معمارية الحاسوب Architecture Computer

د. رمزي القانوني

ITGS 223

خريف 2022- 2023

المحاضرة الساوسة.

Instruction Sets: Characteristics and Functions

خصائص تعليمات الالة ووظائفها

IAS Microprocessor

المعالجات الدقيقة

- Memory Buffer Register (MBR)
- Memory Address Register (MAR)
- Instruction Register (IR)
- Instruction Buffer Register (IBR)
- Program Counter (PC)
- Accumulator (AC)
- Multiplier Quotient (MQ)

What is an Instruction Set?

ماهي مجموعة التعليمات

مجموعة كاملة من التعليمات (Instruction) التي يمكن للمعالج (CPU) أن ينفذها. الغة الالة (Machine Code)

ثنائي (Binary)

يمثل عادة من قبل رمز التجميع Usually represented by assembly codes

Elements of an Instruction

عناصر التعليمة

• رمز العملية (Operation code)

بحدد العملية التي يتعين القيام بها علي سبيل المثال جمع ، طرح ، ضرب، ادخال/اخراج.

[Source Operand reference] مؤشر للمعامل المصدر

أي عملية قد تنطوي علي معامل مصدر أو اكثر وهذه المعاملات هي المدخلات.

Result Operand reference) مؤشر للمعامل الناتج

الْعِملية قد تسفر عن ناتج يجب أن يحفظ.

موشر للتعليمة التالية (Next Instruction Reference)

يخبر المعالج من أين تُجلب التعليمة التالية بعد إنهاء تنفيذ التعليمة الحالية.

Op Code	Source Operand	Result Operand	Next Instruction
n bits	n bits	n bits	n bits

Where have all the Operands Gone?

معامل المصدر أو الناتج يمكن أن يكون ؟

• فوري (Immediate)

قيمة المعامل موجودة في حقل بالتعليمة الجاري تنفيذها.

(CPU register) مسجل المعالج $\frac{2}{3}$

الشمعالج يحتوي على مسجل أو أكثر إذا كان هناك مسجل واحد فقط الاشارة إليه ضمنيا أما أفياً كان أكثر من مسجل فيجب تعيين اسم أو رقم وحيد لكل مسجل والتعليمة يجب أن تعتوى على رقم أو اسم المسجل المطلوب.

Where have all the Operands Gone?

معامل المصدرأو الناتج يمكن أن يكون ؟

• وحدة ادخال/اخراج (I/O device)

التعليمة يجب أن تحدد وحدة الادخال / الاخراج للعملية.

- الذاكرة الرئيسية أو الظاهرية

(Main memory (or virtual memory or cache))

Dr. ramzi elghanuni_Lecture6

Instruction Cycle State Diagram

مخطط حالة دورة التعليمة

q

Instruction Cycle – State Diagram دورة التعليمة – مخطط الحالة

حساب عنوان التعليمة (<u>IAC</u>) تحديد عنوان التعليمة التالية اللازم تنفيذها.

﴿ جلب التعليمة (IF) قراءة التعليمة من موقع بالذاكرة إلى المعالج .

عملية فك تشفير التعليمة (IOD) وفهم الامر للتحديث نوع العملية والمعاملات التي تحتاجها.

عنوان المعامل (OAC) إذا كانت العملية تشتمل الاشارة إلي معامل في الذاكرة إلى معامل في الذاكرة إلى معامل في الذاكرة إلى متاح عبر إدخال / اخراج.

 $\stackrel{\$}{=}$ جلب المعامل (OF) من الذاكرة أو قراءتها من وحدة الادخال /الاخراج.

- تشغيل البيانات (DO) تنفيذ العملية المشار إليها في التعليمة.
- \prec تخزين المعامل (OS) كتابة الناتج في الذاكرة أو إلى وحدة الادخال / الاخراج .

Instruction Representation

تمثيل التعليمات

من الصعب على المبرمج والقارئ على حد سواء التعامل مع التمثيل الثنائي لتعليمات المعالج.

كل تعليمة لديها تمثيل رمزي فريد من نوعه.

e.g. ADD, SUB, LOAD 'STOR, DIV, MUL

ويمكن أيضا أن المعاملات تكون ممثلة بطريقة التالية:

ADD A,B

Opcode	Mnemonic	Meaning	Effect
0000	AND	Logical bit-wise AND	Rd := Rn AND Op2
0001	EOR	Logical bit-wise exclusive OR	Rd := Rn EOR Op2
0010	SUB	Subtract	Rd := Rn - Op2
0011	RSB	Reverse subtract	Rd := Op2 - Rn
0100	ADD	Add	Rd := Rn + Op2
0101	ADC	Add with carry	Rd := Rn + Op2 + C
0110	SBC	Subtract with carry	Rd := Rn - Op2 + C - I
0111	RSC	Reverse subtract with carry	Rd := Op2 - Rn + C - I

Cimple Instruction Format

تنسيق التعليمات

Dr. ramzi elghanuni_Lecture6

Instruction Types

أنواع التعليمات

- تعليمات الحساب والمنطق.

.Data movement (I/O) بيانات الحركة

- تعليمات الادخال / الاخراج

* التحكم (Program flow control).

13- الاختبار والتفرع.

Number of Addresses (a)

عدد العناوين

- 3 addresses
- Operand 1, Operand 2, Result
- a = b + c;
- Not common (ليست شائعة)

Instru	ction	Comment	
SUB	Y, A, B	$Y \leftarrow A - B$	
MPY	T, D, E	$T \leftarrow D \times E$	
ADD	T, T, C	$T \leftarrow T + C$	
DIV	Y, Y, T	$Y \leftarrow Y \div T$	

 $Y = (A - B) / [C + (D \times E)]$

- Needs very long words to hold everything (تتطلب تنسیق تعلیمة طویلة نسبیا لکی تحمل مؤشرات لثلاثة عناوین)
- May be a forth next instruction (usually implicit)

(عنوان التعليمة التالية مشار اليها ضمنياً)

4 bits	2 bits	2 bits	2 bits
opcode	operand	operand	operand
	#1	#2	#3

14

ADD
$$A,B,C$$
 $(A=B+C)$

Dr. ramzi elghanuni_Lecture6

Number of Addresses (b)

عدد العناوين

Instruction	Comment
MOVE Y, A	$Y \leftarrow A$
SUB Y, B	$Y \leftarrow Y - B$
MOVE T, D	$T \leftarrow D$
MPY T, E	$T \leftarrow T \times E$
ADD T, C	$T \leftarrow T + C$
DIV Y, T	$Y \leftarrow Y \div T$

- 2 addresses
- One address doubles as operand and result

•
$$a = a + b$$

$$Y = (A - B) / [C + (D \times E)]$$

- Reduces length of instruction (یقلل من حجم طول التعلیمة)
- Temporary storage to hold some results (التخزين المؤقت لعقد)
 بعض النتائج)
- Requires some extra work (يتطلب بعض العمل الاضافي)
 - لتجنب تغيير قيمة المعامل المزدوج يتم استخدام تعليمة (Move) لنقل القيم لموقع مؤقت قبل تنفيذ العملية.

4 bits	2 bits	2 bits
opcode	operand #1	operand #2

MOVE
$$A,B$$
 $(A=B)$ 1000 00 01
ADD A,C $(A=A+C)$ 1010 00 10

15

Number of Addresses (c)

عدد العناوين

- 1 address.
- Implicit second address (العنوان الثاني ضمنياً)
- Common on early machines (منتشر على الأجهزة القديمة).
- Usually a register (accumulator) AC

$$Y = (A - B) / [C + (D \times E)]$$

Instruction	Comment
LOAD D	$AC \leftarrow D$
MPY E	$AC \leftarrow AC \times E$
ADD C	$AC \leftarrow AC + C$
STOR Y	$Y \leftarrow AC$
LOAD A	$AC \leftarrow A$
SUB B	$AC \leftarrow AC - B$
DIV Y	$AC \leftarrow AC \div Y$
STOR Y	$Y \leftarrow AC$

	4 bits	2 bits
	opcode	operand
Dr.	ramzi elghan	uni_Lecture6

LOAD B
$$(Acc=B)$$
 0000 01
ADD C $(Acc=Acc+C)$ 1010 10
STORE A $(A=Acc)$ 0001 00

Number of Addresses (d)

عدد العناوين

- 0 (zero) addresses
- All addresses implicit (کل العناوین ضمنیاً)
- Uses a Stack (LIFO)
- e.g. push a
- push b
- add
- pop c
- (عنوان الموقع) Top •
- (يخصص مسجل خاص لحفظ عنوان Top) •

3 Addresses

$$X = (A - B + C * (D * E - F))/(G + H * K)$$

SUB R₁,A,B

 $R_1 \leftarrow A - B$

MUL R₂,D,E

 $R_2 \leftarrow D * E$

SUB R2,R2,F

 $R_2 \leftarrow R_2 - F$

MUL R₂,R₂,C

 $R_2 \leftarrow R_2 * C$

ADD R1,R1,R2

 $R_1 \leftarrow R_1 + R_2$

MUL R₃,H,K

 $R_3 \leftarrow H * K$

ADD R₃,R₃,G

 $R_3 \leftarrow R_3 + G$

DIV X,R1,R3

 $X \leftarrow R_1 / R_3$

2 Addresses

$$X = (A - B + C * (D * E - F))/(G + H * K)$$

MOV R₁, A

SUB R₁, B

MOV R₂, D

MUL R2, E

SUB R₂, F

MUL R₂, C

ADD R₁, R₂

MOV R₃, H

MUL R3, K

ADD R₃, G

 $DIV R_1, R_3$

MOV X, R₁

 $R_1 \leftarrow A$

 $R_1 \leftarrow R_1 - B$

 $R_2 \leftarrow D$

 $R_2 \leftarrow R_2 * E$

 $R_2 \leftarrow R_2 - F$

 $R_2 \leftarrow R_2 * C$

 $R_1 \leftarrow R_1 + R_2$

 $R_3 \leftarrow H$

 $R_3 \leftarrow R_3 * K$

 $R_3 \leftarrow R_3 + G$

 $R_1 \leftarrow R_1 / R_3$

 $X \leftarrow R_1$

Dr. ramzi elghanuni_Lecture6

Dr. ramzi elghanuni_Lecture6

1 Addresses

$$X = (A - B + C * (D * E - F))/(G + H * K)$$

LOAD A

 $AC \leftarrow A$

SUB B

AC ← AC - B

STORE T

 $T \leftarrow AC$

LOAD D

AC **←** D

MUL E

 $AC \leftarrow AC * E$

SUB F

 $AC \leftarrow AC - F$

MUL C

 $AC \leftarrow AC * C$

ADD T

 $AC \leftarrow AC + T$

STORE T

 $T \leftarrow AC$

LOAD H

AC **←** H

MUL K

 $AC \leftarrow AC * K$

Dr. ramzi elghanuni_Lecture6

1 Addresses

$$X = (A - B + C * (D * E - F))/(G + H * K)$$

ADD G $AC \leftarrow AC + G$

STORE T1 $T1 \leftarrow AC$

LOAD T AC ← T

DIV T1 $AC \leftarrow AC / T1$

STORE $X \leftarrow AC$

Zero Addresses

$$X = (A - B + C * (D * E - F))/(G + H * K)$$

PUSH A $TOS \leftarrow A$

PUSH B $TOS \leftarrow B$

SUB $TOS \leftarrow (A-B)$

PUSH C TOS \leftarrow C

PUSH D TOS ← D

PUSH E TOS ← E

MUL $TOS \leftarrow (D * E)$

PUSH F TOS \leftarrow F

SUB $TOS \leftarrow ((D*E)-F)$

Dr. ramzi elghanuni_Lecture6

Number of Addresses (d)

عدد العناوين

$$X = (A - B + C * (D * E - F))/(G + H * K)$$

MUL $TOS \leftarrow C * ((D * E) - F)$

ADD $TOS \leftarrow ((A-B) + C*((D*E)-F)$

PUSH G TOS \leftarrow G

PUSH H TOS \leftarrow H

PUSH K TOS \leftarrow K

MUL $TOS \leftarrow (H * K)$

ADD $TOS \leftarrow G + (H * K)$

DIV $TOS \leftarrow ((A - B) + C * ((D * E) - F) / (G + (H * K))$

POP $X \leftarrow TOS$

Dr. ramzi elghanuni_Lecture6

Table 10.1 Utilization of Instruction Addresses (Nonbranching Instructions)

Number of Addresses	Symbolic Representation	Interpretation
3	OP A, B, C	A ← B OP C
2	OP A, B	$A \leftarrow A OP B$
1	OPA	AC←AC OP A
0	OP	T ← (T - 1) OP T

AC = accumulator

T = top of stack

(T-1) = second element of stack

A, B, C = memory or register locations

How Many Addresses کم عدد العناوین

عدد العناوين لكل تعليمة (Instruction) هو قرار اساسي في تصميم المعالج

خ المزيد من العناوين

إ التعليمات أكثر تعقيدا.

أكثر مسجلات (registers).

أ تعليمات أقل في برنامج.

العمليات بين المسجلات (registers) أسرع.

عناوين أقل

- معالج أقل تعقيدا.
- تعلیمات أكثر بدائیة.
 - تعليمات أقل طو لا.

• 25عدد التعليمات تزدد في البرنامج مما يزيد من زمن التنفيذ وبالتالي برامج أطول وأكثر تعقيدا.

Design Decisions

قرارات التصميم

- ما الذي يستطيع فعله؟

ي - مدى التعقيد؟

[Data Types] أنواع البيانات

شكل التعليمة (Instruction Formats)

- طول حقل (Length Opcode)

[- عدد العناوين لكل تعليمة (Number of Addresses)

(Registers) المسجلات

- عدد من مسجلات وحدة المعالجة المركزية المتوفرة

- العمليات التي يمكن القيام بها على المسجل؟

Types of Operand

أنواع المعاملات

تعليمات المعالج تشتغل على بيانات ، وأكثر الاصناف العامة للبيانات أهمية هي:

- (Addresses) العناوين
 - (Numbers) الارقام
- عدد صحيح ثنائي أو ثنائي بنقطة ثابتة (Integer).
 - ثنائي بالنقطة العائمة (floating point).

 - الأحرف (Characters) الأحرف
 - ASCII -
 - البيانات المنطقية (Logical Data)

Bits or flags 57

Types of Operation

أنواع العمليات

عدد رموز العمليات يختلف من معالج إلى آخر ، ومع ذلك فأنها تشترك في نفس الانواع للعامة للعمليات:

. (Arithmetic) الحسابية

المنطقية (Logical) .

التحويل (Conversion) .

- الادخال/الاخراج (I/O).
- . (System Control) التحكم بالنظام
- . (Transfer of Control) نقل السيطرة

Data Transfer

نقل البيانات

يجب على تعليمات نقل البيانات تحديد عدة أشياء:

أله يجب تحديد موقع المعامل المصدر والوجهة (Source & Destination) ، التهموقع يمكن أن يكون في الذاكرة أو المسجل أو الجزء العلوي من المكدس (Stack) .

أله عن الإشارة إلى طول البيانات التي سيتم نقلها.

يجب تحديد طريقة العنونة لكل معامل.

مثل : Load , Store, Push , Pop , Move

Arithmetic

الحسابية

الجمع ، الطرح ، الضرب ، القسمة (Add, Subtract, Multiply, Divide). Signed Integer). الأرقام العشرية بالإشارة (ذات نقطة ثابتة) (Floating point). الأرقام العشرية بالنقطة العائمة (Floating point).

وأوجد عمليات أخرى متنوعة ضمن هذا النوع من العمليات، على سبيل المثال:

Absolute (|a|)

Increment (a++)

Decrement (a--)

Negate (-a)

Logical المنطقية

العمليات المختصة بالبت (Bit)

AND,OR,XOR،NO

Binary

العمليات المنطقية المختصة بالمنطق بالثنائي (Binary)

الإزاحة المنطقية ، التدوير أو الإزاحة الدائرية.

Shift, Rotate

Shift and Rotate Operations

عملية الازاحة والتدوير

(a) Logical right shift

(b) Logical left shift

Shift and Rotate Operations

عملية الازاحة والتدوير

(d) Arithmetic left shift

(e) Right rotate

Examples of Shift and Rotate Operations

Input	Operation	Result
10100110	Logical right shift (3 bits)	00010100
10100110	Logical left shift (3 bits)	00110000
10100110	Arithmetic right shift (3 bits)	11110100
10100110	Arithmetic left shift (3 bits)	10110000
10100110	Right rotate (3 bits)	11010100
10100110	Left rotate (3 bits)	00110101

Conversion

التحويل

تعليمات التحويل هي تلك التي يمكنها تغيير تنسيق البيانات أو تعمل على تنسيق البيانات

على سبيل المثال التحويل من النظام العشري إلى النظام الثنائي.

Input / Output

تعلیمات محدودة. علیمات محدودة.

الإدخال/الإخراج المبرمج.

الإدخال والاخراج المبرمج باستخدام الذاكرة.

- أ الوصول المباشر للذاكرة (DMA).
- استخدام معالج خاص بالإدخال/الإخراج.

Systems Control التحكم بالنظام

تعليمات التحكم بالنظام يمكن تنفيذها عندما يكون المعالج

في حالة معينة وبصلاحيات خاصة.

ينفذ برنامجا في منطقة مميزة و خاصة من الذاكرة.

عادة ما يتم تنفيذ هذه التعليمات من قبل نظام التشغيل.

Transfer of Control

نقل السيطرة

(Branch) > التفرع

branch to x if result is zero -

increment and skip if zero

ADD A Branch xxxx

(Skip) القفر (Skip) skip if zero -anch xxxx -Lectwee استدعاء الإجراء (Instruction call) استدعاء الإجراء

Call and Returns -

تعليمات التفرع

الجنفرع يتم اذا تحقق شرط معين والايتم تنفيذ التعليمة التالية في التسلسل (زيادة عداد القرع يتم اذا تحقق شرط معين والايتم تنفذ دائما التفرع هي تفرع دون قيد أو شرط. القراء المورع هي تفرع دون المورد ال

تعليمات التفرع

هناك طريقتين للاختبار حالة المعالج وذلك لإجراء تنفيذ تعليمة تفرع مشروط في الله الحالة (Status Register) الذي يعكس ناتج عملية حسابية في منطقية يمكن أن يكون هناك أربعة أنواع مختلفة من تعليمات التفرع المشروط:

تفرع للموقع X إذا كانت النتيجة إيجابية	BRP X
تفرع للموقع X إذا كانت النتيجة سلبية	BRN X
تفرع للموقع X إذا كانت النتيجة صفر	BRZ X
تفرع للموقع X إذا حدث فيض	BRO X

في جميع الحالات المشار إليها نتيجة العملية الاخيرة التي تم تنفيذها هي التي تعيين رمز حالة (إيجابية أوسلبية أو صفر أو فيض).

hanuni_Lecture6

تعليمات التفرع

تانيا: يمكن استخدام شكل من التعليمات من ثلاثة عناوين لإجراء المقارنة وتحديد التفرع في نفس التعليمة. في نفس التعليمة. Lecture في المعليمة المعليمة

تعليمات التفرع

Skip Instruction

تعليمات القفز (التخطي)

تعليمات التخطي تتضمن عنوانا ضمنياً ، والتخطي عادة يعني تخطي تعليمة واحدة ، والتخطي فإن العنوان الضمني يساوي عنوان التعليمة التالية مضاف إليه طول التعليمة.

Jump, Skip

Nested Procedure Calls

تعليمات استدعاء الإجراء (برنامج جزئي)

الإجراء هو نفس برنامج حاسب جزئي يتم دمجه في برنامج أوسع نطاقا. ويمكن عند أي نقطة في البرنامج استدعاء هذا الإجراء. والإيعاز للمعالج بالذهاب وتنفيذ الإجراء بأكمله من

ثغاء. ألعودة إلى نقطة الاستدعاء. Lecture

(b) Execution sequence

44

Dr. ramzi elghanuni_Lecture6

Use of Stack

استخدام المكدس

