SCS2112 Automata Theory

Take Home Assignment

NAME: D.N. WICKRAMARATNE INDEX NUMBER: 16001575

REGISTRATION NUMBER: 2016/CS/157

Question 1

Question	M1	M2
a.	q1	q1
b.	{q2}	{q1,q4}
C.	q1->q2->q3->q1	q1->q1->q1->q2->q4
d.	No	Yes
e.	No	Yes

Question 2

1.

Regular Expression: 1(0+1)*0

2.

Regular Expression: 0*10*10*1(0+1)*

3.

Regular Expression : $1 + [0 + 10 + 110 + 111(0+1)](0+1)^*$

Question 3

1. a(abb)* + b

2. (aa + b)* b (a +b)

Question 4

 $L = \{ 0^m 1^m 2^m | m >= 0 \}$

Let us assume that L is

regular

Then w = $0^n 1^n 2^n \in L$

Consider that w is split into 3 segments x,y,z such that

 $|xy| \le n$ and |y| >= 1

Let's take $x = 0^a$; $y = 0^b$ such that $a + b \le n$

Then $z = 0^{n-a-b}1^{n}2^{n}$

According to the pumping lemma of regular expressions, if L is regular, then, for any i, (i = 0, 1,

2, 3,...), $w' = xy^i z$ will also be a part of the language L.

But by considering the case where y = 0,

$$w' = xy^0 z = 0^a 0^{n-a-b} 1^n 2^n = 0^{n-b} 1^n 2^n$$

As shown above, w' does not belong to the language L

Therefore, by contradiction we can say that L is not a regular language

Question 5

1

S -> 0A0 | 1A1 | 0 | 1

A -> A0 | A1 | ε

2.

A -> 0A0 | 1A1 | 1A0 | 0A1 | 0 | 1