

CISCO SYSTEMS

Sumário

- Virtual LANs
 - Conceito e vantagens
 - VLAN configuration

VLANs propagation between switchs

VTP Protocol

Encaminhamento de tráfego entre VLANs

- Routing using na external router
- Routing using a L3 Switch

VLANs - conceito

18/06/23

Virtual LANs – VLANs

- Definidas na norma IEEE802.1Q.
- VLAN's são grupos virtuais de estações e de equipamentos de rede.
 - Estações são os "computadores" ligados
- VLAN's são criadas como grupos de departamentos, grupos de trabalho, independentemente da localização física das estações.
 - Uma forma lógica de ter diferentes redes em cima da mesma rede física
- Estações só comunicam com estações da sua VLAN, tráfego entre VLAN's é limitado:
 - switches encaminham só tráfego unicast, multicast e broadcast entre segmentos da mesma VLAN.
- Diz-se que um ou mais switchs criam um domínio de broadcast.

VLAN - funcionamento

- Switch mantém brigding table por cada VLAN.
- Se uma frame vier de uma porta da VLAN1 o switch procura a tabela de bridging da VLAN1.
- Quando um frame é recebido o switch adiciona o endereço de origem à tabela de bridging, se ele ainda não existir.
- O destino é analisado para se tomar decisão de comutação (switching).
- A aprendizagem e o encaminhamento são feitos com base na tabela daquela VLAN.

Tabela que diz os MACs dos PC's ligados a cada porto do switch

VLANs and the Logical Network

Network Traffic Types

- Traffic types to consider:
 - Network management
 - IP telephony
 - Multicast
 - Normal data
 - Scavenger class

Implementing VLANs

What Is an End-to-End VLAN?

- Users are grouped into VLANs independent of physical location.
- If users are moved within the campus, their VLAN membership remains the same.

What Is a Local VLAN?

Benefits of Local VLANs in the ECNM

- Deterministic traffic flow
- Active redundant paths
- High availability
- Finite failure domain
- Scalable design

VLAN Configuration Modes

• Global Mode


```
Switch# configure terminal
Switch(config)# vlan 3
Switch(config-vlan)# name Vlan3
Switch(config-vlan)# exit
Switch(config)# end
```

VLAN Configuration Modes

• Database Mode


```
Switch# vlan database
Switch(vlan)# vlan 3

VLAN 3 added:
    Name: VLAN0003
Switch(vlan)# exit
APPLY completed.
Exiting....
```

VLAN Access Ports

The access switch port associated with a single data VLAN

VLAN Implementation Commands

Configuring VLANs

- vlan 101
- switchport mode access
- switchport access vlan 101

Verifying VLANs

- show interfaces
- show vlan

How to Implement a VLAN

- Create or configure a VLAN.
- Verify VLAN configuration.
- Associate switch ports with the VLAN.
- Verify switch port configuration.
- Test VLAN connectivity.
- Implement VLAN and switch security.

Configuring an Access VLAN

Switch(config) # vlan vlan_id

Create a VLAN.

Switch(config-vlan) # name vlan_name

Provide a VLAN name.

Switch(config-if)# switchport mode access

Place the switch port into access mode.

Switch(config-if) # switchport access vlan vlan_id

Associate the access switch port with a VLAN.

Verifying the Access VLAN Configuration

```
Switch#show vlan
VLAN Name
                                   Status
                                            Ports
    default
                                   active Fa0/1, Fa0/2, Fa0/3, Fa0/4
                                            Fa0/5, Fa0/7, Fa0/9
11 asw11 data
                                   active
12 asw12 data
                                   active
95 VLAN0095
                                            Fa0/8
                                   active
99 Trunk Native
                                   active
100 Internal Access
                                   active
111 voice-for-group-11
                                   active
112 voice-for-group-12
                                   active
1002 fddi-default
                                   act/unsup
1003 token-ring-default
                                   act/unsup
1004 fddinet-default
                                   act/unsup
1005 trnet-default
                                   act/unsup
VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1
    enet 100001 1500 -
11enet 100011
                 1500 -
. . . . .
```


Summary

- An end-to-end VLAN is geographically dispersed throughout the network.
- Local VLANs should be created with physical boundaries in mind.
- VLANs solve issues that arise in a Layer 2 switched network.
- VLANs can be configured globally or in VLAN database mode.
- An access switch port is associated with one VLAN.
- Cisco provides a series of commands to configure a VLAN and verify configuration on an access switch.
- A series of ordered steps should be followed to implement a VLAN.

Propagação de VLANs

Maintaining Specific VLAN Identification

- Specifically developed for multi-VLAN interswitch communications
- Places a unique identifier in each frame
- Functions at Layer 2

802.1Q VLAN frame format

VLAN Trunking

Comparing ISL and 802.1Q

ISL	802.1Q	
Proprietary	Nonproprietary	
Encapsulated	Tagged	
Protocol independent	Protocol dependent	
Encapsulates the old frame in a new frame	Adds a field to the frame header	

Trunking with ISL

- Is a Cisco proprietary protocol
- Supports PVST
- Uses an encapsulation process
- Does not modify the original frame

ISL Encapsulation

Trunking with 802.1Q

- An IEEE standard
- Adds a 4-byte tag to the original frame
- Additional tag includes a priority field
- Does not tag frames that belong to the native VLAN
- Supports Cisco IP telephony

The 802.1Q Tagging Process

18/06/23 TRC 2022/2023 28

802.1Q Native VLAN

Native VLAN frames are carried over the trunk link untagged.

VLAN Ranges

VLAN Range	Use		
0, 4095	Reserved for system use only		
1	Cisco default		
2–1001	For Ethernet VLANs		
1002–1005	Cisco defaults for FDDI and Token Ring		
1006–4094 Ethernet VLANs only, unusable on spellegacy platforms			

Trunking Configuration Commands

- Trunks can be configured statically or via DTP.
- DTP provides the ability to negotiate the trunking method.
- Configuring a Trunk
 - switchport trunk
 - switchport mode
 - switchport nonegotiate

Switchport Mode Interactions

	Dynamic Auto	Dynamic Desirable	Trunk	Access
Dynamic Auto	Access	Trunk	Trunk	Access
Dynamic Desirable	Trunk	Trunk	Trunk	Access
Trunk	Trunk	Trunk	Trunk	Not recommended
Access	Access	Access	Not recommended	Access

Note: Table assumes DTP is enabled at both ends.

show dtp interface – to determine current setting

How to Configure Trunking

- 1. Enter interface configuration mode.
- 2. Shut down interface.
- 3. Select the encapsulation (802.1Q or ISL).
- 4. Configure the interface as a Layer 2 trunk.
- 5. Specify the trunking native VLAN (for 802.1Q).
- 6. Configure the allowable VLANs for this trunk.
- 7. Use the no shutdown command on the interface to activate the trunking process.
- 8. Verify the trunk configuration.

802.1Q Trunk Configuration

```
Switch(config) #interface fastethernet 5/8
Switch(config-if) #shutdown
Switch(config-if) #switchport trunk encapsulation dot1q
Switch(config-if) #switchport trunk allowed vlan 1,5,11,1002-1005
Switch(config-if) #switchport mode trunk
Switch(config-if) #switchport trunk native vlan 99
Switch(config-if) #switchport nonegotiate
Switch(config-if) #no shutdown
```

Verifying the 802.1Q Configuration

Switch#show running-config interface {fastethernet | gigabitethernet} slot/port

Switch#show interfaces [fastethernet | gigabitethernet] slot/port [switchport | trunk]

Switch#show interfaces fastEthernet 5/8 switchport
Name: fa5/8
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk

Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: dot1q

Negotiation of Trunking: Off Access Mode VLAN: 1 (default)

Trunking Native Mode VLAN: 99 (trunk_only)
Trunking VLANs Enabled: 1,5,11,1002-1005

Pruning VLANs Enabled: 2-1001

• • •

Verifying a 802.1Q Dynamic Trunk Link

```
Switch#show running-config interface fastethernet 5/8
Building configuration...
Current configuration:
interface FastEthernet5/8
 switchport mode dynamic desirable
 switchport trunk encapsulation dot1g
Switch#show interfaces fastethernet 5/8 trunk
                       Encapsulation Status
                                                     Native vlan
Port
          Mode
Fa5/8
                       802.1q
          desirable
                                       trunking
          Vlans allowed on trunk
Port
Fa5/8
          1,5,11,1002-1005
          Vlans allowed and active in management domain
Port
          1,5,1002-1005
Fa5/8
          Vlans in spanning tree forwarding state and not pruned
Port
Fa5/8
          1,5,1002-1005
```


ISL Trunk Configuration

```
Switch(config) #interface fastethernet 2/1
Switch(config-if) #shutdown
Switch(config-if) #switchport trunk encapsulation isl
Switch(config-if) #switchport trunk allowed vlan 1-5,1002-1005
Switch(config-if) #switchport mode trunk
Switch(config-if) #switchport nonegotiate
Switch(config-if) #no shutdown
```


18/06/23 TRC 2022/2023 37

Verifying ISL Trunking

Switch#show running-config interface {fastethernet | gigabitethernet} slot/port

Switch#show interfaces [fastethernet | gigabitethernet] slot/port [switchport | trunk]

Switch#show interfaces fastethernet 2/1 trunk Encapsulation Status Mode Native VLAN Port Fa2/1 trunk isl trunking 99 Port VLANs allowed on trunk Fa2/1 1-5,1002-1005 VLANs allowed and active in management domain Port. Fa2/1 1-2,1002-1005 VLANs in spanning tree forwarding state and not pruned Port 1-2,1002-1005 Fa2/1

Summary

- Trunk links carry traffic from multiple VLANs.
- ISL is Cisco proprietary and encapsulates the Layer 2 frames.
- 802.1Q is an IEEE standard for trunking, which implements a 4-byte tag.
- The 802.1Q native VLANs forward frames without the tag.
- VLAN numbers have specific ranges and purposes.
- Various commands are used to configure and verify ISL and 802.1Q trunk links.
- Allow only required VLANs over the trunk.

Propagação de VLANs com VTP

40

The VTP Domain

- Group of switches that exchange VLAN information
- VLANs administered centrally at a chosen switch

The VTP Protocol

- Advertises VLAN configuration information
- Maintains VLAN configuration consistency throughout a common administrative domain
- Sends advertisements on trunk ports only

VTP Modes

Server (default mode)

- Creates, modifies, and deletes VLANs
- Sends and forwards advertisements
- Synchronizes VLAN configurations
- Saves configuration in NVRAM

- Cannot create, change, or delete VLANs
- Forwards advertisements
- Synchronizes VLAN configurations
- Does not save in NVRAM

Transparent

- Creates, modifies, and deletes local VLANs
- Forwards advertisements
- Does not synchronize VLAN configurations
- Saves configuration in NVRAM

VTP Pruning

- Uses bandwidth more efficiently by reducing unnecessary flooded traffic
- Example: Station A sends broadcast; broadcast flooded only toward any switch with ports assigned to the red VLAN

VTP Operation

- VTP advertisements are sent as multicast frames.
- VTP servers and clients are synchronized to the latest revision number.
- VTP advertisements are sent every 5 minutes or when there is a change.

VTP Configuration Commands

Configuring VTP

- vtp domain
- vtp mode
- vtp password

Verifying VTP

- show vtp status
- show vtp counters

Configuring a VTP Management Domain

- •Configure each switch in the following order to avoid dynamic learning of the domain name:
 - VTP password
 - VTP domain name (case sensitive)
 - VTP mode (server mode is the default)

Configuring and Verifying VTP

Switch#show vlan brief

Displays a list of current VLANs

Switch(config) #vtp password password_string

Sets the VTP password

Switch(config) #vtp domain domain name

Sets the VTP domain name

Switch(config) #vtp mode

Sets the VTP mode to server, client, or transparent

Switch# show vtp status

Displays the current settings for VTP

Verifying the VTP Configuration

Switch#show vtp status

Switch#show vtp status

VTP Version : 2
Configuration Revision : 28
Maximum VLANs supported locally : 1005
Number of existing VLANs : 17

VTP Operating Mode : Client
VTP Domain Name : BCMSN
VTP Pruning Mode : Enabled
VTP V2 Mode : Disabled
VTP Traps Generation : Disabled

MD5 digest : 0x45 0x52 0xB6 0xFD 0x63 0xC8 0x49

08x0

Configuration last modified by 10.1.1.1 at 8-12-05 15:04:49

Switch#

Verifying the VTP Configuration (Cont.)

Switch#show vtp counters

```
Switch#show vtp counters
VTP statistics:
Summary advertisements received
Subset advertisements received
Request advertisements received
Summary advertisements transmitted: 997
Subset advertisements transmitted: 13
Request advertisements transmitted: 3
Number of config revision errors
Number of config digest errors
Number of V1 summary errors
                                   : 0
VTP pruning statistics:
                Join Transmitted Join Received
Trunk
                                                   Summary advts received from
                                                   non-pruning-capable device
Fa5/8
                    43071
                                     42766
                                                      5
```


Adding a Switch to an Existing VTP Domain

Ensure a new switch has VTP revision 0 before adding it to a network.

Summary

- Switches in a VTP domain share VLAN information.
- VTP advertises VLAN information.
- VTP operates in one of three modes: server, client, or transparent.
- VTP Pruning uses available bandwidth more efficiently.
- VTP uses a specific process to distribute and synchronize VLAN information between switches.
- Various commands are used to configure and verify VTP operation on a switch.
- VTP commands should be applied in a particular order.
- Specific steps should be followed when adding a new switch to an existing VTP domain.

Comutação de VLANs

Inter-VLAN Routing with External Router

 Single trunk link carries traffic for multiple VLANs to and from router.

Inter-VLAN Routing External Router Configuration Commands

- Configure on subinterface
 - encapsulation dot1Q (or isl) 10
 - ip address 10.10.1.1 255.255.255.0
- Verify
 - show vlan 10
 - show ip route

Inter-VLAN Routing on External Router: 802.1Q Trunk Link

Inter-VLAN Routing on External Router: ISL Trunk Link

18/06/23

TRC 2022/2023

Verifying Inter-VLAN Routing


```
Switch#ping 10.10.1.2
Sending 5, 100-byte ICMP Echos to 172.16.10.3
time out is 2 seconds:
!!!!!
Success rate is 100 percent (5/5),
round-trip min/avg/max 0/0/0/ ms
```

The ping command tests connectivity to remote hosts.

Verifying the Inter-VLAN Routing Configuration

Router#show vlan

Displays the current IP configuration per VLAN

Router#show ip route

Displays IP route table information

Router#show ip interface brief

Displays IP address on interfaces and current state of interface

Explaining Multilayer Switching

18/06/23 TRC 2022/2023 60

Layer 2 Switch Forwarding Process

18/06/23

TRC 2022/2023

Logical Packet Flow for a Multilayer Switch

18/06/23 62

IP Unicast Frame and Packet Rewrite

Incoming IP Unicast Packet

Rewritten IP Unicast Packet

CAM Table

- Requires an exact match on all bits
- Matching is a binary operation:0 or 1
- Provides very high-speed lookups

TCAM Table

- Matches only significant values
- Matches based on three values: 0, 1, or X (either)
- Masks used to wildcard some content fields

Mask 1 Match: All 32 bits of source IP address	Src IP = 10.1.1.1
	Empty 2
	Empty 3
	Empty 4
	Empty 5
Do Not Care: All remaining bits	Empty 6
	Empty 7
	Empty 8
Mask 2 Match: Most significant 24 bits of source IP	Src IP = 10.1.1.0
	Empty 2
Source in	Empty 3
address	Empty 3 Empty 4
address	Empty 4
address Do Not Care:	Empty 4 Empty 5
address	Empty 4 Empty 5 Empty 6

18/06/23 Mask Patterns

TRC 2022/2023 65

Summary

- A router on a stick can be used to route between VLANs using either ISL or 802.1Q as the trunking protocol.
- A router on a stick requires subinterfaces, one for each VLAN.
- Verify inter-VLAN routing by generating IP packets between two subnets.
- Multilayer switches can forward traffic at both Layer 2 and Layer 3.
- Multilayer switches rewrite the Layer 2 and Layer 3 header using tables held in hardware.

Implementing Inter-VLAN Routing

Enabling Routing Between VLANs on a Multilayer Switch

18/06/23 TRC 2022/2023 67

Layer 3 SVI

18/06/23 TRC 2022/2023 68

SVI on a Multilayer Switch

Configure

- ip routing
- interface vlan 10
 - ip address 10.1.1.1 255.255.255.0
- router eigrp 50
 - network 10.0.0.0

Verify

• show ip route

Configuring Inter-VLAN Routing Through an SVI

Step 1 : Configure IP routing.

Switch (config) #ip routing

Step 2 : Create an SVI interface.

Switch (config) #interface vlan vlan-id

Step 3 : Assign an IP address to the SVI.

Switch(config-if) #ip address ip-address mask

tep 4 : Configure the IP routing protocol if needed.

Switch(config) #router ip_routing_protocol <options>

Routed Ports on a Multilayer Switch (Cont.)

18/06/23

Routed Ports on a Multilayer Switch

- Physical switch port with Layer 3 capability
- Not associated with a VLAN
- Requires removal of Layer 2 port functionality

Configure

- ip routing
- interface fa0/1
 - no switchport
 - ip address 10.3.3.1 255.255.255.0
- router eigrp 50
 - network 10.0.0.0

Configuring a Routed Port

Step 1 : Configure IP routing.

Switch (config) #ip routing

Step 2 : Create a routed port.

Switch(config-if) #no switchport

tep 3 : Assign an IP address to the routed port.

Switch(config-if) #ip address ip-address mask

tep 4 : Configure the IP routing protocol if needed.

Switch(config) #router ip_routing_protocol <options>

Summary

- SVI is a VLAN of switch ports represented by one interface to the routing system.
- Specific commands are used to configure and verify routing on multilayer switch interfaces.
- The interface vlan command creates the SVI.
- A routed port has Layer 3 attributes.
- A routed port requires the removal of Layer 2 port functionality with the no switchport command.
- To receive dynamic updates, a routing protocol is required.

E é tudo...

- Questões?
- Comentários?

