

CHEMISTRY ASESORÍA

2nd SECONDARY

TOMO 7

COMPLETAR LOS SIGUIENTES ESPACIOS

Es la fuerza de atracc**elect<u>rostática</u>** que mantiene **Catibles** a un <u>anión</u> y un _____ que se forma previa transferencia de electrones de valencia.

Escriba verdadero (V) o falso (F) según corresponda.

a. Los compuestos iónicos están es estado gaseoso.

(**F**)

b. Los compuestos iónicos conducen la electricidad en cualquier estado de agregación.

(**F**)

c. Los elementos metálicos son los aniones .

(**F**)

d. Existe una transferencia de electrones en enlace Electrovalente.

(V)

Realice la representación de Lewis del siguiente compuesto iónico : Oxido de magnesio MgO (Mg = IIA, O = VIA)

Determine el número de enlaces covalente polar y covalente apolar de etano.

RESOLUCION

Recordar

POLAR

= 6

APOLAR

= 1

Determine el tipo de enlace que presentan los siguientes compuestos: NH_3 , K_2Oy HF.

Elemento	K	Н	N	0	F
EN	0,8	2,1	3,0	3,5	4.0

RESOLUCION

Molécula	ΔΕΝ	Tipo de enlace
NH ₃	Δ EN = 3,0 - 2,1 = 0,8	COVALENTE
K ₂ O	Δ EN = 3,5 - 0,8 = 2,7	IÓNICO
HF	Δ EN = 4,0 - 2,1 = 1,9	COVALENTE

Excepcion En el *HF* (fluoruro de hidrógeno)

En la estructura del ácido carbónico (H₂CO₃) Indique el número de :

enlaces polares del tipo π : $\frac{1}{2}$

enlaces del tipo σ : _____

enlaces dativos : ____

Ácido carbónico

RESOLUCION

$$H = \begin{cases} 0 \\ \pi \parallel \sigma \\ C = \sigma \\ 0 \end{cases}$$

CHEMISTRY

Halle el número de oxidación del fosforo (P) en el siguiente compuesto:

$$H_3PO_3$$

RESOLUCION

TODO COMPUESTO (IÓNICO O MOLECULAR) ES ELÉCTRICAMENTE NEUTRO, POR ELLO SE CUMPLE LO SIGUIENTE:

$$\Sigma E.O.=0$$

Entonces:

$$3 (+1) + 1 (x) + 3 (-2) = 0$$

 $3 + x - 6 = 0$

En el ión (HSO₄)⁻¹, determine el estado de oxidación del azufré.

RESOLUCION

EN UN ION POLIATÓMICO SE CUMPLE LO SIGUIENTE:

 Σ E. O. = carga relativa del ion

Entonces:

1 (+1) + 1 (x) + 4 (-2) = -1
1 + x - 8 = -1

$$x = +6$$

Determine la valencia del nitrógeno los estados de oxidación del nitrógeno en los siguientes compuestos .

- a) **NO**₂
- b) NO

c) N₂

En la molécula complete :

HClO₄

a. pares de electrones libre. 11
b. número de enlaces covalente dative 3

c. número de enlaces del tipo σ:5___

d. enlaces covalentes polares:5_____

e. número de enlaces del tipo πΩ_____

