NASA-CR-132355) EFFECT OF SWEEP ANGLE ON THE PRESSURE DISTRIBUTIONS AND EFFECTIVENESS OF THE OGES TIP IN (Rochester Applied Science Associates, Inc.) 123 p HC \$8.25 CSCL 0.1A N74-11822

Unclas G3/01 23759 EFFECT OF SWEEP ANGLE ON THE
PRESSURE DISTRIBUTIONS AND
EFFECTIVENESS OF THE OGEE TIP
IN DIFFUSING A LINE VORTEX

By John C. Balcerak and Raymond F. Feller

Issued by Originator as RASA Report No. 73-07

Prepared under Contract No. NAS1-12012 by ROCHESTER APPLIED SCIENCE ASSOCIATES, INC. Rochester, N.Y.

for Langley Research Center
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TABLE OF CONTENTS

						Page
SUMMARY					• •	1
INTRODUCTION						1
LIST OF SYMBOLS .						3
DESCRIPTION OF MOI	DELS AND	WIND TUNN	EL INSTALL	ATION .		ر الموا
TESTING PROCEDURES	S AND DAT	A ACQUISI	TION		. • •	7
DISCUSSION OF WINI	TUNNEL	TEST RESU	ILTS			9
CONCLUSIONS				• • •		18
RECOMMENDATIONS .						19
REFERENCES	• • •			• • •	• •	20
TABLES						21
FIGURES						27
APPENDIX A: WIND	AXES BAL	ANCE DATA	· · · · · ·	• • •	•	79
APPENDIX B: PRESS	SURE DATA] 02

EFFECT OF SWEEP ANGLE ON THE PRESSURE DISTRIBUTIONS

AND EFFECTIVENESS OF THE OGEE TIP

IN DIFFUSING A LINE VORTEX

By John C. Balcerak and Raymond F. Feller ROCHESTER APPLIED SCIENCE ASSOCIATES, INC.

SUMMARY

Low-speed wind tunnel tests were conducted to study the influence of sweep angle on the pressure distributions of an ogee-tip configuration with relation to the effectiveness of the ogee tip in diffusing a line vortex. In addition to the pressure data, performance and flow-visualization data were obtained in the wind tunnel tests to evaluate the application of the ogee tip to aircraft configurations. The effect of sweep angle on the performance characteristics of a conventional-tip model, having equivalent planform area, was also investigated for comparison with the ogee-tip configuration.

Results of the investigation generally indicate that sweep angle has little effect on the characteristics of the ogee in diffusing a line vortex. In addition, the performance characteristics of the ogee were generally superior to those of the conventional-tip configuration. The performance data also indicate that changes in the outermost tip geometry of the ogee may be required for application at high subsonic speeds.

INTRODUCTION

The further development of the helicopter is, to a large extent, dependent upon the improvement of the performance, blade life and acoustic characteristics of the rotor system. One of the primary problems that has hindered the improvement of the rotor systems is the proximity of a vortex that is trailed off a blade to a following blade or to itself in a succeeding passage, or actual blade-vortex intersections. In recent years, the concern over this problem area has led to expanded research involving both active and passive vortex-modification systems. Among the various passive systems that have been investigated for application to the helicopter, the ogee-tip configuration appears to hold the most promise for implementation within the immediate future. In nonrotating systems, this promise has been supported by performance and wake-survey data (ref. 1), performance and flow-visualization data (ref. 2) and by performance data in a

rotating system (ref. 3).

As a helicopter blade rotates, say in hover, the peak in the lift distribution of the blade is far outboard, and if the tip is squared off with respect to the blade radius as in a conventional blade, a steep gradient in the lift distribution exists between this peak and the tip of the blade. This gradient in the lift distribution leads to the formation of a separation vortex which trails off the tip of the blade. The principle underlying some of the passive vortex-modification systems for helicopter applications was to prevent this steep gradient in the local lift distribution which, in turn, would prevent the formation of the separation vortex. Attempts to effect these favorable gradients by tapering the blade, or otherwise modifying the blade to accommodate swept-forward or swept-aft pointed tips or other tip shapes have generally led to unacceptable penalties in performance or in overall systems applications. The ogee tip, which was developed by NASA, also prevents the steep gradient in the local lift distribution, but the basic goal of the ogee-tip design was to modify the formation mechanism of the tip vortex. ventional-tip rotor blade, a concentrated tip vortex is formed by the interaction of the intense core of the separation vortex with the vortex sheet shed from the trailing edge of the airfoil. The ogee-tip shape modifies this process so that the vortex trailed off the tip would roll up more as a sheet, and thus constrains the mechanism associated with the formation of the separation vortex.

One of the problems in adapting a vortex-modification system to the helicopter is that the system must operate in a rotating framework, where in forward flight, the blade is subjected to an effective sweep angle because of the radial component of flow. This component of flow may have a beneficial or adverse effect in regard to the application of a vortex-modification system for helicopters. Thus, the evaluation of a vortex-modification system for helicopter applications has to be made from test data either in a rotating system or in a stationary system which accounts for the radial component of flow.

On the basis of the results which were obtained in reference 2, in which the ogee-tip configuration showed favorable characteristics in regard to performance and vortex diffusion at zero sweep, NASA/Langley sponsored the research effort whose objectives were to determine the effects of the sweep angle on the performance and vortex-modification characteristics of the ogee-tip configuration. These objectives were attained by the collection of performance data, flow-visualization data and pressure data for the ogee-tip configuration in a stationary system by accounting for sweep angle in the range $-20^-\Lambda^-+30^\circ$.

		LIST OF SYMBOLS
ÅΑ		angle of attack at root, degrees
AR	•	model aspect ratio, 2b ² /S, dimensionless
AY		yaw angle, degrees
b		model semispan, cm (or in.)
CCP	•	chordwise center of pressure, dimensionless
c _D		drag coefficient, dimensionless
cr		lift coefficient, dimensionless
cN		normal force coefficient, dimensionless
C		blade chord, cm (or in.)
D.		drag force, newtons (or 1b)
L		lift force, newtons (or 1b)
ΔΡ		differential pressure, dimensionless meter units
PM		pitching moment, newton-meters (or ft-1b)
Pn		pressure tap reading at port "n", dimensionless meter units
Ps		tunnel-centerline static pressure, dimensionless meter units
Pt		tunnel total pressure, dimensionless meter units
q		dynamic pressure dimensionless meter units or newtons/meter 2 (or lb/ft 2)
R		Reynolds number, dimensionless
RM		rolling moment, newton-meters (or ft-1b)
S		model planform area, cm ² (or in. ²)

s cp	spanwise center of pressure, dimensionless
SF	side force, newtons (or lb)
V	freestream or tunnel velocity, meters/sec (or ft/sec)
x	streamwise or chordwise ordinate, cm (or in.)
ΥM	yawing moment, newton-meters (or ft-lb)
У	spanwise ordinate, cm (or in.)
α _R	angle of attack at model root, degrees
Λ.	sweep angle, positive for sweepback, degrees

DESCRIPTION OF MODELS AND WIND TUNNEL INSTALLATION

Ogee Model #1

Ogee Model #1 was fabricated as an attachment to the tip of a UH-1D helicopter blade. The basic blade section was untapered, had a NACA 0012 airfoil section with a chord of 53.6 cm (21.1 in.), and a measured twist of 0.0082 deg/cm (0.0208 deg/in.). The ogeetip section was fabricated from wood and was not twisted. Planform coordinates of the ogee-tip section are presented in Table I. The 0012 airfoil section was maintained to station 168.15 (66.20), and outboard from this point, the airfoil section was contoured smoothly to a complete elliptical section at station 188.85 (74.35). Figures 1 and 2 show sketches of the ogee planform with the layout of the 148 pressure taps incorporated within the model. A tabular listing of the pressure-tap locations and their designation is given in Table II. The pressure taps on the upper surface of the model were numbered from 1 through 74, while the pressure taps on the lower surface were numbered from 101 through 174.

Grooves were routed out on both the upper and lower surfaces of the ogee-tip section for installation of the pressure taps and associated tubing, then filled in with potting compound and sanded to maintain smooth section contours. The ogee section was attached to the blade section by a 20.3 cm (8 in.) extended piece at the base of the wooden section which was fitted snugly into the D-spar and attached to it with thru-bolts. Aft of the D-spar, the ogee section was recessed to fit between the upper and lower skins of the UH-1D blade section by routing out the honeycomb material to a depth of approximately 2.54 cm (1 inch). It was secured to the blade skin with wood screws. The outermost section of the ogee-tip was mortised at station 167.77 (66.05) to accommodate various tip shapes. The station numbers refer to spanwise locations on the model with reference to the tunnel floor at zero sweep. The measurements are in centimeters and, parenthetically, in inches. Provision was made to accommodate pressure taps in the outermost tip region. The outermost section of section of the ogee shown in Figure 1 was instrumented with pressure taps, but the one additional tip shape which was tested was not instrumented with pressure taps.

Ogee Model #2

The model designation, Ogee Model #2, refers to the ogee model which was fabricated and tested under a previous program (ref. 2). In the present test program, the model was used solely for conducting flow-visualization studies using the helium-bubble technique to minimize the possibility of plugging the pressure taps on Ogee Model #1 with the soap solution used in the bubble-generating process. Ogee Model #2 was identical in planform to Ogee Model #1, but the measured twist of the UH-1D blade section comprising Model #2 was 0.0046 deg/cm (0.0117 deg/in.)

Model #3

Model #3 was a conventional-tip model, also fabricated and tested under a previous program (ref. 2). The model was fabricated from an outboard section of a UH-1D helicopter blade which had a measured twist of 0.0046 deg/cm (0.0117 deg/in.). The tip of the model was fitted with a "half-round" cap whose shape was obtained by rotating an airfoil template 180 degrees about the centerline of the chord. Figure 3 shows schematic diagrams of the ogee and conventional-model planforms.

Installation of Models

The wind tunnel installation of all three models was identical. Provisions were made for varying the sweep angle of each model manually by bolting an existing model base support to a plate which pivoted within a jig assembly. The jig contained pre-set positions for securing the models at the requisite sweep angles. Each sweep-angle condition required separate floor plates which were fitted around the base of the models to provide a gap of approximately 0.635 cm (0.25 in.).

Table III presents a comparison of the planform geometries associated with the ogee-tip and conventional-tip models for the reflection-plane installation in the wind tunnel. Although the exposed planform area varied with sweep angle, it was identical for the ogee-tip and conventional-tip models for all sweep angles tested. Since the areas were equal for both models, the aspect ratio of the ogee-tip model was higher than that of the conventional-tip model. The differences in aspect ratio for these models were exaggerated in comparison to those which would be realized on full-scale helicopter blades. The performance characteristics of the models were not corrected for the differences in aspect ratio as precise quantitative comparisons of the performance characteristics were not a primary objective of the research program.

Photographs of Ogee Model #1 installed in the test section at two sweep positions are shown in Figures 4 and 5 for sweep angles of +20 and -20 degrees, respectively. Photographs of Ogee Model #2 at Λ = +30° and Model #3 at Λ = -15° are shown as Figures 6 and 7, respectively.

A "reverse ogee" configuration was achieved by rotating the turntable 180° in the test section. Ogee Models #1 and #2 were tested in this manner at Λ = 0°.

TESTING PROCEDURES AND DATA ACQUISITION

Balance Data

The wind tunnel test program was conducted in the University of Maryland wind tunnel facility at College Park, Maryland. The wind tunnel test section is 2.36 x 3.35 m (7.75 x 11 ft) and 4.57 m (15 ft) long. Model forces and moments were measured by a six-component yoke-type balance located beneath the floor of the test section. Balance data for the models was monitored on-line in the wind-axes system of the wind tunnel with the forces and moments resolved relative to axes parallel and perpendicular to the tunnel centerline. The recorded balance data in this wind-axes system were transformed into a wind-axes system with its origin located on the model quarter-chord at the tunnel floor for any sweep position of the model. A sketch of the coordinate system and the balance data in this reference system are presented in Appendix A. A summary of the model configurations and test conditions for which balance data were obtained is presented in Table IV.

In the plan of test, it was desired to obtain data at the same value of lift at a given angle of attack and sweep angle for both the ogee and conventional-tip models. Baseline data were obtained at $\Lambda = 0^{\circ}$ and a dynamic pressure of 1842 newtons/meter² (38.5 lb/ft2) by pitching the ogee model through an angle-ofattack range at the model root from -2 to +14 degrees in 2-degree increments. The Reynolds number for these conditions based on the model chord was 1.9 \times 10 6 . Balance data were recorded for all the other model test conditions by varying the dynamic pressure in order to generate the same lift that was obtained for the baseline condition at a given angle of attack. This method of testing was adopted to establish a basis for comparison of the circulation strength of the tip vortex, that is, for a given value of lift, it was assumed that the same percentage of vorticity would be rolled up into the tip vortex. Because of differences in twist, the average angle of attack of the conventional model was approximately 0.2 degree less than the ogee model. This slight difference in the average angle of attack was neglected since it would effect only minor differences in the comparison of the performance characteristics between the models. For some test conditions above stall, it was not possible to attain the required lift within the limits of the wind tunnel. For these conditions, testing was conducted by oeprating at a constant dynamic pressure which was maintained at its pre-stall Tests of the reverse-ogee configuration were conducted at a constant dynamic pressure of 1842 newtons/meter2 throughout the angle-of-attack range tested.

Pressure Data

Pressure data from the 148 pressure taps located on Ogee Model #1 were obtained concurrently with the performance data. The test conditions for which pressure data were obtained with Ogee Model #1 are summarized in Table V.

The pressure data were recorded from four, 48-port scanivalves. Three ports on each scanivalve monitored the tunnel total, tunnel static, and tunnel-centerline static pressures, respectively, so that a maximum number of 45 taps were connected to a scanivalve. Pressure transducers with a sensitivity of ±17228 newtons/meter² (±2.5 lb/in.²) were used to cover the range of differential pressure ratio, $\Delta P/q$, for all the test conditions. The pressure data were recorded in meter units on punched cards, and converted to coefficient form, $\Delta P/q$, as follows:

$$q = |P_t - P_s|$$

$$\Delta P/q = \frac{(P_s - P_n)}{q}$$

where P_t = tunnel total pressure,

P = static pressure at tunnel centerline,

p_n = pressure at each port.

All the pressure data recorded during the test are listed in Appendix B.

Flow-Visualization Data

Two methods of flow-visualization were used during the wind tunnel test program. Indications of the swirl in the trailing tip vortex from Ogee Model #1 were observed on a tuft grid, of 5.08 x 5.08 cm (2 x 2 in.) grid size, which was installed 13 chord lengths downstream in the tunnel. Still photographs of the tuft grid were taken with a remotely-operated 35 mm camera concurrently for each test condition during which balance and pressure data were obtained.

Flow-visualization studies in the proximity of the tip regions of both the ogee and conventional configurations were made with Models #2 and #3 using the helium-bubble technique.

In this technique, neutrally-buoyant, helium-filled soap bubbles were produced and released upstream of the model, and illuminated with a collimated beam of light. Flow patterns produced by the helium bubbles were observed and photographs for various views of the models in the test section with 35 mm cameras for all sweep angles at angles of attack of +8, +10, +12, and +14 degrees.

DISCUSSION OF WIND TUNNEL TEST RESULTS

The wind tunnel tests were conducted to determine the effects of sweep angle on the pressure distributions of the ogee-tip configuration, and on the effectiveness of the ogee tip in diffusing a line vortex. Flow-visualization studies were conducted using tuft grids and the helium-bubble technique. Performance data were also obtained for the ogee-tip configuration and for a conventional-tip configuration of equivalent area. Performance data were obtained for both models in the angle-of-attack range $-2^{\circ} \le \alpha \le 14^{\circ}$ in 2-degree increments. Initially, baseline performance data were obtained for the ogee-tip configuration at $\Lambda=0$ and subsequent data for both models were obtained at the same lift as that obtained for the ogee at $\Lambda=0$ for each angle of attack tested by changes in wind-tunnel velocity. Discussions of the results on the basis of performance characteristics, pressure distributions and flow visualization follows.

Performance Characteristics

Figure 8 shows the variation of the drag coefficient of the ogee model at constant angle of attack versus sweep angle. The drag coefficient was consistently higher at angles of forward sweep than for comparable angles of aft sweep, and the minimum values of the drag coefficient at each angle of attack tested were generally obtained with the ogee model at a sweep angle of approximately +10 degrees. At high positive (or negative) sweep angles, a larger (chordwise) gap existed between the model and the wind-tunnel floorplate, and the gap is known to effect changes in the drag. This condition may account for the general higher drag coefficients at Λ =-20, +20 and +30 degrees. The consistent trend in the data, however, suggests that the phenomenon is primarily related to aerodynamic characteristics other than that associated with this gap.

The variation of drag coefficient with sweep angle for the conventional tip configuration (fig. 9) also shows that the minimum drag occurs at low angles of positive sweep. The variation of the drag coefficient with sweep angle for the con-

ventional-tip configuration also shows more nonuniformity than that exhibited by the ogee-tip confirguration, but the general trend shows that the drag coefficient is higher for forward sweep angles up to an angle of attack of approximately 8 degrees. At higher angles of attack, the drag coefficient is minimum at A=+5 degrees, and rises in much the same manner as the ogee-tip configuration as the model is swept forward. The drag data at $\alpha=10$ degrees for positive sweep angles shows a wide scatter as the model approaches stall, and these results are surprising at this relatively low angle of attack. However, the model is completely stalled at a=12 degrees, and lift could not be maintained at the baseline values at angles of attack of 12 and 14 degrees and at sweep angles of +10, +20 and +30 degrees due to stall. The difference in the stalling characteristics between the ogee-tip and the conventional-tip configuration is unusual in that the inboard sections of both the ogee and the conventional-tip configurations are identical, such that the noted variations in the drag characteristics are due solely to the differences of the outermost sections of the Differences in comparable (inboard) model properties are models. The twist of the ogee model, for example, is slightly also small. higher, but the twist extends only to 94 cm (37 in.) above the tunnel floor at A=0, such that any effects due to differences in twist become minimized. The absolute values of the drag coefficient are generally lower for the ogee-tip configuration in the angleof-attack range tested, and the drag coefficient for the conventionaltip configuration generally rises more rapidly with sweep than the ogee-tip configuration above $\alpha=6^{\circ}$. An overall comparison of these drag characteristics indicates that the primary improvement in the performance characteristics of the ogee-tip configuration in application to helicopter rotor systems would be shown in the reduction of dynamic loads due to its more gradual approach to stall.

The lift-to-drag ratios versus angle of attack at a given sweep angle for the ogee-tip configuration are shown in figure 10, and those for the conventional-tip configuration are shown in figure 11. At a constant angle of attack, the L/D reflects the changes in drag with sweep angle since the lift was maintained constant at each angle of attack for both configurations. For the ogee-tip configuration, the peak values of L/D are higher for the aft-sweep conditions than for the forward-sweep conditions and the highest L/D values occur at sweep angles of +5 and +10 degrees. Increasing the sweep angle further aft to angles of +20 and +30 degrees tends to decrease the L/D throughout the angle-of-attack range tested, but the L/D at these conditions remain higher than at zero or negative sweep. Very little change in the shapes and peak levels of the L/D curves occurred between zero sweep angles of -5 and -10 degrees, while the peak L/D at sweep angles of -15 and -20 degrees was much

lower. The lower peak L/D ratios also occurred at lower angles of attack than the higher peak L/D ratios.

For the conventional-tip configuration (fig. 11), the data exhibited more variation in the effects of sweep than that exhibited by the ogee-tip configuration. With respect to zero sweep, higher peak values of L/D were obtained at all sweep angles except at Λ =-15 and -20 degrees, and the peak L/D's tended to occur at approximately the same angle of attack. The overall optimum L/D variation occurred at Λ =+5 degrees. Although higher peak L/D ratios were obtained above Λ =+5 degrees, the L/D for these conditions dropped sharply above an angle of attack of approximately 8 degrees.

Comparison of the variation in L/D between the ogee-tip and conventional-tip configurations shows that higher L/D's are generally attainable with the ogee-tip throughout the angle-of-attack range tested such that overall improvement in performance would be expected in helicopter applications. This result is in variance with that reported in reference 3, which showed a degradation in hover performance characteristics of the ogee with respect to a conventional-tip rotor in small-scale rotor tests. The comparison of the performance characteristics in these tests was made on the basis of equivalent blade radii, in contrast to equivalent planform area as reported herein. Data presented in reference 1 also show improved performance characteristics of the ogee in comparison to a conventional-tip model where the basis for comparison was the equivalent area.

Previous performance tests conducted with Ogee Model #2 at zero sweep (ref. 2) showed a lower value in peak L/D than that which was indicated with Ogee Model #1 during this test program. The observed difference in L/D levels between the two tests was attributed to the fact that a closer gap was maintained between the base of the model and tunnel floor during the current testing, thereby resulting in a "cleaner" model installation and improved performance in terms of the lift and drag measured by the balance. Slight differences in model geometry between the two models could also effect slight differences in the L/D curves with angle of attack. Comparative data which was obtained for the ogee and conventional-tip configuration at zero sweep in reference 2 also showed that the higher peak L/D's were obtained with the ogee.

The spanwise variation in the center of lift versus angle of attack for the ogee configuration is shown in figure 12. The effect of sweep angle on the lift-center variation is negligible, and the center-of-lift location was approximately 43 percent of the semispan of the ogee model outboard of the tunnel floor.

The spanwise variation in center of lift versus angle of attack for the conventional-tip model is presented in figure 13.

The spanwise lift center for the conventional-tip model shows slightly more variation with sweep angle and angle of attack than the ogee-tip configuration, and was generally inboard of that shown for the ogee-tip configuration with respect to the floor of the wind tunnel for comparable test conditions as might be expected, since the area of both models is equivalent. If nondimensionalized by the semispan of the models, however, the spanwise center of pressure of the conventional-tip model would be outboard of the ogee-tip model since the outboard section of the ogee carries a lower percentage of the total lift.

Modified Ogee Tip

A modified (pointed, see figure 26) ogee tip was installed on model No. 1 and tested at A=-20°. The modified tip was tested previously (ref. 2) at zero sweep and had shown slight improvements in the L/D characteristics over a conventional-tip model. As shown in figure 14, only marginal differences in L/D were also found at $\Lambda=-20^{\circ}$. Figure 15 shows a comparison of the spanwise drag center of the modified ogee tip and the unmodified elliptical ogee tip at the -20° sweep position. The modified tip shows a reduction in drag in the angle-of-attack range $0^{\circ} = \alpha = 8^{\circ}$, as evidenced by the inboard shift of the spanwise drag center such that this drag reduction was due to the reduction of the tip drag. Little difference in the drag center between the modified and the unmodified ogee-tip configurations was shown for angles of attack above 8°. At the lower angles of attack, a larger percentage of the total drag is due to profile drag, such that in helicopter applications, modifications in the outermost tip region of the ogee would be beneficial in those portions of the disk such as the advancing side, where tip angles of attack are small. Ogee Pressure Data

The pressure taps on the ogee model were positioned such that a series of taps at six spanwise stations were aligned parallel to the airstream at $\Lambda=0$, -20 and +20 degrees (fig. 1). The absolute pressure distributions for these spanwise stations at $\Lambda=0$, -20 and +20 degrees are shown in figures 16, 17 and 18, respectively. At N=0 degrees, there was a drop in the pressure peak at the leading edge at $\alpha=14^{\circ}$ near station 136.14(53.60), and at $\alpha=12$ degrees farther outboard. At $\Lambda=\pm20$ degrees, the drop in the pressure peak at the leading edge occurs at $\alpha=14$ degrees at approximately the same spanwise station as at A=0 degrees, and also at $\alpha=12$ degrees farther outboard. At $\Lambda=-20$ degrees, the outermost sections of the ogee do not show this characteristic drop in the pressure peaks up to $\alpha=14$ degrees. Farther inboard, however, the differences in the pressure peaks between $\alpha=12$ degrees and $\alpha=14$ degrees are less than those at $\Lambda=0$ degrees or $\Lambda=+20$ degrees for these angles of attack. At angles of attack less than 12 degrees, the streamwise pressure distributions are representative of those normally observed farther inboard from the tip of a lifting surface. For all sweep angles, the distortion in the pressur distributions at angles of attack near 12 degrees are associated with the formation of more distinct vortices at this angle of attack,

while at higher angles of attack, the lifting surface experiences the onset of stall.

Balance data in the angle-of-attack range $12^{\circ} \leq \alpha \leq 14^{\circ}$ shows that the onset of stall for the ogee-tip configuration was more gradual than for the conventional-tip configuration at all sweep angles, and the pressure data support these results as seen that not all sections of the ogee stalled simultaneously.

Because of the limited number of pressure taps that could be installed in streamwise alignment at all sweep angles, indications of vortex formation were not conveniently discerned from the streamwise pressure distributions. Contour plots showing lines of constant pressure for the upper surfaces of the ogee were generated from cross plots of the chordwise and spanwise pressure distributions. In these plots, evidence of vortex formation can be easily discerned by the distortion of the contours as shown for a conventional-tip configuration in figure 19 (fig. 3 of ref. 4). Contour plots at $\alpha=8$ degrees for $\Lambda=-20$, 0, and +20 degrees are shown in figures 20, 21 and 22, respectively. At an angle of attack of 8 degrees, the lines of constant pressure tended to retain a constant chordwise position from the inboard to the outermost regions of the ogee, and this uniformity was negligibly affected as the sweep angle was varied from -20 degrees to +20 degrees. As the sweep angle was varied, however, there was a chordwise shift in the lines of constant pressure, which was most noticeable nearer the trailing edge of the surface. The uniformity of the contours, however, indicates that the vorticity in the tip region tends to trail off as a sheet, since the contours are typical of those inboard of the tip of a lifting surface.

Contour plots for α =12 degrees and Λ =-20, 0, and +20 degrees are shown in figures 23, 24, and 25, respectively. As the angle of attack was increased from 8 to 12 degrees, the uniformity in the lines of constant pressure that was seen at α =8 degrees became distorted, particularly in the region near spanwise station 159.51(62.80). The shift in the lines of constant pressure as sweep angle was varied at α =8 degrees became more pronounced at α =12 degrees, and the peak pressures near the leading edge at Λ =-20 degrees were higher than at Λ =0 degrees or Λ =+20 degrees. The reason for these characteristics are unknown. The contour plots indicate the formation of a vortex in the region near station 159.21 (62.80) and the characteristic patterns of the contours also suggest that the vortex for the swept-forward configuration would tend to be more distinct than for zero or aft-sweep configurations.

Figure 26 shows the contour pressure plot for $\Lambda=-20$ degrees and $\alpha=12$ degrees using a modified ogee tip. Comparison of figure 23 with figure 26 shows that the nonuniform flow region

which existed in the area near station 159.51 (62.80) for the elliptical ogee finger became more uniform with the modified ogee tip. The modified tip would thus show less tendency to form a concentrated vortex than the elliptical ogee finger at the same conditions. The contours for the modified tip also show a chordwise shift in lines of constant pressure, and higher peak pressures were obtained at the leading edge of this configuration than for the elliptical ogee finger for the same conditions.

Pressure data were also obtained for spanwise locations along the upper and lower surfaces of the ogee model at the 19% chord, and figure 27 shows these pressure distributions at $\alpha = 8$ degrees for sweep angles of -20, 0, and +20 degrees. An indication of the spanwise loading distribution for the ogee-tip configuration is given in Figure 28, which shows the integrated chordwise pressures in the form of the normal force coefficient, C_N , for spanwise stations of the ogee section at $\Lambda=0$ and $\alpha=8$. Comparison of figures 27 and 28 shows that the characteristic shape of the spanwise pressures at the 19% chord was similar to the loading distribution based on the integrated chordwise distributions. On this basis the spanwise pressures at the 19% chord were considered representative of the spanwise loading distribution. The gradients of the loading distributions from the base of the ogee section, station 116.59 (45.90) were approximately the same for all sweep angles, which suggests that little difference would be expected in the vortices that would be trailed off the lifting surfaces. observation was supported by the tuft-grid and helium-bubble flowvisualization data which showed only slight differences in the swirl patterns for the same conditions. The pressure distributions at all sweep angles also exhibited a distortion which was approximately coincident with the base of the ogee section. This distortion in the pressure distribution was attributed to the marked change in planform at this spanwise position.

The sharp drop in the pressure coefficient near the root of the ogee model shown in figure 27 was due to the gap between the model and the wind tunnel floor plates, which created a region of low pressure near the root of the model. This gap was maintained larger than had been desired because the deflections of the model on the support system were larger than anticipated. The presence of this gap, however, did not compromise the balance nor the pressure data, since all of the model configurations were consistently subjected to the same gap at all sweep angles. The primary pressure data that were obtained were also far removed from the gap.

Tuft-Grid Flow Visualization

The effectiveness of the ogee tip in diffusing the concentrated trailing tip vortex was observed qualitatively from indications of swirl motions on a tuft grid. The tuft grid was positioned 13 chord lengths downstream of the model. Tuft-grid photographs were taken and analyzed for each test condition during which balance and pressure data were obtained, and representative tuft-grid photographs are shown for sweep positions of -20, 0, and +20 degrees.

Figure 29 shows a series of tuft photographs of the ogee model at sweep angles of -20, 0, and +20 degrees for angles of attack of +4, +8, and +12 degrees. The photographs can be viewed in two aspects, as either the change in swirl motion with variation in angle of attack or with variation in sweep angle. At 4 degrees angle of attack, the tuft photos indicate almost no sign of swirl motion throughout the sweep-angle range investigated. At 8 degrees angle of attack, only slight evidence of swirl motion in the tuft grid can be seen for a sweep angle of -20 degrees, and almost no swirl is evident for sweep angles of 0 or +20 degrees. These observations indicate that the vorticity tends to trail off the ogee tip as a sheet and does not form a concentrated vortex up to a position of 13 chord lengths downstream. As the angle of attack was increased to 12 degrees, the swirl motion in the tufts became more evident for all sweep angles. For $\Lambda=-20^{\circ}$ the swirl motion was more typical of that associated with vortex motion. At A=0° and +20°, the swirl motion was again only slightly discernible in the tufts.

The tuft photos thus show that a slightly more concentrated vortex tended to form at the large angles of forward sweep, while it remained diffuse at conditions of aft sweep. These observations support the data shown in the contour pressure plots which showed that a more concentrated vortex tended to form at $\Lambda=-20^{\circ}$ than for $\Lambda=0$ or $+20^{\circ}$.

Figure 30 shows a series of tuft photographs comparing the conventional-tip model with the ogee-tip model at a sweep angle of -20 degrees for +4, +8, and +12 degrees of angle of attack. The existence of the concentrated trailing tip vortex for the conventional-tip model was clearly evident as indicated by the swirl motion in the tuft grid. In contrast, the ogee tip showed a much lower extent of swirl motion in the tufts. Good resolution of the conventional-tip model was not obtained in these photographs because the model was painted black for helium-bubble flow-visualization studies.

Helium-Bubble Flow Visualization

Flow-visualization studies were conducted using the helium-bubble technique to observe the flow fields across the lifting surfaces and in the near wake. In the helium-bubble technique, neutrally-buoyant, helium-filled soap bubbles are released upstream of the model, and the bubbles are illuminated by a collimated beam of light emanating from a downstream position, which permits visual observation and photographic documentation of the flow field. In the present program, helium bubbles were released from a dual source which allowed more concentration of bubbles at various sections of the ogee tip.

Figures 31, 32 and 33 are photographs of the flow field of the ogee tip for sweep angles of -20, 0, and +20 degrees respectively. The following characteristics of the flow field were observed at the noted angles of attack.

Flow field at $\alpha=8$ degrees: At $\Lambda=-20$ degrees, the flow had a marked inboard spanwise component which was less pronounced at $\Lambda=0$ degrees and virtually nonexistent at $\Lambda=+20$ degrees. At $\Lambda=0$ and +20 degrees, the flow on the outermost section of the ogee exhibited more turbulence in comparison to that seen at $\Lambda=-20$ degrees. No indication of the formation of a concentrated vortex could be noted in the proximity of the lifting surface for any of the sweep angles tested.

Flow field at $\alpha=10$ degrees: At $\Lambda=-20$ degrees, the inboard spanwise component of flow was more distinct than at $\alpha=8$ degrees. At $\Lambda=0$ degrees, there was noticeably more turbulence in the outermost section of the ogee than at $\alpha=8$ degrees, and the turbulent flow also exhibited an inboard spanwise component. The flow at $\Lambda=+20$ degrees was basically the same as that at $\alpha=8$ degrees, except that the turbulent region in the outermost section of the ogee became enlarged.

Flow field at α = 12 degrees: At Λ =-20 degrees, the flow in almost the entire region of the ogee tip was turned inboard, and was noticeably more turbulent than at α =8 degrees. The flow at Λ =0 degrees also exhibited an inboard spanwise component of flow, but to a much lesser extent than at Λ =-20 degrees. At Λ =+20 degrees, the flow field across the ogee was almost the same as at α =8 and 10 degrees, that is, the flow across the lower section of the ogee was primarily parallel to the stream, with a separate, distinct turbulent area across the outermost section of the surface.

The inboard spanwise component of flow that was noted at $\alpha=10$ degrees and 12 degrees was highly turbulent and was confined to the immediate proximity of the lifting surface. The heliumbubble streaks which depict the streamwise flow field in the photographs occur farther out from the surface. A photograph depicting this flow field for $\alpha=12$ degrees and $\Lambda=0$ degrees is shown as figure 34. This photograph was taken from a point

slightly behind and outboard of the ogee such that the trailing edge of the ogee is in the foreground of the photograph. In this view the separation of the turbulent flow field from the nonturbulent flow field can be more easily discerned. As can be seen in figures 31, 32 and 33, this turbulent spanwise type of flow did not occur at positive sweep angles, and was also noted to be absent at sections of the model farther inboard of the ogee tip section.

Visualization of the flow field farther downstream of the ogee model at $\Lambda=-20$ degrees is shown in figure 35 for angles of attack of +8, +10, and +12 degrees. Only at the 12 degree angle-of-attack position can evidence of vortex swirl motion be noted in the photographs. The observed swirl motion at the farther downstream position, however, was not as sharply defined as for a conventional-tip model (e.g. ref. 2).

Comparison of the flow fields for the conventional and ogeetip configurations are shown in figure 36 for the models at $\Lambda=-15^{\circ}$ and at angles of attack of +8, +10, and +12 degrees. The presence of a concentrated vortex trailing from the conventionaltip model was clearly evident at each angle-of-attack position as the helium bubbles were tightly entrained within the vortex. In contrast, the ogee tip showed markedly less tendency of the flow to develop this distinctive concentrated pattern. The indications of turbulence and the inboard spanwise flow that were noted at $\alpha=8$, 10 and 12 degrees for $\Lambda=-20$ degrees were also evident at $\Lambda=-15$ degrees.

A "reverse-ogee" configuration was achieved during the test program by rotating the turntable 180° in the test section so that the trailing edge of the ogee was upstream. The purpose of this test was to obtain a qualitative indication of the flow field of this type of planform by means of flow visualization. The model was tested in this attitude at $\Lambda=0^{\circ}$.

Photographs of the flow field of this reverse-ogee configuration as depicted by the helium bubbles at angles of attack of 8, 10 and 12 degrees are shown in figure 37. At $\alpha=8$ and 10 degrees, a vortex formed along the upstream edge of the reverse ogee near station 116.59 (45.90). This station was coincident with the juncture of the constant-chord blade section and the ogee section. The vortex then trailed off from the reverse ogee at approximately three quarters of the distance outboard of this juncture to the tip. From this three-quarter position and outboard, the flow over the airfoil was highly turbulent, while the flow over the inboard section remained relatively parallel to the stream. At $\alpha=12$ degrees, the vortex which formed over the upstream edge (at $\alpha=8$ and 10 degrees) became obscured as the turbulent-flow

region extended over a wider area of the ogee section. Although it is recognized that the airfoil section was reversed in the airstream, it appears that a reverse ogee shape would be more apt to form a concentrated vortex because of the abrupt change in the planform at the leading edge. The formation of this vortex can be related to that exhibited by delta wings or to leading-edge "spikes" of (otherwise) conventional swept wings.

The quantitative results which were obtained in the test program were confirmed qualitatively by the flow visualization data in several aspects. Observation of the flow field, for example, showed an area of turbulent flow over the outermost sections of the ogee, which became gradually more pronounced as the angle of attack was increased. The pressure distributions reflected this phenomenon in that the peak pressures at the leading edge of the model dropped off along the span of the ogee These phenomena were also reflected in much the same manner. in the balance data as the drag of the ogee increased noticeably more gradually than the conventional tip model at angles of attack below stall. The tendency of the ogee to form a vortex at A=-20 degrees which was noted in the contour plots of the pressure data was also reflected in the tuft-grid data and in the downstream helium-bubble visualization of the flow field.

CONCLUSIONS

On the basis of the research effort that was conducted, it was concluded that the ogee-tip configuration shows good promise toward application to helicopter rotor systems both in regard to the diffusion of the trailed tip vortex and in performance The pressure and flow-visualization data showed characteristics. that the vorticity tends to trail off the ogee tip as a sheet rather than in a concentrated form as in a conventional-tip This characteristic was minimally affected by configuration. changes in sweep angle in the range -20 degrees-A-+30 degrees. The performance data showed that higher L/D's were attained with the ogee-tip configuration than for the conventional-tip configuration for comparable test conditions. The ogee also exhibited a more gradual approach to stall in comparison to the conventional-tip model, and this characteristic would tend to alleviate the high dynamic loads that are encountered by conventional rotor blades at stall.

RECOMMENDATIONS

Wind tunnel tests should be conducted at high subsonic speeds to determine the effects of compressibility on the performance characteristics of the ogee-tip configuration in relation to the conventional-tip configuration. These tests should provide for variation in the outermost tip geometry of the ogee.

Effort should continue to implement the application of the ogee tip to flight hardware. This supportive effort should include the comparative analysis of performance, acoustic and rotor-downwash characteristics between the ogee and conventional-tip rotor systems from whirl-tower and/or wind-tunnel test data.

REFERENCES

- Rorke, J.B., Moffitt, R.C., and Ward, F.J., "Wind Tunnel Simulation of Full-Scale Vortices", Preprint No. 623, 28th Annual National Forum of the American Helicopter Society, Washington, D.C., May 1972.
- Balcerak, J.C., and Feller, R.F., "Vortex Modification by Mass Injection and by Tip Geometry Variation", Rochester Applied Science Associates, Inc., RASA Report 73-01, USAAMRDL Technical Report 73-45, to be published, 1973.
- Landgrebe, A.J., and Bellinger, E.D., "Experimental Investigation of Model Variable-Geometry and Ogee Tip Rotors', United Aircraft Research Laboratories, NASA Contract No. NAS1-10906, to be published, 1973.
- 4. Chigier, N.A., and Corsiglia, V.R., "Tip Vortices Velocity Distributions", Preprint No. 522, 27th Annual National V/STOL Forum of the American Helicopter Society, Washington, D.C., May 1971.

TABLE I
OGEE-TIP PLANFORM COORDINATES

x-Coordinate	y-Coordinate
cm (in.)	cm (in.)*
2.06 (0.81)	188.85 (74.35)
2.67 (1.05)	185.65 (73.09)
3.18 (1.25)	183.54 (72.26)
3.76 (1.48)	181.41 (71.42)
4.32 (1.70)	179.78 (70.78)
5.69 (2.24)	176.07 (69.32)
6.65 (2.62)	173.91 (68.47)
8.03 (3.16)	171.55 (67.54)
9.37 (3.69)	169.42 (66.70)
10.52 (4.14)	167.77 (66.05)
12.04 (4.74)	165.56 (65.18)
13.36 (5.26)	164.06 (64.59)
15.88 (6.25)	161.54 (63.60)
linear variation	linear variation
47.83 (18.83)	129.54 (51.00)
48.26 (19.00)	129.08 (50.82)
49.33 (19.42)	128.02 (50.40)
50.90 (20.04)	126.09 (49.64)
52.25 (20.57)	124.00 (48.82)
53.09 (20.90)	121.64 (47.89)
53.59 (21.10)	116.59 (45.90)

^{*}Station reference at tunnel floor.

TABLE II

MODEL #1 PRESSURE TAP LOCATIONS AND DESIGNATION

	CHORD LOCATION									
STATION cm(in.)	1.00%	4.75%	9.50%	19,0%	28.4%	37.9%	57.0%	66.5%	76.0%	85.0%
178.31 (70.20) 175.01 (68.90) 173.23 (68.20) 171.45 (67.50) 168.15 (66.20) 164.85 (64.90) 163.20 (64.25) 161.29 (63.50) 159.51 (62.80) 158.62 (62.45) 155.19 (61.10) 151.77 (59.75) 149.86 (59.00) 148.08 (58.30) 145.29 (57.20) 144.78 (57.00) 137.67 (54.20) 139.70 (55.00) 137.67 (54.20) 132.33 (52.10) 130.56 (51.40) 128.78 (50.70) 127.00 (50.00) 125.10 (49.25) 121.92 (48.00) 121.29 (47.75) 119.63 (47.10) 117.86 (46.40) 114.81 (45.20) 114.81 (45.20) 114.30 (45.00) 111.13 (43.75) 110.62 (43.55) 106.93 (42.10) 103.89 (40.90) 103.29 (40.65) 101.98 (40.15) 100.33 (39.50) 98.55 (38.80) 72.39 (28.50)	1 2 3 4 5 	14	16 17 18 19 20 21 	26 27 28 29 30 31 31 32 33 34 34 35 36 37	43		58 	64	67	

TABLE II. - Concluded

MODEL #1 PRESSURE TAP LOCATIONS AND DESIGNATION

STAT	rion				СН	ORD L	OCATI	ON			
cm (i	Ln.)	1.00%	4.75%	9.50%	19.0%	28.4%	37.9%	57.0%	66.5%	76.0%	85.0%
60.33 48.26 36.20 24.13 12.07	(23.75) (19.00) (14.25) (9.50) (4.75)	 			38 39 40 41 42			 	 	 	

TABLE III

COMPARISON OF MODEL GEOMETRY

			Ogee-Tip Model			Conve	Tip	
Λ degrees	S cm ² (in. ²)		b cm(in.)		AR	b cm(in.)	AR
-20	8544	(1324)	176.7	(69.6)	7.31	159.0	(62.6)	5.92
-15	8434	(1307)	182.1	(71.7)	7.86	159.0	(62.6)	5.99
-10	8319	(1289)	186.0	(73.2)	8.31	157.6	(62.0)	5.97
-5	8201	(1271)	188.2	(74.1)	8.63	154.8	(60.9)	5.84
0	8069	(1250)	188.9	(74.4)	8.84	150.6	(59.3)	5,62
5	8026	(1244)	189.6	(74.7)	8.96	151.5	(59.7)	5.72
10	7971	(1235)	188.9	(74.4)	8.95	151.2	(59.5)	5,73
20	7826	(1213)	182.4	(71.8)	8.50	146.4	(57,7)	5.48
30	7676	(1189)	168.8	(66.5)	7.42	135.7	(53.4)	4.79

TABLE IV
BALANCE DATA TEST CONDITIONS

Test Run No.	Model Configuration	Sweep Angle A, degrees	Angle of Attack Series $lpha_{_{ m K}}$, degrees
1	Model #1	0	-2,0,2,4,6,8,10,12,14
2	Model #1	+30	-2,0,2,4,6,8,10,12,14
3	Model #1	+20	-2,0,2,4,6,8,10,12,14
5	Model #1	+10	-2,0,2,4,6,8,10,12,14
7	Model #1	+ 5	-2,0,2,4,6,8,10,12,14
12	Model #1	-5	-2,0,2,4,6,8,10,12,14
13	Model #1	-10	-2,0,2,4,6,8,10,12,14
14	Model #1	-20	-2,0,2,4,6,8,10,12,13,14
18	Model #3	-20	-2,0,2,4,6,8,10,12,13,14 15,16,17,18
19	Model #3	-15	-2,0,2,4,6,8,10,12,13,14 15,16,17
32	Model #1 Rotated 180°	0	-2,0,2,4,6,8,10,12
33	Model #1	-15	-2,0,2,4,6,8,10,12,13,14, 15,16
34	Model #1 With Modified	-20	-2,0,2,4,6,8,10,12,13,14
35	Tip	e e e e	
36	Model #3 Model #3	0	-2,0,2,4,6,8,10,12,14
37	Model #3	+5	-2,0,2,4,6,8,10,12,14
38	·	+10	-2,0,2,4,6,8,10,12,14
39	Model #3	+20	-2,0,2,4,6,8,10,12,14
40	Model #3	+30	-2,0,2,4,6,8,10,12,14
41	Model #3	-10	-2,0,2,4,6,8,10,12,14
42	Model #3 Model #3	-5 -20	-2,0,2,4,6,8,10,12,14 -2,0,2,4,6,8,10,12,14,15

TABLE V
PRESSURE DATA TEST CONDITIONS

Test Run No.	Model Configuration	Sweep Angle A, degrees	Angle of Attack Series a _{R'} degrees
1	Model #1	0	-2,2,4,6,8,10,12,14
2	Model #1	30	-2,2,4,6,8,10,12,14
3	Model #1	20	-2,2,4,6,8,10,12,14
5	Model #1	10	-2,2,4,6,8,10,12,14
7	Model #1	5	-2,2,4,6,8,10,12,14
12	Model #1	-5	-2,2,4,6,8,10,12,14
13	Model #1	-10	-2,2,4,6,8,10,12,14
14	Model #1	-20	-2,2,4,6,8,10,12,13,14
32	Model #1 Rotated 180°	0	-2,4,8,12
33	Model #1	-15	-2,2,4,6,8,10,12,14
34	Model #1 With Modified Tip	-20	4,12

Figure 1. Model #1 ogee-tip planform

Figure 2. Model #1 planform

Figure 3. Schematic diagram of the ogee and conventional model planforms

Figure 4. Wind tunnel installation of Ogee Model #1, Λ = +20°

Figure 5. Wind tunnel installation of Ogee Model #1, $\Lambda = -20^{\circ}$

Figure 6. Wind Tunnel Installation of Ogee Model #2, $\Lambda = +30^{\circ}$

Figure 7. Wind tunnel installation of Model #3, $\Lambda = -15^{\circ}$

Sweep Angle, A, degrees

Figure 8. Drag coefficient vs. sweep angle at a constant angle of attack for the ogee model

Figure 9. Drag coefficient vs. sweep angle at a constant angle of attack for the conventional-tip model

Figure 10. Lift-to-drag ratios vs. angle of attack for sweep variation of the ogee model

Figure 11. Lift-to-drag ratios vs. angle of attack for sweep variation of the conventional-tip model

Sym

Figure 12. Spanwise lift center vs. angle of attack for sweep variation of the ogee model

Spanwise Lift Center vs. Angle of Attack

Figure 13. Spanwise lift center vs. angle of attack for sweep variation of the conventional-tip model

Figure 14. Effect of the modified ogee-tip on the L/D performance of the ogee model at $\Lambda=-20^{\circ}$

Effect of Modified Ogee Tip on Spanwise Drag Center

Figure 15. Effect of the modified ogee-tip on the spanwise drag center of the ogee model at $\Lambda=-20^{\circ}$

Figure 16. Chordwise pressure distributions of the ogee for $\Lambda=0^{\circ}$

Chordwise Stations at $\Lambda=0^{\circ}$; Station 117.86(46.40) -6.0 T Sym -2° 0 0000 -5.0 8° 10° 12° **\rightarrow** 140 -2.0 -1.0 upper surface 0 100 10 20 30 40 60 50 X/C -1.0 lower surface $\Delta P/q$ 0

Figure 16. Chordwise pressure distributions of the ogee for $\Lambda \models 0^{\circ}$ - Continued

Chordwise Stations at A=0°; Station 136.14(53.60) -6.0 Sym 0 Δ -5.0 140 $\Delta P/q$ -2.0 -1.0 upper surface 0 30 40 50 X/C -1.0 lower surface

Figure 16. Chordwise pressure distributions of the ogee for $\Lambda=0^{\circ}$ - Continued

Figure 16. Chordwise pressure distributions of the ogee for $\Lambda=0^{\circ}$ - continued

Figure 16. Chordwise pressure distributions of the ogee for $\Lambda = 0^{\circ}$ - Continued

Figure 16. Chordwise pressure distributions of the ogee for $\Lambda=0^{\circ}$ - Concluded

Chordwise Stations at A=-20°; Station 117.86(46.40)

Figure 17. Chordwise pressure distributions of the ogee for $\Lambda = -20^{\circ}$

Chordwise Stations at $\Lambda=-20^{\circ}$; Station 132.33(52.10)

Figure 17. Chordwise pressure distributions of the ogee for $\Lambda=-20^{\circ}$ - Continued

Figure 17. Chordwise pressure distributions of the ogee for A=-20° - Continued

Chordwise Stations at $\Lambda=-20^{\circ}$; Station 155.19(61.10)

Figure 17. Chordwise pressure distributions of the ogee for $\Lambda=-20^{\circ}$ - Continued

Figure 17. Chordwise pressure distributions of the ogee for $\Lambda=-20^{\circ}$ - Continued

Chordwise Stations at $\Lambda=-20^{\circ}$; Station 175.01(68.90)

Figure 17. Chordwise pressure distributions of the ogee for $\Lambda=-20^{\circ}$ - Concluded

Figure 18. Chordwise pressure distributions of the ogee for $\Lambda=+20^{\circ}$

54

Chordwise Stations at A=+20°; Station 117.86(46.40)

Figure 18. Chordwise pressure distributions of the ogee for $\Lambda=+20^{\circ}$ - Continued

Chordwise Stations at A=+20°; Station 132.33(52.10) -6.0_F Sym -2° 0 2° △ 4° □ 6° ∇ 8° 0 -5.0 10° 120 *14*° $\Delta P/q$ -1.0 upper surface 0 50 X/C -1.0 lower surface

Figure 18. Chordwise pressure distributions of the ogee for $\Lambda=+20^{\circ}$ - Continued

+1.0

Chordwise Stations at $\Lambda=+20^{\circ}$; Station 144.78(57.00)

Figure 18. Chordwise pressure distributions of the ogee for $\Lambda = +20^{\circ}$ - Continued

Figure 18. Chordwise pressure distributions of the ogee for $\Lambda=+20^{\circ}$ - Continued

Figure 18. Chordwise pressure distributions of the ogee for $\Lambda=+20^{\circ}$ - Concluded

Figure 19. Isobars on top surface of wing (tip region), $\lambda = 0$, $\alpha =]2^{\circ}$. (Figure 3 of Reference 4).

Figure 20. Contour pressure plot of the ogee-tip section at $\alpha{=}8^{\circ}$ and $\Lambda{=}{-}20^{\circ}$

Figure 21. Contour pressure plot of the ogee-tip section at $\alpha=8^{\circ}$ and $\Lambda=0^{\circ}$

Figure 22. Contour pressure plot of the ogee-tip section at $\alpha=8^{\circ}$ and $\Lambda=+20^{\circ}$

Figure 23. Contour pressure plot of the ogee-tip section at $\alpha=12^{\circ}$ and $\Lambda=-20^{\circ}$

Figure 24. Contour pressure plot of the ogee-tip section at $\alpha = 12^{\circ}$ and $\Lambda = 0^{\circ}$

Figure 25. Contour pressure plot of the ogee-tip section at $\alpha=12^{\circ}$ and $\Lambda=+20^{\circ}$

Figure 26. Contour pressure plot of the ogee-tip section with a modified tip at $\alpha=12^\circ$ and $\Lambda=-20^\circ$

Figure 27. Spanwise pressure distributions of the ogee model at $\alpha{=}8\,^\circ$ and $\Lambda{=}{-}20\,^\circ$, 0°, and +20°

Figure 28. Spanwise loading distribution for the ogee-tip section at $\alpha\!=\!8\,^{\circ}$ and $\Lambda\!=\!0\,^{\circ}$

Figure 29. Tuft-grid visualization for the Ogee model with sweep and angle-of-attack variation

Figure 30. Tuft grid comparison of conventional and Ogee tip model at A=-20°

 $\Lambda = -20^{\circ}$ $\alpha = 8^{\circ}$

 $\Lambda = 0^{\circ}$ $\alpha = 8^{\circ}$

 $\Lambda = +20^{\circ}$ $\alpha = 8^{\circ}$

Figure 31. Influence of sweep angle on the flow field of the ogee-tip at $\alpha=8^{\circ}$

 $\Lambda = -20^{\circ}$ $\alpha = 10^{\circ}$

 $\Lambda = 0^{\circ}$ $\alpha = 10^{\circ}$

 $\Lambda = +20^{\circ}$ $\alpha = 10^{\circ}$

Figure 32. Influence of sweep angle on the flow field of the ogee-tip at $\alpha=10^{\circ}$

 $\Lambda = -20^{\circ}$ $\alpha = 12^{\circ}$

 $\Lambda = 0^{\circ}$ $\alpha = 12^{\circ}$

 $\Lambda = +20^{\circ}$ $\alpha = 12^{\circ}$

Figure 33.) Influence of sweep angle on the flow field of the ogee-tip at $\alpha=12^{\circ}$

View looking forward and inboard

Figure 34.) Spanwise view of the flow field; $\Lambda=0^{\circ}$, $\alpha=10^{\circ}$

 $\Lambda = -20^{\circ}$ $\alpha = 8^{\circ}$

 $\Lambda = -20^{\circ}$ $\alpha = 10^{\circ}$

 $\Lambda = -20^{\circ}$ $\alpha = +12^{\circ}$

Figure 35. Downstream flow-visualization of the ogee-tip at Λ=-20°

Figure 36. Flow field comparison of the conventional and Ogee-tip models at A=-15°

Figure 37. Flow field visualization for the "reverse" ogee-tip configuration at $\Lambda=0^{\circ}$

APPENDIX A WIND AXES BALANCE DATA

Wind-axes Coordinate System

RUN NO TEST NO

656

WIND AXES

1

5 31 01 00 00 00 00

AA	AY	L	D	PM	YM	RM	SF	C CP	L/D	S CP	Q
-002.0	-000•0	-0034+1	003-24	-0002.5	-0005.5	-00078.9	-0001.4	-00.073	-10.524	00.230	038.53
-000.0	-000.0	0015.6	003.33	0000.6	-0008.5	00047.6	-0001.3	-00.038	04.684	00.305	038.53
002.0	-000•C	0068-3	004+21	0003.5	-0011.3	00181.8	-0002•0	-00-051	16.223	00.266	038 • 53
004.0	-000.0	0122.9	005.86	0007.8	-0016.0	00323.3	-0001.0	-00.063	20.972	00.263	038 • 53
006.0	-000•0	0173.7	008.59	0010.3	-0026.6	00441.0	0000-9	-00+059	20.221	00.254	038.53
0.800	-000.0	0218•3	012.66	0012.5	-0035.2	00562•2	0001.7	-00•057	17.243	00.257	038 • 53
010.0	-000•0	0258.0	017.93	0013.2	-0044.0	00680.1	0002.2	-00.051	14.389	00.263	038.53
012.0	-000•0	0296•7	025.98	0013.9	-0069.3	00781.6	0002.1	-00•047	11.420	00.263	038.53
014.0	-000.0	0320.8	039.75	0010.9	-0119.2	00843.2	0000.7	-00.033	08.070	00.263	038.53

RUN NO TEST NO 2 656 WIND AXES 05/07/73 9 31 01 00 00 00 00

		L	Đ.	РМ	YM	RM	SF	C CP	L/D	S CP	Q
AA	AY	·	004+05	0037.0	0000•2	-00078•7	-0000.8	01.085	-08+395	00.230	
-002+0	-000•0						-0001.5	01.379	07.149	00+216	032.48
000-0	-0000+0	0015.8	002.21	-0021.8				01.240	18.812	00.226	040.42
002.0	-000.0	0068.1	003.62	-0084.6	-0005.0	00154.4	-0001.6	-	24.291		
004.0	-000+0	0123+4	005.08	-0151.7	-0005 • B	00283•7	-0003•4	01.229		••	
			007-17	-0212.7	-0007 • 1	00396•2	-0009• 0	01.223	24.267	00.227	•
006.0	-000•0	_		_		00500+1	-0014.0	01.216	20.990	00.228	044.50
008.0	-000•0	0218•3	010.40			00528•2		01-189	15.872	00.203	044.50
010.0	-000.0	0258•4		-0305.9				01.170	12.931	00.219	044.50
012.0	-000+0	0296.9	022.96	-0345.5	-0034.9	00654•6				00.213	
			022 22	-0369-5	-0059.1	00688.6	-0025.0	01.155	09.947	004213	042411

RUN NO TEST NO

WIND AXES 05/07/73 8 31 01 00 00 00 00

3	65	6

AA	AY	L	D	РМ	YM	RM	SF	C CP	L/D	S CP	Q	
-002.0	-000.0	-0033.8	003.85	0024.5	-0003.3	-00086.2	-0000•6	00.722	-08.779	00.254	047.20	
000.0	-000+0	0015•6	002.75	-0015.0	-0005.4	00093.5	0000•6	00.961	05.672	00.599	031.75	
002.0	-000.0	0068•4	003.81	-0057.4	-0008.2	00287.1	-0001.7	00.837	17.952	00-419	038 • 45	
004.0	-000.0	0122.9	005.16	-0102.7	-0009+6	00487•4	0001+1	00.835	23.817	00+396	040.34	
006.0		0174.3	008.01	-0145.3	-0016.6	00434.0	-0004.6	00.834	21.760	00.248	041.88	
008.0	-000.0	0217.8	010.60	-0180.4	-0019.7	00540+1	-0005.8	00.830	20.547	00.247	040.85	
	-000•0	0258.4	014.82	-0207.8	-0028.7	00629•0	-0007•7	00.808	17.435	00.242	039.94	
012.0	-000•0	0297+8	021.45	-0237•4	-0046•4	00711•9	-0010+6	00+802	13.883	00.238	040 • 46	
014.0	-000.0	0320•8	032.30	-0252.4	-0081.6	00746 • 3	-0012.5	00.791	09.931	00.233	039.91	
-002.0		-0033•7	003.75	0027.2	-0004.3	-00089•1	-0000•7	00.804	-08+986	00.263	047.20	
000.0	-000+0	0016.0	002.35	-0014.5	-0005+3	00034+7	-0000•4	00-906	06+808	00.216	028.32	-
002.0	-000•0	0068+1	003.66	-0056.5	-0008.1	00162.5	0000•4	00-828	18.606	00.238	037.33	
004.0		0123•5	005.16	-0102.9	-0010+7	00302+1	-0001.3	00+833	23.934	00.244	040 • 12	

RUN NO TEST NO

5 656

WIND AXES 05/07/73 7 31 01 00 00 00 00

· AA	· AY		D	PM .	YM	RM	SF	C CP	L/D	S CP	Q
-002.0	-000.0	-0033.4	003.19	0011.3	-0006.0	-00078.5	-0001.4	00.337	-10.470	00.234	036.90
000.0	-000.0	0015.9	003.50	-0006.5	-0009+2	00046•2	-0001.5	00.408	04.542	00.290	043.34
002.0	-000.0	0068•0	003.81	-0026.4	-0011.4	00175.6	-0001.3	00.387	17.847	00.258	038.02
004.0	-000.0	0123.2	005.13	-0047.5	-0015.2	00315.6	-0001.5	00.385	24.015	00.256	038.36
006.0	-0.00+0	0174•4	006.98	-0066.1	-0019.9	00444.1	-0002.8	00.379	24.985	00.254	037.98
008.0	-000-0	0218.4	009.37	-0080.6	-0025.4	00554.0	-0003.8	00.370	23.308	00.253	037.16
010.0	-000.0	0257•7	013.05	-0094.3	-0035•3	00644.1	-0003+8	00.368	19.747	00+250	036.47
012.0	-000.0	0297•2	019.48	-0108.2	-0057.8	00737•3	-0007.0	00.367	15.256	00.248	036.30
014.0	-000+0	0321.2	029.77	-0119.6	-0094•4	00780•0	-0007•4	00.375	10.789	00.244	036 • 30

RUN NO TEST NO

7 656

WIND AXES 05/07/73

AA	AY	L	D	PM	YM	RM	SF	C CP	L/D	S CP	Q	
-002.0	-000.0	-0034-1	002.99	0003.8	-0004•4	-00081.2	0002.1	00.111	-11.404	00.237	035•40	
000.0	-000•0	0015•4	003.51	-0002+4	-0008.7	00043•4	-0000+6	00.155	04.387	00.281	043.12	
002.0	-000•0	0068.0	003.75	-0010.6	-0010.9	00174.9	-0001.0	00.155	18.133	00.257	037.76	
004.0	-000.0	0123.1	005.09	-0019.8	-0015.3	00317.1	-0000.3	00.160	24.184	00.257	038.18	
006.0	-000.0	0174.0	006.91	-0026.1	-0020-1	00445.7	-0001.4	00.150	25.180	00.256	037.46	
008.0	-000•0	0218.0	009.59	-0032.6	-0027.6	00553+1	-0001.6	00.150	22.732	00.253	036 • 47	
010.0	-000•0	0257.8	012.63	-0037.9	-0034.9	00650 • 6	0000•2	00-148	20 • 411	00.252	035.48	
012.0	-000•0	0297•2	019+98	-0044.6	-0060 • 1	00745•0	-0000•4	00-151	14.874	00.251	035+61	
	-0.00-0	0321.0	032.08	-0053-2	-0101.5	00790•0	-0001.6	00.166	10.006	00.247	035.74	

RUN NO TEST NO 12 656 WIND AXES

05/07/73

4 31 01 00 00 00 00

	the second of th										
AA	AY	L	D	PM	YM	RM	SF	C CP	L/D	S CP	Q
-002.0	-000.0	-0033+8	003.74	-0008.2	-0007.9	-00078-4	0000•3	-00.241	-09.037	00.231	040.97
000.0	-000.0	0015.9	002.98	0005.7	-0008.8	00045 • 1	-0002.0	-00.358	05.335	00.283	031.84
002.0	-000+0	0068•2	003.92	0021.1	-0012•4	00180.7	-0.001.0	-00.308	17.397	00.265	035-14
004 • 0	-000•0	0123•2	005+87	0036•1	-0017-4	00318•0	-0000.9	-00-292	20.988	00.258	036-64
006.0	-000.0	0174.4	008.34	0050.6	-0023.3	00449•4	-0000-3	-00-290	20.911	00.257	036.64
008.0	-000.0	0218.3	013.13	0061.4	-0032.8	00567.4	0001.8	-00.281	16.626	00.259	037.12
010.0	-000.0	0258.5	018.10	0071.3	-0043.6	00670.8	0003.0	-00.276	14.281	00.259	036.69
012.0	-000.0	0297.5	027.49	0083.1	-0074+0	00777.1	0004+6	-00.280	10.822	00.261	037.33
014.0	-000.0	0321.1	041.14	0083.2	-0122.3	00844.1	0004.0	-00-258	07.805	00.263	037.03

RUN NO TEST NO

WIND AXES

05/07/73

			13 656					3 31 01 00 00 00 00			
AA	AY	Ĺ	. D	РМ	YM	RM	SF	, C. CP	L/D	S CP	Q .
-002.0	-000.0	-0034+1	003.71	-0014.5	-0010.1	-00076.5	-0000.7	-00-423	-09.191	00.224	039.52
000.0	-000•0	0015.7	003.09	0010•4	-0011.3	00043.8	-0001•0	-00.662	05.080	00.278	033.08
002.0	-000.0	0068•4	003.95	0036.2	-0014.2	00174.2	0001.1	-00.528	17.316	00.254	034.97
004+0	-000•0	0122+8	005+84	0063.3	-0019•4	00311•6	0000•6	-00-515	21.027	00.254	036.34
006.0	-000•0	0174•5	008.88	0089.4	-0025.7	00442•4	0002-4	-00.512	19.650	00.253	037.07
008+0		0218•3	013.45	. 0111.0	-0034•6	00557•0	0004•6	-00-509	16.230	00 • 255	037.07
010.0		0258•3	018.42	0130•4	-0045•3	00662.9	0006+4	-00.506	14+022	00.256	036 • 64
012.0		0297•3	026.01	0149.3	-0068+6	00769•5	0007•7	-00+504	11.430	00.258	036•64
014-0		0231-2		0159.0		00833•1	0009•7	-00-495	08.526	00.260	035.98

RUN NO TEST NO

14 656

WIND AXES 05/07/73 1 32 01 00 00 00 00

AA	AY	· L	D	PM	YM	RM	SF	C CP	L/D	S CP	Q
-002.0	-000•0	-0034•0	003.38	-0026.3	-0011.2	-00072.5	-0001.2	-00.771	-10.059	00.213	038.40
000.0	-000.0	0015.5	003.47	0019.6	-0014.5	00043•9	-0001.2	-01-264	04.466	00.283	037.07
002.0	-000.0	0067.8	004.23	0065.2	-0016.7	00164.0	-0000.8	-00.960	16.028	00.242	037.63
	-000•0	0122•6	006.79	0114.7	-0021.3	00294•6	0001.5	-00.934	18.055	00.240	039.21
004•0	-000•0	0173.9	010.53	0161.5	-0026+6	00423•9	0003-3	-00.928	16.514	00.243	039.65
006•0		0217.8	014.99	0201.8	-0033.3	00536•0	0006.9	-00.926	14.529	00.245	038.06
0.800	-000•0		020.11	0239.4	-0041.9	00639•4	0011.1	-00.931	12.809	00.247	037.68
010.0	-000.0	0257•6	027.76	0280.2	-0060.9	00748.9	0015.2		10.727	00.250	037.89
012.0	-000.0	0297.8	•		-0155.8	00857•8	0008•2	-00.913	04.733	00.265	042.00
014.0	-000•0	0320•6	067.73	0299.1	•	00782•8	0013•4		07.135	00+249	040 • 24
013.0	-000.0	0312•1	043.74	0293.2	-0091.3		***	-	08+166	00+253	040 • 24
013.0	-000•0	0327•4	040+09	0301.5	-0084•4	00834+2	0010+9		07.514	00.250	
012 0	-000-0	032048	042.69	0295.3	-0093+0	00806•9	0009.8	-00.916	014014	004270	0-012-

RUN NO TEST NO WIND AXES 05/07/73
18 656 1 32 01 00 00 00

AA	AY	1 1 L	D	PM	YM	RM	SF	C CP	L/D	S CP	Q
-002.0	-000+0	-0033+5	004.55	-0019.5	-0011.9	-00058.5	-0001.6	-00.580	-07.362	00.175	054.18
000-0	-000•0	0016•1	002.44	0016.9	-0007•6	00040•8	-0001.3	-01-049	06.598	00.253	028•06
002.0	-000.0	0068.7	004.43	0059.7	-0014.6	00155.7	-0001.7	-00.867	15.507	00.226	038.70
004.0	-000•0	0123.6	007.33	0104.1	-0022.3	00281.1	-0001.5	-00.840	16.862	00.227	041.88
006.0	-000.0	0174.5	011.83	0147.6	-0032.7	00399.1	-0000-8	-00.844	14.750	00.229	043.33
008.0	-000+0	0217.9	016.87	0181.8	-0043.3	00502.8	0000•5	-00.833	12.916	00.230	042.05
010.0	-000•0	0257•9	023.21	0213.6	-0059+1	00602.7	0002•2	-00.828	11-111	00.234	041-40
012.0	-000.0	0298.8	030.50	0249.7	-0076.4	00703.9	0004.4	-00.836	09.796	00.235	041.66
013.0	-000.0	0309+6	033.90	0259.9	-0084+4	00730.7	0005.4	-00.840	09.132	00.236	040.85
0.14.0	-000.0	0320.5	038.41	0266.9	-0057.6	00762.6	0003.9	-00.833	08.344	00.235	040.85
015.0	-000.0	0278.9	071.95	0226.2	-0180.3	00736.4	-0009.0	-00.785	03.876	00.263	040.85
016.0	-000.0	0278.2	079.46	0223.0	-0204.4	00714.0	-0011.8	-00.770	03.501	00.256	040.85
017.0	-000.0	0273.4	088.96	0218.9	-0238.6	00728.8	-0014.0	-00.761	03.073	00.266	040.85
018.0	-000+0	0272•6	095•47	0219.5	-0259.9	00735•4	-0016.5	-00.760	02.855	00+270	040.85

RUN NO TEST NO

WIND AXES 05/07 2 32 01 00 00 00 00

AA	AY	2. L	D	PM	ΥM	RM	SF -0002•2	C CP -00•467	L/D -06.441	S CP 00.193	Q 063•42
-002.0	-000•0	-0033•3	005.17	-0015.6	-0014 • 1	-00064•1		-00.762	07.428	00.246	023.42
000.0	-000.0	0015.6	002.10	0011.9	-0007.5	00038.5	-0001.0	-00.660	15.258	00.230	036.00
002.0	-000.0	0067.9	004.45	0044.9	-0015.3	00156.5	-0001.8		15.562	00.231	040.72
004.0	-000.0	0123.1	007.91	0078.3	-0024.0	00284.7	-0001.9	-00.635	13.975	00.231	042.18
006.0		0173.3	012.40	0108.8	-0033.9	00401.3	-0001.7	-00.626	12.308	00.235	042.48
008.0		0218•1	017.72	0136.0	-0045 • 9	00512•1	-0001-1	-00-622	10.792	00.237	041.40
010.0		0257.4	023.85	0160.9	-0061•4	00611.5	-0000 • 1	-00+624	09.508	00.240	041.40
012.0		0297•7	031.31	0187.8	-0080•0	00715•0	0001.0	-00.630	08.931	00.241	040.97
013.0			034.62	0194•4	-0088-4	00744•6	0001.6			00.242	040.97
		0321.5	038.10	0202.6	-0097.0	00777.1	0001.9	-00.630	08.438	00.242	
014.0			071.78	0150-2	-0181.8	00705•2	-0010.9		03.714		040.97
015.0			077.53		₹	00681.7	-0012.3		03.385	00 • 259	
016.0	-000•0		085.30	0144.5		00695•9	-0014.5	-00-533	03.017	00-270	U4U • 77

RUN NO TEST NO

WIND AXES 05/07/73 5 31 01 00 00 00 00

				PM .	YM	RM	SF	C CP	L/D	5 CP	Q	
AA	AY	L	D		-0017-8	00121.5	-0001.0	00.900	07.052	00.259	038•53	
182.0	-000.0	0046•9	006 • 65	0042+4			-0001•2	00.853	01.275	00.226	038 • 53	
180.0	-000.0	0007+5	005.88	0006•4	-0015.8	00017.0				00.291	038-53	
178.0	-000.0	-0031•6	006.56	-0034.0	-0016.7	-00092•3	-0001-6	01.069	-04.817			
. =			009.42	-0079.6	-0021.2	-00232.0	-0002.4	00.932	-09+023	00.272	038.53	
176.0	-000•0	-0085•0			- ·			00.921	-09.158	00.263	038.53	
174.0	-000.0	-0144•7	015.80	-0134.1		-00381.5		-	_	00.255	038.53	
172.0	-000.0	-0186+2	025.20	-0175.2	-0061.6	-00476.1	-0003.0	00.932	_			
		-0215.5	039.12	-0194.3	-0096+2	-00544.5	-0002+8	00.887	-05.508	00.252	038.53	
170.0			-		-0127.5	-00572+6	-0002.5	00.842	-04.206	00-253	038.53	
168.0	-000•0	-0224.8	053-44	-				-00.000	-01.764	-00.133	038.53	
	000 0	0000-3	-000-17	-0000-0	-0000.6	-00000•4	-00000	00000	V = V · V ·			

RUN NO TEST NO 33 656

WIND AXES 05/07/73

2 32 01 00 00 00 00

	· AA	AY	L	, D	PM	ΥM	RM	SF	C CP	L/D	S CP	Q	
	-002.0	-000.0	-0033+6	003.37	-0021.8	-0009.6	-00076 • 5	-0000.6	-00-646	-09.970	00.227	035 • 65.	
	000.0	-000•0	0015.7	003.33	0014.3	-0011-2	00044+9	-0001+4	-00.910	04.714	00.285	035 • 65	
	002.0	-000•0	0068•3	004.31	0052+1	-0015-2	00169•2	-00000+9	-00.761	15 • 846	00.247	037•11	
	004.0	-000•0	0123.2	006.84	0089.6	-0021.1	00308.2	-0000-0	-00.726	18.011	00-250	038.66	
	006•0	-000.0	0174•4	010.44	0127.8	-0026-1	00439•1	0002.3	-00.732	16.704	00.251	038.66	
٠	0.800	-000.0	0217.3	014.60	0160.6	-0033.7	00549.8	0004.8	-00.739	14.883	00.252	038.18	
	010.0	-000•0	0258•2	019.65	0190.2	-0044.9	00659.7	0008.0	-00.738	13.139	00.255	037.37	
	012.0	000.0	0299•0	027.71	0222.8	-0067.3	00771.2	0011.4	-00.747	10.790	00.257	037.50	
	013.0	-000.0	0308.8	032.86	0229.7	-0084•0	00799•7	0011.4	-00.745	09.397	00.258	036.94	
	014.0	-000.0	0321.2	038.40	0237.0	-0101.6	00836.7	0013.6	-00.738	08.364	00.260	036.60	
,	015.0	-000.0	0337•9	043.79	0248.6	-0118.1	00884.5	0014.7	-00.736	07.716	00.262	036.60	
	016.0	-000.0	0278 • 1	077.66	0194.8	-0203.0	00795.3	0001.7	-00.674	03.580	00.284	036.60	

RUN NO TEST NO

WIND AXES

05/07/73

34 656

1 32 01 00 00 00 00

AA	AY	L	. D	PM	YM	RM	SF	C CP	L/D	S CP	Q
-002-0	-000.0	-0033.6	003.69	-0024.7	-0010.2	-00069-1	-0001.0	-00.732	-09.105	00.205	041.62
0.00	-000•0	0015.8	002.93	0017-1	-0010.0	00043 • 0	-0001•4	-01.082	05 • 392	00.272	032+18
002+0	-000•0	0068•6	004.24	0064.4	-0014.4	00162.9	-0001.0	-00.937	16.179	00.237	036.94
004.0	-000.0	0123.1	006.75	0113.3	-0019.6	00291.5	0000.5	-00.918	18.237	00.236	038.87
006.0	-000-0	0174.9	010.49	0161.4	-0024.8	00420•4	0003.0	-00.922	16.673	00.240	039.99
0.800	-000.0	0218.6	015.13	0200.7	-0032.4	00530•2	0006.5	-00.918	14.448	00.242	039.64
010+0	-000.0	0259•2	020.73	0242.1	-0044.8	00638.7	0010.4	-00.935	12.503	00.245	038.61
012.0	-000.0	0297.8	028.24	0278.7	-0061.8	00740-1	0015.1	-00-938	10.545	00.247	038.18
013.0	-000.0	0310•7	034.93	0284.9	-0075 • 3	00779+1	0009.8	-00+917	08.894	00.249	038.18
014.0	-000.0	0290•0	060.40	0263.1	-0138.9	00743•4	0006.0	-00.889	04.801	00.255	038.18

RUN NO TEST NO 035 666

WIND AXES 07/09/73 00 5 31 01 00 00 00 00

· AA	AY	L	D	PM	ΥM	RM	SF	ССР	v	RN	Q
-002•0	-146.0	-0033•8	004+89	8.8000	-0009.9	-00080+2	-0000-0	-01.550	229.08	02.148	062 • 41
-000-0	-007.0	0016.2	002.81	0001.2	-0006.8	00031.9	-0000.0	-00.308	161.30	01.512	030.94
002-0	-000•0	0068.0	004+53	0004.5	-0011+2	00142.8	-0000•0	-00+066	182-20	01.708	039.48
004.0	-000.0	0123.2	007.22	0007.0	-0018.3	00267.0	-0000.0	-00.056	189.90	01.781	042.89
006-0	-000.0	0173.7	010.95	0008-1	-0027.6	00382.9	-00000•0	-00•046	192.71	01.807	044.16
008+0	-0.00+0	0217.9	017.55	0008.1	-0040.0	00491.6	-0000.0	-00•037	191.78	01.798	043.74
010.0	-000.0	0258•2	023.60	0006.9	-0053.7	00590•0	-0000.0	-00.026	191.78	01.798	043.74
012.0	-000.0	0296•6	030.76	0005.0	-0069.5	00692+1	-0000.0	-00.016	191.78	01.798	043.74
014.0	-000.0	0321.3	038.68	0006.5	-0088.9	00755.8	-0000.0	-00.020	188.01	01.763	042.04

RUN NO TEST NO 666

WIND AXES 07/09/73 6 31 01 00 00 00 00

AA	AY	L	D	PM	YM	RM	SF	C CP	V	RN	Q
-002.0	-000•0	-0033.9	005.66	0003.7	-0008.3	-00064.9	-0000•0	00.108	256.13	02.402	078.01
-000.0	-000.0	0016.2	002.32	-0002.6	-0005.3	00032.1	-0000.0	00.160	152.12	01.427	027.52
002+0	-000-0	0067•6	003.98	-0008.5	-0008.9	00130.8	-0000.0	00.125	180.22	01.690	038+62
004.0	-000.0	0122•7	006•40	-0015.8	-0015+3	00260•7	-0000.0	00.128	188.01	01.763	042.04
006•0	-000+0	0172.9	009.39	-0022.0	-0022.7	00369.8	-000000	00.127	188.01	01.763	042.04
008.0	-000+0	0217•4	012.86	-0028.0	-0030.6	00468.4	-00000•0	00.129	186.09	01.745	041.18
010.0	-000.0	0259.1	017.46	-0036.8	-0042.7	00569.1	-00000•0	00.142	181.21	01.699	039.05
012.0	-000.0	0295.5	022.74	-0041.0	-0053.2	00649.6	-0000-0	00.139	181.21	01.699	039.05
014-0	-000-0	0320-4	027.38	-0044-4	-0063.8	00714.4	-0000-0	00.139	177.21	01.662	037.35

RUN NO TEST NO

37 666

WIND AXES 07/09/73 7 31 01 00 00 00 00

AA	AY	L	D	PM	YM	RM	SF	C CP	٧	RN	O
-002.0	-000.0	-0034+2	006.08	0009.2	-0006.7	-00075 • 1	-0000•0	00.267	267.61	02.510	085.16
-000.0	-000.0	0016+4	001.84	-0004.8	-0002.7	00031.2	-0000-0	00.292	148.53	01.393	026.23
002+0	-000.0	0068+9	003.51	-0020.7	-0006+6	00138.0	-0000-0	00.300	180.21	01.690	038.62
004.0	-000.0	0123.5	005.93	-0036.3	-0012.6	00255 • 4	-0000-0	00-293	188.96	01.772	042.46
006.0	-000•0	0174•7	008.76	-0051.8	-0018.3	00365•1	-0000-0	00+296	190•84	01.790	043+31
008.0	-000+0	0217.8	012.25	-0066•4	-0024.5	00453•0	-0000+0	00.305	188.01	01.763	042.04
010.0	-000.0	0257-3	024-86	-0080.4	-0033.0	00552.2	-0000.0	00.312	186.09	01.745	041.18
012.0	-000•0	0297.6	043.44	-0080.5	-0055.1	00779.9	-0000.0	00+268	200.89	01.884	047.99
012.0	-000.0	0296.7	045.07	-0097.7	-0036.3	00687.0	-0000.0	00.326	189.90	01.781	042.89

RUN NO TEST NO

38 666

WIND AXES 07/09/73 8 31 01 00 00 00 00

AA	AY	L	D	РМ	YM	RM	SF	C			
-002.0	-000.0	-0032-2	006.58	0019.3	-0002.6	-00065.8	-0000•0	C CP 00•595	V 272∙18	RN 02∙552	Q 088•10
-000.0	-000.0	0016.6	002.33	-0011.7	-0002.3	00027•7	-0000•0	00.704	154.46	01.448	028.37
002.0	-000.	0068•7	004.27	-0046.7	-0004.9	00131.8	-0000•0	00•678	188.01	01.763	042.03
004.0	-000.0	0123.5	006.68	-0082.1	-0009.2	00245.4	-0000.0	00.663	196.38	01.841	042.03
006.0	-000.0	. 0174.4	009.62	-0120.8	-0012.8	00349.7	-0000•0	00.692	199.10	01.867	047.14
0.800	-000.0	0218.5	013.06	-0144.2	-0014.2	00446•4	-000000	00.661	197.29	01.850	046.29
010.0	-000-0	0258.5	034.25	-0213.1	-0020.0	00600•6	-0000.0	00.818	207.88	01.949	051.39
012.0	-000•0	0254.8	060.41	-0262.7	-0027 .7	00702.5	-0000•0	01.003	207.88	01.949	051.39
014.0	-000.0	0232.7	088.04	-0316.3	-0040.3	00801.0	-0000.0	01.280	207.88	01.949	051-39

RUN NO TEST NO 39 666 WIND AXES 07/09/73 9 31 01 00 00 00 00

AA	AY	L	D	РM	YM	RM	SF	C CP	V	RN	Q
-002•0	-000+0	-0030•5	006.47	0027.8	0003.4	-00060+5	-0000+0	00.905	274.12	02.570	089.36
-002.0	-000.0	0017.1	001.87	-0016.7	0000.9	00024.8	-00000.0	00.976	160.18	01.502	030.51
002•0	-000•0	0067•9	003-85	-0063.9	0000•0	00114+3	-0000•0	01.013	193.63	01.815	044.59
004.0	-000•0	0122.8	006.30	-0120.0	-0001.4	00219.7	-0000-0	00.976	205.28	01.925	050.12
004.0	-0.00•0	0173.6	009.04	-0174.8	-0000-8	00304.9	-0000.0	01.006	207.02	01.941	050.97
008•0	-000•0	0223•1	013.08	-0224.5	0002.5	00408+8	-00000•0	01.008	208.73	01.957	051.81
010.0	-000•0	0258•1	•	-0263.2	0006+9	00503+4	-00000+0	01.038	208+73	01.957	051.81
010.0	-000•0	0205+3	039.92	-0304-3	0008.4	00598•6	-0000-0	01.455	208.73	01.957	051.81
014.0	-000•0	0202•4	078.99	-0360.9	0004•4	00676•7	-0000•0	01.675	208.73	01.957	051.81

RUN NO TEST NO 40 666

WIND AXES 07/09 3 31 01 00 00 00 00

AA .	AY	L.	D	PM	MY	RM	SF	C CP	٧	RN	Q
-002.0	-000.0	-0034.2	004.86	-0012.3	-0012.0	-00082.6	-0000•0	-00.358	222.78	02.089	059 • 02
-000+0	-000•0	0017.0	002.38	0008.0	-0007.5	00042.8	-0000•0	-00.470	153.30	01.437	027.95
002.0	-000+0	0057.9	004.15	0029.9	-0013.5	00153.8	-0000•0	+00.439	175•17	01.643	036 • 49
004-0	-000.0	0123.6	006.66	0052.1	-0020.2	00274.3	-0000•0	-00.420	184.15	01.726	040 • 33
006.0	-000•0	0173.9	011.39	0071.6	-0031.3	00400•9	-0000•0	-00.411	187.05	01.754	041.61
008.0	-000.0	0220•1	016.93	0091.0	-0044.8	00511.2	-0000•0	-00.413	188.01	01.763	042.04
010.0	-000.0	0257•5	022.89	0105.3	-0060•4	00605•0	-0000-0	-00-408	185•13	01.736	040.76
012.0	-000+0	0298.5	029.98	0123.2	-0077.1	00712.6	-0000.0	-00.413	184.15	01.726	040.33
014.0	-000.0	0321.2	037.07	0132.0	-0097.4	00774.5	-0000•0	-00.411	180.22	01.690	038.63

RUN NO TEST NO

07/09/73

WIND AXES

				41	666				4 31	01 00 00	00 00
AA -002.0	AY -000.0	L -0033.3	D 006.38	PM -0005.8	YM -0013.1	RM -00072.1	SF -0000.0	C CP -00.173	V 253∙36	RN 02•376	Q 076.34
-000.0	-000.0	0016+7	002.29	0004•5	-0006•5	00033•1	-0000•0	-00+269	146.08	01.370	025.38
002.0	-000.0	0058+4	004.07	0015.2	-0011.8	00151.2	-0000•0	-00.236	174.15	01.633	036 • 07
004•0	-000•0	0122+5	006.63	0028.6	-0019.6	00271•2	-0000•0	-00.233	183.18	01.717	039.91
008.0	-000.0	0217.3	014.24	0048.7	-0040.0	00481.7	-0000.0	-00.224	184.15	01.726	040.33
010.0	-000+0	0257•6	022+61	0052•7	-0056 • 8	00597•4	-0000•0	-00+204	185•13	01.736	040 • 76
012.0	-000+0	0297•3	030.28	0059.6	-0075•1	00701-6	-0000•0	-00+200	185 • 13	01.736	040•76
014-0	-000.0	0321.4	038.61	0063.3	-0096.4	00771.4	-00000•0	-00.197	184.15	01.726	040.33

RUN NO TEST NO 042 666

WIND AXES 07/09/73 00 1 32 01 00 00 00 00

AA	ΑY	L	D	PM	YM	RM	SF	C CP	V	RN	Q
-002.0	000.0	-0033.3	004.17	-0027.4	-0011.6	-00082.7	-0000.0	-00.820	212.97	01.997	053.94
-000•0	-000.0	0017•0	003.27	0015.5	-0010.7	00036+2	-0000-0	-00.911	171.03	01.604	034.79
002.0	-0000•0	0069•3	004.72	0059.1	-0016.3	00153.5	-0000-0	-00.851	182.20	01.708	039.48
004.0	-000.0	0124.0	007.46	0100.8	-0024.2	00275.9	-0000-0	-00.811	184.15	01.726	040 • 33
006•0	-000.0	0175.3	011.55	0142.2	-0033.4	00394•6	-00000•0	-00.810	184.15	01.726	040.33
008.0	-000+0	0218•7	017.16	0179.8	-0046+0	00496•7	-0000+0	-00.821	184.15	01.726	040 • 33
010.0	-000.0	0258+8	023.03	0213.3	-0059.8	00595•4	-0000•0	-00-824	182.20	01.708	039•48
012.0	-000.0	0297.8	030.37	0248.2	-0076.5	00593.8	-00000+0	-00.834	182.20	01.708	039.48
014.0	-000+0	0300.5	058.06	0244.1	-0130.9	00738.1	-00000.0	-00.799	182.20	01.708	039.48
015.0	-000.0	0300.4	065.20	0243.9	-0152.1	00757.7	-0000-0	-00-794	182.20	01.708	039.48

APPENDIX B

PRESSURE DATA

NASA OGEE TIP UNIVERSITY OF MARYLAND WIND TUNNEL OPERATIONS DEPT. RUN NO. TEST NO. 1 656

02/27/73

TUBE NO	PRESS COFFF	TUBF	PRESS COFFE	TUBE NO	PRESS COFFE	TUBE NO	PRESS COFFF	TUBF NO	PRFSS COFFF
AA =	-2.0	AY =	0.0	Q	= 38+53	PSF	V =	122.73	мрн
1	153	31	345	61	138	117	318	146	338
2	214	32	328	62	147	118	388	147	366
3	223	33	341	63	157	119	418	148	398
4	284	34	354	64	014	120	497	149	091
5	030	35	332	65	090	121	522	150	123
6	021	36	336	66	114	122	512	151	- 215
7	- 056	37	336	67	.014	123	502	152	219
8	• 052	38	328	68	047	124	497	153	265
9	• 083	39	323	69	071	125	204	154	297
10	• 056	40	315	7.0	080	126	194	155	302
11	.083	41	196	.71	•057	127	219	156	316
12	.214	42	043	72	•023	128	328	157	338
13	.258	43	047	73	009	129	358	158	018
14	468	44	190	74	009	130	383	159	091
15	354	45	252	101	861	131	423	160	142
16	262	46	280	102	726	132	388	161	174
17	271	47	285	103	666	133	413	162	187
18	332	48	290	104	622	134	413	163	187
19	345	49	061	105	532	135	423	164	009
20	385	50	~•095	106	418	136	418	165	100
21	376	51	180	107	398	137	457	166	128
22	- •332	52	-•185	108	303	138	467	167	.013
23	319	53	233	109	223	139	472	168	059
24	310	54	247	110	214	140	482	169	082
25	328	55	247	111	233	141	492	170	082
26	179	56	257	112	064	142	487	171	.050
27	201	57	271	113	174	143	036	172	.018
28	293	58	009	114	662	144	215	173	0.000
29	301	59	076	115	557	145	297	174	022
30	332	60	109	116	214				- · ·

NASA OGEE TIP UNIVERSITY OF MARYLAND WIND TUNNEL OPERATIONS DEPT• RUN NO• TEST NO• 1 656

02/27/73

TUBE NO	PRESS COEFF								
AA =	2.0	AY =	0.0	Q	= 38.53	PSF	V =	122.73	мрн
1	957	31	562	61	180	117	191	146	209
ž	-1.110	32	562	62	204	118	216	147	223
3	-1.079	33	584	63	223	119	206	148	227
4	-1.209	34	598	64	014	120	261	149	069
5	899	35	-,593	65	118	121	266	150	092
. 6	899	36	598	66	147	122	211	151	153
7	827	37	611	67	•014	123	171	152	157
8	813	38	620	68	066	124	165	153	-,176
9	831	39	607	69	099	125	050	154	195
10	867	40	593	70	104	126	125	155	199
11	863	41	400	71	•066	127	145	156	199
12	575	42	116	72	•019	128	191	157	199
13	696	43	061	73	009	129	206	158	027
14	768	44	247	74	023	130	216	159	069
15	719	45	352	101	206	131	226	160	097
16	269	46	395	102	065	132	201		116
17	422	47	- 409	103	•035	133	196	162	125
18	535	48	437	104	.115	134	201	.163	116
19	566	49	085	105	•150	135	196	164	018
20	669	50	123	106	•296	136	196	165	069
21	674	51	247	107	•326	137	216	166	088
22	674	52	257	108	•417	138	226	167	• 004
23	692	53	337	109	• 457 ·	139	231	168	041
24	683	54	356	110	• 472	140	231	169	051
25		55	361	111	•497	141	231	170	
26		56	376	112	•593	142	226	171	•037
27		57	423	113	•558	143	027	172	.027
28		58	009	114	452	144		173	• 009
29		59	~. 095	115	221	145	195	174	013
30		60	142	116	150			•	

NASA OGFF TIP UNIVERSITY OF MARYLAND WIND TUNNEL OPERATIONS DEPT* RUN NO. TEST NO. 1 656

02/27/73

AA = 4.0 AY = 0.0 Q = 38.53 PSF V = 122.73 MPH 1 -1.408 31675 61217 117119 146132 2 -1.571 32666 62241 118119 147142 3 -1.646 33684 63260 119099 148132 4 -1.752 34772 64018 120119 149059 5 -1.545 35728 65132 121099 150073 6 -1.518 36724 66170 122034 151109 7 -1.408 37754 67 .014 123009 152114 8 -1.439 38768 68080 124 .009 153123 9 -1.368 39754 69113 125 .014 154132 10 -1.448 40719 70118 126079 155137 11 -1.417 41507 71 .071 127089 156132 12 -1.183 42141 72 .023 128119 157128 13 -1.267 43080 73009 129124 158032 14935 44284 74028 130119 159054 15988 45412 101 .124 131129 160077 16326 46478 102 .189 132094 161087 17485 47502 103 .328 133089 162087 18626 48540 104 .423 134089 163073 19732 49094 105 .443 135079 164009 20834 50142 106 .562 136089 166054 21838 51274 107 .602 137089 166054 22847 52293 108 .662 138089 167 0.000 23887 53388 109 .696 139089 168027 24896 54402 110 .726 140099 169027 25940 55421 111 .746 141109 170032 26295 56440 112 .826 142114 171 .018 27331 57483 113 .796 143032 172 .018	TUBE NO	PRESS COEFF.	TUBE NO	PRESS COEFF	TUBE NO	PRESS COEFF	TUBE NO	PRESS COEFF	TUBF NO	PRESS COEFF
2 -1.571 32666 62241 118119 147142 3 -1.646 33684 63260 119099 148132 4 -1.752 34772 64018 120119 149059 5 -1.545 35728 65132 121099 150073 6 -1.518 36724 66170 122034 151109 7 -1.408 37754 67 .014 123009 152114 8 -1.439 38768 68080 124 .009 153123 9 -1.368 39754 69113 125 .014 154132 10 -1.448 40719 70118 126079 155137 11 -1.417 41507 71 .071 127089 156132 12 -1.183 42141 72 .023 128119 157128 13 -1.267 43080 73009 129124 158032 14935 44284 74028 130119 157054 15988 45412 101 .124 131129 160077 16326 46478 102 .189 132094 161087 17485 47502 103 .328 133089 162087 19732 49094 105 .443 135079 164009 20834 50142 106 .562 136079 165041 21838 51274 107 .602 137089 166054 22847 52293 108 .662 138089 167004 21838 51274 107 .602 137089 166054 22847 52293 108 .662 138089 167002 23887 53388 109 .696 139089 168027 24896 54402 110 .726 140099 169027 25940 55421 111 .746 141109 170032 24896 54402 110 .726 140099 169027 25940 55440 112 .826 142114 171 .018 27331 57483 113 .796 143032 172 .018	AA =	4.0	AY :	= 0.0	Q	= 38.53	PSF	v =	122.73	мрн
3 -1.646 33684 63260 119099 148132 4 -1.752 34772 64018 120119 149059 5 -1.545 35728 65132 121099 150073 6 -1.518 36724 66170 122034 151109 7 -1.408 37754 67 .014 123009 152114 8 -1.439 38768 68080 124 .009 153123 9 -1.368 39754 69113 125 .014 154132 10 -1.448 40719 70118 126079 155137 11 -1.417 41507 71 .071 127089 156132 12 -1.183 42141 72 .023 128119 157128 13 -1.267 43080 73009 129124 158032 14935 44284 74028 130119 157054 15988 45412 101 .124 131129 160077 16326 46478 102 .189 132094 161087 18626 48540 104 .423 134089 162087 18626 48540 104 .423 134089 163073 19732 49094 105 .443 135079 164009 20834 50142 106 .562 136079 165041 21838 51274 107 .602 137089 166054 22847 52293 108 .662 138089 167 0.000 23887 53388 109 .696 139089 168027 24896 54402 110 .726 140099 169027 25940 55421 111 .746 141109 170032 6295 56440 112 .826 142114 171 .018 27331 57483 113 .796 143032 172 .018	1	-1.408	31	675	61	217	117	119	146	132
4 -1.752 34 772 64 018 120 119 149 059 5 -1.645 35 728 65 132 121 099 150 073 6 -1.518 36 724 66 170 122 034 151 109 7 -1.408 37 754 67 .014 123 009 152 114 8 -1.439 38 768 68 080 124 .009 153 123 9 -1.368 39 754 69 113 125 .014 154 132 10 -1.448 40 719 70 118 126 079 155 137 11 -1.417 41 507 71 .071 127 069 156 132 12 -1.83 42 141 72 .023 128 119 157 128 13 -1.267 43 080	2	-1.571	32	666	62	241	118	119	147	142
4 -1.752 34 772 64 018 120 119 149 059 5 -1.645 35 728 65 132 121 099 150 073 6 -1.518 36 724 66 170 122 034 151 109 7 -1.408 37 754 67 .014 123 009 152 114 8 -1.439 38 768 68 080 124 .009 153 123 9 -1.368 39 754 69 113 125 .014 154 132 10 -1.448 40 719 70 118 126 079 155 137 11 -1.417 41 507 71 .071 127 069 156 132 12 -1.83 42 141 72 .023 128 119 157 128 13 -1.267 43 080	3	-1.646	33	684	63	260	119	099	148	132
6 -1.518		-1.752	34	772	64	018	120	119	149	
7 -1.408	5	-1.545	35	728	65	132	121	099	150	073
7 -1.408	6	-1.518	36	724	66	170.	122	034	151	109
9 -1.368	7	-1.408	37	754	67	•014	123	~.009	152	
9 -1.368	8	-1.439	38	768	68	080	124	•009	153	123
10 -1.448 40 719 70 118 126 079 155 137 11 -1.417 41 507 71 .071 127 069 156 132 12 -1.183 42 141 72 .023 128 119 157 128 13 -1.267 43 080 73 009 129 124 158 032 14 935 44 284 74 028 130 119 159 054 15 988 45 412 101 .124 131 129 160 077 16 326 46 478 102 .189 132 094 161 087 17 485 47 502 103 .328 133 089 162 087 18 626 48 540 104 .423 134 089 163 073 19 732 49 094	9	-1.368	39	754	69	113	125	.014		132
12 -1.183 42 141 72 .023 128 119 157 128 13 -1.267 43 080 73 009 129 124 158 032 14 935 44 284 74 028 130 119 159 054 15 988 45 412 101 .124 131 129 160 077 16 326 46 478 102 .189 132 094 161 087 17 485 47 502 103 .328 133 089 162 087 18 626 48 540 104 .423 134 089 163 073 19 732 49 094 105 .443 135 079 164 009 20 834 50 142 106 .562 136 079 165 041 21 838 51 274	10	-1.448	40	719	70		126			
12 -1.183 42 141 72 .023 128 119 157 128 13 -1.267 43 080 73 009 129 124 158 032 14 935 44 284 74 028 130 119 159 054 15 988 45 412 101 .124 131 129 160 077 16 326 46 478 102 .189 132 094 161 087 17 485 47 502 103 .328 133 089 162 087 18 626 48 540 104 .423 134 089 163 073 19 732 49 094 105 .443 135 079 164 009 20 834 50 142 106 .562 136 079 165 041 21 838 51 274	11	-1.417	41	507	71	.071	127	089	156	132
13 -1.267 43 080 73 009 129 124 158 032 14 935 44 284 74 028 130 119 159 054 15 988 45 412 101 .124 131 129 160 077 16 326 46 478 102 .189 132 094 161 087 17 485 47 502 103 .328 133 089 162 087 18 626 48 540 104 .423 134 089 163 073 19 732 49 094 105 .443 135 079 164 009 20 834 50 142 106 .562 136 079 165 041 21 838 51 274 107 .602 137 089 166 054 22 847 52 293	12	-1.183	42	141	72			119	157	
14 935 44 284 74 028 130 119 159 054 15 988 45 412 101 .124 131 129 160 077 16 326 46 478 102 .189 132 094 161 087 17 485 47 502 103 .328 133 089 162 087 18 626 48 540 104 .423 134 089 163 073 19 732 49 094 105 .443 135 079 164 009 20 834 50 142 106 .562 136 079 165 041 21 838 51 274 107 .602 137 089 166 054 22 847 52 293 108 .662 138 089 167 0.000 23 887 53 388	13	-1.267	43	280	73		129	124		
15 988 45 412 101 .124 131 129 160 077 16 326 46 478 102 .189 132 094 161 087 17 485 47 502 103 .328 133 089 162 087 18 626 48 540 104 .423 134 089 163 073 19 732 49 094 105 .443 135 079 164 009 20 834 50 142 106 .562 136 079 165 041 21 838 51 274 107 .602 137 089 166 054 22 847 52 293 108 .662 138 089 167 0.000 23 887 53 388 109 .696 139 089 168 027 24 896 54 402	14	935		284	74					
16 326 46 478 102 -189 132 094 161 087 17 485 47 502 103 -328 133 089 162 087 18 626 48 540 104 -423 134 089 163 073 19 732 49 094 105 -443 135 079 164 009 20 834 50 142 106 -562 136 079 165 041 21 838 51 274 107 -602 137 089 166 -054 22 847 52 293 108 -662 138 -089 167 0.000 23 887 53 388 109 -696 139 -089 168 -027 24 896 54 402 110 -726 140 -099 169 -027 25 940 55 421 <td< td=""><td>15</td><td>988</td><td>45</td><td></td><td>101</td><td></td><td>_</td><td></td><td></td><td></td></td<>	15	988	45		101		_			
17 485 47 502 103 .328 133 089 162 087 18 626 48 540 104 .423 134 089 163 073 19 732 49 094 105 .443 135 079 164 009 20 834 50 142 106 .562 136 079 165 041 21 838 51 274 107 .602 137 089 166 054 22 847 52 293 108 .662 138 089 167 0.000 23 887 53 388 109 .696 139 089 168 027 24 896 54 402 110 .726 140 099 169 027 25 940 55 421 111 .746 141 109 170 032 26 295 56 440	16		46	+ · ·				•		
18 626 48 540 104 .423 134 089 163 073 19 732 49 094 105 .443 135 079 164 009 20 834 50 142 106 .562 136 079 165 041 21 838 51 274 107 .602 137 089 166 054 22 847 52 293 108 .662 138 089 167 0.000 23 887 53 388 109 .696 139 089 168 027 24 896 54 402 110 .726 140 099 169 027 25 940 55 421 111 .746 141 109 170 032 26 295 56 440 112 .826 142 114 171 .018 27 331 57 483 113 .796 143 032 172 .018			-							
19 732 49 094 105 .443 135 079 164 009 20 834 50 142 106 .562 136 079 165 041 21 838 51 274 107 .602 137 089 166 054 22 847 52 293 108 .662 138 089 167 0.000 23 887 53 388 109 .696 139 089 168 027 24 896 54 402 110 .726 140 099 169 027 25 940 55 421 111 .746 141 109 170 032 26 295 56 440 112 .826 142 114 171 .018 27 331 57 483 113 .796 143 032 172 .018	18	626	48							
20 834 50 142 106 .562 136 079 165 041 21 838 51 274 107 .602 137 089 166 054 22 847 52 293 108 .662 138 089 167 0.000 23 887 53 388 109 .696 139 089 168 027 24 896 54 402 110 .726 140 099 169 027 25 940 55 421 111 .746 141 109 170 032 26 295 56 440 112 .826 142 114 171 .018 27 331 57 483 113 .796 143 032 172 .018			49							•
21 838 51 274 107 .602 137 089 166 054 22 847 52 293 108 .662 138 089 167 0.000 23 887 53 388 109 .696 139 089 168 027 24 896 54 402 110 .726 140 099 169 027 25 940 55 421 111 .746 141 109 170 032 26 295 56 440 112 .826 142 114 171 .018 27 331 57 483 113 .796 143 032 172 .018	20	834	50			-				
22 847 52 293 108 .662 138 089 167 0.000 23 887 53 388 109 .696 139 089 168 027 24 896 54 402 110 .726 140 099 169 027 25 940 55 421 111 .746 141 109 170 032 26 295 56 440 112 .826 142 114 171 .018 27 331 57 483 113 .796 143 032 172 .018		838		- -						
23887 53388 109 .696 139089 168027 24896 54402 110 .726 140099 169027 25940 55421 111 .746 141109 170032 26295 56440 112 .826 142114 171 .018 27331 57483 113 .796 143032 172 .018										
24896 54402 110 .726 140099 169027 25940 55421 111 .746 141109 170032 26295 56440 112 .826 142114 171 .018 27331 57483 113 .796 143032 172 .018										
25940 55421 111 .746 141109 170032 26295 56440 112 .826 142114 171 .018 27331 57483 113 .796 143032 172 .018				+ -						_
26295 56440 112 .826 142114 171 .018 27331 57483 113 .796 143032 172 .018	25									
27331 57483 113 -796 143032 172 -018		-								
				•						
29556 59104 115034 145132 174004										
30609 60165 116089			•					¥ * > C	± • • • •	# 40 4,

NASA OGEE TIP UNIVERSITY OF MARYLAND WIND TUNNEL OPERATIONS DEPT. RUN NO. TEST NO. 1 656

TUBE NO	PRESS COEFF	TUBE NO	PRESS	TURF NO	PRESS COEFF	TUBE NO	PRESS COEFF	TUBE NO	PRESS COFFF
AA =	6 • 0	AY	= 0.0	Q	= 38.53	PSF	V =	122.73	MPH .
1	-1.871	31	777	61	236	117	065	146	059
2	-2.022	32	781	62	274	118	040	147	063
3	-2.198	33	803	63	293	119	010	148	050
4	-2.388	34	874	64	023	120	•010	149	045
5	-2.295	35	856	65	151	121	•020	150	059
6	-2.105	36	856	66	184	122	•095	151	082
7	-2.048	37	865	67	•009	123	.145	152	072
8	-2.048	38	 869.	58	080	124	•155	153	072
9	-2.048	39	869	69	123	125	•065	154	072
10	-2.075	40	843	70	127	126	060	155	072
11	-2.154	41	596	71	•056	127	060	156	068
12	-1.841	42	167	72	•014	128	050	157	063
13	-2.026	43	094	73	014	129	050	158	- •036
14	944	44	317	74	028	130	040	159	045
15	-1.205	ねる	468	101	•330	131	- •₫35	160	054
16	326	4 %	544	102	•450	132	015	161	054
17	547	47	582	103	•510	133	•005	162	045
18	710	48	625	104	•595	134	•010	163	036
19	825	49	113	105	•655	135	•025	164	013
20	984	50	151	106	•770	136	•025	165	027
21	-1.006	51	303	107	.810	137	.030	166	031
22	-1.046	52	331	108	.865	138	• 025	167	009
23	-1.068	53	-•431	109	. 870	139	•015	168	009
24	-1.090	54	459	110	• 905	140	•010	169	013
25	-1.161	55	483	111	•910	141	• 005	170	013
26	313	56	502	112	•955	142	010	171	• 004
27	362	57	540	113	•945	143	031	172	•022
28	 591	58	028	114	265	144	072	173	•018
29	640	59	113	115	. 125	145	077	174	• 009
30	710	60	180	116	065				

NASA OGEF TIP UNIVERSITY OF MARYLAND WIND TUNNEL OPERATIONS DEPT• RUN NO• TEST NO•

1 656

TUBE NO	PRESS COEFF	TUBE NO	PRESS COFFE	TUBE NO	PRESS COEFF	TUBE- NO	PRESS COFFF	TUBF NO	PRESS COFFF
AA .=	8.0	AY	= 0.0	Q	= 38.53	PSF	V =	122.73	МРН
1	-2.351	31	883	61	250	117	020	146	0.000
2	-2.479	32	887	62	288	118	• 045	147	•009
3	-2.628	33	914	63	311	119	.080	148	•018
4	-2.909	34	993	64	037	120	•120	149	046
5	-2.808	35	984	65	153	121	140	150	050
6	-2.465	36	989	66	190	122	226	151	050
. 7	-2.874	37	-1.006	67	004	123	.276	152	041
8	-2.975	38	-1.010	6.8	083	124	.286	153	023
9	-2.795	39	997	69	125	125	.125	. 154	023
10	-2.751	40	949	7.0	134	126	035	155	023
11	-2.782	41	646	71	•037	127	025	156	018
12	-2.536	42	145	72	•013	128	•010	157	004
13	-2.681	43	134	73	013	129	•015	158	059
14	980	44	334	74	037	130	•030	159	046
15	-1.375	45	511	101	•518	131	• 055	160	041
16	276	46	604	102	.608	132	.060	161	027
17	589	47	655	103	.699	133	.105	162	018
18	760	48	~.706	104	.769	134	.105	163	009
19	892	49	125	105	.829	135	•130	164	023
20	-1.090	50	162	106	.880	136	•135	165	009
21	-1.156	51	329	107	•920	137	•130	166	004
22	-1.213	52	357	108	• 950	138	.130	167	023
23	-1.270	53	469	109	•965	139	•120	168	0.000
24	-1.296	54	506	110	•980	140	.105	169	• 004
25	-1.432	55	529	111	•980	141	.100	170	• 004
26	320	56	552	112	• 9 90	142	•080	171	018
27	378	57	594	113	•980	143	041	172	• 023
28	650	58	055	114	211	144	046	173	.023
29	707	59	120	115	·256	145	027	174	.013
30	795	60	185	116	070				

NASA OGFF TIP UNIVERSITY OF MARYLAND WIND TUNNEL OPERATIONS DEPT. RUN NO. TEST NO.

. 1 656

TUBE NO	PRESS COEFF	TUBE NO	PRESS COFFF	TUBE NO	PRESS COEFF	TUBE NO	PRESS COEFF	TUBE NO	PRESS COEFF
110	COLIT	,10	COLIT	110	COULLE	,,,	COLIT	. 110	COEIF.
AA =	10.0	AY	= 0.0	Q	= 38.53	PSF	v =	122.73	МРН
1	-2.658	31	965	61	268	117	•015	146	•069
2	-2.809	32	980	62	315	118	.106	147	.078
3	-2.995	33	-1.004	63	330	119	•151	148	.101
4	-3.156	34	-1.073	64	070	120	.222	149	046
5	-2.926	35	-1.082	65	165	121	.242	150	046
6	-3.004	36	-1.082	66	- •207	122	• 348	151	018
7	-2.809	37	-1.117	67	033	123	• 389	152	004
8	-3.409	38	-1.117	68	- •084	124	•414	153	•018
9	-3.439	39	-1.082	69	132	125	•176	154	• 032
10	-3.458	40	-1.02	70	136	126	015	155	•046
11	-3.478	41	673	71	• 004	127	•005 -	156	• 046
12	-3.263	42	126	72	• 004	128	•065	157	• 055
13	-3.360	43	240	73	018	129	•091	158	-•073
14	931	44	334	74	033	130	-106	159	036
15	-1.531	45	546	101	•616	131	•146	160	023
16	307	46	660	102	.702	132	.146	161	0.000
17	585	47	716	103	.813	133	.192	162	•023
18	760	48	777	104	.879	134	•207	163	.027
19	936	49	183	105	•915	135	•217	164	032
20	-1.209	50	183	106	•970	136	•227	165	• 009
21	-1. 258	51	330	107	.985	137	.227	166	.013
22	-1.395	52	372	108	995	138	.227	167	036
23	-1.463	53	499	109	1.001	139	.222	168	.013
24	-1.482	54	542	110	•995	140	•207	169	.027
25	-1.634	55	575	111	•985	141	•176	170	•027
26	346	56	598	112	•965	142	.166	171	046
27	370	57	636	113	•980	143	050	172	.018
28	682	- 58	103	114	202	144	013	173	•032
29	760	59	127	115	•369	145	•027	174	•018
30	863	60	193	116	091				

NASA OGFF TIP UNIVERSITY OF MARYLAND WIND TUNNEL OPERATIONS DEPT. RUN NO. TEST NO.

1 656

TUBE NO	PRESS COEFF								
110	CO 2. 1	110	COLI	.,,	202	,,,	202	,,,,	-
AA =	12.0	AY :	= 0.0	Q	= 38.53	PSF	v =	122.73	МРН
1	-2.938	31	-1.013	61	-•270	117	•020	146	.119
2	-3.078	32	-1.061	62	326	118	.110	147	. 142
3	-3,239	33	-1.094	63	355	119	.186	148	• 169
4	-1.681	34	-1.164	64	184	120	.286	149	064
5	-1.611	35	-1.191	65	170	121	.321	150	054
6	-1.229	36	-1.202	66	208	122	• 452	151	004
7	-2.398	37	-1.234	67	132	123	•503	152	•022
8	-3.417	38	-1.229	68	099	124	•513	153	• 068
9	-3.536	39	-1.202	69	132	125	·226	154	•082
10	-4.237	40	-1.110	70	142	126	020	155	•091
11	-4.253	41	706	71	075	127	0.000	156	•096
12	-4.183	42	113	72	056	128	•105	157	.114
13	-4.199	43	473	73	+.033	129	.145	158	100
14	884	44	521	74	037	130	.171	159	032
15	-1.229	45	~. 516	101	•724	131	•211	160	009
16	555	46	682	102	•799	132	.216	161	•032
17	-1.261	47	767	103	.870	133	•276	162	• 050
18	-1.266	48	852	104	.875	134	.286	163	• 064
19	-1.202	49	364	105	.880	135	.311	164	045
20	-1.013	50	360	106	•950	136	•316	165	.022
21	-1.229	51	402	107	•990	137	. 326	166	.036
22	-1.504	52	378	108	•995	138	• 326	167	054
23	-1.628	53	511	109	.975	139	.311	168	.013
24	-1.649	54	577	110	.945	140	.306	169	.036
25	-1.827	55	615	111	• 920	141	.281	170	.036
26	873	56	644	112	.865	142	• 266	171	073
27	857	57	682	113	.880	143	087	172	- ∙009
28	663	58	217	114	191	144	0.000	173	•032
29	679	59	255	115	•392	145	•073	174	•041
30	857	60	236	116	110				

NASA OGEF TIP UNIVERSITY OF MARYLAND WIND TUNNEL OPERATIONS DEPT. RUN NO. TEST NO. 1 656

TURE NO	PRESS COEFF	TURE NO	PRESS COEFF	TURE NO	PRESS COEFF	TUBE NO	PRESS COEFF	TUBE NO	PRESS COEFF
AA =	14.0	AY	= 0•0	Q	= 38.53	PSF	v =	122.73	мрн
1	-3.305	31	857	61	395	117	.045	146	.145
2	-3.650	32	916	62	333	118	+135	147	.186
3	-3.153	33	992	63	333	119	.201	148	.214
4	-1.757	34	-1.084	64	352	120	.286	149	100
5	-1.673	35	-1.227	65	318	121	.311	150	082
6	-1.631	36	-1.236	66	314	122	.482	151	009
7	-1.354	37	-1.337	67	252	123	•558	152	•027
8	-1.118	38	-1.337	68	276	124	•578	153	.077
9	958	39	-1.295	69	209	125	.271	154	.100
10	-2.682	40	-1.169	70	171	126	030	155	.127
11	-3.490	41	698	71	190	127	005	156	• 132
12	-4.676	42	134	72	204	128	.110	157	. 155
13	-5.063	43	780	73	199	129	•150	158	177
14	849	44	994	74	099	130	.191	159	072
15	-1.379	45	818	101	•799	131	• 246	160	018
16	950	46	709	102	.860	132	• 266	161	•027
17	-1.547	47	656	103	•910	133	•316	162	•059
-18	-1.497	48	823	104	•930	134	•331	163	• 082
19	-1.303	49	761	105	•925	135	• 372	164	091
20	-1.135	50	799	106	•960	136	.377	165	.009
21	984	51	718	107	•970	137	•397	166	•027
22	958	52	690	108	• 985	138	• 402	167	113
23	-1.547	53	618	109	•995	139	•392	168	009
24	-1.648	54	561	110	•985	140	•372	169	.018
25	-1.976	55	542	- 111	•935	141	.357	170	.031
26	-1.185	56	594	112	•789	142	•331	171	132
27	-1.236	57	656	113	•774	143	118	172	036
28	-1.101	58	466	114	176	144	009	173	004
29	950	59	480	115	.427	145	• 068	174	.013
30	899	60	433	116	115				

NASA OGEF TIP HINIVERSITY OF MARYLAND WIND TUNNEL OPERATIONS DEPT. RUN NO. TEST NO. 2 656

TUBE	PRESS	TUBF	PRESS	TUBE	PRESS	THRE	PRESS	TUBE	PRESS
NO	COEFF	NO	COEFF	NO	COEFF	NO	COEFF	NO	COEFF
AA =	-2 • 0	AY	= 0.0	Q	= 56.64	PSF	V =	148.81	МРН
1	071	31	334	61	122	117	297	146	326
2	- 185	32	285	62	-•122	118	393	147	332
3	173	33	303	63	132	119	427	148	307
4	216	34	294	64	•042	120	510	149	018
5	120	35	260	65	074	121	547	150	065
6	127	36	260	66	093	122	489	151	201
7	068	37	263	67	.071	123	448	152	214
8	086	38	263	68	045	124	455	153	254
9	0.000	39	257	69	058	. 125	174	154	-,276
10	006	40	260	70	071	126	178	155	251
11	.027	41	161	71	.090	127	215	156	264
12	•170	42	055	72	•n38	128	352	157	282
13	.219	43	.003	73	• or 3	129	386	158	.074
14	427	44	161	74	012	130	407	159	052
15	365	45	252	101	718	131	427	160	136
16	219	46	261	102	633	132	359	161	161
17	254	47	255	103	- 544	133	369	162	152
18	337	48	226	104	516	134	369	163	149
19	362	49	016	105	520	135	356	164	.049
20	399	50	061	106	438	136	349	165	083
21	387	51	177	107	427	137	359	166	108
22	319	52	171	108	362	138	359	167	• 074
23	281	53	216	109	- . 3n8	139	366	168	043
24	254	54	219	110	314	140	356	169	062
25	260	55	206	111	318	141	356	170	~. 065
26	176	56	216	112	- 150	142	314	171	• 096
	201	57	232	113	- 150	143	.024	172	•046
27 28	300	58	•067	114	585	144		173	0.000
20 29	312	. 59		115	592	145		174	024
30	334	60	113	116	243		- "		

NASA OGEE TIP UNIVERSITY OF MARYLAND WIND TUNNEL OPERATIONS DEPT RUN NO. TEST NO.

2 656

TUBE	PRESS COEFF	TUBF NO	PRESS COEFF	TUBE NO	PRESS COEFF	TUBE NO	PRESS COEFF	TUBE NO	PRFSS COEFF
AA =	2.0	AY	= 0.0	Q	= 40.42	PSF	v =	125.71	MPH
_								•	20.0
1	880	31	520	61	170	117	165	146	202
2	~. 980	32	481	62	175	118	222	147	194
3	-1.075	33	498	63	188	119	222	148	164
4	-1.179	34	494	64	• 044	120	270	149	0.000
5	-1.010	35	477	65	103	121	284	150	047
6	954	36	468	66	130	122	217	151	146
7	888	37	490	67	.080	123	142	152	146
8	862	38	481	68	058	124	151	153	168
9	845	39	472	69	089	125	037	154	172
10	823	40	459	70	098	126	118	155	-,155
11	802	41	303	71	.107	127	142	156	
12	572	42	121	72	• 040	128	213	157	168
13	542	43	0.000	73	004	129	222	158	• 069
14	702	44	233	74	026	130	246	159	038
15	732	45	346	101	056	131	236	160	099
16	273	46	368	102	0.000	132	184	161	107
17	385	47	377	103	• 052	133	175	162	094
18	507	48	359	104	.198	134	180	163	086
19	602	49	031	105	•132	135	151	164	•047
20	654	50	080	106	•189	136	156	165	051
21	650	51	238	107	.241	137	151	166	069
22	620	52	247	108	.274	138	151	167	060
23	589	53	314	109	.307	139	146	168	025
24	572	54	314	110	.326	140	161	169	034
25	576	55	305	111	.341	141	146	170	
	_			112	.454	142	142	171	•064
26	238	56	319	112	• 454	142	•043	172	• 051
27	273	57 50	337		364	144	146	173	•012
28	424	58	•071	114					008
29	-+450	59	058	115	246	145	 207	174	VU0
30	498	60	143	116	142				

NASA OGFF TIP UNIVERSITY OF MARYLAND WIND TUNNEL OPERATIONS DEPT. RUN NO. TEST NO.

2 656

TUBE NO	PRESS COEFF	TUBE NO	PRFSS COEFF	TUBE NO	PRESS COEFF	TUBE NO	PRFSS COEFF	TUBE NO	PRFSS COEFF
AA =	4.0	AY	= 0.0	Q	= 43.25	PSF	v =	130.03	МРН
1	-1.404	31	635	61	195	117	107	146	142
2	-1.518	32	- _* 587	62	207	118	134	147	138
3	-1.603	33	595	63	220	119	129	148	097
4	-1.708	34	643	64	• 050	120	147	149	004
. 5	-1,611	35	582	65	118	121	161	150	044
6	-1.530	36	578	66	148	122	076	151	117
7	-1.445	37	582	67	.084	123	008	152	113
. 8	-1.408	38	587	68	063	124	008	153	121
9	-1.412	39	574	69	101	125	.013	154	126
10	-1.429	40	566	70	110	126	085	155	105
11	-1.372	41	404	71	.114	127	102	156	101
12	-1.048	42	178	72	•038	128	156	157	109
13.	-1.06°	43	004	73	008	129	161	158	• 048
14	850	44	+.267	74	029	130	174	159	032
15	9 75	45	398	101	•192	131	156	160	085
16	295	46	445	102	•259	132	098	161	085
17	461	47	453	103	.299	133	085	162	069
18	607	48	453	104	 438 	134	085	163	060
19	704	49	038	105	•36€	135	053	164	• 040
20	813	50	084	106	• 4 ¿ 🥱	136	044	165	040
21	805	51	263	107	•450	137	044	166	048
22	769	· 52	280	108	•501	138	044	167	• 044
23	769	53	356	109	•519	139	044	168	016
24	736	54	364	110	•537	140	049	169	024
25	769	55	364	111	•555	141	053	170	024
26	263	56	373	112	•617	142	044	171	.052
27	307	57	403	113	•635	143	•004	172	• 048
28	502	58	•080	114	259	144	121	173	.016
29	534	59	059	115	080	145	158	174	• 004
30	578	60	152	116	107				

NASA OGEE TIP UNIVERSITY OF MARYLAND WIND TUNNEL OPERATIONS DEPT. RUN NO. TEST NO. 2 656

			•						
TUBE NO	PRESS COEFF								
AA =	6+0	AY	= 0.0	Q	= 44.33	PSF	ν =	131.65	мрн
1	-1.804	31	729	61	214	117	061	146	083
2	-1.975	32	690	62	230	118	065	147	063
3	-2.070	33	702	63	247	119	039	148	023
4	-2.435	34	749	64	•049	120	039	149	.007
5	-2.344	35	698	65	127	121	048	150	031
6	-2.003	36	694	66	154	122	•043	151	087
7	-2.193	37	710	67	.086	123	•105	152	079
8	-2.122	. 38	710	68	069	124	+114	153	075
. 9	-2.026	39	702	69	102	125	.057	154	075
10	-2.019	40	694	70	115	126	048	155	047
11	-2.023	41	487	71	.107	127	065	156	039
12	-1.626	42	222	72	•037	128	083	157	055
13	-1.701	43	020	73	008	129	092	158	• 047
14	860	44	292	74	032	130	096	159	027
15	-1.174	45	448	101	.369	131	083	160	067
16	226	46	506	102	.417	132	026	161	055
17	507	47	526	103	.487	133	004	162	031
18	694	48	518	104	.619	134	0.000	163	019
19	813	49	045	105	. 545	135	•035	164	•039
20	-,955	50	094	106	-589	136	•039	165	019
21	975	51	284	107	•606	137	•048	166	023
22	948	52	312	108	•628	138	•043	167	•051
23	955	53	395	109	•637	139	•039	168	003
24	932	54	415	110	•650	140	•026	169	003
25	987	55	411	111.	•668	141	•035	170	003
26	289	56	419	112	•707	142	•026	171	•055
27	345	57	448	113	•720	143	•015	172	•051
28	575	58	• 0.74	114	206	144	091	173	•019
29	614	59	065	115	•061	145	099	174	.011
30	674	60	164	116	123				

NASA OGEE TIP UNIVERSITY OF MARYLAND WIND TUNNEL OPERATIONS DEPT. RUN NO. TEST NO. 2 656

TUBE	PRESS	TUBE	PRESS	TUBE	PRESS	TUBE	PRESS	TUBE	PRESS
NO	COEFF	NO	COEFF	МО	COFFF	ИО	COEFF	NO	COFFF
AA =	8 • 0	AY	= 0.0	Q	= 44.33	PSF	v =	131.65	мрн
1	-2.048	31	825	61	229	117	034	146	031
2	-2.190	32	797	62	246	118	0.000	147	007
3	-2.396	33	805	63	-+266	119	•030	148	•035
4	-2.327	34	854	64	•049	120	•052	149	0.000
5	-2.611	35	809	65	135	121	•056	150	027
6	-2.595	36	813	66	172	122	.151	151	063
7	-2.506	37	817	67	•082	123	.212	152	051
8	-3.008	38	829	68	069	124	.221	153	035
9	-2.914	39	813	69	106	125	.104	154	031
10	-2.647	40	789	70	114	1,26	043	155	003
ĩĭ	-2.672	41	566	71	.110	127	047	156	•007
12	-2.311	42	259	72	.036	128	034	157	•007
13	-2.327	43	036	73	008	129	021	158	•035
14		44	315	74	024	130	026	159	019
15	-1.384	45	- 492	101	. 446	131	004	160	055
16	311	46	561	102	.507	132	•034	161	043
17	514	47	and the second s	103	. 76	133	•073	162	007
18	744	48		104	.711	134	•078	163	.003
19	890	49		105	.637	135	.112	164	.031
2ó	-1.097	50		106	•659	136	.117	165	007
$\bar{2}$	-1.117	51		107	•676	137	.134	166	011
22	-1.133	52		108	.685	138	.134	167	•043
23	~1.129	53		109	.689	139	•125	168	0.000
24	-1.113	54		110	.689	140	.130	169	.007
25	-1.186	55		111	.698	141	.112	170	•007
26	291	56	•	112	.702	142	.112	. 171	•047
27	356	57	-	113	732	143	•003	172	• 055
28	635	58	•	114	242	144	055	173	.027
29	692	59		115	.173	145	059	174	•019
30	/65	60		116	160				. •

NASA DGEE TIP UNIVERSITY OF MARYLAND WIND TUNNEL OPERATIONS DEPT. RUN NO. TEST NO. 2 656

TUBE	PRESS	TUBE	PRFSS	TUBE	PRESS	TUBE	PRESS	TURE	PRESS
NO	COEFF	NO	COEFF	МО	COEFF	NO	COEFF	NO	COEFF
AA =	10.0	AY	= 0.0	Q	= 44.33	PSF	V =	13.1 • 65	мрн
1	-2.171	31	894	61	241	117	186	146	•019
2	-2.167	32	872	62	262	118	082	147	.051
3	-1.641	33	885	. 63	282	119	004	148	.103
4	616	34	939	64	•041		.104	149	051
5	584	35	899	65	143	121	.125	150	067
6	580	36	912	66	176	122	251	151	051
7	-2.041	37	930	67	•073	123	•320	152	043
. 8	-2.958	38	925	68	- +073	124	.325	153	003
9	-3.237	39	903	69	~ 。≏98	125	.147	154	.007
10	-3.394	40	876	70	- : 118	126	138	155	•043
11	-3.309	41	−.63ა	71	+102	127	134	156	.051
12	-3.116	42	301	72	•∋36	128	021	157	.051
13	-2.967	43	528	73	0.000	129	.013	158	•007
14	714	44	389	74	024	130	•030	159	019
15	80c	11 9	541	101	•464	131	.065	160	047
16	~. 8⊖>	% (5	610	102	485	132	.104	161	011
17	 74 :	47	647	103	485	133	.156	162	.023
18	 647	48	656	104	•581	134	.164	163	.039
19	647	49	164	105	•520	135	•195	164	•023
20	-1.047	50	184	106	•659	136	•203	165	.007
21	-1.160	51	336	107	• 724	137	.221	166	.011
22	-1.258	52	364	108	•711	138	.221	167	•039
23	-1.294	53	- •455	109	•689	139	.216	168	.007
24	-1.276	54	487	110	•672	140	.208	169	.023
25	-1.362	55	- 492	111	.567	141	.203	170	.031
26	674	56	504	112	•637	142	-203	171	.043
27	665	57	537	113	.680	143	150	172	•055
28	656	58	•041	114	281	144	091	173	.027
29	723	59	~.077	115	•169	145	027	174	.027
30	813	60	184	116	307				

NASA OGEF TIP UNIVERSITY OF MARYLAND WIND TUNNEL OPERATIONS DEPT. RUN NO. TEST NO. 2 656

						_			
TUBE	PRESS	TUBE	PRESS	TU8E	PRESS	TUBE	PRESS	TUBE	PRESS
NO	COEFF	NO	COEFF	NÖ	COEFF	NO	COEFF	NO	COEFF
AA =	12.0	AY:	= 0.0	Q	= 44.33	PSF	V =	131.65	MPH
1	-2.222	31	982	61	266	117	193	146	•063
2	-2.153	32	982	62	278	118	060	147	•098
3	-1.581	33	-1.003	63	291	119	008	148	.154
4	-2.195	34	-1.024	64	102	120	•077	149.	173
5 .	-3.066	35	-1.010	65	159	121	.141	150	169
6	-1.121	36	-1.052	66	188	122	.313	151	047
7	668	37	-1.059	67	. 020	123	.382	152	023
8	780	38	-1.059	68	082	124	•404	153	•011
9	808	39	-1.045	69	098	125	.184	154	.035
10	-3.205	40	-1.017	70	106	126	193	155	.082
11	-3.825	41	752	71	•053	127	180	. 🤉 5	• 090
12	-3.965	42	383	72	•016	128	038	157	• 098
13	-3,965	43	672	73	0.000	129	.021	158	122
14	564	44	664	74	024	130	.081	159	051
15	613	45	565	101	•498	131	.124	160	055
16	857	46	656	102	•507	132	•154	161	011
17	717	47	697	103	•511	133	.214	162	.039
18	634	48	717	104	.597	134	.232	163	•059
19	627	49	422	105	. 546	135	•262	164	011
20	-1.310	50	344	106	.644	136	•275	165	.011
21	-1.344	51	364	107	.687	137	.296	166	•023
22	-1.233	52	-,545	108	.683	138	•300	167	015
23	-1.442	53	487	109	.717	139	•296	168	• 003
24	-1.463	54	520	110	.679	140	.292	169	•039
25	-1.581	55	528	111	•576	141	.279	170	.039
26	703	56	549	112	•503	142	•275	171	.023
27	780	57	561	113	•550	143	276	172	.043
28	794	58	307	114	296	144	122	173	.019
29	794	59	282	115	.197	145	003	174	•031
30	808	60	-•202	116	352	A 1-2	-003	***	****
50		00	 € € 0.0	110	-4332				

NASA OGEE TIP UNIVERSITY OF MARYLAND WIND TUNNEL OPERATIONS DEPT. RUN NO. TEST NO. 2 656

TUBE NO	PRESS COEFF	TUBE NO	PRESS COEFF	TUBE NO	PRESS COEFF	TUBE NO	PRESS COEFF	TUBE NO	PRESS COFFF
AA =	14.0	AY	= 0+0	O	= 43.77	PSF	V =	130.81	мрн
1	-1.111	31	776	61	288	117	146	146	•076
2	-1.153	32	~.933	62	280	118	057	147	.129
3	-1.951.	33	997	63	293	119	•004	148	• 206
4	-1.851	34	-1.054	64	301	120	.115	149	242
5	-2.585	35	-1.082	65	188	121	.159	150	-,214
6	-1.217	-36	-1.132	66	192	122	.368	151	101
7	591	37	-1.153	67	146	123	• 465	152	056
8	612	38	-1.160	68	104	124	•478	153	•032
9	584	39	-1.146	69	104	125	.217	154	•060
10	-2.699	40	-1.132	70	113	126	226	155	.117
11	-3.945	41	840	71	012	127	190	156	.133
12	-4.586	42	462	72	~ *029	128	026	157	.149
13	-4.843	43	770	73	~• 025	129	•017	158	222
14	740	44	703	74	046	130	.093	159	117
15	633	45	690	101	•501	131	•155	160	085
-16	690	46	561	102	.527	132	•203	161	004
17	804	47	695	103	•598	133	•266	162	•060
18	 776	48	749	104	•709	134	.274	163	.085
19	705	49	607	105	•611	135	•332	164	121
20	648	50	636	106	•589	136	.337	165	−.0⊖ತ
21	~. 569	51	661	107	638	137	•376	166	.020
22	-1.089	52	670	108	.674	138	•372	167	068
23	-1.488	53	498	109	•713	139	• 368	168	008
24	-1.531	54	527	110	•687	140	◆372	169	• 040
25	-1.723	55	544	111	•620	141	• 359	170	-040
26	861	56	565	112	•407	142	.354	171	044
27	~.861	57	586	113	•350	143	344	172	• 008
28	641	53	473	114	341	144	161	173	.008
29	-,690	59	510	115	.186	145	024	174	.024
30	-•733	60	355	116	~•301 .				

NASA OGEF TIP UNIVERSITY OF MARYLAND WIND TUNNEL OPERATIONS DEPT. RUN NO. TEST NO. 3 656

	<u> </u>								
TUBE	PRESS	TUBE	PRESS	TUBE	PRESS	TUBE	PRESS	TUBE	PRESS
NO	COEFF	NO	COEFF	NO	COEFF	NO	COEFF	NO	COEFF
	. -								
AA =	-2.0	AY :	= 0.0	Q	= 47.20	PSF	· v =	135.84	MPH
•	71.								
1	114	31	357	61	127	117	353	146	353
2	178	32	-,325	62	131	118	434	147	372
3	185	33	325	63	147	119	459	148	357
4 5	-•264 -•092	34	328	64	•027	120	552	149	048
	_	35	303	65	077	121	585	150	100
6	-•096	36	•293	66	100	122	540	151	219
7	042	37	303	67	•054	123	500	152	230
8	021	38	- •303	68	042	124	495	153	271
9	• 035	39	307	69	065	125	195	154	301
10	•010	40	296	70	-•077	126	199	155	-•286
11	• 06 0	41	189	71	•089	127	239	156	301
12	•203	42	071	72	•034	128	373	157	309
13	• 268	43	015	73	0.000	129	402	158	.037
14	-•457	44	189	74	~.015	130	418	159	067
15	- •375	45	267	101	845	131	447	160	134
16	250	46	278	102	703	132	- 394	161	171
17	282	47	282	103	646	133	402	162	
18	357	48	259	104	613	134	414	163	-•167
19	382	49	038	105	589	135	406	164	171
20	421	50	077	106	475	136	406	165	•029
21	403	51	189	107	479	137	418	166	~.093
22	332	52	189	108	382	138	418 422		122
23	300	53	232	109	357	139	426	167	•063
24	289	54	240	110	308	140		168	052
25	296	55	232	111	313	141	430	169	070
26	200	56	232	112	134		41 4	170	074
27 .	225	57	259	113		142	382	171	•081
28	310	58	•042	114	174	143	003	172	• 040
29	332	59 .	058	114	~. 666	144	234	173	• 003
30	350	60	108	116	-•638 -•247	145	327	174	022

NASA OGFF TIP. UNIVERSITY OF MARYLAND WIND TUNNEL OPERATIONS DEPT. RUN NO. TEST NO. 3 656

TUBE	PRESS	TUBE	PRESS	TUBE	PRESS	TUBE	PRESS	TUBE	PRESS
NO	COFFF	NO	COFFF	NO	COFFF	NO	COEFF	NO	COEFF
AA =	2.0	AY :	= 0.0	Q	= 38•45	PSF	V =	122.60	мрн
1	892	31	555	61	184	117	211	146	215
2	-1.063	32	533	62	198	118	246	147	215
3	-1.050	33	547	63	213	119	251	148	206
4	-1.221	34	555	64	•023	120	296	149	022
5	945	35	529	65	113	121	306	150	073
6	- 962	36	529	66	142	122	236	151	160
7	857	37	551	67	•061	123	176	152	160
8	849	38	542	68	061	124	176	153	183
9	844	39	542	69	094	125	050	154	192
10	844	40	529	70	108	126	140	155	183
11	814	41	363	71	•099	127	155	156	178
12	560	42	161	72	•037	128	231	157	192
13	599	43	028	73	004	129	251	158	•032
14	743	44	255	74	028	130	251	159	054
15	757	45	364	101	171	131	261	160	100
16	271	46	402	102	050	132	211	161	119
17	415	47	402	103	•010	133	206	162	109
18	538	48	402	104	.125	134	211	163	109
19	603	49	056	105	.115	135	186	164	• 022
20	673	50	104	106	.231	136	181	165	054
21	682	51	255	107	.256	137	191	166	077
22	656	52	-,260	108	•326	138	191	167	• 050
23	643	53	336	109	.342	139	201	168	032
24	608	54	341	110	•382	140	196	169	041
25	660	55	345	111	•377	141	196	170	045
26	262	56	355	112	•533	142	171	171	• 054
27	288	57	378	113	• 492	143	•013	172	•041
28	446	58	• 047	114	422	144	160	173	.013
29	472	59	075	115	271	145	215	174	009
30	533	60	142	116	-•171				-