

DIGITAL DESIGN

ASSIGNMENT REPORT

ASSIGNMENT ID: 2

PART 1: DIGITAL DESIGN THEORY

Provide your answers here:

Question1

Given the Boolean functionsF1 andF2, show that

- a. The Boolean function E = F1 + F2 contains the sum of the minterms of F1 and F2
- b. The Boolean function $G = F1 \cdot F2$ contains only the minterms that are common to F1 and F2.

One Boolean function can be expressed as the sum of minterms, suppose

$$F1(A,B,C) = \sum m1i, F2(A,B,C) = \sum m2i$$

a.

$$E = F1+F2 = \sum m1i + \sum m2i = \sum (m1i+m2i)$$

b.

$$F1 \cdot F2 = \sum m1i \cdot \sum m2i$$
,

When $i \neq j$, then $mi \cdot mj = 0$

When i = j, then $mi \cdot mj = 1$

To satisfy F1·F2 = 1 in some combination of A,B,C

G can only contain the minterms that are common to F1 and F2

Question2

Convert each of the following to the other canonical form

a.
$$F(x, y, z) = \sum (1, 3, 7)$$

b.
$$F(A, B, C, D) = \prod (1, 3, 5, 8, 11, 13, 15)$$

a.

$$(F(x,y,z))' = \sum (0,2,4,5,6)$$

$$((F(x,y,z))')' = F(x, y, z) = \prod (0,2,4,5,6)$$

b.

$$(F(A,B,C,D))' = \prod (0,2,4,6,7,9,10,12,14)$$

$$((F(A,B,C,D))')' = F(A,B,C,D) = \sum (0,2,4,6,7,9,10,12,14)$$

Write the following Boolean expressions in:

a.
$$(b' + d)(a' + b' + c)(a + c)$$
 SOP form

b. ab + a'c' + bc = abc + abc' + a'bc' + a'bc' + a'bc =
$$\sum (0,2,3,6,7) = \prod (1,4,5)$$

$$=(a+b+c')(a'+b+c)(a'+b+c')$$

Question4

Determine whether the following Boolean equation is true or false. Show your process

b.
$$x'y' + x'z' + yz = x'y + x'z$$

a. False

$$y'z' + yz' + x'z = z' + x'z = z'$$

b. False

Express left part and right part as POS form

left:
$$x'y'z + x'y'z' + x'yz' + xyz + x'yz$$

right:
$$x'yz' + x'yz + x'y'z$$

thus left \neq right

Simplify the following Boolean functions and expressions, using four-variable maps:

a. F (A, B, C, D) = \sum (0, 2, 5, 7, 8, 10, 13, 15)

b. F (w, x, y, z) = \sum (1, 3, 4, 5, 6, 7, 9, 11, 13, 15)

c. A'BCD+ ABC+ CD + B'D

d. A'B'C'D' + BC'D + A'C'D + A'BCD + ACD

a. BD + B'D'

AB	D ₀₀	01	11	10
00	m ₀	\mathbf{m}_1	m_3	m ₂
01	m ₄	m _s	m ₇	m ₆
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
10	m _s	m ₉	m ₁₁	mio

b. z+w'x

wx	Z 00	01	11	10
00	\mathbf{m}_0	m	m ₃	m ₂
01	m ₄	m _s	m ₇	m ₆
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
10	$m_{\rm s}$	m ₉	mn	m ₁₀

c. CD+B'D+ABC

ABC	D ₀₀	01	11	10
00	\mathbf{m}_0	m	m ₃	m_2
01	m ₄	m ₅	m ₇	m ₆
11	m ₁₂	m ₁₃	m ₁₅	m _{1,i}
10	$m_{\rm s}$	m _a	m ₁₁	m ₁₀

d.BD+ACD+A'B'C'

Implement the following logical functions with two-level NOR gate circuits.

Write down the simplification process, then draw the circuit diagram.

a.
$$F(A, B, C, D) = AD + BC'D + ABC + A'BC'D$$

b.
$$F(A, B, C, D) = (A' + C' + D')(A' + C')(C' + D')$$

AB	D ₀₀	01	11	10
00	\mathbf{m}_0	m ₁	m_3	m ₂
01	m ₄	m,	m ₇	m ₆
11	m ₁₂	m ₁₃	m 15	m _{1,i}
10	$m_{\rm s}$	m,	m	m ₁₀

a.

$$F' = A'B'+C'D'+A'C+B'D'=(A+B)'+(C+D)'+(A+C')'+(B+D)'$$

$$(F')'=((A+B)'+(C+D)'+(A+C')'+(B+D)')'$$

b.

$$F = (A'+A'C'+C'+A'D'+C'D')(C'+D') = C'+A'D'$$

$$F' = CD + AC = (C' + D')' + (A' + C')'$$

$$(F')'=((C'+D')'+(A'+C')')'$$

Simplify the following Boolean function F, together with the don't-care conditions d, and then express the simplified function in sum-of-minterms form:

a.
$$F(x, y, z) = \sum (0, 1, 4, 5, 6)$$
 with $d(x, y, z) = \sum (2, 3, 7)$

b.
$$F(A, B, C, D) = \sum (5, 6, 7, 12, 14)$$
with $d(x, y, z) = \sum (3, 9, 11)$

a.
$$F(x,y,z) = 1 = \Sigma(1,2,3,4,5,6,7)$$

x\y	z	01	11	10
0	M ₀	m ₁	m,	m ₂
1	M _a	m _s	m ₇	m _s

b.
$$F(A,B,C,D) = A'BD + A'BC + ABD' = \Sigma(5,6,7,12,14)$$

AB	D ₀₀	01	11	10
00	\mathbf{m}_0	\mathbf{m}_1	m ₃	m_2
01	m ₄	m,	m ₇	m ₆
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
10	$m_{\rm s}$	m _g	M ₁₁	m ₁₀

Question8

Implement the following Boolean expression with exclusive-OR and AND gates, draw the circuit diagram: F = AB'CD' + A'BCD' + AB'C'D + A'BC'D

In four-variables map, F is as follow

$$F = A'B(CD'+C'D) + AB'(CD'+C'D) = (CD'+C'D)(A'B + AB') = (A \oplus B)(C \oplus D)$$

PART 2: DIGITAL DESIGN LAB (TASK1)

All the tasks have been checked in-class