Mapping Gas Permeability of Sustainable Packaging Materials to Link Food Barrier Needs by Clustering algorithms

Final Colloquial

Chair Group: Food Quality & Design

MSc Student: Windy Yeh

Supervisor : Deniz Turan Kunter

Date: Feb 17th

Background

Two problems in shifting to sustainable packaging materials

- Inferior gas barrier properties
- Different food barrier needs

What is the knowledge gap?

Sustainable Materials Food products Chitosan Cellulose **Paperboard Glass** polylactic acid Polyethylene + corn starch -**Chitosan - Cellulose**

What is the knowledge gap?

Sustainable Materials

Food products

Chitosan

Lack a comprehensive, data-driven analysis, on gas permeability characteristics in different sustainable packaging materials.

What is the aim of the project

OTR: oxygen transmission rate

WVTR: water vapor transmission rate

What is the aim of the project

Sustainable Materials

Food products

Research Questions

- 1. Which **clustering algorithms** most accurately classify sustainable packaging materials based on their gas permeability?
- 2. Which **sustainable materials** are best suited for packaging **different food categories**?

WVT

low OTR

Materials

Variable	Explanation	Values
Doc	INE ANICIE IIIIE	Barrier and surface properties of chitosan-coated greaseproof paper
DOI	Digital Object Identifier	https://doi.org/10.1016/j.carbpol.2006.02.005
Target	generic concept represented	Permeability
Туре	the ontology concept category, symbolic, quantitative or addimensional	QUANTITY
Original_Value	a list of annotated tokens for symbolic data, two lists of annotated tokens for quantitative data	(['1.6'], ['cm', '^', '3', 'mm', '/', '(', 'm', '^', '2', '24', 'h', 'atm', ')'])
Attached_Value	the list of annotated tokens to disambiguate a measure unit when necessary for quantitative data. None for symbolic data.	
Annotator	annotator id	1

Methods

$$PC = \frac{TR \times thickness}{Pressure}$$

Methods

Methods

GMM: Gaussian Mixture Model

DBSCAN: Density-Based Spatial Clustering of Applications with Noise

Partition-based algorithm , basic and widely used e.g. Food Risk Prediction

Model-based algorithm flexible for arbitrary shapes

Density-based algorithm, no perquisites number needed e.g. Nutritional Classification

Which model most accurately classify sustainable packaging materials based on their gas permeability?

Silhouette Score & Davies-Bouldin Index

- a: How difference is Death on the Nile to Book 1 & Book 3?
- b: How difference is Death on the Nile to books on SciFi shelf?
- b high and a low -> high Silhouette Score

Which model most accurately classify sustainable packaging materials based on their gas permeability?

Metric	Algorithm	Before optimization	After optimization
	K-Means	0.583	0.680
Silhouette Score	DBSCAN	0.558	0.900
	GMM	0.539	0.705
	K-Means	0.673	0.433
Davies- Bouldin Index	DBSCAN	0.520	0.388
	GMM	0.772	0.428

OTR 23°C, 50%RH

WVTR 25°C, 50%RH

DBSCAN can most accurately classify sustainable packaging materials based on their gas permeability?

Metric	Algorithm	Before optimization	After optimization
Silhouette Score	K-Means	0.583	0.680
	DBSCAN 0.558		0.900
	GMM	0.539	0.705
	K-Means	0.673	0.433
Davies- Bouldin Index	DBSCAN	0.520	0.388
	GMM	0.772	0.428

OTR 23°C, 50%RH

WVTR 25°C, 50%RH

def print cluster sizes(labels, algorithm name):

dbscan = DBSCAN(eps=eps, min samples=min samples)

print_cluster_sizes(dbscan_labels, "DBSCAN")

gmm silhouette = silhouette score(data, gmm labels)

gmm_davies_bouldin = davies_bouldin_score(data, gmm_labels)

DBSCAN

Discussion 1

```
dbscan_labels = dbscan.fit_predict(data)
# Exclude noise points (-1) for silhouette score
valid_dbscan = dbscan_labels != -1
dbscan_silhouette = silhouette_score(data[valid_dbscan], dbscan_labels[valid_dbscan]) if valid_dbscan.any() else -1
dbscan_davies_bouldin = davies_bouldin_score(data[valid_dbscan], dbscan_labels[valid_dbscan]) if valid_dbscan.any() else float('inf')
```

print(f"\nDBSCAN: Silhouette Score = {dbscan_silhouette}, Davies-Bouldin Index = {dbscan_davies_bouldin}")

print(f"\nGMM: Silhouette Score = {gmm silhouette}, Davies-Bouldin Index = {gmm davies bouldin}")

```
# Gaussian Mixture Model
gmm = GaussianMixture(n_components=n_clusters, random_state=42)
gmm_labels = gmm.fit_predict(data)
```

How clustering models were used in gas permeability?

- No clustering model was used in the food packaging material gas permeability
- Predicting model by machine learning (Phan et al., 2024)
- Gas permeability is influenced by multiple factors (De Almeida & Raquel, 2018; Freeman, 1999)

Expanded data volume and **high-quality data** are required

- The data spans from 2000 to 2016
- Mislabel data
- Standardized and transparent reporting of measurement condition

keyword: sustainable packaging material

Which sustainable materials are best suited for packaging

def print cluster sizes(labels, algorithm name):

dbscan = DBSCAN(eps=eps, min samples=min samples)

dbscan labels = dbscan.fit predict(data)

print_cluster_sizes(dbscan_labels, "DBSCAN")

gmm silhouette = silhouette score(data, gmm labels)

gmm_davies_bouldin = davies_bouldin_score(data, gmm_labels)

DBSCAN

Discussion 2

```
# Exclude noise points (-1) for silhouette score
valid_dbscan = dbscan_labels != -1
dbscan_silhouette = silhouette_score(data[valid_dbscan], dbscan_labels[valid_dbscan]) if valid_dbscan.any() else -1
dbscan_davies_bouldin = davies_bouldin_score(data[valid_dbscan], dbscan_labels[valid_dbscan]) if valid_dbscan.any() else float('inf')
print(f"\nDBSCAN: Silhouette Score = {dbscan_silhouette}, Davies-Bouldin Index = {dbscan_davies_bouldin}")
```

```
# Gaussian Mixture Model
gmm = GaussianMixture(n_components=n_clusters, random_state=42)
gmm_labels = gmm.fit_predict(data)
```

print(f"\nGMM: Silhouette Score = {gmm silhouette}, Davies-Bouldin Index = {gmm davies bouldin}")

Strategies to improve the barrier properties

- Coating
 - e.g. PLA-coated paperboard with an AlOx layer (Peelman et al., 2013)
- Incorporation of nanoparticles
 - e.g. PLA combined with montmorillonite-layered silicate (Arora & Padua, 2010)

Incorporation of nanoparticles

Cluster	1 (n = 60)	2 (n = 6)	3 (n = 8)	4 (n = 180)
OTR (cm³/m²day)	22.74 ± 2.30	730000.02±10.60	120000000.00±13.46	126.35±1.13
WVTR (g/m²day)	1146.83±1.35	66.27±1.97	3548.47±1.98	248416.31±1.40
Dominant Base Material	fish gelatin	LDPE	polylactic acid	carrot puree
Dominant Type	nanocomposite	individual	individual	blend
Dominant				
Secondary	montmorillonite	None	None	CMC
Material				

Conclusion

■ DBSCAN, is the most effective algorithm for grouping sustainable packaging materials based on gas permeability, with highest the Silhouette Score (0.900) and lowest Davies-Bouldin Index (0.388).

- Most sustainable packaging materials have high gas permeability, whereas many food applications require high gas barrier properties.
 - Incorporation of nanoparticle

Recommendation

- Limitation
 - Small dataset
 - Inconsistencies and missing data in key parameters

- Recommendation
 - Expand datasets and improve data quality
 - Including more gas permeability data or additional material properties

Thanks for your listening!

Model Hyperparameters

- K-Means
 - k = 9
- GMM
 - k = 9
- DBSCAN
 - MinPt = 4, epsilon = 1.2

Model Evaluation

Silhouette Score

$$s = \frac{b - a}{\max(a, b)}$$

where a represents the average distance between a sample and all other points in the same cluster, while b is the average distance between a sample and all other points in the next nearest cluster.

Davies-Bouldin Index

$$db = \frac{1}{k} \sum_{i=1}^{k} \max(\frac{\Delta X_i + \Delta X_j}{\delta(X_i, X_j)})$$

where ΔXi is the distance within the cluster and $\delta(Xi, Xj)$ is the distance between the cluster i and cluster j

Feature Engineering

Features

Materials	Based Material	11700	Secondary Material	Composition	ОР	OTR	WVP	WVTR	temp	RH
icoareo di easebro	greaseproof paper	coated	chitosan	[2.4]	[0.01, 2]	[0.001, 0.2]	nan	nan	25	95
poly (lactic acid) nanocompos ites	polylactic acid	nanocomposit e	montmorillonite	[0.15]	nan	nan	1.160 * 10 ⁻¹⁰	1.160 * 10 ⁻⁸	38	52
Carrot puree films	Carrot puree	individual	nan	[0.4,0.6]	[20.20, 20.34]	[4.80, 4.84]	nan	nan	25	83

K-Means Result

GMM Result

