Chapter 4 Determinants

4.1 Determinants of Order 2

Definition. Determinant If A is $2 \times n$ matrix with entries from a field F, then we define the determinant of A, denoted det (A) or |A|, to be the scalar ad - bc

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Determinant $M_{2\times n}(F) \to F$ is not a linear transformation since $\det(A+B) \neq \det(A) + \det(B)$

Theorem. 4.1 Determinant is Linear in Each Row The function det: $M_{2\times n}(F) \to F$ is a linear function of each row of a $2\times n$ matrix when the other row is held fixed. That is, if u, v and w are in F^2 and k is a scalar, then

$$\det \begin{pmatrix} u + kv \\ w \end{pmatrix} = \det \begin{pmatrix} u \\ w \end{pmatrix} + k \det \begin{pmatrix} v \\ w \end{pmatrix} \qquad \det \begin{pmatrix} w \\ u + kv \end{pmatrix} = \det \begin{pmatrix} w \\ u \end{pmatrix} + k \det \begin{pmatrix} w \\ v \end{pmatrix}$$

Theorem. 4.2 Nonzero Determinant Implies Invertibility Let $A \in M_{n \times n}(F)$. Then the determinant of A is nonzero if and only if A is invertible. Moreover, if A is invertible, then

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{pmatrix}$$

4.2 Determinants of Order *n*

Definition. Matrix for Computing Minors Let $A \in M_{n \times n}(F)$, for $n \ge 2$, denote $(n-1) \times (n-1)$ matrix obtained from A by deleting row i and column j by \tilde{A}_{ij}

Definition. Determinants Let $A \in M_{n \times n}(F)$. If n = 1, $A = (A_{11})$, define det $(A) = A_{11}$. For $n \ge 2$, we define det (A) recursively as

$$det(A) = \sum_{j=1}^{n} (-1)^{1+j} A_{1j} \cdot det(\tilde{A}_{1j})$$

The scalar det (A) is called the determinant of A and is also denoted by |A|. The scalar

$$c_{ij} = (-1)^{i+j} \det\left(\tilde{A}_{ij}\right)$$

is called the **cofactor** of the entry of A in row i, and column j. So determinant can be expressed as a **cofactor expansion along the first row** of A

$$det(A) = A_{11}c_{11} + A_{12}c_{12} + \dots + A_{1n}c_{1n}$$

Definition. Determinant for Identity Determinant of $n \times n$ identity matrix is 1

Theorem. 4.3 Determinant is Linear in Each Row The determinant of an $n \times n$ matrix is a linear function of each row when the remaining rows are held fixed. That is, for $1 \le r \le n$, we have

$$det \begin{pmatrix} a_1 \\ \vdots \\ a_{r-1} \\ u + kv \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix} = det \begin{pmatrix} a_1 \\ \vdots \\ a_{r-1} \\ u \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix} + kdet \begin{pmatrix} a_1 \\ \vdots \\ a_{r-1} \\ v \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix}$$

where $k \in F$, and $u, v, a_i \in F^n$ are row vectors

Corollary. If $A \in M_{n \times n}(F)$ has a row consisting entirely of zeros, then det(A) = 0

Lemma. Let $B \in M_{n \times n}(F)$, where $n \ge 2$. If row i of B equals e_k for some k $(1 \le k \le n)$, then

$$det(B) = (-1)^{i+k} det(\tilde{B}_{ik})$$

Theorem. 4.4 Cofactor Expansion Along Any Row Yields Determinant The determinants of a square matrix can be evaluated by cofactor expansion along any row. That is, if $A \in M_{n \times n}(F)$, then for any integer i $(1 \le i \le n)$,

$$det(A) = \sum_{j=1}^{n} (-1)^{i+j} A_{ij} \cdot det(\tilde{A}_{ij})$$

Corollary. Same Rows Implies Zero Determinant If $A \in M_{n \times n}(F)$ has two identical rows, then det(A) = 0

Theorem. 4.5 Switching Rows Yields Negative Determinant

If $A \in M_{n \times n}(F)$ and B is a matrix obtained from AE by interchanging any two rows of A, then det(B) = -det(A)

Theorem. 4.6 Adding a Multiple of One Row to Another Do Not Change Determinant

Let $A \in M_{n \times n}(F)$, and let B be a matrix obtained by adding a multiple of one row of A to another row of A. Then det(B) = det(A)

Corollary. If $A \in M_{n \times n}(F)$ has rank less than n, then det(A) = 0

Definition. Simplifying Operations for Computing Determinants Applying elementary operation to A yields B

1. Exchanging two rows of A, then det(B) = -det(A). (det(E) = -1)

- 2. Multiply a row of A by a scalar, then det(B) = kdet(A). (det(E) = k)
- 3. Add a multiple of one row of A to another row of A, then det(B) = det(A). (det(E) = 1)
- 4. $det(E^t) = det(E)$

Definition. Upper Triangular Matrix The determinant of an upper triangular matrix is the product of its diagonal entries.

Can use type 1,3 elementary operation to convert a matrix to upper triangular form, then compute determinants

4.3 Properties of Determinants

Theorem. 4.7 Multiplication Rule for Determinants For any $A, B \in M_{n \times n}(F)$,

$$det(AB) = det(A) \cdot det(B)$$

Corollary. Determinant of Inverse Matrix A matrix $A \in M_{n \times n}(F)$ is invertible if and only if $\det(A) \neq 0$. Furthermore, if A is invertible, then $\det(A^{-1}) = \frac{1}{\det(A)}$

Theorem. 4.8 Matrix Transpose Have Equal Determinant For any $A \in M_{n \times n}(F)$,

$$det(A^t) = det(A)$$

Implies argument to rows can be applied to columns equally well

Theorem. 4.9 Cramer's Rule