Week 8 Practical Session

David Barron

Hilary Term 2017

Structural equation models

There are two commonly used packages for doing structural equation modelling in R: sem and lavaan. I use the latter because I find the models easier to specify. It also includes some utilities to make creating covariance matrices a bit easier. First, enter it as a single string.

```
# input the correlations in lower diagnonal form
houghtonLower.cor <- '
1.000
.668 1.000
.635
     .599 1.000
.263
      .261
             .164 1.000
            .247
.290
     .315
                  .486 1.000
.207
     .245
            .231
                  .251
                       .449 1.000
-.206 -.182 -.195 -.309 -.266 -.142 1.000
-.280 -.241 -.238 -.344 -.305 -.230 .753 1.000
-.258 -.244 -.185 -.255 -.255 -.215 .554 .587 1.000
           .094 -.017 .151 .141 -.074 -.111 .016 1.000
      .028 -.035
                 -.058 -.051 -.003 -.040 -.040 -.018 .284 1.000
.061
                 .063 .138
                             .044 -.119 -.073 -.084 .563 .379 1.000 '
```

Then use the function getCov to create a correlation matrix, and the function cor2cov to convert to a covariance matrix:

```
houghtonFull.cor <-
 getCov(houghtonLower.cor, names = c("wk1","wk2","wk3","hap","md1","md2","pr1","pr2",
                                     "app", "bel", "st", "ima"))
houghtonFull.cov <-
 cor2cov(houghtonFull.cor, sds = c(0.939, 1.017, 0.937, 0.562, 0.760, 0.524, 0.585, 0.609,
                                   0.731, 0.711, 1.124, 1.001))
print(houghtonFull.cov, digits = 1)
      wk1
            wk2
                  wk3
                               md1
                                      md2
                         hap
                                            pr1
                                                  pr2
                                                                bel
                                                                        st
          0.64
                              0.21
                                    0.102 -0.11 -0.16 -0.177
                                                                     0.064
wk1
    0.88
                 0.56
                       0.139
                                                              0.053
    0.64
          1.03
                0.57
                      0.149
                              0.24
                                    0.131 -0.11 -0.15 -0.181
                                                              0.069
wk2
    0.56
          0.57
                 0.88
                      0.086
                              0.18
                                    0.113 -0.11 -0.14 -0.127
                                                              0.063 - 0.037
          0.15
                              0.21
                                    0.074 -0.10 -0.12 -0.105 -0.007 -0.037
    0.14
                0.09
                      0.316
    0.21
          0.24
                0.18 0.208
                             0.58
                                    0.275 -0.04 -0.07 -0.082
    0.10
          0.13
                0.11
                      0.074
                             0.18
                                                             0.053 - 0.002
pr1 -0.11 -0.11 -0.11 -0.102 -0.12 -0.044
                                           0.34
                                                 0.27
                                                      0.237 -0.031 -0.026
pr2 -0.16 -0.15 -0.14 -0.118 -0.14 -0.073
                                           0.27
                                                 0.37
                                                       0.261 -0.048 -0.027
app -0.18 -0.18 -0.13 -0.105 -0.14 -0.082
                                           0.24
                                                0.26
                                                       0.534
                                                              0.008 -0.015
          0.07
                0.06 - 0.007
                             0.08 0.053 -0.03 -0.05
                                                       0.008
                                                              0.506 0.227
     0.06 \quad 0.03 \ -0.04 \ -0.037 \ -0.04 \ -0.002 \ -0.03 \ -0.03 \ -0.015
                                                             0.227
                                                                     1.263
    0.11
          0.18  0.06  0.035  0.10  0.023  -0.07  -0.04  -0.061
      ima
wk1 0.11
```

```
wk2 0.18
wk3 0.06
hap
    0.04
    0.10
md1
md2 0.02
pr1 -0.07
pr2 -0.04
app -0.06
bel
    0.40
st
     0.43
ima
    1.00
```

This example comes from a study of job satisfaction among 263 university employees. The hypothesis is that constructive thinking reduces dysfunctional thinking, which leads to an enhanced sense of well-being, which in turn results in greater job satisfaction. The four theoretical constructs are:

- 1. Constructive (opportunity oriented) thinking
- 2. Dysfunctional (obstacle oriented) thinking
- 3. Subjective well-being
- 4. Job satisfaction

The structural part of the model represents the hypotheses that:

- 1. Both dysfunctional thinking and subjective well-being have direct effects on job satisfaction
- 2. Dysfunctional thinking has a direct effect on subjective well-being
- 3. Constructive thinking has a direct effect on dysfunctional thinking

In the measurement part of the model, each construct has three indicators (see p. 221 of Kline).

This is what the model looks like as a diagramme, followed by the results.

```
semPaths(srmodel0, layout = 'spring')
```


summary(srmodel0, fit.measures = TRUE)

lavaan (0.5-23.1097) converged normally after 43 iterations

Number of observations	263
Estimator	ML
Minimum Function Test Statistic	66.313
Degrees of freedom	50
P-value (Chi-square)	0.061
Model test baseline model:	
Minimum Function Test Statistic	1087.490
Degrees of freedom	66
P-value	0.000
User model versus baseline model:	

Comparative Fit I	ndex (CFI)	0.984
Tucker-Lewis Inde	x (TLI)	0.979

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) Loglikelihood unrestricted model (H1)	-3126.092 -3092.936
Number of free parameters	28
Akaike (AIC)	6308.185
Bayesian (BIC)	6408.205
Sample-size adjusted Bavesian (BIC)	6319.432

Root Mean Square Error of Approximation:

RMSEA		0.035
90 Percent Confidence Interval	0.000	0.056
P-value RMSEA <= 0.05		0.866

Standardized Root Mean Square Residual:

SRMR 0.045

Parameter Estimates:

Information	Expected
Standard Errors	Standard

Latent Variables:

.md2

.wk1

	Estimate	Std.Err	z-value	P(> z)
Construc =~				
bel	1.000			
st	1.060	0.178	5.941	0.000
ima	1.861	0.331	5.627	0.000
Dysfunc =~				
pr1	1.000			
pr2	1.126	0.080	14.108	0.000
app	0.991	0.089	11.184	0.000
WellBe =~				
hap	1.000			
md1	1.768	0.242	7.305	0.000
md2	0.812	0.125	6.484	0.000
JobSat =~				
wk1	1.000			
wk2	1.031	0.081	12.729	0.000
wk3	0.892	0.073	12.160	0.000
Damasai ana.				
Regressions:				- ()
	Eatimata	C+4 E		D(\\-\\\
Drafuna	Estimate	Std.Err	z-value	P(> z)
Dysfunc ~				
Construc	Estimate -0.140	0.078	z-value -1.804	P(> z) 0.071
Construc WellBe ~	-0.140	0.078	-1.804	0.071
Construc WellBe ~ Dysfunc				
Construc WellBe ~ Dysfunc JobSat ~	-0.140 -0.332	0.078	-1.804 -5.382	0.071
Construc WellBe ~ Dysfunc JobSat ~ Dysfunc	-0.140 -0.332 -0.259	0.078 0.062 0.131	-1.804 -5.382 -1.983	0.071 0.000 0.047
Construc WellBe ~ Dysfunc JobSat ~	-0.140 -0.332	0.078	-1.804 -5.382	0.071
Construc WellBe ~ Dysfunc JobSat ~ Dysfunc	-0.140 -0.332 -0.259	0.078 0.062 0.131	-1.804 -5.382 -1.983	0.071 0.000 0.047
Construc WellBe ~ Dysfunc JobSat ~ Dysfunc WellBe	-0.140 -0.332 -0.259	0.078 0.062 0.131	-1.804 -5.382 -1.983	0.071 0.000 0.047
Construc WellBe ~ Dysfunc JobSat ~ Dysfunc WellBe	-0.140 -0.332 -0.259 0.907	0.078 0.062 0.131 0.220	-1.804 -5.382 -1.983 4.124	0.071 0.000 0.047 0.000
Construc WellBe ~ Dysfunc JobSat ~ Dysfunc WellBe Variances:	-0.140 -0.332 -0.259 0.907	0.078 0.062 0.131 0.220 Std.Err	-1.804 -5.382 -1.983 4.124 z-value	0.071 0.000 0.047 0.000 P(> z)
Construc WellBe ~ Dysfunc JobSat ~ Dysfunc WellBe Variances: .bel	-0.140 -0.332 -0.259 0.907 Estimate 0.289	0.078 0.062 0.131 0.220 Std.Err 0.043	-1.804 -5.382 -1.983 4.124 z-value 6.669	0.071 0.000 0.047 0.000 P(> z) 0.000
Construc WellBe ~ Dysfunc JobSat ~ Dysfunc WellBe Variances: .bel .st	-0.140 -0.332 -0.259 0.907 Estimate 0.289 1.017	0.078 0.062 0.131 0.220 Std.Err 0.043 0.097	-1.804 -5.382 -1.983 4.124 z-value 6.669 10.441	0.071 0.000 0.047 0.000 P(> z) 0.000 0.000
Construc WellBe ~ Dysfunc JobSat ~ Dysfunc WellBe Variances: .bel .st .ima	-0.140 -0.332 -0.259 0.907 Estimate 0.289 1.017 0.255	0.078 0.062 0.131 0.220 Std.Err 0.043 0.097 0.124	-1.804 -5.382 -1.983 4.124 z-value 6.669 10.441 2.061	0.071 0.000 0.047 0.000 P(> z) 0.000 0.000 0.039
Construc WellBe ~ Dysfunc JobSat ~ Dysfunc WellBe Variances: .bel .st .ima .pr1	-0.140 -0.332 -0.259 0.907 Estimate 0.289 1.017 0.255 0.105	0.078 0.062 0.131 0.220 Std.Err 0.043 0.097 0.124 0.016	-1.804 -5.382 -1.983 4.124 z-value 6.669 10.441 2.061 6.702	0.071 0.000 0.047 0.000 P(> z) 0.000 0.000 0.039 0.000
Construc WellBe ~ Dysfunc JobSat ~ Dysfunc WellBe Variances: .bel .st .ima .pr1 .pr2	-0.140 -0.332 -0.259 0.907 Estimate 0.289 1.017 0.255 0.105 0.070	0.078 0.062 0.131 0.220 Std.Err 0.043 0.097 0.124 0.016 0.017	-1.804 -5.382 -1.983 4.124 z-value 6.669 10.441 2.061 6.702 4.092	0.071 0.000 0.047 0.000 P(> z) 0.000 0.000 0.039 0.000 0.000

0.197

0.259

0.020

0.042

0.000

0.000

9.871

6.180

.wk2	0.372	0.050	7.454	0.000
.wk3	0.382	0.044	8.647	0.000
Construc	0.215	0.050	4.263	0.000
.Dysfunc	0.232	0.031	7.600	0.000
.WellBe	0.090	0.020	4.459	0.000
.JobSat	0.471	0.067	7.036	0.000

The implication is that constructive thinking reduces dysfunctional thinking, dysfunctional teaching reduces subjective well-being and job satisfaction, and subjective well-being increases job satisfaction.

Single indicator, non-recursive model

This example involves a study of 177 nurses intended to investigate occupational commitment (ie, to the nursing profession), organizational commitment (ie, to the hospital that currently employs them) and turnover intention. There are three types of organizational and occupational commitment: affective (emotional attachment), continuance (perceived cost of leaving) and normative (feeling of obligation to stay), and two types of turnover intention (occupational and organizational). The hypothesis is that the three types of occupational commitment influence occupational turnover intention, the three types of organizational commitment influence organizational turnover intention, and organizational and occupational turnover intention mutually influence each other.

Normally, with only one indicator per factor, we would not be able to estimate error variances, but the original authors also published score reliability coefficients, which we can use to calculate measurement error variance (see p. 222 of Kline).

A diagramme of the model is shown below:

```
coc
                           noc
                                   apc
                                            срс
                                                   npc
                                                         orgti
                                                                  occti
       1.0816 -0.1019
                        0.6658
                                0.5341
                                                0.544 -0.7717 -0.7800
aoc
                                        0.0649
coc
      -0.1019
               0.9604
                        0.0951
                                0.0629
                                        0.4434
                                                0.128 -0.0549 -0.0294
               0.0951
                                                0.465 -0.7876 -0.5820
       0.6658
                        0.9409
                                0.4359
                                        0.1135
noc
                                                0.805 -0.5093 -1.0111
       0.5341
               0.0629
                        0.4359
                                1.1449
                                        0.1836
apc
                        0.1135
       0.0649
               0.4434
                                0.1836
                                        0.6084
                                                0.289 -0.1420 -0.3276
срс
npc
       0.5441
               0.1282
                        0.4652
                                0.8047
                                        0.2891
                                                1.188 -0.5188 -0.9483
orgti -0.7717 -0.0549 -0.7876 -0.5093 -0.1420 -0.519
                                                        1.9600
occti -0.7800 -0.0294 -0.5820 -1.0112 -0.3276 -0.948
                                                        1.1760
```


Results

lavaan (0.5-23.1097) converged normally after 54 iterations

Number of observations	177	
Estimator	ML	
Minimum Function Test Statistic	9.420	
Degrees of freedom	4	
P-value (Chi-square)	0.051	
Model test baseline model:		
Minimum Function Test Statistic	627.135	
Degrees of freedom	28	
P-value	0.000	
User model versus baseline model:		
Comparative Fit Index (CFI)	0.991	
Tucker-Lewis Index (TLI)	0.937	
Loglikelihood and Information Criteria:		
Loglikelihood user model (HO)	-1808.897	
Loglikelihood unrestricted model (H1)	-1804.187	

Root Mean Square Error of Approximation:

Sample-size adjusted Bayesian (BIC)

Number of free parameters

Akaike (AIC)

Bayesian (BIC)

32

3681.794

3783.431

3682.093

RMSEA 90 Percent Confi P-value RMSEA <=		rval	0.00	0.087 0.161 0.159
Standardized Root	Mean Squar	e Residua	1:	
SRMR				0.018
Parameter Estimate	s:			
Information Standard Errors				Expected Standard
Latent Variables:				
AOC =~	Estimate	Std.Err	z-value	P(> z)
aoc	1.000			
COC =~	1.000			
coc	1.000			
NOC =~	1.000			
noc	1.000			
APC =~				
apc	1.000			
CPC =~				
срс	1.000			
NPC =~				
npc	1.000			
OrgTI =~				
orgti	1.000			
OccTI =~				
occti	1.000			
Regressions:				
_	Estimate	Std.Err	z-value	P(> z)
OrgTI ~				
AOC	0.052	0.376	0.137	0.891
COC	0.044	0.171	0.255	0.799
NOC	-1.162	0.403	-2.882	0.004
OccTI ~				
APC	-0.658	0.184	-3.574	0.000
CPC	-0.102	0.156		0.516
NPC	-0.291	0.204	-1.424	0.154
OrgTI ~				
OccTI	0.031	0.141	0.222	0.824
OccTI ~				
OrgTI	0.224	0.119	1.876	0.061
Covariances:				_ ,
	Catalanata	C+4 F	7	$D(\times I - I)$

0.112

0.186

1.591

Estimate Std.Err z-value P(>|z|)

0.077 -1.322

0.173

0.274

-0.101

.OrgTI ~~ .OccTI

AOC ~~ COC

NOC	0.661	0.090	7.319	0.000
APC	0.540	0.092	5.845	0.000
CPC	0.066	0.061	1.084	0.279
NPC	0.546	0.094	5.804	0.000
COC ~~				
NOC	0.092	0.071	1.292	0.196
APC	0.052	0.078	0.663	0.507
CPC	0.439	0.066	6.647	0.000
NPC	0.122	0.080	1.520	0.129
NOC ~~				
APC	0.432	0.084	5.144	0.000
CPC	0.115	0.057	2.027	0.043
NPC	0.458	0.086	5.349	0.000
APC ~~				
CPC	0.187	0.064	2.924	0.003
NPC	0.799	0.106	7.550	0.000
CPC ~~				
NPC	0.290	0.067	4.309	0.000
Variances:	.	G. 1 F		D(: 1.1)
	Estimate	Std.Err	z-value	P(> z)
.aoc	0.195			
.coc	0.288			
.noc	0.245			
.apc	0.160			
.cpc	0.176			
.npc	0.190			
.orgti	0.274			
.occti	0.270			
AOC	0.881	0.114	7.704	0.000
COC	0.667	0.102	6.570	0.000
NOC	0.693	0.100	6.960	0.000
APC	0.977	0.121	8.082	0.000
CPC	0.430	0.064	6.672	0.000
NPC	0.990	0.125	7.892	0.000
.OrgTI	0.753	0.189	3.989	0.000
.OccTI	0.669	0.127	5.271	0.000
aoc	coc noc a	рс срс	npc	orgti occti
aoc NA			-	J
coc NA	NA			
noc NA				
apc NA		0.159		
cpc NA		NA	NA	
npc NA			NA 0.238	
orgti -1.113				
occti -1.811				
_			v sepc.all	_
	npc 8.54 0.9			
59 COC =~				
60 COC =~	npc 8.36 3.3			
58 COC =~	apc 8.36 1.4			
149 OccTI ~	COC 8.36 0.9			
62 COC =~	occti 8.36 0.9	0.78	8 0.527	0.527

```
61
      COC =~ orgti 8.36 -4.306 -3.517
                                         -2.519
                                                  -2.519
144
     NPC ~~ OccTI 7.99 0.621
                                 0.445
                                          0.445
                                                   0.445
     npc ~~
22
               npc 7.99 2.136
                                 2.136
                                          1.810
                                                   1.810
131
                                 0.603
                                          0.371
                                                   0.371
     npc ~~ occti 7.66 0.603
```

The largest standadized residual concerns the relationship between occupational turnover intention and continuance organizational commitment. This also has one of the largest modification indices, so try adding that to the model.

```
# respecified model with single indicators
chang.model2 <- '
#latent variables
AOC = \sim aoc
COC =~ coc
NOC =~ noc
APC =~ apc
CPC =~ cpc
NPC =~ npc
OrgTI =~ orgti
OccTI =~ occti
#regressions
OrgTI ~ AOC + COC + NOC
OccTI ~ APC + CPC + NPC + COC
OrgTI ~ OccTI
OccTI ~ OrgTI
#fix error variances
aoc ~~ .1947*aoc
coc ~~ .2881*coc
noc ~~ .2446*noc
apc ~~ .1603*apc
 cpc ~~ .1764*cpc
npc ~~ .1901*npc
orgti ~~ .2744*orgti
occti ~~ .2700*occti
#correlated disturbances
OrgTI ~~ OccTI '
# fit respecified model to data
model2 <- sem(chang.model2,</pre>
       sample.cov = changFull.cov,
       sample.nobs = 177)
```

Compare model fits:

```
anova(model1, model2)
```

```
Chi Square Difference Test
```

```
Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq) model2 3 3675 3780 0.81 model1 4 3682 3783 9.42 8.61 1 0.0033
```

summary(model2, fit.measure = TRUE)

lavaan (0.5-23.1097) converged	normally a	liter 63	iterations
--------------------------------	------------	----------	------------

Number of observations	177
Estimator	ML
Minimum Function Test Statistic	0.809
Degrees of freedom	3
P-value (Chi-square)	0.847

Model test baseline model:

Minimum Function Test Statistic	627.135
Degrees of freedom	28
P-value	0.000

User model versus baseline model:

Comparative Fit Index (CFI)	1.000
Tucker-Lewis Index (TLI)	1.034

Loglikelihood and Information Criteria:

Loglikelihood	user model (HO)		-1804.592
Loglikelihood	unrestricted model	(H1)	-1804.187

Number of free parameters	33
Akaike (AIC)	3675.184
Bayesian (BIC)	3779.997
Sample-size adjusted Bayesian (BIC)	3675.492

Root Mean Square Error of Approximation:

RMSEA		0.000
90 Percent Confidence Interval	0.000	0.070
P-value RMSEA <= 0.05		0.913

Standardized Root Mean Square Residual:

SRMR	0.005

Parameter Estimates:

Information	Expected
Standard Errors	Standard

Latent Variables:

	Estimate	Std.Err	z-value	P(> z)
100				

AOC =~

aoc 1.000

COC =~

coc 1.000

NOC =~

noc	1.000			
APC =~				
apc CPC =~	1.000			
cpc	1.000			
NPC =~	1.000			
npc	1.000			
OrgTI =~				
orgti	1.000			
OccTI =~				
occti	1.000			
Regressions:				
	Estimate	Std.Err	z-value	P(> z)
OrgTI ~				
AOC	-0.062			0.882
COC	0.030	0.174	0.170	0.865
NOC	-1.033	0.408	-2.534	0.011
OccTI ~				
APC	-0.754			0.001
CPC	-1.441			0.026
NPC	0.094			0.760
COC	0.996	0.454	2.195	0.028
OrgTI ~				
OccTI	0.037	0.147	0.250	0.803
OccTI ~	0 007	0 145	1 000	0 047
OrgTI	0.287	0.145	1.982	0.047
Covariances:				
	Estimate	Std.Err	z-value	P(> z)
.OrgTI ~~				
.OccTI	0.226	0.178	1.272	0.203
AOC ~~				
COC	-0.104		-1.362	0.173
NOC	0.661			0.000
APC	0.532		5.768	0.000
CPC	0.067	0.061	1.103	0.270
NPC	0.541	0.094	5.754	0.000
COC ~~	0 000	0 071	1 205	0 105
NOC APC	0.092 0.063		1.295 0.808	0.195 0.419
CPC	0.443		6.733	0.419
NPC	0.443		1.587	0.000
NOC ~~	0.127	0.000	1.007	0.112
APC	0.431	0.084	5.136	0.000
CPC	0.116			0.041
NPC	0.458		5.334	0.000
APC ~~	3 : 23 3			
CPC	0.182	0.064	2.856	0.004
		0 100	7 550	0 000

0.800

0.288

0.106

0.067

Variances:

NPC

CPC ~~ NPC 7.556

4.289

0.000

0.000

	Estimate	Std.Err	z-value	P(> z)
.aoc	0.195			
.coc	0.288			
.noc	0.245			
.apc	0.160			
.cpc	0.176			
.npc	0.190			
.orgti	0.274			
.occti	0.270			
AOC	0.881	0.114	7.704	0.000
COC	0.664	0.101	6.581	0.000
NOC	0.695	0.100	6.963	0.000
APC	0.978	0.121	8.083	0.000
CPC	0.427	0.064	6.670	0.000
NPC	0.991	0.126	7.894	0.000
.OrgTI	0.767	0.192	4.007	0.000
.OccTI	0.461	0.157	2.933	0.003

Homework

	EdAsp	OcAsp	VerbAch	${\tt QuantAch}$	${\tt FamInc}$	FaEd	MoEd	VerbAb	${\tt QuantAb}$
[1,]	1.024	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
[2,]	0.792	1.077	0.000	0.000	0.000	0.000	0.000	0.000	0.000
[3,]	1.027	0.919	1.844	0.000	0.000	0.000	0.000	0.000	0.000
[4,]	0.756	0.697	1.244	1.286	0.000	0.000	0.000	0.000	0.000
[5,]	0.567	0.537	0.876	0.632	0.852	0.000	0.000	0.000	0.000
[6,]	0.445	0.424	0.677	0.526	0.518	0.670	0.000	0.000	0.000
[7,]	0.434	0.389	0.635	0.498	0.475	0.545	0.716	0.000	0.000
[8,]	0.580	0.564	0.893	0.716	0.546	0.422	0.373	0.851	0.000
[9,]	0.491	0.499	0.888	0.646	0.508	0.389	0.339	0.629	0.871

The model is that a student's achievement (Achieve) depends on home and family characteristics (Home), the student's ability (Ability), and the student's aspiration (Aspire). These four latent variable have the following measures:

Achieve: Verbal achievement (VerbAch) and Quantitative achievement (QuantAch). Home: Family income (FamInc), Father's education (FaEd) and Mother's education (MoEd). Ability: Verbal ability (VerbAb) and Quantitative ability (QuantAb). Aspire: Educational aspiration (EdAsp) and Occupational aspiration (OcAsp)

The covariance matrix above is based on data from 200 students.

Aspiration is thought to be influenced by Ability and Home situation. Achievement is thought to be influenced by all three latent variables. Specify an appropriate structural equation model, obtain results and determine whether the fit of the model is adequate. If it is not, modify the model and re-fit.

Since we're not having another class, I've included the answers, but try to do it yourself first!

First SEM

lavaan (0.5-23.1097) converged normally after 43 iterations

Number of observations 200

Estimator ML

Minimum Function Test Statistic 57.454 Degrees of freedom 21 P-value (Chi-square) 0.000						
Parameter Estimate	es:					
Information Standard Errors				Expected Standard		
Latent Variables:	Estimate	Std.Err	z-value	P(> z)		
Home =~	Lbormaco	Dou. LII	2 varao	1 (* 121)		
FamInc	1.000					
FaEd	1.007	0.073	13.725	0.000		
MoEd	0.964	0.076	12.707	0.000		
Ability =~	0.001	0.010	12.101	0.000		
VerbAb	1.000					
QuantAb	0.949	0.068	14.017	0.000		
Aspire =~	0.010	0.000	11.011	0.000		
EdAsp	1.000					
OcAsp	0.917	0.064	14.341	0.000		
Achieve =~	0.011	0.001	11.011	0.000		
VerbAch	1.000					
QuantAch	0.759	0.042	18.206	0.000		
quantinen	0.100	0.012	10.200	0.000		
Regressions:						
mogroppions.	Estimate	Std.Err	z-value	P(> z)		
Aspire ~	Lboimacc	Dod.bii	Z varac	1 (7 2 7		
Home	0.410	0.125	3.282	0.001		
Ability	0.590	0.116	5.081	0.000		
Achieve ~	0.000	0.110	0.001	0.000		
Home	0.242	0.128	1.901	0.057		
Ability	0.751	0.142	5.298	0.000		
Aspire	0.548	0.113	4.859	0.000		
-	0.040	0.110	4.003	0.000		
Covariances:						
	Estimate	Std.Err	z-value	P(> z)		
Home ~~						
Ability	0.429	0.062	6.877	0.000		
Variances:						
	Estimate	Std.Err	z-value	P(> z)		
$. { t FamInc}$	0.318	0.039	8.106	0.000		
.FaEd	0.129	0.024	5.303	0.000		
.MoEd	0.221	0.030	7.394	0.000		
.VerbAb	0.187	0.035	5.328	0.000		
.QuantAb	0.273	0.038	7.146	0.000		
.EdAsp	0.159	0.041	3.854	0.000		
.OcAsp	0.349	0.047	7.370	0.000		
.VerbAch	0.204	0.051	4.026	0.000		
.QuantAch	0.340	0.043	7.866	0.000		
Home	0.530	0.082	6.469	0.000		
Ability	0.660	0.088	7.518	0.000		
.Aspire	0.333	0.058	5.781	0.000		

```
0.224
   .Achieve
                               0.057
                                       3.911
                                                0.000
 chisq
          df pvalue rmsea
                               cfi
                                     srmr
57.454 21.000 0.000
                    0.093
                            0.974 0.048
      lhs op
                 rhs
                        mi
                               epc sepc.lv sepc.all sepc.nox
64
      FaEd ~~
                MoEd 40.38
                            0.204
                                    0.204
                                             0.296
                                                      0.296
49 Achieve =~
              FamInc 35.95
                            0.413
                                     0.527
                                             0.572
                                                      0.572
35 Ability =~
              FamInc 35.63
                            0.620
                                     0.504
                                             0.547
                                                      0.547
42 Aspire =~
              FamInc 23.04 0.401
                                    0.371
                                             0.403
                                                      0.403
57 FamInc ~~
                MoEd 10.55 -0.098
                                   -0.098
                                            -0.126
                                                     -0.126
50 Achieve =~
                FaEd 10.04 -0.206
                                   -0.263
                                            -0.322
                                                     -0.322
37 Ability =~
                MoEd 9.88 -0.298
                                   -0.242
                                            -0.287
                                                     -0.287
                FaEd 7.93 -0.090
56 FamInc ~~
                                   -0.090
                                            -0.120
                                                     -0.120
80 VerbAb ~~ VerbAch 7.71 -0.086 -0.086
                                            -0.069
                                                     -0.069
43 Aspire =~
                FaEd 7.34 -0.203 -0.188
                                            -0.230
                                                     -0.230
         FamInc FaEd
                            VerbAb QuntAb EdAsp OcAsp VrbAch QntAch
                      MoEd
         0.000
FamInc
FaEd
            NA 0.000
MoEd
            NA 2.173 0.000
VerbAb
         3.334 -1.064 -2.835 0.000
QuantAb
         2.784 -1.537 -2.994 0.000
                                         NA
EdAsp
         2.726 -4.472 -1.170 0.749 -4.728
                                               NA
OcAsp
         2.582 -0.616 -1.125
                             1.610 0.182
                                               NA
                                                      NA
VerbAch
         3.468
                   NA -3.416
                                 NA 1.186 0.875 -1.178 0.000
QuantAch 2.290 -0.979 -0.919 1.061 -0.637 -0.951 -0.384 0.000 0.000
father's and mother's education (which seems very plausible). Let's try this out.
```

There are a number of possible modifications that these results suggest. Examples include covariance between

lavaan (0.5-23.1097) converged normally after 46 iterations

Number of observations	200
Estimator	ML
Minimum Function Test Statistic	19.265
Degrees of freedom	20
P-value (Chi-square)	0.505

Parameter Estimates:

Information	Expected
Standard Errors	Standard

Latent Variables:

	Estimate	Std.Err	z-value	P(> z)
Home =~				
FamInc	1.000			
FaEd	0.782	0.064	12.215	0.000
MoEd	0.720	0.069	10.398	0.000
Ability =~				
VerbAb	1.000			
QuantAb	0.949	0.067	14.136	0.000
Aspire =~				
EdAsp	1.000			

OcAsp		0.918	0.064	14.377	0.000
Achieve =~					
VerbAch		1.000			
QuantAch		0.753	0.041	18.180	0.000
Regressions:					
	Es	timate	Std.Err	z-value	P(> z)
Aspire ~					
Home		0.506	0.153	3.297	0.001
Ability		0.447	0.151	2.968	0.003
Achieve ~					
Home		0.302	0.161	1.879	0.060
Ability		0.685	0.160	4.277	0.000
Aspire		0.526	0.115	4.567	0.000
Covariances:					
	Es	timate	Std.Err	z-value	P(> z)
Home ~~					
Ability		0.535	0.070	7.656	0.000
.FaEd ~~					
.MoEd		0.172	0.032	5.290	0.000
Variances:					
	Es	timate	Std.Err	z-value	P(> z)
$. { t FamInc}$		0.189	0.040	4.755	0.000
.FaEd		0.264	0.034	7.680	0.000
.MoEd		0.371	0.044	8.519	0.000
.VerbAb		0.187	0.035	5.420	0.000
.QuantAb		0.273	0.038	7.213	0.000
.EdAsp		0.160	0.041	3.894	0.000
.OcAsp		0.348	0.047	7.376	0.000
.VerbAch		0.192	0.050	3.817	0.000
$.\mathtt{QuantAch}$		0.347	0.044	7.965	0.000
Home		0.658	0.090	7.337	0.000
Ability		0.659	0.088	7.533	0.000
.Aspire		0.317	0.056	5.621	0.000
.Achieve		0.227	0.057	3.984	0.000
chisq pvalue	rmsea	cfi	srmr		
19.265 0.505	0.000	1.000	0.015		

That seems to do the trick. You can see that all the hypothesised structural relationships are statistically significant.