音频功率放大电路设计

学号: 2128410206 姓名: 龚烨 成绩:

一、任务

设计并完成一个音频功率放大电路,频带宽为 50Hz~20kHz,输出波形基本不失真。

- (1) 设计目标输出功率放大倍数:
- (2) 设计目标输出功率。

二、要求

- 1. 查资料,设计电路原理图,确定器件及其参数。
- 2. 用 Multisim 软件画原理图并仿真,记录仿真结果。
- 3. 制作实物,记录输出结果。
- 4. 学习 Altium Designer 软件的使用。

三 、仪器及器材选择

- 1. 万用表一只。
- 2. 直流稳压电源一台。
- 3. 信号发生器一台。
- 4. 示波器一台
- 5. 电阻与电容若干
- 6. 2N1711、TIP42C 晶体管各两个

四、设计方案

1. 仿真设计 电路原理图如图 1 所示

图 1

通过仿真, 电路可以基本实现 50Hz~20kHz 频段不失真放大功能。通过调节 R4, 可以调节输出电压的幅度。输入输出的波形如图所示

通过查看 Multisim 自带的波特测试仪,可以看出,电路的带宽较宽,可以满足 20kHz 上限截止频率。但由于原件包中只含有 100uF 的电容, 因此在 R6 与 C1 处 的滤波截止频率较高,无法达到 50Hz 下限截止频率的要求。

图 3

2. 实物焊接

由于音频放大电路对电路稳定性要求较高,我选择了 PCB 打样的方式,使用的软 件是嘉立创 EDA。

电路的原理图如图 4 所示。

图 4

PCB 如图 5 所示。

图 5

实物图如图6所示。

图 6

五、实验数据

在输入电压 Vpp=100mV 时,测得幅频响应如下表所示。

f	40	100	500	1k	2k	5k	10k	15k	20k	25k
v_o	92.50	305.80	375.20	396.50	407.40	417.90	438.30	431.90	460.20	454.10
v_i	69.20	67.45	34.18	34.98	34.57	34.40	35.14	33.73	35.22	34.28
A_V	1.26	6.56	10.40	10.54	10.71	10.85	10.96	11.07	11.16	11.22

电源功率P = 5.9V * 0.1A = 0.59W

六、设计总结与分析

在本次综合实验中,我首先通过 Multisim 仿真确认电路结构,再使用 EDA 软件画出原理图和 PCB 图,最后打样、焊接。此音频功率放大电路基本满足了要求,但仍然存在一些不足,例如带宽控制为满足题目要求,输出功率也较小。通过这次实验,我学习了 EDA 软件的使用方法,也练习了焊接技术。