Guía 6. Problema 17

$$\mathbb{P} = \left(\begin{array}{ccc} 0.3 & 0.4 & 0.3 \\ 1 & 0 & 0 \\ 0 & 0.3 & 0.7 \end{array} \right)$$

 X_n : estado al instante n

$$\mathbb{E} = \{a, b, c\}$$

$$P(X_{35} = a/X_{33} = a) = P(X_2 = a/X_0 = a) = P(a \rightarrow (2) a) = P(X_1 = a/X_0 = a) P(X_2 = a/X_1 = a) + (0.4).1 = (0.3)(0.3) + (0.4).1 = 0.49 = (\mathbb{P}^2)_{11}$$

comentario de c -> a la p es 0

Cómo se si es regular elevando a la n

Es regular si:

los autovalores de P estén dentro del disco de radio 1 excepto el 1 que es siempre autovalor

hay que mirar que el 1 sea autovalor simple, que el -1 no sea autovalor y que si hay complejos que su modulo quede afuera de |R|<1

si puedo determinar si el grafo es conexo entonces es regular

Si es diagonalizable no garantiza nada según paco.

Guía 7, problema 12.

Una fábrica produce determinados artículos de tal manera que el 7 % resulta defectuoso. Se inspeccionan n de tales artículos, y se determina la frecuencia relativa de defectuosos fD.

- a) ¿Cuál debería ser el tamaño de n de manera tal que la probabilidad de que fD difiera de 0.07 en menos de 0.01 sea 0.98? Suponga válida la aproximación normal de la distribución binomial.
- b) Conteste la pregunta anterior si 0.07, la probabilidad de tener un artículo defectuoso, se sustituye por p que se supone desconocida. En este caso recuerde que si $p \in (0, 1)$ entonces $p (1 - p) \le 0.25$.

Resolución:

 X_n : # de artículos defectuosos en la muestra aleatoria de tamaño n

$$X_n \sim Bin(n,p)$$

a)
$$p = 0.07$$

$$f_D = \frac{X_n}{n}$$

$$E(f_D) = 0.07$$

$$V(f_D) = V(\frac{X_n}{n}) = \frac{n}{n^2}(0.07)(0.93) = \frac{0.0651}{n}$$

$$\sigma(\mathbf{f}_D) = \sqrt{\frac{0.0651}{n}}$$

$$P(|f_D\text{-}0.07|\!<\!0.01)\!\ge\!0.98$$

$$supongo\ np > 10$$

$$Z = \frac{f_D - 0.07}{\sqrt{0.0651}} \sim N(0, 1)$$

$$P(-a_n < Z < a_n) \ge 0.98$$

$$a_n = \frac{0.01}{\sqrt{0.0651}} \sqrt{n}$$

$$a_n = Z_{0.99} \approx 2.326$$

$$\frac{0.01\sqrt{n}}{\sqrt{0.0651}} \ge 2.326$$

$$n \ge 3522.09$$

$$n \ge 3523$$

para checkear que hicimos las cosas bien n tiene que ser grande, por haber aproximado

Si hubiese ido por otro camino

$$\begin{split} & \text{P}(|\frac{X_n - 0.07}{n\sqrt{0.0651}}| < \frac{0.01\sqrt{n}}{\sqrt{0.0651}}) \! \ge \! 0.98 \\ & \text{P}(\frac{-0.01}{\sqrt{0.0651}} < X_n - 0.07n \! < \! \frac{0.01}{\sqrt{0.0651}}) \! \ge \! 0.98 \end{split}$$

$$P(\frac{-0.01}{\sqrt{0.0651}} + 0.07n < X_n < \frac{0.01}{\sqrt{0.0651}} + 0.07n) \ge 0.98$$

$$P(i_n < X_n < d_n) = p_n$$

para cada n tengo una probabilidad

con un programa podría ver que tan bien aproxima la normal a la binomial

Otra forma:

Desigualdad de Tchebycheff

$$P(|X-E(X)|>t\sigma(x)) \le \frac{1}{t^2}$$

$$P(|f_D-0.07|>\epsilon) \leq \frac{\sigma^2(f_D)}{\epsilon^2}$$

$$P(|f_D-0.07| \le \epsilon) \ge 1 - \frac{\sigma^2(f_D)}{\epsilon^2}$$

donde
$$\epsilon = 0.01 \text{ y } \frac{\sigma^2(f_D)}{\epsilon^2} = 0.02$$

$$\sigma^2(f_D) = 2.10^{-6}$$

$$\frac{0.0651}{n} = 2.10^{-6}$$

$$n \ge 32550$$

parte b)

Parte b)
$$P(\left|\frac{f_D - p}{\sqrt{\frac{p(1 - p)}{n}}}\right| < \frac{0.01\sqrt{n}}{\sqrt{p(1 - p)}}) \ge 0.98$$

$$\left|\frac{f_D - p}{\sqrt{\frac{p(1 - p)}{n}}}\right| Z^{\sim} N(0, 1)$$

$$\frac{0.01\sqrt{n}}{\sqrt{p(1 - p)}} = a_n$$

$$Z_{0.99} = a_n \approx 2.326$$

$$\left| \frac{f_D - p}{\sqrt{p(1-p)}} \right| Z^{\sim} N(0,1)$$

$$\frac{\sqrt[n]{n}}{\sqrt[n]{(1-n)}} = a_n$$

$$Z_{0.99} = a_n \approx 2.326$$

$$0.01\sqrt{n} = 2.326\sqrt{p(1-p)} \le \frac{2.326}{2}$$

$$0.01\sqrt{n} \le 1.163$$

$$n \le (116.3)^2$$

Práctica 8 - Problema 5

Х

$$E(X) = \mu ; V(X) = \sigma^2$$

Se construye un estimador

$$Y = a \overline{X_1} + b \overline{X_2}$$

0 < a < 1

$$E(\overline{X_1}) = \mu$$

$$E(\overline{X_2}) = \mu$$

$$E(Y) = a\mu + b\mu = (a+b) \mu$$
 (no coincide con μ a menos que $a+b=1$)

Si es insesgado

$$E(Y) = \mu \iff a+b=1$$

$$\implies b = 1 - a$$

como las muestras son independientes:

la varianza de la suma es la suma de las varianzas

$$V(Y) = V(a\overline{X_1}) + V(b\overline{X_2}) = a^2V(\overline{X_1}) + b^2V(\overline{X_2}) = a^2V(\overline{X_1}) + (1-a)^2V(\overline{X_2})$$

donde

$$V(\overline{X_1}) = \frac{\sigma^2}{2}$$

$$V(\overline{X_1}) = \frac{\sigma^2}{n_1}$$

 $V(\overline{X_2}) = \frac{\sigma^2}{n_2}$

$$n_2 = 2n_1$$

$$V(Y) = a^2 \frac{\sigma^2}{n_1} + (1-a)^2 \frac{\sigma^2}{2n_1}$$

$$\frac{d}{da}(a^2 + \frac{1}{2}(1-a)^2) = 0$$

se cumple para $a=\frac{1}{3}$

$$(a^2 + \frac{1}{2}(1-a)^2)|_{a=\frac{1}{3}} = \frac{1}{3}$$

$$V_{min}(Y) = \frac{\sigma^2}{3n_1}$$

$$V(Y) = a^2 \frac{\sigma^2}{n} + (1-a)^2 \frac{\sigma^2}{n} = \frac{\sigma^2}{n} [a^2 + (1-a)^2]$$

$$g(a) = a^2 + (1-a)^2$$

$$g(a) = a^2 + (1 - a)^2$$

0 < a < 1

es una parábola mínimo ocurre cuando a = $\frac{1}{2}$ además siempre g(a)<1 $\forall a \epsilon (0,1)$

$$V(Y) < \frac{\sigma^2}{n}$$

dijo como 40 veces que la conclusión es: siempre conviene promediar

Estimar el valor de una proporción p

Se tienen los valores observados de dos proporciones muestrales

 $\hat{p_1} \mathbf{y} \ \hat{p_2}$ independientes de muestras de tamaños n \mathbf{y} m

$$\hat{p_1} = \frac{r_1}{n}$$

 r_1 : # de "éxitos" en la muestra 1

$$\mathbf{r}_1 \sim Bin(n,p)$$

$$\hat{p_2} = \frac{r_2}{n}$$

 $\mathbf{r}_2 \colon \ \# \ \mathrm{de} \ \mathrm{``éxitos''}$ en la muestra 2

$$r_2 \sim Bin(n, p)$$

Se genera

$$\hat{p} = a\hat{p_1} + b \hat{p_2} ; a\epsilon(0,1)$$

- a) determinar a y b de manera tal que \hat{p} sea estimador insesgado de p
- b) si m=n y a el valor que minimiza la varianza de \hat{p} comparar dicha varianza con la de $\hat{q} = \frac{r_1 + r_2}{2n}$

ESTO LO TOMO EN UN PARCIAL

Hay algo que no entra en el examen parcial que sería:

Guía 8: Problema 7,8,9,11,12,13,14

La semana que viene vemos prueba de hipótesis.