UNIDAD 4: CIRCUITO OSCILADOR

Profesor: Ing. Israel Chaves Arbaiza

Curso: Electrónica Básica

AGENDA

- Concepto
- Tipos
- Biestables
- Circuito integrado 555
- Monoestable
- Astable

CONCEPTO

- Produce una señal periódica, típicamente senoidal ó cuadrada
- Convierten la corriente directa (CD) a una señal de corriente alterna (CA)
- Requieren una fuente de alimentación externa (todos los CI)
- Generan señales emitidas por transmisores de radio y televisión, señales de reloj de computadoras, relojes de cuarzo, entre otros.

CONCEPTO

CONCEPTO

Ejemplo

TIPOS DE OSCILADORES

Los osciladores se caracterizan a menudo por la frecuencia de su señal de salida:

- Un oscilador de baja frecuencia (LFO) es un oscilador electrónico que genera una frecuencia por debajo de ≈ 20Hz. Se utiliza típicamente en el campo de los sintetizadores de audio.
- Un oscilador de audio produce frecuencias en el rango de audio, sobre 16Hz a 20kHz
- Un oscilador de RF produce señales en la frecuencia de radio (RF) intervalo de aproximadamente 100kHz a 100GHz

Existen 2 tipos principales: Oscilador lineal (armónico) ó No lineal (de relajación)

OSCILADORES DE RELAJACIÓN

- Producen una señal de salida repetitiva no senoidal, tal como una onda triangular u onda cuadrada
- Consta de un bucle de realimentación, con un dispositivo de conmutación tal como un transistor, un comparador, un relé, etc.
- Esa conmutación carga un capacitor ó inductor hasta que se alcanza un nivel umbral, entonces se descarga de nuevo
- ullet El período del oscilador depende de la constante de tiempo au del circuito del capacitor
- La carga y descarga generan una onda discontinua en un intervalo de aproximadamente 100kHz a 100GHz

OSCILADORES DE RELAJACIÓN

Se dividen en 2 clases:

Diente de sierra ó Flyback:

- El capacitor se carga lentamente
- Luego se da una rápida descarga casi al instante
- Así, sólo hay una *rampa* en la forma de onda de salida que ocupa prácticamente todo el período

Multivibrador:

- El capacitor se carga y descarga lentamente
- La forma de la onda de salida consta de dos partes: una rampa de aumento y una rampa decreciente

OSCILADORES DE RELAJACIÓN: APLICACIONES

- Luces parpadeantes, generadores de funciones
- Inversores y fuentes de alimentación conmutadas
- Señales de reloj de circuitos digitales

OSCILADORES DE RELAJACIÓN

- Se utilizan ampliamente
- Más fáciles de diseñar que los osciladores lineales
- Más fáciles de fabricar en los chips de circuitos integrados, ya que no requieren inductores
- Se pueden ajustar en un amplio rango de frecuencias
- Tienen más ruido de fase y una estabilidad de la frecuencia pobre respecto de los osciladores lineales
- Actualmente son construidos con circuitos integrados dedicados como el chip temporizador
 555

MULTIVIBRADOR

Se basan en estados de las señales, estos estados se pueden memorizar, crear un pulso de temporización o un tren de pulsos

- Monoestable: Genera un único pulso, al recibir un flanco adecuado, siempre y cuando esté habilitado. El pulso se puede temporizar.
- Astable: Crea un tren de pulsos a una frecuencia fija, con un ciclo de trabajo fijo.
- El ciclo de trabajo es el **porcentaje** de tiempo en que el pulso está en el nivel alto (*W*), comparado con el período de la señal (*T*)

$$D = \frac{W}{T}100$$

MULTIVIBRADOR

Biestable: También llamados **flip-flops**. Funcionan como memorias, que guardan niveles de voltaje.

Esos niveles se representan en estados de las señales.

Algunos biestables, son *síncronos*, es decir que guardan el estado en memoria, sólo cuando les llega una orden de un flanco de una señal de reloj (*CLK*)

BIESTABLES: FLIP-FLOP RS

Es un flip-flop asíncrono, que guarda en la patilla Q, la orden que se le entrega en las patillas *SET* y *RESET* (de allí el nombre).

R	S	Q
Bajo	Bajo	Estado anterior (memoria)
Bajo	Alto	Alto
Alto	Bajo	Bajo
Alto	Alto	Prohibido

BIESTABLES: FLIP-FLOP JK

Es un flip-flop síncrono que guarda en la patilla Q la orden que se le entrega en las patillas, donde la J funciona como un SET y la K como un RESET, la diferencia es que no hay estado prohibido.

K	J	Q	
Bajo	Bajo	Estado anterior (memoria)	
Bajo	Alto	Alto	
Alto	Bajo	Bajo	
Alto	Alto	Complementa el estado anterior	

BIESTABLES: FLIP-FLOP D

Es un flip-flop síncrono que guarda en la patilla Q el estado de la patilla D

D	CLK	Q
Bajo	No importa	Estado anterior (memoria)
Bajo	Flanco positivo	Bajo
Alto	No importa	Estado anterior (memoria)
Alto	Flanco positivo	Alto

BIESTABLES: FLIP-FLOP T

Es un flip-flop síncrono que complementa el valor guardado en patilla Q, la *T* viene de la palabra en inglés toggle

CLK	Q
No importa	Estado anterior (memoria)
Flanco positivo	Complementa

El oscilador 555 es un chip de ocho patillas que se puede usar, entre otras cosas, para construir astables y monoestables

Patilla	Nombre	Comentario
1	Tierra	Referencia de cero voltios.
2	Disparo	De flanco negativo.
3	Salida	V _{SAL}
4	Habilitador	De nivel alto, cuando está deshabilitado la salida vale cero siempre.
5	Control	Generalmente tiene un condensador de 10 nF para minimizar rizos, también se puede usar para cambiar los valores de umbral y disparo.
6	Umbral	Sirve para definir el nivel donde estaría el flanco de la señal de disparo.
7	Descarga	Sirve para descargar el condensador utilizado en la oscilación.
8	Alimentación	+V _{cc}

- Es un circuito integrado (chip) aplicado en la generación de pulsos y oscilaciones.
- Desde 1971 sigue siendo implementado debido a su facilidad de uso, bajo costo y estabilidad.
- Muchas empresas los fabrican en versión de transistores bipolares y en CMOS de baja potencia.

- Chip analógico-digital a base de comparadores analógicos y circuitos biestables digitales.
- Una conexión en serie de 3 resistores, ajusta los niveles de referencia de los comparadores a $\frac{2V_{CC}}{3}$ y $\frac{V_{CC}}{3}$, que a su vez ajustan la unidad biestable

MONOESTABLE

Genera un único pulso

MONOESTABLE

- Cada vez que le llegue un flanco negativo a la patilla de disparo
- Mientras el pulso está activo, cualquier otro disparo es ignorado
- Importante: El disparo debe regresar al nivel alto, antes de que termine el pulso

$$W = T_{alto} = 1, 1RC$$

MONOESTABLE

Ejemplo

Genera un tren de pulsos

Utiliza un resistor y un capacitor externos para ajustar el intervalo de temporización de la salida

$$f = \frac{1,44}{(R_A + 2R_B)C}$$

$$D = \frac{R_A + R_B}{R_A + 2R_B} 100$$

Ejemplo

EJEMPLO 1

Se requiere obtener una onda cuadrada de 20kHz, a la cual se le pueda variar el ciclo de trabajo entre 0 y 85 %. Dimensione el siguiente circuito para cumplir con lo especificado.

EJEMPLO 2

Si la señal **Data** tiene un período de T=1s y un ciclo de trabajo de D=60, obtenga las gráficas de salida Q_1 y Q_3 . Tome en cuenta que la señal de entrada, **entra** de forma negada (cuando la señal original es un alto, la negada será un bajo y viceversa) a la patilla K del Flip Flop 1.

