BA-INF 131 - Intelligente Sehsysteme Übung 9: Formbasierte Merkmale

PD Dr. Volker Steinhage Keanu Buschbacher, B.Sc., Florian Huber, B. Sc., Tobias Jakoby, B. Sc., Artem Yushchenko

Formbasierte Merkmale: Beispielsegment

Objekterkennung basiert häufig auf der Erkennung von charakteristischen Formmerkmalen.

Im Folgenden werden sehr anschauliche und einfach zu berechnende Formmerkmale anhand des unten dargestellten blauen Segments s vorgestellt.

Formbasierte Merkmale: Flächeninhalt

Zu den einfachen Formmerkmalen eines Segments s zählen:

1. Der Flächeninhalt F(s):

$$F(s) = \text{Zahl aller Pixel von } s$$

= $|\{(i,j)|(i,j) \in s\}|$

F(s) ist dann translations- und rotationsinvariant, wenn die Rasterung vernachlässigbar ist, also bei hinreichend großen, kompakten Bereichen.

Formbasierte Merkmale: Rand

Zu den einfachen Formmerkmalen eines Segments s zählen:

2. Die Randlänge R(s):

$$R(s) = ext{Zahl der Pixel von } s$$
, die mind. ein Nachbarpixel in ihrer 8-Nachbarschaft außerhalb von s haben, $= |\{(i,j) \in s \text{ mit } (k,l) \in N_8(i,j) \land (k,l) \not\in s\}|$

Formbasierte Merkmale: Kompaktheit

Zu den einfachen Formmerkmalen eines Segments s zählen:

3. Die Kompaktheit K(s):

$$K(s) = Verhältnis des Flächeninhalts von s
zum Quadrat der Randlänge von s
 $= F(s)/R(s)^2$$$

Durch die Quadrierung der Konturlänge wird eine gewisse Skalierungsinvarianz erreicht.

Dennoch zeigen sich Schwankungen bei der Kompaktheit für verschiedene Größen ähnlicher Formen: z.B. für ein diagonal zum Raster orientiertes Quadrat ist K(s) = 0.2 für F(s) = 13 und K(s) = 0.15 für F(s) = 61.

Formbasierte Merkmale: Schwerpunkt

Die im Folgenden dargestellten Flächenträgheitsmomente schätzen die Flächenverteilung entlang der Achsen durch Schwerpunkt μ :

$$(i_\mu,j_\mu)=$$
 Schwerpunktkoordinaten von s mit $i_\mu=rac{1}{F(s)}\cdot\sum_{(i,j)\in s}i,$ $j_\mu=rac{1}{F(s)}\cdot\sum_{(i,j)\in s}j.$

Formbasierte Merkmale: Trägheitsmoment in x-Richtung

Basierend auf dem Schwerpunkt μ :

4. Flächenträgheitsmoment $m_x(s)$ für x-Richtung:

$$m_{\mathsf{x}}(s) = \sum_{(i,j)\in s} (j-j_{\mu})^2$$

Formbasierte Merkmale: Trägheitsmoment in y-Richtung

Basierend auf dem Schwerpunkt μ :

5. Flächenträgheitsmoment $m_{\nu}(s)$ für y-Richtung:

$$m_{y}(s) = \sum_{(i,j)\in s} (i-i_{\mu})^{2}$$

Formbasierte Merkmale: gemischtes Trägheitsmoment

Basierend auf dem Schwerpunkt μ :

6. Gemischtes Flächenträgheitsmoment $m_{xy}(s)$:

$$m_{xy}(s) = \sum_{(i,j) \in s} (i - i_{\mu})(j - j_{\mu})$$

 $m_{xy}(s) = 0$, wenn eine Bezugsachsenrichtung eine Symmetrieachse darstellt.

Andernfalls ist Drehwinkel α berechenbar nach $\tan(2\alpha) = 2m_{xy}/(m_y - m_x)$.

