MATH 502 Notes

Jiantong Liu

October 10, 2023

Throughout the notes, we assume a ring R has a multiplicative identity and is commutative.

0 Noetherian, Artinian, and Localization

Proposition 0.1. Let R be a (commutative) ring, and let M be an A-module, then the following are equivalent:

(i) Given an infinite increasing chain of submodules of M

$$M_1 \subseteq M_2 \subseteq \cdots \subseteq M_n \subseteq M_{n+1} \subseteq \cdots$$

then there exists some $N \in \mathbb{N}$ such that $M_N = M_{N+1} = \cdots$, i.e., for all $n \geqslant N$, $M_n = M_{n+1}$.

- (ii) Every non-empty family of submodules has a maximal element.
- (iii) Every submodule of M is finitely-generated.

Proof. $(i) \Rightarrow (ii)$: This is a direct result of Zorn's lemma.

- $(ii) \Rightarrow (i)$: Obvious.
- $(i), (ii) \Rightarrow (iii)$: Take any submodule N of M and take $x_1 \in N$. If $(x_1) \neq N$, then there exists $x_2 \in N \setminus (x_1)$, so $(x_1, x_2) \subseteq N$, now we proceed inductively, but by the given property we know this stops in finite number of steps, hence we have $N = (x_1, \ldots, x_n)$ for some $n \in \mathbb{N}$, thus N is finitely-generated.
- $(iii) \Rightarrow (i)$: Note that the property implies M is finitely-generated, but that means the chain of submodules must be finite. \Box

Definition 0.2 (Noetherian Module). If any of the conditions in Proposition 0.1 holds, then M is said to be a Noetherian module. Alternatively, we say M satisfies the ascending chain condition.

Proposition 0.3. Let R be a (commutative) ring, and let M be an A-module, then the following are equivalent:

(i) Given an infinite decreasing chain of submodules of M

$$M_1 \supseteq M_2 \supseteq \cdots \supseteq M_n \supseteq M_{n+1} \supseteq \cdots$$

then there exists some $N \in \mathbb{N}$ such that $M_N = M_{N+1} = \cdots$, i.e., for all $n \ge N$, $M_n = M_{n+1}$.

(ii) Every non-empty family of submodules has a minimal element.

Proof. Again, Zorn's lemma.

Definition 0.4 (Artinian Module). If any of the conditions in Proposition 0.3 holds, then M is said to be a Artinian module. Alternatively, we say M satisfies the descending chain condition.

Example 0.5. $\cdot \mathbb{Z}$ is Noetherian.

• \mathbb{Q}/\mathbb{Z} is not Noetherian.

• Let p be a prime. Let $\mathbb{Z}(p^{\infty})$ be the union of chains (as direct limits)

$$\left\langle \frac{\bar{1}}{p} \right\rangle \subseteq \left\langle \frac{\bar{1}}{p^2} \right\rangle \subseteq \dots \subseteq \left\langle \frac{\bar{1}}{p^n} \right\rangle \subseteq \dots$$

then there is an embedding $\mathbb{Z}(p^{\infty}) \subseteq \mathbb{Q}/\mathbb{Z}$, where \bar{a} is the image of a in \mathbb{Q}/\mathbb{Z} . With this construction, $\mathbb{Z}(p^{\infty})$ is Artinian.

Exercise 0.6. Show that $\mathbb{Q}/\mathbb{Z} \cong \bigoplus_{p} \mathbb{Z}(p^{\infty})$ where p traverses through all the primes.

Proposition 0.7. Let N be a submodule of M. Suppose M satisfies ascending (respectively, descending) chain condition, then N and M/N also satisfy ascending (respectively, descending) chain condition. If, for some submodule N of M, we know N and M/N satisfy ascending (respectively, descending) chain condition, then M also satisfies ascending (respectively, descending) chain condition.

Proof. Suppose M satisfies ascending (respectively, descending) chain condition, and let N be a submodule of M. Let $\{N_i\}$ be an increasing (respectively, decreasing) sequence of submodules of N, then they can be regarded as submodules of M, therefore by the Noetherian (respectively, Artinian) condition, we know N satisfies ascending (respectively, descending) chain condition. Now let $\bar{M} = M/N$, and take $\{\bar{M}_i\}$ be an increasing (respectively, decreasing) sequence of \bar{M} . Let $\pi: M \to M/N$ be the quotient map, then the preimages give an increasing (respectively, decreasing) sequence $\{M_i\}$ of submodules of M, where $M_i = \pi^{-1}(\bar{M}_i)$, but by the Notherian (respectively, Artinian) condition, we know the sequence stops in finite steps, therefore the original sequence stops in finite steps as well, hence \bar{M} satisfies the ascending (respectively, descending) chain condition.

Suppose a submodule N of M is such that N and M/N both satisfy ascending chain condition. Take a submodule T of M, then we have a short exact sequence

$$0 \longrightarrow T \cap N \longrightarrow T \longrightarrow T/(T \cap N) \longrightarrow 0$$

Now $T \cap N$ is finitely-generated as N is finitely-generated, therefore we have an embedding $T/T \cap N \hookrightarrow M/N$, thus $T/T \cap N$ is finitely-generated, therefore T is also finitely-generated by a vector space argument.

Suppose we have a decreasing sequence $\{M_n\}$ of M, then we have a decreasing sequence $\{N\cap M_n\}$. Let $\bar{M}=M/N$, then $\bar{M}_n:=(M_n+N)/N$ defines a decreasing sequence of submodules in \bar{M} , but N satisfies the descending chain condition, so the sequence $\{N\cap M_n\}$ stops in finite number of steps, say n_0 . Moreover, the sequence of \bar{M}_n 's also stops in finite number of steps, so by definition the sequence of $(M_n+N)/N$ stops in finite number of steps, say m_0 , but by the isomorphism theorem this shows that the sequence of $M_n/(N\cap M_n)$ stops in m_0 steps. Therefore, whenever $n\geq m_0,n_0$, then $N\cap M_n=N\cap M_{n+1}$, hence $M_n=M_{n+1}=\cdots$ for such n.

Remark 0.8. The final argument should also work in the Noetherian case.

Definition 0.9 (Simple Module). An A-module M is simple if the submodules of M are either 0 or M.

Exercise 0.10. Let A be a commutative ring, and M is an A-module, then M is simple if and only if $M \cong A/\mathfrak{m}$ for some maximal ideal \mathfrak{m} of A.

Definition 0.11 (Jordan-Hölder Chain). Let A be a commutative ring and M be an A-module. We say M has a Jordan-Hölder chain if there exists a decreasing chain of submodules $\{M_i\}$ such that

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_{n-1} \supseteq M_n = 0$$

such that M_i/M_{i+1} is simple. In such a situation, we know n is the length of the Jordan-Hölder chain, and such n is unique. We say M is a module of finite length, and the length is $\ell_A(M) = n$.

Exercise 0.12. Let A be a commutative ring, and let M be an A-module, then M is of finite length if and only if M is both Noetherian and Artinian.

Theorem 0.13. Let A be a commutative ring, then A is Artinian if and only if A is Noetherian and every prime ideal of A is maximal.

Proof. (\Leftarrow) :

Lemma 0.14. Let A be Noetherian, then every ideal of A contains a product of prime ideals.

Subproof. Suppose, towards contradiction, that there exists some ideal I of A that does not contain a product of prime ideals. Let $\mathcal J$ be the set of such ideals of A, then $\mathcal J \neq \varnothing$, and we can take a maximal element of $\mathcal J$, namely J^{-1} By definition, J is not prime, therefore there exists $a,b\in A$ such that $a\notin J$ and $b\notin J$, but $ab\in J$. Now $J\subsetneq J+Aa$ and $J\subsetneq J+Ab$, therefore J+Aa, $J+Ab\notin J$, therefore J+Aa and J+Ab both contain product of prime ideals. But now (J+Aa)(J+Ab) should also contain products of prime ideals, but by distribution this is just $J^2+Ja+Jb+Aab$, which is contained in J because every term is contained in J, so J contains a product of prime ideals as well, contradiction.

In particular, (0) contains a product of prime ideals, in particular (0) equals to this product, but every prime ideal is maximal, therefore $(0) = \mathfrak{m}_1 \cdots \mathfrak{m}_n$ becomes the product of maximal ideals (which may not necessarily be distinct), hence we have a descending chain of ideals

$$A \supseteq \mathfrak{m}_1 \supseteq \mathfrak{m}_1 \mathfrak{m}_2 \supseteq \cdots \supseteq \mathfrak{m}_1 \cdots \mathfrak{m}_n = (0),$$

and in particular $(\mathfrak{m}_1 \cdots \mathfrak{m}_{i-1})/(\mathfrak{m}_1 \cdots \mathfrak{m}_i)$ is a finite-dimensional since A is Noetherian, and it has a natural structure as a A/\mathfrak{m}_i -vector space. From the short exact sequence

$$0 \longrightarrow \mathfrak{m}_1 \cdots \mathfrak{m}_i \longrightarrow \mathfrak{m}_1 \cdots \mathfrak{m}_{i-1} \longrightarrow (\mathfrak{m}_1 \cdots \mathfrak{m}_{i-1})/(\mathfrak{m}_1 \cdots \mathfrak{m}_i) \longrightarrow 0$$

we know the two sides of the sequence are Artinian, hence the central term is Artinian. Proceeding inductively, we know that \mathbf{m}_1 is Artinian, and R/\mathbf{m}_1 would also be Artinian, hence A is Artinian.

 (\Rightarrow) : Now suppose A is Artinian, and we want to show that every prime ideal is maximal, and (0) is a product of maximal ideals. The result then follows from the argument above.

Lemma 0.15. Every Artinian domain is a field.

Subproof. Let $0 \neq a \in A$, then consider the chain

$$(a) \supseteq (a^2) \supseteq \cdots \supseteq (a^n) \supseteq \cdots$$

and by the Artinian property, for some large enough n the descending chain stops. Hence, we have $a^n = \lambda a^{n+1}$ for some large enough n and some $\lambda \in A$. Hence, $a^n(1-\lambda a)=0$, by the cancellation property of a domain, since $a\neq 0$, we must have $\lambda a=1$, therefore a is a unit, as desired.

Corollary 0.16. Let A be Artinian, then every prime ideal of A is maximal.

Finally, it suffices to show that $(0) = \mathfrak{m}_1 \cdots \mathfrak{m}_n$. Let \mathfrak{J} be the set of finite products of maximal ideals, then \mathfrak{J} has a minimal element, and it suffices to show that this element is (0). Suppose not, let $I \neq (0)$ be a minimal element of R. For any two ideals α , β of A, let $(\alpha : \beta) = \{a \in A \mid a\beta \subseteq \alpha\}$. Note that this has a natural structure as an ideal of A. Let J = ((0) : I), and suppose J = A, then I = 0, contradiction, so $J \neq A$ is a proper ideal of A, now consider A/J which is Artinian, then let \mathfrak{G} be the set of all non-zero ideals of A/J, so \mathfrak{G} has a minimal element as well, call it \overline{H} . Let $H = \pi^{-1}(\overline{H})$ where $\pi : A \to A/J$, so we have $J \subsetneq H$, thus let P = (J : H).

Claim 0.17. P is a prime ideal.

Subproof. Given $c, d \notin P$, we want to show that $cd \notin P$. Indeed, consider $J \subsetneq J + cH \subseteq H$, then since H is minimal, then J + cH = H, and similarly we have that J + dH = H. Therefore, we have that J + cdH = J + c(dH + J) = J + cH = H, hence we know $cd \notin P$, as desired.

Now P = (J : H) and J = (0 : I), the by definition we have PHI = (0). Since P is a prime ideal, then P is maximal, and now

$$(0:PI)\supseteq H \supsetneq J = (0:I)$$

Therefore $PI \subseteq I$, where I is a minimal element, contradiction, hence (0) is a product of maximal ideals.

¹The existence of this maximal element is the result of Zorn's lemma and ACC condition.

Definition 0.18 (Short Exact Sequence). Consider the sequence

$$0 \longrightarrow N \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} T \longrightarrow 0$$

This is called a short exact sequence if $\ker(f) = 0$, $\operatorname{im}(g) = T$, and $\ker(g) = \operatorname{im}(f)$. In particular, one slot of the sequence is said to be exact if the kernel of the previous map equals to the image of the subsequent map.

Definition 0.19 (Flat Module). Let M be an A-module, then we say M is a flat A-module if for every short exact sequence

$$0 \longrightarrow N_1 \longrightarrow N_2 \longrightarrow N_3 \longrightarrow 0$$

the tensored sequence

$$0 \longrightarrow M \otimes_A N_1 \longrightarrow M \otimes_A N_2 \longrightarrow M \otimes_A N_3 \longrightarrow 0$$

remains exact.

Remark 0.20. Recall that the properties of modules have the following implications: free \Rightarrow projective \Rightarrow flat \Rightarrow torsion-free, and in the case of finitely-generated modules, torsion-free \Rightarrow free.

Remark 0.21. We already know that the tensor functor is right exact, namely given the short exact sequence above, then

$$M \otimes_A N_1 \longrightarrow M \otimes_A N_2 \longrightarrow M \otimes_A N_3 \longrightarrow 0$$

is exact.

Exercise 0.22. Let M be an A-module, and if there exists a short exact sequence of A-modules

$$0 \longrightarrow N_1 \longrightarrow N_2 \longrightarrow N_3 \longrightarrow 0$$

where N_1 and N_2 are finitely-generated as A-modules, and such that tensoring M preserves the short exact sequence, then M is flat.

Definition 0.23 (Multiplicatively Closed Subset). Let A be a commutative ring and M be an A-module. Let $S \subseteq A$ be a subset. We say S is a multiplicatively closed subset of A if $1 \in S$, $0 \notin S$, and whenever $s_1, s_2 \in S$, then $s_1s_2 \in S$.

Definition 0.24 (Localization). Let $S \subseteq A$ be a multiplicatively closed subset, and let M be an A-module, then $S^{-1}M = (M \times S)/\sim$, where \sim is an equivalence relation defined by the following: $(m_1, s_1) \sim (m_2, s_2)$ if and only if there exists $t \in S$ such that $t(m_1s_2 - m_2s_1) = 0$. $S^{-1}M$ is said to be the localization of M at S.

Given $(m, s) \in M \times S$, we write $\overline{(m, s)}$ to be the equivalence class in $S^{-1}M$ represented by (m, s).

Exercise 0.25. Similarly, one can define the localization $S^{-1}A$ of A at S. In fact, $S^{-1}A$ inherits a ring structure from A, namely

- $\bullet \ \frac{a_1}{s_1} + \frac{a_2}{s_2} = \frac{a_1 s_2 + a_2 s_1}{s_1 s_2},$
- $\bullet \ \frac{a_1}{s_1} \cdot \frac{a_2}{s_2} = \frac{a_1 a_2}{s_1 s_2},$
- $\frac{1}{s} \cdot \frac{s}{1} = \frac{1}{1} = 1$.

Remark 0.26. Note that a ring structure does not guarantee every element to have a multiplicative inverse. The localization of A at S ensures that every element of S now becomes invertible in the new ring $S^{-1}A$. In particular, this induces a ring homomorphism

$$f: A \to S^{-1}A$$
$$a \mapsto \frac{a}{1}$$

This homomorphism is injective if A is a domain.

Remark 0.27. Let I be an ideal of A.

- Consider the ring homomorphism $f:A\to S^{-1}A$ above, then

$$S^{-1}I = IS^{-1}A = f(I)S^{-1}A.$$

In particular, $f^{-1}(IS^{-1}A) \supseteq I$.

- If $I \cap S \neq \emptyset$, then $IS^{-1}A = S^{-1}A$.
- If P is a prime ideal of A such that $P \cap S = \emptyset$, then $f^{-1}(PS^{-1}A) = P$.
- Let M be an A-module, then if $N\subseteq M$ is a submodule, then $S^{-1}N\subseteq S^{-1}M$. That is, given an exact sequence

$$0 \longrightarrow N \longrightarrow M$$

then we obtain an exact sequence

$$0 \longrightarrow S^{-1}N \longrightarrow S^{-1}M$$

Indeed, given $0 \to N \xrightarrow{f} M$, say we have it sending $\frac{n}{1} \mapsto \frac{f(n)}{1} = 0$, then there exists $s \in S$ such that sf(n) = 0, so f(sn) = 0, therefore sn = 0 by injection, hence $\frac{n}{1} = 0$ in $S^{-1}N$ as well.

Exercise 0.28. The localization functor is exact.

Lemma 0.29. Let A be a commutative ring and S be a multiplicatively closed subset of A, then $S^{-1}A \otimes_A M \cong S^{-1}M$. *Proof.* We define

$$\varphi: S^{-1}A \otimes_A M \to S^{-1}M$$
$$\frac{a}{s} \otimes m \mapsto \frac{am}{s}.$$

For any $\frac{m}{s} \in S^{-1}M$, we have $\varphi\left(\frac{1}{s} \otimes m\right) = \frac{m}{s}$, so the map is onto. Now suppose $\varphi\left(\sum_{i=1}^{n} \frac{a_{i}}{s_{i}} \otimes m_{i}\right) = 0$ (since this is a finite sum), then $\varphi\left(\sum_{i=1}^{n} \frac{a_{i}}{s_{i}} \otimes m_{i}\right) = \sum_{i=1}^{n} \frac{a_{i}m_{i}}{s_{i}} = 0$. We make $s = s_{1} \cdots s_{n}$, so

$$\frac{a_i}{s_i} \otimes m_i = \frac{a_i s_1 \cdots s_{i-1} s_{i+1} \cdots s_n}{s} \otimes m_i =: \frac{b_i}{s} \otimes m_i,$$

then $\sum\limits_{i=1}^n rac{a_i}{s_i} \otimes m_i = \sum\limits_{i=1}^n rac{b_i}{s} \otimes m_i$, therefore

$$\varphi\left(\sum_{i=1}^{n} \frac{a_i}{s_i} \otimes m_i\right) = \varphi\left(\sum_{i=1}^{n} \frac{b_i}{s} \otimes m_i\right) = \frac{\sum_{i=1}^{n} b_i m_i}{s} = 0,$$

so there exists $t \in S$ such that $t \sum_{i=1}^{n} b_i m_i = 0$, now

$$\sum_{i=1}^{n} \frac{a_i}{s_i} \otimes m_i = \sum_{i=1}^{n} \frac{b_i}{s} \otimes m_i$$
$$= \sum_{i=1}^{n} \frac{1}{s} \otimes b_i m_i$$
$$= \frac{1}{s} \otimes \sum_{i=1}^{n} b_i m_i$$

$$= \frac{t}{ts} \otimes \sum_{i=1}^{n} b_i m_i$$

$$= \frac{1}{ts} \otimes t \sum_{i=1}^{n} b_i m_i$$

$$= \frac{1}{ts} \otimes 0$$

$$= 0.$$

Proposition 0.30. The map $A \to S^{-1}A$ is A-flat, i.e., $S^{-1}A$ is a flat A-module.

Proof. Consider

$$0 \longrightarrow N \longrightarrow M \longrightarrow T \longrightarrow 0$$

By Lemma 0.29 (since the isomorphism is functorial), it suffices to show the exactness of

$$0 \longrightarrow S^{-1}N \longrightarrow S^{-1}M \longrightarrow S^{-1}T \longrightarrow 0$$

and this follows from Exercise 0.28.

Definition 0.31 (Quasi-local, Local). Let A be a commutative ring. We say A is quasi-local if A has exactly one maximal ideal. In particular, if A is also Noetherian, then we say A is a local ring.

Definition 0.32 (Localization). Let A be a commutative ring and $\mathfrak p$ be a prime ideal of A. Note that $S=A\backslash \mathfrak p$ is a multiplicatively closed subset, then we write $S^{-1}A=A_{\mathfrak p}$ (in general, we have $S^{-1}M=M_{\mathfrak p}$, where $M\otimes_A A_{\mathfrak p}\cong M_{\mathfrak p}$) to denote the localization of A away from the prime ideal $\mathfrak p$.

Exercise 0.33. $A_{\mathfrak{p}}$ is quasi-local with unique maximal ideal $\mathfrak{p}A_{\mathfrak{p}}$.

Remark 0.34. Take $x \in M$, then the following are equivalent:

- x = 0;
- $\frac{x}{1} = 0$ in $M_{\mathfrak{m}}$ for any maximal ideal \mathfrak{m} of A;
- $\frac{x}{1} = 0$ in $M_{\mathfrak{p}}$ for any prime ideal \mathfrak{p} of A.

Proof. We will prove the first two are equivalent. The (\Rightarrow) direction is obvious. Conversely, let $I = \{a \in A \mid ax = 0\}$ to be the annihilator of x in A. Suppose, towards contradiction, that $I \neq A$, then I is contained in some maximal ideal \mathfrak{m} of A, then consider $M_{\mathfrak{m}}$. Since $\frac{x}{1} = 0$ in \mathfrak{m} , then there exists $t \in A \setminus \mathfrak{m}$ such that tx = 0, but $I \subseteq \mathfrak{m}$ and $t \notin \mathfrak{m}$, then we reach a contradiction, hence I = A, and obviously we are done.

Exercise 0.35. 1. Given the sequence

$$0 \longrightarrow M \xrightarrow{f} N \xrightarrow{g} T \longrightarrow 0$$

the following are equivalent:

- the sequence is exact;
- · the sequence

$$0 \longrightarrow M_{\mathfrak{m}} \xrightarrow{f_{\mathfrak{m}}} N_{\mathfrak{m}} \xrightarrow{g_{\mathfrak{m}}} T_{\mathfrak{m}} \longrightarrow 0$$

is exact for all maximal ideals \mathfrak{m} of A;

the sequence

$$0 \longrightarrow M_{\mathfrak{p}} \stackrel{f_{\mathfrak{p}}}{\longrightarrow} N_{\mathfrak{p}} \stackrel{g_{\mathfrak{p}}}{\longrightarrow} T_{\mathfrak{p}} \longrightarrow 0$$

is exact for all prime ideals \mathfrak{p} of A.

To see this, apply Remark 0.34.

2. Let A be a commutative ring and M be an A-module, then the following are equivalent:

- M is A-flat;
- $M_{\mathfrak{m}}$ is $A_{\mathfrak{m}}$ -flat for all maximal ideals \mathfrak{m} of A;
- $M_{\mathfrak{p}}$ is $A_{\mathfrak{p}}$ -flat for all prime ideals \mathfrak{p} of A;

Hence, exactness is a local property.

Exercise 0.36. Let A be a commutative ring, then A is Artinian if and only if A as an A-module is of finite length, i.e., $\ell_A(A) < \infty$. Indeed, note that $(0) = \mathfrak{m}_1 \cdots \mathfrak{m}_n$, and write down the Jordan-Hölder series.

1 Primary Decomposition Theorem

Throughout Section 1, the commutative ring A is always Noetherian. In Section 1.1, M is a finitely-generated A-module; in Section 1.2, we drop this assumption.

1.1 Finitely-generated Case

Definition 1.1 (Coprimary). We say M is a coprimary module if for all $a \in A$, the left multiplication $m_a : M \to M$ is either injective or nilpotent (i.e., there exists n > 0 such that $a^n M = 0$).

Remark 1.2. (i) If M is coprimary, then N is coprimary for all $N \subseteq M$.

(ii) If M is coprimary, let $P = \{a \in A \mid a : M \to M \text{ is nilpotent}\}$, then P is a prime ideal of A.

Proof. For $a, b \notin P$, $a, b : M \to M$ are injective maps, so $ab : M \to M$ is injective, hence $ab \notin P$.

Hence, we usually say M is P-coprimary.

(iii) Let M be P-coprimary, then there exists an injection (as M-linear map) $A/P \hookrightarrow M$.

Proof. Take any $x \neq 0$ in M, then consider

$$a_x: A \to M$$

 $1 \mapsto x$

Let $I = \ker(a_x)$, then we have

$$A/I \hookrightarrow M$$
$$\bar{1} \mapsto x$$

Now $I\subseteq P$ since I already kills x. Since A is Noetherian, P is finitely-generated, thus consider $P=(a_1,\ldots,a_r)$, then $a_i^{t_i}\cdot x=0$ for all i and some t_i 's. Let $t=t_1+\cdots+t_r$, then $P^t\cdot x=0$ by binomial theorem, so $P^t\subseteq I\subseteq P$, hence there exists j such that $P^j\subseteq I\subsetneq P^{j-1}$. Take $y\in P^{j-1}\setminus I$, so $\bar y\neq 0$ in A/P, taking the injection into M, then $\operatorname{Ann}_A(\bar y)=P$. We now have the composition

$$A/P \hookrightarrow A/I \hookrightarrow M$$
$$\bar{1} \mapsto \bar{y}$$

to be injective. \Box

(iv) Suppose M is P-coprimary, and Q is a prime ideal such that $A/Q \hookrightarrow M$, then P=Q.

Proof. By definition of $P,Q\subseteq P$ is obvious: Q kills elements in M, therefore the mapping becomes nilpotent. The other direction is also easy.

Definition 1.3 (Primary). Let $N \subseteq M$ be a submodule. We say N is a primary submodule of M if M/N is coprimary. If M/N is P-coprimary, we say N is P-primary.

Remark 1.4. Let \mathfrak{p} be a prime ideal of A. We claim that \mathfrak{p}^t is P-primary. Consider

$$m_x: A/\mathfrak{p}^t \to A/\mathfrak{p}^t$$

then $x^t = 0$ on A/\mathfrak{p}^t .

Example 1.5. Let $A = k[X,Y,Z]/(Z^2 - XY)$, let $\mathfrak{p} = (x,z)$ where $x = \operatorname{im}(X)$ and $z = \operatorname{im}(Z)$. Now $A/\mathfrak{p} = k[Y]$. \mathfrak{p}^2 is not P-primary. Indeed, note that $A/\mathfrak{p}^2 = k[X,Y,Z]/(z^2 - xy,x^2,z^2) \cong k[X,Y,Z]/(X^2,XY,Z^2,XZ)$. Now the mapping given by multiplication by y on this map is not injective, so \mathfrak{p}^2 is not P-primary.

In particular, the represented surface is not smooth, since the origin (0,0,0) is a singularity.

Theorem 1.6 (Primary Decomposition Theorem). By assumption, A is Noetherian and M is finitely-generated. Let $N \subseteq M$ be a submodule, then there exists a decomposition

$$N = \bigcap_{i=1}^{r} N_i$$

where each N_i is P_i -primary, and such that

- 1. all P_i 's are distinct, and
- 2. this decomposition is irredundant, i.e., minimal. In particular, this means removing any of the N_i 's gives a different intersection, i.e., $\bigcap_{j\neq i} N_j \nsubseteq N_i$.

This is called a primary decomposition of N. Moreover, the primary decomposition is unique up to permutation of modules, that is, if there exists another primary decomposition, i.e., $N = \bigcap_{i=1}^{s} N'_i$ where N'_i 's are P'_i -primary, then r = s and $\{N_1, \ldots, N_r\} = \{N'_1, \ldots, N'_s\}$.

Proof.

Definition 1.7 (Irreducible). A submodule $T \subsetneq M$ is called irreducible if $T \neq T_1 \cap T_2$, where T_1, T_2 are distinct proper submodules of M.

Claim 1.8. Every submodule T of M can be expressed by $T = T_1 \cap \cdots \cap T_l$ where each T_i is irreducible.

Subproof. Suppose, towards contradiction, that there exists some T for which the claim fails, then the set of all such submodules T is a non-empty set \mathcal{T} . Since M is Noetherian, then \mathcal{T} has a maximal element W, therefore W is not irreducible. By definition, $W = W_1 \cap W_2$ where W_1, W_2 are distinct proper submodules of M, so $W_1 \notin \mathcal{T}$ and $W_2 \notin \mathcal{T}$, therefore $W_1 = T_1 \cap \cdots \cap T_r$ for irreducible T_i 's, and $W_2 = T_1' \cap \cdots \cap T_s'$ where T_i' are irreducible. Therefore, W becomes an intersection of irreducible submodules, a contradiction.

Claim 1.9. Suppose T is irreducible in M, then T is a primary submodule of M. That is, we need to show $\bar{M} := M/T$ is coprimary.

Subproof. It suffices to show the following: for all $a \neq 0$ in A, the multiplication map $a: \bar{M} \to \bar{M}$ is either nilpotent or injective. Note that (0) in \bar{M} is irreducible. To see this, we take the ascending chain

$$\ker(a) \subseteq \ker(a^2) \subseteq \ker(a^3) \subseteq \cdots$$

and since A is Noetherian we know $\ker(a^n) = \ker(a^{n+1}) = \cdots$ for some large enough n, therefore for $g = a^n$ we know $\ker(g) = \ker(g^2)$.

Claim 1.10. $\ker(g) \cap \operatorname{im}(g) = (0)$ in \overline{M} .

Subproof of Subclaim. Let $x \in \ker(g) \cap \operatorname{im}(g)$, then g(x) = 0, and there exists $y \in \overline{M}$ such that x = g(y), so $0 = g(x) = g^2(y)$, but that means $y \in \ker(g^2) = \ker(g)$, so x = 0.

Therefore, (0) is irreducible in \bar{M} , so either $\ker(g)=(0)$ or $\ker(g)=\bar{M}$. If $\ker(g)=(0)$, we have g to be injective, hence multiplication by a is injective; if $\ker(g)=\bar{M}$, we have $a^n\bar{M}=0$, so a becomes nilpotent.

Claim 1.11. If N_1 and N_2 are both P-primary as submodules, then $N_1 \cap N_2$ is also P-primary.

Subproof. By definition, M/N_1 and M/N_2 are both P-coprimary, then it is easy to see that $M/N_1 \oplus M/N_2$ is also P-coprimary. We know there is an obvious inclusion

$$M/(N_1 \cap N_2) \hookrightarrow M/N_1 \oplus M/N_2$$

 $\bar{x} \mapsto (\bar{x}, \bar{x})$

so $M/(N_1 \cap N_2)$ is also coprimary by the inclusion, therefore $N_1 \cap N_2$ is P-primary.

Now by Claim 1.8 we have an irreducible decomposition $N=N_1\cap\cdots\cap N_r$ and without loss of generality let it be of the smallest length, that is, the N_i 's are irreducible modules that are irredundant. By Claim 1.9, we know each of the N_i 's is primary with respect to some prime ideal. Now for any two P-primary modules N_i and N_j , we know the intersection is still P-primary according to Claim 1.11, therefore we obtain an irredundant intersection $N=N_1'\cap\cdots N_s'$ where each N_i' is P_i -primary (where P_i 's are now distinct!), and this proves the existence.

For the uniqueness, suppose we have $N=N_1\cap\cdots\cap N_r$ where N_i is P_i -primary, where P_i 's are distinct, and suppose we have $N=N_1'\cap\cdots\cap N_s'$ where N_i' is P_i' -primary, where all P_i' are distinct as well. It is enough to show the following:

Claim 1.12. For any prime ideal p of $A, p \in \{P_1, \dots, P_r\}$ if and only if there exists an injection $A/p \hookrightarrow M/N$.

Subproof. Let $p \in \{P_1, \dots, P_r\}$, without loss of generality denote $p = P_1$, then we have an injection $A/p \hookrightarrow M/N_1$ by Remark 1.2. In $\bar{M} = M/N$, we have $(0) = N_1/N \cap \cdots \cap N_r/N =: \bar{N}_1 \cap \cdots \cap \bar{N}_r$, therefore $\bar{N}_2 \cap \cdots \cap \bar{N}_r \hookrightarrow \bar{M}/\bar{N}_1 = M/N_1$. But $M/N_1 = \bar{M}/\bar{N}_1$, so this gives an injection $\bar{N}_2 \cap \cdots \cap \bar{N}_r \hookrightarrow M/N_1$, but M/N_1 is P_1 -coprimary, so $\bar{N}_2 \cap \cdots \cap \bar{N}_r$ is also P_1 -coprimary, therefore $A/P_1 \hookrightarrow \bar{N}_2 \cap \cdots \cap \bar{N}_r \hookrightarrow \bar{M} = M/N$ by Remark 1.2.

Now suppose $A/p \hookrightarrow M/N$, to show $p \in \{P_1, \dots, P_r\}$, it suffices to show $A/p \hookrightarrow M/N_i$ is injective for some $1 \le i \le r$. We have

$$A/p \xrightarrow{\varphi} M/N = \bar{M} \xrightarrow{\eta_i} \bar{M}/\bar{N}_i = M/N_i$$

and we want to show there exists some injective φ_i . Suppose not, then $\ker(\varphi_i) \neq 0$ in A/p for all $1 \leq i \leq r$. But A/p is an integral domain, therefore $\bigcap_{i=1}^r \ker(\varphi_i) \neq 0$. Therefore, we have

$$A/p \stackrel{\varphi}{\longleftrightarrow} M/N \stackrel{(\eta_1,\dots,\eta_r)}{\longleftrightarrow} \bigoplus_{i=1}^r M/N_i$$

Thus, the defined composition above is the injection $(\varphi_1,\ldots,\varphi_r)$. This implies $\bigcap_{i=1}^r \ker(\varphi_r) = \ker(\varphi_1,\ldots,\varphi_r) = 0$, a contradiction. Thus, there exists some injective φ_i , and therefore $p \in \{P_1,\ldots,P_r\}$.

Definition 1.13 (Zero-divisor). Let A be Noetherian and M be a finitely-generated A-module. We say $0 \neq a \in A$ is a zero-divisor on M if there exists $0 \neq x \in M$ such that ax = 0. Otherwise, we say a is a non-zero-divisor on M.

Definition 1.14 (Essential prime ideal, Associated prime ideal). Given a primary decomposition $N = \bigcap_{i=1}^{r} N_i$, the corresponding prime ideals $\{P_1, \dots, P_r\}$ are called the essential prime ideals of N. In particular, if N = (0), we say these are the associated prime ideals of M, denoted by $\operatorname{Ass}_A(M) = \{P_1, \dots, P_r\}$.

Corollary 1.15. Let A be Noetherian and M be a finitely-generated A-module, and let $\mathrm{Ass}_A(M) = \{P_1, \dots, P_r\}$, then $\bigcup_{i=1}^r P_i$ is the set of all zero-divisors on M.

Proof. If $p \in \mathrm{Ass}_A(M)$, then there exists an injection $A/p \hookrightarrow M$ mapping $\bar{1} \mapsto x$ by Claim 1.12. Therefore, px = 0, so elements of p are zero-divisors of M. Let a be a zero-divisor on M, i.e., let $0 \neq x \in M$ be such that ax = 0. Take the primary decomposition $(0) = N_1 \cap \cdots \cap N_r$ in M, where N_i is P_i -primary, then there exists i such that $x \notin N_i$. Since $\bar{x} \neq 0$ in M/N_i , then $a: M/N_i \to M/N_i$ is such that $a\bar{x} = 0$, so a is nilpotent on M/N_i . Therefore, M/N_i is P_i -coprimary, and by definition $a \in P_i$.

Exercise 1.16. Let $\operatorname{Ass}_A(M) = \{P_1, \dots, P_r\}$, then the set of all nilpotent elements of M is $\bigcap_{i=1}^r P_i$.

Corollary 1.17. Suppose $N \subseteq M$ is a submodule, then

$$\operatorname{Ass}_A(N) \subseteq \operatorname{Ass}_A(M) \subseteq \operatorname{Ass}_A(N) \cup \operatorname{Ass}_A(M/N).$$

Proof. The first inclusion is obvious by $A/p \hookrightarrow N \hookrightarrow M$. We now show the second inclusion. Let $p \in \mathrm{Ass}_A(M)$, and suppose $p \notin \mathrm{Ass}_A(N)$, and we have an inclusion $i : A/p \to M$.

Claim 1.18. $i(A/p) \cap N = (0)$.

Subproof. Suppose not, then let $0 \neq x \in i(A/p) \cap N$, then $x \in N$ and $x \in i(A/p)$, but A/p is an integral domain and is p-coprimary, so $i(A/p) \cap N$ is p-coprimary. Therefore, we have

$$A/p \hookrightarrow i(A/p) \cap N \hookrightarrow N$$

and so $p \in \mathrm{Ass}_A(N)$, a contradiction.

Therefore, we have the composition $A/p \to M \to M/N$ to be injection, thus $p \in \mathrm{Ass}_A(M/N)$.

Corollary 1.19. Let M be finitely-generated, and let $I = \text{Ann}_A(M)$, then the essential prime ideals of I is an associated prime of M.

Proof. Note that the essential prime ideals of I are just $\mathrm{Ass}_A(A/I)$, so if we write $I=I_1\cap\cdots\cap I_r$ where I_i is a P_i -primary. Therefore, we have $A/I=\bar{I}_1\cap\cdots\cap\bar{I}_r$, where $\bar{I}_i=I_i/I$, and \bar{I}_i is P_i -primary.

Now let $M = \langle \alpha_1, \dots, \alpha_n \rangle$ be given by a set of generators, so $M = \{ \sum a_i \alpha_i \mid a_i \in A \}$, now we look at the map

$$\varphi: A \to \bigoplus_{i=1}^{n} M$$
$$1 \mapsto (\alpha_1, \dots, \alpha_n)$$

then the kernel $\ker(\varphi) = I$, so $\bar{\varphi} : A/I \hookrightarrow \bigoplus_{i=1}^n M$ is an injection. By Corollary 1.17, $\operatorname{Ass}_A(M_1 \oplus M_2) = \operatorname{Ass}_A(M_1) \cup \operatorname{Ass}_A(M_2)$, hence we know

$$\operatorname{Ass}(A/I) \subseteq \bigcup_{i=1}^{n} \operatorname{Ass}_{A}(M) = \operatorname{Ass}_{A}(M).$$

Definition 1.20 (Support). The support of M over A, denoted $\operatorname{Supp}_A(M)$, is the set $\{P \mid P \text{ prime ideal such that } P \supseteq I = \operatorname{Ann}_A(M)\}$.

Theorem 1.21 (Prime Filtration). Let M be finitely-generated, then we have a descending chain

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_{n-1} \supseteq M_n = (0)$$

of prime ideals such that $M_i/M_{i+1}\cong A/P_{i+1}, 0\leqslant i\leqslant n-1$, where P_i 's are prime ideals of A, and $\mathrm{Ass}_A(M)\subseteq \{P_1,\ldots,P_n\}$.

Proof. Note that $P \in \mathrm{Ass}_A(M)$ if and only if $i: A/P \hookrightarrow M$, therefore i(A/P) satisfies the condition stated in the theorem. Therefore, take $\mathcal{A} = \{N \subseteq M \mid N \text{ satisfies the condition of the theorem}\}$. Since A is Noetherian, we take a maximal element T of \mathcal{A} .

Claim 1.22. T = M.

Subproof. Suppose, towards contradiction, that $T \neq M$, then we have a short exact sequence

$$0 \longrightarrow T \longrightarrow M \longrightarrow M/T \longrightarrow 0$$

such that $M/T \neq (0)$.

Exercise 1.23. Let L be a finitely-generated A-module, then L=0 if and only if $\mathrm{Ass}_A(L)=\varnothing$.

Let $q \in \mathrm{Ass}_A(M/T)$, then we have

$$0 \longrightarrow T \longrightarrow M \stackrel{\eta}{\longrightarrow} M/T \longrightarrow 0$$

and take $W = \eta^{-1}(j(A/q))$, so we have a new short exact sequence

$$0 \longrightarrow T \longrightarrow W \longrightarrow j(A/q) \cong A/q \longrightarrow 0$$

Thus, $W \supseteq T$ satisfies the condition in the theorem. By the maximality of T, we have a contradiction.

Remark 1.24. Let A be Noetherian and $\mathfrak{m} \subseteq A$ be a maximal ideal, then for any ideal $I \subseteq A$ such that there exists n with $\mathfrak{m}^n \subseteq I \subseteq \mathfrak{m}$, then I is \mathfrak{m} -primary.

Proof. Consider the map

$$A/I \xrightarrow{\cdot x^n} A/I$$

for $x \in \mathfrak{m}$, then this is the zero map. Therefore, multiplication by x is nilpotent. Now suppose $x \notin \mathfrak{m}$, then we want to show that $A/I \xrightarrow{\cdot x} A/I$ is injective. Indeed, since $x \notin \mathfrak{m}$, then $\mathfrak{m} + Ax = A$, hence we have that y + ax = 1 for some $y \in \mathfrak{m}$ and $a \in A$, so $(y + ax)^n = 1$, $y^n + \mu x = 1$, but that means the map $A/I \to A/I$ is given by multiplication by μx , so $\bar{\mu}\bar{x} = \bar{1}$ since y vanishes. That is, \bar{x} is invertible over A/I, hence multiplication by x is an isomorphism.

Exercise 1.25. Let A be a ring and S be a multiplicatively closed subset of A, and let M be an A-module, then $S^{-1}M$ is an $S^{-1}A$ -module. Let $T \subseteq S^{-1}M$ be an $S^{-1}A$ -submodule, then there exists $N \subseteq M$ such that $T = S^{-1}N$.

Remark 1.26. Localization functor is fully faithful.

Remark 1.27. Let A be Noetherian and S be a multiplicatively closed subset of A.

- 1. Let M be P-coprimary, then
 - if $S \cap P = \emptyset$, then $S^{-1}M$ is $S^{-1}P$ -coprimary;
 - if $S \cap P \neq \emptyset$, then $S^{-1}M = 0$.

Proof. Indeed, suppose $S \cap P \neq \emptyset$, let $a: M \to M$ be the multiplication map by a, so $a \in P$ gives $a^n M = 0$ for some n, and if $a \notin P$, then this is injective. Let $\frac{a}{s}: S^{-1}M \to S^{-1}M$ be the multiplication map, but $\frac{a}{s}$ is a unit, so multiplication by s or $\frac{1}{s}$ is an isomorphism, hence we can take this to be $\frac{a}{1}$ with s=1. If $s \in P$, then $s^n: M \to M$ is the zero map, therefore $s^n: S^{-1}M \to S^{-1}M$ is also the zero map, so s is a unit. This only happens if $S^{-1}M = 0$.

- 2. Let N be P-primary, then
 - if $S \cap P = \emptyset$, then $S^{-1}N$ is $S^{-1}P$ -primary in $S^{-1}M$;
 - if $S \cap P \neq \emptyset$, then $S^{-1}N = S^{-1}M$.

Remark 1.28. Consider the localization $S^{-1}M$. Take a submodule T of $S^{-1}M$, then by Exercise 1.25, $T = S^{-1}N$ for some $N \subseteq M$. There is now a primary decomposition on N given by $N = N_1 \cap \cdots \cap N_t$ where N_i is P_i -primary.

Exercise 1.29. Let $W_1, W_2 \subseteq M$, then $S^{-1}(W_1 \cap W_2) = S^{-1}(W_1) \cap S^{-1}(W_2)$ in $S^{-1}M$.

Remark 1.30. This is true whenever we have a flat ring extension.

Therefore, we have

$$T = S^{-1}N$$

$$= S^{-1}N_1 \cap \cdots \cap S^{-1}N_t$$

$$= S^{-1}N_{i_1} \cap \cdots \cap S^{-1}N_{i_r}$$

where $S^{-1}N_{i_j}$ is $S^{-1}P_{i_j}$ -primary, and P_{i_1},\ldots,P_{i_r} are prime ideals for which $S\cap P_j=\varnothing$, where $P_j\in\{P_1,\ldots,P_t\}$.

Exercise 1.31. Let N be P-primary in M.

- if $S \cap P = \emptyset$, then $i_M : M \to S^{-1}M$ and $i_N : N \to S^{-1}N$ gives $i_M^{-1}(S^{-1}N) = N$;
- if $S \cap P \neq \emptyset$, then $i_M^{-1}(S^{-1}N) = i_M^{-1}(S^{-1}M) = M$.

Corollary 1.32. Consider a primary decomposition $N=N_1\cap\cdots\cap N_t$ where N_i is P_i -primary. Suppose we have a different primary decomposition $N=N_1'\cap\cdots\cap N_t'$ where N_i' is also P_i -primary. Suppose P_1 is a minimal element in $\{P_1,\ldots,P_t\}$, then $N_1=N_1'$.

Proof. Let
$$S = A \setminus P_1$$
, then $S^{-1}N = S^{-1}N_1 = S^{-1}N_1'$. Now consider $i_M : M \to S^{-1}M$, this descends to $N_1 \to S^{-1}N_1 = S^{-1}N_1'$ and $N_1' \to S^{-1}N_1'$, so $i_M^{-1}(S^{-1}N_1 = S^{-1}N_1') = N_1 = N_1'$. □

Consider flat ring maps (as a ring extension) like $A \to A[x]$ and $A \to A[x_1, \dots, x_n]$ since as A-modules they are free, since we have a basis $\{x_1^{i_1}, \dots, x_n^{i_n}\}$.

Lemma 1.33. Let $A \to B$ be a flat map, and let M be an A-module. Let N_1 and N_2 be A-submodules of M, then $(N_1 \otimes_A B) \cap (N_2 \otimes_A B) = (N_1 \cap N_2) \otimes_A B$.

Proof. Consider the chain complex

with exact rows and columns. We tensor this complex by $-\otimes_A B$, then since B is flat we obtain a new chain complex

$$0 \longrightarrow (N_1 \cap N_2) \otimes_A B \longrightarrow N_1 \otimes_A B \longrightarrow (N/(N_1 \cap N_2)) \otimes_A B \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow N_2 \otimes_A B \longrightarrow M \otimes_A B \longrightarrow M/N_2 \otimes_A B \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow N_2/(N_1 \cap N_2) \otimes_A B \longrightarrow M/N_1 \otimes_A B \longrightarrow (M/(N_1 + N_2)) \otimes_A B \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow 0 \qquad \qquad \downarrow$$

Via diagram chasing, if $x \in (N_1 \otimes_A B) \cap (N_2 \otimes_A B)$, then $x \in (N_1 \cap N_2) \otimes_A B$.

Corollary 1.34. Suppose we have a primary decomposition $N = N_1 \cap \cdots \cap N_t$ in M, let $A \to A[x]$, then $N[x] = N_1[x] \cap \cdots \cap N_t[x]$ in M[x] where $N_i[x] = N_i \otimes_A A[x]$.

Proof. We want to show that if N_i is P_i -primary, then $N_i[x]$ is $P_i[x]$ -primary. Take a short exact sequence

$$0 \longrightarrow P \longrightarrow A \longrightarrow A/p \longrightarrow 0$$

then we tensor it by $- \bigotimes_A A[x]$, then we obtain a new short exact sequence

$$0 \longrightarrow P \otimes_A A[x] \longrightarrow A[x] \longrightarrow A/p \otimes_A A[x] \longrightarrow 0$$

(Note that we are working over the commutative case, so the left tensor and the right tensor are canonically isomorphic.) We have $B \otimes_A A[x] = B[x]$, now we have $A[x] \otimes_A A/P = A[x]/PA[x] = (A/P)[x]$ which is a domain, so PA[x] is a prime ideal. It now suffices to show that if M is P-coprimary, then M[x] is P[x]-coprimary. This simplifies to showing that:

- if $f(x) \in P[x]$, then the multiplication map $M[x] \xrightarrow{f(x)} M[x]$ is nilpotent;
- if $f(x) \notin P[x]$, $M[x] \xrightarrow{f(x)} M[x]$ is an injection.

Note that $M[x] = \sum_{i \geq 0} m_i x^i$ for some m_i 's. Since P[x] is a prime ideal, then $A[x]/P[x] \cong A/p[x]$. If $f(x) \in P[x]$, we have $f(X) = p_0 + p_1 x + \dots + p_t x^t$ for p_i 's in P. Consider the multiplication map via $[f(x)]^p : M[x] \to M[x]$, where $n = n_0 + n_1 + \dots + n_t$ such that $p_i^{n_i} M = 0$ by the binomial theorem. Now suppose $f(x) \notin P[x]$, then let us write $f(x) = a_0 + a_1 x + \dots + a_t x^t$, and we have two cases:

- if no a_i 's are in P, then for all i, multiplication by a_i on M is an injection. If we multiply f(x) by $m_0 + m_1 sx + \cdots$, then the constant term would be $a_0 m_0$, and for each term to be zero, we must have f(x) equivalent to zero, hence that means multiplication by f(x) on M[x] would be injective as well.
- Now suppose there exists some a_i that is contained in P. We can write down f(x) = u + v where u has coefficients in P and v does not have any coefficients in P. If possible, let $f(\alpha) = 0$ for $\alpha \in M[x]$, then we have $u\alpha = -v\alpha$, and so $u^2\alpha = v^2\alpha$ since $u^2\alpha = u(-v\alpha) = v(-u\alpha) = v^2\alpha$, and by induction we have $u^n\alpha = (-1)^n v^n\alpha$. Therefore, for large enough n such that $u^n\alpha = 0$, we know $v^n\alpha = 0$, and therefore we have a contradiction since v does not contain any coefficients in P.

Remark 1.35. Remark 1.24 would fail if P is not a maximal ideal: P^2 may not be P-primary in this case.

Let R be a Noetherian ring, we let $i_P: R \to R_P$ be the localization away from P, from R to the local ring with maximal ideal PR_P , then we have $(PR_P)^n = P^nR_P$ to be PR_P -primary. Therefore, this gives a mapping from P^n to $P^nR_P = (PR_P)^n$. We now denote $P^{(n)} := i_P^{-1}(P^nR_P)$ to be the nth symbolic power of P, then $P^{(n)}$ is P-primary. (Indeed, we note that P is disjoint from $R \setminus P$, so given $M \to S^{-1}M$ pulling $S^{-1}P$ -primary module $S^{-1}N$ back to M gives a P-primary module.) In particular, $P^{(n)} \supseteq P^{n,2}$

Exercise 1.36. 1. • Let R be Noetherian and M be finitely-generated. Show that $\ell_R(M) < \infty$ if and only if $\mathrm{Ass}_R(M)$ consists of maximal ideals only.

- If $\ell_A(M) < \infty$, then M is a direct sum of coprimary submodules of M.
- 2. Now let R be a Noetherian ring and P be a prime ideal. Prove that the following are equivalent:
 - (i) P is an essential prime ideal of some submodule N of M.
 - (ii) $M_P \neq 0$.
 - (iii) $P \supseteq \operatorname{Ann}_R(M)$.

 $^{^{2}}P^{(n)}$ is the unique P-primary component in the primary decomposition of P^{n} , and is the smallest P-primary ideal containing P^{n} . Therefore, $P^{(n)} = P^{n}$ if and only if P^{n} is primary.

- (iv) P contains some $Q \in \mathrm{Ass}(M)$.
- 3. Let R = k[x, y, z] for some field k, and let $P = (xz y^2, x^3 yz, z^2 x^2y)$.
 - Prove that P is a prime ideal of R.
 - Is P^2 P-primary?

Hint: consider

$$\varphi: k[x, y, z] \to k[t]$$

$$x \mapsto t^{3}$$

$$y \mapsto t^{4}$$

$$z \mapsto t^{5}$$

and show that $\ker(\varphi) = P$.

1.2 Infinitely-generated Case

Now let R be a Noetherian ring, and M is not finitely-generated.

Definition 1.37 (Coprimary). M is called coprimary if for any $a \in R$, we have multiplication map $a : M \to M$ to be either injective, or locally nilpotent, i.e., for all $x \in M$, there exists n_x such that $a^{n_x}x = 0$.

Therefore, any submodule of M is coprimary. Now we define the associated primes to be $\mathrm{Ass}_R(M)$ to be the set of prime ideals in R such that there exists an injection $A/p \hookrightarrow M$, i.e., R/p is a cyclic submodule of M.

Theorem 1.38. Let R and M be as above. For any $P \in \mathrm{Ass}_R(M)$, there exists a P-primary submodule N(P) of M such that $(0) = \bigcap_{P \in \mathrm{Ass}_R(M)} N(P)$, which may be infinite.

Example 1.39. Let A and B be Noetherian rings and M be a finitely-generated A-module, and we say have a ring homomorphism $\varphi: B \to A$. Via the pullback over φ , we make M into a B-module, but M may not be finitely-generated as a B-module. For instance, take $A = \mathbb{Z}$ and $B = \mathbb{Z}[x]$.

Exercise 1.40. Let $\varphi: B \to A$ be a homomorphism of Noetherian rings. If M is a finitely-generated A-module, then via the pullback of φ , M is a B-module. We write it as φM . Prove that $\mathrm{Ass}_A(\varphi M) = \varphi^{-1}(\mathrm{Ass}_A(M))$.

2 FILTERED RINGS AND MODULES, COMPLETIONS

Definition 2.1 (Topological Ring). Let R be a ring with addition φ and multiplication ψ . Suppose R has a topology such that φ and ψ are continuous, then we say R is a topological ring with respect to the given topology. That is, the topology respects the algebraic structure.

Similarly, we can define a topological group with respect to multiplication and inverse, and a topological module with respect to addition and scalar multiplication.

Remark 2.2. A topological ring R (respectively, topological group G, topological module M) is Hausdorff if and only if (0) is closed in R (respectively, (e) is closed in G, (0) is closed in M).

Let M be a topological module, consider

$$\varphi: M \times M \to M$$
$$(x, y) \mapsto x - y$$

then the diagonal is given by $\varphi^{-1}(0) = \{(x,x) \mid x \in M\} = \Delta_M$. Now suppose (0) is closed, which gives Δ_M to be closed, hence M is Hausdorff.

Definition 2.3 (Pseudo-metric Space). We say (X,d) is a pseudo-metric space if we have a function $d: X \times X \to \mathbb{R}^{\geqslant 0}$ such that

- 1. $d(x,y) + d(y,z) \ge d(x,z)$,
- 2. d(x,y) = d(y,x),
- 3. d(x,x) = 0.

This becomes a metric space if d(x, y) = 0 if and only if x = y.

Remark 2.4. A pseudo-metric space is a Hausdorff if and only if it is a metric space.

Definition 2.5 (Completion). Let (X, d) be a (pseudo-)metric space, then the completion (\hat{X}, \hat{d}) of (X, d) is a complete (all Cauchy sequences converge) metric space \hat{X} with a metric \hat{d} with a map $\varphi: X \to \hat{X}$ such that

- 1. φ respects both d and \hat{d} ,
- 2. $\varphi(X)$ is dense in \hat{X} , and
- 3. We have

that is, given any complete metric space Y and a continuous map $\psi: X \to Y$, there exists a unique map $\theta: \hat{X} \to Y$ such that the diagram commutes.

Remark 2.6. If $W \subseteq X$, then $\hat{W} \cong \overline{\varphi(W)}$.

Definition 2.7 (Directed Set). Let (I, \leq) be a poset, then I is called a directed set if for all pairs of $\alpha, \beta \in I$, there exists $\gamma \in I$ such that $\alpha \leq \gamma$ and $\beta \leq \gamma$.

Definition 2.8 (Inverse Limit). We say $\{X_{\alpha}\}_{{\alpha}\in I}$ is an inverse family indexed by I if for all $\alpha \leqslant \beta$, there exists maps $\varphi_{\alpha,\beta}: X_{\beta} \to X_{\alpha}$ such that for all $\alpha \leqslant \beta \leqslant \gamma$, we have a commutative diagram

An inverse limit of $\{X_{\alpha}\}_{{\alpha}\in I}$ is an object X with maps $\varphi_{\alpha}:X\to X_{\alpha}$ for all $\alpha\in I$ such that the diagram

$$X \xrightarrow{\varphi_{\alpha}} X_{\alpha}$$

$$X_{\beta}$$

$$X_{\beta}$$

commutes for all $\alpha, \beta \in I$, and for all Y such that the diagram

commutes for all $\alpha, \beta \in I$, then there exists $f: Y \to X$ such that

commutes for all α .

Remark 2.9. To construct such inverse limits, we take $\tilde{X} = \prod_{\alpha \in I} X_{\alpha}$, then we have an embedding $X \hookrightarrow \tilde{X}$ where

$$X = \left\{ \prod_{\alpha \in I} X_{\alpha} \mid \forall \alpha \leqslant \beta, \varphi(X_{\beta}) = X_{\alpha} \right\}.$$

We denote the inverse limit to be $X = \lim_{\alpha \to \infty} X_{\alpha}$.

Exercise 2.10. Consider $X_0 \supseteq X_1 \supseteq \cdots \supseteq X_n \supseteq \cdots$, then the inverse limit $\varprojlim X_n = \bigcap_{n \ge 0} X_n$.

Exercise 2.11. Let A be a commutative ring, and consider A[x] or $A[x_1,\ldots,x_n]$. Let I=(x), or respectively the maximal ideal (x_1,\ldots,x_n) . Then we have a map $\cdots \to A[x]/I^{n+1} \to A[x]/I^n \to A[x]/I^{n-1} \to \cdots \to A[x]/I$, so $\varprojlim A[x]/I^n \cong A[[x]]$.

Remark 2.12. By Hilbert's theorem, we know if A is Noetherian, then so is A[x]; similarly, if A is Noetherian, then so is A[x].

Definition 2.13 (Graded Ring). We say a commutative ring A is graded if A contains a sequence of $\{A_n\}_{n\geqslant 1}$ of subgroups such that

- $A_i \cdot A_j \subseteq A_{i+j}$,
- $A = \bigoplus_{i \geqslant 0} A_i$.

By definition, this implies A_0 is a subring of A, and $A_+ = \bigoplus_{i \geqslant 1} A_i$ is an ideal, usually called the irrelevant ideal.

Exercise 2.14. 1. $1 \in A_0$,

2. A is Noetherian if and only if A_0 is Noetherian and A_+ is a finitely-generated ideal of A.

2.1 FILTRATIONS OF RINGS AND MODULES

Let A be a commutative ring, not necessarily Noetherian, and let M be an A-module.

Definition 2.15 (Filtered Ring). A is called a filtered ring if it admits a filtration $\{A_n\}_{n\geq 0}$ where A_i 's form a descending sequence of subgroups of A.

Since the descending chain satisfies $A_i \cdot A_j \subseteq A_{i+j}$, then each A_i for i > 0 is an ideal of A. We now write $A \sim \{A_n\}_{n \ge 0}$, associating A with its filtration.

Definition 2.16 (Filtered Module). M is called a filtered A-module if there exists a descending chain of subgroups $M_0 \supseteq M_1 \supseteq \cdots$ of M such that $A_i \cdot M_j \subseteq M_{i+j}$.

This implies each M_i is an A-submodule.

Example 2.17. Let I be an ideal of A, and let $A_n = I^n$. Let M be an A-module, with $M_n = I^n M$. The associated filtrations are called the I-adic filtration of A and of M.

Definition 2.18 (Induced Filtration, Image Filtration). Let $A \sim \{A_n\}$ and $M \sim \{M_n\}$. Let $N \subseteq M$ be a submodule. The induced filtration on N is given by $N_n = N \cap M_n$ for all n.

Let $f: M \to T$ be a surjective A-linear map of modules, then the filtration defined by $T_n = f(M_n)$ is the image filtration of T.

Definition 2.19 (Filtered Map, Strict Morphism). Let $M \sim \{M_n\}$ and $N \sim \{N_n\}$ be filtrations. A map $f: M \to N$ is called a filtered map if for all $n, f(M_n) \subseteq N_n$.

If $f: M \to N$ is a filtered map, suppose f(M) has an induced filtration with $f(M)_n = f(M) \cap N_n$, as well as an image filtration of $\{f(M_n)\}$. We say f is a strict morphism if for any n, $f(M_n) = f(M) \cap N_n = f(M)_n$. Note that by definition we have $f(M_n) \subseteq f(M) \cap N_n$.

2.2 Topology and metric on Filtered Rings and Modules

Definition 2.20 (Fundamental System). Let $A \sim \{A_n\}$ and $M \sim \{M_n\}$. We declare $\{A_n\}$ (respectively, $\{M_n\}$) as a fundamental system of open neighborhoods of (0) in A (respectively, M). For any $x \in A$ (respectively, $x \in M$), $x + A_n$ (respectively, $x + M_n$) form a fundamental system of neighborhoods of x. This presumption defines a topology on A corresponding to $\{A_n\}$ (respectively, M corresponding to $\{M_n\}$).

Remark 2.21. A is a topological ring and M is a topological A-module with respect to this filtration.

Lemma 2.22. Let $M \sim \{M_n\}$ with $N \subseteq M$, and let \bar{N} be the closure of N in M, then this is just $\bigcap_{n \ge 0} N + M_n$.

Proof. Let $x \in \overline{N}$, then there exists n such that $(x + M_n) \cap N \neq \emptyset$. Therefore, there exists $y_n \in M_n$ and $z \in N$ such that $x + y_n = z$, therefore $x = z - y_n \in N + M_n$ for all n. Conversely, let $x \in \bigcap_{n \ge 0} N + M_n$. When $x \in N + M_n$, then

we can write $x = z + y_n$ for $z \in N$ and $y_n \in M_n$. Therefore, $x - y_n = z$, so $(x + M_n) \cap N \neq \emptyset$.

Corollary 2.23. $\overline{(0)} = \bigcap_{n \ge 0} M_n = \bigcap_{n \ge 0} A_n$. Therefore, A (respectively, M) is Hausdorff if and only if $\bigcap_{n \ge 0} A_n = 0$ (respectively, $\bigcap_{n \ge 0} M_n = 0$).

Exercise 2.24. Let $f: M \to N$ be a filtered map, then f is continuous.

Let 0 < c < 1.

If we assume A (or M) is Hausdorff, i.e., $\bigcap_{n\geqslant 0}A_n=0$ ($\bigcap_{n\geqslant 0}M_n=0$). Denote $d(x,y)=c^n$, where n is the largest integer such that $x-y\in M_n$.

If we assume A (or M) is not Hausdorff, i.e., $\bigcap_{n\geqslant 0}A_n\neq 0$ ($\bigcap_{n\geqslant 0}M_n\neq 0$). We can still define the notion of distance as above, but in addition we need: if $x-y\in\bigcap_{n\geqslant 0}M_n$, then d(x,y)=0.

Recall that a sequence $\{x_n\}$ is Cauchy if for any $\varepsilon > 0$, there exists N such that $d(x_n, x_m) < \varepsilon$ for all $n, m \ge N$. Therefore, given by M_n , there exists N such that for all $s, r \ge N$, then $x_r - x_s \in M_n$. Note that it suffices to have $x_{N+1} - x_N \in M_n$, since by telescoping we get what we want over the additive structure of the module. Hence, $\{x_n\}$ is Cauchy if and only if $\{x_n - x_{n-1}\} \to 0$ as $n \to \infty$.

Exercise 2.25. Let M be a complete metric space with respect to $\{M_n\}$, then $\{x_n\} \in M$ has a convergent sum $\sum_{n \geqslant 0} x_n$ if and only if $x_n \to 0$.

Theorem 2.26. Let $M \sim \{M_n\}$ be filtered and Hausdorff. Suppose M is complete with respect to $\{M_n\}$. Let N be a closed submodule of M, then $\bar{M} = M/N$ with respect to the image filtration $\{\bar{M}_n\}$ is also complete (Hausdorff).

Proof. \bar{M} is Hausdorff since $N=\bar{N}=\bigcap_{n\geqslant 0}(N+M_n)$. Consider $\eta:M\to \bar{M}$, then this is Hausdorff and we want to show this is complete. Let $\{\bar{x}_n\}$ be a Cauchy sequence in \bar{M} , then $\bar{x}_{n+1}-\bar{x}_n\in\bar{M}_{i(n)}$ for all $n\geqslant N$, for some i(n) corresponding to n. In particular, $i(n)\to\infty$ as $n\to\infty$. Let x_i be the lift of \bar{x}_i in M, then we have $x_{n+1}-x_n=y_n+z_n$ for some $y_n\in M_{i(n)}$ and $z_n\in N$. By telescoping, we have $x_n-x_1=\sum_{i=1}^{n-1}y_i+\tilde{z}$ for some $\tilde{z}\in N$. But for $n\to\infty$, we have large enough $i(n)\gg 0$, therefore the sequence $\{y_n\}$ satisfies $y_n\in M_{i(n)}$, therefore $y_n\to 0$ for $n\to\infty$, thus the sequence $\sum_{n=1}^\infty y_n$ converges. Hence, as $n\to\infty$, we have $\lim_{n\to\infty} \bar{x}_n=\bar{x}_1+\sum_{n=1}^\infty \bar{y}_n+\tilde{z}=\bar{x}_1+\bar{y}$.

2.3 (I-ADIC) COMPLETION

Definition 2.27 (Null Sequence, Completion). A Cauchy sequence $\{x_n\}$ with $x_n \to 0$ is called a null sequence.

Let $M \sim \{M_n\}$ not necessarily be Hausdorff, then we obtain the completion M of M with respect to $\{M_n\}$ (or the metric defined on $\{M_n\}$) by defining \hat{M} as the set of equivalence classes of all Cauchy sequences in M, over the submodules generated by null sequences.

Remark 2.28. Recall that we define the completion \hat{X} of a space X as the equivalence class of sets of all Cauchy sequences over the relation $x=(x_n)\sim y=(y_n)$ if and only if $d(x_n,y_n)\to 0$ as $n\to\infty$. In our case, we have $\{x_n-y_n\}$ forming a null sequence.

Similarly, we can define the completion \hat{A} of a ring A to be the equivalence class of the sets of all Cauchy sequences over the ideal generated by the null sequences.

Remark 2.29. \hat{M} is a topological \hat{A} -module. In particular, if $\{a_n\}$'s define a Cauchy sequence in A and $\{m_n\}$'s define a Cauchy sequence in M, then $\{a_nm_n\}$'s define a Cauchy sequence in M.

The corresponding mapping is given by

$$i: M \to \hat{M}$$

 $x \mapsto \{x\},$

that is, the image is the constant sequence defined by $x_n = x$ for all n. Note that this is not necessarily injective. However, i(M) is dense in \hat{M} .

Remark 2.30. The completion M of M satisfies the following property: given any complete space T, there is $g: M \to T$ and $f: \hat{M} \to T$ such that g = fi is a commutative diagram. In particular, if $\{x_n\}$ is Cauchy in M, then the image $g(x_n)$ is Cauchy in T. If we define $f(x = (x_n)) = y$, then $g(x_n) \to y$ in T.

Note that given any M_n in M, we have $\overline{i(M_n)} = \hat{M}_n$.

Definition 2.31 (Hausdorffication). The quotient $M/\ker(i)$ is called the Hausdorffication of M.

Remark 2.32. By Theorem 2.26, \hat{M}/\hat{M}_n is complete, then there is an induced mapping $\bar{i}_n: M/M_n \to \hat{M}/\hat{M}_n$. Now $\operatorname{im}(\bar{i}_n)$ is dense in \hat{M}/\hat{M}_n , then $\widehat{M/M}_n = \hat{M}/\hat{M}_n$. Recall that M_n is defined to be open in M via the fundamental system, now cosets of M_n are of the form $x+M_n\cong M_n$ with respect to a homeomorphism, hence $M\backslash M_n$ is open, so M_n is also closed in M. Therefore, M/M_n is discrete, so $\overline{(0)}$ is clopen, therefore M/M_n is complete, therefore $M/M_n\cong \hat{M}/\hat{M}_n$, i.e., isomorphic to the completion. In particular, $i^{-1}(\hat{M}_n)=M_n$ (with $M\cap\hat{M}_n=M_n$).

Remark 2.33. $\bigcap \hat{M}_n = (0)$ and $\{\hat{M}_n\}$ constitutes a fundamental system of open neighborhoods in \hat{M} .

Definition 2.34. Let $A \sim \{A_n\}$ and $M \sim \{M_n\}$, with $\bar{A} \sim \{\bar{A}_n\}$ and $\bar{M} \sim \{\bar{M}_n\}$. We define $E_0(A) = A/A_1 \oplus A_1/A_2 \oplus \cdots \oplus A_n/A_{n+1} \oplus \cdots$ as a graded ring, and similarly we can define $E_0(M)$. This is called the graded ring (respectively, module) associated to the filtration.

Remark 2.35. In particular, $E_0(M)$ is a graded $E_0(A)$ -module. We have

$$A_i/A_{i+1} \times A_i/A_{j+1} \to A_{i+j}/A_{i+j+1}$$

 $(\bar{\lambda}, \bar{\mu}) \mapsto \overline{\lambda \mu}$

and

$$A_i/A_{i+1} \times M_i/M_{j+1} \to M_{i+j}/M_{i+j+1}$$

 $(\bar{\lambda}, \bar{x}) \mapsto \overline{\lambda x}$

We have $E_0(A) \cong E_0(\hat{A})$ and $E_0(M) \cong E_0(M)$ since $A_i/A_{i+1} \cong \hat{A}_i/\hat{A}_{i+1}$ and $M_i/M_{i+1} \cong \hat{M}_i/\hat{M}_{i+1}$.

Remark 2.36. Note that k[x] has transcendental degree 1 over k and k[[x]] has infinite transcendental degree over k, but by Remark 2.35 we know

$$\bigoplus \frac{x^n \cdot k[x]}{x^{n+1} \cdot k[x]} \cong \bigoplus \frac{x^n \cdot k[x]}{x^{n+1} \cdot k[x]}.$$

Definition 2.37 (Inverse Limit). Let $A \sim \{A_n\}$ and $M \sim \{M_n\}$, then we can construct the completion of A (and similarly of M) via inverse limit. We denote $M^* = \varprojlim M/M_n = \{\prod \bar{x}_n : (\bar{x}_n) \in \prod M/M_n, \eta_{n+1}(\bar{x}_{n+1}) = \bar{x}_n \ \forall n \}$ associated with the directed system

$$\cdots \longrightarrow M/M_{n+1_{\overline{x}_{n+1} \mapsto \overline{x}_n}} M/M_n \xrightarrow{\eta_n} M/M_{n-1} \longrightarrow \cdots$$

Therefore this is true if and only if $x_{n+1} - x_n \in M_n$ for any n, so we obtain a Cauchy sequence as mentioned previously. Now M/M_n is discrete hence complete, therefore the associated topology $\prod M/M_n$ of countable products is complete in the product topology. Therefore, since each M/M_n is a metric space, then the countable product is still a metric space $\prod M/M_n$.

Exercise 2.38. Show that M^* is a closed submodule of $\prod M/M_n$. In particular, since $\prod M/M_n$ is complete, then M^* is also complete.

Remark 2.39. The associated map is

$$i: M \to M^*$$

 $x \mapsto (\bar{x}, \bar{x}, \bar{x}, \dots)$

and i(M) is dense in M^* . For any M_n , the image $i(M_n) = (\bar{0}, \dots, \bar{0}, \bar{x}, \bar{x}, \dots)$ for some $x \in M_n$ with the first n coordinates as 0. In general, we have the mapping

$$M^* \stackrel{j}{\longleftarrow} \prod M/M_n \stackrel{\pi_n}{\longrightarrow} M/M_n$$

and
$$\overline{i(M_n)}=(\pi_n j)^{-1}(\overline{0})=j^{-1}\pi_n^{-1}(\overline{0}).$$
 For any $Z_n\in M/M_n$, the preimage
$$\pi_n^{-1}(Z_n)=M/M_1\times M/M_{n-1}\times Z_n\times M/M_{n+1}\times \cdots,$$

so

$$j^{-1}(\pi_n^{-1}(0)) = j^{-1}(M/M_1 \times M/M_{n-1} \times \bar{0} \times M/M_{n+1} \times \cdots) = \overline{j(M_n)} = M_n^*.$$

It now follows that $\bigcap M_n^* = (0)$.

Remark 2.40. We now have the following universal property: for any $M \to M^*$ and mapping $f: M \to N$ for some complete Hausdorff space N, then there exists a unique $g: M^* \to N$ such that the diagram commutes.

$$M \xrightarrow{f} M^*$$

Indeed, M^* is the set of elements (\bar{x}_n) with $\eta_{n+1}(\bar{x}_{n+1}) = \bar{x}_n$, therefore this is the set of elements (x_n) with $x_{n+1} - x_n \in M_n$ for all n, therefore $\{x_n\}$ is a Cauchy sequence, so for $y = \varprojlim f(x_n)$, therefore $g((\bar{x}_n)) = y$. Now if $\{x'_n\}$ is another lift of $(\bar{x}_n) \in M^*$, then we can check that $\{x_n - x'_n\} \to 0$ for $n \to \infty$, hence $\varprojlim f(x_n) = \varprojlim f(x'_n)$, so $M^* = \bar{M}$, $M_n^* = \hat{M}_n$ and so on.

Lemma 2.41. Let $R = A[x_1, ..., x_n]$, $I = (x_1, ..., x_n)$, then the I-adic completion is equivalent to the completion with respect to I-adic filtration corresponding to the topology. i.e., the completion of $A[x_1, ..., x_n]$ is $A[[x_1, ..., x_n]]$.

Lemma 2.42. Say $A \sim \{A_n\}$, and suppose A is Hausdorff, i.e., $\bigcap A_n = (0)$, then if $E_0(A)$ is a domain, then A is also a domain.

Proof. Suppose not, then we can pick $x \neq 0$ and $y \neq 0$ such that xy = 0, then $x \in A_n \backslash A_{n+1}$ and $y \in A_m \backslash A_{m+1}$ for some n, m, then considering the decomposition of $E_0(A)$ we have $\bar{x} \neq 0$ in A_n/A_{n+1} and $\bar{y} \neq 0$ in A_m/A_{m+1} , so $\bar{y}\bar{x} = \bar{y}\bar{x} = 0$, this is a contradiction to the fact that $E_0(A)$ is a domain, therefore A is a domain.

Definition 2.43. Let A and M be filtered and Hausdorff, say $x \in M$ be such that $x \in M_n \backslash M_{n+1}$ with largest such n, then we say n is the filtered degree of x.

Theorem 2.44. Let $A \sim \{A_n\}$ and $M \sim \{M_n\}$ and $N \sim \{N_n\}$, and $f: M \to N$ be a filtered map. Suppose that M is complete, N is Hausdorff, and $E_0(f): E_0(M) \to E_0(N)$ is onto, so we can write $E_0(M) = M/M_1 \oplus M_1/M_2 \oplus \cdots \oplus M_m/M_{m+1}$ and $E_0(N) = N/N_1 \oplus N_1/N_2 \oplus \cdots \oplus M_m/M_{m+1}$, then we have corresponding maps

$$E_0(f)_n: M_n/M_{n+1} \to N_n/N_{n+1}$$

 $(\bar{x}) \mapsto \overline{f(x)},$

then f is onto, N is complete, and f is strict.

Proof. Since $E_0(f)$ is onto, take $x \in N$ and since N is Hausdorff, then $x \in N_n \backslash N_{n+1}$ for some n. Therefore, the induced mapping $E_0(f)_n: M_n/M_{n+1} \to N_n/N_{n+1}$ is onto. Therefore, for $\bar{x} \in N_n/N_{n+1}$, we can pick $y_n \in M_n$ such that $x - f(y_n) \in N_{n+1}$. Therefore, on the level of $E_0(f)_{n+1}$, we know $x - f(y_n) \in N_{n+1}/N_{n+2}$, therefore we can pick $y_{n+1} \in M_{n+1}$ such that $x - f(y_n) - f(y_{n+1}) \in N_{n+2}$. Proceeding inductively, we have a sequence of elements with $y_{n+t} \in M_{n+t}$ such that $x - \sum_{k=0}^t f(y_{n+k}) \in N_{n+t+1}$. Hence, we have a Cauchy sequence in M, and so this is a Cauchy sequence in M_n , so $y_{n+t} \to 0$ as $t \to \infty$, then $\sum_{t=0}^t y_{n+t}$ converges, thus the sum $y \in M_n$. One can check that $f(y) = \bar{x}$, so f is onto. But that means $f(M_n) = N_n$, so f is strict. We also note that $f^{-1}(0)$ is a closed submodule of M since N is Hausdorff, therefore by Theorem 2.26 we know N is complete.

Corollary 2.45. Let A be complete with respect to the filtration, let M be Hausdorff. Suppose $E_0(M)$ is a finitely-generated graded module over $E_0(A)$, that is, there exists x_1, \ldots, x_t , where the degree of \bar{x}_i is r_i , such that $E_0(M)$ is a graded module over $E_0(A)$ generated by $\bar{x}_1, \ldots, \bar{x}_t$. If this is the case, then M is generated by x_1, \ldots, x_t over A.

Proof. Denote $F = \bigoplus_{i=1}^{t} Ae_i$, then this induces a mapping

$$\varphi: F \to M$$
$$e_i \mapsto x_i$$

defined on the generators. Since this is a finite sum over complete ring A, then F is complete. Let r_i be the degree of x_i , then this imposes a filtration on Ae_i as follows:

$$(Ae_i)_j = \begin{cases} 0, & j \leqslant r_i \\ A_{j-r_i}e_i, & j > r_i \end{cases}$$

We implement this on all i's, then the filtered degree of e_i is just r_i . Using this filtration, we induce a filtration on F, then we have a commutative diagram

$$E_{0}(F) \xrightarrow{E_{0}(\varphi)} E_{0}(M)$$

$$\parallel \qquad \qquad \parallel$$

$$E_{0}(\bigoplus_{i=1}^{t} Ae_{i}) \xrightarrow{\varphi'} E_{0}(M)$$

with induced map φ' , where φ' sends $\bar{\varphi}_i \mapsto \bar{x}_i$ for all $1 \leq i \leq t$. Therefore, φ is onto as a $E_0(A)$ -module map. By Theorem 2.44 we are done.

Corollary 2.46. Let $A \sim \{A_n\}$ be complete with respect to filtration, let M be Hausdorff with filtration $\{M_n\}$, and suppose $E_0(M)$ is Noetherian, then M is Noetherian as well.

Proof. Take submodule $N \subseteq M$, define $N_n = N \cap M_n$, then we have an induced filtration of N, therefore $E_0(N)$ is a submodule of $E_0(M)$ with $N_n/N_{n+1} \hookrightarrow M_n/M_{n+1}$ for all n. Hence, N is Hausdorff with respect to $\{N_n\}$, and $E_0(N)$ is a finitely-generated $E_0(A)$ -module, since $E_0(N)$ is a submodule of $E_0(M)$. By Corollary 2.45, this implies N is finitely-generated and complete.

Corollary 2.47. Under the same assumptions as in Corollary 2.46, every submodule N of M is a closed submodule.

Proof. By Corollary 2.46, N is complete, and every complete subspace of a Hausdorff space is closed, thus N is closed.

Corollary 2.48. Let (A, \mathfrak{m}) be quasi-local, i.e., \mathfrak{m} is the unique maximal ideal of a commutative ring (not necessarily Noetherian) A. In addition, suppose A is complete and Hausdorff with a \mathfrak{m} -adic filtration, i.e., $\bigcap \mathfrak{m}^n = (0)$. Let M be an A-module with respect to the filtration $\{\mathfrak{m}^n M\}$, and assume M is Hausdorff. If $\dim_{A/\mathfrak{m}}(M/\mathfrak{m}M)$ is finite, and suppose \mathfrak{m} is a finitely-generated ideal in A, then M is a finitely-generated A-module.

Proof. We write down the decomposition

$$E_0(M) = M/\mathfrak{m}M \oplus \frac{\mathfrak{m}M}{\mathfrak{m}^2 M} \oplus \cdots \oplus \frac{\mathfrak{m}^n M}{\mathfrak{m}^{n+1} M} \oplus \cdots$$

and

$$E_0(A) = A/\mathfrak{m} \oplus \frac{\mathfrak{m}}{\mathfrak{m}^2} \oplus \cdots \oplus \frac{\mathfrak{m}^n}{\mathfrak{m}^{n+1}} \oplus \cdots$$

Denote $\mathfrak{m}=(x_1,\ldots,x_n)$ to be the finitely-generated ideal, and since $A/\mathfrak{m}\cong k$ is a field, then we have a ring homomorphism

$$\eta: k[x_1, \dots, x_n] \to E_0(A)$$

 $x_i \mapsto \bar{x}_i \in \mathfrak{m}/\mathfrak{m}^2$

then η is onto, hence $E_0(A)$ is Noetherian. If we write $M/\mathfrak{m}M=k\{\bar{\alpha}_1,\ldots,\bar{\alpha}_r\}$, then one can check that $E_0(M)$ is generated by $\bar{\alpha}_1,\ldots,\bar{\alpha}_r$ for $\bar{\alpha}_i\in M/\mathfrak{m}M$ over $E_0(A)$. This implies $E_0(M)$ is Noetherian and thus M is finitely-generated over A by Corollary 2.46.

Corollary 2.49. Let A be a commutative ring and I be a finitely-generated ideal over A such that A/I is Noetherian. Suppose A is I-adically complete, i.e., A is complete with respect to the filtration $\{I^n\}$, then A is Noetherian.

Proof. We write down

$$E_0(A) = A/I \oplus I/I^2 \oplus \cdots \oplus I^n/I^{n+1} \oplus \cdots$$

for $I = (x_1, \dots, x_n)$, then using the same argument we have a ring homomorphism

$$\eta: A/I[x_1, \dots, x_n] \to E_0(A)$$

 $x_i \mapsto \bar{x}_i \in I/I^2$

which is also surjective. Since A/I is Noetherian, then $A/I[x_1, \ldots, x_n]$ is also Noetherian, thus $E_0(A)$ is Noetherian, and by Corollary 2.46, we conclude that A is Noetherian.

Remark 2.50. Suppose A is Noetherian, and consider the completion $B = A[[x_1, \ldots, x_n]]$ of $A[x_1, \ldots, x_n]$ with respect to the I-adic filtration where $I = (x_1, \ldots, x_n)$. Therefore, $A[[x_1, \ldots, x_n]] = \varprojlim A[x]/I^n$. Now B/IB is A-Noetherian, so by Corollary 2.49 we conclude that $A[[x_1, \ldots, x_n]]$ is also Noetherian.

Exercise 2.51. Let A be a commutative ring, and we assume it is Noetherian. Let $I \subsetneq J$ be ideals of A, and that $\bigcap J^n = (0)$. Suppose A is complete with respect to the J-adic topology. Prove that A is complete with respect to the I-adic topology as well.

Remark 2.52. We saw in Remark 2.50 that $A[[x_1, \ldots, x_n]]$ is complete with respect to (x_1, \ldots, x_n) , then the completeness holds for any $I \subseteq (x_1, \ldots, x_n)$.

Proposition 2.53. Let A be commutative ring and M be a finitely-generated A-module, and suppose I is an ideal of A such that M = IM, then there exists $a \in I$ such that (1 - a)M = 0.

Remark 2.54. Proposition 2.53 itself is a direct application of Cayley-Hamilton Theorem, and the proof below follows the same approach. This is also sometimes referred to as Nakayama Lemma (c.f., Corollary 2.55).

Proof. We write $M = \langle \alpha_1, \dots, \alpha_n \rangle$ and let I be such that IM = M, then

$$\alpha_1 = a_{11}\alpha_1 + \cdots + a_{1n}\alpha_n$$

where $a_{1i} \in I$. In general, we have

$$\alpha_j = a_{j1}\alpha_1 + \dots + a_{jn}\alpha_n$$

for $a_{ji} \in I$. Therefore,

$$\begin{cases} (1 - a_{11})\alpha_1 - a_{12}\alpha_2 - \dots - a_{1n}\alpha_n &= 0 \\ -a_{21}\alpha_1 + (1 - a_{22})\alpha_2 - \dots - a_{2n}\alpha_n &= 0 \\ & \vdots \\ -a_{n1}\alpha_1 - a_{n2}\alpha_2 - \dots + (1 - a_{nn})\alpha_n &= 0 \end{cases}$$

and this gives a matrix

$$C = \begin{pmatrix} 1 - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & 1 - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & 1 - a_{nn} \end{pmatrix}$$

such that

$$CX := C \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = 0.$$

If we do the cofactor decomposition with respect to the first column, we have $\det(C) \cdot \alpha_1 + 0 \cdot \alpha_2 + \cdots + 0 \cdot \alpha_n = 0$, hence $\det(C) \cdot \alpha_1 = 0$. If we do this for each column, we have $\det(C) \cdot \alpha_i = 0$ for all i, hence $\det(C) \cdot M = 0$. But note that $\det(C) = 1 - a$ for some $a \in I$, therefore (1 - a)M = 0.

Corollary 2.55 (Nakayama Lemma). Suppose I is an ideal of A contained in the Jacobson radical of A, and M is a finitely-generated A-module such that M = IM, then M = 0.

Proof. By Proposition 2.53, there exists $a \in I$ such that (1-a)M = 0. Note that the Jacobson radical is the intersection of all maximal ideals of A, so I is contained in all maximal ideals of A. Since $a \in I$, then 1-a is a unit in A, so M = 0. \square

Exercise 2.56. Let A be a commutative ring and M be a finitely-generated A-module. Suppose $f: M \to M$ is a surjective A-linear map, then f is an isomorphism. Hint: use Proposition 2.53.

From now on, we assume A is Noetherian, M is a finitely-generated A-module. Usually, we assume A and M have I-adic filtrations for some ideal $I \subseteq A$.

Lemma 2.57 (Artin-Rees). Let A be Noetherian and M is a finitely-generated A-module, and $I \subseteq A$ is an ideal. Given submodule $N \subseteq M$, suppose there exists k > 0 such that for every n we have $N \cap I^{n+k}M = I^n(N \cap I^kM)$.

Remark 2.58. The proof essentially refers to the blow-up algebra, i.e., Rees algebra.

³The cleanest way to finish the proof would be to observe that $I \cdot \det(C) = (\operatorname{adj}(C))C$ and so $I \cdot \det(C)X = (\operatorname{adj}(C))CX = 0$. In particular, $\det(C) \cdot X = 0$ and since X generates M, then $\det(C) \cdot M = 0$. Note that this is equivalent to the given approach since the cofactor matrix induces $\operatorname{adj}(C)$.

Proof. Note that the (\supseteq) direction is true by definition, so we only need to show the (\subseteq) direction. Let us write $\tilde{A} = A \oplus I \oplus I^2 \oplus \cdots$, more formally this is $A \oplus It \oplus I^2t^2 \oplus \cdots \oplus I^nt^n \oplus \cdots \subseteq A[t]$. This is a graded ring. Similarly, we write $\tilde{M} = M \oplus IM \oplus I^2M \oplus \cdots \oplus I^nM \oplus \cdots$.

Claim 2.59. \tilde{A} is a graded Noetherian ring.

Subproof. Let $I = (x_1, \ldots, x_n)$, then the ring homomorphism

$$\eta: A[x_1, \dots, x_n] \to \tilde{A}$$

$$x_i \mapsto x_i$$

is onto. Since A is Noetherian, then $A[x_1,\ldots,x_n]$ is also Noetherian. Therefore, \tilde{A} is a graded Noetherian ring.

Suppose M is generated by $\alpha_1, \ldots, \alpha_r$, then \tilde{M} is a finitely-generated graded \tilde{A} -module, generated by $\alpha_1, \ldots, \alpha_r \in M$ by the surjectivity of η . This implies that \tilde{M} is a graded Noetherian module. Now define

$$\tilde{N} = N \oplus (N \cap IM) \oplus (N \cap I^2M) \oplus \cdots \oplus (N \cap I^kM) \oplus \cdots \oplus (N \cap I^{n+k}M) \oplus \cdots$$

then $\tilde{N} \subseteq \tilde{M}$, so \tilde{N} is a finitely-generated graded \tilde{A} -module. Now each generator is a finite sum given by decomposition above, so each of the generating set must be a graded element. Hence, \tilde{N} is generated by finitely many elements, which are graded elements, say β_1,\ldots,β_t where $\deg(\beta_i)=r_i$. Let $k=\max_{1\leqslant i\leqslant t}r_i$, and we think of ways to obtain elements in $N\cap I^{n+k}M$. Considering the multiplicity of the degree, we know $I^{n+k-r_i}\beta_i\subseteq N\cap I^{n+k}$ for each $1\leqslant i\leqslant t$. Therefore, we have

$$N \cap I^{n+k}M = I^{n+k}N + I^{n+k-1}(N \cap IM) + \dots + I^{n}(N \cap I^{k}M) = \sum_{j=0}^{k} I^{n+k-j}(N \cap I^{j}M).$$

Each $I^{n+k-j}(N \cap I^j M) = I^n \cdot I^{k-j}(N \cap I^j M) \subseteq I^n(N \cap I^k M)$, so the sum $N \cap I^{n+k} M \subseteq I^n(N \cap I^k M)$. \square

Corollary 2.60. Using the same assumption as in Lemma 2.57, let I be an ideal of A contained in the Jacobson radical of Noetherian ring A, then $\bigcap I^n M = (0)$.

Proof. Let $N = \bigcap I^n M$, then by Lemma 2.57, $I^n N = N = N \cap I^{n+k} M = I^n (N \cap I^k M)$, then by Corollary 2.55, N = 0.

Remark 2.61. In particular, Corollary 2.60 implies M is Hausdorff with respect to the I-adic topology, so the map $M \hookrightarrow \hat{M}$ is an injection by the mapping

$$M \to \varprojlim M/I^n M \subseteq \prod M/M^n M$$

 $x \mapsto (x, x, \dots)$

Corollary 2.62. Using the same assumption as in Lemma 2.57, let A be a domain with ideal I, then $\bigcap I^n = (0)$.

Proof. Let $J = \bigcap I^n$, then $J \cap I^{n+k}A = I^n(J \cap I^k)$, so $J = I^nJ$, then by Proposition 2.53 there exists $a \in I^n$ such that (1-a)J = 0, and since A is a domain, then J = 0.

Remark 2.63. Corollary 2.62 implies that under *I*-adic topology, the map $A \to \hat{A}$ is injective.

Definition 2.64. Let $A \sim \{I^n\}$ and $M \sim \{M_n\}$, not necessarily with respect to the *I*-adic filtration, then $\{M_n\}$ is called *I*-good if there exists h > 0 such that $M_{n+h} = I^n M_h$.

Remark 2.65. By Lemma 2.57, induced filtration is I-good. Topologically, given $A \sim \{I^n\}$ and $M \sim \{M_n\}$ such that $\{M_n\}$ is I-good, then $I^nM \subseteq M_h$ for some h > 0, so $M_{n+h} = I^nM_h \subseteq I^nM$. In this case, $\{I^nM\}$ and $\{M_n\}$ are cofinal with respect to each other and hence give the same topology on M. Moreover,

$$\lim M/I^n M \cong \lim M/M_n$$
.

That is, the *I*-adic completion of *M* is equivalent to the completion of *M* with respect to $\{M_n\}$.

⁴For instance, we usually write A[t] for $A \oplus At \oplus At^2 \oplus \cdots$.

Remark 2.66. Given an *I*-good filtration and a submodule N of M, $\{I^nN\}$ and $\{N \cap I^nM\}$ define the same topology on N, and hence the *I*-adic completion of N is equivalent to the completion of M with respect to $\{M_n\}$.

Proposition 2.67. Let A be Noetherian and a short exact sequence

$$0 \longrightarrow N \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} T \longrightarrow 0$$

of finitely-generated A-modules, and let I be an ideal of A, then we have a short exact sequence

$$0 \longrightarrow \hat{N} \stackrel{\hat{f}}{\longrightarrow} \hat{M} \stackrel{\hat{g}}{\longrightarrow} \hat{T} \longrightarrow 0$$

where all completions are I-adic completions.

Proof. By Lemma 2.57, we know $\hat{N} = \varprojlim N/I^n N = \varprojlim N/(N \cap I^n M)$, then we have a short exact sequence

$$0 \longrightarrow N/(N \cap I^n M) \longrightarrow M/I^n M \longrightarrow T/I^n T \longrightarrow 0$$

for every n > 0. It now suffices to show that

$$0 \longrightarrow \lim N/(N \cap I^n M) \longrightarrow \lim M/I^n M \longrightarrow \lim T/I^n T \longrightarrow 0$$

Exercise 2.68. $\ker(\bar{f}) = 0$ and $\operatorname{im}(\hat{f}) = \ker(\hat{f})$.

We now show that \hat{g} is onto. Taking $\{z_n\}$ in $\varprojlim T/I^nT$, we want to show that there exists $\{y_n\}$ in $\varprojlim M/I^nM$ with image $\{z_n\}$, and we proceed inductively. Suppose we have constructed $\{y_i\}_{i \leq n}$ such that $\operatorname{im}(y_i) = z_i$ with system $y_n \to y_{n-1} \to \cdots \to y_1$, then there is a commutative diagram

where $y_n \in M/I^nM$ and $z_n \in T/I^nT$. Here all rows are exact and the vertical mappings are surjective. We proceed by diagram chasing. To find $y_{n+1} \in M/I^{n+1}M$ such that $\operatorname{im}(y_{n+1}) = z_{n+1}$, since $g_{n+1} : M/I^{n+1}M \to T/I^{n+1}M$ is onto, then we lift it back to $x_{n+1} \in M/I^{n+1}M$ such that $g_{n+1}(x_{n+1}) = z_{n+1}$, and now there is x_n landing in M/I^nM by the vertical mapping. Note that by definition x_n now lands in z_n by the vertical mapping, so we have both $y_n \to z_n$ and $x_n \to z_n$, therefore $y_n - x_n \to 0$, now we lift it back to w_n in $N/(N \cap I^nM)$, which lifts to $w_{n+1} \in N/(N \cap I^{n+1}M)$, and let the image of w_{n+1} with respect to $w_{n+1} \in M/I^n$, then the element $w_{n+1} \in M/I^n$ is now such that we have

$$\begin{array}{ccc} x'_{n+1} + x_{n+1} & \longrightarrow z_{n+1} \\ \downarrow & & \downarrow \\ y_n & \longrightarrow z_n \end{array}$$

via diagram chasing as desired. This is the element y_{n+1} we want.

Remark 2.69. Refer to the Mittag-Leffler condition, as well as the complex analysis analogue, i.e., Mittag-Leffler Theorem.

Proposition 2.70. Let A be Noetherian and M be a finitely-generated A-module, and let I be an ideal of A. Let \hat{A} and \hat{M} be I-adic completions of A and M, respectively, then

$$\varphi: \hat{A} \otimes_A M \xrightarrow{\sim} \hat{M}$$
$$\{a_n\} \otimes x \mapsto \{a_n x\}$$

Remark 2.71. If we are working over direct limits, we would note

$$(\lim M_{\alpha}) \otimes_A N = \lim M_{\alpha} \otimes_A N.$$

This is not the case here, we do not necessarily have

$$(\lim M_{\alpha}) \otimes_A N = \lim M_{\alpha} \otimes_A N.$$

Proof. Since M is finitely-generated over Noetherian ring A, then we have an exact sequence

$$A^r \xrightarrow{\psi} A^s \xrightarrow[e_i \mapsto m_i]{\eta} M \longrightarrow 0$$

where M is generated by m_1, \ldots, m_s . Tensoring by \hat{A} , we have an exact sequence

$$\hat{A} \otimes A^r \longrightarrow \hat{A} \otimes A^s \longrightarrow \hat{A} \otimes M \longrightarrow 0$$

Let $K = \ker(\eta)$ and take L to be the kernel of $A^r \to K$, then we have exact sequences

$$0 \longrightarrow L \longrightarrow A^r \longrightarrow K \longrightarrow 0$$

and

$$0 \longrightarrow K \longrightarrow A^s \longrightarrow M \longrightarrow 0$$

By Proposition 2.67, the I-adic filtration gives exact sequences

$$0 \longrightarrow \hat{L} \longrightarrow \hat{A}^r \longrightarrow \hat{K} \longrightarrow 0$$

and

$$0 \longrightarrow \hat{K} \longrightarrow \hat{A}^s \longrightarrow \hat{M} \longrightarrow 0$$

therefore

$$\hat{A}^r \longrightarrow \hat{A}^s \longrightarrow \hat{M} \longrightarrow 0$$

is exact and we have a diagram

$$\begin{array}{cccc} \hat{A} \otimes A^r & \longrightarrow & \hat{A} \otimes A^s & \longrightarrow & \hat{A} \otimes M & \longrightarrow & 0 \\ \varphi_{A^r} \downarrow & & & \downarrow \varphi_{A^s} & & \downarrow \varphi_M \\ & \hat{A}^r & \longrightarrow & \hat{A}^s & \longrightarrow & \hat{M} & \longrightarrow & 0 \end{array}$$

Now

$$\hat{A} \otimes A^{s} = \hat{A} \otimes (A \oplus \cdots \oplus A)$$
$$= (\hat{A} \otimes_{A} A) \oplus \cdots \oplus (\hat{A} \otimes_{A} A)$$
$$= (\hat{A})^{s}$$

and similarly $\hat{A} \otimes A^r = (\hat{A})^r$. One can check that φ_{A^r} and φ_{A^s} are isomorphisms. Now the mapping $A^s = \bigoplus_s A \to \bigoplus_s \hat{A}$ has dense image, which implies φ_M is an isomorphism by diagram chasing.

Theorem 2.72. Let A be Noetherian and I be an ideal, then $A \to \hat{A}$, the mapping into the I-adic completion, is a flat map, that is, \hat{A} is a flat A-module.

Proof. For flatness, we can assume that

$$0 \longrightarrow N \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} T \longrightarrow 0$$

is a short exact sequence of finitely-generated modules (since we are working over Noetherian rings), and we want to show that

$$0 \longrightarrow \hat{A} \otimes_A N \stackrel{\hat{f}}{\longrightarrow} \hat{A} \otimes_A M \stackrel{\hat{g}}{\longrightarrow} \hat{A} \otimes_A T \longrightarrow 0$$

is a short exact sequence as well. But we know this is just

$$0 \longrightarrow \hat{N} \longrightarrow \hat{M} \longrightarrow \hat{T} \longrightarrow 0$$

by Proposition 2.70, which is exact by Proposition 2.67.

Corollary 2.73. The map

$$A[x_1,\ldots,x_n] \to A[[x_1,\ldots,x_n]]$$

is flat.

2.4 FAITHFULLY FLAT MODULES

Proposition 2.74. Let A be a commutative ring and M be an A-module, then the following are equivalent:

1.

$$N_1 \xrightarrow{f} N_2 \xrightarrow{g} N_3$$

is exact if and only if

$$M \otimes N_1 \xrightarrow{f} M \otimes N_2 \xrightarrow{g} M \otimes N_3$$

is exact;

2.

$$0 \longrightarrow N_1 \stackrel{f}{\longrightarrow} N_2 \stackrel{g}{\longrightarrow} N_3 \longrightarrow 0$$

is exact if and only if

$$0 \longrightarrow M \otimes N_1 \stackrel{f}{\longrightarrow} M \otimes N_2 \stackrel{g}{\longrightarrow} M \otimes N_3 \longrightarrow 0$$

is exact;

- 3. M is an A-flat module and for any A-module N, $M \otimes_A N = 0$ implies N = 0;
- 4. M is an A-flat module and for any ideal I of A, $M \otimes_A A/I = 0$ implies A = I.

Proof. The equivalence of (1) and (2) is obvious.

 $(1),(2)\Rightarrow(3)$: the flatness is obvious. Suppose $M\otimes_A N=0$, then consider

$$0 \longrightarrow N \longrightarrow 0$$

and we tensor it with M, then we have

$$0 \longrightarrow M \otimes N \longrightarrow 0$$

which is exact, so

$$0 \longrightarrow N \longrightarrow 0$$

is exact and so N = 0.

(3)
$$\Rightarrow$$
 (4): obvious, take $N = A/I$.

 $(4)\Rightarrow (3)$: let $N=\varinjlim N_{\alpha}$ where each N_{α} is a finitely-generated submodule of N, then $N=\bigcup_{\alpha}N_{\alpha}$. We know $M\otimes_A N=\varinjlim M\otimes_A N_{\alpha}$, and by flatness this is just $\bigcup_{\alpha}(M\otimes_A N_{\alpha})$. It is now enough to show that if N is finitely-generated, then $M\otimes N=0$ implies N=0. We proceed by induction. This is obvious when N is cyclic; suppose N is generated by a minimal set of generators $\{x_1,\ldots,x_n\}$, then let N' be generated by $\{x_1,\ldots,x_{n-1}\}$, so $N'\neq N$, now we have a short exact sequence

$$0 \longrightarrow N' \longrightarrow N \longrightarrow A/I \cong N/N' \longrightarrow 0$$

for some ideal I of A, and since M is A-flat, then we have a short exact sequence

$$0 \longrightarrow M \otimes N' \longrightarrow M \otimes N \longrightarrow M \otimes (A/I) \cong 0 \longrightarrow 0$$

but that means A = I, so N' = N, which is a contradiction unless $M \otimes_A N = 0$ implies N = 0.

Exercise 2.75. Show that $(3) \Rightarrow (1), (2)$.

Definition 2.76 (Faithfully Flat). Let A be a commutative ring, an A-module M is called faithfully flat if M satisfies one of the (equivalent) conditions in Proposition 2.74.

Definition 2.77 (Faithful). Let A be a commutative ring, an A-module M is called faithful if $\operatorname{Ann}_A(M) = \{a \in A \mid aM = 0\} = (0)$.

Remark 2.78. Faithfully flat implies faithful. Indeed, let M be faithfully flat, let $I = \text{Ann}_A(M)$, then consider the short exact sequence

$$0 \longrightarrow I \longrightarrow A \longrightarrow A/I \longrightarrow 0$$

and therefore

$$0 \longrightarrow I \otimes_A M \longrightarrow A \otimes_A M \cong M \longrightarrow A/I \otimes_A M \longrightarrow 0$$

$$\cong \downarrow^{a \otimes m \mapsto am} M$$

is a short exact sequence. In particular, $I \otimes_A M = 0$ by definition, therefore I = 0 since M is flat, hence M is faithful.

Example 2.79. Note that M being flat and faithful does not imply M is faithfully flat. Let $A = \mathbb{Z}$ and $M = \mathbb{Q}$, so \mathbb{Q} is faithful and is \mathbb{Z} -flat, but \mathbb{Q} is not faithfully flat over \mathbb{Z} since $\mathbb{Q} \otimes \mathbb{Z}/n\mathbb{Z} = 0$ but $\mathbb{Z}/n\mathbb{Z} \neq 0$ for n > 1.

Theorem 2.80. Let $f: A \to B$ be a homomorphism of commutative rings. The following are equivalent:

- (i) B is a faithfully flat A-module via f;
- (ii) B is A-flat, and for every ideal I of A, $f^{-1}(IB) = I$;
- (iii) B is A-flat, and for every A-module $M, M \to M \otimes_A B$ is injective;
- (iv) f is injective and $B/f(A) \cong B/A$ is A-flat.

Proof. (i) \Rightarrow (ii): B being A-flat is obvious; let $J = f^{-1}(IB)$, then there is a short exact sequence

$$0 \longrightarrow I \longrightarrow J \longrightarrow J/I \longrightarrow 0$$

and tensoring it with B gives

$$0 \longrightarrow I \otimes_A B \longrightarrow J \otimes_A B \longrightarrow J/I \otimes_A B \longrightarrow 0$$

$$\downarrow^{j \otimes b \mapsto jb}$$

$$B$$

where $J \otimes_A B \cong B \cong A \otimes_A B$, and so $\operatorname{im}(J \otimes_A B) = JB$, and $\operatorname{im}(I \otimes_A B) = IB$, therefore having $J = f^{-1}(IB)$ implies JB = IB. We have $I \otimes_A B = J \otimes_A B$, so $J/I \otimes_A B = 0$. Since B is faithfully flat, then J/I = 0, so I = J.

 $(ii)\Rightarrow (iii)$: we want to show that $i_M:M\to M\otimes_A B$ is injective. Suppose, towards contradiction, that there exists some element $0\neq x\in M$ such that $i_M(x)=x\otimes 1=0$, then define $I=\{a\in A\mid ax=0\}$. We have a commutative diagram

$$\begin{array}{ccc} A/I \stackrel{\bar{f}}{-\!\!\!-\!\!\!-\!\!\!-} A/I \otimes_A B \\ \downarrow & & \downarrow \\ M & \longrightarrow M \otimes_A B \end{array}$$

Note that $A/I \otimes_A B \hookrightarrow M \otimes_A B$ is injective since B is A-flat. This gives a diagram chasing

By the commutative diagram, $\bar{f}(A/I)=0$, so \bar{f} is the zero map, and since $A/I\otimes_A B=B/IB$, then $f^{-1}(IB)=A\supsetneq I$, contradiction.

 $(iii) \Rightarrow (iv)$: let B be A-flat and suppose every A-module M, every map $M \to M \otimes_A B$ is an injection, then $A \to A \otimes_A R = R$ is injective. Consider

$$0 \longrightarrow A \longrightarrow B \longrightarrow B/A \longrightarrow 0$$

to show that B/A is A-flat, take the following short exact sequence

$$0 \longrightarrow N \longrightarrow T \longrightarrow M \longrightarrow 0$$

and by tensoring via the first short exact sequence we obtain

and it suffices to show exactness at $N \otimes_A B/A$. Let $x \in N \otimes B/A$ map to 0 in $T \otimes_A B/A$, then lift it to $y \in N \otimes_A B$, send it to z in $T \otimes_A B$, by exactness it sends to 0 in $M \otimes_A B$. Now z has a preimage of w in T, sending it to m in M, but injectivity of $M \to M \otimes_A B$ implies m = 0, therefore w lifts to some $n \in N$, here $n \in N$ is mapped to y' in $N \otimes_A B$, but that means n is mapped to 0 in $T \otimes_A B$ as well, by injectivity of $N \otimes_A B \to T \otimes_A B$, we have y' = y. Hence, n maps to y' = y maps to x in the column, and by exactness this forces x = 0.5

 $(iv) \Rightarrow (iii)$: it suffices to show the following lemma.

Lemma 2.81. Let

$$0 \longrightarrow N \longrightarrow M \longrightarrow T \longrightarrow 0$$

be a short exact sequence of A-modules, and suppose T is A-flat, then for all A-module L, we have the short exact sequence

$$0 \longrightarrow L \otimes_A N \longrightarrow L \otimes_A M \longrightarrow L \otimes_A T \longrightarrow 0$$

to be exact.

⁵Instead of diagram chasing, one can apply the snake lemma instead.

Subproof. Suppose we have a short exact sequence

$$0 \longrightarrow V \longrightarrow F \longrightarrow L \longrightarrow 0$$

where F is free. Then consider

We want to show $L \otimes N$ is exact in the column, i.e., $L \otimes N \to L \otimes M$ is injective. Note that the last row is exact since T is A-flat. We can use a similar argument. Take x in $L \otimes N$ mapping to 0 in $L \otimes M$, lift it to y in $F \otimes N$, map it to z in $F \otimes M$ with image 0 in $L \otimes M$, lift it to w in $V \otimes M$, send it to $t \in V \otimes T$ which maps into $t \in V \otimes T$ by exactness of middle row, by injectivity we know $t \in V$, then lift it to $t \in V \otimes T$ in $t \in V \otimes T$ which maps to $t \in V \otimes T$. The middle row is exact since $t \in V \otimes T$ by exactness of the row we know $t \in V \otimes T$.

Therefore, consider

$$0 \longrightarrow A \longrightarrow B \longrightarrow B/A \longrightarrow 0$$

where B/A is A-flat.

Exercise 2.82. If A and B/A are both A-flat, then B is also A-flat.

By Lemma 2.81, we know the exact sequence

$$0 \longrightarrow M \otimes_A A \longrightarrow M \otimes_A B \longrightarrow M \otimes_A B/A \longrightarrow 0$$

is exact, therefore $M \to M \otimes_A B$ is injective.

 $(iii), (iv) \Rightarrow (i)$: let B be A-flat and $M \to M \otimes_A B$ be injective. We want to show that for any N such that $N \otimes_A B = 0$, we have N = 0. Consider

$$0 \longrightarrow A \longrightarrow B \longrightarrow B/A \longrightarrow 0$$

to be a short exact sequence, and we know B/A is A-flat, so we now know that

$$0 \longrightarrow N \otimes_A A \longrightarrow N \otimes_A B \longrightarrow N \otimes_A B/A \longrightarrow 0$$

is exact, therefore $N \otimes_A B = 0$ implies N = 0 by injectivity.

Theorem 2.83. Let A be a Noetherian ring and I be an ideal of A. Then $A \to \hat{A}$ is faithfully flat if and only if I is contained in the Jacobson radical of A.

Proof. Suppose I is contained in the Jacobson radical of A, then I is contained in the intersection of all maximal ideals of A. For any finitely-generated A-module M, we know $\bigcap_{n\geqslant 1}I^nM=(0)$. Therefore, $M\hookrightarrow \tilde{M}\cong M\otimes_A\hat{A}$ is an injection by Theorem 2.80. Suppose M is not necessarily finitely-generated, then M is the union (hence direct limit) of finitely-generated A-modules M_{α} 's. We want to show that $M\to M\otimes_A\hat{A}$ is an injection. Suppose $x\in M$ is mapped to 0, so let N=Ax=A/J where $J=\mathrm{Ann}_A(x)$, then we have a diagram

$$1 \in N \longleftrightarrow y \in N \otimes_A \hat{A}$$

$$\downarrow \qquad \qquad \downarrow$$

$$x \in M \longleftrightarrow 0 \in M \otimes_A \hat{A}$$

Since $N \hookrightarrow M$ and since \hat{A} is A-flat, so $N \otimes_A \hat{A} \hookrightarrow M \otimes_A \hat{A}$ is injective as well. By chasing the diagram, we know y = 0, therefore by the injection we know N = 0, hence x = 0.

Suppose I is not contained in the Jacobson radical of A, then there exists some maximal ideal \mathfrak{m} of A such that $I \nsubseteq \mathfrak{m}$. Consider A/\mathfrak{m} with I-adic topology of filtration, then $\mathfrak{m} + IA = A$, therefore $\mathfrak{m} + I^nA = A$, hence $A/(\mathfrak{m} + I^n) = 0$. Therefore, $\widehat{(A/\mathfrak{m})} = \varprojlim (A/(\mathfrak{m} + I^n)) = 0$. But note that $\widehat{(A/\mathfrak{m})} = A/\mathfrak{m} \otimes_A \widehat{A} = 0$, with $A/\mathfrak{m} \neq 0$, therefore \widehat{A} is not faithfully flat.

Example 2.84. The map $k[x_1, \ldots, x_n] \to k[[x_1, \ldots, x_n]]$ is flat but not faithfully flat. Indeed, the ideal (x_1, \ldots, x_n) , the ideal is not contained in $(x_1 - a_1, \ldots, x_n - a_n)$ whenever a_i 's are non-zero.

However, if we factor it via the localization

$$k[x_1, \dots, x_n] \xrightarrow{} k[[x_1, \dots, x_n]]$$

$$\downarrow \qquad \qquad \downarrow$$

$$k[x_1, \dots, x_n]_{(x_1, \dots, x_n)}$$

then $k[x_1,\ldots,x_n]_{(x_1,\ldots,x_n)} \to k[[x_1,\ldots,x_n]]$ is faithfully flat.

3 Dimension Theory

3.1 GRADED RINGS AND HILBERT-SAMUEL POLYNOMIAL

Definition 3.1. Let \mathcal{F} be the set of functions $f: \mathbb{Z} \to \mathbb{Z}$, let \mathcal{P} be the set of functions $f: \mathbb{Z} \to \mathbb{Z}$ such that there exists a polynomial $g \in \mathbb{Q}[x]$ such that f(n) = g(n) for $n \gg 0$.

Remark 3.2. Obviously such g is unique, since any such choices would agree for all sufficiently large values.

Definition 3.3. $f \in \mathcal{P}$ is called an essentially polynomial, or an essentially polynomial function.

Definition 3.4 (Degree). We define the degree of f to be the degree of function g.

Remark 3.5. If f=0 for $n\gg 0$, then $\deg(f)=-1$; if f=a is a non-zero constant function, then $\deg(f)=0$.

Example 3.6. Say $f(n) = \binom{n}{i}$ where we fix *i*. For $n \ge i$, f(n) is an integer; for n < i, f(n) = 0. Therefore, the function $f(x) = \binom{x}{i}$ is a function with rational coefficients.

Definition 3.7. For $f \in \mathcal{F}$, we define $\Delta f : \mathbb{Z} \to \mathbb{Z}$ to be a function such that $\Delta f(n) = f(n+1) - f(n)$.

Remark 3.8. If $f \in \mathcal{P}$, then $\Delta f \in \mathcal{P}$. For $n \gg 0$, $f(n) = a_0 n^r + a_1 n^{r-1} + \cdots + a_r$ for $a_i \in \mathbb{Q}$, then $\Delta f(n) = ra_0 n^{r-1} + \cdots$. Hence, $\Delta^r(f) = r!a_0$. But we know $\Delta^r : \mathbb{Z} \to \mathbb{Z}$ if we proceed inductively, so $r!a_0$ is an integer. Note that $\Delta^{r+1}(f) = 0$.

Definition 3.9 (Multiplicity). We say $\Delta^r(f) \equiv \mu(f)$ is the multiplicity of f, that is, $\mu(f) = r!a_0$.

Lemma 3.10. Let $f: \mathbb{Z} \to \mathbb{Z}$, then the following are equivalent:

- (i) $f \in \mathcal{P}$;
- (ii) $\Delta(f) \in \mathcal{P}$;
- (iii) there exists r > 0 such that either $\Delta^{r+1} f = 0$ for $n \gg 0$, or $\Delta^r (f)$ is constant.

Proof. It is enough to show that $\Delta f \in \mathcal{P}$ implies $f \in \mathcal{P}$, and we will induct on degree of Δf . If the degree of Δf is -1, then $\Delta f(n) = 0$ for $n \gg 0$, so if f(n+1) - f(n) = 0 for $n \gg 0$, then f(n+1) = f(n) for $n \gg 0$, thus f is constant for $n \gg 0$, by definition $f \in \mathcal{P}$. Now suppose this holds for polynomial f with degree of Δf at most r-1. Suppose Δf is of the form $a_0 n^r + a_1 n^{r-1} + \cdots + a_r$, then $r!a_0 = \Delta^{r+1} f = \Delta^r (\Delta f) = r!a_1$ which are integers. We write $g(x) = r!a_0\binom{x}{n+1}$ then $\Delta g(n)$ is dominated by the term $r!a_0\frac{r+1}{(r+1)!}n^r$, which is just $a_0 n^r$. We know $\Delta (f-g) = \Delta (f) - \Delta (g)$ which is a polynomial of degree at most r-1, so by induction $f-g \in \mathcal{P}$, hence $f \in \mathcal{P}$.

Exercise 3.11. Show that \mathcal{P} is a free abelian group with basis $\binom{x}{i}$ where $i \geq 0$.

Recall that A is Artinian if and only if A is Noetherian and A has finitely many prime ideals such that each of which is maximal. Note that $(0) = \mathfrak{m}_1^{i_1} \cdots \mathfrak{m}_r^{i_r}$ is a decomposition of maximal ideals, if and only if $\ell_A(A) < \infty$. Moreover, if M is a finitely-generated A-module, then $\ell_A(M) < \infty$.

Definition 3.12. Suppose A has a decomposition $A = A_0 \oplus A_1 \oplus \cdots \oplus A_n \oplus \cdots$ and M is a graded module $M = M_0 \oplus M_1 \oplus \cdots \oplus M_n \oplus \cdots$ where $A_i M_j \subseteq M_{i+j}$. Suppose $N \subseteq M$ is a submodule. Let $x \in N$ be written as $x = x_{i_1} + \cdots + x_{i_t}$, then we say N is a graded submodule if every $x_{i_j} \in N$. In particular, this is equivalent to $N = \bigoplus_i M \cap N_i$.

Remark 3.13. Under this definition, M/N is also a graded module over A. Moreover, let $B = A[X_1, \ldots, X_n]$, and suppose I is a graded ideal of B, then B/I is graded. Moreover, we view B as an A-module generated by the x_i 's, i.e., $B = A[x_1, \ldots, x_n]$ where each x_i has degree 1.

Theorem 3.14 (Hilbert-Serre). Let A_0 be an Artinian ring and $A=A_0[x_1,\ldots,x_r]$ be a finitely-generated graded ring over A_0 with $\deg(x_i)=1$ for all i. Let M be a finitely-generated A-module, and denote $M=M_0\oplus M_1\oplus \cdots$, then we have the following:

⁶Alternatively, we have $A=A_0\oplus (x_1,\ldots,x_r)\oplus (x_1,\ldots,x_r)^2\oplus\cdots$

- (i) each M_n is a module of finite length over A_0 ;
- (ii) let $\chi(M,n) = \ell_{A_0}(M_n)$ be the Hilbert function, then $\chi(M,n)$ is essentially polynomial of degree at most r-1;

(iii) suppose M_0 generates M over A, then $\Delta^{r-1}\chi(M,n) \leqslant \ell_{A_0}(M_0)$. Moreover, the equality holds if and only if

$$M_0[X_1, \dots, X_r] \to M$$

$$mX_1^{i_1} \cdots X_r^{i_r} \mapsto mx_1^{i_1} \cdots x_r^{i_r},$$

where $m \in M_0$, is an isomorphism. It is obvious that φ is an onto graded map.

- Proof. (i) Let m_1, \ldots, m_t be the graded homogeneous generators of M over A. For each M_n , we can write $x = \sum_{i,j} c_{i_1,\ldots,i_r} x_1^{i_1} x_2 i_2 \cdots x_r^{i_r} m_j$ where $c_{i_1,\ldots,i_r} \in A_0$, such that each x_i has degree 1. Suppose $\deg(m_j) = h_j$, then $n = \sum_{j,k} i_k + h_j$. The solution of this equation consists of finite number of (i_1,\ldots,i_r) and h_j 's. Therefore, M_n is finitely-generated over A_0 , hence $\ell_{A_0}(M_n) < \infty$.
 - (ii) We proceed by induction on r. Suppose r=0, then $A=A_0$, and $M=M_0\oplus M_1\oplus \cdots M_t\oplus 0\oplus 0\oplus \cdots$. This means $\chi(M,n)=0$ for $n\gg 0$, so the degree of $\chi(M,n)=-1$. Suppose this is true degree at most r-1, then let $N=\ker(x_r)$ and $\bar{M}=M/x_rM$, then

$$0 \longrightarrow N \longrightarrow M \stackrel{x_r}{\longrightarrow} M \longrightarrow \bar{M} \longrightarrow 0$$

Now \bar{M} and N are finitely-generated modules over $A_0[x_1,\ldots,x_r]/x_rA_0[x_1,\ldots,x_r]=A_0[\bar{x}_1,\ldots,\bar{x}_{r-1}]$. For any n, we have

$$0 \longrightarrow N_n \longrightarrow M_n \longrightarrow M_n \longrightarrow \bar{M}_n \longrightarrow 0$$

therefore

$$\ell(\bar{M}_n) - \ell(N_n) = \ell_{A_0}(M_{n+r}) - \ell_{A_0}(M_n)$$
$$= \Delta \chi(M, n)$$
$$= \chi(\bar{M}_n) - \chi(N, n).$$

By induction, $\chi(\bar{M}, n)$ and $\chi(N, n)$ are essentially polynomials of degree at most r-1, so $\Delta\chi(M, n)$ is essentially polynomial of degree at most r-2, therefore $\chi(M, n)$ is essentially polynomial of degree at most r-1.

(iii) Suppose M_0 generates M over A, then it is obvious that

$$\begin{aligned} M_0[X_1,\dots,X_r] &\to M \\ mX_1^{i_1} & \cdots & X_r^{i_r} &\mapsto mx_1^{i_1} & \cdots & x_r^{i_r} \end{aligned}$$

is an onto graded map where $m \in M_0$. This implies $\varphi_n: (M_0[X_1,\dots,X_r])_n \to M_n$ is onto as well. Hence, $\ell_{A_0}(M_n) \leqslant \ell_{A_0}(M_0[X_1,\dots,X_r])_n$. (Note that $k_{[x,y]}$ has a basis given by $x^n, x^{n-1}y,\dots,xy^{n-1},y^n$.) We observe that $(M_0[X_1,\dots,X_r])_n$ is just $M_0 \otimes_{A_0} [A_0[X_1,\dots,X_r]]_n$ (where $[-]_n$ is the completion on the nth grading), so $\ell_{A_0}(M_0[X_1,\dots,X_r])_n$ is just $\ell_{A_0}(M_0)$ multiplied by the number of monomials of (total) degree n in X_1,\dots,X_r , and by stars-and-bars that is just $\ell_{A_0}(M_0)\binom{n+r-1}{r-1}$. By part (ii), we know that the degree of $\chi(M,n)$ is at most r-1. Also, we have $\chi(M_0[X_1,\dots,X_r],n)=\ell_{A_0}(M_0)\binom{n+r-1}{r-1}$, which is a polynomial of degree r-1. We then conclude that $\Delta^{r-1}\chi(M_0[X_1,\dots,X_r],n)=\ell_{A_0}(M_0)$. Hence, $\Delta^{r-1}\chi(M,n)\leqslant \ell_{A_0}(M_0)$.

Now suppose φ is an isomorphism, then $\chi(M,n)=\chi(M_0[X_1,\ldots,X_r],n)=\ell_{A_0}(M_0)\binom{n+r-1}{r-1}$, therefore $\Delta^{r-1}\chi(M,n)=\ell_{A_0}(M_0)$. Conversely, if $\Delta^{r-1}\chi(M,n)=\ell_{A_0}(M_0)$, then we want to show φ is an isomorphism. Since φ is onto, the kernel L gives a short exact sequence

$$0 \longrightarrow L \longrightarrow M_0[X_1, \dots, X_r] \longrightarrow M \longrightarrow 0$$

where all terms are all graded components, so have positive lengths. Now we know $\chi(M_0[X_1,\ldots,X_r],n)=\chi(M,n)+\chi(L,n)$, so $\Delta^{r-1}\chi(M_0[X_1,\ldots,X_r],n)=\Delta^{r-1}\chi(M,n)+\Delta^{r-1}\chi(L,n)$, therefore $\Delta^{r-1}\chi(L,n)=\Delta^{r-1}\chi(L,n)$

0 since $\Delta^{r-1}\chi(M,n)=\ell_{A_0}(M_0)$. We claim that this is not true if $L\neq 0$. Induct on $\ell_{A_0}(M_0)$. If $\ell_{A_0}(M_0)=1$, then $M_0=k$ a field, so

$$0 \longrightarrow L \longrightarrow B = k[X_1, \dots, X_n] \longrightarrow M \longrightarrow 0$$

If $L \neq 0$, then L is a graded ideal of B, then for some d > 0 we have $L_d \neq 0$. Let $0 \neq f \in L_d$ be homogeneous of degree d, then $B_{n-d}f \in L_n$. This implies $\chi(L_n) = \dim_k(L_n) \geqslant \dim_k(B_{n-d}) = \binom{n-d+r-1}{r-1}$. This gives $\Delta^{r-1}\chi(L,n) \geqslant 1$, contradiction. Now suppose $\ell_{A_0}(M_0) > 1$, then take a Jordan-Hölder series

$$M_0 \supset M_0^{(1)} \supset M_0^{(2)} \supset \dots \supset M_0^{(n)} = 0,$$

such that $M_0^{(i)}/M_0^{(i+1)} \cong A/\mathfrak{m}_i \cong k_i$, where \mathfrak{m}_i is maximal and k_i is a field (but is only isomorphic as modules). Therefore,

$$M_0[X_1,\ldots,X_r]\supset M_0^{(1)}[X_1,\ldots,X_r]\supset M_0^{(2)}[X_1,\ldots,X_r]\supset\cdots$$

is a series such that $M_0^{(i)}[X_1, \dots, X_r]/M_0^{(i+1)}[X_1, \dots, X_r] = k_i[X_1, \dots, X_r]^7$ If we now denote $L^{(i)} = L \cap M_0^{(i)}[X_1, \dots, X_r]$, then there is a filtration $L \supset L^{(1)} \supset L^{(2)} \supset \cdots$, so

$$L^{(i)}/L^{(i+1)} \hookrightarrow M_0^{(i)}[X_1, \dots, X_r]/M^{(i+1)}[X_1, \dots, X_r] \cong k_i[X_1, \dots, X_r].$$

Hence, $\chi(L,n) = \sum_i \chi(L^{(i)}/L^{(i+1)},n)$, therefore $\Delta^{r-1}\chi(L,n) = \sum_i \Delta^{r-1}\chi(L^{(i)}/L^{(i+1)},n)$. But $L \neq 0$,

so there exists some i such that $L^{(i)}/L^{(i+1)} \neq 0$. By the base case (of the induction on $\ell_{A_0}(M_0)$), we know $\Delta^{r-1}\chi(L^{(i)}/L^{(i+1)},n) > 0$, therefore $\Delta^{r-1}\chi(L,n) > 0$, contradiction.

Definition 3.15 (Hilbert Multiplicity). Suppose $\deg(\chi(M,n)) = d$, then $\chi(M,n) = a_0 n^d + \text{linear terms with higher degrees, where } n \gg 0$. Then $A^d = \chi(M,n) = d!a_0$. We say $e_d(M) = d!a_0$ is the Hilbert multiplicity of M over A, i.e., $a_0 = \frac{e_d(M)}{d!}$.

Remark 3.16. 1. Let A be Noetherian and M and N be (non-zero) finitely-generated A-modules, then the support of M is $\mathrm{supp}(M) = V(M)$, the set of prime ideals P of A such that $M_P \neq 0$, which is equivalent to the set of prime ideals P of A where $P \supseteq \mathrm{Ann}_A(M)$.

In particular, if $I = \operatorname{Ann}_A(M)$, then $\operatorname{supp}(M) = \operatorname{supp}(A/I) = V(A/I) \approx V(I)$.

2. Under the above assumption, $\operatorname{supp}(M \otimes_A N) = \operatorname{supp}(M) \cap \operatorname{supp}(N)$. Indeed, let P be in the support of $M \otimes_A N$, then $(M \otimes_A N_P \neq 0, \text{ so } (M \otimes_A N)_P = M_P \otimes_{A_P} N_P \neq 0, \text{ so } M_P \neq 0 \text{ and } N_P \neq 0$, therefore $P \in \operatorname{supp}(M) \cap \operatorname{supp}(N)$. Now suppose $P \in \operatorname{supp}(M) \cap \operatorname{supp}(N)$, then $M_P \neq 0$ and $N_P \neq 0$.

Lemma 3.17. Let A be a local ring and M, N be (non-zero) finitely-generated A-modules, then $M \otimes_A N \neq 0$.

Remark 3.18. We know $\mathbb{Q} \otimes \mathbb{Z}/n\mathbb{Z} = 0$, but \mathbb{Q} is not finitely-generated as a \mathbb{Z} -module.

Proof. Let \mathfrak{m} be the maximal ideal of A. If $M \otimes_A N = 0$, then $A/\mathfrak{m} \otimes_A (M \otimes_A N) = 0$, therefore $M/\mathfrak{m}M \otimes_{A/\mathfrak{m}} M/\mathfrak{m}N = 0$. We run a dimension argument on the vector space, then either $M/\mathfrak{m}M = 0$ or $N/\mathfrak{m}N = 0$. By Corollary 2.55, either M = 0 or N = 0.

This implies $supp(M) \cap supp(N) = supp(M \otimes N)$.

- 3. (a) Let \mathfrak{q} be an ideal of A, and M be a finitely-generated A-module. Suppose $\ell(M/\mathfrak{q}M) < \infty$, then $\ell(M/q^n M) < \infty$ for all n.
 - (b) Consider the short exact sequence

$$0 \longrightarrow N \longrightarrow M \longrightarrow T \longrightarrow 0$$

and \mathfrak{q} is an ideal of A such that $\ell(M/\mathfrak{q}M) < \infty$, then $\ell(N/\mathfrak{q}N) < \infty$ and $\ell(T/\mathfrak{q}T) < \infty$.

⁷Consider the quotient of modules as a short exact sequence, and then tensor it by the polynomial ring structure, then we retrieve a short exact sequence represented by this quotient.

Proof. (a) Note that $\ell(M/\mathfrak{q}M) < \infty$ if and only if $\operatorname{supp}(M/\mathfrak{q}M)$ consists of finitely many maximal ideals only, therefore $\operatorname{supp}(M/\mathfrak{q}M) = \operatorname{supp}(A/\mathfrak{q} \otimes_A M) = \operatorname{supp}(A/\mathfrak{q}) \cap \operatorname{supp}(M)$. Therefore,

$$\operatorname{supp}(M/\mathfrak{q}^n M) = \operatorname{supp}(A/\mathfrak{q}^n) \cap \operatorname{supp}(M)$$
$$= \operatorname{supp}(A/\mathfrak{q}) \cap \operatorname{supp}(M),$$

so it consists of maximal ideals only as well, therefore $\ell(M/\mathfrak{q}^n M) < \infty$ for all n > 0.

(b) Note that $\operatorname{supp}(N/\mathfrak{q}N) = \operatorname{supp}(A/\mathfrak{q}) \cap \operatorname{supp}(N) \subseteq \operatorname{supp}(A/\mathfrak{q}) \cap \operatorname{supp}(M)$, which consists of maximal ideals only, therefore $\operatorname{supp}(N/\mathfrak{q}N)$ consists of maximal ideals only as well. That is, $\ell(N/\mathfrak{q}N) < \infty$.

Theorem 3.19. Let A be a Noetherian ring, \mathfrak{q} be an ideal of A, and let M be a finitely-generated A-module. Suppose $A \sim \{\mathfrak{q}^n\}$ and $M \sim \{M_n\}$ where the filtration is given by $\mathfrak{q}^i M_j \subseteq M_{i+j}$. We further assume that $\ell(M/\mathfrak{q}M) < \infty$, and that $\{M_n\}$ is \mathfrak{q} -good. Define $P_{\mathfrak{q}}((M_n), n) := \ell_A(M/M_n)$, then $\mathfrak{q}^n M \subseteq M_n$, therefore there is a surjection $M/\mathfrak{q}^n M \twoheadrightarrow M/M_n$. Then

- $P_{\mathfrak{q}}((M_n), n)$ is essentially polynomial that depends on $E_0(M)$, and
- if $\ell_A(M/\mathfrak{q}^n M) < \infty$, then $\ell_A(M/M_n)$ is finite.

Proof. We have

$$\Delta P_n((M_n), n) = \ell_A(M/M_{n+1}) - \ell_A(M/M_n)$$

= $\ell_A(M_n/M_{n+1}),$

and take the decomposition $E_0(M) = M/M_1 \oplus M_1/M_2 \oplus \cdots$, and $E_0(A) = A/\mathfrak{q} \oplus \mathfrak{q}/\mathfrak{q}^2 \oplus \cdots$, then $E_0(M)$ is an $E_0(A)$ -module. Since A is Noetherian, then \mathfrak{q} is finitely-generated and so we write $\mathfrak{q} = (x_1, \dots, x_n)$, and so

$$\varphi: A/\mathfrak{q}[x_1, \dots, x_n] \to E_0(A)$$

$$x_i \mapsto \bar{x}_i \in \mathfrak{q}/\mathfrak{q}^2$$

is an onto map. Note that $A/\mathfrak{q}[x_1,\dots,x_n]$ is Noetherian, so $E_0(A)$ is Noetherian as well. Since $\{M_n\}$ is \mathfrak{q} -good, then there exists some h such that $M_{n+h}=\mathfrak{q}^nM_h$ for all n>0. Therefore, $M/M_1\oplus M_1/M_2\oplus\cdots\oplus M_h/M_{h+1}$ generates $E_0(M)$ over $E_0(A)$. For $x\in M_n$, we have $0\neq \bar x\in M_n/M_{n+1}$, and $M_n=\mathfrak{q}^{n-h}M_h$, so $x=\sum y_iw_i$ where $y_i\in\mathfrak{q}^{n-j}$ and $w_i\in M_h$. Therefore, $\bar x=\sum \bar y_i\bar w_i$ in $E_0(M)$ for $\bar y_i\in\mathfrak{q}^{n-h}/\mathfrak{q}^{n-h+1}$ and $\bar w_i\in M_h/M_{h+1}$. This shows that $E_0(M)$ is a finitely-generated $E_0(A)$ -module with generators from $M/M_1,\dots,M_h/M_{h+1}$, where each of them is a finitely-generated A/\mathfrak{q} -module.

Remark 3.20. Note that A/\mathfrak{q} is not necessarily Artinian, so we cannot apply Theorem 3.14 right now.

Recall $\ell(M/\mathfrak{q}M) < \infty$, if we denote $I = \operatorname{Ann}_A(M)$, then

$$\begin{aligned} \operatorname{supp}(M/\mathfrak{q}M) &= \operatorname{supp}(A/\mathfrak{q}) \cap \operatorname{supp}(M) \\ &= \operatorname{supp}(A/\mathfrak{q}) \cap \operatorname{supp}(A/I) \\ &= \operatorname{supp}(A/\mathfrak{q} \otimes_A A/I) \\ &= \operatorname{supp}(A/(\mathfrak{q} + I)). \end{aligned}$$

If we denote $\bar{A}=A/I$, then $\bar{A}/\bar{\mathfrak{q}}=A/(q+I)$, therefore $\ell_{\bar{A}}(\bar{A}/\bar{\mathfrak{q}})<\infty$. We write down $E_0(\bar{A})=\bar{A}/\bar{\mathfrak{q}}\oplus\bar{\mathfrak{q}}/\bar{\mathfrak{q}}^2\oplus\cdots$. Claim 3.21. $E_0(M)$ is a finitely-generated $E_0(\bar{A})$ -module.

Subproof. Since IM = 0, then for any i, $(\mathfrak{q} + I)^n M_i = \mathfrak{q}^n M$.

Since $\ell_{\bar{A}}(\bar{A}/\bar{\mathfrak{q}})<\infty$, then $\bar{A}/\bar{\mathfrak{q}}$ is Artinian, and now by Theorem 3.14 we know $\Delta P_{\mathfrak{q}}((M_n),n)$ is essentially polynomial. Therefore, $P_{\mathfrak{q}}((M_n),n)$ is essentially polynomial.

Let $M_n = \{\mathfrak{q}^n M\}$, then $E_0(M) = M/\mathfrak{q}M \oplus \mathfrak{q}M/\mathfrak{q}^2 M \oplus \cdots$, and $E_0(\bar{A}) = \bar{A}/\bar{\mathfrak{q}} \oplus \bar{\mathfrak{q}}/\bar{\mathfrak{q}}^2 \oplus \cdots$, then $E_0(M)$ is generated by $M/\mathfrak{q}M$ over $E_0(\bar{A})$. Write $P_{\mathfrak{q}}(M,n) = \ell(M/\mathfrak{q}^n M)$, then $\Delta P_{\mathfrak{q}}(M,n) = \ell(\mathfrak{q}^n M/\mathfrak{q}^{n+1}M)$. Suppose

 $(\mathfrak{q}+I)/I$, that is, \bar{q} in \bar{A} , is minimally generated by r elements $\bar{x}_1,\ldots,\bar{x}_r$, so $E_0(\bar{A})=\bar{A}[\bar{x}_1,\ldots,\bar{x}_r]$, then $\Delta P_{\mathfrak{q}}(M,n)$ is of degree at most r-1, and $\Delta^{r-1}(\Delta P_{\mathfrak{q}}(M,n)) \leq \ell(M/\mathfrak{q}M)$, and note that the equality holds if and only if

$$\varphi: M/\mathfrak{q}M \otimes_{\bar{A}/\bar{\mathfrak{q}}} \bar{A}/\bar{\mathfrak{q}}[x_1,\ldots,x_n] \to E_0(M) = M/\mathfrak{q}M \oplus \mathfrak{q}M/\mathfrak{q}^2M \oplus \cdots$$

is an isomorphism. In particular, $\Delta^r(P_{\mathfrak{q}}(M,n)) \leq \ell(M/\mathfrak{q}M)$ therefore $\ell_A(M/M_n)$ is finite.

Corollary 3.22. Under the same assumption, $\ell(M/\mathfrak{q}^n M) \ge \ell(M/M_n)$. Moreover, if we write down the polynomials of $P_{\mathfrak{q}}(M,n)$ and $P_{\mathfrak{q}}((M_n),n)$, then

- the degree of $P_{\mathfrak{q}}(M,n)$ is the degree of $P_{\mathfrak{q}}((M_n),n)$, the leading coefficient of $P_{\mathfrak{q}}(M,n)$ is the leading coefficient of $P_{\mathfrak{q}}((M_n),n)$, hence $\Delta^r(P_{\mathfrak{q}}(M,n)) = \Delta^r(P_{\mathfrak{q}}((M_n),n))$ where r is the degree of $P_{\mathfrak{q}}(M,n)$;
- $P_{\mathfrak{q}}(M,n) = P_{\mathfrak{q}}((M_n),n) + R(n)$ where R(n) is essentially polynomial whose degree is less than the degree of $P_{\mathfrak{q}}(M,n)$, and the leading coefficient is non-negative.

Proof. • Let $P_{\mathfrak{q}}(M,n)$ has degree d and leading coefficient a_0 , and let $P_{\mathfrak{q}}((M_n),n)$ has degree d' and leading coefficient b_0 . Since $\ell(M/\mathfrak{q}^n M) \geqslant \ell(M/M_n)$ for all n, then $d \geqslant d'$. Now $M_{n+h} = \mathfrak{q}^n M_h \subseteq \mathfrak{q}^n M$ since this is a good filtration, therefore $\ell(M/M_{n+h}) \geqslant \ell(M/\mathfrak{q}^n M)$, therefore $d' \geqslant d$, hence d = d'. Similarly, the argument above implies $a_0 \geqslant b_0$ and $b_0 \geqslant a_0$, so $a_0 = b_0$.

This implies $\Delta^d(P_{\mathfrak{q}}(M,n)) = \Delta^d(P_{\mathfrak{q}}((M_n),n)) = a_0 \cdot d!$.

Consider

$$0 \longrightarrow M_n/\mathfrak{q}^n M \longrightarrow M/\mathfrak{q}^n M \longrightarrow M/M_n \longrightarrow 0$$

therefore $\ell(M/\mathfrak{q}^n M) = \ell(M/M_n) + \ell(M_n/\mathfrak{q}^n M)$. Let $R(n) = \ell(M_n/\mathfrak{q}^n M)$, then $P_{\mathfrak{q}}(M,n) = P_{\mathfrak{q}}(M_n,n) + R(n)$, therefore the degree of R(n) is less than d, the degree of $P_{\mathfrak{q}}(M,n)$, and by definition of R(n), the coefficient of the leading term of R(n) is non-negative.

Definition 3.23 (Hilbert-Samuel Polynomial). Let A be a Noetherian ring, \mathfrak{q} be an ideal of A, M be a finitely-generated A-module, with $\ell(M/\mathfrak{q}M) < \infty$, then $P_{\mathfrak{q}}(M,n)$ is called the Hilbert-Samuel polynomial of M with respect to \mathfrak{q} . We define the degree of $P_{\mathfrak{q}}(M,n) = a_0 n^d + a_1 n^{d-1} + \cdots$ to be d, then $\Delta^d(P_{\mathfrak{q}}(M,n)) = d!a_0$ is called the Hilbert-Samuel multiplicity of M with respect to \mathfrak{q} .

Proposition 3.24. Let A be a Noetherian ring, \mathfrak{q} be an ideal of A, M be a finitely-generated A-module, with $\ell(M/\mathfrak{q}M) < \infty$. Let \mathfrak{q}' be another ideal of A such that $\ell(M/\mathfrak{q}'M) < \infty$. Suppose $\operatorname{supp}(M/\mathfrak{q}M) = \operatorname{supp}(M/\mathfrak{q}'M)$, then the degree of $P_{\mathfrak{q}}(M,n)$ equals to the degree of $P_{\mathfrak{q}'}(M,n)$.

Proof. Let $I = \operatorname{Ann}_A(M)$. Recall that

$$\begin{aligned} \operatorname{supp}(M/\mathfrak{q}M) &= \operatorname{A}/\mathfrak{q} \otimes_{\operatorname{A}} \operatorname{M} \\ &= \operatorname{supp}(A/\mathfrak{q}) \cap \operatorname{supp}(M) \\ &= \operatorname{supp}(A/\mathfrak{q}) \cap \operatorname{supp}(A/I) \\ &= \operatorname{supp}(A/\mathfrak{q} \otimes A/I) \\ &= \operatorname{supp}(A/\mathfrak{q} + I), \end{aligned}$$

then similarly $\operatorname{supp}(M/\mathfrak{q}'M) = \operatorname{supp}(A/(\mathfrak{q}'+I))$. Since $I = \operatorname{Ann}_A(M)$, then IM = 0, so we can assume M to be an A/I-module, that is, M is an A-module such that $\operatorname{Ann}_A(M) = 0$. In that case, then $\operatorname{supp}(M/\mathfrak{q}M) = \operatorname{supp}(A/\mathfrak{q})$ and $\operatorname{supp}(M/\mathfrak{q}'M) = \operatorname{supp}(A/\mathfrak{q}')$. Recall that $\ell(M/\mathfrak{q}M) < \infty$, so $\operatorname{supp}(A/\mathfrak{q})$ consists of maximal ideals only. (Since it is Artinian, there are finitely many of them.) Similarly, $\ell(M/\mathfrak{q}'M) < \infty$, so $\operatorname{supp}(A/\mathfrak{q}')$ consists of maximal ideals only as well. In particular, $\operatorname{supp}(A/\mathfrak{q})$ is the set of prime ideals containing \mathfrak{q} , and $\operatorname{supp}(A/\mathfrak{q}')$ is the set of prime ideals containing \mathfrak{q}' , but they are the same, so the radicals agree, i.e., $\sqrt{\mathfrak{q}} = \sqrt{\mathfrak{q}'}$. Since A is Noetherian, then $\mathfrak{q}'' \subseteq \mathfrak{q}'$ for some r > 0 and $\mathfrak{q}''' \subseteq \mathfrak{q}$ for some r' > 0 as well.

Claim 3.25. The degree of $P_{\mathfrak{q}}(M,n)$ equals to the degree of $P_{\mathfrak{q}^r}(M,n)$.

Subproof. If we write $P_{\mathfrak{q}}(M,n)=a_0n^d+\cdots$, with lower degree terms, and $P_{\mathfrak{q}^r}(M,n)=\ell(M/\mathfrak{q}^{rn}M)=P_{\mathfrak{q}}(M,rn)=a_0(rn)^d+\cdots=a_0r^d\cdot n^d+\cdots$, with lower degree terms. Therefore, the degree of $P_{\mathfrak{q}}(M,n)$ is the degree of $P_{\mathfrak{q}^{r}}(M,n)$, and the degree of $P_{\mathfrak{q}^r}(M,n)$.

Recall that $\mathfrak{q}^r \subseteq \mathfrak{q}'$ for some r > 0 and $\mathfrak{q}'^{r'} \subseteq \mathfrak{q}$ for some r' > 0, therefore the degree of $P_{\mathfrak{q}}(M,n)$ is at least the degree of $P_{\mathfrak{q}'}(M,n)$, and the degree of $P_{\mathfrak{q}'}(M,n)$ is at least the degree of $P_{\mathfrak{q}}(M,n)$, therefore the degree of $P_{\mathfrak{q}}(M,n)$.

Remark 3.26. If $\ell(M/\mathfrak{q}M) < \infty$, then we can assume that $\operatorname{Ann}_A(M) = \mathfrak{q}$. Therefore, $\operatorname{supp}(M/\mathfrak{q}M) = \operatorname{supp}(A/\mathfrak{q})$, consists of maximal ideals only.

If we write $\mathfrak{q}=I_1\cap I_2\cap\cdots\cap I_r$ where each I_i is \mathfrak{m}_i -primary for maximal ideal \mathfrak{m}_i . By the Chinese Remainder Theorem, we have $\mathfrak{q}=I_1I_2\cdots I_r$. Thus, $\mathfrak{q}6n=I_1^nI_2^n\cdots I_r^n$, and $A/\mathfrak{q}\cong A/I_1\oplus\cdots\oplus A/I_r$, and so $A/\mathfrak{q}^n=A/I_1^n\oplus\cdots\oplus A/I_r^n$. Therefore, $I_i=\mathfrak{q}A_{\mathfrak{m}_i}$, and $M/\mathfrak{q}^nM\cong\bigoplus_i M/I_i^nM$ by tensoring M. Therefore, $P_{\mathfrak{q}}(M,n)=\sum_i P_{\mathfrak{q}A_{\mathfrak{m}_i}}(M_{\mathfrak{m}_i},n)$.

Therefore, it suffices to understand the Hilbert-Samuel polynomials in the local case (assuming $M/\mathfrak{q}M$ has finite length).

Proposition 3.27. Let A be Noetherian, \mathfrak{q} be an ideal. Consider the short exact sequence

$$0 \longrightarrow N \longrightarrow M \longrightarrow T \longrightarrow 0$$

of finitely-generated A-modules. Suppose $\ell(M/\mathfrak{q}M) < \infty$, (so $\ell(T/\mathfrak{q}T)$ and $\ell(N/\mathfrak{q}N)$ are also finite,) then $P_{\mathfrak{q}}(M,n) = P_{\mathfrak{q}}(T,n) + P_{\mathfrak{q}}(N,n) - R(n)$, where R(n) is an essentially polynomial of degree less than degree of $P_{\mathfrak{q}}(N,n)$, and the leading term of R(n) has non-negative coefficient.

Proof. Consider

$$0 \longrightarrow N/(N \cap \mathfrak{q}^n M) \longrightarrow M/\mathfrak{q}^n M \longrightarrow T/\mathfrak{q}^n T \longrightarrow 0$$

The corresponding filtrations $\{N_n = N \cap \mathfrak{q}^n M\}$ and $\{\mathfrak{q}^n N\}$ are \mathfrak{q} -good. By Corollary 3.22, $P_{\mathfrak{q}}(N,n) = P_{\mathfrak{q}}(N_n,n) + R(n)$. From the short exact sequence above, $P_{\mathfrak{q}}(M,n) = P_{\mathfrak{q}}(T,n) + P_{\mathfrak{q}}(N_n,n)$, thus $\ell(M/\mathfrak{q}^n M) = \ell(T/\mathfrak{q}^n T) + \ell(N/N_n)$, so one can write $P_{\mathfrak{q}}(M,n) = P_{\mathfrak{q}}(T,n) + P_{\mathfrak{q}}(N,n) - R(n)$ with R(n) as specified above.

3.2 DIMENSION OVER ZARISKI TOPOLOGY

Definition 3.28 (Zariski Topology). Let A be a commutative ring, then the Zariski spectrum is the set $\operatorname{Spec}(A) = \{P \mid P \text{ is a prime ideal in } A\}$. This becomes a topological space $X = \operatorname{Spec}(A)$ with the following (Zariski) topology: we declare the closed sets of X to be $V(I) = \{P \in \operatorname{Spec}(A) \mid P \supseteq I\}$, i.e., the vanishing set of an ideal I.

Exercise 3.29.
$$\bullet \bigcap_{i \in I} V(I_i) = V(\sum_{i \in I} I_i),$$

•
$$V(I) \cup V(J) = V(I \cap J) = V(IJ)$$
.

If $I=(f_i)i\in I$, then $V(I)=V(\sum\limits_{i\in I}Af_i)=\bigcap\limits_{i\in I}V(f_i)$, so $X\backslash V(I)=X\backslash\bigcap\limits_{i\in I}V(f_i)=\bigcup\limits_{i\in I}(X\backslash V(f_i))=\bigcup\limits_{i\in I}D(f_i)$, where we define $D(f_i)=X\backslash V(f_i)=\{p\in\operatorname{Spec}(A)\mid f_i\notin p\}$. Therefore, $\{D(f_i)\}$ forms a family of basic open subsets of X. Therefore, $D(f_i)$ corresponds to $\operatorname{Spec}(A_{f_i})$.

Exercise 3.30. Let $Y \subseteq X$ be a subset, then $\overline{Y} = V(I)$ where $I = \bigcap_{p \in Y} p$. Therefore, $V(I) = V(\sqrt{I})$. In particular,

 $V(I) \subsetneq V(J)$ if and only if $\sqrt{J} \subsetneq \sqrt{I}$. One can check that there exists a one-to-one inclusion-reversing correspondence between closed subsets of X and radical ideals of A.

Exercise 3.31. $[p] \in X$ is a closed point if and only if p is a maximal ideal of A. In particular, the spectrum as a topological space is non-Hausdorff.

Definition 3.32 (Irreducible Subset). Let X be a topological space and $Y \subseteq X$ be a subset. Then Y is called irreducible if Y cannot be expressed as a union of two proper closed subsets of Y.

• Y is irreducible if and only if any two non-empty open subsets of Y has a non-empty intersection.

• Y being irreducible implies \bar{Y} irreducible.

Example 3.34. Let $X = \operatorname{Spec}(A)$ be a topological space and Y be a closed subset of X, with Y = V(I). Then Y is irreducible if and only if \sqrt{I} is a prime ideal of A.

Therefore, we have an increasing sequence of closed subsets $Y_0 \subsetneq Y_1 \subsetneq Y_2 \subsetneq \cdots \subseteq Y_r$ in $X = \operatorname{Spec}(A)$ if and only if $P_r \subsetneq P_{r-1} \subsetneq \cdots \subsetneq P_0$ for $V(P_i) = Y_i$ for all $0 \leqslant i \leqslant r$.

- Remark 3.35. Let X be a topological space and let \mathcal{F} be the family of irreducible closed subsets Y of X, then \mathcal{F} has a maximal element. Let $Y_0 \subseteq Y_1 \subseteq Y_2 \subseteq \cdots$ be an increasing chain of irreducible closed subsets, then one can check that $Y = \bigcup_{i \ge 0} Y_i$ is irreducible and closed. By Zorn's lemma, there exists a maximal element of \mathcal{F} .
 - For any $x \in X$, $\{x\}$ irreducible does not imply $\overline{\{x\}}$ irreducible. (In contrast, in Hausdorff spaces, every singleton set is closed.)

Definition 3.36 (Component). A maximal irreducible closed subset of a space X is called a component of X. Therefore, a space X is the union of its components.

Definition 3.37 (Noetherian). Let *X* be a topological space, then *X* is Noetherian if

- (i) every non-empty of open subsets of X has a maximal element, or equivalently,
- (ii) every non-empty of closed subsets of *X* has a minimal element.

Remark 3.38. (i) If X is Noetherian, then any subset Y of X is Noetherian as well.

- (ii) Conversely, if $X = \bigcup_{i=1}^{n} X_i$ where each X_i is Noetherian, then X is Noetherian.
- (iii) If X is Noetherian, then every subset of X is quasi-compact.

Example 3.39. If A be a Noetherian ring, then Spec(A) is Noetherian. The converse is not necessarily true.

Remark 3.40. Suppose A is Noetherian, then $(0) = \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_r$ where \mathfrak{q}_i is P_i -primary. Let $\{P_1, \ldots, P_t\} = \min\{P_1, \ldots, P_r\}$ be the minimal primes, then $\operatorname{Spec}(A) = V(0) = V(\mathfrak{q}_1) \cup \cdots \cup V(\mathfrak{q}_r)$, but since \mathfrak{q}_i is P_i -primary for all i, then $V(\mathfrak{q}_i) = V(P_i)$, so $P_i = \operatorname{Ass}(A/\mathfrak{q}_i) = V(P_1) \cup \cdots \vee V(P_r)$. But if $P_i \subsetneq P_j$, then $V(P_j) \subsetneq V(P_i)$, so the union is just $V(P_1) \cup \cdots \vee V(P_t)$, where each $V(P_i)$ is a component of $\operatorname{Spec}(A)$ for $1 \leqslant i \leqslant t$.

Proposition 3.41. A Noetherian space X has finite components, i.e., $X = X_1 \cup \cdots \cup X_n$ is a finite union.

Proof. Let \mathcal{F} be the collection of closed subsets Z of X for which the proposition is not true, that is, each Z is a finite union of its components. Suppose, towards contradiction, that \mathcal{F} is non-empty. Since X is Noetherian, then there exists a minimal element Z_0 of \mathcal{F} , therefore Z_0 is not irreducible, otherwise $Z_0 \notin \mathcal{F}$, so $Z_0 = W_0 \cup V_0$ is the union of two proper closed subsets. By minimality $W_0, V_0 \notin \mathcal{F}$, therefore W_0 and V_0 should be the finite union of their (finitely many) irreducible components, but that means \mathcal{F} is also a finite union of irreducible components, contradiction.

Definition 3.42 (Dimension). Let X be a topological space, then the dimension of X, denoted $\dim(X)$, is defined as

 $\dim(X) = \sup\{r \mid \text{there exists a decreasing chain of irreducible closed subsets } X_r \supsetneq X_{r-1} \supsetneq \cdots \supsetneq X_1 \supsetneq X_0\}.$

Exercise 3.43. Let A be a commutative ring, $X = \operatorname{Spec}(A)$. Show that X is quasi-compact, i.e., every open cover has a finite subcover.

Definition 3.44 (Dimension). Let A be a commutative ring and $X = \operatorname{Spec}(A)$, then

 $\dim(X) = \sup\{r \mid \text{ there exists an increasing chain of prime ideals } P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_r\}.$

This follows from the definition above.

Definition 3.45 (Krull Dimension). The Krull dimension of a commutative ring A, denoted $\dim(A)$, is $\dim(\operatorname{Spec}(A))$.

Remark 3.46. For any space X, $\dim(X) = \sup(\dim(X_i))$ where each X_i is a component of X.

Remark 3.47. Let A be a commutative ring, $X = \operatorname{Spec}(A)$, then

$$\dim(X) = \sup \{\dim(A/P_i) \mid P_1, \dots, P_t \text{ are minimal prime ideals of } A\}.$$

Remark 3.48 (Nagata). There exists Noetherian rings A such that $\dim(A) = \infty$.

Definition 3.49 (Krull Dimension). Let A be a Noetherian ring (this would probably be the implicit assumption from now on) and let M be an A-module, then the Krull dimension of M is $\dim(M) = \dim(A/I)$ where $I = \operatorname{Ann}_A(M)$.

Exercise 3.50. $\dim(M) = \sup_{\mathfrak{m}} (\dim(M_{\mathfrak{m}}))$ where \mathfrak{m} is a maximal ideal. Note that now the dimension of M can be studied locally. This is similar to the case of studying the degree of $P_{\mathfrak{q}}(M,n)$, where $\operatorname{supp}(\mathfrak{q}+I) = \{\mathfrak{m}_1,\ldots,\mathfrak{m}_n\}$ we just need to study $P_{\mathfrak{q}A_{\mathfrak{m}}}(M_{\mathfrak{m}},n)$ for maximal ideals \mathfrak{m} in the support.

Definition 3.51 (Length). Let (A, \mathfrak{m}) be a local ring, i.e., A is Noetherian with a unique maximal ideal \mathfrak{m} , and let M be a finitely-generated A-module. We denote the length $s(M) = \inf\{n \mid \exists x_1, \ldots, x_n \in \mathfrak{m} \text{ such that } \ell(M/(x_1, \ldots, x_n)M) < \infty\}$. Note that since M is finitely-generated, then $\dim_{A/\mathfrak{m}}(M/\mathfrak{m}M) < \infty$, so s(M) is always finite.

Definition 3.52 (System of Parameters). We say $x_1, \ldots, x_r \in \mathfrak{m}$ is a system of parameters of M if r = s(M) and $\ell(M/(x_1, \ldots, x_r)M) < \infty$.

Let (A, \mathfrak{m}) be a local ring, M be a finitely-generated A-module, then we denote $d(M) = \deg(P_{\mathfrak{m}}(M, n))$

Remark 3.53. For Noetherian ring A (but not necessarily quasi-local), we have $\dim(A) = \sup(\dim(A_{\mathfrak{m}}))$ and $d(M) = \sup(d(M_{\mathfrak{m}}))$.

Theorem 3.54 (Dimension Theorem). Let (A, \mathfrak{m}) be a local ring, M be a finitely-generated A-module, then $\dim(M) = d(M) = s(M)$.

Proof. We will show that $\dim(M) \leq d(M) \leq s(M) \leq \dim(M)$.

• To show $\dim(M) \leq d(M)$, we will induct on d(M). If d(M) = 0, then $P_{\mathfrak{m}}(M,n) = \ell(M/\mathfrak{m}^n M)$, and since d(M) = 0 is the degree of $P_{\mathfrak{m}}(M,n)$, then $\ell(M/\mathfrak{m}^n M) = \ell(M/\mathfrak{m}^{n+1} M) = \cdots$, therefore $\ell(\mathfrak{m}^n M/\mathfrak{m}^{n+1} M) = 0$, hence we have a short exact sequence

$$0 \longrightarrow \mathfrak{m}^n M/\mathfrak{m}^{n+1} M \longrightarrow M/\mathfrak{m}^{n+1} M \longrightarrow M/\mathfrak{m}^n M \longrightarrow 0$$

therefore $\mathfrak{m}^n M/\mathfrak{m}^{n+1}M=0$, so $\mathfrak{m}^n M=\mathfrak{m}^{n+1}M=\mathfrak{m}(\mathfrak{m}^n M)$, then by Nakayama Lemma (Corollary 2.55), we have $\mathfrak{m}^n M=0$, so $\mathrm{supp}(M)=\{\mathfrak{m}\}$. Therefore, $\dim(M)=0$.

Now suppose d(M)>0, and we have shown the case for dimension $0,\ldots,d(M)-1$. Since (A,\mathfrak{m}) is local, then it has finitely many components. Let $P_0\subsetneq P_1\subsetneq\cdots\subsetneq P_n$ be a chain of prime ideals in $\mathrm{supp}(M)$ such that P_0 is a minimal prime ideal in $\mathrm{supp}(M)$. We need to show that $n\leqslant d(M)$. Denote $N=A/P_0$ and take $x\in P_1\backslash P_0$, then x is a non-zero-divisor of N, therefore

$$0 \longrightarrow N \stackrel{x}{\longrightarrow} N \longrightarrow N/xN \longrightarrow 0$$

is a short exact sequence. By Proposition 3.27, $d(N/xN) \le d(N) - 1$. By the inductive hypothesis, $\dim(N/xN) \le d(N/xN) \le d(N-1)$, then note that $N/xN = A/(P_0 + x_1A)$, so $P_0 + x_1A \subseteq P_1 \subseteq P_2 \subseteq \cdots \subseteq P_n$, therefore $n-1 \le \dim(N/xN) \le d(N/xN) \le d(N) - 1$, therefore $n \le d(N) \le d(M)$.

- To show $d(M) \leq s(M)$, let x_1, \ldots, x_n be a system of parameters of M, i.e., n = s(M) and $\ell(M/(x_1, \ldots, x_n)M) < \infty$. This implies $\deg(P_{(x_1,\ldots,x_n)}(M,n)) \leq n$, but $V(M/(x_1,\ldots,x_n)M) = V(M/\mathfrak{m}M)$, therefore we have $\sup(M/(x_1,\ldots,x_n)M) = \{\mathfrak{m}\} = \sup(M/\mathfrak{m}M)$, thus by Proposition 3.24 we conclude $\deg(P_{\mathfrak{m}}(M,n)) = \deg(P_{(x_1,\ldots,x_n)}(M,n))$, so $d(M) \leq s(M) = n$.
- To show $s(M) \leq \dim(M)$, we proceed by induction on $\dim(M)$. If $\dim(M) = 0$, then $\operatorname{supp}(M) = \{\mathfrak{m}\}$, so $\ell_A(M) < \infty$, therefore s(M) = 0. Let $\{P_1, \dots, P_r\}$ be the minimal primes of $\operatorname{supp}(M)$. Take $x \in \mathfrak{m} \setminus \bigcup_{i=1}^r P_i$, then $s(M) 1 \leq s(M/xM) \leq \dim(M/xM) \leq \dim(M 1)^8$, hence $s(M) \leq \dim(M)$.

⁸The first inequality follows from definition, and the second inclusion follows from the inductive hypothesis.

Remark 3.55. If A is a PID, then every prime has height 1, therefore $\dim(A)=1$. For instance, $\dim(\mathbb{Z})=\dim(k[x])=1$. For $A=k[x_1,\ldots,x_n]$, we have $(x_1,\ldots,x_n)\supseteq(x_1,\ldots,x_{n-1})\supseteq\cdots\supseteq(x_1)\supseteq(0)$, so $\dim(A)\geqslant n$.

4 Integral Extensions

5 Noether's Normalization Lemma

6 Homological Algebra

References

- [Ati18] Michael Atiyah. Introduction to commutative algebra. CRC Press, 2018.
- [Bou98] Nicolas Bourbaki. Commutative algebra: chapters 1-7, volume 1. Springer Science & Business Media, 1998.
- [Mat70] Hideyuki Matsumura. Commutative algebra, volume 120. WA Benjamin New York, 1970.
- [Ser12] Jean-Pierre Serre. Local algebra. Springer Science & Business Media, 2012.
- [ZS13] Oscar Zariski and Pierre Samuel. Commutative algebra: Volume II, volume 29. Springer Science & Business Media, 2013.
- [ZSC59] Oscar Zariski, Pierre Samuel, and Irvin Sol Cohen. Commutative algebra, volume 1. Springer, 1959.