

Proteins have 3 profound properties:

- 1. great variety of structure and functions for all functions of cells and tissues
- 2. One place to synthesize ie. Ribosome and using only 20 different units
- 3. they fold spontaneously to the active native 3d state just by encoding the amino acid sequence
- At the end: HST forms to make the 3d structure, which is more informative
- Similar structure < > similar function
- PDB database is the main repository for 3d biological macromolecular structure data
- Source:
- 1. crystal structure
- 2. NMR models
- 3. others

X-ray crystallography

NMR

Atomic resolution	Good	Reasonable
Hydrogens	Rarely determined	Determined
Molecule size	No restriction	Small proteins
Dynamics	Snapshot	Multi models
Membrane proteins	Problematic	
Procedure	Very long	long

Visualization: molecular graphics

- 1. rotation and translation
- 2. color specific parts of molecules
- 3. labelling of residues and atoms
- 4. Geometrical measurements (distances and angles)
- 5. schematic representation and structures to compare and alignment

Representation of molecules

- 1. stick and ball model
- 2. space filled model
- 3. Backbone: only connecting the C-alpha atoms
- 4. Schematic: helix: cylinder and strand: arrow
- 5. surface

Software to visualize them

- 1. Pymol
- 2. Rasmol
- 3. Chimera etc.....

- https://pymol.org/2/
- First download and install
- Pymol tutorial
- http://www.protein.osakau.ac.jp/rcsfp/supracryst/suzuki/jpxtal/Kat sutani/en/interface.php

Structural analysis of proteins

- Examination of atomic interactions
- Examination of secondary structures
- Buried/exposed regions
- Analysis of ligands

Topics which can be solved

- Structural alignment
- Structural classification
- Secondary structure prediction or structure prediction
- Molecular docking
- Molecular dynamics

What properties of proteins used to detect structural similarity

- Sequence
- Type and number of secondary structures (HST)
- Structural arrangement of secondary structures
- Attributes of individual amino acids
- Distances between amino acids

Structural classification

- All β
- All α
- α/β : β - α - β super secondary structures are present, could be linear or barrels
- $\alpha+\beta$: both are separated at different parts of molecules
- The most common classification databases are:
- 1. SCOP
- 2. CATH

All β

All α

 $\alpha+\beta$

Secondary structure prediction

- Prediction of secondary structure is feasible and mostly used machine learning algorithm
- It is a bridge between linear and 3d strucures
- 1. Homology modelling: by aligning proteins of known structure (by SWISS MODEL)
- 2. Fold recognition (by known protein folds)
- 3. Ab initio method of modelling

Alignment with proteins of known structure

M	A	A	G	Y	A	Y	G	V	L	S	(%)
-	A	T	G	F	D	-	-	V	I	D	→ 8 3 3 3 3
-	Α	S	G	F	Е	-	-	V	V	Е	
-	A	K	A	Y	L	-	-	V	L	S	<u> </u>
							ļ				e de la companya della companya della companya de la companya della companya dell
						\$	2	ja Ja			

structural model

Degrees of freedom: phi (ϕ) is the C(i-1),N(i),Ca(i),C(i) torsion angle and psi (ψ) is the N(i),Ca(i),C(i),N(i+1) torsion angle.

The Sasisekharan-Ramakrishnan-Ramachandran plot describes allowed mainchain conformations

- Rotation is permitted around the N-Ca and Ca-C single bonds of all residues (except Proline)
- The angles around these bonds and angle of rotation around the peptide bond define the confirmation of residues
- Peptide bonds are mostly planar with $\omega = 180$ degrees as they are in trans state
- Principle: two atoms can't occupy the same space limits the values of conformational angles
- The allowed range of ϕ , ψ with ω = 180 fall into defined regions in a graph called Ramachandran plot
- Solid lines delimit energetically preferred regions of the angles: regions outside the broken lines are sterically disallowed
- Most amino acids falls into right handed helix or beta regions
- Glycine has additional confirmation and can form left handed helix
- Only few are forced into energetically less favorable states
- Many but not all turns are short, surface exposed regions that contain charged or polar residues

Role of sidechains

- 1. Size: glycine is smallest with only H and phynylalanine contains a benzene ring, one
 of the largest
- 2. Electric charge: acidic amino acids are negatively charged while basic ones are positively charged
- 3. Polarity: polar sidechains form hydrogen bonds to others and to water; others are electrically neutral and if unfavorable interactions with water: hydrophobic
- 4. Shape and rigidity
- E.g. D & E are similar and L & I are similar