Contents 1 Basic 1.4 Pragma optimization Flows, Matching 2.2 MCMF 2.3 GomoryHu Tree 2.4 Global Minimum Cut 2.5 Bipartite Matching 2.6 GeneralMatching 2.8 Flow Models Data Structure 3.1 <ext/pbds> 3.2 Li Chao Tree 3.3 Link-Cut Tree 4.1 2-Edge-Connected Components . . . $4.2\,$ 2-Vertex-Connected Components $\,$. . 4.3 3-Edge-Connected Components . . . 4.4 Heavy-Light Decomposition 4.5 Centroid Decomposition 4.6 Strongly Connected Components . . 4.9 Minimum Mean Cycle $4.10\;\mathrm{Directed}$ Minimum Spanning Tree . . $4.13 \; \text{Edge Coloring} \quad \dots \quad \dots \quad \dots \quad \dots$ 5 String 5.1 Prefix Function 5.2 Z Function 5.3 Suffix Array 5.4 Manacher's Algorithm Lexicographically Smallest Rotation 6 Math 6.1 Extended GCD . . 6.2 Chinese Remainder Theorem 6.3 NTT and polynomials 11 6.7 Simplex Algorithm 11 6.9 Berlekamp Massey Algorithm 6.10 Fast Linear Recurrence 12 6.13 Discrete Logarithm 12 6.14 Quadratic Residue 6.15 Characteristic Polynomial 6.16 Linear Sieve Related 6.17 De Bruijn Sequence \dots 13 6.21 Count of subsets with sum (mod P) 6.22 Theorem 6.22.1 Kirchhoff's Theorem 13 13 13 14 7.3 Condition . . . 14 8 Geometry 15 8.3 Half Plane Intersection 8.4 Triangle Centers 8.5 Circle 8.6 3D Convex Hull . . 3D Convex Hull Delaunay Triangulation

```
9 Miscellaneous
    Miscellaneous

9.1 Cactus 1

9.2 Cactus 2

9.3 Dancing Links

9.4 Offline Dynamic MST

9.5 Matroid Intersection

9.6 Fulor Tour
                                                   17
                                                   17
                                                   18
                                                   18
    9.6 Euler Tour
                                                   18
    9.7 SegTree Beats . . . . . . . . . . . . . . . .
        unorganized . . . . . . . . . . . . . . . .
        Basic
 1.1 vimrc
 set nu rnu cin ts=4 sw=4 autoread hls
 map<leader>b :w<bar>!g++ -std=c++17 '%' -
       DKEV -fsanitize=undefined -o /tmp/.
run<CR>
 map<leader>r :w<bar>!cat 01.in && echo "
       ---" && /tmp/.run < 01.in<CR>
 map<leader>i :!/tmp/.run<CR>
map<leader>c I//<Esc>
 map<leader>y :%y+<CR>
map<leader>l :%d<bar>0r ~/t.cpp<CR>
 1.2 Default code
 #include <bits/stdc++.h>
 using namespace std;
 using i64 = long long;
 using ll = long long;
#define SZ(v) (ll)((v).size())
 #define pb emplace_back
 #define AI(i) begin(i), end(i)
 #define X first
 #define Y second
 template<class T> bool chmin(T &a, T b) {
 return b < a && (a = b, true); }
template<class T> bool chmax(T &a, T b) {
        return a < b && (a = b, true); }</pre>
 #ifdef KEV
 #define DE(args...) kout("[ " + string(#
    args) + " ] = ", args)
void kout() { cerr << endl; }</pre>
 template<class T, class ...U> void kout(T a, U ...b) { cerr << a << ' ', kout
       (b...); }
 template<class T> void debug(T l, T r) {
       while (l != r) cerr << *l << " \n"[</pre>
       next(l)==r], ++l; }
 #define DE(...) 0
 #define debug(...) 0
 #endif
 int main() {
      cin.tie(nullptr)->sync_with_stdio(
           false);
      return 0;
}
 1.3 Fast Integer Input
 char buf[1 << 16], *p1 = buf, *p2 = buf;</pre>
 char get() {
      if (p1 == p2) {
    p1 = buf;
           p2 = p1 + fread(buf, 1, sizeof(
                 buf), stdin);
      if (p1 == p2)
      return -1;
return *p1++;
 char readChar() {
      char c = get();
      while (isspace(c))
      c = get();
return c;
 int readInt() {
      int x = 0;
      char c = get();
      while (!isdigit(c))
           c = get();
```

while (isdigit(c)) {

```
x = 10 * x + c - '0';
         c = get();
     return x;
| }
1.4 Pragma optimization
#pragma GCC optimize("Ofast", "no-stack-
protector", "no-math-errno", "unroll
     -loops")
 native, arch=core-avx2, tune=core-avx2
#pragma GCC ivdep
      Flows, Matching
      Flow
 2.1
 template <typename F>
 struct Flow {
    static constexpr F INF =
         numeric_limits<F>::max() / 2;
     struct Edge {
         int to;
         F cap;
         Edge(int to, F cap) : to(to), cap
             (cap) {}
    int n;
vector<Edge> e;
     vector<vector<int>> adj;
     vector<int> cur, h;
     Flow(int n) : n(n), adj(n) {}
     bool bfs(int s, int t) {
    h.assign(n, -1);
         queue<int> q;
         h[s] = 0;
         q.push(s);
         while (!q.empty()) {
             int u = q.front();
             q.pop();
             for (int i : adj[u]) {
                 auto [v, c] = e[i];
                 if (c > 0 \& h[v] == -1)
                     h[v] = h[u] + 1;
                     if (v == t) { return
                          true; }
                     q.push(v);
             }
         return false;
     F dfs(int u, int t, F f) {
         if (u == t) { return f; }
F r = f;
         for (int &i = cur[u]; i < int(adj</pre>
             [u].size()); i++) {
             int j = adj[u][i];
             auto [v, c] = e[j];
             if (c > 0 \& h[v] == h[u] +
                 1) {
                 Fa = dfs(v, t, min(r, c))
                     );
                 e[j].cap -= a;
                 e[j ^ 1].cap += a;
                 r -= a;
                 if (r == 0) { return f; }
             }
         }
         return f - r;
     // can be bidirectional
     void addEdge(int u, int v, F cf = INF
           F cb = 0) {
         adj[u].push_back(e.size()), e.
             emplace_back(v, cf);
         adj[v].push_back(e.size()), e.
              emplace_back(u, cb);
```

F maxFlow(int s, int t) {

```
F ans = 0:
         while (bfs(s, t)) {
             cur.assign(n, 0);
             ans += dfs(s, t, INF);
         return ans;
    // do max flow first
    vector<int> minCut() {
         vector<int> res(n);
         for (int i = 0; i < n; i++) { res
             [i] = h[i] != -1; }
         return res;
|};
```

MCMF 2.2

```
template <class Flow, class Cost>
struct MinCostMaxFlow {
public:
    static constexpr Flow flowINF =
         numeric_limits<Flow>::max();
    static constexpr Cost costINF =
         numeric_limits<Cost>::max();
    MinCostMaxFlow() {}
    MinCostMaxFlow(int n) : n(n), g(n) {}
    int addEdge(int u, int v, Flow cap,
         Cost cost) {
        int m = int(pos.size());
        pos.push_back({u, int(g[u].size()
             )});
        g[u].push_back({v, int(g[v].size})
             ()), cap, cost});
        g[v].push_back({u, int(g[u].size
             ()) - 1, 0, -cost});
    struct edge {
        int u, v;
        Flow cap, flow;
        Cost cost;
    edge getEdge(int i) {
        auto _e = g[pos[i].first][pos[i].
            second];
        auto _re = g[_e.v][_e.rev];
        return {pos[i].first, _e.v, _e. cap + _re.cap, _re.cap, _e.
             cost};
    vector<edge> edges() {
        int m = int(pos.size());
        vector<edge> result(m);
        for (int i = 0; i < m; i++) {
             result[i] = getEdge(i); }
        return result;
    pair<Flow, Cost> maxFlow(int s, int t
         , Flow flow_limit = flowINF) {
         return slope(s, t, flow_limit).
         back(); }
    vector<pair<Flow, Cost>> slope(int s,
          int t, Flow flow_limit =
         flowINF) {
        vector<Cost> dual(n, 0), dis(n);
        vector<int> pv(n), pe(n), vis(n);
        auto dualRef = [&]() {
            fill(dis.begin(), dis.end(),
                 costINF);
            fill(pv.begin(), pv.end(),
                  -1);
            fill(pe.begin(), pe.end(),
                  -1);
            fill(vis.begin(), vis.end(),
                 false);
            struct Q {
   Cost key;
                 int u:
                 bool operator<(Q o) const</pre>
                       { return key > o.
                      key; }
            priority_queue<Q> h;
            dis[s] = 0;
            h.push({0, s});
            while (!h.empty()) {
```

```
int u = h.top().u;
                 h.pop();
                 if (vis[u]) { continue; }
                 vis[u] = true;
                 if (u == t) { break; }
                 for (int i = 0; i < int(g)
                      [u].size()); i++) {
                     auto e = g[u][i];
                     if (vis[e.v] || e.cap
                            == 0) continue;
                     Cost cost = e.cost -
                          dual[e.v] + dual
                          [u];
                     if (dis[e.v] - dis[u]
                           > cost) {
                          dis[e.v] = dis[u]
                                + cost;
                          pv[e.v] = u;
                          pe[e.v] = i;
                          h.push({dis[e.v],
                                e.v});
                 }
             if (!vis[t]) { return false;
             for (int v = 0; v < n; v++) {
                 if (!vis[v]) continue;
                 dual[v] -= dis[t] - dis[v]
             return true;
        Flow flow = 0;
Cost cost = 0, prevCost = -1;
        vector<pair<Flow, Cost>> result;
        result.push_back({flow, cost});
        while (flow < flow_limit) {</pre>
            if (!dualRef()) break;
Flow c = flow_limit - flow;
             for (int v = t; v != s; v =
                  pv[v]) {
                 c = min(c, g[pv[v]][pe[v
                      ]].cap);
             for (int v = t; v != s; v =
                 pv[v]) {
                 auto& e = g[pv[v]][pe[v]]
                 ]];
e.cap -= c;
                 g[v][e.rev].cap += c;
             Cost d = -dual[s];
             flow += c;
cost += c * d;
             if (prevCost == d) { result.
                  pop_back(); }
             result.push_back({flow, cost
            });
prevCost = cost;
        return result;
private:
    int n;
    struct _edge {
        int v, rev;
        Flow cap;
        Cost cost;
    vector<pair<int, int>> pos;
    vector<vector<_edge>> g;
      GomoryHu Tree
```

}

```
auto gomory(int n, vector<array<int, 3>>
     e) {
    Flow<int, int> mf(n);
    for (auto [u, v, c] : e) { mf.addEdge
          (u, v, c, c); }
    vector<array<int, 3>> res;
    vector<int> p(n);
    for (int i = 1; i < n; i++) {
         for (int j = 0; j < int(e.size())
    ; j++) { mf.e[j << 1].cap =</pre>
              mf.e[j << 1 | 1].cap = e[j
              ][2]; }
```

```
int f = mf.maxFlow(i, p[i]);
     auto cut = mf.minCut();
     for (int j = i + 1; j < n; j++) {
    if (cut[i] == cut[j] && p[i
          ] == p[j]) { p[j] = i; }}
     res.push_back({f, i, p[i]});
return res:
```

Global Minimum Cut

```
// 0(V ^ 3)
template <typename F>
struct GlobalMinCut {
    static constexpr int INF =
         numeric_limits<F>::max() / 2;
    int n;
     vector<int> vis, wei;
     vector<vector<int>> adj;
    GlobalMinCut(int n) : n(n), vis(n),
         wei(n), adj(n, vector<int>(n))
     void addEdge(int u, int v, int w){
         adj[u][v] += w;
         adj[v][u] += w;
     int solve() {
         int sz = n;
         int res = INF, x = -1, y = -1;
auto search = [&]() {
             fill(vis.begin(), vis.begin()
                   + sz, 0);
             fill(wei.begin(), wei.begin()
             + sz, 0);
x = y = -1;
             int mx, cur;
             for (int i = 0; i < sz; i++)
                 mx = -1, cur = 0;
                 for (int j = 0; j < sz; j
                      ++) {
                      if (wei[j] > mx) {
                         mx = wei[j], cur
                               = j;
                     }
                 vis[cur] = 1, wei[cur] =
                 y = cur;
                 for (int j = 0; j < sz; j
                      ++) {
                      if (!vis[j]) {
                          wei[j] += adj[cur
                               ][j];
                 }
             return mx;
        };
         while (sz > 1) {
             res = min(res, search());
             for (int i = 0; i < sz; i++)
                 adj[x][i] += adj[y][i];
                 adj[i][x] = adj[x][i];
             for (int i = 0; i < sz; i++)
                 adj[y][i] = adj[sz - 1][i
                 adj[i][y] = adj[i][sz -
             }
             sz--;
         return res;
    }
};
```

2.5Bipartite Matching

```
struct BipartiteMatching {
   int n, m;
    vector<vector<int>> adi:
    vector<int> l, r, dis, cur;
```

```
BipartiteMatching(int n, int m) : n(n
    ), m(m), adj(n), l(n, -1), r(m,
    -1), dis(n), cur(n) {}
     void addEdge(int u, int v) { adj[u].
          push_back(v); }
     void bfs() {
          vector<int> q;
          for (int u = 0; u < n; u++) {
              if (l[u] == -1) {
                   q.push_back(u), dis[u] =
                        0;
              } else {
                   dis[u] = -1;
          for (int i = 0; i < int(q.size())</pre>
               ; i++) {
              int u = q[i];

for (auto v : adj[u]) {

    if (r[v] != -1 && dis[r[v
                        ]] == -1) {
                       dis[r[v]] = dis[u] +
                       q.push_back(r[v]);
                   }
              }
         }
     bool dfs(int u) {
          int v = adj[u][i];
              if (r[v] == -1 \mid \mid dis[r[v]]
                    == dis[u] + 1 && dfs(r[v
                   } (([
                   l[u] = v, r[v] = u;
return true;
              }
          return false;
     int maxMatching() {
          int match = 0;
          while (true) {
              bfs();
              fill(cur.begin(), cur.end(),
                   0);
              int cnt = 0;
              for (int u = 0; u < n; u++) {
                   if (l[u] == -1) {
                       cnt += dfs(u);
              if (cnt == 0) {
                   break;
              match += cnt;
          return match;
     auto minVertexCover() {
          vector<int> L, R;
          for (int u = 0; u < n; u++) {
              if (dis[u] == -1) {
                   L.push_back(u);
              } else if (l[u] != -1) {
                   R.push_back(l[u]);
          return pair(L, R);
     }
|};
```

GeneralMatching

```
struct GeneralMatching {
    int n;
    vector<int>> adj;
    vector<int> match;
    General Matching ( {\color{red} int} \ n ) \ : \ n(n), \ adj(n)
          , match(n, -1) {}
    void addEdge(int u, int v) {
        adj[u].push_back(v);
        adj[v].push_back(u);
    int maxMatching() {
```

```
vector<int> vis(n), link(n), f(n)
       dep(n)
auto find = [&](int u) {
    while (f[u] != u) \{ u = f[u] \}
         = f[f[u]]; }
};
auto lca = [&](int u, int v) {
    u = find(u);
    v = find(v);
    while (u != v) {
        if (dep[u] < dep[v]) {</pre>
             swap(u, v); }
        u = find(link[match[u]]);
    return u;
queue<int> q;
auto blossom = [&](int u, int v,
     int p) {
    while (find(u) != p) {
        link[u] = v
        v = match[u];
        if (vis[v] == 0) {
    vis[v] = 1;
             q.push(v);
        f[u] = f[v] = p;
        u = link[v];
    }
};
auto augment = [\&](int u) {
    while (!q.empty()) { q.pop();
    iota(f.begin(), f.end(), 0);
    fill(vis.begin(), vis.end(),
         -1);
    q.push(u), vis[u] = 1, dep[u]
          = 0;
    while (!q.empty()){
        int u = q.front();
        q.pop();
        for (auto v : adj[u]) {
             if (vis[v] == -1) {
                 vis[v] = 0;
                 link[v] = u;
                 dep[v] = dep[u] +
                       1:
                 if (match[v] ==
                      -1) {
                     for (int x =
                          v, y = u
                          , tmp; y
!= -1;
                          x = tmp,
                          y = x
== -1 ?
                           -1:
                          link[x])
                           {
                          tmp =
                              match
                              [y],
                              match
                               [x]
                               = y,
                              match
                               [y]
                     return true;
                 q.push(match[v]),
                       vis[match[v
                      ]] = 1, dep[
                      match[v]] =
                      dep[u] + 2;
             } else if (vis[v] ==
                  1 && find(v) !=
                  find(u)) {
                 int p = lca(u, v)
                 blossom(u, v, p),
                       blossom(v,
                      u, p);
            }
```

```
}
                 return false;
           };
           int res = 0;
           for (int u = 0; u < n; ++u) { if
	(match[u] == -1) { res +=
                 augment(u); } }
           return res;
     }
};
```

2.7

```
Kuhn Munkres
// need perfect matching or not : w
     intialize with -\mathrm{IN}\check{\mathrm{F}} / 0
template <typename Cost>
struct KM {
    static constexpr Cost INF =
         numeric_limits<Cost>::max() / 2;
    vector<Cost> hl, hr, slk;
    vector<int> l, r, pre, vl, vr;
    queue<int> q;
    vector<vector<Cost>> w;
    KM(int n) : n(n), hl(n), hr(n), slk(n
         ), l(n, -1), r(n, -1), pre(n),
         vl(n), vr(n),
        w(n, vector<Cost>(n, -INF)) {}
    bool check(int x) {
        vl[x] = true;
if (l[x] != -1) {
             q.push(l[x]);
             return vr[l[x]] = true;
        while (x != -1) \{ swap(x, r[l[x]
             = pre[x]]); }
        return false;
    void bfs(int s) {
        fill(slk.begin(), slk.end(), INF)
        fill(vl.begin(), vl.end(), false)
        fill(vr.begin(), vr.end(), false)
        q = \{\};
        q.push(s);
        vr[s] = true;
        while (true) {
            Cost d;
             while (!q.empty()) {
                 int y = q.front();
                 q.pop();
                 for (int x = 0; x < n; ++
                      x) {
                     if (!vl[x] && slk[x]
                          >= (d = hl[x] +
                          hr[y] - w[x][y]
                          pre[x] = y;
                          if (d != 0) {
                              slk[x] = d;
                          } else if (!check
                               (x)) {
                              return;
                         }
                     }
                }
             d = INF;
            for (int x = 0; x < n; ++x) {
    if (!vl[x] && d > slk[x
                  ]) { d = slk[x]; }}
             for (int x = 0; x < n; ++x) {
                 if (vl[x]) {
                     hl[x] += d;
                 } else {
                     slk[x] -= d;
                 if (vr[x]) { hr[x] -= d;
             for (int x = 0; x < n; ++x) {
                   if (!vl[x] && !slk[x]
                  && !check(x)) { return;
```

}}

```
void addEdge(int u, int v, Cost x) {
         w[u][v] = max(w[u][v], x); }
    Cost solve() {
         for (int i = 0; i < n; ++i) { hl[
              i] = *max_element(w[i].begin
              (), w[i].end()); }
         for (int i = 0; i < n; ++i) { bfs
             (i); }
         Cost res = 0;
         for (int i = 0; i < n; ++i) { res
              += w[i][l[i]]; }
         return res;
    }
};
```

Flow Models 2.8

- · Maximum density induced subgraph
 - 1. Binary search on answer, suppose we're checking answer ${\cal T}$
 - 2. Construct a max flow model, let Kbe the sum of all weights
 - 3. Connect source $s \to v$, $v \in G$ with capacity K
 - 4. For each edge (u, v, w) in G, connect
 - 4. For each edge (u, v, w) in G, connect u → v and v → u with capacity w
 5. For v ∈ G, connect it with sink v → t with capacity K + 2T (∑_{e∈E(v)} w(e)) 2w(v)
 6. T is a valid answer if the maximum flow f < K|V|

Data Structure

3.1<ext/pbds>

```
#include <bits/extc++.h>
#include <ext/rope>
using namespace __gnu_pbds;
using namespace __gnu_cxx;
#include <ext/pb_ds/assoc_container.hpp>
typedef tree<int, null_type, std::less<</pre>
     int>, rb_tree_tag,
     tree_order_statistics_node_update>
     tree_set;
typedef cc_hash_table<int, int> umap;
typedef priority_queue<int> heap;
int main() {
   // rb tree
  tree_set s;
  s.insert(71); s.insert(22);
  assert(*s.find_by_order(0) == 22);
       assert(*s.find_by_order(1) == 71);
  assert(s.order_of_key(22) == 0); assert
       (s.order_of_key(71) == 1);
  s.erase(22);
  assert(*s.find_by_order(0) == 71);
       assert(s.order_of_key(71) == 0);
  // mergable heap
  heap a, b; a.join(b);
  // persistant
  rope<char> r[2];
  r[1] = r[0];
  std::string st = "abc";
  r[1].insert(0, st.c_str());
  r[1].erase(1, 1);
  std::cout << r[1].substr(0, 2) << std::
       endl;
  return 0;
| }
```

3.2 Li Chao Tree

```
// edu13F MLE with non-deleted pointers
// [) interval because of negative
    numbers
constexpr i64 INF64 = 4e18;
struct Line {
    i64 \ a = -INF64, \ b = -INF64;
    i64 operator()(i64 x) const {
        if (a == -INF64 \&\& b == -INF64) {
            return -INF64;
        } else {
            return a * x + b;
```

```
}
    }
};
constexpr int INF32 = 1e9;
struct LiChao {
    static constexpr int N = 5e6;
    array<Line, N> st;
array<int, N> lc, rc;
    int n = 0;
    void clear() { n = 0; node(); }
    int node() {
        st[n] = {};
lc[n] = rc[n] = -1;
         return n++;
    void add(int id, int l, int r, Line
         line) {
         int m = (l + r) / 2;
        bool lcp = st[id](l) < line(l);</pre>
        bool mcp = st[id](m) < line(m);</pre>
         if (mcp) { swap(st[id], line); }
         if (r - l == 1) { return; }
         if (lcp != mcp) {
             if (lc[id] == -1) {
                 lc[id] = node();
             add(lc[id], 1, m, line);
        } else {
   if (rc[id] == -1) {
                 rc[id] = node();
             add(rc[id], m, r, line);
        }
    void add(Line line, int l = -INF32 -
         1, int r = INF32 + 1) {
         add(0, 1, r, line);
    i64 query(int id, int l, int r, i64 x
         ) {
         i64 res = st[id](x);
        if (r - l == 1) { return res; }
int m = (l + r) / 2;
         if (x < m && lc[id] != -1) {</pre>
             res = max(res, query(lc[id],
                  1, m, x));
        } else if (x >= m && rc[id] !=
             -1) {
             res = max(res, query(rc[id],
                  m, r, x));
         return res;
    i64 query(i64 x, int l = -INF32 - 1,
         int r = INF32 + 1) {
         return query(0, 1, r, x);
3.3 Link-Cut Tree
```

```
struct Splay {
   array<Splay*, 2> ch = {nullptr,
        nullptr};
    Splay* fa = nullptr;
    int sz = 1;
    bool rev = false;
   Splay() {}
    void applyRev(bool x) {
        if (x) {
            swap(ch[0], ch[1]);
    void push() {
        for (auto k : ch) {
            if (k) {
                k->applyRev(rev);
        rev = false;
    void pull() {
        sz = 1;
        for (auto k : ch) {
            if (k) {
```

```
}
int relation() { return this == fa->
     ch[1]; }
bool isRoot() { return !fa || fa->ch
     [0] != this && fa->ch[1] != this
     ; }
void rotate() {
    Splay *p = fa;
    bool x = !relation();
    p->ch[!x] = ch[x];
if (ch[x]) { ch[x]->fa = p; }
    fa = p \rightarrow fa;
    if (!p->isRoot()) { p->fa->ch[p->
         relation()] = this; }
    ch[x] = p;
p->fa = this;
    p->pull();
void splay() {
   vector<Splay*> s;
    for (Splay *p = this; !p->isRoot
          (); p = p \rightarrow fa) { s.push_back
          (p->fa); }
    while (!s.empty()) {
         s.back()->push();
         s.pop_back();
    push();
while (!isRoot()) {
        if (!fa->isRoot()) {
             if (relation() == fa->
                  relation()) {
                  fa->rotate();
             } else {
                  rotate();
         rotate();
    pull();
void access() {
   for (Splay *p = this, *q =
         nullptr; p; q = p, p = p \rightarrow fa
         p->splay();
         p \rightarrow ch[1] = q;
         p->pull();
    splay();
void makeRoot() {
    access();
    applyRev(true);
Splay* findRoot() {
    access();
    Splay *p = this;
    while (p->ch[0]) \{ p = p->ch[0];
    p->splay();
    return p;
friend void split(Splay *x, Splay *y)
    x->makeRoot();
    y->access();
// link if not connected
friend void link(Splay *x, Splay *y)
     {
    x->makeRoot();
    if (y->findRoot() != x) {
         x->fa=y;
// delete edge if doesn't exist
friend void cut(Splay *x, Splay *y) {
    split(x, y);
    if (x-sa == y \& !x-sch[1]) {
         x->fa = y->ch[0] = nullptr;
        x->pull();
```

bool connected(Splay *x, Splay *y) {

4 Graph

4.1 2-Edge-Connected Components

```
struct EBCC {
     int n, cnt = 0, T = 0;
vector<vector<int>> adj, comps;
     vector<int> stk, dfn, low, id;
     EBCC(int n) : n(n), adj(n), dfn(n,
     -1), low(n), id(n, -1) {} void addEdge(int u, int v) { adj[u].
           push_back(v), adj[v].push_back(u
     void build() { for (int i = 0; i < n;
           i++) { if (dfn[i] == -1) { dfs(
           i, -1); }}}
     void dfs(int u, int p) {
          dfn[u] = low[u] = T++;
          stk.push_back(u);
          for (auto v : adj[u]) {
   if (v == p) { continue; }
   if (dfn[v] == -1) {
                    dfs(v, u);
                    low[u] = min(low[u], low[
                        v]);
               } else if (id[v] == -1) {
                    low[u] = min(low[u], dfn[
          if (dfn[u] == low[u]) {
               int x;
               comps.emplace_back();
               do {
                   x = stk.back();
                   comps.back().push_back(x)
                   id[x] = cnt;
                   stk.pop_back();
               } while (x != u);
               cnt++;
          }
     }
};
```

4.2 2-Vertex-Connected Components

```
// is articulation point if appear in >=
     2 comps
auto dfs = [&](auto dfs, int u, int p) ->
      void {
    dfn[u] = low[u] = T++;
     for (auto v : adj[u]) {
         if (v == p) { continue; }
if (dfn[v] == -1) {
             stk.push_back(v);
             dfs(dfs, v, u);
             low[u] = min(low[u], low[v]);
             if (low[v] >= dfn[u]) {
                 comps.emplace_back();
                 int x;
                 do {
                     x = stk.back();
                     cnt[x]++;
                     stk.pop_back();
                 } while (x != v);
                 comps.back().push_back(u)
                 cnt[u]++;
             }
         } else {
             low[u] = min(low[u], dfn[v]);
    }
};
for (int i = 0; i < n; i++) {
    if (!adj[i].empty()) {
```

};

```
dfs(dfs, i, -1);
else {
    comps.push_back({i});
}
```

4.3 3-Edge-Connected Components

```
// DSU
struct ETCC {
    int n, cnt = 0;
    vector<vector<int>> adj, comps;
    vector<int> in, out, low, up, nx, id;
    ETCC(int n) : n(n), adj(n), in(n, -1)
          , out(in), low(n), up(n), nx(in)
          , id(in) {}
    void addEdge(int u, int v) {
        adj[u].push_back(v);
        adj[v].push_back(u);
    void build() {
   int T = 0;
        DSU d(n);
        auto merge = [&](int u, int v) {
             d.join(u, v);
             up[u] += up[v];
         auto dfs = [&](auto dfs, int u,
             int p) -> void {
             in[u] = low[u] = T++
             for (auto v : adj[u]) {
                 if (v == u) { continue; }
                 if (v == p) {
                     p = -1;
                     continue;
                 if (in[v] == -1) {
                     dfs(dfs, v, u);
                     if (nx[v] == -1 \&\& up
                          [v] <= 1) {
                          up[u] += up[v];
                          low[u] = min(low[
                              u], low[v]);
                          continue;
                     if (up[v] == 0) \{ v =
                     nx[v]; }
if (low[u] > low[v])
{ low[u] = low[v
                           ], swap(nx[u], v
                          ); }
                     while (v != -1) {
                          merge(u, v); v =
                           nx[v]; }
                 } else if (in[v] < in[u])</pre>
                     low[u] = min(low[u],
                          in[v]);
                     up[u]++;
                 } else {
                     for (int &x = nx[u];
                          x != -1 && in[x]
                            <= in[v] && in[
                          v] < out[x]; x =
                           nx[x]) {
                          merge(u, x);
                     up[u]--;
                 }
             out[u] = T;
         for (int i = 0; i < n; i++) { if
             (in[i] == -1) \{ dfs(dfs, i,
        -1); }}
for (int i = 0; i < n; i++) { if
             (d.find(i) == i) { id[i] =
             cnt++; }}
         comps.resize(cnt);
         for (int i = 0; i < n; i++) {
             comps[id[d.find(i)]].
             push_back(i); }
    }
```

4.4 Heavy-Light Decomposition

```
struct HLD {
    int n, cur = 0;
    vector<int> sz, top, dep, par, tin,
          tout, seq;
     vector<vector<int>> adj;
    HLD(int n) : n(n), sz(n, 1), top(n),
          dep(n), par(n), tin(n), tout(n),
seq(n), adj(n) {}
     void addEdge(int u, int v) { adj[u].
          push_back(v), adj[v].push_back(u
    void build(int root = 0) {
  top[root] = root, dep[root] = 0,
    par[root] = -1;
          dfs1(root), dfs2(root);
    void dfs1(int u) {
   if (auto it = find(adj[u].begin())
                , adj[u].end(), par[u]); it
               != adj[u].end()) {
              adj[u].erase(it);
          for (auto &v : adj[u]) {
              par[v] = u;
              dep[v] = dep[u] + 1;
              dfs1(v);
              sz[u] += sz[v];
              if (sz[v] > sz[adj[u][0]]) {
                    swap(v, adj[u][0]); }
         }
     void dfs2(int u) {
         tin[u] = cur++;
         seq[tin[u]] = u;
          for (auto v : adj[u]) {
              top[v] = v = adj[u][0] ? top
                    [u] : v;
              dfs2(v);
          tout[u] = cur - 1;
    int lca(int u, int v) {
   while (top[u] != top[v]) {
              if (dep[top[u]] > dep[top[v
                   ]]) {
                   u = par[top[u]];
              } else {
                   v = par[top[v]];
              }
         return dep[u] < dep[v] ? u : v;</pre>
    int dist(int u, int v) { return dep[u
    ] + dep[v] - 2 * dep[lca(u, v)];
     int jump(int u, int k) {
         if (dep[u] < k) { return -1; }
int d = dep[u] - k;</pre>
         while (dep[top[u]] > d) \{ u = par
              [top[u]]; }
         return seq[tin[u] - dep[u] + d];
     // u is v's ancestor
    bool isAncestor(int u, int v) {
          return tin[u] <= tin[v] && tin[v</pre>
    ] <= tout[u]; }
// root's parent is itself
int rootedParent(int r, int u) {</pre>
         if (r == u) { return u; }
         if (isAncestor(r, u)) { return
               par[u]; }
         auto it = upper_bound(adj[u].
               begin(), adj[u].end(), r,
               [\&](int x, int y) {
              return tin[x] < tin[y];</pre>
         }) - 1;
         return *it;
     // rooted at u, v's subtree size
     int rootedSize(int r, int u) {
         if (r == u) { return n; }
         if (isAncestor(u, r)) { return sz
               [u]; }
```

4.5 Centroid Decomposition

```
vector<int> sz(n), vis(n);
auto build = [&](auto build, int u, int p
    ) -> void {
    sz[u] = 1;
    for (auto v : g[u]) {
        if (v != p && !vis[v]) {
            build(build, v, u);
            sz[u] += sz[v];
    }
auto find = [&](auto find, int u, int p,
     int tot) -> int {
    for (auto v : g[u]) {
        if (v != p && !vis[v] && 2 * sz[v
             ] > tot) {
             return find(find, v, u, tot);
    return u;
};
auto dfs = [&](auto dfs, int cen) -> void
    build(build, cen, -1);
    cen = find(find, cen, -1, sz[cen]);
    vis[cen] = 1;
    build(build, cen, -1);
    for (auto v : g[cen]) {
    if (!vis[v]) {
            dfs(dfs, v);
    }
dfs(dfs, 0);
```

4.6 Strongly Connected Components

```
struct SCC {
    int n, cnt = 0, cur = 0;
    vector<int> id, dfn, low, stk;
    vector<vector<int>> adj, comps;
    void addEdge(int u, int v) { adj[u].
         push_back(v); }
    SCC(int n) : n(n), id(n, -1), dfn(n,
          -1), low(n, -1), adj(n) {}
    void build() {
         auto dfs = [&](auto dfs, int u)
              -> void {
             dfn[u] = low[u] = cur++;
             stk.push_back(u);
             for (auto v : adj[u]) {
   if (dfn[v] == -1) {
        dfs(dfs, v);
   }
                      low[u] = min(low[u],
                           low[v]);
                 } else if (id[v] == -1) {
                      low[u] = min(low[u],
                           dfn[v]);
                 }
             if (dfn[u] == low[u]) {
                  int v;
                  comps.emplace_back();
                  do {
                      v = stk.back();
                      comps.back().
                           push_back(v);
                      id[v] = cnt;
                      stk.pop_back();
                  } while (u != v);
                  cnt++;
             }
        };
```

```
for (int i = 0; i < n; i++) { if
        (dfn[i] == -1) { dfs(dfs, i)
        ; }}
    for (int i = 0; i < n; i++) { id[
        i] = cnt - 1 - id[i]; }
    reverse(comps.begin(), comps.end
        ());
}
// the comps are in topological
        sorted order
};</pre>
```

4.7 2-SAT

```
struct TwoSat {
     int n, N;
     vector<vector<int>> adj;
     vector<int> ans;
     TwoSat(int n) : n(n), N(n), adj(2 * n)
         ) {}
     void addClause(int u, bool x) { adj[2
           * u + !x].push_back(2 * u + x);
     // u == x || v == y
     void addClause(int u, bool x, int v,
         bool y) {
adj[2 * u + !x].push_back(2 * v +
         y);
adj[2 * v + !y].push_back(2 * u +
     }
// u == x -> v == y
     void addImply(int u, bool x, int v,
          bool y) { addClause(u, !x, v, y)
          ; }
     void addVar() {
         adj.emplace_back(), adj.
              emplace_back();
     // at most one in var is true
     // adds prefix or as supplementary
          variables
     void atMostOne(const vector<pair<int,</pre>
           bool>> &vars) {
          int sz = vars.size();
          for (int i = 0; i < sz; i++) {
              addVar();
              auto [u, x] = vars[i];
              addImply(u, x, N - 1, true);
              if (i > 0) {
                  addImply(N - 2, true, N -
                        1, true);
                  addClause(u, !x, N - 2,
                        false);
              }
         }
     // does not return supplementary
          variables from atMostOne()
     bool satisfiable() {
          // run tarjan scc on 2 * N
          for (int i = 0; i < 2 * N; i++) {
                if (dfn[i] == -1) { dfs(dfs)
         , i); }}
for (int i = 0; i < N; i++) { if
    (id[2 * i] == id[2 * i + 1])</pre>
                { return false; }}
          ans.resize(n);
         for (int i = 0; i < n; i++) { ans
[i] = id[2 * i] > id[2 * i +
                1]; }
          return true;
};
```

$\begin{array}{cccc} \textbf{4.8} & \textbf{count} & \textbf{3-cycles} & \textbf{and} & \textbf{4-} \\ & \textbf{cycles} & & \end{array}$

4.9 Minimum Mean Cycle

create a new vertex S, connect S to all vertices with arbitrary weight (0). Let $f_i(u)$ be the shortest path from S to u with exactly i edges.

$$ans = \min_{f_{n+1}(i)! = \infty} \max_{j=1}^{n} \frac{f_{n+1}(i) - f_j(i)}{n+1-j}$$

4.10 Directed Minimum Spanning Tree

```
// DSU with rollback
template <typename Cost>
struct DMST {
    int n;
    vector<int> s, t, lc, rc, h;
vector<Cost> c, tag;
DMST(int n) : n(n), h(n, -1) {}
    void addEdge(int u, int v, Cost w) {
         int id = s.size();
         s.push_back(u), t.push_back(v), c
              .push_back(w);
         lc.push_back(-1), rc.push_back
              (-1);
         tag.emplace_back();
        h[v] = merge(h[v], id);
    pair<Cost, vector<int>> build(int
         root = 0) {
        DSU d(n);
        Cost res{};
        vector<int> vis(n, -1), path(n),
              q(n), in(n, -1);
        vis[root] = root;
        vector<pair<int, vector<int>>>
              cycles;
         for (auto r = 0; r < n; ++r) {
  auto u = r, b = 0, w = -1;
  while (!~vis[u]) {</pre>
                  if (!~h[u]) { return {-1,
                        {}}; }
                  push(h[u]);
                  int e = h[u];
                  res += c[e], tag[h[u]] -=
                        c[e];
                  h[u] = pop(h[u]);
                  q[b] = e, path[b++] = u,
                       vis[u] = r;
                  u = d.find(s[e]);
                  if (vis[u] == r) {
                      int cycle = -1, e = b
                       do {
                           w = path[--b];
                           cycle = merge(
                                 cycle, h[w])
                       } while (d.join(u, w)
                       u = d.find(u);
                      h[u] = cycle, vis[u]
= -1;
                       cycles.emplace_back(u
                            , vector<int>(q.
                            begin() + b, q.
                            begin() + e));
```

}

}

```
for (auto i = 0; i < b; ++i)
                   { in[d.find(t[q[i]])] =
                   q[i]; }
         reverse(cycles.begin(), cycles.
              end());
         for (const auto &[u, comp] :
              cycles) {
              int count = int(comp.size())
                  - 1;
             d.back(count);
             int ine = in[u];
             for (auto e : comp) { in[d.
                  find(t[e])] = e; }
             in[d.find(t[ine])] = ine;
         vector<int> par;
         par.reserve(n);
for (auto i : in) { par.push_back
              (i != -1 ? s[i] : -1); }
         return {res, par};
     void push(int u) {
         c[u] += tag[u];
         if (int l = lc[u]; l != -1) { tag
              [l] += tag[u]; }
         if (int r = rc[u]; r != -1) { tag
              [r] += tag[u]; }
         tag[u] = 0;
     int merge(int u, int v) {
   if (u == -1 || v == -1) { return
              u != -1 ? u : v; }
         push(u);
         push(v);
         if (c[u] > c[v]) { swap(u, v); }
         rc[u] = merge(v, rc[u]);
         swap(lc[u], rc[u]);
         return u;
     int pop(int u) {
         push(u);
         return merge(lc[u], rc[u]);
|};
```

4.11 Maximum Clique

```
pair<int, vector<int>> maxClique(int n,
    const vector<bitset<N>> adj) {
    int mx = 0;
    vector<int> ans, cur;
   auto rec = [&](auto rec, bitset<N> s)
         -> void {
        int sz = s.count();
        if (int(cur.size()) > mx) { mx =
             cur.size(), ans = cur; }
        if (int(cur.size()) + sz <= mx) {</pre>
              return; }
        int e1 = -1, e2 = -1;
        vector<int> d(n);
        for (int i = 0; i < n; i++) {
            if (s[i]) {
                d[i] = (adj[i] \& s).count
                ();
if (e1 == -1 || d[i] > d[
                     e1]) { e1 = i; }
                if (e2 == -1 || d[i] < d[
                     e2]) { e2 = i; }
            }
        if (d[e1] >= sz - 2) {
            cur.push_back(e1);
            auto s1 = adj[e1] & s;
            rec(rec, s1);
            cur.pop_back();
            return;
        cur.push_back(e2);
        auto s2 = adj[e2] & s;
        rec(rec, s2);
        cur.pop_back();
        s.reset(e2);
        rec(rec, s);
   bitset<N> all;
```

```
for (int i = 0; i < n; i++) {
    all.set(i);
}
rec(rec, all);
return pair(mx, ans);
}</pre>
```

4.12 Dominator Tree

```
// res : parent of each vertex in
     dominator tree, -1 is root, -2 if
     not in tree
 struct DominatorTree {
     int n, cur = 0;
    vector<int> dfn, rev, fa, sdom, dom,
         val, rp, res;
     vector<vector<int>> adj, rdom, r;
     DominatorTree(int n) : n(n), dfn(n,
         -1), res(n, -2), adj(n), rdom(n)
          , r(n) {
         rev = fa = sdom = dom = val = rp
             = dfn;
     void addEdge(int u, int v) {
         adj[u].push_back(v);
    void dfs(int u) {
         dfn[u] = cur;
         rev[cur] = u;
         fa[cur] = sdom[cur] = val[cur] =
             cūr;
         for (int v : adj[u]) {
            if (dfn[v] == -1) {
                dfs(v);
                 rp[dfn[v]] = dfn[u];
             r[dfn[v]].push_back(dfn[u]);
        }
     int find(int u, int c) {
         if (fa[u] == u) { return c != 0 ?
              -1 : u; }
         int p = find(fa[u], 1);
         if (p == -1) { return c != 0 ? fa
             [u] : val[u]; }
         if (sdom[val[u]] > sdom[val[fa[u
             fa[u] = p;
         return c != 0 ? p : val[u];
    void build(int s = 0) {
         dfs(s);
         for (int i = cur - 1; i >= 0; i
             --) {
             for (int u : r[i]) { sdom[i]
                 = min(sdom[i], sdom[find
             (u, 0)]); }
if (i > 0) { rdom[sdom[i]].
                 push_back(i); }
             for (int u : rdom[i]) {
   int p = find(u, 0);
                 if (sdom[p] == i) {
                    dom[u] = i;
                  else {
                     dom[u] = p;
            if (i > 0) { fa[i] = rp[i]; }
        [i] = dom[dom[i]]; }}
         for (int i = 1; i < cur; i++) {</pre>
             res[rev[i]] = rev[dom[i]]; }
};
```

4.13 Edge Coloring

```
vector<int> ans(m, -1);
vector has(a + b, vector<pair<int, int>>(
col, {-1, -1}));
for (int i = 0; i < m; i++) {
    auto [u, v] = e[i];
    vector<int> c;
for (auto x : {u, v}) {
         c.push_back(0);
         while (has[x][c.back()].first !=
              -1) { c.back()++; }
    if (c[0] != c[1]) {
         auto dfs = [&](auto dfs, int u,
              int x) -> void {
             auto [v, i] = has[u][c[x]];
if (v != -1) {
                  if (has[v][c[x ^ 1]].
                       first != -1) {
                      dfs(dfs, v, x \wedge 1);
                  } else {
                      has[v][c[x]] = \{-1,
                            -1};
                  has[u][c[x ^ 1]] = \{v, i
                       }, has[v][c[x ^ 1]]
                  = \{u, i\};
ans[i] = c[x \land 1];
             }
         dfs(dfs, v, 0);
    has[u][c[0]] = {v, i};
    has[v][c[0]] = \{u, i\};
    ans[i] = c[0];
}
// general
auto vizing(int n, const vector<pair<int,</pre>
    int>> &e) {
vector<int> deg(n);
    for (auto [u, v] : e) {
    deg[u]++, deg[v]++;
    int col = *max_element(deg.begin(),
         deg.end()) + 1;
    vector<int> free(n);
    vector ans(n, vector<int>(n, -1));
    vector at(n, vector<int>(col, -1));
    auto update = [&](int u) {
   free[u] = 0;
         while (at[u][free[u]] != -1) {
             free[u]++;
    };
    auto color = [&](int u, int v, int c1
         ) {
         int c2 = ans[u][v];
         ans[u][v] = ans[v][u] = c1;
         at[u][c1] = v, at[v][c1] = u;
         if (c2 != -1) {
             at[u][c2] = at[v][c2] = -1;
             free[u] = free[v] = c2;
         } else {
             update(u), update(v);
         return c2;
    auto flip = [&](int u, int c1, int c2
         int v = at[u][c1];
         swap(at[u][c1], at[u][c2]);
         if (v != -1) {
             ans[u][v] = ans[v][u] = c2;
         if (at[u][c1] == -1) {
             free[u] = c1;
         if (at[u][c2] == -1) {
             free[u] = c2;
         }
return v;
    for (int i = 0; i < int(e.size()); i</pre>
         ++) {
         auto [u, v1] = e[i];
         int v2 = v1, c1 = free[u], c2 =
```

```
vector<pair<int, int>> fan;
         vector<int> vis(col);
while (ans[u][v1] == -1) {
              fan.emplace_back(v2, d = free)
                   [v2]);
              if (at[v2][c2] == -1) {
    for (int j = int(fan.size)
                       ()) - 1; j >= 0; j
                       --) {
                       c2 = color(u, fan[j].
                            first, c2);
              else\ if\ (at[u][d] == -1) {
                  for (int j = int(fan.size
                       ()) - 1; j \ge 0; j
                       --) {
                       color(u, fan[j].first
                            , fan[j].second)
              } else if (vis[d] == 1) {
                  break;
              } else {
                  vis[d] = 1, v2 = at[u][d]
         if (ans[u][v1] == -1) {
              while (v2 != -1) {
                  v2= flip(v2, c2, d);
                  swap(c2, d);
              if (at[u][c1] != -1) {
                  int j = int(fan.size()) - 2;
                  while (j \ge 0 \& fan[j].
                       second != c2) {
                       j--;
                  while (j \ge 0) {
                      color(u, fan[j].first
                            , fan[j].second)
              } else {
                  i--;
              }
         }
     return pair(col, ans);
į }
```

5 String

5.1 Prefix Function

5.2 Z Function

```
template <typename T>
vector<int> zFunction(const T &s) {
   int n = int(s.size());
   if (n == 0) return {};
   vector<int> z(n);
   for (int i = 1, j = 0; i < n; i++) {
      int &k = z[i];
      k = j + z[j] <= i ? 0 : min(j + z
            [j] - i, z[i - j]);
   while (i + k < n && s[k] == s[i +
            k]) { k++; }
   if (j + z[j] < i + z[i]) { j = i;
      }
}</pre>
```

```
}
z[0] = n;
return z;
```

| }

5.3 Suffix Array

```
// need to discretize
struct SuffixArray {
    int n:
vector<int> sa, as, ha;
template <typename T>
    vector<int> sais(const T &s) {
         int n = s.size(), m = *
              max_element(s.begin(), s.end
              ()) + 1;
         vector < int > pos(m + 1), f(n);
         for (auto ch : s) { pos[ch +
              1]++; }
         for (int i = 0; i < m; i++) { pos
         [i + 1] += pos[i]; }
for (int i = n - 2; i >= 0; i--)
{ f[i] = s[i] != s[i + 1] ?
              s[i] < s[i + 1] : f[i + 1];
         vector<int> x(m), sa(n);
         auto induce = [&](const vector<</pre>
              int> &ls) {
             fill(sa.begin(), sa.end(),
                   -1);
             auto L = [\&](int i) \{ if (i
                   >= 0 && !f[i]) { sa[x[s[
                   i]]++] = i; }};
             auto S = [\&](int i) \{ if (i
                   >= 0 \&\& f[i]) { sa[--x[s]}
                   [i]]] = i; }};
             for (int i = 0; i < m; i++) {
             x[i] = pos[i + 1]; }
for (int i = int(ls.size())
                    1; i \ge 0; i--) { S(ls[
                   for (int i = 0; i < m; i++) {
                    x[i] = pos[i]; }
             L(n - 1);
             for (int i = 0; i < n; i++) {
    L(sa[i] - 1); }
             for (int i = 0; i < m; i++) {
             x[i] = pos[i + 1]; for (int i = n - 1; i >= 0; i
                   --) { S(sa[i] - 1); }
        };
         auto ok = [&](int i) { return i
              == n || !f[i - 1] && f[i];
         auto same = [&](int i, int j) {
   do { if (s[i++] != s[j++]) {
                   return false; }} while
                   (!ok(i) && !ok(j));
             return ok(i) && ok(j);
         };
         vector<int> val(n), lms;
         for (int i = 1; i < n; i++) { if
              (ok(i)) { lms.push_back(i);
              }}
         induce(lms);
         if (!lms.empty()) {
             int p = -1, w = 0;
             for (auto v : sa) {
                  if (v != 0 && ok(v)) {
                       if (p != -1 && same(p
                            , v)) { w--; }
                       val[p = v] = w++;
             auto b = lms;
             for (auto &v : b) { v = val[v]
                   1; }
             b = sais(b);
             for (auto &v : b) { v = lms[v]
                   ]; }
             induce(b);
         return sa;
template <typename T>
    SuffixArray(const T &s) : n(s.size())
```

, sa(sais(s)), as(n), ha(n - 1)

5.4 Manacher's Algorithm

5.5 Aho-Corasick Automa-

```
constexpr int K = 26;
struct Node {
    array<int, K> nxt;
    int fail = -1;
// other vars
    Node() { nxt.fill(-1); }
vector<Node> aho(1);
for (int i = 0; i < n; i++) {
    string s;
    cin >> s;
    int u = 0;
    for (auto ch : s) {
    int c = ch - 'a';
        if (aho[u].nxt[c] == -1) {
    aho[u].nxt[c] = aho.size();
             aho.emplace_back();
        u = aho[u].nxt[c];
    }
vector<int> q;
for (auto &i : aho[0].nxt) {
    if (i == -1) {
         i = 0;
    } else {
        q.push_back(i);
        aho[i].fail = 0;
for (int i = 0; i < int(q.size()); i++) {
    int u = q[i];
    if (u > 0) {
        // maintain
    for (int c = 0; c < K; c++) {
         if (int v = aho[u].nxt[c]; v !=
              -1) {
             aho[v].fail = aho[aho[u].fail
                  ].nxt[c];
             q.push_back(v);
        } else {
```

```
| aho[u].nxt[c] = aho[aho[u].
| fail].nxt[c];
| }
| }
```

5.6 Suffix Automaton

```
struct SAM {
   static constexpr int A = 26;
   struct Node {
     int len = 0, link = -1, cnt = 0;
     array<int, A> nxt;
     Node() { nxt.fill(-1); }
   véctor<Node> t;
   SAM() : t(1) {}
   int size() { return t.size(); }
   Node& operator[](int i) { return t[i];
   int newNode() {
     t.emplace_back();
     return t.size() - 1;
   int extend(int p, int c) {
         int cur = newNode();
     t[cur].len = t[p].len + 1;
     t[cur].cnt = 1;
     while (p != -1 && t[p].nxt[c] == -1)
       t[p].nxt[c] = cur;
       p = t[p].link;
     if (p == -1) {
       t[cur].link = 0;
      else {
       int q = t[p].nxt[c];
       if (t[p].len + 1 == t[q].len) {
         t[cur].link = q;
       } else {
                  int clone = newNode();
         t[clone].len = t[p].len + 1;
         t[clone].link = t[q].link;
t[clone].nxt = t[q].nxt;
         while (p != -1 && t[p].nxt[c] ==
              q) {
           t[p].nxt[c] = clone;
           p = t[p].link;
         t[q].link = t[cur].link = clone;
     return cur;
  }
|};
```

5.7 Lexicographically Smallest Rotation

```
template <typename T>
 T minRotation(T s) {
     int n = s.size();
     int i = 0, j = 1;
    s.insert(s.end(), s.begin(), s.end())
    while (i < n && j < n) \{
         int k = 0;
         while (k < n \&\& s[i + k] == s[j +
              k]) {
             k++;
         if (s[i + k] <= s[j + k]) {
             j += k + 1;
         } else {
             i += k + 1;
         if (i == j) {
             j++;
    int ans = i < n ? i : j;
    return T(s.begin() + ans, s.begin() +
          ans + n;
1}
```

5.8 EER Tree

```
// cnt : occurrences, (dfs fail tree)
 // num : number of pal ending here
 struct PAM {
     static constexpr int A = 26;
     struct Node {
         int len = 0, link = 0, cnt = 0,
              num = 0;
          array<int, A> nxt{};
         Node() {}
     };
vector<Node> t;
     int suf = 1;
     string s;
     PAM() : t(2) { t[0].len = -1; }
     int size() { return t.size(); }
     Node& operator[](int i) { return t[i
          ]; }
     int newNode() {
          t.emplace_back();
          return t.size() - 1;
     bool add(int c, char offset = 'a') {
         int pos = s.size();
         s += c + offset;
         int cur = suf, curlen = 0;
while (true) {
              curlen = t[cur].len;
if (pos - 1 - curlen >= 0 &&
                   s[pos - 1 - curlen] == s
                   [pos]) { break; }
              cur = t[cur].link;
          if (t[cur].nxt[c]) {
              suf = t[cur].nxt[c];
              t[suf].cnt++;
              return false;
         suf = newNode();
         t[suf].len = t[cur].len + 2;
t[suf].cnt = t[suf].num = 1;
         t[cur].nxt[c] = suf;
          if (t[suf].len == 1) {
              t[suf].link = 1;
              return true;
         while (true) {
              cur = t[cur].link;
              curlen = t[cur].len;
              if (pos - 1 - curlen >= 0 &&
                   s[pos - 1 - curlen] == s
                   [pos]) {
                  t[suf].link = t[cur].nxt[
                  break:
          t[suf].num += t[t[suf].link].num;
          return true;
};
```

6 Math

6.1 Extended GCD

```
| array<i64, 3> extgcd(i64 a, i64 b) {
| if (b == 0) { return {a, 1, 0}; }
| auto [g, x, y] = extgcd(b, a % b);
| return {g, y, x - a / b * y};
| }
```

6.2 Chinese Remainder Theorem

```
// returns (rem, mod), n = 0 return (0,
    1), no solution return (0, 0)
|pair<i64, i64> crt(vector<i64> r, vector<
    i64> m) {
    int n = r.size();
    for (int i = 0; i < n; i++) {
        r[i] %= m[i];
        if (r[i] < 0) { r[i] += m[i]; }
}</pre>
```

```
i64 r0 = 0, m0 = 1;
for (int i = 0; i < n; i++) {
    i64 r1 = r[i], m1 = m[i];
    if (m0 < m1) { swap(r0, r1), swap
        (m0, m1); }
    if (m0 % m1 == 0) {
        if (r0 % m1 != r1) { return
            {0, 0}; }
        continue;
    }
    auto [g, a, b] = extgcd(m0, m1);
    i64 u1 = m1 / g;
    if ((r1 - r0) % g != 0) { return
        {0, 0}; }
    i64 x = (r1 - r0) / g % u1 * a %
        u1;
    r0 += x * m0;
    m0 *= u1;
    if (r0 < 0) { r0 += m0; }
}
return {r0, m0};</pre>
```

6.3 NTT and polynomials

```
template <int P>
struct Modint {
    int v:
    // need constexpr, constructor, +-*,
         apow, inv()
template<int P>
constexpr Modint<P> findPrimitiveRoot() {
   Modint<P> i = 2;
int k = __builtin_ctz(P - 1);
    while (true) {
        if (i.qpow((P - 1) / 2).v != 1) {
              break; }
        i = i + 1:
    return i.qpow(P - 1 >> k);
template <int P>
constexpr Modint<P> primitiveRoot =
    findPrimitiveRoot<P>();
vector<int> rev;
template <int P>
vector<Modint<P>> roots{0, 1};
template <int P>
void dft(vector<Modint<P>> &a) {
    int n = a.size();
if (n == 1) { return; }
    if (int(rev.size()) != n) {
        int k = __builtin_ctz(n) - 1;
        rev.resize(n);
        for (int i = 0; i < n; i++) { rev
             [i] = rev[i >> 1] >> 1 | (i
             & 1) << k; }
    for (int i = 0; i < n; i++) { if (rev
         [i] < i) { swap(a[i], a[rev[i]])
         ; }}
    if (roots<P>.size() < n) {</pre>
        int k = __builtin_ctz(roots<P>.
             size());
        roots<P>.resize(n);
        while ((1 << k) < n) {
             auto e = Modint<P>(
                  primitiveRoot<P>).qpow(P
                   -1 >> k + 1);
             for (int i = 1 << k - 1; i <
                  1 << k; i++) {
                 roots<P>[2 * i] = roots<P
                 >[i];
roots<P>[2 * i + 1] =
                      roots < P > [i] * e;
             k++:
        }
    // fft : just do roots[i] = exp(2 *
    PI / n * i * complex<double>(0,
         1))
    for (int k = 1; k < n; k *= 2) {
```

for (int i = 0; i < n; i += 2 * k

for (int j = 0; j < k; j++) {

```
Modint<P> u = a[i + j];
                  Modint < P > v = a[i + j + k]
                       ] * roots\langle P \rangle [k + j];
                  // fft : v = a[i + j + k]
                        * roots[n / (2 * k)
                        * j]
                  a[i + j] = u + v;

a[i + j + k] = u - v;
             }
        }
    }
template <int P>
void idft(vector<Modint<P>> &a) {
    int n = a.size();
    reverse(a.begin() + 1, a.end());
    dft(a):
    Modint<P> x = (1 - P) / n;
    for (int i = 0; i < n; i++) { a[i] =
         a[i] * x; }
template <int P>
struct Poly : vector<Modint<P>>> {
    using Mint = Modint<P>;
    Poly() {}
    explicit Poly(int n) : vector<Mint>(n
         ) {}
    explicit Poly(const vector<Mint> &a)
          : vector<Mint>(a) {}
    explicit Poly(const initializer_list<</pre>
         Mint> &a) : vector<Mint>(a) {}
template<class F>
explicit Poly(int n, F f) : vector<
          Mint>(n) { for (int i = 0; i < n
          ; i++) { (*this)[i] = f(i); }}
template<class InputIt>
    explicit constexpr Poly(InputIt first
           InputIt last) : vector<Mint>(
         first, last) {}
    Poly mulxk(int k) {
         auto b = *this;
         b.insert(b.begin(), k, 0);
         return b;
    Poly modxk(int k) {
         k = min(k, int(this->size()));
         return Poly(this->begin(), this->
              begin() + k);
    Poly divxk(int k) {
         if (this->size() <= k) { return</pre>
              Poly(); }
         return Poly(this->begin() + k,
              this->end());
    friend Poly operator+(const Poly &a,
         const Poly &b) {
         Poly res(max(a.size(), b.size()))
         for (int i = 0; i < int(a.size())</pre>
              ; i++) { res[i] = res[i] + a
              [i]; }
         for (int i = 0; i < int(b.size())</pre>
              ; i++) { res[i] = res[i] + b
              [i]; }
         return res;
    friend Poly operator-(const Poly &a,
         const Poly &b) {
         Poly res(max(a.size(), b.size()))
         for (int i = 0; i < int(a.size())</pre>
              ; i++) { res[i] = res[i] + a
              [i]; }
         for (int i = 0; i < int(b.size())</pre>
              ; i++) { res[i] = res[i] - b
[i]; }
         return res;
    friend Poly operator*(Poly a, Poly b)
         if (a.empty() || b.empty()) {
              return Poly(); }
         int sz = 1, tot = a.size() + b.
              size() - 1;
         while (sz < tot) { sz *= 2; }</pre>
         a.resize(sz);
```

```
b.resize(sz):
    dft(a);
     dft(b);
    for (int i = 0; i < sz; i++) { a[
    i] = a[i] * b[i]; }</pre>
     idft(a);
    a.resize(tot);
    return a:
friend Poly operator*(Poly a, Mint b)
     for (int i = 0; i < int(a.size())
    ; i++) { a[i] = a[i] * b; }
return a;
Poly derivative() {
    if (this->empty()) { return Poly
          (); }
     Poly res(this->size() - 1);
    for (int i = 0; i < this->size()
- 1; ++i) { res[i] = (i + 1)
* (*this)[i + 1]; }
     return res;
Poly integral() {
    Poly res(this->size() + 1);
    for (int i = 0; i < this->size();
    ++i) { res[i + 1] = (*this)
    [i] * Mint(i + 1).inv(); }
     return res;
Poly inv(int m) {
     // a[0] != 0
    Poly x({(*this)[0].inv()});
    int k = 1;
    while (k < m) {
    k *= 2;
    x = (x * (Poly({2})) - modxk(k))
               ) * x)).modxk(k);
    return x.modxk(m);
Poly log(int m) {
    return (derivative() * inv(m)).
          integral().modxk(m);
Poly exp(int m) {
    Poly x(\{1\});
    int k = 1;
while (k < m) {
    k *= 2;
    x = (x * (Poly({1}) - x.log(k))</pre>
               ) + modxk(k)).modxk(k);
    return x.modxk(m);
Poly pow(i64 k, int m) {
     if (k == 0) { return Poly(m, [&](
          int i) { return i == 0; });
     int i = 0;
    while (i < this->size() && (*this
          [i].v == 0) \{ i++; \}
     if (i == this->size() || __int128
          (i) * k >= m) { return Poly(
          m); }
    .qpow(k);
Poly sqrt(int m) {
    // a[0] == 1, otherwise quadratic
          residue?
    Poly x({1});
    int k = 1;
    while (k < m) {
    k *= 2;
         x = (x + (modxk(k) * x.inv(k))
               ).modxk(k)) * ((P + 1) /
     return x.modxk(m);
Poly mulT(Poly b) const {
```

if (b.empty()) { return Poly(); }

```
int n = b.size();
reverse(b.begin(), b.end());
return (*this * b).divxk(n - 1);
     vector<Mint> evaluate(vector<Mint> x)
          if (this->empty()) { return
               vector<Mint>(x.size()); }
          int n = max(x.size(), this->size
               ());
         vector<Poly> q(4 * n);
         vector<Mint> ans(x.size());
         x.resize(n);
         auto build = [&](auto build, int
               id, int l, int r) -> void {
              if (r - l == 1) {
    q[id] = Poly({1, -x[1].v
              });
} else {
                   int m = (1 + r) / 2;
                   build(build, 2 * id, 1, m
                   build(build, 2 * id + 1,
                        m, r);
                   q[id] = q[2 * id] * q[2 *
                         id + 1];
             }
         build(build, 1, 0, n);
         auto work = [&](auto work, int id
               , int l, int r, const Poly &
              num) -> void {
if (r - l == 1) {
                   if (l < int(ans.size()))</pre>
                        \{ ans[l] = num[0]; \}
              } else {
                  work(work, 2 * id + 1, m,
r, num.mulT(q[2 *
                        id]).modxk(r - m);
         };
         work(work, 1, 0, n, mulT(q[1].inv
               (n)));
         return ans;
};
template <int P>
Poly<P> interpolate(vector<Modint<P>> x,
     vector<Modint<P>> y) {
     // f(xi) = yi
     int n = x.size();
     vector<Poly<P>> p(4 * n), q(4 * n);
    auto dfs1 = [&](auto dfs1, int id,
          int l, int r) -> void {
          if (l == r) {
              p[id] = Poly < P > (\{-x[l].v, 1\})
              return;
         int m = l + r >> 1;
dfs1(dfs1, id << 1, l, m);
dfs1(dfs1, id << 1 | 1, m + 1, r)</pre>
         p[id] = p[id << 1] * p[id << 1]
               17;
     dfs1(dfs1, 1, 0, n - 1);
     Poly<P> f = Poly<P>(p[1].derivative()
          .evaluate(x));
    auto dfs2 = [&](auto dfs2, int id,
   int l, int r) -> void {
          if (1 == r) {
              q[id] = Poly < P > ({y[l] * f[l]}.
                   inv()});
              return;
         int m = 1 + r >> 1;
dfs2(dfs2, id << 1, 1, m);
dfs2(dfs2, id << 1 | 1, m + 1, r)
          q[id] = q[id \ll 1] * p[id \ll 1]
               1] + q[id << 1 | 1] * p[id
               << 1];
```

```
dfs2(dfs2, 1, 0, n - 1);
return q[1];
```

6.4 Any Mod NTT

```
constexpr int P0 = 998244353, P1 =
    1004535809, P2 = 469762049;
 constexpr i64 P01 = 1LL * P0 * P1;
  constexpr int inv0 = Modint<P1>(P0).inv()
  constexpr int inv01 = Modint<P2>(P01).inv
          ().v;
 (J.V;
for (int i = 0; i < int(c.size()); i++) {
    i64 x = 1LL * (c1[i] - c0[i] + P1) %
        P1 * inv0 % P1 * P0 + c0[i];
    c[i] = ((c2[i] - x % P2 + P2) % P2 *
        inv01 % P2 * (P01 % P) % P + x)</pre>
| }
```

6.5 Newton's Method

$$Q_{k+1} = Q_k - \frac{F(Q_k)}{F'(Q_k)} \pmod{x^{2^{k+1}}}$$

6.6 Fast Walsh-Hadamard Transform

```
1. XOR Convolution
```

- $f(A) = (f(A_0) + f(A_1), f(A_0)$ $f(A_1)$
- $f^{-1}(A) = (f^{-1}(\frac{A_0 + A_1}{2}), f^{-1}(\frac{A_0 A_1}{2})$
- 2. OR Convolution

 - $f(A) = (f(A_0), f(A_0) + f(A_1))$ $f^{-1}(A) = (f^{-1}(A_0), f^{-1}(A_1) f^{-1}(A_0))$
- 3. AND Convolution

 - $f(A) = (f(A_0) + f(A_1), f(A_1))$ $f^{-1}(A) = (f^{-1}(A_0))$ $f^{-1}(A_1), f^{-1}(A_1))$

Simplex Algorithm

Description: maximize $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} < \mathbf{b}$ and $x \ge 0$. Returns $-\infty$ if infeasible and ∞ if unbounded.

```
const double eps = 1e-9;
const double inf = 1e+9;
int n, m;
vector<vector<double>> d;
vector<int> p, q;
void pivot(int r, int s) {
   double inv = 1.0 / d[r][s];
}
  for (int i = 0; i < m + 2; ++i) {
  for (int j = 0; j < n + 2; ++j) {
    if (i != r && j != s) d[i][j] -= d[
        r][j] * d[i][s] * inv;
     }
   for (int i = 0; i < m + 2; ++i) if (i
  != r) d[i][s] *= -inv;
for (int j = 0; j < n + 2; ++j) if (j
!= s) d[r][j] *= +inv;
   d[r][s] = inv;
   swap(p[r], q[s]);
bool phase(int z) {
   int x = m + z;
   while (true) {
      int s = -1;
      for (int i = 0; i <= n; ++i) {
   if (!z && q[i] == -1) continue;
         if (s == -1 | | d[x][i] < d[x][s]) s
      if (d[x][s] > -eps) return true;
      int r = -1;
      for (int i = 0; i < m; ++i) {
         if (d[i][s] < eps) continue;
if (r == -1 || d[i][n + 1] / d[i][s</pre>
                ] < d[r][n + 1] / d[r][s]) r =
```

```
if (r == -1) return false;
    pivot(r, s);
vector<double> solve(const vector<vector<
     double>> &a, const vector<double> &b
      , const vector<double> &c) {
  m = b.size(), n = c.size();
  d = vector<vector<double>>(m + 2,
       vector<double>(n + 2));
  for (int i = 0; i < m; ++i) {
  for (int j = 0; j < n; ++j) d[i][j] =
           a[i][j];
  p.resize(m), q.resize(n + 1);
for (int i = 0; i < m; ++i) p[i] = n +
    i, d[i][n] = -1, d[i][n + 1] = b[i</pre>
       ];
  for (int i = 0; i < n; ++i) q[i] = i, d
       [m][i] = -c[i];
  q[n] = -1, d[m + 1][n] = 1;
  int r = 0;
  for (int i = 1; i < m; ++i) if (d[i][n + 1] < d[r][n + 1]) r = i;
  if (d[r][n + 1] < -eps) {
    pivot(r, n);
    if (!phase(1) || d[m + 1][n + 1] < -
          eps) return vector<double>(n, -
          inf);
    for (int i = 0; i < m; ++i) if (p[i]
          == -1) {
       int s = min_element(d[i].begin(), d
           [i].end() - 1) - d[i].begin();
      pivot(i, s);
  if (!phase(0)) return vector<double>(n,
  vector<double> x(n);
  for (int i = 0; i < m; ++i) if (p[i] <</pre>
       n) x[p[i]] = d[i][n + 1];
```

6.7.1 Construction

Standard form: maximize $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} < \mathbf{b}$ and x > 0. Dual \overline{LP} : minimize $\mathbf{b}^T \mathbf{y}$ subject to $A^T \mathbf{y} \geq \mathbf{c}$ and $\bar{y} \geq 0.5$ \bar{x} and \bar{y} are optimal if and only if for all $i \in [1, n]$, either $\bar{x}_i = 0$ or $\sum_{j=1}^m A_{ji}\bar{y}_j = c_i$ holds and for all $i \in [1, m]$ either $\bar{y}_i = 0$ or $\sum_{j=1}^n A_{ij}\bar{x}_j = b_j$ holds.

```
1. In case of minimization, let c'_i = -c_i
```

- 2. $\sum_{1 \leq i \leq n} A_{ji} x_i \geq b_j \rightarrow \sum_{1 \leq i \leq n} -A_{ji} x_i \leq$ $-b_j$
- 3. $\sum_{1 \le i \le n} A_{ji} x_i = b_j$
 - $\begin{array}{ll} \bullet & \sum_{1 \leq i \leq n} A_{ji} x_i \leq b_j \\ \bullet & \sum_{1 \leq i \leq n} A_{ji} x_i \geq b_j \end{array}$
- 4. If x_i has no lower bound, replace x_i with

6.8 Subset Convolution

```
Description: h(s) = \sum_{s' \subset s} f(s')g(s \setminus s')
vector<int> SubsetConv(int n, const
     vector<int> &f, const vector<int> &g
     ) {
  const int m = 1 \ll n;
  vector<vector<int>> a(n + 1, vector<int
        >(m)), b(n + 1, vector<int>(m));
  for (int i = 0; i < m; ++i) {
    a[__builtin_popcount(i)][i] = f[i];</pre>
     b[__builtin_popcount(i)][i] = g[i];
  for (int i = 0; i <= n; ++i) {
     for (int j = 0; j < n; ++j) {
  for (int s = 0; s < m; ++s) {
          if (s >> j & 1) {
    a[i][s] += a[i][s ^ (1 << j)];</pre>
            b[i][s] += b[i][s \wedge (1 << j)];
          }
```

```
}
    vector<vector<int>> c(n + 1, vector<int
    for (int s = 0; s < m; ++s) {
       for (int i = 0; i <= n; ++i) {
  for (int j = 0; j <= i; ++j) c[i][s
    ] += a[j][s] * b[i - j][s];
   for (int i = 0; i <= n; ++i) {
  for (int j = 0; j < n; ++j) {
    for (int s = 0; s < m; ++s) {
      if (s >> j & 1) c[i][s] -= c[i][s]
    }
}
                       ^ (1 << j)];
      }
   }
    vector<int> res(m);
    for (int i = 0; i < m; ++i) res[i] = c[
            __builtin_popcount(i)][i];
    return res;
}
```

Berlekamp Massey Algo-6.9

```
// find \sum a_(i- j)c_j = 0 for d <= i
template <typename T>
vector<T> berlekampMassey(const vector<T>
         &a) {
      vector<T> c(1, 1), oldC(1);
      int oldI = -1;
      T \text{ oldD} = 1;
      for (int i = 0; i < int(a.size()); i</pre>
            ++) {
T d = 0;
            for (int j = 0; j < int(c.size())
    ; j++) { d += c[j] * a[i - j</pre>
            if (d == 0) { continue; }
T mul = d / oldD;
            vector<T> nc = c;
            nc.resize(max(int(c.size()), i -
            oldI + int(oldC.size()));

for (int j = 0; j < int(oldC.size

()); j++) { nc[j + i - oldI]

-= oldC[j] * mul; }
             if (i - int(c.size()) > oldI -
                    int(oldC.size())) {
                  oldI = i;
                  oldD = d:
                  swap(oldC, c);
            swap(c, nc);
      return c;
```

6.10Fast Linear Recurrence

```
| // p : a[0] \sim a[d - 1]
 // q : a[i] = \sum a[i - j]q[j]
 template <typename T>
 T linearRecurrence(vector<T> p, vector<T>
        q, i64 n) {
      int d = q.size() - 1;
      assert(int(p.size()) == d);
p = p * q;
      p.resize(d);
      while (n > 0) {
    auto nq = q;
    for (int i = 1; i <= d; i += 2) {
        nq[i] *= -1;
    }</pre>
           auto np = p * nq;
nq = q * nq;
            for (int i = 0; i < d; i++) {
                 p[i] = np[i * 2 + n % 2];
           for (int i = 0; i <= d; i++) {
    q[i] = nq[i * 2];
           n /= 2;
      return p[0] / q[0];
| }
```

```
i64 mul(i64 a, i64 b, i64 mod) {}
i64 qpow(i64 x, i64 p, i64 mod) {}
bool isPrime(i64 n) {
     if (n == 1) { return false; }
     int r = __builtin_ctzll(n - 1);
     i64 d = n - 1 >> r;
     auto checkComposite = [&](i64 p) {
         i64 x = qpow(p, d, n);
         if (x == 1 | | x == n - 1) {
              return false; }
         for (int i = 1; i < r; i++) {
              x = mul(x, x, n);
if (x == n - 1) { return
                   false; }
         return true;
     for (auto p : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {
         if (n == p) {
    return true;
         } else if (checkComposite(p)) {
              return false;
     return true;
vector<i64> pollardRho(i64 n) {
     vector<i64> res;
     auto work = [&](auto work, i64 n) {
         if (n <= 10000) {
              for (int i = 2; i * i <= n; i
                   ++) {
                  while (n % i == 0) {
                       res.push_back(i);
                       n \neq i;
                  }
              if (n > 1) { res.push_back(n)
              return;
         } else if (isPrime(n)) {
              res.push_back(n);
              return;
         i64 \times 0 = 2:
         auto f = [\&](i64 x) \{ return (mul) \}
              (x, x, n) + 1) % n; };
         while (true) {
              i64 \times = x0, y = x0, d = 1,

power = 1, lam = 0, v =
              while (d == 1) {
                  y = f(y);
                  ++lam;
                  v = mul(v, abs(x - y), n)
                   if (lam % 127 == 0) {
                       d = gcd(v, n);
                       v = 1:
                   if (power == lam) {
                       x = y;
power *= 2;
                       lam = 0;
                      d = gcd(v, n);
v = 1;
                  }
              if (d != n) {
                  work(work, d);
                  work(work, n / d);
                  return;
              ++x0;
         }
     work(work, n);
     sort(res.begin(), res.end());
     return res;
į }
```

6.12 Count Primes leq n

```
if (n <= 1) { return 0; }</pre>
                                                  if (n == 2) { return 1; }
                                                 const int v = sqrtl(n);
int s = (v + 1) / 2;
                                                 vector<int> smalls(s), roughs(s),
                                                        skip(v + 1);
                                                  vector<i64> larges(s);
                                                  iota(smalls.begin(), smalls.end(), 0)
                                                 for (int i = 0; i < s; i++) {
    roughs[i] = 2 * i + 1;</pre>
                                                       larges[i] = (n / roughs[i] - 1) /
                                                  const auto half = [](int n) -> int {
                                                       return (n - 1) >> 1; };
                                                 int pc = 0;
                                                 for (int p = 3; p \leftarrow v; p += 2) {
                                                       if (skip[p]) { continue; }
                                                      int q = p * p;
if (1LL * q * q > n) { break; }
                                                       skip[p] = true;
                                                       for (int i = q; i <= v; i += 2 *
                                                            p) skip[i] = true;
                                                       int ns = 0;
                                                       for (int k = 0; k < s; k++) {
                                                            int i = roughs[k];
                                                           if (skip[i]) { continue; }
i64 d = 1LL * i * p;
                                                            larges[ns] = larges[k] - (d
     <= v ? larges[smalls[d /</pre>
                                                                  2] - pc] : smalls[half(
                                                                 n / d)]) + pc;
                                                            roughs[ns++] = i;
                                                      }
                                                      for (int i = half(v), j = v / p -
    1 | 1; j >= p; j -= 2) {
    int c = smalls[j / 2] - pc;
    for (int e = j * p / 2; i >=
        e; i--) { smalls[i] -= c
                                                      pc++;
                                                 larges[0] += 1LL * (s + 2 * (pc - 1))
                                                         * (s - 1) / 2;
                                                  for (int k = 1; k < s; k++) { larges
                                                 [0] -= larges[k]; }
for (int l = 1; l < s; l++) {
                                                       i64 q = roughs[l];
                                                       i64 M = n / q;
int e = smalls[half(M / q)] - pc;
                                                       if (e <= 1) { break; }</pre>
                                                       i64 t = 0:
                                                       for (int k = l + 1; k <= e; k++)
                                                            { t += smalls[half(M /
                                                      roughs[k])]; }
larges[0] += t - 1LL * (e - l) *
                                                            (pc + l - 1);
                                                  return larges[0] + 1;
```

6.13 Discrete Logarithm

```
// return min x >= 0 s.t. a \land x = b \mod m
, 0 \land 0 = 1, -1 if no solution
 // (I think) if you want x > 0 (m != 1),
       remove if (b == k) return add;
 int discreteLog(int a, int b, int m) {
      if (m == 1) {
           return 0;
     a %= m, b %= m;
int k = 1, add = 0, g;
      while ((g = gcd(a, m)) > 1) {
           if (b == k) {
                return add;
           } else if (b % g) {
                return -1;
           b /= g, m /= g, ++add;
k = 1LL * k * a / g % m;
```

```
if (b == k) {
    return add;
int n = sqrt(m) + 1;
int an = 1;
for (int i = 0; i < n; ++i) {
    an = 1LL * an * a % m;
unordered_map<int, int> vals;
for (int q = 0, cur = b; q < n; ++q)
    vals[cur] = q;
cur = 1LL * a * cur % m;
for (int p = 1, cur = k; p \le n; ++p)
    cur = 1LL * cur * an % m;
    if (vals.count(cur)) {
         int ans = n * p - vals[cur] +
               add:
         return ans;
    }
return -1;
```

6.14 Quadratic Residue

```
int jacobi(int a, int m) {
    int s = 1;
    while (m > 1) {
         a %= m;
         if (a == 0) { return 0; }
         int r = __builtin_ctz(a);
         if (r % 2 == 1 && (m + 2 & 4) !=
              0) { s = -s; }
         if ((a \& m \& 2) != 0) \{ s = -s; \}
         swap(a, m);
    return s;
int quadraticResidue(int a, int p) {
    if (p == 2) { return a % 2; }
    int j = jacobi(a, p);
if (j == 0 || j == -1) { return j; }
    int b, d;
    while (true) {
        b = rng() % p;
d = (1LL * b * b + p - a) % p;
         if (jacobi(d, p) == -1) { break;
    int f0 = b, f1 = 1, g0 = 1, g1 = 0,
    for (int e = p + 1 >> 1; e > 0; e >>=
          1) {
         if (e % 2 == 1) {
             tmp = (1LL * g0 * f0 + 1LL *
                   d * g1 % p * f1 % p) % p
             g1 = (1LL * g0 * f1 + 1LL *
                   g1 * f0) % p;
             g0 = tmp;
         tmp = (1LL * f0 * f0 + 1LL * d *
f1 % p * f1 % p) % p;
f1 = 2LL * f0 * f1 % p;
         f0 = tmp;
    return g0;
```

6.15Characteristic Polynomial

```
vector<vector<int>>> Hessenberg(const
      vector<vector<int>> &A) {
  int N = A.size();
  vector<vector<int>> H = A;
  for (int i = 0; i < N - 2; ++i) {
    if (!H[i + 1][i]) {
  for (int j = i + 2; j < N; ++j) {</pre>
         if (H[j][i]) {
```

```
for (int k = i; k < N; ++k)
    swap(H[i + 1][k], H[j][k])</pre>
             for (int k = 0; k < N; ++k)
                   swap(H[k][i + 1], H[k][j])
            break:
          }
       }
     if (!H[i + 1][i]) continue;
     int val = fpow(H[i + 1][i], kP - 2);
for (int j = i + 2; j < N; ++j) {
  int coef = 1LL * val * H[j][i] % kP</pre>
       for (int k = i; k < N; ++k) H[j][k]
= (H[j][k] + 1LL * H[i + 1][k
             ] * (kP - coef)) % kP;
        for (int k = 0; k < N; ++k) H[k][i
             + 1] = (H[k][i + 1] + 1LL * H[
k][j] * coef) % kP;
    }
  return H;
}
vector<int> CharacteristicPoly(const
      vector<vector<int>> &A) {
  int N = A.size();
  auto H = Hessenberg(A);
  for (int i = 0; i < N; ++i) {
  for (int j = 0; j < N; ++j) H[i][j] =
            kP - H[i][j];
  vector<vector<int>>> P(N + 1, vector<int
        >(N + 1));
  P[0][0] = 1;
  for (int i = 1; i \le N; ++i) {
     P[i][0] = 0;
     for (int j = 1; j <= i; ++j) P[i][j]
= P[i - 1][j - 1];
     int val = 1;
     for (int j = i - 1; j >= 0; --j) {
  int coef = 1LL * val * H[j][i - 1]
              % kP:
       coef) % kP;
if (j) val = 1LL * val * (kP - H[j
             ][j - 1]) % kP;
    }
  }
  if (N & 1) {
     for (int i = 0; i <= N; ++i) P[N][i]</pre>
           = kP - P[N][i];
  return P[N];
```

6.16 Linear Sieve Related

```
vector<int> minp(N + 1), primes, mobius(N
       + 1);
mobius[1] = 1;
for (int i = 2; i <= N; i++) {
     if (!minp[i]) {
         primes.push_back(i);
         minp[i] = i;
         mobius[i] = -1;
     for (int p : primes) {
         if (p > N / i) {
              break;
         minp[p * i] = p;
         mobius[p * i] = -mobius[i];
if (i % p == 0) {
              mobius[p * i] = 0;
              break:
         }
     }
|}
```

6.17 De Bruijn Sequence

```
int res[kN], aux[kN], a[kN], sz;
void Rec(int t, int p, int n, int k) {
if (t > n) {
```

```
if (n \% p == 0)
      for (int i = 1; i <= p; ++i) res[sz
            ++] = aux[i];
    aux[t] = aux[t - p];
    Rec(t + 1, p, n, k);
for (aux[t] = aux[t - p] + 1; aux[t]
          < k; ++aux[t]) Rec(t + 1, t, n,
int DeBruijn(int k, int n) {
  // return cyclic string of length k^n
       such that every string of length n
        using k character appears as a
       substring.
  if (k == 1) return res[0] = 0, 1;
fill(aux, aux + k * n, 0);
  return sz = 0, Rec(1, 1, n, k), sz;
```

6.18 Floor Sum

```
// \sum \{i = 0\} \{n\} floor((a * i + b) / c
i64 floorSum(i64 a, i64 b, i64 c, i64 n)
      if (n < 0) { return 0; }</pre>
      if (n == 0) { return b / c; }
if (a == 0) { return b / c * (n + 1);
              }
      i64 \text{ res} = 0;
      if (a >= c) { res += a / c * n * (n +
1) / 2, a %= c; }
if (b >= c) { res += b / c * (n + 1),
      b %= c; }
i64 m = (a * n + b) / c;
return res + n * m - (m == 0 ? 0 :
             floorSum(c, c - b - 1, a, m - 1)
```

6.19 More Floor Sum

```
• m = \lfloor \frac{an+b}{c} \rfloor
```

```
g(a,b,c,n) = \sum_{i=1}^n i \lfloor \frac{ai+b}{c} \rfloor
                                              \lfloor \tfrac{a}{c} \rfloor \cdot \tfrac{n(n+1)(2n+1)}{6} + \lfloor \tfrac{b}{c} \rfloor \cdot \tfrac{n(n+1)}{2}
                                           +g(a \mod c, b \mod c, c, n),
                                            \begin{array}{ll} +g(a \bmod c, b \bmod c, c, n), & n < 0 \lor a = 0 \\ 0, & n < 0 \lor a = 0 \\ \hline \frac{1}{2} \cdot (n(n+1)m - f(c,c-b-1,a,m-1)) & \text{The number of undirected spanning in } G \text{ is } \\ -h(c,c-b-1,a,m-1)), & \text{otherwise} \\ & \text{The number of directed spanning tree} \end{array}
```

```
h(a,b,c,n) = \sum_{i=0}^{n} \left\lfloor \frac{ai+b}{c} \right\rfloor^{2}
                   +\lfloor \frac{a}{c} \rfloor \cdot \lfloor \frac{b}{c} \rfloor \cdot n(n+1)
                    +h(a \mod c, b \mod c, c, n)
                    +2\lfloor \frac{a}{c} \rfloor \cdot g(a \mod c, b \mod c, c, n)
                    +2\lfloor \frac{b}{c} \rfloor \cdot f(a \mod c, b \mod c, c, n),
                     nm(m+1) - 2g(c, c-b-1, a, m-1)
```

6.20 Min Mod Linear

```
|// \min i : [0, n) (a * i + b) % m
// ok in 1e9
int minModLinear(int n, int m, int a, int
      b, int cnt = 1, int p = 1, int q =
     1) {
if (a == 0) { return b; }
     if (cnt % 2 == 1) {
         if (b >= a) {
             int t = (m - b + a - 1) / a;
             int c = (t - 1) * p + q;
             if (n <= c) { return b; }</pre>
             n -= c;
b += a * t - m;
         b = a - 1 - b;
     } else {
         if (b < m - a) {
```

```
int t = (m - b - 1) / a;
        int c = t * p;
if (n <= c) { return (n - 1)
             /p * a + b; }
        n -= c;
b += a * t;
    }
b = m - 1 - b;
cnt++;
int d = m / a;
int c = minModLinear(n, a, m % a, b,
     cnt, (d - 1) * p + q, d * p + q)
return cnt % 2 == 1 ? m - 1 - c : a -
      1 - c;
```

6.21Count of subsets with sum (mod P) leq T

```
int n, T;
cin >> n >> T;
vector<int> cnt(T + 1);
for (int i = 0; i < n; i++) {
    int a;
    cin >> a;
    cnt[a]++;
vector<Mint> inv(T + 1);
for (int i = 1; i <= T; i++) {
    inv[i] = i == 1 ? 1 : -P / i * inv[P
        % i];
FPS f(T + 1);
}
f = f.exp(T + 1);
```

6.22Theorem

6.22.1 Kirchhoff's Theorem

Denote L be a $n\times n$ matrix as the Laplacian matrix of graph G, where $L_{ii} = d(i)$, $L_{ij} = -c$ where c is the $\underline{\underline{\mathbf{p}}}$ umber $\underline{\underline{\mathbf{p}}}$ feedge (i, j) in G.

rooted at r in G is $|\det(\tilde{L}_{rr})|$.

Let D be a $n \times n$ matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniformly at random) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G. $n < 0 \lor a = 0$

-2f(c,c-b-1,a,m-1) - f(a,b,c6.22.3her Cayley's Formula

• Given a degree sequence d_1, d_2, \dots, d_n for each labeled vertices, there are $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees.

• Let $T_{n,k}$ be the number of labeled forests on n vertices with k components, such that vertex 1, 2, ..., k belong to different components. Then $T_{n,k} = kn^{n-k-1}$.

6.22.4 Erdős–Gallai Theorem

A sequence of non-negative integers $d_1 \geq d_2 \geq$ $\ldots \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1 + d_2 + \ldots + d_n$ is even and

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$$

holds for all $1 \le k \le n$.

7 Dynamic Programming

7.1 Dynamic Convex Hull

```
struct Line {
     // kx + b
   mutable i64 k, b, p;
   bool operator<(const Line& o) const {</pre>
        return k < o.k; }</pre>
   bool operator<(i64 x) const { return p</pre>
        < x;  }
 struct DynamicConvexHullMax : multiset<</pre>
      Line, less<>>> {
   // (for doubles, use INF = 1/.0, div(a,
        b) = a/b
   static constexpr i64 INF =
        numeric_limits<i64>::max();
   i64 div(i64 a, i64 b) {
          // floor
     return a / b - ((a \land b) < 0 \&\& a \% b)
   bool isect(iterator x, iterator y) {
     if (y == end()) return x -> p = INF, 0;
     if (x->k == y->k) x->p = x->b > y->b
? INF : -INF;
     else x->p = div(y->b - x->b, x->k - y
           ->k);
     return x \rightarrow p >= y \rightarrow p;
   void add(i64 k, i64 b) {
     auto z = insert(\{k, b, 0\}), y = z++,
          X = V;
     while (isect(y, z)) z = erase(z);
if (x != begin() && isect(--x, y))
           isect(x, y = erase(y));
     while ((y = x) != begin() \&\& (--x)->p
           >= y->p)
        isect(x, erase(y));
   i64 query(i64 x) {
          if (empty())
              return -INF;
     auto l = *lower_bound(x);
     return 1.k * x + 1.b;
| };
```

7.2 1D/1D Convex Optimization

```
struct segment {
  int i, l, r;
  segment(int a, int b, int c): i(a), l(b
       ), r(c) {}
inline long long f(int l, int r) { return
      dp[l] + w(l + 1, r); }
void solve() {
  dp[0] = 011;
  deque<segment> deq; deq.push_back(
       segment(0, 1, n));
  for (int i = 1; i <= n; ++i) {
    dp[i] = f(deq.front().i, i);
    while (deq.size() && deq.front().r <</pre>
         i + 1) deq.pop_front();
    deq.front().l = i + 1;
    segment seg = segment(i, i + 1, n);
    while (deq.size() && f(i, deq.back().
         1) < f(deq.back().i, deq.back().</pre>
         1)) deq.pop_back();
    if (deq.size()) {
      int d = 1048576, c = deq.back().1;
      while (d \gg 1) if (c + d \ll deq.)
        back().r) {
if (f(i, c + d) > f(deq.back().i,
              c + d)) c += d;
      deq.back().r = c; seq.l = c + 1;
    if (seg.l <= n) deq.push_back(seg);</pre>
```

7.3 Condition

7.3.1 Totally Monotone (Concave/Convex)

```
\begin{array}{ll} \forall i < i', j < j', \ B[i][j] \leq B[i'][j] \implies B[i][j'] \leq B[i'][j'] \\ B[i'][j'] \\ \forall i < i', j < j', \ B[i][j] \geq B[i'][j] \implies B[i][j'] \geq B[i'][j'] \end{array}
```

7.3.2 Monge Condition (Concave/ Convex)

```
\begin{array}{l} \forall i < i', j < j', B[i][j] + B[i'][j'] \geq B[i][j'] + B[i'][j] \\ \forall i < i', j < j', B[i][j] + B[i'][j'] \leq B[i][j'] + B[i'][j] \end{array}
```

7.3.3 Optimal Split Point

```
If B[i][j] + B[i+1][j+1] \ge B[i][j+1] + B[i+1][j] then H_{i,j-1} \le H_{i,j} \le H_{i+1,j}
```

8 Geometry

8.1 Basic

```
using Real = double; // modify these if
     needed
constexpr Real eps = 1e-9;
int sign(T x) { return (x > 0) - (x < 0);
int sign(Real x) \{ return (x > eps) - (x = eps) \}
     < -eps); }
int cmp(T a, T b) { return sign(a - b); }
struct P {
    T x = 0, y = 0;
    P(T x = 0, T y = 0) : x(x), y(y) {}
    -, +*/, ==!=<, - (unary)
};
struct L {
    P<T> a, b;
    L(P < T > a = {}), P < T > b = {}) : a(a), b
         (b) {}
T dot(P<T> a, P<T> b) { return a.x * b.x
+ a.y * b.y; }
T square(P<T> a) { return dot(a, a); }
Real length(P < T > a) { return sqrtl(square
     (a)); }
Real dist(P<T> a, P<T> b) { return length
     (a - b); }
T cross(P<T> a, P<T> b) { return a.x * b. y - a.y * b.x; }
T cross(P<T> p, P<T> a, P<T> b) { return
     cross(a - p, b - p); }
P<Real> normal(P<T> a) {
    Real len = length(a);
    return P<Real>(a.x / len, a.y / len);
bool up(P < T > a) { return sign(a.y) > 0 ||
     sign(a.y) == 0 \&\& sign(a.x) > 0; }
// 3 colinear? please remember to remove
     (0.0)
bool polar(P<T> a, P<T> b) {
    bool ua = up(a), ub = up(b);
    return ua != ub ? ua : sign(cross(a,
         b)) == 1;
bool sameDirection(P<T> a, P<T> b) {
     return sign(cross(a, b)) == 0 &&
     sign(dot(a, b)) == 1; 
// 1/0/1 if on a->b's left/ /right
int side(P<T> p, P<T> a, P<T> b) { return
sign(cross(p, a, b)); }
int side(P<T> p, L<T> l) { return side(p,
      1.a, 1.b); }
P < T > rotate90(P < T > p) { return {-p.y, p.x}}
     }; }
```

```
P<Real> rotate(P<Real> p, Real ang) {
   return {p.x * cos(ang) - p.y * sin(
   ang), p.x * sin(ang) + p.y * cos(ang)
     )}; }
Real angle(P < T > p) { return atan2(p.y, p.
     x); }
P<T> direction(L<T> l) { return l.b - l.a
      ; }
bool sameDirection(L<T> l1, L<T> l2) {
     return sameDirection(direction(l1),
     direction(l2)); }
P<Real> projection(P<Real> p, L<Real> 1)
     auto d = direction(l);
    return 1.a + d * (dot(p - 1.a, d) /
         square(d));
P<Real> reflection(P<Real> p, L<Real> l)
     { return projection(p, l) * 2 - p; }
Real pointToLineDist(P<Real> p, L<Real> l
     ) { return dist(p, projection(p, l))
// better use integers if you don't need
     exact coordinate
// l <= r is not explicitly required</pre>
P<Real> lineIntersection(L<T> l1, L<T> l2
     ) { return l1.a - direction(l1) * (
     Real(cross(direction(l2), l1.a - l2.
     a)) / cross(direction(l2), direction
     (11))); }
m! = r < m; }
bool pointOnSeg(P<T> p, L<T> l) { return
     side(p, 1) == 0 \&\& between(p.x, 1.a.
     x, l.b.x) && between(p.y, l.a.y, l.b
      .y); }
bool pointStrictlyOnSeg(P<T> p, L<T> 1) {
      return side(p, l) == 0 && sign(dot(
     p - l.a, direction(l))) * sign(dot(p
- l.b, direction(l))) < 0; }
bool overlap(T l1, T r1, T l2, T r2) {
   if (l1 > r1) { swap(l1, r1); }
   if (l2 > r2) { swap(l2, r2); }
    return cmp(r1, 12) != -1 \&\& cmp(r2,
          11) != -1;
bool segIntersect(L<T> l1, L<T> l2) {
    auto [p1, p2] = l1;
auto [q1, q2] = l2;
     return overlap(p1.x, p2.x, q1.x, q2.x
          ) && overlap(p1.y, p2.y, q1.y,
          q2.y) &&
             side(p1, l2) * side(p2, l2)
<= 0 &&
             side(q1, l1) * side(q2, l1) <= 0;
// parallel intersecting is false
bool segStrictlyIntersect(L<T> l1, L<T>
     12) {
    auto [p1, p2] = l1;
    auto [q1, q2] = 12;
     return side(p1, l2) * side(p2, l2) <
            side(q1, l1) * side(q2, l1) <
// parallel or intersect at source doesn'
     t count
bool rayIntersect(L<T> 11, L<T> 12) {
    int x = sign(cross(l1.b - l1.a, l2.b)
         - 12.a));
     return x == 0 ? false : side(l1.a, l2
          ) == x \& side(12.a, 11) == -x;
Real pointToSegDist(P<T> p, L<T> l) {
    auto d = direction(l);
    if (sign(dot(p - l.a, d)) >= 0 &&
    sign(dot(p - l.b, d)) <= 0) {</pre>
         return 1.0L * cross(p, l.a, l.b)
               / dist(l.a, l.b);
    } else {
         return min(dist(p, l.a), dist(p,
```

1.b));

}

```
Real segDist(L<T> 11, L<T> 12) {
    if (segIntersect(l1, l2)) { return 0;
   return min({pointToSegDist(l1.a, l2),
       pointToSegDist(l1.b, l2),
     pointToSegDist(l2.a, l1),
                  pointToSegDist(l2.b, l1)
// 2 times area
T area(vector<P<T>> a) \{
    T res = 0;
int n = a.size();
     for (int i = 0; i < n; i++) { res +=
         cross(a[i], a[(i + 1) % n]); }
bool pointInPoly(P<T> p, vector<P<T>> a)
     int n = a.size(), res = 0;
     for (int i = 0; i < n; i++) {
         P < T > u = a[i], v = a[(i + 1) % n]
         if (pointOnSeg(p, {u, v})) {
              return 1; }
         if (cmp(u.y, v.y) \ll 0) \{ swap(u, v.y) \}
               v); }
         res \leq cross(p, u, v) > 0;
     return res;
į }
```

8.2 Convex Hull and related

```
vector<P<T>> convexHull(vector<P<T>> a) {
    int n = a.size();
    if (n <= 1) { return a; }</pre>
    sort(a.begin(), a.end());
    a.resize(unique(a.begin(), a.end()),
         a.end());
    vector < P < T >> b(2 * n);
    int j = 0;
    for (int i = 0; i < n; b[j++] = a[i
          ++]) {
         while (j \ge 2 \& side(b[j - 2], b)
              [j - 1], a[i]) \leftarrow 0) \{ j--;
    for (int i = n - 2, k = j; i >= 0; b[
         j++] = a[i--]) {
         while (j > k && side(b[j - 2], b[
j - 1], a[i]) <= 0) { j--; }
    b.resize(j - 1);
    return b;
^{\prime\prime} nonstrct : change <= 0 to < 0
// warning : if all point on same line
     will return {1, 2, 3, 2}
```

8.3 Half Plane Intersection

```
vector<P<Real>> halfPlaneIntersection(
    vector<L<Real>> a) {
    sort(a.begin(), a.end(), [&](auto l1,
         auto 12) {
        if (sameDirection(l1, l2)) {
            return side(l1.a, l2) > 0;
        } else {
            return polar(direction(l1),
                 direction(l2));
    deque<L<Real>> dq;
    auto check = [&](L<Real> 1, L<Real>
         l1, L<Real> l2) { return side(
        lineIntersection(l1, l2), l) >
        0; };
    for (int i = 0; i < int(a.size()); i</pre>
         ++) {
        if (i > 0 && sameDirection(a[i],
             a[i - 1])) { continue; }
```

```
while (int(dq.size()) > 1 && !
          check(a[i], dq.end()[-2], dq.back())) { dq.pop_back(); }
    while (int(dq.size()) > 1 && !
          check(a[i], dq[1], dq[0])) {
           dq.pop_front(); }
    dq.push_back(a[i]);
while (int(dq.size()) > 2 && !check(
     dq[0], dq.end()[-2], dq.back()))
      { dq.pop_back(); }
while (int(dq.size()) > 2 && !check(
     dq.back(), dq[1], dq[0])) { dq.}
     pop_front(); }
vector<P<Real>> res;
dq.push_back(dq[0]);
for (int i = 0; i + 1 < int(dq.size()
); i++) { res.push_back(
     lineIntersection(dq[i], dq[i +
     1])); }
return res;
```

8.4 Triangle Centers

```
// \text{ radius: } (a + b + c) * r / 2 = A \text{ or }
     pointToLineDist
P<Real> inCenter(P<Real> a, P<Real> b, P<
     Real> c) {
    Real la = length(b - c), lb = length(
     c - a), lc = length(a - b);
return (a * la + b * lb + c * lc) / (
          la + lb + lc);
// used in min enclosing circle
P<Real> circumCenter(P<Real> a, P<Real> b
     , P<Real> c) {
P<Real> ba = b - a, ca = c - a;
     Real db = square(ba), dc = square(ca)
     , d = 2 * cross(ba, ca);

return a - P<Real>(ba.y * dc - ca.y *

db, ca.x * db - ba.x * dc) / d;
P<Real> orthoCenter(P<Real> a, P<Real> b,
       P<Real> c) {
     L<Real> u(c, P<Real>(c.x - a.y + b.y,
           c.y + a.x - b.x));
     L<Real> v(b, P<Real>(b.x - a.y + c.y,
           b.y + a.x - c.x));
     return lineIntersection(u, v);
```

8.5 Circle

```
const Real PI = acos(-1);
struct Circle {
    P<Real> o;
    Real r;
    Circle(P<Real> o = \{\}, Real r = \emptyset):
         o(o), r(r) {}
// actually counts number of tangent
     lines
int typeOfCircles(Circle c1, Circle c2) {
    auto [01, r1] = c1;
    auto [o2, r2] = c2;
    Real d = dist(o1, o2);
    if (cmp(d, r1 + r2) == 1) \{ return 4;
    if (cmp(d, r1 + r2) == 0) \{ return 3;
    if (cmp(d, abs(r1 - r2)) == 1) {
         return 2; }
    if (cmp(d, abs(r1 - r2)) == 0) {
         return 1; }
    return 0;
// aligned l.a -> l.b;
vector<P<Real>> circleLineIntersection(
    Circle c, L<Real> 1) {
    P<Real> p = projection(c.o, l);
    Real h = c.r * c.r - square(p - c.o);
if (sign(h) < 0) { return {}; }
    P<Real> q = normal(direction(l)) *
         sqrtl(c.r * c.r - square(p - c.o
         ));
    return \{p - q, p + q\};
```

```
// circles shouldn't be identical
// duplicated if only one intersection,
      aligned c1 counterclockwise
vector<P<Real>> circleIntersection(Circle
      c1, Circle c2) {
     int type = typeOfCircles(c1, c2);
if (type == 0 || type == 4) { return
           {}; }
     auto [o1, r1] = c1;
     auto [o2, r2] = c2;
     Real d = clamp(dist(o1, o2), abs(r1 -
     r2), r1 + r2);
Real y = (r1 * r1 + d * d - r2 * r2)
          /(2 * d), x = sqrtl(r1 * r1 - y)
           * y);
     P < Real > dir = normal(o2 - o1), q1 =
          o1 + dir * y, q2 = rotate90(dir)
* x;
     return \{q1 - q2, q1 + q2\};
// counterclockwise, on circle -> no
vector<P<Real>> pointCircleTangent(P<Real</pre>
     > p, Circle c) {
     Real x = square(p - c.o), d = x - c.r
* c.r;
     if (sign(d) <= 0) { return {}; }
P<Real> q1 = c.o + (p - c.o) * (c.r *
          c.r / x), q2 = rotate90(p - c.o
) * (c.r * sqrt(d) / x);
  return \{q1 - q2, q1 + q2\};
// one-point tangent lines are not
      returned
vector<L<Real>> externalTangent(Circle c1
      , Circle c2) {
    auto [01, r1] = c1;
auto [02, r2] = c2;
vector<L<Real>> res;
if (cmp(r1, r2) == 0) {
         P dr = rotate90(normal(o2 - o1))
* r1;
          res.emplace_back(o1 + dr, o2 + dr
         res.emplace_back(o1 - dr, o2 - dr
     } else {
         P p = (o2 * r1 - o1 * r2) / (r1 -
                r2);
         auto ps = pointCircleTangent(p,
               c1), qs = pointCircleTangent
               (p, c2);
          for (int i = 0; i < int(min(ps.</pre>
               size(), qs.size())); i++) {
               res.emplace_back(ps[i], qs[i
               1); }
     return res;
vector<L<Real>> internalTangent(Circle c1
      , Circle c2) {
    auto [01, r1] = c1;
auto [02, r2] = c2;
vector<L<Real>> res;
P<Real> p = (01 * r2 + o2 * r1) / (r1
           + r2);
     auto ps = pointCircleTangent(p, c1),
          qs = pointCircleTangent(p, c2);
     emplace_back(ps[i], qs[i]); }
     return res;
// OAB and circle directed area
Real triangleCircleIntersectionArea(P<
     Real> p1, P<Real> p2, Real r) {
auto angle = [&](P<Real> p1, P<Real>
          p2) { return atan2l(cross(p1, p2
     ), dot(p1, p2)); };
vector<P<Real>> v =
          circleLineIntersection(Circle(P<
    Real>(), r), L<Real>(p1, p2));
if (v.empty()) { return r * r * angle
(p1, p2) / 2; }
```

bool b1 = cmp(square(p1), r * r)

1, b2 = cmp(square(p2), r * r)

```
== 1:
     if (b1 && b2) {
          if (sign(dot(p1 - v[0], p2 - v))
               [0])) <= 0 && sign(dot(p1 -
               v[0], p2 - v[0])) <= 0) {
              return r * r * (angle(p1, v
                    [0]) + angle(v[1], p2))
                    / 2 + cross(v[0], v[1])
                    / 2;
          } else {
              return r * r * angle(p1, p2)
                    / 2:
     } else if (b1) {
    return (r * r * angle(p1, v[0]) +
                cross(v[0], p2)) / 2;
     } else if (b2) {
          return (cross(p1, v[1]) + r * r *
                angle(v[1], p2)) / 2;
     } else {
          return cross(p1, p2) / 2;
 Real polyCircleIntersectionArea(const
      vector<P<Real>> &a, Circle c) {
     int n = a.size();
     Real ans = 0;
for (int i = 0; i < n; i++) {
          ans +=
               triangle {\tt CircleIntersectionArea}
               (a[i], a[(i + 1) % n], c.r);
     return ans;
 Real circleIntersectionArea(Circle a,
      Circle b) {
     int t = typeOfCircles(a, b);
     if (t >= 3) {
          return 0;
     } else if (t <= 1) {</pre>
          Real r = min(a.r, b.r);
          return r * r * PÍ;
     Real res = 0, d = dist(a.o, b.o);
for (int i = 0; i < 2; ++i) {
    Real alpha = acos((b.r * b.r + d
               * d - a.r * a.r) / (2 * b.r
               * d));
          Real s = alpha * b.r * b.r;
          Real t = b.r * b.r * sin(alpha) *
                cos(alpha);
          res += s - t;
          swap(a, b);
     return res;
| }
```

3D Convex Hull

```
double absvol(const P a,const P b,const P
     c,const P d) {
  return abs(((b-a)^(c-a))^*(d-a))/6;
struct convex3D {
 static const int maxn=1010;
  struct T{
    int a,b,c;
   bool res;
   T(){}
   T(int a,int b,int c,bool res=1):a(a),
        b(b),c(c),res(res){}
 int n,m;
 P p[maxn];
 T f[maxn*8];
 int id[maxn][maxn];
 bool on(T &t,P &q){
    return ((p[t.c]-p[t.b])^(p[t.a]-p[t.b
        ]))*(q-p[t.a])>eps;
  void meow(int q,int a,int b){
    int g=id[a][b];
    if(f[g].res){
      if(on(f[g],p[q]))dfs(q,g);
      else{
        id[q][b]=id[a][q]=id[b][a]=m;
        f[m++]=T(b,a,q,1);
```

```
}
  }
  void dfs(int p,int i){
     f[i].res=0;
     meow(p,f[i].b,f[i].a);
     meow(p,f[i].c,f[i].b);
     meow(p,f[i].a,f[i].c);
   void operator()(){
     if(n<4)return;
     if([&](){
         for(int i=1;i<n;++i)if(abs(p[0]-p</pre>
              [i])>eps)return swap(p[1],p[
              i]),0;
         return 1;
         }() || [&](){
for(int i=2;i<n;++i)if(abs((p[0]-
              p[i])^(p[1]-p[i]))>eps)
              return swap(p[2],p[i]),0;
         return 1:
         }() || [&](){
         for(int i=3;i<n;++i)if(abs(((p</pre>
              [1]-p[0])^(p[2]-p[0]))*(p[i
              ]-p[0]))>eps)return swap(p
              [3],p[i]),0;
         return 1;
         }())return;
     for(int i=0;i<4;++i){</pre>
       T t((i+1)\%4,(i+2)\%4,(i+3)\%4,1);
       if(on(t,p[i]))swap(t.b,t.c);
       id[t.a][t.b]=id[t.b][t.c]=id[t.c][t
            .a]=m;
       f[m++]=t;
     for(int i=4;i<n;++i)for(int j=0;j<m</pre>
          ;++j)if(f[j].res && on(f[j],p[i
          ])){
       dfs(i,j);
break;
     int mm=m; m=0;
     for(int i=0;i<mm;++i)if(f[i].res)f[m</pre>
          ++]=f[i];
  bool same(int i,int j){
     return !(absvol(p[f[i].a],p[f[i].b],p
          [f[i].c],p[f[j].a])>eps ||
          absvol(p[f[i].a],p[f[i].b],p[f[i
          ].c],p[f[j].b])>eps || absvol(p[
          f[i].a],p[f[i].b],p[f[i].c],p[f[
          j].c])>eps);
  int faces(){
     int r=0;
     for(int i=0;i<m;++i){</pre>
       int iden=1;
       for(int j=0; j<i;++j)if(same(i,j))</pre>
            iden=0;
       r+=iden;
     return r;
} tb;
```

8.7**Delaunay Triangulation**

```
const P<i64> pINF = P<i64>(1e18, 1e18);
using i128 = __int128_t;
struct Quad {
  P<i64> origin;
  Quad *rot = nullptr, *onext = nullptr;
  bool used = false;
  Quad* rev() const { return rot->rot; }
  Quad* lnext() const { return rot->rev()
        ->onext->rot; }
  Quad* oprev() const { return rot->onext
        ->rot; }
  P<i64> dest() const { return rev()->
       origin; }
Quad* makeEdge(P<i64> from, P<i64> to) {
Quad *e1 = new Quad, *e2 = new Quad, *
e3 = new Quad, *e4 = new Quad;
  e1->origin = from;
  e2->origin = to;
  e3->origin = e4->origin = pINF;
```

```
e1->rot = e3:
  e2 - rot = e4;
  e3->rot = e2;
  e4->rot = e1;
  e1->onext = e1
  e2->onext = e2
  e3->onext = e4
  e4->onext = e3;
  return e1:
void splice(Quad *a, Quad *b) {
  swap(a->onext->rot->onext, b->onext->
       rot->onext);
  swap(a->onext, b->onext);
void delEdge(Quad *e) {
  splice(e, e->oprev());
  splice(e->rev(), e->rev()->oprev());
  delete e->rev()->rot;
  delete e->rev();
  delete e->rot;
  delete e;
Quad *connect(Quad *a, Quad *b) {
  Quad *e = makeEdge(a->dest(), b->origin
  splice(e, a->lnext());
  splice(e->rev(), b);
  return e;
bool onLeft(P<i64> p, Quad *e) { return
     side(p, e->origin, e->dest()) > 0; }
bool onRight(P<i64> p, Quad *e) { return
side(p, e->origin, e->dest()) < 0; }
template <class T>
T det3(T a1, T a2, T a3, T b1, T b2, T b3
  T c1, T c2, T c3) {
return a1 * (b2 * c3 - c2 * b3) - a2 *
(b1 * c3 - c1 * b3) + a3 * (b1 *
       c2 - c1 * b2);
bool inCircle(P<i64> a, P<i64> b, P<i64>
     c, P < i64 > d) {
  auto f = [\&](P < i64 > a, P < i64 > b, P < i64 >
        c) {
    return det3<i128>(a.x, a.y, square(a)
          , b.x, b.y, square(b), c.x, c.y,
          square(c));
  i128 det = f(a, c, d) + f(a, b, c) - f(
b, c, d) - f(a, b, d);
return det > 0;
pair<Quad*, Quad*> build(int l, int r,
     vector<P<i64>> &p) {
  if (r - l == 2) {
    Quad *res = makeEdge(p[l], p[l + 1]);
    return pair(res, res->rev());
  else\ if\ (r - 1 == 3) 
    Quad *a = makeEdge(p[l], p[l + 1]), *
         b = makeEdge(p[l + 1], p[l + 2])
    splice(a->rev(), b);
    int sg = sign(cross(p[l], p[l + 1], p
         [1 + 2]);
    if (sg == 0) { return pair(a, b->rev
    ()); }
Quad *c = connect(b, a);
    if (sg == 1) {
      return pair(a, b->rev());
    } else {
      return pair(c->rev(), c);
  int m = l + r \gg 1;
  auto [ldo, ldi] = build(l, m, p);
  auto [rdi, rdo] = build(m, r, p);
  while (true) {
    if (onLeft(rdi->origin, ldi)) {
      ldi = ldi->lnext();
      continue;
    if (onRight(ldi->origin, rdi)) {
      rdi = rdi->rev()->onext;
      continue:
    break;
```

```
Quad *basel = connect(rdi->rev(), ldi);
  auto valid = [&](Quad *e) { return
       onRight(e->dest(), basel); };
   if (ldi->origin == ldo->origin) { ldo =
        basel->rev(); }
   if (rdi->origin == rdo->origin) { rdo =
        basel; }
  while (true) {
     Quad *lcand = basel->rev()->onext;
     if (valid(lcand)) {
       while (inCircle(basel->dest(),
           basel->origin, lcand->dest(),
         lcand->onext->dest())) {
Quad *t = lcand->onext;
         delEdge(lcand);
         lcand = t;
     Quad *rcand = basel->oprev();
     if (valid(rcand)) {
       while (inCircle(basel->dest(),
           basel->origin, rcand->dest(),
            rcand->oprev()->dest())) {
         Quad *t = rcand->oprev();
         delEdge(rcand);
         rcand = t;
     if (!valid(lcand) && !valid(rcand)) {
          break; }
     if (!valid(lcand) || valid(rcand) &&
          inCircle(lcand->dest(), lcand->
          origin, rcand->origin, rcand->
          dest())) {
       basel = connect(rcand, basel->rev()
     } else {
       basel = connect(basel->rev(), lcand
            ->rev());
    }
  }
  return pair(ldo, rdo);
 vector<array<P<i64>, 3>> delaunay(vector<
     P < i64 >> p) {
   sort(p.begin(), p.end());
  auto res = build(0, p.size(), p);
Quad *e = res.first;
   vector<Quad*> edges = {e};
  while (sign(cross(e->onext->dest(), e->
       dest(), e->origin)) == -1) { e = e}
        ->onext; }
  auto add = [&]() {
     Quad *cur = e;
       cur->used = true;
       p.push_back(cur->origin);
       edges.push_back(cur->rev());
       cur = cur->lnext();
    } while (cur != e);
  };
  add();
  p.clear();
   int i = 0;
  while (i < int(edges.size())) { if (!(e</pre>
         = edges[i++])->used) { add(); }}
   vector<array<P<i64>, 3>> ans(p.size() /
        3);
  return ans;
| }
```

9 Miscellaneous

9.1 Cactus 1

```
for (auto v : adj[u]) {
    if (v == p) { continue; }
    if (vis[v] == 0) {
        dfs(dfs, v, u);
         if (!cyc[v]) { // merge dp }
    } else if (vis[v] == 1) {
        for (int w = u; w != v; w =
              par[w]) {
             cyc[w] = 1;
        }
    } else {
        vector<int> cycle = {u};
        for (int w = v; w != u; w =
    par[w]) { cycle.
              push_back(w); }
        work(cycle);
    }
}
vis[u] = 2;
```

9.2 Cactus 2

```
// a component contains no articulation
     point, so P2 is a component
// but not a vertex biconnected component
      by definition
// resulting bct is rooted
struct BlockCutTree {
     int n, square = 0, cur = 0;
     vector<int> low, dfn, stk;
     vector<vector<int>> adj, bct;
    BlockCutTree(int n) : n(n), low(n),
    dfn(n, -1), adj(n), bct(n) {}
void build() { dfs(0); }
     void addEdge(int u, int v) { adj[u].
          push_back(v), adj[v].push_back(u
     void dfs(int u) {
         low[u] = dfn[u] = cur++;
         stk.push_back(u);
         for (auto v : adj[u]) {
             if (dfn[v] == -1) {
                 dfs(v);
                 low[u] = min(low[u], low[
                  if (low[v] == dfn[u]) {
                      bct.emplace_back();
                      int x;
                      do {
                          x = stk.back();
                          stk.pop_back();
                          bct.back().
                               push_back(x)
                      } while (x != v);
                      bct[u].push_back(n +
                          square);
                      square++;
             } else {
                 low[u] = min(low[u], dfn[
                      v]);
             }
        }
    }
|};
```

9.3 Dancing Links

```
void remove(int c) {
  if (E) lt[rg[c]] = lt[c], rg[lt[c]] =
        rg[c];
  TRAV(i, dn, c) {
    if (E) {
      TRAV(j, rg, i)
up[dn[j]] = up[j], dn[up[j]] =
             dn[j], --s[cl[j]];
    } else {
      lt[rg[i]] = lt[i], rg[lt[i]] = rg
    }
 }
void restore(int c) {
  TRAV(i, up, c) {
    if (E) {
      TRAV(j, lt, i)
++s[cl[j]], up[dn[j]] = j, dn[
             up[j]] = j;
    } else {
      lt[rg[i]] = rg[lt[i]] = i;
    }
  if (E) lt[rg[c]] = c, rg[lt[c]] = c;
up[i] = dn[i] = bt[i] = i;
    lt[i] = i == 0 ? c : i - 1;
    rg[i] = i == c - 1 ? c : i + 1;
    s[i] = 0;
  rg[c] = 0, lt[c] = c - 1;
  up[c] = dn[c] = -1;
  head = c, sz = c + 1;
void insert(const vector<int> &col) {
  if (col.empty()) return;
  int f = sz;
  for (int i = 0; i < (int)col.size();</pre>
       ++i) {
    int c = col[i], v = sz++;
    dn[bt[c]] = v;
    up[v] = bt[c], bt[c] = v;
    rg[v] = (i + 1 == (int)col.size() ?
          f : v + 1);
    rw[v] = rows, cl[v] = c;
    ++s[c];
    if (i > 0) lt[v] = v - 1;
  ++rows, lt[f] = sz - 1;
int h() {
  int ret = 0;
  fill_n(vis, sz, false);
TRAV(x, rg, head) {
    if (vis[x]) continue;
    vis[x] = true, ++ret;
TRAV(i, dn, x) TRAV(j, rg, i) vis[
        cl[j]] = true;
  return ret;
void dfs(int dep) {
 if (dep + (E ? 0 : h()) >= ans)
return;
  if (rg[head] == head) return sol =
       cur, ans = dep, void();
  if (dn[rg[head]] == rg[head]) return;
  int w = rg[head];
  TRAV(x, rg, head) if (s[x] < s[w]) w
       = x;
  if (E) remove(w);
  TRAV(i, dn, w) {
    if (!E) remove(i);
    TRAV(j, rg, i) remove(E ? cl[j] : j
    cur.set(rw[i]), dfs(dep + 1), cur.
         reset(rw[i]);
    TRAV(j, lt, i) restore(E ? cl[j] :
         j);
    if (!E) restore(i);
```

if (E) restore(w);

```
dn[bt[i]] = i, up[i] = bt[i];
    ans = 1e9, sol.reset(), dfs(0);
   return ans;
};
int main() {
   int n, m; cin >> n >> m;
DLX<true> solver;
    solver.init(m);
    for (int i = 0; i < n; i++){
        vector<int> add;
        for (int j = 0; j < m; j++){
           int x; cin >> x;
            if (x == 1) {
                add.push_back(j);
        solver.insert(add);
    cout << solver.solve() << '\n';</pre>
   return 0;
```

9.4 Offline Dynamic MST

```
int cnt[maxn], cost[maxn], st[maxn], ed[
     maxn];
pair<int, int> qr[maxn];
// qr[i].first = id of edge to be changed
     , qr[i].second = weight after
     operation
// cnt[i] = number of operation on edge i
// call solve(0, q - 1, v, 0), where v
    contains edges i such that cnt[i] ==
void contract(int 1, int r, vector<int> v
      vector<int> &x, vector<int> &y) {
  sort(v.begin(), v.end(), [&](int i, int
       if (cost[i] == cost[j]) return i <</pre>
            j;
       return cost[i] < cost[j];</pre>
      });
  djs.save();
  for (int i = 1; i <= r; ++i) djs.merge(</pre>
  st[qr[i].first], ed[qr[i].first]);
for (int i = 0; i < (int)v.size(); ++i)</pre>
    if (djs.find(st[v[i]]) != djs.find(ed
          [v[i]])) {
       x.push_back(v[i]);
       djs.merge(st[v[i]], ed[v[i]]);
    }
  djs.undo();
  djs.save();
  for (int i = 0; i < (int)x.size(); ++i)
         djs.merge(st[x[i]], ed[x[i]]);
  for (int i = 0; i < (int)v.size(); ++i)</pre>
    if (djs.find(st[v[i]]) != djs.find(ed
          [v[i]])) {
       y.push_back(v[i]);
       djs.merge(st[v[i]], ed[v[i]]);
    }
  djs.undo();
void solve(int l, int r, vector<int> v,
     long long c) {
  if (l == r) {
    cost[qr[i].first] = qr[l].second;
     if (st[qr[l].first] == ed[qr[l].first
          ]) {
       printf("%lld\n", c);
       return;
    int minv = qr[l].second;
    for (int i = 0; i < (int)v.size(); ++</pre>
          i) minv = min(minv, cost[v[i]]);
     printf("%lld\n", c + minv);
     return;
```

```
int m = (l + r) >> 1;
vector < int > lv = v, rv = v;
vector<int> x, y;
for (int i = m + 1; i \le r; ++i) {
  cnt[qr[i].first]--;
  if (cnt[qr[i].first] == 0) lv.
        push_back(qr[i].first);
contract(l, m, lv, x, y);
long long lc = c, rc = c;
djs.save();
for (int i = 0; i < (int)x.size(); ++i)</pre>
  lc += cost[x[i]];
  djs.merge(st[x[i]], ed[x[i]]);
solve(l, m, y, lc);
djs.undo();
x.clear(), y.clear();
for (int i = m + 1; i <= r; ++i) cnt[qr</pre>
     [i].first]++;
for (int i = 1; i <= m; ++i) {</pre>
  cnt[qr[i].first]--
  if (cnt[qr[i].first] == 0) rv.
       push_back(qr[i].first);
contract(m + 1, r, rv, x, y);
djs.save();
for (int i = 0; i < (int)x.size(); ++i)</pre>
  rc += cost[x[i]];
  \label{eq:djs.merge} \mbox{djs.merge(st[x[i]], ed[x[i]]);}
solve(m + 1, r, y, rc);
djs.undo();
for (int i = 1; i \ll m; ++i) cnt[qr[i].
     first]++;
```

9.5 Matroid Intersection

```
x → y if S - {x} ∪ {y} ∈ I₁ with cost({y}).
source → y if S ∪ {y} ∈ I₁ with cost({y}).
y → x if S - {x} ∪ {y} ∈ I₂ with -cost({y}).
y → sink if S ∪ {y} ∈ I₂ with -cost({y}).
```

Augmenting path is shortest path from source to sink .

9.6 Euler Tour

9.7 SegTree Beats

```
struct SegmentTree {
    int n;
    struct node {
        i64 mx1, mx2, mxc;
        i64 mn1, mn2, mnc;
        i64 add;
        i64 sum;
        node(i64 v = 0) {
            mx1 = mn1 = sum = v;
            mxc = mnc = 1;
        add = 0;
        mx2 = -9e18, mn2 = 9e18;
    }
};
vector<node> t;
// build
```

```
void push(int id, int l, int r) {
    auto& c = t[id];
int m = l + r >> 1;
    if (c.add != 0) {
         apply_add(id << 1, l, m, c.
              add):
         apply_add(id << 1 | 1, m + 1,
         r, c.add);
c.add = 0;
    apply_min(id << 1, 1, m, c.mn1);</pre>
    apply_min(id \ll 1 | 1, m + 1, r,
          c.mn1):
    apply_max(id << 1, 1, m, c.mx1);</pre>
    apply_max(id \ll 1 | 1, m + 1, r,
void apply_add(int id, int l, int r,
     i64 v) {
    if (v == 0) {
         return;
    auto& c = t[id];
    c.add += v;
    c.sum += v^* (r - l + 1);
    c.mx1 += v;
    c.mn1 += v;
    if (c.mx2 != -9e18) {
         c.mx2 += v;
    if (c.mn2 != 9e18) {
         c.mn2 += v;
void apply_min(int id, int l, int r,
     i64 v) {
    auto& c = t[id];
    if (v <= c.mn1) {</pre>
         return;
    c.sum -= c.mn1 * c.mnc;
    c.sum += c.mn1 * c.mnc;
    if (l == r \mid l \mid v >= c.mx1) {
         c.mx1 = v;
    } else if (v > c.mx2) {
    c.mx2 = v;
void apply_max(int id, int l, int r,
     i64 v) {
     auto& c = t[id];
    if (v >= c.mx1) {
         return;
    c.sum -= c.mx1 * c.mxc;
    c.mx1 = v;
    c.sum += c.mx1 * c.mxc;
    if (l == r \mid \mid v \leftarrow c.mn1) {
         c.mn1 = v;
    } else if (v < c.mn2) {
         c.mn2 = v;
void pull(int id) {
   auto &c = t[id], &lc = t[id <<</pre>
    1], &rc = t[id << 1 | 1];
c.sum = lc.sum + rc.sum;
    if (lc.mn1 == rc.mn1) {
         c.mn1 = lc.mn1;
         c.mn2 = min(lc.mn2, rc.mn2);
         c.mnc = lc.mnc + rc.mnc;
    } else if (lc.mn1 < rc.mn1) {
    c.mn1 = lc.mn1;</pre>
         c.mn2 = min(lc.mn2, rc.mn1);
         c.mnc = lc.mnc;
    } else {
         c.mn1 = rc.mn1;
         c.mn2 = min(lc.mn1, rc.mn2);
         c.mnc = rc.mnc;
    if (lc.mx1 == rc.mx1) {
    c.mx1 = lc.mx1;
         c.mx2 = max(lc.mx2, rc.mx2);
c.mxc = lc.mxc + rc.mxc;
    } else if (lc.mx1 > rc.mx1) {
    c.mx1 = lc.mx1;
         c.mx2 = max(lc.mx2, rc.mx1);
         c.mxc = 1c.mxc;
```

```
} else {
         c.mx1 = rc.mx1;
         c.mx2 = max(lc.mx1, rc.mx2);
         c.mxc = rc.mxc;
void range_chmin(int id, int l, int r
    , int ql, int qr, i64 v) {
if (r < ql || l > qr || v >= t[id
         ].mx1) {
         return;
    if (ql <= l && r <= qr && v > t[
          id].mx2) {
         apply_max(id, l, r, v);
    push(id, l, r);
int m = l + r >> 1;
    range_chmin(id << 1, 1, m, ql, qr</pre>
    range_chmin(id \ll 1 | 1, m + 1, r
           ql, qr, v);
    pull(id);
void range_chmin(int ql, int qr, i64
     v) {
    range\_chmin(1, 0, n - 1, ql, qr,
          v);
void range_chmax(int id, int l, int r
    , int ql, int qr, i64 v) {
if (r < ql || l > qr || v <= t[id
          ].mn1) {
         return:
    if (ql <= l && r <= qr && v < t[</pre>
          id].mn2) {
         apply_min(id, l, r, v);
    push(id, l, r);
int m = l + r >> 1;
    range_chmax(id << 1, l, m, ql, qr</pre>
    range_chmax(id \ll 1 | 1, m + 1, r
           , ql, qr, v);
    pull(id);
void range_chmax(int ql, int qr, i64
     V) {
    range_chmax(1, 0, n - 1, ql, qr,
          v);
void range_add(int id, int l, int r,
    int ql, int qr, i64 v) {
if (r < ql || l > qr) {
         return;
    if (ql <= l && r <= qr) {
         apply_add(id, l, r, v);
         return;
    push(id, l, r);
int m = l + r >> 1;
    range_add(id << 1, l, m, ql, qr,</pre>
         v);
    range\_add(id << 1 | 1, m + 1, r,
          ql, qr, v);
    pull(id);
void range_add(int ql, int qr, i64 v)
    range\_add(1, 0, n - 1, ql, qr, v)
i64 range_sum(int id, int l, int r,
     int ql, int qr) {
    if (r < ql || l > qr) {
         return 0;
    if (ql <= l && r <= qr) {
         return t[id].sum;
    push(id, l, r);
    int m = l + r >> 1;
```

```
}
                                                   }
                                                 };
    i64 range_sum(int ql, int qr) {
         return range_sum(1, 0, n - 1, ql,
               qr);
9.8 unorganized
const int N = 1021;
struct CircleCover {
  int C;
  Cir c[N];
  bool g[N][N], overlap[N][N];
  // Area[i] : area covered by at least i
        circles
  double Area[ N ];
  void init(int _C){ C = _C;}
  struct Teve {
    pdd p; double ang; int add;
Teve() {}
    Teve(pdd _a, double _b, int _c):p(_a)
          , ang(_b), add(_c){}
    bool operator<(const Teve &a)const
    {return ang < a.ang;}
  }eve[N * 2];
  // strict: x = 0, otherwise x = -1
bool disjuct(Cir &a, Cir &b, int x)
                                                       MCMF {
  \{\text{return sign}(abs(a.0 - b.0) - a.R - b.R\}
       ) > x;
  bool contain(Cir &a, Cir &b, int x)
  {return sign(a.R - b.R - abs(a.0 - b.0)
       ) > x;}
  bool contain(int i, int j) {
    /* c[j] is non-strictly in c[i]. */
    return (sign(c[i].R - c[j].R) > 0 ||
         (sign(c[i].R - c[j].R) == 0 \&\& i
          < j)) && contain(c[i], c[j],
         -1);
  void solve(){
    fill_n(Area, C + 2, 0);
for(int i = 0; i < C; ++i)
for(int j = 0; j < C; ++j)
        overlap[i][j] = contain(i, j);
    for(int i = 0; i < C; ++i)
for(int j = 0; j < C; ++j)
        g[i][j] = !(overlap[i][j] ||
              overlap[j][i] ||
             disjuct(c[i], c[j], -1));
    for(int i = 0; i < C; ++i){
      int E = 0, cnt = 1;
      for(int j = 0; j < C; ++j)
  if(j != i && overlap[j][i])</pre>
           ++cnt;
      for(int j = 0; j < C; ++j)
        if(i != j && g[i][j]) {
  pdd aa, bb;
           CCinter(c[i], c[j], aa, bb);
           double A = atan2(aa.Y)
                                     - c[i].0.
                Y, aa.X - c[i].0.X);
                                                          }
           double B = atan2(bb.Y - c[i].0.
                                                        }
                Y, bb.X - c[i].0.X);
           eve[E++] = Teve(bb, B, 1), eve[
                                                   }
          E++] = Teve(aa, A, -1);
if(B > A) ++cnt;
                                                 public:
      if(E == 0) Area[cnt] += pi * c[i].R
             * c[i].R;
      else{
        sort(eve, eve + E);
         eve[E] = eve[0];
        for(int j = 0; j < E; ++j){
  cnt += eve[j].add;</pre>
           Area[cnt] += cross(eve[j].p,
                eve[j + 1].p) * .5;
           double theta = eve[j + 1].ang -
                 eve[j].ang;
           if (theta < 0) theta += 2. * pi
           Area[cnt] += (theta - sin(theta))
```

)) * c[i].R * c[i].R * .5;

}

```
// p, q is convex
double TwoConvexHullMinDist(Point P[],
  Point Q[], int n, int m) {
int YMinP = 0, YMaxQ = 0;
double tmp, ans = 999999999;
  for (i = 0; i < n; ++i) if(P[i].y < P[
       YMinP].y) YMinP = i;
 for (int i = 0; i < n; ++i) {
    while (tmp = Cross(Q[YMaxQ + 1] - P[
         YMinP + 1], P[YMinP] - P[YMinP +
1]) > Cross(Q[YMaxQ] - P[YMinP
         + 1], P[YMinP] - P[YMinP + 1]))
         YMaxQ = (YMaxQ + 1) % m;
    if (tmp < 0) ans = min(ans,
         PointToSegDist(P[YMinP], P[YMinP
          + 1], Q[YMaxQ]));
    else ans = min(ans, TwoSegMinDist(P[
    YMinP], P[YMinP + 1], Q[YMaxQ],
         Q[YMaxQ + 1]);
    YMinP = (YMinP + 1) \% n;
  return ans;
template <typename F, typename C> class
  static constexpr F INF_F =
       numeric_limits<F>::max();
  static constexpr C INF_C =
       numeric_limits<C>::max();
  vector<tuple<int, int, F, C>> es;
  vector<vector<int>> g;
  vector<F> f;
  vector<C> d;
  vector<int> pre, inq;
  void spfa(int s) {
    fill(inq.begin(), inq.end(), 0);
    fill(d.begin(), d.end(), INF_C);
    fill(pre.begin(), pre.end(), -1);
    queue<int> q;
    d[s] = 0;
    q.push(s);
    while (!q.empty()) {
      int u = q.front();
      inq[u] = false;
      q.pop();
      for (int j : g[u]) {
        int to = get<1>(es[j]);
        C w = get<3>(es[j]);
        if (f[j] == 0 || d[to] <= d[u] +</pre>
             w)
           continue;
        d[to] = d[u] + w;
        pre[to] = j;
         if (!inq[to]) {
           inq[to] = true;
           q.push(to);
 MCMF(int n) : g(n), pre(n), inq(n) {}
  void add_edge(int s, int t, F c, C w) {
    g[s].push_back(es.size());
    es.emplace_back(s, t, c, w);
    g[t].push_back(es.size());
    es.emplace_back(t, s, 0, -w);
  pair<F, C> solve(int s, int t, C mx =
       INF_C / INF_F) {
    add_edge(t, s, INF_F, -mx);
f.resize(es.size()), d.resize(es.size
    for (F I = INF_F \land (INF_F / 2); I; I)
         >>= 1) {
      for (auto &fi : f)
        fi *= 2;
```

```
for (size_t i = 0; i < f.size(); i</pre>
           += 2) {
        auto [u, v, c, w] = es[i];
        if ((c \& I) == 0)
          continue;
        if (f[i]) {
          f[i] += 1;
          continue;
        spfa(v);
        if (d[u] == INF_C \mid \mid d[u] + w >=
             0) {
           f[i] += 1;
          continue;
        f[i + 1] += 1;
        while (\bar{u} != v) {
          int x = pre[u];
          f[x] -= 1;
          f[x ^ 1] += 1;
          u = get<0>(es[x]);
      }
    }
C w = 0;
    for (size_t i = 1; i + 2 < f.size();</pre>
        i += 2)
      w -= f[i] * get<3>(es[i]);
    return {f.back(), w};
};
  auto [f, c] = mcmf.solve(s, t, 1e12);
  cout << f << ' ' << c << '\n';
void MoAlgoOnTree() {
  Dfs(0, -1);
  vector<int> euler(tk);
  for (int i = 0; i < n; ++i) {</pre>
    euler[tin[i]] = i;
    euler[tout[i]] = i;
  vector<int> l(q), r(q), qr(q), sp(q,
       -1);
  for (int i = 0; i < q; ++i) {
    if (tin[u[i]] > tin[v[i]]) swap(u[i],
          v[i]);
    int z = GetLCA(u[i], v[i]);
    sp[i] = z[i];
    if (z == u) l[i] = tin[u[i]], r[i] =
         tin[v[i]];
    else l[i] = tout[u[i]], r[i] = tin[v[
         i]];
    qr[i] = i;
  sort(qr.begin(), qr.end(), [&](int i,
       int j) {
      if (l[i] / kB == l[j] / kB) return
           r[i] < r[j];
      return l[i] / kB < l[j] / kB;
      });
  vector<bool> used(n);
  // Add(v): add/remove v to/from the
       path based on used[v]
  for (int i = 0, tl = 0, tr = -1; i < q;
        ++i) {
    while (tl < l[qr[i]]) Add(euler[tl</pre>
        ++]);
    while (tl > l[qr[i]]) Add(euler[--tl
         1);
    while (tr > r[qr[i]]) Add(euler[tr
         --]);
    while (tr < r[qr[i]]) Add(euler[++tr</pre>
         1);
    // add/remove LCA(u, v) if necessary
 }
}
for (int l = 0, r = -1; auto [ql, qr, i]
    : qs) {
if (ql / B == qr / B) {
        for (int j = ql; j <= qr; j++) {
            cntSmall[a[j]]++;
            ans[i] = max(ans[i], 1LL * b[
                 a[j]] * cntSmall[a[j]]);
        for (int j = ql; j <= qr; j++) {</pre>
```

```
cntSmall[a[j]]--;
         continue;
    if (int block = ql / B; block != lst)
         int x = min((block + 1) * B, n);
        while (r + 1 < x) { add(++r); }
while (r >= x) { del(r--); }
         while (l < x) { del(l++); }
         mx = 0;
         lst = block;
    while (r < qr) \{ add(++r); \}
    i64 \text{ tmpMx} = mx;
    int tmpL = 1;
    while (l > ql) \{ add(--l); \}
    ans[i] = mx;
    mx = tmpMx;
    while (l < tmpL) { del(l++); }</pre>
typedef pair<ll,int> T;
typedef struct heap* ph;
struct heap { // min heap
  ph l = NULL, r = NULL;
  int s = 0; T v; // s: path to leaf
  heap(T_v):v(v)  {}
ph meld(ph p, ph q) {
  if (!p || !q) return p?:q;
  if (p\rightarrow v > q\rightarrow v) swap(p,q);
  ph P = new heap(*p); P->r = meld(P->r,q)
  if (!P->l | P->l->s < P->r->s) swap(P
       ->1,P->r);
  P->s = (P->r?P->r->s:0)+1; return P;
ph ins(ph p, T v) { return meld(p, new
     heap(v)); }
ph pop(ph p) { return meld(p->1,p->r); }
int N,M,src,des,K;
ph cand[MX];
vector<array<int,3>> adj[MX], radj[MX];
pi pre[MX];
11 dist[MX];
struct state {
  int vert; ph p; ll cost;
  bool operator<(const state& s) const {</pre>
       return cost > s.cost; }
int main() {
  setIO(); re(N,M,src,des,K);
  F0R(i,M) {
    int u,v,w; re(u,v,w);
    adj[u].pb(\{v,w,i\}); radj[v].pb(\{u,w,i\})
         }); // vert, weight, label
  priority_queue<state> ans;
    FOR(i,N) dist[i] = INF, pre[i] =
          {-1,-1};
    priority_queue<T,vector<T>,greater<T</pre>
         >> pq;
    auto ad = [&](int a, ll b, pi ind) {
      if (dist[a] <= b) return;</pre>
      pre[a] = ind; pq.push({dist[a] = b,}
           a});
    ad(des,0,{-1,-1});
    vi seq;
    while (sz(pq)) {
      auto a = pq.top(); pq.pop();
      if (a.f > dist[a.s]) continue;
      seq.pb(a.s); trav(t,radj[a.s]) ad(t
            [0],a.f+t[1],{t[2],a.s}); //
            edge index, vert
    trav(t,seq) {
      trav(u,adj[t]) if (u[2] != pre[t].f
             && dist[u[0]] != INF) {
         ll cost = dist[u[0]]+u[1]-dist[t]
         ];
cand[t] = ins(cand[t],{cost,u
              [0]});
```

```
if (pre[t].f != -1) cand[t] = meld(
           cand[t],cand[pre[t].s]);
      if (t == src) {
        ps(dist[t]); K --;
         if (cand[t]) ans.push(state{t,
              cand[t],dist[t]+cand[t]->v.f
      }
    }
  F0R(i,K) {
    if (!sz(ans)) {
      ps(-1);
      continue;
    auto a = ans.top(); ans.pop();
int vert = a.vert;
    ps(a.cost);
    if (a.p->l) {
      ans.push(state{vert,a.p->1,a.cost+a
           .p->l->v.f-a.p->v.f});
    if (a.p->r) {
      ans.push(state{vert,a.p->r,a.cost+a
           .p->r->v.f-a.p->v.f);
    int V = a.p->v.s;
    if (cand[V]) ans.push(state{V,cand[V
         ],a.cost+cand[V]->v.f});
 }
}
Pt LinesInter(Line a, Line b) {
    double abc = (a.b - a.a) \wedge (b.a - a.a)
    double abd = (a.b - a.a) \wedge (b.b - a.a)
         );
    if (sign(abc - abd) == 0) return b.b;
         // no inter
    return (b.b * abc - b.a * abd) / (abc
           abd):
vector <Pt> SegsInter(Line a, Line b) {
    if (btw(a.a, a.b, b.a)) return {b.a};
    if (btw(a.a, a.b, b.b)) return {b.b};
    if (btw(b.a, b.b, a.a)) return {a.a};
    if (btw(b.a, b.b, a.b)) return {a.b};
if (ori(a.a, a.b, b.a) * ori(a.a, a.b
         , b.b) == -1 && ori(b.a, b.b, a.
         a) * ori(b.a, b.b, a.b) == -1) {
        return {LinesInter(a, b)};
    return {};
double polyUnion(vector <vector <Pt>>>
     poly) {
    int n = poly.size();
    double ans = 0;
    auto solve = [&](Pt a, Pt b, int cid)
        vector <pair <Pt, int>> event;
         for (int i = 0; i < n; ++i) {
             int st = 0, sz = poly[i].size
                  ();
             if (st == sz) continue;
             for (int j = 0; j < sz; ++j)
                 Pt c = poly[i][(j + st) %
                       sz], d = poly[i][(j
                       + st + 1) % sz];
                 if (sign((a - b) \wedge (c - d))
                      )) != 0) {
                      int ok1 = ori(c, a, b)
                           ) == 1;
                      int ok2 = ori(d, a, b)
                           ) == 1;
                      if (ok1 ^ ok2) event.
                           emplace_back(
                           LinesInter({a, b
                 }, {c, d}), ok1
? 1 : -1);
} else if (ori(c, a, b)
== 0 && sign((a - b)
                       * (c - d)\bar{)} > 0 \&\& i
```

```
for (int j = 0; j < n; ++j)
                      <= cid) {
                    event.emplace_back(c,
                                                        tdst[i] =
                                                          min(tdst[i], dp[msk][j] + dst
                          -1);
                    event.emplace_back(d,
                                                               [j][i]);
                          1);
                                                    }
            }
        }
        sort(all(event), [&](pair <Pt,</pre>
                                                  int ans = INF;
             int> i, pair <Pt, int> j) {
                                                  for (int i = 0; i < n; ++i)
            return ((a - i.first) * (a -
                                                    ans = min(ans, dp[(1 << t) - 1][i])
                 b)) < ((a - j.first) * (
                                                  return ans;
                 a - b));
        });
                                            };
        int now = 0;
        Pt lst = a;
        for (auto [x, y] : event) {
            if (btw(a, b, lst) && btw(a,
b, x) && now == 0) ans
+= lst ^ x;
            now += y, lst = x;
        }
    for (int i = 0; i < n; ++i) for (int
        j = 0; j < poly[i].size(); ++j)</pre>
        Pt a = poly[i][j], b = poly[i][(j
              + 1) % int(poly[i].size())
             ];
        solve(a, b, i);
    return ans / 2;
// Minimum Steiner Tree, O(V 3^T + V^2 2^
    T)
struct SteinerTree { // 0-base
 static const int T = 10, N = 105, INF =
       1e9;
  int n, dst[N][N], dp[1 << T][N], tdst[N</pre>
      ];
  int vcost[N]; // the cost of vertexs
  void init(int _n) {
    n = _n;
    for (int i = 0; i < n; ++i) {
      for (int j = 0; j < n; ++j) dst[i][
           j] = INF;
      dst[i][i] = vcost[i] = 0;
   }
  void add_edge(int ui, int vi, int wi) {
   dst[ui][vi] = min(dst[ui][vi], wi);
  void shortest_path() {
    for (int k = 0; k < n; ++k)
      for (int i = 0; i < n; ++i)
        for (int j = 0; j < n; ++j)
          dst[i][j] =
            min(dst[i][j], dst[i][k] +
                 dst[k][j]);
  int solve(const vector<int> &ter) {
    shortest_path();
    int t = SZ(ter);
    for (int i = 0; i < (1 << t); ++i)
      for (int j = 0; j < n; ++j) dp[i][j
           ] = INF;
    for (int i = 0; i < n; ++i) dp[0][i]
         = vcost[i];
    for (int msk = 1; msk < (1 << t); ++
        msk) {
      if (!(msk & (msk - 1))) {
        int who = __lg(msk);
        for (int i = 0; i < n; ++i)
          dp[msk][i] =
            vcost[ter[who]] + dst[ter[who
                 ]][i];
      for (int i = 0; i < n; ++i)
        for (int submsk = (msk - 1) & msk
             ; submsk;
          submsk = (submsk - 1) & msk)
dp[msk][i] = min(dp[msk][i],
            dp[submsk][i] + dp[msk ^
                 submsk][i] -
              vcost[i]);
      for (int i = 0; i < n; ++i) {
        tdst[i] = INF;
```