Reinforcement Learning (RL)

1. Khái niệm

Tại sao không dùng Supervised Learning?

- Ý tưởng: dùng dữ liệu trạng thái → hành động từ object để huấn luyện mạng
 Neural
- Nhưng thực tế:
 - Khó xác định "hành động tốt nhất" trong từng trạng thái.
 - Nhiều hành động đều "hợp lý", nên dữ liệu huấn luyện không rõ ràng.
- ⇒ Supervised learning không phù hợp, cần phương pháp khác

RL giống như huấn luyện chó

- Không cần dạy chi tiết, chỉ cần đưa ra phần thưởng hoặc phạt:
 - Làm tốt → khen: "good dog"
 - Làm sai → phạt: "bad dog"
- Mạng Neural sẽ tự khám phá ra hành động nào nên làm.

Ý tưởng cốt lõi của RL

- Không cần chỉ rõ hành động đúng cho từng đầu vào.
- Chỉ cần định nghĩa hàm phần thưởng: làm gì được khen → RL sẽ tự học cách tối ưu hành động để nhận thưởng.

2. Return

- Trong Reinforcement Learning, Return là tổng các phần thưởng (rewards)
 mà tác nhân nhận được sau một chuỗi hành động.
- Tuy nhiên, thông thường thì phần thưởng gần (về mặt thời gian) thì giá trị
 hơn phần thưởng ở tương lai xa.
- Vì vậy, Return được tính bằng cách giảm trọng số phần thưởng trong tương lai bằng một hệ số chiết khấu (discount factor), ký hiệu là γ (gamma), nằm

Reinforcement Learning (RL)

trong khoảng [0, 1].

Ý nghĩa của discount factor (γ)

- γ càng gần 1 → hệ thống càng kiên nhẫn, coi trọng phần thưởng xa.
- γ càng nhỏ → hệ thống thiên về phần thưởng gần.
- Trong tài chính, γ phản ánh giá trị thời gian của tiền (time value of money).

Trường hợp phần thưởng âm (negative rewards)

• Discount factor sẽ khuyến khích hoãn phần thưởng âm càng lâu càng tốt.

3. Policy

RL (Reinforcement Learning) cần một **hàm quyết định** hành động nên làm trong từng trạng thái cụ thể, hàm này được gọi là **Policy**, ký hiệu là π (pi).

$$\pi(s) = a$$

Trong đó:

- s là trạng thái hiện tại.
- a là hành động mà policy chọn trong trạng thái đó.
- Mục tiêu của RL là tìm ra một policy tối ưu, tức là policy giúp tối đa hóa tổng phần thưởng (return) trong suốt quá trình hành động.

4. Tổng kết - Mô hình chung (MDP - Markov Decision Process)

State (Trạng thái)

Mô tả đầy đủ tình hình hiện tại

Action (Hành động)

Tập các lựa chọn agent có thể thực hiện

• Reward (Phần thưởng)

Giá trị (số thực) phản ánh mức "tốt/xấu" của hành động vừa thực hiện ở trạng thái cũ

Discount factor (γ)

Hệ số chiết khấu ∈(0, 1): làm giảm giá trị các phần thưởng ở tương lai xa hơn so với phần thưởng hiện tại.

• Return (G_t)

Tổng phần thưởng có chiết khấu:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

• Policy (π)

Hàm ánh xạ từ trạng thái → hành động:

$$\pi(s) = a$$

Mục tiêu RL: tìm policy tối ưu sao cho tổng Return là lớn nhất.