Homework 5

Alexander Brylev

The label "Problem" is used for required problems. "Exercise" is for suggested exercises.

Problem 1 (Golan 307). Let V be a vector space over a field F and let W be a subspace of V. For each $v \in V$, let $v + W = \{v + w \mid w \in W\}$. Let $V/W = \{v + W \mid v \in V\}$ be the collection of all sets of the form v + W, and define operations of addition and scalar multiplication on V/W by setting (v + W) + (v' + W) = (v + v') + W and c(v + W) = (cv) + W for all $v, v' \in V$ and $c \in F$. Show that

- 1. v + W = v' + W if and only if $v v' \in W$;
- 2. V/W, with the given operations, is a vector space over F;
- 3. The function $v \mapsto v + W$ is an epimorphism from V to V/W, the kernel of which equals W:
- 4. Every complement of W in V is isomorphic to V/W;
- 5. If $(v+W) \cap (v'+W) \neq \emptyset$, then v+W=v'+W.

The space V/W is called the factor space of V by W.

Solution. 1. Let v+W=v'+W for some $v,v'\in V$. Then $v+0_W=v'+w$ for some $w\in W$, so that $v-v'=w-0_W\in W$.

Now let $v - v' \in W$. Then v - v' = w' for some $w' \in W$, so that for any $w \in W$ we have $v + w = (v' + w') + w = v' + (w' + w) \in v' + W$, which shows $v + W \in v' + W$. Due to symmetry, we must also have $v' + W \in v + W$. Hence v + W = v' + W.

2. First, let's check that the given operations are well-defined, i.e. if u+W=v+W for some $u,v\in W$ and u'+W=v'+W for some $u',v'\in W$, then (u+u')+W=(v+v')+W and cu+W=cv+W for all $c\in F$.

If u+W=v+W and u'+W=v'+W for some $u,v,u',v'\in W$, then, by part 1, u-v=w and u'-v'=w' for some $w,w'\in W$. So $(u+u')-(v+v')=w+w'\in W$, and, using part 1 again, we get (u+u')+W=(v+v')+W. Also, $cu-cv=c(u-v)=cw\in W$, so that cu+W=cv+W, by part 1 as well. Thus, the given operations are indeed well-defined.

To show V/W, with the given operations, is a vector space, we first need to prove V/W is an abelian group.

Let $u+W, u_1+W, u_2+W, u_3+W\in V/W$. Then i) $((u_1+W)+(u_2+W))+(u_3+W)=((u_1+u_2)+W)+(u_3+W)=((u_1+u_2)+u_3)+W=(u_1+(u_2+u_3))+W=(u_1+W)+((u_2+u_3)+W)=(u_1+W)+((u_2+W)+(u_3+W));$ ii) $(0_V+W)+(u+W)=(0_V+u)+W=u+W=(u+0_V)+W=(u+W)+(0_V+W);$ iii) $(-u+W)+(u+W)=(-u+u)+W=0_V+W;$ iv) $(u_1+W)+(u_2+W)=(u_1+u_2)+W=(u_2+u_1)+W=(u_2+W)+(u_1+W).$ Hence $V/W=< V/W, +, -, 0_V+W>$ is an abelian group.

For each $r \in F$ consider $f_r : V/W \to V/W$ by $f_r(v+W) = rv + W$.

Let $r, r_1, r_2 \in F$ and $v + W, v_1 + W, v_2 + W \in V/W$. Then

i)
$$f_r((v_1 + W) + (v_2 + W)) = f_r((v_1 + v_2) + W) = r(v_1 + v_2) + W = (rv_1 + rv_2) + W = (rv_1 + W) + (rv_2 + W) = r(v_1 + W) + r(v_2 + W) = f_r(v_1 + W) + f_r(v_2 + W);$$

ii)
$$f_{r_1+r_2}(v+W) = (r_1+r_2)v + W = (r_1v+r_2v) + W = (r_1v+W) + (r_2v+W) = r_1(v+W) + r_2(v+W) = f_{r_1}(v+W) + f_{r_2}(v+W);$$

- iii) $f_{r_1}(f_{r_2}(v+W)) = f_{r_1}(r_2v+W) = r_1r_2v+W = f_{r_1r_2}(v+W);$
- iv) $f_1(v+W) = 1v + W = v + W$.

Therefore V/W is a vector space over F.

- 3. The map $f: V \to V/W$ defined via f(v) = v + W is obviously surjective and f(v + u) = (v + u) + W = (v + W) + (u + W) = f(v) + f(u) for all $u, v \in V$, which shows it is a homomorphism. Using part 1, f(v) = v + W = 0 + W if and only if $v = v 0 \in W$, which shows Ker(f) = W.
- 4. Using the first homomorphism theorem and part 3, $W^c = V/Ker(f) \cong Im(f) = V/W$.
- 5. Let $(v+W) \cap (v'+W) \neq \emptyset$. This means v+w=v'+w' for some $w,w' \in W$, which yields $v-v'=w'-w \in W$. By part 1, this implies v+W=v'+W.

Problem 2 (Golan 325). Let $\alpha \in \operatorname{Aut}(\mathbb{R}^2)$ be defined by $\alpha : \begin{bmatrix} a \\ b \end{bmatrix} \mapsto \begin{bmatrix} -b \\ a \end{bmatrix}$. Show that $\mathbb{R}\{\alpha, \sigma_0\}$ is a unital subalgebra of $\operatorname{End}(\mathbb{R}^2)$. Show that it is proper by giving an example of an endomorphism of \mathbb{R}^2 not in this subalgebra.

Solution. Since $\alpha^4 = \sigma_1$, then $\mathbb{R}\{\alpha, \sigma_0\} = \{c_0\sigma_1 + c_1\alpha + c_2\alpha^2 + c_3\alpha^3 : c_0, c_1, c_2, c_3 \in \mathbb{R}\}$. Clearly this set is closed under addition, multiplication by scalars and compositions, and contains σ_1 . Hence it is unital subalgebra of $\operatorname{End}(\mathbb{R}^2)$.

Define $\beta: \mathbb{R}^2 \to \mathbb{R}^2$ by $\beta: \begin{bmatrix} a \\ b \end{bmatrix} \mapsto \begin{bmatrix} a \\ 0 \end{bmatrix}$. Since β is a projection in \mathbb{R}^2 , $\beta \in \operatorname{End}(\mathbb{R}^2)$. Suppose $\beta \in \mathbb{R}\{\alpha, \sigma_0\}$. Then there exist $c_0, c_1, c_2, c_3 \in \mathbb{R}$ such that $\begin{bmatrix} a \\ 0 \end{bmatrix} = \beta(\begin{bmatrix} a \\ b \end{bmatrix}) = c_0\sigma_1(\begin{bmatrix} a \\ b \end{bmatrix}) + c_1\alpha(\begin{bmatrix} a \\ b \end{bmatrix}) + c_2\alpha^2(\begin{bmatrix} a \\ b \end{bmatrix}) + c_3\alpha^3(\begin{bmatrix} a \\ b \end{bmatrix}) = \begin{bmatrix} (c_0 - c_2)a + (c_3 - c_1)b \\ (c_1 - c_3)a + (c_0 - c_2)b \end{bmatrix}$ for all $a, b \in \mathbb{R}$. Choosing a = 1, b = 0, we get $c_0 - c_2 = 1$. And, choosing a = 0, b = 1, we get $c_0 - c_2 = 0$. A contradiction. Hence $\beta \notin \mathbb{R}\{\alpha, \sigma_0\}$ and our subalgebra is proper.

Problem 3 (Golan 326). Let V be the space of all real-valued functions on the interval [-1,1] which are infinitely differentiable, and let δ be the endomorphism of V which assigns to each function f its derivative. Find the kernel and image of δ .

Solution. We have $Ker\delta = \{v \in V : \delta(v) = 0\} = \{f \in C^{\infty}[-1,1] : f' = 0\} = \{f \in C^{\infty}[-1,1] : f(x) = c \text{ for some } c \in R\}$, i.e., a set of all constant functions defined on [-1,1]. We have $Im\delta = \{v \in V : \delta(u) = v \text{ for some } u \in V\} = \{f \in C^{\infty}[-1,1] : g' = f \text{ for some } g \in C^{\infty}[-1,1]\} = \{f \in C^{\infty}[-1,1] : f \text{ is integrable on } [-1,1]\}$, i.e., a set of all integrable functions from $C^{\infty}[-1,1]$.

Problem 4 (Golan 338). Let V be a vector space over a field F which is not finitely generated, and let $\sigma_0 \neq \alpha \in \operatorname{End}(V)$. Set $A = \{\beta \in \operatorname{End}(V) \mid \alpha\beta = \sigma_1\}$. Show that if A has more than one element then it is infinite.

Solution. Suppose A has two elements, β_1 and β_2 . Then there exists a basis vector v of V such that $\beta_1(v) \neq \beta_2(v)$. For $n \geq 3$, define $\beta_n \in \operatorname{End}(V)$ via $\beta_n(v) = (n-1)\beta_1(v) - (n-2)\beta_2(v)$ and $\beta_n(u) = \beta_1(u)$, where u is a basis vector of V such that $u \neq v$. Then $\alpha \beta_n(v) = (n-1)\alpha \beta_1(v) - (n-2)\alpha \beta_2(v) = (n-1)v - (n-2)v = v$ and $\alpha \beta_n(u) = \alpha \beta_1(u) = u$ for a basis vector u of V such that $u \neq v$. Thus, $\beta_n \in A$ for all n. For $n \neq k$, $\beta_n(v) - \beta_k(v) = (n-k)(\beta_1(v) - \beta_2(v)) \neq 0$, which shows $\beta_n \neq \beta_k$ for $n \neq k$. Hence A contains infinitely many elements.

Problem 5 (Golan 340). Let V be a vector space over a field F satisfying the condition that $\alpha\beta = \beta\alpha$ for all $\alpha, \beta \in \text{End}(V)$. Show that $\dim(V) = 1$.

Solution. Suppose $\dim(V) > 1$. Then there exist two linearly independent vectors e_1 and e_2 in V. Define $\alpha \in \operatorname{End}(V)$ via $\alpha(e_1) = e_2$ and $\alpha(v) = 0$ if $v \notin \operatorname{span}(e_1)$. Define $\beta \in \operatorname{End}(V)$ via $\beta(e_2) = e_1$ and $\beta(v) = 0$ if $v \notin \operatorname{span}(e_2)$. Then $\alpha\beta(e_1) = \alpha(0) = 0$, which does not equal $\beta\alpha(e_1) = \beta(e_2) = e_1$, a contradiction.

Problem 6 (Golan 354). Let V be a vector space over a field F and let $\alpha \in \operatorname{Aut}(V)$. Let W_1, \ldots, W_k be subspaces of V satisfying $V = \bigoplus_{i=1}^k W_i$. For each $1 \le i \le k$, let $Y_i = \{\alpha(w) \mid w \in W_i\}$. Is $V = \bigoplus_{i=1}^k Y_i$?

Solution. Let $y \in V$. Since $\alpha \in Aut(V)$, then α is surjective and hence there exists $x \in V$ such that $\alpha(x) = y$. Since $x \in V$ and $V = \bigoplus_{i=1}^k W_i$, then $x = w_1 + w_2 + ... w_k$ for some $w_i \in W_i, 1 \le i \le k$. Then $y = \alpha(x) = \alpha(w_1 + w_2 + ... + w_k) = \alpha(w_1) + \alpha(w_2) + ... + \alpha(w_k) \in Y_1 + Y_2 + ... + Y_k$.

Let $v \in Y_i \cap Y_j$ for some $i \neq j$. Then $v = \alpha(w_i) = \alpha(w_j)$ for some $w_i \in W_i$ and $w_j \in W_j$. Since $\alpha \in Aut(V)$, then α is injective, and so $w_i = w_j \in W_i \cap W_j$. From $V = \bigoplus_{i=1}^k W_i$, it follows that $W_i \cap W_j = \{0\}$, and hence $w_i = w_j = 0$. So $v = \alpha(w_i) = \alpha(0) = 0$.

Exercise (Golan 415). Let V be the subspace of $\mathbb{R}[X]$ consisting of all polynomials of degree less than 3 and choose the basis $B = \{1, X, X^2\}$ for V. Let $\alpha \in \text{End}(V)$ satisfy

$$\Phi_{BB}(\alpha) = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}.$$

Let D be the basis $\{1, X+1, 2X^2+4X+3\}$ for V. What is $\Phi_{DD}(\alpha)$?

Exercise (Golan 467). Let n be a positive integer and let F be a field. Let $A, B \in \mathcal{M}_{n \times n}(F)$ satisfy A + B = I. Show that $AB = \mathbf{0}$ if and only if A and B are idempotent.

Solution. Since A + B = I, then B = I - A and A = I - B. So $AB = A(I - A) = AI - A^2 = A - A^2$ and $AB = (I - B)B = IB - B^2 = B - B^2$. Hence $AB = \mathbf{0}$ if and only if $A = A^2$ and $B = B^2$, i.e., if and only if A and B are idempotent.

Exercise (Golan 530). Let n be a positive integer and let F be a field. If $A \in \mathcal{M}_{n \times n}(F)$ is nonsingular, is the same necessarily true of $A + A^T$?

Solution. If n=1, then A=(a) for some $a\in F$. If A is nonsingular, then $a\neq 0_F$, and so $A+A^T=(a)+(a)=(2a)$ is nonsingular, since $2a\neq 0_F$. Now, let n>1. Define $A=(a_{ij})$ via $a_{1n}=-1_F$, $a_{i,(n+1)-i}=1_F$ for $2\leq i\leq n$, and $a_{ij}=0_F$ elsewhere. Then $det(A)=-1_F\neq 0_F$, so that A is nonsingular. However, $A+A^T$ has a zero first row, and hence is singular.