MA144: Problem Solving and Computer Programming

Lecture-3

Algorithm, Pseudocode

Problem

- Any real world situation which can be expressed unambiguously and that has a solution or procedure to solve it.
- Problems are not restricted to mathematical problems
- Recipes found in cookery books are procedures (or solutions) for solving a cookery problem.
 - How to prepare a coffee?

Problem Solving

- Problem Solving is the sequential process of analyzing information related to a given situation and generating appropriate response options.
- The following 6 steps must be followed to solve a problem:
 - 1. Understand the Problem
 - 2. Formulate a Model
 - 3. Develop an Algorithm
 - 4. Write a Program (in this course, C++)
 - 5. Test the Program
 - 6. Evaluate the Solution

Understand the Problem

- What input data/information is available?
- What does it represent?
- What format it is in?
- Is anything missing?
- What output information I am trying to produce?
- What I am going to have to compute
- What is the format of the output, like text, picture, graph ...

Formulate a Model

- Identify a formula or a mathematical expression for solving the problem
- Model, to solve the problem, can be developed after analyzing the problem and its possible solution.
 - In the problem of finding the sum,
 the values are numbers and hence can be added
 - if they are not numbers but grades with different credits for each course, to find cumulative grade point, the weighted average can be calculated

Algorithm

- Algorithm: A sequence of simple, unambiguous and effectively computable statements, that when executed sequentially, produces the desired result and halts in a finite amount of time.
 - An algorithm is a sequence of computational steps that transforms the input into the output.

Characteristics of an Algorithm

Simple: A statement that is written in a simple language and is understandable to the reader.

Complex and compound statements are to be avoided.

Unambiguous: A statement without ambiguities and is based on mathematical facts

■ The expression a/b/c. Is it a/(b/c) or (a/b)/c?

Effectively Computable: A statement that can be properly executed

 x is sum of all positive integers is simple but is not effectively computable

Characteristics of an Algorithm (contd...)

Sequential execution: All the statements must be executed in sequential order one after other – including branching statements

Finite time: Time taken to complete the solution must be finite

 Add 1 to each integer is simple, unambiguous, effictive but can not be executed in finite amount of time.

Structured Programming

Three control structures:

- Sequence
- Selection
- Repetition

Sequence: the construct where one statement is executed after another

Statement 1

Statement 2

Statement 3

:

Structured Programming (contd)

Selection: the construct where statements are executed or skipped depending on whether a condition evaluates to TRUE or FALSE

There are three selection structures:

- IF
- IF-ELSE
- SWITCH

Structured Programming (contd)

Repetition: the construct where statements can be executed repeatedly until a condition evaluates to TRUE or FALSE

There are three repetition structures

- FOR
- WHILE
- DO-WHILE

Description of an Algorithm

Pseudocode

Flowchart

```
function \operatorname{Shift}(vector,i,j)
   if i \leq j then
        return vector
   end if
   store \leftarrow vector[i]
   for 0 \leq k \leq (i-j-1) do
        vector[i-k] \leftarrow vector[i-k-1]
   end for
   vector[j] \leftarrow store
   return vector
end function
```


Pseudocode (algorithm design language)

- Consists of natural language-like statements that precisely describe the steps of an algorithm
- Statements describe actions
- Focuses on the logic of the algorithm
- Avoids language-specific elements
- Steps are numbered
- Indentation is used for dependent statements in selection and repetition structures

Pseudocode Language Constructs

Assignment/Computation

Assign expression to var1 **Compute** var2 as the sum of x and y **Increment** counter

 $var1 \leftarrow expression$ $var2 \leftarrow x + y$ $counter \leftarrow counter + 1$

Input

Get var1, var2, ...

Read var1, var2, ...

Output

Display var1, var2, ...

Write var1, var2, ...

Pseudocode Language Constructs (contd)

Selection

IF condition
 statement1
 statement2
statementA

SWITCH expression

case1: action1

case2: action2

•

default: actionk

statementA

IF condition
 statement1
 statement2

ELSE

statement3 statement4 statementA

Pseudocode Language Constructs (contd)

Repetition

FOR bounds on repetition satement1 satement2 statementA

while condition
statement1
statement2
statementA

DO

statement1
statement2
WHILE condition
statementA

Pseudocode Examples

- 1. Find the average of given four numbers
- 2. Find a profit or loss
- 3. Print a multiplication table of a given number
- 4. Calculate factorial of a given number
- 5. Find the maximum of more than three numbers
- 6. Exchange the values of two variables
- 7. Find gcd of two numbers
- 8. Compute $a^k \mod n$
- 9. Check whether the given number is prime or not
- 10.Locate all the prime numbers between 1 and the given number n
- 11. Find Icm of two numbers

Next Lecture Flowcharts