SECURITY CLASSIFICATION OF THIS PAGE (When Data Fintered)

READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER I. REPORT NUMBER 5. TYPE OF REPORT & PERIOD COVERED 4. TITLE (and Subtitio)
Phase I Inspection Report Phase I Inspection Report National Dam Safety Program Ischua Creek Watershed Project Site 6A Allegheny River Basin, Cattaraugus County, NY 6. PERFORMING ORG. REPORT NUMBER Inventory No. 571 8. CONTRACT OR GRANT NUMBER(8) 7. AUTHOR(*) Bent L. Thomsen Gary L. Wood ✓DACW-51-79-C-0001 9. PERFORMING ORGANIZATION NAME AND PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Thomsen Associates 105 Corona Avenue Groton, NY 13073 L CONTROLLING OFFICE NAME AND ADDRESS New York State Department of Environmental 12. REPORT DATE 10 September 1980 Conservation 50 Wolf Road 13. NUMBER OF PAGES Albany, NY 12233 4. MONITORING AGENCY NAME & ADDICESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Department of the Army 26 Federal Plaza New York District, CofE UNCLASSIFIED New York, NY 10287 15a, DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; Distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

*Original contains color All WHYS population and publication of the contract of the con ions will be the Copy worm med to pre southing A SICVIFIC NT TOWN TO OF PAGES WHICH DO ROT white" REPRODUCE LEGIBLY.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Dam Safety

National Dam Safety Program Visual Inspection Hydrology, Structural Stability Ischua Creek Watershed Project Site 6A Cattaraugus County Allegheny

Ischua Creek

20. ABSTRACT (Continue en reverse side if necessary and identify by block number)

This report provides information and analysis on the physical condition of the dam as of the report date. Information and analysis are based on visual inspection of the dam by the performing organization.

The examination of available engineering documents and visual inspection of the Ischua Creek Watershed Project-Site 6A dam did not disclose conditions which constitute a hazard to

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE Adownstream human life or property.

The total discharge capacity of the combined principal and auxiliary spillways is adequate to impound and safely discharge the floodwater resulting from the Probable Maximum Flood (PMF).

A few minor deficiencies were noted on this structure. These deficiencies include debris (logs) along the riprap lined section of the upstream slope; a depression behind the south wall of the impact basin over the west principal spillway outlet pipe, a wet area near the contact between the berm and right abutment along the downstream slope of the dam between stations 8 + 00 and 9 + 00, leakage around the reservoir slide gate when fully closed, erosion of the downstream toe and rip rap west of the impact basin. These deficiencies should be corrected within 6 months of the date of notification to the Owner. A warning system and evacuation plan should be developed and implemented within 6 months for notification of downstream residents and the proper authorities.

ALLEGHENY RIVER BASIN

* ISCHUA CREEK WATERSHED PROJECT SITE 6A

S CATTARAUGUS COUNTY, NEW YORK
INVENTORY NO. N.Y.571

PHASE I INSPECTION REPORT	•
Ischua Creek Watershed Project Site 64	
Inventory Number NY-57D, Allegheny River	Basin)
New York, Phase I Inspection Report,	4
THOMSEN ASSOCIATES Gary L. /W.	omsen

Prepared for

DEPARTMENT OF THE ARMY
NEW YORK DISTRICT, CORPS OF ENGINEERS

NEW YORK, NEW YORK

(2) 181

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED
CONTRACT NO DACK-51-79-CAPATI

393970

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

NTIS DIIC Unci

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM ISCHUA CREEK WATERSHED PROJECT SITE 6A I.D. NO. N.Y. 571 ALLEGHENY RIVER BASIN CATTARAUGUS COUNTY, NEW YORK

TABLE OF CONTENTS

~	ASSESSMENT	Page No.
-	OVERVIEW PHOTOGRAPH	_
1	PROJECT INFORMATION	1
1.1	GENERAL	1
1.2	DESCRIPTION OF PROJECT	1
	PERTINENT DATA	4
2	ENGINEERING DATA	7
2.1	GEOTECHNICAL DATA	7
2.2	DESIGN RECORDS	8
2.3	CONSTRUCTION RECORDS	8
	OPERATION RECORDS	8
2.5	EVALUATION OF DATA	9
3	VISUAL INSPECTION	-
	FINDINGS	10
3.2	EVALUATION	10 12
4	OPERATION AND MAINTENANCE PROCEDURES	13
	PROCEDURE	13
4.2	MAINTENANCE OF DAM	13
	WARNING SYSTEM IN EFFECT	13
	EVALUATION	13
5	HYDROLOGIC/HYDRAULIC	
5.1	DRAINAGE AREA CHARACTERISTICS	14 14
	ANALYSIS CRITERIA	14
	SPILLWAY CAPACITY	14
5.4	RESERVOIR CAPACITY	15
5.5	FLOODS OF RECORD	
	OVERTOPPING POTENTIAL	15
	EVALUATION	15
		15

		Page No.
6	STRUCTURAL STABILITY	16
6.1	EVALUATION OF STRUCTURAL STABILITY	16
7	ASSESSMENT/RECOMMENDATIONS	19
7.1	ASSESSMENT	19
7.2	RECOMMENDED REMEDIAL MEASURES	20

APPENDICES

Appendix A - Photographs

Appendix B - Visual Inspection Checklist

Appendix C - Hydrologic/Hydraulic Engineering Data and Computations

Appendix D - Design Folder

Appendix E - Drawings

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

NAME OF DAM: Ischua Creek Watershed Project

Site &A, Inventory No. N.Y. 571

STATE LOCATED: New York

COUNTY: Cattaraugus

RIVER BASIN: Allegheny

WATERSHED: Ischua Creek

STREAM: Gates Creek

DATE OF INSPECTION: May 5, 6 and 20, 1980

See Vicinity Map & Topographic Map,

Appendix E

ASSESSMENT

The examination of available engineering documents and visual inspection of the Ischua Creek Watershed Project-Site 6A dam did not disclose conditions which constitute a hazard to downstream human life or property.

The total discharge capacity of the combined principal and auxiliary spillways is adequate to impound and safely discharge the floodwater resulting from the Probable Maximum Flood (PMF).

A few minor deficiencies were noted on this structure. These deficiencies include debris (logs) along the riprap lined section of the upstream slope; a depression behind the south wall of the impact basin over the west principal spillway outlet pipe, a wet area near the contact between the berm and right abutment along the downstream slope of the dam between stations 8 + 00 and 9 + 00, leakage around the reservoir slide gate when fully closed, erosion of the downstream toe and rip rap west of

the impact basin. These deficiencies should be corrected within 6 months of the date of notification to the Owner. A warning system and evacuation plan should be concloped and implemented within 6 months for notification of downstream residents and the proper authorities.

Bent L. Thomsen, P. E. Thomsen Associates N. Y. License #40553

Gary L. Wood, P. E. Thomsen Associates N. Y. License #44504

New York District Engineer Colonel W. M. Smith, Jr.

APPROVED BY

10 SEP 1980

ii

View of upstream embankment slope from east spillway

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
ISCHUA CREEK WATERSHED PROJECT

SITE 6A

I. D. No. NY. 571

ALLECHENY RIVER BASIN
CATTARAUGUS COUNTY, NEW YORK

SECTION 1: PROJECT INFORMATION

1.1 GENERAL

a. Authority

This Phase I Inspection Report was authorized by the New York State Department of Environmental Conservation by Contract No. D-201458. This study was performed in accordance with the terms of the above contract and the Recommended Guidelines for Safety Inspection of Dams prepared by the Department of Army, Office of the Chief of Engineers to fulfill the requirements of the National Dam Inspection Act, Public Law 92-327.

b. Purpose of Inspection

This inspection was conducted to obtain available data concerning design and construction of the dam, to evaluate that data, to visually inspect existing conditions at the dam, to identify and evaluate deficiencies and/or hazardous conditions which, if present, may threaten life and property of the residents downstream of the dam and to recommend remedial measures to mitigate such deficiencies and hazardous conditions.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam

The Ischua Creek Watershed Project Site 6A consists of an earth dam with two principal spillway outlet pipes passing

through the embankment and auxiliary spillways passing around the east and west ends of the dam.

The dam embankment consists of compacted glacial till soils, having the maximum height of 63 feet, a crest width of 20 feet and a crest length of 1043 feet. upstream slope is 1 vertical on 3 horizontal with a 15 foot wide berm at elevation 1650.0 and a downstream slope of 1 vertical on 2.5 horizontal with a 16 foot wide berm at elevation 1650.0. The upstream slope is lined with riprap 18 inches thick and 12 inches of bedding for the riprap between elevation 1656.0 and 1664.0. elevations correspond to 5 feet below 3 feet above normal recreation pool elevation 1661.0. The remainder of the upstream slope above the recreation pool, the crest and the downstream slope are grass covered. An earth cutoff trench of varying depth and widths between 12 and 24 feet keys the embankment into the glacial till and bedrock foundation material.

The principal spillway consists of the following components; two (2) rectangular reinforced concrete drop inlet structures with a crest elevation of 1661.0, two (2) 42 inch I.D. reinforced concrete outlet pipes, two (2) reinforced concrete impact basins and a riprap lined outlet channel. The reservoir drain is a 30 inch I.D. reinforced concrete pipe extending 104 feet into the reservoir from the base of the east drop inlet structure. A manually operated vertical slide gate mechanism mounted on the top and inside of the east drop inlet structure controls the flow through the reservoir drain.

The auxiliary spillways are located in cut sections at the east and west ends of the dam. The east auxiliary spillway has a bottom width of 250 feet whereas the bottom width of the west auxiliary spillway is 200 feet. The internal drainage system consists of 10 foot wide drain trenches cut into the foundation material. The trenches are filled with a "gravelly material". Seepage from the trenches is collected in two 10 inch diameter perforated bituminous coated corrugated metal pipes surrounded by "filter" material and extend parallel to the dam axis 100 feet downstream from the dam centerline.

The perforated sections terminate near the principal spillway outlet pipes where solid 10 inch diameter bituminous coated corrugated metal pipe bends 90° and outlets to the outlet channel on either side of the impact basins.

b. Location

The Ischua Creek Watershed Project Site 6A is located West of Abbott Road approximately 1.0 mile southeast from the center of the Village of Franklinville, New York.

c. Size Classification

The dam is 63 feet high and has a maximum flood storage capacity of 3890 acre-feet at the top of the dam. Therefore, the dam is of intermediate size category by virtue of its height and storage capacity as defined in the Recommended Guidelines for Safety Inspection of Dams.

d. Hazard Classification

The dam is classified as a high hazard structure due to the presence of the number of homes along the downstream channel and the proximaty of the Village of Franklinville.

e. Ownership

The dam is owned, operated and maintained by the Cattaraugus County Watershed District. The local contracting officer is Mr. Ed Smith of Franklinville, New York. His telephone number is 716-676-3427.

f. Purpose of the Dam

The primary purpose of the dam is a floodwater retarding structure. Its secondary purpose is it creates and impounds a recreational lake.

g. Design and Construction History

The design of the dam was performed by the U.S. Department of Agriculture, Soil Conservation Service (SCS), Syracuse, New York. The construction was under the supervision and inspection of the SCS and the general contractor was Eisert Construction Corporation of Olean, New York. The dam was completed in 1971 and the as-built drawings are dated May 19, 1971. The Syracuse office of the SCS has a design folder containing hydrologic, hydraulic, geologic information, as well as scils laboratory test data and slope stability analysis. In addition, as-built drawings and contract documents are maintained by the SCS Syracuse office.

h. Normal Operations Procedure

Normal flows are discharged through the drop inlet structures to the principal spillway outlet pipes. The elevation of the riser crest of the drop inlet structures is 1661.0. Reservoir levels between elevation 1661.0 and the axuiliary spillways crest elevation 1679.0 are discharged through the drop inlet structure. The reservoir has sufficient capacity to store and discharge 740 cfs without discharge occurring in the auxiliary spillway.

1.3 PERTINENT DATA

a. Drainage Areas (sq. mi.)	19
b. Discharge at Damsite (cfs)	
Reservoir Drain at Riser Crest	147.5
Principal Spillway at Auxiliary Spillway Crest(1679	.0) 740
Principal Spillway at Maximum High Water (Top of Dam 1687.2)	797
Auxiliary Spillway at Maximum High Water (1687.2)	35,003
Total Spillway Capacity at Maximum High Water (1687.2)	35,800

c. Elevation (ft. above M.S.L.) as noted in the as-built drawings Top of Dam 1687.2 Design High Water 1682.9 Auxiliary Spillway Crest 1679.0 Recreation Pool (Normal Pool) 1661.0 Streambed at Dam Centerline 1624.5 d. Reservoir 6.06 miles Length of drainage basin 4500 feet Length of normal pool e. Storage (acre-feet) Recreation Pool 1110 Crest of Auxiliary Spillway (Flood Storage) 2286 Design High Water (Flood Storage) 3020 Top of Dam (Flood Storage) 3890 f. Reservoir Surface (acres) Recreation Pool 80 Crest of Auxiliary Spillway 174 Design High Water 190 Top of Dam 218 g. Dam (Taken from as-built drawings and Design Report) The dam is a homogeneous embankment composed Type: of compacted glacial till with keyed earth cutoff trench and toe drains parallel to dam centerline Length: (ft) 1043 63 Height: (ft) Top Width: (ft) 20 Upstream (V:H) 1:3 Side Slopes: 1:2.5 Downstream (V:H) Cutoff: Earth Cutoff Trench with compacted

embankment material

Grout Curtain: None

h. Principal Spillway

Type: Two (2) 42" I.D. outlet pipes, 3.5'x 10.5"

I.D. reinforced concrete drop inlet structures rising 57.5' above base elevation of 1627.0

Total Length of Weir: 38 ft.

Crest Elevation 1661.0

Gates: Uncontrolled

i. Auxiliary Spillways

Type: Channel cut into soil, trapezoidal cross section, grass lined

Bottom Width: (ft) East Spillway 250
West Spillway 200
Side Slopes: (V:H) 1:3
Length of Level or Control Section:
East Spillway (ft) 30
West Spillway (ft) 20

East Spillway 1
West Spillway 1

Exit Slope: (%)

Entrance Slope:(%)

East Spillway 2.2
West Spillway 2.2

j. Reservoir Drain

Type: 30 inch I.D. reinforced concrete pipe

Length: (ft) 104.0

Control: Manually operated vertical slide gate mounted on the east drop inlet structure

SECTION 2: ENGINEERING DATA

2.1 GEOTECHNICAL DATA

a. General Geology

The Ischua Creek damsite number 6A is located southeast of the Village of Franklinville, in southwestern New York State. This area is situated at the northern extremity of the Appalachian Plateau physiographic province.

Local bedrock consists of interbedded shales, siltstones and sandstones of Upper Devonian age. Although the regional dip of strata in this province is gently southwestern, this dip is so slight that, over relatively short distances, the stratigraphy may be considered essentially horizontal.

Overlying the local bedrock are deposits associated with Wisconsin glaciation of the area. These deposits include ground moraine on uplands and slopes, and outwash and alluvial deposits (stratified granular material) filling or forming the floor of active or former stream channels.

Although geologic reconnaissance has revealed no major or active faults in this area, the Village of Franklinville is situated in a region classified between Zone 2 and Zone 3 seismicity, as shown on Figure No. 1 of the Recommended Guidelines for Safety Inspection of Dams. We note, the Attica, New York area located roughly 35 miles to the north has been the site of numerous recent seismic events of moderate intensity.

b. Subsurface Investigation

The subsurface investigation conducted by the SCS consisted of a total of 11 test borings and 31 test pit excavations. Along the dam centerline a total of 3 test borings and 7 test pit excavations were advanced. The investigation for the principal spillway consisted of 3 test pit excavations. A total of 8 test borings and 18

test pit excavations were made for the two auxiliary spillways. Three additional test pit excavations were made along the alignment of the toe drain.

c. Subsurface Conditions

The overburden soils at the dam consist primarily of alluvial silts and gravels in the flood plain overlying dense glacial till at a depth of 8 to 10 feet. Glacial till soils were encountered in both abutments. In the west abutment glacial till overlies the bedrock surface at depths ranging from 4 to 20 feet. Along the east abutment bedrock was not reached within the depth of investigation which extended to a depth of at least 45 feet. The true groundwater table lies between 3 and 5 feet below the former grades along the flood plain. Perched water conditions were encountered in numerous test pits excavated for the auxiliary spillway investigation.

2.2 DESIGN RECORDS

The dam was designed by the Soil Conservation Service, who prepared a design report, contract specifications and engineering drawings. Portions of the design folder have been included with this report as Appendix D. In addition, a number of as-built drawings prepared by the SCS have been included in Appendix E of this report.

2.3 CONSTRUCTION RECORDS

Construction inspection was performed by the SCS and the construction documents are available at the SCS office in Syracuse, New York. Changes from original design are noted on the as-built plans in Appendix E. The most notable change was the raising of the dam by 0.6 feet and reduction of the bottom width of the east auxiliary spillway.

2.4 OPERATION RECORDS

Since the dam was designed as a floodwater retarding structure no operating records are maintained regarding reservoir level or spillway discharge. During periods of high runoff it is reported that the structure is monitored periodically by SCS personnel and representatives of the Cattaraugus County Watershed District.

2.5 EVALUATION OF DATA

The data presented in this report has been compiled from information obtained from the Soil Conservation Service, Cattaraugus County Watershed Commission and the files of the New York State Department of Environmental Conservation.

The data reviewed in connection with the Phase I inspection were deemed to be adequate and reliable.

SECTION 3: VISUAL INSPECTION

3.1 FINDINGS

a. General

A visual inspection of the dam was conducted on May 5, 6, and 20, 1980. The weather at the time of these inspections was clear with temperatures in the 70's. The reservoir level for May 5 and 6 inspections was at the crest of the drop inlet strucutre, elevation 1661.0. On May 20, 1980 the reservoir had been drawn down for the purpose of inspecting the principal spillway outlet pipes. On this date the reservoir level was at approximately elevation 1656.0.

b. Embankment

The embankment was at the time of inspection in excellent condition, with no signs of misalignment, sloughing, seepage, or cracking. A slight amount of debris in the form of logs was lying on the upstream slope between elevation 1661.0 and 1664.0. A small depression, 2 feet wide by 1 feet deep was detected above the west outlet pipe just south of the concrete wall of the impact basin of that outlet pipe. No evidence of erosion or seepage was detected along either the upstream or downstream abutment-embankment contact. No seepage was detected beyond the toe of the dam, however, a wet area was detected near the contact between berm and the east abutment along the downstream slope.

The internal drainage system consist of drain trenches at the toe of the dam and perforated 10 inch diameter bituminous coated corrugated metal pipe surrounded by filter material which extends from the drain trenches parallel to the dam axis and to the principal spillway outlet pipes. The toe drains outlet into the outlet channel along either side of the impact basins. No discharge was observed from the drains on the inspection dates noted above.

c. Principal Spillway

The principal spillway consists of two (2) reinforced concrete drop inlet structures with the riser crest at elevation 1661.0. Two (2) 42 inch I.D. reinforced concrete pipes, bedded on a concrete cradle, transport reservoir water from the drop structures to the impact basin and outlet channel. The outlet pipe is provided with 7 reinforced concrete anti-seep collars at 24 foot spacings starting 20 feet from the drop inlet structure and ending 178 feet from the drop inlet structures. The outlet pipes and interior sections of the drop inlet structure were in satisfactory condition.

d. Auxiliary Spillways

The auxiliary spillways for this structure are located at the east and west end of the dam. The spillways are cut into glacial till soils. Although the majority of the auxiliary spillways are in cut sections it was necessary to construct a levee along the west side of the east auxiliary spillway extending from the dam centerline north a distance of approximately 250 feet. The inside, or dam side, of both auxiliary slopes has been lined with stone paving. Following earthwork the auxiliary spillways were lined with topsoil and seeded and now support a healthy grass cover. Both spillways were in good condition at the time of the inspection.

e. Reservoir Drain

The reservoir is drained by a 30 inch I.D. reinforced concrete pipe and amanually operated slide gate with the gate stem situated at the top of the east drop inlet structure. The slide gate is in an operable condition, however, when fully closed, leakage estimated at between 10 and 20 gallons per minute passes around the gate.

f. Downstream of Toe

The waste from this dam site is located downstream of the dam along the west side of the outlet channel in the natural flood plain. The area has been graded, covered with topsoil and now supports a healthy growth of grass.

g. Downstream Channel

The downstream channel beyond the impact basin for a distance of 10 feet is lined with rip rap for a depth of 2.7 feet. Beyond the riprap section for a distance of 40 feet, the outlet channel is cut into the former flood plain. Side slopes are 1 vertical on 2.5 horizontal. The outlet channel grades away from the impact basins on a slope of 1 percent for a distance of 50 feet. For a distance of 50 feet beyond the impact basin to the intersection of the existing stream the outlet channel slopes downstream at 0.45 percent. Side slopes for the outlet channel in this section are 1 vertical on 6 horizontal with a minimum width of 100 feet. Some erosion of the riprap lined downstream channel and downstream toe has occurred near the impact basin.

g. Reservoir Area

The area surrounding the reservoir is primarily pasture land and wood lots. The slopes of the area surrounding the reservoir are gentle and estimated to be between 5 and 10 percent with the exception of the entrance to the east auxiliary spillway which has an estimated slope of 1 vertical on 2 horizontal. No signs of slope instability were observed.

3.2 EVALUATION

The visual inspection of this dam revealed the following deficiencies:

- 1) Debris along the riprap lined section of the upstream slope.
- 2) A depression 1 foot deep and 2 foot in diameter was noted above the west principal spillway outlet pipe along the south wall of the impact basin.
- 3) A wet area along the downstream slope in the area of the east abutment-berm contact.
- 4) Leakage around the reservoir drain slide gate when fully closed, estimated to be between 10-20 gallons per minute.
- 5) Erosion of downstream toe and riprap lined downstream channel adjacent to the impact basins of the principal spillway.

SECTION 4: OPERATION AND MAINTENANCE PROCEDURE

4.1 PROCEDURES

The normal reservoir level is controlled by the crest elevation of the drop inlet structures. Downstream flow is limited by the flow over the crest of the drop inlet structures during heavy runoff. The principal spillway can discharge 740 cfs without flow occurring in the auxiliary spillways.

4.2 MAINTENANCE OF DAM

The dam is maintained by the Owner, Cattaraugus County Watershed District. Normal maintenance includes mowing the grass of the embankment and auxiliary spillways and removal of debris from the upstream embankment slope.

4.3 WARNING SYSTEM IN EFFECT

There is no warning system in effect, however, the dam is reportedly monitored during periods of heavy runoff by representatives of the SCS and owner.

4.4 EVALUATION

The operation and maintenance procedures for this structure are satisfactory.

THE PROPERTY OF THE PROPERTY O

SECTION 5: HYDROLOGIC/HYDRAULIC

5.1 DRAINAGE AREA CHARACTERISTICS

Delineation of the watershed draining into the reservoir pool area was made using the USGS 7.5 minute quadrangles for Franklinville and Rawson, New York. The total drainage area measures 19 square miles and consists of both wooded lands and open fields. It should be noted that the flood water from 6.4 square miles of the total drainage area is regulated by another Soil Conservation Service (Site 5) dam before it eventually reaches the reservoir at Site 6A. Relief in the drainage area is moderate to steep with slopes ranging from 8 percent to 25 percent.

5.2 ANALYSIS CRITERIA

The analysis of the floodwater retarding capability of this dam was performed using the Corps of Engineers HEC-1 computer program, Dam Safety Version. This program develops an inflow hydrograph based upon the "Snyder Unit Hydrograph" and then uses the "Modified Puls" flood routing procedure. The spillway design flood selected for analysis was the PMF in accordance with the recommended guidelines of the U.S. Army Corps of Engineers.

5.3 SPILLWAY CAPACITY

The principal spillway system for the dam consists of two parallel drop inlet structures each consisting of a single stage reinforced concrete riser, 42 inch diameter reinforced concrete pipe and a reinforced concrete impact basin to dissipate the energy of high velocity discharge at the outlet end of the pipe. An auxiliary spillway system is designed as an earth cut in each abutment with the control section on compact glacial till. The spillways are of trapezoidal section with bottom widths of 200 feet and 250 feet and side slopes of 1 vertical to 3 horizontal. Principal spillway discharge is controlled by the outlet pipes. Discharge through the auxiliary spillways are calculated assuming a depth of flow at the control section as critical depth.

The spillway system appears to be adequate for discharging the Probable Maximum Flood (PMF). For the PMF, the peak inflow is 32,235 cfs and the peak outflow is 31,729 cfs. The computed spillway capacity for a water surface elevation at the top of dam is 35,800 cfs.

During the PMF storm event the maximum discharge velocity through the auxiliary spillways occurs along the exit slopes and is computed to 11.1 fps and 11.7 fps for the south and north auxiliary spillways, respectively. In addition, the total duration of auxiliary spillway discharge for the PMF event is 28.5 hours.

5.4 RESERVOIR CAPACITY

Storage capacity of the reservoir between the auxiliary spillway crests and the top of the dam is 1604 acre-feet which is equivalent to a runoff depth of 1.54 inches over the total drainage area. The total storage capacity of the dam is 5,000 acre-feet with a maximum flood storage capacity of 3890 acre-feet.

5.5 FLOODS OF RECORD

Due to the lack of reliable information, no attempt was made to estimate the discharge for the flood of record.

5.6 OVERTOPPING POTENTIAL

Analysis using the PMF indicates that the dam has sufficient spillway capacity to discharge the PMF. For a PMF peak outflow of 31,729 cfs, reservoir level would be 0.7 feet below the dam crest elevation.

5.7 EVALUATION

At the PMF the reservoir surface is 0.7 feet below the top of the dam and the height of water in the auxiliary spillway is 7.5 feet. The computed maximum discharge velocities through the auxiliary spillway is in excess of the normally accepted maximum velocity for grass lined spillways of 8 fps. Therefore, the potential of auxiliary spillway erosion exists during periods of heavy runoff.

SECTION 6: STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations

No signs of instability were observed in connection with this structure.

b. Design and Construction Data

A total of at least 8 slope stability analyses were performed by SCS for the embankment during the design phase. The soil strength parameters utilized in these analyses were based on consolidated-undrained (R) triaxial shear tests. The tests were conducted on remolded proposed embankment materials compacted to at least 93.5 percent of the maximum dry density attainable through the Standard Proctor Compaction Test (ASTM D-698). The shear strength parameters used in the analyses are as follows:

Sample No.	Internal Friction Angle (degrees)	Cohesion (psf)	
65W214	21.5	300	
65W217	19.0	425	

We note these tests were conducted on remolded material having a gradation less than the No. 4 sieve size.

The stability analyses performed were based on the above shear strength parameters using a modified Swedish slip-circle method. Both the upstream and downstream slopes were analysed using this method under varying conditions.

The results of the stability analyses presented in the Design Report are tabulated below:

Berm			Factor of	
Trail No	. Slope	Width	Elevation	Safety
3 5A & 6B	3:1 Upstream 2 1/2:1	25	1660	1.35
8	Downstream 2 1/2:1	16	1650	1.49
	Downstream	10	1650	1.48

NOTE: "Trail Arc Nos. 3,5A & 6 did not penetrate the foundation. Trail No. 8 penetrated the foundation to a depth of 10 feet." For the alluvium foundation the internal friction angle was assumed equal to 35 degrees and zero cohesion.

A review of the recommended design* for a homogeneous earth embankment composed of recompacted glacial till soils indicate that adequate factors of safety against embankment shear failure for the following slope:

Upstream Slope (H:V) 2 1/2:1 to 3:1 Downstream Slope (H:V) 2:1 to 2 1/2:1

We further note the computed factor of safety for the downstream slope of 1.49 is the minimum allowable factor of safety according to th' Corps of Engineers Guidelines for the case of steady seepage at maximum storage pool.

In general the stability analyses were based on conservative shear strength parameters because of the gradation of samples tested compared to the embankment composition.

No additional stability analyses were conducted as part of the Phase I Inspection Report.

Design of the crest width and longitudinal camber for settlement considerations as well as the cutoff trench width and depth are in accordance with standard practice. Likewise, the design and construction of the internal drainage system is of conventional design for homogeneous earth embankment dams.

c. Erosion Protection

The design documents do not appear to address in-service erosion protection of the auxiliary spillway channels.

The sodded slopes of the embankment appear to have performed satisfactorily and can be expected to continue to do so.

^{*&}quot;Design of Small Dams", U.S. Department of Interior, Bureau of Reclamation, 1977.

The case of the auxiliary spillways is somewhat less certain, however. The calculated maximum discharge velocity and duration of flow are higher than would normally be considered permissible for sodded channels.

d. Seismic Stability

No seismic stability analysis was performed as performed as part of the dam design.

SECTION 7: ASSESSMENT/RECOMMENDATIONS

7.1 ASSESSMENT

a. Safety

The Phase I inspection of the Ischua Creek Watershed Project Site 6A dam did not reveal conditions which constitute a hazard to human life or property. The earth embankment is considered stable based on the available engineering data and visual observations. The dam and spillways are capable of retarding and discharging floodwater resulting from the Probable Maximum Flood (PMF).

b. Adequacy of Information

The available data reviewed as part of the Phase I inspection is adequate.

c. Need for Additional Investigation

We recommend that the following potential problems be given further investigation or study.

- i) A study should be made of the channel velocities in the auxiliary spillways and an evaluation of the need for additional erosion protection.
- ii) A field investigation should be made of the source of the wet area which was found at the contact between the downstream berm and the east abutment. The need for any type of corrective measure should be evaluated after this determination is made.

d. Urgency

An emergency preparedness plan for notification and evacuation of downstream residents should be developed and implemented within 6 months. The evaluation of the auxiliary spillway erodability and source of the wet area should be undertaken within 6 months and completed within 18 months.

7.2 RECOMMENDED REMEDIAL MEASURES

- a. Remove debris from around drop inlet structures and upstream slope.
- b. Place and compact embankment type materials in the depression over the west principal spillway outlet pipe along the south wall of the concrete impact basin.
- c. Repair reservoir drain slide gate to insure slide gate is properly seated and no leakage occurs.
- d. Replace riprap along west side of outlet channel adjacent to west impact basin.
- e. Develop and implement a warning system and evacuation plan for downstream residents and proper authorities in the event of large auxiliary spillway discharge.

APPENDIX A

PHOTOGRAPHS

中間を 年 好人 八山

View of upstream embankment slope from east spillway.

View of upstream slope protection.

View of upstream embankment slope from west abutment.

View of downstream embankment slope from west abutment--mowed (green) strip is berm.

View of intake structures.

Close-up of intake structure and reservoir drain gate operating stem.

Continuation of photo above.

View of west spillway looking downstream.

lose up of erosion protection on pushe (dam side) spillway snown at right edge of photo above.

THE TANK A THE P

View of upstream embankment slope and east spillway.

Continuation of photo above.

the east side of the stilling basin--also showing toe drain outlets.

Ĭ

View of erosion on east side of stilling basin.

View of downstream channel from crest of dam--reservoir drain closed.

View of minor erosion along west side of impact basin.

A Control of the South Control of the South State South

Same view as above with reservoir drain open 9".

View of downstream channel from impact basin.

APPENDIX B

1)

Basic Data

a.	General
	Name of Dam Ischua Creek Site 6A
	Fed. I.D. # 250-3399 DEC. Dam No. Ny 571
	River Basin Allegheny ·
	Location: Town Franklinville County Cattaraugus
	U.S.G.S. Quadrangle Frenklin ville
	Stream Name Gates Creek
	Tributary of <u>Tschua Creek</u>
	Latitude (N) 42° 19 Longitude (W) 79° 26
	Type of Dam Eactly Dass
	Hazard Category High
	Date(s) of Inspection 5/5/80 \alpha 5/6/80 , 5/20/80
	Weather Conditions Clauda
	Reservoir Level at Time of Inspection
	Tailwater Level at Time of Inspection
b.	Inspection Personnel Chaples T. GAYNDE II - Thousen Appointes
	Bul Ehrerano - Doulate & Harry Host -565 Ed Smith - Ca Haraugus Fyr Wakished Distant 716-676-3427
c.	Persons Contacted (Including Address & Phone No.)
	. Unie Clark - 365 bent - 716-699-2326
	Robin Warrender - DEC - Albany - 518-457-5557
	DON Lake -565 - SUPERISE Office - 315-423-5503
đ.	Don Lake -565 - Euperuse Office - 315-423-5503 Harry Hered -565 - Syracuse Office - 315-423-5503 History:
. •	Date Constructed 5/19/71 Date(s) Reconstructed None
	and the second s
	Designer Soil Conscius hun Service
	Constructed by Fiser t Const Corp Olean, 11
	Owner Pattoraugus County wateshid Distinit
e.	V
	Seismic Zone Poundry Zone 2 - Zone 3 (See Algermisson, 1969 - Corps of Engineer Guidelines)
	· · · · · · · · · · · · · · · · · · ·

2)_	Embankment						
	a.	Cha	racteristics				
		15	Embankment Material Macial Till Typical Prop. b.				
			Mrs. 1 - 25%, Sand - 25%, Passing 200 Sice - 50%				
		2)	Cutoff Type Trench				
		3)	Impervious Core None DAM 13 HONDGEN FOUS				
		4)	Internal Drainage System Drain Teine W/ Toe Diens				
		5)	Drain Pine Daylighte at Spillway Outlet Miscellaneous				
	b.	Crest					
		1)	Vertical Alignment (200)				
		2)	Horizontal Alignment (200)				
		3)	Surface Cracks				
		4)	Miscellaneous				
,	c.	Upst	pstream Slope				
		1)	Slope (Estimate) (V:H) 1:3 to Beach 1650 4h 1:3				
			Undesirable Growth or Debris, Animal Burrows North				
		3)	Sloughing, Subsidence or Depressions NonE				

	Slope Protection Green Count of the Form Note O
	RIPTAD 1657.5 to 1664.0 (3' Above \$
	3' Below Normal Fool Elication)
5)	Surface Cracks or Movement at Toe NONE
Dow	vnstream Slope
1)	Slope (Estimate - V:H) 1.21/2 to Bont 0 8/00 1650.0 46 121/2
2)	Undesirable Growth or Debris, Animal Burrows NONE
3)	Sloughing, Subsidence or Depressions
4)	Surface Cracks or Movement at Toe None
- •	
5)	
•	Seepage Slightly out our at at at
•	Seepage slightly out area at rest. I be here toe a been right abelieved area? In source
•	between toe a been right abelieved at continued for external draince (See As Built Plans area is outlined)
5)	between toe a been right abelieved at continued for external draince (See As Built Plans area is outlined)
5) 6)	Seepage <u>clichtly out area at constitution</u> be here to be a been eight obstant area is made for external decine; (See As Built Plans area is outlined) External Drainage System (Ditable, Trenches; Blanket)
5) 6) 7)	Seepage Shirt with one at condition to show right abilities area is outlined) For external draining (See As Boilt Plans area is outlined) External Drainage System (Dit. 18, Trenches; Blanket) GRASS Lined Preinage Sunte Condition Around Outlet Structure Depression 2' Diemter, 1'
5) 6) 7)	Seepage slight out over at continual behavior to a been right obstant over a sware for estend drange (See As Boilt Plans area is outlined) External Drainage System (Dith 188, Trenches; Blanket) GRASS Lined Promage Sunte
5) 6) 7) 8)	Seepage Shirt with one at condition to show right abilities area is outlined) For external draining (See As Boilt Plans area is outlined) External Drainage System (Dit. 18, Trenches; Blanket) GRASS Lined Preinage Sunte Condition Around Outlet Structure Depression 2' Diemter, 1'

	2)	Seepage Along Contract See Note #5 under
		2 -10" φ BCC M
a.		eription of System Decar Trans - Dipe
		Entered de d'en Dian Tanne Parallel do & of
		100' From Dan &
b.	Cond	lition of System () Observable
	-	charge from Drainage System Very 1.412 (trutic)
Inst	Disc	ntation (Mo)humentation/Surveys, Observation Wells, Weers, Etc.)
C. Inst Piez	Disc	ntation (Monumentation/Surveys, Observation Wells, Weers, Etc.) Monument Ele. 1719.26 Sta 1490 on Est
C. Inst Piez	Disc	ntation (Mo)humentation/Surveys, Observation Wells, Weers, Etc.)
C. Inst Piez	Disc	ntation (Monumentation/Surveys, Observation Wells, Weers, Etc.) Monument Ele. 1719.26 Sta 1490 on Est
C. Inst Piez	Disc	ntation (Monumentation/Surveys, Observation Wells, Weers, Etc.) Monument Ele. 1719.26 Sta 1490 on Est
C. Inst Piez	Disc	ntation (Monumentation/Surveys, Observation Wells, Weers, Etc.) Monument Ele. 1719.26 Sta 1490 on Est

VISUAL INSPECTION CHECKLIST

5)	Res	<u>servoir</u>
	a.	Slopes 5-10%
		Right Side near entrener to right spillway max slope
	b.	Sedimentation Unobservable
	c.	Unusual Conditions Which Affect Dam
6)	Are	a Downstream of Dam
	à.	Downstream Hazard (No. of Homes, Highways, etc.) Village of
		Franklinville (Many Humes) State Rt. 98
	b.	Seepage, Unusual Growth None
	c.	Evidence of Movement Beyond Toe of Dam None
	đ.	Condition of Downstream Channel
		Erosua clani just bent
7)	Spi	liway(s) (Including Discharge Conveyance Channel)
		- Concrete Drop Jalet Structures with 42" I.D
		Outlet Pipes to Impart Basis
	a.	Reservoir Drain GAted on East Inlet Structure
	b.	Condition of Service Spillway Good, Concrete - Cood
		1. No leakage through joints in outlet pipe All joints inspected 5-20-80
		Note: Depression over outlet pipe behind left impact tosin. Exposer Arand Inset Basin
		CASHE 16 WA LANGE LANGE

of some of the second s

Jestin Stockso autich Pine Spiratine 3/2 1/7 177 1/8 East 10/1/ 16 4 1/3/10 73 MORTARED 200 West Inmt 15 14 1/7 4 100 Note: Perevoia bakoge 60 1/2 /w 14 13/ 17 1 14 doesn't 200 7 /2/ 13 4 Fint * 13 15] ~] 10/1/2 14 1/4 1/3 10 MAGTORED 1 3/ 7/7 - Dut Coon Mest Trut + 300 1/4 W 14 1/2 1/0 /1/ 40 1 Ø 13 \mathscr{D} _)

-

VISUA	L I	insf	ECTI	ON C	HECKI	ISI

c.	Condition of Auxiliary Spillway(5) Good, Houses,
	Heavy Brush near downshern end of East Side
	Spi Husy
•	MAX. Elyu. 1679.0
đ.	Condition of Discharge Conveyance Channel
Res	servoir Drain/Outlet
	Type: Pipe Conduit Other
	Material: Concrete RCP Metal Other
	Size: 30" J.D Length 104.0 Invert Elevations: Entrance 1628.25 Exit 1628.25 Out. 1
	Invert Elevations: Entrance 1628.25 Exit 1628.25 Outlet
	Physical Condition (Describe): Unobservable
	Material:
	Joints: Alignment
	Structural Integrity:
	Hydraulic Capability:
	Means of Control: Gate Valve Unconcrolled
	Operation: Operable Other
	Present Condition (Describe): Rising Sking Some Premiums
	Problem with Shen Guides Slight amount of leakage
	when closed Est = 10-20 gpm
-	Impact Basis Townt - 1619.83
	No Warning System or Evacuation Plan
	GATE try for Reservoir Drain in Forenthisville Town Half

THOMSEN ASSOCIATES

9)		Structural O / O / O / O / O / O / O / O / O / O					
	a.	Concrete Surfaces Good on Drop Inlet Structures,					
		Impact Basin & Spillway Dultet pipe					
	b.	Structural Cracking None					
	c.	Movement - Horizontal & Vertical Alignment (Settlement)					
	đ.	Junctions with Abutments or Embankments N/A					
	•	Drains - Foundation Joint Face CUP ()					
	e.	Drains - Foundation, Joint, Face CMP w/					
	f.	Water Passages, Conduits, Sluices					
		Seepage or Leakage None					
	g.	Seepage or Leakage None					

	For doubt de la
	Joints - Construction, etc. Outet Dije joints varies From tight to MAX. Specific of 1/4", joints are design for 21/2 inch Maxment, No deckage, No Crackes
	3 /
1	Coundation
-	
•	
7	Abutments
-	
C	Control Gates Reservoir Deain Gate - Rising 5km - Disn't close tightly, Allans 10-20 apm flow
-	LOISO't close tightly, Allows 10-20 gpm flow
-	pproach & Outlet Channels
E	nergy Dissipators (Plunge Pool, etc.)
	for Outlet Prom
I	ntake Structures Dego Inlet
I -	
I 	
	ntake Structures Deep Inlet
 S	ntake Structures Dego Inlet
 S	ntake Structures Deep Inlet

APPENDIX C

HYDROLOGIC/HYDRAULIC ENGINEERING
DATA AND COMPUTATIONS

THOMSEN ASSOCIATES

CHECK LIST FOR DAMS HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

AR	EA-CAPACITY DATA:			TOTAL	
		$\frac{\texttt{Elevation}}{(\texttt{ft.})}$	Surface Area (acres)	Storage Capacity (acre-ft.)	
		(200)	(40105)	(4010 10.)	
1)	Top of Dam	1687.2	218	50000	
2)	Design High Water (Max.Design Pool)			41300	
3)	Auxiliary Spillwa Crest	y 		33 <i>9</i> 6	
4)	Pool Level with Flashboards		N.A.	N.A.	
5)	Service Spillway Crest	16610	<u> </u>		
	DISCHARGES				
				Volume (cfs)	
1)	Average Daily			UnknowAl	
2)	Spillway @ Maximum High Water (Top of Dam) 35, 300				
3)	Spillway @ Design			11,690	
4)	Spillway @ Auxili	ary Spillway	Crest Elevatio	n 740	
5)	Low Level Outlet				
6)	Total (of all fac	ilities) 0 M	aximum High Wat	er <i>35, 300</i>	
7)	Maximum Known Flo	ođ		UNK now N	

OUTLET STRUCTURES/EMERGENCY DRAWDOWN FACILITIES:
Type: Gate Sluice Conduit Penstock
Shape: Ciri-Ine
Size: 30" diameter RCP
Elevations: Entrance Invert 1628.25
Exit Invert /628.25
Tailrace Channel: Elevation <u>1622.5</u>
HYDROMETEROLOGICAL GAGES:
Type: Nova
Location:
Records:
Date -
Max. Reading -
FLOOD WATER CONTROL SYSTEM:
Warning System: None
Method of Controlled Releases (mechanisms):
Reserving Dean w/ manually conholled stude gate
on east Neon inlet structure

THOMSEN ASSOCIATES

CREST:	ELEVATION: 16372
Type: Homowing Enoth &	Emberkment
Width: 20	Length: 1043
Spillover 2- Drop Jakt Stra	theres & 2 Abriliary bears hard In. Heats 15
Location Dear April Structures of	ear May. Section of Embankinget
Austling Spellways et	east & west and of Embankinent
SPILLWAY:	
PRINCIPAL	EMERGENCY
	vation
<i>38 f₁.+</i> Wi	dth Trapezoidal Cut in Soil (Genoted)
	Must - 200 fut
Type of	Control
Uncon	trolled
Cont	rolled:
	ype
(Flashboards;	gate)
Nun	ber
Size/	Length
Invert M	aterial Topsoil underlain by Classel T.H
Anticipate of operating	d Length service <u>235 haves @ PMF</u>
240.33' Quille Por Chute Le	
Not Applicable Height Betwee & Approach C	n Spillway Crest Vapies hannel Invert East Enhance Slave - 1% Flow; West Enhance Slape - 1%

DRAINAGE AREA: 19.0 g miles
DRAINAGE BASIN RUNOFF CHARACTERISTICS:
Land Use - Type: Whoded & Pashuc
Terrain - Relief: Moderate to Steep (8 to 25 %)
Surface - Soil: Glacial Till (S. 11, S.d., Gasul)
Runoff Potential (existing or planned extensive alterations to existing surface or subsurface conditions)
Ups hear Reservoire (Site 5) Retrads Runoff hom 64
Da mik desinage para, No Planned Changes
Potential Sedimentation problem areas (natural or man-made; present or future)
Design Seding, labor is 138 A. Ft. in Soyen from
•
7716 17 6 47 377567107.
and of Construction.
Potential Backwater problem areas for levels at maximum storage capacity including surcharge storage:
Potential Backwater problem areas for levels at maximum storage capacity including surcharge storage:
Potential Backwater problem areas for levels at maximum storage capacity including surcharge storage: Approximately 350 feet of Albboths Road would be
Potential Backwater problem areas for levels at maximum storage capacity including surcharge storage:
Potential Backwater problem areas for levels at maximum storage capacity including surcharge storage: Approximately 350 feet of Hibboths Road woold be invadated along east side of Reservoire during a
Potential Backwater problem areas for levels at maximum storage capacity including surcharge storage: Approximately 350 feet of Abbotts Road woold be invended along east side of Reservoire Storage on PMF storage. Dikes - Floodwalls (overflow & non-overflow) - Low reaches along
Potential Backwater problem areas for levels at maximum storage capacity including surcharge storage: Approximately 350 fort of Abboths Road would be invended along east side of Reservoir Queing a PMF story. Dikes - Floodwalls (overflow & non-overflow) - Low reaches along the Reservoir perimeter:

PRODUCT 2841 (NEWS) Inc., Grates, Mars. 01450

الم المحدد عام المداد عام المداد	<u> </u>
SHEET NO	OF
CALCULATED BY	DATE
CHECKED BY	DATE

Drainage Area Subarea 1 - 64 sq. mile Subarea 2 - 12.6 sq. mile Total Area - 19.0 sq. mile Estimation of Lag Time Subarea - 19.0 sq. mile Festimation of Lag Time Subarea - 19.0 sq. mile 10,400 x 100 = 2.17. Subarea - 19.0 sq. mile Line of Easin = 10,400 x 100 = 2.17. Check of Lag Time Ving Linesley, Koher & Paulus Equation Line of Paulins Subarea 2 10,400 x 100 = 2.17. Subarea 2 10,400 x 100 = 2.17. Subarea 2 10,400 x 100 = 2.17. Check of Lag Time 10,400 x 100 = 2.17. Subarea 2 10,400 x 100 = 2.17. Subarea 2 10,400 x 100 = 2.17. Subarea 2 10,400 x 100 = 1.047. Subarea 2 10,400 x 100 = 1.047. Check of Lag Time 10,20 - 1.04 7. Check of Lag Time 10,400 x 100 - 1.04 7. Check of Lag Time 10,20 - 1.04 7. Check of Lag Time 10,400 - 1.04 7. Check of Lag Tim	- 1/c4.5\
Subarea 2 - 12.6 sq. mile Total Area - 19.0 sq. mile Subarea - 19.0 sq. mile 10,400 x 100 = 2.19. Check of Lag Time Using Linsley, Kohler & Faulus Equation 10,400 x 100 = 2.19. \$\frac{10,400}{10,400} \times \frac{100}{100} \times \fr	
Total Area - 19.0 sq mile Festimation of Lag Time Subarea - 19.0 sq mile Subarea - 19.0 sq mile 10.400 x 100 = 2.19. Check of Lag Time Using Lineley, Kohler & Paulus Equation 10.400 x 100 = 2.19. 10.72 (\frac{3.30x(151)}{10.21} \frac{3.8}{2.67} \frac{1.5}{2.67} 1	
Estimation of Lag Time Subarea - 1 tp = ct (.955)(L.Le) 3+25tR = 1,80(.955)(3.03 x 1.51) 3+25(.5) = 2.94 hrs. Slope of Easin = \frac{2200-1780}{10,400} \times 100 = 2.17. Check of Lag Time Using Linsley, Kohler & Paulus Equation tq = 0.72 (\frac{1.Le}{V_S}) = 0.72 (\frac{363x(5)}{VOL})^{28} = 2.67ht. Subaron 2 tq = ct (.957)(L.Le) 3+25tR = 217(.955)(6.06 x 227) 3+25(.5) = 4.68 hours Slope of Easin = \frac{1920-1680}{28000} \times 100 - 1.047. Check of Lag times Vaing Linsley, Kohler & Paulhus Equation tq = 0.72 (\frac{1.Le}{V_S})^{38} = 0.72 (\frac{6.06x(27)}{V-0104})^{-38} = 4.64 hrs. In HEC-1 input for subareal (tq = 2.844 cq = 0.63) and for subarea 2	
to=c+(.955)(L.L _c) ³ +25+R = 1,80(.955)(3.03 x 1.51) ² +.25(.5) = 2.84 yrs. Slope of Easin = \frac{2000-1780}{10,400} \times 100 = 2.17. Check of Lag Time Using Linsley, Kohler & Paulus Equation to=c+(.955)(L-L _c) ³ = 0.72 (\frac{308x1.51}{021}) ²³ = 2.67hr. Subaron 2 to=c+(.955)(L-L _c) ³ = 0.72 (\frac{308x1.51}{021}) ²³ = 2.67hr. Subaron 2 to=c+(.955)(L-L _c) ³ = 0.72 (\frac{308x1.51}{021}) ²³ = 2.67hr. Check of Lag times Using Linsley, Kohler & Paulhus Equation, to=0.72 (\frac{112}{13}) ³⁸ = 0.72 (\frac{308x227}{1004}) ³⁸ = 4.64 hrs. In HEC-1 input For subareal (to=2.84 & co=0.63) and for subarea 2	Estimation of Lag Time
= 2,84 hrs. Slope of Easin = \frac{2000-1780}{10,400} \times 100 = 2.17. Check of Lag Time	
Check of Lag Time Using Linsley, Kohler & Paulus Equation to: 0.72 (\frac{1.1c}{\substack{\sub	
Using Linsley, Kohler & Paulus Equation $t_0: 0.72 \left(\frac{1 \cdot L_c}{\sqrt{s}} \right)^{38} = 0.72 \left(\frac{5.03 \times 1.51}{10011} \right)^{238} = 2.67 \text{ hr.}$ Subarca: 2 $t_0: 0.72 \left(\frac{1 \cdot L_c}{\sqrt{s}} \right)^{38} = 0.72 \left(\frac{5.03 \times 1.51}{10011} \right)^{238} = 2.67 \text{ hr.}$ Slope of Rosin = $\frac{1920 - 1680}{23000} \times 100 = 1.049$. Check of Lag time Using Linsley, Kohler & Paulhus Equation, $t_0: 0.72 \left(\frac{1 \cdot L_c}{\sqrt{s}} \right)^{38} = 0.72 \left(\frac{6.06 \times 2.27}{\sqrt{-0.104}} \right)^{38} = 4.64 \text{ hrs.}$ In HEC-1 input for subarcal ($t_0: 2.84 \text{ cp} = 0.63$) and for subarca 2	Slope of Easir, = $\frac{2000-1780}{10,400} \times 100 = 2.17$.
Subaren: 2 to = c4(.955)(L.L.) + .25 + R = 217(.955)(6.06 x 227) 3 + .25(.5) = 4.68 hours flope of Basin = 1920-1680 x 100 = 1,04% Check of Lag time Using lineley, Kohler & Paulhus Equation, to = 0.72(\frac{1.16}{1.36}) 38 = 0.72(\frac{6.06x227}{1.0104}) 38 = 4.64 hrs. In HEC-1 input for subarea (to = 2.84 & co = 0.63) and for subarea 2	Check of Lag Time Using Linsley, Kohler & Paulus Equation
$t_{p} = c_{1}(.955)(L \cdot L_{c})^{\frac{1}{2}} \cdot .25 + R = 217(.955)(4.06 \times 227)^{\frac{3}{2}} + .25(.5) = 4.68 \text{ hours}$ $Slope of Bosin = \frac{1920 - 1680}{23000} \times 100 = 1,04\%$ $Check reflagtime$ $Vaing Lineley, Kohler & Paulhus Equation,$ $t_{p} = 0.72 \left(\frac{L \cdot L_{c}}{\sqrt{S}}\right)^{\frac{38}{2}} = 0.72 \left(\frac{6.06 \times 227}{\sqrt{0.104}}\right)^{\frac{38}{2}} = 4.64 \text{ hrs.}$ $In . HEC-1 input for . subarea! (t_{p} = 2.84 & c_{p} = 0.63) and for . subarea?$	$t_0 = 0.72 \left(\frac{1.1c}{\sqrt{s}} \right)^{\frac{38}{3}} = 0.72 \left(\frac{3.03 \times 1.51}{\sqrt{011}} \right)^{\frac{38}{3}} = 2.67 \text{ hr.}$
Slope of Basin = 1920-1680 X 100 = 1,04%. Check of Lagtime Using Lingley, Kohler & Paulhus Equation, tp = 0.72 (L.L.) 38 0.72 (6.06x2.27) 38 = 4.64 hrs. In HEC-1 input for subareal (tp = 2.84 & cp = 0.63) and for subarea 2	
Check of Lagtime Veing Lineley, Kohler & Paulhus Equation, $t_p = 0.72 \left(\frac{1.1c}{V_s}\right)^{.38} = 0.72 \left(\frac{6.06\times2.27}{V_s}\right)^{.38} = 4.64 \text{ hrs.}$ In HEC-1 input For subarea! $(t_p = 2.84 \text{ d.cp} = 0.63)$ and for subarea?	
Using Linsley, Kohler & Paulhus Equation, $t_p = 0.72 \left(\frac{L\cdot L_c}{VS}\right)^{.38} = 0.72 \left(\frac{6.06x2.27}{V.0104}\right)^{.38} = 4.64 \text{ hrs.}$ In HEC-1 input for subareal (tp = 2.84 d cp = 0.63) and for subarea?	
$t_{p} = 0.72 \left(\frac{\text{L.Le}}{\sqrt{3}}\right)^{.38} = 0.72 \left(\frac{6.06 \times 2.27}{\sqrt{.0104}}\right)^{.38} = 4.64 \text{ hrs.}$ In .HEC-1 input for subarea! (tp = 2.84 d cp = 0.63) and for subarea?	Check of Lagtime
In .HEC-1 input for subarea! (to= 2.84¢ co= 0.63) and for subarea?	Vaina Linsley, Kohler & Paulhus Equation,
	$t_{p} = 0.72 \left(\frac{L \cdot L_{c}}{V_{s}} \right)^{.38} = 0.72 \left(\frac{6.06 \times 2.27}{V_{s} \cdot 0.104} \right)^{.38} = 4.64 \text{ hrs.}$
(To = 4/08 of Co=0.63) were used to develop "mudge" whit had enough	In HEC-1 input for subarea! (tp=2.84d cp=0.63) and for subarea? (tp=468 & cp=0.63) were used to develop snyder to unit hydrograph

SHEET NO OF DATE OF DATE

PROBABLE MAXIMUM PRECIPITATION

SUBAREA-1

From Hydrometeorological Report #33, Probable Maximum Precipitation = 22.5 inches (For 200 Squalle - 24 hr. duration)

Depth-Area-Duration Relationship (Zone 2)

6 hr. - . 116%. 12 hr. - . 127%

24 hr. - 141%

SUBAREA-2

From Hydrometeorological Report #33 Probable Maximum. Precipitation = 22.5 inches (For Zoo squalle - 24 hr. duration)

Depth-Area- Duration Relationship (Zone 2)

6. hr. - 1149a

12, hr. - 124%

24 hr. - 137%

FORM 204-1 Available from (NEBS) Inc. Groton, Mass. 01450

JOB	variliais tra,	Uam #571
SHEET NO		OF
CALCULATED I	8, W.	DATE6/5/80
CHECKED BY_		DATE

							SCALE							===	
				•					-	•					
, .	Stage - D	ischarç	ge . C.	stug mic	ation	•		,							
1 1 4	i I :				,	•		(Tw	in Pa	rallel	Sys	tem).		
. Nor	mal Pool	Elevati	on ±	1661.	C .	_	R	iser 4			-				
	vation of C			i		1				~			RCE	, n	(=. DI
	rgenky Spi			1				ength							,,,,,
						•		9						7 ^	
	ation of to	• ,				•	. 51	levati	on e	Thie	6 7 F1	بe	102	,,0	
. Hev	ation of 7	[allwate	·	1622.	ગ ,	•	• •					٠	٠	•	
	<u>.</u>		•		; ;	,			•				•	• •	
		!	•		• •	•	,								•
Ass	umptions:	:	:					,		•		•			
		• -	,	;	, .			1 .			,				,
	To com	oute -h	e dia	charae	2 thru	.the c	isec.	weic	fla	n ear	patio	n w	ر ځد	sed	
• •	for the	an cacycoli	الملاء م	``````````````````````````````````````	1663	Λ Δ+	ر، به د. مارلاد	ر. دود		ሳ ፣ ነራሪ 3	^ !	1 5	امین	L	, ,
• •	for the	T	1 510	عاد ک	ιφφυ.	O, AI	Stud	jes ai		1 GG 5	, O 7	ו בי	read	wati	e (
	at the inle				กลุ่นเวบ	0+ th	K ((6	ect or	- Cic.	פר טאן	a d	icch	لي: ان	ان خه	imputer
, , ;	thru pipe	e outlet	count	cl.	· 1	-				;		•	,		
				1											
				•			•		•			•		•	•
②	Coefficier	t of We	eir.= 3	3,0		·						•		•	
	Coefficier Aureau c				udash	c En	a inee	ina i	C. a.u	, , lac #	 5 u	io e	O	1 +0	•
3	Bureau c	f Public	c Rica	ds Hu											
3	Bureau c	f Public Heady	c Rica vater	ds Hu dssum	ring I	Enlet	d Ov	Hetc	Contro	ol. L	ong	har	d c	alcul	
3	mere was compute Boisean c	f Public Headw de to c	c Ria vater compl	ds Hu assum te he	ving I	inlet ter 'c	edou \$ On	tlet°¢ d.the	iontro limi	ol. L t. cf	ong the	har	dc it.	alcul	alions
3	Bureau c	f Public Headw de to c	c Ria vater compl	ds Hu assum te he	ving I	inlet ter 'c	edou \$ On	tlet°¢ d.the	ini Limi	ol. L t. cf	ong the	har	dc it.	alcul	alions
<u> </u>	mere was compute Boisean c	f Public Headw de to a Uting d	c Rla vater compl ischai	ds Ho assum te ho ige th	ving I	inlet ter 'c	edou \$ On	tlet°¢ d.the	ini Limi	ol. L t. cf	ong the	har	dc it.	alcul	alions
<u> </u>	Bureau c compute were mad In comp	f Public Headw de to a Uting d	c Rla vater compl ischai	ds Ho assum te ho ige th	ving I	inlet ter 'c	edou \$ On	tlet°¢ d.the	ini Limi	ol. L t. cf	ong the	har	dc it.	alcul	alions
3	Bureau c compute were mad In comp	f Publiched with the to a string d	c Rha votter complissible ischal e ign	ds Ho assum the ho ge the prod.	ving I	inlet ter 'c	edou \$ On	tlet°¢ d.the	ini Limi	ol. L t. cf	ong the	har	dc it.	alcul	alions
3	Bureau c compute were mad In comp friction lo	f Public Headw de to a uting d pss wer	c Rica vater compu ischai e ign	ds Ho assumate he age the pred.	ving I	inlet ter 'c	edou \$ On	Het c dthe cy so	Lontro Limi Pillwo	ol. L t. cf	ong the	har	dc it.	alcul	alions
3	Bureau c compute were mad In comp friction lo	f Publiched with the to a string d	c Rica vater compu ischai e ign	ds Ho assumate he age the pred.	ving I	inlet ter 'c	edou \$ On	tlet°¢ d.the	Lontro Limi Pillwo	ol. L t. cf	ong the	har	dc it.	alcul	alions
3	Bureau c compute were mad In comp friction lo	f Public Headw de to a uting d pss wer	c Rica vater compu ischai e ign	ds Ho assumate he age the pred.	ving I	inlet ter 'c	edou \$ On	Het c dthe cy so	Lontro Limi Pillwo	ol. L t. cf	ong the	har	dc it.	alcul	alions
3	Bureau c compute were mad In comp friction lo	f Public Headw de to a uting d pss wer	c fila vater compl ischai e ign	ds Ho assumate he age the pred	ring I	inlet ter 'c	edou \$ On	Het c dthe cy so	Lontro Limi Pillwo	ol. L t. cf	ong the	har	dc it.	alcul	alions
3	Bureau c compute were mad In comp friction la	f Public. Headwide to a ting d	c fila vater compl ischai e ign	ds Ho assumate he age the pred	ring I	inlet ter 'c emo	edou \$ On	Het c dthe cy so	Lontro Limi Pillwo	ol. L t. cf	ong the	har	dc it.	alcul	alions
3	Bureau c compute were mad In comp Priction la	f Public. Headwide to a ting d	c Rica vater compr is chai e ign	ds Ho assumate he age the pred	ring I	inlet ter 'c emo	e on	Het c	Lontro Limi Pillwo	ol. L t. cf	ong the	har	dc it.	alcul	alions
3	Bureau c compute were mad In comp Priction la	f Public. Headwide to a uting d oss wer	c flica votter compliants e ign	ds Ho assum the ho age the prod	ring I	inlet ter 'c eme	e on	Het c	Lontro Limi Pillwo	ol. L t. cf	ong the	har	dc it.	alcul	alions
3	Bureau c compute were mad In comp Priction la	Headwhe to a ting d	c flica vater compu ischai e ign	ds Ho assum the he ge the	ring I	inlet ter 'c em	e ou	Het c	Lontro Limi Pillwo	ol. L t. cf	ong the	har	dc it.	alcul	alions
3	Bureau c compute were mad In comp Priction la	Headwhe to a ting d	c flica vater compu ischai e ign	ds Ho assum the he ge the	ring I	inlet ter 'c em	e ou	Het c	Lontro Limi Pillwo	ol. L t. cf	ong the	har	dc it.	alcul	alions
3	Bureau c compute were mad In comp Priction la	Headwhe to a ting d	c flica vater compu ischai e ign	ds Ho assum the he ge the	ring I	inlet ter 'c em	e on	Het c	Lontro Limi Pillwo	ol. L t. cf	ong the	har	dc it.	alcul	alions
<u> </u>	Bureau c compute were mad In comp Priction la	Headwhe to a ting d	c flica vater compu ischai e ign	ds Ho assum the he ge the	ring I	inlet ter 'c em	e on	Het c	Lontro Limi Pillwo	ol. L t. cf	ong the	har	dc it.	alcul	alions
3	Bureau c compute were mad In comp Priction la	Headwhe to a ting d	c flica vater compu ischai e ign	ds Ho assum the he ge the	ring I	inlet ter 'c em	e on	Het c	Lontro Limi Pillwo	ol. L t. cf	ong the	har	dc it.	alcul	alions

JOB - 7- (d ()	Jam # NY 571
SHEET NO	OF
CALCULATED BY R, W.	DATE6/5/30
CHECKED BY	DATE

SCALE

Stage - Disc	harne C	omputations
		1

21		Weir			<u> </u>	·	·	Control			
Elev.	5tage	We ir Dischage	Inlet Hw/o	Control	0410 2	et Co	3	HW	Emerpercy Spillwy		Total
			70	Ηw			HW		Dis Charae	Discharge	Cischarac
41 .	ft.	cfs	**************************************	++.	ft.	<u>f</u> t.	f †.	<u>-f</u> †.	cfs	c fs	cfs
1661.0	, O	0	- .		-	-;	-	_	. — .	, 0,	J
1663.0	2	166	4.0	14.0	3.4	11.5	10.4	14.0	· O	332	3 3 2
1665.0	4	-#	-	<u>-</u>	•	39	38	38		. 636	5 2 6
\6;7.O	6	· ·	• • • • • • • • • • • • • • • • • • • •	-	3.5	41	40	40	0	552	652 652
1669.0	5		- -	٠ ١ -	3,5	4 3	42	42	0 .	్ ఓవ	648
1671.0	10		· ·		3.5	45	44	44	0 .	684	. 6 5 4
1673.0	12	-	 1 -	• • ·	3,5	47	46	46	. 0	. 698	638
1675.0	14		·- ·	# :: 	3.5	49	48	48		714	714
1677.0	1.6	-	<u>-</u>	<u>.</u> :	3,5	51	50	50	0	726	726
1679.0	IB	<u></u>			3,5	53	52	52	0	740	.740
1681.0	20		÷ ÷	+ 	3 .5	5,5 5,5	5.4	5 <u>.</u> 4	3425	756	4181
1783.0	2,2	-	÷	• · · · · · · · · · · · · · · · · · · ·	3.5	57	56	56	11,515	 770	i2,285.
1635.0	24	-	-		3.5	59	50	58	21,625	. 784.	22,408
1686.6	25.6	-	-	÷	3.5	30 .6	59.6	59.6	31,170	792	31,962
1687.5	24.5	-	-	-	3,5	41.5	100.5	60.5		. 199	37 34 <i>C</i>
	l buo *	let Cont	rol vill	govern 1	from ele	vation	1665.0.	and abu	ve Dischaza terad	by H= (1+ke+	19n2 V2

FORM 204-1 Available from NEBB Inc. Groton Mass 01450 AN INC. MESS HELDING FR TO TE COM

McFarland-Johnson Engineers, Inc.

171 Front Street BINGHAMTON, NEW YORK 13905

JOB 14 4 4 (CO)	anc atucy i	ZAM #1 571
	•	OF
CALCULATED BY R	, W	_ DATE615185
CHECKED BY		_ DATE

	CHECKED BY DATE _	
	SCALE	
Sample Calculations Riser Discharge		
Stage @ 1663.0 Q= CLH 3/2.		·
C= 3.1 Q= 3.1(19)(2) L= 19' Q= 166 cfs H= 2' Cancuted Head with		hat
top of riser will not	be submerged, thus each pipe will offs., thus total discharge = 2x.166 =	be
Pipe Control		
At a stage of 1665.0, the computed more than the stage elevation. Therefore outlet control		
HW= H+ho=Lso. HW= 1665.0-1627.0-38. H= 4.5-3.5+30'= 39'		
H= (1+Ke+ 29n2L) V2 R4s). Zg.		
$39 = (1+.1+\frac{29(.012)^{2}(240)}{(.875)^{4/3}})\frac{V^{2}}{(4.875)^{4/3}}$ $V = 33.06$	A	
Q = AV Q = 9.62(33.06) Q = .318 cfs $X ? pipes =$. 636 c-f5	,

SHEET NO OF DATE SISSON

CALCULATED BY R. W. DATE SISSON

CHECKED BY DATE

SCALE	
	٠
Emergency Spillury	
	•
5tage @ 1681,0	
Elev. 1679.0	
200	2501
Harris Ha	
- de-1	
Rezervoir	
	i .
. Q thru Pipcs,	•
. Hw= 1681.0-1627.0= 54.0', Q=AV	
Q=9.62(39.3)=376.82 pipes = .756cfs	
55= (2.297) (4.4).	
Y ² = 1486	*
Discharge thru anir equacy spillways,	ı
$H = .1681.0 - 1679.0 = 2^{1}$	ţ
and the same of th	•
Ignoring approach velocity & friction loss. H= det 29 Re	
	,
Computations involve assuming a discharge thru each spillway and ther	٠.
calculating ! de and . ZgAz Then balance two sides of equation . Table	8-5 of
King & Brater "Handbook of Hydraulics was used to compute de	
Thru 250'Spillway, Assume Q= 1800, K'c = .0018, 446=.0031	•
Thru 250'Spillway, Assume Q= 1800, K'c = .0018, de/b= .0031 dc= .776, 27Az= 1.223 dc+27Az= .776+1.22=1.996 = 2.0	•

FORM 204-1 Available from (NCB3) Inc., Groton, Mass 01450

108 Hydistais insy.	= 5T1
SHEET NO	OF
CALCULATED BY R.W.	DATE
CHECKED BY	DATE

			SCALE		
Stage	- Storage Data				
. Elevation (ft.)	Surface. Area (Acres)	Ava. Area (Acres)	Incremental Storage (Acre-97.)	Total Storage (Acre ft.)	Remarks.
1661.0	80	:		·	
1679.0	174	127	2286	2286	Surface fireas are directly taken from
1684,2	204	189	183	3269	S C.E. Jeeign report Since they are computed
1686.6	216	210	504	3773	with maps of 2 foot and 5 foot contour
1687.5	220	218	200	3975	intervals
	· · · · · · · · · · · · · · · · · · ·			•	
j	· · · · · · · · · · · · · · · · · · ·				
,					• • • •
	. ,	1		• • • •	
			* 1		
					•
	.) • •	r > + + + + +	• • •
	• •		* *	•	•
			•		•

FORM 204-1 Available from NEBS Inc., Groton, Mass 01450

JOB Hydrocaic Tray [1	m NIFECE
SHEET NO S.C.S. SITE S	or.
CALCULATED BY PHE	•
CALCULATED BY FIE	DATE
CHECKED BY	DATE

Stage Dis	charge C	omoutations
	1	,

Elev.	Stage	Orifice	Inlet	Control	Outle			Cartiol	Riser 4	Pipe	Emergency-Spill	Total
		Dischage	a\mu	HW	<u>dc+d</u> 2	Н	HW	HW		Dischage		Dischurge
f†.	ft.	cfs		ft.	fł.	£ 1 ,	-ît .	£+	ft,	cf5	<u>cfs</u>	cfs
752	Q	Q			-	•	,	,	٠			0
754	2	18.8	• 4	;		•	•				, .	18. 8
756	4	30.4	.6	2.4	•	•	,	,	,	•		30.4
758	6	3 9 .6	.67	2,7	·	•	•	,				38.6
: 760	8	45.4	.74	3.0	•	•	,					45.4
762	10	51.3	.B	3.2				٠				51.3
164	12	56.5	.85	3.4	3.I	.9	1,0	3.4		•	•	56.5
166	14	61.3	.88	3.5	3.15	.94	1.09	3.5	,	,		61.3
68	16	65.8	.93	3.72	3.2	.9 <u>.</u> 5	1.15	3,72		•	, ,	65,8
70	18	70	.98	3.92	3.3	1.20	1.5	3.92		; ;	, , ,	70.0
72	20	73.9	1.01	4.04	3.35	1,48	1.83	4.04		•		73.9
174	22	59	5.65	22.6	4.	19.25	20,25	22.6	Riser Control 1,25	226	. ,	285
176	: 2 4	19	· · ·	31.44	4	64.78	: 35,78	35,78	Riser(at) 3,25	365		384
78	26	• <u>-</u>		· ÷	4	38	39	39	PipeCan 39	400		400
180	28	-		-	4	40	41	4	\$10€ 609 4]	4101 411		411

McFarland-Johnson Engineers, Inc.

171 Front Street BINGHAMTON, NEW YORK 13905

JOB	ع <u>ت</u>
SHEET NO 5. C.S. SITE 5	OF
CALCULATED BY PHE	DATE 6/6/50
CHECKED BY	DATE

Stage · Discharge Computations (cont.)

					V		<i>\\</i>							
	Elev	Stage	Orifice		Cotino	0416 0416 2	t Contr		Control		l Pipe	Emergency, Spilluny	Total	
			Dischage	70	HW		Н	HW	HW	<u>H</u>	Dischorg	٠,	Discharge	
	4	t+	cfs		<i>t</i> +,	£ŧ.	ft.	ft.	t+	tt.	cfs	c-fs	c-fs	
	1782	3,0			-	4	42	4,3	4,3	4.3	421	, 0.	421 .	
	1784	32	-	•	1.	4	44	45	4.5	45	431	2500	2931	
	17 8 6	3.4		-	1.	4	46	4.7	47	47	441	, 8000	844 [
	1788	36	•	.] .	1	4	48	49	49	49	450	16,300	16,750	
	1759.2	37. Z	_			4	49.2	50.Z	50,2	50.Z	456	22,000	22,456	
			,	•				ŀ		•		•		
,	,								,			•	,	
		,		,	,						,	•	. ,	
	į.	•			,	,		٠	,	;	. ,	. ,		
į	,	•	-	•				à		•	,	,		
	· • •	i			•		,			•	,	,		
	. •	٠	,		,			,		•	·	•	•	
	•	·	•		,			•	,			* ' *	,	
İ	*		·	•		·	1	,	1	i				
		7	·	·									. , .	
				,	·			,						
						,						, 4	,	
							,	:	,		,	•		
				,				•				•	,	
,			,	,	,									
	,							ļ	,		,			
,	·				,	,					,			
				!					l	1	1		I	

McFarland-Johnson Engineers, Inc. 171 Front Street

JOB TYPI TO CITURE.	$\frac{1}{1} = \frac{1}{1} \cdot \frac{C(1)}{1} = \frac{1}{1} \cdot \frac{C(1)}{1}$
SHEET NO.	OF
CALCULATED BY PHE	_ DATE 6/6/80
CHECKED BY	DATE

BIN	GHAMTON, NEW YO	RK 13905		CHECKED BY DATE					
			SCALE						
	Stage	Storage Do	ata	· · · · · · · · · · · · · · · · · · ·	, ,				
Elevation (ft)	Surface Area (Acres)	Avg. Area (Acres)	Incremental Storage (Acre-fert)	Total Storage (Acre-ft.)	Remarks				
1752	8.5	e.5							
1755	11.6	10.1	30,3	30.3					
1760	19,4	 15,5	77.5	107.8					
1765	27.0	23.2	. 116,0	223.9	The state of the s				
1770	36.4	31.7	158,5	382.3					
 177 <u>5</u>	50.8	43.6	218	60.3					
1780	67.1	58.9	294.5	8948					
1785	82.3	74,7	373.5	1268,3					
1790	95,2	€8.8	444	1712,3	``				
, , , , , , , , , , , , , , , , , , ,				• • •					
, , , , ,									
			· · · · · · · · · · · · · · · · · · ·	• • • • •					
, ,		· · · · ·							
,	•		•	,					

MODULE 2041 (NESS) Inc., Green, Mar. 61466

SHEET NO.	OF
CALCULATED BY	DATE
CHECKED BY	DATE

					KED 8Y		DA1		
		<u> </u>		SCAL	E				
- •	en	E	eer en ger aft tots Dubberee r. Der 06 mei eelbe	, and the set of the property and the second		•	in hiệte di statutin sa akst. sa	· · · · · · · · · · · · · · · · · · ·	•
		1/4 slope = . 02					d/s slope	- 0 <i>22</i>	-
		itt ziele - in-		1686.6		THE STATE OF THE S	rita "avobie		•
					·		***************************************		7
•	, 1 <u>3</u>	1	3 ,,	9.0		3		3,	i
		200		1.0		1	250/	->	
	· финанский и меферинций эн			********		utak - de sessek kalkelisaksiassa sugara, 1940	ne op en overe doerneauwy gry maker	** * ************** ** ***********	
 -	. Maximum.	Discharge thru	. 2 emergene	y spillw	ays_= 31	,170 cfs	e 1686.6		
							personal di Santano Santano (sa Maria		
		000 cfs. thru		•	1 channel		personal property of the second		.
	$Q = \Pi$	170 cfs tha	(250' bu			1 .4			.
······································	· · · · · · · · · · · · · · · · · · ·	14;000 x. 06			·	x.06			
*****	K'= (14;000 x. C6 2(0) ^{3/2} (,0/2) ^{7/2}	= ,0041		K = (250). 42 (.022) ⁴	= ,0028		****
							ــــــــــــــــــــــــــــــــــــــ	·-	
		029 (200) = 5.9	5 		d.,	22 (250)	7 C'D'	· prac sessan	
	·	12609 = 11.	14600	, recent of the same and desperature of the	V 1	1170/1465	.7 - 11.71	 'leec	
			1	3 ,	1	:			
1			1 1	!	1	1	,		
					!			1	
						1			+
· · · · · · · · · · · · · · · · · · ·					,	1 1	1 1		
!						<u> </u>	I		
	1					1	1 1		
<u> </u>							; ;	1 1	
						ļ.,		<u> </u>	 4.
						<u> </u>			•
· · · · · · · · · · · · · · · · · · ·							1 1		
				- ! ! !			! i ,	<u> </u>	
·	 				-	 		1 1 	-
	1 1		-		1	<u> </u>		rringiniyan merek - a mi shindiringili	
						- '		M MAN, MANER SOME MORALE MORALE MANERAL MANERA MANERA MANERA MANERA MANERA MANERA MANERAL MANERA M	
 -	1			- : : :	;	- 	1 1		
	1 1				<u> </u>		. ;		10 ar 1000

505 10,000 14,000 22,000 20,000 34100 CL & EZZER CO MADEIN USA 46 0782

32,000 - 40co 38000 MINTH & ESSER CO. MADE IN USA. 46 0782

FEDDO HIURUGKAPH PACKAGE (HEC-I) UHM SAPEFI VERSION - UJUL 1973 DASI MUDIFICATION 20 run 12 ***************** A1 44 و د ů 150 $\omega \mathbf{1}$ 5 J

12

13

14

15

Į o

17

14

1 9

21

22

2+

د 2

25

2 1

2ે ઇ

24

30

31

32

33

34

30

3/

3 7

40

43

AVALUATE OF DAM UVERTUPPING USING MATIOS OF PMF APPROLUGICATIONAULIC ANALYSIS OF SAFETY OF MY 571 KALLOS OF PAF ROUTED THROUGH THE RESERVOIR 3) 0 0 0 1 J 1 .35 .50 . 05 .80 ٨ υ 0 6.1 OF THELOW HYDROGRAPH SUBAREA 1 CAUCULATION 11 6.4 ð 6.4 0 0 0 110 127 141 0 0 1 U . 33 -.1 ٨ ĸ U 1 0 0 0 ٧1 ROUTING OF LIFLOW MYDROGRAPH ì U U 1 1 Y 1 1 O. 0 12 U 4 J 108 250 460 65^y 552 755 1045 1195 12 1345 1510 1025 13 Ü 30. 1 45.4 13.9 285 383 400 421 2931 73 3+41 10733 22456 . 0 h U N.1 CALCULATION OF INFLUM HYDROGRAPH SUBAREA 2 ø 12.6 U 12.6 0 Ü 0 ť 22.5 114 124 137 ï 0 Û 10 .1 0 0 4.58 .03 λ -.1 ĸ CUADINE MYUKUGRAPHS SUBAREA 1 AND SUBAREA 2 N1 ٨ 51 ROUTING OF INCLUM HIDROGRAPH Ĭ 0 1 1 ¥ 1 υ U 0 0 12 Û 260 . 00 1050 2650 1575 2285 3040 3775 3715 12 13 v 332 052 684 714 740 31962 4181 12285 22108 13 37045

PREVIOU OF BEGGENCE OF STREAM METHORK CALCULATIONS

ROVUEE REDROGRAPH AE ROUTE REDROGRAPH AE CONSTREE 2 REPROGRAPH AE ROUTE HEORGERAPH IO EVE OF REERORK 1 2 2 2 3

FUUUD MYDROGRAPE FACKAGE (MEC-1) JAM SAFEIY VERSION JULY 1970 GAST MUDIFICATION 20 TES 19

> 15-Jub-00 11:04:00 TIME OF EXECUTION

> > AVALISIS OF DAM OVERTOPPING USING RATIOS OF PMF midRoudgic-nidraudic analysis of safety of NY 571 RATIOS OF PMF ROUTED THROUGH THE RESERVOIR

JOB SPECIFICATION walk ILAY IHE NIMI METRO IPLT IPKI NSTAN ichik 14 12 150 Ü U 30 u 0 LROPT TRACE JUPER NAT

MULII-PLAN ANALYSES TO BE PERFORMED NPLAH = 1 NRTIO = 6 LRTIO = 1 0.50 0.65 0.80 1.00 KILOS= 0.20 U = 35

SUB-APEA RUNUFF COMPUTATION

CAUCULATION OF INFLOW HYDROGRAPH SUBAREA 1

JPLT INAME ISTAGE 100.02 I L C O v ITAPE JPRT LOING

HYDROGRAPH DATA TRSPC RATIO LOCAL TAKEN SHAP 1SHUW ISAME lhiui Lung TRSUA 6.40 0.00 6. ±0 0.00 0.000

PRECIP DATA

848 R72 PhS 86 R12 R24 RYD 22.50 110.00 127.00 141.00 0.00 0.00 0.00 0.00

TRSPS CUMPOTED BY THE PRUGRAM 15 0.800

LUSS DATA STRKS STRTL CNSIL ALSMX RTIMP LRUPT SIKKP Kiluu ERAIN RTIOK DUTKR 0.10 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00

> UNIT HYDROGRAPH DATA 12= 2.84 CP=0.63 0 =A1N

> > RECESSION DATA

5TRIU= -2.00 uRCah= -0.10 RT16R= 2.00 APPRIXIMALE CLARK CUEFFICIENTS FRUX GIVE: SUYDER OF A'D TY ARE TC= 0.50 AND R= 5.20 INTERVALS

> Unil minkugkaen 31 ENG-OF-FERIOD URDIVATES, GAG= 2.85 HOURS, CP= 0.63 VOL= 1.00 503. 843. 740. 610. 62. 871. 420. 410. 014. 918. 73. 415. 342. 202. 433. 142. 150. 130. 108. 89. 11. 28. 19. 10. 13. ou. 50. il. 54. 9.

U													
40.DA	nt .m.i	e Example	KA1 4	とおじょ	Luss	COMP û	40.JA	HK.KN	PERIOD	RAIM	£XCS	LOSS	COMP 0
1.31	0.30	1	0.05	0.00	0.08	12.	1.02	14.00	70	0.00	0.00	0.00	280.
1.01	1.00	2	J. U.	9.30	0.00	11.	1.02	14.30	77	0.00	0.00	0.00	261.
1.01	1.30	3	0.00	0.00	0.00	10.	1.02	15.00	78	0.00	0.00	0.00	244.
1.01	2.00	4	∪.∪ ù	0.00	U. U5	10.	1.02	15.30	79	0.00	0.00	0.00	228.
1.01	2.30	Š	0.08	0.00	0.06	9.	1.02	10.00	90	U.00	0.00	0.00	212.
1.01	3.00	n	0.0 5	0.00	0.00	ರ.	1.02	10.30	81	0.00	0.00	0.00	198.
1.01	3.30	1	0.05	0.00	0.06	8.	1.02	17.00	82	0.00	0.00	0.00	185.
1.01	4.00	9	0.00	0.00	0.00	7.	1.02	17.30	83	0.00	0.00	0.00	172.
1.01	4.30	9	0.08	u. 00	9.08	7.	1.02	18.00	84	0.00	0.00	0.00	161.
1.01	5.00	10	0.08	0.00	0.00	6.	1.02	18.30	85	0.00	0.00	0.00	150.
1.01	5.30	11	J.00	0.00	0.00	6.	1.02	19.00	86	0.00	0.00	0.00	140.
1.01	6.30	14	0.05	3.60	0.08	b.	1.02	19.30	87	0.00	0.00	0.00	131.
1.01	7.00	13	0.17	0.12	0.05	13.	1.02	20.00	86	0.00	0.00	0.00	122.
1.01	7.30	14 15	U.17 U.17	0.12	0.05	39.	1.02	20.30	69	0.00	0.00	0.00	114.
1.01	8.00	15	J.17	0.12	0.05	91. 108.	1.02 1.02	21.00	90 91	0.00	0.00	0.00	106. 99.
1.01	8.30	17	J.17	0.12	0.05	205.	1.02	22.00	92	0.00	0.00 0.00	0.00	92.
1.01	9.00	18	0.17	0.12	0.05	3/1.	1.02	22.30	93	0.00	0.00	0.00	86.
1.01	9.30	19	U.17	0.12	0.05	470.	1.02	23.00	94	0.00	0.00	0.00	80.
1.01	10.60	20	3.17	0.12	0.05	55 +.	1.02	23.30	95	0.00	0.00	0.00	75.
1.01	10.30	21	0.17	0.12	0.05	624.	1.03	0.00	96	0.00	0.00	0.00	70.
1.01	11.00	22	0.17	0.12	0.05	581.	1.03	0.30	97	0.00	0.00	0.00	65.
1.01	11.30	23	U.17	0.12	0.05	729.	1.03	1.00	98	0.00	0.00	0.00	61.
1.01	12.00	24	U.17	0.12	0.05	700.	1.03	1.30	99	0.00	0.00	0.00	57.
1.01	12.30	25	1.04	44.0	0.05	854.	1.03	2.00	100	0 00	0.00	0.00	53.
1.01	13.00	26	1.04	0.59	0.05	1079.	1.03	2.30	101	0.00	0.00	0.00	50.
1.01	13.30	27	1.25	1.20	0.05	1505.	1.03	3.00	102	0.00	0.00	0.00	46.
1.01	14.00	26	1.25	1.20	0.05	2161.	1.03	3.30	103	0.00	0.00	0.00	43.
1.01	14.30	29	1.57	1.54	0.05	3029.	1.03	4.00	104	0.00	0.00	0.00	40.
1.01	15.00	30	1.57	1.54	0.35	4059.	1.03	4.30	105	0.00	0.00	0.00	38.
1.01	15.30	١ د	1.90	1.65	0.00	5171.	1.03	5.00	106	0.00	0.00	0.00	35.
1.01	10.00	32	0.03	5.9ช	0.05	6503.	1.03	5.30	107	0.00	0.00	0.00	33.
1.01	10.30	3 3	1.40	1.41	0.05	8351.	1.03	6.00	108	0.00	0.00	0.00	30.
1.01	17.00	34	1.40	1.41	0.05	10274.	1.03	6.30	109	0.00	0.00	0.00	28.
1.01	17.30	35	1.15	1.10	0.05	12046.	1.03	7.00	110	0.00	0.00	0.00	27.
1.01	18.00	30	1.15	1.10	0.05	13340.	1.03	7.30	111	0.00	0.00	0.00	25.
1.01	18.30	37	0.13	0.08	0.65	13895.	1.03	8.00	112	0.00	0.00	0.00	23.
1.01	19.00	33	0.13	0.00	0.05	13539.	1.03	8.30	113	0.00	0.00	0.00	22.
1.01	19.30 20.00	9 د	0.13	0.03	0.05	12461.	1.03	9.00	114	0.00	0.00	0.00	20.
1.01	20.30	10 41	0.13	0.0a 0.0a	0.05	11090.	1.03	9.30	115	0.00	0.00	0.00	19.
1.01	21.00	42	0.13	J.U8	0.05	9629. 8189.	1.03	10.00	116	0.00	0.00	0.00	18.
1.01	21.30	43	0.13	0.00 60.0	0.05	6885.	1.03	10.30	117	0.00	0.00	0.00	16.
1.01	22.00	44	0.13	0.03	0.5	5787.	1.03	11.30	118 119	0.00	0.00 0.00	0.00	15. 14.
1.61	42.30	45	U.13	0.00	0.05	4881.	1.03	12.00	120	0.00	0.00	0.00	13.
1.01	23.00	40	0.13	0.05	0.05	4135.	1.03	12.30	121	0.00	0.00	0.00	12.
1.01	23.30	41	0.13	0.08	0.05	3519.	1.03	13.00	122	0.00	0.00	0.00	12.
1.02	0.00	4 8	v.13	0.00	0.05	3011.	1.03	13.30	123	0.00	0.00	0.00	11.
1.02	0.30	49	0.00	0.00	0.00	2588.	1.03	14.00	124	0.00	0.00	0.00	10.
1.02	1.00	טט	0.00	0.00	U.UU	2225.	1.03	14.30	125	0.00	0.00	0.00	9.
1.02	1.30	51	0.00	0.00	0.00	1906.	1.03	15.00	126	0.00	0.00	0.00	9.
1.02	2.00	32	0.00	0.00	U.00	1621.	1.03	15.30	127	0.00	0.00	0.00	8.
1.J2	2.30	ادد	J. J.	0.00	0.00	1380.	1.03	16.00	128	0.00	0.00	0.00	8.
1.02	3.00	54	0.99	0.00	0.00	128/.	1.03	10.30	129	0.00	0.00	0.00	7.
1.02	3.30	55	U. JU	0.00	0.00	1201.	1.03	17.00	130	0.00	0.00	0.00	7.
1.02	4.00	36	J. UU	0.00	0.00	1121.	1.03	17.30	131	0.00	0.00	0.00	6.
1.02	4.30	31	0.00	0.10	0.00	1040.	1.03	18.00	132	0.00	0.00	0.00	6.
1.62	3.00	20	0.00	0.00	0.00	970.	1.03	18.30	133	0.00	0.00	0.00	5.

MAR

1.02	5.30	59 (1.0	0.00	6.00	910.	1.03 19	.00	134 6.00	0.00	0.00	5.
1.02	5.00	pU U.		-	b49.	1.03 19		135 0.00	0.00	0.00	5.
1.02	0.00	01 0.0			793.		.00	136 0.00	0.00	0.00	4.
1.02	7.00	62 0.0			739.	1.03 20	.30	137 0.00	0.00	0.00	4.
1.02	1.30	n3 0.0			690.	1.03 21	.00	1.00	0.00	0.00	4.
1.02	6.00	64 0.0			b+4.	1.03 21	.30	139 0.00	0.00	0.00	4.
1.04	8.30	05 V.			601.	1.00 22	.00	140 0.00	0.00	0.00	3.
1.04	9.00	00 V.		Ú. UU	560.	1.03 22	.30	141 0.00	0.00	0.00	3.
1.02	9.30	07 0.0		0.00	523.		.00	142 0.00		0.00	3.
	10.00	68 U.		0.00	488.	1.03 23	3.30	143 0.00		0.00	3.
1.02	10.30	69 0.0	0.00	0.00	455.		.00	144 0.00	-	0.00	3.
1.04	11.60	70 0.0) U. UU	0.00	425.		.30	145 0.00		0.00	2.
1.02	11.30	71 0.0	JU U.00		396.		00	146 0.00		0.00	2.
1.04	12.00	72 0.0	0.00		370.		.30	147 0.00		0.00	2.
1.02	12.30	73 0.0	0.00 O		345.		2,00	148 0.00		0.00	2.
1.02	13.00	74 0.0)U U.UU		322.		.30	149 0.00	-	0.09	2.
1.02	13.30	75 0.0	0.00	0.00	300.	1.04	.00	150 0.00	0.00	0.00	2.
								SUM 25,38	22.58 ()(573.)(2.80 71.)(199249. 5642.10)
					04 110 10	20.00.0		e and there			
		_	PeA					L VOLUME 199245.			
		Cı						5042.			
		C C						24.13			
		LiiCni		15.25 387.27				b12.99			
		A (3-)		5202.				8233.			
	4	AC-1 Inuus Cu		641b.				10150.			
		111303 60	17	0110.	, , , , , ,		•				
				naph ar sta		PLAN 1, F	₹ŢĬÛ 1 2.	1.	1.	1.	
	۷.	4.	۷.				· 53.	74.	94.	111	
	1.	1.	3.	٠, ٥,	18.	•	361.	432.	606.	812	
	125.	135.	146.		171.	210.	2779.	2706.	2492.	2218	
	103	1313.	1070.		2410. 9/6.	2668. 827.	704.	602.	518.	445	
	1926.	1030.	1377.		240.	224.	209	195.	182.	170	
	3 t 1 .	324.	2/6.	-	120.	112.	105.	98.	91.	85.	
	159.	1-0.	138. 59.		60.	56.	52.	49.	46.	42.	
	79. 40.	1+. 37.	34.	34.	30.	28.	20.	24.	23.	21.	· •
	20.	10.	17.	10.	15.	14.	13.	12.	11.	11,	1
	10.	9.	۶,• ۶.	ε.	٥.	7.	7.	b .	6.	5.	•
	5.	5.	4.	4.	4.	4.	3.	3.	٠ 3.	3,	,
	۷.	2.	2.	4.	2.	2.	2.	2.	1.	1.	,
	ī.	1.	1.	1.	1.	1.	1.	1.	1.	1.	
	1.	1.	1.	1.	0.	υ.	0.	u .	0.	0,	Ī
			PuA	.k b≕nüüR	24-หปบR	72 - H008	ል ዮሁፕ ፍ	L VOLUME			
		4.	15 2779		_			39849.			
			10 79					1128.			
		1405		3.05				4.63			
			11 13	77.45				122,60			
		AL-		1040.				1647.			
		Inula Cu		1283.	1941.	2031	•	2031.			
	,	-	ripkje	HAFR AT SIA	1 fúk	PLAN 1, 1		_			
	4.	1,	7.	3.	3.	3.	3.	3.	4.	2,	
	2.	۷.	ა.	14.	32.	59.	93.	130.	165.	194	•

.

215.	237.	250.	207.	299.	37a.	527.	756.	1060.	1421.
1610.	4297.	2423.	_	4217.	4004.	4863.	4/39.	4361.	3882.
3370.	2300.	2410.		1709.	1447.	1232.	1054.	906.	779.
007.	307.	103.		420	342.	366.	341.	319.	297.
477.	231.	2:1.	-	210.	190.	183.			
139.	129.	141.				- •	171.	159.	149.
59.	65.		-	105.	90.	92.	85.	80.	74.
		60.	-	53.	49.	46.	43.	40.	37.
35.	32.	30.		25.	25.	23.	21.	20.	19.
17.	10.	15.		13.	12.	11.	11.	10.	9.
7.	ბ•	٥.	•	7.	ó.	ь.	5.	5.	5.
4.	4.	*•		3.	3.	3.	3.	2.	2.
4.	۶.	۷.	2.	2.	2.	1.	1.	1.	1.
1.	1.	1.	1.	1.	1.	1.	1.	1.	1.
			CH-0 AH39	uk 2+−HC)UK 72-H	JUR 101A	L VOLUME		
		Cr3	4803. 367	1. 138	39. 4:	84.	69736 .		
		Ciro	.13%. 10	4. 3	39.	14.	1975.		
	INC	nesi	5.	34 8.	.07 8.	.45	8.45		
		ન ન	135.	54 205.	.07 214	.53	214.55		
	AC	−r f	132		64. 28		2682.		
	14502 C	9 .4	224	0. 339	35	54.	3554.		
						•			
		п¥	DRUGRAPH AT S	[A 1 F	FOR PLAN 1,	, RTIO 3			
6.	٥.	5.		5.	4.	4.	4.	3.	3.
3.	. ć	7.	20.	45.	d4.	133.	185.	235.	277.
312.	341.	30 1.	384.	427.	539.	752.	1080.	1515.	2030.
2505.	3201.	4170.		0044.	b67J.	6948.	6769.	6231.	5545.
4014.	4094.	3443.	2894.	2441.	2067.	1759.	1505.	1294.	1113.
953.	61J.	593.	544.	601	500.	523.	468.	455.	425.
390.	370.	315.	342.	300.	280.	261.	244.	228.	212.
198.	145.	174.	101.	150.	140.	131.		-	-
44.	92.	80.	80.	75.			122.	114.	106.
50.	40.				70.	65.	61.	57.	53.
		+3.	40.	38,	35.	33.	30.	28.	27.
45.	23.	44.	20.	19.	18.	16.	15.	14.	13.
12.	12.	11.	10.	9 .	9.	8.	8.	7.	7.
6.	۰.	5.	5.	5.	4.	4.	4.	4.	3.
3.	3.	3.	3.	2.	2.	2.	2.	2.	2.
2.	1.	1.	1.	1.	1.	1.	1.	1.	1.
			PEAR D-HO				. AOPAWE		
			oy48. 524			92.	99623.		
		C.48	197. 14			20.	2821.		
	1 14 C i	163	7.			, 07	12.07		
		গ প	193.	იპ 292.	96 300.	48	306.49		
	AC-	r I	260	1. 393	5. 411	.6.	4117.		
	THOUS C	اه ان	320	485	4. 507	18.	5078.		
_			URUGKAPH AT S.	'A 1 F		RTIO 4			
8.	1.	7.	ь.	6.	5.	5.	5.	4.	4.
4.	4.	ь.	20.	59.	109.	173.	241.	306.	360.
400.	443.	4/4.	499,	555.	701.	978.	1404.	1969.	2638.
3301.	4260.	5428.	0078.	7832.	6671.	903∠.	8800.	8100.	7209.
0259.	5323.	44/5.	3702.	3173.	2688.	2287.	1957.	1682.	1446.
1239.	1053.	897.	ø37.	181.	729.	560.	634.	592.	552.
515.	wol.	443.	410.	390.	304.	340.	317.	296.	276.
253.	240.	224.	209.	195.	162.	170.	159.	148.	138.
124.	140.	114.	105.	30.	91.	25.	79.	74.	69.
		•		- •	<i>,</i>	55.	170	/3.	0,,
				*		-	france on		

****** \ F = \

ŧ

. 100	••••								
				4.0	4 -	42	40.	37.	35.
64.			54.	49.	40.	21.	20.	18.	17.
32.	30.	25.	20.	24.	23.			9.	9.
10.	15.	14.	13.	12.	11.	11.		5.	4.
ø.	8.	7.	7.	6. 3.	0.	5.	5. 2.	2.	2.
4.	4.	4.	3.	٥.	3.	٠.		1.	1.
2.	2.	2.	2.	2.	1.	1.	1.	1.	• •
				0	. 50 200	D 100	L VOLUME		
	_		6-HO	UK 24-HUUI	R 72-HOUI	R TOTA	129509.		
	_	FS 90	32. 681	2579 3. 73 91 14.99 72 360.84 1. 5115 0. 6310	. 033.	•	3667.		
		MS 2	56. 19	5. 13.	0 15 6	•	15.69		
	Laca		9.	91 14.9	4 200 4	2 2	398.44		
		MM	251.	12 300.0	# 370.T	2	5352.		
	AC-		330	5 6310	6-01	•	6601.		
	14068 C	I M	417	0. 6310	. 0001	•	00020		
		1.40	6.6. DU 10 E	TA 1 FO	ו ואונם פ	etin 5			
4.6							6.	5.	5.
10.	۶.	ε. 10.	8. 31.	7. 73.	135.	212.	296.	376.	444.
5.	5.	10.	51.	643	Hod.	1204	1728.	2423.	3247.
459.	545.	583.	51. 614. 8219. 4030.	7. 73. 683. 9039. 3905.	10672.	11116.	10831.	9969.	
4137.	5250.	0001.	02170 And0	3005.	3408.	2815.	2409.	9969. 2070.	1780.
7703.	0221*	1164	1030	961.	847.	837.	781.	728.	680. 340.
1525.	1290.	1104.	515	460-	448.	418.	390.	364.	340.
634.	394.	27.	257	240.	224.	209.	195.	182.	170.
31/.	290.	2/0.	129	120-	112.	105.	98.	91.	85.
159.	146.	120.	24.	nû.	50.	52.	49.	46.	42.
79.	27	34	32.	9039. 3905. 961. 480. 240. 120. 00. 30. 15. 8.	28.	26.	2409. 781. 390. 195. 98. 49. 24.	23.	21.
40.	3/•	17.	16.	15.	14.	13.	12.	11.	11.
∠ ∪.	10.	1,.	8.	8.	7.	7.	6.	6. 3.	5.
10.	y •	4.	8.	4.	7. 4.	3.	3.	3.	3.
J.	5. 2.	2.		2.		2.	2.	1.	
۷.	2.								
		ρ	EAK 5-HU	บห 24-หมม	R 72-HUU	R 101/	AP AOTAME		
	(CFS 111	16. ×34	12. 3174	. 110/	•	159396.		
		CMS 3	15. 23	8. 90	. 31	•	4514. 19.31		
	INC		12.	20 18.4	5 19.3	1	19.31		
		M .vi	309.	81 468.7	3 490.3	7	490.39		
		-F 1	416	8. 90 20 18.4 81 468.7 1. 5296	. 6586	•	03074		
	THUUS C	ש ע	513	3. 7766	. 8124	•	8124.		

								•	
			OGRAPH AT S	TA 1 FO	R PLAN 1,	RTIU 6	7.	7.	6.
12.	11.	10.	10.	9. 91.	8.	8.		-	554.
ь.	6.	13.	39.	91.	168.	265.	371.	470. 3029.	
624.	obi.	729.		854.		1505.	2161.		11090.
5171.	0563.	a351.	10274.			13895.	13539.	12461.	2225.
9629.	8189.	6665 .	5787.	4861.	4135.	3519.	3011.	2588.	849.
1900.	1621.	1380.	1207.	1201.	1121.	1046.	976.	910.	425.
793.	139.	090.	644.	601.	560.	523.	486.	455.	212.
390.	370.	345.	322.	300.	200.	261.	244.	228. 114.	106.
196.	185.	172.	161.	150.	140.	131.	122.		53.
ûy.	92.	60.	ь.	75.	70.	65.	b1.	57.	27.
50.	4v.	43.	40.	38.	35.	33.	30.	26.	13.
25.	۷۵.	24.	40.	19.	18.	16.	15.	14. 7.	7.
12.	12.	11.	16.	y.	9.	8. 4.	8. 4.	4.	3.
٥.	b •	5.	5.	5.	4.	-	2.	2.	2.
5 .	٥.	٠, د	۶,	2.	2.	2.	۷.	••	₩ ₩

Lang Salahadiya - 27 Abril - 19

maken. So and he is moved in the helphanest district in

and a service of the second

, -

	**						SFJKAGE 1345.	0015LUw 0.0		6, 6	• S	415.	+67.	407.	100 T	73.	72.	• • •		m g	153	500	1049.	1 (
17	* * * * * * * * * * * * * * * * * * * *	·	•				າດ•ິດ ວິດ•ິດ	> >														7.	•	
14.000 L L L L L L L L L L L L L L L L L L			HOUTING OF LAFEON AYDRUG		32333		40.00	36.40		. 6	19.	19.	421. 415.	• 007 007	292.	73.	71.	, ,		· * ;		.010.	745. 3cl.	•
3 3 4 E H E	*		e Lariboa	15144	Chuis 0.000	45 f P S	100	45		~ 6	22.	6 <u>7</u> 5	421. 414.	+02.	275.	73.	71.	• • • • • • • • • • • • • • • • • • • •	ۍ •	٠ (ب	75%	1001	1040. V 44.	
• • • •	*		מעשים.	1COAP	A V G	"STUL O	00.67	45.40	SIATE	2, 7	07	900	#20 #13	4 5 4 4 5 4 5 4 5 4 5 4 5 5 4 5 5 6 5 6	251	73,	7 6	0	ก	7 /	0 0	3	ການ	1
10490. 247. 15.43. 387.27 5402. 0410.	*	HYDRUG	зкарн	NO ST	800 1825	6.4G	250.0	61,30	LON			. 10			· N						4	п.) j	
2404. 24.07 24.07 7470. 9707.	***	HYDRUGRAPH RGUIING			TING DATA ISAME 1	AMSKA 0.000	. 4		2, PLAN	OUTFLOW 2.		12.	20. 12.	,3°.	30.	73.	71. 69.	• eu e	SIOR 3.	์ ค. รู	22.		770.	
1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ELING		JPLT 0	A IOPT	0000°0	00.00	73,90	N 1, RTIU		32.	956.	419. 411.	402.	211.	73.	71. 69.	67.	m	चं		570	1014. 414.	
• • • • • • • • • • • • • • • • • • •	***			JPRI 0	dwd1	TSK 0.000	552.00	285.00	1 1	2.5	34.	 	418. 411.	401.	193.	72.	71.	67.	3.	n O	622.	1071.	901.	,,,
1992420 50420 2420 612099 8233 10156	* *			INAME 1		STORA-1.	•	m		2 2	37.	753.	418	399.	176.	72.	70. 69.	67.	3.	8 6	720.	1005.	1001 868	, , , ,
	*			ISTAGE 0	LSTR	ISPRAT 0	50.60	83.00													70	10	n wo	•
	***			1AUTO 0			755.00	400.00									70. 69.	_		12.		•		
							1045,00	421		2.	46.	.65	108.	395 . 315.	148.	72.	68.	67.	э.	15.	392.	054.	362.	, ,
							00.	00•																
							1195.0	2931.																

161.	074.	5/e.	093.	048.	634.	620.	607.	594.	582.
5/0.	553.	545.	531.	520.	520.	512.	505.	498.	492.
467.	45Z.	4//.	473.	469.	266 .	463.	460.	457.	454.
451.	444.	440.	443.	440.	437.	434.	431.	429.	426.
423.	420.	417.	414.	411.	409.	460.	403.	400.	397.
394.	391.	369.	385.	383.	380.	377.	375.	372.	369.
306.	. د ن د	301.	358.	355.	352.	349.	347.	344.	341.
				STAGE	:				
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	U.O	0.0
0.0	0.0	Ú.U	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	٥.٥	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	U.O	U.U	0.0	0.0	0.0	0.0	0.0	0.0	0.0
U.O	0.0	V.U	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	U. Ù	0.0	0.0	υ.υ	0.0	0.0	0.0	0.0
0. 0	U. U	U.U	Û.U	0.0	0.0	0.0	U.O	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	ú.O	0.0	U.O	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

2 +=HOUR

474.

13.

2.75 69.95 939.

1159.

72-HOUR

220.

6. 3.83 97.39 1306.

1014.

TOTAL VOLUME

31668.

897.

3.84 97.43

1309.

1614.

MAXIMUM STURAGE = 1080.

o-HOUR

677.

19.

0.98 25.00 335.

414.

PEAN

1012.

25.

cr S

CmS

MM AC+FI

Inches

Tabus Co M

			SIAliun	2,	PLAN 1, RI	10 2			
				OUIFL	Dw				
4.	4.	4.	4.	4.	4.	4.	4.	4.	4.
4.	4.	4.	4.	5.	6.	8.	11.	15.	20.
26.	31.	٠٤٤.	35.	37.	40.	44.	47.	51.	57.
63.	o b •	10.	320.	397.	411.	866.	2858.	4293.	4145.
5697.	3191.	2502.	2502.	2176.	1868.	1597.	1303.	1166.	1000.
658 .	734.	227.	545.	489.	446.	421.	421.	420.	420.
420.	419.	419.	416.	416.	417.	416.	410.	415.	414.
413.	412.	412.	411.	410.	409.	408.	407.	406.	405.
404.	403.	404.	401.	400.	398.	395.	393.	391.	388.
356.	383.	312.	350.	344.	331.	319.	307.	295.	283.
259.	431.	417.	199.	182.	167.	153.	140.	128.	117.
108.	٠٤٠	90.	٠٤٥	7v.	14.	74.	73.	73.	73.
73.	13.	73.	12.	72.	12.	72.	72.	72.	71.
71.	71.	11.	71.	71.	70.	70.	70.	70.	70.
10.	n9.	. ka	09.	09 .	09.	69.	68.	68.	68.
				STOR					
5.	٥.	5.	5.	5.	5.	5.	5.	5.	5.
5.	5.	5,	5.	٠.	8.	10.	15.	20.	27.
34.	43.	52.	p1.	71.	×4.	101.	126	161	210

. .

. .

•

!*

1 1

273.	350.	.cl.	J07.	734.	901.	1072.	1192.	1232.	1228.
1210.	1202.	110%.	1143.	1150.	1132.	1115.	1101.	1090.	1080.
10/1.	1004.	1957.	1954.	1049.	1047.	1044.	1041.	1038.	1033.
1028.	1021.	ivi+.	1007.	996.	990.	960.	9/0.	960.	949.
936.	921.	915.	90 3.	890.	8/7.	664.	851.	838.	824.
811.	757.	153.	108.	754.	740.	725.	711.	696.	682.
007.	o5.s.	537.	525.	611.	598.	586.		562.	551.
511.	531.	522.	514.	507.	500.	494.		484.	479.
475.	4/1.	407.	104.	401.	45×.	455.	452.	450.	447.
444.	441.	458.	435.	433.	430.	427.	424.	421.	418.
		410.	-	404.	401.	398.		393.	390.
307.	384.	idi.	3/9.	376.	373.	370.	367.	365.	362.
				STAGE					
0.0	0.0	0.0	U.O	0.0	0.0	0.0	0.0	0.0	0.0
0.0	U. U	J.J	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	U . U		0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.6	0. 0	υ . υ `	J.0	0.Û	0.0	0.0	0.0	0.0	0.0
U. U	. 0.0	J. Ú	U.U	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
0.0		•	0.0	J.0		0.0	0.0	0.0	0.0
6.0	ũ.u	0.0	0.0	υ.0	0.0	0.0	0.0	0.0	0.0
0.3	U. u		0.0		0.0	0.0	0.0	0.0	0.0
0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0
0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0
0.0	0.0		0.3		u.O	0.0	0.0	0.0	0.0
0.6	0.0	0.0	0.0			0.0	0.0	0.0	0.0
0.0	0. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		PEAK	6≠หอบห		72-4008		VOLUME		
	Crá				424.		61114.		
	Cas	122.	74.		12. 7.40		1731.		
	LaChes		3.82	5.91	7.40		7.40		
	47		97.05		187.96	1	188.02		
	AC-FI		1303.	2017.	2525.		2525.		
	THOUS CO M		1008.	2486.	3114.		3115.		

MAXIMUM STORAGE = 1232.

			STATION	2,	PLAN 1, RT.	[0 3			
				OUTFL	ب ال				
٥.	ó.	6.	6.	6.	6.	6.	6.	6.	6.
υ.	ა.	5.	ó.	6.	8.	11.	16.	22.	29.
32.	35.	38.	41.	44.	47.	50.	54.	59.	65.
70.	193.	384.	405.	421.	3805.	6397.	6795.	6540.	5977.
5289.	4509.	3878.	3∠ó5.	2823.	2531.	2213.	1915.	1650.	1420.
1221.	1047.	894.	777.	698.	037.	588.	546.	508.	473.
441.	421.	421.	420.	420.	420.	419.	419.	418.	418.
417.	#10.	410.	415.	414.	413.	413.	412.	411.	410.
409.	403.	407.	400.	405.	404.	403.	402.	401.	400.
398.	345.	jys.	391.	300.	.ob£	384.	373.	359.	346.
333.	320.	3∪ø.	297.	200.	202.	240.	220.	201.	184.
107.	15:.	141.	130.	119.	109.	100.	91.	84.	77.
74.	74.	73.	73.	73.	73.	73.	73.	72.	72.
74.	14.	12.	12.	71.	71.	71.	71.	71.	71.
10.	70.	10.	70.	70.	70.	69.	69.	69.	69.

c. t. b. s. b. s. b. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 9. 11. 15. 21. 29. 38. 49. 01. 74. 86. 103. 121. 146. 182. 233. 304. 39b. 512. 0094. 850. 1044. 1189. 1171. 1152. 1134. 1118. 1105. 1092. 1050. 1042. 1073. 1000. 1062. 1055. 1055. 1052. 1050. 1048. 1118. 1108. 1118. 1118. 1118. 1118. 1118. 1118. 1109. 1171. 1118. 1118.					STOR					
1.				8 .	ಕ .	ь.	8.	8.	7.	7.
49. 61. 74. 86. 103. 121. 146. 182. 233, 304. 395. 395. 512. 054. 830. 1044. 1219. 1289. 1300. 1293. 1278. 1259. 1240. 1221. 1204. 1189. 1171. 1152. 1134. 1118. 1105. 1094. 1082. 1073. 1000. 1002. 1055. 1055. 1052. 1050. 1048. 1040. 1044. 1042. 1038. 1033. 1024. 1022. 1015. 1008. 999. 991. 981. 971. 961. 950. 939. 928. 916. 904. 892. 877. 866. 653. 639. 86. 812. 798. 784. 770. 756. 600. 587. 575. 564. 553. 542. 532. 523. 515. 508. 500. 500. 587. 575. 564. 553. 542. 532. 523. 515. 508. 500. 587. 575. 564. 553. 542. 532. 523. 515. 508. 453. 450. 447. 144. 442. 439. 436. 433. 430. 427. 424. 422. 449. 410. 413. 410. 407. 404. 402. 1399. 390. 393. 390. 387. 385. 382. 379. 376. 376. 387. 389. 399. 393. 390. 387. 385. 382. 379. 376. 376. 387. 389. 390. 0.00. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-			1.	9.	11.	15.			
1259. 1240. 1221. 1204. 1189. 1171. 1152. 1134. 1118. 1105. 1193. 1062. 1073. 1000. 1002. 1058. 1055. 1052. 1050. 1050. 1048. 1044. 1042. 1038. 1033. 1024. 1022. 1015. 1000. 1048. 1044. 1042. 1038. 1033. 1024. 1022. 1015. 1000. 1048. 1049. 1079. 1015. 1008. 1089. 991. 981. 971. 901. 950. 939. 926. 916. 904. 892. 877. 866b. 853. 839. 826. 812. 798. 784. 770. 756. 751. 000. 587. 575. 564. 553. 542. 532. 523. 515. 508. 501. 495. 459. 458. 459. 458. 459. 458. 459. 458. 459. 458. 459. 458. 459. 459. 464. 461. 495. 471. 468. 464. 461. 450. 427. 424. 422. 419. 416. 413. 410. 407. 4034. 400. 427. 424. 422. 419. 416. 413. 410. 407. 403. 400. 399. 399. 399. 389. 387. 385. 382. 379. 376. 874. 400. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-					121.	146.	182.		
1259, 1240, 1221, 1204, 1189, 1171, 1152, 1134, 1118, 1105, 1093, 1003, 1003, 1005, 1055, 1052, 1050, 1044, 1042, 1038, 1033, 1028, 1022, 1015, 1008, 999, 991, 981, 971, 961, 950, 939, 928, 916, 904, 892, 879, 866, 853, 839, 826, 812, 798, 784, 770, 756, 741, 727, 713, 998, 664, 659, 655, 640, 626, 613, 000, 587, 575, 564, 553, 542, 532, 523, 515, 508, 501, 495, 409, 464, 480, 475, 471, 468, 464, 461, 455, 456, 453, 450, 447, 444, 442, 439, 436, 433, 430, 427, 424, 422, 449, 416, 413, 410, 407, 404, 402, 399, 390, 393, 390, 387, 385, 382, 379, 376, 376, 376, 376, 376, 376, 376, 376		-	-	830.	1044.	1219.	1289.	1300.		
1095. 1082. 1073. 1000. 1062. 1058. 1055. 1052. 1050. 1048. 999. 1044. 1044. 1044. 1044. 1043. 1033. 1028. 1022. 1015. 1008. 999. 991. 981. 971. 901. 950. 939. 928. 916. 904. 892. 877. 866. 853. 839. 820. 812. 798. 784. 770. 756. 741. 727. 713. 098. 664. b09. 655. 640. b26. 613. 000. 587. 575. 564. 553. 542. 532. 523. 515. 508. 501. 495. 407. 404. 480. 475. 471. 468. 464. 461. 45t. 450. 427. 424. 422. 419. 416. 413. 410. 407. 404. 402. 399. 390. 393. 390. 387. 385. 382. 379. 376. STAGE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-				1189.	1171.	1152.	1134.		
991. 981. 971. 981. 950. 939. 928. 916. 904. 892. 879. 866. 653. 839. 820. 812. 798. 784. 770. 756. 741. 727. 713. 698. 664. 669. 655. 640. 626. 613. 000. 587. 575. 564. 553. 542. 532. 523. 515. 508. 501. 495. 469. 464. 480. 475. 471. 468. 464. 461. 456. 456. 453. 450. 447. 444. 442. 439. 436. 433. 430. 427. 424. 422. 419. 416. 413. 410. 407. 404. 402. 399. 390. 393. 390. 387. 385. 382. 379. 376. STAGE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.					1062.	1058.	1055.	1052.		
991. 981. 971. 961. 950. 939. 928. 916. 904. 892. 879. 866. d53. 839. 820. 812. 799. 784. 770. 756. 741. 727. 713. 598. 664. 553. 542. 532. 523. 515. 508. 500. 587. 575. 564. 553. 542. 532. 523. 515. 508. 501. 495. 499. 464. 480. 475. 471. 468. 464. 461. 455. 456. 433. 450. 447. 444. 442. 439. 436. 433. 430. 427. 424. 422. 419. 416. 413. 410. 407. 404. 402. 399. 390. 393. 390. 387. 385. 382. 379. 376. STAGE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.						1028.	1022.	1015.	1008.	999.
865. 853. 839. 820. 812. 798. 784. 770. 756. 751. 727. 713. 098. 664. 609. 655. 640. 626. 613. 600. 587. 575. 564. 553. 542. 532. 523. 515. 508. 501. 495. 409. 464. 480. 475. 471. 468. 464. 461. 455. 455. 455. 455. 450. 447. 444. 442. 439. 436. 433. 430. 427. 424. 422. 419. 416. 413. 410. 407. 404. 402. 399. 390. 393. 390. 387. 385. 382. 379. 376. STAGE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.							928.		904.	
741. 727. 713. 698. 664. 669. 655. 640. 626. 613. 610. 587. 575. 564. 553. 542. 532. 523. 515. 508. 501. 495. 469. 464. 480. 475. 471. 468. 464. 461. 455. 456. 453. 450. 447. 444. 442. 439. 436. 433. 430. 427. 424. 422. 419. 416. 413. 410. 407. 404. 402. 499. 390. 393. 390. 387. 385. 382. 379. 376. STAGE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.							798.	784.		
501. 507. 575. 564. 553. 542. 532. 523. 515. 508. 501. 495. 409. 454. 480. 475. 471. 468. 464. 461. 455. 455. 455. 453. 450. 447. 444. 442. 439. 436. 433. 430. 427. 424. 422. 419. 416. 413. 410. 407. 404. 402. 399. 390. 393. 390. 387. 385. 382. 379. 376. STAGE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.						669.	655.		626.	
501. 495. 409. 464. 480. 475. 471. 468. 464. 461. 450. 450. 450. 447. 444. 442. 439. 436. 433. 430. 427. 424. 422. 419. 410. 413. 410. 407. 404. 402. 399. 390. 393. 390. 387. 385. 382. 379. 376. STAGE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				-			532.	523.		
458. 456. 453. 450. 447. 444. 442. 439. 436. 433. 430. 427. 424. 422. 419. 416. 413. 410. 407. 404. 402. 399. 390. 393. 390. 387. 385. 382. 379. 376. STAGE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-			-			471.	468.	464.	
402. 399. 396. 393. 390. 387. 385. 382. 379. 376. STAGE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				-	-		442.	439.	436.	433.
399. 396. 393. 390. 387. 385. 382. 379. 376. STAGE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.							413.	410.	407.	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	402.	399.	390.	393.	390.	387.	385.	382.		
0.0					STAGE					
0.0	0.0	v. v	0.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0					
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0			• •		-
0.0	0.0	0.0	0.0	0.0	0.0					-
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	U.O	0.0	0.0					
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	U.O	0.0	0.0					
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	' v . v	0.0	0.0	0.0	0.0	0.0	0.0			
0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		V. U	0.0	0.0	0.0	0.0	0.0			
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	0.0	0.0	0.0	0.0	0.0			
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			J.U	U. O	0.0	0.0	0.0			
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			0.6	0.0	0.0	0.0	0.0			
U.U U.U U.U U.U U.O U.O U.O U.O U.O U.O	_	- •	J.0	U. 0	0.0	0.0	0.0	0.0		
LEAK 6-HOUR 24-HOUR 72-HOUR TOTAL VOLUME CFS 0795. 4432. 1564. 630. 90710. CMS 192. 126. 45. 18. 2569. INCHES 0.44 9.21 10.98 10.99 MY 163.03 233.97 278.98 279.07 AC-F1 2196. 3143. 3747. 3748.		. •			U.O	0.0	0.0	0.0		
LEAK 6-HOUR 24-HOUR 72-HOUR TOTAL VOLUME CES 0795. 4432. 1564. 630. 90710. CMS 192. 126. 45. 18. 2569. INCHES 0.44 9.21 10.98 10.99 MY 163.03 233.97 278.98 279.07 AC-F1 2196. 3143. 3747. 3748.		•	•	0.0	0.0	6.0	0.0	0.0		
CFS 6795. 4432. 1564. 630. 90710. CMS 192. 126. 45. 18. 2569. INCHES 0.44 9.21 10.98 10.99 MY 163.03 233.97 278.98 279.07 AC=F1 2196. 3143. 3747. 3748.	0.0	0.0	0.0	0.0	0.0	0.0	.0.0	0.0	0.0	
CFS 6795. 4432. 1564. 630. 90710. CMS 192. 126. 45. 18. 2569. INCHES 0.44 9.21 10.98 10.99 MY 163.03 233.97 278.98 279.07 AC-F1 2196. 3143. 3747. 3748.			ŁŁAK	6-m0uk	24-HOUR	72-HJUR	101AL	VOLUME		
CMS 192. 126. 45. 18. 2569. INCHES 0.44 9.21 10.98 10.99 MY 163.03 233.97 278.98 279.07 AC-F1 2196. 3143. 3747. 3748.		CFS	6795.	4432.	156+.					
INCHES 0.44 9.21 10.98 10.99 MY 163.03 233.97 278.98 279.07 AC-F1 2196. 3143. 3747. 3748.			192.	126.	45.	18.				
MY 163.03 233.97 278.98 279.07 AC-F1 2196. 3143. 3747. 3748.				0.44	9.21	10.98				
AC-F1 2196. 3143. 3747. 3748.					233.97	278.98				
						3747.				
		Thous Cu m		2711.	3870.	4622.				

MAXIMUM STURAGE = 1300.

STATION 2, PLAN 1, RIIG 4

				OUTFL	0 *				
٠.	ხ.	8.	8.	δ.	8.	٤.	7.	7.	7.
7.	7.	7.	7.	₽•	11.	15.	21.	29	33.
30.	34.	45.	40.	49.	51.	55.	60.	65.	70.
204.	385.	+17.	540.	4960.	7300.	8756.	8919.	8441.	7762.
U875.	5939.	ラリまと。	4245.	3574.	3016.	2710.	2408.	2106.	1827.
157c.	1350.	1100.	1010.	90b.	828.	765.	709.	660.	615.
513.	551.	444	405.	434.	421.	421.	420.	420.	420.
415.	417.	410.	416.	417.	416.	416.	415.	414.	413.
14.	411.	-11.	410.	409.	400.	407.	406.	405.	404
aud.	402.	401.	¥UÜ,	397.	395.	393.	390.	388.	386.

٠ د ه د	370.	330.	٠٤٠.	330.	313.	300.	294.	281.	257.
235.	415.	191.	iti.	105.	151.	139.	127.	116.	
90.	40.	32.	75.	74.	14.	13.	73.	73.	107.
13.	13.	74.	12.	72.	12.	72.	72.	71.	73.
71.	71.	71.	71.	70.	70.	70.	7u.	70.	71. 70.
					, • •		,	70.	70.
				STOR					
10.	io.	10.	10.	10.	10.	10.	10.	10.	10.
9.	э.	y.	10.	11.	14.	19.	27.	38.	50.
64.	ರ ∪.	94.	110.	136.	160.	192.	239.	306.	399.
517.	004.	040.	10/0.	1250.	1328.	1351.	1354.	1345.	1327.
1302.	12/7.	1252.	1231.	1213.	1197.	1182.	1164.	1146.	1129.
1114.	IIOI.	1009.	1050.	1074.	1069.	1066.	1062.	1059.	1057.
1454.	1052.	1050.	1046.	1046.	1044.	1041.	1037.	1032.	1027.
1021.	1013.	1000.	99/.	989.	979.	969.	959.	948.	937.
925.	914.	901.	ee9.	876.	863.	850.	837.	823.	809.
795.	/81.	107.	753.	738.	724.	709.	695.	681.	666.
052.	037.	023.	610.	597.	585.	573.	561.	550.	540.
530.	J22.	214.	500.	500.	494.	468.	403.	479.	474.
470.	457.	+04.	401.	458.	455.	452.	449.	447.	444.
441.	430.	435.	432.	430.	427.	424.	421.	418.	415.
412.	410.	407.	401.	401.	390.	395.	392.	390.	387.
							*****	•,,,	307.
4	_			STAJE					
0.0	0.0	υ.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	v.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	o.u	0.0	0.0	0.0	0.0	0.0
0.0	V. V	0.0	U.O	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	U.U	0.0	0.0	0.0	0.0	0.0	0.0
U. 0	0.0	U. 0	0.0	0.6	0.0	0.0	0.0	0.0	0.0
0.0	0. 0	U.U	0.0	0.0	0.0	0.0	0.0	0.0	0.0
U. U	0.0	0.0	J.0	0.υ	U.U	0.0	0.0	0.0	0.0
0.0	G • U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	U. U	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0
0.0	0.0	U.U	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
							- •	•••	•••
	40.	PEAN	6 - HUUR				VOLUME		
	CFS		010/.	2167.	836.		120396.		
	CAS		175.	61.	24.		3409.		
	INCHES		8.99	12.60	14.58		14.58		
	16		228.42	319.95	370.28		370.40		
	AC-P1		3068.	4297.	4973.		4975.		
	14002 CO W		3764.	5301.	6135.		6137.		

MAXIMUM STORAGE =

			STAITUR	۷,	PLAN 1, RI	10 5			
10. 9. 39. 307. 0292.	.0. 9. +4. 404. 1461.	10. 4. 47. 421. 5202.	9. 9. 49. 4712. 5224.	OUTF1 9. 10. 52. 3351. 4399.	,0% 13. 56. 10175. 3715.	9. 10. 60. 10905. 3151.	9. 20. 64. 10975.	9. 32. 69. 10389.	9. 35. 148. 9401. 2207.
				,,,,,	3/13.	2121.	2705.	2505.	22

1944.	1059.	1423.	1240.	1114.	1019.	941.	873.	812.	756.
700.	o5e.	514.	574.	534.	498.	465.	434.	421.	421.
120.	420.	426.	419.	419.	410.	416.	417.	416.	416.
415.	314.	.13.	414.	411.	411.	410.	409.	408.	407.
405.	±05.	404.	403.	402.	401.	400.	397.	395.	393.
390.	366.	300.	303.	370.	350.	343.	330.	318.	306.
294.	281.	257.	235.	215.	197.	181.	165.	151.	139.
127.	116.	107.	50.	90.	82.	75.	74.	74.	73.
73.	13.	13.	73.	73.	72.	72.	72.	72.	72.
72.	71.	71.	71.	71.	71.	71.	70.	70.	70.
,				STOR					
			• >	12.	12.	12.	12.	12.	12.
13.	13.	13.	12.		17.	24.	34.	46.	62.
12.	11.	11.	12.	14.		239.	297.	300.	492.
60.	100.	121.	144.	169.	198.	1394.	1395.	1384.	1364.
634.	812.	1042.	1243.	1343.	1379.	1201.	1186.	1170.	1152.
1341.	1314.	1284.	1257.	1235.	1216.	1076.	1072.	1068.	1065.
1135.	1119.	1105.	1094.	1086.	1081.	1048.	10/2.	1044.	1041.
1062.	1059.	1057.	1054.	1052.	1050.		989.	979.	969.
1037.	1032.	1027.	1020.	1013.	1006.	997.	876.	863.	850.
959.	948.	937.	925.	913.	901.	889. 753.	738.	724.	709.
೮೨೮.	823.	8JY.	795.	781.	767.		597 .	585.	573.
695.	680.	000.	051.	637.	623.	610.	500.	494.	488.
561.	550.	540.	530.	522.	514.	506.	458.	455.	452.
483.	479.	+74.	470.	467.	464.	461.	430.	427.	424.
447.	447.	444.	441.	438.	435.	432.	401.	398.	395.
421.	418.	±15.	412.	410.	407.	404.	401.	370.	3,3,
				STAGE		•			
0.0	0.0	0.0	0.0	Ú.U	0.U	0.0	0.0	0.0	0.0
0.0	0.0	0.0	U.O	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	o.∪	0.0	0.0	0.0	0.0	0.0	0.0	0.0
U.U	0.0	0.0	0.0	0.0	0.0	, 0.0	0.0	0.0	0.0
U. U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	U. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	U.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	v.J	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	U.O	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	υ.υ	0.0	0.0	0.0	0.0	0.0	V.O	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	V. U	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0	0.0
		£	LAK 6-H	JuR 24+HOU			L VOLUME		

MAXIMUM STOKAGE = . 1395.

7985.

226.

11.51

3951.

4884.

294.79

10975.

. 11 د

CFS

CMS

2.3

1.CHES

AC-FF

THOUS CU N

2, PLAN 1, RT10 6 SIALLON

2758.

78. 16.03

407.21

5469.

6740.

1042.

30.

18.18

401.75

0202. 7050.

061FL0A

150134.

4251.

18.18

461.69

6204. 7652.

12.	12.	14.	12.	12.	12.	12.	11.	11.	11.
11.	11.	ıi.	11.	13.	17.	23.	31.	34.	39.
44.	17.	<u>ي</u> ن.	24.	51.	ol.	₽4.	69.	113.	347.
+02.	, #14 .	+15 0.		11211.	12/24.	13635.	13719.	12986.	11752.
10332.	8090 .	1,34.	0517.	5490.	4044.	3939.	3357.	2898.	2045.
2348.	2017.	1700.	1544.	1390.	1272.	1175.	1091.	1015.	945.
501.	622.	161.	715.	008.	o23.	501.	542.	506.	472.
440.	421.	461.	420.	420.	420.	419.	419.	418.	118.
417.	415.	410.	1 15.	414.	413.	413.	412.	411.	410.
469.	+ 00.	±97.	406.	405.	404.	403.	402.	401.	400.
390.	395.	393.	391.	308.	386.	384.	373.	359.	346.
333.	320.	303.	297.	286.	262.	240.	220.	201.	184.
169.	154.	141.	130.	119.	109.	100.	91.	84.	77.
74.	7 ± •	73.	73.	73.	73.	73.	73.	72.	72.
12.	72.	72.	72.	71.	71.	71.	71.	71.	71.
				STOR					
10.	15.	10.	10.	15.	15.	4.5	4.5		
14.	14.	1 4.	15.	17.		15.	15.	15.	15.
100.	125.	153.	181.	212.	22.	30.	42.	58.	76.
704.	1015.	1228.	1349.	1400.	250.	301.	374.	477.	614.
1383.	1354.	1327.	1293.	1265.	1430.	1448.	1450.	1435.	1411.
1160.	11+2.	1125.	1112.	1103.	1242.	1222.	1207.	1193.	1178.
1073.	1009.	1000.	1063.	1000.	1096.	1090.	1085.	1080.	1076.
1046.	1044.	1042.	1035.	1033.	1057.	1055.	1052.	1050.	1048.
yy1.	981.	9/1.	901.	950.	1028.	1022.	1015.	1008.	999.
879.	600.	853.	834.	826.	939.	926.	916.	904.	892.
741.	727.	713.	090.	620. 684.	812.	798.	784.	770.	750.
000.	507.	375.	564.	553.	669.	655.	640.	626.	613.
501.	495.	489.	464.	400.	5.2.	532.	523.	515.	508.
458.	450.	453.	450.	447.	475.	471.	468.	464.	461.
430.	127.	424.	424.	4194	444.	442.	439.	436.	433.
	• • •	••••	124.	4134	410.	413.	410.	407.	404.
				STAGE					
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	U.O	0.0	0.0	0.0	0.0
0.0	U.U	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	U.U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	J. O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0).0	0.0	0.0	0.0	U.O	0.0	0.0	0.0	0.0
U.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	U.U	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	U • U	0.0	0.0	0.0	0.0	0.0	0.0
			,					- • •	•••
	<i>a.</i> .	PLAK					VOLUME		
	Cr S		10239.				189838.		
	CHS		290.	· · · - •	37.		5376.		
	INCHES 1.4		14.89				22.99		
	1.4 AC⇒r I		378.02				584.05		
	10000 CU 4		5077.		7842.		7845.		
	1,,000 00 4		n263.	8094.	9673.		9676.		

MAXINUA STURAGE = 1450.

SUB-AREA KUNOFF COMPUTATION

CALCULATION OF INFLOA HYDROGRAPH SUBAREA 2

		~	1srau 2	TOURE TECON TIMPE O O	1 t C C S		UFUI JENI INAME ISIACE IAUIU	1 0 0	NA 31 L	1 0 0 T	0
	THEOG	Lond	12.60	SNAP C. U.J	HYOKOGK 1KSDA 12.00	HYUKUGKAPH DAIA IKSDA IRSPC 12.00 0.00	RATIO 0.000		ISAUW ISAME LOCAL	PDCAL 0	
OAS APPLE CONTRACTOR		o Pre	2 2	9 Kg	PRECIP DATA R12 R24	P UATA R24	* C	K72	46 40 60 60 60 60 60 60 60 60 60 60 60 60 60		
INSPC COMPUTED HI TO	SE PROGRI	54 IS C.	80 k			•	3	•	•		

RIIMP 0.00 ALSMX 0.00 RECESSION DATA
SINTO= -2.00 OKCSN= -0.10 RIIDK= 2.00
APPRJAIMHE CLANN COLFFICIENIS FROM GIVER SYIDER OP AND IP AME IC=10.53 AND R= 8.42 INTERVALS CNSTL 0.10 STRTL 1.00 R110K UPIF HYDROGRAPH DAIA 4.08 CP=0.63 N LOSS LAFA STRKS 0.00 EKA16 RiioL 1.ve 51 KNK 140.1

AT MINITED IN

1126. 373. 114. 35. VDL= 1.00 1114. 420. 128. 39. 12. 4.64 hJUKS, CP= 0.03 946. 1053. 533. 473. 162. 144. 45. 13. 51 rdb-ur-tekluu Okultales, LAG=
253. 446. 621. 795.
554. 252. 206. 183.
50. 71. 63. 183.
50. 24. 21. 19. 17.

T

1 1

to to distinct by the

COMP O	30 4 •	150.	700.	53.	.60	.89	30.	195.	162.	131.	102.	175.	.06	.92	.05	# R	9 4
Õ			•	•	•	•	•,	•	•	•	•	,	1-1	,•••	1-7	. •	
FOSS	00.0	00.0	00.0	00.0	00.0	00.0	0.00	00.0	0.00	0.00	0.00	00.0	00.0	00.0	00.0	00.0	•
EXCS	0.00	00.0	00.0	00.0	00.0	0.00	00.0	00.0	00.0	00.0	00.0	00.3	00.0	00.0	00.0	00.0	0
RALN	00.0	00.0	00.0	0.00	00.0	00.0	00.0	00.0	33.3	0.00	0.00	2.00	00.0	00.0	00.0	00.0	100
PERIOD	76	7.7	76	75) 19	8 18	78	63	4.0	\$0	98	47	¢	J, Q	3	91	ç
HR. MN	14.00	14.36	15.00	15.30	16.00	16.30	17.00	17.30	16.00	18.30	19.00	19.37	20.00	20.30	200	21.30	13 66
FLU»	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.52	1.02	1.02	1.02	1.62	1.02	1.02	•
LND-UF-PERIOD CUMP Q	24.	.23.	•07	19.	18.	17.	10.	14.	14.	13.	12.	11.	13.	77.	43.	84.	11 1
2507	30.0	0.00	30.0	00.0	00.0	۵ ٠ ٠	30.0	0.00	2 • C	v.04	0000	00.0	60.0	30.0	1.45	66.7	3
EACS	00.0	00.0	00.0	30.0	20.0	20.0	20.0	2000	35.3	20.0	20.0	33.5	30.0	01.0	0.10	1.10	:
KALN	S. C. &	£0.0	00.0	6.00	0.CB	0.00	00.0	60.0	00.0	00.0	2.00	د د د	0.10	C1.7	0.15	0.10	
t cR130		٧.	*1)	47	n	0		u	n	7	11	1,	13	1,	27	07	` -
*****	0.30	1.00	1.30	7.0c	2.30	3.60	3.30	20.4	4.30	3.66	5.30	22.0	0.50	7.00	2001	20.0	
4) :	1.01	1.01	1.01	1.01	1.01	1.01	1.01	10.1	1,01	1001	70.7	10.1	1.01	11	1007	11	

0

1.01 7.01 Jain 0.10 6.05 1 3 211. 22.30 1.02 93 0.00 0.90 0.00 247. 1.01 9.30 19 v.13 0.19 0.05 3u + . 1.32 0.00 23.00 94 0.00 0.00 231. 1.01 10.00 20 J. 15 J.iu 0.05 407. 1.02 23.30 95 0.00 0.00 0.00 215. 1.11 10.50 21 517. 0.15 J. L. 0.95 1.03 0.00 96 0.00 0.00 0.00 201. 1.01 11.00 0.15 44 J.1J 0.05 631. 1.03 0.30 47 0.00 0.00 0.00 187. 1.01 11.30 43 0.10 0.10 0.05 741. 1.03 1.00 98 0.00 0.00 0.00 175. 1.01 12.00 24 4.13 6.10 0.05 343. 1.03 1.30 99 0.00 0.00 0.00 103. 1.01 12.30 ۷٥ 1.04 U.77 0.05 907. 1.03 2.00 100 0.00 0.00 0.00 152. 1.01 13.00 23 1.01 0.99 1.03 0.05 1171. 2.30 101 0.00 0.00 0.00 142. 13.30 1.01 41 1.24 1.19 0.05 1500. 1.03 3.00 102 0.00 0.00 0.00 133. 1.01 14.00 20 1.24 1.19 U.U5 1987. 1.03 3.30 103 0.00 0.00 0.00 124. 1.01 14.3% 21 1.53 1.50 0.05 2004. 1.03 4.00 104 0.00 0.00 0.00 115. 1.01 15.00 31) 1.55 1.30 0.05 3555. 4.30 1.03 105 0.00 0.00 0.00 108. 1.0i 15.30 31 1.03 1.0+ 0.05 4007. 1.03 5.00 106 0.00 0.00 0.00 100. 1.01 10.00 32 3.77 0.05 5. 74 0144. 1.03 5.30 107 0.00 0.00 0.00 94. 1.01 10.30 ٤٤ 3051. 1.45 1.40 0.05 1.03 5.00 108 0.00 0.00 0.00 87. 17.60 1.01 34 1.45 1.40 0.95 10217. 6.30 1.03 0.00 109 0.00 0.00 82. 17.30 1.01 35 1.09 1.14 0.05 12459. 1.03 7.00 110 0.00 0.00 0.00 76. 1.01 18.00 30 1.14 1.09 0.05 14647. 1.03 7.30 111 0.00 0.00 0.00 71. 1.)1 10.36 37 0.12 0.07 0.05 10635. 1.03 8.00 112 0.00 0.00 0.00 60. 1.01 19.00 14 1.12 0.01 0.05 1.03 10215. 8.30 113 0.00 0.00 0.00 62. 1.01 19.30 33 9.12 0.07 0.05 19250. 1.03 9.00 114 0.00 0.00 0.00 58. 1.01 20.00 نا يه 0.05 0.12 0.07 1.03 19715. 9.30 115 0.00 0.00 54. 0.00 1.01 20.31 41 0.12 0.37 0.03 19599. 1.03 10.00 116 0.00 0.00 0.00 50. 1.01 21.60 0.12 44 0.07 0.03 1.03 10854. 10.30 117 0.00 0.00 0.00 47. 1.01 21.39 * 3 6.12 0.01 0.35 1/528. 1.03 11.00 118 0.00 0.00 0.00 44. 1.01 42.00 44 0.12 0.01 U. U5 in214. 1.03 11.30 119 0.00 0.00 0.00 41. 1.01 24.30 45 0.12 0.01 0.05 14753. 1.03 12.00 0.00 120 0.00 0.00 38. 1.31 23.61 ło 0-12 0.07 6.05 13311. 1.03 12.30 121 0.00 0.00 0.00 36. 23.30 1.01 +1 0.12 0.01 J. U5 i1450. 1.03 13.00 122 0.00 1.00 0.00 33. 1.02 0.11 45 J-12 0.07 0.05 10742. 1.03 13.30 123 0.00 0.00 0.00 31. 0.30 1.32 44 0.01 0.00 0.00 9059. 1.03 14.00 124 0.00 0.40 0.00 29. 1.02 1.00 30 1.00 0.00 U. U. 8090. 1.03 14.30 125 0.00 0.00 27. 0.00 1.04 1.30 51 1.00 0.00 0.00 1620. 1.03 15.00 126 0.00 0.00 0.00 25. 1.02 2.00 52 0.00 0.00 0.00 7033. 1.03 15.30 127 0.00 0.00 0.00 23. 1.64 2.30 23 0.00 0.00 U. 00 0319. 1.03 16.00 128 0.00 0.00 0.00 22. 1.02 3.00 0.00 54 3.00 0.00 5664. 1.03 16.30 129 0.00 0.00 0.00 20. 1.02 3.30 בכ 0.00 0.00 0.00 5075. 1.03 17.00 130 0.00 0.00 0.00 19. 1.02 4.00 56 0.00 0.00 0.00 4534. 4.03 17.30 131 0.00 0.00 0.00 18. 1.02 4.30 57 0.00 U. 00 0.00 4041. 1.03 18.00 132 0.00 17. 0.00 0.00 5.00 1.02 6.00 0.00 58 0.00 3593. 1.03 18.30 133 0.00 0.00 0.00 15. 1.02 5.30 59 0.00 0.00 0.00 3192. 1.03 19.00 134 0.00 0.00 0.00 14. 1.02 6.00 50 0.00 0.Ju 0.00 2834. 1.03 19.30 135 0.00 0.00 0.00 13. 1.02 0.30 0.33 71 0.00 0.00 2510. 1.03 20.00 0.00 136 0.00 0.00 13. 1.02 7.00 02 J.00 0.00 0.00 4234. 1.03 20.30 137 0.00 0.00 0.00 12. 1.04 7.30 63 J. UU 0.00 0.00 1903. 1.03 21.00 138 0.00 0.00 0.00 IJ. 1.02 8.60 04 0.00 0.00 0.00 1847. 1.03 21.30 139 0.00 0.00 0.00 10. 1.02 8.30 Ġ5 0.00 0.00 0.00 1723. 1.03 22.00 0.00 140 0.00 0.00 10. 1.32 9.00 00 0.00 0.00 0.00 1600. 1.03 22.30 141 0.00 0.00 0.00 9. 9.30 1.02 57 0.00 0.06 1500. U.UC 1.03 0.00 23.00 142 0.00 0.00 8. 1.02 10.00 0.00 bd 0.00 0.00 1399. 1.03 23.30 143 0.00 0.00 0.00 8. 1.02 10.30 09 J. JO U.U. 1300. 0.00 1.04 0.00 144 0.00 0.00 0.00 7. 1.02 11.00 70 9.00 9.00 0.00 1210. 1.04 0.30 145 0.00 0.00 0.00 7. 1.02 11.30 74 J. UU J. J. U. JÚ 1137. 1.04 0.00 1.00 146 0.00 0.00 6. 1.02 14.00 74 0.00 0.00 0.00 1001. 1.04 1.30 147 0.00 0.00 0.00 6. 1.02 12.50 is v.90 0.00 0.00 390. 1.04 2.00 148 0.00 0.00 0.00 5. 1.02 13.60 14 U. U. 6.00 U. Ju 923. 1.04 2.30 149 0.00 0.00 0.00 5. 1.02 13.30 15 0.00 0.00 861. 1.04 3.00 150 0.00 0.00 9.00 5.

UM 24.91 22.12 2.78 371766. (033.)(502.)(71.)(10527.24)

ì

Į.

*

		h f D k	UGHAPH AT :	5TA 2	FOR PLAN 1	, RIIO 1			
5.	4.	4.	4.	4.	3.	3.	₃.	3.	3.
2.	2.	3.	4.	9.	17.	28.	43.	61.	81.
103.	120.	145.	109.	193.	234.	30u.	397.	533.	711.
733.	1229.	1010.	2043.	2492.	2929.	3327.	3643.	3850.	3943.
3920.	3771.	3520.	3243.	2951.	2062.	2392.	2148.	1932.	1738.
1564.	1407.	1204.	1134.	1015.	907.	608.	719.	638.	567.
503.	-47.	3-1.	309.	345.	322.	300.	280.	261.	244.
227.	212.	190.	105.	172.	161.	150.	140.	131.	122.
114.	100.	39.	92.	86.	80.	75.	70.	65.	61.
57.	53.	49.	40.	43.	40.	37.	35.	33.	30.
40.	21.	٤٥.	23.	22.	20.	19.	17.	16.	15.
14.	13.	14.	12.	11.	10.	9.	9.	8.	8.
7.	7.	٥.	٥.	5.	5.	5.	4.	4.	4.
+ •	3.	3.	٥.	3.	3.	2.	2.	2.	2.
4.	2.	4.	1.	1.	1.	1.	1.	1.	1.

	PEAK	シーイプログ	24-HOUR	72-HUUR ,	SMULOV LATOR
CFS	3943.	335J.	1470.	516.	74350.
345	112.	95.	42.	15.	2105.
InCoss		2.41	4.34	4.57	4.57
414		62.43	110.30	110.18	116.19
AC-F1		1001.	2917.	3072.	3072.
1400S CO 4		2049.	3598.	3787.	3790.

		hion	UGRAPH AT	STA 2	FUR PLAN 1	, RTIO 2			
ď •	ð.	7.	7.	6.	6.	5.	5.	5.	4.
4.	4.	4.	t.	16.	29.	49.	75.	106.	142.
101.	241.	259.	295.	336.	410.	525.	696.	932.	1244.
1034.	2120.	2010.	3570.	4301.	5120.	5822.	6375.	6737.	6900.
0690 .	v5594.	bliv.	5075.	5104.	¥659.	4185.	3700.	3381.	3042.
۷737.	4 +02.	2212.	1984.	1776.	1507.	1414.	1250.	1117.	992.
861.	702.	őyt.	046.	603.	563.	525.	490.	457.	426.
370.	371.	3.0.	323.	302.	281.	262.	245.	228.	213.
199.	ioo.	1/3.	162.	151.	141.	131.	122.	114.	107.
93.	73.	37.	ø1.	75.	70.	60.	61.	57.	53.
50.	46.	43.	40.	30.	35.	33.	31.	29.	27.
25.	23.	44.	20.	19.	18.	16.	15.	14.	13.
12.	12.	41.	10.	9.	9.	ъ.	8.	7.	ž.
۰.	t.	5.	٥.	5.	4.	4.	4.	4.	3.
٥.	٠ د	J.	3.	2.	2.	2.	ž.	2.	2.

	2544	กปบล≂อ	24-HUUK	72-HOUR	101AL VOLUME
Çrs	0900.	გგიქ.	2573.	903.	130112.
L 15	1,5.	100.	73.	49.	3064.
14Cmus		4.55	7.00	8.00	8.00
ግ ሳ		103.95	193.02	203.31	203.32
n(-11		2911.	5164.	5370.	5377.

IHUUS CU 4 6295. 3380 -0031. 0032. HIDROGRAPH AT SIA 2 FOR FEAR 1, HITE 3 11. 5. 1.. 10. 9. 8. 8. 5. 11. 23. 42. 70. 7. 12. 7. 7. 7. 107. 152. 994. 1332. 9107. 9625. 70. 203. ٠. 23. 42. 70. 403. 500. 750. 0230. 7323. 8318. 7377. 6650. 5979. 253. 2207. 2020. 259. 315. 3/1. 421. 1778. 5100. 2334. 3072. 9107. 4020. 9625. 9857. 8107. /3/... 2835. 253. 2207. 801. 804. 402. 97:5. 7141. 8514. 5371. 4829. 4345. 3910. 3517. Blou. 1797. 1596. 750. 700. 125%. 1117. 934. 653. 609. Spa. 33U. 475. 375. 350. 326. 305. 163. 187. 231. 215. 201. 175. 104. 205. 2+1. 152. 103. 82. 44. 41. 22. 20. 11. 10. 5. 5 100. 87. 142. 115. 94. 122. 144. 108. 54. 27. 50. 25. 71. óο. o2. 5ε. 47. 23. 12. 47. 38. 29. 25. 13. 6. jo. 33. 31. 27. 13. 19. 11. 17. is. La. 10. 7. 9. ٥. ٠. 7. 6. 5. ٠. 4. 3. PEAN 6-HGUP 24-HOUR 72-HOUR TOTAL VOLUME 3076. 1291. CF3 905/. 8376. 185874. 2/1. CIS 237. 104. 37. 5203. 11.43 INCHES 10.86 6.10 11.44 4.4 157.07 275.74 290.44 7291. 7080. AL-FI 4153. INDUS CO H 5123. 9473. нтыкобкант 41 STA /2 FOR PLAN 1, RTIO 4 13. 12. 12. 11. 10. 0. 15. 29. 55. 91. 15. 14. 9. 9. 8. 7. 139. 198 264. 628. 761. 975. 8098. 9520. 10813. 9590. 8652. 7773. 540. 975. 330. ·ilu. 452. 1292. 1731. 2311. 3054. SYY3. 5433. 6641. 11840. 12512. 12815. 12739. 10539. 14255. 11 ibH. 9590. 8652. 7773. 6982. 3299. 2947. 2626. 2336. 1120. 1045. 975. 910. 560. 522. 487. 455. 280. 201. 244. 227. 140. 431. 122. 114. 7773. 0982. 5049. 6278. 5003. 3005. 4100. +372. 2075. 1452. 1200. 1035. 1201. 792. 849. 134 043. 344. 60u. 30u. 089. 424. 345. 307. 212. 198. 185. 112. loi. 150. 106. 75. 28. 27. 13. 7. 2 70. 05. 01. 92. ٥٧. ño. 57. 49. 33. 16. 8. 40. 43. 40. 30. 35. 30. 25. 17.

> PENK 6-HUUR 24-HOUP 72-HUUR TOTAL VOLUME 167H. 10989. 4779. 241636. Cra 12015. 300. Cas dod. 135. 48. 6842. L\CnES 3.04 14.11 14.67 14.87 204.19 377.57 377.60 13.4 350.46 AC-FI 5400. 9479. 9984. Indus to h 0000. 12315. 11092. 12316.

9.

19.

Ÿ.

5.

24.

11.

20.

10.

5.

43.

12.

٥.

2 FOR PLAY 1, R110 5 HIJPUGKAPH AT STA lo. is. 14. 13. 12. 12. 11. 10. 30. 7. Iv. lc. 67. 112. 171. 243. 325.

A Service

4.

15.

ь.

4.

12.

6.

41 : .	505.	593.	674.	775.	937.	1200.	1590.	2131.	2844.
-	4915.	5441.	e173.	9967 .	11717.	13309.	14572.	15400.	15772.
3734. 15079.	15093.	14102.	12971.	11802.	16549.	956b.	#593 .	7727.	6952.
13679. 6236.	5029.	5050.	4535.	4000.	3627.	3233.	2875.	2553.	2267.
2013.	1/87.	150î.	1417.	1378.	1286.	1200.	1120.	1045.	975.
909.	848.	792.	739.	669.	643.	600.	560.	522.	487.
455.	444.	356.	369.	345.	322.	300.	280.	261.	244.
433.	414.	197.	105.	172.	151.	150.	140.	131.	122.
114.	106.	99.	92.	86.	aU.	75.	70.	65.	01.
57.	53.	47.	46.	43.	40.	37.	35.	33.	30.
28.	27.	25.	23.	22.	20.	19.	17.	16.	15.
14.	13.	14.	12.	11.	10.	9.	9.	8.	8.
7.	7.	6.	0.	5.	5.	5.	4.	4.	4.
, .	• •	•••							
		FE	AK 6-H	JUR 24-H	OUR 72-6	OUR TOT.	AL VOLUME		
		crs 1577	12. 134	02. 58	82. 20	65.	297398.		
			17. 3	79. 1	67.		8421.		
	IuC	-	9	.89 17	.37 18	.30	18.30		
		64	251	.32 441	.18 464		464.74		
	AC	-FT	56	46. 116			12289.		
	16005 -	U M	81	97. 143	190. 151	57.	15158.		
		9.34		CTA 2	FOR PLAN 1	. RTIO 6			
			JUPAPH AI	18.	1/.	16.	14.	14.	13.
24.	22.	40.	22.	45.	84.	140.	214.	304.	407.
12.	11.	13. 711.	843.	967.	11/1.	1500.	1987.	2664.	3555.
517.	631.	8051.	16217.	12459.	14647.	16630.	18215.	19250.	19715.
4567.	6144. 18854.	17628.	16217.	14753.	13311.	11958.	10742.	9059.	8690.
19559.	/033.	0317.	5009.	5075.	4534.	4041.	3593.	3192.	2834.
/820. 251c.	/033. 2234.	1903.	1047.	1723.	1608.	1500.	1399.	1306.	1218.
1137.	1001.	990.	923.	861.	804.	750.	700.	653.	609.
113/. 5ur.	550.	145.	402.	431.	402.	375.	350.	326.	305.
284.	405.	2+7.	د د د د	215.	201.	187.	175.	163.	152.
144.	155.	144.	115.	108.	100.	94.	87.	82.	76.
71.	155.	04.	58.	54.	50.	47.	44.	41.	38.
36.	٠٠٠. ٤٤.	31.	29.	27.	25.	23.	22.	20.	19.
18.	1/.	15.	14.	13.	13.	12.	11.	10.	10.
9.	ð.	۶.	7.	7.	ь.	6.	5.	5.	5.
7.	•	,	, •	-					
		P	EAN DEH	OUR 24-1	HOUR 72-H	100R 101	AL VULUME		
		CFS 197			352. 25	81.	371/48.		
			58. 4	14.	208.	73.	10527.	•	
	1.05	ปีกะวั	12	2.37 2	208. 1.71 22 1.48 580	2.87	22.87		
	-	M.A	314		1.48 580		580.93		
	A.	- e r	83	107. 14	583. 153	160.	15361.		
	In Jus (102		y88. 189	47.	15948.		
		•							

CUMBINE HYDROGRAPHS

Constre nivrodantes Suranea 1 And Subanea 2

od i OF 2 HIDHUGRAPHS AT 2 PLAN 1 PTIO 1 7. 5. 33. 7. ٥. ა. ი. ٥. 5. 5. ٥. 4. э. 20. 70. 1. 12. 49. 93. 110. 145. 171. 195. 224. 434. 206. 334. 574. 757. 707. 1204. 1072. 2110. 3144. 2503. 3082. 4037. 4254. 4353. 4335. ±130. 4190. 3963. 1151. 3616. 3249. 2901. 2585. 2051. 2303. 1025. ints. 155%. 1326. 1435. 1227. 1137. 1055. 983. 919. do2. 311. 703. 757. 690. 733. 711. 670. 651. oja. oid. 3U5. 565. 575. 562. 551. 539. 516. 527. 5un. 445. 468. 480. 4/7. 448. 428. 410. 393. 306. 37o. 345. 321. 290. 230. 273. 251. 211. 194. 178. 104. 151. 133. 127. 117. 107. 91. 90. 99. øø. 89. 34. ಶರ. ٥Ġ. 83. ы3. 82. 81. 80. 79. 73. 78. 10. 71. 76. 76. 75. 75. 74. 74. 74. 73. 73. 72. 72. 71. 71. 72. 71. 70. 04. 04. 09. 68. 09. 68. 68. 68. PLAN อ=ทบิปห 24=กบิปลิ 72-dUuR AMUJOV JATOT Crs 4353. 3921. 1882. 736. 106018. CAS 123. 111. 53. 21. 3002. INChes 1.92 3.69 4.32 4.33 44 48.70 93.62 109.83 109.87 1944. 3733. 4300. 4381. Lauda CJ A 2398. 4605. 5402. 5404. Sum OF 2 HYDRUGRAPHS AT 2 FLAN 1 RT10 2 12. 12. 11. 10. 10. 9. 35. 57. 9. 9. 8. ъ. ø. ٥. 12. 20. 86. 122. 163. 207. 254. 292. 3/6. JJU. 450. 569. 743. 984. 1301. 1696. 2218. 2394. 3690. 5537. 4757. 6689. 9263. 11030. 11045. 3790. 10550. 7339. 89/2. 6177. 5123. 6527. 5782. 4547. 4041. 3594. 3196. 2838. 2529. 2265. 2033. 1835. 1678. 1538. 1412. 1306. 1201. 1021. 1113. 1065. 980. 941. 905. 872. 840. 811. 784. 750. 734. 711. 69u. 670. 652. 634. 618. 603. 589. 575. 503. 551. 538. 505. 526. 515. 495. 405. 438. 470. 456. 420. 402. 385. 368. 352. 309. 234. 250. 239. 202. 220. 185. 170. 157. 144. 89. 132. 122. 112. 103. 95, 90. 91. 88. 86. ø5. 84. σ3**.** 83. 82. 80. 79. **81.** 79. 71. 78. 77. 10. 10. 75. 75. 74. 74. 73. 73. 7 4. 72. 74. 72. 71. 71. 70. 70. PEAK 0-400R 24~40UK 72-HUUR TOTAL VOLUME CFS 11045. 831o. 3538. 1328. 191225. CAS . c 1 ć 237. 100. 38. 5415. 140HES 4.10 7.80 0.93 44 104.16 176.01 198.11 198.17 46-r [7018. 4153. 7900. faJUS CU 4 p123. 8657. 9744. 9747. SUIL UP 2 LIUKUGRAPHS AT 2 PLAN 1 RIIG 3 io. 17. 15. lo. 15. 14. 14. 13. 12. 12.

50.

174.

233.

81.

123.

11.

11.

17.

29.

\$8.00 mm / / / / / / / / / / / / / / / / /									
	_								
471.	3 50.	409.	4t2.	526.	532.	800.	1047.	1391.	1842.
2404.	3205.	4409.	5514.	6050.	11129.	14715.	15903.	16165.	15835.
15000.		12592.	11372.	10199.	9186.	6192.	7286.	6480.	5766.
5131.	4563.	4954.	sclż.	3235.	2904.	2009.	2342.	2103.	1890.
1099.	1536.	1-12.	1344.	1262.	1224.	1169.	1119.	10 1.	1027.
Y 5.	947.	910.	e77.	845.	o15.	787.	762.	731.	714.
.	ó73.	654.	o37.	620.	605.	591.	577.	564.	
540.	52b .	517.	506.	496.	487.	477.	461.	441.	552.
404.	3 d / •	3/0.	354.	339.	J12.	287.	263.	242.	422.
204.	155.	172.	150.	140.	134.	123.	113.		222.
92.	90.	89 ٠	88.	87.	86.	65.	84.	104.	96.
81.	მ ს.	79.	79.	78.	78.	77.		83.	82.
75.	14.	74.	73.	73.	73.	72.	76. 72.	76. 72.	75. 71.
		FEAT	(6=HUUR	24-400					, • •
	C F S						VOLUME		
	CMS						276584.		
			•				7832.		
	140862		6.27				11.28		
	MA A A A A A A A A A A A A A A A A A A A		159.28				286.63		
	AC-r'1		6351.			•	11429.		
	THOUS CO F	1	7834.	12763,	14094.	•	14098.		

		SUM UF	2 HILRUGRA	PnS Al	2 PLAN	1 KTIO 4			
23.	22.	21.	20.	19.	18.	16.	17.	16.	15.
15.	14.	15.	24.	3₭.	65.	106.	160.	226.	297.
372.	449.	525.	594.	ь 77 .	812.	1,030.	1352.	1796.	2381.
323r.	4378.	2040.	7407.	13058.	17320.	19569.	20759.	20953.	20577.
19614.	18194.	15500.	14/04.	13163.	11671.	10483.	9390.	6384.	7476.
0001.	5928.	5268.	4195.	4205.	3775.	3391.	3045.	2734.	2457.
2200.	1986.	1700.	1005.	155+,	1466.	1396.	1330.	1269.	1212.
1150.	1105.	1001.	1018.	971.	939.	903.	870.	838.	809.
152.	750.	732.	/10.	689.	069.	651.	633.	617.	602.
560.	574.	502.	550.	537.	526.	514.	504.	494.	485.
4/6.	450.	437.	418.	400.	363.	307.	351.	334.	307.
401.	25%.	237.	218.	200.	184.	169.	156.	143.	131.
i41.	111.	102.	94.	91.	90.	89.	87.	86.	85.
54.	83.	82.	82.	81.	80.	79.	79.		_
17.	70.	70.	75.	75.	74.	74.	73.	78. 73.	77. 73.

CFS CMS INCHES INA AC-F1	FEAK 20953. 593.	6-mour 170/3. 403. 6.36 212.31 8406.	24-HOUR 5907. 195. 13.53 343.59 13700.	72-HOUR 2513. 71. 14.77 3/5.07 14956.	TOTAL VOLUME 362032. 10252. 14.77 375.18 14960.
Inous CU M		10443.	16899.	18448.	14960. 18453.

		SJH Ut	Z HYDRUGRA	PHS AT	2 PLAN	1 RT10 5			
16.	21. 11.	26. 19.	25. 27.	24. 47.	43. 80.	22. 130.	21. 197.	20. 275.	19. 361.
453. 4161.	545. 3313.	540.	124.	82b.	992.	1260.	1054.	2200.	2992.
239/1.	223/0.	ログレル。 インろしま。	12605 26195.	10318. 10201.	21892. 14364.	24217. 1271/.	25547. 11378.	25788. 10232.	25173. 9159.
51/5. 2/10.	72nn. 44.5.	54/5.	5776. 2050.	5175.	4010.	4173.	3748.	3365.	3023.
2	67976	2200.	2000.	1912.	1/84.	1605.	1553.	1465.	1395.

1330.	1209.	1211.	1153.	1198.	1001.	1018.	977.	935.	903.
doy.	838.	309.	702.	756.	732.	710.	689.	669.	651.
633.	01/.	ō02.	588.	574.	502.	550.	537.	526.	514.
304.	474.	±65.	470.	450.	431.	418.	400.	383.	367.
ábi.	334.	305.	201.	250.	237.	218.	200.	184.	169.
155.	143.	131.	121.	111.	102.	94.	91.	90.	89.
07.	åo.	۶ɔ.	o4.	83.	92.	82.	81.	80.	79.
74.	78.	77.	77.	76.	70.	75.	75.	74.	74.
		ť	cak o=h	Ј ЈК 24- Н(OUK 72-HO	UR 10T	AL VOLUME		
				υ υ. 8 6(5. 310	7.	447532.		
			_	03. 24		8.	12673.		
	THC		1)		85 18.		18.26		
		MM	264		.U3 403.		463.78		
	AC.		105	62. 1706	7. 1848	8.	18493.		
	THOUS CO	J .4	130	28. 2105	2280	4.	22911.		
10167. 3398. 1577. 985. 093.	27734. 9091.	32. 23. 791.	18853. 22730. 7213.	30. 58. 1024. 23670. 20249. 6465.	17955. 580b. 2230. 1224. 815. 605.	27. 163. 1565. 30271. 15897. 5216. 2081. 1169. 787. 591. 477. 287.		25. 339. 2777. 32235. 12557. 4206. 1812. 1071. 737. 564. 441. 242. 104. 83.	24. 445. 3902. 31466. 11336. 3779. 1590. 1027. 714. 552. 422. 96. 82.
61.	80.	79.	74.		78.	77	76.	76.	75.
, 	C LNCH	66 342. MS 9: E5 MA	EAK 6-H: 35. 267 13. 79	GUR 24-H0 73. 1087 58. 30 .11 21. .94 541. 70. 2157	72-H007. 36998. 11030 22.9004 581.004. 23199	UR TOTA 9. 0. 91 81 9.	1L VOLUME 501586. 15902. 22.91 581.98 23206. 28624.	70.	73.

HYDROGRAPH ROUTING

ROUTING OF INFLOW HYDROGRAPH

						ISTAGE	
3	•		TING DATA	U	1	Ú	U
CLUSS 0.000		•	isahe 1	 1PMP 0		LSTR	

	3775.00	31962.00																																																•
	3430.00	22408.00			•																	•	•							•						. ~						_	_	_						
	00.	90.			•	8	9 9	9 1	131	0 4	7	. E	56	17	40	• 069	73	26			-	0	997	=	330	787	017) (C	776	400	7 4	1 0	650			• •						•	•	•				0.0		•
• •	3040.00	12285			2	~	۳ ا	2	735	7 6	2	4	27	8	0	691.	~	57		+	.	80	848	140	338	264	577	114	70	0 0	, ,	, ,	674.			• •	•	•	•			•		•	•		•	0.0	•	•
SIGKA 1SPKAT -1. 0	2020.00	4181.00			?	2	S	S	732.	35	0 ~	7 7	2.5	6	9	693.	7	58		4	, .	64	704.	057	345.	287.	234.	127.		• 0 3	• 10 10 10 10 10 10 10 10 10 10 10 10 10		, , , , , ,		5	000		0.0	200	0	, ° °	3	၁ • ၁	0 •0	3 •3	3.0	. .	2.0	2 2	•
0.00.0	00*5877	740.00			7.	20	87.	53	37.	3	7 6	2 (67.	20	5	694.	3	7		- 4	. v	52.	7	700	351	200	240	140		7 5	704	* 7 7	723.			•	• •			•	•							0.3	•	٠
00000	1575.00	714.00	PLAN 1, HIIO	4	7	7.	72.	535.	724	1403.	• • • • • • • • • • • • • • • • • • • •	7.57	200	721.	7.0	695.	.080	663.		4	4	43.	454.	1844.	355	294	7.748.	153	75.5	1767.	200	200	740.			•	•	•	•	• (•							3	•	٠
0.000 U	1050.00	094.00	A S NO	0.14	7.	•	60.	57	719	4	900	7	9 6	, ,	12	697	S	40	3013	4 d	• •	•	~		^	•	•	-	•	•	•	Λ.	777.		JACK C	•	2 2) c	0.0	• •		0.0	, 5°	0.0	3		3	0.0		> • 5
7717	2 2	٠ •	SIATED				Š	4	114	2	- ·	, ע	2	• •	3 ~	0 0	4	٥		4	• (2	77	200	356	303	107	175	435	7	٠ ۵	2 2	747			•	٠	•	•	•		•	•			• •	•	, 3	•	٠
10110	5 5 6	052			,	٥	2	*	9	56	9	υ. Σ	9 -	7 5	7 :	700	3	000		•	, , , 1	4	15	7	346	302	267	165	35%	4	930	321	342.) 			٠	•	•	•	•	•	•	•		•	•			٠
	200.00	332.00			7.	• •	-4	30	2 4 4	12.	270	۶,	,	7 !	9 .	? 5	· `	£70.				• 19	3		534.	,1c.	232.	370.	use.	•2•	017.	355.				•	٠	•	•	•	٠	•	•	•	•	•	•) D	٠	
	35.50 30.6788	22.04.0			7.	. 0	•	^	_	7.	'n	2	•	٧٦.	∩ :	ე.~	١ ٢	c 71.		•	, 4	٠ 4	* 2	7 7	ر ۱	3 2 3	111	4 45	707	ň	950	375	1123.	•		•	٠	•	•	•	٠	•	•	٠	٠	•	•) 3) 3	•	٠
	ત્ર (5	5																																																

\$ low

Crs Crs Indias Autri	72AN 141+. 40.	9-MUM-2 3+. 3+. 2-59 15.09	24-aduk 850. 25. 1.70 43.10 1719.	72-HOUR 027. 10. 3.09 93.04 3734.	TOTAL VULUAL 90390. 2560. 3.09 93.07 3735.
14092 CP 3		742.	2120.	4605.	4607.

MAXIAUM STURAGE = 2356.

			STATION	3,	Puad I, RI	10 2			
				Jaino	Uw				
12.	12.	12.	12.	12.	12.	12.	12.	11.	11.
41.	41.	11.	11.	11.	12.	14.	18.	24.	32.
42.	5+.	6 7.	05.	103.	123.	149.	182.	228.	288.
350.	402.	112.	567.	655.	669.	084.	704.	720.	736.
3149.	ა5∪1.	ەۋە2ە.	d438.	8029.	7371.	6640.	5927.	5271.	4684.
4112.	30,00	3025.		3017.	273.	2473.	2240.	2034.	1851.
1090.	1547.	1423.	1312.	1224.	1151.	1069.	1035.	987.	944.
906.	670.	Bio.	ಾಲಿಕ.	780.	75 .	740.	740.	740.	740.
739.	73+.	739.	139.	737.	73m.	738.	737.	737.	737.
136.	150.	736.	135.	735.	734.	734.	737.	737.	
/31.	131.	730.	129.	720.	728.	727.	726.	733. 725.	732.
123.	723.	122.	/21.	720.	719.	718.			724.
714.	711	7.1.	/10.	100.	707 .	705.	717.	716.	715.
099.	07 4.	390.	09 5 .	693.	692.		704.	702.	701.
or5.	003.	631.	530.	670.		691.	689.	688.	686.
3.,3.	003.	091.	550.	0/86	675.	674.	672.	671.	669.
7		_	_	รูโบห					
7.	1.	7.	7.	7.	٦.	7.	7.	7.	7.
1.	<i>i</i> •	0.	٥.	7.	7.	9.	11.	14.	19.
25.	33.	41.	51.	62.	74.	90.	110.	137.	174.
422.	28m.	375.	494.	616.	833.	1058.	1359.	1748.	2174.
20+1.	2762.	2340.	∠ø⊅⊅.	2835.	2804.	2768.	2734.	2702.	2674.
2049.	2022.	2571.	25 5 8.	2527.	2497.	2469.	2444.	2422.	2403.
2350.	23/1.	2357.	2340.	2330.	2329.	2322.	2310.	2311.	2307.
∠3∪3.	2239.	4477.	2292.	2269.	2287.	2284.	2280.	2277.	2272.
2206.	-201.	2254.	4247.	2240.	2232.	2223.	2214.	2205.	2195.
2105.	2111.	2103.	∠151.	2134.	2125.	4111.	2090.	2081.	2065.
2040.	2030.	2011.	1991.	1971.	1949.	1927.	1905.	1881.	1858.
1533.	1009.	1704.	1/56.	1733.	1707.	1681.	1655.	1629.	1603.
1577.	losi.	1525.	1477.	1473.	1447.	1422.	1396.	1370.	1344.
1319.	1493.	1207.	1242.	1210.	1191.	1165.	1140.	1114.	1089.
1004.	1630.	1013.	980.	yóà.	938.	913.	898.	863.	838.
				STAGE	•.				
0.6	0.0	U. U	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
U. J	0.0	Ů.U	U.U	0.0	0.0	0.0	0.0	0.0	
U.U	0.0	0.0	U.U	0.0	0.0	0.0	0.0		0.0
0.0	U.U	0.0	U.U	0.0	0.0	0.0		0.0	0.0
(.0	J.J	J.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ú. ()	J. j	9.0	0.0	0.0		-	0.0	0.0	0.0
0.0	9.7	9.U	0.9	0.0	0.0	6.0	0.0	0.0	0.0
0.0	V	0.0	0.0	0.U	υ.υ	0.0	0.0	0.0	0.0
V.U	1.9	0.0			0.0	0.0	0.0	0.0	0.0
•••	• • •	V • V	V • V	0.0	0.0	0.0	0.0	0.0	0.0

4114 -

0.0 0.0 0.0 0.0	1 . U 5 . U 7 . U 6 . U	0.0 0.0 0.0 6.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.7 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
	CFS CMS Inches MM AC-FT Incus Co M	FEAR 8438. 234.	5-HüUK 6048. 171. 2.96 75.21 2959. 1694.	24-HOUR 2497. 71. 4.89 124.20 4952. 6109.	72-HGUR 1188. 34. 6.9b 177.27 7009. 8719.		YGLUME 171122. 4646. 6.98 177.34 7071. 8722.		

MAXIAUM STORAGE = 2855.

			STAILÚN	3,	PLAN 1, RT	10 3			
				OUIFL	υ *				
18.	10.	15.	10.	17.	17.	17.	17.	16.	16.
15.	io.	15.	15.	16.	17.	21.	26.	34.	45.
E().	77.	77.	119.	144.	1/3.	209.	257.	321.	369.
425.	364.	014.	oti.	677.	998 .	722.	1037.	8143.	12957.
14705.	14591.	13720.	12542.	11451.	10395.	9370.	8390.	7485.	6666.
5935.	7401.	4071.	4179.	3933.	3654.	3360.	3071.	2795.	2534.
2293.	4313.	10/0.	1715.	1504.	1476.	1385.	1306.	1237.	1176.
1121.	1070.	1/44.	901.	942.	900.	872.	840.	810.	783.
721.	140.	7+0.	740.	740.	739.	739.	739.	739.	738.
731.	130.	731.	737.	737.	730.	736.	736.	735.	735.
	734.	133.	733.	732.	731.	731.	730.	729-	729.
734.	127.	120.	745.	724.	724.	723.	722.	721.	720.
728.		127.	710.	715.	714.	713.	711.	710.	708.
714.	116.	/4:•	702.	701.	700.	698.	697.	695.	694.
707.	705.	704.	o6b.	086.	695.	663.	682.	080.	678.
674.	091.	509.	000.	00.74	093.				
				51 u K					
11.	11.	11.	11.	10.	10.	10.	10.	10.	19.
10.	7.	9.	ý.	۶.	10.	12.	16.	21.	27.
30.	40.	50.	72.	87.	194.	126.	155.	193.	246.
317.	415.	220.	129.	953.	1292.	1790.	2380.	2841.	3066.
3133.	3127.	3095.	3050.	3900.	2949.	2900.	2853.	2809.	2770.
2734.	4103.	2015.	∠o59.	2024.	2534.	2563.	2532.	2503.	2475.
2450.	4420.	4116.	2300.	2375.	2303.	2353.	2345.	2338.	2331.
2325.	4340.	4315.	2311.	2306.	2303.	2299.	2296.	2292.	2290.
2207.	4204.	2451.	2277.	2272.	2207.	2261.	2255.	2248.	2241.
2233.	4424.	2215.	2266.	4196.	2186.	2176.	2165.	∠153.	2140.
2233.	4113.	∠J95.	∠ ∪83.	2067.	∠ 050.	2033.	2014.	1994.	1973.
	1113.	1 = 000	1884.	1861.	1037.	1812.	1787.	1702.	1736.
1952.	1004.	1,50.	1032.	1007.	1561.	1550.	1529.	1503.	1477.
1710. 1451.	1904.	1,50.	1373.	1346.	1322.	1296.	1271.	1245.	1219.
	1100.	1143.	1116.	1092.	1007.	1042.	1016.	991.	960.
1134.	1106.	1143.	11.00		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			
				5140				2. 4	۸ ،
6.6	0.6	V.U	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.0	1.0	ن ، ر	0.5	0.6	0.0	0.0	0.0	0.0	0.0
0.0	(.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	J. 1	0.0	U • U	0.0	0.0	0.0	0.0	0.0
v.v	∀ • €	1.0	U. U	11.0	0.0	0.0	0.0	0.0	0.0

0.3	J • J	J.U	v. u	0.0	J.0	0.0	0.0	V.U	0.0
J . U	9.5	V.J	v. i	U.U	U. U	0.0	0.0	0.0	0.0
U.U	11.3	0.0	U • U	0.0	0.0	0.0	0.0	U.O	0.0
0. 0	U . i J	0.0	U.U	0.0	٠.٠	0.0	0.0	0.0	0.0
U.U	.)	9.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
U.U	J. U	J. U	U . U	0.0	U.U	0.0	0.0	0.0	0.0
$u_{\bullet}u$	4.0	U. U	U.U	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	U.U	V . U	U.U	U. U	U.U	0.0	0.0	0.0
v.ŭ	0.0	J. U	U.U	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	U.U	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	Pēar	6-HUJR	24-HGUR	72-HOUK	BMUJOV JAIUT
Cr o	14705.	107/0.	4181.	1760.	253463.
C 18	410.	300.	110.	50.	7177.
LACHES		5.28	8.19	10.34	10.34
11.		134.01	207.96	262.58	262.67
4C-F i	•	2343.	8292.	10470.	10474.
Injus Cu i		0591.	10228.	12915.	12919.

MAXIAUA STURAGE = 3133.

BLATIG	3.	PLAN	1.	RT10	4
W - 11 2 2 U 1	~,				•

				OUTFL	.0 4				
23.	۷3.	43.	23.	23.	22.	22.	22.	21.	21.
41.	20.	20.	23.	40.	22.	27.	34.	44.	59.
77.	93.	145.	154.	136.	223.	269.	33u.	372.	427.
505.	514.	001.	o7 y .	762.	728.	4018.	13790.	10723.	20149.
20111.	19204.	11921.	10332.	14685.	13102.	11771.	10669.	9599.	8596.
7018.	2011.	6097.	5427.	4640.	4330.	4018.	3757.	3474.	3188.
2909.	26 +4.	2391.	2179.	1993.	1830.	1704.	1592.	1497.	1413.
1337.	14/4.	1211.	1.55.	1104.	1050.	1012.	971.	933.	897.
8ú4.	. د د ه	804.	777.	752.	140.	740.	740.	740.	739.
139.	117.	739.	738.	733.	738.	737.	737.	737.	736.
130.	135.	735.	/35.	734.	734.	733.	732.	732.	731.
731.	130.	129.	748.	720.	727.	726.	725.	724.	723.
722.	722.	721.	720.	719.	718.	717.	716.	715.	714.
713.	711.	710.	70d.	707.	705.	704.	702.	701.	699.
6¥8.	070.	675.	393.	o92.	690.	689.	688.	686.	685.
				> T 0k					
14.	14.	14.	14.	14.	13.	13.	13.	13.	13.
12.	12.	12.	12.	12.	14.	16.	20.	27.	35.
46.	ω),	15.	93.	112.	134.	162.	199.	249.	319.
416.	550.	731.	y15.	1371.	1969.	2633.	3098.	3288.	3343.
3342.	3309.	3251.	3196.	3132.	3071.	3015.	2962.	2911.	2862.
2618.	2774.	27-2.	2110.	2682.	2651.	2033.	2605.	2575.	2545.
2515 .	2401.	2461.	4438 .	2418.	2401.	2387.	2375.	2365.	2356.
2349.	2341.	2335.	2329.	2324.	2319.	2314.	2309.	2305.	2302.
2298.	4495.	2272.	22H9.	2206.	2283.	2280.	2276.	2271.	2206.
226Û.	2254.	24 5.	4239.	2231.	2222.	2213.	2204.	2194.	2184.
2173.	2102.	2150.	2130.	2124.	2110.	2095.	2080.	2064.	2047.
2029.	2010.	1990.	1509.	1947.	1925.	1903.	1879.	1856.	1831.
1507.	1702.	1/50.	1/31.	1705.	1679.	1053.	1627.	1001.	1575.
1549.	1523.	1497.	14/1.	1445.	1419.	1394.	1306.	1342.	1316.
1291.	1255.	1237.	121+.	1108.	1103.	1137.	1112.		

STAGE

'	E. 2. 817	,	
Π	The same of the sa		The second secon
		•	A design of the second
			1
			T 1
		·	
}`I '	3-8		

		14 43	J.U	Ú.U	1.	U_Ú	0.0	0.0	0.0
0.0	JøJ	U.U	0.0		v. u		0.0	-	_
U . U	0.0	y. U	U . IJ	0.0	0.0	0.0	0.0	0.0	0.0
U. U	U.U	V.U	0.0	U. u	0.0	0.0	v. u	0.0	0.0
0.0	9. 0	0.0	0.0	U.0	U.U	0.0	0.0	0.0	0.0
0.0	0.6	U . U	0.0	U.O	6.0	0.0	0.0	0.0	0.0
0. 0	9.0	J. 0	0.0	0.0	J.0	0.0	0.0	0.0	0.0
6.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
υ.υ	0.3	U.U	0.0	0.0	0.0	0.0	0.0	0.0	0.0
U.J	U.U	0.0	U.U	0.0	υ.0	0.0	0.0	0.0	0.0
0.9	0.0	U.U	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(. i	0.0	U.U	0.0	0.0	0.0	0.0	0	0.0	0.0
0.0	0.0	U.U	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.6	0.0	U.U	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0
ULU	0.0	0.0	0.0	U_0	0.0	0.0	0.0	0.0	0.0

	PEAK	6-HGUR	24-HUUR	72-HUJR	JPUJUV JATOT
CF S	20149.	15294.	5891.	2337.	336682.
LAS	571.	433.	167.	60.	9534.
1% CheS		7.49	11.54	13.73	13.74
mid		190.19	293.03	348.79	348.91
AC=FI		/584.	11684.	13908.	13912.
inodă cu M		4355.	14413.	17155.	17161.

HAXIAUM STURAGE = 3343,

			51A113N	3,	PLAN 1, RI	119 2,			
				UUIFL	, U *				
40.	20.	44.	20.	28.	21.	27.	27.	26.	26.
25.	25.	44.	44.	25.	28.	· 33.	41.	54.	72.
9 .	121.	154.	107.	220.	274.	328.	367.	418.	489.
bor.	o58.	574.	690.	725.	4081.	15899.	22171.	24700.	25270.
24102.	23004.	21912.	20072.	18065.	16123.	14320.	12734.	11512.	10421.
9300.	n 3 8 5 .	1+12.	0000.	5452.	5326.	4776.	4286.	4000.	3737.
3455.	3170.	2844.	2043.	2427.	2238.	2071.	1920.	1786.	1670.
15/6.	1462.	1:03.	1332.	1207.	1207.	1153.	1102.	1055.	1011.
970.	754.	091.	dos.	833.	634.	777.	751.	700.	740.
740.	140.	134.	739.	/39.	739.	736.	738.	736.	737.
737.	157.	720.	730.	136.	735.	735.	734.	734.	733.
734.	732.	151.	731.	730.	729.	728.	728.	.727.	726.
725.	124.	123.	722.	722.	721.	720.	719.	718.	717.
110.	715.	114.	713.	711.	710.	708.	707.	705.	704.
702.	701.	J44.	698.	096.	695.	693.	692.	690.	o89.
				S1 UR	1				
17.	17.	17.	17.	17.	17.	10.	16.	16.	16.
15.	15.	15.	15.	15.	17.	20.	25.	33.	43.
57.	73.	92.	113.	136.	164.	196.	244.	307.	396.
520.	209.	913.	1493.	1908.	2639.	3179.	3421.	3513.	3533.
3515.	3473.	3413.	3340.	3203.	3168.	3118.	3057.	3003.	2950.
2900.	2052.	2009.	2770.	4735.	2/05.	2679.	2055.	2631.	2603.
4513.	2543.	1723.	2481.	2404.	2444.	2426.	241(.	2396.	2384.
6313.	6304.	4135.	2340.	4341.	2335.	2329.	232 .	2316.	2314.
2309.	2305.	2302.	4470.	4295.	6472.	2289.	2280.	4283.	2280.
		-		2.		0021	211.1	5000	0043

4253.

2102.

2009.

4400.

21/3.

4015.

2210.

2204.

440V.

4671.

2191.

40000

2405.

4104.

6341.

a summercemental of the companion of the

2240.

2150.

1990.

2239.

Z137.

1909.

2231.

2124.

1947.

2213.

2095.

1903.

2222.

2110.

1925.

1079.	1355.	1131.	1807.	1762.	1750.	1730.	1705.	1079.	1653.
1027.	1001.	15/5.	1549.	1523.	1497.	1471.	1445.	1419.	1394.
1300.	13+2.	1310.	1441.	1205.	1239.	1214.	1106.	1163.	1137.
				STAGE	Ξ				
0.7	U. 0	0.0	U. 0	0.0	0.0	0.0	0. U	0.0	0.0
U. 6	U. J	U. U	0.0	0.0	0.0	0.0	0.0	0.0	0.0
U. U	0.0	Ú.U	U. U	υ,υ	0.0	0.0	0.0	0.0	0.0
0.0	0.0	U.U	U.J	0.0	0.0	0.0	0.0	0.0	0.0
0.0	U.J	U.U	0.3	0.0	0.0	0.0	U.U	0.0	0.0
0.0	U. U	J. J	0.0	0.0	0.0	0.0	0.0	0.0	0.0
U. U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	3.0	ل ₊ ان	0.0	0.0	u.0	0.0	U.O	0.0	0.0
U.U	0.0	0.0	U. Ö	0.0	0.0	0.0	0.0	0.0	0.0
0.0	J. U	6.0	U. U	0.0	0.0	0.0	0.0	0.0	0.0
Ç. U	0.0	0.0	U.U	0.0	0.0	0.0	U.0	0.0	0.0
(. c	v.u	6.0	0.0	U.O	0.0	0.0	0.0	0.0	0.0
0.0	6.0	٠. ن	0.0	0.0	U.0	0.0	0.0	0.0	0.0
0.0	U.U	0.0	0.0	v. 0	0.0	0.0	0.0	0.0	0.0
0. u	0. 0	J. U	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	PEA t	b=HUUR	24-HUUR	72 - HJUR	TOTAL VOLUME
CFS	25270.	19792.	7610.	2919.	420422.
LAS	716.	560.	215.	83.	11905.
LaCates		9.69	14.90	17.15	17.15
તંત્ર		240.13	378.52	435.54	435.69
AC-FT		9514.	15093.	17307.	17373.
Injus Co 4		12100.	18617.	21422.	21429.

MAXIMUM STORAGE =

			STATION	3,	PLAN 1, RI	IU 6			
				OUTFL	,O,n				
35 .	35.	35.	35.	35.	34.	34.	33.	33.	32.
32.	31.	31.	30.	31.	35.	41.	52.	68.	89.
117.	150.	157.	234.	281.	334.	369.	416.	481.	574.
636.	J72.	n 3 7 .	724.	3980.	17475.	25523.	29584.	31404.	31729.
30979.	29417.	21300.	24902.	22419.	20103.	17885.	15869.	14095.	12595.
11444.	10351.	9207.	8304.	7424.	6650.	5966.	5356.	4809.	4319.
4018.	3/00.	3 ± 0 U .	3212.	2972.	2750.	2560.	2381.	2217.	2065.
1924.	1195.	1632.	1582.	1494.	1410.	1344.	1279.	1219.	1163.
1:12.	1305.	1020.	979.	940.	904.	871.	839.	810.	783.
151.	140.	740.	740.	740.	139.	739.	739.	739.	738.
738.	/35.	737.	737.	73/.	730.	736.	736.	735.	735.
734.	134.	733.	133.	732.	731.	731.	730.	729.	729。
728.	127.	720.	725.	724.	724.	723.	722.	721.	720.
719.	718.	717.	710	715.	714.	713.	711.	710.	708.
707.	705.	701.	702.	701.	700.	098.	697.	695.	694.
				STOR					
21.	21.	41.	41.	21.	21.	20.	20.	20.	19.
19.	13.	is.	19.	19.	21.	25.	31.	41.	54.
70.	#U .	11.	140.	169.	203.	246.	305.	386.	502.
002.	5/5.	1235.	1647.	2029.	3240.	3542.	3689.	3755.	3767.
3740.	3045.	3001.	3520.	3430.	3341.	3256.	3178.	3110.	3052.
3000.	2711.	4190.	2040.	2800.	2709.	2736.	2707.	2680.	2657.
2033.	2003.	25/0.	25 i7.	2522.	2499.	2476.	2459.	2442.	2426.

2411.	2591.	2385.	2374.	2305.	2357.	2349.	2342.	2336.	2330.
2324.	2314.	2315.	∠31U.	2306.	2302.	2299.	2296.	4294.	2290.
2281.	425%.	2201.	2271.	2272.	2267.	2261.	2255.	2248.	2241.
2233.	2224.	2210.	2200.	2190.	2160.	∠176.	2105.	2153.	2140.
2127.	2113.	2034.	2003.	2007.	2050.	2033.	2014.	1994.	1973.
1952.	1930.	1908.	1564.	1801.	163/.	1812.	1787.	1762.	1736.
171J.	1684.	1058.	1632.	1606.	1581.	1555.	1529.	1503.	1477.
1451.	1425.	1399.	1373.	1348.	1322.	1296.	1271.	1245.	1219.
				STAGE	3				
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	U.U	0.0	0.0	U.0	0.0	0.0	0.0	0.0
0.0	U. U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	U • U	U.U	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	U.V	0.0	0.0	0.0	V. U	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	U . U	0.0	0.0	0.0	0.0	0.0	v.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	U.U	0.0	0.0	U.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	U.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
U.0	0.0	0.0	0.0	J.0	Ü.Ü	0.0	0.0	0.0	0.0
v. u	U.Ú	U.U	U. U	0.0	0.0	0.0	0.0	Ú.O	0.0
0.0	U. 0	0.0	0.0	U.O	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

PEAK ₽UQH₽¢ 24-H9JR 72-HOUR TOTAL VOLUME Crs 532593. 31729. 3697. 25060. 9906. 127. 281. 105. 21.72 Cns **890.** 15081. 21.73 551.93 INCHES 14.40 492.76 12.56 4 (4 319.10 551.75 19649. 12724. AC=r I 22001. 22008. Thud5 Co M 27137. 15095. 24236. 27140.

MAXIMUM STERAGE = 3707.

********* ******* ******* *******

and the second of the second o

PERK FOLK AND STORAGE (ELD OF FERTOD) SUMMARY FOR AUGTIPLE PORM-RATIO ECONOMIC COMPUTATIONS FOUND IN CUBIC FEBT FER SECOND (CUBIC METERS FER SECOND)

AREA IN STUARE MILES (SQUARE KINDMETERS)

						RATIOS API	PLIED TO FI	UAS	
UPERATION.	STATION	AKEA	SUMM	KATIO 1	KATIU 2	RATIU 3	RA110 4	RATIO 5	RATIO 6
				0.20	v.35	0.50	0.65	0.80	1.00
nYDKJGRAPH AT	r i	0.40	1	2775.	4863.	o948.	9032.	11116.	13895.
	(10.50)	(78.09)(137.71)(0948. 196.73)(255.75)(314.77)(393.46)(
ROULED ID	2	00	1,	1012.	4293.	6795. 192.42)(8919.	10975.	13719.
	l	10.30)	(28.0/)(121.56)(192.42)(252.50)(310.77)(388.47)(
HYDRUGKAPH A	r 2	12.00 32.03)	1	3943.	6900.	9857. 279.13)(12815.	15772.	19715.
	(32.03)	(111.65)(1 15.39)(279.13)(362.67)(440.61)(558.26)(
2 COMBINED	2	19.JJ 49.Zl)	1	4353.	11045.	161o5. 457.75)(20953.	25788.	32235.
	(49.21)	(123.20)(312.76)(451.15)(593,32)(730.24)(912.80)(
KO0150 TO	3	19.00 49.21)	1	1414.	8438.	14705. 410.41)(20149.	25270.	31729.
	(49.21)	(40.03)(238.94)(410.41)(570.54)(715.56)(898.47)(

[} D , "Y [5

APPENDIX D

DESIGN FOLDER

WATERSHED PROTECTION PROJECT

DESIGN REPORT

Site 6A

Cattaraugus County

New York

U S DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

INDEX

- I General
- II Layout
- III- Hydraulic Design
- IV- Foundation & Embankment Design
 - A- Geology Report
 - B- Soil Testing Report
 - C- Analysis
- **⊻** Structural
- VI- Quantities ✓
- VII- Specifications

- U. S. DEPARTMENT OF AGRICULTURE - SOIL CONSERVATION SERVICE -

Multipurpose dam site No. 6A, of the Ischua Creek watershed protection project, is located approximately one-half mile southeast of Franklinville, New York, on Gates Creek, a tributary of Ischua Creek. Site No. 6A is in series and approximately 2.9 miles downstream from the completed site No. 5. Sheet 4 of this report, together with the Franklinville, N. Y. 15-minute quadrangle published by the U. S. Geological Survey, may be used to locate the structure more definitely.

A summary of pertinent design information is given on sheet 2 of this report.

Criteria and procedures used in this design are given in the following Soil Conservation Service publications:

National Engineering Memorandum No. 27, Limiting Criteria for the Design of Earth Dams

National Engineering Memorandum No. 42, Reinforced Concrete Pipe Drop Inlet Barrels

National Engineering Memorandum No. 50, Pipe Drop Inlet Type Principal Spillways

National Engineering Handbook No. 4, Hydrology

National Engineering Handbook No. 5, Hydraulics

National Engineering Handbook No. 6, Structural Design

National Engineering Handbook No. 8, Geology

Engineering Division Technical Release No. 2, Earth Spillways

Engineering Division Technical Release No. 5, Structural Design of Underground Conduits

Engineering Division Technical Release No. 10, Storage--Floodwater Retarding Structures

Engineering Division Technical Release No. 12, Procedure for Computing Sediment Requirements for Retarding Reservoirs Upper Darby Method of Reservoir Flood Routing

This is one of eight proposed floodwater retarding dams in the Ischua Creek watershed designed to reduce floodwater damages. It will retard a 100-year frequency storm without discharge occurring in the emergency spillway. The permanent pool has a water surface area of 80 acres and a beneficial storage volume of 972 acre-feet in addition to the 50 -year sediment storage.

The results of hydrologic and hydraulic computations are given on sheet 3 of this report.

The structure consists of a compacted earth fill with a cutoff through alluvial gravel to firm sandstone in the left abutment and to firm, relatively impervious glacial till in the flood plain and right abutment. A drainage system is located under the downstream portion of the earth fill to control the phreatic surface and to collect seepage.

The principal spillway system is two parallel drop inlet structures each consisting of a single stage reinforced concrete riser, 42-inch diameter reinforced concrete water pipe, and a reinforced concrete impact basin to dissipate the energy of high velocity discharge at the outlet end of the pipe.

-;-

- U S DEPARTMENT OF AGRICULTURE - SOIL CONSERVATION SERVICE -

The emergency spillway system is designed as an earth cut in each abutment with the control section on firm, compact glacial till. An engineering cost analysis was performed which led to the elimination of rock excavation in the left emergency spillway.

SOIL CONSERVATION SERVICE --U. S. DEPARTMENT OF AGRICULTURE

Element	Determining		Surface	Storage	1 86	प्रवा	Inflow	Peak
of Structure	Factor	Elevation	Acres	Acre-Feet	Inches*	Volume Inches*	Rate c.f.s.	Outflow c.f.s.
Invert of orifice	50-year sediment accumulation							
Crest of riser	50-year sediment action ulation plus 972 sc-ft of beneficial storage	1661.0	8	0111	1.65	1	1,	ı
Crest of 1/ emergency spillway	10-jwar frequency storm, moisture condition III (TR-10 procedure)	1679.0	174	/ 2 59æ	3.37	1	•	
Design high water	1.75 X 6-bour point reinfall, moisture condition II	1684.2	204	32002/	92.4	8.5	17,450	15,200
Top of dam	2.5% 6-hour point rainfall, moisture condition II	1686.6	216	76905/	6۴۰۶	13.3	30,100	28,200

*Inches of runoff from controlled area of 8064 acres Time required to empty flood storage is $[\mu,\bar{\jmath}]$ days

Asaised 4.8' based on engineering cost analysis. Stores not include any storage allocated to permanent pool.

ENGINEERING & WATERSHED PLANNING UNIT, UPPER DARBY, PA --

ISCHUA CREEK WATERSHED SITE 6A NY-1001-D

HYDROLOGY AND HYDRAULICS SUPPLEMENT

TABLE OF CONTENTS

		PAGE
1.	General	
	Summary of H&H	1-1
	Hydrograph Values	1-2
	Emergency Spillway & Freeboard Hydrograph Results	1 2 3
2.	Computer Input Hydrograph Data	
	Emergency Spillway Hydrograph - Site 6A Alone	2-1
	Emergency Spillway & Freeboard Hydrographs (Site 5 with Site 6A)	2-2, 2-3
3.	Rservoir Routing	
	Emergency Spillway Hydrograph Site 6A Alone	3-1 to 3-4
	Emergency Spillway & Freeboard Hydrographs	3-5 to 3-29
	(Site 5 with Site 6A)	0 0 00 0 23

UNITED STATES DEPARTMENT OF AGRICULTURE

SOIL CONSERVATION SERVICE

Pa 1-1

Syracuse, New York 13210

SUBJECT:

ENG 13 - Ischua Creek Site 6A
Revised Hydrology and Hydraulics

DATE: 8/6/70

O: THE FILES

Summary of Revised Hydrology and Hydraulics for Ischua Site 6A Emergency Spillway and Freeboard Hydrographs.

Due to an excess of Excavation from the Emergency Spillways, a revision in the bottom width of the right emergency spillway was determined to avoid wasting of excavation.

Criteria used is the same as the original design with the exception of the Emergency Spillway Hydrograph minimum point rainfall. The minimum used was to be either (1) 1.00 times the design point rainfall (1.00 x 7.9") modified by the previous Areal Rainfall Factor OR: (2) the point rainfall called for under the current Engineering Memorandum #27 (Rev.) (9.0") modified by the current areal rainfall factor. A summary of the data used for the routings is attached.

Several bottom widths were run, with a resulting bottom width of 450' total used. This reduces the right emergency spillway bottom width from 300' to 250'. The design high water elevation is lowered to 1682.9 from 1684.2 and the top of dam is raised to 1687.2 from 1686.6. The design high water is lowered because the point rainfall for the emergency hydrograph that was used in the original design was 1.75 (7.9"). The top width of the dam is to remain the same as the original design (20 ft.). The resulting steepening of the side slopes is felt to have an insignificant effect upon the stability of the dam. The above mentioned changes were discussed between L. Ibbitson and G. Oman on August 4 and 5, 1970.

1	STATE	PROJECT		SOIL CONSERVATION S	SERVICE 6P0 . 1950 6-470067 .
10	NEW YOU	PROJECT CHECKED	TSHUA CALOX DATE	SITE 6A JOB NO.	
8. . ,	SUBJEGT En. SO	WY. & PRESSORD HYD	era and P	JOB NO. N Y - /	
		STATE SOARD AYOU	ROGRAPH KESOLTS	SHEET	or <u>G1-3</u> .
I.	<u> </u>				
1. 36.	SITE GA			├ -	
1					+-+-+
	<u>Em.</u>	SPLWY. HYDROGRAPH	RESULTS		
	B. W.	Q D.H.W.	Qp QEM.	QEA V	
ł	450 72	265 1682.9	171 170		-
1		765 /682.9	676 . 6589 -	14.6 8.6	Sec
AMERICAL.	500,1. 74	39 1682.7 " "	674 6765	135 8.3 7	SSC
,					
٠,	وع ا	CCROCALD Hungaran			
		ECBOARD HYDROGRAP	H KESOLTS	, ,	
	_ B. W. Q	TOP DAM			
1					
	450 28,	675 /687.2			
	500 28,	987 1686.8	-		
					
- dellar		╃ ═ ┞╒╇╤ ╟╾ ╇═╏ ═╏═╬═╬	- ├╌╎╌ ╽ ╌╽╌┩╼┨┉╽		
	1-1-1-1-1-1-	†· · † · -		+	
133	NOTE: Hp \$ 0	VALUES FOR	COMPUTER R	OUTINES BASED	
1.					
	UR	W S= 0.00	ENTRANCE SLOP	es FOR GAE	M. SPLWYS.
1					٠
	· · · · · · · · · · · · · · · · · · ·				
1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				a w
1					
					5
require.		-			
	│ ┈┩┈╽┈╉╾╂╾╂╶╂┈╽	·····································	┼╶ ╎╸ ┼┈┤╌╏╴├┈╎ <i>╸</i>		
-				 	
<u>.</u>			 	++++++	
<i>i</i> · , ·					
= -					
The war I'm	an and the second of the latest and	' . , <u>.</u>		,	

U S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

SCS-522 REV 5-58				SOIL CONSERVATION SERVICE							
STATE	.V:)			PROJE	1.	DATE	L. # 6 A				
BY 7	11	DATE	11:16	Ź	KED AV	A DATE 1/5		JOB NC	NY	-1001	- E
SUBJEC	1.	14.1	- 1	ry. K1	i Hd		1	SHEET	2	OF	
;		,	11			1					þ
	, !	•	•	• •	i		•		:		:
٧)			;	,	-;	1 24	•	!	•		•
X	•		• •		•	32			:	1 :	
112.		•	÷		•	1 8 V	. 12			1	
Kemër	*			Þ		14.	1,2		•	;	
			-4			17.00	15.0			- :	
72	. !	•	!		:	4.4Ke.11	. 7	!		,	
1. 1.	:	7	N	74	~! ~!	12 K	. ?	i '	:		
Cracking	.,	**	, '	14	4	1 42	7	1		t	
0					······	3112		İ,		ļ	
2				٠.		Spirit Spirit	12.		:		
fuidid	·				•	1 6 E	ge/	1 :	:		
4		-		_		1000				:	
1						SWXXWS SOCA PLOCE	Ġ	İ	-	1	
13					ì	2 50 7 7 6 7 7 7 7 7 8	7	}		;	,
0.0	is.	Ń	77	77	22	1 4 3	· M			'	
75 O.CC?		•	'\	. 4	''		· · · · · · ·	1		• • •	
					1	200	if:	•		i	
1	. 26	2	4	77	m	300	, ,	i		:	
i,	R		N	η.	N	194				;	
		-a u./v=1/-				1. 1.	Ć	1 .	•	į	
7			4	,	_	1/2.2	1	į		: .	
P. I.	Ø,	1	ω	~	6	7 1 1 1	1	1	•	;	
						by Leon 31 ds + Nar 311, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13	samples most all filt		,	1	•
0 0	4	77	2	0.072	Ø	19, 26	. '8				
Dso m m	0.047	0.135	0.010	ö	0.068	1112	: 4	i	,	į	
1	Ó	<u>o</u>	0	0		12,70					,
sample Depth 1.5.C.S.			73	6 7	C40r	Cappe of susse "FLEXAB. 2177 by Leon 31 ds. March. 1963,	1	: S		i	•
· ;	70	W.	7	CL 01 CL 01	27.07.0	1,200	•	;			:
**		۷)	Ö	CT 01		25.11	٠٠٤ ٦		•		
3,						1867		Jagene Sch		: ;	•
11	4.	$C_{\mathcal{O}}$	7	9	.):	1 204	W.	ü ;	. •		•
Ö	.4.7	4.5	37-5	,01-,1	102,2	3 4 4 5	')	<u>a</u>	,	i	
						が、対象上	MI	Ď	•	• !	
4	7:25	× C 2. 4	70 = 3	2071	207.	12:0	. "	1	•	. ;	• :
218	$\dot{\varsigma}$	G	9	Ö	3			i	:	. 1	
<u>\i</u>		٠٧	~(7		1		1	ţ	,	
	•		,		,	i		4 :		i — i	

COMPUTATION SHEET U S. DEPARTMENT OF AGRICULTU SCS-522 REV 5-58 SOIL CONSERVATION SERVICE NEVI /JA CHECKED BY DATE, 1/4/65 DRAINAGE DESIGN The Drainage System is designed based on the impormation contained in the Geologic & Foils Reports The Drain is located 100 FT. downstream from the E of Rum. It extends on each side of the principal epillung parallel to the to of Down to the too of solope at each obutement. This bestien of the Printe sounde and will bottom on The Charge ground 5 usface At the Too of 3/spe in cich a butement the Drain any les toward The of Dain inorder it may be retained within The embina mont and From The works in it will have a well to of portal the Lead for will extend to bed ruck at to a min hepth of 6.0 AT 6. low the stripping Line and will continue of the self aperel acirteners The Flevotion of the Normal Tool. The Prin will outlet thru a 100 B.C.C.MP. It will tory of the principal to livery and Tip paralled There to aht Telin with in below the baffle. The portion of The Drain extanding up each abutement will be filled with Flool Him Mutorial as to presented in Somple 65 10213 the rost of the Uran will contour Designed Filter Matorial as set forth in Soils Lab. Report

COMPUTATION SHEET U S. DEPARTMENT OF AGRICULTURE SCS-522 REV 5-58 SOIL CONSERVATION SERVICE

GEOLOGY REPORT

SITE 6A

ISCHUA CREEK

FRANKLINVILLE

NEW YORK

APPROVAL:

W. S. Atkinson

State Conservation Engineer

PREPARED BY:

B. S. Ellis
Bernard S. Ellis
Geologist

REFERENCE:

U.S.DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

DRAWING NO. NY-1001-G

SHEET___OF__

DATE July 64

	Sheet 4	əf
•	1(-59	

DETAILED GEOLOGIC INVESTIGATION OF DAM SITES

GENERAL

State New York Co	ountyCattaraugu	11S - 14, - 14, Sec 1, T - R	; Watershed Ischua Creek
		-1 Site number 6A Site group	
Investigated by B. S. E.II.	(FP-2, WP	-1, etc.) ipment used Backhoe, Drill	Rig Date 7/64
(SIEU	ature and title)		el, etc.)
•		SITE DATA	
Drainage area size 19.1	sq. mi., <u>12,224</u> acres. T	ype of structure <u>Earth Fill</u>	Purpose Multi-purpose
Direction of velley trend (downst	ream) Northwest	Maximum height of fill 60	feet . Length of fillfeet .
Estimated volume of compacted	fill required263	. 700 yards	
		STORAGE ALLOCATION	
	Volume (ac. ft.)	Surface Area (acres)	Depth at Dam (feet)
Sediment _	138	23	11
Floodwater	2265	175	49
Recreation _	972	80	31
Steepness of abutments: Left_ General geology of site:	36 percent; Right		au physiographic province. a mile SE of the village of
Binghamton drift	t. Morainal depo	sits are common in the area	a. The material in the
		th occasional kames and kar	
Binghamton drift	t is characterize	d by an abundance of both	igneous erratics and of
limestones.			
		he north end of the main v	
	irainage reversal	and post-glacial drainage	to the south. During inter-
	a glacial lake w	as formed in the Ischua va	lley. Deep sand deposits occur
	a glacial lake w	as formed in the Ischua va	
a short distance shore line.	a glacial lake w e downstream from	as formed in the Ischua va	lley. Deep sand deposits occur imity to an old glacial lake
a short distance shore line. Underlying	a glacial lake we downstream from bedrock is inter	as formed in the Ischua vanthis C/L, indicating prox	lley. Deep sand deposits occur imity to an old glacial lake e of Devonian Age. This bed-
a short distance shore line. Underlying rock was encount	a glacial lake we downstream from bedrock is intertered in drilling	as formed in the Ischua vanthis C/L, indicating prox	lley. Deep sand deposits occur imity to an old glacial lake

10-59

DETAILED GEOLOGIC INVESTIGATION OF DAM SITES

FEATURE	Centerline of	Dam
	erline of Dam. Principal Spillway.	Emergency Spiliway, the Stream Channel, Investigations for Drainage of Structure, Borrow Area, Reservoir Basin, etc.)

DRILLING PROGRAM

			Number	of Samples Taken	
Equipment Used		of Holes	Undisturbed	Disturbed	
	Exploration	Sampling	(state type)	Large	Small
Backhoe	7		an 40		
Drill Rig	3	3			30
Total	10	3	to 10		30
		SUMMARY OF F			
			this site consist o		
his till also under ntersection of the					
depth, dropping of					
of D.H. #6.		Lacou pau	a. oo a cop on oxoo		1141110
	abutments	and under the	he flood plain is v	very dense.	with very lo
permeability. The o		·			
siderable amount of					
plain is influent fo					
water moving downstr	eam in the	ese gravels.			
The bedrock und	er the lef	ft abutment i	s an interbedded sa	andstone and	shale.
Bedding is fairly th	ick, rangi	ing from 1.5'	to 3.01.		
		·····			

10-59	DETAIL	LED GEOL	OGIC INVESTIG	ATION OF DAM SITES		
•						
	ncy Spillway Fman		the Stream Channel	Investigations for Drainage of Str	setura Borrow Area 5	Pac voir Rasın etc.
(Centenine of Dain, Filincip	er Spinway, Chis	gency opinway	, the Streem Channel,	macerifications in prainage of 200	SCIUIE, BUITOW MICZ, F	(esc. voii Dasiii, etc.)
•			DRILLING PRO	GRAM		
r				Number o	of Samples Taken	
Equipment Used		Number of Exploration	of Holes Sampling	Undisturbed (state type)	<u>Distur</u> Large	rbed Small
: .			, •	(state type)	_	Silen
Backhoe			2		6	4.5
Drill Rig	Marin Marin	8	8	****		45
**************************************						-
	······································		Charles de la colonia de la co			
,						4.5
	Total	26	10	40 (40)	6	45
		9	SUMMARY OF F	INDINGS		
•,			(include only factu			
Glacial till o	ccurs qui	te unifo	rmly over the	e entire emergency	spillway exc	avation
area.				A1 - A - A		
· · · · · · · · · · · · · · · · · · ·				eous from the stand		
•	 	nowever	, a definite	break in color, wi	th blue-gray	
overlain by brown						
				with a portion of i		above
design grade line.	There i	s an est	imated 200 c	u. yds. of rock ren	noval.	
				t occur in localize		the left
				s in the right spil		
All of the box	rrow will	come fro	om the emerge	ncy spillway excava	ation.	
•						

n SCS 3768 et of					
59	DETAILED, GEOL	OGIC INVESTIG	ATION OF DAM SITES	•	
ruge Principal Sp	villwav				
		y, the Stream Channel,	Investigations for Drainage of St	ructure, Borrow Area, Re	servoir Basin
		DRILLING PRO	GRAM		
•				of Samples Taken	
Equipment Used	Number o	of Hoies	Undisturbed	Disturt	ed
	Exploration	Sampling	(state type)	Large	Small
Backhoe	3	46 48			
				-	

					······································
	atal 3				
70	otal			-	
	S	SUMMARY OF F			
		(include only factu	iai data)		
The dense gl	acial till unit	formly underl	ies the entire ext	ent of the pr	incipal
, spillway. This t	ill was encount	tered at an a	verage depth of 10	o in all thre	e test
			clean coarse grav	vel. In all t	hree pi
heavy seepage was		_			
		to be somewh	ere in the 3'-5' a	ione, dependin	ig on tr
area. Recharge i	s fairly high.				
					· · · · · · · · · · · · · · · · · · ·

•	•		•		•	٠	_
51	•	≥# {		. (of	-	

9c - 01	DE	TAILED GEOL	OGIC INVESTIG	ATION OF DAM SITES		
FEATURE	Foundation Dr					
. (C	enterline of Dam, Principal Spillway,	Emergency Spillway			ructure, Borrow Area, R	eservoir Basin, etc.
• :			DRILLING PRO			
				Number	of Samples Taken	
	Equipment Used	Number o		Undisturbed	Distur	
		Exploration	Sampling	(state type)	Large	Small
	Backhos	3	3	with the same of t	3	
						
						
		-			***************************************	
•	Total	3	3		3	
		_	UMMARY OF FI			
, 100 - 110	These three pits we	ere dug near	r the downst:	ream toe of the da	m. slightly d	lownstream
fro	om the probable location					
	The material encour			the same as that 1	ogged upstrea	m at the
C/I	location. The glad					
	miform depth of 71					
	The three samples			ls overlying the t	ill.	
·		Justicia Work	<u> </u>			
	,					
		- 				*
	taga mengalik ang pitangga mengalik ana pitangga kanggalan pangga pangga pangga pangga pangga pangga pangga p			and the second second second second second second second second second second second second second second second		
		· (11) - · · · · · · · · · · · · · · · · · · 				
				_		
~						

Form SCS-376C
Scient ___ of ___
For A-Service Use Only

10-59

DETAILED GEOLOGIC INVESTIGATION OF DAM SITES

State New York County	Cattaraugus Watershe	d Ischua Creek Subwatersher	Gates Creek
		Investigated by BSE///s, G	

INTERPRETATIONS AND CONCLUSIONS

Centerline of Dam

With dense till and bedrock underlying the entire extent of the C/L of the dam, foundation problems are pretty much at a minimum on this site. Blow count in the surficial gravels is quite high, and very high in the underlying till. The bedrock surface, as shown in the detail sketch of the area near T.P. #4, is dipping at a moderately shallow angle. This, coupled with the extremely dense till, should obviate the need to consider differential settlement between the rock and the till as a problem.

The 10° or so of gravel and silt overlying the till is, of course, permeable. Seepage into these flood plain test pits was fairly rapid. The GWT in these gravels will, of course, drop during July, August and September, but I feel that there is a good possibility of water in them at any time of the year.

We will need to install a cutoff through these gravels and at least 2' into the underlying till. In the left abutment, a key should be cut into unweathered bedrock to carry the cutoff across the extent of the flood plain and abutments.

There did not appear to be any seep areas on either abutment, or at the junction of the flood plain and the abutments. There is, however, a possibility that some minor seepage will be picked up in the left abutment when the area is scalped. It would be a rare situation if no ground water was seeping out of the rock at this point. However, I do not feel that the amount will be significant.

Both abutments should be flattened somewhat to meet the requirement of a 1:1 slope or flatter for compaction.

Bedrock exposed in the stream downstream from the C/L of dam is flat-lying, and the cores recovered from the drill holes also indicate horizontal bedding.

There is a question in my mind as to how much of the flood plain material should be scalped under the base area of the dam. With the exception of the upper portion of D.H. #5, blow count in the "clean" gravels is quite high. Excavation of the cutoff trench and the principal spillway trench down to till and backfilling with embankment material will set up a condition for moderate differential settlement. Consideration should be given to the removal of enough of these gravels in order to minimize this problem.

We have had some trouble with softening of till foundations when we have excavated a trench in saturated flood plain gravels. The water seeps into the trench from the gravel and equipment moving in the trench works the water into the silt fraction of the till. The till softens, and further excavation is required. I would suggest that an upstream diversion be constructed to drain and divert the water away from proposed excavations in the foundation.

Form SCS	376C
5.10et	of
For IA-Sen	rice Use Only

10-59

DETAILED GEOLOGIC INVESTIGATION OF DAM SITES

State New York County	Cattaraugus	Watershed	Ischua Creek	Subwatershed	Gates	Creek
Site number 6A Site group						

INTERPRETATIONS AND CONCLUSIONS (continued)

Emergency Spillway

As indicated in the front of this report, the emergency spillways are predominantly glacial till. The right spillway is somewhat more homogeneous than the left. The backhoe pits, to a depth of 13', revealed only a slight variation in texture and a change in color from brown to bluish gray at a depth of about 8'. The drill holes, carried to greater depths, validated this information.

In the left spillway, an area of sand and silt exists in the vicinity of T.P. Nos. 253 and 254. This material was wet in place, and we can probably expect some stability problems with it when the spillway is excavated. This situation is quite similar to the outside slope of the emergency spillway on Site #16, Conewango Creek Watershed. However, I still feel that it would be wiser to excavate with normal side slopes and then go back in and blanket with heavy gravel if we have trouble with this material on these slopes. Behavior of the material on Site #16 may give us a clue as to what to expect on this site. It appears that the volume of sand and silt involved is rather small and that the area covered is fairly restricted. It is conceivable that pans could mix this in with the till at least to some extent. This would cut down the amount that we would have to spoil.

Bedrock underlies much of the left emergency spillway area. The rock surface was delineated in a number of places with drill holes and backhoe pits. A contour map of this surface was interpolated from this information. Rock excavation is estimated to be in the neighborhood of 200 cu. yds. Rippability of this rock is quite variable, as shown in the photo of the cores recovered from the drill holes. However, with this small amount, determination of rippability of the rock would seem to be a rather inconsequential item.

Principal Spillway

Dense glacial till underlies the entire extent of the proposed C/L of the principal spill-way. While I did not have any drill holes at this exact location, it is logical to assume that the blow count data for the three drill holes along the C/L of dam would be valid for the materials along the principal spillway.

I recommend that the trench be excavated down to the glacial till and backfilled with select material from the emergency spillway excavation. While I cannot predict the location of the GWT at the time of construction, I would like to re-emphasize the need for at least consideration of some type of dewatering of these gravels. This procedure should minimize the softening of the underlying till with the resultant need to over excavated.

GENERAL

Test pits dug for the initial downstream location of this dam revealed about 10' of gravelly material underlain by sand over much of the flood plain area. I visually classified this material as a CP or CW. The outlet channel for the present C/L location will need to be designed for this gravel.

Form SC3 376C
Si.eet of
For 11-Service Use Only

10-59

DETAILED GEOLOGIC INVESTIGATION OF DAM SITES

State New York County	Cattaraugus	Watershed Ischua Creek	Subwatershed Gates Creek
Site number 6A Site group	C Structure class	Investigated by	Geologist Date 7/64 (signature and title)

INTERPRETATIONS AND CONCLUSIONS (continued)

The basin behind this structure is very similar to the basin behind Site #5, further upstream on this tributary. With dense till and bedrock as a cutoff point under the C/L of this dam, I do not feel that seepage losses will effect the maintenance of a permanent pool behind this structure. Site #5 has held a permanent pool very well, with a less positive cutoff.

Pressure tests were run in the bedrock. As indicated in the logs, moderate water loss was experienced in some horizons. However, it should be borne in mind that this is a horizontal transmission of water, rather than vertical. It is entirely logical to assume that vertical transmission of water from the pool into these more permeable zones in the rock would be a lot lower than the pressure tests would seem to indicate. The photo of the rock core recovered from D.H. #7 shows good solid rock from 15.5 to 18.5, with a fractured zone from 18.5 to 21.0. The 3 G.P.M. loss undoubtedly occurred in this fractured zone. Vertical permeability would appear to be near zero. If it is felt that the seepage losses through the rock will be excessive, it should be possible to blanket the west side of the flood plain for the required distance upstream. I do not feel that any seepage will occur in the till underlying the central and east side of the flood plain, therefore, the need to blanket would be confined to the west side.

All of the fill material will come from the emergency spillway excavation, therefore, no separate borrow investigation was made.

I do not believe that the "clean" gravels encountered in the flood plain will be suitable for drainage or filter material. There are two large commercial sources of washed and screened sand and gravel nearby in this watershed, therefore, the cost will not be excessive for imported material.

UNITED STATES GOVERNMENT

1emorandum

W. S. Atkinson, State Conservation

DATE: September 9, 1964

Engineer, SCS, Syracuse, New York 13210

FROM

Rey S. Decker, Head, Soil Mechanics Laboratory,

SCS, Lincoln, Nebraska 68508

SUBJECT:

ENG - Soil Tests 18 - New York WP-08, Ischua Creek, Site No. 6A

(Cattaraugus County)

ATTACHMENTS

1. Form SCS-354, Soil Mechanics Laboratory Data, 2 sheets.

2. Form SCS-355, Triaxial Shear Test Data, 2 sheets.

3. Form SCS-352, Compaction and Penetration Resistance Report, 5 sheets.

4. Form SCS-353, Filter Design, 1 sheet.

5. Form SCS-357, Summary · Slope Stability Analysis, 3 sheets.

6. Investigational Plans and Profiles.

DISCUSSION

FOUNDATION

Classification: The foundation at this site consists of glacial till on the abutments and alluvial silts and gravels overlying glacial till in the floodplain.

The glacial till on the left abutment is underlain by bedrock at depths of from about 4 feet at the base of the left abutment to a depth of about 20 feet at the inside edge of the emergency spillway.

Bedrock was not reached within the investigational depth on the right abutment. Hole No. 271 in the emergency spillway on this abutment was drilled to a depth of 45 feet.

The floodplain :ilts and gravels are about 8 to 10 feet thick and overlie glacial till except in the area at the base of the right abutment where the floodplain sediments directly overlie bedrock.

B. Density: The glacial till on the abutments and in the floodplain is described as dense. Blow count values in the till in the floodplain section ranged from about 35 to greater than 100 blows/foot.

On Site 4 in this watershed a GM glacial till that contained 30 percent gravel and about 45 percent fines had an in-place density of about 130 p.c.f. Based on the high blow count we would expect the in-place density of the GM in the floodplain section to exceed 120 p.c.f. also.

y sell falls

Rey S. Decker

Subj: ENG - Soil Tests 18 - New York WP-08, Ischua Creek, Site No. 6A (Cattaraugus County)

Blow counts in the alluvial gravel zone ranged from 12 to 86 blows/foot. The ML in drill hole No. 7 has a penetration resistance of 39 blows/foot. The relative density of the 12 to 13-blow-per-foot alluvial GM is judged to be in the range of 70 percent.

- C. Strength: Blow count data indicates that the alluvium will have lower shear strength values than the glacial till. Based on the indicated relative density of the alluvium, we suggest design shear strength values of Ø = 35°, c = 0 for the alluvium. The suggested values are based on the assumption that the bulk of the ML surface zone in the floodplain will be removed during site preparation.
- D. Consolidation: The blow count tests indicate a dense till; therefore, consolidation within the till is expected to be very low.

Some consolidation may be expected within the alluvium. The potential is expected to be fairly low, however, and the settlement is expected to occur during the construction period.

Differential settlement is not expected to be a problem in the area of the bedrock contact near the base of the left abutment. The slope of the bedrock appears to be slightly flatter than 2:1 and consolidation within the dense till is expected to be minor.

E. Permeability: The Geologist expects the dense till on the abutments and in the floodplain to have a very low permeability rate.

Moderate water loss occurred in some horizons in the bedrock. The Geologist compares the conditions at this site to Site 5 on this watershed, however, and states that Site 5 has held a permanent pool very well.

EMBANKMENT

- A. Classification: The borrow material will be obtained from the emergency spillways. Three samples from the right spillway and two samples from the left spillway were submitted to the laboratory. The samples indicate a fairly uniform material that contains about 25 percent gravel and about 50 percent fines. The liquid limits range from 17 to 26 and the PI's range from 1 to 8. These samples are classed as CL, CL-ML and SM.
- B. Compacted Density: Standard Proctor density tests were made on the fraction finer than the 3/4-inch size as requested. The compaction tests were made on Samples 65W214, 65W216 and 65W217. In addition to

Rey S. Decker

Subj: ENG - Soil Tests 18 - New York WP-08, Ischua Creek, Site No. 6A (Cattaraugus County)

the compaction tests on the minus 3/4 fraction, Proctor tests were made on the minus 4 fraction of Samples 65W214 and 65W217.

The density obtained on the minus 4 fraction when the gravel up to 3/4 in. was included was slightly less (98% to 99%) than obtained when only the minus 4 material was compacted. The tests were made in 1/30 cubic foot molds and some interference probably occurred between the gravel particles and the mold which resulted in the slightly lower minus 4 density when the gravel was included.

C. Shear Strength: Triaxial shear tests were made on Samples 65W214 and 65W217. The tests were made on the minus 4 fraction. The tests were made on specimens molded to about 93.5 to 94.5 percent of Standard Proctor density. The samples were soaked to saturation prior to placement in the shear chambers. The consolidated, undrained shear values obtained were $\emptyset = 21.5^{\circ}$, c = 300 p.s.f. on Sample 65W214 and $\emptyset = 19^{\circ}$, c = 425 p.s.f. on Sample 65W217. These values are in the same range as test values obtained on the minus 4 material from Site 4 in this watershed and are suggested for design.

SLOPE STABILITY

Slope stability was checked with a modified Swedish circle method of analysis. The analysis was based on an embankment height of 61.6 feet. A phreatic line was assumed from emergency spillway elevation to a drain at c/b = 0.6. The embankment was considered as homogeneous and was analyzed for shear strength values of $\emptyset = 21.5^{\circ}$, c = 300 p.s.f. and for shear strength values of $\emptyset = 19^{\circ}$, c = 425 p.s.f. Foundation strength values of $\emptyset = 35^{\circ}$, c = 0 were assumed for the alluvium and the strength of the underlying till was considered to be high enough so that a failure are would not penetrate it.

The analysis shows that a 25-foot berm is required on the proposed 3:1 upstream slope and that a 16-foot berm is required on the proposed 2 1/2:1 downstream slope in order to obtain satisfactory factors of safety. The berm widths, elevations and factors of safety obtained are shown in the following summary:

Slope	M-1-3 M) Be	-		
probe	Trial No.	Width	Elevation	$\mathbf{F_{s}}$	
3:1 Upstream	3	25 feet	1660	1.35	
2 1/2:1 Downstream	5A and 6B	16 feet	: 1650	1.49	
2 1/2:1 Downstream	8	10 feet	1650	1.48	

Rey S. Decker

Subj: ENG - Soil Tests 18 - New York WP-08, Ischua Creek, Site No. 6A (Cattaraugus County)

Trial Arc Nos. 3, 5A and 6 did not penetrate the foundation. Trial Arc No. 8 penetrated the foundation to a 10-foot depth. This condition was not the limiting one but is listed above for comparative purposes.

A complete summary of the analysis is attached (Form SCS-357).

RECOMMENDATIONS

- A. Site Preparation: The geology report and the log for T.P. 1 make reference to steep portions on the abutments. These steep areas should be flattened to about 2:1 in order to insure a good bond and reduce the danger of differential settlement.
- B. Cutoff Trench: A cutoff trench with a minimum depth of 5 feet is suggested for the abutments. At this depth we anticipate that the trench bottom will be below the zone affected by surface weathering. In the floodplain section the trench should bottom in firm GM glacial till to right of \$\frac{1}{2}\$ Station \$\frac{1}{2}\$+00. On the left side of \$\frac{1}{2}\$ Station \$\frac{1}{2}\$+00 and on the lower portion of the right abutment the trench should bottom on bedrock.

A normal trench width will be adequate except where the trench bottoms on bedrock. Where the trench bottoms on bedrock, we recommend a minimum trench width of $2^{1/4}$ feet.

The trench should be backfilled with CL material like Sample 65W214. We are assuming that the gravelly alluvium will have a low consolidation potential; therefore, we recommend that the trench backfill be compacted to 100 percent of Standard Proctor density.

The Geologist has indicated that the till underlying the gravelly alluvium is likely to soften unless the founiation is dewatered. This situation is quite typical in low plasticity materials. We recommend dewatering prior to excavation to insure that the till does not soften. A loss in density within the till would reduce the effectiveness of the cutoff and also increase the consolidation potential.

C. Principal Spillway: The foundation conditions at the proposed location (approximately & Station 11+50) are quite uniform. About 10 feet of alluvial gravel logged as GW overlies dense glacial till which is logged as GM.

The Geologist suggests that the pipe trench be excavated to glacial till and backfilled to grade with compacted materials. We assume that variations are expected within the alluvium. Samples from the drain line indicate

Rey S. Decker

Subj: ENG - Soil Tests 18 - New York WP-08, Ischua Creek, Site No. 6A (Cattaraugus County)

that alluvium can vary from a medium SM to a GM-GP. Excavation to the till would insure a uniform foundation for the conduit. The trench backfill should consist of CL like Sample 65W214 compacted to at least 100 percent of Standard Proctor. Dewatering will undoubtedly be required to prevent softening of the till if the excavation is carried to the till.

D. Drain: A drain is recommended to provide a safe outlet for seepage that bypasses the cutoff trench through the glacial till and through the bedrock. A drain is also required to control the phreatic line.

The bedrock occurs within close proximity of the surface at the drain location on the left abutment. For the drain on this abutment we suggest that GM-GP material from the floodplain like Sample 65W2l3 be used. The GM-GP could be placed as a blanket in a dozer trench that bottoms on bedrock. This drain should extend up the abutment to normal pool level or to a point where the mantle reaches a thickness of about 8 feet, whichever occurs first.

A drain trench depth of about 6 feet is suggested for the right abutment. The drain on this abutment may either be constructed as a narrow trench with a designed filter or it may be constructed as a wide trench (8-12 feet) with GM-GP from the floodplain used as the drain material.

The drainage requirements for the floodplain section depend upon the extent of the material like Sample 65W212 from T.P. 77. The sample received from this pit is an SM that contains 34 percent fines. The zone represented by Sample 65W212 was logged as GW-GM, however, and we are not certain that the sample received is representative. If the floodplain materials at the drain location consist primarily of GM-GP like Samples 65W211 and 65W213, the only requirement would be to provide a controlled outlet. It appears that a pipe outlet with a designed filter would be most economical unless rock is readily available for a rock toe. The suggested filter limits for the outlet drain are shown on the attached Form SCS-353.

If Sample 65W212 is representative, areas such as this can be handled by enlarging the drain trench in these areas and placing GM-GP between the base and the filter. Placement of GM-GP like Samples 65W211 and 65W213 will also be required between the embankment material and the filter outlet.

E. Embankment Design:

1. Selection of Material. The borrow material will be obtained from the emergency spillways. Samples from both spillways indicate a

Rey S. Decker

Subj: ENG - Soil Tests 18 - New York WP-08, Ischua Creek, Site No. 6A (Cattaraugus County)

fairly uniform material; therefore, a homogeneous embankment is recommended. The embankment material should be placed at a minimum of 95 percent of Standard Proctor density. The placement moisture content should be controlled to near optimum.

The field control may be based on either the minus 4 or the minus 3/4-inch fractions. It appears, however, that field Proctor tests or control by Hilf's rapid method or something comparable will be required, however, since the minus 4 compacted density of the till ranges from 118 to 124.5 p.c.f. The range for the minus 3/4-inch fraction was about the same as the range for the minus 4.

There is some sand and silt encountered in the vicinity of T.P. Nos. 253 and 254 in the lert spillway. The volume is expected to be small and we suggest that this type of material be placed above the phreatic line in the downstream section. The compaction requirement should be at least 95% of Standard Proctor for this type of material also.

2. Slopes. The following slopes have acceptable factors of safety and are recommended:

Upstream - 3:1 with a 25-foot berm at elevation 1660.

Downstream - 2 1/2:1 with a 16-foot berm at elevation 1650.

3. Settlement. An overfill allowance of 1.75 feet is suggested to compensate for residual settlement within the fill and foundation.

Prepared by:

Jon P. Dunia Iorn P. Dunnigan

Din i. Daniigan

Reviewed and Approved by:

Roland B. Phillips

Attachments

cc: B. S. Ellis, Syracuse, N. Y.

Henry W. Davis, Penn Yan, N. Y.

Jesse S. Wicks, Little Valley, N. Y.

H. M. Kautz, Upper Darby, Pa.

			,, _ , _ , _ , _ , _ , _ , _ , _ , _ , 	,	·		
7	w/ 3	***	a. .				
10m = 13	0 /FF = 2.00	X 62.4 PT	. 0 ,	-,			
			1				
- 85 : 140	5/73 = 2.2	4 X 6 Z . 4 1 FT	∤				
· · ·		i					+======================================
72	4	26122					
VO. F. 18	17-13. 4.1.23	X 62.4 /FT		l : : : -			
10		*					+- <u>+-</u>
9=21	9-1019	D= 394				}	
	*/						+
C.±,30	PIFF Town	▗ ┃╺┵╴╴┊┠┼ [╏] ┯╌┧╴	┃┿ ╍╍┆┨┼╵┝╸				
1				1			
L = 2	8.24		1	1-4 (
		1					
F.5.	1-51	1 (Tand)	(24/E13) -	Resistino	FORPS -	7 89 470 -7	7
	T	(Tand)(T(62.4)		De Winn	FARRES	133286	
	+	1 (64.47	ゖ゙゙゙゚゚゚゚ゖゖ゙゚゙゙゙゙゙゙゙゙゙゙゚゚゙゙゙゙゙゙゚゚゚゙゚ヹ゚゚゚゚゙゚゚゙゚゙゚゚ヹ゚゚゚゚゙゙゙゙゙゙	11119	z 47 4 43	:f. ± : 7	
L.C. = 23	8.24 x 300	F12	71412.	P. I I I	* 	15 - 5 - 5	T; I I I I
12 W/1-17		,	1!	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			t:= #1 =
L/1/1919)	1624) . 18 x	400×394×62.4	- 117998			!	+ - + 1 - + + - + + +
1 , 1, ,		1 1 1 1 1	1	1		17 .4 . 7 1	11 Ups
ET (62.4)	534×67.4		- 133284.0				1 - 1 - 1 - 1
				<u> </u>			<u>+</u>
	1	1				. 11: 12: 7	1 = 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		<u> </u>				[: : 1 : : 1	1: 11: 11: 1
					l — + = ++		
	+	1:	1::::::::::::::::::::::::::::::::::::::		: .; i' i	i i i i i i i i i i i i i i i i i i i	1 4
/ (,		1 - 1-1-1		1 = - 1 = -	l ideit		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77	, =+ ,-1/,		 	 		
25	1 10 17 27 2	Visit 41 M					1 23/10 /1.
I 1	1						1::11
	5 1. =	1::	1	ļ —		+ - + <u></u>	1
					1. 4 = 7.	الميسيل ا	1 : 11 : 1
1	<u> </u>	1 - 1 - 1		· · · · ·			1. 11 1 1.
				 			
	1 +					N	
						┠╶╸╂╍╌┤	
		1			7- 1 - 1		
		1 1 1		-, · · · -	1 -1 - 1		
1		1					
					-		+ - 1 1 1 1
	1						
	 	 				f 	-: i : · -
	. !*	1				* 4 4 4 1	1
		1 :	*	J. -	*		
	 						
		1		!	-	7 1	
	1 !!:	,			!		
		 				t	
. ;	'	1.					
	1 1	;	<u> </u>				
	 ;				!		
				0060			• .
						W	
	i		. !	,		\mathcal{T}	
1		1	I	ł	i '	!/ -	

•

and the second s

APPENDIX E

DRAWINGS

VICINITY MAP
ISCHUA CREEK WATERSHED PROJECT
SITE 6A
I.D. NO. N.Y. 571

TOPOGRAPHIC MAP
ISCHUA CREEK WATERSHED PROJECT
SITE 6A
ID NO. N.Y. 571

ISCHUA CREEK WATERSHED PROJECT

MULTIPLE - PURPOSE DAM NO. 6 -A **GATES CREEK**

DRAINAGE AREA FLOOD STORAGE

TO EMERGENCY SPILLWAY CREST

WATER SURFACE AREA AT RECREATION POOL

HEIGHT OF DAM

VOLUME OF FILL

8,064 Acres

2,265 Ac. Ft.

Acres

62 Feet

Cubic Yards

BUILT UNDER THE WATERSHED PROTECTION AND FLOOD PREVENTION ACT

by

ISCHUA CREEK COUNTY SMALL WATERSHED PROTECTION DISTRICT

with the assistance of

NEW YORK STATE CONSERVATION DEPARTMENT

and the

SOIL CONSERVATION SERVICE

of the

U.S. DEPARTMENT OF ACCULTURE

SITE NO. 6 - A

SHEET I COVER SHEET

SHEFT 2 PLAN OF STORAGE AREAS

SHEET 3 PLAN OF DAMSITE

SHEET 4 PROFILES

SHEET 5 PRCFILES

SHEET 6 DRAINAGE DETAILS

SHEET 7 SEEPAGE DRAIN OUTLET CETAILS - TYP SECT DAM

SHEFT 8884 FLAN PROFILE OF PRINCIPAL SHILLWAY

SHEET 9 RISER DETAILS

SHEET 10 RISER - REINF STEEL DETAILS

SHEET II RISER - REINF STEEL DETAILS

SHEET IZ CRADLE, COLLARS & POND DRAIN IN

SHEET IS IMPACT BASIN DETAILS

SHEET IS MISC DETAILS & STEEL SCHEDULE

SHEET IS TRASH RACK & GATE HOIST PLATFORM DETAILS

SHEET IS TEST HOLE DESCRIPTIONS

SHEET IT TEST HULE CESCRIPTIONS

THE ! IN FENCING DETAILS

AS BUILT

REVISIONS

ISCHUA CREEK WATERSHED PROJECT

MULTIPLE - PURPOSE DAM NO.6-A CATTARAJGJS COUNTY, NEW YORK

COVER SHEET

·U.S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

TYPICAL SECTION OF ROCK RIPRAP ALONG NORMAL WATER LINE_ BOT TO SCALE & UF OUTLET CHAPPEL STA 20171.5 1 Marian - F Eley, 1717, 83

PLAN OF OUTLET DRAIN

DETAILS OF OUTLET DRAIN

TYPICAL SECTION OF DAM NOT TO SCALE

CLASS B. CUMPACTION, BORROW FROM EMERGENCY SPILLWAY.

- DRAIN FILL UNDER BASE OF THE IMPACT BASIN WILL BE COMPACTED BY MANUALLY DIRECTED POWER TAMPERS
- Y CHILET BRAIN PIPE
- TION BB

21 75

- DESIGNED FATER, SEE SHEET & FOR GRADATION
- @ GRAVELLY MATER AL (GW/ GM) SIMILAR TO THAT FOUND FROM 1"TO 1 DEEP IN TP 18

AS BUILT

5/13/71

ISCHUA CREEK WATERSHED PROJECT MULTIPLE PURPOSE DAM NO 6-A CATTARAUGUS COUNTY, NEW YORK SEEPAGE DRAIN OUTLET DETAILS . TYP. SECT DAM

U.S DEPARTMENT OF AGRICULTURE . SOIL CONSERVATION SERVICE

4. اعروس - 7 84044196 2 384 6 NY - 1001 - P

12+40 AS BUILT 0 2 ISCHUA CREEK WATERSHED SITE *6A 11+90 X-SECTIONS - PAN I'S DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE NOTES: GROWN LINE FIELD BOOK *1 LEGINA GROUND LIME STRIP LIME DESIGN AS BU'LT 1470 .. F.S Ballow

CONSTRUCTION DETAILS

- REMOVE THE EXISTING PIPE AND EXTEND THE PIPES THROUGH THE IMPACT BASIN WINGWALLS AS SHOWN ON THIS SHEET.
- 2 THE HOLES IN THE SIDEWALLS WHERE THE ELBOWS ARE REMOVED AND THE SPACES AROUND THE NEW PIPE DUTLETS IN THE WINGWALLS SHALL BE PLUGGED WITH GROUT EXCEPT AS OTHERWISE APPROVED BY THE ENGINEER THE GROUTING MORTAR SHALL BE AS DESCRIBED IN CHAPTER VIII OF THE CONCRETE MANUAL, BUREAU OF RECLAMATION, & S. DEPARTMENT OF THE INTERIOR
- 3. INSTALL DRAIN FILL ALONG THE WALLS AS SHOWN ON THIS SHEET DRAIN FILL SHALL MEET THE GRADATION OF SCREENING W: OF THE STANDARD GRADATIONS FROM THE JANUARY 2 1882 NEW YORK PUBLIC WORKS SPECIFICATIONS IN ADDITION THE PERCENTAGE OF DRAIN FILL FINER THAN A #200 SIEVE SHALL NOT BE MORE THAN THREE (3) PERCENT
- 4 EARTH FILL AS SHOWN ON THE DRAWINGS SMALL BE PLACED IN HORIZONTAL LIFTS A MAXIMUM OF B'THICK AND SHALL CONTAIN NO ROCKS LARGER THAN 3" CUMPACTION SHALL BE A MINIMUM OF 100 (2) PASSES PER LIFT WITH A MANUALLY DIRECTED POWER TAMPER OR PLATE VIBRATOR WITH THE SOIL THROUGHLY WET BUT NOT SO WET AS TO CAUSE ADHERENCE OF THE SOIL TO THE EQUIPMENT, NOR TO CAUSE BOGGING DOWN OF THE EQUIPMENT.
- 5 DISTURBED AREAS SHALL BE SEEDED AND MULCHED UPON COMPLETION OF BACKFILLING

QUANTITY SUMMARY
100 CU.YDS EXCAVATION
90 CU YOS DRAIM FILL
140 CU YDS EARTH FILL

140 CU TOS EARTH FILL 30 FT.10"NON-PERF. BCCMP 2 12"TO 10"BCCMP REDUCERS 6'LONG 1 12"BCCMP WYE 2'X 2'X 7'LONG

AS BUILT

DETAILS OF OUTLET DRAIN

_ELEV 1622 5

3CALE

ISCHUA CREEK WATERSHED PROJECT
MULTIPLE PURPOSE DAM NO 6-A
CATTARAUGUS COUNTY, NEW YORK
MODIFIED DRAIN OUTLETS

U. S DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE

R G YOUTON 8/72

NY-1001 -P