

Bayesian Learning and Monte Carlo Simulation Project: Boston Housing Dataset

Politecnico di Milano

Authors: Felipe Azank dos Santos, Gabriel Speranza Pastorello, Giacomo Savazzi

Advisor: Prof. Federico Bassetti **Co-advisors**: Alessandro Carminati

Introduction

Goal: perform a regression analysis on the Boston Housing Dataset to predict the median value of owner-occupied homes (**MEDV**)

Features: 13 features + target included in the dataset:

Feature	Description			
CRIM	per capita crime rate by town			
ZN	proportion of residential land zoned for lots over 25,000 sq.ft.			
INDUS	proportion of non-retail business acres per town			
CHAS	Charles River dummy variable (1 or 0)			
NOX	nitric oxides concentration (parts per 10 million)			
RM	RM average number of rooms per dwelling			
AGE proportion of owner- occupied units built prior to 1940				

Feature	Description			
DIS	weighted distances to five Boston employment centres			
RAD	index of accessibility to radial highways			
TAX	full-value property tax rate per \$10,000			
PTRATIO	pupil-teacher ratio by town			
В	1000(Bk - 0.63) ² where Bk is the proportion of blacks by town			
LSTAT	% of lower status of the population			
MEDV	Median value of owner-occupied homes (in \$1000's)			

Description of the data

- MEDV value has been set to a maximum of 50 [1], with multiple instances of this exact value in the dataset
 - Considered outliers and will not help in prediction, so they were removed
 - Total number of samples decreased from 506 to 490

Fig. 1: Linear correlation plot between the features and MEDV

Fig. 2: Scatter plots of LSTAT (upper left), DIS (upper right), RM (lower left) and TAX (lower right) in relation to target variable MEDV.

Model specification

- Standard Bayesian Regression
 - o g-prior
 - Jeffreys-Zellner-Siow (JZS) prior
- Bayesian Information Criterion (BIC)
- Just Another Gibbs Sampler (JAGS)
 Spike and Slab
 - Median Probability (MP)
 - Highest Probability Density (HPD)

Standard Bayesian Regression: g-prior

• Assigns a **normal** distribution **prior** to the regression coefficients: $\beta \sim N_k \left(0, \alpha \sigma^2 \left(X^t X\right)^{-1}\right)$

$\cdot \alpha = g \text{ value}$

- Small g = strong belief in the prior
- Big g = not considerable belief in the prior
- o g values tried: 100, 50, 1
- \circ Without any major changes, α is then set to 1

Fig. 3: Histogram for target MEDV

Standard Bayesian Regression: g-prior

• The following values for the coefficients are obtained:

G Prior	Posterior Mean	Posterior SD	p(B != 0)
Intercept	21,6359	0,1698	1
CRIM	-0,0534	0,0185	1
ZN	0,0177	0,0080	1
INDUS	-0,0219	0,0352	1
CHAS	0,2261	0,5244	1
NOX	-6,1991	2,1615	1
RM	1,8797	0,2527	1
AGE	-0,0118	0,0075	1
DIS	-0,6055	0,1136	1
RAD	0,1257	0,0375	1
TAX	-0,0069	0,0021	1
PTRATIO	-0,4191	0,0745	1
В	0,0039	0,0015	1
LSTAT	-0,1751	0,0301	1

Fig. 4: g-prior posterior distribution of coefficients

Fig. 5: Parameters mean values and confidence intervals with g-prior

Standard Bayesian Regression: JZS prior

• Jeffreys prior on σ and the Zellner-Siow prior on the **coefficients**

It is a mixture of the g-prior and does not introduce additional information but rather reflects
a conservative belief about the coefficients' distribution.

JZS Prior	Posterior Mean	Posterior SD	p(B != 0)
Intercept	21,6359	0,1698	1
CRIM	-0,1060	0,0260	1
ZN	0,0351	0,0112	1
INDUS	-0,0436	0,0496	1
CHAS	0,4493	0,7393	1
NOX	-12,3178	3,0469	1
RM	3,7351	0,3562	1
AGE	-0,0235	0,0106	1
DIS	-1,2031	0,1601	1
RAD	0,2497	0,0529	1
TAX	-0,0137	0,0030	1
PTRATIO	-0,8328	0,1050	1
В	0,0078	0,0021	1
LSTAT	-0,3478	0,0424	1

Fig. 6: JZS posterior distribution of coefficients

Fig. 7: Parameters mean values and confidence intervals with JZS prior

Bayesian Information Criterion (BIC)

The Bayesian Information Criterion is defined as follow:

$$BIC = Kln(n) - 2ln(\mathcal{L})$$

Where:

- *K* is the number of features
- *n* is the number of datapoints
- L is the maximized value of the likelihood function for the model

It is used for model selection in bayesian linear regression due to it's relatioship with the Bayes Factor:

$$BF = \frac{p(M1|D)p(M1)}{p(M2|D)p(M2)}$$

$$p(M|D) = e^{-\frac{BIC}{2}}p(M)$$

Bayesian Information Criterion (BIC)

The BIC in the BAS package consider the following non-informative prior over the regression coefficients:

$$\pi(eta | \sigma^2) \sim 1$$
 $\pi(\sigma^2) \sim \frac{1}{\sigma^2}$

Then we define a uniform prior over the possible model and performs backward elimination keeping the model with the smallest BIC value, that is the best BIC model. In the model selection process, we obtain the following inclusion probabilities over the features:

Features	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE
$p(\beta_i \neq 0 Y)$	0.994	0.931	0.061	0.050	1.000	1.000	0.358
Features	DIS	RAD	TAX	PTRATIO	В	LSTAT	
$p(\boldsymbol{\beta_i} \neq 0 \mathbf{Y})$	1.000	1.000	1.000	1.000	0.974	1.000	

Bayesian Information Criterion (BIC)

Then we consider the **best BIC model** and obtain the following value for the regression coefficients:

Best BIC	Posterior Mean	Posterior SD	p(B != 0)
Intercept	21,6359	0,1703	1
CRIM	-0,1066	0,0261	1
ZN	0,0388	0,0112	1
INDUS	0	0	0
CHAS	0	0	0
NOX	-14,8492	2,8125	1
RM	3,6297	0,3483	1
AGE	0	0	0
DIS	-1,0840	0,1508	1
RAD	0,2741	0,0511	1
TAX	-0,0151	0,0027	1
PTRATIO	-0,8755	0,1038	1
В	0,0077	0,0021	1
LSTAT	-0,3881	0,0394	1

Fig. 8: BIC posterior distribution of coefficients

Fig. 9: Parameters mean values and confidence intervals with BIC

Just Another Gibbs Sampler (JAGS) Spike and Slab

The Spike and Slab defines and index γ over the model defined as an array of k element such that for $\beta_i = 0$ we have that $\gamma_i = 0$ and for $\beta_i \neq 0$ we have that $\gamma_i = 1$. This is done using the following prior for the regression coefficients:

$$eta_i | \gamma_i \sim (1 - \gamma_i) \delta_{\{0\}} + \gamma_i \mathcal{N}(0, \sigma_{\beta_i}^2)$$
 $\gamma_i | \theta_i \sim \mathcal{B}e(\theta_i)$
 $\theta_i \sim \pi(\theta_i)$

Over the following model:

$$Y | X \sim Norm(\mu, \sigma^{2})$$

$$\mu = \beta 0 + Xi * \beta$$

$$\tau = \frac{1}{\sigma^{2}} \sim Gamma(0.001, 0.001)$$

$$(\beta 0, \beta) \sim \pi(\beta 0, \beta)$$

Then we select the model using two different criteria.

JAGS Spike and Slab: Median Probability Model

In the **Median Probability** model, we consider the posterior of the inclusion variable and select the features that have **probability higher than 0.5** to be included.

Fig. 10: Histogram of the g values used to determine the selected features

In this case **only the CHAS feature is excluded** from the model as all the other features have inclusion probability higher than 0.5

JAGS Spike and Slab: Highest Posterior Density Model

In the **Highest Posterior Density** model, we select the model that was **visited more times** in the MCMC generated by JAGS.

Fig. 11: Visited Models JAGS approach

The models are indexed based on the features included, so from the index of the model we can extract what features were excluded.

In this case the features excluded were **INDUS** and **CHAS**.

Prediction Analysis

Train-test split with Shuffling

- 70/30 proportion
- Removing bias
- 147 test samples

Regression Metrics

- RMSE
- MAE
- MAPE

Performance Comparison

Regression Metrics

Root Mean Squared Error (RMSE)

- Easy interpretability (same unit as the target)
- Large errors penalization

Mean Absolute Error (MAE)

Overall performance (equal penalization)

Mean Absolute Percentage Error (MAPE)

- Most intuitive (eliminates magnitude)
- Ideal for low range target values

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}$$

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|$$

MAPE =
$$\frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

Prediction Analysis – Performance Comparison

- Just like the posterior, the predictive distribution of the standard Bayesian Regression showed similar results, proving once again that the model was quite robust and indifferent to the priors.
- BIC approach was successful in improving both performance and complexity, proving to be a "go to" approach when dealing with simple regression problems.
- Both MCMC model selection techniques (MP & HPD) generated a better performance (this could be a sign of overfitting since the models are more complex).

Model	Metric
	RMSE: 3.72
g-prior standard	MAE: 2.82
	MAPE: 13.99%
	RMSE: 3.73
JZS standard	MAE: 2.82
	MAPE: 13.99%
	RMSE: 3.62
Best BIC	MAE: 2.75
	MAPE: 13.80%
	RMSE: 3.55
JAGS - MP	MAE: 2.64
	MAPE: 13.11%
	RMSE: 3.58
JAGS - HPD	MAE: 2.66
	MAPE: 13.18%

Fig. 12: Comparison of the models' performances

Conclusions

- ✓ All feature selection approaches dropped CHAS feature. Proving that, for our analysis, the CHAS column proved to be useless.
- ✓ The Bayesian Regression Analysis proved to be relativelly successfull, corroborating our choice to use the Normal Linear Regression.

✓ The project was extremelly useful in reviewing the main points talked in the class and lab sessions.

Thank you!

- Felipe A. dos Santos (10919711)
- Gabriel S. Pastorello (10946365)
- Giacomo Savazzi (10675184)

