Final Exam

1. Let X be a nonempty topological space and let $\{\mu_n\}_{n=1}^{\infty}$ be a sequence of Borel regular measures on X. Assume for any $A \subset X$ the sequence $\mu_n(A)$ decreases and define $\mu(A) = \lim_{n \to \infty} \mu_n(A)$. Prove that if $\mu_1(X) < \infty$, then μ is a measure on X.

Lemma (MCT) The Monotone Convergence Theorem holds for nonnegative μ -measurable functions $f_n \setminus f^{\dagger}$, if f_1 is μ -summable. **Proof** $\{(f_1 - f_n)\}_{n=1}^{\infty}$ is a nonnegative sequence of functions with $(f_1 - f_n) \nearrow (f_1 - f)$, so by the ordinary MCT

$$\lim_{n \to \infty} \int (f_1 - f_n) = \int (f_1 - f)$$

and so

$$\lim_{n \to \infty} \int f_1 - \lim_{n \to \infty} \int f_n = \int f_1 - \int f$$

Thus $\lim_{n\to\infty} \int f_n = \int f$ and MCT \(\sqrt{is proved.} \)

Proof We are given that

- each μ_n is Borel regular,
- $\mu_1(X) < \infty$, and
- $\mu_n(A) \searrow \mu(A)$ for any $A \subset X$.

First, observe that $\mu_n(\emptyset) = 0$ for all n, so $\mu(\emptyset) = 0$. Now let $A \subset \bigcup_{i=1}^{\infty} A_i$, with $A, A_i \in X$ for all $i \in \mathbb{N}$. We need to show that

$$\mu\left(A\right) \leq \sum_{i=1}^{\infty} \mu\left(A_{i}\right).$$

Since each μ_n is a measure,

$$\mu_n(A) \le \sum_{i=1}^{\infty} \mu_n(A_i) \tag{1}$$

for all n. Now since for any A, $\mu_n(A)$ is a decreasing real sequence bounded below by 0, then it always converges, so taking limits in both sides of (1),

$$\mu(A) \le \lim_{n \to \infty} \sum_{i=1}^{\infty} \mu_n(A_i). \tag{2}$$

Now we will view this sum as an integral. Let $f_n(x) = \begin{cases} \mu_n(A_i) \text{ where } i = \lfloor x \rfloor, & \text{if } x \geq 1 \\ 0 & \text{if } x < 1 \end{cases}$.

Then each f_n is simple and nonnegative, and the Lebesgue integral of f_n is

$$\int_{\mathbb{R}} f_n(x) = \sum_{i=1}^{\infty} f_n(i) = \sum_{i=1}^{\infty} \mu_n(A_i),$$

 $^{^{\}dagger}f_n \searrow f$ means that $f_n \ge f_{n+1}$ for all n and $\lim_{n \to \infty} f_n = f$.

and we can substitute into (2) to find

$$\mu(A) \le \lim_{n \to \infty} \int_{\mathbb{R}} f_n(x). \tag{3}$$

Observe that $\mu_1(A) \leq \mu_1(X) < \infty$ and $\mu_n \searrow \mu$, so $\mu(A) < \infty$ always. Considering the A_i sets, for any $n \in \mathbb{N}$ either $\sum_{i=1}^{\infty} \mu_n(A_i)$ is finite or it is infinite.

Case I: Suppose there exists some K such that $\sum_{i=1}^{\infty} \mu_K(A_i)$ is finite.

Following are a few facts about the functions $f_n(x) = \mu_n(A_i)$:

- (i) Since $\mu_n \searrow \mu$, then $\sum_{i=1}^{\infty} \mu_k(A_i) < \infty$ for all k > K.
- (ii) Each f_n is a nonnegative simple function, and thus measurable.
- (iii) f_k is μ -summable for every k > K, since $\int_{\mathbb{R}} f_k(x) = \sum_{i=1}^{\infty} \mu_k(A_i) < \infty$.
- (iv) $f_n \searrow f$, since $\mu_n \searrow \mu$.
- (v) f_1 is bounded above by $\mu_1(X)$, since every $A_i \subset X$ and μ_1 has the monotonicity property.
- (vi) f is measurable by (i) and (iii) above.
- (vii) We can assume f is μ -summable, since if not then $\sum_{i=1}^{\infty} \mu(A_i) = \int_{\mathbb{R}} f = \infty > \mu(A)$ and we're done.

Let $g_n = f_{n+K}$. Now we can check that the hypotheses of MCT \searrow are satisfied:

- g_n are μ -measurable
- g_1 is μ -summable.
- $g_n \searrow f$

So we can apply MCT \searrow and conclude that

$$\lim_{n \to \infty} \int_{\mathbb{R}} f_n = \lim_{n \to \infty} \int_{\mathbb{R}} g_n = \int_{\mathbb{R}} f$$

so substituting into equation (3), we find that

$$\mu(A) \le \int_{\mathbb{R}} f(x) = \sum_{i=1}^{\infty} \mu(A_i)$$

and we are done.

Case II: Suppose $\sum_{i=1}^{\infty} \mu_n(A_i)$ is infinite for every n.

Since each μ_n is a Borel regular measure and μ_1 is in particular, for each A_i there exists a respective Borel set B_i such that $B_i \subset A_i^{\dagger}$ and $\mu_1(A_i) = \mu_1(B_i)$, so

$$\mu_1(A) \le \sum_{i=1}^{\infty} \mu_1(B_i) = \sum_{i=1}^{\infty} \mu_1(A_i)$$

[†]The textbook gives the set containment the other way, but if we find Borel set \widetilde{B}_i with $A_i^{\complement} \subset \widetilde{B}_i$, then $\widetilde{B}_i^{\complement}$ is our desired B_i .

Let $D_1 = B_1$, and $D_n = B_n \setminus \bigcup_{i=1}^{n-1} B_i$. Then $\{D_i\}_{i=1}^{\infty}$ is a disjoint collection of Borel (and thus measurable) sets with $\bigcup_{i=1}^{\infty} D_i = \bigcup_{i=1}^{\infty} B_i$. Observe that

$$\sum_{i=1}^{\infty} \mu_1(D_i) = \mu_1 \left(\bigcup_{i=1}^{\infty} D_i \right) < \infty,$$

and for any n, since μ_n is Borel,

$$\sum_{i=1}^{\infty} \mu_n(D_i) = \sum_{i=1}^{\infty} \left(\mu_n(B_i) - \mu_n \left(\bigcap_{j=1}^i B_j \right) \right) \le \sum_{i=1}^{\infty} \mu_n(B_i),$$

so we can apply Case I to $A \subset \bigcup_{i=1}^{\infty} D_i$ to conclude that $\mu(A) \leq \sum_{i=1}^{\infty} \mu(D_i)$, and since μ has the monotonicity property[†] and $D_i \subset B_i \subset A_i$,

$$\mu(A) \le \sum_{i=1}^{\infty} \mu(D_i) \le \sum_{i=1}^{\infty} \mu(B_i) \le \sum_{i=1}^{\infty} \mu(A_i)$$

and we are done.

This is because μ_n is a measure, so $\mu_n(A) \leq \mu_n(B)$ for all n, and taking limits, $\mu(A) \leq \mu(B)$.

2. Let $f: \mathbb{R} \to \mathbb{R}$ be Lebesgue-measurable. Prove that there exists a Borel-measurable function $g: \mathbb{R} \to \mathbb{R}$ such that f(x) = g(x) μ -a.e. in \mathbb{R} .

Proof We will show that (i) every Lebesgue-measurable simple function has the desired property, and show that (ii) this implies nonnegative Lebesgue-measurable functions have the property, and thus (iii) all Lebesgue-measurable functions have the property.

- (i) Let $\sigma = \sum_{i=1}^{\infty} a_i \chi_{A_i}$ be a nonnegative Lebesgue-measurable simple function with all A_i sets pairwise disjoint and of finite measure[†]. We know that for every Lebesgue-measurable set L with finite measure, there exists a compact (and thus Borel) set K such that $K \subset L$ and $\mu(L \setminus K) < \varepsilon$ for every ε . So for each A_i , we find a collection of compact sets $\{K_i^n\}_{n=1}^{\infty}$ such that $K_i^n \subset A_i$ and $\mu(A_i \setminus K_i^n) < \frac{1}{k}$. Then call $K_i = \bigcup_{n=1}^{\infty} K_i^n$, and $K_i \subset A_i$, K_i is Borel, and $\mu(K_i) = \mu(A_i)$.

 Thus we can define $\beta = \sum_{i=1}^{\infty} a_i \chi_{K_i}$, and note that $\beta = \sigma$ μ -a.e., and if $\beta(x) \neq \sigma(x)$, then $\beta(x) = 0^{\ddagger}$.
- (ii) Next, let f be any nonnegative Lebesgue-measurable function, and let σ_n be a sequence of nonnegative Lebesgue-measurable simple functions with $\sigma_n \nearrow f$. By (i), produce Borel measurable functions β_n with $\beta_n = \sigma_n \ \mu$ -a.e.. Since $\sigma_n \to f$ and $\beta_n = 0$ whenever $\beta_n \neq \sigma_n$, then β_n converges to a function we can call $g = \lim_{n \to \infty} \beta_n$. To see that g is Borel measurable, we show that $\lim \inf \beta_n$ and $\lim \sup \beta_n$ are Borel measurable.

$$(\limsup_{n \to \infty} \beta_n)^{-1} (-\infty, b) = \{ x \in \mathbb{R} : \limsup_{n \to \infty} \beta_n(x) < b \}$$
$$= \{ x \in \mathbb{R} : \forall k > 0, \exists n > k \text{ s.t. } \beta_n(x) < b \}$$
$$= \bigcap_{k=1}^{\infty} \bigcup_{n > k} \beta_n^{-1} (\infty, b)$$

which is Borel. A similar argument shows that $\liminf \beta_n$ is Borel measurable, so $g = \liminf \beta_n = \limsup \beta_n$ is as well.

(iii) Finally, we observe that if f is any Lebesgue-measurable function, it can be written as $f = f^+ - f^-$ where

$$f^{+}(x) = \begin{cases} f(x), & f(x) \ge 0 \\ 0, & \text{otherwise} \end{cases} \qquad f^{-}(x) = \begin{cases} f(x), & -f(x) \le 0 \\ 0, & \text{otherwise} \end{cases}$$

and we can use (ii) to produce Borel measurable functions g^+ and g^- such that $g^+=f^+$ μ -a.e. and $g^-=f^ \mu$ -a.e., so letting $g=g^+-g^-$, we find that g=f μ -a.e., and all that remains is to show that g is Borel measurable:

$$g^{-1}(-\infty, b) = \{x \in \mathbb{R} : g^{+}(x) - g^{-}(x) < b\} = \begin{cases} (g^{-})^{-1}(b, \infty), & \text{if } b \le 0\\ (g^{+})^{-1}(0, b), & \text{if } b > 0 \end{cases}$$

which is a Borel set in either case.

[†]Such a disjoint collection of sets partitions \mathbb{R} , and if there are any with infinite measure, we can refine the partition by dividing the sets at every integer, i.e. if $A_i = (10, \infty)$, replace A_i with $A_{i_1} = (10, 11]$, $A_{i_2} = (12, 12]$, etc.

[‡]In case you were concerned, $\beta^{-1}(\{0\})$ is Borel even if no $a_i = 0$, since it is $\left(\bigcup_{i=1}^{\infty} K_i\right)^{\complement}$ in that case.

3. Let X be nonempty and let μ be a measure on X. Assume $A_n \subset X$ are μ -measurable for $n=1,2,\ldots$ and assume the sequence χ_{A_n} converges in measure to some function $f:X\to\mathbb{R}$. Prove that there exists a μ -measurable set $A\subset X$ such that $f=\chi_A$ μ -a.e. in X.

Proof Since $\chi_{A_n} \xrightarrow{\mu} f$, then there exists a subsequence $\chi_{A_{n_k}} \to f$ μ -a.e.. Thus we can let

$$A = \{ x \in X : \lim_{k \to \infty} \chi_{A_{n_k}}(x) = 1 \}$$

That is, A^{\complement} contains all $x \in X$ where $\lim_{k \to \infty} \chi_{A_{n_k}}(x) = 0$ or DNE. Now observe that

$$\chi_A = f \ \mu$$
-a.e.,

Since $\chi_A = \lim_{k \to \infty} \chi_{A_{n_k}}$ except when the limit DNE, and the limit certainly does not agree with f when it DNE, so

$$\mu(\lbrace x \in X : \lim_{k \to \infty} \chi_{A_{n_k}}(x) \text{ DNE}\rbrace) = 0.$$

Thus $\chi_A = \lim_{k \to \infty} \chi_{A_{n_k}} \mu$ -a.e. and $\lim_{k \to \infty} \chi_{A_{n_k}} = f \mu$ -a.e., so $\chi_A = f \mu$ -a.e.

To see that A is measurable, observe that $\chi_A = \lim_{k \to \infty} \chi_{A_{n_k}} \mu$ -a.e. and each $\chi_{A_{n_k}}$ is a measurable function, so their limit is measurable. Thus

$$\{x \in X : \frac{1}{2} < \chi_A(x) < \frac{3}{2}\} = A$$

is measurable, and we're done.

4. Let X be nonempty and let μ be a measure on X. Assume $f_n, f: X \to \mathbb{R}$ are μ -measurable functions such that for each $\varepsilon > 0$ one has

$$\sum_{n=1}^{\infty} \mu(\lbrace x : |f_n(x) - f(x)| > \varepsilon\rbrace) < \infty.$$

Prove that $f_n \to f \mu$ -a.e. in X.

Proof Let $\varepsilon > 0$. Since the sum is finite, then the tail of the sum goes to zero, so the terms go to zero. That is, since

$$\sum_{n=1}^{\infty} \mu(\{x : |f_n(x) - f(x)| > \varepsilon\}) < \infty, \text{ then}$$

$$\lim_{k \to \infty} \sum_{n=k}^{\infty} \mu(\{x : |f_n(x) - f(x)| > \varepsilon\}) = 0, \text{ so}$$

$$\lim_{n \to \infty} \mu(\{x : |f_n(x) - f(x)| > \varepsilon\}) = 0, \text{ so}$$

$$f_n \xrightarrow{\mu} f.$$

Since $f_n \xrightarrow{\mu} f$, then there exists a subsequence $f_{n_k} \to f \mu$ -a.e.

To see that the more general case of $f_n \to f$ μ -a.e. holds, suppose not. Denote

$$A_{\delta} = \{ x \in X : \lim_{k \to \infty} f_{n_k}(x) \neq f(x) \}.$$

We know that

$$\sum_{n=1}^{\infty} \mu(B_n^{\varepsilon}) < \infty, \text{ where}$$

$$B_n^{\varepsilon} = \{x : |f_n(x) - f(x)| > \varepsilon\}$$

For any $x \in X$, if $\lim_{n \to \infty} |f_n(x) - f(x)|$ exists and nonzero, then $x \in A_{\delta}$. So we can observe the following about "the bad set" of f_n :

$$\mu\left(A\right) > 0$$
, where
$$A = \left\{x \in X: \lim_{n \to \infty} \left|f_n(x) - f(x)\right| \text{ DNE} \right\}.$$

Let $x \in A \setminus A_{\delta}$, so $f_{n_k}(x) \to f(x)$, but $f_n(x) \not\to f(x)$. Then there exists a subsequence $f_{n_j}(x)$ such that $f_{n_j}(x) \to L \neq f(x)$, where $L \in [-\infty, \infty]$. Then

$$\lim_{j \to \infty} |f_{n_j}(x) - f(x)| = |L - f(x)|$$

so for small ε , there exists $J \in \mathbb{N}$ such that $|f_{n_j}(x) - f(x)| > \varepsilon$ for every j > J. This means x is in infinitely many B_n^{ε} , so $(A \setminus A_{\delta}) \subset \limsup_{n \to \infty} B_n^{\varepsilon}$ and by the Borel-Cantelli Lemma, they both have measure zero. This contradicts that A has positive measure, since $A \subset (A \setminus A_{\delta}) \cup A_{\delta}$.