	S'	ΓUΙ	EN	TI	D N	0		
							-	
1 1	1		i I					

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 3, 2017/2018

ETN4106 – OPTOELECTRONICS AND OPTICAL COMMUNICATIONS

(All sections/Groups)

30 MAY 2018 9:00 a.m. – 11:00 a.m. (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 7 pages with 4 Questions only.
- 2. Answer ALL questions. The distribution of the marks for each question is given.
- 3. Please print all your answers in the Answer Booklet provided.

Question 1 (25 marks)

- (a) Describe the term acceptance angle. Support your answer with a diagram.

 [3 marks]
- (b) A graded-index multimode fiber with a numerical aperture of 0.4 has a core diameter of 60 μ m. Given that the characteristic index profile $\alpha = 1.95$, determine:
 - (i) The cut-off value of normalized frequency, V_c .

[2 marks]

- (ii) The cut-off wavelength for the fiber to operate as a single mode fiber.

 [2 marks]
- (iii) The number of guided modes propagating in the fiber when the wavelength of light is 1550 nm. [4 marks]
- (iv) The acceptance angle when the fiber is placed in water. Assume that the refractive index of water is 1.33. [2 marks]
- (v) The core refractive index, if the relative refractive index difference is 1.35 %. [2 marks]
- (c) Describe the following light attenuation mechanisms.
 - (i) Intrinsic absorption

[2 marks]

(ii) Extrinsic absorption

[2 marks]

(d) Suggest TWO (2) ways to reduce macrobending losses in optical fiber.

[2 marks]

(e) State TWO (2) types of linear scatterings and their causes.

[4 marks]

Continued

Question 2 (25 marks)

- (a) The optical sources used in optical fiber communication systems are laser diodes and light emitting diodes (LEDs).
 - (i) Describe the stimulated emission process which gives laser its coherent radiation. Your answer should include description of the photons emitted.

 [4 marks]
 - (ii) LEDs are commonly used in a local area network. Give TWO (2) reasons for this. [4 marks]
- (b) Compare the photon absorption process in direct bandgap and indirect bandgap semiconductors. [4 marks]
- (c) Calculate the ratio of the threshold current densities at 30 °C and 90 °C for an injection laser with its threshold temperature coefficient, $T_o = 160 \text{ K}$ [Hint: The ratio of the threshold current densities is $\frac{J_{th}(90^{\circ}C)}{J_{th}(30^{\circ}C)}$]. [5 marks]
- (d) The quantum efficiency of a photodiode is 70% when photons having an energy of 2×10^{-19} J are incident upon it.
 - (i) With the help of a suitable equation, define quantum efficiency. [2 marks]
 - (ii) Why is the quantum efficiency of a photodiode generally less than unity? [2 marks]
 - (iii) Calculate the responsivity of the photodiode. [2 marks]
 - (iv) Calculate the incident optical power required to obtain a photocurrent of 8 μ A. [2 marks]

~	4.0			
	ntin	ned		

Question 3 (25 marks)

- (a) Do optical amplifiers provide better performance over regenerative repeaters which require optoelectronic devices and electronic circuits? Give TWO (2) reasons to support your answer. [5 marks]
- (b) Illustrate TWO (2) applications of optical amplifiers that can be used to increase the transmission distance in an optical network. [4 marks]
- (c) Erbium doped fiber amplifiers (EDFAs) are widely used in optical communication networks.
 - (i) Describe TWO (2) ways to attain population inversion in an EDFA. [4 marks]
 - (ii) What is the dominant noise generated in an EDFA? [2 marks]
 - (iii) An EDFA is being pumped at 980 nm with a 20 mW pump power. If the gain at 1550 nm is 25 dB, calculate the maximum input power and output power. [4 marks]
- (d) A bit stream of '10110' is modulated at the transmitter of an optical communication system.
 - (i) Draw the modulated carrier waveform if amplitude shift keying (ASK) scheme is used. [2 marks]
 - (ii) Draw the modulated carrier waveform if frequency shift keying (FSK) scheme is used. [2 marks]
 - (iii) Draw the modulated carrier waveform if phase shift keying (PSK) scheme is used. [2 marks]

Continued

Question 4 (25 marks)

(a) Your company recently won a tender to install optical fiber network facilities in a new university campus. The system requirement is an optical link that is able to support signal transmission at a bit rate of 100 Mbps and a link that can support a maximum transmission distance of 2 km. The system should be designed in the most cost-effective way using only the components listed in Table 4 (a).

Optical	Transmit power	Receiver	Loss
Component		sensitivity	
Laser diode	0 dBm	-	-
with central			
wavelength at			
1550 nm			·
LED with	-13 dBm	-	-
central			
wavelength at			
850 nm			·
p-i-n	-	-32.8 dBm	-
photodiode			
Avalanche	-	-41.4 dBm	1
photodiode			
Single mode	-	-	1.3 dB/km at 850 nm
fiber			0.4 dB/km at 1310 nm
			0.3 dB/km at 1550 nm
Step-index	-	-	4 dB/km at 850 nm
multimode			
fiber			•
Graded-index	<u>-</u>	-	2.5dB/km at 850 nm
multimode			0.8dB/km at 1300 nm
fiber			
Source	-	-	0.1 dB
coupling loss			
Detector	-	-	0.1 dB
coupling loss			
Splice loss	-	-	0.03 dB

Table 4 (a)

\sim		•			
Co	ntin	med	 		

Question 4 (continued)

- (i) Propose a suitable operating wavelength for your system (850 nm, 1310 nm or 1550 nm). Justify your choice. [4 marks]
- (ii) Propose a suitable fiber type for your design. Justify your answer.

 [4 marks]
- (iii) Propose a suitable optical source for your design. Justify your answer.

 [4 marks]
- (iv) Propose a suitable optical detector for your design. Justify your answer [4 marks]
- (v) Based on your answer in Q4 (ii), calculate the fiber cable loss for the 2 km fiber. [2 marks]
- (vi) Calculate the total channel loss of one link (2 km fiber length). Assume that splicing is only needed to connect the fiber with pigtails at the source and detector. [2 marks]
- (vii) Based on your selection in Q4 (iii)-(iv), calculate the power budget.
 [2 marks]
- (viii) Calculate the system margin. Show that your design fulfills the power budget requirement. [3 marks]

Appendix A

Physical Constants and Units

Constant	Symbol	Value (mks units)
Speed of light in vacuum	c	2.998 × 10 ⁸ m/s
Electron charge	e	$1.602 \times 10^{-19} \mathrm{C}$
Boltzmann's constant	k_B	$1.38 \times 10^{-23} \text{ J/K}$
Permittivity of free space	£0	$8.8542 \times 10^{-12} \text{ F/m}$
Permeability of free space	<i>μ</i> 0	$4\pi \times 10^{-7} \text{ N/A}^2$
Electron volt	eV	$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
Planck's constant	h	$6.626 \times 10^{-34} \text{ J} \cdot \text{s}$