

RTR532 2018 Spring Lecture 03

- Design verification
- Finite State Machines

Recap of previous lecture

- Conditional assignments (2)
- Sequential assignments (2)

Final Project prospect

- Show your VHDL and FPGA skills
- Project ideas ?

Design verification

Verification definition

But how can we know that the code works correctly?

Verification – making sure your design works according to specification

What and how can we verify?

What

- Functional verification does it function according to specification?
- Timing verification does the design work at the required speed?

How

- Simulations
 - Functional
 - timing
- Hardware evaluation
 - In-chip logic analyzer
 - Observing LED's/LCD/data interface

Design flow with verification

Simulations

- Two simulation stages
 - Functional simulation functionality
 - Timing simulation functionality + delays
- You should ALWAYS do at least functional simulation before you download the FPGA code

Hardware evaluation

- Observing LEDs/LCD/data interfaces
 - Download fpga code and see what happens
 - Does not say much (optimized code?)
- In-chip logic analyzer
 - A specific IP module (VHDL block) can be generated in Quartus
 - Acts as Logic Analyzer for required signals
 - See how signals change inside FPGA in real time

Testbench – test of PCB's

Testbench for VHDL

- We want to place our design in a testbed and
 - Apply stimulus
 - Check how outputs change
- Solution Testbench vhdl file!
- In testbench you can:
 - Generate stimulus
 - Use non-synthesizeable signal type TIME
 - Use non-synthesizeable construct as WAIT, WAIT FOR, AFTER

Whiteboard example

- Draw entity to test (unit under test UUT)
- Draw entity for a testbench to test UUT

Testbench (stimulus process, clock)

Stimulus process (wait only in Process):

```
stimulus_proc: process
begin
   wait for 10 ns;
   s <= "00";
   x <= "0000";
   wait for 10 ns;
   s <= "01";
   x <= "0110";
wait;
end process;</pre>
```

WAIT Reference http://www.ics.uci.edu/
 jmoorkan/vhdlref/wait
 s.html

Clock generation in testbench:

- Quartus project example testbench template
- Quartus allows to generate template testbench for your .vhd module!

- Help in \rtr532-2018\resources\
 - 1) step by step how to
 - adding_testbench_to_quartus_project_2017-03-
 - **07.txt**
 - 2) «clean template»- testbench_template.vhd

Design verification more info

- http://users.wpi.edu/~rjduck/VHDL%20module8%2 0a.pdf
- https://www.xilinx.com/support/documentation/a pplication notes/xapp199.pdf

Finite State Machines (FSM)

What is a finite state machine?

- Output depends on
 - Inputs
 - And previous state!
- FSM allows us to create sequential logic system
- Finite number of states

FSM definition

- k states $(S_1, S_2, ..., S_k)$
- m inputs $(I_1, I_2, ..., I_m)$

- n outputs $(O_1, O_2, ..., O_n)$
- State transition: S' = f(S, I)
- Outputs based on state: O = f(S) (optionally also simultaneously on inputs)

Applications of FSM

- Decision tree
- Sequence of events to happen

- Each state requires state transition (to what state we go from this state?!)
- Multiple FSM styles
 - Single process, two process, three process
 - Mealy machine, Moore machine.

Whiteboard example

- FSM Decision tree
- Binary stream signal input
- 1 bit signal output
- Output high level when 0110 binary sequence is detected in binary data stream
- Draw FSM state diagram

Whiteboard example

light 2

Traffic light controller FSM (event control)

Task: form a traffic light control signal:

1. Light signal mapping: red = «00», yellow = «01», green =

«10»

2. Required color timing:

Red – 30sec

Yellow – 5sec

Green – 30sec

Yellow – 5sec

3. Clock frequency = 1Hz

FSM with VHDL

- We start with Single-Process FSM
- Process + case
- Each case when => requires state transition info

- Output signals can be assigned either
 - in the state process
 - not in state process (z <= '1' when state = «abc» else '0');

- Quartus example
 - Binary stream capture
 - Traffic light

FSM more info

- https://www.youtube.com/watch?v=LM6Rm7mPcx
 g
- http://web.engr.oregonstate.edu/~traylor/ece474/ vhdl lectures/essential vhdl pdfs/essential vhdl1 07-127.pdf
- http://quartushelp.altera.com/15.0/mergedProject s/hdl/vhdl/vhdl pro state machines.htm

Lecture Summary

- Remember from this lecture:
 - Design verification
 - Finite State Machines when to use

To do till next lecture:

- Problem set 03 (submit by 2018-03-22)
- Generate ideas for final project