# **Introduction to Machine Learning**

# Bernoulli Loss



# Learning goals

- Know the Bernoulli loss and related losses (log-loss, logistic loss, Binomial loss)
- Derive the risk minimizer
- Derive the optimal constant model
- Understand the connection between log-loss and entropy splitting



## **BERNOULLI LOSS**

$$L(y, f(\mathbf{x})) = \log(1 + \exp(-y \cdot f(\mathbf{x}))) \text{ for } y \in \{-1, +1\}$$
  
 $L(y, f(\mathbf{x})) = -y \cdot f(\mathbf{x}) + \log(1 + \exp(f(\mathbf{x}))) \text{ for } y \in \{0, 1\}$ 

- Two equivalent formulations for different label encodings
- Negative log-likelihood of Bernoulli model, e.g., logistic regression
- Convex, differentiable
- Pseudo-residuals (0/1 case):  $\tilde{r} = y \frac{1}{1 + \exp(-f(\mathbf{x}))}$ Interpretation: *L*1 distance between 0/1-labels and posterior prob!





## **BERNOULLI LOSS ON PROBABILITIES**

If scores are transformed into probabilities by the logistic function  $\pi(\mathbf{x}) = (1 + \exp(-f(\mathbf{x})))^{-1}$  (or equivalently if  $f(x) = \log\left(\frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})}\right)$  are the log-odds of  $\pi(\mathbf{x})$ ), we arrive at another equivalent formulation of the loss, where y is again encoded as  $\{0,1\}$ :

 $L(y, \pi(\mathbf{x})) = -y \log (\pi(\mathbf{x})) - (1 - y) \log (1 - \pi(\mathbf{x})).$ 



 $\pi(x)$ 

#### **BERNOULLI LOSS: RISK MINIMIZER**

The risk minimizer for the Bernoulli loss defined for probabilistic classifiers  $\pi(\mathbf{x})$  and on  $y \in \{0, 1\}$  is

$$\pi^*(\mathbf{x}) = \eta(\mathbf{x}) = \mathbb{P}(y = 1 \mid \mathbf{x} = \mathbf{x}).$$

**Proof:** We can write the risk for binary *y* as follows:

$$\mathcal{R}(t) = \mathbb{E}_{x} \left[ L(1, \pi(\mathbf{x})) \cdot \eta(\mathbf{x}) + L(0, \pi(\mathbf{x})) \cdot (1 - \eta(\mathbf{x})) \right],$$

with  $\eta(\mathbf{x}) = \mathbb{P}(y=1 \mid \mathbf{x}=\mathbf{x})$  (see chapter on the 0-1-loss for more details). For a fixed  $\mathbf{x}$  we compute the point-wise optimal value c by setting the derivative to 0:

$$\frac{\partial}{\partial c} \left( -\log c \cdot \eta(\mathbf{x}) - \log(1 - c) \cdot (1 - \eta(\mathbf{x})) \right) = 0$$

$$-\frac{\eta(\mathbf{x})}{c} + \frac{1 - \eta(\mathbf{x})}{1 - c} = 0$$

$$\frac{-\eta(\mathbf{x}) + \eta(\mathbf{x})c + c - \eta(\mathbf{x})c}{c(1 - c)} = 0$$

$$c = \eta(\mathbf{x}).$$



## **BERNOULLI LOSS: RISK MINIMIZER / 2**

The risk minimizer for the Bernoulli loss defined on  $y \in \{-1, 1\}$  and scores  $f(\mathbf{x})$  is the point-wise log-odds:

$$f^*(\mathbf{x}) = \log\left(\frac{\mathbb{P}(y \mid \mathbf{x} = \mathbf{x})}{1 - \mathbb{P}(y \mid \mathbf{x} = \mathbf{x})}\right).$$

The function is undefined when  $P(y \mid \mathbf{x} = \mathbf{x}) = 1$  or  $P(y \mid \mathbf{x} = \mathbf{x}) = 0$ , but predicts a smooth curve which grows when  $P(y \mid \mathbf{x} = \mathbf{x})$  increases and equals 0 when  $P(y \mid \mathbf{x} = \mathbf{x}) = 0.5$ .

**Proof:** As before we minimize

$$\mathcal{R}(f) = \mathbb{E}_{x} \left[ L(1, f(\mathbf{x})) \cdot \eta(\mathbf{x}) + L(-1, f(\mathbf{x})) \cdot (1 - \eta(\mathbf{x})) \right]$$
$$= \mathbb{E}_{x} \left[ \log(1 + \exp(-f(\mathbf{x}))) \eta(\mathbf{x}) + \log(1 + \exp(f(\mathbf{x}))) (1 - \eta(\mathbf{x})) \right]$$



#### BERNOULLI LOSS: RISK MINIMIZER / 3

For a fixed  $\mathbf{x}$  we compute the point-wise optimal value c by setting the derivative to 0:

$$\begin{split} \frac{\partial}{\partial c} \log(1 + \exp(-c))\eta(\mathbf{x}) + \log(1 + \exp(c))(1 - \eta(\mathbf{x})) &= 0 \\ -\frac{\exp(-c)}{1 + \exp(-c)}\eta(\mathbf{x}) + \frac{\exp(c)}{1 + \exp(c)}(1 - \eta(\mathbf{x})) &= 0 \\ -\frac{\exp(-c)}{1 + \exp(-c)}\eta(\mathbf{x}) + \frac{1}{1 + \exp(-c)}(1 - \eta(\mathbf{x})) &= 0 \\ -\eta(\mathbf{x}) + \frac{1}{1 + \exp(-c)} &= 0 \\ \eta(\mathbf{x}) &= \frac{1}{1 + \exp(-c)} \\ c &= \log\left(\frac{\eta(\mathbf{x})}{1 - \eta(\mathbf{x})}\right) \end{split}$$



# **BERNOULLI: OPTIMAL CONSTANT MODEL**

The optimal constant probability model  $\pi(\mathbf{x}) = \theta$  w.r.t. the Bernoulli loss for labels from  $\mathcal{Y} = \{0,1\}$  is:

$$\hat{\theta} = \operatorname{arg\,min}_{\theta} \mathcal{R}_{\mathsf{emp}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)}$$

Again, this is the fraction of class-1 observations in the observed data. We can simply prove this again by setting the derivative of the risk to 0 and solving for  $\theta$ .



# BERNOULLI: OPTIMAL CONSTANT MODEL / 2

The optimal constant score model  $f(\mathbf{x}) = \theta$  w.r.t. the Bernoulli loss labels from  $\mathcal{Y} = \{-1, +1\}$  or  $\mathcal{Y} = \{0, 1\}$  is:

$$\hat{ heta} = \mathop{\mathsf{arg\,min}}_{ heta} \mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}) = \log rac{n_+}{n_-} = \log rac{n_+/n}{n_-/n}$$



This again shows a tight (and unsurprising) connection of this loss to log-odds.

Proving this is also a (quite simple) exercise.



## **BERNOULLI-LOSS: NAMING CONVENTION**

We have seen three loss functions that are closely related. In the literature, there are different names for the losses:

$$L(y, f(\mathbf{x})) = \log(1 + \exp(-yf(\mathbf{x}))) \text{ for } y \in \{-1, +1\}$$
  
 $L(y, f(\mathbf{x})) = -y \cdot f(\mathbf{x}) + \log(1 + \exp(f(\mathbf{x}))) \text{ for } y \in \{0, 1\}$ 

are referred to as Bernoulli, Binomial or logistic loss.

$$L(y, \pi(\mathbf{x})) = -y \log (\pi(\mathbf{x})) - (1 - y) \log (1 - \pi(\mathbf{x}))$$
 for  $y \in \{0, 1\}$ 

is referred to as cross-entropy or log-loss.

We usually refer to all of them as **Bernoulli loss**, and rather make clear whether they are defined on labels  $y \in \{0, 1\}$  or  $y \in \{-1, +1\}$  and on scores  $f(\mathbf{x})$  or probabilities  $\pi(\mathbf{x})$ .



## BERNOULLI LOSS MIN = ENTROPY SPLITTING

When fitting a tree we minimize the risk within each node  $\mathcal N$  by risk minimization and predict the optimal constant. Another approach that is common in literature is to minimize the average node impurity  $Imp(\mathcal N)$ .

**Claim:** Entropy splitting  $\mathrm{Imp}(\mathcal{N}) = -\sum_{k=1}^g \pi_k^{(\mathcal{N})} \log \pi_k^{(\mathcal{N})}$  is equivalent to minimize risk measured by the Bernoulli loss.

Note that 
$$\pi_k^{(\mathcal{N})} := \frac{1}{n_{\mathcal{N}}} \sum_{(\mathbf{x}, y) \in \mathcal{N}} [y = k].$$

**Proof:** To prove this we show that the risk related to a subset of observations  $\mathcal{N} \subseteq \mathcal{D}$  fulfills

$$\mathcal{R}(\mathcal{N}) = n_{\mathcal{N}} \mathsf{Imp}(\mathcal{N}),$$

where  $\mathcal{R}(\mathcal{N})$  is calculated w.r.t. the (multiclass) Bernoulli loss

$$L(y, \pi(\mathbf{x})) = -\sum_{k=1}^{g} [y = k] \log (\pi_k(\mathbf{x})).$$



# BERNOULLI LOSS MIN = ENTROPY SPLITTING /2

$$\mathcal{R}(\mathcal{N}) = \sum_{(\mathbf{x}, y) \in \mathcal{N}} \left( -\sum_{k=1}^{g} [y = k] \log \pi_k(\mathbf{x}) \right)$$

$$\stackrel{(*)}{=} -\sum_{k=1}^{g} \sum_{(\mathbf{x}, y) \in \mathcal{N}} [y = k] \log \pi_k^{(\mathcal{N})}$$

$$= -\sum_{k=1}^{g} \log \pi_k^{(\mathcal{N})} \underbrace{\sum_{(\mathbf{x}, y) \in \mathcal{N}} [y = k]}_{n_{\mathcal{N}} \cdot \pi_k^{(\mathcal{N})}}$$

$$= -n_{\mathcal{N}} \sum_{k=1}^{g} \pi_k^{(\mathcal{N})} \log \pi_k^{(\mathcal{N})} = n_{\mathcal{N}} \operatorname{Imp}(\mathcal{N}),$$

where in  $^{(*)}$  the optimal constant per node  $\pi_k^{(\mathcal{N})} = \frac{1}{n_{\mathcal{N}}} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{N}} [y = k]$  was plugged in.

