Project title	Optimized column location in flat slab system
Problem statement	One of the key architectural advantages of a concrete flat slab system is
	its flexibility in design. The absence of beams and columns allows for
	larger, open spaces with minimal obstructions, giving architects the
	freedom to create unique and innovative layouts. However, the location
	of the middle columns (one of the main factors affecting the
	construction cost) is commonly aligned based on experience which may
	entails an uneconomic design alternative.
Project objectives	To develop an optimizing code for the location of the intermediate
	columns for a given flat slab plan considering the deflection as the
	objective function.
Deliverables	Submit your work on GitHub using the template.

Project title	Optimized slab thickness in flat slab system
Problem statement	Optimizing flat slab thickness is a crucial aspect in structural design as it
	directly affects the overall efficiency and cost-effectiveness of a
	building. By carefully analyzing the load distribution and considering
	factors such as span length, column spacing, and desired deflection
	limits, engineers can determine the most appropriate slab thickness. A
	thicker slab may be required for longer spans or heavier loads to
	ensure adequate strength and stiffness. However, excessive thickness
	can lead to unnecessary material usage and increased construction
	costs. Conversely, reducing the slab thickness too much may
	compromise structural integrity. Therefore, optimizing flat slab
	thickness involves finding a balance between structural requirements
	and economic considerations to achieve an optimal solution that meets
	both safety standards and cost-efficiency goals.
Project objectives	To develop an optimizing code for the slab thickness of a concrete flat
	slab plan to minimize the cost of the system.
Deliverables	Submit your work on GitHub using the template.

Project title	Grouping of concrete columns in a multi storey building
Problem statement	Optimizing flat slab thickness is a crucial aspect in structural design as it
	directly affects the overall efficiency and cost-effectiveness of a
	building. By carefully analyzing the load distribution and considering
	factors such as span length, column spacing, and desired deflection
	limits, engineers can determine the most appropriate slab thickness. A
	thicker slab may be required for longer spans or heavier loads to
	ensure adequate strength and stiffness. However, excessive thickness
	can lead to unnecessary material usage and increased construction
	costs. Conversely, reducing the slab thickness too much may
	compromise structural integrity. Therefore, optimizing flat slab
	thickness involves finding a balance between structural requirements
	and economic considerations to achieve an optimal solution that meets
	both safety standards and cost-efficiency goals.
Project objectives	To group the columns in a 3D concrete model for a 10-storey building
	based on the columns axial capacities.
Deliverables	Submit your work on GitHub using the template.

Project title	Steel truss bridge optimization
Problem statement	Optimizing truss elements is a crucial step in structural engineering to
	ensure the efficiency and effectiveness of a truss system. The main goal
	of optimization is to minimize the weight or cost of the truss while
	maintaining its strength and stability. This can be achieved by carefully
	selecting the material properties, such as the type and grade of steel and
	optimizing the cross-sectional dimensions of the truss members.
	Additionally, optimizing the configuration and arrangement of truss
	elements can also enhance their performance. Advanced computational
	tools and algorithms are often employed to analyze various design
	alternatives and identify the most optimal solution. By optimizing truss
	elements, engineers can achieve a balance between structural integrity,
	cost-effectiveness, and sustainability in construction projects.
Project objectives	To design effectively a 2-lane (8m wide) 30m Pratt truss steel bridge
	subjected to uniform load of 1ton/m ² .
Deliverables	Submit your work on GitHub using the template.

Project title	ML application in concrete mix design
Problem statement	Machine learning has been increasingly used in the field of civil
	engineering, including the design of concrete mixtures. Concrete is a
	complex material with various ingredients and properties that interact
	with each other in a nonlinear way. Machine learning algorithms can
	analyze large data sets of concrete mixtures and their properties to
	identify patterns and relationships that can be used to optimize the mix
	design. By training models on data from past concrete
	mixtures, machine learning can predict the properties of new mixtures
	and suggest adjustments to achieve desired outcomes such as strength,
	durability, and workability. This can help engineers design more efficient
	and cost-effective concrete mixtures, and ultimately improve the quality
	and durability of concrete structures.
Project objectives	To develop a robust and reliable tool to predict the concrete mix
	compressive strength.
Deliverables	Submit your work on GitHub using the template.

Project title	ML application in optimizing concrete mix design
Problem statement	Machine learning has been increasingly used in the field of civil
	engineering, including the design of concrete mixtures. Concrete is a
	complex material with various ingredients and properties that interact
	with each other in a nonlinear way. Machine learning algorithms can
	analyze large data sets of concrete mixtures and their properties to
	identify patterns and relationships that can be used to optimize the mix
	design. By training models on data from past concrete
	mixtures, machine learning can predict the properties of new mixtures
	and suggest adjustments to achieve desired outcomes such as strength,
	durability, and workability. This can help engineers design more efficient
	and cost-effective concrete mixtures, and ultimately improve the quality
	and durability of concrete structures.
Project objectives	To develop a robust and reliable tool to design concrete mixture with
	target strength while minimizing its cost.
Deliverables	Submit your work on GitHub using the template.