Partial Differential Equations - MSO 203B

Assignment 1 - Fourier Series and SL theory

Tutorial Problems

- 1. Find the Fourier series of $f(x) = \begin{cases} x; & 0 \le x \le \pi \\ 0; & -\pi \le x < 0 \end{cases}$ and f is extended periodically to whole of \mathbf{R} .
- 2. Find the Fourier series of $f(x) = \begin{cases} 1; & 0 \le x < \frac{1}{2} \\ 0; & \frac{1}{2} \le x < 1 \\ -1; & -\frac{1}{2} \le x < 0 \\ 0; & -1 \le x < \frac{1}{2} \end{cases}$ and f is extended periodically to whole of \mathbf{R} .
- 3. An elastic string of length 4m with fixed ends is raised by 2m and then released from rest. Assume the displacement satisfies $u_{tt} 25u_{xx} = 0$ for $0 \le x \le 4$; $t \ge 0$. Describe the motion of the string in terms of a Fourier series solution.
- 4. Prove that $\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx = 2a_0^2 + \sum_{n \in \mathbb{N}} (a_n^2 + b_n^2)$ where a_i and b_i are Fourier coefficients of the square summable function f.
- 5. Comment on the convergence of $\sum_{n \in \mathbb{N}} \frac{(-1)^n}{n^2}$ using the Fourier series of $f(x) = x^2$ on $\left[-\frac{1}{2}, \frac{1}{2}\right]$.
- 6. Solve the equation y''(x) = x; $x \in (0, \pi)$ using Fourier Series subject to the boundary condition $y(0) = y(\pi) = 0$.
- 7. Show that the Chebychev's equation given by $(1-x^2)y'' xy' + n^2y = 0$ in [-1, 1] is a singular SL-BVP.

- 8. Let (λ_1, y_1) and (λ_2, y_2) be the two distinct eigenpair of a regular SL-BVP such that $\lambda_1 < \lambda_2$. Show that y_2 admits a zero in between two consecutive zeroes of y_1 .
- 9. Reduce the problem $y'' + xy' + \lambda y = 0$ into an appropriate SL-BVP e.q., in self-adjoint form.
- 10. Comment on the eigen pairs of the problem $y'' + \lambda y = 0$; $\lambda > 0$ subject to the boundary condition $y'(0) = h_1 y(0)$ and $y'(l) = -h_2 y(l)$ where $h_1, h_2 > 0$.

END