Course Code:	Course Title	Credit
CSC403	Database Management System	3

Pr	Prerequisite: Data Structures		
Co	Course Objectives:		
1	Develop entity relationship data model and its mapping to relational model		
2	Learn relational algebra and Formulate SQL queries		
3	Apply normalization techniques to normalize the database		
4	4 Understand concept of transaction, concurrency control and recovery techniques.		
Co	Course Outcomes:		
1	Recognize the need of database management system		
2	Design ER and EER diagram for real life applications		
3	Construct relational model and write relational algebra queries.		
4	Formulate SQL queries		
5	Apply the concept of normalization to relational database design.		
6	Describe the concept of transaction, concurrency and recovery.		

Module		Content	Hrs
1		Introduction Database Concepts	3
	1.1	Introduction, Characteristics of databases, File system v/s Database system, Data abstraction and data Independence, DBMS system architecture, Database Administrator	
2		Entity-Relationship Data Model	6
	2.1	The Entity-Relationship (ER) Model: Entity types: Weak and strong entity sets, Entity sets, Types of Attributes, Keys, Relationship constraints: Cardinality and Participation, Extended Entity-Relationship (EER) Model: Generalization, Specialization and Aggregation	
3		Relational Model and relational Algebra	8
	3.1	Introduction to the Relational Model, relational schema and concept of keys. Mapping the ER and EER Model to the Relational Model, Relational Algebra-operators, Relational Algebra Queries.	5
4		Structured Query Language (SQL)	6
	4.1	Overview of SQL, Data Definition Commands, Integrity constraints: key constraints, Domain Constraints, Referential integrity, check constraints, Data Manipulation commands, Data Control commands, Set and string operations, aggregate function-group by, having, Views in SQL, joins, Nested and complex queries, Triggers	
5		Relational-Database Design	6
	5.1	Pitfalls in Relational-Database designs, Concept of normalization, Function Dependencies, First Normal Form, 2NF, 3NF, BCNF.	
6		Transactions Management and Concurrency and Recovery	10
	6.1	Transaction concept, Transaction states, ACID properties, Transaction Control Commands, Concurrent Executions, Serializability-Conflict and View, Concurrency Control: Lock-based, Timestamp-based protocols, Recovery System: Log based recovery, Deadlock handling	

Tex	Textbooks:		
1	Korth, Slberchatz, Sudarshan, Database System Concepts, 6 th Edition, McGraw Hill		
2	Elmasri and Navathe, Fundamentals of Database Systems, 5th Edition, Pearson Education		
3	Raghu Ramkrishnan and Johannes Gehrke, Database Management Systems, TMH		
References:			
1	Peter Rob and Carlos Coronel, Database Systems Design, Implementation and		
	Managementl, Thomson Learning, 5th Edition.		
2	Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press.		
3	G. K. Gupta, Database Management Systems, McGraw Hill, 2012		

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1 Question paper will comprise of total six questions.
- 2 All question carries equal marks
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4 Only Four question need to be solved.
- In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Usei	Useful Links	
1	https://nptel.ac.in/courses/106/105/106105175/	
2	https://swayam.gov.in/nd1 noc19 cs46/preview	
3	https://www.classcentral.com/course/swayam-database-management-system-9914	
4	https://www.mooc-list.com/tags/dbms	

Lab Code	Lab Name	Credit
CSL402	Database Management system Lab	1

Prerequisite: Discrete Structures		
Lab Objectives:		
1 To explore design and develop of relational model		
2 To present SQL and procedural interfaces to SQL comprehensively		
3 To introduce the concepts of transactions and transaction processing		
Lab Outcomes: At the end of the course, the students will be able to		
Design ER /EER diagram and convert to relational model for the realworld application.		
2 Apply DDL, DML, DCL and TCL commands		
3 Write simple and complex queries		
4 UsePL / SQL Constructs.		
5 Demonstrate the concept of concurrent transactions execution and frontend-backend		
connectivity		

Sugge	Suggested List of Experiments		
Sr. No.	Title of Experiment		
1	Identify the case study and detail statement of problem. Design an Entity-Relationship (ER) / Extended Entity-Relationship (EER) Model.		
2	Mapping ER/EER to Relational schema model.		
3	Create a database using Data Definition Language (DDL) and apply integrity constraints for the specified System		
4	Apply DML Commands for the specified system		
5	Perform Simple queries, string manipulation operations and aggregate functions.		
6	Implement various Join operations.		
7	Perform Nested and Complex queries		
8	Perform DCL and TCL commands		
9	Implement procedure and functions		
10	Implementation of Views and Triggers.		
11	Demonstrate Database connectivity		
12	Implementation and demonstration of Transaction and Concurrency control techniques using locks.		

Te	Term Work:		
1	Term work should consist of 10 experiments.		
2	Journal must include at least 2 assignments on content of theory and practical of "Database		
84	Management System"		
3	The final certification and acceptance of term work ensures that satisfactory performance of		
	laboratory work and minimum passing marks in term work.		
4	Total 25 Marks (Experiments: 15-marks, Attendance Theory& Practical: 05-marks,		
8	Assignments: 05-marks)		
O	Oral & Practical exam		