2023 LLVM Developers' Meeting Quick Talk

MLIR Dialect for GraphBLAS

Sriram Aananthakrishnan

Extreme Scale Computing

Intel

Graphs Everywhere

- Graphs are unstructured and irregular
- Difficult to parallelize and optimize across multiple platforms

Graph Analysis Using Sparse Linear Algebra

- Graphs as sparse matrices
- Vector-Matrix multiply or Matrix-Matrix multiply
- Use ∧ (⊗) instead of multiply operator and V (⊕) instead of addition operator for a traversal step
- Apply transformations on final output with a write mask and an optional accumulation (⊙) operator

GraphBLAS

- Community driven standard
- Building blocks for graph algorithms in the language of linear algebra over algebraic semirings: $(D, \bigoplus, \bigotimes, 0)$
 - Monoid ⊕ is commutative and associative with identity 0
 - Binary ⊗ is commutative
- Descriptors for altering the semantics e.g., transpose inputs, merge/replace output

https://graphblas.org/

Operation	Mathematical Description
mxm	$C\langle M\rangle = C \odot A \oplus \otimes B$
mxv	$w\langle m\rangle = w \odot A \oplus \otimes v$
vxm	$w\langle m\rangle = w \odot v \oplus \otimes A$
eWiseMult	$C\langle M\rangle = C \odot A \otimes B$
eWiseAdd	$C\langle M\rangle = C \odot A \oplus B$
reduce	$w\langle m\rangle = w \odot [\bigoplus_j A(,:j)]$
apply	$C\langle M \rangle = C \odot f(A)$ $w\langle m \rangle = w \odot f(u)$
transpose	$C\langle M\rangle = C \odot A^T$
extract	$C\langle M \rangle = C \odot A(i,j)$ $w\langle m \rangle = w \odot u(i)$
assign	$C\langle M\rangle(i,j) = C \odot A(i,j)$ $w\langle m\rangle(i) = w \odot u$

GraphBLAS in Academia & Industry

- The GraphBLAS C API Specification Version 2.0 https://graphblas.org/docs/GraphBLAS_API_C_v2.0.0.pdf
- SuiteSparse:GraphBLAS
 https://people.engr.tamu.edu/davis/GraphBLAS.html
- Python Bindings
- Integrated into Julia & Matlab
- Industry: NetworkX & FalkorDB

GraphBLAS Compiler

Storage		Types		Semirings		Descriptor		Algorithm		Fusion
CSR	\boldsymbol{x}	int		$\langle +, \times \rangle$	χ	mask	X	Gustavson	$\boldsymbol{\chi}$	assign — apply
CSC		float	χ	$\langle \vee, \wedge \rangle$		¬mask		dot – prod		mxm — reduce
dense		double		(any, sec)		replace		heap		vxm — reduce
blocked		complex		$\langle min, + \rangle$		transpose				
44				⟨+, sec⟩						
	'	113	1			32	1			
				960						

 $mxm (C\langle M \rangle = A \oplus \otimes B)$ Variants: 256 X 11³ X 960 X 32

Algorithm 1000: SuiteSparse:GraphBLAS: Graph Algorithms in the Language of Sparse Linear Algebra

GraphBLAS MLIR Dialect

- Analyze and optimize GraphBLAS DAG of operations
- Progressively lower
 GraphBLAS ops to
 SparseTensor/Linalg ops
- MLIR sparse compiler pipeline for CPU, GPU and XPU

Anatomy of a GraphBLAS Op

```
%w = grb.vxm <land;lor> #grb.desc<RC> %u, %A, %m:
(tensor<?xi64, #SV>,
  tensor<?xi64, #CSR>,
  tensor<?xi64, #SV>) →
  tensor<?xi64, #SV>)
```

Inputs: %u, %A, (Optional) %m

Output: %w

Semiring: <land, lor>

Descriptor: #grb.desc<RC>

Progressive Lowering

- 1. %I = grb.assign #grb.desc<C>%I, %d, %m:
- 2. $(tensor < ?xi64, #SV >, i64, tensor < ?xi64, #SV >) \rightarrow tensor < ?xi64, #SV$


```
1. %| = linalg.generic #attr
```

- 2. ins(%m) outs(%l)
- 3. ^bb(%mi,%li):
- 4. %u = sparse_tensor.unary %mi
- 5. present {}
- 6. absent{
- 7. sparse_tensor.yield %d
- 8. }
- 9. **linalg.yield** %u

10. }

Operator Fusion

- Opportunity to fuse vxm reduce
- Optimize memory when fusing mxm - reduce when output matrix only use is reduce

MLIR GraphBLAS: Current Status

- MLIR representation for a subset of operations in GraphBLAS dialect
- Progressive lowering of GraphBLAS ops to Linalg and SparseTensors
- Lowering focuses on semirings, mask, ¬mask and sparse tensor dialect handles multiple storage formats
- Sparse compilation pipeline to OpenMP/LLVM
- End-to-end code generation for Breadth-First Search (BFS)

Learnings & Future Directions

- Learnings
 - Progressive lowering minimizes burden by allowing top level to focus on algorithm and GraphBLAS specific variants
 - Builder design pattern for Linalg/SparseTensor
- Future Directions
 - Expand support to all operations in GraphBLAS standard
 - Operator fusion
 - Vectorization for CPUs
 - GPU/XPU code generation

#