1 から 6 までの目がそれぞれ $\frac{1}{6}$ の確率で出るサイコロを 3 回振って出た目を順に n_1, n_2, n_3 とし, 次の 3 次方程式を考える.

$$x^3 - n_1 x + (-1)^{n_2} n_3 = 0$$

- 1. この方程式が相異なる 3 個の実数解をもつ確率を求めよ.
- 2. この方程式が自然数解をもつ確率を求めよ.

[解]表記の簡潔さのため

$$f(x) = x^3 - n_1 x + (-1)^{n_2} n_3$$

とおく. 方程式 f(x) = 0 について考える.

(1)

f(x) のグラフの概形を調べるため、一階微分を計算すると

$$f'(x) = 3x^2 - n_1$$

だから、 $n_1 > 0$ より f(x) の増減表は table 1 となる.

表 1: f(x) の増減表

x	$-\infty$		$-\sqrt{\frac{n_1}{3}}$		$\sqrt{\frac{n_1}{3}}$		∞
f'		+	0	_	0	+	
f	$(-\infty)$	7	極大	>	極小	7	(∞)

したがって、f(x) = 0 が 3 実数解を持つ条件は

$$f(\sqrt{n_1/3})f(-\sqrt{n_1/3}) < 0$$

$$\left(-\frac{2}{3}n_1\sqrt{\frac{n_1}{3}} + (-1)^{n_2}n_3\right)\left(\frac{2}{3}n_1\sqrt{\frac{n_1}{3}} + (-1)^{n_2}n_3\right) < 0$$

$$-\frac{2}{3}n_1\sqrt{\frac{n_1}{3}} < (-1)^{n_2}n_3 < \frac{2}{3}n_1\sqrt{\frac{n_1}{3}}$$

$$n_3 < \frac{2}{3}n_1\sqrt{\frac{n_1}{3}}$$

$$(1)$$

と表せる。ただし、最終行で $n_3>0$ を利用した。以下、eq. (1) を満たす整数 (n_1,n_2,n_3) を考える。まず、 n_2 については任意であり、 n_1 と n_3 のみ考えれば良い。表記の簡潔さのため

$$A = \frac{2}{3}n_1\sqrt{\frac{n_1}{3}}$$
$$B = (-1)^{n_2}n_3$$

とおくと、 $n_1=1,2,\cdots,6$ に対して値は以下のようになる.

表 2: Aの n1 による値の変化

n_1	1	2	3	4	5	6
A	$\frac{2}{9}\sqrt{3}$	$\frac{4}{9}\sqrt{6}$	2	$\frac{16}{9}\sqrt{3}$	$\frac{10}{9}\sqrt{15}$	$4\sqrt{2}$

これらの値は

$$\frac{2}{9}\sqrt{3} < 1 < \frac{4}{9}\sqrt{6} < 2 < \frac{16}{9}\sqrt{3} < 3 < \frac{10}{9}\sqrt{15} < 4 < 4\sqrt{2} < 6$$

という大小関係にあるから、 n_1 に対応して eq. (1) を満たす n_3 をリストアップすると table 3 のようになる.

表 3: eq. (1) を満たす n_1, n_3 の一覧

n_1	1	2	3	4	5	6
n_3	無し	1	1	$1 \sim 3$	$1 \sim 4$	$1 \sim 5$
n3 の数	0	1	1	3	4	5

したがって求める確率は

$$\frac{1}{6} \cdot \frac{1}{6} + \frac{1}{6} \cdot \frac{1}{6} + \frac{1}{6} \cdot \frac{3}{6} + \frac{1}{6} \cdot \frac{4}{6} + \frac{1}{6} \cdot \frac{5}{6} = \frac{7}{18}$$

である. …(答)

(2) 題意の自然数解を $k \in \mathbb{N}$ とおくと, f(k) = 0 ゆえ

$$k(k^2 - n_1) = (-1)^{n_2 + 1} n_3$$

だから、 $k \ \, |k^2-n_1|$ の積が n_3 であることが必要である。まずはこの必要条件を満たす (k,k^2-n_1) を n_3 に応じてリストアップする。k に対して, $n_1=1,2,\cdots,6$ より

$$|k^2 - n_1| \le |k^2 - 1|$$

 $|k^2 - n_1| \le |k^2 - 6|$

であるから、この上限によって一定の制限があることに注意すると、一覧は table 4 となる.

表 4: $k|k^2-n_1|=n_3$ を満たす (n_3,k,k^2-n_1) の組

n_3	1	2	3	4	5		6
$\begin{pmatrix} k \\ k^2 - n_1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ $\begin{pmatrix} 2 \\ \pm 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -4 \end{pmatrix}$ $\begin{pmatrix} 2 \\ \pm 2 \end{pmatrix}$		$\left(\frac{1}{2} \right)$	$\begin{pmatrix} 2 \\ 3 \end{pmatrix}$

これを満たす (k, n_1) を一覧化すると

n_3	1	2	3	4	5	6
(k, n_1)	(1, 2)	(1, 3)	(1,4)	(1,5)	(1,6)	(2,1)
		(2, 3)		(2,2)		
		(2, 5)		(2,6)		

である。それぞれの組に対して n_2 は 3 通り (偶数か奇数) が対応するので、 (n_1, n_2, n_3) の場合の数は

$$10 * 3 = 30$$

通りであり、求める確率は

$$\frac{30}{6^3} = \frac{5}{36}$$

である. …(答)

[解説]