# 机器学习建模流程要点总结

## 一、数据集处理

## 1. 数据集划分

为了构建合理的模型并作出准确评估,我们首先需要对数据集进行合理划分



| 数据集                  | 作用          | 备注                        |
|----------------------|-------------|---------------------------|
| 训练集(train set)       | 拟合模型        | 数据集的 60%~80%              |
| 验证集 (validation set) | 模型超参数调整,选择最 | 1. 数据集的 5% ~ 20%          |
|                      | 优模型         | 2. 结合训练集使用交叉验证方法:         |
|                      |             | a) HoldOut: 固定比例划分,例: 8:2 |
|                      |             | b) K-Fold:均分K组(>=2),循环K-1 |
|                      |             | 组训练, 余下1组验证, 计算平均效果       |
|                      |             | c) 留一:循环 N-1 个样本训练,余下单    |
|                      |             | 样本测试,计算平均效果               |
|                      |             | d)                        |
|                      |             | 3. 解决过拟合问题                |
| 测试集 (test set)       | 模型性能检验      | 数据集的 10% ~ 20%            |
| 跨时间测试集 (oot set)     | 模型性能检验(稳定性、 | 1. 一般适用于对模型生命周期有一定要求的     |
|                      | 预期线上效果、模型版本 | 场景,比如金融、风控等               |
|                      | 比较)         | 2. 在时间序列数据中也用作一般测试集       |

### 1.1 代码片段

```
import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold

df = pd.read_csv('xxx.txt', sep='\t', encoding='utf-8')

df_train, df_test = train_test_split(df, test_size=0.2, random_state=2024)

# HoldOut 交叉验证

df_train_train, df_train_eval = train_test_split(df_train, test_size=0.2, random_state=2024)

# k-Fold 交叉验证

Kfold = KFold(n_splits=5, shuffle=True, random_state=2024)

for i, (tdi, vdi) in enumerate(kfold.split(df_train.values)):
    train_train = df_train.values[tdi, :]

    train_eval = df_train.values[vdi, :]
```

# 2. 数据集采样

实际业务中数据往往是不均衡的 采取适当的采样方法,改善建模样本,更好的拟合模型



## 2.1 过采样

| 方法     | 思想                                         | 备注 | È                            |
|--------|--------------------------------------------|----|------------------------------|
| 随机过采样  | 对少数类样本进行随机抽样产生新样本                          | 1. | 一般使用有放回(bootstrap)方法         |
|        |                                            | 2. | 简单,但有过拟合风险                   |
| SMOTE  | 在少数类样本之间插值产生新样本                            | 1. | 可能会产生噪声                      |
|        | 对于一个少数类样本 $x_i$ ,使用 KNN (K 近邻)             | 2. | 对于离散型特征,该方法使用 VDM            |
|        | 计算邻近的 K 个少数类样本,再随机选取其                      |    | 距离度量 (SMOTEN) 或转为 ohe 编      |
|        | 中一个样本,插值公式如下:                              |    | 码(SMOTENC)后处理                |
|        | $x_{new} = x_i + \lambda * (x_{zi} - x_i)$ | 3. | 衍生方法:                        |
|        |                                            |    | a) Borderline: 对[danger]样本(超 |
|        |                                            |    | 过一半的 KNN 样本属于多数              |
|        |                                            |    | 类,「边界」样本)进行生成;               |
|        |                                            |    | v1,插值时只选取少数类样本;              |
|        |                                            |    | v2,插值时任意选取样本                 |
|        |                                            |    | b) KMeans:聚类→过滤(保留高          |
|        |                                            |    | 比例少数类簇)→生成(少数类               |
|        |                                            |    | 越少,生成样本越多)                   |
|        |                                            |    | c) SVM: 对支持向量进行生成            |
|        |                                            |    | d)                           |
| ADASYN | 生成过程类似 SMOTE, 区别在于自动决定每                    | 1. | Δ为 K-NN 中多数类样本数量             |

|   | 个少数类生成多少样本                              | 2. | 易受少数类离群点影响 |
|---|-----------------------------------------|----|------------|
| 7 | 样本总量: $G = (S_{maj} - S_{min}) * \beta$ |    |            |
|   | 少数类样本权重: $\Gamma_i = \Delta_i / K / Z$  |    |            |
|   | 少数类样本生成数量: $g_i = \Gamma_i * G$         |    |            |

# 2.2 欠采样

| 方法         | 思想                               | 备注 |                       |
|------------|----------------------------------|----|-----------------------|
| 随机欠采样      | 对多数类样本进行随机抽样产生子集                 | 1. | 原型选择类,可控制欠采样数量        |
|            |                                  | 2. | 可使用有放回或无放回方法          |
|            |                                  | 3. | 简单,但有信息丢失风险           |
| NearMiss   | 采用启发式方法,从多数类样本中选取子集              | 1. | 原型选择类,可控制欠采样数量        |
|            | 1. v1: 选择多数类样本中「N 少数类近邻」         | 2. | 计算复杂度高, v1 易受离群点影响    |
|            | 平均距离最小的                          |    |                       |
|            | 2. v2: 选择多数类样本中「N 少数类远邻」         |    |                       |
|            | 平均距离最小的                          |    |                       |
|            | 3. v3: Step1, 保留少数类样本的 M 近邻;     |    |                       |
|            | Step2,选择多数类样本中 N 近邻平均            |    |                       |
|            | 距离最大的                            |    |                       |
| TomekLinks | 从多数类样本中剔除类间重叠样本(Tomek's          | 1. | 原型选择类,数据清洗            |
|            | link, 噪声)                        | 2. | 无法控制欠采样数量             |
|            | Tomek's link: 两样本互为最近邻且分属不同      | 3. | 存在难分类信息丢失问题           |
|            | 类别                               |    |                       |
| ENN        | 从多数类样本中剔除「低支持」的样本                | 1. | 原型选择类,数据清洗            |
|            | 「低支持」: K 近邻中超一半不为该多数类            | 2. | 无法控制欠采样数量             |
|            |                                  | 3. | 衍生方法:                 |
| \          |                                  |    | a) 无支持: K 近邻均为其他类     |
|            |                                  |    | b) Repeated: 重复多次剔除   |
|            |                                  |    | c) AllKNN: 重复多次剔除, 每轮 |
|            |                                  |    | 迭代中递增 KNN 尺度          |
|            |                                  |    | d)                    |
| CNN        | 从多数类样本中保留 1-NN 错分样本              | 1. | 原型选择类,数据清洗            |
|            | 具体步骤:                            | 2. | 无法控制欠采样数量             |
|            | Step 1.少数类样本集合 C, 多数类样本集合 S      | 3. | 对噪声敏感                 |
|            | Step 2.从 S 中随机选取一个样本放入 C 中,      |    |                       |
|            | 并训练 1-NN                         |    |                       |
|            | Step 3. 遍历 S, 逐样本, 使用 1-NN 进行分类, |    |                       |
|            | 将错分的样本加入 C 并更新 1-NN 规则           |    |                       |
|            | Step 4.重复 Step 3 直至没有可加入 C 的样本   |    |                       |
| OneSidedSe | 使用 Tomek Links 剔除噪声样本,类似 CNN,    | 1. | 原型选择类,数据清洗            |
| lection    | 但在所有样本上应用 1-NN, 并将错分样本加          | 2. | 无法控制欠采样数量             |
|            | 入 C, 且不对 S 进行迭代                  | 3. | 解决 CNN 噪声敏感问题         |
| Neighbourh | 从多数类样本中剔除「低支持」样本(使用              | 1. | 原型选择类,数据清洗            |

| oodCleanRu  | ENN) 和 3-NN 输出样本 (正确分类) 的并集 | 2. | 无法控制欠采样数        |
|-------------|-----------------------------|----|-----------------|
| le          |                             | 3. | 相比 CNN,关注剔除而非压缩 |
| InstanceHar | 从样本中剔除「分类概率低」的样本(使用任        | 1. | 原型选择类,数据清洗      |
| dnessThresh | 意分类算法)                      | 2. | 无法控制欠采样数        |
| old         |                             | 3. | 依赖分类算法精度        |
| ClusterCent | 使用 KMeans 对多数类样本进行聚类,生成     | 1. | 原型生成类           |
| rolds       | 的聚类中心作为子集                   | 2. | 子集样本是生成得到的而非选择  |

### 2.3 代码片段

```
# imbalanced-learn==0.8.0
import pandas as pd
from sklearn.model_selection import train_test_split
from imblearn.over_sampling import RandomOverSampler, SMOTENC
from imblearn.under_sampling import RandomUnderSampler, EditedNearestNeighbours
df = pd.read_csv('xxx.txt', sep='\t', encoding='utf-8')
df_train, df_test = train_test_split(df, test_size=0.2, random_state=2024)
df_X, df_y = df_train.iloc[:, 1:], df_train.iloc[:, 0]
## 上采样 # 随机上采样, 2倍
# MUDIL_WITH, 2IB
ros = RandomOverSampler(sampling_strategy=2.0, random_state=2024)
df_X_=ros, df_y_ros = ros.fit_resample(df_X, df_y)
# SMOTE, 5-NN
smote = SMOTE(random_state=2024, k_neighbors=5)
df_X_smote, df_y_smote = smote.fit_resample(df_X, df_y)
** May 1 (***F, 10%, 17)(XLE)
rus = RandomUnderSampler(sampling_strategy=0.1, random_state=2024, replacement=False)
df_X_rus, df_y_rus = rus.fit_resample(df_X, df_y)
# ENN, 10\%, 低支持 enn = EditedNearestNeighbours(sampling_strategy=0.1, random_state=2024, kind_sel='mode')
df_X_{enn}, df_y_{enn} = enn.fit_{resample}(df_X, df_y)
## 上采样+下采样
# SMOTENC+TomekLink, 2倍
smote_tl = SMOTETomek(sampling_strategy=2, random_state=2024, smote=SMOTENC)
df_X_smote_tl, df_y_smote_tl = smote_tl.fit_resample(df_X, df_y)
## 欠采样+集成学习
# EasyEnsemble, lightgbm * 10, 10%
params = {
       'boosting_type': 'gbdt', 'objective': 'binary',
       'n_estimators': 100, 'learning_rate':0.1,
       'max_depth': 5, 'num_leaves':30, 'max_bin':50, 'min_data_in_leaf':20,
       'max_oin':50, 'min_data_in_tear':20,
'feature_fraction': 0.8, 'bagging_freq':10,
'reg_alpha': 0.01, 'reg_lambda':0.01,
'feature_fraction_seed': 2024, 'bagging_seed': 2024,
'n_jobs': -1
,
clf_base_lgb = lgb.LGBMClassifier(**params)
clf_ee = EasyEnsembleClassifier(base_estimator=clf_base_lgb, n_estimators=10,
                                                     sampling_strategy=0.1,
                                                     n_jobs=-1, random_state=2024, verbose=1)
clf_ee.fit(df_X.values, df_y.values)
```

## 二、特征工程

数据和特征决定了机器学习的上限,模型和算法只是逼近这个上限

### 1. 特征预处理

未经处理的特征可能存在以下问题:

- 1. 不同特征间量纲不一致,无法放在一起比较
- 2. 离散型特征无法直接入模
- 3. 存在缺失值
- 4. 存在异常值
- 5. 特征分布不满足模型假设
- 6. 特征中的噪声导致模型过拟合

#### 1.1 无量纲化

针对连续型特征,通过去除不同特征间由于量纲不同引起的误差,从而提升模型收敛速度和模型精度(对于涉及距离计算的模型,无量纲化是必须的)

| 方法             | 思想                                       | 备注 | E                     |
|----------------|------------------------------------------|----|-----------------------|
| StandardScaler | z-score 标准化,零均值、单位方差                     | 1. | 改善分布, 消除分布产生的度量偏差     |
|                | $x'=(x-\mu)/\sigma$                      | 2. | 使数据更符合模型统计假设, 正态分     |
|                |                                          |    | 布→标准正态分布,             |
|                |                                          | 3. | 在噪声影响下可以更好的保持样本       |
|                |                                          |    | 间距(相对于 MinMaxScaler)  |
| MinMaxScaler   | 离差标准化(归一化),将数据映射到[0,1]                   | 1. | 输出范围确定                |
|                | $x' = (x - x_{min})/(x_{max} - x_{min})$ | 2. | 易受异常值影响,鲁棒性差          |
|                |                                          | 3. | 类似有 MaxAbsScaler,     |
|                |                                          |    | a) $x' = x/\max( x )$ |
| \              |                                          |    | b) 将数据映射到[-1,1](正负值)  |
|                |                                          |    | c) 不会破坏稀疏结构           |
| RobustScaler   | 鲁棒标准化, 减去中位数再除以四分位距                      | 1. | 鲁棒性好,不受异常值影响          |
|                | $x' = (x - x_{median})/IQR$              | 2. | 同时可以保持异常值 (离群点) 特性    |

### 1.2 离散型特征处理

对于离散型特征,通常原始输入为字符串形式,大部分模型无法接收该输入;而数值型离散型特征入模后通常会被当作连续型特征处理,从而造成训练误差

| 工作图》(以自是市公区工作是外工作图》),《市经济》 |                                   |    |                 |  |
|----------------------------|-----------------------------------|----|-----------------|--|
| 方法                         | 思想                                | 备注 |                 |  |
| Label Encoding             | 标签编码, 使用字典方式, 将特征的类别              | 1. | 无监督方法           |  |
|                            | 取值和递增整数相关联                        | 2. | 适用于处理有序特征(针对目标) |  |
|                            | [['A'],['B'],['C']]→[[0],[1],[2]] | 3. | 除作为连续型特征应用于一般模  |  |

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 型外,更适合支持类别性质特征的             |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------|
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 模型 (LightGBM、XGBoost) 或作    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 为 NN embedding 层的输入         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4. | 与 Ordinal Encoding (序列编码) 类 |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 似,实际使用时仅输入有区别               |
| One-Hot Encoding | 独热编码,也称一位有效编码,使用 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. | 无监督方法                       |
|                  | 位状态寄存器对特征的 N 个状态编码                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2. | 适用于处理无序特征(特征取值扩             |
|                  | $[[\text{`A'}],[\text{`B'}],[\text{`C'}]] \rightarrow [[1,0,0],[0,1,0],[0,0,1]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 展到欧式空间,使距离度量计算更             |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 合理),对于有序特征则会丢失顺             |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 序信息(相较于 Label Encoding)     |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3. | 在一定程度上扩增了特征维度,引             |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 入非线性,提升模型拟合能力,且             |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 便于后续做特征组合                   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4. | 特征类别数量过多时(高基数),会            |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 产生高维稀疏矩阵,计算复杂度上             |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N. | 升,有过拟合风险(维度灾难)              |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5. | 相比基于树的模型(LightGBM、          |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | XGBoost),更适用于线性模型           |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | (LR)                        |
| Target Encoding  | 目标编码, 也称均值编码, 将特征的类别                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1. | 有监督方法                       |
|                  | 取值表示为其对应的目标概率估计                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2. | 适合对高基数特征编码                  |
|                  | 使用先验概率估计和后验概率估计的凸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3. | 对于回归任务, 概率估计使用均值            |
|                  | 组合 (加权平均) 表示, 并加入正则化方                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4. | 对于多分类任务,使用one-vs-all策       |
|                  | 法(参数、CV)避免过拟合                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 略,会生成多个特征(目标类别)             |
|                  | $\hat{P}_k = \lambda * prior + (1 - \lambda) * posterior$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5. | 避免过拟合方法:                    |
|                  | $prior = \hat{P}(y = y_c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ŀ  | a) 调整参数: 阈值 t、斜率 f          |
|                  | $posterior = \hat{P}(y = y_c   x = x_k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | b) CV: k 折交叉验证, 结果合并        |
|                  | $\lambda = 1/(1 + e^{(n-t)/f})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                             |
| WOE Encoding     | 证据权重编码 (Weight of Evidence),将                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1. | 有监督方法                       |
|                  | 特征的类别取值表示为其对应的正负样                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2. | 一般用于二分类任务                   |
|                  | 本之间的差异                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3. | 量纲统一,特征内不同取值的间隔             |
|                  | $WOE_k = \ln \left( \frac{\#y_k^+/\#y^+}{\#y_k^-/\#y^-} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 标准化 (单位 WOE 变化差值恒定)         |
|                  | $WOE_k = III \left( \frac{1}{2} \frac{1}{$ | 4. | WOE 和 ln(odds)单调性一致(WOE     |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 经转换可表示为 ln(odds)和常量),       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 可将非线性特征转为线性,对GLM            |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 的使用很有必要                     |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5. | 结合分箱 (类别取值多) 可用于计           |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 算 IV,衡量特征预测能力               |
| i l              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                             |

# 1.3 缺失值处理

实际业务数据中, 绝大部分数据都包含缺失值, 且大部分模型无法接收含有缺失值的输入,

#### 因此一般需要对含有缺失值的特征做预先处理



| 方法     | 思想                                  | 备注                 |
|--------|-------------------------------------|--------------------|
| 删除     | 1. 删除含有缺失值的样本(存在多个特征缺失,             | 1. 删除法             |
|        | 且该类样本占比少)                           | 2. 对于非 MCAR, 存在信息丢 |
|        | 2. 删除缺失值较多的特征 (特征覆盖度<10%)           | 失                  |
|        |                                     | 3. 可以通过对完整样本加权,降   |
|        |                                     | 低删除含缺失值样本的影响       |
| 简单填充   | 1. 连续型特征:均值、中位数、最大值、最小值             | 1. 填充法             |
|        | 2. 离散型特征:                           | 2. 存在人为增加噪声        |
|        | a) 无序: 众数                           | 3. 结合其他特征条件,例:同一   |
|        | b) 有序:中位数、最大值、最小值                   | 「小区」下的平均「房价」       |
|        | 3. 时间序列:上次、下次观测结转,前后平均              | 4. 最大值、最小值填充侧重于将   |
|        |                                     | 特征取值归到两端, 便于后续     |
|        |                                     | 进行分箱处理或应用树模型       |
|        |                                     | 寻找最优分裂点            |
| 回归填充   | 使用任意回归方法,将含有缺失值的特征作为 y,其            | 1. 填充法             |
|        | 他特征作为 X, 使用完备样本进行拟合, 对缺失数据          | 2. 计算复杂度较高         |
|        | 进行预测                                | 3. 可根据特征相关性,选择合适   |
|        |                                     | 的特征进行回归拟合          |
|        |                                     | a) 低相关性: 预测偏差大     |
|        |                                     | b) 高相关性:特征冗余       |
|        |                                     | c) 一般介于两者之间        |
|        |                                     | 4. 有过拟合风险          |
| K 近邻填充 | 使用 K-NN 方法,计算含有缺失值的样本的 K 个近         | 1. 填充法             |
|        | 邻样本,并使用均值对缺失值进行填充                   | 2. 样本距离度量使用「缺失值加   |
|        |                                     | 权欧氏距离」             |
| 多重填充   | 1. 重复展开单次填充(对填充值、模型参数、模             | 1. 填充法             |
|        | 型样本加噪),得到多个完整的样本集                   | 2. 计算复杂度高          |
|        | 2. 采用同样的分析方法对所有样本集进行分析              | 3. 相比使用某一方法进行单次    |
|        | 3. 基于分析结果对填充结果做选择或综合                | 填充置信度更高            |
| 特殊值填充  | 使用-99999、-1、0、99999、'unknown'等非特征取值 | 1. 填充法             |
|        | 范围内的值进行填充,表示特征的「缺失值」取值              | 2. 后续处理:           |
|        |                                     | a) 连续型特征: 结合分箱     |

|     |                        |    | 处理 (单独视为一箱),        |
|-----|------------------------|----|---------------------|
|     |                        |    | 或视为填充最大值、最          |
|     |                        |    | 小值 (效果同上)           |
|     |                        |    | b) 离散型特征:结合编码       |
|     |                        |    | 处理(lbe 两端、ohe)      |
| 不处理 | 对含缺失值的样本不做任何处理,直接输入可以处 | 1. | 忽略法                 |
|     | 理缺失值的模型                | 2. | 相关模型有: RF、LightGBM、 |
|     |                        |    | XGBoost (最大增益划分方    |
|     |                        |    | 向、默认划分方向)           |

## 1.4 异常值处理

异常数据,也称离群点,是实际业务数据分布的常态,该类数据在整体或某些特征维度(连续型特征)上显著不同于其他数据,与「正常数据」的分布有显著差异



在对异常数据中部分特征维度的异常值处理之前,我们还需要识别哪些是异常值。除了人工经验筛选外、我们还可以借助以下方法对大数据量样本进行异常值检测:

| 经验师选外,我们还可以信助以下方法对人数据里件本进行开吊阻检测. |                                                                                       |                   |
|----------------------------------|---------------------------------------------------------------------------------------|-------------------|
| 方法                               | 思想                                                                                    | 备注                |
| 统计模型方法                           | 1. 3σ准则:                                                                              | 1. 1、2、3 为参数化方法:  |
|                                  | $(\mu - 3\sigma, \mu + 3\sigma)$ 范围外的数据为异常值                                           | a) 先验分布假设(正态)     |
|                                  | (范围内占比 99.74%)                                                                        | b) 基于坚实的统计学理论     |
|                                  | 2. Grubbs 检验 (最大归一化残差检验):                                                             | c) 大多针对一元数据(3     |
|                                  | $G_i = (x_i - \mu)/\sigma$ ,设定置信度水平,查表确                                               | 适用于多维,2 用于多       |
|                                  | 定是否为异常值 (大于查表临界值)                                                                     | 维时使用马氏距离)         |
|                                  | 3. 卡方检验:                                                                              | 2. 4、5、6 为非参数化方法: |
|                                  | $(x_i - E_i)^2$                                                                       | a) 没有先验分布假设       |
|                                  | $\chi^2 = \sum_{i=1}^n \frac{(x_i - E_i)^2}{E_i},  \boxed{\square} \bot$              | b) 5、6 可以通过观察数据   |
|                                  | 4. 切比雪夫不等式:                                                                           | 分布,直观的找到异常        |
|                                  | D(IV 1 2 10 2 10 2 11 2 11 2 11 2 11 2 11 2                                           | 值的大致范围            |
|                                  | $P\{ X - \mu  > \varepsilon\} < \frac{\sigma^2}{\varepsilon^2}$ ,至少有 $(1 - 1/k^2)$ 的数 | c) 需要指定其他参数,如     |
|                                  | 据在μ±kσ内。(μ±4.5σ范围内占比 95%)                                                             | 6 中直方图箱的数量、       |
|                                  | 5. 四分位距 (箱线图):                                                                        | 宽度、面积等。影响检        |
|                                  | $(Q_1 - 1.5 * IQR, Q_3 + 1.5 * IQR)$ (范围内占                                            | 测效果               |
|                                  | <b>է</b> 99.3%)                                                                       |                   |

|        | 6. HBOS (基于直方图的离群点分数):                              |             |                       |
|--------|-----------------------------------------------------|-------------|-----------------------|
|        | $HBOS(x) = \sum_{i=1}^{n} \ln(1/hist_i(x_i))$ ,分数高为 | ,           |                       |
|        | 离群点                                                 |             |                       |
| 聚类方法   | 1. 使用任意聚类方法,离群点聚类为一小簇                               | 1.          | 1 为基于簇的方法             |
|        | 2. 基于密度聚类方法,利用密度定义识别不                               | 2.          | 2 为基于密度的方法,例如         |
|        | 属于任何簇的离群点                                           |             | DBSCAN 中的「噪声点」、       |
|        |                                                     |             | FSDP 中的「cluster halo」 |
|        |                                                     | 3.          | 检测效果依赖于聚类效果           |
|        |                                                     | 4.          | 密度聚类方法参数多             |
| K 近邻方法 | 通过计算 KNN 平均距离,降序得到头部离群点                             | 1.          | 计算复杂度高                |
|        |                                                     | 2.          | 参数 K 的选择影响检测效果        |
| 奇异点检测  | One-Class SVM(单类支持向量机):                             | 1.          | 训练集中不包含异常样本           |
|        | 1. OCSVM: 通过构建与特征空间中的零点路                            | <u>i</u> 2. | 半监督学习                 |
|        | 离最大的超平面,将零点和所有样本分开                                  | 3.          | 使用训练后的模型对新数据          |
|        | 2. SVDD:构建超球体,最小化体积(样本至                             | I           | 检测离群点                 |
|        | 中心的距离,半径 R)                                         |             |                       |
| 离群点检测  | 1. Robust covariance (稳健协方差):                       | 1.          | 训练集中包含异常样本            |
|        | 假设数据 (一维) 服从正态分布, 估计最适                              | 2.          | 无监督学习                 |
|        | 合的一组参数(均值、方差)进行拟合                                   | 3.          | 用于检测自身离群点和新数          |
|        | 2. isolation Forest (孤立森林):                         |             | 据离群点                  |
|        | 通过子采样构建孤立树(递归随机分割数                                  | 4.          | 同样可用于奇异点检测            |
|        | 据子集),计算样本点通过孤立树的路径长                                 | 5.          | 1中,对于高维数据,估计参         |
|        | 度, 再计算整体孤立森林得分, 识别离群点                               | Ţ           | 数为均值向量和协方差矩阵          |
|        | $s(x,n) = 2^{\frac{E(h(x))}{c(n)}}$                 | 6.          | 2中,分布稀疏且距离密度高         |
|        | $s(x,n) = 2  ^{c(n)}$                               |             | 的样本较远的样本点(离群          |
|        | 3. LOF (局部异常因子):                                    |             | 点),在孤立树中被切分的次         |
|        | 计算 KNN 内其他样本点的局部可达密度                                | [           | 数低,路径长度短              |
|        | 的平均值与该样本点的局部可达密度的比                                  | 7.          | 3 同样为基于密度的方法。其        |
|        | 值,越大于1越可能为离群点                                       |             | 中,可达距离表示样本点           |
|        | 局部可达密度:KNN 内其他样本点到该点                                | į           | KNN 的范围距离             |
| \      | 的可达距离的均值的倒数                                         |             |                       |

通过异常值检测,我们确定了样本中的「正常数据」和「异常数据」,在建模之前,我们需要对「异常数据」中存在异常的特征维度进行处理,避免可能带来的模型拟合精度问题

| 24.3 1311132 |                               |                   |  |
|--------------|-------------------------------|-------------------|--|
| 方法           | 思想                            | 备注                |  |
| 删除           | 1. 删除含有异常值的样本                 | 1. 存在信息丢失问题       |  |
|              | 2. 删除有较多明显异常的特征               | 2. 2 中主要倾向于人工经验识  |  |
|              |                               | 别的「错误数据」          |  |
| 截断           | 根据人工经验或统计模型方法,对异常值进行截断:       | 1. 人工经验处理可以在降低异   |  |
|              | 1. 人工经验: 例:「正常数据」的范围为(0,200), | 常值影响的情况下保持离群      |  |
|              | 「异常数据」10000 截断至 500           | 点特性               |  |
|              | 2. 统计模型方法:例:四分位距方法的范围两端       | 2. 统计模型方法更加鲁棒     |  |
| 分箱           | 对特征进行分箱转换,将异常值归到近邻箱中          | 1. 对异常值有很强的鲁棒性    |  |
|              |                               | 2. 同《特征转换》中「分箱转换」 |  |
| 视为缺失值        | 将异常值视为缺失值,使用缺失值处理方法           | 同《缺失值处理》          |  |

| 不处理 | 对含有异常值的特征不做单独处理,依赖其他处理 | 1. | 1 中主要方法有                    |
|-----|------------------------|----|-----------------------------|
|     | 方法或模型:                 |    | StandardScaler、RobustScaler |
|     | 1. 「无量纲化」处理方法降低异常值影响   | 2. | 2 中主要模型包括: RF、              |
|     | 2. 使用鲁棒性更好的模型进行拟合      |    | LightGBM、XGBoost (基于树       |
|     | 3. 使用可以识别异常值的聚类方法      |    | 的划分统计)                      |
|     |                        | 3. | 3 中主要聚类模型包括:                |
|     |                        |    | DBSCAN、FSDP                 |

## 1.5 特征转换

除了前述的「无量纲化」(标准化转换)和「离散型特征处理」(编码转换),对于连续型特征,我们还可以通过其他转换,改善存在的分布问题和噪声问题,进一步提升模型拟合能力

| 方法    | 思想                                                                                                                                                                                                                                                                                                                          | 备注                   |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 非线性转换 | 通过幂次变换改善特征分布 (接近正态分布), 尽可                                                                                                                                                                                                                                                                                                   | 1. 有利于方差稳定(消除异方      |
|       | 能满足模型假设(线性回归),提升模型拟合精度:                                                                                                                                                                                                                                                                                                     | 差) 和偏度最小化 (正态分布      |
|       | 1. 对数转换:                                                                                                                                                                                                                                                                                                                    | 指标),便于后续统计推断和        |
|       | $x^{(\lambda)} = log_{\lambda}(x)$                                                                                                                                                                                                                                                                                          | 假设验证                 |
|       | 2. Box-Cox 变换:                                                                                                                                                                                                                                                                                                              | 2. 一般使用 EDA 方法(直方图、  |
|       | $x^{(\lambda)} = \begin{cases} (x^{\lambda} - 1)/\lambda, & \text{if } \lambda \neq 0 \\ \ln(x), & \text{if } \lambda = 0 \end{cases}$                                                                                                                                                                                      | QQ 图) 观察确定存在分布问      |
|       | $\ln(x), \qquad if \ \lambda = 0$                                                                                                                                                                                                                                                                                           | 题的特征,再进行处理           |
|       | 3. Yeo-Johnson 变换:                                                                                                                                                                                                                                                                                                          | 3. 1 适用于取值范围较大的特     |
|       | $\left(\left[(x+1)^{\lambda}-1\right]\right)$                                                                                                                                                                                                                                                                               | 征。通过缩小特征尺度, 使特       |
|       | $\frac{1}{\lambda},  \text{if } \lambda \neq 0, x \geq 0$                                                                                                                                                                                                                                                                   | 征更平滑,降低离群点影响         |
|       | $x^{(\lambda)} = \begin{cases} \ln(x+1), & \text{if } \lambda = 0, x \ge 0 \\ [(-x+1)^{2-\lambda} - 1] \end{cases}$                                                                                                                                                                                                         | (2、3 中的对数变换同理)       |
|       | $x^{(\lambda)} = \begin{cases} \frac{\left[(x+1)^{\lambda} - 1\right]}{\lambda}, & \text{if } \lambda \neq 0, x \ge 0\\ \ln(x+1), & \text{if } \lambda = 0, x \ge 0\\ -\frac{\left[(-x+1)^{2-\lambda} - 1\right]}{2-\lambda}, & \text{if } \lambda \neq 2, x < 0\\ -\ln(-x+1), & \text{if } \lambda = 2, x < 0 \end{cases}$ | 4. 1、2要求特征值为正数       |
|       | $-\ln(-x+1), \qquad if \ \lambda=2, x<0$                                                                                                                                                                                                                                                                                    | 5. 2、3 中的参数λ可以使用极大   |
|       |                                                                                                                                                                                                                                                                                                                             | 似然、Bayes 方法进行估计      |
|       |                                                                                                                                                                                                                                                                                                                             | 6. 1 也常用于对回归预测的 y 值  |
|       |                                                                                                                                                                                                                                                                                                                             | 进行转换,避免预测结果为负        |
| 分箱转换  | 通过将特征取值范围划分为连续的不同区间(箱),                                                                                                                                                                                                                                                                                                     | 1. 2、3、4 为无监督方法      |
|       | 并按序对区间进行统一编码,使连续型特征转换为                                                                                                                                                                                                                                                                                                      | a) 需要人工设定分箱数         |
|       | 离散型有序特征 (连续特征离散化),从而避免噪声                                                                                                                                                                                                                                                                                                    | b) 4 中一般使用 KMeans    |
|       | 和异常值的影响,增强模型泛化性:                                                                                                                                                                                                                                                                                                            | 2. 5、6 为有监督方法        |
|       | 1. 人工分箱:人工设定分箱阈值                                                                                                                                                                                                                                                                                                            | a) 5 为 top-down 方法,6 |
|       | 2. 等距分箱:每个区间的宽度相同                                                                                                                                                                                                                                                                                                           | 为 bottom-up 方法       |
|       | 3. 等频分箱:每个区间的样本数相同                                                                                                                                                                                                                                                                                                          | b) 5 中使用 Gini 系数作为   |
|       | 4. 聚类分箱: 使用聚类方法, 聚类得到的簇即为                                                                                                                                                                                                                                                                                                   | 分箱指标,也可使用其           |
|       | 分箱结果                                                                                                                                                                                                                                                                                                                        | 他指标:                 |
|       | 5. CART 分箱:使用 CART 算法对 y 进行拟合,                                                                                                                                                                                                                                                                                              | i. KS: 对应 Best-KS    |
|       | 得到的叶子节点即为分箱结果                                                                                                                                                                                                                                                                                                               | 分箱方法(要求              |
|       | 6. 卡方分箱:循环计算相邻区间(初始为单个样                                                                                                                                                                                                                                                                                                     | bad rate 单调)         |
|       | 本) 的卡方值, 对最小卡方值区间对进行合并,                                                                                                                                                                                                                                                                                                     | ii. IV               |
|       | 直至满足设定条件                                                                                                                                                                                                                                                                                                                    | c) 5 中需要设定最小分箱       |

$$\chi^{2} = \sum_{i=1}^{2} \sum_{j=1}^{J} (N_{i,j} - E_{i,j})^{2} / E_{i,j}$$
$$E_{i,j} = N_{i} * C_{j} / N$$

- 占比 (0.05)、Gini 系数 阈值、最大分箱数 (3~ 10) 等参数
- d) 为防止过拟合, 5 中常使用剪枝方法进行处理
- e) 6 适用于分类任务;可以通过设定卡方阈值 (自由度&置信度)或 最小、最大区间数确定 分箱结果
- 3. 可以对分箱后的特征使用 ohe 编码处理:
  - a) 引入非线性
  - b) 稀疏向量运算快
  - c) 结合「特征组合」方法, 可进一步提升模型效果
- 4. 一般用于「海量离散特征+简单模型」策略
- 5. 可用于计算 IV, 衡量特征预测能力
- 6. 常用于 LR 评分卡建模 (结合 WOE 编码)

### 1.6 代码片段

#### 「无量纲化」

```
# 无量纲化
import pandas as pd
import joblib
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
df = pd.read_csv('xxx.txt', sep='\t', encoding='utf-8')
df_train, df_test = train_test_split(df, test_size=0.2, random_state=2024)
df_train_X, df_train_y = df_train.iloc[:, 1:], df_train.iloc[:, 0]
df_test_X, df_test_y = df_test.iloc[:, 1:], df_test.iloc[:, 0]
# z-score标准化
ss = StandardScaler()
# 训练集拟合&转换
X_train_ss = ss.fit_transform(df_train_X)
joblib.dump(ss, 'ss.pickle')
# 测试集以训练集标准进行转换
ss = joblib.load('ss.pickle')
X_test_ss = ss.transform(df_test_X)
```

```
# 离散型特征处理
import pandas as pd
import joblib
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
df = pd.read_csv('xxx.txt', sep='\t', encoding='utf-8')
df_train, df_test = train_test_split(df, test_size=0.2, random_state=2024)
df_train_X, df_train_y = df_train.iloc[:, 1:], df_train.iloc[:, 0]
df_test_X, df_test_y = df_test.iloc[:, 1:], df_test.iloc[:, 0]
# Label Encoding
# 训练集拟合&转换
dict_lbe = {}
list_X_train_lbe = []
for x in df_train_X.columns:
      lbe = LabelEncoder()
       df_X_lbe_each = pd.DataFrame(lbe.fit_transform(df_train_X[x]), columns=[x])
       dict_lbe[x] = lbe
       list_X_train_lbe.append(df_X_lbe_each)
df_X_train_lbe = pd.concat(list_X_train_lbe, axis=1)
joblib.dump(dict_lbe, 'dict_lbe.pickle')
# 测试集以训练集标准进行转换
dict_lbe = joblib.load('dict_lbe.pickle')
list_X_test_lbe = []
for x in df_test_X.columns:
       list_feat_values_unseen = list(set(df_test_X[x].unique())-set(dict_lbe[x].classes_))
       if len(list_feat_values_unseen) > 0: # 未见过的特征取值处理, 归为-1 (保证训练集对应特征有该取值)
             df_test_X[x].replace(list_feat_values_unseen, -1, inplace=True)
       df_X_lbe_each = pd.DataFrame(dict_lbe[x].transform(df_test_X[x]), columns=[x])
       list_X_test_lbe.append(df_X_lbe_each)
df_X_test_lbe = pd.concat(list_X_test_lbe, axis=1)
# One-Hot Encoding
# 训练集拟合&转换
enc = OneHotEncoder(categories='auto', handle_unknown='ignore')
clf ohe = enc.fit(df train X)
\label{eq:df_xtrain_ohe} $$ df_X_{train_ohe} = pd.DataFrame(clf_ohe.transform(df_train_X).toarray(), columns=clf_ohe.get_feature_names_out()) $$ df_X_{train_ohe} = pd.DataFrame(clf_ohe.train_X).toarray(), columns=clf_ohe.train_X).toarray(), columns=clf_ohe.train_X), columns=cl
joblib.dump(clf_ohe, 'clf_ohe.pickle')
# 测试集以训练集标准进行转换
clf_ohe = joblib.load('clf_ohe.pickle')
for i, x in enumerate(df_test_X.columns):
      list_feat_values_unseen = list(set(df_test_X[x].unique())-set(clf_ohe.categories_[i]))
     if len(list_feat_values_unseen) > 0: # 同上
           df_test_X[x].replace(list_feat_values_unseen, -1, inplace=True)
df_X_test_ohe = pd.DataFrame(clf_ohe.transform(df_test_X).toarray(), columns=clf_ohe.get_feature_names_out())
# Target Encoding, scikit-learn>=1.3.2
from sklearn.preprocessing import TargetEncoder
# 训练集拟合&转换
te = TargetEncoder(target_type='binary', smooth='auto', cv=5)
X_train_te = enc_auto.fit_transform(df_train_X.values, df_train_y.values)
df_X_train_te = pd.DataFrame(X_train_te, columns=df_train_X.columns)
joblib.dump(te, 'te.pickle')
# 测试集以训练集标准进行转换
te = joblib.load('te.pickle')
X_test_te = enc_auto.transform(df_test_X.values)
df X test te = pd.DataFrame(X test te, columns=df test X.columns)
```

#### 「缺失值处理 |

```
# 缺失值处理
import pandas as pd
import numpy as np
import joblib
from sklearn.model_selection import train_test_split
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
df = pd.read_csv('xxx.txt', sep='\t', encoding='utf-8')
df_train, df_test = train_test.split(df, test_size=0.2, random_state=2024)
df_train_X, df_train_y = df_train.ibloc[:, 1:], df_train.ibloc[:, 0]
df_test_X, df_test_y = df_test.ibloc[:, 1:], df_test_ibloc[:, 0]
# 训练業处理
df_train_X_des = df_des(df_train_X)
df_train_X_des = df_train_X[k *for x in df_train_X.columns if x not in df_train_X_des[df_train_X_des['Miss Percent(%)']>90.0].index]]
df_train_X_des.to_csv('df_train_X_des.csv', encoding='utf-8')
# 週试集以训练集标准处理

df_train_X_des = pd.read_csv('df_train_X_des.csv', encoding='utf-8')

df_test_X = df_test_X[[x for x in df_test_X.columns if x not in df_train_X_des[df_train_X_des['Miss Percent(%)']>90.0]['Unnamed: 0']]]
# 填充--简单&特殊
# 训练集处理
dict fillna = {
        'bbb': df_train_X['bbb'].mean(),
df_train_X['aaa'].fillna(dict_fillna['aaa'], inplace=True)
idf_train_X['bbb'].fillna(dict_fillna['bbb'], inplace=True)
joblib.dump(dict_fillna, 'dict_fillna.pickle')
# 测试集以训练集标准处理
# MS WARROW WIRD REFUTELL TELL
dict_fillna = joblib.load('dict_fillna.pickle')
df_test_X['aaa'].fillna(dict_fillna['aaa'], inplace=True)
df_test_X['bbb'].fillna(dict_fillna['bbb'], inplace=True)
# 植态__同归
# 训练集处理
ii = IterativeImputer(missing_values=np.nan, max_iter=10, n_nearest_features=50, random_state=2024)
ii.fit(df train X.values)
train_X_ii = ii.transform(df_train_X.values)
joblib.dump(ii, 'ii.pickle')
# 测试集以训练集标准处理
ii = joblib.load('ii.pickle')
test_X_ii = ii.transform(df_test_X.values)
```

#### 「异常值处理」

```
# 异常值处理
import pandas as pd
import numpy as np
import joblib
from sklearn.model_selection import train_test_split
df = pd.read_csv('xxx.txt', sep='\t', encoding='utf-8')
df_train, df_test = train_test_split(df, test_size=0.2, random_state=2024)
df_train_X, df_train_y = df_train.iloc[:, 1:], df_train.iloc[:, 0]
df_test_X, df_test_y = df_test.iloc[:, 1:], df_test.iloc[:, 0]
# 使用四分位距检测并截断
Q1 = np.quantile(df_train_X['aaa'], 0.25)
Q3 = np.quantile(df_train_X['aaa'], 0.75)
IQR = Q3 - Q1
dict_outlier = {
     'aaa': [Q1-1.5*IQR, Q3+1.5*IQR]
index_outlier_down = df_train_X[(df_train_X['aaa']<dict_outlier['aaa'][0])].index</pre>
index_outlier_up = df_train_X[(df_train_X['aaa']>dict_outlier['aaa'][1])].index
df_train_X.loc[index_outlier_down, 'aaa'] = dict_outlier['aaa'][0]
df_train_X.loc[index_outlier_up, 'aaa'] = dict_outlier['aaa'][1]
joblib.dump(dict_outlier, 'dict_outlier.pickle')
# 测试集以训练集标准处理
dict outlier = joblib.load('dict outlier.pickle')
index_outlier_down = df_test_X[(df_test_X['aaa'] < dict_outlier['aaa'][0])].index</pre>
index_outlier_up = df_test_X[(df_test_X['aaa']>dict_outlier['aaa'][1])].index
df_test_X.loc[index_outlier_down, 'aaa'] = dict_outlier['aaa'][0]
df_test_X.loc[index_outlier_up, 'aaa'] = dict_outlier['aaa'][1]
```

#### 「特征转换|

```
# 特征转换
import pandas as pd
 import numpy as np
 import joblib
from sklearn.model selection import train_test_split
from sklearn.preprocessing import PowerTransformer, KBinsDiscretizer
df = pd.read_csv('xxx.txt', sep='\t', encoding='utf-8')
df_train, df_test = train_test_split(df, test_size=0.2, random_state=2024)
df_train_X, df_train_y = df_train.iloc[:, 1:], df_train.iloc[:, 0]
df_test_X, df_test_y = df_test.iloc[:, 1:], df_test.iloc[:, 0]
# Yeo-Johnson变换, z-score标准化
pt = PowerTransformer(method='yeo-johnson', standardize=True, copy=True)
pt.fit(df_train_X)
train_X_pt = pt.transform(df_train_X)
joblib.dump(pt, 'pt.pickle')
# 测试集以训练集标准外理
pt = joblib.load('pt.pickle')
test_X_pt = pt.transform(df_test_X)
 # 等频分箱, 5箱, lbe
kbd = KBinsDiscretizer(n_bins=5, encode='ordinal', strategy='quantile')
kbd.fit(df_train_X)
train_X_kbd = kbd.transform(df_train_X)
joblib.dump(pt, 'kbd.pickle')
# 测试集以训练集标准外理
kbd = ioblib.load('kbd.pickle')
test_X_pt = kbd.transform(df_test_X)
```

### 2. 特征选择

特征预处理完成后,基于以下原因,我们还需要对特征进行筛选,再输入算法模型中训练:

- 1. 存在无关特征 (X 与 y), 对模型来说是噪声, 容易造成过拟合
- 2. 存在冗余特征 (X 与 X), 影响模型的可解释性
- 3. 特征维度高,模型计算复杂度高,建模资源和成本消耗大
- 4. 样本量一定时,模型效果不会随着特征维度增加而一直升高(维度灾难),对于使用高维度特征得到的模型,根据奥卡姆剃刀原理,如果能找到拟合效果相同且特征维度更低的模型,低维特征模型往往是更好的模型,具有更好的泛化性

#### 2.1 Filter

过滤法,按照特征自身的发散性或与目标(因变量)、其他特征(自变量)之间的相关性进行评分,通过设定阈值或选择特征个数,进行特征筛选

| 方法 | 思想                   | 备注                    |
|----|----------------------|-----------------------|
| 方差 | 计算各特征方差,设定预期阈值,筛选方差大 | 1. 基于特征自身发散性          |
|    | 于阈值的特征               | 2. 可基于特征分布计算阈值:       |
|    |                      | a) 布尔特征: 0-1 分布,      |
|    |                      | Var(x) = p * (1 - p), |
|    |                      | 过滤 0 占比为 p 的特征        |
|    |                      | b)                    |
|    |                      | 3. 对于实际业务,通常筛掉方差      |
|    |                      | 为 0 的特征(缺失导致全部境       |
|    |                      | 充为默认值)                |

| 单因素方差分析                  | 通过假设检验方法 (F 检验), 计算特征对于目                                                                                                 | 1. | 基于特征与目标、其他特征间        |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------|----|----------------------|
|                          | 标、其他特征是否有显著性影响,筛选 P 值小                                                                                                   |    | 的相关性                 |
|                          | 于等于显著性水平 (置信度) α的特征 (原假设                                                                                                 | 2. | 适用于离散型特征在回归任         |
|                          | 为不显著)                                                                                                                    |    | 务(目标为连续型)下的相关        |
|                          |                                                                                                                          |    | 性计算;对于分类任务(目标)       |
|                          | $F = \frac{S_b/(r-1)}{S_w/(n-r)} \sim F(r-1, n-r)$                                                                       |    | 为离散型)下的连续型特征,        |
|                          | $P(F(r-1,n-r),F) \le \alpha$                                                                                             |    | 可以反向计算               |
|                          | 1 (1 (1 1,10 1),1 ) <u>u</u>                                                                                             | 3. | 也可用于离散型特征和连续         |
|                          |                                                                                                                          | ٥. | 型特征间的相关性计算           |
|                          |                                                                                                                          | 4. | 置信度α一般设定为 0.05       |
|                          |                                                                                                                          | 5. | 对于多因素与目标间的相关         |
|                          |                                                                                                                          | 3. | 性计算(先验条件、因果推断        |
|                          |                                                                                                                          |    | 控制组+特征),可以通过多        |
|                          |                                                                                                                          |    | 元线性回归分析计算单特征         |
|                          |                                                                                                                          |    | p值(整体F检验,单特征不        |
|                          |                                                                                                                          |    | 显著假设)                |
| <br>卡方检验                 | 通过假设检验方法(皮尔逊卡方检验), 计算特                                                                                                   | 1. | 基于特征与目标、其他特征间        |
| 1, 23, 1 <u>25</u> , 257 | 征对于目标、其他特征是否有显著性影响,筛                                                                                                     |    | 的相关性                 |
|                          | 选 P 值小于等于显著性水平α的特征                                                                                                       | 2. | 适用于离散型特征在分类任         |
|                          |                                                                                                                          | 2. | 务下的相关性计算             |
|                          | $\chi_{Pearson}^{2} = \sum_{i=1}^{R} \sum_{j=1}^{C} \frac{(A_{i,j} - T_{i,j})^{2}}{T_{i,j}} \sim \chi^{2}(R - 1, C - 1)$ | 3. | 也可用于离散型特征之间的         |
|                          | $P(\chi^2(R-1,C-1),\chi^2_{Pearson}) \le \alpha$                                                                         | 5  | 相关性计算                |
|                          | $I(\chi(R^{-1},C^{-1}),\chi_{Pearson}) = u$                                                                              | 4. | 置信度α一般设定为 0.05       |
| IV 值                     | 信息价值 (Information value), 由特征各分组                                                                                         | 1. | 基于特征与目标间的相关性         |
| 1. 14                    | WOE 加权求和计算(消除分组数量差异带来的                                                                                                   | 2. | WOE 相关同《离散型特征编       |
|                          | 误差),衡量特征对目标的预测能力。筛选 IV                                                                                                   |    | 码》中「WOE Encoding」    |
|                          | 值大于阈值的特征                                                                                                                 | 3. | 一般用于二分类任务,常用于        |
|                          |                                                                                                                          |    | LR 评分卡建模             |
|                          | $IV = \sum_{i=0}^{K} (\#y_i^+ / \#y^+ - \#y_i^- / \#y^-) * WOE_i$                                                        | 4. | 计算时需要对特征做「分箱转        |
|                          | IV 值范围 预测能力                                                                                                              |    | 换」,受分箱效果影响,一般        |
|                          | (0,0.02) 无                                                                                                               |    | 分 3~5 箱, 分箱过多 IV 值   |
|                          | [0.02,0.1] 弱                                                                                                             |    | 偏高(不准确)              |
| \                        | (0.1,0.3] 中等                                                                                                             |    | 1131 3 (1 1 2 7 3 7  |
|                          | (0.3,0.5] 强                                                                                                              |    |                      |
|                          | (0.5,+∞) 异常                                                                                                              |    |                      |
| <br>相关系数                 | 计算特征与目标、其他特征的下列系数以及对                                                                                                     | 1. | 基于特征与目标、其他特征间        |
| 伯大尔奴                     | 应 P 值,筛选大于阈值且显著的特征:                                                                                                      | 1. | 的相关性                 |
|                          | 1. 皮尔逊相关系数:                                                                                                              | 2. | 1、2、3的取值范围为[-1,1],   |
|                          |                                                                                                                          |    | 表示负相关→不相关→正相         |
|                          | $\rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X * \sigma_Y}$                                                                      |    | 关, 绝对值越大相关性越强        |
|                          |                                                                                                                          | 3. | 1 为线性相关系数;属于参数       |
|                          |                                                                                                                          | ]  | 统计方法(t 检验要求数据为       |
|                          | $r_{s} = 1 - \frac{6 * \sum_{i=1}^{n} d_{i}^{2}}{n * (n^{2} - 1)}$                                                       |    | 正态分布);适用于连续型特        |
|                          | 3. 肯德尔相关系数:                                                                                                              |    | 征; 易受异常值影响           |
|                          | יי ווויטו דו ייי                                                                                                         |    | <b>声</b> / 勿入月日 臣が『日 |

| T                                                                                              |    |                                                 |
|------------------------------------------------------------------------------------------------|----|-------------------------------------------------|
| $\tau_b = \frac{n_c - n_d}{\sqrt{(n_0 - n_1) * (n_0 - n_2)}}$                                  | 4. | 2 为秩相关系数, 通过计算秩                                 |
| $\sqrt{(n_0 - n_1) * (n_0 - n_2)}$                                                             |    | 次 (特征值 rank, 值相同取平                              |
| 4. MIC (最大信息系数):                                                                               |    | 均值) 差值 d 表示相关性, 可                               |
| 不同尺度下归一化互信息的最大值                                                                                |    | 用于表示非线性相关性;属于                                   |
| $(y,y) = \sum_{x} \sum_{y \in \mathcal{Y}} p(x,y)$                                             |    | 非参数统计方法;适用于连续                                   |
| $I(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) * log_2\left(\frac{p(x,y)}{p(x) * p(y)}\right)$ |    | 型特征或离散型有序特征                                     |
| $mic(X;Y) = max_{m*n < B} \frac{I(X;Y)}{log_2(\min(m,n))}$                                     | 5. | 3 中为秩相关系数, 通过计算                                 |
| $mic(X;Y) = max_{m*n < B} \frac{1}{\log_2(\min(m,n))}$                                         |    | 协和对 $(n_c)$ 、不协和对 $(n_d)$ 、                     |
|                                                                                                |    | 不变对 $(n_1, n_2)$ 的数量差异                          |
|                                                                                                |    | 表示相关性,可用于表示非线                                   |
|                                                                                                |    | 性相关性;属于非参数统计方                                   |
|                                                                                                |    | 法;适用于连续型特征或离散                                   |
|                                                                                                |    | 型有序特征                                           |
|                                                                                                | 6. | $3$ 中 $\tau_b$ 适用于特征尺度相等                        |
|                                                                                                |    | 的情况,特征尺度不等则可以                                   |
|                                                                                                |    | 使用 $\tau_c = \frac{2*(n_c - n_d)}{n^2*(m-1)/m}$ |
|                                                                                                |    | 更用 $t_c = \frac{1}{n^2 \cdot (m-1)/m}$          |
|                                                                                                | 7. | 4 可以表示非线性相关性; 适                                 |
|                                                                                                |    | 用于连续型特征或离散型有                                    |
|                                                                                                |    | 序特征,使用时需要对特征做                                   |
|                                                                                                |    | 离散化处理 (m*n), 不同尺                                |
|                                                                                                |    | 度表示离散化的个数和方式                                    |
|                                                                                                | 8. | 4 相对于其他方法, 计算复杂                                 |
|                                                                                                |    | 度低,鲁棒性高,但数据量要                                   |
|                                                                                                |    | 求高                                              |
|                                                                                                |    |                                                 |

# 2.2 Wrapper

包装法,基于模型和评价指标,对特征集进行迭代多次训练,在每轮迭代中,根据设定的阈值或特征数量要求,进行特征筛选

| 方法     | 思想                     | 备注 | È                |
|--------|------------------------|----|------------------|
| 递归特征消除 | 根据模型的特征权重系数或重要性指标,在    | 1. | 计算复杂度较高, o(n)    |
|        | 每次训练完成后过滤低于阈值或尾部的特     | 2. | 用于过滤无关特征         |
|        | 征, 迭代多次处理直至满足要求, 余下的特征 | 3. | 可结合 CV 方法和评价指标   |
|        | 子集即为所求                 |    | 输出每次迭代处理后的模型     |
|        |                        |    | 效果,选择最合适的特征子集    |
|        |                        | 4. | 相关的模型和指标:        |
|        |                        |    | a) 广义线性回归:线性回    |
|        |                        |    | 归、逻辑回归等;特征       |
|        |                        |    | 权重系数、P值          |
|        |                        |    | b) SVM:线性核;特征权   |
|        |                        |    | 重系数              |
|        |                        |    | c) 树模型: XGBoost、 |

|          |                                    |    | L:14CDM 答,杜尔子                   |
|----------|------------------------------------|----|---------------------------------|
|          |                                    |    | LightGBM 等;特征重                  |
|          |                                    |    | 要性                              |
| 后向逐步特征消除 | 基于模型和评价指标, 在每轮迭代处理中, 循             | 1. | 计算复杂度高, $o(n^2)$                |
|          | 环使用 $n_i - 1$ 维特征进行模型训练(得到 $n_i$ 个 | 2. | 用于过滤无关、冗余特征                     |
|          | 模型),过滤"当前指标最优且优于上一轮"的              |    | a) 无关特征: 目标为 y; 评               |
|          | 模型所删除的特征,迭代多次处理直至满足                |    | 价指标包括: AUC、loss                 |
|          | 要求,余下的特征子集即为所求                     |    | (logloss, rmse), acc,           |
|          |                                    |    | recall、R <sup>2</sup> 或 AIC、BIC |
|          |                                    |    | (特征数量角度)等                       |
|          |                                    |    | b) 冗余特征: 目标为1维                  |
|          |                                    |    | X;降低多重共线性,改                     |
|          |                                    |    | 善模型可解释性,提升                      |
|          |                                    |    | 模型收敛速度;评价指                      |
|          |                                    |    | 标: $VIF = 1/(1 - R^2)$ ;        |
|          |                                    |    | 过滤最高且高于阈值                       |
|          |                                    |    | (一般为10)的特征                      |
|          |                                    | 3. | 可引入验证集或结合 CV 方                  |
|          |                                    |    | 法,得到的评价指标更准确,                   |
|          |                                    |    | 防止过拟合                           |
| 前向逐步特征构造 | 基于模型和评价指标, 在每轮迭代处理中, 循             | 1. | 计算复杂度高, o(n²)                   |
|          | 环增加1维特征(有放回;初始0)进行模型               | 2. | 用于过滤无关特征                        |
|          | 训练,筛选"当前指标最优且优于上一轮"的               | 3. | 其他同「后向逐步特征消除」                   |
|          | 模型所增加的特征,迭代多次处理直至满足                |    |                                 |
|          | 要求,最终的特征子集即为所求                     |    |                                 |

## 2.3 Embedded

嵌入法,利用模型自身的特征选择能力,不进行额外的特征筛选;或考虑到实际工程的计算资源成本,根据模型的特征权重系数和重要性指标,通过设定阈值或选择特征个数,进行特征筛选(类似于《Wrapper》中非迭代的「递归特征消除」)

| 方法    | 思想                   | 备注 | Ė                              |
|-------|----------------------|----|--------------------------------|
| 基于惩罚项 | 基于带 L1 正则项的线性模型,对特征进 | 1. | 仅适用于线性模型 $(y = W^T X + b)$ 在L1 |
|       | 行拟合,筛选权重系数不为0特征      |    | 正则项的作用下产生稀疏解的情况                |
|       | <i>Y</i>             | 2. | 大部分权重系数为 0 的特征为无关特征            |
|       |                      | 3. | 具有高相关性的特征可能存在某一个的              |
|       |                      |    | 权重系数被置 0 的情况, 可结合 L2 正则        |
|       |                      |    | 项 (降权平滑) 做进一步筛选: 额外筛选          |
|       |                      |    | L2 相近且 L1 为 0 的特征(相对于已筛        |
|       |                      |    | 选特征),再决定是否去除冗余特征               |
| 基于树模型 | 基于树模型对特征重要性的计算, 筛选大  | 1. | 特征重要性计算,以 XGBoost 为例:          |
|       | 于阈值的特征               |    | a) 特征分裂次数                      |
|       |                      |    | b) 特征分裂覆盖样本数                   |
|       |                      |    | c) 特征分裂增益                      |

#### 2.4 其他方法

| 方法 | 思想                                      | 备注 |                        |
|----|-----------------------------------------|----|------------------------|
| PI | Permutation Importance (置换特征重要性), 计算改变  | 1. | 没有模型限制以及对特定类型特         |
|    | 特征后,模型预测的误差:                            |    | 征的偏好                   |
|    | Step 1. 将数据划分为训练集和验证集                   | 2. | 通过对验证集的评价,体现了特征        |
|    | Step 2. 使用基模型对训练集做拟合                    |    | 的泛化能力                  |
|    | Step 3. 对训练好的模型使用验证集进行评价                | 3. | Step 4.3 中 n 越大统计结果越显著 |
|    | Step 4. 循环计算每个特征的重要性                    |    |                        |
|    | Step 4.1 对验证集上的单个特征进行随机打乱               |    |                        |
|    | Step 4.2 重新对验证集进行评价, 计算单次评价差异           |    |                        |
|    | Step 4.3 重复 Step 4.1 ~ 4.2 n 次,计算平均评价差异 |    |                        |

### 2.5 代码片段

```
# 特征选择
import pandas as pd
import numpy as np
import joblib
import lightgbm as lqb
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.inspection import permutation_importance
df = pd.read_csv('xxx.txt', sep='\t', encoding='utf-8')
df_train, df_test = train_test_split(df, test_size=0.2, random_state=2024)
df_train_X, df_train_y = df_train.iloc[:, 1:], df_train.iloc[:, 0]
df_test_X, df_test_y = df_test.iloc[:, 1:], df_test.iloc[:, 0]
 list_feats_x = list(df_train_X.columns)
# Step1: 方差筛选
df_train_des = df_train_X.describe().T
list_feats_x_std = [x for x in list_feats_x if x in df_des[df_des['std']>0].index] # 保持顺序,下同
# Step2: 单因素方差分析
# 3tep2・半凶系クを力句
# <u>注練型特征、分类任务、P値显著</u>
selector = SelectKBest(f_classif, k=1).fit(df_train_X[list_feats_x_std], df_train_y)
df_ht = pd.DataFrame(
          'feature': list_feats_x_std,
          'P_value': selector.pvalues_
df_train_train_X, df_train_val_X, df_train_train_y, df_train_val_y = \
    train_test_split(df_train_X[list_feats_x_ht], df_train_y, test_size=0.2, random_state=2024)
estimator_pi = lgb.LGBMClassifier(importance_type='gain')
estimator_pi.fit(df_train_train_X, df_train_train_y)
pi = permutation_importance(estimator=estimator_pi, X=df_train_val_X, y=df_train_val_y, n_jobs=8)
df_pi = pd.DataFrame(
          'feature': list_feats_x_ht,
'permutation_importance_mean': pi.importances_mean
# 训练集应用筛选结果
df_train_X_ = df_train_X_[list_feats_x_pi]
joblib.dump(list_feats_x_pi, 'list_feats_x_pi.pickle')
# 测试集以训练集标准处理
list_feats_x_pi = joblib.load('list_feats_x_pi.pickle')
df_test_X_ = df_test_X[list_feats_x_pi]
```

# 3. 降维

对于特征维度较高的数据,模型计算复杂度高,建模资源和成本消耗大。除了使用《特征选择》方法降低特征维度,我们还可以使用其他方法,通过将高维样本映射到低维空间的方式,实现特征降维

P.S.相对于《特征选择》方法,可解释性差

| 方法          | 思想                                                                                                                                         | 备注   |                             |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------|
| PCA         | Principal Component Analysis (主成分分析),通过对                                                                                                   | 1. 无 | 监督方法,以自身方差衡量                |
|             | 中心化数据矩阵(特征维度 0 均值)的协方差矩阵                                                                                                                   | 信    | 信息量,保留主成分                   |
|             | 进行特征值分解,将高维数据矩阵映射到 top 特征                                                                                                                  | 2. 降 | 降低噪声(小特征值对应的特               |
|             | 值对应的特征向量空间(投影方差大(从高到低)                                                                                                                     | 徝    | E向量维度)                      |
|             | 且两两正交(线性不相关)),从而实现降维                                                                                                                       | 3. 特 | 持征值分解计算效率低,可以               |
|             | $\lambda_1$                                                                                                                                | 使    | 使用 SVD (存在高效、准确的            |
|             | $E^{T}\left(\frac{1}{m}XX^{T}\right)E = \Lambda = \begin{pmatrix} \lambda_{1} & \lambda_{2} & \\ & \ddots & \\ & & \ddots & \end{pmatrix}$ | 特    | 持征值分解方法)                    |
|             | $\lambda_n$                                                                                                                                | 4. 本 | 太质上是线性变换方法,对于               |
|             |                                                                                                                                            | 非    | 线性数据,可以通过核技巧                |
|             |                                                                                                                                            |      | (KPCA),将数据映射到高              |
|             |                                                                                                                                            | 维    | 註线性可分空间,再进行降维               |
| LDA         | Linear Discriminant Analysis (线性判别分析),通过                                                                                                   | 1. 有 | 了监督方法,本质上用于分类               |
|             | 将高维数据映射到低维空间,使得目标类内散度尽                                                                                                                     | 2. 降 | 全维后的维度上限:                   |
|             | 可能小,类间散度尽可能大,从而实现降维                                                                                                                        | m    | iin(n_class-1,n_feature); 适 |
|             | $\underset{W}{\operatorname{argmax}} J(W) = \frac{\prod_{diag} W^{T} S_{b} W}{\prod_{diag} W^{T} S_{w} W}$                                 | 用    | ]于高维多分类(人脸识别)               |
|             | $W$ $\Pi_{diag}W^TS_wW$                                                                                                                    | 3. 最 | <b>是终计算同样使用特征值分</b>         |
|             |                                                                                                                                            | 解    | <b>军思想</b>                  |
| Embedding   | 神经网络嵌入学习,通过构建维度递减的 MLP,对                                                                                                                   | 1. 有 | 「监督方法                       |
|             | 高维数据进行目标拟合,最小化目标损失,抽取输                                                                                                                     |      | 引出层的低维数据表示对高                |
|             | 出层的低维输出数据,从而实现降维                                                                                                                           | 维    | <b>注输入特征的深层主要信息</b>         |
|             | $\hat{y} = MLP(X)$                                                                                                                         | 拍    | 由取 (对于目标)                   |
|             | $min loss(y, \hat{y})$                                                                                                                     | 3. 类 | 《似的有传统的词嵌入学习                |
| AutoEncoder | 自动编码器 (神经网络), 通过构建编码器→低维隐                                                                                                                  |      | E监督方法 (自监督方法)               |
|             | 变量→解码器结构,重构输入特征,最小化重构损                                                                                                                     | 2. 👎 | 中间的低维隐层输出表示对                |
|             | 失,中间的低维隐变量即为所求                                                                                                                             | 原    | 始高维输入特征的主要信                 |
|             | h = Encoder(X)                                                                                                                             |      | ·<br>【压缩(对于自身重构)            |
|             | $\widehat{X} = Decoder(h)$                                                                                                                 |      | <sub>锅</sub> 码器和解码器可以使用     |
|             | $minlossig(X,\widehat{X}ig)$                                                                                                               |      | ILP 结构,组成深度自动编              |
|             |                                                                                                                                            |      | 3器(整体训练;不同于栈式               |
|             |                                                                                                                                            | É    | a动编码器,逐层训练)                 |

#### 3.1 代码片段

```
# 降维
import pandas as pd
import numpy as np
import joblib

from sklearn.model_selection import train_test_split
from sklearn.decomposition import KernelPCA

df = pd.read_csv('xxx.txt', sep='\t', encoding='utf-8')
df_train, df_test = train_test_split(df, test_size=0.2, random_state=2024)
df_train_X, df_train_y = df_train.iloc[:, 1:], df_train.iloc[:, 0]
df_test_X, df_test_y = df_test.iloc[:, 1:], df_test.iloc[:, 0]

# KPCA, 降低到10维
kpca = KernelPCA(n_components=10, kernel='rbf')
kpca.fit(df_train_X, df_train_y)
train_X_kpca = kpca.transform(df_train_X)
joblib.dump(kpca, 'kpca.pickle')

# 测试集以训练集标准处理
kpca = joblib.load('kpca.pickle')
test_X_kpca = kpca.transform(df_test_X)
```

### 4. 特征组合

为了进一步提升模型拟合能力,增强模型的非线性表达能力,除了依赖人工经验对特征进行进一步加工、衍生(可解释性强,但费时费力),我们还可以通过一些自动化的方法对特征进行交叉(与)组合(或),发现潜在的有效特征

P.S.相对于人工经验加工,可解释性差

| 方法      | 思想                                                                                | 备注 |                                       |
|---------|-----------------------------------------------------------------------------------|----|---------------------------------------|
| 简单交叉组合  | 通过对原始特征两两进行+、-、*、/等操作得到                                                           | 1. | 使用数学方法,可生成(n*                         |
|         | 新特征                                                                               |    | $(n-1)/2$ ) * $n$ _operation 个 交      |
|         |                                                                                   |    | 叉组合新特征                                |
|         |                                                                                   | 2. | 适用于连续型特征                              |
|         |                                                                                   | 3. | 生成的绝大部份特征可能为无                         |
|         |                                                                                   |    | 效特征,可以结合《特征筛选》                        |
| '       |                                                                                   |    | 方法选择有效特征                              |
|         |                                                                                   | 4. | 相关实例: mljar                           |
| 多项式生成   | 通过给定参与生成的特征和最大阶数,根据范                                                              | 1. | 使用数学方法,可生成(d-                         |
|         | 德蒙矩阵,生成阶数和小于等于最大阶数的所                                                              |    | 1) * $C_n^1 + (d-1) * C_n^2 + (d-1)$  |
|         | 有特征组合 (乘积)                                                                        |    | 2) * $C_n^3$ + ··· + $C_n^d$ 个最高为 d 阶 |
|         | $\begin{bmatrix} 1 & x_1 & x_1^2 \end{bmatrix}$                                   |    | 的交叉新特征                                |
|         | $\begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix}$                | 2. | 适用于连续型特征                              |
|         | $(x_1, x_2) \stackrel{d=2}{\Longrightarrow} (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2)$ | 3. | 生成的大量无效特征处理同上                         |
|         |                                                                                   | 4. | 参与生成的特征数和最大阶数                         |
|         |                                                                                   |    | 越大,计算复杂度越高                            |
| GBDT+LR | 通过对原始特征使用 GBDT 进行拟合,得到的                                                           | 1. | 有监督方法                                 |
|         | 叶子节点的稀疏编码表示 (索引 ohe) 即为新特                                                         | 2. | 叶子节点的稀疏编码表示为树                         |
|         | 征,再输入到 LR 中进行拟合                                                                   |    | 模型隐式特征交叉的结果                           |



- GBDT 相比于单个决策树:
  - a) 多个决策树集成,表达能力强,泛化性好,能够发现更多且有效的特征交叉表示(单个决策树需要更多深度,容易过拟合,且生成的特征更稀疏)
  - b) Boosting 对残差的不断拟 合优先发现对整体区分 度大的特征, 思路更合理
- 4. 海量离散特征+简单模型策略
- 5. 生成的特征维度高,因此数据 量要求高,否则容易过拟合

#### 模型内在处理

对原始特征直接使用特定的模型进行拟合,应 用模型内部的特征交叉组合处理,不做额外的 显式处理:

1. FM: Factorization Machine (因子分解机)

$$y(X) = w_0 + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle v_i, v_j \rangle x_i x_j$$

- 2. 树模型:内部节点根据最大增益选择合适的特征和划分点不断进行分裂,每层分裂结果相当于对上一层做特征交叉处理
- 神经网络:每层神经元的输入表示对上一层神经元输出的多项式组合的激活函数变换

$$A^{l} = \sigma^{l}(Z^{l}) = \sigma^{l}(W^{l}A^{l-1} + B^{l})$$

- 有监督方法
- 2. 隐式特征交叉组合
- 3. 1应用2阶多项式模型,隐含了对特征的2阶特征交叉;用于解决稀疏数据的特征组合问题;由此衍生的模型有FFM
- 2 中例,深度为 2 的分裂节点 (x<sub>1</sub> > a)&(x<sub>2</sub> < b),表示 2 阶 特征交叉;特征交叉阶数随深 度增加</li>
- 5. 3本质为特征的多项式组合,通过非线性激活函数增加非线性表达,如 sigmoid、tanh、relu等;可结合 1 的特征交叉思想,衍生模型有 DeepFM、DCN、xDeepFM、NFM等

#### 4.1 代码片段

```
# 特征组合
import pandas as pd
import numpy as np
import joblib
import lightgbm as lgb
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from sklearn.linear_model import LogisticRegression
df = pd.read_csv('xxx.txt', sep='\t', encoding='utf-8')
df_train, df_test = train_test_split(df, test_size=0.2, random_state=2024)
df_train_X, df_train_y = df_train.iloc[:, 1:], df_train.iloc[:, 0]
df_test_X, df_test_y = df_test.iloc[:, 1:], df_test.iloc[:, 0]
                                                                      # GBDT+LR (ElasticNet, L1+L2)
params = {
   'boosting_type': 'gbdt', 'objective': 'binary',
   'n_estimators': 10, 'learning_rate':0.1,
   'max_depth': 5, 'num_leaves':30,
   'max_bin':50, 'min_data_in_leaf':20,
   'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 10,
   'reg_alpha': 0.01, 'reg_lambda':0.01,
   'feature_fraction_seed': 2024, 'bagging_seed': 2024,
   'n_jobs': -1
clf_lgb = lgb.LGBMClassifier(**params)
clf_lgb.fit(df_train_X, df_train_y)
joblib.dump(clf_lgb, 'clf_lgb.pickle')
train_X_lgb = clf_lgb.predict(df_train_X, pred_leaf=True)
enc = OneHotEncoder(categories='auto', handle_unknown='ignore')
clf_ohe = enc.fit(train_X_lgb)
joblib.dump(clf_ohe, 'clf_ohe.pickle')
train_X_lgb_ohe = clf_ohe.transform(train_X_lgb)
clf_lr = LogisticRegression(penalty='elasticnet', C=0.1)
clf_lr.fit(train_X_lgb_ohe, df_train_y)
joblib.dump(clf_lr, 'clf_lr.pickle')
clf_lr.predict_proba(train_X_lgb_ohe)
# 测试集以训练集标准处理
clf_lgb = joblib.load('clf_lgb.pickle')
test_X_lgb = clf_lgb.predict(df_test_X, pred_leaf=True)
clf_ohe = joblib.load('clf_ohe.pickle')
test_X_lgb_ohe = clf_ohe.transform(test_X_lgb)
clf_lr = joblib.load('clf_lr.pickle')
clf_lr.predict_proba(test_X_lgb_ohe)
```

### 三、模型构建

根据业务目标,选择合适的模型,对经过《数据集处理》和《特征工程》的数据进行建模。 这里主要介绍业界常用做 baseline 的 XGBoost 模型的训练和优化

## 1. 模型训练

XGBoost, eXtreme Gradient Boosting (极限梯度提升),本质上是 GBDT 的改进算法,同样为加法模型,前向分步算法;其相对于 GBDT 主要有以下几方面改进:

| 改进点   | 思想                               | 备注                 |
|-------|----------------------------------|--------------------|
| 正则项   | 显式增加基于叶子节点个数 (T)、叶子节点权重 (w)      | 1. 用于 gbtree 基分类器  |
|       | 计算的表示每棵树的复杂度的正则项                 | 2. 相当于做了预剪枝        |
| 二阶导数  | 代价函数使用二阶泰勒展开,可以同时考虑一阶、二          | 1. 一阶导数无法保证全局最     |
|       | 阶导数                              | 优 (除非目标为凸函数)       |
| 基分类器  | 支持多种基分类器,如:gbtree、gblinear、DART等 | 1. 根据具体情况选择        |
| 行列采样  | 在每轮迭代中,可以基于行(数据)抽样、列(特征)         | 1. 避免过拟合           |
|       | 抽样构建当前基分类器                       |                    |
| 缺失值处理 | 通过将缺失值带入分裂后的左右子节点,计算最大增          | 1. 对于稀疏特征 (ohe)、含有 |
|       | 益,自动学习分裂方向                       | 大量0值的特征同理          |
|       |                                  | 2. 预测时缺失值 (训练不含缺   |
|       |                                  | 失) 默认分裂到左侧子节点      |

理论推导一图流:

目标函数 
$$Obj = \sum_{i=1}^n l(y_i, \hat{y}_i) + \sum_{k=1}^K \Omega(f_k)$$
 目标函数 (第4改长) 
$$Obj^{(t)} = \sum_{i=1}^n l(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)) + \Omega(f_t) + constant$$
 树&复杂度定义 
$$f_t(x) = w_{q(x)}, w \in R^T, q : R^d \to \{1, 2, \cdots, T\}$$
 
$$\Omega(f_t) = \gamma T + \frac{1}{2} \lambda \sum_{j=1}^T w_j^2$$
 
$$\square \text{Dh} \text{$$

在具体构建每棵树时(每轮迭代中),我们根据以下方法进行树节点分裂,选择最佳分裂点:

| 方法     | 思想                                                                                                        | 备注 | È                                                                                                                               |
|--------|-----------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------|
| 精确贪心算法 | 枚举所有特征和可能的划分,计算最优增益                                                                                       | 1. | 计算复杂度高, $o(n*m)$                                                                                                                |
|        | $\max \left( \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda} \right)$ | 2. | 按特征值排序                                                                                                                          |
| 近似算法   | 对于每个特征,只计算分位点的增益                                                                                          | 1. | 计算复杂度低, o(n)                                                                                                                    |
|        |                                                                                                           | 2. | 实际对特征值排序后的数据按照                                                                                                                  |
|        |                                                                                                           |    | $h_i$ 加权计算分位点                                                                                                                   |
|        |                                                                                                           |    | $Obj^{(t)} = \frac{1}{2} \sum\nolimits_{i=1}^{n} \frac{1}{2} h_{i} [f_{t}(x_{i}) + g_{i}/h_{i}]^{2} + \Omega(f_{t}) + constant$ |

实际训练时,利用现有的 API,根据目标(分类(二、多)、回归、排序)选择合适的基分类器和损失函数(对应《模型优化》中的「Booster」和「objective」参数),设定好模型超参数,即可对经过《数据集处理》和《特征工程》的数据进行训练,具体见 1.1 《代码片段》

#### 1.1 代码片段

```
# 模型训练
import pandas as pd
import numpy as np
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
df = pd.read_csv('xxx.txt', sep='\t', encoding='utf-8')
df_train, df_test = train_test_split(df, test_size=0.2, random_state=2024)
df_train_X, df_train_y = df_train.iloc[:, 1:], df_train.iloc[:, 0]
df_test_X, df_test_y = df_test.iloc[:, 1:], df_test.iloc[:, 0]
df_X_y_train_dm = xgb.DMatrix(df_train_X, label=df_train_y)
df_X_test_dm = xgb.DMatrix(df_test_X)
# XGBoost, 二分类, 梯度提升树(100颗, 深度5), 交叉熵损失
params = {
    'booster': 'gbtree',
    'objective': 'binary:logistic',
    'eta': 0.1,
    'max_depth':5, 'min_child_weight': 1,
    'gamma': 0.1,
    'subsample': 0.8, 'colsample_bytree': 0.8,
    'alpha': 0.01, 'lambda': 0.01,
}
clf_xgb = xgb.train(params, df_X_y_train_dm, num_boost_round=100)
clf xgb.save model('xgb.model')
# 测试集预测, AUC评价
clf_xgb = xgb.Booster(model_file='xgb.model')
pred_prob = clf_xgb.predict(df_X_test_dm)
ras = roc_auc_score(df_test_y, pred_prob)
```

# 2. 模型优化

模型训练完成后,由于各种原因,效果很可能没达到预期或还有提升空间。除了更精细化的对数据进行《数据集处理》或《特征工程》方向的再次优化外,对模型学习过程的优化也至关重要,因此这里主要介绍基于超参数调整的 XGBoost 模型优化策略

XGBoost 中主要的超参数:

| 参数              | 思想                                                                                                                         | 备注                              |
|-----------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Booster         | 基学习器,模型每轮迭代中使用的模型                                                                                                          | 1. 通用参数                         |
|                 | 包括: gbtree、gblinear、DART                                                                                                   | 2. 默认使用 gbtree, 算法原始理论          |
|                 |                                                                                                                            | 推导中的树模型构建方法                     |
|                 |                                                                                                                            | 3. gblinear 为 GBM 框架下的线性模       |
|                 |                                                                                                                            | 型构建方法                           |
|                 |                                                                                                                            | 4. DART 为带 dropout 的 gbtree     |
| num_boost_round | Boosting 迭代轮次, 对应实际构建的基学习                                                                                                  | 1. 通用参数                         |
|                 | 器数量                                                                                                                        | 2. 默认 10, 一般结合 early stopping   |
|                 |                                                                                                                            | 来确定                             |
| objective       | 学习目标,主要对应最小化的损失函数:                                                                                                         | 1. 学习目标参数                       |
|                 | 1. 回归任务:                                                                                                                   | 2. 1.c 中 $f(x)$ 表示 tweedie 分布的均 |
|                 | a) reg:absoluteerror,绝对值损失                                                                                                 | 值μ; 方差ρ取值范围为(1,2), 为            |
|                 | loss(y, f(x)) =  y - f(x)                                                                                                  | 选用该学习目标下的超参数(表                  |
|                 | b) reg:squarederror, 平方损失                                                                                                  | 示泊松和伽马的混合分布);适用                 |
|                 | $loss(y, f(x)) = (y - f(x))^2$                                                                                             | 于长尾和 0 值较多的数据分布情                |
|                 | c) reg:tweedie, tweedie 分布损失                                                                                               | 况,如金融信贷等                        |
|                 | $loss(y, f(x)) = -y \frac{f(x)^{1-\rho}}{1-\rho} + \frac{f(x)^{2-\rho}}{2-\rho}$                                           | 3. 2.b 中输出为样本在各类别下的             |
|                 | $1 - \rho + 2 - \rho$                                                                                                      | 预测概率; 可以使用                      |
|                 | d)                                                                                                                         | multi:softmax 输出预测类别            |
|                 | 2. 分类任务:                                                                                                                   | 4. 可通过设定「obj」参数使用自定             |
|                 | a) binary:logistic,二分类,交叉熵                                                                                                 | 义的损失函数,如:focalloss (需           |
|                 | 损失                                                                                                                         | 要输出一阶、二阶导数)                     |
|                 | loss(y, f(x)) = -yln(f(x)) - (1 - y)ln(1 - f(x))                                                                           |                                 |
|                 | b) multi:softprob, 多分类, 多个二                                                                                                |                                 |
| ,               | 分类模型 (one-vs-rest) 经                                                                                                       |                                 |
|                 | softmax 转换后的交叉熵损失                                                                                                          |                                 |
|                 | $loss(y, f(x)) = -\sum_{i=1}^{k} y_i log \frac{e^{f_i(x)}}{\sum_{j=1}^{k} e^{f_i(x)}}$                                     |                                 |
|                 | c)                                                                                                                         |                                 |
|                 | 3. 排序任务:                                                                                                                   |                                 |
|                 | a) rank:pairwise, ranknet 损失                                                                                               |                                 |
|                 | $loss\big(y,f(x)\big) = -P_{i,j}\ln\big(\hat{P}_{i,j}\big) - \big(1-P_{i,j}\big)\ln\big(1-\ln\big(\hat{P}_{i,j}\big)\big)$ |                                 |
|                 | $\hat{P}_{i,j} = \frac{1}{1 + e^{-(f(x_i) - f(x_j))}}$                                                                     |                                 |
|                 | b)                                                                                                                         |                                 |
|                 | 4                                                                                                                          |                                 |

| eta              | 学习率,控制每轮迭代中权重 w 的占比                | 1. | Booster 参数 (gbtree)              |
|------------------|------------------------------------|----|----------------------------------|
|                  |                                    | 2. | 范围(0,1], 默认 0.3, 经验值一般           |
|                  |                                    |    | 取[0.01,0.2]                      |
|                  |                                    | 3. | 较小的取值可以提升模型泛化性                   |
| max_depth        | 最大树深,控制每轮迭代中树生成的深度                 | 1. | Booster 参数 (gbtree)              |
|                  |                                    | 2. | 预剪枝参数                            |
|                  |                                    | 3. | 默认 6, 经验值一般取[3,10]               |
|                  |                                    | 4. | 较小的值对应的树更简单(深度                   |
|                  |                                    |    | 小),可以避免过拟合                       |
| min_child_weight | 最小叶子节点样本权重和 (二阶导数), 控              | 1. | Booster 参数(gbtree)               |
|                  | 制每轮迭代中树生成时的节点分裂                    | 2. | 预剪枝参数                            |
|                  | 若节点分裂后存在子节点的样本权重和小                 | 3. | 默认 1                             |
|                  | 于该值,则不进行此次分裂                       | 4. | 较大的值对应的树更简单(不易                   |
|                  |                                    | A  | 分裂), 可以避免过拟合                     |
| gamma            | 节点分裂所需的最小损失减少量,控制每                 | 1. | Booster 参数 (gbtree)              |
|                  | 轮迭代中树生成时的节点分裂                      | 2. | 预剪枝参数                            |
|                  | 对应树的复杂度定义中的 $\gamma$ ,即只有 $Gain >$ | 3. | 默认 0                             |
|                  | 0的情况才会进行分裂                         | 4. | 较大的值对应的树更简单(不易                   |
|                  |                                    |    | 分裂),可以避免过拟合                      |
| subsample        | 行抽样比例,控制每轮迭代中所需的样本                 | 1. | Booster 参数 (gbtree)              |
|                  | 数量                                 | 2. | 范围(0,1], 默认 1, 经验值一般取            |
|                  |                                    |    | [0.5,1]                          |
|                  |                                    | 3. | 较小的值可避免过拟合                       |
|                  |                                    | 4. | 可通过设定「sampling_method」           |
|                  | ·                                  |    | 参数指定抽样方法:                        |
|                  |                                    |    | a) uniform,均匀,默认                 |
|                  |                                    |    | b) gradient_base, 基于梯度,          |
|                  |                                    |    | $\sqrt{g^2 + \lambda h^2}$ ,需要设置 |
|                  |                                    |    | 「tree_method 」 参 数 为             |
|                  |                                    |    | gpu_hist                         |
| colsample_bytree | 列抽样比例,控制每轮迭代中所需的特征                 | 1. | Booster 参数 (gbtree)              |
|                  | 数量                                 | 2. | 范围(0,1], 默认 1, 经验值一般取            |
|                  |                                    |    | [0.5,1]                          |
|                  |                                    | 3. | 较小的值可避免过拟合                       |
|                  |                                    | 4. | 类似的列抽样参数有:                       |
|                  |                                    |    | a) 「colsample_bylevel」,层         |
|                  |                                    |    | b) 「colsample_bynode」,节点         |
|                  |                                    |    | c) 以上「colsample_by*」参数           |
|                  |                                    |    | 的作用是累积的                          |
|                  |                                    | 5. | 可通过设置 DMatrix 的                  |
|                  |                                    |    | 「feature_weights」参数控制抽样          |
|                  |                                    |    | 权重                               |
| lambda           | 权重 w 的 L2 正则化项                     | 1. | Booster 参数 (gbtree)              |
|                  | 对应树的复杂度定义中的礼                       | 2. | 默认 1                             |
|                  | •                                  | •  |                                  |

|       |                                                                                                 | 3. | 值越大权重 w 越小,避免过拟合    |
|-------|-------------------------------------------------------------------------------------------------|----|---------------------|
| alpha | 权重 w 的 L1 正则化项                                                                                  | 1. | Booster 参数 (gbtree) |
|       | 带 L1 正则化项的树的复杂度定义, $\Omega(f_t)$ =                                                              | 2. | 默认 0                |
|       | $\gamma T + \frac{1}{2} \lambda \sum_{j=1}^{T} w_j^2 + \frac{1}{2} \alpha \sum_{j=1}^{T}  w_j $ | 3. | 值越大权重 w 越稀疏,避免过拟    |
|       | 对应上式中的α                                                                                         |    | 合                   |

我们主要对上述的 Booster 参数和 num boost round 进行优化调整,具体调参策略:

|             | 上述的 Booster 参数和 num_boost_round 进行                              | ·  |                    |
|-------------|-----------------------------------------------------------------|----|--------------------|
| 方法          | 思想                                                              | 备注 | Ė                  |
| Grid Search | 网格搜索,对每个超参数的预期取值范围进行自                                           | 1. | 计算复杂度高, $o(n^m)$   |
|             | 定义网格划分,遍历所有取值组合,训练模型并                                           | 2. | 一般依赖经验或使用等间距划分     |
|             | 记录最优超参数                                                         | 3. | 衍生的优化方法:           |
|             |                                                                 |    | a) 贪心策略:每次只对部分超    |
|             |                                                                 |    | 参数进行网格搜索, 获得最      |
|             |                                                                 |    | 优超参数后固定这部分超        |
|             |                                                                 | A  | 参数的取值              |
|             |                                                                 |    | b) 随机搜索: 对每个超参数的   |
|             |                                                                 |    | 预期取值范围使用随机数        |
|             |                                                                 |    | 进行采样; 需要设定搜索次      |
|             |                                                                 | ,  | 数; 相比网格搜索可能获得      |
|             |                                                                 |    | 更好的效果              |
| 贝叶斯优化       | 通过建立超参数与模型输出之间的函数关系,利                                           | 1. | 计算复杂度较低,依赖迭代次数     |
|             | 用每轮迭代中搜索点(超参数组合)的信息确定                                           | 2. | 依靠概率分布迭代搜索"可能的     |
|             | 下一个搜索点 (加入到下一轮迭代中), 以此来寻                                        |    | 更好的"超参数            |
|             | 找最优超参数                                                          | 3. | 函数关系一般假设D满足高斯分     |
|             | Step 1. 采样多组超参数及对应的模型输出, 组成                                     |    | 布,使用高斯过程回归进行拟合     |
|             | 初始数据集 $D = (x_1, f(x_1)), \dots, (x_n, f(x_n))$                 | 4. | 采集函数包括: PI、EI、UCB等 |
|             | Step 2. 迭代确定下一个超参数组合                                            | 5. | 存在冷启动问题            |
|             | Step 2.1 对D使用预先假设的模型 (函数关系) 进                                   |    |                    |
| \           | 行拟合                                                             |    |                    |
|             | p(y x,D) = fit(M,D)                                             |    |                    |
|             | Step 2.2 利用采集函数计算"最优超参数"x <sub>i</sub>                          |    |                    |
|             | $x_i \leftarrow \underset{x \in \chi}{argmax}  S(x, p(y x, D))$ |    |                    |
|             | Step 2.3 计算 $x_i$ 对应的 $f(x_i)$ ,并加入到 $D$ 中                      |    |                    |
|             | Step 3. $D + f(x)$ 最优的超参数组合 $x$ 即为所求                            |    |                    |

#### 2.1 代码片段

```
# 模型优化
  # 模型优化
import pandas as pd
import numpy as np
import xgboost as xgb
  from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score, log_loss
  df = pd.read_csv('xxx.txt', sep='\t', encoding='utf-8')
df_train, df_test = train_test_split(df, test_size=0.2, random_state=2024)
df_train_train, df_train_eval = train_test_split(df_train, test_size=0.2, random_state=2024)
  df_train_X, df_train_y = df_train_train.iloc[:, 1:], df_train_train.iloc[:, 0]
df_eval_X, df_eval_y = df_train_eval.iloc[:, 1:], df_train_eval.iloc[:, 0]
df_test_X, df_test_y = df_test.iloc[:, 1:], df_test.iloc[:, 0]
  df_X_y_train_dm = xgb.DMatrix(df_train_X, label=df_train_y)
df_X_y_eval_dm = xgb.DMatrix(df_eval_X, label=df_eval_y)
df_X_eval_dm = xgb.DMatrix(df_eval_X)
df_X_text_dm = xgb.DMatrix(df_text_X)
 # XGBoost, 二分类,梯度提升树, Grid Search (贪心策略)
best_loss = np.inf
best_params = {
   'booster': 'gbtree',
   'objective': 'binary:logistic'
  best num boost round = 0
 params = {
   'booster': 'gbtree',
   'objective': 'binary:logistic',
   'eta': 0.1,
   'max_depth':5, 'min_child_weight': 1,
             'max_depth':0.1,
'subsample':0.8, 'colsample_bytree':0.8,
'alpha':0.01, 'lambda':0.01,
'eval_metric':['auc', 'logloss']
  list_watch = [(df_X_y_train_dm, 'train'), (df_X_y_eval_dm, 'eval')]
params['eta'] = best_params['eta']
params['max_depth'] = best_params['max_depth']
params['mat_chitd_weight'] = best_params['min_chitd_weight']
params['gamma'] = best_params['gamma']
 # subsample.colsample_bytree

for ss in [i/10.0 for i in range(5, 11)]:
    for csb in [i/10.0 for i in range(5, 11)]:
        params['subsample'] = ss
        params['colsample_bytree'] = csb
        clf_xxgb = xgb.train(params, df_X_y_train_dm, num_boost_round=best_num_boost_round)
        loss = log_loss(df_eval_y, clf_xgb.predict(df_X_eval_dm))
        if loss < best_loss:
             best_loss:
              best_params['subsample'] = ss
              best_params['colsample_bytree'] = csb
  params['subsample'] = best_params['subsample']
params['colsample_bytree'] = best_params['colsample_bytree']
  # alpha, lambda

for a in [0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100]:

for l in [0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100]:

params('alpha'] = a

params('lambda'] = l

clf_xgb = xgb.train(params, df_X_y_train_dm, num_boost_round=best_num_boost_round)

loss = log_loss(df_eval_y, clf_xgb.predict(df_X_eval_dm))
                      if loss < best_loss:
    best_loss = loss</pre>
                              best_params['alpha'] = a
best_params['lambda'] = l
  # 最优超参数训练
  " MOUNTED SAVING COLLY X9B - x9B.train(best_params, df_X_y_train_dm, num_boost_round=best_num_boost_round) clf_xgb.save_model('xgb.model')
  # 測试集预测, AUC评价
clf_xgb = xgb.Booster(model_file='xgb.model')
pred_prob = clf_xgb.predict(df_X_test_dm)
  ras = roc_auc_score(df_test_y, pred_prob)
```

# 四、模型评价

模型构建完成后,我们需要对模型进行合理的评估,以帮助我们准确的衡量模型的性能,从而进行优化和改进。不同场景(任务)下的评价方法(指标)往往是不同的

# 1. 分类任务

| 二分类混淆矩阵 |               | 预测值                 |                     |  |
|---------|---------------|---------------------|---------------------|--|
|         |               | 正样本 (Positive)      | 负样本(Negative)       |  |
| 古京店     | 正样本(Positive) | TP (True Positive)  | FN (False Negative) |  |
| 真实值     | 负样本(Negative) | FP (False Positive) | TN (True Negative)  |  |

|             | 贝什本(Negative)                   | re (raise Positive)  |    | The (True Negative)                                             |
|-------------|---------------------------------|----------------------|----|-----------------------------------------------------------------|
| 指标          | 思想                              |                      | 备注 |                                                                 |
| Accuracy    | 准确率,正确分类的样本占置                   | 整体样本的比重              | 1. | 受分类阈值影响(样本不平衡)                                                  |
|             | (TP + TN)/(TP + FR)             | P + FN + TN          | 2. | 表示整体样本效果                                                        |
| Precision   | 精确率,预测为正的样本中的                   | 分类正确的比例              | 1. | 受分类阈值影响(样本不平衡)                                                  |
|             | TP/(TP +                        | FP)                  | 2. | 对于二分类,表示正样本                                                     |
|             |                                 |                      | 3. | 对于多分类,表示某一类样本;                                                  |
|             |                                 |                      |    | 表示整体时一般使用加权平均                                                   |
|             |                                 |                      |    | (各类样本数量)                                                        |
| Recall      | 召回率, 也称灵敏度 (TPR),               | 实际为正的样本中分            | 1. | 受分类阈值影响(样本不平衡)                                                  |
|             | 类正确的比例                          |                      | 2. | 对于二分类,表示正样本                                                     |
|             | TP/(TP +                        | FN)                  | 3. | 对于多分类,表示某一类样本;                                                  |
|             |                                 |                      |    | 表示整体时一般使用加权平均                                                   |
|             |                                 |                      |    | (各类样本数量)                                                        |
| $F_1$ score | 精确率和召回率的调和平均                    |                      | 1. | 受分类阈值影响(样本不平衡)                                                  |
|             | $2*\frac{Precision}{Precision}$ | * Recall             | 2. | 综合评价方法,解决评估过程中                                                  |
|             | Precision -                     | - Recall             |    | 精确率与召回率存在的冲突问题                                                  |
|             |                                 |                      |    | 一般化定义, $F_{\beta}$ score ( $\beta$ 为召回                          |
|             |                                 |                      |    | 率相对于精确率的权重):                                                    |
|             |                                 |                      |    | $(1+\beta^2)*\frac{Precision*Recall}{\beta^2*Precision+Recall}$ |
|             |                                 |                      | 4. | 对于多分类,表示某一类样本;                                                  |
|             |                                 |                      |    | 表示整体时一般使用加权平均                                                   |
|             |                                 |                      |    | (各类样本数量)                                                        |
| AUC         | Area Under Curve (ROC 曲线        | 下的面积),表示模型           | 1. | 一般用于二分类                                                         |
|             | 将某个随机正样本排列在某                    | 个随机负样本前的概            | 2. | 对样本不平衡不敏感                                                       |
|             | 率(正样本预测得分大于负荷                   | 样本预测得分)              | 3. | 特异度: 负样本召回, TN/(FP+                                             |
|             | ROC 曲线 (Receiver Operatin       | ng Characteristic,受试 |    | TN); 即 $FPR$ , $FP/(FP+TN)$                                     |
|             | 者曲线),通过不同阈值下计                   | 算的 TPR(纵坐标)          | 4. | ROC 曲线越靠近左上角, AUC 值                                             |
|             | 和 FPR(1-特异度,横坐标)                | 绘制得出                 |    | 越大,模型性能越好                                                       |
|             |                                 |                      | 5. | 其他计算方法:对预测得分降序                                                  |
|             |                                 |                      |    | 排序,统计正负样本对中,正样                                                  |

|    |          |              |           |          |    | 本预测得分大于负样本预测得分<br>的组合数占比                                  |
|----|----------|--------------|-----------|----------|----|-----------------------------------------------------------|
|    |          |              |           |          |    | $\frac{\sum_{i \in Pos}^{M} Rank_i - M * (M+1)/2}{M * N}$ |
| KS | Kolmogor | ov-Smirnov 统 | 计量, KS 曲线 | 的最大差值,   | 1. | 一般用于二分类                                                   |
|    | 通过衡量     | 正负样本的累       | 积分布差异, i  | 评估模型的区   | 2. | 对样本不平衡不敏感                                                 |
|    | 隔力       |              |           |          | 3. | 适用于寻找最优切分阈值                                               |
|    | KS 曲线,   | 通过不同阈值       | 1(横坐标)下   | 计算的 TPR、 | 4. | 一般用于风险模型                                                  |
|    | FPR (纵   | 坐标) 绘制得!     | 出         |          |    |                                                           |
|    |          | max  T       | PR - FPR  |          |    |                                                           |
|    |          | KS 值范围       | 区隔能力      |          |    |                                                           |
|    |          | (0,0.2)      | 无         |          |    |                                                           |
|    |          | [0.2,0.4]    | 较好        |          |    |                                                           |
|    |          | (0.4,0.5]    | 好         |          | A  |                                                           |
|    |          | (0.5,0.6]    | 很好        |          |    |                                                           |
|    |          | (0.6,0.75]   | 非常好       |          |    |                                                           |
|    |          | (0.75,1]     | 异常        |          |    |                                                           |

# 2. 回归任务

| 指标   | 思想                                                     | 备注 | È                                                                                 |
|------|--------------------------------------------------------|----|-----------------------------------------------------------------------------------|
| MAE  | Mean Absolute Error,平均绝对误差                             | 1. | 越接近 0,模型拟合程度越好                                                                    |
|      | $1\sum^{N}$                                            | 2. | L1 范数损失                                                                           |
|      | $\frac{1}{N} \sum_{i=1}^{N}  y_i - \hat{y}_i $         | 3. | 与目标真实值量级一致                                                                        |
|      |                                                        | 4. | 相比「MSE」、「RMSE」,受异常                                                                |
|      |                                                        |    | 值的影响小                                                                             |
| MAPE | Mean Absolute Percentage Error,平均绝对百分比误差               | 1. | 越接近0,模型拟合程度越好;大                                                                   |
|      | $\frac{1}{N}\sum_{i=1}^{N} \frac{y_i-\hat{y}_i}{y_i} $ |    | 于1表示"劣质模型"                                                                        |
|      | $\overline{N} \angle_{i=1} $ $y_i$                     | 2. | 考虑了残差在目标真实值中的占                                                                    |
|      |                                                        |    | 比,进一步弱化了异常值的影响                                                                    |
|      |                                                        | 3. | 不适用于目标真实值有 0 的情况                                                                  |
|      |                                                        |    | 存在目标真实值较小时导致计算                                                                    |
|      |                                                        |    | 结果过大的问题,修正指标                                                                      |
|      | ,                                                      |    | 「SMAPE」:                                                                          |
|      |                                                        |    | $\frac{1}{N}\sum\nolimits_{i=1}^{N} \frac{y_i-\hat{y}_i}{( y_i + \hat{y}_i )/2} $ |
| MSE  | Mean Squared Error,均方误差                                | 1. | 越接近 0,模型拟合程度越好                                                                    |
|      | $\frac{1}{N}\sum_{i=1}^{N}(y_i-\hat{y}_i)^2$           | 2. | L2 范数损失                                                                           |
|      | $\frac{1}{N}\sum_{i=1}^{N}(y_i-\hat{y}_i)^2$           |    | 放大了预测误差,易受异常值的                                                                    |
|      |                                                        |    | 影响                                                                                |
|      |                                                        | 4. | 相比「MAE」,由于可微分特性,                                                                  |
|      |                                                        |    | 被用作回归模型默认损失函数                                                                     |
| RMSE | Root Mean Squared Error,均方根误差                          | 1. | 越接近 0,模型拟合程度越好                                                                    |

|       |                                                         | 2. | 与目标真实值量级一致,因此相              |
|-------|---------------------------------------------------------|----|-----------------------------|
|       | $\sqrt{\frac{1}{N}} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$ |    | 比「MSE」使用更广泛                 |
|       | $\sqrt{N \sum_{i=1}^{N} i=1}$                           | 3. | 放大了预测误差,易受异常值的              |
|       |                                                         |    | 影响                          |
| $R^2$ | 可决系数, 已解释变差 (SSR, 回归平方和) 在总变差                           | 1. | 越接近 1,模型拟合程度越好              |
|       | (SST, 总平方和) 中的占比, 用于评估拟合回归线周                            | 2. | 适用于线性回归                     |
|       | 围数据点的散布情况                                               | 3. | 表示自变量对因变量的解释程度              |
|       | 总变差由已解释变差和未解释变差(SSE,误差平方                                | 4. | 可用于计算 VIF,过滤冗余特征            |
|       | 和)组成                                                    | 5. | 存在自变量增加导致R <sup>2</sup> 增大的 |
|       | SSR SSE                                                 |    | 问题,使用「调整后 $R^2$ 」:          |
|       | $\frac{SSR}{SST} = 1 - \frac{SSE}{SST}$                 |    | SSR/k                       |
|       | $SSR = \sum_{i=1}^{N} (\hat{y}_i - \bar{y}_i)^2$        |    | $\overline{SST/(n-k-1)}$    |
|       | $SSR = \sum_{i=1}^{n} (y_i - y_i)^2$                    |    |                             |
|       | $SSE = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$              | 1  |                             |
|       | $SST = \sum_{i=1}^{N} (y_i - \bar{y}_i)^2$              |    |                             |

### 3. 代码片段

```
# 模型评价
import pandas as pd
import numpy as np
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score, classification_report, root_mean_squared_error, r2_score
df = pd.read_csv('xxx.txt', sep='\t', encoding='utf-8')
df_train, df_test = train_test_split(df, test_size=0.2, random_state=2024)
df_train_X, df_train_y = df_train.iloc[:, 1:], df_train.iloc[:, 0]
df_test_X, df_test_y = df_test.iloc[:, 1:], df_test.iloc[:, 0]
df_X_y_train_dm = xgb.DMatrix(df_train_X, label=df_train_y)
df_X_test_dm = xgb.DMatrix(df_test_X)
# 分类任务, XGBoost
params = {
    'booster': 'gbtree',
'objective': 'binary:logistic',
     'eta': 0.1,
     'max_depth':5, 'min_child_weight': 1,
    'gamma': 0.1,
'subsample': 0.8, 'colsample_bytree': 0.8,
'alpha': 0.01, 'lambda': 0.01,
clf_xgb = xgb.train(params, df_X_y_train_dm, num_boost_round=100)
clf_xgb.save_model('xgb.model')
clf_xgb = xgb.Booster(model_file='xgb.model')
pred_prob = clf_xgb.predict(df_X_test_dm)
```

```
# Precision、Recall、F1 score, 多阈值(预测打分)评价
df_y = pd.DataFrame({'y_true': df_test_y, 'y_pred_prob': pred_prob})
df_y.sort_values(by='y_pred_prob', ascending=False, inplace=True)
df y.reset index(drop=True, inplace=True)
list_df_prf = []
for t in [i/100.0 for i in range(1, 51)]:
   test_p = np.array([int(x) for x in df_y['y_pred_prob']>=t])
   cr = classification_report(df_y['y_true'], test_p, output_dict=True)
   c = test_p.sum()
   p = cr['1']['precision']
   r = cr['1']['recall']
   f1 = cr['1']['f1-score']
   df_prf_temp = pd.DataFrame(
       {
            'threshold': [i],
            'count': [c],
            'precision': [p],
            'recall': [r],
            'F1': [f1]
       }
    list_df_prf.append(df_prf_temp)
df_prf = pd.concat(list_df_prf, axis=0)
df_prf.reset_index(drop=True, inplace=True)
# 回归任务, XGBoost
params = {
   'booster': 'gbtree',
    'objective': 'reg:squarederror',
    'eta': 0.1,
    'max_depth':5, 'min_child_weight': 1,
    'gamma': 0.1,
    'subsample': 0.8, 'colsample bytree': 0.8,
    'alpha': 0.01, 'lambda': 0.01,
clf_xgb = xgb.train(params, df_X_y_train_dm, num_boost_round=100)
clf_xgb.save_model('xgb.model')
clf_xgb = xgb.Booster(model_file='xgb.model')
pred_prob = clf_xgb.predict(df_X_test_dm)
rmse = root_mean_squared_error(df_test_y, pred_prob)
r2 = r2_score(df_test_y, pred_prob)
```

### 五、附录

#### 相关文档&博客

- 1. 数据集处理——数据集划分
  - a) <a href="https://www.jianshu.com/p/45aa52002fc8">https://www.jianshu.com/p/45aa52002fc8</a> 如何正确使用数据集
  - b) https://zhuanlan.zhihu.com/p/33651227 数据集划分与特征工程的先后关系
  - c) https://zhuanlan.zhihu.com/p/488284413 交叉验证
- 2. 数据集处理——数据集采样
  - a) <a href="https://imbalanced-learn.org/stable/index.html">https://imbalanced-learn.org/stable/index.html</a> 不平衡样本学习文档
  - b) <a href="https://www.cnblogs.com/massquantity/p/9382710.html">https://www.cnblogs.com/massquantity/p/9382710.html</a> 不平衡样本采样方法
  - c) https://zhuanlan.zhihu.com/p/237792038 EasyEnsemble
- 3. 特征工程——特征预处理
  - a) https://www.cnblogs.com/charlotte77/p/5622325.html 特征预处理
  - b) https://scikit-learn.org/stable/modules/preprocessing.html sklearn 文档
- 4. 特征工程——特征预处理——无量纲化
  - a) <a href="https://scikit-learn.org/stable/auto-examples/preprocessing/plot\_all\_scaling.html">https://scikit-learn.org/stable/auto-examples/preprocessing/plot\_all\_scaling.html</a> sklearn 文档
  - b) <a href="https://zhuanlan.zhihu.com/p/454711078">https://zhuanlan.zhihu.com/p/454711078</a> 数据集预处理——数据缩放
- 5. 特征工程——特征预处理——离散型特征处理
  - a) <a href="https://www.biaodianfu.com/categorical-feature.html">https://www.biaodianfu.com/categorical-feature.html</a> 类别特征处理
  - b) <a href="https://zhuanlan.zhihu.com/p/26308272">https://zhuanlan.zhihu.com/p/26308272</a> 目标编码
  - c) https://zhuanlan.zhihu.com/p/30026040 WOE 编码
- 6. 特征工程——特征预处理——缺失值处理
  - a) <a href="https://scikit-learn.org/stable/modules/impute.html">https://scikit-learn.org/stable/modules/impute.html</a> sklearn 文档
  - b) <a href="https://www.zhihu.com/question/26639110">https://www.zhihu.com/question/26639110</a> 机器学习中如何处理缺失数据
  - c) https://zhuanlan.zhihu.com/p/579468047 R 语言——多重填充
- 7. 特征工程——特征预处理——异常值处理
  - a) https://www.jianshu.com/p/8e5291cc74e7 异常值检测
  - b) <a href="https://scikit-learn.org/stable/modules/outlier\_detection.html">https://scikit-learn.org/stable/modules/outlier\_detection.html</a> 异常值检测 sklearn 文档
  - c) https://zhuanlan.zhihu.com/p/84587517 HBOS
  - d) https://blog.csdn.net/itplus/article/details/38926837 FSDP
  - e) https://zhuanlan.zhihu.com/p/32784067 One-Class SVM
  - f) <a href="https://blog.csdn.net/extremebingo/article/details/80108247">https://blog.csdn.net/extremebingo/article/details/80108247</a> 孤立森林
  - g) https://zhuanlan.zhihu.com/p/358944859 异常值处理常用方法
- 8. 特征工程——特征预处理——特征转换
  - a) <a href="https://scikit-learn.org/stable/auto\_examples/preprocessing/plot\_map\_data\_to\_normal.html">https://scikit-learn.org/stable/auto\_examples/preprocessing/plot\_map\_data\_to\_normal.html</a> 非线性转换 sklearn 文档
  - b) https://www.lianxh.cn/news/581607c3114c9.html 正态转换方法
  - c) <a href="https://blog.csdn.net/weixin/46649052/article/details/115117950">https://blog.csdn.net/weixin/46649052/article/details/115117950</a> 为什么要正态分布
  - d) <a href="https://zhuanlan.zhihu.com/p/442674762">https://zhuanlan.zhihu.com/p/442674762</a> 线性回归因变量正态分布
  - e) <a href="https://scikit-learn.org/stable/auto-examples/preprocessing/plot-discretization-strategies.html">https://scikit-learn.org/stable/auto-examples/preprocessing/plot-discretization-strategies.html</a> 分籍

#### 转换 sklearn 文档

- f) https://blog.csdn.net/u013421629/article/details/78416748 卡方分箱
- 9. 特征工程——特征选择
  - a) <a href="https://scikit-learn.org/stable/modules/feature-selection.html">https://scikit-learn.org/stable/modules/feature-selection.html</a> sklearn 文档
  - b) https://www.jianshu.com/p/867193608bbd 特征维度灾难
- 10. 特征工程——特征选择——Filter
  - a) <a href="https://zhuanlan.zhihu.com/p/33357167">https://zhuanlan.zhihu.com/p/33357167</a> 方差分析
  - b) https://zhuanlan.zhihu.com/p/139151375 F 检验
  - c) https://zhuanlan.zhihu.com/p/140043959 卡方检验
  - d) <a href="https://zhuanlan.zhihu.com/p/80134853">https://zhuanlan.zhihu.com/p/80134853</a> WOE 和 IV 值
  - e) <a href="https://zhuanlan.zhihu.com/p/676392044">https://zhuanlan.zhihu.com/p/676392044</a> 皮尔逊、斯皮尔曼相关系数
  - f) <a href="https://zhuanlan.zhihu.com/p/658467717">https://zhuanlan.zhihu.com/p/658467717</a> 肯德尔相关系数
  - g) https://zhuanlan.zhihu.com/p/53092905 MIC
- 11. 特征工程——特征选择——Wrapper
  - a) <a href="https://scikit-">https://scikit-</a>

learn.org/stable/auto examples/feature selection/plot rfe with cross validation.html 递归特征消除 sklearn 文档

- b) https://zhuanlan.zhihu.com/p/547264476 逐步回归
- c) <a href="https://www.cnblogs.com/wqbin/p/11109650.html">https://www.cnblogs.com/wqbin/p/11109650.html</a> VIF
- d) https://zhuanlan.zhihu.com/p/142489599 AIC, BIC
- 12. 特征工程——特征选择——Embedded
  - a) <a href="https://zhuanlan.zhihu.com/p/29360425">https://zhuanlan.zhihu.com/p/29360425</a> L1 L2
  - b) https://blog.csdn.net/sujinhehehe/article/details/84201415 XGBoost 特征重要性
- 13. 特征工程——特征选择——其他方法
  - a) https://blog.csdn.net/weixin 38037405/article/details/127131599 PI
- 14. 特征工程——降维
  - a) <a href="https://zhuanlan.zhihu.com/p/77151308">https://zhuanlan.zhihu.com/p/77151308</a> PCA
  - b) <a href="https://www.cnblogs.com/pinard/p/6244265.html">https://www.cnblogs.com/pinard/p/6244265.html</a> LDA
  - c) <a href="https://zhuanlan.zhihu.com/p/133207206">https://zhuanlan.zhihu.com/p/133207206</a> AutoEncoder
  - d) <a href="https://scikit-learn.org/stable/modules/decomposition.html">https://scikit-learn.org/stable/modules/decomposition.html</a> 信号成分分解 sklearn 文档
- 15. 特征工程——特征组合
  - a) <a href="https://supervised.mljar.com">https://supervised.mljar.com</a> AutoML 文档
  - b) https://scikit-

learn.org/stable/auto examples/linear model/plot polynomial interpolation.html 多项式生成、B 样条曲线生成 sklearn 文档

- c) https://www.jianshu.com/p/96173f2c2fb4 GBDT+LR
- d) <a href="https://tech.meituan.com/2016/03/03/deep-understanding-of-ffm-principles-and-practices.html">https://tech.meituan.com/2016/03/03/deep-understanding-of-ffm-principles-and-practices.html</a> FM
- 16. 模型构建——模型训练
  - a) https://xgboost.readthedocs.io/en/latest XGBoost 文档
  - b) <a href="https://blog.csdn.net/a819825294/article/details/51206410">https://blog.csdn.net/a819825294/article/details/51206410</a> XGBoost 原理与推导
- 17. 模型构建——模型优化
  - a) https://zhuanlan.zhihu.com/p/115879247 gbtree 和 gblinear 的区别
  - b) https://blog.csdn.net/uncle\_ll/article/details/136080064 DART

- c) <a href="https://zhuanlan.zhihu.com/p/629883594">https://zhuanlan.zhihu.com/p/629883594</a> tweedie 损失
- d) <a href="https://zhuanlan.zhihu.com/p/91652813">https://zhuanlan.zhihu.com/p/91652813</a> GBDT 多分类
- e) <a href="https://zhuanlan.zhihu.com/p/631575097">https://zhuanlan.zhihu.com/p/631575097</a> pairwise—ranknet
- 18. 模型评价
  - a) <a href="https://zhuanlan.zhihu.com/p/666774052">https://zhuanlan.zhihu.com/p/666774052</a> 模型评价指标
- 19. 模型评价——分类任务
  - a) <a href="https://www.zhihu.com/question/30643044/answer/48955833">https://www.zhihu.com/question/30643044/answer/48955833</a> 评价指标各自优缺点
  - b) https://www.cnblogs.com/gczr/p/10354646.html KS 深入理解
- 20. 模型评价——回归任务
  - a) <a href="https://www.cnblogs.com/wqbin/p/11109650.html">https://www.cnblogs.com/wqbin/p/11109650.html</a> 可决系数

