Bài tập cộng H₂, Br₂ vào các hiđrocacbon không no, mạch hở

A. Lý thuyết và phương pháp giải

a/ Phản ứng với H₂:

- Khi đun nóng có kim loại niken làm xúc tác, hiđrocacbon không no, mạch hở X cộng H_2 vào liên kết π .

Phương trình: $C_nH_{2n+2-2k} + kH_2 \xrightarrow{Ni,t^o} C_nH_{2n+2}$ (k là số liên kết π trong phân tử) Tùy vào hiệu suất của phản ứng mà thu được hỗn hợp Y có hiđrocacbon không no dư hoặc hiđro dư hoặc cả hai còn dư.

- Phương pháp giải:
- + Số mol khí sau phản ứng luôn giảm và số mol H_2 phản ứng là $n_{\rm H_2pu}=n_{\rm _X}-n_{\rm _Y}$
- + Cứ 1 mol liên kết π cộng với 1 mol H₂
- + Theo DLBTKL: $m_X = m_Y$

b/ Phản ứng với Br2:

- Khi dẫn hiđrocacbon không no, mạch hở qua dung dịch nước brom, thấy màu nâu đỏ của dung dịch bị nhạt màu dần.

Phương trình: $C_nH_{2n+2-2k} + kBr_2 \xrightarrow{xt,t^o} C_nH_{2n+2-2k}Br_{2k}$ (k là số liên kết π trong phân tử)

- Phương pháp giải:
- + Cứ 1 mol liên kết π cộng với 1 mol $Br_2 \Rightarrow n_{lk\pi} = n_{Br,pu}$
- + Sử dụng định luật bảo toàn nguyên tố; bảo toàn mol π ; bảo toàn khối lượng để giải bài toán.

B. Ví dụ minh họa

Ví dụ 1: Cho hiđrocacbon X phản ứng với brom (trong dung dịch) theo tỉ lệ mol 1:1, thu được chất hữu cơ Y (chứa 74,08% Br về khối lượng). Khi X phản ứng với HBr thì thu được hai sản phẩm hữu cơ khác nhau. Tên gọi của X là

- A. but -1- en.
- B. but -2- en.
- C. xiclopropan.
- D. propilen.

$$C_x H_v + Br_2 \rightarrow C_x H_v Br_2$$

% Br =
$$\frac{80.2}{12x + y + 80.2}$$
.100% = 74,08%

$$\Rightarrow$$
 12x + y = 56 \Rightarrow x = 4; y = 8

$$\Rightarrow$$
X: C₄H₈

X phản ứng với HBr thu được 2 sản phẩm hữu cơ ⇒ X là: CH₂=CH-CH₂-CH₃

Đáp án A

Ví dụ 2: Hỗn hợp khí X gồm 0,1 mol C₂H₂; 0,2 mol C₂H₄ và 0,3 mol H₂. Đun nóng X với xúc tác Ni, sau một thời gian thu được hỗn hợp khí Y có tỉ khối so với H₂ bằng 11. Hỗn hợp Y phản ứng tối đa với a mol Br₂ trong dung dịch. Giá trị của a là A. 0,1.

B. 0,2.

C. 0,3.

D. 0,4

Hướng dẫn giải:

$$n_X = 0.1 + 0.2 + 0.3 = 0.6$$
 mol; $M_Y = 11.2 = 22$

Bảo toàn khối lượng: $m_Y = m_X = 0,1.26 + 0,2.28 + 0,3.2 = 8,8$ gam

$$n_{\rm Y} = \frac{8.8}{22} = 0.4 \text{(mol)}$$

$$n_{_{\rm H_2}\,\text{phản \'ung}} = n_X - n_Y = 0.6$$
 - $0.4 = 0.2~(mol)$

Bảo toàn số mol liên kết π ta có:

$$0,1.2 + 0,2 - 0,2 = n_{Br_2} = a$$

$$\Rightarrow$$
 a = 0,2(mol)

Đáp án B

Ví dụ 3: Cho 4,48 lít hỗn hợp X (ở đktc) gồm 2 hiđrocacbon mạch hở lội từ từ qua bình chứa 1,4 lít dung dịch Br_2 0,5M. Sau khi phản ứng hoàn toàn, số mol Br_2 giảm đi một nửa và khối lượng bình tăng thêm 6,7 gam. CTPT của 2 hiđrocacbon là

 $A. C_2H_2 và C_4H_8.$

B. C₂H₂ và C₃H₈

C. C₃H₄ và C₄H₈

D. C₂H₂ và C₄H₆

$$n_{X} = \frac{4,48}{22,4} = 0,2 \text{mol}; n_{Br_{2}} = 1,4.0,5 = 0,7 \text{mol}; n_{Br_{2}pu} = 0,35 \text{mol}$$

 $n_X < n_{Br_2pu} < 2n_X \rightarrow X$ gồm anken và ankin.

$$n_{ankin} = 0.35 - 0.2 = 0.15$$
 (mol); $n_{anken} = 0.2 - 0.15 = 0.05$ mol

Gọi công thức của ankin là C_nH_{2n-2} ; anken là C_mH_{2m} (n, m > 1)

$$m_{binh \ tăng} = m_X = 0.15.(14n-2) + 0.05.14m = 6.7$$

$$\rightarrow$$
 3n + m = 10 \rightarrow n = 2; m = 4

Hai hiđrocacbon là C₂H₂ và C₄H_{8.}

Đáp án A

C. Luyện tập

Câu 1: Hiđrocacbon nào sau đây khi phản ứng với dung dịch brom thu được 1,2-đibrombutan?

A. Butan.

B. But - 1 - en.

C. But - 1 - in.

D. Buta -1,3 - dien.

Hướng dẫn giải:

(A): CH₃ - CH₂ - CH₂ - CH₃ không tác dụng với brom.

(B):
$$CH_2 = CH_2 - CH_2 - CH_3 + Br_2 \rightarrow CH_2Br - CHBr - CH_2 - CH_3$$

(C):
$$CH \equiv C - CH_2 - CH_3 + 2Br_2 \rightarrow CHBr_2 - CHBr_2 - CH_2 - CH_3$$

(D):
$$CH_2 = CH - CH = CH_2 + 2Br_2 \rightarrow CH_2Br - CHBr - CHBr - CH_2Br$$

Đáp án B

Câu 2: Hỗn hợp X gồm H_2 và C_2H_4 có tỉ khối so với H_2 là 7,5. Dẫn X qua Ni nung nóng, thu được hỗn hợp Y có tỉ khối so với H_2 là 12,5. Hiệu suất của phản ứng hiđro hóa là

A. 50%.

B. 60%.

C. 70%.

D. 80%.

Hướng dẫn giải:

Phương trình phản ứng: $C_2H_4 + H_2 \rightarrow C_2H_6$

Bảo toàn khối lượng ta có $m_{trước} = m_{sau} \longrightarrow \overline{M}_X.n_X = \overline{M}_Y.n_Y$

$$\rightarrow \frac{n_x}{n_y} = \frac{\overline{M}_Y}{\overline{M}_X} = \frac{12.5}{7.5} = \frac{5}{3}$$

 \rightarrow Coi $n_X = 5$ mol; $n_Y = 3$ mol

Hỗn hợp X có $\overline{M}_X = 7,5.2 = 15$

$$\rightarrow$$
 % $n_{H_2} = \frac{28-15}{28-2}.100\% = 50\% \Rightarrow n_{H_2} = n_{C_2H_4} = 2,5 \text{mol}$

Ta có: $n_{\text{giảm}} = 5\text{-}3 = 2\text{mol} = n_{\text{H}_2 \text{ phản ứng}} = n_{\text{C}_2\text{H}_4 \text{ phản ứng}}$

$$\rightarrow$$
 % H = $\frac{2}{2.5}$.100% = 80%

Đáp án D

Câu 3: Dẫn 0,2 mol một olefin A qua dung dịch brom dư, khối lượng bình sau phản ứng tăng 5,6 gam. Vậy công thức phân tử của A là

A. C_2H_4 .

B. C_3H_6 .

 $C. C_4H_8.$

D. C_5H_{10} .

Hướng dẫn giải:

CTPT A: C_nH_{2n}

$$C_{\overline{n}}H_{\overline{2n}} + Br_2 \rightarrow C_{\overline{n}}H_{\overline{2n}}Br_2$$

Khối lượng bình tăng chính là khối lượng của olefin

$$M_X = \frac{5.6}{0.2} = 28 \rightarrow n = 2$$

Đáp án A

Câu 4: Đun nóng hỗn hợp khí X gồm 0,06 mol C₂H₂ và 0,04 mol H₂ với xúc tác Ni, sau một thời gian thu được hỗn hợp khí Y. Dẫn toàn bộ hỗn hợp Y lội từ từ qua bình đựng dung dịch brom (dư) thì còn lại 0,448 lít hỗn hợp khí Z (ở đktc) có tỉ khối so với O₂ là 0,5. Khối lượng bình dung dịch brom tăng là

A. 1,04 gam.

B. 1,64 gam.

C. 1,20 gam.

D. 1,32 gam.

-
$$m_z = n_z.M = \frac{0.448}{22.4}.(0.5.32) = 0.32g$$

- Áp dụng định luật bảo toàn khối lượng

$$m_X = m_Y = 0.06.26 + 0.04.2 = 1.64$$
 gam

Ta có
$$m_{binh tăng} = m_Y - m_Z = 1,64 - 0,32 = 1,32g$$

Đáp án D

Câu 5: Hỗn hợp X gồm H_2 , C_2H_4 và C_3H_6 có tỉ khối so với H_2 là 9,25. Cho 22,4 lít X (đktc) vào bình kín có sẵn một ít bột Ni. Đun nóng bình một thời gian, thu được hỗn hợp khí Y có tỉ khối so với H_2 bằng 10. Tổng số mol H_2 đã phản ứng là A. 0,015 mol.

B. 0,05 mol.

C. 0,07 mol.

D. 0,075 mol.

Hướng dẫn giải:

$$M_Y = 10.2 = 20$$
; $M_X = 9,25.2 = 18,5$

Bảo toàn khối lượng: $m_X = m_Y$

$$\mathbf{M}_{\mathbf{X}}.\mathbf{n}_{\mathbf{X}} = \mathbf{M}_{\mathbf{Y}}.\mathbf{n}_{\mathbf{Y}}$$

$$\rightarrow \frac{n_X}{n_Y} = \frac{M_Y}{M_X} = \frac{20}{18.5} \Rightarrow n_Y = 0.925 \text{mol}$$

$$\rightarrow n_{H_2 \text{ phản \'ung}} = n_X - n_Y = 1 - 0.925 = 0.075 \text{ mol}$$

Đáp án D

Câu 6: Hỗn hợp X gồm 0,15 mol axetilen; 0,1 mol vinylaxetilen; 0,1 mol etilen và 0,4 mol hiđro. Nung hỗn hợp X với xúc tác niken, một thời gian được hỗn hợp khí Y có tỉ khối với hiđro bằng 12,7. Hỗn hợp khí Y phản ứng vừa đủ với dung dịch dịch chứa a mol Br₂. Giá trị của a là

A. 0,25 mol.

B. 0,35 mol.

C. 0,45 mol.

D. 0,65 mol

$$n_X = 0.15 + 0.1 + 0.1 + 0.4 = 0.75$$
 (mol);
 $m_X = 0.15$. $26 + 0.1$. $52 + 0.1.28 + 0.4.2 = 12.7$ g

Bảo toàn khối lượng có $m_X = m_Y \rightarrow \overline{M}_X.n_X = \overline{M}_Y.n_Y$

$$\rightarrow$$
 n_Y = 0,5mol

-
$$n_{\rm H_2~phản~\acute{u}ng}$$
 = $n_{\rm X}$ - $n_{\rm Y}$ = 0,75- 0,5 = 0,25(mol)

- Bảo toàn số mol liên kết π : 0,15.2 + 0,1.3 + 0,1.1 = a + 0,25 → a = 0,45mol

Đáp án D

Câu 7: Hỗn hợp khí X gồm H₂ và C₂H₄ có tỉ khối so với He là 3,75. Dẫn X qua Ni nung nóng thu được hỗn hợp khí Y có tỉ khối so với He là 5. Hiệu suất của phản ứng hiđro hóa là

A. 50%.

B. 60%.

C. 70%.

D. 80%.

Hướng dẫn giải:

Phương trình phản ứng: $C_2H_4 + H_2 \rightarrow C_2H_6$

Bảo toàn khối lượng ta có $m_{trước} = m_{sau} \longrightarrow \overline{M}_X.n_X = \overline{M}_Y.n_Y$

$$\rightarrow \frac{n_x}{n_x} = \frac{\overline{M}_Y}{\overline{M}_X} = \frac{5}{3.75} = \frac{4}{3}$$

 \rightarrow Coi $n_X = 4$ mol; $n_Y = 3$ mol

Hỗn hợp X có $\overline{M}_X = 3,75.4 = 15$

$$\rightarrow$$
 % $n_{H_2} = \frac{28-15}{28-2} .100\% = 50\% \Rightarrow n_{H_2} = n_{C_2H_4} = 2 \text{mol}$

Ta có: $n_{\text{giảm}} = 4\text{-}3 = 1 \text{mol} = n_{\text{H}_2 \text{ phản ứng}} = n_{\text{C}_2\text{H}_4 \text{ phản ứng}}$

$$\rightarrow$$
 % H = $\frac{1}{2}$.100% = 50%

Đáp án A

Câu 8: Hỗn hợp khí A chứa H_2 và hai anken kế tiếp nhau trong dãy đồng đẳng. Tỉ khối của A đối với H_2 là 8,26. Đun nóng nhẹ A có mặt xúc tác Ni thì thu được hỗn hợp B không làm mất màu nước brom và có tỉ khối đối với H_2 là 11,8. Công thức phân tử của hai anken trong hỗn hợp A là

A. C_2H_4 và C_3H_6 .

B. C₃H₆ và C₄H₈.

C. C₄H₈ và C₅H₁₀.

D. C₅H₁₀ và C₆H₁₂.

Hướng dẫn giải:

$$M_A = 8,26.2 = 16,52; M_B = 11,8.2 = 23,6$$

Vì hỗn hợp B không làm mất màu nước brom nên B không chứa anken.

Giả sử có 1 mol hỗn hợp A.

Áp dụng bảo toàn khối lượng: $m_A = m_B$

$$\frac{n_B}{1} = \frac{16,52}{23,6} \rightarrow n_B = n_{H_2(A)} = 0,7 \text{mol}$$

 $n_{2anken} = 1 - 0.7 = 0.3 \text{ mol}$

Gọi công thức chung của 2 anken là C_nH_{2n}

Ta có: 14n. $0.3 + 2. 0.7 = 16.52 \rightarrow n = 3.6$

Vậy 2 anken là C₃H₆ và C₄H₈

Đáp án B

Câu 9: Hỗn hợp khí X chứa H₂ và một ankin. Tỉ khối của X đối với H₂ là 4,8. Đun nóng nhẹ X có mặt xúc tác Ni thì nó biến thành hỗn hợp Y không làm mất màu nước brom và có tỉ khối đối với H₂ là 8. Công thức phân tử của ankin là

A. C₂H₂.

B. C_3H_4 .

 $C. C_4H_6.$

D. C_5H_8

Hướng dẫn giải:

$$M_X = 4.8.2 = 9.6; M_Y = 8.2 = 16$$

Vì Y không làm mất màu nước brom nên Y không có hiđrocacbon không no.

Giả sử X có 1 mol

Áp dụng bảo toàn khối lượng ta có $m_X = m_Y = 9,6.1 = 9,6(g)$

$$n_{H_2 \text{ phản ứng}} = 1 - 0.6 = 0.4 \text{ mol}$$

 $n_{ankin} = 0.2 \text{ mol}$

Gọi công thức của ankin là C_nH_{2n-2}

Ta có:
$$(14n - 2).0,2 + 2.(1 - 0,2) = 9,6$$

$$\rightarrow$$
 n = 3

Đáp án B

Câu 10: Một hỗn hợp X gồm 0,12 mol C₂H₂ và 0,18 mol H₂. Cho X đi qua Ni nung nóng, sau một thời gian thu được hỗn hợp khí Y. Cho Y vào bình đựng brom dư, thấy bình brom tăng m gam và thoát ra khí Z. Đốt cháy hết Z và cho toàn bộ sản phẩm cháy vào bình đựng dung dịch Ca(OH)₂ dư thấy có 5 gam kết tủa xuất hiện và thấy khối lượng dung dịch giảm 1,36 gam. Tính giá trị của m?

A. 2,72 gam.

B. 1,6 gam.

C. 3,2 gam.

D. 12,8 gam.

Hướng dẫn giải:

$$m_X = 0.12.26 + 0.18.2 = 3.48 g$$

Cho X đi qua Ni nung nóng:

Phương trình phản ứng: $C_2H_2 + H_2 \rightarrow C_2H_4$; $C_2H_2 + 2H_2 \rightarrow C_2H_6$

Hỗn hợp Y gồm: C₂H₂, C₂H₄, C₂H₆ và H₂

Cho Y qua bình đựng Br₂ dư có C₂H₂, C₂H₄ bị giữ lại. Hỗn hợp Z gồm: C₂H₆ và H₂

Phương trình phản ứng: $C_2H_4 + Br_2 \rightarrow C_2H_4Br_2$; $C_2H_2 + 2Br_2 \rightarrow C_2H_2Br_4$

Đốt cháy Z thu được CO_2 và H_2O : $n_{CO_2} = n_{CaCO_3} = 0.05$ mol.

$$m_{dd \ gi\acute{a}m} = m_{\downarrow} - (m_{H_2O} + m_{CO_2}) \Rightarrow m_{H_2O} = 5 -1,36 - 0,05.44 = 1,44 \ g$$

$$n_{H_2O} = \frac{1,44}{18} = 0,08 \text{ mol} \Rightarrow m_Z = 0,08.2 + 0,05.12 = 0,76 \text{ g}$$

Khối lượng bình brom tăng: $m = m_X - m_Z = 3,48 - 0,76 = 2,72 g$

Đáp án A