CS294-248 Special Topics in Database Theory Unit 7: Semirings and K-Relations

Dan Suciu

University of Washington

Outline

• Today: Semirings, K-Relations; positive RA only.

• Thursday: FO over Semirings (guest lecturer Val Tannen)

Traditional relations: R(a, b) is either true, or false. Boolean.

Many applications require a more nuanced value.

- Bag semantics: R(a, b) occurs 5 times; R(c, d) occurs 0 times
- Linear algebra: R[i,j] = -0.5.
- Security: R(a, b) is secret; R(c, d) is top secret
- Provenance: R(a, b) was obtained as follows

Traditional relations: R(a, b) is either true, or false. Boolean.

Many applications require a more nuanced value.

- Bag semantics: R(a, b) occurs 5 times; R(c, d) occurs 0 times.
- Linear algebra: R[i,j] = -0.5
- Security: R(a, b) is secret; R(c, d) is top secret
- Provenance: R(a,b) was obtained as follows

Traditional relations: R(a, b) is either true, or false. Boolean.

Many applications require a more nuanced value.

- Bag semantics: R(a, b) occurs 5 times; R(c, d) occurs 0 times.
- Linear algebra: R[i,j] = -0.5.
- Security: R(a, b) is secret; R(c, d) is top secret
- Provenance: R(a, b) was obtained as follows

Traditional relations: R(a, b) is either true, or false. Boolean.

Many applications require a more nuanced value.

- Bag semantics: R(a, b) occurs 5 times; R(c, d) occurs 0 times.
- Linear algebra: R[i,j] = -0.5.
- Security: R(a, b) is secret; R(c, d) is top secret.
- Provenance: R(a, b) was obtained as follows

Traditional relations: R(a, b) is either true, or false. Boolean.

Many applications require a more nuanced value.

- Bag semantics: R(a, b) occurs 5 times; R(c, d) occurs 0 times.
- Linear algebra: R[i,j] = -0.5.
- Security: R(a, b) is secret; R(c, d) is top secret.
- Provenance: R(a, b) was obtained as follows

Traditional relations: R(a, b) is either true, or false. Boolean.

Many applications require a more nuanced value.

- Bag semantics: R(a, b) occurs 5 times; R(c, d) occurs 0 times.
- Linear algebra: R[i,j] = -0.5.
- Security: R(a, b) is secret; R(c, d) is top secret.
- Provenance: R(a, b) was obtained as follows

Definition

A monoid is a tuple M = (M, 0, 1), where:

- $\circ: M \times M \to M$ is a binary function (operation).
- $1 \in M$ is an element.
- \circ is associative: $(x \circ y) \circ z = x \circ (y \circ z)$.
- 1 is a left and right identity: $1 \circ x = x \circ 1 = x$.

Definition

A monoid is a tuple M = (M, 0, 1), where:

- $\circ: M \times M \to M$ is a binary function (operation).
- $1 \in M$ is an element.
- \circ is associative: $(x \circ y) \circ z = x \circ (y \circ z)$.
- 1 is a left and right identity: $1 \circ x = x \circ 1 = x$.

The monoid is commutative if $x \circ y = y \circ x$.

Definition

A monoid is a tuple M = (M, 0, 1), where:

- $\circ: M \times M \to M$ is a binary function (operation).
- $1 \in M$ is an element.
- \circ is associative: $(x \circ y) \circ z = x \circ (y \circ z)$.
- 1 is a left and right identity: $1 \circ x = x \circ 1 = x$.

The monoid is commutative if $x \circ y = y \circ x$.

The monoid is a group if $\forall x \in M$, $\exists y \in M$ s.t. $x \circ y = y \circ x = 1$.

Definition

A monoid is a tuple M = (M, 0, 1), where:

- $\circ: M \times M \to M$ is a binary function (operation).
- $1 \in M$ is an element.
- \circ is associative: $(x \circ y) \circ z = x \circ (y \circ z)$.
- 1 is a left and right identity: $1 \circ x = x \circ 1 = x$.

The monoid is commutative if $x \circ y = y \circ x$.

The monoid is a group if $\forall x \in M$, $\exists y \in M$ s.t. $x \circ y = y \circ x = 1$. prove that y is unique Notation: $y = x^{-1}$.

Examples

Which ones are groups?

$$(\mathbb{R},+,0)$$

$$(\mathbb{R},*,1)$$

$$(\mathbb{R}^{n\times n},\cdot,I_n)$$
: $n\times n$ matrices w/ multiplication

$$(S_n, \circ, id_n)$$
 permutations of n elements w/ composition

$$(2^{\Omega}, \cap, \Omega)$$

$$(2^{\Omega}, \cup, \emptyset)$$

Definition

A semiring is a tuple $S = (S, \oplus, \otimes, \mathbf{0}, \mathbf{1})$ where:

- $(S, \oplus, 0)$ is a commutative monoid.
- $(S, \otimes, 1)$ is a monoid.

$$x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z)$$

$$(y \oplus z) \otimes x = (y \otimes x) \oplus (z \otimes x)$$

• **0** is absorbing, also called annihilating: $x \otimes \mathbf{0} = \mathbf{0} \otimes x = \mathbf{0}$

Semirings

Definition

A semiring is a tuple $S = (S, \oplus, \otimes, \mathbf{0}, \mathbf{1})$ where:

- $(S, \oplus, 0)$ is a commutative monoid.
- $(S, \otimes, 1)$ is a monoid.

$$x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z)$$

$$(y \oplus z) \otimes x = (y \otimes x) \oplus (z \otimes x)$$

• **0** is absorbing, also called annihilating: $x \otimes \mathbf{0} = \mathbf{0} \otimes x = \mathbf{0}$

S is a commutative semiring if \otimes is commutative.

Definition

A semiring is a tuple $S = (S, \oplus, \otimes, 0, 1)$ where:

- $(S, \oplus, 0)$ is a commutative monoid.
- $(S, \otimes, 1)$ is a monoid.

•
$$\otimes$$
 distributes over \oplus : $x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z)$

$$(y \oplus z) \otimes x = (y \otimes x) \oplus (z \otimes x)$$

• **0** is absorbing, also called annihilating: $x \otimes \mathbf{0} = \mathbf{0} \otimes x = \mathbf{0}$

S is a commutative semiring if \otimes is commutative.

A ring is a semiring where $\forall x$ has an additive inverse -x.

A field is a commutative ring where $\forall x \neq \mathbf{0}$ has a multiplicative inverse x^{-1} .

Examples

$$\mathbb{B} = (\{0,1\}, \vee, \wedge, 0, 1)$$
 Booleans

$$(\mathbb{R},+,\cdot,0,1)$$

$$(\mathbb{N},+,\cdot,0,1)$$

$$(\mathbb{R}^{n \times n}, +, \cdot, \mathbf{0}_{n \times n}, \mathbf{I}_n)$$
 Matrices

$$\mathbb{T} = ([0, \infty], \min, +, \infty, 0)$$

Tropical Semiring

$$(2^{\Omega}, \cup, \cap, \emptyset, \Omega)$$

Subsets of Ω

$$(\mathbb{R}[x],+,\cdot,0,1)$$
 Polynomials

$$\mathbb{F} = ([0,1], \mathsf{max}, \mathsf{min}, 0, 1)$$
 "Fuzzy Logic" semiring

Discussion

- Semirings belong to Algebra, with monoids, groups, rings, fields.
- Most semirings of interest to us are not rings, e.g. \mathbb{B} or \mathbb{N} .
- We will only consider commutative semirings, $x \otimes y = y \otimes x$.
- We often write $+, \cdot$ instead of \oplus, \otimes

E.g.
$$x^2y + 3z$$
 means $x \otimes x \otimes y \oplus (\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1}) \otimes z$

Overview

A standard relation associates to each tuple a Boolean value: 0 or 1.

A K-relation associates to each tuple a value from a semiring K.

By choosing different semirings, we can support different applications.

Fix an infinite domain Dom and a semiring ${\pmb K}=({\pmb K},\oplus,\otimes,{\pmb 0},{\pmb 1}).$

Definition ([Green et al., 2007])

A K-relation of arity m is a function $R: \mathsf{Dom}^m \to K$ with "finite support": $\mathsf{Supp}(R) \stackrel{\mathsf{def}}{=} \{t \in \mathsf{Dom}^m \mid R(t) \neq \mathbf{0}\}$ is finite.

Fix an infinite domain Dom and a semiring $K = (K, \oplus, \otimes, \mathbf{0}, \mathbf{1})$.

Definition ([Green et al., 2007])

A K-relation of arity m is a function $R: \mathsf{Dom}^m \to K$ with "finite support": $\mathsf{Supp}(R) \stackrel{\mathsf{def}}{=} \{t \in \mathsf{Dom}^m \mid R(t) \neq \mathbf{0}\}$ is finite.

A \mathbb{B} -relation:

T III I CIUCIOII.					
City					
SF	1				
NYC	0				
Seattle	1				
	City SF NYC				

Set semantics:

2 tuples

Fix an infinite domain Dom and a semiring $K = (K, \oplus, \otimes, \mathbf{0}, \mathbf{1})$.

Definition ([Green et al., 2007])

A K-relation of arity m is a function $R: \mathsf{Dom}^m \to K$ with "finite support": $\mathsf{Supp}(R) \stackrel{\mathsf{def}}{=} \{t \in \mathsf{Dom}^m \mid R(t) \neq \mathbf{0}\}$ is finite.

A \mathbb{B} -relation:

T III I CIALIOII.					
Name	City				
Alice	SF	1			
Alice	NYC	(
Bob	Seattle	1			

Set semantics:

2 tuples

A N-relation:

A N-relation:						
Name	ame City					
Alice	SF	5				
Alice	NYC	0				
Bob	Seattle	3				

Bag semantics:

8 tuples

Fix an infinite domain Dom and a semiring $K = (K, \oplus, \otimes, 0, 1)$.

Definition ([Green et al., 2007])

A K-relation of arity m is a function R : $Dom^m \to K$ with "finite support": $\operatorname{Supp}(R) \stackrel{\operatorname{def}}{=} \{ t \in \operatorname{Dom}^m \mid R(t) \neq \mathbf{0} \} \text{ is finite.}$

R_relation.

Name	City				
Alice	SF	1			
Alice	NYC	C			
Bob	Seattle	1			
_					

Set semantics:

2 tuples

A N-relation:					
Name	City				
Alice	SF	5			
Alice	NYC	C			
Bob	Seattle	3			
2 a a c a m	anticc	•			

Bag semantics:

8 tuples

An R-relation:							
Name	City						
Alice	SF	-0.5					
Alice	NYC	0.1					
Bob	Seattle	3.4					

A tensor

Dan Suciu

Query Evaluation

A query Q with inputs R_1, R_2, \ldots returns some output $Q(R_1, R_2, \ldots)$.

What if $R_1, R_2, ...$ are K-relations over some fixed semiring K?

We can define the output $Q(R_1, R_2,...)$ when inputs are K-relation.

Basic principle: \land becomes \otimes and \lor becomes \oplus .

We will do it in two ways: for Positive Relational Algebra, and UCQs

We consider only the positive RA: \bowtie , σ , Π , \cup .

We consider only the positive RA: \bowtie , σ , Π , \cup .

$$(R \bowtie S)(t) \stackrel{\mathsf{def}}{=} \mathsf{what}?$$

We consider only the positive RA: \bowtie , σ , Π , \cup .

$$(R \bowtie S)(t) \stackrel{\mathsf{def}}{=} R(\pi_{\mathsf{Attr}(R)}(t)) \otimes S(\pi_{\mathsf{Attr}(S)}(t))$$

We consider only the positive RA: \bowtie , σ , Π , \cup .

$$(R \bowtie S)(t) \stackrel{\text{def}}{=} R(\pi_{\operatorname{Attr}(R)}(t)) \otimes S(\pi_{\operatorname{Attr}(S)}(t))$$

$$\sigma_{P}(R)(t) \stackrel{\text{def}}{=} \operatorname{what?}$$

We consider only the positive RA: \bowtie , σ , Π , \cup .

$$(R \bowtie S)(t) \stackrel{\text{def}}{=} R(\pi_{\operatorname{Attr}(R)}(t)) \otimes S(\pi_{\operatorname{Attr}(S)}(t))$$

$$\sigma_p(R)(t) \stackrel{\text{def}}{=} \mathbf{1}_{p(t)} \otimes R(t) \qquad \text{where } \mathbf{1}_{p(t)} = \begin{cases} 1 & \text{if } p(t) \text{ is true} \\ \mathbf{0} & \text{otherwise} \end{cases}$$

We consider only the positive RA: \bowtie , σ , Π , \cup .

$$(R \bowtie S)(t) \stackrel{\text{def}}{=} R(\pi_{\operatorname{Attr}(R)}(t)) \otimes S(\pi_{\operatorname{Attr}(S)}(t))$$

$$\sigma_p(R)(t) \stackrel{\text{def}}{=} \mathbf{1}_{p(t)} \otimes R(t) \qquad \text{where } \mathbf{1}_{p(t)} = \begin{cases} 1 & \text{if } p(t) \text{ is true} \\ \mathbf{0} & \text{otherwise} \end{cases}$$

$$\Pi_X(R)(t) \stackrel{\text{def}}{=} \text{what}?$$

We consider only the positive RA: \bowtie , σ , Π , \cup .

$$(R \bowtie S)(t) \stackrel{\text{def}}{=} R(\pi_{\operatorname{Attr}(R)}(t)) \otimes S(\pi_{\operatorname{Attr}(S)}(t))$$

$$\sigma_p(R)(t) \stackrel{\text{def}}{=} \mathbf{1}_{p(t)} \otimes R(t) \qquad \text{where } \mathbf{1}_{p(t)} = \begin{cases} 1 & \text{if } p(t) \text{ is true} \\ \mathbf{0} & \text{otherwise} \end{cases}$$

$$\Pi_X(R)(t) \stackrel{\mathsf{def}}{=} \bigoplus_{t': \Pi_X(t') = t} R(t')$$

We consider only the positive RA: \bowtie , σ , Π , \cup .

$$(R \bowtie S)(t) \stackrel{\text{def}}{=} R(\pi_{\operatorname{Attr}(R)}(t)) \otimes S(\pi_{\operatorname{Attr}(S)}(t))$$

$$\sigma_p(R)(t) \stackrel{\text{def}}{=} \mathbf{1}_{p(t)} \otimes R(t) \qquad \text{where } \mathbf{1}_{p(t)} = \begin{cases} 1 & \text{if } p(t) \text{ is true} \\ \mathbf{0} & \text{otherwise} \end{cases}$$

$$\Pi_X(R)(t) \stackrel{\text{def}}{=} \bigoplus_{t': \Pi_X(t') = t} R(t')$$

$$(R \cup S)(t) \stackrel{\text{def}}{=} R(t) \oplus S(t)$$

Examples

Examples

Α	В			R	С	l		Α		С
a_1	b_1	X	M	_	_	٠,,		a_1	b_1	<i>c</i> ₁
a ₁ a ₂	b_1	y	M	b_1	<i>c</i> ₁ <i>c</i> ₂	u V	_	<i>a</i> ₂	b_1 b_1 b_2	c_1
a ₂	b_2	z		<i>D</i> ₂	<u>c</u> 2	V		<i>a</i> ₂	b_2	<i>c</i> ₂

Α	В			R		1		Α	В	С	
<i>a</i> ₁	b_1	X	м	b.	C	ļ ,,	=	a_1	b_1	<i>c</i> ₁	хи
<i>a</i> ₂	b_1	y	M	b_1	ς ₁	u V	_	<i>a</i> ₂	b_1	c_1	
a_2	b_2	z		<i>D</i> ₂	<u>-2</u>	V		a_2	b_2	<i>c</i> ₂	

$$\sigma_{A=a_2} \begin{pmatrix} A & B \\ a_1 & b_1 & x \\ a_2 & b_1 & y \\ a_2 & b_2 & z \\ a_3 & b_1 & u \end{pmatrix} = \begin{pmatrix} A & B \\ a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_1 \end{pmatrix}$$

$$\sigma_{A=a_{2}} \begin{pmatrix} A & B \\ a_{1} & b_{1} & x \\ a_{2} & b_{1} & y \\ a_{2} & b_{2} & z \\ a_{3} & b_{1} & u \end{pmatrix} = \begin{pmatrix} A & B \\ a_{1} & b_{1} & x \cdot 0 \\ a_{2} & b_{1} & y \cdot 1 \\ a_{2} & b_{2} & z \cdot 1 \\ a_{3} & b_{1} & u \cdot 0 \end{pmatrix}$$

$$\sigma_{A=a_{2}}\begin{pmatrix} A & B \\ a_{1} & b_{1} \\ a_{2} & b_{1} \\ a_{2} & b_{2} \\ a_{3} & b_{1} \\ \end{pmatrix} = \begin{pmatrix} A & B \\ a_{1} & b_{1} \\ a_{2} & b_{1} \\ a_{2} & b_{1} \\ a_{2} & b_{2} \\ a_{3} & b_{1} \\ u \cdot 0 \end{pmatrix}$$

$$\Pi_{A} \begin{pmatrix} A & B \\ a_{1} & b_{1} & x \\ a_{2} & b_{1} & y \\ a_{2} & b_{2} & z \\ a_{2} & b_{3} & u \end{pmatrix} = \begin{bmatrix} A \\ a_{1} \\ a_{2} \end{bmatrix}$$

$$\sigma_{A=a_{2}}\begin{pmatrix} A & B \\ a_{1} & b_{1} \\ a_{2} & b_{1} \\ a_{2} & b_{2} \\ a_{3} & b_{1} \\ \end{pmatrix} = \begin{pmatrix} A & B \\ a_{1} & b_{1} \\ a_{2} & b_{1} \\ a_{2} & b_{1} \\ a_{2} & b_{2} \\ a_{3} & b_{1} \\ u \cdot 0 \end{pmatrix}$$

$$\Pi_{A} \begin{pmatrix} A & B & X \\ a_{1} & b_{1} & X \\ a_{2} & b_{1} & Y \\ a_{2} & b_{2} & Z \\ a_{2} & b_{3} & U \end{pmatrix} = \begin{bmatrix} A \\ a_{1} \\ a_{2} \end{bmatrix}$$

Х

$$\sigma_{A=a_{2}}\begin{pmatrix} A & B \\ a_{1} & b_{1} \\ a_{2} & b_{1} \\ a_{2} & b_{2} \\ a_{3} & b_{1} \end{pmatrix} u = \begin{pmatrix} A & B \\ a_{1} & b_{1} \\ a_{2} & b_{1} \\ a_{2} & b_{1} \\ a_{2} & b_{2} \\ a_{3} & b_{1} \end{pmatrix} u \cdot 0$$

$$\Pi_{A} \begin{pmatrix}
A & B \\
a_{1} & b_{1} & x \\
a_{2} & b_{1} & y \\
a_{2} & b_{2} & z \\
a_{2} & b_{3} & u
\end{pmatrix} = \begin{bmatrix}
A \\
a_{1} \\
a_{2}
\end{bmatrix} x \\
y + z + u$$

ullet Suppose the semiring is that of Booleans $\mathbb B$. What does the positive relational algebra compute?

• Suppose the semiring is that of natural numbers \mathbb{N} . What does the positive relational algebra compute?

 Suppose the semiring is that of Booleans B. What does the positive relational algebra compute?
 Standard set semantics

• Suppose the semiring is that of natural numbers \mathbb{N} . What does the positive relational algebra compute?

 Suppose the semiring is that of Booleans B. What does the positive relational algebra compute?
 Standard set semantics

An *idempotent* semiring is one where $x \oplus x = x$

• Suppose the semiring is that of natural numbers \mathbb{N} . What does the positive relational algebra compute?

• Suppose the semiring is that of Booleans B. What does the positive relational algebra compute? Standard set semantics

An *idempotent* semiring is one where $x \oplus x = x$

• Suppose the semiring is that of natural numbers \mathbb{N} . What does the positive relational algebra compute? Bag semantics

Notice that \mathbb{N} is not idempotent

Recall that a Conjunctive Query (CQ) is:

$$Q(\mathbf{X}) = \exists \mathbf{Y} (R_1(\mathbf{Z}_1) \wedge R_2(\mathbf{Z}_2) \wedge \cdots)$$

Recall that a Conjunctive Query (CQ) is:

$$Q(\boldsymbol{X}) = \exists \boldsymbol{Y} (R_1(\boldsymbol{Z}_1) \wedge R_2(\boldsymbol{Z}_2) \wedge \cdots)$$

Let $\mathbf{V} \stackrel{\text{def}}{=} \text{Vars}(Q)$ (all variables).

If R_1, R_2, \ldots are K-relations, then the semantics of Q is defined as:

Recall that a Conjunctive Query (CQ) is:

$$Q(\boldsymbol{X}) = \exists \boldsymbol{Y} (R_1(\boldsymbol{Z}_1) \wedge R_2(\boldsymbol{Z}_2) \wedge \cdots)$$

Let $\mathbf{V} \stackrel{\text{def}}{=} \text{Vars}(Q)$ (all variables).

If R_1, R_2, \ldots are K-relations, then the semantics of Q is defined as:

$$Q(\mathbf{x}) \stackrel{\text{def}}{=} \bigotimes_{\mathbf{v} \in \mathsf{Dom}} v_{:\pi_{\mathbf{X}}(\mathbf{v}) = \mathbf{x}} R_1(\pi_{\mathbf{Z}}(\mathbf{v})) \otimes R_2(\pi_{\mathbf{Z}}(\mathbf{v})) \otimes \cdots$$

Recall that a Conjunctive Query (CQ) is:

$$Q(\boldsymbol{X}) = \exists \boldsymbol{Y} (R_1(\boldsymbol{Z}_1) \wedge R_2(\boldsymbol{Z}_2) \wedge \cdots)$$

Let $\mathbf{V} \stackrel{\text{def}}{=} \text{Vars}(Q)$ (all variables).

If R_1, R_2, \ldots are K-relations, then the semantics of Q is defined as:

$$Q(\mathbf{x}) \stackrel{\mathsf{def}}{=} \bigotimes_{\mathbf{v} \in \mathsf{Dom}} \mathbf{v}_{:\pi_{\mathbf{X}}(\mathbf{v}) = \mathbf{x}} R_1(\pi_{\mathbf{Z}}(\mathbf{v})) \otimes R_2(\pi_{\mathbf{Z}}(\mathbf{v})) \otimes \cdots$$

The semantics of an UCQ

$$oxed{Q(oldsymbol{X})=Q_1(oldsymbol{X})\cup Q_2(oldsymbol{X})\cup\cdots}}$$
is: $oxed{Q(t)\stackrel{ ext{def}}{=}Q_1(t)\oplus Q_2(t)\oplus\cdots}$

Short Comment

The semantics over K-relations is simple!

Replace \vee, \wedge with \oplus , \otimes

Sparse Tensors

 $\ensuremath{\mathbb{R}}\text{-relations}$ are logically equivalent to sparse tensors.

Sparse Tensors

 \mathbb{R} -relations are logically equivalent to sparse tensors.

A sparse matrix:

$$M = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 0 & 7 \\ 1.1 & -5 & 0 \end{pmatrix}$$

Representation as an \mathbb{R} -relation:

X	Y	
1	1	9
2	3	7
3	1	1.1
3	2	-5

Einstein Summations and CQs

An Einstein summation is the same as a CQ interpreted over \mathbb{R} -relations.

Einstein Summations and CQs

An Einstein summation is the same as a CQ interpreted over \mathbb{R} -relations.

CQ:

$$Q(X,Z) = \exists Y(A(X,Y) \land B(Y,Z))$$

Einstein Summations and CQs

An Einstein summation is the same as a CQ interpreted over \mathbb{R} -relations.

CQ:

$$Q(X,Z) = \exists Y(A(X,Y) \land B(Y,Z))$$

Einstein Summation:

$$Q[i,k] = \sum_{j} A[i,j] \cdot B[j,k]$$

Einsums "drop the quantifiers": $Q(X, Z) = A(X, Y) \wedge B(Y, Z)$.

Transpose: B[i,j] = A[i,j]

Summation: S = A[i, j]

Row sum: R[i] = A[i,j]

Dot product: P = A[i] * B[i]

Outer product T[i,j] = A[i] * B[j]

Batch matrix multiplication: C[i, k, m] = A[i, j, m] * B[j, k, m]

Dan Suciu

Topics in DB Theory: Unit 7

¹https://rockt.github.io/2018/04/30/einsum

Einsums "drop the quantifiers": $Q(X, Z) = A(X, Y) \wedge B(Y, Z)$.

Transpose: B[i,j] = A[i,j]

Summation: S = A[i, j]

Row sum: R[i] = A[i, j]

Dot product: P = A[i] * B[i]

Outer product T[i,j] = A[i] * B[j]

Batch matrix multiplication: C[i, k, m] = A[i, j, m] * B[j, k, m]

Dan Suciu

Topics in DB Theory: Unit 7

¹https://rockt.github.io/2018/04/30/einsum

Einsums "drop the quantifiers": $Q(X, Z) = A(X, Y) \wedge B(Y, Z)$.

Transpose: B[i,j] = A[i,j]

Summation: S = A[i, j]

Row sum: R[i] = A[i, j]

Dot product: P = A[i] * B[i]

Outer product T[i,j] = A[i] * B[j]

Batch matrix multiplication: C[i, k, m] = A[i, j, m] * B[j, k, m]

¹https://rockt.github.io/2018/04/30/einsum

Einsums "drop the quantifiers": $Q(X, Z) = A(X, Y) \wedge B(Y, Z)$.

Transpose: B[i,j] = A[i,j]

Summation: S = A[i, j]

Row sum: R[i] = A[i,j]

Dot product: P = A[i] * B[i]

Outer product T[i,j] = A[i] * B[j]

Batch matrix multiplication: C[i, k, m] = A[i, j, m] * B[j, k, m]

¹https://rockt.github.io/2018/04/30/einsum

Einsums "drop the quantifiers": $Q(X, Z) = A(X, Y) \wedge B(Y, Z)$.

Transpose: B[i,j] = A[i,j]

Summation: S = A[i, j]

Row sum: R[i] = A[i,j]

Dot product: P = A[i] * B[i]

Outer product T[i,j] = A[i] * B[j]

Batch matrix multiplication: C[i, k, m] = A[i, j, m] * B[j, k, m]

¹https://rockt.github.io/2018/04/30/einsum

Einsums "drop the quantifiers": $Q(X, Z) = A(X, Y) \wedge B(Y, Z)$.

Transpose: B[i,j] = A[i,j]

Summation: S = A[i, j]

Row sum: R[i] = A[i,j]

Dot product: P = A[i] * B[i]

Outer product T[i,j] = A[i] * B[j]

Batch matrix multiplication: C[i, k, m] = A[i, j, m] * B[j, k, m]

¹https://rockt.github.io/2018/04/30/einsum

Einsums "drop the quantifiers": $Q(X, Z) = A(X, Y) \wedge B(Y, Z)$.

Transpose: B[i,j] = A[i,j]

Summation: S = A[i, j]

Row sum: R[i] = A[i,j]

Dot product: P = A[i] * B[i]

Outer product T[i,j] = A[i] * B[j]

Batch matrix multiplication: C[i, k, m] = A[i, j, m] * B[j, k, m]

¹https://rockt.github.io/2018/04/30/einsum

Access Control

• Discretionary Access Control: read/write/etc permissions for each user/resource pair.

• Mandatory Access Control: clearance levels. Secret, Top Secret, etc.

Mandatory Access Control

K-Relaltions

The access control semiring: |(A, min, max, 0, P)|

$$(\mathbb{A}, \min, \max, 0, P)$$

 $A = \{ Public < Confidential < Secret < Top-secret < 0 \} 0$ "No Such Thing"

Pics	
PID	
p1	5
p2	٦

ь.

Осс	
PID	DID
p1	d1
p2	d1
p2	d2

		Docs	
DID		DID	
d1	Р	d1	
d1	Р	d2	
42	D		

$$Q(p) = \mathsf{Pics}(p) \wedge \mathsf{Occ}(p, d) \wedge \mathsf{Docs}(d)$$

Mandatory Access Control

K-Relaltions 0000000000000000

The access control semiring: |(A, min, max, 0, P)|

$$(A, \min, \max, 0, P)$$

 $\mathbb{A} = \{ \text{Public} < \text{Confidential} < \text{Secret} < \text{Top-secret} < 0 \} \ 0$ "No Such Thing"

PICS	
PID	
p1	5
p2	٦

D:aa

Осс	
PID	DID
p1	d1
p2	d1
p2	d2

Р	
Р	
Р	

DID	
d1	C
d2	0

Docs

Answer		
PID		
p1		
p2		
PΣ		

$$Q(p) = \mathsf{Pics}(p) \land \mathsf{Occ}(p, d) \land \mathsf{Docs}(d)$$

What are the annotations of the output tuples?

Mandatory Access Control

The access control semiring: |(A, min, max, 0, P)|

$$(A, \min, \max, 0, P)$$

 $\mathbb{A} = \{ \text{Public} < \text{Confidential} < \text{Secret} < \text{Top-secret} < 0 \} \ 0$ "No Such Thing"

Pics PID p1 p2

Осс	
PID	DID
p1	d1
p2	d1
p2	d2

Docs
DID
d1
d2

7 111344	_
PID	
p1	
p2	

Answer

$$Q(p) = \mathsf{Pics}(p) \land \mathsf{Occ}(p,d) \land \mathsf{Docs}(d)$$

What are the annotations of the output tuples?

Discussion

• K-Relations: powerful abstraction that allows us to apply concepts from the relational model to other domains

Einsum notation popular in ML: numpy, TensorFlow, pytorch
 Note slight variation in syntax. (Read the manual!)

• The original motivation of K-relations in [Green et al., 2007] was to model *provenance*. Will discuss next.

Provenance Polynomials

Overview

Run a query over the input data. Look at one output tuple t.

Where does t come from?

Provenance, or lineage, aims to define some formalism to answer this question.

Many variants were proposed in the literature before K-relations, with an unclear winner.

K-relations proved to be able to capture them all, in an elegant framework.

Provenance Polynomials

Fix a standard database instance $\mathbf{D} = (R_1^D, R_2^D, \ldots)$.

Annotate each tuple with a distinct tag $x_1, x_2, ...$; abstract tagging.

Consider the semiring of polynomials $\mathbb{N}[x] = \mathbb{N}[x_1, x_2, \ldots]$

Each relation R_i^D becomes an $\mathbb{N}[x]$ -relation.

Compute the query Q over the these $\mathbb{N}[x]$ -relations.

Output tuples annotated with polynomials: provenance polynomials.

From [Green et al., 2007]

Α	В	C	
а	b	С	x
d	b	е	y y
f	g	e	z

Α	С
а	С
a	е
d	С
d	e
f	e

$$Q(A, C) = \exists A_1 B_1 C_1(R(A, B_1, C_1) \land R(A_1, B_1, C)) \lor \exists A_1 B_1 B_2(R(A, B_1, C) \land R(A_1, B_2, C))$$

From [Green et al., 2007]

Α	В	С	
а	b	С	X
d	b	е	y
f	g	е	z

Α	С	
а	С	$2x^2$
a	e	xy
d	С	xy
d	e	$2y^2 + yz$
f	e	$2z^{2} + yz$

$$Q(A, C) = \exists A_1 B_1 C_1(R(A, B_1, C_1) \land R(A_1, B_1, C)) \lor \exists A_1 B_1 B_2(R(A, B_1, C) \land R(A_1, B_2, C))$$

From [Green et al., 2007]

Α	В	C	
а	b	С	x
d	b	е	y y
f	g	e	z

$$Q(A, C) = \exists A_1 B_1 C_1 (R(A, B_1, C_1) \land R(A_1, B_1, C)) \lor \exists A_1 B_1 B_2 (R(A, B_1, C) \land R(A_1, B_2, C))$$

Α	С	
а	С	$2x^{2}$
а	е	xy
d	С	xy
d	e	$2y^2 + yz$
f	e	$2z^2 + yz$

Interpretation:

• (a, e) is derived from x and y.

From [Green et al., 2007]

Α	В	C	
а	b	С	x
d	b	е	y y
f	g	e	z

$$Q(A, C) = \exists A_1 B_1 C_1(R(A, B_1, C_1) \land R(A_1, B_1, C)) \lor \exists A_1 B_1 B_2(R(A, B_1, C) \land R(A_1, B_2, C))$$

Α	С	
а	С	$2x^{2}$
а	e	xy
d	с	xy
d	e	$2y^2 + yz$
f	e	$2z^{2} + yz$

Interpretation:

- (a, e) is derived from x and y.
- (a, c) is derived in two ways: using x twice, and using x twice.
- (d, e) is derived ...

Other Notions of Provenance

Many variations on the following themes:

• Do we distinguish between conjunction and disjunction? Do $R \cup R$ and $R \cap R$ have the same provenance?

Do we require idempotence?
 Does R∪R have the same provenance as R∪R∪R?

Do we require multiplicative idempotence? Does R ∩ R have the same provenance as R?

More informative

Less informative

Discussion

- Fine-grained provenance: complete information on how a tuple was produced.
 - Provenance polynomials are fine-grained
- Coarse-grained provenance: data science pipelines
 - What input files where used? What versions? When were they collected?
 - ▶ What tools were used in the pipeline? What version? What (hyper-)parameter settings?
 - ▶ When was the pipeline executed? On what OS, what configuration?

Review: The Algebraic Laws of Relational Algebra

There is no finite axiomatization of the Relational Algebra

why?

But there is a finite axiomatization of Positive Relational Algebra

why?

Examples:

$$(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$$

$$(R \cup S) \bowtie T = R \bowtie T \cup S \bowtie T$$

$$\sigma_p(R \bowtie S) = \sigma_p(R) \bowtie S$$

What are the Algebraic Laws over K-relations?

Homomorphisms

A homomorphism $f:(S,\oplus,\otimes,\mathbf{0},\mathbf{1})\to(K,+,\cdot,0,1)$ is a function $f:S\to K$ such that:

$$f(\mathbf{0}) = 0 \qquad f(\mathbf{1}) = 1$$

$$f(x \oplus y) = f(x) + f(y) \qquad f(x \otimes y) = f(x) \cdot f(y)$$

Universality Property

Theorem

Fix a set $\mathbf{x} = \{x_1, x_2, \ldots\}$. The semiring $(\mathbb{N}[\mathbf{x}], +, \cdot, 0, 1)$ is the freely generated commutative semiring.

Applications to Query Optimization

Corollary

Consider an identity in semirings $E_1 = E_2$. The following are equivalent:

- **1** $E_1 = E_2$ holds in $(\mathbb{N}, +, \cdot, 0, 1)$.
- **2** $E_1 = E_2$ holds in $(\mathbb{N}[x], +, \cdot, 0, 1)$.
- **3** $E_1 = E_2$ holds in all commutative semirings.

Proof (in class) Item $1 \Rightarrow$ Item $2 \Rightarrow$ Item $3 \Rightarrow$ Item 1

Example:

$$(x+y)(x+z)(y+z) = xy(x+y) + xz(x+z) + yz(y+z) + 2xyz$$

Dan Suciu

Applications for Query Optimization

Consider an identity $E_1 = E_2$ in the Positive Relational Algebra $(\bowtie, \sigma, \Pi, \cup)$.

The following are equivalent:

- $E_1 = E_2$ holds under bag semantics.
- $E_1 = E_2$ holds for all K-relations, i.e. for any semiring K.

Example
$$R \bowtie (S \cup T) = (R \bowtie S) \cup (R \bowtie T)$$
.

What about set semantics? Do we have more identities? Fewer identities? Give examples!

Discussion

• Semirings and K-relations significantly expand the scope of the relational data model to a rich set of applications.

• Cost-based query optimizers designed for SQL could, in theory, be deployed in several other domains. E.g. sparse tensor processing.

Green, T. J., Karvounarakis, G., and Tannen, V. (2007).

Provenance semirings.

In Libkin, L., editor, Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 11-13, 2007, Beijing, China, pages 31–40. ACM.