Rigidity of Expectations: Additional Evidence from Density Forecasts of Professionals and Households

Tao Wang Johns Hopkins University

March 5, 2020

Outline

- Motivation
- 2 Theory
- Stimation
 - AR(1)
 - Stocastic volatility
 - Stocastic volatility (old)
- 4 Conclusion

Motivation

- there are various theories on "irrational expectation"
- different theories can be tested using survey data in a comparable manner (Coibion and Gorodnichenko (2012))
- a good theory needs to be (relatively) consistent in predictions across different moments
- higher moments, i.e. uncertainty, brings about one more restriction
- survey also contains information about data generating process itself

What this paper does

- time series and cross-sectional pattern of uncertainty from density forecasts of the inflation
- additional reduced-form tests of the full-information rationality null using the uncertainty
- extend Coibion and Gorodnichenko (2012) in two ways
 - cross-moment estimation for each one of the particular theories on expectation
 - allowing for stochastic volatility of inflation process

Literature

- empirical tests on expectation formation
 - Mankiw et al. (2003), Carroll (2003), Branch (2004), Malmendier and Nagel (2015), Das et al. (2017), Coibion and Gorodnichenko (2012), Fuhrer (2018)
- density and probabilistic questions in expectation surveys
 - Manski (2004), Delavande et al. (2011), Manski (2018)
 - Bertrand and Mullainathan (2001), Van der Klaauw et al. (2008), Delavande (2014)
- different measures of uncertainty
 - Bachmann et al. (2013), Jurado et al. (2015), Binder (2017), Bloom (2009)

A generic framework

h-period ahead density forecast by agent i at time t based on information set $I_{i,t}$

$$f_{i,t+h|t} \equiv f_{i,t}(y_{t+h}|I_{i,t})$$

- ullet theories of expectation differ in $I_{i,t}$
 - ▶ rational expectation (FIRE): $I_{i,t} = y_{i,t}$
 - sticky expectation (SE): $I_{i,t}=y_{t- au},\ au$ being the most recent update date
 - ▶ noisy information (NI): $I_{i,t} = s_{i,t}(y_t)$, where $s_{i,t}$ is a vector of noisy signal(s)
- the process of variable determines the mapping from $I_{i,t}$ to $f_{i,t+h|t}$

Definition and notation

Individual moments	Population moments
Mean forecast: $y_{i,t+h t}$	Average forecast: $\bar{y}_{t+h t}$
Forecast error: $FE_{i,t+h t}$	Average forecast error: $\overline{FE}_{t+h t}$
Uncertainty: $Var_{i,t+h t}$	Average uncertainty: $\overline{Var}_{t+h t}$
, · · · ·	Disagreement: $\overline{\textit{Disg}}_{t+h t}$

Data

	SCE	SPF
Time period	2013M6-2018M6	2007Q1-2018Q4
Frequency	Monthly	Quarterly
Sample Size	1,300	30-50
Aggregate Var in Density	1-yr-ahead inflation	1-yr and 3-yr core CPI and core PCE
Pannel Structure	stay up to 12 months	average stay for 5 years
Demographic Info	Education, Income, Age	Industry

- density estimation following (Engelberg et al. (2009))
- \bullet exclude top and bottom 5% values for forecast errors and uncertainty

Basic patterns: uncertainty and realized inflation

Corr Coefe - 0.06 1-yr-shead Expected Inflation(SPF PCE)

Basic patterns: uncertainty and the size of forecast errors

 no evidence for positive correlation betwen high ex ante uncertainty and ex post forecast errors.

Basic patterns: uncertainty and disagreement

• uncertainty are not the same as disagreement for professionals

Basic patterns: summary

- uncertainty varies across time
- uncertainty contains different information from widely proxies such as disagreement and forecast error

AR(1) model of inflation

Inflation process

$$y_t = \rho y_{t-1} + \omega_t$$
$$\omega_t \sim N(0, \sigma_\omega^2)$$

- Uncertainty
 - ► FIRE: time-invariant

$$\overline{\mathit{Var}}_{t+h|t}^* = \sum_{s=1}^h \rho^{2s} \sigma_\omega^2$$

SE: time-invariant

$$\overline{\textit{Var}}_{t+h|t}^{\text{se}} = \sum_{\tau=0}^{+\infty} \lambda (1-\lambda)^{\tau} \overline{\textit{Var}}_{t+h|t-\tau}^{*}$$

 NI: time-variant but quantitatively tiny due to highly efficient Kalman gain

$$\overline{Var}_{t+h|t}^{ni} = \rho^{2h} \overline{Var}_{t|t}^{ni} + \overline{Var}_{t+h|t}^*$$

Stocastic volatility (UCSV) inflation process (Stock and Watson (2007))

Inflation process

$$y_t = \theta_t + \eta_t$$
, where $\eta_t = \sigma_{\eta,t} \xi_{\eta,t}$
 $\theta_t = \theta_{t-1} + \epsilon_t$, where $\epsilon_t = \sigma_{\epsilon,t} \xi_{\epsilon,t}$
 $\log \sigma_{\eta,t}^2 = \log \sigma_{\eta,t-1}^2 + \mu_{\eta,t}$
 $\log \sigma_{\epsilon,t}^2 = \log \sigma_{\epsilon,t-1}^2 + \mu_{\epsilon,t}$

$$\xi_t = [\xi_{\eta,t}, \xi_{\epsilon,t}] \sim N(0, I_2)$$

$$\mu_t = [\mu_{\eta,t}, \mu_{\epsilon,t}]' \sim N(0, \gamma I_2)$$

UCSV inflation process

Uncertainty

FIRE: time-varying

$$\overline{\textit{Var}}_{t+h|t}^* = \sum_{k=1}^h \exp^{-0.5k\gamma_\eta} \sigma_{\eta,t}^2 + \exp^{-0.5h\gamma_\epsilon} \sigma_{\epsilon,t}^2$$

SE: time-varying

$$\overline{\textit{Var}}_{t+h|t}^{\textit{se}} = \sum_{\tau=0}^{\infty} (1-\lambda)^{\tau} \lambda \overline{\textit{Var}}_{t+h|t-\tau}^{*}$$

NI (1-step-ahead): time-varying

$$\overline{\textit{Var}}_{t|t-1}^{\theta} = \overline{\textit{Var}}_{t-1|t-1}^{\theta} + \textit{Var}_{t|t-1}^{*}(y_{t})$$

Simulated method of moment estimation

$$\widehat{\Omega} = \underset{\{\Omega \in \Gamma\}}{\operatorname{argmin}} (M_{\mathrm{data}} - F^{o}(\Omega, Y)) W(M_{\mathrm{data}} - F^{o}(\Omega, Y))'$$

- Ω : parameters of the particular $o \in \{fire, se, ni\} \times \{ar, sv\}$
- Γ: constraints for the parameter.
- M_{data}: data moments
- F: simulated model moments according to a particular theory o, a function of parameters Ω as well as the Y, the real-time data (including history) up till each point of the time t.
 - unconditional moments, not specific to time
 - moments selected from average forecast, variance and autocovariance of forecasts, average diagreement, variance and autovariance of disagreement, average uncertainty, etc.
- W: weight matrix, identity matrix for now

Estimation procedure and algorithm

- for each theory of expectation formation and the inflation process, start with an initial value for the parameter(s) of interest
- $oldsymbol{0}$ simulate individual forecasts for a large enough (N=200) number of forecasters
- compute the average forecast errors, disagreement and average uncertainty across all agents
- compute the time-series moments of the average forecast, disagreement, and uncertainty
- compute the difference between the simulated moments and the data moments
- keep searching the parameter value until reaching below a threshold of the loss

Two-step and joint estimation

- two-step estimation: separately estimate inflation process parameters and then parameters of the inflation process
 - ▶ pros: computationally lighter
 - cons: potential misspecification. does not utilize the expectation data to understand inflation process per se.
- joint estimation: targeting both moments of realized inflation series and moments of forecasts to simultaneously estimate both the inflation process and the parameter of expectation formation
 - pros: additional information gain from expectations data about inflation process itself
 - cons: more computation burden

Outline

- Motivation
- 2 Theory
- Stimation
 - AR(1)
 - Stocastic volatility
 - Stocastic volatility (old)
- 4 Conclusion

Professionals and SEAR

Professionals and SEAR: joint estimation

(a) FE

(b) Disg

(c) FE/Disg

(d) FE/Disg/Var

Households and SEAR

Households and SEAR: joint estimates

SE parameter estimate

Table: SMM Estimates of Parameters of SE

0	1	2	3	SE: $\hat{\lambda}_{SPF}(Q)$	SE: $\hat{\lambda}_{SPF}(Q)$	SE
FEVar	FEATV			0.47	0.36	1
FEVar	DisgATV	DisgVar		0.27	0.38	1
FEVar	FEATV	DisgVar	DisgATV	0.47	0.36	1
FEVar	FEATV	DisgVar	DisgATV	0.47	0.36	1

• λ : update rate in SE

Professionals and NIAR

Professionals and NIAR: joint estimates

(b) Disg

0.5 model:Disg model:Disa model:Disa 110 185 110 105 105 180 100 100 100 175 095 095 028 205 028 027 027 200 028 026

(c) FE/Disg

(d) FE/Disg/Var

(a) FE

024

0.0

Households and NIAR

Households and NIAR: joint estimates

Outline

- Motivation
- 2 Theory
- Stimation
 - AR(1)
 - Stocastic volatility
 - Stocastic volatility (old)
- 4 Conclusion

Professionals and SESV

NIAR parameters

Table: SMM Estimates of Parameters of NI

0	1	2	3	4	NI: $\hat{\sigma}_{\it pb,SPF}$	$\hat{\sigma}_{\mathit{pr},\mathit{SPF}}$
FEVar	FEATV				25.32	16.07
DisgVar	DisgATV				471301.73	0.85
FEVar	FEATV	DisgVar	DisgATV		25.32	16.07
FEVar	FEATV	DisgVar	DisgATV	Var	9.16708E+12	2.37

 \bullet σ_{pb} : noisiness of public signals in NI

ullet $\sigma_{\it pr}$: noisiness of private signals in Ni

Outline

- Motivation
- 2 Theory
- Stimation
 - AR(1)
 - Stocastic volatility
 - Stocastic volatility (old)
- Conclusion

Results: households and SESV

(a) forecast

(b) FE

(c) forecast/FE

(d) FE/var

(e) FE/var/Disg

SESV parameters

Table: Minimum Distance Estimates of Parameters of SESV

0	1	2	SE: $\hat{\lambda}_{SPF}(Q)$	SE: $\hat{\lambda}_{SCE}(M)$
Forecast			0.1	0.02
FE			0.12	1
FE	Disg		0.14	1
FE	Var		0.12	1
FE	Disg	Var	0.14	1

• λ : update rate in SE

Results: professionals and NISV

(a) forecast

- (b) FE
- (c) forecast/FE
- (d) FE/var
- (e) FE/var/Disg

Results: households and NISV

(a) forecast

(b) FE

(c) forecast/FE

(d) FE/var (e) FE/var/Disg

NISV parameters

Table: Minimum Distance Estimates of Parameters of NISV

0	1	2	NI: $\hat{\sigma}_{pb,SPF}$	$\hat{\sigma}_{\mathit{pr},\mathit{SPF}}$	NI: $\hat{\sigma}_{pb,SCE}$	$\hat{\sigma}_{pr,SCE}$
Forecast			16.9	21.44	5.21	6.05
FE			67.05	146.8	4.4	4.88
FE	Disg		62.6	0.57	7.23	3.54
FE	Var		787.17	3257.84	97.72	95.73
FE	Disg	Var	126.68	0.57	215.54	3.64

ullet σ_{pb} : noisiness of public signals in NI

ullet σ_{pr} : noisiness of private signals in NI

Ongoing work

- I have been matching time-specific conditional moments with data. I will match unconditional moments
- jointly estimate process parameters and expectation formation parameters
- statistical tests of the fitness, i.e. Sargan-Hansen test in the GMM

Conclusion

- Sticky expectation (SE) matches data of inflation and expectations better compared to noisy information (NI)
- Within each model, households are more irrational compared to professionals
- Incorporating higher moments, i.e. uncertainty, helps "discipline" theories on expectation formation
- Higher moments from surveys also contain useful information about the inflation dynamics itself

- Bachmann, R., Elstner, S., and Sims, E. R. (2013). Uncertainty and economic activity: Evidence from business survey data. *American Economic Journal: Macroeconomics*, 5(2):217–49.
- Bertrand, M. and Mullainathan, S. (2001). Do people mean what they say? implications for subjective survey data. *American Economic Review*, 91(2):67–72.
- Binder, C. C. (2017). Measuring uncertainty based on rounding: New method and application to inflation expectations. *Journal of Monetary Economics*, 90:1–12.
- Bloom, N. (2009). The impact of uncertainty shocks. *econometrica*, 77(3):623–685.
- Branch, W. A. (2004). The theory of rationally heterogeneous expectations: evidence from survey data on inflation expectations. *The Economic Journal*, 114(497):592–621.
- Carroll, C. D. (2003). Macroeconomic expectations of households and professional forecasters. *the Quarterly Journal of economics*, 118(1):269–298.

- Coibion, O. and Gorodnichenko, Y. (2012). What can survey forecasts tell us about information rigidities? *Journal of Political Economy*, 120(1):116–159.
- Das, S., Kuhnen, C. M., and Nagel, S. (2017). Socioeconomic status and macroeconomic expectations. Technical report, National Bureau of Economic Research.
- Delavande, A. (2014). Probabilistic expectations in developing countries. *Annu. Rev. Econ.*, 6(1):1–20.
- Delavande, A., Giné, X., and McKenzie, D. (2011). Measuring subjective expectations in developing countries: A critical review and new evidence. *Journal of development economics*, 94(2):151–163.
- Engelberg, J., Manski, C. F., and Williams, J. (2009). Comparing the point predictions and subjective probability distributions of professional forecasters. *Journal of Business & Economic Statistics*, 27(1):30–41.
- Fuhrer, J. C. (2018). Intrinsic expectations persistence: evidence from professional and household survey expectations.
- Jurado, K., Ludvigson, S. C., and Ng, S. (2015). Measuring uncertainty. *American Economic Review*, 105(3):1177–1216.

- Malmendier, U. and Nagel, S. (2015). Learning from inflation experiences. *The Quarterly Journal of Economics*, 131(1):53–87.
- Mankiw, N. G., Reis, R., and Wolfers, J. (2003). Disagreement about inflation expectations. *NBER macroeconomics annual*, 18:209–248.
- Manski, C. F. (2004). Measuring expectations. *Econometrica*, 72(5):1329–1376.
- Manski, C. F. (2018). Survey measurement of probabilistic macroeconomic expectations: progress and promise. *NBER Macroeconomics Annual*, 32(1):411–471.
- Patton, A. J. and Timmermann, A. (2010). Why do forecasters disagree? lessons from the term structure of cross-sectional dispersion. *Journal of Monetary Economics*, 57(7):803–820.
- Stock, J. H. and Watson, M. W. (2007). Why has us inflation become harder to forecast? *Journal of Money, Credit and banking*, 39:3–33.
- Van der Klaauw, W., Bruine de Bruin, W., Topa, G., Potter, S., and Bryan, M. F. (2008). Rethinking the measurement of household inflation expectations: preliminary findings. *FRB of New York Staff Report*, (359).