

Exercise session 11/3 | QBDs

Exercise 1.

The Erlang Distribution

Given: a random variable T_N that is Erlang distributed with N phases and parameter λ_N .

Questions:

- (a) What should λ_N be so that $E[T_N]$ is equal to λ (independently of N)?
- (b) Assume the λ_N calculated in the first question. What is the variance of T_N for $N \to \infty$?
- (c) Assume the λ_N calculated in the first question. What is the squared coefficient of variation $C_{T_N}^2 = \text{var}[T_N]/E[T_N]^2$?

Exercise 2.

The Degenerate Hyperexponential Distribution

Given: a random variable T(p) that has a hyperexponential distribution with two phases, where one phase is indentically 0, i.e., T(p) is exponentially distributed with parameter $\lambda(p)$ with probability p and is 0 with probability 1-p.

Questions:

- (a) What should $\lambda(p)$ be so that $E[T(p)] = \lambda^{1}$ (independent of p)?
- (b) Assume the $\lambda(p)$ calculated in the first question. What is the coefficient of variation $C_{T(p)}^2 = \text{var}[T(p)]/E[T(p)]^2$?
- (c) Assume the $\lambda(p)$ calculated in the first question. What values of the coefficient of variation can be obtained with this degenerate hyperexponential distribution?

Exercise 3.

Switching off the server

Given: Consider an M/M/1 queue with an arrival rate λ and service rate μ , and where the server immediately shuts off when it is idle (e.g., to save power). When a job arrives and finds the server off there is a setup time, I, required to get the server back on. In this problem we assume I to be exponentially distributed with parameter α .

Questions:

- (a) Draw the state transition diagram of the QBD.
- (b) For which λ , μ and α is the Markov chain ergodic?
- (c) Calculate the R-matrix for this QBD.
- (d) Calculate the distribution of the number of customers in the system.
- (e) Compare the result with the system without setup times.
- (f) Say that a server that is on costs C_{on} euros per time unit, a server that is turned off costs nothing and each time unit of delay per customer costs C_d euros. For which values of α is turning off the server when it is idle more optimal than leaving it on?

Exercise 4.

The PH/PH/1 queue

Given: Consider the PH/PH/1 queueing system. This queueing system has infinite capacity and a single server. The interarrival times have the phase-type distribution $PH(G^A, \alpha^A)$ whereas the service times have the phase-type distribution $PH(G^S, \alpha^S)$.

Questions:

- (a) What is the state space of this Markov chain?
- (b) Find the set of balance equations for the queueing system at hand
- (c) Show the transition diagram when both service and interarrival times are Erlang distributed with two stages.
- (d) Find the forward, local and backward matrices for the QBD of 3.

Exercise 5.

Two servers

Given: Consider a queueing system with an infinite capacity buffer Poisson arrivals and two non-identical servers. Service in the fast server is exponentially distributed with rate μ_f whereas service in the slow server is exponentially distributed with rate μ_s . Once a customer starts being served, it stays with the server till its service completes. If both servers are available upon arrival of a customer, the customer choses the fast server.

Questions:

- (a) Define the state space of the queueing system and depict the transition diagram.
- (b) What is the stability condition of this queueing system
- (c) Show that this queueing system fits the QBD framework
- (d) Calculate the stationary distribution