

FU1.5: INVERSE FUNCTIONS

Definition of an inverse function

If $f^{-1}(x)$ is the inverse function of a one-to-one function f(x) then $f^{-1}(x)$ is the set of ordered pairs obtained by interchanging the first and second elements in each ordered pair.

So if $(a,b) \in f$ then $(b,a) \in f^{-1}$ and if f(a) = b then $f^{-1}(b) = a$

The domain of f is the range of f^{-1} and the range of f is the domain of f^{-1} .

For example the function $f:R \to R$ defined by $y = f(x) = \frac{x-1}{2}$ has an inverse function with rule $f^{-1}(x) = 2x + 1$.

So (3,1) belongs to f and (1,3) belongs to f^{-1} , and (-7,-4) belongs to f and (-4,-7) belongs to f^{-1} .

Graph of an inverse function

The graphs of any one-to-one function f and its inverse f^{-1} are symmetric about the line y = x.

Finding an inverse function for y = f(x)

To obtain the rule for an inverse function swap the x and y coordinates in f and rearrange to express y in terms of x:

Example

 $\therefore f^{-1}(x) = \frac{-x+2}{3}$

Find the inverse function of f where f(x) = 2 - 3x

$$y = 2 - 3x$$

$$x = 2 - 3y$$

$$x - 2 = -3y$$

$$-x + 2 = 3y$$

$$\frac{-x + 2}{3} = y$$
[swap x and y]
[rearrange to make 'y' the subject]

Exercise

Find the inverse of each of the following one-to-one functions:

1)
$$y = x + 5$$

2)
$$y = 4x$$

3)
$$y = \frac{2x+1}{3}$$

4)
$$y = \sqrt{2x-1}, x \ge \frac{1}{2}$$

Answers

1)
$$f^{-1}(x) = x - 5$$

2)
$$f^{-1}(x) = \frac{x}{4}$$

3)
$$f^{-1}(x) = \frac{3x-1}{2}$$

4)
$$f^{-1}(x) = \frac{x^2 + 1}{2}, x \ge \frac{1}{2}$$