with domain $D(A_{max}') = BV[-1,0]$ (the space of all functions of bounded variation on [-1,0]). Here we identify $BV[-1,0] \subset L^1[-1,0]$ with a subspace of C[-1,0]' by setting $\langle f, \phi \rangle = \int_{-1}^{O} f(x) \phi(x) dx$ ($f \in C[-1,0]$, $\phi \in BV[-1,0]$). For $\phi \in BV[-1,0]$, $d\phi$ denotes the linear form on C[-1,0] given by $f + \int_{-1}^{O} f(x) d\phi(x)$. We now show (2.16). Let $f \in D(A_{max}) = C^1[-1,0]$, $\phi \in D(A_{max}') = BV[-1,0]$. By Lemma 2.4 and the chain rule (Prop. 2.3) we have |f(x)|' (:= d^+/dt | t=x | f(t)| = Re[(siĝn \bar{f}) f'](x) (where f'(x) = (Ref)'(x) + i(Imf)'(x) in the complex case). Thus $\langle Re[(siĝn \bar{f})Af], \phi \rangle = \int_{-1}^{O} |f(x)|'\phi(x) dx = \int_{-1}^{O} \phi(x) d|f(x)| = \phi(0)|f(0)| - \phi(-1)|f(-1)| - \int_{-1}^{O} |f(x)|d\phi(x) = \langle |f|, A_{max}' \phi \rangle$.

Example 2.13. Let A on (the real or complex) space C[-1,0] be given by Af = f' with domain $D(A) = \{f \in C^1[-1,0] : f'(0) = Lf\}$ where $L \in M[-1,0] = C[-1,0]'$. Then A is the generator of a lattice semigroup if and only if $L = \alpha \delta_O$ for some $\alpha \ge 0$.

<u>Proof.</u> Assume that A is the generator of a lattice semigroup $(T(t))_{t \geq 0}$. There exists $\mu \in M[-1,0]$ satisfying $\mu(\{0\}) = 0$ and $\alpha \in \mathbb{R}$ such that $L = \alpha \delta_O + \mu$. We claim that

(2.18)
$$|\langle f, \mu \rangle| = \langle |f|, \mu \rangle$$
 for all $f \in D(A)$ satisfying $f(0) = 0$.

In fact, by the definition of A we have

(2.19)
$$\delta_{o} \in D(A')$$
 and $A'\delta_{o} = L$.

Moreover, by Thm. 2.5, A satisfies Kato's inequality (2.9). Since f(0) = 0 this implies

$$|\langle f, \mu \rangle| = |f'(0)| = \text{Re}[(\text{sign } f)(f')](0)$$

= $\langle \text{Re}[(\text{sign } f)(\text{Af})], \delta_{O} \rangle = \langle |f|, A'\delta_{O} \rangle$ (by (2.9))
= $\langle |f|, \mu \rangle$.

Since $_{\varphi}(f)=f'(0)$ - $_{<f,\mu>}$ defines a linear form on the space $F=\{f\in C^1[-1,0]: f(0)=0\}$ which is discontinuous for the supremum norm, the space $D(A)=\ker\varphi$ is dense in F and consequently dense in $C_0[-1,0)$. It follows that (2.18) holds for all $f\in C_0[-1,0)$. So by B-I,Sec.2, there exist $\beta\geq 0$ and $x\in [-1,0)$ such that $\mu=\beta\delta_x$. Assume that $\beta\neq 0$. It is easy to see that there exists a real function $f\in C^1[-1,0]$ satisfying $f'(0)=\alpha f(0)+\beta f(x)$ and f(0)f(x)<0. Hence $f\in D(A)$ but $_{<}Re[(si\hat{g}n f)(Af)],\delta_{_{O}}>=(sign f(0))f'(0)=(sign f(0))(\alpha f(0)+\beta f(x))=$