Laplacetransformen

Defenition

$$L[f(t)] = \int_{-0}^{\infty} f(t)e^{-st} dt$$

Beteckning

Laplacetransform: L[f(t)], F(s)

Räkneregler	f(t)	F(s)	
Defenition	f(t)	$\int_{-0}^{\infty} f(t) e^{-st} dt$	L1
Linearitet	$a \cdot f(t) + b \cdot g(t)$	aF(s)+bG(s)	L2
Dämpning	$f(t)e^{-at}$	F(s+a)	L3
Fördröjning	$f(t-T) \cdot \Theta(t-T)$	$F(s)e^{-sT}, \ (T>0)$	L4
Skalning	f(at), (a>0)	$\frac{1}{a} \cdot F\left(\frac{s}{a}\right)$	L5
Frekv.derivering	tf(t)	D[-F(s)]	L6
Frekv.derivering n ggr	$t^{n}f\left(t\right)$	$(-1)^n D^{(n)}[F(s)]$	L7
Tidsderivering	D[f(t)]	sF(s) - f(0)	L8
Tidsderivering n ggr	$D^{n}[f(t)]$	$s^{n} F(s) - \sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0)$	L9
Faltning	f(t) * g(t)	$F(s)\cdot G(s)$	L10
Transformpar			
Sinus	$\sin(at)$	$\frac{a}{s^2 + a^2}$	L11
Cosinus	$\cos(at)$	$\frac{s}{s^2 + a^2}$	L12
Konstant	1	$\frac{1}{s}$	L13
Exponetialfunktion	e^{-kt}	$\frac{1}{s+k}$	L14
Fördröjd stegfunktion	$\theta(t-T), \ (T \ge 0)$	$\frac{e^{-sT}}{s}$	L15
Rampfunktion	$r(t) = t \Theta(t)$	$\frac{1}{s^2}$	L16
Potens	t^k	$\frac{k!}{s^{k+1}}$, $k = 1, 2, 3,$	L17
Deltafunktion	$\delta(t)$	1	L18