# ARMA

Auto-Regressive with Moving Average

#### **ARMA**

- Auto-regressive moving average (ARMA) is a combination autoregressive and moving average process.
- ARMA is applied for a stationary time series
- ARMA(p, q) process combines AR(p) and MA(q) processes.
- How much of p and q to take for a dataset can be guessed from the autocorrelation and partial autocorrelation plots

## How to find Stationarity?

- Dickey-Fuller Test can be used to test the stationarity of any time series
- Consider the expression of auto-regressive model

$$y_t = \beta y_{t-1} + \epsilon_t$$

Dickey–Fuller test checks whether the eta in the expression above is 1 or less than 1

*H*0:  $\beta$  = 1 (the time series is non-stationary)

*HA*:  $\beta$  < 1 (the time series is stationary)

### Dickey-Fuller Test in Python

- statsmodels.tsa.stattools.adfuller is a Dicky-Fuller test and returns test statistics and p-value for the test of the null hypothesis.
- If the p-value is less than 0.05, the time series is stationary.

## What can be done for stationarity?

• We can difference the time series

| value         | diff 1st | 2nd   | 3rd |
|---------------|----------|-------|-----|
| 23            |          |       |     |
| 44            | 21       |       |     |
| 89            | 45       | 24    |     |
| 157           | 68       | 23    | -1  |
| 350           | 193      | 125   | 102 |
| 890           | 540      | 347   | 222 |
| 1706          | 816      | 276   | -71 |
| value<br>1000 |          |       |     |
| 0             | 1 2      | 3 4 5 | 6 7 |



#### ARIMA

- If the time series is not stationary, then we can difference by making it stationary and then apply ARMA
- But, how much order of differencing also needs to be examined
- ARIMA model is an integration of both these things, differencing and ARMA
- ARIMA stands for Auto-Regressive Integrated with Moving Average
- The parameters of ARIMA are:
  - p: order of Auto-Regressive Model
  - d: order of differencing
  - q: order of Moving Average Model

#### SARIMA

- Seasonal ARIMA considers not only the past values of the same season period but also the past values of earlier season period
- For Example,
  - Past Values: Today's (3<sup>rd</sup> Feb 2024), Yesterday's (2<sup>nd</sup> Feb 2024), etc
  - Past Seasonal Values: Today's seasonal(3<sup>rd</sup> Feb 2023, 3<sup>rd</sup> Feb 2022, etc.)

#### **SARIMA Parameters**

- p: order of Auto-Regressive Model
- d: order of Differencing
- q: order of Moving Average Model
- P: order of Seasonal Auto-Regressive Model
- D: order of Seasonal Differencing
- Q: order of Seasonal Moving Average Model
- m: Seasonal Time period = 12 monthly = 4 quart = 7 daily

### Tuning SARIMA

- It requires lot of guess work for knowing the best parameter set
- There is an automated option from package pmdarima which searches the best model with a criterion called AIC

# Questions?