Rates of Change and Tangents to Curves

Calculus is a tool to help us understand how functional relationships change, such as the position or speed of a moving object as a function of time, or the changing slope of a curve being traversed by a point moving along it. In this section we introduce the ideas of average and instantaneous rates of change, and show that they are closely related to the slope of a curve at a point *P* on the curve. We give precise developments of these important concepts in the next chapter, but for now we use an informal approach so you will see how they lead naturally to the main idea of the chapter, the *limit*. You will see that limits play a major role in calculus and the study of change.

Average and Instantaneous Speed

In the late sixteenth century, Galileo discovered that a solid object dropped from rest (not moving) near the surface of the earth and allowed to fall freely will fall a distance proportional to the square of the time it has been falling. This type of motion is called **free fall**. It assumes negligible air resistance to slow the object down, and that gravity is the only force acting on the falling body. If y denotes the distance fallen in feet after t seconds, then Galileo's law is

$$y = 16t^2$$
,

where 16 is the (approximate) constant of proportionality. (If y is measured in meters, the constant is 4.9.)

A moving body's **average speed** during an interval of time is found by dividing the distance covered by the time elapsed. The unit of measure is length per unit time: kilometers per hour, feet (or meters) per second, or whatever is appropriate to the problem at hand.

EXAMPLE 1 A rock breaks loose from the top of a tall cliff. What is its average speed

- (a) during the first 2 sec of fall?
- **(b)** during the 1-sec interval between second 1 and second 2?

Solution The average speed of the rock during a given time interval is the change in distance, Δy , divided by the length of the time interval, Δt . (Increments like Δy and Δt are reviewed in Appendix 3.) Measuring distance in feet and time in seconds, we have the following calculations:

(a) For the first 2 sec:
$$\frac{\Delta y}{\Delta t} = \frac{16(2)^2 - 16(0)^2}{2 - 0} = 32 \frac{\text{ft}}{\text{sec}}$$

(b) From sec 1 to sec 2:
$$\frac{\Delta y}{\Delta t} = \frac{16(2)^2 - 16(1)^2}{2 - 1} = 48 \frac{\text{ft}}{\text{sec}}$$

We want a way to determine the speed of a falling object at a single instant t_0 , instead of using its average speed over an interval of time. To do this, we examine what happens when we calculate the average speed over shorter and shorter time intervals starting at t_0 . The next example illustrates this process. Our discussion is informal here, but it will be made precise in Chapter 3.

TORICAL BIOGRAPHY

leo Galilei 4–1642)

EXAMPLE 2 Find the speed of the falling rock in Example 1 at t = 1 and t = 2 sec.

Solution We can calculate the average speed of the rock over a time interval $[t_0, t_0 + h]$, having length $\Delta t = h$, as

$$\frac{\Delta y}{\Delta t} = \frac{16(t_0 + h)^2 - 16t_0^2}{h}.$$
 (1)

We cannot use this formula to calculate the "instantaneous" speed at the exact moment t_0 by simply substituting h = 0, because we cannot divide by zero. But we *can* use it to calculate average speeds over increasingly short time intervals starting at $t_0 = 1$ and $t_0 = 2$. When we do so, we see a pattern (Table 2.1).

TABLE 2.1	Average speeds	over short tim	e intervals [$t_0, t_0 +$	h]

Average speed: $\frac{\Delta y}{\Delta t} = \frac{16(t_0 + h)^2 - 16t_0^2}{h}$				
Length of time interval h	Average speed over interval of length h starting at $t_0 = 1$	Average speed over interval of length h starting at $t_0 = 2$		
1	48	80		
0.1	33.6	65.6		
0.01	32.16	64.16		
0.001	32.016	64.016		
0.0001	32.0016	64.0016		

The average speed on intervals starting at $t_0 = 1$ seems to approach a limiting value of 32 as the length of the interval decreases. This suggests that the rock is falling at a speed of 32 ft/sec at $t_0 = 1$ sec. Let's confirm this algebraically.

If we set $t_0 = 1$ and then expand the numerator in Equation (1) and simplify, we find that

$$\frac{\Delta y}{\Delta t} = \frac{16(1+h)^2 - 16(1)^2}{h} = \frac{16(1+2h+h^2) - 16}{h}$$
$$= \frac{32h + 16h^2}{h} = 32 + 16h.$$

For values of h different from 0, the expressions on the right and left are equivalent and the average speed is 32 + 16h ft/sec. We can now see why the average speed has the limiting value 32 + 16(0) = 32 ft/sec as h approaches 0.

Similarly, setting $t_0 = 2$ in Equation (1), the procedure yields

$$\frac{\Delta y}{\Delta t} = 64 + 16h$$

for values of h different from 0. As h gets closer and closer to 0, the average speed has the limiting value 64 ft/sec when $t_0 = 2$ sec, as suggested by Table 2.1.

The average speed of a falling object is an example of a more general idea which we discuss next.

FIGURE 2.1 A secant to the graph y = f(x). Its slope is $\Delta y/\Delta x$, the average rate of change of f over the interval $[x_1, x_2]$.

FIGURE 2.2 *L* is tangent to the circle at *P* if it passes through *P* perpendicular to radius *OP*.

Average Rates of Change and Secant Lines

Given an arbitrary function y = f(x), we calculate the average rate of change of y with respect to x over the interval $[x_1, x_2]$ by dividing the change in the value of y, $\Delta y = f(x_2) - f(x_1)$, by the length $\Delta x = x_2 - x_1 = h$ of the interval over which the change occurs. (We use the symbol h for Δx to simplify the notation here and later on.)

DEFINITION The average rate of change of y = f(x) with respect to x over the interval $[x_1, x_2]$ is

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}, \qquad h \neq 0.$$

Geometrically, the rate of change of f over $[x_1, x_2]$ is the slope of the line through the points $P(x_1, f(x_1))$ and $Q(x_2, f(x_2))$ (Figure 2.1). In geometry, a line joining two points of a curve is a **secant** to the curve. Thus, the average rate of change of f from x_1 to x_2 is identical with the slope of secant PQ. Let's consider what happens as the point Q approaches the point P along the curve, so the length P0 of the interval over which the change occurs approaches zero.

Defining the Slope of a Curve

We know what is meant by the slope of a straight line, which tells us the rate at which it rises or falls—its rate of change as the graph of a linear function. But what is meant by the slope of a curve at a point P on the curve? If there is a tangent line to the curve at P—a line that just touches the curve like the tangent to a circle—it would be reasonable to identify the slope of the tangent as the slope of the curve at P. So we need a precise meaning for the tangent at a point on a curve.

For circles, tangency is straightforward. A line L is tangent to a circle at a point P if L passes through P perpendicular to the radius at P (Figure 2.2). Such a line just *touches* the circle. But what does it mean to say that a line L is tangent to some other curve C at a point P?

To define tangency for general curves, we need an approach that takes into account the behavior of the secants through P and nearby points Q as Q moves toward P along the curve (Figure 2.3). Here is the idea:

- 1. Start with what we can calculate, namely the slope of the secant PQ.
- 2. Investigate the limiting value of the secant slope as Q approaches P along the curve. (We clarify the *limit* idea in the next section.)
- 3. If the *limit* exists, take it to be the slope of the curve at P and *define* the tangent to the curve at P to be the line through P with this slope.

This procedure is what we were doing in the falling-rock problem discussed in Example 2. The next example illustrates the geometric idea for the tangent to a curve.

FIGURE 2.3 The tangent to the curve at P is the line through P whose slope is the limit of the secant slopes as $Q \rightarrow P$ from either side.

EXAMPLE 3 Find the slope of the parabola $y = x^2$ at the point P(2, 4). Write an equation for the tangent to the parabola at this point.

Solution We begin with a secant line through P(2, 4) and $Q(2 + h, (2 + h)^2)$ nearby. We then write an expression for the slope of the secant PQ and investigate what happens to the slope as Q approaches P along the curve:

Secant slope
$$=\frac{\Delta y}{\Delta x} = \frac{(2+h)^2 - 2^2}{h} = \frac{h^2 + 4h + 4 - 4}{h}$$

 $=\frac{h^2 + 4h}{h} = h + 4.$

If h > 0, then Q lies above and to the right of P, as in Figure 2.4. If h < 0, then Q lies to the left of P (not shown). In either case, as Q approaches P along the curve, h approaches zero and the secant slope h + 4 approaches 4. We take 4 to be the parabola's slope at P.

FIGURE 2.4 Finding the slope of the parabola $y = x^2$ at the point P(2, 4) as the limit of secant slopes (Example 3).

The tangent to the parabola at *P* is the line through *P* with slope 4:

$$y = 4 + 4(x - 2)$$
 Point-slope equation $y = 4x - 4$.

Instantaneous Rates of Change and Tangent Lines

The rates at which the rock in Example 2 was falling at the instants t = 1 and t = 2 are called *instantaneous rates of change*. Instantaneous rates and slopes of tangent lines are intimately connected, as we will now see in the following examples.

EXAMPLE 4 Figure 2.5 shows how a population *p* of fruit flies (*Drosophila*) grew in a 50-day experiment. The number of flies was counted at regular intervals, the counted values plotted with respect to time *t*, and the points joined by a smooth curve (colored blue in Figure 2.5). Find the average growth rate from day 23 to day 45.

Solution There were 150 flies on day 23 and 340 flies on day 45. Thus the number of flies increased by 340 - 150 = 190 in 45 - 23 = 22 days. The average rate of change of the population from day 23 to day 45 was

Average rate of change:
$$\frac{\Delta p}{\Delta t} = \frac{340 - 150}{45 - 23} = \frac{190}{22} \approx 8.6 \text{ flies/day}.$$

FIGURE 2.5 Growth of a fruit fly population in a controlled experiment. The average rate of change over 22 days is the slope $\Delta p/\Delta t$ of the secant line (Example 4).

This average is the slope of the secant through the points P and Q on the graph in Figure 2.5.

The average rate of change from day 23 to day 45 calculated in Example 4 does not tell us how fast the population was changing on day 23 itself. For that we need to examine time intervals closer to the day in question.

EXAMPLE 5 How fast was the number of flies in the population of Example 4 growing on day 23?

Solution To answer this question, we examine the average rates of change over increasingly short time intervals starting at day 23. In geometric terms, we find these rates by calculating the slopes of secants from P to Q, for a sequence of points Q approaching P along the curve (Figure 2.6).

Slope of $PQ = \Delta p / \Delta t$
(flies/day)
$\frac{340 - 150}{45 - 23} \approx 8.6$
$\frac{330 - 150}{40 - 23} \approx 10.6$
$\frac{310 - 150}{35 - 23} \approx 13.3$
$\frac{265 - 150}{30 - 23} \approx 16.4$

FIGURE 2.6 The positions and slopes of four secants through the point *P* on the fruit fly graph (Example 5).

The values in the table show that the secant slopes rise from 8.6 to 16.4 as the t-coordinate of Q decreases from 45 to 30, and we would expect the slopes to rise slightly higher as t continued on toward 23. Geometrically, the secants rotate about P and seem to approach the red tangent line in the figure. Since the line appears to pass through the points (14, 0) and (35, 350), it has slope

$$\frac{350-0}{35-14}$$
 = 16.7 flies/day (approximately).

On day 23 the population was increasing at a rate of about 16.7 flies/day.

The instantaneous rates in Example 2 were found to be the values of the average speeds, or average rates of change, as the time interval of length h approached 0. That is, the instantaneous rate is the value the average rate approaches as the length h of the interval over which the change occurs approaches zero. The average rate of change corresponds to the slope of a secant line; the instantaneous rate corresponds to the slope of the tangent line as the independent variable approaches a fixed value. In Example 2, the independent variable t approached the values t = 1 and t = 2. In Example 3, the independent variable t approached the value t = 2. So we see that instantaneous rates and slopes of tangent lines are closely connected. We investigate this connection thoroughly in the next chapter, but to do so we need the concept of a *limit*.