

Course > Week 4... > Compr... > Quiz 4

Quiz 4

Problem 1

1/1 point (graded)

A predictor variable is a name for a variable representing which of the following?

- o Information that you already know
- Information that you wish to predict

Submit

Problem 2

1/1 point (graded)

When we fit a line to a set of data, we minimize the mean squared error. Which of the following is the correct equation for the mean squared error?

$$OMSE = \sum_{i=1}^{n} ((y^{(i)} - \bar{y})(x^{(i)} - \bar{x}))^{2}$$

$$OMSE = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} + (ax^{(i)} - b))^{2}$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - (ax^{(i)} + b))^{2}$$

$\bigcirc MSE = \sum_{i=1}^{n} (y^{(i)} - a(x^{(i)} - b))^{i}$	\bigcirc	MSE =	$\sum_{i=1}^{n}$	$(y^{(i)} -$	$a(x^{(i)})$	$(-b)^{2}$
--	------------	-------	------------------	--------------	--------------	------------

Submit

Problem 3

1/1 point (graded)

Given the line y = -3x + 15, and the points a = (3, 0) and b = (7, 0), which point has the smallest squared error from the line?

- \bigcirc point a
- \bigcirc point b
- o both have the same squared error

Submit

Problem 4

1/1 point (graded)

In the lecture, we rewrote the loss function, $f(x) = w_1 x_1 + w_2 x_2 + ... + w_d x_d + b$, as a matrix product, $f(x) = \tilde{w} \cdot \tilde{x}$. How did we get \tilde{w} ?

- \bigcirc Inserted a 1 at the beginning of the ${\bf w}$ vector
- \bigcirc Inserted a 0 at the beginning of the ${\bf w}$ vector
- $lue{f o}$ Inserted the value b at the beginning of the ${f w}$ vector

Submit

Problem 5

1/1 point (graded)

In order to write the loss function $L\left(\tilde{w}\right) = \sum_{i=1}^{n} \left(y^{(i)} - \tilde{w} \cdot \tilde{x}^{(i)}\right)^2$ in the form [Math Processing Error] $L(\tilde{w}) = ||y - X\tilde{w}||^2$, we must create a matrix X. If there are n d-dimensional data points, what is the dimension of the matrix X?

- $\bigcirc X \in \mathbb{R}^{n \times d}$
- $\bigcirc X \in \mathbb{R}^{d \times n}$
- $\bigcirc X \in \mathbb{R}^{(d+1) \times n}$

Submit

Problem 6

1/1 point (graded)

What is the vector \tilde{w} such that the loss function [Math Processing Error] $L(\tilde{w}) = ||y - X\tilde{w}||^2$ is minimized?

- $\tilde{w} = (X^T X)^{-1} (Xy)$

0	$\tilde{w} =$	X^{-1}	(X^T)	y
---	---------------	----------	---------	---

$$\bigcirc \tilde{w} = (X^T y) (X X^T)^{-1}$$

Submit

Problem 7

1/1 point (graded)

What regularizer term does ridge regression use along with the least-squares loss function?

- \bigcirc [Math Processing Error] $\lambda ||w||_2$, where [Math Processing Error] $||w||_2$ is the L_2 norm of w
- [Math Processing Error] $\lambda ||w||_2^2$, where [Math Processing Error] $||w||_2^2$ is the squared L_2 norm of w
- \bigcirc [Math Processing Error] $\lambda ||w||_1$, where [Math Processing Error] $||w||_1$ is the L_1 norm of w
- \bigcirc [Math Processing Error] $\lambda ||w||_1^2$, where [Math Processing Error] $||w||_1^2$ is the squared L_1 norm of w

Submit

Problem 8

1/1 point (graded)

A larger λ in the regularization term for ridg	e regression will typically result in which of tl	ne
following?		

 \square a larger w

a larger error on the training set

 $ule{\hspace{0.1cm}}$ a smaller w

a smaller error on the test set

Submit

Problem 9

1/1 point (graded)

Doing linear regression with the Lasso typically results in few features being included in the model.

True

False

Submit

Problem 10

1/1 point (graded)

Suppose our logistic regression model has decision boundary $x_1 + x_2 - 3 = 0$. How would we classify point p = (1, 3)?

 p is classified as 1 with 50% probability p is classified as 1 with < 50% probability ✓ Submit
Submit
Problem 11
Problem 11
1/1 point (graded)
If you are classifying d -dimensional data using the general linear function $\mathbf{w} \cdot \mathbf{x} + b = 0$ as the probability decision boundary, how would a point x be classified if $\mathbf{w} \cdot \mathbf{x} + b = 2$?
\bigcirc a '1' with 12% probability
\bigcirc a '1' with 42% probability
\bigcirc a '1' with 65% probability
$loodsymbol{\circ}$ a '1' with 88% probability
✓
Submit

Problem 12

1/1 point (graded)

With logistic regression, what value are we trying to optimize?

The overall probability of the labels of the data points	
○ The mean squared error	
\bigcirc The gradient for the ${f w}$ vector	
igcup The joint probability distribution between x and y	
Submit	
roblem 13	
1 point (graded) ue or False: In logistic regression, the optimal value for ${f w}$ is found by	_
erivative of the loss function, setting it equal to zero, and solving for ${f w}$	•
erivative of the loss function, setting it equal to zero, and solving for ${f w}$	•
	•
O True	•
O True	•
TrueFalse✓	
TrueFalse✓Submit	

1/2019	Quiz 4 Comprehension Quiz 4 DSE220x Courseware edX
	\bigcirc It finds values of ${f w}$ for which the loss function is zero
	$loodsymbol{\circ}$ It finds values of $f w$ that approximate local minima of the function
	\bigcirc It provides a closed form solution to ${f w}$ that optimizes the loss function
	Submit
Р	roblem 15
Le ne ve	71 point (graded) et's say we are building a document classifier that will determine if a text is fiction or onfiction. We decide to use a bag-of-words representation of documents, based on a ocabulary consisting of the 3,000 most commonly used words from text in the training et.
	ssume the word "pilot" is found in the test set text but it isn't one of the 3,000 most ommonly found words in the training set. How is the word used in the model?
	There is no entry for this word in the vector representation of any document. The word has no impact on the classification.
	\bigcirc The vector representation for that test document has a 0 entry for that word.
	\bigcirc The vector representation for that test document has a 1 entry for that word.

Problem 16

Submit

1/1 point (graded)

True or false: Coefficients in the ${\bf w}$ vector tend to have a greater impact on the classification of new data as they grow larger.

• True			
False			
~			
Submit			

© All Rights Reserved