

#### 1 Билет 13

Значение многочлена в точке. Корень многочлена.

## Определение

Пусть  $f = a_n t^n + \cdots + a_1 t + a_0 \in K[t]$ .

- 1) Значение многочлена f в точке  $\beta \in K$  это число  $f(\beta) = a_n \beta^n + \cdots + a_1 \beta + a_0$ .
- 2) Если  $f(\beta)=0$ , то  $\beta-$  корень многочлена f.

# Теорема 6(БЕЗУ)

Пусть K — поле,  $f \in K[t]$ ,  $\alpha \in K$ . Тогда остаток от деления f(t) на  $t-\alpha$  равен  $f(\alpha)$ .

Доказательство. • По теореме о делении с остатком,  $f(t) = (t-\alpha)q(t) + r(t)$ , где  $\deg(r) < \deg(t-\alpha) = 1$ . Следовательно,  $r(t) = r \in K$  — константа.

ullet Итак, f(t)=(t-lpha)q(t)+r, где  $r\in K$ . Подставим lpha и получим f(lpha)=0 q(t)+r=r, что нам и нужно.

# Следствие 1

Пусть K — поле,  $f \in K[t]$ ,  $\alpha \in K$  — корень f . Тогда  $f(t) \stackrel{.}{\cdot} t - \alpha$  .

Доказательство. Следует из Теоремы 6, так как f(lpha)=0.

#### 2 Билет 14

### Кратность корня

# Определение

Пусть  $f \in K[t]$ ,  $\alpha \in K$ . Число  $\alpha$  является корнем кратности m многочлена f, если  $f(t) \vdots (t-\alpha)^m$ , но  $f(t) \not / (t-\alpha)^{m+1}$ .

ullet По Следствию 1 любой корень многочлена  $f\in \mathcal{K}[t]$  имеет кратность хотя бы 1.

## Теорема 7

Пусть K — поле,  $f \in K[t]$ ,  $\deg(f) = n$ ,  $\alpha_1, \ldots, \alpha_k \in K$  — все различные корни f, причем корень  $\alpha_i$  имеет кратность  $m_i$ . Тогда:

- 1)  $f(t) : \prod_{i=1}^k (t \alpha_i)^{m_i};$
- 2)  $m_1 + \cdots + m_k \le n$ . В частности,  $k \le n$ .

Доказательство. 1) • Для любых  $i \neq j$ , очевидно,  $((t - \alpha_i)^{m_i}, (t - \alpha_i)^{m_j}) \sim 1$ .

• Для каждого  $i \in \{1, \dots, k\}$  имеем  $f : (t - \alpha_i)^{m_i}$ . Теперь пункт 1 следует из Свойства 4 взаимно простых многочленов.

2) Прямое следствие пункта 1.