Section 1.4 – \mathbb{R}^n and \mathbb{C}^n

Thus $-\alpha$ is the unique complex number such that $\alpha+(-\alpha)=0$. Subtraction on C is de. $a_0,a_1,\ldots,a_m\in \mathbf{F}$ with $a_m\neq 0$ such that fined by $\beta - \alpha = \beta + (-\alpha)$. For $\alpha \neq 0$, let $1/\alpha$ denote the multiplicative inverse of α . Thus $1/\alpha$ is the unique complex number such that $\alpha(1/\alpha) = 1$. Division on C is defined by $\beta/\alpha = \beta(1/\alpha)$

list, length: Suppose n is a nonnegative integer. A list of length n is an ordered collection of n elements (which might be numbers, other lists, or more abstract entities) separated by commas and surfor all $z \in \mathbf{F}$. If p has degree m, we write deg p = mrounded by parentheses. A list of length n looks like this: (x_1, \dots, x_n) Two lists are equal if n and only if they have the same length and the same elements in the same order.

 \mathbf{F}^n is the set of all lists of length n of elements of \mathbf{F} $\left\{(x_1,\ldots,x_n):x_j\in\mathbf{F} \text{ for }j=1,\ldots,n\right\}$ For $\left(x_1,\ldots,x_n\right)\in\mathbf{F}^n$ infinite-dimensional vector space: A vector space is called infinite-dimensional if it is not finite-

and
$$j \in \{1, \dots, n\}$$
, we say that x_j is the j^{th} coordinate of (x_1, \dots, x_n) dimensional.

**Invary independent: A list v_1, \dots, v_m of vectors in V is called linearly independent if addition in \mathbb{F}^n : A ddition in \mathbb{F}^n is defined by adding corresponding coordinates: the only choice of $a_1, \dots, a_m \in \mathbb{F}$ that makes $a_1v_1 + \dots + a_mv_m$ equal of is

addition in
$$\mathbb{F}^n$$
: Addition in $\mathbf{F}^{\tilde{n}}$ is defined by adding corresponding coord $(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$ Commutativity of addition in \mathbb{F}^n : If $x,y\in\mathbb{F}^n$, then $x+y=y+x$

o: Let o denote the list of length n whose coordinates are all $0:0=(0,\ldots,0)$

additive inverse in \mathbb{F}^n : For $x \in \mathbf{F}^n$, the additive inverse of x, denoted -x, is the vector dent. $-x \in \mathbf{F}^n$ such that x+(-x)=0 In other words, if $x=(x_1,\ldots,x_n)$, then \cdot In other words, a list v_1,\ldots,v_m of vectors in V is linearly dependent if there exist $-x=(-x_1,\ldots,-x_n)$ scalar multiplication in \mathbb{F}^n : The product of a number λ and a vector in \mathbf{F}^n is computed by multi-

plying each coordinate of the vector by $\lambda:\lambda$ $(x_1,\ldots,x_n)=(\lambda x_1,\ldots,\lambda x_n)$ here $\lambda \in \mathbf{F}$ and $(x_1, \dots, x_n) \in \mathbf{F}^n$

Section 1.B - Definition of Vector Space

addition, scalar multiplication: \cdot An addition on a set V is a function that assigns an element $u+v\in V$ to each pair of elements $u,v\in V\cdot$ A scalar multiplication on a set V is a function that assigns an element $\lambda v \in V$ to each $\lambda \in \mathbf{F}$ and each $v \in V$

Vector Space: A vector space is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold: commutativity

$$u + v = v + u$$
 for all $u, v \in V$

associativity $(u\ +\ v)\ +\ w\ =\ u\ +\ (v\ +\ w)$ and $(ab)v\ =\ a(bv)$ for all $u, v, w \in V$ and all $a, b \in \mathbf{F}$ additive identity there exists an element $0 \in V$ such that v + 0 = v for all $v \in V$ additive inverse for every $v \in V$, there exists $w \in V$ such that $v \in V$ additive inverse for every $v \in V$, there exists $v \in V$ such that $v \in V$ and $v \in V$ additive inverse for every $v \in V$, there exists $v \in V$ such that v+w=0 multiplicative identity 1v=v for all $v\in V$ distributive properties

$$a(u+v)=au+av$$
 and $(a+b)v=av+bv$ for all $a,b\in {f F}$ and

all $u, v \in V$

vector, point: Elements of a vector space are called vectors or points.

vector space over C is called a complex vector space.

 \mathbb{F}^S : If S is a set, then \mathbf{F}^S denotes the set of functions from S to $\mathbf{F}\cdot \mathrm{For}\ f,\ g\ \in\ \mathbf{F}^S$, the sum $f+g\in \mathbf{F}^S$ is the function defined by (f+g)(x)=f(x)+g(x) for all Spanning list of the right length is a basis Suppose V is finite-dimensional. Then every spanning $x \in S \bullet \text{For } \lambda \in \mathbf{F} \text{ and } f \in \mathbf{F}^S$, the product $\lambda f \in \mathbf{F}^S$ is the function defined by $(\lambda f)(x) = \lambda f(x)$ for all $x \in S$ Unique Additive Identity: A vector space has a unique additive identity

Unique additive inverse: Every element in a vector space has a unique additive inverse.

The number o times a vector: 0v = 0 for every $v \in V$ A number times the vector o: a0 = 0 for every $a \in \mathbf{F}$

The number -1 times a vector: (-1)v = -v for every $v \in V$

Section 1.C - Subspaces

Subspace: A subset U of V is called a subspace of V if U is also a vector space (using the same addition and scalar multiplication as on V).

Conditions for a subspace: A subset U of V is a subspace of V if and only if U satisfies the following three conditions: additive identity $0 \in U$ closed under addition $u, w \in U$ implies $u+w\in U$ closed under scalar multiplication $a\in \mathbf{F}$ and $u\in U$ implies $au\in U$

sum of subsets: Suppose U_1, \ldots, U_m are subsets of V. The sum of U_1, \ldots, U_m , denoted $U_1+\cdots+U_m$, is the set of all possible sums of elements of U_1 , ..., U_m More precisely, $U_1 + \cdots + U_m = \{u_1 + \cdots + u_m : u_1 \in U_1, \dots, u_m \in U_m\}$ Sum of subspaces is the smalles containing subspace: Suppose U_1,\dots,U_m are subspaces of V. Then $U_1+\dots+U_m$ is the smallest subspace of V containing U_1,\dots,U_m

direct sum: Suppose U_1 , \dots , U_m are subspaces of V . The sum U_1 + \dots + U_m is called a direct sum if each element of $U_1+\cdots+U_m$ can be written in only one way as a sum $u_1+\cdots+u_m$, where each u_j is in U_j · If $U_1+\cdots+U_m$ is a direct sum, then $U_1\oplus\cdots\oplus U_m$ denotes $U_1+\cdots+U_m$, with the \oplus notation serving as an indication

Condition for a direct sum: Suppose U and W are subspaces of V. Then U+W is a direct sum if and only if $U \cap W = \{0\}$

Direct sum of two subspaces: Suppose U and W are subspaces of V. Then U+W is a direct sum if and only if $U \cap W = \{0\}$

Section 2. A Span and Linear Independence

Span: The set of all linear combinations of a list of vectors v_1 , \ldots , v_m in V is called the span of v_1, \ldots, v_m , denoted span (v_1, \ldots, v_m) . In other words,

$$\mathrm{span}(v_1, \ldots, v_m) = \{a_1 v_1 + \cdots + a_m v_m : a_1, \ldots, a_m \in \mathbf{F}\}\$$

The span of the empty list () is defined to be $\{0\}$.

Span is the smallest containing subspace: The span of a list of vectors in V is the smallest subspace of V containing all the vectors in the list

spans: If $\operatorname{span}\left(v_1,\ldots,v_m\right)$ equals V, we say that v_1,\ldots,v_m spans Val vector space: A vector space is called finite-dimensional if some list of vectors in it

 $rac{bynomial\ over\ a\ field\ F:}{}$ A function $p:\mathbf{F} o\mathbf{F}$ is called a polynomial with coefficients in \mathbf{F} if there exist $a_0,\ldots,a_m\in \mathbf{F}$ such that

 $p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m$

for all $z \in \mathbf{F}$. $\mathcal{P}(\mathbf{F})$ is the set of all polynomials with coefficients in \mathbf{F} .

lpha, subtraction, 1/lpha, division: Let lpha, $eta \in \mathbf{C}$ · Let -lpha denote the additive inverse of lpha. degree of a polynomial: · A polynomial $p \in \mathcal{P}(\mathbf{F})$ is said to have degree m if there exist scalars

$$p(z) = a_0 + a_1 z + \dots + a_m z^m$$

For m a nonnegative integer, $\mathcal{P}_m(\mathbf{F})$ denotes the set of all polynomials with coeffi-= cients in F and degree at most m.

 $a_1 = \cdots = a_m = 0$

The empty list () is also declared to be linearly independent.

linearly dependent: A list of vectors in V is called linearly dependent if it is not linearly indepen-

 $a_1,\ldots,a_m\in \mathbf{F}$, not all 0, such that $a_1v_1+\cdots+a_mv_m=0$ Linear Dependence Lemma: Suppose v_1, \ldots, v_m is a linearly dependent list in V.

Then there exists $j \in \{1, 2, \dots, m\}$ such that the following hold: (a) $v_i \in$ $\operatorname{span}\left(v_1,\ldots,v_{j-1}
ight)$ (b) if the j^{th} term is removed from v_1,\ldots,v_m , the span of

the remaining list equals $\mathrm{span}\left(v_1,\ldots,v_m\right)$ Length of linearly independent list ≤ length of spanning list: In a finite-dimensional vector

space, the length of every linearly independent list of vectors is less than or equal to the length of every spanning list of vectors. Finite-dimensional subspaces: Every subspace of a finite-dimensional vector space is finite dimen-

sional.

Section 2.B Bases

basis: A basis of V is a list of vectors in V that is linearly independent and spans V **Criterion for basis:** A list v_1,\ldots,v_n of vectors in V is a basis of V if and only if every

 $v \in V$ can be written uniquely in the form $v = a_1 v_1 + \cdots + a_n v_n$ where $a_1, \ldots, a_n \in \mathbf{F}$ Spanning list contains a basis: Every spanning list in a vector space can be reduced to a basis of the

dimensional vector space can be extended to a basis of the vector space. Every subspace V is part of a direct sum equal to V .: Suppose V is finite-dimensional and U is

a subspace of V . Then there is a subspace W of V such that $V=U\oplus W$

dimension, dim V: The dimension of a finite-dimensional vector space is the length of any basis of the vector space. The dimension of V (if V is finite-dimensional) is denoted by $\dim V$

real vector space, complex vector space: • A vector space over \mathbf{R} is called a real vector space. • A Dimension of subspace: If V is finite-dimensional and U is a subspace of V, then $\dim U \leq V$.

Linearly independent list of the right length is a basis: Suppose V is finite-dimensional. Then every linearly independent list of vectors in V with length $\dim V$ is a basis of V

Dimension of a sum: If U_1 and U_2 are subspaces of a finite-dimensional vector space, then

$$\dim (U_1 + U_2) = \dim U_1 + \dim U_2 - \dim (U_1 \cap U_2)$$