Question	Scheme	Marks	
Number 3	$3y = 12 - 4x \Rightarrow y = 4 - \frac{4}{3}x$ OR $4x = 12 - 3y \Rightarrow x = 3 - \frac{3}{4}y$	B1	
	·		
	$\left((x+1)^2 + (4 - \frac{4}{3}x - 2)^2 = 4\right) \left(3 - \frac{3}{4}y + 1\right)^2 + (y-2)^2 = 4$	M1	
	$\Rightarrow 25x^{2} - 30x + 9 = 0 \text{ 3TQ} $ $\Rightarrow 25y^{2} - 160y + 256 = 0 \text{ 3TQ}$	M1A1	
	$(5x-3)(5x-3) = 0 \Rightarrow x = \frac{3}{5}$ $y = 4 - \frac{4}{3} \times \frac{3}{5} = \frac{16}{5}$ $(5y-16)(5y-16) = 0 \Rightarrow y = \frac{16}{5}$ $x = 3 - \frac{3}{4} \times \frac{16}{5} = \frac{3}{5}$	M1A1	
	$y = 4 - \frac{4}{3} \times \frac{3}{5} = \frac{16}{5}$ $x = 3 - \frac{3}{4} \times \frac{16}{5} = \frac{3}{5}$	A1 (7)	
B1	Write the linear equation to read $x =$ or $y =$ May be seen explicitly or implied by subsequent working. (Equivalent forms accepted)		
M1	Substitute to obtain a quad equation in one variable		
M1	Simplify to a 3 term quadratic - terms in any order - coeffs need not be integers		
A1	Correct 3 term quadratic - terms in any order - coeffs need not be integers		
M1	Their 3 term quadratic solved by any valid method. (Can still be earned if the		
A1	discriminant is negative.) Correct values for one variable		
A1	(B1 on e-pen) Correct values for the second variable		
711	Equivalents accepted for both variables		
	NB : Calculator solutions for the quadratic accepted provided both re	oots correct.	
4	05		
	$f'(x) = 2e^{2x}(x+1)^{0.5} + e^{2x} \frac{(x+1)^{-0.5}}{2}$	M1A1A1	
	$f'(x) = e^{2x} \left(2(x+1)^{0.5} + \frac{1}{2(x+1)^{0.5}} \right)$ $\Rightarrow e^{2x} \left(\frac{4(x+1)+1}{2(x+1)^{0.5}} \right) \Rightarrow \frac{e^{2x} (4x+5)}{2\sqrt{x+1}} ***$	dM1	
	$\Rightarrow e^{2x} \left(\frac{4(x+1)+1}{2(x+1)^{0.5}} \right) \Rightarrow \frac{e^{2x}(4x+5)}{2\sqrt{x+1}} ***$	dM1A1cso (6)	
M1	Attempt to differentiate using the product rule. Must be the sum of two terms both with $(x + 1)^{+/-0.5}$ and e^{2x} . Constants may be incorrect If quotient rule is used the numerator must be the difference of two terms both		
	with $(x + 1)^{+/-0.5}$ and e^{2x} and the denominator must be $(x + 1)^{-1}$.		
A1A1	A1A1 Both terms fully correct; A1A0 one term fully correct		
dM1	Extract a common factor of form $k e^{2x}$ where k is an integer		
dM1	Simplify the bracket by combining to a single term		
	The above steps may be carried out in either order but marks must be entered in this order. These 2 M marks are dependent on the first M mark but not on each other.		
A1cso	Obtain the GIVEN answer with no errors seen $(x+1)^{\frac{1}{2}}$ scores A0		
	Seem the St. Lt. this wor with no offold seem (x+1)- seedes No		