

Algoritmos y Programación 4

Clase 11 Análisis de Algoritmos

Análisis de desempeño

Imagen tomada de https://foxtrot.com/

Para que analizar algoritmos

- Conforme aumenta la experiencia en el uso de computadores, estos comienzan a emplearlos para resolver problemas complejos o procesar grandes volúmenes de información.
- En este proceso, es común que surjan preguntas como las siguientes:
 - ¿Cuánto tiempo tomará la ejecución de mi programa?
 - ¿Por qué mi programa se queda sin memoria?

ProgramadorNecesita desarrollar una solución que trabaje

Cliente
Desea resolver el problema
de manera eficiente

CientíficoDesea aprender sobre algo

Estudiante

Para que analizar algoritmos

Razones:

- Predecir desempeño
- Comparar algoritmos.
- Brindar garantías:
- Comprender bases teóricas.
- Razón principal practica: Evitar bugs de desempeño

Realidad

El cliente obtiene [o experimenta] un rendimiento deficiente debido a que el programador no comprendió las características de rendimiento

link

Desafío

Pregunta: ¿Mi programa podrá resolver una entrada práctica de gran tamaño?

¿Por qué mi programa es tan lento?

¿Por qué mi programa se queda sin memoria?

"Esta es la idea fundamental: debemos usar el método científico para entender el rendimiento".

Donald Knuth (1970)

Método científico aplicado al análisis de algoritmos

- El **método científico** son un conjunto de técnicas comúnmente aceptadas y universalmente utilizadas por los científicos para desarrollar conocimientos sobre el mundo natural.
- El método científico nos proporciona un framework (marco de trabajo) para predecir el desempeño y comparar algoritmos.

Pasos:

- 1. Observar alguna característica del mundo natural, generalmente con mediciones precisas.
- 2. Formular un modelo que sea consistente con las observaciones.
- 3. Predecir eventos usando la hipótesis.
- 4. Verificar las predicciones realizando [o mediante] observaciones adicionales.
- **5.** Validar repitiendo hasta que la hipótesis y las observaciones concuerden.

Principios:

- Los experimentos deben ser reproducibles
- Las hipótesis que formulamos deben ser falsificables.

Ejemplo: 3-SUM

• Dados N números enteros distintos, ¿cuántas ternas suman exactamente cero?

30	
-30	
-20	
-10	
40	
0	
10	
15	

Leyendo datos del archivo: 8ints.txt
Arreglo de 8 enteros leído.
Contando ternas que suman 0
4
30 -30 0
30 -20 -10
-30 -10 40
-10 0 10

	a[i]	a[j]	a[k]	sum
1	30	-40	10	0
2	30	-20	-10	0
3	-40	40	0	0
4	-10	0	10	0

3-SUM: Algoritmo a fuerza bruta

• Dados N números enteros distintos, ¿cuántas ternas suman exactamente cero?

```
def countTriples(a):
   n = len(a)
   count = 0
   for i in range(n):
       for j in range(i+1, n):
            for k in range(j+1, n):
                if (a[i] + a[j] + a[k]) == 0:
                    count += 1
    return count
def main():
   file = "8ints.txt"
   print(f"Leyendo datos del archivo: {file}")
   a = readInt1D(file)
   print(f"Arreglo de {len(a)} enteros leído.")
   print(f"Contando ternas que suman 0... ")
   count = countTriples(a)
   print(count)
   if count < 10:
       writeTriples(a)
if name == ' main ':
   main()
```

 Selección de cada terna
 Verificación de la condición para la terna seleccionada

Midiendo el tiempo de ejecución

- Para determinar el rendimiento de un programa, el primer desafío consiste en determinar cómo realizar mediciones cuantitativas del tiempo de ejecución.
- Existen diversas herramientas disponibles para ayudarnos a obtener aproximaciones, donde la mas simple es emplear un **cronometro** sencillo y realizar las mediciones **manualmente**.

```
# --- Inicio del cronometro ---
# Operaciones (toman un tiempo determinado)
# --- Detención del cronometro ---
```


Midiendo el tiempo

Dados N números enteros distintos, ¿cuántas ternas suman exactamente cero?

Leyendo datos del archivo: 1Kints.txt Arreglo de 1000 enteros leído. Contando ternas que suman 0... 70

00:28 = 28 seg

Leyendo datos del archivo: 2Kints.txt Arreglo de 2000 enteros leído. Contando ternas que suman 0... 528

03:45 = 225 seg

Leyendo datos del archivo: 4Kints.txt Arreglo de 4000 enteros leído. Contando ternas que suman 0... 4039

31:37 = 1897 seg

tick tick

tick tick tick tick tick tick tick tick

Midiendo el tiempo de ejecución

- Como realizar las mediciones manualmente de tiempo es muy engorroso, es mejor recurrir a una **forma automática**, empleando **marcas de tiempo**.
- Las marcas de tiempo son capturas de tiempo realizadas al principio y al final para determinar el tiempo que toma la ejecución de las operaciones entre estas.
- Para realizar la medición la forma mas simple se emplea un cronómetro el cual es modelado como la clase Stopwatch (<u>stopwatch.py</u>) cuyo API se muestra a continuación:

	operación	Descripción
API	Stowatch()	Crea un objeto StopWatch (iniciándolo en start)
	Watch.elapsedTime()	Obtiene el tiempo (en segundos) desde que el cronometro fue creado

Midiendo el tiempo de ejecución

- A continuación se muestra como realizar la medición del tiempo empleando un objeto de tipo Stopwatch.
 - El "tiempo de inicio" se captura al crear el objeto.
 - El "tiempo final" al llamar a elapsedTime().

```
def main():
    file = "8ints.txt"
    print(f"Leyendo datos del archivo: {file}")
    a = readInt1D(file)
    print(f"Arreglo de {len(a)} enteros leído.")
    print(f"Contando ternas que suman 0... ")
    watch = Stopwatch() # ---- Marca de tiempo inicial
    count = countTriples(a)
    elapsed_time = watch.elapsedTime() # ---- Marca de tiempo final
    print(count)
    print(f"Tiempo total {elapsed_time} segundos")
    if count < 10:
        writeTriples(a)

if __name__ == '__main__':
    main()</pre>
```


Midiendo el tiempo

Dados N números enteros distintos, ¿cuántas ternas suman exactamente cero?

```
Leyendo datos del archivo: 1Kints.txt
Arreglo de 1000 enteros leído.
Contando ternas que suman 0...
70
Tiempo transcurrido: 26.97974850 segundos
```


Leyendo datos del archivo: 2Kints.txt Arreglo de 2000 enteros leído. Contando ternas que suman 0... 528 Tiempo transcurrido: 230.80460430 segundos

Ejecución de los experimentos

- 1. Comenzar con un tamaño de entrada N moderado.
- 2. Medir y registrar el tiempo de ejecución (T(N)).
- 3. Duplicar el tamaño de la entrada N.
- 4. Repetir.
- 5. Tabular y graficar los resultados.

• Se mide el tiempo ejecutando el programa para varios tamaños de entrada y midiendo el tiempo de ejecución.

```
def uniformInt(lo, hi):
    Return an integer chosen uniformly
    from the range [lo, hi).
    return random.randrange(lo, hi)
def countTriples(a):
    n = len(a)
    count = 0
    for i in range(n):
        for j in range(i+1, n):
            for k in range(j+1, n):
                if (a[i] + a[j] + a[k]) == 0:
                    count += 1
    return count
def timeTrial(n):
    a = create1D(n, 0)
   for i in range(n):
        a[i] = uniformInt(-1000000, 1000000)
   watch = Stopwatch()
    count = countTriples(a)
    return watch.elapsedTime()
```

```
n = int(input("Ingrese el tamaño inicial n: "))
while True:
    previous = timeTrial(n // 2)
    current = timeTrial(n)
    ratio = current / previous
    print(f"{n:7d} {current:4.2f}/{previous:4.2f} =
{ratio:4.2f}")
    n *= 2
```

```
Ingrese el tamaño inicial n: 250
    250 0.42/0.05 = 8.28
    500 3.58/0.38 = 9.46
    1000 28.45/3.62 = 7.86
    2000 229.12/27.95 = 8.20
    4000 1932.38/228.12 = 8.47
    CTRL + C
```


Anatomía de la clase

Anatomía de la clase

Tabla de resultados. Tiempo de ejecución **T(N)** vs. tamaño de la entrada **N**.

N	time (seconds)
1000	0
2000	4
4000	31
8000	248

Grafica estandar. Tiempo de ejecución **T(N)** vs. tamaño de la entrada **N**.

Ajuste de curvas (Curve fitting)

- Graficar en escala log log .
- Si los puntos están en una línea recta (lo que es a menudo el caso), aplica una ley de potencia— se ajusta una curva de la forma aN^b .
- El exponente *b* es la pendiente de la línea.
- Resuelva para a con los datos.

Grafica escala logaritmica. log(T(N)) vs. log(N)

N	TN	lgN	lg Tn	$4.84\times10^{-10}\times N^{\!3}$
1000	0.5	10	-1	0.5
2000	4	11	2	4
4000	31	12	5	31
8000	248	13	8	248

Expresión matematica

$$T_N = aN^b$$
 $\log(T_N) = \log(aN^3)$ $\log(b) = \log(aN^3)$ $\log(T_N) = \log(a) + \log(N^3)$ $\log(T_N) = \log(a) + \log(N)$

Con
$$N = 8000$$
, $T_N = 248$ $248 = a \times 8000^3$ $a = 4.84 \times 10^{-10}$

$$T_N = 4.84 \times 10^{-10} \times N^3$$

Predicción y verificación

Tenemos hasta el momento:

• Hipótesis: El tiempo de ejecución de ThreeSum esta dado por la expresión:

$$T_N = 4.84 \times 10^{-10} \times N^3$$

• **Predicción**: Para N=16000 el resultado será de $T_N=1982~seg\approx 33.22~min$.

% java Generator 1000000 16000 | java ThreeSum 31903 (1985 seconds)

Se comprueba la predicción con el resultado real.

- **Q**: ¿Qué tanto tiempo le tomaría al programa realizar la operación si N=1000000?
- **A**: $N = 1000000 \rightarrow T_N = 484000000$. Es decir 484 millones de segundos o mas de 15 años.

Predicción y verificación

Tenemos hasta el momento:

• Pregunta: ¿Qué pasa si ejecutamos el mismo programa en otra maquina?

 Otra hipótesis: El tiempo de ejecución en diferentes maquina difieren solo por un factor constante.

• Q: ¿Podemos escribir una fórmula precisa para el tiempo de ejecución de un programa de computadora?

A: (Sabiduría popular, década de 1960) No, es demasiado complicado.

A: (D. E. Knuth, 1968-presente) ¡Sí!

- Determinar el conjunto de operaciones.
- Hallar el costo de cada operación (depende del computador y del software de sistema).
- Hallar la **frecuencia de ejecución** de cada operación (depende del algoritmo y de las entradas).
- Tiempo de ejecución total:

Tiempo de ejecucion total =
$$\sum_{op} c_{op} \times f_{op}$$

Costo de las operaciones básicas

Reto: ¿Cómo estimar las constantes?

• Observación: Las operaciones mas primitivas toman un tiempo constante.

operation	example	nanoseconds †
integer add	a + b	2.1
integer multiply	a * b	2.4
integer divide	a / b	5.4
floating-point add	a + b	4.6
floating-point multiply	a * b	4.2
floating-point divide	a / b	13.5
sine	Math.sin(theta)	91.3
arctangent	Math.atan2(y, x)	129.0

operation	example	nanoseconds †
variable declaration	int a	c ₁
assignment statement	a = b	C2
integer compare	a < b	C3
array element access	a[i]	C4
array length	a.length	C ₅
1D array allocation	new int[N]	c ₆ N
2D array allocation	new int[N][N]	c ₇ N ²

 Advertencia. Las operaciones no primitivas suelen tomar más que tiempo constante.

[†] Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Calentamiento: 1-sum

```
public static int count(int[] a)
{
  int N = a.length;
  int cnt = 0;
  for (int i = 0; i < N; i++)
    if (a[i] == 0)
      cnt++;
  return cnt;
}</pre>
Note that frequency
  of increments
  depends on input.
```

operation	cost	frequency
function call/return	20 ns	1
variable declaration	2 ns	2
assignment	1 <i>ns</i>	2
less than compare	1/2 ns	N + 1
equal to compare	1/2 ns	N
array access	1/2 ns	N
increment	1/2 ns	between N and $2N$
knowing exact		ome poetic license); quire study and n.

- Q: ¿Formula para el tiempo total de ejecución?
- A: $cN + 26.5 \ nanoseg$, donde c esta entre 2 y 2.5, dependiendo de la entrada

Calentamiento: 2-sum

```
public static int count(int[] a)
{
   int N = a.length;
   int cnt = 0;
   for (int i = 0; i < N; i++)
       for (int j = i+1; j < N; j++)
       if (a[i] + a[j] == 0)
            cnt++;
   return cnt;
}</pre>
```

operation	cost	frequency
function call/return	20 ns	1
variable declaration	2 ns	N + 2
assignment	1 <i>ns</i>	N + 2
less than compare	1/2 ns	(N+1)(N+2)/2
equal to compare	1/2 ns	N (N - 1)/2
array access	1/2 ns	N (N - 1)
increment	1/2 ns	between $N(N+1)/2$ and N^2
		tedious to derive

- **Q**: ¿Formula para el tiempo total de ejecución?
- **A**: $c_1N^2 + c_2N + c_3$ nanoseg, donde... (la expresión se vuelve mas complicada)

Simplificando los cálculos

Notación asintótica (~)

- Usar solo el término de crecimiento más rápido.
- Ignorar los términos de crecimiento más lento.

Notación asintótica (~)

- Cuando N es grande, los términos ignorados son insignificantes.
- Cuando N es pequeño, todo es insignificante.

Def: $f(N) \sim g(N)$ significa que $f(N)/g(N) \rightarrow 1$ si $N \rightarrow \infty$

Ex.
$$5/4 N^2 + 13/4 N + 53/2 \sim 5/4 N^2$$

1,250,000

1,253,276.5

for $N = 1,000$

within .3%

- **Q**: ¿Fórmula para el tiempo de ejecución de 2-suma cuando el conteo no es grande (caso típico)?
- **A**: $\sim 5/4 N^2$ nanoseg

Modelo matemático para 3-sum

```
public static int count(int[] a)
{
   int N = a.length;
   int cnt = 0;
   for (int i = 0; i < N; i++)
       for (int j = i+1; j < N; j++)
        for (int k = j+1; k < N; k++)
            if (a[i] + a[j] + a[k] == 0)
            cnt++;
   return cnt;
}</pre>
```

operation	cost	frequency
function call/return	20 ns	1
variable declaration	2 ns	~N
assignment	1 ns	~N
less than compare	1/2 ns	~N³/6
equal to compare	1/2 ns	~N³/6
array access	1/2 ns	~N ³ /2
increment	1/2 ns	~N³/6
$ i < j < k = {N \choose 3} = \frac{N(N)}{N} $	(N-1)(N-2)	$\frac{N^3}{6}$

- **Q**: ¿Fórmula para el tiempo total de ejecución cuando el valor de retorno no es grande (caso típico)?
- A: $\sim N^2/2$ nanoseg

```
✓ ← matches 4.84 \times 10^{-10} \times N^3 empirical hypothesis
```


Problema: Contar operaciones es difícil

- El análisis de algoritmos (como lo hacía Knuth) requiere contar la frecuencia de las operaciones. Este conteo casi siempre resulta en sumas discretas (sumatoria, Σ)
 - Un bucle for es una Σ
 - Un bucle triple anidado es una $\Sigma \Sigma \Sigma$
- Calcular el valor exacto de estas sumatorias es complicado (Es necesario tomar un curso de Matemáticas discretas).
- Para facilitar el calculo, use Integrales como Aproximación

Truco: Usar Integrales como Aproximación

- Para valores de N muy grandes, el comportamiento de una suma discreta \sum es casi idéntico al de su contraparte continua integral (\int)
- Truco: Σ (Suma discreta) $\approx \int$ (Integral continua)
- Lo más importante es que el orden de crecimiento (el término N^2 , N^3 , $\log(N)$, etc.) del resultado de la integral es el mismo que el de la suma.

Ex 1.
$$1+2+...+N$$
.

$$\sum_{i=1}^{N} i \sim \int_{x=1}^{N} x \, dx \sim \frac{1}{2} N^2$$

Ex 2.
$$1^k + 2^k + ... + N^k$$
.

$$\sum_{i=1}^{N} i^{k} \sim \int_{x=1}^{N} x^{k} dx \sim \frac{1}{k+1} N^{k+1}$$

Ex 3.
$$1 + 1/2 + 1/3 + ... + 1/N$$
.

$$\sum_{i=1}^{N} \frac{1}{i} \sim \int_{x=1}^{N} \frac{1}{x} dx = \ln N$$

$$\sum_{i=1}^{N} \sum_{j=i}^{N} \sum_{k=i}^{N} 1 \sim \int_{x=1}^{N} \int_{y=x}^{N} \int_{z=y}^{N} dz \, dy \, dx \sim \frac{1}{6} N^{3}$$

Truco: Usar Integrales como Aproximación

• **Ejemplo**: Cual es el valor de: $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = \frac{1}{2^0} + \frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \dots = \sum_{i=0}^{\infty} \frac{1}{2^i}$$

$$\sum_{i=0}^{\infty} \frac{1}{2^i} = 2$$

Si se aplica el truco tenemos:

$$\sum_{i=0}^{\infty} \frac{1}{2^i} \to \int_{x=0}^{\infty} \left(\frac{1}{2}\right)^x dx = \frac{1}{\ln(2)} \approx 1.4427$$

• Advertencia: El truco de la integral no siempre trabaja

Truco: Usar Integrales como Aproximación

$$\sum_{i=0}^{\infty} \frac{1}{2^i} = 2$$

$$\int_{x=0}^{\infty} \left(\frac{1}{2}\right)^x dx = \frac{1}{\ln(2)} \approx 1.4427$$

- En principio, existen modelos matemáticos para el tiempo de ejecución
- En la practica,
 - Las formulas pueden ser complicadas.
 - Podría requerirse matemáticas avanzadas.
 - Es mejor dejar los modelos exactos para los expertos.

• Conclusión: Usaremos modelos aproximados: $T(N) \sim cN^3$

Referencias

Referencias

- Este material ha sido adaptado de las presentaciones disponibles en:
 - https://introcs.cs.princeton.edu/python/
 - https://algs4.cs.princeton.edu/14analysis/

POLITÉCNICO COLOMBIANO JAIME ISAZA CADAVID

Educación para Vivir Mejor

INSTITUCIÓN UNIVERSITARIA

Gracias

www.politecnicojic.edu.co / Medellín - Apartadó - Rionegro