1 Galois Theory

Problem 1

Let F be a field of prime characteristic p. Suppose $E = F(\alpha)$ such that $\alpha \notin F$ but $\alpha^p - \alpha \in F$.

- 1. Find [E : F].
- 2. Prove that E/F is a Galois extension.
- 3. Find the Galois group Gal(E/F).

Hint: Note that
$$(x + 1)^p - (x + 1) = x^p - x$$
. ^a

Proof.

1. This is the hardest part: Let's denote $b = \alpha^p - \alpha \in F$. Consider the polynomial

$$f(x) = x^p - x - b.$$

Clearly from the hint, we can see that $\alpha + k, k = 0, 1, \dots, p-1$ are roots of f(x). They are all distinct. Thus

$$f(x) = \prod_{k=0}^{p-1} (x - \alpha - k)$$

If this polynomial is reducible over F, then there exists n < p such that

$$g(x) = \prod_{i=0}^{n-1} (x - \alpha - k_i) \in F[x]$$

But this implies that the coefficient of x^{n-1} in g(x) is

$$n\alpha + k_0 + k_1 + \ldots + k_{n-1} \in F$$

which implies $\alpha \in F$, a contradiction. Thus f(x) is irreducible over F.

- 2. This follows immediate from part 1 that f is irreducible and has p distinct roots. Thus the splitting field of f is E and $E = F(\alpha)$ is separable as α is separable over F. Thus E/F is a Galois extension.
- 3. The Galois group is a group of order p, thus it is isomorphism to $\mathbb{Z}/p\mathbb{Z}$.

Problem 2

Let $\zeta := e^{2\pi i/7}$ be a primitive 7th root of unity. Let $K = \mathbb{Q}(\zeta)$.

- 1. Prove that there exists an element $\alpha \in K$ such that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 2$.
- 2. Express α in terms of ζ .

^aThis is the Artin-Schreier polynomial.

Proof. We will prove two items at once. Consider the element given by

$$\alpha = \zeta + \zeta^2 + \zeta^4$$

Then it can be seen that the map σ such that σ such that $\sigma(\zeta) = \zeta^3$ generates the Galois group of the cyclotomic field. This implies the desired field extension will correspond to the fixed field of the subgroup generated by σ^2 . We can see that the α defined as above is fixed by $\theta = \sigma^2$. Indeed

$$\theta(\alpha) = \sigma^2(\zeta + \zeta^2 + \zeta^4) = \zeta^9 + \zeta^4 + \zeta^{36} = \zeta^2 + \zeta^4 + \zeta = \alpha$$

Clearly $\alpha \notin \mathbb{Q}$, since ζ has degree 6 over \mathbb{Q} . Moreover, α can't have degree 3 over \mathbb{Q} , otherwise it is inside the intersection of two intermediate fields of degree 2 and 3, thus is rational. Hence we can conclude that this is the desired element.

Another way to do this problem is as follows. We have

$$\alpha^2 = \zeta^2 + \zeta^4 + \zeta + 2(\zeta^3 + \zeta^6 + \zeta^5) = \zeta^2 + \zeta^4 + \zeta - 2(1 + \zeta^2 + \zeta^4 + \zeta) = -2 - \alpha$$

Thus we have the polynomial $x^2 + x + 2$ which is irreducible over \mathbb{Q} , since it has no rational roots. Thus we can conclude that $[\mathbb{Q}(\alpha):\mathbb{Q}]=2$.

$$\alpha^2 + \alpha + 2 = 0$$

This yields the desired element α .

Remark: A Sage code for this problem is given below.

```
k = CyclotomicField(7); k
zeta=k.gen(); a = zeta+zeta^2+zeta^4
a.minpoly()
```

Problem 3

Let K be a finite field of characteristic p with p^k elements. Suppose that F, L are subfields of K with $|F| = p^n$ and $|L| = p^m$. Also, suppose that $|F \cap L| = p$. Prove that K = FL if and only if nm = k.

Proof. Since every finite extension of a finite field is Galois, and we have that

$$\operatorname{Gal}(FL/F) \cong \operatorname{Gal}(L/L \cap F) = m$$

In particular, we have [FL:F]=m. Thus

$$[FL:L\cap F]=[FL:F][F:L\cap F]=mn$$

Hence K = FL if and only if mn = k. ¹

Problem 4

Let E be a Galois extension of \mathbb{Q} of order 2022. Show that there exists a cubic polynomial $f \in \mathbb{Q}[x]$ such that f is irreducible and has 3 distinct roots in E.

Proof.

¹We can also prove this by using the uniqueness of finite extension of finite field of given order.