- **17.** Suppose that we flip a fair coin, n times to obtain n random bits. Consider all $m = \binom{n}{2}$ pairs of these bits in some order. Let Y_i be the **exclusive-or** \bigoplus of the i-th pair of bits, and let $Y = \sum_{i=1}^m Y_i$ be the number of Y_i that equal 1.
- (a) Show that each $Y_i = 0$ with prob = $\frac{1}{2}$ (therefore, $Y_i = 1$ with probability also $\frac{1}{2}$)
- (b) Show that Yi are not mutually independent.
- (c) Show that $E[Y_iY_j] = E[Y_i]E[Y_j]$.
- (d) Find Var[Y].
- (e) Use Chebyshev to bound $Pr[|Y E[Y]| \ge n]$.

(a)

Symmetric difference

$$P(Y_i = 1) = \frac{2 \times 2^{n-2}}{2^n} = \frac{1}{2}$$

$$P(Y_i = 0) = 1 - P(Y_i = 1) = \frac{1}{2}$$

(b)

To investigate their independence, let's consider $P(Y_i = 1; Y_j = 1; Y_k = 1)$.

 $Y_i = 1$ => The first and the second variable

 $Y_j = 1$ => The second and the third variable

 $Y_k = 1$ => The first and the third variable

If they are mutually independent, we should have:

$$P(Y_i = 1) = \frac{2 \times 2^{n-2}}{2^n} = \frac{1}{2}$$
 The same for Y_j and Y_k

$$P(Y_i = 1; Y_j = 1; Y_k = 1) = P(Y_i = 1) \times P(Y_j = 1) \times P(Y_k = 1) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$$

Nevertheless, these events cannot be happened at the same time. Therefore $P(Y_i = 1; Y_j = 1; Y_k = 1) = 0$

$$P(Y_i = 1; Y_j = 1; Y_k = 1) = 0 \implies 0 \neq \frac{1}{8}$$

Let's assume:

000

001

011

010

110

111

101

100

(c)

First, we will show, that Yi are pairwise independent. Consider 2 possibilities.

- 1.) Yi and Yj do not share a bit position. They are obviously independent.
- 2.) Yi and Yj share a bit position. Consider all 3-bit strings to confirm the independence.

				 R	 K	
Yi	=>	The Sth and the Rth variable		 0	 0	
					Or	
Yj	=>	The Kth and the Rth variable		 R	 K	
]	 1	 1	

$$P(Y_i = 0, Y_j = 0) = \frac{2 \times 2^{n-3}}{2^n} = \frac{1}{4}$$

$$P(Y_i = 0) = \frac{2 \times 2^{n-2}}{2^n} = \frac{1}{2}$$

$$P(Y_i = 0; Y_j = 0) = P(Y_i = 0) \times P(Y_j = 0) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

(d)

When our variables are independent:

$$Var(Y) = \sum_{i=1}^{m} Var(Y_i)$$

$$\sum_{i=1}^{m} E(Y_i^2) - E(Y_i)^2 = \sum_{i=1}^{m} \left(0^2 \frac{1}{2} + 1^2 \frac{1}{2}\right) - \left(0 \frac{1}{2} + 1 \frac{1}{2}\right)^2 = \sum_{i=1}^{m} \frac{1}{4} = m \times \frac{1}{4} = \frac{m}{4}$$

(e)

From the previous part we have $Var(Y) = \frac{m}{4}$

$$P[|Y - E(Y)| \ge n] \le \frac{Var(Y)}{n^2} = \frac{1}{8} \frac{n(n-1)}{n^2} \le \frac{1}{8}$$