Personal Information

• Name: 辛越

• Student ID: 21821256

• **E-Mail:**: x1046106323@zju.edu.cn

Schedule

Task	Due	Done
1. 选择论文	Mar. 14	
2. 精读论文,理解模型	Mar. 21	
3. 复现论文	Apr. 4	
4. 完成对比实验	Apr. 11	
5. 形成最后报告	Apr. 18	

选择论文

SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud

Author(s): Bichen Wu; Alvin Wan; Xiangyu Yue; Kurt Keutzer

Published in: 2018 IEEE International Conference on Robotics and Automation (ICRA)

Abstract

We address semantic segmentation of road-objects from 3D LiDAR point clouds. In particular, we wish to detect and categorize instances of interest, such as cars, pedestrians and cyclists. We formulate this problem as a point-wise classification problem, and propose an end-to-end pipeline called SqueezeSeg based on convolutional neural networks (CNN): the CNN takes a transformed LiDAR point cloud as input and directly outputs a point-wise label map, which is then refined by a conditional random field (CRF) implemented as a recurrent layer. Instance-level labels are then obtained by conventional clustering algorithms. Our CNN model is trained on LiDAR point clouds from the KITTI dataset, and our point-wise segmentation labels are derived from 3D bounding boxes from KITTI. To obtain extra training data, we built a LiDAR simulator into Grand Theft Auto V (GTA-V), a popular video game, to synthesize large amounts of realistic training data. Our experiments show that SqueezeSeg achieves high accuracy with astonishingly fast and stable runtime (8.7 \pm 0.5 ms per frame), highly desirable for autonomous driving. Furthermore, additionally training on synthesized data boosts validation accuracy on real-world data. Our source code is open-source released. The paper is accompanied by a video containing a high level introduction and demonstrations of this work.

• 摘要

我们解决了3D LiDAR点云对道路上物体的语义分割问题。特别地,我们希望检测和分类感兴趣的实例,例如汽车、行人和骑自行车的人。我们将此问题描述为逐点分类问题,并提出一种基于卷积神

经网络(CNN)的端到端流水线SqueezeSeg:CNN将转换后的点云作为输入并直接输出逐点的标签映射,然后被作为重复层实现的条件随机场(CRF)重新定义,之后通过传统的聚类算法获得实例级标签。我们的CNN模型使用KITTI数据集的LiDAR点云训练,我们的逐点分割标签来自于KITTI的3D bounding box。为了获取额外的训练数据,我们在流行的视频游戏"侠盗猎车手V"(GTA-V)构建了一个LiDAR模拟器,以合成大量逼真的实验数据。我们的实验表明,SqueezeSeg达到了很高的精度,具有惊人的速度和稳定的运行时间(8.7 ± 0.5 ms每帧)非常适合自动驾驶。此外,对合成数据的额外训练提高了使用真实世界数据验证的准确性。我们的源代码是开源发布的。本文附有一个视频,其中包括对这项工作的高级内容和展示。

精读论文

A. Point Cloud Transformation

Unlike the distribution of image pixels, the distribution of LiDAR point clouds is usually spare and irregular. Therefore, naively discretizing a 3D space into voxels results in excessively many empty voxels. Processing such sparse data is ineffi- cient, wasting computation. To obtain a more compact representation, we project the LiDAR point cloud onto a sphere for a dense, grid-based representation as

$$\theta = \arcsin \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

$$\phi = \arcsin \frac{y}{\sqrt{x^2 + y^2}}$$
(1)

Applying equation (1) to each point in the cloud, we can obtain a 3D tensor of size $H\times W\times C$. In our experiments, we used 5 features for each point: 3 cartesian coordinates (x,y,z), an intensity measurement and range $r=\sqrt{x^2+y^2+z^2}$.

B. Network structure

The input to SqueezeSeg is a $64 \times 512 \times 5$ tensor as described in the previous section. We ported layers (conv1a to fire9) from SqueezeNet for feature extraction. We only down-sample the width. The output of fire9 is a down-sampled feature map that encodes the semantics of the point cloud. To obtain full resolution label predictions for each point, we used deconvolution modules (more precisely, "transposed convolutions") to up-sample feature maps in the width dimension. We used skip-connections to add up-sampled feature maps to lower-level feature maps of the same size, as shown in Fig. 3. The output probability map is generated by a convolutional layer (conv14) with softmax activation. The probability map is further refined by a recurrent CRF layer, which will be

discussed in the next section.

C. Conditional Random Field

在图片语义分割中,CNN模型预测的结果边界模糊,这一般是由于在最大池化等下采样操作中丢失了低层的细节。精确的像素级别的标签预测不仅需要知道高层的语义信息,而且要获取低层的细节,后者对于标签的一致性至关重要。文中使用了条件随机场改进CNN生成的标签图。对于已知的点云和第i个点的预测标签 c_i ,CRF模型使用下面的能量函数

$$E(\mathbf{c}) = \sum_i u_i(c_i) + \sum_{i,j} b_{i,j}(c_i,c_j)$$
 (2)

CNN模型的输出作为初始概率图输入到CRF模型,之后使用高斯核过滤概率图,高斯核按照下面公式选取

$$\omega_{1}exp(-\frac{\parallel \mathbf{p_{i}} - \mathbf{p_{j}} \parallel^{2}}{2\sigma_{\alpha}^{2}} - \frac{\parallel \mathbf{x_{i}} - \mathbf{x_{j}} \parallel^{2}}{2\sigma_{\beta}^{2}}) + \omega_{2}exp(-\frac{\parallel \mathbf{p_{i}} - \mathbf{p_{j}} \parallel^{2}}{2\sigma_{\gamma}^{2}})$$
(3)

这一步也叫做信息传递,因为聚合了临近点的概率。之后通过 1×1 的卷积核调整每个点的概率分布权重,卷积核的值通过学习获得。最后把原始概率与上一步卷积层输出叠加,并用softmax归一化处理,输出的Refined label map再次输入到RNN层进行迭代。迭代结束后得到最终的Refined label map。

复现论文

核心代码如下

```
import os
import sys
import joblib
from utils import util
import numpy as np
import tensorflow as tf
from nn skeleton import ModelSkeleton
class SqueezeSeg(ModelSkeleton):
  def init (self, mc, gpu id=0):
   with tf.device('/gpu:{}'.format(gpu_id)):
      ModelSkeleton. init (self, mc)
      self. add forward graph()
      self._add_output_graph()
      self. add loss graph()
      self._add_train_graph()
      self._add_viz_graph()
      self. add summary ops()
 def _add_forward_graph(self):
   """NN architecture."""
   mc = self.mc
    if mc.LOAD PRETRAINED MODEL:
      assert tf.qfile.Exists(mc.PRETRAINED MODEL PATH), \
          'Cannot find pretrained model at the given path:' \
          ' {}'.format(mc.PRETRAINED_MODEL_PATH)
      self.caffemodel_weight = joblib.load(mc.PRETRAINED_MODEL_PATH)
   conv1 = self. conv layer(
        'conv1', self.lidar_input, filters=64, size=3, stride=2,
        padding='SAME', freeze=False, xavier=True)
    conv1_skip = self._conv_layer(
        'conv1_skip', self.lidar_input, filters=64, size=1, stride=1,
        padding='SAME', freeze=False, xavier=True)
    pool1 = self._pooling_layer(
        'pool1', conv1, size=3, stride=2, padding='SAME')
    fire2 = self._fire_layer(
        'fire2', pool1, s1x1=16, e1x1=64, e3x3=64, freeze=False)
    fire3 = self._fire_layer(
        'fire3', fire2, s1x1=16, e1x1=64, e3x3=64, freeze=False)
    pool3 = self. pooling layer(
```

```
'pool3', fire3, size=3, stride=2, padding='SAME')
fire4 = self. fire layer(
    'fire4', pool3, s1x1=32, e1x1=128, e3x3=128, freeze=False)
fire5 = self. fire layer(
    'fire5', fire4, s1x1=32, e1x1=128, e3x3=128, freeze=False)
pool5 = self._pooling_layer(
    'pool5', fire5, size=3, stride=2, padding='SAME')
fire6 = self._fire_layer(
    'fire6', pool5, s1x1=48, e1x1=192, e3x3=192, freeze=False)
fire7 = self. fire layer(
    'fire7', fire6, s1x1=48, e1x1=192, e3x3=192, freeze=False)
fire8 = self._fire_layer(
    'fire8', fire7, s1x1=64, e1x1=256, e3x3=256, freeze=False)
fire9 = self. fire layer(
    'fire9', fire8, s1x1=64, e1x1=256, e3x3=256, freeze=False)
# Deconvolation
fire10 = self._fire_deconv(
    'fire_deconv10', fire9, s1x1=64, e1x1=128, e3x3=128, factors=[1, 2],
    stddev=0.1)
fire10_fuse = tf.add(fire10, fire5, name='fure10_fuse')
fire11 = self. fire deconv(
    'fire_deconv11', fire10_fuse, s1x1=32, e1x1=64, e3x3=64, factors=[1,
    stddev=0.1)
fire11 fuse = tf.add(fire11, fire3, name='fire11 fuse')
fire12 = self. fire deconv(
    'fire deconv12', fire11 fuse, s1x1=16, e1x1=32, e3x3=32, factors=[1,
    stddev=0.1)
fire12 fuse = tf.add(fire12, conv1, name='fire12 fuse')
fire13 = self._fire_deconv(
    'fire_deconv13', fire12_fuse, s1x1=16, e1x1=32, e3x3=32, factors=[1,
    stddev=0.1)
fire13_fuse = tf.add(fire13, conv1_skip, name='fire13_fuse')
drop13 = tf.nn.dropout(fire13_fuse, self.keep_prob, name='drop13')
conv14 = self. conv layer(
    'conv14_prob', drop13, filters=mc.NUM_CLASS, size=3, stride=1,
    padding='SAME', relu=False, stddev=0.1)
bilateral_filter_weights = self._bilateral_filter_layer(
    'bilateral_filter', self.lidar_input[:, :, :, :3], # x, y, z
   thetas=[mc.BILATERAL_THETA_A, mc.BILATERAL_THETA_R],
    sizes=[mc.LCN_HEIGHT, mc.LCN_WIDTH], stride=1)
self.output_prob = self._recurrent_crf_layer(
    'recurrent crf', conv14, bilateral filter weights,
    sizes=[mc.LCN_HEIGHT, mc.LCN_WIDTH], num_iterations=mc.RCRF_ITER,
    padding='SAME'
)
```

```
def fire layer(self, layer name, inputs, s1x1, e1x1, e3x3, stddev=0.001,
    freeze=False):
  """Fire layer constructor.
  Args:
    layer name: layer name
    inputs: input tensor
    s1x1: number of 1x1 filters in squeeze layer.
    e1x1: number of 1x1 filters in expand layer.
    e3x3: number of 3x3 filters in expand layer.
    freeze: if true, do not train parameters in this layer.
  Returns:
    fire layer operation.
  .....
  sq1x1 = self. conv layer(
      layer_name+'/squeeze1x1', inputs, filters=s1x1, size=1, stride=1,
      padding='SAME', freeze=freeze, stddev=stddev)
  ex1x1 = self. conv layer(
      layer_name+'/expand1x1', sq1x1, filters=e1x1, size=1, stride=1,
      padding='SAME', freeze=freeze, stddev=stddev)
  ex3x3 = self._conv_layer(
      layer_name+'/expand3x3', sq1x1, filters=e3x3, size=3, stride=1,
      padding='SAME', freeze=freeze, stddev=stddev)
  return tf.concat([ex1x1, ex3x3], 3, name=layer_name+'/concat')
def fire deconv(self, layer name, inputs, s1x1, e1x1, e3x3,
                 factors=[1, 2], freeze=False, stddev=0.001):
  """Fire deconvolution layer constructor.
    layer_name: layer name
    inputs: input tensor
    s1x1: number of 1x1 filters in squeeze layer.
    e1x1: number of 1x1 filters in expand layer.
    e3x3: number of 3x3 filters in expand layer.
    factors: spatial upsampling factors.
    freeze: if true, do not train parameters in this layer.
  Returns:
   fire layer operation.
  assert len(factors) == 2, factors should be an array of size 2'
  ksize_h = factors[0] * 2 - factors[0] % 2
  ksize w = factors[1] * 2 - factors[1] % 2
  sq1x1 = self._conv_layer(
      layer_name+'/squeeze1x1', inputs, filters=s1x1, size=1, stride=1,
      padding='SAME', freeze=freeze, stddev=stddev)
  deconv = self._deconv_layer(
      layer_name+'/deconv', sq1x1, filters=s1x1, size=[ksize_h, ksize_w],
      stride=factors, padding='SAME', init='bilinear')
  ex1x1 = self._conv_layer(
      layer_name+'/expand1x1', deconv, filters=e1x1, size=1, stride=1,
```

```
padding='SAME', freeze=freeze, stddev=stddev)
ex3x3 = self._conv_layer(
    layer_name+'/expand3x3', deconv, filters=e3x3, size=3, stride=1,
    padding='SAME', freeze=freeze, stddev=stddev)

return tf.concat([ex1x1, ex3x3], 3, name=layer_name+'/concat')
```

实验结果

以下是几张SequeezeSeg的分割结果

总结

Sequeeze CRF中的超参数大都是根据经验设定的,这很大程度上会限制SqueezeSeg的运用场景扩展能力。如果这些超参数以学习的方式获得,或者用加入一定约束的卷积核代替,应该可以显著扩展模型的使用场景。