STAT 709 Third Exam 9:55am-10:45pm, Nov 23, 2016

Please show all your work for full credits.

- 1. Let X be a sample from $P \in \mathcal{P}$ and ϑ be a functional of P.
 - (a) (4 points) Suppose that T(X) is a sufficient statistic for P. Show (without using the Rao-Blackwell Theorem) that, to find the best unbiased estimator of ϑ in terms of the mean squared error, it is enough to consider functions of T.
 - (b) (4 points) Suppose that T(X) is a minimal sufficient statistic for P, and that there exists a $\mathcal{P}_0 \subset \mathcal{P}$ such that \mathcal{P}_0 has countably many elements and a.s. \mathcal{P}_0 is the same as a.s. \mathcal{P} . Show that, if there is a UMVUE of ϑ , then it must be a Borel function of T a.s. \mathcal{P} .
- 2. Let $X_1, ..., X_n$ be i.i.d. observations having a Lebesgue p.d.f.

$$f_{\theta}(x) = \begin{cases} \phi(x)/c(\theta) & 0 < x < \theta \\ 0 & x \le 0 \text{ or } x \ge \theta \end{cases}$$

where $\phi(x)$ is a positive integrable function on $(0, \infty)$, $\theta > 0$ is an unknown parameter, and $c(\theta) = \int_0^\theta \phi(t) dt$.

- (a) (4 points) Let $g(\theta)$ be a differentiable function of θ . Show that the UMVUE of $g(\theta)$ is $T_n = g(X_{(n)}) + n^{-1}g'(X_{(n)})c(X_{(n)})/\phi(X_{(n)})$, where $X_{(n)}$ is the largest order statistic.
- (b) Assume that g' and ϕ are continuous at θ .
 - (b1) (2 points) Find the asymptotic bias of $S_n = g(X_{(n)})$ as an estimator of $g(\theta)$. (Hint: Find the limiting distribution of $n[S_n g(\theta)]$. You may use the result proved in class: $n(\theta X_{(n)}) \to_d c(\theta)Z/\phi(\theta)$, where Z has the exponential distribution with location parameter 0 and scale parameter 1.)
 - (b2) (2 points) Find the asymptotic relative efficiency of $S_n = g(X_{(n)})$ w.r.t. T_n in part (a).
- (c) (4 points) Let s > 0 be a fixed constant and $\vartheta = P(X_1 \le s)$. Obtain the UMVUE of ϑ .

Solution

1. (a) Let U be an unbiased estimator of ϑ . Then E(U|T) is also an unbiased estimator of θ and

$$Var(U) = Var(E(U|T)) + E[Var(U|T)] \ge Var(E(U|T))$$

- (b) Let U be a UMVUE of ϑ . From the previous expression, we know that $E[\operatorname{Var}(U|T)] = 0$ must be true for all P. Then, for every P, there exists an event N_P such that if $T \notin N_P$, U = E(U|T). Since \mathcal{P}_0 is countable so U = E(U|T) a.s. \mathcal{P}_0 . Since a.s. \mathcal{P}_0 is the same as a.s. \mathcal{P} , U must be a Borel function of T a.s. \mathcal{P} .
- 2. (a) The joint p.d.f. of $X_1, ..., X_n$ is

$$[c(\theta)]^{-n} \prod_{i=1}^{n} \phi(x_i) I_{(0,\theta)}(x_{(n)})$$

Hence, $X_{(n)}$ is sufficient. With the same argument as the case where $\phi(x) \equiv 1$, we can show that $X_{(n)}$ is complete. The p.d.f. of $X_{(n)}$ is $n[c(\theta)]^{-n}[\int_0^x \phi(t)dt]^{n-1}\phi(x)I_{(0,\theta)}(x)$. Thus, we solve for an h such that $g(\theta) = E[h(X_{(n)})]$ for all θ , i.e.,

$$g(\theta) = n[c(\theta)]^{-n} \int_0^{\theta} h(x) [\int_0^x \phi(t) dt]^{n-1} \phi(x) dx$$

or

$$[c(\theta)]^n g(\theta) = n \int_0^\theta h(x) \left[\int_0^x \phi(t) dt \right]^{n-1} \phi(x) dx$$

Differentiating with respect to θ gives

$$g'(\theta)[c(\theta)]^{n} + n[c(\theta)]^{n-1}c'(\theta)g(\theta) = nh(\theta)[\int_{0}^{\theta} \phi(t)dt]^{n-1}\phi(\theta) = nh(\theta)[c(\theta)]^{n-1}\phi(\theta)$$

i.e.,

$$g'(t)c(t) + nc'(t)g(t) = nh(t)\phi(t)$$

Note that $c'(t) = \phi(t)$. Hence

$$h(t) = g(t) + n^{-1}g'(t)c(t)/\phi(t)$$

(b1) In class, we stated that

$$n(\theta - X_{(n)}) \rightarrow_d c(\theta) Z/\phi(\theta)$$

By the delta method,

$$n[g(X_{(n)}) - g(\theta)] \rightarrow_d -g'(\theta)c(\theta)Z/\phi(\theta)$$

Since EZ = 1, the asymptotic bias of S_n is $-g'(\theta)c(\theta)/\phi(\theta)/n$.

(b2) Note that

$$n[T_n - g(\theta)] = n[g(X_{(n)}) - g(\theta)] + g'(X_{(n)})c(X_{(n)})/\phi(X_{(n)})$$

it follows from continuous mapping and Sluzsky theorems that

$$n[T_n - g(\theta)] \rightarrow_d -g'(\theta)c(\theta)Z/\phi(\theta) + g'(\theta)c(\theta)/\phi(\theta) = g'(\theta)c(\theta)(1-Z)/\phi(\theta)$$

Hence, the asymptotic relative efficiency of S_n w.r.t. T_n is

$$\frac{E[g'(\theta)c(\theta)(1-Z)/\phi(\theta)]^2}{E[g'(\theta)c(\theta)Z/\phi(\theta)]^2} = \frac{E(1-Z)^2}{EZ^2} = \frac{1}{2}$$

(c) A reasonable guess is that the UMVUE of ϑ is

$$T_n = \begin{cases} 1 & X_{(n)} \le s \\ h(X_{(n)}) & X_{(n)} > s \end{cases}$$

Then, if $s < \theta$,

$$E(T_n) = \frac{n}{[c(\theta)]^n} \left\{ \int_s^{\theta} h(x) \left[\int_0^x \phi(t) dt \right]^{n-1} \phi(x) dx + \int_0^s \left[\int_0^x \phi(t) dt \right]^{n-1} \phi(x) dx \right\}$$
$$= \frac{n}{[c(\theta)]^n} \left\{ \int_s^{\theta} h(x) \left[c(x) \right]^{n-1} \phi(x) dx + \int_0^s \left[c(x) \right]^{n-1} \phi(x) dx \right\}$$

Since $P(X_1 \le s) = \int_0^s \phi(x) dx / c(\theta) = c(s) / c(\theta)$,

$$\frac{c(s)}{c(\theta)} = \frac{n}{[c(\theta)]^n} \left\{ \int_s^{\theta} h(x) \left[c(x) \right]^{n-1} \phi(x) dx + \int_0^s \left[c(x) \right]^{n-1} \phi(x) dx \right\}$$

or

$$n^{-1}c(s)[c(\theta)]^{n-1} = \int_{s}^{\theta} h(x) \left[c(x)\right]^{n-1} \phi(x) dx + \int_{0}^{s} \left[c(x)\right]^{n-1} \phi(x) dx$$

Differentiating w.r.t. θ ,

$$n^{-1}c(s)(n-1)[c(\theta)]^{n-2}\phi(\theta) = h(\theta)[c(\theta)]^{n-1}\phi(\theta)$$

This shows that

$$h(t) = \frac{n-1}{n} \frac{c(s)}{c(x)}, \quad s < x$$