# Lecture 2 Algorithm Analysis

Bo Tang @ SUSTech, Fall 2022

# Our Roadmap

- - Memory, CPU, Algorithm
  - Algorithm, Pseudocode
- Worst Case Analysis
  - Binary Search Problem
  - Big O notation

## RAM Computation Model



# RAM Computation Model



16GB 32GB Memory



- A finite sequence of cells, each cell has the same number of bits.
- Every cell has an address: the first cell of memory has address 0, the second cell 1, and so on.
- Store information for immediate use in a computer

Computer hardware devices

10111010

### Center Process Unit (CPU)

- Contains a fixed number of registers
- Basic (atomic) operations
  - Initialization
    - Set a register to a fixed values (e.g., 100, 1000, etc.)
  - - Take integers a, b stored in two registers, calculate one of {+, -, \*, /} and store the result in a register
  - Comparison / Branching
    - Take integers a, b stored in two registers, compare them, and learn which of {a<b, a=b, a>b} is true.
  - Memory Access
    - Take a memory address A currently stored in a register, Do the READ (i.e., load data from memory) or WRITE (i.e., flush data to memory) operator

# Algorithm Analysis

#### Algorithm

A sequence of basic operations

### Time Limit Exceed

Time Limit Exceed

#### Algorithm Analysis

#### / Cost analysis

- Algorithm cost (running time) is the length of the sequences,
   i.e., the number of basic operations
- My algorithm is correct, why my submission is TLE?
- Is your algorithm fast?
  - Focus on the order of growth (how the running time grows for large n)
- Unless otherwise stated, we refer algorithm analysis as cost analysis in CS203

# Algorithm Correctness Analysis



### **Correctness** analysis

D Wrong Answer

Wrong Answer

- ♦ I have passed all test cases, why is still WA?
- It is not enough even if you have tested your algorithm on many instances
  - Will your algorithm fail on some other instances?
- Proof your algorithm is correct
- Guarantee your implementation is correct
- Software testing is an individual course in other many Universities
  - We will not introduce software testing techniques in this course.

## Example I: Summation

Problem: given integer n, calculate 1+2+3+...+n

#### Algorithm:

- Initialize variable a to 1, b to n, c to 0
- Repeat the following until a > b:
  - Calculate c plus a, and store the result to c.
  - Calculate a plus 1, and store the result to a.
- Cost of the algorithm:
  - $\Rightarrow$  3 + n + n + n = 3n + 3
- Which atomic operations are performed?
- Algorithm is described by English words

# Example I: Summation

#### Algorithm:

#### 12 deml,

- 1. load n from memory to register b
- 2. register a  $\leftarrow$  1, c  $\leftarrow$  0
- 3. repeat
- 4.  $c \leftarrow c + a$
- 5.  $a \leftarrow a + 1$
- 6. **until** a > b
- 7. return c



- The above is pseudocode, it serves the purpose of express (without ambiguity) how our algorithm runs.
- Pseudocode does not reply on any particular programming language

# Example II: Summation

◆ Problem: given integer n, calculate 1+2+3+...+n

Cost of the above algorithm: 3n + 3

Can we make it faster?

In our middle school math course:

$$1+2+3+...+n = (1+n)*n / 2$$

# Example II: Summation

#### Algorithm:

- 1. load n from memory to register b
- 2. register a  $\leftarrow$  1
- 3.  $a \leftarrow a + b$
- 4. a ← a \* b
- 5.  $a \leftarrow a / 2$
- 6. return a

#### Cost of the algorithm = 5

- This is significantly faster than the previous algorithm
- The time of the previous algorithm increases linearly with n
- The time of this algorithm remains constant with *n*

# Our Roadmap

- RAM Computation Model
  - Memory, CPU, Algorithm
  - Algorithm, Pseudocode



- Worst Case Analysis
  - Binary Search Problem
  - Big O notation

### Search Problem

An array A of n integers have been sorted in ascending order. Design an algorithm to determine whether given value t exists in A.

#### Example



- t = 16, the result is "TRUE"
- t = 17, the result is "FALSE"

### Search Problem

- The First Algorithm
  - ⋄ Simply read the value of A[i] for each  $i \in [1, n]$
  - If any of those cell equals to t, return "TRUE", otherwise return "FALSE"

#### Pseudocode:

- 1. variable i  $\leftarrow$  1
- 2. Repeat
- 3. if A[i] = t then
- 4. return "TRUE"
- 5.  $i \leftarrow i + 1$
- 6. **until** i > n
- 7. return "FALSE"

# Running Time of the First Algorithm

A



- How much time does the algorithm require?
  - If t is 5, the algorithm has running time = 3
  - ⋄ If t is 6, the algorithm has running time = 4n + 1 = 41
- In computer science, it is an art to design algorithms with performance guarantees.

What is the largest running time on the worst input with *n* integers?

# Worst-Case Running Time

The worst-case running time (or worst case cost) of an algorithm under a problem size *n*, is defined to be the largest running time of the algorithm on all the inputs of the same size *n*.

### Worst-Case Time of Search Problem

Our algorithm has worst-case time

$$f(n) = 4n + 1$$

• In other words, the algorithm will terminates with a cost at most 4n+1.

This is a performance guarantee on every n

- Can we make it faster?
  - Binary search algorithm

# Binary Search Algorithm

• We utilize the fact that array A has been sorted in ascending order.

- Let us compare t to the element x in the middle of A
   (i.e., A[n/2])
  - $\bullet$  If t = A[n/2], we have found t, return "TRUE", terminate
  - $\bullet$  If t < A[n/2], we can ignore A[n/2+1] to A[n]
  - $\bullet$  If t > A[n/2], we can ignore A[0] to A[n/2]
- In the  $2^{nd}$  and  $3^{rd}$  cases, we have at most n/2 elements. Then repeat the above on these left elements.

# Binary Search Algorithm

| t=27 | 86 | 51 | 46 | 27 | 19 | 16 | 13 | 10 | 8 | 5 | A |
|------|----|----|----|----|----|----|----|----|---|---|---|
| < t  | 86 | 51 | 46 | 27 | 19 | 16 | 13 | 10 | 8 | 5 | A |
| > t  | 86 | 51 | 46 | 27 | 19 |    |    |    |   |   | A |
| = t  |    |    | 46 | 27 | 19 |    |    |    |   |   | A |

# Binary Search Algorithm

Binary Search in Pseudocode

```
left ← 1, right ← n
     repeat
      mid \Theta (left\thetaright)//2
  if (t = A[mid]) then
5.
            return TRUE
      else if (t < A[mid]) then</pre>
6.
            right ← mid ←1
7.
8.
      else
            left ← mid (+) 1
9.
      until left > right |
10.
      return FLASE
11.
```

# Worst-Case Time of Binary Search

We call the elements from left to right as surviving elements

- Line 1: initialization: 2 basic operations
- Line 2 10: iteration, each iteration performs at most 9 basic operations
- Line 11: termination

How many iterations in the algorithm?

# Worst-Case Time of Binary Search

$$\gamma \rightarrow \frac{1}{\gamma} \rightarrow \frac{1}{\gamma} \rightarrow \frac{1}{\gamma} \leftarrow \frac{1}{\gamma}$$

- How many iterations in the algorithm?
  - After the  $1^{st}$  iteration, the number of surviving elements is at most n/2
  - After the  $2^{nd}$  iteration, the number of surviving elements is at most n/4
  - In general, after *i-th* iteration, the number of surviving elements is at mots n / 2i
  - $\bullet$  Suppose that there are h iterations in total, it holds that h is the smallest integer satisfying (why?):

$$g(n) = 2 + 9h = 2 + 9(1 + \log_2 n)$$

23

This is a performance guarantee that holds on all values of **n**.

### Search Problem

- Running time of two algorithms, with input size n
  - $\diamond$  Algorithm 1: f(n) = 4n + 1 (operations)
  - Algorithm 2:  $g(n) = 9log_2 n + 11$  (operations)
- Which algorithm is better?
  - Algorithm 2. Why?
  - We care about the running time at large input size
  - Constant factors do not affect the order of growth

### Asymptotic Analysis

- Running time of two algorithms, with input size n
  - ⋄ Algorithm 1: f(n) = 4n + 1 (operations)
  - ⋄ Algorithm 2:  $g(n) = 9log_2 n + 11$  (operations)
- In computer science, we rarely calculate the time to such a level.
- We ignore all the constants, but only worry about the dominating term.
  - Why not constant? 10n VS. 5n? Which one is faster?
  - "it depends", 10n comparison, 5n multiplication
  - Why dominating term: 3n VS. log<sub>2</sub> n? Which one is faster
  - "log<sub>2</sub> n" is better than 3n in theoretical computer science

- Let f(n) and g(n) be two functions of n.
- We say that f(n) grows asymptotically no faster than g(n) if there is a constant  $c_1 > 0$  such that:  $f(n) \le c_1 \cdot g(n)$

holds for all  $n \ge c_2$ .

- We denote this by f(n) = O(g(n))
- We say that 5n is considered equally fast as on with 10n, why?
- Big-O capture this by having both of following true (can you prove that?):

$$10n = O(5n)$$
  
 $5n = O(10n)$ 

### Big-O example

10000log<sub>2</sub> n is considered better than n. Big-O capture this by having both of following true:

$$10000\log_2 n = O(n)$$
  
 $n \neq O(10000\log_2 n)$ 

- Proof of  $10000\log_2 n = O(n)$
- There are constants  $c_1 = 1$ ,  $c_2 = 2^{20}$  such that  $10000 \log_2 n \le c_1 n$

holds for all  $n \ge c_2$ 

### Big-O example

- Proof of  $n \neq O(10000\log_2 n)$
- We can proof it by contradiction. Suppose that are constant  $c_1$ ,  $c_2$  such that

$$n \le c_1 \cdot 10000 \log_2 n$$

holds for all  $n \ge c_2$ . The above can be rewritten as:

$$\frac{n}{\log_2 n} \le c_1 \cdot 10000$$

however,  $\frac{n}{\log_2 n}$  tends to be  $\infty$  as n increases.

Therefore, the inequality cannot hold for all  $n \ge c_2$ 

#### Exercise

- Is  $(5n^2 + 3n) = O(n^2)$ ?
  - ♦ Fix c=6 and  $n_0$ =3, then prove  $f(n) \le c g(n)$  [note: other choices also possible]
- Is  $(5n^2 + 3n) = O(n^3)$ ?
- $\bullet$  Is  $(5n^2 + 3n) = O(n)$ ?

Proof the following statements:

$$10000 = O(1)$$

$$100\sqrt{n} + 10n = O(n)$$

$$1000n^{1.5} = O(n^2)$$

$$(\log_2 n)^3 = O(\sqrt{n})$$

$$log_a n = O(log_b n)$$
 for a>1, b>1

### Asymptotic Analysis

Henceforth, we will describe the running time of an algorithm only in the asymptotical (i.e., big-O) form, which is also called the algorithm's time complexity.

Instead of saying the running time of binary search is g(n) = 8log<sub>2</sub> n + 10, we will say g(n)=0(log n), which captures the fastest-growing term in the running time. This is also the binary search's time complexity.

## Worst-Case of Algorithms

| Сотр          | lexity        | Algorithm                                          |
|---------------|---------------|----------------------------------------------------|
| 0(1)          | Constant time | E.g., Compare two numbers                          |
| $O(\log n)$   | Logarithmic   | E.g., Binary search (on a sorted array)            |
| O(n)          | Linear time   | E.g., Search (on a unsorted array)                 |
| $O(n \log n)$ |               | E.g., Merge sort                                   |
| $O(n^2)$      | Quadratic     | E.g., Selection sort                               |
| $O(n^3)$      | Cubic         | E.g., Matrix multiplication                        |
| $O(2^n)$      | Exponential   | E.g., Brute-force search on boolean satisfiability |
| O(n!)         | Factorial     | E.g., Brute-force search on traveling salesman     |

### Big- $\Omega$ notation

- Let f(n) and g(n) be two functions of n.
- We say that f(n) grows asymptotically no slower than g(n) if there is a constant  $c_1 > 0$  such that:  $f(n) \ge c_1 \cdot g(n)$

holds for all  $n \ge c_2$ .

- We denote this by  $f(n) = \Omega(g(n))$
- Examples:
  - $\log_2 n = \Omega(1)$
  - $0.001n = \Omega(\sqrt{n})$

- Let f(n) and g(n) be two functions of n.
- If f(n) = O(g(n)) and  $f(n) = \Omega(g(n))$ , then we define:  $f(n) = \Theta(g(n))$  to indicate f(n) grows asymptotically as fast as g(n)

- Examples:
  - $0.000 + 30 \log n + 1.5\sqrt{n} = \Theta(\sqrt{n})$

- Let f(n) and g(n) be two functions of n.
- If f(n) = O(g(n)) and  $f(n) = \Omega(g(n))$ , then we define:  $f(n) = \Theta(g(n))$  to indicate f(n) grows asymptotically as fast as g(n)

- Examples:
  - $0.000 + 30 \log n + 1.5\sqrt{n} = \Theta(\sqrt{n})$

- Let f(n) and g(n) be two functions of n.
- If f(n) = O(g(n)) and  $f(n) = \Omega(g(n))$ , then we define:  $f(n) = \Theta(g(n))$  to indicate f(n) grows asymptotically as fast as g(n)

- Examples:
  - $0.000 + 30 \log n + 1.5\sqrt{n} = \Theta(\sqrt{n})$