

FCC&IC RF TEST REPORT No. 160602805SHA-001

Applicant: DYNAUDIO A/S.

Sverigesvej 15, 8660 Skanderborg, Denmark.

Manufacturer : GoerTek Dynaudio Co., Ltd.

No. 8877 Yingqian Road, High-tech Industrial Development District, Weifang Shandong Province,

China

Product Name : Intelligent Wireless Music System

Type/Model: Music 5

TEST RESULT : PASS

SUMMARY

The equipment complies with the requirements according to the following standard(s) or specification:

47CFR Part 15 (2014): Radio Frequency Devices

ANSI C63.10 (2013): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

RSS-247 Issue 2 (Feb 2017): Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

RSS-Gen Issue 4 (December 2014): General Requirements for Compliance of Radio Apparatus

Date of issue: May 20, 2017

Prepared by: Reviewed by:

Jesse Xu (*Project Engineer*) Daniel Zhao (*Reviewer*)

FCC ID: 2AK4D-M005 IC: 12734A-M005

Jesse X4

Description of Test Facility

Name: Intertek Testing Service Limited Shanghai

Address: Building No.86, 1198 Qinzhou Road(North), Shanghai 200233, P.R.

China

FCC Registration Number: 236597

IC Assigned Code: 2402B-1

Name of contact: Jonny Jing

Tel: 86 21 61278271 Fax: 86 21 54262353

Content

SI		Y	
1	GEN	ERAL INFORMATION	5
	1.1	Description of Client	5
	1.2	Identification of the EUT	5
	1.3	Technical Specification	6
2	TES'	T SPECIFICATIONS	7
	2.1	Standards or specification	7
	2.2	Mode of operation during the test	7
	2.3	Test software list	7
	2.4	Test peripherals list	7
	2.5	Instrument list	8
	2.6	Test Summary	9
	2.7	Measurement uncertainty	10
3	20 D	B BANDWIDTH	11
	3.1	Limit	11
	3.2	Test Configuration	11
	3.3	Test Procedure and test setup	11
	3.4	Test Protocol	12
4	CAR	RIER FREQUENCY SEPARATION	18
	4.1	Test limit	18
	4.2	Test Configuration	18
	4.3	Test procedure and test setup	18
	4.4	Test protocol	
5	MAX	IMUM PEAK OUTPUT POWER	25
	5.1	Test limit	25
	5.2	Test Configuration	
	5.3	Test procedure and test setup	
	5.4	Test Protocol	
6	EMIS	SSION OUTSIDE THE FREQUENCY BAND	27
	6.1	Test limit	27
	6.2	Test Configuration	
	6.3	Test procedure and test setup	27
	6.4	Test Protocol	28
7	Num	BER OF HOPPING FREQUENCIES	47
	7.1	Test limit	47
	7.2	Test Configuration	47
	7.3	Test procedure and test setup	
	7.4	Test Protocol	
8	DWE	LL TIME	49
	8.1	Test limit	49
	8.2	Test Configuration	
	8.3	Test procedure and test setup	
	8.4	Test Protocol	
9	RAD	IATED EMISSIONS	54
	9.1	Test limit	54

Test report no. 160602805SHA-001

		Page 4 of 71
9.2	Test Configuration	54
9.3	Test procedure and test setup	56
9.4	Test Protocol	
10 Pov	VER LINE CONDUCTED EMISSION	62
10.1	Limit	62
10.2	Test configuration	62
10.3	Test procedure and test set up	63
10.4	Test protocol	
11 Occ	CUPIED BANDWIDTH	65
11.1	Test limit	65
11.2	Test Configuration	65
11.3	Test procedure and test setup	
11.4	Test protocol	

1 GENERAL INFORMATION

1.1 Description of Client

Applicant: DYNAUDIO A/S.

Sverigesvej 15, 8660 Skanderborg, Denmark.

Name of contact : Krestian Pedersen

Tel: +45 8652 3411

Fax : -

Email: KMP@dynaudio.com

Manufacturer : GoerTek Dynaudio Co., Ltd.

No. 8877 Yingqian Road, High-tech Industrial Development District, Weifang Shandong Province,

China

1.2 Identification of the EUT

Product Name : Intelligent Wireless Music System

Type/model: Music 5

FCC ID : 2AK4D-M005

IC: 12734A-M005

1.3 Technical Specification

Operation Frequency : 2400 – 2483.5 MHz

Band

Protocol: Bluetooth Base Rate + EDR

Type of Modulation : GFSK, $\pi/4$ -DQPSK, 8DPSK

Channel Number: 79 channels

Description of EUT : EUT is a bluethooth+WIFI device. This report is only

assessed for BT function. We tested it and listed the

worst data in this report.

Antenna : PCB antenna, 2.0dBi

Rating: 100-240V~50/60Hz, 75W

Category of EUT : Class B

EUT type : Table top

☐ Floor standing

Sample received date : Mar 15, 2017

Date of test : Mar 16, 2017 – April 20, 2017

2 TEST SPECIFICATIONS

2.1 Standards or specification

47CFR Part 15 (2014) RSS-247 Issue 2 (Feb 2017) RSS-Gen Issue 4 (December 2014) ANSI C63.10 (2013)

2.2 Mode of operation during the test

While testing transmitting mode of EUT, the internal modulation and continuously transmission was applied.

The lowest, middle and highest channel were tested as representatives.

Freq. Band (MHz)	Modulation	Lowest (MHz)	Middle (MHz)	Highest (MHz)
	GFSK	2402	2441	2480
2400-2483.5	π/4-DQPSK	2402	2441	2480
	8DPSK	2402	2441	2480

2.3 Test software list

Test Items	Software	Manufacturer	Version
Conducted emission	ESxS-K1	R&S	V2.1.0
Radiated emission	ES-K1	R&S	V1.71

2.4 Test peripherals list

Item No.	Name	Band and Model	Description
1	Laptop computer	HP, EliteBook 2530P	-
2	Mobile phone	НТС	
3	USB cement resistor	-	

2.5 Instrument list

Selected	Instrument	EC no.	Model	Valid until date
\boxtimes	Shielded room	EC 2838	GB88	2018-1-8
\boxtimes	EMI test receiver	EC 2107	ESCS 30	2017-10-19
\boxtimes	A.M.N.	EC 3119	ESH2-Z5	2017-12-16
	A.M.N.	EC 3394	ENV 216	2017-8-1
\boxtimes	Semi anechoic chamber	EC 3048	-	2017-5-11
\boxtimes	EMI test receiver	EC 3045	ESIB26	2017-10-19
\boxtimes	Broadband antenna	EC 4206	CBL 6112D	2017-4-27
\boxtimes	Horn antenna	EC 3049	HF906	2018-4-27
	Horn antenna	EC 4792-1	3117	2017-4-21
\boxtimes	Horn antenna	EC 4792-3	HAP18-26W	2017-6-11
	Pre-amplifier	EC 5262	pre-amp 18	2017-5-25
\boxtimes	Pre-amplifier	EC 4792-2	TPA0118-40	2018-4-10
	High Pass Filter	EC 4797-1	WHKX 1.0/150	G-10SS 2018-1-8
\boxtimes	High Pass Filter	EC 4797-2	WHKX 2.8/18C	G-12SS 2018-1-8
	High Pass Filter	EC 4797-3	WHKX 7.0/1.80	G-8SS 2018-1-8
\boxtimes	Band Reject Filter	EC 4797-4	WRCGV2400/2	2483/10SS 2018-1-8
	Test Receiver	EC 4501	ESCI 7	2018-1-13
\boxtimes	PXA Signal Analyzer	EC5338	N9030A	2017-5-14
\boxtimes	Power sensor/Power me	ter EC4318	N1911A/N1921	A 2018-4-8
	Power sensor	EC5338-1	U2021XA	2018-3-5
	MXG Analog Signal Ge	nerator EC53	38-2 N5181A	2018-3-5
	MXG Vector Signal Ger	nerator EC51	75 N51812B	2018-1-8

2.6 Test Summary

This report applies to tested sample only. The test results have been compared directly with the limits, and the measurement uncertainty is recorded. This report shall not be reproduced in part without written approval of Intertek Testing Service Shanghai Limited.

TEST ITEM	FCC REFERANCE	IC REFERANCE	RESULT
20 dB bandwidth	15.247(a)(1)	RSS-247 Issue 2 Clause 5.1	Tested
Carrier frequency separation	15.247(a)(1)	RSS-247 Issue 2 Clause 5.1	Pass
Maximum peak output power	15.247(b)(1)	RSS-247 Issue 2 Clause 5.4	Pass
Radiated emissions	15.205 & 15.209	RSS-Gen Issue 4 Clause 8.9	Pass
Emission outside the frequency band	15.247(d)	RSS-247 Issue 2 Clause 5.5	Pass
Number of hopping frequencies	15.247(a)(1)(iii)	RSS-247 Issue 2 Clause 5.1	Pass
Dwell time	15.247(a)(1)(iii)	RSS-247 Issue 2 Clause 5.1	Pass
Power line conducted emission	15.207	RSS-Gen Issue 4 Clause 8.8	Pass
Occupied bandwidth	-	RSS-Gen Issue 4 Clause 6.6	Tested

Notes: 1: NA =Not Applicable

2: This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

2.7 Measurement uncertainty

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

TEST ITEM	MEASUREMENT UNCERTAINTY
Maximum peak output power	± 0.74dB
Radiated Emissions in restricted frequency bands below 1GHz	± 4.90dB
Radiated Emissions in restricted frequency bands above 1GHz	± 5.02dB
Emission outside the frequency band	± 2.89dB
Power line conducted emission	± 3.19dB

3 20 dB Bandwidth

Test result: Pass

3.1 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

3.2 Test Configuration

3.3 Test Procedure and test setup

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

The 20 bandwidth per FCC § 15.247(a)(1) is measured using the Spectrum Analyzer with Span = 2 to 3 times the 20 dB bandwidth, RBW≥1% of the 20 dB bandwidth, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold. The test was performed at 3 channels (lowest, middle and highest channel).

3.4 Test Protocol

Temperature: 22°C Relative Humidity: 54%

Modulation	Channel	20dB Bandwidth (kHz)	Two-thirds of Bandwidth (kHz)
	L	1117	744.67
GFSK	M	1114	742.70
	Н	1113	742.03

Channel L

Channel H

Test report no. 160602805SHA-001 Page 14 of 71

Modulation	Channel	20dB Bandwidth (kHz)	Two-thirds of Bandwidth (kHz)
	L	1367	911.37
π/4-DQPSK	M	1365	910.04
	Н	1365	910.04

Channel L

Channel H

Modulation	Channel	20dB Bandwidth (kHz)	Two-thirds of Bandwidth (kHz)
	L	1365	910.00
8DPSK	M	1370	913.37
	Н	1367	911.37

Channel L

Channel H

4 Carrier frequency separation

operate with an output power no greater than 125mW.

Test result: Pass

4.1 Test limit

Frequency hopping systems shall have hopping channel carrier frequencies
separated by a minimum of 25kHz or the 20 dB bandwidth of the hopping channel,
whichever is greater.
☐ Frequency hopping systems operating in the 2400–2483.5 MHz band may have
hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the
20 dB bandwidth of the hopping channel, whichever is greater, provided the systems

4.2 Test Configuration

4.3 Test procedure and test setup

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

The Carrier frequency separation per FCC § 15.247(a)(1) is measured using the Spectrum Analyzer with Span can capture two adjacent channels, RBW≥1% of the span, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold. The test was performed at 3 channels (lowest, middle and highest channel).

4.4 Test protocol

Temperature: 22 °C Relative Humidity: 54 %

Modulation	Channel	Frequency Separation (kHz)	Limit (kHz)
GFSK	L	1004	≥744.67
	M	1000	≥742.70
	Н	1000	≥742.03

Channel L

Channel H

Test report no. 160602805SHA-001 Page 21 of 71

Modulation	Channel	Frequency Separation (kHz)	Limit (kHz)
π/4-DQPSK	L	1000	≥ 911.37
	M	1008	≥ 910.04
	Н	1008	≥ 910.04

Channel L

Channel H

Test report no. 160602805SHA-001 Page 23 of 71

Modulation	Channel	Frequency Separation (kHz)	Limit (kHz)	
8DPSK	L	1004	≥ 910.00	
	M	1000	≥ 913.37	
	Н	1004	≥ 911.37	

Channel L

Channel H

5 Maximum peak output power

Test result: Pass

5.1 Test limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt

For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

5.2 Test Configuration

5.3 Test procedure and test setup

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

The Maximum peak output power per FCC § 15.247(b) is measured using the Spectrum Analyzer with Span = 5 times the 20 dB bandwidth, RBW≥ the 20 dB bandwidth, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold. The test was performed at 3 channels (lowest, middle and highest channel).

5.4 Test Protocol

Temperature: 22°C Relative Humidity: 54%

Modulation	Channel	Conducted Power (dBm)	Limit (dBm)
GFSK	L	7.23	≤ 21.00
	M	8.52	≤ 21.00
	Н	8.40	≤ 21.00

Conclusion: The maximum EIRP = 8.52dBm+2.0dBi = 11.27mW which is lower than the limit of 4W listed in RSS-247.

Modulation	Channel	Conducted Power (dBm)	Limit (dBm)	
π/4-DQPSK	L	4.87	≤ 21.00	
	M	6.88	≤ 21.00	
	Н	6.68	≤ 21.00	

Conclusion: The maximum EIRP = 6.88dBm+2.0dBi = 7.72mW which is lower than the limit of 4W listed in RSS-247.

Modulation	Channel	Conducted Power (dBm)	Limit (dBm)	
8DPSK	L	4.92	≤ 21.00	
	M	6.95	≤ 21.00	
	Н	6.69	≤ 21.00	

Conclusion: The maximum EIRP = 6.95dBm+2.0dBi = 7.85mW which is lower than the limit of 4W listed in RSS-247.

6 Emission outside the frequency band

Test result: Pass

6.1 Test limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

6.2 Test Configuration

Antenna connector

6.3 Test procedure and test setup

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

The Emission outside the frequency band per FCC § 15.247(d) is measured using the Spectrum Analyzer with Span wide enough capturing all spurious from the lowest emission frequency of the EUT up to 10th harmonics, RBW = 100kHz, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold. The test was performed at 3 channels (lowest, middle and highest channel).

6.4 Test Protocol

Temperature: 22°C Relative Humidity: 54%

Modulation	Channel	Max reading among band (dBm)	Results	Limit (dBm)
GFSK	L	6.130	Pass	≥20
	М	7.332	Pass	≥20
	Н	7.166	Pass	≥20
	Hopping	7.381	Pass	≥20

Channel L

Intertek

Test report no. 160602805SHA-001

Channel H

Intertek

Start 2.31000 GHz #Res BW 100 kHz

Test report no. 160602805SHA-001

Mkr→RefLvl

More 1 of 2

Hopping

Modulation	Channel	Max reading among band (dBm)	Results	Limit (dBm)
	L	3.172	Pass	≥20
π/4-DQPSK	M	5.222	Pass	≥20
	Н	4.949	Pass	≥20
	Hopping	4.347	Pass	≥20

Channel L

Intertek

Test report no. 160602805SHA-001

More 1 of 2

Test report no. 160602805SHA-001

Channel H

Hopping

Modulation	Channel	Max reading among band (dBm)	Results	Limit (dBm)
	L	3.178	Pass	≥20
8DPSK	M	5.208	Pass	≥20
	Н	4.949	Pass	≥20
	Hopping	5.192	Pass	≥20

Channel L

Channel M

Channel H

Hopping

Intertek

Test report no. 160602805SHA-001

7 Number of hopping frequencies

Test result: Pass

7.1 Test limit

Number of Hopping Frequencies in the 2400-2483.5 MHz band shall use at least 15 channels.

7.2 Test Configuration

Antenna connector

7.3 Test procedure and test setup

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems).

The Number of hopping frequencies per FCC § 15.247(a)(1)(iii) is measured using the Spectrum Analyzer with RBW=100kHz, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold.

7.4 Test Protocol

Temperature: 22°C Relative Humidity: 54%

Number of Hopping Frequencies	Limit
79	≥15

8 Dwell time

Test result: Pass

8.1 Test limit

The dwell time on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.2 Test Configuration

Antenna connector

8.3 Test procedure and test setup

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems).

Dwell time per FCC § 15.247(a)(1)(iii) is measured using the Spectrum Analyzer with Span = 0, RBW=1MHz, VBW≥RBW, Sweep can capture the entire dwell time, Detector = peak, Trace = max hold.

8.4 Test Protocol

Temperature: 22°C Relative Humidity: 54%

Packet	Occupancy time for single hop (ms)	Channel	Real observed period (s) P	Hops among Observed period I	Dwell time (ms) T	Limit (s)
		L	3.16	32	134.40	
DH1	0.420	M	3.16	32	134.40	
		Н	3.16	32	134.40	
		L	3.16	16	264.00	
DH3	1.650	M	3.16	16	264.00	≤0.4
		Н	3.16	16	264.00	
		L	3.16	10	300	
DH5	3.00	M	3.16	10	300	
		Н	3.16	10	300	

Remark: 1. There are 79 channels in all. So the complete observed period P = 0.4 * 79 = 31.6 s.

2. Average time of occupancy T = O *I * 31.6 / P

DH1

DH3

DH5

9 Radiated Emissions

Test result: Pass

9.1 Test limit

The radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) showed as below:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

9.2 Test Configuration

Frequency range below 1GHz:

Frequency range above 1GHz:

9.3 Test procedure and test setup

The radiated emissions were tested according to the procedure of ANSI C63.10 for compliance to FCC 47CFR 15.247 requirements.

The measurement was applied in a semi-anechoic chamber. While testing for spurious emission higher than 1GHz, if applied, the pre-amplifier would be equipped just at the output terminal of the antenna.

Tabletop devices shall be placed on a nonconducting platform with nominal top surface dimensions 1 m by 1.5 m. For emissions testing at or below 1 GHz, the table height shall be 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height shall be 1.5 m.

The turntable rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mast. The antenna moved up and down between from 1meter to 4 meters to find out the maximum emission level.

The radiated emission was measured using the Spectrum Analyzer with the resolutions bandwidth set as:

```
RBW = 300 Hz, VBW = 1 kHz (9 kHz~150 kHz);

RBW = 10 kHz, VBW = 30 kHz (150 kHz~30MHz);

RBW = 100 kHz, VBW = 300 kHz (30MHz~1GHz for PK)

RBW = 1MHz, VBW = 3MHz (>1GHz for PK);
```

Remark:

- 1. Factor= Antenna Factor + Cable Loss (-Amplifier, is employed)
- 2. Measured level= Original Receiver Reading + Factor
- 3. Margin = Limit Measured level
- 4. If the PK measured level is lower than AV limit, the AV test can be elided.

Example:

```
Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,
Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV.
Then Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m;
Measured level = 10dBuV + 0.20dB/m = 10.20dBuV/m
Assuming limit = 54dBuV/m,
Measured level = 10.20dBuV/m, then Margin = 54 - 10.20 = 43.80dBuV/m.
```


9.4 Test Protocol

Temperature: 22°C Relative Humidity: 54%

All the two models of product were tested and the worst data was listed in the report.

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

The worst waveform from 30MHz to 1000MHz (GFSK, 2402MHz) is listed as below:

Horizontal

Vertical

Test result below 1GHz:

Channel	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	197.00	38.10	13.18	43.00	4.90	QP
	Н	307.48	36.70	24.79	46.00	9.30	QP
	Н	960.00	44.01	19.86	46.00	1.99	QP
	V	30.00	35.45	21.40	40.00	4.55	QP
Н	V	55.15	37.19	12.70	40.00	2.81	QP
	V	68.95	36.88	10.22	40.00	3.12	QP
	V	197.76	38.54	9.30	43.50	4.96	QP
	V	480.00	40.08	20.10	46.00	5.92	QP
	V	960.00	44.10	20.70	46.00	1.90	QP
Remark:	If the marg	in higher tha	n 20dB, it wo	ould be mai	rked as *.		

Test result above 1GHz:

The emission within the frequency range of 1GHz to 25GHz was tested.

GFSK:

Channel	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2402.20	94.60	34.34	Fundamental	/	PK
L	Н	2389.60	47.20	34.29	74.00	26.80	PK
	Н	4803.61	48.20	-3.55	74.00	25.80	PK
M	Н	2441.20	95.80	34.60	Fundamental	/	PK
IVI	Н	4883.77	50.14	-3.35	74.00	23.86	PK
	Н	2480.20	95.92	34.62	Fundamental	/	PK
Н	Н	2483.60	51.65	34.63	74.00	22.35	PK
	Н	4963.93	50.60	-3.16	74.00	23.40	PK

$\pi/4$ -DQPSK:

Channel	Antenna	Frequency	Corrected	Correct	Limit	Margin	Detector
		(MHz)	Reading	Factor	(dBuV/m)	(dB)	
			(dBuV/m)	(dB/m)			
	Н	2402.20	93.20	34.34	Fundamental	/	PK
L	Н	2388.65	48.25	34.25	74.00	25.75	PK
	Н	4803.61	48.50	-3.55	74.00	25.50	PK
M	Н	2441.20	93.60	34.60	Fundamental	/	PK
IVI	Н	4883.77	47.50	-3.35	74.00	26.50	PK
	Н	2480.20	93.45	34.62	Fundamental	/	PK
Н	Н	2483.72	51.65	34.65	74.00	22.35	PK
	Н	4963.93	52.20	-3.16	74.00	21.80	PK

8DPSK:

Channel	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2402.20	93.40	34.34	Fundamental	/	PK
L	Н	2389.27	53.20	34.30	74.00	20.80	PK
	Н	4803.61	48.80	-3.55	74.00	25.20	PK
M	Н	2441.20	92.84	34.60	Fundamental	/	PK
IVI	Н	4883.77	49.50	-3.35	74.00	24.50	PK
	Н	2480.20	94.14	34.62	Fundamental	/	PK
Н	Н	2483.72	51.65	34.65	74.00	22.35	PK
	Н	4963.93	51.70	-3.16	74.00	22.30	PK

Test mode: with WIFI connected(worst case list as below)

Channel	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2402.20	93.40	34.34	Fundamental	/	PK
L	Н	2389.27	54.50	34.30	74.00	19.50	PK
	Н	4803.61	48.80	-3.55	74.00	25.20	PK
M	Н	2441.20	92.84	34.60	Fundamental	/	PK
IVI	Н	4883.77	49.50	-3.35	74.00	24.50	PK
	Н	2480.20	94.14	34.62	Fundamental	/	PK
Н	Н	2483.72	52.47	34.65	74.00	21.53	PK
	Н	4963.93	51.70	-3.16	74.00	22.30	PK

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = limit Corrected Reading

Example: Assuming Antenna Factor = 30.20 dB/m, Cable Loss = 2.00 dB, Gain of Preamplifier = 32.00 dB, Original Receiver Reading = 10 dBuV. Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20 dB/m; Corrected Reading = 10 dBuV + 0.20 dB/m = 10.20 dBuV/m Assuming limit = 54 dBuV/m, Corrected Reading = 10.20 dBuV/m, then Margin = 54 - 10.20 = 43.80 dBuV/m

10 Power line conducted emission

Test result: Pass

10.1 Limit

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	QP	AV			
0.15-0.5	66 to 56*	56 to 46 *			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequency.					

10.2 Test configuration

For table top equipment, wooden support is 0.8m height table

☐ For floor standing equipment, wooden support is 0.1m height rack.

10.3 Test procedure and test set up

Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having 50 Ω input impedance. All other ports are terminated in 50 Ω loads.

Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz.

10.4 Test protocol

Temperature: 22°C Relative Humidity: 54%

All the three models of product were tested and the worst data (GFSK, 2402MHz) was listed in the report.

Test Data:

_	Quasi-peak			Average		
Frequency (MHz)	level dB(µV)	Limit dB(µV)	Margin (dB)	level dB(µV)	limit dB(µV)	Margin (dB)
0.15	33.35	66.00	32.65	19.92	56.00	36.08
0.663	37.36	56.00	18.64	29.48	46.00	16.52
1.167	*	*	*	*	*	*
1.719	*	*	*	*	*	*
2.229	*	*	*	*	*	*
25.863	41.06	60.00	18.94	34.47	50.00	15.53

Remark: If the margin higher than 20dB, it would be marked as *.

11 Occupied Bandwidth

Test Status: Tested

11.1 Test limit

None

11.2 Test Configuration

11.3 Test procedure and test setup

The occupied bandwidth per RSS-Gen Issue 4 Clause 6.6 was measured using the Spectrum Analyzer.

11.4 Test protocol

Temperature : 25 °C Relative Humidity : 55 %

Modulation	Mode	99% Bandwidth (MHz)
GFSK	L	963.71
	M	957.77
	Н	948.02

Channel L

Channel M

Channel H

Modulation	Mode	99% Bandwidth (MHz)
π/4-DQPSK	L	1.1988
	M	1.1977
	Н	1.1990

Channel L

Channel M

Channel H

Test report no. 160602805SHA-001 Page 70 of 71

Modulation	Mode	99% Bandwidth (MHz)
8DPSK	L	1.2022
	M	1.2027
	Н	1.2031

Channel L

Channel M

Channel H

