FEUILLE 3: ACTIONS DE GROUPES ET SOUS-GROUPES

Exercice 1. Soit G un groupe agissant à gauche sur un ensemble X par l'application $G \times X \ni (g, x) \mapsto g \cdot x \in X$.

Démontrer que l'application $\delta: X \times G \to X$ définie, pour tout $(x,g) \in X \times G$ par

$$\delta(x, g) = g^{-1} \cdot x$$

est une action à droite de G sur X.

Exercice 2. (Conjugaison).

- 1. Montrer que l'application $(P, M) \mapsto PMP^{-1}$ de $GL_n(\mathbb{R}) \times M_n(\mathbb{R}) \to M_n(\mathbb{R})$ est une action de $GL_n(\mathbb{R})$ sur l'ensemble $M_n(\mathbb{R})$ des matrices de taille n. Préciser si elle est à gauche ou à droite.
- 2. Soit (G,*) un groupe. On note ad : $G \times G \to G$ l'application définie par $\mathrm{ad}(g,x) = g * x * g^{-1}$.
 - (a) Démontrer que ad est une action à gauche de G sur lui même (appelée action par conjugaison ou action adjointe).
 - (b) Que dire du stabilisateur de e_G et de l'orbite de e_G ?
 - (c) Démontrer que pour tout $h \in G$, on a que stab_h est le sous-ensemble de G des éléments qui commutent avec h. En déduire que G est abélien si et seulement si $\operatorname{stab}_h = G$ pour tout $h \in G$.
 - (d) Démontrer que pour tout $g \in G$, l'application $x \mapsto g * x * g^{-1}$ est un isomorphisme de groupes.

Exercice 3. Soit E un \mathbb{K} -espace vectoriel de dimension n et \mathcal{B} l'ensemble des bases de E. On considère l'application

$$\rho: \left\{ \begin{array}{ccc} GL(E) \times \mathcal{B} & \longrightarrow & \mathcal{B} \\ (f, \{x_1, \dots, x_n\} & \longmapsto & \{f(x_1), \dots, f(x_n)\} \end{array} \right.$$

- 1. Démontrer que ρ est une action à gauche du groupe GL(E) sur l'ensemble des bases. Est-ce une action à droite ?
- 2. Déterminer l'orbite et le stabilisateur d'une base B.

Exercice 4. Déterminer toutes les actions à gauche possibles de $\mathbb{Z}/2\mathbb{Z}$ sur l'ensemble $X = \{a, b, c\}$.

Exercice 5. On notera $e = \exp\left(\frac{i\pi}{3}\right)$.

1. Montrer que l'application $\mathbb{Z} \times \mathbb{C} \to \mathbb{C}$ donnée par $(n, z) \mapsto {}^n z := e^n \cdot z$ est une action du groupe \mathbb{Z} sur \mathbb{C} . Calculer le stabilisateur Stab_z de tout point z et son orbite.

2. On note $C_i(A)$ le ième vecteur colonne d'une matrice A. Déterminer si les applications $S_n \times M_n(\mathbb{R}) \to M_n(\mathbb{R})$ données par

$$(\sigma, A) \mapsto (A_{\sigma(1)}, \dots, A_{\sigma(n)}), \qquad (\sigma, A) \mapsto (A_{\sigma^{-1}(1)}, \dots, A_{\sigma^{-1}(n)})$$

sont des actions à gauche de S_n sur l'ensemble des matrices carrées de taille n. Si elles le sont déterminer les stabilisateurs et orbites de la matrice nulle, de l'identité et de la matrice

$$\left(\begin{array}{cccc} 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 0 & \cdots & 0 \end{array}\right).$$

Exercice 6. Soit X un ensemble et $f; X \to X$ une bijection.

- 1. Démontrer que l'application $\mathbb{Z}/3\mathbb{Z} \times X \to X$ donnée par $([i]_3, x) \mapsto f^i(x)$ définit une action si et seulement si $f = \mathrm{Id}$ ou $f^3 = \mathrm{Id}$.
- 2. Comment généraliser ce résultat à une action de $\mathbb{Z}/n\mathbb{Z}$ sur X via f?

Exercice 7. Soit G un groupe fini et $H \subset G$ un sous-ensemble.

- 1. Prouver que H est un sous-groupe de G si et seulement si $h_1 \cdot h_2 \in H$ pour tous $h_1, h_2 \in H$ (indication: utiliser le cardinal et la multiplication par h_1).
- 2. Donner un contre-exemple lorsque G n'est pas fini.

Exercice 8. Déterminer tous les sous-groupes de $\mathbb{Z}/17\mathbb{Z}$.

Exercice 9. 1. Trouver le groupe ayant le plus petit cardinal possible.

- 2. Montrer que tout groupe de cardinal 2 (resp. 3) est isomorphe à $\mathbb{Z}/2\mathbb{Z}$ (resp. $\mathbb{Z}/3\mathbb{Z}$). Comment généraliser cet exemple à un goupe de cardinal p avec p premier.
- 3. Montrer qu'à isomorphisme près, il n'y a que 2 groupes de cardinal 4.
- 4. Trouver un groupe non cyclique ayant le plus petit cardinal possible.
- 5. Est-il isomorphe à un sous-groupe de S_4 ?
- 6. Trouver un groupe non abélien ayant le plus petit cardinal possible.
- 7. Est-il isomorphe à un sous-groupe de S_2 ? De S_3 ? De S_4 ? De S_n pour n>4?