

RNA-Seq Best Practices Workflows

Ramesh Nair

RNA-Seq Workflows

Variant Calling & Gene Expression

A high-level overview of NGS data processing

Data Formats

FASTQ: Raw unaligned reads

- Simple extension from traditional FASTA format.
- Each block has 4 elements (in 4 lines):
 - Sequence Name (read name, group, etc.)
 - Sequence
 - + (optional: Sequence name again)
 - Associated quality score.
- Example record:

```
@EAS54_6_R1_2_1_413_324
CCCTTCTTGTCTTCAGCGTTTCTCC
+
;;3;;;;;;;;;;;88
```

Identifier Sequence

Sanger format (standard FASTQ)

Base Qualities

✓
(ASCII 33 + Phred scaled Q)

Sanger: Phred+33 Solexa/Illumina 1.0: Solexa+64 Illumina 1.3+: Phred+64 Illumina 1.5+: Phred+64 Illumina 1.8+: Phred+33

FASTQ Format Specification: http://mag.sourceforge.net/fastq.shtml

SAM/BAM: Aligned reads

The BAM format stores aligned reads and is technology independent

SAM: Sequence Alignment/Map

SAM Format Specification: http://samtools.github.io/hts-specs/SAMv1.pdf

VCF: Variant calls

```
##fileformat=VCFv4.2
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=g10, Description="Ouality below 10">
##FILTER=<ID=s50, Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS ID REF ALT OUAL FILTER INFO FORMAT NA00001 NA00002 NA00003
20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GO:DP:HO 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3
20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GO:DP:HO 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4
20 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GO:DP:HO 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
20 1234567 microsat1 GTC G,GTCT 50 PASS NS=3;DP=9;AA=G GT:GO:DP 0/1:35:4 0/2:17:2 1/1:40:3
```

VCF: Variant Call Format

VCF Format Specification: http://samtools.github.io/hts-specs/VCFv4.2.pdf

RPKM/FPKM/TPM: Transcript quantification

• RPKM (single-end reads): Reads Per Kilobase of transcript per Million reads mapped

• FPKM (paired-end reads): Fragments Per Kilobase of transcript per Million reads mapped

• TPM: <u>Transcripts Per Million</u>

RNA-Seq Tools

RNA-Seq Alignment Tools

 STAR: Spliced Transcripts Alignment to a Reference

Refs:

https://code.google.com/p/rna-star/ http://bioinformatics.oxfordjournals.org/content/29/1/15.long

 TopHat2: splice junction mapper for RNA-Seq reads

Refs:

http://ccb.jhu.edu/software/tophat/index.shtml http://genomebiology.com/2013/14/4/R36

STAR vs. TopHat2

Runtime and memory usage of RNA-Seq aligners

Program	Runtime (wall time)	Peak memory (GB)	Parameters		
TopHat2 2.0.8 (Transcriptome only mapping)	8h 29m	4.9	-G transcriptome-only read-mismatches 3 read-gap-length 3 read-edit-dist 3 mate-inner-dist 60 mate-std-dev 60		
TopHat2 2.0.8 (Default: genome and spliced mapping)	17h 1m	5.4	mate-inner-dist 60 mate-std-dev 60		
TopHat2 2.0.8 (With transcriptome mapping)	17h 31 m	5.2	-G read-mismatches 3 read-gap-length 3 read-edit-dist 3 mate-inner-dist 60 mate-std-dev 60		
TopHat2 2.0.8 (Realignment with realignment edit distance of 0)	29h 55m	5.6	read-mismatches 3read-gap-length 3read-edit-dist 3mate-inner-dist 60mate-std-dev 60read-realign-edit-dist 0		
GSNAP 2013-01-23	55h 26m	7.6	max-mismatches=3 -N 1		
RUM 1.12_01	26h 34m	*36.4			
MapSplice 1.15.2	44h 50m	3.7	min_missed_seg = 0		
STAR 2.3.0e	32m	27.8	outFilterMatchNmin 97 outFilterScoreMin 90 outFilterMismatchNmax 3		

Mapping statistics for simulated RNA-Seq data

```
Mapping parameters:
STAR:

1-pass (line 1): all default

2-pass (line 3): --alignSJDBoverhangMin 1
TopHat2 (with Bowtie2):
no realignment (line 2): --mate-inner-dist 145 --mate-std-dev 50
realignment (line 4): --mate-inner-dist 145 --mate-std-dev 50 --read-realign-edit-dist 0
Inner distance between mates and its standard deviation were calculated from the actual distribution for the simulated reads.
```

	Method		Correctly >=150 mapped bases 200 correctly bases mapped	Unmapped	True positive junctions		False positive junctions		
				- 1		Number	Sensitivity	Number	FDR
Line number	Realignment	Aligner	1	2	4	5	6	7	8
1	no (1-step)	STAR	81.3%	95.0%	4.82%	148,487	92.7%	409	0.3%
2	no	TopHat2	82.6%	83.7%	6.70%	135,006	84.3%	1,228	0.9%
3	yes (2-step)	STAR	98.5%	99.5%	0.40%	148,789	92.9%	453	0.3%
4	yes	TopHat2	96.4%	96.8%	1.22%	136,416	85.2%	3,132	2.2%

Refs:

http://genomebiology.com/2013/14/4/R36 http://biorxiv.org/content/biorxiv/early/2013/11/22/000851.full.pdf

Transcript Quantification Tools

 Cufflinks: Transcript assembly, differential expression, and differential regulation for RNA-Seq (FPKM)

Refs:

http://cufflinks.cbcb.umd.edu/manual.html
http://www.nature.com/nbt/journal/v28/n5/full/nbt.1621.html

RSEM: RNA-Seq by Expectation-Maximization (TPM/FPKM)

Refs:

http://www.biomedcentral.com/1471-2105/12/323 http://deweylab.biostat.wisc.edu/rsem/

Sailfish: alignment-free transcript quantification (TPM/RPKM)

Refs:

http://www.nature.com/nbt/journal/v32/n5/full/nbt.2862.html http://www.cs.cmu.edu/~ckingsf/software/sailfish/

SAM/BAM Processing Tools

Picard Tools

- a) Reorder SAM/BAM: match the chromosome ordering in a provided reference file
- b) Sort SAM/BAM: sort reads in coordinate order for each chromosome
- c) Mark Duplicates: remove duplicate reads

Ref: http://picard.sourceforge.net/

SAMtools

- a) Index BAM
- b) Sort BAM
- c) SAM to BAM and vice versa

Ref: http://samtools.sourceforge.net/

RNA-Seq Pipelines

Broad GATK Best Practices workflow for variant calling on RNA-Seq data

Workflow in practice: http://www.broadinstitute.org/gatk/guide/article?id=3891

Stanford CCSB RNA-Seq pipeline

ENCODE RNA-Seq pipeline

(work-in-progress)

ENCODE is in the process of developing a set of uniform processing pipelines for the data generated by the Consortium

Ref:

https://github.com/ENCODE-DCC/long-rna-seq-pipeline

RNA-Seq Galaxy Workflow Demo

https://gbsc-galaxy.stanford.edu/u/rvnair/p/galaxy-rna-seq-workflow-demo

Acknowledgments

- BioTeam
- SCGPM
- CCSB (Sylvia Plevritis, Andrew Gentles)