

Introduction

Robot Operating System (ROS) provides libraries and tools to help software developers create robot applications. It provides hardware abstraction, device drivers, libraries, visualizers, message-passing, package management, and more. This document shows how to install **arena_camera**, LUCID's ROS driver.

Requirements

- Ubuntu 16.04 or Ubuntu 18.04
- ROS Kinetic for Ubuntu 16.04 or ROS Melodic for Ubuntu 18.04
- Arena SDK for Linux x64 v0.1.26 or higher

Initial ROS Setup

1. Set up your system to acquire software from packages.ros.org.

```
$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu
$(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'
```

You can confirm the new list file is set by checking the contents of ros-latest.list:

On Ubuntu 16.04 (xenial):

On Ubuntu 18.04 (bionic):

```
ubuntu@ubuntu:~

File Edit View Search Terminal Help

ubuntu@ubuntu:~$ cat /etc/apt/sources.list.d/ros-latest.list
deb http://packages.ros.org/ros/ubuntu bionic main
ubuntu@ubuntu:~$
```


2. Use apt-key to install the Open Robotics key to your list of trusted keys.

```
$ sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654
```

3. Install ROS Desktop. The following commands will install ROS onto the system.

On Ubuntu 16.04 (xenial):

```
$ sudo apt-get update
$ sudo apt-get install ros-kinetic-desktop-full
```

On Ubuntu 18.04 (bionic):

```
$ sudo apt-get update
$ sudo apt-get install ros-melodic-desktop-full
```

4. Initialize rosdep. This will setup system dependencies for ROS.

```
$ sudo rosdep init
$ rosdep update
```


5. Setup ROS environment variables.

On Ubuntu 16.04 (xenial):

```
$ echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc
$ source ~/.bashrc
```

On Ubuntu 18.04 (bionic):

```
$ echo "source /opt/ros/melodic/setup.bash" >> ~/.bashrc
$ source ~/.bashrc
```

6. Install ROS package workspace dependencies. This will allow you to create and manage your own ROS workspaces, including the ROS workspace used by arena_camera.

```
\ sudo apt-get install python-rosinstall python-rosinstall-generator python-wstool build-essential
```

Arena SDK setup

 Download and install Arena SDK. Arena SDK for Linux is available on the Downloads page at https://thinklucid.com/downloads-hub/. The Arena SDK dependencies are listed in the README file included with the SDK.

Note

These instructions will assume Arena SDK is installed at ~/ArenaSDK_Linux_x64:

```
$ tar -xvf ArenaSDK v0.1.26 Linux x64.tar.gz -C ~
```

Please remember to go over the Getting Started steps discussed in the Arena SDK documentation and run the Arena_SDK.conf file in the Arena_SDK directory:

```
$ cd ~/ArenaSDK_Linux_x64/
$ sudo sh Arena_SDK.conf
```


2. Set up your **ARENA_ROOT** environment variable. This environment variable should be the path where you have installed Arena SDK.

```
$ echo "export ARENA_ROOT=/home/ubuntu/ArenaSDK_Linux_x64" >>
~/.bashrc
$ source ~/.bashrc
```

You can confirm the variable is set with the typing echo \$ARENA_ROOT in the terminal.

Creating a ROS workspace for the arena_camera ROS Driver

1. Extract catkin_ws.zip. This will be the ROS workspace used by arena_camera.

```
These instructions will assume catkin_ws is extracted to ~/catkin_ws:

$ unzip catkin_ws.zip -d ~
```

2. Set up your **ARENA_CONFIG_ROOT** environment variable. This is also the path to the ROS workspace used by arena_camera.

```
$ echo "export ARENA_CONFIG_ROOT=~/catkin_ws" >> ~/.bashrc
$ source ~/.bashrc
```


Building and Running the arena_camera ROS Driver

1. Navigate to your arena camera ROS workspace

```
$ cd ~/catkin_ws
```

2. Copy the included **image_encoding.h** to your ROS include folder

On Ubuntu 16.04 (xenial):

```
$ sudo cp /opt/ros/kinetic/include/sensor_msgs/image_encodings.h
/opt/ros/kinetic/include/sensor_msgs/image_encodings.h.bak
$ sudo cp inc/image_encodings.h
/opt/ros/kinetic/include/sensor_msgs/image_encodings.h
```

On Ubuntu 18.04 (bionic):

```
$ sudo cp /opt/ros/melodic/include/sensor_msgs/image_encodings.h
/opt/ros/melodic/include/sensor_msgs/image_encodings.h.bak
$ sudo cp inc/image_encodings.h
/opt/ros/melodic/include/sensor_msgs/image_encodings.h
```

Note

A custom image_encoding.h is included to enable streaming support for LUCID's Helios camera.

3. Build arena_camera

```
$ catkin_make
```

The above command will build:

arena_camera: The Arena SDK camera code for ROS.arena_camera_node: The ROS node for arena_camera. See

http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes

for further information.

```
[ 95%] Butlding CXX object arena_camera/CMakeFtles/arena_camera.dlr/src/arena_camera/binary_exposure_search.cpp.o
[ 96%] Butlding CXX object arena_camera/CMakeFtles/arena_camera.dlr/src/arena_camera/chaceftles/arena_camera.dlr/src/arena_camera/chaceftles/arena_camera.dlr/src/arena_camera/arena_camera.pp.o
[ 97%] Butlding CXX object arena_camera/CMakeFtles/arena_camera.dlr/src/arena_camera/arena_camera_node.cpp.o
[ 97%] Butlding CXX object arena_camera/CMakeFtles/arena_camera.dlr/src/arena_camera/arena_camera_node.cpp.o
[ 98%] Linking CXX shared library /home/ubuntu/catkin_ws/devel/lib/libarena_camera.so
[ 98%] Butlit target arena_camera
scanning dependencies of target arena_camera_node
[ 100%] Butlding CXX object arena_camera/CMakeFtles/arena_camera_node.dlr/src/arena_camera/main.cpp.o
[ 100%] Linking CXX executable /home/ubuntu/catkin_ws/devel/lib/arena_camera/arena_camera_node
ubuntu@ubuntupc:~/catkin_ws$
```

4. Run roscore to start the ROS server

\$ roscore

```
ubuntu@ubuntupc:~/catkin_ws$ roscore
... logging to /home/ubuntu/.ros/log/203027b4-b2fe-11e9-b548-0800278aafa7/roslaunch-ubuntupc-18688.log
Checking log directory for disk usage. This may take awhile.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://ubuntupc:41957/
ros_comm version 1.12.14

SUMMARY
=======

PARAMETERS
* /rosdistro: kinetic
* /rosversion: 1.12.14

NODES

auto-starting new master
process[master]: started with pid [18698]
ROS_MASTER_URI=http://ubuntupc:11311/
started core service [/rosout-]: started with pid [18711]
started core service [/rosout]
```

Note

Only one roscore can be run at a time.

5. Run arena_camera as a node in a new terminal. The first command listed below will overlay your workspace on top of your ROS environment. The second command will connect to the camera and the camera will start imaging. The received images will be published to a topic. See http://wiki.ros.org/Topics and http://wiki.ros.org/Topics and http://wiki.ros.org/Topics and http://wiki.ros.org/Topics for further information.

```
$ source ~/catkin_ws/devel/setup.bash
$ rosrun arena_camera arena_camera_node
```

6. View the raw images by opening a new terminal and subscribing the image_view node to topic name image_raw.

```
$ rosrun image_view image:=/arena_camera_node/image_raw
```


Note

Streaming with 12-bit pixel formats are not supported in this version of arena camera.

Depth visualization support is not included with this version of arena_camera. You will see a black image when viewing a Coord3D pixel format with the image_view node.

Using rosparam to Set Camera Parameters

ROS includes the rosparam tool which can be used to set camera parameters before starting arena_camera.

To **set** a parameter:

```
$ rosparam set /arena_camera_node/<parameter_name> value
$ rosparam set /arena_camera_node/frame_rate 10
$ rosparam set /arena_camera_node/image_encoding mono8
```

To **list** of parameters that are already set:

```
$ rosparam list /arena_camera_node
```

To **view** a set parameter's value:

```
$ rosparam get /arena_camera_node/<parameter_name>
$ rosparam get /arena_camera_node/frame_rate
```

To **delete** a set parameter:

```
$ rosparam delete /arena_camera_node/<parameter_name>
$ rosparam delete /arena_camera_node/frame_rate
```

Other rosparam commands

Command	Description
rosparam dump	Dump current parameters to a file
rosparam load	Load parameters from a file

Note

If arena_camera is already running, you must stop and start arena_camera for new or changed parameters to take effect.

Supported arena_camera_node Parameters

Parameter	Description
device_user_id	Device User ID (user defined name)
frame_rate	Frame Rate (Hz)
image_encoding	Pixel Format
binning_x	Binning parameter for X axis (must match binning_y)
binning_y	Binning parameter for Y axis (must match binning_x)
exposure	Exposure Time (microseconds)
gain	Gain (dB)
gamma	Gamma correction of pixel intensity
exposure_auto	Auto Exposure control (true/false)
gain_auto	Auto Gain control (true/false)

ROS camera_calibration Node

An optional step is to calibrate a single camera using the ROS **camera_calibration** node. This will assist in calibrating a monocular camera from the image_raw topic. See

http://wiki.ros.org/camera calibration/Tutorials/MonocularCalibration for more detailed information.

Once you have installed camera_calibration with rosdep, you can use it with arena_camera:

```
$ rosrun camera_calibration cameracalibrator.py --no-service-check -
-size 8x6 --square 0.108 image:=/arena_camera_node/image_raw
camera:=/camera
```

where 8x6 is the number of vertices in your checkerboard pattern.

Once there is enough data for calibration, click **Calibrate** to start the calibration process and click **Save** to save the calibration data to a file.

Note

You will not be able to Commit the calibration data onto the camera.

Once the calibration data is saved to file, you can extract the calibration tarball contents and apply the calibration to the camera using **rosparam**. The following steps assume the calibration data is extracted to **~/calibration**.

```
$ mkdir ~/calibration
$ tar -xvf /tmp/calibrationdata.tar.gz -C ~/calibration
$ rosparam set /arena_camera_node/camera_info_url
"file://home/ubuntu/calibration/ost.yaml"
$ rosrun arena_camera arena_camera_node
```

```
ubuntu@ubuntupc:~/catkin_ws$ rosrun arena_camera arena_camera_node
[ WARN] [1564522965.991886744]: Autoflash: 0, line2: 1 , line3: 1
[ INFO] [1564522965.992009953]: No Device User ID set -> Will open the camera device found first
[ INFO] [1564522966.643079874]: camera calibration URL: file:///home/ubuntu/calibration/ost.yaml
```


Version History

Version	Description	Date
1	Initial Release	August 2, 2019
1.1	Added notes for Ubuntu 18.04 and ROS Melodic	August 13, 2019
	Additional clarification to Initial ROS Setup section	