Solution

- a) We can prove that $Explore(\Phi,d)$ works properly by induction on d. If d is 0, and Φ is a satisfying argument then the algorithm returns yes, so it works. Now we look at the problem where d>0. If Explore returns yes, then one of the recursive calls to $Explore(\Phi_i,d-1)$ must have returned yes. So that would mean there is a solution to Φ_i within d-1 of a satisfying argument, which means that there is a solution to Φ within a distance d. Because we're breaking up the problem into 3 subproblems each time, the running time of this algorithm satisfies the recurrence T(n,d)=3T(n,d-1)+p(n). If we solve this recurrence, we get a running time of $O(p(n)*((\sqrt[3]{3})^n)$.
- b) We can do this by considering two assignments Φ_0 and Φ_1 where the former sets all variables to 0, and the latter sets them all to 1. Now we observe that any satisfying assignment is within distance n/2 of either Φ_0 or Φ_1 , rather than n. So we solve the problem by calling $Explore(\Phi_1, n/2)$ and $Explore(\Phi_0, n/2)$ and returning yes if either of these calls return yes. This solution takes time $O(p(n)*3^{n/2})$ so it has run time of $O(p(n)*3^n)$