# Optimisation non linéaire et non convexe

Yann Chevaleyre, Paul Caillon, Clément Royer

Certificat Chef de Projet IA - Université Paris Dauphine-PSL

11 octobre 2023







### Séance de ce matin

- Optimisation lisse
- Descente de gradient

### Table des matières

- Optimisation lisse
  - Calcul différentiel et optimisation
  - Solutions et conditions d'optimalité
  - Classes de problèmes remarquables
- 2 Descente de gradient

# Sommaire

- Optimisation lisse
  - Calcul différentiel et optimisation
  - Solutions et conditions d'optimalité
  - Classes de problèmes remarquables
- Descente de gradient

### Introduction

#### Problème

$$\underset{\boldsymbol{x} \in \mathbb{R}^d}{\text{minimiser}} f(\boldsymbol{x}).$$

#### Hypothèses

- f minorée par f\*;
- f douce/lisse ⇒ les dérivées de f peuvent être utilisées pour résoudre ce problème.

### Gradient

On considère une fonction lisse (ou douce, ou *smooth*)  $f: \mathbb{R}^d \to \mathbb{R}$ .

### Gradient

On considère une fonction lisse (ou douce, ou *smooth*)  $f : \mathbb{R}^d \to \mathbb{R}$ .

#### Dérivée à l'ordre 1

Si f est continûment dérivable sur  $\mathbb{R}^d$ , on définit pour tout  $\mathbf{x} \in \mathbb{R}^d$  le gradient de f en  $\mathbf{x}$  par

$$\nabla f(\mathbf{x}) := \left[\frac{\partial f}{\partial x_i}(\mathbf{x})\right]_{1 \leq i \leq d} \in \mathbb{R}^d.$$

L'ensemble des fonctions continûment dérivables est noté  $C^1$ . On parle de fonction de classe  $C^1$ .

# Calcul différentiel (2)

On considère une fonction lisse (ou douce, ou *smooth*)  $f: \mathbb{R}^d \to \mathbb{R}$ .

# Calcul différentiel (2)

On considère une fonction lisse (ou douce, ou *smooth*)  $f : \mathbb{R}^d \to \mathbb{R}$ .

### Dérivée d'ordre 2

Si f est deux fois continûment dérivable sur  $\mathbb{R}^d$ , on définit pour tout  $x \in \mathbb{R}^d$  la matrice hessienne de f en x par

$$\nabla^2 f(\mathbf{x}) := \left[ \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}) \right]_{1 \leq i,j \leq d} \in \mathbb{R}^{d \times d}.$$

Cette matrice est symétrique.

L'ensemble des fonctions deux fois continûment dérivables est noté  $C^2$  (on dira que f est de classe  $C^2$ ).

# Calcul différentiel (3)

### Développement de Taylor à l'ordre 1

Si  $f \in \mathcal{C}^1$ , pour tous  $\mathbf{x}, \mathbf{h} \in \mathbb{R}^d$ ,

$$f(\mathbf{x} + \mathbf{h}) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathrm{T}} \mathbf{h}.$$

pour  $\|\boldsymbol{h}\|$  suffisamment faible.

# Calcul différentiel (3)

### Développement de Taylor à l'ordre 1

Si  $f \in \mathcal{C}^1$ , pour tous  $\mathbf{x}, \mathbf{h} \in \mathbb{R}^d$ ,

$$f(\mathbf{x} + \mathbf{h}) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathrm{T}} \mathbf{h}.$$

pour  $\|\boldsymbol{h}\|$  suffisamment faible.

### Développement de Taylor à l'ordre 2

Si  $f \in \mathcal{C}^2$ , pour tous  $\mathbf{x}, \mathbf{h} \in \mathbb{R}^d$ ,

$$f(\mathbf{x} + \mathbf{h}) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathrm{T}} \mathbf{h} + \frac{1}{2} \mathbf{h}^{\mathrm{T}} \nabla^{2} f(\mathbf{x}) \mathbf{h}$$

pour  $\|\boldsymbol{h}\|$  suffisamment faible.

# Continuité de Lipschitz

#### Définition

Une fonction  ${m g}: \mathbb{R}^d \to \mathbb{R}^m$  est dite L-lipschitzienne si il existe L>0 telle que

$$\forall (\mathbf{x}, \mathbf{y}) \in (\mathbb{R}^d)^2, \quad \|g(\mathbf{x}) - g(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\|.$$

La valeur L s'appelle une constante de Lipschitz pour g.

- Concept de base, nombreuses variantes.
- $\mathcal{C}_L^{1,1}$  : sous-ensemble de  $\mathcal{C}^1$  des fonctions avec dérivée première L-lipschitzienne.

# Caractère lipschitzien et approximations

#### Approximation de Taylor à l'ordre 1

Soit  $f \in \mathcal{C}_{L}^{1,1}$ . Pour tous  $\mathbf{x}, \mathbf{h} \in \mathbb{R}^{d}$ ,

$$f(\mathbf{x} + \mathbf{h}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathrm{T}} \mathbf{h} + \frac{L}{2} ||\mathbf{h}||^{2}.$$

# Caractère lipschitzien et approximations

### Approximation de Taylor à l'ordre 1

Soit  $f \in \mathcal{C}_{L}^{1,1}$ . Pour tous  $\mathbf{x}, \mathbf{h} \in \mathbb{R}^{d}$ ,

$$f(\mathbf{x} + \mathbf{h}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathrm{T}} \mathbf{h} + \frac{L}{2} ||\mathbf{h}||^{2}.$$

⇒ Une des inégalités majeures en optimisation non linéaire.

# Sommaire

- Optimisation lisse
  - Calcul différentiel et optimisation
  - Solutions et conditions d'optimalité
  - Classes de problèmes remarquables
- Descente de gradient

### Solutions

$$\underset{\boldsymbol{x} \in \mathbb{R}^d}{\mathsf{minimiser}} \, f(\boldsymbol{x})$$

### Minimum global

Un point  $x^*$  est un minimum global du problème si  $f(x^*) \le f(x) \ \forall x \in \mathbb{R}^d$ .

#### Minimum local

Un point  $x^*$  est un minimum local (strict) du problème s'il existe  $\epsilon > 0$  tel que

$$f(\mathbf{x}^*) < f(\mathbf{x}) \ \forall \mathbf{x}, \|\mathbf{x} - \mathbf{x}^*\| \le \epsilon.$$

# Solutions locales et globales (2)

- Trouver des minima globaux est difficile en général;
- Trouver et certifier des minima locaux peut aussi être difficile.

# Solutions locales et globales (2)

- Trouver des minima globaux est difficile en général;
- Trouver et certifier des minima locaux peut aussi être difficile.

#### En optimisation lisse/douce

- Les dérivées donnent des informations;
- D'autres hypothèses sur la fonction peuvent aussi aider.

# Conditions d'optimalité en optimisation douce

Problème sans contraintes minimiser<sub> $\mathbf{x} \in \mathbb{R}^d$ </sub>  $f(\mathbf{x})$ , f de classe  $C^1$ .

# Conditions d'optimalité en optimisation douce

Problème sans contraintes minimiser<sub> $\mathbf{x} \in \mathbb{R}^d$ </sub>  $f(\mathbf{x})$ , f de classe  $C^1$ .

#### Condition nécessaire à l'ordre 1

Si  $x^*$  est un minimum local du problème, alors

$$\|\nabla f(\mathbf{x}^*)\| = 0.$$

# Conditions d'optimalité en optimisation douce

Problème sans contraintes minimiser<sub> $\mathbf{x} \in \mathbb{R}^d$ </sub>  $f(\mathbf{x})$ , f de classe  $C^1$ .

#### Condition nécessaire à l'ordre 1

Si  $x^*$  est un minimum local du problème, alors

$$\|\nabla f(\mathbf{x}^*)\| = 0.$$

- Cette condition est seulement nécessaire:
- Un point tel que  $\|\nabla f(\mathbf{x}^*)\| = 0$  peut aussi être un maximum local ou un point selle.

# Conditions d'optimalité en optimisation douce (2)

Problème sans contraintes minimiser<sub> $\mathbf{x} \in \mathbb{R}^d$ </sub>  $f(\mathbf{x})$ , f de classe  $C^2$ .

# Conditions d'optimalité en optimisation douce (2)

Problème sans contraintes minimiser<sub> $x \in \mathbb{R}^d$ </sub> f(x), f de classe  $C^2$ .

#### Condition à l'ordre 2

Si  $x^*$  est un minimum local du problème, alors

$$\|\nabla f(\mathbf{x}^*)\| = 0$$
 et  $\nabla^2 f(\mathbf{x}^*) \succeq 0$ .

# Conditions d'optimalité en optimisation douce (2)

Problème sans contraintes minimiser<sub> $x \in \mathbb{R}^d$ </sub> f(x), f de classe  $C^2$ 

### Condition à l'ordre 2

Si  $x^*$  est un minimum local du problème, alors

$$\|\nabla f(\mathbf{x}^*)\| = 0$$
 et  $\nabla^2 f(\mathbf{x}^*) \succeq 0$ .

#### Condition à l'ordre 2

Si x\* vérifie

$$\|\nabla f(\mathbf{x}^*)\| = 0$$
 and  $\nabla^2 f(\mathbf{x}^*) \succ 0$ ,

alors c'est un minimum local du problème.

### Minima globaux

- Possibles à trouver pour des problèmes convexes.
- Possibles aussi pour certaines classes de problèmes non convexes.

### Minima globaux

- Possibles à trouver pour des problèmes convexes.
- Possibles aussi pour certaines classes de problèmes non convexes.

#### Minima locaux

- Peuvent être obtenus pour certaines classes de problèmes non convexes.
- En général, peuvent donner des valeurs plus mauvaises que celle des solutions du problème.

### Minima globaux

- Possibles à trouver pour des problèmes convexes.
- Possibles aussi pour certaines classes de problèmes non convexes.

#### Minima locaux

- Peuvent être obtenus pour certaines classes de problèmes non convexes.
- En général, peuvent donner des valeurs plus mauvaises que celle des solutions du problème.

#### Points stationnaires

- D'ordre 1 ou 2, vérifient les conditions nécessaires d'optimalité.
- Calculables via des algorithmes.
- Peuvent être des minima/maxima locaux ou des points selles.

Noncritical Point  $(\nabla \omega \neq 0)$ 

# 

Critical Points  $(\nabla \omega = 0)$ 



Source: J. Wright et Y. Ma, High-Dimensional Data Analysis with Low-Dimensional Models, 2022.

# Sommaire

- Optimisation lisse
  - Calcul différentiel et optimisation
  - Solutions et conditions d'optimalité
  - Classes de problèmes remarquables
- Descente de gradient

### Ensemble convexe

### Définition

Un ensemble  $C \in \mathbb{R}^d$  est dit convexe si

$$\forall (\boldsymbol{u}, \boldsymbol{v}) \in \mathcal{C}^2, \ \forall t \in [0, 1], \qquad t\boldsymbol{u} + (1 - t)\boldsymbol{v} \in \mathcal{C}.$$

### Ensemble convexe

#### Définition

Un ensemble  $C \in \mathbb{R}^d$  est dit convexe si

$$\forall (\boldsymbol{u}, \boldsymbol{v}) \in \mathcal{C}^2, \ \forall t \in [0, 1], \qquad t\boldsymbol{u} + (1 - t)\boldsymbol{v} \in \mathcal{C}.$$

### Exemples:

- $\bullet$   $\mathbb{R}^d$ :
- Droite :  $\{t\mathbf{x}|t\in\mathbb{R}\}$  pour tout  $\mathbf{x}\in\mathbb{R}^d$ ;
- Boule :  $\left\{ oldsymbol{x} \in \mathbb{R}^d | \| oldsymbol{x} \|^2 = \sum_{i=1}^d [oldsymbol{x}]_i^2 \leq 1 \right\}$ .

### Fonctions convexes

### Définition

Une fonction  $f: \mathbb{R}^d \to \mathbb{R}$  est dite convexe si

$$\forall (\boldsymbol{u}, \boldsymbol{v}) \in (\mathbb{R}^d)^2, \ \forall t \in [0, 1], \qquad f(t\boldsymbol{u} + (1 - t)\boldsymbol{v}) \leq t f(\boldsymbol{u}) + (1 - t) f(\boldsymbol{v}).$$

### Fonctions convexes

#### Définition

Une fonction  $f: \mathbb{R}^d \to \mathbb{R}$  est dite convexe si

$$\forall (\boldsymbol{u}, \boldsymbol{v}) \in (\mathbb{R}^d)^2, \ \forall t \in [0, 1], \qquad f(t\boldsymbol{u} + (1 - t)\boldsymbol{v}) \leq t f(\boldsymbol{u}) + (1 - t) f(\boldsymbol{v}).$$

#### Exemples:

- Fonction linéaire :  $f(\mathbf{x}) = \mathbf{a}^{\mathrm{T}}\mathbf{x} + b$ ;
- Norme au carré :  $f(\mathbf{x}) = \|\mathbf{x}\|^2 = \mathbf{x}^T \mathbf{x}$ .

# Fonctions convexes lisses/douces

### Convexité et gradient

Une fonction  $f:\mathbb{R}^d \to \mathbb{R}$  de classe  $\mathcal{C}^1$  est convexe si et seulement si

$$\forall \mathbf{x}, \mathbf{h} \in \mathbb{R}^d, \quad f(\mathbf{x} + \mathbf{h}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathrm{T}} \mathbf{h}.$$

# Fonctions convexes lisses/douces

### Convexité et gradient

Une fonction  $f:\mathbb{R}^d o \mathbb{R}$  de classe  $\mathcal{C}^1$  est convexe si et seulement si

$$\forall x, h \in \mathbb{R}^d, \quad f(x+h) \geq f(x) + \nabla f(x)^{\mathrm{T}}h.$$

L'autre inégalité clé en optimisation.

# Fonctions convexes lisses/douces

### Convexité et gradient

Une fonction  $f:\mathbb{R}^d o \mathbb{R}$  de classe  $\mathcal{C}^1$  est convexe si et seulement si

$$\forall x, h \in \mathbb{R}^d, \quad f(x+h) \geq f(x) + \nabla f(x)^{\mathrm{T}}h.$$

L'autre inégalité clé en optimisation.

#### Convexité et matrice hessienne

Une fonction  $f: \mathbb{R}^d \to \mathbb{R}$  de classe  $C^2$  est dite convexe si et seulement si  $\nabla^2 f(\mathbf{x}) \succ 0$  pour tout vecteur  $\mathbf{x} \in \mathbb{R}^d$ , .

# Optimisation et fonction convexe

 $\underset{\boldsymbol{x} \in \mathbb{R}^d}{\text{minimiser } f(\boldsymbol{x}), f \text{ convexe.}}$ 

## Optimisation et fonction convexe

 $\underset{\boldsymbol{x} \in \mathbb{R}^d}{\text{minimiser } f(\boldsymbol{x}), f \text{ convexe.}}$ 

#### Théorème

Tout minimum local de f est un minimum global.

## Optimisation et fonction convexe

$$\underset{\boldsymbol{x} \in \mathbb{R}^d}{\text{minimiser } f(\boldsymbol{x}), f \text{ convexe.}}$$

#### Théorème

Tout minimum local de f est un minimum global.

#### Corollaire

Si f est de classe  $C^1$ , tout point  $\mathbf{x}^*$  tel que  $\|\nabla f(\mathbf{x}^*)\| = 0$  est un minimum global de f.

## Fonctions fortement convexes

#### Définition

Une fonction  $f: \mathbb{R}^d \to \mathbb{R}$  est  $\mu$ -fortement convexe si pour tous  $(\boldsymbol{u}, \boldsymbol{v}) \in (\mathbb{R}^d)^2$  et  $t \in [0, 1]$ , on a

$$f(t\mathbf{u} + (1-t)\mathbf{v}) \leq t f(\mathbf{u}) + (1-t)f(\mathbf{v}) - \frac{\mu}{2}t(1-t)\|\mathbf{v} - \mathbf{u}\|^2.$$

 $\mathbf{x} \mapsto \frac{\mu}{2} \|\mathbf{x}\|^2$  est  $\mu$ -fortement convexe.

## Fonctions fortement convexes

#### Définition

Une fonction  $f: \mathbb{R}^d \to \mathbb{R}$  est  $\mu$ -fortement convexe si pour tous  $(\boldsymbol{u}, \boldsymbol{v}) \in (\mathbb{R}^d)^2$  et  $t \in [0, 1]$ , on a

$$f(t\mathbf{u} + (1-t)\mathbf{v}) \leq t f(\mathbf{u}) + (1-t)f(\mathbf{v}) - \frac{\mu}{2}t(1-t)\|\mathbf{v} - \mathbf{u}\|^2.$$

 $\mathbf{x} \mapsto \frac{\mu}{2} \|\mathbf{x}\|^2$  est  $\mu$ -fortement convexe.

#### Théorème

- Une fonction fortement convexe a au plus un minimum global.
- Une fonction continue fortement convexe a un unique minimum global.

### Fonctions fortement convexes

### Gradient et convexité forte

Soit  $f: \mathbb{R}^d \to \mathbb{R}$  de classe  $\mathcal{C}^1$ . Alors,

$$\forall \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^d, \quad f(\boldsymbol{v}) \geq f(\boldsymbol{u}) + \nabla f(\boldsymbol{u})^{\mathrm{T}}(\boldsymbol{v} - \boldsymbol{u}) + \frac{\mu}{2} \|\boldsymbol{v} - \boldsymbol{u}\|^2.$$

#### Hessienne et convexité forte

Soit  $f: \mathbb{R}^d \to \mathbb{R}$  de classe  $\mathcal{C}^2$ . Alors

f est  $\mu$ -fortement convexe  $\iff \nabla^2 f(\mathbf{x}) \succeq \mu | \forall \mathbf{x} \in \mathbb{R}^d$ .

## Exemples de problèmes fortement convexes

### Minimisation d'une quadratique convexe

$$\underset{\boldsymbol{x} \in \mathbb{R}^d}{\text{minimiser}} \, f(\boldsymbol{x}) := \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} + \boldsymbol{b}^{\mathrm{T}} \boldsymbol{x}, \quad \boldsymbol{A} \succeq 0.$$

- Fortement convexe si  $\mathbf{A} \succ 0$  avec  $\mu = \lambda_{\min}(\mathbf{A})$ .

## Exemples de problèmes fortement convexes

### Minimisation d'une quadratique convexe

$$\underset{\boldsymbol{x} \in \mathbb{R}^d}{\text{minimiser}} \, f(\boldsymbol{x}) := \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} + \boldsymbol{b}^{\mathrm{T}} \boldsymbol{x}, \quad \boldsymbol{A} \succeq 0.$$

- Fortement convexe si  $\mathbf{A} \succ 0$  avec  $\mu = \lambda_{\min}(\mathbf{A})$ .

### Projection sur un ensemble fermé convexe

$$\underset{\boldsymbol{x} \in \mathcal{X}}{\operatorname{minimiser}} \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{a}\|^2, \quad \mathcal{X} \text{ fermé convexe.}$$

- Generalise le cas  $\mathcal{X} = \mathbb{R}^d$ ;
- ullet L'objectif est 1-fortement convexe  $\Rightarrow$  il existe une unique solution.

## Problèmes non convexes remarquables

### Problème non convexe pathologique

- Des minima locaux non globaux;
- De "mauvais" points selles.



## Problèmes non convexes remarquables

### Problème non convexe pathologique

- Des minima locaux non globaux;
- De "mauvais" points selles.



#### Des instances favorables

- Points selles stricts (pas stationnaires à l'ordre 2);
- Équivalence entre minima locaux et globaux.



Source: J. Wright et Y. Ma, High-Dimensional Data Analysis with Low-Dimensional Models, 2022.

# Exemples de "bons" problèmes non convexes

## Complétion de matrice

$$\underset{X \in \mathbb{R}^{d_1 \times d_2}, \mathrm{rank}(X) \leq r}{\mathsf{minimiser}} \sum_{(i,j) \in \Omega} (X_{ij} - M_{ij})^2 \quad M \in \mathbb{R}^{d_1 \times d_2}, \ \Omega \subset [d_1] \times [d_2].$$

- Données : entrées de M observées.
- Hypothèse : M est de rang  $r \ll \min(d_1, d_2)$ .

# Exemples de "bons" problèmes non convexes

## Complétion de matrice

$$\underset{X \in \mathbb{R}^{d_1 \times d_2}, \mathrm{rank}(X) \leq r}{\mathsf{minimiser}} \sum_{(i,j) \in \Omega} (X_{ij} - M_{ij})^2 \quad M \in \mathbb{R}^{d_1 \times d_2}, \ \Omega \subset [d_1] \times [d_2].$$

- Données : entrées de *M* observées.
- Hypothèse : M est de rang  $r \ll \min(d_1, d_2)$ .

### Formulation factorisée (Burer & Monteiro, '03)

$$\underset{U \in \mathbb{R}^{d_1 \times r}, V \in \mathbb{R}^{d_2 \times r}}{\text{minimiser}} \sum_{(i,j) \in \Omega} \left( [U V^\top]_{ij} - M_{ij} \right)^2,$$

- $(d_1 + d_2)r$  variables  $(\ll d_1 d_2)$ .
- Non convexe en U et V...
- ...mais ne possède que des points selles et des minima globaux.

# Exemples de "bons" problèmes non convexes (2)

## Analyse en composantes principales/Calcul de valeurs propres

Partant de données  $\{a_i\}_{i=1...n}$ , trouver la direction de variabilité maximale des  $a_i$  en résolvant

minimiser 
$$-\frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{C}\mathbf{x}$$
 s. c.  $\|\mathbf{x}\|^2 = 1$ ,

avec

$$C = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{a}_i - \bar{\boldsymbol{a}}) (\boldsymbol{a}_i - \bar{\boldsymbol{a}})^{\mathrm{T}} \quad \bar{\boldsymbol{a}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{a}_i.$$

## Table des matières

- Optimisation lisse
- Descente de gradient
  - Algorithmes et descente de gradient
  - Descente de gradient et optimisation convexe
  - Accélération

## Table des matières

- Optimisation lisse
- Descente de gradient
  - Algorithmes et descente de gradient
  - Descente de gradient et optimisation convexe
  - Accélération

## Cadre

 $\underset{\boldsymbol{x} \in \mathbb{R}^d}{\text{minimiser}} f(\boldsymbol{x}).$ 

## Cadre

$$\underset{\boldsymbol{x} \in \mathbb{R}^d}{\text{minimiser}} f(\boldsymbol{x}).$$

### Hypothèses

- f est minorée par f<sub>low</sub>;
- f est lisse (au moins de classe  $C^1$ ).

# Comment procéder

#### De manière itérative

- Idée de base : étant donné un point courant, se déplacer vers un point potentiellement meilleur;
- Une itération représente l'ensemble des calculs nécessaires pour ce déplacement.

#### Notre but dans le reste du cours

- Proposer des algorithmes;
- Décrire leurs garanties théoriques;
- Vérifier leur intérêt pratique (notebooks).

## Quelles garanties

Pour résoudre minimiser $_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$ , l'algorithme devrait satisfaire les propriétés suivantes :

- Les points calculés tendent vers une solution;
- Les valeurs de l'objectif tendent vers la valeur optimale;
- Une condition d'optimalité est satisfaite à la limite.

## Quelles garanties

Pour résoudre minimiser $_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$ , l'algorithme devrait satisfaire les propriétés suivantes :

- Les points calculés tendent vers une solution;
- Les valeurs de l'objectif tendent vers la valeur optimale;
- O Une condition d'optimalité est satisfaite à la limite.

## Convergence des itérés

L'algorithme génère une suite  $\{x_k\}_k$  telle que

$$\|\mathbf{x}_k - \mathbf{x}^*\| \to 0$$
 lorsque  $k \to \infty$ ,

où  $\mathbf{x}^* \in \operatorname{argmin}_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$  est une solution globale du problème.

# Quelles garanties (2)

## Convergence en valeur de fonction

$$f(\mathbf{x}_k) \to f^*$$
 lorsque  $k \to \infty$ ,

où 
$$f^* = \min_{\boldsymbol{x} \in \mathbb{R}^d} f(\boldsymbol{x})$$
.

# Quelles garanties (2)

## Convergence en valeur de fonction

$$f(\mathbf{x}_k) \to f^*$$
 lorsque  $k \to \infty$ ,

où 
$$f^* = \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$$
.

### Convergence vers un point stationnaire d'ordre 1

$$\|\nabla f(\mathbf{x}_k)\| \to 0$$
 lorsque  $k \to \infty$ .

Condition plus générale.

# Descente et gradient

$$\underset{\boldsymbol{x} \in \mathbb{R}^d}{\text{minimiser } f(\boldsymbol{x})}, \quad f \in \mathcal{C}^1.$$

Pour tout  $\mathbf{x} \in \mathbb{R}^d$ ,

- Soit x est un minimum local et donc  $\nabla f(x) = 0$ ;
- ② Soit f décroît localement depuis x dans la direction de  $-\nabla f(x)$ . Preuve basée sur Taylor.

# Algorithme de descente de gradient

Entrées :  $\mathbf{x}_0 \in \mathbb{R}^d$ ,  $\alpha_0 > 0$ ,  $\varepsilon > 0$ ,  $k_{\text{max}} \in \mathbb{N}$ .

Set k = 0.

- Evaluer  $\nabla f(\mathbf{x}_k)$ ; si  $\|\nabla f(\mathbf{x}_k)\| < \varepsilon$  terminer.
- 3 Incrémenter k de 1; si  $k = k_{max}$  terminer, sinon aller à l'étape 1.

# Algorithme de descente de gradient

Entrées : 
$$\mathbf{x}_0 \in \mathbb{R}^d$$
,  $\alpha_0 > 0$ ,  $\varepsilon > 0$ ,  $k_{\text{max}} \in \mathbb{N}$ .

Set k = 0.

- Evaluer  $\nabla f(\mathbf{x}_k)$ ; si  $\|\nabla f(\mathbf{x}_k)\| < \varepsilon$  terminer.
- Incrémenter k de 1; si  $k = k_{max}$  terminer, sinon aller à l'étape 1.

#### Critères d'arrêt

- Convergence :  $\|\nabla f(\mathbf{x}_k)\| < \varepsilon$ ;
- Budget :  $k = k_{\text{max}}$ .

# Choix de la longueur de pas $\alpha_k$

#### Pas constant

Si  $f \in \mathcal{C}_I^{1,1}$ , poser  $\alpha_k = \frac{1}{I}$ :

- Garantit une décroissance à chaque itération;
- Mais demande de connaître L.

#### Pas décroissant

Choisir  $\alpha_k$  tel que  $\alpha_k \to 0$ .

- Garantit une décroissance à partir d'un certain rang;
- Mais force la valeur à décrôitre.

# Choix de la longueur de pas $\alpha_k$ (2)

### En optimisation classique

- Recherche linéaire : À chaque itération,  $\alpha_k$  obtenue par retour arrière (backtracking) sur un ensemble de valeurs en ordre décroissants (ex:  $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ ).
- La value renvoyée vérifie une condition type décroissance de la valeur de l'objectif.

## En apprentissage (notamment profond)

## $\alpha_k = Learning \ rate$

- Utiliser une valeur fixe pendant un certain nombre d'itérations;
- Diminuer progressivement cette valeur selon une règle fixée (scheduling).

# Analyse théorique de la descente de gradient

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}), \qquad f \in \mathcal{C}_L^{1,1}.$$

### Rappels: Descente de gradient

- Itération :  $\mathbf{x}_{k+1} = \mathbf{x}_k \alpha_k \nabla f(\mathbf{x}_k)$ , terminer si  $\nabla f(\mathbf{x}_k) = 0$ .
- Choix de base en théorie :  $\alpha_k = \frac{1}{L}$ .

### Résultats théoriques

- Convergence : Montrer que  $\|\nabla f(\mathbf{x}_k)\| \to 0$ ;
- Vitesse de convergence : Décroissance de  $\|\nabla f(\mathbf{x}_k)\|$ .
- Complexité au pire cas : Effort requis pour obtenir  $\|\nabla f(\mathbf{x}_k)\| \le \epsilon$  pour  $\epsilon > 0$ .

# Complexité pour la descente de gradient

#### Théorème

Si  $f \in \mathcal{C}_L^{1,1}$  et  $\alpha_k = \frac{1}{L}$ , la descente de gradient produit  $\boldsymbol{x}_k$  tel que  $\|\nabla f(\boldsymbol{x}_k)\| \leq \epsilon$  en au plus

$$2L(f(\mathbf{x}_0) - f_{low})\epsilon^{-2}$$
 itérations.

- Même résultat pour d'autres choix pour  $\alpha_k$ , dont la recherche linéaire.
- On dit que la complexité de la descente de gradient est en  $\mathcal{O}(\epsilon^{-2})$ .

# Vitesses de convergence pour la descente de gradient

#### Théorème

Si  $f \in \mathcal{C}_L^{1,1}$  et  $\alpha_k = \frac{1}{L}$ , alors pour tout  $K \geq 1$ , si  $\{x_k\}$  est la suite des itérés produite par l'algorithme de descente de gradient, on a

$$\min_{0 \le k \le K-1} \|\nabla f(\boldsymbol{x}_k)\| \le \frac{\sqrt{2L(f(\boldsymbol{x}_0) - f_{\text{low}})}}{\sqrt{K}}.$$

### Interpretation

- On dit que la vitesse de convergence de la descente de gradient est  $\mathcal{O}\left(\frac{1}{\sqrt{K}}\right)$ .
- Il existe une fonction telle que cette vitesse correspond exactement au comportement de la méthode !

## Descente de gradient et optimisation non convexe

### Sur un problème non convexe

- La descente de gradient converge vers un point  $\bar{x}$  tel que  $||\bar{x}|| = 0$ .
- Ce point peut être un point selle, voire un maximum local.

## Théorème (Lee et al, 2015)

Pour presque tout  $x_0 \in \mathbb{R}^d$ , la descente de gradient converge vers un point  $\bar{x}$  tel que

$$\|\nabla f(\bar{\mathbf{x}})\| = 0$$
 et  $\nabla^2 f(\bar{\mathbf{x}}) \succeq 0$ .

## Sommaire

- Optimisation lisse
- Descente de gradient
  - Algorithmes et descente de gradient
  - Descente de gradient et optimisation convexe
  - Accélération

# Rappels : la descente de gradient

$$\underset{\boldsymbol{x} \in \mathbb{R}^d}{\mathsf{minimiser}} \, f(\boldsymbol{x}), \qquad f \in \mathcal{C}_L^{1,1}.$$

### Descente de gradient

- Itération:  $\mathbf{x}_{k+1} = \mathbf{x}_k \alpha_k \nabla f(\mathbf{x}_k)$ , terminer si  $\nabla f(\mathbf{x}_k) = 0$ .
- Choix typique en théorie :  $\alpha_k = \frac{1}{L}$ .

### Avec la convexité

Hypothèse :  $f^* = \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$  est atteint.

- Garanties relativement à un minimum global;
- On peut montrer que  $f(x_k) \to f^*$ ;
- On peut aussi montrer une convergence vers l'argmin.

## Complexités et vitesses de convergence

#### Cas non convexe

- Critère :  $\|\nabla f(\mathbf{x}_k)\|$ ;
- Idée : être proche d'un point stationnaire.

### Cas convexe/fortement convexe

- :  $f(\mathbf{x}_k) f^* \le \epsilon$ , avec  $f^* = \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$ ;
- Idée : être proche de la valeur à l'optimum.
- Valeur liée à  $\|x_k x^*\|$  dans le cas fortement convexe.

# Résultats de complexité

#### Théorème

Si  $f \in \mathcal{C}_L^{1,1}$  est convexe et  $\alpha_k = \frac{1}{L}$ , la descente de gradient calcule  $\mathbf{x}_k$  tel que  $f(\mathbf{x}_k) - f^* \le \epsilon$  en au plus

- $\mathcal{O}(\epsilon^{-1})$  itérations;
- $\mathcal{O}\left(\frac{L}{\mu}\ln(\epsilon^{-1})\right)$  itérations si f est  $\mu$ -fortement convexe.
- Cas non convexe :  $\mathcal{O}(\epsilon^{-2})$  pour garantir  $\|\nabla f(\boldsymbol{x}_k)\| \leq \epsilon$ .
- On dit que la descente de gradient possède une meileure complexité dans le cas convexe/fortement convexe.

## Vitesses de convergence

#### Théorème

Si  $f \in \mathcal{C}_L^{1,1}$  est convexe et  $\alpha_k = \frac{1}{L}$ , pour tout  $K \in \mathbb{N}$ , on a:

$$f(\boldsymbol{x}_K) - f^* \leq \frac{L \max_{\boldsymbol{x} \in \operatorname{argmin}_{\boldsymbol{v}} f(\boldsymbol{v})} \|\boldsymbol{x}_0 - \boldsymbol{x}\|}{2} \frac{1}{K}$$

pour f convexe, et

$$f(\mathbf{x}_K) - f^* \leq \left(1 - \frac{\mu}{L}\right)^K \left(f(\mathbf{x}_0) - f^*\right).$$

pour f  $\mu$ -fortement convexe.

- Cas non convexe :  $\mathcal{O}(1/\sqrt{K})$  pour  $\min_{0 \le k \le K-1} \|\nabla f(\mathbf{x}_k)\|$ .
- On dit que la descente de gradient converge plus rapidement dans le cas fortement convexe que dans le cas convexe.

## Sommaire

- Optimisation lisse
- 2 Descente de gradient
  - Algorithmes et descente de gradient
  - Descente de gradient et optimisation convexe
  - Accélération

## Accélération en optimisation convexe

#### Motivation

- En optimisation non convexe,  $\mathcal{O}(1/\sqrt{K})$  est la meilleure vitesse de convergence pour une méthode type gradient;
- Dans le cas convexe, c'est  $\mathcal{O}(1/K^2)$ , mieux que la descente de gradient en  $\mathcal{O}(1/K)$ .

#### Comment obtenir cette meilleure vitesse?

- Stratégies de gradient accéléré, basées sur l'idée de momentum;
- **Principe** : Réutiliser l'information de l'itération précédente.

# Un premier exemple

## Méthode de la boule lestée (Heavy ball, Polyak, 1964)

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k) + \beta (\mathbf{x}_k - \mathbf{x}_{k-1}).$$

- Terme de momentum  $x_k x_{k-1}$ ;
- Optimale sur des quadratiques fortement convexes...
- ... mais ne converge pas toujours pour f fortement convexe!

# Gradient accéléré (Nesterov, 1983)

## $\mathsf{Algorithme}(\boldsymbol{x}_0,\boldsymbol{x}_{-1}=\boldsymbol{x}_0)$

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k + \beta_k(\mathbf{x}_k - \mathbf{x}_{k-1})) + \beta_k(\mathbf{x}_k - \mathbf{x}_{k-1}).$$

- Un appel de gradient par itération;
- Terme de momentum :  $x_k x_{k-1}$  (pas précédent).

## Version à deux suites( $x_0, z_0 = x_0$ )

$$\begin{cases} \mathbf{x}_{k+1} = \mathbf{z}_k - \alpha_k \nabla f(\mathbf{z}_k) \\ \mathbf{z}_{k+1} = \mathbf{x}_{k+1} + \beta_{k+1} (\mathbf{x}_{k+1} - \mathbf{x}_k). \end{cases}$$

# Choix des paramètres

## Longueur de pas $\alpha_k$

- Autres : décroissante, recherche linéaire, etc.

### Momentum $\beta_k$

- f  $\mu$ -fortement convexe :  $\beta_k = \frac{\sqrt{L} \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ ;
- f convexe : Utiliser deux suites

$$t_{k+1} = \frac{1}{2}(1 + \sqrt{1 + 4t_k^2}), t_0 = 0, \quad \beta_k = \frac{t_k - 1}{t_{k+1}}.$$

## Vitesses de convergence

#### Fonctions convexes

- Descente de gradient :  $f(\mathbf{x}_K) f^* \leq \mathcal{O}\left(\frac{1}{K}\right)$ ;
- Gradient accéléré :  $f(\mathbf{x}_K) f^* \leq \mathcal{O}\left(\frac{1}{K^2}\right)$ .

### Fonctions $\mu$ -fortement convexes

Descente de gradient :

$$f(\mathbf{x}_K) - f^* \leq \left(1 - \frac{\mu}{L}\right)^K (f(\mathbf{x}_0) - f^*).$$

Gradient accéléré

$$f(\boldsymbol{x}_K) - f^* \leq C \left(1 - \sqrt{\frac{\mu}{L}}\right)^K (f(\boldsymbol{x}_0) - f^*).$$

## Conclusion

#### Optimisation non linéaire

- Conditions d'optimalité : Caractérisent des points remarquables au moyen des dérivées.
- Convexité = Contexte favorable pour la minimisation;
- Cas non convexe difficile, mais certaines classes de problèmes ont de bonnes propriétés.

### Descente de gradient

- Algorithme de base pour l'optimisation "douce";
- Applicable aux problèmes convexes et non convexes !
- Variantes accélérées optimales pour les problèmes convexes.

## Références

### Ouvrages:

- J. Wright et Y. Ma, High-Dimensional Data Analysis with Low-Dimensional Models, Cambridge University Press, 2022.
- S. J. Wright et B. Recht, *Optimization for Data Analysis*, Cambridge University Press, 2022.
- A. Beck, First-order methods in optimization, MOS-SIAM Series on Optimization, 2017.

## Fin de la seconde partie

Tout à l'heure : Méthodes stochastiques avec Florentin Goyens.

#### Demain

- La gestion des dérivées;
- L'optimisation sans dérivées.

# Fin de la seconde partie

Tout à l'heure : Méthodes stochastiques avec Florentin Goyens.

#### Demain

- La gestion des dérivées;
- L'optimisation sans dérivées.

Merci beaucoup!