

DASAR SISTEM

PERTEMUAN 5 Komparator, ADDer

AGENDA

- 1. Komparator
- 2. Adder
- 3. Multiplexer Demultiplexer
- 4. Encoder Decoder
- 5. Implementasi Logika Kombinasi dengan Multiplexer dan Decoder

A. Komparator

- Fungsi : Membandingkan keadaan logika input-inputnya
 - Non equality → output high bila input beda
 - Equality → output high bila input sama
- Tabel kebenaran?
- Karnaugh map?
- NAND? NOR?
- XOR? XNOR

Non-Equality

inp	output						
Α	В	Υ					
0	0	0					
0	1	1					
1	0	1					
1	1	0					

Equality

inp	input				
Α					
0	0	1			
0	1	0			
1	0	0			
1	1	1			

Karnaugh map

B\A	0	1
0	0	(1)
1	(1)	0

Karnaugh map

В\А	0	1
0	1	0
1	0	1

Non Equality Comparator

- Bentuk NAND
 - $Y(A,B) = \Sigma(1,2)$

•
$$Y = A'B + AB'$$

$$= \overline{A'B + aB'}$$

$$= \overline{A'B \cdot AB'}$$

- Bentuk NOR
 - $Y(A,B) = \Pi(0,3)$

•
$$Y=(A+B)(A'+B')$$

 $=(\overline{A+B})(A'+B')$
 $=(\overline{A+B})+(\overline{A'+B'})$

Equality Comparator

- Bentuk NAND
 - $Y(A,B) = \Sigma(0,3)$

•
$$Y = A'B' + AB$$

$$= \overline{A'B' + AB}$$

$$= \overline{A'B' + AB}$$

$$= \overline{A'B' \cdot AB}$$

- Bentuk NOR
 - $Y(A,B) = \Pi(1,2)$

$$Y = (A + B')(A' + B)$$

$$= (\overline{A + B'})(\overline{A' + B})$$

$$= (\overline{A + B'}) + \overline{(A' + B)}$$

XOR dan XNOR

- Kecuali dalam bentuk SOP, POS, NAND, dan NOR, comparator dapat diperoleh dengan menggunakan gerbang :
 - XOR untuk Non Equality Comp
 - XNOR untuk Equality Comp
- Buktikan:
 - Hasil NOT dari Y = A'B + AB' (non equality comp, XOR) adalah equality comparator Y = (A+B')(A'+B)

B. Penjumlah (Adder)

Ilustrasi penjumlahan

- a) bilangan desimal
- b) bilangan biner

Penjumlah (Adder)

- Fungsi : penjumlahan bilangan biner
 - Half adder → tidak menyertakan bawaan sblmnya (pp. 169)
 - Full adder \rightarrow menyertakan bawaan sebelumnya (pp. 173)
 - Full adder **paralel**!
- Tabel kebenaran?

Half Adder

Inp	out	Output			
Α	В	S	Cn		
0	0	0	0		
0	1	1	0		
1	0	1	0		
1	1	0	1		

Full Adder

	Input	Output		
Α	В	Ср	S	Cn
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Half Adder

$$S = A \oplus B$$

$$C_n = AB$$

Full Adder

$$S = A \oplus B \oplus C_p$$

$$C_n = AB + AC_p + BC_p$$

Full Adder dari 2 Half Adder

Lihat persamaan (58) \rightarrow pp. 174

Full Adder Paralel 4 bit

a₃ a₂ a₁ a₀ b₃ b₂ b₁ b₀ S₃ S₂ S₁ S₀

Bagaimana untuk pengurangan??

• Kita ulas dulu ilustrasi representasi bilangan yang dimengerti oleh **ALU**.....

Arithmetic & Logic Unit (ALU)

- Melakukan kalkulasi
- Semua perangkat komputer yang lain bekerja untuk mendukung bagian ini
- Menangani bilangan integer
- Juga mampu menangani bilangan floating point (real)

Representasi integer

- Hanya punya 0 dan 1 untuk mewakili segalanya
- Angka positif dalam bentuk biner
 e.g. 41=00101001
- Tidak punya tanda negatif
- Tidak punya koma
- Teknik Sign-Magnitude
- Two's compliment

Representasi negatif pada biner

Normal		Bit Bertanda		Komplem	en 1	Komplemen 2	
000	+0	000	+0	000	+0	000	+0
001	+1	001	+1	001	+1	001	+1
010	+2	010	+2	010	+2	010	+2
011	+3	011	+3	011	+3	011	+3
100	+4	100	-0	100	-3	100	-4
101	+5	101	-1	101	-2	101	-3
110	+6	110	-2	110	-1	110	-2
111	+7	111	-3	111	-0	111	-1

Jenis Representasi	+5	-5 1101		
SM	0101			
S1C	900	1010		
S2C	-	1011		

Lihat Muchlas, Rangkaian Digital, pp. 178

Bit Bertanda (Sign-Magnitude)

- Bit paling kiri adalah bit penanda (sign bit)
- 0 berarti positif, 1 berarti negatif
- \bullet +18 = 00010010
- -18 = 10010010
- Problems
 - Need to consider both sign and magnitude in arithmetic
 - Two representations of zero (+0 and -0)
 - Solusinya → menggunakan <u>komplemen 2</u>

Keuntungan Komplemen 2

- Satu representasi nol
- Operasi aritmatika lebih mudah
- Mudah untuk me-negasi-kan
 - 3 = 00000011
 - Boolean complement gives 11111100
 - Add 1 to LSB

11111101

OK, sekarang kita lihat hubungan antara <u>penjumlahan</u> dengan <u>pengurangan</u>

• Ubah substahen (bagian pengurang) ke bentuk komplemen 2 nya, dan tambahkan ke minuend (bagian yang dikurangi) contoh:

$$a - b = a + (-b)$$

• Tampak bahwa kita hanya butuh rangkaian <u>adder</u> dan <u>komplemen</u>, untuk membentuk substractor

Membuat rangkaian Adder-Substractor

Rangkaian diagram logika 1'S complement untuk 4 bit:

Rangkaian diagram Adder-Substractor (aplikasi paralel full adder) adalah:

a₃ a₂ a₁ a₀ b₃ b₂ b₁ b₀ S₃ S₂ S₁ S₀

Sekarang, kita latihan dulu ©

• Silahkan siapkan alat tulis untuk ikut mencoba dan mengikuti contoh-contoh yang akan diberikan....

Contoh: tunjukkan operasi full adder paralel dalam melakukan operasi aritmetika +2+3, +2-3, -2+3, dan -2-3! Anggap C_i=0 dan bilangan biner negatif direpresentasikan dalam S2C!

Jawab:

		Desimal		Biner				Desimal		Biner	
C,	=	0	=	0		C	=	0	=	0	
A	=	+2	=	0010		Α	=	+2	=	0010	
В	=	+3	=	0011	+	В	=	-3	=	1101	+
S	=	+5	=	0101	1	S	=	-1	=	1111	
C	=	0	=	0		C.	=	0	=	0	
	1										
		Desimal		Biner				Desimal		Biner	
C	=	0	=	0		C	=	0	=	0	
A	=	-2	=	1110		A	=	-2	=	1110	
В	=	+3	=	0011	+	В	=	-3	=	1101	+
S	=	+1	=	0001		S	=	-5	=	1011	
C.	=	1	=	1		C.	=	1	=	1	

Aritmatika Bilangan Biner 4 bit Dalam representasi komplemen 2

Solusi Overflow:

Pada ALU, harus memberikan sinyal tentang keadaan ini sehingga tidak terdapat usaha untuk menggunakan hasil operasi tersebut.

• Indikator Overflow:

Bila dua buah bilangan ditambahkan, <u>keduanya positif atau keduanya negatif</u>, maka overflow akan dan hanya terjadi bila <u>hasilnya memiliki tanda yang berlawanan</u>

Latihan mandiri

- lihat tugas 27 (pp. 180)

 Tunjukkan operasi **full adder paralel <u>4-bit</u>** dalam melakukan operasi aritmetika +4+2, +4-2, -4+2, dan -4-2
- Soal nomor 5, pp. 230 akan dikerjakan di praktikum

Contoh 3 bit full adder paralel

Contoh 4 bit full adder-substractor A + B atau A + (-B)

DSCH → ADD4SIGNED.SCH