PH 223 Week 9

Benjamin Bauml and Danielle Skinner

Winter 2024

The first two problems are borrowed/adapted from Chapters 29 and 30 of the Student Workbook for Physics for Scientists and Engineers.

Activity 1

A metal wire is resting on a U-shaped conducting rail. The rail is fixed in position, but the wire is free to move.

vi. Move out of the plane of the page, breaking contact with the rail?

(a) If the magnetic field is increasing in strength, does the wire:

i. Remain in place?

ii. Move to the right?

iii. Move to the left?

iv. Move up on the page?

viii. Rotate clockwise? v. Move down on the page? ix. Some combination of these? If so, which?

Explain your choice.

(b) If the magnetic field is decreasing in strength, which of the above happens? Explain.

vii. Rotate clockwise?

Activity 2

The magnetic field above the dotted line is $\vec{B} = (2 \text{ T, right})$. Below the dotted line, the field is $\vec{B} = (2 \text{ T, left})$. Each closed loop is $1 \text{ m} \times 1 \text{ m}$.

(a) Let's evaluate the line integral of \vec{B} around each of these closed loops by breaking the integration into four steps. We'll go around the loop in a *clockwise* direction. Pay careful attention to signs.

	Loop 1	Loop 2	Loop 3
$\int \vec{B} \cdot d\vec{s}$ along left edge			ALCOHOL SECURIOR SEASON SHAP SHAPE SHAPE SECURIOR SECURIO
$\int \vec{B} \cdot d\vec{s}$ along top	e e e e e e e e e e e e e e e e e e e	anage opening so so all places are not to the place of th	Annulativitation and property to account the submitted addressed to be body of investigatory and
$\int \vec{B} \cdot d\vec{s}$ along right edge	whether the edge of the part of the property of the property and the special states.	So with the transfer company $a_{ij}(x) = a_{ij}(x) + a_{ij}(x) +$	*** **********************************
$\int \vec{B} \cdot d\vec{s}$ along bottom	ALTER CALLEY, THE THE PARTY OF	Management and approximately 100 to 1	
The line integral around the loop i	s simply the sum of thes	e four separate integrals:	:
$\oint \vec{B} \cdot d\vec{s}$ around the loop	THE RESIDENCE OF THE PROPERTY	1	

(b) What is the current through loop 2, and what direction is it in?

Activity 3: Induction Table

(a) For each case below, fill out the table with the corresponding information. If the quantity is a vector, draw an arrow indicating the direction of the vector. If it is a scalar, indicate the sign of the scalar with a +, -, or 0. Remember that $\vec{\mu} = I\vec{A}$.

On the loops, draw the up area vector in red and the down area vector in black. When you determine the current for each area vector, draw the direction of the current on the loop with the corresponding color. Case A has been completed as an example.

- (b) Does your choice of area vector change the final answer?
- (c) How is the direction of $\vec{\mu}$ related to the direction of the change in the external magnetic field?

 \vec{B} points up and is constant.

 \vec{B} points up and is increasing.

 \vec{B} points up and is decreasing.

 \vec{B} points down and is constant.

 \vec{B} points down and is increasing.

 \vec{B} points down and is decreasing.

	Cas	Case A		Case B		Case C		Case D		Case E		Case F	
$ec{A}$	†	+											
$ec{B}$	1	↑											
Φ_B	+	_											
$\frac{d\Phi_B}{dt}$	0	0											
V_{ind}	0	0											
I_{ind}	0	0											
$ec{\mu}$	0	0										·	