

Version 1 ▼

Sep 08, 2020

Rosbash/Janelia StickLAMP Protocol V.1

Albert Yu¹, Tim Brown², Jasmine Quynhe Le¹, Kristina Galatsis¹, Michael Rosbash¹

¹Brandeis University; ²Janelia Research Campus

1 Works for me

dx.doi.org/10.17504/protocols.io.bk33kyqn

XPRIZE Rapid Covid Testing

Albert Yu

ABSTRACT

A protocol for the detection of SARS-CoV-2 from saliva samples featuring a rapid purification step and a high-contrast colorimetric readout. Saliva is first inactivated using a 100x inactivation reagent consisting of 2.5M TCEP, 100 mM EDTA, 1.2N NaOH solution diluted to approximately 1x final concentration and heated to 95C for 5 minutes. RNA is rapidly purified and concentrated with magnetic beads in a PEG/NaCl-based buffer using a 3D-printed magnetic stick that enables selective separation of beads without carryover of saliva contaminants. Beads are eluted directly into an RT-LAMP reaction mix, which uses a novel high contrast dye that turns from purple to clear when acidified by nucleic acid amplification products that enables unambiguous identification of successful amplification. This protocol is sensitive down to 1 copy/µl of SARS-CoV-2 in 300 µl of saliva. This degree of sensitivity enables faithful detection of SARS-CoV-2 even in pooled samples.

DO

dx.doi.org/10.17504/protocols.io.bk33kyqn

PROTOCOL CITATION

Albert Yu, Tim Brown, Jasmine Quynhe Le, Kristina Galatsis, Michael Rosbash 2020. Rosbash/Janelia StickLAMP Protocol. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.bk33kyqn

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Sep 08, 2020

LAST MODIFIED

Sep 08, 2020

PROTOCOL INTEGER ID

41819

MATERIALS

NAME	CATALOG #	VENDOR
NaCl	53014	Sigma Aldrich
Twist synthetic SARS-CoV-2 RNA control	Mt007544.1	Twist Bioscience
SARS-CoV-2 Master Mix		
Actin Master Mix		
100x Inactivation Reagent		
Bead Mix		
Magnetic Tips		
Heat Block at 65C		

mprotocols.io

09/08/2020

B

Citation: Albert Yu, Tim Brown, Jasmine Quynhe Le, Kristina Galatsis, Michael Rosbash (09/08/2020). Rosbash/Janelia StickLAMP Protocol. https://dx.doi.org/10.17504/protocols.io.bk33kyqn

NAME	CATALOG #	VENDOR
Heat Block at 95C		
Magnetic Stick		

STEPS MATERIALS

NAME	CATALOG #	VENDOR
100x Inactivation Reagent		
SARS-CoV-2 Master Mix		
Actin Master Mix		
Magnetic Tips		
NaCl	53014	Sigma Aldrich
Water		
Twist synthetic SARS-CoV-2 RNA control	Mt007544.1	Twist Bioscience

Bead Mix

MATERIALS TEXT

100x Inactivation Reagent 2.5M TCEP 150mM EDTA 1.2N NaOH

SARS-CoV-2/Actin Master Mix 12.5µl SARS-CoV-2/Actin Buffer/Dye/Primer Mix 0.5µl WarmStart RTx NEB M0380L 1µl Bst2.0 NEB M0537L 11µl H20

Bead Mix

See https://ethanomics.files.wordpress.com/2012/08/serapure_v2-2.pdf with 300µl beads instead of 1000µl

EQUIPMENT

NAME	CATALOG #	VENDOR
ThermoMixer	5382000023	
Magnetic Stick	None	

SAFETY WARNINGS

Do not open up PCR tubes after amplification.

- 1 Instruct patient to avoid food, drink, toothbrushing, and nasal sprays for a minimum of 30 minutes prior to sample collection © 00:30:00
- 2 Begin pooling saliva in your mouth. Saliva production can be stimulated by thinking about food, or about the saliva collection itself.
- 3 Gently expel saliva into the funnel, tapping to collect in the tube, until amount of saliva is approximately flush with the

 $\textbf{Citation:} \ Albert \ Yu, \ Tim \ Brown, \ Jasmine \ Quynhe \ Le, \ Kristina \ Galatsis, \ Michael \ Rosbash (09/08/2020). \ Rosbash/Janelia \ StickLAMP \ Protocol. \\ \underline{https://dx.doi.org/10.17504/protocols.io.bk33kyqn}$

4 Add inactivation reagent to approximately 1x final concentration. Reaction is tolerant of between 0.7x to 2x final concentration.

7.5 μl Approximately

- 5 Invert 40 times to mix
- 6 Heat tube to approximately 95C for 5 minutes. Viral RNA release is similar between 93-98C. Use tube clip to prevent popping. § 95 °C © 00:05:00

7 Remove tube from heat and let rest at room temperature for at least 3 minutes or on ice for at least 30 seconds.

8 While tube is resting, aliquot 25 μ I SARS-CoV-2 mastermix and 25 μ I Actin mastermix to separate wells of PCR strip tube, 96-well plate, or 1.5ml tube per sample.

Per run, prepare two additional 25µl SARS-CoV-2 mastermixes for positive and negative controls.

protocols.io
4
09/08/2020

40m

16 Cap tubes and place on 65C heating apparatus for 40 minutes.

If using a thermal cycler, run with the following program:

65C for 40 minutes 4C indefinitely

8 65 °C © 00:40:00

17 Remove tubes from heating apparatus and examine color change.

18 If a positive sample is found when pooling, re-test pooled samples individually.