## IE2111 ISE Principles & Practice 2 Solutions to Assignment #3

|                         | Alternative A | Alternative B | Alternative C |
|-------------------------|---------------|---------------|---------------|
|                         | Invest Large  | Invest Medium | Invest Small  |
| Initial Investment Cost | \$1,800,000   | \$1,200,000   | \$600,000     |
| Annual Revenue          | \$450,000     | \$370,000     | \$300,000     |
| Annual Operation Cost   | \$30,000      | \$20,000      | \$15,000      |
| Useful Life             | 9 years       | 6 years       | 3 years       |
| Market value at EoY 3   | \$900,000     | \$450,000     | \$60,000      |
| Market value at EoY 6   | \$450,000     | \$120,000     | -             |
| Market value at EoY 9   | \$120,000     | -             | -             |

MARR = 10%.

(a) Study period = 3 years.

Assume that

- Alternative A is co-terminated at EoY 3.
- Alternative B is co-terminated at EoY 3.

Cash flow diagrams for each alternative over 3 years:



$$AW(10\%)$$
 of A over 3 years =  $-1,800,000 [A/P, 10\%, 3] + 420,000 + 900,000 [A/F, 10\%, 3]$   
=  $-1,800,000 (0.402114804) + 420,000 + 900,000 (0.302114804)$   
=  $-\$31,903.32 < 0$ 

$$AW(10\%)$$
 of B over 3 years =  $-1,200,000 [A/P, 10\%, 3] + 350,000 + 450,000 [A/F, 10\%, 3]$   
=  $-1,200,000 (0.402114804) + 350,000 + 450,000 (0.302114804)$   
=  $$3,413.90$ 

$$AW(10\%)$$
 of C over 3 years =  $-600,000 [A/P, 10\%, 3] + 285,000 + 60,000 [A/F, 10\%, 3]$   
=  $-600,000 (0.402114804) + 285,000 + 60,000 (0.302114804)$   
=  $$61,858.01$ 

Hence choose Alternative C which has the highest AW(10%) over the 3-year study period.

(b) Study period = 6 years.

Assume that

- Alternative A is co-terminated at EoY 6.
- Alternative C is repeated at EoY 3.

Cash flow diagrams for each alternative over 6 years:



$$AW(10\%)$$
 of A over 6 years =  $-1,800,000 [A/P, 10\%, 6] + 420,000 + 450,000 [A/F, 10\%, 6]$   
=  $-1,800,000 (0.22960738) + 420,000 + 450,000 (0.12960738)$   
=  $$65,030.04$ 

$$AW(10\%)$$
 of B over 6 years =  $-1,200,000 [A/P, 10\%, 6] + 350,000 + 120,000 [A/F, 10\%, 6]$   
=  $-1,200,000 (0.22960738) + 350,000 + 120,000 (0.12960738)$   
=  $\$ 90,024.03$ 

$$AW(10\%)$$
 of C over 6 years =  $AW(10\%)$  of C over first 3 years =  $$61,858.01$  // from part (a)

Hence choose Alternative B which has the highest AW(10%) over the 6-year study period.

## (c) Study period = 6 years.

Assume that

- Alternative A is co-terminated at EoY 6.
- Alternative C is repeated at EoY 3.

The cash flow diagrams are as in Part (b)

Using Incremental IRR Method:

Projects sorted in increasing initial cost = [ C, B, A ] As these are investment projects"

Base project = "do nothing".

Next project = "C"

| EoY | C – "do-nothing" |
|-----|------------------|
| 0   | -600,000         |
| 1   | 285,000          |
| 2   | 285,000          |
| 3   | -255,000         |
| 4   | 285,000          |
| 5   | 285,000          |
| 6   | 345,000          |

$$IRR(C\text{-"do-nothing"}) = 23.58\% > 10\% \implies Feasible.$$

Base project = C

Next project = B

| EoY | B - C    |
|-----|----------|
| 0   | -600,000 |
| 1   | 65,000   |
| 2   | 65,000   |
| 3   | 605,000  |
| 4   | 65,000   |
| 5   | 65,000   |
| 6   | 125,000  |

$$IRR(B - C) = 16.62\% > 10\% \implies Feasible.$$

Base project = B

Next project = A

| EoY | A - B    |
|-----|----------|
| 0   | -600,000 |
| 1   | 70,000   |
| 2   | 70,000   |
| 3   | 70,000   |
| 4   | 70,000   |
| 5   | 70,000   |
| 6   | 400,000  |

$$IRR(A - B) = 5.06\% < 10\% \implies Infeasible.$$

Base project = B

Next project = Nil

Hence choose Alternative B based on incremental IRR over the 6-year study period.

Notice that the individual IRR for A, B and C over 6 years are 14.70%, 20.13% and 23.58% respectively. The best project B does not have the maximum IRR over 6 years.

## (d) Study period = infinity

Assume all alternatives can be repeated at the end of their useful life.

Cash flow diagrams for each alternative over their first life cycle:



```
AW(10\%) of A over infinity = AW(10\%) of A over first 9 years = -1,800,000 \ [A/P, 10\%, 9] + 420,000 + 180,000 \ [A/F, 10\%, 9]  = -1,800,000 \ (0.173640539) + 420,000 \ +180,000 \ (0.073640539)  = \$ 120,702.33
```

$$AW(10\%)$$
 of B over infinity =  $AW(10\%)$  of B over first 6 years =  $$90,024.03$  // from part (b)

$$AW(10\%)$$
 of C over infinity =  $AW(10\%)$  of C over first 3 years =  $$61,858.01$  // from part (a)

Hence choose Alternative A which has the highest AW over the infinite study period