Q1 Forward pass of CNN

Note this one is zero padded!

Q2

Step-by-step tutorial for backpropagation in CNN.

https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code -714ef1c38199

Q3

https://stats.stackexchange.com/guestions/235528/backpropagation-with-softmax-cross-entropy

Q4

Check section 5 and 6. Full derivation of formulas

https://github.com/Kulbear/deep-learning-coursera/blob/master/Neural%20Networks%20and%20Deep%20Learning/Building%20your%20Deep%20Neural%20Network%20-%20Step%20by%20Step.ipynb

Q5

Same as above

Q6

$$\sigma(\mathbf{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}} ext{ for } i=1,\ldots,K ext{ and } \mathbf{z} = (z_1,\ldots,z_K) \in \mathbb{R}^K$$

Q7

Softmax part is as same as above, cross entropy is defined as

$$\mathrm{loss}(x, class) = -\log\left(rac{\exp(x[class])}{\sum_{j}\exp(x[j])}
ight) = -x[class] + \log\left(\sum_{j}\exp(x[j])
ight)$$

Pytorch NLLLoss, CrossEntropy

Q8

Check the definition of entropy.

Entropy is the measurement of chaosity.

The cross entropy loss function for multiclass can be computed as:

$$-\sum_{i=1}^{N} y_i log \hat{y}_i$$

When y_i and \hat{y}_i is very close, (say 1 and 0.999999) then the loss is almost 0. But it can be infinitely large (think about it)

Q9

Q10

Knn - non-parameterized

Q11

https://towardsdatascience.com/overfitting-vs-underfitting-a-complete-example-d05dd7e19765

Q13

Q14

https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

Q15

考虑闭式解所需要的矩阵运算

For linear regression on a model of the form $y = X\beta$, where X is a matrix with full column rank, the least squares solution,

$$\hat{\beta} = \arg\min \|X\beta - y\|_2$$

is given by

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

Now, imagine that X is a very large but sparse matrix. e.g. X might have 100,000 columns and 1,000,000 rows, but only 0.001% of the entries in X are nonzero. There are specialized data structures for storing only the nonzero entries of such sparse matrices.

Also imagine that we're unlucky, and X^TX is a fairly dense matrix with a much higher percentage of nonzero entries. Storing a dense 100,000 by 100,000 element X^TX matrix would then require 1×10^{10} floating point numbers (at 8 bytes per number, this comes to 80 gigabytes.) This would be impractical to store on anything but a supercomputer. Furthermore, the inverse of this matrix (or more commonly a Cholesky factor) would also tend to have mostly nonzero entries.

However, there are iterative methods for solving the least squares problem that require no more storage than X, y, and $\hat{\beta}$ and never explicitly form the matrix product X^TX .

In this situation, using an iterative method is much more computationally efficient than using the closed form solution to the least squares problem.

Q16

https://www.guora.com/Why-is-CNN-used-for-image-classification-and-why-not-other-algorithms

Q17

Parameter sharing

Parameter Sharing

Black arrows = particular parameter

Convolution
shares the same
parameters
across all spatial
locations

Traditional matrix multiplication does not share any parameters

Figure 9.5

(Goodfellow 2016)

Q18

Spatially: pooling

Number of activation maps: change conv layer size

Conv layer shape: kernel height x kernel width x in_channel x out_channel(number of filters/activation maps) $5 \times 5 \times 3 \times 2$ filters

Q19

new_height = (input_height - filter_height + 2 * P)/S + 1
new_width = (input_width - filter_width + 2 * P)/S + 1

A conv layer with 2x2xdxd stride size 2

Q20

Use the formula above

Q21

0
Q22 0
Q23
5 x 5 x 10 x 5 + 5
Q24 See links in Q2
Q25 residual connection http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture09.pdf
Q26 DenseNet needs more memory
Q27 Hard to tell
Q28 Not changing
Q29
1-stage vs 2-stage 1-stage tends to miss more small objects
https://everitt257.github.io/post/2018/08/10/object_detection.html
Q30 2-stage methods separate the object detection task into proposal and classification
Q31

The fully connected layer requires you flatten the input to a vector representation which loses

Q32

Same as Q31?

the spatial and depth information.

Q33

Upsampling

https://medium.com/activating-robotic-minds/up-sampling-with-transposed-convolution-9ae4f2df 52d0

Q34

Q35

Not requirement of annotated data

Q36

Q37

Variational Autoencoders (VAEs) have one fundamentally unique property that separates them from vanilla autoencoders, and it is this property that makes them so useful for generative modeling: their latent spaces are, by design, continuous, allowing easy random sampling and interpolation.

It achieves this by doing something that seems rather surprising at first: making its encoder not output an encoding vector of size n, rather, outputting two vectors of size n: a vector of means, μ , and another vector of standard deviations, σ .

 $\underline{\text{https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5da} \\ \underline{f}$

Q38

A minimax game (game theory)

Q39

Kinda Open question

Q40

https://r2rt.com/styles-of-truncated-backpropagation.html

Q41

BPTT

Q42

Q43

Q44
https://towardsdatascience.com/model-distillation-and-compression-for-recommender-systems-i-n-pytorch-5d81c0f2c0ec
6min read

Q45 Explain why bi-linear transform is differentiable in a few sentences. Use mathematical symbols if needed.