# Projekt

## Sterowniki robotów

# Założenia projektowe

# Wykrywacz kradzieży WK

Skład grupy: Sylwester Kozieja, 235798 Paula Langkafel, 235373

Termin: środa TN 13

 $\begin{tabular}{ll} $Prowadzący: \\ mgr inż. Wojciech DOMSKI \end{tabular}$ 

# Spis treści

| 1        | Opis projektu                                     | 2                |
|----------|---------------------------------------------------|------------------|
| 2        | 2.1 Konfiguracja pinów mikrokontrolera            | 5<br>5<br>5<br>5 |
| <b>3</b> | Urządzenia zewnętrzne 3.1 Akcelerometr – LSM303C  | 6<br>6<br>7      |
| 5        | Testowanie urządzenia                             | 7                |
| 6        | Zakres wykonanej pracy           6.1 Akcelerometr | 8<br>8<br>8<br>9 |
| 7        | Podsumowanie                                      | 9                |
| B        | Bibilografia                                      | 10               |

## 1 Opis projektu

Celem projektu jest stworzenie urządzenia, które poprzez komunikację z akcelerometrem wykrywa niepożądany ruch. Użytkownik będzie miał możliwość wybrania sposobu otrzymywania komunikatów. Jednym z założeń projektu jest wybór opcjonalnego interfejsu audio. Urządzenia ma zawierać menu dające możliwość podstawowej konfiguracji, takiej jak załączenie alarmu i wybór sposobu komunikowania się oraz ustawianie poziomu załączania alarmu. Dodatkową opcją jest wizualizowanie poziomu rejestrowanych przyspieszeń.

Na zakres prac składa się oprogramowanie zewnętrznej pamięci Flash , skonfigurowanie akcelerometru, a także realizacja komunikacji z interfejsami.

# 2 Konfiguracja mikrokontrolera



Rysunek 1: Konfiguracja wyjść mikrokontrolera w programie STM32CubeMx



Rysunek 2: Konfiguracja zegarów mikrokontrolera

# 2.1 Konfiguracja pinów mikrokontrolera

| Numer pinu | Pin  | Tryb pracy       | Funkcja/ etykieta |
|------------|------|------------------|-------------------|
| 1          | PE2  | SAI1_MCLK_A      | SAI1_MCK          |
| 2          | PE3  | GPIO_Output      | AUDIO_RST         |
| 3          | PE4  | SAI1_FS_A        | SAI1_FS           |
| 4          | PE5  | SAI1_SCK_A       | SAI1_SCK          |
| 5          | PE6  | SAI1_SD_A        |                   |
| 15         | PC0  | GPIO Output      | MAG CS            |
| 16         | PC1  | LCD_SEG19        |                   |
| 17         | PC2  | GPIO_Input       | MAG_DRDY          |
| 18         | PC3  | LCD_VLCD         |                   |
| 23         | PA0  | GPIO_EXTI0       | JOY_CENTER        |
| 24         | PA1  | GPIO_EXTI1       | JOY_LEFT          |
| 25         | PA2  | GPIO_EXTI2       | JOY_RIGHT         |
| 26         | PA3  | GPIO EXTI3       | JOY UP            |
| 30         | PA5  | GPIO EXTI5       | JOY DOWN          |
| 31         | PA6  | LCD_SEG3         |                   |
| 32         | PA7  | LCD_SEG4         |                   |
| 33         | PC4  | $LCD\_SEG22$     |                   |
| 34         | PC5  | LCD SEG23        |                   |
| 35         | PB0  | $LCD\_SEG5$      |                   |
| 36         | PB1  | LCD_SEG6         |                   |
| 37         | PB2  | GPIO Output      | LED R             |
| 38         | PE7  | SAI1 SD B        | AUODIO DIN        |
| 39         | PE8  | GPIO Output      | LED G             |
| 40         | PE9* | SAI1 FS B        | AOUDIO CLK        |
| 41         | PE10 | QUADSPĪ CLK      | QSPI CLK          |
| 42         | PE11 | QUADSPI NCS      | QSPI_CS           |
| 43         | PE12 | QUADSPI BK1 IO0  | QSPI D0           |
| 44         | PE13 | QUADSPI BK1 IO1  | QSPI D1           |
| 45         | PE14 | QUADSPI BK1 IO2  | QSPI D2           |
| 46         | PE15 | QUADSPI BK1 IO3  | QSPI D3           |
| 47         | PB10 | LCD SEG10        |                   |
| 48         | PB11 | LCD SEG11        |                   |
| 51         | PB12 | LCD SEG12        |                   |
| 52         | PB13 | LCD SEG13        |                   |
| 53         | PB14 | LCD SEG14        |                   |
| 54         | PB15 | LCD_SEG15        |                   |
| 55         | PD8  | $LCD\_SEG28$     |                   |
| 56         | PD9  | $LCD\_SEG29$     |                   |
| 57         | PD10 | LCD_SEG30        |                   |
| 58         | PD11 | LCD_SEG31        |                   |
| 59         | PD12 | $LCD\_SEG32$     |                   |
| 60         | PD13 | LCD_SEG33        |                   |
| 61         | PD14 | LCD_SEG34        |                   |
| 62         | PD15 | $LCD\_SEG35$     |                   |
| 63         | PC6  | $LCD\_SEG24$     |                   |
| 64         | PC7  | LCD_SEG25        |                   |
| 65         | PC8  | LCD_SEG26        |                   |
| 66         | PC9  | $LCD\_SEG27$     |                   |
| 67         | PA8  | LCD_COM0         |                   |
| 68         | PA9  | LCD_COM1         |                   |
| 69         | PA10 | $LCD\_COM2$      |                   |
| 77         | PA15 | (JTDI) LCD_SEG17 |                   |
| 78         | PC10 | LCD_SEG40        |                   |

Tabela 1: Konfiguracja pinów mikrokontrolera

| Numer pinu | Pin  | Tryb pracy               | Funkcja/ etykieta |
|------------|------|--------------------------|-------------------|
| 79         | PC11 | LCD_SEG41                |                   |
| 80         | PC12 | $LCD\_SEG42$             |                   |
| 83         | PD2  | LCD_SEG43                |                   |
| 89         | PB3  | (JTDO-TRACESWO) LCD_SEG7 |                   |
| 90         | PB4  | (NJTRST)LCD_SEG8         |                   |
| 91         | PB5  | $LCD\_SEG9$              |                   |
| 92         | PB6  | I2C1_SCL                 |                   |
| 93         | PB7  | I2C1_SDA                 |                   |
| 95         | PB8  | LCD_SEG16                |                   |
| 96         | PB9  | LCD_COM3                 |                   |
| 97         | PE0  | GPIO_Output              | XL_CS             |
| 98         | PE1  | LCD_SEG37                |                   |

Tabela 2: Konfiguracja pinów mikrokontrolera

#### 2.2 QUADSPI

Interfejs użyty do obsługi pamięci Flash zapewniający dużą przepustowość dzięki czterem liniom danych (PE12:15) oraz dwóm liniom sterującym (PE10 i PE11).

| Parametr              | Wartość            |
|-----------------------|--------------------|
| Clock Prescaler       | 255                |
| Fifo Threshold        | 1                  |
| Sample Shifting       | No Sample Shifting |
| Flash Size            | 1                  |
| Chip Select High Time | 1 Cycle            |
| Clock Mode            | Low                |

#### 2.3 LCD

Interfejs wyświetlacza umożliwiający komunikację z urządzeniem poprzez zaprojektowane menu. Korzysta z dużej ilości pinów, które opisane są na rysunku z konfiguracją. Ustawienia standardowe,<br/>parametr Duty Selection ustawiony na 1/4.

| Parametr                 | Wartość      |
|--------------------------|--------------|
| Clock Prescaler          | 1            |
| Clock Divider            | 16           |
| Duty Selection           | 1/4          |
| Bias Selector            | 1/4          |
| Multiplex mode           | Disable      |
| Voltage Source Selection | Internal     |
| Contrast Control         | 2.60V        |
| Dead Time Duration       | No dead Time |
| High Drive               | Disable      |
| Pulse ON Duration        | 0 pulse      |
| Blink Mode               | Disabled     |
| Blink Frequency          | $\rm fLCD/8$ |

#### 2.4 GPIO

Prosty interfejs do sterowania cyfrowymi wejściami/wyjściami. Użyty do obsługi LED i joystick'a. 5 pinów dla joystick'a (PA0:3 i PA5) oraz pin dla diody LED (PB2).

#### 2.5 SPI

Akcelerometr, który będzie podstawą projektu, służy do pomiaru przyspieszenia na którym będzie bazowało kryterium stwierdzenia kradzieży.

| Parametr                  | Wartość                  |
|---------------------------|--------------------------|
| Frame Format              | Motorola                 |
| Data Size                 | 8 Bits *                 |
| First Bit                 | MSB First                |
| Prescaler (for Baud Rate) | 16 *                     |
| Baud Rate                 | $5.0~\mathrm{MBits/s}$ * |
| Clock Polarity (CPOL)     | Low                      |
| Clock Phase (CPHA)        | 1 Edge                   |
| CRC Calculation           | Disabled                 |
| NSSP Mode                 | Enabled                  |
| NSS Signal Type           | Software                 |

#### 2.6 SAI

Interfejs do obsługi wyjścia audio. Na jego podstawie będzie wysyłany komunikat o rzekomej kradzieży.

| Parametr                           | Wartość            |  |
|------------------------------------|--------------------|--|
| SAI A                              |                    |  |
| Synchronization Inputs             | Asynchronous       |  |
| Audio Mode                         | Master Transmit    |  |
| Output Mode                        | Stereo             |  |
| Companding Mode                    | No companding mode |  |
| SAI SD Line Output Mode            | Driven             |  |
| Protocol                           | I2S Standard       |  |
| Data Size                          | 16 Bits            |  |
| Number of Slots (only Even Values) | 2                  |  |
| Master Clock Divider               | Enabled            |  |
| Audio Frequency                    | 192 KHz            |  |
| Real Audio Frequency               | 35.714 KHz *       |  |
| Error between Selected             | -81.39 % *         |  |
| Fifo Threshold                     | Empty              |  |
| Output Drive                       | Disabled           |  |
| SAI B                              |                    |  |
| Synchronization Inputs             | Asynchronous       |  |
| Protocol                           | SPDIF              |  |
| Audio Mode                         | Master Transmit    |  |
| Output Mode                        | Stereo             |  |
| Companding Mode                    | No companding mode |  |
| Audio Frequency                    | 48 KHz             |  |
| Real Audio Frequency               | 142.857 KHz *      |  |
| Fifo Threshold                     | Empty              |  |
| Output Drive                       | Disabled           |  |

# 3 Urządzenia zewnętrzne

#### 3.1 Akcelerometr – LSM303C

Akcelerometr został wykorzystany do pomiaru przyspieszenia liniowego na tej postawie określano czy załączyć alarm. Wpisanie tych wartości do podanych rejestrów włącza akcelerometr, umożliwia korzystanie ze wszystkich trzech osi, oraz zapewnia dobrą jakość odczytu. Ponadto ustawia wartość szerokości pasma anty aliasingowego na 50Hz, umożliwia korzystanie z SPI oraz ustawia zakres odczytywanych przyspieszeń na  $\pm 8g$ . [1]

| Rejestr            | Wartość |
|--------------------|---------|
| CTRL_REG1_A (0x20) | 0x4F    |
| CTRL REG4 A (0x23) | 0xFD    |

## 4 Opis działania programu

### 5 Testowanie urządzenia

Urządzenie testowano pod kątem dobrania odpowiedniej wartości przyspieszenia oznaczającego kradzież. Podczas oprogramowywania założono, że urządzenie – podczas faktycznego używania w celu wykrycia kradzieży – będzie znajdowało się w torebce lub plecaku użytkownika. W kontekście tego przeprowadzono testy symulujące upadek z 50cm.

Jak widać na wykresie przy każdym upadku przyspieszenie najpierw spada do bardzo niskich wartości następnie rośnie. W większości przypadków nieznacznie w kontekście kolejnego wykresu, z symulacją kradzieży. Tylko jeden pomiar przekracza  $100\frac{m}{s}$  i jedynie kolejne 2 mają wartości na poziome  $70\frac{m}{s}$ . Wszystkie pomiary stabilizują się w okolicach  $16\frac{m}{s}$ . Pomiary te nie oddają w pełni upadku swobodnego, ze względu na to że płytka STM32L476 Discovery musi być podłączona do źródła zasilania kablem, który nieco ją blokuje.



Rysunek 3: Upadek z 50cm

Na kolejnym wykresie przedstawiono symulację poruszania się z torebką, w zwykły sposób. Pik, który można zaobserwować na wykresie, jest to zarzucenie torebki z urządzeniem na ramię. Jak widać tego typu zdarzenia nie powinny mieć wartości przyspieszenia większej od  $100\frac{m}{s}$ .



Rysunek 4: Symulowane dopuszczalne przyspieszenia

Następy wykres przedstawia symulację kradzieży, zakładamy szarpanie kradniętym przedmiotem, następują częste bardzo wysokie piki wykrywanego przyspieszenia. Największe wartości oscylują wokół  $130\frac{m}{s}$ .



Rysunek 5: Symulowana kradzież

## 6 Zakres wykonanej pracy

#### 6.1 Akcelerometr

Akcelerometr działa na komunikacji przez SPI, w trybie half duplex master. Piny dotyczące innych peryferiów w pewien sposób związanych z używanymi zostały wprowadzone w stan wysoki, tak żeby nie zakłócać pomiaru.

#### 6.2 Wyświetlacz z menu i zegarem RTC

Pierwszy commit miał na celu stworzenie pierwszego prostego programu, który sprawdzał komunikację z diodami LED oraz wyświetlaczem. W drugim commicie zostało zaimplementowane menu wraz z podstawowymi opcjami i zegar RTC będący podstawą do obliczania czasu co jest niezbędne do umiejscowienia alarmu w czasie. Urządzenie inicjowane jest stałą datą i godziną, ale istnieje możliwość ustawienia czasu w menu. Również w menu można ustawić flagi aktywność sygnalizacji alarmu dźwiękiem i diodą.

## 6.3 Opis menu

Opcje menu:

- Start uruchamia procedurę rejestrowania alarmów
- Ustaw godzinę
- Ustaw datę
- Audio ustawienie sygnalizacji alarmu przez sygnał Audio
- LED -ustawienie sygnalizacji alarmu diodą LED
- Wyświetl alarmy pobiera z pamięci zarejestrowane alarmy i wyświetla w postaci listy

## 7 Podsumowanie

#### Literatura

- [1] LSM303C Ultra-compact high-performance eCompass module: 3D accelerometer and 3D magnetometer, Czerwiec 2014.
- [2] User manual Getting started with STM32L476G discovery kit software development tools, Sierpień 2015.
- [3] UM1928 User manual Getting started with STM32L476G discovery kit software development tools, Wrzesień 2018.
- [4] W. Domski. Sterowniki robotów, Laboratorium Wprowadzenie, Wykorzystanie narzędzi STM32CubeMX oraz SW4STM32 do budowy programu mrugającej diody z obsługą przycisku. Marzec 2017.
- [5] Marius Bazu, Lucian Galateanu, Virgil Emil Ilian, Jerome Loicq, Serge Habraken, Jean-Paul Collette. Quantitative accelerated life testing of mems accelerometers. *Sensors*, Listopad 2007.
- [6] J. L. Suryadiputra Liawatimena. Vehicle Tracker wih a GPS and Accelerometer Sensor System in Jakarta. *Internetworking Indonesia Journal*, Styczeń 2017.