Inverse of a matrix

Let A be an nxn matin If there exists an nxn matin B satisfying AB = BA = I, then the matrix B is called the inverse of A and is denoted by B = A -Finding the inverse of a matrix The Gauss - Jordan method —> (In | B) $(A|I_n)$ Use elementary options to transform LHS to identify matin Example

Find inverse of A = 1 1 2 3 0 3 -2 3 0

Transpose of matin

Columns are interchanged with rows

Works on any and all matrices

Square matrin is said to be symmetric if
$$A^T = A$$

$$(A^T)^T = A$$

$$(MN)^T = N^T M^T$$

Determinants

A number that tells if the inverse of the matrin enists.

$$A = [a]$$

$$A^{1} = \begin{bmatrix} 1 \\ \overline{a} \end{bmatrix}$$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

det A = ad - bc

$$\begin{array}{c|cccc}
A^{-1} & = & 1 & d & -b \\
\hline
& ad - bc & -c & a
\end{array}$$

A square matrix A has an inverse if and only if its determinant is not zero

Example

Which of the following matrices have an inverse?

1A1 = -6 |B| = 0

|C| = -1

The Colactor Expansion Method

To find the deliminant for nxn matrices, where n > 3 we use the cojactor enpansion method.

$$(5)(-1)^{1+1}$$
 det $\begin{bmatrix} 0 & 1 \\ -2 & 1 \end{bmatrix}$ + 2 $(-1)^{1+2}$ det $\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ + 3 $(-1)^{1+3}$ det $\begin{bmatrix} -1 & 0 \\ 1 & -2 \end{bmatrix}$

$$= 5(2) - 2(-1-1) + 3(2-0)$$

: 10 + 4 + 6 : 20 = det (A)

$$(2)(-1)^{1+2} dut \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} + 0 + (-2)(-1)^{3+2} dut \begin{bmatrix} 5 & 3 \\ -1 & 1 \end{bmatrix}$$

Example

Find the determinant of the matrix

$$= -1 \left[-1(5) + 3(-u-u) \right] + 2 \left[1(5) + 3(-8) \right]$$

The deliminant of any triangular matrix of size nxn is the product of the diagonal entries.

Gamen's Rule

The solution of the linear system is given by

Replace the nth column with
the light hand side and
find deliminant—
e.g. N. => Replace col 1
Nz => Replace col 2