

TABLE OF CONTENTS

- **PLAYLIST**
 - Introduction
 - Data Analysis + Processing
 - Supervised Analysis
 - Conclusions

C THANKS!

SPOTIFY Skip Prediction

By Faith Villarreal and Ricky Zapata

Table of contents

- **PLAYLIST**
 - Introduction
 - Data Analysis + Processing
 - Supervised Analysis
 - Conclusions
- C THANKS!

01 Introduction

Data Analysis 02 + Processing

Supervised Analysis 03

Conclusions

Introduction: The Objective & Dataset

- **Objective:** Predict if users will skip or listen to a track.
- **Dataset:** "Spotify Sequential Skip Prediction Challenge" mini dataset from Spotify R&D; 170,000 user sessions.
- Methodology:
 - Utilizes 46 features from session and track data.
 - Focus on three 'skip' features ('skip_1', 'skip_2', 'skip_3') combined using OR logic for skip prediction.
 - Use labels (1) skipped and (0) not skipped for classification prediction/hypothesis and accuracy calculation.
- Tools Used:
 - pandas and numpy libraries for data manipulation.
 - sklearn for modeling
 - matplotlib for plotting graphs and data visualization

3:49

Data Analysis + Processing

- Reorganizing Data:
 - Combining 'skip_1', 'skip_2', and 'skip_3'
 - Linking sessions data to track data
 - Extracting year, month, and day of week from date feature
- Ordinal Encoding: categorical features are ordered in nature so we can use Ordinal Encoding
- One-Hot Encoding: no order to categorical features so we can use One-Hot Encoding
 - Used sklearn's OneHotEncoder
 - i. 'context_type', 'hist_user_behavior_reason_start', 'hist_user_behavior_reason_end', and 'key' features
- Standardization of Data:
 - Used sklearn's StandardScaler

Supervised Analysis: Logistic Regression

Feature Transformation

- Polynomial. Degree of 2.
- Square Root

L1 and L2 Regularization

• C: [0.001, 0.01, 0.1, 1, 10]

Best Accuracy: ~98%

Dataset	Square Root Transformation Degree	
	Original	Transformed
Train	0.9791592208720514	0.979166666666666
Test	0.9791592208720514	0.9791666698776302

ROC-AUC Score: 0.98476

2:54

03 Supervised Analysis: SVM

Kernel Functions

- Linear
- Polynomial. Degree of 2.

Regularization

• C: [100, 20, 5, 1, 0.01, 0.001]

Best Accuracy: 98%

Linear, C = 1.

Supervised Analysis: Neural Network

Activation Functions

- ReLu
- Sigmoid

Regularization

- Ridge: 0.01, 0.001
- Lasso: 0.01, 0.001

Layers

- [64, 32, 16, 1]
- [64, 32, 1]

Best Accuracy: 98.14%

4 Layers. No regularization.

Conclusions

- Neural Networks performed best.
- Regularization did not help (much)
- Generalized Question = Generalized Answer
- Massive Dataset

Thank You!

