Package 'StroupGLMM'

October 12, 2022

October 12, 2022
Type Package
Title R Codes and Datasets for Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup
Version 0.1.0
Maintainer Muhammad Yaseen <myaseen208@gmail.com></myaseen208@gmail.com>
Description R Codes and Datasets for Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications, CRC Press.
Depends R (>= 3.1)
Imports aod, broom, car, ggplot2, lme4, lmerTest, lsmeans, MASS, mutoss, nlme, pbkrtest, phia, stats, survey
License GPL-2
<pre>URL https://github.com/MYaseen208/StroupGLMM</pre>
LazyData TRUE
RoxygenNote 5.0.1.9000
NeedsCompilation no
Author Muhammad Yaseen [aut, cre], Adeela Munawar [aut], Walter W. Stroup [ctb], Kent M. Eskridge [ctb]
Repository CRAN
Date/Publication 2016-04-19 01:00:56
R topics documented:
DataExam2.B.2 2 DataExam2.B.3 3 DataExam2.B.4 4 DataExam2.B.7 5 DataSet3.1 6 DataSet3.2 7 DataSet3.3 8

2 DataExam2.B.2

Index		49
	Table1.2	48
		47
	Exam5.3	45
	Exam5.2	41
	Exam5.1	39
	Exam4.1	37
		34
	Exam3.5	32
	Exam3.3	29
	Exam3.2	27
		25
	Exam2.B.6	
	Exam2.B.5	22
	Exam2.B.4	
	Exam2.B.3	
	Exam2.B.2	
	Exam2.B.1	
	Exam1.2	
	Exam1.1	
	DataSet5.2	
	DataSet5.1	
	DataSet4.1	9

DataExam2.B.2 Data for Example 2.B.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-54)

Description

Exam2.B.2 is used to visualize the effect of glm model statement with binomial data with logit and probit links.

Usage

data(DataExam2.B.2)

Format

A data. frame with 11 rows and 3 variables.

Details

- x independent variable
- n bernouli trials(bernouli outcomes on each individual)
- y number of successes on each individual

DataExam2.B.3

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

```
Exam2.B.2
```

Examples

```
data(DataExam2.B.2)
```

DataExam2.B.3

Data for Example 2.B.3 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-55)

Description

Exam2.B.3 is used to illustrate one way treatment design with Gaussian observations.

Usage

```
data(DataExam2.B.3)
```

Format

A data. frame with 6 rows and 2 variables.

Details

- trt treatments as factor with number 1 to 3
- y response variable

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized linear mixed models: modern concepts, methods and applications. CRC press.

4 DataExam2.B.4

See Also

Exam2.B.3

Examples

data(DataExam2.B.3)

DataExam2.B.4

Data for Example 2.B.4 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-54)

Description

Exam2.B.4 is used to illustrate one way treatment design with Binomial observations.

Usage

```
data(DataExam2.B.4)
```

Format

A data. frame with 6 rows and 4 variables.

Details

- obs number of observations
- trt three treatments with class factor
- Nij number of bernouli trials on each individual
- y number of successes on each individual

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

```
Exam2.B.4
```

```
data(DataExam2.B.4)
```

DataExam2.B.7 5

DataExam2.B.7

Data for Example 2.B.7 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-60)

Description

Exam2.B.7 is related to multi batch regression data assuming different forms of linear models with factorial experiment.

Usage

```
data(DataExam2.B.7)
```

Format

A data. frame with 16 rows and 4 variables.

Details

- Rep number of replications
- a factor with two levels 1 and 2
- b factor with two levels 1 and 2
- y response variable

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

```
Exam2.B.7
```

```
data(DataExam2.B.7)
```

DataSet3.1

DataSet3.1

Data for Example 3.1 and Example 3.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

DataSet3.1 is used for linear and generalized linear models

Usage

```
data(DataSet3.1)
```

Format

A data. frame with 20 rows and 5 variables.

Details

- trt two treatment 0 and 1
- rep unit of observation or observation ID
- Y is continuous & may be assumed Gaussian
- N is the number of obs
- F is the number of "successes" (N and F specify a binomial response)

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

```
Exam3.2
```

```
data(DataSet3.1)
```

DataSet3.2

DataSet3.2

DataSt3.2 for Example 3.3, Example 3.4, Example3.6, Example3.8 and Example 3.9 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

DataSet3.2 Multi-Location, 4 Treatment Randomized Block

Usage

```
data(DataSet3.2)
```

Format

A data. frame with 32 rows and 10 variables.

Details

- trt two treatment 0 and 1
- · loc four locations used as blocks
- Y is Gaussian response variable
- Nbin subjects at each Loc x Trt for binomial response
- S1 and S2 are two binomial response variables
- count1 and count 2 used later
- A and B are factors with level 0 and 1

Author(s)

- 1. Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

```
Exam3.3 Exam3.9
```

```
data(DataSet3.2)
```

8 DataSet3.3

DataSet3.3

Data for Example 3.7 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

Exam1.2 is used to see types of model effects by plotting regression data

Usage

```
data(DataSet3.3)
```

Format

A data. frame with 36 rows and 6 variables.

Details

- X Each batch observed at several times:0,3,6,12,24,36,48 months
- Y continuous variable observed at each level of X
- Fav number of successes
- N isndependent bernoulli trials
- Batch Batches as 1, 2, 3, 4
- Count binomial response variable

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized linear mixed models: modern concepts, methods and applications. CRC press.

```
data(DataSet3.3)
```

DataSet4.1

DataSet4.1

Data for Example 4.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

DataSet4.1 comes from Cochran and Cox (1957) Experimental Design

Usage

```
data(DataSet4.1)
```

Format

A data. frame with 60 rows and 3 variables.

Details

- blocks 15 blocks in an incomplete block desgin
- trt treatments representing incomplete block desgin
- y is continuous & may be assumed Gaussian

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- Adeela Munawar (<adeela.uaf@gmail.com>)

References

- 1. Stroup, W. W. (2012). Generalized linear mixed models: modern concepts, methods and applications. CRC press.
- 2. Cochran, W. G., & Cox, G. M. (1957). Experimental designs.

See Also

```
Exam4.1
```

```
data(DataSet4.1)
```

10 DataSet5.1

DataSet5.1

Data for Example 5.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

DataSet5.1 is used for polynomial multiple regression

Usage

```
data(DataSet5.1)
```

Format

A data, frame with 14 rows and 3 variables.

Details

- X is predictor variable with level 0, 1, 2, 4, 8, 12, 16
- N is the number of independent bernoulli trials for a given observation
- F is the number of "successes" (N and F specify a binomial response)

Author(s)

- 1. Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

```
Exam5.1
```

```
data(DataSet5.1)
```

DataSet5.2

DataSet5.2

Data for Example 5.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

DataSet5.2 is used for three factor orthogonal main effects only design with sequential fitting of predictors

Usage

```
data(DataSet5.2)
```

Format

A data. frame with 9 rows and 4 variables.

Details

- a is predictor variable with level 0, 1
- b is predictor variable with level 0, 1
- c is predictor variable with level 0, 1
- y response variable

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

Exam5.2

```
data(DataSet5.2)
```

12 Exam1.1

Exam1.1

Example 1.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-5)

Description

Exam1.1 is used for inspecting probability distribution and to define a plausible process through linear models and generalized linear models.

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- Adeela Munawar (<adeela.uaf@gmail.com>)

References

 Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

```
Table1.1
```

```
#-----
## Linear Model and results discussed in Article 1.2.1 after Table1.1
data(Table1.1)
Exam1.1.lm1 <-
 lm(
    formula = y/Nx^x
   , data
            = Table1.1
  # , subset
  # , weights
   # , na.action
           = "qr"
   , method
   , model
            = TRUE
            = FALSE
   , X
            = FALSE
           = TRUE
   , qr
   , singular.ok = TRUE
   , contrasts = NULL
  # , offset
summary(Exam1.1.lm1 )
#-----
```

Exam1.1 13

```
## GLM fitting with logit link (family=binomial)
#-----
Exam1.1.glm1 <-
 glm(
    formula = y/Nx^x
   , family = binomial(link = "logit")
, data = Table1.1
   , data
   , weights = NULL
   # , subset
   # , na.action
   , start = NULL
   # , etastart
   # , mustart
   # , offset
   # , control = list(...)
# , model = TRUE
   = FALSE
   , X
          = TRUE
   , у
   , contrasts = NULL
   # , ...
 )
## this glm() function gives warning message of non-integer success
summary(Exam1.1.glm1)
#-----
## GLM fitting with logit link (family=Quasibinomial)
Exam1.1.glm2 <-
 glm(
    formula = y/Nx^x
   , family = quasibinomial(link = "logit")
   , data = Table1.1
   , weights = NULL
   # , subset
   # , na.action
   , start = NULL
   # , etastart
   # , mustart
   # , offset
   # , control = list(...)
   \# , model = TRUE
   , method = "glm.fit"
   , x = FALSE
           = TRUE
   , у
   , contrasts = NULL
 )
## problem of "warning message of non-integer success" is overome by using quasibinomial family
summary(Exam1.1.glm2)
#-----
## GLM fitting with survey package(produces same result as using quasi binomial family in glm)
```

14 Exam1.1

```
library(survey)
design <-
 svydesign(
    ids
               = ~1
             = NULL
= NULL
   , probs
   , strata
   , variables = NULL
   , fpc
               = NULL
   , data = Table1.1
# , nest = FALSE
   # , check.strata = !nest
   , weights = NULL
   , pps
               = FALSE
   # , ...
Exam1.1.svyglm <-
 svyglm(
     formula = y/Nx^x
   , design = design
   # , ...
   , family = quasibinomial(link="logit")
# summary(Exam1.1.svyglm)
## Figure 1.1
Newdata
        <-
 data.frame(
   Table1.1
   , LM
          = Exam1.1.lm1$fitted.values
   , GLM = Exam1.1.glm1$fitted.values
   , QB
        = Exam1.1.glm2$fitted.values
   , SM
            = Exam1.1.svyglm$fitted.values
## One Method to plot Figure1.1
#-----
library(ggplot2)
Figure1.1 <-
 ggplot(
     data
          = Newdata
   , mapping = aes(x=x,y=y/Nx)
 geom_point (
   mapping = aes(colour="black")
 ) +
 geom_point (
   data = Newdata
   , mapping = aes(x=x,y=LM,colour="blue"),shape=2
```

Exam1.1 15

```
) +
 geom_line(
   data = Newdata
   , mapping = aes(x=x,y=LM,colour="blue")
 geom_point (
   data = Newdata
   , mapping = aes(x=x,y=GLM,colour="red"),shape=3
 ) +
 geom_smooth (
   data = Newdata
   , mapping = aes(x=x,y=GLM,colour="red")
   , stat = "smooth"
 ) +
 theme_bw()
            +
 scale_colour_manual (
   values=c("black","blue","red"),
   labels=c("observed","LM","GLM")
 ) +
 guides (
  colour = guide_legend(title="Plot")
 ) +
 labs (
           = "Linear Model vs Logistic Model"
  title
 ) +
 labs (
            = "p"
   У
print(Figure1.1)
#-----
## Another way to plot Figure 1.1
newdata <-
 data.frame(
   P = c(
              Table1.1$y/Table1.1$Nx
            , Exam1.1.lm1$fitted.values
            , Exam1.1.glm1\$fitted.values
             )
   , X
          = rep(Table1.1$x, 3)
   , group = rep(c('Obs', 'LM', 'GLM'), each = length(Table1.1$x))
Figure1.1
             <-
 ggplot(
     data = newdata
   , mapping = aes(x = X , y = P)
 ) +
 geom_point(
   mapping = aes(x = X , y = P, colour = group , shape=group)
 geom_smooth(
```

16 Exam1.2

```
= subset(x = newdata, group == "LM")
    , mapping = aes(x=X,y=P)
    , col
             = "green"
 ) +
 geom_smooth(
           = subset(x = newdata, group=="GLM")
    , mapping = aes(x = X , y = P)
             = "red"
 ) +
 theme_bw() +
 labs(
          = "Linear Model vs Logistic Model"
   title
print(Figure1.1)
## Correlation among p and fitted values using Gaussian link
(lmCor <-
 cor(
   Table1.1$y/Table1.1$Nx,Exam1.1.lm1$fitted.values)
## Correlation among p and fitted values using quasi binomial link
(glmCor <-
 cor(
    Table1.1$y/Table1.1$Nx,Exam1.1.glm1$fitted.values)
)
```

Exam1.2

Example 1.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-9)

Description

Exam1.2 is used to see types of model effects by plotting regression data

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

Table1.2

Examples

```
#-----
## Plot of multi-batch regression data discussed in Article 1.3
data(Table1.1)
Table1.2$Batch <- factor(x = Table1.2$Batch)</pre>
library(ggplot2)
Plot <-
ggplot(
  data
         = Table1.2
  , mapping = aes(y = Y, x = X, colour=Batch, shape=Batch)
 geom_point() +
 geom_smooth(
  method = "lm"
  , fill
) +
labs(
  title = "Plot of Multi Batch Regression data"
)
 theme_bw()
```

Exam2.B.1 Example 2.B.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-53)

Description

Exam2.B.1 is used to visualize the effect of lm model statement with Gaussian data and their design matrix

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

```
Table1.1
```

Examples

```
------
## Linear Model discussed in Example 2.B.1 using simple regression data of Table1.1
data(Table1.1)
Exam2.B.1.lm1 <-
 lm(
     formula
               = y~x
   , data
              = Table1.1
   # , subset
   # , weights
   # , na.action
              = "qr"
   , method
              = TRUE
   , model
   # , x
                = FALSE
                = FALSE
   # , y
              = TRUE
   , qr
   , singular.ok = TRUE
   , contrasts = NULL
   # , offset
     , ...
summary(Exam2.B.1.lm1)
DesignMatrix.lm1 <-</pre>
 model.matrix (
   object = Exam2.B.1.lm1
DesignMatrix.lm1
```

Example 2.B.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-54)

Description

Exam2.B.2 is used to visualize the effect of glm model statement with binomial data with logit and probit links.

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

```
DataExam2.B.2
```

Examples

```
#-----
## probitit Model discussed in Example 2.B.2 using DataExam2.B.2
## Default link is logit
## using fmaily=binomial gives warning message of no-integer successes
data(DataExam2.B.2)
Exam2.B.2glm <-
 glm(
    formula = y/n^x
   , family = quasibinomial(link = "probit")
   , data
           = DataExam2.B.2
   , weights = NULL
  , subset
  , na.action
          = NULL
   , start
   , etastart
   , mustart
   , offset
   , control = list(...)
   , model = TRUE
   , method = "glm.fit"
          = FALSE
  , X
           = TRUE
  , у
   , contrasts = NULL
   # , ...
 )
summary(Exam2.B.2glm)
```

Exam2.B.3 Example 2.B.3 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-55)

Description

Exam2.B.3 is used to illustrate one way treatment design with Gaussian observations.

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

```
DataExam2.B.3
```

```
#-----
## Means Model discussed in Example 2.B.3 using DataExam2.B.3
#-----
Exam2.B.3.lm1 <-
 lm(
    formula = y~trt
           = DataExam2.B.3
   , data
   # , subset
   # , weights
  \# , na.action
# , na.action
, method = "qr"
, model = TRUE
# , x = FALSE
# , y = FALSE
, qr = TRUE
   , singular.ok = TRUE
   , contrasts = NULL
  # , offset
  # , ...
 )
summary(Exam2.B.3.lm1)
#-----
## Effectss Model discussed in Example 2.B.3 using DataExam2.B.3
#-----
Exam2.B.3.1m2 <-
 lm(
    formula = y\sim0+trt
   , data = DataExam2.B.3
   # , subset
  # , weights
  # , na.action
# , Halaction
, method = "qr"
, model = TRUE
# , x = FALSE
# , y = FALSE
, qr = TRUE
  , qr
   , singular.ok = TRUE
   , contrasts = NULL
  # , offset
  # , ...
summary(Exam2.B.3.lm2)
```

Exam2.B.4 Example 2.B.4 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-56)

Description

Exam2.B.4 is used to illustrate one way treatment design with Binomial observations.

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

```
DataExam2.B.4
```

```
## logit Model discussed in Example 2.B.2 using DataExam2.B.4
## Default link is logit
## using fmaily=binomial gives warning message of no-integer successes
data(DataExam2.B.4)
DataExam2.B.4trt < factor(x = DataExam2.B.4<math>trt)
Exam2.B.4glm <-
 glm(
        formula = Yij/Nij~trt
      , family = quasibinomial(link = "probit")
      , data
                 = DataExam2.B.4
      , weights = NULL
      , subset
      , na.action
                 = NULL
      , start
      , etastart
      , mustart
      , offset
       , control
                  = list(...)
      , model
                  = TRUE
      , method
                  = "glm.fit"
                  = FALSE
      , x
                  = TRUE
      , у
      , contrasts = NULL
```

```
# , ...
)
summary(Exam2.B.4glm)
```

Exam2.B.5

Example 2.B.5 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-57)

Description

Exam2.B.5 is related to multi batch regression data assuming different forms of linear models.

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

Table1.2

```
#------
## Nested Model with no intercept
data(Table1.2)
Table1.2$Batch <- factor(x = Table1.2$Batch)</pre>
Exam2.B.5.lm1 <-
 lm(
       formula = Y \sim 0 + Batch + Batch / X
     , data
                = Table1.2
     , subset
     , weights
     , na.action
                 = "qr"
     , method
                 = TRUE
      , model
                 = FALSE
                 = FALSE
     , у
      , qr
                 = TRUE
      , singular.ok = TRUE
      , contrasts = NULL
     , offset
     , ...
```

```
DesignMatrix.lm1 <- model.matrix (object = Exam2.B.5.lm1)</pre>
DesignMatrix.lm1
## Interaction Model with intercept
Exam2.B.5.1m2 <-
 lm(
                = Y~Batch +X+ Batch*X
       formula
                 = Table1.2
      , data
     , subset
     , weights
     , na.action
      , method
              = ¬.
= TRUE
                 = "qr"
      , model
     , X
                 = FALSE
               = FALSE
   # , y
                = TRUE
     , qr
     , singular.ok = TRUE
      , contrasts = NULL
   # , offset
 )
DesignMatrix.lm2 <- model.matrix (object = Exam2.B.5.lm2)</pre>
DesignMatrix.lm2
## Interaction Model with no intercept
Exam2.B.5.1m3 <-
 lm(
       formula = Y~0 + Batch + Batch*X
      , data = Table1.2
   # , subset
     , weights
     , na.action
      , method
                = "qr"
                = TRUE
      , model
                = FALSE
     , X
                = FALSE
     , у
           = TRUE
     , qr
      , singular.ok = TRUE
      , contrasts = NULL
     , offset
DesignMatrix.lm3 <- model.matrix(object = Exam2.B.5.lm3)</pre>
#-----
## Interaction Model with intercept but omitting X term as main effect
Exam2.B.5.lm4 <-
 lm(
       formula = Y~Batch + Batch*X
                = Table1.2
      , data
```

```
, subset
      , weights
      , na.action
                    = "qr"
      , method
      , model
                    = TRUE
                    = FALSE
                    = FALSE
      , у
      , qr
                    = TRUE
       , singular.ok = TRUE
       , contrasts = NULL
      , offset
DesignMatrix.lm4 <- model.matrix(object = Exam2.B.5.lm4)</pre>
DesignMatrix.lm4
```

Exam2.B.6

Example 2.B.6 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-58)

Description

Exam2.B.6 is related to multi batch regression data assuming different forms of linear models keeping batch effect random.

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

 Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

```
Table1.2
```

```
#-----
## Nested Model with no intercept
#------
data(Table1.2)
library(nlme)
Table1.2$Batch <- factor(x = Table1.2$Batch)
Exam2.B.6fm1 <-
lme(</pre>
```

```
fixed
               = Y~X
  , data
               = Table1.2
  , random
               = list(Batch = pdDiag(~1), X = pdDiag(~1))
  , correlation = NULL
              = NULL
  , weights
# , subset
  , method
             = "REML" #c("REML", "ML")
  , na.action = na.fail
# , control
               = list()
  , contrasts = NULL
  , keep.data = TRUE
```

Exam2.B.7

Example 2.B.7 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-60)

Description

Exam2.B.7 is related to multi batch regression data assuming different forms of linear models with factorial experiment.

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

```
DataExam2.B.7
```

```
#-----
## Classical main effects and Interaction Model
#------
data(DataExam2.B.7)
DataExam2.B.7$a <- factor(x = DataExam2.B.7$a)
DataExam2.B.7$b <- factor(x = DataExam2.B.7$b)
Exam2.B.7.lm1 <-
lm(
    formula = y~ a + b + a*b
    , data = DataExam2.B.7
# , subset</pre>
```

```
, weights
     , na.action
     , method = "qr"
     , model = TRUE
               = FALSE
    , x
                = FALSE
     , у
     , qr
                = TRUE
     , singular.ok = TRUE
     , contrasts = NULL
     , offset
 )
## One way treatment effects model
DesignMatrix.lm1 <- model.matrix (object = Exam2.B.7.lm1)</pre>
DesignMatrix2.B.7.2 <- DesignMatrix.lm1[,!colnames(DesignMatrix.lm1) %in% c("a2","b")]
lmfit2 <-</pre>
 lm.fit(
             = DesignMatrix2.B.7.2
    X
   , y = DataExam2.B.7$y
, offset = NULL
, method = "qr"
, tol = 1e-07
   , singular.ok = TRUE
Coefficientslmfit2 <- coef( object = lmfit2)</pre>
#-----
## One way treatment effects model without intercept
#-----
                 <-
DesignMatrix2.B.7.3
as.matrix(DesignMatrix.lm1[,!colnames(DesignMatrix.lm1) %in% c("(Intercept)","a2","b")])
lmfit3 <-</pre>
 lm.fit(
              = DesignMatrix2.B.7.3
    Χ
   , y = DataExam2.B.7$y
, offset = NULL
           = "qr"
= 1e-07
   , method
   , tol
   , singular.ok = TRUE
 )
Coefficientslmfit3 <- coef( object = lmfit3)</pre>
#-----
## Nested Model (both models give the same result)
Exam2.B.7.lm4 <-
 lm(
      formula = y^a + a/b
, data = DataExam2.B.7
```

```
, subset
       , weights
       , na.action
                     = "qr"
       , method
       , model
                    = TRUE
                    = FALSE
                    = FALSE
      , у
       , qr
                    = TRUE
       , singular.ok = TRUE
       , contrasts = NULL
       , offset
summary(Exam2.B.7.1m4)
Exam2.B.7.lm4 <-
 lm(
         formula
                    = y~ a + a*b
                    = DataExam2.B.7
       , data
      , subset
      , weights
      , na.action
                     = "qr"
       , method
                    = TRUE
       , model
                    = FALSE
                    = FALSE
       , у
       , qr
                    = TRUE
       , singular.ok = TRUE
       , contrasts = NULL
       , offset
summary(Exam2.B.7.lm4)
```

Exam3.2 Example 3.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-73)

Description

Exam3.2 used binomial data, two treatment samples

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataSet3.1

```
## Linear Model and results discussed in Article 1.2.1 after Table1.1
#-----
data(DataSet3.1)
DataSet3.1trt < - factor(x = DataSet3.1<math>trt)
Exam3.2.glm <-
 glm(
       formula = F/N^{-}trt
     , family = quasibinomial(link = "logit")
     , data
              = DataSet3.1
     , weights = NULL
   # , subset
   # , na.action
              = NULL
     , start
   # , etastart
     , mustart
     , offset
     , control = list(...)
     , model = TRUE
, method = "glm.fit"
   # , model
              = FALSE
   # , x
           = TRUE
    , у
     , contrasts = NULL
     , ...
 )
summary(Exam3.2.glm)
#-----
## Individula least squares treatment means
library(lsmeans)
(Lsm3.2 <-
 lsmeans::lsmeans(
   object = Exam3.2.glm
   , specs = "trt"
   # , ...
 )
)
OddsRatioMean3.2 <- 1/(1 + exp(-summary(Lsm3.2)[c("lsmean")]))
#-----
## Over all mean
library(phia)
list3.2<- list(trt=c("0" = 0.5,"1" = 0.5))
(Test3.2 <-
 testFactors(
    model = Exam3.2.glm
```

Exam3.3

Example 3.3 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-77)

Description

Exam3.3 use RCBD data with fixed location effect and different forms of estimable functions are shown in this example.

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

```
DataSet3.2
```

```
, method = "qr" , model = TRUE , x = FALSE
     , X
               = FALSE
    , у
     , qr
               = TRUE
     , singular.ok = TRUE
     , contrasts = NULL
   # , offset
     , ...
 )
summary( Exam3.3.lm1 )
## Individula least squares treatment means
library(lsmeans)
(Lsm3.3 <-
 lsmeans::lsmeans(
    object = Exam3.3.lm1
   , specs = "trt"
   # , ...
 )
)
## Pairwise treatment means estimate
contrast( object = Lsm3.3 , method = "pairwise")
#-----
## Repairwise treatment means estimate
## contrast( object = Lsm3.3 , method = "repairwise")
#-----
## LSM Trt0 (This term is used in Walter Stroups' book)
#-----
library(phia)
list3.3.1 <- list(trt=c("0" = 1 ) )
Test3.3.1 <-
summary(testFactors(
  model = Exam3.3.lm1
 , levels = list3.3.1)
## LSM Trt0 alt(This term is used in Walter Stroups' book)
#-----
list3.3.2 <-
 list(trt=c("0" = 1 )
     , loc=c("1" = 0,"2" = 0,"3" = 0,"4" = 0,"5" = 0,"6" = 0,"7" = 0)
 )
Test3.3.2 <-
summary(testFactors(
  model = Exam3.3.1m1
 , levels = list3.3.2)
#-----
```

```
## Trt0 Vs Trt1
#-----
list3.3.3 <- list(trt=c("0" = 1,"1" = -1))
Test3.3.3 <-
summary(testFactors(
  model = Exam3.3.lm1
 , levels = list3.3.3)
## average Trt0+1
list3.3.4 <- list(trt=c("0" = 0.5 , "1" = 0.5))
Test3.3.4 <-
summary(testFactors(
  model = Exam3.3.lm1
 , levels = list3.3.4)
 )
#-----
## average Trt0+2+3
#-----
list3.3.5 <- list(trt=c("0" = 0.33333,"2" = 0.33333,"3" = 0.33333))
Test3.3.5 <-
summary(testFactors(
  model = Exam3.3.lm1
 , levels = list3.3.5)
## Trt 2 Vs 3 difference
list3.3.6 <- list(trt=c("2" = 1,"3" = -1))
Test3.3.6 <-
summary(testFactors(
  model = Exam3.3.lm1
 , levels = list3.3.6)
## Trt 1 Vs 2 difference
#-----
list3.3.7 \leftarrow list(trt=c("1" = 1,"2" = -1))
Test3.3.7 <-
summary(testFactors(
  model = Exam3.3.lm1
 , levels = list3.3.7)
 )
#-----
## Trt 1 Vs 3 difference
#-----
list3.3.8 <- list(trt=c("1" = 1,"3" = -1))
Test3.3.8 <-
summary(testFactors(
  model = Exam3.3.lm1
 , levels = list3.3.8)
```

```
## Average trt0+1 vs Average Trt2+3
list3.3.9 <- list(trt=c("0" = 0.5,"1" = 0.5,"2" = -0.5,"3" = -0.5))
Test3.3.9 <-
summary(testFactors(
   model = Exam3.3.lm1
  , levels = list3.3.9)
## Trt1 vs Average Trt0+1+2
list3.3.10 <- list(trt=c("0" = 0.33333,"1" = -1,"2" = 0.33333,"3" = 0.33333))
Test3.3.10 <-
summary(testFactors(
   model = Exam3.3.lm1
 , levels = list3.3.10)
 )
   ._____
## Sidak Multiplicity adjustment for p-values
library(mutoss)
PValues3.3 <-
 c(
   Test3.3.3[[7]][1, 4]
  , Test3.3.6[[7]][1, 4]
  , Test3.3.7[[7]][1, 4]
  , Test3.3.8[[7]][1, 4]
 , Test3.3.9[[7]][1, 4]
  , Test3.3.10[[7]][1, 4]
AdjPValues3.3 <- sidak(PValues3.3)
```

Exam3.5

Example 3.5 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-85)

Description

Exam3.5 fixed location, factorial treatment structure, Gaussian response

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataSet3.2

```
data(DataSet3.2)
DataSet3.2A \leftarrow factor(x = DataSet3.2A)
DataSet3.2$B <- factor(x = DataSet3.2$B)</pre>
DataSet3.2$loc <- factor(x = DataSet3.2$loc, level = c(8, 1, 2, 3, 4, 5, 6, 7))
Exam3.5.1m <-
 lm(
        formula = Y^{\sim} A + B + loc
      , data
                  = DataSet3.2
   # , subset
    # , weights
   # , na.action
      , method
                   = "gr"
                  = TRUE
      , model
   # , x
                  = FALSE
                  = FALSE
   # , y
                  = TRUE
      , qr
      , singular.ok = TRUE
      , contrasts = NULL
   # , offset
     , ...
 )
##---a0 marginal mean
list3.5.a0 <- list(B = c("0" = 1, "1" = 0))
library(phia)
Test3.5.a0 <-
 summary(testFactors(
     model = Exam3.5.lm
    , levels = list3.5.a0)
##---b0 marginal mean
list3.5.b0 <- list(B = c("0" = 1,"1" = 0))
Test3.5.b0 <-
summary(testFactors(
   model = Exam3.5.lm
 , levels = list3.5.b0)
##---Simple effect of A on B0
Test3.5.AB0 <-
 summary(testInteractions(
     model = Exam3.5.lm
    , custom = list3.5.b0
    , across = "B")
```

```
##---Simple effect of B on A0
Test3.5.BA0 <-
 summary(testInteractions(
     model = Exam3.5.lm
    , custom = list3.5.a0
    , across = "A")
##---Simple Effect of A over B
(SimpleEffect3.5.AB <-
 summary(testInteractions(
      model = Exam3.5.lm
    , fixed = ^{\prime\prime}A^{\prime\prime}
    , across = "B")
   )
##---Simple Effect of B over A
(SimpleEffect3.5.BA <-
 summary(testInteractions(
      model = Exam3.5.lm
    , fixed =
                 "B"
     across = "A")
)
## Individula least squares treatment means
(Lsm3.5 <-
 lsmeans::lsmeans(
      object = Exam3.5.lm
    , specs = ^{A*B}
 )
```

Exam3.9

Example 3.9 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-118)

Description

Exam3.9 used to differentiate conditional and marginal binomial models with and without interaction for S2 variable.

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

 Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

```
DataSet3.2
```

```
#-----
## Binomial conditional GLMM without interaction, logit link
#-----
library(MASS)
DataSet3.2$trt <- factor( x = DataSet3.2$trt )</pre>
DataSet3.2loc < factor(x = DataSet3.2\\loc)
Exam3.9.fm1 <-
 glmmPQL(
         = S2/Nbin~trt
    fixed
   , random = \sim 1 \mid loc
   , family = quasibinomial(link = "logit")
   , data
          = DataSet3.2
 # , weights
 # , control
   , niter = 10
   , verbose = TRUE
  # , ...
summary(Exam3.9.fm1)
#-----
## treatment means
#-----
library(lsmeans)
(Lsm3.9fm1 <-
 lsmeans::lsmeans(
    object = Exam3.9.fm1
   , specs = "trt"
   , link=TRUE
  # , ...
 )
)
##--- Normal Approximation
library(nlme)
Exam3.9fm2 <-
 lme(
            = S2/Nbin~trt
    fixed
   , data
            = DataSet3.2
   , random
            = ~1|loc
   , weights
            = NULL
 # , subset
   , method = "REML" #c("REML", "ML")
```

```
, na.action = na.fail
 # , control = list()
   , contrasts = NULL
   , keep.data = TRUE
 )
(Lsm3.9fm2 <-
 lsmeans::lsmeans(
     object = Exam3.9fm2
   , specs = "trt"
   # , ...
 )
)
##---Binomial GLMM with interaction
Exam3.9fm3 <-
 glmmPQL(
              = S2/Nbin~trt
    fixed
   , random
              = ~1|trt/loc
              = quasibinomial(link = "logit")
   , family
   , data
               = DataSet3.2
 # , weights
 # , control
   , niter = 10
   , verbose = TRUE
   # , ...
 )
summary(Exam3.9fm3)
(Lsm3.9fm3 <-
 lsmeans::lsmeans(
     object = Exam3.9fm3
   , specs = "trt"
 # , ...
 )
)
##---Binomial Marginal GLMM(assuming compound symmetry)
Exam3.9fm4 <-
 glmmPQL(
     fixed
                = S2/Nbin~trt
   , random
                = ~1|loc
   , family
                = quasibinomial(link = "logit")
             = quacta
= DataSet3.2
   , data
   , correlation = corCompSymm(form=~1|loc)
 \# , weights
 \# , control
   , niter
              = 10
   , verbose = TRUE
 # , ...
 )
summary(Exam3.9fm4)
(Lsm3.9fm4 <-
 lsmeans::lsmeans(
     object = Exam3.9fm4
```

Exam4.1 37

```
, specs = "trt"
    # , ...
)
```

Exam4.1

Example 4.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-138)

Description

Exam4.1 REML vs ML criterion is used keeping block effects random

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

```
DataSet4.1
```

```
DataSet4.1$trt <- factor(x = DataSet4.1$trt)</pre>
DataSet4.1$block <- factor(x = DataSet4.1$block)</pre>
##---REML estimates on page 138(article 4.4.3.3)
library(lme4)
Exam4.1REML <-
  lmer(
      formula
                 = y~ trt +( 1|block )
    , data
                  = DataSet4.1
    , REML
                  = TRUE
  , control
                 = lmerControl()
                 = NULL
    , start
   , verbose
                 = 0L
   , subset
   , weights
  , na.action
# , offset
    , contrasts = NULL
    , devFunOnly = FALSE
```

38 Exam4.1

```
# , ...
VarCompREML4.1 <-
 VarCorr(x = Exam4.1REML
   # , sigma = 1
         # , ...
print(VarCompREML4.1, comp=c("Variance"))
##---ML estimates on page 138(article 4.4.3.3)
Exam4.1ML <-
 lmer(
     formula = y ~ trt + (1|block)
, data = DataSet4.1
, REML = FALSE
  # , control = lmerControl()
    , start = NULL
  # , verbose = 0L
  # , subset
  # , weights
  # , na.action
  # , offset
      , contrasts = NULL
  , devFunOnly = FALSE # , ...
 )
VarCompML4.1 <-
 # , ...
print(VarCompML4.1,comp=c("Variance"))
Exam4.1.lm <-
 lm(
     formula
              = y~ trt + block
   , data = DataSet4.1
# , subset
# , weights
 # , na.action
   , method = "qr"
   , model
                = TRUE
   , x = FALSE
, y = FALSE
, qr = TRUE
# , x
# , y
   , singular.ok = TRUE
   , contrasts = NULL
# , offset
# , ...
 )
summary(anova(object = Exam4.1.lm))
```

Exam5.1

Example 5.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-163)

Description

Exam5.1 is used to show polynomial multiple regression with binomial response

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

```
DataSet5.1
```

```
##---Sequential Fit of the logit Model
Exam5.1.glm.1 <-
 glm(
     formula
                = F/N^{\sim} X
                = quasibinomial(link = "logit")
    , family
    , data
                = DataSet5.1
    , weights
                = NULL
    , subset
   , na.action
   , start
                = NULL
   , etastart
   , mustart
   , offset
                = list(...)
   , control
   , model
                = TRUE
                   "glm.fit"
    , method
                = FALSE
   , X
                   TRUE
   , у
    , contrasts = NULL
 )
summary(Exam5.1.glm.1)
## confint.default() produce Wald Confidence interval as SAS produces
```

```
##---Likelihood Ratio test for Model 1
(LRExam5.1.glm.1 <-
 anova(
     object = Exam5.1.glm.1
    , test = "Chisq")
)
library(aod)
WaldExam5.1.glm.1 <-
 wald.test(
             = vcov(object=Exam5.1.glm.1)
     Sigma
             = coef(object=Exam5.1.glm.1)
    , b
    , Terms
             = 2
    , L
             = NULL
   , Н0
             = NULL
   , df
             = NULL
    , verbose = FALSE
##---Sequential Fit of the logit Model quadratic terms involved
Exam5.1.glm.2 <-
 glm(
     formula
                = F/N^{\sim} X + I(X^{\circ}2)
                = quasibinomial(link = "logit")
    , family
                = DataSet5.1
    , data
    , weights
                = NULL
 # , subset
 # , na.action
   , start
                = NULL
# , etastart
 # , mustart
# , offset
 # , control
              = list(...)
  , model
               = TRUE
   , method
                = "glm.fit"
                = FALSE
# , x
                = TRUE
  , у
   , contrasts = NULL
   , ...
 )
summary( Exam5.1.glm.2 )
##---Likelihood Ratio test for Model Exam5.1.glm.2
(LRExam5.1.glm.2 <-
 anova(
     object = Exam5.1.glm.2
    , test = "Chisq")
)
WaldExam5.1.glm.2 <-
 wald.test(
     Sigma = vcov(object=Exam5.1.glm.2)
    , b
             = coef(object=Exam5.1.glm.2)
```

```
, Terms = 3
    , L
             = NULL
    , Н0
             = NULL
             = NULL
   , df
    , verbose = FALSE
 )
##---Sequential Fit of the logit Model 5th power terms involved
Exam5.1.glm.3 <-
 glm(
                 = F/N^{\sim} X + I(X^{\circ}2) + I(X^{\circ}3) + I(X^{\circ}4) + I(X^{\circ}5)
     formula
    , family
                = quasibinomial(link = "logit")
    , data
                = DataSet5.1
    , weights
                 = NULL
# , subset
# , na.action
   , start
                = NULL
# , etastart
# , mustart
# , offset
 # , control
                = list(...)
  , model
                = TRUE
                = "glm.fit"
   , method
                = FALSE
  , X
                = TRUE
# , y
   , contrasts = NULL
# , ...
 )
summary(Exam5.1.glm.3)
## confint.default() produce Wald Confidence interval as SAS produces
##---Likelihood Ratio test for Model 1
(LRExam5.1.glm.3 <-
 anova(
     object = Exam5.1.glm.3
    , test = "Chisq")
)
WaldExam5.1.glm.3 <-
 wald.test(
     Sigma
             = vcov(object=Exam5.1.glm.3)
    , b
             = coef(object=Exam5.1.glm.3)
    , Terms = 6
    , L
             = NULL
   , H0
             = NULL
   , df
             = NULL
    , verbose = FALSE
```

Exam5.2

Example 5.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-164)

Description

Exam5.2 three factor main effects only design

Author(s)

- 1. Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

```
DataSet5.2
```

```
DataSet5.2$a <- factor( x = DataSet5.2$a)</pre>
DataSet5.2$b <- factor( x = DataSet5.2$b)</pre>
DataSet5.2$c <- factor(x = DataSet5.2$c)</pre>
##---first adding factor a in model
Exam5.2.lm1 <-
  lm(
      formula
                  = y~ a
    , data
                  = DataSet5.2
    , subset
   , weights
   , na.action
                  = "qr"
    , method
    , model
                  = TRUE
   , x
                  = FALSE
                  = FALSE
   , у
                  = TRUE
    , qr
    , singular.ok = TRUE
    , contrasts = NULL
 # , offset
 #
   , ...
summary( Exam5.2.lm1 )
library(lsmeans)
##---A first
( Lsm5.21m1
```

```
lsmeans::lsmeans(
    object = Exam5.2.lm1
   , specs = "a"
   # , ...
 )
)
## lsmeans::contrast(object = Lsm5.2lm1 , method = "pairwise")
Anovalm1 <- anova(object = Exam5.2.lm1)
Anovalm1
##---then adding factor b in model
Exam5.2.1m2 <-
 lm(
     formula
                = y^a a + b
   , data
                = DataSet5.2
# , subset
# , weights
 # , na.action
              = "qr"
   , method
               = TRUE
   , model
 # , x
               = FALSE
             = FALSE
= TRUE
# , y
   , qr
   , singular.ok = TRUE
   , contrasts = NULL
# , offset
# , ...
 )
summary( Exam5.2.lm1 )
(Lsm5.21m2 <-
 lsmeans::lsmeans(
     object = Exam5.2.1m2
   , specs = "b"
   # , ...
 )
)
## lsmeans::contrast(object = Lsm5.2lm2, method = "pairwise")
Anovalm2 <- anova(object = Exam5.2.1m2)
Anovalm2
##---then adding factor c in model
Exam5.2.1m3 <-
 lm(
     formula
             = y^{a} + b + c
                = DataSet5.2
   , data
# , subset
# , weights
# , na.action
   , method
                = "qr"
   , model
               = TRUE
# , x
             = FALSE
              = FALSE
# , y
               = TRUE
   , qr
```

```
, singular.ok = TRUE
, contrasts = NULL
# , offset
 )
summary( Exam5.2.lm3 )
(Lsm5.21m3
           <-
 lsmeans::lsmeans(
     object = Exam5.2.1m3
   , specs = "c"
   # , ...
 )
## lsmeans::contrast(object = Lsm5.2lm3, method = "pairwise")
Anovalm3 <- anova(object = Exam5.2.lm3)
Anovalm3
##---Now Change the order and add b first in model
Exam5.2.1m4 <-
 lm(
     formula = y^{-} b
   , data
              = DataSet5.2
# , subset
# , weights
# , na.action
                = "qr"
   , method
   , model
                = TRUE
                = FALSE
# , x
# , y
               = FALSE
   , qr
               = TRUE
   , singular.ok = TRUE
   , contrasts = NULL
# , offset
 # , ...
 )
summary( Exam5.2.lm4 )
(Lsm5.2lm4 <-
 lsmeans::lsmeans(
     object = Exam5.2.1m4
   , specs = "b"
   # , ...
 )
)
## lsmeans::contrast(object = Lsm5.2lm4, method = "pairwise")
Anovalm4 <- anova(object = Exam5.2.lm4)
##---then adding factor a in model
Exam5.2.1m5 <-
 lm(
    formula
             = y~ b + a
   , data
               = DataSet5.2
# , subset
# , weights
```

```
# , na.action
   , method
                 = "qr"
   , model
                 = TRUE
  , X
                 = FALSE
                 = FALSE
  , у
                 = TRUE
   , qr
   , singular.ok = TRUE
   , contrasts = NULL
   , offset
summary( Exam5.2.lm5 )
(Lsm5.21m5
 lsmeans::lsmeans(
     object = Exam5.2.1m5
   , specs = "a"
   # , ...
 )
)
## lsmeans::contrast(object = Lsm5.21m3, method = "pairwise")
Anovalm5 <- anova(object = Exam5.2.lm5)
Anovalm5
```

Exam5.3

Example 5.3 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-172)

Description

Exam5.3 Inference using empirical standard error with different Bias connection

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

```
DataSet4.1
```

Examples

```
data(DataSet4.1)
DataSet4.1$trt <- factor(x = DataSet4.1$trt)</pre>
DataSet4.1$block <- factor( x = DataSet4.1<math>$block)
##---REML estimates on page 172
library(lme4)
# library(lmerTest)
Exam5.3REML <-
 lmer(
        formula = y \sim trt + (1|block)
      , data = DataSet4.1
      , REML
                 = TRUE
    # , control = lmerControl()
                 = NULL
      , start
   # , verbose = 0L
    # , subset
     , weights
      , na.action
   # , offset
      , contrasts = NULL
      , devFunOnly = FALSE
##---Standard Error Type "Model Based" with no Bias Connection
AnovaExam5.3REML <- anova( object = Exam5.3REML )</pre>
AnovaExam5.3REML
##---Standard Error Type "Model Based" with "Kenward-Roger approximation" Bias Connection
# library(pbkrtest)
anova( object = Exam5.3REML, ddf = "Kenward-Roger")
##---ML estimates on page 172
Exam5.3ML
 lmer(
       formula = y \sim trt + (1|block)
      , data = DataSet4.1
                  = FALSE
      , REML
     , control = lmerControl()
                  = NULL
      , start
     , verbose = 0L
      , subset
      , weights
      , na.action
      , offset
      , contrasts = NULL
      , devFunOnly = FALSE
 )
```

##---Standard Error Type "Model Based" with no Bias Connection

Table 1.1 47

```
AnovaExam5.3ML <- anova( object = Exam5.3ML )
AnovaExam5.3ML

##---Standard Error Type "Model Based" with "Kenward-Roger approximation" Bias Connection
anova( object = Exam5.3ML, ddf = "Kenward-Roger")</pre>
```

Table1.1

Data for Table 1.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

Exam1.1 is used for inspecting probability distribution and to define a plausible process.

Usage

```
data(Table1.1)
```

Format

A data. frame with 11 rows and 3 variables.

Details

- x independent variable
- Nx bernouli trials(bernouli outcomes on each individual)
- y number of successes on each individual

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

```
Exam1.1
```

```
data(Table1.1)
```

48 Table 1.2

Table1.2

Data for Table1.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-10)

Description

Exam1.2 is used to see types of model effects by plotting regression data

Usage

```
data(Table1.2)
```

Format

A data. frame with 36 rows and 5 variables.

Details

- X have 11 levels in varying intervals from 0 to 48 observed for multiple batches
- Y continuous variable observed at each level of X
- Fav number of successes
- N number of bernoulli trials
- Batch Batches as 1, 2, 3, 4

Author(s)

- Muhammad Yaseen (<myaseen208@gmail.com>)
- 2. Adeela Munawar (<adeela.uaf@gmail.com>)

References

1. Stroup, W. W. (2012). Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

```
Exam1.2
```

```
data(Table1.2)
```

Index

* datasets	DataSet5.2, 11, 42
DataExam2.B.2, 2	
DataExam2.B.3, 3	Exam1.1, 12, 47
DataExam2.B.4,4	Exam1.2, 16, 48
DataExam2.B.7,5	Exam2.B.1, 17
DataSet3.1, 6	Exam2.B.2, 3 , 18
DataSet3.2,7	Exam2.B.3, 4, 19
DataSet3.3,8	Exam2.B.4, 4, 21
DataSet4.1,9	Exam2.B.5, 22
DataSet5.1, 10	Exam2.B.6, 24
DataSet5.2, 11	Exam2.B.7, 5, 25
Exam1.1, 12	Exam3.2, 6 , 27
Exam1.2, 16	Exam3.3, 7, 29
Exam2.B.1, 17	Exam3.5, 32
Exam2.B.2, 18	Exam3.9, 7, 34
Exam2.B.3, 19	Exam4.1, 9, 37
Exam2.B.4, 21	Exam5.1, 10, 39
Exam2.B.5, 22	Exam5.2, <i>11</i> , 41
Exam2.B.6, 24	Exam5.3,45
Exam2.B.7, 25	- 12
Exam3.2, 27	Table1.1, 12, 17, 47
Exam3.3, 29	Table1.2, <i>17</i> , <i>22</i> , <i>24</i> , 48
Exam3.5,32	
Exam3.9,34	
Exam4.1,37	
Exam5.1,39	
Exam5.2,42	
Exam5.3,45	
Table1.1,47	
Table1.2,48	
DataExam2.B.2, 2, 19	
DataExam2.B.3, 3, 20	
DataExam2.B.4, 4, 21	
DataExam2.B.7, 5, 25	
DataSet3.1, 6, 28	
DataSet3.2, 7, 29, 33, 35	
DataSet3.3,8	
DataSet4.1, 9, 37, 45	
DataSet5.1, 10, 39	