

DISCIPLINA SISTEMAS COMPUTACIONAIS PROFESSOR: LUCAS MARQUES DA CUNHA

PROJETO - PROCESSAMENTO DIGITAL DE IMAGENS

Objetivo: Criar uma página HTML e formatar os estilos usando CCS contendo os comandos, resultados e explicações referentes às questões descritas abaixo. Lembre-se de adicionar os nomes dos membros da equipe. Você poderá criar uma ou mais páginas para exibir os resultados, cabendo a equipe esta decisão.

1. Instruções:

Para resolução desta questão você irá precisar:

- I. Acessar o Livro Processamento Digital de Imagens usando Matlab (Capítulo 2);
- II. Para execução dos comandos, utilizar as imagens presentes na pasta: atividade_imagens
- III. Utilize o software Octave para executar os comandos. Você pode utilizar a versão on-line: https://octave-online.net/ ou versão desktop: https://www.gnu.org/software/octave/. Para a versão desktop, lembre-se de instalar e carregar o pacote 'image';
- IV. Adicionar à página criada os comandos e seus respectivos resultados, bem como a explicação solicitada em cada alternativa abaixo.

Nesta questão você irá utilizar os comandos exemplificados no Capítulo 2 de acordo com as seguintes especificações:

- a. Utilizar comando Octave para ler 4 imagens: 2 imagens coloridas e 2 em escala de cinza.
- b. Utilizar o comando Octave *whos* para as 4 imagens lidas. Qual a função deste comando? O que significa as informações exibidas ao executar o comando *whos*?
- c. Utilizar comando Octave para exibir as 4 imagens em uma única janela (Obs. devem ter mesma dimensão)
- d. Utilizar comando Octave para exibir as 4 imagens em janelas distintas.

2. Instruções:

Para resolução desta questão você irá precisar:

- I. Acessar o Livro Processamento Digital de Imagens usando Matlab (Capítulo 2)
- II. Para execução dos comandos, utilizar as imagens presentes na pasta: atividade_imagens
- III. Utilize o software Octave para executar os comandos. Você pode utilizar a versão on-line: https://octave-online.net/ ou versão desktop: https://www.gnu.org/software/octave/. Para a versão desktop, lembre-se de instalar e carregar o pacote 'image';
- IV. Adicionar à página criada os comandos e seus respectivos resultados, bem como a explicação solicitada em cada alternativa abaixo.

DISCIPLINA SISTEMAS COMPUTACIONAIS PROFESSOR: LUCAS MARQUES DA CUNHA

Nesta questão você irá utilizar os comandos exemplificados no Capítulo 2 (Seção 2.4) de acordo com as seguintes especificações:

- a. Ler a imagem 'bolhas.tif' e exibi-la.
- b. Utilizar o comando Octave para salvar a imagem lida com o nome: 'bolhas2', no formato JPEG;
- c. O que significa o parâmetro 'q' do comando imwrite em relação à qualidade e armazenamento da imagem?
- d. Usando o comando imwrite, salve 4 novas imagens alterando o valor de 'q' para q = 10, q = 50, q = 70 e q = 90:
- e. Leia e exiba as 4 imagens modificadas na letra d. Explique em termos de qualidade e armazenamento como o parâmetro 'q' influencia nesse contexto.
- f. Utilize o comando imfinfo para cada imagem salva na letra d. Analise e compare as informações de FileSize de cada imagem.
- g. Para cada imagem gerada na letra d, calcule a taxa de compressão conforme o exemplo da seção 2.4 (Pág 24).
- h. Qual a diferença entre o formato TIF e o formato JPEG?
- i. Como funciona a compressão de imagens? (Leia o capítulo 8 do livro: Processamento Digital de Imagens)

3. Instruções:

Para resolução desta questão você irá precisar:

- I. Acessar o Livro: Processamento Digital de Imagens usando Matlab (Capítulo 2)
- II. Para execução dos comandos, utilizar as imagens presentes na pasta: atividade imagens
- III. Utilize o software Octave para executar os comandos. Você pode utilizar a versão on-line: https://octave-online.net/ ou versão desktop: https://www.gnu.org/software/octave/. Para a versão desktop, lembre-se de instalar e carregar o pacote 'image';
- IV. Adicionar à página criada os comandos e seus respectivos resultados, bem como a explicação solicitada em cada alternativa abaixo.

Nesta questão você irá utilizar os comandos exemplificados no Capítulo 2 (Seção 2.6) de acordo com as seguintes especificações:

- a. Ler a imagem 'mandril_gray.tif' e exibi-la;
- b. Qual o tipo de classe de imagem lida na letra a? Use o comando whos como auxílio.
- c. Utilize os comandos da Tabela 2.4 (Pág 29) para converter a imagem lida na letra a
- d. Exiba as imagens resultantes após o processo de conversão.
- e. Qual a diferença entre os tipos de classe das imagens em relação aos níveis de intensidade? Para saber disso, verifique os valores dos níveis de intensidade das imagens para cada tipo.

DISCIPLINA SISTEMAS COMPUTACIONAIS PROFESSOR: LUCAS MARQUES DA CUNHA

4. Instruções:

Para resolução desta questão você irá precisar:

- I. Acessar a apostila: apostila-matlab-Octave.pdf (Operações geométricas)
- II. Para execução dos comandos, utilizar as imagens presentes na pasta: atividade_imagens;
- III. Utilize o software Octave para executar os comandos. Você pode utilizar a versão on-line: https://octave-online.net/ ou versão desktop: https://www.gnu.org/software/octave/. Para a versão desktop, lembre-se de instalar e carregar o pacote 'image';
- IV. Adicionar à página criada os comandos e seus respectivos resultados, bem como a explicação solicitada em cada alternativa abaixo.

Nesta questão você irá utilizar os comandos exemplificados na Seção sobre Operações Geométricas (Slide 27) de acordo com as seguintes especificações:

- a. Ler e exibir as imagens: 'peppers_gray.tif' e 'astronauta.tif';
- b. Modifique a resolução espacial das imagens com escala de 0.5; realize esse processo para os três algoritmos de interpolação: vizinho mais próximo, 'bilinear' a e 'bicúbico'. Exiba as imagens resultantes.
- c. Modifique a resolução espacial das imagens com escala de 3; Realize esse processo para os três algoritmos de interpolação: vizinho mais próximo, bilinear a e bicúbico. Exiba as imagens resultantes.
- d. Explique a diferença entre as operações realizadas nas letras a e b. Quais aspectos são alterados na imagem resultante? Como essas operações influenciam na qualidade visual da imagem?
- e. Use o comando Octave para rotacionar a imagem em 30º e 90º; exiba as imagens resultantes.
- f. Use o comando Octave para realizar o espelhamento das imagens; exiba as imagens resultantes.
- g. Que tipo de transformação (geométrica ou intensidade) foi realizada nas imagens após o uso dos comandos acima? Justifique.

5. Instruções:

Para resolução desta questão você irá precisar:

Acessar a apostila: apostila-matlab-Octave.pdf (Operações aritméticas)

- II. Para execução dos comandos, utilizar as imagens presentes na pasta: atividade imagens:
- III. Utilize o software Octave para executar os comandos. Você pode utilizar a versão on-line: https://octave-online.net/ ou versão desktop: https://www.gnu.org/software/octave/. Para a versão desktop, lembre-se de instalar e carregar o pacote 'image';
- IV. Adicionar à página criada os comandos e seus respectivos resultados, bem como a explicação solicitada em cada alternativa abaixo.

DISCIPLINA SISTEMAS COMPUTACIONAIS PROFESSOR: LUCAS MARQUES DA CUNHA

Nesta questão você irá utilizar os comandos exemplificados na Seção sobre Operações Aritméticas (Slide 30) de acordo com as seguintes especificações:

- a. Ler e exibir as imagens: 'lena_gray_512.tif', 'ceu.tif', 'red.tif' e 'cameraman.tif':
- b. Realize operações aritméticas entre as imagens lidas. Opere sempre com a imagem que contém uma pessoa e outra com um fundo. Exiba as imagens resultantes.
- c. Explique as diferenças de intensidade das imagens resultantes? Por que há imagens mais claras e outras mais escuras?
- d. O que aconteceria se adicionarmos a cada imagem resultante os respectivos valores, 10, 50, 150?
- e. Dado o valor do pixel = 200 de uma imagem de 8 bits (L = 256), como seria interpretado esse valor se somarmos 150? Justifique.

6. Instruções:

Para resolução desta questão você irá precisar:

- I. Acessar o livro: Processamento Digital de Imagens usando Matlab (Capítulo 3)
- II. Para execução dos comandos, utilizar as imagens presentes na pasta: atividade_imagens
- III. Utilize o software Octave para executar os comandos. Você pode utilizar a versão on-line: https://octave-online.net/ ou versão desktop: https://www.gnu.org/software/octave/. Para a versão desktop, lembre-se de instalar e carregar o pacote 'image';
- IV. Adicionar à página criada os comandos e seus respectivos resultados, bem como a explicação solicitada em cada alternativa abaixo.

Nesta questão você irá utilizar os comandos exemplificados no Capítulo 3 de acordo com as seguintes especificações:

- a. Ler a imagem 'felino.tif' e exibi-la;
- b. Separar as bandas R, G e B da imagem. Em seguida, gerar uma imagem colorida resultante do negativo de cada uma das respectivas bandas.
- c. Converter a imagem lida em escala de cinza e exibir o resultado;
- d. Gerar o negativo da imagem em escala de cinza e exibir o resultado;
- e. Usando os comandos da Tabela 2.4 (pág 29), gere duas novas imagens convertendo a imagem em escala de cinza nos tipos: double e uint16.
- f. Como seria os negativos das imagens convertidas para double e uint16? Realize esta operação e exiba os resultados. Houve alguma diferença em relação a imagem do tipo uint8? Justifique.
- g. Uma imagem do tipo uint16 pode apresentar quantos níveis de intensidade? Qual a profundidade de bits?
- h. Informe os valores mínimos e máximos das imagens geradas para os tipos: double, uint8 e uint16.

DISCIPLINA SISTEMAS COMPUTACIONAIS PROFESSOR: LUCAS MARQUES DA CUNHA

7. Instruções:

Para resolução desta questão você irá precisar:

- I. Acessar o livro: Processamento Digital de Imagens usando Matlab (Capítulo 3)
- II. Para execução dos comandos, utilizar as imagens presentes na pasta: atividade_imagens
- III. Utilize o software Octave para executar os comandos. Você pode utilizar a versão on-line: https://octave-online.net/ ou versão desktop: https://www.gnu.org/software/octave/. Para a versão desktop, lembre-se de instalar e carregar o pacote 'image';
- IV. Adicionar à página criada os comandos e seus respectivos resultados, bem como a explicação solicitada em cada alternativa abaixo.

Nesta questão você irá utilizar os comandos exemplificados no Capítulo 3 (Seção 3.2) de acordo com as seguintes especificações:

- a. Ler a imagem 'fisico.tif' e exibi-la;
- b. Utilize o comando em Octave para realizar o ajuste de contraste da imagem lida; Exiba o resultado obtido;
- c. Utilizando o comando para ajuste de contraste, modifique o parâmetro gamma para 0.25, 1 e 2, respectivamente. Exiba as imagens resultantes e explique qual a função desse parâmetro no ajuste do constraste.
- d. Utilize com comando Octave para gerar uma imagem Limiarizada e exiba seu resultado;
- e. O negativo da imagem, ajuste de contraste e limiarização correspondem a qual tipo de transformação? Essas operações são pontuais ou locais?
- f. Diferencie transformação de intensidade e filtragem espacial.

8. Instruções:

Para resolução desta questão você irá precisar:

- I. Acessar o livro: Processamento Digital de Imagens usando Matlab (Capítulo 3)
- II. Para execução dos comandos, utilizar as imagens presentes na pasta: atividade_imagens;
- III. Utilize o software Octave para executar os comandos. Você pode utilizar a versão on-line: https://octave-online.net/ ou versão desktop: https://www.gnu.org/software/octave/. Para a versão desktop, lembre-se de instalar e carregar o pacote 'image';
- IV. Adicionar à página criada os comandos e seus respectivos resultados, bem como a explicação solicitada em cada alternativa abaixo.

Nesta questão você irá utilizar os comandos exemplificados no Capítulo 3 (Seção 3.3) de acordo com as seguintes especificações:

- a. Ler e exibir as imagens: 'lake.tif', 'livingroom.tif', 'homem.tif', 'barbara.tif' e 'iato.tif':
- b. Gerar os histogramas das imagens lidas;

DISCIPLINA SISTEMAS COMPUTACIONAIS PROFESSOR: LUCAS MARQUES DA CUNHA

- c. De acordo com os histogramas das imagens, qual operação é mais adequada para cada uma delas: Expansão e/ou equalização de histograma? Justifique.
- d. Gere as imagens de acordo com o processamento indicado como resposta na letra c e seus respectivos histogramas.
- e. Expansão de histograma é pontual ou local? E equalização de histograma? O que ocorre quando uma imagem com um único nível passa pela operação de equalização de histograma?
- f. Melhor fazer equalização seguido por expansão de histograma, o inverso, ou a ordem não importa? (Dica: Utilize o Octave para realizar as operações e veja a distribuição dos níveis de intensidade de seus respectivos histogramas)

9. Instruções:

Para resolução desta questão você irá precisar:

- I. Acessar livro: Processamento Digital de Imagens usando Matlab (Capítulo 3)
- II. Para execução dos comandos, utilizar as imagens presentes na pasta: atividade_imagens;
- III. Utilize o software Octave para executar os comandos. Você pode utilizar a versão on-line: https://octave-online.net/ ou versão desktop: https://www.gnu.org/software/octave/. Para a versão desktop, lembre-se de instalar e carregar o pacote 'image';
- IV. Adicionar à página criada os comandos e seus respectivos resultados, bem como a explicação solicitada em cada alternativa abaixo.

Nesta questão você irá utilizar os comandos exemplificados no Capítulo 3 (Seção 3.4) de acordo com as seguintes especificações:

- a. Ler e exibir as imagens: 'woman blonde.tif' e 'pirate.tif';
- b. Gere as imagens correspondentes após a aplicação dos filtros de média, média circular e mediana;
- c. Adicione ruído do tipo "Sal e Pimenta" e "Gaussiano" às imagens e exiba os resultados;
- d. Aplique os filtros de média e mediana para janelas de tamanho 3x3, 5x5, 9x9, nas imagens ruidosas; qual filtragem apresenta melhor resultado?
- e. Qual a diferença entre filtro de média e mediana?

10. Instruções:

Para resolução desta questão você irá precisar:

- I. Acessar o livro: Processamento Digital de Imagens usando *Matlab* (Capítulo 3)
- II. Para execução dos comandos, utilizar as imagens presentes na pasta: atividade_imagens;
- III. Utilize o software Octave para executar os comandos. Você pode utilizar
- a versão on-line: https://octave-online.net/ ou versão desktop:

DISCIPLINA SISTEMAS COMPUTACIONAIS PROFESSOR: LUCAS MARQUES DA CUNHA

<u>https://www.gnu.org/software/octave/</u>. Para a versão desktop, lembre-se de instalar e carregar o pacote 'image';

IV. Adicionar à página criada os comandos e seus respectivos resultados, bem como a explicação solicitada em cada alternativa abaixo.

Nesta questão você irá utilizar os comandos exemplificados no Capítulo 3 (Seção 3.4) de acordo com as seguintes especificações:

- a. Ler e exibir as imagens: 'cat.tif' e 'babuino.tif';
- b. Aplique os filtros apresentados na Tabela 3.5 (Pág. 121) e exiba as imagens resultantes;
- c. Quais desses filtros são de suavização e quais deles são de aguçamento? Qual a diferença entre esses filtros?
- d. Para os filtros de aguçamento, gere as imagens correspondentes a partir da soma da imagem original com a imagem filtrada e exiba os resultados.
- e. Utilize a função de detecção de bordas (prewitt, canny, roberts, sobel, Log) nas imagens lidas na letra a. Para cada imagem resultante, exiba o negativo da imagem. Na sua opinião, qual filtro apresenta maior eficiência?
- f. Selecione algumas imagens de sua preferência e aplique as máscaras convolucionais a seguir:

[1 1 1; 0 0 0; -1 -1 -1], [1 0 -1; 1 0 -1; 1 0 -1], [-1 -1 -1; -1 8 -1; -1 -1 -1], [0.025 0.1 0.025; 0.1 0.5 0.1; 0.025 0.1 0.025].

Qual dessas máscaras são de suavização e quais delas são de aguçamento? g. Aplique o operador de Bordas de *Kirch* para as imagens de sua preferência e exiba os resultados:

5	5	5	-3	5	5	-3	-3	5	-3	-3	-3
-3	0	-3	-3	0	5	-3	0	5	-3	0	5
-3	-3	-3	-3	-3	-3	-3	-3	5	-3	5	5
-3	-3	-3	-3	-3	-3	5	-3	-3	5	5	-3
-3	0	-3	5	0	-3	5	0	-3	5	0	-3
5	5	5	5	5	-3	5	-3	-3	-3	-3	-3