IN THE CLAIMS

Please amend claim 13, cancel claim 17 and add claims 18-21 as follows.

- 1-7. (canceled)
- (previously presented) A process for converting a bridged metallocene of formula
 (IIa)

where

M is Ti, Zr or Hf,

 $\mathrm{R^4}$, $\mathrm{R^6}$ are identical or different and are each hydrogen or a $\mathrm{C_{1}\text{-}C_{20}}$ group,

 R^5 , R^7 are identical or different and are each a hydrogen atom or a C_1 - C_{20} group,

- R^8 , R^9 are identical or different and are each a hydrogen atom, a halogen atom or a C_1 - C_{30} group, and two radicals R^8 and R^9 may form a monocyclic or polycyclic ring system which may in turn be substituted,
- 1, 1' are identical or different and are each an integer from zero to 4,
- X is a halogen atom, and
- B is a bridging structural element between the two indenyl radicals,

to a bridged metallocene of formula (II),

where

M, X, 1, 1', B, R^4 , R^5 , R^6 , R^7 , R^8 and R^9 have the same meaning as above,

Y is an element of main group VI of the Periodic Table of the Elements,

m' is 1 or 2, and

 R^3 are identical or different and are each halogen or a C_1 - C_{30} group; comprising the steps

a) reacting a bridged metallocene of the formula (IIa) with a ligand exchange component

 M^1YR^3

where

Y and R³ are as defined above,

 M^1 is a cation, a cationic fragment, or an ammonium cation corresponding to an amine,

- to form the bridged metallocene of formula (II),
- b) optionally separating off solid residues of the formula M¹X,
- c) optionally separating off the inert solvent or solvent mixture,
- d) recrystallizing the bridged metallocene of the formula (II) from an aprotic hydrocarbon, and
- e) separating the compound of the formula (II) from the mother liquor.
- (previously presented) The process of claim 8 wherein in the bridged metallocenes of formula (IIa) and (II):
 - M is zirconium,
 - R³ are identical or different and are each hydrogen atom or a C_1 - C_{10} -alkyl, C_2 - C_{12} -alkenyl, C_6 - C_{24} -aryl, C_5 - C_{24} -heteroaryl, C_7 - C_{30} -arylalkyl, C_7 - C_{30} -alkylaryl, fluorinated C_6 - C_{24} -aryl, fluorinated C_7 - C_{30} -arylalkyl, or fluorinated C_7 - C_{30} -alkylaryl group,
 - R^4 , R^6 are identical or different and are each hydrogen atom or a C_1 - C_{18} -alkyl, C_2 - C_{10} -alkenyl, C_3 - C_{15} -alkylalkenyl, C_6 - C_{18} -aryl, C_5 - C_{18} -heteroaryl, C_7 - C_{20} -arylalkyl, C_7 - C_{20} -alkylaryl, fluorinated C_1 - C_{12} -alkyl, fluorinated C_6 - C_{18} -aryl, fluorinated C_7 - C_{20} -arylalkyl or fluorinated C_7 - C_{20} -alkylaryl group,
 - R^8 , R^9 are identical or different and are each a hydrogen atom, a halogen atom, or a C_1 - C_{30} -group, and two radicals R^8 and R^9 may form a monocyclic or polycyclic ring system which may in turn be substituted.
- 10. (previsously presented) The process according to claim 8 where in the compounds of formula (IIa) and (II):

R⁵, R⁷ are hydrogen atoms,

X is chlorine,

Y is oxygen or sulfur,

1, 1' are 1,

m' is 1, and

- B is $(CH_3)_2Si$, $(CH_3)_2Ge$, $(C_6H_5)_2Si$, $(C_6H_5)(CH_3)Si$, CH_2CH_2 , $CH(CH_3)CH_2$, $CH(CH_4H_9)C(CH_3)_2$, CH_2 , $C(CH_3)_2$, or $(C_6H_5)_2C$.
- (previously presented) A process according to claim 8 wherein a polar or nonpolar, aprotic hydrocarbon or hydrocarbon mixture is used in step d).
- (previously presented) The process for converting a bridged metallocene of formula (IIa)

where

M is Ti, Zr or Hf,

η

 $\mathsf{R}^{\mathsf{4}},\,\mathsf{R}^{\mathsf{6}}$ are identical or different and are each hydrogen or a $\mathsf{C}_{\mathsf{1}}\text{-}\mathsf{C}_{\mathsf{30}}$ group,

 $\mathsf{R}^{\mathsf{5}},\,\mathsf{R}^{\mathsf{7}}$ are identical or different and are each a hydrogen atom or a $\mathsf{C}_{\mathsf{1}}\text{-}\mathsf{C}_{\mathsf{20}}$ group,

- R^8 , R^9 are identical or different and are each a hydrogen atom, a halogen atom or a C_1 - C_{30} group, and two radicals R^8 and R^9 may form a monocyclic or polycyclic ring system which may in turn be substituted,
- 1, 1' are identical or different and are each an integer from zero to 4,
- X is a halogen atom, and
- B is a bridging structural element between the two indenyl radicals, to a bridged metallocene of formula (II),

where

M, X, 1, 1', B, R^4 , R^5 , R^6 , R^7 , R^8 and R^9 have the same meaning as above,

Y is an element of main group VI of the Periodic Table of the Elements,

m' is 1 or 2, and

 R^3 are identical or different and are each halogen or a C_1 - C_{30} group; comprising the steps

a) reacting a bridged metallocene of the formula (IIa) with a ligand exchange

component

M¹YR³

where

Y and R³ are as defined above.

 M^1 is a cation, a cationic fragment, or an ammonium cation corresponding to an amine,

to form the bridged metallocene of formula (II),

- b) optionally separating off solid residues of the formula M¹X,
- c) optionally separating off the inert solvent or solvent mixture,
- d) recrystallizing the bridged metallocene of the formula (II) from a solvent selected from toluene, hexane, heptane, xylene, tetrahydrofuran (THF), diomethoxyethane (DME), toluene/THF, heptane/DME or toluene/DME, and
- e) separating the compound of the formula (II) from the mother liquor.
- (currently amended) A process for converting a bridged metallocene of the formula (Ia)

where

M is a metal of transition group III, IV, V or VI of the Periodic Table of the Elements,

R¹ are identical or different and are each a radical SiR^{12}_{3} , where R^{12} are identical or different and are each a hydrogen atom or a C_1 - C_{40} group, or R^1 is a C_1 - C_{30} group,

or two or more radicals R^1 may be joined to one another in such a way that the radicals R^1 and the atoms of the cyclopentadienyl ring which connect them form a C_4 - C_{24} -ring system which may in turn be substituted,

 R^2 are identical or different and are each a radical SiR^{12}_{3} , where R^{12} are identical or different and are each a hydrogen atom or a C_1 - C_{40} group, or R^2 is a C_1 - C_{30} group,

or two or more radicals R^2 may be joined to one another in such a way that the radicals R^2 and the atoms of the cyclopentadienyl ring which connect them form

a $C_4\text{-}C_{24}$ ring system which may in turn be substituted,

- X is a halogen atom,
- n is from 0 to 4,
- n' is from 0 to 4,
- m is from 1 to 4,
- k is 1, and
- B is a bridging structural element between the two cyclopentadienyl rings,

to a bridged metallocene of the formula (I)

where

 $M,\,R^1,\,R^2,\,X,\,n,\,n^i,\,m,\,k,\,B$ and R^{12} are as defined above and

- m' is from 1 to 4,
- R³ is hydrogen or a C₁-C₄₀ group,
- Y is an element of the main group 6 of the Periodic Table of the Elements, or

BINGEL et al., Ser. No. 09/856,695 a fragment CR_2^3 , NR^3 , NR^3 (CO)-, NR^3 (SO₂)-, PR^3 or $P(=O)R^3$, O(CO)-, $O(SO_2)$ -,

comprising the steps:

a) reacting the compound of the formula (Ia) with a ligand exchange component $$\rm M^1YR^3$$

where

Y and R³ are as defined above.

M¹ is a cation or a cationic fragment, in particular Li, Na, K, MgCl, MgBr, MgI, or is an ammonium cation corresponding to an amine,

with the compound of the formula M¹X, where M¹ and X are as defined above, being eliminated, in an inert solvent or solvent mixture,

- b) optionally, separating off solid residues of the formula M¹X
- c) optionally, separating off the inert solvent or solvent mixture,
- recrystallizing the bridged metallocene of the formula (I) from an aprotic hydrocarbon, and
- e) separating the compound of the formula (I) from the mother liquor.
- 14. (currently amended) A process as claimed in claim 1 claim 13, wherein a polar or nonpolar, aprotic hydrocarbon or hydrocarbon mixture is used in step d).
- 15. (previously presented) A process for converting a bridged metallocene of the

BINGEL et al., Ser. No. 09/856,695 formula (la)

$$\begin{array}{c}
R^{1}_{n} \\
R^{2}_{n'}
\end{array}$$
(la)

where

M is a metal of transition group III, IV, V or VI of the Periodic Table of the Elements,

are identical or different and are each a radical SiR^{12}_{3} , where R^{12} are identical or different and are each a hydrogen atom or a C_1 - C_{40} group, or R^1 is a C_1 - C_{30} group, or two or more radicals R^1 may be joined to one another in such a way that the radicals R^1 and the atoms of the cyclopentadienyl ring which connect them form a C_4 - C_{24} -ring system which may in turn be substituted,

 R^2 are identical or different and are each a radical SiR^{12}_{3} , where R^{12} are identical or different and are each a hydrogen atom or a C_1 - C_{40} group, or R^2 is a C_1 - C_{30} group, or two or more radicals R^2 may be joined to one another in such a way that the radicals R^2 and the atoms of the cyclopentadienyl ring which connect them form a C_4 - C_{24} ring system which may in turn be substituted,

X is a halogen atom,

n is from 0 to 4,

n' is from 0 to 4,

m is from 1 to 4,

k is 1, and

B is a bridging structural element between the two cyclopentadienyl rings,

to a bridged metallocene of the formula (I)

where

 $M,\,R^1,\,R^2,\,X,\,n,\,n^\prime,\,m,\,k,\,B$ and R^{12} are as defined above and

m' is from 1 to 4,

R³ is hydrogen or a C₁-C₄₀ group,

Y is an element of the main group 6 of the Periodic Table of the Elements, or a fragment CR³₂, NR³, NR³(CO)-, NR³(SO₂)-, PR³ or P(=O)R³, O(CO)-, O(SO₂)-,

BINGEL et al., Ser. No. 09/856,695 comprising the steps:

a) reacting the compound of the formula (Ia) with a ligand exchange component $$\rm M^1YR^3$$

where

Y and R³ are as defined above.

M¹ is a cation or a cationic fragment, or is an ammonium cation corresponding to an amine,

with the compound of the formula M¹X, where M¹ and X are as defined above, being eliminated, in an inert solvent or solvent mixture,

- b) optionally, separating off solid residues of the formula M¹X
- c) optionally, separating off the inert solvent or solvent mixture,
- d) recrystallizing the bridged metallocene of the formula (I) from a solvent selected from toluene, hexane, heptane, xylene, tetrahydrofuran (THF), dimethoxyethane (DME), toluene/THF, heptane/DME or toluene/DME, and
- e) separating the compound of the formula (I) from the mother liquor.
- 16. (previously presented) The process according to claim 13, where in the bridged metallocenes of formula (I) and (Ia):
- M is Ti, Zr or Hf,
- R¹ are identical or different and are each a radical SiR¹²₃, where R¹² are identical or different and are each a hydrogen atom or C₁-C₂₀-alkyl, C₁-C₁₀-fluoroalkyl, C₁-C₁₀-alkoxy, C₀-C₂₀-aryl, C₀-C₁₀-fluoroaryl, C₀-C₁₀-aryloxy, C₂-C₁₀-alkenyl,

 C_7 - C_{40} -arylalkyl, C_7 - C_{40} -alkylaryl or C_8 - C_{40} -arylalkenyl, or R^1 is C_1 - C_{25} -alkyl such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C_2 - C_{25} -alkenyl, C_3 - C_{15} -alkylalkenyl, C_6 - C_{24} -aryl, C_5 - C_{24} -heteroaryl, C_7 - C_{30} -arylalkyl, C_7 - C_{30} -alkylaryl, fluorinated C_1 - C_{25} -alkyl, fluorinated C_6 - C_{24} -aryl, fluorinated C_7 - C_{30} -arylalkyl, fluorinated C_7 - C_{30} -alkylaryl or C_1 - C_{12} -alkoxy, or two or more radicals R^1 may be joined to one another in such a way that the radicals R^1 and the atoms of the cyclopentadienyl ring which connect them form a C_4 - C_{24} -ring system which may in turn be substituted,

are identical or different and are each a radical SiR^{12}_{3} , where R^{12} are identical or different and are each a hydrogen atom or C_1 - C_{20} -alkyl, C_1 - C_{10} -fluoroalkyl, C_1 - C_{10} -alkoxy, C_6 - C_{14} -aryl, C_6 - C_{10} -fluoroaryl, C_6 - C_{10} -aryloxy, C_2 - C_{10} -alkenyl, C_7 - C_{40} -arylalkyl, C_7 - C_{40} -alkylaryl or C_8 - C_{40} -arylalkenyl, or R^2 is C_1 - C_{25} -alkyl such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C_2 - C_{25} -alkenyl, C_3 - C_{15} -alkylalkenyl, C_6 - C_{24} -aryl, C_5 - C_{24} -heteroaryl, C_7 - C_{30} -arylalkyl, C_7 - C_{30} -alkylaryl, fluorinated C_7 - C_{25} -alkyl, fluorinated C_6 - C_{24} -aryl, fluorinated C_7 - C_{30} -arylalkyl, fluorinated C_7 - C_{30} -alkylaryl or C_1 - C_{12} -alkoxy, or two or more radicals R^2 may be joined to one another in such a way that the radicals R^2 and the atoms of the cyclopentadienyl ring which connect them form a C_4 - C_{24} ring system which may in turn be substituted, or two or more radicals R^2 may be joined to one another in such a way that the

or two or more radicals R^2 may be joined to one another in such a way that the radicals R^2 and the atoms of the cyclopentadienyl ring which connect them form a C_4 - C_{24} ring system which may in turn be substituted,

- Is hydrogen or C_1 - C_{25} -alkyl, C_2 - C_{25} -alkenyl, C_3 - C_{15} -alkylalkenyl, C_6 - C_{24} -aryl, C_5 - C_{24} -heteroaryl, C_7 - C_{30} -arylalkyl, C_7 - C_{30} -alkylaryl, fluorinated C_1 - C_{25} -alkyl, fluorinated C_6 - C_{24} -aryl, fluorinated C_7 - C_{30} -arylalkyl or fluorinated C_7 - C_{30} -alkylaryl,
- Y is an element of main group 6 of the Periodic Table of Elements.
- 17. (canceled)
- 18. (new) A process for converting a bridged metallocene of the formula (la)

where

- M is a metal of transition group III, IV, V or VI of the Periodic Table of the Elements,
- R^1 are identical or different and are each a radical SiR^{12}_{3} , where R^{12} are identical or different and are each a hydrogen atom or a C_1 - C_{40} group, or R^1 is a C_1 - C_{30} group, or two or more radicals R^1 may be joined to one another in such a way that the radicals R^1 and the atoms of the cyclopentadienyl ring which connect them form a C_4 - C_{24} -ring system which may in turn be substituted,
- R² are identical or different and are each a radical SiR¹²₃, where R¹² are identical or

different and are each a hydrogen atom or a C_1 - C_{40} group, or R^2 is a C_1 - C_{30} group, or two or more radicals R^2 may be joined to one another in such a way that the radicals R^2 and the atoms of the cyclopentadienyl ring which connect them form a C_4 - C_{24} ring system which may in turn be substituted,

- X is a halogen atom,
- n is from 0 to 4,
- n' is from 0 to 4,
- m is from 1 to 4,
- k is 1, and
- B is a bridging structural element between the two cyclopentadienyl rings,

to a bridged metallocene of the formula (I)where

 $M,\,R^1,\,R^2,\,X,\,n,\,n^\prime,\,m,\,k,\,B$ and R^{12} are as defined above and

m' is from 1 to 4,

- R³ is hydrogen or a C₁-C₄₀ group,
- Y is an element of the main group 6 of the Periodic Table of the Elements, or a fragment CR³₂, NR³, NR³(CO)-, NR³(SO₂)-, PR³ or P(=O)R³, O(CO)-, O(SO₂)-, and in which one or both cyclopentadienyl rings of the bridged metallocene of formula (I) and (Ia) are substituted in such a way that they form an indenyl ring,

comprising the steps:

a) reacting the compound of the formula (Ia) with a ligand exchange component

M¹YR³

where

Y and R³ are as defined above,

M¹ is a cation or a cationic fragment, in particular Li, Na, K, MgCl, MgBr, Mgl, or is an ammonium cation corresponding to an amine,

with the compound of the formula M¹X, where M¹ and X are as defined above, being eliminated, in an inert solvent or solvent mixture,

- b) optionally, separating off solid residues of the formula M¹X
- c) optionally, separating off the inert solvent or solvent mixture,
- recrystallizing the bridged metallocene of the formula (I) from an aprotic hydrocarbon, and
- e) separating the compound of the formula (I) from the mother liquor.

- (new) A process as claimed in claim 18, wherein a polar or nonpolar, aprotic hydrocarbon or hydrocarbon mixture is used in step d).
- 20. (new) A process for converting a bridged metallocene of the formula (la)

where

- M is a metal of transition group III, IV, V or VI of the Periodic Table of the Elements,
- R¹ are identical or different and are each a radical SiR^{12}_{3} , where R^{12} are identical or different and are each a hydrogen atom or a C_1 - C_{40} group, or R^1 is a C_1 - C_{30} group, or two or more radicals R^1 may be joined to one another in such a way that the radicals R^1 and the atoms of the cyclopentadienyl ring which connect them form a C_4 - C_{24} -ring system which may in turn be substituted,
- R² are identical or different and are each a radical SiR¹²₃, where R¹² are identical or different and are each a hydrogen atom or a C₁-C₄₀ group, or R² is a C₁-C₃₀ group, or two or more radicals R² may be joined to one another in such a way that the

radicals R^2 and the atoms of the cyclopentadienyl ring which connect them form a C_4 - C_{24} ring system which may in turn be substituted,

- X is a halogen atom,
- n is from 0 to 4,
- n' is from 0 to 4,
- m is from 1 to 4,
- k is 1, and
- B is a bridging structural element between the two cyclopentadienyl rings,

to a bridged metallocene of the formula (I)

where

 $M,\,R^1,\,R^2,\,X,\,n,\,n^\prime,\,m,\,k,\,B$ and R^{12} are as defined above and

m' is from 1 to 4,

R³ is hydrogen or a C₁-C₄₀ group,

Y is an element of the main group 6 of the Periodic Table of the Elements, or a fragment CR³₂, NR³, NR³(CO)-, NR³(SO₂)-, PR³ or P(=O)R³, O(CO)-, O(SO₂)-, and in which one or both cyclopentadienyl rings of the bridged metallocene of formula (I) and (Ia) are substituted in such a way that they form an indenyl ring,

comprising the steps:

a) reacting the compound of the formula (Ia) with a ligand exchange component M^1YR^3

where

Y and R³ are as defined above,

M¹ is a cation or a cationic fragment, or is an ammonium cation corresponding to an amine,

with the compound of the formula M¹X, where M¹ and X are as defined above, being eliminated, in an inert solvent or solvent mixture,

- b) optionally, separating off solid residues of the formula M¹X
- c) optionally, separating off the inert solvent or solvent mixture,
- d) recrystallizing the bridged metallocene of the formula (I) from a solvent selected from toluene, hexane, heptane, xylene, tetrahydrofuran (THF), dimethoxyethane (DME), toluene/THF, heptane/DME or toluene/DME, and
- e) separating the compound of the formula (I) from the mother liquor.
- 21. (new) The process according to claim 18, where in the bridged metallocenes of

BINGEL et al., Ser. No. 09/856,695 formula (I) and (Ia):

M is Ti, Zr or Hf,

- are identical or different and are each a radical SiR $^{12}_{3}$, where R 12 are identical or different and are each a hydrogen atom or C $_1$ -C $_{20}$ -alkyl, C $_1$ -C $_{10}$ -fluoroalkyl, C $_1$ -C $_{10}$ -alkoxy, C $_6$ -C $_{20}$ -aryl, C $_6$ -C $_{10}$ -fluoroaryl, C $_6$ -C $_{10}$ -aryloxy, C $_2$ -C $_{10}$ -alkenyl, C $_7$ -C $_{40}$ -arylalkyl, C $_7$ -C $_{40}$ -alkylaryl or C $_8$ -C $_{40}$ -arylalkenyl, or R 1 is C $_1$ -C $_{25}$ -alkyl such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C $_2$ -C $_{25}$ -alkenyl, C $_3$ -C $_{15}$ -alkylalkenyl, C $_6$ -C $_{24}$ -aryl, C $_5$ -C $_{24}$ -heteroaryl, C $_7$ -C $_{30}$ -arylalkyl, C $_7$ -C $_{30}$ -alkylaryl, fluorinated C $_1$ -C $_{25}$ -alkyl, fluorinated C $_6$ -C $_{24}$ -aryl, fluorinated C $_7$ -C $_{30}$ -arylalkyl, fluorinated C $_7$ -C $_{30}$ -alkylaryl or C $_1$ -C $_{12}$ -alkoxy, or two or more radicals R 1 may be joined to one another in such a way that the radicals R 1 and the atoms of the cyclopentadienyl ring which connect them form a C $_4$ -C $_{24}$ -ring system which may in turn be substituted,
- are identical or different and are each a radical SiR 12 ₃, where R 12 are identical or different and are each a hydrogen atom or C $_1$ -C $_{20}$ -alkyl, C $_1$ -C $_{10}$ -fluoroalkyl, C $_1$ -C $_{10}$ -alkoxy, C $_6$ -C $_{14}$ -aryl, C $_6$ -C $_{10}$ -fluoroaryl, C $_6$ -C $_{10}$ -aryloxy, C $_2$ -C $_{10}$ -alkenyl, C $_7$ -C $_{40}$ -arylalkyl, C $_7$ -C $_{40}$ -alkylaryl or C $_8$ -C $_{40}$ -arylalkenyl, or R 2 is C $_1$ -C $_{25}$ -alkyl such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C $_2$ -C $_{25}$ -alkenyl, C $_3$ -C $_{15}$ -alkylalkenyl, C $_6$ -C $_{24}$ -aryl, C $_5$ -C $_{24}$ -heteroaryl, C $_7$ -C $_{30}$ -arylalkyl, C $_7$ -C $_{30}$ -arylalkyl, fluorinated C $_1$ -C $_{25}$ -alkyl, fluorinated C $_6$ -C $_{24}$ -aryl, fluorinated C $_7$ -C $_{30}$ -arylalkyl, fluorinated C $_7$ -C $_{30}$ -alkylaryl, fluorinated C $_7$ -C $_{30}$ -alkylaryl or C $_1$ -C $_{12}$ -alkoxy, or two or more radicals R 2 may be joined to one another in such a way that the

radicals R^2 and the atoms of the cyclopentadienyl ring which connect them form a C_4 - C_{24} ring system which may in turn be substituted,

or two or more radicals R^2 may be joined to one another in such a way that the radicals R^2 and the atoms of the cyclopentadienyl ring which connect them form a C_4 - C_{24} ring system which may in turn be substituted,

- R³ is hydrogen or C_1 - C_{25} -alkyl, C_2 - C_{25} -alkenyl, C_3 - C_{15} -alkylalkenyl, C_6 - C_{24} -aryl, C_5 - C_{24} -heteroaryl, C_7 - C_{30} -arylalkyl, C_7 - C_{30} -alkylaryl, fluorinated C_1 - C_{25} -alkylaryl, fluorinated C_6 - C_{24} -aryl, fluorinated C_7 - C_{30} -arylalkyl or fluorinated C_7 - C_{30} -alkylaryl,
- Y is an element of main group 6 of the Periodic Table of Elements.
- 22. (new) A process as claimed in claim 13, wherein M¹ is Li, Na, K, MgCl, MgBr, Mgl, or is an ammonium cation corresponding to an amine.