Solutions

FREEMAN CHENG

7 August 2024

Problem (4-3).

For notation, take $\langle \cdot, \cdot \rangle$ to be $T(\cdot, \cdot)$. Let $e_1, ..., e_n$ be an orthonormal basis for V. By definition, $|\omega(e_1, ..., e_n)| = 1$, and applying Theorem 4-6 gives

$$|\omega(e_1,...,e_n)| = \left| \det \left[egin{array}{ccc} \ddots & & & \\ & \langle w_i,e_j
angle & & \\ & & \ddots & \end{array} \right] \right|.$$

Using the common identity (see any quantum mechanics textbook)

$$\begin{bmatrix} \ddots & & & \\ & \langle w_i, e_j \rangle & & \\ & & \ddots & \end{bmatrix} \begin{bmatrix} \ddots & & \\ & \langle e_i, w_j \rangle & & \\ & & \ddots & \end{bmatrix} = \begin{bmatrix} \ddots & & \\ & \langle w_i, w_j \rangle & & \\ & & \ddots & \end{bmatrix},$$

we arrive at the desired result.

Problem (4-4).

$$f^*\omega(v_1, ..., v_n) = \omega(f(v_1), ..., f(v_n))$$

$$= \det \begin{bmatrix} \cdot \cdot \cdot \\ & T(f(v_i), f(e_j)) \\ & \cdot \cdot \cdot \end{bmatrix} \omega(f(e_1), ..., f(e_n)) \quad \text{(Theorem 4-3)}$$

$$= \det \begin{bmatrix} \cdot \cdot \\ & T(f(v_i), f(e_j)) \\ & \cdot \cdot \cdot \end{bmatrix}$$

$$= \det \begin{bmatrix} \cdot \cdot \\ & \langle v_i, e_j \rangle \\ & \cdot \cdot \cdot \end{bmatrix},$$

where the last two equalities come from the fact that ω is a volume element and $f^*T(\cdot,\cdot)=\langle\cdot,\cdot\rangle$.

Problem (4-5).

Because det is continuous, the image of $\det \circ c$ on the path must be of the same sign.

Problem (4-6).

- (a) We have $v_1 \times v_2 = \det[v_1 \ v_2]$.
- (b) By definition, $\det[v_1, ..., v_{n-1}, v_1 \times \cdots \times v_{n-1}] = ||v_1 \times \cdots \times v_{n-1}||^2$.

Problem (4-7).

Fix $\omega \in \wedge^n(V)$. Let S be any inner product on V. Construct inner product T by scaling S by $\frac{1}{\omega(e_1,\ldots,e_n)^2}$, where e_1,\ldots,e_n is an orthonormal basis for V. Now, it's easy to see that ω is a volume element with respect to T.

Problem (4-8).

Take T to be the inner product on V. Let $\varphi \in V^*$ be given by $\varphi(v) = \omega(v_1, ..., v_{n-1}, v)$, where $v_1, ..., v_{n-1}$ are fixed. Then, by the Riesz representation theorem, $\varphi(v) = T(v, w)$ for some $w \in V$. We can now define $v_1 \times \cdots \times v_{n-1} = w$.