MULTISCALE IMAGE SEGMENTATION FOR VARYING OBJECT SIZE IN AN IMAGE

PROBLEM: COMPLEXITY IN SATELLITE IMAGES

- Initial goal: Building segmentation in satellite images, but satellite images are big so generally solutions crop them images and feed to the neural network this can lead to these two problems:
 - An object can be very small part of the image.
 - An object can be very big part of the image.
- To solve these problem using single neural network would be difficult plus the complexity of the network would have to be high in order to achieve higher accuracy.

COMPLEXITY IN SATELLITE IMAGES: EXAMPLE

Variation in to-be-segmented Object size

TRADITIONAL APPROACHES

Cropping and feeding then stitching

DRAWBACKS OF TRADITIONAL APPROACHES

- Network needs to be complex.
- Network needs to learn the variance of target object size.
- One Ratio isn't enough.

OUR PROPOSAL

- Have different cropping ratios: images with different sizes will lead to each network specialize in different object sizes.
- Kind of an ensemble of three networks

DATASET: DSTL

- DSTL provides you with 1km x 1km satellite images in both 3-band and 16-band formats.
- The 3-band images are the traditional RGB natural color images. The 16-band images contain spectral information by capturing wider wavelength channels.
- DSTL has labeled 10 different classes: Buildings, Misc. Manmade structures, Road, Track, Trees, Crops, Waterway, Standing water, Vehicle Larg Small

ARCHITECTURE

CONCLUSION

- In this project we proposed an Neural Network architecture that can be used when your target object occupies varying amount of area in your input Image.
- The Ratios can be determined by studying the data one small rule can: 'Let the smallest ratio be in which the smallest target object is completely fitted in one cropped image'.