

ЭТИКЕТКА

УПЗ.487.374 ЭТ

Микросхема интегральная 564 ИР11В Функциональное назначение – Многоцелевой регистр 8х4 бит

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

20		T		A	
1		D0	RG	Q0	 8
23		D1			11
22		D2		Q1	
21		D3		Q2	 13
19		W0			16
18		W1		Q3	 10
17		W2			
		RA		В	
2	-	0		Q0	9
3		1			
4		2		Q1	 10
		RB		Q2	 14
7		0		Q3	15
6		1		Ų3	
5		2			

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Информационный вход	9	Выход	17	Вход адреса записи
2	Вход адреса считывания	10	Выход	18	Вход адреса записи
3	Вход адреса считывания	11	Выход	19	Вход адреса записи
4	Вход адреса считывания	12	Общий	20	Тактовый вход
5	Вход адреса считывания	13	Выход	21	Информационный вход
6	Вход адреса считывания	14	Выход	22	Информационный вход
7	Вход адреса считывания	15	Выход	23	Информационный вход
8	Выход	16	Выход	24	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = (25 \pm 10) °C) Таблица 1

Наиманаранна парамотра адинина намарання ражим намарання	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5 \; B; \; 10 \; B$	U_{OL}	-	0,01
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5 \; B$ $U_{CC} = 10 \; B$	Uoн	4,99 9,99	- -
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC} = 5$ B, $U_{IL} = 1,5$ B, $U_{IH} = 3,5$ B $U_{CC} = 10$ B, $U_{IL} = 3,0$ B, $U_{IH} = 7,0$ B	U _{OL max}	-	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC}=5$ B, $U_{IL}=1,5$ B, $U_{IH}=3,5$ B $U_{CC}=10$ B, $U_{IL}=3,0$ B, $U_{IH}=7,0$ B	U _{OH min}	4,2 9,0	-
5. Входной ток низкого уровня, мкА, при: U_{CC} = 15 В	$I_{\rm IL}$	-	/-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15 \; B$	I_{IH}	-	0,1
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 \; B, \; U_{O} = 0,5 \; B \\ U_{CC} = 10 \; B, \; U_{O} = 0,5 \; B$	I_{OL}	0,5 1,0	-
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5$ B, $U_0 = 4.5$ B $U_{CC} = 10$ B, $U_0 = 9.5$ B	I_{OH}	/-0,5/ /-1,0/	- -

Продолжение таблицы 1					
1	2	3	4		
9. Ток потребления, мкА, при:					
$U_{CC} = 5 B$	I_{CC}	-	10,0		
$U_{CC} = 10 B$	1 _{CC}	-	20,0		
$U_{CC} = 15 B$		-	40,0		
10. Время задержки распространения сигнала при включении (выключении),					
нС, при:					
$U_{CC} = 5 \text{ B}; C_L = 50 \text{ m}\Phi$					
по тактовому входу	$t_{ m PHL}$	-	600		
по адресному входу	(t_{PLH})	-	550		
$U_{CC} = 10 \text{ B}; C_L = 50 \text{ n}\Phi$					
по тактовому входу		-	300		
по адресному входу		-	275		
11. Входная емкость, пФ, при: U _{CC} = 10 В	$C_{\rm I}$	-	8,0		
OCC - 10 B					

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г, серебро г,

золото г/мм

на 24 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

в том числе:

 $2.1~{\rm M}$ инимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11~0398-2000~{\rm u}$ ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65~{\rm ^{\circ}C}$ - не менее $100000~{\rm u}$., а в облегченных режимах, которые приводят в ТУ, при $U_{\rm CC}=5$ В $\pm~10\%$ - не менее $120000~{\rm u}$.

 Γ амма – процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе "Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (T _{см}) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.

3 ГАРАНТИИ ПРЕДПРИЯТИЯ – ИЗГОТОВИТЕЛЯ

 $3.1 \ \underline{\Gamma}$ арантии предприятия — изготовителя — по ОСТ В $11 \ 0398 - 2000$:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

Микросхемы 564 ИР11В соответствуют техническим условиям бК0.347.064 ТУ15 и признаны годными для эксплуатации.

Приняты по	(извещение, акт и др.)	OT _	(дата)	
Место для шт	ампа ОТК			Место для штампа ВП
Место для шт	ампа «Перепроверка	произв	едена	
Приняты по	(извещение, акт и др.)	. OT _	(дата)	
Место для шт	гампа ОТК			Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуру должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.