A Decomposition-based Evolutionary Algorithm for Multi-modal Multi-objective Optimization

Ryoji Tanabe Hisao Ishibuchi (SUSTech)

1. Multi-modal multi-objective optimization [Deb 08]

Locate as many as possible equivalent Pareto optimal solutions

- Goal: approximate PF
- One of A and B is fine

Multi-modal multi-objective opt.

- Goal: approximate PS A and B are necessary
- ► E.g., Space mission design [Schütze 11] and rocket engine design [Kudo 11]
- ► Diverse nondominated solutions are helpful for decision-making [Hiroyasu 05]

2. Proposed: An MOEA/D with addition and deletion operators (MOEA/D-AD)

	Number of subproblems N	Population size μ
MOEA/D [Zhang 07]	constant	constant
MOEA/D-AD	constant	nonconstant

1 Initialize the population $m{P}=\{m{x}^1,...,m{x}^\mu\}$ and weight vectors $m{W}=\{m{w}^1,...,m{w}^N\}$; 2 while The termination criteria are not met do

- Generate the child u by recombining two individuals randomly selected from P;
- 4 Assign the child u to the closest subproblem in the objective space;
- 5 Perform the deletion operation;
- 6 Perform the addition operation;

7 end

8 return ${m P}$ with the size $N\leftarrow$ Apply a postprocessing solution-reducing procedure $({m P})$

3. Assignment operation of MOEA/D-AD

- ► The same with MOEA/D-DU [Yuan 16]
- ► Calculate the perpendicular distance between $m{f}(m{u})$ and each weight $m{w}$
- lacktriangle Assign the child u to the subproblem having the minimum distance value

4. Deletion operation of MOEA/D-AD

The deletion operation is performed only among...

- *L*: the neighborhood size in the solution space If $g(\mathbf{x}) \geq g(\mathbf{u})$,
- \boldsymbol{x} is deleted from the population

(c)

F

 x_1

(D)

(B)

5. Addition operation of MOEA/D-AD

- lacksquare Add the child u to the population P
- 1. If $m{u}$ is better than at least one individual in the deletion operation, or
- 2. If u has no neighborhood individual in the solution space

6. Discussion: How to handle both objective and solution space diversity

- ► E.g., Omni-optimizer [Deb 08] uses the crowding distance in both the objective and solution spaces
- ► The objective space diversity is maintained using the uniformly distributed weight vectors
- ► The solution space diversity is maintained using the niching method with the relative distance

Solution space

7. Experimental settings

- ► EMMO: Omni-optimizer [Deb 08], MO_Ring_PSO_SCD [Yue18] ► EMO: NSGA-II [Deb 02], MOEA/D [Zhang 07], MOEA/D-DU # obj. # var. # PS sets Disc. PS Test problems Two-On-One [Preuss 06] convex Omni-test [Deb 08] convex SYM-PART1 [Rudolph 07] convex SYM-PART2 [Rudolph 07] convex SYM-PART3 [Rudolph 07] convex SSUF1 [Liang 16] SSUF3 [Liang 16] convex
- ightharpoonup Population size $\mu = \text{Number of subproblems } N = 100$
 - \blacktriangleright Only 100 individuals selected by the postprocessing solution-reducing procedure were used for the performance evaluation of MOEA/D-AD
- ► SBX crossover and the polynomial mutation
- ► Tchebycheff scalarizing function [Zhang 07]
- ▶ Neighborhood size L in MOEA/D-AD: $L = \lfloor 0.1 \mu \rfloor$
- ► Maximum number of evaluations = 30000 \blacktriangleright Number of runs: = 31

8. Distribution of nondominated solutions on the SYM-PART1 problem

Objective space NSGA-II finds well-distributed solutions (a) MOEA/D-AD (b) MO_Ring_PSO_SCD (c) Omni-optimizer (d) NSGA-II (e) MOEA/D (f) MOEA/D-DU

Only MOEA/D-AD finds solutions on all the nine lines (a) MOEA/D-AD (b) MO_Ring_PSO_SCD (c) Omni-optimizer $\frac{15}{-15}$ $\frac{15}{-10}$ $\frac{15}{-5}$ $\frac{10}{-5}$ $\frac{15}{-15}$ $\frac{15}{-10}$ $\frac{15}{-5}$ $\frac{15}$ (e) MOEA/D (f) MOEA/D-DU (d) NSGA-II

9. Comparison on the seven two-objective test problems (the IGD and IGDX indicators)

Mean IGD values (objective space)

NSGA-II is the best multi-objective optimizer

	rio di tino di cono indici objectivo openimes.						
	MOEA/D- AD	MO_Ring_ PSO_SCD	Omni- optimizer	NSGA-II	MOEA/D	MOEA/D- DU	
Two-On-One	0.0637 (5)	0.0606≈ (4)	0.0489+ (2)	0.0490+ (3)	0.0450+ (1)	0.0709- (6)	
Omni-test	0.0755 (5)	0.1814 - (6)	0.0303+(2)	0.0297+(1)	0.0517+(4)	0.0458+(3)	
SYM-PART1	0.0302 (4)	0.0283+(3)	0.0236+(2)	0.0210+(1)	0.0467 - (5)	0.0478 - (6)	
SYM-PART2	0.0305 (3)	$0.0312 \approx (4)$	0.0284+(2)	0.0229+(1)	0.0466 - (5)	0.0474-(6)	
SYM-PART3	0.0307 (2)	0.0323 - (3)	0.0343 - (4)	0.0228+(1)	0.0455 - (5)	0.0470-(6)	
SSUF1	0.0075 (6)	0.0065+(5)	0.0060+(4)	0.0055+(2)	0.0055+(3)	0.0042+(1)	
SSUF3	0.0190 (5)	0.0106+(3)	0.0170+(4)	0.0073+(1)	0.0629-(6)	0.0082+(2)	

*The IGD metric [Zitzler 03] evaluates how well the population approximates the Pareto front in the objective space

Mean IGDX values (solution space)

MOEA/D-AD is the best multi-modal multi-objective optimizer

Wolf (D / D is the best matti modal matti objective optimizer						
	MOEA/D- AD	MO_Ring_ PSO_SCD	Omni- optimizer	NSGA-II	MOEA/D	MOEA/D- DU
Two-On-One	0.0353 (1)	0.0369- (2)	0.0383- (3)	0.1480- (4)	0.2805 - (6)	0.2067 – (5)
Omni-test	1.3894 (1)	2.2227-(3)	<i>2.0337</i> — (2)	2.5664-(4)	4.3950-(6)	2.9251-(5)
SYM-PART1	0.0686 (1)	0.1482- (2)	3.8027 - (3)	7.9287 - (5)	9.1551 – (6)	5.0426-(4)
SYM-PART2	0.0783 (1)	0.1610- (2)	1.0863 - (3)	5.3711- (5)	9.4834 (6)	5.1610-(4)
SYM-PART3	0.1480 (1)	0.4909- (2)	1.3620-(3)	5.8410-(5)	7.3969-(6)	4.6767-(4)
SSUF1	0.0761 (1)	0.0860-(2)	0.0899 - (3)	0.1323 - (5)	0.2443 - (6)	0.1143-(4)
SSUF3	0.0302 (2)	0.0198+(1)	0.0541-(3)	0.0710-(5)	0.3083 - (6)	0.0599-(4)

*The IGDX metric [Zhou 09] evaluates how well the population approximates the Pareto-optimal solution sets in the solution space