Sistemas Complexos

Luiz Renato Fontes

Modelo SIR

Modelo de transmissão de uma infecção em que cada indivíduo de uma população de tamanho m+n está em 1 de 3 estados possíveis: suscetível, infectado, ou removido. Inicialmente temos $m \geq 1$ infecciosos e $n \geq 1$ suscetíveis.

O período que cada infeccioso permanece neste estado é uma va *I*, após o que ele se torna removido.

Cada infeccioso a taxa λ faz contato com um outro indivíduo da população escolhido uniforme/e ao acaso; se o indivíduo contatado for suscetível, então ele se torna infeccioso. Se o indivíduo contatado estiver infectado ou removido, então nada muda, e dizemos que a infecção se frustrou.

Removidos/infecciosos não podem ser re/infectados.

Todas as va's do modelo são independentes.

Como os tempos de infecciosidade são todos finitos e há um número finito de indivíduos no sistema, a infecção dura um tempo finito, após o que temos apenas removidos e possivelmente suscetíveis na população.

Segmentos vermelhos correspondem a inds infecciosos e seus períodos de infecção; \times 's marcam início de setas em intervalos infecciosos

Comportamento assintótico

Vamos apresentar dois resultados sobre o comportamento assintótico qdo $n \to \infty$, em distintos regimes de tempo e tamanho inicial da infecção.

Primeiro vamos fixar m, e para cada T fixo, vamos obter o limite qdo $n \to \infty$ da distribuição do número de inds infectados no tempo $t \in [0,T]$, em termos de um processo de nascimento e morte associado a processo de ramificação. Neste caso a va I tem distribuição genérica.

No segundo regime $I \sim \text{Exp}(1)$, $m = \mu n \text{ com } \mu > 0$, e de novo obtemos o limite qdo $n \to \infty$, mas desta vez das proporções de suscetíveis e infecciosos sobre o total da pop, em termos da slç de certas eqs diferenciais; o limite vale uniforme/e em intervalos de tempo finitos arbitrários e qc.

Construção do modelo

Vamos construir o modelo SIR e simultaneamente um processo auxiliar na prova do nosso primeiro resultado (Teo 1, formulado abaixo). O processo auxiliar é semelhante ao SIR, com setas de infecção e períodos de infecção de cada ind com duração aleatórios como no SIR, com a diferença que não há infecções frustradas no modelo auxiliar.

Começamos pela população do SIR, $\mathcal{N}=\{1,\ldots,m+n\}$, de que os 1ros m inds estão infectados inicialmente, e os demais inicial/e suscetíveis. A pop do mod auxiliar é $\mathbb{N}\setminus\mathcal{N}$.

Sejam famílias de va's indep $\{Y_i^x; x \in \mathcal{N}, i \geq 1\}$ e $\{I^x; x \in \mathbb{N}\}$, e indep entre si e indep de $\{\mathcal{P}_x, x \in \mathbb{N}\}$, uma família iid de processos de Poisson de taxa $\lambda > 0$ em $[0,\infty)$. Para $x \in \mathcal{N}, i \geq 1$, Y_i^x tem distr uniforme em $\mathcal{N} \setminus \{x\}$, e $I^x \sim I$, a va mencionada no início. Sejam $\{\sigma_1^x < \sigma_2^x < \cdots\}$ as sucessivas marcas de \mathcal{P}_x , e façamos $\tilde{Y}_{\sigma_i}^x = Y_i^x$, $i \geq 1$, $x \in \mathcal{N}$.

Vamos a seguir construir processos de crescimento da pop de inds infectados ou removidos no SIR e no sistema auxiliar.

Construção (cont)

Seja $\mathcal{G}_0 = \mathcal{G}_0^* = \{1, \dots, m\}$, e, para $x \in \mathcal{G}_0$, seja $\tau_x = 0$ e $\bar{\tau}_x = I^x$. Para $x \in \mathcal{G}_0$ fazemos $\eta_t(x) = \eta_t^*(x) = \begin{cases} 1, & \text{se } \tau_x \leq t < \bar{\tau}_x; \\ 2, & \text{se } t \geq \bar{\tau}_x. \end{cases}$ Sejam ainda

$$\begin{split} \mathcal{T}_0 &= \mathcal{T}_0^* = \inf \{ \sigma_1^x < \overline{\tau}_x : \ x \in \mathcal{G}_0 \}, \ \mathcal{X}_0 = \mathcal{X}_0^* = \{ x \in \mathcal{G}_0 : \ \sigma_1^x = \mathcal{T}_0 \}, \\ \text{onde inf} \ \emptyset &= \infty \ \text{e} \ \mathcal{X}_0 = \mathcal{X}_0^* = \emptyset \ \text{se} \ \mathcal{T}_0 = \infty. \end{split}$$

Para $k \geq 0$, dados $\mathcal{G}_k \subset \mathcal{N}$, $\mathcal{G}_k^* \subset \mathbb{N}$,

 $\begin{array}{l} \blacktriangleright \ \ \text{Se} \ \mathcal{T}_k < \infty \ \text{então} \ \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{ \tilde{Y}_{\mathcal{T}_k}^{\mathcal{X}_k} \}; \ \text{se além disto,} \\ y_k := \tilde{Y}_{\mathcal{T}_k}^{\mathcal{X}_k} \in \mathcal{N} \setminus \mathcal{G}_k, \ \text{então} \ \tau_{y_k} = \mathcal{T}_k \ \text{e} \ \bar{\tau}_{y_k} = \tau_{y_k} + I^{y_k}, \ \text{e fazemos} \\ \eta_t(x) = \begin{cases} 0, & \text{se} \ 0 \leq t < \tau_x; \\ 1, & \text{se} \ \tau_x \leq t < \bar{\tau}_x; \\ 2, & \text{se} \ t \geq \bar{\tau}_x. \end{cases}$

Fazemos ainda $\mathcal{T}_{k+1} = \inf\{\mathcal{T}_k < \sigma_i^x < \bar{\tau}_x : x \in \mathcal{G}_{k+1}, i \geq 1\},\ \mathcal{X}_{k+1} = \{x \in \mathcal{G}_{k+1} : \sigma_i^x = \mathcal{T}_{k+1} \text{ para algum } i \geq 1\};$

▶ Seja \bar{k} 1ro k p/o qual $\mathcal{T}_k = \infty$, neste passo o processo de crescimento termina, e fazemos $\eta_t(x) \equiv 0$, se $x \in \mathcal{N} \setminus \mathcal{G}_{\bar{k}}$.

Construção (cont)

- ▶ Se $\mathcal{T}_k^* < \infty$, e
 - $\qquad \quad \mathcal{X}_k^* \in \mathcal{N} \text{ e } y_k^* := \tilde{Y}_{\mathcal{T}_k^*}^{\mathcal{X}_k^*} \in \mathcal{N} \setminus \mathcal{G}_k^* \text{, então } \mathcal{G}_{k+1}^* = \mathcal{G}_k^* \cup \{y_k^*\};$
 - ▶ $\mathcal{X}_k^* \in \mathcal{N}$ e $\tilde{Y}_{\mathcal{T}_k^*}^{\mathcal{X}_k^*} \notin \mathcal{N} \setminus \mathcal{G}_k^*$, ou $\mathcal{X}_k^* \notin \mathcal{N}$, então $\mathcal{G}_{k+1}^* = \mathcal{G}_k^* \cup \{z_k\}$, onde $z_k = \min\{(\mathbb{N} \setminus \mathcal{N}) \setminus \mathcal{G}_k\}$;

em qquer caso, p/ $x\in\mathcal{G}_{k+1}^*\setminus\mathcal{G}_k^*$, fazemos $au_x^*=\mathcal{T}_k^*$, $au_x^*= au_x^*+I^x$, e

$$\eta_t^*(x) = egin{cases} 0, & ext{se } 0 \leq t < au_x^*; \ 1, & ext{se } au_x^* \leq t < au_x^*; \ 2, & ext{se } t \geq au_x^*; \end{cases}$$

fazemos ainda $\mathcal{T}_{k+1}^* = \inf\{\mathcal{T}_k^* < \sigma_i^{\mathsf{x}} < \bar{\tau}_{\mathsf{x}}^* : \mathsf{x} \in \mathcal{G}_{k+1}^*, \ i \geq 1\}$, e $\mathcal{X}_{k+1}^* = \{\mathsf{x} \in \mathcal{G}_{k+1}^* : \sigma_i^{\mathsf{x}} = \mathcal{T}_{k+1}^* \text{ para algum } i \geq 1\}$;

▶ Seja $k^* = \inf\{k \geq 0 : \mathcal{T}_k^* = \infty\}$; se $k^* < \infty$, então o processo de crescimento é encerrado no passo k^* , e fazemos $\eta_t^*(x) \equiv 0$, se $x \in \mathbb{N} \setminus \mathcal{G}_{k^*}^*$; e, neste caso, fazemos tb $\mathcal{T}_k^* = \infty$ para $k > k^*$.

Processo de nascimento e morte

Obs. 1)
$$\mathcal{G}_{\bar{k}} \subset \cup_{k \geq 0} \mathcal{G}_k^*$$
, e $\tau_x = \tau_x^* \ \forall \ x \in \mathcal{G}_{\bar{k}}$

2) \mathcal{G}_0^* , \mathcal{G}_1^* , . . . é um processo de crescimento associado a processo de ramificação $(R_\ell)_{\ell \geq 0}$ com distribuição de prole dada por N(I), onde I é a variável mencionada acima, e $N(\cdot)$ é um $\operatorname{PP}(\lambda)$, indep de I, começando com m indivíduos, e em que cada eventual filho é adicionado por vez, seguindo certa ordem (especificada acima).

Seja $Y_t = \sum_{x \in \mathbb{N}} \mathbb{1}\{\eta_t^*(x) = 1\}$ o número de inds infectados no processo auxiliar no tempo t; (Y_t) é um processo de nascimento e morte não necessaria/e Markoviano (depende se I é exponencial ou não).

Notemos que $Y_t \leq Z_t$, $t \geq 0$, onde Z_t é o número de inds infectados ou removidos no tempo t num processo auxiliar em que $I^x \equiv \infty$.

 (Z_t) é então um processo de nascimento puro Markoviano em $\mathbb N$ começando em m e com taxa de nascimento em $n \in \mathbb N$ igual a λn . Notemos que se trata de um processo não explosivo; logo,

$$(Y_t)$$
 é não explosivo qc; (1)

segue que qc se $\mathcal{T}_k^* < \infty$, $k \geq 0$, então $\mathcal{T}_k^* \to \infty$ qdo $k \to \infty$. (1')

1º Regime — Teorema 1

Seja $Y_n(t) = \sum_{x \in \mathbb{N}} \mathbb{1}\{\eta_t(x) = 1\}$ o número de inds infectados no SIR no tempo t, e Y_t como acima. Então para todo $T \ge 0$ temos que com alta probabilidade (ie, com prob $\to 1$ qdo $n \to \infty$)

$$Y_n(t) = Y_t$$
 para todo $0 \le t \le T$.

Dem. Para $x \in \mathcal{G}_k^*$ para algum $k \geq 0$, seja $\mathcal{I}_x = [\tau_x^*, \bar{\tau}_x^*)$.

Dado T > 0, seja $K = K(T) = \inf\{k \ge 0 : T_k^* \ge T\}$; segue de (1') que $K < \infty$ qc.

Seja ainda $A_n = A_n(T)$ o evento em que $\mathcal{G}_K^* \subset \mathcal{N}$.

Para completar a dem do Teo 1, basta mostrar que

$$\mathbb{P}(A_n) \to 1 \text{ qdo } n \to \infty. \tag{2}$$

Dem. de (2)

Para $\ell \geq 0$, seja

$$\mathcal{B}_{\ell} = \{\mathcal{T}_{\ell}^* = \infty\} \cup \{\mathcal{T}_{\ell}^* < \infty, \ \mathcal{X}_{\ell}^* \in \mathcal{N}, \ \tilde{Y}_{\mathcal{T}_{\ell}^*}^{\mathcal{X}_{\ell}^*} \in \mathcal{N} \setminus \mathcal{G}_{\ell}^*\},$$

e notemos que $\cap_{\ell=0}^K B_\ell \subset A_n$.

Logo, dado $L \ge 0$,

$$\mathbb{P}(A_n) \geq \prod_{\ell=0}^L \mathbb{P}(B_\ell | \cap_{j=0}^{\ell-1} B_j) - \mathbb{P}(K > L),$$

onde $\cap_{j=0}^{-1} B_j = \Omega$.

Podemos verificar prontamente que a prob dentro do produto acima é $\geq 1 - \frac{m+L}{m+n-1} \to 1$ qdo $n \to \infty$, e concluímos que $\liminf_{n \to \infty} \mathbb{P}(A_n) \geq 1 - \mathbb{P}(K > L) \ \forall \ L.$

E (2) segue de L ser arbitrário.

Obs.

- 1) Da conexão de (Y_t) com o processo de ramificação (R_ℓ) , como observado no alto do Slide 8, segue que se $\mathbb{E}(N(I)) = \lambda \iota \leq 1$, então (R_ℓ) se extingue qc, e podemos dizer que no SIR a infecção se extingue em tempo *relativamente curto* (de ordem 1) uniforme/e em n.
- 2) Se no entanto $\lambda\iota>1$, então (R_ℓ) sobrevive cp >0, e podemos dizer que para n bastante grande, no SIR a infecção sobrevive por tempo bastante longo (divergindo em n) cp >0 uniforme/e em n.

Obs. 2 (cont)

De fato, podemos mostrar que neste caso, se Z_n for o tamanho final do cj de inds removidos (o tamanho final da epidemia) e (r_n) for uma seq de nos. reais tq $r_n \to \infty$, $\frac{r_n}{n} \to 0$ qdo $n \to \infty$, então

- ▶ $\mathbb{P}(Z_n \leq r_n) \to q^m \text{ qdo } n \to \infty$;
- ▶ $\mathbb{P}(r_n < Z_n < \alpha n\tau) \to 0 \text{ qdo } n \to \infty$;
- ▶ $\mathbb{P}(Z_n > \beta n\tau) \to 0$ qdo $n \to \infty$,

para qquer $0<\alpha<1<\beta$, onde τ é a slç não trivial de $1-e^{-\lambda\iota\tau}=\tau$, e q é a prob de sobrevivência do processo de ramificação (R_ℓ) começando com 1 ind.

Veja na Seção 4.4 em Andersson & Britton um argumento para um resultado um pouco mais forte; o Teo 4.2 naquela seção fornece um resultado mais completo s/prova (c/ref).