INDEXVL, WFAC, NPTSO, POMATH, SPMVTH, DWFAC, GRACTM, AMOFAC,

3 AMOMIN, AMUMAX, AMORAT, VULLIM, BIAS, PJOIN, VHJOIN, WSIM, WDELSM,

4 HETTER, MODE, CORLEN, SPCOR

COMMON /STHAR/WAIT, COML,V, SKRD, SKCHI, TRRD, TRCHI, URKRD, URKCHI,

1 PACCEL(2), MACCEL(2), VACCFL(2)

DIMENSION HIGP(M0,NDG), KLOUT(NDG), SUM(1)

COMMON/HIGCOM/ RIGDUM

REAL RFL(16)

LOGICAL ISPLIT

XP(DIST)=EXP(-.5*DIST)

KROT=KROTIN

IF (KROT .LE. 0) WRITE(6,1000) KROT

1000 FORMAT(2X, ::::::: WARNING ::::::: IN CLUST, KROT=*, 3X,

* T10)

IF (KROT .LE. 0) RETURN

DO 399 I00=1,NDG

C INSPECT EACH POINT

PMAX=-1.

KMAX=0

C CHANGE RF:RASSRACH 3/21/77

C USES PCUND FOR PPASS, DIST FOR DISS(KL)

PCUND(KROT)=1.

PTOT=0.

ISFC=0

KL=LSURS(KROT)

NCKPT = 1

IF (KL .LE. 0) WRITE(6,2000) NCKPT , KL

2000 FORMAT(2X, ::::::: WARNING ::::::: IN CLUST, AT CHECKPOIN

* T10 , 2X, 13, 3X, *, KL=*, IB)

IF (KL .LE. 0) RETURN

C KFATH=KROT

C GO DOWN CLUSTEN TREE

C CHANGE RF:RASSRACH 3/21/77

130 PCUND(KL)=PROP(KL)/(PRIRCM(KFATH))*PCOND(KFATH)

IF (.NOT.ISPLIT(KL)) GO TO 131

CLU00010
 CLU00020
 CLU00030
 CLU00040
 CLU00050
 CLU00060
 CLU00070
 CLU00080
 CLU00090
 CLU00100
 CLU00110
 CLU00120
 CLU00130
 CLU00140
 CLU00150
 CLU00160
 CLU00170
 CLU00180
 CLU00190
 CLU00200
 CLU00210
 CLU00220
 CLU00230
 CLU00240
 CLU00250
 CLU00260
 CLU00270
 CLU00280
 CLU00290
 CLU00300
 CLU00310
 CLU00320
 CLU00330
 CLU00340
 CLU00350
 CLU00360
 CLU00370
 CLU00380
 CLU00390
 CLU00400
 CLU00410
 CLU00420
 CLU00430
 CLU00440
 CLU00450
 CLU00460
 CLU00470
 CLU00480
 CLU00490
 CLU00500
 CLU00510
 CLU00520
 CLU00530
 CLU00540
 CLU00550
 CLU00560
 CLU00570
 CLU00580
 CLU00590
 CLU00600
 CLU00610
 CLU00620
 CLU00630
 CLU00640
 CLU00650
 CLU00660
 CLU00670
 CLU00680
 CLU00690
 CLU00700
 CLU00710
 CLU00720
 CLU00730
 CLU00740
 CLU00750
 CLU00760
 CLU00770
 CLU00780
 CLU00790

FILE: CLUST FORTRAN A

```

      KFATH=KL
      KL=LISHAS(KL)
      NCKPT = 2
      IF ( KL .LE. 0 ) WRITE(6,2000) NCKPT , KL
      IF ( KL .LE. 0 ) RETURN
      GO TO 130
131 CALL COHECT(HFL,HTGP(1,IDO),W(KL),SUM(KL+1))
C CHANGE RE:BASSBACH 3/21/77
      DIST=DOTSW(HFL,VHIN(KL+1))/W(KL)
      IF(LHS(DIST+DCON(KL)).LE. 160.) GO TO 531
      GO TO 139
139 CONTINUE
C CHANGE RE:HASSBACH 3/21/77
      P=EXP(DIST*DCON(KL))/VOLRT(KL)*PCOND(KL)
      PTOT=PTOT+P
      IF(P.LE.PMAX,0.0,ISPLIT(KL))
      GO TO 139
      PMAX=0
      KMAX=KL
      139 KL=LINK(KL)
      IF(KL)130,140,130
C GO UP THFF
C CHANGE RE:BASSBACH 3/21/77
C 140 HCOND(KL) = 0
C 144 KL = KFATH
C
      HCOND(KL) = 0
      KFATH=LSUPER(KL)
      NCKPT = 3
C
      IF ( KL .LE. 0 ) WRITE(6,2000) NCKPT , KL
      IF ( KL .LE. 0 ) RETURN
C
      IF (KL.NE.KHOT) GO TO 131
300 I=KLOUNT(IDO)
      KLOUT(IDO)=KMAX
      IF(PTOT.NE.0.) PMAX=PMAX/PTOT
C
      IF(TT.LT.TTLIM) GO TO 399
      646 PRINT #47,IDO,W(KHOT),KL,ISFC,(KTP(I),I=1,ITLIM)
      647 FORMAT('ULOCUP IN CLUST:IDO,W(KHOT),KL,SECTION',I5,E11.5,2I5
      1 /(1X14I5))
399 CONTINUE
      RETURN
      END

```

CLU00800
CLU00810
CLU00820
CLU00830
CLU00840
CLU00850
CLU00860
CLU00870
CLU00880
CLU00890
CLU00900
CLU00910
CLU00920
CLU00930
CLU00940
CLU00950
CLU00960
CLU00970
CLU00980
CLU00990
CLU01000
CLU01010
CLU01020
CLU01030
CLU01040
CLU01050
CLU01060
CLU01070
CLU01080
CLU01090
CLU01100
CLU01110
CLU01120
CLU01130
CLU01140
CLU01150
CLU01160
CLU01170
CLU01180
CLU01190
CLU01200
CLU01210
CLU01220
CLU01230
CLU01240
CLU01250

FILE: CMERR FORTRAN A

SUBROUTINE CMERR

WRITE (6,10)

10 FORMAT ('CMERR--FATAL ERROR, END OF EXECUTION!')

STOP

END

CME00010
CME00020
CME00030
CME00040
CME00050

FILE: CORRECT FORTRAN A

SUBROUTINE CORRECT (REL,PV,P,S)
COMMON /MISC/ MU,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
1 AMQ,UDCOM,XUVFLO,XUNFLO,WADJIN,ELIMTH,SPPTH,VFAC,AMM,SBLTH,
2 TMDVL,WFAC,NPTSD,PURATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
3 AMOMIN,AMOMAX,AMOHAT,VOLLIM,BIAS,PJOIN,VRJOIN,WSIM,WUELSM,
4 RETTER,MONF,COPLEN,SPCOR
PFAL REL(30), PV(30), S(30)
DO 10 I = 1,MM
PFL(I) = PV(I) - S(I) / P
10 IT = I
WHTTF (6,9999) I1:REL(I),PV(I),S(I),P
FORMAT (1:CORRECT I:REL,PV,S,P),I4,4(F10.4,2X))
CONTINUE
RETURN
END

COR00010
COR00020
COR00030
COR00040
COR00050
COR00060
COR00070
COR00080
COR00090
COR00100
COR00110
COR00120
COR00130
COR00140
COR00150

REAL FUNCTION DAMSO#B (AM,AMET)
 CALCULATES THE TRACE OF THE SQUARE OF THE MATRIX AM, RELATIVE
 TO THE METRIC AMET.
 $DAMSO = \text{TRACE}(AM^*AMET^*AM*AMET)$
 DIMENSION MXAR(31),LR(3),LV(3)
 EQUIVALENCE (LR(1),LVRIN),(LR(2),LKURT),
 (LR(3),LOVAR),(LV(1),LSUM),(LV(2),LSKEW),(LV(3),LOSUM)
 COMMON /MISC/ MQ,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
 1 AMQ,ODCON,XOFLD,XIJNFD,WADJIN,ELIMTH,SEPTH,VFAC,AMM,SHLTH,
 2 TNDXVL,WFAC,NPTSO,PQRATH,SPMVTH,DWFAC,GRACTM,AMUFAC,
 3 AMOMIN,AMOMAX,AMORAT,VOLLIM,RIAS,PJOIN,VHJOIN,WSIM,WDELSM,
 4 HETTEH,MODE,CWLEN,SPCUR

```

10  REAL*8 AM(475)
11  REAL*8 AMET(475)
12  REAL*8 DAMSO,DAMSOD,ROW,COL
13  DAMSO=0.
14  DAMSU=0.
15  DO 20 J=1,MQ
16  DO 19 J=1,I
17  ROW=0.
18  COL=0.
19  TKLOC=MXAR(I)
20  KJLOC=MXAR(J)
21  DO 10 K=1,J
22  ROW=ROW+AM(TKLOC+1)*AMET(KJLOC+1)
23  COL=COL+AM(KJLOC+1)*AMET(TKLOC+1)
24  TKLOC=TKLOC+1
25  KJLOC=KJLOC+1
26  IF (I,F0,J) GO TO 12
27  JP=J+1
28  DO 11 K=JP,I
29  ROW=ROW+AM(TKLOC+1)*AMET(KJLOC)
30  COL=COL+AM(KJLOC)*AMET(TKLOC+1)
31  TKLOC=TKLOC+1
32  KJLOC=KJLOC+K
33  IF (I,F0,MQ) GO TO 14
34  TKLOC=IKLOC+1
35  TP=I+1
36  DO 13 K=TP,MQ
37  ROW=ROW+AM(TKLOC)*AMET(KJLOC)
38  COL=COL+AM(KJLOC)*AMET(TKLOC)
39  TKLOC=TKLOC+K
40  KJLOC=KJLOC+K
41  CONTINUE
42  DAMSO=DAMSU+ROW*COL
43  DAMSO=DAMSU+DAMSU-DAMSOD
44  WE MUST COUNT EACH OFF-DIAGONAL TWICE. DAMSO AVOIDS DOUBLE-
45  COUNTING THE DIAGONAL TERMS.
46  RETURN
47  END

```

DAM00010
 DAM00020
 DAM00030
 DAM00040
 DAM00050
 DF/00060
 DL00070
 DAM00080
 DAM00090
 DAM00100
 DAM00110
 DAM00120
 DAM00130
 DAM00140
 DAM00150
 DAM00160
 DAM00170
 DAM00180
 DAM00190
 DAM00200
 DAM00210
 DAM00220
 DAM00230
 DAM00240
 DAM00250
 DAM00260
 DAM00270
 DAM00280
 DAM00290
 DAM00300
 DAM00310
 DAM00320
 DAM00330
 DAM00340
 DAM00350
 DAM00360
 DAM00370
 DAM00380
 DAM00390
 DAM00400
 DAM00410
 DAM00420
 DAM00430
 DAM00440
 DAM00450
 DAM00460
 DAM00470
 DAM00480
 DAM00490
 DAM00500
 DAM00510
 DAM00520
 DAM00530
 DAM00540

FILE: DATFIX FORTRAN A

SUBROUTINE DATFIX
 DIMENSION INDX(27), LSUHS(30), LSUPER(29), INADJ(28), NSYMR(12),
 1 PCUM(26), PHRCM(25), CIN(24), CTOT(23), PROP(22), SPFAC(21),
 2 WADJ(20), W(19), OPWOP(18), OW(17), VOLIN(16), VOLPT(15), DCON(14),
 3 PORAT(13), ODIS(12), PPASS(12), PST(11), OCTN(10), PCOND(7),
 4 OPIOR(9), ODEN(8),
 DTMFNSION VHIN(475), GFN(999), GREF(999), ALINK(1),
 FNUIVALENCE (LINK(1), ALINK(1)), (LINK(31), INDEX(27)),
 FNUIVALENCE (LINK(31), LSUAS(30)),
 ENIVALENCE (LINK(31), LSUPER(29)), (LINK(31), IDADJ(28)),
 1 (LINK(31), NSYMH(12)), (LINK(31), PCUM(26)), (LINK(31), PRHCM(25)),
 2 (LINK(31), CIN(24)), (LINK(31), CTOT(23)), (LINK(31), PROP(22)),
 3 (LINK(31), SPFAC(21)), (LINK(31), WADJ(20)), (LINK(31), W(19)),
 4 (LINK(31), OPWOP(18)), (LINK(31), OW(17)), (LINK(31), VOLIN(16)),
 5 (LINK(31), VOLPT(15)), (LINK(31), DCON(14)), (LINK(31), PORAT(13)),
 6 (LINK(31), ODIS(12)), (LINK(31), PPASS(12)), (LINK(31), PST(11)),
 7 (LINK(31), OCTN(10)), (LINK(31), PCOND(7)), (LINK(31), VRIN(7)),
 8 (LINK(31), GEN(7)), (LINK(31), OPIOR(9)), (LINK(31), ODEN(8)),
 9 (LINK(31), GHFF(8)),
 COMMON /CLUS/ JUNK(12), NARL, NTOP, NTAS7M, NWANT, LINK(14000)
 DIMENSION MXAR(3), LR(3), LV(3),
 FNUIVALENCE (LR(1), LVIN), (LR(2), LKURT),
 1 (LR(3), LOVAR), (LV(1), LSHM), (LV(2), LSKFW), (LV(3), LOSUM)
 COMMON /MISC/ MQ, MM, LP, LV, NINCLS, MXAR, WTINIT, KROOT, EPS, DELT,
 1 AMQ, UDCON, XUVFLO, XUNFL0, WADJIN, ELIMTH, SFPTH, VFAC, AMM, SBLTH,
 2 INDXVL, WFAC, NPTSO, POKATH, SPMVTH, DWFAC, GRACTM, AMUFAC,
 3 AMOMAT, AMOMAX, AMOPAT, VOLIM, RIAS, PJOIN, VHJOIN, WSIM, WDFLSM,
 4 HFTER, MODE, SCULEN, SPCOR
 COMMON /STPAR/ WAIT, GAM, SKAND, SKCHI, TRPND, TRCHT, URKAND, URKCHI,
 1 MACCF1(2), MACCF1(2), VACCEL(2),
 COMMON /SPPAR/ GAMMET, DELMET, SGTMET, OARCOV, OARCKEW, OBRKURT, EXMNSQ,
 1 SHMIN, EXMAX, SAMCEN, TSDINI, DAMP, DORPMS, DIAG, TIM0, TIM1, ITERMX,
 2 SDFD1,
 COMMON /INIT/ WTNEW, DFVINI, CHANIN
 COMMON /JO/ INPH, NDJOIN, RLIM, NOJO, NOELTM
 MODE=0
 CONLV=3.
 WFAC=1.0.
 WAIT=150.
 WDFLSM=20.
 WSIM=400.
 WADJIN=200.
 CONLV=CONLV+SPCOR
 DO 20 I=1,NTAS7
 20 LINK(I)=0
 RETURN
 END

DAT00010
 DAT00020
 DAT00030
 DAT00040
 DAT00050
 DAT00060
 DAT00070
 DAT00080
 DAT00090
 DAT00100
 DAT00110
 DAT00120
 DAT00130
 DAT00140
 DAT00150
 DAT00160
 DAT00170
 DAT00180
 DAT00190
 DAT00200
 DAT00210
 DAT00220
 DAT00230
 DAT00240
 DAT00250
 DAT00260
 DAT00270
 DAT00280
 DAT00290
 DAT00300
 DAT00310
 DAT00320
 DAT00330
 DAT00340
 DAT00350
 DAT00360
 DAT00370
 DAT00380
 DAT00390
 DAT00400
 DAT00410
 DAT00420
 DAT00430
 DAT00440
 DAT00450
 DAT00460
 DAT00470
 DAT00480
 DAT00490

SUBROUTINE DENCAL(KL,RATIO,OLW)

THIS ROUTINE ADJUSTS THE DENOMINATOR OFFSET AND PROPORTION OF KL.
 NEW PROP=RATIO*OLD PROP
 THE NODES MUST ALREADY BE RECONNECTED TO THEIR NEW POSITIONS.

```

  DIMENSION NTR(32)
  DIMENSION INDEX(27),LSUHS(30),LSUPER(29),IDADJ(28),NSYMB(12),
  1 PCUM(26),PRIRCM(25),CIN(24),CTOT(23),PROP(22),SPFAC(21),
  2 WADJ(20),W(19),OPROP(18),OW(17),VOLINT(16),VOLRT(15),DCON(14),
  3 POKAT(13),DISS(12),PPASS(12),PST(11),OCIN(10),PCOND(7),
  4 OPRIOR(9),ODEN(8)
  DIMENSION VRIN(475),GEN(999),GREF(999),ALINK(1),
  FN1)EQUivalence (LINK(1),ALINK(1),(LINK(31),INDEX(27))
  EQUIVALENCE (LTNK(31),LSUPEP(29)), (LTNK(31),IDADJ(28)),
  1 (LINK(31),NSYMH(12)), (LINK(31),PCUM(26)), (LINK(31),PRIRCM(25)),
  2 (LINK(31),CIN(24)), (LINK(31),CTOT(23)), (LINK(31),PROP(22)),
  3 (LINK(31),SPFAC(21)), (LINK(31),WADJ(20)), (LINK(31),W(19)),
  4 (LINK(31),OPROP(18)), (LINK(31),OW(17)), (LINK(31),VOLIN(16)),
  5 (LINK(31),VOLPT(15)), (LINK(31),DCON(14)), (LINK(31),POKAT(13)),
  6 (LINK(31),DISS(12)), (LINK(31),PPASS(12)), (LINK(31),PST(11)),
  7 (LINK(31),OCIN(10)), (LINK(31),PCOND(7)), (LINK(31),VRIN(7)),
  8 (LINK(31),GEN(7)), (LINK(31),OPRIOR(9)), (LINK(31),ODEN(8)),
  9 (LINK(31),GREF(8)), (LINK(31),NTR(31))
  COMMON/CLUS/ JUNK(12),NARL,NTOP,NTBSZM,NWANT,LTNK(14000)
  DIMENSION MXAR(31),LR(3),LV(3)
  EQUIVALENCE (LR(1),LVRIN),(LR(2),LKURT),
  1 (LR(3),LOVAR),(LV(1),LSUM),(LV(2),LSKEW),(LV(3),LOSUM)

  COMMON /MISC/ MQ,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
  1 AMG,ODCON,XOVFL0,XUNFL0,WADJIN,ELIMTH,SPFTH,VFAC,AMM,SBLTH,
  2 INDEXL,WFAC,NHTSO,POKATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
  3 AMOMIN,AMUMAX,AMORAT,VOLLIM,BIAS,PJOIN,VHJOIN,WSIM,WDELSM,
  4 HETTER,MIND,CPLEN,SPCOR

  COMMON /STPHR/WAIT,CONLV,SKAND,SKCHI,TRAND,TRCHI,URKBND,UHKCHI,
  ) MACCEL(?) *MACCFL(?) *VACCEL(?)
```

PROP(KL)=PROP(KL)*RATIO
 OPROP(KL)=OPROP(KL)*RATIO
 KF=LSUPER(KL)
 OLW=CTOT(KL)
 CTOT(KL)=W(KF)-(OLW-CTOT(KL))/RATIO
 ODEN(KL)=ODEN(KL)/RATIO
 RETURN
 END

ORIGINAL PAGE IS
OF POOR QUALITY

DEN00010
 DEN00020
 DEN00030
 DEN00040
 DEN00050
 DEN00060
 DEN00070
 DEN00080
 DEN00090
 DEN00100
 DEN00110
 DEN00120
 DEN00130
 DEN00140
 DEN00150
 DEN00160
 DEN00170
 DEN00180
 DEN00190
 DEN00200
 DEN00210
 DEN00220
 DEN00230
 DEN00240
 DEN00250
 DEN00260
 DEN00270
 DEN00280
 DEN00290
 DEN00300
 DEN00310
 DEN00320
 DEN00330
 UFN00340
 DEN00350
 DEN00360
 DEN00370
 DEN00380
 DEN00390
 DEN00400
 DEN00410
 DEN00420
 DEN00430
 DEN00440
 DEN00450
 DEN00460
 DEN00470
 DEN00480
 DEN00490

FILE: DISC FURTHER A

```
INTEGER FUNCTION DISC(N)
COMMON /WAND/NX
N=ENPANI(NX)
DISC=N*(FLOAT(NX)/214748369.)
RETURN
END
```

DIS00010
DIS00020
DIS00030
DIS00040
DIS00050
DIS00060

FILE: DMINV FORTRAN A

SUBROUTINE DMINV(A,B,C,VOL)

C THIS ROUTINE CALCULATES A=THE INVERSE OF C. A=C**-1. IT ALSO
C RETURNS THE DETERMINANT OF C IN VOL. THE SQUARE ARRAY
C IS TEMPORARY STORAGE, AND MAY BE IDENTICAL TO C.
C VOL=-DAHS(DEF(C)) IF C IS NOT POSITIVE DEFINITE.

```

COMMON /MISC/ MD,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
1 AMN,UDCUM,XOVFL0,XUNFL0,WADJIN,ELIMTH,SEPTH,VFAC,AMM,SBLTH,
2 TNDXVL,WFAC,NPTSO,PQRATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
3 AMOMIN,AMOMAX,AMORAT,VOLLIM,BIAS,PJOIN,VRJOIN,WSIM,WDELSH,
4 RETTERW,MDIFC,CURLEN,SPCUR

REAL*8 H(A(MD,MD)),H(MD,MD),C(MD,MD)
HFALEP 2,VOLL
VOLL=1.
DO 11 I=1,MD
DO 10 J=1,MD
H(I,J)=C(I,J)
10 A(I,J)=0.
11 A(I,I)=1.
DO 22 I=1,MD
VOLL=VOLL+H(I,I)
IF(H(I,I),LE,0.0) VOL=-DAHS(VOLL)
7=1./H(I,I)
DO 21 J=1,MD
H(I,J)=H(I,J)*7
21 A(I,J)=A(I,J)*7
DO 22 IP=1,MD
IF(IP,FN,1) GO TO 22
7=P(IP,1)
DO 23 J=1,MD
H(IP,J)=H(IP,J)-H(I,J)*7
23 A(IP,J)=A(IP,J)-A(I,J)*7
22 CONTINUE
VOL = VOLI
RET,TURN
END

```

DM100010
 DM100020
 DM100030
 DM100040
 DM100050
 DM100060
 DM100070
 DM100080
 DM100090
 DM100100
 DM100110
 DM100120
 DM100130
 DM100140
 DM100150
 DM100160
 DM100170
 DM100180
 DM100190
 DM100200
 DM100210
 DM100220
 DM100230
 DM100240
 DM100250
 DM100260
 DM100270
 DM100280
 DM100290
 DM100300
 DM100310
 DM100320
 DM100330
 DM100340
 DM100350
 DM100360
 DM100370

FILE: DOTSO FORTAN A

```

FUNCTION DOTSO(V,AMET)
C CALCULATES THE INNER PRODUCT V.V RELATIVE TO THE METRIC AMET
DIMENSION NTH(32)
DIMENSION INDEX(27),LSUHS(30),LSUPER(29),INADJ(28),NSYMR(12),
1 PCUM(26),PRIKCM(25),CIN(24),CTOT(23),PROP(22),SPFAC(21),
2 WADJ(20),W(19),OPROP(18),OW(17),VOLIN(16),VOLPT(15),DCON(14),
3 DORAT(13),DISS(12),PPASS(12),PST(11),OCIN(10),PCUND(7),
4 OPPUD(9),ODEN(H)
DIMENSTION VHTN(475),GFN(999),GREF(999),ALINK(1)
EQUIVALENCE (LINK(1),ALINK(1)),(LINK(31),INDEX(27))
EQUIVALENCE (LTNK(31),LSUHS(30))
EQUIVALENCE (LTNK(31),LSUPER(29)),(LINK(31),INADJ(28)),
1 (LINK(31),NSYMH(12)),(LINK(31),PCUM(26)),(LTNK(31),PRIKCM(25)),DOT00010
2 (LINK(31),CIN(24)),(LINK(31),CTOT(23)),(LINK(31),PROP(22)),DOT00020
3 (LINK(31),SPFAC(21)),(LINK(31),WADJ(20)),(LINK(31),W(19)),DOT00030
4 (LINK(31),OPROP(18)),(LINK(31),OW(17)),(LINK(31),VOLIN(16)),DOT00040
5 (LINK(31),VOLPT(15)),(LINK(31),DCON(14)),(LINK(31),PDRAT(13)),DOT00050
6 (LINK(31),DISS(12)),(LINK(31),PPASS(12)),(LINK(31),PST(11)),DOT00060
7 (LINK(31),OCIN(10)),(LINK(31),PCOND(7)),(LTNK(31),VHIN(7)),DOT00070
8 (LINK(31),GFN(H)),(LINK(31),NTH(31)),(LINK(31),OPHOR(9)),(LINK(31),ODEN(H)),DOT00080
9 (LINK(31),GREF(H)),(LINK(31),NTH(31))
COMMON/CLUS/ JUNK(12),NARL,NTOP,NTBS7M,NWANT,LINK(14000)
DIMENSTION VHTP(31),LP(3),V(3)
EQUIVALENCE (LR(1),LVFIN),(LR(2),LKUHT),
1 (LR(3),LOVARI),(LV(1),LSUM),(LV(2),LSKFW),(LV(3),LOSUM)DOT00090
COMMON /MISC/ VD,MM,LP,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
1 AM0,OCUN,XOVFLO,XUNFL0,WADJIN,ELIMTH,SPFTH,VFAC,AMM,SHLTH,DOT00100
2 INDFVL,WFAC,INPTS0,PORATH,SPMVTH,DWFAC,GRACTM,AMOFAC,DOT00110
3 AM0IN,AM0MAX,AM0HAT,VOLLIM,HIAS,PJOIN,VRJOIN,WSIM,WEELSM,DOT00120
4 RFTTR,OMDE,CONLN,SPCIR,DOT00130
COMMON /STHR/WAIT,CONLV,SKAND,SKCHI,THRD,TRCHT,UPKAND,URKCHI,DOT00140
1 PACC1(2),MACCEL(2),VACCEL(2)DOT00150
REAL V(30),AMET(475)DOT00160
REAL *8 DDOTS0,DDOT
DDOTS0=0.
DDOT=V(1)*V(1)*AMET(1)DOT00170
DO 10 I=2,60DOT00180
MX=MXAD(I)DOT00190
7 DO H,J=2,1DOT00200
2 DDOTS0=DDOTS0+V(I)*V(J-1)*AMET(MX+J-1)DOT00210
10 DDOT=DDOT+V(I)*V(I)*AMET(MX+I)DOT00220
THE DIAGONALS ARE HANDLED SEPARATELY BECAUSE EACH OFF-
DIAGONAL APPEARS TWICE. AND SO MUST BE DOUBLED.DOT00230
DDOTS0=DDOTS0+DDOTS0+DDOTDOT00240
DDOTS0 = DDOTS0DOT00250
RETURNDOT00260
ENDDOT00270

```

FILE: DSQMTX FORTRAN A

SUBROUTINE DSQMTX(SQ,AM)

REAL*8 SQ

C THIS SUBROUTINE EXPANDS MATRIX AM FROM TRIANGULAR FORM AND MAKES
C AN MQ*MQ SQUARE SYMMETRIC MATRIX IN SQ(DIM MQ*MQ).

```

COMMON /MISC/ MQ,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,CPS,DELT,
1   AM0,UDCON,X0VFLO,XUNFL0,WADJIN,ELIMTH,SEPTM,VFAC,AMM,SBLTH,
2   INDEXVL,WFAC,NPTS0,PORATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
3   AMOMIN,AMOMAX,AMORAT,VOLLIM,RIAS,PJOIN,VRJOIN,WSIM,WDELSM,
4   BETTEH,MODE,COPLEN,SPCOR

```

DIMENSION AM(475),SQ(900)

LOC=0

IM0=0

DO 11 J=1,MN

IJ=J

DO 10 J=1,I

LOC=LOC+1

SQ(IJ)=AM(ILOC)

SQ((IM0+J))=AM(LOC)

10 IJ=IJ+MN

IM0=IM0+MN

PF TLMN

END

DSQ000010
 DSQ000020
 DSQ000030
 DSQ000040
 DSQ000050
 DSQ000060
 DSQ000070
 DSQ000080
 DSQ000090
 DSQ000100
 DSQ000110
 DSQ000120
 DSQ000130
 DSQ000140
 DSQ000150
 DSQ000160
 DSQ000170
 DSQ000180
 DSQ000190
 DSQ000200
 DSQ000210
 DSQ000220
 DSQ000230
 DSQ000240

FILE: DTMHTR FORTRAN A

SUBROUTINE TMMTH(TRI,SQ)

NFAL=9 S,

THIS ROUTINE TAKES THE LOWER TRIANGLE OF SQ(DIM MO*MO) AND PUTS
IT INTO SYMMETRIC MATRIX FORM IN TRI.

DIMENSION MEAR(31),LR(3),LV(3)

COMMON /MISC/ MO,MM,LR,LV,NTNCLS,MXAR,WTINNT,KROOT,FPS,DELT,

1 AMO,DDCCV,XOVFL0,XUNFL0,WADJIN,FLIMTH,SPPTH,VFAC,AMM,SHLTH,

2 INDXVL,WFAC,NPTSO,PORATH,SPMVTH,DWFAC,GRACTM,AMUFAC,

3 AMOMIN,AMOMAX,AMORAT,VOLLTM,HIAS,PJOIN,VJOIN,WSIM,WDELSM,

4 HFTTH,MODE,COPLEN,SPCDR

DIMENSION TRI(475),SU(900)

DO 10 I=1,40

MX=MAX(I,1)

TJCI

DO 10 J=I+1

10 TRI(MX+J)=SQ(I,J)

10 TJ=J+MX

10 RETURN

END

DTR00010
DTR00020
DTR00030
DTR00040
DTR00050
DTR00060
DTK00070
DTP00080
DTP00090
DTR00100
DTR00110
DTR00120
DTR00130
DTR00140
DTR00150
DTR00160
DTK00170
DTP00180
DTR00190
DTR00200
DTP00210

ORIGINAL PAGE IS
OF POOR QUALITY

FT1F: FIGHOT FORTRAN A

```

SUBROUTINE FIGHOT(LP,NM,R,F,V)
C THIS ROUTINE CALLS SYSTEM ROUTINES TO GENERATE AN EIGENROTATION OF
C REAL M V(NM,NM), R(NM,NM), E(NM)
C AN LP(LP) SUMMATRIX OF THE ARRAY R. THE EIGENVALUES ARE RETURNED
C IN F AND THE EIGENVECTOR MATRIX IS IN V (DIM NM*NM), WHERE
C THE SECOND INDEX RUNS OVER EIGENVECTORS, AND THE FIRST
C WITHIN THEM.
C THE STORAGE ALLOCATION SYSTEM (MORSTA, FREE) IS ALSO USED.
C THE LOWER TRIANGLE OF R IS DESTROYED.

COMMON/CLUS/ JUNK(12),NARL,NTOP,NTBSZM,NWANT,LINK(14000)

LP2 = P * LP
TDEMORSTK(LP2)
THMORSTH(LP2)

9904 WRTTF (6,9904) 1 LP,NM, ((R(I,J), I=1,NM), J=1,NM)
FORMAT (1PF0 TRIMX LP,NM,P 1,2I8,/,/
1 4(4(F10.2,2X) / ))
CALL THDMX(LP,NM,R,LINK(ID),LINK(IA))
LTD = ID + IP - 1
IAH = IA + IP - 1
WRTTF (6,9904) LP,NM, ((R(I,J), I=1,NM), J=1,NM),
1 (LINK(I), I=ID,LTD), (LINK(I), I=IA, LIA)
FORMAT (1PF0 TRIMX LP,NM,R, ID,IB',?IA,/,/
1 4(4(F10.2,2X) / ))
T2=HMORSTH(LP2)
T2=MINSTK(LP2)

9947 WRTTF (6,9947) (F(I), I=1,4)
FORMAT (1PF0 FIGVAL F1,/, 4(4(F10.2,2X) / ))
CALL FTGVAL(1,P,F,LINK(ID),LINK(IB),LINK(IW),LINK(IF))
LIW = IW + 2
LIF = IF + 2
WRTTF (6,9947) LP,(E(J), J=1,4), (LINK(I), I=ID,LID),
1 (LINK(I), I=IH,LIA), (LINK(I), I=IW,LIW), (LINK(I), I=IF,LIF)
9996 FORMAT (1PF0 FIGVAL FP,E, ID,IB,IW,IF',IA,/,/
1 4(4(F10.2,2X) / ))
CALL FTGVEC(LP,NM,R,LINK(ID),LINK(IA),E,V,LINK(IF),LINK(IW))
CALL FREE(1D,LP)
CALL FRFF(1D,LP)
CALL FRFF(1W,LP)
CALL FRFF(1F,LP)
RETURN
END

```

```

FIG0001C
FIG00020
FIG00030
FIG00040
FIG00050
FIG00060
FIG00070
FIG00080
FIG00090
FIG00100
FIG00110
FIG00120
FIG00130
FIG00140
FIG00150
FIG00160
FIG00170
FIG00180
FIG00190
FIG00200
FIG00210
FIG00220
FIG00230
FIG00240
FIG00250
FIG00260
FIG00270
FIG00280
FIG00290
FIG00300
FIG00310
FIG00320
FIG00330
FIG00340
FIG00350
FIG00360
FIG00370
FIG00380
FIG00390
FIG00400
FIG00410
FIG00420
FIG00430
FIG00440

```

FILE: FIGVAL FORTRAN A

```

SUBROUTINE FIGVAL (LM, E, A, B, W, F)
  IMPLICIT REAL*8 (A-H,O-Z)
C THIS SUBROUTINE WAS COPIED FROM THE 1110 PROGRAM
  REAL*8 H(LP), A(LP), B(LP), W(LP)
  REAL*8 F(LP)

AM = DAHS(A(1))
HM = 0.
DO 1 I = 2,LP
  AM = DMAX1(AM,DAHS(A(I)))
  HM = DMAX1(HM,DAHS(B(I)))
  HD = AM + HM + HM
  DO 6 I = 1,LP
    A(I) = A(I)/HD
    B(I) = B(I) /HD
    F(I) = -1.0
    W(I) = 1.0
    DO 50 K = 1,LP
      CONTINUE
      IF ((W(K)-F(K))/DMAX1(DAHS(W(K)),+DAHS(E(K))+1.0-24)-5.E-7)50,50,10
    X = (W(K) + F(K)) * 0.5
    S2 = 1.0
    F(1) = A(1) - X
    IF (F(1)) 102,104,104
102   S1 = -1.0
    N = 0
    GO TO 104
104   S1 = 1.0
    N = 1
    DO 120 I = 2,LP
      IF (S1) 106,113,106
106   IF (S1-1) 107, 114, 107
107   IF (DAHS(F(I-1)) - 1.F-15) 111, 112, 112
111   F(I-1) = F(I-1) * 1.F15
112   F(I) = (A(I) - X) * F(I-1) - B(I) * H(I) * F(I-2)
      IF (I .GT. 2) F(I) = (A(I) - X) * F(I-1)
      GO TO 115
113   F(I) = (A(I) - X) * S1
      GO TO 115
114   F(I) = (A(I) - X) * F(I-1) - DSIGN(H(I) * B(I),S2)
115   S2 = S1
      IF (F(I)) 114, 117, 116
116   S1 = DSIGN(S1,F(I))
      IF (S1 + S2) 117, 120, 117
117   N = N + 1
      CONTINUE
      N = LP - N
      IF (N .LT. K) GO TO 20
12   DO JS J = N,0
      W(J) = X
      N = N + 1
      IF (LP .LT. N) GO TO 8
24   DO 26 J = N,LP
      IF (X - F(J)) 8,4,26
26   F(J) = X
      GO TO 8
      CONTINUE
      DO 80 I = 1,LP
        A(I) = A(I) * BD
        B(I) = B(I) * BD
        W(I) = (W(I) + F(I)) * HD * 0.5
        I = LP
        I = 1
        DO 80 I = 1,LP
          IF (DAHS(W(K)) - DAHS(W(J))) 63,63,65
63   F(I) = -(J)
        J = J - 1
        GO TO 80
65   F(I) = -(K)
        K = K + 1
      CONTINUE
      RETURN
END

```

FIG00010
FIG00020
FIG00030
FIG00040
FIG00050
FIG00060
FIG00070
FIG00080
FIG00090
FIG00100
FIG00110
FIG00120
FIG00130
FIG00140
FIG00150
FIG00160
FIG00170
FIG00180
FIG00190
FIG00200
FIG00210
FIG00220
FIG00230
FIG00240
FIG00250
FIG00260
FIG00270
FIG00280
FIG00290
FIG00300
FIG00310
FIG00320
FIG00330
FIG00340
FIG00350
FIG00360
FIG00370
FIG00380
FIG00390
FIG00400
FIG00410
FIG00420
FIG00430
FIG00440
FIG00450
FIG00460
FIG00470
FIG00480
FIG00490
FIG00500
FIG00510
FIG00520
FIG00530
FIG00540
FIG00550
FIG00560
FIG00570
FIG00580
FIG00590
FIG00600
FIG00610
FIG00620
FIG00630
FIG00640
FIG00650
FIG00660
FIG00670
FIG00680
FIG00690
FIG00700
FIG00710
FIG00720
FIG00730
FIG00740

FILE: FIGVEC FORTRAN A

```

SUBROUTINE EIGVEC (LP,NM,R,A,B,E,V,P,Q)
IMPLICIT NFAL*8 (A=H,0=Z)
C THIS SUBROUTINE WAS COPIED FROM THE 1110 SYSTEM
DIMENSION R(NM,NM), A(LP), B(LP), E(LP), V(NM,NM), P(LP), Q(LP)
LP1 = LP - 1
DO 50 IX = 1,LP
  X = A(1) - E(IX)
  Y = A(2)
C
  DO 10 I = 1,LP1
    IF (DAABS(X)-DAB5(A(I+1))) 4,6,8
    P(I) = H(I+1)
    C(I) = A(I+1) - E(IX)
    V(I,IX) = H(I+2)
    Z = -X/P(I)
    X = Z + C(I) + Y
    IF (LP1 .NE. I) Y = Z * V(I,IX)
    GO TO 10
    IF (X) 8,7,R
    X = 1.0E-10
    P(I) = X
    C(I) = Y
    V(I,IX) = 0.0
    X = A(I+1) / (H(I+1) / X + Y + E(IX))
    Y = A(I+2)
CONTINUE
10   IF (X) 21, 24, 21
21   V(LP,IX) = 1.0/X
C
22   I = LP1
    V(I,IX) = (1.0 - Q(I) * V(LP,IX)) / P(I)
    X = V(LP,IX)**2 + V(I,IX)**2
25   I = I-1
    IF (I) 26,30,26
    V(I,IX) = (1.0 - (Q(I)*V(I+1,IX) + V(I,IX) * V(I+2,IX))) / P(I)
    X = X + V(I,IX)**2
    GO TO 25
    V(LP,IX) = 1.0E10
    GO TO 22
30   X = D50HT(X)
    DO 31 I = 1,LP
      V(I,IX) = V(I,IX) / X
31   IF (LP .EQ. 2) GO TO 50
    DO 42 KK = 2,LP1
      K = LP - KK + 1
      Y = 0.0
      DO 35 I = K,LP
        Y = Y + V(I,IX) * R(I,K-1)
35   DO 40 I = K,LP
        V(I,IX) = V(I,IX) - 2.0*Y**R(I,K-1)
40   CONTINUE
42   CONTINUE
      RFTUPN
50   END

```

ORIGINAL PAGE IS
OF POOR QUALITY

EIG00010
EIG00020
EIG00030
EIG00040
EIG00050
EIG00060
EIG00070
EIG00080
EIG00090
EIG00100
EIG00110
EIG00120
EIG00130
EIG00140
EIG00150
EIG00160
EIG00170
EIG00180
EIG00190
EIG00200
EIG00210
EIG00220
EIG00230
EIG00240
EIG00250
EIG00260
EIG00270
EIG00280
EIG00290
EIG00300
EIG00310
EIG00320
EIG00330
EIG00340
EIG00350
EIG00360
EIG00370
EIG00380
EIG00390
EIG00400
EIG00410
EIG00420
EIG00430
EIG00440
EIG00450
EIG00460
EIG00470
EIG00480
EIG00490
EIG00500
EIG00510
EIG00520
EIG00530
EIG00540
EIG00550
EIG00560

FILE: FLIM FORTRAN A

SUBROUTINE FLIM(KEL)

C THIS ROUTINE ELIMINATES THE CLUSTER KEL FROM THE CLUSTER TREE
AND FREES THE STORAGE.

1 DIMENSION INDEX(27),LSUHS(30),LSUPER(29),INADJ(28),NSYMB(12),
1 PCUM(26),PPRCM(25),CIN(24),CTOT(23),PROP(22),SPFAC(21),
2 WADJ(20),W(19),OPROP(18),OW(17),VOLIN(16),VOLRT(15),DCON(14),
2 PARAT(13),DISS(12),PPASS(12),PST(11),OCIN(10),PCOND(7),
4 OPRIOR(9),ODEN(8)

1 DIMENSION VPIN(475),GEN(999),GREF(999),ALINK(1),
1 FQIIVALENCE(LINK(1),ALINK(1)),(LINK(31),INDEX(27))
1 EQVIIVALENCE(LINK(31),LSURS(30))
1 FQIIVALENCE(LINK(31),LSUPER(29)),(LINK(31),TDADJ(28)),
1 (LINK(31),CIN(24)),(LINK(31),CTOT(23)),(LINK(31),PROP(22)),
2 (LINK(31),SPFAC(21)),(LINK(31),WADJ(20)),(LINK(31),W(19)),
4 (LINK(31),OPROP(18)),(LINK(31),OW(17)),(LINK(31),VOLIN(16)),
5 (LINK(31),VOLRT(15)),(LINK(31),DCON(14)),(LINK(31),PARAT(13)),
5 (LINK(31),DISS(12)),(LINK(31),PPASS(12)),(LINK(31),PST(11)),
7 (LINK(31),OCIN(10)),(LINK(31),PCOND(7)),(LINK(31),VRIN(7)),
8 (LINK(31),GEN(7)),(LINK(31),OPRIOR(9)),(LINK(31),ODEN(8)),
4 (LINK(31),GFFF(M))

COMMON /CLUS/ JLINK(12),NAPL,NTOP,NTBS7M,NWANT,LINK(14000)

DIMENSION MXAH(31),LR(3),LV(3)

FQIIVALENCE(LR(1),LVRIN),(LR(2),LKURT),
1 (LP(3),LOVAB),(LV(1),LSUM),(LV(2),LSKEW),(LV(3),LOSUM)

COMMON /MISC/ MN,MM,LH,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
1 AMO,OUCON,XOVFL0,XUNFL0,WADJN,ELIMTH,SEPTH,VFAC,AMM,SBLTH,
2 INDXVL,WFAC,NPTSO,PORATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
3 AMOMIN,AMOMAX,AMORAT,VOLLIM,HIAS,PJOIN,VRJOIN,WSIM,WDELSM,
4 BETTER,MOUF,CORLEN,SPCOR

COMMON /STPAH/WAIT,CONLV,SKHND,SKCHI,TRHND,TRCHI,URKAND,URKCHI,
1 PACCEL(2),MACCEL(2),VACCEL(2)

KF=PARENT, KMEX=1ST STA. LS = OFFSPRING
KF=LSUPER(KFL)
KMFX=LINK(KFL)
LS=LSUHS(KEL)
PRINT 719,INDEX(KFL),INDEX(KMEX),INDEX(LS),INDEX(KF)
710 FORMAT (10#*#FLIMINATE*,I4,1) LINK,LSURS,LSUPER=,3I3)
WHITE (3,714) INDEX(KEL),INDEX(KMEX),INDEX(LS),INDEX(KF)

IF FIRST, USE SUBLIM IF THERE ARE ONLY 2 SUBCLUSTERS AT THIS LEVEL.
LSS=LSUHS(KF)
IF(KF,F1,KROOT,AND,LINK(LSS),EQ,0) RETURN
LK1=LINK(LSS)
IF(LINK(LK1),NE,0,OR,KF,F1,KROOT) GO TO 5
4 CALL SUBLIM(KF)
CALL PPTREE(KF)
RETURN

NOW WE REMOVE THE CLUSTER FROM VARIOUS LISTS.

5 K=LSUHS(KF)
IF(K,FQ,KEL) GO TO 13

6 KFL NOT 1ST OFFSPRING
7 KOLD=K
KELINK(K)
IF(K,F0,0) PRINT 666,KEL,KF,KOLD,LSURS(KF)
666 FORMAT (10#*STRUCTURAL ERROR AT ELIM: KEL,KFATH,KOLD,INIT*,5I9)
IF(K,NE,KFL) GO TO 7

8 NODE KEL FOUND, AS NTH OFFSPRING (N NOT 1), SET LINK OF N-1 TO N+1
LINK(KOLD)=LINK(K)
GO TO 15

9 NODE KEL IS 1ST OFFSPRING, SET 1ST OFFSPRING LINK TO LINK FROM KEL
13 LSUHS(KF)=LINK(K)
IF LINK(KFL)=0

10 NOW DROP THE CLUSTER AND ITS SUHS
CALL PPTREE(KFL,NINCLS)
RETURN
END

ELI00010
ELI00020
ELI00030
ELI00040
ELI00050
ELI00060
ELI00070
ELI00080
ELI00090
ELI00100
ELI00110
ELI00120
ELI00130
ELI00140
ELI00150
ELI00160
ELI00170
ELI00180
ELI00190
ELI00200
ELI00210
ELI00220
ELI00230
ELI00240
ELI00250
ELI00260
ELI00270
ELI00280
ELI00290
ELI00300
ELI00310
ELI00320
ELI00330
ELI00340
ELI00350
ELI00360
ELI00370
ELI00380
ELI00390
ELI00400
ELI00410
ELI00420
ELI00430
ELI00440
ELI00450
ELI00460
ELI00470
ELI00480
ELI00490
ELI00500
ELI00510
ELI00520
ELI00530
ELI00540
ELI00550
ELI00560
ELI00570
ELI00580
ELI00590
ELI00600
ELI00610
ELI00620
ELI00630
ELI00640
ELI00650
ELI00660
ELI00670
ELI00680
ELI00690
ELI00700
ELI00710
ELI00720
ELI00730
ELI00740
ELI00750
ELI00760
ELI00770

FILE: EXPP FORTRAN A

```

FUNCTION EXPP(Y)
REAL*8 DEXPP,TERM,A,XX,E
4990 FORMAT ('DEXPP',2E12.6)
E = 1.0 D-50
XX = Y
IF (XX .LT. 0.) XX = -XX
TERM = 1.0
DEXPP = 1.0
N = 1
10 CONTINUE
TERM = TERM + XX/N
A = DABS(TERM)
N = N + 1
IF (A .LE. E) GO TO 20
DEXPP = DEXPP + TERM
GO TO 10
20 CONTINUE
IF (Y .LT. 0.) DEXPP = 1.000/DEXPP
RETURN
END

```

```

EXP00010
EXP00020
EXP00030
EXP00040
EXP00050
EXP00060
EXP00070
EXP00080
EXP00090
EXP00100
EXP00110
EXP00120
EXP00130
EXP00140
EXP00150
EXP00160
EXP00170
EXP00180
EXP00190
EXP00200
EXP00210

```

FILE: FHFE FORTRAN A

SUBROUTINE FREE (LOCATE,LENGTH)

COMMON/CLUS/ JUNK(12),NARL,NTOP,NTHSZM,NWANT,LINK(14000)

PURPOSE--TO RETURN STORAGE TO LINK FILE

INPUT LOCATE=LOCATION OF BLOCK OF STORAGE
LENGTH=LENGTH OF BLOCK OF STORAGE

CALCULATE SIZE MOD 32
SIZEF = MOD(LENGTH,32)

LINK TO OLD FIRST ENTRY FOR SIZE
LINK(LOCATE) = LINK(SIZE)

SET FIRST ENTRY OF THIS SIZE TO LOCATE
LINK(SIZE) = LOCATE + LENGTH * 65536

WRITE (6,0000) LOCATE,LENGTH,LINK(LOCATE),LINK(SIZE)
FORMAT ('ILOCATE,LENGTH,LINK(LOC),LINK(SZ)'),4TB

RETURN
END

FRE00010
FRE00020
FRE00030
FRE00040
FRE00050
FRE00060
FRE00070
FRE00080
FRE00090
FRE00100
FRE00110
FRE00120
FRE00130
FRE00140
FRE00150
FRE00160
FRE00170
FRE00180
FRE00190
FRE00200
FRE00210
FRE00220
FRE00230
FRE00240
FRE00250

LOGICAL FUNCTION ISPLIT (KLI)

```

1 DIMENSION NTH(32)
1 DIMENSION INDEX(27), LSUBS(30), LSUPER(29), IDADJ(28), NSYMB(12),
1 PCUM(26), PHIRCM(25), CIN(24), CTOT(23), PROP(22), SPFAC(21),
1 WADJ(20), W(19), OPROP(18), OW(17), VOLIN(16), VOLRT(15), DCON(14),
1 PORAT(13), DIS5(12), PPASS(12), PST(11), OCIN(10), PCOND(7),
1 OPRIOR(9), ODEN(8)
1 DIMENSION VRIN(475), GEN(999), GREF(999), ALINK(1),
1 EQUIVALENCE (LINK(1),ALINK(1)), (LINK(31),INDEX(27))
1 EQUIVALENCE (LINK(31),LSUBS(30)),
1 EQUIVALENCE (LINK(31),LSUPER(29)), (LINK(31),IDADJ(28)),
1 (LINK(31),NSYMB(12)), (LINK(31),PCUM(26)), (LINK(31),PHIRCM(25)),
1 (LINK(31),CIN(24)), (LINK(31),CTOT(23)), (LINK(31),PROP(22)),
1 (LINK(31),SPFAC(21)), (LINK(31),WADJ(20)), (LINK(31),W(19)),
1 (LINK(31),OPROP(18)), (LINK(31),OW(17)), (LINK(31),VOLIN(16)),
1 (LINK(31),VOLRT(15)), (LINK(31),DCON(14)), (LINK(31),PORAT(13)),
1 (LINK(31),DIS5(12)), (LINK(31),PPASS(12)), (LINK(31),PST(11)),
1 (LINK(31),OCIN(10)), (LINK(31),PCOND(7)), (LINK(31),VRIN(7)),
1 (LINK(31),GEN(7)), (LINK(31),OPRIOR(9)), (LINK(31),ODEN(8)),
1 (LINK(31),GREF(8)), (LINK(31),NTA(31))
COMMON/CLUS/ JUNK(12), NARL, NTOP, NTAS2M, NWANT, LINK(14000)
DIMENSION MXAR(31), LR(3), LV(3)
EQUIVALENCE (LR(1),LVHIN), (LR(2),LKURT),
1 (LR(3),LOVAP), (LV(1),LSUM), (LV(2),LSKEW), (LV(3),LOSUM)

1 COMMON /MISC/ MQ, MM, LR, LV, NINCLS, MXAR, WTINIT, KROUT, EPS, DELT,
1 AMQ, ODCON, XOVFLO, XUNFLO, WADJIN, ELIMTH, SEPTH, VFAC, AMM, SBLTH,
1 TNIXVL, WFAC, NPTSO, PQRAYTH, SPMVTH, DWFAC, GRACTM, AMOFAC,
1 AMOMIN, AMOMAX, AMORAT, VOLLM, BIAS, PJUIN, VRJOIN, WSIM, WDELSM,
1 HETTEK, MODE, CORLEN, SPCOR
COMMON /STPAR/WAIT, CONLV, SKBND, SKCHI, TRAND, TRCHI, URKBND, URKCHI,
1 PACCEL(2), MACCEL(2), VACCEL(2)
KL = KL
LSH = LSUHS(KL)
1 ISPLIT = LSH .NE. 0 .AND. (SPFAC(KL) .GT. 0. .OR.
1 IARS(INDEX(LSH)) .LT. IARS(INDEX(KL)))
1 RETURN
END

```

ISP00010
ISP00020
ISP00030
ISP00040
ISP00050
ISP00060
ISP00070
ISP00080
ISP00090
ISP00100
ISP00110
ISP00120
ISP00130
ISP00140
ISP00150
ISP00160
ISP00170
ISP00180
ISP00190
ISP00200
ISP00210
ISP00220
ISP00230
ISP00240
ISP00250
ISP00260
ISP00270
ISP00280
ISP00290
ISP00300
ISP00310
ISP00320
ISP00330
ISP00340
ISP00350
ISP00360
ISP00370
ISP00380
ISP00390

FILE: JOIN FORTRAN A

INTEGER FUNCTION JOIN(KAI,KBI,SUM,SKEW,KURT,OSUM,OVAR,VVV,B,A,D)
 JOIN RAISES THE HYPOTHESIS THAT KA AND KB ARE THE SAME CLUSTER.
 KB MUST BE OBTAINABLE FROM KA VIA LINK.
 CREATE NEW CLUSTER -JOIN- WITH KA AND KB AS SUBCLUSTERS
 WARNING: CALLING SUBROUTINE MUST ASSURE THAT KB IS TO RIGHT OF KA
 ***** ***** ***** ***** ***** ***** ***** ***** ***** *****
 DIMENSION INDEX(27),LSUHS(30),LSUPER(29),IDADJ(28),NSYMB(12),
 1 PCUM(26),PRIRCM(25),CIN(24),CTOT(23),PROP(22),SPFAC(21),
 2 WADJ(20),W(19),OPROP(18),OW(17),VOLIN(16),VOLRT(15),DCON(14),
 3 PORAT(13),DISS(12),PPASS(12),PST(11),OCIN(10),PCOND(7),
 4 OPR1OR(9),ODEN(A)
 DIMENSION VPIN(475),GEN(999),GPFF(999),LINK(1),
 EQUIVALENCE (LINK(1)),ALINK(1),(LINK(31),INDEX(27))
 EQUIVALENCE (LINK(31),LSURS(30))
 EQUIVALENCE (LINK(31),LSUPER(29)),(LINK(31),IDADJ(28)),
 1 (LINK(31),NSYMH(12)),(LINK(31),PCUM(26)),(LINK(31),PRIRCM(25))
 2 (LINK(31),CTOT(24)),(LINK(31),CTOT(23)),(LINK(31),PROP(22)),
 3 (LINK(31),SPFAC(21)),(LINK(31),WADJ(20)),(LINK(31),W(19)),
 4 (LINK(31),OPROP(18)),(LINK(31),OW(17)),(LINK(31),VOLIN(16)),
 5 (LINK(31),VOLRT(15)),(LINK(31),DCON(14)),(LINK(31),PORAT(13)),
 6 (LINK(31),DISS(12)),(LINK(31),PPASS(12)),(LINK(31),PST(11)),
 7 (LINK(31),OCIN(10)),(LINK(31),PCOND(7)),(LINK(31),VRIN(7)),
 8 (LINK(31),GEN(7)),(LINK(31),OPR1OR(9)),(LINK(31),ODEN(8)),
 4 (LINK(31),GPFF(A))
 COMMON/CLUSTR/ INFGIN,TOTWRD,CLSNAM,PTP,NOFLD,SYM(61),
 1 LNCAT,PRNT(4),KLHC,PPTME,PROUT,TOTPPIX,
 2 SCHAM1,BUFFPIX,MIFTOT,NRUFSD,NDUMP,LRAUD,
 3 MAXRF,ALFA,NWDNS,NWDNS,MPTS,LRAIF,TQ1,NOCYCL
 INTEGER TUT+H1,SYM,PRNT,PPTME,PROUT,TOTPPIX,SCRAM1,BUFFPIX,BUFTOT
 1 ,CLSNAM
 COMMON/CLUS/ .LINK(12),NAHL,NTOP,NTHS7M,NWANT,LINK(14000)
 DIMENSION MY4H(31),LP(3),LV(3)
 EQUIVALENCE (LH(1),LVRIN),(LK(2),LKURT),
 1 (LP(1),LOVAB),(LV(1),LSUM),(LV(2),LSKEFW),(LV(3),LOSUM)
 COMMON /MISC/ WJ,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
 1 AMJ,DCON,XOVLFL,XINFL, WADJIN,FLIMTH,SPFTH,VFAC,AMM,SHLTH,
 2 IXOVL,WFACT,NFTSO,PORATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
 3 AMOMIN,AMOMAX,AMOPAT,VOLLIM,HIAS,PJOIN,VRJOIN,WSIM,WDELSM,
 4 BETTER,MODE,FCRLFN,SPCOK
 COMMON /STRPAR/WAIT,CONLV,SKHND,SKCHI,TRAND,TRCHI,URKBND,URKCHI,
 1 PACC1(2),MACCEL(2),VACCEL(2)
 REAL SUM(1),SKEFW(1),KURT(1),OSUM(1),OVAR(1)
 REAL A(MQ,MQ),B(MQ,MQ),D(MQ,MQ)
 REAL VVV(MQ,MQ)
 *** FIND CLUSTERS KA AND KB. MOVE THEM FROM OLD STRING
 TO NEWLY CREATED STRING CONTAINING ONLY KA AND KB ***
 TO
 KA = GIVEN CLUSTER
 KB = GIVEN CLUSTER
 KA=KAI
 LS=LSUPER(KA)
 KB=KBJ
 JOTNEQ
 LIKKA = PARENT STRING OF KA
 LSUPKA = PARENT OF KA
 LIKKA=LINK(KAI)
 LSUPKA=LSUPER(KA)
 LSUPSL(SUPKA) = 1ST OFFSPRING OF PARENT OF KA
 LINK(LIKKA) = STR OF SH OF KA
 OR FOR CLUSTER THAT IS NOT CONNECTED TO PARENT. PHOR UNNECESSARY
 TF(LSURS(LSUPKA).EQ.0.AND.LINK(LIKKA).EQ.0) RETURN
 JOIN = NEW CLUSTER
 JOTNEQ=MKSTR(NINCLS)
 CREATE NEW CLUSTER -JOIN-
 INDEXVL=INDEXVL+1
 INDEX(JJOIN)=INDEXVL

B-50

**ORIGINAL PAGE IS
OF POOR QUALITY**

FILE: JOIN FORTRAN A

```

      TDADD(JOIN)=NPTSO+TOTPIX
      PWINT 717, INDEX(KA), INDEX(KA), INDEX(JOIN)
717  FORMAT 100**JOINING', I4, ' AND ', I4, ' TO GET ', I4)
      WRITE (3,717) INDEX(KA), INDEX(KB), INDEX(JOIN)

C   SET PARENT OF JOIN FROM PARENT OF KA
C   SET LINK OF JOIN TO 1ST OFFSPRING OF PARENT
C   SET JOIN TO BE 1ST OFFSPRING
C   SET OFFSPRING OF JOIN TO BE KA
      LSUPER(JOIN)=LS
      LINK(JOIN)=LSURS(LS)
      LSURS(LS)=JOIN
      LSUHS(JOIN)=KA

C   LLINK DOWN SIRHS OF JOIN TO KA
      K=JOIN
30   K0=K
      K=LINK(K)
      IF(K.NE.KA) GO TO 30

C   REMOVE KA FROM OLD FAMILY
C   RESET SIRH POINTER FOR ELEMENT LINKING TO KA TO POINT TO LINK FROM KA
C   SET SIRH POINTER OF KA TO POINT TO KB
C   SET UP PARENT POINTER OF KA TO BE JOIN
      LLINK(K0)=LINK(KA)
      LINK(KA)=K0
      LSUPER(KA)=JOIN

C   LLINK FROM KA TO KB--PROGRAM WILL ABORT IF KA DOES NOT PRECEDE KB
      K0=K
35   K0=K
      K=LINK(K)
      IF(K.NE.KA) GO TO 35

C   RESET SIRH POINTER THAT POINTS TO KB TO POINT TO SIRH OF KB
      LLINK(K0)=LINK(KA)

C   SET KB TO POINT TO 0
C   SET PARENT OF KB TO BE JOIN
      LINK(KP)=0
      LSUPER(KB)=JOIN

C   CREATE NEW THEF
      CALL PRTHFF (KS)

C   *** CALCULATE STATISTICS FOR NEW CLUSTER ***
      CALL SOMTX(1000,VRTIN(KH+1))
      CALL MTNV(H,D,VVV,DD)
      CALL SOMTX(1000,VRTIN(KA+1))
      CALL MTNV(A,D,VVV,DD)

C   GET COVARIANCES OF THE PARTS.
C   CALCULATE INITIAL WEIGHTS
      W(JOIN)=WFAC*AM0*SPCOR
      W(JOIN)=W(JOIN)
      W0D(JOIN)=W(JOIN)+WANJIN

C   CALCULATE SPLITTING FACTORS
      SPFAC(JOIN)=APR10P(JOIN)
      OPP10P(JOIN)=SPFAC(JOIN)

C   CALCULATE PROPORTIONS FOR PARENT(JOIN) AND SUBS (KA + KB)
      PGRAT(JOIN)=0.
      PROP(JOIN)=PHOP(KA)+PROP(KB)
      OPPROP(JOIN)=PHOP(JOIN)
      PHRCM(JOIN)=1.
      CALL DFNCAL(KA,1./PROP(JOIN)*W(LS))
      CALL DFNCAL(KB,1./PROP(JOIN)*W(LS))
      CIN(JOIN)=CTN(KA)*PROP(KA)+CIN(KB)*PROP(KB)
      OCTN(JOIN)=CTN(JOIN)
      ODFN(JOIN)=CIN(JOIN)/PROP(JOIN)
      CTOT(JOIN)=W(LS)-ODEN(JOIN)

C   CALCULATE WEIGHTTING COEFFICIENTS (TEMPORARY-FOR MEANS AND COVAR)
      CF=W(JOIN)/(W(KB)*W(KH))*PROP(KA)*PROP(KB)
      FA=W(KH)/W(KA)
      CA=PHOP(KA)*W(JOIN)/W(KA)
      CH=PHOP(KB)*W(JOIN)/W(KB)

```

JOI00800
 JOI00810
 JOI00820
 JOI00830
 JOI00840
 JOI00850
 JOI00860
 JOI00870
 JOI00880
 JOI00890
 JOI00900
 JOI00910
 JOI00920
 JOI00930
 JOI00940
 JOI00950
 JOI00960
 JOI00970
 JOI00980
 JOI00990
 JOI01000
 JOI01010
 JOI01020
 JOI01030
 JOI01040
 JOI01050
 JOI01060
 JOI01070
 JOI01080
 JOI01090
 JOI01100
 JOI01110
 JOI01120
 JOI01130
 JOI01140
 JOI01150
 JOI01160
 JOI01170
 JOI01180
 JOI01190
 JOI01200
 JOI01210
 JOI01220
 JOI01230
 JOI01240
 JOI01250
 JOI01260
 JOI01270
 JOI01280
 JOI01290
 JOI01300
 JOI01310
 JOI01320
 JOI01330
 JOI01340
 JOI01350
 JOI01360
 JOI01370
 JOI01380
 JOI01390
 JOI01400
 JOI01410
 JOI01420
 JOI01430
 JOI01440
 JOI01450
 JOI01460
 JOI01470
 JOI01480
 JOI01490
 JOI01500
 JOI01510
 JOI01520
 JOI01530
 JOI01540
 JOI01550
 JOI01560
 JOI01570
 JOI01580

FILE: JOIN FORTRAN A

```

C CHV=CA
IF (INDEX(KH),LT,0) CHV=CHV*W(KR)/OW(KR)
JO101590
C CALCULATE WEIGHTED OVERALL MEANS AND COVARIANCE
DO 21 I=1,MQ
JO101600
SUM(JOIN+I)=CA*SUM(KA+I)+CH*SUM(KB+I)
JO101610
SKEW(JOIN+I)=0.
JO101620
OSUM(JOIN+I)=SUM(JOIN+I)
JO101630
DELTA=CF*(FA*SUM(KA+I)-SUM(KB+I))
JO101640
JO101650
JO101660
JO101670
C COVARIANCE=COVAR(KA)+COVAR(KB)+DISPLACEMENT**2 (WITH COEFFICIENTS)
JO101680
DO 21 J=1,MQ
JO101690
21 D(I,J)=CA*A(I,J)+CH*H(I,J)+DELTA*(FA*SUM(KA+J)-SUM(KB+J))
JO101700
JO101710
C PUT COVARIANCE INTO JOIN NODE. CALCULATE VOLUME
JO101720
CALL TRIMTX(COVAR(JOIN+1),D)
JO101730
CALL MINV(VVV,A,D,VOLIN(JOIN))
JO101740
CALL TRIMTX(VRTRN(JOIN+1),VVV)
JO101750
JO101760
C ZFPU OUT KURT
JO101770
DO 22 I=1,MN
JO101780
22 KURT(JOIN+I)=0.
JO101790
JO101800
C COVARIANCE MUST BE POSITIVE DEFINITE
JO101810
IF (VOLIN(JOIN),LE,0.) PRINT 653,LS,JOIN,VOLIN(LS),VOLIN(JOIN)
JO101820
653 FORMAT(1 VOLIN,*,* ERROR IN JOIN: CLASSES,VOLUMES!,215.2E10.5)
JO101830
VOLIN(JOIN)=ABS(VOLIN(JOIN))* .8756510763F-26*(6.283185307/W(JOIN))
JO101840
1      *#ME
JO101850
C PUT VOLUME (VOLIN) IN INTERNAL FORM. CALCULATE VOLRT. INIT DCN
JO101860
VOLRT(JOIN)=SQR(VOLIN(JOIN))
JO101870
DCN(JOIN)=0.0
JO101880
OW(JOIN)=1.(JOIN)
JO101890
JO101900
C *** PRINT DATA FOR NEW CLUSTER ***
JO101910
C PRINT OUT (IF DESIRED)
JO101920
CALL CLR(KH,-1,SUM,SKEW,KURT)
JO101930
CALL CLR(KA,-2,SUM,SKEW,KURT)
JO101940
CALL CLR(KB,-2,SUM,SKEW,KURT)
JO101950
RETURN
JO101960
END
JO101970
JO101980

```

FILE: MINV FORTRAN A

```

SUBROUTINE MINV(A,B,C,VOL)
C THIS ROUTINE CALCULATES A=THE INVERSE OF C. A=C**-1. IT ALSO
C RETURNS THE DETERMINANT OF C IN VOL. THE SQUARE ARRAY
C H IS TEMPORARY STORAGE, AND MAY BE IDENTICAL TO C.
C VOL=-DABS(DET(C)) IF C IS NOT POSITIVE DEFINITE.

COMMON /MISC/ MQ,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
1  AM0,UNCON,XOVFL0,XIINFL0,WADJIN,ELIMTH,SEPTH,VFAC,AMM,SBLTH,
2  INDEXL,WFACT,NPTS0,PQRATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
3  AMOMIN,AMIMAX,AMORAT,VOLLIM,HIAS,PJOIN,VRJOIN,WSIM,WDELSM,
4  HETTER,MODE,CURLEN,SPCOR

REAL A(MQ,MQ),H(MQ,MQ),C(MQ,MQ)
HFAI #R Z,VOLL
VOLL=1
DO 11 I=1,MM
DO 10 J=1,MM
H(I,J)=C(I,J)
10 A(I,J)=0.
11 A(I,I)=1.
DO 22 I=1,MM
VOLL=VOLL+H(I,I)
IF(H(I,I).LE.0.) VOLL=-DABS(VOLL)
Z=1./H(I,I)
DO 21 J=1,MM
H(I,J)=H(I,J)*Z
21 A(I,J)=A(I,J)*Z
DO 22 IP=1,MM
IF(IP,FU,I) GO TO 22
Z=P(IP,I)
DO 23 J=1,MM
P(IP,J)=H(IP,J)-H(I,J)*Z
23 A(IP,J)=A(IP,J)-A(I,J)*Z
22 CONTINUE
VOL = VOLL
RETURN
END

```

MIN00010
MIN00020
MIN00030
MIN00040
MIN00050
MIN00060
MIN00070
MIN00080
MIN00090
MIN00100
MIN00110
MIN00120
MIN00130
MIN00140
MIN00150
MIN00160
MIN00170
MIN00180
MIN00190
MIN00200
MIN00210
MIN00220
MIN00230
MIN00240
MIN00250
MIN00260
MIN00270
MIN00280
MIN00290
MIN00300
MIN00310
MIN00320
MIN00330
MIN00340
MIN00350
MIN00360
MIN00370

ORIGINAL PAGE IS
OF POOR QUALITY

FILE: MLT FURTHER A

SUBROUTINE MLT(A,B,C)

```
COMMON /MISC/ NQ,MM,LR,V,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,  
1 AMQ,NUCON,XOVFL0,XUNFL0,WADJIN,ELIMTH,SFPTH,VFAC,AMM,SALTH,  
2 INDXVL,PFAC,NHTSO,PORATH,SPMVTH,DWFAC,GRACTH,AMOFAC,  
3 AMOMIN,AMOMAX,AMORAT,VOLLIM,BIAS,PJOIN,VRJOIN,WSIM,WDELSM,  
4 HETTEH,MODE,CUHLEN,SPCOR  
  
REAL*8 SUM,A(MQ,MM),B(MQ,MM),C(MQ,MM)  
DO 13 I=1,MQ  
DO 13 J=1,MM  
SUM=0.  
DO 12 K=1,MM  
12 SUM=SUM+B(I,K)*C(K,J)  
13 A(I,J)=SUM  
HETTEH  
END
```

MLT00010
MLT00020
MLT00030
MLT00040
MLT00050
MLT00060
MLT00070
MLT00080
MLT00090
MLT00100
MLT00110
MLT00120
MLT00130
MLT00140
MLT00150
MLT00160
MLT00170

FILE: MURSTR FORTRAN A

FUNCTION MORSTR(LENGTH)
C SUBROUTINE WAS PREVIOUSLY GET, BUT WAS CHANGED TO HAVE AN INTEGER NAME
C COMMON/CLUS/ JLINK(12),NARL,NTOP,NTHS7M,NWANT,LINK(14000)
C THE PURPOSE OF THIS ROUTINE IS TO ALLOCATE STORAGE SPACE
C INPUT--LENGTH SIZE OF SPACE NEEDED IN WORDS
C OUTPUT-GET INDEX IN THE LINK FILE TO THE REQUESTED SPACE
C
C MAHL = 13006
C CALCULATE INDEX TO LINK TABLE FOR MORE STORAGE FROM SIZE
C MORSTR = MOD(LENGTH,32)
C CK TABLE FOR PREVIOUSLY RETURNED ENTRY
10 LSTLINK = MORSTR
C LNKKT = LNK(MORSTR)
IF (LNKKT .EQ. MORSTR) GO TO 100
C LENGTH TO MOVE STORAGE IS IN THE LAST 16 BITS OF LINK ENTRY
C MORSTR = MOD(LINKKT,65536)
IF (MORSTR .EQ. 0) GO TO 100
C ENTRY WAS RETURNED, CHECK SIZE
C KOUNT = LNKKT/65536
IF (KOUNT .NE. LENGTH) GO TO 10
C LENGTH SIZE
LINK(LSTLINK) = LINK(MORSTR)
RETURN
C
C NO MATCHING ENTRY. RETURN MORE STORAGE FROM TOP OF LINK ARRAY
100 CONTINUE
IF (MOD(NTOP,2) .NE. 1) NTOP = NTOP + 1
MORSTR = NTOP
NTOP = NTOP + LENGTH
C
CK TABLE FOR OVERFLOW
IF (NTOP .LT. MAHL) RETURN
C
200 WRITE (6,200)
FORMAT (1 NU MORE SPACE AVAILABLE IN LINK ARRAY!)
WRITE (3,200)
STOP
END

MOR00010
MOR00020
MOR00030
MOR00040
MOR00050
MOR00060
MOR00070
MOR00080
MOR00090
MOR00100
MOR00110
MOR00120
MOR00130
MOR00140
MUR00150
MOR00160
MUR00170
MOR00180
MOR00190
MOR00200
MOR00210
MOR00220
MOR00230
MOR00240
MOR00250
MOR00260
MOR00270
MOR00280
MOR00290
MOR00300
MOR00310
MUR00320
MOR00330
MOR00340
MOR00350
MOR00360
MOR00370
MOR00380
MOR00390
MOR00400
MOR00410
MOR00420
MOR00430
MOR00440
MOR00450
MOR00460
MOR00470
MOR00480
MOR00490

FILE: MPVS FORTRAN A

SUBROUTINE MPVS(AM,C,V)

SETS AM=AM+V*V*C (TENSOR PRODUCT)

```
COMMON /MISC/ M0,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
1 AM0,DUCON,XUVFL0,XUNFL0,WADJIN,ELIMTH,SEPTH,VFAC,AMM,SBLTH,
2 INDYVL,WFAC,NPTSO,PQRATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
3 AMOMIN,AMIMAX,AMORAT,VOLLIM,HIAS,PJIN,VAJOIN,WSIM,WDELSM,
4 HETTEH,MODEF,CONLEN,SPCON
```

PFAL AM(475),V(30)
LOC=0
DO 10 I=1,M0
DO 10 J=1,1
LOC=LOC+1
10 AM(LOC)=AM(LOC)+V(I)*V(J)*C
RETURN
END

MPV00010
MPV00020
MPV00030
MPV00040
MPV00050
MPV00060
MPV00070
MPV00080
MPV00090
MPV00100
MPV00110
MPV00120
MPV00130
MPV00140
MPV00150
MPV00160
MPV00170

RECORD PAGE 43
OF POOR QUALITY

```

SUBROUTINE MTVFC(U,A,V)
DIMENSION NTR(32)
DIMENSION INDEX(27),LSUHS(30),LSUPER(29),IDADJ(28),NSYMB(12),
1 PCUM(26),PAIRCM(25),CIN(24),CTOT(23),PROP(22),SPFAC(21),
2 WADJ(20),W(19),OPROP(18),OW(17),VOLIN(16),VOLAT(15),DCON(14),
3 PORAT(13),DISS(12),PPASS(12),PST(11),OCIN(10),PCOND(7),
4 OPRIOR(9),ODEN(8)
DIMENSION VJIN(475),GEN(999),GREF(999),ALINK(),
EQUIVALENCE (LINK(1)),ALINK(1),(LINK(31)),INDEX(27))
EQUIVALENCE (LINK(31)),LSUHS(30),
EQUIVALENCE (LINK(31)),LSUPER(29), (LINK(31),IDADJ(28)),
1 (LINK(31),NSYMR(12)), (LINK(31),PCUM(26)), (LINK(31),PAIRCM(25)),
2 (LINK(31),CIN(24)), (LINK(31),CTOT(23)), (LINK(31),PROP(22)),
3 (LINK(31),SPFAC(21)), (LINK(31),WADJ(20)), (LINK(31),W(19)),
4 (LINK(31),OPROP(18)), (LINK(31),OW(17)), (LINK(31),VOLIN(16)),
5 (LINK(31),VOLAT(15)), (LINK(31),DCON(14)), (LINK(31),PORAT(13)),
6 (LINK(31),DISS(12)), (LINK(31),PPASS(12)), (LINK(31),PST(11)),
7 (LINK(31),OCIN(10)), (LINK(31),PCOND(7)), (LINK(31),VRIN(7)),
8 (LINK(31),GEN(7)), (LINK(31),OPRIOR(9)), (LINK(31),ODEN(8)),
9 (LINK(31),GPFF(5)), (LINK(31),NTB(31))
COMMON/CLUS/,JUNK(12),NARL,NTOP,NTASZM,NVANT,LINK(1400)
DIMENSION MXAR(31),LH(3),LV(3)
EQUIVALENCE (LH(1),LVRIN),(LH(2),LKURT),
1 (LH(3),LUVAR),(LV(1),LSUM),(LV(2),LSKEW),(LV(3),LOSUM)
COMMON /MISC/ MD,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
1 AMO,UDCON,XUNFL0,XUNFL0,WADJIN,ELTMTH,SEPTH,VFAC,AMM,SHLTH,
2 TNDXVL,VFAC,NPTSO,PORATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
3 AMOMIN,AMOMAX,AMOPAT,VOLLIM,BIAS,PJOIN,VRJOIN,WSIM,WDELSM,
4 RTTFR,MDPF,CORLFD,SPCOR
COMMON /STPAW/WAIT,C0NLV,SKHND,SKCHI,TRAND,TRCHI,URKAND,URKCHI,
1 HARCEL(2),MACCFL(2),VACCEL(2)
11 ALDP(1)(MU),V(MU),A(M0,M0)
11 ALDP(1)(MU)
11 SUM=0
DO 12 I=1,M0
SUM=0
DO 12 J=1,M0
12 SUM=SUM+A(I,J)*V(J)
13 II(T)=SUM
RTTFRN
END

```

FILE: MULTI FORTRAN A

SUBROUTINE MULTI(PV)

PURPOSE--CALL DATFIX, ALFREE, CLINIT, STATIS, CLDUMP

COMMON /INFORM/HEAD(42), MAPTAP,
1 PAGSZ, TAPCHK, TRNSYM, SAVTAP, MAXFET,
2 DUPSYM, THRSYM, MAXDIV, TSTSYP, MUL00010
3 SERIAL, TAPESV, FILESV, MINDIV, MUL00020
4 MAXCLS, NOCLS2, MAXFLD, NOFLD2, SPLMAX, MUL00030
5 NOTRFD, NOFFAT, NOFET2, NOFLD3, MUL00040
6 VARS22, VARS24, XSI2, NOSPEC, NOHIST, MUL00050
7 NOGRP, DIVSIZ, KEFPLV, PRTLEV, YSIZ, MUL00060
8 XHGH, XLW, SPCHAS, NOCLS3, PCTSZ, MUL00070
9 *THLOCK(30), FFTVEC(30), FFTWC2(30), HISVEC(30), INVERT(30), HESTVC(30), MUL00080
10 COMMON/CLUSTH/ IFFGIN, TOTWRD, CLSNAM, IPT, NOFLD, SYM(61), MUL00090
11 LNCAT, PRNT(4), KLAC, PRTME, PROUT, TOTPIX, MUL00100
12 SCRAM1, RUFPIX, RUFTOT, NHUFSD, NDUMP, LAUFD, MUL00110
13 MAXHF, AREA, NWDS, NWDRS, NPTS, LHUF, IQ1, NOCYCL, MUL00120
14 INTEGER TOTJED, SYM, PRNT, PRTME, PROUT, TOTPIX, SCRAM1, RUFPIX, RUFTOT, MUL00130
15 *CLSNAM, MUL00140
16 DIMENSION INDEX(27), LSUBS(30), LSUPER(29), IDADJ(28), NSYMB(12), MUL00150
17 PCUM(26), PRIHCM(25), CIN(24), CTOT(23), PROP(22), SPFAC(21), MUL00160
18 WADJ(20), W(19), OPROP(18), OW(17), VOLIN(16), VOLRT(15), DCON(14), MUL00170
19 PQRAT(13), DISS(12), PPASS(12), PST(11), OCIN(10), PCOND(7), MUL00180
20 OPRIOR(9), ODEN(8), MUL00190
21 DIMENSION VFTN(475), GEN(999), GREF(999), ALINK(1), MUL00200
22 FOUTVALENCE(LINK(1)), ALINK(1)), (LINK(31), INDEX(27)), MUL00210
23 FOUTVALENCE(LINK(31), LSUBS(30)), MUL00220
24 FOUTVALENCE(LINK(31), LSUPER(29)), (LINK(31), IDADJ(28)), MUL00230
25 (LINK(31), NSYMB(12)), (LINK(31), PCUM(26)), (LINK(31), PRIHCM(25)), MUL00240
26 (LINK(31), CIN(24)), (LINK(31), CTOT(23)), (LINK(31), PROP(22)), MUL00250
27 (LINK(31), SPFAC(21)), (LINK(31), WADJ(20)), (LINK(31), W(19)), MUL00260
28 (LINK(31), OPROP(18)), (LINK(31), OW(17)), (LINK(31), VOLIN(16)), MUL00270
29 (LINK(31), VOLRT(15)), (LINK(31), DCON(14)), (LINK(31), PQRAT(13)), MUL00280
30 (LINK(31), DISS(12)), (LINK(31), PPASS(12)), (LINK(31), PST(11)), MUL00290
31 (LINK(31), OCIN(10)), (LINK(31), PCOND(7)), (LINK(31), VRIN(7)), MUL00300
32 (LINK(31), GEN(7)), (LINK(31), OPRIOR(9)), (LINK(31), ODEN(8)), MUL00310
33 COMMON/CLUS/ JUNK(12), NAHL, NTOP, NTAS7M, NWANT, LINK(14000), MUL00320
34 DIMENSION NYAP(31), LH(3), LV(3), MUL00420
35 FOUTVALENCE(LH(1), LVRIN), (LH(2), LKURT), MUL00430
36 1 (LH(3), LVRIN), (LV(1), LSUM), (LV(2), LSFW), (LV(3), LOSUM), MUL00440
37 MUL00450
38 COMMON /MISC/ MO, MM, LP, LV, NINCLS, MXAR, WTINIT, KROOT, EPS, DELT, MUL00460
39 AMO, OMOM, XOVFL0, XUNFL0, WADJIN, ELIMTH, SFPTH, VFAC, AMM, SRLTH, MUL00470
40 TNIXVL, WFAC, NPTSO, PQRATH, SPMVTH, DWFAC, GRACTM, AMOFAC, MUL00480
41 AMOIN, AMOMAX, AMORAT, VOLIM, RIAS, PJOIN, VRJOIN, WSIM, WDELSM, MUL00490
42 HETTER, MODE, CORLEN, SPCOR, MUL00500
43 MUL00510
44 MUL00520
45 COMMON /STRPAR/WAIT, CONLV, SKBND, SKCHI, TRND, TRCHI, URKAND, URKCHI, MUL00530
46 1 PACCEL(2), MAGCEL(2), VACCEL(2), MUL00540
47 MUL00550
48 MUL00560
49 MUL00570
50 CALL DATFIX TO INITIALIZE VARIABLES
51 CALL DATFIX
52 MO=NOFET
53 MM=(MO*(MO+1))/2
54 CALL ALFREE TO FREE STRING STARTED BY KLAC
55 CALL ALFREE(KLAC, NINCLS)
56 CALL CLINIT TO INITIALIZE THE CLUSTERING ALGORITHM
57 CALL CLINIT(KLAC)
58 KROOT=KLAC
59 CALL STATIS TO CLASSIFY EACH POINT AND UPDATE STATISTICS
60 CALL STATIS(KLAC, PV, GEN(LSUM), GEN(LSFW), GEN(LKURT), GEN(LOSUM),
61 * GEN(LVRA))
62 K: PRINT OUT ALL CLASSES.
63 PROUT=3
64 CALL CLDUMP TO PRINT ALL CLASSES FOR ENTIRE TREE UNDER KLAC
65 CALL CLDUMP(KLAC)
66 PROUT=1
67 RETURN

FILE: MULTI FORTRAN A

END

MUL00800

FILE: MVEC FORTAN A

```
SUBROUTINE MVEC(U,A,V)
COMMON /MISC/ MO,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
1 AMO,ODCON,XOVFLO,XUNFL0,WADJIN,ELIMTH,SFPTH,VFAC,AMM,SBLTH,
2 INDXVL,WFAC,NPKTS0,PQRATH,SFMVTH,DWFAC,GRACTM,AMOFAC,
3 AMOMIN,AMOMAX,AMORAT,VOLLIM,BIAS,PJOIN,VRJOIN,WSIM,WDELSM,
4 HETTEP,MDIE,CFULLEN,SPCOR
      REAL*8 U(MO),V(MO),A(MO,MO)
      HFAL=A*SUM
      DO 13 I=1,MO
      SUM=0.
      DO 12 J=1,MO
12    SUM=SUM+A(I,J)*V(J)
13    U(I)=SUM
      RETURN
      END
```

MVE00010
MVE00020
MVE00030
MVE00040
MVE00050
MVE00060
MVE00070
MVE00080
MVE00090
MVE00100
MVE00110
MVE00120
MVE00130
MVE00140
MVE00150
MVE00160
MVE00170

FILE: NRAND FORTRAN A

```
FUNCTION NRAND(NX)
DATA MOOD,MULT,INC/214748369,731381067,123456791/
NX=MOD(NX*MULT+INC,MOOD)
NRAND=FRS(NX)
RETURN
END
```

NRA00010
NRA00020
NRA00030
NRA00040
NRA00050
NRA00060

FILE: ORD1 FORTRAN A

SUBROUTINE ORD1(A,I1,I2,N)	ORD00010
DIMENSION A(N)	ORD00020
IXSTOP=I2-1	ORD00030
IF ((IXSTOP-I1).LT.1) GO TO 210	ORD00040
DO 200 J=I1,IXSTOP	ORD00050
JP1=J+1	ORD00060
IF (ABS(A(J)).LE.ABS(A(JP1))) GO TO 200	ORD00070
COPY=A(J)	ORD00080
A(J)=A(JP1)	ORD00090
A(JP1)=COPY	ORD00100
K=J	ORD00110
150 K=K-1	ORD00120
IF (K.LT.I1) GO TO 200	ORD00130
KP1=K+1	ORD00140
IF (ABS(A(K)).LE.ABS(A(KP1))) GO TO 200	ORD00150
COPY=A(K)	ORD00160
A(K)=A(KP1)	ORD00170
A(KP1)=COPY	ORD00180
GO TO 150	ORD00190
200 CONTINUE	ORD00200
210 CONTINUE	ORD00210
RETURN	ORD00220
END	ORD00230

SUBROUTINE CLUSMP

C* THE PURPOSE OF CLUSMP IS TO PRINT THE CLUSTER MAP. THE CLUSTER
C* MAP HAS EACH PIXEL REPRESENTED BY A SYMBOL. EACH SYMBOL
C* REPRESENTS A CLUSTER TYPE

IMPLICIT INTEGER (A-Z)

COMMON /AHWAY/TOP, ARRAY(18000)

DIMENSION TPFFAT(?)

DIMENSION HUFER(1), COL(3,110), OUT(110), FL(R), FLUINF(6),
1 CLUSTN(110), NHLK(61), NNLKT(61)COMMON /GLORAL/HEAD(63), MAPTAP, DATAPE, SAVTAP, RMFILE,
1 RMKEY,MISFIL,MISKEY,TRFORM,EKTPTP,FRPKEY,MAPUNT,NOFILE,DRUMAD,
2 ASAVFL,NHSJUN,NHSTFI , DUPSYM, THRSYM, MAXDIV, MINCOMMON/CLUSTH/ TREGIN,TOTWRD,CLSNAM,IPT,NOFLD, SYM(61),
1 LNCAT, PRNT(4), KLBC, PRTME, PROUT, TOTPIX,
2 SCHAM1,HUFHTY,HUFTOT,NHUFSD,NDUMP,LAUFD
3 MAXHE, APFA, NWDS, NWDRS, NPTS, LAUF, IO1, NOCYCLINTEGER TOTWRD,SYM,PRNT,PRTME,PROUT,TOTPIX,SCRAM1,BUFPIX,BUFTOT
1 ,CLSNAM

DIMENSION NTB(32)

DIMENSION INDX(27),LSUHS(30),LSUPFH(29),IDANJ(28),NSYMR(12),
1 PCUM(26),PRIPCM(25),CIN(24),CTOT(23),PROP(22),SPFAC(21),
2 WANJ(20),W(19),OPROP(18),OW(17),VOLIN(16),VOLRT(15),DCON(14),
3 PQRAT(13),DISS(12),PPASS(12),PST(11),OCIN(10),PCOND(7),
4 OPRIOR(9),ODEN(8)DIMENSION VPTN(475),GFN(999),GRFF(999),ALINK(1)
EQUIVALENCE (LTNK(1),ALINK(1)),(LINK(31),INDEX(27))
EQUIVALENCE (LTNK(31),LSURF(29)),(LTNK(31),TDADJ(24)),
1 (LINK(31),NSYMP(12)),(LINK(31),PCUM(26)),(LINK(31),PRIPCM(25)),
2 (LINK(31),CIN(24)),(LINK(31),CTOT(23)),(LINK(31),PROP(22)),
3 (LINK(31),SPFAC(21)),(LINK(31),WANJ(20)),(LINK(31),W(19)),
4 (LINK(31),OPROP(18)),(LINK(31),OW(17)),(LINK(31),VOLIN(16)),
5 (LINK(31),VOLRT(15)),(LINK(31),DCON(14)),(LINK(31),PQRAT(13)),
6 (LINK(31),DISS(12)),(LINK(31),PPASS(12)),(LINK(31),PST(11)),
7 (LINK(31),OCIN(10)),(LINK(31),PCOND(7)),(LINK(31),VRIN(7)),
8 (LINK(31),GFN(7)),(LINK(31),OPRIOR(9)),(LINK(31),ODEN(8)),
9 (LINK(31),GRFF(8)),(LINK(31),NTB(31))

COMMON/CLUS/ JUNK(12),NARL,NTOP,NTBS7M,NWANT,LTNK(14000)

DIMENSION MXAH(31),LR(3),LV(3)

EQUIVALENCE (LR(1),LVIN),(LR(2),LKURT),
1 (LR(3),LOVAR),(LV(1),LSIM),(LV(2),LSKEW),(LV(3),LOSUM)COMMON /MISC/ MO,MM,LH,LV,NINCLS,MXAH,WTINIT,KROOT,EPS,DELT,
1 AMO,ODCON,XOVFL0,XUNFL0,WANJIN,ELIMTH,SEPTH,VFAC,AMM,SALTH,
2 TDIVL,WFLAC,NPTSD,PQRATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
3 AMULIN,AMOMAX,AMOPAT,VOLLIM,RIAS,PJOIN,VJOIN,WSIM,WDELSM,
4 HFTTER,MODE,CORLEN,SPCIRCOMMON /STH4W/WAIT,CONLV,SKHND,SKCHI,TRAND,TRCHI,URKHND,URKCHI,
1 PACCEL(2),MACCEL(2),VACCEL(2)LOGICAL NFJN
PFAL HUFER

EQUIVALENCE (COL(1,1),ARRAY(2001))

EQUIVALENCE (OUT(1),ARRAY(2400))

EQUIVALENCE (CLUSTN(1),ARRAY(2510))

EQUIVALENCE (NHLK(1),ARRAY(2620))

EQUIVALENCE (NNLKT(1),ARRAY(2730))

EQUIVALENCE (HUFER(1),ARRAY(3001))

1 EQUIVALENCE (FLDINF(1),LINSTR),(FLDINF(4),SAMSTR),
2 (FLDINF(2),LINEND),(FLDINF(5),SAMEND),
(FLDINF(3),LININC),(FLDINF(6),SAMINC)

FIELD INFORMATION STORED AS FOLLOWS

ARRAY(1) = FIRST FIELD NAME FOR THIS CLASS

(2) = NO. OF VERTICES FOR THIS FIELD (NV)

(3)-(3+NV#2) = ACTUAL VERTEX NUMBERS

(3+NV#2) = TOTAL PIXELS FOR THIS FIELD

PAC00010
PAC00020
PAC00030
PAC00040
PAC00050
PAC00060
PAC00070
PAC00080
PAC00090
PAC00100
PAC00110
PAC00120
PAC00130
PAC00140
PAC00150
PAC00160
PAC00170
PAC00180
PAC00190
PAC00200
PAC00210
PAC00220
PAC00230
PAC00240
PAC00250
PAC00260
PAC00270
PAC00280
PAC00290
PAC00300
PAC00310
PAC00320
PAC00330
PAC00340
PAC00350
PAC00360
PAC00370
PAC00380
PAC00390
PAC00400
PAC00410
PAC00420
PAC00430
PAC00440
PAC00450
PAC00460
PAC00470
PAC00480
PAC00490
PAC00500
PAC00510
PAC00520
PAC00530
PAC00540
PAC00550
PAC00560
PAC00570
PAC00580
PAC00590
PAC00600
PAC00610
PAC00620
PAC00630
PAC00640
PAC00650
PAC00660
PAC00670
PAC00680
PAC00690
PAC00700
PAC00710
PAC00720
PAC00730
PAC00740
PAC00750
PAC00760
PAC00770
PAC00780
PAC00790

FILE: PACLMP FORTRAN A

C* (4+NV*2)-(10+NV*2) = FLDINF BLOCK FOR THIS FIELD
C* DATA BLANK// */
C
C***** INITIALIZE *****
C** INITIALIZE OUTPUT FILE **
IPUNIT = 16
TPCHAN = 1
IPFFAT(1) = 1
IPFRMT = 11
IPSAMP = (SAMEND-SAMSTR)/SAMINC + 1
FNDFAP = 0
C
INCATE=0
IPT=1
MAXPOP = 61
DO 25 I=1,MAXPOP
25 NBLKT(I)=0
C CALL MAXIMUM HUFFER SIZE THAT IS AN EVEN NUMBER OF PIXELS
TOP = 18000
MAXPUF = (TOP - 3000)/MQ * MQ
C
C*****
DO 600 IFLD=1,NFLD
C WRITE HEADING FOR NEW FILE
CALL WRTHED (TPCHAN,IPFFAT,IPSAMP,IPFRMT,IPUNIT)
C XTRA = SEGMENTS ALREADY PROCESSED
XTRA=0
C NFLN = FALSE IF ONLY 1 PAGE NEEDED
NFLN=.FALSE.
C NV = NO OF VERTICES FOR THIS FIELD
NV=ARRAY(IPT+1)
C TOTSAM = TOTAL FIXELS FOR THIS FIELD
TOTSAM=ARRAY(IPT+2+NV*2)
C MOVE DATA DEFINING LINES AND SAMPLES
DO 30 I=1,5
FLDINF(I)=ARRAY(IPT+2+I+NV*2)
30 CONTINUE
C BLANK OUTPUT HUFFER
DO 40 I=1,110
40 OUT(I)=BLANK
C ZFLD COUNT OF POINTS IN CLUSTER
DO 45 I=1,MAXPOP
45 NBLK(I)=0
C CHECK IF ALL OF CLUSTER MAP CAN FIT ACROSS ONE PAGE--ONLY 110
SYMBOLS ARE PRINTED ACROSS THE PAGE FOR EVERY LINE. THE PROGRAM
WILL PRINT THE ENTIRE CLUSTER MAP IN 110 SYMBOL SEGMENTS
C SET STARTING ADDRESS AND ENDING ADDRESS FOR LINE
STCLM=SAMSTH
FNCLM=SAMEND
C CK FOR MORE THAN 110 SEGMENTS SPECIFIED AND RESET MAXIMUM IF NECESSARY
NFLN = FALSE. IF 1 LINE TRUE, IF 2 OR MORE LINES
50 IF (((FNCLM-SAMSTH)/SAMINC+1-XTRA).LE. 110) GO TO 60
FNCLM= (100+XTRA)*SAMINC + SAMSTR
NFLN=.TRUE.
C * READ 1 BUFFER OF DATA *
C
C TWRD = TOTAL WORDS LEFT TO BE READ
60 TWRD = TOTWRD
C READ FULL BUFFER OF DATA UNLESS ONLY PARTIAL BUFFER OF DATA LEFT
NOWRD = MAXPUF
IF (TWRD .LT. NOWRD) NOWRD = TWRD
C TREGIN IS BEGINNING OF SCRAMBLED DATA
PAC00800
PAC00810
PAC00820
PAC00830
PAC00840
PAC00850
PAC00860
PAC00870
PAC00880
PAC00890
PAC00900
PAC00910
PAC00920
PAC00930
PAC00940
PAC00950
PAC00960
PAC00970
PAC00980
PAC00990
PAC01000
PAC01010
PAC01020
PAC01030
PAC01040
PAC01050
PAC01060
PAC01070
PAC01080
PAC01090
PAC01100
PAC01110
PAC01120
PAC01130
PAC01140
PAC01150
PAC01160
PAC01170
PAC01180
PAC01190
PAC01200
PAC01210
PAC01220
PAC01230
PAC01240
PAC01250
PAC01260
PAC01270
PAC01280
PAC01290
PAC01300
PAC01310
PAC01320
PAC01330
PAC01340
PAC01350
PAC01360
PAC01370
PAC01380
PAC01390
PAC01400
PAC01410
PAC01420
PAC01430
PAC01440
PAC01450
PAC01460
PAC01470
PAC01480
PAC01490
PAC01500
PAC01510
PAC01520
PAC01530
PAC01540
PAC01550
PAC01560
PAC01570
PAC01580

FILE: PAFLMP FORTRAN A

CALL HREAD (IHEGIN, BUFER, NOWRD, DUMMY)
ADDRESS = IAFGIN + NOWRD
TWRD = TWRD - NOWRD
BUFAD = 1

*** SET COLUMN HEADINGS ***

100 CONTINUE
J=0
DO 100 I=SAMSTR,SAMEND,SAMINC
IF(I .LT. STCLM) GO TO 100
IF(I .GT. FNCLM) GO TO 110
J=1
COL(1,J)=I/100
COL(2,J)=MOD(I,100)/10
COL(3,J)=MOD(I,10)
100 CONTINUE

*** WRITE HEADINGS ***

110 LPTSEJ
WRITE(6,500)
WRITE(6,HEAD)
WRITE(6,510)ARRAY(IPT),TOTSAM
C* PRINT COLUMN NUMHFRS FOR CLUSTER MAP
DO 120 I=1,3
120 WRITE(6,520)(COL(I,J),J=1,LPTS)
WRITE(6,500)
500 FORMAT(/)
510 FORMAT(//2X,45,//, TOTAL NUMBER OF POINTS IN THIS FIELD",IT)
520 FORMAT(9X,110I1)

***** PROCESS ONE LINE OF DATA *****

DO 300 LINE=LINSTR,LINEND,LININC
C* CALL EDLINT TO OBTAIN FIELD INTERSECTIONS FOR THIS LINE
CALL EDLINT(ARRAY(IPT+2),NV,FL,LINE,SAMPS,NI)

***** PROCESS EACH INTERCEPT *****

DO 200 I=1,NI+2
NOFX=0

C* C* SAVE THE BEGINNING AND END NUMBERS OF THIS INTERCEPT FOR ARRAY OUT
WHICH IS PRINTED
IE=(FL(I)-SAMSTR)/SAMINC+1
IE=(FL(I+1)-SAMSTR)/SAMINC+1
IF(MOD(SAMSTR,SAMINC) .NE. MOD(FL(I)+SAMINC)) IB=IB+1
TNPTS=(IE-IB+1)*NI
IF(IE .GT. IE) TNPTS=0
IF(IE .GT. IE) GO TO 140

C* C* CHECK IF INTERCEPTS ARE WITHIN PRINTOUT LIMITS
IF(FL(I) .GT. FNCLM) GO TO 140
IF(FL(I+1) .LT. STCLM) GO TO 140
GO TO 150

C* C* THESE CARDS ARE USED TO SET UP THE OUTPUT FOR BLANK LINES OR BLANK
SPACES OR AREAS OUTSIDE OF PRINT LIMITS

140 CONTINUE
IF(I+1 .NE. NI) WRITE (6,141)
141 FORMAT(1V)
GO TO 140

C* C* 150 CONTINUE
C* RESAVE BEGINNING AND END NUMBERS FOR ARRAY OUT IF INTERCEPT(S)
EXCEEDS PRINT LIMIT
IF(FL(I) .GT. STCLM) GO TO 152
IE=IP
IE=(STCLM-SAMSTR)/SAMINC+1
IF(MOD(SAMSTR,SAMINC) .NE. MOD(STCLM,SAMINC)) IB=IB+1

C* C* STORE NUMBER OF EXTRA POINTS THAT ARE IN INTERCEPT BUT ARE
C* OUTSIDE THE PRINT LIMITS ON LEFT SIDE
NOFX=(IE-IB)*NI
BUFAD=BUFAD+NOFX
TNPTS = TNPTS - NOFX
152 IF(FL(I+1) .GT. FNCLM) IE=(FNCLM-SAMSTR)/SAMINC+1

PAC01590
PAC01600
PAC01610
PAC01620
PAC01630
PAC01640
PAC01650
PAC01660
PAC01670
PAC01680
PAC01690
PAC01700
PAC01710
PAC01720
PAC01730
PAC01740
PAC01750
PAC01760
PAC01770
PAC01780
PAC01790
PAC01800
PAC01810
PAC01820
PAC01830
PAC01840
PAC01850
PAC01860
PAC01870
PAC01880
PAC01890
PAC01900
PAC01910
PAC01920
PAC01930
PAC01940
PAC01950
PAC01960
PAC01970
PAC01980
PAC01990
PAC02000
PAC02010
PAC02020
PAC02030
PAC02040
PAC02050
PAC02060
PAC02070
PAC02080
PAC02090
PAC02100
PAC02110
PAC02120
PAC02130
PAC02140
PAC02150
PAC02160
PAC02170
PAC02180
PAC02190
PAC02200
PAC02210
PAC02220
PAC02230
PAC02240
PAC02250
PAC02260
PAC02270
PAC02280
PAC02290
PAC02300
PAC02310
PAC02320
PAC02330
PAC02340
PAC02350
PAC02360
PAC02370

FILE: PACLMP FORTRAN A

```

C* SET PRINT LIMITS IN THE I-110 LIMITS WHEN THE NUMBERS WOULD EXCEEDPAC02380
C* 110 ON ANOTHER PASS THROUGH THE DATA
I=IH-XTRA
IE=IF-XTRA
IF(IH.GT.IF) GO TO 140
NSETS=IE-IH+1
NPNTS=NSETS*MN
C 155 CONTINUE
C* CHECK IF NEEDED DATA IN THIS INTERCEPT IS IN TWO BUFFERS
C* IF (RUFAD + NPNTS .LE. NOWRD) GO TO 170
C
C      ** COMPLETE LINE IS NOT IN BUFFER **
C IS ANY OF LINE IN CURRENT BUFFER?
DIFF = HUFAD - NOWRD - 1
IF (HUFAD .LE. NOWRD) GO TO 157
C NONE OF CURRENT LINE IS IN HUFFER. SET NEW HUFFER POINTER TO
C SKIP OVER EXTRANEOUS POINTS
ADDRESS = ADDRESS + DIFF
TWRD = TWRD - DIFF
RUFAD = 1
GO TO 165
C SOME OF CURRENT HUFFER IS NEEDED. MOVE IT TO BEGINNING OF BUFFER
157 KOUNT = NOWRD - HUFAD + 1
DO 160 I = 1,KOUNT
HUFER(I) = RUFFR(RUFAD)
160 RUFAD = RUFAD + 1
C RESET BUFFER ADDRES TO END OF OLD DATA
RUFAD = KOUNT + 1
C READ DATA INTO REMAINDER OF BUFFER
165 NOWRD = MAXRUF - RUFAD + 1
IF (TWRD .LT. NOWRD) NOWRD = TWRD
IF (NOWRD .LE. 0) GO TO 168
CALL RREAD(ADDRESS,RUFER(RUFAD),NOWRD,STAT)
ADDRESS = ADDRESS + NOWRD
TWRD = TWRD - NOWRD
168 RUFAD = 1
C CALL CLUST TO OBTAIN THE CLUSTER SUBSCRIPT SO THAT THE CLUSTER
C SYMBOLS CAN BE COMPUTED FOR EACH SET OF FL'S WITHIN THE
C START(STCLM) AND END(ENCLM)
170 CONTINUE
9968 FORMAT (1TH,1F,CLUSTN 1-10*.216,/.10I7)
CALL CLUST (HUFER(RUFAD), NSETS, CLUSTN, KLBC, GEN(LS:M))
C ** WRITE LINE OF DATA ON NEW FILE **
C RESET END OF FILE INDICATOR IF LAST RECORD
IF ((LNF .GT. (LINEND - LININC)) ENDTAP = -1
IF (XTRA .EQ. 0) CALL WRITLN (CLUSTN,ENDTAP)
C
I=0
C* STORE SYMBOLS FOR OUTPUT
DO 173 K=IH,IF
L=L+1
NUM=CLUSTN(L)
C SET SYMBOL--THE SUBSCRIPT FOR SYM IS RESET TO 1 THROUGH MAXPOP
    NTFMP = NSYMR(NUM)
    J=MOD(NSYMR(NUM)-1,MAXPOP)+1
    IF ( J .LE. 0 ) J = 47
    LNCATE=MAX0(LNCAT,J)
    OUT(K)=SYM(J)
C SAVE THE NUMBER OF PIXELS ASSIGNED TO THIS CLUSTER
173 NALIK(J)=NALIK(J)+1
C      *** PRINT LINE OF OUTPUT AND BLANK BUFFER ***
    WRITE (6,275) LINE, (OUT(K),K=1,LPTS)
    IF (LINE .LE. 4) WRITE (3,9275) LINE, (OUT(K),K=1,LPTS)
275 FFORMAT (2X,15,2X,110A1)
9275 FFORMAT (2X,15,2X,50A1,/,9X,50A1)
C
DO 280 K=1,110
280 OUT(K) = HBLANK

```

FTL.F: PACLMR FORTRAN A

```

C 100 RUFAD = MUFAD + TNPTS
C 200 CONTINUE
C 300 CONTINUE
C
C           ** END OF GENERATION OF LINES FOR 1 PAGE **
C
C   CHECK FOR ADDITIONAL PAGES
C 110 IF(.NOT. NFIN)GO TO 400
C
C   MULTIPLE PAGES.  RESET BOUNDARIES
C     XTRAS=(FNCLM-SAMSTR)/SAMINC + 1
C     STCLM=FNCLM+1
C     FNCLM=SAMEND
C     NFIN=.FALSE.
C
C   GO TO PROCESS ADDITIONAL PAGES
C     GO TO 100
C
C 400 CONTINUE
C
C           ** END OF CLUSTER MAP **
C
C           ** PRINT COUNTS **
C
C   DO 465 I=1,MAXPOP
C 465 NBLKT(I)=NBLK(I)+NBLK(I)
C
C     WRITE(6,570)
C 470 FORMAT(//2X,'POINTS PFR CLUSTER IN THIS FIFLD',/3X,'CLUSTER',
C     & 5X,'SYMHOL',5X,'POINTS')
C
C     LNCAT=MOD(LNCAT-1,MAXPOP)+1
C
C
C   DO 580 I=1,LNCAT
C 580 WRITE(6,590)I,SYM(I),NBLK(I)
C 590 FORMAT(8X,I2,10X,A1,7X,I5)
C
C     IPT=IPT+NN*2
C 600 CONTINUE
C
C
C     WRITE(6,MFAID)
C     WRITE(3,750)LNCAT
C 750 FORMAT(//1 TOTAL NUMBER OF CLUSTERS =*,I3)
C
C     TOTPTS=TOTWPN/NN
C
C     WRITE(6,760) TOTPTS
C 760 FORMAT(//1 TOTAL NUMBER OF POINTS =*,I5)
C
C     WRITE(6,770)
C 770 FORMAT(//1 CLUSTER      SYMBOL      POINTS IN CLUSTER)
C
C     DO 775 J=1,LNCAT
C 775 WRITE(6,780)J,SYM(J),NBLKT(J)
C 780 FORMAT(4X,I2,9X,A1,10X,I7)
C
C     RETURN
C END
C#

```

PRINTED, PAGE IS
QUALITY

FILE: PCMMAT FORTRAN A

```

DIMENSION AW(4,4),C(4),R(4),U(4),V(4)          PCM00010
DIMENSTON JM(4),T(10),A(4,4)                  PCM00020
DIMENSION W(4,4)                                PCM00030
N=4
NMEN=1
IN=1
DO 1999 KK=1,N
JM(KK)=KK
1999 CONTINUE
DO 3 I=1,4
DO 4 J=1,4
W(I,J)=.5
IF (I.EQ.J) W(I,J)=.4
3 CONTINUE
CONTINUE
WRITE (16,7777)
7777 FORMAT(//2X,'START INPUT')
READ(15,7778) T(I)
7778 FORMAT(F10.6)
WRTF(6,7787) T(I)
7787 FORMAT(//2X,IT=1,F10.6)
DO 201 T=1.0
DO 202 J=1,1
KK=KK+1
A(I,J)=T(KK)
202 CONTINUE
201 CONTINUE
CALL MTMLSH(A,W,AW,N,N)
DO 12 J=1,N
DO 13 I=1,N
AWIJ=AW(I,J)
U(I)=W(I,J)*AWIJ
V(I)=AW(I,J)**2
13 CONTINUE
C(I)=SUPSUM(U,N,N)
R(J)=SUPSUM(V,N,N)
12 CONTINUE
DO 14 J=1,N
U(J)=R(J)
14 CONTINUE
5 CONTINUE
RSUM=SUPSUM(U,N,N)
MAIN LOOP
30 CONTINUE
WHITE(6,42)
42 FORMAT(//2X,'AFTER 36 CONTINUE. W COLUMNWISE')
DO 30 K=1,3
CALL MTINDEX(R,JM,K,N)
IS=JM(K)
IF (R(IS).LE.0.0) GO TO 60
RMIN=R(IS)
ITERATIVE SUB LOOP
DO 31 IK=K+NN
I31=IK+1
IR=JM(I31)
DO 32 J=1,N
U(I)=AW(I,IS)*AW(I,IR)
V(I)=W(I,IS)*AW(I,IR)
32 CONTINUE
WAAN=SUPSUM(U,N,N)
WAAN=SUPSUM(V,N,N)
DEI=WAAN-2.*C(IS)*WAAN
DEI=(DFL/R(IS))**2
FPS=.01*(.01+(R(IR)/R(IS))-1.)
IF (DFL.LT.FPS) GO TO 31
GAMMA=C(IS)
PHO=R(IS)
DO 33 J=1,NN
FORM ITERATION MATHIX
SM11=R(IS)+(C(IS)-GAMMA)**2
SM22=R(IR)+(C(IR)-GAMMA)**2
SM12=WAAN-2.*GAMMA*WAAN
FIGEN=0.5*(SM11+SM22-SQRT((SM11-SM22)**2+4.*SM12**2))
X1=SM22-FIGEN
X2=-SM12
DEL=SQRT(X1**2+X2**2)
X1=X1/DEL
X2=X2/DEL
IF (FIGEN.LF.0.0) GO TO 35

```

THIS PAGE IS
NOT IN QUALITY

FILE: PCMMAT FORTRAN A

```

      FRRCM=1.0-.01
      IF (EIGEN.GT.RHO*ERRCM) GO TO 35
      DO 34 I=1,N
      U(I)=(X1*AW(I,IS)+X2*AW(I,IR))+(X1*W(I,IS)+X2*W(I,IR))
34    CONTINUE
      GAMMA=SUPSUM(U,N,N)
      RHO=EIGEN
33    CONTINUE
35    CONTINUE
      DO 36 I=1,N
      WITS=W(I,IS)
      WITR=W(I,IR)
      U(I)=X1*WITS + X2*WITR
      V(I)=X2*WITS - X1*WITR
      W(I,IS)=U(I)
      W(I,IR)=V(I)
      AWITS=AW(I,IS)
      AWITR=AW(I,IR)
      U(I)=X1*AWITS+X2*AWITR
      V(I)=X2*AWITS-X1*AWITR
      AW(I,IS)=U(I)
      AW(I,IR)=V(I)
      U(I)=W(I,IS)*U(I)
      V(I)=W(I,IR)*V(I)
36    CONTINUE
      WRITF(16,40) IS
      FORMAT(//2x,'IS='//I4)
      WRITF(16,420) (W(I,IS),I=1,N)
      WRITF(16,41) IR
      FORMAT(//2x,'IR='//I4)
      WRITF(16,420) (W(I,IR),I=1,N)
520   FORMAT(//.8(F12.6))
      C(IS)=SUPSUM(U,N,N)
      C(IR)=SUPSUM(V,N,N)
      DO 37 I=1,N
      U(I)=(AW(I,IS)-C(IS)*W(I,IS))**2
      V(I)=(AW(I,IR)-C(IR)*W(I,IR))**2
37    CONTINUE
      F(IS)=SUPSUM(U,N,N)
      P(IR)=SUPSUM(V,N,N)
      IF (P(IS).LT.0.0) GO TO 60
      CONTINUE
      END OF SUB LOOP
      IF (R(IS).LT.RF*C(IS)**2) GO TO 30
      IF (RMIN.GT.4.0*R(IS)) GO TO 34
      GO TO 30
60    CONTINUE
      JM(K)=JM(IN)
      JM(IN)=IS
      WRITE(15,100) K,JM(K),IN,JM(IN)
100   FORMAT(//2x,'K='//I4,' ' // 'JM='//I4,' ' // 'IN='//I4,' ' // 'JM='//I4)
      P(IS)=0.0
      IN=IN + 1
      IF (IN.GT.N) GO TO 70
      GO TO 39
30    CONTINUE
70    CONTINUE
      WRITF(6,71)
      FORMAT(//2x,'HFACHED THE END')
      END

```

FILE: PROCFS FORTRAN A

C PROCFS LARS 0106

PRO000010

C PROCFS DUMMY LOAD POINT FOR OVERLAY MODULES
WHITTEN 8/5/72 BY EARL RODD
REVISED 1/22/73 BY EARL RODD

PRO000020

PRO000030

PRO000040

PRO000050

PRO000060

PRO000070

PRO000080

PRO000090

SUBROUTINE PROCFS (ARRAY, TOP)

PRO000100

PRO000110

PRO000120

PRO000130

PRO000140

THIS IS A DUMMY PROGRAM USED TO RESOLVE A REFERENCE
IN THE WOUT MODULE AS THE POINT AT WHICH OVERLAY
MODULES BEGIN. THE ARRAY A IS USED TO FORCE THE
SYSTEMS FREE STORAGE ABOVE OVERLAY MODULES.
(SEE SYSTEM MANUAL.)

PRO000150

PRO000160

PRO000170

PRO000180

PRO000190

PRO000200

PRO000210

PRO000220

PRO000230

PRO000240

PRO000250

DIMENSION A(34000)
RETURN
END

FILE: PRTREF FORTRAN A

```

SUBROUTINE PRTREF(TOPNOD)
IMPLICIT INTEGER (A-Z)
C THE PURPOSE OF THIS SUBROUTINE IS TO PRINT A NODE TREE
DIMENSION INDEX(27),LSUBS(30),LSUPER(29),IDADJ(28),NSYMA(12),
1 PCUM(26),PRIRCM(25),CIN(24),CTOT(23),PROP(22),SPFAC(21),
2 WADJ(20),W(19),OPROP(18),OW(17),VOLIN(16),VOLRT(15),DCON(14),
3 PORAT(13),DISS(12),PPASS(12),PST(11),OCIN(10),PCOND(7),
4 OPRIOR(9),ODEN(8)
DIMENSION VRIN(475),GEN(999),GREF(999),ALINK(1)
EQUIVALENCE (LINK(1),ALINK(1)),(LINK(31),INDEX(27))
EQUIVALENCE (LINK(31),LSUAS(30))
EQUIVALENCE (LINK(31),LSUPER(29)), (LINK(31),IDADJ(28)),
1 (LINK(31),NSYMA(12)), (LINK(31),PCUM(26)), (LINK(31),PRIRCM(25)), PRT00010
2 (LINK(31),CIN(24)), (LINK(31),CTOT(23)), (LINK(31),PROP(22)), PRT00020
3 (LINK(31),SPFAC(21)), (LINK(31),WADJ(20)), (LINK(31),W(19)), PRT00030
4 (LINK(31),OPROP(18)), (LINK(31),OW(17)), (LINK(31),VOLIN(16)), PRT00040
5 (LINK(31),VOLRT(15)), (LINK(31),DCON(14)), (LINK(31),PORAT(13)), PRT00050
6 (LINK(31),DISS(12)), (LINK(31),PPASS(12)), (LINK(31),PST(11)), PRT00060
7 (LINK(31),OCIN(10)), (LINK(31),PCOND(7)), (LINK(31),VRIN(7)), PRT00070
8 (LINK(31),GEN(7)), (LINK(31),OPRIOR(9)), (LINK(31),ODEN(8)), PRT00080
9 (LINK(31),GREF(8)) PRT00090
COMMON/CLUS/ JUNK(12),NARL,NTOP,NTR57M,NWANT,LINK(14000) PRT00100
DIMENSTON POS(120) PRT00110
DIMENSTON X(1000),Y(1000) PRT00120
DATA TPLANK/14/ PRT00130
C ZERO X AND Y LOCATION FOR NODES PRT00140
MAXNOD = 1000 PRT00150
TOPNDE = 110 PRT00160
IF (TOPNDF .EQ. 0) RETURN PRT00170
DO 10 I = 1,MAXNOD PRT00180
X(I) = 0 PRT00190
Y(I) = 0 PRT00200
CONTINUE PRT00210
10
      NODE = TOPNDE PRT00220
      IRIGHT = 1 PRT00230
      LINENO = 1 PRT00240
      MAXLN = 1 PRT00250
      HIGHND = 100 PRT00260
C
C      *** SAVE LOCATION OF NODE ***
C
50  NUMBER = LSUHS(INDEX(NODE)) PRT00270
  IF (NUMBER .EQ. 0) NUMBER = 100 PRT00280
  X(NUMBER) = IRIGHT PRT00290
  Y(NUMBER) = LINENO PRT00300
  IF (NODE .GT. HIGHND) HIGHND = NODE PRT00310
C
      LSTNOD = NODE PRT00320
C
C      *** PROCESS SIBUR ***
C
      NODE = LSUHS(NODE) PRT00330
      IF (NODE .LE. 0) GO TO 100 PRT00340
C
      SUB EXITS. INCREMENT LINE NUMBER PRT00350
      LINENO = LINENO + 1 PRT00360
      IF (LINENO .GT. MAXLN) MAXLN = LINENO PRT00370
      GO TO 50 PRT00380
C
C      *** PROCESS SIBLING ***
C
100  NODE = LINK(LSTNOD) PRT00390
  IF (NODE .LE. 0) GO TO 200 PRT00400
C
C      SIBLING EXITS. INCREMENT COLUMN NUMBER PRT00410
      IRIGHT = IRIGHT + 1 PRT00420
      GO TO 50 PRT00430
C
C      *** FIND NEXT NON-ZERO NODE ***
C
200  LINENO = LINENO - 1 PRT00440
  IF (LINENO .LE. 1) GO TO 300 PRT00450
  NODE = LSUPER(LSTNOD) PRT00460
  IF (NODE .EQ. TOPNDE) GO TO 300 PRT00470
  LSTNOD = NODE PRT00480
  GO TO 100 PRT00490
C
C      *** PRINT NODES ***
C
C      PRINT LINFSZ NODES PER LINE. SET MIN AND MAX COLS FOR PAGE PRT00500
300  MINCOL = 1 PRT00510
  LINFSZ = 17 PRT00520

```

FILE: PRTREE FORTRAN A

```

C
310  MAXCOL = MINCOL + LINESZ - 1          PRT00800
      ** PRINT LINE                         PRT00810
      DO 400 LINE = 1,MAXLIM                 PRT00820
C
      ICT = 0                                PRT00830
C BLANK BUFFER                            PRT00840
      DO 320 I = 1,120                      PRT00850
320  POS(I) = TBLANK                     PRT00860
C CK NODE FOR THIS LINE                  PRT00870
      DO 370 NODE = 1,HIGHND               PRT00880
      NOLINE = Y(INODE)                   PRT00890
      IF (NOLINE .NE. LINE) GO TO 370     PRT00900
C
      COLNO = X(NODE)                     PRT00910
      IF (COLNO .LT. MINCOL .OR. COLNO .GT. MAXCOL) GO TO 370" PRT00920
C
      NODE ON THIS PAGE                  PRT00930
      COLNO = MOD(COLNO,LINESZ)           PRT00940
      IF (COLNO .EQ. 0) COLNO = LINESZ    PRT00950
      COLNO = (COLNO-1) * 3 + 1            PRT00960
      NUMBER = NODE                     PRT00970
      CALL HN1441 (POS(COLNO),3,NUMBER)   PRT00980
      ICT = 1                            PRT00990
370  CONTINUE                           PRT01000
C LINE COMPLETE, PRINT IT
      IF (ICT .EQ. 0) GO TO 400          PRT01010
      WRITE (3,300) (PUS(L),L=1,5)       PRT01020
      WRITE (6,300) (PUS(L),L=1,5)       PRT01030
380  FORMAT (17(1X,3A1))                PRT01040
C
400  CONTINUE                           PRT01050
C
C END OF PAGE, SKIP TO NEW PAGE
      WRITE (3,410)                      PRT01060
410  FORMAT (/)                         PRT01070
C CK FOR MORE PAGES
      MINCOL = MINCOL + LINESZ          PRT01080
      IF (MINCOL .LE. IRIGHT) GO TO 310  PRT01090
C
      RETURN
END

```

FILE: HEADTP FORTRAN 4

THIS SUBROUTINE COORDINATES THE ROUTINES TO READ FIELDS OF DATA FROM THE IMAGE TAPE AND STORE IT ON A DRUM FILE FOR THE CLASSY SUBROUTINES. RANDOM ACCESS ROUTINES ARE USED FOR DRUM I/O. (INIT, REA00010
 AND RWITP). REA00020
 REA00030
 REA00040
 REA00050
 REA00060
 REA00070
 REA00080
 REA00090
 REA00100
 REA00110
 REA00120
 REA00130
 REA00140
 REA00150
 REA00160
 REA00170
 REA00180
 REA00190
 REA00200
 REA00210
 REA00220
 REA00230
 REA00240
 REA00250
 REA00260
 REA00270
 REA00280
 REA00290
 REA00300
 REA00310
 REA00320
 REA00330
 REA00340
 REA00350
 REA00360
 REA00370
 REA00380
 REA00390
 REA00400
 REA00410
 REA00420
 REA00430
 REA00440
 REA00450
 REA00460
 REA00470
 REA00480
 REA00490
 REA00500
 REA00510
 REA00520
 REA00530
 REA00540
 REA00550
 REA00560
 REA00570
 REA00580
 REA00590
 REA00600
 REA00610
 REA00620
 REA00630
 REA00640
 REA00650
 REA00660
 REA00670
 REA00680
 REA00690
 REA00700
 REA00710
 REA00720
 REA00730
 REA00740
 REA00750
 REA00760
 REA00770
 REA00780
 REA00790

```

SUBROUTINE READTP(LAST, IDATA, TOPID)
IMPLICIT INTEGER (A-Z)
REAL UNIF,Z * ZOR * X * FJ * PIXFL * TEMP
PARAMETER CRUF
DIMENSION FLDINF(6), IDATA(1), FL(12)
DIMENSTON CRUF(), PIXEL(1), NUM(1)
COMMON/ANHAY/ TOP, ARRAY(18000)
COMMON /INFORM/ HEAD(42), MAPTAP,
1 PAGSZ, TAPCHK, TRNSYM, TSTSYM, MAXDIV, SPLMAX,
2 DUPSYM, THRSYM, MAXDIV, MINDIV, NOFLD3, NOFLD2,
3 SERIAL, TAPESV, FILESV, NOFET4, VARSIZ, NOMIST,
4 MAXCLS, NOCLSP, MAXFLD, NOFET2, NOSPEC,
5 NOTRFD, NOFFAT, XSIZ, NOCLS3, PCTSZ,
6 VAHSZ2, VARSZ4, KFFPLV, PRTLEV, YSIZ,
7 NOGRP, DIVSIZ, XHIGH, XLOW, SPCRAS, NOFLD1, NOFLD0,
8 XHIGH, XLOW, SPCRAS, NOFLD3, PCTSZ, REA00240
OTLOCK(30), FFTVFC(30), FETVC2(30), HISVEC(30), INVERT(30), BESTVC(30) REA00250
COMMON/CLUSTR/ IHEGIN, TOTWRD, CLSNAM, IPT, NOFLD, SYM(61),
1 LNCAT, PRNT(4), KLHC, PRTME, PROUT, TOTPPIX,
2 SCRAM1, HUFPIX, HUFTOT, NHUFSD, NDUMP, LAUFD
3 MAXPF, ARFA, NWDS, NWUHS, NPTS, LHIF, TQI, NOCYCL
4 INTEGER TOTWRD, SYM, PRNT, PRTME, PROUT, TOTPPIX, SCRAM1, HUFPIX, BUFTOT
5 CLSNAM
EQUIVALENCE (CHUF(1), ARRAY(2001)), (PIXEL(1), ARRAY(21))
EQUIVALENCE (NUM(1), ARRAY(9010))
EQUIVALENCE (FLDINF(1), LINSTR), (FLDINF(4), SAMSTR):
* (FLDINF(2), LINEND), (FLDINF(5), SAMEND):
* (FLDINF(3), LININC), (FLDINF(6), SAMINC)
RESERVE 2000 LOCATIONS OF 'ARRAY' FOR FIELD DEFINITION INFORMATION.
THE REMAINDER OF 'ARRAY' IS USED FOR I/O BUFFERS.
FIELD INFORMATION STORED AS FOLLOWS
  ARRAY(1) = FIRST FIELD NAME FOR THIS CLASS
  (2) = NO. OF VERTICES FOR THIS FIELD (NV)
  (3)-(3+NV*2) = ACTUAL VERTEX NUMBERS
  (3+NV*2) = TOTAL PIXFLS IN THIS FIELD
  (4+NV*2)-(10+NV*2) = FLDINF BLOCK FOR THIS FIELD
COMMON /TESTCM/ ITEST(100), MTEST(100), ISUM, MSUM, NSUM
INITIALIZE CONSTANTS TO CHECK SCRAMBLING
DO 2 I=1,100
2 ITEST(I) = 0
MTEST(I) = 0
NTEST(I) = 0
ISUM = 0
MSUM = 0
NSUM = 0
TF(NCOL.GT.0)GO TO 10
CALL RTNIT(IHEGIN,NWDS)
IHEGIN = 1
DEFINE FILE ??(2100,2000,U,TD)
DRUMAD = 1
DRMWDS = 420000
WRITE (22*) DRUMAD
DATAFL = 11
CALL TAPHDF(DATAFL,0)
CONTINUE
ADDRES=IHFGTH
T*PDE=0
LAST=0
TOTWRD=0
PFINOX=2001
TOP = 18000
MAXDTM=TOP-2000
BUFSIZE = MAXDTM/NOFFAT * NOFFAT
NOFILE=0

```

FILE: READTP FORTRAN A

```

IPT=1
IF(NOCL.GT.0) WRITE(6,1500) NXTCLS
C#
C# READ A FIELD DESCRIPTION FROM CARDS.
ICK=LARREAD(ARRAY(IPT),ARRAY(IPT+2),FLDINF,ARRAY(IPT+1))
IF(ICK.LT.0)GO TO 100
IF(ICK.FQ.0)GO TO 150
NV=ARRAY(IPT+1)
NOFLD=NOFLD+1
NSAMP=(SAMEND-SAMSTR)/SAMINC+1
FLDSAM=0
IH=IPT+2
IE=IA+NV*2-1
WRITE(6,1500) NOFLD,ARRAY(IPT),NV,SAMINC,LININC,
              (ARRAY(I),I=IR,IE)

C# POSITION TAPE FOR THIS FIELD
CALL FLDINT(FLDINF,FFTVEC,NOFEAT)
KNT=0
DO 70 LINE=LINSTH,LINEND,LININC
CALL LINERD(IDATA,FNDTAP)
IF(FNDTAP.FQ.-1)GO TO 800

C# FIND SAMPLE INTERSECTS FOR THIS LINE - NI=NO. OF INTERSECTS
CALL FDLINT(ARRAY(IPT+2),NV,FL,LINE,SAMPS,NI)
C# STORE DATA ON THIS LINE INTO OUTPUT BUFFER
DO 60 I=1,NT,2
IR=(FL(I)-SAMSTR)/SAMINC+1
IE=(FL(I+1)-SAMSTR)/SAMINC+1
IF(MOD((SAMSTR,SAMINC),NE. MOD(FL(I)+SAMINC))IR=IR+1
IF(IR.GT.IE)GO TO 60
DO 50 J=IR,IE
KNT=KNT+1
DO 50 K=1,NOFFAT
IWRD=IWRD+1
ITEMP=(K-1)*NSAMP+J
CRUF(IWRD)=IDATA(ITEMP)

C CK FOR FULL BUFFER. WRITE BUFFER IF FULL
IF(IWRD.LT.BUFSIZ)GO TO 50
TOTWRD=TOTWRD+IWRD
CALL RWHITE(ADDRES,CRUF(1),BUFSIZ,LSTAT)
C COUNT OCCURRENCES OF VALUES FOR TEST OF SCRAMBLING
CALL TTEST(CRUF(1),BUFSIZ,ITEST,ISUM)
9941 FORMAT('ADDRES,BUFSIZ,ISUM=',2I10,/(10I7))
ADDRES=ADDRES+BUFSIZ
IWRD=0
50 CONTINUE
60 CONTINUE
FLDSAM=FLDSAM+SAMPS
CONTINUE

C EMPTY BUFFER
IF(IWRD.EQ.0)GO TO 75
TOTWRD=TOTWRD+IWRD
CALL RWRITE(ADDRES,CRUF(1),IWRD,LSTAT)
CALL TTEST(CRUF(1),IWRD,ITEST,ISUM)
CONTINUE

75 IPT=IPT+NV*2+2
A$RAY(IPT)=KNT
DO 80 I=1,6
IPT=IPT+1
A$RAY(IPT)=FLDTNF(I)
IPT=IPT+1
IF(IPT+30.GT.2000)GO TO 700
GO TO 20

C# C$ NAME CARD ENCOUNTERED - REREAD PREVIOUS CARD TO GET NAME.
100 NOCL=NOCL+1
IF(NOCL.GT.1)GO TO 120
READ(30,1100) NXTCLS
WRITE(6,1500) NXTCLS
GO TO 20

C CL$NAM=NXTCLS
120 READ(30,1100)NXTCLS

```

FILE: READTP FORTRAN A

```

      GO TO 155
C 150  CLSNAM=NXTCLS
C 155  LAST=1      **** SCRAMBLE DATA ****
      PURPOSE: SCRAMBLE THE ORDER OF A SET OF INTEGERS, IN THE
      RANGE 1 - NPIXEL, AND USE THIS SCRAMBLED SET OF
      INTEGERS TO SCRAMBLE THE LOCATIONS OF INPUT DATA
      WITHIN THE INPUT DATA BUFFER. OUTPUT THE SCRAMBLED
      DATA ON THE DRUM.
C 160  BUFTOT = NO. OF AVAIL WORDS IN SCRATCH AREA 'ARRAY'
I 160  TOP = 16000
C 165  HUFTOT = ((TOP - IPT+1)/NOFEAT) * NOFEAT
C 170  RUFSTZ = 1/2 OF TOTAL WORDS ON FAST STORAGE DEVICE BUFFER (ARRAY)
C 175  HUFSIZ = HUFTOT/2
C 180  NHUFS0 = 0
C 185  NWODS = TOTAL NO. OF WORDS AVAIL IN FAST STORAGE
C 190  TOTWRD = TOTAL NUMBER OF WORDS IN ORIG DATA ON DRUM
C 195  SCRAM1 = 1ST WORD OF AVAIL FAST STORAGE + LENGTH OF ORIG DATA UNLESS
      SCRAM1 = IHEGIN + TOTWRD
      SCRAMBLE THE INPUT DATA. PLACE THE SCRAMBLED DATA ON DRUM.
      FOR SUBSEQUENT ACCESS BY SUBROUTINES STATIS AND CLASY1
C 200  IPT = 1ST AVAIL WORD IN SCRATCH AREA 'ARRAY'
C 205  RUFSTZ = 1/2 OF TOTAL AVAIL WORDS IN BUFFER 'ARRAY'
C 210  RUFPIX = SIZE OF 'ARRAY'/NO OF CHANNELS
I 210  HUFPIX = BUFTOT/NOFEAT

      *** INITIALIZE ***
      Z = 204(145927)
      READ THE INPUT PIXELS FROM DRUM INTO THE BUFFER SPACE, AND
      SCRAMBLE THE PIXELS IN THE INPUT BUFFFH

C 220  TNADDR = NEXT WORD OF ORIG DATA
C 225  TNADDR = IHEGIN
C 230  OUTADD = NEXT AVAIL WORD FOR SCRAMBED DATA
C 235  OUTADD = SCRAM1
C 240  NM1 = NO OF CHANNELS - 1
C 245  NM1 = NOFEAT - 1

      *** CALCULATE TRIAL SLICE ***
      NHUFS = NO. OF BUFFERS OF DATA
      TOTWRD = TOTAL WORDS OF DATA
      FFAT = NO OF CHANNELS
      MAXRUF = MAXIMUM HUFFFH SIZE * NO. OF BUFFERS
      SLICE = LARGEST CHUNK THAT WILL FIT IN A BUFFER, NHUFS0 TIMES
      SECTION = ARRAY CREATED FROM SLICES OF DATA FROM EACH BUFFER

C 250  CALC TRIAL SLICE
200  NHUFS = (TOTWRD + RUFSTZ - 1) / RUFSTZ
210  MAXRUF = HUFSIZ * NHUFS
      TSLICE = (MAXRUF/NHUFS) / NHUFS
C 220  SLICE MUST BE EVEN MULT OF NO OF CHANNELS
      IF (TSLICE .GE. NOFEAT) GO TO 230
C 230  WRITE (6,1220) TOTWRD,NHUFS, NOFEAT, TSLICE
1220  FORMAT (' READTP--ERROR IN CALC BUFFER SLICES. TOTAL WORDS =',I8,
      1, ' NO WDS IN BUFF = ',I6,' NO CHAN=',I6,' TRIAL SLICE=',I6)
      CALL CMFRK

C 240  CALC SLICE AS EVEN MULT OF NO CHANNELS
230  SLICE = (TSLICE/NOFEAT) * NOFEAT
C 250  TOTAL WORDS READ = ( 1 SLICE FROM N BUFFERS) * N BUFFERS TIMES
      SECTS7 = SLICE * NHUFS
      TOTSTS = SECTS7 * NHUFS

C 260  NUMBER OF WORDS IN EACH RUFFER * NO OF BUFFERS MUST BE .GE. TOT WDS
      IF (TOTSTS .GE. TOTWRD) GO TO 240
      NHUFS = NHUFS + 1
      GO TO 210

C 270  CONTINUE
C 280  READ N BUFFERS OF DATA
      DO 600 K=1,NHUFS+1

```

```

C     *** READ SLICES OF DATA ***
C
C     SLICE DATA--READ SOME DATA FROM EACH SECTION EXCEPT POSSIBLY LAST
C     SECTION. START EACH READ IN FIRST SECTION
C
C     INADDR = NEXT WORD OF ORIG DATA
C
410     RADDRS = INADDR + (K-1) * SLICE
        NWORDS = 0
C
        NDXRD = 1
        DO 420 J = 1,NHUFFS
        SIZRD = SLICE
        CURADS = RADDRS + (J-1) * SECTSZ
C
C     CK IF MORE DATA IS NEEDED FROM LAST BUFFER
C     IF (TOTWHD - CURADS .LT. 0) GO TO 420
C
        LASTWD = CURADS + SLICE - 1
        IF (TOTWHD .LT. LASTWD) SIZRD = TOTWHD - CURADS + 1
        CALL READ (CURADS, PIXEL(NDXRD), SIZRD, STATUS)
        NDXRD = NDXRD + SIZRD
        NWORDS = NWORDS + SIZRD
420     CONTINUE

C
C     CONSTRUCT A SET OF SCRAMBLED INTEGERS IN THE RANGE 1 - NPIXEL
C
C     CREATE SCRAMBLFD INTEGERS ONLY WHEN BUFFER SIZE CHANGES
1345    CONTINUE
C     NPIXFL = NO. OF SETS OF CHANNELS IN ONE BUFFER
        NPIXEL = NWORLIS/NOFEAT
        IF (K .GE. 2 .AND. LSTNPX .EQ. NPIXFL) GO TO 480
        LSTNPX = NPIXEL
C
        DO 440 I = 1,NPIXEL,1
        NUM(I) = I
C
        NPI = NPIXEL + 1
C
        DO 460 J=1,4,1
C
        DO 450 J10=1,NPIXEL
        J = NPIXEL - J10 + 1
        X = UNTF(I,J)
        FJ = J
        NN = FJ * X + 1
        LL = NPI - J
        NTFMP = NUM(LL)
        NUM(LL) = NUM(NN)
        NUM(NN) = NTFMP
450     CONTINUE
C
C     *** SCRAMBLE DATA ***
C
C     NOPIXFL = NO. OF SETS OF CHANNELS IN ONE BUFFER
480     NPXM1 = NPIXEL - 1
        DO 500 I=1,NPMX1,2
        N = NUM(I) * NOFEAT - NM1
        L = NUM(I+1) * NOFEAT - NM1
C
C     NOFEAT = NO. OF CHANNELS
        DO 490 J=1,NOFEAT,1
        NN = N + J - 1
        LL = L + J - 1
        TFMP = PIXFL(NN)
        PIXFL(NN) = PIXFL(LL)
        PIXFL(LL) = TFMP
490     CONTINUE
500     CONTINUE
C
C     ADD FACTOR TO EACH PIXEL
        DO 510 I = 1,NWORDS
        Z = UNTF(I,1)
        X = Z - .5
        PIXFL(I) = PIXFL(I) + X
510     CONTINUE

```

REA02380
 REA02390
 REA02400
 REA02410
 REA02420
 REA02430
 REA02440
 REA02450
 REA02460
 REA02470
 REA02480
 REA02490
 REA02500
 REA02510
 REA02520
 REA02530
 REA02540
 REA02550
 REA02560
 REA02570
 REA02580
 REA02590
 REA02600
 REA02610
 REA02620
 REA02630
 REA02640
 REA02650
 REA02660
 REA02670
 REA02680
 REA02690
 REA02700
 REA02710
 REA02720
 REA02730
 REA02740
 REA02750
 REA02760
 REA02770
 REA02780
 REA02790
 REA02800
 REA02810
 REA02820
 REA02830
 REA02840
 REA02850
 REA02860
 REA02870
 REA02880
 REA02890
 REA02900
 REA02910
 REA02920
 REA02930
 REA02940
 REA02950
 REA02960
 REA02970
 REA02980
 REA02990
 REA03000
 REA03010
 REA03020
 REA03030
 REA03040
 REA03050
 REA03060
 REA03070
 REA03080
 REA03090
 REA03100
 REA03110
 REA03120
 REA03130
 REA03140
 REA03150
 REA03160

FILE: READTP FORTRAN A

*** WRITE SCRAMBLED DATA ON DRUM ***

PUT THE BUFFER OF SCRAMBLED PIXELS BACK ON THE DRUM

C OUTADD = NEXT AVAIL WORD FOR SCRAMBLED DATA
C PIXEL = SCRAMBLED DATA
C NWORDS = NO. OF WORDS IN CURRENT BUFFER
C CALL HWRITE(OUTADD,PIXEL,NWORDS,OSTAT)
C COUNT OCCURANCES OF VALUES FOR TEST OF SCRAMBLING
C CALL TFST(PIXEL,NWORDS,NTEST,NSUM)
C OUTADD = OUTADD + NWORDS

600 CONTINUE
RETURN

700 WRITE(6,1300)
CALL CMERH

800 WRITE(6,1400)
CALL CMERR

1100 FORMAT(10A,44)

1300 FORMAT(' FIELD DEFINITION INFORMATION EXCEEDS 2000 WORDS')
1400 FORMAT(' END-OF-TAPE REACHED BEFORE END OF FIELD')
1500 FORMAT('//40X,'FIELDS TO BE CLUSTERED FOR CLASS',1X,A4//
* '36X,'SAMPLE',3X,'LINE',/5X,'FIELD NAME',3X,
* 'INO. OF VERTICES',3X,'INC.',3X,'INC.',30X,'VERTICES')
1600 FORMAT(1X,I2,4X,A4,I2X,I2,I0X,I2,6X,I2,5X,
* '5((I4,1,I4,1),2X)/2(52X,5((I4,1,I4,1),2X)))
FND

REA03170
REA03180
REA03190
REA03200
REA03210
REA03220
REA03230
REA03240
REA03250
REA03260
REA03270
REA03280
REA03290
REA03300
REA03310
REA03320
REA03330
REA03340
REA03350
REA03360
PEA03370
REA03380
REA03390
REA03400
REA03410
PEA03420
REA03430

SUBROUTINE SEPER(KL)

C THIS ROUTINE IS CALLED WHENEVER IT HAS BEEN DECIDED THAT A
 CLUSTER SHOULD BE SPLIT FOR GOOD. THE CLUSTER HAS PREVIOUSLY
 BEEN SPLIT BY THE ROUTINE SPLIT, AND SUFFICIENT STATISTICS
 HAVE NOW BEEN GATHERED TO CONFIRM THAT THE CLUSTER CAN BE
 SPLIT UP ON A STATISTICALLY SIGNIFICANT BASIS.

C THE ROUTINE TAKES THE CLUSTER AT KL, AND BRINGS UP ALL ITS
 DAUGHTER CLUSTERS TO THE SAME LEVEL AS KL ITSELF. KL IS
 THEN ELIMINATED.

DIMENSION NTA(32)

```

1  PCUM(26),PRIRCM(25),CIN(24),CTOT(23),PROP(22),SPFAC(21),
2  WADJ(20),W(19),UPROP(18),OW(17),VOLIN(16),VOLRT(15),DCON(14),
3  PORAT(13),DISS(12),PPASS(12),PST(11),OCIN(10),PCOND(7),
4  OPRIOR(9),ODEN(8)
5  DIMENSTON VRIN(475),GEN(999),GREF(999),ALINK(1)
6  EQUIVALENCE (LINK(1)),ALINK(1),(LINK(31),INDEX(27))
7  EQUIVALENCE (LINK(31),LSUBS(30))
8  EQUIVALENCE (LINK(31),LSUPER(29)),(LINK(31),IDADJ(28)),
9  (LINK(31),NSYMR(12)),(LINK(31),PCUM(26)),(LINK(31),PRIRCM(25)),
10 (LINK(31),CIN(24)),(LINK(31),CTOT(23)),(LINK(31),PROP(22)),
11 (LINK(31),SPFAC(21)),(LINK(31),WADJ(20)),(LINK(31),W(19)),
12 (LINK(31),OPROP(18)),(LINK(31),OW(17)),(LINK(31),VOLIN(16)),
13 (LINK(31),VOLRT(15)),(LINK(31),DCON(14)),(LINK(31),PORAT(13)),
14 (LINK(31),DISS(12)),(LINK(31),PPASS(12)),(LINK(31),PST(11)),
15 (LINK(31),OCIN(10)),(LINK(31),PCOND(7)),(LINK(31),VRIN(7)),
16 (LINK(31),GEN(7)),(LINK(31),OPRIOR(9)),(LINK(31),ODEN(8)),
17 (LINK(31),GPFF(8)),(LINK(31),NTB(31))
18 COMMON/CLUS/ JUNK(12),NARL,NTOP,NTBS7M,NWANT,LINK(14000)
19 DIMENSION MYAR(31),LR(3),LV(3)
20 EQUIVALENCE (LR(1),LVRIN),(LR(2),LKURT),
21 (LR(3),LVAR),(LV(1),LSUM),(LV(2),LSKFW),(LV(3),LOSUM)

```

```

1  COMMON /MISC/ MQ,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
2  AMQ,UDCON,XOVFLO,XUNFLO,WADJIN,ELIMTH,SEPTH,VFAC,AMM,SBLTH,
3  INDXVL,WFAC,NPTSO,PORATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
4  AMOMIN,AMOMAX,AMORAT,VOLLIM,BIAS,PJOIN,VRJOIN,WSIM,WDELSM,
5  HETTER,MODE,CURLEN,SPCOR

```

```

1  COMMON /STPAR/WAIT,CONLV,SKAND,SKCHI,TRAND,TRCHI,URKAND,URKCHI,
2  PACCEL(2),MACCEL(2),VACCEL(2)

```

*** CALC NEW PATIO AND PASSF ***

KS=LSUPER(KL)
 N = LSUHS(KL)

PRINT 571, INDEX(KL),INDEX(KS),INDEX(N),SPFAC(KL)
 WRITE (3,571) INDEX(KL),INDEX(KL),INDEX(KL),INDEX(N),SPFAC(KL)

571 FORMAT (10***SFPERATE 1,13,1 SUPER+SURS 1,213,1 SPFAC 1,E11.5)

RATIO=PROP(KL)/PRIRCM(KL)

PASSF=PST(KL)/(PCUM(KL)*PRIRCM(KL))

*** REMOVE KL ***

C K = FIRST OFFSPRING OF PARENT OF KL
 FIRST WE FIND KL IN THE LIST OF LSUBS OF KS, AND REMOVE IT.

K=LSUHS(KS)

IF(K.NE.KL) GO TO 20

C FIRST OFFSPRING OF KL = K, RESET FIRST OFFSPRING TO LINK(KL)
 LSUHS(KS)=LINK(KL)

GO TO 29

C FIND CLUSTER KL

20 KUL=K

K=LINK(K)

IF(K.LE.0) GO TO 666

IF(K.NE.KL) GO TO 20

C SET LINK OF KOLD = LINK OF KL

25 LINK(KOLD)=LINK(KL)

CHECK FOR VOID SUBCLUSTERS OF KL

C PROCESS EACH SURCLUSTER.

29 K=LSUHS(KL)

SEP00010
 SEP00020
 SEP00030
 SEP00040
 SEP00050
 SEP00060
 SEP00070
 SEP00080
 SEP00090
 SEP00100
 SEP00110
 SEP00120
 SEP00130
 SEP00140
 SEP00150
 SEP00160
 SEP00170
 SEP00180
 SEP00190
 SEP00200
 SEP00210
 SEP00220
 SEP00230
 SEP00240
 SEP00250
 SEP00260
 SEP00270
 SEP00280
 SEP00290
 SEP00300
 SEP00310
 SEP00320
 SEP00330
 SEP00340
 SEP00350
 SEP00360
 SEP00370
 SEP00380
 SEP00390
 SEP00400
 SEP00410
 SEP00420
 SEP00430
 SEP00440
 SEP00450
 SEP00460
 SEP00470
 SEP00480
 SEP00490
 SEP00500
 SEP00510
 SEP00520
 SEP00530
 SEP00540
 SEP00550
 SEP00560
 SEP00570
 SEP00580
 SEP00590
 SEP00600
 SEP00610
 SEP00620
 SEP00630
 SEP00640
 SEP00650
 SEP00660
 SEP00670
 SEP00680
 SEP00690
 SEP00700
 SEP00710
 SEP00720
 SEP00730
 SEP00740
 SEP00750
 SEP00760
 SEP00770
 SEP00780
 SEP00790

FILE: SEPER FORTRAN A

```

      KOLD=KL
10  CONTINUE
      IF (K.GT.0) GO TO 614
666  PNTNT 666, KL, K, KOLD
664  FORMAT(10BAD SURINDEX IN SEPER: KL,K, K OLD=1,2I6,I12)
      CALL CLPR(KL,666,GEN(LSUM),GEN(LSKFW),GEN(LKURT))
      CALL CLPR(KOLD,666,GEN(LSUM),GEN(LSKFW),GEN(LKURT))
      RETURN

*** SET PARENT OF EACH OFFSPRING FROM PARENT OF KL

514  CONTINUE
      LSUPFR(K)=KS
      CALL DENCAL TO ADJUST THE DENOMINATOR OFFSET AND PROPORTION OF KL
      CALL DFNICAL(K,RATIO,W(KL))
      PST(K)=PST(K)+PASSF

      GFT NFXT SIRLING
      KOLD=KL
      KELINK(K)
      IF(K.NE.0) GO TO 10

      *** SET LAST OFFSPRING OF KL TO POINT TO OLD 1ST
      OFFSPRING OF KL'S PARENt.
      SET KL'S PARENt TO POINT TO 1ST OFFSPRING OF KL ***
      KS = PARENt OF KL
      NOW ADD THE SURCLUSTER LIST OF KL TO THAT OF KS
      LLINK(KOLD)=LSUHS(KS)
      LSUHS(KS)=LSUHS(KL)
      CALL FREE(KL+NINCLS)
      CALL PRTRFF(KS)
      RRETURN
      END

```

SEP00800
SEP00810
SEP00820
SEP00830
SEP00840
SEP00860
SEP00870
SEP00880
SEP00890
SEP00900
SEP00910
SEP00920
SEP00930
SEP00940
SEP00950
SEP00960
SEP00970
SEP00980
SEP00990
SEP01000
SEP01010
SEP01020
SEP01030
SEP01040
SEP01050
SEP01060
SEP01070
SEP01080
SEP01090
SEP01100
SEP01110
SEP01120
SEP01130
SEP01140
SEP01150

SUBROUTINE SETUP

```

***** THE PURPOSE OF SUBROUTINE SETUP IS TO READ AND ANALYZE ALL CARD INPUT TO THE PROGRAM *****

IMPLICIT INTEGER (A-X)

COMMON /INFORM/HED(42), MAPTAP, DATAPE, SAVTAP, MAXFET, SET00010
1 PAGSZ, TAPCHK, TRNSYM, TSTS, SPLMAX, SET00020
2 DUPSYM, THRSYM, MAXDIV, MINDIV, NOFLD2, SET00030
3 SERIAL, TAPESV, FILFSV, NOFLD3, SET00040
4 MAXCLS, NOCLS2, MAXFLD, NOFET2, VARSIZ, SET00050
5 NOTRFD, NOFEAT, NOFET4, NOHIST, SET00060
6 VARSZ2, VARSZ4, XSIZ, NOSPEC, SET00070
7 NOGRP, DIVSIZ, KEEPLV, PRTLEV, YSIZ, SET00080
8 XHIGH, XLOW, SPCHAS, NOCLS3, PCTS, SET00090
9 HILLOCK(30), FETVFC(30), FETVC2(30), HISVEC(30), INVERT(30), RESTVC(30), SET00100
10 DIMENSION HED1(10), HED2(10), DATE(2), COMENT(10), TEMP(1) SET00110
11 EQUIVALENCE (HED1(1),HEAD(3)), (DATE(1), HEAD(15)), (HED2(1),HEAD(20)), (COMENT(1),HEAD(32)) SET00120
12 COMMON /SUPCOM/ INTAPE, STATUS, COL, CODE1, CODE2, CARD(62) SET00130
13 COMMON/CLUSTH/ IREGIN, TOTWRD, CLSNAM, TPT, NOFLD, SYM(61) SET00140
14 LNCAT, PRNT(4), KLBC, PPTME, PROUT, TOTPIX, SET00150
15 SCHAM1, HUFPIX, HUFTOT, NAUFS, NDUMP, LAUFD, SET00160
16 MAXHF, AREA, NWDS, NWDRS, NPTS, LAUF, IQ1, NOCYCL, SET00170
17 INTEGER TOTWRD, SYM, PRNT, PPTME, PROUT, TOTPIX, SCRAM1, HUFPIX, BUFTOT, SET00180
18 CLSNAM, SET00190
19
20 DIMENSION SMHLS(61)
21 DATA SMHLS/11,21,31,141,151,161,171,181,191,1A1,1B1,1C1,1D1, SET00200
22 1E1,1F1,1G1,1H1,1I1,1J1,1K1,1L1,1M1,1N1,1O1,1P1,1Q1, SET00210
23 1H1,1S1,1T1,1U1,1V1,1W1,1X1,1Y1,1Z1,1I1,1J1,1L1,1M1,1N1,1O1, SET00220
24 1I1,1J1,1L1,1M1,1N1,1O1,1P1,1Q1,1R1,1S1,1T1,1U1,1V1,1W1,1X1,1Y1,1Z1,1I1,1J1,1L1,1M1,1N1,1O1, SET00230
25 DATA BLANK///, KOMMA//,/
26 DIMENSION INVEC(11)
27 DATA INVEC/"CHAN", "HFD1", "HFD2", "DATE", "COMM", "NPTS", "INPOS", SET00240
28 "SYMH", "PHTN", "END", "ITER"/
29 ICNT=0
30 KO=0
31 DO 5 T=1,61
32 5 SYM(T)=SMHLS(T)
33 NOFFAT=0
34 WRTTE(6,530)
35 10 READ(21,480) CODE,CARD
36 WRTTE(6,550) CODE,CARD
37 COL=0
38 C SFT NUMBER OF VALID CARD TYPES
39 CNUM=11
40 C DETERMINE CARD TYPE
41 DO 20 T=1,CNUM
42 IF(CODE.EQ.0) INVEC(I) GO TO 30,50,70,90,110,130,150,170,190,
43 * 260,270,I
44 20 CONTINUE
45 C INVALID CARD TYPE
46 WRTTE(6,490) CODE,CARD
47 GO TO 10
48 C CHANNEL CARD
49 30 J=NXTCHH(CARD,COL)
50 IF(J.EQ.0) PLANK() GO TO 10
51 COL=COL-1
52 NOFFAT=NUMBER(CURD,COL,FFTVEC,NOFEAT)
53 VARSIZE=(NOFFAT*(NOFEAT+1))/?
54 GO TO 10
55 C HFD1 CARD
56 50 READ(30,500) HFD1
57 GO TO 10

```

F11F: SETUP >UNTRAN A

```

C HEDP CARD
C   70 READ(30,500) HEDP
C     GO TO 10
C DATE CARD
C   20 READ(30,510)DATE
C     GO TO 10
C COMMENT CARD
C   110 READ(30,500)COMMENT
C     GO TO 10
C NPTS CARD, NUMBER OF DATA POINTS FOR EACH CHANNEL RETURNED TO
C CLASY3 EACH CALL TO CLASY2
C   130 J=NUMBER(CARD, COL, NPTS, K0)
C     GO TO 10
C NPOS CARD, NUMBER OF DRUM POSITIONS FROM WHICH TO OBTAIN DATA FOR
C CLASY3, SO THAT THE DATA WILL BE SCRAMBLED
C   150 J=NUMBER(CARD, COL, NPOS, K0)
C     GO TO 10
C SYMBOL CARD
C   170 ICNT=ICNT+1
C     IF (ICNT .GT. 61) GO TO 10
C   140 M=NXTCHR(CARD, COL)
C     IF (M .EQ. BLANK) GO TO 10
C     IF (M .EQ. KIMMA) GO TO 180
C     SYM(ICNT)=M
C     GO TO 170
C PRINT OPTION CARD
C   140 J=NXTCHR(CARD, COL)
C     IF (J .EQ. BLANK) GO TO 10
C     COL=COL-1
C     J=NUMBER(CARD, COL, PRNT, K0)
C     GO TO 10
C *END* CARD
C 260 RETURN
C ITERATION CARD
C   270 J=NXTCHR(CARD, COL)
C     WRITE(3,4999) J
C     IF (J .EQ. BLANK) GO TO 10
C     COL = COL - 1
C     K = NUMBER(CARD, COL, TEMP, K0)
C     NOCYCLE = TEMP(1)
C     WRITE(3,4999) J, NOCYCL
C   2999 FORMAT(''NOCYCL='',A4,,X,,I8)
C     GO TO 10
C FORMATS
C   490 FORMAT(A4,,4X,,62A1)
C   490 FORMAT('' INVALID INPUT CARD--IGNORED''/T5,A4,,4X,,62A1)
C   F00 FORMAT(10X,,10A6)
C   L10 FORMAT(10X,,2A6)
C   S50 FORMAT(5X,,A6,,4X,,62A1)
C   L30 FORMAT(''// INPUT SUMMARY''//)
C   FND
SET00800
SET00810
SET00820
SET00830
SET00840
SET00850
SET00860
SET00870
SET00880
SET00890
SET00900
SET00910
SET00920
SET00930
SET00940
SET00950
SET00960
SET00970
SET00980
SET00990
SET01000
SET01010
SET01020
SET01030
SET01040
SET01050
SET01060
SET01070
SET01080
SET01090
SET01100
SET01110
SET01120
SET01130
SET01140
SET01150
SET01160
SET01170
SET01180
SET01190
SET01200
SET01210
SET01220
SET01230
SET01240
SET01250
SET01260
SET01270
SET01280
SET01290
SET01310
SET01320
SET01330
SET01340
SET01350
SET01360
SET01370
SET01380
SET01390
SET01400
SET01410
SET01420
SET01430
SET01440
SET01450
SET01460
SET01470

```

```

SUBROUTINE SPLIT(KL,SUM,SKFW,KURT,O SUM,OVAR,ORT,DSQ,
1 SG,TAU,FPF,VER,DUM,DSG,DTAU)
IMPLICIT REAL*8 (A-H,O-Z)
      RFAL*8 SUMM,SUMV,GRADSG,DDSG,DDSG1,DDSG2,DDSG3,DDSG4
      RFAL*8 DFLTN,DRES,ERT,HTR,SIG,GAM,GP,AA,AB,TMG,TRD,DEL50
      REAL*8 FRCUV,ERSKFW,ERKURT,OBJ,GAMCGN,GMCF,EXPECT
      RFAL*8 HFST,DAFST,THIMP,PCTIMP,SSIZ,SMOV,DKURT,DKRTGM,DSKEW
      RFAL*8 DDS,TVDSQ,TDEL,DVDEL,TSPROA,TOEL,DVDEL,TVDSQ2
      DFAL*8 DEHEN,TERFD,TR2VD4,DVD2D2,DCOV2,D2,D3,DSKEW2,DKURT2
      HFAL*8 DS,DA,SG1,TAU1Q,DD3,DERED,TERFDQ,TR2VD4,DB7DSQ,UNIDS
      REAL*8 UNTDSQ

THIS ROUTINE HAS THE FOLLOWING FUNCTIONS
(1) TO GUESS THE OPTIMAL AXIS TO SPLIT THE CLUSTER ON, USING
    USING SKWENESS AND KURTOSIS DATA.
(2) TO GENERATE TWO NEW CLUSTERS CORRESPONDING TO THE
    PHOKAHLF HALVES OF THE OLD CLUSTER
(3) TO BUILD THEM INTO THE TREE

      RFAL*8 ITFMP, IITFMP, IJTEMP
      DIMENSION INDEX(27),LSUBS(30),LSUPER(29),IDADJ(28),NSYMR(12),
      DFAL*8 PCUM(26),PRIRCM(25),CIN(24),CTOT(23),PROP(22),SPFAC(21),
      1 WADJ(20),W(19),OPROP(18),OW(17),VOLIN(16),VOLRT(15),DCON(14),
      2 PORAT(13),DISS(12),PPASS(12),PST(11),OCTIN(10),PCOND(7),
      3 OPRIO(9),ODEN(8)
      4 VRIN(475),GEN(999),GRFF(999)
      REAL*4 VRIN(475),GEN(999),GRFF(999)
      RFAL*8 ALINK(1)
      EQUIVALENCE (LINK(1),ALINK(1)),(LINK(31),INDEX(27))
      EQUIVALENCE (LINK(31),LSUBS(30))
      EQUIVALENCE (LINK(31),LSUPER(29)),(LINK(31),IDADJ(28)),
      1 (LINK(31),NSYMR(12)),(LINK(31),PCUM(26)),(LINK(31),PRIRCM(25)),
      2 ,(LINK(31),CIN(24)),(LINK(31),CTOT(23)),(LINK(31),PROP(22)),
      3 ,(LINK(31),SPFAC(21)),(LINK(31),WADJ(20)),(LINK(31),W(19)),
      4 ,(LINK(31),OPROP(18)),(LINK(31),OW(17)),(LINK(31),VOLIN(16)),
      5 ,(LINK(31),VOLRT(15)),(LINK(31),DCON(14)),(LINK(31),POHAT(13)),
      6 ,(LINK(31),DISS(12)),(LINK(31),PPASS(12)),(LINK(31),PST(11)),
      7 ,(LINK(31),OCTIN(10)),(LINK(31),PCOND(7)),(LINK(31),VRIN(7)),
      8 ,(LINK(31),GEN(7)),(LINK(31),OPRIO(9)),(LINK(31),ODEN(8)),
      9 ,(LINK(31),GRFF(8))
      COMMON /JOINPR/WOJOIN,RLIM,NOJO,NOELIM
      COMMON/CLUS/ JUNK(12),NARL,NTOP,NTASZM,NWANT,LINK(14000)
      DIMENSION MYAR(3),LR(3),LV(3)
      EQUIVALENCE (LR(1),LVRIN),(LR(2),LKURT),
      1 (LR(3),L0VAR),(LV(1),LSUM),(LV(2),LSKFW),(LV(3),LOSUM)

      RFAL*4 WTINIT,EPS,DELT,AM0,ODCON,XOVFLO,XUNFLO,WADJIN,ELIMTH,
      1 SFPTH,VFAC,AMM,SHLTH,WFAC,PORATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
      2 AMOMIN,AMOMAX,AMORAT,VOLLIM,RIAS,PJOIN,VRJOIN,WSIM,WDELSM
      3 RETTEN,CURFLN,SPCOR
      COMMON /MISC/ MQ,MM,LK,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
      1 AM0,ODCON,XOVFLO,XUNFLO,WADJIN,FLIMTH,SFPTH,VFAC,AMM,SHLTH,
      2 INDXL,WFAC,NPTSO,PORATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
      3 AMOMIN,AMOMAX,AMORAT,VOLLIM,BIAS,PJOIN,VRJOIN,WSIM,WDELSM,
      4 HETTEH,MODF,CURFLN,SPCOR

      COMMON /STPAR/WAIT,CONLV,SKRND,SKCHI,TRBND,TRCHI,URKAND,URKCHI,
      1 PACCEL(2),MACCEL(2),VACCEL(2)

      RFAL*4 WAIT,CONLV,SKHND,SKCHI,TRBND,TRCHI,URKAND,URKCHI,
      1 PACCEL,MACCEL,VACCEL
      COMMON/CLUSTH/ IAFCIN,TOTWRD,CLSNAM,IPT,NOFLD,SYM(61),
      1 LNCAT,PNNT(4),KLAC,PRTME,PROUT,TOTPIX,
      2 SCRAM1,BUFPIX,HUFTOT,NUFSD,NDUMP,LAUFD
      3 MAXHF,APFA,NWDS,NWDRS,NPTS,LAUFD,IO1,NOCYCL

      INTEGER TOTWRD,SYM,PNNT,PRTME,PROUT,TOTPIX,SCRAM1,BUFPIX,HUFTOT
      1 ,CLSNAM

      REAL SUM(1),SKFW(1),KURT(1),O SUM(1),OVAR(1)
      RFAL*8 DSU(MQ,MQ),SG(MQ,MQ),TAU(MQ,MQ),ERE(MQ,MQ),
      1 VFP(MQ,MQ),ORT(MQ,MQ),DUM(MQ,MQ),DSG(MQ,MQ),DTAU(MQ,MQ)

```

TO SAVE STORAGE, WE USE SEVERAL ARRAYS FROM THE CALLING
SEQUENCE IN MORE THAN ONE WAY. SINCE WE CANNOT EQUIVALENCE
NAMES IN THE CALLING SEQUENCE, THESE ARRAYS HAVE NON-MNEMONIC
IDENTIFIERS. IN PARTICULAR,
DSQ IS ALSO USED AS THE TRANPOSE OF ORT

SPL00010
SPL00020
SPL00030
SPL00040
SPL00050
SPL00060
SPL00070
SPL00080
SPL00090
SPL00100
SPL00110
SPL00120
SPL00130
SPL00140
SPL00150
SPL00160
SPL00170
SPL00180
SPL00190
SPL00200
SPL00210
SPL00220
SPL00230
SPL00240
SPL00250
SPL00260
SPL00270
SPL00280
SPL00290
SPL00300
SPL00310
SPL00320
SPL00330
SPL00340
SPL00350
SPL00360
SPL00370
SPL00380
SPL00390
SPL00400
SPL00410
SPL00420
SPL00430
SPL00440
SPL00450
SPL00460
SPL00470
SPL00480
SPL00490
SPL00500
SPL00510
SPL00520
SPL00530
SPL00540
SPL00550
SPL00560
SPL00570
SPL00580
SPL00590
SPL00600
SPL00610
SPL00620
SPL00630
SPL00640
SPL00650
SPL00660
SPL00670
SPL00680
SPL00690
SPL00700
SPL00710
SPL00720
SPL00730
SPL00740
SPL00750
SPL00760
SPL00770
SPL00780
SPL00790

C ERE IS ALSO USED AS SG**2 AND AS D(OBJECTIVE)/D(SG**2) SPL00800
 C VEW IS ALSO USED AS TAU**2 AND AS D(OBJECTIVE)/D(TAU**2) SPL00810
 C DUM IS A DUMMY ARRAY USED IN MANY WAYS SPL00820
 C THE ITERATION USES SG AND TAU AS THE SQUARE ROOT OF THE COVARIANCE SPL00830
 C MATRIX, TO INSURE POSITIVE DEFINITENESS SPL00840
 C CONTROL PARAMETERS SPL00850
 C
 C COMMON/SPPAR/, GAMMFT, DELMET, SGTMET, ORCOV, ORSKEW, ORKURT, EXMNSQ,
 C , SHRMIN, FXMA, , GAMCFN, TSQINI, DAMP, DOBPMs, DIAG, TIM0, TIM1, ITERMx,
 C ? SPRED, ITER SPL00860
 C ? HFAL*4 GAMMFT, DELMET, SGTMET, ORCOV, ORSKEW, ORKURT, EXMNSQ,
 C 1 SHRMIN, EXMAX, GAMCFN, TSQINI, DAMP, DOBPMs, TIM0, TIM1, SPRED SPL00870
 C ? HFAL*4 DEL(16), SPROA(16), T(16), TPVD(16), DDFL SPL00880
 C 1 (16), DSQT(16), VDFL(16), VDSQD(16), S(16), E(16),
 C ? FVURT(16), FRFD(16) SPL00890
 C HFAL*4 R(1) SPL00900
 C EQUIVALENCE (HFAL(1), R(1)) SPL00910
 C LOGICAL DIAG SPL00920
 C DATA IPLANK, ISTAHS /! , , , , , / SPL00930
 C DATA GRADSIV, GHADRT/1..1./ SPL00940
 C
 C MU=M0+M0 SPL00950
 C DOBFAc = MAXIMUM TIM0, TIM1, DOBPMs IN COMMON CAR0 SPL00960
 C DOBFAc=(TIM0+AM0+TIM1)*DOBPMs SPL00970
 C
 C WE MUST FIRST GENERATE CENTERED VERSIONS OF THE VARIANCE, SKEWNESS,
 C AND KURTOSIS. SPL00980
 C
 C VARIANCE SPL00990
 C EXPAND VRIN AND KURT SPL01000
 C W0=1.0/W(KL) SPL01100
 C CALL USUMTX(DUM,VRIN(KL+1)) SPL01120
 C MU=AM0+2E0 SPL01130
 C CALL USUMTX(DTAU,KURT(KL+1)) SPL01140
 C
 C REMOVE WEIGHT FACTOR FROM SKEW SPL01150
 C DO 61 I=1..M0 SPL01160
 C SKEWNESS=SKFW SPL01170
 C S(I)=SKFW(I+KL)*W0 SPL01180
 C 61 CONTINUE SPL01190
 C
 C 120 CONTINUE SPL01200
 C SHIFT TO FRAME WITH UNIT INVERSE COVARIANCE MATRIX (DUM). SPL01210
 C COORDINATE TRANSMISSION CREATED IN ORT. EIGENVALUES IN E SPL01220
 C CALL FTGRUT(M0,M0,DUM,E,ORT) SPL01230
 C
 C DILATE ALONG COORDINATE AXES TO MAKE COVAR A UNIT MATRIX SPL01240
 C DO 101 I=1..M0 SPL01250
 C F(I)=F(I)*W(KL) SPL01260
 C FE = DSQRT(DAHS(E(I))) SPL01270
 C
 C DO 101 J=1..M0 SPL01280
 C ORT(J,I)=FE*ORT(J,I) SPL01290
 C 101 DSQ(I,J)=ORT(J,I) SPL01300
 C
 C DO THE LINEAR TRANSFORMATIONS SPL01310
 C CALL MLT(DUM,DTAU,ORT) SPL01320
 C CALL MLT(DTAU,DSQ,DUM) SPL01330
 C CALL MTVEC(R,DSQ,S) SPL01340
 C
 C THE PROBLEM IS NOW IN A FRAME WHERE THE COVAR MATRIX IS A UNIT MATRIX SPL01350
 C SPL01360
 C 121 CONTINUE SPL01370
 C
 C INITIALIZE AND MAKE GOOD INITIAL GUESS SPL01380
 C GAM=.00001E0 SPL01390
 C
 C FIND FRAME WHERE KURTOSIS IS DIAGONAL SPL01400
 C CALL FTGRUT(M0,M0,DTAU,FVURT,DUM) SPL01410
 C KURTOSIS=KURT-(M0+2)*COVAR (IN TRANSFORMED FRAME.) SPL01420
 C DO 68 T=1..M0 SPL01430
 C 68 FVURT(T)=FVURT(T)*W0-HQ SPL01440
 C
 C ROTATE SKEWNESS TO THAT FRAME SPL01450
 C CALL MTVEC(S,DUM,R) SPL01460
 C SPL01470
 C SPL01480
 C SPL01490
 C SPL01500
 C SPL01510
 C SPL01520
 C SPL01530
 C SPL01540
 C SPL01550
 C SPL01560
 C SPL01570
 C SPL01580

```

C INITIALIZATION          SPL01590
  DELIN=3                 SPL01600
  IHFS=0                  SPL01610
  RTSM=0                  SPL01620
  OHTSM=0                 SPL01630
  THN=.05*AMQ              SPL01640
  THSQ=TRN*TRN              SPL01650
  AMXVAL=0E0                SPL01660
C FIND MAX NEGATIVE EIGENVALUE CALC ROOT SUMS FOR SKEWNESS ADJUSTMENT SPL01670
  DO 111 I=1,ND             SPL01680
  IF(FVURT(I).GT.AMXVAL) GO TO 103 SPL01690
  AMXVAL=FVURT(I)           SPL01700
  IHFS=1                   SPL01710
  103 RT = DSQRT(32.00*DMAX1(0.00,FVURT(I))+TRSQ) SPL01720
  RTSM=HFTSM+RT              SPL01730
  111 OHTSM=OHTSM+1./HT      SPL01740
  TCOF=4.*AMQ                SPL01750
C CK FOR NEG EIGENVALUE SPL01760
  IF(IRES.FN.0) GO TO 118 SPL01770
C NEGATIVE EIGENVALUE. ADJUST 'GOOD GUESS' TEMPORARIES SPL01780
  DELIN=DSQRT(DSQR(-R.*AMXVAL)) SPL01790
  SAR = DAHS(S(IRES)) SPL01800
  RTSM=RTSM+5.333333*SAR/DELIN-TRN SPL01810
  OHTSM=ORTSM-1./THN SPL01820
  TCOF=TCOF+.333333 SPL01830
C POS AND NEG EIGENVALUE ADJUSTMENTS SPL01840
C CK FOR NEG EIGENVALUE SPL01850
  118 THN=THN-(TCOF*TPN-RTSM)/(TCOF-TRN*ORTSM) SPL01860
  TRSQ=TRN*TRN SPL01870
C IF(IHES.EQ.0) GO TO 119 SPL01880
C NEG EIGENVALUE. ADJUST 'GOOD GUESS' TEMPORARIES SPL01890
  FRT = DSQRT(=10.6666700*AMXVAL) SPL01900
C THE COS.ACOS EXPRESSION FINDS THF ROOT OF A CUBIC SPL01910
  ITTEMP = (SAH*(4.*SAH-TRN*DELIN)/(AMXVAL*FRT)) SPL01920
  ITTEMP = UMAX1(-.999999D0,ITEMP) SPL01930
  JTTEMP = DMINTN(.999999D0,ITTEMP) SPL01940
  DELIN = SAR/S(IRES) * DMIN1(2.00,DSQRT(FRT*DCOS(.3333333D0* SPL01950
  1.DARCOS(JTTEMP))) SPL01960
  DHFS=200*S(THFS)/DELIN-.500*THN SPL01970
C IN ANY CASE, CHFTE FACTOR USED IN MEAN DISPLACEMENT CALC SPL01980
  110 DELFAC=DELIN**A*DSQRT(DRSKEW*.500+2.500/DSQRT(DAHS(TRN)/AMQ)) SPL01990
C GENERATE ACTUAL INITIAL VALUES SPL02000
  DO 115 I=1,ND SPL02010
  FI=1./E(I) SPL02020
C INITIAL COVARIANCE MATRICES AND ROTATION MATRICES SPL02030
  DO 112 J=1,ND SPL02040
  DSG(J,I)=FI*I*HFT(J,I) SPL02050
  SG(J,I)=0E0 SPL02060
  112 TAU(J,I)=0E0 SPL02070
C CALCULATE MEAN DISPLACEMENT USING SKEWNESS SPL02080
  FRT=(DSQRT(DMAX1(0.00,32.00*FVURT(I)+TRSQ))-TRN)*.2500 SPL02090
  RTR=2.*FRT+TRN SPL02100
  DEL(I)=4.*S(I)*HTR/(DELFAC*HTR*HTR) SPL02110
  IF(I.NF.IHES) GO TO 113 SPL02120
C SPECIAL CALCULATION ALONG MAX NEG EIGENVECTOR SPL02130
  FRT=DHFS SPL02140
  DEL(I)=DELIN SPL02150
  117 STG = DAHS(1E0-.25F0*DEL(I)*DEL(I)) SPL02160
C CALCULATE COVARIANCE MATRIX DIAGONALS SPL02170
  DDSG1 = 2.00*SIG=.001D0 SPL02180
  DDSG2 = STG+FRT SPL02190
  DDSG3 = DMINTN(DDSG1,DDSG2) SPL02200
  DDSG4 = DMAX1(0.00,DDSG3) SPL02210
  DDSG=DSQRT(DDSG4) SPL02220
  SG(I,I) = DDSG SPL02230
  115 TAU(I,I)=DSQRT(DMAX1(SIG-ERT,.001D0)) SPL02240

```

FILE: SPLIT FORTRAN A

```

      CALL MLT (ORT,USG,DUM) SPL02380
C INITIALIZE ITERATIONS SPL02390
      SSIZ=-.0AE0 SPL02400
      REST=1D30 SPL02410
      ITFR=0 SPL02420
SPL02430
SPL02440
ITERATION CYCLE STARTS HERE. SPL02450
C CALCULATE OBJECTIVE FUNCTION. SPL02460
C TEMPORARIES DEPENDING ON GAM SPL02470
C
      150 GP=.500*(100+GAM) SPL02480
      GM=.500-.500*GAM SPL02490
      AA=GM*GP SPL02500
      RR=1.500*GAM*GAM-.500 SPL02510
C CALC SIGMA SQ., TAU SQ AND DIFFERENCE (DSQ) SPL02520
      CALL MLT(ERF,SG,SG) SPL02530
      CALL MLT(VER,TAU,TAU) SPL02540
SPL02550
C NOTE--MOS CAUSES PROCESSING OF WHOLE ARRAY SPL02560
      DO 162 I=1,MOS SPL02570
      162 DSO(I,I)=ERF(I,I)-VER(I,I) SPL02580
SPL02590
C CALC DEL*#?, TRACE DSQ SPL02600
      TRD=0E0 SPL02610
      DFLSQ=0E0 SPL02620
      DO 161 I=1,MQ SPL02630
      DFLSQ=DELSQ+DFL(I)*DEL(I) SPL02640
      161 TRD=TRD+DSQ(I,I) SPL02650
SPL02660
C CALC DSQ*DEL, DSQ*DSQ SPL02670
      CALL MVEC(M,DSQ,DFL) SPL02680
      CALL MLT(DUM,DSQ,DSQ) SPL02690
SPL02700
C TEMPS FOR OBJECTIVE FUNC CALC SPL02710
      TMG=TRD-GAM*DFLSQ SPL02720
      RRP=RR*DEL.SQ-GAM*TRD SPL02730
      GAM2=2E0*GAM SPL02740
      GAMDEL=GAM*DELSQ SPL02750
      ERcov=AMU SPL02760
      FRSKEW=0E0 SPL02770
      FRKURT=0E0 SPL02780
SPL02790
C VECTORS AND ARRAYS USED HERE ARE ALSO USED IN THE DERIVATIVE CALC SPL02800
C CALC ACTUAL FRRQNS SPL02810
      DO 165 I=1,MQ SPL02820
      DELTA_3 SPL02830
      SPROA(I)=TRD*DEL(I)+2E0*R(I)-GAMDEL*DFL(I) SPL02840
      T(I)=AA*SPROA(I)-S(I) SPL02850
      DO 166 J=1,MQ SPL02860
      DELTA_2 SPL02870
      ERF(I,J)=AA*DEL(I)*DEL(J)+GP*ERE(I,J)+GM*VER(I,J) SPL02880
      ERcov=FRCov+FRF(I,J)**2 SPL02890
      DELTA_4 SPL02900
      VER(I,J)=AA*(TMG*DSQ(I,J)+2E0*DUM(I,J)+RRP*DFL(I)*DEL(J)- SPL02910
      1 GAM2*(DEL(I)*R(J)+DEL(J)*R(I))) SPL02920
SPL02930
C CALC ERRORS IN KURTOSIS(FRKURT), COVARIANCE(ERcov), SKEWNESS(FRSKEW) SPL02940
      166 FRKURT=FRKURT+VFR(I,J) ***? SPL02950
      ERcov=ERcov-2E0*FPE(I,I) SPL02960
      FRKURT=FRKURT+(-2E0*VFR(I,I)+EVURT(I))*EVURT(I) SPL02970
      VFR(I,I)=VER(I,I)-EVURT(I) SPL02980
      FRF(I,I)=ERF(I,I)-1E0 SPL02990
      167 FRSKEW=FRSKew+T(I)*T(I) SPL03000
      TEST NEW POINT SPL03010
SPL03020
C CALC OBJECTIVE FUNCTION SPL03030
      ORCOV, ORSKW, ORKURT ARE USED AS PARAMETERS DEFINED IN CRL0 SPL03040
      ORJ=ORCOV+FRCov+FRSkew+ERSKEW+FRKURT+ERKURT SPL03050
      GAMCGN=GAM*GAMCN SPL03060
      GMCF=1E0*GAM*GAMCGN SPL03070
      ORJ=ORJ*GMCF SPL03080
SPL03090
C CALC STEP SIZE (SSIZ) AND SPL03100
      ORFST=REST SPL03110
      TF(ITFR,EN,0) PCTIMP=.25 SPL03120
SPL03130
SPL03140
SPL03150
SPL03160

```

```

EXPECT=SSIZ*GRADRT*GMCF          SPL03170
SHRINK=1.0*(RFST-OBJ)/EXPECT    SPL03180
DSHRMN = SHRMIN                 SPL03190
SHRINK=DMAX1(.5D0/DMAX1(SHRINK,1.0-10),DSHRMN) SPL03200
C CK TO SEE IF OBJECTIVE FUNCTION HAS IMPROVED SPL03210
IF(OBJ.LT.RFST) GO TO 170 SPL03220
C OBJ FUNCTION HAS NOT IMPROVED. SHRINK STEP SIZE. SKIP NEW DERIV CALC SPL03230
SMOV=(SHRINK-1F0)*SSIZ          SPL03240
SSIZ=SSIZ*SHRINK                SPL03250
IF (DARS(SSIZ).LT. 1E-10) GO TO 200 SPL03260
THIMP=DMIN1(THIMP,OBJ)          SPL03270
PCTIMP=PCTIMP*(PCTIMP-PCTIMP*DAMP*.7) SPL03280
GO TO 190 SPL03290
C OBJ FUNCTION IMPROVED. CONCLUDE STEP SIZE CALC SPL03300
170 THIMP=DMIN1(RFST-OBJ,OBJ) SPL03310
PCTIMP=PCTIMP*(THIMP/OBJ-PCTIMP)*DAMP SPL03320
XTMP = PCTIMP * OBJ SPL03330
IF(PCTIMP*OBJ.I.E.DDFAC.OBJ.ITER.GT.ITFRMX) GO TO 200 SPL03340
RFST=OBJ SPL03350
DEXMAX = EXMAX SPL03360
SHRINK=DMIN1(DSURT(EXMNSQ+(1E0-SHRINK)**2),DEXMAX) SPL03370
SSIZ=SSIZ*SHRINK                SPL03380
SMOV=SSIZ SPL03390
C CALCULATE DERIVATIVES SPL03400
TFMP SCALARS DEPENDING ON DKURT, DSKEW DEFINITION SPL03410
DKURT=AA*DKURT SPL03420
DKRTGM=DKURT*GAM SPL03430
DSKEW=AA*DSKEW SPL03440
DD5=-2F0*DKRTGM SPL03450
C TFMP VECTORS AND MATRIX PRODUCTS SPL03460
CALL MVEC(EPEQ,ERE,DEL) SPL03470
CALL MVEC(DSQT,DSQ,T) SPL03480
CALL MVFC(VDFL,VER,DFL) SPL03490
CALL ACOM(DUM,VER,DSQ) SPL03500
CALL MVFC(VDSQ,DUM,DEL) SPL03510
C INITIALIZE FOR INNER PRODUCTS SPL03520
TVDSQ2=0E0 SPL03530
TDFL=0F0 SPL03540
DVDEL=0E0 SPL03550
TSPROA=0E0 SPL03560
C CALC. INNER PRODUCTS SPL03570
DO 171 I=1,MQ SPL03580
TDFL=TDFL+DFL(I)*T(I) SPL03590
DVDEL=DVDEL+DEL(I)*VDFL(I) SPL03600
TSPROA=TSPROA+T(I)*SPROA(I) SPL03610
TVDSQ2=TVDSQ2+DUM(I,I) SPL03620
171 TVDFL(I)=DSKEW*T(I)+DDS*VDFL(I) SPL03630
C INITIALIZE FOR MUHF INNER PRODUCTS SPL03640
DERED=0E0 SPL03650
TERFD=0E0 SPL03660
TR2VD4=0E0 SPL03670
DVNDP2=0E0 SPL03680
DCOV2=2E0*DRCOV*AA SPL03690
C CALC. DERIVATIVE COEFFICIENT TEMPORARIES SPL03700
D2=2E0*AA*(OKHUR2*(HR*DVDEL-.5E0*GAM*TVDSQ2)-DSKEW*GAM*TDEL) SPL03710
D3=DSKEW*(TRD-GAM*DELSQ) SPL03720
DSKEW2=2E0*DSKEW SPL03730
OKURT2=2E0*OKURT SPL03740
DR=OKURT2*HRP SPL03750
D6=-2F0*OKURT2*GAM SPL03760
SG1=DRCOV*GP SPL03770
TAU1=DRCOV*GM SPL03780
UNIDSQ=DSKEW*TDEL+DKURT*.5F0*TVDSQ2-DKRTGM*DVEL SPL03790
D03=DKURT*TRD-OKRTGM*DELSQ SPL03800
C CALC MATRIX TFMP AND DOT PRODUCTS SPL03810
DO 175 I=1,MQ SPL03820
DERFD=DERED+DEL(I)*ERFD(I) SPL03830
DVNDP2=DVNDP2+DEL(I)*VDSQD(I) SPL03840
C DVEL IS THE DERIVATIVE WITH RESPECT TO DEL SPL03850
DVEL(I)=DCOV2*FRED(I)+D2*DEL(I)+D3*T(I)+DSKEW2*DSQT(I)+D5*VDEL(I)+ SPL03860
1. D6*VDSQD(I) SPL03870
DO 174 J=1,MQ SPL03880
TERFDQ=TERFD0+ERE(I,J)*DSQ(I,J) SPL03890
TR2VD4=TR2VD4+DSQ(I,J)*DUM(I,J) SPL03900

```

ORIGINAL PAGE IS
OF POOR QUALITY

FILE: SPIT FORTRAN A

```

      DBYDSQ=TPVD(I)*DEL(J)+TPVD(J)*DEL(I)
      1           +DD3*VER(I,J)+DKURT2*DUM(I,J)
      VER(I,J)=TAU1*FRE(I,J)-DBYDSQ
  174  FRE(I,J)=SG1*FRE(I,J)+DBYDSQ
      FRE(I,I)=FRE(I,I)+UNIDSQ
  175  VER(I,I)=VER(I,I)-UNIDSQ
C   CALC DERIVATIVES WITH RESPECT TO COVARIANCE MATRIX ROOTS
      CALL ACOM(DSG,SG,FRE)
      CALL ACOM(DTAU,TAU,VER)
C   CALC DERIVATIVE WITH RESPECT TO GAM
      DGAM=DRCOV*(-.5E0)*(GAM*DERED-TERED)-OHSKFW*(.5E0*GAM*TSPROA*
      1     AA*DELSDA*INEL)-OAKURT*(GAM*(.25E0*TVDSQ2*TRD+.5E0*TR2VD4*
      2     (KA-.5E0)*DELSQ*DVDEL)-
      3     .5E0*HH*(.5E0*DELSQ*TVDSQ2+DVDEL*TRD+2E0*DWD2D2))+*
      4     .GAMCGN/(GMCF*GMCF)*ORJ
C   CALC THE SQ. OF THE DERIVATIVE AND ITS ROOT
      SUMM=0F0
      SUMV=0F0
      DO 181 I=1,M0
      SUMV=SUMV+DDEL(I)*DDEL(I)
      DO 181 J=1,M0
      SUMM=SUMM+DSG(I,J)*DSG(I,J)+DTAU(I,J)*DTAU(I,J)
  181 CONTINUE
      GRADSQ=SUMM*SGTMET+SUMV*DELMET+DGAM*DGAM*GAMMET
      GRADRT=DSORT(GRADSQ)

C   SET UP AND TEST POINT
C   FNTHY FROM NO DERIVATIVE CALC.
  190 CONTINUE
  194 CONTINUE

C   MOVE TO NEW POINT
  195 SMOV=SMOV/GRADRT
      SGTMOV=SMOV*SGTMET
      DO 191 I=1,M0
      SG(I,I)=SG(I,I)+SGTMOV*DSG(I,I)
      TAU(I,I)=TAU(I,I)+SGTMOV*DTAU(I,I)
  191 CONTINUE
      DELMOV=DELMET*SMOV
      DO 192 I=1,M0
  192 DEL(I)=DEL(I)+DELMOV*DUEL(I)
      GAM=GAM+SMOV*GAMMET+DGAM

C   ITERATE AND LIMIT NUMBER OF ITERATIONS
      ITFR=ITFR+1
      IF (ITFR.GT.ITFRMX) GO TO 200
      GO TO 150

C   *** GENERATE TWO NEW SUBCLUSTERS ***
C   SHIFT COORDINATE FRAME BACK
  200 CONTINUE

C   CALC DSQ = TRANPOSE OF OLD OLD ROTATION
  250 DO 251 I=1,M0
      DO 251 J=1,M0
  251 DSQ(J,I)=OHT(I,J)
C   DSG AND DTAU ARE TEMP ARRAYS FOR COVARIANCES
      CALL MLT(DSG,SG,SG)
      CALL MLT(DTAU,TAU,TAU)

C   SMEAR THE MATRICES OUT BY THE ARBITRARY FACTOR 'SPRED' FROM CAL0
      DO 253 I=1,M0
      DO 253 J=1,M0
      SPREDD=.2*SPRED*DEL(I)*DEL(J)
      IF (I.EQ.J) SPREDD=SPREDD+SPRFD
      DSG(I,J)=DSG(I,J)+SPREDD
  253 DTAU(I,J)=DTAU(I,J)+SPREDD

C   DO ACTUAL ROTATION
      CALL MLT(DUM,DSG,DSQ)
      CALL MLT(DSG,ORT,DUM)
      CALL MLT(DUM,DTAU,DSQ)
      CALL MLT(DTAU,ORT,DUM)
      CALL MVFC(P,ORT,DEL)

C   CREATE AND LINK NEW CLUSTERS
      KA=MORSTR(NINCLS)

```

SPL03960
SPL03970
SPL03980
SPL03990
SPL04010
SPL04020
SPL04030
SPL04040
SPL04050
SPL04060
SPL04070
SPL04080
SPL04090
SPL04100
SPL04110
SPL04120
SPL04130
SPL04140
SPL04150
SPL04160
SPL04170
SPL04180
SPL04190
SPL04200
SPL04210
SPL04220
SPL04230
SPL04240
SPL04250
SPL04260
SPL04270
SPL04280
SPL04290
SPL04300
SPL04310
SPL04320
SPL04330
SPL04340
SPL04350
SPL04360
SPL04370
SPL04380
SPL04390
SPL04400
SPL04410
SPL04420
SPL04430
SPL04440
SPL04450
SPL04460
SPL04470
SPL04480
SPL04490
SPL04500
SPL04510
SPL04520
SPL04530
SPL04540
SPL04550
SPL04560
SPL04570
SPL04580
SPL04590
SPL04600
SPL04610
SPL04620
SPL04630
SPL04640
SPL04650
SPL04660
SPL04670
SPL04680
SPL04690
SPL04700
SPL04710
SPL04720
SPL04730
SPL04740

FILE: SPLIT FORTRAN A

```

      KR=MORSTR(NINCLS)

C CREATE NAMES AND LINKAGES FOR NEW CLUSTERS KA, KB
  INDEXVL=INUXVL+2
  INDEX(KA)=INDEXVL-1
  INDEX(KB)=INDEXVL
  LINK(KR)=0
  LSUAS(KH)=0
  LSUAS(KA)=0
  LTMK(KA)=KH
  LSUHS(KL)=KA
  LSUPER(KA)=KL
  LSUPER(KR)=KL

C IDADJ = ADJUSTMENT POSITION IN TERMS OF INPUT POINTS
  IDADJ(KA)=NPTSO+TOTPIX
  IDADJ(KB)=IDADJ(KA)

C SET UP WEIGHTS AND PROPORTIONS
  PPROP(KA)=GP
  PPROP(KR)=GM
  OPROP(KA)=GP
  OPROP(KR)=GM
  SPFAC(KA)=-9999.
  SPFAC(KB)=-9999.
  PRAT(KA)=0.
  PRAT(KB)=0.
  PRTHCM(KL)=1.
  SPFAC(KL)=APRIOR(KL)
  APRIOR(KL)=SPFAC(KL)

C SET PARAMETERS.
  WSTART=WFAC*AMQ*SPCOR
  W(KA)=WSTART
  DW(KA)=W(KA)
  CIN(KA)=WSTART*PPROP(KA)
  DCIN(KA)=CIN(KA)
  ODFN(KA)=CIN(KA)/GP
  CTOT(KA)=W(KL)-ODFN(KA)
  W(KB)=WSTART
  DW(KB)=W(KB)
  CIN(KB)=WSTART*PPROP(KR)
  DCIN(KB)=CIN(KR)
  ODFN(KB)=CIN(KB)/GM
  CTOT(KR)=W(KL)-ODFN(KR)
  WADJ(KA)=W(KA)+WADJIN
  WADJ(KR)=W(KR)+WADJIN

C INVERT COVAR MATRIX AND CALC VOLUME
  CALL DMINV(SG,DUM,DSG,VOLIN(KA))
  CALL DMINV(TAU,DUM,DTAU,VOLIN(KR))
  IF(VOLIN(KA).LE.0.0.OR.VOLIN(KR).LE.0.) PRINT 653,KL,KA,KB,
  1 VOLIN(KL),VOLIN(KA),VOLIN(KR)
  653 FORMAT('NOVOLUME ERROR IN SPLIT: CLASSES, VOLUMES',3I5,3E10.2)
  VOLIN(KA) = ABS(VOLIN(KA))*A756510763E-26*(6.283185307)**MQ
  VOLIN(KR) = ABS(VOLIN(KR))*A756510763E-26*(6.283185307)**MQ
  VOLRT(KA) = SQRT(VOLIN(KA))
  VOLRT(KR) = SQRT(VOLIN(KR))
  DCON(KA)=ODCON
  DCON(KR)=UDCON
  LOC=0

C SET UP ALL THE ARRAYS AND VECTORS FOR NEW CLUSTER
  DO 210 I=1,10
  SKFW(KA+I)=0.
  SKFW(KH+I)=0.
  SUM(KA+I)=WSTART*(SUM(I+KL)/W(KL)+GM*R(I))
  SUM(KH+I)=WSTART*(SUM(I+KL)/W(KL)-GP*R(I))
  OSUM(KA+I)=SUM(KA+I)
  OSUM(KH+I)=SUM(KH+I)
  DO 210 J=1,10

C LOC IS A LOCAL INDEX WITHIN TRIANGULAR ARRAYS
  LOC=LOC+1
  VRIN(KA+LOC)=SG(I,J)/WSTART
  VRIN(KR+LOC)=TAU(I,J)/WSTART
  KURT(KA+LOC)=0.
  KURT(KR+LOC)=0.
  QVAR(KA+LOC)=DSG(I,J)*WSTART
  210 QVAR(KR+LOC)=DTAU(I,J)*WSTART

```

FILE: SPLIT FORTRAN A

NOFLIM = 0
RETURN
END

SPL05540
SPL05550
SPL05560

ORIGINAL PAGE IS
OF POOR QUALITY

SUBROUTINE SQMTX(SQ,AM)

REAL SQ,AM

C THIS SUBROUTINE EXPANDS MATRIX AM FROM TRIANGULAR FORM AND MAKES
 C AN MQ*MQ SQUARE SYMMETRIC MATRIX IN SQ(DIM MQ*MQ).

COMMON /MISC/ MQ,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
 1 AMQ,ODCUN,XOVFLO,XUNFLO,WADJIN,ELIMTH,SEPTH,VFAC,AMM,SBLTH,
 2 INDXVL,WFAC,NPTSO,FQRATH,SPMVTH,DWFAC,GRACTN,AMOFAC,
 3 AMOMIN,AMOMAX,AMORAT,VOLLIM,BIAS,PJOIN,VRJOIN,WSIM,WDELSM,
 4 BETTER,MODE,CORLEN,SPCOR

DIMENSTON AM(475),SQ(900)

LOC=0

IMQ=0

DO 11 I=1, MQ

IJ=1

DO 10 J=1, I

LOC=LOC+1

SQ(IJ)=AM(LOC)

SQ(IMQ+J)=AM(LOC)

10 IJ=IJ+MQ

11 IMQ=IMQ+MQ

RETURN

END

 SQM00010
 SQM00020
 SQM00030
 SQM00040
 SQM00050
 SQM00060
 SQM00070
 SQM00080
 SQM00090
 SQM00100
 SQM00110
 SQM00120
 SQM00130
 SQM00140
 SQM00150
 SQM00160
 SQM00170
 SQM00180
 SQM00190
 SQM00200
 SQM00210
 SQM00220
 SQM00230
 SQM00240

FILE: STATIS FORTRAN A

SUBROUTINE STATIS(KROTIN,PV,SUM,SKEW,KURT,OSUM,OVAR)

STA00010

PURPOSE

- (1) TAKE EACH INPUT POINT AND CLASSIFY IT (ON A FRACTIONAL, PROBABILISTIC BASIS.)
- (2) UPDATES THE VARIOUS STATISTICAL PARAMETERS ASSOCIATED WITH THE CLASSES INDICATED.
- (3) CALLS ADJUST TO SEE IF ANY OF THESE CLASSES ARE POTENTIALLY TWO AND REFER THOSE TO THE ROUTINE "SPLIT".

STA00020

STA00030

STA00040

STA00050

STA00060

STA00070

STA00080

STA00090

STA00100

STA00110

STA00120

STA00130

STA00140

STA00150

STA00160

STA00170

STA00180

STA00190

STA00200

STA00210

STA00220

STA00230

STA00240

STA00250

STA00260

STA00270

STA00280

STA00290

STA00300

STA00310

STA00320

STA00330

STA00340

STA00350

STA00360

STA00370

STA00380

STA00390

STA00400

STA00410

STA00420

STA00430

STA00440

STA00450

STA00460

STA00470

STA00480

STA00490

STA00500

STA00510

STA00520

STA00530

STA00540

STA00550

STA00560

STA00570

STA00580

STA00590

STA00600

STA00610

STA00620

STA00630

STA00640

STA00650

STA00660

STA00670

STA00680

STA00690

STA00700

STA00710

STA00720

STA00730

STA00740

STA00750

STA00760

STA00770

STA00780

STA00790

INTEGER HUFSIZ , RUFCONT

THIS PROGRAM TAKES EACH INPUT POINT AND CLASSIFIES IT
(ON A FRACTIONAL, PROBABILISTIC BASIS) IT THEN
UPDATES THE VARIOUS STATISTICAL PARAMETERS ASSOCIATED WITH THE
CLASSES INDICATED AND CHECKS TO SEE IF
ANY OF THESE CLASSES IS POTENTIALLY TWO. THOSE WHICH
ARE ARE REFERRED TO THE ROUTINE "SPLIT".

STA00190

STA00200

STA00210

STA00220

STA00230

STA00240

STA00250

STA00260

STA00270

STA00280

STA00290

STA00300

STA00310

STA00320

STA00330

STA00340

STA00350

STA00360

STA00370

STA00380

STA00390

STA00400

STA00410

STA00420

STA00430

STA00440

STA00450

STA00460

STA00470

STA00480

STA00490

STA00500

STA00510

STA00520

STA00530

STA00540

STA00550

STA00560

STA00570

STA00580

STA00590

STA00600

STA00610

STA00620

STA00630

STA00640

STA00650

STA00660

STA00670

STA00680

STA00690

STA00700

STA00710

STA00720

STA00730

STA00740

STA00750

STA00760

STA00770

STA00780

STA00790

DIMENSION INDEX(27),LSUHS(30),LSUPER(29),IDADJ(28),NSYMR(12),
PCUM(26),PRIRCM(25),CIN(24),CTOT(23),PROP(22),SPFAC(21),
WADJ(20),W(19),UPROP(18),OW(17),VOLIN(16),VOLRT(15),DCON(14),
PORAT(13),DISS(12),PPASS(12),PST(11),OCIN(10),PCOND(7),
OPHIOB(4),ODEN(8)

STA00240

STA00250

STA00260

STA00270

STA00280

STA00290

STA00300

STA00310

STA00320

STA00330

STA00340

STA00350

STA00360

STA00370

STA00380

STA00390

STA00400

STA00410

STA00420

STA00430

STA00440

STA00450

STA00460

STA00470

STA00480

STA00490

STA00500

STA00510

STA00520

STA00530

STA00540

STA00550

STA00560

STA00570

STA00580

STA00590

STA00600

STA00610

STA00620

STA00630

STA00640

STA00650

STA00660

STA00670

STA00680

STA00690

STA00700

STA00710

STA00720

STA00730

STA00740

STA00750

STA00760

STA00770

STA00780

STA00790

COMMON/CLUSR/WATT,CONLV,SKHND,SKCHI,TRHND,TRCHI,URKHND,URKCHI,
PACCEL,MACCEL,VACCEL

STA00480

STA00490

STA00500

STA00510

STA00520

STA00530

STA00540

STA00550

STA00560

STA00570

STA00580

STA00590

STA00600

STA00610

STA00620

STA00630

STA00640

STA00650

STA00660

STA00670

STA00680

STA00690

STA00700

STA00710

STA00720

STA00730

STA00740

STA00750

STA00760

STA00770

STA00780

STA00790

COMMON/CLUSTH/ IHEGIN,TOTWRD,CLSNAM,IPT,NUFLD,SYM(61),
LNCA,WTINTT,KROOT,EPS,DELT,
INDXL,WFACT,NPTSO,PORATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
AMOMIN,AMOMAX,AMORAT,VOLLIM,BIAS,PJOIN,VHJOIN,WSIM,WDELSM,
HETTER,MODF,CORLEN,SPCOR

STA00480

STA00490

STA00500

STA00510

STA00520

STA00530

STA00540

STA00550

STA00560

STA00570

STA00580

STA00590

STA00600

STA00610

STA00620

STA00630

STA00640

STA00650

STA00660

STA00670

STA00680

STA00690

STA00700

STA00710

STA00720

STA00730

STA00740

STA00750

STA00760

STA00770

STA00780

STA00790

COMMON/MONTE/PLIM/3,3,,/1/
MONTE--CHECK LK. RATIO 1/3 OF THE TIME. ELIM. WHEN PROP. LT .1
INTEGER DISC
XP(DIST)=EXP(-.5*DIST)
HERE ABOVE GDET IS THE SQUARE ROOT OF THE COVARIANCE
MATRIX, AND FFAC IS A POWER OF PI.

STA00480

STA00490

STA00500

STA00510

STA00520

STA00530

STA00540

STA00550</p

FILE: STATIS FORTRAN A

```

      RMQ=.6666666667*AMQ           STA00800
      KL = LSUAS(KROT)             STA00810
      KL=0                         STA00820
      ***** READ AND PROCESS DATA NIT TIMES *****
      ITFR = 0                      STA00830
      I ITFR = ITER + 1            STA00840
      *** READ 1 BUFFER OF SCRAMBLED DATA ***
      MQ = LENGTH OF ONE VECTOR    STA00850
      RUFISIZ = HUFPIX * MQ        STA00860
      NRUFS = TOTWRD/RUFISIZ      STA00870
      LRUF = MOD( TOTWRD , RUFISIZ )
      IF ( LRUF .GT. 0 ) NRUFS = NBUFS + 1   STA00880
      TNADDR = 1ST WORD OF ORIG DATA ON FAST STORAGE
      INADDR = SCRAM                STA00890
      RUFCNT = 0                     STA00900
      TOTWRD = NO. WORDS IN ORIGINAL DATA ON DRUM
      MQ = LENGTH OF ONE VECTOR    STA00910
      TOTPIX = TOTWRD/MQ           STA00920
      50 RUFCNT = RUFCNT + 1       STA00930
      NWORDS = RUFISIZ             STA00940
      IF ( LRUF .GT. 0 .AND. RUFCONT .EQ. NRUFS ) NWORDS = LRUF
      CALL PREAD (INADDR, PV, NWORDS, ISTAT)
      10 IF ( ISTAT .GT. 0 ) GO TO 10
      TNADDR = INADDR + NWORDS     STA00950
      NPIXEL = NWORDS/MQ           STA00960
      NDO = NPIXEL                 STA00970
      *** INSPECT EACH CLASS AND PROCESS EACH OF THE DATA POINTS ***
      DO 399 IDO=1,NDO           STA00980
      ** THIS CODE GETS RANDOM NUMBERS. **
      GET NEXT POINT IN SEQUENCE
      IF USE MONTE-CARLO TECHNIQUES FOR LOW PROBABILITY CLASSES(P+PLIM)
      PCUM(KROT)=0.
      IF ( INDEX(KL) .NE. 0 .AND. KL .NE. 119)
      * WRITE(6,1000) IDO, INDEX(KL), KL
      1000 FORMAT( 3X, '*** WARNING FROM STATIS ***' ON THE ', 2X, I5,
      * 2X, 'TIME, INDEX(KL)=', I5, 3X, ', KL=', I5 )
      PATHCM(KROT)=0.
      PPASS(KROT)=1.
      TSEC=0
      KFATH=KROT
      KL=LSIHS(KROT)
      GO DOWN CLUSTER TREE
      130 IF (LSIHS(KL).EQ.0) GO TO 131
      FIND BOTTOM NODE
      PCUM(KL)=0.
      PATHCM(KL)=0.
      KFATH=KL
      KL=LSIHS(KL)
      GO TO 130
      CHANGE### 4
      CALC UNWEIGHTED NORMALIZED VECTOR REL
      WUSF = CURRENT WEIGHT
      131 IF (INDEX(KL).LE.0) GO TO 133
      USE NEW WEIGHTS AND MEANS IF ADJUST HAS BEEN CALLED
      CALL CORRECT(RFL,PV(1+IDO),W(KL),SUM(KL+1))
      WUSF=W(KL)
      PROP(KL)=CTN(KL)/(W(KFATH)-CTOT(KL))
      GO TO 134
      CHANGE## 4.5
      133 CALL CORRECT(RFL,PV(1,IDO),OW(KL),OSUM(KL+1))

```

FILE: STATIS FORTRAN A

```

WUSE=OW(KL)
134 DISS(KL)=DOTSU(REF,VRIN(KL+1))*WUSE
WDISS = DISS(KL) + DCON(KL)
IF(LAKS(WDISS).LT.100.) GO TO 531
PCOND(KL)=0.
GO TO 138
531 CONTINUE
Y = -.5*DDISS
XTEMP = EXP(Y)
PCOND(KL)=XTEMP/VOLKT(KL)
138 IF(LSIHS(KL).NE.0) PCUM(KL)=PCUM(KL)/PRIRCM(KL)
SPUF=SPFAC(KL)/SPCOR
IF(SPUF.GT.XUNFL) GO TO 231
PST(KL)=PHOP(KL)*PCOND(KL)

C SFT KL = LAST NODE IN STRING
GO TO 239
231 IF(SPUF.LT.XOVFL) GO TO 232
PST(KL)=PHOP(KL)*PCUM(KL)
GO TO 234
232 CONTINUE
Z7=EXP(SPUF)
PST(KL)=PHOP(KL)*(PCOND(KL)+Z7*PCUM(KL))/(1.+Z7)
239 PCUM(KFATH)=PCUM(KFATH)+PST(KL)
PRIRCM(KFATH)=PRIRCM(KFATH)+PROP(KL)
139 KL=LINK(KL)
IF(KL)130,149,130
C GO UP TREE
140 KL=KFATH
KFATH=LSIHS(KL)
IF(KL.NE.KHOT) GO TO 131
C WE NOW HAVE THE RELEVANT CLASSES AND THEIR PROBABILITIES AVAILABLE.
C NEXT WE MAKE THE APPROPRIATE INDIVIDUAL FIRST-ORDER STATISTICS ADJ.
150 CONTINUE
PCUM(KROT)=PCUM(KROT)/PRIRCM(KROT)
TF(PCUM(KROT).NE.0.) GO TO 151
CHANGE*** 5
PRINT 555,100,W(KROT),(PV(KPR,I00),KPR=1,M0)
555 FORMAT(10**SUSPECTED BAD DATA POINT--STATIS**I00='15,' ROOT'..
1 F10.2/5X,'VECTOR',(SF12.6))
GO TO 399
151 CONTINUE
KL=LSIHS(KHOT)
KFATH=KROT
W(KROT)=W(KROT)+PPASS(KHOT)
NPTSO=NPTSO+1
KA0J=0
152 CONTINUE
IF(PST(KL).EQ.0.) GO TO 299
PPASSK=PPASS(KFATH)
P=PST(KL)/(PCUM(KFATH)*PRIRCM(KFATH))*PPASSK
KA0=KL
153 IF(P.GT.PLIM) GO TO 140
IF(DISC(MONTE).NE.1) GO TO 299
PPASSK=PPASSK*AMONTE
P=P*AMONTE
GO TO 152
CHANGE*** 6
140 IF(INDEX(KL).LE.0) GO TO 143
CALL CORRECT(REF,PV(1,I00),W(KL),SUM(KL+1))
GO TO 144
CHANGE*** 6.5
143 CALL CORRECT(REF,PV(1,I00),OW(KL),OSUM(KL+1))
144 W0=W(KL)
IF(P.GT.1.001.DH.P.LT.0.) PRINT 672,INDEX(KL),KL,INDEX(KFATH),
1 KFATH,I00,P,PST(KL),PCUM(KFATH),PRIRCM(KFATH),PPASSK,
2 PHOP(KL)
672 FORMAT(' PROB FRHO(STATIS):',2(I3,I7),I6,' P= ',E9.4)
1 20X,'FRHO',7E9.4)
IF(P.GT.1.1) P=.01
W(KL)=W(KL)+P
ALOW=P/W(KL)
ALPHA=W0*ALOW
C HERE WE ADJUST SPFAC AND PORAT.
TF(LSIHS(KL).EQ.0) GO TO 611
Z0=(PCUM(KL)-PCOND(KL))/(PCUM(KL)+PCOND(KL)+1.E-37)
ZQS=ZQ#70
PORAT(KL)=PORAT(KL)+P#ZQS

```

```

      SPFAC(KL)=SPFAC(KL)+P*ZQS*(2.+ZQS/(1.5-.9*ZQS))
611  CONTINUE
      IF(INDFX(KL).LT.0) GO TO 189
      VOLIN(KL)=VOLIN(KL)*(1.+ALOW*DISS(KL))
      VOLRT(KL)=.5*(VOLRT(KL)+VOLIN(KL))/VOLRT(KL)
      C      HERE WE KEEP VOLRT NEAR SQRT(VOLIN) BY NEWTON'S METHOD.
      ZFAC=.5/(1.+ALOW+.5)
      DCN(KL)=DCN(KL)-BMO*ZFAC*(3.*ZFAC*ZFAC)
      THE ABOVE APPROXIMATION TO THE LOG IS CORRECTED FOR IN ADJUST
      PROPORTION CALCULATION.
149  PROPL=PROP(KL)/PHIRCM(KFATH)
      IF(PPNPL.GT..9999) GO TO 192
      IF(P.GE.PPASSK*PROPL) GO TO 190
      CTOT(KL)=CTOT(KL)+P/PROPL
      GO TO 141
192  CIN(KL)=CIN(KL)+1.
      GO TO 141
190  CTOT(KL)=CTOT(KL)+(PPASSK-P)/(1.-PROPL)
      CIN(KL)=CIN(KL)+(P-PPASSK*PROPL)/(1.-PROPL)
191  CONTINUE
      CHANGE*** 7
      CALL VVPV(SUM(KL+1),P,PV(1,IDO))
      IF(INDFX(KL).LE.0) GO TO 163
      CALL VMTV(COVFC,VPIN(KL+1),REL)
      COFI=-ALPHA/(1.+ALOW*DISS(KL))
      CALL MPVS(VPIN(KL+1),COFI,COVEC)
      GO TO 164
163  CALL MPVS(UVAR(KL+1),ALPHA,REL)
164  CONTINUE
      C      DISS(KL) CONTAINS THE GAUSSIAN DISTANCE OF THE POINT FROM THE CLUSTER
      C      VPIN IS THE INVERSE COVARIANCE MATRIX (*****) OVER W(KL) (**** NSTA02670
      C      (THIS INTRODUCES SEVERAL SCALE FACTORS)
      C      COVFC IS THE CONTRAVARIANT FORM OF THE RELATIVE DISTANCE REL.
      C      COVFC=VPIN*REL
      WF NOW HAVE ALL THE LINEAR AND QUADRATIC STATISTICS, AND PROCEED
      TO CALCULATE THE APPROXIMATE 3RD AND 4TH MOMENTS FOR TESTING.
      THESE MOMENTS ARE NOT CALCULATED EXACTLY: THE SQUARED
      DISTANCE OF A POINT FROM THE MEAN ACTUALLY SHOULD
      USE ALL THE DATA IN CALCULATING THE MEAN AND
      COVARIANCE, WHEREAS WE SUBSTITUTE THE CURRENT
      VALUES INSTEAD. THUS THE VALUES CALCULATED DEPEND
      ON THE ORDER THE POINTS ARE READ IN. THIS IS NOT
      CRITICAL.
      C
      WDISS=DISS(KL)*P
      IF(INDFX(KL).LT.0) WRITE(3,9980) WDISS,INDFX(KL)
5000  FORMAT(1WDISS,KL=1,F14.4,16)
      CALL VVPV(SKFW(KL+1),WDISS,REL)
      CALL MPVS(KURT(KL+1),WDISS,REL)
504  CONTINUE
      WF NOW ADJUST THE CLASS FOR LARGE-SCALE STATISTICAL EFFECTS,
      ON AN OCCASIONAL BASIS. THIS INCLUDES NOMINAL NEWTONS
      METHOD CORRECTIONS AND TESTING FOR THE POSSIBILITY
      OF TWO CLUSTERS (USING THE SKEW AND KURT STATISTICS).
      IF(W(KL).GT.(WADJ(KL)+.0005).OR.NPTSO.GE.IDADJ(KL)) KADJ=KL
      IF(KL.EQ.145.AND.W(KL).LT.-200.5.AND.W(KL).GT.-199.5) KADJ=KL
      IF(W(KL).GT.WADJ(KL)) WRITE(6,999A) INDEX(KL),W(KL),WADJ(KL)
504A  FORMAT(1STATIS KL, W(KL),WADJ(KL),1.18,2E18,10)
      IF(NPTSO.GE.IDADJ(KL)) WRITE(6,999A) INDEX(KL),NPTSO, IDADJ(KL)
5047  FORMAT(1STATIS NPTSO, IDADJ(KL),3I8)
509  PPASS(KL)=P
      IF(LSUPS(KL).EQ.0.OR.PCUM(KL).EQ.0.) GO TO 304
      KFATH=KL
      KL=LSUAS(KL)
      GO TO 153
304  KL=LLINK(KL)
303  IF(KL) 153,305,153
305  KL=KFATH
      KFATH=LSUPFH(KL)
      IF(KL.NE.KROT) GO TO 304
      IF(KADJ.NE.0) CALL ADJUST(KADJ,SUM,SKEW,KURT,OSUM,OVAR)
      IF(MOD(NPTSO,TOTPX).NE.0.OR.MODE.EQ.0) GO TO 309
      NXA=NXA
      CALL PPTREE(KROT)
      CALL CLIDUMP(KROT)
309  CONTINUE
647  FORMAT(1LOOP IN STATIS:IDO,W(KROT),KL,SECTION,I5,E11.5,2I5
      1 / (1X14I5))

```

FILE: STATIS FORTRAN A

```
340 CONTINUE          STA03170
IF( AUFCNT .LT. NAFNS ) GO TO 50   STA03180
WRITE (6,2000) ITER               STA03190
2000 FORMAT(' NO OF ITERATIONS THROUGH ALL THE DATA = ',I4) STA03200
      ITFR=ITER                     STA03210
      IHOLD=PROUT                   STA03220
      PROUT=2?                      STA03230
      CALL PRTHEE (KROT)            STA03240
      CALL CLDUMP(KROT)             STA03250
      NUFILE=""                     STA03260
      IF (ITFR .EQ. NIT) NUFILE = 1  STA03270
      CALL CLUDMP (NUFILE)
      PROUT=IMUL1
      IF (ITER .LT. NIT) GO TO 1
      RETURN
FEND
```

SUBROUTINE SURLIM(KLHED)

C SURLIM ELIMINATES THE SUBCLUSTERS OF THE NODE KLHED.

DIMENSION NTR(32),
 INDEX(27), LSURS(30), LSUPER(29), IDADJ(28), NSYMB(12),
 PCUM(26), PRIRCM(25), CIN(24), CTOT(23), PROP(22), SPFAC(21),
 WADJ(20), W(19), OPROP(18), OW(17), VOLIN(16), VOLAT(15), DCON(14),
 PQRAT(13), DISS(12), PPASS(12), PST(11), OCTIN(10), PCOND(7),
 OPHIOR(9), ODFN(8)
 DIMENSION VPIN(475), GFN(999), GREF(999), ALINK(1),
 FQIIVALENCE(LINK(1), ALINK(1)), (LINK(31), INDEX(27))
 FQIIVALENCE(LINK(31), LSURS(30))
 FQIIVALENCE(LINK(31), LSUPER(29)), (LINK(31), IDADJ(28)),
 (LINK(31), NSYMB(12)), (LINK(31), PCUM(26)), (LINK(31), PRIRCM(25)),
 (LINK(31), CIN(24)), (LINK(31), CTOT(23)), (LINK(31), PROP(22)),
 (LINK(31), SPFAC(21)), (LINK(31), WADJ(20)), (LINK(31), W(19)),
 (LINK(31), OPHIOR(9)), (LINK(31), OW(17)), (LINK(31), VOLIN(16)),
 (LINK(31), VOLAT(15)), (LINK(31), DCON(14)), (LINK(31), PQRAT(13)),
 (LINK(31), DISS(12)), (LINK(31), PPASS(12)), (LINK(31), PST(11)),
 (LINK(31), DCON(10)), (LINK(31), PCOND(7)), (LINK(31), VRIN(7)),
 (LINK(31), GFN(7)), (LINK(31), OPHIOR(9)), (LINK(31), ODEN(8)),
 (LINK(31), GFFF(8)), (LINK(31), NTA(31))
 COMMON/CLUS/JUNK(12), NARL, NTOP, NTBS7M, NWANT, LINK(14000)
 DIMENSION MXAR(31), LK(3), LV(3)
 FQIIVALENCE(LR(1), LVRIN), (LR(2), LKURT),
 (LR(3), LOVAR), (LV(1), LSUM), (LV(2), LSKFW), (LV(3), LOSUM)
 COMMON /MISC/ MQ, MM, LR, LV, NINCLS, MXAR, WTINIT, KROOT, EPS, DELT,
 AMO, DCON, XOVFLO, XUNFL, WADJIN, ELIMTH, SEPTH, VFAC, AMM, SALTH,
 INDXVL, WFAC, NPTSO, PQRATH, SPMVTH, DWFAC, GRACTM, AMOFAC,
 AMOMIN, AMOMAX, AMOPAT, VOLLIM, HIAS, PJOIN, VRJOIN, WSIM, WDELSM,
 BETTER, MOIF, CORLEN, SPCOR
 COMMON /STPAH/WAIT, CONL, V, SKRND, SKCHI, TRND, TRCHI, URKBND, URKCHI,
 PACCEL(2), MACCFL(2), VACCEL(2)
 PRINT 713, INDFX(KLHED), SPFAC(KLHED), SALTH
 713 FORMAT(1,1, **SUR FLIM 1, T3, ! SPLITTING!, F12.5, ! !, F12.5)
 WRITE(3,713) INDFX(KLHED), SPFAC(KLHED), SBLTH
 KL=KLHED
 K=LSURS(KL)
 PRINT 714, INDEX(K)
 CALL TRFHFE(K, NINCLS)
 714 FORMAT(1,1)
 K=KNX
 IF(K, NF, 0) GO TO 11
 LSURS(KL)=0
 SPFAC(KL)=9999.
 PQRAT(KL)=0.
 CALL PRTHFE(KLHED)
 RFTIHN
 END

SUB00010
 SUB00020
 SUB00030
 SUB00040
 SUB00050
 SUB00060
 SUB00070
 SUB00080
 SUB00090
 SUB00100
 SUB00110
 SUB00120
 SUB00130
 SUB00140
 SUB00150
 SUB00160
 SUB00170
 SUB00180
 SUB00190
 SUB00200
 SUB00210
 SUB00220
 SUB00230
 SUB00240
 SUB00250
 SUB00260
 SUB00270
 SUB00280
 SUB00290
 SUB00300
 SUB00310
 SUB00320
 SUB00330
 SUB00340
 SUB00350
 SUB00360
 SUB00370
 SUB00380
 SUB00390
 SUB00400
 SUB00410
 SUB00420
 SUB00430
 SUB00440
 SUB00450
 SUB00460
 SUB00470
 SUB00480
 SUB00490
 SUB00500
 SUB00510

FILE: SUPSUM FORTRAN A

```
FUNCTION SUPSUM(A,I,N)
DIMENSION A(N)
IF (I.LT.2) GO TO 110
CALL ORDI(A+1:I,N)
IM2=I-2
DO 100 J=1,IM2
JP1=J+1
A(JP1)=A(J) + A(JP1)
JJ=J+2
IF (ABS(A(JP1)).LF.ABS(A(JJ))) GO TO 100
CALL ORDI(A,JP1:I,N)
100 CONTINUE
II=I-1
SUPSUM=A(I) + A(II)
RETURN
END
```

SUP00010
SUP00020
SUP00030
SUP00040
SUP00050
SUP00060
SUP00070
SUP00080
SUP00090
SUP00100
SUP00110
SUP00120
SUP00130
SUP00140
SUP00150
SUP00160

FILE: TEST FORTRAN A

```
SUBROUTINE TEST (PIX, NWORDS,LTEST,LSUM)
COMMON /TFSTCM/ ITEST(100),NTEST(100),MTEST(100),ISUM,MSUM,NSUM
REAL PIX
DIMENSION PIX (1), LTEST(1)
DO 10045 I=1,NWORD$  
  IVALUE = PIX (I)
  IF (IVALEU .LT. 1 .OR. IVALUF .GT. 99) GO TO 10040
  LTEST(IVALEU) = LTEST(IVALEU) + I
  GO TO 10045
10040 LTEST ( 100) = LTEST( 100) + I
10045 LSUM = LSUM + IVALUE
RETURN
END
```

TES00010
TES00020
TES00030
TES00040
TES00050
TES00060
TES00070
TES00080
TES00090
TES00100
TES00110
TES00120
TES00130
TES00140

FILE: TR FORTRAN A

FUNCTION TR(AM,AMET)
CALCULATES THE TRACE OF THE MATRIX AM RELATIVE TO THE METRIC AMETR

COMMON /MISC/ MQ,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,FPS,DELT,	TR 00010
1 AMQ,UDCON,XOVFLO,XUNFL0,WADJIN,ELIMTH,SEPTH,VFAC,AMM,SALTH,	TR 00020
2 INDXVL,WFAC,NPTSO,PQRATH,SPMVTH,DWFAC,GRACTM,AMOFAC,	TR 00030
3 AMOMIN,AMOMAX,AMORAT,VOLLIM,BIAS,PJOIN,VRJOIN,WSIM,WDELSM,	TR 00040
4 RETTEH,MODEF,CORLEN,SPCOR	TR 00050
INTEGER MXAR(3),LR(3),LV(3)	TR 00060
REAL AM(475),AMET(475)	TR 00070
REAL*A DPTH	TR 00080
10 DPTH= AM(1)*AMET(1)*.5	TR 00090
DO 10 I=2,MM	TR 00100
10 DPTH=DPTH+AM(I)*AMET(I)	TR 00110
DPTH=DPTH*DPTH	TR 00120
WE MUST DOUBLE THE OFFDIAGONAL TERMS (SEE COMMENT IN FUNCTION DTR)	TR 00130
NOW SUBTRACT DIAGONALS.	TR 00140
DO 15 I=2,MM	TR 00150
15 MXA=MXAR(I)	TR 00160
DPTH=DPTH-AM(MXA+I)*AMET(MXA+I)	TR 00170
TH = DPTH	TR 00180
RETURN	TR 00190
END	TR 00200
	TR 00210
	TR 00220
	TR 00230
	TR 00240

SUBROUTINE TRFREE(KLHED,LEN)

C THIS ROUTINE FREES THE TREE HEADED BY KLHED.
C THE USER ROUTINE MUST INSURE THAT POINTERS TO KLHED, ETC., ARE
C PROPERLY ADJUSTED.

DIMENSION NTA(32),
DIMENSION INDEX(27), LSUBS(30), LSUPER(29), IDADJ(28), NSYMB(12),
1 PCUM(26), PRIRCM(25), CIN(24), CTOT(23), PROP(22), SPFAC(21),
2 WADJ(20), W(19), OPROP(18), OW(17), VOLIN(16), VOLAT(15), DCON(14),
3 PQRAT(13), DISS(12), PPASS(12), PST(11), OCIN(10), PCOND(7),
4 OPRIOR(9), ODEN(8),
DIMENSION VRIN(475), GEN(999), GREF(999), ALINK(1),
FQIIVALENCE(LINK(1),ALINK(1)), (LINK(31)-INDEX(27))
FQIIVALENCE(LINK(31),LSUBS(30)),
FQIIVALENCE(LINK(31),LSUPER(29)), (LINK(31),IDADJ(28)),
1 (LINK(31),NSYMH(12)), (LINK(31),PCUM(26)), (LINK(31),PRIRCM(25)),
2 (LINK(31),CIN(24)), (LINK(31),CTOT(23)), (LINK(31),PROP(22)),
3 (LINK(31),SPFAC(21)), (LINK(31),WADJ(20)), (LINK(31),W(19)),
4 (LINK(31),OPROP(18)), (LINK(31),OW(17)), (LINK(31),VOLIN(16)),
5 (LINK(31),VOLAT(15)), (LINK(31),DCON(14)), (LINK(31),PQRAT(13)),
6 (LINK(31),DISS(12)), (LINK(31),PPASS(12)), (LINK(31),PST(11)),
7 (LINK(31),OCIN(10)), (LINK(31),PCOND(7)), (LINK(31),VRIN(7)),
8 (LINK(31),GEN(7)), (LINK(31),OPRIOR(9)), (LINK(31),ODEN(8)),
9 (LINK(31),GREF(8)), (LINK(31),NTB(31))
COMMON/CLUS/ JUNK(12), NAHL, NTOP, NTBSZM, NWANT, LINK(14000)
DIMENSION MXAR(31), LR(3), LV(3)
FQIIVALENCE(LR(1), LVAINI), (LR(2), LKURT),
1 (LR(3), LUOVAR), (LV(1), LSUM), (LV(2), LSKEW), (LV(3), LOSUM)

1 COMMON /MISC/ MQ, MM, LR, LV, NINCLS, MXAR, WTINIT, KROOT, EPS, DELT,
1 AM0, UDCON, XOVFLO, XUNFLO, WADJIN, ELIMTH, SEPTH, VFAC, AMM, SBLTH,
2 INDXVL, WFAC, NPFTSO, PQRATH, SPMVTH, DWFAC, GRACTM, AMOFAC,
3 AMOMIN, AMOMAX, AMORAT, VOLIM, BIAS, PJOIN, VRJOIN, WSIM, WDELSM,
4 RFTTER, MODE, CORLEN, SPCOR

1 COMMON /STPAH/WAIT, CUNLV, SKRND, SKCHI, TRAND, TRCHI, URKBND, URKCHI,
1 PACCEL(?), MACCEL(2), VACCEL(2)
IF(KLHED.EQ.0) RETURN
KLEKLHED

0 KLO=KL
KL=LSUBS(KL)
TF(KL.NF.0) GO TO 9
KL=KLO

11 KLF=LSUPER(KL)
10 KLK=LINK(KL)
CALL FREE(KL,LFN)
TF(KL.FU.KLHED) GO TO 99
KL=KLF
TF(KL).9,13,0

12 KL=KLF
GO TO 11

99 KLHED=0
RF TURN
END

FILE: TRIDMX FORTRAN A

```

SUBROUTINE TRIDMX (N,NM,A,D,B)
REAL*8 YTEMP, A(NM,NM), D(NM), B(NM)
DOUBLE PRECISION SUM,XTEMP
DO 10 I = 1,N
   D(I) = A(I,I)
10  IF (I>2) 60,55,15
15  DO 46 K = 3,N
   KK = K-1
   SUM = A(K-1,K-2)*A(K-1,K-2)
20  DO 20 J = K,N
   SUM = SUM + A(J,K-2) * A(J,K-2)
   XTEMP = DSQRT(SUM)
   YTEMP = XTEMP
   R(K-2) = DSTGN(YTEMP, -A(K-1,K-2))
24  IF (R(K-2)) 24,46,24
   A(K-1,K-2) = DSQRT(0.500 * DABS(A(K-1,K-2) / R(K-2)) + 0.500)
   DENOM = -2. * A(K-1,K-2) * R(K-2)
28  DO 30 I = K,N
   A(I,K-2) = A(I,K-2) / DENOM
30  SCAL = 0.
37  DO 36 J = KK,N
   H(J) = 0.
   IF (J,F0,KK) GO TO 350
340  DO 340 L = KK,JJ
   R(J) = R(J) + A(J,L) * A(L,K-2)
350  DO 35 L = J,N
   R(J) = R(J) + A(L,J) * A(L,K-2)
35  JJ = J
36  SCAL = SCAL + R(J) * A(J,K-2)
38  DO 40 J = KK,N
   H(J) = H(J) - SCAL*A(J,K-2)
40  DO 45 J = KK,N
   DO 45 I = J,N
   A(L,J) = A(L,J) - 2.* (A(L,K-2) * R(J) + A(J,K-2) * R(L))
45  CONTINUF
46  DO 50 I = 1,N
   T = A(I,I)
   A(I,I) = D(I)
   J = N-I
   IF (N.EQ. I) GO TO 50
50  R(I+1) = H(I)
51  D(I) = T
55  R(N) = A(N,N-I)
56  R(1) = 0.0
57  DETLWN
58  FNIT

```

```

TRI00010
TRI00020
TRI00030
TRI00040
TRI00050
TRI00060
TRI00070
TRI00080
TRI00090
TRI00100
TRI00110
TRI00120
TRI00130
TRI00140
TRI00150
TRI00160
TRI00170
TRI00180
TRI00190
TRI00200
TRI00210
TRI00220
TRI00230
TRI00240
TRI00250
TRI00260
TRI00270
TRI00280
TRI00290
TRI00300
TRI00310
TRI00320
TRI00330
TRI00340
TRI00350
TRI00360
TRI00370
TRI00380
TRI00390
TRI00400
TRI00410
TRI00420
TRI00430
TRI00440
TRI00450
TRI00460

```

ORIGINAL PAGE IS
OF POOR QUALITY

FILE: TRIMTX FORTRAN A

```

C SUBROUTINE TRIMTX(TRI,SQ)
C THIS ROUTINE TAKES THE LOWER TRIANGLE OF SQ(DIM MQ*MQ) AND PUTS
C IT INTO SYMMETRIC MATRIX FORM IN TRI.
C
C DIMENSION MXAR(31),LH(3),LV(3)
C COMMON /MISC/ MQ,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
C 1 AMQ,ODCON,XOVFLO,XUNFLO,WADJIN,ELIMTH,SEPTH,VFAC,AMM,SBTH,
C 2 INDXVL,4FAC,NPTSO,PQRATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
C 3 AMOMIN,AMOMAX,AMORAT,VOLLIM,BIAS,PJOIN,VRJOIN,WSIM,WDELSM,
C 4 BETTER,MODE,COPLEN,SPCOR
C
C DIMENSION TRI(475),SQ(900)
DO 10 I=1,MQ
MX=MXAR(I)
IJ=I
DO 10 J=1,I
TRI(MX+J)=SQ(IJ)
10 IJ=IJ+MQ
RETURN
END

```

TRI00010
TRI00020
TRI00030
TRI00040
TRI00050
TRI00060
TRI00070
TRI00080
TRI00090
TRI00100
TRI00110
TRI00120
TRI00130
TRI00140
TRI00150
TRI00160
TRI00170
TRI00180
TRI00190
TRI00200

FILE: UNTF FORTRAN A

```
FUNCTION UNTF(W)
COMMON /RAND/NX, IDUM, IDUM1
NX=NRAND(NX)
  XNX = NX
UNTFL = XNX * W / 214748369.
RETURN
END
```

UNI00010
UNI00020
UNI00030
UNI00040
UNI00050
UNI00060
UNI00070

FTLF: VMTV FORTNAN A

SUBROUTINE VMTV(VA,AMET,VR)
SETS VA=AMET*VA
COMMON /MISC/ MQ,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,EPS,DELT,
1 AMQ,NDCON,XOVFLO,XIINFL0,WADJIN,ELIMTH,SEPTH,VFAC,AMM,SMTH,
2 INDXVL,WFAC,NPTSO,PORATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
3 AMOMIN,AMOMAX,AMORAT,VOLLIM,BIAS,PJOIN,VRJOIN,WSIM,WDELSM,
4 BETTEH,MODE,CORLEN,SPCOR
REAL VA(30),VR(30),AMET(475)
RFAL OR SUM
LOCA=0
DO 20 I=1,MQ
SUM=0.
DO 10 J=1,I
LOCA=LOCA+1
10 SUM=SUM+AMFT(LOCA)*VR(J)
IF(I,F0,MQ) GO TO 20
JS=I+1
LOCH=LOCA+I
DO 11 J=JS,MQ
SUM=SUM+AMFT(LOCH)*VR(J)
11 LOCH=LOCH+J
20 VA(I)=SUM
RETURN
END

VMT00010
VMT00020
VMT00030
VMT00040
VMT00050
VMT00060
VMT00070
VMT00080
VMT00090
VMT00100
VMT00110
VMT00120
VMT00130
VMT00140
VMT00150
VMT00160
VMT00170
VMT00180
VMT00190
VMT00200
VMT00210
VMT00220
VMT00230
VMT00240

FILE: VPV FORTRAN A

SUBROUTINE VPV(VA,FAC,VB)
SETS VA=VA+FAC*VB

COMMON /MISC/ MQ,MM,LR,LV,NINCLS,MXAR,WTINIT,KROOT,FPS,DELT,
1 AMQ,ONCON,XOVFLO,XUNFL0,WADJIN,ELIMTH,SEPTH,VFAC,AMM,SHLTH,
2 TNDXVL,WFAC,NPTSO,PQRATH,SPMVTH,DWFAC,GRACTM,AMOFAC,
3 AMOMIN,AMOMAX,AMORAT,VOLLIM,AIAS,PJOIN,VRJOIN,WSIM,WDELSM,
4 HETTER,MODE,CURLEN,SPCOR

REAL VA(30),VR(30)

DO 10 I=1,MQ

10 VA(I)=VA(I)+VB(I)*FAC

BRETURN

FEND

VPV00010
VPV00020
VPV00030
VPV00040
VPV00050
VPV00060
VPV00070
VPV00080
VPV00090
VPV00100
VPV00110
VPV00120
VPV00130
VPV00140

ORIGINAL PAGE IS
OF POOR QUALITY

APPENDIX C
SAMPLE OUTPUT

INPUT SUMMARY

PTIN
CHAN 1.1.1.1.20
ITPK 1.2.3.4.5.6.7.8
MAP 10
LINE 1.5.3.4.5.6.7.8.9.10
1-5.26-30
*END

INPUT IMAGE DATA TAPE INFORMATION

FORMAT UNIVERSAL

NO. OF CHANNELS 16

NO. OF PIXELS/LINE 196

FIRST SCAN LINE NO. 1

FIRST PIXEL REFERENCE PT 1

1 (1. 1) (196. 1) (196. 50) (1. 50) (1. 1)

TESTS FOR NORMALITY (KL, INDEA, RKL) 0.0 1 0.0200000039186003 0.0 0.20000000300E 03

AJUSTST 1 WEIGHT 209.0 WAS 0.0 SPFFAC=0.99999E 04 CHANGE 0.0
STATISTICS: IMACR -9.9 SKEW 616.0 KURT 2002.6
TESTS (SPLIT=0) :-1.1262E 05 -55079E 04 -0.22472E 05
WADJ(KL)*W(RKL)*SIN 420.0 200.0 400.0
SKUPONT RELATIVE TO TOP LEVEL = 1.0100000 1.0100000 1.0100000
LOADJ*NPTSO*INDEA*WADJ 9800 200 1.0100000 1.0100000 1.0100000
STATIS(KL, W(RKL), W(RKL), WADJ(KL)) 1 0.42000037559E 03 0.0149997539E 03

AJUSTST 1 WEIGHT 421.0 WAS 200.0 SPFFAC=0.99999E 04 CHANGE 0.0
STATISTICS: TRACE 254.9 SKEW 882.2 KURT 22174.6
TESTS (SPLIT=0) :55735E 05 -4957E 04 -17941E 04
WADJ(KL)*W(RKL)*SIN 462.0 221.0 200.0
PROPORTION RELATIVE TO TOP LEVEL = 1.0000000 1.0000000 1.0000000
LOADJ*NPTSO*INDEA*WADJ 10000 21 0.4619997554E 03 0.4619995117E 03
STATIS(KL, W(RKL), WADJ(KL)) 1 0.46299997559E 03 0.4619995117E 03

AJUSTST 1 WEIGHT 464.0 WAS 221.0 SPFFAC=0.99999E 04 CHANGE 0.0
STATISTICS: IMACR 231.1 SKEW 4294.6 KURT 4058.6
TESTS (SPLIT=0) :-0.02300E 05 -12976E 04 0.17528E 05
WADJ(KL)*W(RKL)*SIN 504.0 242.0 400.0
PROPORTION RELATIVE TO TOP LEVEL = 1.0000000 1.0000000 1.0000000
00-00
01-00
02-45 03-55
**HAVE SPLIT 1 WEIGHT 242.0 SUMS 2 3 ITEM 20
KL, INDEA, LSUPER, 145

ORIGINAL PAGE IS
OF POOR QUALITY

CLUSTER 1 INDEX 1 PROPORTION 1.00000 * PARENT 063.001
 SPLIT-0.100E-02
 WEIGHT 24.000 WAS 221.000 AUGUST 004.000 ID 10221
 PROPORTION: PUP 1.0000 CIN 242.000 CTOT 421.000
 OLD PROP 1.0000 CIN 242.000 DIFFP 0.0
 VOLUME.31E-07 DCUN -1.16
 LOCATION 145 LINK 0 SUBS 2 1563 SUPER 0 149 SYMBOL 1
 INDEX = 1
 NET PROB***** DIRECT***** CUMS 0.0 * .10000E 01

MEAN 26.12 27.92 28.33 27.21 21.34 22.32 24.73 24.03
 COVARIANCE 2
 3.021 4.44 3.10 2.62 1.21 2.10 1.05 0.77
 4.044 5.17 5.17 4.43 2.43 5.77 2.28 0.60
 5.17 6.64 6.03 0.10 0.17 3.31 3.63
 6.03 7.70 -1.31 -1.85 3.04 0.76
 7.70 -1.31 2.46 4.56 0.05 -1.74
 8.05 5.77 0.17 -1.85 9.87 -0.52 -3.95
 9.03 2.28 3.31 3.04 0.05 -0.52 3.72 3.91
 0.60 3.83 4.76 -1.74 -3.95 3.91 7.03
 SKEW(*) 331.6 566.0 111.9 824.1 -403.9-1010.2 670.4 1166.2

CLUSTER 1 INDEX 2 PROPORTION 0.45239 * PARENT 242.000
 SPLIT-0.9999E 04
 WEIGHT 80.000 WAS 52.39 CIN 60.000 AUGUST 260.000 ID 10463
 PROPORTION: PUP 0.45238, CIN 36.19 DCUN 162.00
 OLD PROP 0.45238, CIN 36.19 DIFFP 0.0
 VOLUME.97E-16 DCUN 4.74
 LOCATION 1543 LINK 3 1741 SUBS 0 0 SUPER 1 145 SYMBOL 2
 INDEX = 2
 NET PROB 0.00 DIRECT 0.00 CUMS 0.00 * 0.00
 CUMS.10810E-82 * .10610E-82

MEAN 26.48 29.20 28.58 27.67 21.63 23.12 25.87 24.57
 COVARIANCE 2
 2.74 2.46 1.96 2.25 0.33 -0.38 0.96 1.07
 2.46 4.27 2.29 3.08 0.48 0.49 0.82 -0.37
 3 1.66 2.29 4.77 4.91 -0.40 -1.56 2.56 2.93
 4 2.25 3.08 4.91 7.75 -1.89 -3.27 3.25 5.66
 5 0.33 0.48 -0.40 -1.89 2.81 3.80 -1.04 -3.42
 6 -0.38 0.49 -1.56 -3.27 3.80 7.73 -3.96 -6.21
 7 0.96 0.82 2.56 3.25 -1.04 -3.96 4.40 6.82
 8 1.07 -0.37 2.93 5.66 -3.42 -8.21 6.82 13.53
 SKW(*) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CLUSTER 1 INDEX 3 PROPORTION 0.54761 * PARENT 242.000
 SPLIT-0.9999E 04
 WEIGHT 80.000 WAS 80.000 AUGUST 260.000 ID 10463
 PROPORTION: PUP 0.54761, CIN 43.81 CTOT 162.00
 OLD PROP 0.54761, CIN 43.81 DCUN 60.00 DIFFP 0.0
 VOLUME.0.21E-14 DCUN 4.74
 LOCATION 1743 LINK 0 SUBS 0 0 SUPER 1 145 SYMBOL 3

JET DIRECT 0.00 DIRECT 0.00 CUSUM 0.00 * 0.00
CUSUM 1.5957E-92 * 1.4924E-92

STATIS KL. #(KL) • WADJ(KL)	1	0.504997554E 03	246.00	504.00
SKFW((*)	0.0	0.0	0.0	0.0

WADJ•NPTSO•INDEFLWADJ 10221 663 1 0.504997554E 03 0.503997554E 03

ADJUST 1 WEIGHT 505.0 WAS 242.0 SPFAC=0.12971E 03 CHANGE 0.0
STATISTICS: TRACF -93.6 SKEW 1702.0 KURT 4636.3 02
TESTS (SPLIT=0): -10278E 06 -3688E 04 -0.1751E 05
WADJ(KL) • SIM 565.0 263.0 600.0
PROPORTION RELATIVE TO TOP LEVEL = 926 1.000000 1
WADJ•NPTSO•INDEFLWADJ 10463 1 0.280570084E 03 546.00
STATIS KL. #(KL) • WADJ(KL) 3 0.280570084E 03 0.2800000000E 03

ADJUST 3 WEIGHT 280.0 WAS 4102.5 SPFAC=0.99990E 04 CHANGE 0.6
STATISTICS: TRACF -961.9 SKEW 4102.5 KURT 23243.9 03
TESTS (SPLIT=0): 0.86775E 05 -20127E 04 -18846E 04
WADJ(KL) • SIM 421.1 200.0 400.0
PROPORTION RELATIVE TO TOP LEVEL = 0.630541 3
00-00
01-00
02-37 03-63
***HAVE SPLIT 3 WEIGHT 200.0 SUBS 4 5 ITER 18

KL•INDEFLWADJ 1741 3

FOR PAGE 18
QUALITY

CLUSTER 0 INPUT 3 PROPORTION 0.01474 * PARENT 1 317.000
 SPLIT=0.17000^{0.0}
 WEIGHT 0.00050^{0.0}
 PROPORTION: PK0 0.63054 CIN 0.000 ADJUST 421.140 ID 10463
 OLD PROP 0.63054 CIN 156.000 CIUT 54.022
 VOLUME 0.000 CIN 156.000 INDEN 255.300 DCON -5.200
 LOCATION 1741 LINK 0 0 SUMS 4 2155 SUBS 1 145 SYMBOL 1
 INDEX = 3
 NET PROP***** DIRECT***** CUMS 15457E-82 * 100000t 0.1
 MEAN 25.015 27.35 28.68 28.97 21.43 21.62 24.40 23.84
 COVARIANCE₂ 3.35 15.02 3.51 3.02 1.44 3.10 1.27 1.17
 5.02 11.10 6.77 5.60 2.90 7.57 3.60 2.63
 3 3.51 6.77 7.30 6.59 0.69 2.14 4.00 4.56
 4 3.02 5.60 6.50 7.33 -0.53 0.17 3.36 4.59
 5 1.64 2.90 0.64 -0.53 2.71 4.47 0.52 -0.62
 6 3.10 7.57 2.14 0.17 4.47 9.78 1.01 -0.75
 7 1.27 3.60 4.00 3.36 0.52 1.61 3.62 3.17
 8 1.17 2.63 4.56 4.59 -0.62 -0.75 3.17 4.60
 SKEW(*w) 366.5 286.1 393.7 261.2 158.8 -208.8 643.3 301.2

CLUSTER 1 INDEX 4 PROPORTION 0.48676 * PARENT 200.570
 SPLIT=0.99950^{0.0}
 WEIGHT 0.000 WAS 60.000 ADJUST 280.000 ID 10778
 PROPORTION: PK0 0.48676 CIN 38.94 CIUT 120.57
 OLD PROP 0.48675 CIN 38.94 INDEN 80.000 DIFFER 0.0
 VOLUME 0.55E-17 ROOT0.23E-08 DCON 4.74
 LOCATION 2155 LINK 5 2313 SUBS 0 0 SUPER 3 1741 SYMBOL 2
 INDEX = 4
 NET PROP 0.0 DIRECT 0.0 CUMS 0.0 * 0.0
 MEAN 26.51 27.89 28.98 27.25 21.75 22.07 25.02 24.41
 COVARIANCE₂ 3.99 5.71 4.35 3.96 1.35 2.91 1.55 1.55
 5.71 12.44 9.30 7.25 2.86 8.09 3.91 3.67
 3 4.33 8.30 9.43 8.94 0.40 2.52 5.00 6.25
 4 3.96 7.25 8.94 10.60 -1.15 -0.21 4.66 6.80
 5 1.35 2.86 0.40 -1.15 3.14 4.97 0.10 -1.15
 6 2.91 8.09 2.52 -0.21 4.97 11.30 0.94 -0.80
 7 1.55 3.91 5.00 4.66 0.10 0.94 4.38 4.32
 8 1.55 3.67 6.25 6.89 -1.15 -0.80 4.32 6.74
 SKEW(*w) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CLUSTER 1 INDEX 5 PROPORTION 0.51324 * PARENT 200.570
 SPLIT=0.9593E-04^{0.0}
 WEIGHT 0.000 WAS 80.000 ADJUST 280.000 ID 10778
 PROPORTION: PK0 0.51324 CIN 41.06 CIUT 120.57
 OLD PROP 0.51324 CIN 41.06 INDEN 80.000 DIFFER 0.0
 VOLUME 0.11E-23 ROOT0.11E-11 DCON 4.74
 LOCATION 2313 LINK 0 0 SUMS 0 0 SUPER 3 1741 SYMBOL 3

CLUSTER 0 INDEX 2 PROPORTION		0.3736H # PARENT		547.000	
SPLIT-0.170E 02					
WEIGHT 200.474	445	50.000	ADJUST	420.955	10 10463
PROPORTION: PHUP 0.36439	CIN 140.18	CTOT 155.60			
OLD PROPTN 0.363394	CIN 140.18	ODEN 39.20	DIFER	0.0	
VOLUME 0.25E 21	WGT0.27E-06	DCON 5.24			
LOCATION 1583	LINK 3 1741	SIMS 6 2599	SUPER 1	145	SYMOL
INDEX = 2	SYMLU = 1				
NET PROB***** DIRECT***** CUMS 0.00 * 1.00					
	CUMS.1081UE-82*	* 1000UE 01			
MEAN	28.017	28.04	29.09	28.19	20.86 21.42 25.92 25.71
COVARIANCE	2.64	3.07	2.59	2.21	0.75 0.34 1.75 1.76
2	3.07	6.17	3.23	1.87	1.45 3.05 2.04 0.01
3	2.59	3.23	6.49	6.74	-1.14 -3.40 4.07 5.60
4	2.21	1.67	6.74	9.04	-2.76 -6.27 4.79 8.52
5	0.75	1.85	-1.14	-2.76	3.42 5.53 -0.98 -4.10
6	0.34	3.05	-3.40	-6.27	5.53 11.33 -2.99 -9.09
7	1.75	2.04	4.07	4.79	-0.98 -2.09 3.86 5.51
8	1.76	0.01	5.60	8.52	-4.10 -9.09 5.51 11.89
SKEW(•)	-345.2-1272.8	834.5	883.6-1156.0-2433.3	190.7	1045.7
CLUSTER 1 INDEX 6 PROPORTION		0.50203 # PARENT		200.478	
SPLIT-0.9999E 04					
WEIGHT 80.000	WAS	80.000	ADJUST	280.000	ID 11010
PROPORTION: PKUP 0.50203	CIN 40.16	CTOT 120.48			
OLD PROPTN 0.502032	CIN 40.16	ODEN 80.00	DIFER	0.0	
VOLUME 0.21E-17	ROUT0.14E-08	DCON 4.74			
LOCATION 2599	LINK 7 2757	SIMS 0 0 SUPER 2 1583 SYMOL			
INDEX = 6	SYMLU = 2				
NET PROB	0.0	DIRECT 0.0	CUMS 0.0	0.0	0.0
MEAN	26.41	27.81	30.57	29.95	19.67 18.74 27.06 28.59
COVARIANCE	2.10	2.53	1.70	0.70	1.40 1.74 2.02 0.37 -0.53
2	2.53	6.88	1.82	-0.90	3.74 7.46 0.27 -0.85
3	1.70	1.82	6.25	5.95	-1.22 -3.24 2.77 3.82
4	0.70	-0.90	5.95	8.91	-3.30 -6.97 3.03 6.87
5	1.40	3.74	-1.22	-3.30	4.83 8.20 -0.53 -5.23
6	2.02	7.46	-3.24	-6.97	A.20 16.64 -1.62 -10.72
7	0.37	0.27	2.77	3.03	-0.53 -1.62 1.99 2.29
8	-0.63	-4.85	3.82	6.87	-5.23 -10.72 2.29 9.38
SKEW(•)	0.0	0.0	0.0	0.0	0.0 0.0 0.0 0.0
CLUSTER 1 INDEX 7 PROPORTION		0.69797 # PARENT		200.478	
SPLIT-0.9999E 04					
WEIGHT 80.000	WAS	80.000	ADJUST	280.000	ID 11010
PROPORTION: PHUP 0.49797	CIN 39.84	CTOT 120.48			
OLD PROPTN 0.49796	CIN 39.84	ODEN 80.00	DIFER	0.0	
VOLUME 0.37E-21	ROUT0.19E-10	DCON 4.74			
LOCATION 2757	LINK 0 0	SIMS 0 0 SUPER 2 1583 SYMOL			

CLUSTER 0 INDEX 4 PROPORTION 0.84141 W PARENT 436.362
 SPLIT-0.1700E 02 WEIGHT 220.433 0.45 PROPORTION: PROP 0.40449 C13 200.131 ADJUST 461.0565 ID 11117
 OLD PROP 0.904493 CIN 212.42 QDEN 252.04 DIFFER 0.0
 VOLUME 0.13E 21 AUTO 0.21E-07 RCON -1.19

LOCATION 2153 LINK 5 SUPER 8 145 SUPER 3 1741 SYMBOL 1
 INDEX = 4 SYMBOL = 1

NET PHOB 688.48 DIRECT 113.23 CUMS 0.0 * 1.00
 CUMS 0.0 * .1000E 01

MEAN 26.3H 27.64R 26.74 27.08 21.16 21.74 24.58 23.75
 COVARIANCE 3.12 4.91 10.24 3.36 6.59 3.31 1.84 3.29 1.30 1.01
 2 4.91 10.24 6.86 6.59 3.17 6.61 2.90 2.25
 3 3.36 6.86 8.06 8.33 0.92 1.71 4.16 4.99
 4 3.31 6.59 8.33 10.36 0.24 0.10 4.46 6.32
 5 1.64 3.17 0.92 0.24 2.73 4.38 0.37 -0.74
 6 3.29 6.61 1.71 0.10 4.36 4.27 0.27 -2.24
 7 1.30 2.90 4.16 4.46 0.37 0.27 3.33 3.72
 8 1.01 2.25 4.99 6.32 -0.74 -2.24 3.72 0.32
 SKEW(*w) 661.2 807.9 236.3 -187.1 147.5 597.4 126.0 287.6

CLUSTER 1 INDEX 8 PROPORTION 0.44127 W PARENT 220.483

SPLIT-0.9999E 06 WEIGHT 80.000 WAS 80.000 ADJUST 280.000 ID 11483
 PROPORTION: PROP 0.44127 CIN 35.30 CTOT 140.48
 OLD PROP 0.441273 CIN 35.30 QDEN 80.00 DIFFER 0.0
 VOLUME 0.29E-18 RCON 4.74

LOCATION 145 LINK 9 SUPER 3043 SUBS 0 0 SUPER 4 2155 SYMBOL 2
 INDEX = H SYMBOL = 2

NET PROB***** DIRECT***** CUMS***** * 1.00

MEAN 26.44 27.04 26.90 24.80 21.71 23.14 23.42 22.15

COVARIANCE 3.03 3.41 2.19 3.21 0.28 0.93 1.72 3.13
 2 3.41 5.52 3.11 4.74 0.24 2.00 1.47 3.21
 3 2.19 3.11 3.14 3.96 0.32 1.40 1.58 2.70
 4 3.21 4.74 3.96 6.72 0.36 1.25 3.12 5.52
 5 0.28 0.24 0.32 0.36 0.70 0.82 -0.06 -0.23
 6 0.93 2.00 1.40 1.25 0.82 2.95 -0.70 -1.52
 7 1.72 1.47 1.58 3.12 -0.06 -0.70 3.88 6.02
 8 3.13 3.21 2.70 5.52 -0.23 -1.52 6.02 11.51
 SKEW(*w) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CLUSTER 1 INDEX 9 PROPORTION 0.55873 W PARENT 220.483

SPLIT-0.9999E 06 WEIGHT 80.000 WAS 80.000 ADJUST 280.000 ID 11483
 PROPORTION: PROP 0.55873 CIN 44.70 CTOT 142.48
 OLD PROP 0.558726 CIN 44.70 QDEN 80.00 DIFFER 0.0
 VOLUME 0.15E-19 RCON 4.74

LOCATION 3043 LINK 0 SUPER 3 0 0 SUPER 4 2155 SYMBOL 3
 INDEX = G SYMBOL = 3

NET PHOB 0.0 DIRECT 0.0 CUMS 0.0 * n 0.0

ORIGINAL PAGE IS
 OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

	MEAN	26.32	27.82	30.19	28.94	20.72	20.53	25.43	25.01
COUNT	ANCF	3•07	7•23	5•05	4•67	3•65	5•56	2•52	1•49
2		7•23	15•99	11•67	9•66	6•73	11•57	6•36	4•14
3		5•05	11•67	14•15	14•19	1•75	2•09	5•07	9•09
4		4•67	9•66	14•16	15•95	0•20	-1•34	7•86	10•48
5		3•05	6•73	1•75	0•20	5•16	8•74	0•63	-1•74
6		5•56	11•57	2•06	-1•39	8•74	17•01	0•90	-4•15
7		2•52	6•36	8•07	7•86	0•63	0•90	4•96	5•20
8		1•49	4•14	9•66	10•48	-1•74	-4•15	5•20	8•06
SKEW(*w)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

LOADJ(NPTSO*INDEX*W*WADJ, 11117 1683 4 0.4620122070E 03 0.4612084961E 03

ADJUST 3 WEIGHT TESTS TRACE 121.62 WAS SPLIT=0: 1.016E 06 1285.3 SPFFAC=0.21950E 02 CHANGE 0.0
 WADJ(KL)*W(KL)*WSIM 502.8 241.4 -0.43133E 04 -0.84997E 04
 PROPORTION RELATIVE TO TOP LEVEL = 0.616012 3
 IDADJ(NPTSO*INDEX*W*WADJ, 11114U 1732 0.3 0.2806679988E 03 0.2800000000E 03
 STATUS KL, W(KL)*WADJ(KL) 6 0.4214631348E 03 0.4209555664E 03

ADJUST 6 WEIGHT TESTS TRACE 105.7 WAS SPLIT=0: 1.1543E 06 80.0 SPFFAC=0.99999E 04 CHANGE 0.0
 WADJ(KL)*W(KL)*WSIM 421.3 200.7 3945.0 KURT 15011.6
 PROPORTION RELATIVE TO TOP LEVEL = 0.316532 -0.21686E 04 -0.10111E 05
 IDADJ(NPTSO*INDEX*W*WADJ, 11010 1766 6 0.4214631348E 03 0.4209555664E 03
 STATUS KL, W(KL)*WADJ(KL) 2 0.4014072266E 03 0.460953320E 03

ADJUST 2 WEIGHT TESTS TRACE 421.5 WAS SPLIT=0: 1.1543E 06 200.5 SPFFAC=0.77037E 02 CHANGE 0.0
 WADJ(KL)*W(KL)*WSIM 462.0 221.0 1983.2 KURT 2032.7
 PROPORTION RELATIVE TO TOP LEVEL = 0.392902 0.400.0 220.99 2
 IDADJ(NPTSO*INDEX*W*WADJ, 11016 1769 4 0.4014072266E 03 0.460953320E 03
 STATUS KL, W(KL)*WADJ(KL) 3 0.5033339844E 03 0.5028159180E 03

ADJUST 4 WEIGHT TESTS TRACE 295.8 WAS SPLIT=0: 1.1543E 05 220.5 SPFFAC=0.6257E 03 CHANGE 0.0
 WADJ(KL)*W(KL)*WSIM 462.0 221.0 1626.7 KURT 2202.5
 PROPORTION RELATIVE TO TOP LEVEL = 0.392902 0.400.0 220.99 2
 IDADJ(NPTSO*INDEX*W*WADJ, 11483 2091 4 0.563067 0.601459 240.92 261.93 3
 STATUS KL, W(KL)*WADJ(KL) 3 0.5033339844E 03 0.5028159180E 03

ADJUST 9 WEIGHT TESTS TRACE 503.3 WAS SPLIT=0: 1.1543E 05 261.4 SPFFAC=0.18291E 02 CHANGE 0.0
 WADJ(KL)*W(KL)*WSIM 543.9 261.9 1207.4 KURT 13193.1
 PROPORTION RELATIVE TO TOP LEVEL = 0.601459 0.601459 240.92 261.93 3
 IDADJ(NPTSO*INDEX*W*WADJ, 11532 2171 3 0.2801301210E 03 0.2800000000E 03

ADJUST 10 WEIGHT TESTS TRACE 436.1 WAS SPLIT=0: 1.1543E 05 40.0 SPFFAC=0.99999E 04 CHANGE 0.0
 WADJ(KL)*W(KL)*WSIM 420.3 200.1 4505.6 KURT 13193.1
 PROPORTION RELATIVE TO TOP LEVEL = 0.3904271 0.3904271 4 0.400.0 26667 26667
 IDADJ(NPTSO*INDEX*W*WADJ, 11532 2171 3 0.2801301210E 03 0.2800000000E 03

***HAFV SPLIT 4 0.1543E 05 10-1 11-15 200.1 SUHS 10 11 ITER 24
 RL INDEX 3043 9 2145 0.3904271 0.3904271 4 0.400.0 26667 26667
 IDADJ(NPTSO*INDEX*W*WADJ, 11532 2171 3 0.2801301210E 03 0.2800000000E 03

CLUSTER	0	INDEX	2	PROPORTION	0.52973	W PARENT	364.458
SPLIT	0.1700E-02						
WEIGHT	200.130	WAS	AU.000	AUGUST	420.260	ID 11453	
PROPORTION:	PRUP 0.53266	CIN 14H.63	CTOT 155.67				
OLD PRUP	0.53267	CIN 14H.63	ODEN 280.58	DIFFER	0.0		
VOLUME	0.52E-20	MUDN 0.45E-07	DCON -5.24				
LOCATION	3043	LINK 0	SUBS 10	SUPER 4	2155	SYMBOL 1	
INDEX =		SYMBL =					
NET PROB*****	DIRECT*****	CUMS 0.0	* 1.00				
		CUMS.0	* .1000E 01				
MEAN	26.34	27.62	29.10	27.79	20.95	21.24	24.83
COVARIANCE	2.62	4.51	2.93	2.25	2.06	3.63	1.38
2	4.51	12.12	6.95	4.97	4.65	9.77	4.25
3	2.93	6.95	7.82	7.39	1.14	2.24	4.81
4	2.25	4.97	7.39	8.82	-0.34	-0.82	4.33
5	2.06	4.65	1.14	-0.39	3.60	6.15	0.76
6	3.63	9.77	2.28	-0.82	6.15	12.83	1.53
7	1.3H	4.25	4.81	4.33	0.78	1.53	3.92
8	0.66	1.79	5.06	6.21	-1.25	-2.66	3.64
							5.96
SKEN(*#)	343.5	204.6-1178.4	-945.9	474.9	1077.7	-906.7	-443.7
CLUSTER	1	INDEX	10	PROPORTION	0.50423	W PARENT	200.130
SPLIT	0.999E 04						
WEIGHT	80.000	WAS	80.000	ADJUST	280.000	ID 12105	
PROPORTION:	PRUP 0.50423	CIN 40.34	CTOT 120.13				
OLD PROP	0.504235	CIN 40.34	ODEN 80.00	DIFFER	0.0		
VOLUME	0.17E-17	ROOT 0.13E-08	DCON 4.74				
LOCATION	3329	LINK 11.3487	SUBS 0	0 SUPER 9	3043	SYMBOL 2	
INDEX =	10	SYMBOL =	2				
NET PROB	0.0	DIRECT	0.0 CUMS	0.0 *	0.0		
MEAN	26.55	27.75	28.05	26.90	21.35	22.16	24.04
COVARIANCE	3.40	5.14	1.92	1.27	3.17	5.44	1.11
2	5.14	13.43	4.90	2.76	6.76	13.43	4.45
3	1.92	4.90	4.84	4.25	1.70	2.86	4.47
4	1.27	2.76	4.25	6.02	0.08	-0.54	3.73
5	3.17	6.76	1.70	0.08	5.04	8.47	1.46
6	5.44	13.43	2.86	-0.54	8.47	17.18	2.45
7	1.11	4.45	4.47	3.73	1.66	2.45	5.22
8	-0.30	0.05	3.39	4.62	-1.22	-3.06	3.94
							5.79
SKEN(*#)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CLUSTER	1	INDEX	11	PROPORTION	0.49577	W PARENT	200.130
SPLIT	0.999E 04						
WEIGHT	80.000	WAS	80.000	ADJUST	280.000	ID 12105	
PROPORTION:	PRUP 0.49577	CIN 39.66	CTOT 120.13				
OLD PROP	0.495765	CIN 39.66	ODEN 80.00	DIFFER	0.0		
VOLUME	0.52E-24	ROOT 0.72E-12	DCON 4.74				
LOCATION	3487	LINK 0	SUBS 0	0 SUPER 9	3043	SYMBOL 3	
INDEX =	0.0						

PROBABILITY = 0.0
NET P-VAL = 0.0
COVARIANCE = 0.0
CUMS = 0.0

	MEAN	26.13	27.49	30.14	26.70	26.55	20.39	25.63	25.04
COVARIANCE	0.042	0.93	0.96	0.05	0.01	1.29	0.15	0.14	0.14
2	1.03	3.70	0.92	-0.35	2.24	4.87	0.50	-0.73	
3	0.36	0.92	1.16	1.03	0.13	0.42	0.69	0.68	
4	0.05	-0.35	1.03	1.65	-0.62	-1.54	0.64	1.25	
5	0.61	2.24	0.13	-0.62	1.71	3.48	0.04	-0.90	
6	1.26	4.87	0.42	-1.58	3.48	7.73	0.18	-1.67	
7	0.15	0.50	0.69	0.64	0.04	0.18	0.54	0.51	
8	-0.14	-0.73	0.68	1.25	-0.90	-1.87	0.51	1.17	
SKEWNESS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

INDEX = NPTSO * INDEX * ADJ(RL) 11483
STATIS RL, WKL * ADJ(RL)

ADJUST A WEIGHT TRACE TESTS (SPLIT=0): 260.7 SKEWNESS 0.0 SPFAC=0.99999E 04 CHANGE=0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CLUSTER 717 INDEX A PROPORTION 0.47218 w PARENT 425.0000
SPLIT=0.9999E 04
WEIGHT 280.144 WAS 80.0000 ADJUST 280.0000 ID 11483
PROPORTION: PKOP=0.46973 CIN=186.00 CTOT=27.48
OLD PROP=0.43668 CIN=35.30 RDEN=80.48 DIFFER 0.0
VOLUME=0.44E-13 P0010.21E-06 DCON=-5.24

LOCATION 145 LINK 9 3043 5185 0 SUPER 4 2155 SYMBOL*****

INDEX = H SYMBOL = ***** NET PROB***** DIRECT***** CUMS***** 1.00

MEAN 26.26 27.36 27.45 25.05 31.81 23.10 23.73 22.54

	COVARIANCE	3.63	4.84	3.59	4.96	0.40	1.53	0.75	1.24
2	4.84	6.96	5.52	6.88	0.61	3.25	1.08	1.33	
3	3.59	5.52	5.58	5.91	0.19	1.49	1.45	2.11	
4	4.016	6.68	5.91	7.99	-0.01	1.23	1.73	2.95	
5	0.40	0.61	0.19	-0.01	1.14	1.46	0.24	0.05	
6	1.53	3.25	1.49	1.23	1.46	4.01	0.20	-0.48	
7	0.75	1.08	1.45	1.73	0.24	0.20	2.36	2.85	
8	1.24	1.33	2.11	2.95	0.05	-0.48	2.85	5.40	
SKEWNESS	-408.9	186.1	789.3	1314.5	37.8	-373.6	572.9	1042.0	

ADJ(RL)=KL*SIM TO TOP LEVEL = 200.10.272830
PROPORTION RELATIVE TO TOP LEVEL = 0.00000
00-00 02-38 03-63
06-31 07-06 04-57 05-04
**HAVE SPLIT 12-12 13-15 09-30
RL,INDEX,LSUPER 145 E1GHF 200.1 SUBS 12 13 ITEH 23

CLUSTER 0 INDEX 9 PROPORTION 0.47503 w PARENT 425.000
 SPLIT 0.1700E-02 WAS 0.000 ADJUST 420.288 ID 11443
 WEIGHT 200.144 PROP 0.47612 CIN 151.30 CTOT 106.50 DIFFER 0.0
 PROPORTION: PROP 0.476116 CIN 151.30 ODEN 318.50 DIFFER 0.0
 VOLUME 0.14E-21 R00T0.21E-06 DC0N 4.75-24
 LOCATION 145 LINK 9 3043 SUBS 12 3773 SUPER 4 2155 SYMBOL 1
 INDEX = H SYMBOL = 1
 NET PROB***** DIRECT***** CUMS***** * 1.00
 MEAN 26.19 27.50 27.67 26.00 21.85 23.09 23.85 22.69
 COVARIANCE 3.94 5.41 4.14 4.41 0.45 1.77 0.37 0.49
 2 5.41 10.33 6.49 7.46 0.76 3.75 0.93 0.59
 3 4.14 6.49 6.54 6.69 0.15 1.52 1.40 1.87
 4 4.41 7.46 6.69 8.50 -0.15 1.22 1.18 1.93
 5 0.45 0.76 0.15 -0.15 1.31 1.71 0.36 0.16
 6 1.77 3.75 1.52 1.22 1.71 4.43 0.56 -0.07
 7 0.37 0.93 1.40 1.18 0.36 0.56 1.75 1.58
 8 0.49 0.59 1.67 1.93 0.16 -0.07 1.58 2.96
 SKEW(*w) -408.9 166.1 789.3 1314.5 37.8 -373.6 572.9 1042.0

 CLUSTER 1 INDEX 12 PROPORTION 0.44307 w PARENT 200.144
 SPLIT 0.9999E-04 WAS 60.000 ADJUST 280.000 ID 12192
 WEIGHT 80.000 PROP 0.44307 CIN 35.45 CTOT 120.14 DIFFER 0.0
 OLD PROP 0.443072 CIN 35.45 ODEN 80.00 DIFFER 0.0
 VOLUME 0.68E-18 R00T0.83E-09 DC0N 4.74
 LOCATION 3773 LINK 13 3931 SUBS 0 0 SUPER 8 145 SYMBOL 2
 INDEX = 12 SYMBOL = 2
 NET PROB 0.0 DIRECT 0.0 CUMS 0.0 * 0.0
 MEAN 25.57 27.59 28.18 27.06 22.00 22.82 24.30 23.51
 COVARIANCE 2.27 4.15 4.15 5.72 2.35 0.11 1.14 0.42 -0.46
 2 4.15 11.04 5.72 5.82 0.50 3.59 1.20 -0.36
 3 2.81 5.72 7.44 7.36 -0.58 -0.39 2.94 3.37
 4 2.35 5.82 7.36 9.07 -1.42 -1.51 2.96 3.72
 5 0.11 0.50 -0.58 -1.42 1.42 2.08 0.09 -0.71
 6 1.14 3.59 -0.39 -1.51 2.08 4.94 -0.39 -2.19
 7 0.42 1.20 2.94 2.96 0.09 -0.39 3.64 3.92
 8 -0.46 -0.36 3.37 3.72 -0.71 -2.19 3.92 6.06
 SKEW(*w) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

 CLUSTER 1 INDEX 13 PROPORTION 0.55693 w PARENT 200.144
 SPLIT 0.9999E-04 WAS 80.000 ADJUST 280.000 ID 12192
 WEIGHT 80.000 PROP 0.55693 CIN 44.55 CTOT 120.14 DIFFER 0.0
 OLD PROP 0.556928 CIN 44.55 ODEN 80.00 DIFFER 0.0
 VOLUME 0.29E-23 R00T0.17E-11 DC0N 4.74
 LOCATION 3931 LINK 0 0 SUBS 0 0 SUPER 8 145 SYMBOL 3
 INDEX = 13 SYMBOL = 3
 NET PROB 0.0 DIRECT 0.0 CUMS 0.0 * 0.0

MEAN 26.68 27.42 27.47 27.42 25.15 21.73 23.24 23.49 22.04

CUMHARANC_F² 7.27 6.29 9.16 8.30 2.03 3.59 0.08 2.59
8.20 9.91 7.22 5.57 7.42 1.68 2.99 0.17 2.84

3 6.16 7.22 5.57 7.42 1.68 2.99 0.22 2.34

4 6.51 9.79 7.42 10.18 2.23 3.97 0.22 3.16

5 2.03 2.24 1.68 2.23 1.77 1.21 0.07 0.85

6 3.59 4.19 2.94 3.97 1.21 2.20 0.09 1.31

7 0.98 0.17 0.22 0.22 0.07 0.09 0.21 0.23

8 2.54 2.89 2.34 3.16 0.85 1.31 0.23 1.47

SKEW(*#) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

IDADJNPTSO(I,IDEK,*,WADJ,1:483 2392 8 250.14 20.29

STATIS KL. W(KL)*WADJ(RL) 0.4620241699E 03 0.461970703IE 03

AJUST 2 WEIGHT 462.0 WAS 221.0 SPFAC-0.28164E 02 CHANGE 0.0

STATISTICS: TRACE TESTS (SPLIT=0): -0.11581E 06 3535.4 MURT 14226.7 04
-0.2071E 04 -0.8775E 04

CLUSTER 718 INDEX 2 PROPORTION 0.37819 w PARENT 2401.001

SPLIT-0.2816E 02 WEIGHT 462.024 WAS 220.985 ADJUST 461.971 ID 11569

PROPORTION: PHUP 0.3845 CIN 320.84 CTOT 1267.12
OLD PROB 0.397031 CIN 156.0 DEN 397.55 DIFFEN 11.76

VOLUME 0.44E-15 WOOTN.21E-07 DCWN -1.15

LOCATION 15A3 LINK 3 1741 SUHS 6 2599 SUPER 0 119 SYMBOL*****

INDEX = 2 SYMBOL = *****

NET PROB 32.19 DIRECT H3.65 CUMS 142.61 *

MEAN 26.13 26.11 29.44 28.70 20.42 20.67 26.28 26.68

COVARIANCE 2.49 2.93 2.93 2.16 2.02 0.69 1.63 2.27
2 2.93 5.49 2.88 5.54 5.93 -1.01 -2.66 2.07 1.38

3 2.16 2.88 5.54 5.93 1.39 2.92 2.07 1.38

4 2.02 2.03 5.93 8.41 -2.25 -5.05 4.43 7.73

5 0.69 1.39 -1.01 -2.25 2.81 4.65 -0.93 -3.16

6 0.61 2.92 -2.66 -5.05 4.65 10.04 -2.47 -7.24

7 1.63 2.07 3.39 4.43 -0.93 -2.47 3.80 5.22

8 2.27 1.38 5.03 7.73 -3.16 -7.24 5.22 10.70

SKEW(*#) -653.2 -633.2-1491.2-1425.0 672.3 1594.2-1260.8-1690.7

WAUJKL) W(KL)*WIM PROPORTION RELATIVE TO TOP LEVEL = 241.0 0.373256 0.0

IDADJNPTSO(I,IDEK,*,WADJ,1:1569 2401 213442383E 03 0.421335937E 03

AJUST 6 WEIGHT 421.3 WAS 200.7 SPFAC-0.99999E 04 CHANGE 0.0

STATISTICS: TRACE TESTS (SPLIT=0): -2.7 SKEN 3937.8 MURT 1720.8 04
-0.16901E 04 -0.67806E 04

CLUSTER 719 INDEX 6 PROPORTION 0.84541 w PARENT 242.579

SPLIT-0.1000E 0.7 WEIGHT 421.344 WAS 200.668 ADJUST 421.335 ID 11566

PROPORTION: PHUP 0.8063 CIN 371.14 CTOT -215.44 0.0
OLD PHUP 0.820124 CIN 183.34 DEN 256.73 DIFFEN 0.0
VOLUME 0.60E-15 WOJN.24E-07 DCWN -1.18

LOCATION 2599 L1,K, 7 2757.51HS 0 0 SUPER 2 1783 SYMBOL*****

RESULTS -
NET PROFIT***** DIRECT***** CUMS CUMS 0.0 0.0

MEAN 26.19 28.12 29.64 28.92 20.32 20.43 26.36 26.69

COVARIANCE 2 2.94 2.94 2.94 1.92 1.59 0.96 1.16 1.37 1.70

3 1.92 2.73 5.09 5.27 -0.65 -1.90 3.05 4.20

4 1.59 1.65 5.27 7.63 -1.91 -4.32 3.97 6.71

5 0.96 1.73 -0.65 -1.91 2.65 4.63 -0.72 -2.82

6 1.16 3.70 -1.90 -4.32 4.63 10.00 -1.99 -6.52

7 1.37 1.89 3.05 3.97 -0.72 -1.99 3.57 4.60

8 1.70 0.82 4.20 6.71 -2.82 -6.52 4.60 4.53

SKFW(0W) -576.7 -566.7-1490.9-1460.0 717.3 1638.0-1187.0-1614.4

ADJ(KL)•SIM(KL)•SIM PROPORTION RELATIVE TO TOP LEVEL = 220.7 400.0
IDADJ(NP50,INDEX•WADJ(KL)•WADJ(KL)) 11566 2405 6 0.317678 6
STATIS KL. W(KL)•WADJ(KL) 4 0.5020078125E 03 0.501849121E 03

ADJUST 4 WEIGHT STATISTICS: TRACE TESTS (SPLIT=0): 502.0 WAS 240.9 SPFAC-0.19139E 01 CHANGE 0.0
ADJ(KL)•SIM(KL)•SIM TESTS (SPLIT=0): 67.5 SKEW 1488.6 KURT 12871.7 0.17983E 00 0.355642E 02

ADJ(KL)•SIM(KL)•SIM PROPORTION RELATIVE TO TOP LEVEL = 261.1 400.0
IDADJ(NP50,INDEX•WADJ(KL)•WADJ(KL)) 11891 2508 4 0.599578 4 0.5438052050E 03

ADJUST 3 WEIGHT STATISTICS: TRACE TESTS (SPLIT=0): 544.5 WAS 261.9 SPFAC-0.1735E 02 CHANGE 0.0
ADJ(KL)•SIM(KL)•SIM TESTS (SPLIT=0): 70.9 SKEW 1476.5 KURT 17292.7 0.10114E 00 0.24463E 02

ADJ(KL)•SIM(KL)•SIM PROPORTION RELATIVE TO TOP LEVEL = 262.5 400.0
IDADJ(NP50,INDEX•WADJ(KL)•WADJ(KL)) 11971 2593 4 0.660410 3 0.5424111328E 03 0.542166039E 03

ADJUST 4 WEIGHT STATISTICS: TRACE TESTS (SPLIT=0): 542.4 WAS 261.1 SPFAC-0.90777E-01 CHANGE 0.0
ADJ(KL)•SIM(KL)•SIM TESTS (SPLIT=0): 125.7 SKEW 859.9 KURT 7010.9 0.56216E-01 0.17029E 02

ADJ(KL)•SIM(KL)•SIM PROPORTION RELATIVE TO TOP LEVEL = 281.3 400.0
IDADJ(NP50,INDEX•WADJ(KL)•WADJ(KL)) 12308 2934 4 0.621416 4 0.62107910156E 03 0.2800000000E 03

ADJUST 12 WEIGHT STATISTICS: TRACE TESTS (SPLIT=0): 542.0 WAS 261.9 SPFAC-0.90777E-01 CHANGE 0.0
ADJ(KL)•SIM(KL)•SIM TESTS (SPLIT=0): 125.7 SKEW 859.9 KURT 7010.9 0.56216E-01 0.17029E 02

ADJ(KL)•SIM(KL)•SIM PROPORTION RELATIVE TO TOP LEVEL = 281.3 400.0
IDADJ(NP50,INDEX•WADJ(KL)•WADJ(KL)) 12192 2981 4 0.621416 4 0.62107910156E 03 0.2800000000E 03

ADJUST 8 WEIGHT STATISTICS: TRACE TESTS (SPLIT=0): 542.0 WAS 280.8 SPFAC-0.99990E 04 CHANGE 0.0
ADJ(KL)•SIM(KL)•SIM TESTS (SPLIT=0): 125.7 SKEW 859.9 KURT 7010.9 0.56216E-01 0.17029E 02

ADJUST 8 INDEX 8 PROPOSITION TESTS (SPLIT=0): 542.0 WAS 280.8 SPFAC-0.99990E 04 CHANGE 0.0
ADJ(KL)•SIM(KL)•SIM TESTS (SPLIT=0): 125.7 SKEW 859.9 KURT 7010.9 0.56216E-01 0.17029E 02

C-15 CLUSTER 724 INDEX 8 PROPOSITION 0.53124 W PARENT 310.400

WEIGHT 0.1553E 03 ADJUST 10159.6 0.13197E 05

WEIGHT 420.604 WAS 200.144 0.49686E 04

PROPORTION: PKP 0.5227 CIN 300.27 CTO 2563.420.2498 ID 12192

OLD PROP 0.479116 CIN 151.30 QIN 318.50 DIFFER 51.23

VOLUME: 29E-15 ROC 10.17E-07 DCN -1.19

LOCATION 145 LINK 9 3043 SUBS 12 3773 SUPER 4 2155 SYMBOL*****

INDEX = SYMBO*****

NET PROFIT***** DIRECT***** CUMS***** 0.40

ORIGINAL PAGE IS
OF POOR QUALITY

MEAN	26.70	27.43	27.46	25.80	21.39	23.07	23.83	22.65
COVARIANCE	3.94	5.31	3.83	4.04	0.47	1.93	0.20	0.37
2	5.31	9.43	5.86	6.45	0.83	4.01	0.91	0.32
3	3.83	5.46	5.80	5.49	0.27	1.74	1.09	1.51
4	4.04	6.45	5.42	7.05	-0.18	1.34	0.57	1.24
5	0.47	0.83	0.27	-0.18	1.34	1.74	0.58	0.28
6	1.93	4.01	1.74	1.34	1.74	4.54	0.87	0.21
7	2.46	0.91	3.09	0.57	0.54	0.87	1.78	1.31
8	0.37	0.32	1.51	1.24	0.28	0.21	1.31	2.41
SKWNT(=)	-445.8	-267.3	-464.7	-381.2	-10.2	-267.5	-156.2	-116.9
WADJ(KL) * SIM PROPORTION RELATIVE TO TOP LEVEL = 60.9 400.0 IDADJ(NPTSO) INDUCT * WADJ(KL) 12192 2490 0.335799 H STATIS KL. * (KL) * WADJ(KL)	220.5	0.335799	460.92	0.280000000E 03				
ADJUST 10 WEIGHT STATISTICS: TRACE TESTS (SPLIT=0): 85.8 SKEW 2407.4 KURT 10317.6 CHANGE 0.0 WADJ(KL) * SIM(KL) * SIM 460.6 0.40755E 04 -0.14837E 05 IDADJ(NPTSO) INDEX * WADJ(KL) 12105 3017 0.221478 10 STATIS KL. * (KL) * WADJ(KL) 9 0.42040564941E 03 0.4202602339E 03	80.0	SPFAC-0.99990E 04	0.0	0.35788E 00 0.41945E 03				
ADJUST 9 WEIGHT STATISTICS: TRACE TESTS (SPLIT=0): 11695E 06 1766.4 KURT 11843.2 CHANGE 0.0 WADJ(KL) * SIM(KL) * SIM 460.6 0.40755E 04 -0.12163E 05 IDADJ(NPTSO) INDEX * WADJ(KL) 12105 3059 0.262123 9 STATIS KL. * (KL) * WADJ(KL) 30 0.5853510742E 03 0.5850839844E 03	420.4	WAS	0.0	0.19710E 00 0.15387E 03				
ADJUST 3 WEIGHT STATISTICS: TRACE TESTS (SPLIT=0): 10003E 06 282.5 SPFAC-0.16088E 02 CHANGE 0.0 WADJ(KL) * SIM(KL) * SIM 625.6 0.4150E 04 -0.1214E 05 IDADJ(NPTSO) INDEX * WADJ(KL) 12393 3060 0.65113R 3 STATIS KL. * (KL) * WADJ(KL) 6 0.4615419922E 03 0.4613525391E 03	585.4	WAS	282.5	SPFAC-0.16088E 02	CHANGE 0.0	0.0	0.79102E-01 0.25112E 02	
ADJUST 6 WEIGHT STATISTICS: TRACE TESTS (SPLIT=0): 8471.0 2249.7 SPFAC-0.99999E 04 CHANGE 0.0 WADJ(KL) * SIM(KL) * SIM 501.7 240.9 0.33551E 04 -0.12980E 05 IDADJ(NPTSO) INDEX * WADJ(KL) 12205 3107 0.320775 6 STATIS KL. * (KL) * WADJ(KL) 2 0.5022648926E 03 0.5020776367E 03	461.5	WAS	2249.7	KURT 10050.1	CHANGE 0.0	0.0	0.13445E 00 0.13345E 02	
ADJUST 2 WEIGHT STATISTICS: TRACE TESTS (SPLIT=0): 190.4 SKEW 3199.7 KURT 10659.6 CHANGE 0.0 WADJ(KL) * SIM(KL) * SIM 502.265 241.039 ADJUST 10 12201 PROPORTION: PROB 0.35985 CIN 365.19 CTOT 2115.16 OLD PHOP 0.363328 CIN 164.39 NOEN 456.66 DIFFER 6.04 VOLUME 0.46E-15 PCNT 0.21E-07 DCUN -1.12 LOCATION 1583 LINK 3 1741 SUPER 0 119 SYMBOL***** INDEX = 2 NET PHOP***** DIRECT***** CUMS***** 0.93	502.3	WAS	3199.7	KURT 10659.6	CHANGE 0.0	0.0	0.17278E 00 0.17356E 02	
MEAN	25.95	27.74	29.36	28.70	20.30	20.51	27.11	26.072
COVARIANCE	2.27	2.61	2.22	2.04	0.4C	0.15	1.54	2.14
2	2.61	5.09	2.91	1.97	1.14	0.54	1.36	1.3n
3	2.27	2.96	6.31	6.53	-1.44	-3.51	3.52	2.41

4 2.04 1.97 6.63 9.08 -2.55 -5.95 4.48 1.67
 5 0.49 1.14 -1.44 -2.55 2.47 4.85 -1.09 -3.17
 6 0.15 2.50 -3.60 -5.95 6.85 10.61 -2.88 -7.43
 7 1.54 1.06 3.52 4.48 -1.09 -2.85 3.72 4.95
 8 2.15 1.30 5.24 7.67 -1.17 -7.43 4.95 9.74
 SKEW(*w) -208.4-1292.9 73.8 540.5 -969.4-1961.1 232.5 1405.3

WADJ(KL) *W(KL) RELATIVE TO TOP LEVEL = 542.5 261.2 366.826²
 IDADJ(NPTSU.INDEX.W.WADJ(KL)) 3131.0.362557617E 03

ADJUST 4 WEIGHT
 STATISTICS: TRACE TESTS (SPLIT=0): 43.8 SKEW 502.8 WAS
 WADJ(KL) *W(KL) RELATIVE TO TOP LEVEL = 622.9 261.7 301.7 0.5826557617E 03
 PROPORTION RELATIVE TO TOP LEVEL = 301.7 0.50840.0

IDADJ(NPTSU.INDEX.W.WADJ(KL)) 1273.3528 0.502521972E 03 622.91
 STATIS KL. W(KL).WADJ(KL) 6.0.502521972E 03 0.5017314453E 03

ADJUST 6 WEIGHT
 STATISTICS: TRACE TESTS (SPLIT=0): 79.5 SKEW 502.5 WAS
 WADJ(KL) *W(KL) RELATIVE TO TOP LEVEL = 643.3 261.7 301.7 0.5046E 06

PROPORTION RELATIVE TO TOP LEVEL = 301.7 0.5046E 06
 IDADJ(NPTSU.INDEX.W.WADJ(KL)) 1290.3673 0.6264625048E 03 622.91
 STATIS KL. W(KL).WADJ(KL) 3.0.6264625048E 03 0.6256181641E 03

ADJUST 3 WEIGHT
 STATISTICS: TRACE TESTS (SPLIT=0): 35.1 SKEW 526.4 WAS
 WADJ(KL) *W(KL) RELATIVE TO TOP LEVEL = 667.2 323.6 0.541501.3

PROPORTION RELATIVE TO TOP LEVEL = 323.6 0.400.0
 IDADJ(NPTSU.INDEX.W.WADJ(KL)) 12860.3687 0.5425566406E 03 582.66
 STATIS KL. W(KL).WADJ(KL) 2.0.5425566406E 03 0.5424521484E 03

ADJUST 10 WEIGHT
 STATISTICS: TRACE TESTS (SPLIT=0): 79.9 SKEW 542.6 WAS
 WADJ(KL) *W(KL) RELATIVE TO TOP LEVEL = 582.7 281.3 0.400.0

PROPORTION: PROP.CM060E 0.0856 CIN 400.0
 (ERROR CONT) CMN.4060E 0.1934E 03.2126E 01.9496E 00.2222E 03
 CLUSTER 735 INDEX 10 PROPORTION 1.06208 W PARENT 422.499

SPIT=0.100E 05 WEIGHT 220.99 WAS 200.151 ADJUST 460.398 10 12817
 PROPORTION: PROP.0.0856 CIN 405.96 CINT 49.57
 OLD PHOP 0.859061 CIN 193.35 ODEON 261.27 DIFFER 0.0
 VOLUME 0.14E 21 ROOT0.16E-07 DCON -1.19
 LOCATION 3329 LINK 11 3487 SUBS 0 0 SUPER 9 3042 SYMBOL*****
 INDEX = 10 SYMBOL = ***** NET PROBES***** DIRECT***** CUMS 0.0.0 0.0

MEAN 26.34 27.31 28.15 26.42 21.47 22.12 24.29 23.03
 COVARIANCE 3.83 5.83 5.01 4.59 8.01 4.59 3.81 2.42 1.86
 5.83 12.37 9.41 8.01 4.58 8.52 4.62 3.21
 3 5.01 9.41 9.08 9.06 2.90 4.87 5.16 4.65
 4 4.59 8.01 9.06 10.12 2.01 2.78 4.71 5.29

	SKEWNESS	SE	95% CI	99% CI
5	-0.43	0.54	-2.95 -2.01	-3.07 -0.95
6	-0.41	0.52	-4.07 -2.75	-4.65 -0.23
7	-0.42	0.62	-5.15 -4.71	-1.64 -2.62
8	-0.44	0.21	4.04 -3.24	0.55 -0.34

PROPORTION RELATIVE TO TOP LEVEL =
 STATUS KL. INDEPENDENT (KL) 12 3.55 0.217233 0.220160
 STATUS KL. INDEPENDENT (KL) 12 0.422255215T 0.421582031T 0.46040

PROPORTION RELATIVE TO TOP LEVEL = 0.215500 / 0.215500 = 1.000000

ADJNPTSO. INDEX# 12781 3951 12 221.47 465.94
H 0.4613n1025st 03 0.4609194336t 02
ATIS KL. W(AL)•ADJ(RL)

DISTRIBUTION OF THE POPULATION IN THE TOWNSHIP OF KUHLKAMP
IN 1850

CLASS	NUMBER	PERCENTAGE
White	1,2750	3969
Black	1,2750	3969
Total	2,549	100.0

ADJUSTMENTS 9 WEIGHT 460.8 - WAS 1.220%3 - SPFFAC-0.17488E-02 CHANGE 0.0 0.0 0.15876E-00 0.23466E-03

```

TESTS (SPLIT=0) : -0.1156E-06 10/4/-0.45335E-04 1897-0.40699E-04
TESTS (KLI) : 501.0 1156E-06 240.5 400.0
PORTION (KLI) : 1.0 1156E-06 253.0 304.9
PORTION RELATIVE TO TOP LEVEL : 0.0 0.0 0.0 1.0

```

ADJUNPTSW INDEX WADJ 12859 4000 0.6234631348E 03 0.9229116211E 03
ATIS KL. W (KL) WADJ (KL)

```

0.76578E-01 0.13495E-02

```

PROPORTIONAL NFTSO, INDEFINITE KL, ATIS KL,	TO TUP LEVEL	4124	0.514939	0.
W(KL)·W(UJK(KL))	3	0.6674846·31E 03	322·01	664·01

ADJUSTED STATISTICS: 3. WEIGHT 2237.5 SPFAC 0.884793E 01 CHANGED=0.0
TESTS: TTEST-01 223.0 320.5 KUNT 0.2911.0 0.05
TESTS: TTEST-02 223.0 320.5 KUNT 0.2911.0 0.05
TESTS: TTEST-03 223.0 320.5 KUNT 0.2911.0 0.05

DOUBLING	WHEELS	TO 707	VELOC.	343.9	0.6750	0.3	0.13011E-05
ADJUSTMENT	INDEX	TOP LEVEL		0.58844	3		
ADJUSTMENT	INDEX	WADJ.	1.3487	4.271		343.87	707.74

ADJUST.----6----WFLIGHT -544.1 MAS -261.7 SPFAC-0.99994E 04 CHANGE0.0 0 0.0 0.0 0.0 0.0 0.0 0.0

ADAMNTSO, INDEX, WADJ(RL) 13473 4412 6.4633 67004E 03 0.462937017E 03
ATIS RL, W(RL), WADJ(RL)

```

0.2791E+00 0.2202E-02

```

POSITION RELATIVE TO TOP LEVEL = 241.0 .0323489.0 12

REVIEW OF SCIENTIFIC LITERATURE

CLUSTEP 0 INDEX 12 PROPORTION 0.84057 w PARENT 440.200
 SPLIT -0.170E-02
 WEIGHT 241.870 WAS 221.469 ADJUST 503.759 ID 13751
 PROPORTION: PHOP 0.914134 CIN 222.92 C107 215.03 DCON 0.0
 OLD PROB 0.914134 CIN 222.92 DCON 0.14E-07 DIFFER 0.0
 VOLUME 0.23E-21 COUT 0.14E-07 DCON -1.15
 LOCATION 3773 LINK 13 3931 SUBS 14 4217 SUPER 8 105 SYMBOL 1
 INDEX = 12 SYMBOL = 1
 NET PROB***** DIRECT***** CUMS 0.0 * 1.000 CUMS.0 0.10000E-01

MEAN	25.56	27.13	26.98	25.54	21.90	23.25	23.77	22.57
COVARIANCE	3.60	5.10	3.69	3.67	0.48	1.31	0.37	0.20
2	5.10	10.28	5.48	5.81	0.82	4.09	1.33	-0.04
3	3.69	5.98	5.72	4.84	0.27	1.17	1.05	0.67
4	3.67	5.61	4.89	5.01	-0.27	0.77	0.41	0.45
5	0.48	0.82	0.27	-0.27	1.39	1.80	0.71	0.41
6	1.31	4.09	1.17	0.77	1.80	5.16	1.22	0.39
7	0.37	1.33	1.05	0.41	0.71	1.22	1.71	0.95
8	0.20	-0.04	0.87	0.45	0.41	0.39	0.95	1.62
SKEW(*#)	-1263.0-1644.7-1656.0-1469.5		314.1	453.9	245.1	303.0		

CLUSTER 1 INDEX 14 PROPORTION 0.44722 w PARENT 241.879
 SPLIT -0.9999E-04
 WEIGHT 80.000 WAS 80.000 ADJUST 280.000 ID 14298
 PROPORTION: PHOP 0.44722 CIN 35.78 C107 161.88 DCON 0.000 DIFFER 0.0
 OLD PHOP 0.447217 CIN 35.78 DCON 80.000 DIFFER 0.0
 VOLUME 0.73E-19 ROOT0.27E-09 DCON 4.74
 LOCATION 4217 LINK 15 375 SUBS 0 0 SUPER 12 3773 SYMBOL 2
 INDEX = 14 SYMBOL = 2
 NET PROB 0.0 DIRECT 0.0 CUMS 0.0 * 0.0
 CUMS.0 0.0

MEAN	25.20	27.35	26.80	25.28	22.48	25.06	24.42	22.81
COVARIANCE	2.58	2.88	2.31	2.38	0.01	-0.68	0.15	-0.39
2	2.68	7.29	3.67	3.85	-0.51	0.60	0.73	-1.42
3	2.91	3.67	5.65	4.35	-0.81	-2.41	0.83	0.66
4	2.38	3.85	4.35	5.19	-1.36	-2.36	-0.23	-0.45
5	0.01	-0.51	-0.81	-1.36	1.51	1.84	0.93	0.93
6	-0.68	0.60	-2.41	-2.36	1.84	4.44	1.04	0.68
7	0.15	0.73	0.83	-0.23	0.93	1.04	2.08	1.69
8	-0.39	-1.42	0.66	-0.45	0.93	0.68	1.69	2.88
SKEW(*#)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

CLUSTER 1 INDEX 15 PROPORTION 0.55279 w PARENT 241.879
 SPLIT -0.9999E-04
 WEIGHT 80.000 WAS 80.000 ADJUST 280.000 ID 14298
 PROPORTION: PHOP 0.55278 CIN 44.22 C107 161.88 DCON 80.000 DIFFER 0.0
 OLD PHOP 0.552783 CIN 44.22 DCON 80.000 DIFFER 0.0
 VOLUME 0.2E-20 ROOT0.9E-10 DCON 4.74
 LOCATION 4375 LINK 0 SUBS 0 0 SUPER 12 3773 SYMBOL 3
 INDEX = 15 SYMBOL = 3

NET PERIODIC EXPENSES

	STAN	25.86	24.96	27.13	25.74	21.43	21.77	23.26	22.37
COVARIANCE	2	4.01 5.91	5.90 10.49	4.05 6.82	4.14 6.58	0.52 1.56	2.65 5.64	0.64 1.53	0.44 0.66
	3	4.015	6.85	4.060	4.61	0.44	3.58	0.48	0.62
	4	4.14	6.59	4.061	5.16	0.52	2.91	0.94	0.82
	5	6.012	1.056	0.49	0.52	1.13	1.34	6.51	0.09
	6	2.65	5.54	3.054	2.91	1.39	4.43	1.03	0.30
	7	0.64	1.53	0.642	0.64	0.51	1.03	1.07	0.33
	8	0.441	0.66	0.627	0.62	0.09	0.39	0.33	0.46
SKEWNESS		0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0

JIDADJ-NPTSO-INDÉKOMAUJ 13751 2449 212 241-AW
STATIS KL. (KL) ADJ(KL) 0.5827402734t 0.3 0.582661132H 03

ADJUST	B	WEIGHT	501.0	HAS	240.4	SPFAC-0.16107E 02	CHANGE 0.0	6.0	0.31791E 02
STATISTICS	TRACE	156.5	SKEW	5605.0	MUXT	30A66.8			
TESTS	(SPLIT=0)	157.0	51.0	0.19710E 03		0.866403E 04			
WADJ(KL)	W(KL)	541.8	260.9	400.0					
WADJ(KL)	W(KL)	541.8	260.9	400.0					
PROPORTIONAL	TU TOP LEVEL	0.410260							
ADADJ(NPSO)	ADADJ(NPSO)	13769.4	5337	541.8					
STATIS KL	W(KL)	WADJ(KL)	4	0.66644152832E 03	0.66644152832E 03	0.66644152832E 03	541.85	0.66644152832E 03	0.66644152832E 03

```

ADJUST 4 EIGHT 664.4 WAS 322.0 SPFAC-0.11991E 02 CHANGE 0.0 0.0
ADJUST 4 EIGHT 664.4 WAS 322.0 SPFAC-0.11991E 02 CHANGE 0.0 0.0
STATISTICS: TRACE 33.8 SKEN 4475.0 KURT 24823.9
TESTS (SPLIT=0): - 992P2RE 05 - 37470E 03 0.48925E 04
PROPORTION (KL) 0.913 0.913 0.913 0.913
PROPORTION RELATIVE TO TOP LEVEL = 342.4 400.0
IDADJ NTSO INDEA WADJ 13924 4639 0.611963 4
STATIS KL WKL WADJ IRL 3 0.7083610840E 03 0.7077373042 704.42

```

```

ADJUST 3 WEIGHT    708.4 WAS   343.9 SPAC-0.20734E 02 CHANGE 0.0
ADJUST 3 TRACE     41.8 SKEN  1651.8 RURT 12665.1
STATISTICS (SPLIT=0): .96398E 05 -.30902E 04 -.66210E 04
TESTS (SPLIT=0) : .96398E 05 -.30902E 04 -.66210E 04

CLUSTER 745 INDEX 3 PROPORTION 6.44866 w PARENT 4794.000
SPLIT-0.2073E 02
WEIGHT 708.361 WAS   343.8869 ADJUST 707.737 I0 14071
PROPORTION: PRUT 0.65510 CIN 633.67 CTUT 38622.21

```

	DIRECT*****	CUM5*****	*	1.00
NET PROBES***				
MFAN	25.94	27.47	27.49	22.74

COVARIANCE	4.04	5.65	4.36	3.95	1.35	2.55	1.32	0.90
$\Sigma \epsilon^2$	5.65	11.11	7.12	5.43	2.35	6.12	2.42	1.25
3	4.04	7.12	6.63	5.77	1.40	2.42	1.32	1.04
4	3.95	6.45	5.77	5.44	5.65	1.29	1.29	1.73

6	2.55	6.12	2.92	1.89	2.86	6.61	2.04	0.73
7	1.22	2.65	2.32	1.54	1.23	2.04	2.15	1.26
A	0.91	1.25	1.81	1.73	0.63	0.73	1.26	1.90
SKEN(=W)	403.6	1274.6	74.2	-75.6	681.2	1397.6	527.3	83.7

WADJJKL) * W(KL) * S1M * RELATIVE TO TOP LEVEL = 364.5 300.0
 IDADJNPTSO * INDEX W(KL) * WADJJKL) 14071 4794 0.669339 3
 STATUS KL. W(KL) * WADJJKL) 10 0.460674047E 03 0.460397492E 03

ADJUST 10 WEIGHT STATISTICS: TRACE (SPLIT=0): 67.0 SKEN 220.2 SPFAC=0.99999E 04 CHANGE 0.0
 WADJJKL) * W(KL) * S1M (SPLIT=0): -1156E 06 2100.3 KURT 21587.2 04 -14594E 04

WADJJKL) * W(KL) * S1M 501.0 240.5 400.0 ALPHARUN: PNP: 10.992E 00 0.539E 01 0.625E 03 (ERROR CONI CIN: 447UE 03.2126E 03.2344E 03 0.2126E 03.2344E 03 (KFP) CFCN.DEN.QUEEN=0.3*****.345E 03*****.4487E 03.2239E 03

CLUSTER 747 INDEX 10 PROPORTION 0.97773 # PARENT +34.490
 SPLIT=0.100E 05 WEIGHT 240.476 WAS 220.199 ADJUST 500.352 ID 13655
 PROPORTION: PROP 1=0.3858 CIN 447.02 CTOF -14.22 OLD PROP 0.905313 CIN 212.60 NDEN 2223.00 DIFFER 0.0
 VOLUME=0.17E 21 ROOT0.14E-07 DCON -1.16

LOCATION 2329 LINK 11 3487 SUBS 0 0 SUPER 9 3043 SYMBOL*****
 INDEX = 10 SYMBOL = ***** NET PROB***** DIRECT***** CUNS 0.0 * 0.0

MEAN 26.68 28.12 28.44 26.75 22.03 22.95 24.48 23.21

COVARIANCE 2 4.68 7.01 4.97 4.23 2.92 4.92 2.30 1.67
 7.01 13.49 8.94 7.40 5.13 9.92 4.81 3.15

3 4.97 8.94 7.68 6.60 3.24 5.66 3.94 3.16

4 4.23 7.40 6.60 7.41 2.13 3.42 3.15 3.51

5 2.92 5.13 3.24 2.13 3.33 5.17 2.15 1.03

6 4.92 9.92 5.66 3.42 5.17 10.30 3.69 1.67

7 2.30 4.81 3.94 3.15 2.15 3.69 2.96 1.97

8 1.67 3.15 3.16 3.51 1.03 1.47 1.97 2.58

SKEN(=W) 789.2 1790.0 853.3 852.0 853.4 1475.3 510.7 565.2

PROPORTION RELATIVE TO TOP LEVEL = 0.177288 10
 IDADJNPTSO * INDEX W(KL) * WADJJKL) 12 0.5040935059E 03 0.5037587891E 03

ADJUST 12 WEIGHT 504.1 WAS 241.9 SPFAC=0.34214E 02 CHANGE 0.0
 STATISTICS: TRACE (SPLIT=0): 55.5 SKEN 560.9 KURT 552.8
 WADJJKL) * W(KL) * S1M (SPLIT=0): -10660E 06 -4.615E 04 -16632E 05
 PROPORTION RELATIVE TO TOP LEVEL = 544.4 262.2 400.0
 IDADJNPTSO * INDEX W(KL) * WADJJKL) 14298 5159 0.334098 12 262.21 544.43
 STATUS KL. W(KL) * WADJJKL) 9 0.5016525879E 03 0.5010087891E 03

ADJUST 9 WEIGHT 501.7 WAS 240.5 SPFAC=0.34281E 02 CHANGE 0.0
 STATISTICS: TRACE (SPLIT=0): -20.0 SKEN 144.7 KURT 992.1
 WADJJKL) * W(KL) * S1M (SPLIT=0): -11148E 06 -39922E 04 -12256E 05

PROPORTION RELATIVE TO TOP LEVEL = 542.3 261.1 405.0
 IDADJNPTSO * INDEX W(KL) * WADJJKL) 13880 5206 0.302098 12 261.15 542.30
 STATUS KL. W(KL) * WADJJKL) 4 0.7055498047E 03 0.7048159180E 03

ADJUST 4 WEIGHT 705.5 WAS 342.4 SPFAC 0.23903E 02 CHANGE 0.0
 STATISTICS: TRACE (SPLIT=0): 194.3 SKEN 1705.2 KURT 1419.1
 WADJJKL) * W(KL) * S1M (SPLIT=0): -50515E 05 -30431E 04 -13926E 04
 PROPORTION RELATIVE TO TOP LEVEL = 546.3 363.1 400.0

0.73512E-01 0.70780E 01

0.15108E 00 0.20022E 03

0.17386E 00 0.11261E 03

ORIGINAL PAGE IS
OF POOR QUALITY

C-21

DUMP OF OBSERVED CLUSTERS FROM 15 4375

CLUSTER 0 INDEX 15 PROPORTION 0.5745 # PARENT 339.106
 SPLIT-0.1700E 02
 WEIGHT 200.279 WAS
 PROPORTION: PROP 0.5844 CIN 0.009 ADJUST 420.559 ID 14298
 OLD PROP 0.58641 CIN 158.04 CTOT 64.18 DIFFER 0.0
 VOLUME 0.12E 20 ROOT 0.36E 07 DCON -5.25

LOCATION 4375 LINK 0 SUBS 16 2155 SUPER 12 3773 SYMBOL 1
 INDEX = 15 SYMBOL = DIRECT***** CUMS 0.0 * 10000E 01

NET PROB***** CUMS 0.0 * 10000E 01

	MEAN	26.10	27.70	27.46	26.14	21.61	22.48	23.51	22.43
COVARIANCE	3.83	5.68	3.57	3.50	1.05	3.22	0.23	0.34	
2	5.68	11.35	6.10	5.88	2.13	6.95	1.13	0.30	
3	3.52	6.10	4.59	4.99	1.24	3.84	0.85	0.78	
4	3.50	5.88	4.09	4.97	0.47	3.03	0.12	0.62	
5	1.05	2.13	1.24	0.47	1.64	2.13	0.91	0.33	
6	3.22	6.95	3.84	3.03	2.13	5.81	1.38	0.58	
7	0.23	1.13	0.85	0.12	0.91	1.38	1.45	0.65	
8	0.36	0.30	0.78	0.62	0.33	0.58	0.65	1.22	
SKEN(*%)	658.0	1417.8	552.0	560.7	449.2	1300.7	358.9	165.4	

CLUSTER 1 INDEX 16 PROPORTION 0.5247 W PARENT 200.279
 SPLIT-0.999E 04
 WEIGHT 80.000 WAS
 PROPORTION: PROP 0.32477 CIN 80.000 ADJUST 280.000 ID 15253
 OLD PROP 0.524768 CIN 41.98 CTOT 120.28
 VOLUME 0.92E-18 ROOT 0.96E-09 DCON 4.74

LOCATION 2155 LINK 17 4661 SUBS 0 0 SUPER 15 4375 SYMBOL 2
 INDEX = 16 SYMBOL = DIRECT***** CUMS***** * 1.04

NET PROB***** CUMS***** * 1.04

	MEAN	26.71	29.03	28.07	26.71	22.02	23.68	23.83	22.54
COVARIANCE	4.96	7.26	4.00	4.17	1.40	4.24	0.46	0.72	
2	7.26	14.18	6.88	7.00	2.59	8.78	1.54	0.69	
3	4.00	6.88	5.28	4.90	1.34	4.21	1.16	1.16	
4	4.17	7.00	4.90	6.09	0.62	3.49	0.43	1.14	
5	1.40	2.59	1.34	0.62	2.01	2.73	1.10	0.63	
6	4.24	8.78	4.21	3.49	2.73	7.56	1.76	1.00	
7	0.46	1.54	1.16	0.43	1.10	1.76	1.83	0.93	
8	0.72	0.69	1.16	1.14	0.63	1.00	0.93	1.85	
SKEN(*%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

CLUSTER 1 INDEX 17 PROPORTION 0.47523 W PARENT 200.279
 SPLIT-0.999E 04
 WEIGHT 80.000 WAS
 PROPORTION: PROP 0.47523 CIN 80.000 ADJUST 280.000 ID 15253
 OLD PROP 0.475232 CIN 38.02 CTOT 120.28
 VOLUME 0.29E-25 ROOT 0.17E-12 DCON 4.74

LOCATION 4661 LINK 0 SUBS 0 0 SUPER 15 4375 SYMBOL 3
 INDEX = 17 SYMBOL = DIRECT***** CUMS***** * 1.04

MEAN 25.43 26.23 26.44 25.50 21.15 21.16 23.15 22.30
 COVARIANCE 1.66 2.86 1.84 1.65 0.76 1.96 0.19 -0.04
 2 2.56 5.29 3.38 2.94 1.43 3.69 0.46 -0.09
 3 1.64 3.30 2.22 1.95 0.91 2.32 0.31 0.00
 4 1.64 2.94 1.95 1.92 0.70 1.99 0.16 -0.02
 5 0.76 1.43 0.91 0.70 0.55 1.10 0.22 0.01
 6 1.96 3.69 2.32 1.94 1.10 2.76 0.40 -0.02
 7 0.19 0.46 0.31 0.16 0.22 0.40 0.22 0.08
 8 -0.04 -0.09 0.00 -0.02 0.01 -0.02 0.08 0.15
 SKEW(0W): 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

IDADJ, NPTSO, INDEX, WADJ, WADJ(KL), WADJ(JKL)
 STATUS KL, WKL, WJKL, WADJ(KL)
 3 0.750680176E 03 0.7489848633E 03

ADJUST 3 WEIGHT 751.0 WAS 364.5 SPFAC 0.23476E 02 CHANGE 0.0
 STATISTICS: THACE 153.3 SKEW 695.0 KURT 26169.0 0.533573E-01 0.88569E 01
 TESTS (SPLIT=0) 72654E 05 -3951.4E 04 0.70756E 04
 WADJ(KL)* (RELATIVE) 793.0 386.5 400.0
 PROPORTION RELATIVE TO TOP LEVEL = 0.599588 3

***SEPERATE 3 SUPER,SUBS 0 8 SPFAC 0.23476E 02
 00-00 08-35 12-32 14-13 15-16 16-10 17-09 STATUS KL, WKL, WADJ(KL)
 00-00 13-02 10-21 11-01 05-02 02-40 06-18 07-02

CLUSTER 756 INDEX 10 PROPORTION 1.01746 W PARENT 452.275
 SPLIT-0.1000E 260.554 WAS 240.476 ADJUST 54.109 ID 14775
 PROPORTION: 0.0001.01066 CIN 488.23 COT -64.57
 OLD PROP: 0.927848 CIN 234.42 DCON 265.51 DIFFER 0.0
 VOLUME 0.34E 21 ROOT 0.12E-07
 LOCATION 3329 LINK 11 3487 SUBS 0 0 SUPER 9 3043 SYMBOL*****
 INDEX = 10 SYMBOL = *****

NET PROB***** DIRECT***** CUMS 0.0 * 0.0

MEAN 26.06 26.92 27.57 25.90 21.49 22.22 24.02 22.80
 COVARIANCE 4.33 6.75 4.82 4.33 2.74 4.73 2.30 1.47
 2 6.75 14.03 9.02 7.23 5.28 10.39 4.44 2.35
 3 4.82 9.02 7.72 6.61 3.28 6.09 4.07 2.95
 4 4.33 7.23 6.61 7.81 2.73 4.04 3.72 4.05
 5 2.74 5.28 3.28 2.73 2.96 4.60 1.91 0.90
 6 4.73 10.39 6.09 4.04 4.60 9.55 3.26 0.74
 7 2.30 4.44 4.07 3.72 1.91 3.26 2.99 2.18
 8 1.47 2.35 2.95 4.05 0.90 0.78 2.18 3.30
 SKEW(0W): -1.053.4-2035.1-1575.1-1302.2-1034.5-1247.4 -836.1 -761.5

PROPORTION RELATIVE TO TOP LEVEL = 0.231140 10
00-00 09-24
08-30 10-23 05-02 02-43
12-28 13-02 11-01 06-41 07-02
14-11 15-17 18-12 19-11
16-12 17-05 WEIGHT 260.6 SUBS 18 19 ITER 17
***HAVE SPLIT 10 INDEX 323 KL. LSUPER 16 3043

DUMP OF OBSERVED CLUSTERS FROM 10 3329

CLUSTER 0 INDEX 10 PROPORTION 0.95765 # PARENT 452.275
 SPLIT-0.170E 02 ADJUST 24.0476 WAS 253.82 C1N 157.23 541.109 10 14775
 FLIGHT 260.554 PROPORTION: PROP 0.951253 C1N 0.951253 CTOT 157.23
 OLD PROP 0.951253 C1N 0.951253 ODEN 26.04 DIFFER 0.0
 VOLUME 0.34E 21 DCUN -1.12

LOCATION 3329 LINK 11 3487 SUBS 1A 1741 SUPER 9 3043 SYMBOL 1
 INDEX = 10 SYMBOL = 1 NET PROB***** DIRECT***** CUMS 0.0 * 1.00
 NET PROB***** DIRECT***** CUMS 0.0 * 1.000E 11

MEAN 26.06 26.42 27.57 25.90 21.49 22.22 24.02 22.80

	COVARIANCE	MEAN	COVARIANCE	MEAN	COVARIANCE	MEAN	COVARIANCE	MEAN
1	4.33	6.75	4.82	4.33	2.74	4.73	2.30	1.47
2	6.75	14.03	9.02	7.23	5.28	10.39	6.44	2.35
3	4.82	9.02	7.72	6.61	3.28	6.04	4.07	2.95
4	4.33	7.23	6.61	7.81	2.73	4.04	3.72	4.05
5	2.74	5.28	3.28	2.73	2.96	4.50	1.91	0.90
6	4.73	10.39	6.09	4.04	4.60	9.55	3.26	0.78
7	2.30	4.44	4.07	3.72	1.91	3.26	2.99	2.18
8	1.47	2.35	2.95	4.05	0.90	0.78	2.18	3.30

SKEW(*W) -1053.9-2035.1-1575.1-1502.2-1034.5-1297.4 -836.1 -760.6

CLUSTER 1 INDEX 18 PROPORTION 0.50748 # PARENT 260.554
 SPLIT-0.9999E 04 ADJUST 80.0000 WAS 80.0000 C1N 40.60 CTOT 280.000 10 15712
 WEIGHT 80.0000 PROPORTION: PROP 0.50748 C1N 40.60 ODEN 80.00 DIFFER 0.0
 OLD PROP 0.50748 C1N 40.60 VOLUME 0.23E-18 ROOT18.48E-09 DCUN 4.74

LOCATION 1741 LINK 19 4947 SUBS 0 0 SUPER 10 3329 SYMBOL 2
 INDEX = 18 SYMBOL = 2

NET PROB***** DIRECT***** CUMS***** * 0.9A
 MEAN 24.45 23.78 25.48 24.37 20.13 19.87 22.82 22.13

	COVARIANCE	MEAN	Covariance	MEAN	Covariance	MEAN	Covariance	MEAN
1	2.98	2.97	3.04	3.81	1.55	1.74	1.26	1.51
2	2.97	6.66	4.39	3.65	2.58	5.07	1.09	0.48
3	3.04	4.39	5.83	5.61	1.53	2.47	2.76	2.84
4	3.81	3.65	5.61	7.71	1.61	1.55	3.24	4.51
5	1.55	2.58	1.53	1.61	2.17	2.64	0.69	0.04
6	1.74	5.07	2.47	1.55	2.64	5.66	0.70	-0.91
7	1.26	1.09	2.76	3.24	0.69	0.70	2.40	2.24
8	1.51	0.48	2.84	4.51	0.04	-0.91	2.24	4.12

SKEW(*W) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CLUSTER 1 INDEX 19 PROPORTION 0.49252 # PARENT 260.554
 SPLIT-0.9999E 04 ADJUST 80.0000 WAS 80.0000 C1N 39.40 CTOT 160.55 10 15712
 PROPORTION: PROP 0.49252 C1N 39.40 ODEN 80.00 DIFFER 0.0
 OLD PROP 0.49252 C1N 39.40 VOLUME 0.37E-21 ROOT19.474 DCUN 4.74

LOCATION 4947 LINK 0 SUBS 0 0 SUPER 10 3329 SYMBOL 3
 INDEX = 19 SYMBOL = 3 NET PROB 0.0 DIRECT 0.0 CUMS 0.0 * 0.0

	MEAN	27.73	30.16	29.72	27.48	22.89	24.65	25.26	23.49
COVARIANCE	2.06	2.95	1.93	1.65	0.79	1.78	0.37	-0.03	
2	2.95	5.91	3.92	4.04	1.68	3.55	1.63	1.15	
3	1.93	3.92	3.00	3.30	1.11	2.10	1.33	1.16	
4	1.65	4.04	3.30	5.41	1.14	1.05	1.58	2.57	
5	0.79	1.68	1.11	1.14	1.13	1.61	0.65	0.73	
6	1.78	3.55	2.10	1.05	1.61	3.90	0.99	0.17	
7	0.37	1.63	1.33	1.58	0.65	0.99	1.19	1.11	
8	-0.03	1.15	1.16	2.57	0.73	0.17	1.11	2.08	
SKEW(0#)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

IDADJ(NPTSO,INDEX,WADJ,WADJ(WKL)) 14775 59123146975E 260.55 561311
STATIS KL. WKL) WADJ(WKL) 0.6273146975E 0.6266289531E 0.3

	ADJUST	WEIGHT	627.3	WAS	303.3	SPFAC-0.99999E 04	CHANGE 0.0		
STATISTICS	TESTS	TRACE (SPLIT=0)	160.5	SKW	1683.4	KURT 12527.5			
WADJ(WKL) WADJ(WKL)	TESTS	(SPLIT=0)	-76700E 05		-32606E 04	-78214E 04			
ALPHA ERROR:PAK ^b ,CM ^b	VOLUME	WKL	668.0	324.0	-4.0				
(ERROR CONT) C14.5810E	VOLUME	C14.5810E	6.9672E 03.1000E 01.1023E 01.3240E 03	WKF)	C10T,DEN,0DEN.5956E 03*****.6880E 03.2999E 03				
CLUSTER 757 INDEX 6 PROPORTION 0.97791 W PARENT 595.554									
SPLIT -0.1000E 05	WEIGHT	324.001	MAS	303.313	ADJUST 668.002 ID 15070				
PROPORTION	PROPORTION	0.936130	0.0022 C10T	58E 02 C10T	-2245 DIFFER 0.0				
OLD PROPU 0.936130	OLD PROPU	0.0022 C10T	0.0016 DCON	299.91 DCON	-91.06 DCON				
VOLUME 0.5810E 21	VOLUME	0.0022 C10T	0.0016 DCON	299.91 DCON	-91.06 DCON				
LOCATION 2599 LINK 7 2757 SUBS 0 0 SUPER 2 1583 SYMBOL*****									
INDEX = 6 SYMBOL = *****									
NET PROG***** DIRECT***** CUMS 0.0 * 0.0									
	MEAN	26.60	28.38	30.83	30.21	19.89	19.31	27.00	27.99
COVARIANCE	2	1.34	1.60	0.59	0.46	0.96	1.45	0.71	0.83
3	1.60	3.93	1.18	0.60	1.67	4.02	1.14	0.61	
4	0.59	1.18	2.07	1.86	0.85	1.39	0.64	0.02	
5	0.46	0.60	1.66	3.61	0.27	0.02	1.36	1.54	
6	0.96	1.67	0.85	0.27	1.61	2.26	0.66	-0.01	
7	1.45	4.02	1.39	0.92	2.26	5.58	0.69	-0.71	
8	0.71	1.14	0.64	1.36	0.66	0.69	2.13	1.92	
SKEW(0#)	407.9	773.3	427.0	787.2	226.9	228.9	1039.2	913.7	

C-27

	ADJUST	WEIGHT	280.1	WAS	397219	6		
PROPORTION RELATIVE TO TOP LEVEL	TESTS	(SPLIT=0)	-91810E 05	SKW	80.0	SPFAC-0.99990E 04	CHANGE 0.0	
IDADJ(NPTSO,INDEX,WADJ,WADJ(WKL)) 15070 5984 0.3240E 00	WADJ(WKL) WADJ(WKL)	14	0.28010545688E 03	0.2800000000E 03	668.00			
ADJUST	WEIGHT	280.1	WAS	3785.0	KURT 18066.4			
STATISTICS	TESTS	(SPLIT=0)	-420.2	WSW	-23336E 04	-70913E 04		
WADJ(WKL) WADJ(WKL)	TESTS	(SPLIT=0)	1114280	0.001.1	400.0			
PROPORTION RELATIVE TO TOP LEVEL	TESTS	(SPLIT=0)	14	0.54446289E 03	420.21			
IDADJ(NPTSO,INDEX,WADJ,WADJ(WKL)) 14298 6047 0.28227E 03	WADJ(WKL) WADJ(WKL)	12	0.54446289E 03	0.5444628227E 03	0.46713E 00 0.38697E 02			

ADJUST 12 WEIGHT 544.7 WAS 262.2 SPFAC 0.33154E 02 CHANGE 0.0
 STATISTICS TRACE 67.8 SKEW 2156.9 KURT 5708.0
 TESTS (SPLIT=0) 3075E 06 -1.14781E 05
~~WAUJ(KL) W(KL) SIM~~
 PROPORTION RELATIVE TO TOP LEVEL = 282.5 400.0
 STATUS(KL) W(KL) WADJ(KL) 12

***SEPARATE 12 SUPER.SUBS @ 14 SPFAC 0.33154E 02
 00-00 06-33 15-19 13-02 09-25 05-02 02-41
 14-12 16-15 17-04 18-12 19-12 11-01 06-38 07-02
 STATUS(KL) W(KL) WADJ(KL) 14 0.5837644043E 03 0.5831250000E 03

ADJUST 8 WEIGHT 583.8 WAS 281.6 SPFAC 0.22044E 02 CHANGE 0.0
 STATISTICS TRACE 66.2 SKEW 1157.5 KURT 4796.7
~~WAUJ(KL) W(KL) SIM~~
 PROPORTION RELATIVE TO TOP LEVEL = 302.2 400.0
 STATUS(KL) W(KL) WADJ(KL) 8

***SEPARATE 8 SUPER.SUBS 0 14 SPFAC 0.22044E 02
 14-13 15-19 13-02 09-25 05-02 02-40
 14-13 16-15 17-04 10-24 11-01 06-37 07-02
 STATUS(KL) W(KL) WADJ(KL) 2 0.6642934570E 03 0.6633095703E 03

ADJUST 2 WEIGHT 664.3 WAS 321.7 SPFAC -0.21242E 02 CHANGE 0.0
 STATISTICS TESTS (SPLIT=0) 45.3 SKEW 1413.5 KURT 14659.0
~~WAUJ(KL) W(KL) SIM~~
 PROPORTION 0.38264E 05 1.34356E 04 -.52674E 04

CLUSTER 760 INDEX 2 PROPORTION 0.39680 W PARENT 6256.000
 WEIGHT 664.293 WAS 321.655 ADJUST 663.310 ID 15167
 PROPORTION: PROP 0.39667 CIN 632.25 CINT 4663.62
 OLD PROP 0.39649 CIN 296.75 00732.36 DIFFER 5.55
 VOLUME 0.71E-16 40010.84E-08 DCN -1.05

LOCATION 1563 LINK 0 SUBS 6 2599 SUPER 0 119 SYMBOL*****
 INDEX = 2 SYMBOL = ***** DIRECT***** CUMS***** 0.99

NET PROB***** MEAN 26.52 28.23 30.77 30.14 19.78 19.20 26.81 27.87

COVARIANCE 1.42 1.59 0.59 0.34 1.01 1.45 0.58 0.65
 2 1.59 3.06 1.15 0.46 1.81 4.03 1.06 0.33

3 0.59 1.15 2.08 2.19 0.78 1.08 0.79 0.26

4 0.34 0.46 2.09 4.17 0.05 -0.56 1.55 1.94

5 1.01 1.81 0.78 0.05 1.84 2.69 0.47 -0.42

6 1.45 4.03 1.08 -0.56 2.69 6.16 0.33 -1.56

7 0.59 1.06 0.79 1.55 0.47 2.33 2.18 2.07

8 0.65 0.33 0.26 1.94 -0.42 -1.56 2.07 4.13

SKW(%) 474.2 434.7 579.8 904.5 19.0 -5.2 715.4 973.2

~~WAUJ(KL) W(KL) SIM~~
 PROPORTION RELATIVE TO TOP LEVEL = 342.6 400.0
 STATUS(KL) W(KL) WADJ(KL) 9 0.5430520020E 03 0.5422963867E 03

ADJUST 9 WEIGHT 543.1 WAS 261.1 SPFAC -0.38492E 02 CHANGE 0.0
 STATISTICS TESTS (SPLIT=0) 62.3 SKEW 599.4 KURT 13435.6
~~WAUJ(KL) W(KL) SIM~~
 PROPORTION RELATIVE TO TOP LEVEL = 281.9 400.0
 STATUS(KL) W(KL) WADJ(KL) 16 0.280144531E 281.9 587.81
 STATUS(KL) W(KL) WADJ(KL) 16 0.280144531E 281.9 587.81

ADJUST 16 WEIGHT 280.3 WAS 80.0 SPFAC=0.99990E 04 CHANGE 0.0
 STATISTICS: TRACE 0 -208.8 SKEW 1531.3 KURT 3011.2
 TESTS (SPLIT=0) -.83043E 05 -.42857E 04 -.22133E 05
 WADJ(KL) WKL SIM 420.6 200.3 400.0
 PROPORTION RELATIVE TO TOP LEVEL = 0.160307 16
 IDADJ(NPSO) INDEX 0.1629 200.31
 STATIS KL WKL WADJ(KL) 15 0.42055420.63
 STATIS KL WKL WADJ(KL) 15 0.42055420.63

ADJUST 15 WEIGHT 420.7 WAS 200.3 SPFAC=0.60746E 02 CHANGE 0.0
 STATISTICS (SPLIT=0) -.11998E 06 -.42794E 04 -.16293E 05
 TESTS (SPLIT=0) -.11998E 06 -.42794E 04 -.16293E 05

CLUSTER 763 INDEX 15 PROPORTION 0.19489 w PARENT 6466b.000

WEIGHT 420.673 WAS 200.279 ADJUST 420.559 ID 15253

SPLIT-0.675E 02 PROP 0.19073 CIN 329.75 CTOT 476154

PROPORTION: PKOP 0.176340 CIN 159.04 DEN 911.49 DIFFER 22.06

OLD PROP 0.176340 CIN 159.04 DEN 911.49 DIFFER 22.06

VOLUME 0.38E-16 R0010.63E-08 DCM -1.19

LOCATION 4375 LINK 13 3931 SUBS 16 2155 SUPER 0 119 SYMBOL*****

INDEX = 15 SYMBOL = ***** NET PROB***** DIRECT***** CUM***** * 0.90

MEAN 26.31 27.87 27.69 26.44 21.57 22.50 23.50 22.43

COVARIANCE 3.61 5.46 3.40 3.29 1.22 3.36 0.33 0.21

2 5.46 11.42 6.03 5.51 2.44 7.34 1.49 0.10

3 3.40 6.03 4.69 4.02 1.43 4.17 1.06 0.81

4 3.29 5.51 4.02 4.80 0.59 3.14 0.16 0.54

5 1.22 2.44 1.43 0.59 1.80 2.35 0.99 0.30

6 3.36 7.34 4.17 3.14 2.35 6.13 1.70 0.55

7 0.33 1.49 1.06 0.16 0.99 1.70 1.62 0.68

8 0.21 0.10 0.81 0.54 0.30 0.55 0.68 1.26

SKEW(*W) 532.9 100.2 489.4 739.1 -38.5 -17.4 -64.1 68.0

WADJ(KL) WKL SIM 460.8 220.4 400.0
 PROPORTION RELATIVE TO TOP LEVEL = 0.210986 15
 IDADJ(NPSO) INDEX 0.15253 668 0.66824707035 220.39 460.79
 STATIS KL WKL WADJ(KL) 6 0.66800244147.03

ADJUST 6 WEIGHT 668.2 WAS 324.0 SPFAC=0.99999E 04 CHANGE 0.0
 STATISTICS: TRACE 110.4 SKEW 3985.3 KURT 20556.0
 TESTS (SPLIT=0) -.87986E 05 -.85533E 03 0.10639E 04
 WADJ(KL) WKL SIM 108.5 344.2 400.0

PROPORTION RELATIVE TO TOP LEVEL = 0.331033 6

00-00 14-15 15-22 13-02 09-24 11-01 05-02 06-35

16-18 17-02 10-24 18-11 19-13 20-16 21-17 0

*****HAVE SPLIT 6 WEIGHT 344.2 SUBS 20 21 ITER 14

KL INDEX LSUBPEN 2599 6 15A3

0.0

ADJUST 16 WEIGHT 280.3 WAS 80.0 SPFAC=0.99990E 04 CHANGE 0.0
 STATISTICS (SPLIT=0) -.83043E 05 -.42857E 04 -.22133E 05

0.0

ADJUST 15 WEIGHT 420.7 WAS 200.3 SPFAC=0.60746E 02 CHANGE 0.0
 STATISTICS (SPLIT=0) -.11998E 06 -.42794E 04 -.16293E 05

0.0

DUMP OF OBSERVED CLUSTERS FROM 6 2599

CLUSTER 0 INDEX 6 PROPORTION 0.91170 W PARENT 619.046
 SPLIT-0.1700t 0.2 PROPORTION 0.91170 W PARENT 619.046
 *EIGHT 34.624t WAS 324.001 AUGUST 70H.442 ID 15744
 PROPORTION: PHUP 0.95619 CIN 33.013 CTOT 256.94
 OLD PHUP 0.95619 CIN 33.013 NDEN 362.1 DIFFER 0.0
 VOLUME 0.11E 22 ROOT0.63t-08 DCN -1.04
 LOCATION 2599 LINT 7 2757 SUBS 20 SUPER 2 1583 SYMBOL 1
 INDEX = 6 SYMBOL = 1
 NET PHUB***** DIRECT***** CUMS 0.0 * 1.00
 CUMS 0.0 * .10000E 0.1

MEAN 26.44 27.78 30.94 30.36 19.55 18.57 26.91 25.16
 COVARIANCE 1.72 1.93 0.58 0.10 1.37 1.98 0.40 0.20
 2 1.93 4.17 0.82 0.05 2.14 4.16 0.82 -0.02
 3 0.54 0.82 1.83 1.80 0.74 0.88 0.64 0.11
 4 0.10 0.05 1.80 3.84 0.14 -0.50 1.04 1.73
 5 1.37 2.14 0.74 0.14 1.85 2.61 0.58 -0.15
 6 1.94 4.16 0.88 -0.50 2.61 5.32 0.46 -1.01
 7 0.40 0.82 0.64 1.48 0.58 0.46 1.99 1.82
 8 0.20 -0.02 0.11 1.73 -0.15 -1.01 1.82 3.69
 SKEW(*) -560.7-15*1.1 311.1 401.2 -812.0-1821.2 -168.1 600.4

CLUSTER 1 INDEX 20 PROPORTION 0.49010 W PARENT 344.246
 SPLIT-0.9999t 0.4 WAS 50.000 ADJUST 280.000 ID 16935
 *EIGHT 80.000 CIN 39.21 CTOT 266.25
 PROPORTION: PHUP 0.49010 CIN 39.21 NDEN 80.00 DIFFER 0.0
 OLD PHUP 0.490103 CIN 39.21 ROOT0.29E-09 DCN 4.74
 VOLUME 0.81E-19
 LOCATION 145 LINK 21 3773 SUBS 0 0 SUPER 6 2599 SYMBOL 2
 INDEX = 20 SYMBOL = 2
 NET PHUB***** DIRECT***** CUMS***** * 1.00
 MEAN 25.99 26.45 31.43 31.24 18.89 17.08 26.50 28.15
 COVARIANCE 2.39 2.94 0.76 0.03 1.76 2.90 0.17 -0.44
 2 2.94 5.54 1.44 0.71 3.12 5.55 0.83 -0.96
 3 0.76 1.44 2.10 1.77 1.00 1.30 1.06 0.34
 4 0.03 0.71 1.77 3.75 0.15 -0.18 2.19 2.65
 5 1.78 3.12 1.00 0.15 2.14 3.49 0.26 -0.99
 6 2.90 5.55 1.30 -0.18 3.49 7.03 0.14 -2.30
 7 0.17 0.83 1.06 2.19 0.26 0.14 2.01 1.77
 8 -0.44 -0.96 0.34 2.65 -0.99 -2.30 1.77 4.47
 SKEW(*) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C-30

CLUSTER 1 INDEX 21 PROPORTION 0.50990 W PARENT 344.246
 SPLIT-0.9999t 0.4 WAS 50.000 ADJUST 280.000 ID 16935
 *EIGHT 80.000 CIN 40.79 CTOT 266.25
 PROPORTION: PHUP 0.509897 CIN 40.79 NDEN 80.00 DIFFER 0.0
 OLD PHUP 0.509897 CIN 40.79 ROOT0.17E-10 DCN 4.74
 VOLUME 0.30E-21
 LOCATION 3773 LINK 0 SUBS 0 0 SUPER 6 2599 SYMBOL 3
 INDEX = 21 SYMBOL = 3
 NET PHUB***** DIRECT***** CUMS***** * 1.00

DAUJ-150, INDIA, DAUJ 15784 7135 6 344.025 708.49

JUSTICE 767 INDEX 10 PROPOSITION 767 0.00372 M PARENT 446 211

```

    EIGHT - U-33717 U-62
    PROPORTION: PKOP1.0 CIN239253.00
    DPROP0.951253.02
    VOLUME0.16E21 R0010.86E0.08
    ADJUST CT0.565.58
    DCON -1.11
    DIFFER 62.82

```

2000-2001 12 2.88 0.05 16.27 10.26 5.35 3.27 1.56

4 4.32 0.05 6.19 6.16 3.20 5.04 3.37 2.75

THEORY OF THE EARTH

Table 1. Summary of the results of the simulation study

SCEM (n) 1155.4 2488.4 1564.1 1277.1 809.9 11703.8 762.4 728.6

WADJU-NPTSO INDEX = 100
WADJU-KLUKU-MANDJIKI = 100
WADJU-KLUKU-MANDJIKI = 100

```

ADJUST 2 WEIGHT    706.0 WAS   342.6 SPFAC-0.29262E-02 CHANGED 0.0
STATISTICS TWICE 114.5 KUNT 1507.7 20993.0 5.52E-02
TESTS ASPIRIN-132E OF 22625.0 2.2E-02

```

0.86218E-01 6.16819E-02

0.00.0 0.062185-01 6:16819E 02

CLUSTER 767 INDEX 2 PROPORTION 0.34600 = PARENT 7557.000
 SPLIT=0.292E 02
 *EIGHT 7557.041 342.639 ADJUST 705.277 LU 16056
 PROPORTION: P0.011.3441 CIN 297.27 CTO 5314.34
 MUL PROD 0.364520 CIN 335.50 LDEN 913.79 DIFFN 4.054
 VOLUME 0.34E-16 MUL 0.56E-08 DC0N -1.03
 LOCATION 1543 Link 0 SIMS 6 2549 SUPER 0 119 SYMBOL*****
 INDEX = 2 SYMBOL = *****
 NET PHR***** DIRECT***** CMS***** 0.97
 MEAN 25.53 24.07 30.57 30.30 19.64 14.90 26.96 28.12
 COVARIANCE 1.52 1.09 0.58 0.30 1.12 1.66 0.52 0.49
 2 1.59 3.85 0.93 0.32 1.79 3.89 0.95 0.30
 3 0.52 0.53 1.94 1.86 0.78 1.08 0.60 0.03
 4 0.30 0.32 1.06 3.75 0.25 -0.17 1.42 1.60
 5 1.12 1.79 0.79 0.29 1.63 2.29 0.62 -0.04
 6 1.64 3.89 1.02 -0.17 2.29 5.18 0.62 -0.74
 7 0.52 0.95 0.60 1.02 0.52 0.62 2.03 1.84
 8 0.69 0.30 0.03 1.60 -0.04 -0.74 1.04 3.55
 SKREW(***) -540.4-1161.1 -43.4 128.1 -508.4-1274.4 36.9 413.7

ADJUSTION RELATIVE TO TOP LEVEL 746.6 363.3 400.0
 IDADJ(NPTS0*INDEX)*WADJ(KL)*WADJ(RL) 18 0.2801137695E 03 0.2800000000E 03
 STATIS KL* WKL)*WADJ(RL) 7337 2 363.32^ 746.65

ADJUST 16 WEIGHT 240.1 WAS 40.0 SPFAC=0.99999E 04 CHANGED 0.0 0.53599E 00 0.13566E 03
 STATISTICS: TRACF 29.5 SKEW 4304.4 KURT 9404.3
 TESTS (SPLIT=0): -1.125A1E 06 -1.18177E 04 -0.15753E 05

ADJUSTION RELATIVE TO TOP LEVEL = 420.200.1 40.0 0.122176 16
 IDADJ(NPTS0*INDEX)*WADJ(KL)*WADJ(RL) 15712 7483 0.18 200+1 0.4206289063E 03
 STATIS KL* WKL)*WADJ(RL) 16 0.421360P39HE 6+ 0.4206289063E 03

ADJUST 16 WEIGHT 421.4 WAS 200.3 SPFAC=0.99999E 04 CHANGED 0.0 0.51371E-01 0.57965E 02
 STATISTICS: TRACF 41.2 SKEW 1350.9 KURT 26875.9
 TESTS (SPLIT=0): 1.1899E 06 -0.44814E 04 0.29995E 04
 ADJ(KL)*WKL*SIM 46.2 221.0 400.0 PROPORTION RELATIVE TO TOP LEVEL = 0.197774 16
 00-00 14-16 15-21 16-19 17-02 13-02 09-25 05-02 02-35
 22-07 23-11 16-16 WEIGHT 221.0 SUBS 22 23 ITER 31 20-16 2
 KL*INDEX.LSUPER 2155 16 4375

ORIGINAL PAGE
OR HOOR QUALITY

NUMBER OF OBSERVED CLUSTERS FROM 16

2155

CLUSTER 1 INDEX 16 PROPORTION 0.83605 w PARENT 435.566
 SPLIT 0.1700E-02
 WEIGHT 221.0145 WAS 200.314 ADJUST 462.093 ID 16229
 PROPORTION: PROP 0.90465 CIN 209.21 CTOT 185.33 DIFFER 0.0
 OLD PROP 0.90465 CIN 209.21 ODEN 250.24 DIFFER 0.0
 VOLUME 0.16E-02 ROOT 0.61E-08 DCON -1.20

LOCATION 2155 LINK 17 4661 SUBS 22 5361 SUPER 15 4375 SYMBOL 1

INDEX = 16 SYMBOL = 1 NET PROB***** DIRECT***** CUMS***** 1.00

MEAN 26.33 27.63 27.78 26.64 21.63 22.32 23.46 22.60

COVARIANCE	2.94	4.57	10.27	5.7A	4.23	3.68	3.55	2.76	0.40
2	3.03	5.78	4.7A	3.39	2.05	4.93	1.79	1.32	0.67
3	2.39	4.23	3.30	3.78	0.73	2.95	0.35	0.71	
4	1.68	3.18	2.05	0.73	2.38	3.26	1.42	0.56	
5	3.55	7.84	4.93	2.96	3.26	7.20	2.65	1.10	
6	0.76	2.37	1.79	0.35	1.42	2.65	2.17	0.90	
7	0.40	0.67	1.32	0.71	0.56	1.10	0.90	1.43	
8	SKEW(***)	-61.6	-346.1	156.4	-49.0	71.9	-104.4	285.8	576.3

C-33 CLUSTER 1 INDEX 22 PROPORTION 0.39377 w PARENT 221.046
 SPLIT 0.999E-04
 WEIGHT 80.000 WAS 80.000 ADJUST 280.000 ID 17310
 PROPORTION: PROP 0.39377 CIN 31.50 CTOT 141.05 DIFFER 0.0
 OLD PROP 0.393771 CIN 31.50 ODEN 80.00 DIFFER 0.0
 VOLUME 0.22E-20 ROOT 0.47E-10 DCON 4.74

LOCATION 5361 LINK 23 5519 SUBS 0 0 SUPER 16 2155 SYMBOL 2

INDEX = 22 SYMBOL = 2 NET PROB 0.0 DIRECT 0.0 CUMS 0.0 0.0 0.0

MEAN 24.66 23.80 25.71 25.13 20.15 19.33 22.73 22.56

COVARIANCE	0.86	1.07	1.02	0.92	0.05	0.69	0.37	0.37
2	1.07	2.35	1.39	1.37	0.15	1.23	0.56	0.12
3	1.02	1.39	2.12	1.61	-0.05	1.20	1.31	1.44
4	0.92	1.37	1.61	2.34	-1.02	-0.00	0.19	1.03
5	0.05	0.15	-0.05	-1.02	1.57	1.21	0.79	0.07
6	0.69	1.23	1.20	-0.00	1.21	2.36	0.94	0.25
7	0.37	0.56	1.31	0.19	0.79	0.94	2.76	1.97
8	0.37	0.12	1.44	1.03	0.07	0.25	1.97	3.87
SKEW(***)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

CLUSTER 1 INDEX 23 PROPORTION 0.60623 w PARENT 221.046
 SPLIT 0.999E-04
 WEIGHT 80.000 WAS 80.000 ADJUST 280.000 ID 17300
 PROPORTION: PROP 0.60623 CIN 48.50 CTOT 141.05 DIFFER 0.0
 OLD PROP 0.606228 CIN 48.50 ODEN 80.00 DIFFER 0.0
 VOLUME 0.46E-20 ROOT 0.68E-10 DCON 4.74

LOCATION 5519 LINK 0 0 SUBS 0 0 SUPER 16 2155 SYMBOL 3

INDEX = 23 SYMBOL = 3 NET PROB 0.0 DIRECT 0.0 CUMS 0.0 0.0 0.0

MEAN
 COVARIANCE 27.42 30.12 29.13 27.82 28.26 23.94 22.63
 2 3.19 4.77 3.17 2.43 2.09 3.86 4.43
 4.77 10.66 6.07 4.21 3.62 6.45 6.66
 3 3.17 6.07 4.97 3.60 2.50 5.30 1.71 1.29
 4 2.43 4.21 3.40 3.76 1.16 3.26 0.24 0.71
 2.00 3.62 2.50 1.16 2.32 3.47 1.04 0.66
 5 3.46 6.45 5.30 3.20 3.47 7.59 2.83 1.25
 6 3.40 6.44 1.29 0.71 0.26 1.44 1.95 0.57
 7 6.72 2.58 1.71 0.26 1.25 0.57 0.50
 A 0.43 0.44 1.29 0.71 0.60 1.25 0.57 0.50
 SKEW(***)
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

LOADJ(NPTSO,INDEX=0,MAUJ 16229 750.0 0.5840905762E-03 16 221.05 462.09
 STATUS KL. W(KL) *ADJ(KL) 0.5838076172E-03

ADJUST 9 WEIGHT 584.1 WAS 281.4 SPFAC-0.333390E 02 CHANGED 0.0
 STATISTICS TESTS (SPLIT=0): TRAC -68.6 SKEW 1056.0 KURT 9350.0 0.57911E-01 0.79322E 01
 0.40324E 04 -0.11559E 05

CLUSTER 770 IDEA 9 PROPORTION 0.24758 # PARENT 7542.0000

SPLIT=0.334E 02
 WEIGHT 584.091 WAS 281.904 ADJUST 583.800 10 16085
 PROPORTION: PROP 0.24599 CIN 4.32.86 C107.5811.08
 OLD PROP 0.226041 CIN 78.70 DIFFEP 15.99
 VOLUME 0.52E-16 QUOT 0.72E-08 DCON -1.0A

LOCATION 3063 LINK 5 2313 SUBS 10 3329 SUPER 0 119 SYMBOL*****
 INDEX = 9 SYMBOL = *****

NET PROH***** DIRECT***** CMS***** * 0.99

MEAN 26.52 27.80 28.12 26.32 21.83 22.84 24.36 23.03

COVARIANCE 4.39 7.15 4.84 4.09 2.96 5.37 2.48 1.43
 7.15 14.88 9.41 7.43 5.69 11.30 5.09 2.74
 4.84 9.41 7.46 6.37 3.73 7.06 4.20 2.71
 4.09 7.43 6.07 6.60 3.02 5.05 3.43 3.15
 2.46 5.69 3.73 3.02 3.02 4.86 2.25 1.17
 5.37 11.39 7.06 5.05 4.86 9.96 4.08 1.79
 2.48 5.09 4.20 3.43 2.25 4.08 3.14 1.92
 1.43 2.79 2.71 3.15 1.17 1.79 1.92 2.47

SKEW(***)
 -100.0 103.9 -420.1 -711.6 35.1 506.4 -299.4 -698.1

ADJ(KL) * (KL) * SIM TO TOP LEVEL = 302.2 400.0
 PROPORTION RELATIVE TO TOP LEVEL = 0.238357 9
 LOADJ(NPTSO,INDEX=0,MAUJ 16085 7542.0 0.2802236328E-03 19 0.2800000000E 03 62.37

ADJUST 19 WEIGHT 280.2 WAS 80.0 SPFAC-0.99990E 04 CHANGED 0.0
 STATISTICS TESTS (SPLIT=0): TRAC 373.7 SKEW 1591.2 KURT 18424.3
 ADJ(KL) * (KL) * SIM 0.13006E 05 -0.45292E 04 -0.67260E 04

PROPORTION RELATIVE TO TOP LEVEL = 200.2 400.0 0.111524 19
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

14-16 15-21 17-02 13-02 10-24 11-01 05-02 0
 16-17 17-02 10-23 19-11 11-01 05-02 0
 22-07 23-11 10-12 20-06 25-05

07-02 HAVE SPLIT 19 AT 17.01 200.2 SUHS 24 25 1TEH 13
 THREE POINTS

```

DUMP OF OBSERVED CLUSTERS FROM 19 4947
CLUSTER 0 TRUTH 19 PHURECTION 0.49493 * PARENT 401.2
SPLIT=0.1700t 0.2
*EIGHT 200*22* WAS 80.0000 ADJUST 420.447 1
PROPORTION: PHUP 0.48838 CIN 166.68 CTRT 66.45
OLD PROF 0.48378 CIN 166.68 IDEN 330.77 DIFFER 6.0
VOLUME.73E 1H QUOT.0.11E-07 DCN -5.2
LOCATION 4947 LINK 0 SIPS 24 5805 SUPER 10 1324 S
INDEX = 19 DIRECT***** CUMS 0.0 * 1.0E-11
NET PHOB***** CUMS 0.0 * 1.0000E-11

```

MFIAN	24.012	30.87	30.08	27.67	23.06	25.36	25.61	23.72
COVARIANCE	2.99	4.36	3.22	2.92	1.61	3.17	1.62	1.04
2	4.36	8.56	5.94	5.40	2.98	5.98	3.22	2.21
3	3.22	5.94	5.27	4.73	2.54	4.30	2.94	2.01
4	2.99	5.40	4.73	5.39	2.42	3.70	2.61	2.51
5	1.61	2.98	2.54	2.42	1.79	2.38	1.46	1.17
6	3.17	5.96	4.30	3.70	2.38	4.81	2.40	1.54
7	1.42	3.22	2.94	2.61	1.46	2.40	2.18	1.39
8	1.04	2.21	2.01	2.51	1.17	1.64	1.39	1.87
SKEWNESS	210.9	640.5	213.5	38.1	163.3	727.2	288.2	203.6

CLUSTER	INDEX	PROPORTION	0.55726	W PARENT	200.224
SPLIT	-0.999E-04	\$AS	80.000	ADJUST	240.000
WEIGHT	0.0.00	PROP	0.55726	CIN	120.000
PROPORTION	0.0.00	PROP	0.55726	CTD	173.67
OLD_PROP	0.557260	CIN	44.58	DEN	80.00
VOLUME	0.5E-19	PROP	0.55726	DCON	47.74
LOCATION	5805	LINK	25.5963	SUBS	0
INDEX =	24	SYMBOL	=		
NET PROB	0.0	DIRECT	0.0	CUMS	0.0
					0.0

CLUSTER	INDEX	25	PROPOSITION	0.44274	W PARENT	200.224
SPLIT-0.999E 04						
WEIGHT 0.000						
PROPORTION: F-UP 0.44274			CIN .35*.02	ADJUST .280.000	CTOY .120.000	10 17347
OLD PROP 0.44274			ODEN .80.000	DIFFER .0.0		
VOLUME 0.125			DFON .4.74			
ROOTN 1.12						

LOCATION 0.4431 L1K 0 0 SPLIT 0 0 SPLIT 14 4447 SYMUL 3
 L1K = 25 SYMUL = 3
 SET PROB 0.0 DIRECT CUMS 0.0 * 0.01

	MEAN	27.80	36.19	29.81	27.62	22.88	24.53	25.24	23.61
COVARIANCE	1.74	1.74	1.74	1.74	0.75	0.75	1.28	0.24	0.33
2	1.74	3.00	2.11	1.75	1.22	2.21	0.80	0.54	
3	1.24	2.10	1.60	1.35	0.91	1.56	0.54	0.44	
4	1.09	1.75	1.35	1.76	1.03	1.24	0.49	0.66	
5	0.70	1.22	0.91	1.03	0.71	0.91	0.34	0.46	
6	1.24	2.21	1.56	1.24	0.91	1.71	0.61	0.38	
7	0.44	0.80	0.64	0.49	0.34	0.61	0.35	0.18	
8	0.33	0.54	0.44	0.86	0.45	0.34	0.18	0.58	
SKEW(**)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

LOADJ(NPTSO,INDEX,WAUJ) 15712 15 0.461561234E 200.22 420.45
 STATUS KL. W(KL)*ADJ(KL)

ADJUST 15 WEIGHT 461.6 WAS 220.4 SPFAC=0.22415E 02 CHANGE 0.0
 STATISTICS TRACE -122.9 SKEW 576.2 KURT 4.422.8
 TESTS (SPLIT=0): -.10079E 06 -.50249E 04 -.10594E 05
 WADJ(KL)*WKL*WLN 502.3 241.2 600.0
 PROPORTION RELATIVE TO TOP LEVEL = 0.209206 15
 LOADJ(NPTSO,INDEX,WAUJ) 16268 7617 0.209206 15
 STATUS KL. W(KL)*ADJ(KL)

ADJUST 21 WEIGHT 280.6 WAS 80.0 SPFAC=0.99990E 04 CHANGE 0.0
 STATISTICS TRACE 244.3 SKEW 794.3 KURT 2771.0 0.26447E 04
 TESTS (SPLIT=0): -.66684E 05 -.53204E 04 0.209147E 04
 WADJ(KL)*WKL*WLN 421.2 200.6 400.0
 PROPORTION RELATIVE TO TOP LEVEL = 0.209147 21
 00-00
 14-14 15-20 13-02 00-24 11-01 05-02 0
 16-17 17-02 10-23 11-01 05-02 0
 22-05 23-12 19-10 2
 07-02 24-07 25-04

27-10 00-WF SPLIT 21 WEIGHT 21 200.6 SUGS 26 27 ITER 13
 NL*INDEX*LSUPER 373 21 2509

DUMP OF OBSERVED CLUSTERS FROM 21 3773

CLUSTER 1 INDEX 21 PROPORTION 0.56166 W PARENT 652.377
 SPLIT=0.1700E-02 WEIGHT 200.595 WAS 80.000 ADJUST 21.191 ID 16935
 PROPORTION: PHUP 0.57159 CIN 180.95 CTOT 363.10 DIFFER 0.0
 OLD PROP 0.571594 CIN 184.95 OPEN 324.27 DCON 5.24
 VOLUME 0.14E-18 ROUTE 63E-08 DCON

LOCATION 3773 LINK 0 SUBS 26 6249 SUPER 6 2599 SYMBOL 1
 INDEX = 21 SYMBOL = 1

NET PROB***** DIRECT***** CUMS***** * 1.00

MEAN	26.76	28.83	30.50	29.51	20.29	19.94	27.33	28.14
COVARIANCE	1.24	1.14	0.70	0.84	0.63	0.77	0.61	1.22
2	1.14	2.26	1.35	1.24	0.69	2.00	0.49	0.79
3	0.78	1.35	2.16	1.90	1.13	2.16	0.56	-0.23
4	0.84	1.24	1.90	3.33	1.11	1.66	1.99	1.09
5	0.63	0.69	1.13	1.11	1.01	1.07	0.46	0.19
6	0.77	2.00	2.16	1.66	1.07	2.91	0.24	-0.40
7	0.61	0.49	0.56	1.99	0.46	0.24	1.98	1.63
8	1.22	0.79	-0.23	1.09	0.19	-0.40	1.63	2.92

SKEW(*w) -158.8 -314.1 -101.3 -274.3 32.1 -165.9 -104.0 -114.0

C-37 CLUSTER 1 INDEX 26 PROPORTION 0.53463 W PARENT 200.595
 SPLIT=0.9999E-04 WEIGHT 80.000 WAS 80.000 ADJUST 200.000 ID 17716
 PROPORTION: PHUP 0.53603 CIN 80.000 CTOT 120.60 DIFFER 0.0
 OLD PROP 0.534632 CIN 42.17 OPEN 80.00 DCON 4.74
 VOLUME 0.64E-20 ROUTE 80010.80E-10 DCON

LOCATION 6249 LINK 27 6407 SUBS 0 0 SUPER 21 3773 SYMBOL 2
 INDEX = 26 SYMBOL = 2

NET PROB 0.0 DIRECT 0.0 CUMS 0.0 * 0.0

MEAN	26.57	28.44	30.36	29.16	20.32	19.72	27.20	28.03
COVARIANCE	1.73	1.67	1.67	0.56	0.59	0.56	0.94	1.64
2	1.67	3.07	1.40	1.08	0.65	2.49	0.43	1.40
3	0.56	1.40	2.35	2.06	1.19	2.34	0.52	-0.48
4	0.59	1.08	2.06	3.77	1.20	1.74	2.20	0.87
5	0.56	0.65	1.19	1.20	1.11	1.06	0.46	0.07
6	0.94	2.49	2.34	1.74	1.06	3.42	0.18	-0.30
7	0.56	0.43	0.52	2.20	0.46	0.18	2.24	1.79
8	1.84	1.40	-0.44	0.87	0.07	-0.30	1.79	3.98

SKEW(*w) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CLUSTER 1 INDEX 27 PROPORTION 0.46537 W PARENT 200.595
 SPLIT=0.9999E-04 WEIGHT 80.000 WAS 80.000 ADJUST 120.60 DIFFER 280.000 ID 17716
 PROPORTION: PHUP 0.66537 CIN 80.000 CTOT 120.60 DIFFER 0.0
 OLD PROP 0.57307 CIN 37.23 OPEN 80.00 DCON 4.74
 VOLUME 1.5E-23 ROUTE 40010.12E-12 DCON

LOCATION 5407 LINK 0 SUBS 0 0 SUPER 21 3773 SYMBOL 3
 INDEX = ? SYMBOL = 3

NET PROB 0.0 DIRECT 0.0 CUMS 0.0 * 0.0

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

INDEX • NFTSO • STATIS • KLO • WADUJ 16935 7916 21 200.60
STATIS KLO WADUJ 0.7092814941E 03 0.7084910932E 03

```

ADJUSTED SEPARATE TESTS SPLIT-T=0.7453E-05 RELATIVE PROPORTION TO TOP LEVEL = 0.365115
  WEIGHT 709.3 WAS 344.2 SPFAC 0.6099E-03 CHANGED=0
  30.4 SKEN 2338.0 KURT 12748.0 -.67272E-04
  0.0

```

***SEPARATE 6 SUPER-SUHS 2 20 SMPAC 0.1609E 03
 00-00 15-21 13-02 09-24
 14-14 16-18 17-02 10-23
 22-05 23-13 14-13 19-10
 11-01 24-07 25-04

27-09 ST-ATIS KL, WIM 07-01

```

ADJUST 20 RELIGHT 280.6 MAS 80.0 SPFAC=0.99990E 04
STATISTICS: TRACE -55.1 SKEW 354.4 KURT 9163.3
TESTS (SPMLI=0) -.1347E V6 .2573SE 04 -.15960E 0
ADJUKL) W(KL) -.421.3 200.6 600.0
PROPORTION RELATIVE TO TOP LEVEL = 0.165596 20
ADAJD,ADJNP,TSU,INDEX W(AU) 16935 .8215 200.65 421.30
STATS KL 2 0.7475660945E 03 0.766649258E 03
ADJUKL) W(KL) WADJKL) W(KL)

```

ADJUST 2 WEIGHT 747.6 WAS 363.3 SPFAC 0.23512E 03 C1
 STATISTICS: TRACE 457.1 SKEW 11456.1 KURT 268014.1
 TESTS (SPLIT=0): 0.63832E 06 0.67985E 04 0.24888E 06
 (ADJ(KL)) (WSLW) 788.5 384.2 400.0

PROPORTION RELATIVE TO TOP LEVEL = 0.364029
 ***SEPARATE 2 SUPER-SUBS 0 20 SFAC 0.23512E 03
 00-00 21-18 07-01 14-16 15-22 13-02 09-22
 20-17 26-13 27-07 22-20 23-16 17-02 16-21
 22-04 23-16 17-02 16-21 18-11 1

2
05-02
~~11-01~~ 51-01 K.L. ♀ (K.L.) ♀ ADJ (K.L.) 10 0.5819895020± 0.3 0.5819350352E 03

```

ADJUST 10 WEIGHT      582.0 WAS    281.0 SPFAC 0.8883E 02  CHANGE 0.0   0.0  0.88404E-01 0.34650E 02
STATISTICS  THACE 361.9 SKEN 2867.1 KURT 4258.1
TESTS (SPLIT=0) 0.2554E 05 -2229E 04 0.2164E 05
ADJ(KL) WKL WSH 622.0 301.0 400.0
ALPHA 0.05 PTK CMIN 10.9769E 01 10.0E 01 301.0E 03
(TERMO CONT) CIN 0.533E 03 0.2711E 03 0.2922E 03 wTKF.CT01.UEN.UEN.4796E 03*****.5766E 03.2905E 03
CLUSTER 776 INDEX 10 PROPORTION 1.0101E 03 N PARENT 479.590
SPLIT 0.8883E 02
WEIGHT 301.021 245 ADJUST 622.043 10 16940
PROPORTION: PTKP 1.0224E 01 CIN 563.27 CTOT -795.99
NDEN 290.46 DIFFER 44.87
NDEN 290.46 DCON -1.0A
VOLUME 0.66E 21 400.01 71E-08

```

LOCATION 3329 LINK 11 SYMBOL = *****

INDEX = 11 NET PROB***** DIRECT***** CUMS***** * 1.01

MEAN 2e+05 27.69 27.92 26.14 21.80 22.55 24.29 22.34

COVARIANCE 4.22 6.78 4.67 3.94 2.85 4.94 2.34 1.48

2 6.78 14.49 9.0E 7.18 5.26 10.77 4.60 2.63

3 4.67 9.08 7.49 6.1* 3.64 6.55 3.99 2.77

4 3.94 7.18 6.14 6.60 3.05 4.75 3.35 3.18

5 2.85 5.26 3.64 3.05 2.87 4.41 2.01 1.16

6 4.94 10.77 6.55 4.75 4.41 9.29 3.51 1.68

7 2.34 4.60 3.99 3.35 2.01 3.51 2.80 1.78

8 1.48 2.83 2.77 3.18 1.16 1.68 1.78 2.45

SKEW(*w) -963.6-1646.2-1766.0-1487.9 -447.1 -661.9 -801.8 -930.6

PROPORTION RELATIVE TO TOP LEVEL = 0.210303 10

***SEPARATE 10 SUPER.SUBS 9 18 SPFAC 0.88833E 02

00-00 21-19 07-01 14-16 15-22
26-14 27-06 16-20 13-02 09-22
05-02 22-04 23-16 16-11 1

STATS KL, W(KL), WADJ(KL) 23 0.280228759E 03 0.2800000000E 03

ADJUST 23 WEIGHT 280.2 WAS 4410.2 SPFAC -0.99999E 04 CHANGE 0.0
STATISTICS TAKE SPLIT=0! 801.2 SMEW 4410.2 KURT 216.12

CLUSTER 776 INDEX 23 PROPORTION 0.79776 W PARENT 453.709

SPLIT=0.9999E 04 WEIGHT 280.2 WAS 4410.2 SPFAC -0.99999E 04 CHANGE 0.0

PROPORTION: PROB 0.00167 CIN 80.000 ADJUST 280.000 ID 17300

OLD PROB 0.606228 CIN 48.59 DCON 80.000 ID 17300

VOLUME 0.12E-14 ROOT 0.35E-07 DCON -5.24 DIFFER 0.0

LOCATION 5519 LINK 0 SUBS 0 0 SUPER 16 2155 SYMBOL*****

INDEX = 23 SYMBOL = ***** DIRECT***** CUMS.0 0.0 * 0.0

NET PROB***** DIRECT***** CUMS.0 0.0 * 0.0

MEAN 26.96 28.97 28.51 27.12 21.86 23.17 23.72 22.57

COVARIANCE 3.16 5.14 3.29 2.82 1.41 3.53 0.57 0.11

2 5.14 12.29 6.68 5.52 2.92 8.54 2.45 0.15

3 3.29 6.68 5.19 3.86 1.94 5.24 1.75 1.07

4 2.82 5.52 3.86 4.49 0.71 3.46 0.21 0.18

5 1.41 2.92 1.94 0.71 2.02 3.05 1.41 0.60

6 3.53 8.54 5.24 3.46 3.05 7.62 2.85 1.14

7 0.57 2.45 1.75 0.21 1.41 2.85 2.17 0.86

8 0.11 0.15 1.07 0.18 0.60 1.14 0.86 1.43

SKEW(*w) -1054.3-2369.8-1352.4-1307.2 -290.2-252.6 -5.1 415.2

WADJ(KL) W(KL) SYMBOL = *****

PROPORTION RELATIVE TO TOP LEVEL = 200.2 0.166826 23

00-00 21-18 07-01 14-16 15-23
26-14 05-02 22-04 23-17 17-02 13-02 0
05-02 28-09 29-08

11-01

25-02

25-02

DUMP OF OBSERVED CLUSTERS FROM 23 5519

CLUSTER 0 INPUT 23 PROPORTION 0.74893 w PARENT 0.999E-04

SPLIT=0.1700E-02

WEIGHT=200.229 WAS=80.000 ADJUST=420.000 ID 11380

PROPORTION: P=0.61273 CIN=173.70 CTOT=221.74 DIFF=0.05

OLD PROP=0.412725 CIN=173.70 DIFF=231.93 DCON=0.05

VOLUME=0.98E-19 ROOT=0.35E-07

LOCATION 5519 LINK 0 SUBS 28 3329 SUPER 16 2155 SYMBOL 1

INDEX = 23 SYMBOL = 1

NET PROB***** DIRECT***** CUMS 0.0 * 1.00

CUMS.0 * 100000E 01

MEAN 26.78 26.51 26.26 26.92 21.69 22.74 23.64 22.54

COVARIANCE 3.15 1.29 3.33 2.98 1.17 3.43 0.52 -0.02

2 5.29 12.94 6.92 6.04 2.64 8.58 2.42 -0.14

3 3.33 6.92 5.20 4.04 1.72 5.21 1.76 0.98

4 2.94 6.04 4.04 4.70 0.54 3.53 0.20 -0.03

5 1.17 2.64 1.72 0.54 1.90 2.88 1.38 0.60

6 3.43 6.58 5.21 3.53 2.88 7.63 2.86 1.69

7 0.52 2.42 1.75 0.20 1.34 2.86 2.25 0.98

8 -0.02 -0.14 0.98 -0.03 0.60 1.09 0.98 1.04

SKW(***) -1054.3-2369.6-1352.4-1307.2 -290.2-1252.6 -5.1 415.2

C-40

CLUSTER 1 INDEX 2A PROPORTION 0.51622 w PARENT 200.229

SPLIT=0.999E-04

WEIGHT=80.000 WAS=80.000 ADJUST=280.000 ID 18258

PROPORTION: P=0.51622 CIN=41.30 CTOT=120.23 DIFF=0.0

OLD PROP=0.516222 CIN=41.30 DCON=4.74 DCON=0.0

VOLUME=0.49E-18 ROOT=0.70E-09

LOCATION 3329 LINK 29 1503 SUBS 0 SUPER 23 5519 SYMBOL 2

INDEX = 2A SYMBOL = 2

NET PROB***** DIRECT***** CUMS***** 1.01

MEAN 25.90 26.49 27.16 25.83 21.38 21.51 23.59 22.83

COVARIANCE 3.45 5.77 4.09 3.83 0.05 1.96 -0.16 -0.64

2 5.77 13.96 8.43 7.76 0.14 5.42 1.13 -1.45

3 4.04 8.43 7.46 5.98 -0.36 2.46 0.92 0.15

4 3.83 7.76 5.98 6.61 -0.82 1.85 -0.49 -0.86

5 0.05 0.14 -0.36 -0.82 1.45 2.03 0.85 0.72

6 1.96 5.42 2.46 1.85 2.03 6.36 1.99 1.05

7 -0.15 1.13 0.92 -0.49 0.85 1.99 2.19 1.24

8 -0.64 -1.45 0.15 -0.86 0.72 1.06 1.24 2.36

SKW(***) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CLUSTER 1 INPUT 29 PROPORTION 0.48378 w PARENT 200.229

SPLIT=0.999E-04

WEIGHT=80.000 WAS=80.000 ADJUST=280.000 ID 18258

PROPORTION: P=0.48378 CIN=38.70 CTOT=120.23 DIFF=0.0

OLD PROP=0.483778 CIN=38.70 DCON=80.00 DCON=4.74 DCON=0.0

VOLUME=0.19E-24 ROOT=0.44E-12

LOCATION 1583 LINK 0 SUBS 0 SUPER 23 5519 SYMBOL 3

INDEX = 29 SYMBOL = 3

NET PROB***** DIRECT***** CUMS***** 1.00

MEAN 27.71 30.67 29.43 28.04 22.02 24.05 23.69 22.24
 COVARIANCE 0.60 0.92 0.92 0.62 0.66 0.13 0.57 -0.03 -0.01
 2 0.92 3.18 1.52 1.52 1.32 0.25 0.22 0.19 -0.11
 3 0.62 1.52 1.11 1.11 0.15 1.11 0.18 0.19
 4 0.64 1.32 1.11 1.52 -0.02 0.83 -0.24 0.19
 5 0.13 0.25 0.15 -0.02 0.24 0.28 0.16 0.03
 6 0.57 2.22 1.11 0.83 0.28 1.79 0.73 0.07
 7 -0.00 0.79 0.18 -0.24 0.16 0.73 0.71 -0.04
 8 -0.01 -0.11 0.19 0.19 0.03 0.07 -0.04 0.29
 SKEW(*w) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

LOADJ,NPTSO,INDEX,W,ADJ,17300 R458 23 200.23 0.46297734E 03
 STATUS,KL,W(KL),WADJ(KL)

ADJUST 16 WEIGHT 462.5 WAS 221.0 SPFAC-0.47231E 02 CHANGE 0.0
 STATISTICS: TRACE 1620.3 SKEW 7001.6 KURT 937579.4 0.6
 TESTS (SPLIT=0): 0.25291E 07 0.14034E 04 0.91458E 06
 WADJ(KL),W(KL),WSTW 502.9 600.0
 PROPORTION RELATIVE TO TOP LEVEL = 210524 16
 IDADJ,NPTSO,INDEX,W,ADJ,17300 8484 15 0.502856641E 03 502.90
 STATUS,KL,W(KL),WADJ(KL)

ADJUST 15 WEIGHT 502.8 WAS 241.2 SPFAC-0.20659E 02 CHANGE 0.0
 STATISTICS: TRACE 145.1 SKEW 249.6 KURT 22324.1 0.12397E 03
 TESTS (SPLIT=0): -0.90734E 05 -0.29029E 04 0.0
 WADJ(KL),W(KL),WSTW 56.3 261.6 400.0
 PROPORTION RELATIVE TO TOP LEVEL = 260647 15
 IDADJ,NPTSO,INDEX,W,ADJ,17417 8620 15 0.461787793E 03 543.27
 STATUS,KL,W(KL),WADJ(KL)

ADJUST 14 WEIGHT 461.7 WAS 220.5 SPFAC-0.99999E 04 CHANGE 0.0
 STATISTICS: TRACE 25.3 SKEW 1483.6 KURT 7529.7 0.15402E 05
 TESTS (SPLIT=0): -0.11524E 06 -0.41163E 06 -0.15402E 05

CLUSTER 781 INDEX 14 PROPORTION 0.15903 W PARENT 8130.000
 SPLIT-0.100E 05
 WEIGHT 461.749 WAS 220.458 ADJUST 460.917 ID 16937
 PROPORTION: PROP: 0.15831 CIN 406.00 CDT 6170.71
 OLD PROP: 0.183343 CIN 191.28 DEN1080.36 DIFFER 0.0
 VOLUME:0.47E-17 ROOT0.22E-08 DCUN -1.16

LOCATION 4217 LINK 15 4375 SUBS 0 SUPER 0 119 SYMBOL*****
 INDEX = 14 SYMBOL = *****
 NET PROB***** DIRECT***** CUMS 0.0 0.0

MEAN 24.68 26.37 25.93 24.45 22.21 24.22 23.79 22.32
 COVARIANCE 1.97 2.13 2.19 2.06 0.43 0.19 1.10 0.87
 2 2.13 4.64 3.44 3.32 -0.27 0.31 1.56 0.67
 3 2.19 3.44 4.11 3.61 -0.05 -0.31 1.39 1.17
 4 2.04 3.32 3.61 4.86 -0.32 -0.06 1.31 1.61
 5 0.43 -0.27 -0.05 -0.32 0.91 6.32 0.39 0.42
 6 0.19 0.31 -0.31 -0.06 0.32 0.85 0.36 0.32
 7 1.10 1.56 1.39 1.31 0.39 0.36 1.30 0.86
 8 0.87 0.67 1.17 1.61 0.42 0.32 0.86 1.76

SKEW(*w) -204.3 92.5 141.4 -230.1 -205.4 -347.3 -251.2 -594.8

5	0.98	1.37	1.21	0.70	1.39	2.11	0.44	-1.55
6	1.45	3.50	2.25	0.91	2.11	4.95	0.25	-1.40
7	0.51	0.65	0.86	2.62	0.40	0.25	2.32	1.92
A	0.45	0.32	0.14	2.22	-0.55	-1.40	1.92	0.15
SKEM(♦)	-999.9-1369.6	315.3	1982.3	-835.3-1497.9	-269.0	792.3		

"ADJ(KL)♦W(KL)♦WSI" *420.9 200.5 *400.0
 ALPHA ERROR IPK CIN 2246F 00.1076E 01.13E 01.0005E 03
 (ERROW CONT) CIN 03.4277E 02.1918E 03.013E W(KF).CINT.0EN.3947E 03.1457E 03.2490E 03.0009E 02

CLUSTER 784 INDEX 26 PROPORTION 0.94682 W PARENT 394.691
 SPLIT-0.9449E 0.4 WEIGHT 200.46P WAS 80.000 ADJUST 420.936 ID 17716
 WEIGHT 200.46P PROPORTION: PKUP 1.07607 CIN 224.60 CTOT 142.72 OLD PROP 0.534632 CIN 42.77 NDN 80.00 DIFFER 0.0
 VOLUME 0.24E 20 ROOT 0.57E-07 DCON -5.23
 LOCATION 6249 LINK 27 6497 SUBS 0 0 SUPER 21 3773 SYMBOL*****
 INDEX = 26 SYMBOL = ***** NET PROD***** DIRECT***** CUMS 0.0.0.0.0

MEAN	26.58	28.48	30.53	29.80	19.94	19.35	27.17	29.46
COVARIANCE	1.72	1.80	0.85	0.48	1.12	1.66	0.49	0.46
2	1.80	4.00	1.80	0.97	1.66	3.91	0.74	-0.11

3	0.85	1.80	3.28	3.36	1.21	2.21	1.00	0.39
4	0.48	0.97	3.36	6.06	0.50	0.58	2.51	2.77
5	1.12	1.66	1.21	0.50	1.76	2.52	0.38	-0.79
6	1.69	3.91	2.21	0.58	2.52	5.56	0.27	-1.83
7	0.49	0.74	1.00	2.51	0.38	0.27	2.35	1.98
8	0.45	-0.11	0.39	2.77	-0.79	-1.83	1.98	4.22
SKEM(♦)	-999.9-1369.6	315.3	1982.3	-835.3-1497.9	-269.0	792.3		

PROPORTION RELATIVE TO TOP LEVEL = 0.142678 26
 00-00 16-10 19-10 11-01 20-16 21-18 26-14 30-06 31-08 1
 16-09 25-02 27-04 27-01 14-16 2

29-03 17-02 13-02 05-02
 ***HAVE SPLIT 26 WEIGHT 6249 200.5 SUBS 30 31 ITER 60
 KL, INDEX, LSUPER

NMAP OF OBSERVED CLUSTERS FROM 26 6249

CLUSTER 0 INPUT 26 PROPORTION 0.69870 * PARENT 394.691
 SPLIT=0.1700E-02 WEIGHT=0.0000E+00
 PROPORTION: PROB 0.4645 CIN 80.0000 ADJUST 420.436 ID 17716
 OLD PROB 0.794072 CIN 181.83 CTOT 134.45 DIFFER 0.0
 VOLUME=0.24E-20 WEIGHT=0.57E-07 DCUN -5.23

LOCATION 6249 LINK 27 6407 SUBS 30 3043 SUPER 21 3773 SYMBOL 1
 INDEX = 26 SYMBOL = 1

NET PROB***** DIRECT***** CUMS 0.0 * 1.00
 CUMS=0.01000E-01

MEAN 26.58 26.48 30.63 29.80 19.94 19.35 27.17 28.46

COVARIANCE 1.72 1.60 0.98 0.97 1.12 1.69 0.99 0.96
 2 1.80 4.00 1.88 1.88 1.66 3.91 0.74 -0.11
 3 0.95 1.80 3.24 3.35 1.21 2.21 1.00 0.39
 4 0.48 0.97 3.36 6.04 0.20 0.58 2.51 2.77
 5 1.12 1.66 1.21 0.50 1.76 2.52 0.38 -0.74
 6 1.69 3.91 2.21 0.58 2.52 5.56 0.27 -1.83
 7 0.49 0.74 1.00 2.51 0.38 0.27 2.35 1.98
 8 0.46 -0.11 0.39 2.77 -0.79 -1.83 1.98 4.22
 SKEW(*) -999.91-1369.6 315.3 1982.3 -835.3-1497.9 -269.0 792.3

C-44

CLUSTER 1 INPUT 30 PROPORTION 0.45039 * PARENT 200.468
 SPLIT=0.9999E-04 WEIGHT=0.0000E+00
 PROPORTION: PROB 0.45039 CIN 80.0000 ADJUST 280.000 ID 19016
 OLD PROB 0.450393 CIN 36.03 CTOT 124.47 DIFFER 0.0
 VOLUME=0.39E-17 ROUNT=0.20E-08 DCUN 4.74

LOCATION 3043 LINK 31 2599 SUBS 0 0 SUPER 26 6249 SYMBOL 2
 INDEX = 30 SYMBOL = 2

NET PROB***** DIRECT***** CUMS***** * 1.01

MEAN 25.89 27.84 30.30 29.94 19.20 18.50 26.36 28.49

COVARIANCE 3.27 3.60 1.52 0.20 1.58 2.32 0.47 -0.10
 2 3.60 7.25 3.25 1.18 2.98 5.68 1.68 -0.97
 3 1.52 3.25 5.92 7.32 -0.16 -0.29 1.94 3.33
 4 0.20 1.18 7.32 14.47 -2.69 -5.29 2.96 0.43
 5 1.52 2.98 -0.16 -2.69 3.19 5.11 -0.89 -3.92
 6 2.32 5.66 -0.29 -5.29 5.11 10.25 -1.10 -7.04
 7 0.47 1.68 1.94 2.96 -0.89 -1.10 2.35 3.25
 8 -0.10 -0.97 3.33 8.83 -3.92 -7.04 3.25 9.95
 SKEW(*) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CLUSTER 1 INPUT 31 PROPORTION 0.54961 * PARENT 200.468
 SPLIT=0.9999E-04 WEIGHT=0.0000E+00
 PROPORTION: PROB 0.54961 CIN 80.0000 ADJUST 120.47 280.000 ID 19016
 OLD PROB 0.549607 CIN 43.97 CTOT 80.00 DIFFER 0.0
 VOLUME=0.74E-22 ROUNT=0.86E-11 DCUN 4.74

LOCATION 2599 LINK 0 SUBS 0 0 SUPER 26 6249 SYMBOL 3
 INDEX = 31 SYMBOL = 3

NET PROB***** DIRECT***** CUMS***** * 0.49

MEAN 27.14 29.01 36.72 29.69 20.55 21.05 27.93 29.68
 COVARIANCE 0.97 0.57 1.64 2.17 1.33 1.29 1.49 0.81
 2 0.57 1.64 1.45 0.46 0.04 2.45 -0.50 -0.75
 3 1.64 1.45 4.94 0.55 3.03 3.62 3.78 1.18
 4 2.17 0.46 0.55 1.20 4.24 3.22 0.94 4.01
 5 1.33 0.64 3.03 4.24 2.30 2.02 2.91 1.18
 6 1.20 2.45 3.62 3.22 2.02 4.23 1.05 -0.58
 7 1.49 -0.50 3.76 8.84 2.91 1.05 7.45 3.79
 8 0.81 -0.75 1.14 4.01 1.14 -0.58 3.79 2.76
 SKEWNESS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

IDADJ-NPTS0-INDEX-WADJ 17716 9216 26 200.47 420.94
 STATISTICS KL WRL WADJ(KL) 0.4211909180E 03

ADJUST 21 WEIGHT 421.4445 SPFAC=0.21117e 03
 STATISTICS (SPLIT=0): 103.8 SKEN 200.6 KURT 1079.3
 TESTS (SPLIT=0): -0.10999E 06 -0.4739E 04 -0.13186E 05
 CHANGE 0.0

CLUSTER 784 INDEX 21 PROPORTION 0.16597 * PARENT 9302.000
 SPLIT 0.2172E 03
 WEIGHT 421.4368 0.05 200.596
 PROPORTION: PKOP 0.1883 CIN 40.27 ADJUST 21.191 1D 17716
 OLD PKOP 0.20254 CIN 184.95 712.56
 VOLUME 0.54E-18 W0010.74E-09 OPEN 929.65 DIFFER 76.74
 DCON -1.16

LOCATION 3773 LINK 7 2757 SUBS 26 6249 SUPER 0 119 SYMBOL*****
 INDEX = 21

NET PROB***** DIRECT***** CURS***** * 0.93
 MEAN 26.86 28.98 30.51 29.50 20.28 19.99 27.29 28.21

COVARIANCE 1.20 1.12 0.83 0.94 0.65 0.89 0.56 1.07
 2 1.12 2.08 1.65 1.59 0.81 2.35 0.59 0.73
 3 0.83 1.65 2.56 2.25 1.36 2.60 0.67 -0.27
 4 0.94 1.59 2.25 3.70 1.27 2.09 2.22 1.22
 5 0.65 0.81 1.36 1.27 1.08 1.32 0.45 0.05
 6 0.79 2.35 2.60 2.08 1.32 3.41 0.35 -0.48
 7 0.56 6.59 0.67 2.22 0.45 0.35 2.18 1.78
 8 1.07 0.73 -0.27 1.22 0.05 -0.48 1.78 3.12
 SKEWNESS 292.3 461.9 13.8 33.4 -88.7 125.8 0.0 452.5

WADJ(KL) WSIM PROPORTION RELATIVE TO TOP LEVEL = 220.6 0.177807 21

***SUB ELIM 21 SPLITTING -217.17242 * -150.00000
 00-00 26 27
 1A-11 19-10 25-02 11-01 20-16 21-18 07-01 14-15 15-25
 22-03 23-19 28-16 2

13-02 05-02 IDADJ-NPTS0-INDEX-WADJ 17716 9302 21 220.77 461.54
 STATISTICS KL WRL WADJ(KL) 0.4206718750E 03 0.4202275391E 03
 CHANGE 0.0

ADJUST 18 WEIGHT 420.74AS SPFAC=0.99999E 04
 STATISTICS (SPLIT=0): 4.9 SKEN 200.1 KURT 1252.4 6301.7
 TESTS (SPLIT=0): -0.45360E 04 -0.1769E 05

0.3339008E-01 0.31881E 02

NUMBER OF OBSERVED CLUSTERS FROM

3329

CLUSTER 1 INDEX .24 PROPORTION 0.74554 ■ PARENT 407.832
 SPLIT=0.1700E-02 WEIGHT 200.101 .45 ADJUST 420.033 10 19202
 PROPORTION: PROP 0.35405 CIN 1.947 CTO 153.72 DCON 0.00
 OLD PROP 0.85020 CIN 1.6947 DLEN 254.11 DIFER 0.0
 VOLUME 0.91E-19 WDTU 0.73E-07 DCON -5.24

LOCATION 3329 LINK 24 1583 SUBS 32 6407 SUPER 23 5519 SYMBOL 1
 INDEX = 24 SYMBOL = 1 NET PROB***** DIRECT***** CUMS***** * 1.00

MEAN 26.57 25.39 26.25 26.75 21.82 22.47 23.92 22.76

	COVARIANCE	MEAN	NET PROB(**)	DIRECT*****	CUMS*****	SUPER 23 5519 SYMBOL	INDEX = 24 SYMBOL = 1			
1	2	3.65 4.96	26.57	25.39	26.25	26.75	21.82	22.47	23.92	22.76
2	3	3.35 5.42	3.92	10.92	5.07	3.70	4.76	2.25	3.11	0.10
3	4	2.69 4.76	3.76	3.76	4.03	3.76	4.03	2.57	2.76	-0.24
4	5	1.23 2.55	1.53	1.53	0.38	0.38	0.38	1.39	1.39	-0.39
5	6	3.11 7.26	4.57	7.26	2.76	2.76	2.61	2.61	2.61	0.45
6	7	0.10 1.77	1.39	1.39	0.06	0.06	0.22	0.22	0.22	0.80
7	8	-0.24 -0.39	0.90	0.90	0.03	0.03	0.45	0.45	0.45	1.10
8		SKWEW(**)	854.0 1974.4	1267.9	969.7	590.4	1567.1	474.4	46.5	

CLUSTER 1 INDEX 32 PROPORTION 0.41854 ■ PARENT 200.101
 SPLIT=0.9999E-04 WEIGHT 80.000 WAS 80.000 ADJUST 280.000 10 19202
 PROPORTION: PROP 0.418542 CIN 33.48 CTO 120.10 DCON 80.00 DIFFER 0.0
 OLD PROP 0.418542 CIN 33.48 CTO 120.10 DCON 80.00 DIFFER 0.0
 VOLUME 0.25E-21 WDTU 0.0010.16E-10 DCON 4.74

LOCATION 6407 LINK 33 6249 SUBS 0 0 SUPER 28 3329 SYMBOL 2
 INDEX = 32 SYMBOL = 2 NET PROB 0.34 DIRECT 1.72 CUMS 0.0 * 0.0

	COVARIANCE	MEAN	NET PROB(**)	DIRECT*****	CUMS*****	SUPER 28 3329 SYMBOL	INDEX = 32 SYMBOL = 2		
1	2	2.12 2.19	32.05	29.94	28.19	22.77	25.78	24.96	22.76
2	3	2.01 2.34	2.34	2.01	1.09	1.09	1.66	1.66	2.53
3	4	1.09 1.40	1.40	2.67	2.27	0.40	1.18	1.18	2.10
4	5	1.18 1.66	1.66	0.60	1.35	1.35	0.86	0.86	1.55
5	6	1.72 2.53	2.12	0.85	1.64	1.64	1.64	1.64	1.71
6	7	0.80 1.09	2.10	1.55	0.57	0.57	0.69	0.69	0.69
7	8	0.21 -0.17	1.85	1.71	-0.41	-0.41	-0.45	-0.45	-0.45
8		SKWEW(**)	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0

CLUSTER 1 INDEX 33 PROPORTION 0.58146 ■ PARENT 200.101
 SPLIT=0.9999E-04 WEIGHT 80.000 CIN 80.000 ADJUST 280.10 10 19202
 PROPORTION: PROP 0.581456 CIN 46.52 CTO 120.10 DCON 80.00 DIFFER 0.0
 OLD PROP 0.581456 CIN 46.52 DLEN 44E-10 DCON 4.74

LOCATION 6249 LINK 33 6249 SUBS 0 0 SUPER 28 3329 SYMBOL 3
 INDEX = 33 SYMBOL = 3 NET PROB***** DIRECT***** CUMS***** * 1.00

ORIGINAL PAGE IS
OF POOR QUALITY

3

C-48

ADJUST 20 WEIGHT -317.422.1 WAS 1200.6 SPFFAC=0.99999C 04 CHANGE 0.0
 STATISTICS: TRACE TESTS (SPLIT=0) : -317.421E 05 142.0 KURT 4649.8 -0.14249E 05
 ADJ(KL) W(KL) SPLIT 462.9 221.5 -434.9E 14 -0.4349E 05
 PROPORTION RELATIVE TO TOP LEVEL = 0.167331 20 221.57 51
 IDADJ NPTSO INDEX KL WADJ 1M015 9605 0.421042968E 03 0.4204472656E 03
 STATIS KL = WKL * ADJ(KL) 19 0.421042968E 03 0.4204472656E 03
 0.31013E 00 0.36877E 02

 ADJUST 19 WEIGHT 421.0 WAS 200.2 SPFFAC=0.43027E 02 CHANGE 0.0
 STATISTICS: TRACE TESTS (SPLIT=0) : 34.6 SKW 1112.5 KURT 9489.5 04 -0.4723E 04 -0.14509E 05
 CLUSTER 790 INDEX 19 PROPORTION 0.04652 w PARENT 9646.000
 SPLIT=0.4303E 02
 WEIGHT 421.03 WAS 200.224 ADJUST 420.007 10 17347
 PROPORTION: PWUP 0.9645 CIN 363.06 CUT 5967.77
 OLD PROP 0.095809 CIN 166.68 DEN 1716.65 DIFFEK 16.70
 VOLUME 0.23E-17 ROOT 0.15E-08 DCVN -1.19
 LOCATION 4947 LINK 11 3487 SIHS 24 5A05 SUPER 0 119 SYMLUL*****
 INDEX = 19 SYMBOL = *****
 NET PROB***** DIRECT***** CUMS***** * 0.98
 MEAN 28.08 30.94 36.01 27.65 23.05 25.29 25.55 23.74

 COVARIANCE
 2 3.71 3.71 2.99 2.58 1.75 2.77 1.26 0.81
 3 2.89 5.11 4.99 4.37 2.50 3.73 2.75 1.70
 4 2.58 4.70 4.37 5.10 2.38 3.27 2.46 2.31
 5 1.75 2.58 2.50 2.38 1.90 2.13 1.39 1.06
 6 2.77 5.05 3.73 3.27 2.13 4.07 2.04 1.34
 7 1.26 2.75 2.75 2.46 1.39 2.04 1.99 1.20
 8 0.81 1.79 1.79 2.31 1.06 1.34 1.20 1.70
 SKEW(***W) -23.6 -196.1 -543.4 -342.7 -201.2 -312.4 -306.8 -79.9

 WADJ(KL) W(KL) SPLIT 461.6 220.8 400.0
 PROPORTION RELATIVE TO TOP LEVEL = 0.100002 19
 IDADJ NPTSO INDEX KL WADJ(KL) 17347 9646 0.5030158691E 03 0.5029013672E 03
 STATIS KL = WKL * WADJ(KL)
 0.77030E-01 0.85493E 02

 ADJUST 16 WEIGHT 503.0 WAS 241.5 SPFFAC=0.13023E 02 CHANGE 0.0
 STATISTICS: TRACE TESTS (SPLIT=0) : 0.78822E 05 294.0 KURT 16096.1 461.66E 06
 WADJ(KL) W(KL) SPLIT 543.1 261.6 -246.25E 04 0.13874E 06
 PROPORTION RELATIVE TO TOP LEVEL = 0.207584 16 400.0
 IDADJ NPTSO INDEX KL WADJ 18284 9759 0.207584 16 261.57 543.13
 NO OF ITERATIONS THROUGH ALL THE DATA = 1
 00-00
 18-13 19-10 11-01 20-16 21-21 07-01 14-13 15-22
 24-08 25-01 11-01 20-16 21-21 07-01 14-13 15-22
 KL INDEX LSUPER 119 0*****
 0.77030E-01 0.85493E 02

 ADJUST 15 WEIGHT 421.0 WAS 200.2 SPFFAC=0.43027E 02 CHANGE 0.0
 STATISTICS: TRACE TESTS (SPLIT=0) : 34.6 SKW 1112.5 KURT 9489.5 04 -0.4723E 04 -0.14509E 05
 CLUSTER 790 INDEX 19 PROPORTION 0.04652 w PARENT 9646.000
 SPLIT=0.4303E 02
 WEIGHT 421.03 WAS 200.224 ADJUST 420.007 10 17347
 PROPORTION: PWUP 0.9645 CIN 363.06 CUT 5967.77
 OLD PROP 0.095809 CIN 166.68 DEN 1716.65 DIFFEK 16.70
 VOLUME 0.23E-17 ROOT 0.15E-08 DCVN -1.19
 LOCATION 4947 LINK 11 3487 SIHS 24 5A05 SUPER 0 119 SYMLUL*****
 INDEX = 19 SYMBOL = *****
 NET PROB***** DIRECT***** CUMS***** * 0.98
 MEAN 28.08 30.94 36.01 27.65 23.05 25.29 25.55 23.74

 COVARIANCE
 2 3.71 3.71 2.99 2.58 1.75 2.77 1.26 0.81
 3 2.89 5.11 4.99 4.37 2.50 3.73 2.75 1.70
 4 2.58 4.70 4.37 5.10 2.38 3.27 2.46 2.31
 5 1.75 2.58 2.50 2.38 1.90 2.13 1.39 1.06
 6 2.77 5.05 3.73 3.27 2.13 4.07 2.04 1.34
 7 1.26 2.75 2.75 2.46 1.39 2.04 1.99 1.20
 8 0.81 1.79 1.79 2.31 1.06 1.34 1.20 1.70
 SKEW(***W) -23.6 -196.1 -543.4 -342.7 -201.2 -312.4 -306.8 -79.9

 WADJ(KL) W(KL) SPLIT 461.6 220.8 400.0
 PROPORTION RELATIVE TO TOP LEVEL = 0.100002 19
 IDADJ NPTSO INDEX KL WADJ(KL) 17347 9646 0.5030158691E 03 0.5029013672E 03
 STATIS KL = WKL * WADJ(KL)
 0.24377E-01 0.25828E 02

 ADJUST 14 WEIGHT 503.0 WAS 241.5 SPFFAC=0.13023E 02 CHANGE 0.0
 STATISTICS: TRACE TESTS (SPLIT=0) : 0.78822E 05 294.0 KURT 16096.1 461.66E 06
 WADJ(KL) W(KL) SPLIT 543.1 261.6 -246.25E 04 0.13874E 06
 PROPORTION RELATIVE TO TOP LEVEL = 0.207584 16 400.0
 IDADJ NPTSO INDEX KL WADJ 18284 9759 0.207584 16 261.57 543.13
 NO OF ITERATIONS THROUGH ALL THE DATA = 1
 00-00
 18-13 19-10 11-01 20-16 21-21 07-01 14-13 15-22
 24-08 25-01 11-01 20-16 21-21 07-01 14-13 15-22
 KL INDEX LSUPER 119 0*****
 0.24377E-01 0.25828E 02

NET P(X) OF PRESERVED CLUSTERS FROM 0									
CLUSTER 1 INDEX 19 PROPORTION 0.0 AUGUST 0.0 CUMS 0.000000000									
SPLIT 0.1000±0.05	INDEX 0.045	PROPORTION 0.001	AUGUST 0.0	CUMS 0.000000000					
ATIGHT 9800±0.000	VOLUME 0.0000±0.000	PROP 0.0000±0.000	CIN 0.000	CUT 0.0					
PROP0.0000±0.0000	VOLUME 0.0000±0.000	PROP 0.0000±0.000	CIN 0.000	CUT 0.0					
OLD PROP 1.0000±0.000	VOLUME 0.0000±0.000	PROP 1.0000±0.000	CIN 0.000	CUT 0.0					
PDIFF = 0	SKEW = 0								
NET P(X) 0.0	SPLIT 0.0	CUMS***** * 1.00							
CLUSTER 1 INDEX 19 PROPORTION 0.0125±0.000000000									
SPLIT 0.1000±0.05	INDEX 0.03	PROPORTION 0.0220±0.0058	AUGUST 0.0116	CUT 0.0					
WEIGHT 3050±0.013	VOLUME 0.0000±0.000	PROP 0.1255±0.0000	CIN 0.000	CUT 0.0					
PROP0.0000±0.0000	VOLUME 0.0000±0.000	PROP 0.1054±0.0000	CIN 0.000	CUT 0.0					
OLD PROP 0.1054±0.0000	VOLUME 0.0000±0.000	PROP 0.1054±0.0000	CIN 0.000	CUT 0.0					
PDIFF = 0	SKEW = 0								
LOCATION 1741	LINK 19 4947	SIGS 0	SUPER 0	SUPH 0					
INDEX = 14	SPLIT 0.1	CUMS***** * 0.98							
NET P(X)***** * DIRECT***** * CUMS***** * 0.98									
MEAN 25.33	STD.42	26.52	25.16	20.97	21.19	23.37	22.3		
COVARIANCE 2	2.02	2.40	1.54	1.55	1.01	1.63	0.38	-0.01	
	2.41	5.85	2.88	2.27	2.02	4.69	0.44	-0.38	
3	1.04	2.88	3.26	2.98	3.45	2.01	1.52	1.04	
4	1.55	2.27	2.94	4.27	0.46	1.11	1.49	1.93	
5	1.01	2.02	0.86	0.86	1.56	2.27	0.39	-0.05	
6	1.63	4.69	2.01	1.11	2.27	5.57	0.62	-0.65	
7	0.35	0.44	1.32	1.44	0.39	0.62	1.43	1.01	
8	-0.07	-0.38	1.08	1.93	-0.02	-0.69	1.01	2.01	
SKEW(**)	-114.4	-90.5	-170.8	-407.5	-149.8	165.5	-179.0	-356	
CLUSTER 1 INDEX 19 PROPORTION 0.0096±0.000000000									
SPLIT 0.1929±0.02	INDEX 0.051	PROPORTION 0.220±0.19	AUGUST 0.639	CUT 0.1944					
WEIGHT 229.851	VOLUME 0.0000±0.000	PROP 0.0693	CIN 0.000	CUT 0.0					
PROP0.0000±0.0000	VOLUME 0.0000±0.000	PROP 0.1963±0.0000	CIN 0.000	CUT 0.0					
OLD PROP 0.616±0.0000	VOLUME 0.0000±0.000	PROP 0.616±0.0000	CIN 0.000	CUT 0.0					
PDIFF = 0	SKEW = 0								
LOCATION 4947	LINK 19 3487	SIGS 24	SUPER 0	SUPH 0					
INDEX = 19	SPLIT 0.1	CUMS 11.73 * 0.98							
NET P(X) 0.11	DIRECT 1.12	CUMS 11.73 * 0.98							
MEAN 28.16	STD.05	29.99	27.68	23.06	25.32	26.52	23.7		
COVARIANCE 2	2.47	3.07	2.54	2.24	1.55	2.37	1.09	0.64	
	3.07	6.08	4.28	4.03	2.16	4.16	2.31	1.4	
3	2.54	4.26	4.65	3.99	2.43	3.16	2.53	1.41	
4	2.24	4.03	3.90	4.74	2.31	2.85	2.29	2.11	
5	1.64	2.16	2.43	2.31	1.97	1.88	1.32	0.99	
6	2.37	4.16	3.16	2.85	1.86	3.36	1.69	1.05	
7	1.04	2.31	2.53	2.29	1.32	1.69	1.79	1.04	
H	0.60	1.41	1.41	2.11	0.95	1.05	1.03	1.03	
SKEW(*)	42.4	50.0	47.8	45.2	19.2	46.0	17.4	17.4	

C-50

CLUSTER 2 INDEX 24 PROPORTION 0.94653 W PARENT 229.851
 SPLIT -0.100E-05 WEIGHT 225.941 WAS 200.197 ADJUST 420.395 ID 19266
 PROPORTION: PROP 0.83150 CIN 212.18 CTOT -25.32 DIFFR 0.0
 OLD PROP 0.440552 CIN 186.95 OPEN 229.76 DIFFR 0.0
 VOLUME 0.22E-19 COUN 15E-09
 LOCATION 5805 LINK 25 5963 SUBS 0 0 SUPER 19 4947 SYMBOL 3
 INDEX = 24 SYMBOL = 3
 NET PROB 11.48 DIRECT 13.61 CUMS 0.0 * 0.0
 SKW(*W) 2.0 40.5 2.6 51.7 -36.6 -37.2 -3.2 -15.9
 CUMS.0

MEAN 28.06 30.94 29.65 27.58 22.98 25.20 25.44 23.73
 COVARIANCE 2 2.76 3.57 2.67 2.49 1.84 2.78 1.28 0.71
 3 3.57 7.05 4.96 4.50 2.50 4.95 2.68 1.61
 4 2.87 4.96 5.05 4.30 2.65 3.66 2.79 1.57
 5 2.49 4.50 4.31 5.06 2.46 3.24 2.48 2.23
 6 1.64 2.59 2.05 2.48 2.11 2.18 1.46 1.03
 7 2.78 4.95 3.68 3.24 2.18 4.06 2.02 1.26
 8 1.28 2.68 2.70 2.48 1.46 2.02 1.98 1.15
 9 0.71 1.61 1.57 2.23 1.03 1.24 1.15 1.63
 SKW(*W) 2.0 40.5 2.6 51.7 -36.6 -37.2 -3.2 -15.9
 CUMS.0

CLUSTER 2 INDEX 25 PROPORTION 0.15047 W PARENT 229.851
 SPLIT -0.999E-04 WEIGHT 93.251 WAS 80.000 ADJUST 280.000 ID 17347
 PROPORTION: PROP 0.428393 CIN 44.54 CTOT -72.61 DIFFR 0.0
 OLD PROP 0.428393 CIN 35.42 OPEN 82.68 DIFFR 0.0
 VOLUME 0.98E-25 ROOT 0.30E-12 DCUN 3.52
 LOCATION 5963 LINK 0 SUBS 0 0 SUPER 19 4947 SYMBOL 4
 INDEX = 25 SYMBOL = 4
 NET PROB 0.0 DIRECT 0.0 CUMS 0.0 * 0.0
 SKW(*W) 58.0 89.8 76.4 19.3 46.4 72.5 31.0 7.0
 CUMS.0

MEAN 27.85 30.27 29.87 27.62 22.92 24.60 25.31 23.52
 COVARIANCE 2 1.73 1.78 1.28 1.05 0.80 1.33 0.56 0.31
 3 1.78 3.09 2.19 1.75 1.26 2.29 0.86 0.53
 4 1.28 2.19 1.71 1.38 0.96 1.62 0.69 0.45
 5 0.81 1.75 1.39 1.77 1.02 1.22 0.53 0.34
 6 1.33 2.29 1.62 1.22 0.95 1.78 0.64 0.36
 7 0.45 0.86 0.69 0.53 0.36 0.54 0.46 0.21
 8 0.31 0.57 0.45 0.84 0.64 0.36 0.21 0.58
 SKW(*W) 58.0 89.8 76.4 19.3 46.4 72.5 31.0 7.0
 CUMS.0

CLUSTER 1 INDEX 11 PROPORTION 0.00605 W PARENT 9800.000
 SPLIT -0.999E-04 WEIGHT 101.759 WAS 80.000 ADJUST 280.000 ID 12105
 PROPORTION: PROP 0.084166 CIN 56.40 CTOT 488.39 DIFFR 0.0
 OLD PROP 0.084166 CIN 39.66 OPEN 471.23 DIFFR 0.0
 VOLUME 0.11E-22 ROOT 0.34E-11 DCUN 1.23
 LOCATION 3487 LINK 20 145 SUBS 0 0 SUPER 0 119 SYMBOL 5
 INDEX = 11 SYMBOL = 5
 NET PROB 0.0 DIRECT 0.0 CUMS 0.0 * 0.0
 SKW(*W) 58.0 89.8 76.4 19.3 46.4 72.5 31.0 7.0
 CUMS.0

MFAN 26.02 27.73 30.25 29.71 20.07 20.53 25.05
 COVARIANCE 1.044 1.017 0.944 0.944 0.944 0.944 0.944
 2 1.17 4.11 0.92 -0.50 2.58 0.48 0.48
 3 0.36 0.92 1.26 1.24 0.05 0.05 0.05
 4 0.04 -0.50 1.26 2.04 -1.08 -2.10 0.75 1.51
 5 0.71 2.58 0.05 2.06 2.06 4.10 0.02 -1.16
 6 1.42 5.46 0.22 -2.10 4.10 8.85 0.10 -2.38
 7 0.17 0.52 0.77 0.75 0.02 0.10 0.60 0.60
 8 -0.14 -0.94 0.44 1.58 -1.16 -2.34 0.60 1.48
 SKEW(*w) 111.0 295.6 110.9 30.0 137.5 240.0 61.9 -47.9

CLUSTER 1 INDEX 20 PROPORTION 9.16369 PARENT 9890.000
 SPLIT 0.1000E-05
 WEIGHT 249.429 WAS 221.472 ADJUST 462.943 ID 19405
 PROPORTION: PWDUP 0.16366 CIN 247.11 CTOU 5290.04
 OLDPROP 0.167203 CIN 219.17 DEN131.0 DIFFER 0.0
 VOLUME 0.25E-20 WOOT0.50E-10 DCUN 3.79

LOCATION 145 LINK 21 3773 SUHS 0 0 SUPER 0 119 SYMBOL 6
 INDEX = 20
 NET PROB 0.00 DIRECT 0.00 CUMS***** * 1.00

MEAN 25.76 26.60 31.00 31.21 18.66 17.04 26.34 27.95

COVARIANCE 1.18 0.75 0.75 0.46 0.30 0.61 0.65 -0.32 -0.70
 2 0.75 2.21 0.80 0.82 1.07 1.55 -0.01 -1.01

3 0.46 0.89 1.33 1.23 0.68 0.34 0.79 0.39
 4 0.36 0.82 1.23 2.50 0.64 0.11 1.15 1.92

5 0.81 1.07 0.68 0.64 1.01 0.80 -0.06 -0.45
 6 0.65 1.55 0.34 0.11 0.80 1.55 -0.42 -1.27
 7 -0.32 -0.01 0.79 1.15 -0.00 -0.42 1.39 1.54
 8 -0.70 -1.01 0.39 1.92 -0.45 -1.27 1.54 3.66

SKEW(*w) -6.8 4.9 17.9 23.7 21.2 -9.9 26.3 18.7

CLUSTER 1 INDEX 21 PROPORTION 0.20940 W PARENT 9890.000
 SPLIT 0.1000E-05
 WEIGHT 353.817 WAS 220.772 ADJUST 461.544 ID 19102
 PROPORTION: PWDUP 0.20949 CIN 360.88 CTOU 5070.38
 OLDPROP 0.175264 CIN 218.31 DEN125.69 DIFFER 0.0
 VOLUME 0.4E-19 WOOT0.29E-09 DCUN 0.76

LOCATION 3773 LINK 7 2757 SUHS 0 0 SUPER 0 119 SYMBOL 7
 INDEX = 21
 NET PROB 0.00 DIRECT 0.00 CUMS***** * 0.93

MEAN 26.96 29.10 30.66 29.52 20.37 20.18 27.20 28.11

COVARIANCE 1.25 1.13 1.12 0.88 0.71 0.94 0.48 1.04
 2 1.13 2.63 1.67 2.63 2.24 1.45 2.70 0.58 -0.34

3 0.69 1.67 2.63 2.63 2.24 1.45 2.70 0.58 -0.34

4 0.97 1.70 2.24 3.50 1.27 2.17 2.04 1.21
 5 0.71 0.84 1.45 1.27 1.14 1.42 0.32 -0.05
 6 0.44 2.45 2.70 2.17 1.42 3.56 0.29 -0.57
 7 0.42 0.59 0.25 2.04 1.32 0.29 2.04 1.76

C-52

4 1.0A 0.011 -0.34 1.21 -0.05 -0.57 1.76 3.38
 SKEW(+) 155.5 -35.7 491.5 254.0 341.4 466.3 -162.4 -441.0

CLUSTER 1 INDEX 7 PROPORTION 0.01301 * PARENT 9800.000
 SPLIT-0.99997 94 WEIGHT 19E-12 WAS ADJUST 280.000 10 11010
 PROPORTION: PKUP 0.01301 CIN 0.000 CTOT 226.71
 OLD PROP 0.16779 CIN 39.86 DIFFER 0.0
 VOLUME 0.37E-17 ROOT 0.19E-08 DCON -2.52
 LOCATION 2757 LINK 14 4217 SUBS 0 0 SUPER 0 119 SYMBOL 8
 INDEX = 7 SYMBOL = R
 NET PROB 0.00 DIRECT 0.00 CUMS 0.0 * .0
 MEAN 25.64 27.92 27.55 26.52 21.72 23.45 25.06 23.71

COVARIANCE 2 2.54 2.91 2.94 3.73 -0.48 -1.64 2.85 4.52
 2 2.41 4.49 3.77 4.58 -0.67 -1.70 3.34 4.59
 3 2.94 3.77 4.84 5.78 -1.23 -3.12 3.91 6.15
 4 3.73 4.58 5.78 7.75 -1.89 -4.19 5.08 8.48
 5 -0.48 -0.67 -1.23 -1.89 1.23 2.05 -1.20 -2.45
 6 -1.64 -1.70 -3.12 -4.19 2.05 4.76 -3.38 -6.24
 7 2.85 3.34 3.91 5.08 -1.20 -3.38 4.44 7.16
 8 4.52 4.59 6.15 8.48 -2.45 -6.24 7.16 12.62
 SKEW(+) -52.2 -514.7 -77.7 193.3 -468.9 -956.4 436.5 1378.0

C-53

CLUSTER 1 INDEX 14 PROPORTION 0.012925 * PARENT 9800.000
 SPLIT-0.10005 WEIGHT 160 WAS 241.290 ADJUST 502.581 10 18530
 PROPORTION: PKUP 0.12932 CIN 0.026 CTOT 7407.46
 OLD PROP 0.149140 CIN 214.72 DIFFER 0.0
 VOLUME 0.19E-18 ROOT 0.43E-09 DCON 1.80
 LOCATION 4217 LINK 15 4375 SUBS 0 0 SUPER 0 119 SYMBOL 9
 INDEX = 14 SYMBOL = S
 NET PROB 0.02 DIRECT 61.99 CUMS 0.0 * .0
 MEAN 26.60 26.25 25.89 24.27 22.09 24.04 23.60 21.99

COVARIANCE 2 1.70 1.58 1.58 1.70 0.49 0.16 0.91 0.77
 2 1.58 3.54 3.54 2.63 2.75 -0.07 0.32 1.28 0.59
 3 1.70 2.63 3.45 3.10 0.11 -0.27 1.22 1.10
 4 1.70 2.75 3.10 4.56 -0.11 0.05 1.31 1.03
 5 0.49 -0.07 0.11 -0.11 0.91 0.32 0.44 0.44
 6 0.16 0.32 -0.27 0.05 0.32 0.40 0.35 0.33
 7 0.91 1.28 1.22 1.31 0.44 0.35 1.22 0.88
 8 0.77 0.59 1.10 1.83 0.44 0.33 0.48 1.92
 SKEW(+) 5.2 -118.4 -290.4 -442.2 -146.3 -159.7 -372.4 -492.1

ORIGINAL PAGE IS
OF POOR QUALITY

NET PROFIT	1. T-Unit	1c. PRODUCTION	0.22160 w. RETENTION	0.00000
SPLIT - 0.16500	4.92145	4.65	261.637	ABUJISI
NET PROFIT POSITION: 100%	0.00000	0.00000	74.30<7	10.1420
NET PROFIT: 0.00000	0.00000	0.00000	C107 79570.00	
NET PROFIT: 0.00000	0.00000	0.00000	DUNN 20.14	10.44
LUXURIA 437-1	1.39531	1.39531	SLIPPER 0.145	SYMBOL
NET-X =	1-	1-	10	10.000
NET PROFIT	1.011	1.011	CUMS1294.80	*

Covariance	1.15	5.02	3.15	2.75	1.24	3.23	0.27	-0.12
2	2.12	11.56	6.15	5.09	2.57	7.66	1.87	-0.25
3	3.15	6.15	4.50	3.55	1.67	4.77	1.43	0.51
4	2.75	5.09	3.55	4.04	0.44	3.02	0.04	0.63
5	1.24	2.67	1.67	0.45	1.47	2.79	1.27	0.51
6	3.23	7.66	4.77	3.02	2.79	6.65	2.46	0.93
7	0.27	1.57	1.43	0.04	1.27	2.46	2.14	1.04
8	-0.12	-0.25	0.91	0.03	0.51	0.93	1.04	1.06

CLUSTER	LINK	PROPORTION	PARENT	495.145
SPLIT-0.1687_U2				
SPLIT-0.1687_U2				
WEIGHT				
PROPORTION:	269.013	.445	ADJUST	543.130
PROPORTION:	269.013	.445	CUT	225.31
PROPORTION:	269.013	.445	ODEN	252.41
PROPORTION:	269.013	.445	DFCR	0.13
PROPORTION:	269.013	.445	DCUN	4.50
LOCATION	2155	LINK 17 4661	SUMS 22 5361	SUPER 15 4375
INDEX =	16	SUMS = 11	CUMS 53.60 *	SUMUL 11
SPLIT PH061246.08	DIRECT1388.78			
MEAN	26.51	26.15	26.67	21.72 22.77
				23.63 22.71

COVARIANCE	3.43	5.18	3.47	2.99	1.28	3.11	3.22	-0.19
	5.13	11.11	6.14	4.97	2.61	7.66	1.65	-0.34
3	3.63	6.14	5.11	3.87	1.54	4.38	1.37	0.87
4	2.96	4.97	3.87	4.21	0.47	2.68	0.16	0.14
5	1.28	2.61	1.54	0.47	1.98	2.69	1.09	0.30
6	3.11	7.06	4.38	2.68	2.69	6.24	2.11	0.58
7	0.22	1.65	1.37	0.18	1.09	2.11	2.03	1.01
8	-0.19	-0.34	0.87	0.14	0.30	0.58	1.01	1.67
SKEW (•)	-0.1	-2.7	3d.0	25.7	24.6	13.5	-5.1	-28.8

COVARIANCE	0.98 2	1.34	1.38	1.20	1.00	0.32	1.01	0.54	0.60
		3.00	1.66	1.63	0.63	0.65	1.97	1.03	0.61
	3	1.20	1.69	2.60	1.97	0.97	1.54	1.06	1.94
	4	1.00	1.63	1.97	2.65	-0.64	0.18	0.67	1.41
	5	0.32	0.65	0.30	-0.64	1.62	1.60	1.08	0.48
	6	1.01	1.97	1.50	0.18	1.60	3.24	1.45	0.82
	7	0.54	1.03	1.56	0.47	1.04	1.45	2.77	2.16
	8	0.60	0.61	1.98	1.41	0.48	0.82	2.16	3.19
SKEWNESS	419.6	1047.3	5633.3	2933.6	392.4	1044.3	571.1	554.8	

CLUSTER 3 INDEX 23 PROPORTION		0.86142 W PARENT 269.616								
WEIGHT	0.204E-02	ADJUST	560.602 ID 19311							
SPLIT	255.478	C107	12.22							
PROPORTION:	PRG 0.81266 CIN 220.301	DIFER	1.35							
OLD PROP	0.871292 CIN 182.46	DCON	3.56							
VOLUME	0.14E-18 ROOT 0.37E-09									
LOCATION	5519 LINK 0 SUBS 28 SUPER 16 2155 SYMBOL 13									
INDEX = 23 SYMBOL = 13										
NET PROB	50.53 DIRECT 62.18 CUMS1934.50 *	0.92								
MEAN	26.65 28.54 28.37 26.84 21.84 23.02 23.93 22.72									
COVARIANCE	3.33 4.85 10.42 5.65 4.59 3.19 2.76 2.97 0.05 -0.28									
2	4.85	10.42	5.65	4.59	3.19	2.76	2.38	6.68	1.51	
	3	3.19	5.65	4.71	3.50	3.50	1.41	4.24	1.19	0.74
	4	2.76	4.59	3.50	3.91	0.33	2.60	-0.04	0.01	
	5	1.18	2.38	1.41	0.33	1.98	2.57	1.09	0.37	
	6	2.97	6.68	4.24	2.60	2.57	5.89	2.17	0.74	
	7	0.05	1.51	1.19	-0.04	1.09	2.17	2.05	0.96	
	8	-0.28	-0.43	0.74	0.01	0.37	0.74	0.96	1.51	
SKEWNESS	4.1 -5.3 47.8 -3.5 -34.4 -61.0 10.4 -37.0									
COVARIANCE	26.57 28.39 28.26 26.72 21.81 22.95 23.93 22.72									
2	5.49 0.21 11.36 6.22 5.18 3.93 2.93 1.32 3.24 0.21 -0.22									
	3	3.43 6.22 5.18 3.87 2.00 2.67 2.67 7.39 1.81 -0.36								
	4	2.93 5.00 3.87 4.20 0.46 2.09 2.09 2.79 1.18 0.15								
	5	1.32 2.67 1.50 0.46 0.46 2.09 2.09 2.79 1.18 0.37								
	6	3.24 7.39 4.57 2.61 2.79 6.52 6.52 2.29 0.65								
	7	0.21 1.81 1.48 0.23 1.18 2.29 2.29 2.19 1.08								
	A -0.22 -0.36 0.88 0.15 0.37 0.65 1.08 1.08 1.65									
CLUSTER 4 INDEX 28 PROPORTION	0.85286 W PARENT 255.478									
WEIGHT	0.6615E-02	ADJUST	520.203 ID 19202							
SPLIT	247.545 WAS 200.101	C107	-41.12							
PROPORTION:	PRG 0.78343 CIN 232.36	DON	254.11 DIFER 20.71							
OLD PROP	0.854050 CIN 189.47	DCON	3.04							
VOLUME	0.55E-16 ROOT 0.74E-09									
LOCATION	3329 LINK 29 1583 SUBS 32 6407 SUPER 23 5519 SYMBOL 14									
INDEX = 28 SYMBOL = 14										
NET PROB1777.03 DIRECT2268.26 CUMS 0.16 *	1.01									
MEAN										

SKEW(*W) -215.6 -334.9 -404.7 -445.5 -157.3 -16.0 -204.5 -215.6

CLUSTER 5 INDEX 32 PROPORTION 0.3471 w PARENT 247.545
 SPLIT-0.9999E 0.4
 WEIGHT 0.317 0.45 0.000 ADJUST 280.000 ID 19202
 PROPORTION: PWD 0.45870 CLW 0.000 CIN 3348 DTOT 123.87 DIFFE 0.0
 OLD PHON 0.45870 CIN 3348 DTOT 80.000 DIFFE 0.0
 VOLUME 0.28E-20 0.01010.54E-10 DCIN 33.0 DIFFE 0.0
 LOCATION 6407 LINK 33 6249 SUBS 0 0 SUPER 2H 3324 SYMBOL 15
 INDEX = 32
 NET PHON 0.0 DIRECT 0.0 CUMS 0.0 * 0.0
 MEAN 27.75 31.90 29.47 28.10 22.64 25.04 24.84 22.75

COVARIANCE 2 0.19 2.50 2.26 1.36 1.16 1.70 0.92 0.29
 2 0.50 4.03 3.03 2.11 1.71 2.65 1.45 0.09
 3 2.26 3.03 4.36 3.22 1.25 2.14 2.37 1.99
 4 1.36 2.11 3.22 2.83 0.50 0.98 1.81 1.83
 5 1.16 1.71 1.25 0.50 1.34 1.61 0.64 -0.30
 6 1.73 2.65 2.12 0.98 1.61 3.43 0.77 -0.35
 7 0.92 1.45 2.37 1.81 0.64 0.77 1.78 1.00
 8 0.29 0.09 1.99 1.63 -0.30 -0.35 1.60 2.63
 SKEW(*W) -225.8 -476.5 -384.9 -355.8 -246.3 -306.3 -227.3 -126.9

CLUSTER 5 INDEX 33 PROPORTION 0.64529 w PARENT 247.545
 SPLIT-0.9999E 0.4
 PROPORTION: PWD 0.65256 WAS 0.000 ADJUST 280.000 ID 19202
 OLD PHON 0.58158 CIN 46.52 DTOT 122.74 DIFFE 0.0
 VOLUME 0.26E-15 ROOT 0.51E-09 DCIN 1.74
 LOCATION 6249 LINK 0 0 SUBS 0 0 SUPER 2H 3324 SYMBOL 16
 INDEX = 33
 NET PHON 0.16 DIRECT 0.25 CUMS***** * 1.00
 MEAN 25.86 26.29 27.30 25.87 21.29 21.34 23.37 22.69
 COVARIANCE 2 3.18 4.16 2.86 2.49 1.03 2.34 -0.39 -0.39
 2 0.14 7.70 4.63 3.50 1.86 4.61 0.36 -0.65
 3 2.88 4.63 4.20 3.01 1.17 3.42 0.61 0.56
 4 2.49 3.50 3.01 3.60 0.04 1.72 -0.66 -0.23
 5 1.03 1.86 1.17 0.04 1.96 2.23 0.93 0.41
 6 2.34 4.61 3.42 1.72 2.23 4.29 1.47 0.66
 7 -0.39 0.36 0.61 -0.66 0.93 1.47 1.79 0.86
 8 -0.39 -0.65 0.50 -0.23 0.41 0.66 0.86 1.39
 SKEW(*W) 361.1 1044.0 521.4 368.9 342.0 809.5 259.0 -65.8

C-56

CLUSTER 4 INDEX 29 PROPORTION 0.14714 w PARENT 255.478
 SPLIT-0.9999E 0.4
 WEIGHT 0.401 0.55 0.000 ADJUST 280.000 ID 19254
 PROPORTION: PWD 0.13516 CIN 80.000 DTOT 103.87 DIFFE 0.0
 OLD PHON 0.42342 DTOT 0.12E-11 DCIN 3.51
 VOLUME 0.15E-23 0.000 0.000 0.000

LOCATION 1583 LINK 0 0 SUMS 0 0 SUPER 23 4419 SYMUL 17

INDEX =
NET PROB 0.00 DIRECT 0.0 CUMS***** * 1.00
MEAN 27.72 30.68 29.48 28.11 22.05 24.012 23.70 22.24
COVARIANCE 2 0.54 0.54 0.54 0.54 0.17 0.13 0.58 -0.03 -0.00
3 0.69 1.55 1.27 1.27 1.24 0.16 1.12 0.14 0.24
4 0.17 1.42 1.24 1.67 -0.01 0.08 -0.29 0.21
5 0.13 0.22 0.16 -0.01 0.27 0.27 0.14 0.06
6 0.58 2.10 1.12 0.86 0.27 1.68 0.65 0.11
7 -0.03 0.70 0.14 -0.29 0.14 0.65 0.72 -0.03
8 -0.00 -0.13 0.24 0.21 0.06 0.11 -0.03 0.35
SKWEN(*#) 18.4 28.4 71.7 52.2 36.9 46.9 18.0 44.1

CLUSTER 2 INDEX 17 PROPORTION 0.06767 # PARENT 495.145
SPLIT 0.99999E-06
WEIGHT 125.991 WAS 80.000 ADJUST -657.01 280.000 ID 15253
PROPORTION: PRUP 0.06513 CIN 75.04 CTOT 111.38 DIFFER 0.0
OLD PROP 0.341336 CIN 38.02 ODEN 111.38 DCON 1.12
VOLUME 0.69E-23 W00T0.26E-11
LOCATION 4661 LINK 0 0 SUMS 0 0 SUPER 15 4375 SYMUL 18
INDEX = 17
NET PROB 0.00 DIRECT 0.0 CUMS 0.0 * 0.0
C-57

MEAN 25.59 26.53 27.01 25.68 21.20 21.33 23.22 22.31
COVARIANCE 2 2.06 3.68 2.30 2.11 1.08 2.58 0.34 -0.06
3 3.06 7.06 4.27 3.87 2.07 4.99 0.76 -0.13
4 2.30 4.27 2.81 2.48 1.29 3.05 0.45 0.00
5 1.08 2.07 1.29 1.01 0.84 2.68 0.32 -0.04
6 2.58 4.99 3.05 2.68 1.60 3.75 0.63 -0.04
7 0.34 0.76 0.49 0.32 0.35 0.63 0.30 0.10
8 -0.06 -0.13 0.06 -0.04 0.00 -0.04 0.10 0.19
SKWEN(*#) 209.7 399.0 235.1 247.4 54.7 207.8 74.6 23.8

CLUSTER 1 INDEX 13 PROPORTION 0.01652 # PARENT 9800.000
SPLIT 0.99999E-06
WEIGHT 165.100 WAS 80.000 ADJUST 156.74 280.000 ID 12192
PROPORTION: PRUP 0.01653 CIN 136.42 CTOT 156.74
OLD PROP 0.117525 CIN 44.55 ODEN 379.10 DIFFER 0.0
VOLUME 0.80E-19 W00T0.28E-09 DCON -2.29
LOCATION 3931 LINK 5 2313 SUMS 0 0 SUPER 0 119 SYMUL 19
INDEX = 13
NET PROB 0.00 DIRECT 0.00 CUMS 0.0 * 0.0
C-57

MEAN 26.51 27.53 27.78 25.26 21.80 23.50 23.52 21.93
COVARIANCE 2 5.05 6.56 6.96 6.22 6.58 1.49 2.64 0.01
6.96 6.43 6.22 6.28 1.50 3.44 0.17 2.05

DATA QUALITY

3	4.044	6.222	5.02	6.047	1.035	2.047	6.028	1.074
4	6.070	8.224	6.047	8.083	1.074	3.016	8.075	2.038
5	1.042	1.080	1.035	1.074	0.068	1.000	0.010	0.059
6	2.064	3.044	2.044	3.010	1.000	1.042	0.015	0.054
7	0.091	0.117	0.028	0.025	0.310	0.015	0.033	0.027
8	1.044	2.005	1.074	2.034	0.50	0.044	0.027	1.032
SKEW(**)	-1.206	4.350.4	251.8	316.1	114.0	458.0	-37.4	-174.7

CLUSTER	1	INDEX	5	PROPORTION	0.01M20 & PARENT 4800.000			
SPLIT	0.49995	%						
WEIGHT	225.751	%AS						
PROPORTION:	P10 = 0.01621	C1N = 50.090	AJUST					
OLD PROPO	0.19376	C1T = 167.36	C1U = 246.000	10 10772				
VOLUME	0.39E-19	C1N = 41.016	C1T = 610.014					
LOCATION	2313	C1N = 205.94	C1U = 33.51					
IMDFX =	S	NCUN =	DIFFER	0.9				
NET PROPS	0.000	LINK = 0	SUMS = 0	SUPER = 0				
		SYMBOL = 70	114	SYMBOL = 20				
MEAN	25.59	26.41	27.68	28.45	21.09	21.56	23.43	23.17
COVARIANCE	1.91	3.31	1.34	1.01	0.98	2.41	0.32	0.26
2	3.31	6.95	2.74	1.66	2.25	5.63	1.32	0.54
3	1.38	2.74	1.51	1.10	0.78	1.94	0.64	0.53
4	1.01	1.86	1.10	0.31	1.02	0.29	0.47	
5	0.99	2.25	0.74	0.31	1.13	2.31	0.72	0.10
6	2.41	5.63	1.94	1.02	2.31	5.41	1.49	0.29
7	0.32	1.32	0.64	0.29	0.72	1.49	1.11	0.35
8	0.26	0.58	0.53	0.47	0.10	0.29	0.35	0.48
SKEW(*)	-323.9	-748.9	-470.8	-371.0	-125.4	-421.0	-50.8	-137.0

LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS

POINTS PER CLUSTER IN THIS FIELD

— תְּנַדֵּן אֶת־בָּנָךְ וְאֶת־בָּנָתְךָ
— תְּנַדֵּן אֶת־בָּנָךְ וְאֶת־בָּנָתְךָ

Iterations 2 - 9 removed.

TOTAL NUMBER OF POINTS = 480

CLUSTER	SAMPLE	TESTS (RL)
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
10	10	
11	11	
12	12	
STATS RL = (RL) * RL		

ADJUST 103 TESTS
STATISTICS 1-ACF TESTS (SPLIT=0): -25.4 CTS 06 221.5 SPFAC-U-0.99999E 04
0.0

CLUSTER 109 INDEX 103 PROPORTION 0.25721 * PARENT 3795.749
SPLIT=0.10000005 WEIGHT 45.041 WAS 221.457 AUGUST 462.514 10 857723
PROPORTION 0.25604 CIN 221.13 CINT 224.71 DIFF 0.0
OLD PROP 0.25505 CIN 196.25 OPEN 900.6 DIFF 0.0
VOLUME 0.30E-17 VOLUME 17E-08 DCN 21.15 DIFF 0.0
LOCATION 5463 L101.6407 SING 0 SUPER-15 +375 SYMBOL*****
INDX = 103 SYMBOL = *****
NET PROF***** MFCCL***** CUMS 0.0 * 0.0

MEAN 27.12 CTS 74 30.28 30.26 20.05 19.08 24.09 29.74
COVARIANCE 1.52 1.71 1.71 1.71 0.51 1.05 1.70 0.57 0.65
2 1.52 1.52 1.52 1.52 0.51 1.05 1.70 0.57 0.65
3 0.09 1.34 2.52 2.73 1.23 2.02 1.08 0.57
4 0.51 1.01 2.73 4.32 1.05 1.75 1.05 1.12
5 1.05 1.33 1.23 1.05 1.46 1.77 0.79 0.21
6 1.70 3.18 2.02 1.78 1.77 3.61 1.26 0.32
7 0.77 1.00 1.08 1.85 0.74 1.26 1.72 0.81
8 0.65 0.72 0.57 1.12 0.21 0.32 0.81 1.65
SKWNESS -30.5 173.5 -363.1 -675.2 -54.4 155.3 -149.3 -160.8

C-62

ADJUST 103 TESTS (SPLIT=0): -25.4 CTS 06 241.6 SPFAC-U-0.99999E 04
PROPORTION RELATIVE TO TOP LEVEL = 85723 79539 0.075504 103
INDEX NPTS0 INDEX * ADJ 85723 79539 0.075504 103
STATS NPTS0 INDEX (RL) -20 79043 241.62 563.25
ADJUST -20 WEIGHT 3003.9 WAS 1502.0 SPFAC-U-0.99999E 04
STATISTICS TESTS (SPLIT=0): -54.3 SKW 0.5 CINT 1490.2 CHANGE 0.0
0.0

CLUSTER 101 INDEX -20 PROPORTION 0.15242 * PARENT 79043.000
SPLIT=0.10000005 WEIGHT 1501.971 AUGUST 3405.123 10 79043
PROPORTION 0.15306 CINT 3003.55 CINT 5426.95
OLD PROP 0.15206 CINT 1501.79 DIFF 0.0
VOLUME 0.48E-21 VOLUME 22E-10 DCN 1143.074 DIFF 0.0
LOCATION 145 L101.3773 SING 0 SUPER 0 112 SYMBOL*****
INDX = -20 SYMBOL = *****

0.17917E 00 0.10556E 03

0.0

0.10097E-07 0.46423E-07

NET PROFIT***** CUMCIT***** CUMSE***** 1.00
 MEAN 270.72 265.7 30.07 31.17 1K.06 17.04 2K.33 27.04
 COVARIANCE ? 1.015 0.72 0.52 0.30 0.62 -0.32 -0.71
 ? 0.72 0.57 0.37 0.43 0.55 1.32 -0.06 -1.02
 3 0.52 0.87 1.57 1.09 0.70 0.33 0.77 0.21
 4 0.34 0.63 1.00 2.19 0.52 0.19 0.99 1.57
 5 0.82 0.96 0.70 0.62 0.46 0.68 -0.03 -0.50
 6 0.45 1.36 0.33 0.19 0.68 1.33 -0.48 -1.25
 7 -0.32 -0.06 0.77 0.99 -0.03 -0.48 1.33 1.35
 8 -0.71 -1.02 0.21 1.57 -0.50 -1.75 1.35 3.04
 SKWEN(+) = -95.8 -35.3 145.0 80.8 -116.1 -61.1 190.5 279.7

 WADJ(KL)***SIM(KL)***RELATIVE TO TOP LEVEL 3905.1 1502.0 400.0
 IDADJ(NPSU.INDUEK.WADJ79311) 0.1527409 -20 1501.97 3905.13
 STATUS NPSU.IDADJ(KL) -14 79311

 ADJUST -14 WEIGHT 209d.7 *AS 1059.7 SPFAC=0.99999E 04 CHANGE 0.0
 STATISTICS: TMACF TESTS (SPLIT=0): -6.9771E 05 143.5 KURT=1939.3
 ? -35.07E 04 -.13065E 05

 CLUSTER101 INDEX -14 PROPORTION 0.10752 W PARENT79311.0000
 SPLIT=0.1000E 05
 WEIGHT 0.45 1059.715 ADJUST 2755.259 ID 79311
 PROPORTION: PROP=0.10770 CIN=0.34.94 CT0160242*5
 OLD PROP=0.107701 CIN=0.26.65 ODENS=2K.85 DIFFP=0.0
 VOLUME=0.47E-21 DCON=4.74

 LOCATION 4217 LIK=15 4375 SUBS n 0 SUPER 0 119 SYMBOL*****
 INDEX = -14 SYMBOL = *****
 NET PROFIT***** DIRECTION***** CUMSE***** 1.02
 MEAN 24.39 25.70 25.54 26.14 22.19 24.16 23.61 22.20

 COVARIANCE ? 1.30 0.87 1.17 1.23 -0.31 -0.05 0.63 0.26
 ? 0.87 2.17 1.51 1.87 -0.43 -0.08 0.72 -0.05
 3 1.17 1.51 2.61 2.33 -0.35 -0.03 0.61 0.05
 4 1.23 1.67 2.31 3.90 -0.50 -0.38 0.60 0.75
 5 0.31 -0.43 -0.35 -0.50 0.75 0.27 0.19 0.17
 6 -0.05 -0.08 -0.03 -0.38 0.27 0.83 0.22 0.22
 7 0.63 0.72 0.41 0.60 0.19 0.22 0.67 0.14
 8 0.26 -0.05 0.05 0.75 0.17 0.22 0.14 0.69
 SKWEN(+) = -281.8 -463.5 -503.8 -537.2 -2.1 92.9 -139.0 -20.0

 WADJ(KL)***SIM(KL)***RELATIVE TO TOP LEVEL 2701.5 1039.0 400.0
 IDADJ(NPSU.INDUEK.WADJ79311) 0.105735 -14 1039.03 2701.48
 STATUS NPSU.IDADJ(KL) -21

 ADJUST -21 WEIGHT 3995.3 *AS 1997.7 SPFAC=0.99999E 04 CHANGE 0.0
 STATISTICS: TMACF TESTS (SPLIT=0): -12.95 SKW = 376.0E 05
 ? -6.6538E 05 -.2995E 04 -.11508E 05

 CLUSTER1012 INDEX -21 PROPORTION 0.20344 W PARENT793119.0000
 SPLIT=0.1000E 05
 WEIGHT 0.395.31 1.62 1.99.693 ADJUST 5194.0000 ID 793119
 PROPORTION: PROP=0.20334 CIN=0.39.51 CT0159704*61
 OLD PROP=0.20339 CIN=0.197.24 DEHRS=3D.71 DIFFP=0.0
 VOLUME=0.14E-20 DCON=4.74

 LOCATION 3773 LIK=14 4217 SUMS 0 0 SURFR 0 119 SYMBOL*****
 INDEX = -21 SYMBOL = *****

1947 December 11-12 - 1948 January 1-2
Socorro Observatory
Socorro, New Mexico

Concentration	1.0 ^a	1.0 ^b	0.9 ^c	0.8 ^d	0.7 ^e	0.6 ^f	0.5 ^g	0.4 ^h	0.3 ⁱ	0.2 ^j	0.1 ^k
S ₁ (%)(*)	514.9	352.6	345.0	124.9	192.7	223.3	956.8				
S ₂ (%)(*)	420.6	201.3	201.3	100.0	100.0	100.0	100.0				
S ₃ (%)	3.1	1.5	1.5	0.7	0.7	0.7	0.7				
S ₄ (%)	4.6	2.0	2.0	1.0	1.0	1.0	1.0				
S ₅ (%)	5.1	2.3	2.3	1.1	1.1	1.1	1.1				
S ₆ (%)	6.6	3.0	3.0	1.5	1.5	1.5	1.5				
S ₇ (%)	8.1	3.5	3.5	1.7	1.7	1.7	1.7				
S ₈ (%)	9.6	4.0	4.0	2.0	2.0	2.0	2.0				

ADJ(1)	ADJ(2)	ADJ(3)	ADJ(4)
0.203499	0.203499	0.203499	0.203499
-21	-21	-21	-21
1997.67	1997.67	1997.67	1997.67
51.380	51.380	51.380	51.380

```

        0-15673E-01 0-13081E 02

```

PROMOTIONAL PRACTICE IN THE U.S. MARKET

卷之三

PROP 0-207521 CIN 1814-76
PROP 0-207521 CIN 1815-25
DIFFER 312-38

ענין זה נזכר בפירוש ר' יונה בן עזרא בפירושו לירמיה ו'

SYMBOLS 6 11 SUPER 5381 102 105 105 393 393 431 431 431

卷之三

NAP
26.96 23.51 24.73 21.15 22.19 22.22 22.22

卷之三

卷之三

3 2-33 3-62 3-51 2-54 0-73 2-66 "75 0-65

THEORY OF THE EQUILIBRIUM STATE IN IRREVERSIBLE SYSTEMS

卷之三

卷之三

U = 0.1
U = 0.2
U = 0.4

7 -0.16 0.39 0.75 -0.44 0.82 1.19 1.77 1.16

$\alpha = -0.20$ -0.62 0.65 -0.16 0.43 0.61 1.10 1.86

WAVY (KL) W (KL) W SIM PROPORTION RELATIVE TO TOP LEVEL = 5162.8 / 1985.7 = 0.262^a ± 0.017 -15

***SPLIT ELIM¹⁰-15 SPLITTING -946.70093 + -150.00000

18-00 14-00 20-15 21-20 14-11 15-20 13-05 05-14
18ADJ. NPTSD. 1405 1405 1405 1405 1405 1405 1405
100 100 100 100 100 100 100 100

C-64

	KEY(1*)	KEY(2*)	KEY(3*)	KEY(4*)	KEY(5*)	KEY(6*)	KEY(7*)	KEY(8*)	KEY(9*)	KEY(10*)
VARIANCE	24.79	23.96	26.01	25.03	20.35	19.32	22.76	22.46		
1	1.04	1.046	0.61	0.63	0.87	0.03	0.22	0.82	-0.11	-0.00
2	0.95	1.02	0.63	0.77	0.10	0.96	-0.24	-0.24	-0.00	
3	0.05	0.63	1.05	1.29	0.17	0.56	-0.06	0.91		
4	0.046	0.77	1.29	2.36	-0.49	0.16	-0.62	0.55		
5	0.04	0.10	0.17	-0.44	1.62	0.31	0.39	0.20		
6	0.22	0.66	0.56	0.16	0.31	0.94	0.46	0.42		
7	-0.82	-0.24	-0.04	-0.62	0.39	0.46	1.30	0.50		
8	-0.11	-0.00	0.91	0.55	0.20	0.42	0.50	1.10		

WADJ(FLL) WIKL NSIM 813.9 397.0 0.09702 0.0
PROPORTION RELATIVE TO TUE LEVEL = 5
IDAHO INF 50 INDEX 856.5 806.5 5 396.95
STATS NSPO WADJ(FLL) -18 81288 81288

-65

```

CLUSTER1015 INDEX -18 PROPORTION 0.09862 * PARENT61288.000
SPLIT11-0.10005
WEIGHT19.0062 WAS
PKPROP0.0917 CIN 969.150 ADJUST 2519.768 ID 81268
PROPORTION PKPROP0.0917 CIN 1A27.66 CTO6245.29
OLD PKPROP0.099170 CIN 909.95 ODEN920.833 DIFFER 0.0
VOLUME0.76E-21 COUNT0.27E-10 DCN 4.74
LOCATION 1741 LINK-19 4947 SUMS 0 SUPER 0 119 SYMBOL*****  

INDEX = -18 SYMBOL = *****
```

NET PROBABILITY	DIRECT*****	CUMS*****	*	0.98
MEAN	25.56	25.61	26.05	25.68

COVARIANCE	2	3	4	5	6	7
1.91	2.46	1.52	1.37	1.22	2.30	0.50
2.46	5.59	3.02	2.44	2.09	4.82	-0.51
3	1.52	3.02	2.89	2.34	1.31	3.22
4	1.37	2.44	2.34	3.16	1.66	2.75
5	1.22	2.09	1.31	1.66	1.39	1.97
6	2.30	4.82	3.22	2.75	1.97	4.73
7	0.56	0.31	1.16	1.40	0.49	0.96

0.042974E-01 0.61113E 0.0
 0.0
 ADJUSTED STATED
 STATISTICS TESTS (SPLIT=0): 214.0 0.05 747.0 0.0559942 0.04 CHANGE 0.0
 1ST 0.32177E 0.05 0.47477E 0.05 0.15354E 0.05
 CLUSTER 101 INDEX = 0.04341 * P44FJTR4436.001
 SPLIT=1.1600E 0.05
 TESTS: PROB 0.007 0.05 C10778.04 0.0559942 1.0 0.05056
 PROB 0.003 0.05 C10778.09 0.0559942 1.0 0.05056
 VOLUME=12E-18 0.0010.35E-09 NCN 0.0010.35E-09 DIFFER 0.05
 LOCATION 2313 LINK 0 SUPER 0 0 SUPER 0 119 SYMBOL*****
 INDEX = 5 SYMBOL = *****
 NET PROB***** DIRECT***** CUMS 0.0 * 0.0
 CUMS 0
 MEAN 24.74 23.96 26.04 25.00 20.34 19.35 22.79 22.044
 COVARIANCE 1.49 0.95 0.72 0.91 0.09 0.23 -0.05 0.12
 2 0.97 0.65 0.42 0.67 0.49 -0.26 -0.02
 3 0.72 0.65 1.55 1.31 0.14 0.57 -0.08 0.87
 4 0.91 0.52 1.31 2.63 -0.23 0.19 -0.04 0.52
 5 0.05 0.07 0.14 -0.53 0.63 0.30 0.41 0.20
 6 0.23 0.89 0.57 0.19 0.30 0.05 0.44 0.041
 7 -0.05 -0.26 -0.08 -0.84 0.41 0.44 1.31 0.51
 8 -0.12 -0.02 0.07 0.52 0.20 0.41 0.51 1.04
 SKFD(0) -441.2 -503.4 -593.7 -558.0 -110.6 -284.6 169.1 -286.6
 ADJUSTED STATED
 STATISTICS TESTS (SPLIT=0): 108.0 0.05 417.0 0.0559942 5
 IDADJ-NPSO 0.050 0.055 0.05327E 0.0559942 0.05
 STATIS KL. W(KL) 0.0537165527E 0.0559942 0.05
 CLUSTER 101 INDEX = 0.04608 * PARENT5498.000
 SPLIT=0.1600E 0.05
 WEIGHT 653.7 WAS 316.7 SPFAC-0.99999E 0.04 CHANGE 0.0
 TESTS: TRACE 0.1008E 0.06 31A.0 KURT 248.0 0.0559942 0.05
 0.4500E 0.04 -0.17559E 0.05
 ADJUST 13 EIGHT 653.7 WAS 316.7 SPFAC-0.99999E 0.04 CHANGE 0.0
 STATISTICS TESTS (SPLIT=0): 0.1008E 0.06 31A.0 KURT 248.0 0.0559942 0.05
 CLUSTER 101 INDEX = 0.04608 * PARENT5498.000
 SPLIT=0.1600E 0.05
 PROPORTION: PRUP 0.04815 C1077283.00 10 0.0060
 PROB 0.050328 C107309.14 0.05327E 0.0559942 0.05
 VOLUME=12E-18 NCN 0.05327E 0.0559942 0.05
 LOCATION 3931 LINK 5 2313 SUPER 0 0 SUPER 0 119 SYMBOL*****
 INDEX = 13 SYMBOL = *****
 NET PROB***** DIRECT***** CUMS***** * 0.73
 MEAN 24.38 25.46 25.12 22.81 21.55 23.49 23.03 20.84
 COVARIANCE 0.75 0.26 0.36 0.40 0.60 0.10 0.01 0.38
 2 0.26 1.95 0.85 0.89 0.94 1.57 0.27 -0.37
 3 0.35 0.85 2.00 1.55 0.45 0.31 1.28 0.64
 4 0.40 0.89 1.55 2.62 0.22 0.52 1.14 1.27
 5 0.40 0.44 0.44 0.22 0.46 0.77 0.03 -0.23
 6 0.14 1.07 0.31 0.52 0.77 1.71 -0.10 -0.57
 7 0.01 0.27 1.02A 1.04 0.03 -0.10 1.03 0.57
 8 0.35 -0.37 0.55 1.27 -0.23 -0.57 0.57 1.42
 SKFD(0) -77.4 45.7 65.5 170.5 -53.4 193.4 -16.5 124.0

AUGUST -19 WEIGHT 1407.8 WAS 305.5 SPFAC=0.999998 04 CHAMGE0.0
 TESTS (SPLIT=v) : -7470E 05 149.8 KURT 170.9 -0.35409E 04 -0.13666E 05
 CLUSTERED INDEX -19 PROPORTION 0.09175 = PATENT6613.000
 SPLIT=0.100E 05 WEIGHT 180.631 WAS 902.593 AUGUST 2354.540 10 89813
 PROPORTION: PROP 0.09183 CIN 1737.30 C1017839.81
 OLD PROP 0.091834 CIV 970.65 DEN9498.59 DIFERK 6.0
 VOLUME 0.92E-21 KURT0.30E-10 DCUN 4.74
 LOCATION 4947 LINK=20 165 SUBS 0 0 SUPER 0 119 SYMBOL*****
 INDEX = -19 SYMUL = *****
 NET PROP***** DIRECT***** CUM***** * 0.97
 MEAN 25.40 31.68 30.49 28.17 23.27 25.70 25.90 24.06
 COVARIANCE 2.14 2.31 2.02 1.80 1.52 2.03 0.90 0.56
 2 2.31 4.73 3.52 3.22 1.94 3.56 2.03 1.25
 3 2.02 3.52 4.37 3.52 2.28 2.76 2.57 1.31
 4 1.80 3.22 3.52 4.24 2.18 2.51 2.15 1.99
 5 1.52 1.94 2.24 2.16 1.71 1.66 1.26 0.87
 6 2.03 3.56 2.16 2.51 1.66 3.01 1.5* 0.93
 7 0.90 2.03 2.57 2.15 1.26 1.51 1.84 0.87
 R 0.56 1.25 1.31 1.99 0.57 0.93 0.87 1.33
 SKEW(*#) -239.6 587.6 -491.7 -436.4 -223.2 -518.3 -277.9 -96.3

NET PROB INDEX CLUSTER PROPORTION 0 119

CLUSTER 1 INDEX 0 PROPORTION 0.0 PARENT 200.000
 SPLIT -0.1000E-05 WEIGHT 0.1690E-05 PROPORTION 0.0 PARENT 200.000
 WEIGHT 0.1724E-0332 PROPORTION 0.0005 CIN 0.001 AUGUST 0.0 COUT 0.0
 PROPORTION: PFOR 0.0985 CIN 1.631 COUT 0.001 CDEN 0.001 DIFFER 0.0
 OLD PROB 0.098452 CIN 0.1771 CDEN 0.934 COUT 0.001 DIFFER 0.0
 VOLUME 0.73E-21 P00T0.27E-10 DC0N 4.074

INDEX = 0 NET PROB 0.0 INDEX = 0.0 CUMSUM***** * 1.00

CLUSTER 1 INDEX -19 PROPORTION 0.09864 PARENT 200.000
 SPLIT -0.1000E-05 WEIGHT 0.1724E-0332 PROPORTION 0.0005 CIN 0.001 AUGUST 0.0 COUT 0.0
 PROPORTION: PFOR 0.0985 CIN 1.631 COUT 0.001 CDEN 0.001 DIFFER 0.0
 OLD PROB 0.098452 CIN 0.1771 CDEN 0.934 COUT 0.001 DIFFER 0.0
 VOLUME 0.73E-21 P00T0.27E-10 DC0N 4.074

LOCATION 1741 LINK-19 4947 SUBS 0 SUPER 0 119 SYMBOL 1
 INDEX = -19 SYMBOL = 1 NET PROB***** DIRECT***** CUMSUM***** * 0.004

MEAN 250.55 250.60 26.84 25.67 20.78 20.65 23.33 22.53
 COVARIANCE 2 1.041 2.41 1.051 1.35 1.20 2.27 0.51 -0.50
 2 2.41 5.47 2.94 2.32 2.04 4.72 0.32 -0.77

3 1.050 2.94 2.04 2.32 1.24 3.19 1.17 0.31
 4 1.034 2.34 2.37 3.15 1.64 2.71 1.40 1.04
 5 1.020 2.04 1.20 1.64 1.37 1.93 0.69 0.11
 6 2.27 4.72 3.14 2.71 1.93 4.64 0.97 -0.27

7 0.51 0.32 1.17 1.40 0.49 0.87 1.27 0.78
 A -0.50 -0.77 0.31 1.04 0.11 -0.27 0.78 1.09

SKEW(*#) 92.6 458.5 -111.5 -19.4 184.9 158.3 -270.4 -67.2
 MEAN 2H.40 31.64 30.46 28.15 23.26 25.69 25.88 24.05
 COVARIANCE 2 2.15 2.35 2.04 1.82 1.53 2.07 0.91 0.57
 2 2.35 4.81 3.56 3.27 1.96 3.63 2.06 1.26

3 2.04 3.56 4.00 3.55 2.30 2.79 2.59 1.32
 4 1.82 3.27 3.05 4.27 2.20 2.55 2.17 2.01
 5 1.53 1.96 2.30 2.20 1.72 1.69 1.27 0.87
 6 2.07 3.63 2.70 2.55 1.68 3.07 1.53 0.94
 7 0.41 2.06 2.50 2.17 1.27 1.53 1.85 0.87
 A 0.57 1.26 1.32 2.01 0.97 0.94 0.87 1.34

LOCATION 4947 LINK-20 145 SUBS 0 SUPER 0 119 SYMBOL 2
 INDEX = -19 SYMBOL = 2 NET PROB 0.00 CUMSUM***** * 0.047

MEAN 2H.40 31.64 30.46 28.15 23.26 25.69 25.88 24.05
 COVARIANCE 2 2.15 2.35 2.04 1.82 1.53 2.07 0.91 0.57
 2 2.35 4.81 3.56 3.27 1.96 3.63 2.06 1.26

3 2.04 3.56 4.00 3.55 2.30 2.79 2.59 1.32
 4 1.82 3.27 3.05 4.27 2.20 2.55 2.17 2.01
 5 1.53 1.96 2.30 2.20 1.72 1.69 1.27 0.87
 6 2.07 3.63 2.70 2.55 1.68 3.07 1.53 0.94
 7 0.41 2.06 2.50 2.17 1.27 1.53 1.85 0.87
 A 0.57 1.26 1.32 2.01 0.97 0.94 0.87 1.34

LOCATION 4947 LINK-21 145 SUBS 0 SUPER 0 119 SYMBOL 3
 INDEX = -19 SYMBOL = 3 NET PROB 0.00 CUMSUM***** * 0.047

MEAN 2H.40 31.64 30.46 28.15 23.26 25.69 25.88 24.05
 COVARIANCE 2 2.15 2.35 2.04 1.82 1.53 2.07 0.91 0.57
 2 2.35 4.81 3.56 3.27 1.96 3.63 2.06 1.26

3 2.04 3.56 4.00 3.55 2.30 2.79 2.59 1.32
 4 1.82 3.27 3.05 4.27 2.20 2.55 2.17 2.01
 5 1.53 1.96 2.30 2.20 1.72 1.69 1.27 0.87
 6 2.07 3.63 2.70 2.55 1.68 3.07 1.53 0.94
 7 0.41 2.06 2.50 2.17 1.27 1.53 1.85 0.87
 A 0.57 1.26 1.32 2.01 0.97 0.94 0.87 1.34

LOCATION 4947 LINK-22 145 SUBS 0 SUPER 0 119 SYMBOL 4
 INDEX = -19 SYMBOL = 4 NET PROB 0.00 CUMSUM***** * 0.047

MEAN 2H.40 31.64 30.46 28.15 23.26 25.69 25.88 24.05
 COVARIANCE 2 2.15 2.35 2.04 1.82 1.53 2.07 0.91 0.57
 2 2.35 4.81 3.56 3.27 1.96 3.63 2.06 1.26

3 2.04 3.56 4.00 3.55 2.30 2.79 2.59 1.32
 4 1.82 3.27 3.05 4.27 2.20 2.55 2.17 2.01
 5 1.53 1.96 2.30 2.20 1.72 1.69 1.27 0.87
 6 2.07 3.63 2.70 2.55 1.68 3.07 1.53 0.94
 7 0.41 2.06 2.50 2.17 1.27 1.53 1.85 0.87
 A 0.57 1.26 1.32 2.01 0.97 0.94 0.87 1.34

ORIGINAL PAGE IS
OF POOR QUALITY

LOCATION	145	LINK-21	3773	SIMS	0	0	SUPER	0	119	SYMBOL
INDEX	=	-20		SYMBOL	=					
NET PROB	0.00	1.1FFECT	0.00	CUMS*****	*	1.00				
MEAN	25.78	20.56	30.04	31.18	18.65	17.04	25.33	27.91		
COVARIANCE	1.16	0.74	0.52	0.38	0.62	0.65	0.32	0.71		
	0.74	2.05	0.87	0.43	0.95	1.36	0.06	-1.02		
3	0.52	0.67	1.37	1.09	0.70	0.73	0.77	0.21		
4	0.34	0.63	1.09	2.16	0.62	0.14	0.49	1.57		
5	0.82	0.96	0.76	0.52	0.46	0.68	-0.03	-0.50		
6	0.65	1.36	0.33	0.19	0.68	1.33	-0.48	-1.25		
7	-1.32	-0.06	0.77	0.99	-0.03	-0.48	1.33	1.35		
8	-0.71	-1.02	0.21	1.57	-0.50	-1.25	1.35	3.44		
SKEW(*#)	-132.6	-22.7	119.8	11.7	-170.5	-53.7	207.5	342.8		
CLUSTER	1	INPUT	-21	PROMOTION	0.020282	■ PARENT#200.000				
SPLIT	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000		
WEIGHT	3855.27	2023.4	1997.61	3855.60	1997.61	2193.60	10	89219		
PROPORTION	0.2023	0.2023	0.2023	0.2023	0.2023	0.2023	CTOT#9521*50			
OLD PROB	0.202339	0.202339	0.202339	0.202339	0.202339	0.202339	INDEN#886678 DIFFER	0.0		
VOLUME	0.14E-20	0.00E-10	0.00E-10	0.00E-10	0.00E-10	0.00E-10	DCON	4.74		
LOCATION	3773	LINK-14	4217	SUBS	0	0	SUPER	0	119	SYMBOL
INDEX	=	-21	SYMBOL	=						
NET PROB	0.0	DIRECT	0.0	CUMS*****	*	0.93				
MEAN	26.90	29.06	30.67	29.60	20.36	20.20	27.26	28.10		
COVARIANCE	1.24	1.15	0.80	0.90	0.63	0.84	0.53	1.13		
	1.15	2.59	1.62	1.61	0.74	2.36	0.58	0.76		
2	0.80	1.62	2.49	2.06	1.33	2.58	0.51	-0.38		
3	0.96	1.61	2.06	3.26	1.14	2.01	1.89	1.11		
4	0.63	0.74	1.33	1.14	1.08	1.26	0.31	-0.03		
5	0.64	2.36	2.59	2.01	1.26	3.48	0.21	-0.69		
6	0.53	0.58	0.51	1.89	0.31	0.21	1.92	1.73		
7	1.13	0.76	-0.38	1.11	-0.03	-0.69	1.73	3.31		
8	395.8	276.2	5.1	109.6	-268.1	-140.0	315.2	764.5		
CLUSTER	1	INDEX	-14	PROPORTION	0.10543	■ PARENT#200.000				
SPLIT	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	ADJUST	2701.461	10	89111
WEIGHT	1909.920	1909.920	1909.920	1909.920	1909.920	1909.920	CTOT#9533*50			
PROPORTION	0.10518	0.10518	0.10518	0.10518	0.10518	0.10518	INDEN#9533 DIFFER	0.0		
OLD PROB	0.105176	0.105176	0.105176	0.105176	0.105176	0.105176	DCON	4.74		
VOLUME	0.42E-21	0.00E-10	0.00E-10	0.00E-10	0.00E-10	0.00E-10				
LOCATION	4217	LINK-15	4375	SIMS	0	0	SUPER	0	119	SYMBOL
INDEX	=	14	SYMBOL	=						
NET PROB	0.00	1FFECT	0.00	CUMS*****	*	1.02				
MEAN	24.37	25.67	25.53	24.11	22.19	24.16	23.60	22.21		
COVARIANCE	1.30	0.87	0.87	1.17	1.24	0.31	-0.05	0.27		
	0.87	2.14	1.49	1.85	-0.43	-0.08	0.71	-0.05		
2	1.17	1.49	2.61	2.33	-0.35	-0.84	0.40	0.05		
3	1.24	1.65	2.33	3.91	-0.50	-0.39	0.59	0.75		

5	0.11	-0.43	-0.35	-0.50	0.75	0.27	0.19	0.17
6	-0.07	-0.07	-0.04	-0.34	0.27	0.04	0.23	0.22
7	0.04	0.71	0.41	0.59	0.14	0.23	0.07	0.14
8	0.27	-0.05	0.05	0.75	0.17	0.22	0.14	0.08
SKW(***)	-2.04.4	-0.16.2	-0.33.0	-0.62.4	3.3.4	-1.16.2	-3.00.9	-1.10.3

CLUSTER 1 INDEX 13 PROPORTION 0.020101 * PARENTHEZ 0.0000
 SPLIT=0.1000 0.5 WEIGHT 50.00% PROP 0.0000 MAS 337.055 AUGUST 594.109 ID 95288
 PROPORTION 0.0000 PROP 0.05109 CIN 495.44 CT074500.56 DIFFER 0.0
 OLD PROP 0.04023 CIN 327.29 DENE7072.56 0.0
 VOLUME 0.11E-19 MOUT 0.10E-09 DCOUN 1.44

LOCATION 4375 LINK 5 3931 SUPER 0 0 SUPER 0 119 SYMBOL 6
 INDEX = -15 SYMBOL = 6

NET PHOT	0.64	0.17	0.17	CUMS*****	*	1.34		
MEAN	27.05	29.70	28.30	27.23	22.26	24.04	24.27	22.08
COVARIANCE	2.43	2.73	2.12	1.91	0.53	1.30	-0.29	-0.24
?	2.73	5.04	3.10	2.64	0.46	2.27	0.12	-0.74
3	2.12	3.10	3.23	2.36	0.52	1.95	0.61	0.59
4	1.91	2.64	2.36	2.98	-0.37	0.84	-0.55	-0.24
5	0.53	0.46	0.52	-0.37	1.00	1.09	0.72	0.40
6	1.39	2.27	1.95	0.84	1.09	2.27	0.96	0.52
7	-0.24	0.12	0.61	-0.55	0.72	0.96	1.70	1.08
8	-0.24	-0.74	0.59	-0.24	0.40	0.52	1.08	1.88
SKW(***)	1.617.4	2727.9	2610.1	1908.4	379.0	2137.3	1049.3	230.1

CLUSTER 1 INDEX 13 PROPORTION 0.05121 * PARENTHEZ 0.0000
 SPLIT=0.1000 0.5 WEIGHT 50.00% PROP 0.0000 MAS 337.055 AUGUST 594.109 ID 95288
 PROPORTION 0.0000 PROP 0.05109 CIN 495.44 CT074500.56 DIFFER 0.0
 OLD PROP 0.04023 CIN 327.29 DENE7072.56 0.0
 VOLUME 0.11E-19 MOUT 0.10E-09 DCOUN 1.44

LOCATION 3931 LINK 5 2313 SUPER 0 0 SUPER 0 119 SYMBOL 7
 INDEX = 13 SYMBOL = 7

NET PHOT	0.0	DIRECT	0.0	CUMS*****	*	0.73		
MEAN	20.39	25.44	25.11	22.62	21.55	23.04	23.01	20.85
COVARIANCE	0.75	0.27	0.37	0.42	0.39	0.04	0.02	0.38
?	0.27	1.43	0.82	0.86	0.94	1.54	0.22	-0.36
3	0.37	0.82	1.36	1.56	0.43	0.27	1.24	0.67
4	0.42	0.86	1.54	2.65	0.20	0.48	1.14	1.31
5	0.34	0.44	0.43	0.20	0.47	0.76	0.01	-0.24
6	0.39	1.54	0.27	0.48	0.76	1.69	-0.15	-0.57
7	0.62	0.22	1.24	1.14	0.01	-0.15	1.22	0.61
8	0.34	-0.36	0.67	1.31	-0.24	-0.57	0.01	1.42
SKW(***)	7.0.4	72.1	-256.9	-172.4	146.7	117.7	-246.3	-264.4

CLUSTER 1 Input = PROPORTION 0.00670 + PARENTS 0.006
 SPLIT=0.1000 0.720.314 .045
 SIGNIF 0.170.042 ADJUST 0.000.319 ID 0.00276
 EQUIPMENT: PROPU 0.09647 CIN 74.3.31 CTOT 0.0493.75
 OLD PHUP 0.09647 CIN 402.41 INENJ 0.000.92 DIFFFW 0.0
 VOLUME 0.548714 CUD 0.010.23E-99
 LOCATION 231.1 Link 0 SUMS 0 0 SUPTR 0 119 SYMBOL
 INDEX =
 NET PROF 0.00A INFCT 0.072 CUMS 0.0 * 0.0

MEAN	24.76	23.99	25.98	25.01	20.33	19.34	22.76	22.66
COVARIANCE	1.045 0.95	0.96 2.01	0.69 0.65	0.60 0.65	0.50 0.07	0.07 0.14	0.20 0.55	-0.83 -0.08
2	0.95	2.01	0.65	0.65	0.82	0.07	0.91	-0.22
3	0.681	0.65	1.048	1.027	0.127	0.14	0.55	-0.08
4	0.90	0.62	1.027	2.044	-0.52	0.16	-0.07	0.51
5	0.07	0.07	0.14	-0.52	0.63	0.29	0.41	0.19
6	0.20	0.91	0.55	0.16	0.29	0.95	0.46	0.40
7	-0.83	-0.22	-0.02	-0.87	0.41	0.46	1.31	0.47
8	-0.12	-0.00	0.84	0.51	0.19	0.40	0.47	1.03
SKFW (w)	502.5	713.4	394.6	915.3	-93.7	261.2	-322.8	197.6

LIVIN' IN • JEWISH • SCAFFOLD CENTER

TOTAL NUMBER OF POINTS IN THIS FIELD 9400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

POINTS PEA CLUSTER IN THIS FILED CLOUDS

1912
3000
4193
1364
1222

1923 45.67 1.0

1923 45.67 1.0

**FINAL PAGE IS
POOR QUALITY**

Total number of trials = 400

CLUSTER SYMBOL PARENT IN CLUSTER

1	?	161
3	3	212
5	5	306
6	5	490
7	7	193
8	8	344
9	9	105
10	8	222
11	8	222
12	8	222
13	8	222

STATUS NPTSO.IUAGJ(RL)

-20 SPARE

HARD3

ADJUST -20 WEIGHT TESTS: TRACE TESTS (SPLIT=0) : -65663E 05

CLUSTERID19 INDEA -20 PROPORTION 0.15231 * PARENTN65643.000

SPLIT=0.1000F 05 WEIGHT 3004.271 WAS 1501.97 AUGUST 0.99999E 04 CHANNEL 0.0

PROPORTION: PROP 0.52155 CIN 3003.26 CTO 6912E 96 MURT -3305E 06

OLD PROP 0.152155 CIN 591.79 DIFFER 0.07 MURK 0.0

VOLUME 0.48E-21 VOLUME 0.22E-10 DCUN 4.74

LOCATION 147 LINK-21 3773 SIMS 0 SUPER 0 119 SYMBOL*****

INDEX = -20 SYMBOL = ***** DIRECT***** CUMS***** * 1.00

NET PROBES***** DIRECT***** CUMS***** * 1.00

MEAN 25.72 26.57 30.97 31.17 18.66 17.04 26.33 27.91

COVARIANCE 1.16 0.78 0.52 0.38 0.92 0.65 -0.32 -0.71

2 0.72 2.05 0.87 0.83 0.96 1.36 -0.06 -1.02

3 0.52 0.67 1.37 1.09 0.70 0.33 0.77 0.21

4 0.35 0.63 1.09 2.16 0.62 0.19 0.99 1.57

5 0.62 0.96 0.76 0.62 0.96 0.68 -0.03 -0.50

6 0.05 1.36 0.33 0.19 0.68 1.33 -0.48 -1.25

7 -0.32 -0.06 0.77 0.99 -0.03 -0.46 1.33 1.35

8 -0.71 -1.02 0.21 1.57 -0.50 -1.25 1.35 3.44

SKEW(*#) -105.5 -32.3 135.7 64.6 -111.8 -54.3 149.6 273.6

ADJUST (RL) INDEA -20 PROPORTION 3906.0 1502.3 0.152428 -70 3*05.97

IDADJNPTSO.INDEA#AUJ 8894.3 96*#3 -20 89111 1502.30

STATUS NPTSO.IUAGJ(RL) -14 EY111 89111

ADJUST -14 WEIGHT 2065.7 SKWAS 1039.0 SPFAC-0.99999E 04 CHANNEL 0.0

TESTS (SPLIT=0) : -73804E 05 149.3 MURT 1701.1 -0.3505E 04 -13332E 05

CLUSTERID20 INDEA -14 PROPORTION 0.10505 * PARENTB9111.000

SPLIT=0.1000E 05 WEIGHT 2065.646 WAS 1039.031 AUGUST 0.99950E 00 CHANNEL 0.0

PROPORTION: PROP 0.105222 CIN 2006.52 CTO 6995.00 MURT 0.0

OLD PROP 0.105222 CIN 008.29 DIFFER 0.0

VOLUME 4.2E-21 VOLUME 0.21E-10 DCUN 4.74

LOCATION 4217 LINK-13 4375 SIMS 0 SUPER 0 119 SYMBOL*****

INDEX = -14 SYMBOL = ***** DIRECT***** CUMS***** * 1.002

NET PROBES***** DIRECT***** CUMS***** * 1.002

MEAN 24.37 25.68 25.53 24.12 22.19 24.16 23.60 22.21

COVARIANCE 1.30 0.67 1.07 1.05 0.31 -0.05 0.63 0.71

2 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

3 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

4 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

5 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

6 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

7 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

8 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

9 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

10 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

11 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

12 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

13 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

14 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

15 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

16 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

17 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

18 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

19 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

20 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

C-74

ADJUST -20 WEIGHT TESTS: TRACE TESTS (SPLIT=0) : -65663E 05

CLUSTERID19 INDEA -20 PROPORTION 0.15231 * PARENTN65643.000

SPLIT=0.1000F 05 WEIGHT 3004.271 WAS 1501.97 AUGUST 0.99999E 04 CHANNEL 0.0

PROPORTION: PROP 0.52155 CIN 3003.26 CTO 6912E 96 MURT -3305E 06

OLD PROP 0.152155 CIN 591.79 DIFFER 0.07 MURK 0.0

VOLUME 0.48E-21 VOLUME 0.22E-10 DCUN 4.74

LOCATION 147 LINK-21 3773 SIMS 0 SUPER 0 119 SYMBOL*****

INDEX = -20 SYMBOL = ***** DIRECT***** CUMS***** * 1.00

NET PROBES***** DIRECT***** CUMS***** * 1.00

MEAN 25.72 25.68 25.53 24.12 22.19 24.16 23.60 22.21

COVARIANCE 1.30 0.67 1.07 1.05 0.31 -0.05 0.63 0.71

2 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

3 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

4 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

5 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

6 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

7 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

8 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

9 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

10 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

11 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

12 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

13 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

14 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

15 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

16 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

17 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

18 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

19 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

20 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

ADJUST -14 WEIGHT TESTS (SPLIT=0) : -73804E 05

CLUSTERID20 INDEA -14 PROPORTION 0.10505 * PARENTB9111.000

SPLIT=0.1000E 05 WEIGHT 2065.646 WAS 1039.031 AUGUST 0.99950E 00 CHANNEL 0.0

PROPORTION: PROP 0.105222 CIN 2006.52 CTO 6995.00 MURT 0.0

OLD PROP 0.105222 CIN 008.29 DIFFER 0.0

VOLUME 4.2E-21 VOLUME 0.21E-10 DCUN 4.74

LOCATION 4217 LINK-13 4375 SIMS 0 SUPER 0 119 SYMBOL*****

INDEX = -14 SYMBOL = ***** DIRECT***** CUMS***** * 1.002

NET PROBES***** DIRECT***** CUMS***** * 1.002

MEAN 24.37 25.68 25.53 24.12 22.19 24.16 23.60 22.21

COVARIANCE 1.30 0.67 1.07 1.05 0.31 -0.05 0.63 0.71

2 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

3 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

4 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

5 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

6 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

7 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

8 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

9 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

10 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

11 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

12 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

13 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

14 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

15 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

16 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

17 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

18 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

19 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

20 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

ADJUST -20 WEIGHT TESTS: TRACE TESTS (SPLIT=0) : -65663E 05

CLUSTERID19 INDEA -20 PROPORTION 0.15231 * PARENTN65643.000

SPLIT=0.1000F 05 WEIGHT 3004.271 WAS 1501.97 AUGUST 0.99999E 04 CHANNEL 0.0

PROPORTION: PROP 0.52155 CIN 3003.26 CTO 6912E 96 MURT -3305E 06

OLD PROP 0.152155 CIN 591.79 DIFFER 0.07 MURK 0.0

VOLUME 0.48E-21 VOLUME 0.22E-10 DCUN 4.74

LOCATION 147 LINK-21 3773 SIMS 0 SUPER 0 119 SYMBOL*****

INDEX = -20 SYMBOL = ***** DIRECT***** CUMS***** * 1.00

NET PROBES***** DIRECT***** CUMS***** * 1.00

MEAN 25.72 25.68 25.53 24.12 22.19 24.16 23.60 22.21

COVARIANCE 1.30 0.67 1.07 1.05 0.31 -0.05 0.63 0.71

2 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

3 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

4 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

5 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

6 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

7 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

8 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

9 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

10 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

11 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

12 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

13 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

14 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

15 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

16 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

17 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

18 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

19 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

20 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05

ADJUST -14 WEIGHT TESTS (SPLIT=0) : -73804E 05

CLUSTERID20 INDEA -14 PROPORTION 0.10505 * PARENTB9111.000

SPLIT=0.1000E 05 WEIGHT 2065.646 WAS 1039.031 AUGUST 0.99950E 00 CHANNEL 0.0

PROPORTION: PROP 0.105222 CIN 2006.52 CTO 6995.00 MURT 0.0

OLD PROP 0.105222 CIN 008.29 DIFFER 0.0

VOLUME 4.2E-21 VOLUME 0.21E-10 DCUN 4.74

LOCATION 4217 LINK-13 4375 SIMS 0 SUPER 0 119 SYMBOL*****

INDEX = -14 SYMBOL = ***** DIRECT***** CUMS***** * 1.002

NET PROBES***** DIRECT***** CUMS***** * 1.002

MEAN 24.37 25.68 25.53 24.12 22.19 24.16 23.60 22.21

COVARIANCE 1.30 0.67 1.07 1.05 0.31 -0.05 0.63 0.71

2 0.67 2.14 1.06 1.05 -0.43 -0.05 0.71 -0.05</p

3	1.17	1.044	2.61	2.033	-7.35	-0.66	0.60	0.60
4	1.04	1.045	2.93	3.041	-0.610	-0.30	0.54	0.75
5	0.41	-0.43	-0.35	-0.50	0.76	0.27	0.19	0.17
6	-0.05	-0.08	-0.54	-0.39	0.27	0.04	0.23	0.22
7	0.63	0.71	0.40	0.59	0.19	0.23	0.67	0.14
8	0.27	-0.05	0.05	0.75	0.17	0.22	0.14	0.66
SKEW(*#)	-273.7	-402.9	-472.2	-551.8	-12.0	76.0	-157.1	-71.1

WADJ(KL) W(KL) SIM PROPORTION RELATIVE TO TOP LEVEL = 0.10415E-14 1026.65 2669.30
IDADJ NPTSO INDEX: WADJ 89211 49111 89219 69219

ADJUST -21 WEIGHT 3995.3 WAS 1997.6 SPFAC-0.99999E-04 CHANGE 0.0
STATISTICS: TRACE -12.1 SKEW 377.8 KURT 2313.7 0.0
TESTS (ISPLIT=0): -0.69556E-05 -0.29906E-04 -0.11528E-05

CLUSTER1021 INDEX -21 PROMOTION 0.20240 M PARENTA9219.000
SPLIT-0.1000E-05

WEIGHT 3995.27% WAS 1997.618 ADJUST 5193.805 ID 89219
PROPORTION: PFILE C 21231 CIN 3994.60 CTOTK9518.06
OLD PFILE C 21230 CIN 1997.0 DIFF 0.0
VOLUME 0.14E-20 QFILE 0.38E-10 DC0N 4.74

LOCATION 3773 LINK-14 4217 SUBS 0 0 SUPER 0 119 SYMBOL*****
INDEX = -21 SYMBOL = *****

NET PROF***** DIRECT***** CUMS***** + 0.93

MEAN 26.90 29.06 30.69 29.60 20.36 20.21 27.26 28.09

C-75

COVARIANCE	1.24	1.15	0.80	0.90	0.63	0.64	0.53	1.13
2	1.15	2.59	1.62	1.61	0.74	2.36	0.58	0.76
3	0.80	1.62	2.49	2.06	1.33	2.58	0.51	-0.36
4	0.90	1.61	2.06	3.26	1.14	2.01	1.89	1.11
5	0.63	0.74	1.33	1.14	1.08	1.26	0.31	-0.03
6	0.84	2.36	2.58	2.01	1.26	3.48	0.21	-0.69
7	0.53	0.58	0.51	1.89	0.31	0.21	1.92	1.73
8	1.13	0.76	-0.38	1.11	-0.03	-0.69	1.73	3.31
SKEW(*#)	421.0	516.2	363.8	397.3	-125.0	199.4	421.5	652.6

WADJ(KL) W(KL) SIM PROPORTION RELATIVE TO TOP LEVEL = 0.203060 -21 1997.7 5193.91
IDADJ NPTSO INDEX: WADJ 89219 69219 89279 89279

ADJUST -15 WEIGHT 3925.1 WAS 1985.7 SPFAC-0.99999E-04 CHANGE 0.0
STATISTICS: TRACE -16.1 SKEW 2155.9 KURT 1879.0 0.0
TESTS (ISPLIT=0): -0.44275E-05 -0.12118E-04 0.049112E-04

CLUSTER1022 INDEX -15 PROMOTION 0.20049 M PARENTA9279.000
SPLIT-0.1000E-05

WEIGHT 395.103 WAS 1985.693 ADJUST 5162.797 ID 89279
PROPORTION: PFILE 0.20425 CIN 3594.36 CTOT771191.88
OLD PFILE 0.20425 CIN 1800.55 DIFF 0.0
VOLUME 0.14E-19 QFILE 0.12E-09 DC0N 4.74

LOCATION 4375 LINK 13 3931 SUBS 0 0 SUPER 0 119 SYMBOL*****
INDEX = -15 SYMBOL = *****

NET PROF***** DIRECT***** CUMS***** + 1.0R
MFAN 27.13 24.65 26.94 27.22 22.25 24.04 <4.27 22.89

0.38446E-07 0.32369E-06

0.0

0.3207E-02 0.35927E-01

0.0

COVARIANCE	2.043	5.073	2.012	1.91	6.073	1.036	-0.27	-0.24
2	2.073	5.064	2.017	2.064	0.046	0.046	0.012	-0.074
3	2.017	3.016	3.023	2.036	0.052	1.045	0.061	0.059
4	1.041	2.064	2.036	2.095	-0.037	0.064	-0.055	-0.024
5	0.053	0.046	0.052	-0.037	1.040	1.049	0.072	0.040
6	1.034	2.027	1.095	0.044	1.019	2.027	0.096	0.052
7	-0.024	0.012	0.001	-0.053	0.072	0.096	1.070	1.065
8	-0.024	-0.014	0.059	-0.024	0.040	0.052	1.008	1.036
SKEWNESS	1.3780.7	25630.7	15900.1	1341.5	10560.2	2199.0	1191.0	500.9

XADJ(ALL) = (KL)*LSUPW
 PROPOF RELATION RELATION TO T0 T0 LEVEL 1939.4 1939.4 1939.4 1939.4 1939.4 1939.4 1939.4 1939.4 1939.4
 1A-10 19-09 20-15 21-20 14-10 14-20 13-05 13-05 05-10
 ***HAVE SPLIT-15 WEIGHT 1939.4 SUMS10*105 ITER 12
 KL,INDEX,LSUPW 4375 -15 1,9

DUMP OF OBSERVED CLUSTERS FOR RUN-15

4375

CLUSTER 0 PARENT -15 PROPORTION 0.14730 ■ PARENT 1939.400
 SPLIT=0.1700E-02
 WEIGHT 1939.400 WAS 1967.693 AUGUST 5422.405 10 54270
 PROPORTION: P=0.19453 CIN 16663 1793.05 ADJUST 5103.210.88
 OLD PROB 0.19453 CIN 1793.05 DIFF 0.00000 0.00000 0.00000
 VOLUME 0.10t 27 0.00t 0.12E+09 DCIN 4.74

LOCATION 4375 LINK 13 3431 SUB 45104 0249 SUPER 0 119 SYMBOL 1

NET PROB***** DIRECT***** CUMS***** 1.00

	MEAN	27.06	24.75	24.32	27.24	22.28	24.14	24.24	22.90
COVARIANCE	2.25	2.65	1.76	1.76	0.42	1.15	-0.35	-0.25	
2	2.45	4.47	2.75	2.39	0.22	1.77	-0.03	-0.77	
3	1.96	2.75	3.00	2.21	0.37	1.65	0.51	0.55	
4	1.78	2.39	2.21	2.84	-0.65	0.04	-0.60	-0.26	
5	0.42	0.22	0.37	-0.45	1.30	0.80	0.65	0.38	
6	1.15	1.77	1.65	0.64	0.89	1.83	0.81	0.47	
7	-0.35	-0.03	0.51	-0.60	0.65	0.81	1.63	1.05	
8	-0.25	-0.77	0.55	-0.26	0.38	0.47	1.05	1.85	
SKWNESS(*)	1378.7	2563.7	1590.1	1341.5	1956.2	2199.6	1191.8	500.9	

NET PROB***** DIRECT***** CUMS***** 0.98

MEAN 28.00 31.26 29.98 28.15 22.79 24.86 24.43 22.61

COVARIANCE 1.95 1.84 3.57 1.61 1.47 0.16 0.98 -0.42 0.10

2 1.84 3.57 1.98 2.73 1.76 -0.27 1.39 -0.23 -0.53

3 1.61 1.98 2.73 1.95 0.15 1.55 0.51 1.08

4 1.47 1.76 1.95 2.63 -0.69 0.57 -0.67 0.10

5 0.16 -0.27 0.15 -0.69 1.25 0.75 0.75 0.65

6 0.98 1.39 1.55 0.57 0.75 1.83 0.78 0.74

7 -0.42 -0.23 0.51 -0.67 0.75 0.78 1.80 1.23

8 0.10 -0.53 1.08 0.10 0.65 0.74 1.23 2.21

SKWNESS(*) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CLUSTER 1 INDEX 104 PROPORTION 0.49557 ■ PARENT 1939.410

SPLIT=0.9999E-04
 WEIGHT 80.000 WAS 80.000 ADJUST 280.000 10 99079

PROB 0.49557 CIN 39.65 CTOT 1959.41 DIFF 0.0

VOLUME 0.10E-19 8000.10E-09 DCIN 80.000 4.74

LOCATION 6249 LINK 105 SUBS 0 0 SUPER-15 4375 SYMBOL 2

INDEX = 104 NET PROB***** DIRECT***** CUMS***** 0.98

MEAN 28.00 31.26 29.98 28.15 22.79 24.86 24.43 22.61

COVARIANCE 1.95 1.84 3.57 1.61 1.47 0.16 0.98 -0.42 0.10

2 1.84 3.57 1.98 2.73 1.76 -0.27 1.39 -0.23 -0.53

3 1.61 1.98 2.73 1.95 0.15 1.55 0.51 1.08

4 1.47 1.76 1.95 2.63 -0.69 0.57 -0.67 0.10

5 0.16 -0.27 0.15 -0.69 1.25 0.75 0.75 0.65

6 0.98 1.39 1.55 0.57 0.75 1.83 0.78 0.74

7 -0.42 -0.23 0.51 -0.67 0.75 0.78 1.80 1.23

8 0.10 -0.53 1.08 0.10 0.65 0.74 1.23 2.21

SKWNESS(*) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CLUSTER 1 INDEX 105 PROPORTION 0.50443 ■ PARENT 1939.410

SPLIT=0.9599E-04
 WEIGHT 80.000 WAS 80.000 ADJUST 280.000 10 99079

PROB 0.50443 CIN 40.35 CTOT 1859.41 DIFF 0.0

VOLUME 0.13E-20 8000.36E-10 DCIN 80.000 4.74

LOCATION 6407 LINK 0 SUBS 0 0 SUPER-15 4375 SYMBOL 3

INDEX = 105 NET PROB***** DIRECT***** CUMS***** 1.00

MEAN 26.13 28.26 27.88 26.35 21.79 23.44 24.15 23.17

UDAJ NPTSO. INTUKOWA JU
STATIS KL. W (KL) WAIJ (KL)

```

ADJUST 104 WEIGHT 240.4 WAS 33363.0 SPFAC-U-099990C 04 CHANGED 0.0 0.0 0.2135% 01 0.99152E 03
STATISTICS THAC 5KE# KURT 7392.8
TESTS (SPLIT=0) 06.0 0.31244E 06 0.27246E 05 0.49789E 05
ADJ(KL) WILK 0.51M 0.420.8 0.200.0
ADJ(LL) ERWKHPIK 0.51M 0.420.8 0.200.0
(EPROR COUNT) CIN.2170E 03.3965E 02.1774E 03 SPURUAT U3
(CIN) CIN.2170E 03.3965E 02.1774E 03 S(RF).CTOT.DEN.UVEN.2037E 04.1692E 04.1644E 03.6000E 02

LUMITEH1026 INDEX 104 PROPORTION 1.35662 W PARENT 20.96.930
EIGHT 200.404 WAS ADJUST 104.000 420.0W 10 99079
LD PROP 0.495573 CIN 217.03 CTOT 1892.49
COLUMN 0.32E 21 QOUT 0.23E-06 OPEN 80.00 DIFFER 0.0 DCIN -5.23
LOCATION 6249 LINKLVS 6407 SHMS 0 0 SUPER-15 4375 SYMBOL *****
```

C-78

PROPORTION RELATIVE TO TOP LEVEL = $0.145047 \cdot 10^4$
 18-10 19-09 20-15 21-20 14-10 15-20 13-05 05-10
 *** HAVE SPLIT 104 471611 200.4 545100107 00-05
 KL. INDEX LSUPER 6249 104 4375 118 56

NUMBER OF OBSERVED CLUSTERS FROM 104 6249

CLUSTER 0 INDEX 104 PROPORTION 0.36328 W PARENT 2036.0430
 SPLIT=0.17900 02 WEIGHT 0.00000 WAS 0.00000 ADJUST 0.00000
 PROPORTION: PROP 0.40404 CIN 0.1738 CTOT 1542.065
 OLD PROP 0.737100 CIN 0.1738 ODEN 4.082K DIFFER 0.0
 VOLUME 0.32E-21 P0010.23E-06 DC0N -5.23

LOCATION 5963 LINK107 SYMBOL 5963 SUPER104 4375 SYMBOL 1
 INDEX = 104 SYMBOL = 5963

NET PROB***** DIRECT***** CUMS***** * 1.00

MEAN 27.14 29.12 30.37 29.98 20.45 20.21 26.94 27.86

	COVARIANCE	COVARIANCE	COVARIANCE	COVARIANCE	COVARIANCE	COVARIANCE	COVARIANCE	COVARIANCE
1	2.51	3.64	0.71	-0.41	2.59	4.60	-0.93	-2.60
2	3.64	7.69	0.99	-1.36	4.59	9.75	-2.29	-7.07
3	0.71	0.99	2.57	2.81	0.31	0.47	1.19	1.29
4	-0.41	-1.36	2.81	5.69	-2.26	-4.22	3.47	6.42
5	2.54	4.59	0.31	-2.26	5.09	8.49	-2.82	-7.51
6	4.60	9.75	0.47	-4.22	8.49	16.96	-5.92	-16.89
7	-0.93	-2.29	1.10	3.67	-2.82	-5.92	5.76	9.26
8	-2.80	-7.07	1.20	6.42	-7.51	-14.89	9.26	19.22
SKWNESS	-1416.9-3711.2	1133.9	3727.0-4096.4-8086.0	4222.0-9130.4				

CLUSTER 1 INDEX 106 PROPORTION 0.40579 W PARENT 200.404
 SPLIT=0.9995 04 WEIGHT 0.00000 WAS 0.00000 ADJUST 280.000 ID 99916
 PROPORTION: PROP 0.40579 CIN 32.46 CTOT 120.40
 OLD PROP 0.405794 CIN 32.46 ODEN 80.00 DIFFER 0.0
 VOLUME 0.12E-16 P00010.35E-08 DC0N 4.74

C-79
 LOCATION 5963 LINK107 SYMBOL 5361 SUBS 0 0 SUPER104 6249 SYMBOL 2
 INDEX = 106 SYMBOL = 5361

NET PROB 0.00 DIRECT 0.00 CUMS 0.0 * 0.0

MEAN 26.03 26.36 30.98 32.53 17.38 14.26 30.04 34.53

	COVARIANCE							
1	4.88	7.38	0.60	-1.68	6.01	9.26	-1.69	-7.26
2	7.38	15.20	-0.56	-6.05	11.28	21.62	-6.35	-17.88
3	0.60	-0.56	5.25	6.82	0.11	-3.12	3.86	4.89
4	-1.68	-6.05	6.82	13.58	-5.76	-13.97	9.52	17.48
5	6.01	11.28	0.11	-5.76	11.72	19.61	-6.58	-17.78
6	9.26	21.62	-3.12	-13.97	19.61	38.32	-14.70	-36.56
7	-1.69	-6.35	3.86	9.52	-6.58	-14.70	11.64	20.64
8	-6.24	-17.88	4.89	17.48	-17.78	-36.55	20.64	44.09
SKWNESS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

CLUSTER 1 INDEX 107 PROPORTION 0.59421 W PARENT 200.404
 SPLIT=0.9995 04 WEIGHT 0.00000 WAS 0.00000 ADJUST 280.000 ID 99916
 PROPORTION: PROP 0.59421 CIN 47.54 CTOT 120.40
 OLD PROP 0.594206 CIN 47.54 ODEN 80.00 DIFFER 0.0
 VOLUME 0.27E-22 P0010.52E-11 DC0N 4.74

LOCATION 5361 LINK 0 SUBS 0 0 SUPER104 6249 SYMBOL 3
 INDEX = 107 SYMBOL = 5361

NET PROB***** DIRECT***** CUMS***** * 1.01

ORIGINAL PAGE IS
OF POOR QUALITY

MEAN	27.47	31.00	29.05	21.24	27.55	26.35	24.83	23.31
COVARIANCE	2.12 2.45	2.47 3.30	2.22 2.12	1.04 0.64	1.21 1.65	4.00 5.22	-1.26 -1.04	-1.34 -2.66
3	2.27	2.14	2.93	1.45	0.74	3.62	-0.43	-0.21
4	1.09	0.64	1.45	2.07	-0.31	0.74	0.10	1.21
5	1.21	1.65	0.74	-0.31	1.50	3.37	-1.17	-2.16
6	4.04	5.22	3.62	0.74	3.37	4.63	-3.35	-4.97
7	-1.27	-1.44	-0.54	0.10	-1.17	-3.35	1.64	2.74
	-1.34	-2.50	-0.21	1.21	-2.16	-6.97	2.78	5.34
SKEW(*#)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

ADJUSTED TSO. INDEXES: MAUJ 99079 90116 104
STATIS KL. W(KL) *ADJ(RL)

ADJUST TESTS: TRACE TESTS (SPLIT=0): #ADJ(KL) *SIM PROPORTION TO TOP LEVEL = IDADJ(NPTSO. INDEX KL. *ADJ(RL))	280.3 WAS 200.9 SKEW 416.0 KURT 11719.9 -86250E 05 -19505E 04 -1.3426E 05	CHANGE 0.0	0.0
ADJUST TESTS: WEIGHT TESTS (SPLIT=0): #ADJ(KL) *SIM PROPORTION TO TOP LEVEL = IDADJ(NPTSO. INDEX KL. *ADJ(RL))	1084.9 WAS 139.4 SKET 1649.6 KURT 4075.0 -80745E 05 -23293E 04 -1.2275E 05	CHANGE 0.0	0.0

CLUSTER1025 INDEX 5 PROPORTION 0.10157 w PARENT40413.000
SPLIT-0.100E 05 WEIGHT 1084.859 WAS 417.046 SKET 1044.319 ID 94256
PROPORTION: PHUP 0.10157 CIN 1045.91 CTOTB061431
OLD PKP 0.09033 CIN 492.41 INDEN4077.08 DIFFER 0.0
VOLUME0.45E-18 ROOT0.92E-09 DCON -2.90

LOCATION 2313 LINK 0 0 SUMS 0 0 SUPER n 119 SYMBOLS INDEX = 5 SYMBOL = *****	NET PROBS***** DIRECT***** CUMS 0.0 *	CUMS 0.0 *	0.0					
MEAN	24.79	23.99	26.04	25.03	20.34	19.35	22.76	22.67

COVARIANCE 1.047 0.98 0.72 0.92 0.06 0.23 -0.83 -0.11

COVARIANCE	2	3	4	5	6	7	8	9
COVARIANCE	0.98	0.72	0.66	0.65	0.67	0.60	0.57	0.57
3	0.72	0.66	1.55	1.31	0.16	0.16	-0.09	-0.09
4	0.92	0.85	1.31	2.49	-0.54	0.18	-0.69	0.52
5	0.06	0.07	0.16	-0.54	0.64	0.31	0.43	0.21
6	0.23	0.90	0.57	0.16	0.31	0.96	0.44	0.41
7	-0.63	-0.25	-0.00	-0.89	0.43	0.44	1.32	0.49
8	-0.11	-0.00	0.68	0.52	0.21	0.41	0.49	1.08
SKEW(*#)	892.1	835.7	1036.3	1180.7	-35.2	396.4	-584.0	497.6

ADJUST(KL) *SIM PROPORTION TO TOP LEVEL = 667.6 400.0 IDADJ(NPTSO. INDEX KL. *ADJ(RL))	1736.3 0.10338A 5 667.6 1736.31 STATIS NPTSO. INDEX KL. *ADJ(RL))	CHANGE 0.0	0.0
ADJUST -14 WEIGHT TESTS (SPLIT=0): #ADJ(TSO. INDEX KL. *ADJ(RL))	1944.9 WAS 55.2 SKET 971.9 SPFAC-U.99999E 04 -73335E 05 -36032E 04 1875.5 13293E 05	CHANGE 0.0	0.0

CLUSTER 1028 INDEX -1 PROB 0.117
 SPLIT -0.100E 0.117 0.912 ADJUST 0.910E 0.000
 WEIGHT 1.982 0.415 0.980 C11 1.435 0.06 C10 1.724 0.05 10 91088
 PROPORTION PROB 0.09809 C11 917.0 0.00000 DIFFER 0.05
 OLD PROB 0.09809 C11 917.0 0.00000 DIFFER 0.05
 VOLUME 0.73E+21 0.010.27E-10 ICUN 4.74
 LOCATION 1741 LINE-14 4947 SUPER 0 0 SUPER 0 119 SYMUL*****
 INDEX = -1K SYMBOL = *****
 NET PROB***** DIRECT***** CUMS***** * 0.98
 MEAN 25.56 25.60 26.85 25.68 20.74 20.85 23.34 22.53
 COVARIANCE 1.40 2.41 1.51 1.50 1.35 1.20 2.27 0.51 -0.59
 2 2.41 5.47 2.98 2.98 2.38 2.04 4.72 0.32 -0.77
 3 1.50 2.98 2.68 2.32 1.29 3.19 1.17 0.31
 4 1.35 2.38 2.32 3.15 1.64 2.71 1.40 1.04
 5 1.29 2.04 1.29 1.64 1.37 1.93 0.49 0.11
 6 2.27 4.72 3.19 2.71 1.93 4.64 0.67 -0.27
 7 0.51 0.32 1.17 1.40 0.49 0.87 1.27 0.78
 8 -0.50 -0.77 0.31 1.04 0.11 -0.27 0.78 1.49
 SKEW(*#) 187.7 395.8 145.7 43.7 59.0 333.5 -36.5 -59.4

WADJ(KL) W(KL) NSIM 2529.8 973.0 0.093826 0.0
 PROPORTION RELATIVE TO TOP LEVEL = 0.093826 -1b
 TWDJ(NPTSO) INDEX = ADJ 91088 91088 0.2807243652E 03 0.280000000E 03
 STATIS KL. W(KL) W(KL) W(KL)

ADJUSTED WEIGHT 280.7 WAS 8532.4 SPFACT-0.9999E 04 CHANGE 0.0
 STATISTICS: TRACE 101.3 SKEW 0.46734.5 0.21616E 05
 TESTS (SPLIT=0): -1.1622E 06 0.24196E 04
 MAUW(KL) NSIM 421.6 200.7 400.0 0.075181 106
 PROPORTION RELATIVE TO TOP LEVEL = 21-20 14-16 15-20 13-05 0
 18-10 19-09
 ***HAVE SPLIT 10 SUBS108109 ITER 39
 KL. INDEX. LSUPER 5963 106 6249

DATA OF OBSERVATION CLUSTERS FROM FILE

CLUSTER 0 INDEx 105 PROPORTION 0.69111 * PARENT 0.911
 SPLIT -0.1700E-02 WEIGHT 0.000004
 PROPORTION: PROP 0.000000 CIN 80.000 AUGUST 021.444 ID 99916
 OLD PROP 0.623410 CIN 192.31 CTOT 130.65 DIFFER 0.0
 VOLUME 0.456210 DCON 278.26
 LOCATION 5963 LINK 107 5361 SUPER 106 249 SYMBOL 1
 INDEX = 105 SYMBOL = 1
 NET PROGRE***** DIRECT***** CUMS 0.0 * 1.00
 CUMS 0 .100000 01

MEAN 25.45 27.82 30.27 30.30 19.57 14.54 27.19 26.75

COVARIANCE	2.30	2.71	0.66	0.13	2.16	2.69	-0.02	-0.91
2	2.71	6.01	0.84	-0.53	3.75	7.24	-0.72	-3.67
3	0.64	0.64	3.24	3.96	0.16	-0.30	1.84	2.26
4	0.13	-0.53	3.94	7.00	-1.63	-3.63	3.75	0.42
5	2.16	3.75	0.16	-1.63	4.20	6.60	-1.81	-5.40
6	2.89	7.24	-0.30	-3.63	5.60	13.11	-4.11	-11.06
7	-0.02	-0.72	1.64	3.75	-1.81	-4.11	5.35	7.77
8	-0.91	-3.87	2.20	6.42	-5.40	-11.06	7.77	15.82

SKREW(*#) 182.5 895.2-1059.3-2544.6 2095.1 3945.9-2824.3-5532.3

CLUSTER 1 INDEx 108 PROPORTION 0.39927 * PARENT 200.724
 SPLIT -0.9999E-04 WEIGHT 0.000000
 PROPORTION: PROP 0.36627 CIN 80.000 ADJUST 280.000 ID101367
 OLD PROP 0.394207 CIN 31.94 CTOT 120.72
 VOLUME 0.97E-19 DCON 80.00 DIFFER 0.0
 LOCATION 3487 LINK 106 2155 SUPER 106 5963 SYMBOL 2
 INDEX = 108 SYMBOL = 2
 NET PROGRE***** DIRECT***** CUMS***** 1.00
 MEAN 27.63 29.64 29.01 27.94 21.75 22.26 25.94 25.73

COVARIANCE	2.88	3.39	2.68	3.69	0.19	0.77	0.90	0.99
2	3.39	6.35	3.42	3.82	1.41	4.21	-0.34	-1.18
3	2.68	3.42	5.87	8.79	-2.04	-2.90	5.01	7.68
4	3.69	3.82	8.79	15.49	-4.48	-7.45	4.52	15.15
5	0.19	1.41	-2.04	-4.48	3.28	6.48	-4.58	-7.95
6	0.77	4.21	-2.90	-7.45	6.48	13.93	-8.83	-15.30
7	0.40	-0.34	5.01	9.52	-4.58	-8.83	6.72	14.15
8	0.49	-1.18	7.88	15.15	-7.95	-15.30	14.15	23.05

SKREW(*#) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CLUSTER 1 INDEx 109 PROPORTION 0.60073 * PARENT 200.724
 SPLIT -0.9994E-04 WEIGHT 0.000000
 PROPORTION: PROP 0.60073 CIN 80.000 ADJUST 280.000 ID101367
 OLD PROP 0.600733 CIN 48.06 CTOT 120.72
 VOLUME 0.18E-19 DCON 80.00 DIFFER 0.0
 LOCATION 2155 LINK 0 SUPER 106 5963 SYMBOL 3
 INDEX = 109 SYMBOL = 3
 NET PROGRE***** DIRECT***** CUMS***** 0.98

ORIGINAL PAGE IS
OF POOR QUALITY

MEAN 25.66 26.60 31.10 31.67 14.11 16.07 24.02 30.70
 COVARIANCE 1.942 2.07 0.04 -0.32 2.10 2.03 0.64 0.34
 2.07 5.01 0.02 -0.07 -1.12 3.68 0.34 -0.07 -3.30
 3 0.04 0.02 2.67 3.08 0.93 0.09 1.03 0.35
 4 -0.32 -1.12 3.08 5.07 -0.31 -2.01 2.10 3.55
 5 2.10 3.68 0.93 -0.31 3.88 5.01 -0.06 -2.97
 6 2.03 6.38 0.09 -2.01 5.61 9.33 -1.04 -6.84
 7 0.64 -0.07 1.03 2.10 -0.06 -1.04 3.89 4.51
 8 0.34 -3.30 0.35 3.55 -2.97 -6.84 4.51 10.89
 SKW(0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

IADJ(NPTSO, INDEX, WADJ(KL), WADJ(KL))
 IADJ(KL, WKL), WADJ(KL)
 STATISTICS 1567 0.4212939453E 03 0.4204041055E 03

ADJUST 104 WEIGHT 421.3 WAS 200.4 SPFAC-0.16317E 03 CHANGED 0.0
 STATISTICS THACCE TESTS (SSLIT=0): 7.75048E 05 3994.7 KURT 71080.8 0.47106E 05
 WADJ(KL), WKL, WSIM 46.13 220.9 -1.8396E 04 0.47106E 05
 PROPORTION RELATIVE TO TOP LEVEL 0.03809 104
 IADJ(NPTSO, INDEX, WADJ(KL)) 99916 13 104 220.89 0.6941093750E 03
 STATIS KL, WKL, WADJ(KL)

ADJUST 13 WEIGHT 695.1 WAS 337.1 SPFAC-0.99999E 04 CHANGED 0.0
 STATISTICS (SSLIT=0): -1.98572E 05 726.1 KURT 2690.9 0.29997E 01

C-83 CLUSTER1029 INDEX 13 PROPORTION 0.05054 W PARENT42003.000
 SPLIT-0.100E 05 WEIGHT 695.081 WAS 337.051 ADJUST 694.109 10 95288
 PROPORTION: PKOP 0.05035 CN 674.62 CT078623.94
 OLD PROP 0.04290 CIN 327.29 DEN7068.50 DIFFER 0.0
 VOLUME 0.13E-18 WOOT 0.35E-09 DC0N -1.04

LOCATION 3931 LINK 5 2313 SUBS 0 0 SUPER 0 119 SYMBOL*****
 INDEX = 13 SYMBOL = *****

NET PROB***** DIRECT***** CUMS***** 0.73
 MEAN 24.41 25.41 25.11 22.81 21.54 23.47 23.02 20.87

COVARIANCE 0.75 0.24 0.36 0.42 0.38 0.06 0.02 0.00
 2 0.24 1.93 0.80 0.84 0.92 1.54 0.20 -0.37
 3 0.36 0.80 1.91 1.54 0.43 0.26 1.21 0.66
 4 0.42 0.84 1.54 2.64 0.20 0.48 1.13 1.30
 5 0.38 0.92 0.63 0.20 0.84 0.73 0.02 -0.23
 6 0.36 1.54 0.26 0.48 0.73 1.65 -0.15 -0.57
 7 0.02 0.20 1.21 1.13 0.02 -0.15 1.26 0.60
 8 0.40 -0.37 0.66 1.30 -0.23 -0.57 0.60 1.40
 SKW(0) 158.9 -32.3 -321.6 -140.3 159.6 101.1 -268.2 -171.1

WADJ(KL), WKL, WSIM 736.1441 358.0 400.0
 IADJ(NPTSO, INDEX, WADJ(KL)) 92003 0.05491 13 0.28795E 04 0.17476E 05
 IADJ(KL), WKL, WADJ(KL)
 STATISTICS (SSLIT=0): 461.4 220.7 400.0 0.125932 105
 PROPORTION RELATIVE TO TOP LEVEL 0.050565 92113 10522169E 03 0.4202005859E 03

ADJUST 105 WEIGHT 421.0 WAS 200.3 SPFAC-0.99999E 04 CHANGED 0.0
 STATISTICS THACCE TESTS (SSLIT=0): 461.4 220.7 400.0 0.125932 105
 IADJ(NPTSO, INDEX, WADJ(KL)) 105 0.4610565 92113 10522169E 03 0.46114438477E 03

ADJUST 105 *EIGHT
 STATISTICS: MEAN 461.9 WAS 220.7 SPFAC=0.99994E 04 CHANGE 0.0
 PLACE 70.7 SKW 265.1 KURT 1.4405.7 -0.29433E 04 -0.42121E 04

CLUSTER1031 INDEX 105 PROPORTION 0.67124 * PARENT 2667.184
 SPLIT=0.1000E 05 WEIGHT 461.9 WAS 220.722 ADJUST 461.944 10101913
 PROPORTION: PHOP 0.71246 CIN 451.03 CTOT 2034.50 DIFFER 0.0
 OLD PHOP 0.64299.3 CIN 210.95 DEN 393.85 DIFFER 0.0
 VOLUME 0.38E-17 ROOT0.20E-08 DCON 0.115
 LOCATION 6407 LINK 0 0 SIRS 0 0 SUPER-15 4375 SYMBOL*****
 INDEX = 105 SYMHUL = *****

NET PHOM***** DIRECT***** CUMS***** * 1.011
 MEAN 27.06 29.77 28.05 27.26 27.33 24.20 24.30 22.90
 COVARIANCE?

	2.024	2.059	2.059	2.014	1.95	0.056	1.04	-0.043	-0.023
2	2.059	4.446	2.046	2.096	2.56	0.19	1.79	-0.12	-0.74
3	2.014	2.096	3.29	2.35	0.44	1.78	0.47	0.62	
4	1.95	2.056	2.036	2.69	-0.37	0.75	-0.66	-0.29	
5	0.446	0.119	0.44	-0.37	1.29	0.44	0.66	0.40	
6	1.19	1.79	1.74	0.75	0.84	1.05	0.82	0.51	
7	-0.44	-0.112	0.47	-0.60	0.66	0.82	1.70	1.08	
8	-0.123	-0.74	0.62	-0.29	0.40	0.51	1.08	1.94	

SKW(*#) -957.8 -915.1 -874.9 -621.8 -588.4 -444.7 34.6 189.1

WADJ(KL)*W(KL)*SIM 502.3 241.05E 01*00E 01*241.1E 03
 ALPHA ERROR:PKP.CM*W105.25E 00*1005E 01*241.1E 03
 (ERROR CONT) CIN.4510E 03.2109E 03.2404E 03.2405E 03.2406E 03
 W(KL)*C10E 03.2407E 03.2408E 03.2409E 03.2400E 03.2401E 03
 CLUSTER1032 INDEX 105 PROPORTION 0.94705 * PARENT 2667.184

SPLIT=0.1000E 15 WEIGHT 241.13E WAS 220.722 ADJUST 502.276 10101913
 PROPORTION: PHOP 1.00521 CIN 451.03 CTOT 2034.50 DIFFER 0.0
 OLD PHOP 0.642443 CIN 210.95 DEN 393.85 DIFFER 0.0
 VOLUME 0.51E 105 ROOT0.20E-08 DCON 0.115
 LOCATION 6407 LINK 0 SIRS 0 0 SUPER-15 4375 SYMBOL*****

INDEX = 105 SYMHUL = *****

NET PHOM***** DIRECT***** CUMS***** * 1.000
 MEAN 26.82 24.51 26.76 27.10 22.20 24.08 24.31 23.01

	2.33	2.41	1.97	1.72	0.50	1.09	-0.43	-0.19
2	2.41	4.33	2.05	2.32	0.25	1.74	-0.19	-0.91
3	1.97	4.65	2.96	1.97	0.61	1.67	0.52	0.63
4	1.72	2.32	1.97	2.52	-0.34	0.59	-0.63	-0.41
5	0.50	0.25	0.61	-0.34	1.43	0.94	0.81	0.54
6	1.09	1.74	1.67	0.59	0.94	1.86	0.86	0.47
7	-0.43	-0.19	0.52	-0.63	0.61	0.96	1.72	1.15
8	-0.19	-0.91	0.63	-0.41	0.54	0.47	1.15	2.17

SKW(*#) -957.8 -915.1 -874.9 -621.8 -588.4 -444.7 34.6 189.1

PROPORTION RELATIVE TO TOP LEVEL = 0.131505 105
 LOADN=NPSS. INDEX 10191323 0.150228
 STATUS KL. WADJ(KL) 10191323 0.4214480230E 03
 ADJUST 106 *EIGHT -191.210.8 WAS 200.7 SPFAC=0.144501 0.3
 STATISTICS: MEAN -191.210.8 SKW 14.01.3 KURT 17573.1 CHANGE 0.0

0.19401E 00 0.49127E 02
 0.12906E 00 0.38050E 03
 0.0

TESTS (SPLIT=0): -0.835E-2E 05 -0.4430HE 04 -0.6392HE 04
 CLUSTER1032 INDEX 105 PROPORTION 0.47599 W PARENT 433.675
 SPLIT-0.144E-05
 WEIGHT 42.0E-01 WAS
 PROPORTION: PKOR 0.62019 CIN 200.724 ADJUST 421.444 I10101367
 OLD PROP 0.823E-06 CIN 192.31 DEN 27M-53 DIFFER 59.15
 VOLUME 0.56E-15 ADJF 0.24E-07 DC0N -1.18
 LOCATION 5963 LINK107 5361 SHRS108 3487 SUPER104 6249 SYMBOL*****
 INDEX = 106 SYMBOL = *****
 NET PROB04907.40 DIRECT5983.32 CUMS 895.88 * 1.01

MEAN	26.91	27.87	30.38	30.42	19.54	19.35	27.39	29.13
COVARIANCE	2.05	2.42	0.51	0.04	1.74	2.40	0.21	-0.32
2	2.42	5.16	0.73	-0.27	2.84	5.47	0.21	-1.87
3	0.51	0.73	2.96	3.39	0.46	0.21	1.24	1.15
4	0.04	-0.27	3.79	5.88	-0.67	-1.81	2.40	3.71
5	1.74	2.84	0.45	-0.67	3.02	4.30	-0.55	-2.76
6	2.40	5.47	0.21	-1.81	4.36	8.65	-1.54	-5.71
7	0.21	0.21	1.24	2.40	-0.55	-1.54	3.61	*.37
8	-0.32	-1.87	1.15	3.71	-2.78	-5.71	*.37	8.97

SKEW(*W) 71.1 123.8 306.3 261.6 -115.6 -563.1 115.5 486.5

WADJ(KL) W(KL) WSIM PROPORTION RELATIVE TO TOP LEVEL 462.1 221.1 400.0
 IDADJ-NPTSO-WINDEX-WADJ101367 0.062E50 106
 STATIS KL W(KL)-WADJ(KL) 1n4 0.4626744047E 03 0.*61779785211 03

ADJUST 104 WEIGHT 462.7 WAS 220.9 SPFAC-0.68024E 02 CHANGED 0.0
 STATISTICS: TRACE -146.9 SKEW 231.8 KURT 18086.9
 WADJ(KL) W(KL) WSIM 503.6 178E 05 -32629E 04 -.49029E 04
 PROPORTION RELATIVE TO TOP LEVEL 241.8 400.0
 IDADJ-NPTSO-WINDEX-WADJ101435 0.089152 104
 STATIS KL W(KL)-WADJ(KL) 1n9 0.2805195313E 03 241.78 503.57 03

ADJUST 105 WEIGHT 280.5 WAS 80.0 SPFAC-0.99990E 04 CHANGED 0.0
 STATISTICS: TRACE 50.0 SKEW 756.6 KURT 38797.2E 05

CLUSTER1034 INDEX 109 PROPORTION 0.69045 W PARENT 278.408
 SPLIT-0.9999E 04
 WEIGHT 280.520 WAS
 PROPORTION: PKOP 0.7007 CIN 80.000 ADJUST 280.000 I10101367
 OLD PROP 0.600133 CIN 48.000 DEN 80.00 DIFFER 14.55
 VOLUME 0.60E-14 ADJF 0.77E-07 DC0N -5.2,
 LOCATION 2155 LINK 0 SUBS 0 0 SUPER106 5963 SYMBOL*****
 INDEX = 109 SYMBOL = *****
 NET PROB***** DIRECT***** CUMS***** * 0.98

MEAN	26.21	27.36	30.76	31.12	18.99	17.35	27.60	29.84
COVARIANCE	1.96	2.19	0.08	-0.43	1.84	2.13	0.39	-0.00
2	2.19	4.67	0.09	-0.86	2.84	4.79	0.59	-1.38
3	0.04	0.09	2.63	2.92	0.67	0.07	0.80	0.19
4	-0.43	-0.86	2.92	4.91	-0.28	-1.36	1.17	1.91
5	1.84	2.74	0.67	-0.28	2.86	3.46	0.26	-1.45
6	2.13	4.79	0.07	-1.36	3.46	6.24	0.11	-2.96
7	0.39	0.59	0.89	1.17	0.26	0.11	2.44	2.15
8	-0.00	-1.38	0.19	1.91	-1.45	-2.96	2.15	5.27

SKEN(ew) 1007.4 143H.2 -317.1-1017.5 1600.7 2229.r -900.3-1892.1

*ADJ(L) SIS (NL) *SIS
PROPOSITION (NL) *SIS
14-10 14-09 20-10 21-20 14-10 14-20
***HAVE SPLIT104 *EIGH
KL•INJER•LSURF 2155 109 3963

1

00-11

1

DUMP OF OBSERVED CLUSTERS FROM 19

CLUSTER 1 INDEX 119 PROPORTION 0.66676 = PARENT 278.008									
SPLIT-0.1700 ₀	INPUT ₀	PROB ₀	0.66676	CIN ₀	80.000	ADJUST	421.039	10101367	
WEIGHT ₀	200.520	4AS		CIN ₁	157.32	CTOT	422.45		
PROPORTION: PKOP ₀	0.701623	CIN ₂	157.32	CDN ₀	235.94	DIFFER	0.0		
OLD_SHP ₀	0.701623	VOLUME ₀	20	77E-07	RCVN ₀	-5.24			
LOCATION 215 ₀	LINK ₀	0	SUR110	2599	SUPER106	5403	SYMBL	1	
INDEX = 10 ₀	SYMBL =								
NET PROB*****	DIRECT*****	CUMS*****	1.00						
MEAN	26.63	27.67	30.62	30.83	10.36	17.86	27.43	29.48	
COVARIANCE	1.95	2.23	0.08	-0.47	1.73	2.17	0.29	-0.14	
2	2.23	4.53	0.12	-0.76	2.37	4.16	0.85	-0.61	
3	0.08	0.12	2.62	2.85	0.56	0.06	0.70	0.12	
4	-0.47	-0.76	2.85	4.84	-0.27	-1.10	0.79	1.26	
5	1.73	2.37	0.56	-0.27	2.66	2.85	0.39	-0.85	
6	2.17	4.16	0.06	-1.10	2.85	5.01	0.58	-1.41	
7	0.29	0.85	0.76	0.79	0.59	0.58	1.86	1.20	
8	-0.14	-0.61	0.12	1.26	-0.85	-1.41	1.20	3.03	
SKEM(***)	1007.4	1438.2	-377.1	-1017.5	1600.7	2229.8	-900.3	-1092.1	
MEAN	27.24	28.81	30.11	29.79	20.51	19.57	26.71	28.05	
COVARIANCE	2.48	2.35	1.29	0.96	2.26	2.81	-0.22	-0.55	
2	2.35	4.88	2.22	1.43	3.14	5.13	0.17	-1.74	
3	1.29	2.22	3.70	3.12	2.18	2.33	0.97	-0.65	
4	0.93	1.43	3.12	4.51	1.19	0.74	1.34	1.27	
5	2.26	3.14	2.19	1.19	3.92	4.70	-0.34	-2.40	
6	2.81	5.13	2.33	0.74	4.70	7.55	-0.26	-3.30	
7	-0.22	0.17	0.97	1.34	-0.34	-0.26	2.15	2.06	
8	-0.55	-1.74	-0.65	1.27	-2.40	-3.30	2.06	5.62	
SKEM(***)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

CLUSTER 1 INDEX 111 PROPORTION 0.52860 = PARENT 200.520									
SPLIT-0.9999E-04	INPUT ₀	PROB ₀	0.52860	CIN ₀	80.000	ADJUST	120.52	200.000	10103541
WEIGHT ₀	60.000	4AS		CIN ₁	42.30	CTOT	120.52		
PROPORTION: PKOP ₀	0.52M691	CIN ₂	42.30	CDN ₀	80.00	DIFFER	0.0		
OLD_PROP ₀	0.52M691	VOLUME ₀	25	77E-12	RCVN ₀	4.74			
LOCATION 215 ₀	LINK ₀	0	SUBS ₀	0	SUPER109	215>	SYMBL	3	
INDEX = 111	SYMBL =								
NET PROB1606.47	DIRECT	0.00	CUMS=456.65	*	1.00				
MEAN	25.72	26.65	31.07	31.75	19.29	15.35	26.08	30.74	

	SKEWNESS	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Covariance	0.27 0.34	0.33 0.66	-0.02 0.01	-0.12 -0.10	0.27 0.39	0.36 0.64	-0.00 -0.01	-0.10 -0.13
3	-0.02 -0.12	0.01 -0.10	0.36 0.45	0.45 0.40	0.33 -0.10	-0.01 -0.17	0.20 0.33	0.09 0.23
4	0.27 0.39	0.01 -0.01	0.45 -0.17	0.40 0.49	-0.10 0.49	-0.17 0.45	0.20 0.08	-0.22 -0.33
5	0.34 0.64	0.13 0.13	0.20 0.20	0.33 0.33	0.01 0.01	0.08 0.08	0.25 0.45	0.25 0.50
6	-0.01 -0.01	-0.14 0.04	0.04 0.24	0.04 -0.02	-0.13 -0.13	0.01 0.01	0.00 0.00	0.00 0.00

INDUJNPTSÜ [INDEKA-5]ADUJ0136/ 93741 109 0.5031194082E 200.52
STATIS KL. 105 0.5031194082E 0.3 0.302273672E 03

CLUSTER INDEX 106 PROPOSITION 102660 # PARENT 4596784

C-88

MEAN	26.72	28.09	30.59	30.72	19.68	18.40	27.76	29.53
COVARIANCE	2.04	2.33	0.49	0.01	1.51	2.23	0.84	0.59
2	2.33	4.26	0.74	0.28	1.97	3.88	1.68	0.65
3	0.49	0.74	2.34	2.64	0.55	0.71	0.86	0.60
4	0.01	0.28	2.64	4.64	0.22	0.24	1.47	1.47
5	1.51	1.97	0.55	0.22	1.90	2.31	0.87	0.89
6	2.23	3.08	0.71	0.24	2.31	4.41	1.37	0.19
7	0.84	1.45	0.88	1.47	0.87	1.37	2.21	1.41
8	0.59	0.65	0.60	1.47	0.09	0.19	1.41	2.54

PROPORTION RELATIVE TO TOP LEVEL = 0.062017 106
 STATEADJ MTSU INFLAT. = 0.0103198 05153 0.062017 106
 STATEADJ MTSU INFLAT. = 0.0103198 05153 0.062017 106
 STATEADJ MTSU INFLAT. = 0.0103198 05153 0.062017 106

```

ADJUST 104  LIGHT  593.0 WAS    741.0 SFAC-021176 U2  CHANGE 0.0
STATISTICS: FACT  36.4 SKET  1216.5 KUT  15H01.2 04
TESTS (SPLIT=0): -11037E 06  -41H2AE U4  -83857E 04

CLUSTER 1037 INDEX 104  MUPORTION 0.37017 * PARENT 3112.554
SPLIT=0.2115E 02
LIGHT 78.4 WAS 241.7851 ADJUST 503.570 10103347
PROPORTION: P10P n=3127 CIN 50.3% CTO 1703.570
P20P n=3127 CIN 241.14 DIFF 503.570
P30P n=33054 CIN 241.14 DIFF 503.570
P40P n=33054 CIN 241.14 DIFF 503.570
P50P n=33054 CIN 241.14 DIFF 503.570
P60P n=33054 CIN 241.14 DIFF 503.570
P70P n=33054 CIN 241.14 DIFF 503.570
P80P n=33054 CIN 241.14 DIFF 503.570
P90P n=33054 CIN 241.14 DIFF 503.570
P100P n=33054 CIN 241.14 DIFF 503.570

```

ORIGINAL PAGE IS
POOR QUALITY

LOCATION 024 L11:R1U0 9407 SYMBOL 9963 SYMBOL 9963 SYMBOL 9963

LINK = 194 NET PROBES***** DIRECT***** CUMS***** 1.03

WEAU 26.64 21.39 30.63 30.59 10.59 18.25 27.67 29.53

COVARIANCE 1.97 2.26 0.42 -0.02 1.67 2.16 0.51 0.42

2 2.24 4.29 0.69 0.18 1.54 3.84 1.26 0.43

3 0.42 0.69 2.44 2.67 0.70 0.79 0.73 0.33

4 -0.02 0.18 2.67 4.66 0.30 0.22 1.27 1.21

5 1.47 1.94 0.70 0.30 1.81 2.19 0.79 0.03

6 2.17 3.84 0.79 0.22 2.19 4.33 1.18 -0.00

7 0.61 1.26 0.73 1.27 0.79 1.18 1.08 1.16

8 0.42 0.43 0.33 1.21 0.03 -0.00 1.16 2.24

SKEW (+) -165.3 -166.4 671.6 539.0 29.7 -52.6 -122.0 -383.2

WADJ(KL) * S1M 544.0 262.0 0.096854 0.0

PROPORTION RELATIVE TO TOP LEVEL = 0.096854 0.0

IDADJ(NPSO,INDEX=1) WADJ(0387.65425 104 262.0 0.096854 0.0

STATISTICS KL, WKL) * ADJ(KL) * ADJ(KL) 110 0.2806721191E 03 0.2800000000E 03

ADJUST 110 WEIGHT 260.7 WAS 80.0 SPFAC-0.9999UE 04 CHANGE 0.0

STATISTICS: TRACE -90.1 SKEW 44.6 9 KURT 9273.0 0.0

TESTS (ISPLIT=0) 205.8 SKEW -8.4156E 05 -1.6661E 04 -1.0849E 05

WADJ(KL) * S1M 421.3 200.7 400.0 0.049776 220.57

PROPORTION RELATIVE TO TOP LEVEL = 0.049776 220.57 1.0

IDADJ(NPSO,INDEX=1) WADJ(0354.1 956227 110 200.6 0.4210390625E 03

STATISTICS KL, WKL) * ADJ(KL) 109 0.4210900879E 03 0.4210390625E 03

ADJUST 109 WEIGHT 421.1 WAS 200.5 SPFAC-0.3897E 03 CHANGE 0.0

STATISTICS: TRACE -90.1 SKEW 94.2 KURT 9938.9 0.0

TESTS (ISPLIT=0) 11270E 06 -48971E 04 -1.052E 05

WADJ(KL) * S1M 661.1 220.6 400.0 0.063434 220.57

PROPORTION RELATIVE TO TOP LEVEL = 0.063434 220.57 0.09

IDADJ(NPSO,INDEX=1) WADJ(0354.1 95711 109 0.5439604492E 03

STATISTICS KL, WKL) * ADJ(KL) 105 0.5439604492E 03 0.5439604492E 03

ADJUST 105 WEIGHT 544.1 WAS 262.0 SPFAC-0.9999UE 04 CHANGE 0.0

STATISTICS: TRACE 120.6 SKEW 437.8 KURT 7562.1 0.0

TESTS (ISPLIT=0) 90.2 93738E 05 -4794E 04 -1.3941E 05

WADJ(KL) * S1M 584.2 282.1 400.0 0.122833 282.10

PROPORTION RELATIVE TO TOP LEVEL = 0.122833 282.10 0.05

IDADJ(NPSO,INDEX=1) WADJ(0336.96139 105 282.10 584.19

STATISTICS NPSO,INDEX=1 WADJ(KL) -19 96613 96613 0.0

ADJUST -19 WEIGHT 1805.7 WAS 902.2 SPFAC-0.9999UE 04 CHANGE 0.0

STATISTICS: TRACE -44.4 SKEW 175.1 KURT 1683.0 0.0

TESTS (ISPLIT=0) -75416E 05 -35646E 04 -1.3664E 05

CLUSTER100 INDEX -19 PROPORTION 0.09146 # PARENT9613.006

SPLIT=0.00E 05 WEIGHT 1805.740 WAS 902.241 ADJUST 235.8825 ID 96613

PROPORTION: PHOP n.091374 CIN 866.66 1D17689.56 DCON 0.0

OLD PROP 0.091374 CIN 866.66 1D17689.56 DIFFER 0.0

VOLUME=0.93E-21 KURT 0.31E-10 DCON 4.74

LOCATION 4447 LINK=20 145 SUBS 0 0 SUPER 0 119 SYMBOL *****

INDEX = -19 SYMBOL = ***** CUMS***** 0.97

NET PROBES***** DIRECT***** CUMS***** 0.97

WEAU 2E.40 31.66 30.48 2E.16 73.25 25.69 25.89 24.06

COVARIANCE 2.15 2.35 2.04 1.82 1.53 2.07 0.91 0.57

2 2.35 4.81 3.56 3.27 1.96 3.63 2.05 1.26

3 2.04 3.56 4.40 3.55 2.31 2.74 2.59 1.32

4 1.052 3.27 3.056 4.021 2.020 2.055 2.017 <0.01
 5 1.053 1.97 2.036 2.020 1.72 1.66 1.027 0.047
 6 2.017 3.63 2.76 2.55 1.64 2.07 1.53 0.94
 7 0.041 2.01 2.020 2.017 1.27 1.53 1.045 0.57
 8 0.057 1.26 1.32 2.01 1.07 0.94 0.67 1.34
 SKEWNESS -3.931 -7.640.5 -615.3 -573.5 -327.0 -667.0 -326.3 -168.2

ADJUSTED LEVEL = 0.0514
 IDADJNPTSO * RELATIVE TO IDADJNPTSO * INDSEA
 STATUS RL = ADJ(RL)

ADJUST 106 WEIGHT 502.4 545 1113.0 1 SPFAC-U-026519E 02 CHANGE=0.0
 STATISTICS: 1FACT TESTS (SPLIT=0): 0.6270E 06 0.5732E 04 0.2782E 06

ADJ(RL) * STIM TESTS (SPLIT=0): 54.27 261.3 400.0 0.165E 01 0.6513E 03
 ALPHA FRACTION: P.CM 0.9749E 0.3100E 0.105E 0.1K1E 0.1K1E 0.3
 (FRACN CNT) CIN=0.784E 0.3.229E 0.3.249E 0.3.249E 0.3.249E 0.3.249E 0.3

CLUSTER104 INDEX 105 PROPORTION 0.9566U W PAR INT 473.996

SPLIT=0.2652E 02 WEIGHT 261.325 7AS AUGUST 241.059
 PROPORTION: P.RUPP 1.00495 CIN 78.37 CIN 71.96
 OLD PROG 0.92125 CIN 22d.99 3DEN 242.04 DIFFER 27.02
 VOLUME=0.21E 21 M4010.40E-08 MCUN -1.12

LOCATION 5964 LINK107 5361 SUPER10A 3487 SUPER10A 5249 SYMBOL*****
 INDEX = 105 SYMBOL = ***** SYMBOL***** SYMBOL*****
 NET PHON***** DIRECT***** CUMS***** 1.00

MEAN 26.47 27.60 30.31 30.40 19.49 1K.22 27.59 29.41
 COVARIANCE 2 2.05 2.32 0.05 -0.05 1.53 2.20 0.55 0.33
 2 2.32 4.40 0.67 0.29 1.96 3.90 1.32 0.57

3 0.048 0.047 2.58 3.30 0.58 0.044 1.37 1.10
 4 -6.05 0.29 3.30 5.62 0.25 6.34 1.97 1.96
 5 1.53 1.95 0.52 0.25 1.92 2.34 0.73 -0.12
 6 2.21 3.40 0.84 0.34 2.34 4.51 1.15 -0.17
 7 0.55 1.32 1.37 1.97 0.73 1.15 2.33 1.52
 8 0.33 0.57 1.16 1.96 -0.12 -0.13 1.52 2.70

SKEWNESS -914.5 -333.5-1292.6-1129.2 -343.2 -1466.6-1640.8-1-16.9

C-90

PROPORTION RELATIVE TO TOP LEVEL = 0.057266 106
 IDADJNPTSO * INDSEA * IDADJNPTSO * INDSEA
 STATUS RL = ADJ(RL)

ADJUST 105 WEIGHT 245.1 WAS 242.1 SPFAC-0.99999E 04 CHANGE=0.0
 STATISTICS: 1FACT TESTS (SPLIT=0): -1.0213E 06 -0.4131E 04 -0.1042E 05

ADJ(RL) * STIM TESTS (SPLIT=0): 625.9 303.0 400.0 0.1017E 01 0.3030E 03
 ALPHA FRACTION: P.CM 0.63375 0.63375 0.63375 0.63375 0.63375 0.63375
 (FRACN CNT) CIN=0.551E 0.3.2621E 0.3.2621E 0.3.2621E 0.3.2621E 0.3.2621E 0.3

CLUSTER104 INDEX 105 PROPORTION 0.98625 * PARENT 3503.984
 SPLIT=0.1000E 02 WEIGHT 242.097 AUGUST 242.097
 PROPORTION: P.RUPP 1.0166H CIN 245.07 CIN 254.524
 OLD PROG 0.926470 CIN 222.74 DIFFER 24
 VOLUME=0.31E 20 4.910.19E-0M DCUN -1.09

LOCATION 6407 L1-W 0 0 SUPER-15 4375 SYMBOL*****
 INDEX = 105 SYMBOL = ***** SYMBOL***** SYMBOL*****
 NET PHON***** DIRECT***** CUMS***** 1.00

0.71402E-01 0.36839E 01
 0.72382E-01 0.99553E 01
 0.4096E 03.2425E 03

MEAN 26.92 24.54 25.51 27.09 22.33 24.17 24.42 23.04

COVARIANCE 2.31 2.57 2.03 1.74 1.74 1.03 1.10 -0.40 -0.22
2.57 4.17 2.74 3.04 2.22 0.24 1.61 0.44 -0.21 -1.06
3 2.03 2.74 3.04 2.22 0.24 1.61 0.44 0.44 0.63

4 1.74 2.54 2.03 2.22 2.95 -0.69 0.49 -0.63 -0.36
5 0.35 0.01 0.29 -0.64 1.42 0.92 0.68 0.50
6 1.16 1.57 1.61 0.44 0.92 1.77 0.79 0.61
7 -0.40 -0.21 0.49 -0.63 0.64 0.79 1.54 1.04
8 -0.22 -1.06 0.63 -0.36 0.50 0.61 1.14 2.16
SKW(^{**}) -657.0 -598.9 -499.7 -661.7 107.0 -105.9 340.5 234.5

PROPORTION RELATIVE TO TOP LEVEL =
IADJ.NPTSO.INDEA.W. #ADJ105939 0.7354 0.120869 105 105
STATIS KLN W(RKL).#ADJ(RKL) 104 0.5439992676E 03 0.5439990234E 03
STATIS KLN W(RKL).#ADJ(RKL) 104 0.5439992676E 03 0.5439990234E 03

ADJUST 104 WEIGHT 545.0 MAS 1422.0 SPFAC-U.33381E 02 CHANGE 0.0
STATISTICS THACF 184.6 SKEW 1411.3 KURT 1882.0
TESTS (SPLIT=0): 2.74075E 05 -0.38145E 04 -0.10582E 05

CLUSTER10** INDEX 104 PROPORTION 0.39073 * PARENT 3515.201
SPLIT-D.3338E 02
WEIGHT 544.999 WAS 262.000 ADJUST 543.999 10105225
PROPORTION: PHUP 0.38924 CIN 545.00 C10 2117.61
OLD PROP 0.37054 CIN 262.00 C10 2117.61
VOLUME 0.35E-16 ROUTE 0.59E-08 DCUN 946.09 DIFFER 7.56
LOCATION 6249 LINK105 6407 SUBS106 5963 SUPER-15 4375 SYMBOL *****
INDEX = 104 SYMBOL = *****

NET PROB***** DIRECT***** CUMS***** * 0.98

MEAN 26.58 27.93 30.47 30.57 19.56 19.27 27.72 29.53

COVARIANCE 2.03 2.30 0.46 -0.04 1.55 2.27 0.65 0.35
2.30 4.30 0.76 0.24 2.02 3.95 1.30 0.47
3 0.46 0.76 2.55 2.86 6.73 0.96 0.91 0.19
4 -0.04 0.24 2.86 4.97 0.40 0.49 1.53 1.40
5 1.55 2.72 0.73 0.40 1.88 2.30 0.91 0.10
6 2.27 3.95 0.96 0.49 2.30 4.43 1.36 0.19
7 0.65 1.30 0.91 1.53 0.91 1.36 2.00 1.12
8 0.35 0.47 0.49 1.40 0.10 0.19 1.12 2.12

SKW(^{**}) -707.8 -817.2 -89.8 216.4 -763.3 -804.6 -354.2 -188.5

#ADJ(RKL).#W(RKL).#SIM 586.0 283.0 400.0
PROPORTION RELATIVE TO TOP LEVEL = 0.099573 0.
IADJ.NPTSO.INDEA.W. #ADJ105225 9744.0 104 586.00
STATIS KLN W(RKL).#ADJ(RKL) 110 0.421342383E 03

ADJUST 110 WEIGHT 421.4 MAS 200.7 SPFAC-U.99999E 04 CHANGE 0.0
STATISTICS THACF 2135.1 SKEW 45057.7 KURT 138065.0 0.13567E 07
TESTS (SPLIT=0): 0.44377E 07 0.3922E 05 0.421342383E 03

CLUSTER10** INDEX 110 PROPORTION 0.20068 * PARENT 423.035
SPLIT-0.100E 05
WEIGHT 421.41 MAS 200.672 ADJUST 421.344 10105427
PROPORTION: PHUP 0.87427 CIN 406.35 CTOT -41.0H2
OLD PROP 0.87427 CIN 193.15 DCUN 261.31 DIFFER 0.0
VOLUME 0.18E-15 ROUTE 0.14E-07 DCUN -1.12
LOCATION 2599 LIKELI 3043 SIMS 0 0 SURPLUS 115 SYMBOL *****
INDEX = 110 SYMBOL = *****

NET PROB***** DIRECT***** CUMS***** * 1.02

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
NOT OF QUALITY

MEAN 270.36 271.67 30.45 310.54 134.41 271.56 294.33

COVARIANCE	2.005	2.22	0.24	-0.16	1.51	1.97	0.61	0.02
?	2.22	4.21	0.52	-0.13	1.96	3.53	0.92	-0.21
3	0.25	0.32	2.56	3.04	0.29	-0.97	1.05	0.44
4	-0.12	-0.13	3.04	2.40	-0.30	-0.86	1.45	1.54
5	1.51	1.94	0.23	-0.30	2.35	2.78	0.63	-0.62
6	1.47	3.53	-0.07	-0.86	2.74	6.74	0.72	-1.15
7	0.04	0.92	1.65	1.45	0.63	0.72	2.28	1.62
8	0.92	-0.21	0.54	1.94	-0.62	-1.15	1.62	3.28
SKWNESS	-593.5	-13.5-1863.4-2912.2	1970.3	3527.4-1439.1-4209.2				

ADJUSTED SPLIT INDEX
ALPHA EXPURGATION CIN = 10.82%
TERROR CONC CIN = 0.064E 03.193E 00.1044E 01.970E 00.250E 03
CLUSTER 1000E 0.2126E 03 W(KF) CINTUDEN.00EN.4230E 03*****.4669E 03.2613E 03

SPLIT=0 1000E 0.5 PROPORTION 1.07601 = PARENT 023.035

PROPORTION: 220.79 WAS 200.672 ADJUST -41.62
OLD PROP 0.446600 CIN 193.75 DEN 261.31 DIFFP 0.0
VOLUME 0.25E 21 QUOTU.14E-07 DCUN -1.12

LOCATION 2549 LICKLILLI 3043 SHHS 0 0 SUPER109 215 SYMUL*****
INDEX = 110 SYMBOL = *****

MEAN 260.31 271.56 30.34 30.44 19.51 14.25 271.50 294.23

COVARIANCE	2.00	2.04	0.34	0.05	1.30	1.61	0.60	0.11
?	2.04	4.08	0.61	0.22	1.69	3.10	0.91	-0.06
3	0.34	0.61	2.46	3.55	0.08	-0.19	1.27	1.27
4	0.05	0.22	3.55	6.25	-0.05	-1.26	1.58	2.45
5	1.30	1.69	0.08	-0.65	2.45	2.98	0.63	-0.78
6	1.61	3.10	-0.19	-1.26	2.88	4.87	0.62	-1.45
7	0.40	0.51	1.27	1.58	0.63	0.62	2.48	1.94
8	0.11	-0.08	1.27	2.45	-0.78	-1.45	1.94	3.86
SKWNESS	-593.5	-13.5-1863.4-2912.2	1970.3	3527.4-1439.1-4209.2				

PROPORTION RELATIVE TO TOP LEVEL
18-10 19-09 20-15 21-20 14-10 15-20 0.052716 110
05-10 ** HAVE SPLIT 110 WEIGHT 22-7 SUBS112113 ITER 71
KL.INDEx.LSUPEx 2599 110 55 0

NUMBER OF OBSERVED CLUSTERS FROM 110 2544

CLUSTER 1 INDEX 110 PROPORTION 0.92743 * PARENT 423.035

SPLIT=0.1700P 0* WEIGHT 25.739 WAS 200.672 AUGUST 461.478 10105427

PROPORTION: PHOP 6.90056 CIN 212.60 CTOT 145.42 UDEN 229.12 DIFFR 0.0

OLD PHOP 0.90041 CIN 212.60 UDEN 229.12 DIFFR -1.14 VOLUME 0.25T 21 INDfx = 110 SYMBOL = 1

NET PROB***** DIRECT***** CUM***** 1.00

MEAN 25.31 27.66 30.34 30.49 14.51 14.25 27.50 29.23

COVARIANCE 2 2.00 2.09 0.36 0.05 1.30 1.61 0.40 0.11

2 2.00 4.08 0.61 0.22 1.69 3.10 0.91 -0.08

3 0.34 0.61 2.80 3.55 0.08 -0.19 1.27 1.27

4 0.07 0.22 3.55 6.25 -0.65 -1.26 1.58 2.45

5 1.30 1.69 0.08 -0.65 2.65 2.94 0.63 -0.78

6 1.61 3.10 -0.10 -1.26 2.84 4.87 0.62 -1.45

7 0.40 0.91 1.27 1.58 0.63 0.62 2.68 1.94

8 0.11 -0.08 1.27 2.45 -0.78 -1.45 1.94 3.86

SKREW(*) -593.5 -13.5-1803.4-2912.2 1970.3 3527.9-1939.1-4209.2

CLUSTER 1 INDEX 112 PROPORTION 0.29225 * PARENT 220.739

CLUSTER 1 INDEX 112 PROPORTION 0.29225 * PARENT 220.739

WEIGHT 25.000 WAS 80.000 ADJUST 240.000 10107254

PROPORTION: PHOP 0.29225 CIN 23.38 CTOT 140.74 UDEN 80.00 DIFFR 0.0

VOLUME 0.25E-21 UDEN 52E-08 UDEN 80.00 DIFFR 0.0

LOCATION 8319 LNK113 1583 SUBS 0 0 SUPER110 2599 SYMBOL 2

INDfx = 112 SYMBOL = 2

NET PROB 0.0 DIRECT 0.0 CUM***** 1.00

MEAN 25.14 26.33 30.15 30.36 19.52 15.41 26.09 27.52

COVARIANCE 2 2.40 2.91 1.60 3.13 -0.55 -0.49 -1.25 -0.34

2 2.91 7.07 2.24 3.78 -0.12 2.36 -2.56 -3.37

3 1.69 2.24 7.19 9.19 -3.39 -4.99 4.22 7.47

4 3.13 3.78 9.10 16.24 -7.04 -10.08 4.06 10.56

5 -0.55 -0.12 -3.30 -7.04 6.69 8.99 -1.32 -6.55

6 -0.49 2.36 -4.90 -10.08 8.99 14.92 -3.68 -12.00

7 -1.25 -2.56 4.22 4.06 -1.32 -3.68 6.83 9.16

8 -0.34 -3.37 7.47 10.56 -6.55 -12.00 9.16 18.25

SKREW(*) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CLUSTER 1 INDEX 113 PROPORTION 0.70775 * PARENT 220.739

CLUSTER 1 INDEX 113 PROPORTION 0.70775 * PARENT 220.000 10107254

WEIGHT 25.000 WAS 80.000 ADJUST 240.000 10107254

PROPORTION: PHOP 0.70775 CIN 56.62 CTOT 140.74 UDEN 50.00 DIFFR 0.0

VOLUME 0.31E-21 UDEN 50.00 DIFFR 0.0

LOCATION 1583 LNK113 0 SUBS 0 0 SUPER110 2599 SYMBOL 3

INDfx = 113 SYMBOL = 3

NET PROB 0.0 DIRECT 0.0 CUMS 0.00 * 1.012

MFAN 26.79 26.21 30.41 30.54 19.51 18.14 28.09 29.94

DUMP OF OBSERVATION CLOSTERS FROM 0 119
 CLUSTER 1 INDEX -19 PROPORTION 0.0 PARENT 48000.000

SPLIT 0.100E 05
 #EIGHT 9.000E 05
 PROPORTION: PKOP 1.00000 CIN 0.001 ADJUST 0.00 CTOT 0.00 DIFF 0.0
 OLD PROB 1.00000 CIN 0.001 DCON 0.000
 VOLUME 0.0 INDEX = 0
 INDEX = 0

NET PROB 0.0 DIRECT 6.0 CUMSUM***** * 1.00

CLUSTER 1 INDEX -19 PROPORTION 0.04887 * PARENT 35000.000
 SPLIT 0.100E 05
 #EIGHT 1.729E 05 **AS
 PROPORTION: PKOP 0.09777 CIN 1.355 ADJUST 2524.007 10100686
 OLD PROB 0.09477 CIN 9.179E 04 DCON 0.03 DIFF 0.0
 VOLUME 0.72E 21 DCON 4.74
 LOCATION 1741 LINK=1947 SURS 0 0 SUPER 0 119 SYMBOL 1
 INDEX = -18 SYMBOL = 1

NET PROB***** DIRECT***** CUMSUM***** * 0.94
 MEAN 25.56 25.60 26.04 25.67 26.74 20.85 23.33 22.53

COVARIANCE	1.88	2.38	1.49	1.33	1.19	2.24	0.50	-0.50
2	2.38	5.38	2.94	2.34	2.01	4.64	0.32	-0.77
3	1.44	2.94	2.87	2.31	1.28	3.16	1.16	0.32
4	1.33	2.34	2.31	2.13	1.62	2.67	1.40	1.04
5	1.10	2.01	1.28	1.62	1.38	1.90	0.49	0.11
6	2.24	4.64	3.16	2.67	1.90	4.58	0.86	-0.26
7	0.50	0.32	1.16	1.40	0.49	0.86	1.27	0.78
8	-0.50	-0.77	0.37	1.04	0.11	-0.26	0.78	1.49

SKEW(*w) 89.4 421.2 -141.0 -44.0 201.9 90.4 -260.7 -119.0

CLUSTER 1 INDEX -19 PROPORTION 0.09202 * PARENT 48000.000

SPLIT 0.100E 05
 #EIGHT 1.023E 042 **AS
 PROPORTION: PKOP 0.09193 CIN 903.500 ADJUST 2349.056 10106413
 OLD PROB 0.09192 CIN 866.08 DCON 0.026.000 DIFF 0.0
 VOLUME 0.95E 21 DCON 4.74
 LOCATION 4947 LINK=20 SURS 0 0 SUPER 0 119 SYMBOL 2
 INDEX = -19 SYMBOL = 2

NET PROB 0.00 DIRECT 0.00 CUMSUM***** * 0.97
 MEAN 28.39 31.63 30.45 28.14 23.26 25.67 25.88 24.05

COVARIANCE	2.18	2.61	2.07	1.86	1.55	2.11	0.93	0.58
2	2.41	4.93	3.62	3.34	2.00	3.73	2.09	1.29
3	2.07	3.62	4.43	3.59	2.32	2.85	2.61	1.34
4	1.85	3.34	3.59	4.31	2.22	2.61	2.19	2.02
5	1.55	2.00	2.32	2.22	1.73	1.71	1.29	0.88
6	2.11	3.73	2.85	2.61	1.11	3.15	1.56	0.97
7	0.43	2.09	2.61	2.14	1.29	1.56	1.86	0.88
8	0.58	1.29	1.34	2.02	0.88	0.97	0.88	1.34

SKEW(*w) -102.1 -521.1 -430.9 -346.8 -110.9 -400.9 -251.2 -216.1

CLUSTER 1 INDEX -20 PROPORTION 0.15292 * PARENT 49000.000

SPLIT 0.100E 05
 #EIGHT 2.926E 27 **AS
 PROPORTION: PKOP 0.15277 CIN 1527.050 ADJUST 3905.370 10 45643
 OLD PROB 0.15277 CIN 1501.179 DCON 4.74 DIFF 0.0
 VOLUME 0.4E 21 DCON 0.22E 10

LOCATION 145 LINK-21 SURF 3 0 0 SURF 0 114 SYMBOL 3
INDEX = -20 SYMBOL = 3

NET PROB 0.00 DIRECT 0.00 CUM***** * 1.000
MEAN 27.72 220.69 31.04 14.65 17.04 25.33 27.04

COVARIANCE 1.015 0.715 0.652 0.345 0.452 5.655 -6.32 -6.71
2 0.72 2.05 0.67 0.83 0.46 1.36 -0.06 -1.02
3 0.52 0.67 1.37 1.04 0.70 0.33 0.76 0.21
4 0.34 0.43 1.05 2.16 0.62 0.19 0.49 1.57
5 0.42 0.46 0.70 0.62 0.96 0.64 -0.03 -0.50
6 0.65 1.36 0.33 0.19 0.68 1.33 -0.46 -1.25
7 -0.32 -0.06 0.74 0.59 -0.93 -0.48 1.33 1.35
8 -0.71 -1.02 0.21 1.57 -0.60 -1.25 1.35 3.44

SKewness(-0.6) -11.61 -25.1 133.4 35.0 -176.1 -72.7 196.2 352.2

CLUSTER 1 INDEX -21 PROPORTION 0.0233H & PARENT 0.000
SPLIT-U-1000 0.5
SPLIT-U-3000 0.43
PROPORTION: 0.2031R7 CIN 3A57.70 ADJUST 5143.406 10 4,019
OLD PROB 0.2031R7 CIN 1901.33 MGEN9433.63 DIFFER 0.0
VOLUME 0.14E-20 0.010.3AE-10 DCUN 4.74

LOCATION 3773 INDEX-15 SURF 0 0 SUPER 0 114 SYMBOL 4
INDEX = -21 SYMBOL = 4
NET PROB 0.00 DIRECT 0.00 CUM***** * 0.03
MEAN 26.90 24.06 30.57 29.60 20.36 20.20 27.26 28.10

COVARIANCE 1.044 1.015 0.46 0.90 0.53 0.24 0.53 1.13
1 1.15 2.59 1.62 1.61 0.74 2.36 0.58 0.76
2 0.86 1.62 2.40 2.08 1.32 2.54 0.51 -0.34
3 0.40 1.61 2.04 3.26 1.14 2.01 1.69 1.11
4 0.40 0.74 1.33 1.14 1.04 1.26 0.31 -0.03
5 0.44 2.36 2.52 2.01 1.26 3.44 0.21 -0.69
6 0.53 0.58 0.51 1.69 0.31 0.21 1.92 1.73
7 0.13 0.76 -0.58 1.11 -0.03 -0.79 1.73 3.31

SKewness(0.0) 34.04 273.9 9.4 111.9 -269.3 -141.1 313.3 758.5

CLUSTER 1 INDEX -14 PROPORTION 0.1042H & PARENT 0.000
SPLIT-U-1000 0.5
SPLIT-U-3000 0.45 ADJUST 2664.300 10 48411
PROPORTION: 0.10418 CIN 1236.81 C1077942.5
OLD PROB 0.10418 CIN 996.23 MGEN9433.63 DIFFER 0.0
VOLUME 0.41E-21 0.010.2E-10 DCUN 4.74

LOCATION 4217 INDEX-15 SURF 0 0 SUPER 0 114 SYMBOL 5
INDEX = -14 SYMBOL = 5
NET PROB 0.00 DIRECT 0.00 CUM***** * 1.02
MEAN 26.37 25.66 25.42 24.10 22.21 24.16 23.54 22.21

COVARIANCE 1.030 0.46 1.015 1.024 0.31 -0.07 0.63 0.27
2 0.45 2.12 1.42 1.65 -0.43 -0.08 0.71 -0.04
3 1.14 1.46 2.03 2.34 -0.35 -0.45 0.40 0.05
4 1.04 1.07 2.34 1.63 -0.50 -0.34 0.59 0.70

5	0.31	-0.43	-0.35	-0.50	0.75	0.77	0.19	0.17
6	-0.07	-0.04	-0.05	-0.34	0.27	0.84	0.23	0.22
7	0.62	0.71	0.40	0.59	0.14	0.23	0.67	0.14
8	0.27	-0.04	0.05	0.76	0.17	0.22	0.14	0.04
SKEWNESS	-144.9	-461.9	-315.4	-645.5	24.4	-153.4	-265.9	-90.2

CLUSTER 1 INDEX = 15 PROPORTION 0.19615 w PARENT 0.000
 SPLIT=0.6538E 0.3 WEIGHT=0.3544E 0.443 PROPORTION=0.19549 OLD PKOP=0.195943 VOLUME=0.116E-19 LOCATION=4375 INDEX = -15 NET PROB 0.08 DIRECT 0.02 CUMS 0.02 * 1.04
 MEAN 27.10 29.80 28.96 27.28 27.30 24.18 24.30 22.89
 COVARIANCE 2.33 2.51 2.00 1.82 0.43 1.17 -0.36 -0.26
 2 2.51 4.58 2.82 2.45 0.23 1.81 -0.03 -0.79
 3 2.00 2.62 3.07 2.26 0.38 1.69 0.52 0.56
 4 1.82 2.45 2.24 2.91 -0.46 0.66 -0.61 -0.27
 5 0.43 0.23 0.30 -0.46 1.33 0.91 0.66 0.39
 6 1.17 1.61 1.69 0.66 0.91 1.87 0.83 0.48
 7 -0.36 -0.03 0.52 -0.61 0.66 0.83 1.67 1.08
 8 -0.26 -0.79 0.56 -0.27 0.39 0.48 1.08 1.89
 SKEWNESS 1525.1 2006.7 1707.5 1691.7 623.4 1466.3 866.0 176.0

C-97

ORIGINAL PAGE IS
OF POOR QUALITY

CLUSTER 2 INDEX 104 PROPORTION 0.48353 w PARENT 3578.443
 SPLIT=0.3631E 0.02 WEIGHT=0.319E 0.00 PROPORTION=0.50501 OLD PKOP=0.588046 VOLUME=0.97E-18 LOCATION=6249 INDEX = 104 NET PROB 0.00 DIRECT 0.00 CUMS 11.24 * 0.99
 MEAN 26.55 27.87 30.41 30.54 19.49 18.20 27.71 29.60
 COVARIANCE 1.99 2.28 0.42 -0.12 1.53 2.22 0.54 0.30
 2 2.28 4.47 0.74 0.05 2.12 4.03 1.19 0.34
 3 0.47 0.74 2.61 2.95 0.71 1.00 0.96 0.50
 4 -0.12 0.05 2.95 0.99 0.35 0.41 1.39 1.31
 5 1.53 2.12 0.71 0.35 1.88 2.33 0.85 0.04
 6 2.27 4.03 1.00 0.41 2.33 4.41 1.31 0.11
 7 0.54 1.19 0.90 1.34 0.85 1.31 1.87 0.92
 8 0.30 0.34 0.50 1.31 0.04 0.11 0.92 1.42
 SKEWNESS 204.8 -7.4 171.2 125.7 -34.02 -71.4 -103.0 231.3

CLUSTER 3 INDEX 105 PROPORTION 0.93365 * PARENT 374.000
 SPLIT 0.79251 1.05 PROPORTION 0.93365 * PARENT 374.000
 WEIGHT 0.42564 0.45 PROPORTION 0.93365 * PARENT 374.000
 PROPORTION: PROP 0.92564 CIN 270.325 AUGUST 374.000
 OLD PROP 0.92564 CIN 270.325 CIN 407.004 CTO 760.37
 VOLUME 0.92564 CIN 270.325 CTO 760.37 DIFFER 12.60
 DCUN 0.90

LOCATION 5963 LINE 107 LINK 5361 SUPER 108 SUPER 114 SYMBOL 8
 INDEX = 105 SYMBOL = 8

NFT PROP 11.15 DIRECT 0.21 CUMS***** * 0.04

MEAN 26.55 27.05 36.39 30.46 19.52 14.23 27.03 29.52

COVARIANCE 2 2.04 2.34 0.46 -0.06 1.53 2.24 0.57 0.38

2 2.34 4.50 0.70 0.16 2.06 3.68 1.23 0.50

3 0.47 0.79 2.70 3.14 0.61 0.81 1.13 0.64

4 -0.06 0.16 3.14 5.21 0.23 0.25 1.63 1.64

5 1.23 2.05 0.61 0.23 1.91 2.38 0.73 -0.07

6 2.24 3.94 0.81 0.25 2.38 4.53 1.11 -0.07

7 0.57 1.23 1.13 1.63 0.73 1.11 2.11 1.31

8 0.34 0.50 0.84 1.64 -0.07 -0.07 1.31 2.44

SKEWNESS 105.5 11.7 21.2 104.2 104.8 47.0 115.2 -231.1 -55.2

CLUSTER 4 INDEX 106 PROPORTION 0.20448 * PARENT 426.206

SPLIT 0.99997 0.4 PROPORTION 0.20448 * PARENT 426.206

WEIGHT 0.45 PROPORTION: PROP 0.19329 CIN 80.000 ADJUST 414.75 CIN 0.000 ID101367

OLD PROP 0.32459 CIN 31.94 DCUN 98.41 DIFFER 11.00

VOLUME 0.17E-13 DCUN 1.3E-06 DIFFER -5.23

LOCATION 3487 LINE 105 SUPER 106 SUPER 106 SYMBOL 9
 INDEX = 106 SYMBOL = 9

NET PROP***** DIRECT***** CUMS***** * 1.00

MEAN 27.40 24.22 29.73 29.14 20.81 20.44 27.26 28.16

COVARIANCE 2 5.20 2.72 2.01 0.45 1.39 0.67 1.22

2 5.72 5.21 3.17 3.34 1.15 3.94 6.64 0.48

3 2.14 3.17 4.56 5.67 -0.26 0.44 3.23 4.62

4 2.01 3.34 5.07 9.75 -1.37 -1.57 5.97 8.07

5 0.45 1.15 -0.29 -1.37 2.32 4.13 -1.68 -3.53

6 1.33 3.94 0.44 -1.57 4.13 0.27 -3.27 -6.62

7 0.67 0.44 3.23 5.97 -1.68 -3.27 5.74 7.88

8 1.22 11.48 4.02 6.07 -3.53 -6.62 7.08 13.07

SKEWNESS -662.4 -711.6 26.2 268.2 -676.2-1323.4 117.8 436.0

CLUSTER 4 INDEX 107 PROPORTION 0.79502 * PARENT 426.206

SPLIT 0.44505 0.2 PROPORTION 0.79502 * PARENT 426.206

WEIGHT 274.093 745.245 PROPORTION: PROP 0.74967 CIN 240.664 AUGUST 501.728 ID107460

OLD PROP 0.802744 CIN 174.07 CIN 174.07 CTO 158.30 DIFFER 6.79

VOLUME 0.19E-13 DCUN 0.44E-09 DCUN 3.56

LOCATION 2155 LINE 0 SUPER 110 SUPER 114 SYMBOL 10
 INDEX = 104 SYMBOL = 0

NFT PROP 0.06 DIRECT 0.01 CUMS 24.24 * 1.03

MEAN 26.39 27.61 30.56 30.72 19.34 17.95 21.62 29.59

COVARIANCE 2 1.02 1.94 0.14 -0.44 1.50 1.90 0.43 0.02

2 1.04 3.62 0.30 -0.33 2.02 3.43 1.11 0.05

3	0.14	0.30	2.24	2.71	0.50	0.34	0.74	0.37
4	-0.48	-0.33	2.61	4.74	0.11	-0.19	1.69	1.23
5	1.20	2.02	0.56	0.11	1.49	2.14	0.61	-0.07
6	1.41	3.43	0.32	-0.19	2.14	3.64	1.15	-0.13
7	0.43	1.11	0.74	1.09	0.41	1.15	1.81	0.63
8	0.02	0.05	0.37	1.23	-0.07	-0.13	0.83	1.67
SKFW(%)	104.4	*0.2	115.3	46.2	87.7	35.0	-7.9	76.9

CLUSTER 5 INDEX 110 PROPORTION 0.90414 * PARENT 279.093
 SPLIT-0.423E-04 WEIGHT 0.3095 WAS 220.739 ADJUST 461.476 ID107254
 PROPORTION: PWD 0.3512 CIN 281.11 CTOT 721.52 DIFFER 29.14
 OLD PROD 0.29061 CIN 242.60 ODEN 229.12 DIFFER 29.14
 VOLUME 6.47E-17 PWD 0.2668 DCVN 2.46
 LOCATION 2599 LINK111 3043 SUPER10 2155 SYMBOL 11
 INDEX = 110 SYMBOL = 11
 NET PHM 24.44 DIRECT 26.67 CUMSUM *** 1.00
 MEAN 26.37 27.63 30.35 30.49 19.49 16.16 27.52 29.33

COVARIANCE	1.96	2.10	0.33	0.00	1.32	1.64	0.43	0.23
2	2.10	4.22	0.50	0.07	1.41	3.23	0.93	0.01
3	0.33	0.50	2.75	3.31	0.15	-0.14	1.14	1.11
4	0.00	0.07	3.31	5.72	-0.48	-1.07	1.02	2.15
5	1.32	1.61	0.15	-0.44	2.28	2.70	0.62	-0.58
6	1.05	3.23	-0.14	-1.07	2.70	4.60	0.67	-1.17
7	0.43	0.93	1.14	1.42	0.52	0.67	2.32	1.70
8	0.23	0.01	1.11	2.15	-0.58	-1.17	1.70	3.47
SKW(%)	90.2	-100.5	-38.5	-90.3	-46.4	-117.6	-33.4	133.1

CLUSTER 6 INDEX 112 PROPORTION 0.28345 * PARENT 293.905
 SPLIT-0.9599E-04 WEIGHT 0.100.109 WAS 50.000 ADJUST 280.000 ID107254
 PROPORTION: PWD 0.28309 CIN 41.15 CTOT 148.53 DIFFER 0.0
 OLD PROD 0.29250 CIN 23.35 ODEN 40.00 DIFFER 0.0
 VOLUME 0.12E-15 PWD 0.11E-07 DCVN 2.96
 LOCATION 8319 LINK113 1583 SUPER10 2599 SYMBOL 12
 INDEX = 112 SYMBOL = 12
 NET PHM *** DIRECT *** CUMSUM *** 1.00
 MEAN 25.24 26.21 30.27 30.56 19.31 18.04 26.25 27.95

COVARIANCE	2.27	2.60	1.52	2.69	-0.37	-0.34	-0.97	-0.10
2	2.60	6.70	1.99	3.15	0.42	2.1	-2.12	-3.04
3	1.52	1.99	6.46	8.06	-2.70	-4.20	3.90	6.49
4	2.69	3.15	0.04	14.04	-5.64	-8.47	3.77	9.20
5	-0.37	0.42	-2.70	-5.69	5.74	7.87	-1.19	-5.71
6	-0.34	2.71	-4.20	-8.47	7.87	13.24	-3.34	-10.62
7	-0.97	-2.12	3.49	3.77	-1.19	-5.34	0.07	0.00
8	-0.10	-3.04	5.44	9.20	-5.71	-10.62	0.00	16.06
SKFW(%)	125.6	29.9	64.4	17.1	-91.3	-152.9	111.5	264.4

CLUSTER	6	INDEX	113	PROPORTION	0.71655	■ PARENT	293.905
SPLIT	0.999E+06						
WEIGHT	1.32E+02	KAS	50.000	ADJUST	240.000	VOLUME	1007254
PROPORTION:	PROB 0.71505	CIN 103.72	CTOT 148.97				
OLD PROB	0.707750	CIN 56.62	CTOT 108.30	DIFFER	0.0		
VOLUME	0.13E-16	AUT0.38E-03	AU.000	AU.000	0.0		
LOCATION	1583	LINK 0	SIGS 0	SUPER110	2594	SYMBOL	13
INDEX =	113	SYMBOL =	13				
NET PROB	0.0	DIRECT 0.0	CUMS 0.000	*	1.00?		
MEAN	25.43	24.222	30.345	30.349	19.61	18.24	27.94
COVARIANCE	1.93	2.10	0.05	-0.47	1.53	1.27	0.86
2	2.01	3.31	-0.16	-0.52	1.88	2.44	1.37
3	0.05	-0.16	1.43	2.75	0.44	0.10	0.51
4	-0.47	-0.52	2.75	4.85	0.16	-0.16	1.06
5	1.64	1.48	0.44	0.16	1.57	2.00	0.92
6	1.97	2.68	0.10	-0.17	2.00	3.01	1.44
7	0.84	1.37	0.21	1.04	0.92	1.44	0.74
8	0.45	0.76	0.34	1.10	0.24	0.47	0.46
SKWNESS	115.6	59.5	-113.7	-199.7	142.1	173.1	-66.2
CLUSTER	5	INDEX	111	PROPORTION	0.09096	■ PARENT	279.093
SPLIT	0.999E+06						
WEIGHT	95.074	WAS	80.000	ADJUST	240.000	VOLUME	1D103541
PROPORTION:	PROB 0.09357	CIN 5.07	CTOT 208.71				
OLD PROB	0.477371	CIN 42.30	CTOT 88.60	DIFFER	0.0		
VOLUME	0.40E-24	AUT0.64E-12	AU.000	AU.000	0.0		
LOCATION	3043	LINK 0	SIGS 0	SUPER109	2155	SYMBOL	14
INDEX =	111	SYMBOL =	14				
NET PROB	0.0	DIRECT 0.0	CUMS4456.665	*	1.00		
MEAN	25.66	26.59	31.01	31.01	1H.29	1H.34	2H.03
COVARIANCE	0.37	0.44	-0.04	-0.17	0.34	0.44	0.01
2	0.44	0.81	-0.02	0.41	0.52	0.02	-0.05
3	-0.04	-0.02	0.41	0.52	0.02	-0.05	0.19
4	-0.15	-0.17	0.52	0.94	-0.13	-0.25	0.32
5	0.34	0.46	0.02	-0.13	0.44	0.55	0.01
6	0.44	0.79	-0.04	-0.25	0.55	0.95	0.10
7	0.01	0.16	0.14	0.32	0.01	0.10	-0.37
8	-0.12	-0.20	0.11	0.36	-0.24	-0.37	0.29
SKWNESS	-76.2	-67.1	59.5	61.2	9.0	-2.9	-58.5
CLUSTER	3	INDEX	107	PROPORTION	0.06635	■ PARENT	379.000
SPLIT	0.999E+06						
WEIGHT	125.163	WAS	80.000	ADJUST	240.000	VOLUME	10 94916
PROPORTION:	PROB 0.06544	CIN 43.49	CTOT 248.07				
OLD PROB	0.43641	CIN 47.54	CTOT 108.30	DIFFER	0.0		
VOLUME	0.14E-15	AUT0.3AE-09	AU.000	AU.000	0.0		
LOCATION	5361	LINK 0	SIGS 0	SUPER104	2249	SYMBOL	15
INDEX =	107	SYMBOL =	15				
NET PROB	0.00	DIRECT 0.00	CUMS*****	*	1.00		

MEAN	274.47	311.16	294.69	284.05	220.37	233.71	255.41	244.27
COVARIANCE	3.34 2	2.57~ 5.23	1.67~ 2.01~	1.67~ 2.01~	3.26~ 4.67	-1.26~ -2.62	-1.07~ -1.07	-1.07~ -1.07
3	2.03~	2.07~	3.01~	2.07~	3.01~	2.2~	-0.041	0.37
4	1.07~	2.016	2.07~	4.01	-1.054	-0.05~	0.35	0.0~
5	0.06~	0.03~	0.07~	-1.5~	2.019	3.043	>1.32	-2.07~
6	0.02~	0.057	2.02~	-0.46~	3.043	4.04~	-4.04~	-0.50~
7	-1.07~	-2.05~	-3.041	0.37~	-1.04~	-3.04~	3.017	0.7~
R	-1.05~	-3.06~	0.37	2.00	-2.07~	-6.05~	0.78	0.37
SKEWNESS	-1537.011~	-2141.011~	-1345.011~	-1434.0	179.04	-557.04	544.01	722.6
NET PROB	0.02	0.03	0.03	CUMS*****	*	1.00		
MEAN	271.07	254.79	284.96	27.20	22.39	24.27	24.43	22.96
COVARIANCE	2.35~ 2.02~	2.66~ 4.08~	2.12~ 2.82~	1.05~ 2.02~	0.04~ 0.31	1.04~ 1.67	-0.28~ -0.16	-0.25~ -1.02
3	2.012~	2.085	3.019	2.03~	0.31	1.67	0.50	0.54~
4	1.054~	2.062	2.034~	3.00~	-0.60	0.60	-0.57	-0.31
5	0.032~	0.034~	0.31	-0.60	1.34~	0.87	0.61	0.42~
6	1.014~	1.06~	1.07~	0.60~	0.87	1.74~	0.74~	0.53~
7	-0.029~	-0.016~	0.50~	-0.57~	0.61~	0.74~	1.50~	1.09~
R	-0.025~	-1.002	0.58~	-0.31~	0.42~	0.53~	1.09~	2.02~
SKEWNESS	415.02	529.1	390.5	263.9	205.2	231.4	3.04	-218.6
NET PROB	0.0	0.03	0.0	CUMS*****	*	0.73		
MEAN	246.61	254.3	25.09	22.01	21.57	23.43	23.00	20.94
COVARIANCE	0.74~ 0.39~	0.30~ 1.94	0.43~ 0.04	0.41~ 0.94	0.11~ 1.45	0.02~ 0.22	0.02~ 0.35	0.37~
3	0.34~	0.44	1.02~	1.55	0.44~	0.30	1.19	0.64~
4	0.003~	0.049	1.05~	2.07~	0.21	0.51	1.05	1.31
5	0.041	0.04~	0.46~	0.21	0.47	0.76	0.01	-0.24~
6	0.011	1.055	0.30~	0.51	0.76~	1.66~	-0.13	-0.54~
7	0.012~	0.022	1.04~	1.09~	0.01	-0.13	1.15	0.54~
R	0.037~	-0.035	0.054	1.31	-1.024	-0.054	0.54~	1.44~

C-101

14.5 214.2 -32.7 -186.0

ORIGINAL PAGE IS
OF POOR QUALITY

BY ANDREAS HUGSTÖTER, ST. GALLEN, SWITZERLAND

ט' ט' ט' ט' ט' ט' ט' ט' ט'

PUBLICATIONS RECEIVED IN THIS ISSUE

184
213
300
400
342
192
300
300
300
300
300
102
223

HUSTON, TEXAS

Total negative or prints = 9400

CLUSTER	STRIKE	Prints In Cluster
1	2	212
2	3	300
3	4	405
4	5	192
5	6	342
6	7	10
7	8	4
8	9	10
9	10	6
10	11	6
11	12	0
12	13	0
13	14	0
14	15	6
15	16	4
16	17	0
17	18	104
		222

THE JOURNAL OF CLIMATE

The image consists of a large, uniform grid of binary digits (0s and 1s). The pattern is organized into several distinct vertical columns. The first column contains mostly '0's with some '1's interspersed. The second column has a mix of '0's and '1's. The third column is predominantly '1's with a few '0's. This pattern repeats across the entire width of the grid. The height of the grid is approximately 10 times its width. The overall effect is a high-contrast, digital-looking texture.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

total number of points in this field 900

The image consists of a large, uniform grid of binary digits (0s and 1s). The pattern is organized into several distinct horizontal bands. The top band contains mostly 1s, followed by a band of mostly 0s, then another band of mostly 1s, and so on. Within these bands, there are numerous small, localized clusters of the opposite digit. For example, in the band of mostly 1s, there are many small groups of 0s scattered throughout. The overall effect is a digital or binary representation of a complex, repeating signal.

CLUSTERS OF BIRDS IN THIS FIELD

APPENDIX D
UTILITY ROUTINES

D.1 MATHEMATICAL SUBROUTINES

Subroutine Name and Calling Sequence	Description
AMSQ(AM,AMET)	Calculates the trace of the square of the matrix AM, relative to the metric AMET.
CORRECT(REL,PV,P,S)	Subtracts S(I)/P from PV(I) to create (REL(I)).
DENCAL(KL,RATIO,OLW)	Adjusts the denominator offset and proportion of KL.
DMINV(A,B,C,VOL)	Calculates A equal to the inverse of C and VOL equal to the determinant of C. B is used as temporary storage.
DOTSQ(V,AMET)	Calculates the inner product V.V relative to the metric AMET.
DSQMTX(SQ,AM)	Expands MATRIX AM from triangular form and makes and MQ*MQ square symmetric matrix in SQ(MQ,MQ).
DTRMTX*8(TRI,SQ)	Puts the lower triangle of SQ(MS,MQ) into symmetric matrix form in TRI.
EIGROT(LP,NM,R,E,V)	Generates an Eigenrotation of an LP*LP submatrix of the array R. The Eigenvalues are returned in E and this Eigenvector matrix is in V(NM*NM), where the second index runs over Eigenvectors and the first within them. Subroutines TRIDMX, EIGVAL and EIGVEC are used.

D.1 MATHEMATICAL SUBROUTINES (CONT.)

Subroutine Name and Calling Sequence	Description
EIGVAL(LP,E,A,B,W,F)	Calculates the Eigenvalues in descending absolute order. Array A(LP) gives the diagonal elements of the tridiagonal matrix. Array B is a vector of LP elements. W and F are temporary storage.
EIGVEC(LP,NM,R,A,B,E,V,P,Q)	Calculates the Eigenvectors for the matrix R(LP) with maximum dimension NM. Array A holds the tridiagonalized R; Array B holds the off-diagonal elements of tri-diagonalized R; E are the Eigenvector of R; V holds the Eigenvectors stored columnwise and P and Q are temporary storage.
MINV(A,B,C)	Creates matrix A as product of matrices B and C.
MPVS(AM,C,V)	Creates tensor product in AM (AM=AM+V*V*C).
MTVEC(U,A,V)	Creates double precision product of vector V and array A in array U.
MVEC(U,A,V)	Creates product of vector V and array A in array U.
NRAND(NX)	Creates positive integer between 0 and
ORD1(A,I1,I2,N)	Sorts the characters in array A(I1) through A(I2).
SQMTX(SQ,AM)	Expands the matrix AM from triangular form and makes an MQ*MQ square symmetric matrix in SQ(MQ,MQ) TR(AM,AMET) calculates the trace of matrix AM relative to the metric AMET.
TRIDMX(N,NM,A,D,B)	Tridiagonalizes a real symmetric matrix.

D.1 MATHEMATICAL SUBROUTINES (CONT.)

Subroutine Name and Calling Sequence	Description
TRIMTX(TRI,SQ)	Takes the lower triangle of SQ(MQ,MQ) and puts it into symmetrix matrix form in TRI.
VMTV(VA,AMET,VB)	Calculates array VA equal to matrix AMET times array VB..matrix A is stored in lower triangular form.
VPV(VA,FAC,VB)	Calculates array VA equal to the sum of array VA and the product of array VB and constant FAC.

D.2 MATHEMATICAL FUNCTIONS

Function Name and Calling Sequence	Description
APRIOR	Forms sum of BIAS and product of VFAC*AMQ.
DAMSQ*8 (AM,AMET)	Calculates the trace of the square of the matrix AM, relative to the metric AMET.
DISC(N)	Calculates an integer between 0 and N.
UNIF(W)	Calculates a floating point number between 0 and W.

D.3 EOD LARSHS ROUTINES

Subroutine Name and Calling Arguments	Description
BNI4AI(IFLD,INCHR,IBN)	Converts the internal binary number IBN to the first INCHR characters of the array IFLD.
FDLINT(FIELD,NPTS,FL,YLINE,NSAMP,JJ)	Returns the number of samples, NSAMP, contained in the field of the given scan line YLINE. Array FL of length JJ contains the ordered pixel intercepts. Array FIELD contains the field table entered by the user; NPTS is the number of points in this field table.
FLDINT(FLDINF,FETVEC,NOFEAT)	Unpacks the pixel from the data header according to the rectangular field description in FLDINE using the channel array FETVEC for NOFEAT channels. Data stored in LARSHS common block /TAPERD/.
FSFMFL(UNIT,FILE,ISAT)	Positions file on unit UNIT at file FILE. Returns status in ISTAT.
LAREAD(FLDNAM,VERTCS,FLDINF,NC)	Reads NC field definition card images to determine the field name FLDNAM, the array field vertices VERTCS, and the array of field information FLDINF.
LINERD(IDATA,ENDTAP)	Unpacks information from the data tape into array IDATA.
NUMBER(CARD,COL,NUMVEC,NOW)	The numbers in array CARD starting at column COL are stored in array NUMVEC. The routine is terminated by the first non-blank, non-numeric, non-comma character.
NXTCHR(CARD,COL)	The next non-blank character in card CARD beginning at column COL is returned as a function. Pointer COL is updated to point to the character following the returned character.

D.3 EOD LAR SYS ROUTINES (CONT.)

Subroutine Name and Calling Arguments	Description
RWRITE (BEGADD, WHERE, TOTWDS, STATUS)	Simulates the random read of a work file. BEGADD is the address in the file; data is read into array WHERE; user specifies number of words to be read in TOTWDS; and STATUS is a dummy variable.
RWRITE (BEGADD, WHERE, TOTWDS, STATUS)	Simulates the random write of a work file. BEGADD is the address in the file; data is written from array WHERE; user specifies number of words to be written in TOTWDS; and STATUS is a dummy variable.
TAPHDR (DATAPE, IFILE)	Reads the header record of file IFILE from file DATAPE into common block/TAPERD/.
WRTHED (NCHAN, FEAT, NSAMP, FRMAT, IUNIT)	Writes the header record for the data tape IUNIT. The NCHAN channels in array FEAT are written on unit IUNIT. The number of samples per channel is in NSAMP; FRMAT contains the format.
WRTLN (IDATA, LSTLIN)	Writes the data from array IDATA. Status for the last record is in LSTLIN.

D.4 UTILITY ROUTINES

Subroutine or Function Name and Calling Arguments	Description
<code>LLFREE(KLHED,LEN)</code>	Frees the storage in the LINK array used by cluster KLDHED of length LEN and all of its subclusters.
<code>CMERR</code>	Writes error message and terminates the program.
<code>FREE(LOCATE,LENGTH)</code>	Frees the storage in LINK array with index LOCATE of length LENGTH.
<code>MORSTR(LENGTH</code>	Function that gets the index for a block of storage in LINK array and makes that storage unavailable.