

Team 0: Growable Space Habitat
Robert Dye
Justin Blankenhorn
Andrew Yang
Adam Pameron

Sponsor: Dr. John Lusher II, Dr. Hope Rising

TA: Rohith Kumar

Project Summary

- Current space operations require constant resupply

 – Costly (\$20,000 per kg)

 – Inefficient and wasteful
- Long term space missions need a sustainable food source
- Project provides electrical infrastructure for a selfsustaining system capable of recycling agricultural products

Project/Subsystem Overview

Major Project Changes Since Last Time

Power Management:

None

User Interface:

- Will display data on health of system
- Al/Data Processing:
- None

Microcontroller:

None

Al/Data Processing Subsystem

- Create binary classifier using Convolutional Neural Network (CNN) Model
 - Baby Spinach [Proxy: Tomato Leaves]
- Collect sensor data from microcontrollers
- Send sensor data to database

Al/Data Processing Subsystem

Accomplishments since last presentation	Ongoing progress/problems and plans until the next presentation
 Perform Stratified Cross Validation with augmented RGB Dataset Used SGD Optimizer Configured UART serial communication Validated sensor data with trusted Pi data Configured I2C serial communication Controller and Peripheral Mode Validated Sensor Data with trusted Arduino data Deployed model to Pi to validate classification Built application code to repeat routines (classify, send image and state) Created specialized functions to abstract routine 	 Further validation of sensor data Build application code for PIC32 Create specialized functions to abstract routine

Al/Data Processing Subsystem – Train Accuracy 4 Folds

Al/Data Processing SubsystemValidation Accuracy 4 Folds

Al/Data Processing SubsystemValidation Accuracy 4 Folds

Al/Data Processing SubsystemTraining and Validation Accuracy Fold 4

Al/Data Processing Subsystem – Confusion Matrix Fold 4

Al/Data Processing Subsystem – Pi and PIC32 CO2 Values

Al/Data Processing SubsystemArduino and PIC32 O2 Values

Al/Data Processing Subsystem

- Provide power to PCBs that house the microcontrollers as well as the pi that will be used to control AI subsystem
- BMS monitoring
- Charging

Accomplishments since last presentation	Ongoing progress/problems and plans until the next presentation
 Powered all subsystems at the same time Soldered analog Sensor PCBs 	 Keep performing testing on the BMS Code monitoring chips with BQ Studio

- Voltage/Time graph current 1.06/1.25

- % Health/Time graph current 1.06/1.25

Microcontroller

Andrew Yang

- 200 Peripherals modularized between 5 microcontrollers
- UART, I2C, Analog, Digital, Digital Counter, GPIO switch

Microcontroller

Andrew Yang

Accomplishments since last presentation	Ongoing progress/problems and plans until the next presentation
 Validated MCU operation Ordered Analog Sensor PCBs Rev. 2 	 Implement counter logic for water flow sensor Solder and validate analog sensor boards Flash MCU with dev board code

Microcontroller Andrew Yang

Microcontroller

Andrew Yang

User Interface

- Display Data from MCU sensors on app
- Visualize sensor values over time
- Display camera pictures on app

User Interface

Justin Blankenhorn

Accomplishments since last presentation	Ongoing progress/problems and plans until the next presentation
 Configured Graphs in terms of hours, days, weeks, years Use dropdown button instead of buttons Included data + graphs on plant health with pictures Reconfigured graphs to lower noise Put Camera pictures on separate pages 	 Reformat graphs to align with Pi internal clock Work on formatting

User Interface - Graphs

Justin Blankenhorn

0

 ∇

0

 \Diamond

User Interface – System Health

Data Integration

Data Integration

Sensor 1: 20.497204 Expected Range: NA
Sensor 2: 20.387352 Expected Range: NA
Sensor 3: 20.481132 Expected Range: NA
Sensor 4: 20.556638 Expected Range: NA

BACK REFRESH
GRAPH
DATA

Execution & Plan

THANK YOU!