Tablá pre kvantifikátory.

Viackvantifikátorové tvrdenia

8. prednáška Logika pre informatikov a Úvod do matematickej logiky

Ján Kľuka, <u>Ján Mazák</u>, Jozef Šiška

Letný semester 2024/2025

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

Obsah 8. prednášky

Tablá s kvantifikátormi

Logické vlastnosti a vzťahy

v logike prvého rádu

Dokazovanie s kvantifikátormi

Substitúcia a substituovateľnosť

Formalizácia s viacerými kvantifikátormi

Rovnaký kvantifikátor

Alternácia kvantifikátorov

Postupná formalizácia a parafrázovanie

Závislosť od kontextu

Dodatky k formalizácii s jedným kvantifikátorom

Tablá s kvantifikátormi

Tablá s kvantifikátormi

Logické vlastnosti a vzťahy

v logike prvého rádu

Logické vlastnosti a vzťahy v logike prvého rádu

Minulý týždeň sme zadefinovali, kedy je uzavretá formula a teória (množina uzavretých formúl) pravdivá v danej štruktúre ($\mathcal{M} \models A, \mathcal{M} \models T$).

Použili sme pomocný induktívne definovaný vzťah štruktúra spĺňa formulu pri ohodnotení ($\mathcal{M} \models X[e]$). Je definovaný pre všetky formuly (otvorené aj uzavreté).

Pomocou štruktúr a pravdivosti môžeme pre relačnú logiku prvého rádu skonkretizovať logické vlastnosti a vzťahy, ktoré už poznáme z výrokovologickej časti logiky prvého rádu:

- splniteľnosť a nesplniteľnosť,
- "vždy pravdivé" formuly (vo výrokovom prípade sa volali tautológie),
- vyplývanie/logický dôsledok.

Splniteľnosť a nesplniteľnosť

Ako sme sa dohodli minule, predpokladáme, že sme si pevne zvolili ľubovoľný jazyk relačnej logiky prvého rádu \mathcal{L} . Všetky definície platia pre symboly, termy, atómy, formuly, teórie, atď. v tomto jazyku a štruktúry a ohodnotenia indivíduových premenných pre tento jazyk. Pretože \mathcal{L} je ľubovoľný, dajú sa definície aplikovať na všetky jazyky relačnej logiky prvého rádu.

Definícia 8.1

Nech X je uzavretá formula a T je teória.

Formula X je prvorádovo splniteľná vttX je pravdivá v nejakej

štruktúre (ekvivalentne: existuje štruktúra \mathcal{M} taká, že $\mathcal{M} \models X$).

Teória T je prvorádovo splniteľná vtt T má model (ekvivalentne: T je pravdivá v nejakej štruktúre; existuje štruktúra \mathcal{M} taká, že $\mathcal{M} \models T$).

Formula resp. teória je *prvorádovo nesplniteľná* vtt nie je prvorádovo splniteľná.

Splniteľnosť – príklad

Príklad 8.2

Teória $\{\forall x (\texttt{človek}(x) \lor \texttt{myš}(x)), \forall x (\texttt{človek}(x) \to \neg \texttt{myš}(x))\}$ je prvorádovo splniteľná.

Je to tak preto, že je <mark>pravdivá v štruktúre</mark> (teda jej modelom je)

 $\mathcal{M} = (D,i), \mathsf{kde}\,D = \{1,2\}, i(\mathsf{\check{c}lovek}) = \{1\}\,\mathsf{a}\,i(\mathsf{my\check{s}}) = \{2\}.$

Samozrejme je pravdivá v mnohých iných štruktúrach.

Platné formuly

Formulám, ktoré sú výrokovologicky pravdivé (pravdivé v každom výrokovologickom ohodnotení atómov), sme hovorili tautológie. Pre formuly, ktoré sú prvorádovo pravdivé (pravdivé v každej štruktúre), sa používa iný pojem:

Definícia 8.3

Nech X je uzavretá formula.

Formula X je *platná* (skrátene $\models X$) vtt X je pravdivá v každej štruktúre (teda pre každú štruktúru \mathcal{M} máme $\mathcal{M} \models X$).

Samozrejme,

formula nie je platná vtt je nepravdivá v aspoň jednej štruktúre. Platnosť sa ale nedá overiť vymenovaním všetkých štruktúr, lebo tých je nekonečne veľa.

Je formula $(\forall x \operatorname{doma}(x) \to \operatorname{doma}(\operatorname{Jurko}))$ platná?

Platné formuly – príklad

Príklad 8.4

Formula $X = (\forall x \operatorname{doma}(x) \to \operatorname{doma}(\operatorname{Jurko}))$ je platná.

 $D\hat{o}kaz$. Predpokladajme, že by X nebola platná, teda by bola nepravdivá v nejakej štruktúre $\mathcal{M}=(D,i)$. Potom by v \mathcal{M} pri nejakom ohodnotení splnený antecedent $\forall x \operatorname{doma}(x)$, ale nesplnený konzekvent $\operatorname{doma}(\operatorname{Jurko})$, teda $i(\operatorname{Jurko}) \notin i(\operatorname{doma})$. Ak je ale splnené $\forall x \operatorname{doma}(x)$, tak pre každé $m \in D$ máme

Ak je ale splnené $\forall x \operatorname{doma}(x)$, tak pre každé $m \in D$ máme $m \in i(\operatorname{doma})$. Preto aj $i(\operatorname{Jurko}) \in i(\operatorname{doma})$, čo je spor.

Preto X je platná.

Prvorádové vyplývanie, prvorádový logický dôsledok

Definícia 8.5

Z teórie T prvorádovo logicky vyplýva uzavretá formula X (tiež X je prvorádovým logickým dôsledkom T, skrátene $T \vDash X$) vtt X je pravdivá v každom modeli T (ekvivalentne podrobnejšie: pre každú štruktúru $\mathcal M$ platí, že ak je v $\mathcal M$ pravdivá T, tak je v $\mathcal M$ pravdivá X).

Nezabúdajme, že význam "⊨" závisí od typu objektu na ľavej strane (a od prítomnosti ohodnotenia indiv. premenných):

pravdivosť:

štruktúra ⊧ formula/teória

splnenie:

štruktúra ⊨

formula [ohodnotenie]

vyplývanie:

teória ⊨ formula

Prvorádové vyplývanie – príklad

Prvorádové vyplývanie sa nedá overiť vymenovaním všetkých štruktúr, rovnako ako platnosť.

```
Príklad 8.6

Vyplýva prvorádovo z teórie

T = \{ \forall x (\text{oprav}i(\text{TServis}, x) \rightarrow \text{tlačiare}n(x)), \\ \neg \text{tlačiare}n(\text{môjMobil}) \}

formula X = \neg \text{oprav}i(\text{TServis}, \text{môjMobil})?
```

Prvorádové vyplývanie – príklad

Prvorádové vyplývanie sa nedá overiť vymenovaním všetkých štruktúr, rovnako ako platnosť.

```
Príklad 8.6
```

 $T = \{ \, \forall x (\mathtt{oprav} \mathtt{i}(\mathtt{TServis}, x) \to \mathtt{tla} \mathtt{\check{c}iare} \mathtt{\check{n}}(x)),$

Vyplýva prvorádovo z teórie

¬tlačiareň(môjMobil)}
formula X = ¬opraví(TServis.môiMobil)?

Áno, vyplýva. Presvedčíme sa o tom podobnou úvahou ako v príklade platnej formuly.

Prvorádové nevyplývanie a príklad

Samozrejme, formula X nevyplýva z teórie T vtt X nie je pravdivá v aspoň jednom modeli T.

Tento model je kontrapríkladom vyplývania.

Príklad 8.7

```
Vyplýva prvorádovo z teórie
```

 $T = \{ \forall x (\text{opravi}(\text{TServis}, x) \rightarrow \text{tlačiare}\check{\mathbf{n}}(x)), \\ \text{tlačiare}\check{\mathbf{n}}(\text{mojaHP}) \}$ formula X = opravi(TServis, mojaHP)?

Prvorádové nevyplývanie a príklad

Samozrejme, formula X nevyplýva z teórie T vtt

X nie je pravdivá v aspoň jednom modeli T.

Tento model je <mark>kontrapríkladom</mark> vyplývania.

```
Príklad 8.7
```

```
Vyplýva prvorádovo z teórie
```

$$T = \{ \forall x (\texttt{oprav}\texttt{i}(\texttt{TServis}, x) \rightarrow \texttt{tla}\texttt{čiare}\texttt{\check{n}}(x)), \\ \texttt{tla}\texttt{\check{c}iare}\texttt{\check{n}}(\texttt{mojaHP}) \}$$

formula X = opravi(TServis, mojaHP)?

Nie, nevyplýva. Napríklad štruktúra
$$\mathcal{M}=(D,i)$$
, kde $D=\{1,2,3\}$,

$$i(\texttt{TServis}) = 1,$$
 $i(\texttt{tlačiareň}) = \{2, 3\},$ $i(\texttt{mojaHP}) = 2,$ $i(\texttt{opravi}) = \{(1, 3)\}$

je kontrapríkladom toho, že $T \vDash X$, pretože $\mathcal{M} \vDash T$, ale $\mathcal{M} \nvDash X$.

Výrokovologické, prvorádové a logické vyplývanie

Podobne ako výrokovologické vyplývanie, aj prvorádové vyplývanie je špeciálny prípad logického vyplývania v prirodzenom jazyku.

Logické vyplývanie v prirodzenom jazyku je bohatšie ako prvorádové vyplývanie. Tvrdenie zodpovedajúce formule X logicky vyplýva z tvrdení v T — keď rozumieme vzťahu "väčší".

Logika prvého rádu ale "nevidí" význam predikátov.

Pozerá sa na ne len pomocou formúl, v ktorých vystupujú.

Dohoda 8.8

Nateraz budeme stručne ale nepresne hovoriť "logický dôsledok" a "vyplývanie" namiesto "prvorádový logický dôsledok" a "prvorádové logické vyplývanie".

Viac o vzťahu výrokovologického, prvorádového a logického vyplývania neskôr.

Platnosť a vyplývanie

Medzi platnými formulami a prvorádovým vyplývaním je podobný vzťah ako medzi tautológiami a výrokovologickým vyplývaním.

Tvrdenie 8.9

Nech X je uzavretá formula.

Nasledujúce tvrdenia sú vzájomne ekvivalentné:

- X je platná ($\models X$);
- X vyplýva z prázdnej teórie ($\emptyset \vDash X$);
- X vyplýva z každej teórie (pre každú teóriu T máme $T \models X$).

Tvrdenie 8.10

Nech $T = \{A_1, \dots, A_n\}$ je konečná teória a nech X je uzavretá formula.

- Nasledujúce tvrdenia sú vzájomne ekvivalentné:
 - formula $(\bigwedge_{i=1}^n A_i \to X)$ je platná (t.j., $\models (\bigwedge_{i=1}^n A_i \to X)$); • X vvplýva z teórie T (t.i., $T \models X$).

Platnosť, vyplývanie a ekvivalencia

Tyrdenie 8.11

Nech X a Y sú uzavreté formuly.

Nasledujúce tvrdenia sú vzájomne ekvivalentné:

- X je prvorádovo ekvivalentná s Y (skr. $X \Leftrightarrow Y$);
- formula $(X \leftrightarrow Y)$ je platná (skr. $\models (X \leftrightarrow Y)$);
- z {X} prvorádovo vyplýva Y a z {Y} prvorádovo vyplýva X
 (skr. {X} ⊨ Y a {Y} ⊨ X).

Tablá s kvantifikátormi

Dokazovanie s kvantifikátormi

Dôkazy a tablá pre logiku prvého rádu

Dôkazy s kvantifikovanými formulami sformalizujeme pomocou rozšírenia tabiel na logiku prvého rádu.

Tablá budú obsahovať označené formuly prvého rádu.

V tablách dovolíme aj otvorené formuly.

Tablové pravidlá budú zachovávať splniteľnosť tabla.

Označené formuly logiky prvého rádu

Podobne ako vo výrokovej logike môžeme zaviesť označovanie formúl logiky prvého rádu znamienkami **T** a **F**.

Definícia 8.12

Nech $\mathcal M$ je štruktúra, e je ohodnotenie indivíduových premenných a X je formula. Potom

- \mathcal{M} spĺňa označenú formulu $\mathbf{T}X$ pri ohodnotení e vtt \mathcal{M} spĺňa formulu X pri ohodnotení e, skrátene: $\mathcal{M} \models \mathbf{T}X[e]$ vtt $\mathcal{M} \models X[e]$;
- M spĺňa označenú formulu FX pri ohodnotení e vtt
 M nespĺňa formulu X pri ohodnotení e,
 skrátene: M ⊨ FX[e] vtt M ⊭ X[e].

 \mathcal{M} spĺňa množinu označených formúl S^+ pri ohodnotení e vtt \mathcal{M} spĺňa každú označenú formulu A^+ z S^+ pri ohodnotení e, skrátene: $\mathcal{M} \models S^+[e]$ vtt pre každú $A^+ \in S^+$ máme $\mathcal{M} \models A^+[e]$.

Splniteľnosť označených formúl a ich množín

Definícia 8.13 (Splniteľnosť označených formúl a ich množín)

Ozn. formula X^+ je splniteľná vtt pre nejakú štruktúru $\mathcal M$ a nejaké ohodnotenie indivíduových premenných e máme $\mathcal M \models X^+[e]$.

Množina ozn. formúl S^+ je **splniteľná** vtt pre nejakú štruktúru $\mathcal M$ a nejaké ohodnotenie indivíduových premenných e máme $\mathcal M \models S^+[e]$.

Príklad 8.14 (Dôkaz s pozitívnou všeobecnou kvantifikáciou)

Dokážme neformálne, ale *veľmi podrobne*, že z teórie $T = \{$ (1) $\forall x (\text{oprav}i(\text{TServis}, x) \rightarrow \text{tlačiare}\check{n}(x))$,

(2) ¬tlačiareň(môjMobil)

} prvorádovo vyplýva (3) ¬opraví(TServis, môjMobil).

Sporom:

```
Príklad 8.14 (Dôkaz s pozitívnou všeobecnou kvantifikáciou)

Dokážme neformálne, ale veľmi podrobne, že z teórie T = \{

(1) \forall x (\text{oprav}(TServis, x) \rightarrow \text{tlačiare}\tilde{n}(x)),
```

(2) \neg tlačiareň(môjMobil) } prvorádovo vyplýva (3) \neg opraví(TServis, môjMobil). Sporom: Nech sú formuly (1) a (2) pravdivé v nejakej štruktúre $\mathcal{M} = (D, i)$,

ale (3) je v nej nepravdivá, teda nie je splnená pri nejakom ohodnotení *e*.

Potom (4) opraví(TServis, môjMobil) je splnená v $\mathcal M$ pri e. Navyše (5) tlačiareň(môjMobil) je nesplnená.

Pretože podľa prvého predpokladu (1) je formula (opraví(TServis, x) \rightarrow tlačiareň(x)) splnená pri e(x/d) pre

každé $d \in D$, musí byť splnená aj pre objekt i(môjMobil). Teda
(6) $(opraví(TServis, môjMobil) \rightarrow tlačiareň(môjMobil))$ je splnená pri e.

Pretože už vieme, že ľavá strana je pravdivá (4), musí byť aj pravá strana (7) tlačiareň(môjMobil) pravdivá. To je ale v spore so skorším zistením (5), že táto formula je nepravdivá.

Tablo pre dôkaz

Na väčšinu krokov v predchádzajúcom dôkaze stačia doterajšie tablové pravidlá.

```
1. T \forall x (\text{opravi}(TServis, x) \rightarrow \text{tlačiareň}(x)) S^+
2. T \neg \text{tlačiareň}(\text{môjMobil}) S^+
3. F \neg \text{opravi}(TServis, \text{môjMobil}) S^+
4. T \text{opravi}(TServis, \text{môjMobil}) \alpha 3
5. F \text{tlačiareň}(\text{môjMobil}) \alpha 2
6. T (\text{opravi}(TServis, \text{môjMobil}) \rightarrow \text{tlačiareň}(\text{môjMobil}) ?1
7. T \text{tlačiareň}(\text{môjMobil}) MP4, 6
* 5, 7
```

Špeciálny prípad pravdivej všeobecne kvantifikovanej formuly

Doterajšie pravidlá ale nestačia na kľúčový krok, v ktorom sme z pravdivej všeobecne kvantifikovanej formuly (1)

$$\forall x (\text{opravi}(\text{TServis}, x) \rightarrow \text{tlačiareň}(x))$$

odvodili jej špeciálny prípad (inštanciu) (6) pre konštantu môjMobil:

```
(opravi(TServis, môjMobil) \rightarrow tlačiareň(môjMobil))
```

Táto formula, ale aj každá iná, ktorá vznikne analogicky dosadením hocijakého termu za premennú x, je logickým dôsledkom formuly (1).

Pravidlo pre pravdivé všeobecne kvantifikované formuly

Na tento krok potrebujeme nové pravidlo:

$$\frac{\mathbf{T}\,\forall x\,A}{\mathbf{T}\,A\{x\mapsto t\}}\,\,\gamma$$

pre každú formulu A, každú premennú x a každý term t, ak spĺňajú dôležitú dodatočnú podmienku — viac o nei neskôr.

 $\{x\mapsto t\}$ označuje substitúciu — zobrazenie premenných na termy (v tomto prípade je toto zobrazenie iba jednoprvkové).

 $A\{x\mapsto t\}$ označuje aplikáciu substitúcie $\{x\mapsto t\}$ na formulu A — je to formula, ktorá vznikne z formuly A nahradením všetkých voľných výskytov premennej x termom t.

Špeciálny prípad nepravdivej existenčne kvantifikovanej formuly

Veľmi podobná situácia nastáva pre nepravdivú existenčne kvantifikovanú formulu, napr.

$$\mathbf{F} \exists x (\text{oprav} i(\text{TServis}, x) \land \text{mobil}(x)).$$

Inštancia

$$F(opravi(TServis, Chrumko) \land mobil(Chrumko))$$

je logickým dôsledkom pôvodnej označenej formuly.

Rovnako je jej logickým dôsledkom každá iná inštancia a môžeme sformulovať pravidlo:

$$\frac{\mathbf{F} \,\exists x \, A}{\mathbf{F} \, A \{ x \mapsto t \}} \, \gamma$$

pre každú formulu A, každú premennú x a každý $\operatorname{term} t$, ak (opäť) spĺňajú dôležitú dodatočnú podmienku.

Dôkaz s $\mathbf{T} \forall x A$ a $\mathbf{F} \exists x A$

```
Pomocou nových pravidiel môžeme dokázať napr.
\{\forall x (\text{oprav}i(\text{TServis}, x) \rightarrow \text{tlačiare}\check{n}(x)).
\forall x (\text{mobil}(x) \rightarrow \neg \text{tlačiare}\check{n}(x)).
mobil(m\hat{o}jMobil) \models \exists x(mobil(x) \land \neg opravi(TServis, x)):
  1. T \forall x (opravi(TServis, x) \rightarrow tlačiareň(x))
                                                                          S^+
                                                                          S^+
  2. T \forall x (mobil(x) \rightarrow \neg tlačiareň(x))
                                                                          S^+
  3. Tmobil(môiMobil)
  4. \mathbf{F} \exists x (mobil(x) \land \neg opravi(TServis, x))
  5. T(mobil(môjMobil) → ¬tlačiareň(môjMobil))
                                                                          \gamma 2\{x \mapsto m\hat{o} iMobil\}
  6. T¬tlačiareň(môjMobil)
                                                                          MP5, 3
  7. Ftlačiareň(môjMobil)
                                                                          \alpha6
  8. T(\text{opravi}(TServis, môjMobil}) \rightarrow tlačiareň(môjMobil}) \gamma 1\{x \mapsto môjMobil\}
  9. Fopraví(TServis.môiMobil)
                                                                          MT8, 7
10. F(mobil(môjMobil) ∧ ¬opraví(TServis, môjMobil))
                                                                          \gamma 4\{x \mapsto m\hat{o}jMobil\}
 11. Fmobil(môjMobil) \beta10
                                          12. F¬opraví(TServis, môjMobil) β10
      * 3,11
                                          13. Topraví(TServis, môjMobil) \alpha12
                                              * 9,13
```

Dôkaz s pozitívnou existenčnou kvantifikáciou

Príklad 8.15

```
Dokážme neformálne, že z teórie T = \{ (1) \forall x (\text{oprav}\textsc{i}(\text{TServis}, x) \rightarrow \text{tlačiare}\sc{n}(x)), (2) \exists x \neg \text{tlačiare}\sc{n}(x)
```

} prvorádovo vyplýva (3) ∃x ¬opraví(TServis, x).

Sporom: Nech sú formuly (1) a (2) pravdivé v nejakej štruktúre $\mathcal{M}=(D,i)$, ale (3) je v nej nepravdivá, teda nie je splnená pri nejakom ohodnotení e.

Dôkaz s pozitívnou existenčnou kvantifikáciou

Dokážme neformálne, že z teórie $T = \{$

Príklad 8.15

```
(1) \forall x (\text{oprav}i(\text{TServis}, x) \rightarrow \text{tlačiare}\check{n}(x)).
        (2) \exists x \neg tlačiareň(x)
} prvorádovo vyplýva (3) \exists x \neg opraví(TServis, x).
Sporom: Nech sú formuly (1) a (2) pravdivé v nejakej štruktúre \mathcal{M} = (D, i),
ale (3) je v nej nepravdivá, teda nie je splnená pri nejakom ohodnotení e.
Podľa (2) existuie v doméne objekt d taký, že \negtlačiareň(x) je splnená pri
ohodnotení e(x/d). Zoberme si jeden z takýchto objektov a označme ho
napríklad premennou z. Pri e(z/d) potom je (4) \negtlačiareň(z) splnená,
a teda (5) tlačiareň(z) je nesplnená. Podľa (1) je formula
(6) (opraví(TServis, z) \rightarrow tlačiareň(z)) splnená. Pretože už vieme, že
```

pravá strana je nesplnená (5), je aj ľavá strana (7) opraví (TServis, z) nesplnená. Podľa predpokladu dôkazu sporom (3) je však aj jeho inštancia

(8) ¬opraví(TServis, z) nesplnená, teda (9) je splnená opraví(TServis, z), čo je v spore so skorším zistením (7).

Pozitívna existenčná kvantifikácia a jej vlastná premenná

Kľúčovým krokom v predchádzajúcom dôkaze je označenie objektu (svedka), ktorý existuje podľa pozitívnej existenčne kvantifikovanej formuly

$$T \exists x \neg tlačiareň(x),$$

dočasným menom — voľnou premennou z a odvodenie:

$$\mathbf{T} \neg \mathsf{tlačiareň}(z)$$
.

Táto premenná sa predtým na vetve nesmie vyskytovať voľná. 🗘

Musí to byť nová, vlastná premenná pre formulu $T \exists x \neg t \exists ciareň(x)$.

Vo všeobecnosti:

$$\frac{\mathsf{T}\,\exists x\,A}{\mathsf{T}\,A\{x\mapsto y\}}\,\,\delta$$

pre každú formulu A, každú premennú x a každú novú premennú y, ak (opäť) spĺňajú dôležitú dodatočnú podmienku.

Prečo vlastná premenná?

Prečo potrebuje každá pozitívna existenčná formula vlastnú premennú?

Pravidlá musia zachovávať splniteľnosť vetiev v table.

Konštanty a iné voľné premenné v table môžu označovať objekty s konfliktnými vlastnosťami.

Ich dosadením za existenčne kvantifikovanú premennú by sme dospieť k falošnému sporu.

Prečo vlastná premenná? – príklad

```
Vetva
 n+1. Ttlačiare\check{n}(x)
 n+2. T \exists x \neg tlačiareň(x)
ie splniteľná (napr. je splnená štruktúrou \mathcal{M} = (\{1, 2\}, i), i(tlačiareň) = \{1\} pri
ohodnotení e = \{x \mapsto 1, ...\}.
Vetva
 n+1. Ttlačiareň(x)
 n+2. T \exists x \neg t lačiareň(x)
 n+3. T¬tlačiareň(z) \checkmark \delta 2\{x \mapsto z\}
ie splniteľná (napr. je splnená štruktúrou
\mathcal{M} = (\{1, 2\}, i), i(tlačiareň) = \{1\} pri ohodnotení
e = \{ x \mapsto 1, z \mapsto 2, ... \} \}
```

Negatívna všeobecná kvantifikácia a jej vlastná premenná

Negatívna všeobecne kvantifikovaná formula

$$\mathbf{F} \forall x \text{ tlačiare}\check{\mathbf{n}}(x)$$
,

znamená, že pre niektorý objekt x (kontrapríklad) je jej priama podformula tlačiareň(x) nepravdivá.

Tento objekt teda môžeme opäť označiť novou vlastnou premennou formuly $\mathbf{F} \forall x \text{tlačiare}\check{\mathbf{n}}(x)$, napríklad u, a môžeme odvodiť:

$$\mathbf{F}$$
 tlačiare $\check{\mathbf{n}}(u)$.

Táto premenná sa predtým na vetve nesmie vyskytovať voľná. 🗘

Vo všeobecnosti:

$$\frac{\mathbf{F}\,\forall x\,A}{\mathbf{F}\,A\{x\mapsto y\}}\,\,\delta$$

pre každú formulu A, každú premennú x a každú novú premennú y, ak (opäť) spĺňajú dôležitú dodatočnú podmienku.

Dôkaz s pravidlami pre kvantifikátory

```
\{\exists x \, \forall v (\text{oprav}i(x, v) \rightarrow \text{tlačiare}i(v)).
  \forall x (mobil(x) \rightarrow \neg tlačiareň(x))
 \models \forall x (mobil(x) \rightarrow \exists y \neg opravi(y, x)):
                         1. T \exists x \forall y (opravi(x, y) \rightarrow tlačiareň(y)) S^+
                                                                                                  S^+
                         2. T \forall x (mobil(x) \rightarrow \neg tlačiareň(x))
                         3. \mathbf{F} \forall x (\text{mobil}(x) \rightarrow \exists y \neg \text{oprav}(y, x))
                                                                                                  S^+
                         4. \mathbf{F}(\text{mobil}(u) \rightarrow \exists v \neg \text{oprav}(v, u))
                                                                                                  \delta 3\{x \mapsto u\}
                         5. Tmobil(u)
                                                                                                  \alpha 4
                         6. \mathbf{F} \exists v \neg oprav \mathbf{i}(v, u)
                                                                                                  \alpha 4
                         7. \mathbf{T} \forall v (\operatorname{oprav}_{\mathbf{1}}(z, v) \rightarrow \operatorname{tlačiare}_{\mathbf{1}}(v))
                                                                                                  \delta 1\{x \mapsto z\}
                         8. T(mobil(u) \rightarrow \neg tlačiareň(u))
                                                                                                  \gamma 2\{x \mapsto u\}

 T¬tlačiareň(u)

                                                                                                  MP8. 5
                       10. Ftlačiareň(u)
                                                                                                  \alpha 9
                       11. T(\operatorname{oprav}(z, u) \to \operatorname{tlačiare}(u))
                                                                                                  \gamma7{v \mapsto u}
                       12. \mathbf{F} opraví(z, u)
                                                                                                  MT11,10
                                                                                                  \gamma 6\{y \mapsto z\}
                       13. \mathbf{F} \neg \operatorname{oprav}(z, u)
                       14. Topravi(z, u)
                                                                                                  \alpha 13
                              * 12.14
```

Tablové pravidlá pre logiku prvého rádu

Definícia 8.16

Pravidlami tablového kalkulu pre logiku prvého rádu sú pravidlá typu α a β pre výrokovú logiku a pravidlá:

$$\gamma \qquad \frac{\mathbf{T} \, \forall x \, A}{\mathbf{T} \, A \{x \mapsto t\}} \qquad \frac{\mathbf{F} \, \exists x \, A}{\mathbf{F} \, A \{x \mapsto t\}} \qquad \text{jednotne: } \frac{\gamma(x)}{\gamma_1(t)}$$

$$\delta \qquad \frac{\mathbf{F} \, \forall x \, A}{\mathbf{F} \, A \{x \mapsto y\}} \qquad \frac{\mathbf{T} \, \exists x \, A}{\mathbf{T} \, A \{x \mapsto y\}} \qquad \text{jednotne: } \frac{\delta(x)}{\delta_1(y)}$$

kde A je formula, x je premenná, t je term substituovateľný za x v A a y je premenná substituovateľná za x v A.

Pri operácii rozšírenia vetvy tabla π o dôsledok niektorého z pravidiel typu δ navyše musí platiť, že premenná y nemá voľný výskyt v žiadnej formule na vetve π .

Korektnosť pravidiel γ a δ

Tvrdenie 8.17 (Korektnosť pravidiel γ a δ)

Nech S^+ je množina označených formúl v jazyku \mathcal{L} , nech x a y sú premenné, nech t je term.

- Ak $\gamma(x) \in S^+$ a t je substituovateľný za x v $\gamma_1(x)$, tak S^+ je splniteľná vtt $S^+ \cup \{\gamma_1(t)\}$ je splniteľná.
- Ak $\delta(x) \in S^+$, y je substituovateľná za x v $\delta_1(x)$ a y sa nemá voľný výskyt v S^+ , tak S^+ je splniteľná vtt $S^+ \cup \{\delta_1(y)\}$ je splniteľná.

Tablový kalkul pre logiku prvého rádu

Princíp tablových dôkazov ostáva nezmenený:

- Ak chceme dokázať, že formula X je platná, hľadáme uzavreté tablo pre S⁺ = {FX}.
 Predpokladáme teda, že v nejakej štruktúre a nejakom ohodnotení je X nesplnená a ukážeme spor.
- Podobne pre prvorádové vyplývanie T ⊨ X predpokladáme, že v nejakej štruktúre a nejakom ohodnotení sú splnené všetky formuly z T (T A pre A ∈ T), ale X je nesplnená (FX) a ukážeme spor, teda hľadáme uzavreté tablo pre S⁺ = {T A | A ∈ T} ∪ {FX}.

Častá chyba pri pravidlách γ a δ : aplikácia na podformuly

```
Vetva:
```

- F mobil(u)
 T tlačiareň(u)
- 2. I tracraren(u)
- 3. $\mathbf{T}(\forall x \text{ tlačiare}\check{\mathbf{n}}(x) \rightarrow \forall y \text{ mobil}(y))$

je splniteľná

 $(\text{je splnen\'a napr. \'strukt\'urou }\mathcal{M}=(\{1,2\},i), \text{kde } i(\text{mobil})=\{1\}, i(\text{tla\'ciare\'n})=\{2\} \text{ pri ohodnoten\'i } e=\{u\mapsto 2,...\}).$

V table:

- 1. $\mathbf{F} \operatorname{mobil}(u)$
- 2. T tlačiare $\check{n}(u)$
- 3. $T(\forall x \text{ tlačiare}\check{n}(x) \rightarrow \forall y \text{ mobil}(y))$
- 4. $F \forall x \text{ tlačiare}\check{n}(x) \oslash \beta 3$ 5. $T \forall y \text{ mobil}(y) \oslash \beta 3$
- 6. Ftlačiareň(v) $\delta 4$ 7. Tmobil(u) $\phi \gamma 3$

je ľavá vetva <mark>splniteľná</mark>

(je splnená napr. tou istou štruktúrou \mathcal{M} ako pôvodná vetva pri ohodnotení $e = \{u \mapsto 2, v \mapsto 1 \dots \}$).

Chybná vetva:

- 1. $\mathbf{F} \operatorname{mobil}(u)$
- 2. T tlačiare $\check{n}(u)$
- 3. $T(\forall x \text{ tlačiare}\check{n}(x) \rightarrow \forall y \text{ mobil}(y))$
- 4. T(tlačiareň(u) $\rightarrow \forall v \text{mobil}(v)$) u "v3"
- 5. $T \forall y mobil(y)$ MP4, 2

 γ 5

6. Tmobil(u) ie nesplniteľná.

Tablové pravidlá sa nikdy neaplikujú na podformuly označenej formuly v uzle.

Tablá s kvantifikátormi

Substitúcia a substituovateľnosť

Substitúcia

Definícia 8.18 (Substitúcia)

Substitúciou (v jazyku $\mathcal L$) nazývame každé zobrazenie $\sigma\colon V\to \mathcal T_{\mathcal L}$ z nejakej množiny indivíduových premenných $V\subseteq \mathcal V_{\mathcal L}$ do termov jazyka $\mathcal L$.

Príklad 8.19

Keď $\mathcal{V}_{\mathcal{L}} = \{u, v, \dots, z, u_1, \dots\}, \mathcal{C}_{\mathcal{L}} = \{Klárka, Jurko\},$

napríklad $\sigma_1 = \{\mathbf{x} \mapsto \mathtt{Klárka}, \mathbf{y} \mapsto \mathbf{u}, \mathbf{z} \mapsto \mathbf{x}\}$ je substitúcia.

Problém so substitúciou

Vetva

```
n+1. \mathbf{T} \forall x \neg pozná(x, x)
                                       \nu 1\{x \mapsto v\}
  n+2. \mathbf{T} \neg pozná(y, y)
  n+3. T \forall x \exists y \operatorname{pozná}(x, y)
je splniteľná (napr. je splnená štruktúrou \mathcal{M} = (\{1, 2\}, i), i(\text{pozná}) = \{(1, 2), (2, 1)\}
pri ohodnotení e = \{y \mapsto 1, ...\}).
Ale vetva
                                                                                            Oprava: Vetva
 n+1. \mathbf{T} \forall x \neg pozná(x, x)
                                                                                             n+1. \mathbf{T} \forall x \neg pozná(x, x)
 n+2. \mathbf{T} \neg pozná(v, v) \gamma 1\{x \mapsto v\}
                                                                                             n+2. \mathbf{T} \neg pozná(z, z)
                                                                                                                                        \gamma 1\{x \mapsto z\}
 n+3. \mathbf{T} \forall x \exists y \operatorname{pozná}(x, y)
                                                                                             n+3. \mathbf{T} \forall x \exists y \operatorname{pozn} \hat{a}(x, y)
 n+4. T \equiv y \operatorname{pozná}(y, y) \bigotimes \, \, \gamma'' \, 3\{x \mapsto y\}
                                                                                             n+4. \mathbf{T} \exists v \operatorname{pozn} \hat{a}(z, v) \checkmark \gamma 3\{x \mapsto z\}
ie nesplniteľná.
                                                                                            ie splniteľná.
```

Definícia 8.20 (Substituovateľnosť, aplikovateľnosť substitúcie)

Nech A postupnosť symbolov (term alebo formula), nech $t, t_1, ..., t_n$ sú termy a $x, x_1, ..., x_n$ sú premenné.

Term t je substituovateľný za premennú $x \vee A$ vtt

nie je pravda, že pre niektorú premennú
$$y$$
 vyskytujúcu sa v t platí, že v nejakej oblasti platnosti kvantifikátora $\exists y$ alebo $\forall y$ vo

formule A sa premenná x vyskytuje voľná. Substitúcia $\{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ je aplikovateľná na A vtt

- Príklad 8.21
- term t_i je substituovateľný za x_i v A pre každé $i \in \{1, ..., n\}$.
- Nech $A = \exists y \text{ pozná}(x, y)$.
- - Substitúcia $\{x \mapsto y, z \mapsto Jurko\}$ nie je aplikovateľná na A,
 - lebo term y nie je substituovateľný za premennú $x \vee A$. • Substitúcia $\{x \mapsto z, y \mapsto Jurko, z \mapsto y\}$ je aplikovateľná na A.

Substitúcia do postupnosti symbolov

premennej x_i v A termom t_i .

Definícia 8.22 (Substitúcia do postupnosti symbolov)

Nech A je postupnosť symbolov,

nech $\sigma=\{x_1\mapsto t_1,\dots,x_n\mapsto t_n\}$ je substitúcia. Ak σ je aplikovateľná na A, tak $A\sigma$ je postupnosť symbolov, ktorá

Príklad 8.23

Nech
$$A = \exists y \text{ pozná}(x, y) \text{ a } \sigma = \{x \mapsto z, y \mapsto u, z \mapsto y\}.$$

Substitúcia σ je aplikovateľná na A. V A je voľná iba premenná x, dosadíme za ňu term z. ktorý neobsahuje viazanú premennú v.

vznikne súčasným nahradením každého voľného výskytu

Všetky výskyty *y* sú <u>viazané</u>, za ne sa nedosádza.

Premenná *z* sa v *A* nevyskytuje, nie je za čo dosadzovať.

$$A\sigma = \exists y \text{ pozná}(z, y)$$

Substitúcia do termoy a formúl rekurzívne

Tyrdenie 8.24

Pre každú substitúciu $\sigma = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\},\$

každú premennú $v \in \mathcal{V}_C \setminus \{x_1, \dots, x_n\}$, každý symbol

konštanty $a \in \mathcal{C}_{\mathcal{L}}$, každý predikátový symbol $P^k \in \mathcal{P}_{\mathcal{L}}$. každé $i \in \{1, ..., n\}$, každú spojku $\diamond \in \{\land, \lor, \rightarrow\}$, všetky formuly A a B

a všetky termy $s_1, s_2, ..., s_k \in \mathcal{F}_{\mathcal{L}}$ platí:

a vsetky termy
$$s_1, s_2, ..., s_k \in \mathcal{I}_{\mathcal{L}}$$
 plati:

 $x_i \sigma = t_i$ $y \sigma = y$

$$y\sigma = y$$
 $a\sigma = a$

$$y\sigma = y \qquad \qquad u\sigma = u$$

$$v_{\sigma}\sigma \doteq v_{\sigma}\sigma \qquad (P(v_{\sigma} = v_{\sigma}))\sigma = P$$

$$(s_1 \doteq s_2)\sigma = (s_1\sigma \doteq s_2\sigma) \quad (P(s_1, \dots, s_k))\sigma = P(s_1\sigma, \dots, s_k\sigma)$$

$$((A \diamond B))\sigma = (A\sigma \diamond B\sigma)$$

$$(\neg A)\sigma = \neg (A\sigma) \qquad ((A \diamond B))\sigma = (A\sigma \diamond B\sigma)$$

$$(\forall y A)\sigma = \forall y (A\sigma) \qquad (\exists y A)\sigma = \exists y (A\sigma)$$

$$(\forall x_i A)\sigma = \forall x_i (A\sigma_i) \qquad (\exists x_i A)\sigma = \exists x_i (A\sigma_i),$$

kde
$$\sigma_i = \sigma \setminus \{x_i \mapsto t_i\}$$
, za predpokladu, že σ je v danom prípade aplikovateľná.

Formalizácia s viacerými
kvantifikátormi

Viacnásobné použitie rovnakého kvantifikátora

Použitím jedného kvantifikátora vo formule sme minulý týždeň dokázali vyjadriť pomerne komplikované tvrdenia.

Ale už v príklade tabiel sme videli, že niektoré tvrdenia zodpovedajú viacerým kvantifikátorom vo formule.

Rozoberme si niekoľko typických prípadov.

Formalizácia s viacerými

kvantifikátormi

Rovnaký kvantifikátor

Viacnásobné použitie rovnakého kvantifikátora

Najjednoduchšie sú opakované použitia rovnakého kvantifikátora na začiatku formuly:

- $\exists x \, \exists y ((\check{\mathtt{clovek}}(x) \land \check{\mathtt{skrečok}}(y)) \land \check{\mathtt{krmi}}(x, y))$
- $\forall x \, \forall y ((\check{\mathsf{clovek}}(x) \land \check{\mathsf{skrečok}}(y)) \to \check{\mathsf{krmi}}(x,y))$

Význam je ľahké uhádnuť, aj keď je možno zrejmejší v alternatívnej forme, ktorá priamo zodpovedá aristotelovským formám obmedzenej kvantifikácie:

- ∃x(človek(x) ∧ ∃y(škrečok(y) ∧ kŕmi(x, y)))
 Nejaký človek (má vlastnosť, že) kŕmi nejakého škrečka.
- $\forall x (\check{\mathtt{clovek}}(x) \to \forall y (\check{\mathtt{skrečok}}(y) \to \check{\mathtt{krmi}}(x,y)))$ Každý človek kŕmi každého škrečka.

Prenexové vs. hlbšie vnorené formy

Dve uvedené formy každého typu tvrdenia sú vzájomne ekvivalentné, majú rovnaký význam.

Prvé formy sú prenexové — kvantifikátory sú na začiatku formuly.

• Nie je vždy dobré snažiť sa o prenexovú formu, v zložitejších prípadoch môže byť zavádzajúca.

Rôznosť objektov označených premennými - všeobecný prípad

Tento typ tvrdení je väčšinou bezproblémový až na jeden prípad:

$$\forall x\, \forall y ((\texttt{zvieratko}(x) \land \texttt{zvieratko}(y)) \rightarrow \\ (\texttt{väčši}(x,y) \lor \texttt{menši}(x,y)))$$

nezodpovedá tvrdeniu: Pre každé zvieratká x a y platí, že x je väčšie od y alebo x je menšie od y.

Slovenské *každé* (*dve*) *zvieratká x a y* znamená, že *x* a *y* označujú naozaj viacero zvieratiek. Ale v logike prvého rádu je každá premenná kvantifikovaná samostatne a rôzne premenné môžu označovať ten istý objekt.

Rôznosť objektov označených premennými — všeobecný prípad

Tento typ tvrdení je väčšinou bezproblémový až na jeden prípad:

$$\forall x \, \forall y ((\texttt{zvieratko}(x) \land \texttt{zvieratko}(y)) \rightarrow \\ (\texttt{väčši}(x,y) \lor \texttt{menši}(x,y)))$$

nezodpovedá tvrdeniu: Pre každé zvieratká x a y platí, že x je väčšie od y alebo x je menšie od y.

Slovenské *každé* (*dve*) *zvieratká x a y* znamená, že *x* a *y* označujú naozaj viacero zvieratiek. Ale v logike prvého rádu je každá premenná kvantifikovaná samostatne a rôzne premenné môžu označovať ten istý objekt. Rôznosť musíme zapísať explicitne:

$$\forall x \, \forall y ((\texttt{zvieratko}(x) \land \texttt{zvieratko}(y) \land x \neq y) \rightarrow \\ (\texttt{väčši}(x,y) \lor \texttt{menši}(x,y)))$$

Pre ľubovoľné termy s, t je $s \neq t$ je skratka za $\neg s \doteq t$.

Rôznosť objektov označených premennými — existenčný prípad

Podobne formula

$$\exists x\,\exists y (\texttt{zvieratko}(x) \land \texttt{zvieratko}(y))$$

neznamená, že existujú aspoň dve zvieratká (je ekvivalentná s $\exists x$ zvieratko(x)).

Existenciu aspoň dvoch zvieratiek zabezpečí formula:

Rôznosť objektov označených premennými — existenčný prípad

Podobne formula

$$\exists x \,\exists y (zvieratko(x) \land zvieratko(y))$$

neznamená, že existujú aspoň dve zvieratká (je ekvivalentná s $\exists x \text{ zvieratko}(x)$).

Existenciu aspoň dvoch zvieratiek zabezpečí formula:

$$\exists x \,\exists y (z \text{vieratko}(x) \land z \text{vieratko}(y) \land x \neq y)$$

Podľa dohody zo 4. prednášky do seba vnorené vľavo uzátvorkované konjunkcie skrátene zapisujeme bez vnútorných zátvoriek.

 $\mathsf{Teda}\,(\mathsf{zvieratko}(x) \land \mathsf{zvieratko}(y) \land x \not= y)$

je skrátený zápis $((zvieratko(x) \land zvieratko(y)) \land x \neq y)$.

Podobne skracujeme do seba vnorené disjunkcie.

Formalizácia s viacerými kvantifikátormi

Kvantilikatorilli

Alternácia kvantifikátorov

Existencia pre všetky

Časté formuly, v ktorých sa vyskytujú oba kvantifikátory, sú ako

$$\forall x (zvieratko(x) \rightarrow \exists y (\check{c}lovek(y) \land k\acute{r}mi(y, x)))$$

Hovorí, že každé zvieratko má vlastnosť, že nejaký človek ho kŕmi, teda každé zvieratko niekto kŕmi.

Ekvivalentne sa to dá vyjadriť aj (v menej vernej) prenexovej forme:

Pri rovnakých kvantifikátoroch v prenexovej forme na ich poradí nezáleží:

- $\forall x \forall y \text{ má_rád}(x, y)$ je ekvivalentné $\forall y \forall x \text{ má_rád}(x, y)$;
- $\exists x \exists y \text{ má_rád}(x, y)$ je ekvivalentné $\exists y \exists x \text{ má_rád}(x, y)$.

Pri rôznych kvantifikátoroch zmena poradia vážne mení význam:

• $\forall x \exists y \, \text{má_rád}(x, y) -$

Pri rovnakých kvantifikátoroch v prenexovej forme na ich poradí nezáleží:

- $\forall x \forall y \text{ má_rád}(x, y)$ je ekvivalentné $\forall y \forall x \text{ má_rád}(x, y)$;
- $\exists x \exists y \text{ má_rád}(x, y)$ je ekvivalentné $\exists y \exists x \text{ má_rád}(x, y)$.

Pri rôznych kvantifikátoroch zmena poradia vážne mení význam:

• $\forall x \exists y \text{ má_rád}(x, y) - \text{Každ}y/-á má rád/rada niekoho.}$

Pri rovnakých kvantifikátoroch v prenexovej forme na ich poradí nezáleží:

- $\forall x \forall y \, \text{má_rád}(x, y)$ je ekvivalentné $\forall y \, \forall x \, \text{má_rád}(x, y)$;
- $\exists x \exists y \text{ má_rád}(x, y)$ je ekvivalentné $\exists y \exists x \text{ má_rád}(x, y)$.

Pri rôznych kvantifikátoroch zmena poradia vážne mení význam:

- $\forall x \exists y \, \text{má_rád}(x, y) Každý/-á má rád/rada niekoho.$
- $\exists x \, \forall y \, \text{má_rád}(x, y) -$

Pri rovnakých kvantifikátoroch v prenexovej forme na ich poradí nezáleží:

- $\forall x \forall y \, \text{má_rád}(x, y)$ je ekvivalentné $\forall y \, \forall x \, \text{má_rád}(x, y)$;
- $\exists x \exists y \text{ má_rád}(x, y)$ je ekvivalentné $\exists y \exists x \text{ má_rád}(x, y)$.

Pri rôznych kvantifikátoroch zmena poradia vážne mení význam:

- $\forall x \exists y \text{ má_rád}(x, y) Každý/-á má rád/rada niekoho.$
- $\exists x \, \forall y \, \text{má_rád}(x, y) \text{Niekto má rád/rada všetkých.}$

Záleží aj na tom, ako sa kvantifikované premenné použijú vo formule, ktorá je kvantifikovaná.

Porovnajme:

- $\forall x \exists y \text{ má_rád}(\underline{x}, y) \underline{Každý/-á} \text{ má rád/rada niekoho.}$
- $\bullet \ \underline{\forall \mathtt{x}} \, \exists \mathtt{y} \, \mathtt{m} \\ \mathtt{a} \underline{\mathtt{r}} \\ \mathtt{a} \mathrm{d} (\mathtt{y}, \underline{\mathtt{x}}) \, \\$

Záleží aj na tom, ako sa kvantifikované premenné použijú vo formule, ktorá je kvantifikovaná.

Porovnajme:

- $\forall x \exists y \text{ má_rád}(\underline{x}, y) \underline{Každ\acute{y}/-\acute{a}} \text{ má rád/rada niekoho.}$
- $\bullet \ \ \underline{\forall x} \ \exists y \ \text{má_rád}(y,\underline{x}) \underline{\textit{Každú/-ého}} \ \textit{má niekto rád}.$

Záleží aj na tom, ako sa kvantifikované premenné použijú vo formule, ktorá je kvantifikovaná.

Porovnajme:

- $\forall x \exists y \text{ má_rád}(\underline{x}, y) \underline{Každ\acute{y}/-\acute{a}} \text{ má rád/rada niekoho.}$
- $\bullet \ \ \underline{\forall x} \ \exists y \ \text{má_rád}(y,\underline{x}) \underline{\textit{Každú/-ého}} \ \textit{má niekto rád}.$

Záleží aj na tom, ako sa kvantifikované premenné použijú vo formule, ktorá je kvantifikovaná.

Porovnajme:

- $\forall x \exists y \text{ má_rád}(\underline{x}, y) \underline{\text{Každý/-á}} \text{ má rád/rada niekoho.}$
- $\underline{\forall x} \exists y \, \text{má_rád}(y, \underline{x}) \underline{\textit{Každú/-ého}} \, \textit{má niekto rád}.$

а

- $\underline{\exists x} \, \forall y \, \text{má_rád}(\underline{x}, y) \underline{\text{Niekto}} \, \text{má rada/rád všetkých.}$
- $\exists \underline{x} \, \forall y \, \text{má_rád}(y, \underline{x}) -$

Záleží aj na tom, ako sa kvantifikované premenné použijú vo formule, ktorá je kvantifikovaná.

Porovnajme:

- $\forall x \exists y \text{ má_rád}(\underline{x}, y) \underline{\text{Každý/-á}} \text{ má rád/rada niekoho.}$
- $\bullet \ \ \underline{\forall x} \ \exists y \ \text{má_rád}(y,\underline{x}) \underline{\textit{Každú/-ého}} \ \textit{má niekto rád}.$

a

- $\underline{\exists x} \, \forall y \, \text{má_rád}(\underline{x}, y) \underline{\text{Niekto}} \, \text{má rada/rád všetkých.}$
- $\bullet \ \ \underline{\exists x} \, \forall y \, \mathrm{má_rád}(y,\underline{x}) \underline{\mathit{Niekoho}} \, \mathit{majú} \, \mathit{radi} \, \mathit{všetci}.$

Záleží aj na tom, ako sa kvantifikované premenné použijú vo formule, ktorá je kvantifikovaná.

Porovnajme:

- $\underline{\forall x} \exists y \, \text{má_rád}(\underline{x}, y) Každý/-á má rád/rada niekoho.$
- $\bullet \ \ \underline{\forall x} \ \exists y \ \text{má_rád}(y,\underline{x}) \underline{\textit{Každú/-ého}} \ \textit{má niekto rád}.$

а

- $\exists x \forall y \text{ má_rád}(\underline{x}, y) \underline{\text{Niekto}} \text{ má rada/rád všetkých.}$
- $\underline{\exists x} \, \forall y \, \text{má_rád}(y, \underline{x}) \underline{\textit{Niekoho}} \, \textit{majú radi všetci}.$

Cvičenie: Pre každú z týchto štyroch formúl nájdite štruktúru, v ktorej je pravdivá, ale ostatné sú nepravdivé.

Unikátna existencia

Kombináciou oboch kvantifikátorov s rovnosťou môžeme vyjadriť existenciu práve jedného (unikátneho) objektu s danou vlastnosťou:

$$\exists x (\check{s}kre\check{c}ok(x) \land \forall y (\check{s}kre\check{c}ok(y) \rightarrow x \doteq y))$$

Neformálne: Nejaký škrečok je jediným škrečkom.

Podobne sa dá vyjadriť existencia práve k objektov pre každé prirodzené číslo k.

Formalizácia s viacerými

Postupná formalizácia a parafrázovanie

kvantifikátormi

Na formalizáciu zložitých tvrdení je najlepšie ísť postupne.

Sformalizujme: Každého škrečka kŕmi nejaké dieťa.

1. Rozpoznáme, že tvrdenie má tvar Všetky P sú Q, pričom P je atomická vlastnosť. Môžeme ho teda čiastočne sformalizovať na:

Na formalizáciu zložitých tvrdení je najlepšie ísť postupne.

Sformalizujme: Každého škrečka kŕmi nejaké dieťa.

1. Rozpoznáme, že tvrdenie má tvar Všetky P sú Q, pričom P je atomická vlastnosť. Môžeme ho teda čiastočne sformalizovať na:

$$\forall x (\check{s}kre\check{c}ok(x) \rightarrow nejaké dieťa kŕmi x)$$

2. Sformalizujeme nejaké dieťa kŕmi x: Má formu: Nejaké P je Q:

Na formalizáciu zložitých tvrdení je najlepšie ísť postupne.

Sformalizujme: Každého škrečka kŕmi nejaké dieťa.

1. Rozpoznáme, že tvrdenie má tvar Všetky P sú Q, pričom P je atomická vlastnosť. Môžeme ho teda čiastočne sformalizovať na:

$$\forall x (\check{s}kre\check{c}ok(x) \rightarrow nejaké dieťa kŕmi x)$$

2. Sformalizujeme nejaké dieťa kŕmi x: Má formu: Nejaké P je Q:

$$\exists y (\mathtt{dieťa}(y) \land \mathtt{k\acute{r}mi}(y, x))$$

3. Dosadíme:

Na formalizáciu zložitých tvrdení je najlepšie ísť postupne.

Sformalizujme: Každého škrečka kŕmi nejaké dieťa.

 Rozpoznáme, že tvrdenie má tvar Všetky P sú Q, pričom P je atomická vlastnosť. Môžeme ho teda čiastočne sformalizovať na:

$$\forall x (\check{s}kre\check{c}ok(x) \rightarrow nejaké dieťa kŕmi x)$$

2. Sformalizujeme nejaké dieťa kŕmi x: Má formu: Nejaké P je Q:

$$\exists y (\mathtt{dieťa}(y) \land \mathtt{k\acute{r}mi}(y,x))$$

3. Dosadíme:

$$\forall x (\check{s}kre\check{c}ok(x) \rightarrow \exists y (die 'a(y) \land k\acute{r}mi(y, x)))$$

Systematickým prístupom sa dajú správne sformalizovať aj veľmi zložité tvrdenia.

Viacnásobná negácia — nesprávne možnosti

Opatrnosť je potrebná pri formalizácii tvrdení s viacnásobnou negáciou, napríklad: "Nijaké dieťa nechová žiadnu vretenicu."

Viacnásobná negácia — nesprávne možnosti

Opatrnosť je potrebná pri formalizácii tvrdení s viacnásobnou negáciou, napríklad: "Nijaké dieťa nechová žiadnu vretenicu."

Tu sa ľahko stane, že pri neopatrnej postupnej formalizácii skončíme s chybnou formulou:

- Nie je pravda, že nejaké dieťa nemá vlastnosť, že chová nejakú vretenicu, teda Každé dieťa má vlastnosť, že chová nejakú vretenicu, teda Každé dieťa chová nejakú vretenicu.
- S ¬∃x(dieťa(x) ∧ ¬∃y(vretenicu(y) ∧ ¬chová(x, y))) − Nie je pravda, že nejaké dieťa nemá vlastnosť, že nechová nejakú vretenicu, teda Každé dieťa nechová nejakú vretenicu (ale môže chovať iné).

Viacnásobná negácia — parafráza a správna formalizácia

Na správne sformalizovanie "Žiadne dieťa nechová žiadnu vretenicu" je lepšie toto tvrdenie parafrázovať:

Viacnásobná negácia — parafráza a správna formalizácia

Na správne sformalizovanie "Žiadne dieťa nechová žiadnu vretenicu" je lepšie toto tvrdenie parafrázovať:

- Nie je pravda, že nejaké dieťa je také, že chová nejakú vretenicu.
- Pre každé dieťa nie je pravda, že chová nejakú vretenicu.
- $\forall x (\text{dieťa}(x) \rightarrow \neg \exists y (\text{vretenicu}(y) \land \text{chová}(x,y)))$
 - Pre každé dieťa x je pravda, že pre každú vretenicu y je pravda, že x nechová y.
- $\forall x(\text{die\'ta}(x) \rightarrow \forall y(\text{vretenicu}(y) \rightarrow \neg \text{chov\'a}(x,y)))$

Viacnásobná negácia — nesprávna parafráza

A Podľa našich skúseností študenti/-ky najčastejšie výrok "Žiadne dieťa nechová žiadnu vretenicu,"

nesprávne parafrázujú ako

"Neexistuje dieťa x a neexistuje vretenica y, pre ktoré je pravda, že x chová y,"

čo navyše následne sformalizujú v prenexovom tvare ako

$$\exists x \neg \exists y (\text{die\'ta}(x) \land \text{vretenica}(y) \land \text{chov\'a}(x,y))$$

"Každý objekt v doméne je dieťa, ktoré chová nejakú vretenicu."

Pri parafrázovaní preto:

nonoužívaito nagyistuia "

- nepoužívajte "neexistuje ... ",
 - namiesto toho používajte: "nie je pravda, že existuje ... ";
- nespájajte kvantifikátory spojkami "a", "alebo",
 za kvantifikátorom začnite vedľajšiu vetu:

"Existuje x také, že x je dieťa a existuje y také, že ... "

Postupná formalizácia, negácia a databázy

Niekedy sa oplatí pozrieť na tvrdenie cez jeho negáciu.

Užitočné napríklad pri formalizácii do databázových jazykov — dopyty v datalogu či SQL (bez agregácie) možno vyjadriť formulami prvorádovej logiky, ale nemožno použiť všeobecný kvantifikátor.

Skúste schematicky zakresliť situáciu k výrokovej forme "človek, ktorý pozná všetkých známych svojich známych".

Postupná formalizácia, negácia a databázy

Niekedy sa oplatí pozrieť na tvrdenie cez jeho negáciu.

Užitočné napríklad pri formalizácii do databázových jazykov — dopyty v datalogu či SQL (bez agregácie) možno vyjadriť formulami prvorádovej logiky, ale nemožno použiť všeobecný kvantifikátor.

Skúste schematicky zakresliť situáciu k výrokovej forme "človek, ktorý pozná všetkých známych svojich známych".

$$\verb"clovek"(x) \land \forall y (\verb"pozn" \verb"a"(x,y) \to \forall z (\verb"pozn" \verb"a"(y,z) \to \verb"pozn" \verb"a"(x,z)))$$

Opak: človek, čo nepozná niektorého známeho svojho známeho.

Postupná formalizácia, negácia a databázy

Niekedy sa oplatí pozrieť na tvrdenie cez jeho negáciu.

Užitočné napríklad pri formalizácii do databázových jazykov — dopyty v datalogu či SQL (bez agregácie) možno vyjadriť formulami prvorádovej logiky, ale nemožno použiť všeobecný kvantifikátor.

Skúste schematicky zakresliť situáciu k výrokovej forme "človek, ktorý pozná všetkých známych svojich známych".

$$\verb"clovek"(x) \land \forall y (\verb"pozn" \verb"a"(x,y) \to \forall z (\verb"pozn" \verb"a"(y,z) \to \verb"pozn" \verb"a"(x,z)))$$

Opak: človek, čo nepozná niektorého známeho svojho známeho.

$$\verb"clovek"(x) \land \neg \exists y \, \exists z (\verb"pozn" \verb"a"(x,y) \land \verb"pozn" \verb"a"(y,z) \land \neg \verb"pozn" \verb"a"(x,z))$$

Odkaz z konzekventu — o sedliakoch a osloch

Už minule sme rozoberali zdanlivo existenčné tvrdenia typu:

Ak nejaký prvák navštevuje LPI, tak (on) je bystrý.

Postupnou formalizáciou by sme mohli dospieť k nesprávnej otvorenej formule:

- $\bigvee \forall x ((\operatorname{prvák}(x) \land \operatorname{navštevuje}(x, \operatorname{LPI})) \rightarrow \operatorname{bystr} \dot{y}(x)).$

Vyskytujú sa aj v zložitejších kombináciách. Úderným príkladom je:

Každý sedliak, ktorý vlastní nejakého osla, <u>ho</u> bije.

Na existenčné tvrdenie *vlastní nejakého osla* v antecedente odkazuje zámeno *ho* v konzekvente.

Odkaz z konzekventu — nesprávne možnosti

Postupnou formalizáciou by sme mohli dostať nesprávnu formulu:

$$\forall x ((sedliak(x) \land \exists y(osol(y) \land vlastni(x,y))) \rightarrow bije(x,y))$$

Keby sme sa ju pokúsili "zachránit" tým, že zaviažeme premennú y, mohlo by to dopadnúť rôzne, ale stále neprávne:

- $\forall x (\operatorname{sedliak}(x) \land \exists y (\operatorname{osol}(y) \land \operatorname{vlastni}(x, y) \land \operatorname{bije}(x, y)))$ Všetko je sedliak, ktorý vlastní osla, ktorého bije.
- ∀x(sedliak(x) → ∃y(osol(y) ∧ vlastní(x, y) ∧ bije(x, y)))- Každý sedliak určite vlastní osla, ktorého bije.

Existenčný kvantifikátor teda nefunguje.

Odkaz z konzekventu — parafráza a správna formalizácia

Na správne sformalizovanie je tvrdenie Každý sedliak, ktorý vlastní nejakého osla, ho bije, potrebné parafrázovať na

- Každý sedliak bije každého osla, ktorého vlastní.
- Pre každého osla je pravda, že každý sedliak, ktorý ho vlastní, ho bije.

Z parafráz už ľahko dostaneme správne formalizácie:

- $\forall x \big(sedliak(x) \rightarrow \\ \forall y \big((osol(y) \land vlastni(x, y)) \rightarrow bije(x, y) \big) \big)$
- $\forall x (\operatorname{osol}(x) \to \\ \forall y (\operatorname{sedliak}(y) \land \operatorname{vlastni}(y, x)) \to \operatorname{bije}(y, x)))$

Formalizácia s viacerými

kvantifikátormi

Závislosť od kontextu

Nejednoznačné tvrdenia

Každú minútu v New Yorku prepadnú jedného človeka.

Dnes nám poskytne rozhovor.

— SNL

Vtip spočíva v potenciálnej nejednoznačnosti prvej vety.

Pravdepodobne ste ju pochopili ("slabé" čítanie)

$$\forall x \big(\texttt{min\'uta}(x) \to \exists y \big(\check{\texttt{clovek}}(y) \land \texttt{prepadnut\'yPo\check{\texttt{cas}}}(x,y) \big) \big)$$

Ale druhá veta vyzdvihla menej pravdepodobný alternatívny význam ("silné" čítanie):

$$\exists y \big(\verb"clovek"(y) \land \forall x \big(\verb"min\'uta"(x) \to \verb"prepadnut\'y Po\'cas"(x,y) \big) \big)$$

Závisí od situácie, ktoré z čítaní je správne.

Formalizácia je teda kontextovo závislá.

Formalizácia s viacerými kvantifikátormi

kvantifikátorom

Dodatky k formalizácii s jedným

Enumerácia — vymenovanie objektov s vlastnosťou

Niekedy potrebujeme vymenovať objekty s nejakou vlastnosťou:

Na bunke č. 14 bývajú Aďa, Biba, Ciri, Dada.
 (býva_v(Aďa, bunka14) ∧ ··· ∧ býva_v(Dada, bunka14))
 Ekvivalentne:

Každá z Aďa, Biba, Ciri, Dada býva v bunke č. 14.
$$\forall x ((x \doteq A d a \lor \cdots \lor x \doteq D a d a) \rightarrow b \acute{y} v a_v(x, bunka 14))$$

Na bunke č. 14 bývajú iba Aďa, Biba, Ciri, Dada.
 Každý, kto býva v bunke č. 14, je jedna z Aďa, Biba, Ciri, Dada.
 ∀x(býva v(x, bunka14) → (x = Aďa ∨ · · · ∨ x = Dada))

Výnimky a implikatúra

Tvrdenia s výnimkami niekedy vyznievajú silnejšie, ako naozaj sú.

Mám rád všetko ovocie, okrem jabĺk.

Toto tvrdenie zodpovedá aristotelovskej forme: $Každé\ P\ je\ Q$, kde P= ovocie a nie jablko a Q= také, že ho mám rád, teda:

$$\forall x ((\texttt{ovocie}(x) \land \lnot \texttt{jablko}(x)) \rightarrow \texttt{mám_rád}(x))$$

Je veľmi lákavé z tohto tvrdenia usúdiť, že navyše znamená: Jablká nemám rád, ale je to iba implikatúra (zdanlivý dôsledok).

K *Mám rád všetko ovocie*, *okrem jabĺk* môžeme síce prekvapivo, ale bez sporu dodať:

- Jablká milujem.
- Z jabĺk mám rád iba červené.

V spore s tvrdením by bol dodatok: Ale slivky nemám rád.