₻لوحـــة تماريــن الممارســـة المنزليـــه

كراعداد الأستاذ محمد حاقة King

المستوى والمستقيم في الفضاء

 $\left(O,\vec{i},\vec{j},\vec{k}\right)$ في كل ما يلي الفضاء منسوب إلى معلم متعامد ومتجانس

A(3,-1,1) و $\overrightarrow{u}(1,2,-2)$: و الأول

- عين تمثيلا وسيطيًا للمستقيم (d) الذي يشمل A و u شعاع توجيه له (1
 - (d) هل النقطة H(2, -3, 3) تنتمي المستقيم (2

B(3,-1,1) و A(0,1,2)

- كتب تمثيلا وسيطيا للمستقيم ((AB) عبر عن المستقيم ((AB) بجملة معادلتين ديكارتيتين (1
 - (AB)بيّن أن النقطة $\mathrm{E}(-1,4,7)$ لا تنتمي للمستقيم (3
 - أحسب (AB) المسافة بين المستقيم المستقيم المستقيم d(E;(AB)) بطريقتين مختلفتين (4

لله التمسرين الثالث: (d_2) و (d_2) المستقيمين المعرفين بالتمثليين الوسيطيين الأتيين في كل حالة

ادرس الوضع النسبي لـ $(d_{\scriptscriptstyle 1})$ و $(d_{\scriptscriptstyle 1})$ ادرس الوضع

F(0,2,-3) و C(-1,3,1)، B(1,2,1)، A(2,1,0) و B(1,2,1)

- بيّن أن النقط B، A و B ليست في استقامية، ماذا تستنتج؟
 - (ABC) أكتب تمثيلا وسيطيا للمستوي (2
 - (ABC)استنتج معادلة ديكارتية للمستوي (3
- (ABC) المسافة بين النقطة F والمستوي (4 المسافة المسافقة المسا
- (ABC)عيّن إحداثيات النقطة H المسقط العمودي للنقطة F على المستوى (5

للهالتمرين الخامس: نعتبر المستويين (P_1) و (P_2) المعرفين بمعادلتيهما الديكارتيتين:

$$(P_{_{2}}):x-3y+2z+2=0\text{ \ \ o\ \ }(P_{_{\!\!1}}):x-2y+2z-1=0$$

BAC 2017

بيّن أن (P_1) و (P_2) يتقاطعان وفق مستقيم (Δ) ، يطلب إعطاء تمثيل وسيطى له (Δ)

 $\left(o\,; \overrightarrow{i}\,
ight)$ عيّن إحداثيات E نقطة تقاطع المستوي $\left(P_{1}
ight)$ مع حامل محور الفواصل (2

سطح الكرة في الفضاء

(S) النمرين الأول الهدف إيجاد معادلة ديكارتية لسطح الكرة (S)

كتب معادلة ديكارتية لسطح الكرة (S) في كل حالة مما يلي

B(-1,1,-1) و نصف قطرها A(-3,1,1) قطرها (2 AB قطرها (2 $\omega(-1,2,3)$ ونصف قطرها (1 و $\omega(-1,2,3)$

D(2,-4,2) مركزها C(1,-2,4) وتشمل النقطة (3

التى تحقق M(x,y,z) التى تحقق التعرف على مجموعة النقط الثاني : الهدف التعرف على مجموعة النقط الثاني : الهدف التعرف على مجموعة النقط

بطريقة العدد K بطريقة العدد $x^2+y^2+z^2+ax+by+cz+d=0$

 $x^{2} + y^{2} + z^{2} - 2x - 4y + 6z + 14 = 0$ (2 $x^{2} + y^{2} + z^{2} - 2x - 2y - 2z - 6 = 0$ (1)

 $x^{2} + y^{2} + z^{2} + x - y + 2z + 5 = 0$ (3)

للهالتمـــرين الثالث: الهدف دراسة الوضع النسبي لمستوي مع سطح كرة

R=2 سطح الكرة التي مركزها $\omega(1,-2,1)$ ونصف قطرها $\omega(S)$

 $(P_{_{\! 4}}): x-3y+z+3=0 \ {\bf (} \ (P_{_{\! 2}}): x-y-z+1=0 \ {\bf (} \ (P_{_{\! 1}}): x-2y+2z-1=0$

 (P_3) الوضع النسبي لـ(S) مع كل من (P_1) الوضع النسبي ال

للهالتمرين الرابع

B(1,1,1)، A(0,0,1): في الفضاء المنسوب إلى معلم متعامد ومتجانس ومتجانس $\left(o,\overline{i},\overline{j},\overline{k}\right)$ نعتبر النقط

 $R=\sqrt{3}$ وسطح الكرة $\omega(1,-1,0)$ التي مركزها $\omega(1,-1,0)$ ونصف قطرها C(2,1,2)

(S) اكتب معادلة ديكارتية لسطح الكرة (S) وتحقق من أنّ A تنتمى لـ(1

2) أ/ تحقّق أنّ النقط $B \cdot A$ و C تُعين مستويا، يطلب إيجاد شعاعا ناظميا له

(ABC)ب/ استنتج معادلة ديكارتية للمستوي

(S) وسطح الكرة ($d(\omega;(ABC))$ وسطح الكرة ($d(\omega;(ABC))$ وسطح الكرة ($d(\omega;(ABC))$

(ABC)ليكن (Δ)،المستقيم الذي يشمل ω ، والعمودي على المستوي (3

$$\left(\Delta\right)$$
 تمثیل وسیطي للمستقیم $\begin{cases} x=1+t \ y=-1-t \ , (t\in\mathbb{R}) \end{cases}$ أُر بيّن أنّ $z=-t$

(S) وسطح الكرة الكرة (Δ) وسطح الكرة الكرة بناتج إحداثيات نقطتي تقاطع المستقيم

ليس هناك أسرار للنجاح ،انه نتيجمّ للهحضير الجيد والعمل الجاد،والتعلم من الأخطاء

N

U