

# **ECON 201B**

Author: Wenxiao Yang

Institute: Haas School of Business, University of California Berkeley

**Date:** 2024

Seeking what is true is not seeking what is desirable.

## **Contents**

| Chapte | r 1 Geo                                                       | ometric Programming (GP)                                                                                                                    | 1  |
|--------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.1    | Arithmetic Mean-Geometric Mean Inequality                     |                                                                                                                                             | 1  |
|        | 1.1.1                                                         | AM-GM inequality $\frac{x_1+x_2++x_n}{n} \geq \sqrt[n]{x_1x_2x_n}$                                                                          | 1  |
|        | 1.1.2                                                         | Weighted AM-GM inequality: $\sum_{i=1}^{n} \delta_i x_i \ge \prod_{i=1}^{n} x_i^{\delta_i} \dots \dots \dots \dots \dots$                   | 1  |
| 1.2    | Unconstrained Geometric Programs                              |                                                                                                                                             | 2  |
|        | 1.2.1                                                         | Def: Posynomial                                                                                                                             | 2  |
|        | 1.2.2                                                         | General Strategy: AM-GM inequality                                                                                                          | 2  |
|        | 1.2.3                                                         | Dual of the Unconstrained GP                                                                                                                | 2  |
| Chapte | r 2 Pol                                                       | ynomial Interpolation                                                                                                                       | 5  |
| 2.1    | Metho                                                         | d 1: $M\vec{a} = \vec{y}$                                                                                                                   | 5  |
| 2.2    | Metho                                                         | Method 2: Lagrange Interpolation Formula                                                                                                    |    |
| 2.3    | Lines of Best Fit                                             |                                                                                                                                             | 6  |
| 2.4    | Least-Square Problem (Overconstrainted $A\vec{x}=\vec{b}$ )   |                                                                                                                                             | 6  |
|        | 2.4.1                                                         | Lemma: closest point $\Leftrightarrow (A\vec{x}^* - \vec{y}) \perp \vec{a}, \ \forall \vec{a} \in V \ \dots \dots \dots \dots \dots$        | 6  |
|        | 2.4.2                                                         | Theorem: $\vec{x}^* = (A^T A)^{-1} A^T \vec{y} = A^+ \vec{y}$                                                                               | 7  |
|        | 2.4.3                                                         | Def: Projection Matrix: $P = AA^+$ ; Projection of $\vec{y}$ on $V$ : $A\vec{x}^* = P\vec{y}$                                               | 7  |
|        | 2.4.4                                                         | Special Case: Projection on vector $Proj_{\vec{a}}(\vec{y}) = \frac{(\vec{a} \cdot \vec{y})\vec{a}}{\ \vec{a}\ ^2} \dots \dots \dots \dots$ | 8  |
|        | 2.4.5                                                         | Theorem: Projection Matrix = Sum of outer products of orthonormal basis                                                                     | 8  |
|        | 2.4.6                                                         | Corollary: $Q$ has orthonormal columns $\Rightarrow \vec{x}^* = Q^T \vec{y}$ . $(Q^+ = Q^T)$                                                | 9  |
|        | 2.4.7                                                         | The Gram-Schmidt process                                                                                                                    | 9  |
| 2.5    | Minimum-norm problems (Underconstrainted $A\vec{x}=\vec{b}$ ) |                                                                                                                                             | 10 |
|        | 2.5.1                                                         | Applying the least-squares technique                                                                                                        | 10 |
|        | 2.5.2                                                         | The short cut method                                                                                                                        | 11 |
|        | 2.5.3                                                         | The short cut method with $H$ -norm                                                                                                         | 12 |

## **Chapter 1 Geometric Programming (GP)**

### 1.1 Arithmetic Mean-Geometric Mean Inequality

## **1.1.1** AM-GM inequality: $\frac{x_1+x_2+...+x_n}{n} \geq \sqrt[n]{x_1x_2...x_n}$

### **Theorem 1.1 (AM-GM inequality)**

For any  $x_1, x_2, ..., x_n \ge 0$ ,

$$\frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \cdots x_n}$$

Equality is only achieved when  $x_1 = x_2 = \cdots = x_n$ 

 $_{\odot}$ 

- The LHS is the arithmetic mean (average) of  $x_1, x_2, ..., x_n$ .
- The RHS is the geometric mean of  $x_1, x_2, ..., x_n$ .

## **1.1.2** Weighted AM-GM inequality: $\sum_{i=1}^{n} \delta_i x_i \ge \prod_{i=1}^{n} x_i^{\delta_i}$

### **Theorem 1.2 (Weighted AM-GM inequality)**

For any  $x_1, x_2, ..., x_n \ge 0$  with  $\delta_1, \delta_2, \cdots, \delta_n > 0$  with  $\delta_1 + \cdots + \delta_n = 1$ ,

$$\delta_1 x_1 + \delta_2 x_2 + \dots + \delta_n x_n \ge x_1^{\delta_1} x_2^{\delta_2} \cdots x_n^{\delta_n}$$

Equality is only achieved if  $x_1 = x_2 = \cdots = x_n$ .

 $\bigcirc$ 

When  $\delta_1 = \cdots = \delta_n = \frac{1}{n}$ , the inequality recovers to unweighted AM-GM inequality.

### Proof 1.1

Prove by Jensen's Inequality:

Let  $f(t) = -\ln(t)$  which is strictly convex in  $(0, \infty)$ . Take  $\lambda_1, \lambda_2, \cdots, \lambda_n > \text{such that } \delta_1 + \delta_2 + \cdots + \delta_n = -\ln(t)$ 

1. According to Jensen's Inequality:

$$f(\sum_{i=1}^{n} \delta_i x_i) \le \sum_{i=1}^{n} \delta_i f(x_i)$$

By substituting f:

$$-\ln(\sum_{i=1}^{n} \delta_i x_i) \le -\sum_{i=1}^{n} \delta_i \ln(x_i)$$

$$e^{\ln(\sum_{i=1}^{n} \delta_i x_i)} \ge e^{\sum_{i=1}^{n} \delta_i \ln(x_i)}$$

$$\sum_{i=1}^{n} \delta_i x_i \ge x_1^{\delta_1} x_2^{\delta_2} \cdots x_n^{\delta_n}$$

### 1.2 Unconstrained Geometric Programs

### 1.2.1 Def: Posynomial

### **Definition 1.1**

A posynomial term in variables  $t_1, ..., t_m$  is a function of the form

$$Ct_1^{\alpha_1}t_2^{\alpha_2}\cdots t_m^{\alpha_m}$$

where  $\alpha_1, ..., \alpha_m \in \mathbb{R}$  and C > 0 is a positive real number.

### \*

### **Definition 1.2**

A posynomial is a sum of posynomial terms.



### 1.2.2 General Strategy: AM-GM inequality

#### **Definition 1.3**

An unconstrained geometric program (GP) is the problem of minimizing a posynomial over positive real inputs.

$$\min_{(t_1,\cdots,t_m\in\mathbb{R}^m_{>0}}g(t_1,\cdots,t_m)$$

where  $g(t_1, \dots, t_m)$  is a sum of posynomial terms.  $g(t_1, \dots, t_m) = \sum_{i=1}^n Term_i(t_1, \dots, t_m)$ , where

$$Term_i(t_1, \cdots, t_m) = C_i t_1^{\alpha_{i,1}} t_2^{\alpha_{i,2}} \cdots t_m^{\alpha_{i,m}}$$



#### **General Strategy:**

Choose weights  $\delta_1, ..., \delta_n > 0$  with  $\delta_1 + \cdots + \delta_n = 1$  and use the inequality

$$\sum_{i=1}^{n} Term_{i}(t_{1}, \cdots, t_{m}) = \sum_{i=1}^{n} \delta_{i} \left( \frac{Term_{i}(t_{1}, \cdots, t_{m})}{\delta_{i}} \right)$$

$$\geq \left( \frac{Term_{1}(t_{1}, \cdots, t_{m})}{\delta_{1}} \right)^{\delta_{1}} \cdots \left( \frac{Term_{n}(t_{1}, \cdots, t_{m})}{\delta_{n}} \right)^{\delta_{n}}$$

### 1.2.3 Dual of the Unconstrained GP

**Example:** Suppose we want to find the minimum of  $f(x,y) = 2xy + \frac{y}{x^2} + \frac{3x}{y}$ .

We want

$$2xy + \frac{y}{x^2} + \frac{3x}{y} \ge \left(\frac{2xy}{\delta_1}\right)^{\delta_1} \left(\frac{y}{\delta_2 x^2}\right)^{\delta_2} \left(\frac{3x}{\delta_3 y}\right)^{\delta_3}$$

which requires

- (1) **Power of** x:  $\delta_1 2\delta_2 + \delta_3 = 0$
- (2) **Power of** y:  $\delta_1 + \delta_2 \delta_3 = 0$

(3) **Sum:**  $\delta_1 + \delta_2 + \delta_3 = 1$ 

(4) **Positive:**  $\delta_1, \delta_2, \delta_3 > 0$ 

In general, we want to eliminate all  $t_1,...,t_n$  is the RHS of the inequality, then the RHS can be transformed into constant  $V(\delta) = \left(\frac{C_1}{\delta_1}\right)^{\delta_1} \left(\frac{C_2}{\delta_2}\right)^{\delta_2} \cdots \left(\frac{C_n}{\delta_n}\right)^{\delta_n}$  which is a lower bound of  $g(\vec{t}), \vec{t} \in \mathbb{R}_{>0}^m$ 

### **Dual Geometric Problem**

$$\max_{\vec{\delta} \in \mathbb{R}_{>0}^{n}} V(\vec{\delta}) = \left(\frac{C_{1}}{\delta_{1}}\right)^{\delta_{1}} \left(\frac{C_{2}}{\delta_{2}}\right)^{\delta_{2}} \cdots \left(\frac{C_{n}}{\delta_{n}}\right)^{\delta_{n}}$$
s.t. 
$$\delta_{1}\alpha_{1,1} + \delta_{2}\alpha_{2,1} + \cdots + \delta_{n}\alpha_{n,1} = 0 \quad \text{(power of } t_{1})$$

$$\vdots$$

$$\delta_{1}\alpha_{1,m} + \delta_{2}\alpha_{2,m} + \cdots + \delta_{n}\alpha_{n,m} = 0 \quad \text{(power of } t_{m})$$

$$\delta_{1} + \cdots + \delta_{n} = 1$$

$$\delta_{1}, \delta_{2}, \dots, \delta_{n} > 0$$

Suppose  $\vec{\delta}^*$  is the solution to the dual GP.

$$\sum_{i=1}^{n} \delta_{i}^{*} \left( \frac{Term_{i}(\vec{t})}{\delta_{i}^{*}} \right) \geq \left( \frac{Term_{1}(\vec{t})}{\delta_{1}^{*}} \right)^{\delta_{1}^{*}} \cdots \left( \frac{Term_{n}(\vec{t})}{\delta_{n}^{*}} \right)^{\delta_{n}^{*}}$$

The inequality holds only if

$$\frac{Term_1(\vec{t})}{\delta_1^*} = \frac{Term_2(\vec{t})}{\delta_2^*} = \dots = \frac{Term_m(\vec{t})}{\delta_m^*} = V(\vec{\delta}^*)$$

where  $V(\vec{\delta}^*)$  is a function only related to  $\vec{\delta}^*$ .

**Note:** It is possible that system of equations for  $\vec{t}$  has no solution.

#### $Dual \Rightarrow Primal$

### **Theorem 1.3**

Given a feasible point  $\vec{\delta}^*$  of the dual program. If the equations

$$\frac{Term_1(\vec{t})}{\delta_1^*} = \frac{Term_2(\vec{t})}{\delta_2^*} = \dots = \frac{Term_m(\vec{t})}{\delta_m^*} = V(\vec{\delta}^*)$$

have a solution  $\vec{t}^*$  with  $t_i^* > 0, i = 1, 2, ..., m$ , then  $\vec{t}^*$  is a primal solution,  $\vec{\delta}^*$  is a dual solution, and  $g(\vec{t}^*) = V(\vec{\delta}^*)$ 

#### Proof 1 2

If a solution  $\vec{t}^*$  with  $t_i^*>0, i=1,2,...,m$  exists, then  $g(\vec{t}^*)=V(\vec{\delta}^*)$  (by AM-GM inequality).

Suppose there exists another solution  $\vec{t'}$  to the primal problem. Because  $V(\vec{\delta}^*)$  is a lower bound of  $g(\vec{t})$ ,  $g(\vec{t'}) \geq V(\vec{\delta}^*) = g(\vec{t}^*) \Rightarrow \vec{t}^*$  is an optimal solution minimizing g.

Suppose there exists feasible  $\vec{\delta}'$ ,  $V(\vec{\delta}')$  is a lower bound of  $g(\vec{t}) \Rightarrow V(\vec{\delta}^*) = g(\vec{t}^*) \geq V(\vec{\delta}') \Rightarrow \vec{t}^*$  is also optimal maximizing V.

### $Primal \Rightarrow Dual$

### Theorem 1.4

If  $\vec{t}^*$  is an optimal primal solution, then

$$\vec{\delta}^* = \left(\frac{Term_1(\vec{t}^*)}{g(\vec{t}^*)}, \frac{Term_2(\vec{t}^*)}{g(\vec{t}^*)}, \cdots, \frac{Term_n(\vec{t}^*)}{g(\vec{t}^*)}\right)$$

is an optimal dual solution and  $g(\vec{t}^*) = V(\vec{\delta}^*)$ .

### Proof 1.3

If  $\vec{t}^*$  is an optimal primal solution, it's a critical point and  $\nabla g(\vec{t}^*) = \vec{0}$ . Recall  $g(\vec{t}^*) = \sum_{i=1}^m Term_i(\vec{t}^*) = \sum_{i=1}^m C_i t_1^{*\alpha_{i,1}} t_2^{*\alpha_{i,2}} \cdots t_m^{*\alpha_{i,m}}$ 

 $\nabla g(\vec{t}^*) = \vec{0}$  implies, for each  $1 \leq j \leq n$ ,

$$\frac{\partial g(\vec{t}^*)}{\partial t_j} = \sum_{i=1}^n \frac{\alpha_{i,j}}{t_j} Term_i(\vec{t}^*) = 0$$

Then, we can check  $\vec{\delta}^* = \left(\frac{Term_1(\vec{t}^*)}{g(\vec{t}^*)}, \frac{Term_2(\vec{t}^*)}{g(\vec{t}^*)}, \cdots, \frac{Term_n(\vec{t}^*)}{g(\vec{t}^*)}\right)$  is feasible in dual problem and can get the equality in AM-GM inequality.

## **Chapter 2 Polynomial Interpolation**

Suppose we are given a collection of points  $\{(x_1, y_1), (x_2, y_2), ..., (x_k, y_k)\}$ . We want to find **polynomial** f that passes through all the points.

We have two methods to solve this problem:

- (1) Set up and solve the system  $M\vec{a} = \vec{y}$
- (2) Use the Lagrange interpolation formula.

### **2.1 Method 1:** $M\vec{a} = \vec{y}$

If  $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$  passes through all  $(x_i, y_i)$ , then

$$a_n x_1^n + \dots + a_1 x_1 + a_0 = y_1$$

$$a_n x_2^n + \dots + a_1 x_2 + a_0 = y_2$$

:

$$a_n x_k^n + \dots + a_1 x_k + a_0 = y_k$$

in matrix form as  $M\vec{a} = \vec{y}$ 

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^n \\ 1 & x_2 & x_2^2 & \cdots & x_2^n \\ \vdots & & \ddots & & \vdots \\ 1 & x_k & x_k^2 & \cdots & x_k^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_k \end{bmatrix}$$

In order to avoid no solution or multi solutions, we would let to set n = k - 1.

#### Theorem 2.1

If  $x_i \neq x_j$  for all  $1 \leq i < j \leq k$ , then there is a <u>unique</u> polynomial of degree at most k-1 that passes through the points  $\{(x_1, y_1), (x_2, y_2), \cdots, (x_k, y_k)\}$ .

## 2.2 Method 2: Lagrange Interpolation Formula

Suppose

$$l_i(x) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}, i = 1, 2, ..., k$$

The  $l_1, \dots, l_k$  has the following properties:

• Each has degree k-1

- $l_i(x_i) = 1$
- $l_i(x_j) = 0$  when  $i \neq j$

Then the Lagrange Interpolation Formula is

$$f(x) = y_1 l_1(x) + y_2 l_2(x) + \dots + y_k l_k(x)$$

where  $f(x_i) = y_1 \cdot 0 + y_2 \cdot 0 + \dots + y_i \cdot 1 + \dots + y_k \cdot 0 = y_i$ 

### 2.3 Lines of Best Fit

Suppose we use a linear function y = ax + b to fit the collection of points  $(x_1, y_1), ..., (x_k, y_k)$ .

We use error to measure the accuracy of line's accuracy of fitting.

1.  $Error(a,b) = |(ax_1 + b) - y_1| + \dots + |(ax_k + b) - y_k|$ 

Pros: 1. Convex; 2. Minimizing problem is linear.

Cons: not differentiable

2.  $Error(a,b) = [(ax_1 + b) - y_1]^2 + \dots + [(ax_k + b) - y_k]^2 = ||a\vec{x} + b\vec{1} - \vec{y}||^2$  which is also convex  $\frac{\partial Error(a,b)}{\partial a} = 2\sum_{i=1}^n (ax_i + b - y_i)x_i = 2(a\vec{x} + b\vec{1} - \vec{y})^T \cdot \vec{x}$   $\frac{\partial Error(a,b)}{\partial b} = 2\sum_{i=1}^n (ax_i + b - y_i) = 2(a\vec{x} + b\vec{1} - \vec{y})^T \cdot \vec{1}$ 

The critical point is the global minimizer

## **2.4** Least-Square Problem (Overconstrainted $A\vec{x} = \vec{b}$ )

For  $A \in \mathbb{R}^{m \times n}$ ,  $\vec{y} \in \mathbb{R}^m$ , m > n. We want to solve  $A\vec{x} = \vec{y}$ . However, this equation system is overconstrained, we can only find a  $\vec{x}$  to minimize the error between  $A\vec{x}$  and  $\vec{y}$ .

The least-square error problem can be written as find  $\vec{x} \in \mathbb{R}^n$  to minimize  $||A\vec{x} - \vec{y}||$ .

If A is an  $m \times n$  matrix, then the set  $V = \{A\vec{x} : \vec{x} \in \mathbb{R}^n\}$  is a subspace of  $\mathbb{R}^m$ .

Then, "minimizing  $||A\vec{x} - \vec{y}||$ " means "finding the point of V closest to  $\vec{y} \in \mathbb{R}^m$ ".

### **2.4.1** Lemma: closest point $\Leftrightarrow (A\vec{x}^* - \vec{y}) \perp \vec{a}, \ \forall \vec{a} \in V$

#### Lemma 2.1

If  $V = \{A\vec{x} : \vec{x} \in \mathbb{R}^n\}$ , then the point  $A\vec{x}^* \in V$  is the closest point of V to  $\vec{y} \in \mathbb{R}^m$  if and only if

$$(A\vec{x}^* - \vec{y}) \perp \vec{a}, \ \forall \vec{a} \in V$$

C

### Proof 2.1

We look at restrictions to lines.  $\vec{x}^*$  is the global minimizer of  $f(\vec{x}) = ||A\vec{x} - \vec{y}||^2$ .  $\vec{u} \in \mathbb{R}^n$  is an arbitrary element of V. Let  $\vec{a} = A\vec{u}$ .

$$\phi_{\vec{u}}(t) = ||A(\vec{x}^* + t\vec{u}) - \vec{y}||^2$$

$$= ||A\vec{x}^* - \vec{y} + t\vec{a}||^2$$

$$= ||A\vec{x}^* - \vec{y}||^2 + 2t(A\vec{x}^* - \vec{y})^T \vec{a} + t^2 ||\vec{a}||^2$$

Since  $\vec{x}^*$  is the global minimizer of  $f(\vec{x})$ , t=0 is the global minimizer of  $\phi_{\vec{u}}$ . For  $C_1t^2+C_2t+C_3$ , t=0 is global minimizer when  $C_1 \geq 0$ ,  $C_2=0 \Rightarrow (A\vec{x}^*-\vec{y})^T\vec{a}=0$ 

### **2.4.2 Theorem:** $\vec{x}^* = (A^T A)^{-1} A^T \vec{y} = A^+ \vec{y}$

We can use this characterization to write down a **normal equation**. ("normal" is another word for "perpendicular")

### Theorem 2.2

A point  $\vec{x}^* \in \mathbb{R}^n$  minimizes  $\|A\vec{x} - \vec{y}\|$  if and only if  $A^T A \vec{x}^* = A^T \vec{y}$ 

### Proof 2.2

Let  $\vec{a}^{(i)} = A\vec{e}^{(i)}$  be the basis vector of V, then any vector  $\vec{a}$  can be linear combination of  $\{\vec{a}^{(i)}\}_{i=1,...,n}$ . Hence,  $\vec{x}^*$  is the global minimizer  $\Leftrightarrow (A\vec{x}^* - \vec{y}) \perp \vec{a}^{(i)}, i = 1,...,n \Leftrightarrow A^T(A\vec{x}^* - \vec{y}) = 0$ 

We can solve the optimal  $x^*$  as

$$\vec{x}^* = (A^T A)^{-1} A^T \vec{y} = A^+ \vec{y}$$

we call  $A^+ = (A^T A)^{-1} A^T$  the <u>pseudoinverse</u> of A because  $A^+$  is a "pseudo-solution" to the overconstrained system.

### **2.4.3** Def: Projection Matrix: $P = AA^+$ ; Projection of $\vec{y}$ on V: $A\vec{x}^* = P\vec{y}$

### **Definition 2.1**

The matrix  $P = AA^+$  is called a **projection matrix**. (It maps a point  $\vec{y} \in \mathbb{R}^n$  to  $P\vec{y}$ , the closest point in V to  $\vec{y}$ ,  $P\vec{y}$  is also called projection of  $\vec{y}$  on V.)

We have  $P\vec{y} = A\vec{x}^*$ ,  $(P\vec{y} - \vec{y}) \perp \vec{a}$ ,  $\forall \vec{a} \in V$ .

### Properties of P:

- $P^2 = P$  (i.e., P is idempotent)
- $P^T = P$  (i.e., P is symmetric)

## **2.4.4** Special Case: Projection on vector $Proj_{\vec{a}}(\vec{y}) = \frac{(\vec{a} \cdot \vec{y})\vec{a}}{\|\vec{a}\|^2}$

A special case:  $A = \vec{a} \in \mathbb{R}^m$ .

$$P = \vec{a}(\vec{a}^T \vec{a})^{-1} \vec{a}^T = \frac{\vec{a} \vec{a}^T}{\|\vec{a}\|^2}$$

The projection of  $\vec{y}$  onto  $\vec{a}$ 

$$Proj_{\vec{a}}(\vec{y}) = P\vec{y} = \frac{\vec{a}\vec{a}^T}{\|\vec{a}\|^2}\vec{y} = \frac{\vec{a}\cdot\vec{y}}{\|\vec{a}\|^2}\vec{a}$$

where  $\frac{\vec{a} \cdot \vec{y}}{\|\vec{a}\|^2}$  is a scalar to measure how much of  $\vec{y}$  is "pointing in the same direction as"  $\vec{a}$ .

If we normalize  $\vec{a}$  to  $\vec{u}$ , the projection of  $\vec{y}$  onto vector  $\vec{u}$  is

$$Proj_{\vec{u}}(\vec{y}) = (\vec{u} \cdot \vec{y})\vec{u}$$

### **2.4.5** Theorem: Projection Matrix = Sum of outer products of orthonormal basis

Let  $\vec{u}^{(1)},...,\vec{u}^{(n)}$  be the **orthonormal basis** of  $V \in \mathbb{R}^m$  (which requires  $\|\vec{u}^{(i)}\| = 1, i = 1,...,n$  and  $\vec{u}^{(i)} \cdot \vec{u}^{(j)} = 0, \forall i \neq j$ )

#### Theorem 2.3

Suppose that  $V \subseteq \mathbb{R}^m$  with an orthonormal basis  $\{\vec{u}^{(1)},...,\vec{u}^{(n)}\}$ . Then the projection matrix onto V is given by the formula

$$P = \vec{u}^{(1)}(\vec{u}^{(1)})^T + \vec{u}^{(2)}(\vec{u}^{(2)})^T + \dots + \vec{u}^{(n)}(\vec{u}^{(n)})^T$$

**Note:** sometimes  $\vec{u}\vec{v}^T$  is called the **outer product** of  $\vec{u}$  and  $\vec{v}$ .

#### Proof 2.3

For any  $\vec{y}$ , let  $\vec{x} = P\vec{y}$  and  $\vec{z} = \vec{y} - \vec{x}$ , we know  $\vec{z} \perp V$ .

Because  $\vec{x} \in V$ , we can write

$$\vec{x} = a_1 \vec{u}^{(1)} + \dots + a_n \vec{u}^{(n)}$$

So we can write

$$\vec{y} = \vec{x} + \vec{z} = a_1 \vec{u}^{(1)} + \dots + a_n \vec{u}^{(n)} + \vec{z}$$

For any i = 1, ..., n, we can compute by orthonormal property and

$$\vec{u}^{(i)} \cdot \vec{y} = a_i$$

$$\vec{x} = (\vec{u}^{(1)} \cdot \vec{y}) \vec{u}^{(1)} + \dots + (\vec{u}^{(n)} \cdot \vec{y}) \vec{u}^{(n)}$$

$$= \vec{u}^{(1)} (\vec{u}^{(1)})^T \vec{y} + \dots + \vec{u}^{(n)} (\vec{u}^{(n)})^T \vec{y}$$

$$= \left[ \vec{u}^{(1)} (\vec{u}^{(1)})^T + \vec{u}^{(2)} (\vec{u}^{(2)})^T + \dots + \vec{u}^{(n)} (\vec{u}^{(n)})^T \right] \vec{y}$$

$$= P \vec{y}$$

## **2.4.6** Corollary: Q has orthonormal columns $\Rightarrow \vec{x}^* = Q^T \vec{y}$ . $(Q^+ = Q^T)$

### **Corollary 2.1**

When columns of Q are orthonormal, the vector  $\vec{x}^*$  that minimizes  $||Q\vec{x} - \vec{y}||$  can be computed as  $\vec{x}^* = Q^T \vec{y}$ .

#### Proof 2.4

$$Q^+ = (Q^T Q)^{-1} Q^T = I Q^T = Q^T$$

### 2.4.7 The Gram-Schmidt process

Now we know that if Q has orthonormal columns, then we get a much nicer formula for the projection matrix and for the least-squares minimization problem. How do we make Q have orthonormal columns?

One method for doing this is the Gram-Schmidt process. We want to input vectors  $\vec{a}^{(1)},...,\vec{a}^{(n)}$  and output orthonormal vectors  $\vec{u}^{(1)},...,\vec{u}^{(n)}$ .

We assume  $\vec{a}^{(1)},...,\vec{a}^{(n)}$  are linearly independent. In the algorithm, we will produce  $\vec{v}^{(1)},...,\vec{v}^{(n)}$  that are orthogonal but not orthonormal, then we get  $\vec{u}^{(1)},...,\vec{u}^{(n)}$  by  $\vec{u}^{(i)} = \frac{\vec{v}^{(i)}}{\|\vec{v}^{(i)}\|}$ .

### **Gram-Schmidt process:**

(1) Let 
$$\vec{v}^{(1)} = \vec{a}^{(1)}$$
 and  $\vec{u}^{(1)} = \frac{\vec{v}^{(1)}}{\|\vec{v}^{(1)}\|}$ 

(2) For 
$$j = 1, ..., n$$

$$\begin{split} \vec{v}^{(j)} &= \vec{a}^{(j)} - \sum_{i=1}^{j-1} (\vec{u}^{(i)} \cdot \vec{a}^{(j)}) \vec{u}^{(i)} \\ &= \vec{a}^{(j)} - \sum_{i=1}^{j-1} \frac{(\vec{v}^{(i)} \cdot \vec{a}^{(j)}) \vec{v}^{(i)}}{\|\vec{v}^{(i)}\|^2} \\ &= \vec{a}^{(j)} - \sum_{i=1}^{j-1} Proj_{\vec{v}^{(i)}}(\vec{a}^{(j)}) \end{split}$$

and

$$\vec{u}^{(j)} = \frac{\vec{v}^{(j)}}{\|\vec{v}^{(j)}\|}$$

**Note:** In the general case, where  $\vec{a}^{(1)},...\vec{a}^{(n)}$  are not linearly independent, step (2) will sometimes give us  $\vec{v}^{(j)} = 0$ . In that case, we omit the  $j^{th}$  vector: what this tells us is that  $\vec{a}^{(j)}$  is not necessary to span the subspace.

## **2.5** Minimum-norm problems (Underconstrainted $A\vec{x} = \vec{b}$ )

Consider systems of equations  $A\vec{x} = \vec{b}$  with infinitely many solutions. We want to find the solution  $\vec{x}$  with the smallest norm.

i.e., we want to find the projection of  $\vec{0}$  on  $S = \{\vec{x} \in \mathbb{R}^n : A\vec{x} = \vec{b}\}$ 

### 2.5.1 Applying the least-squares technique

The solution set  $S = \{\vec{x} \in \mathbb{R}^n : A\vec{x} = \vec{b}\}$  which is an example of an **affine subspace**, i.e., a vector subspace of  $\mathbb{R}^n$  that does not contain  $\vec{0}$ .

We may write  $S = S' + \vec{x}_0$ , where:

- $\vec{x}_0$  is an arbitrary element of S (s.t.  $A\vec{x}_0 = \vec{b}$ )
- $\bullet \ S' = \{ \vec{y} \in \mathbb{R}^n : A\vec{y} = \vec{0} \}$

"Finding the point in S closest to  $\vec{0}$ " is equivalent to "Finding the point in S' closest to  $-\vec{x}_0$ "

#### **Example:**

$$\min_{\vec{x} \in \mathbb{R}^4} \quad \|\vec{x}\|$$
 s.t.  $2x_1 - x_2 + x_3 - x_4 = 3$  
$$x_2 - x_3 - x_4 = 1$$

$$x_2 = 1 + x_3 + x_4 \Rightarrow 2x_1 - 1 - x_3 - x_4 + x_3 - x_4 = 3 \Rightarrow x_1 - x_4 = 2.$$

The general solution has the form

$$\vec{x} = \begin{bmatrix} 2 + x_4 \\ 1 + x_3 + x_4 \\ x_3 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} x_3 + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} x_4$$

Let  $\vec{x}_0 = [2, 1, 0, 0]^T$ , the solution set can be  $S = S' + \vec{x}_0$  where S' is the set of linear combinations of  $[0, 1, 1, 0]^T$  and  $[1, 1, 0, 1]^T$ .

Then, the problem becomes

$$\min_{\substack{(x_3, x_4) \in \mathbb{R}^2 \\ 0 \ 1}} \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} - \begin{bmatrix} -2 \\ -1 \\ 0 \\ 0 \end{bmatrix}$$

Let  $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$  . From what we have already known, we can solve this problem by solving

$$A^{T}AX = A^{T}(-x_{0}) \Leftrightarrow \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} X = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$

Then, we can solve  $(x_3, x_4) = (0, -1)$ , then the optimal solution is (1, 0, 0, -1).

#### 2.5.2 The short cut method

We can find that  $S = \{\vec{x} \in \mathbb{R}^n : A\vec{x} = \vec{b}\}$  and  $S' = \{\vec{y} \in \mathbb{R}^n : A\vec{y} = \vec{0}\}$  are parallel. Then the vector  $\vec{x}^* - \vec{0}$  (i.e.  $\vec{x}^*$ ) should be perpendicular to S'.

#### Lemma 2.2

A vector  $\vec{x}^*$  satisfying  $A\vec{x}^* = \vec{b}$  is the minimum-norm solution to the system of equations  $A\vec{x} = \vec{b}$  if and only if  $\vec{x}^* \cdot \vec{y} = 0$  for all solutions  $\vec{y}$  of the homogeneous system  $A\vec{y} = \vec{0}$ .

Obviously, **all** vectors in null space  $(N(A) = \{\vec{y} : A\vec{y} = \vec{0}\})$  are orthogonal to a vector **if and only if** it is a linear combination of A's rows.  $\vec{x}^* = A^T \vec{w}$ , for some  $\vec{w} \in \mathbb{R}^n$ .  $(\vec{x}^* \cdot (\vec{y}) = (\vec{x}^*)^T \vec{y} = \vec{w}^T A \vec{y} = 0)$ 

### Theorem 2.4

A vector  $\vec{x}^*$  satisfying  $A\vec{x}^* = \vec{b}$  is the minimum-norm solution to the system of equations  $A\vec{x} = \vec{b}$  if and only if it can be written as  $\vec{x}^* = A^T \vec{w}$  for some  $\vec{w} \in \mathbb{R}^n$ 

Hence, we cam find the minimum-norm solution  $\vec{x}^*$  by solving

$$AA^T\vec{w} = \vec{b}$$

for  $\vec{w}$  and then computing  $\vec{x}^* = A^T \vec{w}$ .

### **Same Example:**

$$\min_{\vec{x} \in \mathbb{R}^4} ||\vec{x}||$$
s.t.  $2x_1 - x_2 + x_3 - x_4 = 3$   
 $x_2 - x_3 - x_4 = 1$ 

Solve the system

$$\begin{bmatrix} 2 & -1 & 1 & -1 \\ 0 & 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 1 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} 7 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

We can solve  $(w_1, w_2) = (\frac{1}{2}, \frac{1}{2})$ , then  $\vec{x}^* = A^T \vec{w} = [1, 0, 0, -1]^T$ 

#### **2.5.3** The short cut method with H-norm

### Definition 2.2

Given a positive definite (symmetric) matrix H, let the associated inner product be  $\vec{x} \cdot_H \vec{y} = \vec{x}^T H \vec{y}$  and the associated norm be  $\|\vec{x}\|_H = \sqrt{\vec{x}^T H \vec{x}}$ 

Solve the optimization problem

$$\min_{\vec{x} \in \mathbb{R}^n} \quad \|\vec{x}\|_H^2 = \vec{x}^T H \vec{x}$$

$$s.t. \quad A\vec{x} = \vec{b}$$

#### Lemma 2.3

A point  $\vec{x}^*$  that satisfies  $A\vec{x}^* = \vec{b}$  is the **minimum-H-norm solution** to  $A\vec{x} = \vec{b}$  if and only if

$$\vec{x}^* \cdot_H \vec{y} = 0$$

for all  $\vec{y}$  for which  $A\vec{y} = \vec{0}$ 

### Proof 2.5

We proved that the  $\vec{x}^*$  being perpendicular with  $\{y \in \mathbb{R}^n : A\vec{y} = \vec{0}\}$  is equivalent to  $\vec{x}^*$  is the minimum-norm solution to  $A\vec{x}^* = \vec{b}$ 

A vector that is orthogonal to  $\{y \in \mathbb{R}^n : A\vec{y} = \vec{0}\}$  if and only if  $\vec{x}^* = H^{-1}A^T\vec{w}$ , for some  $\vec{w}$ .  $(\vec{x}^* \cdot_H \vec{y} = \vec{0})$ 

$$(\vec{x}^*)^T H \vec{y} = \vec{w}^T A H^{-1} H \vec{y} = 0$$

The same as the short cut method we can solve the  $\vec{x}^*$  by computing  $AH^{-1}A^T\vec{w}=\vec{b}$ 

### Theorem 2.5

The minimum-H-norm solution  $\vec{x}^*$  of the Underconstrainted system  $A\vec{x} = \vec{b}$  can be found by solving

$$AH^{-1}A^T\vec{w} = \vec{b}$$

for  $\vec{w}$  and then computing  $\vec{x}^* = H^{-1}A^T\vec{w}$ 



### Example 2.1

$$\min_{(x,y)\in\mathbb{R}^2} 3x^2 + 2xy + 2y^2$$

$$s.t. \quad 3x - y = 3$$

 $3x^2 + 2xy + 2y^3$  is the square of the H-norm of the point  $\begin{bmatrix} x \\ y \end{bmatrix}$  for the matrix  $H = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$ . We can also

compute 
$$H^{-1} = \begin{bmatrix} 0.4 & -0.2 \\ -0.2 & 0.6 \end{bmatrix}$$
.

Then, we can solve  $\vec{x}^*$  by computing

$$AH^{-1}A^T\vec{w} = \vec{b}$$

$$\begin{bmatrix} 3 & -1 \end{bmatrix} \begin{bmatrix} 0.4 & -0.2 \\ -0.2 & 0.6 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} \vec{w} = 3$$

We can compute  $\vec{w}=\frac{5}{9}$ , then the optimal solution is  $\begin{bmatrix} x \\ y \end{bmatrix} = H^{-1}A^T\vec{w} = \begin{bmatrix} \frac{7}{9} \\ -\frac{2}{3} \end{bmatrix}$