Базы данных Лекция №1

Введение в теорию баз данных

Общая сумма человеческих знаний:

Рост объема информации:

Рост цифровой информации в мире*

Взаимодействие отдельных систем

Две основные предпосылки появления баз данных:

- Необходимость хранить и обрабатывать большое количество данных.
- Разработка методов совместного использования данных.

Определение базы данных

База данных - совокупность предназначенных для машинной обработки данных, которая служит для удовлетворения нужд многих пользователей в рамках одной или нескольких организаций.

База данных — это совокупность взаимосвязанных структурированных данных, относящихся к определенной предметной области и организованных так, чтобы обеспечить независимость данных от программ обработки. Фактически база данных — это модель предметной области (ПО).

База данных - совокупность *взаимосвязанных* хранящихся вместе с отношениями между ними *устойчивых* данных при наличии такой *минимальной избыточности*, которая допускает их *независимое* использование *оптимальным образом* для одного или *нескольких* приложений.

Свойства БД (по Дж. Мартину)

- Многоразовое использование
- Простота обновления
- Быстрый поиск и получение необходимой информации по запросу
- Уменьшение избыточности
- Защита от несанкционированного доступа
- Максимальная независимость от прикладных программ

СУБД

Системой управления базами данных называют программную систему, предназначенную для создания на ЭВМ общей базы данных для множества приложений, поддержания её в актуальном состоянии и обеспечения эффективного доступа пользователей к содержащимся в ней данным в рамках предоставленных им полномочий.

Программные составляющие СУБД включают в себя ядро и сервисные средства (утилиты).

- **≻Ядро** СУБД это набор программных модулей, необходимый и достаточный для создания и поддержания БД, то есть универсальная часть, решающая стандартные задачи по информационному обслуживанию пользователей.
- **▶Сервисные программы** предоставляют пользователям ряд дополнительных возможностей и услуг, зависящих от описываемой предметной области и потребностей конкретного пользователя.

update Сотрудники Скрипт на языке Клиент **set** Отдел = :ВыборОтдел баз данных (SQL), where TaбHoмep = :ВыборТН реализующий Приложение операции клиента Клиент Клиент Система Машина Приложение База управления баз данных файлами данных Клиент Клиент Приложение Клиент

Виртуальная машина, реализующая язык баз данных (SQL), и обеспечивающая преобразование команд этого языка в последовательность вызовов низкоуровневых функций системы управления файлами.

База данных Система управления файлами

Машина баз данных

Клиент Приложение Клиент Клиент Приложение Клиент Клиент Приложение Клиент

Функции СУБД

- 1) Поддержка языка баз данных
- 2) Поддержка словаря данных
- 3) Управление данными на физическом уровне
- 4) Управление буферами оперативной памяти
- 5) Поддержка транзакций
- 6) Резервное копирование данных и восстановление данных после сбоев
- 7) Обеспечение безопасности данных
- 8) Обеспечение целостности данных

https://db-engines.com/en/ranking

	Rank	Aug 2022	DBMS	Database Model	Score			
Aug 2023	Jul 2023				Aug 2023	Jul 2023	Aug 2022	
1.	1.	1.	Oracle 🚹	Relational, Multi-model 👔	1242.10	-13.91	-18.70	
2.	2.	2.	MySQL	Relational, Multi-model 👔	1130.45	-19.89	-72.40	
3.	3.	3.	Microsoft SQL Server ☐	Relational, Multi-model 👔	920.81	-0.78	-24.14	
4.	4.	4.	PostgreSQL [1]	Relational, Multi-model 👔	620.38	+2.55	+2.38	
5.	5.	5.	MongoDB □	Document, Multi-model 👔	434.49	-1.00	-43.17	
6.	6.	6.	Redis 😷	Key-value, Multi-model 👔	162.97	-0.80	-13.43	
7.	1 8.	1 8.	Elasticsearch	Search engine, Multi-model 👔	139.92	+0.33	-15.16	
8.	4 7.	4 7.	IBM Db2	Relational, Multi-model 👔	139.24	-0.58	-17.99	
9.	9.	9.	Microsoft Access	Relational	130.34	-0.38	-16.16	
10.	10.	10.	SQLite [1]	Relational	129.92	-0.27	-8.95	

	Rank				Score			
Nov 2022	Oct 2022	Nov 2021	DBMS	Database Model	Nov 2022	Oct 2022	Nov 2021	
1.	1.	1.	Oracle 🞛	Relational, Multi-model 👔	1241.69	+5.32	-31.04	
2.	2.	2.	MySQL 🚹	Relational, Multi-model 👔	1205.54	+0.17	-5.98	
3.	3.	3.	Microsoft SQL Server 🚹	Relational, Multi-model 👔	912.51	-12.17	-41.78	
4.	4.	4.	PostgreSQL 🚹	Relational, Multi-model 👔	623.16	+0.44	+25.88	
5.	5.	5.	IBM Db2	Relational, Multi-model 👔	149.56	-0.10	-17.96	
6.	6.	1 7.	Microsoft Access	Relational	135.03	-3.14	+15.79	
7.	7.	4 6.	SQLite 🚹	Relational	134.63	-3.17	+4.83	
	Rank		DD146	B-t-b		Score		
Aug 2023	Jul 2023	Aug 2022	DBMS	Database Model	Aug 2023	-		
1.	1.	1.	Oracle -	Relational, Multi-model 👔	1242.10	-13.9	1 -18.70	
2.	2.	2.	MySQL #	Relational, Multi-model 👔	1130.45	-19.8	9 -72.40	
3.	3.	3.	Microsoft SQL Server 🚦	Relational, Multi-model 👔	920.81	L -0.7	8 -24.14	
4.	4.	4.	PostgreSQL 🚹	Relational, Multi-model 👔	620.38	3 +2.5	5 +2.38	
5.	5.	5.	MongoDB 😷	Document, Multi-model 🚺	434.49	-1.0	0 -43.17	
6.	6.	6.	Redis 😷	Key-value, Multi-model 👔	162.97	7 -0.8	0 -13.43	
7.	1 8.	1 8.	Elasticsearch	Search engine, Multi-model 👔	139.92	2 +0.3	3 -15.16	
8.	4 7.	4 7.	IBM Db2	Relational, Multi-model 👔	139.24	1 -0.5	8 -17.99	
9.	9.	9.	Microsoft Access	Relational	130.34	1 -0.3	8 -16.16	
10.	10.	10.	SQLite []	Relational	129.92	2 -0.2	7 -8.95	

Rank			DRMC	Databasa Madal	Score				
Aug 2023	Jul 2023	Aug 2022	DBMS	Database Model	Aug 2023	Jul 2023	Aug 2022		
1.	1.	1.	MongoDB 🖽	Document, Multi-model 👔	434.49	-1.00	-43.17		
2.	2.	2.	Amazon DynamoDB 🚹	Multi-model 🔃	83.55	+4.75	-3.71		
3.	3.	3.	Databricks	Multi-model 🔟	71.34	+2.87	+16.72		
4.	4.	4.	Microsoft Azure Cosmos DB 🚹	Multi-model 🔟	35.00	-1.49	-6.37		
5.	5.	5.	Couchbase 😛	Document, Multi-model 👔	24.68	-0.46	-4.10		

Предметная область. Сущности и атрибуты

Предметная область (ПО) информационной системы рассматривается как совокупность реальных процессов и объектов (**сущностей**), представляющих интерес для её пользователей.

Сущности: базовые и зависимые.

Для каждого типа сущности необходимо определить имя.

Атрибуты: характеристики сущностей. Атрибуты бывают:

- 1. Идентифицирующие и описательные атрибуты.
- 2. Составные и простые атрибуты.
- 3. Однозначные и многозначные атрибуты.
- 4. Обязательные и необязательные.

Для каждого атрибута необходимо определить название, указать тип данных и описать ограничения целостности — множество значений, которые может принимать данный атрибут.

Предметная область. Сущности и атрибуты

Предметная область: обучение в университете

4. Семестр