Spektrálne metódy a vlastné čísla Laplaceovho operátora

Veronika Bozděchová, Jiří Púček, Marek Mikloš

Charles University, Czech Republic

Spektrální metoda

Spektrální metodu využijeme na aproximaci řešení naší obyčejné diferenciální rovnice s danýma okrajovýma podmínkama.

$$\frac{d^2}{dx^2} \left(E I_{zz} \frac{d^2 y}{dx^2} \right) = q(x) \tag{1}$$

Myšlenka aproximace spočívá v nahrazení řešící funkce y(x) polynonem $p(x) = p_{N-1}(x)$, který prochází N body danýma pravou stranou (1) tedy funkcí q(x). V našem případě volíme rozdělení N interpolačních bodů podle kořenů Čebyševových polynomů

$$x_j = \cos\left(\frac{(j-1)\pi}{N-1}\right). \tag{2}$$

V našem případě polynom $p_{N-1}(x)$ bude ve tvaru

$$p_{N-1}(x) = \sum_{j=1}^{N} f(x_j) l_j(x) = \frac{\sum_{j=1}^{N} \frac{(-1)^j f(x_j)}{c_j(x-x_j)}}{\sum_{k=1}^{N} \frac{(-1)^k}{c_k(x-x_k)}},$$
(3)

kde $I_i(x)$ máme definované jako

$$l_{j}(x) = \frac{\prod_{k=1}^{N} (x - x_{k})}{\prod_{k=1}^{N} (x_{j} - x_{k})}.$$
 (4)

Spektrální metoda

Na aproximaci členů $\frac{dy}{dx}$ a jejich dalších derivací využijeme, že $y(x) \approx p_{N-1}(x)$ tedy bude platit (pro dostatečně velké N)

$$\frac{d^n y}{dx^n} \approx \frac{d^n p_{N-1}}{dx^n}. (5)$$

Hledání takového řešení nás vede na řešení soustavy rovnic s maticí $D_{N\times N}$ (případně její mocniny), u níž platí

$$\left. \frac{dy}{dx} \right|_{x=x_k} \approx \left. \frac{dp_{N-1}}{dx} \right|_{x=x_k} = \sum_{j=1}^N D_{kj} f(x_j).$$
 (6)

Matlab kód

Zadefinujeme jednotlivé konstanty a vektory, se kterými pracujeme (speciálně pro jeden pevný konec máme

$$a_4 = \frac{F}{Elzz} = \frac{g \rho da^2}{Elzz}$$
).

```
g=9.81;rho=650;d=10;x=[-d/2,d/2];a=0.25;a1=0;a2=0;a3=0;a4=0;
E=10^5:Izz=1:n=20:
```

Dále si vybereme funkci f(x), která nám udává hustotu působící síly na jednotku délky. Tato funkce nám dává pravou stranu naší obyčejné diferenciální rovnice.

```
f=@(x)_{\sqcup}-g*rho*a^2*1.^(x); L=E*Izz*diffmat([n_{\sqcup}n+4],4,x);
```

Pro případ dvou případně jednoho pevného konce volíme dané okrajové podmínky. V textu níže můžeme vidět příslušné rovnice příslušné okrajovým podmínkám pro jeden pevný konec (pro případ dvou pevných konců $T_1=T_3, T_2=T_4$ s tím, že hranice je nyní $+\frac{d}{2}$ místo $-\frac{d}{2}$).

```
T1=diffrow(n+4,0,-d/2,x); T3=diffrow(n+4,1,-d/2,x); T2=diffrow(n+4,2,d/2,x); T4=diffrow(n+4,3,d/2,x); T4=diffrow(n+4,3,
```

Sestavíme naši maticovou soustavu a vyřešíme ji.

```
A=[L;T1;T2;T3;T4];
rhs=[gridsample(f,n);a1;a2;a3;a4];
u=A\rhs:
```

Porovnání Mathematica x Matlab

Obrázek 1. Mathematica (pevné konce) Obrázek 2. Mathematica (pevný konec)

Obrázek 3. Matlab (pevné konce)

Obrázek 4. Matlab (pevný konec)

Vibrace destičky

'Najprimitívnejší model pre vychýlenie dosiek je daný rovnicou'

$$\frac{\partial^2 u}{\partial t^2} - K^2 \Delta u = 0, (7)$$

"kde u je vychýlenie dané ako zobrazenie $u:(t,\vec{x})\in\mathbb{R}\times\mathbb{R}^2\mapsto\mathbb{R}$ " "Pre stojaté vlnenie má riešenie (7) tvar:"

$$-\Delta \widehat{u} = \frac{\omega^2}{K^2} \widehat{u} \tag{8}$$

"Ak označíme $L=_{def}-\Delta$ a $\lambda=_{def}\frac{\omega^2}{K^2}$ z 8 dostaneme:"

$$-L\widehat{u}=\lambda\widehat{u} \tag{9}$$

"Z čoho dostaneme po dosadení vhodných okrajových podmienok úlohu pre nájdenie vlastných vektorov lineárneho operátora." "Chceme nájšť vlastné vektory a vlastné čísla Laplaceovho operátora v $\Omega \subset \mathbb{R}^2$ s nulovou Dirichletovou podmienkou. Chceme teda riešíť:"

$$-\Delta \widehat{u} = \lambda \widehat{u} \tag{10}$$

$$\widehat{u}|_{\partial\Omega} = 0$$
 (11)

Hodnoty $\widehat{u}vinterpolačných[\mathbf{x}_i,y_k]$ bodoch označíme ako $\widehat{u}_{i,k}$, dostávame:

$$\widehat{u}_{i,k} =_{def} (\widehat{u}_x)_{i,k} =_{def} \widehat{u}(x_i, y_k). \tag{12}$$

Aproximácie parciálnych derivácií podľa x a y budú označené ako $(\widehat{u}_x)_{i,k}$ a $(\widehat{u}_y)_{i,k}$. Teda

$$(\widehat{u}_{x})_{i,k} =_{def} \frac{\partial \widehat{u}}{\partial x}(x,y) \mid_{x=x_{i}^{*},y=y_{k}}$$
(13a)

$$(\widehat{u}_{y})_{i,k} =_{def} \frac{\partial \widehat{u}}{\partial y}(x,y) \mid_{x=x_{i},y=y_{k}}.$$

$$(13b)$$

Vlastní čísla

V následujích výpočtech jsme vždy uvažovali obdélník 2×3 , s čímž nám vyšla následující vlastní čísla:

Obrázek 5. Vlastní čísla pro obdelník

Matlab vs Mathematica

Pro ukázku tady ještě máme několik vlastních čísel toho samého v *Mathematice*.

Obrázek 6. Vlastní čísla v Mathematice