$0.1 \mathbb{R}^n$ 中开集、闭集及其性质

0.1.1 *n* 维欧氏空间

定义 0.1

我们用 \mathbb{R}^n 表示 n 维欧氏空间, 即

$$\mathbb{R}^n = \{x = (\xi_1, \xi_2, \dots, \xi_n) : \xi_i \in \mathbb{R}, i = 1, 2, \dots, n\}.$$

其中, ξ_i 称为 x 的第 i 个**坐标**.

定义 0.2 (\mathbb{R}^n 中的加法与数乘)

设 $x = (\xi_1, \xi_2, \dots, \xi_n), y = (\eta_1, \eta_2, \dots, \eta_n) \in \mathbb{R}^n, k \in \mathbb{R}, 定义 \mathbb{R}^n$ 中的加法、数乘分别为

$$x + y = (\xi_1 + \eta_1, \xi_2 + \eta_2, \dots, \xi_n + \eta_n)$$
$$kx = (k\xi_1, k\xi_2, \dots, k\xi_n)$$

拿 筆记 不难证明 ℝⁿ 在上述加法和数乘下构成线性空间.

定义 0.3 (\mathbb{R}^n 中两点之间距离)

对于任意的 $x, y \in \mathbb{R}^n$, 设 $x = (\xi_1, \xi_2, \dots, \xi_n), y = (\eta_1, \eta_2, \dots, \eta_n) \in \mathbb{R}^n$, 定义

$$d(x, y) = \left(\sum_{i=1}^{n} |\xi_i - \eta_i|^2\right)^{\frac{1}{2}}$$

表示点 x 到 y 的**距离**. 通常记 d(x,0) = ||x||, 表示 x 的**范数**, 若 $x \in \mathbb{R}^1$, 则 ||x|| 即为 x 的绝对值.

命题 $0.1 (\mathbb{R}^n$ 中两点之间距离的基本性质)

- (1) (非负性) 对于任意的 $x, y \in \mathbb{R}^n$, 我们有 $d(x, y) \ge 0$, 当且仅当 x = y 时等号成立;
- (2) (对称性) 对于任意的 $x, y \in \mathbb{R}^n$, 我们有 d(x, y) = d(y, x);
- (3) (三角不等式) 对任意的 $x, y, z \in \mathbb{R}^n$, 都有

$$d(x, y) \leqslant d(x, z) + d(z, y).$$

证明 (1) 和 (2) 的证明是显然的. 下面证明 (3). 设 $x = (x_1, x_2, \cdots, x_n), y = (y_1, y_2, \cdots, y_n), z = (z_1, z_2, \cdots, z_n),$ 则

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = \sqrt{\sum_{i=1}^{n} (x_i - z_i + z_i - y_i)^2},$$

$$d(x,z) = \sqrt{\sum_{i=1}^{n} (x_i - z_i)^2}, d(z,y) = \sqrt{\sum_{i=1}^{n} (z_i - y_i)^2}.$$

 $记 x_i - z_i = a_i, z_i - y_i = b_i, 其中 i = 1, 2, \dots, n.$ 则

$$d(x,z) = \sqrt{\sum_{i=1}^{n} a_i^2}, d(z,y) = \sqrt{\sum_{i=1}^{n} b_i^2},$$
(1)

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - z_i + z_i - y_i)^2} = \sqrt{\sum_{i=1}^{n} (a_i + b_i)^2} = \sqrt{\sum_{i=1}^{n} a_i^2 + \sum_{i=1}^{n} b_i^2 + 2\sum_{i=1}^{n} a_i b_i}.$$
 (2)

又由 Cauchy - Schwarz 不等式可得

$$(\sum_{i=1}^{n} a_i b_i)^2 \leqslant (\sum_{i=1}^{n} a_i^2)(\sum_{i=1}^{n} b_i^2).$$

从而

$$\sum_{i=1}^{n} a_i b_i \leqslant \sqrt{(\sum_{i=1}^{n} a_i^2)(\sum_{i=1}^{n} b_i^2)}.$$
 (3)

于是结合(1)(2)(3)式可得

$$d(x,y) = \sqrt{\sum_{i=1}^{n} a_i^2 + \sum_{i=1}^{n} b_i^2 + 2\sum_{i=1}^{n} a_i b_i} \leqslant \sqrt{\sum_{i=1}^{n} a_i^2 + \sum_{i=1}^{n} b_i^2 + 2\sqrt{(\sum_{i=1}^{n} a_i^2)(\sum_{i=1}^{n} b_i^2)}}$$

$$= \sqrt{[\sqrt{\sum_{i=1}^{n} a_i^2 + \sqrt{\sum_{i=1}^{n} b_i^2}]^2}} = \sqrt{\sum_{i=1}^{n} a_i^2 + \sqrt{\sum_{i=1}^{n} b_i^2}} = d(x,z) + d(z,y).$$

定义 0.4

设 $\{x_k\}$ 为 \mathbb{R}^n 中的点列, 若存在 $x \in \mathbb{R}^n$ 使得

$$\lim_{k \to \infty} d(x_k, x) = 0$$

则称 $\{x_k\}$ 收敛于 x, 记为 $\lim_{k\to\infty} x_k = x$ 或 $x_k\to x(k\to\infty)$.

命题 0.2

设 $\{x_k\} \subset \mathbb{R}^n$, 则 $\{x_k\}$ 是收敛数列, 当且仅当

$$\lim_{i,j\to\infty} d(x_i,x_j) = 0$$

证明 设 $x_k = (\xi_1^{(k)}, \xi_2^{(k)}, \dots, \xi_n^{(k)}), x = (\xi_1, \xi_2, \dots, \xi_n)$. 注意到

$$|\xi_i^{(k)} - \xi_i| \le d(x_k, x) \le \sum_{i=1}^n |\xi_i^{(k)} - \xi_i|$$

易证 $x_k \to x$, 当且仅当对每个坐标位置 i, 都有 $\xi_i^{(k)} \to \xi_i(k \to \infty)$. 再由柯西收敛准则即可得到证明. \Box

0.1.2 \mathbb{R}^n 中的开集及其性质

定义 0.5 (邻域、内点、内部和开集)

设 $x_0 \in \mathbb{R}^n$, $\varepsilon > 0$, 定义

$$U(x_0, \varepsilon) = \{x \in \mathbb{R}^n : d(x, x_0) < \varepsilon\}$$

为 x_0 的 ε - 邻域.

设 $A \subset \mathbb{R}^n$, $x \in A$, 若存在 $\varepsilon_0 > 0$ 使得 $U(x, \varepsilon_0) \subset A$, 则称 $x \to A$ 的**内点**. A 的全体内点, 记为 A° , 也称为 A 的**内部**.

若 A 中每个点都是 A 的内点, 则称 A 为开集. 此即对 $\forall x \in A$, 都存在 $r_x > 0$, 使得

$$U(x, r_x) \subset A$$
.

笔记 $(a,b), (-\infty,a), (a,+\infty)$ 都是 \mathbb{R} 中的开集; 邻域 $U(x_0,r)$, 又称以 x_0 为心、以 r 为半径的开球, 是 \mathbb{R}^n 中的开集; A° 也是开集.

命题 0.3 (开集的性质)

- (1) \emptyset 和 \mathbb{R}^n 是开集;
- (2) 任意个开集的并集是开集;
- (3) 有限个开集的交集是开集.

注 无限个开集的交集不一定是开集. 例如

$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right) = \{0\}.$$

证明

- (1) 显然.
- (2) 设 $\{G_{\alpha}: \alpha \in \Gamma\}$ 为一族开集. 任取 $x \in \bigcup_{\alpha \in \Gamma} G_{\alpha}$, 则存在 $\alpha_0 \in \Gamma$ 使得 $x \in G_{\alpha_0}$. 由于 G_{α_0} 是开集, 则存在 $\varepsilon_0 > 0$ 使得

$$U(x, \varepsilon_0) \subset G_{\alpha_0} \subset \bigcup_{\alpha \in \Gamma} G_{\alpha}$$

故 x 是 $\bigcup_{\alpha \in \Gamma} G_{\alpha}$ 的内点. 再由 x 的任意性知 $\bigcup_{\alpha \in \Gamma} G_{\alpha}$ 是开集.

(3) 设 G_1, G_2, \dots, G_n 为开集, 任取 $x \in \bigcap_{i=1}^n G_i$, 则 $x \in G_i$, $i = 1, 2, \dots, n$. 由于 G_i 是开集, 故存在 $\varepsilon_i > 0$ 使得

$$U(x, \varepsilon_i) \subset G_i, \quad i = 1, 2, \cdots, n$$

令 $\varepsilon = \min\{\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n\}$, 则 $\varepsilon > 0$ 且 $U(x, \varepsilon) \subset \bigcap_{i=1}^n G_i$, 故 $x \not\in \bigcap_{i=1}^n G_i$ 的内点. 再由 x 的任意性知 $\bigcap_{i=1}^n G_i$ 是开集.

命题 0.4

设 A 为非空集合,则 A° 为开集.

证明 任取 $x \in A^{\circ}$,则存在 r > 0 使得 $U(x,r) \subset A$. 对 $\forall y \in U(x,r)$,令 $\delta = r - d(x,y)$,则易知 $U(y,\delta) \subset A$,故 $y \in A^{\circ}$. 从而 $U(x,r) \subset A^{\circ}$,因此, A° 是开集.

0.1.3 \mathbb{R}^n 中的闭集及其性质

定义 0.6 (聚点、极限点和孤立点)

设 $x_0 \in \mathbb{R}^n$, $A \subset \mathbb{R}^n$. 若对 $\forall \varepsilon > 0$, 都有

$$U(x_0, \varepsilon) \cap (A - \{x_0\}) \neq \emptyset$$
.

则称 x_0 为 A 的**聚点**或**极限点**. 不是聚点, 即存在 $\varepsilon_0 > 0$ 使得

$$U(x_0, \varepsilon_0) \cap (A - \{x_0\}) = \emptyset$$

则称 x_0 为 A 的**孤立点**.

注 ℝⁿ 空间, 聚点 = 内点 + 边界点, 故聚点不一定属于 A, 比如边界点. 例如, A = (0, 1), 则 [0, 1] 都是 A 的聚点.

П

命题 0.5 (Rn 中聚点的等价条件)

设 $x_0 \in \mathbb{R}^n$, $A \subset \mathbb{R}^n$. 则 x_0 是A的聚点等价于:

- (1) $\forall \varepsilon > 0$, 都有 $U(x_0, \varepsilon) \cap (A \{x_0\}) \neq \emptyset$.
- (2) 对 $\forall \varepsilon > 0$, $U(x, \varepsilon)$ 中含有无穷多 A 中的点.

证明 (2)←(1) 是显然的. 下证 (1)⇒(2).

假设存在 $\varepsilon_0 > 0$, 使得

$$U(x_0, \varepsilon_0) \cap (A - \{x_0\}) = \{x_1, x_2, \cdots, x_n\}$$

令

$$\delta = \min\{|x_0 - x_i| : i = 1, 2, \dots, n\}$$

则 $U(x_0, \delta)$ 中不含 A 中异于 x_0 的点, 这与 x_0 是 A 的聚点矛盾.

定义 0.7 (导集、完全集、闭包和闭集)

设 $A \subset \mathbb{R}^n$, 则 A 的聚点的全体, 称为 A 的**导集**, 记为 A'. 若 A' = A, 则称 A 为**完全集** (无孤立点). A - A' 中的点, 即为所有孤立点.

 $A \cup A'$ 称为 A 的**闭包**, 记为 \overline{A} . 开集的余集, 称为**闭集**.

 $\widehat{\Sigma}$ 笔记 例如, [a,b], $(-\infty,a]$, $[a,+\infty)$ 都是 \mathbb{R} 中的闭集; 以 x_0 为心, 以 r 为半径的闭球 $B(x_0,r) = \{x \in \mathbb{R}^n : d(x,x_0) \leq r\}$ 是 \mathbb{R}^n 中的闭集; A', A 也是闭集.

命题 0.6

- (1) 若 $A \subset B$, 则 $A' \subset B'$;
- (2) $(A \cup B)' = A' \cup B'$.

证明 利用导集的定义容易验证.

命题 0.7 (闭集的性质)

- (1) \emptyset 和 \mathbb{R}^n 是闭集;
- (2) 任意个闭集的交集是闭集;
- (3) 有限个闭集的并集是闭集.

注 无限个闭集的并集不一定是闭集. 例如, $\bigcup_{n=0}^{\infty} [1/n, 1] = (0, 1]$.

证明 由命题 0.3, 闭集的定义以及De Morgan 定律, 容易验证.

命题 0.8

设 $A \subset \mathbb{R}^n$,则

- (1) $x \in A' \Leftrightarrow \exists \{x_n\} \subset (A \{x\})$ 使得 $x_n \to x$;
- (2) $x \in \overline{A} \Leftrightarrow \exists \{x_n\} \subset A \notin \{x_n\} \to x$.

证明 (1) "⇒". 若 $x \in A'$, 则对 $\forall \varepsilon > 0$, 都有 $U(x, \varepsilon) \cap (A - \{x\}) \neq \emptyset$. 特别地, 依次令 $\varepsilon_n = 1/n, n = 1, 2, \dots$, 取 $x_n \in U(x, 1/n) \cap (A - \{x_0\})$, 则 $x_n \to x$.

" \leftarrow ". 设 $\{x_n\} \subset (A - \{x\})$ 满足 $x_n \to x$. 由于 $x_n \to x$, 则对 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, 使得当 $n \geqslant N$ 时有 $d(x_n, x) < \varepsilon$, 即 $x_n \in U(x, \varepsilon)$. $\forall n \geqslant N$. 又 $x_n \neq x$, 故 $U(x, \varepsilon) \cap (A - \{x\}) \neq \emptyset$. 因此, $x \in A'$.

(2) "⇒". $\overline{A} = A \cup A'$. 若 $x \in A$, 令 $x_n = x$, $n \in \mathbb{N}$, 则 $x_n \to x$. 若 $x \in A'$, 由 (i) 知, 结论仍然成立.

" \leftarrow ". 设 $\{x_n\} \subset A$ 满足 $x_n \to x$. 若 $\exists n_0 \in \mathbb{N}$, 使得 $x_{n_0} = x$, 则 $x \in A \subset \overline{A}$. 否则 $\forall n \in \mathbb{N}$, 都有 $x_n \neq x$, 则由 (i)

知, $x \in A' \subset \overline{A}$.

定理 0.1

A 为闭集 $\Leftrightarrow A' \subset A$.

证明 "⇒". 设 A 为闭集,则 A^c 为开集. 任取 $x \in A'$, 往证 $x \in A$, 即 $x \notin A^c$. 若 $x \in A^c$, 由于 A^c 是开集,则存在 $\varepsilon_0 > 0$ 使得 $U(x, \varepsilon_0) \subset A^c$. 故 $U(x, \varepsilon_0) \cap A = \varnothing$, 从而 $U(x, \varepsilon_0) \cap (A - \{x\}) = \varnothing$. 这与 $x \in A'$ 矛盾.

" \leftarrow ". 设 $A' \subset A$, 往证 A 是闭集, 即 A^c 是开集. 任取 $x \in A^c$, 由于 $A' \subset A$, 则 $x \notin A'$. 故 $\exists \varepsilon_0 > 0$ 使得 $U(x, \varepsilon_0) \cap (A - \{x\}) = \emptyset$, 从而

$$U(x, \varepsilon_0) \subset (A - \{x\})^c = (A \cap \{x\}^c)^c = A^c \cup \{x\} = A^c$$

因此, A^c 是开集.

定理 0.2

A 为闭集 $\Leftrightarrow A = \overline{A}$.

 $\frac{1}{12}$ 闭集 $A = \overline{A}$, 再由命题 0.8(2)知, 闭集中任一点都能找到闭集中的一个点列收敛到该点. 这也是闭集才具有的好的性质.

证明 "⇒". A 为闭集,则 $A' \subset A$. 故 $\overline{A} = A \cup A' \subset A \subset \overline{A}$. 因此, $A = \overline{A}$.

"
$$\leftarrow$$
". 若 $A = \overline{A}$, 则 $A' \subset \overline{A} = A$, 故 A 是闭集.

定理 0.3

设 A 为一个非空集合,则 A' 为闭集.

证明 只需证明 $(A')' \subset A'$. 设 $x \in (A')'$, 由命题 0.8(1), 存在 $\{x_n\} \subset A' - \{x\}$ 使得 $x_n \to x$. 往证 $x \in A'$, 即存在 $\{y_n\} \subset A - \{x\}$ 使得 $y_n \to x$.

对于固定的 $n \in \mathbb{N}$, 由于 $x_n \in A'$, 则存在 $y_n \in A - \{x, x_n\}$ 使得 $d(y_n, x_n) < 1/n$. 于是

$$d(y_n, x) \leq d(y_n, x_n) + d(x_n, x) \to 0, \quad n \to \infty$$

totag to

定义 0.8 (连续映射)

设 X, Y 为距离空间, 称映射 $f: X \to Y$ 在点 $x_0 \in X$ 处连续, 是指对 $\forall \varepsilon > 0$, 存在 $\delta > 0$ 使得当 $d(x, x_0) < \delta$ 时, 有 $d(f(x), f(x_0)) < \varepsilon$.

若 f 在任意点 $x \in X$ 都连续, 则称 f 为 X 上的**连续映射**.

注 f 在 x₀ 点连续可等价地用集合语言描述如下:

$$\forall \varepsilon > 0, \exists \delta > 0, \ \text{\'eta} f(U(x_0, \delta)) \subset U(f(x_0), \varepsilon)$$

定理 0.4 (连续映射的充要条件)

设 $f: X \to Y$ 是映射,则下列条件等价:

- (1) f 连续;
- (2) Y 的任一开集在 f 下的原象是 X 中的开集;
- (3) Y 的任一闭集在 f 下的原象是 X 中的闭集.

注 若上述定理的 (2) 换成 "X 的任一开集在 f 下的象是 Y 中的开集", 结论不一定成立. 因为连续映射在开集上的象未必是开集. 例如, f(x) = |x|, 则 f 在开区间 (-1, 1/2) 上连续, 但 f 的象是 [0,1), 不是开集.

证明 (1) \Rightarrow (2). 设 f 连续, $G \subset Y$ 为开集. 不妨设 $f^{-1}(G) \neq \emptyset$, 任取 $x_0 \in f^{-1}(G)$, 则 $f(x_0) \in G$. 由于 G 是开集, 则

 $\exists \varepsilon > 0$ 使得 $U(f(x_0), \varepsilon) \subset G$. 又 f 连续, 则对上述 ε , $\exists \delta > 0$ 使得

$$f(U(x_0,\delta))\subset U(f(x_0),\varepsilon)\subset G$$

从而 $U(x_0, \delta) \subset f^{-1}(G)$. 这就证明了 $x_0 \not\in f^{-1}(G)$ 的内点. 因此, $f^{-1}(G)$ 是开集.

(2) ⇒ (1). 设 $x_0 \in X$, 对 $\forall \varepsilon > 0$, 都有 $U(f(x_0), \varepsilon)$ 是 Y 中的开集, 从而由 (2) 知 $f^{-1}(U(f(x_0), \varepsilon))$ 是 X 中的开集. 又 $x_0 \in f^{-1}(U(f(x_0), \varepsilon))$, 则存在 $\delta > 0$ 使得

$$U(x_0, \delta) \subset f^{-1}(U(f(x_0), \varepsilon))$$

故 $f(U(x_0,\delta)) \subset U(f(x_0),\varepsilon)$, 从而 f 在点 x_0 连续, 再由 x_0 的任意性知 f 连续.

(2) \Rightarrow (3). 设 $F \subset Y$ 为闭集,则 F^c 是开集,故由 (2) 知 $f^{-1}(F^c)$ 是 X 中的开集.于是, $f^{-1}(F) = (f^{-1}(F^c))^c$ 是 X 中的闭集.

 $(3) \Rightarrow (2)$ 类似.