Zinovy Radovilsky*

California State University, East Bay, Hayward, California, USA

Vishwanath Hegde

California State University, East Bay, Hayward, California, USA

Anuja Acharya

California State University, East Bay, Hayward, California, USA

Uma Uma

California State University, East Bay, Hayward, California, USA

This research paper identifies and compares knowledge domains and skills that characterize Business Data Analytics (BDA) and Data Science (DS) professions. By reviewing the literature sources, we develop a model to systemize the expected knowledge domains and skills for these two fields. Then we collected primary BDA and DS job posting data from online job-related websites and analyzed this data using text mining methods. The results of the text mining analysis reveal some similarities as well as important differences between the required knowledge domains and groups of skills for BDA and DS. These results provide insights that are vital in designing curriculum and training in the evolving business analytics and data sciences areas, and also enable professionals to sharpen their skills that are aligned with job market requirements.

I. INTRODUCTION

Big data analytics is increasingly shaping the way organizations manage their decision-making processes, create new services and products, and gain competitive advantage. The demand for analytics and its applications is driving the expansion of information technology and associated analytical methods and tools (Kennedy et al., 2015). As a result, a number of analytics

professions emerged, among which business analytics, business data analytics (in this paper, we use the term "business data analytics" or BDA) and data science (DS) professions are the most prominent ones. According to a Forbes article (Columbus, 2015), jobs related to big data analytics represent one of the fastest growing segments of the overall job market. This article also stated that the number of people using the analytics titles in LinkedIn has

^{*} Corresponding Author. E-mail address: zinovy.radovilsky@csueastbay.edu

Skills Requirements of Business Data Analytics and Data Science Jobs: A Comparative Analysis

doubled in 2011-2015. Based on a MarketWatch.com survey, the data scientist job was ranked in 2017 as #1 Best Job in America, and the analytics manager job was ranked as #4 (Fottrell, 2017).

Due to the fact that the big data fields like BDA and DS are still evolving over recent time, there is an ongoing discussion on how to define each of these areas and what they really represent. As Miller (2014) stated "Exactly what a data scientist is and what skill set is required is a subject of intense debate." A number of academic and practitioner papers define these terms in a variety of ways. In some papers, the authors do not distinguish between the terms "business data analytics" and "data science" as separate entities (Henry and Venkatraman, 2015; Miller, 2014; Power, 2014; Kemper and Mathews, 2017; Priestley, 2013). For example, Henry and Venkatraman (2015), state that "Big data infrastructure comprises of a big data repository, data analytics software, and the data scientists. Data scientists use their knowledge and expertise in the growing field of data sciences, which need strong mathematical, statistical, and information technology." This explanation does not contemplate a business data analytics profession to be an entity separate from the data scientist profession. In a similar way, Kemper and Mathews (2017) point out that all work in data analytics is done by "the Data Scientist." They define the "data science" term in conjunction with the "data analytics" term using the definition provided by the National Institute of Standards and Technology (NIST, 2015): "data science is the extraction of actionable knowledge directly from data through a process of discovery, or hypothesis formulation and hypothesis testing; and the analytics process is the synthesis of knowledge from information."

In many academic and practitioner literature sources, "business data analytics" or simply "business analytics," and "data science" terms are defined separately (Phelps and Szabat, 2017; Bichler et al., 2017; Kambatla et al., 2014; Aasheim et al., 2015). This separation between BDA and DS is also evident by the relevant job postings in the market. Summarizing various definitions of "data analytics," specifically in conjunction with "business analytics," Phelps and Szabat (2017) concluded that the BDA definitions highlight four key aspects: data, technology, statistical and quantitative analysis, and decision-making support. They also stated that data science definitions include four key aspects: data, databases, computer systems (taking a set of inputs, processing them to produce outputs), and advanced analysis (e.g., machine learning, artificial natural language processing, intelligence) including statistics. This summarization of BDA and DS definitions provides a clear difference between the two terms. DS emphasizes computer systems, algorithms, and computer programming skills, whereas BDA has a substantial focus on statistical and quantitative analysis of data, and decision-making support.

In addition to defining the BDA and DS terms, there is also an ongoing discussion in the academic and practitioner literature on the knowledge and skills that are required for the two professions (Phelps and Szabat, 2017; Kemper and Mathews, 2017; Cegieelski, and Jones-Farmer, 2016; Kambatla et al., 2014). This discussion is specifically important at the time when the job market for these professions is rapidly growing, and, at the same time, an extensive number of academic and professional programs in BDA and DS have been recently introduced by a large number of universities and colleges. A clear and indepth understanding of relevant knowledge and skills for BDA and DS fields may

Skills Requirements of Business Data Analytics and Data Science Jobs: A Comparative Analysis

tremendously benefits several important stakeholders: (a) business organizations creating job requirements and qualifications for big data professionals; (b) current and future specialists that would like to develop and/or improve their skills in the BDA and DS fields, and (c) academic and professional institutions that are creating or already teaching analytics and data science programs.

In this paper, our goal is to identify, and compare systemize groups knowledge domains skills and that characterize BDA and DS professions. For identifying these groups, we analyze existing in the market business and data analysts as well as data scientist job offerings using methods of text mining analytics. The objectives of this research study include the following:

- Based on literature sources, identify the expected knowledge domains and skills for BDA and DS fields.
- Systemize the groups of skills required for BDA and DS fields by analyzing primary job posting data.
- Compare the BDA and DS knowledge domains and groups of skills to identify their similarities and differences.
- Provide important insights for companies and education of BDA and DS professionals.

The structure of this paper is as follows. After the Introduction section I, we present in section II, a literature review of existing research on BDA and DS knowledge and skills. In section III, we describe research methodology, data collection, and analytical approaches applied in this research. In section IV, we provide, using text mining methods, analysis of BDA and DS job requirements and present the results of this analysis. We finish the paper with the conclusions in section V.

II. LITERATURE REVIEW

As the entire field of big data analytics is relatively new and developing, the existing research pertaining to the knowledge domains and skills required in big data analytics professions is also quite recent and evolving. In this section we analyze existing literature sources pertaining to: (a) methodology and actual professional skills essential to the BDA and DS fields, and (b) comparison of the knowledge domains and skills of these two fields.

As a professional field that involves technology, utilization of quantitative/statistical methods, business-related functionality, BDA and DS involve an extensive variety of knowledge and skills traits. This necessitates developing a methodology for systemizing those skills present them in coherent understandable ways. We identified a number of papers that describe such methodologies and associated skills in BDA (Dubey and Gunasekaran, 2015; Gorman and Klimberg, 2014; Cegieelski, and Jones-Farmer, 2016; De Mauro et al., 2017; Ellway et al., 2014; Wymbs, 2016) and DS (Power, 2016; Mills et al, 2016; Schoenherr and Speier-Pero, 2015; Song and Zhu, 2016; Tang and Sae-Lim, 2016; Kemper and Mathews, 2017; Englmeier and Murtagh, 2017).

For BDA, Dubey and Gunasekaran (2015), based on a survey of data and business analytics executives, develop a framework for education and training in BDA by clustering all skills into two major groups: hard skills and soft skills. The hard skills include some statistical/quantitative methods like statistics, forecasting and optimization, and also functional areas such finance, financial accounting, marketing. The soft skills contain some managerial and communication attributes like leadership abilities. team

Skills Requirements of Business Data Analytics and Data Science Jobs: A Comparative Analysis

listening, interpersonal skills, etc., which can be relevant to any business profession. Overall, this research, being a good initial approach in systemizing the BDA skills, does not address all of them, e.g., technology-related skills. From the latter standpoint, a more detailed framework, which is based on benchmarking of BDA academic programs (Gorman and Klimberg, 2014), includes not only statistics and quantitative groups of skills, but also information systems and business intelligence group. This group of skills incorporates skills in big data technologies, enterprise systems, data marts, databases, online analytical processing (OLAP) and programming, which are overlapped with quantitative methods, forecasting and data mining. Being more detailed, the Gorman and Klimberg (2014), however, do not address managerial and communication skills associated with BDA.

Cegieelski, and Jones-Farmer (2016) present an even more comprehensive research of the BDA knowledge, skills, and abilities by analyzing a large number of undergraduate business analytics programs. This research identifies, using expert ranking of those programs, the important components of knowledge, skills, and ability in three main knowledge domains required for the BDA profession, i.e.:

- Business domain includes communication skills, project management, client orientation, time management, etc.
- Analytical domain incorporates problem definition and problemssolving skills, predictive analysis, integrative analysis, and some others.
- Technical domain is divided into three subgroups:
 - o Applications Excel, SAS, Tableau, etc.
 - o Languages R, Python, SQL, and Java

Infrastructure – Hadoop,
 Casandra, Oracle, Linux,
 MapReduce, Hive, and Pig.

We now continue this literature review with a discussion of methodologies related to DS knowledge and skills. In analyzing management information systems programs, Mills et al. (2016) adopted four pillars of skills in educating data scientists including:

- Data preprocessing, storage, and retrieval – e.g., NoSQL, data modeling, and data warehousing skills.
- Data exploration statistical analysis and visualization.
- Analytical models and algorithms machine learning, data mining, and natural language processing.
- Data product data and information organization, knowledge representation, and application development.

This framework is somewhat similar to those for BDA, but distinguishes itself by introducing the "data product" pillar, which includes, among other things, application development. Conversely, the framework provided by these authors (Mills et al., 2016) does not incorporate a business domain, which is quite common among BDA groups of skills.

Schoenherr and Speier-Pero (2015), in their research on big data analytics in supply chain management, establish three groups of skill sets for DS, which include: (a) enterprise business processes and decision making, (b) analytical and modeling tools, and (c) data management. Although these three groups describe DS skills, they also come close and can be easily adopted for a BDA skills framework.

Another research paper on identifying DS skills (Song and Zhu, 2016) presents the DS framework as a combination of four components:

Skills Requirements of Business Data Analytics and Data Science Jobs: A Comparative Analysis

- Big Data Infrastructure includes big data technologies such as Hadoop ecosystems, NoSQL databases, in-memory computing and cloud computing.
- Big Data Analytics Lifecycle covers all stages of data analysis, data understanding, data preparation, and integration, model-building, evaluation, deployment, and monitoring.
- Data Management Skills incorporate traditional data modeling and relational database knowledge.
- Behavioral disciplines contain soft skills related to people and business such as abilities to think critically, to communicate with domain experts, and to make project outcomes relevant to business.

This DS framework also comes close to the BDA groups of skills, specifically, in terms of data management skills and behavioral disciplines. With respect to the question on distinguishing between BDA and DS skills, we identify only a handful number of research papers, which consider the differences between the groups of skills in these fields (Aasheim et al., 2015; Debortolli et al., 2014; Liberatore and Luo, 2013). For example, Aasheim et al. (2015) discusses the similarities and differences between the BDA and DS undergraduate programs based on the course descriptions. The authors identified that these two types of programs have a number of similarities, specifically, in terms of the topics taught. However, they also recognized several important differences in the program curriculum: "First, DS programs require additional mathematics courses - at least through linear algebra, which is typically after Calculus II, and most require discrete math. Second, they all require at least nine hours of programming courses and at least two statistics courses" (Aasheim et al., 2015). The limitation of these results with respect to our study is that it does not cover all potential BDA and DS programs, and also do not consider, as has been described before, the real job market requirements for these professions.

We identified, however, several practitioner papers that describe the most common DS skills based on analyzing DS job positions from various websites. For example, Junco (2017) used text mining to extract DS skills from Glassdoor.com, a popular website with various job positions (see Figure 1).

Gonzalez (2017) provided a list of most common DS skills based on the 2015 job data from LinkedIn. Based on web scabbing tools, Steinweg-Woods (2015) identified DS skill lists for the job markets in various cities (San Francisco, New York, Chicago, etc.) and nationwide. All of these lists contain just the technical skills, and do not have any other relevant DS skills, e.g., analytical and business skills pertaining to the DS profession.

Overall, the analysis of the described academic literature sources shows that they:
(a) do not clearly distinguish between the group of skills required for BDA and DS; and (b) those papers are predominately based on analysis of existing academic programs or on surveys of big data professionals, and do not take into consideration real job market requirements for BDA and DS knowledge domains and skills.

Skills Requirements of Business Data Analytics and Data Science Jobs: A Comparative Analysis

The Ten Most Common Data Science Skills in Job Postings

Skill	Percentage of Job Listings
Python	72%
R	64%
SQL	51%
Hadoop	39%
Java	33%
SAS	30%
Spark	27%
Matlab	20%
Hive	17%
Tableau	14%
ource: Glassdoor Economic Research.	glassdoo

FIGURE 1. TEN MOST COMMON DATA SCIENCE SKILLS IN JOB POSTINGS (JUNCO, 2017)

III. METHODOLOGY

In this paper, we intent to answer the following research questions related to the BDA and DS fields:

- What are groups of knowledge and skills required for BDA and DS professions?
- What are common and distinguishing groups of skills between the two professions?
- What are important insights that can be revealed to business organizations and educational programs in terms of the BDA and DS knowledge and skills?

Our research model is based on identifying knowledge domains and associated skill sets for the BDA and DS fields. In addition to the three knowledge domains - Business, Analytical, and Technical – that are used in the Cegieelski, and Jones-Farmer (2016) paper discussed in the Literature Review section, we add one more knowledge domain, Communication. The latter is related to the written. communication, and presentation skills required today for the BDA and DS specialists (Song and Zhu, 2016; Dubey and Gunasekaran, 2015). Figure 2 depicts our research model, which connects the BDA

and DS with 4 described knowledge domains and groups of skills (one or several groups) connected with each domain. In general, some groups of skills may also contribute simultaneously to several knowledge domains, e.g., analytical and technical.

As described in the Literature Review section, most of the academic research that considers the BDA and DS knowledge and skills is based on analyzing academic and professional programs without proper emphasis on and attention to the existing job market requirements for these professions, which actually defines the real knowledge and skills for these big data professions. Therefore, to answer our research questions, we analyze the primary data related to the online posted iob requirements, qualifications, and skills for the BDA and DS professions. For these purposes, we collected around 1050 unique records of job requirements in BDA and DS for a period of 5 months from July through November of 2017. The job records were approximately evenly split between the two positions (close to 550 records for BDA and 500 records for DS positions). A specific number of 500 records for each data set represents a substantial and sufficient array of records to be able to perform a qualified text mining

Skills Requirements of Business Data Analytics and Data Science Jobs: A Comparative Analysis

analysis and receive statistically significant results of this analysis. The collection of these records was done manually without utilizing any web-scaping (web-crawling) tools, because with the latter tools we would not be able to structure the scrapped data into specific data/column structure we used in our research. They were derived from various online job posting sites including LinkedIn.com, Monster.com, Dice.com, Indeed.com, glassdoor.com, and careerbuilder.com.

FIGURE 2. RESEARCH MODEL.

We develop two separate data sets, one included positions for DS jobs, and another data set – for BDA jobs. The titles of these job positions included in each data set were strictly related to either "Data Scientist" or "Data Analyst" jobs titles, respectively. We did not consider titles that may entail both DS and BDA in them, or other titles that were unclear in terms of their inclusion in one of the two data sets.

The primary job posting data was initially collected in a separate spreadsheet data set for each profession (BDA or DS) with the following column structure:

- Job Title the title of a job position by which it is advertised in the website.
- Industry a specific industry to which this job belongs, e.g., Information Technology, Insurance, Biotechnology, Oil and Gas, etc.

- Position Level position level is derived by the following two methods:
 - The first option is a position level (e.g., Entry level, Associate, Director) as advertised for the job position in the website.
 - o The second option, in case of the position level is not advertised in the website is to use the following assumptions: entry level (0-3 years of experience), midsenior level (3-5 years of experience), senior level (5+ years of experience)
- Education education level required for the job.
- Experience the number of years of professional experience required for the job.

- Responsibilities the job description which entails what a candidate is supposed to do in the given role.
- Requirements/Skills/Qualification the skillset required for the job title. This includes, for example, technical skills like scripting languages (R, statistical Python etc.). and quantitative analytical models (classification, regression models, forecasting, optimization model etc.), experience domain (Insurance, Media etc.), business-related skills, and others.

In this research, we mostly concentrate on the last column with the information on the jobs' requirements, skills, and qualification. If these information is not provided in a job posting, we consider responsibilities as a primary source of information to identify required job skills. This information is central to our research agenda of identifying and comparing the knowledge domains and groups of skills for BDA and DS professions.

The data we analyze – requirements, skills, and qualifications of BDA and DS job positions – are mostly qualitative textual demonstrate data that a sufficient complexity derived from its unstructured nature and amount of records used. This analysis cannot be done by simple data visualization or manual counting, and therefore requires more sophisticated approaches of big data analytics. In our case, we utilize text mining methods to identify the existing frequencies of various skills with the associated BDA professions, group (cluster) those skills, and compare between each other. For each of these professions, we identify the following:

• Document Data Matrix (DTM) with useful words and phrases, defined as "terms," describing the job requirements, skills and

- qualifications, and also their count and relative frequency.
- *Term Cloud* to visualize the relative frequencies of terms in DTM.
- Singular Vector Decomposition (SVD) of the data to reduce noise and redundancy in the analyzed DTM that improves the ability to capture the essence of existing relationships between the terms.
- VARIMAX Rotation to develop, based on the relationships between terms, several important groups of topic terms (words and phrases) that can characterize the groups of skills required for each position.
- Latent Class Analysis (LCA) to identify clusters of terms (similar to topic words) based on the closeness of their relations.

The described quantitative approaches are commonly used for text mining analytics, and are well described in a variety of literature sources (Berry and Kogan, 2010; Kwartler, 2017; Klimberg and McCollough, 2016, Weiss et al., 2015).

To utilize all these text mining methods, we employ the JMP software, which is one of the SAS software products. The current version of JMP software has an extensive built-in statistical and predictive analytics capabilities, and, in particular, text mining analytics. It is relatively easy to use, provides good visualization of the derived results, and can make output scripts with the methods applied to any major data analytics language like Python, R, and SAS. The results of our analysis based on the specified text mining methods, and comparison of the BDA and DS groups of skills are presented in the next section.

IV. TEXT MINING ANALYSIS AND RESUTS

As discussed in the Methodology section, we utilize the text data describing requirements, skills, and qualifications of the accumulated BDA and DS job postings. Based on this text data, we develop a Document Term Matrix (DTM) for each profession, which contains a combination of terms, i.e., individual words and simple phrases, specific to a particular profession (BDA or DS). The DTM development was using Stemming of words and Regex option for tokenizing those words. We also use a Add*Word* utility to remove Stop unnecessary words, e.g., "a," "the," "and," and remove words combinations that are general and not specific to BDA or DS, e.g., "strong," "easy," "experience," and some others. In addition, we use a Recode utility to change the words with common names, example, "ml" was recoded as "machine learning," or recode misspelled words.

Based on these DTM improvements and cleaning, they finally contained 985 terms for BDA and 1,350 terms for DS. The 20 most frequent BDA and DS terms and

TABLE 1. 20 MOST FREQUENT BDA TERMS.

		Proportion
#	Term	of total, %
1	sql	74.5%
2	tools	56.9%
3	reports	54.9%
4	business	53.9%
5	environment	52.9%
6	analytics	51.0%
7	understand.	47.1%
8	excel	47.1%
9	database	44.1%
10	develop	44.1%
11	proficient	44.1%
12	python	36.3%
13	required	36.3%
14	r	35.3%
15	business intelligence	35.3%
16	technical	31.4%
17	tableau	30.4%
18	team	28.4%
19	query	27.5%
20	analysis	27.5%

their percentages in the total number of postings are presented in Tables 1 and 2, respectively. As can be seen from the tables, the most frequent terms are quite different between the two sets of job postings. For BDA jobs, the most frequent terms start with "sql," "tools," "reports," "business," and "environment," which describe a more business-oriented nature of those jobs. At the same time, the most frequent words in the DS jobs contain "machine learning," "analytical," "python," "big data," "analytics," "algorithms," which and characterizes more technical (programming and software) orientation of those jobs. The development of DTM in JMP does allow to use, besides individual terms, the phrase terms combined of two or more words up to a certain limit specified by a DTM developer (we limited it to 4 words in a phrase term). Therefore, two-word terms like "machine learning," "big data," and "business intelligence" appear in DTM (see Tables 1 and 2).

The term clouds in Figures 3 and 4 also support the same conclusion with respect to more business-oriented BDA terms versus technical orientation of the DS terms.

TABLE 2. 20 MOST FREQUENT DS TERMS.

		Proportion
#	Term	of total, %
1	machine learning	71.6%
2	analytical	47.0%
3	python	42.0%
4	big data	28.2%
5	analysis	26.8%
6	algorithms	26.4%
7	written communication	24.0%
8	sql	22.6%
9	r	20.0%
10	techniques	18.6%
11	tools	15.8%
12	statistics	15.4%
13	data processing	14.8%
14	natural language	14.2%
15	hadoop	13.4%
16	models	12.6%
17	environment	12.0%
18	data mining	11.8%
19	technologies	11.6%
20	collaborate	11.4%

FIGURE 3. TERM CLOUD FOR BDA JOBS.

FIGURE 4. TERM CLOUD FOR DS JOBS.

We next apply Latent Semantic Analysis (LCA) to extract useful information from DTM concerning knowledge and skills of the BDA and DS professions. Due to a large size of the DTMs for both job positions, we utilize, as a part of LCA, Singular Value Decomposition (SVD) to reduce the DTM dimensionality to a manageable size that more clearly depicts the underlying structure of the data (Klimberg and McCullough, 2016, Weiss et 2015). SVD reduces noise and redundancy in the data, and creates new dimensions that capture the essence of existing relationships. To develop the SVD output, we utilize the minimum term frequency of 10 (a term is mentioned at least

10 times in the job postings), and term frequency—inverse document frequency (TF-IDF) weighting. TF-IDF considers the tradeoff between the frequency of a term throughout the data set and the frequency of the term in DTM, which makes results more interpretable (Klimberg and McCullough, 2016, Weiss et al., 2015).

To develop SVD, we apply 20 singular vectors. The number of singular vectors can be assigned by a developer in the SVD specifications. For the visualization purposes, we utilize the first two vectors only, which capture around 14% and 10% of the variance in the BDA and DS data sets, respectively. The SVD outputs for the first two term singular vectors (Vector 1 and

Vector 2) are shown in Figures 5 and 6. In each graph, the singular vectors have three branches that are shown with different colors and markers (red squares, blue circles, and green "plus sign" points). The branches describe some common themes existing in the text data. For example, in the SVD plot for BDA (Figure 5), the branch with blue circles describes the data analytics

FIGURE 5. SVD PLOT FOR BDA TERMS.

The three branches in the SVD plot for DS terms (Figure 6) represent different groups of terms from those in the plot for BDA terms. For example, the blue circles in the DS plot (Figure 6) are associated with analytical tools like "machine learning "svm," "naïve bayes," and some others. The branch with green plus sign points "algorithms," "architecture," represents "models," and other similar terms. The red square dots describe a variety of software development like "software terms development," "open source," "distributed computing," and others. Finally, the black dots in both SVD plots (Figures 5 and 6) denote BDA and DS terms that are not grouped by the first two singular vectors, Vectors 1 and 2.

To develop more coherent groups of terms for BDA and DS, we use the SVD data for topic extraction with *VARIMAX Rotation*, which is, essentially, the factor analysis of terms. This approach allows extracting groups of terms that, according to

technologies and languages (Python, R, Hadoop, Hive, Spark, Java, and similar related items). The branch with plus sign points represents "machine learning," "statistics," and "techniques." The branch with a substantial number of red squares characterizes a theme associated with business requirements in business data analytics.

FIGURE 6. SVD PLOT FOR DS TERMS.

squared loadings or squared correlations between the terms, are closely related to each other (Kwartler, 2017; Klimberg and McCollough, 2016, Weiss et al., 2015). In our case, we apply the Topic Analysis with VARIMAX Rotation for both DTMs. The number of selected topics could vary, typically, from 2 to 10, and can be used to identify the best fit of the term groupings. In our research, we identify that the best fit for the BDA terms happens with the selected number of topics equal to 10, and for the DS terms the best number of topic appears to be 8 (see Appendix A). Each topic in Appendix A contains a list of skills that belong to each topic. The specific skills included in each topic are closely related to each other according to squared loadings between the skills. These skills are also listed in descending order of their respective loadings, from top-rated (high loadings) down to lower-rated (lower loadings).

In essence, each topic identifies a group of terms, which may be described as a

Skills Requirements of Business Data Analytics and Data Science Jobs: A Comparative Analysis

group of skills generally required for a BDA or DS job. Based on the combination of terms included in the topics in *Appendix A*, we were able to provide a possible definition, with only certain degree of certainty, for each of those topics, and associate it with four knowledge domains, i.e., Technical, Analytical, Business, and Communication described in the Methodology section of this paper. The

topic or group of skills definitions, example of those skills, and their allocation to specific knowledge domains are presented in Tables 3 and 4. In these tables, all terms in the *Examples of Skills* column are shown in lowercase, which is done to make them consistent with the DTM terms (Tables 1 and 2) and data mining results in *Appendix A*.

TABLE 3. TOPICS DEFINITIONS FOR BDA.

Topic	Group of Skills	Examples of Skills	Domain
		xml, database design, packages, collect	
Topic 1	Database Design and Management	organize analyze and disseminate	Technical
		clustering, regression, factoring,	
Topic 2	Data Mining/Machine Learning	algorithms, neural network	Analytical
		business, requirements, lead, mapping,	
Topic 3	General Business	documents	Business
		programs, office, results, outlook,	
Topic 4	Office Programs	powerpoint	Business
		scheduling, media, data visualization,	
Topic 5	Effective Data Management	effective, solutions	Business
		hadoop, spark, hive, c/c++, big data	
Topic 6	Big Data Technology and Languages	technologies, languages	Technical
		tables, pivot/table, sharepoint, microsoft	
Topic 7	Data Presentation	office, vba	Analytical
		cube, kimball, ssas, sql server, data	
Topic 8	Data Warehousing	warehouse	Technical
Topic 9	Data Analytics Software	r, tableau, qlikview, python, stata	Analytical
		reports, database, web, crystal reports,	
Topic 10	Presentation and Communication	interpersonal skills	Communication

TABLE 4. TOPICS DEFINITIONS FOR DS.

Topic	Group of Skills	Examples of Skills	Domain
Topic 1	Analytical Tools	naïve bayes, knn, svm, machine learning	Analytical
	Information Management and	information, process, manage, written	Business and
Topic 2	Communication	communication, verbal communication	Communication
	Implementation of Analytics and Big	implementation, service, customer, data	
Topic 3	Data Technologies	mining, hadoop, statistical modeling	Technical
		software development, distributed	
Topic 4	Software Development	computing, hive, architecture, apache	Technical
		software, open source, testing, apache,	
Topic 5	Software and Data Management	data management	Technical
		clustering, modeling, quantitative,	
Topic 6	Analytical Methods	analytical skills, logistic regression, sas	Analytical
		bayesian, frameworks, algorithms,	
Topic 7	Algorithms and Languages	architecture, models	Analytical
		communicate complex, real world,	Business and
Topic 8	Communication and Presentation	problems, team, solve	Communication

Skills Requirements of Business Data Analytics and Data Science Jobs: A Comparative Analysis

Tables 3 and 4 show several similar topics for both BDA and DS, for example, Topic 2 Data Mining/Machine Learning and Topic 10 Learning and Communication in BDA are comparable with *Topic* **Tools** and Analytical **Topic** Communication and Presentation in DS, respectively. However, we also noticed substantive differences in the groups of skills in those profession. As can be seen from Table 4, the BDA groups of skills have a major emphasis on business-related skills like General Business skills and Effective Data Management, and also technical skills such as Database Design and Management, and Data Warehousing. Contrary to that, the DS job skills focus on *Software* Development, Algorithms and Languages, and Software and Data Management, whereas the business skills appeared to be substantially less prominent in DS.

We continue our text mining research with cluster analysis of the BDA and DS' terms, which is referred to as Latent Class Analysis (LCA). It is used in text mining to group together DTM's common terms into a designated number of clusters (Berry and Kogan, 2010; Klimberg and McCollough, 2016; Weiss et al., 2015). As previously with the SVD and VARIMAX Rotation, we used for consistency 10 clusters for BDA and 8 clusters for DS. The clustering results including the DTM terms in each cluster are presented in Appendix B. Employing the combination of terms allocated to the clusters in Appendix B, we also provide a possible definition for each of those clusters, and associate each cluster with one or several of the four knowledge domains. The topic definitions and their allocation to specific domains for each profession is presented in Tables 5 and 6.

TABLE 5. DEFINITIONS of CLUSTERS FOR BDA.

Cluster	Group of Skills	Examples of Skills	Domain
	Business Problem Solving and	communications skills, problem solving,	Business and
Cluster 1	Communication	creativity, collaboration, problem	Communication
		python, develop, languages, machine	
		learning, hadoop, r, hive, statistics,	Technical and
Cluster 2	Big Data Technology and Languages	programming	Analytical
		excel, access, proficient, organizational,	
Cluster 3	Office Programs	powerpoint	Business
Cluster 4	General Management	manage, problem solving, fast paced, excel	Business
Cluster 5	Effective Data Management	sql, result, proficient, communication skills	Business
Cluster 6	Database Design and Management	advanced, sql server, build, etl	Technical
		database, sql, develop, analytical skills,	
Cluster 7	Database Design and Management	design	Technical
		complex, develop, business, reports,	
Cluster 8	Presentation and Communication	presentation, communication skills	Communication
		analytics, proficient, results, business	
Cluster 9	Data Analytics	intelligence	Analytical
		environment, develop, management, work	
Cluster 10	General Management	independently, product	Business

Skills Requirements of Business Data Analytics and Data Science Jobs: A Comparative Analysis

Comparing the allocation of terms into BDA clusters and BDA topics (Tables 3 and 5), we can see a high degree of similarity between them. Although not in the same sequence, the common topics and clusters for BDA are: General Business/General Management, Office Programs, Effective Data Management, Big Data Technologies and Languages, and some others to the lesser level of similarity. In the same way, there are a number of common themes in the topics and clusters related to DS (Tables 4 and 6), e.g.,

Analytical Methods, Algorithms, Communication and Presentation, and Big Data Technologies. All this supports the point that several different text mining methods identify a number of similar groups of skills within BDA and DS professions. In addition, the cluster analysis also confirms, as previously identified through the Topics Analysis, that there are a number of different groups of skills between BDA and DS. Overall, the LCA cluster analysis validates the results of VARIMAX Rotation of terms for the BDA and DS groups of skills.

TABLE 6. DEFINITIONS OF CLUSTERS FOR DS.

Cluster	Group of Skills	Examples of Skills	Domain
	Technologies and Programming		
Cluster 1	Languages	technologies, programming languages	Technical
		machine learning, natural language,	
Cluster 2	Analytical Methods	statistics, analytical tools, optimization	Analytical
Cluster 3	Analytical Methods	machine learning, tools, analysis, python,	Analytical
		written communication, non technical,	
Cluster 4	Communication and Presentation	analytical, results, environment	Communication
		techniques, algorithms, machine learning,	
Cluster 5	Algorithms	big data, svm	Technical
		deep learning, machine learning,	
Cluster 6	Algorithms	algorithms, python, problem solving	Technical
		written communication, business,	Business and
Cluster 7	Business and Communication	analytical, projects, research	Communication
		spark, big data, algorithms, hadoop,	
Cluster 8	Big Data Technologies	modeling	Technical

V. CONCLUSIONS

Creating a detailed understanding of relevant knowledge and skills for business data analytics (BDA) and data science (DS) fields is extremely important for various organizations looking for big data professionals. It is also critical for current and future professionals that would like to develop and/or improve their skills in these areas. In addition, the clear recognition of the BDA and DS knowledge and skills may be vital for an increasing number of

academic and professional programs that teach business data analytics and data science.

The described in this paper literature review of academic and practitioner papers show that they do not clearly distinguish between the groups of skills required for BDA and DS. Those papers predominately based on analysis of existing business analytics and data science educational programs, or on surveys of big data professionals, and do not take into

Skills Requirements of Business Data Analytics and Data Science Jobs: A Comparative Analysis

consideration real job market requirements for BDA and DS knowledge and skills.

In this research study, we apply the primary data of job requirements, qualifications, and skills for business/data analyst and data scientist from various online job-related websites in order to identify and systemize the groups of knowledge and skills required for BDA and DS professions. We also compare the two sets of data to distinguish between the two professions, and provide important insights for companies and education of BDA and DS professionals.

Our research model is based on identifying knowledge domains and skill sets for the BDA and DS fields. According to this model, we consider four knowledge domains - Technical, Analytical, Business, and Communication – and associated groups of skills (one or several groups) connected with each domain. To identify these groups of skills we utilize a variety of methods of text mining analytics, i.e., developing a Document Data Matrix and text terms cloud, performing Singular Value Decomposition of the Document Data Matrix, and using the latter to make VARIMAX Rotation and Latent Class Analysis for grouping and clustering the text terms, respectively.

mining analysis, The text in particular, VARIMAX Rotation's topics and reveal LCA clusters. some similarities as well as substantial differences between the knowledge domains and groups of skills for BDA and DS (see Tables 4-6). The similarities are demonstrated by the groups of skills related to Analytical Methods, Data Mining and Machine Learning. and Communication and Presentation skills. We also identify that the most notable difference in BDA vs. DS groups of skills is that the former has a major emphasis on business-related skills including General Business and Effective Data Management, and also technical skills such as *Database Design and Management*, and *Data Warehousing* (Table 3). Contrary to that, the DS groups of skills focus on the technical skills related to *Software Development*, *Algorithms and Languages*, *Software and Data Management* (Table 4). Applying the text mining analysis, we were also able to identify the top ranked skills that belong to each group of skills.

Overall, this paper presents a unique research study, where the knowledge domains and groups of skills relevant to BDA and DS are compared and contrasted based on the job-related skill requirements and qualifications for these professions. This research also produced a number of contributions to the theory and practice of big data analytics. First, we extended the list of knowledge domains for BDA and DS to four main domains including Technical, Analytical, Business, and Communication, and also develop a new research model that incorporates these domains along with the groups of skills. Second, we identified and titled those groups of skills (topics and clusters) with their respective top-ranked skills examples for BDA and professions. Third, from the practical standpoint, the systemized knowledge domains and associated groups of skills for BDA and DS can be extremely helpful to: (a) employers developing job requirements for bid data job positions; (b) employees and specialists for better understanding and for sharpening their skills in BDA or DS; and (c) academic and professional education for developing new or improving existing analytics and data science programs and certificates.

This research can be extended in the future in several ways. We may analyze the BDA and DS skills in conjunction with several important job-related characteristics and attributes, i.e., years of experience (e.g., 1-3 years, 3-5 years, 5+years), position level (entry, middle, and senior level), education

level (bachelor, masters, Ph.D.), job location, and some others. In addition, we may compare and contrast the groups of BDA and DS job-related skills with those imbedded in the existing academic and professional programs in these fields.

REFERENCES

- Aasheim, C.L. and Williams, S., Rutner, P. and Gardiner, A., "Data Analytics vs. Data Science: A Study of Similarities and Differences in Undergraduate Programs Based on Course Descriptions", *Journal of Information Systems Education*, 26(2), 2015, 103-115.
- Berry, M. and Kogan, J. *Text Mining: Applications and Theory*, John Wiley and Sons, 2010.
- Bichler, M., Heinzl, A. and Van der Aalst, W.M., "Business Analytics and Data Science: Once Again?", *Business & Information Systems Engineering*, 59(2), 2017, 77-79.
- Cegieelski, C.G. and Jones-Farmer, L.A., "Knowledge, Skills, and Abilities for Entry-Level Business Analytics Positions: A Multi-Method Study", Decision Science Journal of Innovative Education, 14(1), 2016, 91-118.
- Columbus, L., "Where Big Data Jobs Will Be in 2016", Forbes Magazine, November 15, 2015, http://www.forbes.com (accessed October 5, 2017).
- Daniel, B., "Big Data and analytics in higher education: Opportunities and challenges", *British Journal of Educational Technology*, 46(5), 2015, 904-920.
- Debortolli, S., Muller, O. and Von Brocke, J., "Comparing Business Intelligence and Big Data Skills: A Text Mining Study Using Job Advertisements",

- Business and Information Systems Engineering, 5, 2014, 289-300.
- De Mauro, A., Greco, M., Grimaldi, M. and Ritala, P., "Human resources for Big Data professionals: A systematic classification of job roles and required skill sets," *Information Processing & Management*, June, 2017, 1-22.
- Dubey R. and Gunasekaran, A., "Education and training for successful career in Big data and Business Analytics", *Industrial and Commercial Training*, 47(4), 2015, 174-181.
- Ellaway, R.H., Puci, M.V., Galbraith, R.M. and Cameron, T., "Developing the role of big data and analytics in health professional education", *Medical Teacher*, 36, 2014, 216-222.
- Englmeier, K. and Murtagh, F., "Editorial: What Can We Expect from Data Scientists?", *Journal of Theoretical and Applied Electronic Commerce Research*, 12(1), 2017, 1-5.
- Fottrell, Q., "The most sought-after job in America pays \$110,000 a year if you have this skill", *MarketWatch: Stock Market News*, November 19, 2017, http://www.MarketWatch.com (accessed December 1, 2017).
- Gonzalez, C., "Data Analysis and Computing: The Future Job Wave," *Machine Design*, April 14, 2017, http://www.machinedesign.com/industri al/data-analysis-and-computing-future-job-wave (accessed November 28, 2017).
- Gordon, M.E, "Are Business ready to Take Advantage of the Growing Number of Data Scientists?", *Big Data Consulting*, February 6, 2016, http://www.experfy.com (accessed December 1, 2017).
- Gorman, M. F. and Klimberg, R.K., "Benchmarking Academic Programs in Business Analytics", *Interfaces*, 44(3), 2014, 329-341.

- Henry, R. and Venkatraman, S., "Big Data Analytics the Next Big Learning Opportunity", Journal of Management Information and Decision Sciences, 18(2), 2015, 17-29.
- Holden, G., "Big Data and R&D Management", Research-Technology Management, September-October, 2016, 22-26.
- Junco, P.R., "Data Scientist Programs: What Skills Do They Have and How Much Do They Make?", Glassdoor Job Search, September 2017, 21, http://www.glassdoor.com (accessed November 10, 2017).
- Kambatla, K., Kollias, G., Kumar, V. and Grama, A, "Trends in big data analytics", Journal of Parallel and Distributed Computing, 74, 2014, 2561-2573.
- Kemper, S. and Mathews, T., "Earth Science Data Analytics: Definitions, Techniques and Skills, Data Science Journal, 16(6), 2017, 1-8.
- Kennedy D.T., Crossen, D.M. and Szabat, K.A., "Business Analytics and Big Data: Driving Organizational Change", in Research Handbook of Organizational Transformations through Big Data Analytics, IGI Global, 2015.
- Klimberg, R. and McCullough, B.D., Fundamentals of Predictive Analytics with JMP, Second Edition, Institute, Inc., 2016.
- Kwartler, T., Text Mining in Practice with R, John Wiley & Sons Ltd, 2017.
- Liberatore, M. and Luo, W., "ASP, The Art and Science of Practice: A Comparison of Technical and Soft Skill Requirements for Analytics and OR Professionals", Interfaces, 43(92), 2013, 194-197.
- Miller, S., "Collaborative Approaches Needed to Close the Big Data Skills Gap", Journal of Organization Design, 3(1), 2014, 26-30.

- Mills, R., Chudoba, K.M. and Olsen, D.H., "IS Programs Responding to Industry Demands for Data Scientists: Comparison between 2011 – 2016", Journal of *Information* **Systems** Education, 27(2), 2016, 131-140.
- NIST Big Data Interoperability: 2015 NIST Big Data Public Working Group Definitions and Taxonomies Subgroup. Framework: Volume 1, Definitions, NIST Special Publication 1500-1, 2015.
- Phelps, A.L. and Szabat, K.A., "The Current Landscape of Teaching Analytics to Business Students at Institutions of Higher Education: Who is Teaching What?", The American Statistician, 71(2), 2017.
- Power, D.J., "Data science: supporting decision-making", Journal of Decision Systems, 25(4), 2016, 345-356.
- Priestley, J., "Big Data Career Switch: 4 Key Points", InformationWeek Connects to Business Technology Community, July 17. 2013, http://www.informationweek.com (accessed November 10, 2017).
- Ransbotham, S., Kiron, D. and Prentice, P.K., "The Talent Dividend", MIT Sloan Management Review, 56(3), Spring 2015, 63-68.
- Schoenherr, T. and Speier-Pero, C., "Data Science, Predictive Analytics, and Big Data in Supply Chain Management: Current State and Future Potential", Journal of Business Logistics, 36(1), 2015, 120-132.
- Song, I.Y. and Zhu, Y., "Big data and data science: what should we teach", Expert Systems, 33(4), 2016, 364-373.
- Steinweg-Woods, J., "Web Scrapping for Key Data Science Job Skills," Jesse Steinweg-Woods, Ph.D., March 17, 2015, http://jessesw.com/Data-Science-Skills (accessed November 10, 2017).
- Tang, R. and Sae-Lim, W., "Data science programs in U.S. higher education: An

Skills Requirements of Business Data Analytics and Data Science Jobs: A Comparative Analysis

- exploratory content analysis of program description, curriculum structure, and course focus", *Education for Information*, 32, 2016, 269-290.
- Weiss, S.M., Indurkhya, N. and Zhang, T., *Fundamentals of Predictive Text Mining*, Second Edition, Springer-Verag London, 2015.
- Wymbs, C., "Managing the Innovation Process: Infusing Data Analytics into the Undergraduate Business Curriculum (Lessons Learned and Next Steps)", Journal of Information Systems Education, 27(1), 2016, 61-74.

Skills Requirements of Business Data Analytics and Data Science Jobs: A Comparative Analysis

APPENDIX A RESULTS OF VARIMAX ROTATION FOR BDA

Topic 1	Topic 1		Topic 2		3	Topic 4		Topic 5	
Term	Loading	Term	Loading	Term	Loading	Term	Loading	Term	Loading
xml	0.88063	clustering	0.92141	business	0.72035	programs	0.72612	schedul-	0.70564
database design	0.78871	regression	0.83244	requirements	0.70143	office	0.71524	media	0.62606
packages	0.75177	factoring	0.80845	lead-	0.61084	result-	0.65822	data visualization	0.62509
collect organ- analyze and disseminate	0.74700	algorithms	0.78392	mapping	0.60608	outlook	0.58220	train-	0.58535
javascript	0.73582	neural network	0.77214	document.	0.59245	terminolog-	0.52815	effect-	0.56831
datasets	0.69896	decision trees	0.73692	sources	0.57522	powerpoint	0.48317	solutions	0.51221
segmentation	0.67588	probability	0.67449	present-	0.57382	healthcare	0.47723	teradata	0.50165
ai	0.66750	deep learning	0.65676	quantitative	0.52530	reason-	0.46306	fast pace-	0.48969
object-	0.66731	scenario-	0.64068	develop	0.49399	supervis-	0.45005	managing	0.48428
data analytics	0.66304	statistics	0.52094	decision	0.49341	word	0.44892	tools	0.48410
data models	0.65943	methodolog-	0.51635	complex	0.43243	logic-	0.44124	agile	0.47759
etl	0.65908	techniques	0.48832	analytics skills	0.42633	industri-	0.39038	product.	0.47183
spss	0.62745	number-	0.45855	analytics	0.41026	strong problem solving	0.38805	recommend-	0.45953
understand-	0.55994			quick-	0.40749	work independ-	0.38688	environment	0.44282
				oriented	0.40245	oper-	0.38114	depth	0.43770
						•		oracle	0.43491

Topic 6		Topic 7	•	Topic 8		Topic 9		Topic 10	
Term	Loading	Term	Loading	Term	Loading	Term	Loading	Term	Loading
hadoop	0.73192	tables	0.6022	cube-	0.78972	r	0.5941	reports	0.5470
spark .	0.64426	pivot/table	0.5640	kimball	0.78972	tableau	0.5338	database	0.5379
hive	0.57655	sharepoint	0.5364	ssas	0.73856	qlikview	0.4947	web	0.4803
c/c++	0.54148	suite	0.5220	sql server	0.70620	python	0.4740	problem	-0.4577
big data technologies	0.49627	microsoft office	0.4890	data warehous	0.62529	stata	0.4702	crystal reports	0.4553
languages	0.48913	reason-	0.4257	schema-	0.60503	consult.	0.4230	queri-	0.4376
java	0.46880	vba	0.3921	ssis	0.51059	spotfire	0.4180	tools	0.3611
technologies	0.44101	view-	0.3874	design	0.45140	modeling	0.3983	interpersonal skills	0.3467
integration	0.43847	group	0.3838	oral and written communication skills	0.44004	required	0.3611	manager	0.3431
nosql	0.38636	function-	0.3756	develop	0.42574	statistics	0.3543	solving	-0.3388
cloud	0.38244	macros	0.3742	quick-	0.37991	statistical analysis	0.3419	analyze	0.3335
linux	0.36212	review-	0.3499	methodolog-	0.37930	oper-	-0.3283	oracle	0.3300
azure	0.36137	passion-	-0.3402			looker	0.3282	data modeling	0.3278
programming	0.35441	analysis	-0.3329			visualization	0.3229	concepts	0.3112
		build	0.3229					sql	0.3089

RESULTS OF VARIMAX ROTATION FOR DS

Topic 1		Topic 2		Topic 3		Topic 4		Topic 5	Topic 5	
Term	Loading	Term	Loading	Term	Loading	Term	Loading	Term	Loading	
naive bayes	0.82145	information	0.50269	implementation	0.54393	software development	0.54253	software	0.52477	
k nn	0.80145	process	0.42999	services	0.49413	effectively communicate	0.51235	open source	0.45519	
svm	0.71277	manage .	0.42842	customer	0.39938	real world	0.51092	testing	0.41633	
nosql databases	0.48640	management	0.38766	data mining	0.38411	distributed computing	0.50685	best practices	0.39711	
financial services	0.39420	written communication	0.38138	project	0.38041	presentation	0.50479	apache	0.39115	
techniques	0.36149	business	0.36963	design	0.34461	teamwork	0.49363	data management	0.38502	
critical thinking	0.34746	innovative	0.30888	leadership	0.34267	class	0.48297	platform	0.38255	
aws	0.34153	verbal communication	0.30591	redshift	0.34147	hive	0.48247	information retrieval	0.33230	
big data	0.33929	problem solving	0.28942	hadoop	0.32914	architecture	0.38747	development	0.32694	
statistical software	0.31589	team	0.28714	methodologies	0.31388	apache	0.36215	applications	0.31815	
algorithms	0.30851	minimum	0.25008	google	0.30194	scikit learn	0.33838	shell scripting	0.31575	
machine learning	0.29667	develop	0.24920	statistical modeling	0.29093	methods	0.33047	data warehousing	0.29820	
_		developing	0.24723	automation	0.28893	technologies	0.32825	processes	0.29236	
		technical	0.24181	development	0.26783	non technical	0.31969	research	0.25566	

Topic 6		Topic 7		Topic 8	
Term	Loading	Term	Loading	Term	Loading
clustering concepts modeling quantitative databases oracle analytical skills communicate logistic regression sas data processing analytical supervised neural networks complex	0.4739 0.3606 0.3566 0.3382 0.3344 0.32246 0.3122 0.2812 0.2776 0.2693 -0.2689 0.2607 0.2539 0.2471	bayesian frameworks algorithms architecture models c developing systems logistic regression web deep learning java production principles	0.44110 0.43065 0.41595 0.36904 0.36625 0.35786 0.34125 0.31484 0.29022 0.26386 0.26033 0.23938 0.23996 0.23301	communicate complex class real world quantitative analysis problems team problem solve solving nosql fast paced analyze model	0.51279 0.49010 0.46620 0.44393 0.36538 0.32250 0.31324 0.31108 0.30334 0.29283 0.28697 0.23751

Skills Requirements of Business Data Analytics and Data Science Jobs: A Comparative Analysis

APPENDIX B RESULTS OF CLUSTERING ANALYSIS OF BDA

Cluster1	Cluster2	Cluste	er3 Cluste	r4 Cluste	er5	Cluster6	Cluster7	Cluster8	Cluster9	Cluster1	10
Term	Score Term	Score Term	Score Term	Score Term	Score Term	Score	Term Score	e Term Sco	re Term	Score Term	Score
communication skills	5.9259 python	10.083 excel	13.63 manage	9.3575 excel	9.6497 advan	iced 9.2379	database 11.739			14.174 environment	11.681
problem solving	3.297 develop	8.0135 proficient	9.0428 problem solving	8.2806 sql	9.3606 organ	. 7.1091	information 11.338	3 develop 11.9	15 proficient	11.362 develop	11.559
creativ	3.2094 languages	7.1578 access	5.8114 fast pace	8.2343 result	7.362 sql ser	rver 5.4463	sql 9.2079	business 9.62)3 packages	9.398 management	11.398
oper-	2.9312 machine learning	7.0742 organizationa	al 2.9989 excel	7.7351 proficient	7.0524 function	on- 5.3284	develop 8.9724	reports 8.81	75 result	9.3117 work independ-	10.857
collabor-	2.5751 hadoop	6.342 powerpoint	2.9531 statistics	6.6401 communication	skills 7.0315 detaile	ed oriented 5.2493	attention 8.2119	environment 8.69	15 required	9.1887 product	10.237
problem	2.562 r	6.2729 management	2.8646 creativ	6.2669 understand	6.9697 service	es 5.1868	statistical 8.143°	l analyze 8.30	18 business intelligence	9.0986 schedul-	6.8714
chang-	2.5093 hive	5.3891 visualization	2.346 machine learnir	g 5.0114 tools	6.9592 build	4.6836	analytics skills 7.9907	present 8.29	i3 tableau	8.6053 sql	6.8252
environment	2.3778 statistics	5.2105 methods	2.2406 accuracy	4.9476 database	6.5283 etl	3.6841	accuracy 7.6102	communication skills 8.28	31 word	8.1118 relationships	6.0608
aws	2.0385 process-	5.0289 statistics	2,2008 reports	4.9036 applications	5.5783 quick-	3.6767	design 7.5994	requirements 8.2	32 tools	7.7513 fast pace	6.0136
team-player	2.0314 programming	4.7534 vba	2.1712 data mining	4.8185 powerpoint	5.5191 health	care 3.6692	hadoop 6.2884	l effect 7.9	71 reports	7.522 concepts	6.0096

RESULTS OF CLUSTERING ANALYSIS OF DS

Cluster1	Cluster2		Cluster3		Cluster4		Cluster5		Cluster6		Cluster7		Cluster8	
Term	Score Term	Score Te	erm	Score	Term	Score	Term	Score	Term	Score	Term	Score Ter	m	Score
technologies	1.5765 machine learning			8.4171	written communication	6.8176	techniques	9.6783	deep learning		written communication	6.3994 ana	llysis	8.8
excellent communication	1.2223 natural language	2.7834 to	ools	5.4713	non technical	4.206	algorithms	8.9651	machine learning	5.1707	business	5.824 mag	chine learning	8.5232
programming languages	1.1592 statistics	2.606 an	nalysis	4.9993	analytical	3.8091	machine learning	6.0935	algorithms	5.1226	analytical	5.464 spar	rk	7.8958
industry experience	0.6685 data processing	1.5109 py	ython	4.8812	results	3.7169	big data	4.4252	written communication	4.9362	projects	5.1345 big	data	7.2161
apache	0.5621 analytical tools	1.4062 te	echnical	4.2532	environment	3.3002	svm	4.0049	python	4.9064	research	4.6251 algo	orithms	7.2066
programming language	0.4988 programming language	1.2344 sc	cikit learn	4.204	technical	3.2803	models	3.3292	problem solving	4.6914	development	4.6121 had	loop	7.086
b testing	0.4301 optimization	1.1286 m	nethods -	4.1942	collaborate	3.0376	aws	3.0928	natural language	4.2917	techniques	4.3219 mor	deling	6.7509
solving skills	0.4088 computational	0.9281 no	on technical	4.1583	tableau	3.0268	programming	3.0852	java	4.0068	verbal communication	4.217 sql	-	6.3434
sql experience	0.3925 scala			3.3679	fast paced	3.0087	naive bayes	3.0645	c	3.8192	hadoop	3.9311 stat	tistical modeling	6.0605
powerpoint	0.3841 collaborate	0.8549 na	atural language	3.2894	programming	2.9832	technologies	2.976	frameworks	3.7389	problem solving	3.915 bay	esian	5.7367