Third Year B.S. (Honors) 2022-2023

Department of Applied Mathematics, University of Dhaka Course Title: Math Lab III (Matlab), Course No.: AMTH 350

Assignment 03

Name: Aminul Islam Manut

Roll: 5H-123-071

Group: 3

Use Matlab to solve each of the following problems.

- 1. The one dimensional homogeneous heat equation is $u_t = a^2 u_{xx}$, where u defines the temperature and a^2 is a positive constant known as the diffusivity. Use symbolic variables and symunit package to assign units to each of the variables and parameters present in the heat equation. Also, check units consistency of this equation (hint: compute the derivatives).
- 2. Consider a thin wire made of homogeneous material the diameter of which coincides with the x-axis from x = 0 to x = L. It is assumed that the initial temperature, f of the rod is specified as a function of the distance x from one end of the rod (x = 0). The temperature distribution u(x, t) at some later time in the absence of any heat source is then a solution of the one-dimensional, homogeneous heat equation. Suppose the two ends are suddenly placed in contact with ice packs at $0^{\circ}C$ at time t = 0 and this temperature is maintained at all times. Then the temperature distribution of this rod is given by

 $u(x,t) = \sum_{n=1}^{\infty} c_n \frac{\sin n\pi x}{L} e^{\frac{-a^2 n^2 \pi^2 t}{L^2}}$

- (a) Verify that the solution given satisfies the one-dimensional, homogeneous equation.
- (b) Suppose, f(x) = 10. Compute the coefficients, c_n .
- (c) Assume, $a^2 = 1.71$, and $L = \pi$. Plot the temperature, u(x, t) for first five non-zero values of n.
- (d) Express the temperature, u(x,t) as a sum of the terms you obtained in part(b) and hence plot it.
- (e) Plot the temperature at the center of the rod as a function of time.
- (f) What would be the temperature of the rod if it is kept for sufficiently long time?
- 3. Consider the following heat conduction problem through a thin rod:

$$u_t = a^2 u_{xx}$$
; $0 < x < 10$; $t > 0$
 $B.C.: u(0,t) = 10$; $u(10,t) = 30$; $t > 0$

1.C.:
$$u(x,0) = 0$$
; $0 < x < 10$

The solution of this problem is

$$u(x,t) = 10 + 2x + \frac{20}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n 3 - 1}{n} \sin(\frac{n\pi x}{10}) e^{\frac{-a^2 n^2 \pi^2 t}{100}}$$

Consider four rods, each of which is made entirely of each of these four materials, Silver (1.71), Copper (1.14), Aluminum (0.86) and Cast iron (0.12) (bracketed values indicate corresponding diffusivity).

- (a) Create a table demonstrating the temperature, u(x, t) at t = 1 for each rod (take 0.5 as spatial increment).
- (b) Repeat part (a) for t = 10 and t = 20 and hence comment how the diffusivity of material affects the heat conduction.
- (c) Use first three non-zero terms to visualize the temperature distribution in each rod.
- (d) How long it will take for the center of each rod to reach a temperature of 15 units?
- 4. Consider a one-dimensional road with traffic flow described by the following quasi-linear PDE:

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho v) = 0$$

where $\rho(x,t)$ is the traffic density (vehicles per unit length), and $v(\rho)$ is the velocity of the traffic as a function of density. Given:

- Length of the road, L = 10 km
- Maximum velocity, $v_{\text{max}} = 120 \text{ km/h}$
- Density-dependent slowing down parameter, a = 0.02 vehicles/(km²)
- Initial density distribution, $\rho_0(x) = 20$ vehicles/km for 0 < x < L

Considering the scenario of red light turning green, set up the initial conditions, and implement the method of characteristic using MATLAB to simulate the traffic density evolution over time and analyze the system's behavior.

5. Check the transversality condition for the PDE $u_x + 3y^{\frac{2}{3}}u_y = 2$, subject to initial condition, u(x, 1) = 1 + x and hence solve using method of characteristic. Plot the solution surface along with characteristic curves.

```
%a3q1
clc;
syms U(x,t) a
unit=symunit;
U=U*unit.K;
x=x*unit.m;
t=t*unit.t;
a=a*unit.m^2/unit.t;
eqn=diff(U,t) == a*diff(U,x,x);
disp('Differential term with respect to time:');
diff(U,t)
disp('Differential term with respect to space:');
a*diff(U,x,x)
Differential term with respect to time:
ans(x, t) =
diff(U(x, t), t)*([K]/[t])
Differential term with respect to space:
ans(x, t) =
a*diff(U(x, t), x, x)*([K]/[t])
```

```
%a3q2
clc;
syms t \times n \cdot c \cdot n(n) \cdot L \cdot a \cdot f(x) \cdot u \cdot n(x, t, n) \cdot lambda(n) \cdot heat(x, t)
assume(n, "integer")
assume([L a], "positive")
heat(x, t) = 0;
lambda(n) = n*pi/L;
u_n(x, t, n) = c_n .* sin(x*lambda(n)) .* exp(-t*(a^2)*lambda(n).^2);
eqn = simplify(diff(u n, t) - (a^2)*diff(u n, x, x));
if eqn == 0
    fprintf('The equation is satisfied.\n')
else
    fprintf('The equation is not satisfied.\n')
end
f(x) = 10;
c n(n) = (2/L) * int(f(x) .*sin(lambda(n).*x), x, 0, L);
u 	 n 	 plot(x, t, n) = subs(u 	 n(x, t, n), sym(["L" "a" "c 	 n"]), [pi 	 1.71 	 c 	 n]);
for i = 1:9
    tfinal = 3;
    u plot(x, t) = u n plot(x, t, i);
    heat(x, t) = heat(x, t) + u_plot(x, t);
    fsurf(u plot, [0 pi 0 tfinal], "EdgeColor", "interp"), colormap jet
    hold on
    alpha(0.5)
    title(['First five non-negative terms.']);
end
figure
fsurf(heat, [0 pi 0 tfinal], "EdgeColor", "interp"), colormap jet
alpha(0.5)
title(['Total heat distribution.']);
figure
heat mid = heat(pi/2, t);
fplot(heat mid, [0 3])
title(['Heat distribution at the middle over time.']);
The equation is satisfied.
```


First five non-negative terms.

Heat distribution at the middle over time.

Published with MATLAB® R2016a

```
%a3q3
clc;
syms x val t val u val
silverDist = heatDist(x val, t val, 1.71);
copperDist = heatDist(x val, t val, 1.14);
aluminumDist = heatDist(x val, t val, 0.86);
ironDist = heatDist(x val, t val, 0.12);
x = linspace(0, 10, 21);
createHeatDistributionTable(1);
createHeatDistributionTable(10);
createHeatDistributionTable(20);
silverMid(t val) = silverDist(5, t val);
for i = 0:.1:30
    if(round(silverMid(i)) == 15)
        tSilverMid = i;
        break
    end
end
tSilverMid
copperMid(t val) = copperDist(5, t val);
for i = 0:.1:30
    if (round(copperMid(i)) == 15)
        tCopperMid = i;
        break
    end
end
tCopperMid
aluminumMid(t val) = aluminumDist(5, t val);
for i = 0:.1:30
    if(round(aluminumMid(i)) == 15)
        tAluminumMid = i;
        break
    end
end
tAluminumMid
tIronMid = 0;
ironMid(t val) = ironDist(5, t val);
for i = 1000:1:1300
    if (round(ironMid(i)) == 15)
        tIronMid = i;
        break
    end
end
tIronMid
```

```
figure
fsurf(silverDist, [0 10 0 30], "EdgeColor", "interp"), colormap jet
title('Heat distribution in a thin silver rod')
xlabel('x')
ylabel('t')
zlabel('u(x, t)')
box on
alpha(0.5)
figure
fsurf(copperDist, [0 10 0 30], "EdgeColor", "interp"), colormap jet
title ('Heat distribution in a thin copper rod')
xlabel('x')
ylabel('t')
zlabel('u(x, t)')
box on
alpha(0.5)
figure
fsurf(aluminumDist, [0 10 0 30], "EdgeColor", "interp"), colormap jet
title('Heat distribution in a thin aluminum rod')
xlabel('x')
ylabel('t')
zlabel('u(x, t)')
box on
alpha(0.5)
figure
fsurf(ironDist, [0 10 0 30], "EdgeColor", "interp"), colormap jet
title ('Heat distribution in a thin iron rod')
xlabel('x')
ylabel('t')
zlabel('u(x, t)')
box on
alpha(0.5)
function createHeatDistributionTable(t)
    syms x val t val u val
    x = linspace(0, 10, 21);
    silverDist = heatDist(x_val, t_val, 1.71);
    copperDist = heatDist(x val, t val, 1.14);
    aluminumDist = heatDist(x val, t val, 0.86);
    ironDist = heatDist(x val, t val, 0.12);
    sil = round(vpa(silverDist(x, t), 7), 6);
    cop = round(vpa(copperDist(x, t), 7), 6);
    alu = round(vpa(aluminumDist(x, t), 7), 6);
    irn = round(vpa(ironDist(x, t), 7), 6);
    disp(table(x', sil', cop', alu', irn', 'VariableNames', {'x', 'Silver',
'Copper', 'Aluminum', 'Iron'}));
end
```

```
function heat = heatDist(x, t, a)
    syms n c n(n) L f(x) u n(x, t, n) lambda(n) heat(x, t)
    assume(n, "integer")
    assume([L a], "positive")
    heat (x, t) = 10 + 2*x;
    lambda(n) = n*pi/L;
    u n(x, t, n) = (20/pi) .*(((3*((-1)^n))-1)/n) .* sin(x*lambda(n)) .* exp(-
t*(a^2)*(lambda(n).^2));
    u 	 n 	 plot(x, t, n) = subs(u 	 n(x, t, n), sym(["L" "a"]), [10 	 a]);
    for i = 1:50
        u plot(x, t) = u n plot(x, t, i);
        heat(x, t) = heat(x, t) + u plot(x, t);
    end
end
     X
            Silver
                          Copper
                                       Aluminum
                                                       Iron
      0
           10.0
                         10.0
                                       10.0
                                                     10.0
    0.5
           8.364143
                         7.564586
                                       6.809929
                                                     0.047454
           6.798087
                         5.350807
                                       4.109533
                                                     -0.009952
      1
    1.5
           5.363947
                         3.521625
                                       2.174542
                                                     -0.005671
           4.110384
                                       1.000865
      2
                         2.147785
                                                     0.007038
    2.5
           3.070168
                         1.2099
                                       0.398266
                                                     0.004108
      3
           2.261658
                         0.628138
                                       0.136383
                                                     -0.006242
    3.5
           1.693896
                         0.301017
                                       0.040054
                                                     -0.003572
           1.37413
                                                     0.006404
      4
                         0.136925
                                       0.010083
    4.5
           1.316116
                         0.071895
                                       0.00234
                                                     0.003231
      5
           1.547243
                         0.077057
                                       0.001575
                                                     -0.007206
    5.5
           2.112609
                                       0.00653
                                                     -0.002858
                         0.163995
      6
           3.074501
                         0.394938
                                       0.030185
                                                     0.008712
    6.5
           4.50635
                         0.898621
                                       0.120154
                                                     0.002248
      7
            6.481256
                         1.883283
                                       0.409149
                                                     -0.01135
    7.5
            9.056407
                         3.629437
                                       1.194798
                                                     -0.000879
      8
           12.256065
                         6.443299
                                       3.002595
                                                     0.016408
    8.5
           16.056799
                         10.564865
                                       6.523627
                                                     -0.003675
      9
           20.378855
                         16.052419
                                       12.328599
                                                     -0.027561
    9.5
           25.086718
                         22.693759
                                       20.429787
                                                     0.128964
     10
           30.0
                         30.0
                                       30.0
                                                     30.0
            Silver
                                       Aluminum
     X
                          Copper
                                                       Iron
      0
           10.0
                         10.0
                                       10.0
                                                     10.0
                                       9.180929
                                                     3.514942
    0.5
           10.777734
                         9.906949
      1
           11.560939
                         9.839968
                                       8.399914
                                                     0.624074
    1.5
           12.354952
                         9.824565
                                       7.69461
                                                     0.051886
```

2	13.164845	9.885137	7.101851	0.001939
2.5	13.995298	10.044423	6.657203	0.000032
3	14.850486	10.322985	6.39445	0
3.5	15.733974	10.738715	6.345007	0
4	16.648632	11.306386	6.537219	0
4.5	17.596563	12.037246	6.99555	0
5	18.57905	12.938685	7.739651	0
5.5	19.596525	14.013981	8.783341	0
6	20.64856	15.262134	10.133564	0
6.5	21.733874	16.677808	11.789404	0
7	22.850369	18.251384	13.741272	0.000001
7.5	23.995175	19.969137	15.970377	0.000096
8	25.164728	21.813536	18.448609	0.005818
8.5	26.354852	23.763658	21.138904	0.155658
9	27.560866	25.795716	23.996156	1.872223
9.5	28.777695	27.883684	26.968656	10.544825
10	30.0	30.0	30.0	30.0
X	Silver	Copper	Aluminum	Iron
		11		
0	10.0	10.0	10.0	10.0
0 0.5	10.0 10.987596	10.0 10.69375	10.0 10.080506	10.0 5.100192
0.5	10.987596	10.69375	10.080506	5.100192
0.5 1	10.987596 11.975498	10.69375 11.395036	10.080506 10.183234	5.100192 1.876323
0.5 1 1.5	10.987596 11.975498 12.964003	10.69375 11.395036 12.111208	10.080506 10.183234 10.329903	5.100192 1.876323 0.481068
0.5 1 1.5 2	10.987596 11.975498 12.964003 13.953395	10.69375 11.395036 12.111208 12.849253	10.080506 10.183234 10.329903 10.541223	5.100192 1.876323 0.481068 0.08408
0.5 1 1.5 2 2.5	10.987596 11.975498 12.964003 13.953395 14.943934	10.69375 11.395036 12.111208 12.849253 13.615617	10.080506 10.183234 10.329903 10.541223 10.836422	5.100192 1.876323 0.481068 0.08408 0.009876
0.5 1 1.5 2 2.5 3	10.987596 11.975498 12.964003 13.953395 14.943934 15.935853	10.69375 11.395036 12.111208 12.849253 13.615617 14.416052	10.080506 10.183234 10.329903 10.541223 10.836422 11.232788	5.100192 1.876323 0.481068 0.08408 0.009876 0.000772
0.5 1 1.5 2 2.5 3 3.5	10.987596 11.975498 12.964003 13.953395 14.943934 15.935853 16.929352	10.69375 11.395036 12.111208 12.849253 13.615617 14.416052 15.255475	10.080506 10.183234 10.329903 10.541223 10.836422 11.232788 11.745248	5.100192 1.876323 0.481068 0.08408 0.009876 0.000772 0.00004
0.5 1 1.5 2 2.5 3 3.5	10.987596 11.975498 12.964003 13.953395 14.943934 15.935853 16.929352 17.924591	10.69375 11.395036 12.111208 12.849253 13.615617 14.416052 15.255475 16.13784	10.080506 10.183234 10.329903 10.541223 10.836422 11.232788 11.745248 12.385999	5.100192 1.876323 0.481068 0.08408 0.009876 0.000772 0.00004 0.000001
0.5 1 1.5 2 2.5 3 3.5 4	10.987596 11.975498 12.964003 13.953395 14.943934 15.935853 16.929352 17.924591 18.921686	10.69375 11.395036 12.111208 12.849253 13.615617 14.416052 15.255475 16.13784 17.066048	10.080506 10.183234 10.329903 10.541223 10.836422 11.232788 11.745248 12.385999 13.164186	5.100192 1.876323 0.481068 0.08408 0.009876 0.000772 0.00004 0.000001
0.5 1 1.5 2 2.5 3 3.5 4 4.5	10.987596 11.975498 12.964003 13.953395 14.943934 15.935853 16.929352 17.924591 18.921686 19.92071	10.69375 11.395036 12.111208 12.849253 13.615617 14.416052 15.255475 16.13784 17.066048 18.041871	10.080506 10.183234 10.329903 10.541223 10.836422 11.232788 11.745248 12.385999 13.164186 14.085647	5.100192 1.876323 0.481068 0.08408 0.009876 0.000772 0.00004 0.000001 0
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5.5	10.987596 11.975498 12.964003 13.953395 14.943934 15.935853 16.929352 17.924591 18.921686 19.92071 20.921686	10.69375 11.395036 12.111208 12.849253 13.615617 14.416052 15.255475 16.13784 17.066048 18.041871 19.065911	10.080506 10.183234 10.329903 10.541223 10.836422 11.232788 11.745248 12.385999 13.164186 14.085647 15.152737	5.100192 1.876323 0.481068 0.08408 0.009876 0.000772 0.00004 0.000001 0
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5	10.987596 11.975498 12.964003 13.953395 14.943934 15.935853 16.929352 17.924591 18.921686 19.92071 20.921686 21.924591	10.69375 11.395036 12.111208 12.849253 13.615617 14.416052 15.255475 16.13784 17.066048 18.041871 19.065911 20.137578	10.080506 10.183234 10.329903 10.541223 10.836422 11.232788 11.745248 12.385999 13.164186 14.085647 15.152737 16.364222 17.715274 19.197551	5.100192 1.876323 0.481068 0.08408 0.009876 0.000772 0.00004 0.000001 0 0 0.000004 0.000004 0.00012 0.002317
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5.5 6.5	10.987596 11.975498 12.964003 13.953395 14.943934 15.935853 16.929352 17.924591 18.921686 19.92071 20.921686 21.924591 22.929352 23.935853 24.943934	10.69375 11.395036 12.111208 12.849253 13.615617 14.416052 15.255475 16.13784 17.066048 18.041871 19.065911 20.137578 21.255115 22.415629 23.615171	10.080506 10.183234 10.329903 10.541223 10.836422 11.232788 11.745248 12.385999 13.164186 14.085647 15.152737 16.364222 17.715274 19.197551 20.799373	5.100192 1.876323 0.481068 0.08408 0.009876 0.000772 0.000001 0 0 0 0.000001 0 0.000004 0.00012 0.002317 0.029628
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6	10.987596 11.975498 12.964003 13.953395 14.943934 15.935853 16.929352 17.924591 18.921686 19.92071 20.921686 21.924591 22.929352 23.935853	10.69375 11.395036 12.111208 12.849253 13.615617 14.416052 15.255475 16.13784 17.066048 18.041871 19.065911 20.137578 21.255115 22.415629 23.615171 24.848829	10.080506 10.183234 10.329903 10.541223 10.836422 11.232788 11.745248 12.385999 13.164186 14.085647 15.152737 16.364222 17.715274 19.197551 20.799373 22.505987	5.100192 1.876323 0.481068 0.08408 0.009876 0.000772 0.00004 0.000001 0 0 0.000004 0.000004 0.00012 0.002317
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6.5 7 7.5	10.987596 11.975498 12.964003 13.953395 14.943934 15.935853 16.929352 17.924591 18.921686 19.92071 20.921686 21.924591 22.929352 23.935853 24.943934	10.69375 11.395036 12.111208 12.849253 13.615617 14.416052 15.255475 16.13784 17.066048 18.041871 19.065911 20.137578 21.255115 22.415629 23.615171 24.848829 26.110848	10.080506 10.183234 10.329903 10.541223 10.836422 11.232788 11.745248 12.385999 13.164186 14.085647 15.152737 16.364222 17.715274 19.197551 20.799373	5.100192 1.876323 0.481068 0.08408 0.009876 0.000772 0.000001 0 0 0 0.000001 0 0.000004 0.00012 0.002317 0.029628
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6.5 7	10.987596 11.975498 12.964003 13.953395 14.943934 15.935853 16.929352 17.924591 18.921686 19.92071 20.921686 21.924591 22.929352 23.935853 24.943934 25.953395	10.69375 11.395036 12.111208 12.849253 13.615617 14.416052 15.255475 16.13784 17.066048 18.041871 19.065911 20.137578 21.255115 22.415629 23.615171 24.848829	10.080506 10.183234 10.329903 10.541223 10.836422 11.232788 11.745248 12.385999 13.164186 14.085647 15.152737 16.364222 17.715274 19.197551 20.799373 22.505987	5.100192 1.876323 0.481068 0.08408 0.009876 0.000772 0.00004 0.000001 0 0 0.000004 0.00012 0.002317 0.029628 0.25224
0.5 1 1.5 2 2.5 3.5 4 4.5 5.6 6.5 7.5 8.5	10.987596 11.975498 12.964003 13.953395 14.943934 15.935853 16.929352 17.924591 18.921686 19.92071 20.921686 21.924591 22.929352 23.935853 24.943934 25.953395 26.964003	10.69375 11.395036 12.111208 12.849253 13.615617 14.416052 15.255475 16.13784 17.066048 18.041871 19.065911 20.137578 21.255115 22.415629 23.615171 24.848829 26.110848	10.080506 10.183234 10.329903 10.541223 10.836422 11.232788 11.745248 12.385999 13.164186 14.085647 15.152737 16.364222 17.715274 19.197551 20.799373 22.505987 24.299929	5.100192 1.876323 0.481068 0.08408 0.009876 0.000772 0.00004 0.000001 0 0 0.000004 0.00012 0.002317 0.029628 0.25224 1.443205

tSilverMid =

5.4000

tCopperMid =

12

tAluminumMid =

21

tIronMid =

1079

Heat distribution in a thin iron rod

Published with MATLAB® R2016a

```
%a3q4
road length = 10;
max speed = 120;
initial density = 20;
max density = initial density;
time step = 0.001;
total time = 0.2;
num steps = total time / time step;
position = linspace(-40, 40, 1000);
density = zeros(size(position));
density(1:end) = initial_density;
colormap('jet');
figure;
for step = 1:num steps
    velocity = max speed * (1 - 2 * density / max density);
    displacement = max_speed * (1 - 2 * density / max_density) * time_step;
    position = position - displacement;
    density = (max_density / 2) * (1 - position ./ (max_speed * step *
time step));
    % Boundary conditions
    density(position < -max speed * step * time step) = max density;</pre>
    density(position > max_speed * step * time_step) = 0;
   plot(position, density, 'LineWidth', 2);
    xlabel('Position');
    ylabel('Density');
    title(['Traffic Density Evolution (Time: ' num2str(step*time step) '
hours)']);
    ylim([0, max density]);
    xlim([-10, 10]);
    drawnow;
end
```

1

Published with MATLAB® R2016a

```
%a3q5
clc;
c=1; a=1;
f=@(x,y,u,DuDx) 2 - (1/3)*y^(2/3);
x=linspace(0, 2, 50);
y=linspace(1, 2, 50);
[X,Y] = meshgrid(x,y);
t=linspace(0,1,50);
u0=@(x) 1+x;
sol=pdepe(0, @pdefun,u0, @bcfun,x,t);
u=sol(:,:,1)';
figure;
surf(X,Y,u);
xlabel('x');
ylabel('y');
zlabel('u');
title('Solution Surface');
hold on;
for i=1:length(y)
    y_char=y(i) *ones(size(x));
    x char=x;
    z char=u0(x)+c*t(i);
    plot3(x_char, y_char, z_char,'r');
end
hold off
```

