ROB 501 Exam-II Solutions

17 December 2018

Problem 1:

- (a) False. The columns of V are e-vectors of $A^{\top}A$. Indeed, $A^{\top}A = V\Sigma^2V^{\top}$.
- (b) True. This is the main point of the SVD handout.
- (c) False. $B = U\widehat{\Sigma}V^{\top}$ with $\widehat{\Sigma} = \text{diag}(1, 1, 1, 0)$ and thus has rank three.
- (d) False. $A^{\top}A = V\Sigma^2V^{\top}$, and hence $\lambda_{\max}(A^{\top}A) = 20^2 \neq 20$.

Problem 2:

- (a) False. $\hat{x} = S^{-1}C^{\top}(CS^{-1}C^{\top})^{-1}y$. Also, we need linearly independent columns for $(C^{\top}SC)^{-1}$ to exist.
- (b) As written, this problem is False. It should be $\hat{x} = (C^{\top}SC)^{-1}C^{\top}Sy$. We will accept both answers!
- (c) True. This is the BLUE. You can also see this by matrix multiplication:

$$KC = (C^{\top}Q^{-1}C)^{-1}(C^{\top}Q^{-1}C) = I$$

(d) True. Set P = rI and take the limit as $r \to \infty$. We have

$$\widehat{x} = \lim_{r \to \infty} [C^{\top} Q^{-1} C + (rI)^{-1}]^{-1} C^{\top} Q^{-1} y = [C^{\top} Q^{-1} C]^{-1} C^{\top} Q^{-1} y.$$

Problem 3:

- (a) True. Weierstrass Theorem.
- (b) False. Completeness is required and we have nothing in the problem that implies that \mathcal{X} is complete.
- (c) False. S is not necessarily closed, and hence it does not necessarily contain its limit points.
- (d) True. Because S is bounded, $\exists r < \infty$ such that $S \subset B_r(0)$. Hence, $S \subset \overline{B}_r(0)$, the closure of the ball, which, being closed and bounded in a finite-dimensional normed space, is compact. Therefore, the sequence (x_n) is contained in a compact set and must have a convergent subsequence. Being convergent, the subsequence is therefore Cauchy.

Problem 4:

- (a) False. Take for example the open set $S = (0,1) \subset \mathbb{R}$, then $x = 1 \notin S$ satisfies d(x,S) = 0.
- (b) True. S is closed if, and only if $\sim S$ is open, and $\sim S$ is open if, and only if $\forall x \in \sim S$, $d(x, \sim S) > 0$. But $\sim \sim S = S$, and thus we see that the statement is true. Second solution: S is closed if, and only, if, $d(x,S) = 0 \implies x \in S$, and thus, $x \notin S$ must imply that d(x,S) > 0.
- (c) False. All open balls are convex and they are not closed.
- (d) True. y is a local minimum of f. Because $B_1(0)$ and f are convex, local minima are also global minima. Hence, the statement is true.

Problem 5:

(a) True. From lecture. We can also derive it:

$$P_{k|k-1} - P_{k|k} = K_k C_k P_{k|k-1} = P_{k|k-1} C_k^{\top} \left(C_k P_{k|k-1} C_k^{\top} + Q_k \right)^{-1} C_k P_{k|k-1}$$

Next we use the following matrix facts to show positive semi-definiteness:

$$\forall A \in \mathbb{R}^{n \times m}, \forall B \in \mathbb{R}^{n \times k}, \quad A \succeq 0 \implies B^{\top} A B \succeq 0 \tag{1}$$

$$\forall A \in \mathbb{R}^{n \times m}, \forall B \in \mathbb{R}^{n \times m}, \quad A \succeq 0, B \succeq 0 \implies A + B \succeq 0$$
 (2)

$$\forall A \in \mathbb{R}^{n \times n}, \det(A) \neq 0, \quad A \succeq 0 \implies A^{-1} \succeq 0$$
 (3)

The proof proceeds as follows:

- Start with the fact that $P_{k|k-1} \succeq 0$
- (1) $\implies C_k P_{k|k-1} C_k^{\top} \succeq 0$
- (2) $\implies C_k P_{k|k-1} C_k^{\top} + Q_k \succeq 0$ (where we also use $Q_k \succeq 0$
- (3) $\Longrightarrow (C_k P_{k|k-1} C_k^{\top} + Q_k)^{-1} \succeq 0$
- (1) $\implies P_{k|k-1}C_k^{\top} \left(C_k P_{k|k-1}C_k^{\top} + Q_k \right)^{-1} C_k P_{k|k-1} \succeq 0$
- (b) False. This could be larger or smaller depending on the matrices A_k, G_k, R_k . For instance, suppose $A_k = I$, $G_k = I$ and $R_k = I$. Then $P_{k+1|k} P_{k|k} = I \succeq 0$.
- (c) True. If Q_k is very large, then:
 - $(C_k P_{k|k-1} C_k^{\top} + Q_k)^{-1} \approx Q_k^{-1} \approx 0$ and $K_k \approx 0$
 - This gives $\hat{x}_{k|k} \approx \hat{x}_{k|k-1}$ and $P_{k|k} \approx P_{k|k-1}$.

This says that if our measurement is very noisy, it shouldn't affect our state estimate or variance.

- (d) True. If Q_k is very small, then:
 - $\left(C_k P_{k|k-1} C_k^{\top} + Q_k\right)^{-1} \approx \left(C_k P_{k|k-1} C_k^{\top}\right)^{-1}$
 - $K_k = P_{k|k-1}C_k^{\top} \left(C_k P_{k|k-1}C_k^{\top}\right)^{-1}$
 - $C_k \hat{x}_{k|k} = C_k \hat{x}_{k|k-1} + \left(C_k P_{k|k-1} C_k^{\top} \right) \left(C_k P_{k|k-1} C_k^{\top} \right)^{-1} \left(C_k \hat{x}_{k|k-1} y_k \right) = y_k$

This says that if our measurement is very precise, the updated state should be approximately consistent with the value of the measurement.

Problem 6:

(a) Remember to flip the qualifiers and invert the statement. This gives us:

$$\exists x, y \in \mathcal{X}, \lambda \in [0, 1], \text{s.t. } f(\lambda x + (1 - \lambda)y) > \lambda f(x) + (1 - \lambda)f(y)$$

(b) Since Q is orthogonal, we know $Q^{-1} = Q^{\top}$, therefore:

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ -2/3 & -1/3 & 2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}^{\top} \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$$

We then use back-substition to get:

$$x_3 = 1$$

 $x_2 = -2 - 2x_3 = -4$
 $x_1 = 2 - 2x_2 - 3x_3 = 7$

i.e.
$$x = [7, -4, 1]^{\top}$$
.

Alternate Solution:

Instead of backsubstitution, many of you directly computed R^{-1} using its adjoint and determinant (this is easy since R is upper triangular):

$$R^{-1} = \frac{1}{\det(R)}\operatorname{adj}(A) = \frac{1}{1} \begin{bmatrix} 1 & -2 & 1\\ 0 & 1 & -2\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 1\\ 0 & 1 & -2\\ 0 & 0 & 1 \end{bmatrix}$$

Then the solution can be computed as $x = R^{-1}Q^{\top}\begin{bmatrix} 0 & 0 & 3 \end{bmatrix}^{\top}$

(c) From lecture, we can write

$$A = \sigma_1 U_1 V_1^{\top} + \sigma_2 U_2 V_2^{\top},$$

where U_i and V_i are columns of U and V, respectively. From the SVD Handout, we know that the matrix of smallest norm that drops the rank of $A - \Delta A$ is $\Delta A = \sigma_2 U_2 V_2^{\top}$.

If you want to work out the details, because $\sigma_2 = 0.1$ and $||U_2V_2^\top|| = 1$, we have $||\sigma_2U_2V_2^\top|| = \sigma_2 = 0.1$. Additionally, since $A - \sigma_2U_2V_2^\top = \sigma_1U_1V_1^\top$ has rank 1, we obtain that $\Delta A = \sigma_2U_2V_2^\top$ satisfies the requirements.

Computing, we get:

$$\Delta A = \sigma_2 U_2 V_2^{\top} = \frac{0.1}{5\sqrt{2}} \begin{bmatrix} -4 & 3\\ -4 & 3 \end{bmatrix}$$

Alternate Solution

Alternatively, you can get ΔA by selecting only the smallest singular value from Σ to get:

$$\Delta A = U \begin{bmatrix} 0 & 0 \\ 0 & 0.1 \end{bmatrix} V^{\top}$$

Problem 7: The solutions can be done straight out of the handout on Gaussian Random Vectors

(a)
$$Y = \begin{bmatrix} 2 & 3 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$
. Therefore, from the handout,

$$\mu_Y = \begin{bmatrix} 2 \ 3 \ 0 \end{bmatrix} \mu_X = \begin{bmatrix} 2 \ 3 \ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = 2 \text{ and } \Sigma_Y = \begin{bmatrix} 2 \ 3 \ 0 \end{bmatrix} \Sigma_X \begin{bmatrix} 2 \ 3 \ 0 \end{bmatrix}^\top = \begin{bmatrix} 2 \ 3 \ 0 \end{bmatrix}^\top = \begin{bmatrix} 2 \ 3 \ 0 \end{bmatrix} \begin{bmatrix} 6 \ 2 \ 3 \ 1 \\ 4 \ 1 \ 3 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} = 75$$

(b) We apply the formulas from the handout

$$\mu_{1|2} := \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2)$$

$$\Sigma_{1|2} := \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

and thus, in our case

$$\mu_{\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \mid \{X_3 = 4\}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 4 \\ 1 \end{bmatrix} \frac{1}{3} (4 - (-1)) = \begin{bmatrix} 7 & \frac{2}{3} \\ 1 & \frac{2}{3} \end{bmatrix} = \begin{bmatrix} \frac{23}{3} \\ \frac{5}{3} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 23 \\ 5 \end{bmatrix}$$

and

$$\Sigma_{\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} | \{X_3 = 4\}} = \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix} - \begin{bmatrix} 4 \\ 1 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 4 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 16 & 4 \\ 4 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & 2 \\ 2 & 8 \end{bmatrix}$$

(c) We give two solutions

(i)
$$Y|\{X_3=4\}=\begin{bmatrix}2 & 3\end{bmatrix}\begin{bmatrix}X_1\\X_2\end{bmatrix}|\{X_3=4\}$$
 and thus

$$\mu_{Y|\{X_3=4\}} = \begin{bmatrix} 2 & 3 \end{bmatrix} \mu_{\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} | \{X_3=4\}} = \begin{bmatrix} 2 & 3 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 23 \\ 5 \end{bmatrix} = \frac{61}{3}$$

(ii) The above is fine and is super quick. The solution I expected you to give is to first find the density of $Z = \begin{bmatrix} Y \\ X_3 \end{bmatrix}$, and then compute the conditional mean. We do that next.

$$Z = \begin{bmatrix} Y \\ X_3 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

and therefore

$$\mu_Z = \begin{bmatrix} 2 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mu_X$$
$$= \begin{bmatrix} 2 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

and

$$\Sigma_{Z} = \begin{bmatrix} 2 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Sigma_{X} \begin{bmatrix} 2 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{\top}$$

$$= \begin{bmatrix} 2 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 6 & 2 & 4 \\ 2 & 3 & 1 \\ 4 & 1 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 3 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 75 & 11 \\ 11 & 3 \end{bmatrix}$$

Hence, we apply the formula from the handout and arrive at

$$\mu_{Y|\{X_3=4\}} = 2 + 11\frac{1}{3}(4 - (-1)) = \frac{61}{3},$$

the same answer we computed before.

Remark: This part was only worth 3 points so that if you did not find the quick solution from your work in (b), then you would not be penalized very much.

Problem 8:

(a) True. The Projection Theorem tells us that \widehat{x} is unique and is characterized by $x - \widehat{x} \perp M$. Because $\langle x - x^*, v^i \rangle = 0$ for $1 \leq i \leq k$, we have that $x^* \perp M$ also, and hence $\widehat{x} = x^*$.

Alternative very good (5): Use the normal equations to solve for \widehat{x} . Recognize that we can use the orthonormal basis $\{v\}$, in which the Gram matrix is the identify, G = I. Hence, the normal equations give $\widehat{x} = x^*$

Alternative pretty good (5): \widehat{x} is the projection of x onto span $\{y^1, \dots, y^k\}$ while x^* is the projection of x onto span $\{v^1, \dots, v^k\}$ (something we worked out in lecture). Because the two spans are equal, we have $\widehat{x} = x^*$

Alternative that is not too bad (4): State that both formulas give the orthogonal projection of x onto M. This answer is not as complete as I would like, but in the stress of an exam, it's not so bad that I want to take off many points. You are using the term "orthogonal projection" as an operator and you are using it with confidence.

Others: There were too many others to list that selected T (true) but really did not give an explanation that hangs together. These received one point for selecting T and one to two points, mostly, for stating useful clues as to why the result is true.

(b) From HW, we know the answer is $f = \alpha_1 t^2 + \alpha_2 \sin(\pi t)$, where $G\alpha = c$. We compute the appropriate terms to have

$$G = \left[\begin{array}{cc} < t^2, t^2 > & < t^2, \sin(\pi, t) > \\ < t^2, \sin(\pi, t) > & < \sin(\pi, t), \sin(\pi, t) > \end{array} \right] = \left[\begin{array}{cc} \frac{2}{5} & 0 \\ 0 & 1 \end{array} \right]$$

Hence,

$$\left[\begin{array}{cc} \frac{2}{5} & 0\\ 0 & 1 \end{array}\right] \left[\begin{matrix} \alpha_1\\ \alpha_2 \end{matrix}\right] = \left[\begin{matrix} 4\\ \pi \end{matrix}\right]$$

and therefore $f = 10t^2 + \pi \sin(\pi t)$

(c) First note that:

$$\frac{\partial h}{\partial x} = \begin{bmatrix} e^{x_1} & 1\\ 1 & 2x_2 \end{bmatrix}$$

We can then compute our Newton-Raphson step:

$$x_{k+1} = x_k - \left(\frac{\partial h}{\partial x}(x_k)\right)^{-1} (h(x_k) - y)$$

and thus

$$x_{1} = x_{0} - \left(\frac{\partial h}{\partial x}(x_{0})\right)^{-1} (h(x_{0}) - y)$$

$$= \begin{bmatrix} 0 \\ -1 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix}^{-1} \left(\begin{bmatrix} 0 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right)$$

$$= \begin{bmatrix} 0 \\ -1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ -1 \end{bmatrix} + \begin{bmatrix} 2/3 \\ 1/3 \end{bmatrix}$$

$$\therefore$$

$$x_{1} = \begin{bmatrix} 2/3 \\ -2/3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

Problem 9: A+

Inspired by \mathbb{R}^n , we define e_i to be an infinite sequence that has all entries equal to zero except a one in the i-th element. That is $e_i := (0,0,\ldots,1,0,0,\ldots)$, so that

$$e_1 := (1, 0, 0, 0, \ldots)$$

$$e_2 := (0, 1, 0, 0, \ldots)$$

$$e_3 := (0, 0, 1, 0, \ldots)$$
etc.

It is obvious that $\forall n \geq 1$, $||e_n||_{\infty} = 1$ and thus $e_n \in \overline{B}_1(0)$. Also, for $i \neq j \implies ||e_i - e_j||_{\infty} = 1$, and therefore sequence $(e_n)_{n=1}^{\infty}$ cannot have a Cauchy subsequence. Indeed, for $n_i \neq n_j$,

$$||e_{n_i} - e_{n_j}||_{\infty} = 1.$$