L665 Machine Learning for NLP 2. Probability Theory

Damir Cavar

Indiana University

January 2018

Outline

Reading

Probability Theory

Axioms of Probability

Random Variables

Cumulative Distribution Functions
Probability Mass Functions
Probability Density Functions
Expectation
Variance

Two Random Variables

Joint and Marginal Distributions

Joint and Marginal Probability Mass Functions

Reading

See syllabus

- Maleki & Do: Review of Probability Theory
- Manning & Schuetze: Ch. 2
- ▶ Goodfellow et al.: Ch. 3

The following slides are based on Maleki & Do: Review of Probability Theory

Probability Theory

- ▶ Mathematical framework: representing uncertain statements
 - quantifying uncertainty
 - axioms for deriving new uncertain statements
- ▶ In AI we use Probability Theory:
- laws of probability tell us how AI systems should reason
- so we design our algorithms to compute or approximate various expressions derived using probability theory.
- Second, we can use probability and statistics to theoretically analyze the behavior of proposed AI systems

Sample Space Ω

- ▶ The set of all the outcomes of a random experiment.
- ▶ Each outcome $\omega \in \Omega$ can be thought of as a complete description of the state of the real world at the end of the experiment.

Set of Events or Event Space $\mathcal F$

- ▶ A set whose elements $A \in \mathcal{F}$ (called events) are subsets of Ω .
- ▶ $A \subseteq \Omega$ is a collection of possible outcomes of an experiment.
- F should satisfy three properties:
 - \blacktriangleright $\emptyset \in \mathcal{F}$
 - $A \in \mathcal{F} \implies \Omega \setminus A \in \mathcal{F}$
 - $A_1, A_2, \dots \in \mathcal{F} \implies \bigcup_i A_i \in \mathcal{F}$

Probability Measure

- ▶ A function $P : \mathcal{F} \to R$ that satisfies the following properties,
 - ▶ $P(A) \ge 0$, for all $A \in \mathcal{F}$
 - $P(\Omega) = 1$
 - ▶ If $A_1, A_2, ...$ are disjoint events (i.e., $A_i \cap A_j = \emptyset$ whenever $i \neq j$), then

$$P(\cup_i A_i) = \sum_i P(A_i)$$

Example

- Tossing six-sided die.
- Sample space: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Different event spaces:
 - 1. simple event space $\mathcal{F} = \{\emptyset, \Omega\}$
 - 2. another event space could be all subsets of ${\mathcal F}$
- ▶ for 1., the unique probability measure is: $P(\emptyset) = 0, P(\Omega) = 1$
- for 2., one possibility would be to assign the probability of each set to $\frac{i}{6}$, with i= number of elements in the particular set, i.e. $P(\{1,2,3,4\})=\frac{4}{6}$ or $P(\{1,2,3\})=\frac{3}{6}$

Properties

- $A \subseteq B \implies P(A) \leq P(B)$
- ▶ $P(A \cap B) \leq min(P(A), P(B))$
- ▶ (Union Bound) $P(A cupB) \le P(A) + P(B)$
- $P(\Omega \setminus A) = 1 P(A)$
- ▶ (Law of Total Probability) if $A_1, ..., A_k$ is a set of disjoint events such that $\bigcup_{i=1}^k A_i = \Omega$, then $\sum_{i=1}^k P(A_i) = 1$

Conditional Probability

With *B*, and event with non-zero probability:

conditional probability of any event A given B is:

$$P(A|B) \triangleq \frac{P(A \cap B)}{P(B)} \tag{1}$$

- P(A|B) is the probability of event A after observing the event B.
- Two events are independent, if and only if

$$P(A \cap B) = P(A)P(B), or P(A|B) = P(A)$$
 (2)

▶ Independence: the occurrence of *B* has no impact on the probability of *A* occurring.

Experiment:

- flipping 10 coins, asking for the number of coins coming up heads
- ▶ sample space Ω contains sequences of length 10 of heads and tails, e.g. $w_0 = \langle H, H, T, H, T, H, H, T, T, T \rangle \in \Omega$
- ► Practically: we are not necessarily interested in obtaining any particular sequence of heads and tails, but rather
- real-valued functions of outcomes
 - number of heads among 10 coin flips
 - ▶ length of the longest run of tails
- these functions are known as: Random Variables

Experiment:

- ▶ random variable X is a function $X : \Omega \to \mathbb{R}$.
- random variables denoted using upper case letters $X(\omega)$ or more simply X (where the dependence on the random outcome ω is implied)
- value that a random variable may take denoted using lower case letters x

Example: experiment above

- $X(\omega)$ is the number of heads that occur in the sequence of tosses ω .
- only 10 coins are tossed, $X(\omega)$ can take only a finite number of values
- so it is known as a discrete random variable.
- ▶ Here, the probability of the set associated with a random variable X taking on some specific value k is

$$P(X = k) := P(\omega : X(\omega) = k)$$
 (3)

Example:

- ▶ Suppose that $X(\omega)$ is a random variable indicating the amount of time it takes for a radioactive particle to decay.
- ▶ In this case, $X(\omega)$ takes on a infinite number of possible values, so it is called a continuous random variable.
- ▶ We denote the probability that X takes on a value between two real constants a and b (where a < b) as</p>

$$P(a \le X \le b) := P(\omega : a \le X(\omega) \le b)$$
 (4)

Functions:

- to specify the probability measures used when dealing with random variables
- alternative functions (CDFs, PDFs, and PMFs) are specified
- probability measures governing an experiment immediately follow from these functions

CDF:

- for a real-valued random variable X, or just distribution function of X, evaluated at x, is the probability that X will take a value less than or equal to x
- ▶ a function $F_X : \mathbb{R} \to [0,1]$ which specifies a probability measure as, $F_X(x) \triangleq P(X \leq x)$.
- **b** by using this function one can calculate the probability of any event in \mathcal{F} (i.e. the Event Space)

Sample CDF functions (Wikipedia)

CDF Properties:

- ▶ $0 \le F_X(x) \le 1$
- $\lim_{x \to -\infty} F_X(x) = 0$
- $\lim_{x\to\infty} F_X(x) = 1$
- $\triangleright x \leq y \implies F_X(x) \leq F_X(y)$

Probability Mass Functions

PMF:

- ► X, a random variable that takes on a finite set of possible values (i.e. X is a discrete random variable)
- ► representing the probability measure associated with *X* by directly specifying the probability of each value that the random variable can assume
- ► that is: a PMF is a function that gives the probability that a discrete random variable is exactly equal to some value

Probability Mass Functions

PMF:

- ▶ A function $p_X : \Omega \to \mathbb{R}$ such that $p_X(x) \triangleq P(X = x)$
- ► For discrete random variables: Val(X) is the set of possible values that the random variable X may assume
- Example: if $X(\omega)$ is a random variable indicating the number of heads out of ten tosses of a coin, then $Val(X) = \{0, 1, 2, ..., 10\}.$

Probability Mass Functions

PMF Properties:

- ▶ $0 \le p_X(x) \le 1$
- $\blacktriangleright \sum_{x \in Val(X)} p_X(x) = 1$
- ► $\sum_{x \in A} p_X(x) = P(X \in A)$ (A a set of elements in the Event Space \mathcal{F})

Rates at which quantities change

The differential represents the principal part of the change in a function y = f(x) with respect to changes in the independent variable.

The differential dy is defined by

$$dy = f'(x) dx (5)$$

where f'(x) is the derivative of f with respect to x, and dx is an additional real variable (so that dy is a function of x and dx). The notation is such that the equation

$$dy = \frac{dy}{dx} dx \tag{6}$$

Rates at which quantities change

Constant function: f(x) = c

- ▶ Derivative: f'(x) = 0
- ▶ Example: f(x) = -10, then f'(x) = 0

Power rule: $f(x) = x^r$ with r a constant from \mathbb{R}

- ▶ Derivative: $f'(x) = rx^{r-1}$
- ► Example: $f(x) = x^{-2}$, then $f'(x) = -2x^{-3} = \frac{-2}{x^3}$

Function multiplied by a constant: f(x) = cg(x)

- ▶ Derivative: f'(x) = cg'(x)
- ► Example: $f(x) = 3x^3$, for c = 3 and $g(x) = x^3$, $f'(x) = cg'(x) = 3(3x^2) = 9x^2$

Sum of functions: f(x) = g(x) + h(x)

- ▶ Derivative: f'(x) = g'(x) + h'(x)
- ► Example: $f(x) = x^2 + 4$, for $g(x) = x^2$ and h(x) = 4, f'(x) = g'(x) + h'(x) = 2x + 0 = 2x

Difference of functions: f(x) = g(x) - h(x)

- ▶ Derivative: f'(x) = g'(x) h'(x)
- ► Example: $f(x) = x^3 x^{-2}$, for $g(x) = x^3$ and $h(x) = x^{-2}$, $f'(x) = g'(x) h'(x) = 3x (-2x^{-3}) = 3x^2 + 2x^{-3}$

Product of two functions: f(x) = g(x)h(x)

- ▶ Derivative: f'(x) = g(x)h'(x) + h(x)g'(x)
- ► Example: $f(x) = (x^2 2x)(x 2)$, for $g(x) = x^2 2x$ and h(x) = x 2, $f'(x) = g(x)h'(x) + h(x)g'(x) = (x^2 2x)1 + (x 2)(2x 2) = x^2 2x + 2x^2 6x + 4 = 3x^2 8x + 4$

Quotient of two functions: $f(x) = \frac{g(x)}{h(x)}$

- ▶ Derivative: $f'(x) = \frac{(h(x)g'(x) g(x)h'(x))}{h(x)^2}$
- ► Example: $f(x) = \frac{x-2}{x+1}$, for g(x) = x-2 and h(x) = x+1, $f'(x) = \frac{h(x)g'(x) g(x)h'(x)}{h(x)^2} = \frac{(x+1)1 (x-2)1}{(x+1)^2} = \frac{3}{(x+1)^2}$

Probability Density Functions

- ▶ For some continuous random variables, the CDF $F_X(x)$ is differentiable everywhere.
- ► That is, for a function to be differentiable means that for one real variable a derivative exists at each point in its domain.
- ▶ In these cases: the PDF is the derivative of the CDF

$$f_X(x) \triangleq \frac{dF_X(x)}{dx}$$
 (7)

The PDF for a continuous random variable may not always exist (i.e., if $F_X(x)$ is not differentiable everywhere).

According to the properties of differentiation, for very small Δx ,

$$P(x \le X \le x + \Delta x) \approx f_X(x)\Delta x \tag{8}$$

Probability Density Functions

PDF:

- density of a continuous random variable
- ▶ is a function value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) interpreted as providing a relative likelihood that the value of the random variable would equal that sample
- the PDF is used to specify the probability of the random variable falling within a particular range of values, as opposed to taking on any one value
- probability given by the integral of this variable's PDF over that range

Expectation

The expectation of g(X): a "weighted average" of the values that g(x) can taken on for different values of x, where the weights are given by $p_X(x)$ or $f_X(x)$.

- ▶ X a discrete random variable with PMF $p_X(x)$ and an arbitrary function $g : \mathbb{R} \to \mathbb{R}$.
- ▶ g(X) can be considered a random variable, and we define the expectation or expected value of g(X) as $E[g(X)] \triangleq \sum_{x \in Val(X)} g(x) p_X(x)$
- ▶ If X is a continuous random variable with PDF $f_X(x)$, then the expected value of g(X) is defined as, $E[g(X)] \triangleq \int_{-\infty}^{\infty} g(x) f_X(x) dx$

As a special case of the above, note that the expectation, E[X] of a random variable itself is found by letting g(x) = x; this is also known as the mean of the random variable X.

Expectation

Example:

- six-sided dice
- expected value is the arithmetic mean of the value of a large number of experiments

In Python?

```
% frame needs [fragile]
import random
random.seed()
count = 1000
sum([random.randrange(1,7) for x in range(count)])/count
```

Variance

For a random variable X: how concentrated the distribution of a random variable X is around its mean.

Formal definition: the variance of a random variable X:

$$Var[X] \triangleq E[(X - E(X))^2]$$
 (9)

We can derive the alternate expression:

$$E[(X - E[X])^{2}] = E[X^{2} - 2E[X]X + E[X]^{2}]$$

$$= E[X^{2}] - 2E[X]E[X] + E[X]^{2}$$

$$= E[X^{2}] - E[X]^{2}$$
(10)

▶ the second equality follows from linearity of expectations and the fact that *E*[*X*] is actually a constant with respect to the outer expectation

Two Random Variables

Considering more than one quantity during a random experiment. **Experiments with two variables:**

- flip a coin ten times:
 - variable 1: $X(\omega)$ = the number of heads that come up
 - variable 2: $Y(\omega)$ = the length of the longest run of consecutive heads

Given two random variables X and Y:

- ▶ **Possibility 1**: Consider each of them separately, we need only $F_X(x)$ and $F_Y(y)$
- Possibility 2: Considering the values that X and Y take simultaneously during outcomes of a random experiment, we need the Joint Cumulative Distribution Function (CDF) of X and Y:

$$F_{XY}(x,y) = P(X \le x, Y \le y) \tag{11}$$

Knowing the Joint CDF, the probability of any event involving X and Y can be calculated.

Joint CDF $F_{XY}(x, y)$ and the **Joint Distribution Functions** $F_X(x)$ and $F_Y(y)$ of each variable separately are related by

$$F_X(x) = \lim_{y \to \infty} F_{XY}(x, y) dy \tag{12}$$

$$F_Y(y) = \lim_{x \to \infty} F_{XY}(x, y) dx \tag{13}$$

 $F_X(x)$ and $F_Y(y)$ are the Marginal Cumulative Distribution Functions of $F_{XY}(x,y)$.

Properties:

- ▶ $0 \le F_{XY}(x, y) \le 1$
- $ightharpoonup \lim_{x,y\to\infty} F_{XY}(x,y) = 1$
- $\lim_{x,y\to-\infty} F_{XY}(x,y) = 0$
- $F_X(x) = \lim_{y \to \infty} F_{XY}(x, y)$

Joint and Marginal Probability Mass Functions

If X and Y are discrete random variables, then the **Joint Probability Mass Function** $p_{XY}: \mathbb{R} \times \mathbb{R} \to [0,1]$ is defined by

$$p_{XY}(x,y) = P(X = x, Y = y)$$
 (14)

We assume, $0 \le P_{XY}(x, y) \le 1$ for all x, y, and $\sum_{x \in Val(X)} \sum_{y \in Val(Y)} P_{XY}(x, y) = 1$.

How does the joint PMF over two variables relate to the probability mass function for each variable separately?

Joint and Marginal Probability Mass Functions

Next Steps

For Probability Theory:

- ► Maleki & Do: Review of Probability Theory
- Read Manning and Schuetze Chapter 2
- Read Deep Learning Book Chapter 3

For Linear Algebra:

- Read Deep Learning Book Chapter 2
- Kolter (and Do): Linear Algebra Review and References