18.100B Problem Set 7

Due Friday November 3, 2006 by 3 PM

Problems:

1) Consider an infinite series with alternating signs

$$a_0 - a_1 + a_2 - a_3 + a_4 - \dots = \sum (-1)^n a_n.$$

Prove the Leibnitz criteria for convergence:

If $a_i > 0$ for all i, $a_{i+1} \le a_i$ and $\lim_{i \to \infty} a_i = 0$, then the series converges. Notice that this applies to the series $\sum \pm \frac{1}{n}$ which is not absolutely convergent. (*Hint:* Show that $s_1 \le s_3 \le s_5 \le \ldots \le s_4 \le s_2 \le s_0$ and $|s_{n+k} - s_n| \le a_{n+1}$.)

2) We say that a rational number r > 0 is written in reduced form r = p/q if p and q are positive integers with no common factor. Consider the function defined on (0,1) by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational} \\ \frac{1}{q} & \text{if } x = p/q \text{ in reduced form} \end{cases}$$

Prove that f is continuous at every irrational x, but discontinuous at every rational x. (Notice this shows that a function can be continuous at a point without being continuous in any neighborhood of that point.)

- 3) Let f and g be continuous mappings of a metric space \mathcal{M} into a metric space \mathcal{N} , and let $Q \subseteq \mathcal{M}$ be a dense subset of \mathcal{M} .
 - a) Prove that f(Q) is dense in $f(\mathcal{M})$.
 - b) Show that if f(x) = g(x) for every $x \in Q$, then f(x) = g(x) for every $x \in \mathcal{M}$.
- 4) Suppose that $f: E \to \mathbb{R}$ is a continuous map from some subset $E \subseteq \mathbb{R}$.
 - a) Show that it is possible to have E bounded and f(E) unbounded.
 - b) Show that if f is uniformly continuous and E is bounded, then f(E) must be bounded.
 - c) Show that it is possible to have f uniformly continuous, E unbounded, and f(E) unbounded.
- 5) Suppose that $f: \mathcal{M} \to \mathcal{N}$ is a uniformly continuous mapping between metric spaces.
 - a) Prove that if (x_n) is a Cauchy sequence in \mathcal{M} , then $(f(x_n))$ is a Cauchy sequence in \mathcal{N} .
 - b) Use the function $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2$ to show that it is possible for a continuous function to send Cauchy sequences to Cauchy sequences without being uniformly continuous.
- 6) Let E be a non-empty subset of a metric space \mathcal{M} , define the distance from $x \in X$ to E by

$$d_{E}(x) = \inf_{z \in E} d(x, z)$$

Prove that d_E is a uniformly continuous function on X, by showing that

$$\left|d_{E}\left(x\right)-d_{E}\left(y\right)\right|\leq d\left(x,y\right).$$

7) Suppose K and F are disjoint subsets of \mathcal{M} , such that F is closed and K is compact. Prove that there exists a $\delta > 0$ such that $d(p,q) > \delta$ whenever $p \in F$ and $q \in K$. Show that the conclusion can fail if we only assumed that K was closed, instead of compact. (*Hint:* d_F is a continuous positive function on K)

Extra problems:

1) Suppose X, Y, and Z are metric spaces, and Y is compact. Let

$$X \xrightarrow{f} Y \xrightarrow{g} X$$

and assume that g is one-to-one.

- a) Show that if g is continuous and $g \circ f$ is continuous then f is continuous.
- b) Show that if g is continuous and $g \circ f$ is uniformly continuous then f is uniformly continuous.
- c) Show that compactness of Y is necessary, even if X and Z are compact.
- 2) A real-valued function f defined in (a, b) is said to be *convex* if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

for any $x, y \in (a, b)$ and $\lambda \in (0, 1)$.

- a) Prove that a convex function is automatically continuous.
- b) Prove that every increasing convex function of a convex function is convex.
- c) Assume g is a continuous real function defined on (a,b) and satisfying

$$g\left(\frac{x+y}{2}\right) \le \frac{g\left(x\right) + g\left(y\right)}{2}$$

for all $x, y \in (a, b)$. Prove that g is convex.

- 3) In class we showed that a continuous function $f:[a,b]\to\mathbb{R}$ is uniformly continuous. Prove this by either:
 - a) Assume it is false, so for some ε no choice of δ works everywhere. Find, for each $n \in \mathbb{N}$ a point x_n where $\delta = \frac{1}{n}$ does not work. Extract a convergent subsequence, (x_{n_k}) and derive a contradiction from the convergence of $(f(x_{n_k}))$.
 - b) Fix $\varepsilon > 0$, and for each $x \in [a,b]$ let $\delta(x)$ be the length of the largest open interval I centered at x such that $|f(z) f(y)| \le \varepsilon$ whenever $z, y \in I$ (really $\delta(x)$ is defined as a supremum of course). Show that $\delta(x) > 0$ and $\delta(x)$ is continuous. Because [a,b] is compact, $\delta(x)$ must achieve a minimum, say δ_0 . Show that δ_0 works in the definition of uniform continuity.