DGL-BASIERTES SEIR GRAPHENMODELL

CCEES SEMINAR - SOSE 2020 - PROF. DR. KURT ROTH

ALEXANDER KUNKEL TOBIAS RICHTER LAILA SCHMIDT DANIEL MAIRHOFER

JULY 12, 2020

AUFBAU DES MODELS

GRAPHENNETZWERK

Graph:

- Knoten: geographisch/ politisch getrennte Populationen
- Kanten: Austausch zwischen Populatinen

POPULATION

- gut durchmischtes System
- 5 Kompartmente:
 - ► S (susceptible)
 - ► E (exposed)
 - ► I (infected)
 - ► R (recovered)
 - ► D (deceased)
- SEIR Model: Übergang zwischen Kompartmenten

SEIR MODEL

DGL Parameter:

- Verbreitungsrate (Wahrscheinlichkeit Weitergabe)
- Inkubationszeit
- Krankheitsdauer
- Fatalität
- demographische Parameter: Geburten- und Sterberate
- Dauer bis Verlust von Immunität

KANTEN

Austauschgewichte

- abhängig vom Knoten
- abhängig vom Kompartment

PARAMTERRAUM

- Netzwerkgröße
- Vernetzungsgrad
- Netzwekstruktur
- DGL Paramter
- Initialisierung der Austauschparamter
- Initialisierung der Anfangspopulationen

IMPLEMENTIERTE FEATURES

- Lockdown
- lokaler Lockdown
- Impfung
- konstante Infektionsquelle
- einzelne Infektionsquelle

ANALYSE

ERKUNDEN DES SYSTEMS

- Vergleich der globalen Netzwerk Werte mit einem Referenzsystem
- Ausbreitung der Krankheit im Netzwerk
- ...

VERGLEICH DER GLOBALEN NETZWERK WERTE MIT EINEM REFERENZSYSTEM

Referenzsystem:

- Anfangsbedingungen
 - = Addition der Populationen an den Knoten
- DGL Paramter
 - = Mittelwerte von den Knoten Parametern

NETZWERKTOPOLOGIE UND DYNAMIK

NETZWERKTOPOLOGIEN

Verschiedene Modelle zur Erzeugung von zufälligen Netzwerken:

- Erdos-Renyi
 - ► Parameter:
 - Anzahl der Knoten V (num_vertices)
 - Mittlere Kantenanzahl \bar{k} (mean_degree)
 - ▶ $p_k \sim Bin(N, k)$
 - $ightharpoonup \bar{L} = \frac{V\bar{k}}{2}$
 - ► Small World Eigenschaft
- Bollobas-Riordan
 - ► Skalenfreies Netzwerk: $p_b \sim k^{-\gamma}$
 - Momente $\langle k^{\gamma-1} \rangle$ größer $\gamma 1$ von p_k sind nicht endlich
 - ▶ Parameter:
 - $\alpha = 0.2, \beta = 0.8, \gamma = 0., \delta_{in} = 0., \delta_{out} = 0.5$

In Utopia sind Netzwerkgeneratoren über Boost Graph Library implementiert.

NETZWERKTOPOLOGIEN

Verschiedene Modelle zur Erzeugung von zufälligen Netzwerken:

- Erdos-Renyi
 - Parameter:
 - Anzahl der Knoten V (num vertices)
 - Mittlere Kantenanzahl \bar{k} (mean degree)
 - ightharpoonup $p_k \sim Bin(N, k)$
 - $ightharpoonup \overline{L} = \frac{V\overline{k}}{2}$
 - ► Small World Eigenschaft

■ Bollobas-Riordan

- ► Skalenfreies Netzwerk: $p_k \sim k^{-\gamma}$
- ► Momente $< k^{\gamma-1} >$ größer $\gamma 1$ von p_k sind nicht endlich
- ▶ Parameter:

$$\alpha = 0.2, \beta = 0.8, \gamma = 0., \delta_{in} = 0., \delta_{out} = 0.5$$

In Utopia sind Netzwerkgeneratoren über Boost Graph Library implementiert.

ZUSÄTZLICHE EIGENSCHAFTEN

- Initialisierung der Population auf Knoten
 - ► Standard: Exponentiell verteilte Population

- Kantengewichte:
 - ► Zufälliges Gewicht w_{ii} = [0, init_weight]
 - ► Standard: init_weight= 0.01

- Randomisierung der Infektionsparameter auf Knoten
 - ightharpoonup Standard: β randomisiert

ZUSÄTZLICHE EIGENSCHAFTEN

- Initialisierung der Population auf Knoten
 - ► Standard: Exponentiell verteilte Population

- Kantengewichte:
 - ightharpoonup Zufälliges Gewicht $w_{ii} = [0, init_weight]$
 - ► Standard: init_weight= 0.01

- Randomisierung der Infektionsparameter auf Knoten
 - Standard: β randomisiert

ZUSÄTZLICHE EIGENSCHAFTEN

- Initialisierung der Population auf Knoten
 - Standard: Exponentiell verteilte Population

- Kantengewichte:
 - ightharpoonup Zufälliges Gewicht $w_{ii} = [0, init_weight]$
 - ► Standard: init_weight= 0.01

- Randomisierung der Infektionsparameter auf Knoten
 - Standard: β randomisiert

NETZWERKTOPOLOGIE UND DYNAMIK

ERDOS-RENYI

ERDOS-RENYI: NETZWERK

Figure: Erdos-Renyi Netzwerk mit $V=40, \, \bar{k}=2$ für den letzten simulierten Zeitpunkt ($t=10^4$)

ERDOS-RENYI: NETZWERKDYNAMIK

Simulation: Erdos-Renyi Derivative Network Animation

ERDOS-RENYI: KNOTENANZAHL

Gesamtpopulation für variierte Knotenanzahl V = 12,100:

Figure: Knotenanzahl V= 12 und mittlere Kantenzahl $\bar{k}=$ 2. Standardeinstellungen.

Figure: Knotenanzahl V=100 und mittlere Kantenzahl $\bar{k}=2$. Standardeinstellungen.

Timestep

- Geringfügig bessere Übereinstimmung mit dem Referenzmodell für höhere V
- Höhere Robustheit gegenüber Seed

ERDOS-RENYI: KNOTENANZAHL

Prozentuale Abweichung der Infektionswellen (Sim/Ref)

Figure: Fehlerbalken: Zweifache Standardabweichung. $\bar{k}=5$. Fixe Infektionsparameter, sonst Standardeinstellungen.

ERDOS-RENYI: MITTLERE KANTENZAHL

Gesamtpopulation für konstantes V = 12 aber $\bar{k} = \{2, 6\}$

Figure: $\bar{k} = 2$, Standardeinstellungen.

Figure: $\bar{k} = 6$, Standardeinstellungen.

- \blacksquare Höheres \bar{k} reduziert Abweichung zu Referenzmodell
- Robustheit gegenüber Seed ist erhöht

ERDOS-RENYI: MITTLERE KANTENZAHL

Prozentuale Abweichung der Infektionswellen (Sim/Ref)

 $\textbf{Figure:} \ \textbf{Fehlerbalken:} \ \textbf{Zweifache Standardabweichung.} \ \textbf{\textit{V}} = \textbf{100.} \ \textbf{Standardeinstellungen.}$

16

ERDOS-RENYI: MITTLERE KANTENZAHL

Vergleich der ersten Infektionswelle für verschiedene Seeds

Figure: Darstellung der ersten Infektionswelle aus dem Gesamtpopulationsplot. $V=100, \bar{k}=2.$ Standardeinstellungen.

NETZWERKTOPOLOGIE UND DYNAMIK

BOLLOBAS-RIORDAN

BOLLOBAS-RIORDAN: NETZWERK

Figure: Bollobas-Riordan Netzwerk mit $V=40, \bar{k}=2$ für den letzten simulierten Zeitpunkt ($t=10^4$)

BOLLOBAS-RIORDAN: NETZWERKDYNAMIK

Simulation: Bollobas-Riordan Derivative Network Animation

BOLLOBAS-RIORDAN

Sum of SEIR populations across graph

Figure: Gesamtpopulation für V = 40. Standardeinstellungen.

BOLLOBAS-RIORDAN: KNOTENANZAHL

Prozentuale Abweichung der Infektionswellen (Sim/Ref)

Figure: Fehlerbalken: Zweifache Standardabweichung. Standardeinstellungen.

BOLLOBAS-RIORDAN: KONTENANZAHL

Vergleich der ersten Infektionswelle für verschiedene Seeds

Figure: Darstellung der ersten Infektionswelle aus dem Gesamtpopulationsplot. $V=100, \bar{k}=2.$ Standardeinstellungen.

VERGLEICH ERDOS-RENYI UND BOLLOBAS-RIORDAN

Figure: Erdos-Renyi mit $V=100, \bar{k}=2.$ Standardeinstellungen.

Sum of SEIR populations across graph

Figure: Bollobas-Riordan mit V = 100. Standardeinstellungen.

STABILITÄT DES MODELLS

STABILITÄT DES MODELLS

- Differentialgleichung dominiert Graphenmodell
- Simulation läuft recht zügig in Fixpunkt der DGL

Figure: Suszeptible-Infektiöse Phasendiagram für Erdos-Renyi mit $V=40, \bar{k}=2$. Standardeinstellungen.

Figure: Infektiöse-Recovered Phasendiagram für Erdos-Renyi mit $V=40, \bar{k}=2$. Standardeinstellungen.

■ Beobachtbar für jede Parameterkonstellation.

STABILITÄT DES MODELLS

- Differentialgleichung dominiert Graphenmodell
- Simulation läuft recht zügig in Fixpunkt der DGL

Figure: Suszeptible-Infektiöse Phasendiagram für Erdos-Renvi mit V = 40, $\bar{k} = 2$, Standardeinstellungen.

Figure: Infektiöse-Recovered Phasendiagram für Erdos-Renyi mit $V=40, \bar{k}=2$. Standardeinstellungen.

■ Beobachtbar für jede Parameterkonstellation.

INVERTIERTE ANFANGSBEDINGUNGEN

- Population startet im immunen Zustand
- Sukzessive geht Immunität verloren

Sum of SEIR populations across graph

Figure: Erdos-Renyi mit $V = 40, \bar{k} = 2$

VARIIERTE INITIALISIERUNG DER KANTENGEWICHTE

Figure: Erdos-Renyi für $V=40, \bar{k}=2$. Standardeinstellungen.

VARIJERTE INITIALISIERUNG DER KANTENGEWICHTE

Vergleich der Infektionswellen (Proz. Abweichung: I_{max} , T_{max}):

Figure: Erdos-Renyi mit V=50, $\bar{k}=2$. Standardeinstellung mit variierter Initialisierung der Kantengewichte.

VARIIERTE MOBILITÄT VON INFIZIERTEN

Figure: Erdos-Renyi mit V = 50, $\bar{k} = 2$ und i weight= 0.1.

Figure: Erdos-Renyi mit V = 50, $\bar{k} = 2$ und $i_weight = 0.5$.

- Eingeschränkte Mobilität von Infizierten lässt Dynamik im Wesentlichen unverändert
- Leichte Abweichungen zu Referenzmodell sind beobachtbar

VARIJERTE MOBILITÄT VON INFIZIERTEN

Vergleich der Infektionswellen (Proz. Abweichung: I_{max} , T_{max}):

Figure: Erdos-Renyi für V=50, $\bar{k}=2$. Standardeinstellungen mit Sweep über die Gewichtung der Infizierten.