1. 片上网络(Network on Chip)简介

SPARC T5(Oracle) 16核Crossbar互连NoC

Cell(IBM) 9核Ring互连NoC

SCC(Intel) 24核Mesh互连NoC

1. 片上网络(Network on Chip)简介

1. 片上网络(Network on Chip)简介

组成部分:

- IP core
 - 计算,发送和接收数据包
- Router(路由器)
 - 存储和转发数据包
- NI(网络接口)
 - IP core与Router的数据交换

上图为典型的Mesh互连NoC中的路由器结构,包含5个端口,端口之间可以互相发送数据。硬件包含端口的缓冲区、控制逻辑和中间的交换开关

注1:本设计中将把IP core替换为traffic generator,

只负责发送和接收数据包,不负责计算

注2:本设计中略去了网络接口

2. 路由器的流水线结构

3. 路由器功能简介(以2x2Mesh为例)

存储-转发模型

■路由器的缓冲区

3. 路由器功能简介(以2x2Mesh为例)

缓冲区的实现方法-FIF0

3. 路由器功能简介(以2x2Mesh为例)

路由(Routing)

3. 路由器功能简介(以2x2Mesh为例)

先Y后X路由(路径2)的一种实现方法

步骤1

路由器地址 00

数据包目的地址 11

00≠11, 数据包目前处 在目的地址的不同行不 同列,向Y方向发送

数据包到达10路由器

步骤2

路由器地址 10

数据包目的地址 11

10≠11,数据包目前处 在目的地址的同行不同 列,向X方向发送

数据包到达11路由器

步骤3

路由器地址 11

数据包目的地址 1-

11=11,数据包目前处在目的地址的同行同列,向LOCAL方向发送

数据包到达目的地址

3. 路由器功能简介(以2x2Mesh为例)

开关分配(Switch Allocation)

缓冲区	转发端口	传发端口 仲裁结果	
X	Y	成功	
Y	LOCAL	成功	
LOCAL	X	成功	

无转发端口冲突

缓冲区	转发端口	仲裁结果
X	LOCAL	成功
Y	LOCAL	失败
LOCAL	X	成功

转发端口冲突

3. 路由器功能简介(以2x2Mesh为例)

基于轮询的开关分配:避免数据饿死情况

每当一个端口的请求得到相应,下个端口的优先级变高

3. 路由器功能简介(以2x2Mesh为例)

流量控制(Flow Control)

如果不考虑下级缓冲区的占用情况,会造成数据包丢失

4. 课程设计目标

面向众核处理器的需求,设计满足功能需求的路由器。然后基于所给出的PE模块(提供RTL代码),完成2x2 mesh结构的NoC系统。

- · router的流水级数不限;
- router各个部件的设计和实现推荐
 - ➤ 缓冲区(同步FIFO);
 - ▶ 路由(先X后Y路由);
 - ▶ 开关分配(轮询);
 - ▶ 开关分配失败解决(流水线暂停);
 - ▶ 流量控制(流水线暂停);

5. 具体内容

课程设计目标具体包含以下3个部分的设计内容:

路由器部分:

- ◆架构设计
- ◆RTL代码设计
- ◆逻辑仿真
- ◆逻辑综合
- ◆时序分析
- ◆物理设计

TG部分:

- ◆逻辑仿真
- ◆逻辑综合
- ◆时序分析
- ◆物理设计

NoC:

- ◆代码集成
- ◆逻辑仿真
- ◆物理设计

6. 评价指标

- ◆ 路由器的评价指标:
 - > 路由器的最高频率
 - > 路由器单位面积、单位频率的功耗
- ◆ NoC的评价指标:
 - ▶ NoC的吞吐率
 - > NoC的平均数据包传输延时
- ◆ 芯片设计工艺:
 - **▶ 55nm** 工艺

7. 详细设计要求-router的端口定义

7. 详细设计要求-rounter的端口说明

端口	说明	
rst_n	复位,低电平有效	
clk	时钟信号	
LOCAL/X/Y_DATA_IN[39:0]	来自TG/X方向/Y方向的40bit数据包	
LOCAL/X/Y_VALID_IN[39:0]	来自TG/X方向/Y方向的数据包有效信号	
X/Y_FULL_IN[39:0]	来自X方向/Y方向的缓冲区满信号	
LOCAL/X/Y_DATA_OUT[39:0]	送给TG/X方向/Y方向的40bit数据包	
LOCAL/X/Y_VALID_OUT[39:0]	送给TG/X方向/Y方向的数据包有效信号	
LOCAL/X/Y_FULL_IN[39:0]	送给TG/X方向/Y方向的缓冲区满信号	

7. 详细设计要求-数据包的格式

4	4 bits	(2/2)	8 bits	26 bits	2 bits
	Src	Dst	Timestamp	Data	Туре

Type 01: Regular packet
00: Retransmission request
11: Retransfer packet

注1. 当Type域为01或11时,Data域为全0

注2. Timestamp域表示数据包产生时的时钟周期数

,用以计算数据包延时

7. 详细设计要求-测试模式

标准测试用例(Traffic Pattern)

