$11a_{359} (K11a_{359})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{26} - u^{25} + \dots - u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 26 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{26} - u^{25} + \dots - u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{6} - 3u^{4} - 2u^{2} + 1 \\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{16} - 7u^{14} - 19u^{12} - 22u^{10} - 3u^{8} + 14u^{6} + 6u^{4} - 2u^{2} + 1 \\ -u^{16} - 6u^{14} - 14u^{12} - 14u^{10} - 2u^{8} + 6u^{6} + 4u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{15} - 6u^{13} - 14u^{11} - 14u^{9} - 2u^{7} + 6u^{5} + 4u^{3} + 2u \\ -u^{17} - 7u^{15} - 19u^{13} - 22u^{11} - 3u^{9} + 14u^{7} + 6u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{25} - 10u^{23} + \dots - 8u^{3} - u \\ -u^{25} + u^{24} + \dots - u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{25} - 10u^{23} + \dots - 8u^{3} - u \\ -u^{25} + u^{24} + \dots - u - 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $-4u^{24} + 4u^{23} - 40u^{22} + 36u^{21} - 172u^{20} + 136u^{19} - 396u^{18} + 264u^{17} - 472u^{16} + 236u^{15} - 136u^{14} - 20u^{13} + 344u^{12} - 220u^{11} + 384u^{10} - 140u^{9} + 48u^{8} - 108u^{6} + 16u^{5} - 40u^{4} + 16u^{3} - 8u^{2} + 16u - 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7, c_9	$u^{26} + u^{25} + \dots - 9u - 5$
c_2, c_3, c_8	$u^{26} - u^{25} + \dots - u - 1$
c_4, c_5, c_6 c_{10}, c_{11}	$u^{26} + u^{25} + \dots - 3u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7, c_9	$y^{26} - 23y^{25} + \dots - 151y + 25$
c_2, c_3, c_8	$y^{26} + 21y^{25} + \dots - 11y + 1$
$c_4, c_5, c_6 \\ c_{10}, c_{11}$	$y^{26} + 33y^{25} + \dots - 11y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.841791 + 0.094185I	5.20604 - 5.29901I	-9.93823 + 3.19957I
u = 0.841791 - 0.094185I	5.20604 + 5.29901I	-9.93823 - 3.19957I
u = -0.828402 + 0.050333I	-3.49265 + 3.42603I	-11.85459 - 4.34345I
u = -0.828402 - 0.050333I	-3.49265 - 3.42603I	-11.85459 + 4.34345I
u = 0.829469	-6.03489	-16.5470
u = -0.063117 + 1.217600I	3.01166 + 1.26256I	-8.17654 - 5.12241I
u = -0.063117 - 1.217600I	3.01166 - 1.26256I	-8.17654 + 5.12241I
u = 0.392131 + 1.168430I	8.49921 + 0.85694I	-6.81756 + 0.45709I
u = 0.392131 - 1.168430I	8.49921 - 0.85694I	-6.81756 - 0.45709I
u = -0.370693 + 1.223000I	0.117817 + 0.889406I	-8.45807 + 0.89318I
u = -0.370693 - 1.223000I	0.117817 - 0.889406I	-8.45807 - 0.89318I
u = 0.373903 + 1.269520I	-2.09387 - 4.32460I	-12.48733 + 3.68089I
u = 0.373903 - 1.269520I	-2.09387 + 4.32460I	-12.48733 - 3.68089I
u = 0.116826 + 1.320420I	6.90824 - 2.96972I	-1.89605 + 4.34441I
u = 0.116826 - 1.320420I	6.90824 + 2.96972I	-1.89605 - 4.34441I
u = -0.475175 + 0.446398I	10.68300 + 1.72593I	-6.44509 - 3.70709I
u = -0.475175 - 0.446398I	10.68300 - 1.72593I	-6.44509 + 3.70709I
u = -0.371528 + 1.305530I	0.74252 + 7.74244I	-7.42357 - 6.92511I
u = -0.371528 - 1.305530I	0.74252 - 7.74244I	-7.42357 + 6.92511I
u = -0.127500 + 1.375760I	16.3951 + 3.6931I	-1.57713 - 3.06120I
u = -0.127500 - 1.375760I	16.3951 - 3.6931I	-1.57713 + 3.06120I
u = 0.374153 + 1.333360I	9.68283 - 9.67188I	-5.67938 + 5.45420I
u = 0.374153 - 1.333360I	9.68283 + 9.67188I	-5.67938 - 5.45420I
u = 0.373827 + 0.329514I	1.88313 - 1.28751I	-6.75058 + 5.74185I
u = 0.373827 - 0.329514I	1.88313 + 1.28751I	-6.75058 - 5.74185I
u = -0.301902	-0.485500	-20.4450

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_7, c_9	$u^{26} + u^{25} + \dots - 9u - 5$
c_2, c_3, c_8	$u^{26} - u^{25} + \dots - u - 1$
c_4, c_5, c_6 c_{10}, c_{11}	$u^{26} + u^{25} + \dots - 3u - 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7, c_9	$y^{26} - 23y^{25} + \dots - 151y + 25$
c_2, c_3, c_8	$y^{26} + 21y^{25} + \dots - 11y + 1$
$c_4, c_5, c_6 \\ c_{10}, c_{11}$	$y^{26} + 33y^{25} + \dots - 11y + 1$