VE320 Intro to Semiconductor Devices Mid1 Recitation Class

Ziyi Wang

UM-SJTU Joint Institute

June 10, 2022

Ziyi Wang (SJTU) VE320 RC June 10, 2022 1/34

Contents

- Chapter 1: Crystalline Structure of Solids
 - Space Lattice
- Chapter 2: Introduction to Quantum Mechanics
 - Basic Equations
 - Schrodinger Wave Equation
- Chapter 3: Quantum Theory of Solids
 - Allowed & Forbidden Energy Bands
 - Electrical Conduction in Solid
 - Density of States Function
 - Statistical Mechanics
- Formulas and Tables

2/34

Ziyi Wang (SJTU) VE320 RC June 10, 2022

- 1: Crystalline Structure of Solids
 - Space Lattice
- Chapter 2: Introduction to Quantum Mechanics
 - Basic Equations
 - Schrodinger Wave Equation
- Chapter 3: Quantum Theory of Solids
 - Allowed & Forbidden Energy Bands
 - Electrical Conduction in Solid
 - Density of States Function
 - Statistical Mechanics
- Formulas and Tables

Lattice Types

- Simple cubic: $\#atom = \frac{1}{8} \times 8 = 1$, $r(atom) = \frac{a}{2}$
- Body-centered cubic: #atom = $\frac{1}{8} \times 8 + 1 = 2$, r(atom) = $\frac{\sqrt{3}a}{4}$
- Face-centered cubic: $\#atom = \frac{1}{8} \times 8 + \frac{1}{2} \times 6 = 4$, $r(atom) = \frac{\sqrt{2}a}{4}$
- $\bullet \ \ \ \ \text{Volume Density} = \frac{\# \text{atoms per unit cell}}{\text{volume of unit cell}}$
- Surface Density = $\frac{\text{\#atoms per lattice plane}}{\text{area of lattice plane}}$
- A corner atom is shared by eight unit cells so that each corner atom contributes $\frac{1}{8}$ of its volume to each unit cell.
- A surface atom is shared by two unit cells so that each surface atom contributes $\frac{1}{2}$ of its volume to each unit cell.

Ziyi Wang (SJTU) VE320 RC June 10, 2022 4/34

Miller Index

- Steps:
 - a. Find the intersection (∞ if parallel to the axis)
 - b. Write the reciprocal
 - c. Times the lowest common denominator
- All parallel planes are equivalent.
- [hkl]: Crystal direction
 (hkl): Crystal plane direction
 [hkl] direction is perpendicular to the (hkl) plane in the simple cubic lattice.

- Chapter 1: Crystalline Structure of Solids
 - Space Lattice
- Chapter 2: Introduction to Quantum Mechanics
 - Basic Equations
 - Schrodinger Wave Equation
- 3 Chapter 3: Quantum Theory of Solids
 - Allowed & Forbidden Energy Bands
 - Electrical Conduction in Solid
 - Density of States Function
 - Statistical Mechanics
- Formulas and Tables

Basic: Wave-particle Duality

- For matters: p = mv, $E = \frac{1}{2}mv^2$
- For photons: $p = \frac{h\nu}{c}$, $E = h\nu$, $\nu = \frac{\lambda}{c}$
- For both: $k = \frac{2\pi}{\lambda}$, $p = \frac{h}{\lambda}$, $\hbar = \frac{h}{2\pi}$, $\Delta p \Delta x \geq \hbar$, $\Delta E \Delta t \geq \hbar$

7/34

Ziyi Wang (SJTU) **VE320 RC**

Solution of 2nd Order DE

$$\bullet \ \frac{\partial^2 y}{\partial x^2} = k^2 y$$

$$y = Ae^{kx} + Be^{-kx}$$

$$\bullet \ \frac{\partial^2 y}{\partial x^2} = -k^2 y$$

$$y = Ae^{ikx} + Be^{-ikx}$$

= $C \sin(kx) + D \cos(kx)$

Basic Concepts

- Wave function: $\Psi(x)$
- Probability density function: $|\Psi(x)|^2 = \Psi(x)\Psi^*(x)$.
- Schrodinger Equation:

$$\frac{\partial^2 \Psi(x)}{\partial x^2} + \frac{2m}{\hbar} (E - V(x)) \Psi(x) = 0$$

- Boundary condition:
 - $\bullet \int_{-\infty}^{\infty} |\Psi(x)|^2 dx = 1$
 - $\Psi(x)$ must be finite
 - $\Psi(x)$ must be continuous
 - $\partial \Psi(x)/\partial x$ must be finite
 - $\partial \Psi(x)/\partial x$ must be continuous (when $V(x) < \infty$)

Ziyi Wang (SJTU)

Electrons in Free Space

• Suppose V(x) = 0

$$\frac{\partial^2 \Psi(x)}{\partial x^2} + \frac{2mE}{\hbar^2} \Psi(x) = 0$$

General solution:

$$\Psi(x) = Ae^{ikx} + Be^{-ikx}$$

where the wave number $k = \sqrt{\frac{2mE}{\hbar}}$.

Particles in free space behave as traveling waves, and we have

$$k = \sqrt{\frac{2mE}{\hbar}} = \frac{p}{\hbar}, \lambda = \frac{h}{p} = \frac{2\pi}{k}.$$

Ziyi Wang (SJTU)

Electrons in Infinite Quantum Well

$$\bullet \frac{\partial^2 \Psi(x)}{\partial x^2} + \frac{2m}{\hbar^2} (E - V(x)) \Psi(x) = 0, \begin{cases} V(x) = +\infty, & x \leq 0 \text{ or } x \geq a \\ V(x) = 0, & 0 < x < a \end{cases}$$

• General solution:

$$\Psi(x) = A_1 \cos kx + A_2 \sin kx$$

Boundary condition:

$$\Psi(x = 0) = \Psi(x = a) = 0$$

$$\int_0^a \Psi(x) \Psi^*(x) = 1$$

Conclusion:

$$\Psi(x) = \sqrt{\frac{2}{a}} \sin k_n x$$

$$k_n = \frac{n\pi}{a}, n = 1, 2, 3, \cdots$$

$$E = E_n = \frac{\hbar^2 n^2 \pi^2}{2ma^2}$$

Electrons in Finite Quantum Well

$$\bullet \frac{\partial^2 \Psi(x)}{\partial x^2} + \frac{2m}{\hbar^2} (E - V(x)) \Psi(x) = 0, \begin{cases} V(x) = V_0, & x \leq 0 \text{ or } x \geq a \\ V(x) = 0, & 0 < x < a \end{cases}$$

• General solution:

$$\Psi(x) = \begin{cases} Ae^{-ik_1x} + Be^{ik_1x}, & k_1 = \sqrt{\frac{2m(E - V_0)}{\hbar^2}}, x \le 0 \text{ or } x \ge a \\ Ce^{-ik_2x} + De^{ik_2x}, & k_2 = \sqrt{\frac{2mE}{\hbar^2}}, 0 < x < a \end{cases}$$

Boundary condition:

$$\Psi(x)|_{x=0,a}$$
 continuous

$$\Psi'(x)|_{x=0,a}$$
 continuous

$$\int_{-\infty}^{\infty} \Psi(x) \Psi^*(x) = 1$$

• Depending on the relationship between E and V_0 , $\Psi(x)$ is different.

- Chapter 1: Crystalline Structure of Solids
 - Space Lattice
- Chapter 2: Introduction to Quantum Mechanics
 - Basic Equations
 - Schrodinger Wave Equation
- Chapter 3: Quantum Theory of Solids
 - Allowed & Forbidden Energy Bands
 - Electrical Conduction in Solid
 - Density of States Function
 - Statistical Mechanics
- Formulas and Tables

1-D Kronig-Penny Model

Idealized model of one dimensional single crystal

Figure: Potential function of 1-D crystal in KP model

- Bloch theorem: $\Psi(x) = u(x)e^{jkx}$
- Conclusion:

$$P'\frac{\sin\alpha a}{\alpha a} + \cos\alpha a = \cos ka$$

where $P' = \frac{mV_0ba}{\hbar^2}$. This equation gives the condition that the Schrodinger wave equation has a solution.

14/34

Energy Bands in K Space

- Consider the E-k relation of particles in the lattice.
- Let $f(\alpha a) = P' \frac{\sin \alpha a}{\alpha a} + \cos \alpha a$

Figure: The entire $f(\alpha a)$ function

where the shared areas show the allowed values of αa corresponding to real values of k.

The E versus k diagram

Figure: E vs. k diagram

For the same energy level, k can have 2 values. (Positive and negative direction)

Energy bands

Semiconductor:

Figure: E-k diagram of semiconductor. (a)T=0K; (b)T>0K

When external electric field is applied

Drift current density: $J = qNv_d = q\sum_{i=1}^N v_i$.

Effective Mass

Background: for the electrons in the lattice,

$$F_{\text{total}} = F_{\text{ext}} + F_{\text{int}} = ma$$

where m is the static mass of the electron. Consider only the external force,

$$F_{\rm ext} = m^* a$$

where m^* is the effective mass of the electron.

• For electron in free space, we have $E = \frac{\hbar^2 k^2}{2m}$, i.e.,

$$\frac{1}{\hbar}\frac{dE}{dk} = v$$

$$\frac{1}{\hbar^2}\frac{d^2E}{dk^2} = \frac{1}{m}$$

Effective Mass

• For electrons at the bottom of the conduction band, $E - E_c = C_1(k)^2$, i.e.,

$$\frac{1}{\hbar^2} \frac{d^2 E}{dk^2} = \frac{2C_1}{\hbar^2} = \frac{1}{m^*}$$

• For electrons at the top of the valance band, $E - E_v = -C_2(k)^2$, i.e.,

$$\frac{1}{\hbar^2} \frac{d^2 E}{dk^2} = \frac{-2C_2}{\hbar^2} = \frac{1}{m^*}$$

which is equivalent to holes with positive mass and positive charge.

$$E = E(k) = E_c + \frac{\hbar^2}{2m_n^*}(k - k_1)^2$$

 $E = E(k) = E_v - \frac{\hbar^2}{2m_p^*}(k - k_2)^2$

where m_n^* and m_p^* are effective mass of electrons and holes.

Ziyi Wang (SJTU) VE320 RC June 10, 2022

19/34

Density of States Function

• For electrons in the lattice, $E = \frac{\hbar^2 k^2}{2m}$,

$$g(E) = \frac{4\pi (2m)^{3/2}}{h^3} \sqrt{E}$$

• For electrons at the bottom of the conduction band, $E-E_c=\frac{\hbar^2k^2}{2m_n^2}$,

$$g_c(E) = rac{4\pi (2m_n^*)^{3/2}}{h^3} \sqrt{E - E_c}, \quad E \geq E_c$$

• For holes at the top of the valance band, $E_V - E = \frac{\hbar^2 k^2}{2m_p^*}$,

$$g_{\nu}(E) = \frac{4\pi(2m_{p}^{*})^{3/2}}{h^{3}}\sqrt{E_{\nu}-E}, \quad E \leq E_{\nu}$$

• There is no energy states in the forbidden band, g(E) = 0, when $E_V < E < E_C$.

Fermi-Dirac Probability Function

- Fermi level E_F : hypothetical levels with a 50% probability of electron occupancy in thermodynamic equilibrium.
- $f_F(E)$ represents the possibility that a quantum state of energy E is occupied by an electron

$$f_F(E) = \frac{1}{1 + \exp(\frac{E - E_F}{kT})}$$

Figure: The Fermi probability function versus energy for different temperatures.

Boltzmann Distribution

• When $E - E_F > 3kT$,

$$f_F(E) \approx \exp(-\frac{E - E_F}{kT})$$

Figure: The Fermi–Dirac probability function and the Maxwell–Boltzmann approximation.

Ziyi Wang (SJTU) VE320 RC June 10, 2022 22/34

- Chapter 1: Crystalline Structure of Solids
 - Space Lattice
- Chapter 2: Introduction to Quantum Mechanics
 - Basic Equations
 - Schrodinger Wave Equation
- Chapter 3: Quantum Theory of Solids
 - Allowed & Forbidden Energy Bands
 - Electrical Conduction in Solid
 - Density of States Function
 - Statistical Mechanics
- Formulas and Tables

Ziyi Wang (SJTU)

•
$$\frac{\partial^2 y}{\partial x^2} = k^2 y \Longrightarrow y = Ae^{kx} + Be^{-kx}$$

 $\frac{\partial^2 y}{\partial x^2} = -k^2 y \Longrightarrow y = Ae^{ikx} + Be^{-ikx}$

•
$$p = mv$$
, $E = \frac{1}{2}mv^2$
 $p = \frac{h\nu}{c}$, $E = h\nu$, $\nu = \frac{\lambda}{c}$
 $k = \frac{2\pi}{\lambda}$, $p = \frac{h}{\lambda}$, $\hbar = \frac{h}{2\pi}$

$$\bullet \frac{\partial^2 \Psi(x)}{\partial x^2} + \frac{2m}{\hbar} (E - V(x)) \Psi(x) = 0$$

•
$$\Psi(x) = \sqrt{\frac{2}{a}} \sin k_n x$$
 $k_n = \frac{n\pi}{a}, n = 1, 2, 3, \cdots, E = \frac{h^2 n^2 \pi^2}{2ma^2}$

$$\bullet \ \frac{1}{\hbar} \frac{dE}{dk} = V \quad \frac{1}{\hbar^2} \frac{d^2E}{dk^2} = \frac{1}{m}$$

•
$$E - E_c = C_1(k)^2$$
, $\frac{1}{\hbar^2} \frac{d^2 E}{dk^2} = \frac{2C_1}{\hbar^2} = \frac{1}{m^*}$
 $E - E_V = -C_2(k)^2$, $\frac{1}{\hbar^2} \frac{d^2 E}{dk^2} = \frac{-2C_2}{\hbar^2} = \frac{1}{m^*}$

Ziyi Wang (SJTU)

•
$$E = E(k) = E_c + \frac{\hbar^2}{2m_n^*}(k - k_1)^2$$

 $E = E(k) = E_v - \frac{\hbar^2}{2m_p^*}(k - k_2)^2$

$$g(E) = \frac{4\pi (2m)^{3/2}}{h^3} \sqrt{E}$$

$$g_c(E) = \frac{4\pi (2m_n^*)^{3/2}}{h^3} \sqrt{E - E_c}, \quad E \ge E_c$$

$$g_v(E) = \frac{4\pi (2m_p^*)^{3/2}}{h^3} \sqrt{E_v - E}, \quad E \le E_v$$

•
$$f_F(E) = \frac{1}{1 + \exp(\frac{E - E_F}{kT})}$$

 $f_F(E) \approx \exp(-\frac{E - E_F}{kT})$

•
$$n_0 = \int_{E_c}^{\infty} g_c(E) f_F(E) dE$$

 $p_0 = \int_{-\infty}^{E_v} g_v(E) (1 - f_F(E)) dE$

•
$$n_0 = N_c \exp\left(\frac{E_F - E_c}{kT}\right)$$

 $p_0 = N_v \exp\left(\frac{E_v - E_F}{kT}\right)$
 $n_0 p_0 = N_c N_v \exp\left(-\frac{E_g}{kT}\right) = n_i^2$

25/34

Ziyi Wang (SJTU) VE320 RC June 10, 2022

•
$$n_0 = n_i \exp\left[\frac{E_F - E_{Fi}}{kT}\right]$$

 $p_0 = n_i \exp\left[\frac{-(E_F - E_{Fi})}{kT}\right]$

•
$$E_{Fi} - E_{\text{midgap}} = \frac{3}{4}kT \ln{(\frac{m_p^*}{m_n^*})}$$

$$\bullet \ \frac{n_d}{n_d + n_0} = \frac{1}{1 + \frac{N_C}{2N_d} \exp\left[\frac{-(E_C - E_d)}{kT}\right]}$$

•
$$n_0 = \frac{(N_d - N_a)}{2} + \sqrt{\left(\frac{N_d - N_a}{2}\right)^2 + n_i^2}$$

 $p_0 = \frac{(N_a - N_d)}{2} + \sqrt{\left(\frac{N_a - N_d}{2}\right)^2 + n_i^2}$

•
$$E_c - E_F = kT \ln \left(\frac{N_c}{n_0} \right)$$
 (when $N_d \gg n_i, E_c - E_F = kT \ln \left(\frac{N_c}{N_d} \right)$)
 $E_F - E_{Fi} = kT \ln \left(\frac{n_0}{n_i} \right)$

•
$$E_F - E_V = kT \ln \left(\frac{N_V}{\rho_0} \right)$$
 (when $N_a \gg n_i, E_F - E_V = kT \ln \left(\frac{N_V}{N_a} \right)$)
 $E_{Fi} - E_F = kT \ln \left(\frac{\rho_0}{n_i} \right)$

26/34

•
$$I_{drf} = e(\mu_n n + \mu_p p)E$$

$$v_n = \frac{v_s}{\left[1 + (\frac{E_{on}}{E})^2\right]^{1/2}}$$

$$v_p = \frac{v_s}{\left[1 + (\frac{E_{op}}{E})^2\right]^{1/2}}$$

- $J_{\text{nx}|\text{dif}} = eD_n \frac{dn}{dx}$ $J_{\text{px}|\text{dif}} = -eD_p \frac{dp}{dx}$
- $\bullet \ \frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{kT}{e}$

Ziyi Wang (SJTU)

Table B.2 | Conversion factors

	Prefixes		
$1 \text{ Å (angstrom)} = 10^{-8} \text{ cm} = 10^{-10} \text{ m}$	10^{-15}	femto-	= f
$1 \mu \text{m} (\text{micrometer}) = 10^{-4} \text{cm}$	10^{-12}	pico-	= p
$1 \text{ mil} = 10^{-3} \text{ in.} = 25.4 \ \mu\text{m}$	10^{-9}	nano-	= n
2.54 cm = 1 in.	10^{-6}	micro-	$= \mu$
$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$	10^{-3}	milli-	= m
$1 J = 10^7 \text{ erg}$	10^{+3}	kilo-	= k
	10^{+6}	mega-	= M
	10^{+9}	giga-	= G
	10^{+12}	tera	= T

Table B.3 | Physical constants

•	
Avogadro's number	$N_A = 6.02 \times 10^{+23}$ atoms per gram
	molecular weight
Boltzmann's constant	$k = 1.38 \times 10^{-23} \text{ J/K}$
Boltzmaini s constant	$k = 1.38 \times 10^{-3} \text{ J/K}$ = $8.62 \times 10^{-5} \text{ eV/K}$
Electronic shores	$e = 1.60 \times 10^{-19} \mathrm{C}$
Electronic charge (magnitude)	e − 1.00 × 10 ° C
Free electron rest mass	$m_0 = 9.11 \times 10^{-31} \mathrm{kg}$
Permeability of free space	$\mu_0 = 4\pi \times 10^{-7} \text{H/m}$
Permittivity of free space	$\epsilon_0 = 8.85 \times 10^{-14} \text{F/cm}$
, ,	$= 8.85 \times 10^{-12} \text{F/m}$
Planck's constant	$h = 6.625 \times 10^{-34} \mathrm{J-s}$
	$= 4.135 \times 10^{-15} \mathrm{eV}$ -s
	$\frac{h}{2\pi} = \hbar = 1.054 \times 10^{-34} \text{J-s}$
Proton rest mass	$M = 1.67 \times 10^{-27} \mathrm{kg}$
Speed of light in vacuum	$c = 2.998 \times 10^{10} \mathrm{cm/s}$
Thermal voltage ($T = 300 \text{ K}$)	$V_t = \frac{kT}{e} = 0.0259 \text{ V}$
	kT = 0.0259 eV

Table B.4 | Silicon, gallium arsenide, and germanium properties (T = 300 K)

Property	Si	GaAs	Ge
Atoms (cm ⁻³)	5.0×10^{22}	4.42×10^{22}	4.42×10^{22}
Atomic weight	28.09	144.63	72.60
Crystal structure	Diamond	Zincblende	Diamond
Density (g/cm ³)	2.33	5.32	5.33
Lattice constant (Å)	5.43	5.65	5.65
Melting point (°C)	1415	1238	937
Dielectric constant	11.7	13.1	16.0
Bandgap energy (eV)	1.12	1.42	0.66
Electron affinity, χ (V)	4.01	4.07	4.13
Effective density of states in conduction band, N_c (cm ⁻³)	2.8×10^{19}	4.7×10^{17}	1.04×10^{19}
Effective density of states in valence band, N_{ν} (cm ⁻³)	1.04×10^{19}	7.0×10^{18}	6.0×10^{18}
Intrinsic carrier concentration (cm ⁻³)	1.5×10^{10}	1.8×10^{6}	2.4×10^{13}
Mobility (cm ² /V-s)			
Electron, μ_n	1350	8500	3900
Hole, μ_p	480	400	1900
Effective mass $\left(\frac{m^*}{m_0}\right)$			
Electrons	$m_I^* = 0.98$	0.067	1.64
	$m_i^* = 0.19$		0.082
Holes	$m_h^* = 0.16$	0.082	0.044
	$m_{hh}^* = 0.49$	0.45	0.28
Density of states effective mass			
Electrons $\frac{m_{ch}^*}{m_o}$	1.08	0.067	0.55
Holes $\left(\frac{m_{dp}^*}{m_o}\right)$	0.56	0.48	0.37
Conductivity effective mass			
Electrons $\frac{\left(m_{cs}^*\right)}{\left(m_{c}^*\right)}$	0.26	0.067	0.12
Holes $\frac{m_{cp}^*}{m_o}$	0.37	0.34	0.21

Table B.5 | Other semiconductor parameters

Material	$E_g(eV)$	a (Å)	ϵ_r	χ	\overline{n}
Aluminum arsenide	2.16	5.66	12.0	3.5	2.97
Gallium phosphide	2.26	5.45	10	4.3	3.37
Aluminum phosphide	2.43	5.46	9.8		3.0
Indium phosphide	1.35	5.87	12.1	4.35	3.37

Table B.6 | Properties of SiO_2 and Si_3N_4 (T = 300 K)

Table B.0 11 Toperties of t	510_2 and 51_{31} 4 (1)	500 K)
Property	SiO_2	Si ₃ N ₄
Crystal structure	[Amorphous fo circuit applicati	r most integrated ions]
Atomic or molecular density (cm ⁻³)	2.2×10^{22}	1.48×10^{2}
Density (g/cm ³)	2.2	3.4
Energy gap	$\approx 9 \text{ eV}$	4.7 eV
Dielectric constant	3.9	7.5
Melting point (°C)	≈1700	≈1900

Table 4.1 | Effective density of states function and density of states effective mass values

	N_c (cm ⁻³)	N_v (cm ⁻³)	m_n^*/m_0	m_p^*/m_0
Silicon	2.8×10^{19}	1.04×10^{19}	1.08	0.56
Gallium arsenide	4.7×10^{17}	7.0×10^{18}	0.067	0.48
Germanium	1.04×10^{19}	6.0×10^{18}	0.55	0.37

Table 4.2 | Commonly accepted values of

$$n_i$$
 at $T = 300 \text{ K}$

Silicon	$n_i = 1.5 \times 10^{10} \mathrm{cm}^{-3}$
Gallium arsenide	$n_i = 1.8 \times 10^6 \mathrm{cm}^{-3}$
Germanium	$n_i = 2.4 \times 10^{13} \mathrm{cm}^{-3}$

33/34

Good Luck!

