Academia de Jóvenes Talento - Nicaragua 2018

Incírculos mixtilíneos

Jafet Baca

1. Introducción

Definición 1. Sea ABC un triángulo. El A-incírculo mixtilíneo (ω_A) es el círculo tangente internamente al circuncírculo del $\triangle ABC$ y tangente a los lados AB y CA.

Naturalmente, también existen incírculos mixtilíneos correspondientes a $B(\omega_B)$ y $C(\omega_C)$. Nótese el uso del artículo "el". En efecto, no hay más que un incírculo mixtilíneo para cada vértice de $\triangle ABC$.

Proposición 1. Dado un triángulo ABC, existe uno y solamente un incírculo mixtilíneo correspondiente a cada uno de sus vértices.

Primero, proveeremos una forma de construir el círculo A-mixtilíneo, mostraremos que tal método funciona y al mismo tiempo argumentaremos su carácter único.

Construcción. Sea I el incentro de $\triangle ABC$. La perpendicular por I a AI corta a AB y AC en D y E, respectivamente. Sea M el punto medio del arco \widehat{BAC} y T_A el punto de corte del rayo MI con el circuncírculo de $\triangle ABC$. El A-incírculo mixtilíneo es el circuncírculo del $\triangle T_ADE$.

Prueba. Considere la inversión f con centro A y radio AE = AD. Definamos a w_A como el circuncírculo de $\triangle T_ADE$. Note que (EAD) y ω_A son ortogonales, es decir, $f(\omega_A) = \omega_A$, así que $T'_A = f(T_A)$ es el segundo punto de intersección de AD y ω_A . Sea M' = f(M), entonces la imagen de (BAC) es la recta T'_AM' ; por ende, es suficiente probar que T'_AM' es tangente a ω_A . Sea O_A el circuncentro de $\triangle T_ADE$ y observemos que $AD^2 = AI \cdot AO_A$, por tanto $f(I) = O_A$. Ya que M, I y T_A son colineales y simultáneamente $\angle IAM = 90^\circ$, el cuadrilátero $T'_AAM'O_A$ es cíclico con diámetro O_AM' , así $\angle O_AT'_AM' = 90^\circ$, lo cual implica la tangencia requerida.

Por el teorema de Monge, A, T_A y el exsimilicentro de (BAC) y el incírculo de $\triangle ABC$, digamos K, son colineales. De este modo, el punto T_A está determinado por la segunda intersección de AK y (BAC), por tanto, tal punto es único; asimismo, el circuncentro de ω_A está únicamente determinado por el punto de corte de AI y OT_A , por ende, concluimos que ω_A es único.

¡Debemos resaltar dos situaciones particulares! Además de la unicidad de ω_A , tenemos que su punto de tangencia con (BAC), el incentro de $\triangle ABC$ y el punto medio de \widehat{BAC} son colineales; en otras palabras, T_AI biseca al arco \widehat{BAC} ; ¡es importante reconocer tal colinealidad! Además, resulta que el incentro es el punto medio del segmento formado por los puntos de contacto de ω_A y los lados AB, AC. Ambos hechos son en extremo útiles y será mejor establecerlos por aparte.

Proposición 2. La recta que une el punto de contacto de ω_A con (BAC) y el incentro de $\triangle ABC$ corta al arco \widehat{BAC} en su punto medio.

Proposición 3. El incentro de $\triangle ABC$ es el punto medio del segmento que une los puntos de tangencia de ω_A con los lados AB y AC.

¡La demostración anterior puede parecer grotesca! En realidad, hay suficiente motivación para brindar tal método de construcción de ω_A . En la sección siguiente, la exposición será más suave y comprobaremos que existe un modo más natural de obtener el A-incírculo mixtilíneo.

2. Un camino más "natural"

Un primer hecho crucial en lo que sigue se presenta a continuación.

Proposición 4. Sean Ω y ω dos circunferencias tangentes en D, de modo que ω se encuentra en el interior de Ω . Se traza una cuerda AB de Ω de modo que AB es tangente a ω en C; entonces, DC biseca el arco \widehat{AB} .

Prueba. Sea O el centro de Ω . Observe que D es el exsimilicentro de Ω y ω , por ende, si DC corta a Ω por segunda vez en M, la tangente ℓ a Ω por M debe ser paralela a AB. Como $OM \perp \ell$, inferimos que $OM \perp AB$, es decir, OM es la mediatriz de \overline{AB} y por consiguiente M es el punto medio del arco \widehat{AB} . \square

Se puede llegar a una demostración más instructiva mediante inversión¹. En adición, podemos brindar un argumento más simple a la proposición 3.

Segunda prueba de la proposición 3. Sean $X = \overline{T_AD} \cap (ABC), X \neq T_A$ y $Y = \overline{T_AE} \cap (ABC), Y \neq T_A$. Por la proposición 4, X e Y son los puntos medios de los arcos \widehat{BXA} y \widehat{CYA} , por tanto, CX y BY se cortan en I. Por el teorema de Pascal aplicado al hexágono T_AXCABY deducimos que D, I, E son colineales. Como AE = AD y $\angle DAI = \angle EAI$, la recta AI es la mediatriz de \overline{DE} , de donde la conclusión es inmediata.

Encontremos algunos ángulos iguales y trapecios isósceles escondidos en la figura previa. Consideremos a M como el punto medio del arco \widehat{BAC} .

Proposición 5. Las rectas AT_A y MT_A son conjugadas isogonales en $\triangle XT_AY$.

Prueba. Es claro que $AM \parallel EF$ debido a que $\angle IAM = \angle AID = 90^{\circ}$. Por ser T_A el exsimilicentro de ω_A y (BAC), sucede que $XY \parallel DE$, luego, $XY \parallel AM$, lo cual origina que $\widehat{AX} = \widehat{MY}$, por consiguiente, $\angle AT_AX = \angle YT_AM$.

El hecho previo nos brinda otra prueba de la proposición 2.

¹Vea el ejercicio 6.1.

Segunda prueba de la proposición 2. Acabamos de inferir que $\angle AT_AX = \angle YT_AM$, i.e. $\angle AT_AD = \angle ET_AM$. Note que AT_A es simediana del $\triangle DT_AE$, así que $\angle AT_AD = \angle ET_AI$, es decir, $\angle ET_AM = \angle IT_AE$. Como M e I yacen a un mismo lado respecto a T_AE , se deduce que M, I y T_A están alineados.

La demostración de la proposición 5 también nos indica que \widehat{AXYM} es un trapecio isósceles. Es más, tenemos que $\widehat{MX} = \widehat{AY} = \widehat{YC}$ y $\widehat{MY} = \widehat{AX} = \widehat{XB}$, por tanto,

Proposición 6. Los cuadriláteros AXYM, CYMX y BXMY son trapecios isósceles.

Usando las proposiciones 2 y 6, también podemos obtener que $\angle IT_AE = \angle MT_AY = \angle ACX = \angle ICE$ y similarmente, $\angle IT_AD = \angle IBD$, por ende,

Proposición 7. Los cuadriláteros BT_AID y CT_AIE son cíclicos.

Podemos decir más acerca de BT_AID y CT_AIE . En efecto,

$$\angle ICY = \frac{1}{2} \left(\widehat{AY} + \widehat{XA} \right) = \frac{1}{2} \left(\widehat{CY} + \widehat{YM} \right) = \angle CT_AI$$

Del mismo modo, $\angle BT_AI = \angle IBX$. Tomando en cuenta que X e Y son los circuncentros correspondientes de $\triangle AIB$ y $\triangle AIC$ (¿por qué?), deducimos que,

Proposición 8. Las rectas BI y CY son tangentes al circuncírculo de CT_AIE , mientras que CI y BX son tangentes al circuncírculo de BT_AID .

El resultado interior significa que,

Proposición 9. Los cuadriláteros BT_AID y CT_AIE son armónicos.

De hecho, por la proposición 8, obtenemos que $\angle BIT_A = \angle ICT_A$ y $\angle T_ABI = \angle T_AIC$, por tanto $\triangle BT_AI \sim \triangle IT_AC$, es decir,

Proposición 10. El punto de tangencia de ω_A y (BAC) es el centro de semejanza espiral que traslada \overline{BI} a \overline{IC} .

Lo anterior permite deducir la siguiente propiedad².

Proposición 11. Sea I' el simétrico de I respecto a T_A . Entonces, I' yace sobre el circuncírculo del $\triangle BIC$.

Es sumamente sencillo demostrar que MB y MC son tangentes al círculo (BIC), así que en realidad BICI' también es armónico.

3. Más propiedades

Si bien hemos hablado bastante del incentro en sí, poco hemos dicho acerca de otros puntos igual de importantes. De esto trata la sección actual.

Proposición 12. Sea Q el punto de tangencia del A-excírculo con BC. Luego, $\angle BAT_A = \angle QAC$, i.e. AT_A y AQ son isogonales conjugadas en $\triangle ABC$.

Prueba. Sean T y P los segundos puntos de intersección de AT_A con ω_A y MT_A con ω_A , respectivamente. Dado que T_A es el exsimilicentro de ω_A y (BAC), tenemos que $TP \parallel AM : IA \perp TP$. Debido a que el circuncentro de ω_A yace sobre AI, inferimos que AI es la mediatriz de \overline{TP} , por lo que,

$$\angle BAT_A = \angle BAT = \angle BAI - \angle TAI = \angle CAI - \angle PAI = \angle CAP$$

Sean ℓ_P y ℓ_M las tangentes a ω_A , (BAC) por P, M, respectivamente. Note que $\ell_P \parallel \ell_M$ y $\ell_M \parallel BC$, así que $\ell_P \parallel BC$. Como A es el exsimilicentro del A-excírculo y ω_A , lo anterior implica que A, P, Q están alineados, y en conclusión, $\angle BAT_A = \angle PAC = \angle QAC$.

Proposición 13. Sea K el punto de contacto del incírculo de $\triangle ABC$ con BC. Las rectas AT_A y KT_A son isogonales conjugadas en $\triangle BT_AC$, i.e. $\angle BT_AK = \angle AT_AC$.

Prueba. Es claro que $\angle BT_AA = \angle BCA$, lo cual aunado al lema previo conduce a inferir que $\triangle BAT_A \sim \triangle QAC$, luego, $\frac{AT_A}{BT_A} = \frac{AC}{QC}$, pero recordemos que BK = CQ (K y Q son simétricos respecto al punto medio de \overline{BC}), entonces $\frac{AT_A}{BT_A} = \frac{AC}{BK}$, lo cual junto a $\angle T_ABK = \angle T_ABC = \angle T_AAC$ nos indica que $\triangle BT_AK \sim \triangle AT_AC$, luego, $\angle BT_AK = \angle AT_AC$, como requeríamos.

Grupo Olímpico 2018 5

²Si no tienes idea del porqué, revisa el folleto de semejanza espiral

Sea L y M' los puntos donde el rayo AI corta a BC, (BAC), respectivamente. La última semejanza obtenida implica que $\angle BKT_A = \angle ACT_A = \angle AM'T_A = \angle LM'T_A$, luego

Proposición 14. Los puntos de corte del rayo AI con BC y (BAC), el punto de tangencia del incírculo con BC y el punto común de ω_A con (BAC) (es decir, los puntos L, M', K y T_A) están sobre una misma circunferencia.

Sea $R = \overline{MT_A} \cap \overline{BC}$. Tenemos el próximo hecho.

Proposición 15. Las rectas CD, AR y BE son concurrentes.

Prueba. Por el teorema de Ceva, es suficiente probar que $\frac{BD}{DA} \cdot \frac{AE}{EC} \cdot \frac{CR}{RB} = 1$, lo cual se reduce a mostrar que $\frac{BR}{CR} = \frac{BD}{CE}$. Por la proposición 9, sabemos que $BT_A \cdot DI = BD \cdot IT_A$ e $IE \cdot CT_A = EC \cdot IT_A$, luego,

$$\frac{BD}{CE} = \frac{DI}{IE} \cdot \frac{BT_A}{IT_A} \cdot \frac{IT_A}{CT_A} = \frac{BT_A}{CT_A} = \frac{BR}{CR}$$

donde hemos utilizado los hechos 2 y 3. La prueba es completa.

Proposición 16. Las rectas DE, BC y T_AM' concurren.

Prueba. Sea $T = \overline{T_AM'} \cap \overline{BC}$. Como $\angle BT_AR = \angle RT_AC$ y $\angle RT_AM' = 90^\circ$, descubrimos que T_AT es la bisectriz exterior de $\angle BT_AC$, por tanto (T, R; B, C) = -1. Por la proposición 15, DE también debe pasar por T.

Vale recalcar que el circuncírculo de $\triangle RT_AT$ es el T_A -círculo de Apolonio de $\triangle BT_AC$.

Proposición 17. La tangente común de ω_A y (BAC) pasa por el punto medio del \overline{TR} .

Prueba. Sea S el punto medio de \overline{TR} (y por ende el circuncentro de $\triangle RT_AT$). Es sencillo obtener que,

$$\angle ST_AM = \angle ST_AR = \angle SRT_A = \frac{1}{2}\left(\widehat{BT_A} + \widehat{MC}\right) = \frac{1}{2}\left(\widehat{BT_A} + \widehat{MB}\right) = \angle MCT_A$$

lo cual justifica que ST_A es tangente a (BAC) en T_A (y por ende también es tangente a ω_A).

Grupo Olímpico 2018 6

Observe que R es el ortocentro de $\triangle TM'M$. De este modo, si $J = \overline{RM'} \cap (BAC), J \neq M'$, entonces,

Proposición 18. Los puntos T, J, M están alineados. Es decir, las rectas TM y M'R se cortan sobre (BAC).

Esto nos permite reforzar la proposición 16, pues ahora sabemos que MJ, DE, BC y T_AM' concurren en T. Además, implica que J es el segundo punto de intersección de (RT_AT) y (BAC). De hecho, por ser (RT_AT) el T_A -círculo de Apolonio de $\triangle BT_AC$, sucede que JBT_AC es un cuadrilátero armónico, de modo que JT_A es la reflexión de la mediana T_AN en el triángulo BT_AC .

Proposición 19. El cuadrilátero JBT_AC es armónico, por tanto, las rectas T_AJ y T_AN son conjugadas isogonales en $\triangle BT_AC$.

Esta lista de hechos está demasiado lejos de ser exhaustiva. Para nuestros propósitos, es suficiente. Es claro que estos resultados son válidos para los otros dos incírculos mixtilíneos de $\triangle ABC$.

4. Dos y tres incírculos mixtilíneos

En esta sección abordaremos brevemente las propiedades concernientes a dos y tres incírculos mixtilíneos. Denotemos por T_C y T_B los puntos de tangencia de ω_C y ω_B con (BAC), respectivamente. Supongamos que ω_C y ω_B tocan a \overline{BC} en D, E respectivamente.

Proposición 20. Denote por N el punto medio del inradio perpendicular a BC en $\triangle ABC$ y M el punto medio del arco \widehat{BC} opuesto a A en (BAC). La recta MN es el eje radical de ω_B y ω_C .

Prueba. Sea ℓ el eje radical de ω_B y ω_C . Por la proposición 4, T_CD y T_BE se cortan en M. Veamos que $\angle MT_BC = \angle MBC = \angle MCB = \angle ECM$, así que MC es tangente a (T_BEC) . Análogamente, MB es tangente a (T_CDB) , luego,

$$MD \cdot MT_C = MB^2 = MC^2 = ME \cdot MT_B$$

es decir, M tiene igual potencia respecto a ω_B y ω_C , así que $M \in \ell$. Por otro lado, sean A_1 , B_1 y E_1 los puntos de contacto del incírculo con BC, AC y el punto de tangencia de ω_C con CA, respectivamente. Es simple justificar que el eje radical del incírculo y ω_C es la base media del trapecio isósceles $E_1B_1A_1D$, así que debe pasar por N. Análogamente, el eje radical del incírculo y ω_B pasa por N; por tanto, N es el centro radical del incírculo, ω_B y ω_C , luego $N \in \ell$. El resultado es inmediato.

Note que la demostración anterior también implica que T_CT_BED es cíclico. Al ser D y E puntos antihomólogos, podemos derivar que T_C y T_B son antihomólogos respecto al exsimilicentro de ω_B y ω_C ; desde luego, esto conduce a concluir que el punto de corte de T_CT_B y BC es el exsimilicentro de ω_B y ω_C .

Proposición 21. El punto de contacto de ω_A y (ABC), T_A , yace sobre el circuncírculo de $\triangle DME$.

Prueba. Por la proposición 2, sabemos que $\angle IT_AM = 90^\circ$; además, si BC y T_AM se cortan en T tendremos que $\angle TIM = 90^\circ$ según la proposición 16, luego,

$$MD \cdot MT_C = MB^2 = MI^2 = MT_A \cdot MT$$

lo cual significa que T_CDT_AT es cíclico. Ya que T_CDET_B es cíclico, obtenemos que $\angle DT_AM = \angle TT_CD = \angle T_BED$ y el hecho sigue.

Aplicando el teorema del eje radical a $(T_C DET_B)$, $(DEMT_A)$ y (BAC) concluimos que $T_C T_B$ pasa por T; entonces, T es el exsimilicentro de ω_B y ω_C .

Proposición 22. El punto de intersección de la perpendicular a AI por I y BC es el exsimilicentro de ω_B y ω_C . Además, la recta que une los puntos de contacto de ω_B y ω_C con (BAC) y la recta formada por el punto de tangencia de ω_A con (BAC) y el punto medio del arco \widehat{BC} opuesto a A pasan por dicho exsimilicentro.

Volvamos a la demostración de la unicidad de ω_A , donde obtuvimos que el exsimilicentro del incírculo y circuncírculo de $\triangle ABC$ yace sobre la recta que une A con el punto de contacto de (BAC) y ω_A . Lo mismo debe ocurrir para los vértices B y C. Recordando la proposición 12, inferimos el siguiente lema.

Proposición 23. Las rectas que unen cada vértice con el punto de tangencia de su incírculo mixtilíneo correspondiente con (BAC) y la recta que une el incentro con el circuncentro de $\triangle ABC$ concurren en el exsimilicentro de su incírculo y su circuncírculo, que además resulta ser el punto isogonal del punto de Nagel de $\triangle ABC$.

En el presente contexto, OI, CT_C , BT_B y AT_A concurren en K, el isogonal del punto de Nagel de $\triangle ABC$. Por último, examinemos qué ocurre con el centro radical de ω_A , ω_B y ω_C .

Proposición 24. Sea S el centro radical de ω_A , ω_B y ω_C . Luego, S yace sobre OI y divide a \overline{OI} en la razón $\frac{OS}{SI} = -\frac{2R}{r}$, donde las distancias OS y SI son tomadas como dirigidas.

Prueba. Sean M_1 , M_2 y M_3 los puntos medios de \widehat{BC} , \widehat{CA} y \widehat{AB} opuestos a A, B y C, respectivamente; PQR el triángulo tangencial de $\triangle ABC$; P_1 , Q_1 y R_1 los puntos medios correspondientes de \overline{IP} , \overline{IQ} y \overline{IR} . Por la proposición 20, M_1P_1 , M_2Q_1 y M_3R_1 concurren en S. Los triángulos $\triangle M_1M_2M_3$ y $\triangle P_1Q_1R_1$ son directamente homotéticos con centro S (¿por qué?). Ya que I es el circuncentro de $\triangle P_1Q_1R_1$ y O lo es de $\triangle M_1M_2M_3$, concluimos que S, I, O están alineados. Debido a que el circunradio de $\triangle P_1Q_1R_1$ es $\frac{r}{2}$, concluimos que $OS: SI = R: -\frac{r}{2} = -2R: r$.

5. Problemas resueltos

¡Es momento de ilustrar el uso de las propiedades recién deducidas mediante algunos problemas de ejemplo!

Ejercicio 5.1. (EGMO 2013, P5) Sea Ω el circuncírculo de $\triangle ABC$. El círculo ω es tangente a los lados AC y BC, y es internamente tangente al círculo Ω en P. Una recta paralela a AB que pasa por el interior de $\triangle ABC$ es tangente a ω en Q. Probar que $\angle ACP = \angle QCB$.

Solución. Sea Q' el punto de tangencia del C-excírculo con AB. Por definición de Q y debido a que C es el exsimilicentro de ω y el C-excírculo, tenemos que C, Q, Q' son colineales. Por la proposición 12, concluimos que $\angle ACP = \angle Q'CB = \angle QCB$.

9

Ejercicio 5.2. (IMO 2016 SL, G2) Sea ABC un triángulo con circuncírculo Γ e incentro I. Sea M el punto medio del lado BC. Denote por D el pie de la perpendicular desde I a BC. La perpendicular a AI por I corta a los lados AB y AC en F y E, respectivamente. Suponga que el circuncírculo del triángulo AEF interseca a Γ en un punto X diferente a A. Demostrar que las rectas XD y AM se cortan en Ω .

Solución. X es el centro de semejanza espiral que envía \overline{FE} a \overline{BC} . Note que M e I constituyen puntos correspondientes, así que X manda \overline{FI} a \overline{BM} y por ende también transforma \overline{FB} a \overline{IM} , de modo que si $Q = \overline{EF} \cap \overline{BC}$, tendremos que QXIM es cíclico. Sean $L = \overline{AI} \cap \Omega$, $N = \overline{LM} \cap \Omega$. Como $\angle QIL = \angle QML = 90^\circ$, deducimos que QIML es cíclico y por tanto, QXIML es un pentágono inscrito, lo cual indica que $\angle QXL = 90^\circ$, por consiguiente, Q, X y N son colineales. De acuerdo a la proposición 18, X yace sobre LR, donde $R = \overline{IN} \cap \overline{BC}$.

Sea T_A el punto de contacto del A-incírculo mixtilíneo y Ω . Sabemos que T_AL pasa por Q según la proposición 16. Observemos que XMT_A es el triángulo órtico de $\triangle QNL$ y por tanto, BC es la bisectriz interna de $\angle XMT_A$, así que,

$$\angle DMT_A = \angle RMT_A = \angle RMX = \angle RNX = \angle XNT_A = \angle XK'T_A = \angle DK'T_A$$

donde $K' = \overline{XD} \cap \Omega, K' \neq X$; es decir, $DMK'T_A$ es cíclico.

Por otra parte, usando la proposición 13 podemos deducir que $\triangle BT_AD \sim \triangle AT_AC$, por lo que,

$$\angle BDT_A = \angle ACT_A = \angle AKT_A = \angle MKT_A$$

con $K = \overline{AM} \cap \Omega$, $K \neq A$; de donde surge que $DMKT_A$ es cíclico. Finalmente, concluimos que K = K' y por ende XD y AM se cortan sobre Ω .

Ejercicio 5.3. (ELMO 2017 SL, G4) Sea ABC un triángulo agudo con incentro I y circuncírculo ω . Suponga que un círculo ω_B es tangente a BA, BC, e internamente tangente a ω en B_1 , mientras que un círculo ω_C es tangente a CA, CB, e internamente tangente a ω en C_1 . Si B_2 y C_2 son los puntos diametralmente opuestos a B y C en ω , respectivamente, y X denota el punto de intersección de B_1C_2 y B_2C_1 , probar que XA = XI.

Prueba. Sean D y E los puntos medios de los arcos menores \widehat{AC} y \widehat{AB} , respectivamente; asimismo, definamos a Y como el punto medio de \widehat{ACB} . Sea $K = \overline{BB_1} \cap \overline{CC_1}$; por la proposición 23, K yace sobre OI. De acuerdo al teorema de Pascal aplicado al hexágono $BB_1C_2CC_1B_2$, la intersección de B_1C_2 y C_1B_2 , es decir X, está sobre KO. Note que $O = \overline{BB_2} \cap \overline{EY}$ e $I = \overline{YC_1} \cap \overline{BD}$, luego, el teorema de Pascal aplicado al hexágono YC_1B_2BDE nos asegura que $X' = \overline{C_1B_2} \cap \overline{DE}$, I e O también son colineales; entonces X, X', K, I y O están alineados. Como X y X' están sobre C_1B_2 , concluimos que X = X' y por ende X está sobre ED, la mediatriz de \overline{AI} , de donde surge el resultado.

Ejercicio 5.4. (Competencia Matemática Austriaca-Polaca 2016, P7) Un triángulo ABC es dado. Sea ω su A-incírculo mixtilíneo e I_A su A-excentro. Denote por H el pie de altura desde A a BC, E el punto medio de \widehat{BAC} , M el punto medio de \overline{BC} y N el punto medio de \overline{AH} . Suponga que $P = \overline{MN} \cap \overline{AE}$ y que el rayo PI_A corta por primera vez a ω en S. Demostrar que (BSC) y ω son tangentes.

Prueba. Sea T_A el punto común de ω y (BAC) y L el punto de corte de la tangente común a estos círculos con BC. Supongamos que S' es el segundo punto común del círculo con centro L y radio LT_A con ω . Ya que $S'L^2 = T_AL^2 = LB \cdot LC$, S'L es tangente a (BS'C), luego, es suficiente probar que S = S'. Sea $K = \overline{ET_A} \cap \overline{BC}$ y T el simétrico de K respecto a L. Según la proposición 17, T yace sobre (T_AKS') cuyo diámetro es \overline{KT} . Sea O_A el centro de ω . Por el hecho 16 y el teorema de La Hire, A está sobre la T-polar respecto a ω . Además, como (T, K; B, C) = -1 por la proposición 15, AK es tal T-polar, de modo que si $R = \overline{AK} \cap \overline{O_AT}$, se tiene que $\angle TRK = 90^\circ$ y por ende $R \in (T_AKS')$. Debido a que este último y ω son ortogonales (¿por qué?), inferimos que $S'T_ATR$ es armónico. Entonces,

$$(I_A, I; \overline{BC} \cap \overline{AI}, A) = -1 = (S', T_A; T, R) \stackrel{K}{=} (\overline{S'K} \cap \overline{AI}, I; \overline{BC} \cap \overline{AI}, A)$$

por tanto, S', K e I_A están alineados. Por otro lado, sea $Q = \overline{AE} \cap \overline{BC}$ y veamos que,

$$(\overline{BC} \cap \overline{AI}, A; I_A, I) = -1 = (H, A; N, P_{\infty}) \stackrel{M}{=} (Q, A; P, E) \stackrel{K}{=} (\overline{BC} \cap \overline{AI}, A; \overline{KP} \cap \overline{AI}, I)$$

lo cual significa que $I_A = \overline{KP} \cap \overline{AI}$. En conclusión, P, S', K e I_A son colineales, por consiguiente S = S'.

Finalicemos esta sección con el siguiente problema.

Ejercicio 5.5. (ELMO 2014 SL, G8) En el triángulo ABC con incentro I y circuncentro O, sean A', B', C' los puntos de tangencia de su circuncírculo con sus A, B, C-incírculos mixtilíneos, respectivamente. Sea ω_A el círculo por A' tangente a AI en I, y defina ω_B , ω_C de forma similar. Demostrar que ω_A , ω_B , ω_C tienen otro punto común X distinto a I, y que $\angle AXO = \angle OXA'$.

Prueba. De acuerdo a la proposición 23, AA', BB', CC' y OI concurren en el exsimilicentro del incírculo y circuncírculo de $\triangle ABC$, digamos K. Sea DEF el triángulo tangencial de $\triangle ABC$. Sean P, Q, R los puntos de intersección de \overline{AK} , \overline{BK} , \overline{CK} con el incírculo, respectivamente, luego, los triángulos ABC y PQR son homotéticos con centro K. Como $QR \parallel BC$, deducimos que ID es la mediatriz de \overline{QR} y por ende, PD es la bisectriz interior de $\angle QPR$. El mismo resultado vale para QE y RF, por tanto, estas rectas concurren en el incentro de $\triangle PQR$, digamos L, mismo que debe estar sobre la recta KI y por tanto, K, L, I, O son colineales.

Es simple demostrar que el A-incírculo mixtilíneo y el incírculo son inversos³ respecto al círculo de radio AI y centro A, por ende, $AI^2 = AP \cdot AA'$, lo cual implica que ω_A es el circuncírculo de $\triangle PIA'$. Además, siendo D' el antípoda de D en el incírculo, por la proposición 12, P y D' son reflejos uno del otro respecto a AI, así que $\angle PDI = \angle PIA = \angle PA'I$, por tanto, D está sobre ω_A . Análogamente, $E \in \omega_B$ y $F \in \omega_C$, es decir, ω_A , ω_A , ω_C son los circuncírculos de PIDA', QIEB', CIFC', respectivamente.

Consideremos la inversión respecto al incírculo y notemos que PD, QE, RF son las imágenes de ω_A , ω_B , ω_C , respectivamente. Como tales rectas concurren en L, dichas circunferencias deben pasar por el inverso de L respecto al incírculo. Este es el punto X requerido, el cual debe estar alineado con K, L, I, O.

Note que las tríadas K, L, I y K, I, O son puntos correspondientes en $\triangle PQR$ y $\triangle ABC$, por lo que,

$$\frac{OK}{KI} = \frac{IK}{KL} = \frac{AK}{KP} \Longrightarrow \frac{OK}{AK} = \frac{KI}{KP} = \frac{KA'}{KX} : OK \cdot KX = KA' \cdot AK$$

es decir, OAXA' es cíclico, por lo que $\angle OXA' = \angle A'AO = \angle OA'A = \angle OXA$. ¡Estamos hechos!

6. Problemas propuestos

Ejercicio 6.1. Pruebe la proposición 4 mediante inversión con centro M y radio MA.

Ejercicio 6.2. Demostrar que los seis puntos de intersección de los incírculos mixtilíneos con los lados de $\triangle ABC$ yacen sobre una cónica.

Ejercicio 6.3. Demuestre que el A-incírculo mixtilíneo y el incírculo de un triángulo ABC son inversos respecto al círculo de centro A y radio \overline{AI} .

Ejercicio 6.4. Deduzca dos propiedades de incírculos mixtilíneos no abordadas aquí.

Ejercicio 6.5. (Corea, 2018) Sea ABC un triángulo con circuncentro O y circuncírculo Ω . El punto S es el centro del círculo ω tangente internamente a Ω en K y tangente a los lados AB y AC. El círculo con diámetro \overline{AS} corta por segunda vez a Ω en T. Si M es el punto medio de \overline{BC} , demostrar que K, T, M, O son concíclicos.

Ejercicio 6.6. (OMCC 2016, P6) Sea ABC un triángulo con incentro I y circuncírculo Γ . Sea $M = \overline{BI} \cap \Gamma$ y $N = \overline{CI} \cap \Gamma$. La paralela a MN por I corta a AB, AC en P y Q. Demostrar que los circunradios de $\triangle BNP$ y $\triangle CMQ$ son iguales.

Ejercicio 6.7. (Sharygin 2017, Grado 9, P2) Sea I el incentro del triángulo ABC, M el punto medio de AC y W el punto medio del arco \widehat{AB} que no contiene a C. Se sabe que $\angle AIM = 90^{\circ}$. Encuentre la razón CI:IW.

Ejercicio 6.8. Dado un triángulo escaleno ABC, sean D, E, F los puntos de intersección de las perpendiculares a las rectas AI, BI, CI con las prolongaciones de los lados BC, CA y AB, respectivamente. Demostrar que D, E y F yacen sobre una misma línea.

Ejercicio 6.9. (ELMO 2014 SL, G7) Sea ABC un triángulo inscrito en el círculo ω con centro O; sea ω_A su A-incírculo mixtilíneo, ω_B su B-incírculo mixtilíneo, ω_C su C-incírculo mixtilíneo, y X el centro radical de ω_A , ω_B , ω_C . Sean A', B', C' los puntos donde ω_A , ω_B , ω_C son tangentes a ω . Demostrar que AA', BB', CC' y OX son concurrentes.

Ejercicio 6.10. El triángulo escaleno ABC tiene incentro I e incírculo ω . Sean D y E los puntos de contacto de ω con CA y AB, respectivamente. La recta CI corta a ED en L, mientras que la recta BI corta a ED en K. Sea X_A el punto de tangencia del A-incírculo mixtilíneo con el circuncírculo de ABC. Demostrar que la recta X_AI pasa por el punto medio de \overline{LK} .

³Vea el ejercicio 6.3.

Ejercicio 6.11. (IMO 2017 SL, G4) En el triángulo ABC, sea ω el A-excírculo. Sean D, E, F los puntos donde ω es tangente a las rectas BC, CA, AB, respectivamente. El círculo (AEF) interseca a la recta BC en P, Q. Sea M el punto medio de AD. Probar que el círculo (MPQ) es tangente a ω .

Ejercicio 6.12. (Jafet Baca, 2018) Sea XYZ un triángulo acutángulo con incentro J. Sea B un punto sobre la recta YZ tal que $\angle BJX = 90^{\circ}$. El rayo XJ corta al círculo XYZ en C, y el segmento BC corta por segunda vez al círculo XYZ en E. Sea R el punto de intersección de JE con YZ. Denote por ℓ a la base media de BJ en $\triangle BRJ$. Demostrar que pueden seleccionarse puntos F y T sobre ℓ y A sobre XE tales que:

- a) JAFET es un pentágono cíclico.
- b) Los círculos FYE y ZTE se cortan sobre YZ, y
- c) La recta ℓ es tangente a los círculos FYE y ZTE.

Ejercicio 6.13. (Taiwán TST 3 2014, P3) Sea M un punto sobre el circuncírculo de $\triangle ABC$. Suponga que las tangentes desde M al incírculo cortan a BC en X_1 y X_2 . Probar que el circuncírculo de $\triangle MX_1X_2$ interseca al circuncírculo de $\triangle ABC$ por segunda vez en su punto de tangencia con el A-incírculo mixtilíneo.

Ejercicio 6.14. (Mathematical Reflections O451). Sea ABC un triángulo, Γ su circuncírculo, ω su incírculo e I el incentro. Sea M el punto medio de \overline{BC} . El incírculo ω es tangente a AB y AC en F y E, respectivamente. Suponga que M corta a Γ en puntos distintos P y Q. Sea J el punto sobre EF tal que MJ es perpendicular a EF. Muestre que IJ y el eje radical de (MPQ) y (AJI) se cortan en Γ .

En la página siguiente se incluyen algunas ideas que pueden ser útiles para llegar a una solución, sin embargo, están lejos de resolver el problema por sí solas (a excepción de alguno por ahí). Solamente consúltalas si llevas al menos una hora intentando el problema y continúas bloqueado.

7. Hints

- 1. Hay un par de círculos ortogonales.
- 2. Teorema de Carnot (para cónicas).
- 3. Considera dos pares de puntos antihomólogos.
- 4. ¡Pura diversión! Probablemente no sea posible escribir un artículo que involucre todas las propiedades.
- 5. Hay varios ángulos rectos. Mantén en mente las proposiciones 17 y 19.
- 6. Obtén algunos paralelogramos y un par de triángulos congruentes convenientes.
- 7. Mediatrices y paralelas.
- 8. ¡Monge es nuestro amigo :)!
- 9. ¡Esto es propiedad!
- 10. Hay un ortocentro oculto y también un par de antiparalelas.
- 11. Recuerda la proposición 4.
- 12. Escoge un punto obvio sobre BC y no olvides el hecho 16. Hay una definición alternativa de F y T.
- 13. Considera el dual del teorema de involución de Desargues.
- 14. Ese punto de intersección ya lo conocemos. Redefínelo y demuestra que está sobre IJ y el eje radical de (MPQ) y (AIJ).