Machine Learning

MY TRACKER

Machine Learning

Обучение с учителем и без

Обучение с учителем и без

Обучение с учителем

Классификаци я

Кошка
Собака
Собака
Собака
Рыбка
Собака
Слон
Слон

1
0
0
0
2
0
3
3

0.13
0.19
0.98
0.14
0.57
0.42
0.39
0.02

Регрессия

30000
45000
45000
37500
18000
30000
180000
95000

- 0.13	
0.19	
0.98	
0.14	
- 0.57	
0.42	
0.39	
0.02	

7
57
19
24
21
35
39
27

Постановка задачи классификации

Пусть дан набор объектов $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}, \ \mathbf{x}_i \in \mathcal{X}, \ y_i \in \mathcal{Y}, \ i \in 1, \dots, N,$ полученный из неизвестной закономерности $y = f(\mathbf{x})$. Необходимо построить такую $h(\mathbf{x})$, которая наиболее точно апроксимирует $f(\mathbf{x})$.

Будем искать неизвестную

$$h(\mathbf{x}) = h(a_1, \ldots, a_T)$$

Оранжевые:
$$p_1 = \frac{9}{20}$$
 Синие: $p_2 = \frac{11}{20}$

Синие:
$$p_2 = \frac{11}{20}$$

Оранжевые:
$$p_1 = \frac{9}{20}$$

Синие:
$$p_2 = \frac{11}{20}$$

Энтропия Шеннона

$$-\sum_{i=1}^{N} p_i \log_2(p_i)$$

Индекс Джини

$$1 - \sum_{i=1}^{N} p_i^2$$

Оранжевые:
$$p_1 = \frac{9}{20}$$

Синие:
$$p_2 = \frac{11}{20}$$

Оранжевые:
$$p_1 = \frac{9}{20}$$
 Синие: $p_2 = \frac{11}{20}$ $S_0 = -\frac{9}{20} \log_2(\frac{9}{20}) - \frac{11}{20} \log_2(\frac{11}{20}) = 0.993$

$$S_1 = -\frac{5}{13} \log_2(\frac{5}{13}) - \frac{8}{13} \log_2(\frac{8}{13}) = 0.96$$

$$S_1 = -\frac{5}{13} \log_2(\frac{5}{13}) - \frac{8}{13} \log_2(\frac{8}{13}) = 0.96$$
 $S_2 = -\frac{1}{7} \log_2(\frac{1}{7}) - \frac{6}{7} \log_2(\frac{6}{7}) = 0.59$

Оранжевые:
$$p_1 = \frac{9}{20}$$

Синие:
$$p_2 = \frac{11}{20}$$

Оранжевые:
$$p_1 = \frac{9}{20}$$
 Синие: $p_2 = \frac{11}{20}$ $S_0 = -\frac{9}{20} \log_2(\frac{9}{20}) - \frac{11}{20} \log_2(\frac{11}{20}) = 0.993$

$$S_1 = -\frac{5}{13} \log_2(\frac{5}{13}) - \frac{8}{13} \log_2(\frac{8}{13}) = 0.96$$

$$S_2 = -\frac{1}{7} \log_2(\frac{1}{7}) - \frac{6}{7} \log_2(\frac{6}{7}) = 0.59$$

$$IG("X \le 12") = S_0 - \frac{13}{20}S_1 - \frac{7}{20}S_2 = 0.163$$

Алгоритм

Обходим все варианты и находим разбиение с наибольшим Information Gain (IG). После того повторяем операцию для каждого из разбиений, пока все объекты из разбиения не будут одного класса.

Переобучение


```
def build(L):
 create node t
 if the stopping criterion is True:
     assign a predictive model to t
 else:
     Find the best binary split L = L_left + L_right
     t.left = build(L_left)
     t.right = build(L_right)
 return t
```

Обучающая и тестовая выборки

Обучающая выборка

Тестовая выборка

Обучающая и тестовая выборки

Обучающая выборка

Обучающая и тестовая выборки

Обучающая выборка $(X_{train};y_{train})$

Тестовая выборка $(X_{test};y_{test})$

Кросс-валидация

Весь датасет

Разбиваем на 5 частей

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Запуск 1					
Запуск 2					
Запуск 3					
Запуск 4					
Запуск 5					

Обучение
Валидация

Кросс-валидация на временных данных

Весь датасет

Разбиваем на 5 частей

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Запуск 1					
Запуск 2					
Запуск 3					
Запуск 4					

Обучение
Валидация
Не используем

Финальный пайплайн

Кросс-валидация на обучающей выборке

+ Результат работы на отложенной выборке

Плюсы

- Интерпретируемость
- Отлично подходит как базовый алгоритм для ансамбля моделей
- Мало чувствителен к выбросам
- Высокая скорость работы
- Не требует сложной предобработки данных
- Можно оценить модель с
 помощью статистических тестов

Минусы

- Очень склонен к переобучению
- Изменяет всю структуру дерева от небольших изменений в выборке
- Алгоритм построен на эвристиках
- Слабый алгоритм