

Plano de Ensino

Curso	Semestre/Ano				
Tecnologia em Desenvolvimento de Software Multiplataforma					1o Semestre/2023
Disciplina	Sigla				
Álgebra Linear	MAG004				
Carga Horária Semanal	Carga Teórica	Carga Prática		Carga H	orária Semestral
4	4		0		80

Professor

HENRIQUE FURIA SILVA

Ementa

Vetores, Espaços Vetoriais, Transformações Lineares, Matrizes, Determinantes, Dependência Linear, Autovalores e Autovetores, Diagonalização.

Objetivo

Conhecer e utilizar vetores, espaços vetoriais, transformações lineares, sistemas de equações lineares e matrizes, para a aprimorar as técnicas de desenvolvimento de algoritmos para Inteligência Artificial, e a análise e desempenho de Rede de Computadores. Conhecer e empregar os conceitos de matrizes para uma melhor eficiência em tempo de processamento, no desenvolvimento de programas. Criar modelos matemáticos para soluções de problemas

Metodologia

Aulas expositivas com resolução de exercícios

Avaliação individual escrita

Ensino à distância

Critérios de Avaliação

Fórmula : max(0.5*N1 + 0.5*N2, max(0.5*N3 + 0.5*N2, 0.5*N1 + 0.5*N3))

Legendas

Nota 1 - Nota do primeiro bimestre é composta de uma prova (P1) e de trabalhos (T1):N1 = 0.7*P1 + 0.3*T1 -

Prova P1: Sistemas lineares, determinantes, matrizes, espaços vetoriais, subespaços vetoriais

Nota 2 - Nota do segundo bimestre é composta de uma prova (P2) e de trabalhos (T2):N2 = 0,7*P2 + 0,3*T2 -

Prova 2: Transformações lineares, dependência linear, autovalores e autovetores

Substitutiva - Prova substitutiva substituirá a nota do pior bimestre - Toda a matéria do semestre

Plano de Aula

- 1 SISTEMAS LINEARES (Henrique Furia Silva) -> Sistemas de equações algébricas lineares: resolução por substituição e por escalonamento. Representação na forma de multiplicação de matrizes retangulares. Teorema de Cramer para a solução de sistemas bidimensionais determinados.
- 2 DETERMINANTES (Henrique Furia Silva) -> Teorema de Cramer para a representação da solução de sistemas determinados como quociente de determinantes. Regra de Sarrus para o cálculo de determinantes tridimensionais. Teorema de Laplace para o cálculo de determinantes por recorrência.
- 3 GRUPO DAS MATRIZES RETANGULARES (Henrique Furia Silva) -> Definição de grupo algébrico como conjunto não vazio munido de operação binária. Adição de matrizes retangulares como grupo abeliano. Associatividade e comutatividade da soma. Neutro aditivo e elemento oposto.
- 4 ANEL DAS MATRIZES QUADRADAS (Henrique Furia Silva) -> Grupo algébrico com relação à multiplicação de matrizes quadradas, Ausência de comutatividade. Propriedades do produto.
- 5 SISTEMAS LINEARES HOMOGÊNEOS (Henrique Furia Silva) -> Sistemas lineares homogêneos: classificação; técnicas de resolução. Sistemas lineares homogêneos tridimensionais com infinitas soluções. Variável livre. determinação do espaço vetorial das soluções. Obtenção da reta passando pela origem e paralela ao vetor diretor.
- 6 ESPAÇO TRIDIMENSIONAL EUCLIDIANO (Henrique Furia Silva) -> Espaço vetorial das triplas ordenadas. Subespaço vetorial das soluções de sistemas lineares homogêneos. Obtenção dos geradores do plano passando pela origem e que contém dois vetores linearmente independentes.
- 7 ESPAÇOS VETORIAIS (Henrique Furia Silva) -> Grupos comutativos. Corpos algébricos. Axiomas de espaço vetorial. Regras operacionais. Espaço das matrizes retangulares com coeficientes reais.

Responsavel pela Disciplina	Coordenador pelo Curso			
HENRIQUE FURIA SILVA	ANTONIO RODRIGUES CARVALHO NETO			
11	11			

Plano de Ensino

- 8 BASES (Henrique Furia Silva) -> Espaços vetoriais de dimensão finita. Coordenadas; base canônica; dimensão. Espaço vetorial das matrizes retangulares. Geradores. Dependência linear entre vetores do espaço das matrizes. Bases. Coordenadas de vetores.
- 9 SUBESPAÇOS VETORIAIS (Henrique Furia Silva) -> Bases canônicas e coordenadas. Dimensão de espaços vetoriais. Subespaços vetoriais. Subespaços das soluções de sistema linear homogêneo.
- 10 ANEL COM DIVISÃO (Henrique Furia Silva) -> Matriz identidade como elemento neutro multiplicativo. Anel com unidade. Anel com divisão.
- 11 PROVA P1 (Henrique Furia Silva) -> Grupos abelianos, anel das matrizes quadradas, corpo das matrizes diagonais. Sistema linear determinado, teorema de Cramer. Sistema linear homogêneo, subespaço das soluções, base e dimensão.
- 12 SISTEMAS LINEARES E MATRIZES (Henrique Furia Silva) -> Teorema de Cramer para sistema determinado. Subespaço das soluções sistema homogêneo indeterminado. Corpo das matrizes diagonais: matriz identidade e matriz inversa.
- 13 TRANSFORMAÇÕES LINEARES (Henrique Furia Silva) -> Propriedades das funções lineares. Transformações lineares entre espaços vetoriais de dimensão finita. Matriz de uma transformação linear.
- 14 NÚCLEO DE FUNÇÕES (Henrique Furia Silva) -> Bases canônicas. Núcleo como subespaço do domínio da transformação linear, e sua respectiva base. Aplicação injetora.
- 15 IMAGEM DE FUNÇÕES (Henrique Furia Silva) -> Imagem como subespaço do contradomínio da transformação linear, e sua respectiva base. Aplicação sobrejetora.
- 16 TRANSFORMAÇÕES LINEARES APLICADAS (Henrique Furia Silva) -> Teorema do núcleo e imagem de aplicações lineares. Exercícios de aplicação.
- 17 OPERADORES LINEARES (Henrique Furia Silva) -> Propriedades dos operadores lineares com matriz quadrada. Vetores e valores próprios. Polinômio característico. Algoritmo de pesquisa de raízes racionais de polinômios com coeficientes inteiros. Obtenção dos espaços próprios.
- 18 ESPAÇOS PRÓPRIOS (Henrique Furia Silva) -> Método para encontrar autovalores e determinar os respectivos autoespaços. Vetores linearmente independentes. Mudança de base da aplicação linear.
- 19 DIAGONALIZAÇÃO (Henrique Furia Silva) -> Operadores diagonalizáveis. Processo de diagonalização de operador linear.
- 20 PROVA P2 -> Revisão de conceitos e aplicação da prova
- 21 PROVA P3 (Henrique Furia Silva) -> Revisão de conceitos e aplicação da prova
- 22 OPERADORES DIAGONALIZÁVEIS -> Critério para verificar quando um operador linear pode ser escrito como uma matriz diagonal.
- 23 OPERADORES DIAGONALIZÁVEIS -> Forma canônica de Jordan.

Bibliografia Basica

9788540701694. Howard ANTON, Chris RORRES, Claus Ivo DOERING. Álgebra Linear com Aplicações. 10 ed. Porto Alegre: Bookman, 2012.

9788543019154. Neide M. B. Franco. Álgebra Linear. São Paulo: Pearson, 2016.

9780074504123. Alfredo STEINBRUCH, Paulo WINTERLE. Álgebra Linear. São Paulo: Pearson, 1995.

Bibliografia Complementar

GRUS, J., Data Science do Zero: Primeiras Regras com o Python. Rio de Janeiro: Alta Books, 2019.

LIPSCHUTZ, S., LIPSON, M., Álgebra Linear. Porto Alegre: Bookman, 2011.

SANTOS, R.F.V., Álgebra Linear com Python: Aprenda na prática os principais conceitos; Série: Cientistas de Dados.

[S.I.: s.n.], 2018

TAKAHASHI, S., Guia Mangá álgebra linear. São Paulo: Novatec, 2012.

Bibliografia Referencia

(9788524401855) Elon Lages Lima. Geometria Analítica e Álgebra Linear.

9788571931282. Paulo Sérgio Quilelli Corrêa. Álgebra Linear e Geometria Analítica.

(9783319783611) Giovanni Landi, Alessandro Zampini. Linear Algebra and Analytic Geometry for Physical Sciences.

9788535716801. Gelson lezzi; Carlos Murakami. Fundamentos da matemática elementar. Volume 1: Conjuntos e funções, 2019.

9788535717488. Gelson lezzi. Samuel Hazzan. Fundamentos de matemática elementar - Volume 4: Sequências, matrizes, determiantes e sistemas, 2019.

9783319783611. Giovanni Landi; Alessandro Zampini. Linear Algebra and Analytic Geometry for Physical Sciences, 2018

Responsavel pela Disciplina	Coordenador pelo Curso		
HENRIQUE FURIA SILVA	ANTONIO RODRIGUES CARVALHO NETO		
1.1	1.1		