

R1.06 - Mathématiques discrètes Contrôle Terminal

Nom du responsable :	A. Ridard
Date du contrôle :	Mardi 9 novembre 2021
Durée du contrôle :	1h30
Nombre total de pages :	? pages
Impression:	A4 recto-verso agrafé (1 point)
Documents autorisés :	A4 recto-verso manuscrit
Calculatrice autorisée :	Non
Réponses :	Directement sur le sujet

Exercice 1. On considère l'ensemble $E = [0,9] = \{0,1,2,...,9\}$ et $A = \{0,2,4,6,8\}$, $B = \{5,7,9\}$ deux parties de E.

1. Compléter les définitions en compréhension suivantes :

(a)
$$E = \{n \in \mathbb{N} \mid n \leq 9\}$$

2. Résoudre dans $\mathcal{P}(E)$ chacune des équations ensemblistes suivantes :

(a)
$$A \cap X = \{0, 4, 8\}$$

$$\int = \left\{ \times CE \left[2 \notin X \text{ et } 6 \notin X \right\} = 9 \left(\overline{22,69} \right) \right\}$$

(b)
$$A \cap X = \{0, 1, 2\}$$

(c)
$$B \cap X = \emptyset$$

$$J = \{x \in [5 \notin x \in 7 \notin x \in 9 \notin x\}$$

$$= S(\overline{8})$$

(d) $B \cup X = \overline{A}$

(e) $X \setminus A = B$

3. Déterminer les ensembles suivants :

(a) $A\Delta \overline{B}$

(b) P(B)

On considère
$$E = \{-2, -1, 0, 1, 2\}$$
 et $F = \{0, 1, 2\}$.

1. Dans cette question, on s'intéresse à la relation binaire \mathcal{R}_1 de E vers E définie par :

$$\forall x \in E, \forall y \in E, \ x \mathcal{R}_1 \ y \Longleftrightarrow x^2 = y^2$$

Représenter graphiquement \mathcal{R}_1 en complétant le diagramme cartésien :

2. Dans cette question, on s'intéresse à la relation binaire \mathcal{R}_2 de E vers E définie par :

$$\forall x \in E, \forall y \in E, \ x \mathcal{R}_2 \ y \Longleftrightarrow y = \left(\sqrt{x}\right)^2$$

(a) Représenter graphiquement \mathcal{R}_2 en complétant le diagramme sagittal :

(b) Déterminer la partie 1 de $E \times E$ correspondant à \mathcal{R}_2 .

$$\Re_2 = (E, E, U)$$
 arec $U = \{(9,0), (1,1), (2,2)\}$

3. Dans cette question, on s'intéresse à la relation binaire \mathcal{R}_3 de E vers E définie par :

$$\forall x \in E, \forall y \in E, x \mathcal{R}_3 y \Longleftrightarrow y = \sqrt{x^2}$$

Représenter graphiquement \mathcal{R}_3 en complétant les diagrammes ci-dessous :

4. Parmi les assertions suivantes, cocher celles qui sont vraies.

- Dans chaque situation (numérotée de 1 à 7), il est possible de cocher 0, 1 ou 2 case(s)
- Attention aux ensembles de départ et d'arrivée exprimés dans chaque situation. Pour rappel :

$$E = \{-2, -1, 0, 1, 2\}$$
 et $F = \{0, 1, 2\}$

1. La relation binaire \mathcal{R}_1 de E vers E est une	□ fonction
	□ application
2. La relation binaire \mathcal{R}_2 de E vers E est une	⊠ fonction
	□ application
3. La relation binaire \mathcal{R}_2 de F vers E est une	■ fonction
	■ application
4. La relation binaire \mathcal{R}_2 de F vers est une application	injective
E	■ surjective
5. La relation binaire \mathcal{R}_3 de E vers E est une application	□ injective
	□ surjective
6. La relation binaire \mathcal{R}_3 de E vers F est une application	□ injective
	■ surjective
7. La relation binaire \mathcal{R}_3 de F vers F est une application	☑ injective

NOM:

GROUPE:

0,5

Exercice 3. 4

1. On considère $A = \{(x, y) \in \mathbb{R}^2 \mid y = 4x - 1\}$ et $B = \{(x, y) \in \mathbb{R}^2 \mid \exists t \in \mathbb{R}, \ x = t + 1 \text{ et } y = 4t + 3\}.$

(a) Représenter graphiquement ² l'ensemble A.

(b) Montrer par double inclusion que A = B.

BcA:

Sit (x,4) € B

Montre que (2,4) EA.

Comme (x,y) & B, il existe t & R tel que x = t+1 et y = 4t+3.

Alan, 42-1 = 4(t+1) = 4t+3 = y done (x,y) ∈ A. 1

ACB:

Sit (rig) &A.

Montrer que (x,y) €B.

Poblis t = x - 1.

On a bien x = t + 1

et y=4x-1=4(++1)-1=4+3 d'où (n,y) & B.

(a) Représenter graphiquement les ensembles C et D.

(b) Compléter la définition en compréhension suivante :

$$C \cap D = \{(x, y) \in \mathbb{R}^2 \mid y = -1\}$$

3. (question bonus) On considère $E = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ et $F = \{(x, y) \in \mathbb{R}^2 \mid y \ge 0\}$

(a) Représenter graphiquement l'ensemble E.

(b) Compléter la définition en compréhension suivante :

$$E \cap F = \{(x, y) \in \mathbb{R}^2 \mid y = \sqrt{1 - x^2} \}$$