Data Warehouse Systems

Sean Kang

Data Warehouse System

Extract-Transform-Load Process

Table Mapping Examples

One-to-one table mapping

Source Table	Source Attribute	Target Table	Target Attribute	Selection Condition
Address	Address_key	Location	Location_id	Transform all the new addresses (Year>2000)

Many-to-one table mapping

Source Table	Source Attribute	Target Table	Target Attribute	Selection Condition
Patient, Address	Address_key, Address_key	Person	Location_id	Transform all the current patients with their new addresses (Year>2000)

_LEFT JOIN _ _ - - -

Attribute Mapping Examples

One-to-one attribute mapping

Source Table	Source Attribute	Target Table	Target Attribute	Selection Condition
Address	Address_key	Location	Location_id	Transform all the new addresses (Year>2000)

Many-to-one attribute mapping

Source Table	Source Attribute	Target Table	Target Attribute	Selection Condition
Patient	Day_of_birth, Month_of_birth, Year_of_birth	Person	Date_of_birth	Transform all the current patients

Data Warehouse Features (Separation of Purposes)

- A decision support database that is maintained separately from the organization's operational database
- Supports information processing by providing a solid platform of consolidated, historical data for analysis
- Focuses on the modeling and analysis of data for decision makers, not on daily operations or transaction processing

Data Warehouse vs. Operational DBMS

Major task of traditional relational DBMS:

- OLTP (on-line transaction processing)
- Day-to-day operations, such as purchasing, inventory, banking, manufacturing, payroll, registration, and accounting

Major task of data warehouse system:

- OLAP (on-line analytical processing)
- Data analysis and decision making

OLTP vs. OLAP

	OLTP	OLAP
users	customer	knowledge worker
function	day to day operations	decision support
DB design	relational model	multidimensional model
data	current, up-to-date detailed	historical, summarized, integrated
access	read/write	read lots of scans
unit of work	short, simple transaction	complex query
# records accessed	tens	millions
#users	thousands	hundreds
DB size	100MB-GB	100GB-TB

Multidimensional Data Model

Structures optimized for end-user queries that include:

- Dimension table: contains descriptive attributes
- □ Fact table: contains measurements of a business process and keys to each of the related dimension tables

Multidimensional Data Model

Star schema:

A fact table in the middle connected to a set of dimension tables

Snowflake schema (diagram on next slide)

- Dimensions are split into more than one dimension tables
- Star schema is a special case of the snowflake schema with a single level hierarchy

Fact constellations (diagram on next slide)

 Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

Example of Star Schema

Example of Snowflake Schema

Example of Fact Constellation

OLAP Using Multidimensional Data

- Enable users to access a wide variety of views of data for multidimensional analysis
- Unlike traditional relational reports that represent data in twodimensional row and column format, represent their aggregated data in a multi-dimensional structure called cube
- Supports complicated queries involving facts to be measured across different dimensions

Example: Sales volume as a function of product, month, and region

A Sample Data Cube

Data Warehouse Usage

Information processing

 Supports querying, basic statistical analysis, and reporting using tables, charts and graphs

Analytical processing

Multidimensional analysis of data warehouse data using OLAP operations

Data mining

- Knowledge discovery from hidden patterns
- Supports associations, constructing analytical models, performing classification and prediction, and presenting the mining results using visualization tools

Summary

- Enterprises use data warehouses to accumulate data from multiple sources for data analysis and research
- ETL process involves extracting data from source databases, transforming it into a form suitable for research and analysis, and loading it into a data warehouse
- DBMS is tuned for OLTP: access methods, indexing, concurrency control, recovery
- Data warehouse is tuned for OLAP: complex OLAP queries, multidimensional view, consolidation

Case Study Example: Transportation

- Your Trip to NYC and back
- One or More Stop-overs
 - Each Flight contains
 - Aircraft Tail ID, Departure, Destination, Planned Start time, Planned End Time,
 - Aircraft Crew
 - Aircraft Maintenance and Operations Status
 - Flight Path, Runway used on take off, landing,
 - Capacity at take off, Capacity ramp-up from 60 days
 - Your Reservation
 - Passenger Name, age, gender, contact info, purchase date, purchase source
 - Number of days before departure
 - Class level, mileage or reward accumulation

Tables

- How many Fact Tables Involved in this Case Study
- Multi-level Fact Tables
 - Aircraft Flight
 - Passenger Reservation
 - Aircraft
- How many Dimension Tables Involved
 - Country, City, Airport
 - · Aircraft, Fuel
 - Currency, Reward Points
 - Timezone, Country-code,
 - Passenger Type, Seat-Class,

Analysis Questions

- How often do passengers upgrade? (is there sufficient data)
- How % of customers earn and redeem their rewards within a year?
 (is there sufficient data)
- Do they respond to fare promotions? (does the reservation data contain promotion codes)
- Do customer take flights with overnight stop-over?
- What proportion of the flight contains platinum passengers?
- How many days before departure did most passengers reserve their tickets?
- How many seats were empty on the flight?
- Was the flight used as a multi-leg of a journey?

Sample Table

