A bit more just about primes

Lesson by Senya, group L4+

Problem 1. Just an exercise: Positive integer numbers a, b, c, d are such that ab = cd. Is it possible that a+b+c+d is a prime?

Prime numbers are mysterious and many simple-sounding facts are still open problems. However, we did manage to get a good estimate on p_n , i.e n—th prime number, namely $p_n \approx n \cdot ln(n)$. While this fact is not that easy to prove, it is rather elementary to get to a result about p_n that is very close to this fact.

Problem 2. Let p be prime and $p^a|\binom{n}{k}$. Prove that $p^a \leq n$.

Problem 3. Let p_k be k-th largest prime number and let p=2m+1

- i) Prove that $\binom{m}{p} > \frac{2^p}{p}$;
- ii) Prove that $\binom{m}{p} \leq p^k$;

Thus we can conclude that $p_k^{k+1} > 2^{p_k}$. Finally, prove that there is a constant C such that $p_k < C \cdot k \cdot ln(k)$.

Problem 4. As before let p_k be the k-th prime number. Prove that are infinitely many k such that

- a) $2p_k < p_{k+1} + p_{k-1}$
- b) $2p_k \ge p_{k+1} + p_{k-1}$
- c) $p_k^2 > p_{k-1}p_{k+1}$
- d) $p_k p_{k-1} < \sqrt{k-1}$

Problem 5. There is a finite set of prime numbers P. Prove that there is a number x such that it is representable in the form $a^p + b^p$ (where a, b are integers) if and only if $p \in P$.

Problem 6. There is a prime number p. Prove that there is a prime number q such that $n^p - p$ is not divisible by q for any positive integer n.

Problem 7. Is it possible to place positive integers into the cells of a 2019×2019 board in such a way that the ratio of any two neighbouring numbers (larger number divided by the smaller) is an integer not larger than 2019?