Chapter 1: Operational Semantics

Bohua Zhan

Institute of Software, Chinese Academy of Sciences

December 2023

Reading

- Concrete Semantics (Nipkow & Klein), Chapter 7
- Introduction to Formal Semantics (Zhou & Zhan), Chapter 1

Why study semantics

- To prove correctness of a program, we first need to rigorously define what a program does.
- In particular, the rules of Hoare logic that we will study later can be justified based on clearly defined operational or denotational semantics.

A simple programming language: IMP

$$com = \mathbf{skip}$$
 (skip)
 $| var := aexp$ (assign)
 $| com; com$ (seq)
 $| \mathbf{if} \ bexp \ \mathbf{then} \ com \ \mathbf{else} \ com$ (if)
 $| \mathbf{while} \ bexp \ \mathbf{do} \ com$ (while)

- var: name of a variable
- aexp: arithmetic expression
- bexp: boolean expression

Example of a program

In the following, define

$$P$$
 = while $a > 0$ do
 $c := c + b$;
 $a := a - 1$

Example of a program

In the following, define

$$P$$
 = while $a > 0$ do
 $c := c + b$;
 $a := a - 1$

Abstract syntax tree for P:

Semantics: what does the program P mean?

Semantics: what does the program P mean?

P represents a transformation on the state.

Semantics: what does the program P mean?

P represents a transformation on the state.

State: a function from variables to values (e.g. integers):

 $var \rightarrow int.$

Semantics: what does the program P mean?

P represents a transformation on the state.

State: a function from variables to values (e.g. integers):

 $var \rightarrow int.$

We assume the state is *finite*: it assigns values to only a finite number of variables.

Big-step operational semantics

• Given program c and states s, t,

$$(c,s) \Rightarrow t$$

means c can transform state s into state t.

Big-step operational semantics

• Given program c and states s, t,

$$(c,s) \Rightarrow t$$

means c can transform state s into state t.

 Big-step operational semantics is specified by a set of rules for deriving statements of the above form.

Big-step operational semantics

• Given program c and states s, t,

$$(c,s) \Rightarrow t$$

means c can transform state s into state t.

- Big-step operational semantics is specified by a set of rules for deriving statements of the above form.
- In the following, let $[e]_s$ represent the evaluation of an arithmetic or boolean expression e on state s.

Rules for skip, assign and seq

Rule for skip:

$$\frac{}{(\mathbf{skip},s)\Rightarrow s}$$
 skip

• Rule for assign:

$$(\mathsf{v} := \mathsf{e}, s) \Rightarrow s(\mathsf{v} := \llbracket \mathsf{e} \rrbracket_s)$$
 assign

• Rule for seq:

$$rac{(c_1,s)\Rightarrow s'\ (c_2,s')\Rightarrow s''}{(c_1;c_2,s)\Rightarrow s''}$$
seq

Rules for if

$$box{ \llbracket b
bracket_s = ext{true } (c_1,s) \Rightarrow t}{ (ext{if } b ext{ then } c_1 ext{ else } c_2, \ s) \Rightarrow t} ext{ifTrue}$$

$$\frac{\llbracket b \rrbracket_s = \mathsf{false} \ (c_2, s) \Rightarrow t}{(\mathbf{if} \ b \ \mathbf{then} \ c_1 \ \mathbf{else} \ c_2, \ s) \Rightarrow t} \mathsf{ifFalse}$$

Rules for while

$$\frac{[\![b]\!]_s = \mathsf{false}}{(\mathsf{while}\ b\ \mathsf{do}\ c,\ s) \Rightarrow s} \, \mathsf{whileFalse}$$

$$\frac{\llbracket b \rrbracket_s = \mathsf{true} \ (c,s) \Rightarrow s' \ (\mathbf{while} \ b \ \mathbf{do} \ c, \ s') \Rightarrow s''}{(\mathbf{while} \ b \ \mathbf{do} \ c, \ s) \Rightarrow s''} \mathsf{while} \mathsf{True}$$

Operational semantics: example

Example: With

$$P$$
 = while $a > 0$ do
 $c := c + b$;
 $a := a - 1$

show $(P, s) \Rightarrow t$ where

$$s = (a := 2, b := 3, c := 0)$$

and $t = (a := 0, b := 3, c := 6)$.

First time through the loop

Two assignments:

Combining:

$$\begin{aligned} &(c := c + b, (a := 2, b := 3, c := 0)) \Rightarrow (a := 2, b := 3, c := 3) \\ &(a := a - 1, (a := 2, b := 3, c := 3)) \Rightarrow (a := 1, b := 3, c := 3) \\ \hline &(c := c + b; a := a - 1, (a := 2, b := 3, c := 0)) \Rightarrow (a := 1, b := 3, c := 3) \end{aligned}$$

Second time through the loop

• Two assignments:

$$\frac{(c := c + b, (a := 1, b := 3, c := 3)) \Rightarrow (a := 1, b := 3, c := 6)}{(a := a - 1, (a := 1, b := 3, c := 6)) \Rightarrow (a := 0, b := 3, c := 6)}$$
 assign

Combining:

Dealing with while

Let D stand for c := c + b; a := a - 1

$$\frac{[\![\![a > 0]\!]\!]_s = \mathsf{false}}{(\mathbf{while} \ a > 0 \ \mathbf{do} \ D, (\![\![a := 0, b := 3, c := 6]\!])} \ \mathsf{whileFalse}$$

$$\begin{split} & [\![a > 0]\!]_s = \mathsf{true} \\ & (D, (\![a := 2, b := 3, c := 0]\!)) \Rightarrow (\![a := 1, b := 3, c := 3]\!) \\ & \underbrace{(\mathsf{while} \ a > 0 \ \mathsf{do} \ D, (\![a := 1, b := 3, c := 3]\!)) \Rightarrow (\![a := 0, b := 3, c := 6]\!)}_{(\mathsf{while} \ a > 0 \ \mathsf{do} \ D, (\![a := 2, b := 3, c := 0]\!)) \Rightarrow (\![a := 0, b := 3, c := 6]\!)}_{\mathsf{while} \ \mathsf{True}} \end{split}$$
 while True

Theoretical properties

- Termination
- Determinism
- Equivalence of commands

Termination

Using big-step operational semantics for IMP:

定义

A program c terminates on state s if there exists t such that $(c,s) \Rightarrow t$.

Note: in the IMP language there is no *failure*. If there is, we would need to somehow distinguish it from non-termination.

Determinism

Intuitively: a language is deterministic if any program starting at any state has at most one execution path.

Formal definition using big-step operational semantics:

定义

A language is deterministic if for any program c and state s, we have $(c,s) \Rightarrow t_1$ and $(c,s) \Rightarrow t_2$ implies $t_1 = t_2$.

Note: here we are ignoring possibility of non-termination.

Equivalence of commands

Intuitively: two commands are equivalent if their behaviors are the same.

Formal definition using big-step operational semantics:

定义

$$c \sim c'$$
 if $\forall s \ t. \ (c,s) \Rightarrow t \longleftrightarrow (c',s) \Rightarrow t$.

Note: again, we ignore the possibility of non-termination.

Cannot get any information about intermediate states

Cannot get any information about intermediate states

... as a result ...

Cannot get any information about intermediate states

... as a result ...

• If P is non-terminating, cannot get any information about P at all. In particular, cannot distinguish non-termination and failure.

Cannot get any information about intermediate states

... as a result ...

- If *P* is non-terminating, cannot get any information about *P* at all. In particular, cannot distinguish non-termination and failure.
- Unable to extend to concurrent execution, which involves interleaved execution of multiple threads.

Small-step operational semantics

• Big-step operational semantics (also called *natural semantics*) has the advantage of being simple, but as we have seen also has problems.

Small-step operational semantics

- Big-step operational semantics (also called *natural semantics*) has the advantage of being simple, but as we have seen also has problems.
- Next, we introduce small-step operational semantics (also called structural operational semantics), which addresses these problems.

Small-step operational semantics

- Big-step operational semantics (also called *natural semantics*) has the advantage of being simple, but as we have seen also has problems.
- Next, we introduce small-step operational semantics (also called structural operational semantics), which addresses these problems.
- Given programs c, c' and states s, t,

$$(c,s) \rightarrow (c',t)$$

means execution of c on state s for one step can result in state t, with c' being the remainder of the program to be executed.

Rules for skip and assign

- There is *no* rule for **skip**, indicating that if the program is **skip**, then there is no more step to be taken.
- Rule for assign:

$$(v := e, s) o (\mathbf{skip}, s(v := \llbracket e \rrbracket_s))$$
 assign

If the program is an assignment, the next step performs the assignment, and there is nothing remaining to execute.

Rules for seq

$$rac{(c_1,s) o (c_1',s')}{(c_1;c_2,s) o (c_1';c_2,s')}$$
seq1

To execute a sequence c_1 ; c_2 , first execute c_1 (rule seq1). After c_1 has finished (becomes **skip**), start executing c_2 (rule seq2).

Rules for if

$$\frac{[\![b]\!]_s = \mathsf{true}}{(\mathbf{if}\; b\; \mathbf{then}\; c_1\; \mathbf{else}\; c_2,\; s) \to (c_1,s)}\, \mathsf{ifTrue}$$

$$\frac{\llbracket b \rrbracket_s = \mathsf{false}}{(\mathbf{if} \ b \ \mathbf{then} \ c_1 \ \mathbf{else} \ c_2, \ s) \to (c_2, s)} \, \mathsf{ifFalse}$$

Rule for while

(while $b \text{ do } c, s) \rightarrow (\text{if } b \text{ then } (c; \text{while } b \text{ do } c) \text{ else skip}, s)$

Executing **while** for one step means unfolding the loop.

Execution in small-step semantics

定义

Define \rightarrow^* to be the *reflexive transitive closure* of \rightarrow .

Intuitively:

- $(c,s) \rightarrow^* (c',s')$ means executing c on state s for some number of (including zero) steps results in a state s', with c' remaining to be executed.
- $(c,s) \rightarrow^* (\mathbf{skip},s')$ means executing c on state s terminates in a state s'.

Example of execution

Let
$$D$$
 stand for $c := c + b$; $a := a - 1$

$$(\text{while } a > 0 \text{ do } D, (a := 2, b := 3, c := 0))$$

$$\rightarrow (\text{if } a > 0 \text{ then } (D; \text{while } a > 0 \text{ do } D) \text{ else skip, } (a := 2, b := 3, c := 0))$$

$$\rightarrow (D; \text{while } a > 0 \text{ do } D, (a := 2, b := 3, c := 0))$$

$$\rightarrow (\text{skip; } a := a - 1; \text{while } a > 0 \text{ do } D, (a := 2, b := 3, c := 3))$$

$$\rightarrow (a := a - 1; \text{while } a > 0 \text{ do } D, (a := 2, b := 3, c := 3))$$

$$\rightarrow (\text{skip; while } a > 0 \text{ do } D, (a := 1, b := 3, c := 3))$$

$$\rightarrow (\text{while } a > 0 \text{ do } D, (a := 1, b := 3, c := 3))$$

Example of execution

Let
$$D$$
 stand for $c := c + b$; $a := a - 1$
(while $a > 0$ do D , $(a := 2, b := 3, c := 0)$)
 \rightarrow (if $a > 0$ then $(D$; while $a > 0$ do D) else skip, $(a := 2, b := 3, c := 0)$)
 \rightarrow $(D$; while $a > 0$ do D , $(a := 2, b := 3, c := 0)$)
 \rightarrow (skip; $a := a - 1$; while $a > 0$ do D , $(a := 2, b := 3, c := 3)$)
 \rightarrow (skip; while $a > 0$ do D , $(a := 1, b := 3, c := 3)$)
 \rightarrow (while $a > 0$ do $a := 1, b := 3, c := 3$)

Exercise: justify each of the above steps.

Example of execution, continued

. . .

```
→ (while a > 0 do D, (a := 1, b := 3, c := 3))

→ (if a > 0 then (D; while a > 0 do D) else skip, (a := 1, b := 3, c := 3))

→ (D; while a > 0 do D, (a := 1, b := 3, c := 3))

→ (skip; a := a - 1; while a > 0 do D, (a := 1, b := 3, c := 6))

→ (a := a - 1; while a > 0 do D, (a := 1, b := 3, c := 6))

→ (skip; while a > 0 do D, (a := 0, b := 3, c := 6))

→ (while a > 0 do D, (a := 0, b := 3, c := 6))

→ (if a > 0 then (D; while a > 0 do D) else skip, (a := 0, b := 3, c := 6))

→ (skip, (a := 0, b := 3, c := 6))
```

Example of execution, continued

... \rightarrow (while a > 0 do D, (a := 1, b := 3, c := 3)) \rightarrow (if a > 0 then (D; while a > 0 do D) else skip, (a := 1, b := 3, c := 3)) \rightarrow (D; while a > 0 do D, (a := 1, b := 3, c := 3)) \rightarrow (skip; a := a - 1; while a > 0 do D, (a := 1, b := 3, c := 6)) \rightarrow (a := a - 1; while a > 0 do D, (a := 1, b := 3, c := 6)) \rightarrow (skip; while a > 0 do D, (a := 0, b := 3, c := 6)) \rightarrow (while a > 0 do D, (a := 0, b := 3, c := 6)) \rightarrow (if a > 0 then (D; while a > 0 do D) else skip, (a := 0, b := 3, c := 6)) \rightarrow (skip, (a := 0, b := 3, c := 6))

Hence:

$$(\textbf{while } \textbf{\textit{a}} > 0 \textbf{ do } \textbf{\textit{D}}, (\textbf{\textit{a}} := 2, \textbf{\textit{b}} := 3, \textbf{\textit{c}} := 0)) \rightarrow^* (\textbf{skip}, (\textbf{\textit{a}} := 0, \textbf{\textit{b}} := 3, \textbf{\textit{c}} := 6))$$

Termination

A program c possibly terminates on state s if there exists t such that

$$(c,s) \rightarrow^* (\mathbf{skip}, t)$$

(that is, there exists a finite path of \rightarrow from (c, s) to (\mathbf{skip}, t)).

- A program c is *possibly* non-terminating on state s if there exists an infinite path of \rightarrow starting from (c, s).
- A program c always terminates on state s if there does not exist an infinite path of \rightarrow starting from (c,s).
- A program c stops abnormally if neither of the above is true. That is, there is a finite path of \rightarrow from (c,s) to (c',t), where $c' \neq \mathbf{skip}$ but it is impossible to continue from (c',t).

Determinism

定义

A language is deterministic if for any program c and state s, we have $(c,s) \to (c_1,t_1)$ and $(c,s) \to (c_2,t_2)$ implies $c_1 = c_2$ and $t_1 = t_2$.

Note: this corresponds to our intuitive concept of deterministic execution. It also takes into account the possibility of non-termination.

Equivalence of big- and small-step semantics

定理 (from big to small)

 $(c,s) \Rightarrow t \text{ implies } (c,s) \rightarrow^* (\mathbf{skip},t).$

定理 (from small to big)

 $(c,s) \rightarrow^* (\mathbf{skip},t) \text{ implies } (c,s) \Rightarrow t.$

Proofs by induction

How to prove theorems in the theory of operational semantics?

Proofs by induction

How to prove theorems in the theory of operational semantics?

• Induction on structure of the program: when proving a property about all programs, assume the property holds on sub-programs (in the sense of abstract syntax tree).

Proofs by induction

How to prove theorems in the theory of operational semantics?

- Induction on structure of the program: when proving a property about all programs, assume the property holds on sub-programs (in the sense of abstract syntax tree).
- Induction on proof tree: when proving a consequence from an assertion of an inductively defined predicate, induct on how the assertion is obtained.

Example of proof

We aim to prove the following theorem:

定理

 $(c,s) \Rightarrow t \text{ implies } (c,s) \rightarrow^* (\mathbf{skip},t).$

Example of proof

We aim to prove the following theorem:

定理

$$(c,s) \Rightarrow t \text{ implies } (c,s) \rightarrow^* (\mathbf{skip},t).$$

For this, we need a lemma about small-step semantics:

引理

$$(c_1, s_1) \to^* (c_2, s_2)$$
 implies $(c_1; c', s_1) \to^* (c_2; c', s_2)$.

Example of proof

We aim to prove the following theorem:

定理

$$(c,s) \Rightarrow t \text{ implies } (c,s) \rightarrow^* (\mathbf{skip},t).$$

For this, we need a lemma about small-step semantics:

引理

$$(c_1, s_1) \rightarrow^* (c_2, s_2)$$
 implies $(c_1; c', s_1) \rightarrow^* (c_2; c', s_2)$.

Recall the definition of reflexive transitive closure...

Proof of lemma

$$\frac{}{(c,s) \rightarrow^* (c,s)} \qquad \frac{(c_1,s_1) \rightarrow (c_3,s_3) \quad (c_3,s_3) \rightarrow^* (c_2,s_2)}{(c_1,s_1) \rightarrow^* (c_2,s_2)}$$

Proof (of lemma):

- Base case: we have $(c,s) \to^* (c,s)$ and need to show $(c;c',s) \to^* (c;c',s)$. This follows from reflexivity of the closure.
- Inductive step: we have $(c_1, s_1) \rightarrow (c_3, s_3)$ and $(c_3, s_3) \rightarrow^* (c_2, s_2)$, and wish to show $(c_1; c', s_1) \rightarrow^* (c_2; c', s_2)$.
 - By rule seq1 of small step semantics, we have $(c_1; c', s_1) \rightarrow^* (c_3; c', s_3)$.
 - By inductive hypothesis, we have $(c_3; c', s_3) \rightarrow^* (c_2; c', s_2)$.
 - By the transitivity of the closure, we have $(c_1; c', s_1) \rightarrow^* (c_2; c', s_2)$, as desired.

Proof of theorem

Proof (of theorem): induct on proof of $(c, s) \Rightarrow t$, divide into cases by the last rule used.

• skip: then $c = \mathbf{skip}$ and s = t, we wish to show

$$(\mathbf{skip}, s) \to^* (\mathbf{skip}, s).$$

This follows from reflexivity.

Proof of theorem

Proof (of theorem): induct on proof of $(c, s) \Rightarrow t$, divide into cases by the last rule used.

• skip: then $c = \mathbf{skip}$ and s = t, we wish to show

$$(\mathbf{skip}, s) \to^* (\mathbf{skip}, s).$$

This follows from reflexivity.

ullet assign: then c=(v:=e) and $t=s(v:=[\![e]\!]_s)$, we wish to show

$$(v := e, s) \rightarrow^* (\mathbf{skip}, s(v := [e]_s)).$$

This follows from rule assign for small-step semantics.

• seq: then $c=c_1; c_2$, and there is some state s' such that $(c_1,s)\Rightarrow s'$ and $(c_2,s')\Rightarrow t$. By inductive hypothesis, we have $(c_1,s)\to^*(\mathbf{skip},s')$ and $(c_2,s')\to^*(\mathbf{skip},t)$. By the previous lemma, we have $(c_1;c_2,s)\to^*(\mathbf{skip};c_2,s')$. Combining these with rule seq2, we get $(c_1;c_2,s)\to^*(\mathbf{skip},t)$.

- seq: then $c=c_1;c_2$, and there is some state s' such that $(c_1,s)\Rightarrow s'$ and $(c_2,s')\Rightarrow t$. By inductive hypothesis, we have $(c_1,s)\to^*(\mathbf{skip},s')$ and $(c_2,s')\to^*(\mathbf{skip},t)$. By the previous lemma, we have $(c_1;c_2,s)\to^*(\mathbf{skip};c_2,s')$. Combining these with rule seq2, we get $(c_1;c_2,s)\to^*(\mathbf{skip},t)$.
- ifTrue: then c is of the form if b then c_1 else c_2 , $[\![b]\!]_s =$ true, and $(c_1,s) \Rightarrow t$. By inductive hypothesis, we get $(c_1,s) \rightarrow^* (\mathbf{skip},t)$, Combine this with rule ifTrue for small-step semantics, we get $(c,s) \rightarrow^* (\mathbf{skip},t)$ as desired.
- ifFalse: similar to ifTrue case.

• whileFalse: then c is of the form while b do c', $[\![b]\!]_s =$ false, and s = t. By rule while followed by ifFalse, we get $(c, s) \to^* (\mathbf{skip}, t)$, as desired.

- whileFalse: then c is of the form while b do c', $[\![b]\!]_s =$ false, and s = t. By rule while followed by ifFalse, we get $(c, s) \to^* (\mathbf{skip}, t)$, as desired.
- whileTrue: then c is of the form while b do c', $[\![b]\!]_s =$ true, $(c',s)\Rightarrow s'$ and $(c,s')\Rightarrow t$. By the inductive hypothesis, we get $(c',s)\rightarrow^*(\mathbf{skip},s')$ and $(c,s')\rightarrow^*(\mathbf{skip},t)$. By the previous lemma, we get $(c';c,s)\rightarrow^*(\mathbf{skip};c,s')$. Combining these with while, ifTrue and seq2, we get $(c,s)\rightarrow^*(\mathbf{skip};t)$, as desired.

What have we learned?

 We proved (one direction of) the equivalence between two definitions of semantics.

What have we learned?

- We proved (one direction of) the equivalence between two definitions of semantics.
- This is possible only because both semantics are defined in a precise way (using a logical language).

What have we learned?

- We proved (one direction of) the equivalence between two definitions of semantics.
- This is possible only because both semantics are defined in a precise way (using a logical language).
- The proofs are tedious and error-prone. An interactive theorem prover will help a lot in checking such proofs.

Extensions

- for loops, do ... while ... loops.
- Jumps (gotos).
- Local variables (scopes).
- Procedures (pushing and popping stack).
- Exceptions (throw and catch).
- Data types, structs, pointers (aliasing), arrays.
- Objects, classes, methods (inheritance and polymorphism).

Extensions

- for loops, do ... while ... loops.
- Jumps (gotos).
- Local variables (scopes).
- Procedures (pushing and popping stack).
- Exceptions (throw and catch).
- Data types, structs, pointers (aliasing), arrays.
- Objects, classes, methods (inheritance and polymorphism).

```
non-determinism, concurrency, randomization, functional programming (closures), . . .
```