

Cambridge O Level

COMBINED SCIENCE 5129/12

Paper 1 Multiple Choice May/June 2021

1 hour

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

INSTRUCTIONS

There are **forty** questions on this paper. Answer **all** questions.

- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

1 The diagram shows a plant cell.

Which parts of the cell are only present in plant cells?

- **A** 1, 2 and 3
- **B** 1, 3 and 5
- **C** 2, 4 and 6
- **D** 4, 5 and 6

- 2 Which definition of diffusion is correct?
 - A the movement of molecules from a higher to a lower concentration, against a concentration gradient
 - **B** the movement of molecules from a higher to a lower concentration, down a concentration gradient
 - **C** the movement of molecules from a lower to a higher concentration, against a concentration gradient
 - **D** the movement of molecules from a lower to a higher concentration, down a concentration gradient
- **3** Enzymes are vital in changing insoluble materials into soluble forms so that a germinating seed can make use of them.

Which factor is important in speeding up these changes?

- A carbon dioxide
- **B** humidity
- C light
- **D** temperature

4 Which of the aquatic plants in the diagram below is likely to have the lowest rate of photosynthesis?

5 The graphs show how the concentration of amino acids and glucose in the blood change during and after a meal.

Which point shows carbohydrate has been absorbed through the wall of the small intestine?

- 6 What causes a plant to wilt?
 - A when the amount of water lost during transpiration is greater than the water uptake through the roots
 - **B** when the amount of water lost during transpiration is less than the water uptake through the
 - **C** when the amount of water used during photosynthesis is greater than the water uptake through the roots
 - **D** when the amount of water used during photosynthesis is less than the water uptake through the roots

7 The diagram shows a human heart.

The four valves in the heart are labelled W, X, Y and Z.

Which valves would be open and which valves would be closed as blood leaves the heart?

	open	closed
Α	X and Z	W and Y
В	X and Y	W and Z
С	W and Z	X and Y
D	W and Y	X and Z

- 8 Which statements about anaerobic respiration are correct?
 - 1 It produces carbon dioxide.
 - 2 It produces lactic acid.
 - 3 It releases more energy than aerobic respiration.
 - 4 It takes place in the absence of oxygen.

A 1 and 2 **B** 1 and 4 **C** 2 and 3 **D** 2 and 4

9 Blood is tested for glucose, protein, urea and water before entering and after leaving an organ. The results are shown on the graph.

What is the organ?

- A intestine
- **B** kidney
- C liver
- **D** lungs
- **10** What is the function of the ciliary muscles of the eye?
 - A to blink the eyelids
 - **B** to change the shape of the lens
 - C to enlarge the size of the pupil
 - **D** to move the eyeball around
- **11** A drug is an1..... administered substance which modifies2..... reactions in the body.

Which words correctly complete gaps 1 and 2?

	1	2
Α	externally	chemical
В	externally	physical
С	internally	chemical
D	internally	physical

12 The diagram shows the carbon cycle.

Which arrows represent respiration?

- **A** 1 and 2
- **B** 1 and 4
- **C** 2 and 3
- **D** 3 and 4

- **13** Strawberry plants can reproduce:
 - asexually by runners
 - sexually by seeds.

Which statement is correct?

- A Plants from runners have one parent and are genetically identical.
- **B** Plants from runners have two parents and are genetically different.
- **C** Plants from seeds have one parent and are genetically different.
- **D** Plants from seeds have two parents and are genetically identical.

14 The diagram shows a condenser.

Where do the hot vapour and the cooling water enter the condenser?

	hot vapour	cooling water
Α	Р	Q
В	Р	R
С	Q	Р
D	Q	S

15 Which row describes the arrangement and movement of particles in solid sodium chloride?

	arrangement	movement
Α	random	moving rapidly through the solid
В	random	vibrating about a fixed point
С	regular	moving rapidly through the solid
D	regular	vibrating about a fixed point

- **16** Which statement describes isotopes of the same element?
 - **A** They have the same number of electrons and neutrons.
 - **B** They have the same number of neutrons and a different number of protons.
 - **C** They have the same number of protons and a different number of neutrons.
 - **D** They have the same number of protons and neutrons.

17 The atomic structure of four particles is shown.

particle	neutrons	protons	electrons
W	15	11	10
X	16	11	11
Y	16	15	16
Z	17	17	17

Which particles are ions?

- A W and X
- **B** W and Y
- **C** X and Z
- **D** Y and Z

18 Which dot-and-cross diagram shows the arrangement of the outer electrons in a molecule of carbon dioxide?

- **19** Which formula has the greatest number of atoms?
 - A $Fe_2(SO_4)_3$
 - B Cu(CH₃COO)₂
 - **C** Ca₃(PO₄)₂
 - \mathbf{D} (NH₄)₂CO₃

20 Substance X dissolves readily in water. When X dissolves it releases positive ions and hydroxide ions.

Which statement about the solution of substance X is correct?

- A It has a pH below 7.
- **B** It reacts rapidly with magnesium to release hydrogen.
- C It reacts with ammonium chloride to release ammonia gas.
- **D** It turns universal indicator paper red.
- 21 Which electronic structure is that of a non-metal?
 - **A** 2,5
- **B** 2,3
- **C** 2,2
- **D** 2,1

22 Four metals, W, X, Y and Z, are tested with water, steam and dilute hydrochloric acid.

The results are shown.

W does not react with cold water or steam and only reacts slowly with dilute hydrochloric acid.

Z reacts slowly with cold water, reacts moderately fast with steam and reacts rapidly with dilute hydrochloric acid.

Y reacts vigorously with cold water.

X does not react with cold water, reacts very slowly with steam and reacts moderately fast with dilute hydrochloric acid.

What is the order of reactivity of the metals?

	most react	ive —	→ lea	ast reactive
Α	W	Х	Z	Y
В	W	Z	Х	Y
С	Y	Х	Z	W
D	Y	Z	X	W

- 23 What is a use of zinc?
 - A containers for food
 - **B** electrical wiring
 - C making brass
 - D making cutlery

24	The	ne global atmospheric concentration of carbon dioxide has increased in the last 200 years.						
	Wh	ich proce	esses are ca	using this incre	ase?	•		
		1	emissions	from motor veh	icles			
		2	photosynth	nesis				
		3	power stat	ions using coal	and o	oil		
	Α	1, 2 and	13 B	1 and 2 only	С	1 and 3 only	D	2 and 3 only
25	Wh	ich stateı	ment about	the manufactur	e of a	ammonia by the	Hab	er process is correct?
	Α	The hyd	lrogen is ob	tained from the	air.			
	В	The pro	cess uses p	owdered iron a	s a c	atalyst.		
	С	The pro	cess uses a	low temperatu	re.			
	D	The pro	cess uses a	ıtmospheric pre	ssure	э.		
20	۱۸/۱۵	iob ototov		manulara af an	h a na	alamaya aasiaa i		····a at?
26		nich statement about members of an homologous series is correct?						
	Α	Alkanes are an homologous series with a general formula of C _n H _{2n+2} .						
	В	Each member of the series has different chemical properties.						
	С					ent functional gr	•	
	D	Each m	ember of the	e series differs	from	the next by a Cl	H₃ gr	oup.
27	Pet	roleum is	separated	into fractions by	y frac	tional distillation	٦.	
	Wh	ich state	ments are c	orrect?				
		1	Petroleum	is vaporised be	fore	it enters the frac	ctiona	ating tower.
		2	Fractions v	vith low boiling	point	s are used as fu	ıels.	
		3	Fractions v	vith high boiling	poin	ts condense at	the to	op of the fractionating tower.
		4	The fractio	nating tower is	cool	at the bottom ar	nd ho	t at the top.
	Α	1 and 2	В	1 and 4	С	2 and 3	D	3 and 4

28 The diagrams show a measuring cylinder containing water before and after a cork is placed in the cylinder.

Exactly half of the volume of the cork is under the water.

What is the total volume of the cork?

- **A** 10 cm³
- **B** 15 cm³ **C** 20 cm³
- \mathbf{D} 40 cm³

29 Which line on a speed–time graph shows when a body is moving at constant speed?

- a horizontal line
- a line that slopes downwards
- a line that slopes upwards C
- a vertical line

30 A block of metal has a mass of 1.00 kg on Earth. The density of the metal is 8000 kg/m³.

On a planet with a weaker gravitational field, which row could be correct for the block?

	mass/kg	weight/N	density/kg/m ³
Α	0.500	5	2000
В	0.500	5	8000
С	1.00	2	2000
D	1.00	2	8000

31 The diagram shows a boy of weight 500 N sitting on a see-saw. He sits 2.0 m from the pivot.

What force *F* is applied 4.0 m from the pivot to balance the see-saw?

- **A** 250 N
- **B** 750 N
- **C** 1000 N
- **D** 3000 N

32 A force moves a block of wood up a slope at constant speed.

What happens to its kinetic energy and its gravitational potential energy as it moves up the slope?

	kinetic energy	gravitational potential energy
Α	constant	decreases
В	constant	increases
С	increases	decreases
D	increases	increases

33 A path is made by laying concrete slabs on a cold day. Gaps are left between the slabs.

On a hot day how does the size of each slab and the gaps between the slabs change?

- **A** The slabs and the gaps both become larger.
- **B** The slabs and the gaps both become smaller.
- **C** The slabs become larger and the gaps become smaller.
- **D** The slabs become smaller and the gaps become larger.
- 34 Which statement about waves is correct?
 - A All transverse waves travel at the same speed in a vacuum.
 - **B** Longitudinal waves can travel through a vacuum.
 - **C** Longitudinal waves cannot transfer energy.
 - **D** Transverse waves have vibrations at right-angles to the direction of travel.

35 The diagram shows the direction of the electrostatic forces acting on three charged objects P, Q and R.

Which diagram correctly shows the forces acting on the objects when they are arranged in a different order?

36 In the circuit shown, 2.0 C of charge move through the lamp in a time of 6.0 s.

What is the current in the circuit?

- **A** 0.33 A
- **B** 3.0 A
- **C** 4.0 A
- **D** 12A

37 A heating element is connected to a power supply of voltage V.

The current in the element is I and produces thermal energy E in time t.

What is the correct formula for *t* in terms of *I*, *V* and *E*?

- **A** $t = \frac{EV}{I}$ **B** $t = \frac{EI}{V}$ **C** $t = \frac{E}{VI}$ **D** $t = \frac{VI}{E}$

- 38 Which metal is used to make the core of an electromagnet?
 - aluminium
 - В copper
 - C iron
 - D steel
- 39 Which table correctly identifies the locations of electrons, neutrons and protons in an atom?

ļ	1

	inside nucleus	outside nucleus
electrons	✓	
neutrons	✓	
protons		✓

В

	inside nucleus	outside nucleus
electrons		~
neutrons		✓
protons	✓	

C

	inside nucleus	outside nucleus						
electrons		✓						
neutrons	✓							
protons	✓							

D

	inside nucleus	outside nucleus
electrons	~	
neutrons		✓
protons		✓

40 The nuclide iodine-128 is radioactive with a half-life of 25 minutes.

A sample of this nuclide has an initial activity of 1600 counts/second.

What will be the activity of this sample after 100 minutes?

- Α 50
- В 100
- C 200
- 400

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

		2	e L	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	牊	radon			
	\equiv				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Н	iodine 127	85	Ą	astatine -			
	>				8	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ъ	polonium —	116	_	livermorium —
	>				7	z	nitrogen 14	15	Ф	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209			
	≥				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Ŀ	flerovium —
	≡				5	М	boron 11	13	Al	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	g	cadmium 112	80	Нg	mercury 201	112	ပ်	copernicium –
											29	Cn	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -
Group	<u>.</u>										28	Ż	nickel 59	46	Pq	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium -
	5				,						27	ပိ	cobalt 59	45	格	rhodium 103	77	'n	iridium 192	109	Ĭ	meitnerium -
			Ε	hydrogen 1							26	Fe	iron 56	4	Ru	ruthenium 101	9/	SO	osmium 190	108	Hs	hassium -
											25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
					_	pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>Б</u>	tantalum 181	105	g D	dubnium —
						atc	re				22	j	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	¥	rutherfordium -
											21	လွ	scandium 45	39				lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium —
	_				8	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Вb	rubidium 85	55	S	caesium 133	87	ъ	francium -

71 Lu	lutetium 175	103	ב	lawrencium	ı
°2 Vb				_	
e9 Tm	thulium 169	101	Md	mendelevium	ı
₈₈ <u>п</u>	erbium 167	100	Fm	ferminm	I
67 Ho	holmium 165	66	Es	einsteinium	1
_® ∆	dysprosium 163	86	ర్	califomium	ı
es Tb	terbium 159	97	Ř	berkelium	ı
64 G d	gadolinium 157	96	Cm	curium	ı
e3 Eu	europium 152	92	Am	americium	ı
Sm	samarium 150	94	Pu	plutonium	ı
Pm	promethium	93	δ	neptunium	1
9 P N	neodymium 144	92	\supset	uranium	238
59 P	praseodymium 141	91	Ра	protactinium	231
Ce Sg	cerium 140	06	Ч	thorium	232
57 La	lanthanum 139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).