

Amendments to the Claims

1. (Original) An ink set for ink jet recording, having a plurality of colors of ink jet recording ink, wherein said plurality of colors of ink contain pigments, the aspect ratio (σ) between the major and minor axes of the pigment particles is 2 or less, and the value of $\eta (1 - n(\sigma - 1))$ (n is a coefficient indicating $(\eta_L - \eta_H) / \eta_H$, where η_L is the viscosity measured at a shear rate of 10 S^{-1} , and η_H is the viscosity measured at a shear rate of 1000 S^{-1} ; $0.1 \geq n$), which is calculated from the viscosity (η) of said plurality of colors of ink as measured at a shear rate of 200 S^{-1} and at 20°C , is within $\pm 5\%$ for said plurality of colors of ink.
2. (Original) The ink set for ink jet recording according to Claim 1, wherein the particle size of the pigments has a aspect average of 10 to 200 nm.
3. (Currently Amended) The ink set for ink jet recording according to Claim 1 [[or 2]], wherein the statistical viewing method involves the use of a scanning electron microscope (SEM) or transmission electron microscope (TEM).
4. (Currently Amended) The ink set for ink jet recording according to ~~any of Claims 1 to 3~~ Claim 1, wherein the major axis is the X axis, and the minor axis is the shorter of the Y axis and the Z axis.
5. (Currently Amended) The ink set for ink jet recording according to ~~any of~~

~~Claims 1 to 4~~ Claim 1, wherein the pigments are carbon black and/or organic pigments.

6. (Currently Amended) The ink set for ink jet recording according to ~~any of~~ ~~Claims 1 to 5~~ Claim 1, wherein the viscosity of the plurality of colors of ink is at least 2 mPa·s and no more than 10 mPa·s.

7. (Currently Amended) The ink set for ink jet recording according to ~~any of~~ ~~Claims 1 to 6~~ Claim 1, wherein the surface tension of the plurality of colors of ink is no more than 40 mN/m.

8. (Currently Amended) The ink set for ink jet recording according to ~~any of~~ ~~Claims 1 to 7~~ Claim 1, wherein the pigments are dissolved or dispersed in water without the use of a dispersant.

9. (Currently Amended) The ink set for ink jet recording according to ~~any of~~ ~~Claims 1 to 7~~ Claim 1, wherein the pigments are dissolved or dispersed in water by a polymer.

10. (Currently Amended) The ink set for ink jet recording according to ~~any of~~ ~~Claims 1 to 9~~ Claim 1, wherein the pigments are subjected to media-less dispersion.

11. (Original) The ink set for ink jet recording according to Claim 10, wherein the media-less dispersion is accomplished with a nanomizer or a jet mill.

12. (Currently Amended) A method for manufacturing the ink set for ink jet recording according to ~~any of Claims 1 to 11~~ Claim 1, wherein the value of $\eta(1 - n(\sigma - 1))$ ($0.1 \geq n$), which is calculated from the viscosity (η) of said plurality of colors of ink as measured at a specific shear rate and a specific temperature, is adjusted to be within $\pm 5\%$ for said plurality of colors of ink.

13. (Original) The method for manufacturing the ink set for ink jet recording according to Claim 12, wherein the specific temperature is 5 to 50°C, and the specific shear rate is 0.1 to 10^4 S⁻¹.

14. (Currently Amended) An ink jet recording apparatus equipped with the ink set for ink jet recording according to ~~any of Claims 1 to 11~~ Claim 1, wherein ink jet recording is performed with a head whose drive system is electrostrictive or thermal.