EE288 Data Conversions/Analog Mixed-Signal ICs Spring 2018

Lecture 2: ADC Architectures

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Course Schedule – Subject to Change

Date	Topics	
24-Jan	Course introduction and ADC architectures	
29-Jan	-Converter basics: AAF, Sampling, Quantization, Reconstruction	
31-Jan	ADC dynamic performance metrics, Spectrum analysis using FFT	
5-Feb	ADC & DAC static performance metrics, INL and DNL	
7-Feb	OPAMP and bias circuits review	
12-Feb	SC circuits review	
14-Feb	Sample and Hold Amplifier - Reading materials	
19-Feb	Flash ADC and Comparators: Regenerative Latch	
21-Feb	Comparators: Latch offset, preamp, auto-zero	
26-Feb	Finish Flash ADC	
28-Feb	DAC Architectures - Resistor, R-2R	
5-Mar	DAC Architectures - Current steering, Segmented	
7-Mar	DAC Architectures - Capacitor-based	
12-Mar	SAR ADC with bottom plate sampling	
14-Mar	SAR ADC with top plate sampling	
19-Mar	Midterm Review	
21-Mar		Midterm exam
26-Mar	Spring break	
28-Mar	Spring break	
2-Apr	Pipelined ADC stage - comparator, MDAC, x2 gain	
4-Apr	Pipelined ADC bit sync and alignment using Full adders	
9-Apr	Pipelined ADC 1.5bit vs multi-bit structures	
11-Apr	Fully-differential OPAMP and Switched-capacitor CMFB	
16-Apr	Single-slope ADC	
18-Apr	Oversampling & Delta-Sigma ADCs	
23-Apr	Second- and higher-order Delta-Sigma Modulator.	
25-Apr	Hybrid ADC - Pipelined SAR	
30-Apr	Hybrid ADC - Time-Interleaving	
2-May	ADC testing and FoM	
7-May	Project presentation 1	
8-May	Project presentation 2	
14-May	Final Review	
20-May	Project Report Due by 6 PM	

ADC architectures

*Midterm Exam dates are approximate and subject to change with reasonable notice.

ADC

- Digitizes input signal up to Nyquist frequency $(f_N = f_s/2)$
- Sampling rate, f_s should be greater than twice the input bandwidth
- Each sample is digitized to the maximum resolution of converter
- Need good reference and clock

Flash ADC

Comparator

<u>Transfer characteristic</u> (ideal)

$$V_i + O$$
 $V_{th} - O$
 V_o ("Digital")

Circuit symbol

Detects the polarity of the analog input signal and produces a digital output (1 or 0) accordingly – threshold-crossing detector

Ideal Comparator

Binary search for Analog Estimates

Successive Approximation Register (SAR) ADC

- Binary search algorithm $\rightarrow N^*T_{clk}$ to complete N bits
- Conversion speed is limited by comparator, DAC, and digital logic (successive approximation register or SAR)

Successive Approximation Register (SAR) ADC

- DAC output gradually approaches the input voltage
- Comparator differential input gradually approaches zero

Algorithmic (or Cyclic) ADC

- Input is sampled first, then circulates in the loop for N clock cycles
- Conversion takes N cycles with one bit resolved in each T_{clk}

Algorithmic (or Cyclic) ADC

- If $V_X < V_{FS}/2$, then $b_i = 0$, and $V_o = 2*V_X$
- If $V_X > V_{FS}/2$, then $b_i = 1$, and $V_o = 2*(V_X V_{FS}/2)$
- V_o is called conversion "**residue**"

Algorithmic (or Cyclic) ADC

- Constant threshold (V_{FS}/2) is used for each comparison
- Residue experiences 2X gain each time it circulates the loop

1-bit/stage Pipelined ADC

- J. A. Severin, "Technique for high speed analog-to-digital conversion,"
- U.S. patent 3,599,204, Aug. 10, 1971

1-bit/stage Pipelined ADC

1-bit/stage Pipelined ADC

