ECE 435 Medical Image Processing Assignment 4

Yiping Wang V00894385

March 13, 2019

Question 2: Test the algorithm on the image "angiogram.tif". You will provide the following results:

- 1. The binarized image with the value of the threshold at convergence
- 2. The histogram of angiogram tif image with the value of the threshold specified on it.
- 3. A table containing the value of the threshold at every iteration before reaching convergence.

Answer: The following results are obtained when tolerance is set to 10^{-8} . The initial estimate of the threshold is randomly selected from the element of the image.

The binarized image with threshold at convergence of **103.9122** and the histogram of "angiogram.tif" image with the threshold at convergence of **103.9122** shows in Figure 1. Table 1 shows the value of the threshold at every iteration before reaching convergence.

Table 1		
Iteration	Threshold Value	
1	43	
2	71.4590	
3	82.2945	
4	88.1546	
5	92.6288	
6	95.8906	
7	97.8611	
8	97.8611	
9	99.3100	
10	100.7898	
11	101.6115	
12	102.3741	
13	103.1515	
14	103.9122	

Moreover, after invoking the function a few times, we obtain a different segmentation result since the initial estimate of the thresholds are different.

Without Histogram Equalization

Figure 1: Binarized Image and Its Histogram when Threshold at Convergence of 103.9122

The binarized image with threshold at convergence of 137.5802 and the histogram of "angiogram.tif" image with the threshold at convergence of 137.5802 shows in Figure 2. Table 2 shows the value of the threshold at every iteration before reaching convergence.

Table 2		
Iteration	Threshold Value	
1	168	
2	137.5802	

Question 3: Apply histogram equalization to angiogram.tif. You may choose to work with the Matlab histeq function. Next, apply the same thresholding algorithm to the equalized image. Compute the new threshold, and the new binarized images

The binarized image with threshold at convergence of **105.6698** and the histogram of "angiogram.tif" image with the threshold at convergence of **105.6698** shows in Figure 3. Table 3 shows the value of the threshold at every iteration before reaching convergence.

Without Histogram Equalization

Figure 2: Binarized Image and Its Histogram when Threshold at Convergence of 137.5802

Threshold at Convergence: 127.0794 8 6 4 2

Figure 3: Binarized Image and Its Histogram when Threshold at Convergence of 105.6698

With Histogram Equalization

Figure 4: Binarized Image and Its Histogram when Threshold at Convergence of 172.2672

Table 3		
Iteration	Threshold Value	
1	28	
2	78.6122	
3	102.8717	
4	115.3512	
5	121.2035	
6	125.9473	
7	127.0794	

Moreover, after invoking the function a few times, we obtain a different segmentation result since the initial estimate of the thresholds are different.

The binarized image with threshold at convergence of **172.2672** and the histogram of "angiogram.tif" image with the threshold at convergence of **172.2672** shows in Figure 4. Table 4 shows the value of the threshold at every iteration before reaching convergence.

Table 4	
Iteration	Threshold Value
1	202
2	172.2672

Question 4: Compare and discuss the results obtained by optimal thresholding on the original image, and on the image pre-processed with histogram equalization.