Functional Analysis

David Wiedemann

Table des matières

1	Inti	roduction	2
	1.1	Topological Spaces	2
	1.2	Metric spaces	2
	1.3	Norms, Banach Spaces	5
	1.4	Basis of a normed space	6
\mathbf{L}	ist	of Theorems	
	1	Definition (Topological space)	2
	2	Definition (Properties)	2
	3	Definition (Sequences)	2
	4	Definition (Continuity)	2
	5	Definition (Metric space)	2
	6	Definition	3
	1	Lemma	3
	7	Definition	3
	2	Proposition	3
	3	Theorem	4
	8	Definition (Normed space)	5
	9	Definition	5
	10	Definition (Banach Space)	5
	4	Proposition	5
	11	Definition	
	12	Definition (Schauder Basis)	6

1 Introduction

Lecture 1: Introduction

Wed 12 Oct

Main reference is "Functional Analysis" by H.W. Alt.

1.1 Topological Spaces

Definition 1 (Topological space)

Let X be a set, a topology is a subset $\tau \subset P(X)$ is a topology if

- $-\emptyset, X \in \tau$
- any union of opens is open
- Finite intersections of opens are open.

Definition 2 (Properties)

For $A \subset X$, \overline{A} is the smallest closed set containing A and the interior A^o is the biggest open set contained in A.

Finally, the boundary is $\partial A = \overline{A} \setminus A^o$.

X is separable if \exists a dense countable subset

Definition 3 (Sequences)

Let $x : \mathbb{N} \to X, \overline{x} \in X$, $\lim x_k = \overline{x} \iff$ any neighbourhood $U \in T$ of x eventually contains x_k

Definition 4 (Continuity)

A function $f: X \to Y$ is continuous if $\forall U \in \tau_Y, f^{-1}(U)$. This is different from sequential continuity $x_n \to \overline{x} \implies f(x_n) \to f(\overline{x})$

f is continuous at $x \in X$ if $\forall V \in S$ st $f(x) \in V \implies f^{-1}(V) \in \tau_X$

Lecture 2: More recaps

Fri 14 Oct

1.2 Metric spaces

Definition 5 (Metric space)

 $X \text{ a set, } d: X \times X \to [0, \infty) \text{ is a matrix}$

Definition 6

 $X \ a \ set, \ d_1, d_2 \ metrics$

- 1. d_1 is topologically stronger than d_2 if τ_{d_1} is finer.
- 2. d_1 is uniformly stronger than d_2 if $\exists C > 0$ such that $d_2 \leq Cd_1$
- 3. d_1 is uniformly stronger than d_2 if $\exists C > 0$ such that $\frac{1}{C}d_1 \leq d_2 \leq Cd_1$

Lemma 1

THe following are equivalent

- 1. d_1 is topologically stronger than d_2
- 2. Id: $(X, \tau_{d_1}) \to (X, \tau_{d_2})$ is continuous
- 3. If $x_n \to \overline{x}$ in d_1 then $x_n \to \overline{x}$ in d_2
- 4. $\forall x \in X \forall \epsilon > 0 \exists \delta_{\epsilon,x} > 0 \text{ such that }$

$$d(x,y) \le \delta \implies d_2(x,y) < \epsilon$$

Definition 7

Let (X,d) be a metric space

- 1. $A \subset X$ is bounded if $\exists \overline{x} \in X$ such that $\sup_{y \in A} d(x,y) < \infty$ or $A = \emptyset$
- 2. x_n is Cauchy if

$$\lim_{n \to \infty} \sup_{i,j \ge n} d(x_i, x_j) = 0$$

- 3. X complete if x Cauchy $\implies x$ convergent.
- 4. (Y, e) is a matric, $fX \to Y$ is uniformly continuous if $\forall \epsilon > 0 \exists \delta > 0$ such that $d(x, y) < \delta \implies e(f(x), f(y)) < \epsilon$.

Define $X = \{x : \mathbb{N} \to \mathbb{R} \text{ such that } \exists N \text{ such that } x_i = 0 \text{ eventually } \}.$

This space, with p-norm is not complete, so we construct the completion.

Proposition 2

Let (X,d) a metric space and (Y,e) a complete metric space, $A \subset X, \phi : A \to Y$ uniformly continuous.

Then \exists unique $\psi : \overline{A} \to Y$ such that ψ is uniformly continuous and $\phi = \psi|_A$.

Proof

If $x : \mathbb{N} \to A$ is Cauchy, then $\phi \circ x$ is also cauchy.

To prove this, let $\epsilon>0$ and $\partial_{\epsilon}^{\phi}>0$ be such that $d(x,y)<\delta\implies e(\phi(x),\phi(y))<\epsilon.$

Let $N=N_{\delta}^{x}$ be such that $i,j\geq N \implies d(x_{i},x_{j})<\delta$, then $e(\phi(x_{i}),\phi(x_{j}))<\epsilon$

Now, let $a \in \overline{A}$, then $\exists x_k$ converging to a.

x is d-Cauchy and $\phi \circ x$ is e-cauchy.

 $\exists \ a \ limit \ b^* = \lim \phi(x_k) \ So \ we \ define \ \psi(a) = b^*.$

We now prove continuity/uniform continuity.

Let $a, b \in \overline{A}, x, y : \mathbb{N} \to A \text{ and } x_i \to b, y_j \to b.$

Then

$$e(\psi(a), \psi(b)) = \lim e(\phi(x_i), \phi(y_j))$$

Now, let $\epsilon > 0$, then $\exists \delta > 0$ such that $d(x, y) < \delta$.

Thus $e(\phi(x), \phi(y)) < \epsilon$

If $d(a,b) < \delta \exists N \text{ such that } d(x_i,y_i) < \delta \forall i,j > N$

$$e(\phi(x_i), \phi(y_j)) < \epsilon \implies e(\psi(a), \psi(b) \le \epsilon)$$

Theorem 3

If (X,d) is a metric space, then there exists a complete metric space (Y,e) and an isometry $\phi:X\to Y$ such that $Y=\overline{\phi(X)}$.

Both are unique up to a bijective isometry.

Proof

Define $C_X := \{x : \mathbb{N} \to X, x \; Cauchy \} \; and \; x\tilde{y} \; if \lim_{j \to \infty} d(x_i, y_j) = 0.$

Write $Y = C_X / \sim$.

For $x, y \in Y$, define $e(x, y) = \lim_{i \to \infty} d(x_i, x_i)$.

Is this well defined?

If $j, k \ge N$

$$|d(x_i, y_i) - d(x_k, y_k)| \le d(x_i, x_k) + d(y_i, y_k)$$

And if $x\tilde{x}'$, then

$$\lim d(x_i, y_i) = \lim d(x'_i, y_i)$$

because

$$|d(x_i, y_j) - d(x_j', y_j)| \le d(x_j, x_j') \to 0$$

To show that e is a metric, most properties are obvious.

We show that if e(x,y) = 0 then $\lim d(x_j, y_j) = 0 \implies x\tilde{y} \implies x = y$ Triangular equality holds because

$$e(x, y = \lim d(x_i, y_i) \le \lim \sup d(x_i, z_i) + d(z_i, y_i) = e(x, z) + e(z, y)$$

The isometry $\phi: X \to Y$ simply sends $x \mapsto [x]$.

We now show $[x] \in Y$, $\phi(x_k)$ is a sequence in Y, we want to show that

$$\phi(x_k) \to [x].$$

$$\lim_{k\to\infty}e(\phi(x_k),[x])=\lim_{k\to+\infty}\lim_{j\to\infty}d(x_k,x_j)=0$$

Which shows $Y = \overline{\phi(X)}$ Let y^k Cauchy $\forall k \exists x_k \in X$ such that $e([y^k], \phi(x_k)) < 2^{-k}$.

We claim $[y^k] \to [x]$

$$d(x^k, x^h = e(\phi(x^k, \phi(x^h)))) \le 2^{-k} + 2^{-h + e([y^k], [y^h])}$$

Thus $x \in C_X [x] \in Y$

$$e([y^k], [x]) = \lim d(y_i^k, x_j) \le \lim d(U_i^k, x_k) + d(x_k, x_j) \le 2^{-k}$$

Finally, to show uniqueness, if (Y,e) and (Y',e') are two completions. Let $\psi = \phi \circ (\phi')^{-1} : \phi'(X) \to Y$.

 ψ is an isometry so there is a unique extension $\psi: Y' \to Y$ and this is an isometry.

1.3 Norms, Banach Spaces

Throughout, $K = \mathbb{R}$ or \mathbb{C}

Definition 8 (Normed space)

 $\|\cdot\|: X \to [0,\infty)$ is a norm if

$$- \|x\| = 0 \iff x = 0$$

$$- \|\lambda x\| = |\lambda| \|X\|$$

$$- \|x + y\| \le \|x\| + \|y\|$$

Definition 9

 c_0 is the $space c_0 = \{x : \mathbb{N} \to \mathbb{R} \text{ s.t. } \lim x_k = 0\}$ together with $\|x\|_{c_0} = \sup |x_k|$

For
$$p \in [1, \infty)$$
, $l_p = \{x : \mathbb{N} \to \mathbb{R} \text{ s.t. } \sum_{k \in \mathbb{N}} |x_k|^p < \infty \}$ with $||x||_{l_p} = (\sum |x_k|^p)^{\frac{1}{p}}$

Definition 10 (Banach Space)

A Banach space is a complete normed space.

Proposition 4

Any normed space has a completion which is Banach.

Proof

Let (Y,e) be the completion as above, define

$$[x] + [y] \coloneqq [x + y] \text{ and } \lambda[x] \coloneqq [\lambda x]$$

1.4 Basis of a normed space

Definition 11

Let $A \subset X$.

A is linearly independent if $\forall N \in \mathbb{N}, \forall a_i \in A \forall \lambda_i \in K, \sum_i \lambda_i a_i = 0 \implies \lambda_i = 0.$

We define

$$span(A) = \left\{ \sum_{i} (i) \lambda_i a_i, \lambda_i \text{ as above } \right\}$$

A is a Hamel basis if A is linearly independent and X = spanA

Definition 12 (Schauder Basis)

 $e: \mathbb{N} \to X$ is a Schauder basis if $\forall x \in X$ there is a unique $\lambda: \mathbb{N} \to K$ such that $x = \sum_{i=0}^{\infty} \lambda_i e_i \iff \lim \|x - \sum^N \lambda_i e_i\| = 0$