

к образование

Определение и основные задачи

Под **временным рядом** понимаются последовательно измеренные через некоторые (зачастую равные) промежутки времени данные.

Анализ временных рядов

Объединяет методы изучения временных рядов, как пытающиеся понять природу точек данных (откуда они взялись? что их породило?), так и пытающиеся построить прогноз.

Прогнозирование временных рядов

Заключается в построении модели для предсказания будущих событий основываясь на известных событий прошлого, предсказания будущих данных до того как они будут измерены. Типичный пример — предсказание цены открытия биржи основываясь на предыдущей её деятельности.

Исследование временных рядов

Существует несколько методов анализа данных, применимых для временных рядов.

Общее исследование

- Визуальное изучение графических представлений временных рядов
- Автокорреляционный анализ для изучения зависимостей
- Спектральный анализ для изучения циклического поведения, не связанного с сезонностью

Описание

- Разделение компонент: тренд, сезонность, медленно и быстро меняющиеся компоненты, циклическая нерегулярность
- Простейшие свойства частных распределений
- Прогнозирование и предсказание
 - Полноценные статистические модели при стохастическом моделировании для создания альтернативных версий временных рядов, показывающих, что могло бы случиться на произвольных отрезках времени в будущем при изменении определенных условий (предсказание)
 - Упрощённые статистические модели для описания вероятных значений временного ряда в ближайшем будущем при известных последних значениях при тех же условиях (прогноз)

Causal Impact (R)

Библиотека на R

Выбираем 2 схожих ряда (эвристика – например, соседние регионы со схожими трендами, рассчёт коэффициэнта корреляции или РСА-анализ);

Остальное делает Causal Impact.

Прямые заходы: Башкортостан (событие) VS Свердловская область

Среднее фактическое значение: 44 343;

Среднее модельное: 38 689;

Диапазон модельных значений в рамках 95% доверительного интервала: [35346, 41948]

С 95% точностью можно сказать, что эффект от события в прямых составляет от 6.2% до 23%

STL-Разложение

Библиотеки на Python

statsmodels.tsa.seasonal – выделение тренда (только MA), сезонной составляющей и шума;

stldecompose - полиномиальный тренд "из коробки";

sklearn.preprocessing – полиномиальная регрессионная модель выделения тренда;

MA, Meadian Smoothing (for some range)

Графики трендов (различные подходы):

Подбор степени полинома по метрикам R2, MAE, RMSE:

ARIMA (p, d, q):

Авторегрессионная модель:

$$y_t = \sum_{i=1}^p a_i y_{t-i} + arepsilon_t$$

Стационарный ряд: математическое ожидание и дисперсия постоянны (т. е. среднее значение временного ряда, вокруг которого изменяются уровни, является величиной постоянной)

Проверка: критерий Дикки-Фуллера (DF-тест)

```
ADF: -0.037
p-value: 0.95
Critical values: {
    '5%': -2.87;
    '1%': -3.45;
    '10%': -2.57}
5%: ADF > Critical value => Единичных корней нет, ряд стационарен
```

ARIMA (p, d, q):

