# Introduction to Regressions

### **Cause and Effect**

Correlation: Two variables are correlated when changes in one variable occur in a pattern corresponding to changes in the other.

### **Cause and Effect**

Causation: One variable moves, and the second variable changes because of the movement of the first.







### **Questioning Causality**

When we suspect a causal relationship (that x causes y), it is important to ask ourselves several questions:

- 1. Is it possible that y causes x instead?
- 2. Is it possible that z (a new factor that we haven't considered before) is causing both x and y?
- 3. Could the relationship have been observed by chance?

### **Establishing Causality**

In order to establish causality, we need to meet several conditions:

- ullet We can explain why x causes y
- We can demonstrate that **nothing else is driving the changes** (within reason)
- ullet We can show that there is a **correlation** between x and y

### **Ceteris Paribus**

ceteris paribus means "all else equal"



# Why I stink at golf

Why am I always in the sand trap?

• Need to isolate the variables

# Why I stink at golf

- Is it my club?
- My swing?
- The wind? (definitely the wind)



### To uncover the effect

Swing my club 100 times with each golf club

- Keeping the wind, my stance, my swing, etc. consistent
- Is that even really possible?
- In many cases, no



- Allows us to act as if nothing else were changing
- Mathematicaly isolates the effect of each individual **variable** on the outcome of interest
  - Variables are the factors that we want to include in our model



• Think about it like a trend line!



Whoops! What if there is another variable?

Or lots of variables??



### Minimize Errors and Best Fit Lines



# Minimize Errors and Best Fit Lines

Try it by hand!



# Why LINEAR regression?

- Faster
- More honest



### Regression in Excel - Disclaimer

First, when doing regression in the real world™, don't use Excel.

• If you need to do real regressions for a project, let me know and we can talk about appropriate tools

Now that we have that out of the way, let's do regression in Excel!

## Regression in Excel

#### **SUMMARY OUTPUT**

How well our model works (between 0 and 1)

| Regression Statistics |            |  |  |  |  |
|-----------------------|------------|--|--|--|--|
| Multiple R            | 0.89995438 |  |  |  |  |
| R Square              | 0.80991788 |  |  |  |  |
| Adjusted RS           | 0.80741209 |  |  |  |  |
| Standard Err          | 203.446439 |  |  |  |  |
| Observation           | s 539      |  |  |  |  |

#### **ANOVA**

|            | df  | SS         | MS         | F          | Significance F |
|------------|-----|------------|------------|------------|----------------|
| Regression | 7   | 93647121.1 | 13378160.2 | 323.218495 | 7.528E-187     |
| Residual   | 531 | 21978330.9 | 41390.4537 |            |                |
| Total      | 538 | 115625452  |            |            |                |

| The effect  |
|-------------|
| of a one    |
| unit change |
| in Revenues |

|              | Coefficients | tandard Erro | t Stat     | P-value    | Lower 95%  | Upper 95%  |
|--------------|--------------|--------------|------------|------------|------------|------------|
| Intercept    | 65.8714341   | 27.8583551   | 2.36451269 | 0.01841259 | 11.1453234 | 120.597545 |
| Revenues     | 3.25375963   | 0.14370177   | 22.6424468 | 5.9652E-80 | 2.9714659  | 3.53605335 |
| OperatingInc | 4.9391061    | 0.36696355   | 13.4593914 | 9.7301E-36 | 4.21822764 | 5.65998455 |
| Expansion    | -148.32761   | 28.9491739   | -5.123725  | 4.2E-07    | -205.19657 | -91.458646 |
| TVDeal       | 149.880437   | 24.7796878   | 6.04851999 | 2.76E-09   | 101.202188 | 198.558685 |
| LaborContrac | -37.589965   | 29.1835947   | -1.2880512 | 0.19828914 | -94.919432 | 19.7395014 |
| Playoffs     | -2.6146006   | 19.1864353   | -0.1362734 | 0.89165681 | -40.305232 | 35.0760304 |
| SuperBowl    | 54.7577832   | 38.2224961   | 1.43260615 | 0.15255885 | -20.328077 | 129.843643 |

Whether or not effect is significant (or should be attributed to chance)

### Regression terms

- Coefficient: This is the effect of changing a variable by one unit (from "untreated" to "treated")
- Standard Error (Standard Deviation): Measures how noisy the effect of the independent variable is on the dependent variable
  - Larger numbers indicate more noise

### Regression terms

- Confidence Interval: Assuming our regression analysis includes all relevant information, we expect that the true coefficient (treatment effect) lies within this range 95% of the time (for a 95% confidence interval)
- Statistical Significance: When the Average Treatment Effect has a confidence interval (at 95% or 99% levels, typically) that does not include 0

### What we assume

- 1. Effects are Linear (there are some workarounds)
- 2. Errors are normally distributed (bell-shaped)
- 3. Variables are not Collinear
- 4. No Autocorrelation (problematic for time series data)
- 5. Homoskedasticity (errors are shaped the same across all observations)

### What we assume

All of these assumptions can be modified, but not by Excel. We almost always violate at least one assumption with any given dataset

### When should we use regression, then?

- Regression Analysis is most useful when you care about WHY
- If you want to just predict WHAT will happen next, we have better tools for you! (We will spend the rest of the course looking at them)

### For Lab

Work with your group to analyze your data from previous labs using regression analysis. Use the scientific method:

- Write down your hypothesis (what you believe should be the relationship between variables and why you think that is true)
- Organize the data
- Implement the regression(s)
- Decide whether or not the regression results support your hypothesis, and what this means for your conclusions and visuals