Know thyself: Metacognitive networks and measures of consciousness

[Antoine Pasquali, Bert Timmermans, Axel Cleeremans]

Simulation 2: Artificial Grammar Learning

Principe

Un premier réseau apprend à discriminer des lettres d'une grammaire. En même temps, un second réseau apprend à parier sur le résultat du premier réseau, à partir, de la comparaison entre l'entrée et la sortie du premier.

Cette expérience diffère principalement de la précédente dans sa phase d'apprentissage : les deux réseaux apprennent une première fois ensemble, puis le premier est réinitialisé (et le second n'apprend plus)

Paramètres

Momentum : 0.5 Taux d'apprentissage : 0.4 40 unités cachés Apprentissage : 60 epochs Poids initialisés entre [-1 ;1] pour le premier, [0, 0.1] pour le second Température à 1

48 unités entrées/sorties/comparées

Résultat de l'article

Sorties des neurones sur [0. ; 1.]

Discrimination		Simulation	
Implicit	Correct	Incorrect	Total
High Wager	<u>36.5</u>	8.5	45
Low Wager	35.5	<u>19.5</u>	55
Total	72	28	100
Explicit	Correct	Incorrect	Total
High Wager	<u>63.5</u>	0.5	64
Low Wager	34.5	1.5	36
Total	98	2	100

Implicit : 2nd phase d'apprentissage durant 3 epochs

Explicit: 2nd phase d'apprentissage durant 12 epochs

Le réseau de premier ordre affiche de bonne performances (92%, 72%)

La qualité des paris est plutôt bonne (65 %) en explicite mais pas en implicite (56 %)

Les bons paris sont soulignés.

Conclusion

Illustration de représentations formées en dehors du réseau de premier ordre grâce à un comparateur.

Grâce au comparateur, les 2 réseaux peuvent apprendre indépendamment et le second peut être réutilisé sur une nouvelle expérience.

Nos résultats :

Sigmoïde sur [0,1]: $\frac{1}{1+1-\theta x}$

Paramètres supposés

Apprentissage online	

Localization with	Simulation		
Implicit	Correct	Incorrect	Total
High wager	40,45	21.65	62,1
Low wager	31.2	6,65	37,85
Total	71,65	28,3	100
Explicit	Correct	Incorrect	Total
High Wager	73.1	1.65	74.75
Low Wager	23.55	1.65	25.2
Total	96,65	3,3	100

Le réseau de premier ordre affiche des performances similaires

Les différences de qualité entre paris sont légèrement accentuées ($65\% \rightarrow 75\%$, $56\% \rightarrow 47\%$)

Annexes:

(Strings grammaticaux uniquement)

Localization with	Simulation				
Implicit	Correct	Incorrect	Total		
High wager	43.3	43.3	86.6		
Low wager	0	13.3	13.3		
Total	43.3	56.6	100		
Explicit	Correct	Incorrect	Total		
High Wager	93.3	3.3	96.6		
Low Wager	0.0	3.3	3.3		
Total	93.3	6.6	100		

Performances en explicite (sur strings grammaticaux)

Durant les 60 premières epochs, le premier réseau n'apprend qu'une fois sur 2.

Réinitialisation du premier réseau à l'epoch 60