### PheWAS Implementation and methods

Robert Carroll, PhD

Department of Biomedical Informatics
Robert.Carroll@vanderbilt.edu

# Introduction to PheWAS

# The genome-wide association study



# The phenome-wide association study



PheWAS <u>requirement</u>: A large cohort of patients with genotype data and many diagnoses

# Methods of grouping doing a PheWAS

- EMR data
  - Billing codes:
    - International Classification of Disease (ICD) WHO standard for diagnoses, signs, and symptoms
    - Current Procedural Terminology (CPT) procedure codes
  - Text
    - NLP
    - N-grams
- Observational cohort data
  - Must have a lot of phenotypes; most have a focus
  - Framingham, NHANES, 23&Me are good targets

### "PheWAS" - Phenome-wide association study



## ICD codes

- International Classification of Disease (ICD)
- At Vanderbilt we currently use ICD-10 CM
  - Transitioned completely in Oct 2015
  - Much of the world uses the similar ICD-10
- The large majority of our historical data is in ICD-9 CM
  - Currently many systems still double code data in ICD-9 and ICD-10
- Diagnostic codes:
  - ICD-9-CM: ~13,500
  - ICD-10: ~68,000

## ICD9 codes

- 3-digit codes (000-999): diagnoses, signs, symptoms
- 2-digit codes (00-99): procedures
- V-codes and E-codes

| Grouping                     | Examples                                                                                              | Count   |
|------------------------------|-------------------------------------------------------------------------------------------------------|---------|
| Chapter                      | 390-459.99 DISEASES OF THE CIRCULATORY SYSTEM                                                         | 20      |
| Section                      | 401-405.99 HYPERTENSIVE DISEASE<br>390-392.99 ACUTE RHEUMATIC FEVER                                   | 120     |
| Category (3-digit)           | 401 Essential Hypertension<br>402 Hypertensive heart disease                                          | 900+    |
| Fully-specified (3-5 digits) | 401.9 Benign essential hypertension<br>402.11 Benign hypertensive heart disease with<br>heart failure | ~13,500 |

## ICD10 codes

- Start with a character
  - No overlap with ICD9 E and V codes if properly specified
- 21 Chapters
  - They join and cross letter codes
    - CHAPTER II Neoplasms (C00-D49)
    - CHAPTER III Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism (D50-D89)
- There exist billing maps between ICD9 and ICD10
- Phecode map development is in progress

# The problem with billing codes

- False positives
  - Diagnoses evolve over time -- physicians may initially bill for suspected diagnoses that later are determined to be incorrect
  - Wrong code entered (easier to find or remember)
  - Physicians may bill for a different condition if it pays for a given treatment
    - psoriatic arthritis and rheumatoid arthritis
- False negatives:
  - Outpatient billing limited to 4 diagnoses/visit
  - Outpatient billing done by physicians (e.g., takes too long to find the unknown ICD9)
  - Inpatient billing done by professional coders:
    - omit codes that don't pay well
    - can only code problems actually explicitly mentioned in documentation

### EMR Phenotyping with ICD-9 billing codes

Phenome-wide association study (PheWAS)





### **Original PheWAS**

Table 2. Diseases previously associated with the five SNP studied and current PheWAS ORs

Carotid ather

 $RA^g$ 

| SNP        | Gene/region | Disease        | Cases | Previous OR       | PheWAS P-value        | PheWAS OR        |
|------------|-------------|----------------|-------|-------------------|-----------------------|------------------|
| rs3135388  | DRB1*1501   | MS             | 89    | 1.99 <sup>a</sup> | $2.77 \times 10^{-6}$ | 2.24 (1.56–3.16) |
|            |             | SLE            | 141   | 2.06 <sup>b</sup> | 0.51                  | 1.13 (0.79–1.58) |
| rs17234657 | Chr. 5      | CD             | 200   | 1.54 <sup>c</sup> | 0.00080               | 1.57 (1.19-2.04) |
| rs2200733  | Chr. 4q25   | AF and flutter | 606   | 1.75 <sup>d</sup> | 0.14                  | 1.15 (0.95-1.39) |
| rc13330/10 | Chr 0n21    | CAD            |       |                   |                       |                  |

N = 6,005

Chr. 6

rs6457620



### PheWAS of "all" NHGRI GWAS Catalog SNPs



# PheWAS Population

- 13,835 European-Ancestry individuals from 5 eMERGE sites with available GWAS data
- 2,080,550 unique dates of interaction with the EMR
- Mean follow-up of 15.7 ± 10.3 years

# Replications of NHGRI GWAS associations via PheWAS

### P-value for replication:

- All 210/751: 2x10<sup>-98</sup>
- Powered 51/77: 3x10<sup>-47</sup>



# Factors associated with replication

- Number of prior publications
- Exactness of phenotype match
- SNP location/functional status NOT associated



### PheWAS of all GWAS "hits"

Each dot=one phenotype

- GWA catalog association only
- GWA catalog association replicated by PheWAS
- New association found by PheWAS



### Genetics and Risk

- Pleiotropy: Single genetic changes may have multiple phenotypic effects.
- A single disease may have many associated genetic variants.
- A disease may have many comorbid diseases





# Pleiotropy in Thyroid Diseases



### phewascatalog.org

#### PheWAS results for >3000 SNPs identified in GWAS studies



# Other uses and types of phenome scanning

- Other structured data
  - Labs
  - Vitals
  - Report measurements (ECGs, echos, etc.)
- Natural language data
- Environmental ("E-WAS")

# Using PheWAS to explore a physical exam finding

Pectus excavatum

Cardiac issues if extreme



Pectus carinatum

Thought incidental



# Study Design



### Pectus Excavatum



## **Pectus Carinatum**



#### Top Marshfield EWAS Results for Type 2 Diabetes



\*Hall et al, Pac Bio Symp 2014

# Summary

- EHR-linked DNA biobanks can be used for genomic and pharmacogenomic discovery. They can be cost efficient and fast. Big populations are (will be) needed for genomic discovery, deciphering rare variants, and drug-drug interactions.
- Tools to provide access to data, algorithms, and results (Research repositories, PheKB.org, phewascatalog.org).
- Phenotype algorithms are typically portable across EHR systems, healthcare settings, NLP systems, etc.
- Think about confounding.

## R PHEWAS PACKAGE

# **GWAS: Genome Wide Association Study**



## PheWAS: Phenome-Wide Association Study



# PheWAS phenotype examples

| PheWAS Code | Phenotype                     | Case ICD-9                     | Controls exclude:              |
|-------------|-------------------------------|--------------------------------|--------------------------------|
| 250         | Diabetes                      | 250.*                          | T1D, T2D, secondary DM         |
| 250.1       | Type 1 Diabetes               | 250.01<br>250.11<br>250.21     | u —                            |
| 250.2       | Type 2 Diabetes               | 250.00<br>250.10<br>250.20<br> | "                              |
| 714         | RA and inflammatory arthritis | 714.*                          | RA, Psoriatic arthritis, Lupus |
| 714.1       | RA                            | 714.0, 714.3                   | u .                            |
| 714.2       | Felty's syndrome              | 714.3                          | u                              |

# R PheWAS Package Biobank EHR R PheWAS ICD9 Demographics Codes **Package** PheWAS Code Genotypes Phenotypes Translation Plotting **Association Testing**

### **Data Creation**

- generateExample() will generate a practice data set.
- It doesn't reflect the nuances and interrelation of PheWAS codes, but it can be nice to try things out.

### **Data Creation**

- Need a data frame of attributes for regression.
- Phenotype variables can be boolean or numeric.
- Genotype data is best formatted as allele counts.
  - plink --recodeA
  - genotypes=read.table("genotypes.raw",head=T)
- Covariates are in tabular form as well.

## Create PheWAS Table

- createPhewasTable combines a few steps.
  - Translate: Converts ICD-9s to PheWAS codes. Optional.
  - Aggregation: Combines overlapping codes
  - Exclusions: Excludes individuals from analysis if they share a similar diagnosis, e.g., Type 1 and 2 Diabetes. Optional.
- ICD-9 code data has a triplet format:
  - ID: Which individual?
  - ICD-9: Which code?
  - Count: How many of this code for this ID?
- It also can help for other phenotypes.
  - Find the max for a set of different lab values.
  - Log transform the sum of code counts
- Or, one can skip this step.
  - It's the slowest function for a typical PheWAS.
  - SQL aggregation and perl reshaping are faster.

| ID | ICD9   | count |
|----|--------|-------|
| 1  | 250.01 | 1     |
| 1  | 411.2  | 3     |
| 2  | 714.1  | 32    |
|    |        |       |

## PheWAS method

- phewas(phenotypes, genotypes)
  - Takes tables of different categories
    - Outcomes (eg, phenotypes)
    - Predictors (eg, genotypes)
    - Covariates (eg, age and gender)
    - Adjustments for comparison of results (eg, none vs. BMI)
  - Or use one data frame with vectors of names
- Performs logistic or linear regression
- Can also perform chi-square and t-tests

# **Data Shapes**

### One data frame and names

data

| 335 | 411 | rs1234 | rs4321 |
|-----|-----|--------|--------|
| T   | F   | 0      | 1      |
| NA  | Т   | 2      | 1      |
| F   | F   | 2      | 0      |

phenotypes

genotypes

### Several data frames

phenotypes

| id | 335 | 411 |
|----|-----|-----|
| 1  | Т   | F   |
| 2  | NA  | Т   |
| 3  | F   | F   |

genotypes

| Id | rs1234 | rs4321 |
|----|--------|--------|
| 1  | 0      | 1      |
| 2  | 2      | 1      |
| 3  | 2      | 0      |

## PheWAS method options

- Easy to use multithreading with parallel
  - phewas(..., cores=4)
  - Single threaded uses lapply
- Can also return complete models (can cause issues)
- additive.genotypes
  - Calculate allele frequencies
  - Calculate HWE p-value
- Calculate significance thresholds
  - Supply an alpha
  - Returns easy to use T/F variables for each
  - Alpha, Bonferroni, and FDR
  - Returns the details in the object's attributes

#### PheWAS execution

- The alternate method is to use the data parameter with name vectors in the phenotype, genotype, and covariates parameters.
- > mydata=merge(phenotypes,genotypes)
- results=p hewas(phenotypes=names(phenotypes)[-1],genotypes=c("rs1234","rs5678"), data=mydata)

## Phenotype-only PheWAS

- The phewas function can be used for more than just generic PheWAS.
- In the following example, outcomes and predictors are used for a phenotype only analysis.
- Note that these parameters are simply alternate names for phenotypes and genotypes, respectively.
- max.a1c.results=phewas(outcomes=phenotypes, predictors=csv.phenotypes[,c("id","max.a1c")])

## PheWAS Meta-analysis

- The phewasMeta method can assist in meta-analysis of multiple PheWAS, e.g., if one has multiple genotype platforms of data to analyze. It wraps the metagen method of the meta package.
- results.omni1=phewas(phenotypes=phenotypes.omni1,genotypes=genotypes.omni1)
- results.omni1\$study="Omni 1"
- results.omni.express=phewas(phenotypes=phenotypes.om ni.express, genotypes=genotypes.omni.express)
- results.omni.express\$study="Omni Express"
- results.merged=rbind(results.omni1,results.omni.express)
- results.meta=phewasMeta(results.merged)

## phewasManhattan

Simple method for plotting right from phewas()



## Other Phenotype Plots

- phenotypeManhattan
  - Intended for any p-value plotting.
  - Allows for adding one's own descriptions.
  - Works for GWAS results, too.
- phenotypePlot
  - Most options are documented in this function.
  - Set colors, descriptions, annotations, groupings, and more.
  - These options can be used from the higher level functions as well.



# ggplot2

- These plotting functions return ggplot2 objects.
- If one doesn't see the right option, modify the plot!
- plot+aes(shape=HWE\_p<.1)+annotate("text",label="Wow! ->", x=175,y=6.9,colour="red",hjust=0,size=8)



### Summary

- R PheWAS is a native R package
  - Portable across platforms
  - Extensible
  - Integrated documentation
- Designed to be robust to input data types
- A "classic" PheWAS analysis and plot is only a few function calls away

#### Github

- https://github.com/PheWAS/PheWAS
- Github allows users to collaborate on open source projects.
- This includes bug reporting and more.
- It also is the best way to access the most recent version of the package.

## Installing R PheWAS

- install.packages("devtools")
- install.packages(c("dplyr","tidyr","ggplot2","M
   ASS","meta","ggrepel","DT"))
- devtools::install\_github("PheWAS/PheWAS")
- library(PheWAS)

### **Accessing Documentation**

- ?PheWAS
- The ? operator will allow you to look up help for most functions and data objects in PheWAS
- ?? can help find items if you can't remember the name.
- vignette("PheWAS-package")

#### Contact

 Feel free to contact me: Robert.Carroll@Vanderbilt.edu