Community Detection Algorithms

Community Evolution

Network and Community Evolution

- How does a **network** change over time?
- How does a community change over time?
- What properties do you expect to remain roughly constant?

What properties do you expect to change?

How Networks Evolve?

Network Growth Patterns

1. Network Segmentation

2. Graph Densification

3. Diameter Shrinkage

1. Network Segmentation

- Often, in evolving networks, segmentation takes place, where the large network is decomposed over time into three parts
- 1. Giant Component: As network connections stabilize, a giant component of nodes is formed, with a large proportion of network nodes and edges falling into this component.
- 2. Stars: These are isolated parts of the network that form star structures. A star is a tree with one internal node and n leaves.
- **3. Singletons**: These are orphan nodes disconnected from all nodes in the network.

2. Graph Densification

- The density of the graph increases as the network grows
 - The number of edges increases faster than the number of nodes does

$$E(t) \propto V(t)^{\alpha}$$

- Densification exponent: $1 \le \alpha \le 2$:
 - $-\alpha = 1$: linear growth constant out-degree
 - $-\alpha = 2$: quadratic growth clique

E(t) and V(t) are numbers of edges and nodes respectively at time t

Densification in Real Networks

3. Diameter Shrinking

In networks diameter shrinks over time

12_F -Full graph -e-Post '95 subgraph 11 -----Post '95 subgraph, no past 10 Effective diameter 9 1992 1994 2002 1996 1998 2000 Time [years]

ArXiv citation graph

Affiliation Network

How Communities Evolve?

Community Evolution

 Communities also expand, shrink, or dissolve in dynamic networks

Community Evaluation

Evaluating the Communities

We are given objects of two different kinds $(+, \times)$

 The perfect community: all objects inside the community are of the same type

- Evaluation with ground truth
- Evaluation without ground truth

Evaluation with Ground Truth

- When ground truth is available
 - We have partial knowledge of what communities should look like
 - We are given the correct community (clustering) assignments

Measures

- Precision and Recall, or F-Measure
- Purity
- Normalized Mutual Information (NMI)

Precision and Recall

$$Precision = \frac{Relevant \ and \ retrieved}{Retrieved}$$

$$P = \frac{TP}{TP + FP}$$

$$Recall = \frac{Relevant \ and \ retrieved}{Relevant}$$

$$R = \frac{TP}{TP + FN}$$

True Positive (TP):

- When similar members are assigned to the same communities
- A **correct** decision.

True Negative (TN):

- When dissimilar members are assigned to different communities
- A **correct** decision

False Negative (FN):

- When similar members are assigned to different communities
- An **incorrect** decision

False Positive (FP):

- When dissimilar members are assigned to the same communities
- An **incorrect** decision

Precision and Recall: Example

$$TP = {5 \choose 2} + {6 \choose 2} + {2 \choose 2} = 26,$$

$$FP = (5 \times 1) + (6 \times 2) = 17,$$

$$FN = (5 \times 2) + (6 \times 1) = 16,$$

$$TN = (6 \times 5) + (2 \times 1) = 32.$$

$$P = \frac{26}{26+17} = 0.60$$

$$R = \frac{26}{26+16} = 0.61$$

F-Measure

Either *P* or *R* measures one aspect of the performance,

 To integrate them into one measure, we can use the harmonic mean of precision of recall

$$F = 2 \cdot \frac{P \cdot R}{P + R}$$

For the example earlier,

$$F = 2 \times \frac{0.6 \times 0.61}{0.6 + 0.61} = 0.60$$

Purity

We can assume the majority of a community represents the community

 We use the label of the majority against the label of each member to evaluate the communities

Purity can be easily tampered by

- Points being singleton communities (of size 1); or by
- Very large communities

$$Purity = \frac{1}{N} \sum_{i=1}^{N} \max_{j} |C_i \cap L_j|$$

- *k*: the number of communities
- *N*: total number of nodes,
- L_i : the set of instances with label j in all communities
- C_i : the set of members in community i

Mutual Information

- Mutual information (MI). The amount of information that two random variables share.
 - By knowing one of the variables, it measures the amount of uncertainty reduced regarding the others

$$MI = I(H, L) = \sum_{h \in H} \sum_{l \in L} \frac{n_{h,l}}{n} \log \frac{n \cdot n_{h,l}}{n_h n_l}$$

- L and H are labels and found communities;
- n_h and n_l are the number of data points in community h and with label l, respectively;
- $n_{h,l}$ is the number of nodes in community h and with label l; and n is the number of nodes

Normalizing Mutual Information (NMI)

- Mutual information (MI) is unbounded
- To address this issue, we can normalize MI
- How? We know that

$$MI \le min(H(L), H(H)),$$

 $(MI)^2 \le H(H)H(L).$
 $MI \le \sqrt{H(H)} \sqrt{H(L)}.$

• *H*(.) is the entropy function

$$H(L) = -\sum_{l \in L} \frac{n_l}{n} \log \frac{n_l}{n}$$

$$H(H) = -\sum_{h \in H} \frac{n_h}{n} \log \frac{n_h}{n}.$$

Normalized Mutual Information

Normalized Mutual Information

$$NMI = \frac{MI}{\sqrt{H(L)}\sqrt{H(H)}}.$$

$$NMI = \frac{\sum_{h \in H} \sum_{l \in L} n_{h,l} \log \frac{n \cdot n_{h,l}}{n_h n_l}}{\sqrt{(\sum_{h \in H} n_h \log \frac{n_h}{n})(\sum_{l \in L} n_l \log \frac{n_l}{n})}}.$$

We can also define it as

Note that
$$MI < 1/2(H(H) + H(L))$$

$$NMI = \frac{I(H;L)}{\frac{1}{2}(H(L) + H(H))}$$

Normalized Mutual Information

$$NMI = \frac{\sum_{h,l} n_{h,l} \log \frac{n \cdot n_{h,l}}{n_h n_l}}{\sqrt{(\sum_h n_h \log \frac{n_h}{n})(\sum_l n_l \log \frac{n_l}{n})}}$$

- where *l* and *h* are known (with labels) and found communities, respectively
- n_h and n_l are the number of members in the community h and l, respectively,
- n_{h} is the number of members in community h and labeled l,
- *n* is the size of the dataset

- **NMI** values close to **one** indicate **high** similarity between communities found and labels
- Values close to zero indicate high dissimilarity between them

Normalized Mutual Information: Example

Found communities (H)

$$- [1,1,1,1,1,1,2,2,2,2,2,2,2,2,2]$$

Actual Labels (L)

$$-$$
 [2,1,1,1,1,1, 2,2,2,2,2,2,1,1]

$$n = 14$$

	n
h=1	6
h=2	8

	n _i
l=1	7
l=2	7

n _{h,l}	l=1	l=2
h=1	5	1
h=2	2	6

Evaluation without Ground Truth

(a) U.S. Constitution

(b) Sports

Evaluation with Semantics

- A simple way of analyzing detected communities is to analyze other attributes (posts, profile information, content generated, etc.) of community members to see if there is a coherency among community members
- The coherency is often checked via human subjects.
 - Or through labor markets: Amazon Mechanical Turk
- To help analyze these communities, one can use word frequencies. By generating a list
 of frequent keywords for each community, human subjects determine whether these
 keywords represent a coherent topic.

• Evaluation Using Clustering Quality Measures

- Use clustering quality measures (SSE)
- Use more than two community detection algorithms and compare the results and pick the algorithm with better quality measure