Basic Electrical Science Lab Course Code: EE152

Laboratory Manual

Name: Sadat Zubin Aftab Shah

Roll No: 20CSE1030

Section: B

Academic Session: April – August 2021

National Institute of Technology Goa

CERTIFICATE

This is to certify that Mr./ Ms	of Class <u>B.Tech</u>
1 st year (2 nd Sem), Division Sec A/B, bearing Roll. No	, has
satisfactorily completed the course experiments in	the Laboratory
Course Basic Electrical Science Lab (EE152) in the acade	emic year 2020-
2021 in the Institution of National Institute of Technolog	gy Goa.

Course Instructor

Table of Contents

SI. No.	Name of the Experiment	Pg. No.	Date of Experiment	Date of Submission	Marks/Expt. (10 M)
1	Verification of Ohms Law	04	20-05-2021	23-05-2021	
2	Verification of Kirchhoff's Laws – KVL and KCL	11	27-05-21	31-05-21	
3	Verification of Thevenin's and Norton's Theorem	04	03-06-21	17-06-21	
4	Measurement of AC System quantities – Average, RMS, Form Factor, Peak Factor, P, Q, pf				
5	Measurement of Self, Mutual and Coefficient of Coupling				
6	V-I Characteristics of P- N Junction and Zener Diode				
7	Half-wave Diode Rectifier				
8	Full-wave Diode Rectifier				
9	Transient analysis of RL, RC and RLC Circuits				
10	Digital Gate Circuits				

Experiment 3

Verification Of Network Theorems

1. Introduction:

This experiment will help us to understand various network theorem -Superposition, Thevenin and Nortan theorem and to verify through a Simulation platform, MATLAB/Simulink.

2. Objectives:

- a. Acquire good knowledge on the above-mentioned network theorem.
- b. Verification of the four theorems in MATLAB/Simulink Platform
- 3. <u>Simulink Blockset used:</u> Resistors, voltage source, ramp, AC source, current source, current measurement, voltage measurement, add, divide, display, scope, constant, powergui.

4. Theory:

a) Superposition Theorem:

Superposition theorem states that in any linear, active, bilateral network having more than one source, the response across any element is the sum of the responses obtained from each source considered separately and all other sources are replaced by their internal resistance. The superposition theorem is used to solve the network where two or more sources are present and connected.

- b) Thevenin's Theorem:
 - Thevenin's Theorem states that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single voltage source and series resistance connected to a load.
- c) Norton's Theorem:
 - Norton's Theorem states that any linear circuit containing several energy sources and resistances can be replaced by a single constant current generator in parallel with a Single Resistor.

5. Statement of Experiments:

This session consists of four parts. [V= 100 V, R_x = (10 × x) Ω , I = 50 A] Consider, R_5 as **Load Resistance**.

- a. Using the circuit diagram shown in Fig. 3.a, verify **Superposition Theorem** in Matlab/Simulink platform.
- b. Using the circuit diagram shown in Fig. 3.a, verify **Thevenin Theorem** in Matlab/Simulink platform.

Fig. 3.a

- c. Using the circuit diagram shown in Fig 3.a, verify Norton Theorem in Matlab/ Simulink platform.
- 6. **Procedure:** The procedures for the *four parts* are mentioned here.

a. Superposition Theorem

- i. Convert the circuit shown in Fig. 3.a into experimental circuit (which includes necessary measuring instruments).
- ii. Construct the experimental circuits in MATLAB/Simulink domain and simulate it.
- iii. Based on the simulation, fill up the Table-3.1 to verify superposition theorem.

b. Thevenin's Theorem

- i. Convert the circuit shown in Fig. 3.a into experimental circuit (necessary measuring instruments are to be incorporated in the circuit).
- ii. Construct the experimental circuits in MATLAB/Simulink domain. Here, the file has to be run two times: at first it has to run to find out the open circuit voltage across the load terminal and it has to run second time to find out Thevenin's resistance across the load terminal.
- iii. Based on the simulation, prepare an appropriate table and fill up it to verify thevenin's theorem.

c. Norton's Theorem

- i. Convert the circuit shown in Fig. 3.a into experimental circuit (necessary measuring instruments are to be incorporated in the circuit).
- ii. Construct the experimental circuits in MATLAB/Simulink domain. Here, the file has to be run to find out the short circuit voltage across the load terminal.
- iii. Based on the simulation, prepare an appropriate table and fill up it to verify norton's theorem.

Superposition Theorem:

Fig3a: Circuit connections in Simulink for Superposition theorem

Observation		ing Function	due to al	Load Voltage (volts) (V _L) due to all forcing Function		nge (volts) to V only			V _{LV} + V _{LI}	(volts)
No.	Applied Voltage (V) in	Applied Current (I) in	Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated
	volts	A								
1	100	50	948.72	948.7	51.28	51.28	897.44	897.4	948.72	948.68
2	100	100	1846.15	1846	51.28	51.28	1794.87	1795	1846.15	1846.28
3	50	100	1820.51	1821	25.64	25.64	1794.87	1795	1820.51	1820.64
4	50	50	923.08	923.1	25.64	25.64	897.44	897.4	923.08	923.04

Table3.1: Observation table for superposition theorem

> Thevenin's And Norton's Theorem:

Circuit Diagram:

Fig3b: Circuit connections in Simulink for Thevenin's Theorem And Norton's Theorem

Observation Table:

		ed Forcing nction	Voltage across Load R _L in main circuit (Volts)		V _{TH} (Volts)		I _N (Amperes)		R _{TH} =V _{TH} /I _N ohms		Voltage across Load R _L in Thevenin's equivalent		Voltage across Load R∟ in Norton's equivalent	
Obs No.	Applied Voltage V (Volts)	Applied current I (Amps)	Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated
1	100	50	948.7	948.7	1480	1480	52.86	52.86	28	28	948.7	948.7	948.7	948.7
2	50	50	923.1	923.1	1440	1440	51.43	51.43	28	28	923.1	923.1	923.1	923.1
3	50	100	1821	1821	2840	2840	101.4	101.4	28	28	1821	1821	1821	1821
4	150	200	3667	3667	5720	5720	204.3	204.3	28	28	3667	3667	3667	3667

Table 2.2: Observation table for Thevenin's theorem and Norton's theorem

Theoretical Calculations:

EE152

	Date Page
Jar observation 3 V=50V I=100A Val = 20(50)+700(100) \$V_{1h}= 5 (V+351) Val = 20(50)+700(100) \$V_{1h}= 5 (V+351) Val = 1821V = 5 (50+35(10) Val = 2840V	2N= 50 + 105 35
Ach = 28 PL for observation (5) V = 150V I = 200	n
VRL = 20(150) + 700(200) Vth = 5 (150+25(2)	[= 150 +200 35
RH = 200	15, 207.3A

Assignment:

1. Replace constant voltage source by variable voltage source (sinusoidal source with the same magnitude, ramp input with slope 1) in Fig. 3.a, do all the simulation again.

> Superposition Theorem

• Constant sources replaced with Sinusoidal sources

Fig3c: Circuit connections in Simulink for Superposition theorem using sinusoidal sources

Observation	Applied Force	ing Function	Load Voltag (V _L) due to a Funct	ill forcing	Load Volt (V _{LV}) due	age (volts) to V only		age (volts) to I only	V _{LV} +V _{LI} (volts)		
No.	Applied Voltage (V) in volts	Applied Current (I) in A	Theoretical	Simulated	Theoretical	Simulated	Theoretical Simulated		Theoretical	Simulated	
1	100sin(2π60t)	50sin(2π60t)	670.86	670.86	36.26	36.26	634.6	634.6	670.86	670.86	

Table3.3: Observation table for Superposition theorem using sinusoidal input

Fig3d: Circuit connections in Simulink for Superposition theorem using variable sources with ramp

Observation	1.1	Applied Forcing Function		ge(volts) all forcing (RMS)	Load Volta (V _{tv}) due to V	age (volts) V only (RMS)		tage (volts) I only (RMS)	V _{tv} +V _{tt} (volts) (RMS)		
No.	Applied Voltage (V) in volts Ramp slope:1	Applied Current (I) in A Ramp slope:1	Theoretical Simulated		Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated	
1	0 - 50	0 - 50	532.93	533	14.8	14.8	518.1	518.2	532.9	533	

Table 3.4: Observation table for Superposition theorem for variable sources using ramp

> Thevenin and Norton's Theorem

Fig3e: Circuit connections in Simulink for Thevenin and Norton's theorem using sinusoidal sources

	Applied Force	cing function	Voltage across Load R∟in main circuit (Volts)		V _{TH} (Volts)		I _N (Amperes)		R _{TH} =V _{TH} /I _N ohms		Voltage across Load R _L in Thevenin's equivalent		Voltage across Load R _L in Norton's equivalent	
Obs No.	Applied Voltage V (Volts)	Applied current I (Amps)	Theoretic al	Simulated	Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated
1	100sin(2π60t)	50sin(2π60t)	670.84	670.7	1046.51	1046.348	37.37	37.37	28	28	670.84	670.7	670.74	670.7

Table3.5: Observation table for Thevenin and Norton's theorem for variable sources using sinusoidal

Graphical Results:

Fig3f: Circuit connections in Simulink for Thevenin and Norton's theorem using variable sources with ramp

Graphical Results:

	Applied Forc	ing function	R _L in ma	cross Load ain circuit olts)	V _{TH} (V	olts)	I _N (Amp	oeres)	R _{TH} =V _{TH} /	I _N ohms	Voltage across Load R _L in Thevenin's equivalent		Voltage ac R _L in No equiv	orton's
Obs No.	Applied Voltage V (Volts) Ramp slope: 1	Applied current I (Amps) Ramp slope: 1	Theoretic al	Simulated	Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated
1	50	50	923.08	923.1	1440	1440	51.43	51.43	28	28	923.08	930.1	930.08	930.1

Table3.5: Observation table for Thevenin and Norton's theorem for variable sources with ram

Graphical Results:

2. Using circuit shown in Fig. 3.b, do the experiments again. Consider, the load resistance mentioned in red colour.

Fig3g: Circuit connections in Simulink for Superposition theorem for ckt 3b

Observation		ing Function	Load Volta (V _L) due to a Funct	ll forcing	Load Volt (V _{LV}) due	age (volts) to V only	Load Voltage (volts) (V_{II}) due to I only		$V_{LV}+V_{L}$	(volts)
No.	Applied Voltage (V) in volts	Applied Current (I) in A	Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated
1	1	3	-21 -21		-3	-3	-18	-18	-21	-21
2	3	3	-27	-27	-9	-9	-18	-18	-27	-27
3	3	1	-15	-15	-9	-9	-6	-6	-15	-15
4	2	5	-36	-36	-6	-6	-30	-30	-36	-36

Table3.6: Observation table for Superposition theorem for ckt 3b

Fig3h: Circuit connections in Simulink for Thevenin and Norton theorem for ckt 3b

EE152

D 45.0	Licetifea	. Science i	_00				22132								
	Applied Ford	cing function	R _L in ma	icross Load ain circuit olts)	V _{TH} (V	'olts)	I _N (Amp	peres)	peres) R _{TH} =V _{TH} /I		Voltage across Load R _L in Thevenin's equivalent		Voltage ac R _L in No equiv	orton's	
Obs No.	Applied Voltage V (Volts)	Applied current I (Amps)	Theoretic al	Simulated	Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated	Theoretical	Simulated	
1	1	3	-21	-21	7	7	-1.75	-1.75	-4	-4	-21	-21	-21	-21	

Table 3.7: Observation table for Thevenin and Norton theorem for ckt 3b

Basic Electrical Science Lab
3-911+61+3=18
3-961 +211 = 12-
-811
-2i1 = 3
î, 2-1.5 A
Vx = 11+3
3
Vx = 1.5
3
Vx = 0.5V
* P
5 = 1+ hi
4
= 1+ 4 (-1.5)
I = 1-6
I = 1-6
I = -1.25 A
2N = 9+3-2Vn
=-1.25+3-2(0.5)
= -1.25 + 3 - 1
= 2-1.25
2N =- 1.75 A
310.00
The second secon