

Grundlagen der ET (6)
Gerald Kupris
13.11.2012

Verschiebung GET vom 14.11. auf den 13. 11.!

VORLESUNGSPLAN ANGEWANDTE INFORMATIK / INFOTRONIK

Wintersemester 2012/13

Block 1: 08:00 - 09:30 Block 2: 09:45 - 11:15 Block 3: 12:00 - 13:30

1. Semester Bachelor AI (Stand: 18.09.2012)

Mittwoch,

Donnerstag,

Block 4: 14:00 - 15:30 Block 5: 15:45 - 17:15 Block 5: 15:45 - 19:00

14. November 15. November 16. November

	Montag	Dienstag	Mittwoch	Donnerstag	Freitag	
1	Digitaltechnik 1	Grundlagen der Informatik	GET GET Kupris	Mathematik 1	Besuch der Messe	
	Bö E 101		Ku E 101			
2	Physik	Grundlagen der Informatik	m thematik 1	Physik	"electronica"	
	Ku E 001		F 101	Ka E 0.96		
3	GET	Einführung in die Programmierung				
	Bö E 001	Jr ITC 1 - E 104				
4	Mathematik 1 LB Böhm E 001	Einführung in die Programmierung Jr ITC 1 - E 103				
5	Mathematik 1 LB Böhm E 001	GET Kupris ITC 1 - E104				

Wiederholung: Knotenregel

Die Summe aller Ströme in einem Knotenpunkt ist gleich Null. Dabei werden hineinfließende und abfließende Ströme mit unterschiedlichen Vorzeichen versehen.

$$I_1 + I_2 - I_3 - I_4 = 0$$

Allgemein:

$$\sum_{i=1}^{N} I_i = 0$$

N =Anzahl der Leiter im Knotenpunkt

Wiederholung: Maschenregel

Die Summe aller Spannungen in einer geschlossenen Masche ist Null. Dabei werden Spannungen, deren Zählpfeil in Umlaufrichtung zeigt, positiv und die anderen Spannungen negativ gezählt.

$$-U_1 - U_2 + U_3 - U_4 + U_5 = 0$$

Allgemein:

$$\sum_{i=1}^{N} U_i = 0$$

 $N={\sf Anzahl}$ der Zweige in einer Masche

Wiederholung: Parallelschaltung von Widerständen

$$rac{1}{R_{ges}} = rac{1}{R_1} + rac{1}{R_2} \quad o \quad ext{Gesamtwiderstand} \quad R_{ges} = rac{R_1 \cdot R_2}{R_1 + R_2}$$

Wiederholung: Stromteilerregel

Bei einer Parallelschaltung von Widerständen verhalten sich die Teilströme in den einzelnen Zweigen wie die Leitwerte der jeweiligen Zweige.

Stromteilerregel

$$rac{I_1}{I_2} = rac{G_1}{G_2} = rac{R_2}{R_1}$$

Wiederholung: Reihenschaltung von Widerständen

Wiederholung: Spannungsteiler

Bei einer Reihenschaltung von Widerständen verhalten sich die Teilspannungen an den einzelnen Widerständen wie die jeweiligen Widerstände.

Spannungsteilerregel

$$\frac{U_1}{U_2} = \frac{R_1}{R_2}$$

Spannungen am Spannungsteiler

$$\frac{U_A}{U_E} = \frac{R_2}{R_1 + R_2}$$

$$U_{A} = \frac{R_2}{R_1 + R_2} \cdot U_{E}$$

$$R_1 = R_2$$

$$R_1 = R_2 \qquad \qquad \qquad U_A = \frac{1}{2} \cdot U_E$$

$$R_1 = 9 \cdot R_2 \qquad \qquad U_A = \frac{1}{10} \cdot U_E$$

$$U_{A} = \frac{1}{10} \cdot U_{E}$$

Wiederholung: Aufgaben

3. Gegeben sei das Netz auf der rechten Seite mit den Daten R_1 = 60 Ω , R_2 = 30 Ω , R_3 = 20 Ω , R_4 = 40 Ω , R_2 = 2,4 A. Berechnen Sie den Strom I.

4. Gegeben ist das folgende Netzwerk mit $U_q = 10 \text{ V}$, $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $R_3 = R4 = 3 \text{ k}\Omega$.

Gesucht ist die Spannung U₄.

Potentiometer

Ein Potentiometer ist ein elektronisches Widerstandsbauelement, dessen Widerstandswerte mechanisch (durch Drehen oder Verschieben) veränderbar sind. Es hat mindestens drei Anschlüsse und wird vorwiegend als stetig einstellbarer Spannungsteiler eingesetzt.

Der Spannungsteiler besteht aus einem elektrisch nichtleitenden Träger, auf dem ein Widerstandsmaterial aufgebracht ist, zwei Anschlüssen an den beiden Enden des Widerstandselements und einem beweglichen Gleitkontakt (auch als Schleifer bezeichnet), der den festen Gesamtwiderstand elektrisch in zwei Teilwiderstände aufteilt.

Potentiometer gibt es als Bedienelement mit einer Welle für einen Drehknopf oder als Schiebepotentiometer (z. B. an Mischpulten und in Tonstudios).

Prinzipieller Aufbau eines Potentiometers

Bauformen von Potentiometern

Schaltbilder Potentiometer

Spannungsteiler mit Potentiometer

$$R = R_1 + R_2$$
 , $R_2 = \lambda R$, $0 \le \lambda \le 1$

$$rac{U_a}{U_e} = rac{\lambda}{\lambda(1-\lambda)R/R_a+1}$$

Kennlinie eines unbelasteten Potentiometers

(a:
$$R/R_a=0$$

b:
$$R/R_a = 0.33$$

c:
$$R/R_a = 1.0$$

d:
$$R/R_a = 3.0$$

e:
$$R/R_a = 10.0$$

Widerstandsverläufe von Potentiometern

Die Funktion zwischen Winkel bzw. Strecke und Widerstand bei Potentiometern kann auch nichtlinear sein (positiv oder negativ logarithmisch, exponentiell, oder S-förmig).

Tabelle: belasteter Spannungsteiler

Berechnen Sie die Ausgangsspannung des belasteten Spannungsteilers für ein Potentiometer von R = 1 k Ω und eine Eingangsspannung U_e = 10 V.

R_a	R/R_a	λ	R_1	R_2	$R_2 \parallel R_a$	$R_1+R_2 R_a $	U_a	U_a/U_e
∞	0	0	$1 \text{ k}\Omega$	0 Ω	0 Ω	1 kΩ	0 V	0
		0,2	Ω 008	200 Ω	200 Ω	1 kΩ	2 V	0,2
		0,4	600 Ω	400 Ω	400 Ω	1 kΩ	4 V	0,4
		0,6	400 Ω	600 Ω	600 Ω	1 kΩ	6 V	0,6
		0,8	200 Ω	Ω 008	Ω 008	1 kΩ	8 V	0,8
		1	0 Ω	$1 \text{ k}\Omega$	$1~\text{k}\Omega$	1 kΩ	10 V	1

 $3 k\Omega = 0.33$

 $1 k\Omega$ 1

 333Ω 3

100 Ω 10

Kennlinien eines belasteten Potentiometers

a:
$$R/R_a=0$$

b:
$$R/R_a = 0.33$$

c:
$$R/R_a = 1.0$$

d:
$$R/R_a = 3.0$$

e:
$$R/R_a = 10.0$$

Ausgangs- und Eingangswiderstand einer Schaltung

Eingang Ausgang Ra Ri Quelle Last Außenwiderstand Innenwiderstand Ra Ri Lastwiderstand Quellwiderstand Außen-Innen-Eingangswiderstand Ausgangswiderstand widerstand widerstand Abschlusswiderstand

Die Impedanzen bei einem Gerät

Spannungs- und Leistungsanpassung

Unter Spannungsanpassung versteht man die Tatsache, dass der Innenwiderstand R_i einer Signalquelle (bzw. deren Ausgangswiderstand) wesentlich kleiner ist als der Eingangswiderstand R_a eines angeschlossenen Gerätes:

$$R_a \gg R_i$$

Unter der Leistungsanpassung von elektrischen Geräten versteht man die optimale Leistungsübertragung von Signalen oder Energie. Diese liegt vor, wenn gerade die Hälfte der erzeugten Leistung an den Endverbraucher abgegeben wird, d.h. der Wirkungsgrad beträgt maximal 50 %. Hierzu müssen Innen- und Außenwiderstand den gleichen Betrag aufweisen.

$$R_i = R_a$$

Ersatzschaltbild eines Spannungsteilers mit Quelle

Literatur

M. Filtz, TU Berlin: Vorlesung Grundlagen der Elektrotechnik, WS2006/07

Moeller: Grundlagen der Elektrotechnik, Vieweg + Teubner Verlag

Helmut Lindner: Elektro - Aufgaben Band 1: Gleichstrom, Hanser Fachbuchverlag

Paul A. Tipler, Gene Mosca: Physik für Wissenschaftler und Ingenieure, Spektrum Akademischer Verlag, August 2009

Hochschule Deggendorf – Edlmairstr. 6 und 8 – 94469 Deggendorf