PHÂN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

- CÂU 1. Tìm mệnh đề sai trong các mệnh đề sau:
 - A Hai vecto được gọi là cùng phương nếu chúng có giá song song với nhau.
 - (B) Nếu hai vecto cùng phương thì chúng cùng hướng hoặc ngược hướng.
 - (C) Hai vectơ được gọi là bằng nhau nếu chúng cùng độ dài và cùng hướng.
 - \bigcirc Nếu vecto \overrightarrow{a} và vecto \overrightarrow{b} cùng bằng vecto \overrightarrow{c} thì hai vecto \overrightarrow{a} và vecto \overrightarrow{b} bằng nhau.

Dòi giải.

Hai vecto được gọi là cùng phương nếu chúng có giá song song hoặc trùng nhau.

Chọn đáp án (A).....

🗭 Lời giải.

Dễ thấy vectơ bằng với vectơ \overrightarrow{AB} là vectơ nào $\overrightarrow{D'C'}$ vì chúng cùng hướng và có cùng đô dài.

Chọn đáp án (A).....

CÂU 3. Cho hình hộp ABCD.A'B'C'D'. Vectơ nào dưới đây cùng phương với vectơ \overrightarrow{AB} ?

 $A \overrightarrow{CD}$.

 $(\mathbf{D})A\overrightarrow{C'}.$

🗭 Lời giải.

Vecto cùng phương với \overrightarrow{AB} là \overrightarrow{CD} , vì hai vecto này có giá song song với nhau.

Chon đáp án (A).....

CÂU 4. Cho hình hộp ABCD.A'B'C'D'. Mệnh đề nào sau đây sai?

$$\overrightarrow{A}\overrightarrow{AC'} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'}.$$

$$\overrightarrow{B}\overrightarrow{BC'} = \overrightarrow{BC} + \overrightarrow{BD} + \overrightarrow{BB'}.$$

$$\overrightarrow{\mathbf{C}}\overrightarrow{DB'} = \overrightarrow{DA} + \overrightarrow{DC} + \overrightarrow{DD'}.$$

$$(\mathbf{D})\overrightarrow{BD'} = \overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{BB'}.$$

🗭 Lời giải.

Theo quy tắc hình hộp, ta có mệnh đề sai là $\overrightarrow{BC'} = \overrightarrow{BC} + \overrightarrow{BD} + \overrightarrow{BB'}$.

Chọn đáp án (B).....

CÂU 5.

Cho hình tứ diện ABCD. Gọi M, N lần lượt là trung điểm AB, CD, I là trung điểm của đoạn MN. Mệnh đề nào sau đây sai?

$$\overrightarrow{AN} = (\overrightarrow{AD} + \overrightarrow{AC}).$$

$$\mathbf{B})\overrightarrow{IN} + \overrightarrow{IM} = \overrightarrow{0}.$$

$$(\mathbf{C})\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}.$$

$$\overrightarrow{\mathbf{D}} \overrightarrow{NC} + \overrightarrow{ND} = \overrightarrow{0}.$$

🗩 Lời giải.

Đáp án B đúng: Vì I là trung điểm MN nên ta có: $\overrightarrow{IN} + \overrightarrow{IM} = \overrightarrow{0}$.

Đáp án C đúng: Vì M là trung điểm AB nên ta có: $\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}$.

Đáp án D đúng. Vì N là trung điểm CD nên ta có $\overrightarrow{NC} + \overrightarrow{ND} = \overrightarrow{0}$.

Chọn đáp án (A).....

CÂU 6.

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Hãy tìm mệnh đề đúng trong những mênh đề sau đây

$$\overrightarrow{A} \overrightarrow{AB} + \overrightarrow{AD}' + \overrightarrow{AA'} = \overrightarrow{AC'}.$$

$$\overrightarrow{\mathbf{B}}\overrightarrow{AD} + \overrightarrow{DB'} = \overrightarrow{B'A}.$$

$$\overrightarrow{\mathbf{C}}\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{BD}.$$

$$(\mathbf{D})\overrightarrow{AC} - \overrightarrow{AB'} = \overrightarrow{CB'}.$$

Dòi giải.

Theo quy tắc hình hộp ta có $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'} = \overrightarrow{AC'}$.

Chọn đáp án (A)......

CÂU 7. Cho tứ diện ABCD, có bao nhiêu vectơ có điểm đầu là A và điểm cuối là một trong các đỉnh còn lại của tứ diện? **(A)** 1. $(\mathbf{C})_2.$

🗩 Lời giải.

Có ba vecto là: \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} .

Chọn đáp án B.....

CÂU 8. Cho hình hộp ABCD.A'B'C'D'. Hai vectơ nào sau đây cùng phương? $(A) \overrightarrow{A'B}$ và $\overrightarrow{A'B'}$. $(B) \overrightarrow{B'C'}$ và \overrightarrow{CD} . $\overrightarrow{\mathbf{D}} \overrightarrow{AB}$ và $\overrightarrow{D'C'}$. $(\mathbf{C})\overrightarrow{AB}$ và $\overrightarrow{B'C'}$.

D Lời giải.

Hai vecto \overrightarrow{AB} và $\overrightarrow{D'C'}$ có giá song song nên cùng phương.

Chọn đáp án (D).....

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, CD, G là trung điểm của MN. Vector

 $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD}$ bằng Vecto nào sau đây

 $(\mathbf{A})4\overrightarrow{MG}.$

 $(\mathbf{B})\overrightarrow{GD}$.

 $\mathbf{C} \overrightarrow{0}$.

 $(\mathbf{D})\overrightarrow{MN}$.

🗩 Lời giải.

 $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \left(\overrightarrow{GA} + \overrightarrow{GB}\right) + \left(\overrightarrow{GC} + \overrightarrow{GD}\right) = 2\overrightarrow{GM} + 2\overrightarrow{GN} = 2\left(\overrightarrow{GM} + \overrightarrow{GN}\right) = \overrightarrow{0}.$

CÂU 10. Cho hình lập phương ABCD.A'B'C'D'. Chọn mệnh đề đúng?

 $(\mathbf{B})\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AC} = \overrightarrow{AA'}. \quad (\mathbf{C})\overrightarrow{AB} = \overrightarrow{CD}.$ $(\mathbf{A}) \overrightarrow{AC} = C'A'.$

 $\overrightarrow{AB} + \overrightarrow{C'D'} = \overrightarrow{0}.$

🗩 Lời giải.

Ta có $\overrightarrow{AB} + \overrightarrow{C'D'} = \overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{0}$.

Chọn đáp án (D).....

CÂU 11. Cho hình lăng trụ ABC.A'B'C', M là trung điểm của BB'. Đặt $\overrightarrow{CA} = \overrightarrow{a}$, $\overrightarrow{CB} = \overrightarrow{b}$, $\overrightarrow{AA'} = \overrightarrow{c}$. Khẳng định nào

$$(\mathbf{A}) \overrightarrow{AM} = \overrightarrow{b} + \overrightarrow{c} - \frac{1}{2} \overrightarrow{a}$$

$$\overrightarrow{\mathbf{c}}\overrightarrow{AM} = \overrightarrow{a} + \overrightarrow{c} - \frac{1}{2}\overrightarrow{b}$$

$$\overrightarrow{D}\overrightarrow{AM} = \overrightarrow{b} - \overrightarrow{a} + \frac{1}{2}\overrightarrow{c}.$$

D Lời giải.

Ta có
$$\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM} = \overrightarrow{CB} - \overrightarrow{CA} + \frac{1}{2}\overrightarrow{BB'}$$

$$= \overrightarrow{b} - \overrightarrow{a} + \frac{1}{2}\overrightarrow{AA'} = \overrightarrow{b} - \overrightarrow{a} + \frac{1}{2}\overrightarrow{c}.$$

Chọn đáp án (D).....

CÂU 12.

Cho tứ diện ABCD có M, N lần lượt là trung điểm các cạnh AC và BD. Gọi G là trung điểm của đoạn thẳng MN. Hãy chọn khẳng định sai

$$\overrightarrow{\mathbf{A}})\overrightarrow{GA} + \overrightarrow{GC} = 2\overrightarrow{GM}.$$

$$(\mathbf{B})\overrightarrow{GB} + \overrightarrow{GD} = \overrightarrow{MN}.$$

$$\overrightarrow{\mathbf{C}}$$
) $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{0}$.

$$\mathbf{D} \ 2\overrightarrow{NM} = \overrightarrow{AB} + \overrightarrow{CD}.$$

🗩 Lời giải.

$$\odot$$
 $\overrightarrow{GA} + \overrightarrow{GC} = 2\overrightarrow{GM}$ đúng vì M là trung điểm AC .

$$\bigodot \overrightarrow{GB} + \overrightarrow{GD} = \overrightarrow{MN}$$
 đúng vì $\overrightarrow{GB} + \overrightarrow{GD} = 2\overrightarrow{GN} = \overrightarrow{MN}$

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{0} \text{ dúng vì } \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = 2\left(\overrightarrow{GM} + \overrightarrow{GN}\right) = \overrightarrow{0}.$$

$$② \ 2\overrightarrow{NM} = \overrightarrow{AB} + \overrightarrow{CD} \ \text{sai vì} \ \overrightarrow{AB} + \overrightarrow{CD} = \left(\overrightarrow{AM} + \overrightarrow{MN} + \overrightarrow{NB}\right) + \left(\overrightarrow{CM} + \overrightarrow{MN} + \overrightarrow{ND}\right) = 2\overrightarrow{MN} + \overrightarrow{0} + \overrightarrow{0} = 2\overrightarrow{MN}.$$

Chọn đáp án \bigcirc D........

CÂU 13. Cho tứ diện đều SABC có cạnh a. Gọi M, N lần lượt là trung điểm SA, BC. Các mệnh đề sau đúng hay sai?

Mệnh đề	Ð	S
a) Độ dài của vectơ \overrightarrow{SA} bằng $a.$.	X	

$\mathbf{b)} \ \overrightarrow{SA} \cdot \overrightarrow{SB} = \frac{a^2 \sqrt{3}}{2}.$	X	
c) $\overrightarrow{SB} + \overrightarrow{AB} + \overrightarrow{SC} + \overrightarrow{AC} = 4\overrightarrow{MN}$.		X
d) Gọi I là trọng tâm của tứ diện. Khoảng cách từ I đến (ABC) bằng $\frac{3a\sqrt{6}}{4}$.		X

Lời giải.

a.
$$|\overrightarrow{SA}| = SA = a$$
.

b.
$$\overrightarrow{SA} \cdot \overrightarrow{SB} = \left| \overrightarrow{SA} \right| \cdot \left| \overrightarrow{SB} \right| \cdot \sin \widehat{ASB} = a \cdot a \cdot \sin 60^{\circ} = \frac{a^2 \sqrt{3}}{2}$$
.

c. Do
$$N$$
 là trung điểm của BC nên $\overrightarrow{SB} + \overrightarrow{SC} = 2\overrightarrow{SN}$ và $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{MB}$. Suy ra $\overrightarrow{SB} + \overrightarrow{SC} + \overrightarrow{AB} + \overrightarrow{AC} = 2\left(\overrightarrow{SN} + \overrightarrow{AN}\right)$
Do M là trung điểm của \overrightarrow{SA} nên $\overrightarrow{NA} + \overrightarrow{NS} = 2\overrightarrow{NM} \Leftrightarrow \overrightarrow{AN} + \overrightarrow{SN} = 2\overrightarrow{MN}$. Do đó $\overrightarrow{SB} + \overrightarrow{SC} + \overrightarrow{AB} + \overrightarrow{AC} = 2 \cdot 2 \cdot \overrightarrow{MN} = 4\overrightarrow{MN}$.

d. Gọi
$$G$$
 là trọng tâm tam giác ABC .

Do tứ diện SABC là tứ diện đều và I là trọng tâm tứ diện nên d(I, (ABC)) = IG

Tam giác ABC đều cạnh a, N là trung điểm của BC, suy ra $AN = \frac{a\sqrt{3}}{2}$.

Do
$$G$$
 là trọng tâm tam giác ABC nên $AG = \frac{2}{3}AN = \frac{a\sqrt{3}}{3}$.

Do tứ diện SABC là tứ diện đều nên $SG\bot(ABC)\Rightarrow SG\bot AG$.

Tam giác
$$SAG$$
 vuông tại G nên $SG = \sqrt{SA^2 - AG^2} = \sqrt{a^2 - \frac{a^2}{3}} = \frac{a\sqrt{6}}{3}$.

Do
$$I$$
 là trọng tâm tứ diện $SABC$ nên $IG = \frac{1}{4}SG = \frac{1}{4} \cdot \frac{a\sqrt{6}}{3} = \frac{a\sqrt{6}}{12}$

Vậy
$$d(I, (ABC)) = \frac{a\sqrt{6}}{12}$$
.

Chọn đáp án a đúng b đúng c sai d sai

CAU 14. Cho hình lập phương $ABCD.A_1B_1C_1D_1$ có canh a. Gọi M là trung điểm AD. Các mệnh đề sau đúng hay sai?

Mệnh đề	Đ	S
a) $\overrightarrow{A_1B_1} = \overrightarrow{CD}$.		X
$\overrightarrow{DC_1} = \overrightarrow{DC} + \overrightarrow{DD_1}.$	X	

Mệnh đề	Đ	S
c) $\overrightarrow{AB_1} \cdot \overrightarrow{CD_1} = 0$.	X	
$\overrightarrow{C_1M} = \overrightarrow{C_1C} + \overrightarrow{C_1D_1} + \frac{1}{2}\overrightarrow{C_1B_1}.$	X	

🗭 Lời giải.

HINH O DAY

1. Mênh đề sai vì
$$\overline{A_1B_1} = \overline{DC} \neq \overline{CD}$$
.

1. Mệnh đề sai vì
$$\overrightarrow{A_1B_1} = \overrightarrow{DC} \neq \overrightarrow{CD}$$
.
2. Mệnh đề đúng vì $\overrightarrow{DC} + \overrightarrow{DD_1} = \overrightarrow{DC} + \overrightarrow{CC_1} = \overrightarrow{DC_1}$
3. Mệnh đề đúng $\overrightarrow{AB_1} \cdot \overrightarrow{CD_1} = \overrightarrow{AB_1} \cdot \overrightarrow{BA_1} = 0$

3. Mênh đề đúng
$$\overrightarrow{AB_1} \cdot \overrightarrow{CD_1} = \overrightarrow{AB_1} \cdot \overrightarrow{BA_1} = 0$$

4. Mệnh đề sai

$$\overrightarrow{B_1M} = \overrightarrow{B_1B} + \overrightarrow{BM}$$

$$= \overrightarrow{BB_1} + \frac{1}{2} \left(\overrightarrow{BA} + \overrightarrow{BD} \right)$$

$$= \overrightarrow{BB_1} + \frac{1}{2} \left(\overrightarrow{B_1A_1} + \overrightarrow{B_1D_1} \right)$$

$$= \overrightarrow{BB_1} + \frac{1}{2} \left(\overrightarrow{B_1A_1} + \overrightarrow{B_1A_1} + \overrightarrow{B_1C_1} \right)$$

$$=\overrightarrow{BB_1} + \overrightarrow{B_1A_1} + \frac{1}{2}\overrightarrow{B_1C_1}$$

Chọn đáp án a sai b đúng c đúng d đúng

CÂU 15. Cho tứ diện ABCD có cạnh a. Gọi M, N lần lượt là trung điểm của AB, CD. Các mệnh đề sau đúng hay sai? 1. Vec tơ \overrightarrow{AB} và \overrightarrow{CD} cùng hướng. 2. $\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED} = \overrightarrow{0}$ với E là trung điểm MN. 3. $\overrightarrow{AB} \cdot \overrightarrow{CD} + \overrightarrow{AC} \cdot \overrightarrow{DB} + \overrightarrow{AD} \cdot \overrightarrow{BC} = \overrightarrow{0}$. 4. Điểm I xác định bởi $P = 3\overrightarrow{IA}^2 + \overrightarrow{IB}^2 + \overrightarrow{IC}^2 + \overrightarrow{ID}^2$ có giá trị nhỏ nhất. Khi đó giá trị nhỏ nhất của P là $2a^2$ 🗩 Lời giải.

- 1. Mệnh đề sai
- 2. Mênh đề đúng: Vì M là trung điểm AB nên $\overrightarrow{EA} + \overrightarrow{EB} = 2\overrightarrow{EM}$, N là trung điểm CD nên $\overrightarrow{EC} + \overrightarrow{ED} = 2\overrightarrow{EN}$ Ta có $E\vec{A} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED} = 2(\overrightarrow{EM} + \overrightarrow{EN}) = \overrightarrow{0}$
- 3. Mệnh đề đúng: Vì $\overrightarrow{AB} \cdot \overrightarrow{CD} + \overrightarrow{AC} \cdot \overrightarrow{DB} + \overrightarrow{AD} \cdot \overrightarrow{BC} = (\overrightarrow{AC} + \overrightarrow{CB}) \cdot \overrightarrow{CD} + \overrightarrow{AC} \cdot \overrightarrow{DB} + \overrightarrow{AD} \cdot \overrightarrow{BC}$ $= \overrightarrow{AC} \cdot \left(\overrightarrow{CD} + \overrightarrow{DB} \right) + \overrightarrow{AD} \cdot \overrightarrow{BC} + \overrightarrow{CB} \cdot \overrightarrow{CD} = \overrightarrow{AC} \cdot \overrightarrow{CB} + \overrightarrow{AD} \cdot \overrightarrow{BC} + \overrightarrow{CB} \cdot \overrightarrow{CD}$
- $=\overrightarrow{CB}(\overrightarrow{AC}-\overrightarrow{AD})+\overrightarrow{CB}\cdot\overrightarrow{CD}=\overrightarrow{0}$

HINH Ò DAY

4. Mệnh đề đúng:

Gọi M là điểm thoả mãn hệ thức $3\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = \overrightarrow{0}$ suy ra M cố định vì A, B, C, D cố định. Ta có $P = 3\overrightarrow{IA}^2 + \overrightarrow{IB}^2 + \overrightarrow{IC}^2 + \overrightarrow{ID}^2 = 3(\overrightarrow{IM} + \overrightarrow{MA})^2 + (\overrightarrow{IM} + \overrightarrow{MB})^2 + (\overrightarrow{IM} + \overrightarrow{MC})^2 + (\overrightarrow{IM} + \overrightarrow{MD})^2$

$$=6IM^2+3MA^2+MB^2+MC^2+MD^2+2\overrightarrow{IM}\left(3\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right)$$

 $= 6IM^2 + 3MA^2 + MB^2 + MC^2 + MD^2.$

Do đó để P nhỏ nhất thì I trùng với M. Gọi G là trọng tâm tam giác BCD.

$$3\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = \overrightarrow{0} \Leftrightarrow 3\overrightarrow{MA} + (\overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD}) = \overrightarrow{0}$$

$$\Leftrightarrow 3\overrightarrow{MA} + 3\overrightarrow{MG} = \overrightarrow{0} \Leftrightarrow \overrightarrow{MA} + \overrightarrow{MG} = \overrightarrow{0}$$

Suy ra M là trung điểm của AG.

Ta có
$$BG = \frac{2}{3} \cdot \frac{a\sqrt{3}}{2} = \frac{a}{\sqrt{3}} \Rightarrow AG = \sqrt{AB^2 - BG^2} = \sqrt{a^2 - \left(\frac{a}{\sqrt{3}}\right)^2} = \frac{a\sqrt{2}}{\sqrt{3}}$$

$$\Rightarrow MA = \frac{1}{2}AG = \frac{a}{\sqrt{6}} \Rightarrow MA^2 = \frac{a^2}{6}.$$

Lai có
$$MD^2 = MC^2 = MB^2 = MG^2 + BG^2 = \frac{a^2}{6} + \frac{a^2}{3} = \frac{a^2}{2}.$$

Vậy giá trị nhỏ nhất là $P = 3 \cdot \frac{a^2}{6} + 3 \cdot \frac{a^2}{2} = 2a^2$ khi I trùng với M

CÂU 16. Chọ tứ diện đềuABCD cạnh a có G là trọng tâm của tam giác BCD và I là điểm thuộc đoạn thẳng AG sao cho $\overrightarrow{AI} = 3\overrightarrow{IG}$. Các mệnh đề sau đúng hay sai? 1. $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$. 2. $\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} = 3\overrightarrow{IG}$. 3. $\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{AC}$ $\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID}$. 4. $\overrightarrow{IB} = \frac{3}{4}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AC} - \frac{1}{4}\overrightarrow{AD}$

🗩 Lời giải.

HINH O DAY

- 1. Mệnh đề sai vì G là trọng tâm của tam giác BCD nên $\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{0}$.

$$\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} = \overrightarrow{IG} + \overrightarrow{GB} + \overrightarrow{IG} + \overrightarrow{GC} + \overrightarrow{IG} + \overrightarrow{GD} = 3\overrightarrow{IG} + \left(\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD}\right) = 3\overrightarrow{IG}.$$

- 3. Mệnh đề đúng: Vì $\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{0}\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} = \overrightarrow{IA} + 3\overrightarrow{IG} = \overrightarrow{IA} + \overrightarrow{AI} = \overrightarrow{0}$.
- 4.Mệnh đề đúng vì:

$$\overrightarrow{AI} = 3\overrightarrow{IG} \Leftrightarrow \overrightarrow{IA} = -\frac{3}{4}\overrightarrow{AG}.$$

$$\overrightarrow{IB} = \overrightarrow{IA} + \overrightarrow{AB} = -\frac{3}{4}\overrightarrow{AG} + \overrightarrow{AB} = -\frac{3}{4} \cdot \frac{1}{3} \left(\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} \right) + \overrightarrow{AB} = \frac{3}{4}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AC} - \frac{1}{4}\overrightarrow{AD}.$$

PHÂN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 17 đến câu 3

CÂU 17. Cho tứ diện ABCD Gọi E là trung điểm AD, F là trung điểm BC. Ta có $\overrightarrow{AB} + \overrightarrow{DC} = \cdots \overrightarrow{EF}$ Lời giải.

Trả lời: 2

Do E là trung điểm AD, F là trung điểm BC nên: $\overrightarrow{EA} + \overrightarrow{ED} = \overrightarrow{0}$; $\overrightarrow{FB} + \overrightarrow{FC} = -(\overrightarrow{BF} + \overrightarrow{CF}) = \overrightarrow{0}$.

$$\text{C6} \left\{ \begin{aligned} \overrightarrow{AB} &= \overrightarrow{AE} + \overrightarrow{EF} + \overrightarrow{FB} \\ \overrightarrow{DC} &= \overrightarrow{DE} + \overrightarrow{EF} + \overrightarrow{FB} \end{aligned} \right. \Rightarrow \overrightarrow{AB} + \overrightarrow{DC} = 2\overrightarrow{EF}$$

CÂU 18. Cho hình hộp chữ nhật $ABCD \cdot A'B'C'D'$ có AB = 2a, AD = 3a. Độ dài vecto $\overline{B'D'}$ bằng..... Dòi giải.

HINH O DAY

Ta có:
$$|\overrightarrow{B'D'}| = B'D' = BD = \sqrt{AB^2 + AD^2} = a\sqrt{13}$$

Vậy độ dài vecto $\overline{B'D'}$ bằng $a\sqrt{13}$

CÂU 19. Cho hình lập phương $ABCD \cdot A'B'C'D'$. Góc giữa hai vecto $\overrightarrow{A'B}$ và $\overrightarrow{AC'}$ bằng 🗩 Lời giải.

HINH O DAY

$$\frac{\overrightarrow{\text{Ta co}} \overrightarrow{A'B} = \overrightarrow{A'A} + \overrightarrow{AB}}{\overrightarrow{AC'}} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'}} = \overrightarrow{AB} - \overrightarrow{AA'}$$

$$\Rightarrow \overrightarrow{A'B} \cdot \overrightarrow{AC'} = \left(\overrightarrow{AB} - \overrightarrow{AA'}\right) \cdot \left(\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'}\right) = \overrightarrow{AB}^2 - \overrightarrow{AA'}^2 = 0$$

$$\Rightarrow \text{G\'oc giữa hai vecto } \overrightarrow{A'B} \text{ và } \overrightarrow{AC'} \text{ bằng } 90^\circ$$

CÂU 20. Cho hình chóp $S \cdot ABC$ có SA, SB, SC đôi một vuông góc nhau và SA = SB = SC = a. Gọi M là trung điểm của AB. Góc giữa hai vecto \overrightarrow{SM} và \overrightarrow{BC} bằng

Lời giải.

HINH O DAY

Ta có cos
$$(\overrightarrow{SM}, \overrightarrow{BC}) = \frac{\overrightarrow{SM} \cdot \overrightarrow{BC}}{\left|\overrightarrow{SM}\right| \left|\overrightarrow{BC}\right|} = \frac{\overrightarrow{SM} \cdot \overrightarrow{BC}}{SM \cdot BC}.$$

$$\overrightarrow{SM} \cdot \overrightarrow{BC} = \frac{1}{2} (\overrightarrow{SA} + \overrightarrow{SB}) \cdot (\overrightarrow{SC} - \overrightarrow{SB})$$

$$\overrightarrow{SM} \cdot \overrightarrow{BC} = \frac{1}{2} \left(\overrightarrow{SA} + \overrightarrow{SB} \right) \cdot \left(\overrightarrow{SC} - \overrightarrow{SB} \right)$$

$$= \frac{1}{2} \left(\overrightarrow{SA} \cdot \overrightarrow{SC} - \overrightarrow{SA} \cdot \overrightarrow{SB} + \overrightarrow{SB} \cdot \overrightarrow{SC} - \overrightarrow{SB} \cdot \overrightarrow{SB} \right)$$

$$=-\frac{1}{2}\overrightarrow{SB}\cdot\overrightarrow{SB}=-\frac{1}{2}SB^2=-\frac{a^2}{2}\cdot$$

Tam giác SAB và SBC vuông cân tại S nên $AB = BC = a\sqrt{2}$. $\Rightarrow SM = \frac{AB}{2} = \frac{a\sqrt{2}}{2}$.

Do đó
$$\cos\left(\overrightarrow{SM},\overrightarrow{BC}\right) = \frac{-\frac{a^2}{2}}{\frac{a\sqrt{2}}{2} \cdot a\sqrt{2}} = -\frac{1}{2}$$
. Suy ra $\left(\overrightarrow{SM},\overrightarrow{BC}\right) = 120^{\circ}$

CÂU 21. Cho hình chóp $S \cdot ABC$ có SA, SB, SC đôi một vuông góc nhau và SA = SB = SC = a. Gọi M là trung điểm của AB. Góc giữa hai vecto \overrightarrow{SM} và \overrightarrow{BC} bằng

Lời giải.

Trả lời: 120°

HINH O DAY

Ta có
$$\cos\left(\overrightarrow{SM}, \overrightarrow{BC}\right) = \frac{\overrightarrow{SM} \cdot \overrightarrow{BC}}{\left|\overrightarrow{SM}\right| \left|\overrightarrow{BC}\right|} = \frac{\overrightarrow{SM} \cdot \overrightarrow{BC}}{SM \cdot BC}.$$

$$\overrightarrow{SM} \cdot \overrightarrow{BC} = \frac{1}{2} \left(\overrightarrow{SA} + \overrightarrow{SB} \right) \cdot \left(\overrightarrow{SC} - \overrightarrow{SB} \right)$$

$$=\frac{1}{2}\left(\overrightarrow{SA}\cdot\overrightarrow{SC}-\overrightarrow{SA}\cdot\overrightarrow{SB}+\overrightarrow{SB}\cdot\overrightarrow{SC}-\overrightarrow{SB}\cdot\overrightarrow{SB}\right)$$

$$= -\frac{1}{2}\overrightarrow{SB}\cdot\overrightarrow{SB} = -\frac{1}{2}SB^2 = -\frac{a^2}{2}\cdot$$

Tam giác SAB và SBC vuông cân tại S nên $AB = BC = a\sqrt{2}$.

Suy ra trung tuyến
$$SM = \frac{AB}{2} = \frac{a\sqrt{2}}{2}$$
.

Do đócos
$$\left(\overrightarrow{SM}, \overrightarrow{BC}\right) = \frac{-\frac{a^2}{2}}{\frac{a\sqrt{2}}{2} \cdot a\sqrt{2}} = -\frac{1}{2}$$
. Suy ra $\left(\overrightarrow{SM}, \overrightarrow{BC}\right) = 120^{\circ}$

CÂU 22. Cho hình hộp $ABCD \cdot A'B'C'D'$. Xét các điểm M, N lần lượt thuộc các đường thẳng A'C, C'D sao cho đường thẳng MN song song với đường thẳng BD'. Khi đó tỉ số $\frac{MN}{BD'}$ bằng

Lời giải.

HINH O DAY

$$\overrightarrow{BA} = \overrightarrow{x}, \overrightarrow{BB'} = \overrightarrow{y}, \overrightarrow{BC} = \overrightarrow{z}.$$

Do
$$\overrightarrow{CM}$$
, $\overrightarrow{CA'}$ là hai vecto cùng phương $\Rightarrow \exists k \in \mathbb{R} \colon \overrightarrow{CM} = k \cdot \overrightarrow{CA'}$

Và
$$\overrightarrow{C'N}$$
, $\overrightarrow{C'D}$ là hai vecto cùng phương $\Rightarrow \exists h \in \mathbb{R} : \overrightarrow{C'N} = h \cdot \overrightarrow{C'D}$

Ta có:
$$\overrightarrow{BD'} = \overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{BB'} = \overrightarrow{x} + \overrightarrow{y} + \overrightarrow{z}$$
, (1)

Ta có:
$$\overrightarrow{BD'} = \overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{BB'} = \overrightarrow{x} + \overrightarrow{y} + \overrightarrow{z}$$
, (1)
Ta lại có: $\overrightarrow{MN} = \overrightarrow{CN} - \overrightarrow{CM} = \overrightarrow{CC'} + \overrightarrow{C'N} - \overrightarrow{CM} = \overrightarrow{CC'} + h \cdot \overrightarrow{C'D} - k \cdot \overrightarrow{CA'}$

$$= \vec{y} + h \cdot (-\vec{y} + \vec{x}) - k \cdot (\vec{y} - \vec{z} + \vec{x}) = (h - k) \cdot \vec{x} + (1 - h - k) \cdot \vec{y} + k \cdot \vec{z}, (2)$$

Ta lại có:
$$MN = CN - CM = CC' + C'N - CM = CC' + h \cdot C'D - k \cdot CA'$$

$$= \overrightarrow{y} + h \cdot (-\overrightarrow{y} + \overrightarrow{x}) - k \cdot (\overrightarrow{y} - \overrightarrow{z} + \overrightarrow{x}) = (h - k) \cdot \overrightarrow{x} + (1 - h - k) \cdot \overrightarrow{y} + k \cdot \overrightarrow{z}, (2)$$
Do $MN \parallel B'D$ nên tồn tại $t \in \mathbb{R}$: $\overrightarrow{MN} = t \cdot \overrightarrow{BD'}$. Từ (1) và (2) ta có
$$\begin{cases} h - k = t \\ 1 - h - k = t \\ k = t \end{cases} \Rightarrow t = \frac{1}{4} \Rightarrow \overrightarrow{MN} = 1 + \frac{$$

$$\frac{1}{4}\overrightarrow{BD'}$$
.

$$\frac{1}{4}\overrightarrow{BD'}.$$

$$V_{ay} \frac{MN}{BD'} = \frac{1}{4}.$$