Raport z przebiegu laboratorium: <u>Programowanie Celowe i Ilorazowe</u>

Data: **2.11.2021**Imię i nazwisko: **Dawid Królak**Grupa: **i2.2**

Dzień i godzina zajęć: środa 9.45 PKT: / 20

Poniższe polecenia dotyczą zadania z pliku zadanie_pc_pi.xlsx.

- 1. [3] Sformułowanie problemu programowania matematycznego
 - a. [1] Podaj interpretację zmiennych decyzyjnych:
 - i. X₁ ilość mieszanki m1 w kg

ii. X₂ – ilość mieszanki m2 w kg

b. [2] Podaj wszystkie ograniczenia, jakie muszą spełniać wartości zmiennych x₁ i x₂:

```
2x1 + x2 >= 4000

x1 + x2 >= 3000

5x1 + 6x2 >= 20000

5x1 + 6x2 <= 30000
```

- 2. [2] Optymalizacja wielkości produkcji
 - a. [1] Podaj wartości współczynników funkcji celu i zaznacz kierunek optymalizacji:

i. $C_1 = 2$

ii. $C_2 = 5$

iii. kierunek optymalizacji:

max min

b. [1] Podaj rozwiązanie uzyskane za pomocą Solvera: $x_1 = 0$ $x_2 = 5000$ $f_1^* = 25000$

- 3. [2] Optymalizacja kosztów produkcji
 - a. [1] Podaj wartości współczynników funkcji celu i zaznacz kierunek optymalizacji:

i. $c_1 = 1$

ii. $c_2 = 2$

iii. kierunek optymalizacji:

max

min

b. [1] Podaj rozwiązanie uzyskane za pomocą Solvera: $x_1 = 4000$ $x_2 = 0$ $f_2^* = 4000$

- 4. [4.5] Optymalizacja dwukryterialna za pomocą programowania celowego
 - a. [1] Podaj celową postać funkcji celu (jako wartości celów przyjmij wartości funkcji celu z pkt. 2 i 3):

$$min | 2x1 + 5x2 - 25000| + |x1 + 2x2 - 4000|$$

- b. [0.5] Zaznacz kierunek optymalizacji celowej funkcji celu: max min
- c. [1] Podaj zlinearyzowaną postać funkcji celu i kierunek optymalizacji: min z1+y1+z2+y2
- d. [2] Podaj dodatkowe ograniczenia, w stosunku do pkt. 1.b (np. ograniczenia uwzględniające y i z):

$$2x1 + 5x2 + z1 - y2 = 25000$$

 $x1 + 2x2 + z2 - y2 = 4000$

e. [1] Podaj uzyskane za pomocą Solvera wartości wszystkich zmiennych decyzyjnych oraz wartość funkcji celu:

```
x1 = 0, x2 = 5000, z1 = 0, z1 = 0, y1 = 0, z2 = 0, y2 = 6000
```

- 5. [8.5] Optymalizacja dwukryterialna za pomocą programowania ilorazowego
 - a. [1] Podaj ilorazową postać funkcji celu, w formacie f₁ / f₂:

2x1+5x2/(x1+2x2)

- b. [0.5] Zaznacz kierunek optymalizacji ilorazowej funkcji celu: <u>max</u> min
- c. [1] Wyraź wzorami nowe zmienne decyzyjne u₀, u₁, u₂ za pomocą starych zmiennych x₁, x₂:

i.
$$u_0 = 1 / (x1+2x2)$$

ii.
$$u_1 = x1 / (x1+2x2)$$

iii.
$$u_2 = x2 I / (x1+2x2)$$

- d. [1] Zapisz zlinearyzowaną postać funkcji celu: 2u1 + 5u2
- e. [0.5] Zaznacz kierunek optymalizacji zlinearyzowanej funkcji celu: <u>max</u> min
- f. [2] Podaj wszystkie ograniczenia, jakie w problemie PL muszą spełniać wartości nowych zmiennych u₀, u₁ i u₂:

```
u1, u2, u0 >= 0

u0 != 0

u1 + 2u2 = 1

2u1 + u2 - 4000u0 >= 0

u1 + u2 - 3000u0 >= 0

5u1 + 6u2 - 20000u0 >= 0

5u1 + 6u2 - 30000u0 <= 0
```

- g. [1] Podaj rozwiązanie uzyskane za pomocą Solvera: $u_0 = 0,0001$ $u_1 = 0$ $u_2 = 0,5$ $f^* = 2,5$
- h. [0.5] Czy na podstawie rozwiązania postaci zlinearyzowanej analizowanego problemu można odtworzyć rozwiązanie oryginalnego problemu? Odpowiedź: <u>tak</u> nie

i. [1] Jeżeli w poprzednim punkcie udzieliłeś odpowiedzi tak, to podaj wartości oryginalnych zmiennych x_1 , x_2 , odpowiadające uzyskanemu przez Solver rozwiązaniu:

i. $x_1 = 0$

ii. x₂ = **5000**