Linear Algebra MATH 2318 (Fall 2022)

1. Consider the following linear system

- a) Write the system as a matrix equation $A\vec{x} = \vec{b}$.
- b) Compute A^{-1} using any method from class.
- c) Use A^{-1} to solve the system.
- 2. Compute the determinant of $A = \begin{bmatrix} 3 & -1 & 2 & 1 \\ 4 & 3 & 0 & -2 \\ -1 & 0 & 2 & 3 \\ 6 & 2 & 5 & 2 \end{bmatrix}$ using any method from class.
- 3. Let A, B and C be $n \times n$ matrices such that $\det A = 2$, $\det B = -1$ and $\det C = 3$. Find $\det \left(2(A^{-1})^2B^TC^3\right)$.
- 4. Let $A = \begin{bmatrix} a+1 & 0 \\ 1 & -1 \end{bmatrix}$. Find all the values of a so that the matrix $A^2 + 3A$ is singular.
- 5. Let $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -1 \\ 1 & 1 & 0 \end{bmatrix}$. It is known that six of the cofactors of A are:

$$C_{11} = 1$$
, $C_{12} = -1$, $C_{13} = 1$, $C_{21} = -1$, $C_{22} = 1$, $C_{23} = 1$.

- a) Compute adj(A).
- b) Compute $\det A$.
- c) Find A^{-1} .
- 6. For each of the following, determine if the statement is true or false. Provide a short reasoning (one or two sentences).
 - a) Cramer's rule can be applied to any kind of linear system.
 - b) If $\det A \neq 0$, for some $n \times n$ matrix A, then the columns of A are linearly independent.
 - c) If a square matrix has two identical columns, then its determinant is zero.
 - d) If a square matrix A is not invertible, then the system $A\vec{x} = \vec{b}$ is inconsistent for all \vec{b} .
 - e) If A and B are invertible, then so is A + B.
 - f) If A and B are any two matrices such that $AB = I_n$, then A and B are both invertible.