Akdeniz University Computer Engineering Department

CSE206 Computer Organization

Week09: Number Systems and Computer Arithmetic

Assoc.Prof.Dr. Taner Danışman tdanisman@akdeniz.edu.tr

	Week 1	19-Feb-24 Introduction	Ch1
	Week 2	26-Feb-24 Computer Evolution	Ch2
	Week 3	4-Mar-24 Computer Systems	Ch3
	Week 4	11-Mar-24 Cache Memory, Direct Cache Mapping	Ch4
	Week 5	18-Mar-24 Associative and Set Associative Mapping	Ch4
	Week 6	25-Mar-24 Internal Memory, External Memory, I/O	Ch5-Ch6-Ch7
	Week 7	1-Apr-24 Number Systems, Computer Arithmetic	Ch9-Ch10
	Week 8	8-Apr-24 Holiday	Ch1Ch10
	Week 9	15-Apr-24 Number Systems, Computer Arithmetic	Ch11
	Week 10	26-Apr-24 <mark>Midterm</mark>	Ch1-Ch11
	Week 11	29-Apr-24 Digital Logic, Instruction Sets, Addressing Modes	Ch12,Ch13
	Week 12	6-May-24 Processor Structure and Function	Ch14
	Week 13	13-May-24 RISC, Inctruction Level Parallelism	Ch15-Ch16
	Week 14	20-May-24 Assembly Language (TextBook: Assembly Language for x86 Processors)	Kip Irvine
	Week 15	27-May-24 Assembly Language (TextBook: Assembly Language for x86 Processors)	Kip Irvine

The Decimal System

- System based on decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) to represent numbers
- For example the number 83 means eight tens plus three:

$$83 = (8 * 10) + 3$$

The number 4728 means four thousands, seven hundreds, two tens, plus eight:

$$4728 = (4 * 1000) + (7 * 100) + (2 * 10) + 8$$

The decimal system is said to have a **base**, or **radix**, of 10. This means that each digit in the number is multiplied by 10 raised to a power corresponding to that digit's position:

$$83 = (8 * 10^{1}) + (3 * 10^{0})$$

$$4728 = (4 * 10^{3}) + (7 * 10^{2}) + (2 * 10^{1}) + (8 * 10^{0})$$

Decimal Fractions

The same principle holds for decimal fractions, but negative powers of 10 are used. Thus, the decimal fraction 0.256 stands for 2 tenths plus 5 hundredths plus 6 thousandths:

$$0.256 = (2 * 10^{-1}) + (5 * 10^{-2}) + (6 * 10^{-3})$$

A number with both an integer and fractional part has digits raised to both positive and negative powers of 10:

$$442.256 = (4 * 10^{2}) + (4 + 10^{1}) + (2 * 10^{0}) + (2 * 10^{-1}) + (5 * 10^{-2}) + (6 * 10^{-3})$$

- Most significant digit
 - The leftmost digit (carries the highest value)
- Least significant digit
 - The rightmost digit

Positional Interpretation of a Decimal Number

4	7	2	2	5	6
100s	10s	1s	tenths	hundredths	thousandths
102	10 ¹	10 ⁹	10-1	10-2	10-3
position 2	position 1	position 0	position -1	position -2	position -3

Table 9.1 Positional Interpretation of a Decimal Number

Positional Number Systems

- Each number is represented by a string of digits in which each digit position i has an associated weight ri, where r is the radix, or base, of the number system.
- The general form of a number in such a system with radix r is

$$(\ldots a_3 a_2 a_1 a_0 a_{-1} a_{-2} a_{-3} \ldots)_r$$

where the value of any digit a_i is an integer in the range $0 \le a_i < r$. The dot between a_0 and a_{-1} is called the **radix point**.

Positional Interpretation of a Number in Base 7

	Position	4	3	2	2	0	-1
/	Value in exponential form	74	73	72	71	70	7-1
	Decimal value	2401	343	49	7	1	1/7

Table 9.2 Positional Interpretation of a Number in Base 7

The Binary System

- Only two digits, 1 and 0
- Represented to the base 2
- The digits 1 and 0 in binary notation have the same meaning as in decimal notation:

$$O_2 = O_{10}$$

 $O_2 = O_{10}$

To represent larger numbers each digit in a binary number has a value depending on its position:

$$10_2 = (1 * 2^1) + (0 * 2^0) = 2_{10}$$

$$11_2 = (1 * 2^1) + (1 * 2^0) = 3_{10}$$

$$100_2 = (1 * 2^2) + (0 * 2^1) + (0 * 2^0) = 4_{10}$$

and so on. Again, fractional values are represented with negative powers of the radix:

$$1001.101 = 2^3 + 2^0 + 2^{-1} + 2^{-3} = 9.625_{10}$$

Converting Between Binary and Decimal

- Binary notation to decimal notation:
 - Multiply each binary digit by the appropriate power of 2 and add the results
- Decimal notation to binary notation:
 - Integer and fractional parts are handled separately

For the integer part, recall that in binary notation, an integer represented by

$$-b_{m-1}b_{m-2}...b_2b_1b_0 b_i = 0 \text{ or } 1$$

has the value

$$-(b_{m-1}*2^{m-1})+(b_{m-2}*2^{m-2})+\ldots+(b_1*2^1)+b_0$$

Suppose it is required to convert a decimal integer N into binary form. If we divide N by 2, in the decimal system, and obtain a quotient N_1 and a remainder R_0 , we may write

$$-N = 2 * N_1 + R_0$$
 $R_0 = 0 \text{ or } 1$

Next, we divide the quotient N_1 by 2. Assume that the new quotient is N_2 and the new remainder R_1 . Then

$$N_1 = 2 * N_2 + R_1$$
 $R_1 = 0 \text{ or } 1$

so that

$$-N = 2(2N_2 + R_1) + R_0 = (N_2 * 2^2) + (R_1 * 2^1) + R_0$$

If next

$$N_2 = 2N_3 + R_2$$

we have

$$N = (N_3 * 2^3) + (R_2 * 2^2) + (R_1 * 2^1) + R_0$$

Figure 9.1 Converting from Decimal Notation to

Binary Notation for Integers

(b) 21₁₀

Figure 9.2 Converting from Decimal Notation to

Binary Notation for Fractions

(a) $0.81_{10} = 0.110011_2$ (approximately)

(b) $0.25_{10} = 0.01_2$ (exactly)

Hexadecimal Notation

- Binary digits are grouped into sets of four bits, called a nibble
- Each possible combination of four binary digits is given a symbol, as follows:

```
0000 = 0 0100 = 4 1000 = 8 1100 = C

0001 = 1 0101 = 5 1001 = 9 1101 = D

0010 = 2 0110 = 6 1010 = A 1110 = E

0011 = 3 0111 = 7 1011 = B 1111 = F
```

- Because 16 symbols are used, the notation is called hexadecimal and the 16 symbols are the hexadecimal digits
- Thus

$$2C_{16} = (2_{16} * 16^{1}) + (C_{16} * 16^{0})$$

= $(2_{10} * 16^{1}) + (12_{10} * 16^{0}) = 44$

Table 9.3 Decimal, Binary, and Hexadecimal

Hexadecimal Notation

Not only used for representing integers but also as a concise notation for representing any sequence of binary digits

Reasons for using hexadecimal notation are:

It is more compact than binary notation

In most computers, binary data occupy some multiple of 4 bits, and hence some multiple of a single hexadecimal digit

It is extremely easy to convert between binary and hexadecimal notation

Summary

- Number Systems
 - The decimal system
 - Positional number systems
 - The binary system
- Converting between binary and decimal
 - Integers
 - Fractions
- Hexadecimal notation

Computer Arithmetic

Arithmetic & Logic Unit (ALU)

- Part of the computer that actually performs arithmetic and logical operations on data
- All of the other elements of the computer system are there mainly to bring data into the ALU for it to process and then to take the results back out
- Based on the use of simple digital logic devices that can store binary digits and perform simple Boolean logic operations

ALU Inputs and Outputs

Integer Representation

- In the binary number system arbitrary numbers can be represented with:
 - The digits zero and one
 - The minus sign (for negative numbers)
 - The period, or radix point (for numbers with a fractional component)
- For purposes of computer storage and processing we do not have the benefit of special symbols for the minus sign and radix point
- Only binary digits (0,1) may be used to represent numbers

Sign-Magnitude Representation All of these alternatives involve

There are several alternative conventions used to represent negative as well as positive integers

Sign-magnitude representation is the simplest form that employs a sign bit

- All of these alternatives involve treating the most significant (leftmost) bit in the word as a sign bit
- If the sign bit is 0 the number is positive
- If the sign bit is 1 the number is negative

of the numbers and their relative magnitudes to carry out the

required operation

There are two representations of 0

 Addition and subtraction require a consideration of both the signs

Drawbacks:

Because of these drawbacks, signmagnitude representation is rarely used in implementing the integer portion of the ALU

Twos Complement Representation

- Uses the most significant bit as a sign bit
- Differs from sign-magnitude representation in the way that the other bits are interpreted

Range	-2_{n-1} through $2_{n-1}-1$		
Number of Representations of Zero	One		
Negation	Take the Boolean complement of each bit of the corresponding positive number, then add 1 to the resulting bit pattern viewed as an unsigned integer.		
Expansion of Bit Length	Add additional bit positions to the left and fill in with the value of the original sign bit.		
Overflow Rule	If two numbers with the same sign (both positive or both negative) are added, then overflow occurs if and only if the result has the opposite sign.		
Subtraction Rule	To subtract B from A , take the twos complement of B and add it to A .		

Table 10.1 Characteristics of Twos Complement Representation and Arithmetic

Table 10.2 Alternative Representations for 4-Bit Integers

Decimal Representation	Sign-Magnitude Representation	Twos Complement Representation
+8	_	-
+7	0111	0111
+6	0110	0110
+5	0101	0101
+4	0100	0100
+3	0011	0011
+2	0010	0010
+1	0001	0001
+0	0000	0000
-0	1000	_
-l	1001	1111
-2	1010	1110
-3	1011	1101
-4	1100	1100
-5	1101	1011
-6	1110	1010
-7	1111	1001
-8	_	1000

Range Extension

- Range of numbers that can be expressed is extended by increasing the bit length
- In sign-magnitude notation this is accomplished by moving the sign bit to the new leftmost position and fill in with zeros
- This procedure will not work for twos complement negative integers
 - Rule is to move the sign bit to the new leftmost position and fill in with copies of the sign bit
 - For positive numbers, fill in with zeros, and for negative numbers, fill in with ones
 - This is called sign extension

Negation

- Twos complement operation
 - Take the Boolean complement of each bit of the integer (including the sign bit)
 - Treating the result as an unsigned binary integer, add 1

```
+18 = 00010010 (twos complement)
bitwise complement = 11101101
\frac{+}{111011110} = -18
```

The negative of the negative of that number is itself:

```
-18 = 11101110 (twos complement)
bitwise complement = 00010001
+ 1
00010010 = +18
```

Negation Special Case 1

Overflow is ignored, so:

$$-0 = 0$$

Addition Examples

OVERFLOW RULE

If two numbers are added, and they are both positive or both negative, then overflow occurs if and only if the result has the opposite sign.

SUBTRACTION RULE:

To subtract one number (subtrahend) from another (minuend), take the twos complement (negation) of the subtrahend and add it to the minuend.

Subtraction Example

$$\begin{array}{c} 0010 = 2 \\ + 1001 = -7 \\ 1011 = -5 \end{array} & \begin{array}{c} 0101 = 5 \\ + 1110 = -2 \\ 10011 = 3 \end{array} \\ \\ \begin{array}{c} \text{(a) } \text{M} = 2 = 0010 \\ \text{S} = 7 = 0111 \\ -\text{S} = 1001 \end{array} & \begin{array}{c} \text{(b) } \text{M} = 5 = 0101 \\ \text{S} = 2 = 0010 \\ -\text{S} = 1110 \end{array} \\ \\ \begin{array}{c} 1011 = -5 \\ + 1110 = -2 \\ 11001 = -7 \end{array} & \begin{array}{c} 0101 = 5 \\ + 0010 = 2 \\ 0111 = 7 \end{array} \\ \\ \text{(c) } \text{M} = -5 = 1011 \\ \text{S} = 2 = 0010 \\ -\text{S} = 1110 \end{array} & \begin{array}{c} \text{(d) } \text{M} = 5 = 0101 \\ \text{S} = -2 = 1110 \\ -\text{S} = 0010 \end{array} \\ \\ \begin{array}{c} \text{O101} = -6 \\ + 1100 = -4 \\ 10110 = 0 \text{ overflow} \end{array} \\ \\ \begin{array}{c} \text{(e) } \text{M} = 7 = 0111 \\ \text{S} = -7 = 1001 \\ -\text{S} = 0111 \end{array} & \begin{array}{c} \text{(f) } \text{M} = -6 = 1010 \\ \text{S} = 4 = 0100 \\ -\text{S} = 1100 \end{array} \\ \\ \end{array}$$

Figure 10.4 Subtraction of Numbers in Twos Complement Representation (M - S)

Geometric Depiction of Twos Complement Integers

Figure 10.5 Geometric Depiction of Twos Complement Integers

Hardware for Addition and Subtraction

Figure 10.6 Block Diagram of Hardware for Addition and Subtraction

Floating-Point Representation

- With a fixed-point notation it is possible to represent a range of positive and negative integers centered on or near 0
- By assuming a fixed binary or radix point, this format allows the representation of numbers with a fractional component as well
- Limitations:
 - Very large numbers cannot be represented nor can very small fractions
 - The fractional part of the quotient in a division of two large numbers could be lost

Floating-Point Representation

- ► For decimal numbers, we use scientific notation.
- Thus, 976,000,000,000,000 can be represented as
 - $-9.76 * 10^{14}$ and
- 0.00000000000000976 can be represented as
 - 9.76 * 10-14
- We dynamically slide the decimal point to a convenient location and use the exponent of 10 to keep track of that dec
 - **Sign**: plus or minus
 - Significand S
 - **Exponent** E

$$\pm S \times B^{\pm E}$$

The **base** B is implicit and need not be stored because it is the same for all numbers.

Floating-Point

- The final portion of the word
- Any floating-point number can be expressed in many ways The following are equivalent, where the significand is expressed in binary form:

- Normal number
 - The most significant digit of the significand is nonzero
 - A normal number is one in which the most significant digit of the significand is nonzero.
 - For base 2 representation, a normal number is therefore one in which the most significant bit of the significand is one.

Typical 32-Bit Floating-Point Format

The leftmost bit stores the **sign** of the number (0 = positive, 1 = negative).
The **exponent** value

The **exponent** value is stored in the next 8 bits. The representation used is known as a **biased representation**.

Typically, the bias equals $(2^{k-1} - 1)$, where k is the number of bits in the binary exponent

Figure 10.18 Typical 32-Bit Floating-Point Format

To see the need for aligning exponents, consider the following decimal addition:

$$(123 \times 10^{0}) + (456 \times 10^{-2})$$

Clearly, we cannot just add the significands. The digits must first be set into equivalent positions, that is, the 4 of the second number must be aligned with the 3 of the first. Under these conditions, the two exponents will be equal, which is the mathematical condition under which two numbers in this form can be added. Thus,

$$(123 \times 10^{0}) + (456 \times 10^{-2}) = (123 \times 10^{0}) + (4.56 \times 10^{0}) = 127.56 \times 10^{0}$$

Figure 10.22 Floating-Point Addition and Subtraction $(Z \leftarrow X \pm Y)$

39

Booth's Algorithm for Two's Complement Multiplication

A	Q	Q_{-1}	M	
0000	0011	0	0111	Initial values
1001	0011	0	0111	$A \leftarrow A - M$) First
1100	1001	1	0111	Shift Scycle
1110	0100	1	0111	Shift Second cycle
0101	0100	1	0111	$A \leftarrow A + M \setminus Third$
0010	1010	0	0111	shift ∫ cycle
0001	0101	0	0111	Shift } Fourth cycle

Figure 10.13 Example of Booth's Algorithm (7×3)

Figure 10.12 Booth's Algorithm for Twos Complement Multiplication

