DATE				SHEET NO.01			
X	×	y	У	G V L V			
0	0	0	0	GIS, YI			
5 · 64 × 10-4	5.64×101	0.0112	0.0113	1 2			
8·42×10		0.0182	0.0188	,			
1	1.405 ×10-3	0.0342	0.0354				
	1.968×10-3	0.0213	0.0241	LN			
1 1	2.498×10-3	0.0772	0.08				
	4.22×10-3	0.121	0.1377	GIS. YNAT LS. XM			
6.98×10.3	7'03 ×10-3	0.212	0.269				
<u>9)</u>) F2	rom plos	Ļ .					
L _s	min =	$\frac{\times_{N+1} - \times_{1}}{\times_{N} - \times_{1}}$	$\frac{1}{6} = \frac{0.25 - 0.25}{6.65 \times 10}$	0.02 = 34.5864			
$G_S = 0.8 \frac{PV}{RT} = \frac{180 \text{ m}^3 \times 101325 \text{ Pa.}}{8.314 \text{ J-mof}^{-1} \text{ k}^{-1} 298 \text{ k}} \times 0.8$							
$G_{1s} = 5993.51 \underline{moles}$ $\overline{hr}.$							
Ls,	min = (5	993.51 X 3	34.5864) =	8731 207293·83 moles			

$$L_{s,min} = (5993.51 \times 34.5864) = \frac{3731}{hr} 207293.83 \frac{moles}{hr}$$

$$L_{s,min} = (207293.83 \times 18 \times 10^{-3}) \frac{kg}{hr}.$$

DATE

SHEET NO. 02

b)
$$L_s = 1.2 L_s$$
, min = 24 8752.596 moles

 $\frac{L_s}{G_{1s}} = 41.50$

Let, operating line pawes through (x_{N}' , 0.25)

 $41.50 = \frac{0.25 - 0.02}{x_{N}' - 0}$
 $x_{N}' = 5.542 \times 10^{-3}$

Cy From plot,

Number of ideal trays $= 4 + \frac{21}{36}$

No. of real trays = $\frac{\text{theoretical no. of trays}}{\text{mechanical efficiency}} = \frac{4.583}{0.5}$ = 9.17

=> Required number of Real trays = 10

DATE

2

SHEET NO. 03

0.21			
Mole CO2	Pcoz (mm Hg)	×	У
0.058	5.6	0.062	7.423×103
0.060	12.8	0.064	0.014
0.062	29.0	0.066	0'0397
o 0 0 6 4	56.0	0.068	0.0795
0.066	98.7	0.070	0.149
0.068	155.0	0.073	0.256

Griven:
$$x_0 = 0.615$$

 $x_1 = 0.02$

a) from plot :
$$x'_{H} = 0.0708$$

$$\frac{L_{s,min}}{G_{1s}} = \frac{Y_{N+1} - Y_{1}}{Y_{N} - X_{0}} = \frac{0.176 - 0.02}{0.0708 - 0.0615}$$

b)
$$\frac{L_s}{G_{1s}} = 1.2 \frac{L_s, min}{G_{1s}} = 20.124$$

$$G_{S} = 0.85 \times \frac{1 \, m^3 \times 101325 \, Pa}{8.314 \, \text{J mof}^{-1} \, k^{-1} \, 298 \, k} = 2 34.76 \, \frac{\text{mof}}{\text{fbr}}$$

$$L_{S} = 699.56 \, \frac{\text{mof}}{\text{fbr}}$$

P.R.E.

DATE

.31

SHEET NO. 04

$$L_{N} = \left[L_{S} + 0.0058 L_{S}\right] = 740.13 \text{ mod/hr}.$$

$$20.124 = \frac{0.176 - 0.02}{2N - 0.0615}$$

$$L_{N} = \left[L_{S} \times \frac{100}{\frac{30}{61} + \frac{30}{18}} + 0.0582 L_{S} \times \frac{100}{61} + \frac{30}{18} \times \frac{100}{18} \right]$$

$$L_{N} = 177518 \text{ fhr}$$

c) Using XN = 0.069

from plot no. of ideal stages = 2.43

For dilute (gas) system

Equilibrium curre:

$$X_0 = X_0 = 0.0001$$

$$y_1 = y_1 = \frac{0.01 \times 0.02}{0.99 + 0.01 \times 0.02} = 2.019 \times 10^{-4}$$

LN= 17.751 kg/hr.

Gis, 1/1 Ls, Xo

P.R.

DATE

SHEET NO. 05

a)
$$\frac{L_{\text{S,min}}}{G_{\text{S}}} = \frac{0.01 - 2.019 \times 10^{-4}}{9.36 \times 10^{-3} - 0.0001} = 1.0581$$

$$G_{1} = \frac{(240 \times 0.98)}{(240 \times 0.9902)} = 237.648 \frac{\text{kmol}}{\text{thr.}}$$

$$N = \frac{\log \left[\frac{y_{N+1} - m\chi_0}{y_4 - m\chi_0} \left(1 - \frac{1}{A} \right) + \frac{1}{A} \right]}{\log A}$$

$$A = \frac{L}{m61} = \frac{252.699}{1.0682 \times 238.824} = 1.981$$

$$M = 5.781$$

$$\frac{\gamma}{1+\gamma} = \frac{1.0682 \times 1000}{1+x}$$

$$y = x(1.0682 + 0.0682 Y)$$

P.R.E

DATE

$$\frac{0.01 - \lambda}{0.01 - \lambda} = -5.116$$

DATE

Q.41 Griven!
$$y = 26x$$

$$S = \frac{m6s}{L_s}$$

$$G_s = \frac{G_{11} + G_{12}}{2}$$

$$L_s = \frac{L_1 + L_2}{2}$$

$$L_s = \left(\frac{600 + 600 \times 0.9505}{2}\right) = 585.15$$

$$G_1_s = \left(\frac{25 + 25 + 600 \times 0.0495}{2}\right) = 39.85$$

$$S = \frac{26 \times 39.85}{585.15} = 1.771$$

$$Griven! \quad \chi_0 = 0.05 \quad \chi_N = 0.005$$

$$\frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3} =$$

SHEET NO. 08

.5

DATE

$$y^* = \frac{1 \cdot 02 \times 7}{1 - x}$$

$$L_S X_2 + G_1S Y_1 = G_1S Y_2 + L_S X_1$$

$$G_1S = 0.9 \times \begin{pmatrix} 600 \, \text{m}^3 \times 101325 \, \text{Pa} \\ 8.314 \, \text{J.mod}^{-1} \, \text{K.}^{-1} \, \text{2.98 k} \end{pmatrix}$$

$$= 22084 \cdot 323 \, \text{modes}$$

$$Griven that
$$y_1 = 0.002 \quad y_2 = 0.1 \quad y_1 = 0.111, \quad y_2 = 0.002$$
Using $X = \frac{x}{1 - x}$

$$y^* = 1.02 \times 1$$
Now,
$$\frac{L_{S, rnin}}{G_1S} = \frac{0.111 - 0.002}{0.103 - 0} \times 1$$
Given that
$$\frac{L_S}{G_1S} = 2 \frac{L_{S, rnin}}{G_{1S}} = 2$$

$$\frac{y_2 - y_1}{x_2 - x_1} = 2$$

$$x_1 = 0.055$$
again
$$\frac{y_1 - \frac{y_1}{1 - y_1}}{x_1 - \frac{x}{1 - x_1}} = 2$$$$

DATE

SHEET NO. 09

Obtained operating line can be represented as

$$\frac{y}{1-y} = \frac{2x}{1-x}$$

For obtaining yis

$$\frac{0.1 - \frac{1.02 \times 1}{1 - \times}}{x; - x} = -\frac{kx}{ky} = \frac{325}{150} = -2.167$$
Following table is required for evaluation of Nta

χ	y	≈;	7:	8-81 8	eny
2.48 ×10-3	0.005	0.003	0.003	2.5	-5.3
4.92 × 10 ⁻³	0. 01	0.006	0.006	2.5	-4.6
9,71×10-3	0.02	0.013	0.013	2.86	- 3.9
0.014	0.03	0.019	0.02	3	- 3.5
0.019	0.04	0.025	0.026	2.86	- 3.9
0.023	0.05	0.031	0.033	2.94	-2.99
0.028	0.06	0.034	0'039	2.86	-2.8
0.036	0.08	0.049	0.023	2.96	- 2.5
0.023	0.1	0.020	0.064	2.48	-2.3

$$N + G = \int \frac{dy}{y - y_1} + \frac{1}{2} ln \left(\frac{1 - y_2}{1 - y_1} \right)$$

DATE

SHEET NO. 10

$$N_{tG} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{y}{y-y_1} d(\log y) + \frac{1}{2} ln(\frac{1-y_2}{1-y_1})$$

Jon y1 J y-y; d(eny) can be obtained by numerical integration or by graphical integration.

From graphical integration;

$$H_{tg} = \frac{G_1'}{k_{ya} (1-y_i)_m}$$

For dilute system,

$$(1-y_i)_{M} \simeq \frac{(1-y_i)_{1}+(1-y)_{1}}{2}$$
 $(y_{iM})_{1} = 0.9335$
 $G_{i} = \frac{600\times101325\times4}{298\times8:314\times6.768)^{2}tt}$
 $= 52269.91 \frac{mod}{m^{2}.hr}$

P.R.E

DATE

SHEET NO. 11

0.6

By question:
$$m=1.4$$
 $N_{tog} = \frac{\ln \left[\frac{y_1 - mx_2}{y_2 - mx_2} (1 - \frac{1}{A}) + \frac{1}{A} \right]}{1 - \frac{1}{A}}$

Considering ideal gas behavior

 $y_1 = 0.06$
 $y_2 = 0.0005$

Considering $L_s = \frac{L_1 + L_2}{2}$; $G_{1s} = \frac{G_{11} + G_{12}}{2}$
 $L_2 = 250 \text{ kg/hr} = \frac{250}{18} = 13.88 \frac{\text{kmod}}{\text{hr}}$
 $L_1 = (13.88 + 0.3374) \frac{\text{kmod}}{\text{hr}}$
 $L_1 = (13.88 + 0.3374) \frac{\text{kmod}}{\text{hr}}$
 $L_1 = 14.22 \frac{\text{kmod}}{\text{hr}}$
 $L_1 = 14.05 \frac{\text{kmod}}{\text{hr}}$
 $G_{1s} = 6.1345 \frac{\text{kmod}}{\text{hr}}$
 $G_{1s} = 6.1345 \frac{\text{kmod}}{\text{hr}}$
 $G_{1s} = \frac{G_{1s} + G_{1s}}{2} = 5.966 \frac{\text{kmod}}{\text{hr}}$
 $G_{1s} = \frac{G_{1s} + G_{1s}}{2} = \frac{14.05}{1.4 \times 5.966} = 1.69$
 $N_{tog} = \frac{\ln \left[\frac{0.06}{0.0005} (1 - \frac{1}{1.1682}) + \frac{1}{1.1682} \right]}{(1 - \frac{1}{1.1682})} = 9.611$

P.R.F

DATE

SHEET NO.12

$$H_{ton} = \frac{G_1'}{K_{c_1} a (1-y)_M} \qquad G_1' = \frac{4G_1}{\pi x \times (0^{13})^2}$$

$$(1-y_1)_M \approx 1$$

$$H_{ton} = 0.378$$

$$Z = H_{ton} N_{ton} = 3.63 \text{ m}$$

$$G_1 = 14.0 \quad \frac{kmod}{hr}$$

$$L_2 = 45.56 \quad \frac{kmod}{hr}$$

$$L_1 = \left[45.56 + G_1 \times 0.021\right] = 45.56 + 0.294$$

$$L_1 = 45.854$$

$$L = \frac{L_1 + L_2}{2} = 45.707 \quad \frac{kmod}{hr}$$

$$G_1 = \frac{G_1 + G_1 2}{2} = 13.853 \quad \frac{kmod}{hr}$$

$$G_2 = \frac{G_1 + G_1 2}{2} = 13.853 \quad \frac{kmod}{hr}$$

$$G_3 = \frac{G_1 + G_1 2}{2} = 13.853 \quad \frac{kmod}{hr}$$

$$G_4 = \frac{y_1 - y_2}{(y - y^*)_M}$$

$$(y - y^*)_M = \frac{(y_1 - y_1^*)_M}{4\pi \left(\frac{y_1 - y_1^*}{y_2 - y_3^*}\right)} - \left(\frac{y_2 - y_1^*}{y_3 - y_3^*}\right)$$

$$\frac{(y - y^*)_M}{4\pi \left(\frac{y_1 - y_1^*}{y_3 - y_3^*}\right)} - \left(\frac{y_2 - y_1^*}{y_3 - y_3^*}\right)$$

P.R.E

DATE

SHEET NO. 13

$$\chi_{1} = 0 \qquad \qquad \forall_{1}^{*} = 0.0076$$

$$\chi_{2} = 0.0064 \qquad \qquad \forall_{2}^{*} = 0$$

$$(y - y^{*})_{M} = \frac{(0.026 - 0.0076) - (0.005 - 0)}{4n}$$

$$(y - y^{*})_{M} = 0.0103$$

$$N_{+0} = \frac{0.026 - 0.005}{0.01803} = 2.04$$

$$Figain_{\frac{1}{K}yq} = \frac{1}{k_{y}q} + \frac{1}{mk_{x}q}$$

$$k_{y}q = 0.025$$

$$H_{+0} = \frac{C7'}{k_{y}q(1 - y_{*})_{M}} = \frac{13.853}{0.186 \times 0.025 \times 3600}$$

$$= 0.87$$

Z = (2.04×0.87) = 1.7748 m

DATE

$$G_1 = \frac{G_{11} + G_{12}}{2} = 23.64 \text{ kmol}$$

$$L_2 = \frac{1}{2} = \frac{1}{2} = 256.36 \text{ kmol}$$

$$A = \frac{L}{mG} = \frac{256.36}{22.5 \times 23.64} = 0.482$$

$$A = \frac{1}{m6n} = \frac{1}{22.5 \times 23.64}$$

$$N_{tol} = \frac{1}{m6n} = \frac{1}{22.5 \times 23.64}$$

$$N_{tol} = \frac$$

$$\chi_2 = 0.03$$

$$x^{4} = 0.005$$

$$\frac{1}{Kya} = \frac{1}{kya} + \frac{m}{kxa}$$

$$Kya = \frac{1}{0.06 \times 3600} + \frac{1}{22.5 \times 0.04 \times 3600}$$

DATE

$$H_{tol} = \frac{L}{K_{x}a(1-x_{4})_{M}}$$

$$= 1.673$$

$$= H_{tol} N_{tol}$$

$$= 6.82 m$$