1. Lösning: Testa dig fram

Svar: Nej

2. Svar: Resten är 29.

3.
$$5^{327} \equiv 10 \mod 17$$

- 4. Eftersom sgd(3,9) = 3 och 3 inte delar 5, så saknar ekvationen lösningar
- 5. Entalssiffran är 3.
- 6. $x \equiv 6 \mod 10$
- 7. a) Lösning: $a \equiv b \mod n$ om $n \mid (a b)$, d.v.s. a b = kn för något $k \in \mathbb{Z}$.
 - b) Lösning: Vi har att $a\equiv b \bmod m$, d.v.s. $k_1m=a-b$ för något $k_1\in\mathbb{Z}$. Vidare gäller att n|m, d.v.s. $m=k_2n$, för något $k_2\in\mathbb{Z}$. Genom att kombinera dessa likheter får vi att $k_1k_2n=a-b$, så $a\equiv b \bmod n$.
- 8. Lösning: Antalet positiva heltal som delar a är $3\cdot 6\cdot 5\cdot 5\cdot 4\cdot 3\cdot 5=27000$, och antalet tal som delar b är $3\cdot 9\cdot 4\cdot 4\cdot 6\cdot 2\cdot 2=10368$ Antalet tal som delar både a och b är $3\cdot 5\cdot 4\cdot 4\cdot 3\cdot 2=1440$. Sökt antal är alltså 27000+10368-1440=35928
- 9. a) Svar: 39
 - b) Svar: x = -8, y = 9