3

3.1

3.2

3.3

X	q_0	q_1	
a	q_0	q_1	
b	q_1	\perp	
\mathbf{c}	T	q_0	
aa	q_0	q_1	same as a
ab	q_1	\perp	same as b
ac	上	q_0	same as c
ba	q_1	\perp	same as b
bb	1	\perp	
bc	q_0	\perp	
ca	上	q_0	same as c
$^{\mathrm{cb}}$	上	q_1	
cc	上	\perp	same as bb
:	:	•	

From the table we compute $S(M) = \{[a], [b], [c], [b^2], [bc], [cb]\}$. Suppose S(M) is a group with $u, v \in \Sigma^*, \delta_u, \delta_v \in \langle \mathcal{F}(M) \rangle$ then there exists for an arbitrary but fixed δ_u another δ_v with $\delta_u \delta_v = id_Q$. Notice we can choose $q_1 \delta_b = \bot$ and we cannot find any δ_v with $\bot \delta_v = q_1$. Therefore S(M) is not a group.

Now assume S(M) is a monoid. Hence, there exists $u \in \Sigma^*, \delta_u \in \langle \mathcal{F}(M) \rangle$ with $\delta_u = id_Q$. Notice δ_a satisfies this condition and acts a neutral element. Thus, S(M) is a monoid. \square

3.4