Exercise 28

(1)
$$e^2 \cdot e^3 = e^5$$

(4)
$$ln(2) + ln(3) = ln(2x3) = ln(6)$$

$$(7)$$
 $2^{(3^2)} = 2^9 = 512$

$$(8) (2^3)^2 = 8^2 = 64$$

(9)
$$l_n(5^3) = 3l_n(5)$$

(9)
$$ln(5) = 34n(5)$$

 $ln(5) = 2n(5) + 2n(5) - 2n(3)$
 $ln(5) + 2n(5) = 2 2n(5)$

(12)
$$ln(ln(5^3)) = ln(3ln(5))$$

= $ln(3) + ln(ln(5))$.

Ex 29
• Given
$$x \in \mathbb{R}$$
, $f(x)$ is well defined as soon as $3-5x > 0$
that is $x < \frac{3}{5}$ $D_g = J-\infty, \frac{3}{5}$

· Given riell, g(x) is well defined as soon as $3x^2 + 2x - 1 > 0$ the discriminant of the polynomial $3X^2 + 2X - 1$ is $\Delta = 4 + 4x^3$ $\frac{-2\pm 4}{6} = -1 \text{ and } \frac{1}{3}.$ and the roots we

Hence
$$Q_g = J - \infty, -1[U] \frac{1}{3}i + \infty$$

is well defined · h is well defined if $\frac{2e-1}{2x+4}$ and strictly positive we make a table of the signs.

20	- ∞	-2	4	+00
96-1			\$	+
2x+4	÷	\(\)	+	
2-1	+	*	- 0	+

Hence
$$D_h = J - \infty, -2[U] - 1, +\infty[$$

· J(x) is well defined if ln(x) is well defined and strictly positive, This is the case for 2>1.

$$\mathcal{Q}_{J} = \int J_{1} + \infty \left[\right]$$