

(19)日本国特許庁(JP)

許 公 (12) 特

(11)特許番号

Fori

第2707616号

(45) 発行日 平成10年(1998) 2月4日

(24)登録日 平成9年(1997)10月17日

(51) Int,Cl,6		識別記号	庁内整理番号	FI		技術表示箇所
H02J	7/24			H02J	7/24	E
	7/14				7/14	S .
	7/24				7/24	G .

: :

請求項の数1(全7頁)

(21)出顯番号	特願昭63-186558	(73)特許権者 999999999 株式会社デンソー
(22)出願日	昭和63年(1988) 7月26日	保工会社プラッ 愛知県刈谷市昭和町1丁目1番地 (72)発明者 丸山 敏典
(65)公開番号:	特開平2-36734 平成2年(1990)2月6日	爱知県刈谷市昭和町1丁目1番地 日本電装株式会社内
(43)公開日	平成2年(1990)2月0日	(72)発明者 松橋 俊明 愛知県刈谷市昭和町1丁目1番地 日本
		電装株式会社内
		(74)代理人 弁理士 伊藤 求馬
		審査官 吉村 伊佐雄

車両用発電機の電圧制御装置 (54)【発明の名称】

(57) 【特許請求の範囲】

【請求項1】 互いに直列に接続されたイグニションスイ ッチとチャージランプを介してバッテリ電圧を入力する 入力端子を有し、該入力端子の電圧が所定値を越えた時, に車両用発電機のロータコイルの励磁を開始するように なした電圧制御装置において、上記入力端子電圧が上記 所定値よりも低い他の所定値を越えた時に出力信号を発 する比較手段と、該出力信号により作動して上記入力端 子とアース間にリーク補償抵抗を接続するスイッチ手段 とを具備する車両用発電機の電圧制御装置。

【発明の詳細な説明】

[産業上の利用分野]

本発明は車両用発電機の電圧制御装置に関し、イグニ ションスイッチとチャージランプを直列接続してこれら の入力端子を共通化した電圧制御装置に関する。

2

[従来の技術]

電圧制御装置の外形の小形化と配線コストの低減を図 って、イグニションスイッチとチャージランプの入力端 子を共通化したものが例えば特開昭61-46200号公報に開 示されており、その要部を第7図に示す。

電圧制御装置1は車両用発電機2のロータコイル21を 励磁するパワートランジスタ11を有し、上記入力端子た るし端子の電圧が上昇するとトランジスタ171、172を介 して上記パワートランジスタ11が導通せしめられる。上 記し端子にはチャージランプ4の一端が接続され、該チ ャージランプ4の他端にはイグニッションスイッチ3が 直列接続されて車載バッテリ5に至っている。

コンパレータ15の「一」端子には上記発電機5の発電 電圧が入力しており、発電機2が発電を開始する前はコ ンバレータ15の出力が「1」 レベルとなって、トランジ スタ152を介して上記チャージランプ4が点灯せしめられる。発館機2が発館を開始するとその発電電圧は定電圧V3を越え、トランジスタ152が非導通となって上記チャージランプ4は消灯せしめられる。

なお、発館中の上記パワートランジスタ11の0N-0FF 制御は、ペース側にツェナーダイオード113を設けたト ランジスタ111によりなされる。

ところで、上記イグニションスイッチ3の接点は、雨中走行後等には一時的に開放状態での絶縁性が低下してリークを生じることがあり、このリークによりL端子電 10 圧が上昇して上記パワートランジスタ11が導通状態となり、バッテリ5よりロータコイル21へ大きな励磁電流が流れてバッテリ上がりを生じるおそれがある。

そこで、図示の如く、L端子とアース間にリーク補償抵抗143を介してトランジスタ14を設け、このトランジスタ14のベースを抵抗142を介して上記バッテリ5に接続し、常時、上記トランジスタ14を導通状態となし、上記リーク時の電流を吸収してL端子電圧の上昇を防止している。

[発明が解決しようとする課題]

しかしながら、上記従来装置において、ある程度大きなリーク電流を吸収するためには上記トランジスタ14に十分なベース電流を供給する必要があり、これを、上述の如くリークの有無に拘らず常時行なう構成では、バッテリ暗電流が大きくなってバッテリ負担はそれ程小さくならない。

本発明はかかる問題点を解決するもので、イグニションスイッチがリークを生じていない時にはバッテリ電流の消費を小さく抑えて、バッテリ負担の大幅軽減を実現する電圧制御装置を提供することを目的とする。

[課題を解決するための手段]

本発明の構成を第1図で説明すると、互いに直列に接続されたイグニションスイッチ3とチャージランプ4を介してバッテリ5の電圧を入力する入力端子Lを有し、該入力端子Lの電圧が所定値を越えた時に車両用発電機2のロータコイル21の励磁を開始する電圧制御装置1は、上紀入力端子Lの電圧が上記所定値よりも低い他の所定値を越えた時に出力信号を発する比較手段12と、該出力信号により作動して上記入力端子Lとアース間にリーク補償抵抗143を接続するスイッチ手段14とを具備し40でいる。

[作用]

本発明の電圧制御装置において、イグニションスイッチ3のリークが生じていない場合には、上記入力端子Lの電圧は上記他の所定値よりも低く、したがってスイッチ手段14は作動しないからバッテリ5電流が無駄に消費されることはない。

イグニションスイッチ3にリークを生じると、上記入 力端子しの電圧が上記他の所定値を越える。比較手段12 より出力信号が発せられてスイッチ手段14が作動し、入 50 カ場子Lとアース間にリーク補償抵抗143が接続される。これによりリーク電流は吸収され、上記入力端子しの電圧上昇が防止される。したがって、入力端子し電圧が上記所定値を越えることはなく、ロータコイル21が誤って励磁されることはない。

[第1 実施例]

第1図には本発明の第1実施例を示し、図中同符号は 従来例を示す第7図で既述したものに対応している。以 下、従来との相違点を中心に説明する。

電圧制御装置 1 はコンパレータ12、13を有しており、 それぞれの「-」端子にL端子の電圧が入力している。 上記各コンパレータ12、13の「+」端子には定電圧V1、 V2が入力しており、V1<V2としてある。

上記コンパレータ12の出力端にはトランジスタ16が接続され、このトランジスタ16の出力により抵抗142を介してスイッチ手段たるトランジスタ14が0N作動せしめられる。一方、上記コンパレータ13の出力端にはトランジスタ112が接続され、該トランジスタ112は抵抗114を介してパワートランジスタ11を0N作動せしめる。

20 なお、トランジスタ14、152はそれぞれトランジスタ1 41、151を介してコンパレータ15により0FF作動せしめられる。図中、22、23はそれぞれ発電機のステータコイルおよび全波整流器である。また、L端子とアース間に設けた抵抗144は、イグニションスイッチ3の通常開放作動時にL端子をアースレベルへ引下げるものである。

上記構成の電圧制御装置において、イグニションスイッチ開放状態でリーク電流がない場合には、L端子電圧はOYであり(第2図線x)、この時のバッテリ放電電流は例えば0.43mAであって(第3図線x)、これはコンバレータ12作動用の電源電流である。

これに対して、既述した従来の装置では、リーク電流が生じた場合にし端子電圧をパワートランジスタ11の0N作動を引起こさない限度内に維持するために(第2図線 z)、リーク電流を生じていない場合にもトランジスタ14に抵抗142を経て常時例えば0.83mA程度のパッテリ電流を供給する必要がある(第3図線 z)。

かくして、本実施例の装置では、リーク電流を生じて いない場合には、従来の半分程度のバッテリ電流消費に 抑えることができる。

上記実施例の装置において、リーク電流を生じると、 L端子電圧は電圧V1を越えて上昇し、コンパレータ12の 出力が「0」レベルとなってトランジスタ16が0Nとな り、さらにトランジスタ14が0Nとなってリーク補償抵抗 143によりリーク電流が吸収される。これにより、L端 子電圧はリーク電流領域では電圧V2より低い上記電圧V1 に維持され、この結果、コンパレータ13の出力は「1」 レベルを維持し、パワートランジスタ11が誤って0N作動 せしめられることはない。

[第2実施例]

上記第1実施例では、リーク電流が比較的わずかに流

30

れてもし端子電圧が急上昇し、コンパレータ12の出力に よりトランジスタ14が導通して、パッテリ放電電流は第 3 図に示す如く即座に従来よりも大きくなることがあ

そこで、第2実施例は、ある程度のリーク電流ならば パッテリ放電電流を増加せしめることなくリーク電流の 吸収を可能としたもので、これを第4図に示す。

図は上記各コンパレータ12、13およびトランシズタ1 6、112を詳細内部回路で示すもので、コンパレータ12の のペースに接続してある。かかる構成により、L端子質 圧が電圧V1よりも低い状態で、上記コンパレータ12の作 動電流が上記トランジスタ14に供給され、これを不飽和 の導通状態におく。

かくして、比較的わずかなリーク電流は、不飽和の導 通状態にある上記トランジスタ14により補償抵抗143を 経て吸収され (第5図および第6図における線yのA領 域)、このA領域でパッテリ放電電流は増加することな く低く抑えられる。

なお、図中、抵抗181、チェナーダイオード182、電流 20 14……トランジスタ (スイッチ手段) ミラー回路183はコンパレータ12の作動電源を構成して おり、このためにバッテリより吸収される電流は、バッ テリ電圧とツェナーの電圧の差を抵抗181で除したもの となる。

「発明の効果」

以上の如く、本発明の電圧制御装置は、入力端子電圧

[第2図]

を定電圧と比較するコンパレータを設けて、該コンパレ ータの出力でリーク補償抵抗を接続するスイッチ手段を 作動せしめるようになしたから、リーク電流が生じてい ·ない場合にはパッテリ暗電流を極めて小さく抑えること が可能であり、これによりバッテリ負担の大幅軽減が実 現できるものである。

【図面の簡単な説明】

第1図ないし第3図は本発明の第1実施例を示し、第1 図は装置の全体回路図、第2図および第3図はそれぞ 入力トランジスタ121のコレクタを上配トランジスタ14 10 れ、L端子電流とバッテリ放電電流ないしL端子電圧の 関係を示す図、第4図ないし第6図は本発明の第2実施 例を示し、第4図は装置の要部詳細回路図、第5図およ び第6図はそれぞれ、し端子電流とパッテリ放電電流な いしし端子電圧の関係を示す図、第7図は従来装置の要 部回路図である。

1 …… 鐵圧制御装置

11……パワートランジスタ

-12……コンパレータ(比較手段)

13-----コンパレータ

2 ……車両用発電機

21 ……ロータコイル

3 ……イグニションスイッチ

4 ……チャージランプ

5パッテリ

し箱子環族

【第3図】

[第1図]

【第4図】

[第7図]

