Preprocessing

(Part of Speech & TF-IDF)

Ko, Youngjoong

Dept. of Computer Science & Engineering, SKK University

Index

Introduction

How to build colab environment

- Part of Speech
- **❖** TF-IDF
- Assignment

Introduction

Introduction

- The assignment is to implement the functions calculating normalized TF-IDF for the given texts.
- ➤ In this PDF, we will explain the 'Part-Of-Speech' and 'normalized TF-IDF', and will give you guidelines for the assignment.
- Before explaining the assignment, we will show how to build colab environment.

Google, 'Colab'

- Google Cloud Development Environment.
- > This allows you to access a free GPU for up to 12 hours at a time.
- Need a personal Google account.

- Google, 'Colab'
 - Create New Notebook

- Google, 'Colab'
 - New Notebook

- Google, 'Colab'
 - Notebook Settings

Google, 'Colab'

- Notebook Settings
 - Python 3
 - GPU

Google, 'Colab'

- Check Notebook settings
 - Python

GPU

- Google, 'Colab'
 - Google Drive Mount

Google, 'Colab'

Upload data to google drive

Google, 'Colab'

After refresh, check the drive update history

How to install NLTK in Python

➤ Install NLTK

[7] !pip install nltk

Requirement already satisfied: nltk in /usr/local/lib/python3.6/dist-packages (3.2.5)
Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from nltk) (1.12.0)

Given Dataset

Data Format : .json

Data Example :

id	paragraph	label						
1	Perhaps President Trump is right	finance						
2	From Town & Country Pippa Middleton	entertainment						
1000	New York Mets prospect Tim Tebow	sports						

The number of Labels: 5 (sports, entertainment, lifestyle, finance and tv)

Part of Speech

What is POS (Part-Of-Speech) tag?

A POS tag is a label assigned to each word in a text to indicate the part-of-speech.

Ex) Noun (NN, NNS, NNP), Verb (VB, VBD, VBG)

What is POS (Part-Of-Speech) tagging?

"John ate the cake"

POS tagging

"John/NNP + ate/VBP + the/DT + cake/NN"

Part of Speech

❖ POS tags of NLTK library for POS tagging

Tag	Description	Example
CC	coordinating conjunction	and
CD	cardinal number	1, third
DT	determiner	the
EX	existential there	there is
FW	foreign word	d'hoevre
IN	preposition/subordinating conjunction	in, of, like
JJ	adjective	big
JJR	adjective, comparative	bigger
JJS	adjective, superlative	biggest
LS	list marker	1)
MD	Modal	could, will
NN	noun, singular or mass	Door
NNS	noun plural	Doors
NNP	proper noun, singular	John
NNPS	proper noun, plural	Vikings
PDT	Predeterminer	both the boys
POS	possessive ending	friend's

PRP	personal pronoun	I, he, it
PRP\$	possessive pronoun	my, his
RB	Adverb	however, usually
RBR	adverb, comparative	Better
RBS	adverb, superlative	Best
RP	Particle	give <i>up</i>
ТО	То	to go, to him
UH	Interjection	Uhhuhhuhh
VB	verb, base form	Take
VBD	verb, past tense	Took
VBG	verb, gerund/present participle	Taking
VBN	verb, past participle	Taken
VBP	verb, sing. present, non-3d	Take
VBZ	verb, 3rd person sing. Present	Takes
WDT	wh-determiner	Which
WP	wh-pronoun	who, what
WP\$	possessive wh-pronoun	Whose
WRB	wh-abverb	where, when

Part of Speech

Example of NLTK library

What is TF (Term Frequency)?

> TF shows how frequent a word occurs in a document.

Example of TF calculation

Doc0: i/PRP am/VBP a/DT boy/NN

Doc1: i/PRP am/VBP a/DT girl/NN

Doc2 : who/WP is/VBZ a/DT boy/NN

	a/DT	am/VBP	boy/NN	girl/NN	i/PRP	is/VBZ	who/WP
Doc_0	1	1	1	0	1	0	0
Doc_1	1	1	0	1	1	0	0
Doc_2	1	0	1	0	0	1	1

The limitation of TF

Frequently used words like 'and', 'the', 'a', 'i', and 'you' will be weighted highly due to their frequent usage, even though they are not important.

What is IDF (Inverse Document Frequency)?

- DF is used to determine whether a term is common or rare across all documents.
- Common words have less information compared to the ones that occur rarely.
- IDF is a way of damping the weights of common terms and increasing the weights of those that occur infrequently.

Example of IDF calculation

- $log_2 \frac{N}{df_t}$: Inverse value of DF
- N: Total number of document
- df_t : The number of documents that contain the term t (df_t)

ex) am/VBP =
$$log_2 \frac{3}{2} = 0.58$$
, girl/NN= $log_2 \frac{3}{1} = 1.58$

	a/DT	am/VBP	boy/NN	girl/NN	i/PRP	is/VBZ	who/WP
IDF	0	0.58	0.58	1.58	0.58	1.58	1.58

What is TF-IDF (Term Frequency-Inverse Document Frequency)?

$$\operatorname{tfidf}(t, d, D) = \operatorname{tf}(t, d) \cdot \operatorname{idf}(t, D)$$

Term fre	equency	Documen	t frequency	Norma	alization	We will use these fomulas		
 I (logarithm)	$1 + \log(t f_{t,d})$	n (no)	1	n (none)	1			
n (natural)	$tf_{t,d}$	t (idf)	$\log rac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \dots + w_M^2}}$			
a (augmented)	$0.5 + \frac{0.5 \times t f_{t,d}}{\max_{t} t f_{t,d}}$	p (prob idf)	$\max\left\{0,\log\frac{N-df_t}{df_t}\right\}$	u (pivoted unique)	$\frac{1}{u}$			
b (boolean)	$\begin{cases} 1 & if \ tf_{t,d} > 0 \\ 0 & otherwise \end{cases}$			b (byte size)	$\frac{1}{CharLength^{\alpha}}, \alpha < 1$			
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 + \log(ave_{t\in d}(tf_{t,d}))}$							

❖ Normalized TF-IDF Example

> TF

	a/DT	am/VBP	boy/NN	girl/NN	I/PRP	is/VBZ	who/WP
Doc_0	1	1	1	0	1	0	0
Doc_1	1	1	0	1	1	0	0
Doc_2	1	0	1	0	0	1	1

> IDF

	a/DT	am/VBP	boy/NN	girl/NN	i/PRP	is/VBZ	who/WP
IDF	0	0.58	0.58	1.58	0.58	1.58	1.58

> TF-IDF

	a/DT	am/VBP	boy/NN	girl/NN	i/PRP	is/VBZ	who/WP
Doc_0	0	0.58	0.58	0	0.58	0	0
Doc_1	0	0.58	0	1.58	0.58	0	0
Doc_2	0	0	0.58	0	0	1.58	1.58

Normalized TF-IDF Example

Normalization of TF-IDF

■ Normalized
$$Doc_0 = \frac{1}{\sqrt{(0+0.58^2+0.58^2+0+0.58^2+0+0)}} \times Doc_0$$

$$= \begin{bmatrix} Doc_0 & 0 & \frac{0.58}{\sqrt{1.00}} & \frac{0.58}{\sqrt{1.00}} & 0 & \frac{0.58}{\sqrt{1.00}} & 0 & 0 \end{bmatrix}$$

■ Normalized
$$Doc_1 = \frac{1}{\sqrt{(0+0.58^2+0+1.58^2+0.58^2+0+0)}} \times Doc_1$$

$$= \begin{bmatrix} Doc_1 & 0 & \frac{0.58}{\sqrt{3.17}} & 0 & \frac{1.58}{\sqrt{3.17}} & \frac{0.58}{\sqrt{3.17}} & 0 & 0 \end{bmatrix}$$

■ Normalized
$$Doc_2 = \frac{1}{\sqrt{(0+0+0.58^2+0+0+1.58^2+1.58^2)}} \times Doc_2$$

$$= \begin{bmatrix} Doc_2 & 0 & 0 & \frac{0.58}{\sqrt{5.33}} & 0 & 0 & \frac{1.58}{\sqrt{5.33}} & \frac{1.58}{\sqrt{5.33}} \end{bmatrix}$$

Assignment

Assignment

- Implement the functions calculating normalized TF-IDF according to above explanation.
- We provide 'train.json', 'test.json', 'HW3_main.py' and 'HW3_util.py'.
- You have to implement 1 function (Calculate_TF_IDF_Normalization) which is in 'HW3 main.py' (please see page 25 for specific formats).
- Use 'Python3' and 'Google Colab'.
- Do not import any additional library except those that are already imported.
- Plagiarized submissions (Copied codes) will be scored 0.

Assignment

'HW3_main.py'

We provide input/output format of three functions in 'HW3_main.py' as the comments, so you can refer it

Sort final TF-IDF values in <u>alphabetical</u> order (a-z)

Ex)		d	а	С	b		а	b	С	d
	Doc0	0	0.41	0.41	0	Doc0	0.41	0	0.41	0

Round the final TF-IDF values which are the output of the function 'Calculate_TF_IDF_Normalization' to the second digit after the decimal point using 'round()' function

ex)
$$0.4054... \Rightarrow 0.41 / 1.0986... \Rightarrow 1.1$$

Assignment

Submission File

- 1) Python code file (.py) (python version 3.x)
 - Format: "hw3_StudentName_StudentID_main.py". - Ex) "hw3_ 홍길동_2020000000_main.py"
- 2) TEXT file (.txt)
 - Format: "hw3_StudentName_StudentID.txt".

Format of the text file that you have to submit

| Train Data Length: 725 | TF-IDF Length: 2000 | | Test Data Length: 154 | TF-IDF Length: 20000 | | 815 | 0.03 | 0.15 | 0.2 | 0.02 | 0.06 | 0.11 | 0.03 | finance | Category | | TAB(\t)

Thank you for your attention!

고 영 중 (Ko, Youngjoong)

http://nlp.skku.edu/