CHAPTER 7

Polynomial Regression Models

Introduction

A second-order polynomial in one variable:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$$

A second-order polynomial in two variables:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2 + \varepsilon$$

One-variable form, again:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$$

- If $x_1 = x$ and $x_2 = x^2$, standard linear regression analysis applies.
- The expectation of y for a one-variable polynomial model is

$$E(y) = \beta_0 + \beta_1 x + \beta_2 x^2$$

One Predictor Variable – Second Order

Figure 7.2 Danger of extrapolation.

Cautions in fitting a polynomial in one-variable

- 1. Keep the order of the model as low as possible
 - This is especially true if you are using the model as a predictor
 - Transformations are often preferred over higher-order models
 - Parsimony try to fit the data using the simplest model possible
 - Remember: An n 1 order model can be fitted to a set of data with n points

Cautions in fitting a polynomial in one-variable

- Model Building Strategy
 - One approach is fitting the lowest order polynomial possible and build up (forward selection).
 - Second approach is fitting the highest order polynomial of interest, and removing terms (backward elimination).
 - Remember: The same result may not be obtained from the two approaches

- Cautions in fitting a polynomial in one-variable
 - 3. Extrapolation
 - Can be dangerous when the model is a higher-order polynomial
 - The nature of the true underlying relationship may change or be completely different than the system that produced the data used to fit the model

Cautions in fitting a polynomial in one-variable

4. III-conditioning

- Ill-conditioning refers to the fact that as the order of the model increases, the X'X matrix inversion will become inaccurate—error can be introduced into the parameter estimates
- As the order of the model ↑, multicollinearity ↑
- Centering the variables first, may remove some illconditioning but not all
- Narrow ranges on the x variables can result in significant ill-conditioning and multicollinearity problems.

Cautions in fitting a polynomial in one-variable

- 5. Hierarchy
 - Hierarchical model is one which, if it is of order n, then
 it contains all terms with orders of n and below:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_{n-1} x^{n-1} + \beta_n x^n \epsilon$$

- Two schools of thought: 1) Maintain hierarchy and 2)
 Maintaining hierarchy is not important.
- Suggestion: Fit the model with only significant terms and use knowledge and understanding of the process to determine if a hierarchical model is necessary

Centering

 Sometimes, centering the regressor variables can minimize or eliminate at least some of the illconditioning that may be present in a polynomial model

TABLE 7.1 Hardwood Concentration in Pulp and Tensile Strength of Kraft Paper, Example 7.1

Hardwood	Tensile Strength, (psi)		
Concentration, x _i (%)	y, (psi)		
1	6.3		
1.5	11.1		
2	20.0		
2 3 4 4.5 5	24.0		
4	26.1		
4.5	30.0		
5	33.8		
5.5	34.0		
6	38.1		
6.5	39.9		
7	42.0		
8	46.1		
9	53.1		
10	52.0		
11	52.5		
12	48.0		
13	42.8		
14	27.8		
15	21.9		

R code

- rm(list=ls())
- Paper <- read.csv("data-ex-7-1-(Hardwood).csv",h=T)
- plot(Paper\$HwdCon,Paper\$TsStr)
- # fit polynomial regression with order 2 note the function I()
- model1 <- Im(Paper\$TsStr ~ Paper\$HwdCon+ I(Paper\$HwdCon^2))
- summary(model1)
- library(car)
- vif(model1)
- cor(Paper\$HwdCon, Paper\$HwdCon^2)
- # plot data
- plot(Paper\$HwdCon,Paper\$TsStr)
- # plot the fitted values using dots
- points(Paper\$HwdCon,model1\$fitted.values,pch=20)
- # plot the fitted values using a line
- points(Paper\$HwdCon,model1\$fitted.values,type="l")

Tensile Strength (psi)

Consider the regression analysis provided below:

```
The regression equation is
y = -6.67 + 11.8 x - 0.635 x2
Predictor
                         SE Coef
                Coef
                                                          VIF
               -6.674
                         3.400
Constant
                                      -1.96
                                               0.067
               11.764
                         1.003
                                     11.73
                                               0.000
                                                         17.1
X
            -0.63455
                         0.06179
                                     -10.27
                                                         17.1
                                               0.000
\times 2
S = 4.420
          R-Sq = 90.9\% R-Sq(adj) = 89.7\%
Analysis of Variance
Source
                             SS
                                        MS
                                               79.43
                                     1552.1
Regression
                         3104.2
                                                        0.000
                         312.6
Residual Error
                                      19.5
                 16
                         3416.9
Total
                 18
```

 Note that the variance inflation factors indicate that multicollinearity may be a problem

	Hardwood Concentration, x _i (%)	Hardwood Concentration Squared, x_i^2 (%)
Hardwood Concentration, x _i (%)	100.00%	97.04%
Hardwood Concentration Squared, x _i ² (%)	97.04%	100.00%

• Center the data using the mean of the regressor variable:

$x_i - 7.2632$	$(x_i - 7.2632)^2$	y
-6.2632	39.2277	6.3
-5.7632	33.2145	11.1
-5.2632	27.7013	20.0
-4.2632	18.1749	24.0
-3.2632	10.6485	26.1
-2.7632	7.6353	30.0
-2.2632	5.1221	33.8
-1.7632	3.1089	34.0
-1.2632	1.5957	38.1
-0.7632	0.5825	39.9
-0.2632	0.0693	42.0
0.7368	0.5429	46.1
1.7368	3.0165	53.1
2.7368	7.4901	52.0
3.7368	13.9637	52.5
4.7368	22.4373	48.0
5.7368	32.9109	42.8
6.7368	45.3845	27.8
7.7368	59.8581	21.9

R code

- # center the observations
- Paper\$HwdCon_Centered=Paper\$HwdConmean(Paper\$HwdCon)
- # refit polynomial regression using centered observations
- model2 <- Im(Paper\$TsStr ~ Paper\$HwdCon_Centered+
 I(Paper\$HwdCon_Centered^2))
- summary(model2)
- library(car)
- # check VIF
- vif(model2)
- # check correlation
- cor(Paper\$HwdCon_Centered, Paper\$HwdCon_Centered^2)

Example 7.1(Centered)

Hardwood Hardwood Concentration, Concentration Squared, x_i² (%) X_i (%) Hardwood Concentration, x_i (%) 100.00% 29.74% Hardwood Concentration Squared, x_i^2 (%) 29.74% 100.00%

VIF

0.000

Example 7.1(Centered)

$$y = \beta_0 + \beta_1(x - 7.2632) + \beta_2(x - 7.2632)^2 + \varepsilon$$

The regression equation is y = 45.3 + 2.55 xcent - 0.635 x2cent

Predictor	Coef	SE Coef	T	P
Constant	45.295	1.483	30.55	0.000
xcent	2.5463	0.2538	10.03	0.000
x2cent	-0.63455	0.06179	-10.27	0.000

S = 4.420 R-Sq = 90.9% R-Sq(adj) = 89.7%

Analysis of Variance

Source	DF	SS	MS	F
Regression	2	3104.2	1552.1	79.43
Residual Error	16	312.6	19.5	
Total	18	3416.9		

R code

- # example 7.2
- Voltage <- read.csv("data-ex-7-2-(Voltage-Drop).csv",h=T)
- # visualize data
- plot(Voltage\$Time,Voltage\$VoltageDrop)
- # build polynomial regression
- model3=lm(Voltage\$VoltageDrop~Voltage\$Time+I(Voltage\$Time^2))
- # plot fitted values
- par(mfrow=c(1,2))
- plot(Voltage\$Time,Voltage\$VoltageDrop)
- points(Voltage\$Time,model3\$fitted.values,pch=20)
- points(Voltage\$Time,model3\$fitted.values,type="l")
- plot(Voltage\$Time,model3\$residuals)
- abline(h=0,col="grey")
- # build polynomial regression
- model3=Im(Voltage\$VoltageDrop~Voltage\$Time+I(Voltage\$Time^2)+I(Voltage\$Time^3))
- par(mfrow=c(1,2))
- plot(Voltage\$Time,Voltage\$VoltageDrop)
- points(Voltage\$Time,model3\$fitted.values,pch=20)
- points(Voltage\$Time,model3\$fitted.values,type="l")
- plot(Voltage\$Time,model3\$residuals)
- abline(h=0,col="grey")
- # build polynomial regression
- model3=lm(Voltage\$VoltageDrop~Voltage\$Time+I(Voltage\$Time^2)+I(Voltage\$Time^3)+I(Voltage\$Time^4))
- par(mfrow=c(1,2))
- plot(Voltage\$Time,Voltage\$VoltageDrop)
- points(Voltage\$Time,model3\$fitted.values,pch=20)
- points(Voltage\$Time,model3\$fitted.values,type="l")
- plot(Voltage\$Time,model3\$residuals)
- abline(h=0,col="grey")

Optional reading

Piecewise polynomial regression

Piecewise Polynomial Fitting (Splines)

- This is a technique that can be used if a particular function behaves differently for different ranges of x
- Generally, divide the range of x into "homogeneous" segments and fit an appropriate function in each section

Piecewise Polynomial Fitting (Splines)

Splines:

- Splines are piecewise polynomials of order k
- Splines have knots the points at which the segments are joined
- Too many knots can result in "overfitting" and will not necessarily provide more insight into the system.
- Usually, a cubic spline is sufficient polynomial of order 3

Piecewise Polynomial Fitting (Splines)

- Cubic Spline with continuous first and second derivatives
- There are h knots, t₁ < t₂ < ... < t_h. This cubic spline is given by:

$$E(y) = S(x) = \sum_{j=0}^{3} \beta_{0j} x^{j} + \sum_{i=1}^{h} \beta_{i} (x - t_{i})_{+}^{3}$$

with

$$(x-t_i)_+ = \begin{cases} x-t_i, & x > t_i \\ 0, & x \le t_i \end{cases}$$

Consider (x – t_i)₊ as an "indicator variable" – that is, "on" or "off"

R code

- # example 7.2
- Voltage <- read.csv("data-ex-7-2-(Voltage-Drop).csv",h=T)
- # visualize data
- plot(Voltage\$Time,Voltage\$VoltageDrop)
- # build polynomial regression
- model3=Im(Voltage\$VoltageDrop~Voltage\$Time+I(Voltage\$Time+2))
- # plot fitted values
- points(Voltage\$Time,model3\$fitted.values,pch=20)
- points(Voltage\$Time,model3\$fitted.values,type="l")
- # residual plot
- plot(model3\$fitted.values,model3\$residuals)
- abline(h=0)

The regression equation is $y = 5.27 + 1.49 \times - 0.0652 \times 2$

Predictor	Coef	SE Coef	T	P	VIF
Constant	5.2657	0.4807	10.95	0.000	
X	1.4872	0.1112	13.37	0.000	15.3
x 2	-0.065198	0.005375	-12.13	0.000	15.3

S = 1.076 R-Sq = 83.2% R-Sq(adj) = 82.4%

Analysis of Variance

Source	DF	SS	MS	F	Р
Regression	2	218.66	109.33	94.35	0.000
Residual Error	38	44.03	1.16		
Total	40	262.69			

Residuals Versus the Fitted Values

(response is y)

- A cubic spline is now investigated. Based on the plot of the original data and knowledge of the process, two knots are chosen.
- It appears that voltage behaves different between time 0 and 6.5 seconds than it does between 6.5 and 13 seconds.
- It appears to behave differently yet again after 13 seconds.
- Therefore, h = 2 knots are chosen to be $t_1 = 6.5$ and $t_2 = 13$.
- Deciding the number and locations of knots is difficult.
 At least a few data points in each interval. No more than one extreme value in each interval. Prior knowledge.

The cubic spline model is

$$y = \beta_{00} + \beta_{01}x + \beta_{02}x^2 + \beta_{03}x^3 + \beta_1(x - 6.5)_+^3 + \beta_2(x - 13)_+^3 + \varepsilon$$

R code

- library(splines)
- # quadratic term
- Voltage\$x2 <- Voltage\$Time^2
- # qubic term
- Voltage\$x3 <- Voltage\$Time^3
- # knot at 6.5
- Voltage\$x65 <- ifelse ((Voltage\$Time>6.5), (Voltage\$Time-6.5)^3, 0)
- # knot at 13
- Voltage\$x13 <- ifelse ((Voltage\$Time>13), (Voltage\$Time-13)^3, 0)
- # fit spline regression
- model4 <- Im(Voltage\$VoltageDrop ~ Voltage\$Time+Voltage\$x2+Voltage\$x3+Voltage\$x65+Voltage\$x13)
- summary(model4)
- # check the fit
- par(mfrow=c(1,2))
- plot(Voltage\$Time,Voltage\$VoltageDrop)
- points(Voltage\$Time,model4\$fitted.values,pch=20)
- points(Voltage\$Time,model4\$fitted.values,type="l")
- # residual plot
- plot(model4\$fitted.values,model4\$residuals)
- abline(h=0)

```
y = 8.47 - 1.45 x + 0.490 x2 - 0.0295 x3 + 0.0247 x65 + 0.0271 x13
```

Predictor	Coef	SE Coef	T	P
Constant	8.4657	0.2005	42.22	0.000
X	-1.4531	0.1816	-8.00	0.000
x2	0.48989	0.04302	11.39	0.000
x3	-0.029467	0.002848	-10.35	0.000
x65	0.024706	0.004039	6.12	0.000
x13	0.027112	0.003578	7.58	0.000

Figure 7.7 Plot of residuals e_i , versus fitted values \hat{y}_i for the cubic spline model.

Figure 7.8 Plot of residuals e_i , versus fitted values \hat{y}_i for the cubic polynomial model.