CW (CNN)

Konwolucja i "pooling" w CNN (Convolutional Neural Network)

Input (konwolucji)
$$\boldsymbol{u}=(u(i,j))_{i=1,j=1}^{N,N}, \ u(i,j)\in\mathbb{R} \ (1\leq i,j\leq N)$$

Output (konwolucji) $\boldsymbol{x}=(x(i,j))_{i=1,j=1}^{N,N}, \ x(i,j)\in\mathbb{R} \ (1\leq i,j\leq N)$
 $(N=5)$

Jądro (ang. kernel)
$$\mathbf{w} = (w(i',j'))_{i'=-\infty,j'=-\infty}^{\infty,\infty}$$
 $w(i',j') \in \mathbb{R} \quad (-\infty < i',j' < \infty)$ Praktycznie weźmy $w(i',j') = 0$ gdy $(i',j') \notin \{-H,\ldots,H\} \times \{-H,\ldots,H\}$ $(H=1)$

Konwolucja (splot) $\boldsymbol{u} \mapsto \boldsymbol{x} = \boldsymbol{w} * \boldsymbol{u}$

Konwolucja = ekstrakcja cech obrazów (feature extraction)

$$x(i,j) = f_1 \left(\sum_{i'=-\infty}^{\infty} \sum_{j'=-\infty}^{\infty} w(i',j') u(i-i',j-j') \right)$$

 f_1 funkcja progowa lub $f_1(x) = x$

Uwaga. $(i-i', j-j') \notin \{1, \dots, N\} \times \{1, \dots, N\} \Rightarrow u(i-i', j-j') = 0$ (Jak to implementować w Pythonie?)

"Pooling" $\boldsymbol{x} \mapsto \boldsymbol{y}$

Pooling (łączenie) = operacja próbkowania przestrzennego Input ("pooling") $\boldsymbol{x} = (x(i,j))_{i=1,j=1}^{N,N}, \ x(i,j) \in \mathbb{R} \ (1 \leq i,j \leq N)$ (N=5)

Output ("pooling") $\mathbf{y} = (y(i,j))_{i=1,j=1}^{N-K,N-K}, \ y(i,j) \in \mathbb{R} \ (1 \le i,j \le N-K)$

$$y(i,j) = f_2 \left(\frac{1}{(K+1)^2} \sum_{(p,q) \in P_{ij}} x(p,q) \right) \ (1 \le i, j \le N - K)$$

$$P_{ij} = \{(i+k, j+\ell)\}_{k=0, \ell=0}^{K,K}$$
 f_2 funkcja progowa lub $f_2(x) = x$ $(N = 5, K = 3, N - K = 2)$

Dane dla zadań

$$\blacksquare = 1 \in \mathbb{R} \text{ (float)}$$
$$0 \in \mathbb{R} \text{ (float)}$$

$$\mathbf{w}_{j} = \begin{array}{ccc} (w(-1,-1) & w(-1,0) & w(-1,1) \\ w(0,-1) & w(0,0) & w(0,1) \\ w(1,-1) & w(1,0) & w(1,1) \end{array}$$
 $(1 \le j \le 4)$

Zadania

(1) (Konwolucja) Niech ${\bm u}\mapsto {\bm x}=(x(i,j))_{i=1,j=1}^{5,5}={\bm w}*{\bm u}$ będzie zdefiniowana wzorem

$$x(i,j) = f_1 \left(\sum_{i'=-1}^{1} \sum_{j'=-1}^{1} w(i',j') u(i-i',j-j') \right)$$

z funkcją progową

$$f_1(x) = \begin{cases} 0 & \text{gdy } x < 0\\ 1 & \text{gdy } x \ge 0. \end{cases}$$

Obliczyć i wyświetlić jako obraz $\boldsymbol{w}_j * \boldsymbol{u}_i \ (1 \le i \le 5, \ 1 \le j \le 4)$.
(2) ("pooling") Niech $\boldsymbol{u} \mapsto \boldsymbol{x} = (x(i,j))_{i=1,j=1}^{5,5} = \boldsymbol{w} * \boldsymbol{u}$ będzie zdefiniowana wzorem

$$x(i,j) = f_1 \left(\sum_{i'=-1}^{1} \sum_{j'=-1}^{1} w(i',j') u(i-i',j-j') \right)$$

z funkcją $f_1(x)=x$. Dla tego ${\boldsymbol x}$ zdefiniujemy "pooling" ${\boldsymbol y}=(y(i,j))_{i=1,j=1}^{2,2}, \quad y(i,j)\in \mathbb{R}$ $(1 \le i, j \le 2)$ wzorem

$$y(i,j) = f_2 \left(\frac{1}{4^2} \sum_{(p,q) \in P_{ij}} x(p,q)\right) \ (1 \le i, j \le 2)$$

z funkcją progową

$$f_2(x) = \begin{cases} 0 & \text{gdy } x < 0 \\ 1 & \text{gdy } x \ge 0 \end{cases}$$

i $P_{ij} = \{(i+k,j+\ell)\}_{k=0,\ell=0}^{3,3}$. Obliczyć i wyświetlić jako obraz "pooling" \boldsymbol{y} dla $\boldsymbol{w}_j * \boldsymbol{u}_i$ $(1 \leq i \leq 5, 1)$ $1 \le j \le 4$).