

План

Ансамбли алгоритмов: примеры и обоснование (статистическое, вычислительное, функциональное)

Повышение разнообразия в ансамблях

Комитеты (голосование, Voting Ensembles), усреднение

Бэгинг (Bagging)

Пэстинг (Pasting)

Случайные подпространства (Random Subspaces)

Случайные патчи (Random Patches)

Cross-Validated Committees

Стекинг (Stacking)

Блендинг (Blending)

Ансамбль алгоритмов (Ensemble / Multiple Classifier System)

 алгоритм, который состоит из нескольких алгоритмов машинного обучения (базовых алгоритмов – base learners)

простой ансамбль в регрессии:

$$a(x) = \frac{1}{n} \left(b_1(x) + \ldots + b_n(x) \right)$$

простой ансамбль в классификации:

$$a(x) = \text{mode}(b_1(x), \dots, b_n(x))$$

комитет большинства

В чём может быть усложнение?

Ансамбль алгоритмов

$$a(x) = b(b_1(x), \dots, b_n(x))$$

b – мета-алгоритм (meta-estimator),

 b_{i} – базовые алгоритмы (base learners)

в бустинге - слабые (weak)

Реализация в scikit-learn

sklearn.ensemble.VotingClassifier

estimators	Список базовых алгоритмов	
voting="hard"	Голосование по меткам или усреднение вероятностей	
weights=None	Beca	
n_jobs=None	« number of jobs»	
flatten_transform=True	Формат ответа (для soft-ансамбля)	

есть ещё ensemble.VotingRegressor

Ошибка суммы регрессоров: теоретическое обоснование

Если ответы регрессоров на объекте – независимые случайные величины с одинаковым матожиданием и дисперсией

$$\xi = \frac{1}{n} (\xi_1 + \dots + \xi_n)$$

$$E\xi = \frac{1}{n} (E\xi_1 + \dots + E\xi_n) = E\xi_i$$

$$\mathbf{D}\xi = \frac{1}{n^2} (\mathbf{D}\xi_1 + \dots + \mathbf{D}\xi_n) = \frac{\mathbf{D}\xi_i}{n}$$

ДЗ А если есть корреляция между базовыми алгоритмами?

решите в постановке, что корреляция между любыми двумя алгоритмами равна ho

Ошибка комитета большинства: теоретическое обоснование

Пусть три (независимых) классификатора на два класса с вероятностью ошибки $\, {\cal D} \,$

Пусть верный ответ - 0

$$egin{array}{lll} (0,0,0) & (1-p)(1-p)(1-p) \ (1,0,0) & p(1-p)(1-p) \ (0,1,0) & (1-p)p(1-p) \ (0,0,1) & (1-p)(1-p)p \ \end{array}$$
 верный ответ $(1,1,1) & ppp \ (1,1,0) & pp(1-p) \ \end{array}$

(0,1,1) (1-p)pp

(1,0,1) p(1-p)p

ошибка

вероятность ошибки

$$p^3 + 3(1-p)p^2 = p^2(3-2p)$$

Ошибка комитета большинства

При малых $\,p\,$ ошибка комитета очень мала!

При p = 0.2 – почти в два раза меньше

Ошибка комитета большинства

Общий случай:

$$\sum_{t=0}^{\lfloor n/2 \rfloor} C_n^t (1-p)^t p^{n-t} \le e^{-\frac{1}{2}n(2p-1)^2}$$

неравенство Хёфдинга (Hoeffding)

Ошибка экспоненциально снижается с увеличением числа базовых алгоритмов... но это в теории

На практике

Классификаторы / регрессоры точно не являются независимыми

Почему?

На практике

Классификаторы / регрессоры точно не являются независимыми

Почему?

- Решают одну задачу
- Настраиваются на один целевой вектор
- Могут быть из одной модели (ну, 2-3 разных)!

Выход

Пытаться делать алгоритмы разнообразными

Пусть алгоритмы ошибаются, но по-разному: ошибки одних компенсируются правильными ответами других

Пример: подвыборки и подмножества признаков в RF

Ещё почему алгоритмы в ансамбле должны быть разными

одинаковые	похожие	разные
1111110000 q=0.6	1111110000 q=0.6	1010010111
1111110000 q=0.6	1111101000 q=0.6	1100110011
1111110000 q=0.6	1111100100 q=0.6	1111110000
		1110110011
$q_{ens} = 0.6$	q_ens = 0.5	$q_{ens} = 0.7$

Выход

Пытаться делать алгоритмы разнообразными

Пусть алгоритмы ошибаются, но по-разному: ошибки одних компенсируются правильными ответами других

Пример: подвыборки и подмножества признаков в RF

Ещё почему алгоритмы в ансамбле должны быть разными

одинаковые	похожие	разные
1111110000 q=0.6	1110111000 q=0.6	1010010111
1111110000 q=0.6	1101110100 q=0.6	1100110011
1111110000 q=0.6	1011101100 q=0.6	1111110000
		1110110011
$q_{ens} = 0.6$	q_ens = 0.8	$q_{ens} = 0.7$

ДЗ Честный эксперимент, оценивающий зависимость качество (разнообразие)

Повышения разнообразия – что «варьируют»

• обучающую выборку

(бэгинг)

• признаки

(Random Subspaces)

• целевой вектор

(ECOC, f(y))

модели

(стекинг)

• алгоритмы в модели

(разные гиперпараметры, инициализации, snapshot, разные random seed в RF, ...)

Варьирование алгоритмов в модели

л/к полиномов разной степени

л/к случайных лесов с разной глубиной

л/к НС с разной инициализацией / после разных эпох

Обоснования применения ансамблей

Статистическое (Statistical)

Вычислительное (Computational)

Функциональное (Representational)

- ошибка может быть меньше
- обучение = оптимизация функции, а ансамбль «распараллеливает» процесс
- можно представить функции, которые нельзя было с помощью базовых алгоритмов

Ансамбли

• комитеты (голосование) / усреднение

в том числе, различные усреднения, с предварительной деформацией, калибровкой, бэгинг (bagging) + обобщения (RF)

• перекодировки ответа

кодирование целевого вектора,

ECOC (error-correcting output coding)

• стекинг (stacking)

построение метапризнаков — ответов алгоритмов на объектах выборки, обучение на них мета-алгоритма

• бустинг (boosting)

построение суммы алгоритмов: каждое следующее слагаемое строится с учётом ошибок предыдущих

• «ручные методы»

эвристические способы комбинирования ответов базовых алгоритмов

• однородные ансамбли

рекурсия в формуле мета-алгоритм(базовые) + общая схема оптимизации (пример: нейросети)

Комитеты (голосование, Voting Ensembles)

голосование по большинству (Majority vote)

$$a(x) = \text{mode}(b_1(x), \dots, b_n(x))$$

комитеты единогласия

в бинарной задаче классификации – $a(x) = \min(b_1(x),...,b_n(x))$

обнаружение аномалий:

мата-алгоритм - максимум

«тревога при малейшем подозрении»

$$a(x) = \max(b_1(x), \dots, b_n(x))$$

Усреднение

«среднее арифметическое»

$$a(x) = \frac{1}{n} (b_1(x) + \dots + b_n(x))$$

+ любые другие средние (ех: по Колмогорову)

$$a(x) = \frac{1}{n} f^{-1} (f(b_1(x)) + \dots + f(b_n(x)))$$

Ранговое усреднение (Rank Averaging)

$$a(x) = \frac{1}{n} \left(\operatorname{rank}(b_1(x)) + \dots + \operatorname{rank}(b_n(x)) \right)$$

ориентировано на конкретный AUC ROC

Усреднение с весами (weighted averaging)

Усреднение (регрессия)

Голосование (классификация)

$$a(x) = \frac{1}{w_1 + \dots + w_n} \left(w_1 \cdot b_1(x) + \dots + w_n \cdot b_n(x) \right)$$

$$a(x) = \arg \max_{j} \left[\sum_{t: b_t(x) = j} w_t \right]$$

Feature-Weighted Linear Stacking

Области компетентности алгоритмов – линейные регресии

$$a(x) = w_1(x) \cdot b_1(x) + ... + w_n(x) \cdot b_n(x) =$$

$$= \sum_{t} \left(\sum_{i} w_{ti} x_{i} \right) b_{t}(x) = \sum_{t,i} w_{ti} x_{i} b_{t}(x)$$

Бэгинг (Bagging) – bootstrap aggregating

каждый базовый алгоритм настраивается на случайной подвыборке обучения

Бэгинг (Bagging)	подвыборка обучающей выборки берётся с помощью бутстрепа
Пэстинг (Pasting)	случайная обучающая подвыборка
Случайные подпространства (Random Subspaces)	случайное подмножество признаков
Случайные патчи (Random Patches)	одновременно берём случайное подмножество объектов и признаков
Cross-Validated Committees	k обучений на (k-1)-м фолде

Бэгинг (Bagging)

- 1. Цикл по t (номер базового алгоритма)
 - 1.1. Взять подвыборку [X',y'] обучающей выборки [X,y]
 - 1.2. Обучить t-й базовый алгоритм на этой подвыборке:

$$b_t = \operatorname{fit}(X', y')$$

2. Ансамбль

$$a(x) = \frac{1}{n} (b_1(x) + \dots + b_n(x))$$

(для задач регрессии).

Каждый базовый алгоритм обучается ~ на 63% данных, остальные называются – out-of-bag-наблюдениями (ООВ)

$$1 - \frac{1}{e} \approx 0.632$$

~ процедура снижения variance в статистическом обучении

OOB-prediction

На ООВ-части выборки можно получить ответы алгоритма Пусть на і-й итерации это часть: OOB_i и мы построили алгоритм b_i

ООВ-ответы бэгинга (ООВ-prediction)

$$a_{\text{OOB}}(x_j) = \frac{1}{|\{i : x_j \in \text{OOB}_i\}|} \sum_{i: x_j \in \text{OOB}_i} b_i(x_j)$$

Можно вычислить ООВ-ошибку бэгинга

хорошая оценка ошибки на тесте похожа на CV-ошибку...

Д/З Сравнить ООВ-ошибку и ошибку на ООВ-ответе (экспериментально)

Особенности ансамблирования

Не всегда получается «как было задумано»...

verbose=0)

model.fit(X, y)

класс 1

класс 0

Устойчивость модели (stable learners)

Разброс (variance) показывает изменение алгоритма из модели при незначительном изменении обучающей выборки

high variance	low variance
CART	SVM
1NN	kNN, k>>1

В бэгинге используются неустойчивые модели, но несмещённые (small bias)!

Но тут нет хороших теоретических результатов...

Устойчивость модели (stable learners)

Пример – если выбрать правильную базовую модель для бэгинга

здесь - kNN(1)

Реализация в scikit-learn

sklearn.ensemble.BaggingClassifier

base_estimator	Базовая модель
n_estimators=10	Число алгоритмов в ансамбле
max_samples=1.0	Размер подобучения (доля или число)
max_features=1.0	Число / доля признаков для обучения базового алгоритма
bootstrap=True	Выбирать ли подобучение с возвращением
bootstrap_features=False	Аналогичная опция для признаков
oob_score=False	Вычислять ли ООВ-ошибку
warm_start=False	Использовать ли в качестве начальных приближений старые
	веса

n jobs=None, random_state=None, verbose=0

есть ещё ensemble.BaggingRegressor

Примеры бэгинга

одно дерево

ближайший сосед

бэгинг 100 деревьев

бэгинг 100 ближайших соседей

Идеи из бэгинга, RS и т.п. на практике

Часто признаки делятся / можно разделить на группы:

- по источнику данных (БКИ1, БКИ2, ...)
- по типу признака (вещественный, категориальный, ...)
- по кодированию (OHE, hash, label, ...)
- по способу агрегирования (PCA, t-SNE, кластеризация,...)

Иногда объекты:

- по источнику данных
- по времени
- по значениям каких-то признаков (в том числе по кластерам)
- эти деления можно использовать при формировании подвыборок...

как?

Случайный лес (Random Forest)

дальнейшие улучшения независимости базовых классификаторов

бэгинг + случайности при построении деревьев

отдельная лекция

Стекинг (stacking)

Идея: хорошо усреднять алгоритмы, но почему именно усреднять?приходит в голову всем...

$$a(x) = b(b_1(x), \dots, b_n(x))$$

b – мета-алгоритм, который нужно отдельно настроить!

Д. Волпертом, автором серии теорем «No free lunch...» в 1992 году

Стекинг (stacking)

Используем ответы алгоритмов как признаки для нового мета-алгоритма машинного обучения

уже есть реализация в scikit-learn!

Наивная форма стекинга

что здесь неправильно?

Наивная форма стекинга

Блендинг (Blending) – простейшая форма стекинга

Блендинг

– термин введён победителями конкурса Netflix

Сейчас блендингом называются простейшие формы стекинга, например, выпуклую комбинацию алгоримтов

Недостатки

Используется не вся обучающая выборка

- можно усреднить несколько блендингов
- можно «состыковать»
- долго и не всегда лучше по качеству
- ответы всё равно надо будет усреднить

Блендинг: состыковка таблиц

ещё можно усреднить значения мета-признаков на тесте

но это меняет распределения

Настройка параметров блендинга

задача Boosters

Стекинг – хотим использовать всю обучающую выборку

м.б. разные разбиения на фолды и усреднить ответы базовых алгоритмов или стекингов

Стекинг – другой способ получения метапризнаков на контроле

также можно брать разные разбиения и усреднять

Недостаток

Метапризнаки на обучении и тесте разные!

регуляризация

нормальный шум к метапризнакам

ДЗ Реализовать и сравнить разные виды стекинга

На данных реальной задачи mlbootcamp

Использование признаков с мета-признаками

можно добавлять результаты обучения без учителя...

Геометрия стекинга

Геометрия стекинга

Стекинг vs Блендинг

Результаты очень похожи...

- Нужны достаточно большие выборки
- Заточен на работу алгоритмов разной природы

Но для каждого м.б. своё признаковое пространство

• Хорош на практике (бизнес-задачи)

Пример: регрессоры + RF = устойчивость к аномальным значениям признаков

• Метаалгоритм должен минимизировать целевую функцию

He всё так просто... log_regs + log_reg может не справится с Log_loss

• Многоуровневый стекинг

Оправдан только в спортивном анализе данных

• Пространство метапризнаков удобнее признакового, но признаки сильно коррелированны

Но нет хорошей теории на эту тему

- используют, как правило, регрессоры базовые алгоритмы не сильно оптимизируют,
- настраиваются не на целевой признак
 (на его квадрат, на разницу между каким-то признаком и целевым),
- используют модели ориентированные на разные функционалы качества,
- пополняют множество базовых алгоритмов алгоритмами, которые решают другую задачу (например кластеризаторами)
 - Появляются дополнительные параметры количество фолдов, уровень шума

Простейший стекинг – кодирование категорий

mean-target-encoding

J

использование байесовского алгоритма для формирования мета-признака

ECOC = Error-Correcting Output Code

Пусть есть задача с L классами, а у нас классификаторы на 2 класса

1. One-vs-All – каждый класс отделяем от остальных

$$0 - 1000$$

$$1 - 0100$$

$$2 - 0010$$

$$3 - 0001$$

можно по тах вероятности среди 4х вероятностей принадлежности к 4м классам

2. One-vs-One – попарно классы друг от друга

$$2 - -0 - 0 - 1$$

$$3 - --0-00$$

прочерк – объекты соответствующего класса не участвуют в задаче можно сложить вероятности принадлежности к классам для каждого класса и по тах

ECOC

3. Допустима произвольная кодировка классов:

0 - 00

1 - 10

2 - 01

3 - 11

это минимальная кодировка, но тут высока цена ошибки бинарного классификатора

4. В том числе, с помощью ЕСОС

0 - 000111

1 - 011100

2 - 101010

3 - 110001

Литература

Статья про ансамбли

Dietterich, T. G. (2000). «Ensemble Methods in Machine Learning» // First International Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science (pp. 1-15). New York: Springer Verlag.

Предложен Feature-Weighted Linear Stacking

Sill, J.; Takacs, G.; Mackey, L.; Lin, D. (2009). «Feature-Weighted Linear Stacking». arXiv:0911.0460.

Бэгинг и аналогичные идеи:

- L. Breiman, Pasting small votes for classification in large databases and on-line, Machine Learning, 36(1), 85-103, 1999.
 - L. Breiman, Bagging predictors, Machine Learning, 24(2), 123-140, 1996.
- T. Ho, The random subspace method for constructing decision forests, Pattern Analysis and Machine Intelligence, 20(8), 832-844, 1998.
- G. Louppe and P. Geurts, Ensembles on Random Patches, Machine Learning and Knowledge Discovery in Databases, 346-361, 2012.

Ансамбли в машинном обучении

https://dyakonov.org/2019/04/19/ансамбли-в-машинном-обучении/

AdaBoost – немного другой вывод:

http://www.cs.toronto.edu/~rgrosse/courses/csc411_f18/slides/lec09-slides.pdf