QFT: Simetrias e Conservação — Noether & Gauge

Guia com equações destrinchadas e exercícios resolvidos

Samuel Keullen Sales

October 13, 2025

Abstract

Este documento apresenta Noether e invariância de gauge de forma prática: (i) exposição formal e legenda termo-a-termo das equações-chave; (ii) exercícios resolvidos com valores numéricos e conversão para SI; (iii) interpretações físicas prontas para registrar em relatórios. O objetivo é preparar você para a prova cobrindo cálculo e interpretação.

Contents

1	Introdução: o papel das simetrias		2
2	Teo 2.1 2.2	rema de Noether — enunciado e legenda das fórmulas Enunciado (forma curta)	2 2 2
3	Exemplo (desmontado) — invariância de fase global $U(1)$ para campo escalar complexo		2
	3.1 3.2 3.3 3.4	Lagrangiano	2 3 3 3
4	Inva 4.1 4.2	ariância translacional e tensor energia-momento Definição	3 3
5	Inva 5.1	ariância de gauge local (esboço e legenda) Transformação local $U(1)$	4
6	Exe 6.1 6.2	ercícios resolvidos (passo a passo) — preparo para a prova Exercício 1 (resolvido) — corrente de Noether para onda plana Exercício 2 (resolvido) — tensor energia-momento para onda senoidal (1+1D	4
	6.3	simplificada)	5 6
7	Che	ecklist de assuntos para prova (resumo rápido)	7
8	Ref	erências rápidas (para revisão)	7

1 Introdução: o papel das simetrias

Breve: simetrias contínuas implicam correntes conservadas (Noether). Simetrias locais (gauge) exigem campos de gauge para preservar invariância e introduzem interações.

2 Teorema de Noether — enunciado e legenda das fórmulas

2.1 Enunciado (forma curta)

Se a ação $S=\int d^4x\,\mathcal{L}(\phi,\partial\phi)$ é invariante sob uma transformação contínua de parâmetro pequeno α :

$$\phi(x) \to \phi'(x) = \phi(x) + \delta\phi(x), \qquad \delta\phi(x) = \alpha \,\Delta\phi(x),$$

então existe uma corrente j^{μ} conservada:

$$\partial_{\mu}j^{\mu}=0.$$

2.2 Construção explícita da corrente (campo escalar)

Para transformações internas (não dependem de x), a corrente de Noether é, tipicamente,

$$j^{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta \phi + \text{c.c.},$$

onde "c.c." indica conjugado complexo quando necessário.

Legenda (destrinchada):

- L: Lagrangiano, função das variáveis de campo e suas derivadas.
- $\partial \mathcal{L}/\partial(\partial_{\mu}\phi)$: momento canônico associado à variação de ϕ (derivada conjugada).
- $\delta\phi$: variação do campo sob a transformação de simetria (proporcional ao gerador da simetria).
- $\partial_{\mu}j^{\mu} = 0$: conservação local da quantidade associada (integrando sobre espaço gera quantidade global conservada).

3 Exemplo (desmontado) — invariância de fase global U(1) para campo escalar complexo

3.1 Lagrangiano

$$\mathcal{L} = (\partial_{\mu}\phi)^*(\partial^{\mu}\phi) - m^2\phi^*\phi.$$

Legenda: primeiro termo = derivadas cinéticas (energia cinética do campo), segundo = termo de massa.

3.2 Transformação

$$\phi(x) \to e^{i\alpha}\phi(x) \approx \phi(x) + i\alpha\phi(x)$$
 (para $\alpha \ll 1$).

Variação: $\delta \phi = i \alpha \phi$.

3.3 Corrente de Noether (derivação curta)

$$j^{\mu} = i \left(\phi \partial^{\mu} \phi^* - \phi^* \partial^{\mu} \phi \right).$$

Destrinchamento:

- $\phi \partial^{\mu} \phi^*$: campo vezes derivada do conjugado (fluxo de fase).
- sinal i: surge da variação de fase complexa.
- j^0 (componente temporal) corresponde à densidade de carga; j^i são densidades de corrente espacial.

3.4 Verificação com ondas planas (preparando exercício 1)

Se $\phi(x) = \phi_0 e^{-ip \cdot x}$ então

$$\partial^{\mu}\phi = -ip^{\mu}\phi, \qquad \partial^{\mu}\phi^* = +ip^{\mu}\phi^*.$$

Substituindo:

$$j^{\mu} = i(\phi(ip^{\mu}\phi^*) - \phi^*(-ip^{\mu}\phi)) = i(2ip^{\mu}|\phi|^2) = -2p^{\mu}|\phi|^2.$$

Interpretação: corrente proporcional a p^{μ} e à densidade $|\phi|^2$; seu sinal depende da convenção de corrente (alguns livros definem com sinal trocado — o que importa é consistência).

4 Invariância translacional e tensor energia-momento

4.1 Definição

Se \mathcal{L} é invariante sob $x^{\mu} \to x^{\mu} + a^{\mu}$, então a corrente de Noether é o tensor energiamomento:

$$T^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \partial^{\nu}\phi - g^{\mu\nu}\mathcal{L}.$$

Legenda:

- \bullet T^{00} : densidade de energia; T^{0i} : densidade de momento; T^{ij} : fluxo de momento.
- $\partial_{\mu}T^{\mu\nu}=0$: expressa conservação local de energia-momento.

4.2 Exemplo prático (campo escalar real)

Com
$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)(\partial^{\mu} \phi) - \frac{1}{2} m^2 \phi^2$$
,

$$T^{\mu\nu} = \partial^{\mu}\phi \,\partial^{\nu}\phi - g^{\mu\nu} \Big(\frac{1}{2} (\partial_{\alpha}\phi)^2 - \frac{1}{2} m^2 \phi^2 \Big).$$

Observação: essa é a forma *canônica*; existem formas simétricas (Belinfante) úteis em GR.

3

5 Invariância de gauge local (esboço e legenda)

5.1 Transformação local U(1)

$$\phi(x) \to e^{i\alpha(x)}\phi(x)$$
.

Sem campo de gauge, $\partial_{\mu}\phi$ não transforma covariantemente; por isso definimos a derivada covariante:

$$D_{\mu} = \partial_{\mu} + ieA_{\mu},$$

e exigimos que $A_{\mu} \to A_{\mu} - \frac{1}{e} \partial_{\mu} \alpha(x)$ para que

$$D_{\mu}\phi \to e^{i\alpha(x)}D_{\mu}\phi.$$

Lagrangiano gauge-invariante (escalares + Maxwell):

$$\mathcal{L} = (D_{\mu}\phi)^*(D^{\mu}\phi) - m^2\phi^*\phi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}, \qquad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}.$$

Legenda: A_{μ} é o campo de gauge (potencial eletromagnético), $F_{\mu\nu}$ é a força (campo elétrico/magnético).

6 Exercícios resolvidos (passo a passo) — preparo para a prova

Observação: em todos os exercícios trabalho primeiramente em unidades naturais ($\hbar = c = 1$) e só converto quando solicitado; as conversões usam

$$1 \text{ eV} = 1.602176634 \times 10^{-19} \text{ J}.$$

6.1 Exercício 1 (resolvido) — corrente de Noether para onda plana

Enunciado: para $\phi(x) = \phi_0 e^{-ip \cdot x}$ com amplitude ϕ_0 real (escolha $\phi_0 = 1$ para simplicidade) e transformação U(1), calcule j^{μ} e interprete fisicamente. Converta j^0 para unidades SI assumindo $p^0 = E = 1$ eV.

Solução:

1. Fórmula da corrente:

$$j^{\mu} = i(\phi \partial^{\mu} \phi^* - \phi^* \partial^{\mu} \phi).$$

2. Para $\phi = \phi_0 e^{-ip \cdot x}$ com ϕ_0 real:

$$\partial^{\mu}\phi = -ip^{\mu}\phi, \quad \partial^{\mu}\phi^* = +ip^{\mu}\phi^*.$$

3. Substituindo:

$$j^{\mu} = i(\phi(ip^{\mu}\phi^*) - \phi^*(-ip^{\mu}\phi)) = i(2ip^{\mu}|\phi|^2) = -2p^{\mu}|\phi|^2.$$

4. Escolhendo $\phi_0=1$ (portanto $|\phi|^2=1$) e $p^\mu=(E,{\bf p})$ com E=1 eV:

$$j^{\mu} = -2p^{\mu} = (-2E, -2\mathbf{p}).$$

5. Componente temporal (densidade de carga) em unidades de eV:

$$j^0 = -2E = -2 \text{ eV}.$$

6. Converter para SI (Joule): multiplicar por $1.602176634 \times 10^{-19}$:

$$j_{\rm SI}^0 = -2 \times 1.602176634 \times 10^{-19} \text{ J} \approx -3.204 \times 10^{-19} \text{ J}.$$

Interpretação física (pronta para relatório):

A corrente de Noether associada à invariância de fase global é proporcional ao quadrimomento do modo e à densidade $|\phi|^2$. A componente temporal j^0 representa a densidade de carga (para um campo com carga unitária). O sinal depende da convenção; fisicamente importa a conservação $\partial_{\mu}j^{\mu}=0$, ou seja, a quantidade total de carga (integral de j^0 em todo o espaço) é constante no tempo.

Observação sobre dimensões: aqui tratamos $|\phi|^2$ adimensional por escolha de normalização (modo de exercício). Em análises físicas completas as unidades do campo devem ser tratadas consistentemente, mas o procedimento algébrico e a interpretação permanecem iguais.

6.2 Exercício 2 (resolvido) — tensor energia-momento para onda senoidal (1+1D simplificada)

Enunciado: dado $\phi(x,t) = A\sin(kx - \omega t)$ em 1+1 dimensões e Lagrangiano livre $\mathcal{L} = \frac{1}{2}(\partial_t \phi)^2 - \frac{1}{2}(\partial_x \phi)^2 - \frac{1}{2}m^2\phi^2$, calcule $T^{\mu\nu}$, verifique $\partial_\mu T^{\mu 0} = 0$ (conservação de energia), e obtenha a densidade de energia T^{00} numericamente para A = 1, k = 1 m⁻¹, m = 0 (modo massless), no instante t = 0 e x = 0. Converta o resultado para SI.

Solução:

1. Fórmula do tensor (canônico, para campo real):

$$T^{\mu\nu} = \partial^{\mu}\phi \, \partial^{\nu}\phi - q^{\mu\nu}\mathcal{L}.$$

Em 1+1D com sinal de métrica $q^{00} = 1$, $q^{11} = -1$.

2. Derivadas da onda:

$$\partial_t \phi = -\omega A \cos(kx - \omega t), \qquad \partial_x \phi = kA \cos(kx - \omega t).$$

3. Densidade de energia (componente T^{00}):

$$T^{00} = \frac{1}{2} (\partial_t \phi)^2 + \frac{1}{2} (\partial_x \phi)^2 + \frac{1}{2} m^2 \phi^2.$$

(para esse Lagrangiano a forma simplificada é a soma de energia cinética, energia de gradiente e energia de massa)

4. Substituindo m = 0, A = 1, k = 1 m⁻¹, em t = 0, x = 0: $\cos(0) = 1$.

$$\partial_t \phi|_{0,0} = -\omega, \quad \partial_x \phi|_{0,0} = k.$$

5. Para campo massless a relação de dispersão é $\omega=ck$. Em SI $c=2.997\,924\,58\times 10^8$ m/s, com k=1 m⁻¹:

$$\omega = ck = 2.9979 \times 10^8 \text{ s}^{-1}.$$

6. Agora calcule T^{00} (mantendo unidades SI para energia density):

$$T^{00} = \frac{1}{2}(\omega^2) + \frac{1}{2}(k^2) = \frac{1}{2}(\omega^2 + k^2).$$

Atenção: em unidades naturais $\hbar=c=1$ as dimensões mudam; aqui estamos convertendo para SI apenas pela relação $\omega=ck$. Para dar um valor em SI consistente precisamos assumir unidade de ϕ ; para ilustração pegamos A sem dimensão e calculamos a quantidade numérica (unidade será (field units) $^2 \cdot s^{-2}$). Substituindo números:

$$\omega^2 \approx (2.9979 \times 10^8)^2 \approx 8.9876 \times 10^{16} \text{ s}^{-2}, \qquad k^2 = 1 \text{ m}^{-2}.$$

$$T^{00} \approx \frac{1}{2} (8.9876 \times 10^{16} + 1) \approx 4.4938 \times 10^{16} \text{ (unidade: field}^2 \cdot \text{s}^{-2}).$$

Interpretação física pronta:

O componente T^{00} representa a densidade de energia local do campo. Para ondas eletromagnéticas ou campos físicos, a densidade inclui energia cinética (derivada temporal), energia de variação no espaço (gradiente) e termos de massa. A conservação $\partial_{\mu}T^{\mu 0}=0$ garante que a energia total (integral espacial de T^{00}) é constante no tempo.

Nota prática: Em cálculos reais a unidade de ϕ é física e deve ser usada para obter Joules por metro cúbico; aqui mostramos procedimento e número escala para treinamento algebraico.

6.3 Exercício 3 (resolvido) — derivada covariante e invariância de gauge local

Enunciado: considere transformação local $\alpha(x) = \beta x$ com $\beta = 0.05$ (length)⁻¹ (escolha de conveniência), campo escalar $\phi(x)$ e campo de gauge A_{μ} . Mostre que, sem A_{μ} , a Lagrangiana não é invariante e que a introdução da derivada covariante $D_{\mu} = \partial_{\mu} + ieA_{\mu}$ restaura invariância desde que A_{μ} transforme como $A_{\mu} \to A_{\mu} - \partial_{\mu}\alpha/e$.

Solução (passos lógicos):

- 1. Sem gauge: $\partial_{\mu}\phi \to \partial_{\mu}(e^{i\alpha(x)}\phi) = e^{i\alpha(x)}(\partial_{\mu}\phi + i(\partial_{\mu}\alpha)\phi)$. O termo adicional $i(\partial_{\mu}\alpha)\phi$ impede que $\partial_{\mu}\phi$ transforme na mesma forma simples.
- 2. Com covariante: defina $D_{\mu}\phi \equiv (\partial_{\mu} + ieA_{\mu})\phi$. Sob transformação local:

$$\phi \to e^{i\alpha(x)}\phi, \qquad A_{\mu} \to A_{\mu} - \frac{1}{e}\partial_{\mu}\alpha(x).$$

3. Então

$$D_{\mu}\phi \to (\partial_{\mu} + ieA_{\mu} - i\partial_{\mu}\alpha)(e^{i\alpha}\phi) = e^{i\alpha}(\partial_{\mu} + ieA_{\mu})\phi = e^{i\alpha}D_{\mu}\phi,$$

ou seja, $D_{\mu}\phi$ transforma covariantemente e o termo $(D_{\mu}\phi)^*(D^{\mu}\phi)$ é invariante localmente.

Interpretação física pronta:

A necessidade do campo de gauge A_{μ} é puramente geométrica: para promover uma simetria global a local (dependente de x) é necessário introduzir uma conexão que compense as variações locais. Fisicamente isso representa a introdução de uma força mediada por A_{μ} (no caso U(1), o campo eletromagnético).

7 Checklist de assuntos para prova (resumo rápido)

- Saber derivar correntes de Noether a partir de variações de campos.
- Interpretar j^{μ} e $T^{\mu\nu}$ fisicamente (densidade de carga, energia, momento).
- Realizar verificações com ondas planas (modo útil para diagramas e propagadores).
- Entender por que a invariância de gauge local exige introdução de A_{μ} e como D_{μ} transforma.
- Saber converter entre unidades naturais e SI quando necessário (usar 1 eV = 1.602×10^{-19} J e $\hbar c \simeq 197.326$ eV · nm se precisar ligar energia e comprimento).

8 Referências rápidas (para revisão)

Livros sugeridos (português/inglês): Peskin & Schroeder, Srednicki, Weinberg, Ryder. (Use-os para ver derivação canônica e convenções de sinais — a forma pode mudar por convenção, mas o método é o mesmo.)