PROVA ESPECIAL DE TERMODINÂMICA I (EQE-363)

Prof. Frederico W. Tavares

- 1) (30Ptos) Uma corrente com vazões de 50 mols/s de n-butano, 20 mols/s de n-hexano e 50 mols/s de n-octano entra em um trocador de calor a 1 atm e 300K e sai a 350K. Fazendo as suposições pertinentes:
- a) Calcule as composições das fases em equilíbrio, se for o caso, na entrada e na saída do trocador de calor.
- b) Calcular a taxa de calor envolvida no processo.

Dados dos componentes	n-butano	n-hexano	n-octano
Psat(atm) (300K)	5	2	0.2
Psat(atm) (350K)	10	5	0.8
$\Delta H^{vap}(cal/gmol)$	5132	6672	7907
C_P^V (cal/gmol/K)	28	20	18
C_P^L (cal/gmol/K)	35	25	22

- **2)** (20 Ptos) Um tanque industrial de $5x10^5$ cm³ contendo propano (tratado como gás ideal) é comprimido do estado I ($P^I(atm) = 1$ e $T^I(K) = 300$) para o estado II ($P^{II}(atm) = 4$ e $T^{II}(K) = ?$). Sabendo que a capacidade calorífica de gás ideal à pressão constante é de $C_P(cal/gmolK) = 5,0+0,01T(K)$, calcule o calor total e o trabalho total envolvidos nos seguintes processos:
- a)Compressão isotérmica reversível. b) Compressão adiabática reversível.
- 3) (30 Ptos) Uma mistura contendo 1 mol de A, 2 mols de B e o 7 mols de C entra num reator e os componentes participam das seguintes reações a 400 K e 2,5 atm: A (g) \Leftrightarrow B (g) + C (g) e B (g) + A (g) \Leftrightarrow 2 D (s). Considerando o comportamento de gás ideal e que D é sólido dentro do sistema, calcule a composição da fase gasosa de equilíbrio na saída do reator. Dados: Energias livres de Gibbs e calores de formação dos componentes a 300 K e 1 atm no estado de referência de gás ideal para os compostos A, B e C e sólido puro para D.

Compostos	A	В	C	D
$\Delta G_f^0(cal/gmol)$	200	250	250	450
$\Delta H_f^0(cal/gmol)$	2000	1500	500	2500

4) (20 ptos) Duas correntes de amônia, corrente 1 (m₁=20 lbm/s a -40 °F e 30 psia) e corrente 2 (m₂=?, a 60 °F e 30 psia), são misturadas em um trocador de calor de contato direto, produzindo uma corrente 3 no estado de vapor saturado. A corrente 3 passa por um compressor (com eficiência de compressão de 80%) e produz uma corrente 4 a 100 psia. Encontre as propriedades termodinâmicas (T, P, H e S) das correntes e calcule a potência elétrica envolvida no processo.

Figure 9.4 Pressure/enthalpy diagram for ammonia

R = 1,987cal/(gmolK) = 82,05(atmcm³)/(gmolK)

 $T(^{\circ}F) = I(R) - 459,$

 $dH = C_P dT + [V - T \left(\frac{\partial V}{\partial T} \right)_P] dP$

 $dS = C_P d \ln T - \left(\frac{\partial V}{\partial T}\right)_P dP$

 $y_i P = x_i \gamma_i P_i^{SAT}$

 $K = exp\left(\frac{-\Delta G^0}{RT}\right) = \prod_i \hat{a}_i^{\nu_i}$

 $\left(\frac{\partial \mathbf{G}'}{\partial \mathbf{T}}\right) = -\frac{\mathbf{H}}{\mathbf{T}^2}$