Deep Learning

Chapter 2 퍼셉트론, 다층 퍼셉트론(Perceptron, MLP)

- 퍼셉트론의 개념을 이해 할 수 있다.
- 다층 퍼셉트론의 개념을 이해 할 수 있다.

딥러닝 역사 – 퍼셉트론 제안

인공신경망 – 퍼셉트론(Perceptron)

신경의 흥분이 전달되기 위해서는 뉴런에 전달되는 자극의 크기가 <mark>역치 이상</mark>이 되어야함

인공신경망 – 퍼셉트론(Perceptron)

퍼셉트론 (Perceptron)

프랑크 로젠블라트가 1957년에 고안한 개념

The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain

$$y = W_1 X_1 + W_2 X_2 + b$$

Step function(계단함수)

Sigmoid function(시그모이드 함수)

$$\mathbf{y} = \begin{cases} \mathbf{0}, & (W_1 X_1 + W_2 X_2 + b \le 0) \\ \mathbf{1}, & (W_1 X_1 + W_2 X_2 + b > 0) \end{cases}$$

 W_1, W_2 : 가중치 (weight) – 각 입력 신호가 결과에 주는 영향력을 조절하는 매개변수 b : 편향 (bias) – 뉴런이 얼마나 쉽게 활성화하느냐를 조절하는 매개변수

딥러닝 역사 – XOR 문제

AND 게이트

x1	x2	AND
0	0	0
0	1	0
1	0	0
1	1	1

OR 게이트

x 1	x2	OR
0	0	0
0	1	1
1	0	1
1	1	1

XOR 게이트

x 1	x2	XOR
0	0	0
0	1	1
1	0	1
1	1	0

AND,OR는 해결이 가능하지만 간단한 XOR 문제를 해결 할 수 없었다.

딥러닝 역사 – XOR 문제 해결(MLP)

다층 퍼셉트론(Multi Layer Perceptron)

단층 퍼셉트론의 차원 수를 확장시켜 여러 개의 층으로 구성하여 만든 신경망.

X₁

NAND 게이트

x 1	x2	NAND
0	0	1
0	1	1
1	0	1
1	1	0

x1	x2	NAND
0	0	1
0	1	1
1	0	1
1	1	0

x1	x2	OR
0	0	0
0	1	1
1	0	1
1	1	1

NAND	OR	AND
1	0	0
1	1	1
1	1	1
0	1	0

다층 퍼셉트론(Multilayer Perceptron)

- 한 번의 연산으로 해결되지 않는 문제를 해결할 수 있

다.

- 돈릥에면함)핵습진하기오래중한다라미터가 많 아

학습시 과대적합되기 쉽다.