

Last time ★ Do not invent mathematical notation or language • What a proposition is

- Definitions of negation, conjunction, disjunction, and exclusive or
- What conjuncts, disjuncts, tautologies, and contradictions are in formal logic
- How to build and use a truth table

Fall 2023 CSCI 150 2/30

- :

Today's outline

- Conditional operator
- Laws of propositional equivalence

Fall 2023 CSCI 150 3/30

3

Logical operator: conditional

A false statement implies anything

p o q denotes the implication (aka conditional proposition) that p

implies q	p	q	$p \rightarrow$
	T	T	T
	T	F	F
	F	T	T
	F	F	Т

- In $p \rightarrow q$, p is the hypothesis and q is the conclusion
- Can read $p \to q$ as "if p then q" $p \colon \mathsf{Mars} \text{ is made of chocolate} \qquad q \colon 2+3=9$ $p \to q \colon \mathsf{If Mars} \text{ is made of chocolate then } 2+3=9$
- Not like if-then statement in code, which is executable

Fall 2023 CSCI 150 4/30

Many ways to read a conditional

 $\begin{array}{lll} \text{if } p \text{ then } q & q \text{ follows from } p \\ \text{If } p, q & q \text{ provided that } p \\ q \text{ if } p & q \text{ is necessary for } p \\ q \text{ when } p & \text{a necessary condition for } p \text{ is } q \\ p \text{ implies } q & p \text{ is sufficient for } q \\ q \text{ whenever } p & \text{a sufficient condition for } q \text{ is } p \end{array}$

p: Maria got an A in CSCI 150 q: Maria will find a good job $p \rightarrow q$: If Maria got an A in CSCI 150 then she will find a good job For Maria to find a good job it is sufficient that she got an A in CSCI 150 Maria will find a good job if she got an A in CSCI 150

Maria will find a good job unless she did not get an A in CSCI 150

Fall 2023 CSCI 150

5/30

5

Only if

- If p then q is written $p \rightarrow q$
- "p only if q" means
 - If q does not happen, then p does not happen
 - If q is not true then p is not true
 - ~q → ~p
- But $\sim q \rightarrow \sim p$ is the contrapositive of $p \rightarrow q$ and so is logically equivalent to it
- Thus "p only if q" is written $p \to q$ or $\sim q \to \sim p$

Fall 2023 CSCI 150 6/30

A really useful logical equivalence

p	~p	q	$p \rightarrow q$	$\sim p \vee q$
Т	F	T	T	Т
Т	F	F	F	F
F	T	T	T	Т
F	T	F	T	T

p: Maria got an A in CSCI 150 q: Maria will find a good job $p \to q$: If Maria got an A in CSCI 150 then she will find a good job

 $\sim p \lor q$: Either Maria did not get an A in CSCI 150 or she will find a good job

Fall 2023

CSCI 150

7/30

Variations on an implication

p: Maria got an A in CSCI 150 q: Maria will find a good job $p \to q$: If Maria got an A in CSCI 150 then she will find a good job

- Converse of p → q is q → p can be read "p only if q" and as "if q then p"
 q → p: If Maria finds a good job then she got an A in CSCI 150
- Inverse of p → q is ~p → ~q
 ~p → ~q: If Maria did not get an A in CSCI 150 then she will not find a good job
- Contrapositive of p → q is ~q → ~p
 ~q → ~p: If Maria does not find a good job then she did not get an A in CSCI 150

Fall 2023

CSCI 150

Equivalent implications

- · Must have identical truth table columns
- Which of a conditional proposition and its inverse, converse, and contrapositive are equivalent?

 A false statement implies anything.

p	~p	q	~a	$p \rightarrow q$	$\sim p \rightarrow \sim q$	$a \rightarrow p$	$\sim q \rightarrow \sim p$
T	F	T	F	T	Т	T	Т
Т	F	F	Т	F	Т	Т	F
F	T	Т	F	Т	F	F	Т
F	Т	F	Т	Т	Т	Т	Т

• An implication is logically equivalent to its contrapositive

$$(p \rightarrow q) \equiv (\sim q \rightarrow \sim p)$$

• The converse and inverse of an implication are logically equivalent

$$(q \to p) \equiv (\sim p \to \sim q)$$

Fall 2023 CSCI 150 9/30

.

Logical operator: biconditional

- $p \leftrightarrow q$ denotes a biconditional proposition
- Asserts that p and q are logically equivalent

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \land (q \rightarrow p)$
T	T	T	Т	T	Т
T	F	F	F	T	F
F	T	F	Т	F	F
F	F	T	T	T	Т

 $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

- Can read $p \leftrightarrow q$ as
 - p is necessary and sufficient for q p iff q
 - if p then q and conversely p exactly when q
 - p: Mars is made of chocolate q: 2 + 3 = 9
 - $p \leftrightarrow q$: Mars is made of chocolate if and only if 2 + 3 = 9

Fall 2023

CSCI 150

10/30

Comments Propositions can get complex Order of operations Evaluate ~ first Then evaluate ∧ and ∨ Finally evaluate → and ↔ Use parentheses liberally to keep computation clear Evaluate from the inside out Logic applies to R but strictly speaking <,>, ≤, ≥, =, ≠ are not symbols in propositional logic (-x ≤ y) ≡ (-x < y) ∨ (-x = y) (-x ≥ y) ≡ (-x > y) ∨ (-x = y) Fall 2023 CSCI 150

Today's outline ✓ Conditional operator • Laws of propositional equivalence Fall 2023 CSCI 150 13/30

13

Commutative laws for ∨ and ∧

• A binary operator calculates a result for 2 values

$$2 + 5$$
 $7/9$

- A binary operator is commutative if it produces the same result when its values are interchanged
- Addition and multiplication on *R* are commutative

$$2 + 5 = 5 + 2$$
 $2 \times 5 = 5 \times 2$

• Subtraction and division on R are not commutative

$$2-5 \neq 5-2$$
 $\frac{7}{9} \neq$

• Logical operators V and A are commutative on propositions

$p \vee q \equiv q \vee p$	Proof by truth table	p	q	$p \lor q$	$q \lor p$
$p \wedge q \equiv q \wedge p$		T	T	T	T
$p \wedge q = q \wedge p$		T	F	T	T
		F	T	T	T
	CSCI 150	F	F	F	F

16

Fall 2023

Associative laws for ∨ and ∧

- A binary operator is associative if it produces the same result when its application on 3 arguments are grouped consecutively
- Addition and multiplication on R are associative

$$(2+5)+9=2+(5+9)$$

$$(2\times5)\times9 = 2\times(5\times9)$$

• Subtraction and division on R are not associative

$$(2-5)-9 \neq 2-(5-9)$$

$$(2/5)/9 \neq 2/(5/9)$$

• Logical operators ∨ and ∧ are associative on propositions

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

$$(p \land q) \land r \equiv p \land (q \land r)$$

Fall 2023

CSCI 150

17/30

17

Proof of an associative law by truth table

 $(p \vee q) \vee r \equiv p \vee (q \vee r)$

p	q	r	$p \lor q$	$(p \lor q) \lor r$	$q \vee r$	$p \lor (q \lor r)$
Т	T	T	T	T	Т	T
Т	T	F	T	T	T	T
Т	F	T	T	T	Т	T
Т	F	F	T	T	F	T
F	T	T	T	T	Т	T
F	T	F	T	T	Т	T
F	F	T	F	Т	Т	Т
F	F	F	F	F	F	F

Fall 2023

CSCI 150

18/30

Distributive laws with ∨ and ∧

- One binary operator is distributive over another if it produces the same result when their application on 3 arguments can be grouped in either order
- Multiplication in *R* is distributive over addition and over subtraction $2 \times (5 + 9) = (2 \times 5) + (2 \times 9)$ $2 \times (5 - 9) = (2 \times 5) - (2 \times 9)$
- Subtraction and division in R are not distributive over addition or multiplication

$$2-(5+9) \neq (2-5)+(2-9)$$
 $2-\left(\frac{5}{9}\right) \neq \frac{2-5}{2-9}$

Logical operators v and ∧ are distributive over each other

V is distributive over ∧ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ ∧ is distributive over ∨

 $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$

Fall 2023 **CSCI 150** 19/30

19

Proof of a distributive law

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

p	q	r	$q \wedge r$	$p \lor (q \land r)$	$p \lor q$	$p \lor r$	$(p \lor q) \land (p \lor r)$
T	T	Т	T	T	T	T	T
T	T	F	F	T	T	T	T
T	F	T	F	T	T	T	T
T	F	F	F	T	T	T	T
F	T	T	T	T	T	T	T
F	T	F	F	F	T	F	F
F	F	T	F	F	F	T	F
F	F	F	F	F	F	F	F

CSCI 150

20

Fall 2023

20/30

Idempotent laws for \lor and \land

• An idempotent law shows that, for some operator, the identity for a binary operator has no effect on itself

$$0 + 0 = 0$$
 $1 \times 1 = 1$

• In propositional logic, the idempotent law for \vee is $p \vee p \equiv p$

$$egin{array}{cccc} p & p \lor p \\ T & T \\ F & F \end{array}$$

• In propositional logic, the idempotent law for \wedge is $p \wedge p \equiv p$

$$egin{array}{cccc} p & p \wedge p & & & & & \\ T & T & & T & & & & & \\ F & & F & & & & & & \end{array}$$

Fall 2023 CSCI 150 23/30

23

Universal bound laws for ∨ and ∧

- A universal bound law shows that for an operator some constant overrides any another value
- In propositional logic, the universal bound law for \vee is $p \vee t \equiv t$

$$\begin{array}{cccc}
p & t & p \lor t \\
T & T & T \\
F & T & T
\end{array}$$

• In propositional logic, the universal bound law for \wedge is $p \wedge c \equiv c$

$$\begin{array}{cccc}
p & c & p \land c \\
T & F & F \\
F & F & F
\end{array}$$

Fall 2023 CSCI 150 24/30

Proof methods (so far) Truth table Sequence of statements with reasons

CSCI 150

29/30

29

Fall 2023

