```
In [26]:
           import numpy as np
           import pandas as pd
           import matplotlib.pyplot as plt
           import seaborn as sns
          df = pd.read_csv(r"C:\Users\ippil\Downloads\uberdrive (1).csv")
In [27]:
In [28]:
          df
Out[28]:
                  START DATE*
                                 END_DATE*
                                              CATEGORY*
                                                                START*
                                                                            STOP*
                                                                                    MILES*
                                                                                                  PURPOSE
                    01-01-2016
                                  01-01-2016
                                                                              Fort
              0
                                                  Business
                                                             Fort Pierce
                                                                                         5.1
                                                                                              Meal/Entertai
                          21:11
                                       21:17
                                                                             Pierce
                                  01-02-2016
                    01-02-2016
                                                                              Fort
               1
                                                             Fort Pierce
                                                                                         5.0
                                                                                                        Na
                                                  Business
                          01:25
                                        01:37
                                                                             Pierce
                                  01-02-2016
                    01-02-2016
                                                                              Fort
              2
                                                  Business
                                                             Fort Pierce
                                                                                            Errand/Supplie
                                                                             Pierce
                          20:25
                                        20:38
                    01-05-2016
                                  01-05-2016
                                                                              Fort
              3
                                                  Business
                                                             Fort Pierce
                                                                                        4.7
                                                                                                    Meetin
                          17:31
                                        17:45
                                                                             Pierce
                                                                              West
                    01-06-2016
                                  01-06-2016
              4
                                                  Business
                                                             Fort Pierce
                                                                              Palm
                                                                                       63.7
                                                                                               Customer Vis
                          14:42
                                       15:49
                                                                             Beach
                    12/31/2016
                                  12/31/2016
           1150
                                                  Business
                                                                Karachi
                                                                           Karachi
                                                                                         0.7
                                                                                                    Meetin
                           1:07
                     12/31/2016
                                  12/31/2016
                                                                         Unknown
                                                                Karachi
           1151
                                                  Business
                                                                                         3.9
                                                                                              Temporary Sit
                                                                          Location
                          13:24
                                        13:42
                    12/31/2016
                                  12/31/2016
                                                              Unknown
                                                                         Unknown
           1152
                                                  Business
                                                                                        16.2
                                                                                                    Meetin
                          15:03
                                        15:38
                                                               Location
                                                                          Location
                    12/31/2016
                                  12/31/2016
           1153
                                                                                              Temporary Sit
                                                  Business
                                                             Katunayake
                                                                         Gampaha
                                                                                         6.4
                          21:32
                                        21:50
                    12/31/2016
                                  12/31/2016
           1154
                                                              Gampaha
                                                                                       48.2
                                                                                              Temporary Sit
                                                  Business
                                                                          Ilukwatta
                          22:08
                                        23:51
          1155 rows × 7 columns
```

p3

Data Inspection

• To understand the structure and content of the dataset.

```
In [34]:
         df.columns
Out[34]: Index(['START_DATE*', 'END_DATE*', 'CATEGORY*', 'START*', 'STOP*', 'MILES*',
                 'PURPOSE*'],
               dtype='object')
In [36]:
         df.shape
Out[36]: (1155, 7)
         df.size
In [38]:
Out[38]:
         8085
In [40]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1155 entries, 0 to 1154
        Data columns (total 7 columns):
                          Non-Null Count Dtype
            Column
         0
             START_DATE* 1155 non-null object
         1
             END_DATE*
                          1155 non-null object
         2
             CATEGORY*
                          1155 non-null object
         3
             START*
                          1155 non-null object
         4
             STOP*
                          1155 non-null
                                          object
         5
                          1155 non-null
                                          float64
             MILES*
             PURPOSE*
                          653 non-null
                                          object
        dtypes: float64(1), object(6)
        memory usage: 63.3+ KB
In [42]:
         df.describe()
Out[42]:
                    MILES*
         count 1155.000000
          mean
                  10.566840
            std
                  21.579106
           min
                   0.500000
           25%
                   2.900000
           50%
                   6.000000
          75%
                  10.400000
           max
                 310.300000
In [44]: df.head()
```

Out[44]:		START_DATE*	END_DATE*	CATEGORY*	START*	STOP*	MILES*	PURPOSE*
	0	01-01-2016 21:11	01-01-2016 21:17	Business	Fort Pierce	Fort Pierce	5.1	Meal/Entertain
	1	01-02-2016 01:25	01-02-2016 01:37	Business	Fort Pierce	Fort Pierce	5.0	NaN
	2	01-02-2016 20:25	01-02-2016 20:38	Business	Fort Pierce	Fort Pierce	4.8	Errand/Supplies
:		01-05-2016 17:31	01-05-2016 17:45	Business	Fort Pierce	Fort Pierce	4.7	Meeting
	4	01-06-2016 14:42	01-06-2016 15:49	Business	Fort Pierce	West Palm Beach	63.7	Customer Visit

In [46]: df.tail()

Out[46]:

	START_DATE*	END_DATE*	CATEGORY*	START*	STOP*	MILES*	PURPOSE*
1150	12/31/2016 1:07	12/31/2016 1:14	Business	Karachi	Karachi	0.7	Meeting
1151	12/31/2016 13:24	12/31/2016 13:42	Business	Karachi	Unknown Location	3.9	Temporary Site
1152	12/31/2016 15:03	12/31/2016 15:38	Business	Unknown Location	Unknown Location	16.2	Meeting
1153	12/31/2016 21:32	12/31/2016 21:50	Business	Katunayake	Gampaha	6.4	Temporary Site
1154	12/31/2016 22:08	12/31/2016 23:51	Business	Gampaha	Ilukwatta	48.2	Temporary Site

Questions

Q1. Show the last 10 records of the dataset.

In [50]: df.tail(10)

Out[50]:		START_DATE*	END_DATE*	CATEGORY*	START*	STOP*	MILES*	PURPOSI
	1145	12/30/2016 10:15	12/30/2016 10:33	Business	Karachi	Karachi	2.8	Errand/Supplie
	1146	12/30/2016 11:31	12/30/2016 11:56	Business	Karachi	Karachi	2.9	Errand/Supplie
	1147	12/30/2016 15:41	12/30/2016 16:03	Business	Karachi	Karachi	4.6	Errand/Supplie
	1148	12/30/2016 16:45	12/30/2016 17:08	Business	Karachi	Karachi	4.6	Meetin
	1149	12/30/2016 23:06	12/30/2016 23:10	Business	Karachi	Karachi	0.8	Customer Vis
	1150	12/31/2016 1:07	12/31/2016 1:14	Business	Karachi	Karachi	0.7	Meetin
	1151	12/31/2016 13:24	12/31/2016 13:42	Business	Karachi	Unknown Location	3.9	Temporary Sit
	1152	12/31/2016 15:03	12/31/2016 15:38	Business	Unknown Location	Unknown Location	16.2	Meetin
	1153	12/31/2016 21:32	12/31/2016 21:50	Business	Katunayake	Gampaha	6.4	Temporary Sit
	1154	12/31/2016 22:08	12/31/2016 23:51	Business	Gampaha	llukwatta	48.2	Temporary Sit
	4							•

Q2. Show the first 10 records of the dataset.

In [52]: df.head(10)

it[52]:		START_DATE*	END_DATE*	CATEGORY*	START*	STOP*	MILES*	PURPOSE*
	0	01-01-2016 21:11	01-01-2016 21:17	Business	Fort Pierce	Fort Pierce	5.1	Meal/Entertain
	1	01-02-2016 01:25	01-02-2016 01:37	Business	Fort Pierce	Fort Pierce	5.0	NaN
	2	01-02-2016 20:25	01-02-2016 20:38	Business	Fort Pierce	Fort Pierce	4.8	Errand/Supplies
	3	01-05-2016 17:31	01-05-2016 17:45	Business	Fort Pierce	Fort Pierce	4.7	Meeting
4	4	01-06-2016 14:42	01-06-2016 15:49	Business	Fort Pierce	West Palm Beach	63.7	Customer Visit
	5	01-06-2016 17:15	01-06-2016 17:19	Business	West Palm Beach	West Palm Beach	4.3	Meal/Entertain
	6	01-06-2016 17:30	01-06-2016 17:35	Business	West Palm Beach	Palm Beach	7.1	Meeting
	7	01-07-2016 13:27	01-07-2016 13:33	Business	Cary	Cary	0.8	Meeting
	8	01-10-2016 08:05	01-10-2016 08:25	Business	Cary	Morrisville	8.3	Meeting
	9	01-10-2016 12:17	01-10-2016 12:44	Business	Jamaica	New York	16.5	Customer Visit

Q3. Show the dimension(number of rows and columns) of the dataset.

```
In [60]: print(df.shape)
    print("IT shows that the dataset contains 1155 rows and 7 columns")
    (1155, 7)
    IT shows that the dataset contains 1155 rows and 7 columns
```

Q4. Show the size (Total number of elements) of the dataset.

```
In [62]: df.size
Out[62]: 8085
```

Q5. Display the information about all the variables of the data set. What can you infer from the output?

In [66]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1155 entries, 0 to 1154
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	START_DATE*	1155 non-null	object
1	END_DATE*	1155 non-null	object
2	CATEGORY*	1155 non-null	object
3	START*	1155 non-null	object
4	STOP*	1155 non-null	object
5	MILES*	1155 non-null	float64
6	PURPOSE*	653 non-null	object

dtypes: float64(1), object(6)

memory usage: 63.3+ KB

Q6. Check for missing values.

In [72]: df.isna()

Out[72]:		START_DATE*	END_DATE*	CATEGORY*	START*	STOP*	MILES*	PURPOSE*
	0	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	True
	2	False	False	False	False	False	False	False
	3	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False
	•••							
	1150	False	False	False	False	False	False	False
	1151	False	False	False	False	False	False	False
	1152	False	False	False	False	False	False	False
	1153	False	False	False	False	False	False	False
	1154	False	False	False	False	False	False	False

рЗ

1155 rows × 7 columns

Q7. How many missing values are present in the entire dataset?

In [76]: df.isna().sum()

Out[76]:	START_DATE*	0
	END_DATE*	0
	CATEGORY*	0
	START*	0
	STOP*	0
	MILES*	0
	PURPOSE*	502
	dtype: int64	

Q8. Get the summary of the original data.

In [78]:	df.desc	df.describe(include='all')											
Out[78]:		START_DATE*	END_DATE*	CATEGORY*	START*	STOP*	MILES*	PURPOSE*					
	count	1155	1155	1155	1155	1155	1155.000000	653					
	unique	1154	1154	2	176	187	NaN	10					
	top	6/28/2016 23:34	6/28/2016 23:59	Business	Cary	Cary	NaN	Meeting					
	freq	2	2	1078	201	203	NaN	187					
	mean	NaN	NaN	NaN	NaN	NaN	10.566840	NaN					
	std	NaN	NaN	NaN	NaN	NaN	21.579106	NaN					
	min	NaN	NaN	NaN	NaN	NaN	0.500000	NaN					
	25%	NaN	NaN	NaN	NaN	NaN	2.900000	NaN					
	50%	NaN	NaN	NaN	NaN	NaN	6.000000	NaN					
	75%	NaN	NaN	NaN	NaN	NaN	10.400000	NaN					
	max	NaN	NaN	NaN	NaN	NaN	310.300000	NaN					

Q9. Drop the missing values and store the data in a new dataframe (name it"df")

```
In [84]: df1 = df.dropna()
    df1
```

PURPOSI	MILES*	STOP*	START*	CATEGORY*	END_DATE*	START_DATE*	
Meal/Entertai	5.1	Fort Pierce	Fort Pierce	Business	01-01-2016 21:17	01-01-2016 21:11	0
Errand/Supplie	4.8	Fort Pierce	Fort Pierce	Business	01-02-2016 20:38	01-02-2016 20:25	2
Meetin	4.7	Fort Pierce	Fort Pierce	Business	01-05-2016 17:45	01-05-2016 17:31	3
Customer Vis	63.7	West Palm Beach	Fort Pierce	Business	01-06-2016 15:49	01-06-2016 14:42	4
Meal/Entertai	4.3	West Palm Beach	West Palm Beach	Business	01-06-2016 17:19	01-06-2016 17:15	5
							•••
Meetin	0.7	Karachi	Karachi	Business	12/31/2016 1:14	12/31/2016 1:07	1150
Temporary Sit	3.9	Unknown Location	Karachi	Business	12/31/2016 13:42	12/31/2016 13:24	1151
Meetin	16.2	Unknown Location	Unknown Location	Business	12/31/2016 15:38	12/31/2016 15:03	1152
Temporary Sit	6.4	Gampaha	Katunayake	Business	12/31/2016 21:50	12/31/2016 21:32	1153
Temporary Si	48.2	llukwatta	Gampaha	Business	12/31/2016 23:51	12/31/2016 22:08	1154
						ws × 7 columns	653 ro
•							4

Q10. Check the information of the dataframe(df).

In [90]: df1.info()

```
<class 'pandas.core.frame.DataFrame'>
Index: 653 entries, 0 to 1154
Data columns (total 7 columns):
   Column
                Non-Null Count Dtype
--- -----
                 _____
    START DATE* 653 non-null
                                object
0
1
    END DATE*
                653 non-null
                               object
    CATEGORY*
                653 non-null
                                object
 3
    START*
                653 non-null
                                object
4
    STOP*
                653 non-null
                                object
5
    MILES*
                653 non-null
                                float64
    PURPOSE*
                653 non-null
                                object
dtypes: float64(1), object(6)
memory usage: 40.8+ KB
```

Q11. Get the unique start locations.

p3

```
In [92]: df['START*'].unique()
Out[92]: array(['Fort Pierce', 'West Palm Beach', 'Cary', 'Jamaica', 'New York',
                 'Elmhurst', 'Midtown', 'East Harlem', 'Flatiron District',
                 'Midtown East', 'Hudson Square', 'Lower Manhattan',
                 "Hell's Kitchen", 'Downtown', 'Gulfton', 'Houston', 'Eagan Park',
                 'Morrisville', 'Durham', 'Farmington Woods', 'Lake Wellingborough',
                 'Fayetteville Street', 'Raleigh', 'Whitebridge', 'Hazelwood',
                 'Fairmont', 'Meredith Townes', 'Apex', 'Chapel Hill', 'Northwoods',
                 'Edgehill Farms', 'Eastgate', 'East Elmhurst', 'Long Island City',
                 'Katunayaka', 'Colombo', 'Nugegoda', 'Unknown Location',
                 'Islamabad', 'R?walpindi', 'Noorpur Shahan', 'Preston',
                 'Heritage Pines', 'Tanglewood', 'Waverly Place', 'Wayne Ridge',
                 'Westpark Place', 'East Austin', 'The Drag', 'South Congress',
                 'Georgian Acres', 'North Austin', 'West University', 'Austin',
                 'Katy', 'Sharpstown', 'Sugar Land', 'Galveston', 'Port Bolivar',
                 'Washington Avenue', 'Briar Meadow', 'Latta', 'Jacksonville',
                 'Lake Reams', 'Orlando', 'Kissimmee', 'Daytona Beach', 'Ridgeland',
                 'Florence', 'Meredith', 'Holly Springs', 'Chessington', 'Burtrose',
                 'Parkway', 'Mcvan', 'Capitol One', 'University District',
                 'Seattle', 'Redmond', 'Bellevue', 'San Francisco', 'Palo Alto',
                 'Sunnyvale', 'Newark', 'Menlo Park', 'Old City', 'Savon Height',
                 'Kilarney Woods', 'Townes at Everett Crossing', 'Huntington Woods',
                 'Weston', 'Seaport', 'Medical Centre', 'Rose Hill', 'Soho',
                 'Tribeca', 'Financial District', 'Oakland', 'Emeryville',
                 'Berkeley', 'Kenner', 'CBD', 'Lower Garden District', 'Storyville',
                 'New Orleans', 'Chalmette', 'Arabi', 'Pontchartrain Shores',
                 'Metairie', 'Summerwinds', 'Parkwood', 'Banner Elk', 'Boone',
                 'Stonewater', 'Lexington Park at Amberly', 'Winston Salem',
                 'Asheville', 'Topton', 'Renaissance', 'Santa Clara', 'Ingleside',
                 'West Berkeley', 'Mountain View', 'El Cerrito', 'Krendle Woods',
                 'Fuquay-Varina', 'Rawalpindi', 'Lahore', 'Karachi', 'Katunayake',
                 'Gampaha'], dtype=object)
```

Q12. What is the total number of unique start locations?

p3

```
In [102... df['START*'].nunique()
Out[102... 176
```

Q13. What is the total number of unique stop locations.

```
In [106... df['STOP*'].nunique()
Out[106... 187
```

Q14. Display all Uber trips that has the starting point as San Francisco.

In [108	df[d	f['START*'] ==	'San Francis	co']					
Out[108		START_DATE*	END_DATE*	CATEGORY*	START*	STOP*	MILES*	PURPOSE*	
	362	05-09-2016 14:39	05-09-2016 15:06	Business	San Francisco	Palo Alto	20.5	Between Offices	
	440	6/14/2016 16:09	6/14/2016 16:39	Business	San Francisco	Emeryville	11.6	Meeting	
	836	10/19/2016 14:02	10/19/2016 14:31	Business	San Francisco	Berkeley	10.8	NaN	
	917	11-07-2016 19:17	11-07-2016 19:57	Business	San Francisco	Berkeley	13.2	Between Offices	
	919	11-08-2016 12:16	11-08-2016 12:49	Business	San Francisco	Berkeley	11.3	Meeting	
	927	11-09-2016 18:40	11-09-2016 19:17	Business	San Francisco	Oakland	12.7	Customer Visit	
	933	11-10-2016 15:17	11-10-2016 15:22	Business	San Francisco	Oakland	9.9	Temporary Site	
	966	11/15/2016 20:44	11/15/2016 21:00	Business	San Francisco	Berkeley	11.8	Temporary Site	

Q15. What is the most popular starting point for the Uber drivers?

p3

Q16. What is the most popular dropping point for the Uber drivers?

Q17. What is the most frequent route taken by Uber drivers.

```
In [120...
          df.groupby(['START*','STOP*'])['MILES*'].size().sort_values(ascending=False).head(1
Out[120...
          START*
                             STOP*
          Unknown Location Unknown Location
                                                       86
          Morrisville
                             Cary
                                                       75
          Cary
                             Morrisville
                                                       67
                             Cary
                                                       53
                             Durham
                                                       36
                                                       . .
          Midtown
                             Midtown
                                                        2
          New Orleans
                             Metairie
                                                        2
          Huntington Woods Weston
                                                        2
                                                        2
          The Drag
                             Congress Ave District
          Metairie
                             New Orleans
                                                        2
          Name: MILES*, Length: 100, dtype: int64
```

Q18. Display all types of purposes for the trip in an array.

```
In [122... df['PURPOSE*']
```

```
Out[122... 0
                 Meal/Entertain
          1
          2
                 Errand/Supplies
          3
                         Meeting
                  Customer Visit
          1150
                         Meeting
          1151
                  Temporary Site
          1152
                         Meeting
          1153
                  Temporary Site
          1154
                  Temporary Site
          Name: PURPOSE*, Length: 1155, dtype: object
```

Q19. Plot a bar graph of Purpose vs Miles(Distance). What can you infer from the plot

p3

```
sns.barplot(data =df,y = 'MILES*',x='PURPOSE*',ci=False,estimator='sum')
In [132...
          plt.xticks(rotation =90)
         C:\Users\ippil\AppData\Local\Temp\ipykernel_12732\2818505978.py:1: FutureWarning:
         The `ci` parameter is deprecated. Use `errorbar=('ci', False)` for the same effect.
           sns.barplot(data =df,y = 'MILES*',x='PURPOSE*',ci=False,estimator='sum')
          ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
Out[132...
           [Text(0, 0, 'Meal/Entertain'),
            Text(1, 0, 'Errand/Supplies'),
            Text(2, 0, 'Meeting'),
            Text(3, 0, 'Customer Visit'),
            Text(4, 0, 'Temporary Site'),
            Text(5, 0, 'Between Offices'),
            Text(6, 0, 'Charity ($)'),
            Text(7, 0, 'Commute'),
            Text(8, 0, 'Moving'),
            Text(9, 0, 'Airport/Travel')])
```


• From the bar graph we can conclude that the purpose of travelling is more for mettings and for customer visit compared to the remaining purpose.

Q20. Display a dataframe of Purpose and the total distance travelled for that particular Purpose.

In [165...

df1

O-	-4-	$\Gamma \sim$	-	_	
())	17	1 1	16	ь.	

	START_DATE*	END_DATE*	CATEGORY*	START*	STOP*	MILES*	PURPOSE*
0	01-01-2016 21:11	01-01-2016 21:17	Business	San Francisco	Fort Pierce	5.1	Meal/Entertain
2	01-02-2016 20:25	01-02-2016 20:38	Business	San Francisco	Fort Pierce	4.8	Errand/Supplies
3	01-05-2016 17:31	01-05-2016 17:45	Business	San Francisco	Fort Pierce	4.7	Meeting
4	01-06-2016 14:42	01-06-2016 15:49	Business	San Francisco	West Palm Beach	63.7	Customer Visit
5	01-06-2016 17:15	01-06-2016 17:19	Business	San Francisco	West Palm Beach	4.3	Meal/Entertain
•••							
1150	12/31/2016 1:07	12/31/2016 1:14	Business	San Francisco	Karachi	0.7	Meeting
1151	12/31/2016 13:24	12/31/2016 13:42	Business	San Francisco	Unknown Location	3.9	Temporary Site
1152	12/31/2016 15:03	12/31/2016 15:38	Business	San Francisco	Unknown Location	16.2	Meeting
1153	12/31/2016 21:32	12/31/2016 21:50	Business	San Francisco	Gampaha	6.4	Temporary Site
1154	12/31/2016 22:08	12/31/2016 23:51	Business	San Francisco	llukwatta	48.2	Temporary Site

653 rows × 7 columns

→

In [167...

df2 =df1.groupby('PURPOSE*')['MILES*'].sum()
print(df2)

PURPOSE*

Airport/Travel 16.5 Between Offices 197.0 Charity (\$) 15.1 Commute 180.2 Customer Visit 2089.5 Errand/Supplies 508.0 Meal/Entertain 911.7 Meeting 2851.3 Moving 18.2 Temporary Site 523.7

Name: MILES*, dtype: float64

Q21. Generate a plot showing count of trips vs category of trips. What can you infer from the plot

p3

 We can conclude that based on the count plot most of the trips are of business trips compared to personal trips

CATEGORY*

Personal

Business

Q22. What percentage of Miles were clocked under Business Category and what percentage of Miles were clocked under Personal Category?

100

• 97.1% miles were clocked under business category and the remaining 2.9% are of personal category.

In []: