

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 0 924 209 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
02.05.2003 Bulletin 2003/18

(21) Application number: **98310461.3**

(22) Date of filing: **18.12.1998**

(51) Int Cl.7: **C07D 403/06, A61K 31/415,**
C07D 233/10, C07D 233/20,
C07D 233/22, C07D 401/04,
C07D 401/14, C07D 403/04,
C07D 405/04, C07D 405/10,
C07D 405/14, C07D 409/04,
C07D 409/10, C07D 409/14,
C07D 413/04, A61K 31/42

(54) Hypoglycemic imidazoline compounds

Hypoglykämische imidazoline derivate

Imidazolines hypoglycémiques

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE
Designated Extension States:
AL LT LV RO SI

(30) Priority: **19.12.1997 US 68195 P**

(43) Date of publication of application:
23.06.1999 Bulletin 1999/25

(60) Divisional application:
02020546.4 / 1 266 897

(73) Proprietor: **ELI LILLY AND COMPANY**
Indianapolis, Indiana 46285 (US)

(72) Inventors:

- **Jirousek, Michael Robert**
Antioch, Illinois 60002 (US)
- **Paal, Michael**
22335 Hamburg (DE)
- **Rühter, Gerd**
21129 Hamburg (DE)
- **Schotten, Theo**
21444 Vierhufen (DE)
- **Stenzel, Wolfgang**
21465 Reinbek (DE)
- **Takeuchi, Kumiko**
Indianapolis, Indiana 46268 (US)

(74) Representative: **Burnside, Ivan John et al**
Eli Lilly and Company Limited
Lilly Research Centre
Erl Wood Manor
Windlesham, Surrey GU20 6PH (GB)

(56) References cited:

EP-A- 0 125 410	EP-A- 0 133 244
EP-A- 0 846 688	WO-A-92/06972
WO-A-92/20642	WO-A-95/15326
WO-A-96/03387	GB-A- 2 262 739
US-A- 3 546 242	US-A- 3 649 640
US-A- 5 017 584	US-A- 5 140 034

- **CHEMICAL ABSTRACTS, vol. 93, no. 19, 10 November 1980 Columbus, Ohio, US; abstract no. 186079f, V.KELAREV ET AL: "Synthesis and properties of azoles and their derivatives.32.Synthesis and some reactions of hydrochlorides of indolylcarboxylic acid iminoesters" page 636; XP002097718 & KHIM. GETEROTSIKL. SOEDIN., no. 5, 1980, pages 645-650,**
- **CHEMICAL ABSTRACTS, vol. 120, no. 7, 14 February 1994 Columbus, Ohio, US; abstract no. 77192t, V.I. KELAREV ET AL: "Synthesis of azoles and diazoles containing 1-methylindole fragments" page 871; XP002097719 & IZV. VYSSH. UCHEBN. ZAVED. KHIM. KHIM. TEKHNOL., vol. 36, no. 3, 1993, pages 49-55,**

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

EP 0 924 209 B1

- CHEMICAL ABSTRACTS, vol. 92, no. 9, 3 March 1980 Columbus, Ohio, US; abstract no. 76203p, D.R. SHRIDHARET AL: "Benzofuran derivatives. Part II. Synthesis and biological activity of some new 2-benzofurancarboxamidine derivatives" page 649; XP002097720 & INDIAN J. CHEM. SECT B, vol. 18b, no. 3, 1979, pages 254-256 ,
- CHEMICAL ABSTRACTS, vol. 95, no. 19, 9 November 1981 Columbus, Ohio, US; abstract no. 169050p, V.I. KELAREV ET AL: "Preparation of 2-substituted delta-2 oxazolines from indolylcarboxylic acid imino ester hydrochlorides" page 729; XP002097721 & ZH. VSES. KHIM. O-VA, vol. 26, no. 4, 1981, pages 457-458,

DescriptionField of the Invention

5 [0001] This invention relates to the use of certain imidazoline compounds and analogues thereof for the treatment of diabetes, diabetic complications, metabolic disorders, or related diseases where impaired glucose disposal is present.

Background of the Invention

10 [0002] It is generally accepted that the control of blood glucose levels for the treatment of patients diagnosed with type II diabetes will have a beneficial effect. Established oral therapies for treating type II diabetes either improve insulin action or cause enhanced insulin secretion. The agents currently approved as therapies for type II diabetes patients that cause an enhanced insulin secretion contain a sulphonylurea moiety. These compounds act by depolarising the
15 beta cell by modulating closure of the K-ATP channel. Additional compounds that act at the K-ATP channel are under consideration for treatment of type II diabetes and that are not sulphonylurea compounds and have a fast onset of activity and short duration of action such as (-)-N-(trans-4-isopropylcyclohexanecarbonyl)-D-phenylalanine (A-4166) (Brit. J. Pharm. 1997, 120, 137-145).

20 [0003] All agents that function at the molecular level by modulating the K-ATP channel have the potential for inducing hypoglycemia. Hypoglycemia is the major cause of adverse reactions in patients receiving sulphonylurea therapy and the prevalence of hypoglycemic episodes can be as high as 20% of patients. WO 92/06972 relates to the use of certain 2-(N substituted indol-2-yl) imidazole, 2-(N-substituted indol-2-yl)-3, 4, 5, 6-tetrahydro pyr imidine and 2-(N-substituted indol-2-yl)-4, 5, 6, 7-terra hydro-1H-1, 3-diazepine compounds in the treatment of diabetes. Compounds that potentiate insulin secretion under high glucose conditions and have little or no effect at low blood glucose levels would offer a
25 distinct advantage in the treatment of type II diabetes.

Summary of the Invention

30 [0004] Compounds for use according to the present invention potentiate the secretion of insulin from beta cells under high glucose conditions and have minimal effect under low glucose conditions.

[0005] The compounds are also operable in additional disease states where impaired glucose disposal is present. For example, these include cardiovascular disease where above normal glucose levels are present or initial insulin resistance has occurred. The compounds can also be used to treat post operative insulin resistance induced by anaesthesia.

35 [0006] The present invention provides use of compounds of the following Formula (I) in the treatment of diabetes, especially Type II diabetes, diabetic complications, and metabolic disorders or related diseases in particular where impaired glucose disposal is present.

wherein

X is -O-, -S-, or -NR⁵-;

R⁵ is hydrogen or C₁₋₈ alkyl;

R¹, R^{1'}, R², and R³ are independently hydrogen or C₁₋₈ alkyl;

R¹ and R² optionally together form a bond and R^{1'} and R³ are independently hydrogen or C₁₋₈ alkyl;

R¹ and R² optionally combine together with the carbon atoms to which they are attached form a C₃₋₇ carbocyclic ring and R^{1'} and R³ are independently hydrogen or C₁₋₈ alkyl;

R¹ and R^{1'} together with the carbon atom to which they are attached optionally combine to form a C₃₋₇ spirocarbocyclic ring and R² and R³ are independently hydrogen or C₁₋₈ alkyl;

R² and R³ together with the carbon atom to which they are attached optionally combine to form a C₃₋₇ spirocarbocyclic ring and R¹ and R^{1'} are independently hydrogen or C₁₋₈ alkyl;

n is 0, 1, or 2;

R⁴ is

15

20

25

30

35

Y is -O-, -S-, or -NR⁸-;

Y' is -O- or -S-;

R⁶ and R⁷ are independently hydrogen, C₁₋₈ alkyl, C₃₋₇ cycloalkyl, C₁₋₈ alkoxy, C₁₋₈ alkylthio, halo C₁₋₈ alkylthio, C₁₋₈ alkylsulfinyl, C₁₋₈ alkylsulfonyl, C₃₋₇ cycloalkoxy, aryl-C₁₋₈ alkoxy, halo, halo-C₁₋₈ alkyl, halo-C₁₋₈ alkoxy, nitro, -NR¹⁰R¹¹, -CONR¹⁰R¹¹, aryl C₁₋₈ alkyl, optionally substituted heterocyclyl, optionally substituted phenyl, optionally substituted naphthyl, optionally halo substituted acylamino, cyano, hydroxy, COR¹², halo C₁₋₈ alkylsulfinyl, or halo C₁₋₈ alkylsulfonyl, or alkoxyalkyl of the formula

40

45

where

p is 0, 1, 2, 3, or 4; and

q is 1, 2, 3, 4, or 5;

50

R¹² is C₁₋₈ alkyl or optionally substituted phenyl;

R⁸ is hydrogen, C₁₋₈ alkyl, halo-C₁₋₈ alkyl, optionally substituted phenyl, optionally substituted heterocyclyl, COO C₁₋₈ alkyl, optionally substituted COaryl, COC₁₋₈ alkyl, SO₂C₁₋₈ alkyl, optionally substituted SO₂ aryl, optionally substituted phenyl-C₁₋₈ alkyl, CH₃(CH₂)_pO-(CH₂)_qO-;

55

R⁹ is hydrogen, halo, C₁₋₈ alkyl, halo C₁₋₈ alkyl, C₁₋₈ alkylthio, halo C₁₋₈ alkylthio, C₃₋₇ cycloalkylthio, optionally substituted arylthio or heteroarylthio, C₁₋₈ alkoxy, C₃₋₇ cycloalkoxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, or optionally substituted aryl or heteroaryl, C₃₋₇ cycloalkyl, halo C₃₋₇ cycloalkyl, C₃₋₇ cycloalkenyl, cyano, COOR¹⁰, CONR¹⁰R¹¹ or NR¹⁰R¹¹, C₂₋₆ alkenyl, optionally substituted heterocyclyl, optionally substituted aryl C₁₋₈ alkyl, optionally substituted heteroaryl C₁₋₈ alkyl in which the alkyl group can be substituted

by hydroxy, or C₁₋₈ alkyl substituted by hydroxy,

R¹⁰ and R¹¹ are independently hydrogen, C₁₋₈ alkyl, optionally substituted aryl C₁₋₈ alkyl, optionally substituted phenyl, or R¹⁰ and R¹¹ together with the nitrogen atom to which they are attached may combine to form a ring with up to six carbon atoms which optionally may be substituted with up to two C₁₋₈ alkyl groups or one carbon atom

5 may be replaced by oxygen or sulfur;

R¹⁴ and R¹⁶ are independently hydrogen, halo, C₁₋₈ alkyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkoxy, C₃₋₇ cycloalkylC₁₋₈ alkoxy, halo-C₁₋₈ alkyl, halo-C₁₋₈ alkoxy, C₁₋₈ alkoxy, carbo(C₁₋₈)alkoxy, optionally substituted aryl, or optionally substituted heteroaryl;

R¹⁵ and R¹⁷ are independently hydrogen, halo, C₁₋₈ alkoxy, C₃₋₇-cycloalkyl, C₃₋₇ cycloalkylC₁₋₈ alkoxy, C₁₋₈ alkyl, C₃₋₇ cycloalkoxy, hydroxy, halo C₁₋₈ alkoxy, carbo(C₁₋₈)alkoxy, optionally substituted phenyl, optionally substituted phenyl-C₁₋₈ alkyl, optionally substituted phenoxy, optionally substituted phenyl-C₁₋₈ alkoxy, (tetrahydropyran-2-yl)methoxy, C₁₋₈ alkyl-S(O)_m⁻, optionally substituted aryl-C₁₋₈ alkyl-S(O)_m⁻, CH₃(CH₂)_p-Z¹-(CH₂)_q-Z²⁻, or Z³-(CH₂)_{q'}-Z²⁻;

15 where:

m is 0, 1 or 2;

m' is 0, 1, or 2;

q' is 0, 1, 2, 3, 4, or 5;

20 Z¹ and Z² are independently a bond, O, S, SO, SO₂, sulphoximino, or NR¹⁰; and

Z³ is hydroxy, NR¹⁰R¹¹, or SH;

provided that when R¹, R^{1'}, R² and R³ are all hydrogen; n is 0; R⁴ is naphthyl; and R¹⁴, R¹⁵ and R¹⁶, or R¹⁵, R¹⁶ and R¹⁷ are all hydrogen, then R¹⁷ or R¹⁴, respectively, is other than halo, methoxy, or C₁₋₆ alkyl;

25 and pharmaceutically acceptable salts and esters thereof.

[0007] One embodiment of the present invention is the use of a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof, in the manufacture of a medicament for treating diabetes or a related disorder.

[0008] Another embodiment of the present invention is a method of treating diabetes or a related disorder, which comprises administering to a patient a compound of formula (I), or a pharmaceutically acceptable salt thereof.

Detailed Description of the Invention

[0009] In the above formulae, a "C₁₋₈ alkyl" group can be any alkyl group, branched or unbranched, containing up to eight carbon atoms, and examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertiary butyl, pentyl and hexyl. Preferred values of C₁₋₈ alkyl are C₁₋₆ alkyl, and most preferably methyl and ethyl.

[0010] A "C₃₋₇ cycloalkyl" group is cyclopropyl, cyclobutyl, cyclohexyl or cyclopentyl.

[0011] A "C₃₋₇ cycoalkyl-C₁₋₈ alkyl" group is one such cycloalkyl group attached through a C₁₋₈ alkyl group (an alkylene group) to the ring.

[0012] A "C₁₋₈ alkoxy" group is one of the above-mentioned C₁₋₈ alkyl groups attached through oxygen to the ring, and preferred examples are methoxy and ethoxy.

[0013] A "C₃₋₇ cycloalkoxy" group is a C₃₋₇ cycloalkyl group as mentioned above linked through an oxygen atom to the ring as, for example, cyclopropyloxy, cyclopentyloxy and cyclohexyloxy.

[0014] A "C₃₋₇ cycloalkylC₁₋₈ alkoxy" group is a C₃₋₇ cycloalkyl-C₁₋₈ alkyl as mentioned above linked through an oxygen atom to the ring as, for example, cyclohexylmethoxy.

[0015] A "carbo(C₁₋₈)alkoxy" group is a

group, for example a carbomethoxy or carboethoxy group.

[0016] An "optionally substituted aryl" group is a mononuclear or polynuclear aromatic hydrocarbon group, for example phenyl or naphthyl, which is optionally substituted with one or more, preferably one to three, substituents independently selected from, for example, C₁₋₈ alkyl, C₁₋₈ alkoxy, carboxy, hydroxy, cyano, halo, trifluoromethyl, SCH₃, nitro, phenyl, 3,4-methylenedioxy, amino, and phenyl which is optionally substituted by from one to three independently selected from the group consisting of C₁₋₈ alkyl, C₁₋₈ alkoxy, carboxy, hydroxy, cyano, halo, trifluoromethyl, SCH₃, nitro,

phenyl, 3,4-methylenedioxy, and amino.

[0017] "Heteroaryl" means about a four to about a ten membered aromatic mononuclear or polynuclear ring system in which one or more of the atoms in the ring is an element other than carbon, for example nitrogen, oxygen, or sulfur. Examples of heteroaryl groups include indolyl, imidazolyl, furanyl, thiophenyl, benzofuranyl, benzothiopenyl, pyridyl, quinolinyl, oxazolyl, pyrrolyl, isoxazolyl, pyrimidyl, thiazolyl, and benzimidazolyl. An "optionally substituted heteroaryl" group is a heteroaryl group which is optionally substituted with one or more, preferably one to three, substituents independently selected from, for example, C₁₋₈ alkyl, C₁₋₈ alkoxy, carboxy, hydroxy, cyano, halo, trifluoromethyl, SCH₃, nitro, phenyl, 3,4-methylenedioxy, amino, and phenyl which is optionally substituted by from one to three substituents independently selected from the group consisting of C₁₋₈ alkyl, C₁₋₈ alkoxy, carboxy, hydroxy, cyano, halo, trifluoromethyl, SCH₃, nitro, phenyl, 3,4-methylenedioxy, and amino.

[0018] "Optionally substituted heterocycl" means about a four to about a 10 membered mononuclear or polynuclear saturated or partially unsaturated ring system in which one or more of the atoms in the ring is an element other than carbon, for example nitrogen, oxygen, or sulfur, and which is optionally substituted with one or more, preferably one to three, substituents independently selected from, for example, C₁₋₈ alkyl, C₁₋₈ alkoxy, carboxy, hydroxy, cyano, halo, trifluoromethyl, SCH₃, nitro, phenyl, amino, and phenyl which is optionally substituted by from one to three substituents independently selected from the group consisting of C₁₋₈ alkyl, C₁₋₈ alkoxy, carboxy, hydroxy, cyano, halo, trifluoromethyl, SCH₃, nitro, phenyl, 3,4-methylenedioxy, and amino. Examples of heterocycl groups include piperidyl, imidazolidinyl, tetrahydrofuranlyl, morpholinyl, homopiperidinyl, tetrahydroquinolinyl, dioxanyl, and tetrahydranpyranyl.

[0019] An "aryl-C₁₋₈ alkyl" group can be, for example, optionally substituted phenyl-C₁₋₈ alkyl or optionally substituted naphthyl-C₁₋₈ alkyl, such optionally substituted groups being optionally substituted with one or more, preferably one to three, substituents selected from, for example, C₁₋₈ alkyl, C₁₋₈ alkoxy, carboxy, hydroxy, cyano, halo, trifluoromethyl, SCH₃, nitro and amino. A preferred aryl-C₁₋₈ alkyl group is optionally substituted phenyl-(CH₂)_x where x is 1 or 2, most preferably optionally substituted benzyl.

[0020] A halo group is preferably chloro, bromo or fluoro.

[0021] A halo C₁₋₈ alkyl or halo C₁₋₈ alkoxy group is a substituent in which one or more, preferably one to three, hydrogen atoms on the C₁₋₈ alkyl moiety is replaced by a halo atom, preferably chloro, bromo or fluoro.

[0022] An "alkoxyalkoxy" group is of the formula CH₃(CH₂)_p-O-(CH₂)_q-O-, where p is 0-4 and q is 1-5, preferred examples being those in which p is 0 or 1 and q is 1-3, especially methoxyethoxy, ethoxyethoxy, ethoxypropoxy, or methoxypropoxy.

[0023] A "C₁₋₈ acylamino" substituent is preferably of the formula RCONH- where RCO is any appropriate acid residue, RCO containing from 1-8 carbon atoms. Examples of R include C₁₋₈ alkyl, in particular methyl or ethyl, acetyl being the most preferred acyl group. R can also be aryl C₁₋₈ alkyl, especially benzyl, or R can be halo-C₁₋₈ alkyl, especially trifluoromethyl.

[0024] The "acyl" moiety, alone or in combination, is derived from an alkanoic acid containing from one to eight carbon atoms. The term "acyl" also includes moieties derived from an aryl carboxylic acid.

[0025] As used herein, the term "aryl coupling" shall mean any appropriate method for coupling two aromatic or heteroaromatic rings known to the artisan. Such methods may include, but are not limited to Stille coupling or Suzuki coupling methods. The Suzuki coupling is an especially preferred coupling method. The Suzuki method using Ar-B(OH)₂ and Pd catalyst is particularly preferred for use in the synthesis methods described herein. The artisan will appreciate that there are a variety of available Pd catalysts which are acceptable for the Suzuki coupling. One such Pd catalyst which is preferred for the methods described herein is Pd(PPh₃)₄.

[0026] The term "treating", as used herein, describes the management and care of a patient for the purpose of combating the disease, condition, or disorder and includes the administration of a compound of present invention to prevent the onset of the symptoms or complications, to alleviate the symptoms or complications, or to eliminate the disease, condition, or disorder.

[0027] In the above formula (I), the moiety X is preferably -NR⁵-, where R⁵ is hydrogen.

[0028] It is preferred that R¹ and R^{1'} are hydrogen or methyl, and R² and R³ are hydrogen, or R¹ and R^{1'} are both hydrogen, and R² and R³ are hydrogen or methyl, and that

50

55

of Formula (I) is an imidazolinyl group. Especially preferred imidazolines are those wherein R¹, R^{1'}, R² and R³ are each hydrogen; and R⁵ is hydrogen or an amino protecting group.

[0029] Further preferred compounds of Formula (I), as defined hereinabove, are those which have one or more of the following independently selected features:

- 5 (i) R¹ and R^{1'} are hydrogen and R² and R³ are hydrogen or methyl, more preferably R¹, R^{1'}, R² and R³ are hydrogen;
- (ii) X is -NH-;
- (iii) n is 0;
- (iv) R⁴ is

20 in which

R¹⁴ and R¹⁶ are independently selected from hydrogen, halo, or optionally substituted phenyl, naphthyl or thiienyl, more preferably from hydrogen, bromo, chloro, phenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 4-methylphenyl, 3-methylphenyl, 2-methylphenyl, 4-chlorophenyl, 3-chlorophenyl, 2-chlorophenyl, 2,3-dichlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 3,5-dichlorophenyl, 3-chloro-4-fluorophenyl, 5-chloro-2-thienyl, 2-thienyl, 3-thienyl, 4-(trifluoromethyl)phenyl, 2,4-dimethoxyphenyl, 4-methoxyphenyl, 3-methoxyphenyl, 2-methoxyphenyl, 3-(trifluoromethyl)phenyl, biphenyl, 4'-chlorobiphenyl, or 3-nitrophenyl, and most preferably from hydrogen, bromo, chloro, phenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 5-chloro-2-thienyl, 2,4-dichlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 3,5-dichlorophenyl, 4-methylphenyl, 3-chloro-4-fluorophenyl, 4-(trifluoromethyl)phenyl, 2-methoxyphenyl, or 4-methoxyphenyl,

R¹⁵ is selected from hydrogen, halo, methyl, or methoxy, more preferably hydrogen, and

35 R¹⁷ is selected from benzyloxy, propoxy, butoxy, H₃C(CH₂)_p-O-(CH₂)_q-O-, H₃C(CH₂)_p-S-(CH₂)_q-O-, H₃C(CH₂)_p-SO₂-(CH₂)_q-O-, (tetrahydropyran-2-yl)methoxy, cyclobutylmethoxy, cyclopentylmethoxy, or cyclohexylmethoxy, more preferably from H₃C-O-(CH₂)₂-O-, H₃CCH₂-O-(CH₂)₂-O-, H₃C-O-(CH₂)₃-O-, H₃CCH₂-O-(CH₂)₃-O-, or cyclobutylmethoxy, and most preferably H₃C-O-(CH₂)₂-O-;

- 40 (v) R⁴ is an indol-3-yl group of the formula

50 in which

R⁶ is selected from hydrogen, halo, nitro, cyano, C₁₋₆ alkyl, halo C₁₋₆ alkyl, halo C₁₋₆ alkoxy, or halo C₁₋₆ alkylthio, more preferably from chloro, fluoro, methyl, trifluoromethyl, or pentafluoroethyl which are in the 5-position of the indole nucleus.

R⁷ is hydrogen, halo, or methyl, more preferably in the 7-position of the indole nucleus, still more preferably

hydrogen or chloro, and most preferably hydrogen,

R⁸ is hydrogen, methyl, or optionally substituted benzyl, more preferably hydrogen or 2-chlorobenzyl, and most preferably hydrogen,

R⁹ is hydrogen, C₁₋₆ alkyl, halo C₁₋₆ alkyl, optionally substituted benzyl, optionally substituted phenyl, or optionally substituted thienyl, more preferably hydrogen, methyl, trifluoromethyl, benzyl, 3-chlorobenzyl, phenyl, 4-methylphenyl, 2,4-dichlorophenyl, 3-methyl-2-thienyl, 2,5-dimethyl-3-thienyl, 4-methoxyphenyl, 2-methoxyphenyl, 4-chlorophenyl, 3-chlorophenyl, 2-chlorophenyl, 2-methylphenyl, 3-methylphenyl, 3-thienyl, 2-bromophenyl, 4-chloro-3-methylphenyl, 2,4-dimethylphenyl, 2-(trifluoromethyl)phenyl, or 3-fluorophenyl, and most preferably hydrogen, methyl, benzyl, 3-chlorobenzyl, 4-chlorophenyl, 3-chlorophenyl, 2-chlorophenyl, 3-methylphenyl, 4-chloro-3-methylphenyl, 4-methoxyphenyl, or 2-methoxyphenyl;

(vi) R⁴ is a benzofuran-3-yl (Y=O) or benzothien-3-yl (Y=S) group

in which

R⁶ is selected from hydrogen, halo, C₁₋₆ alkyl, or halo C₁₋₆ alkyl, more preferably from chloro, fluoro, methyl, or trifluoromethyl which are in the 5-position of the bicyclic nucleus, and most preferably chloro,

R⁹ is C₁₋₆ alkyl or optionally substituted phenyl, more preferably methyl, 4-methylphenyl, 4-methoxyphenyl, 2-methoxyphenyl, 4-chlorophenyl, 3-chlorophenyl, or 2-chlorophenyl, and most preferably methyl or 2-chlorophenyl;

(vii) R⁴ is a benzofuran-2-yl group

in which R⁶ is selected from hydrogen, halo, C₁₋₆ alkyl, or optionally substituted phenyl, naphthyl, or thienyl, more preferably from bromo, phenyl, 4-methylphenyl, 5-chloro-2-thienyl, 2-thienyl, 3-thienyl, 3-trifluoromethylphenyl, 3-methoxyphenyl, 2-methoxyphenyl, 3,5-bistrifluoromethylphenyl, 4-fluorophenyl, or 3-fluorophenyl;

(viii) R⁴ is a benzothien-2-yl group

in which

R⁶ is selected from hydrogen, halo, C₁₋₆ alkyl, halo C₁₋₆ alkyl, C₁₋₆ alkoxy, and more preferably from hydrogen, chloro, bromo, methoxy, methyl, or trifluoromethyl, and

R⁹ is hydrogen, halo, C₁₋₄ alkoxy, C₁₋₄ alkyl, optionally substituted phenyl, naphthyl, or thiaryl, or an optionally substituted phenylmethyl, optionally substituted naphthylmethyl, optionally substituted thiaryl methyl, or optionally substituted pyridylmethyl group in which the methyl group is substituted by hydroxy:

(ix) R⁴ is a quinolin-3-yl group

10

15

in which

20 R¹⁴ is selected from hydrogen, halo, C₁₋₄ alkyl, C₁₋₄ alkoxy, or halo C₁₋₄ alkyl, more preferably from halo, C₁₋₄ alkyl, or trifluoromethyl, and most preferably from chloro, methyl, or trifluoromethyl in the 6-position of the quinoline nucleus, and

25 R¹⁶ is C₁₋₄ alkyl, halo C₁₋₄ alkyl, or optionally substituted phenyl, more preferably methyl, trifluoromethyl, phenyl, or 4-methylphenyl in the 2-position of the quinoline nucleus, and mostly preferably methyl.

[0030] Preferred compounds of the present invention include:

- 30 3-(4,5-Dihydroimidazol-2-yl)-2,5-dimethyl-1H-indole;
- 3-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-methyl-1H-indole;
- 3-(4,5-Dihydroimidazol-2-yl)-2-methyl-5-trifluoromethyl-1H-indole;
- 3-(4,5-Dihydroimidazol-2-yl)-2-methyl-5-pentafluoroethyl-1H-indole;
- 5,7-Dichloro-3-(4,5-dihydroimidazol-2-yl)-2-methyl-1H-indole;
- 3-(4,5-Dihydroimidazol-2-yl)-5-fluoro-2-methyl-1H-indole;
- 35 3-(4,5-Dihydroimidazol-2-yl)-2-methyl-5-nitro-1H-indole;
- 5-Bromo-3-(4,5-dihydroimidazol-2-yl)-2-methyl-1H-indole;
- 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-phenyl-1H-indole;
- 5,7-Dichloro-3-(4,5-dihydroimidazol-2-yl)-2-phenyl-1H-indole;
- 40 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-7-methyl-2-phenyl-1H-indole;
- 5-Chloro-2-(4-chlorophenyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
- 5-Chloro-2-(3-chlorophenyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
- 5-Chloro-2-(2-chlorophenyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
- 2-(4-Chlorophenyl)-5,7-dichloro-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
- 45 2-(2-Chlorophenyl)-3-(4,5-dihydroimidazol-2-yl)-5-fluoro-1H-indole;
- 2-(2-Bromophenyl)-5-chloro-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
- 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(3-fluorophenyl)-1H-indole;
- 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(4-iodophenyl)-1H-indole;
- 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(4-methylphenyl)-1H-indole;
- 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(3-methylphenyl)-1H-indole;
- 50 5,7-Dichloro-3-(4,5-dihydroimidazol-2-yl)-2-(3-methylphenyl)-1H-indole;
- 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2-methylphenyl)-1H-indole;
- 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2-trifluoromethylphenyl)-1H-indole;
- 2-(2,4-Dichlorophenyl)-3-(4,5-dihydroimidazol-2-yl)-5-fluoro-1H-indole;
- 3-(4,5-Dihydroimidazol-2-yl)-2-(2,4-dimethylphenyl)-5-fluoro-1H-indole;
- 55 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2,4-dimethylphenyl)-1H-indole;
- 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2,5-dimethylphenyl)-1H-indole;
- 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2-methoxyphenyl)-1H-indole;
- 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(4-methoxyphenyl)-1H-indole;

5-Chloro-2-(4-chloro-3-methylphenyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(4-(2-methoxyethoxy)phenyl)-1H-indole;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2-(2-methoxyethoxy)phenyl)-1H-indole;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
 5-Chloro-3-cyclohexyl-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
 5-Chloro-2-(cyclohexen-1-yl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
 2,5-Bistrifluoromethyl-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
 2-Benzyl-5-chloro-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
 5-Chloro-2-(2-chlorobenzyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
 5-Chloro-2-(3-chlorobenzyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
 5-Chloro-1-(2-chlorobenzyl)-3-(4,5-dihydroimidazol-2-yl)-2-methyl-1H-indole;
 5-Chloro-3-(4,5-dihydro-4,4-dimethylimidazol-2-yl)-2-methyl-1H-indole;
 5-Chloro-2-(2-chlorophenyl)-3-(4,5-dihydro-4,4-dimethylimidazol-2-yl)-1H-indole;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(pyridin-4-yl)-1H-indole;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(3-thienyl)-1H-indole;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2,5-dimethyl-3-thienyl)-1H-indole;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(3-methyl-2-thienyl)-1H-indole;
 2-[2-(2-Fluorophenyl)indol-3-yl]ethyl]-4,5-dihydroimidazole;
 2-[2-(2-Chlorophenyl)indol-3-yl]ethyl]-4,5-dihydroimidazole;
 2-[5-Chloro-2-(2-chlorophenyl)benzofuran-3-yl]-4,5-dihydro-1H-imidazole;
 2-[5-Chloro-2-(3-chlorophenyl)benzofuran-3-yl]-4,5-dihydro-1H-imidazole;
 2-[5-Chloro-2-methylbenzofuran-3-yl]-4,5-dihydro-1H-imidazole;
 2-[5-Fluoro-2-methylbenzofuran-3-yl]-4,5-dihydro-1H-imidazole;
 2-[2-(2-Chlorophenyl)-5-fluorobenzo[b]thiophen-3-yl]-4,5-dihydro-1H-imidazole;
 2-[5-Fluoro-2-(4-methylphenyl)benzo[b]thiophen-3-yl]-4,5-dihydro-1H-imidazole;
 2-(5-Chloro-2-methylbenzo[b]thiophen-3-yl)-4,5-dihydro-4,4-dimethyl-1H-imidazole;
 2-[7-Bromo-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-7-phenyl-naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(2-Fluorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(3-Fluorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(4-Fluorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(3,5-Dichlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-7-(4-methylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-7-(2-thienyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-7-(3-thienyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(5-Chloro-2-thienyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(2-Methoxyphenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(4-Methoxyphenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-7-(3-nitrophenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-Bromo-4-chloro-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-Bromo-7-(5-chloro-2-thienyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-Chloro-7-(5-chloro-2-thienyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-Chloro-3-(2-methoxyethoxy)-7-(3-thienyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-Chloro-3-(2-methoxyethoxy)-7-(4-methylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-Chloro-7-(4-chlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-Chloro-3-(2-methoxyethoxy)-7-(3-methoxyphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-Chloro-3-(2-methoxyethoxy)-7-(4-trifluoromethylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Ethoxyethoxy)-7-(4-methylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(4-Methylphenyl)-3-(tetrahydropyran-2-yl)methoxynaphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(4-Fluorophenyl)-3-(2-methylthioethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(4-Methoxyphenyl)-3-(3-methoxypropoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(5-Chloro-2-thienyl)-3-butoxynaphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(5-Chloro-2-thienyl)-3-(2-ethoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-Bromo-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-4-(4-methylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-(4-Chlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-(2,4-Dichlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-4-(4-methoxyphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;

2-[3-(2-Methoxyethoxy)-4-(3-methoxyphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-4-(2-methoxyphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-4-(2-thienyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-(5-Chloro-2-thienyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole:
 5 2-[4-Bromo-3-propoxynaphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-(3,4-Dichlorophenyl)-3-(2-ethoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-(3-Chloro-4-fluorophenyl)-3-(cyclobutylmethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 6-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methylquinoline;
 3-(4,5-Dihydro-1H-imidazol-2-yl)-2-phenylquinoline;
 10 2-(3-Phenylbenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole;
 2-(3-Butoxybenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole;
 (2-(4,5-Dihydro-1H-imidazol-2-yl)benzo[b]thiophen-3-yl)-(naphthalen-1-yl)methanol;
 (4-tert.-Butylphenyl)-(2-(4,5-dihydro-1H-imidazol-2-yl)benzo[b]thiophen-3-yl)methanol;
 15 2-(5-Phenylbenzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(5-(3,5-Bistrifluoromethylphenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(5-(4-Fluorophenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(5-(4-Methylphenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(5-(3-Thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 20 2-(5-(3-Fluorophenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(5-(3-Trifluoromethylphenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(5-(2-Thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(5-(5-Chloro-2-thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 25 2-(5-(3-Methoxyphenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(5-(2-Methoxyphenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(7-(4-Methylphenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(7-(3-Thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(7-(2-Thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole; and
 2-(4-(5-Chloro-2-thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole.

30 [0031] More preferred compounds of the present invention include:

5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-methyl-1H-indole;
 3-(4,5-Dihydroimidazol-2-yl)-2-methyl-5-trifluoromethyl-1H-indole;
 35 5-Chloro-2-(3-chlorophenyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
 5-Chloro-2-(2-chlorophenyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
 6-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methylquinoline;
 2-[3-(2-Methoxyethoxy)-7-(4-methylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-7-phenyl-naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 40 2-[7-(5-Chloro-2-thienyl)-3-(2-ethoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(2-Fluorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(4-Methoxyphenyl)-3-(3-methoxypropoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-(4-Chlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole; and
 2-[4-(2,4-Dichlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole.

45 [0032] By virtue of their acidic moieties, some of the compounds of Formula I include the pharmaceutically acceptable base addition salts thereof. Such salts include those derived from inorganic bases such as ammonium and alkali and alkaline earth metal hydroxides, carbonates, bicarbonates, and the like, as well as salts derived from basic organic amines such as aliphatic and aromatic amines, aliphatic diamines, hydroxy alkamines, and the like. Such bases useful in preparing the salts of this invention thus include ammonium hydroxide, potassium carbonate, sodium bicarbonate, calcium hydroxide, methylamine, diethylamine, ethylenediamine, cyclohexylamine, ethanolamine and the like.

[0033] Because of a basic moiety, some of the compounds of Formula I can also exist as pharmaceutically acceptable acid addition salts. Acids commonly employed to form such salts include inorganic acids such as hydrochloric, hydrobromic, hydroiodic, sulfuric and phosphoric acid, as well as organic acids such as paratoluenesulfonic, methanesulfonic, oxalic, para-bromophenylsulfonic, carbonic, succinic, citric, benzoic, acetic acid, and related inorganic and organic acids. Such pharmaceutically acceptable salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, phosphate, mono-hydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, heptanoate, propiolate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, 2-butyne-1,4 dioate, 3-hexyne-2,5-dioate, benzoate, chloroben-

zoate, hydroxybenzoate, methoxybenzoate, phthalate, xylenesulfonate, phenylacetate, phenylpropionate, phenylbutyrate, citrate, lactate, hippurate, β -hydroxybutyrate, glycollate, maleate, tartrate, methanesulfonate, propanesulfonate, naphthalene-1-sulfonate, naphthalene-2-sulfonate, mandelate and the like salts.

[0034] In addition, it is recognised that compounds of the present invention may form a variety of solvates with a number of different solvents. Representative solvates can be useful as final embodiments of the present invention or as intermediates in the isolation or preparation of the final embodiments of this invention. For example solvates can be prepared with lower alcohols such as ethanol and with alkyl esters such ethylacetate.

[0035] It is recognised that various stereoisomeric forms of the compounds of Formula I may exist. The compounds may be prepared as racemates and can be conveniently used as such. Therefore, the racemates, individual enantiomers (including, but in no way limited to atropisomers), diastereomers, or mixtures thereof form part of the present invention. Unless otherwise specified, whenever a compound is described or referenced in this specification all the racemates, individual enantiomers, diastereomers, or mixtures thereof are included in said reference or description.

[0036] In addition to the pharmaceutically acceptable salts, other salts are envisaged which may serve as intermediates in the purification of compounds or in the preparation of other, for example pharmaceutically acceptable, acid addition salts, or are useful for identification, characterisation or purification.

[0037] General methods of synthesis for the compounds of formula I for use in the present invention and compounds of formula I wherein R⁵ is an amino protecting group and/or Z³ is selected from protected hydroxy, protected amino and protected SH are described in Schemes I-XII below.

[0038] Protecting groups can be any of the conventional amino protecting groups, see, for instance T.W. Greene, Protective Groups in Organic Synthesis, chapter 7, John Wiley and Sons, New York, 1981, and by J.W. Barton, Protective Groups in Organic Chemistry, chapter 2, J.F.W. McOmie, ed., Plenum Press, New York, 1973. Examples of such groups include but are not intended to be limited to benzyl and substituted benzyl such as 3,4-dimethoxybenzyl, o-nitrobenzyl, and triphenylmethyl; those of the formula -COOR where R includes such groups as methyl, ethyl, propyl, isopropyl, 2,2,2-trichloroethyl, 1-methyl-1-phenylethyl, isobutyl, t-butyl, t-amyl, vinyl, allyl, phenyl, benzyl, p-nitrobenzyl, o-nitrobenzyl, and 2,4-dichlorobenzyl; acyl groups and substituted acyl such as formyl, acetyl, chloroacetyl, dichloroacetyl, trichloroacetyl, trifluoroacetyl, benzoyl, and p-methoxybenzoyl; and other groups such as methanesulfonyl, p-toluenesulfonyl, p-bromobenzenesulfonyl, p-nitrophenylethyl, p-toluenesulfonylaminocarbonyl, and the like. Preferred nitrogen protecting groups are benzyl, acyl, or silyl.

GENERAL SCHEME FOR THE SYNTHESIS OF INDOLYL-IMIDAZOLINES

[0039] Compounds of formula I wherein X is NH; R¹, R^{1'}, R², R³ are hydrogen; n is 1 or 2; R⁴ is

and

R⁶, R⁷, R⁹ have the definitions given above can be prepared according to scheme L

wherein R⁴ and n are as defined herein for Formula I, and J is C₁₋₈alkyl, aryl, or aryl C₁₋₈alkyl.

[0040] The transformation described in Scheme I is novel and is described in Scheme Ia.

[0041] Cyclisation is induced by a silylating agent or a mixture of silylating agents, optionally in the presence of an soluble or insoluble base, e.g. triethyl amine or dimethylaminomethyl polystyrene and a solvent. Useful reagents are e.g. described in FLUKA Chemika, "Silylating Agents" (1995) ISBN 3-905617-08-0 and the literature cited therein.

[0042] In a more preferred embodiment, these silylating agents are trimethyl silyl halogenides, TMS-X (e.g. trimethyl

silyl chloride or trimethyl silyl iodide) or hexamethyl disilazane, HMDS or trimethyl silyl diethylamine, TMS-DEA or mixtures of them. In the most preferred embodiment the reactions are carried out either in methylene chloride with excess TMS-Cl or, more preferred, TMS-I in presence of triethyl amine or dimethylaminomethyl polystyrene at ambient temperature, or in neat HMDS or HMDS/TMS-Cl 100/1, without additional base and solvent at 50°C to reflux, preferably at 70°C to 90°C. In some cases, using TMS-X as cyclizing reagent, excessive reagent has to be added in several portions within a period of time (up to about a week) to ensure complete conversion. The process described herein is compatible to many functionalities present in an organic molecule, e.g. unprotected hydroxy, unprotected amino, olefinic double bond, cyano, nitro, aromatic halogen, amide and is successful in some cases, when conventional methods failed (Chem. Pharm. Bull. 1980, 28, 1394-1402).

10

[0043] The process described in Scheme Ia affords numerous advantages over similar methods known in the art. The transformation can be achieved in high yield and under mild conditions, whereas, methods known in the art require the use of extreme conditions or reagents

[0044] Compounds of formula I wherein X is NH; R¹, R^{1'}, R², R³ are hydrogen; n is 0; R⁴ is

40

and

R⁶, R⁷, R⁹ have the definitions given above can be prepared according to scheme II.

45

50

55

Scheme II

J_1 is COR_2 or CO_2R_2 and
 R_2 is C_1-C_8 alkyl, aryl, or aryl C_1-C_8 alkyl.

20 [0045] The process described in Scheme II is novel

[0046] The process describes the preparation of imidazolines of formula I in which X is NH and R4 is an indole nucleus. The process is affected by treating a compound of formula (IV) with a compound of formula (III) in the presence of a dehydration agent between room temperature and 140°C; followed by treatment with an alcohol or water between room temperature and the boiling point of the reaction mixture. The preferred compounds of formula III are 1-acetyl-imidazoline-2-one or 1-(phenyloxycarbonyl)-imidazoline-2-one. The preferred dehydration agent is phosphorus oxychloride or thionylchloride. The preferred reagent for the deprotection of the N-substituted-imidazoline or the N-substituted-imidazole is ethanol or water.

25 [0047] The indole nuclei of formulas (II and IV) utilized in Schemes I and II are known in the art and can be prepared as shown in the Schemes IIIa-IIIIf below and as described, for example, in *Bull. Soc. Chim. Fr.* 1969 (4), 1227-34, with the modifications shown, for Schemes IIIa-IIIId, and *J. Org. Chem.* (1994) 59, 6372, with the modifications shown, for Scheme IIIIf.

Scheme IIIaScheme IIIb

55 wherein, n, J, and R⁶ are as defined herein above.

Scheme IIIc

Scheme IIId

Scheme IIIe

Scheme IIIf

[0048] Scheme IIg, below, describes a method for the synthesis of 3-cyanoindoless and subsequent transformation to the corresponding imidazolines, which are substituted by an aryl or heteroaryl group in position 2 of the indole nucleus. Nitrobenzene derivatives react with acetonitrile derivatives which contain a leaving group L to give (2-nitrophenyl)acetonitriles. Reactions of this type are known , for example as reported by M. Makosza et al., Liebigs Ann. Chem. / Recl. **1997**, 1805. Typical leaving groups L are halogens, substituted or unsubstituted phenoxy groups, or substituted or unsubstituted phenylthio groups. A preferred value for L is 4-chlorophenoxy. The reaction can be carried out with strong bases, for example, NaOH or KOH, or with alkoxylates, for example, potassium tert.-butoxide in polar solvents such as DMF or DMSO. The resulting acetonitrile is alkylated with benzyl halides or heteroaryl methyl halides, preferably bromides or chlorides. This reaction requires a base typically used for such alkylation. A preferred method uses potassium carbonate and a phase transfer catalyst, for example a crown ether. The following cyclization to 3-cyano-1-hydroxyindoless may also be carried out with strong bases in polar solvents as described above. A preferred procedure uses sodium hydroxide in DMSO. The removal of the 1-hydroxy group can be achieved under conditions which are typically used for this purpose, for example catalytic hydrogenation, reduction with metals, or with phosphorus reagents such as trialkyl phosphites, for example as reported by R.M. Acheson, in "Advances in Heterocyclic Chemistry", Vol. **51**, p.129. In a preferred method the reduction is carried out by heating with trimethyl phosphite. The transformation of the cyano group to an imidazoline is achieved by heating with ethylenediamine. This reaction is achieved, in a preferred process, with ethylenediamine tosylate by heating of both reactants at temperatures > 300 °C.

40

45

50

55

Scheme IIIg

wherein R⁹ is aryl or heteroaryl.

[0049] Scheme IIIh describes a method for the synthesis of indol-3-yl acetates and propionates containing an aryl or heteroaryl group in the 2-position of the indole ring. Indol-3-yl acetates and propionates which are unsubstituted in position 2 are commercially available or may be prepared according to procedures known in the art, for example, in a similar manner as described in Scheme IIb. The bromination in the 2-position of the indole nucleus may be achieved with bromination reagents and reaction conditions known in the art, for example bromine, NBS, TMS bromide /DMSO, or pyridinium bromide perbromide. A preferred method uses NBS in dichloromethane at 0 °C. 2-Bromoindoles are converted to 2-aryl or heteroaryl indoles by standard conditions known in the art for Suzuki coupling reactions using aryl or heteroaryl boronic acids employing a Pd catalyst, preferably Pd(PPh₃)₄.

Scheme IIIh

wherein R⁹ is aryl or heteroaryl, n is 1 or 2, and J is C₁₋₄alkyl.

[0050] Compounds of Formula I, wherein X is NH; R¹, R^{1'}, R², and R³ are hydrogen; n is 0; R⁴ is

5

and

10 R¹⁴, R¹⁵, R¹⁶, and R¹⁷ have the definitions given above can be prepared by methods known in the art or as described herein. A skilled artisan would appreciate that the compounds of Formula I could be prepared from the appropriate halo and hydroxy substituted naphthalenes. Such syntheses are illustrated in Schemes IV and V, below.

15

Scheme IV

20

25

30

35

40

45 wherein R^{14'}, R^{15'}, and R^{17'} are R¹⁴, R¹⁵, and R¹⁷, respectively, protected derivatives thereof, or precursor moieties thereto, and R^{16'} is optionally substituted aryl, or optionally substituted heteroaryl.

45

50

55

Scheme V

25 wherein $R^{15'}$, $R^{16''}$ and $R^{17'}$ are R^{15} , R^{16} , and R^{17} , respectively, protected derivatives thereof, or precursor moieties thereto, and $R^{14''}$ is optionally substituted aryl, or optionally substituted heteroaryl.

[0051] Scheme Via illustrates the introduction of the imidazoline group into the 3-position of the benzothiophene ($Y = S$) or the benzofuran nucleus ($Y = O$). The unsubstituted bicyclic heterocycle reacts with chloroformates, preferably with ethyl chloroformate to give the corresponding 3-carboxylates. The reaction is catalyzed by Lewis acids, for example, Al(III) chloride, Sn(IV) chloride, Ti(IV) chloride, or boron halides in halogenated hydrocarbons or in carbon disulfide. It should be noted that when carbon disulfide is used, intermediate dithioesters are formed as shown in Scheme VIa. A preferred method uses Al(III) chloride in carbon disulfide at room temperature. The transformation of the carboxylate or dithiocarboxylate to the imidazoline is achieved by reaction with ethylenediamine, preferably by heating in a solvent such as ethanol. This reaction is catalyzed by traces of carbon disulfide.

35

Scheme VIa

[0052] Benzofurans ($Y = O$) or benzothiophenes ($Y = S$) with an optionally substituted aryl or optionally substituted heteroaryl group in the 2-position may be prepared as illustrated in Scheme VIb. The unsubstituted heterocycles are

prepared by methods known in the art, preferably by heating of (2,2-dialkoxy)ethoxybenzenes or (2,2-dialkoxy)ethylthiobenzenes, respectively, in chlorobenzene with polyphosphoric acid. These intermediates are converted to the corresponding benzofuran-2-yl or benzothiophen-2-yl boronic acids using standard conditions known in the art which use metallation with butyl lithium and trapping of the carbanions with esters of boronic acid like triisopropyl borate followed by an acid work-up procedure. The following aryl coupling reaction is carried out as described above for Scheme IIIh. preferably using a Suzuki coupling method, which preferably is carried out with aryl or heteroaryl bromides or iodides. In another procedure, 2-bromobenzofurans or 2-bromobenzothiophenes are prepared using standard bromination reagents known in the art, for example NBS. In a preferred method, the heterocycles are lithiated with butyl lithium followed by trapping of the carbanions with bromine. The 2-bromoheterocycles are converted to 2-aryl or 2-heteroaryl derivatives in aryl coupling reactions with optionally substituted aryl or optionally substituted heteroaryl boronic acids.

Scheme VIb

wherein R⁹' is optionally substituted aryl or optionally substituted heteroaryl.

[0053] Another route to benzofurans or benzothiophenes which are substituted in the 2-position by an optionally substituted aryl or optionally substituted heteroaryl group is illustrated in Scheme VIc. Phenols or thiophenols are reacted with arylacyl bromides or heteroarylacyl bromides to give the corresponding aryl- or heteroaryloxymethyl or aryl- or heteroarylthiomethylketones, respectively. The reaction is carried out in the presence of a base, for example potassium carbonate. These intermediates are heated under acidic conditions to give the corresponding bicyclic nuclei. A preferred method is heating in polyphosphoric acid (PPA).

Scheme VIc

wherein R^{9'} is optionally substituted aryl or optionally substituted heteroaryl.

[0054] Scheme VIId describes a method for preparation of 2-methylbenzofurans or 2-methylbenzothiophenes. In the first step phenols or thiophenols, respectively, are alkylated with allyl halides which contain another leaving group L. A preferred group L is another halogen, and in a preferred method the alkylation is carried out by heating with 2,3-dichloropropene in acetone in the presence of a base, for example potassium carbonate. A preferred method for cyclization to form the heterocyclic rings is heating of the intermediate allylether or allythioether in N,N-diethylaniline. This reaction may or may not require an additional step for ring closure of the intermediate product derived from a Claisen rearrangement, for example by heating with hydrochloric acid.

10

Scheme VIId

[0055] A particular method for the synthesis of benzofurans or benzothiophenes containing a 2-substituted ethyl group in position 2 of the nucleus is described in Scheme Vie. 2-Methylbenzofurans or 2-methylbenzothiophenes are brominated at the methyl group to give 2-bromomethyl derivatives by standard conditions known in the art used for benzylic brominations, preferably with NBS. These are converted to phosphonium salts by heating with phosphines, preferably by heating with triphenylphosphine to triphenylphosphonium bromides which react with aldehydes under standard conditions known in the art for Wittig reactions to give 2-vinylbenzofurans or 2-vinylbenzothiophenes. The corresponding ethyl derivatives are prepared by hydrogenation of the vinyl compounds. A preferred method uses borohydride / Ni(II) acetate, particularly borohydride which is fixed on an exchange resin. Such resins are familiar and readily commercially available from vendors known to the artisan, see for example, Bunin, B.A. (1998) The Combinatorial Index. Academic Press, San Diego. ISBN 0121413403 #10496; Gordon E.M. & Kerwin, J.F.J. (1998) Combinatorial Chemistry and Molecular Diversity in Drug Discovery. John Wiley & Sons, New York. ISBN 0471155187 #9827.

45

50

55

Scheme VIe

where $R^9'\text{CH}_2\text{CH}_2^-$ is R^9 .

[0056] The synthesis of 3-chloro-2-(4,5-dihydro- 1H-imidazol-2-yl)benzothiophenes is exemplified in Scheme VII.

Scheme VII

[0057] A procedure for the preparation of 3-optionally substituted aryl- and 3-optionally substituted heteroaryl-2-(4,5-dihydro)imidazol-2-yl benzothiophenes using a solid support is exemplified by Scheme Villa. The solid support illustrated in Scheme Villa may be a resin. Such resins and their use are familiar to the skilled artisan. Such resins can readily be obtained from commercial vendors, for example, but in no way limited to, Novabiochem Catalog and Peptide Synthesis Handbook, 1999; Novabiochem, The Combinatorial Chemistry Catalog (March 1998); Bachem, Peptides and Biochemicals (1998). See also the following books available to the artisan via Amazon.com and from other vendors known to the skilled artisan, Terrett, N.K. (1998) Combinatorial Chemistry, Oxford University Press, New York ISBN 0198502206 #9825; Terrett, N.K. (1998) Combinatorial Chemistry, Oxford University Press, New York.

ISBN0198502192#10542; Wilson, S.R., & Czarnik, A.W. (1997) Combinatorial Chemistry, Synthesis and Applications, John Wiley & Sons, Inc., New York. ISBN 047112687X#8349; and Jung, G(1996) Combinatorial Peptide and Nonpeptide Libraries: A Handbook, VCH, Weinheim; New York. ISBN 3527293809#8474.

5

Scheme VIIIA

where R^{9'} is optionally substituted aryl or optionally substituted heteroaryl.

[0058] The synthesis of several series of benzothiophenes of the present invention is exemplified in Scheme VIIIB.

Scheme VIIIb

[0059] Wherein R^{9'} is C₁₋₈ alkyl; R^{9''} is aromatic or heteroaromatic; R^{9'''} is C₁₋₈ alkyl, aromatic or heteroaromatic. As used in Scheme VIIb, the term "strong base" has the 5 meaning as recognized by the skilled artisan. A preferred strong base is an alkyl lithium and the most preferred strong base is n-BuLi.

[0060] A procedure for preparing indoles of the present invention which are substituted in the 2-position by an optionally substituted aryl group, or optionally substituted heteroaryl group is exemplified in Scheme IX. Introduction of the ethoxycarbonylmethyl group onto the nitrobenzene is achieved by methods known in the art, for example, as described in *Synthesis* 1988, 1007-9.

Scheme IX

[0061] R^{9'} is aryl or heteroaryl; all other terms are as defined by Formula I. The term "alkyl phosphite" shall have the meaning understood by the artisan, and a most preferred alkyl phosphite is P(OEt)₃.

[0062] Scheme X exemplifies the preparation of 6-optionally substituted aryl- or optionally substituted heteroaryl-2-imidazolinyl naphthalenes. Methyl-6-bromo-2-naphthoate is converted into the imidazoline as described, for example, in Example 18, followed by introduction of the aryl or heteroaryl moiety by Suzuki reaction. The Suzuki reaction may be accomplished by methods known in the art, or by procedures described herein.

Scheme X

wherein Ar is optionally substituted aryl or optionally substituted heteroaryl.

[0063] Scheme XI illustrates a general route for the synthesis of 2-imidazolinyl quinolines, and Scheme XII illustrates a general route for the synthesis of 3-imidazolinylquinolines.

5

Scheme XI

30

Scheme XII

wherein J is C₁₋₈alkyl, aryl, or aryl C₁₋₈alkyl.

[0064] The artisan appreciates that, in some instances, desired isomeric forms may be obtained using separation methods which are generally known.

[0065] Compounds of Formula (I) have primary action during hyperglycemia in that they improve glucose tolerance without producing marked reduction in basal plasma glucose levels.

[0066] Compounds for use in the invention were active in screens for activity using assays based on the use of BTC6 cells, for example as described by Poitout, V et al. *Diabetes* 44:306-313(1995) and D'Ambra , R et al *Endocrinology*, 126: 2815-2822(1990)] and rat Langerhans islets, for example as described by Lacy, P.E and Kostianovsky, M. *Diabetes* (1967), and as described in more detail in hereinbelow, and in an Intravenous Glucose Tolerance Test as described hereinbelow.

5

Preparations and Examples

[0067] The following examples and preparations are provided merely to further illustrate the invention. The scope of the invention is not construed as merely consisting of the following examples. In the following examples and preparations, melting point, nuclear magnetic resonance spectra, mass spectra, high pressure liquid chromatography over silica gel, gas chromatography, N,N-dimethylformamide, palladium on charcoal, tetrahydrofuran, ethyl acetate, thin layer chromatography and elemental analysis are abbreviated M.Pt. or m.p., NMR, MS, HPLC, GC, DMF, Pd/C, THF, EtOAc, TLC and EA respectively. The terms "EA", "TLC", "NMR", and "MS", when being utilised in the preparations, indicate that the data indicated was consistent with the desired structure. Reported melting points are uncorrected and yields are unoptimized.

10

15

Preparation 1

[0068] Ethyl (2,5-Dimethylindol-3-yl)acetate (X=Me, n=1)

25

30

[0069] A suspension of 1.6 g (0.01 mol) of *p*-tolylhydrazine hydrochloride salt in 50 mL of EtOH was treated with ethanolic NH₃ to basify, heated on the water bath for 2 minutes, and then the NH₄Cl salt formed was filtered off. The filtrate was concentrated to dryness and treated with 1.4 g (0.01 mol) of ethyl levulinate and 0.92 mL of PCl₃ (0.01 mol) in 25 mL of toluene at 130°C. for 4 hours. The reaction mixture was poured into an ice-water and extracted with ethyl acetate which was washed three times with brine to neutral. The extract was dried over MgSO₄, concentrated, and chromatographed with CH₂Cl₂ as an eluent to yield 1.2 g (48%) of the desired indolylacetate as an oil.

[0070] The following compounds were prepared from the appropriately substituted hydrazines essentially by the same procedure as described in Preparation 1.

40

Preparation 2

45

[0071] Ethyl (5-Fluoro-2-methylindol-3-yl)acetate (X=F, n=1). Yield: 21 %.

50

Preparation 3

55

[0072] Ethyl (5-Chloro-2-methylindol-3-yl)acetate (X=Cl, n=1). Yield 40%.

Preparation 4

[0073] Ethyl (5-Bromo-2-methylindol-3-yl)acetate (X=Br, n=1). Yield 23%.

[0074] The following intermediates were prepared substantially in accordance with Preparation 1 from the corresponding hydrazine hydrochloride or hydrazine and ethyl 4-acetylbutyrate. The crude indolylpropionate esters obtained in high yields were used in the subsequent reaction without further purification.

Preparation 5

[0075] Ethyl 3-(2,5-Dimethylindol-3-yl)propionate (X=Me, n=2) Yield: 96%; ^1H NMR (CDCl_3) d 7.66 (br. s, 1H), 7.25 (s, 1H), 7.17 (d, $J=8.0$ Hz, 1H), 6.92 (d, $J=8.0$ Hz, 1H), 4.11 (q, $J=7.0$ Hz, 2H), 2.99 (t, $J=7.0$ Hz, 2H), 2.60 (t, $J=8.0$ Hz, 2H), 2.44 (s, 3H), 2.36 (s, 3H), 1.24 (t, $J=7.0$ Hz, 3H).

Preparation 6

[0076] Ethyl 3-(5-Fluoro-2-methylindol-3-yl)propionate (X=F, n=2). Yield: 92%,

Preparation 7

[0077] Ethyl 3-(5-Chloro-2-methylindol-3-yl)propionate (X=Cl, n=2). Yield: 96%.

Preparation 8

[0078] Ethyl 3-(5-Bromo-2-methylindol-3-yl)propionate (X=Br, n=2). Yield: 62%.

Preparation 9

[0079] Ethyl 3-(5-Trifluoromethyl-2-methylindol-3-yl)propionate (X=CF₃, n=2). Yield: 90%.

Preparation 10

[0080] (2-Methylindol-3-yl)acetic acid and (2-methyl-5-methoxyindol-3-yl)acetic acid were esterified with ethanolic HCl by conventional methods known in the art to give

[0081] Ethyl (2-Methylindol-3-yl)acetate (X=H, n=1). Yield: 98%

[0082] Ethyl (2-Methyl-5-methoxyindol-3-yl)acetate (X=OCH₃, n=1). Yield: 99%

Preparation 11

[0083] Ethyl 3-(2-Methylindol-3-yl)propionate (X=H, n=2)

[0084] A solution of 1.6 g (10 mmol) of ethyl 4-acetylbutyrate and 1.1 g (10 mmol) of phenylhydrazine in 10 ml of ethanol was treated with 2 ml of ethanolic HCl solution at room temperature for 3 h, and then left standing in the refrigerator overnight. The solution was neutralized with ethanolic ammonia, concentrated, and chromatographed with dichloromethane as an eluent to afford 1.19 g (52%) of the indolylpropionate ester.

^1H NMR (CDCl_3) d 7.75 (br s, 1H), 7.36 (d, $J = 7.5$ Hz, 1H), 7.24 (d, $J = 8$ Hz, 1H), 7.11 (t, $J=7$ Hz, 1H), 7.07 (t, $J = 7$ Hz, 1H), 4.10 (q, $J = 7$ Hz, 2H), 3.03 (t, $J = 7.5$ Hz, 2H), 2.61 (t, $J = 7.5$ Hz, 2H), 2.38 (s, 3H), 1.21 (t, $J = 7$ Hz, 3H).

Preparation 12

[0085] Ethyl 3-(2-Methyl-5-methoxyindol-3-yl)propionate (X=OCH₃, n=2)

[0086] The compound was prepared in a manner essentially similar to that of Preparation 11; Yield: 99%.

Preparation 13

[0087] Ethyl (2-Bromoindol-3-yl)acetate (X=H, n=1)

[0088] To a solution of 15.0 g (73.8 mmol) of ethyl (indol-3-yl)acetate in 75 ml of anhydrous dichloromethane at 0 °C was added 13.1 g (73.8 mmol) of NBS in small portions. The mixture was stirred at 0 °C for 3 h and then quickly concentrated under reduced pressure (argon was used to normalize the pressure after concentration to avoid decomposition due to the product's instability). Column chromatography with 99:1 toluene /ethanol afforded 10.5 g (50%) of the 2-bromoindole as a yellow oil.

⁵ ¹H NMR (CDCl₃) δ 8.22 (s, 1H), 7.35 (d, J = 8.5 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.16 (m, 2H), 4.16 (q, J = 7 Hz, 2H), 3.72 (s, 2H), 1.25 (t, J = 7 Hz, 3H); MS 281 (M⁺).

[0089] The following intermediates were prepared in a manner essentially that of Preparation 13:

¹⁰ Preparation 14

[0090] Ethyl (2-Bromo-5-fluoroindol-3-yl)acetate (X=F, n=1) yellow oil: yield 46 %.

¹⁵ Preparation 15

[0091] Ethyl (2-Bromo-5-chloroindol-3-yl)acetate (X=Cl, n=1) yellow oil which solidified rapidly upon standing; yield 47 %

²⁰ Preparation 16

[0092] Ethyl 3-(2-Bromoindol-3-yl)propionate (X=H, n=2) yellow oil; yield 75 %

²⁵ ¹H NMR (CDCl₃) δ 8.11 (s, 1H), 7.53 (d, J = 8 Hz, 1H), 7.26 (d, J = 8 Hz, 1H), 7.13 (m, 2H), 4.12 (q, J = 7 Hz, 2H), 3.06 (t, J = 7.5 Hz, 2H), 2.64 (t, J = 7.5 Hz, 2H), 1.23 (t, J = 7 Hz, 3H); MS 295 (M⁺).

³⁰ Preparation 17

[0093] Ethyl (2-Phenylindol-3-yl)acetate (X, Y=H, n=1)

[0094] To a solution of 2.0 g (7.1 mmol) of ethyl (2-bromoindol-3-yl)acetate in 40 ml of dioxane was added under argon 1.2 g (0.11 mmol) of Pd(PPh₃)₄ and 13.3 ml of 2.0 M sodium carbonate. After stirring at room temperature for ca. 15 min, 1.3 g (11 mmol) of benzeneboronic acid was added, and the mixture was heated at 80 °C under argon overnight. The mixture was cooled to room temperature and solids were removed by filtration. The filtrate was concentrated and chromatographed on silica gel with toluene as an eluent to yield 1.6 g (81%) of the 2-phenyl indole as a yellow crystalline solid.

⁴⁰ ¹H NMR (CDCl₃) δ 8.19 (s, 1H), 7.69-7.14 (m, 9H), 4.13 (q, J = 7.5 Hz, 2H), 3.85 (s, 2H), 1.24 (t, J = 7 Hz, 3H)

[0095] The following intermediates were prepared essentially in the same manner as described in Preparation 17. Substituted benzeneboronic acids, which are not commercially available, were prepared from corresponding substituted iodobenzenes and triisopropylborate Suzuki coupling reactions which are known in the art or as described herein.

⁵⁰ Preparation 18

[0096] Ethyl [2-(2-Chlorophenyl)indol-3-yl]acetate (X=H, Y=2-Cl, n=1)
yellow oil; yield 61 %

⁵⁵ Preparation 19

[0097] Ethyl [2-(2-Trifluoromethylphenyl)indol-3-yl]acetate (X=H, Y=2-CF₃, n=1)
yellow oil; yield 63 %

Preparation 20

[0098] Ethyl [2-(2,4-Dichlorophenyl)indol-3-yl]acetate ($X=H$, $Y=2,4-Cl_2$, $n=1$)
yellow oil; yield 60 %

5

Preparation 21

[0099] Ethyl [2-(2-Chlorophenyl)-5-fluoroindol-3-yl]acetate ($X=F$, $Y=2-Cl$, $n=1$)
amorphous solid; yield 94 %

10

Preparation 22

[0100] Ethyl [5-Chloro-2-(2-chlorophenyl)indol-3-yl]acetate ($X=Cl$, $Y=2-Cl$, $n=1$) yellow oil which solidified upon standing; yield 60 %

15

Preparation 23

[0101] Ethyl 3-(2-Phenylindol-3-yl)propionate (X , $Y=H$, $n=2$)
oil; yield 66%

20

1H NMR ($CDCl_3$) δ 8.07 (s, 1H), 7.64-7.13 (m, 9H), 4.09 (q, $J = 7$ Hz, 2H), 3.35 (t, $J = 8$ Hz, 2H), 2.68 (t, $J = 8$ Hz, 2H), 1.21 (t, $J = 7$ Hz, 3H)

Preparation 24

25

[0102] Ethyl 3-[2-(2-Fluorophenyl)indol-3-yl]propionate ($X=H$, $Y=2-F$, $n=2$)
yellow oil; yield 63%

Preparation 25

30

[0103] Ethyl 3-[2-(2-Chlorophenyl)indol-3-yl]propionate ($X=H$, $Y=2-Cl$, $n=2$)
yellow oil; yield 60%

Preparation 26

35

[0104] Ethyl 3-[2-(2-Trifluoromethylphenyl)indol-3-yl]propionate ($X=H$, $Y=2-CF_3$, $n=2$) yellow oil; yield 61%

Preparation 27

40

[0105] Ethyl 3-[2-(2,4-Dichlorophenyl)indol-3-yl]propionate ($X=H$, $Y=2,4-Cl_2$, $n=2$)
yellow resinous solid; yield 40 %

Preparation 28

45

[0106] 2-(5-Chloro-2-nitrophenyl)-3-(3-fluorophenyl)propionitrile ($X = 3-F$)

46

[0107] (5-Chloro-2-nitrophenyl)acetonitrile was prepared from 4-chloronitrobenzene and 4-chlorophenoxyace-

tonitrile according to procedure known in the art (M. Makosza, J. Winiarski, *J. Org. Chem.* **1984**, *49*, 1494). To a suspension of 13.8 g (0.1 mol) anhydrous potassium carbonate in 100 ml acetonitrile were added 100 mg 18-crown-6, 3.93 g (20.0 mmol) of (5-chloro-2-nitrophenyl)acetonitrile, and 4.15 g (21.95 mmol) 3-fluorobenzyl bromide, successively. It was stirred at room temperature overnight, and the solids were removed by filtration. The filtrate was concentrated under reduced pressure, and the residue was stirred with a small amount of ethanol to give the pale yellow crystalline title compound, which was collected by filtration, washed with cold ethanol, and dried in vacuo.
5 yield: 4.9 g (80 %)

[0108] Except as noted, the following intermediates (Preparations 29-31) were prepared in essentially the same manner as described for Preparation 28, from (5-chloro-2-nitrophenyl)acetonitrile and the corresponding benzyl halides:
10

Preparation 29

[0109] 2-(5-Chloro-2-nitrophenyl)-3-(3-trifluoromethylphenyl)propionitrile ($X = 3\text{-CF}_3$) yield: 52 %: pale yellow crystalline solid.
15

Preparation 30

[0110] 2-(5-Chloro-2-nitrophenyl)-3-(3-iodophenyl)propionitrile ($X = 3\text{-I}$) yield: 36 %: pale yellow crystals
20

Preparation 31

[0111] 2-(5-Chloro-2-nitrophenyl)-3-(4-iodophenyl)propionitrile ($X = 4\text{-I}$) The mixture was stirred for 4 h at room temperature, and the title compound was purified by chromatography on silica gel with hexane / ethyl acetate 7:3 to give a yellow oil, which slowly solidified upon standing.
25 yield: 98 %

Preparation 32

[0112] 5-Chloro-3-cyano-2-(3-fluorophenyl)-1-hydroxy- 1H-indole ($X = 3\text{-F}$)
30

[0113] To a solution of 4.6 g (15.1 mmol) 1-(5-chloro-2-nitrophenyl)-2-(3-fluorophenyl)propionitrile in 75 ml dry DMSO were added 2.4 g (60 mmol) powdered sodium hydroxide. The mixture was stirred for 1 h at room temperature and poured with stirring into 800 ml 2N hydrochloric acid. The formed precipitate was collected by filtration, washed with water, and dried in vacuo. The title 1-hydroxyindole was purified by chromatography on silica gel with hexane / ethyl acetate 7:3 to give 3.6 g (83 %) of a beige crystalline solid; MS 286 (M^+).
45

[0114] The following intermediates (Preparations 33-35) were prepared essentially in the same manner as described above for Preparation 32:
50

Preparation 33

[0115] 5-Chloro-3-cyano-1-hydroxy-2-(3-trifluoromethylphenyl)-1H-indole ($X = 3\text{-CF}_3$)
55 yield: 68 %; beige crystalline solid; MS 336 (M^+).

Preparation 34

[0116] 5-Chloro-3-cyano-1-hydroxy-2-(3-iodophenyl)-1H-indole (X = 3-I) yield: 98 % of 1-hydroxyindole, which was used for the next step without further chromatographic purification; MS 394 (M⁺).

5

Preparation 35

[0117] 5-Chloro-3-cyano-1-hydroxy-2-(4-iodophenyl)-1H-indole (X = 4-I) yield: 63 %; brown crystalline solid.

10

Preparation 36

[0118] 5-Chloro-3-cyano-2-(3-fluorophenyl)-1H-indole (X = 3-F)

15

20

[0119] A mixture of 1.3 g (4.53 mmol) 5-chloro-3-cyano-2-(3-fluorophenyl)-1-hydroxy-1H-indole and 15 ml trimethyl phosphite was heated for 4 h at 100 °C. It was concentrated under reduced pressure, and the title indole was obtained from the residue by chromatography on silica gel with hexane / ethyl acetate 4:1. It was recrystallized by stirring with ethyl acetate to give 455 mg (37 %) of a crystalline solid; MS 270 (M⁺).

[0120] The following 2-phenylindoles (Preparations 37-39) were prepared essentially in the same manner as described above for Preparation 36:

30

Preparation 37

[0121] 5-Chloro-3-cyano-2-(3-trifluoromethylphenyl)-1H-indole (X = 3-CF₃) yield: 73 %; crystallization by stirring with ethanol; MS 320 (M⁺).

35

Preparation 38

[0122] 5-Chloro-3-cyano-2-(3-iodophenyl)-1H-indole (X = 3-I)

[0123] The compound was isolated by crystallization from ethanol without further chromatographic purification. yield: 51 %; MS 378 (M⁺).

40

Preparation 39

[0124] 5-Chloro-3-cyano-2-(4-iodophenyl)-1H-indole (X = 4-I)

[0125] The compound was isolated in the same manner as the before mentioned 3-iodo isomer. yield: 75 %.

45

Preparation 40

50

Step A: 5-Chlorobenzofuran-2-boronic acid

[0126]

55

[0127] 5-Chlorobenzofuran was prepared by heating 4-chlorophenoxyacetaldehyde dimethylacetal in polyphosphoric acid; yield: 73 %.

[0128] To a solution of 8.8 g (57.7 mmol) 5-chlorobenzofuran in 250 ml dry ether were added 7.32 g (63.0 mmol) tetramethylethylenediamine (TMEDA). The solution was kept below - 60 °C under argon, while 37.5 ml of a 1.6M solution of butyllithium in hexane was added dropwise. It was warmed to -10 °C during 45 min and stirred at this temperature for another 30 min. The mixture was cooled again below - 60 °C followed by dropwise addition of 35.7 g (190 mmol) triisopropyl borate. After warming to room temperature the mixture was quenched with 70 ml 2N hydrochloric acid and stirred for 1 h. The organic layer was washed three times with 30 ml 2N hydrochloric acid, twice with water, and extracted with 2N sodium hydroxide solution, successively. The alkaline aqueous layer was brought to pH 5 and extracted with tert.-butylmethylether. All organic layers were combined, dried over sodium sulfate, and concentrated in vacuo to give the pale yellow crystalline boronic acid which was used for the next step without further purification. yield: 9.4 g (83 %); MS 196 (M⁺).

Step B: 5-Chloro-2-(4-methoxyphenyl)benzofuran (X = 4-OCH₃)

[0129]

[0130] A mixture of 1.4 g (7.13 mmol) 5-chlorobenzofuranboronic acid, 1.24 g (5.30 mmol) 4-iodoanisole, 150 mg Pd(PPh₃)₄, 7.1 ml 1M aqueous sodium carbonate solution, and 25 ml 1,2-dimethoxyethane were heated in a sealed tube at 100 °C under argon overnight. It was cooled to room temperature and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under reduced pressure. 600 mg of the title benzofuran were obtained by crystallization from ethyl acetate and another 250 mg were obtained from the mother liquid after chromatography on silica gel with hexane.

total yield: 850 mg (62 %)

[0131] The following compounds or Preparations 41-44 were prepared essentially in the same manner by Suzuki coupling reaction with the corresponding iodobenzenes:

Preparation 41

[0132] 5-Chloro-2-(2-chlorophenyl)benzofuran (X = 2-Cl) yield: 600 mg (15.5 %) from 3.5 g (14.7 mmol) 1-chloro-2-iodobenzene; colorless crystals, MS 262 (M⁺).

Preparation 42

[0133] 5-Chloro-2-(3-chlorophenyl)benzofuran (X = 3-Cl)
yield: 370 mg (27 %).

Preparation 43

[0134] 5-Chloro-2-(4-chlorophenyl)benzofuran (X = 4-Cl)
yield: 1.06 g (76 %).

Preparation 44

[0135] 5-Chloro-2-(3-methylphenyl)benzofuran (X = 3-CH₃)
yield: 850 mg (66 %).

Preparation 45

Step A: 2-(4-Chlorophenylthio)-1-(4-methylphenyl)ethanone (X = Cl)

5 [0136]

[0137] A mixture of 10.0 g (47 mmol) 4-methylphenacyl bromide, 6.8 g (47 mmol) 4-chlorothiophenol, and 6.5 g (47 mmol) anhydrous potassium carbonate in 100 ml dry DMF was stirred for 3 h at 80 °C. It was filtered and the filtrate was concentrated under reduced pressure. The concentrate was stirred in water, and the resulting solid was filtered off, washed with water, and recrystallized from ethanol to give 10.7 g (82 %) of the crude title compound.

20

Step B: 5-Chloro-2-(4-methylphenyl)benzo[b]thiophene (X = Cl)

25 [0138]

[0139] A mixture of 9.7 g (35 mmol) 2-(4-chlorophenylthio)-1-(4-methylphenyl)ethanone and 125 ml polyphosphoric acid were heated at 120 °C for 24 h. It was cooled and quenched with 125 g ice. After 30 min stirring 100 ml ethyl acetate were added, and it was stirred again vigorously. The formed precipitate was filtered with suction, washed with water and ethyl acetate, successively, and dried in vacuo to give 2.6 g (29 %) of the title benzothiophene.

35

Preparation 46

40 [0140] 2-(4-Fluorophenylthio)-1-(4-methylphenyl)ethanone (X = F)
[0141] The compound was prepared in a manner essentially similar to that described in Preparation 45, Step A, from 4-fluorothiophenol.
yield: 7.8 g (64 %).

45

Preparation 47

[0142] 5-Fluoro-2-(4-methylphenyl)benzo[b]thiophene (X = F)
[0143] The benzothiophene was prepared in a manner similar to that described in Preparation 45, Step B, from 7.8 g (30 mmol) 2-(4-fluorophenylthio)-1-(4-methylphenyl)ethanone. During the work-up procedure the organic layer was washed with saturated aqueous sodium bicarbonate solution, dried over sodium sulfate, and concentrated under reduced pressure. The title compound was recrystallized from ethyl acetate.
yield: 0.95 g (13 %).

55

Preparation 48

Step A: 2-Bromo-5-chlorobenzo[b]thiophene (X = Cl)

5 [0144]

[0145] 5-Chlorobenzothiophene was prepared by procedures known in the art (J. Heterocyclic Chem. **1988**, 25, 1271). 1.68 g (9.96 mmol) of the compound were dissolved in 20 ml dry ether, and the solution was kept under argon at room temperature, while 6.25 ml (10 mmol) of a 1.6 M solution of butyl lithium in hexane was added dropwise. It was stirred for 30 min, cooled to - 30 °C followed by slow addition of 1.60 g (10.0 mmol) bromine. After 30 min stirring at this temperature cooling was stopped, and the mixture was washed with aqueous sodium thiosulfate solution. The organic layer was dried over sodium sulfate and concentrated under reduced pressure, and the title benzothiophene was obtained after chromatography on silica gel with hexane to give 1.65 g (67 %) of a colorless oil, which slowly solidified.

25 Step B: 5-Chloro-2-(2-chlorophenyl)benzo[b]thiophene (X = Cl, Y = 2-Cl)

20 [0146]

[0147] To a solution of 1.03 g (4.16 mmol) 2-bromo-5-chlorobenzothiophene in 12 ml DME under argon were added 1.0 g (6.4 mmol) 2-chlorobenzeneboronic acid, 88 mg Pd(PPh₃)₄, and 6.4 ml 1M aqueous sodium carbonate solution, and the mixture was heated overnight at 100 °C in a sealed tube. After cooling 20 ml water and 20 ml ethyl acetate were added followed by vigorous stirring. The organic layer was dried over sodium sulfate and concentrated in vacuo, and the title compound was purified by chromatography on silica gel with hexane / ethyl acetate 97:3 to give 1.1 g (95 %) of a colorless oil, which slowly solidified; MS 278 (M⁺).

40

Preparation 49

[0148] 2-Bromo-5-fluorobenzo[b]thiophene (X = F)

[0149] The compound was prepared in a manner essentially similar to that described in Preparation 48, Step A, from 9.12 g (59.9 mmol) 5-fluorobenzothiophene which was prepared by known methods (J. Heterocyclic Chem. **1993**, 30, 1085). yield: 5.35 g (39 %); colorless oil, which slowly solidified

Preparation 50

50

[0150] 2-(2-Chlorophenyl)-5-fluorobenzo[b]thiophene (X = F, Y = 2-Cl)

[0151] The title compound was prepared in a manner similar to that described in Preparation 48, Step B, from 0.97 g (4.2 mmol) 2-bromo-5-fluorobenzothiophene. yield: 0.59 g (53.5 %); colorless crystalline solid; MS 262 (M⁺).

55

Preparation 51

[0152] 5-Chloro-2-(4-methylphenyl)benzo[b]thiophene (X = Cl, Y = 4-CH₃)

[0153] The compound was prepared in the same manner as described in Preparation 48, Step B, from 2.06 g (8.32

mmol) 2-bromo-5-chlorobenzothiophene and 2.44 g (17.95 mmol) 4-methylbenzeneboronic acid and isolated by crystallization from ethyl acetate.
yield: 1.7 g (79 %).

5 Preparation 52

Step A: 2-Chloro-3-(4-chlorophenoxy)propene (A = O, X = Cl)

[0154]

10

20 [0155] A mixture of 12.86 g (100 mmol) 4-chlorophenol, 11.1 g (100 mmol) 2,3-dichloropropene, and 16.6 g (120 mmol) anhydrous potassium carbonate in 50 ml acetone were heated with reflux overnight. Solids were removed by filtration and the filtrate was concentrated under reduced pressure. The residue was dissolved in 200 ml tert.-butylmethylether and washed twice with 100 ml 5 % NaOH and with water, successively. The organic layer was dried over sodium sulfate and concentrated to give 13.4 g (66 %) of the title allylether as a yellow oil.

25

Step B: 5-Chloro-2-methylbenzofuran (A = O, X = Cl)

[0156]

30

35

40 [0157] A mixture of 13.4 g (66.0 mmol) 2-chloro-3-(4-chlorophenoxy)propene and 75 ml N,N-diethylaniline were heated at 210 °C overnight. After cooling it was diluted with 400 ml tert.-butylmethylether and extracted three times with 250 ml 10 % hydrochloric acid. The organic layer was dried over sodium sulfate and concentrated in vacuo to leave a brown oil, which was heated for 8 h at 85 °C with 65 ml concentrated hydrochloric acid. The mixture was diluted with 100 ml water and 200 ml tert.-butylether, brought to pH10 with 30 % NaOH and stirred vigorously. The organic layer was dried over sodium sulfate, concentrated, and the residue chromatographed on silica gel with hexane to give 5.5 g (50 %) of the title benzofuran as a colorless oil.

45 [0158] The following compounds, Preparations 53-55, were prepared essentially in the same manner as described for Preparation 52, Step A:

Preparation 53

[0159] 2-Chloro-3-(4-fluorophenoxy)propene (A = O, X = F)

50 yield: 25.6 g (59 %) from 26.0 g (232 mmol) 4-fluorophenol.

Preparation 54

[0160] 2-Chloro-3-(4-chlorophenylthio)propene (A = S, X = Cl)

55 yield: 20.5 g (93 %) from 14.6 g (100 mmol) 4-chlorothiophenol; yellow oil.

Preparation 55

[0161] 2-Chloro-3-(4-fluorophenylthio)propene (A = S, X = F)

yield: 19.8 g (98 %) from 12.8 g (100 mmol) 4-fluorothiophenol.

5 [0162] Except as noted, the following intermediates, Preparations 56-58 were prepared in essentially the same manner as described in Preparation 52, Step B:

Preparation 56

10 [0163] 5-Fluoro-2-methylbenzofuran (A = O, X = F) from 25.6 g (137 mmol) 2-chloro-3-(4-fluorophenoxy)propene
yield: 11.1 g (54 %); colorless oil.

Preparation 57

15 [0164] 5-Chloro-2-methylbenzo[b]thiophene (A = S, X = Cl) from 20.5 g (93.6 mmol) 2-chloro-3-(4-chlorophenylthio) propene with the modification that heating in hydrochloric acid was not required.
yield: 11.0 g (64 %); colorless crystals

Preparation 58

20 [0165] 5-Fluoro-2-methylbenzo[b]thiophene (A = S, X = F) from 19.8 g (97.7 mmol) 2-chloro-3-(4-fluorophenylthio) propene without heating in hydrochloric acid
yield: 9.9 g (61 %); colorless crystals

Preparation 59[0166]

30

35

Step A: 2-Bromomethyl-5-chlorobenzo[b]thiophene (R = CH₂Br)

40 [0167] A solution of 2.73 g (14.95 mmol) 5-chloro-2-methylbenzothiophene and 2.67 g (15.0 mmol) NBS in 100 ml carbon tetrachloride was heated to 70 °C and a catalytic amount of dibenzoyl peroxide was added. After 30 min reflux solids were removed by filtration. The solvent was removed in vacuo and the residue was suspended in 100 ml hot hexane and filtered. The filtrate was evaporated to dryness to give 3.8 g (97 %) of the title compound as a colorless solid.

Step B: [(5-Chlorobenzo[b]thiophen-2-yl)methyl]triphenylphosphonium Bromide (R = CH₂P(C₆H₅)₃Br)

45 [0168] A mixture of 2.50 g (9.56 mmol) 2-bromomethyl-5-chlorobenzo[b]thiophene and 2.51 g (9.57 mmol) triphenylphosphine in 50 ml xylene was heated at 140 °C. After 3 h the reaction mixture was cooled to room temperature, and the phosphonium salt was filtered off, washed with xylene and tert.-butylmethylether, successively, and dried in vacuo.
yield: 2.7 g (54 %)

50

Step C: 5-Chloro-2-(hepten-1-yl)benzo[b]thiophene (R = -CH=CHC₅H₁₁)

55 [0169] To 20 ml 1,2-epoxybutane containing a small amount of potassium tert.-butoxide were added under argon 1.0 g (1.9 mmol) of the phosphonium salt and 0.19 g (1.9 mmol) of hexanal, and the mixture was stirred at 70 °C for 4 h. It was cooled to room temperature, evaporated, and the residue dissolved in diisopropylether. After filtration the filtrate was concentrated under reduced pressure. The concentrate was eluted through a column of silica gel with hexane and the eluant was concentrated to give 0.36 g (72 %) of the title benzothiophene as a colorless foam; MS 264 (M⁺).

Step D: 5-Chloro-2-heptylbenzo[b]thiophene (R = n-C₇H₁₅)

[0170] To a solution of 0.36 g (1.36 mmol) of 5-chloro-2-(hepten-1-yl)benzo[b]thiophene in 50 ml methanol were added 5 g (15 mmol) of borohydride exchange resin and 375 mg (1.51 mmol) Ni(II)acetate tetrahydrate, and the mixture was refluxed for 1 h. It was cooled to room temperature and the resin removed by filtration. The resin was heated twice with 50 ml methanol, and the combined filtrates were concentrated under reduced pressure. The residue was eluted through a column of silica gel with hexane, and the eluant was evaporated to give 175 mg (48 %) of the title compound as a colorless resinous oil; MS 266 (M⁺).

Preparation 60

[0171] Ethyl 5-Chloro-2-(4-methoxyphenyl)benzofuran-3-dithiocarboxylate (A = O, X = Cl, R = 4-methoxyphenyl)

[0172] A suspension of 0.88 g (6.6 mmol) anhydrous AlCl₃ in 20 ml CS₂ was kept below 5 °C, while 0.72 g (6.6 mmol) ethyl chloroformate was added. After 15 min at this temperature 0.85 g (3.3 mmol) 5-chloro-2-(4-methoxyphenyl) benzofuran in 10 ml CS₂ was added, and the mixture was stirred at room temperature for 5 h. It was quenched with crushed ice and extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate and concentrated under reduced pressure. The title compound was obtained after chromatography on silica gel with hexane / ethyl acetate 95:5 as a red oil which solidified slowly upon standing.

yield: 0.43 g (36 %); MS 362 (M⁺).

[0173] The following dithiocarboxylate intermediates, Preparations 61-73 were prepared essentially in the same manner as described for Preparation 60, from the corresponding benzofurans or benzothiophenes:

Preparation 61

[0174] Ethyl 5-Chloro-2-(2-chlorophenyl)benzofuran-3-dithiocarboxylate (A = O, X = Cl, R = 2-chlorophenyl)
yield: 67 %; orange oil.

Preparation 62

[0175] Ethyl 5-Chloro-2-(3-chlorophenyl)benzofuran-3-dithiocarboxylate (A = O, X = Cl, R = 3-chlorophenyl)
yield: 70 %; red oil which solidified upon standing; MS 366 (M⁺).

Preparation 63

[0176] Ethyl 5-Chloro-2-(4-chlorophenyl)benzofuran-3-dithiocarboxylate (A = O, X = Cl, R = 4-chlorophenyl)
yield: 15 %; red oil; MS 366 (M⁺).

Preparation 64

[0177] Ethyl 5-Chloro-2-(3-methylphenyl)benzofuran-3-dithiocarboxylate (A = O, X = Cl, R = 3-methylphenyl)
yield: 72 %; red oil; MS 346 (M⁺).

Preparation 65

[0178] Ethyl 5-Chloro-2-methylbenzofuran-3-dithiocarboxylate (A = O, X = Cl, R = CH₃) yield: 33 %; red crystalline solid; MS 270 (M⁺).

Preparation 66

[0179] Ethyl 5-Fluoro-2-methylbenzofuran-3-dithiocarboxylate (A = O, X = F, R = CH₃) yield: 24 %; red oil.

5 Preparation 67

[0180] Ethyl 5-Chloro-2-methylbenzo[b]thiophen-3-dithiocarboxylate (A = S, X = Cl, R = CH₃) yield: 35 %; red oil; MS 286 (M⁺).

10 Preparation 68

[0181] Ethyl 5-Fluoro-2-methylbenzo[b]thiophen-3-dithiocarboxylate (A = S, X = F, R = CH₃) yield: 32 %; red oil; MS 270 (M⁺).

15 Preparation 69

[0182] Ethyl 5-Chloro-2-(4-methylphenyl)benzo[b]thiophen-3-dithiocarboxylate (A = S, X = Cl, R = 4-methylphenyl) yield: 29 %; red oil; MS 362 (M⁺).

20 Preparation 70

[0183] Ethyl 5-Fluoro-2-(4-methylphenyl)benzo[b]thiophen-3-dithiocarboxylate (A = S, X = F, R = 4-methylphenyl) yield: 23 %; red oil; MS 346 (M⁺).

25 Preparation 71

[0184] Ethyl 5-Chloro-2-(2-chlorophenyl)benzo[b]thiophen-3-dithiocarboxylate (A = S, X = Cl, R = 2-chlorophenyl) yield: 6 %; red oil; MS 347 (M⁺ - Cl)

30 Preparation 72

[0185] Ethyl 2-(2-Chlorophenyl)-5-fluorobenzo[b]thiophen-3-dithiocarboxylate (A = S, X = F, R = 2-chlorophenyl) yield: 32 %; red oil; MS 331 (M⁺ - Cl).

35 Preparation 73

[0186] Ethyl 5-Chloro-2-heptylbenzo[b]thiophen-3-dithiocarboxylate (A = S, X = Cl, R = n-C₇H₁₅) yield: 66 %; red oil.

40 Preparation 74

5-Chloro-1-(2-chlorobenzyl)-indole

[0187] The compound was prepared in essentially the same manner as described in Example 89, Step 1. Yield 61%, yellow oil. M.S. 276.

Preparation 75

5-Chloro-1-(3-chlorobenzyl)-indole

[0188] The compound was prepared in essentially the same manner as described in Example 89, Step 1. Yield 54%, yellow oil. M.S. 276.

Preparation 76

5-Chloro-1-(4-chlorobenzyl)-indole

[0189] The compound was prepared in essentially the same manner as described in Example 89, Step 1. Yield 54%,

yellow oil. M.S. 276.

Preparation 77

5 5-Chloro-2-(2-chlorobenzyl)-indole

[0190] The compound was prepared in essentially the same manner as described in Example 89, Step 2. Yield 48%, yellow oil. M.S. 276.

10 Preparation 78

5-Chloro-2-(3-chlorobenzyl)-indole

[0191] The compound was prepared in essentially the same manner as described in Example 89, Step 2. Yield 38%, yellow oil. M.S. 276.

15 Preparation 79

5-Chloro-2-(4-chlorobenzyl)-indole

20 [0192] The compound was prepared in essentially the same manner as described in Example 89, Step 2. Yield 44%, yellow oil. M.S. 276.

25 Preparation 80

5-Chloro-2-methyl-1-(2-chlorobenzyl)indole

[0193] The compound was prepared in essentially the same manner as described in Example 90, Step 1. Yield 28%, m.p. 83-84°C, M.S. 289.

30 Preparation 81

5-Chloro-2-methyl-1-(3-chlorobenzyl)indole

35 [0194] The compound was prepared in essentially the same manner as described in Example 90, Step 1. Yield 24%, m.p. 86-87°C, M.S. 289.

Preparation 82

40 5-Chloro-2-methyl-1-(4-chlorobenzyl)indole

[0195] The compound was prepared in essentially the same manner as described in Example 90, Step 1. Yield 28%, m.p. 93-94°C, M.S. 289.

45 Preparation 83

[0196]

50

55

Ethyl 7-Bromo-3-(3-(tert.-butoxycarbonylamino)propoxy)-naphthalen-2-carboxylate (Y = CH₂NHBoc)

[0197] A mixture of 3.8 g (12.88 mmol) ethyl 7-bromo-3-hydroxynaphthalen-2-carboxylate, 3.0 g (15.5 mmol) 1-(tert.-butoxycarbonylamino)-3-chloropropane (prepared according to Helv. Chim. Acta 76 (1993), 1644), 2.0 g (14.5 mmol) 5 potassium carbonate, and a catalytic amount of potassium iodide in 20 ml dry DMF was stirred at 90 °C for 6 h. It was poured into water, extracted three times with ethyl acetate, and the combined organic layers were washed three times with water, dried over sodium sulfate, and concentrated in vacuo. The intermediate was purified by chromatography on silica gel with toluene / acetone 9:1 to give 5.8 g (100 %) of a yellow oil, which solidified rapidly upon standing.

[0198] The following intermediates were prepared in substantially the same manner:

Ethyl 7-Bromo-3-(2-methylthioethoxy)naphthalen-2-carboxylate (Y = SCH₃)

[0199] from ethyl 7-bromo-3-hydroxynaphthalen-2-carboxylate and 1-chloro-2-methylthioethane; yield: 91 %; MS 369 and 371 (M⁺ + 1)

Ethyl 7-Bromo-3-(2-dimethylaminoethoxy)naphthalen-2-carboxylate (Y = N(CH₃)₂)

[0200] from ethyl 7-bromo-3-hydroxynaphthalen-2-carboxylate and 1-chloro-2-dimethylaminoethane hydrochloride; yield: 49 %; MS 366 and 368 (M⁺ + 1)

Ethyl 4-Bromo-3-(2-methylthioethoxy)naphthalen-2-carboxylate (Y = SCH₃)

[0201] from ethyl 4-bromo-3-hydroxynaphthalen-2-carboxylate and 1-chloro-2-methylthioethane; yield: 21 %; MS 369 and 371 (M⁺ + 1)

Ethyl 4-Bromo-3-propoxynaphthalen-2-carboxylate (Y = CH₃)

[0202] from ethyl 4-bromo-3-hydroxynaphthalen-2-carboxylate and propyl iodide; yield: 61 %

Ethyl 4-Bromo-3-butoxynaphthalen-2-carboxylate (Y = CH₂CH₃)

[0203] The intermediate was prepared from ethyl 4-bromo-3-hydroxynaphthalen-2-carboxylate and butyl iodide in almost quantitative yield and used for the next step without further purification.

Preparation 84**Ethyl 3-(3-(tert.-Butoxycarbonylamino)propoxy)-7-(4-methylphenyl)naphthalen-2-carboxylate (X = 4-CH₃, Y = CH₂NHBoc)**

[0204] To a solution of 6.6 g (14.6 mmol) of the bromonaphthalene in 100 ml dioxane were added under argon 22 ml 2M aqueous sodium carbonate solution and 2.0 g Pd(PPh₃)₄, successively. The mixture was stirred for 30 min at room temperature followed by addition of 3.0 g (22.0 mmol) 4-methylbenzeneboronic acid. After 6 h stirring at 80 °C the solvent was removed in vacuo, and the title intermediate was purified by chromatography on silica gel with toluene / acetone 97:3 to give 4.5 g (66.5 %) of a yellow oil, which rapidly solidified upon standing.

[0205] The following intermediates were prepared in substantially the same manner:

Ethyl 7-(4-Fluorophenyl)-3-(2-methylthioethoxy)naphthalen-2-carboxylate (X = 4-F, Y = SCH₃)

[0206] yield: 61 %; pale yellow oil; MS 384 (M⁺)

5 **Ethyl 3-(2-Dimethylaminoethoxy)-7-(4-methylphenyl)naphthalen-2-carboxylate (X = 4-CH₃, Y = N(CH₃)₂)**

[0207] The compound crystallized by stirring of the residue with a small amount of ether and was used for the next step without further chromatographic purification; MS 378 (M⁺ + 1).

10 **Ethyl 4-(2,4-Dichlorophenyl)-3-(2-methylthioethoxy)naphthalen-2-carboxylate (X = 2,4-Cl₂, Y = SCH₃)**

[0208] yield: 47.5 %; MS 435 (M⁺ + 1)

15 **Ethyl 4-(4-Chlorophenyl)-3-propoxynaphthalen-2-carboxylate (X = 4-Cl, Y = CH₃)**

[0209] yield: 77 %

Ethyl 3-Butoxy-4-(4-chlorophenyl)naphthalen-2-carboxylate (X = 4-Cl, Y = CH₂CH₃)

20 [0210] yield: 95 %; MS 383 (M⁺ + 1)

Example 1

25 **2-[2-[1-(2,4-Dichlorobenzyl)-1H-indol-3-yl]-ethyl]-4,5-dihydro-1H-imidazole**

[0211] To a solution of 3-(1H-indol-3-yl)-propionic acid ethyl ester (1.6 g, 7.3 mMol) in dry acetonitrile (25 ml) was added successively cesium carbonate (2.35 g, 7.3 mMol) and 2,4-dichlorobenzyl chloride (1.0 ml, 7.3 mMol). The mixture was heated to 70°C. for 15 hours and, after cooling, poured into water (250 ml) and extracted with methylene chloride. The combined organic solutions were dried over sodium sulphate and evaporated. The remaining brown oil was used in the next step without further purification.

[0212] A 2M solution of trimethyl aluminium in toluene (3.32 ml) was diluted with dry toluene (30 ml), cooled to 0°C. and 1,2-diaminoethane (0.43 ml) was added. The mixture was brought to ambient temperature and a solution of 2.5 g of 3-[1-(2,4-Dichlorobenzyl)-1H-indol-3-yl]-propionic acid ethyl ester in dry toluene (20 ml) was added slowly. The reaction mixture was refluxed for 15 hours, cooled and carefully hydrolysed with water (20 ml). The organic phase was separated, dried over sodium sulphate and evaporated. The crude product was purified by column chromatography using successively methylene chloride/ethanol/aqueous ammonium hydroxide 50:49:1 and 50:43:7 respectively to yield the titled product.

40 Example 2

[0213] For clarification, as described in the following embodiments of Example 2, the variables 'X' and 'Y' are intended as illustrated:

55 **tert.-Butyl[3-(2-(4,5-Dihydro-1H-imidazol-2-yl)-7-(4-methylphenyl)naphthalen-3-yloxy)propyl]carbamate (X = 4-CH₃, Y = CH₂NHBoc)**

[0214] A mixture of 2.4 g (5.18 mmol) of the ethyl naphthalen-2-carboxylate and 25 ml ethylenediamine was heated

at 90 °C overnight. The excess of diamine was removed by distillation in vacuo, and the remaining crude 2-aminoethylamide was stirred with ethyl acetate, collected by filtration, and dried in vacuo to give 2.0 g (81 %) of colorless crystals. 1.6 g (3.35 mmol) of the amide was heated with 6 ml HMDS under argon at 130 °C overnight. After cooling the mixture was diluted with ethanol and concentrated in vacuo. The title imidazoline crystallized from ethyl acetate to give 470 mg of pale yellow crystals along with 170 mg of a yellow resinous material, which was obtained after chromatography (dichloromethane / ethanol 7:3) from the mother liquid.

total yield: 640 mg (42 %), m.p. 106-109 °C; MS 459 (M^+)

[0215] The following imidazolines were prepared in substantially the same or a substantially similar manner:

Example 2a: 2-[7-(4-Fluorophenyl)-3-(2-methylthioethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole (X = 4-F, Y = SCH_3)

[0216] The intermediate 2-aminoethylamide was obtained in 91 % yield as a pale yellow crystalline solid (MS 399 ($M^+ + 1$)) and cyclized by heating in HMDS.

yield: 14 %; yellow crystalline solid, m.p. 136 °C; MS 381 ($M^+ + 1$)

Example 2b: 2-[3-(2-Dimethylaminoethoxy)-7-(4-methylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride (X = 4- CH_3 , Y = 4-N(CH_3)₂)

[0217] The intermediate 2-aminoethylamide crystallized by stirring with ether; yield: 46 %; MS 392 ($M^+ + 1$). The title imidazoline was prepared by cyclization with HMDS followed by treatment of HCl in ether. It crystallized after dilution with ether.

yield: 3 %; pale yellow crystals, m.p. 148 °C; MS 374 ($M^+ + 1$)

Example 2c: 2-[4-(2,4-Dichlorophenyl)-3-(2-methylthioethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride (X = 2,4-Cl₂, Y = SCH_3)

[0218] The intermediate 2-aminoethylamide was obtained in 67 % yield; MS 449 ($M^+ + 1$). The title hydrochloride was formed by stirring with HCl in ether / ethanol and crystallized after further addition of ether.

yield: 6.5 %; yellow crystalline solid, m.p. 182 °C; MS 431 ($M^+ + 1$)

Example 2d: 2-[4-(4-Chlorophenyl)-3-propoxynaphthalen-2-yl]-4,5-dihydro-1H-imidazole (X = 4-Cl, Y = CH_3)

[0219] The intermediate 2-aminoethylamide was obtained in quantitative yield after chromatographic purification with dichloromethane / ethanolic ammonia gradient 99:1 to 95:5, and the cyclization was achieved by stirring of a dichloromethane solution at room temperature for 14 days in the presence of TMS iodide and diethylaminomethyl polystyrene. The title compound was purified via column chromatography on silica gel with dichloromethane / ethanolic ammonia gradient 99:1 to 92:8.

yield: 29 %; beige oil

Example 2e: 2-[3-Butoxy-4-(4-chlorophenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole (X = 4-Cl, Y = CH_2CH_3)

[0220] The intermediate 2-aminoethylamide was obtained after chromatographic purification with dichloromethane / ethanolic ammonia gradient 99:1 to 90:10 in 88 % yield; MS 397 ($M^+ + 1$). The conversion to the imidazoline was achieved with TMS iodide and diethylaminomethyl polystyrene in the same manner as described herein by Example 2d. The title compound was purified by chromatography with dichloromethane followed by dichloromethane / ethanolic ammonia 95:5.

yield: 39 %; pale yellow oil; MS 379 ($M^+ + 1$)

Example 2f: 3-[2-(4,5-Dihydro-1H-imidazol-2-yl)-7-(4-methylphenyl)naphthalen-3-yloxy]propylamine Bis trifluoroacetate (X = 4- CH_3 , Y = CH_2NH_2)

[0221] A solution of 0.2 g (0.435 mmol) of the carbamate from the previous step in 2 ml dichloromethane and 1 ml trifluoroacetic acid was stirred overnight at room temperature. The solvent was removed in vacuo, and the title imidazoline crystallized from ethanol to give 110 mg of colorless crystals. Another crop of 100 mg of pale yellow crystals was obtained from the mother liquid with ethanol / ethyl acetate. total yield: 210 mg (82 %), m.p. 204-5 °C (dec.); MS 359 (M^-)

Example 3

5 2-[7-(4-Fluorophenyl)-3-(2-methylsulfonylethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ($X = 4\text{-F}$, $Y = \text{SO}_2\text{CH}_3$)

[0222] As used herein, the variables "X" and "Y" refer to the structure illustrated in Example 2, above.

[0223] A solution of 100 mg (0.263 mmol) of 2-[7-(4-fluorophenyl)-3-(2-methylthioethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole in 3.5 ml methanol was cooled to 0 °C, while 500 mg oxone in 2.7 ml water were added dropwise. It was stirred at room temperature for 3 h, concentrated under reduced pressure, diluted with water, and after adjusting to pH 7-8 with sodium bicarbonate solution extracted with dichloromethane. The organic layer was washed with brine and with water, successively, dried over sodium sulfate, and concentrated to leave the title sulfone as an oil, which crystallized by stirring with a small amount of ether. yield: 13 mg (12 %); yellow crystals, m.p. 127 °C; MS 413 ($M^+ + 1$)

Example 4

15 2-(4-Methyl-3-propoxynaphthalen-2-yl)-4,5-dihydro-1H-imidazole

Step A: Methyl 4-Methyl-3-propoxynaphthalene-2-carboxylate

20 **[0224]** 3-Hydroxy-4-methyl-2-naphthoic acid was prepared according to a literature procedure (Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 22 (1979), 786; Farmaco, Ed. Sci. 33 (1978), 822) and esterified with methanol using standard conditions to give methyl 3-hydroxy-4-methyl-2-naphthoate. A suspension of 300 mg (1.39 mmol) of this ester, 263 mg (1.55 mmol) propyl iodide, and 215 mg (1.55 mmol) of dry potassium carbonate in 60 ml of absolute butanone was stirred at 60 °C for 5 days. After addition of the same amounts of propyl iodide and potassium carbonate stirring was continued at 60 °C for another 2 days. The inorganic salts were filtered off, washed with acetone, and together with a small amount of silica gel the filtrate was evaporated to dryness. The remaining powder was applied to column chromatography on silica gel using hexane / tert.-butylmethylether gradient up to 9:1. yield: 280 mg (78 %)

30 Step B: 2-(4-Methyl-3-propoxynaphthalen-2-yl)-4,5-dihydro-1H-imidazole

35 **[0225]** A mixture of 280 mg (1.08 mmol) methyl 4-methyl-3-propoxynaphthalene-2-carboxylate and 2 ml ethylenediamine was heated at 80 °C overnight. The excess diamine was removed under reduced pressure and the intermediate 2-aminoethylamide purified by chromatography on silica gel with dichloromethane followed by dichloromethane / ethanolic ammonia gradient up to 9:1.

yield: 270 mg (87 %)

A mixture of 60 mg (0.21 mmol) of the amide, 200 mg (0.6 mmol) diethylaminomethyl polystyrene resin and 86 µl (0.6 mmol) TMS iodide in 2 ml dichloromethane was stirred at room temperature for 5 days. After addition of another 100 mg of the resin and 43 µl of the iodide stirring was continued for 7 days. The resin was removed by filtration, washed with dichloromethane and ethanol, successively, and the filtrate was concentrated under reduced pressure. The title compound was obtained after chromatography on silica gel with dichloromethane /ethanolic ammonia 9:1. yield: 23 mg (41 %); beige crystalline solid

Example 5

45 **[0226]**

55 3-(4,5-Dihydro-1H-imidazol-2-yl)-2-phenylquinoline ($X = \text{H}$, $R = \text{phenyl}$)

[0227] As used herein, the variables "X" and "R" refer to the structure illustrated above herein in Example 5.

Step 1:2 -Phenylquinoline-3-carbaldehyde

[0228] A solution of 960 mg (5 mmol) of 2-chloroquinolin-3-carbaldehyde, 570 mg (0.5 mmol) of Pd(PPh_3)₄, and 1.2 g of benzeneboronic acid in a mixture of 7.5 ml of 2M aqueous sodium carbonate solution and 20 ml of dioxane was heated for 40 h to 95 °C. It was extracted with ethyl acetate, and the organic layer was dried and evaporated. The residue was chromatographed on silica gel with a hexane / ethyl acetate gradient 98:2 to 90:10 to give 1.05 g (90 %) of the title aldehyde.

Step 2:3-(4,5-Dihydro-1H-imidazol-2-yl)-2-phenylquinoline

[0229] A solution of 100 mg (0.366 mmol) of the aldehyde from the previous step and 0.25 ml of ethylenediamine in 3 ml of nitrobenzene was heated for 60 h at 150 °C. The solvent was removed by flash chromatography on silica gel using hexane as the eluent. After evaporation the residue was purified via column chromatography on silica gel with dichloromethane / ethanolic ammonia gradient 99:1 to 90:10. yield: 9 mg (7 %); brown oil

[0230] The following two examples were prepared in substantially the same manner by Suzuki coupling reaction with 2-chloroquinoline-3-carbaldehyde followed by formation of the imidazoline:

Example 5a: 3-(4,5-Dihydro-1H-imidazol-2-yl)-2-(4-methylphenyl)quinoline (X = H, R = 4-methylphenyl)

[0231] beige amorphous solid

Example 5b: 2-(Benzofuran-2-yl)-3-(4,5-dihydro-1H-imidazol-2-yl)quinoline (X = H, R = benzofuran-2-yl)

[0232] beige amorphous solid

[0233] In addition to the corresponding imidazolines the following imidazoles have been isolated from the reaction mixture after chromatographic separation:

Example 5c: 3-(1H-Imidazol-2-yl)-2-phenylquinoline

[0234] brown amorphous solid

Example 5d: 2-(Benzofuran-2-yl)-3-(1H-imidazol-2-yl)quinoline

[0235] brown oil

Example 6

5-Chloro-2-methyl-3-(4,5-dihydro-1-H-imidazol-2-yl)-1H-indole

[0236]

[0237] A mixture of 5-chloro-2-methylindole (30.1 g; 0.18 mole) and 1-acetyl-imidazolidine-2-one (24 g; 0.18 mole) was added to phosphorous oxychloride (178 ml) and heated to 50°C. After 5 hours, phosphorous oxychloride was evaporated. The residue was treated with ethanol (250 ml) cautiously and maintained at reflux for 3.5 hours. The mixture was concentrated under reduced pressure to half of the original volume to obtain a precipitate, which was collected on a filter. The crystalline residue was treated with water, washed with ethylacetate, treated with 2N sodium

hydroxide to pH 11 and stirred overnight. The precipitate was filtered, washed with water and t-butylmethylether and dried to give product (10.9 g, 26%), m.p. 213°C.

¹H-NMR(DMSO): d 2.5 (s, 3H, CH₃), 3.55 (s, 4H, 2xCH₂), 6.30 (b, 1H, imidazolin), 7.04 (d, 1H 8.00 (s, 1H, H-4), 11.57 (b, 1H, NH-indol); MS (Ei 70eV) m/Z 233M+.

⁵ [0238] The following examples were prepared in substantial accordance with Example 6 and the procedures and methods disclosed herein.

Ex. #	MolStructure		yield	mp.	MS
6a		2-Methyl-3-(4,5-dihydro-1H-imidazol-2-yl)-1H-indole Hydrochloride	50%	301-303 °C	199 M+
6b		3-(4,5-dihydro-1H-imidazol-2-yl)-2,5-dimethyl-1H-indole Hydrochloride	51.30 %	> 290 °C	278 M+
6c		5-Methoxy-3-(4,5-dihydro-1H-imidazol-2-yl)-1H-indole	14.60 %	214 °C	229 M+
6d		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-fluoro-2-methyl-1H-indole Hydrochloride	46%	amorph	217 M+

5	6e		2-Phenyl-3-(4,5-dihydro-1H-imidazol-2-yl)-1H-indole Hydrochloride	63.90 %	> 300 °C	261 M+
10	6f		5-Nitro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	23%	> 350°C	244 M+
15	6g		3-(4,5-Dihydro-1H-imidazol-2-yl)-2-methyl-5-trifluoromethyl-1H-indole Hydrochloride	25%	350 °C	267 M+
20	6h		5-Bromo-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	80%	> 350°C	277 M+
25	6i		5-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-1,2-dimethyl-1H-indole	9.60 %	189 °C	247 M+
30						
35						
40						
45						
50						

5	6j		5-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-1H-indole Hydrochloride	60.20 %	> 300 °C	294 M+
10	6k		4-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	66.00 %	> 250 °C	233 M+
15	6l		6-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	60%	> 300 °C	233 M+
20	6m		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-iodo-2-methyl-1H-indole Hydrochloride	63%	> 300 °C	325 M+
25	6n		5-Chloro-2-(4-chlorophenyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-1H-indole Hydrochloride	40.90 %	> 320 °C	330 M+
30	6o		5-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-ethyl-1H-indole	7.10 %	176 °C	247 M+
35						
40						
45						
50						
55						

5	6p		5-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-(4-methylphenyl)-1H-indole Hydrochloride	17.40 %	> 300 °C	308 M+
10	6q		5-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-(4-methoxyphenyl)-1H-indole Hydrochloride	64.80 %	347 °C	326 [M+H] +
15	6r		5-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-(2-methylphenyl)-1H-indole	15.80 %	245 °C	309 M+
20	6s		5-Chloro-2-(2-chlorophenyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-1H-indole	6%	257 °C	330 M+
25	6t		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-fluoro-2-(4-methylphenyl)-1H-indole Hydrochloride	19%	> 310 °C	293 M+
30	6u		5,7-Dichloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-1H-indole Hydrochloride	12%	> 330 °C	330 M+
35						
40						
45						
50						
55						

5	6v		5-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-(5-methylfuran-2-yl)-1H-indole Hydrochloride	16.50 %	> 310 °C	299 M+
10	6w		5-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-(2-thienyl)-1H-indole Hydrochloride	62.80 %	> 310 °C	301 M+
15	6x		2-(2-Bromophenyl)-5-chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-1H-indole	2.30 %	201-202 °C	374 M+
20	6y		5-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-(3-methyl-2-thienyl)-1H-indole	34.30 %	251 °C	314 M+
25						
30						
35						

40	Structure and E.g. #	Name	yield	MS	mp
			%	M+	°C
45		3-(4,5-Dihydro-1H-imidazol-2-yl)-7-bromo-2-methyl-1H-indole Hydrochloride	40%	278	> 320
50		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(4-Chlorophenyl)-1H-indole Hydrochloride	56%	330	> 310
55					

5		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-cyano-2-methyl-1H-indole Hydrochloride	36%	224	>300
10		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(4-methylphenyl)-1H-indole Hydrochloride	56%	310	>300
15		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(3-methoxyphenyl)-1H-indole Hydrochloride	54%	326	317
20		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(4-methoxyphenyl)-1H-indole Hydrochloride	45%	326	347
25		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(2-methoxyphenyl)-1H-indole Hydrochloride	48%	326	242
30		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(3-methoxyethoxyphenyl)-1H-indole Hydrochloride	56%	370	178
35					
40					
45					
50					

5		6ah	3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(2-methoxyethoxyphenyl)-1H-indole	48%	333	> 242
10		6ai	3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(4-ethoxyphenyl)-1H-indole Hydrochloride	54%	340	> 300
15		6aj	3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(2-methylphenyl)-1H-indole	73%	310	245
20		6ak	3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(3-methylphenyl)-1H-indole Hydrochloride	68%	310	> 320
25		6al	3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(4-methoxyethoxyphenyl)-1H-indole Hydrochloride	62%	370	335
30		6am	3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(2-chlorophenyl)-1H-indole	56%	330	257
35						
40						
45						
50						

5		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-fluoro-2-(2-chlorophenyl)-1H-indole Hydrochloride	55%	314	257 (Z)
10		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-fluoro-2-(2-chlorophenyl)-1H-indole Hydrochloride	58%	293	> 310
15		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(3-chlorophenyl)-1H-indole	58%	330	258
20		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(3-thienyl)-1H-indole	32%	302	216
25		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(2,5-dimethyl-thien-3-yl)-1H-indole Hydrochloride	34%	330	265-266
30		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(cyclohexen-2-yl)-1H-indole Hydrochloride	45%	300	> 310
35					
40					
45					
50					

5		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(2,5-dichlorothien-3-yl)-1H-indole Hydrochloride	34%	371	> 310
10		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(2-chlorophenyl)-1H-indole Hydrochloride	66%	330	> 310
15		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(cyclohexan-1-yl)-1H-indole Hydrochloride	44%	302	> 310
20		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(2-fluorophenyl)-1H-indole Hydrochloride	58%	314	> 300
25		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-7-methyl-2-phenyl-1H-indole	44%	310	254-256
30		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-fluoro-2-(2,4-dichlorophenyl)-1H-indole	56%	348	> 340
35					
40					
45					

5		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(2,4-dimethylphenyl)-1H-indole	46%	324	277-279
10		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-fluoro-2-(2,4-dimethylphenyl)-1H-indole	55%	307	229 (Z)
15		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-7-methyl-2-(2-chlorophenyl)-1H-indole Hydrochloride	45%	344	302
20		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(3-methyl-4-chlorophenyl)-1H-indole Hydrochloride	65%	344	> 300
25		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(2-trifluoromethylphenyl)-1H-indole Hydrochloride	46%	364	> 320
30		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(2,5-dimethylphenyl)-1H-indole Hydrochloride	54%	324	160
35					
40					
45					
50					

5		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-methyl-2-(2,4-dichlorophenyl)-1H-indole Hydrochloride	56%	344	> 310
10		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-methyl-2-(2,5-dimethylphenyl)-1H-indole Hydrochloride	38%	303	309-312
15		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(2,5-dichlorophenyl)-1H-indole Hydrochloride	48%	365	178-180
20		3-(4,5-Dihydro-1H-imidazol-2-yl)-5,7-dichloro-2-(3-methylphenyl)-1H-indole Hydrochloride	44%	344	290-295
25		3-(4,5-Dihydro-1H-imidazol-2-yl)-5,7-dichloro-2-(4-methoxyphenyl)-1H-indole Hydrochloride	45%	360	> 300
30		3-(4,5-Dihydro-1H-imidazol-2-yl)-5,7-dichloro-2-(4-chlorophenyl)-1H-indole Hydrochloride	43%	365	> 300
35					
40					
45					
50					

5		3-(4,5-Dihydro-1H-imidazol-2-yl)-5,7-dichloro-2-methyl-1H-indole	45%	268	264
10	6bl				

3-(4,5-Dihydro-1H-imidazol-2-yl)-2-methyl-5-pentafluoroethyl-1H-indole Hydrochloride

15 [0239] was prepared using substantially the methods described herein yielding a product which was colorless crystals, m.p. > 280 °C (dec.); MS 318 ($M^+ + 1$).

[0240] For reasons of purification the base was transformed in a number of cases to the HCl-salt in a known manner.

Example 7

20 2-(2,5-Dimethylindol-3-yl)methyl-4,5-dihydroimidazole hydrochloride (X=CH₃, n=1)

[0241]

[0242] A mixture of 1.18 g (4.8 mmol) of ethyl (2,5-dimethylindol-3-yl)acetate and 7.5 mL of ethylenediamine was heated at 115°C overnight. The excess ethylenediamine was removed under reduced pressure and the residue was chromatographed with 1:1 CH₂Cl₂-EtOH + 10% ethanolic NH₃. The pure fraction of N-(2-aminoethyl)-(2,5-dimethylindol-3-yl)acetamide obtained (1.2 g) was treated with 15 mL of hexamethyldisilazine (HMDS) at gentle reflux (130°C.) overnight. The mixture was concentrated to dryness, dissolved in EtOH and treated with etheric HCl to acidic. Addition of ether in 3 portions induced light brown crystals. Yield: 39%; m.p. 245-7°C; ¹H NMR (DMSO-d₆) δ 11.02 (br. s, 1H), 9.94 (br. s, 2H), 7.23 (s, 1H), 7.16 (d, J=8.0 Hz, 1H), 6.85 (d, J=8.0 Hz, 1H), 3.90 (s, 2H), 3.79 (s, 4H), 2.36 (s, 6H).

[0243] Except as noted, the compounds of the following Examples 7a to 7d were prepared in a manner substantially similar to that of Example 7.

Example 7a

2-[(2-Methylindol-3-yl)methyl]-4,5-dihydroimidazole Hydrochloride (X=H, n=1)

50 [0244] The imidazoline was obtained in 9.3% yield, as a beige crystalline solid, m.p. 265-266 °C, using POCl₃ instead of HMDS

¹H NMR (DMSO-d₆) δ 11.18 (br s, 1H), 9.60 (very br s, 2H), 7.46 (d, J = 7.5 Hz, 1H), 7.28 (d, J = 8 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.97 (t, J = 7.5 Hz, 1H), 3.94 (s, 2H), 3.78 (s, 4H), 2.39 (s, 3H); MS 213 (M_B^+)

Example 7b

2-[(2-Methyl-5-methoxyindol-3-yl)methyl]-4,5-dihydroimidazole Hydrochloride (X=OCH₃, n=1)

- 5 [0245] Yield: 11%; beige crystalline solid, m.p. 215-216 °C; ¹H NMR (DMSO-d₆) d 10.98 (br s, 1H), 10.00 (br s, 2H), 7.16 (d, J = 7.5 Hz, 1H), 7.01 (s, 1H), 6.67 (dd, J = 8.5 Hz, J = 2 Hz, 1H), 3.90 (s, 2H), 3.79 (s, 3H), 3.76 (s, 4H), 2.36 (s, 3H); MS 243 (M_B⁺).

Example 7c

10 2-[2-(2-Methylindol-3-yl)ethyl]-4,5-dihydroimidazole Hydrochloride (X=H, n=2)

[0246] The compound was prepared in 33% yield by heating in HMDS with addition of one drop of TMS chloride. m. p. 259-261 °C

- 15 ¹H NMR (DMSO-d₆) d 10.87 (br s, 1H), 10.26 (br s, 2H), 7.50 (d, J = 7.5 Hz, 1H), 7.24 (d, J = 8 Hz, 1H), 6.99 (t, J = 7.5 Hz, 1H), 6.94 (t, J = 7.5 Hz, 1H), 3.76 (s, 4H), 3.01 (t, J = 7.5 Hz, 2H), 2.69 (t, J = 7.5 Hz, 2H), 2.35 (s, 3H); MS 227 (M_B⁺).

Example 7d

20 2-[2-(2-Methyl-5-methoxyindol-3-yl)ethyl]-4,5-dihydroimidazole Hydrochloride (X=OCH₃, n=2)

[0247] The compound was prepared by heating in HMDS with addition of one drop of TMS chloride. Yield 55%; beige crystalline solid, m.p. 274-276 °C

- 25 ¹H NMR (DMSO-d₆) d 10.70 (br s; 1H), 10.36 (br s, 2H), 7.11 (d, J = 8.5 Hz, 1H), 7.06 (s, 1H), 6.63 (dd, J = 8.5, J = 2.5 Hz, 1H), 3.77 (s, 7H), 2.99 (t, J = 7.5 Hz, 2H), 2.69 (t, J = 7.5 Hz, 2H) 2.32 (s, 3H); MS 257 (M_B⁺)

[0248] The following examples 8-10 were performed substantially in accordance with Example 7. As used in these examples, the variables "X" and/or "n" refer to the structure illustrated in Example 7.

Example 8

2-(5-Fluoro-2-methylindol-3-yl)methyl-4,5-dihydroimidazole hydrochloride (X=F; n=1)

35 [0249] Yield: 21%, m.p. 274-5°C.

Example 9

2-(5-Chloro-2-methylindole-3-yl)methyl-4,5-dihydroimidazole hydrochloride (X=Cl; n=1)

- 40 [0250] Yield: 4.8%, m.p. 279-281 °C.

Example 10

2-(5-Bromo-2-methylindol-3-yl)methyl-4,5-dihydroimidazole hydrochloride (X=Br; n=1)

- 45 [0251] Yield: 23%, m.p. 287-9°C.

[0252] The following examples 11-15 were performed substantially in accordance with Example 7 with the exception that 1 drop of TMSCl was added to HMDS and heated at 120°C. in the imidazoline formation reaction. As used in these examples, the variables "X" and/or "n" refer to the structure illustrated in Example 7.

Example 11

2-[2-(2,5-Dimethylindol-3-yl)ethyl]-4,5-dihydroimidazole hydrochloride (X=CH₃, n=2)

- 55 [0253] Yield: 46%. m.p. 292-4° C: ¹H NMR (DMSO-d₆) d 10.73 (br. s. 1H), 10.30 (br. s, 2H), 7.24 (s, 1H), 7.11 (d, J=8.0 Hz, 1H), 6.81 (d, J=8.0 Hz. 1H), 3.77 (s. 4H), 2.99 (t, J=7.5 Hz, 2H), 2.68 (t, J=7.5 Hz, 2H), 2.36 (s, 3H), 2.32 (s, 3H).

Example 12

2-[2-(5-Fluoro-2-methylindol-3-yl)ethyl]-4,5-dihydroimidazole hydrochloride (X=F, n=2)

5 [0254] Yield: 48%; m.p. 323-5 °C.

Example 13

2-[2-(5-Chloro-2-methylindol-3-yl)ethyl]-4,5-dihydroimidazole hydrochloride (X=Cl, n=2)

10 [0255] Yield: 69%; m.p. >330°C.

Example 14

15 2-[2-(5-Bromo-2-methylindol-3-yl)ethyl]-4,5-dihydroimidazole hydrochloride (X=Br, n=2)

[0256] Yield: 37%; m.p. >325°C.

Example 15

20 2-[2-(5-Trifluoromethyl-2-methylindol-3-yl)ethyl]-4,5-dihydroimidazole hydrochloride (X=CF₃, n=2)

[0257] Yield: 9.0%; m.p. >310°C.

Example 16

25 2-(7-Bromo-3-[2-methoxyethoxy]-naphthalen-2-yl)-4,5-dihydro-1H-imidazole Ethyl-7-bromo-3-hydroxy-2-naphthoate

30 [0258] A solution of 81 g (0.3 mol) of 7-bromo-3-hydroxy-2-naphthoic acid in 600 ml dried EtOH and 60 ml conc. sulfuric acid was heated at reflux for 16 hours. The mixture was cooled to room temperature and treated with water (4000 ml) and neutralised with NaHCO₃. The solid was separated by filtration and dried in a drying chamber afforded 75.3 g (85%) of the titled compound.

35 Ethyl-7-bromo-3-[2-methoxyethoxy]-2-naphthoate

35 [0259] To a solution of 59 g (0.2 mol) of the above-mentioned compound in 400 ml dimethylformamide was added 27.6 g (0.2 mol) potassium carbonate and 34.8 g (0.25 mol) 2-methoxyethoxybromide. The mixture was heated for 6 hours at 60° C. under stirring. After cooling to room temperature, the mixture was added to water (2000 ml). The solid was separated and dried. Yield: 67.7 g (95%)

40 {2-Aminoethyl}-7-bromo-3-[2-methoxyethoxy]-2-naphthoamide

45 [0260] A mixture of 67.7 g (0.19 mol) of the above-mentioned compound and 114.2 g (0.19 mol) ethylenediamine was heated for 6 hours at 100° C. After cooling to room temperature, water (1500 ml) was added. The induced solid was separated, washed with water and dried. Yield: 59.9 g (85%).

2-(7-Bromo-3-[2-methoxyethoxy]-naphthalen-2-yl)-4,5-dihydro-1H-imidazole

50 [0261] To 48 g (0.13 mol) of the above-mentioned compound was added cautiously phosphorousoxy-trichloride. The mixture was heated for 4 hours at 80-90°C. After evaporation, the mixture was added to ice-water and was made basic with 5 N NaOH and extracted with dichloromethane. The extract was washed with water, dried and evaporated *in vacuo* and chromatographed with ethylacetate/isopropanole/methanole/ ammonia 10% in ethanole 45/45/5/5 on silica gel. Yield: 30 g (66%).

Example 17

2-(7-(4-Methyl-phenyl)-2-[2-methoxyethoxy]-naphthalen-2-y)-4,5-dihydro-1H-imidazole

- 5 [0262] To a solution of 1.4 g (4 mmol) of 2-(7-Bromo-3-[2-methoxyethoxy]-naphthalen-2-yl)-4,5-dihydro-1H-imidazole

in 80 ml 1,4-dioxane was added under argon 0.46 g (0.4 mmol) of Pd(PPh_3)₄ and 8 ml of 2M Na₂CO₃. After stirring at room temperature for 20 minutes 0.816 g 4-methylbenzeneboronic acid was added and the mixture was heated for 20 hours at 80°C. The mixture was cooled to room temperature and filtered to remove the solid. The solution was acidified with 2N HCl and chromatographed on silica gel with dichloromethane/methanole 90/10 and gave 0.52 g (32%) of an amorphous product. MS(Ei 70 eV) m/Z M+ 360.

¹H-NMR(DMSO): d 2.43 (s, 3H, CH₃), 3.39 (s, 3H, OCH₃) 3.83 (bs, 2H, CH₂), 4.05 (s, 4H, 2xCH₂), 4.36 (bs, 2H, CH₂), 7.56 (d, 2H, Ar-H), 7.71 (d, 2H, Ar-H), 7.73 (s, 1H, Ar-H), 7.96 (s, 1H, Ar-H), 8.20 (s, 1H, Ar-H), 8.50 (s, 1H, Ar-H), 10.18 (bs, 2H, NH.HCl).

- 15 [0263] The following examples were prepared in substantial accordance with Examples 16, 17, and the procedures and methods disclose herein. As used in the following Table, the phrase "amorph" means amorphous.

MolStructure	Ex. #	Name	yield	mp.	MS(M ⁺)
	17a	2-[3-Methoxyethoxy]-7-(4-methylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	33%	amorph	360

35

40

45

50

55

5		17b	2-[3-(2-Methoxyethoxy)-7-(4-methoxyphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	41%	amorph	376
10		17c	2-[7-(4-Fluorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	27%	amorph	364
15		17d	2-[3-(2-Methoxyethoxy)-7-(3-trifluoromethylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	46%	amorph	414
20		17e	2-[3-(2-Methoxyethoxy)-7-(2-thienyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	30.70 %	amorph	352
25		17f	2-[3-(2-Methoxyethoxy)-7-(2-methoxyphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	40%	amorph	376
30						
35						
40						
45						
50						

5		17g	2-[3-(2-Methoxyethoxy)-7-(3-thienyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	26.90 %	amorph	352
10		17h	2-[7-(3-Fluorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	37%	240-242°C	364
15		17l	2-[3-(2-Ethoxyethoxy)-7-(4-methylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	42%	230-232 °C	374

Example 18

35 2-(4-Bromo-3-[2-methoxyethoxy]-naphthalen-2-yl)-4,5-dihydro-1H-imidazole

Ethyl-4-bromo-3-hydroxy-2-naphthoate

40 [0264] A solution of 41.5 g (0.156 mol) 4-bromo-3-hydroxy-naphthoic acid in 300 ml ethanol and 15 ml conc. Sulfuric acid was heated as reflux for 24 hours. The mixture was cooled to room temperature. The formed crystals were filtered off, washed with ethanol and dried. Yield: 38.05 g (83%).

Ethyl-4-bromo-3-[2-methoxyethoxy]-2-naphthoate

45 [0265] To a solution of 35.14 g (0.119 mol) of the above-mentioned compound in 200 ml dimethylformamide was added 16.46 g (0.119 mol) potassium carbonate and 24.9 g (0.179 g) 2-methoxyethoxybromide. The mixture was heated for 8 hours at 80°C. After cooling to room temperature, the mixture was given in water (300 ml) and extracted with ethylacetate. The extract was washed with water, dried and evaporated *in vacuo* giving a brown oil. Yield: 36.27 g (86.2%).

50 {2-Aminoethyl}-4-bromo-3-[2-methoxyethoxy]-2-naphthoamide

55 [0266] A mixture of 50.73 g, (0.144 mol) of the above-mentioned compound and 96 ml (0.144 mol) ethylenediamine was heated for 8 hours at 80°C. After cooling to room temperature, the mixture was evaporated *in vacuo* and without further purification used for the next step. Yield: 52.56 g (99.6%).

2-(4-Bromo-3-[2-methoxyethoxy]-naphthalen-2-yl)-4,5-dihydro- 1H-imidazole

[0267] To 52.56 g (0.143 mol) of the above-mentioned compound was added cautiously 127 ml phosphorous-ox-ytrichloride. The mixture was heated for 8 hours at 80°C. After evaporation, the mixture was added to ice-water, extracted with dichloromethane, dried and evaporated *in vacuo*. Addition of isopropanol induced hygroscopic crystals. Yield: 23.1 g (41.9%)

Example 19

2-(4-(2,4-Dichloro-phenyl)-3-[2-methoxyethoxy]-naphthalen-2-yl)-4,5-dihydro-1H-imidazole

[0268] To a solution of 25 g (0.0065 mol) of the above-mentioned compound in 100 ml 1,4-dioxan was added under argon 1.4 g (0.0012 mol) of $Pd(PPh_3)_4$ and 15 ml 2M Na_2CO_3 . After addition of 2.47 g of 2,4-dichlorobenzeneboronic acid the mixture was heated to 18 hours at 80°C. After cooling to room temperature, the solid was filtered off, the solution was acidified with 2N HCl and after evaporation *in vacuo* chromatographed on silica gel with dichloromethane/ethanol 90/10 giving 860 mg (29.3%) of a crystalline product.

MS(Ei 70 eV) m/Z 414 M+, m.p. 153°C.

1H -NMR(DMSO) d 3.31 (s, 3H, Ome), 3.37 (bs, 2H, CH_2), 3.72 (bs, 2H, CH_2), 4.05 (s, 4H, 2x CH_2), 7.25 (bs, 1H, Ar-H), 7.50 (bs, 1H, Ar-H), 7.66 (bs, 3H, Ar-H), 7.90 (s, 1H, Ar-H), 8.12 (bs, 1H, Ar-H), 8.54 (s, 1H, Ar-H).

[0269] The following examples were prepared in substantial accordance with Examples 18, 19, and the procedures and methods disclose herein.

25

30

35

40

45

50

55

MolStructure	BL	Name	yield	mp	MS (M ⁺)
<p>5</p>	19a	2-[3-(2-Methoxyethoxy)-4-(4-methylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole	4.16%	147 °C	361
<p>10</p>	19b	2-[4-(5-Chloro-2-thienyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	13.60 %	180°C	386
<p>15</p> <p>20</p> <p>25</p> <p>30</p> <p>35</p>	19c	2-[4-(2,4-Dichlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	21.95 %	153-155 °C	414

40

45

50

55

5		19d	2-[3-(2-Methoxyethoxy)-4-(3-thienyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	18.50 %	209-211 °C	352
10		19e	2-[3-(2-Methoxyethoxy)-4-(4-chlorophenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	5.80%	184-186 °C	380
15		19f	2-[3-(2-Methoxyethoxy)-4-(3-methoxyphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	18.73 %	81 °C	376
20		19g	2-[4-(2-Fluorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	49.60 %	126 °C	364
25		19h	2-[3-(2-Methoxyethoxy)-4-(4-methylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	24.29 %	176-178 °C	360
30						
35						
40						
45						
50						

Example 20

2-(2-Phenylindol-3-yl)methyl-4,5-dihydroimidazole Hydrochloride (X, Y=H, n= 1)

5 [0270]

[0271] A mixture of 1.6 g (5.7 mmol) of ethyl (2-phenylindol-3-yl)acetate and 15 ml of ethylenediamine was heated at reflux overnight. The excess diamine and the formed water were removed by distillation at 90 °C in vacuo, and the crude product was chromatographed with dichloromethane / ethanol 1:1 to afford 1.35 g (80 %) of N-(2-aminoethyl)-
20 -(2-phenylindol-3-yl)acetamide as a yellow crystalline solid. The amide and 20 ml of HMDS were heated at reflux under argon overnight. The crystals formed upon cooling were collected by filtration, dissolved in ethanol, and traces of HMDS were stripped off along with ethanol. The title imidazoline was purified by chromatography with dichloromethane / ethanol 7:3, dissolved in ethanol and treated with ethanolic HCl to form a hydrochloride salt which was recrystallized from EtOH/EtOAc to yield 0.45 g (31 %) of colorless crystals along with 0.32 g of the product salt from the mother liquid (54 % overall yield).

m.p. > 270 °C (dec.); ¹H NMR (DMSO-d₆) d 11.67 (s, 1H), 9.94 (br s, 2H), 7.61-7.44 (m, 7H), 7.18 (t, J = 7.5 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 4.12 (s, 2H), 3.75 (s, 4H); MS 275 (M_B⁺)

30 Example 21

2-[2-(2-Chlorophenyl)indol-3-yl]methyl-4,5-dihydroimidazole Hydrochloride (X=H, Y=2-Cl, n=1)

[0272] A mixture of 0.75 g (2.4 mmol) of ethyl (2-(2-chlorophenyl)indol-3-yl)acetate and 5 ml of ethylenediamine was heated at 120 °C for 4 h. The excess amine and the formed water were removed by distillation in vacuo. The crude amide was purified by chromatography with isopropanol / ethyl acetate / 25% NH₄OH 4:5:0.1 to yield 400 mg (51 %) as a yellow oil. The amide, 5 ml of HMDS, and 1 drop of TMS chloride were heated at reflux under argon overnight. The crude precipitate formed upon cooling was filtered, washed with ethanol, and chromatographed using the same eluent used in Example 20, above. The hydrochloride salt was formed by treatment with ethanolic HCl and recrystallized from acetone to afford 40 mg (9.5 %) of beige crystals of the title compound.

m.p. > 157 °C (dec.); ¹H NMR (DMSO-d₆) d 11.61 (s, 1H), 9.82 (br s, 2H), 7.66 (d, J = 7.5 Hz, 1H), 7.54 (m, 4H), 7.43 (d, J = 8 Hz, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 3.88 (s, 2H), 3.68 (s, 4H); MS 309 (M_B⁺).

[0273] The following compounds were prepared, except as noted, essentially in the same manner as described for Examples 20 and 21:

45 Example 22

2-[2-(2-Trifluoromethylphenyl)indol-3-yl]methyl-4,5-dihydroimidazole Hydrochloride (X=H, Y=2-CF₃, n=1)

[0274] without chromatographic purification of the 2-aminoethylamide; yield: 64 %; beige crystals, m.p. 180-4 °C; ¹H NMR (DMSO-d₆) d 11.61 (s, 1H), 9.84 (br s, 2H), 7.83 (d, J = 7.5 Hz, 1H), 7.82 (d, J = 7.5 Hz, 1H), 7.77 (d, J = 7.5 Hz, 1H), 7.71 (d, J = 7.5 Hz, 1H), 7.55 (d, J = 7.5 Hz, 1H), 7.41 (d, J = 8Hz, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 3.71 (s, 6H); MS 343 (M_B⁺).

55

Example 23

2-[2-(2,4-Dichlorophenyl)indol-3-yl]methyl-4,5-dihydroimidazole Hydrochloride (X=H, Y=2,4-Cl₂, n=1)

- 5 [0275] 2-aminoethylamide: 31 % yield, yellow oil
imidazoline: 43 % yield; beige crystals, m.p. 243-5 °C; MS 343 (M_B⁺).

Example 24

10 2-[2-(2-Chlorophenyl)-5-fluoroindol-3-yl]methyl-4,5-dihydroimidazole Hydrochloride (X=F, Y=2-Cl, n=1)

[0276] without chromatographic purification of the 2-aminoethylamide; yield: 4.8 %; beige crystals, m.p. 191-3 °C; MS 327 (M_B⁺).

Example 25

2-[5-Chloro-2-(2-chlorophenyl)indol-3-yl]methyl-4,5-dihydroimidazole Hydrochloride (X=Cl, Y=2-Cl, n=1)

- 20 [0277] 2-aminoethylamide: 60 % yield, yellow oil which solidified upon standing imidazoline: 53 % yield; beige crystals, m.p. 195-7 °C; MS 343 (M_B⁺).

Example 26

- 25 [0278] 2-[2-(2-Phenylindol-3-yl)ethyl]-4,5-dihydroimidazole Hydrochloride (X, Y=H, n=2) without chromatographic purification of the 2-aminoethylamide; yield: 21 %; beige crystals, m.p. 239-41 °C;
¹H NMR (DMSO-d₆) δ 11.37 (s, 1H), 10.22 (br s, 2H), 7.72 (d, J = 8 Hz, 1H), 7.66 (d, J = 7.5 Hz, 2H), 7.54 (t, J = 7.5 Hz, 2H), 7.42 (d, J = 7.5 Hz, 1H), 7.39 (d, J = 8 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 7.05 (t, J = 7 Hz, 1H), 3.71 (s, 4H), 3.23 (t, J = 8 Hz, 2H), 2.79 (t, J = 8 Hz, 2H); MS 289 (M_B⁺).

Example 27

2-[2-(2-Fluorophenyl)indol-3-yl]ethyl]-4,5-dihydroimidazole Hydrochloride (X=H, Y=2-F, n=2)

- 35 [0279] The 2-aminoethylamide was obtained as a yellow oil in 69 % yield and converted to the imidazoline by heating in HMDS without addition of TMS chloride. The title imidazoline was recrystallized from isopropanol after chromatographic purification with dichloromethane / ethanol 7:3 and obtained in 39 % yield of pure hydrochloride salt along with 52 % of the crude salt from the mother liquid. beige crystals, m.p. > 135 °C (dec.); ¹H NMR (DMSO-d₆) δ 11.36 (s, 1H), 10.17 (s, 2H), 7.73 (d, J = 7.5 Hz, 1H), 7.59 (t, J = 7 Hz, 1H), 7.52 (d, J = 5.5 Hz, 1H), 7.39 (m, 3H), 7.16 (t, J = 7 Hz, 1H), 7.07 (t, J = 7 Hz, 1H), 3.69 (s, 4H), 3.07 (t, J = 7 Hz, 2H), 2.74 (t, J = 7 Hz, 2H); MS 307 (M_B⁻).

Example 28

2-[2-(2-Chlorophenyl)indol-3-yl]ethyl]-4,5-dihydroimidazole Hydrochloride (X=H, Y=2-Cl, n=2)

- 45 [0280] The 2-aminoethylamide was obtained as a pale yellow foam in 83 % yield. The imidazoline was formed from the amide by heating in HMDS with addition of two drops of TMS chloride, purified by chromatography with dichloromethane / ethanol 3:2, and recrystallized from isopropanol to give the pure hydrochloride salt in 30 % along with 43 % yield of the crude salt from the mother liquid.
yellow crystalline solid, m.p. > 173 °C (dec.); ¹H NMR (DMSO-d₆) δ 11.29 (s, 1H), 9.89 (s, 2H), 7.70 (d, J = 8 Hz, 1H), 7.65 (d, J = 7 Hz, 1H), 7.54-7.50 (m, 3H), 7.36 (d, J = 8 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 3.66 (s, 4H), 3.00 (t, J = 7.5 Hz, 2H), 2.72 (t, J = 7.5 Hz, 2H); MS 323 (M_B⁺).

Example 29

55 2-[2-(2-Trifluoromethylphenyl)indol-3-yl]ethyl]-4,5-dihydroimidazole Hydrochloride (X=H, Y=2-CF₃, n=2)

[0281] 2-aminoethylamide: 45 % yield, yellow oil
imidazoline: 48 % yield; pale yellow crystals after crystallization from acetone, m.p. 288-91 °C;

¹H NMR (DMSO-d₆) δ 11.26 (s, 1H), 10.16 (s, 2H), 7.92 (d, J = 8 Hz, 1H), 7.80 (d, J = 7 Hz, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.71 (t, J = 8 Hz, 1H), 7.60 (d, J = 7.5 Hz, 1H), 7.35 (d, J = 8 Hz, 1H), 7.15 (t, J = 7.5 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 4.03 (br s, 4H), 2.87 (t, J = 7 Hz, 2H), 2.66 (distort. t, J = 7 Hz, 2H); MS 357 (M_B⁺).

⁵ Example 30

2-[2-(2-(2,4-Dichlorophenyl)indol-3-yl)ethyl]-4,5-dihydroimidazole Hydrochloride (X=H, Y=2,4-Cl₂, n=2)

[0282] 2-aminoethylamide: 98 % yield, pale yellow crystalline solid after stirring with ethanol

[0283] imidazoline: 26 % yield; beige crystals after crystallization from acetone, m.p. 247-9 °C; MS 357 (M_B⁺)

Example 31

2-(3-Chlorobenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole (X = Cl, Y = H)

[0284]

Step A: 2-(2-Phenylethen-1-yl)-4,5-dihydro-1H-imidazole

[0285] A solution of 5.3 g (50 mmol) of benzaldehyde and 4.2 g (50 mmol) of 2-methyl-4,5-dihydro-1H-imidazole in 50 ml toluene was refluxed in a Dean-Stark apparatus. Within 8 h 0.9 ml of water had been separated and the reaction was almost complete as detected by TLC. After cooling the crystalline precipitate was filtered off, treated with cold tert.-butylmethylether, and dried in vacuo.

yield: 2.6 g (23 %)

Step B: 2-(3-Chlorobenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole

[0286] 0.34 g (2 mmol) of the imidazoline described in the previous step was mixed with 0.17 ml of thionyl chloride and 20 µl pyridine under argon. After heating to 140 °C another 0.34 ml of thionyl chloride was slowly added and heating was continued for another 2 h. It was cooled and an excess of ethanol was carefully added. All volatiles were removed in vacuo, and the title compound was obtained from the residue via column chromatography on silica gel with dichloromethane / ethanolic ammonia gradient.

yield: 0.1 g (21 %); brown crystalline solid.

Example 32

2-(Benzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole (X = Y = H)

[0287] The title compound was prepared in the essentially the same manner, from 0.34 g (2 mmol) of 2-(2-phenylethen-1-yl)-4,5-dihydro-1H-imidazole and thionyl bromide, as described in Example 31.

yield: 40 mg (9.5 %); brown amorphous solid

Example 33

2-(3-Phenylbenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole (X = phenyl, Y = H)

[0288] A solution of 70 mg (0.3 mmol) of 2-(3-chlorobenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole, 61 mg (0.5 mmol) of benzeneboronic acid, and 35 mg (0.03 mmol) of tetrakis(triphenylphosphine)palladium(0) in a mixture of 5 ml dioxane and 1 ml 2M aqueous sodium carbonate solution was heated at 95 °C for 5 d. It was cooled and evaporated

to dryness. The title compound was obtained from the residue after repeated column chromatography on silica gel with dichloromethane / ethanolic ammonia gradient.

yield: 10 mg (12 %); brown resin

5 Example 34

2-(3-(4-Methylthiophenyl)benzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole (X = 4-methylthiophenyl, Y = H)

[0289] The title compound was prepared by a Suzuki coupling reaction between 4-methylthiobenzeneboronic acid and 2-(3-chlorobenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole as described in Example 33.

10 Example 35

2-(3-Butoxybenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole (X = OC₄H₉, Y = H)

[0290] A solution of 0.1 g (0.42 mmol) of 2-(3-chlorobenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole and 56 mg (0.5 mmol) of potassium tert.-butoxide in 2 ml of absolute n-butanol was heated for 3 d. After cooling the mixture was filtered, the filter rinsed with dichloromethane, and the filtrate concentrated under reduced pressure.

The title compound was obtained from the residue after column chromatography on silica gel with dichloromethane / ethanolic ammonia gradient.

yield: 10 mg (8.7 %); brown resin

20 Example 36

25 2-(6-Bromo-3-chlorobenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole (X = Cl, Y = 6-Br)

Step A: Ethyl 6-Bromo-3-chlorobenzo[b]thiophen-2-carboxylate

[0291] 3.4 g (15 mmol) of 4-bromocinnamic acid were mixed with 4 g (33 mmol) of thionyl chloride and 150 µl pyridine under argon. The mixture was stirred at 145 °C followed by slow addition of another 8 g (66 mmol) of thionyl chloride. After 6 h it was cooled and 20 ml of absolute ethanol was added carefully. All volatiles were removed in vacuo, and the title compound was isolated from the residue via column chromatography on silica gel with dichloromethane / ethanolic ammonia gradient. yield: 4.1g (85 %).

35 Step B: 2-(6-Bromo-3-chlorobenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole

[0292] A mixture of 4 g (12.5 mmol) ethyl 6-bromo-3-chlorobenzo[b]thiophen-2-carboxylate and 7.5 g (125 mmol) ethylenediamine were heated at 80 °C overnight. It was concentrated in vacuo, and the crude 2-ethylaminoamide was dissolved in 70 ml dry dichloromethane followed by addition of 10.5 ml triethylamine and 15 g (75 mmol) TMS iodide. After five days stirring at room temperature the reaction was almost complete as detected by TLC. It was extracted with water, dried over sodium sulfate, and concentrated under reduced pressure. The title imidazoline was isolated from the residue by column chromatography on silica gel with dichloromethane / ethanolic ammonia gradient. yield: 2.46 g (62 %); beige crystalline powder.

[0293] The following examples were prepared essentially in the same manner starting from the corresponding cinnamic acids:

45 Example 37

2-(7-Bromo-3-chloro-4-methoxybenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole (X = Cl, Y = 7-Br-4-OCH₃)

[0294] brown crystalline solid.

50 Example 38

55 2-(3,4-Dichlorobenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole Hydroiodide (X = Cl, Y = 4-Cl)

[0295] pale yellow crystals.

Example 39

2-(3-Chloro-4-methoxybenzo[b]thiophen-2-yl)-4,5-dihydro- 1H-imidazole Hydroiodide (X = Cl, Y = 4-OCH₃)

5 [0296] grey powder.

Example 40

2-(3-Chloro-4-trifluoromethylbenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole Hydroiodide (X = Cl, Y = 4-CF₃)

10 [0297] colorless crystals.

Example 41

15 2-(3-Chloro-6-trifluoromethylbenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole Hydroiodide (X = Cl, Y = 6-CF₃)

[0298] beige crystalline solid.

Example 42

20 2-(3-Chloro-6-methylbenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole Hydroiodide (X = Cl, Y = 6-CH₃)

[0299] grey crystalline solid.

Example 43

25 2-(4-Bromo-3-chlorobenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole Hydroiodide (X = Cl, Y = 4-Br)

[0300] colorless crystals.

30 Example 44: 2-(7-Bromo-3-chlorobenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole Hydroiodide (X = Cl, Y = 7-Br)

[0301] beige crystalline solid.

Example 45

35 2-(3-Chloro-6-(naphthalen-1-yl)benzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole (X = Cl, Y = 6-(naphthalen-1-yl))

40 [0302] A solution of 60 mg (0.19 mmol) of 2-(6-bromo-3-chlorobenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole, 69 mg (0.4 mmol) of naphthalene- 1 -boronic acid, and 23 mg (0.02 mmol) of Pd(PPh₃)₄ in a mixture of 2.5 ml dioxane and 0.4 ml 2M aqueous sodium carbonate solution was heated at 95 °C for 24 h. After cooling it was concentrated to dryness under reduced pressure, and the title compound was obtained from the residue by column chromatography on silica gel with dichloromethane /ethanolic ammonia gradient.

yield: 20 mg (29 %); brown amorphous solid

Example 46

45 2-(3-Chloro-6-(2-thienyl)benzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole (X = Cl, Y = 6-(2-thienyl))

50 [0303] The compound was prepared in manner similar to that of Example 45 from 2-(6-bromo-3-chlorobenzo[b]thiophen-2-yl)-4,5-dihydro- 1H-imidazole and thiophen-2-boronic acid.

Example 47

(2-(4,5-Dihydro-1H-imidazol-2-yl)benzo[b]thiophen-3-yl)-(4-methoxyphenyl)methanol (R = 4-methoxyphenyl)

5 [0304]

10

15

[0305] A stirred solution of 120 mg (0.5 mmol) of 2-(3-chlorobenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole in 5 ml of absolute THF was cooled to -78 °C and 0.625 ml of a 1.6 M solution of butyllithium in hexane (1.1 mmol) was added dropwise. After stirring for 1 h at -40 °C another 0.15 ml of 1.6 M butyllithium in hexane was added and stirring at -40 °C was continued for 15 min. It was added dropwise via a syringe a solution of 152 µl (1.25 mmol) of 4-methoxybenzaldehyde in 1 ml of absolute THF, and the mixture was slowly warmed to room temperature overnight. After careful quenching with water it was extracted with ether. The combined organic layers were dried over sodium sulfate and evaporated in vacuo, and the residue was purified via column chromatography on silica gel with dichloromethane / ethanolic ammonia gradient.

20 yield: 50 mg (30 %); beige crystalline solid.

[0306] The following Examples 48-54 were prepared in a similar manner to that of Example 47 by lithiation of 2-(3-chlorobenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole employing the following modification of the above described procedure:

[0307] A stirred solution of 100 mg (0.42 mmol) of 2-(3-chlorobenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole in 4 ml of absolute THF was cooled to -50 °C and 0.563 ml of 1.6 M butyllithium in hexane (0.9 mmol) was added dropwise. It was warmed to 0 °C within 4 h under stirring followed by dropwise addition via a syringe of a solution of 1 mmol of the aldehyde in 1 ml of dry THF. The mixture was slowly warmed to room temperature, and after stirring for 2 d the mixture was carefully quenched with 0.5 ml of ethanol followed by addition of 2 g of Amberlyst 15. The slurry was stirred for 20 min, and the ion exchange resin was removed by filtration and rinsed with ethanol, dichloromethane / ethanolic ammonia 95:5, dichloromethane / ethanolic ammonia 1:1, and ethanolic ammonia (each 3 x 4 ml), successively. The fractions were checked by TLC, and those containing the title imidazoline were combined and concentrated under reduced pressure. The residue was purified via column chromatography on silica gel with dichloromethane / ethanolic ammonia gradient.

40

Example 48

(2-(4,5-Dihydro-1H-imidazol-2-yl)benzo[b]thiophen-3-yl)-(3,4-methylenedioxyphenyl)methanol (R = 3,4-methylenedioxyphenyl)

45

[0308] brown amorphous solid.

Example 49

50 (2-(4,5-Dihydro-1H-imidazol-2-yl)benzo[b]thiophen-3-yl)-(pyridin-3-yl)methanol (R = pyridin-3-yl)

[0309] brown resin.

Example 50

55

(2-(4,5-Dihydro-1H-imidazol-2-yl)benzo[b]thiophen-3-yl)-(2-thienyl)methanol (R = 2-thienyl)

[0310] brown resin.

Example 51

(2-(4,5-Dihydro-1H-imidazol-2-yl)benzo[b]thiophen-3-yl)-(2-fluorophenyl)methanol (R = 2-fluorophenyl)

- 5 [0311] beige amorphous solid.

Example 52

(2-(4,5-Dihydro-1H-imidazol-2-yl)benzo[b]thiophen-3-yl)-(naphthalen-1-yl)methanol (R = 1-naphthyl)

- 10 [0312] beige amorphous solid.

Example 53

- 15 (4-tert.-Butylphenyl)-(2-(4,5-dihydro-1H-imidazol-2-yl)benzo[b]thiophen-3-yl)methanol (R = 4-tert.-butylphenyl)

- [0313] brown amorphous solid.

Example 54

20 2,4-Dichlorophenyl)-(2-(4,5-dihydro-1H-imidazol-2-yl)benzo[b]thiophen-3-yl)methanol (R = 2,4-dichlorophenyl)

- [0314] brown amorphous solid.

- 25 Example 55

5-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-(3-fluorophenyl)-1H-indole (X = 3-F)

[0315]

- 35 [0316] Ethylenediamine tosylate (929 mg, 4.0 mmol) and 5-chloro-3-cyano-2-(3-fluorophenyl)-1H-indole (0.27 g, 1.0 mmol) were thoroughly mixed in a mortar and heated with melting at 320 °C for 10 min. After cooling it was stirred with a small amount of water, and the mixture was brought to pH 9 with 2N sodium hydroxide. The precipitate was collected by filtration, washed with water, and dried in vacuo. The title imidazoline was isolated by chromatography on silica gel with dichloromethane / 10% ethanolic ammonia 9:1 and recrystallized from methanol. yield: 40 mg (13 %); beige crystalline solid, m.p. 248-250 °C; MS 312 (M⁺-1).

- 45 [0317] The following Examples 56-58 were prepared in essentially the same manner as described in Example 55:

Example 565-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-(3-trifluoromethylphenyl)-1H-indole (X = 3-CF₃)

- 50 [0318] yield: 28 %; beige crystalline solid, m.p. 258-260 °C; MS 362 (M⁺-1).

Example 57

[0319] 5-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-(3-iodophenyl)-1H-indole (X = 3-I) yield: 13 %; beige crystalline solid after chromatography and recrystallization from ethyl acetate,
5 m.p. 242-244 °C; MS 422 (M⁺⁺1).

Example 58

5-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-(4-iodophenyl)-1H-indole (X = 4-I)
10

[0320] yield: 29 %; colorless crystals after chromatography and recrystallization from ethanol, m.p. 246-248 °C; MS 422 (M⁺⁺1).

Example 59

15 5-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-1H-indole

Step A: 5-Chloro-1H-indole-3-carboxylic Acid

20 [0321] A solution of 5.0 g (33.0 mmol) of commercially available 5-chloro-1H-indole in 50 ml dry DMF was kept at 0 °C, while 7.35 g (35.0 mmol) trifluoroacetanhydride was added dropwise. After 3 h stirring at room temperature the mixture was poured into 200 ml water, and the precipitate was filtered with suction and heated with reflux overnight in 200 ml 20 % NaOH. It was extracted twice with dichloromethane, and the aqueous layer was acidified with hydrochloric acid. The crystalline title compound was collected by filtration and dried in vacuo.

25 yield: 6.0 g (93 %)

Step B: Ethyl 5-Chloro-1H-indole-3-carboxylate

30 [0322] To a suspension of 5.23 g (26.74 mmol) 5-chloro-1H-indole-3-carboxylic acid in 140 ml dry ethanol were added 10 ml concentrated sulfuric acid, and the mixture was heated with reflux for 16 h. It was concentrated under reduced pressure, and the residue was treated with ethanol / hexane to give the crystalline title ester, which was filtered and dried in vacuo.

yield: 3.84 g (64 %); MS 224 (M⁺⁺1)

35 [0323] The ethyl ester may also be prepared according to procedures known in the art (Japanese Patent 62 153271 (CA 108 (1988), 150791)) from ethyl acrylate and 2-bromo-5-chloroaniline in two Pd catalyzed steps in 9 % overall yield.

Step C: 5-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-1H-indole

40 [0324] A mixture of 1.34 g (6.0 mmol) ethyl 5-chloro-1H-indole-3-carboxylate and 10 ml ethylenediamine were heated at 120 °C for 4 days. The excess of diamine was removed in vacuo, and the residue was stirred with a small amount of ether to give the pale yellow crystalline 2-aminoethylamide.

yield: 0.77 g (54 %); MS 238 (M⁺⁺1)

45 [0325] The crude amide was heated at 120 °C overnight with 7.5 ml HMDS containing several drops of TMS iodide. The mixture was concentrated to dryness under reduced pressure, and the title imidazoline was obtained by chromatography on silica gel with dichloromethane / ethanol 1:1.

yield: 0.32 g (45 %); beige crystalline solid; m.p. > 300 °C; MS 220 (M⁺⁺1).

Example 60

2-[5-Chloro-2-(4-methoxyphenyl)benzofuran-3-yl]-4,5-dihydro-1H-imidazole (X = Cl, R = H, Y = 4-methoxyphenyl)

5 [0326]

10 [0327] A mixture of 0.41 g (1.13 mmol) ethyl 5-chloro-2-(4-methoxyphenyl)benzofuran-3-dithiocarboxylate, 0.4 g (6.65 mmol) ethylenediamine, and one drop of CS₂ in 20 ml ethanol was heated at reflux for 4 h. The solvent was removed in vacuo, and the residue was treated with water and brought to pH 5 with 2N hydrochloric acid. Solids were removed by filtration, and the filtrate was brought to pH 10 with 30 % aqueous sodium hydroxide and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under reduced pressure, and the title imidazoline was obtained after chromatography on silica gel with dichloromethane / 10 % ethanolic ammonia 98:2.

20 yield: 60 mg (16%); pale yellow crystals, m.p. 175-177 °C; MS 366 (M⁺⁺¹)

25 [0328] The following benzofurans, Examples 61-68, were prepared, except as noted, in the same manner as described in Example 60, with 1,2-diaminoethane or 1,2-diamino-2-methylpropane from the corresponding dithiocarboxylates:

Example 61

30 2-[5-Chloro-2-(2-chlorophenyl)benzofuran-3-yl]-4,5-dihydro-1H-imidazole Hydrochloride (X = Cl, R = H, Y = 2-chlorophenyl)

35 [0329] The imidazoline was isolated by extraction of the aqueous mixture with ethyl acetate. The hydrochloride salt was prepared from the residue with a mixture of ether and ethanol containing HCl and recrystallized from ethanol. yield: 44 %; colorless crystalline solid, m.p. 275-277 °C.

Example 62

40 2-[5-Chloro-2-(3-chlorophenyl)benzofuran-3-yl]-4,5-dihydro-1H-imidazole (X = Cl, R = H, Y = 3-chlorophenyl)

45 [0330] yield: 22 %; pale yellow crystalline solid, m.p. 181-83 °C; MS 331 (M⁺⁺¹)

Example 63

50 2-[5-Chloro-2-(4-chlorophenyl)benzofuran-3-yl]-4,5-dihydro-1H-imidazole (X = Cl, R = H, Y = 4-chlorophenyl).

[0331] yield: 23 %; colorless crystals, m.p. 215-217 °C; MS 331 (M⁺⁺¹).

Example 64

2-[5-Chloro-2-(3-methylphenyl)benzofuran-3-yl]-4,5-dihydro-1H-imidazole (X = Cl, R = H, Y = 3-methylphenyl)

55 [0332] yield: 14 %; colorless crystals, m.p. 169-171 °C; MS 311 (M⁺⁺¹).

Example 65

2-(5-Chloro-2-methylbenzofuran-3-yl)-4,5-dihydro-1H-imidazole (X = Cl, R = H, Y = CH₃)

5 [0333] yield: 33%; pale yellow crystalline solid, m.p. 187-190 °C; MS 234 (M⁺).

Example 66

2-(5-Fluoro-2-methylbenzofuran-3-yl)-4,5-dihydro-1H-imidazole (X = F, R = H, Y = CH₃)

10 [0334] After chromatography the compound was recrystallized from toluene / hexane for further purification. yield: 25 %; colorless crystals, m.p. 159-162 °C; MS 218 (M⁺).

Example 67

15 2-(5-Chloro-2-methylbenzofuran-3-yl)-4,5-dihydro-4,4-dimethyl-1H-imidazole (X = Cl, R = Y = CH₃)

[0335] yield: 6 %; pale yellow crystals, m.p. 140-142 °C; MS 262 (M⁺).

Example 68

20 2-(5-Fluoro-2-methylbenzofuran-3-yl)-4,5-dihydro-4,4-dimethyl-1H-imidazole (X = F, R=Y=CH₃)

25 [0336] The compound was obtained as a resinous oil after chromatography and crystallized from cyclohexane. yield: 25 %; beige crystalline solid, m.p. 117-120 °C; MS 246 (M⁺).

Example 69

30 2-(5-Chloro-2-methylbenzo[b]thiophen-3-yl)-4,5-dihydro-1H-imidazole (X = Cl, R = H, Y = CH₃)

[0337]

45 [0338] A mixture of 0.7 g (2.44 mmol) ethyl 5-chloro-2-methylbenzo[b]thiophen-3-dithiocarboxylate and 10 ml ethyl-enediamine was heated for 2 h at 120 °C. It was poured into 150 ml water, stirred for 10 min and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under reduced pressure to leave the title compound which was purified by crystallization from acetonitrile. yield: 0.51 g (83 %); colorless crystals, m.p. 190-192 °C; MS 250 (M⁺).

50 [0339] The following benzo[b]thiophenes, Examples 70-81, were prepared, except as noted, in essentially the same manner as described in Example 69, with 1,2-diaminoethane or 1,2-diamino-2-methylpropane from the corresponding dithiocarboxylates:

Example 70

55 2-(5-Fluoro-2-methylbenzo[b]thiophen-3-yl)-4,5-dihydro-1H-imidazole (X = F, R = H, Y = CH₃)

[0340] yield: 50 %; colorless crystalline solid, m.p. 161-163 °C; MS 234 (M⁺).

Example 71

2-[5-Chloro-2-(2-chlorophenyl)benzo[b]thiophen-3-yl]-4,5-dihydro- 1H-imidazole (X = Cl, R = H, Y= 2-chlorophenyl)

- 5 [0341] The compound was purified by chromatography with dichloromethane / 10 % ethanolic ammonia 98:2. yield: 37 %; pale yellow crystalline solid, m.p. 122-125 °C; MS 345 (M⁺ - 1), 311 (M⁺ - Cl).

Example 72

10 2-[2-(2-Chlorophenyl)-5-fluorobenzo[b]thiophen-3-yl]-4,5-dihydro-1H-imidazole (X = F, R = H, Y = 2-chlorophenyl)

- [0342] The compound was purified by chromatography with dichloromethane / 10 % ethanolic ammonia 98:2. yield: 44 %; pale yellow crystals, m.p. 177-179 °C; MS 329 (M⁺- 1), 295 (M⁺ - Cl).

Example 73

15 2-[5-Chloro-2-(4-methylphenyl)benzo[b]thiophen-3-yl]-4,5-dihydro-1H-imidazole (X = Cl, R = H, Y = 4-methylphenyl)

- 20 [0343] The imidazoline was purified by chromatography with toluene / ethanol 3:2. yield: 56 %; colorless crystalline solid, m.p. 217-220 °C; MS 325 (M⁺ - 1).

Example 74

25 2-[5-Fluoro-2-(4-methylphenyl)benzo[b]thiophen-3-yl]-4,5-dihydro-1H-imidazole (X = F, R = H, Y = 4-methylphenyl)

- [0344] yield: 45%; pale yellow crystals, m.p. 187-189 °C; MS 309 (M⁺ - 1).

Example 75

30 2-(5-Chloro-2-heptylbenzo[b]thiophen-3-yl)-4,5-dihydro-1H-imidazole (X = Cl, R = H, Y = n-C₇H₁₅)

- [0345] The title compound was purified by chromatography with dichloromethane / 10 % ethanolic ammonia 95:5. yield: 71 %; colorless crystalline solid, m.p. 126-128 °C; MS 334 (M⁺).

Example 76

35 2-(5-Chloro-2-methylbenzo[b]thiophen-3-yl)-4,5-dihydro-4,4-dimethyl-1H-imidazole (X= Cl, R = Y = CH₃)

- 40 [0346] The title imidazoline was purified by chromatography with dichloromethane /10 % ethanolic ammonia 97:3 followed by crystallization from acetonitrile. yield: 47 %; colorless crystalline powder, m.p. 158-160 °C; MS 278 (M⁺).

Example 77

45 2-(5-Fluoro-2-methylbenzo[b]thiophen-3-yl)-4,5-dihydro-4,4-dimethyl-1H-imidazole (X=F, R=Y=CH₃)

- [0347] It was purified by chromatography with dichloromethane / 10 % ethanolic ammonia 97:3, and the title compound crystallized by stirring with acetonitrile. yield: 61 %; pale yellow foam, m.p. 112-115 °C; MS 262 (M⁺).

Example 78

50 2-[5-Chloro-2-(4-methylphenyl)benzo[b]thiophen-3-yl]-4,5-dihydro-4,4-dimethyl-1H-imidazole (X = Cl, R = CH₃, Y = 4-methylphenyl)

- 55 [0348] The imidazoline was purified by chromatography with toluene / ethanol 7:3, yield: 50 %; colorless oil which slowly crystallized, m.p. 128-130 °C; MS 353 (M⁺ - 1).

Example 79

2-[5-Fluoro-2-(4-methylphenyl)benzo[b]thiophen-3-yl]-4,5-dihydro-4,4-dimethyl-1H-imidazole (X = F, R = CH₃, Y = 4-methylphenyl)

[0349] The imidazoline was purified by chromatography with toluene / ethanol 4:1. yield: 61 %; colorless crystalline solid, m.p. 213-215 °C; MS 337 (M⁺ - 1).

Example 80

2-(5-Chloro-2-heptylbenzo[b]thiophen-3-yl)-4,5-dihydro-4,4-dimethyl-1H-imidazole (X = Cl, R = CH₃, Y = n-C₇H₁₅)

[0350] The title imidazoline was purified by chromatography with dichloromethane / 10 % ethanolic ammonia 95:5. yield: 59 %; beige foam; MS 362 (M⁺).

Example 81

2-(5-Chloro-2-methylbenzo[b]thiophen-3-yl)-4,5-dihydro- 1H-oxazole

[0351] The oxazoline was prepared by heating of 0.3 g (1.05 mmol) ethyl 5-chloro-2-methylbenzo[b]thiophene-3-dithiocarboxylate in 2 ml 2-aminoethanol as described above, and it was isolated by chromatography on silica gel with hexane / ethyl acetate 9:1.

yield: 60 mg (23 %); colorless crystalline solid, m.p. 100-102 °C; MS 251 (M⁺).

Example 82

3-(4,5-Dihydro-1H-imidazol-2-yl)-2-mercaptopquinoline-2-thiol

[0352] A mixture of 1.81 g (10 mmol) of 2-chloroquinoline-3-carbaldehyde, 320 mg of elemental sulfur, and 2.4 g (400 mmol) of ethylenediamine in 20 ml isobutanol was heated to 115 °C for 6h. After cooling the mixture was filtered and evaporated. The residue was purified via column chromatography (dichloromethane / ethanol 10:3). yield: 570 mg (25 %); brown crystals, m.p. 61-63 °C

Example 83

5-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-(pyridin-3-yl)-1H-indole (X = Cl, R = 3-pyridyl)

[0353]

Step A: Ethyl (E/Z)-2-(5-Chloro-2-nitrophenyl)-3-(pyridin-3-yl)propenoate

[0354] To a solution of 700 mg (3 mmol) of ethyl 5-chloro-2-nitrophenylacetate (prepared according to Synthesis 1988, 1007), 321 mg (281 µl, 3 mmol) of pyridine-3-carbaldehyde, and 1.5 ml of 2N ethanolic KOH in 10 ml of absolute ethanol was added approx. 1 g of mol sieves (0.4 nm), and it was stirred for 16 h at ambient temperature. The mixture was filtered and the filtrate evaporated. The residue was chromatographed on silica gel with a hexane / acetone gradient (0 to 20 % acetone).

yield: 360 mg (36 %)

Step B:Ethyl 5-Chloro-2-(pyridin-3-yl)- 1H-indole-3-carboxylate

- 5 [0355] A solution of 350 mg (1.05 mmol) of the compound from Step A, in 6 ml of neat triethyl phosphite was stirred at 140 °C for 3 h. Excess triethyl phosphite was removed in vacuo, and the residue was dissolved in a small amount of ethanol together with approx. 500 mg of silica gel. The slurry was evaporated to dryness, and the remaining powder loaded onto a column containing silica gel. The title compound was obtained by chromatography with a hexane / acetone gradient (0 to 50 % acetone).
- 10 yield: 100 mg (33%).

Stets C:5-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-(pyridin-3-yl)-1H-indole

- 15 [0356] A solution of 100 mg (0.3 mmol) of the ester obtained in Step B, in 2 ml of ethylenediamine and 50 µl of water was stirred for 14 d at 100 °C. The mixture was evaporated to dryness, triturated with a minimum of dichloromethane / ethanol, and the precipitate was collected by filtration and dried in vacuo. The mother liquid was purified via silica gel chromatography using a dichloromethane / ethanolic ammonia gradient (98:2 to 80:20). The precipitate and the chromatographed material was collected to give 65 mg (65 %) of the 2-aminoethylamide.

- 20 [0357] To a solution of 65 mg (0.2 mmol) of the 2-aminoethylamide in 4 ml of dichloromethane 200 mg of diethylaminomethyl polystyrene and 86 µl of TMS iodide were added. After stirring for 3 d at ambient temperature another 57 µl of TMS iodide and 130 mg of the resin were added. Stirring was continued for another 4 d followed by repeated addition of an equal amount of TMS iodide and resin. After another 5 d of stirring the resin was removed by filtration, the filtrate was evaporated, and the residue purified via column chromatography on silica gel.
- 25 yield: 10 mg (16%); brown amorphous solid.

Example 84

5-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-(pyridin-4-yl)-1H-indole (X = Cl, R = 4-pyridyl)

- 30 [0358] This compound was prepared in the essentially the same manner as described in Example 85, and obtained as a yellow amorphous solid.

Example 85

- 35 3-(4,5-Dihydroimidazol-2-yl)-2-(4-methylphenyl)-5-trifluoromethoxy-1H-indole Hydrochloride (X = OCF₃, R = 4-methylphenyl)

Step A: 2-(4-Methylphenyl)-5-trifluoromethoxy- 1H-indole

- 40 [0359] To a stirred solution of 5.3 g (30 mmol) of 4-trifluoromethoxyaniline in 8 ml of N,N-diethylaniline was added dropwise at 165 °C a solution of 4.3 g of 4-methylphenacyl bromide in 7.5 ml of xylene. It was heated at 165 °C for 3 h. The mixture was cooled followed by addition of 50 ml of ethyl acetate. It was washed with 2N hydrochloric acid, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate and concentrated under reduced pressure. The residue was purified via repeated column chromatography on silica gel using a hexane / dichloromethane gradient (100:0 to 50:50). The title compound thus obtained was recrystallized from hexane.
- 45 yield: 400 mg (5 %).

Step B:3-(4,5-Dihydroimidazol-2-yl)-2-(4-methylphenyl)-5-trifluoromethoxy-1H-indole Hydrochloride

- 50 [0360] 380 mg (1.3 mmol) of the indole from Step A was heated with 210 mg (1.6 mmol) of N-acetyl-2-imidazolinone in 1.3 ml of neat phosphoryl chloride at 60 °C for 20 h. The excess of phosphoryl chloride was removed under reduced pressure, and the residue was dissolved in 2 ml of absolute ethanol and heated at 60 °C for 5 h. The mixture was cooled, and the crystalline precipitate collected by filtration, washed with ethanol, and dried in vacuo.
- 55 yield: 370 mg (70%); pale yellow crystals, m.p. >250 °C

Example 86

2-(2-Chlorophenyl)-3-(4,5-dihydroimidazol-2-yl)-5-trifluoromethoxy-1H-indole (X = OCF₃, R = 2-chlorophenyl)

- 5 [0361] The compound was prepared in essentially the same manner as described in Example 85, and obtained as a beige amorphous solid.

Example 87

- 10 3-(4,5-Dihydroimidazol-2-yl)-2-(4-methylphenyl)-5-trifluoromethylthio-1H-indole Hydrochloride (X = SCF₃, R = 4-methylphenyl)

[0362] The imidazoline was prepared in essentially the same manner as described in Example 85, starting from 4-(trifluoromethylthio)aniline and obtained as a colorless crystalline solid.

15

Example 88

2-(6-Aryl-naphthalene-2-yl)-4,5-dihydro-1H-imidazoles

- 20 [0363] The compounds of Examples 88a to 88g, shown in Table I below, were prepared from methyl-6-bromo-2-naphthoate as described in Scheme X, above. The general conditions for the Suzuki reaction were as follows:

[0364] To a solution of 1 mmol of the bromo compound in 20ml 1,4-dioxane is added under argon 0.1 mmol Pd(PPh₃)₄ and 2ml 2M Na₂CO₃. After stirring at room temperature for 20 minutes, 1.5mmol of the aryl boronic acid is added and the mixture is heated for 20 hours at 80°C. The mixture is cooled to room temperature and filtered to remove the solid.

25

The solution is acidified with 2N HCl and chromatographed on silica gel.

30

35

40

45

50

55

Table I

E.g. #	Structure		Yield	mp.	MS
88a		6-(Phenyl)-naphthalene-2-yl)-4,5-dihydro-1H-imidazole	55%	amorphous	272 M+
88b		6-(3-Thienyl)-naphthalene-2-yl)-4,5-dihydro-1H-imidazole	68%	amorphous	278 M+
88c		6-(4-Methoxyphenyl)-naphthalene-2-yl)-4,5-dihydro-1H-imidazole	50%	amorphous	302 M+
88d		6-(4-Chlorophenyl)-naphthalene-2-yl)-4,5-dihydro-1H-imidazole	60%	amorphous	306 M+
88e		2-[6-(4-Trifluoromethylphenyl)-naphthalene-2-yl]-4,5-dihydro-1H-imidazole	50%	amorphous	340 M+
88f		2-[6-(2,4-Dichlorophenyl)-naphthalene-2-yl]-4,5-dihydro-1H-imidazole	61%	amorphous	341 M+

5	88g		2-[6-(3,5-Bis(trifluoromethyl)-phenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole	53%	amorphous	408 M+
---	-----	--	---	-----	-----------	--------

10

Example 89

5-Chloro-2-benzyl-3-(4,5-dihydroimidazol-2-yl)-1H-indole

15

[0365]

Step 1: 3.85 g (30 mmol) 5-chloroindole was treated with 6.84 g (40 mmol) benzylbromide, 1.97 g (30 mmol) potassium hydroxide (85% powdered in mortar) and 0.25 g (1 mmol) 18-crown-6 as described in Synthesis 1979 p. 618, giving 4.35 g (60%) 5- chloro-1-benzyl-1H-indole, yellow oil, MS (Ei 70 eV) m/Z M+ 241.

Step 2: 2.42 g (10 mmol) 5-chloro-1-benzylindole was heated at 140° with PPA as described in Synth. Commun. 27 (1997) p. 2036 giving 2.0 g (83%) 5-chloro-2-benzyl-1H-indole, yellow oil, MS (Ei 70 eV) m/Z M+241.

25

Step 3: A mixture of 2.42g (10mmol) 5-chloro-2-benzylindole and 1.28g (10mmol) 1-acetyl-imidazolidine-2-one (0,1mol) is added to phosphorus oxychloride (10ml) and heated to 60°C for 5 hours. After evaporation of phosphorus oxychloride the residue is treated with ethanol (14ml) and heated to reflux for 3.5 hours. Ethanol is evaporated. The residue is purified by chromatography to obtain the hydrochloride. The base is obtainable by treatment with 2N sodium hydroxide to pH 11. The solid is filtered off and dried in vacuo. Hydrochloride, m.p. 299-300°C, M. S. (Ei 70 ev) m/Z M=309.

30

[0366] The compounds of Table II, Examples 89a to 89c, were prepared essentially as described in Example 89.

35

40

45

50

55

Table II

E.g. #	Structure		Yield	mp.	MS
89a		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(2-chlorobenzyl)-1H-indole Hydrochloride	29 %	>300 °C	344
89b		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(3-chlorobenzyl)-1H-indole Hydrochloride	10 %	270-271 ° (Z)	344
89c		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-(4-chlorobenzyl)-1H-indole Hydrochloride	26 %	>300 °C	344

Example 90

45 5-Chloro-2-methyl-1-benzyl-3-(4,5-dihydroimidazol-2-yl)-1H-indole

[0367]

50 Step 1: 4.97 g (30mmol) 5-chloro-2-methylindole was treated with 6.84 g (40mmol) benzyl bromide, 1.97 g (30mmol) potassium hydroxide (85% powdered in mortar) and 0.25 g (1mmol) 18-crown-6 as described in Synthesis 1979, p. 618 to give 3.22 g (42%) 5-chloro-2-methyl-1-benzyl-1H-indole, mp: 75 - 76°, MS (Ei 70 eV) m/Z M+255.

55 Step 2: 2.56 g (10mmol) 5-chloro-2-methyl-1-benzylindole was treated with 1.28 g (10mmol) 1-acetyl-imidazolidin-2-one and 10 ml phosphorous oxychloride as described in Example 89, Step 1 to give 0.65 g (18%) 3-(4,5-dihydro-1H-imidazol-2-yl)-5-chloro-2-methyl-1-benzyl-1H-indole Hydrochloride, mp: 273 - 275°, MS (Ei 70 eV) m/Z M+323.

[0368] The compounds of Table III, Examples 90a to 90c, were prepared essentially as described in Example 90.

Table III

E.g. #	Structure		Yield	mp.	MS
90a		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-methyl-1-(2-chlorobenzyl)-1H-indole Hydrochloride	17 %	299-300°	358
90b		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-methyl-1-(3-chlorobenzyl)-1H-indole Hydrochloride	40 %	amorphous	358
90c		3-(4,5-Dihydro-1H-imidazol-2-yl)-5-chloro-2-methyl-1-(4-chlorobenzyl)-1H-indole Hydrochloride	24 %	amorphous	358
		Hydrochloride			

Example 91

Optionally substituted aryl and heteroaryl 2-(4,5-dihydro-1H-imidazol-2-yl)benzofurans

- 5 [0369] The compounds of Table IV, Examples 91a-91aj were prepared as follows:

- 25 [0370] As illustrated herein, by the above scheme, R⁶ is as defined by Formula I and R⁷ is an aryl or heteroaryl.
 [0371] Bromobenzofurancarboxylic acids were prepared according to procedures known in the art, for example, as described in Helv. Chim. Acta 1954, p. 436, followed by the esterifications of the acids. The esters were converted into the imidazolines according to the procedure as described, for example, in Example 16, followed by applying the Suzuki-reaction as described, for example, in Example 88.

30

Table IV

35

40

45

50

55

E.g. #	Structure		Yield	mp.	MS
5 91a		2-(4-(5-Chloro-2-thienyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	56 %	158-160 °C	302
10 91b		2-(5-(2-Thienyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	41%	284-286 °C	268
15 91c		2-(5-(5-Chloro-2-thienyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	15%	amorphous	302
20 91d		2-(5-(4-Fluorophenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	22%	amorphous	280
25 91e		2-(5-(3-Trifluoromethylphenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	19%	amorphous	330
30 91f		2-(5-(3-Methoxyphenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	44%	246-248 °C	292
35 91g		2-(5-Phenyl-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	20%	252-254 °C	262

5	91h		2-(5-(3,5-Bistrifluoromethyl-phenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	25%	amorphous	398
10	91i		2-(5-(4-Chlorophenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	20%	amorphous	296
15	91j		2-(5-(4-Trifluoromethyl-phenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	27%	amorphous	330
20	91k		2-(5-(3-Nitrophenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	32%	amorphous	307
25	91l		2-(5-(4-Methylphenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	20%	amorphous	276
30	91m		2-(6-(5-Chloro-2-thienyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	67%	292-294 °C	302
35	91n		2-(7-(4-Methylphenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	41%	294-296 °C	276

5	91o		2-(7-(3-Thienyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	56%	amorphous	268
10	91p		2-(7-(2-Thienyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	43%	246-248 °C	268
15	91q		2-(7-(2-Methoxyphenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	64%	266-268 °C	292
20	91r		2-(7-(3-Nitrophenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	44%	298-300°C	307
25	91s		2-(5-(4-methylphenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	24%	amorphous	276
30	91t		2-(5-(4-methoxyphenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	32%	amorphous	292
35	91u		2-(5-(3-trifluoromethylphenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	36%	amorphous	330

5	91v		2-(5-(4-fluorophenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	35%	amorphous	280
10	91w		2-(5-(4-methylthiophenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	28%	amorphous	308
15	91x		2-(5-(3-fluorophenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	39%	amorphous	316
20	91y		2-(5-(2-methoxyphenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	37%	amorphous	328
25	91z		2-(7-(3-fluorophenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	28%	247°C	316
30	91aa		2-(7-(3-trifluoromethylphenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	40%	>300°C	366
35	91ab		2-(7-(3-nitrophenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	42%	>300°C	343
40						
45						
50						

5	91ac		2-(7-(4-methoxyphenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	45%	>300°C	328
10	91ad		2-(7-(4-chlorophenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	44%	>300°C	333
15	91ae		2-(7-(4-fluorophenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	39%	>300°C	316
20	91af		2-(4-(2-thienyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	25%	156°C	304
25	91ag		2-(4-(3-thienyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	28%	181°C	304
30	91ah		2-(4-(2-(5-chlorothienyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	30%	156°C	339
35	91ai		2-(4-(3-nitrophenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	32%	160°C	343
40						
45						
50						

5 91aj		CH	2-(4-(3-fluorophenyl)-2-benzofuranyl)-4,5-dihydro-1H-imidazole Hydrochloride	33%	135°C	316
-----------	--	----	--	-----	-------	-----

10

Example 92

5-optionally substituted aryl- and optionally substituted heteroaryl 2-methyl-3-(4,5-dihydro-1H-imidazolin-2-yl)-1H-indoles

[0372] The compounds of Table V, Examples 92a to 92s, were prepared by Suzuki coupling, for example, as described by Examples 91.

20

25

30

45

50

55

Table V

E.g. #	Structure		Yield	mp.	MS
92a		5-Phenyl-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	38%	< 300 °C	275
92b		5-(2-Thienyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	63%	amorphous	281
92c		5-(4-Chlorophenyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	35%	amorphous	309
92d		5-(3-Trifluoromethyl-phenyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	34%	amorphous	343
92e		5-(2-Benzofuranyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	51%	amorphous	315

5	92f		5-(4-Methylphenyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	22%	amorphous	289
10	92g		5-(4-Methoxyphenyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	24%	amorphous	305
15	92h		5-(4-Fluorophenyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	21%	amorphous	293
20	92i		5-(3-Nitrophenyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	19%	amorphous	320
25	92j		5-(2-Thienyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	26%	amorphous	281
30						
35						
40						
45						

5	92k		5-(3-Trifluoromethylphenyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	28%	amorphous	343
10	92l		5-(4-Trifluoromethylphenyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	16%	amorphous	343
15	92m		5-(2,4-Dichlorophenyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	31%	amorphous	344
20	92n		5-(3,5-Dichlorophenyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	28%	amorphous	344
25	92o		5-(3,5-Bistrifluoromethylphenyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	16%	amorphous	411
30						
35						
40						
45						

5	92p		5-(3-Amino-phenyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	18%	amorphous	290
10	92q		5-(1-Naphthyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	22%	amorphous	325
15	92r		5-(5-Chloro-2-thienyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	18%	amorphous	316
20	92s		5-(4-Bromophenyl)-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methyl-1H-indole Hydrochloride	18%	amorphous	354
25						
30						
35						

40

Example 93

5-Chloro-2-phenylthio-3-(4,5-dihydro-1H-imidazol-2-yl)-1H-indole

45 [0373] 5-Chloro-3-phenylthio-1H-indole was prepared according to the procedure as described in Synthesis, June 1988, 480-481. 5-Chloro-1H-indole (0.021mol, 3.19g) gave 5-chloro-3-(phenylthio)-1H-indole (4g): MS:259MH⁺; m.p. 109°C; yield (74.6%).

50 [0374] Isomerisation of the 3-phenylthio-1H-indole to 2-phenylthio-1H-indole is described in J.Org.Chem. 1992, 57, 2694-2699. 5-Chloro-3-(phenylthio)-1H-indole (0.015mol, 4g) gave 5-chloro-2-(phenylthio)-1H-indole (2.3g): MS: 259MH⁺; m.p.58°C; yield (57.5%).

Treatment of 5-chloro-2-(phenylthio)-1H-indole (3.8mmol, 1g) with N-acetyl-4,5-dihydro-1H-imidazol-2-one as described in Example 89, Step 3 gave 5-chloro-2-phenylthio-3-(4,5-dihydro-1H-imidazol-2-yl)-1H-indole (0.19g): MS: 327M⁺; m.p.178°C; yield (13.4%).

55

Example 94

4-Optionally substituted aryl- and heteroaryl-2-(4,5-dihydro-1H-imidazolin-2-yl) naphthalenes

- 5 [0375] The compounds of Table VI, Examples 94a to 94ai, are prepared by methods known in the art, or by the procedures as described herein, for example in Scheme IV.

Table VI

Structure and E.g. #	Name	Yield %	MS (M+)	M.P. °C
 94a	2-[4-(4-Fluorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	27	364	amorphous
 94b	2-[4-(3-Nitrophenyl)-3-propoxynaphthalen-2-yl]-4,5-1H-imidazole	29	375	amorphous
 94c	2-[3-(2-Methoxyethoxy)-4-(2-thienyl)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	31	389	amorphous

40

45

50

55

5		2-[4-(3,5-Dichlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	33	415	178
10		2-[3-(2-Methoxyethoxy)-4-(3-trifluoromethylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	25	414	124
15		2-[3-(2-Methoxyethoxy)-4-(4-methoxyphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	37	377	227
20		2-[3-(2-Methoxyethoxy)-4-(3-nitrophenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	28	391	195
25		2-[3-(2-Methoxyethoxy)-4-(3,5-bis(trifluoromethyl)phenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	22	482	223
30		2-[3-(2-Methoxyethoxy)-4-(2-methoxyphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	36	377	202
35					
40					
45					
50					

5		2-[3-(2-Methoxyethoxy)-4-(4-trifluoromethylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	31	414	154
10		2-[3-(2-Methoxyethoxy)-4-(4-methylthiophenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	17	393	220
15		2-[4-(2,4-Dichlorophenyl)-3-propoxynaphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	38	399	181
20		2-[3-(2-Methoxyethoxy)-4-(2-methylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	35	361	122
25		2-[4-(3-Chlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	31	381	192
30		2-[4-(2-Chlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	34	381	210
35					
40					
45					
50					

5		2-[4-(3-Chloro-4-fluorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	23	399	204
10		2-[4-(3,4-Dichlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	25	414	199
15		2-[4-(2,3-Dichlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	21	414	179
20		2-[4-(4-Chlorophenyl)-3-(2-ethoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	27	394	221
25		2-[4-(4-Chlorophenyl)-3-butoxynaphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	38	379	amorphous
30		2-[4-(4'-Chloro-4-biphenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	22	457	amorphous
35					
40					
45					
50					

5		2-[4-(4-Chlorophenyl)-3-(cyclobutylmethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	8	391	228
10		2-[4-(3-Chloro-4-fluorophenyl)-3-(2-ethoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	20	412	200
15		2-[3-(2-Ethoxyethoxy)-4-(4-ethylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	24	388	215
20		2-[4-(4-tert-Butylphenyl)-3-(2-ethoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	28	416	248
25		2-[4-(3,4-Dichlorophenyl)-3-(2-ethoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	9	428	192
30		2-[4-(3-Chloro-4-fluorophenyl)-3-(cyclobutylmethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	4	409	173
35					
40					
45					
50					

5		2-[4-(4-Chlorophenyl)-3-propoxynaphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	23	365	amorphous
10		2-[4-(3,4-Dichlorophenyl)-3-(cyclobutylmethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	10	425	192
15		2-[4-(4-Biphenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	15	423	214
20		2-[4-(4-Ethylphenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	24	375	165
25		2-[3-(2-Methoxyethoxy)-4-(3,4-methylenedioxophenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	12	390	168
30		2-[4-(4-tert-Butylphenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	25	403	179
35					
40					
45					
50					

5		2-[4-(3,4-Dimethoxyphenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	30	407	225
10		2-[4-(2,4-Dichlorophenyl)-3-propoxynaphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	38	399	181

Example 95

7-Optionally substituted aryl- and heteroaryl- and 7-bromo-2-(4,5-dihydro-1H-imidazolin-2-yl)-3-substituted naphthalenes

[0376] The compounds of Table VII, Examples 95a to 95at, are prepared by methods known in the art, or by the procedures as described herein, for example in Scheme V.

Table VII

Structure and E.g. #	Name	Yield %	MS (M+)	M.P. °C
	2-[7-(5-Chlorothien-2-yl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-1H-imidazole	41	386	amorphous
	2-[3-(2-Methoxyethoxy)-7-(3-nitrophenyl)naphthalen-2-yl]-4,5-1H-imidazole	22	391	amorphous

5		95c	2-[4-Bromo-7-(5-chlorothien-2-yl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	33	466	amorphous
10		95d	2-[3-(2-Methoxyethoxy)-7-(4-trifluoromethylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	34	414	amorphous
15		95e	2-[3-(2-Methoxyethoxy)-7-(4-chlorophenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	27	381	amorphous
20		95f	2-[3-(2-Methoxyethoxy)-7-phenylnaphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	36	346	amorphous
25		95g	2-(7-Bromo-3-hydroxynaphthalen-2-yl)-4,5-1H-imidazole Hydrochloride	60	291	amorphous
30		95h	2-(7-Bromo-3-butoxynaphthalen-2-yl)-4,5-1H-imidazole Hydrochloride	3	347	amorphous

5		2-[7-Bromo-4-chloro-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	5	384	amorphous
10		2-[3-Butoxy-7-(4-methylphenyl)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	41	359	amorphous
15		2-[3-Butoxy-7-(3-nitrophenyl)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	50	390	amorphous
20		2-[4-Chloro-7-(5-chlorothien-2-yl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	64	421	amorphous
25		2-[4-Chloro-7-(5-chlorothien-2-yl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	64	421	amorphous
30		2-[4-Chloro-3-(2-methoxyethoxy)-7-(4-methylphenyl)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	62	395	amorphous
35		2-[4-Chloro-7-(4-chlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	43	415	200
40					
45					
50					

5		2-[4-Chloro-3-(2-methoxyethoxy)-7-(4-trifluoromethylphenyl)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	40	449	216
10		2-[7-Bromo-3-(2-ethoxyethoxy)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	32	363	256
15		2-[4-Chloro-3-(2-methoxyethoxy)-7-(4-methoxyphenyl)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	60	411	206
20		2-[3-(2-Methoxyethoxy)-7-(3-methoxyphenyl)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	44	377	230
25		2-[7-(3-Fluorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	37	364	amorphous
30		2-[3-(2-Methoxyethoxy)-7-(3,5-bis(trifluoromethyl)phenyl)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	25	482	264
35					
40					
45					
50					

5		2-[7-(4-Methylphenyl)-3-(phenylmethoxy)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	35	393	224
10		2-[7-(3,5-Dichlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	28	415	240
15		2-[7-(5-Chlorothien-2-yl)-3-(2-ethoxyethoxy)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	36	401	206
20		2-[7-Bromo-3-(3,4,5,6-tetrahydropyran-2-ylmethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	50	389	284
25		2-[7-(4-Methylphenyl)-3-(3,4,5,6-tetrahydropyran-2-ylmethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	26	401	290
30		2-[3-Butoxy-7-(5-chlorothien-2-yl)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	50	385	240
35					
40					
45					
50					

5		2-[3-Butoxy-7-(4-methoxyphenyl)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	56	375	260
10		2-[7-(3-Nitrophenyl)-3-(3,4,5,6-tetrahydropyran-2-ylmethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	27	432	292
15		2-[7-(5-Chlorothien-2-yl)-3-(3,4,5,6-tetrahydropyran-2-ylmethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	33	427	270
20		2-[7-(4-Methoxyphenyl)-3-(3,4,5,6-tetrahydropyran-2-ylmethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	23	417	276
25		2-[7-Bromo-3-(3-ethoxypropoxy)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	2	377	196
30		2-[3-(3-Ethoxypropoxy)-7-(4-methylphenyl)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	27	389	218
35					
40					
45					
50					

5		95ag	2-[3-(3-Methoxypropoxy)-7-(4-methylphenyl)naphthalen-2-yl]-4,5-1H-imidazole Hydrochloride	30	375	238
10		95ah	2-[7-Bromo-3-(3-methoxypropoxy)naphthalen-2-yl]-4,5-1H-imidazole	37	327	228
15		95ai	2-[7-(5-Chlorothien-2-yl)-3-(3-methoxypropoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	38	401	210
20		95aj	2-[7-(4-Methoxyphenyl)-3-(3-methoxypropoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	31	391	226
25		95ak	2-[3-(3-Methoxypropoxy)-7-(3-nitrophenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	41	406	248
30		95al	2-[3-(2-Methoxyethoxy)-7-(2-methylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	27	361	276

5	95am		2-[7-(3-Chlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	32	381	264
10	95an		2-[3-(2-Methoxyethoxy)-7-(2-trifluoromethylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	28	414	271
15	95ao		2-[3-(2-Methoxyethoxy)-7-(3-methylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	32	361	260
20	95ap		2-[7-(2-Fluorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	34	364	272
25	95aq		2-[7-(2-Chlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	32	381	281
30	95ar		2-[7-(2,4-Dimethoxyphenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	27	407	239
35						
40						
45						

50

55

5		2-[7-(3-Chloro-4-fluorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	29	399	amorphous
10		2-[7-(2,3-Dichlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole Hydrochloride	28	415	279
15					

20 Example 96

6-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methylquinoline (X = Cl, R = CH₃)

[0377] The variables "X" and "R" refer to the structure illustrated above in Example 5.

Step 1:Ethyl 3-(4-Chlorophenylamino)but-2-enoate

[0378] A solution of 70 g (0.54 mol) of 4-chloroaniline, 70 ml (0.54 mol) of ethyl acetoacetate, and 0.6 ml acetic acid in 400ml toluene was heated in a Dean-Stark apparatus for 19 h at 130 °C. The mixture was evaporated, and the remaining crystalline precipitate stirred with diisopropylether and filtered. The filtrate was concentrated and the residue purified via column chromatography on silica gel with dichloromethane / hexane 4:1.
yield: 62 g (48 %)

Step 2:Ethyl 6-Chloro-2-methylquinoline-3-carboxylate

[0379] To a solution of 6.2 g (83 mmol) DMF in 50 ml of 1,2 dichloroethane was carefully added 19.1 g (126 mmol) of phosphoryl chloride. After stirring for 10 min at ambient temperature a solution of 20 g (83 mol) of ethyl 3-(4-chlorophenylamino)but-2-enoate in 50 ml of 1,2 dichloroethane was added slowly, while the mixture turned dark in an exothermic reaction. Stirring at ambient temperature was continued for another hour followed by heating with reflux for 6 h. The mixture was poured on to crushed ice, washed twice with water, dried over sodium sulfate, and concentrated under reduced pressure. The title ester was obtained from the residue via flash chromatography on silica gel with dichloromethane / hexane 4:1.
yield: 15 g (72 %)

Step 3:2-Aminoethyl 6-Chloro-2-methylquinoline-3-carbamide

[0380] A mixture of 10 g (38 mMol) of the ester from the previous step was heated in 45 ml of neat ethylene diamine for 16 h at 95 °C. The excess of amine was removed in a vacuo and the residue was purified via flash chromatography on silica gel with dichloromethane followed by dichloromethane / ethanolic ammonia 7:3.
yield: 7.2 g (72 %)

Step 4:6-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methylquinoline

[0381] To a solution of 3 g (114 mmol) of the 2-aminoethylamide in 75 ml of dichloromethane under argon 15.2 g of diethylaminomethyl polystyrene and 6.31ml of TMS iodide were added. After stirring for 170 h at ambient temperature the resin was removed by filtration and repeatedly rinsed with dichloromethane and ethanol (3 x 30 ml each). The filtrate was concentrated under reduced pressure and the residue purified via preparative HPLC on RP-18 silica gel with an acetonitrile / water gradient.

yield: 1 g (36 %); brown crystalline solid

[0382] The following two quinolines were prepared analogously using substantially similar procedures, starting from ethyl 2-oxobutyrate and 3-chloroaniline. The intermediate mixture of ethyl 5-chloro-3-methylquinoline-2-carboxylate and the isomeric ethyl 7-chloro-3-methylquinoline-2-carboxylate was separated by preparative HPLC, and both esters were converted to the corresponding imidazolines as described above:

In these following examples, the variable "X" refers to the following illustrated structure:

Example 96a: 5-Chloro-2-(4,5-dihydro-1H-imidazol-2-yl)-3-methylquinoline (X = 5-Cl)

[0383] colorless crystals

Example 96b: 7-Chloro-2-(4,5-dihydro-1H-imidazol-2-yl)-3-methylquinoline (X = 7-Cl)

[0384] beige crystalline solid, m.p. 139-141 °C

Example 97

2,5-Bistrifluoromethyl-3-(4,5-dihydroimidazol-2-yl)-1H-indole

Step 1:2-ido-4-trifluoromethyl-aniline

[0385] The intermediate was prepared according to a literature procedure (*Tetrahedron* 50 (1994), 7343).

Step 2:2,2,2-Trifluoro-N-(2-ido-4-trifluoromethylphenyl)acetamide

[0386] The compound was prepared from the aniline of the previous step with trifluoro acetanhydride in tert.-butyl-methylether by a standard procedure in quantitative yield.

Step 3:Ethyl 2,5-Bistrifluoromethyl-1H-indole-3-carboxylate

[0387] The indole was prepared from the trifluoroacetamide according to a literature method (*J. Chem. Soc., Perkin Trans 1*, 1997, 2056).

Step 4:2,5-Bistrifluoromethyl-1H-indole-3-carboxylic Acid

[0388] The indole-3-carboxylate was saponified with 5 % aqueous potassium hydroxide solution to give the carboxylic acid in 25 % yield.

Step 5:2,5-Bistrifluoromethyl-1H-indole-3-carbonyl chloride

[0389] A mixture of 500 mg (1.68 mmol) of the indolecarboxylic acid from Step 4 and 20 ml of thionyl chloride was heated for 3 h at 70 °C. The excess of thionyl chloride was removed under reduced pressure and the remaining crude acid chloride was dissolved in 30 ml of dry dichloromethane. This solution was used in the next step.

Step 6:2-Aminoethyl 2,5-Bistrifluoromethyl-1H-indole-3-carbamide

[0390] A solution of 5 g of ethylenediamine in 30 ml of dry dichloromethane was cooled to -20 °C followed by addition of the 2,5-bistrifluoromethyl-1H-indole-3-carbonyl chloride solution. After stirring for 1 h the mixture was brought to ambient temperature and all volatiles were removed in a vacuo. The residue was redissolved in a small amount of

dichloromethane, coated on silica gel, and the title amide was purified by flash chromatography with dichloromethane / ethanol gradient 9:1 to 1:1. yield: 240 mg (42 %)

Step 7:2,5-Bistrifluoromethyl-3-(4,5-dihydroimidazol-2-yl)-1H-indole

[0391] A mixture of 120 mg of the amide and 1.5 ml of neat HMDS containing 1 % of TMS chloride was stirred for 16 h at 100 °C. After quenching with ethanol all volatiles were removed in vacuo. The residue was redissolved in a small amount of dichloromethane, coated on silica gel, and purified by flash chromatography with dichloromethane followed by dichloromethane / ethanolic ammonia 95:5.

yield: 65 mg (57 %); pale beige crystalline solid

[0392] The pharmacological activity of compounds of the present invention may be determined by methods well known in the art and by the assays disclosed herein.

ASSAYS

BTC6, F7 Insulinoma Cell Screening Models

[0393] BTC6,F7 are cultured in DMEM 4.5g/l glucose with the following supplements: 15%(v/v) equine serum; 2.5% (v/v) FCS; and 50 U/ml Penicillin/ 50 µg/ml Streptomycin.

A) Adherent BTC6,F7 cells

[0394] BTC6,F7 are seeded after trypsinization to 30.000 cells/well in a 96 well multiplate. The cells grow to 50 % confluence and at day 2 or 3 after seeding, the insulin secretion experiments were performed as follows:

[0395] Discard the supernatant of the 96 well plates after the cells have been seeded, wash 3 times with EBSS (Earl's balanced salt solution) (0 mM glucose)/ 0.1 % BSA and incubate in the EBSS solution 30 min at 5% CO₂, 37°C.

[0396] The experiments with the compounds were run in the presence of 10 mM glucose and also in the absence of glucose in different concentrations. Incubation time is 1 hour. The supernatant is filtered and the insulin amounts measured by radioimmunoassay using an antibody directed against rat insulin.

B) Dissociated BTC6,F7 cells

[0397] BTC6,F7 cells at 50 % confluence were dislodged using enzyme free cell dissociation solution. Dislodged cells were dissociated by pressing the cell suspension through a needle (25 gauge). Cells were washed three times in EBSS (0 mM glucose)/0.1% BSA and insulin secretion experiments are performed as described above.

[0398] Dose response titrations on the agonists described revealed EC₅₀ values of < 10 mM, preferably < 1mmol.

Rat Islet Assay

[0399] The number of islets of three rats is usually sufficient to test 8 compounds including standards.

Solutions

[0400]

1. 100 ml EBSS (Earl's balanced salt solution): For example, as commercially available Cat. No. BSS-008-B (Specialty Media) without Glucose & Phenol Red, with 0.1% BSA, other comparable commercially available media are acceptable.

2. 100 ml EBSS/BSA buffer + 130.8 mg D(+)-Glucose monohydrate (MW: 198.17)
(=3.3 mM final concentration).

3. 100 ml EBSS/BSA buffer + 661.8 mg D(+)-Glucose monohydrate (MW: 198.17)
(=16.7 mM final concentration).

4. 100 ml EBSS (Earl's balanced salt solution). For example, as commercially available,Cat. No. BSS-008-B (Specialty Media) without Glucose & Phenol Red, with 0.1% BSA, with 0.6 % DMSO; other comparable solutions may be used as well;

Dilution of compounds:

[0401] Each dilution of compound has to be double concentrated as it will be diluted 1 + 1 by EBSS/BSA + Glucose (either high Glucose, 16.7 mM final conc. or low Glucose, 3.3 mM final conc.) in a 24 -well tissue culture plate (or other appropriate tissue culture receptacle, if desired).

[0402] A stock solution of the compound to be tested of 10 mM in DMSO is made, and the following solutions made for the compounds to be tested, and for standards.

Tube No.	Concentration (μM)	final Concentration (μM)	Dilution (μl)
1	200	100	40 μl of stock + 2000 μl EBSS/BSA
2	60	30	900 μl of tube 1 + 2100 μl EBSS/BSA
3	20	10	300 μl of tube 1 + 2700 μl EBSS/BSA/ 0.6 % DMSO
4	6	3	300 μl of tube 2 + 2700 μl EBSS/BSA/ 0.6 % DMSO
5	2	1	300 μl of tube 3 + 2700 μl EBSS/BSA/ 0.6 % DMSO
6	0.6	0.3	300 μl of tube 4 + 2700 μl EBSS/BSA/ 0.6 % DMSO
7	0.2	0.1	300 μl of tube 5 + 2700 μl EBSS/BSA/ 0.6 % DMSO
8	0.06	0.03	300 μl of tube 6 + 2700 μl EBSS/BSA/ 0.6 % DMSO

[0403] Culture dishes are prepared (untreated, 100 x 20 mm, one per two compounds) with 10 ml EBSS/BSA and 10 ml low glucose EBSS/BSA or similar preparative solution and place in an incubator at 37°C, 5 % CO₂, for at least 15 min.

Preparation of Rat islets in culture dishes:

[0404] Approximately half of an islet is selected with a 100 μl pipette and transferred to a prepared culture dish with EBSS/BSA/low Glucose by using binoculars (magnification about 30 x).

[0405] The dish is put back into the incubator (37°C, 5 % CO₂) for preincubation (30 min)

[0406] If a 24 well plate is used for the assay, the dilutions are distributed (500 μl each) as shown in the scheme below.

[0407] 500 μl of EBSS/BSA + 0.6 % DMSO (0 = Control).

40

45

50

55

0	0	0.03	0.03	0.1	0.1
1	2	3	4	5	6
0.3	0.3	1	1	3	3
7	8	9	10	11	12
10	10	30	30	0	0
13	14	15	16	17	18
0.1	0.1	1	1	10	10
19	20	21	22	23	24

[0408] EBSS/BSA/ high Glucose, 500 µl is added to wells 1-16, and EBSS/BSA/low Glucose, 500 µl is added to wells 17-24.

[0409] This scheme is repeated with the other compounds in tissue culture plates and the plates are placed into the incubator (37°C, 5 % CO₂) for at least 15 min.

[0410] The culture dish with the second half of the islets is taken out of the incubator. The rest of the islet is picked up with a 100 µl pipette and placed into the second of the prepared culture dishes with EBSS/BSA/low Glucose using binoculars, and placed back into the incubator (37°C, 5 % CO₂) for preincubation (30 min).

[0411] Take out the tissue culture plates 1 and 2 and the first preincubated islets. Place 8 islets into each well by using a 10 µl pipette and binoculars (general guideline-magnification about 40 x), generally trying to select islets of similar size which are not digested. The plates are placed back in the incubator (37°C, 5 % CO₂) for 90 min.

[0412] Remove the second of the overnight cultured culture dishes with islets from incubator. Approximately half of the islets are placed into the 3rd of the prepared culture dishes with EBSS/BSA/low Glucose with a 100 µl pipette and using binoculars (general guideline-magnification about 30 x), then placed back into the incubator (37°C, 5 % CO₂) for preincubation (30 min).

[0413] The 24 -well tissue culture plates 3 and 4 and the second preincubated islets culture dish are removed from the incubator and 8 islets placed into each well by using a 10 µl pipette and binoculars (magnification about 40 x), again selecting islets of similar size which are not digested. Put the plates back to the incubator (37°C, 5 % CO₂) for 90 min.

[0414] Take the culture dish with the second half of the islets out of the incubator. with a 100 µl pipette into the 4th of the prepared culture dishes with EBSS/BSA/low Glucose by using binoculars (magnification about 30 x) and put them back into the incubator (37°C, 5 % CO₂) for preincubation (30 min)

[0415] Take out the 24 -well tissue culture plates 5 and 6 and the 3rd preincubated islets culture dish. Place 8 islets into each well with a 10 pl pipette by using binoculars (magnification about 40 x). Put the plates back into the incubator (37°C, 5 % CO₂) for 90 min.

[0416] Take out the 24 -well tissue culture plates 7 and 8 and the last preincubated islets culture dish. Place 8 islets into each well with a 10 µl pipette by using binoculars (magnification about 40 x). Put the plates back to the incubator (37°C, 5 % CO₂) for 90 min.

[0417] When 90 minutes of incubation are over, transfer approximately 300 µl of each well into one well of the 96 well filter plate and by using a vacuum pump filter it into a 96 well Microplate. 4 of the 24-well tissue culture plates cover one filterplate and

96-well-Microplate.

[0418] The insulin secreted by the islets is measured in a RIA after dilution (1:5).

Intravenous Glucose Tolerance Test

[0419] This test is used to examine in vivo efficacy of compounds of the present invention on insulin secretion and blood glucose at hyperglycemia.

[0420] The intravenous glucose tolerance test (IVGTT) is performed in overnight fasted anesthetized male wistar rats weighing 280-350g. Under pentobarbitone anesthesia (50 mg/kg ip) polyethylene catheters are placed in the left jugular vein and in the left common carotid artery. Glucose (10% solution) is administered intravenously at a dose of 0.5 g/kg, followed directly by an iv injection of the compound to be tested.

[0421] Blood samples are drawn before and 3, 6, 10, 15, 30 and 45 min after glucose administration, centrifuged and the obtained serum is stored at -20°C for analytics. Test compounds are examined along with a reference (positive control) and a vehicle control with n=8 animals per group. Glucose is determined by the hexokinase method, and insulin via radioimmunoassay (RIA) from serum.

[0422] In order to examine the effects of test compounds on insulin and blood glucose at euglycemia in vivo, the protocol of the IVGTT as described above is used except for the administration of intravenous glucose.

[0423] The compounds of Formula I are preferably formulated prior to administration. Therefore, yet another embodiment of the present invention is a pharmaceutical formulation comprising a compound of Formula I and one or more pharmaceutically acceptable carriers, diluents or excipients.

[0424] The present pharmaceutical formulations are prepared by known procedures using well-known and readily available ingredients. In making the compositions of the present invention, the active ingredient will usually be mixed with a carrier, or diluted by a carrier, or enclosed within a carrier which may be in the form of a capsule, sachet, paper or other container. When the carrier serves as a diluent, it may be a solid, semisolid or liquid material which acts as a vehicle, excipient or medium for the active ingredient. Thus, the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosol (as a solid or in a liquid medium), soft and hard gelatin capsules, suppositories, sterile injectable solutions and sterile packaged powders.

[0425] Some examples of suitable carriers, excipients, and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water syrup, methyl cellulose, methyl and propylhydroxybenzoates, talc, magnesium stearate and mineral oil. The formulations can additionally include lubricating agents, wetting agents, emulsifying and suspending agents, preserving agents, sweetening agents or flavoring agents. The compositions of the invention may be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient.

[0426] The compositions are preferably formulated in a unit dosage form, each dosage containing from about 0.1 to about 500 mg, more usually about .5 to about 200 mg, of the active ingredient. However, it will be understood that the therapeutic dosage administered will be determined by the physician in the light of the relevant circumstances including the condition to be treated, the choice of compound to be administered and the chosen route of administration, and therefore the above dosage ranges are not intended to limit the scope of the invention in any way. The compounds can be administered by a variety of routes including the oral, rectal, transdermal, subcutaneous, topical, intravenous, intramuscular or intranasal routes. For all indications, a typical daily dose will contain from about 0.05 mg/kg to about 20 mg/kg of the active compound of this invention. Preferred daily doses will be about 0.1 to about 10 mg/kg, ideally about 0.1 to about 5 mg/kg. However, for topical administration a typical dosage is about 1 to about 500 mg compound per cm² of an affected tissue. Preferably, the applied amount of compound will range from about 30 to about 300 mg/cm², more preferably, from about 50 to about 200 mg/cm², and, most preferably, from about 60 to about 100 mg/cm².

[0427] The following formulation examples are illustrative only and are not intended to limit the scope of the invention in any way.

Formulation I

[0428] Hard gelatin capsules are prepared using the following ingredients:

50	Quantity (mg/ capsule)
Active ingredient	25
starch, dried	425
magnesium stearate	10
Total	<u>460 mg</u>

[0429] The above ingredients are mixed and filled into hard gelatin capsules in 460 mg quantities.

Formulation 2

5 [0430] Tablets each containing 10 mg of active ingredient are made up as follows:

Active ingredient	10 mg
Starch	160 mg
Microcrystalline cellulose	100 mg
Polyvinylpyrrolidone (as 10% solution in water)	13 mg
Sodium carboxymethyl starch	14 mg
Magnesium stearate	3 mg
Total	300 mg

10 [0431] The active ingredient, starch and cellulose are mixed thoroughly. The solution of polyvinylpyrrolidone is mixed with the resultant powders and passed through a sieve. The granules so produced are dried and re-passed through a sieve. The sodium carboxymethyl starch and magnesium stearate are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets each weighing 300 mg.

15 [0432] The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. The invention which is intended to be protected herein, however, is not to be construed as limited to the particular forms disclosed, since they are to be regarded as illustrative rather than restrictive. Variations and changes may be made by those skilled in the art without departing from the invention.

Claims

25 1. Use of a compound of Formula (I):

30 wherein

X is -O-, -S-, or -NR⁵-;

R⁵ is hydrogen or C₁₋₈ alkyl;

R¹, R^{1'}, R², and R³ are independently hydrogen or C₁₋₈ alkyl;

55 R¹ and R² optionally together form a bond and R^{1'} and R³ are independently hydrogen or C₁₋₈ alkyl;

R¹ and R² optionally combine together with the carbon atoms to which they are attached to form a C₃₋₇ carbocyclic ring and R^{1'} and R³ are independently hydrogen or C₁₋₈ alkyl;

R¹ and R^{1'} together with the carbon atom to which they are attached optionally combine to form a C₃₋₇ spiro-

carbocyclic ring and R² and R³ are independently hydrogen or C₁₋₈ alkyl;
 R² and R³ together with the carbon atom to which they are attached optionally combine to form a C₃₋₇ spiro-carbocyclic ring and R¹ and R^{1'} are independently hydrogen or C₁₋₈ alkyl;

5 n is 0, 1, or 2;

m is 0, 1 or 2;

m' is 0, 1, or 2;

q' is 0, 1, 2, 3, 4, or 5;

R⁴ is

10

15

20

25

30

Y is -O-, -S-, or -NR⁸;

Y' is -O- or -S-;

35 R⁶ and R⁷ are independently hydrogen, C₁₋₈ alkyl, C₃₋₇ cycloalkyl, C₁₋₈ alkoxy, C₁₋₈ alkylthio, halo C₁₋₈ alkylthio, C₁₋₈ alkylsulfinyl, C₁₋₈ alkylsulfonyl, C₃₋₇ cycloalkoxy, aryl-C₁₋₈ alkoxy, halo, halo-C₁₋₈ alkyl, halo-C₁₋₈ alkoxy, nitro, -NR¹⁰R¹¹, -CONR¹⁰R¹¹, aryl C₁₋₈ alkyl, optionally substituted heterocycl, optionally substituted phenyl, optionally substituted naphthyl, optionally halo substituted acylamino, cyano, hydroxy, COR¹², halo C₁₋₈ alkylsulfinyl, or halo C₁₋₈ alkylsulfonyl, or alkoxyalkyl of the formula

40

where

p is 0, 1, 2, 3, or 4; and

q is 1, 2, 3, 4, or 5;

R¹² is C₁₋₈ alkyl or optionally substituted phenyl;

45 R⁸ is hydrogen, C₁₋₈ alkyl, halo-C₁₋₈ alkyl, optionally substituted phenyl, optionally substituted heterocycl, COO C₁₋₈ alkyl, optionally substituted COOaryl, COC₁₋₈ alkyl, SO₂C₁₋₈ alkyl, optionally substituted SO₂ aryl, optionally substituted phenyl-C₁₋₈ alkyl, CH₃(CH₂)_pO-(CH₂)_qO-;

50 R⁹ is hydrogen, halo, C₁₋₈ alkyl, halo C₁₋₈ alkyl, C₁₋₈ alkylthio, halo C₁₋₈ alkylthio, C₃₋₇ cycloalkylthio, optionally substituted arylothio or heteroarylothio, C₁₋₈ alkoxy, C₃₋₇ cycloalkoxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, or optionally substituted aryl or heteroaryl, C₃₋₇ cycloalkyl, halo C₃₋₇ cycloalkyl, C₃₋₇ cycloalkenyl, cyano, COOR¹⁰, CONR¹⁰R¹¹ or NR¹⁰R¹¹, C₂₋₆ alkenyl, optionally substituted heterocycl, optionally substituted aryl C₁₋₈ alkyl, optionally substituted heteroaryl C₁₋₈ alkyl in which the alkyl group can be substituted by hydroxy, or C₁₋₈ alkyl substituted by hydroxy,

55 R¹⁰ and R¹¹ are independently hydrogen, C₁₋₈ alkyl, optionally substituted aryl C₁₋₈ alkyl, optionally substituted phenyl, or R¹⁰ and R¹¹ together with the nitrogen atom to which they are attached may combine to form a ring with up to six carbon atoms which optionally may be substituted with up to two C₁₋₈ alkyl groups or one carbon atom may be replaced by oxygen or sulfur;

R¹⁴ and R¹⁶ are independently hydrogen, halo, C₁₋₈ alkyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkoxy, C₃₋₇ cycloalkylC₁₋₈

alkoxy, halo-C₁₋₈ alkyl, halo-C₁₋₈ alkoxy, C₁₋₈ alkoxy, carbo(C₁₋₈)alkoxy, optionally substituted aryl, or optionally substituted heteroaryl;

R¹⁵ and R¹⁷ are independently hydrogen, halo, C₁₋₈ alkoxy, C₃₋₇-cycloalkyl, C₃₋₇ cycloalkyl C₁₋₈ alkoxy, C₁₋₈ alkyl, C₃₋₇ cycloalkoxy, hydroxy, halo C₁₋₈ alkoxy, carbo (C₁₋₈) alkoxy, optionally substituted phenyl, optionally substituted phenyl-C₁₋₈ alkyl, optionally substituted phenoxy, optionally substituted phenyl-C₁₋₈ alkoxy, (tetrahydropyran-2-yl) methoxy, C₁₋₈ alkyl-S(O)_m⁻, optionally substituted aryl-C₁₋₈ alkyl-S(O)_{m'}⁻, CH₃(CH₂)_p-Z¹-(CH₂)_q-Z²⁻, or Z³-(CH₂)_{q'}-Z²⁻;

where:

m is 0, 1 or 2;

m' is 0, 1, or 2;

q' is 0, 1, 2, 3, 4, or 5;

Z¹ and Z² are independently a bond, O, S, SO, SO₂, sulphoximino, or NR¹⁰; and

Z³ is hydroxy, NR¹⁰ R¹¹, or SH;

wherein aryl is a mononuclear or polynuclear aromatic hydrocarbon group, heteroaryl is a four to ten membered aromatic mononuclear or polynuclear ring system in which one or more of the atoms in the ring is an element other than carbon, heterocyclyl is a four to ten membered mononuclear or polynuclear, saturated or unsaturated ring system in which one or more of the atoms in the ring is an element other than carbon, and optionally substituted is unsubstituted or substituted by one or more substituents independently selected from C₁₋₈ alkyl, C₁₋₈ alkoxy, carboxy, hydroxy, cyano, halo, trifluoromethyl, SCH₃, nitro, phenyl, 3,4-methylenedioxy, amino, and phenyl which is optionally substituted by from one to three substituents independently selected from the group consisting of C₁₋₈ alkyl, C₁₋₈ alkoxy, carboxy, hydroxy, cyano, halo, trifluoromethyl, SCH₃, nitro, phenyl, 3,4-methylenedioxy, and amino;

provided that when R¹, R^{1'}, R² and R³ are all hydrogen; n is 0; R⁴ is naphthyl; and R¹⁴, R¹⁵ and R¹⁶, or R¹⁵, R¹⁶ and R¹⁷ are all hydrogen, then R¹⁷ or R¹⁴, respectively, is other than halo, methoxy, or C₁₋₆ alkyl;

or a pharmaceutically acceptable salt or ester thereof, in the manufacture of a medicament for the treatment of diabetes, diabetic complications, metabolic disorders, or related diseases where impaired glucose disposal is present.

2. Use of a compound of Formula (I):

(I)

in which

X is -O-, -S-, or -NR⁵-;

R⁵ is hydrogen or C₁₋₈ alkyl,

R¹, R^{1'}, R², and R³ are independently hydrogen or C₁₋₈ alkyl;

R¹ and R² together form a bond and R^{1'} and R³ are independently hydrogen or C₁₋₈ alkyl;

R¹ and R² can combine together with the carbon atoms to which they are attached form a C₃₋₇ carbocyclic ring and R^{1'} and R³ are independently hydrogen or C₁₋₈ alkyl;

R¹ and R^{1'} together with the carbon atom to which they are attached combine to form a C₃₋₇ spirocarbocyclic ring and R² and R³ are independently hydrogen or C₁₋₈ alkyl;

R² and R³ together with the carbon atom to which they are attached combine to form a C₃₋₇ spirocarbocyclic and R¹ and R^{1'} are independently hydrogen or C₁₋₈ alkyl;

n is 0, 1, or 2;

R⁴ is

Y is -O-, -S-, or -NR⁸-;

Y' is -O- or -S-;

R⁶ and R⁷ are independently hydrogen, C₁₋₈ alkyl, C₃₋₇ cycloalkyl, C₁₋₈ alkoxy, C₁₋₈ alkylthio, halo C₁₋₈ alkylthio, C₁₋₈ alkylsulfinyl, C₁₋₈ alkylsulfonyl, C₃₋₇ cycloalkoxy, aryl-C₁₋₈ alkoxy, halo, halo-C₁₋₈ alkyl, halo-C₁₋₈ alkoxy, nitro, -NR¹⁰R¹¹, -CONR¹⁰R¹¹, aryl C₁₋₈ alkyl, optionally substituted heterocyclyl, optionally substituted phenyl, optionally halo substituted acylamino, cyano, hydroxy, COR¹², halo C₁₋₈ alkylsulfinyl, or halo C₁₋₈ alkylsulfonyl, or alkoxyalkyl of the formula

where

p is 0, 1, 2, 3, or 4; and

q is 1, 2, 3, 4, or 5;

R¹² is C₁₋₈ alkyl or optionally substituted phenyl;

R⁸ is hydrogen, C₁₋₈ alkyl, halo-C₁₋₈ alkyl, optionally substituted phenyl, optionally substituted heterocyclyl, COO C₁₋₈ alkyl, optionally substituted COOaryl, COC₁₋₈ alkyl, SO₂C₁₋₈ alkyl, optionally substituted SO₂aryl, optionally substituted phenyl-C₁₋₈ alkyl, CH₃(CH₂)_pO-(CH₂)_qO-;

R⁹ is hydrogen, halo, C₁₋₈ alkyl, halo C₁₋₈ alkyl, C₁₋₈ alkylthio, halo C₁₋₈ alkylthio, C₃₋₇ cycloalkylthio, optionally substituted arylthio or heteroarylthio, C₁₋₈ alkoxy, C₃₋₇ cycloalkoxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, or optionally substituted aryl or heteroaryl, C₃₋₇ cycloalkyl, halo C₃₋₇ cycloalkyl, C₃₋₇ cycloalkenyl, cyano, COOR¹⁰, CONR¹⁰R¹¹ or NR¹⁰R¹¹, C₂₋₆ alkenyl, optionally substituted heterocyclyl, optionally substituted aryl C₁₋₈ alkyl, optionally substituted heteroaryl C₁₋₈ alkyl in which the alkyl group can be substituted by hydroxy,

R^{10} and R^{11} are independently hydrogen, C_{1-8} alkyl, optionally substituted aryl C_{1-8} alkyl, optionally substituted phenyl, or R^{10} and R^{11} together with the nitrogen atom to which they are attached may combine to form a ring with up to six carbon atoms which optionally may be substituted with up to two C_{1-8} alkyl groups or one carbon atom may be replaced by oxygen or sulfur;

R^{14} and R^{16} are independently hydrogen, halo, C_{1-8} alkyl, C_{3-7} cycloalkyl, C_{3-7} cycloalkoxy, halo- C_{1-8} alkyl, halo- C_{1-8} alkoxy, C_{1-8} alkoxy, optionally substituted aryl, or optionally substituted heteroaryl;

R^{15} and R^{17} are independently hydrogen, halo, C_{1-8} alkoxy, C_{3-7} -cycloalkyl, C_{1-8} alkyl, C_{3-7} cycloalkoxy, hydroxy, halo C_{1-8} alkoxy, optionally substituted phenyl, optionally substituted phenyl- C_{1-8} alkyl, optionally substituted phenoxy, optionally substituted phenyl- C_{1-8} alkoxy, tetrahydropyran-2-ylmethoxy, C_{1-8} alkyl-S(O)_n-, optionally substituted aryl- C_{1-8} alkyl-S(O)_n-, $CH_3(CH_2)_p-Z^1-(CH_2)_q-Z^2-$, or $Z^3-(CH_2)_q-Z^2-$;

Z^1 and Z^2 are independently a bond, O, S, SO, SO₂, sulphoximino, or NR¹⁰;

Z^3 is hydroxy, or NR¹⁰ R¹¹;

wherein aryl is a mononuclear or polynuclear aromatic hydrocarbon group, heteroaryl is a four to ten membered aromatic mononuclear or polynuclear ring system in which one or more of the atoms in the ring is an element other than carbon, heterocyclyl is a four to ten membered mononuclear or polynuclear, saturated or unsaturated ring system in which one or more of the atoms in the ring is an element other than carbon, and optionally substituted is unsubstituted or substituted by one or more substituents independently selected from C_{1-8} alkyl, C_{1-8} alkoxy, carboxy, hydroxy, cyano, halo, trifluoromethyl, SCH₃, nitro, phenyl, 3,4-methylenedioxy, amino, and phenyl which is optionally substituted by from one to three substituents independently selected from the group consisting of C_{1-8} alkyl, C_{1-8} alkoxy, carboxy, hydroxy, cyano, halo, trifluoromethyl, SCH₃, nitro, phenyl, 3,4-methylenedioxy, and amino; or a pharmaceutically acceptable salt or ester thereof,

in the manufacture of a medicament for the treatment of diabetes, diabetic complications, metabolic disorders, or related diseases where impaired glucose disposal is present.

3. Use according to claim 1 wherein R¹ and R^{1'} are hydrogen and R² and R³ are hydrogen or methyl.

4. Use according to claim 1 wherein X is -NH-.

5. Use according to claim 1 wherein n is 0.

6. Use according to claim 1 wherein

R⁴ is

R^{14} and R^{16} are independently hydrogen, halo, or optionally substituted phenyl, naphthyl or thienyl;

R^{15} is hydrogen, halo, methyl, or methoxy; and

R^{17} is benzyloxy, propoxy, butoxy, $H_3C(CH_2)_p-O-(CH_2)_q-O-$, $H_3C(CH_2)_p-S-(CH_2)_q-O-$, $H_3C(CH_2)_p-SO_2-(CH_2)_q-O-$, (tetrahydropyran-2-yl)methoxy, cyclobutylmethoxy, cyclopentylmethoxy, or cyclohexylmethoxy.

7. Use according to claim 1 wherein

R⁴ is

5

10

R⁶ is hydrogen, halo, nitro, cyano, C₁₋₆ alkyl, halo C₁₋₆ alkyl, halo C₁₋₆ alkoxy, or halo C₁₋₆ alkylthio;
R⁷ is hydrogen, halo, or methyl;

R⁸ is hydrogen, methyl, or optionally substituted benzyl; and

15 R⁹ is hydrogen, C₁₋₆ alkyl, halo C₁₋₆ alkyl, optionally substituted benzyl, optionally substituted phenyl, or
optionally substituted thiienyl.

8. Use according to claim 1 wherein

20 R⁴ is

25

30

Y is O or S;

R⁶ is hydrogen, halo, C₁₋₆ alkyl, or halo C₁₋₆ alkyl; and

R⁹ is C₁₋₆ alkyl or optionally substituted phenyl.

9. Use according to claim 1 wherein

35 R⁴ is

40

45

and

R⁶ is hydrogen, halo, C₁₋₆ alkyl, or optionally substituted phenyl, naphthyl, or thiienyl.

10. Use according to claim 1 wherein

50 R⁴ is

55

5

10 R⁶ is hydrogen, halo, C₁₋₆ alkyl, halo C₁₋₆ alkyl, C₁₋₆ alkoxy; and
R⁹ is hydrogen, halo, C₁₋₄ alkoxy, C₁₋₄ alkyl, optionally substituted phenyl, naphthyl, or thienyl, or an optionally substituted phenylmethyl, optionally substituted naphthylmethyl, optionally substituted thienylmethyl, or optionally substituted pyridylmethyl group in which the methyl group is substituted by hydroxy.

15 11. Use according to claim 1 wherein

R⁴ is

20

25 R¹⁴ is hydrogen, halo, C₁₋₄ alkyl, C₁₋₄ alkoxy, or halo C₁₋₄ alkyl; and
R¹⁶ is C₁₋₄ alkyl, halo C₁₋₄ alkyl, or optionally substituted phenyl.

12. Use according to claim 1 wherein

30 R¹, R^{1'}, R² and R³ are hydrogen or methyl;
X is -NH-; and
n is 0.

13. Use according to claim 12 wherein

35 R⁴ is

40

45

R¹⁴ and R¹⁶ are independently hydrogen, bromo, chloro, phenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 5-chloro-2-thienyl, 2,4-dichlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 3,5-dichlorophenyl, 4-methylphenyl, 3-chloro-4-fluorophenyl, 4-(trifluoromethyl)phenyl, 2-methoxyphenyl, or 4-methoxyphenyl;

R¹⁵ is hydrogen; and

R¹⁷ is H₃C-O-(CH₂)₂-O-, or H₃CCH₂-O-CH₂CH₂O-.

14. Use according to claim 12 wherein

55

R⁴ is

5

10 Y is O or S;
R⁶ is chloro; and
R⁹ is methyl or 2-chlorophenyl.

15. Use according to claim 12 wherein

15 R⁴ is

20

25 and

R⁶ is bromo, phenyl, 4-methylphenyl, 5-chloro-2-thienyl, 2-thienyl, 3-thienyl, 3-trifluoromethylphenyl, 3-methoxyphenyl, 2-methoxyphenyl, 3,5-bistrifluoromethylphenyl, 4-fluorophenyl, or 3-fluorophenyl.

30 16. Use according to claim 12 wherein

R⁴ is

35

40

R⁶ is hydrogen, chloro, bromo, methoxy, methyl, or trifluoromethyl; and
R⁹ is hydrogen, halo, C₁₋₄ alkoxy, C₁₋₄ alkyl, optionally substituted phenyl, naphthyl, or thienyl, or an optionally substituted phenylmethyl, optionally substituted naphthylmethyl, optionally substituted thienylmethyl, or optionally substituted pyridylmethyl group in which the methyl group is substituted by hydroxy.

45 17. Use according to claim 12 wherein

50 R⁴ is

55

R¹⁴ is chloro, methyl, or trifluoromethyl; and
R¹⁶ is methyl.

18. Use according to claim 1 wherein

5

R¹, R^{1'}, R² and R³ are hydrogen or methyl;
X is -NH-;
n is 0, 1 or 2;
R⁴ is

10

15

20

R⁶ is chloro, fluoro, methyl, trifluoromethyl, or pentafluoroethyl;
R⁷ is hydrogen;
R⁸ is hydrogen; and
R⁹ is hydrogen, methyl, benzyl, 3-chlorobenzyl, 4-chlorophenyl, 3-chlorophenyl, 2-chlorophenyl, 3-methylphenyl, 4-chloro-3-methylphenyl, 4-methoxyphenyl, or 2-methoxyphenyl.

19. Use according to claim 18 wherein n is 0.

30

20. Use according to claim 1 wherein the compound of Formula (I) is

3-(4,5-Dihydroimidazol-2-yl)-2,5-dimethyl-1H-indole;
5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-methyl-1H-indole;
3-(4,5-Dihydroimidazol-2-yl)-2-methyl-5-trifluoromethyl-1H-indole;
35 3-(4,5-Dihydroimidazol-2-yl)-2-methyl-5-pentafluoroethyl-1H-indole;
5,7-Dichloro-3-(4,5-dihydroimidazol-2-yl)-2-methyl-1H-indole;
3-(4,5-Dihydroimidazol-2-yl)-5-fluoro-2-methyl-1H-indole;
3-(4,5-Dihydroimidazol-2-yl)-2-methyl-5-nitro-1H-indole;
5-Bromo-3-(4,5-dihydroimidazol-2-yl)-2-methyl-1H-indole;
40 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-phenyl-1H-indole;
5,7-Dichloro-3-(4,5-dihydroimidazol-2-yl)-2-phenyl-1H-indole;
5-Chloro-3-(4,5-dihydroimidazol-2-yl)-7-methyl-2-phenyl-1H-indole;
5-Chloro-2-(4-chlorophenyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
45 5-Chloro-2-(3-chlorophenyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
5-Chloro-2-(2-chlorophenyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
2-(4-Chlorophenyl)-5,7-dichloro-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
2-(2-Chlorophenyl)-3-(4,5-dihydroimidazol-2-yl)-5-fluoro-1H-indole;
2-(2-Bromophenyl)-5-chloro-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(3-fluorophenyl)-1H-indole;
5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(4-iodophenyl)-1H-indole;
5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(4-methylphenyl)-1H-indole;
5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(3-methylphenyl)-1H-indole;
5,7-Dichloro-3-(4,5-dihydroimidazol-2-yl)-2-(3-methylphenyl)-1H-indole;
5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2-methylphenyl)-1H-indole;
55 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2-trifluoromethylphenyl)-1H-indole;
2-(2,4-Dichlorophenyl)-3-(4,5-dihydroimidazol-2-yl)-5-fluoro-1H-indole;
3-(4,5-Dihydroimidazol-2-yl)-2-(2,4-dimethylphenyl)-5-fluoro-1H-indole;
5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2,4-dimethylphenyl)-1H-indole;

5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2,5-dimethylphenyl)-1H-indole;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2-methoxyphenyl)-1H-indole;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(4-methoxyphenyl)-1H-indole;
 5-Chloro-2-(4-chloro-3-methylphenyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(4-(2-methoxyethoxy)phenyl)-1H-indole;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2-methoxyethoxy)phenyl)-1H-indole;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
 5-Chloro-2-cyclohexyl-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
 5-Chloro-2-(cyclohexen-1-yl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
 2,5-Bistrifluoromethyl-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
 2-Benzyl-5-chloro-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
 5-Chloro-2-(2-chlorobenzyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
 5-Chloro-2-(2-chlorobenzyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
 5-Chloro-1-(2-chlorobenzyl)-3-(4,5-dihydroimidazol-2-yl)-2-methyl-1H-indole;
 5-Chloro-3-(4,5-dihydro-4,4-dimethylimidazol-2-yl)-2-methyl-1H-indole;
 5-Chloro-2-(2-chlorophenyl)-3-(4,5-dihydro-4,4-dimethylimidazol-2-yl)-1H-indole;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(pyridin-4-yl)-1H-indole;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(3-thienyl)-1H-indole;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2,5-dimethyl-3-thienyl)-1H-indole;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(3-methyl-2-thienyl)-1H-indole;
 2-[2-(2-Fluorophenyl)indol-3-yl]ethyl]-4,5-dihydroimidazole; or
 2-[2-(2-Chlorophenyl)indol-3-yl]ethyl]-4,5-dihydroimidazole;
 or a pharmaceutically acceptable salt or ester thereof.

25 **21.** Use according to claim 1 wherein the compound of Formula (I) is

2-[5-Chloro-2-(2-chlorophenyl)benzofuran-3-yl]-4,5-dihydro-1H-imidazole;
 2-[5-Chloro-2-(3-chlorophenyl)benzofuran-3-yl]-4,5-dihydro-1H-imidazole;
 2-[5-Chloro-2-methylbenzofuran-3-yl]-4,5-dihydro-1H-imidazole; or
 2-[5-Fluoro-2-methylbenzofuran-3-yl]-4,5-dihydro-1H-imidazole;
 or a pharmaceutically acceptable salt or ester thereof.

30 **22.** Use according to claim 1 wherein the compound of Formula (I) is

2-[2-(2-Chlorophenyl)-5-fluorobenzo[b]thiophen-3-yl]-4,5-dihydro-1H-imidazole;
 2-[5-Fluoro-2-(4-methylphenyl)benzo[b]thiophen-3-yl]-4,5-dihydro-1H-imidazole; or
 2-(5-Chloro-2-methylbenzo[b]thiophen-3-yl)-4,5-dihydro-4,4-dimethyl-1H-imidazole;
 or a pharmaceutically acceptable salt or ester thereof.

35 **23.** Use according to claim 1 wherein the compound of Formula (I) is

2-[7-Bromo-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-7-phenyl-naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(2-Fluorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(3-Fluorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(4-Fluorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(3,5-Dichlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-7-(4-methylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-7-(2-thienyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-7-(3-thienyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(5-Chloro-2-thienyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(2-Methoxyphenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(4-Methoxyphenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-7-(3-nitrophenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-Bromo-4-chloro-3-(2-n)ethoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-Bromo-7-(5-chloro-2-thienyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-Chloro-7-(5-chloro-2-thienyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-Chloro-3-(2-methoxyethoxy)-7-(3-thienyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;

5 2-[4-Chloro-3-(2-methoxyethoxy)-7-(4-methylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-Chloro-7-(4-chlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-Chloro-3-(2-methoxyethoxy)-7-(3-methoxyphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-Chloro-3-(2-methoxyethoxy)-7-(4-trifluoromethylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Ethoxyethoxy)-7-(4-methylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(4-Methylphenyl)-3-(tetrahydropyran-2-yl)methoxynaphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(4-Fluorophenyl)-3-(2-methylthioethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(4-Methoxyphenyl)-3-(3-methoxypyropoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(5-Chloro-2-thienyl)-3-butoxynaphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[7-(5-Chloro-2-thienyl)-3-(2-ethoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-Bromo-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-4-(4-methylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-(4-Chlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-(2,4-Dichlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-4-(4-methoxyphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-4-(3-methoxyphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-4-(2-methoxyphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[3-(2-Methoxyethoxy)-4-(2-thienyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-(5-Chloro-2-thienyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-Bromo-3-propoxynaphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 2-[4-(3,4-Dichlorophenyl)-3-(2-ethoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole; or
 2-[4-(3-Chloro-4-fluorophenyl)-3-(cyclobutylmethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
 or a pharmaceutically acceptable salt or ester thereof.

25 **24.** Use according to claim 1 wherein the compound of Formula (I) is

6-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methylquinoline; or
 3-(4,5-Dihydro-1H-imidazol-2-yl)-2-phenylquinoline;
 or a pharmaceutically acceptable salt or ester thereof.

30 **25.** Use according to claim 1 wherein the compound of Formula (I) is

2-(3-Phenylbenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole;
 2-(3-Butoxybenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazole;
 (2-(4,5-Dihydro-1H-imidazol-2-yl)benzo[b]thiophen-3-yl)-(naphthalen-1-yl)methanol; or
 (4-tert-Butylphenyl)-(2-(4,5-dihydro-1H-imidazol-2-yl)benzo[b]thiophen-3-yl)methanol;
 or a pharmaceutically acceptable salt or ester thereof.

40 **26.** Use according to claim 1 wherein the compound of Formula (I) is

2-(5-Phenylbenzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(5-(3,5-Bistrifluoromethylphenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(5-(4-Fluorophenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(5-(4-Methylphenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(5-(3-Thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(5-(3-Fluorophenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(5-(3-Trifluoromethylphenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(5-(2-Thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(5-(5-Chloro-2-thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(5-(3-Methoxyphenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(5-(2-Methoxyphenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(7-(4-Methylphenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(7-(3-Thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 2-(7-(2-Thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole; or
 2-(4-(5-Chloro-2-thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole;
 or a pharmaceutically acceptable salt or ester thereof.

55 **27.** Use according to claim 1 wherein the compound of Formula (I) is

5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-methyl-1H-indole;
or a pharmaceutically acceptable salt or ester thereof.

28. Use according to claim 1 wherein the compound of Formula (I) is

5
6-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methylquinoline
or a pharmaceutically acceptable salt or ester thereof.

29. Use according to claim 1 wherein the compound of Formula (I) is

10
2-[3-(2-Methoxyethoxy)-7-(4-methylphenyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
or a pharmaceutically acceptable salt or ester thereof.

15
30. Use according to claim 1 wherein the compound of Formula (I) is 3-(4,5-Dihydroimidazol-2-yl)-2-methyl-5-trifluor-

omethyl-1H-indole;

or a pharmaceutically acceptable salt or ester thereof.

31. Use according to claim 1 wherein the compound of Formula (I) is

20
5-Chloro-2-(3-chlorophenyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
or a pharmaceutically acceptable salt or ester thereof.

32. Use according to claim 1 wherein the compound of Formula (I) is

25
5-Chloro-2-(2-chlorophenyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole;
or a pharmaceutically acceptable salt or ester thereof.

33. Use according to claim 1 wherein the compound of Formula (I) is

30
2-[3-(2-Methoxyethoxy)-7-phenyl-naphthalen-2-yl]-4,5-dihydro-1H-imidazole; or a pharmaceutically accepta-
ble salt or ester thereof.

34. Use according to claim 1 wherein the compound of Formula (I) is

35
2-[7-(5-Chloro-2-thienyl)-3-(2-ethoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
or a pharmaceutically acceptable salt or ester thereof.

35. Use according to claim 1 wherein the compound of Formula (I) is

40
2-[7-(2-Fluorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole; or 2-[7-(4-Methoxyphe-
nyl)-3-(3-methoxypropoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
or a pharmaceutically acceptable salt or ester thereof.

36. Use according to claim 1 wherein the compound of Formula (I) is

45
2-[4-(4-Chlorophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole; or 2-[4-(2,4-Dichlo-
rophenyl)-3-(2-methoxyethoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole;
or a pharmaceutically acceptable salt or ester thereof.

50
37. Use according to any one of the preceding claims for the treatment of diabetes.

38. Use according to any one of the preceding claims for the treatment of Type II diabetes.

39. Use according to claim 2 for simulating insulin secretion in a mammal in need thereof.

Patentansprüche

1. Verwendung einer Verbindung der Formel (I)

5

10

15

20

25

worin

X für -O-, -S- oder -NR⁵- steht,
R⁵ für Wasserstoff oder C₁-C₈ Alkyl steht,
R¹, R^{1'}, R² und R³ unabhängig für Wasserstoff oder C₁-C₈ Alkyl stehen,
R¹ und R² wahlweise zusammen eine Bindung bilden und R^{1'} und R³ unabhängig für Wasserstoff oder C₁-C₈ Alkyl stehen,
R¹ und R² wahlweise mit den Kohlenstoffatomen, an die sie gebunden sind, einen carbocyclischen C₃-C₇ Ring bilden und R^{1'} und R³ unabhängig für Wasserstoff oder C₁-C₈ Alkyl stehen,
R¹ und R^{1'} zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, wahlweise einen spirocarbocyclischen C₃-C₇ Ring bilden und R² und R³ unabhängig für Wasserstoff oder C₁-C₈ Alkyl stehen,
R² und R³ zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, wahlweise einen spirocarbocyclischen C₃-C₇ Ring bilden und R¹ und R^{1'} unabhängig für Wasserstoff oder C₁-C₈ Alkyl stehen,
n für 0, 1 oder 2 steht,
m für 0, 1 oder 2 steht,
m' für 0, 1 oder 2 steht,
q' für 0, 1, 2, 3, 4, oder 5 steht,
R⁴ steht für

(I)

R⁴

45

50

55

Y für -O-, -S- oder -NR⁸- steht,

Y' für -O- oder -S- steht,

R⁶ und R⁷ unabhängig stehen für Wasserstoff, C₁-C₈ Alkyl, C₃-C₇ Cycloalkyl, C₁-C₈ Alkoxy, C₁-C₈ Alkylothio, Halogen-C₁-C₈-alkylothio, C₁-C₈ Alkylsulfinyl, C₁-C₈ Alkylsulfonyl, C₃-C₇ Cycloalkoxy, Aryl-C₁-C₈-alkoxy, Halogen, Halogen-C₁-C₈-alkyl, Halogen-C₁-C₈-alkoxy, Nitro, -NR¹⁰R¹¹, -CONR¹⁰R¹¹, Aryl-C₁-C₈-alkyl, wahlweise substituiertes Heterocycl, wahlweise substituiertes Phenyl, wahlweise substituiertes Naphthyl, wahlweise halogensubstituiertes Acylamino, Cyano, Hydroxy, COR¹², Halogen-C₁-C₈-alkylsulfinyl oder Halogen-C₁-C₈-alkylsulfonyl oder Alkoxyalkyl der Formel

20

worin

25

p für 0, 1, 2, 3 oder 4 steht und

q für 1, 2, 3, 4 oder 5 steht,

R¹² für C₁-C₈ Alkyl oder wahlweise substituiertes Phenyl steht,

30

R⁸ steht für Wasserstoff, C₁-C₈ Alkyl, Halogen-C₁-C₈-alkyl, wahlweise substituiertes Phenyl, wahlweise substituiertes Heterocycl, COO-C₁-C₈ Alkyl, wahlweise substituiertes CO-Aryl, CO-C₁-C₈ Alkyl, SO₂C₁-C₈ Alkyl, wahlweise substituiertes SO₂-Aryl, wahlweise substituiertes Phenyl-C₁-C₈-alkyl oder CH₃(CH₂)_p-O-(CH₂)_q-O-,

35

R⁹ steht für Wasserstoff, Halogen, C₁-C₈ Alkyl, Halogen-C₁-C₈-alkyl, C₁-C₈ Alkylothio, Halogen-C₁-C₈-alkylothio, C₃-C₇ Cycloalkylthio, wahlweise substituiertes Arylthio oder Heteroarylthio, C₁-C₈ Alkoxy, C₃-C₇ Cycloalkoxy, wahlweise substituiertes Aryloxy, wahlweise substituiertes Heteroaryloxy oder wahlweise substituiertes Aryl oder Heteroaryl, C₃-C₇ Cycloalkyl, Halogen-C₃-C₇-cycloalkyl, C₃-C₇ Cycloalkenyl, Cyano, COOR¹⁰, CONR¹⁰R¹¹ oder NR¹⁰R¹¹, C₂-C₆ Alkenyl, wahlweise substituiertes Heterocycl, wahlweise substituiertes Aryl-C₁-C₈-alkyl, wahlweise substituiertes Heteroaryl-C₁-C₈-alkyl, worin die Alkylgruppe durch Hydroxy substituiert sein kann, oder C₁-C₈ Alkyl, das durch Hydroxy substituiert ist,

40

R¹⁰ und R¹¹ unabhängig für Wasserstoff, C₁-C₈ Alkyl, wahlweise substituiertes Aryl-C₁-C₈-alkyl, wahlweise substituiertes Phenyl stehen oder R¹⁰ und R¹¹ zusammen mit dem Stickstoffatom, an das sie gebunden sind, unter Bildung eines Rings mit bis zu sechs Kohlenstoffatomen kombinieren können, der wahlweise mit bis zu zwei C₁-C₈ Alkylgruppen substituiert sein kann oder bei dem ein Kohlenstoffatom durch Sauerstoff oder Schwefel ersetzt sein kann,

45

R¹⁴ und R¹⁶ unabhängig stehen für Wasserstoff, Halogen, C₁-C₈ Alkyl, C₃-C₇ Cycloalkyl, C₃-C₇ Cycloalkoxy, C₃-C₇ Cycloalkyl-C₁-C₈-alkoxy, Halogen-C₁-C₈-alkyl, Halogen-C₁-C₈-alkoxy, C₁-C₈ Alkoxy, Carbo-C₁-C₈-alkoxy, wahlweise substituiertes Aryl oder wahlweise substituiertes Heteroaryl,

50

R¹⁵ und R¹⁷ unabhängig stehen für Wasserstoff, Halogen, C₁-C₈ Alkoxy, C₃-C₇ Cycloalkyl, C₃-C₇ Cycloalkyl-C₁-C₈-alkoxy, C₁-C₈ Alkyl, C₃-C₇ Cycloalkoxy, Hydroxy, Halogen-C₁-C₈-alkoxy, Carbo-C₁-C₈-alkoxy, wahlweise substituiertes Phenyl, wahlweise substituiertes Phenyl-C₁-C₈-alkyl, wahlweise substituiertes Phenylxylo, wahlweise substituiertes Phenyl-C₁-C₈-alkoxy, (Tetrahydropyran-2-yl)methoxy, C₁-C₈ Alkyl-S(O)_m-, wahlweise substituiertes Aryl-C₁-C₈-alkyl-S(O)_m-, CH₃(CH₂)_p-Z¹-(CH₂)_q-Z² oder Z³-(CH₂)_q'-Z₂-,

worin

55

m für 0, 1 oder 2 steht,

m' für 0, 1 oder 2 steht,

q' für 0, 1, 2, 3, 4 oder 5 steht,

Z¹ und Z² unabhängig für eine Bindung, O, S, SO, SO₂, Sulfoximino oder NR¹⁰ stehen und Z₃ für Hydroxy, NR¹⁰R¹¹ oder SH steht,
 5 worin Aryl für eine mononukleäre oder polynukleäre aromatische Kohlenwasserstoffgruppe steht, Heteroaryl für ein vier- bis zehngliedriges aromatisches, mononukleäres oder polynukleäres Ringssystem steht, worin ein oder mehrere Atome des Rings ein anderes Element als Kohlenstoff sind, Heterocycl für ein vier- bis zehngliedriges mononukleäres oder polynukleäres, gesättigtes oder ungesättigtes Ringsystem steht, worin ein oder mehrere Atome des Rings für ein anderes Element als Kohlenstoff stehen und das wahlweise unsubstituiert oder substituiert ist durch einen oder mehrere Substituenten, unabhängig ausgewählt aus C₁-C₈ Alkyl, C₁-C₈ Alkoxy, Carboxy, Hydroxy, Cyano, Halogen, Trifluormethyl, SCH₃, Nitro, Phenyl, 3,4-Methylendioxy, Amino und Phenyl, das wahlweise substituiert ist durch einen bis drei Substituenten, unabhängig ausgewählt aus der Gruppe, die besteht aus C₁-C₈ Alkyl, C₁-C₈ Alkoxy, Carboxy, Hydroxy, Cyano, Halogen, Trifluormethyl, SCH₃, Nitro, Phenyl, 3,4-Methylendioxy und Amino,
 10 mit der Maßgabe, daß wenn R₁, R¹, R² und R³ alle für Wasserstoff stehen, n für 0 steht, R⁴ für Naphthyl steht und R¹⁴, R¹⁵ und R¹⁶ oder R¹⁵, R¹⁶ und R¹⁷ alle für Wasserstoff stehen, R¹⁷ oder R¹⁴ dann jeweils nicht für Halogen, Methoxy oder C₁-C₆ Alkyl stehen,
 15 oder eines pharmazeutisch annehmbaren Salzes oder Esters hiervon,
 zur Herstellung eines Arzneimittels zur Behandlung von Diabetes, diabetischen Komplikationen, metabolischen Störungen oder verwandten Erkrankungen, bei denen eine gestörte Glucoseablagerung vorkommt.

20 2. Verwendung einer Verbindung der Formel (I)

worin

X für -O-, -S- oder-NR⁵- steht,
 R⁵ für Wasserstoff oder C₁-C₈ Alkyl steht,
 R¹, R¹', R² und R³ unabhängig für Wasserstoff oder C₁-C₈ Alkyl stehen,
 R¹ und R² zusammen eine Bindung bilden und R¹' und R³ unabhängig für Wasserstoff oder C₁-C₈ Alkyl stehen,
 50 R¹ und R² wahlweise mit den Kohlenstoffen, an die sie gebunden sind, einen carbocyclischen C₃-C₇ Ring bilden können
 und R¹' und R³ unabhängig für Wasserstoff oder C₁-C₈ Alkyl stehen,
 R¹ und R¹' zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, einen spirocarbocyclischen C₃-C₇ Ring bilden und R² und R³ unabhängig für Wasserstoff oder C₁-C₈ Alkyl stehen,
 55 R² und R³ zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, einen spirocarbocyclischen C₃-C₇ Ring bilden und R¹ und R¹' unabhängig für Wasserstoff oder C₁-C₈ Alkyl stehen,
 n für 0, 1 oder 2 steht,
 R⁴ steht für

5

10

oder

15

20

Y für -O-, -S- oder -NR⁸- steht,
Y' für -O- oder -S- steht,

R⁶ und R⁷ unabhängig stehen für Wasserstoff, C₁-C₈ Alkyl, C₃-C₇ Cycloalkyl, C₁-C₈ Alkoxy, C₁-C₈ Alkylthio, Halogen-C₁-C₈-alkylthio, C₁-C₈ Alkylsulfinyl, C₁-C₈ Alkylsulfonyl, C₃-C₇ Cycloalkoxy, Aryl-C₁-C₈-alkoxy, Halogen, Halogen-C₁-C₈-alkyl, Halogen-C₁-C₈-alkoxy, Nitro, -NR¹⁰R¹¹, -CONR¹⁰R¹¹, Aryl-C₁-C₈-alkyl, wahlweise substituiertes Heterocyclyl, wahlweise substituiertes Phenyl, wahlweise halogensubstituiertes Acylamino, Cyano, Hydroxy, COR¹², Halogen-C₁-C₈-alkylsulfinyl oder Halogen-C₁-C₈-alkylsulfonyl oder Alkoxyalkyl der Formel

35

worin

p für 0, 1, 2, 3 oder 4 steht und

q für 1, 2, 3, 4 oder 5 steht,

R¹² für C₁-C₈ Alkyl oder wahlweise substituiertes Phenyl steht,

40 R⁸ steht für Wasserstoff, C₁-C₈ Alkyl, Halogen-C₁-C₈-alkyl, wahlweise substituiertes Phenyl, wahlweise substituiertes Heterocyclyl, COO-C₁-C₈ Alkyl, wahlweise substituiertes CO-Aryl, CO-C₁-C₈ Alkyl, SO₂C₁-C₈ Alkyl, wahlweise substituiertes SO₂-Aryl, wahlweise substituiertes Phenyl-C₁-C₈-alkyl oder CH₃(CH₂)_p-O-(CH₂)_q-O-,

45 R⁹ steht für Wasserstoff, Halogen, C₁-C₈ Alkyl, Halogen-C₁-C₈-alkyl, C₁-C₈ Alkylthio, Halogen-C₁-C₈-alkylthio, C₃-C₇ Cycloalkylthio, wahlweise substituiertes Arylthio oder Heteroarylthio, C₁-C₈ Alkoxy, C₃-C₇ Cycloalkoxy, wahlweise substituiertes Aryloxy, wahlweise substituiertes Heteroaryloxy oder wahlweise substituiertes Aryl oder Heteroaryl, C₃-C₇ Cycloalkyl, Halogen-C₃-C₇-cycloalkyl, C₃-C₇ Cycloalkenyl, Cyano, COOR¹⁰, CONR¹⁰R¹¹ oder NR¹⁰R¹¹, C₂-C₆ Alkenyl, wahlweise substituiertes Heterocyclyl, wahlweise substituiertes Aryl-C₁-C₈-alkyl, wahlweise substituiertes Heteroaryl-C₁-C₈-alkyl, worin die Alkylgruppe durch Hydroxy substituiert sein kann,

50 R¹⁰ und R¹¹ unabhängig für Wasserstoff, C₁-C₈ Alkyl, wahlweise substituiertes Aryl-C₁-C₈-alkyl, wahlweise substituiertes Phenyl stehen oder R¹⁰ und R¹¹ zusammen mit dem Stickstoffatom, an das sie gebunden sind, unter Bildung eines Rings mit bis zu sechs Kohlenstoffatomen kombinieren können, der wahlweise mit bis zu zwei C₁-C₈ Alkylgruppen substituiert sein kann oder bei dem ein Kohlenstoffatom durch Sauerstoff oder Schwefel ersetzt sein kann,

55 R¹⁴ und R¹⁶ unabhängig stehen für Wasserstoff, Halogen, C₁-C₈ Alkyl, C₃-C₇ Cycloalkyl, C₃-C₇ Cycloalkoxy, Halogen-C₁-C₈-alkyl, Halogen-C₁-C₈-alkoxy, C₁-C₈ Alkoxy, wahlweise substituiertes Aryl oder wahlweise substituiertes Heteroaryl,

R¹⁵ und R¹⁷ unabhängig stehen für Wasserstoff, Halogen, C₁-C₈ Alkoxy, C₃-C₇ Cycloalkyl, C₁-C₈ Alkyl, C₃-C₇ Cycloalkoxy, Hydroxy, Halogen-C₁-C₈-alkoxy, wahlweise substituiertes Phenyl, wahlweise substituiertes Phenyl-C₁-C₈-alkyl, wahlweise substituiertes Phenoxy, wahlweise substituiertes Phenyl-C₁-C₈-alkoxy, (Tetrahydropyran-2-yl)methoxy, C₁-C₈ Alkyl-S(O)_m⁻; wahlweise substituiertes Aryl-C₁-C₈-alkyl-S(O)_n, CH₃(CH₂)_p-Z¹-(CH₂)_q-Z² oder Z³-(CH₂)_q-Z₂⁻,
 5 Z¹ und Z² unabhängig für eine Bindung, O, S, SO, SO₂, Sulfoximino oder NR¹⁰ stehen und
 Z₃ für Hydroxy oder NR¹⁰R¹¹ steht,

worin Aryl für eine mononukleäre oder polynukleäre aromatische Kohlenwasserstoffgruppe steht, Heteroaryl für ein vier- bis zehngliedriges aromatisches, mononukleäres oder polynukleäres Ringssystem steht, worin ein oder mehrere Atome des Rings ein anderes Element als Kohlenstoff sind, Heterocycl für ein vier- bis zehngliedriges mononukleäres oder polynukleäres, gesättigtes oder ungesättigtes Ringsystem steht, worin ein oder mehrere Atome des Rings für ein anderes Element als Kohlenstoff stehen und das wahlweise unsubstituiert oder substituiert ist durch einen oder mehrere Substituenten, unabhängig ausgewählt aus C₁-C₈ Alkyl, C₁-C₈ Alkoxy, Carboxy, Hydroxy, Cyano, Halogen, Trifluormethyl, SCH₃, Nitro, Phenyl, 3,4-Methylendioxy, Amino und Phenyl, das wahlweise substituiert ist durch einen bis drei Substituenten, unabhängig ausgewählt aus der Gruppe, die besteht aus C₁-C₈ Alkyl, C₁-C₈ Alkoxy, Carboxy, Hydroxy, Cyano, Halogen, Trifluormethyl, SCH₃, Nitro, Phenyl, 3,4-Methylenedioxy und Amino,
 10 oder eines pharmazeutisch annehmbaren Salzes oder Esters hiervon,
 15 zur Herstellung eines Arzneimittels zur Behandlung von Diabetes, diabetischen Komplikationen, metabolischen Störungen oder verwandten Erkrankungen, bei denen eine gestörte Glucoseablagerung vorkommt.

- 20 3. Verwendung nach Anspruch 1, worin R¹ und R^{1'} für Wasserstoff stehen und R² und R³ für Wasserstoff oder Methyl stehen.
- 25 4. Verwendung nach Anspruch 1, worin X für -NH- steht.
- 5. Verwendung nach Anspruch 1, worin n für 0 steht.
- 30 6. Verwendung nach Anspruch 1, worin

R⁴ steht für

R¹⁴ und R¹⁶ unabhängig für Wasserstoff, Halogen, wahlweise substituiertes Phenyl, Naphthyl oder Thienyl stehen,
 45 R¹⁵ für Wasserstoff, Halogen, Methyl oder Methoxy steht, und
 R¹⁷ für Benzyloxy, Propoxy, Butoxy, H₃C(CH₂)_p-O-(CH₂)_q-O-, H₃C(CH₂)_p-S-(CH₂)_q-O-, H₃C(CH₂)_p-SO₂-(CH₂)_q-O-, (Tetrahydropyran-2-yl)methoxy, Cyclobutylmethoxy, Cyclopentylmethoxy oder Cyclohexylmethoxy steht.

- 50 7. Verwendung nach Anspruch 1, worin

R⁴ steht für

5

10

R⁶ für Wasserstoff, Halogen, Nitro, Cyano, C₁-C₆ Alkyl, Halogen-C₁-C₆-alkyl, Halogen-C₁-C₆-alkoxy oder Halogen-C₁-C₆-alkylthio steht,

R⁷ für Wasserstoff, Halogen oder Methyl steht,

R⁸ für Wasserstoff, Methyl oder wahlweise substituiertes Benzyl steht, und

15 R⁹ für Wasserstoff, C₁-C₆ Alkyl, Halogen-C₁-C₆-alkyl, wahlweise substituiertes Benzyl, wahlweise substituiertes Phenyl oder wahlweise substituiertes Thienyl steht.

8. Verwendung nach Anspruch 1, worin

20

R⁴ steht für

25

30

Y für O oder S steht,

R⁶ für Wasserstoff, Halogen, C₁-C₆ Alkyl oder Halogen-C₁-C₆-alkyl steht, und

R⁹ für C₁-C₆ Alkyl oder wahlweise substituiertes Phenyl steht.

35

9. Verwendung nach Anspruch 1, worin

R⁴ steht für

40

45

und

R⁶ für Wasserstoff, Halogen, C₁-C₆ Alkyl oder wahlweise substituiertes Phenyl, Naphthyl oder Thienyl steht.

10. Verwendung nach Anspruch 1, worin

50

R⁴ steht für

55

5 R⁶ für Wasserstoff, Halogen, C₁-C₆ Alkyl, Halogen-C₁-C₆-alkyl oder C₁-C₆ Alkoxy steht, und
R⁹ für Wasserstoff, Halogen, C₁-C₄ Alkoxy, C₁-C₄ Alkyl, wahlweise substituiertes Phenyl, Naphthyl oder Thienyl steht oder für eine wahlweise substituierte Phenylmethyl-, wahlweise substituierte Naphthylmethyl-, wahlweise substituierte Thienylmethyl- oder wahlweise substituierte Pyridylmethylgruppe steht, worin die Methylgruppe durch Hydroxy substituiert ist.

11. Verwendung nach Anspruch 1, worin

10 R⁴ steht für

15 R¹⁴ für Wasserstoff, Halogen, C₁-C₄ Alkyl, C₁-C₄ Alkoxy oder Halogen-C₁-C₄-alkyl steht, und
R¹⁶ für C₁-C₄ Alkyl, Halogen-C₁-C₄-alkyl oder wahlweise substituiertes Phenyl steht.

20 12. Verwendung nach Anspruch 1, worin

25 R¹, R^{1'}, R² und R³ für Wasserstoff oder Methyl stehen,
X für -NH- steht, und
n für 0 steht.

13. Verwendung nach Anspruch 12, worin

30 R⁴ steht für

35 R¹⁴ und R¹⁶ unabhängig stehen für Wasserstoff, Brom, Chlor, Phenyl, 2-Fluorphenyl, 3-Fluorphenyl, 4-Fluorphenyl, 5-Chlor-2-thienyl, 2,4-Dichlorphenyl, 4-Chlorphenyl, 2,4-Dichlorphenyl, 3,4-Dichlorphenyl, 3,5-Dichlorphenyl, 4-Methylphenyl, 3-Chlor-4-fluorphenyl, 4-(Trifluormethyl)phenyl, 2-Methoxyphenyl oder 4-Methoxyphenyl,

40 R¹⁵ für Wasserstoff steht und
R¹⁷ für H₃C-O-(CH₂)₂-O- oder H₃CCH₂-O-CH₂CH₂O- steht,

45 14. Verwendung nach Anspruch 12, worin

50 R⁴ steht für

Y für O oder S steht,
 R⁶ für Chlor steht, und
 R⁹ für Methyl oder 2-Chlorphenyl steht.

5 15. Verwendung nach Anspruch 12, worin

R⁴ steht für

10

15

und R⁶ steht für Brom, Phenyl, 4-Methylphenyl, 5-Chlor-2-thienyl, 2-Thienyl, 3-Thienyl, 3-Trifluormethylphenyl, 3-Methoxyphenyl, 2-Methoxyphenyl, 3,5-Bistrifluormethylphenyl, 4-Fluorphenyl oder 3-Fluorphenyl.

16. Verwendung nach Anspruch 12, worin

20

R⁴ steht für

25

30

R⁶ für Wasserstoff, Chlor, Brom, Methoxy, Methyl oder Trifluormethyl steht, und
 R⁹ für Wasserstoff, Halogen, C₁-C₄ Alkoxy, C₁-C₄ Alkyl, wahlweise substituiertes Phenyl; Naphthyl oder Thienyl steht oder für eine wahlweise substituierte Phenylmethyl-, wahlweise substituierte Naphthylmethyl-, wahlweise substituierte Thienylmethyl- oder wahlweise substituierte Pyridylmethylgruppe steht, worin die Methylgruppe durch Hydroxy substituiert ist.

35

17. Verwendung nach Anspruch 12, worin

40

R⁴ steht für

45

50

R¹⁴ für Chlor, Methyl oder Trifluormethyl steht, und
 R¹⁶ für Methyl steht.

55

18. Verwendung nach Anspruch 1, worin

R¹, R^{1'}, R² und R³ für Wasserstoff oder Methyl stehen,
 X für -NH- steht,
 n für 0, 1 oder 2 steht,
 R⁴ steht für

5

10

R⁶ für Chlor, Fluor, Methyl, Trifluormethyl oder Pentafluorethyl steht,
R⁷ für Wasserstoff steht,
R⁸ für Wasserstoff steht, und
R⁹ für Wasserstoff, Methyl, Benzyl, 3-Chlorbenzyl, 4-Chlorphenyl, 3-Chlorphenyl, 2-Chlorphenyl, 3-Methylphenyl, 4-Chlor-3-methylphenyl, 4-Methoxyphenyl oder 2-Methoxyphenyl steht.

19. Verwendung nach Anspruch 18, worin n für 0 steht.

20. Verwendung nach Anspruch 1, worin die Verbindung der Formel (I) folgende ist

20

3-(4,5-Dihydroimidazol-2-yl)-2,5-dimethyl-1H-indol,
5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-methyl-1H-indol,
3-(4,5-Dihydroimidazol-2-yl)-2-methyl-5-trifluormethyl-1H-indol,
3-(4,5-Dihydroimidazol-2-yl)-2-methyl-5-pentafluorethyl-1H-indol,
5,7-Dichlor-3-(4,5-dihydroimidazol-2-yl)-2-methyl-1H-indol,
3-(4,5-Dihydroimidazol-2-yl)-5-fluor-2-methyl-1H-indol,
3-(4,5-Dihydroimidazol-2-yl)-2-methyl-5-nitro-1H-indol,
5-Brom-3-(4,5-dihydroimidazol-2-yl)-2-methyl-1H-indol,
5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-phenyl-1H-indol,
5,7-Dichlor-3-(4,5-dihydroimidazol-2-yl)-2-phenyl-1H-indol,
5-Chlor-3-(4,5-dihydroimidazol-2-yl)-7-methyl-2-phenyl-1H-indol,
5-Chlor-2-(4-chlorophenyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indol,
5-Chlor-2-(3-chlorophenyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indol,
5-Chlor-2-(2-chlorophenyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indol,
2-(4-Chlorphenyl)-5,7-dichlor-3-(4,5-dihydroimidazol-2-yl)-1H-indol,
2-(2-Chlorphenyl)-3-(4,5-dihydroimidazol-2-yl)-5-fluor-1H-indol,
2-(2-Bromphenyl)-5-chlor-3-(4,5-dihydroimidazol-2-yl)-1H-indol,
5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-(3-fluorophenyl)-1H-indol,
5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-(4-iodophenyl)-1H-indol,
5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-(4-methylphenyl)-1H-indol,
5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-(3-methylphenyl)-1H-indol,
5,7-Dichlor-3-(4,5-dihydroimidazol-2-yl)-2-(3-methylphenyl)-1H-indol,
5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-(2-methylphenyl)-1H-indol,
5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-(2-trifluormethylphenyl)-1H-indol,
2-(2,4-Dichlorphenyl)-3-(4,5-dihydroimidazol-2-yl)-5-fluor-1H-indol,
3-(4,5-Dihydroimidazol-2-yl)-2-(2,4-dimethylphenyl)-5-fluor-1H-indol,
5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-(2,4-dimethylphenyl)-1H-indol,
5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-(2,5-dimethylphenyl)-1H-indol,
5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-(2-methoxyphenyl)-1H-indol,
5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-(4-methoxyphenyl)-1H-indol,
5-Chlor-2-(4-chlor-3-methylphenyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indol,
5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-(4-(2-methoxyethoxy)phenyl)-1H-indol,
5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-(2-(2-methoxyethoxy)phenyl)-1H-indol,
5-Chlor-3-(4,5-dihydroimidazol-2-yl)-1H-indol,
5-Chlor-2-cyclohexyl-3-(4,5-dihydroimidazol-2-yl)-1H-indol,
5-Chlor-2-(cyclohexen-1-yl)-3-(4,5-dihydroimidazol-2-yl)-1H-indol,
2,5-Bistrifluormethyl-3-(4,5-dihydroimidazol-2-yl)-1H-indol,
2-Benzyl-5-chlor-3-(4,5-dihydroimidazol-2-yl)-1H-indol,

5-Chlor-2-(2-chlorbenzyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indol,
 5-Chlor-2-(3-chlorbenzyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indol,
 5-Chlor-1-(2-chlorbenzyl)-3-(4,5-dihydroimidazol-2-yl)-2-methyl-1H-indol,
 5-Chlor-3-(4,5-dihydro-4,4-dimethylimidazol-2-yl)-2-methyl-1H-indol,
 5-Chlor-2-(2-chlorphenyl)-3-(4,5-dihydro-4,4-dimethylimidazol-2-yl)-1H-indol,
 5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-(pyridin-4-yl)-1H-indol,
 5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-(3-thienyl)-1H-indol,
 5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-(2,5-dimethyl-3-thienyl)-1H-indol,
 5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-(3-methyl-2-thienyl)-1H-indol,
 10 2-[2-(2-(2-Fluorophenyl)indol-3-yl)ethyl]-4,5-dihydroimidazol oder
 2-[2-(2-Chlorphenyl)indol-3-yl]ethyl]-4,5-dihydroimidazol,

oder ein pharmazeutisch annehmbares Salz oder Ester hiervon.

15 21. Verwendung nach Anspruch 1, worin die Verbindung der Formel (I) folgende ist

2-[5-Chlor-2-(2-chlorphenyl)benzofuran-3-yl]-4,5-dihydro-1H-imidazol,
 2-[5-Chlor-2-(3-chlorphenyl)benzofuran-3-yl]-4,5-dihydro-1H-imidazol,
 20 2-[5-Chlor-2-methylbenzofuran-3-yl]-4,5-dihydro-1H-imidazol, oder
 2-[5-Fluor-2-methylbenzofuran-3-yl]-4,5-dihydro-1H-imidazol,

oder ein pharmazeutisch annehmbares Salz oder Ester hiervon.

22. Verwendung nach Anspruch 1, worin die Verbindung der Formel (I) folgende ist

25 2-[2-(2-Chlorphenyl)-5-fluorbenzo[b]thiophen-3-yl]-4,5-dihydro-1H-imidazol,
 2-[5-Fluor-2-(4-methylphenyl)benzo[b]thiophen-3-yl]-4,5-dihydro-1H-imidazol oder
 2-(5-Chlor-2-methylbenzo[b]thiophen-3-yl)-4,5-dihydro-4,4-dimethyl-1H-imidazol

30 oder ein pharmazeutisch annehmbares Salz oder Ester hiervon.

23. Verwendung nach Anspruch 1, worin die Verbindung der Formel (I) folgende ist

35 2-[7-Brom-3-(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[3-(2-Methoxyethoxy)-7-phenylnaphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[7-(2-Fluorophenyl)-3-(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[7-(3-Fluorophenyl)-3-(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[7-(4-Fluorophenyl)-3-(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 40 2-[7-(3,5-Dichlorphenyl)-3-(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[3-(2-Methoxyethoxy)-7-(4-methylphenyl)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[3-(2-Methoxyethoxy)-7-(2-thienyl)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[3-(2-Methoxyethoxy)-7-(3-thienyl)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 45 2-[7-(5-Chlor-2-thienyl)-3 -(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[7-(2-Methoxyphenyl)-3-(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[7-(4-Methoxyphenyl)-3-(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[3-(2-Methoxyethoxy)-7-(3-nitrophenyl)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[7-Brom-4-chlor-3-(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 50 2-[4-Brom-7-(5-chlor-2-thienyl)-3-(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[4-Chlor-7-(5-chlor-2-thienyl)-3-(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[4-Chlor-3-(2-methoxyethoxy)-7-(3-thienyl)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[4-Chlor-3-(2-methoxyethoxy)-7-(4-methylphenyl)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 55 2-[4-Chlor-3-(2-methoxyethoxy)-7-(4-chlorphenyl)-3-(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[4-Chlor-3-(2-methoxyethoxy)-7-(3-methoxyphenyl)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[4-Chlor-3 -(2-methoxyethoxy)-7-(4-trifluormethylphenyl)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[3-(2-Ethoxyethoxy)-7-(4-methylphenyl)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[7-(4-Methylphenyl)-3-(tetrahydropyran-2-yl)methoxynaphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[7-(4-Fluorophenyl)-3-(2-methylthioethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[7-(4-Methoxyphenyl)-3-(3-methoxypropoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,

5 2-[7-(5-Chlor-2-thienyl)-3-butoxynaphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[7-(5-Chlor-2-thienyl)-3-(2-ethoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[4-Brom-3-(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[3-(2-Methoxyethoxy)-4-(4-methylphenyl)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[4-(4-Chlorphenyl)-3-(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[4-(2,4-Dichlorphenyl)-3-(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[3-(2-Methoxyethoxy)-4-(4-methoxyphenyl)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[3-(2-Methoxyethoxy)-4-(3-methoxyphenyl)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[3-(2-Methoxyethoxy)-4-(2-methoxyphenyl)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[3-(2-Methoxyethoxy)-4-(2-thienyl)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[4-(5-Chlor-2-thienyl)-3-(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[4-Brom-3-propoxynaphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 2-[4-(3,4-Dichlorphenyl)-3-(2-ethoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol, oder
 2-[4-(3-Chlor-4-fluorophenyl)-3-(cyclobutylmethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol,
 15 oder ein pharmazeutisch annehmbares Salz oder Ester hiervon.

24. Verwendung nach Anspruch 1, worin die Verbindung der Formel (I) folgende ist

20 6-Chlor-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methylchinolin oder
 3-(4,5-Dihydro-1H-imidazol-2-yl)-2-phenylchinolin

oder ein pharmazeutisch annehmbares Salz oder Ester hiervon.

25. Verwendung nach Anspruch 1, worin die Verbindung der Formel (I) folgende ist

25 2-(3-Phenylbenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazol,
 2-(3-Butoxybenzo[b]thiophen-2-yl)-4,5-dihydro-1H-imidazol,
 (2-(4,5-Dihydro-1H-imidazol-2-yl)benzo[b]thiophen-3-yl)-(naphthalin-1-yl)methanol oder
 (4-tert-Butylphenyl)-(2-(4,5-dihydro-1H-imidazol-2-yl)benzo[b]thiophen-3-yl)methanol
 30 oder ein pharmazeutisch annehmbares Salz oder solcher Ester hiervon.

26. Verwendung nach Anspruch 1, worin die Verbindung der Formel (I) folgende ist

35 2-(5-Phenylbenzofuran-2-yl)-4,5-dihydro-1H-imidazol,
 2-(5-(3,5-Bistrifluormethylphenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazol,
 2-(5-(4-Fluorophenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazol,
 2-(5-(4-Methylphenylbenzofuran-2-yl)-4,5-dihydro-1H-imidazol,
 2-(5-(3-Thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazol,
 2-(5-(3-Fluorophenylbenzofuran-2-yl)-4,5-dihydro-1H-imidazol,
 40 2-(5-(3-Trifluormethylphenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazol,
 2-(5-(2-Thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazol,
 2-(5-(5-Chlor-2-thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazol,
 2-(5-(3-Methoxyphenyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazol,
 2-(5-(2-Methoxyphenylbenzofuran-2-yl)-4,5-dihydro-1H-imidazol,
 45 2-(7-(4-Methylphenylbenzofuran-2-yl)-4,5-dihydro-1H-imidazol,
 2-(7-(3-Thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazol,
 2-(7-(2-Thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazol oder
 2-(4-(5-Chlor-2-thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazol,

50 oder ein pharmazeutisch annehmbares Salz oder Ester hiervon.

27. Verwendung nach Anspruch 1, worin die Verbindung der Formel (I) folgende ist

55 5-Chlor-3-(4,5-dihydroimidazol-2-yl)-2-methyl-1H-indol
 oder ein pharmazeutisch annehmbares Salz oder Ester hiervon.

28. Verwendung nach Anspruch 1, worin die Verbindung der Formel (I) folgende ist

6-Chlor-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methylchinolin

oder ein pharmazeutisch annehmbares Salz oder Ester hiervon.

- 5 **29.** Verwendung nach Anspruch 1, worin die Verbindung der Formel (I) folgende ist

2-[3-(2-Methoxyethoxy)-7-(4-methylphenyl)naphthalin-2-yl]-4,5-dihydro-1H-imidazol

oder ein pharmazeutisch annehmbares Salz oder Ester hiervon.

- 10 **30.** Verwendung nach Anspruch 1, worin die Verbindung der Formel (I) folgende ist

3-(4,5-Dihydroimidazol-2-yl)-2-methyl-5-trifluormethyl-1H-indol

- 15 oder ein pharmazeutisch annehmbares Salz oder Ester hiervon.

- 31.** Verwendung nach Anspruch 1, worin die Verbindung der Formel (I) folgende ist

5-Chlor-2-(3-chlorphenyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indol

- 20 oder ein pharmazeutisch annehmbares Salz oder Ester hiervon.

- 32.** Verwendung nach Anspruch 1, worin die Verbindung der Formel (I) folgende ist

5-Chlor-2-(2-chlorphenyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indol

oder ein pharmazeutisch annehmbares Salz oder Ester hiervon.

- 33.** Verwendung nach Anspruch 1, worin die Verbindung der Formel (I) folgende ist

2-[3-(2-Methoxyethoxy)-7-phenylnaphthalin-2-yl]-4,5-dihydro-1H-imidazol

oder ein pharmazeutisch annehmbares Salz oder Ester hiervon.

- 35 **34.** Verwendung nach Anspruch 1, worin die Verbindung der Formel (I) folgende ist

2-[7-(5-Chlor-2-thienyl)-3-(2-ethoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol

oder ein pharmazeutisch annehmbares Salz oder Ester hiervon.

- 40 **35.** Verwendung nach Anspruch 1, worin die Verbindung der Formel (I) folgende ist

2-[7-(2-Fluorphenyl)-3-(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol oder
2-[7-(4-Methoxyphenyl)-3-(3-methoxypropoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol

- 45 oder ein pharmazeutisch annehmbares Salz oder Ester hiervon.

- 36.** Verwendung nach Anspruch 1, worin die Verbindung der Formel (I) folgende ist

2-[4-(4-Chlorphenyl)-3-(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol oder
2-[4-(2,4-Dichlorphenyl)-3-(2-methoxyethoxy)naphthalin-2-yl]-4,5-dihydro-1H-imidazol

oder ein pharmazeutisch annehmbares Salz oder Ester hiervon.

- 55 **37.** Verwendung nach einem der vorangehenden Ansprüche zur Behandlung von Diabetes.

- 38.** Verwendung nach einem der vorangehenden Ansprüche zur Behandlung von Typ II Diabetes.

39. Verwendung nach Anspruch 2 zur Stimulierung der Insulinsekretion bei einem Säuger, der dessen bedarf.

Revendications

5

1. Utilisation d'un composé répondant à la formule (I) :

dans laquelle :

X est -O-, -S-, ou -NR⁵- ;

R⁵ est hydrogène ou alkyle en C₁₋₈ ;

R¹, R¹', R² et R³ sont indépendamment hydrogène ou alkyle en C₁₋₈ ;

R¹ et R² forment éventuellement ensemble une liaison et R¹' et R³ sont indépendamment hydrogène ou alkyle en C₁₋₈ ;

R¹ et R² se combinent éventuellement avec les atomes de carbone auxquels ils sont fixés pour former un noyau carbocyclique en C₃₋₇ et R¹' et R³ sont indépendamment hydrogène ou alkyle en C₁₋₈ ;

R¹ et R¹' se combinent éventuellement avec l'atome de carbone auquel ils sont fixés pour former un noyau spirocarbocyclique en C₃₋₇, et R² et R³ sont indépendamment hydrogène ou alkyle en C₁₋₈ ;

R² et R³ se combinent éventuellement avec l'atome de carbone auquel ils sont fixés pour former un noyau spirocarbocyclique en C₃₋₇, et R¹ et R¹' sont indépendamment hydrogène ou alkyle en C₁₋₈ ;

n est 0, 1, ou 2 ;

m est 0, 1 ou 2 ;

m' est 0, 1 ou 2 ;

q' est 0, 1, 2, 3, 4 ou 5 ;

R⁴ est

45

55

Y est -O-, -S-, ou -NR⁸-;

Y' est -O-, ou -S- ;

R⁶ et R⁷ sont indépendamment hydrogène, alkyle en C₁₋₈, cycloalkyle en C₃₋₇, alcoxy en C₁₋₈, alkyle en C₁₋₈ thio, halo alkyle en C₁₋₈ thio, alkyle en C₁₋₈ sulfinyle, alkyle en C₁₋₈ sulfonyle, cycloalkoxy en C₃₋₇, arylalcoxy en C₁₋₈, halo, halo alkyle en C₁₋₈, halo alcoxy en C₁₋₈, nitro, -NR¹⁰R¹¹, -CONR¹⁰R¹¹, aryl alkyle en C₁₋₈, hétérocyclique éventuellement substitué, phényle éventuellement substitué, naphthyle éventuellement substitué, acylamino éventuellement halosubstitué, cyano, hydroxy, COR¹², halo alkyle en C₁₋₈ sulfinyle, ou halo alkyle en C₁₋₈ sulfonyle ou alcoxyalkyle répondant à la formule :

dans laquelle :

p est 0, 1, 2, 3 ou 4 ; et

q est 1, 2, 3, 4, ou 5 ;

R¹² est alkyle en C₁₋₈ ou phényle éventuellement substitué ;

R⁸ est hydrogène, alkyle en C₁₋₈, halo alkyle en C₁₋₈, phényle éventuellement substitué, hétérocyclique éventuellement substitué, COO alkyle en C₁₋₈, COaryl éventuellement substitué, COCalkyle en C₁₋₈, SO₂ alkyle en C₁₋₈, SO² aryle éventuellement substitué, phényl alkyle en C₁₋₈ éventuellement substitué, CH₃(CH₂)_pO-CH₂_q-O- ;

R⁹ est hydrogène, halo, alkyle en C₁₋₈, halo alkyle en C₁₋₈, alkyle en C₁₋₈ thio, halo alkyle en C₁₋₈ thio, cycloalkyle en C₃₋₇ thio, aryl thio ou hétéroaryl thio éventuellement substitué, alcoxy en C₁₋₈, cycloalkoxy en C₃₋₇, aryloxy éventuellement substitué, hétéroaryloxy éventuellement substitué ou aryle ou hétéroaryle éventuellement substitué, cycloalkyle en C₃₋₇, halo cycloalkyle en C₃₋₇, cycloalcényle en C₃₋₇, cyano, COOR¹⁰, CONR¹⁰R¹¹ ou NR¹⁰R¹¹, alcényle en C₂₋₆, hétérocyclique éventuellement substitué, aryl alkyle en C₁₋₈ éventuellement substitué, hétéroaryl alkyle en C₁₋₈ éventuellement substitué, où le groupe alkyle peut être substitué par hydroxy, ou alkyle en C₁₋₈ substitué par hydroxy,

R¹⁰ et R¹¹ sont indépendamment hydrogène, alkyle en C₁₋₈, arylalkyle en C₁₋₈ éventuellement substitué, phényle éventuellement substitué, ou R¹⁰ et R¹¹ peuvent se combiner avec l'atome d'azote auquel ils sont fixés pour former un cycle comportant jusqu'à 6 atomes de carbone qui peuvent éventuellement être substitués avec jusqu'à deux groupes alkyle en C₁₋₈, ou un atome de carbone peut être remplacé par un atome d'oxygène ou de soufre ;

R¹⁴ et R¹⁶ sont indépendamment hydrogène, halo, alkyle en C₁₋₈, cycloalkyle en C₃₋₇, cycloalkoxy en C₃₋₇, cycloalkyle en C₃₋₇ alcoxy en C₁₋₈, halo alkyle en C₁₋₈, halo alcoxy en C₁₋₈, alcoxy en C₁₋₈, carbo alcoxy (en C₁₋₈), aryle éventuellement substitué ou hétéroaryle éventuellement substitué ;

R¹⁵ et R¹⁷ sont indépendamment hydrogène, halo, alcoxy en C₁₋₈, cycloalkyle en C₃₋₇, cycloalkyle en C₃₋₇ alcoxy en C₁₋₈, alkyle en C₁₋₈, cycloalkoxy en C₃₋₇, hydroxy, haloalcoxy en C₁₋₈, carbo alcoxy (en C₁₋₈), phényle éventuellement substitué, phényl alkyle en C₁₋₈ éventuellement substitué, phényloxy éventuellement substitué, phényl alcoxy en C₁₋₈ éventuellement substitué, (tétrahydronaphtalene-2-yl)méthoxy, alkyle en C₁₋₈ S(O)_m, aryl alkyle en C₁₋₈ S(O)_m éventuellement substitué, CH₃(CH₂)_p-Z¹-(CH₂)_q-Z² ou Z³-(CH₂)_q-Z²- ;

où :

m est 0, 1 ou 2 ;

m' est 0, 1 ou 2 ;

q' est 0, 1, 2, 3, 4, ou 5 ;

Z¹ et Z² sont indépendamment une liaison, O, S, SO, SO₂, sulfoximino, ou NR¹⁰;

et

5 Z³ est hydroxy, NR¹⁰R¹¹, ou SH ;

où aryle est un groupe hydrocarboné aromatique mononucléaire ou polynucléaire, hétéroaryle est un système cyclique mononucléaire ou polynucléaire aromatique à quatre à dix membres, dans lequel un ou plusieurs des atomes dans le cycle sont un élément autre que le carbone, hétérocyclique est un système cyclique saturé ou insaturé, mononucléaire ou polynucléaire, de quatre à dix membres, dans lequel un ou plusieurs des atomes dans le cycle sont un élément autre que le carbone, et éventuellement substitué est non substitué ou substitué par un ou plusieurs substituants choisis, indépendamment parmi alkyle en C₁₋₈, alcoxy en C₁₋₈, carboxy, hydroxy, cyano, halo, trifluorométhyle, SCH₃, nitro, phényle, 3,4-méthylènedioxy, amino, et phényle qui est éventuellement substitué par un à trois substituants indépendamment choisis parmi le groupe constitué de alkyle en C₁₋₈, alcoxy en C₁₋₈, carboxy, hydroxy, cyano, halo, trifluorométhyle, SCH₃, nitro, phényle, 3,4-méthylènedioxy, et amino ; sous réserve que, lorsque R¹, R^{1'}, R² et R³ sont tous hydrogène ; n est 0 ; R⁴ est naphthyle ; et R¹⁴, R¹⁵ et R¹⁶ ou R¹⁵, R¹⁶ et R¹⁷ sont tous hydrogène, R¹⁷ ou R¹⁴, respectivement, est autre que halo, méthoxy ou alkyle en C₁₋₆ ; ou un sel ou un ester pharmaceutiquement acceptable de ce dernier, dans la fabrication d'un médicament pour le traitement du diabète, des complications diabétiques, des troubles métaboliques, ou de maladies apparentées dans lesquelles l'élimination du glucose est insuffisante.

2. Utilisation d'un composé répondant à la formule (I) :

45 dans laquelle :

X est -O-, -S-, ou -NR⁵⁻ ;

R⁵ est hydrogène ou alkyle en C₁₋₈ ;

R¹, R^{1'}, R² et R³ sont indépendamment hydrogène ou alkyle en C₁₋₈ ;

R¹ et R² forment ensemble une liaison, et R^{1'} et R³ sont indépendamment hydrogène ou alkyle en C₁₋₈ ;

R¹ et R² peuvent se combiner avec les atomes de carbone auxquels ils sont fixés pour former un noyau carbocyclique en C₃₋₇, et R^{1'} et R³ sont indépendamment hydrogène ou alkyle en C₁₋₈ ;

R¹ et R^{1'} se combinent avec l'atome de carbone auquel ils sont fixés pour former un noyau spirocarbocyclique en C₃₋₇, et R² et R³ sont indépendamment hydrogène ou alkyle en C₁₋₈ ;

R² et R³ se combinent avec l'atome de carbone auquel ils sont fixés pour former un noyau spirocarbocyclique en C₃₋₇, et R¹ et R^{1'} sont indépendamment hydrogène ou alkyle en C₁₋₈ ;

n est 0, 1, ou 2 ;

R⁴ est

5

10

15

Y est -O-, -S-, ou -NR⁸⁻ ;

Y' est -O-, ou -S- ;

20 R⁶ et R⁷ sont indépendamment hydrogène, alkyle en C₁₋₈, cycloalkyle en C₃₋₇, alcoxy en C₁₋₈, alkyle en C₁₋₈ thio, halo alkyle en C₁₋₈ thio, alkyle en C₁₋₈ sulfinyle, alkyle en C₁₋₈ sulfonyle, cycloalkoxy en C₃₋₇, arylalcoxy en C₁₋₈, halo, halo alkyle en C₁₋₈, halo alcoxy en C₁₋₈, nitro, -NR¹⁰R¹¹, -CONR¹⁰R¹¹, aryl alkyle en C₁₋₈, hétérocyclyle éventuellement substitué, phényle éventuellement substitué, acylamino éventuellement halosubstitué, cyano, hydroxy, COR¹², halo alkyle en C₁₋₈ sulfinyle, ou halo alkyle en C₁₋₈ sulfonyle ou alcoxyalkyle répondant à la formule :

25

dans laquelle :

30

p est 0, 1, 2, 3 ou 4 ; et

q est 1, 2, 3, 4, ou 5 ;

R¹² est alkyle en C₁₋₈ ou phényle éventuellement substitué ;

35 R⁸ est hydrogène, alkyle en C₁₋₈, halo alkyle en C₁₋₈, phényle éventuellement substitué, hétérocyclyle éventuellement substitué, COOalkyle en C₁₋₈, COOaryl éventuellement substitué, COCalkyle en C₁₋₈, SO₂ alkyle en C₁₋₈, SO₂ aryle éventuellement substitué, phényl alkyle en C₁₋₈ éventuellement substitué, CH₃(CH₂)_p-O-(CH₂)_q-O- ;

40 R⁹ est hydrogène, halo, alkyle en C₁₋₈, halo alkyle en C₁₋₈, alkyle en C₁₋₈ thio, halo alkyle en C₁₋₈ thio, cycloalkyle en C₃₋₇ thio, aryl thio ou hétéroaryl thio éventuellement substitué, alcoxy en C₁₋₈, cycloalkoxy en C₃₋₇, aryloxy éventuellement substitué, hétéroaryloxy éventuellement substitué, ou aryle ou hétéroaryle éventuellement substitué, cycloalkyle en C₃₋₇, halo cycloalkyle en C₃₋₇, cycloalcényle en C₃₋₇, cyano, COOR¹⁰, CONR¹⁰R¹¹ ou NR¹⁰R¹¹, alcényle en C₂₋₆, hétérocyclyle éventuellement substitué, aryl alkyle en C₁₋₈ éventuellement substitué, hétéroaryl alkyle en C₁₋₈, éventuellement substitué, où le groupe alkyle peut être substitué par hydroxy,

45 R¹⁰ et R¹¹ sont indépendamment hydrogène, alkyle en C₁₋₈, aryl alkyle en C₁₋₈ éventuellement substitué, phényle éventuellement substitué, ou R¹⁰ et R¹¹ peuvent se combiner avec l'atome d'azote auquel ils sont fixés pour former un cycle comportant jusqu'à 6 atomes de carbone qui peuvent éventuellement être substitués avec jusqu'à deux groupes alkyle en C₁₋₈, ou un atome de carbone peut être remplacé par un atome d'oxygène ou de soufre ;

50 R¹⁴ et R¹⁶ sont indépendamment hydrogène, halo, alkyle en C₁₋₈, cycloalkyle en C₃₋₇, cycloalkoxy en C₃₋₇, halo alkyle en C₁₋₈, halo alcoxy en C₁₋₈, alcoxy en C₁₋₈, aryle éventuellement substitué ou hétéroaryle éventuellement substitué ;

55 R¹⁵ et R¹⁷ sont indépendamment hydrogène, halo, alcoxy en C₁₋₈, cycloalkyle en C₃₋₇, alkyle en C₁₋₈, cycloalkoxy en C₃₋₇, hydroxy, haloalkoxy en C₁₋₈, phényle éventuellement substitué, phényl alkyle en C₁₋₈ éventuellement substitué, phényloxy éventuellement substitué, phényl alcoxy en C₁₋₈ éventuellement substitué, (tétrahydropyrane-2-yl)méthoxy, alkyle en C₁₋₈ S(O)_n⁻, aryl alkyle en C₁₋₈, -S(O)_n⁻ éventuellement substitué, CH₃(CH₂)_p-Z¹-(CH₂)_q-Z², ou Z³-(CH₂)_q-Z² ;

Z¹ et Z² sont indépendamment une liaison, O, S, SO, SO₂, sulfoximino, ou NR¹⁰ ;

Z³ est hydroxy ou NR¹⁰R¹¹ ;

5 où aryle est un groupe hydrocarboné aromatique mononucléaire ou polynucléaire, hétéroaryle est un système cyclique mononucléaire ou polynucléaire aromatique à quatre à dix membres, dans lequel un ou plusieurs des atomes dans le cycle sont un élément autre que le carbone, hétérocyclique est un système cyclique saturé ou insaturé, mononucléaire ou polynucléaire à quatre à dix membres dans lequel un ou plusieurs des atomes dans le cycle sont un élément autre que le carbone, et éventuellement substitué est non substitué ou substitué par un ou plusieurs substituants choisis indépendamment parmi alkyle en C₁₋₈, alcoxy en C₁₋₈, carboxy, hydroxy, cyano, halo, trifluorométhyle, SCH₃, nitro, phényle, 3,4-méthylènedioxy, amino, et phényle qui est éventuellement substitué par un à trois substituants indépendamment choisis parmi le groupe constitué de alkyle en C₁₋₈, alcoxy en C₁₋₈, carboxy, hydroxy, cyano, halo, trifluorométhyle, SCH₃, nitro, phényle, 3,4-méthylènedioxy, et amino ;

10 ou un sel ou un ester pharmaceutiquement acceptable de ce dernier
 dans la fabrication d'un médicament pour le traitement du diabète, des complications diabétiques, des troubles métaboliques, ou de maladies apparentées dans lesquelles l'élimination du glucose est insuffisante.

15 3. Utilisation selon la revendication 1, dans laquelle R¹ et R^{1'} sont hydrogène, et R² et R³ sont hydrogène ou méthyle.

4. Utilisation selon la revendication 1, dans laquelle X est -NH-.

5. Utilisation selon la revendication 1, dans laquelle n est 0.

20 6. Utilisation selon la revendication 1, dans laquelle

R⁴ est

25 R¹⁴ et R¹⁶ sont indépendamment hydrogène, halo, ou phényle, naphthyle ou thiényle éventuellement substitué ;

30 R¹⁵ est hydrogène, halo, méthyle ou méthoxy ; et

35 R¹⁷ est benzyloxy, propoxy, butoxy, H₃C(CH₂)_p-O-(CH₂)_q-O-, H₃C(CH₂)_p-S-(CH₂)_q-O-, H₃C(CH₂)_p-SO₂-(CH₂)_q-O-, (tétrahydropyran-2-yl)méthoxy, cyclobutylméthoxy, cyclopentylméthoxy, ou cyclohexylméthoxy.

40 7. Utilisation selon la revendication 1, dans laquelle

R⁴ est

45 R⁶ est hydrogène, halo, nitro, cyano, alkyle en C₁₋₆, halo alkyle en C₁₋₆, halo alcoxy en C₁₋₆, ou halo alkyle en C₁₋₆ thio ;

50 R⁷ est hydrogène, halo, ou méthyle ;

R⁸ est hydrogène, méthyle, ou benzyle éventuellement substitué ; et

55 R⁹ est hydrogène, alkyle en C₁₋₆, halo alkyle en C₁₋₆, benzyle éventuellement substitué, phényle éventuelle-

ment substitué ou thiényle éventuellement substitué.

8. Utilisation selon la revendication 1, dans laquelle

5 R⁴ est

10
15 Y est O ou S ;
R⁶ est hydrogène, halo, alkyle en C₁₋₆, ou halo alkyle en C₁₋₆; et
R⁹ est alkyle en C₁₋₆ ou phényle éventuellement substitué.

9. Utilisation selon la revendication 1, dans laquelle

20 R⁴ est

25
30 et
R⁶ est hydrogène, halo, alkyle en C₁₋₆, ou phényle, naphthyle, ou thiényle éventuellement substitué.

35 10. Utilisation selon la revendication 1, dans laquelle

R⁴ est

40
45
50 R⁶ est hydrogène, halo, alkyle en C₁₋₆, halo alkyle en C₁₋₆, alcoxy en C₁₋₆, et
R⁹ est hydrogène, halo, alcoxy en C₁₋₄, alkyle en C₁₋₄, phényle, naphthyle ou thiényle éventuellement subs-
titué, ou un groupe phénylméthyle éventuellement substitué, naphthylméthyle éventuellement substitué, thié-
nylméthyle éventuellement substitué, ou pyridylméthyle éventuellement substitué, où le groupe méthyle est
substitué par hydroxy.

55 11. Utilisation selon la revendication 1, dans laquelle

R⁴ est

5

R¹⁴ est hydrogène, halo, alkyle en C₁₋₄, alcoxy en C₁₋₄, ou halo alkyle en C₁₋₄ ; et
R¹⁶ est alkyle en C₁₋₄, halo alkyle en C₁₋₄, ou phényle éventuellement substitué.

10

12. Utilisation selon la revendication 12, dans laquelle

R¹, R^{1'}, R² et R³ sont hydrogène ou méthyle ;
X est -NH- ; et
n est 0

15

13. Utilisation selon la revendication 1, dans laquelle

R⁴ est

20

25

R¹⁴ et R¹⁶ sont indépendamment hydrogène, bromo, chloro, phényle, 2-fluorophényle, 3-fluorophényle, 4-fluorophényle, 5-chloro-2-thiényle, 2,4-dichlorophényle, 4-chlorophényle, 2,4-dichlorophényle, 3,4-dichlorophényle, 3,5-dichlorophényle, 4-méthylphényle, 3-chloro-4-fluorophényle, 4-(trifluorométhyl)phényle, 2-méthoxyphényle, ou 4-méthoxyphényle ;

35

R¹⁵ est hydrogène ; et

R¹⁷ est H₃C-O-(CH₂)₂-O-, ou H₃CCH₂-O-CH₂-CH₂-O-.

30

14. Utilisation selon la revendication 12, dans laquelle

40

R⁴ est

45

Y est O ou S ;

R⁶ est chloro ; et

R⁹ est méthyle ou 2-chlorophényle.

50

15. Utilisation selon la revendication 12, dans laquelle

55

R⁴ est

5

10

et

R⁶ est bromo, phényle, 4-méthylphényle, 5-chloro-2-thiényle, 2-thiényle, 3-thiényle, 3-trifluorométhylphényle, 3-méthoxyphényle, 2-méthoxyphényle, 3,5-bistrifluorométhylphényle, 4-fluorophényle, ou 3-fluorophényle.

16. Utilisation selon la revendication 12, dans laquelle

15

R⁴ est

20

25

R⁶ est hydrogène, chloro, bromo, méthoxy, méthyle, ou trifluorométhyle ; et

R⁹ est hydrogène, halo, alcoxy en C₁₋₄, alkyle en C₁₋₄, phényle, naphthyle, ou thiényle éventuellement substitué, ou un groupe phénylméthyle éventuellement substitué, naphtylméthyle éventuellement substitué, thiénylméthyle éventuellement substitué, ou pyridylméthyle éventuellement substitué où le groupe méthyle est substitué par hydroxy.

17. Utilisation selon la revendication 12, dans laquelle

35

R⁴ est

40

45

R¹⁴ est chloro, méthyle ou trifluorométhyle ; et
R¹⁶ est méthyle.

18. Utilisation selon la revendication 1, dans laquelle

50

R¹, R^{1'}, R² et R³ sont hydrogène ou méthyle ;
X est -NH- ;
n est 0, 1 ou 2 ;
R⁴ est

55

10 R⁶ est chloro, fluoro, méthyle, trifluorométhyle, ou pentafluoroéthyle ;
 R⁷ est hydrogène ;
 R⁸ est hydrogène ; et
 R⁹ est hydrogène, méthyle, benzyle, 3-chlorobenzyle, 4-chlorophényle, 3-chlorophényle, 2-chlorophényle,
 15 3-méthylphényle, 4-chloro-3-méthylphényle, 4-méthoxyphényle, ou 2-méthoxyphényle.

19. Utilisation selon la revendication 18, dans laquelle n est 0.

20. Utilisation selon la revendication 1, dans laquelle le composé répondant à la formule (I) est :

20 3-(4,5-Dihydroimidazol-2-yl)-2,5-diméthyl-1H-indole ;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-méthyl-1H-indole ;
 3-(4,5-Dihydroimidazol-2-yl)-2-méthyl-5-trifluorométhyl-1H-indole ;
 3-(4,5-Dihydroimidazol-2-yl)-2-méthyl 5 pentafluoroéthyl-1H-indole ;
 5,7-Dichloro-3-(4,5-dihydroimidazol-2-yl)-2-méthyl-1H-indole ;
 3-(4,5-Dihydroimidazol-2-yl)-5-fluoro-2-méthyl-1H-indole ;
 3-(4,5-Dihydroimidazol-2-yl)-2-méthyl-5-nitro-1H-indole ;
 5-Bromo-3-(4,5-dihydroimidazol-2-yl)2-méthyl-1H-indole ;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-phényl-1H-indole ;
 5,7 Dichloro-3-(4,5-dihydroimidazol-2-yl)-2-phényl-1H-indole ;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-7-méthyl-2-phényl-1H-indole ;
 5-Chloro-2-(4-chlorophényle)-3-(4,5-dihydroimidazol-2-yl)-1H-indole ;
 5-Chloro-2-(3-chlorophényle)-3-(4,5-dihydroimidazol-2yl)-1H-indole ;
 5-Chloro-2-(2-chlorophényle)-3-(4,5-dihydroimidazol-2-yl)-1H-indole ;
 35 2-(4-Chlorophényle)-5,7-dichloro-3-(4,5-dihydroimidazol-2-yl)-1H-indole ;
 2-(2-Chlorophényle)-3-(4,5-dihydroimidazol-2-yl)-5-fluoro-1H-indole ;
 2-(2-Bromophényle)-5-chloro-3-(4,5-dihydroimidazol-2-yl)1H-indole ;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(3-fluorophényle)-1H-indole ;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(4-iodophényle)-1H-indole ;
 40 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(4-méthylphényle)-1H-indole ;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(3-méthylphényle)-1H-indole ;
 5,7-Dichloro-3-(4,5-dihydroimidazol-2-yl)-2(3-méthylphényle)-1H-indole ;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2-méthylphényle)-1H-indole ;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2-trifluorométhylphényle)-1H-indole ;
 45 2-(2,4-Dichlorophényle)-3-(4,5-dihydroimidazol-2-yl)-5-fluoro-1H-indole ;
 3-(4,5-Dihydroimidazol-2-yl)-2-(2,4-diméthylphényle)-5-fluoro-1H-indole ;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2,4-diméthylphényle)-1H-indole ;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2,5-diméthylphényle)-1H-indole ;
 5-Chloro-3-{4,5-dihydroimidazol-2-yl)-2-(2-méthoxyphényle)-1H-indole ;
 50 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(4-méthoxyphényle)-1H-indole ;
 5-Chloro-2-(4-chloro-3-méthylphényle)-3-(4,5-dihydroimidazol-2-yl)-1 H-indole ;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(4-(2-méthoxyéthoxy)phényle)-1H-indole ;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2-(2-méthoxyéthoxy)phényle)-1 H-indole ;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-1 H-indole ;
 55 5-Chloro-2-cyclohéxyl-3-(4,5-dihydroimidazol-2-yl)-1H-indole ;
 5-Chloro-2(cyclohexen-2-yl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole ;
 2,5-Bistrifluorométhyl-3(4,5-dihydroimidazol-2-yl)-1H-indole ;
 2-Benzyl-5-chloro-3-(4,5-dihydroimidazol-2-yl)-1H-indole ;

5-Chloro-2-(2-chlorobenzyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole ;
 5-Chloro-2-(3-chlorobenzyl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole ;
 5-Chloro-1-(2-chlorobenzyl)-3-(4,5-dihydroimidazol-2-yl)-2-méthyl-1H-indole ;
 5-Chloro-3-(4,5-dihydro-4,4-diméthylimidazol-2-yl)-2-méthyl-1H-indole ;
 5-Chloro-2-(2-chlorophényl)-3-(4,5-dihydro-4,4-dimethylymidazol-2-yl)-1H-indole.
 5
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(pyridin-4-yl)-1H-indole ;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(3-thienyl)-1H-indole ;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(2,5-diméthyl-3-thienyl)-1H-indole ;
 5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-(3-méthyl-2-thienyl)-1H-indole
 10
 2-[2-(2-Fluorophényl)indol-3-yl]éthyl]-4,5-dihydroimidazol ; ou
 2-[2-(2-Chlorophényl)indol-3-yl]éthyl]-4,5-dihydroimidazol ;

ou un sel ou un ester pharmaceutiquement acceptable de ces derniers.

15 21. Utilisation selon la revendication 1, dans laquelle le composé répondant à la formule (I) est :

2-(5-Chloro-2-(2-chlorophényl)benzofuran-3-yl)-4,5-dihydro-1H-imidazole ;
 2-(5-Chloro-2-(3-chlorophényl)benzofuran-3-yl)-4,5-dihydro-1H-imidazole ;
 20 2-(5-Chloro-2-méthylbenzofuran-3-yl)-4,5-dihydro-1H-imidazole ; ou
 2-(5-Fluoro-2-méthylbenzofuran-3-yl)-4,5-dihydro-1H-imidazole ;

ou un sel ou un ester pharmaceutiquement acceptable de ces derniers.

22. Utilisation selon la revendication 1, dans laquelle le composé répondant à la formule (I) est :

25 2-(2-(2-chlorophényl)-5-fluorobenzo(b)thiophen-3-yl)-4,5-dihydro-1H-imidazole ;
 2-(5-Fluoro-2(4-méthylphényl)benzo(b)thiophen-3-yl)-4,5-dihydro-1H-imidazole ; ou
 2-(5-Chloro-2-méthylbenzo(b)thiophen-3-yl)-4,5-dihydro-4,4-diméthyl-1H-imidazole ;

30 ou un sel ou un ester pharmaceutiquement acceptable de ces derniers.

23. Utilisation selon la revendication 1, dans laquelle le composé répondant à la formule (I) est

35 2-[7-Bromo-3-(2-méthoxyéthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[3-(2-Méthoxyéthoxy)-7-phényl-naphthalen-2-yl]-4,5-dihydro-1H-imidazole
 2-[7-(2-Fluorophényl)-3-(2-méthoxyéthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[7-(3-Fluorophényl)-3-(2-méthoxyéthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[7-(4-Fluorophényl)-3-(2-méthoxyéthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[7-(3,5-Dichlorophényl)-3-(2-méthoxyéthoxy)naphthalen-2-yl]-4,5-1H-imidazole ;
 40 2-[3-(2-Méthoxyéthoxy)-7-(4-méthylphényl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[3-(2-Méthoxyéthoxy)-7-(2-thienyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[3-(2-Méthoxyéthoxy)-7-(3-thienyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[7-(5-Chloro-2-thienyl)-3-(2-méthoxyéthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[7-(2-Methoxyphényl)-3-(2-méthoxyéthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 45 2-[7-(4-Méthoxyphényl)-3-(2-méthoxyéthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[3-(2-Méthoxyéthoxy)-7-(3-nitrophényl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[7-Bromo-4-chloro-3-(2-méthoxyéthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[4-Bromo-7-(5-chloro-2-thienyl)-3-(2-méthoxyéthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 50 2-[4-Chloro-7-(5-chloro-2-thienyl)-3-(2-méthoxyéthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[4-Chloro-3-(2-méthoxyéthoxy)-7-(3-thienyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[4-Chloro-3-(2-méthoxyéthoxy)-7-(4-méthylphényl)naphthalen-2yl]-4,5-dihydro-1H-imidazole ;
 2-[4-Chloro-7-(4-chlorophényl)-3-(2-méthoxyéthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[4-Chloro-3-(2-méthoxyéthoxy)-7-(3-méthoxyphényl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 55 2-[4-Chloro-3-(2-méthoxyéthoxy)-7-(4-trifluorométhylphényl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[3-(2-Éthoxyéthoxy)-7-(4-méthylphényl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[7-(4-Méthylphényl)-3-(tétrahydropyran-2-yl)-méthoxynaphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[7-(4-Fluorophényl)-3-(2-méthylthioéthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[7-(4-Méthoxyphényl)-3-(3-méthoxypropoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;

5 2-[7-(5-Chloro-2-thiényl)-3-butoxynaphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[7-(5-Chloro-2-thiényl)-3-(2-éthoxyéthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[4-Bromo-3-(2méthoxyéthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[3-(2-Méthoxyéthoxy)-4-(4-méthylphényl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[4-(4-Chlorophényl)-3-(2-méthoxyéthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[4-(2,4-Dichlorophényl)-3-(2-méthoxyéthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[3-(2-Méthoxyéthoxy)-4-(4-méthoxyphényle)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[3-(2-Méthoxyéthoxy)-4-(3-méthoxyphényle)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[3-(2-Méthoxyéthoxy)-4-(2-méthoxyphényle)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[3-(2-Méthoxyéthoxy)-4-(2-thienyl)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[4-(5-Chloro-2-thiényl)-3-(2-méthoxyéthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[4-Bromo-3-propoxynaphthalen-2-yl]-4,5-dihydro-1H-imidazole ;
 2-[4-(3,4-Dichlorophényl)-3-(2-éthoxyéthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazole ; ou
 2-[4-(3-Chloro-4-fluorophényl)-3-(cyclobutylméthoxy)naphthalen-2-yl]-4,5-dihydro-1H-imidazolé ;
 15 ou un sel ou un ester pharmaceutiquement acceptable de ces derniers.

24. Utilisation selon la revendication 1, dans laquelle le composé répondant à la formule (I) est :

20 6-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-méthylquinoléine ; ou
 3-(4,5-Dihydro-1H-imidazol-2-yl)-2-phénylquinoléine ;
 ou un sel ou un ester pharmaceutiquement acceptable de ces derniers.

25. Utilisation selon la revendication 1, dans laquelle le composé répondant à la formule (I) est

2-(3-Phénylbenzo(b)thiophen-2-yl)-4,5-dihydro-1H-imidazole ;
 2-(3-Butoxybenzo(b)thiophen-2-yl)-4,5-dihydro-1H-imidazole ;
 (2-(4,5-Dihydro-1H-imidazol-2-yl)benzo(b)thiophen-3-yl)-(naphthalen-1-yl)méthanol ;
 30 ou
 (4-tert-Butylphényl)-(2-(4,5-dihydro-1H-imidazol-2-yl)benzo(b)thiophen-3-yl)méthanol ;
 35 ou un sel ou un ester pharmaceutiquement acceptable de ces derniers.

26. Utilisation selon la revendication 1, dans laquelle le composé répondant à la formule (I) est

40 2-(5-Phénylbenzofuran-2-yl)-4,5-dihydro-1H-imidazole ;
 2-(5-(3,5-Bistrifluorométhylphényl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole ;
 2-(5-(4-Fluorophényle)benzofuran-2-yl)-4,5-dihydro-1H-imidazole ;
 2-(5-(4-Méthylphényl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole ;
 2-(5-(3-Thiényl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole ;
 2-(5-(3-Fluorophényl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole ;
 2-(5-(3-Trifluorométhylphényl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole ;
 2-(5-(2-Thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole ;
 2-(5-(5-Chloro-2-thienyl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole ;
 2-(5-(3-Méthoxyphényl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole ;
 2-(5-(2-Méthoxyphényl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole ;
 50 2-(7-(4-Méthylphényl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole ;
 2-(7-(3-Thiényl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole ;
 2-(7-(2 Thiényl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole ; ou
 2-(4-(5-Chloro-2-thiényl)benzofuran-2-yl)-4,5-dihydro-1H-imidazole ;
 55 ou un sel ou un ester pharmaceutiquement acceptable de ces derniers.

27. Utilisation selon la revendication 1, dans laquelle le composé répondant à la formule (I) est

5-Chloro-3-(4,5-dihydroimidazol-2-yl)-2-méthyl-1H-indole ;

ou un sel ou un ester pharmaceutiquement acceptable de ce dernier.

5 **28.** Utilisation selon la revendication 1, dans laquelle le composé répondant à la formule (I) est

6-Chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-méthylquinoléine ;

ou un sel ou un ester pharmaceutiquement acceptable de ce dernier.

10 **29.** Utilisation selon la revendication 1, dans laquelle le composé répondant à la formule (I) est

2-(3-(2-Méthoxyéthoxy)-7-(4-méthylphényl)naphthalen-2-yl)-4,5-dihydro-1H-imidazole ;

15 ou un sel ou un ester pharmaceutiquement acceptable de ce dernier.

30. Utilisation selon la revendication 1, dans laquelle le composé répondant à la formule (I) est

20 3-(4,5-Dihydroimidazol-2-yl)-2-méthyl-5-trifluorométhyl-1H-indole ;

ou un sel ou un ester pharmaceutiquement acceptable de ce dernier.

31. Utilisation selon la revendication 1, dans laquelle le composé répondant à la formule (I) est

25 5-Chloro-2-(3-chlorophényl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole ;

ou un sel ou un ester pharmaceutiquement acceptable de ce dernier.

32. Utilisation selon la revendication 1, dans laquelle le composé répondant à la formule (I) est

30 5-Chloro-2-(2-chlorophényl)-3-(4,5-dihydroimidazol-2-yl)-1H-indole ;

ou un sel ou un ester pharmaceutiquement acceptable de ce dernier.

35 **33.** Utilisation selon la revendication 1, dans laquelle le composé répondant à la formule (I) est

2-(3-(2-Méthoxyéthoxy)-7-phényl-naphthalen-2-yl)-4,5-dihydro-1H-imidazole ;

ou un sel ou un ester pharmaceutiquement acceptable de ce dernier.

40 **34.** Utilisation selon la revendication 1, dans laquelle le composé répondant à la formule (I) est

2-(7-(5-Chloro-2-thiényl)-3-(2-éthoxyéthoxy)naphthalen-2-yl)-4,5-dihydro-1H-imidazole ;

ou un sel ou un ester pharmaceutiquement acceptable de ce dernier.

35. Utilisation selon la revendication 1, dans laquelle le composé répondant à la formule (I) est

50 2-(7-(2-Fluorophényl)-3-(2-méthoxyéthoxy)naphthalen-2-yl)-4,5-dihydro-1H-imidazole ; ou 2-(7-(4-Méthoxyphényl)-3-(3-méthoxypropoxy)naphthalen-2-yl)-4,5-dihydro-1H-imidazole ;

ou un sel ou un ester pharmaceutiquement acceptable de ces derniers.

36. Utilisation selon la revendication 1, dans laquelle le composé répondant à la formule (I) est

55 2-(4-(4-Chlorophényl)-3-(2-méthoxyéthoxy)naphthalen-2-yl)-4,5-dihydro-1H-imidazole ; ou 2-(4-(2,4-Dichlorophényl)-3-(2-méthoxyéthoxy)naphthalen-2-yl)-4,5-dihydro-1H-imidazole

EP 0 924 209 B1

ou un sel ou un ester pharmaceutiquement acceptable de ces derniers.

37. Utilisation selon l'une quelconque des revendications précédentes pour le traitement du diabète.

5 38. Utilisation selon l'une quelconque des revendications précédentes pour le traitement du diabète de Type II.

39. Utilisation selon la revendication 2 pour simuler la sécrétion d'insuline chez un mammifère qui en a besoin.

10

15

20

25

30

35

40

45

50

55