Cryptography Reading Group

Lossy Trapdoor Functions and Their Applications By Chris Peikert, Brent Waters

Presented by Josh Hoak

January 25, 2010

1 Trapdoor Functions and Lossy Trapdoor functions

Trapdoor functions provide the basis for public key cryptography. Essentially, they are one-way functions that provide a *trapdoor* – an easy way to invert (if you know the trapdoor). In other words, we require for trapdoor functions that:

- 1. They are easy to compute in one direction
- 2. They are difficult to compute in the reverse direction without the trapdoor

Multiplication is the most common example of a function we believe to be one-way, in that it is much easier to multiply than it is to factor (or at least, so we believe). This gives rise to several common problems used in cryptography.

Example: The Discrete Log Problem

Given: g a generator for some cyclic group G and g^x , for some $x \in G$

Find: x

Example: Computational Diffie-Hellman Problem

Given: g a generator for some cyclic group G, g^x , and g^y , for $x, y \in G$

Find: q^{xy}

Example: Decisional Diffie-Hellman

Given: g a generator for some cyclic group G, g^x , g^y , g^z for $x, y, z \in G$

Find: Is $z \equiv xy \mod |G|$

Example: Factor Problem Given: pq, for primes p, q

Find: Find p and q

1.1 Trapdoor Functions

Formally, we talk about collections of trapdoor functions. A collection of trapdoor functions is given by the triple of algorithms running in probabilistic-polynomial-time (PPT): (S, F, F^{-1}) .

- $-S \rightarrow (s,t)$. Algorithm S produces a function index s and the trapdoor t
- $-F(s,\cdot) \to f_s(\cdot)$. Algorithm F takes s and a message input (\cdot) and computes $f_s(\cdot)$, where $f_s: \{0,1\}^n \to \{0,1\}^n$. We require that for a given s, that F be injective.

 $-F^{-1}(t,\cdot) \to f_s^{-1}(\cdot)$. Computes the inverse of F as you would expect. Were $f_s(\cdot)$ not injective, $F^{-1}(t,\cdot)$ would be impossible.

Note that for any PPT inverter \mathcal{I} , we require $\Pr(\mathcal{I}(s, f_s(x)) \to x)$ is negligible for a collection of functions to be trapdoor functions.

1.2 Lossy-Trapdoor Functions

Informally, we think of lossy-trapdoor functions as non-injective trapdoor functions (remember that we are thinking about collections of functions).

We specify a collection of Lossy-Trapdoor Functions by the 4-tuple:

$$(S_{\text{inj}}, S_{\text{loss}}, F_{\text{ltdf}}, F_{\text{ltdf}}^{-1},)$$

We define:

 λ : The security parameter

 $n(\lambda) = \text{poly}(\lambda)$: the input length of the function

 $k(\lambda) \le n(\lambda)$: the lossiness

 $r(\lambda) = n(\lambda - k(\lambda))$: the leakage

For a collection of functions to be deemed a collection of *Lossy-Trapdoor Functions*, three properties must hold:

- 1. Easy to sample injective functions with trapdoor: $S_{\rm inj} \to (s,t)$ where s is a function index and t is its trapdoor. When $S_{\rm inj}$ outputs such a pair, $F_{\rm ltdf}$ and $F_{\rm ltdf}^{-1}$ work as in standard trapdoor examples.
- 2. Easy to sample a lossy function: $S_{loss} \to (s, \perp)$, where s is a function index, and F_{ltdf} computes $f_s(\cdot)$, where $f_s: \{0,1\}^n \to \{0,1\}^r$ recalling that r=n-k.
- 3. Hard to distinguish injective from lossy: we require that $S_{\rm inj}$ and $S_{\rm loss}$ be computationally indistinguishable. Formally, if X_{λ} denotes the distribution of s from $S_{\rm inj}$ and if Y_{λ} denotes the distribution of s from $S_{\rm loss}$, then $\{X_{\lambda}\} \stackrel{c}{\approx} \{Y_{\lambda}\}$.

Important note! We do explicitly require that an injective function be hard to invert.

1.3 Computational Indistinguishability

In the definition for lossy-TDFs, computational indistinguishability (CI) plays a key role – (represented by $\{X_{\lambda}\} \stackrel{c}{\approx} \{Y_{\lambda}\}$). Here, as an aside, I present formally the requirements for CI.

Definition 1 (Statistical distance). Let X and Y be random variables over a countable set S. Then, we define statistical distance (notated $\Delta(X,Y)$) as:

$$\Delta(X,Y) := \frac{1}{2} \sum_{s \in S} |\Pr[X = s] - \Pr[Y = s]|$$

Definition 2 (Statistical Indistinguishability). Let $\mathcal{X} = \{X_{\lambda}\}_{{\lambda} \in \mathbb{N}}$, $\mathcal{Y} = \{Y_{\lambda}\}_{{\lambda} \in \mathbb{N}}$ be two ensambles of random variables indexed by λ . Then \mathcal{X} and \mathcal{Y} are statistical indistinguishability (notated $\{X_{\lambda}\} \stackrel{s}{\approx} \{Y_{\lambda}\}$) when the statistical distance is negligible. In symbols:

$$\{X_{\lambda}\} \stackrel{s}{pprox} \{Y_{\lambda}\} \quad \text{if} \quad \Delta(X,Y) = \mathsf{negl}(\lambda)$$

For the following, I assume familiarity with the advantage for an algorithm (adversary) A.

Definition 3 (Computational Indistinguishability). Let \mathcal{X}, \mathcal{Y} be defined as above and also let there be some probabilistic polynomial time algorithm \mathcal{A} . Then, we say that \mathcal{X}, \mathcal{Y} are computationally indistinguishable (notated $\{X_{\lambda}\} \stackrel{c}{\approx} \{Y_{\lambda}\}$) if the advantage of any PPT algorithm \mathcal{A} is $\mathsf{negl}(\lambda)$.

2 Lossy Trapdoor Functions are Trapdoor Functions

Lemma 1. Let $(S_{\text{ltdf}}, F_{\text{ltdf}}, F_{\text{ltdf}}^{-1})$ give a collection of (n, k)-lossy trapdoor functions. Let $k \geq \omega(\log \lambda)$. Then, $(S_{\text{inj}}, F_{\text{ltdf}}, F_{\text{ltdf}}^{-1})$ give a collection of injective-trapdoor functions (in the conventional sense).

Proof: By hypothesis, $f_s(\cdot) = F_{\text{ltdf}}(s, \cdot)$ is injective for any s generated by S_{inj} , and F^{-1} inverts $f_s(\cdot)$ for a given trapdoor t.

The rest of the proof proceeds by way of contradiction. Suppose that \mathcal{I} is PPT inverter for the collection of functions described above. Then, we can use \mathcal{I} to build a distinguisher \mathcal{D} that distinguishes injective functions and lossy ones. This is a contradiction, since we require that the lossy-functions and injective-functions be indistinguishable.

More formally: If \mathcal{I} is an inverter, then $\mathcal{I}(s, f_s(x))$ outputs x with a non-negligible probability. From inverter \mathcal{I} we construct \mathcal{D} as follows:

Algorithm \mathcal{D} :

On input (i.e. a function index s), choose $x \to \{0,1\}^n$.

Compute $y = F_{ltdf}(s, x)$

Let $x' \leftarrow \mathcal{I}(s, y)$

If x' = x, output 1(injective); otherwise, output 0 (lossy).

Now, we need to analyze \mathcal{D} .

- (1) If s is generated by $S_{\rm inj}$, $\mathcal D$ outputs 'injective' since, by assumption, $\mathcal I$ outputs x with non-negligible probability
- (2) The slipperiness comes in the case in which we let s be any fixed function index generated by S_{loss} . The probability that even an unbounded \mathcal{I} predicts x is given by the average min-entropy of x conditioned on $f_s(x)$. In other words, the predictability is given by at most $2^{-\tilde{H}_{\infty}(x|f_s(x))}$. Since $f_s(\cdot)$ takes at most 2^{n-k} values. The Entropy Approx. Lemma gives us:

$$\tilde{H}_{\infty}(x|f_s(x)) \ge H_{\infty}(x) - (n-k) = n - (n-k) = k$$

Since $k = \omega(\log \lambda)$, the probability that $\mathcal{I}(s, y)$ outputs x, and \mathcal{D} outputs "injective" is $\mathsf{negl}(\lambda)$; By averaging, the same is true for s chosen at random by S_{loss} . \blacklozenge

2.1 Reference

Definition 4 (Min-entropy). Let X be random variable over a domain S. We define the min-entropy as:

$$H_{\infty}(X) = -\log(\max_{s \in S} \Pr[X = s]).$$

Lemma 2 (Entropy Approximation Lemma). If Y takes at most 2^r possible values and Z is any random variable, then

$$\tilde{H}_{\infty}(X|Y) \ge H_{\infty}(X) - r.$$