최소자승법 (Ordinary Least Squares, OLS)

OLS란?

최소자승법(OLS)은 잔차 제곱합을 최소화하여 선형 회귀 모형의 계수를 추정하는 방법이다. 선형 모델에서 계수를 추정할 때 가장 많이 쓰이는 방법이다. 잔차의 제곱합을 식으로 나타내고, 그것을 편미분한 식들이 각각 0이 되는 회귀계수를 찾는 방식이다.

1. 단순 선형 회귀에서의 OLS

단순 선형 회귀 모형에서는 종속 변수 y와 독립 변수 x의 식을 다음과 같이 나타낸다:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, 2, \dots, n,$$

여기서 β_0 는 절편(intercept), β_1 은 기울기(slope), ϵ_i 는 오차 항(error term)을 의마한다. OLS를 통해 잔차 제곱합을 최소화하는 β_0 와 β_1 을 찾는 것이 목표이다. 잔차를 식으로 나타내면 다음과 같다:

$$S(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2.$$

계수에 대한 최적해 도출

 $1. S(\beta_0, \beta_1)$ 를 β_0 와 β_1 에 대해 편미분해보면:

$$\frac{\partial S}{\partial \beta_0} = -2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i),$$

$$\frac{\partial S}{\partial \beta_1} = -2 \sum_{i=1}^{n} x_i (y_i - \beta_0 - \beta_1 x_i).$$

2. 위의 편미분 결과 식들이 0이 되도록 하면 정규방정식(normal equation)을 얻을 수 있다:

$$\sum_{i=1}^{n} y_i = n\beta_0 + \beta_1 \sum_{i=1}^{n} x_i,$$

$$\sum_{i=1}^{n} x_i y_i = \beta_0 \sum_{i=1}^{n} x_i + \beta_1 \sum_{i=1}^{n} x_i^2.$$

3. 정규방정식을 풀면 최적의 β₀와 β₁를 도출할 수 있다:

$$\beta_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}, \quad \beta_0 = \bar{y} - \beta_1 \bar{x}.$$

2. 다중 선형 회귀에서의 OLS

다중 선형 회귀 모형의 식은 다음과 같다:

$$y = X\beta + \epsilon$$
,

여기서:

- y는 $n \times 1$ 의 종속 변수 벡터.
- **X**는 *n* × *p*의 독립 변수 행렬.
- β는 p × 1의 회귀 계수 벡터.
- *ϵ*는 *n* × 1의 오차 벡터.

계수에 대한 최적해 도출

다중 선형 회귀에서 잔차 제곱합은 다음과 같은 식으로 표현된다:

$$S(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}).$$

 $1. S(\boldsymbol{\beta})$ 를 $\boldsymbol{\beta}$ 에 대해 편미분하면:

$$\frac{\partial S}{\partial \boldsymbol{\beta}} = -2\mathbf{X}^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}).$$

2. 위의 편미분 결과들이 0이 되도록 하면 정규방정식을 도출할 수 있다:

$$\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta} = \mathbf{X}^{\top}\mathbf{y}.$$

3. 정규방정식을 풀어 β 를 구하면 다음과 같은 회귀 계수 벡터를 얻을 수 있다:

$$\boldsymbol{\beta} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}.$$