01204211 Discrete Mathematics Lecture 10a: Applications

Jittat Fakcharoenphol

September 6, 2022

A food factory can produce 2 products: a sleeping candy bar (S) and an energy bar (E).

- There are two ingredients: A and B. The factory has 120 units of A and 100 units of B.
- ➤ To produce 1 unit of candy bar S, you need 15 units of A and 10 units of B.
- ➤ To produce 1 unit of energy bar E, you need 10 units of A and 20 units of B.

A food factory can produce 2 products: a sleeping candy bar (S) and an energy bar (E).

- There are two ingredients: A and B. The factory has 120 units of A and 100 units of B.
- ➤ To produce 1 unit of candy bar S, you need 15 units of A and 10 units of B.
- ➤ To produce 1 unit of energy bar E, you need 10 units of A and 20 units of B.

How can we visualize the problem?

A food factory can produce 2 products: a sleeping candy bar (C) and an energy bar (E).

- There are two ingredients: A and B. The factory has 120 units of A and 100 units of B.
- ▶ To produce 1 unit of candy bar C, you need 15 units of A and 10 units of B.
- ➤ To produce 1 unit of energy bar E, you need 10 units of A and 20 units of B.

How can we visualize the problem?

How can we choose the amount of ${\cal C}$ and ${\cal E}$ to produce?

How can we choose the amount of C and E to produce? It depends on the prices per unit of C and E.

How can we choose the amount of C and E to produce? It depends on the prices per unit of C and E. What if 1 unit of C is 1 baht and 1 unit of E is also 1 baht?

How can we choose the amount of ${\cal C}$ and ${\cal E}$ to produce?

How can we choose the amount of C and E to produce? It depends on the prices per unit of C and E.

How can we choose the amount of C and E to produce? It depends on the prices per unit of C and E. What if 1 unit of C is 1 baht and 1 unit of E is also 1 baht?

What if 1 unit of C is 10 baht and 1 unit of E is also 1 baht?

What if 1 unit of C is 1 baht and 1 unit of E is also 10 baht?

If we produce x_1 units of C and x_2 units of E, we would make

If we produce x_1 units of C and x_2 units of E, we would make

$$p_C \cdot x_1 + p_E \cdot x_2$$
,

where p_C and p_E are unit prices for C and E.

If we produce x_1 units of C and x_2 units of E, we would make

$$p_C \cdot x_1 + p_E \cdot x_2$$
,

where p_C and p_E are unit prices for C and E. This is called an objective function. So far, we tried 3 objective functions:

- $x_1 + x_2$
- $ightharpoonup 10 \cdot x_1 + x_2$
- $x_1 + 10 \cdot x_2$

Let's see what they look like again.

Vertices

Interesting things happen at the intersections. What are they?

Simplex algorithm

Simplex algorithm - How do you move?

A quick history of machine learning

- Perceptrons
- Neural networks
- Convolutional neural networks

Perceptrons

- ▶ Invented in 1943 by McCulloch and Pitts.
- ▶ Implemented by Rosenblatt in 1958 (The Perceptron algorithm).

Perceptrons: Training the weights

Perceptrons: XOR limit and multilayer perceptrons

Neural networks

Inspiration from visual cortex study

Convolutional neural networks