15may03 18:33:26 User206374 Session D7302.1 Sub account: MANN/018512-003813US/DMW

File 351:Derwent WPI 1963-2003/UD,UM &UP=200330

Set	Items	Descri	lption
S1	0	PN=JP	5806912
S2	1	PN≃JP	59181257
S3	1	PN=JP	10259176

t s2/3,pi,fd,ab

2/3, PI, FD, AB/1

004146499

WPI Acc No: 1984-292039/ 198447

XRAM Acc No: C84-124317

New ureidobenzamide derivs. - having blood sugar-decreasing activity

Patent Assignee: CHUGAI PHARM CO LTD (CHUS) Number of Countries: 001 Number of Patents: 001

Patent Family:

 Patent No
 Kind
 Date
 Applicat No
 Kind
 Date
 Week

 JP 59181257
 A 19841015
 JP 8353803
 A 19830331
 198447
 B

 Priority Applications (No Type Date):
 JP 8353803
 A 19830331

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 59181257 A 6

Abstract (Basic): JP 59181257 A

Prepn. of (I), comprises (a) reacting (II) with (VI), (b) reducing (III) obtd. and reacting prod. (V) with R2NCO. R1 is H or 1-2 lower alkyl; Y is -NHCONHR2 in 2 or 4 position; R2 is H, lower alkyl or opt. substd. aryl; n is 0 or 1; and X is halogen.

Reaction of (II) with (VI) is in solvent, e.g., acetone, tetrahydrofuran, dioxane, etc. in the presence of base, e.g., triethylamine, pyridine, etc. at 0-30 deg.C for 1-5 hours. (V) is obtd. by catalytic redn. from (III). When R2 is not H, (I) is obtd. from (V) by reaction in inert solvent, e.g., benzene, toluene, acetone, etc. in the presence of base at 20-100 deg.C for 1-48 hours. When R2 is H, (I) is obtd. by dissolving (V) in acid soln. and adding alkali cyanate soln. with stirring at 0-100 deg.C for 1-5 hours.

(19) 日本国特許庁 (JP)

① 特許出願公開

⑩ 公開特許公報 (A)

昭59—181257

DInt. Cl.3 C 07 D 213/75 213/40

A 61 K 31/44

識別記号

ADP

庁内整理番号 7138-4C 7138-4C

❸公開 昭和59年(1984)10月15日 発明の数 1

審査請求 未請求

(全 6 頁)

ᡚウレイドペンズアミド誘導体

②特

昭58--53803

22出

昭58(1983)3月31日

⑫発

明 者 本多成光

東京都豊島区高田三丁目41番8 号中外製薬株式会社内

⑩発 明 者 永井秀明

東京都豊島区高田三丁目41番8

号中外製薬株式会社内

⑫発 明 者 滝島章子

東京都豊島区高田三丁目41番8

号中外製薬株式会社内

明 者 河村明典 79発

1. 発明の名称

ウレイドペンズアミド誘導体

2. 特許請求の範囲

一般式

〔式中Riは水紫原子又は1~2個の低級アルキ ル赭を示し、Yは2位又は4位に結合する菇-NH CONHR2(ここでR2は水素原子、低級アルキルボ 又は核に 置換 熱を有し得る アリール 熱を 意味する) を示し、ヵは0又は1を示す) で發わされるウレイドベンズアミド誘導体。

東京都費島区高田三丁目41番8 号中外製薬株式会社内

明 日野原好和 者

東京都豊島区高田三丁目41番8

号中外製薬株式会社内

@発 明 者 小泉益男

東京都豊島区高田三丁目41番8

号中外製薬株式会社内

@発 明 者 村上泰

東京都豊島区高田三丁目41番8

号中外製薬株式会社内

创出 願 人 中外製薬株式会社

東京都北区浮間5丁目5番1号

個代 理 人 安藤憲章

3. 発明の鮮細な説明

本発明は次の一般式

[式中R1は水素原子又は1~2個の低級アルキ ル戡を示し、Yは2位又は4位に枯合する基-NH OONHR2(ここでR2は水素原子、低級アルキル基 又は核に置換基を有し得るアリール 甚を意味する) を示し、れは0又は1を示す〕

で表わされるウレイドペンズアミド誘導体に関す

上式(1)で表わされる本発明の化合物は優れた 血糖降下作用を有し医漿として有用である。

本発明の化合物は例えば以下に示すようにニト ロベンゾイルハライドとアミン類とを塩甚の存在 下反応させニトロペンズアミド誘導体とし、次い で常法により選元してアミノペンズアミド誘導体 とした後、イソシアナート類と反応させることに より得ることができる。また2-ウレイドベンズ

特閱昭 59-181257(2)

アミド誘導体の場合は、無水イサトン酸とアミン 類とを反応させ2-アミノベンズアミド誘導体と し、次いでイソシアナート類と反応させることに よっても得ることができる。

これを式示すれば以下のとおりである。尚、式中Xはハロゲン原子を意味し、その他の記号は前記と同一の意味を有する。

る。また、R2 = Hのときは、化合物 (V) を塩酸, 酢酸等の酸性水溶液に溶解し、次いでシアン酸ア ルカリ水溶液を提拌下加え、0~100℃、1~ 5時間で行なわれる。

奖 旅 例 1.

無水イサトン酸 2 5 8、2 - アミノー 6 - メチルビリジン 1 6.6 9 を無溶媒操拌下 1 0 0 ℃に加熱する。しばらくして発泡が始まるが、さらに同温度で 4 時間拇排を続ける。冷後反応混合物をクロロホルムに溶解後シリカゲルクロマトグラフィーに付しクロロホルム流出部より、2 - アミノーN - 6 - メチルー 2 - ビリジルベンズアミド 1 3 9を得た (派色ブリズム晶, n-ヘキサン, ベンゼン混合裕媒から再結晶)。収率 3 7%、融点 8 6~8 7 ℃。

この 2.3 9 を 5 % 塩酸浴液 1 5 ml に溶解し、窒温滑拌下、過剰の 1 0 % シアン酸カリウム水溶液を加えてアルカリ性とし、同温度で 2 時間攪拌を続ける。析出した結晶を) 定取し、水洗後メタノールから再結晶して、無色針状晶の 2 - ウレイドーN - 6 - メチル- 2 - ピリジルベンズアミド (化

化合物 (II) とアミン類との反応は通常の酸アミド形成反応条件により行なわれ、例えば、アセトン、テトラヒドロフラン、ジオキサン等の不活性 裕媒中、好ましくは、トリエチルアミン、ビリジン等の塩盐の存在下 0 ~ 3 0 ℃、1 ~ 5 時間で行なわれる。

化合物 [II] は常法により、例えば、パラジウム - 炭素,ラネイニッケル等の触媒を用いる還元反 応により化合物 [V] に導くことができる。

一方、無水イサトン酸 [N] とアミン類との反応は無溶媒、あるいは、ジオキサン、トルエン、キシレン等の溶媒中、攪拌下50~180℃、1~5時間で行なわれ化合物 [V] (2- 懺換体)を得ることができる。

化合物 [V] とイソシアナート類との反応は通常の尿素形成反応条件により行なわれ、例えばR2 ド Hのときは、ペンゼン、トルエン、アセトン、テ トラヒドロフラン、ジオキサン等の不活性溶媒中、 好ましくはトリエチルアミン、ピリジン等の填基 の存在下 20~100~1~48時間で行なわれ

合物1)219を得た。

双率77%、触点180~181℃。

元素分析値 分子式 C14 H14 N4 O2 として

区 H N 理動植物 62.21 5.22 20.73 実測値物 62.24 5.25 20.76 実施例 2.

2-アミノーN-6-メチル-2-ビリジルベンズアミド239およびアセトン20元の混合浴液に窒温攪拌下メチルイソシアナート0.69および触媒量のトリエチルアミンを加える。24時間撥拌後、析出する結晶を沪取し、水洗後アセトンから再結晶して無色針状晶の2-(3-メチルウレイド)-N-6-メチル-2-ビリジルベンズアミド(化合物2)2.59を得た。

収率87%、触点135~136℃。

元素分析値 分子式 O₁₅ H₁₆ N₄ O₂ として

 C
 H
 N

 理論値份
 6 3.3 6
 5.6 7
 1 9.7 1

 実測値份
 6 3.3 2
 5.6 4
 1 9.7 4

持贈昭59-181257(3)

実施例3.

2-アミノー6-メチルビリジン1469,ト リエチルアミン 2 5 ml およびアセトン 3 0 0 ml の 混合俗液に、氷冷攪拌下、4-ニトロペンソイル クロライド258を徐々に加える。 同温度で30 分、次いで 第 温で 1 時間 標 拌 後、 反応 裔 液 を 1.5 l の水に注ぎ、析出する結晶を沪取し、水洗後メ タノールから再結晶して無色針状晶の4~ニトロ - N - 6 - メチル - 2 - ピリジルベンズアミド20 9を得た。収率58%、融点231~232℃。 この209、10%パラジウム - 炭素 1.59 お よびエタノール300mlの混液に水紫を通じ、常 法により接触還元する。計算性の水繁を吸収後触 媒を除去し、反応液を波圧機縮し、残液をn-ヘ キサン、ベンゼンの混合裕姝から再枯晶して無色 プリズム品の4-アミノ-N-6-メチル-2-ビリジルベンズアミド1 5.79を得た。 収率89%、 微点136~137℃。

この239を5%塩酸溶液15mlに溶解し、室 温漿拌下、過期の10%シアン酸カリウム水浴液 を加えてアルカリ性とし、同温度で 2 時間 批拌を 続ける。析出した結晶を戸取し水洗後メタノール から再結晶して無色針状晶の 4 - ウレイド - N -6 - メチル - 2 - ビリジルベンズアミド(化合物 3)1.9を得た。

収率69%、触点225~227℃。

元素分析値 分子式 C14 H14 N4 O2 として

O H N
6 2 2 1 5.2 2 2 0.7 3
6 2 2 3 5.2 6 2 0.7 1

実施例 4.

理驗值份

寒 測 値 饧

4 - アミノ・N - 6 - メチル - 2 - ビリジルベンズアミド 2 3 9 および アセトン 2 0 配の混合裕 液に室温撹拌下、メチルイソシアナート 0.6 9 および触媒 既のトリエチルアミンを加える。 2 4 時間撹拌後、折出する結晶を炉取し水洗後、アセトンから再結晶して 無色針 状晶の 4 - (3 - メチルウレイド) - N - 6 - メチル - 2 - ビリジルベンズアミド(化合物 4) 2 4 9 を得た。収率 8 3 %、 触点 2 0 0 ~ 2 0 2 ℃。

元素分析値 分子式 C15 H16 N4 O2 として

U H N 理 助 飯 均 6 3.3 6 5.6 7 1 9.7 1 実 砂 飯 均 6 3.3 2 5.6 1 1 9.7 6

奖施例 5 ~ 2 5.

契施例1及び2と間機にして装1の化合物を得た。

表 1 (二) CONH(CH,)n-CH+R,

	162 15	245			版 点	似瓣	l	元	* 5	折	(lili	
奖施例 Ma	-{_}-R_1	R ₂	n	分子式	(c)	(%)	现 C	胎 組	(%) N	¥ 0	W W	(%) N
5	0	СНз	0	O14 H14 N4 O2	173~174	8 2	6 2.2 1	5.22	2 0.7 3	6 2.2 5	5.24	2 0.7 6
6	Q	O ₂ H ₅	0	O ₁₅ H ₁₆ N ₄ O ₂	175~176	8 5	6 3.3 6	5.6 7	1 9.7 1	6 3:3 2	5.7 1	1 9.6 8
7		Н	. 0	O13 H12 N4 O2	>300	8 8	6 0.9 3	4.7 2	2 1.8 7	6 0.8 8	4.7 6	2 1.8 3
8		n-03H7	0	O ₁₆ H ₁₈ N ₄ O ₂	>300	8 1	6 4.4 1	6.08	1 8.7 8	6 4. % 5	6.02	1 8.7 1
9		ОН3	1	O15 H16 N4 O2	139~140	7 4	6 3.3 6	5.6 7	1 9.7 1	6 3.4 0	5.68	1 9.7 4
1 0	()	O ₂ H ₅	. 1	O16 H18 N4 O2	146~147	8 3	6 4.4 1	6.08	1 8.7 8	6 4.4 3	6.11	1 8.7 5
1 1			1	C20 H18 N4 O2	219~221	8 0	6 9.3 5	5.2 4	1 6.1 8	6 9.3 9	5. 2 8	1 6.2 1
1 2		ОНз	1	O ₁₅ H ₁₆ N ₄ O ₂	174~175	7 7	6 3.3 6	5.67	1 9.7 1	6 3.3 2	5.6 4	1 9.7 4
1 3	10	O ₂ H ₅	1	O16 H18 N4 O2	172~173	7 6	6 4.4 1	6.08	1 8.7 8	6 4.4 3	6.06	1 8.7 7

	12 19	25			Ht di	取業	Ī	<u></u> π	<u> </u>	14 +	他	
奖施例			#	分子式			理	84 W	(%)	、災	98 th	(%)
₩a	-€, →Ri	R ₂			(೮)	(%)	0	H	<u> N</u>	0		N
1 4	S.	O2 H5	0	O ₁₆ H ₁₈ N ₄ O ₂	156~157	8 1	6 4.4 1	6.08	1 8.7 8	6 4.4 7	6.03	1 8.7 5
15	\$	()	0	O20 H14 N4 O2	167~168	8.8	6 9.3 5	5.2 4	1 6.1 8	6 9.3 7	5.2 6	1 6.1 4
1 6	-Ç, , , ,	O ₂ H ₅	0	O16 H16 N4 O2	154~155	8 8	6 4.4 1	6.08	1 8.7 8	6 4.4 3	6.0 2	1 8.7 4
1 7	T'N CH3	n-O3 H7	0	O ₁₇ H ₂₀ N ₄ O ₂	127~128	8 0	6 5.3 6	6.4 5	1 7.9 4	6 5.3 7	6.47	1 7.9 1
18	₽, cu,	i-03 H7	0	C ₁₇ H ₂₀ N ₄ O ₂	156~157	7 9	6 5.3 6	6.4 5	1 7.9 4	6 5.3 4	6.4 2	1 7.9 2
1 9	L. J. CHI	n-O4H0	0	O ₁₈ H ₂₂ N ₄ O ₂	131~132	8 2	6 6.2 3	6.79	1 7.1 7	6 6.2 6	6.7 4	1 7.1 4
2 0	€ _N cH)	(H)	ó	O20 H24 N4 O2	169~170	8 6	6 8.1 6	6.86	1 5.9 0	6 8.1 4	6.8 3	1 5.9 2
2 1	In cu,		0	O20 H18 N4 O2	145~146	8 3	6 9.3 5	5.2 4	1 6.1 8	6 9.3 1	5.21	1 6.1 9
2 2	€"JcH"	-()-0£	0	C20 H17 OL N4 O2	136~137	9 1	6 3.0 7	4.5 0	1 4.7 1	6 3.0 5	4.4 8	1 4.7 5
2 3	- NI CHI	-Осн,	0	O21 H20 N4 O2	265~270	8 2	6 9.9 8	5.5 9	1 5.5 5	6 9.9 6	5.5 6	1 5.5 2
2 4	CH,	O 2 H 5	0	O ₁₇ H ₂₀ N ₄ O ₂	165~166	8 4	6 5.3 6	6.4 5	1 7.9 4	6 5.3 9		
2 5	CH3 ENT CH3	0	0	O ₂₁ H ₂₀ N ₄ O ₂	127~129	8 8	6 9.9 8	5.5 9	1 5.5 5	6 9.9 6		1 5.5 7

契施例3及び4と同様にして安2の化合物を得た。

央施例	162 1	炎 基]		出 点	収半	l	元	<u> </u>	1} €	Иi	
` Na	€ R1	R ₂	"	分子式	(v).	(X)	理	輪(佐	(%)	契	M W.	
2 6		ОНз	0	O14 H14 N4 O2	206~208	8 5	6 2.2 1	<u>H</u> 5.2 2	2 0.7 3	6 2.2 4	<u>I4</u> 5.2 7	N 2 0.7 6
2 7	(n)	O ₂ II ₅	0 .	C ₁₅ H ₁₆ N ₄ O ₂	237~239	8 1	6 3.3 6	5.6 7	1 9.7 1	6 3.3 5	5.69	1 9.7 3
2 8		Н	0	O ₁₃ H ₁₂ N ₄ O ₂	>300	8 3	6 0.9 3	4.7 2	2 1.8 7	6 0.9 5	4.7 7	2 1.8 4
2 9			0	O19 H16 N4 O2	>3 0 0	8 6	6 8.6 6	4.8 5	1 6.8 6	6 8.6 1	4.8 3	1 6.8 8
3 0		ОНз	0	C14 H14 N4 O2	150~152	7 0	6 2.2 1	5.2 2	2 0.7 3	6 2.2 5	5.25	2 0.7 6
3 1		O ₂ H ₅	0	C ₁₅ H ₁₆ N ₄ O ₂	248~250	8 4	6 3.3 6	5.6 7	1 9.7 1	6 3.3 4	5.6 3	1 9.7 4
3 2		ОН3	1	O ₁₅ II ₁₆ N ₄ O ₂	214~215	8 2	6 3.3 6	5.6 7	1 9.7 1	6 3.3 7	5.6 6	1 9.7 2
3 3		O ₂ H ₅	1	O ₁₆ H ₁₈ N ₄ O ₂	204~205	8 4	6 4.4 1	6.08	1 8.7.8	6 4.4 3	6.04	1 8.7 7
3 4	35	OH3	0	O ₁₅ H ₁₆ N ₄ O ₂	196~197	9 2	6 3.3 6	5.6 7	1 9.7 1	6 3.3 3	5.6 2	1 9.7 5

实施例	14 B	*			战点	AX XX	Γ	元	* 5	计析	1/i	
At.	-Pri	R ₂	n	分子式	(c)	(%)	理 [斯· 斯·	%) N	奖 O	11 M	(%) N.
3 5	4	C ₂ H ₅	0	O16 H18 N4 O2	187~189	7 9	6 4.4 1	6.08	1 8.7 8	6 4.4 5	6.07	1 8.7 4
3 6	₽cH,	O ₂ H ₅	0	O16 H18 N4 O2	175~176	9 0	6 4.4 1	6.08	1 8.7 8	6 4.4 5	6.09	1 8.7 3
3 7	In cus	ri - O 3 H 7	0	O17 H20 N4 O2	143~145	8 7	6 5.3 6	6.4 5	1 7.9 4	6 5.3 2	6.4 8	1 7.9 1
3 8	D. cm	€-03 H7	0	O17 H20 N4 O2	84~85	8 2	6 5.3 6	6.4 5	1 7.9 4	6 5.3 0	6.4 7	1 7.9 9
3 9	Du,	n-04 Hg	0	O18 H22 N4 O2	182~184	8 5	6 6.2 3	6.79	1 7.1 7	6 6.2 7	6.7 6	1 7.1 4
4 0	Int cu,	(H)	0	C20 H24 N4 O2	237~239	89.	6 8.1 6	6.8 6	1 5.9 0	6 8.1 3	6.8 2	1 5.9 3
4 1	In cu,	()	0	O ₂₀ H ₁₈ N ₄ O ₂	222~224	8 4	6 9.3 5	5.2 4	1 6.1 8	6 9.3 3	5.2 7	1 6.1 5
· 4 2	€J.c.,	-{->0e	0	C20 H17 OLN4O2	202~204	8 7	6 3.0 7	4.5 0	1 4.7 1	6 3.0 4	4.4 7	1 4.7 3
4 3	∠(n) cu,	-() _{CH} ,	0	C21 H20 N4 O2	220~222	8 1	6 9.9 8	5.6 9	1 5.5 5	6 9.9 6	5.5 4	1 5.5 1
4 4	Link CH,		0	O16 H18 N4 O2	124~125	7 2	6 4.4 1	6.08	1 8.7 8	6 4.4 7	6.06	1 8.7 3
4 5	END US	O ₂ H ₅	0	O17 H20 N4 O2	201~202	. 8 0	65.36	6.4 5	1 7.9 4	6 5.3 2	G.4 8	1 7.9 7

特開昭59-181257(6)

奥施纫46.

1 群 5 匹の 5 過令 D D Y 系マウス(雄・体重 2 5 ~ 3 0 8)を 1 6 時間絶食後、アロキサン 7 5 四 / 材を節脈内に投与し、 4 8 時間後に、本発明化合物(2 0 0 四 / 材)の水俗液又はけん潤液を経口投与し、 1 5 0 分後に心酸から採血し、グルコースオキシダーゼ法により血中糖漿を測定した。測定結果を設 3 に例示する。

なお、表中の化合物番号は、前記契施例の化合物番号に対応している。

投 4

	投 4
投与化合物	血 糖 值 (#9/d2) mean ± S.D.
(4- 置換体)	
. 4	498±25*
2 7	4 6 5 ± 2 7 **
2 8	473±21***
2 9	493±26**
3 0	4.85±18**
3 1	492±32*
3 3	511±19*
3 4	495±33*
3 5	4 8 5 ± 2 8 **
3 6	4 7 9 ± 2 7 **
3 7	488±20**
3 8	4 6 6 ± 2 9 **
3 9	495±18**
4 0	506±25*
4 3	477±24**
4 4	4 8 3 ± 3 1 **
4 5	5 0 4 ± 2 6 *

*P:<0.05 **:P<0.01***:P<0.001

	数 3
投与化合物	血 牴 锒(<i>mg/dū</i>) mean ± S.D.
な し(対照)	5 6 3 ± 3 7
(2-置換体)	
2	495±19**
6	4 3 9 ± 3 1 ***
7.	4 6 1 ± 1 9 ***
9	5 1 0 ± 3 3 *
1 0	4 9 2 ± 4 1 *
1 1	488±21**
1 2	3 9 6 ± 2 2 ***
1 3	4 5 2 ± 1 8 ***
1 6	4 4 2 ± 1 8 ***
1 7	5 1 2 ± 2 1 *
1 8	503±18*
19	5 1 6 ± 2 3 *
2 1	499±22*
2 2	5 0 1 ± 3 3 *
2 3	473±25 ***

*P:<0.05 **:P<0.01 ***:P<0.001

(19 日本国特許庁 (JP)

⑪特許出願公開

⑩公開特許公報(A)

昭58-69812

© Int. Cl.³ A 61 K 31/16 31/44 # C 07 D 213/40 識別記号 ADP 庁内整理番号 6408---4 C 砂公開 昭和58年(1983)4月26日発明の数 1審査請求 未請求

213/40 7138—4 C 213/75 7138—4 C

(全 5 頁)

60血糖降下剤

②特 願 昭56-167934

②出 願 昭56(1981)10月22日

仰発 明 者 本多成光

東京都豊島区高田三丁目41番8 号中外製薬株式会社内

⑩発 明 者 永井秀明

東京都豊島区高田三丁目41番 8 号中外製薬株式会社内

仰発 明 者 滝島章子

東京都**豊**島区高田三丁目41番8 号中外製薬株式会社内 ⑫発 明 者 河村明典

東京都豊島区高田三丁目41番8号中外製薬株式会社内

⑫発 明 者 小畠範子

東京都豊島区高田三丁目41番8 号中外製薬株式会社内

70発明者段孝

東京都豊島区髙田三丁目41番8 号中外製薬株式会社内

⑪出 願 人 中外製薬株式会社

東京都北区浮間5丁目5番1号

個代 理 人 安藤憲章

最終頁に続く

明 細 書

1. 発明の名称

血糖降下剂

2. 特許請求の範囲

一般式

(式中、R1 は水素原子又は低級アルキル茶を示し、R2 は直鎖、分岐鎖又は環式アルキル茶、核に置換茶を有し得るピリジル茶又はピリジルメチル茶を示し、*は1~3を示す。) で表わされる化合物を有効成分とする血糖降下剤。

本発明は、次の一般式

$$(OCH_3)_n \qquad (1)$$

(式中、R1 は水素原子又は低級アルキル茶を示し、R2 は直鎖・分岐鎖又は環式アルキル茶、核に置換落を有し得るピリジル茶又はピリジルメチル茶を示し、nは1~3を示す。) で表わされる化合物を有効成分とする血糖降下剤の発明である。

上式 ([) で表わされる化合物の中には、公知の化合物が含まれるが、それらの記載されている先行文献には血糖降下作用ないしそれを示唆する業理作用は全く記載されていない。

上式 [1] で表わされる本発明の化合物は、例えば、以下の参考例に示すよりに、アミン類とメトキシペンソイルクロライド類とを、塩基、例えばトリエチルアミンの存在下常法により反応させることにより容易に得ることができる。

给考例.

3- アミノビリジン 9. 4 8 ・トリエテルアミン 1 5 配及びアセトン 2 0 0 配の混合解液に、氷冷機件下、4-メトキンペンゾイルクロライド 1 7 9 を徐々に加える。同温度で 3 0 分、次いで家園で 1 時間機件後反応溶液を 1 8 の水に注ぎ、折出する結晶を評取し、水洗後メタノールから再結晶して無色針状晶の 4-メトキン・N-3-ビリジルペンズアミド(化合物 1) 1 7.5 9 を得た。収率 7 7 %。 職点 1 6 8 ~ 1 7 0 ℃

元素分析値 分子式 O13 H12 N2O2 として

O H N 金額(%) 6841 5.30 12.27 副額(%) 68.33 5.27 12.24

上記と同様にして表1の化合物を得た。

					随 点	収率	元	*	分	析	値		
No.	-(OMe)#	Ri	R ₂	分子式	(3)	(%)	理論值(%) 実剛値(%)	σ		н		N	
2	2-0M a	н	\bigcirc	O12H12N2O2	112~114	7 6	6 8.4 1 6 8.4 9	_	.30 .24		1 2.2 1 2.3		
3	•	,	- Hu	O14H14N2O2	80~82	8 3	6 9.4 0 6 9.3 2	-	. 8 3 5. 8 0		1 1.5 1 1.5		1
4	•	,	Ç) _{ri}	O15H16N2O2	85~87	9 1	7 0.2 9 7 0.2 4		i 29		1 0.9		1
5	3-0Me		\bigcirc	O13H12N2O2	121~122	8 5	6 8.4 1 6 8.4 8		5.30 5.36		122		
6	•	•	Q		155~156	8 3	6 8.4 1 6 8.4 3		5.30 5.31		122		
7		•	Chl He	O14H14N2O2	99~101	8 8	6 9.4 0 6 9.4 7		5.8 3 5.7 9		1 1.5 1 1.6		1
8	4-0Me		Q	O13H12N2O2	131~132	7 9	6 8.4 1 6 8.3 5		5.30 5.26		12:		
9		•	- CH2 -N	O14H14N2O2	150~153	6 5	6 9.4 0 6 9.3 6		5.8 3 5.7 9		1 1.5		
10	,	•	-CH2-	,	71~73	6 8	6 9.4 0		5.8 3 5.7 8		11.		
11	•	•	∠NI _{Me}	. ,	61~64	7 7	6 9.4 0 6 9.4 5		5.8 S		1 L 1 1.		
1 2	•	•	A ne	O16H16N2O2	136~137	8 2	7 0.2 9 7 0.3 7		6.25 6.3		1 Q. 1 Q.		

13 $2.3 - (OMe)_2$ H $O_{14}H_{14}N_{2}O_{3}$ $117 \sim 118$ 58 65.10 5.4 65.14 5.4 65.14 5.4 66.16 5.9 66.16 5.9 66.12 5.9 66.12 5.9 66.12 5.9 66.12 6.9 66.12 6.9 67.14 6.3 67.14 67.14 6.3 67.14 6.	9 1 0.9 1 2 1 0.2 9 5 1 0.3 3 4 9.7 8 7 9.7 5 2 1 0.2 9
14 "	2 1 0.2 9 5 1 0.3 3 4 9.7 8 7 9.7 5 2 1 0.2 9
14	5 1 0.3 3 4 9.7 8 7 9.7 5 2 1 0.2 9
15 " I_{N-He} $O_{1}eH_{1}eN_{2}O_{3}$ $I_{11}\sim I_{12}$ 67 67.11 6.3 67.14 6.3 67.14 6.3 67.14 6.3 67.14 6.3 67.14 6.3 67.14 6.3 67.14 6.3 67.14 6.3 66.16 5.9 66.11 5.8 66.16 5.9 66.21 5.9 66.21 5.9 66.21 5.9 67.15 6.3 67.15 6.3	9.78 7 9.75 2 10.29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 9.75 2 10.29
16 24-(ONe)2	2 10.29
16 2,4-(OMe)2	
17 " 140~141 69 66.16 5.9 66.21 5.9 66.21 5.9 67.11 6.3 67.15 6.3	7 1004
17 " 140~141 69 66.21 5.9 18 " 016H18N2O3 93~94 63 67.15 6.3	7 10.34
17 " 140~141 69 66.21 5.9 18 " 016H18N2O3 93~94 63 67.15 6.3	2 10.29
18 O16H18N2O3 93~94 63 67.11 6.3 67.15 6.3	
18 O16H18N2O3 93~94 63 67.15 6.3	
19 26-(OMe); (OseHieNeOs 155~156 6.7 66.16 5.9	
1.9 26-(OMe)2 66.16 5.9	9 9.74
19 26-(OMe)+	2 10.29
13 2,0 (class) 66.22 5.9	7 10.24
	4 9.78
20 " O16H18N2O3 206~209 63 67.07 6.3	9 9.8 0
65.10 5.4	6 1 0.8 5
21 3,4-(OMe) ₂	
65.10 5.4	6 1 0.8 5
2 2 , 49~51 88 65.10 5.4 65.08 5.4	
66.16 5.9	2 10.29
23 O16H16N2O3 122~123 63 66.12 5.9	
24 - CH ₂ - CH ₂ - 128~129 74 66.16 5.9	
24 " " -CH ₂ " 128~129 74 66.16 5.9 66.19 5.8	8 10.33
66.16 5.9	7 1000
25 " 131~132 75 66.20 5.9	2 1 0.29

			·				·		
2 6	3,4-(OMe)2	н .	He	O16H18N2O3	69~71	63	6 7.1 1 6 7.1 5	6.3 4 6.3 7	9.7 8 9.7 7
2 7	,	,	i-Pr	Ö12H17NO3	144~145	85,	6 4.5 5 6 4.5 9	7.68 7.61	6.27 6.23
2 8	,	,	n-Bu	O13H19NO3	83~84	8.8	6 5.8 0 6 5.7 8	8.0 7 8.0 3	5.9 0 5.8 4
2 9	,		s-Bu	,	127~128	8 3	6 5. 8 0 6 5. 8 4	8.07 8.04	5.9 0 5.9 3
3 0	•	,	i -Bu		124~125	8 0	6 5.8 0 6 5.8 5	8.07 8.1 1	5.9 0 5.9 5
3 1		,	-{H}	O ₁₅ H ₂₁ NO ₃ -	181~182	9 1	6 8 4 1 6 8 3 6	8.04 8.07	5.3 2 5.3 6
3 2	3,5-(OMe) ₂	,	In Me	O15H16N2O3	96~97	8 5	6 6.1 6 6 6.1 2	5.9 2 5.9 8	10.29 10.32
33.	,	•	Me Me	O16H18N2O3	119~120	8 7	6 7.1 1 6 7.1 8	6.34 6.37	9.7 8 9.7 2
3 4	3,4,5-(OMe)3	,		O15H16N2O4	154~156	6 5	6249	5.5 9 5.6 4	9.7 2 9.7 1
3 5	,	,	\Diamond		157~158	7 7	6 2 4 9 6 2 5 2	5.5 9 5.5 6	9.7 2 9.7 3
3 6		•	- CH2- N	O16H18N2O4	115~116	5 8	63.56 63.52	6.00	9. 2 7 9. 2 5
3 7	,		-cu ₂	•	145~146	6 9	6 3.5 6 6 3.5 1	6.00 6.07	9. 2 7 9. 2 2
3 8	•	,	₽ nu	,	127~128	6.4	6356 6359	6.00	9.2 7 9.2 9

	<u> </u>		He		1				
3 9	3,4,5-(OMe)	Н	Inc.	O ₁₇ H ₂₆ N ₂ O ₄	145~146	71	6 4.5 4 6 4.5 8	6.37 6.32	8.8 6 8.9 0
4 0	,		n-Pc	O13H19NO4	114~115	7 3	6 1.6 4	7.5 6	5.5 3
							6 L 6 O	7.5 9	5.5 7
4 1	•	,	t-Pr		154~155	77	6 1.6 4	7.5 6	5.5 3
	·			<u> </u>	1		6 1 6 6	7.5 4	5.5 8
4 2	,	•	n −Bu	014H21N04	133~134	80	6 2 9 0	7.9 2	5.24
							6 2 8 7	7.8 6	5.27
4 3		,	s-8 u		162~163	75	6 2.9 0	7.9 2	5.24
					102 100		6295	7.9 4	5.20
4.4		,	t -Bu	,	133~134	79	6 2 9 0	7.9 2	5.24
					100-104	, ,	6 2 9 1	7.8 8	5.29
45		•	i-Bu	,	122~123	8 <u>1</u>	6290	7.9 2	5.24
					122-123	0.1	6 2 9 6	7.87	5.28
4 6	,		√ E)	C16H23NO4	182~183	8 8	6 5.5 1	7.9 0	4.7 8
			-(H)	0191131104	102 -103	0.8	6 5.5 4	7.93	4.7 2
4 7		i - Pr	i-Pr	016H26NO4	127~128	7 2	6 5.0 6	8.5 3	4.7 4
	<u> </u>			31611261134	127-120		6 5.1 1	8.5 9	4.7 1

とのようにして得られる本祭明の化合物は、優れた血・解除下作用を有し、ヒトに対しては 0.1~100 m/以で有効で、1日1回 0.1~100 m/4の投与で 2.4 時間以上その効力を持続する。

投与に際しては、通常の製剤化に用いられる慣用手段により所望の割型に成形された製剤が用い ちれる。

突施例 1.

1群5匹の5週令DDY系マウス(雄,体重25~30分)を16時間絶食後、アロキサン75 ペノロを静脈内に投与し、48時間後に、本発明化合物(200ペノロ)の水溶液又はけん濁液を経口投与し、150分後に心臓から採血し、グルコースオキンダーゼ法により血中糖量を制定した。側定結果を表2に例示する。

なお、表中の化合物裕号は、参考例の化合物番号に対応している。

投 2

投与化合物	ffi 糖 植 (***)/de) mean ± S.D.
なし(対照)	3 4 7 8 ± 2 8
1	3 2 6 ± 4 2 ••
3	3 7 8 ± 3 1 **
4	364±19 ***
6	3 7 8 ± 5 2 •
. 7	4 1 2 ± 3 3 °
1 2	383±28 **
1 7	3 4 5 ± 4 1 ***
2 2	378±37 ••
2 5	3 5 5 ± 4 6 ••
2 6	3 3 6 ± 3 2 ***
2 7	407±30 *
2 8	4 0 2 ± 2 4 ••
2 9	4 2 1 ± 2 7 • ;
3 2	4 1 6 ± 2 3 •
.3 3	402 ± 34 •
3 6	4 1 6 ± 2 1 ••
3 8	3 0 7 ± 4 3 ***
3 9	4 1 2 ± 3 1 •
4 1	4 2 1 ± 2 8 •
4 6	383±41 **

* : P < 0.05 , * * : P < 0.01 , * * * : P < 0.001

突熵例 2.

4-メトキシ-N-3-ビリジボル

ペンズアミド(化合物1) 100 部.

リン酸水岩カルシウム 5 8.5 部

粘晶セルロース 50

コーンスターチ 40 1

ステアリ酸カルシウム 1.5 音

これらをよく混合し、常法により1錠250mg に打錠(有効成分100mg含有)し、血糖降下用 錠剤として用いる。

出順人 中外製業株式会社

代理人 安藤 憲

第1頁の続き

⑫発 明 者 小泉益男

東京都豊島区高田三丁目41番8

号中外製薬株式会社内

⑩発 明 者 村上泰

東京都豊島区高田三丁目41番8

号中外製薬株式会社内

⑫発 明 者 日野原好和

東京都豊島区高田三丁目41番8

号中外製薬株式会社内

⑫発 明 者 中野英樹

東京都豊島区高田三丁目41番8

号中外製薬株式会社内

⑫発 明 者 髙垣善男

東京都豐島区高田三丁目41番8

号中外製薬株式会社内