به نام خدا بهینهسازی محدب ۱ (۲۵۷۵۶)

تمرین شماره ۱

۱ – نابرابری Von Neumann و نُرم اتمی

الف) برای ماتریسهای متقارن $\mathbf{A}, \mathbf{B} \in \mathbb{S}^n$ نابرابری زیر را اثبات کرده و یک شرط کافی برای حالت تساوی آن بیان نمایید.

$$\operatorname{tr}\{\mathbf{A}\mathbf{B}\} \leq \sum_{i=1}^{n} \lambda_{i}(\mathbf{A})\lambda_{i}(\mathbf{B})$$

ب) برای ماتریسهای غیر مربعی $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$ نابرابری زیر (که نسخهای تعمیمیافته از نابرابری قسمت الف است) را اثبات کرده و یک شرط کافی تساوی برای آن بیان کنید. (مقادیر تکین σ_i را به ترتیب نزولی در نظر بگیرید.)

$$\operatorname{tr}\{\mathbf{A}^T\mathbf{B}\} \leq \sum_{i=1}^{\min\{m,n\}} \sigma_i(\mathbf{A})\sigma_i(\mathbf{B})$$

ج) نُرم ۲ عملگری ماتریس ($\|\mathbf{A}\|_2 = \sigma_1(\mathbf{A})$) را در نظر گرفته و با استفاده از نابرابری قسمت ب، نشان دهید که نُرم دوگان آن برابر نُرم اتمی است؛ یعنی خواهیم داشت:

$$\|\mathbf{B}\|_{*} = \sup\{\operatorname{tr}\{\mathbf{A}^{T}\mathbf{B}\} | \|\mathbf{A}\|_{2} \le 1\} = \sum_{i=1}^{\min\{m,n\}} \sigma_{i}(\mathbf{B})$$

د) بررسی کنید که نُرم اتمی چه کاربردی در بهینهسازی دارد؟

٢-مساله حداقل نُرم اقليدسي

دستگاه معادلات $\mathbf{A} = \mathbf{b}$ را در نظر بگیرید که در آن $\mathbf{A} \in \mathbb{R}^{m \times n}$ یک ماتریس کشیده افقی (m < n) با رتبه کامل سطری است. بردار $\mathbf{A} = \mathbf{b}$ مادل بردار در معادله $\mathbf{A} = \mathbf{b}$ صدق می کند و لذا یک جواب این دستگاه بردار $\mathbf{x}^* = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1} \mathbf{b}$ این بردار در معادله $\mathbf{x}^* = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1} \mathbf{b}$ است. در این تمرین قصد داریم با استفاده از تعامد، نشان دهیم که \mathbf{x}^* در میان جوابهای دستگاه کمترین نُرم اقلیدسی را دارد.

است. $(\mathbf{x} - \mathbf{x}^*) \in N(\mathbf{A})$ است. الف) نشان دهید که برای هر \mathbf{x} دلخواه از مجموعه جواب دستگاه،

ب) با استفاده از نتیجه قسمت الف، نشان دهید که برای هر x دلخواه از مجموعه جواب دستگاه، $x - x^*$ است. با توجه به تئوری اساسی $x - x^*$ متعلق به کدام زیرفضای اساسی ماتریس $x - x^*$ است.

ج) با استفاده از نتیجه قسمت ب، نشان دهید که $\|\mathbf{x}\|_2^2 \ge \|\mathbf{x}^*\|_2^2$ است. به عبارتی، \mathbf{x}^* از بین تمامی پاسخهای دستگاه کمترین نُرم اقلیدسی را دارد.

د) ماتریس نگاشت به فضای سطری و فضای پوچی را به دست آورید. توجه کنید که این ماتریسها قرار است بردار \mathbf{x} را به زیرفضاهای گفته شده نگاشت کنند و سایز آنها $n \times n$ است. رتبه این ماتریسها را نیز بیان کنید.

۳- ماتریسهای بلوکی

است. با $\mathbf{D} \in \mathbb{R}^{m \times m}$ و $\mathbf{C} \in \mathbb{R}^{m \times m}$ $\mathbf{A} \in \mathbb{R}^{n \times m}$ $\mathbf{A} \in \mathbb{R}^{n \times m}$ است. با $\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$ و $\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$ است. با نوشتن رابطه وارون ماتریس بلوکی، اتحاد زیر که به لم معکوس ماتریس موسوم است را اثبات کنید. فرض کنید که معکوس ماتریسهای موجود در این رابطه وجود داشته باشند.

$$(A - BD^{-1}C)^{-1} = A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1}$$

 $\mathbf{u},\mathbf{v}\in\mathbb{R}^n$ ب) شرایط معکوس پذیری و معکوس ماتریس $\mathbf{I}+\mathbf{u}\mathbf{v}^T$ را به دست آورید که در آن $\mathbf{I}\in\mathbb{R}^{n\times n}$ ماتریس همانی بوده و است.

ج) به ازای هر ماتریس معکوسپذیر $\mathbf{A} \in \mathbb{R}^{n \times n}$ و هر دو بردار $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ نشان دهید:

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^T)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}}$$

۴– مکمل شور

 $\mathbf{M} \in \mathbf{M}$ یکی از مفاهیم پرکاربرد در درس، بررسی مثبت معین یا نیمه معین بودن یک ماتریس متقارن است. ماتریس بلوکی متقارن $\mathbf{M} \in \mathbb{R}^{(n-k) \times (n-k)}$ و $\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{C} \end{bmatrix}$ است. با فرض $\mathbf{M} = \mathbf{B}$ را به صورت $\mathbf{B} \in \mathbb{R}^{(n-k) \times (n-k)}$ در نظر بگیرید که در آن $\mathbf{A} \in \mathbb{R}^{k \times k}$ معکوس پذیری $\mathbf{A} \in \mathbb{R}^{m-k}$ معکوس پذیری $\mathbf{A} \in \mathbb{R}^{m-k}$

الف) $\mathbf{M} > 0$ است اگر و تنها اگر $\mathbf{A} < \mathbf{A}$ و $\mathbf{S} < \mathbf{S}$ باشد.

ب) اگر $\mathbf{S} < \mathbf{0}$ باشد، آنگاہ $\mathbf{M} < \mathbf{M}$ است اگر و تنہا اگر $\mathbf{S} < \mathbf{S}$ باشد.

ج) 0 \geqslant M است اگر و تنها اگر $0 \geqslant$ S \geqslant 0 م \Rightarrow 9 باشد. $\mathbf{M} \Rightarrow$ 0 ج

د) نشان دهید ماتریس بلوکی ${f M}$ مثبت معین است اگر و فقط اگر ${f A}$ و ${f C}$ مثبت معین بوده و تمامی مقادیر تکین ماتریس ${f A}^{-{1\over 2}}{f B}{f C}^{-{1\over 2}}$ کوچکتر از ۱ باشند.

۵- مقدار ویژه و تکین

 $\mathbf{AX} = \mathbf{XB}$ مقادیر ویژه مشترک نداشته باشند، معادله $\mathbf{A} \in \mathbb{M}_n(\mathbb{C})$ و $\mathbf{A} \in \mathbb{M}_n(\mathbb{C})$ مقادله عادله $\mathbf{AX} = \mathbf{AX} = \mathbf{AX}$ مقادیر ویژه مشترک نداشته باشند، معادله $\mathbf{AX} = \mathbf{AX} = \mathbf{AX}$ مقادیر ویژه مشترک نداشته باشند، معادله $\mathbf{AX} = \mathbf{AX} = \mathbf{AX}$ ما دارد.

ب) ماتریس متقارن ${f A}$ را با مقادیر ویژه $\lambda_n \geq \cdots \geq \lambda_n$ در نظر بگیرید. نشان دهید:

$$\lambda_k = \max_{\substack{S \subseteq \mathbb{R}^n \\ \dim(S) = k}} \min_{\substack{\mathbf{x} \in S \\ \mathbf{x} \neq \mathbf{0}}} \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \min_{\substack{C \subseteq \mathbb{R}^n \\ \dim(C) = n - k + 1}} \max_{\substack{\mathbf{x} \in C \\ \mathbf{x} \neq \mathbf{0}}} \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

همچنین با استفاده از نتیجه فوق، برای ماتریس $\mathbb{R}(\mathbb{R})$ ماصل عبارت $\|\mathbf{x}\|_2$ محاصل عبارت محاسبه نمایید. $\mathbf{A}\in\mathbb{M}_{m imes n}(\mathbb{R})$ محاسبه نمایید. $\mathbf{A}\in\mathbb{M}_{m imes n}$

ج) ماتریس $\mathbf{A} \in \mathbb{M}_n(\mathbb{R})$ را در نظر بگیرید. با استفاده از تجزیه به مقادیر تکین، پاسخ مساله بهینه سازی $\mathbf{A} \in \mathbb{M}_n(\mathbb{R})$ را به $\mathbf{A} \in \mathbb{M}_n(\mathbb{R})$ ماتریسی یکانی (unitary) باشد. $\mathbf{A} \in \mathbb{R}$ و $\mathbf{A} \in \mathbb{R}$ ماتریسی یکانی ($\mathbf{A} \in \mathbb{R}$ باشد.

$$\lambda_{max}\left(rac{\mathbf{A}+\mathbf{A}^H}{2}
ight) \leq \sigma_{max}(\mathbf{A})$$
 د) برای ماتریس $\mathbf{A} \in \mathbb{M}_n(\mathbb{C})$ نشان دهید:

۶- باز هم مقادیر ویژه!

ماتریس هرمیتی $\mathbf{A} \in \mathbb{M}_n(\mathbb{C})$ را با عناصر $a_{i,j}$ در نظر بگیرید که همه عناصر قطری آن ۱ هستند. اگر عناصر $\mathbf{A} \in \mathbb{M}_n(\mathbb{C})$ کنند:

$$\sum_{j=1}^{n} |a_{i,j}| \le 2, \qquad i = 1, 2, \dots, n$$

آنگاه نشان دهید:

الف) A ماتریسی مثبت نیمهمعین است.

 $\lambda \leq 2$ عنى: ۲ هستند، یعنی: $\Delta \leq 2$ کوچکتر یا مساوی ۲ هستند، یعنی: $\Delta \leq 2$

 $0 \le \det(\mathbf{A}) \le 1$ (ج

۷- تقریب رتبه پایین ماتریس

یکی از کاربردهای تجزیه به مقادیر تکین، محاسبه تقریب رتبه پایین یک ماتریس است. ماتریس $\mathbf{A} \in \mathbb{R}^{m \times n}$ با رتبه r را با تجزیه $\mathbf{A}_k = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T$ به مقادیر تکین $\mathbf{A}_k = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T$ در نظر بگیرید. به ازای یک عدد $\mathbf{A}_k = \mathbf{V}_k \mathbf{V}_k^T$ ماتریس $\mathbf{A}_k \in \mathbb{R}^{m \times n}$ را به صورت $\mathbf{A}_k \mathbf{V}_k^T$ است که شامل $\mathbf{A}_k \mathbf{V}_k^T$ بالا و سمت چپ ماتریس \mathbf{X}_k^T است که شامل $\mathbf{A}_k \mathbf{V}_k^T$ می شود. به عبارت دیگر، \mathbf{A}_k را می توان به صورت $\mathbf{A}_k \mathbf{V}_k^T$ بیان کرد که ماتریسی رتبه \mathbf{A}_k است.

الف) بهترین تقریب رتبه k از k با معیار نُرم فروبینیوس از مساله بهینهسازی زیر بهدست می آید:

$$\min_{\mathbf{X}: \, \mathrm{rank}(\mathbf{X}) \le k} \|\mathbf{A} - \mathbf{X}\|_F$$

 $\|\mathbf{A} - \mathbf{A}_k\|_F \leq \mathbf{X}$ نشان دهید که \mathbf{A}_k پاسخ مساله بهینهسازی فوق است؛ یعنی به ازای هر ماتریس دلخواه \mathbf{X} با رتبه \mathbf{A}_k داریم: $\mathbf{A}_k = \mathbf{A}_k$ ال.

ب) در صورتی که به جای نُرم فروبینیوس از معیار نُرم ۲ در مساله فوق استفاده کنیم، نشان دهید که A_k همچنان پاسخ مساله بهینهسازی تغییریافته خواهد بود.

۸- عدد حالت

ماتریس مربعی معکوسپذیر $\mathbf{A} \in \mathbb{R}^{n \times n}$ را در نظر بگیرید.

. $\|\mathbf{A}\|_2 = \sigma_{max}(\mathbf{A})$ ماتریس، نشان دهید که کرشده برای نُرم ۲ ماتریس، نشان دهید که

ب) با توجه مقادیر تکین \mathbf{A} محاسبه کرده و نشان دهید $\kappa_A = \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2$ عبارت \mathbf{A} عبارت \mathbf{A} عبارت \mathbf{A} عبارت \mathbf{A} معالی برای پایداری عددی ماتریس است. $\kappa_A \geq 1$ عباری برای پایداری عددی ماتریس است.

ج) دستگاه معادلات $\mathbf{a} = \mathbf{b}$ را در نظر بگیرید. در صورتی که بردار \mathbf{b} در فرآیند اندازه گیری دچار خطای کوچک \mathbf{a} شود (به گونه ای که فطای نسبی $\mathbf{a} = \mathbf{b}$)، پاسخ دستگاه ($\mathbf{a} = \mathbf{b}$)، پاسخ دستگاه ($\mathbf{a} = \mathbf{b}$)، پاسخ دستگاه ($\mathbf{a} = \mathbf{b}$)، پاسخ دستگاه $\mathbf{a} = \mathbf{b}$)، پاسخ دستگاه $\mathbf{a} = \mathbf{b}$ نسبی اندازه گیری $\mathbf{a} = \mathbf{b}$ به صورت $\mathbf{a} = \mathbf{b}$ اندازه گیری می تواند به خطای بزرگی در پاسخ دستگاه منجر شود. در چنین شرایطی $\mathbf{a} = \mathbf{b}$ را بد حالت می نامیم.

د) در صورتی که اندازه گیری و مدل به صورت همزمان دچار یک خطای کوچک شوند (یعنی: $\tilde{\mathbf{A}} = \mathbf{A} - \mathbf{E}$ و $\tilde{\mathbf{A}} = \mathbf{A} - \mathbf{E}$)، کران بالای فوق را بازنویسی نمایید.

ه) فرض کنید ماتریس ${\bf A}$ قطری شدنی بوده و به صورت ${\bf A}={\bf S}{\bf A}{\bf S}^{-1}$ بیان شود. بردار باقی مانده ${\bf A}\hat{\bf x}$ می کنیم که ${\bf A}$ برداری ناصفر و $\hat{\bf A}$ عددی دلخواه است. نشان دهید که یک مقدار ویژه از ${\bf A}$ وجود دارد به گونه ای که ${\bf A}$ ا ${\bf A}$ باشد.

۹ - ماتریسهای جابجایی پذیر و قطری شدن همزمان

دو ماتریس $\mathbf{A},\mathbf{B}\in\mathbb{R}^{n imes n}$ را در نظر بگیرید به صورتی که رابطه $\mathbf{A}\mathbf{B}=\mathbf{B}\mathbf{A}$ برقرار است. نشان دهید:

الف) اگر A، n مقدار ویژه متمایز داشته باشد، آنگاه ماتریسهای B ه B و B قطری شدنی خواهند بود.

 $D_1 = P^{-1}AP$ و $D_1 = P^{-1}AP$ و وجود خواهد داشت به گونه که هر دو ماتریس $D_1 = P^{-1}AP$ و $D_1 = P^{-1}AP$ و $D_2 = P^{-1}BP$ قطری باشند. در این حالت $D_1 = D_2$ و $D_2 = P^{-1}BP$ قطری باشند. در این حالت $D_2 = D_2$ و $D_2 = D_2$ قطری فقطری فقطری کنیم. آیا عکس این رابطه نیز برقرار است؟ (یعنی اگر $D_1 = D_2$ و $D_2 = D_2$) باشند، می توان گفت $D_1 = D_2$ و $D_2 = D_2$

با استفاده از این نتیجه، می توان نشان داد که $e^{tA}e^{tB}=e^{tA}e^{tB}=e^{tB}e^{tA}$ و لذا، ماتریسی معکوسپذیر با معکوس ... این گزاره صرفا برای اطلاعات بیشتر شما است و نیازی به اثبات آن نیست. e^{tA} خواهد بود (حتی اگر e^{tA} معکوسپذیر نباشد.) این گزاره صرفا برای اطلاعات بیشتر شما است و نیازی به اثبات آن نیست.

ج) برقراری شرط AB = BA امری دشوار است و برای قطریسازی همزمان دو ماتریس باید به دنبال شرطی کاربردی تر باشیم. برای این منظور، ماتریسهای متقارن $A,B \in \mathbb{R}^{n \times n}$ را در نظر بگیرید. نشان دهید که دو ماتریس B و B به صورت هزمان قطری شدنی هستند، اگر ضرایب حقیقی B و B به گونه وجود داشته باشند که B مثبت معین شود. به طور خاص، نشان دهید در صورتی که B مثبت معین باشد، ماتریس معکوس پذیر B وجود خواهد داشت به گونه ای که B و B قطری باشد.

الگوریتمهای متنوعی برای قطری سازی همزمان دو ماتریس ارائه شدهاند. در صورت علاقهمندی می توانید به مرجع زیر مراجعه کنید:

A. Yeredor, "On using exact joint diagonalization for noniterative approximate joint diagonalization," IEEE Signal Process. Lett., vol. 12, no. 9, pp. 645–648, Sep. 2005.