import turtle turtle.setup(650,350,200,200 turtle.penup() turtle.fd(-250) turtle.fd(-250)

turtle.pendown()

turtle.pendown()

turtle.pendown()

pel olor("purple")

se n(-40)

se n(-40)

rcle(40, 80)

turtle.jrcle(-40, 80) turtle.circle(-40, 80) turtle.circle(40, 80/2) turtle.circle(16, 180) turtle.fd(40)

Python语言程序设计

一维数据的格式化和处理

嵩 天 北京理工大学

一维数据的格式化和处理

- 数据组织的维度
- 一维数据的表示
 - 一维数据的存储
- 一维数据的处理

从一个数据到一组数据

一个数据

表达一个含义

一组数据

表达一个或多个含义

维度:一组数据的组织形式

一组数据

数据的组织形式

一维数据

由对等关系的有序或无序数据构成,采用线性方式组织

3.1413, 3.1398, 3.1404, 3.1401, 3.1349, 3.1376

- 对应列表、数组和集合等概念

二维数据

由多个一维数据构成,是一维数据的组合形式

排名	学校名称	省市	总分	指标得分 生源质量(新生高考成绩得分) ▼
1	清华大学	北京	94.0	100.0
2	北京大学	北京	81.2	96.1
3	浙江大学	浙江	77.8	87.2
4	上海交通大学	上海	77.5	89.4
5	复旦大学	上海	71.1	91.8
6	中国科学技术大学	安徽	65.9	91.9
7	南京大学	江苏	65.3	87.1
8	华中科技大学	湖北	63.0	80.6
9	中山大学	广东	62.7	81.1
10	哈尔滨工业大学	黑龙江	61.6	76.4

表格是典型的二维数据

其中, 表头是二维数据的一部分

多维数据

由一维或二维数据在新维度上扩展形成

排名	学校名称	省市	总分	指标得分 生源质量(新生高考成绩得分) ▼		排名	学校名称	省市	总分	指标得分 生源质量 (新生高考成绩得分) ▼
1	清华大学	北京市	95.9	100.0		1	清华大学	北京	94.0	100.0
2	北京大学	北京市	82.6	98.9	-1 <i>LF</i>	2	北京大学	北京	81.2	96.1
3	浙江大学	浙江省	80	88.8		EI是	北京大学 浙江大学	浙江	77.8	87.2
4	上海交通大学	上海市	78.7	90.6		4	上海交通大学	上海	77.5	89.4
5	复旦大学	上海市	70.9	90.4		5	复旦大学	上海	71.1	91.8
6	南京大学	江苏省	66.1	90.7 201	6	6	中国科学技术大学	安徽	65.9	2017
7	中国科学技术大学	安徽省	65.5	90.1		7	南京大学	江苏	65.3	87.1
8	哈尔滨工业大学	黑龙江省	63.5	80.9		8	华中科技大学	湖北	63.0	80.6
9	华中科技大学	湖北省	62.9	83.5		9	中山大学	广东	62.7	81.1
10	中山大学	广东省	62.1	81.8		10	哈尔滨工业大学	黑龙江	61.6	76.4

高维数据

仅利用最基本的二元关系展示数据间的复杂结构

```
"firstName" : "Tian"
"lastName" : "Song"
"address"
              "streetAddr" : "中关村南大街5号" ,
              "city" : "北京市" ,
              "zipcode" : "100081"
"professional" : ["Computer Networking" , "Security"]
```

数据的操作周期

存储 <-> 表示 <-> 操作

一维数据的表示

如果数据间有序: 使用列表类型

1s = [3.1398, 3.1349, 3.1376]

- 列表类型可以表达一维有序数据
- for循环可以遍历数据,进而对每个数据进行处理

一维数据的表示

如果数据间无序: 使用集合类型

```
st = {3.1398, 3.1349, 3.1376}
```

- 集合类型可以表达一维无序数据
- for循环可以遍历数据,进而对每个数据进行处理

一维数据的存储

存储方式一: 空格分隔

中国 美国 日本 德国 法国 英国 意大利

- 使用一个或多个空格分隔进行存储,不换行

- 缺点: 数据中不能存在空格

一维数据的存储

存储方式二: 逗号分隔

中国,美国,日本,德国,法国,英国,意大利

- 使用英文半角逗号分隔数据进行存储,不换行

- 缺点: 数据中不能有英文逗号

一维数据的存储

存储方式三: 其他方式

中国\$美国\$日本\$德国\$法国\$英国\$意大利

- 使用其他符号或符号组合分隔,建议采用特殊符号
- 缺点: 需要根据数据特点定义, 通用性较差

数据的处理

存储 <-> 表示

- 将存储的数据读入程序
- 将程序表示的数据写入文件

一维数据的读入处理

从空格分隔的文件中读入数据

中国 美国 日本 德国 法国 英国 意大利

```
txt = open(fname).read()

ls = txt.split()

['中国', '美国', '日本', '德国
', '法国', '英国', '意大利']

f.close()
```

一维数据的读入处理

从特殊符号分隔的文件中读入数据

中国\$美国\$日本\$德国\$法国\$英国\$意大利

```
txt = open(fname).read()

ls = txt.split("$")

['中国', '美国', '日本', '德国
', '法国', '英国', '意大利']

f.close()
```

一维数据的写入处理

采用空格分隔方式将数据写入文件

```
ls = ['中国', '美国', '日本']
f = open(fname, 'w')
f.write(' '.join(ls))
f.close()
```

一维数据的写入处理

采用特殊分隔方式将数据写入文件

```
ls = ['中国', '美国', '日本']
f = open(fname, 'w')
f.write('$'.join(ls))
f.close()
```


一维数据的格式化和处理

- 数据的维度: 一维、二维、多维、高维

- 一维数据的表示: 列表类型(有序)和集合类型(无序)

- 一维数据的存储: 空格分隔、逗号分隔、特殊符号分隔

- 一维数据的处理:字符串方法 .split() 和 .join()

Python是最受欢迎的编程语言吗?

嵩老师从来不评论各种编程语言排名 因为

在现在或很近的未来

Python必然排名第一! 又何必评论?

