Thank you for contents.	printing our co	ontent at www.domain-name.com. Please check back soon for new		
contents.	<u>Get 50%</u>			
FLASH SALE	OFF all PRO courses! Claim Your	(https://programiz.pro/offer/pro-sales?utm_source=top-banner-programiz-web&utm_medium=banner&utm_campaign=3-day-sale_top-banner-programiz-web_may_50)		
? (/)	Discount Search tutori	als & examples		
www.domain-name.com				

Binary Search

In this tutorial, you will learn how Binary Search sort works. Also, you will find working examples of Binary Search in C, C++, Java and Python.

Binary Search is a searching algorithm for finding an element's position in a sorted array.

In this approach, the element is always searched in the middle of a portion of an array.

Binary search can be implemented only on a sorted list of items. If the elements are not sorted already, we need to sort them first.

Binary Search Working

Binary Search Algorithm can be implemented in two ways which are discussed below.

- 1. Iterative Method
- 2. Recursive Method

The recursive method follows the divide and conquer (/dsa/divide-and-conquer) approach.

Let x = 4 be the element to be searched.

2. Set two pointers low and high at the lowest and the highest positions respectively.

3. Find the middle element mid of the array ie. [arr[(low + high)/2] = 6].

4. If x == mid, then return mid. Else, compare the element to be searched with m.

7. Repeat steps 3 to 6 until low meets high.

8. x = 4 is found.

Thank you for printing our content at www.domain-name.com. Please check back soon for new contents.

Get 50%

OFF all (https://programiz.pro/offer/pro-sales?utm_source=top-banner-programiz-web&utm_medium=banner&utm_campaign=3-day-sale_top-banner-programiz-web_may_50).

Claim Your
Discount Search tutorials & examples

www.domain-name.com

high = mid - 1

Recursive Method

Python, Java, C/C++ Examples (Iterative Method)

Python Java C C++

Thank you for printing our content at www.domain-name.com. Please check back soon for new contents.

Get 50%

OFF all (https://programiz.pro/offer/pro-sales?utm_source=top-banner-programiz-web&utm_medium=banner&utm_campaign=3-day-courses! sale_top-banner-programiz-web_may_50)

Claim Your
Discount Search tutorials & examples

```
www.domain-name.com

return mid

elif array[mid] < x:
    low = mid + 1

else:
    high = mid - 1

return -1

array = [3, 4, 5, 6, 7, 8, 9]
x = 4

result = binarySearch(array, x, 0, len(array)-1)

if result != -1:</pre>
```

Python, Java, C/C++ Examples (Recursive Method)

Python Java C C++

Thank you for printing our content at www.domain-name.com. Please check back soon for new contents.

Get 50%

OFF all (https://programiz.pro/offer/pro-sales?utm_source=top-banner-programiz-web&utm_medium=banner&utm_campaign=3-day-courses! sale_top-banner-programiz-web_may_50)

Claim Your
Discount Search tutorials & examples

```
www.domain-name.com

ir array[mitu] -- x.
    return mid

# Search the left half
elif array[mid] > x:
    return binarySearch(array, x, low, mid-1)

# Search the right half
else:
    return binarySearch(array, x, mid + 1, high)

else:
    return -1

array = [3, 4, 5, 6, 7, 8, 9]
x = 4
```

Binary Search Complexity

Binary Search Applications

- In libraries of Java, .Net, C++ STL
- While debugging, the binary search is used to pinpoint the place where the error happens.

Next Tutorial:

Greedy Algorithm

Previous Tutorial:
Linear Search

(/dsa/greedy-algorithm)

ontents.	Get 50%	
FLASH SALE	OFF all PRO courses! Claim	(https://programiz.pro/offer/pro-sales?utm_source=top-banner-programiz-web&utm_medium=banner&utm_campaign=3-day-sale_top-banner-programiz-web_may_50)
(/)	Your Discount Search tutoric	als & examples
		www.domain-name.com
Related To	utorials	
DS & Algorith	<u>ms</u>	
<u>Linear Sec</u>	<u>ırch</u>	
(/dsa/linear-	search)	
DS & Algorith	<u>ns</u>	
Quicksort	<u>Algorithm</u>	
(/dsa/quick-	sort)	
DS & Algorith	<u>ms</u>	
Insertion S	Sort Algorithi	<u>m</u>
(/dsa/inserti	<u>on-sort)</u>	
DS & Algorith	<u>ms</u>	
<u>Hashing</u>		
(<u>/dsa/hashir</u>	<u>ng)</u>	

Thank you for printing our content at www.domain-name.com. Please check back soon for new