Matemática Discreta

Licenciatura em Segurança Informática em Redes de Computadores Licenciatura em Engenharia Informática Teoria dos Números - Criptografia

Eliana Costa e Silva – eos@estg.ipp.pt Aldina Correia – aic@estg.ipp.pt

Felgueiras, maio de 2022

Exemplos da utilização da Teoria dos Números na Criptografia

Cifra de César

A Cifra de César é um método de escrita de mensagens proposto por César que consistia em transladar cada letra do alfabeto para três "casas" mais adiante:

А	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
		\leftarrow	\leftarrow	+	1	1	\leftarrow	+	\leftarrow	+		+	+		+	+	\leftarrow								
D	E	F	G	Н		J	K	L	М	N	0	Р	Q	R	S	T	U	V	W	X	Υ	Z	Α	В	С

Encriptar

Substituímos cada letra por um número inteiro de 0 até 25, baseado na sua posição no alfabeto, onde $A \leftrightarrow 0, \ldots, Z \leftrightarrow 25$.

Α	В	С	D	Ε	F	G	Н	-	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
\downarrow	1	1	1	1	1	1	1	1		1	1	+	1	1	1	+	1	1	1	1	1	1	1	1	1
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Portanto, o método de César é definido pela função f que aplica cada número inteiro n, $0 \le n \le 26$, no inteiro $f(n) = (n+3) \mod 26$.

イロト (個) (を見) (達)

Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
1	1	1	1	1	1	1	1	\leftarrow	1	+	1	1	1	1	+	+	1	1	+	+	1	1	1	\leftarrow	+
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Por exemplo, $X \leftrightarrow 23 \longrightarrow f(23) = 27 \mod 23 = 1 \leftrightarrow B$.

Exercício

Encripte a mensagem "DISCRETA" usando a cifra de César.

$$D \leftrightarrow 3 \longrightarrow f(3) = (3+3) \mod 26 = 6 \leftrightarrow G$$

 $I \leftrightarrow 8 \longrightarrow f(8) = (8+3) \mod 26 = 11 \leftrightarrow L.$

$$I \leftrightarrow 8 \longrightarrow f(8) = (8+3) \mod 26 = 11 \leftrightarrow L.$$

$$S \leftrightarrow 18 \longrightarrow f(18) = (18+3) \mod 26 = 21 \leftrightarrow V.$$

Recuperar a mensagem original

Para recuperar a mensagem original a partir da mensagem encriptada pela Cifra de César basta considerar a **função inversa** f^{-1} que transforma um número inteiro n, com $0 \le n \le 25$, no número inteiro localizado 3 posições antes, i.e.

$$f^{-1}(n) = (n-3) \bmod 26.$$

Generalizar a cifra de César

Podemos generalizar a cifra de César transladando b casas em vez de 3 da seguinte forma:

$$f(n) = (n+b) \bmod 26$$

Este é um método muito simples e muito pouco seguro!

Generalizar e "melhorar" a cifra de César

Pode definir-se

$$f(n) = (an + b) \bmod 26,$$

com a e b inteiros escolhidos de modo a garantir que f é uma bijeção (**Porquê?**)

EOS. AIC (ESTGIP.Porto) Maio 2022 4 / 15

Exercício

Considere a função de encriptação definida por $f(n) = (25n + 1) \mod 29$ e considere as seguintes correspondências:

_ A	I D			T =	_					1/			N.			_	Б	-	T =			1 14/	- V	- 1/	7	· •		•
A	B	C	D	E	F	G	н		J	ĸ	L	IVI	IN	0	Р	Q	K	S	1	U	V	VV	_ X	Y		~	+	3
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28

- Encripte a mensagem "BLOB".
- Defina a expressão da função de desencriptação, f^{-1}
- Oesencripte a mensagem "TDQ".

Criptografia – O sistema RSA de chave pública¹

Suponhamos que a Ana pretende enviar uma **mensagem** x ao Bruno, pedindo-lhe que gere uma chave pública u (conhecida por toda a gente) e uma chave privada v (conhecida apenas pelo Bruno).

O protocolo funciona do seguinte modo:

- [1] A Ana envia a mensagem u(x) ao Bruno pelo canal público.
- [2] O Bruno recupera a mensagem original x aplicando v a u(x).

As chaves u e v são aplicações do espaço das mensagens para o espaço das mensagens. Para que o sistema funcione bem e permita manter o secretismo na comunicação, devem ter as seguintes propriedades:

- (P1) v(u(x)) = x para qualquer mensagem x.
- (P2) deve ser difícil obter x conhecendo u(x) e não conhecendo v.

Ao definirmos um sistema criptográfico deveremos explicitar o espaço das mensagens bem como as aplicações $u \in v$.

6 / 15

EOS, AIC (ESTG|P.Porto) Matemática Discreta Maio 2022

¹desenvolvido em 1976 por Rivest, Shamir e Adleman.

Criptografia – O sistema RSA de chave pública

Os sistemas criptográficos do tipo RSA são definidos do seguinte modo:

- $Z_m = \{0, 1, 2, \dots, m-1\}$, onde $m = p \times q$ para algum par de números primos p e q é o espaço de mensagens;
- $u(x) = x^a \mod m$, para qualquer $x \in \mathbb{Z}_m$;
- $v(y) = y^b \mod m$, para qualquer $y \in \mathbb{Z}_m$; onde $a \in b$ são tais que

$$a \times b \bmod [(p-1) \times (q-1)] = 1$$

Este sistema permite enviar mensagens encriptadas por uma chave pública a, mas para que o recetor seja capaz de desencriptar a mensagem precisa de ter uma chave privada b, apenas do seu conhecimento.

Proposicao

Sejam p e q números primos distintos. Sejam ainda $m=p\,q$ e n=(p-1)(q-1). Se a e b são números inteiros tais que $ab\equiv 1 \bmod n$, então v(u(x))=x para qualquer número inteiro $x< p\,q$.

Procedimento de encriptação

Sejam p e q dois números primos, $m=p\,q$, n=(p-1)(q-1), a tal que $\mathrm{mdc}(a,n)=1$ e b a solução da congruência $ab\equiv 1 \bmod n$.

No sistema RSA, podemos começar por traduzir as mensagens (sequências de letras) em sequências de números inteiros (tal como fizemos na cifra de César).

O número inteiro x daí resultante é depois transformado, com a ajuda da chave pública a, num número inteiro fazendo:

$$u(x) = x^a \mod m$$

Procedimento de desencriptação

O recetor quando recebe a mensagem desencripta-a com a ajuda da chave privada b que apenas ele conhece, fazendo:

$$v(u(x)) = u(x)^b \bmod m$$

Exemplo

Encripte a mensagem "STOP" usando o sistema RSA com m = 2537 e a = 13.

Note que
$$2537=43\times 59,\ p=43, q=59$$
 e $\mathrm{mdc}(13,(43-1)(59-1))=\mathrm{mdc}(13,42\times 58)=1.$

Α	В	С	D	Е	F	G	Н	-	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	Х	Z
	+	+	\leftarrow	1	1	1	1	1	+	1	+	+	+	+	1	+	+	+	+	↓	+	+	1
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23

Para encriptar começamos por traduzir STOP no seu equivalente numérico. De seguida agrupamos esses números em blocos de quatro dígitos (pois 2525 < 2537 < 252525). Obtemos.

De seguida encriptamos cada bloco de quatro dígitos:

$$u(x) = x^a \mod m$$
, com $m = p \times q = 2537$ e $a = 13$. \rightarrow aux =

$$u(1819) = 1819^{13} \bmod 2537 = 2081$$

e
$$u(1415) = 1415^{13} \mod 2537 = 2182$$

$$u(1415) = 1415^{13} \bmod 2537 = 2182$$

A mensagem encriptada é 2081 2182. < □ > < □ > < □ > < □ > < □ > < □ > □ ≥

Exemplo

Encripte a mensagem "SOS" usando o sistema RSA com com m=2537 e a=13...

Α	В	С	D	Е	F	G	Н		J	K	L	М	N	0	Р	Q	R	S	Т	U	V	Х	Z
1	1	1	1	\downarrow	\downarrow	\downarrow	\downarrow	1	1	1	1	1	1	+	1		\downarrow	1	↓	1		1	1
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23

Temos S \rightarrow 18 e O \rightarrow 14.

Encriptação:

$$u(x) = x^a \mod m$$
, com $m = p \times q = 2537$ e $a = 13$.

Assim,

$$u("S") = u(18) = 18^{13} \mod (2537) = 2222$$

 $u("OS") = u(1418) = 1418^{13} \mod (2537) = 1289$

A mensagem "SOS" encriptada é:

2222 1289

Exemplo

Desencripte a mensagem 2081 2182, encriptada usando o sistema RSA do exemplo anterior (p=43, q=59 e a=13).

Desencriptação:

$$v(u(x)) = u(x)^b \mod m$$
.

Temos que começar por determinar b resolvendo a congruência $ab \equiv 1 \mod n$. Como $n=(p-1)(q-1)=42\times 58=2436$, a congruência a resolver é

$$13b \equiv 1 \mod 2436$$

Portanto, é necessário calcular o inverso de 13 mod 2436.

Usando o algoritmo de Euclides:

Temos que mdc(2436,13)=1, donde existe o inverso de 13 modulo 2436.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Assim,

$$\begin{array}{lll} \operatorname{mdc}(2436,13) & = & 1 \\ & = & 3-2\times 1 \\ & = & 3-(5-3\times 1)\times 1 \\ & = & 2\times 3-1\times 5 \\ & = & 2\times (13-5\times 2)-1\times 5 \\ & = & 2\times 13-5\times 4-1\times 5 \\ & = & 2\times 13-5\times 5 \\ & = & 2\times 13-5\times (2436-187\times 13) \\ & = & 2\times 13-5\times 2436+935\times 13 \\ & = & \mathbf{937}\times \mathbf{13}-5\times 2436 \end{array}$$

Logo, o inverso de 13 modulo 2436 é 937 e

 $13b \equiv 1 \mod 2436 \Leftrightarrow 937 \times 13 \times b \equiv 937 \times 1 \mod 2436 \Leftrightarrow b \equiv 937 \mod 2436$

Podemos então desencriptar a mensagem fazendo:

$$v(u(x)) = u(x)^b \mod m$$

$$v(2081) = 2081^{937} \mod (2537) = 1819$$

No Scilab fazemos:

aux=pmodulo(2081,2537)

for k=1:(937-1)

aux=pmodulo(aux*2081,2537);

end

$$v(2182) = 2182^{937} \mod (2537) = 1415$$

Α	В	С	D	Е	F	G	Н	Т	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	Х	Z
1	1	1	1	1	1	1	 	1	1	1	+	+	1	+	↓	+	+	+	+	↓	+	+	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23

Como

$$18 \rightarrow \text{S}, \ 19 \rightarrow \text{T}, \ 14 \rightarrow \text{O} \ \text{e} \ 15 \rightarrow \text{P}.$$

A mensagem original é "STOP".

< □ > < □ > < □ > < □ > < □ > < □ > □ ≥

Como se desenrola na realidade o processo de troca de mensagens secretas entre a Ana e o Bruno?

O recetor, o Bruno:

- escolhe dois números primos p e q
 que pode ser difícil quando se procuram números p e q muito grandes;
- ② calcula os produtos m=pq e n=(p-1)(q-1) é muito fácil!
- escolhe $a \in \mathbb{Z}_n$ (a chave pública) tal que $\mathsf{mdc}(a,n) = 1$ é fácil se conhecemos um algoritmo eficaz para calcular o mdc de 2 números!
- lacksquare usando o algoritmo de Euclides, determina $b\in \mathbb{Z}_n$ (a chave privada) tal que $ab\equiv 1 mod n$
 - é fácil se conhecemos um algoritmo eficaz para calcular o inverso de um elemento em $\mathbb{Z}_n!$
- ullet envia os valores de m e a para a Ana, mantendo a chave privada b apenas do seu conhecimento
 - não havendo garantias de segurança no canal de comunicação, os valores de m e a passam a ser eventualmente públicos!

A Ana tem agora os elementos para encriptar as suas mensagens com a função u e enviá-las ao Bruno. Como apenas o Bruno conhece o valor de b, apenas ele poderá decifrar a mensagem aplicando a função v.

E que trabalho tem que fazer uma terceira pessoa mal intencionada, que conhece apenas a função de encriptação, para desencriptar uma mensagem?

- fatorizar o número m para recuperar os primos p e qo que pode ser muito difícil quando m é muito grande:
- $oldsymbol{0}$ usando o algoritmo de Euclides, determinar $b \in \mathbb{Z}_n$ (a chave privada) tal que $ab \equiv 1 \bmod n$ o que será fácil se conhecemos um algoritmo eficaz para calcular o inverso de um elemento em \mathbb{Z}_n .

Portanto.

- para criar o código é preciso encontrar dois números primos p e q;
- para decifrar o código é preciso fatorizar o produto n = p q.

Exercícios: 118 ao 126.