<u>Arquitectura de</u> Computadores

Diseño Lógico Combinacional

Basado en texto: "Digital Design and Computer Architecture , 2^{nd} Edition", David Money Harris and Sarah L. Harris

Chapter 1 < 1>

RO To ONE

Tópicos

- Introducción
- · Ecuaciones Booleanas
- Algebra de Boole
- De la Lógica a las Compuertas
- Lógica Combinacional Multinivel
- · Mapas de Karnaugh
- Bloques de Construcción Combinaciona

Chapter 1 < 2>

Introducción

Un circuito lógico se compone de:

- Entradas
- **Salidas**
- **Especificaciones Funcionales**
- Especificaciones de sincronización

C →

Chapter 1 < 3>

<u>n</u>1

E3

→ Z

E1

E2

Circuitos

- **Nodos**
 - Entradas: A, B, C - Salidas: Y, Z

 - Internos: n1

- E1, E2, E3
- Cada uno es un circuito

Tipos de Circuitos Lógicos

- · Lógica Combinacional
 - Sin Memoria
 - Salidas determinadas por los valores actuales de las entradas
- Lógica Secuencial
 - Tiene memoria
 - Las salidas se determinan por los valores de entrada actuales y anteriores

RO TO ONE

Reglas de Composición

- · Cada elemento es combinacional
- Cada nodo es una entra o se conecta exactamente a una entrada
- El circuito no contiene ciclos
- Ejemplo:

Chapter 1 < 6>

Ecuaciones Booleanas

- Especificación funcional de las salidas en términos de sus entradas
- Ejemplo: $S = F(A, B, C_{in})$

$$C_{\text{out}} = F(A, B, C_{\text{in}})$$

$$S = A \mathring{A} B \mathring{A} C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Chapter 1 < 7>

ZERO To ONE

Algunas Definiciones

- Literal: variable o su complemento
 A, A, B, B, C, C
- Implicante: producto de literales
 ABC, AC, BC
- Minitermino: producto que incluye todas las variables de entrada

 $A\overline{B}C$, $\overline{A}\overline{B}C$, ABC

 Maxitermino: suma que incluye todas las variables de entrada

$$(A+B+C)$$
, $(A+\overline{B}+C)$, $(\overline{A}+\overline{B}+\overline{C})$ Chapter 1 < 8>

Forma Suma-de-Productos(SOP)

- Todas las ecuaciones puden ser escritas en forma SOP
- Cada fila tiene un minitermino
- Un mintermino es un producto (AND) de literales
- Cada mintermino es VERDADERO para esa fila (y solo esa fila)
- La funcion se corma aplicando suma (OR) a los miniterminos cuya salida es VERDADERA
- Por lo tanto, una suma (OR) de productos (términos AND)

				minterm
Α	В	Y	minterm	name
0	0	0	A B	m_0
0	1	1	A B	m_1°
1	0	0	ΑB	m_2
1	1	1	ΑВ	m_3^-

$$Y = F(A, B) =$$

Chapter 1 < 9>

ZERO To ONE

Forma Suma-de-Productos

- Todas las ecuaciones puden ser escritas en forma SOP
- · Cada fila tiene un minitermino
- Un minitermino es un producto (AND) de literales
- Cada minitermino es VERDADERO para esa fila (y solo esa fila)
- La función se corma aplicando suma (OR) a los miniterminos cuya salida es VERDADERA
- Por lo tanto, una suma (OR) de productos (términos AND)

Α	В	Y	minterm	name
0	0	0	$\overline{A} \overline{B}$	m_0
0	1	1	A B	m_1
1	0	0	ΑB	m_2
1	1	1	AВ	m_3
	0 0 1 1	A B 0 0 0 1 1 0 1 1	A B Y 0 0 0 0 1 1 1 0 0 1 1 1	0 0 0 <u>A</u> B

Y = F(A, B) =

Chapter 1 < 10>

Forma Producto-de-Sumas (POS)

- Todas las ecuaciones booleanas pueden ser escritas en forma POS
- Cada fila tiene un maxitermino
- Un maxitermino es una suma (OR) de literales
- Cada maxitermino es FALSO para esa fila (y solo esa fila)
- La función se forma co una pitatoria (AND) de los maxiterminos cuya salida es FALSA
- Por lo tanto, un producto (AND) de sumas (términos OR)

				maxterm
A	В	Y	maxterm	name
0	0	0	A + B	M _o
0	1	1	$A + \overline{B}$	M_1°
(1	0	0	A + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

$$Y = F(A, B) = (A + B)(A + \overline{B}) = \prod_{A \in A} (0, 2)$$

m ZERO To ONE

Ejemplo Ecuaciones

- Si vas a una cafeteria a comprar almuerzo
 - No almorzaras (\overline{E})
 - Si no esta abierto (\overline{O}) o
 - Si solo se sirven completos (C)
- Escriba la tabla de verdad para determinar si vas a almorzar (E).

0	С	Ε
0	0	
0	1	
1	0	
1	1	

Chapter 1 < 12>

Ejemplo Ecuaciones Booleanas

- Si vas a una cafeteria a comprar almuerzo
 - No almorzaras (\overline{E})
 - Si no esta abierto (O) o
 - Si solo se sirven completos (C)
- Escriba una tabla de verdad para determinar si vas a almorzar (E).

0	`ć	Ε
0	0	0
0	1	0
1	0	1
1	1	0
Chapte	r 1 <13>	

7 ZERO TO ONE

Forma SOP & POS

• SOP - suma-de-productos

0	С	Ε	minterm
0	0		<u> </u>
0	1		<u> </u>
1	0		0 <u>C</u>
1	1		ОС

POS - producto-de-sumas

()	С	E	maxterm
	O C	0		0 + C
(С	1		0 + <u>C</u>
	1	0		O + C
	1	1		$\overline{O} + \overline{C}$

Chapter 1 < 14>

Forma SOP & POS

• SOP - suma-de-productos

0	С	Ε	minterm
0	0	0	<u> </u>
0	1	0	<u></u> O C
1	0	1	0 C
1	1	Λ	0 0

$$E = O\overline{C}$$
$$= \Sigma(2)$$

POS - producto-de-sumas

0	С	Ε	maxterm
0	0	0	0 + C
0	1	0	$O + \overline{C}$
1	0	1	O + C
(1	1	Ω	$\overline{0} + \overline{c}$

$$E = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$$

= $\Pi(0, 1, 3)$

Chapter 1 < 15>

rom ZERO To ONE

Algebra Booleana

- Axiomas y teoremas para simplificar ecuaciones Booleanas
- Al igual que en álgebra tradicional, pero mas sencillo: las variables tienen solo dos valores (1 or 0)
- Dualidad en axiomas y teoremas:
 - ANDs y ORs, 0's y 1's se intercambian

Chapter 1 < 16>

Axiomas Booleanos

	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1'	$B = 1 \text{ if } B \neq 0$	Binary field
A2	0 = 1	A2'	T = 0	NOT
A3	$0 \bullet 0 = 0$	A3'	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5'	1 + 0 = 0 + 1 = 1	AND/OR

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B + 0 = B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Chapter 1 < 17>

rom ZERO To ONE

T1: Teorema de Identidad

- $\bullet \quad \mathbf{B} \bullet \mathbf{1} = \mathbf{B}$
- B + 0 = B

Chapter 1 < 18>

T1: Teorema de Identidad

- $B \bullet 1 = B$
- B + 0 = B

Chapter 1 < 19>

rom ZERO To ONE

T2: Teorema del Elemento Nulo

- $\mathbf{B} \bullet \mathbf{0} = \mathbf{0}$
- B + 1 = 1

Chapter 1 < 20>

rom ZERO To

T2: Teorema del Elemento Nulo

- $\mathbf{B} \bullet \mathbf{0} = \mathbf{0}$
- B + 1 = 1

Chapter 1 < 21>

T3: Teorema de la Idempotencia

•
$$B \bullet B = B$$

$$\bullet \quad \mathbf{B} + \mathbf{B} = \mathbf{B}$$

Chapter 1 < 22>

T3: Teorema de la Idempotencia

- $\bullet \quad \mathbf{B} \bullet \mathbf{B} = \mathbf{B}$
- B + B = B

Chapter 1 < 23>

rom ZERO To ONE

T4: Teorema de Identidad

•
$$\mathbf{B} = \mathbf{B}$$

Chapter 1 < 24>

T4: Teorema de Identidad

•
$$\mathbf{B} = \mathbf{B}$$

Chapter 1 < 25>

rom ZERO To ONE

T5: Teorema del Complemento

•
$$\mathbf{B} \bullet \mathbf{B} = 0$$

$$\bullet \quad B + \overline{B} = 1$$

Chapter 1 < 26>

T5: Teorema del Complemento

- $B \bullet \overline{B} = 0$
- B + B = 1

$$\frac{B}{B}$$
 \bigcirc = 0 \bigcirc

Chapter 1 < 27>

ZERO TO ONE

Resumen Teoremas Booleanos

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B + 0 = B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Chapter 1 < 28>

Teoremas Booleanos de Varias Vars

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6'	B + C = C + B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7'	(B + C) + D = B + (C + D)	Associativity
T8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
Т9	$B \bullet (B + C) = B$	T9'	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$ = $B \bullet C + \overline{B} \bullet D$	T11'	$(B + C) \bullet (\overline{B} + D) \bullet (C + D)$ = $(B + C) \bullet (\overline{B} + D)$	Consensus
T12	$B_0 \bullet B_1 \bullet B_2$ = $(B_0 + B_1 + B_2)$	T12'	$B_0 + B_1 + B_2$ = $(\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2})$	De Morgan's Theorem

Nota: T8' differe del álgebra tradicional: OR (+) distribuye sobre AND (•)

Chapter 1 < 29>

om ZERO To ONE

Simplificación de Ecuaciones

Ejemplo 1:

$$Y = AB + \overline{A}B$$

Chapter 1 < 30>

Simplificación de Ecuaciones

Ejemplo 1:

$$Y = AB + \overline{AB}$$

$$= B(A + \overline{A}) T8$$

$$= B(1) T5'$$

$$= B T1$$

Chapter 1 < 31>

rom ZERO To ONE

Simplificación de Ecuaciones Boolenas

Ejemplo 2:

$$Y = A(AB + ABC)$$

Chapter 1 < 32>

Simplificación de Ecuaciones

Ejemplo 2:

$$Y = A(AB + ABC)$$

$$= A(AB(1 + C))$$
 T8

$$= A(AB(1)) T2'$$

$$= A(AB)$$
 T1

$$= (AA)B T7$$

$$= AB$$
 T3

Teorema de DeMorgan

Chapter 1 < 33>

Teorema d $Y = \overline{AB} = \overline{A} + \overline{B}$ $Y = \overline{A} + \overline{B} = \overline{A} \quad \overline{B}$

$$Y = \overline{A + B} = \overline{A} \quad \overline{B}$$

Chapter 1 < 34>

Empujando burbujas

- · Hacia atras:
 - Cuerpo cambia
 - Agrega un<u>a burb</u>uja a cada entrada

- Hacia adelante:
 - Cuerpo cambia
 - Agregar una burbuja a la salida

Chapter 1 < 35>

rom ZERO To ONE

Empujando burbujas

• ¿Cual es la expresion booleana para este circuito?

Chapter 1 < 36>

Empujando burbujas

• ¿Cual es la expresion booleana para este circuito?

$$Y = AB + CD$$

Chapter 1 < 37>

7 ZERO TO ONE

Reglas para Empujar burbujas

- Comience en la salida, luego opere hacia las entradas
- Empuje burbujas desde la salida final hacia atras
- Dibuje las compuertas en una forma que permita que las burbujas se cancelen

Chapter 1 < 38>

De la lógica a las compuertas

- Lógica de dos niveles: ANDs seguidos por ORs
- Ejemplo: $Y = \overline{ABC} + \overline{ABC} + \overline{ABC}$

rom ZERO To ONE

Reglas Esquemáticas de circuitos

- Entradas a la izquierda (o arriba)
- Salidas a la derecha (o abajo)
- Compuertas fluyen desde la izquierda hacia la derecha
- Lo mejor es usar cables rectos

Chapter 1 < 44>

Reglas Esquemáticas de circuitos (cont.)

- Cables siempre se conectan en una unión T
- Un punto indica una conexión entre dos cables que se cruzan
- El lugar de cruce de dos cables que no es destacado por un punto indica que estos cables no están conectados entre si

m ZERO To ONE

Circuitos de Múltiples-Salidas

Ejemplo: Circuito de Prioridad

La salida es alta (1) cuando es VERDADERA la entrada mas significativa

 A_3	Y 3
 A_2	Y 2
 A_1	Y 1
 A ₀ PRIORITY CiIRCUIT	Υ 0
CilRCUIT	

A_3	A_2	A_1	A_o	Υ3	Y 2	Y_1	Y_o
0	0	0	0 1 0 1 0 1 0 1 0 1 0 1				
0	0 0	0	1				
0	0	1 1 0	0				
0	0 1	1	1				
0	1		0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
0 0 0 0 0 0 0 0 1 1 1 1 1	1	1 0 0 1	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				
				•			

Chapter 1 < 46>

Circuitos de Múltiples Salidas

Ejemplo: Circuito de Prioridad

La salida es alta (1) cuando es VERDADERA la entrada mas significativa

	A_3	A_2	A_1	A_o	Υ ₃	Y_2	Y_1	Y_o
_	0	0	0	0	0	0	0	0
	0	0	0 0	1	0	0	0	1
	0	0	1	0	0	0	1	0
	0	0	1	1	0	0	1	0
	0	1	0	0	0	1	0	0
	0 0 0 0 0 0	1	0 1	1	0 0 0 0 1 1	0 1 1 1 1 0 0	0 0 1 1 0 0 0 0	0
ì	0	1	1	0	0	1	0	0
	0	1	1	1	0	1	0	0
	1	0	0	0	1	0	0	0
	1	0	0	1	1	0	0	0
	1	0	1	0	1	0	0	0
	1	0	1	1	1	0	0 0 0	0
	1	1	0	0	1	0	0	0
	0 1 1 1 1 1	1	0	1	1	0	0	0
	1	0 0 0 1 1 1 0 0 0 1 1 1	1	0 1 0 1 0 1 0 1 0 1	1	0	0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	1	1	1	1	1	0	0	0

Chapter 1 < 47>

om ZERO To ONE

Hardware de Circuito de Prioridad

Chapter 1 <48>

Salidas Irrelevantes

A_3	A_2	A_1	A_o	Y_3	Υ 2	Υ,	Υ
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	0 0 1 1 0	1	0	0	0 0 1 1 0	0
0	1	0	0	0	1		0
0	1	0	1	0	1	0	0
0	1	0 1 1	0	0	1	0	0
0	1	1	1	0	1	0	0
0 0 0 0 0 0 0 1 1 1 1 1	0 0 0 1 1 1 0 0 0	0	0	0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	0	0
1	0	0	1	1	0	0	0
1	0	0 1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0 1 0 1 0 1 0 1 0 1	1	0 0 0 0 1 1 1 0 0 0 0 0	0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1	1	1	1	1	0	0	0

	A_{3}	A_{2}	Α,	A	Υ,	Υ,	Υ,	Y ₀ 0 1 0 0 0
-	0	0	0	0	0	0	0	<u> </u>
	0	0	0	1	0	0	0	1
	0	0	1	Χ	0	0	1	0
	0	1	Χ	Χ	0	1	0	0
	1	Χ	Χ	Χ	1	0	0	0

Chapter 1 < 49>

rom ZERO To ONE

Contención: X

- Contención: el circuito trata de entregar a la salida 1 y 0
 - El valor real es algo entre estos extremos
 - Podria ser 0, 1, o estar en la zona prohibida
 - Podria cambiar por cambios de voltaje, temperatura, time, ruido electrico
 - A menudo causa exceso de disipación de potencia

Peligro:

- La contención usualmente indica un bug.
- La X se usa para indicar un "irrelevante" y contención - hay que observar el contexto para concluir y distinguir que simboliza la X

Flotante: Z

- Flotante, alta impedancia, o abierto, Z alto
 - Una salida flotante podria ser 0, 1, o un valor entre estos
 - Un voltmetro no nos muestra si un nodo esta flotando

Bufer Triestado

Ε	Α	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

Chapter 1 < 51>

ERO TO ONE

Buses Triestado

- Nodos flotantes son empleados e los buses triestado processor en 1
 - Muchos y distintos dispositivos
 - Exactamente solo uno esta activo a la vez

Chapter 1 < 52>

Mapas de Karnaugh (K-Maps)

- Las expresiones booleanas pueden ser minimizadas combinando términos
- Los mapas K minimizan las ecuaciones gráficamente
- $PA + P\overline{A} = P$

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Chapter 1 < 53>

rom ZERO To ONE

Mapas K

- Encierre 1's en cuadrados adyacentes
- En una expresión booleana, incluya solo aquellos literales que sean verdadero y cuyos complementos **no** estén en el circulo

Α	В	С	Y
0	0	0	1
0	0	1	1 0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

 $Y = \overline{A}\overline{B}$ Chapter 1 < 54>

Definiciones de los Mapas K

 Complemento: variable con una barra sobre ella

 \bar{A} , \bar{B} , \bar{C}

• Literal: variable o su complemento

 $A, \bar{A}, B, \bar{B}, \bar{C}, C$

- Implicante: producto de literales
 ABC, AC, BC
- Implicante primo: implicante correspondiente al circulo mas grande del mapa K

 Chapter 1 < 57>

7 ZERO TO ONE

Reglas Mapas K

- Cada 1 debe ser encerrado al menos una vez
- Cada circulo debe abracar una potencia de 2
 (i.e. 1, 2, 4) de cuadrados en cada dirección
- Cada circulo debe ser tan grande como sea posible
- Un circulo podría envolver a través de los bordes
- Un "irrelevante" (X) es encerrado solo si ayuda a minimizar la ecuación

Chapter 1 < 58>

Mapa K de 4-entradas From ZERO To ONE AB $Y = \overline{A}C + \overline{A}BD + A\overline{B}\overline{C} + \overline{B}\overline{D}$ Chapter 1 < 61>

Mapa K con Irrelevantes From ZERO To ONE A 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 AB 00 0 01 11 10 Х 01 0 Х Х 1 11 1 Х Х 10 Chapter 1 < 63>

Bloques de Construcción Combinacionales

- Multiplexores
- Decodificadores

Chapter 1 < 65>

ZERO TO ONE

Multiplexor (Mux)

- Selecciona una entrada entre N entradas alternativas a conectar con la salida
- La entrada selectora es de log ₂N-bit control de entrada
- Ejemplo:

Chapter 1 < 66>

Implementacion de un Multiplexor

Compuertas Logicas

- Forma sum-de-productos

D_o

Triestados

- + Para un mux de N entradas, use N triestados
- Enciende solo uno para seleccionar la entrada apropiada

2-<67>

Chapter 1 < 67>

rom ZERO To ONE

Multiplexores basados en Lógica

• Use el mux como una tabla de búsqueda

Α	В	Y
0	0	0 0 0 1
0	1	0
1		0
1	1	1
	Y = AB 00 01 10 11	B Y

Chapter 1 < 68>

Multiplexores basados en Lógica

Reduzca el tamaño del mux

Chapter 1 < 69>

To ONE

Decodificadores

- N entradas, 2^N salidas
- Solo una Salida Hot: Solo una salida HIGH a la vez

$$\begin{array}{c|c}
A_1 & 2:4 \\
Decoder & 11 & Y_3 \\
10 & Y_2 \\
01 & Y_0 \\
\end{array}$$

A_1	A_0	Y ₃	Y_2	Y ₁	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Chapter 1 < 70>

