BZSV Duality and Relative Langlands Program

Wee Teck Gan

January 22, 2024

(Joint with Bryan P.J. Wang)

- F local field,
- G reductive group over F; set G = G(F)
- $Irr(G) = \{isom. classes of irred. smooth reps of G\}.$

- F local field,
- G reductive group over F; set G = G(F)
- $Irr(G) = \{\text{isom. classes of irred. smooth reps of } G\}.$

Main Problem: Classify Irr(G).

- F local field,
- G reductive group over F; set G = G(F)
- $Irr(G) = \{\text{isom. classes of irred. smooth reps of } G\}.$

Main Problem: Classify Irr(G).

Main Conjecture: There is a a surjective map

$$\mathcal{L}_G : \operatorname{Irr}(G) \longrightarrow \Phi(G) = \{L\text{-parameters of } G\}$$

with finite fibers which can also be explicitly parametrized.

- F local field,
- G reductive group over F; set G = G(F)
- $Irr(G) = \{\text{isom. classes of irred. smooth reps of } G\}.$

Main Problem: Classify Irr(G).

Main Conjecture: There is a a surjective map

$$\mathcal{L}_G : \operatorname{Irr}(G) \longrightarrow \Phi(G) = \{L\text{-parameters of } G\}$$

with finite fibers which can also be explicitly parametrized.

An L-parameter is an equivalence class of maps

$$\phi: \Gamma_F = \operatorname{Gal}(\overline{F}/F) = \pi_1^{et}(\operatorname{Spec}(F)) \longrightarrow G^{\vee}$$

where G^{\vee} is the Langlands dual group of G and equivalence is up to G^{\vee} -conjugacy. So (roughly)

$$\Phi(G) = \operatorname{Hom}(\pi_1^{et}(\operatorname{Spec}(F)), G^{\vee})/G^{\vee}$$

Global Langlands Program

- F global field and G reductive group over F
- $G(F) \subset G(\mathbb{A}) = \prod_{\nu} G(F_{\nu})$; set $[G] = G(F) \setminus G(\mathbb{A})$;
- $\mathcal{A}_2(G) = \{$ square-integrable automorphic forms of $G\} = \{f : [G] \to \mathbb{C}\}.$

Global Langlands Program

- F global field and G reductive group over F
- $G(F) \subset G(\mathbb{A}) = \prod_{\nu} G(F_{\nu})$; set $[G] = G(F) \setminus G(\mathbb{A})$;
- $\mathcal{A}_2(G) = \{$ square-integrable automorphic forms of $G\} = \{f : [G] \to \mathbb{C}\}.$

Main Problem: Classify the irreducible constituents of $A_2(G)$.

Main Conjecture: The irreducible constituents of $A_2(G)$ can be parametrized by A-parameters:

$$\Psi: \operatorname{Gal}(\overline{F}/F) \times \operatorname{SL}_2(\mathbb{C}) \longrightarrow \operatorname{G}^\vee$$

- ullet $H \subset G$ a subgroup over F
- \bullet χ a 1-dimensional (automorphic) unitary character of H.

- $H \subset G$ a subgroup over F
- χ a 1-dimensional (automorphic) unitary character of H.

Local: Classify the set

$$\operatorname{Irr}_{H,\chi}(G) := \{\pi : \operatorname{Hom}_H(\pi,\chi) \neq 0\} \subset \operatorname{Irr}(G)$$

of (H, χ) -distinguished representations.

- $H \subset G$ a subgroup over F
- χ a 1-dimensional (automorphic) unitary character of H.

Local: Classify the set

$$\operatorname{Irr}_{H,\chi}(G) := \{\pi : \operatorname{Hom}_H(\pi,\chi) \neq 0\} \subset \operatorname{Irr}(G)$$

of (H,χ) -distinguished representations. By Frobenius reciprocity,

$$\operatorname{Irr}_{H,\chi}(G) = \{\pi : \operatorname{Hom}_{G}(\pi, \operatorname{Ind}_{H}^{G}\chi) \neq 0\},$$

so it is the set of irreducible submodules of $C^{\infty}(H, \chi \backslash G)$.

- $H \subset G$ a subgroup over F
- \bullet χ a 1-dimensional (automorphic) unitary character of H.

Local: Classify the set

$$\operatorname{Irr}_{H,\chi}(G) := \{\pi : \operatorname{Hom}_H(\pi,\chi) \neq 0\} \subset \operatorname{Irr}(G)$$

of (H,χ) -distinguished representations. By Frobenius reciprocity,

$$\operatorname{Irr}_{H,\chi}(G) = \{\pi : \operatorname{Hom}_{G}(\pi, \operatorname{Ind}_{H}^{G}\chi) \neq 0\},$$

so it is the set of irreducible submodules of $C^{\infty}(H, \chi \backslash G)$.

 L^2 -version: describe the spectral decomposition of $L^2(H, \chi \backslash G)$.

- $H \subset G$ a subgroup over F
- χ a 1-dimensional (automorphic) unitary character of H.

Local: Classify the set

$$\operatorname{Irr}_{H,\chi}(G) := \{\pi : \operatorname{Hom}_H(\pi,\chi) \neq 0\} \subset \operatorname{Irr}(G)$$

of (H,χ) -distinguished representations. By Frobenius reciprocity,

$$\operatorname{Irr}_{H,\chi}(G) = \{\pi : \operatorname{Hom}_{G}(\pi, \operatorname{Ind}_{H}^{G}\chi) \neq 0\},$$

so it is the set of irreducible submodules of $C^{\infty}(H, \chi \backslash G)$.

 L^2 -version: describe the spectral decomposition of $L^2(H, \chi \backslash G)$.

Expect: $\operatorname{Irr}_{H,\chi}(G)$ corresponds to L-parameters which factor through some $J^{\vee} \to G^{\vee}$. So (H,χ) -dist. reps are functorial lifts from another group J).

Global: Have global period integral

$$\mathcal{P}_{H,\chi}:\mathcal{A}_2(G)\longrightarrow \mathbb{C}$$

defined by

$$\mathcal{P}_{H,\chi}(f) = \int_{[H]} \overline{\chi(h)} \cdot f(h) dh.$$

Global: Have global period integral

$$\mathcal{P}_{H,\chi}:\mathcal{A}_2(G)\longrightarrow \mathbb{C}$$

defined by

$$\mathcal{P}_{H,\chi}(f) = \int_{[H]} \overline{\chi(h)} \cdot f(h) dh.$$

Classify those $\pi \subset A_2(G)$ such that

$$\mathcal{P}_{H,\chi,\pi} := \mathcal{P}_{H,\chi}|_{\pi} \neq 0 \in \mathrm{Hom}_{H(\mathbb{A})}(\pi,\chi).$$

Global: Have global period integral

$$\mathcal{P}_{H,\chi}:\mathcal{A}_2(G)\longrightarrow \mathbb{C}$$

defined by

$$\mathcal{P}_{H,\chi}(f) = \int_{[H]} \overline{\chi(h)} \cdot f(h) dh.$$

Classify those $\pi \subset \mathcal{A}_2(G)$ such that

$$\mathcal{P}_{H,\chi,\pi} := \mathcal{P}_{H,\chi}|_{\pi} \neq 0 \in \operatorname{Hom}_{H(\mathbb{A})}(\pi,\chi).$$

Expect:

- $\mathcal{P}_{H,\chi,\pi}$ can be factored as product of local $H(F_v)$ -invariant functionals
- $\mathcal{P}_{H,\chi,\pi}$ to be related to an L-function on J.

Classical Examples

Periods	(G,H,χ)	
Whittaker	$G\supset U$ (maximal unipotent)	
	$\chi=\psi$ generic character	
Symplectic	$GL_{2n}\supsetSp_{2n}$	
Shalika	$CL \rightarrow D \rightarrow CL^{\Delta}U$	
Snalika	$GL_{2n}\supset P_{n,n}\supset GL_n^{\Delta}U$	
	$\chi = 1_{GL_n} \otimes \psi(Tr(-))$	
Basic Gross-Prasad	$SO_{2n} imes SO_{2n+1} \supset SO_{2n}^{\Delta}$	
General GP	$SO_n \times SO_m \supset SO_n^{\Delta} U$	
n < m opp. parity	χ generic character	

• Which subgroups $H \subset G$ to consider?

- Which subgroups $H \subset G$ to consider?
- For which (H, χ) is $L^2(H, \chi \backslash G)$ multiplicity-free?

- Which subgroups $H \subset G$ to consider?
- For which (H,χ) is $L^2(H,\chi\backslash G)$ multiplicity-free?
- For a given (H, χ) , from which group J are (H, χ) -dist. reps lifted?

- Which subgroups $H \subset G$ to consider?
- For which (H, χ) is $L^2(H, \chi \backslash G)$ multiplicity-free?
- For a given (H, χ) , from which group J are (H, χ) -dist. reps lifted?
- For a given (H, χ) , which L-function on J is relevant for the global period?

- Which subgroups $H \subset G$ to consider?
- For which (H, χ) is $L^2(H, \chi \backslash G)$ multiplicity-free?
- For a given (H, χ) , from which group J are (H, χ) -dist. reps lifted?
- For a given (H, χ) , which L-function on J is relevant for the global period?

Upshot The subject of RLP is based on a number of examples but there is no systematic framework,

- Which subgroups $H \subset G$ to consider?
- For which (H, χ) is $L^2(H, \chi \backslash G)$ multiplicity-free?
- For a given (H, χ) , from which group J are (H, χ) -dist. reps lifted?
- For a given (H, χ) , which L-function on J is relevant for the global period?

Upshot The subject of RLP is based on a number of examples but there is no systematic framework, that is, until the publication of the Asterisque volume [SV]:

Relative Langlands according to [SV]

Objects	spherical G -variety $X = H \setminus G$	
	_	
Local Qn	spectral decomposition of $L^2(X)$ or $C^{\infty}(X)$	
Global Qn	global H-periods and related L-values	
Dual Data	(i) $\iota_X: X^\vee \times SL_2 \to G^\vee$	
	(ii) (graded symplectic) representation V_X of X^ee	
Conjecture	(local) H-dist. π are functorial lifts from X^{\vee} via ι_X	
	(global) H-period of π given by $L(1/2, \sigma_{\pi}, V_X)$	

Despite providing a uniform framework for the RLP and constructing the Langlands dual data for a spherical variety X, there are still some lingering issues with [SV]:

Despite providing a uniform framework for the RLP and constructing the Langlands dual data for a spherical variety X, there are still some lingering issues with [SV]:

• the definition of V_X from X follows a combinatorial algorithm which is neither so transparent nor conceptual.

Despite providing a uniform framework for the RLP and constructing the Langlands dual data for a spherical variety X, there are still some lingering issues with [SV]:

- the definition of V_X from X follows a combinatorial algorithm which is neither so transparent nor conceptual.
- it is not clear what L-functions (or V_X) will arise from spherical varieties.

Despite providing a uniform framework for the RLP and constructing the Langlands dual data for a spherical variety X, there are still some lingering issues with [SV]:

- the definition of V_X from X follows a combinatorial algorithm which is neither so transparent nor conceptual.
- it is not clear what L-functions (or V_X) will arise from spherical varieties.
- there are certain natural G-modules which are multiplicity-free and whose spectral decomposition can be described in the style of [SV], but which nonetheless do not fall into the framework of [SV].

Despite providing a uniform framework for the RLP and constructing the Langlands dual data for a spherical variety X, there are still some lingering issues with [SV]:

- the definition of V_X from X follows a combinatorial algorithm which is neither so transparent nor conceptual.
- it is not clear what L-functions (or V_X) will arise from spherical varieties.
- there are certain natural G-modules which are multiplicity-free and whose spectral decomposition can be described in the style of [SV], but which nonetheless do not fall into the framework of [SV].

An example of this last point is the theta correspondence, i.e. the spectral decomposition of the Weil representation under the action of a dual pair.

BZSV

The above issues are (to some extent) resolved in the 400-page preprint [BZSV] of Ben-Zvi, Sakellaridis and Venkatesh:

RELATIVE LANGLANDS DUALITY

DAVID BEN-ZVI, YIANNIS SAKELLARIDIS AND AKSHAY VENKATESH

ABSTRACT. We propose a duality in the relative Langlands program. This duality pairs a Hamiltonian space for a group G with a Hamiltonian space on the first pair of the space of the sp

This is a draft. We anticipate making another round of changes before submitting it for publication. All comments are very welcome! In particular, if we have failed to attribute or properly reference a work it is most likely due to either imporance or forerefulness - please tell us.

Wee Teck Gan

BZSV Duality and Relative Langlands Program

Relative Langlands according to [BZSV]

Objects	Hyperspherical Hamiltonian G-variety M	
Local Qn	spectral decomp. of quantization Π_M of M	
Global Qn	spectral decomp. of theta function of Π_M	
Dual Data	Hyperspherical Hamiltonian G^{\vee} -variety M^{\vee}	
Conjecture	(local) Galois action has fixed point on M^ee	
	(global) L-function arises fro Galois rep.	
	on tangent spaces of fixed points	

Comparing [BZSV] with [SV]

	[SV]	[BZSV]
Objects	spherical X	hyperspherical M
Spectral Qn	$L^2(X)$	Quantization of <i>M</i>
Dual Data	(X^{\vee}, ι_X, V_X)	hyperspherical M^{\lor}
Conj.	Factor though ι_X	Galois-fixed points on M^{\vee}

(a) symplectic G-variety: M is a a symplectic variety with G acting as symplectomorphisms. Then $\mathcal{O}(M)$ is a G-equivariant Poisson algebra.

- (a) symplectic G-variety: M is a a symplectic variety with G acting as symplectomorphisms. Then $\mathcal{O}(M)$ is a G-equivariant Poisson algebra.
- (b) Hamiltonian G-variety: a symplectic G-variety M equipped with a G-equivariant moment map $\mu_M: M \longrightarrow \mathfrak{g}^*$.

- (a) symplectic G-variety: M is a a symplectic variety with G acting as symplectomorphisms. Then $\mathcal{O}(M)$ is a G-equivairant Poisson algebra.
- (b) Hamiltonian G-variety: a symplectic G-variety M equipped with a G-equivariant moment map $\mu_M: M \longrightarrow \mathfrak{g}^*$.
- (c) Hyperspherical: a Hamiltonian G-variety which is in addition:
 - ullet affine, smooth and graded (with a commuting \mathbb{G}_m -action)

- (a) symplectic G-variety: M is a a symplectic variety with G acting as symplectomorphisms. Then $\mathcal{O}(M)$ is a G-equivairant Poisson algebra.
- (b) Hamiltonian G-variety: a symplectic G-variety M equipped with a G-equivariant moment map $\mu_M: M \longrightarrow \mathfrak{g}^*$.
- (c) Hyperspherical: a Hamiltonian G-variety which is in addition:
 - ullet affine, smooth and graded (with a commuting \mathbb{G}_m -action)
 - coisotropic: generic *G*-orbits are coisotropic i.e. for each orbit \mathcal{O} and $x \in \mathcal{O}$,

- (a) symplectic G-variety: M is a a symplectic variety with G acting as symplectomorphisms. Then $\mathcal{O}(M)$ is a G-equivariant Poisson algebra.
- (b) Hamiltonian G-variety: a symplectic G-variety M equipped with a G-equivariant moment map $\mu_M: M \longrightarrow \mathfrak{g}^*$.
- (c) Hyperspherical: a Hamiltonian G-variety which is in addition:
 - ullet affine, smooth and graded (with a commuting \mathbb{G}_m -action)
 - coisotropic: generic *G*-orbits are coisotropic i.e. for each orbit \mathcal{O} and $x \in \mathcal{O}$,

$$T_x \mathcal{O} \subset T_x M$$
 satsifies $T_x \mathcal{O}^{\perp} \subset T_x \mathcal{O}$.

Equivalently, the subring $\mathcal{O}(M)^G$ is Poisson-commutative.

 connected generic stabilizers (plus a couple of other technical conditions)

Hyperspherical Hamiltonian G-varieties M

- (a) symplectic G-variety: M is a a symplectic variety with G acting as symplectomorphisms. Then $\mathcal{O}(M)$ is a G-equivairant Poisson algebra.
- (b) Hamiltonian G-variety: a symplectic G-variety M equipped with a G-equivariant moment map $\mu_M: M \longrightarrow \mathfrak{g}^*$.
- (c) Hyperspherical: a Hamiltonian G-variety which is in addition:
 - ullet affine, smooth and graded (with a commuting \mathbb{G}_m -action)
 - coisotropic: generic *G*-orbits are coisotropic i.e. for each orbit \mathcal{O} and $x \in \mathcal{O}$,

$$T_x\mathcal{O}\subset T_xM$$
 satsifies $T_x\mathcal{O}^\perp\subset T_x\mathcal{O}$.

Equivalently, the subring $\mathcal{O}(M)^{\mathcal{G}}$ is Poisson-commutative.

 connected generic stabilizers (plus a couple of other technical conditions)

If X is a spherical G-variety (affine smooth), then $M = T^*X$ is hyperspherical.

Suppose one is given:

- $\iota: H \times SL_2 \longrightarrow G$, with $H \subset Z_G(\iota(SL_2))$ a spherical subgroup;
- ullet S a (graded) symplectic (finite dim) representation of H.

Suppose one is given:

- $\iota: H \times SL_2 \longrightarrow G$, with $H \subset Z_G(\iota(SL_2))$ a spherical subgroup;
- S a (graded) symplectic (finite dim) representation of H.

Let $\{h, e, f\}$ be \mathfrak{sl}_2 -triple associated to $\iota|_{\mathsf{SL}_2}$. Then define a G-variety by:

$$M = (S \times_{\mathfrak{h}^*} (f + \mathfrak{g}^e)) \times^H G.$$

Suppose one is given:

- $\iota: H \times SL_2 \longrightarrow G$, with $H \subset Z_G(\iota(SL_2))$ a spherical subgroup;
- S a (graded) symplectic (finite dim) representation of H.

Let $\{h, e, f\}$ be \mathfrak{sl}_2 -triple associated to $\iota|_{\mathsf{SL}_2}$. Then define a G-variety by:

$$M = (S \times_{\mathfrak{h}^*} (f + \mathfrak{g}^e)) \times^H G.$$

Theorem (BZSV)

Every hyperspherical G-variety is built in the above way (Whittaker induction).

Suppose one is given:

- $\iota: H \times SL_2 \longrightarrow G$, with $H \subset Z_G(\iota(SL_2))$ a spherical subgroup;
- S a (graded) symplectic (finite dim) representation of H.

Let $\{h,e,f\}$ be \mathfrak{sl}_2 -triple associated to $\iota|_{\mathsf{SL}_2}.$ Then define a G-variety by:

$$M = (S \times_{\mathfrak{h}^*} (f + \mathfrak{g}^e)) \times^H G.$$

Theorem (BZSV)

Every hyperspherical G-variety is built in the above way (Whittaker induction).

Observe that the above data is of the same type as the dual data from [SV]:

$$\iota_X: X^{\vee} \times \mathsf{SL}_2 \longrightarrow G^{\vee}$$

and V_X a (graded symplectic) rep. of X^{\vee} .

3 Basic Examples

M	Data for construction
T*(U\C)	
$T^*(H\backslash G)$	$\iota: H \to G, \ S = 0$
$T_e^*(Uackslash G)$	$\iota:SL_2 o G$ (regular SL_2), $S=0$
$(W, G \subset \operatorname{Sp}(W))$	$\iota: G \to G$, $S = W$

3 Basic Examples

M	Data for construction
$T^*(Hackslash G)$	$\iota: H o G, \ S = 0$
$T_e^*(U \backslash G)$	$\iota:SL_2 o G$ (regular SL_2), $S=0$
$(W, G \subset \operatorname{Sp}(W))$	$\iota: G \to G$, $S = W$

A mixed example: S = 0 and

$$\iota: \mathsf{GL}_n \times \mathsf{SL}_2 \longrightarrow \mathsf{GL}_{2n}$$
 (tensor product).

Then

$$M = \left\{ \begin{pmatrix} 0 & B \\ I & 0 \end{pmatrix} : B \in M_n \right\} \times^{\mathsf{GL}_n^{\Delta}} \mathsf{GL}_{2n} = T_e(\mathsf{GL}_n^{\Delta} U \backslash \mathsf{GL}_{2n})$$

Call this the Shalika variety since it gives rise to the Shalika period.

Quantization

Quantization refers to the following philosophy:

- to a symplectic variety M, one can attach an associated Hilbert space Π_M .
- If a symplectic G-variety is Hamiltonian, then Π_M is a unitary rep. of G.

Quantization

Quantization refers to the following philosophy:

- to a symplectic variety M, one can attach an associated Hilbert space Π_M .
- If a symplectic G-variety is Hamiltonian, then Π_M is a unitary rep. of G.

Ideally one would like a functor

Symplectic G-varieties \longrightarrow Unitary G-modules

Quantization

Quantization refers to the following philosophy:

- to a symplectic variety M, one can attach an associated Hilbert space Π_M .
- If a symplectic G-variety is Hamiltonian, then Π_M is a unitary rep. of G.

Ideally one would like a functor

Symplectic G-varieties \longrightarrow Unitary G-modules

One does not have this, but many standard constructions in symplectic geometry can be quantized, i.e. have natural representation theoretic counterparts, as realized by Kirillov, Guillemin-Sternberg, Kazhdan etc.

Classical vs. Quantization

Classical	Quantum
M	(ρ_M, V_M)
$C(M,\mathbb{R})\subset C(M,\mathbb{C})$	$\operatorname{Herm}(V_M)\subset\operatorname{End}(V_M)$
$\mu: M o \mathfrak{g}^*$?
$\mu^*: \mathcal{C}(\mathfrak{g}^*) \to \mathcal{C}(M,\mathbb{C})$	$ ho_{\mathcal{M}}: C^*(G) ightarrow \mathrm{End}(V_{\mathcal{M}})$
(pullback)	(C^* -alg. module)
Coisotropic	Multiplicity-free
$\left(M\times_{\mathfrak{g}^*}^{G}\{0\}\right)$	$(V_M)_G$
(Symplectic reduction)	(G-coinvariants)

Classical vs. Quantization

Classical	Quantum
M	(ρ_M, V_M)
$C(M,\mathbb{R})\subset C(M,\mathbb{C})$	$\operatorname{Herm}(V_M) \subset \operatorname{End}(V_M)$
$\mu: M \to \mathfrak{g}^*$?
$\mu^*: \mathcal{C}(\mathfrak{g}^*) \to \mathcal{C}(M,\mathbb{C})$	$ ho_M:C^*(G) o\operatorname{End}(V_M)$
(pullback)	(C^* -alg. module)
Coisotropic	Multiplicity-free
$\left(M\times_{\mathfrak{g}^*}^{G}\{0\}\right)$	$(V_M)_G$
(Symplectic reduction)	(G-coinvariants)

The last line is often expressed as:

Quantization commutes with Reduction.

Examples of Quantization

M	Π_M
$T^*(X)$, X affine smooth spherical	$L^2(X)$
$T_e^*(U \backslash G) = (e + \mathfrak{g}^f) \times G$	$L^2(U,\psiackslash G)$
(e regular nilpotent)	(Whittaker/Gelfand-Graev module)
$\mathcal{T}_e^*(GL_n^\Delta U ackslash GL_{2n})$ (Shalika variety)	$L^2(GL_n U, \psi ackslash GL_{2n})$ (Shalika module)
symplectic vector space $W = X + X^*$	Weil representation $L^2(X)$
$(V \otimes W, \mathcal{O}(V) \times Sp(W))$	Theta correspondence for $O(V) \times Sp(W)$

Summary

	[SV]	[BZSV]
Objects	spherical X	hyperspherical M
Spectral Qn	$L^2(X)$	Quantization of <i>M</i>
Dual Data	(X^{\vee},ι_X,V_X)	hyperspherical M^{\lor}
Conj.	Factor though ι_X	Galois-fixed points on M^{\vee}

Summary

	[SV]	[BZSV]
Objects	spherical X	hyperspherical M
Spectral Qn	$L^2(X)$	Quantization of <i>M</i>
Dual Data	(X^{\vee}, ι_X, V_X)	hyperspherical M^{\lor}
Conj.	Factor though ι_X	Galois-fixed points on M^{\vee}

What is gained from [SV] to [BZSV]:

- Scope of RLP expanded (e.g. to include theta correspondence)
- there is now a clear symmetry between the basic object M and the dual data M^{\lor}

Two invariants associated to M

The symmetry between the automorphic and Galois side implies that to a hyperspherical G-variety M, one can attach 2 invariants:

Two invariants associated to M

The symmetry between the automorphic and Galois side implies that to a hyperspherical G-variety M, one can attach 2 invariants:

• Period invariant: M gives rise to a theta function $\Theta_M \in \mathcal{A}(G)$). Each $\pi \subset \mathcal{A}_2(G)$ then gives:

$$\mathcal{P}_{M}(\pi) := \sum_{\{\phi_{i}\} \subset \pi} |\langle \Theta_{M}, \phi_{i} \rangle_{\mathrm{Pet}}|^{2}.$$

So

 $\mathcal{P}_M: \{L^2\text{-automorphic reps of } G\} \longrightarrow \mathbb{C}.$

Two invariants associated to M

The symmetry between the automorphic and Galois side implies that to a hyperspherical G-variety M, one can attach 2 invariants:

• Period invariant: M gives rise to a theta function $\Theta_M \in \mathcal{A}(G)$). Each $\pi \subset \mathcal{A}_2(G)$ then gives:

$$\mathcal{P}_{M}(\pi) := \sum_{\{\phi_{i}\} \subset \pi} |\langle \Theta_{M}, \phi_{i} \rangle_{\mathrm{Pet}}|^{2}.$$

So

$$\mathcal{P}_M: \{L^2\text{-automorphic reps of } G\} \longrightarrow \mathbb{C}.$$

 L-function-invariant: through Galois action on tangent spaces of Galois-fixed points, get an invariant by considering special L-value

$$\mathcal{L}_M: \{\mathsf{A}\text{-parameters valued in } G\} \longrightarrow \mathbb{C}$$

Duality Conjecture

The above discussion led [BZSV] to the following

Conjecture

There is an involutive duality

$$\{ hyperspherical \ G\text{-}var. \} \longleftrightarrow \{ hyperspherical \ G^{\vee}\text{-}var. \}$$

such that if $M \longleftrightarrow M^{\vee}$, then

$$\mathcal{P}_{M} = \mathcal{L}_{M^{\vee}}$$

and

$$\mathcal{P}_{M^{\vee}}=\mathcal{L}_{M}.$$

Duality Conjecture

The above discussion led [BZSV] to the following

Conjecture

There is an involutive duality

$$\{hyperspherical\ G\text{-}var.\}\longleftrightarrow \{hyperspherical\ G^{\vee}\text{-}var.\}$$

such that if $M \longleftrightarrow M^{\vee}$, then

$$\mathcal{P}_{M} = \mathcal{L}_{M^{\vee}}$$

and

$$\mathcal{P}_{M^{\vee}} = \mathcal{L}_{M}$$
.

Note that in both equations, the domains of the LHS and RHS are identified by the Langlands correspondence.

Examples of Duality [BZSV]

M	M [∨]
point	$T_e(Uackslash G)$
T*(X)	$V_X imes^{X^{\vee}} G^{\vee}$
$T^*(Sp_{2n} \backslash GL_{2n})$ (symplectic period)	$\mathcal{T}_e(GL_n^\Delta U ackslash GL_{2n}) \ (Shalika\ period)$
$T^*(SO_{2n}^{\Delta} \setminus (SO_{2n} \times SO_{2n+1}))$ (Basic Gross-Prasad)	$V_{2n}\otimes W_{2n}$ (Equal Rank Theta Corr.)
$(V \otimes W, \mathrm{O}(V) \times \mathrm{Sp}(W))$	General GP-varieties

We consider special cases of the data:

$$(\iota_X: H \times \mathsf{SL}_2 \to G, S)$$

such that

We consider special cases of the data:

$$(\iota_X: H \times \mathsf{SL}_2 \to G, S)$$

such that

G is a symplectic or orthogonal group;

We consider special cases of the data:

$$(\iota_X: H \times \mathsf{SL}_2 \to G, S)$$

such that

- G is a symplectic or orthogonal group;
- $\bullet \ H = Z_G(\iota(SL_2));$

We consider special cases of the data:

$$(\iota_X:H\times \mathsf{SL}_2\to G,S)$$

such that

- G is a symplectic or orthogonal group;
- $\bullet \ H = Z_G(\iota(SL_2));$
- S = 0.

We consider special cases of the data:

$$(\iota_X: H \times \mathsf{SL}_2 \to G, S)$$

such that

- *G* is a symplectic or orthogonal group;
- $H = Z_G(\iota(SL_2));$
- S = 0.

The associated G-variety M just depends on a unipotent conjugacy class $e \in G$. The quantization of M_e is a generalized Whittaker/Gelfand-Graev G-module:

$$\Pi_e = \operatorname{Ind}_{H \cdot U}^G 1_H \otimes \psi.$$

Results I

Our first result addresses the question: for which e is M_e hyperspherical? Note that for classical groups, nilpotent orbits are classified by partitions or Young diagrams with parity constraints (plus extra data).

Results I

Our first result addresses the question: for which e is M_e hyperspherical? Note that for classical groups, nilpotent orbits are classified by partitions or Young diagrams with parity constraints (plus extra data).

Proposition

Assume $G = O_{2n}$ for simplicity. Then M_e is hyperspherical if and only if e belongs to the following list:

- $e = [2n r, 1^r]$, r odd (hook type)
- $e = (2^n)$ (Shalika type)
- e = (3,3), (4,4) or (6,6) (sporadic type)

Results II

For those e's of hook type or of sporadic type, our second result determines the hyperspherical dual M_e^{\vee} .

Results II

For those e's of hook type or of sporadic type, our second result determines the hyperspherical dual M_e^{\vee} .

Theorem

For $e \in G = O_{2n}$ of hook type.

$$M_e^{\vee} = M_{e^{\vee}},$$

where $e^{\vee} \in G^{\vee} = \mathrm{O}_{2n}$ is also a nilpotent element of hook type. More precisely, the relation $e \longleftrightarrow e^{\vee}$ is depicted by the following diagram.

Results II

For those e's of hook type or of sporadic type, our second result determines the hyperspherical dual M_e^{\vee} .

Theorem

For $e \in G = O_{2n}$ of hook type.

$$M_e^{\vee} = M_{e^{\vee}},$$

where $e^{\vee} \in G^{\vee} = \mathrm{O}_{2n}$ is also a nilpotent element of hook type. More precisely, the relation $e \longleftrightarrow e^{\vee}$ is depicted by the following diagram.

• The proof of the theorem involves resolving two spectral decomposition problems (for M and M^{\vee} resp.), and showing that the answer can be described in terms of the dual variety (M^{\vee} and M resp.) as dictated by the BZSV conjecture.

- The proof of the theorem involves resolving two spectral decomposition problems (for M and M^{\vee} resp.), and showing that the answer can be described in terms of the dual variety (M^{\vee} and M resp.) as dictated by the BZSV conjecture.
- For the hook type partitions, the solution of these spectral decomposition problems is achieved by using theta correspondence. For the sporadic types, one uses exceptional theta correspondences.

- The proof of the theorem involves resolving two spectral decomposition problems (for M and M^{\vee} resp.), and showing that the answer can be described in terms of the dual variety (M^{\vee} and M resp.) as dictated by the BZSV conjecture.
- For the hook type partitions, the solution of these spectral decomposition problems is achieved by using theta correspondence. For the sporadic types, one uses exceptional theta correspondences.
- In particular, we use the results of Gomez and Zhu on the transfer of generalized Whittaker models under theta correspondence.

- The proof of the theorem involves resolving two spectral decomposition problems (for M and M^{\vee} resp.), and showing that the answer can be described in terms of the dual variety (M^{\vee} and M resp.) as dictated by the BZSV conjecture.
- For the hook type partitions, the solution of these spectral decomposition problems is achieved by using theta correspondence. For the sporadic types, one uses exceptional theta correspondences.
- In particular, we use the results of Gomez and Zhu on the transfer of generalized Whittaker models under theta correspondence.
- Bryan has extended these local results to the global setting and the L^2 -setting, allowing us to resolve the L^2 and global version of the BZSV conjecture.

The proof of these spectral results have an underlying geometric incarnation, which suggests the following principle:

The proof of these spectral results have an underlying geometric incarnation, which suggests the following principle:

If \tilde{M} is a hyperspherical $G \times H$ -var., with dual \tilde{M}^{\vee} (a $G^{\vee} \times H^{\vee}$ -var.), then one should have a commutative diagram:

The proof of these spectral results have an underlying geometric incarnation, which suggests the following principle:

If \tilde{M} is a hyperspherical $G \times H$ -var., with dual \tilde{M}^{\vee} (a $G^{\vee} \times H^{\vee}$ -var.), then one should have a commutative diagram:

$$\widetilde{M} \xrightarrow{\operatorname{duality}} \widetilde{M}^{\vee}$$

Reduction wrt (H, pt) \downarrow Whittaker reduction wrt H^{\vee}
 $M \xrightarrow{\operatorname{duality}} M^{\vee}$

The proof of these spectral results have an underlying geometric incarnation, which suggests the following principle:

If \tilde{M} is a hyperspherical $G \times H$ -var., with dual \tilde{M}^{\vee} (a $G^{\vee} \times H^{\vee}$ -var.), then one should have a commutative diagram:

$$ilde{M} \xrightarrow{ ext{duality}} ilde{M}^{ee}$$
 Reduction wrt (H,pt) \downarrow Whittaker reduction wrt H^{ee} $M \xrightarrow{ ext{duality}} ilde{M}^{ee}$

In other words,

Hyperspherical Duality "commutes" with Reduction.

Thank You for Your Attention!