Secure Multi-party Computation in the Context of Deep Learning CS6160 : Cryptology

Raj Patil: CS18BTECH11039

2021-11-22

Outline

Context

- ► DL is useful
- ▶ inference needs to be fast -> quantization
- privacy is important

Secure Multi-Party Computation

Figure: Incentive for MPC protocols

Requirements of MPC

- 1. Input Privacy
- 2. Correctness

Deconstructing the Problem

Really 2 orthogonal sub-problems

- 1. quantizing neural networks
- 2. facilitating secure inference

Canonical Perspective of Neural Networks

Figure: a typical CNN

A Basic 2PC Framework

Figure: basic 2PC framework

Secure 2-Party Addition

The two parties $(P_1 \text{ and } P_2)$ want to securely compute $DS_1 + DS_2$. Now:

$$DS_1 + DS_2 = (D_1 + S_1) + (D_2 + S_2)$$

= $(D_1 + S_2) + (D_2 + S_1)$

func splitter(DS):

```
S <- get_rand() \\ randomly sourcing the share
D <- DS - S \\ the share doesn't leak any
return D,S \\ information about DS</pre>
```

Approximating Complex activation functions

Two kinds of irregularities:

- 1. A piece-wise differentiable activation function (e.g. ReLU)
- 2. A inherently transcendental function (e.g. Sigmoid)

Quantization

Figure: Quantization

Current Solutions and Challenges

Challenges

- Lack of availability in common frameworks
- Trade-off between efficiency and accuracy during quantization
- Specific Constraints
- Gnosticism regarding efficient solutions -> lack of scrutiny

Contribution

- Probabilistic Truncation (during quantization) :- efficient and accurate
- ► Model Agnosticism

Testing: Client Server Protocol

Figure: client server model for inference by a neural network: P_3 is dishonest

Testing: Factors Involved

Table: Possibilities of Adversarial Conditions in MPC protocols

Breakdown of Adversarial Conditions		Adversarial Nature	
		Active	Passive
Majority	Honest	<50% malicious	<50% malicious
		deviants	observers
	Dishonest	>50% malicious	>50% malicious
		deviants	observers

Possibilities

- MPC protocols -> a little too static -> lack of online implementations
- ► FHE (Fully Homomorphic Encryption) -> inference on encrypted data -> more dynamic opportunities