

Logistic regression

Daniel Fuller
Associate Professor
Department of Community Health and Epidemiology

Hierarchy of Study Design (mine)

- Systematic review + meta analysis
- Randomized designs (RCT)
- Natural experiments
- Cohort studies
- Case control studies
- Cross-sectional & ecological studies

Study design and regression

- All study designs can and do use regression to estimate associations (effects)
- It's crucial to consider the design when thinking about regression.
 - An Odds Ratio (OR) from one study is not the same as one from another study.

Regression in general

- Create a model that fits the data
- Common model types are named because of the distribution of the outcome variable
 - Or assumptions required for the models distribution

Common Distributions

- Normal or Gaussian
 - a) Bell curve
- Uniform
- Count type
 - a) Poisson and negative binomial
- Bernoulli
 - a) Yes or no
- Many, many, more
 - a) https://en.wikipedia.org/wiki/List_of_probability_distributions

Normal (Gaussian) distribution

Linear regression

Count type distribution

- Poisson models
- Negative binomial models
 - Zero inflated models

Bernoulli distribution

- Logistic regression
 - Probit regression
 - Tobit regression

Logistic regression

Logistic regression

- Dichotomous outcome
- Modelling logit transformation of the probability of the outcome as a linear function of a set of predictor variables
 - a) Log odds of the outcome
- This transformation leads to the logistic model
- Can compute the odds of disease and odds ratio for disease that is associated with the presence of factor X (predictor)
- Can be extended to multiple predictors

Fitting a logistic model

- Set of parameter values that are most likely to have produced the observed data
 - a) Maximum likelihood (ML) estimates
 - In reality, these will be very, very small
 - c) Because of this (and because the estimation is easier) software packages usually work with the log likelihood
- Parameter estimate that gives you the maximum likelihood of having the binary outcome values 0/1

Typically for rare(ish) outcomes

- Distribution of 1/0 (cases/non cases) should be 5-15% for one and the inverse for the other.
- If the cases are too common logistic regression will overestimate the effect size
 - a) Probit regression
 - b) Tobit regression
- Software package side note
 - a) Make sure you are modelling the right level of your outcome variable
 - b) Some take 1 as the reference others take 0 as the reference by default

Likelihood ratios

- To determine overall significance of the model = likelihood ratio test
 - a) Compares the likelihood of the 'full' model (predictors added) with the 'null' model (no predictors)
 - Analogous to F-test in linear regression
 - b) For model comparison, the models must be nested (predictors in the simpler model must be a subset of those in the full model)
- To determine significance of individual predictors = Wald test

Model interpretation

- The coefficients in a logistic regression model represent the amount the logit of the probability of the outcome changes with a unit increase in the predictor
 - a) Not easy to interpret!
- Therefore convert the coefficients to odds ratios
 - a) Exponentiation
- Continuous predictors: OR represents the factor by which the odds of disease are multiplied for 1-unit change in the predictor
- Categorical predictor: as with linear regression, convert to dummy variables – coefficient represents the effect of that level to baseline

Logistic regression: small group discussion

- We are interested in how variables, such as GRE score, grade point average and 'prestige' of the undergrad institution effect admission to graduate school
- Outcome: admit (binary variable: admit/don't admit)
- Predictors: gre, gpa (continuous variables) and rank (1 to 4; 1 is 'highest' prestige)
- Interpret the predictors
- Does this group of predictors reliably predict the dependent variable?
 How do you know?

logit admit gre gpa i.rank

Iteration 0:	$log\ likelihood = -249.98826$
Iteration 1:	log likelihood = -229.66446
Iteration 2:	$log\ likelihood = -229.25955$
Iteration 3:	log likelihood = -229.25875
Iteration 4:	$log\ likelihood = -229.25875$

Logistic regression	Number of obs	=	400
	LR chi2(5)	=	41.46
	Prob > chi2	=	0.0000
log likelihood = -229.25875	Pseudo R2	=	0.0829

admit	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
gre	.0022644	.001094	2.07	0.038	.0001202	.0044086
gpa	.8040377	.3318193	2.42	0.015	.1536838	1.454392
1						
rank						
2	6754429	.3164897	-2.13	0.033	-1.295751	0551346
3	-1.340204	.3453064	-3.88	0.000	-2.016992	6634158
4	-1.551464	.4178316	-3.71	0.000	-2.370399	7325287
1						
cons	-3.989979	1.139951	-3.50	0.000	-6,224242	-1.755717

Source: IDRE

logit , or

Logistic regression			er of obs = hi2(5) = > chi2 =	400 41.46 0.0000
Log likelihood = -229.25875		Pseu	do R2 =	0.0829
admit Odds Ratio Std. Err.	Z	P> z	[95% Conf.	Interval]
gre 1.002267 .0010965	2.07	0.038	1.00012	1.004418
gpa 2.234545 .7414652	2.42	0.015	1.166122	4.281877
rank $\frac{1}{1}$				
2 .5089309 .1610714	-2.13	0.033	.2736922	.9463578
3 .2617923 .0903986	-3.88	0.000	.1330551	.5150889
4 .2119375 .0885542	-3.71	0.000	.0934435	.4806919

Confounding and interaction

As with linear regression

- Confounding: 'substantial' (typically >10%) change in coefficient
 - a) Statistical assessment don't forget to also include confounding variables from your DAG regardless of statistical assessment results
- Interaction: Cross-product term

Logistic regression assumptions

- Independence
 - a) Observations are independent from one another
- Linearity
 - a) Any predictor measured on a linear scale is assumed to have a linear relationship with the outcome
- Regression model diagnostics:
 - a) A whole topic in and of itself

Studying

- So many primers on logistic regression!
 - a) Harris JK. Primer on binary logistic regression. Fam Med Community Health. 2021 Dec;9(Suppl 1):e001290. https://doi.org/10.1136%2Ffmch-2021-001290
 - b) https://github.com/jenineharris/logistic-regression-tutorial

Goal of model building

- Best fit and parsimonious
- "Simplest model using the minimum number of parameters needed to explain a given phenomenon"
 - Raykov & Marcoulides, 1999

- Focus here is on statistical models but there are others
- History in epidemiology:
 - a) William Farr, 1840
- Decide on the goal of the model building
 - a) Predict vs causal
- Multivariable model building
 - a) Multivariate vs multivariable? https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518362/
 - b) Incorporate both statistical and subject matter knowledge
- Balance best fit with parsimony
 - a) Definition of 'best fit' and parsimonious will depend on the goal
 - b) For example, in machine learning, you may not want the most parsimonious

Objectives of model-building

- In general, regression modelling has one of two broad objectives:
 - Best fitting model to predict future observations
 - Details of model may not matter (such as effect of specific predictors) but need to exclude any variable with a questionable relationship with the outcome
 - 2. Understand the relationship(s) (potentially causal) between one or more predictors and outcome of interest
 - Requires most precise coefficient estimates possible for variables of interest; careful attention to confounding and interaction
 - Most often the goal of epidemiological models

Model-building: Steps

- Specify the maximum model to be considered i.e.) identify the outcome and full set of predictors
- Specify the criterion/criteria to be used in selecting the variables to be included in the model
- 3. Specify the strategy for applying the criterion/criteria
- Conduct the analyses
 - Forward or backward step by step approach
 - 2. Stepwise forward or backward
 - Best subset method.
- 5. Evaluate reliability of model chosen

Model building

- Is an art and a science
 - a) Both non-mathematical and mathematical
- Draw causal diagram
- Know your data, research question, study design, hypothesis, goal
- Iterative process
 - a) Fitting, assessing, comparing, diagnosing issues, fitting, assessing, comparing, diagnosing...
 - b) Potential interaction, confounding, violating model assumptions, 'best fit',
- Parsimony, best fit and interpretation

Model assumptions

Linear regression

- Validity and representativeness
- Additivity and linearity
- Independence of errors
- Equal variance of errors
- Normality of errors

Logistic regression

- Validity and representativeness
- Additivity and linearity
- Independence of errors

How to assess?

To assess:

- Plot outcome vs fitted values
- Plot residuals vs fitted values
- Plot residuals vs continuous covariates
- Plot residuals vs time/spatial/cluster dependent covariates
- QQ plots of the residuals

Other

- Multicollinearity of predictors
 - a) Variance inflation factor
- Influence measures of particular observations/covariate patterns
- For binary and survival outcomes: calibration and discrimination

Paper Review

Lavoie K, Gosselin-Boucher V, Stojanovic J, Gupta S, Gagné M, Joyal-Desmarais K, Séguin K, Gorin SS, Ribeiro P, Voisard B, Vallis M, Corace K, Presseau J, Bacon S; iCARE Study Team. Understanding national trends in COVID-19 vaccine hesitancy in Canada: results from five sequential cross-sectional representative surveys spanning April 2020-March 2021. BMJ Open. 2022 Apr 5;12(4):e059411. https://doi.org/10.1136/bmjopen-2021-059411

- What is the outcome variables
 - a) How was it created?
- What are the predictor variables
 - a) Why were they included in the model
 - b) What are their associations with the outcome
- What is the study design?
- Is the outcome common or not?