

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addiese: COMMISSIONER FOR PATENTS P O Box 1450 Alexandra, Virginia 22313-1450 www.wepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/723,389	11/25/2003	Thomas Redden Veariel	2003B103/2	8869
20455 707890 2078902088 EXXONMOBII. CHEMICAL COMPANY 5200 BAYWAY DRIVE P.O. BOX 2149 BAYTOWN, TX 77522-2149			EXAMINER	
			BODAWALA, DIMPLE N	
			ART UNIT	PAPER NUMBER
			1791	
			MAIL DATE	DELIVERY MODE
			07/09/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/723,389 VEARIEL ET AL. Office Action Summary Art Unit Examiner DIMPLE N. BODAWALA 1791 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 23 April 2008. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4)\(\times \) Claim(s) 36-39.41-46.48-61.63.64.72-74.76-78.80.81 and 83-85 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 36-39,41-46,48-61,63,64,72-74,76-78,80,81 and 83-85 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s) 1) Notice of References Cited (PTO-892) 4) Interview Summary (PTO-413) Paper No(s)/Mail Date.

Notice of Draftsparson's Catent Drawing Review (CTO-948)

3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date _

5) Notice of Informal Patent Application

6) Other:

DETAILED ACTION

Response to Amendment

In view of the amendment, filed on 4/23/2008 following rejections are withdrawn as a reason of record from the previous office action, mailed on 3/6/2008.

- Rejection of claims 36-64 and 72 under 35 USC 112, second paragraph.
- Rejection of claims 36-39, 51-53, 56, 72-74, 80 and 81 under 35
 USC 102(b) as being anticipated by Hiromi et al. (JP 58-217327).
- Rejection of claims 36-38, 44, 47, 51-53, 56, 58-59, 62, 72-74, 76-78, 80-81 and 83-85 under 35 USC 102(b) as being anticipated by Courval et al. (US 5,204,045).
- Rejection of claims 73-75, 78, 80-82 and 85 under 35 USC 102(b) as being anticipated by Ready et al. (US 6,474,969).
- ✓ Rejection of claims 36-46, 51-61, 72-77 and 80-84 under 35 USC 103(a) as being unpatentable over Leffew et al. (US 6,409,491).
- ✓ Rejection of claims 47-50, 62-64, 78-79 and 85-86 under 35 USC 103(a) as being unpatentable over Leffew et al. (US 6,409,491) in view of Dudley (US 4.123.207).

Application/Control Number: 10/723,389 Page 3

Art Unit: 1791

Response to Arguments

1. Applicant's arguments filed on 4/13/2008 have been fully considered.

- 2. Applicant argues that the examiner has stated that the temperature ranges of claims 36, 51 and 72 should not be considered, wherein Applicants disagree and cites Federal circuit law, states that "a functional limitation must be evaluated and considered, just like any other limitation of the claim, for what if fairly conveys to a person of ordinary skill in the pertinent art in the context in which it is used". A functional limitation can be used to describe the capability of mechanical elements. The temperature ranges are performing such a function in the claims, that is, stating the capability or functional requirement of the apparatus. Applicant's argument is fully considered, but it is moot in view of the amendment of the claims 36, 51 and 72, filed on 4/13/2008.
- 3. Applicant further argues that the prior art, Leffew et al. (US 6,409,491) does not disclose the apparatus element of heater capable of and positioned so as to neat only locally, a portion of the melted polymer to the newly recited range from 30·170 degree C above the Tmelt or cup temperature of the polymer mass, while the balance of the mass remains at Tmelt. Applicant further argues that Leffew et al. (US 6,409,491) does not provide a heating means for raising a local area of the polymer flow to a temperature 30·170

Art Unit: 1791

degree C above Tmelt. Applicants' arguments are fully considered, but they are not persuasive, because the prior art, Leffew discloses plurality of heater (2), wherein each heater containing a corresponding extrusion barrel within the interior, such that the corresponding extrusion barrel is heated to a predetermined temperature (See figure 1, col.4 lines 14-18), which inherently suggests that the heating means for raising a local area of the material flow to a temperature above the Tmelt as defined in the claims of the instant application. If the prior art discloses heater, wherein heater is involved to heat the resin to a predetermined temperature, therefore the prior art is capable to position the heater at a predetermined location to get desired result of the resin. Eventhough, the position of the heater is not similar to the position of heater of the instant application, but the function of element is similar, therefore, there is no patentability weight for location of heater. It has been recognized that to shift location of parts when the operation of the device is not otherwise changed is within the level of ordinary skill in the art, In re Japikse, 86 USPQ 70; In re Gazda, 104 USPQ 400; In re Kuhle, 526 F.2d 553, 188 USPQ 7 (CCPA 1975). The prior art is capable to provide motivation or reason for the heater such as to heat a resin to a predetermined temperature which can be 30-170 degree C above Tmelt. Furthermore, the general conditions of a claim are disclosed in the prior art, it is not inventive

Application/Control Number: 10/723,389 Page 5

Art Unit: 1791

to discover the optimum or workable ranges by routine experimentation, In re Aller, 220 F.2d 454, 456, 105 USPQ 233, 235 (CCPA 1955). Therefore, the rejection of claims over Leffew et al. (US 6,409,491) is maintained. However, upon further consideration new ground of rejection is made which is described as follows:

New Grounds of Rejections

Claim Rejections - 35 USC § 112

- The following is a quotation of the second paragraph of 35 U.S.C. 112:
 The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.
- 5. Claim 48 is rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.
- 6. Claim 48 is rejected because claim 48 is dependent on cancelled claim40.

Claim Rejections - 35 USC § 103

The text of those sections of Title 35, U.S. Code not included in this
action can be found in a prior Office action.

Application/Control Number: 10/723,389

Art Unit: 1791

Claims 36-39, 41-46, 48-61, 63-64, 72-74,76-78,80-81 and 83-85 are rejected under 35 U.S.C. 103(a) as being unpatentable over Leffew et al. (US 6,409,491) in view of Dudley (US 4,123,207).

Page 6

As to claims 36-38, 51, 52, 56, Leffew et al. (491) discloses the 9. extrusion die assembly (14) with the die plate (4), which comprises an upstream face (11); a downstream face (12); a passage (15) having a first opening in the upstream face (11) whereby molten resin at bulk temperature may be received and a second opening in said downstream face (12) whereby molten resin may be extruded, wherein passage (15) is generally cylindrical and having substantially uniform diameter from the upstream to the downstream (See figure 1); and a heater (2) proximate said downstream face (12) and proximate with the passage (15) at the down stream opening and capable of heating the molten resin to a temperature, wherein the heater (2) is a combination of band heaters and cartridge heaters to keep the material flowing and to avoid frictional drag on the material passing through the plate and to prevent solidification prior to cutting (See col.1 lines 21-25), which can be understandable that a combination of band heaters and cartridge heaters is a part of an electrical heating elements. It further teaches that the die plate (4) comprises the intermediate zone (9) for conveying the polymer melt (See figure 1). Figure 1 further teaches that the extrusion die assembly (14)

Art Unit: 1791

having a plurality of extrusion orifices and the monolithic heater (2) in a resin shaping apparatus comprises a heater having first face to engage with the orifice, and second face opposite to the first face. It further teaches that the die plate is associated with the combination of a band and cartridge heater, means to provide electrical energy to the heater (See col.1 lines 21-32).

- 10. As to claims 39, 53, figure 1 shows that passage (15) passes through a position of the heater (2) such that the position is defines the wall of the passage proximate the downstream face. It further teaches that the heater (2) is concentric with the passage, wherein the passage (15) passes through the portion of the heater, such that the portion defines the wall of the passage proximate the down stream face (12).
- 11. As to claims 43, 58, 76, 83, it further teaches that the die plate (4) is monolithic die plate (See figure 1).
- 12. As to claims 44-46, 57, 59-61, Figure 1 further teaches that the die plate (4) comprises the first plate having the upstream face (11) and a second plate having the downstream face (12) and heater (2), and also plurality of passage, wherein said first and second plate are fluidically connected by the passage (15) (See col.2 lines 18-48).

13. As to claim 72. Figure 1 further teaches that the extrusion die assembly

(14) having a plurality of extrusion orifices and the monolithic heater (2) in a

resin shaping apparatus comprises a heater having first face to engage with

the orifice, and second face opposite to the first face. It further teaches that

the die plate is associated with the combination of a band and cartridge

heater, means to provide electrical energy to the heater (See col.1 lines 21-

32). It further discloses a plurality of heaters (2), wherein each heater

containing a corresponding extrusion barrel within the interior, such that the

corresponding extrusion barrel is heated to a predetermined temperature

(See figure 1, col.4 lines 14-18), which inherently suggests that the heating

means for raising a local area of the material flow to a temperature above the

Tmelt as defined in the claims of the instant application. Figure 1 further

teaches that the die plate (4) comprises the first plate having the upstream

face (11) and a second plate having the downstream face (12) and heater (2),

and also plurality of passage, wherein said first and second plate are

fluidically connected by the passage (15) (See col.2 lines 18-48).

14. As to claims 73-74, 77, 80-81, 84 Leffew et al. ('491) discloses the

extrusion die assembly (14) with the die plate (4), which comprises an

upstream face (11); a downstream face (12); a passage (15) having a first

opening in the upstream face (11) whereby molten resin at bulk temperature

Application/Control Number: 10/723,389

Art Unit: 1791

may be received and a second opening in said downstream face (12) whereby molten resin may be extruded, wherein passage (15) is generally cylindrical and having substantially uniform diameter from the upstream to the downstream (See figure 1); and a heater (2) proximate said downstream face (12) and proximate with the passage (15) at the down stream opening and capable of heating the molten resin to a temperature, wherein the heater (2) is a combination of band heaters and cartridge heaters to keep the material flowing and to avoid frictional drag on the material passing through the plate and to prevent solidification prior to cutting (See col.1 lines 21-25), which can be understandable that a combination of band heaters and cartridge heaters is a part of an electrical heating elements. It further teaches that the die plate (4) comprises the intermediate zone (9) for conveying the polymer melt (See figure 1). Figure 1 further teaches that the extrusion die assembly (14) having a plurality of extrusion orifices and the monolithic heater (2) in a resin shaping apparatus comprises a heater having first face to engage with the orifice, and second face opposite to the first face. It further teaches that the die plate is associated with the combination of a band and cartridge heater, means to provide electrical energy to the heater (See col.1 lines 21-32). Figure 1 further teaches that the die plate (4) comprises the first plate having the upstream face (11) and a second plate having the downstream face Application/Control Number: 10/723,389

Art Unit: 1791

(12) and heater (2), and also plurality of passage, wherein said first and second plate are fluidically connected by the passage (15) (See col.2 lines 18-48).

- 15. Leffew ('491) discloses all claimed structural limitations as discussed above. He further teaches that the heater is capable of heating the polymer at a predetermined temperature, however does not provide the temperature range at which the heater is capable of being operated.
- 16. If the prior art discloses heater, wherein heater is involved to heat the resin to a predetermined temperature, therefore the prior art is capable to position the heater at a predetermined location to get desired result of the resin. Eventhough, the position of the heater is not similar to the position of heater of the instant application, but the function of element is similar, therefore, there is no patentability weight for location of heater. It has been recognized that to shift location of parts when the operation of the device is not otherwise changed is within the level of ordinary skill in the art, In re Japikse, 86 USPQ 70: In re Gazda, 104 USPQ 400: In re Kuhle, 526 F.2d 553, 188 USPQ 7 (CCPA 1975). The prior art is capable to provide motivation or reason for the heater such as to heat a resin to a predetermined temperature which can be 30-170 degree C above Tmelt. Furthermore, the general conditions of a claim are disclosed in the prior art, it is not inventive to

Art Unit: 1791

discover the optimum or workable ranges by routine experimentation, In re Aller, 220 F.2d 454, 456, 105 USPQ 233, 235 (CCPA 1955).

- 17. It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to modify the invention of Leffew ('491) by providing the heater capable of heating to the temperature range as recited in the claims I order to provide the desired heating at a wide range of temperature for melting a variety of polymers inherently having a wide range of melt temperatures.
- 18. Leffew et al. discloses all claimed structural limitations as discussed above, but does not disclose the die plate made of material, the insulation material, and also the deposition of insulation material.
- 19. In the analogous art, Dudley ('207) discloses the die plate, which is made from Inconel, stainless steel, or like material (See col.3 lines 60-68). It further teaches that either low thermal conductivity material or Teflon insulates the die plate (See col.4 lines 20-27), as we know that Teflon having melting point is 327 degree C or 620.6 degree F (See wikipedia cite), which inherently suggests that TEFLON consists the higher temperature property. It has been held that a preamble is denied the effect of a limitation where the claim is drawn to a structure and the portion of the claims following the preamble is a self-contained description of the structure (such as high

 $Application/Control\ Number:\ 10/723,389$

Art Unit: 1791

temperature property of the insulation material) not depending for completeness upon the introductory clause, Kropa v. Robie, 88 USPQ 478. Moreover, when the preamble states a purpose or intended use for the invention, it is not limiting: it merely indicates the environment in which the claimed invention operates, Loctite Corp. V. Ultraseal Ltd., 228 USPQ 90, 94. 20. Claims 48-50, 63-64, 73 and 80 are recited the limitations of the process steps for depositing the insulation material either spray coating techniques or vapor deposition techniques. With regard to the claim recitations regarding the method of forming the apparatus, such relate only to the method of producing the claimed apparatus, which does not impart patentability to the apparatus claims. The determination of the patentability is based on the product apparatus itself. In re Brown, 173 USPQ 685, 688. and the patentability of the product does not depend on its method of the production, In re Pilkington, 162 USPQ 145, 147; In re Thrope, 227 USPQ 964 (CAFC 1985).

21. It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to modify the invention of Leffew ('491) by providing the material of the die plate because such an alignment having a high thermal conductivity which can be helpful to utilize the steam to

Application/Control Number: 10/723,389

Art Unit: 1791

maintain the material being extruded in a molten state (See col.1 lines 54-61) as suggested by Dudley ('207).

- 22. It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to modify the invention of Leffew ('491) by providing an insulation material of Dudley ('207) because such an alignment is involved to prevent freeze off of the die plate during the extrusion process.
- Claims 36, 38-39,41-46, 48-55, 57-61, 63 and 64 are rejected under 35
 U.S.C. 103(a) as being unpatentable over Yoshida et al. (US 6,220,847) in view of Dudley (US 4,123,207).
- 24. As to claim 36, Yoshida et al. ('847) discloses die which comprises an upstream face; a down stream face; plurality of passages having a first opening in the upstream face whereby the molten material at bulk temperature may be received, a second opening in the downstream face whereby the molten resin may be extruded (See figures 1·2). It further discloses a plurality of heaters (1b, 8), wherein heaters (8) proximate the down stream face and proximate with the passage at the downstream face and capable of heating the molten resin (See figure 2). It further teaches that the heater is involved to keep the die surface at a high temperature of about 250 degree C (See col.1 lines 49·51), which inherently suggests that the heater is capable to locally heating the molten resin to a temperature about

 $Application/Control\ Number:\ 10/723,389$

Art Unit: 1791

250 degree C. It further suggests that the local molten resin temperatures being from 30-170 degree C above the bulk temperature (See figure 3; col.6 lines 9-16).

- 25. As to claim 38-39, it further teaches that the heater (8) is concentric with the passage, wherein passage passes through a portion of the heater, such that the portion defines the wall of the passage proximate the downstream face (See figures 1-2).
- 26. As to claims 43, 58, it further teaches that the die plate is a monolithic die plate (See figure 1).
- 27. As to claims 44-46, 59-61, it further teaches that the first die plate having an upstream face and a second plate having the downstream face and heater (8), wherein first and second plates fluidically connected by the passage, wherein a plurality of at least one passage and wherein the first and second plates are fluidically connected by each of the passage (See figures 1 and 3).
- 28. As to claim 51, it discloses a die plate having a passage including an initial, upstream zone having an opening for receiving a polymer melt having a bulk temperature Tmelt, an intermediate zone for conveying the polymer melt, and a final, down stream zone terminating the extrusion die assembly at an exit opening whereby the polymer melt exits the die assembly (See

 $Application/Control\ Number:\ 10/723,389$

Art Unit: 1791

figure 3). It further discloses a plurality of heaters (1b, 8), wherein heaters (8) proximate the down stream face and proximate with the passage at the downstream face and capable of heating the molten resin (See figure 2). It further teaches that the heater is involved to keep the die surface at a high temperature of about 250 degree C (See col.1 lines 49-51), which inherently suggests that the heater is capable to locally heating the molten resin to a temperature about 250 degree C. It further suggests that the local molten resin temperatures being from 30-170 degree C above the bulk temperature (See figure 3: col.6 lines 9-16).

- 29. As to claims 52-53, it further teaches that the die assembly comprises a plurality of extrusion orifices forming a pattern, wherein the heating means (8) comprises a heater concentric with the extrusion orifice pattern, wherein heating means (8) proximate the exit opening (See figure 3).
- 30. As to claim 57, it further teaches that the die plate comprises a plurality of passages (Se figures 1-2).
- 31. Yoshida et al. discloses all claimed structural limitations as discussed above, but does not disclose the die plate made of material, the insulation material, and also the deposition of insulation material.
- 32. In the analogous art, Dudley ('207) discloses the die plate, which is made from Inconel, stainless steel, or like material (See col.3 lines 60.68). It

Art Unit: 1791

further teaches that either low thermal conductivity material or Teflon insulates the die plate (See col.4 lines 20-27), as we know that Teflon having melting point is 327 degree C or 620.6 degree F (See wikipedia cite), which inherently suggests that TEFLON consists the higher temperature property. It has been held that a preamble is denied the effect of a limitation where the claim is drawn to a structure and the portion of the claims following the preamble is a self-contained description of the structure (such as high temperature property of the insulation material) not depending for completeness upon the introductory clause, Kropa v. Robie, 88 USPQ 478. Moreover, when the preamble states a purpose or intended use for the invention, it is not limiting; it merely indicates the environment in which the claimed invention operates, Loctite Corp. V. Ultraseal Ltd., 228 USPQ 90, 94. 33. Claims 48-50 and 63-64 are recited the limitations of the process steps for depositing the insulation material either spray coating techniques or vapor deposition techniques. With regard to the claim recitations regarding the method of forming the apparatus, such relate only to the method of producing the claimed apparatus, which does not impart patentability to the apparatus claims. The determination of the patentability is based on the product apparatus itself. In re Brown, 173 USPO 685, 688, and the patentability of the product does not depend on its method of the production,

Application/Control Number: 10/723,389 Art Unit: 1791

In re Pilkington, 162 USPQ 145, 147; In re Thrope, 227 USPQ 964 (CAFC 1985).

- 34. It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to modify the invention of Yoshida et al. by providing the material of the die plate because such an alignment having a high thermal conductivity which can be helpful to utilize the steam to maintain the material being extruded in a molten state (See col.1 lines 54-61) as suggested by Dudley ('207).
- 35. It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to modify the invention of Yoshida et al. by providing an insulation material of Dudley ('207) because such an alignment is involved to prevent freeze off of the die plate during the extrusion process.
- 36. Claims 73, 74, 76-78, 80, 81 and 83-85 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ready et al. (US 6,474,969) in view of Dudley (US 4,123,207).
- 37. As to claims 73, 80, Ready et al. ('969) discloses an extrusion die assembly (10) comprising a die plate (12) (See figure 3) for preparing pellets (See col.1 lines 11-15), wherein plate is made of steel (See col.3 lines 25-27) and having an extruder face as an upstream face (18); a cutting face as a downstream face (20); annular inner and outer groove (24.26) as at least one

Art Unit: 1791

passage for receiving the material and second opening for extruding material in downstream face (20) direction (See figure 3); and an electrical heating element (28a,28b) proximate the downstream face and proximate with the one passage (24,26) at the downstream opening (see figure 3; col.4 lines 4·10), wherein the electrical heating element which inherently capable of locally heating the molten resin with the electrical heating elements. It further teaches that the annular passage (24, 26) is filled with a thermally conductive paste so that heat from heating element (28a, 28b) may be properly conducted to orifice (22) (See col.4 lines 11·20), which inherently suggests that the insulation material concentric with the passage and contiguous with the portion of the heating element which defines the wall of the passage, wherein the passage proximate opening of the downstream face for extruding the material.

- 38. As to claim 74, Figure 3 further teaches that the portion of the heaters (28a, 28b) defines the wall of the passage (24, 26) proximate the downstream face.
- 39. As to claims 76, 78, 83 and 85, it further teaches that the die plate is monolithic die plate (See figure 4), wherein the die plate is made of steel (See col.3 lines 25-27).

Art Unit: 1791

- 40. As to claims 77, 84, it further teaches that the dies plate comprises a first plate having upstream face and a second plate having a downstream face and the heater, wherein the first and second plates fluidically connected by the passage (See figure 4).
- 41. As to claim 81, figure 4 further shows that that the heating means is proximate to the exit opening.
- 42. Ready et al. discloses all claimed structural limitations as discussed above, but does not disclose the insulation material, and also the deposition of insulation material.
- 43. In the analogous art, Dudley ('207) discloses the die plate, which is made from Inconel, stainless steel, or like material (See col.3 lines 60-68). It further teaches that either low thermal conductivity material or Teflon insulates the die plate (See col.4 lines 20-27), as we know that Teflon having melting point is 327 degree C or 620.6 degree F (See wikipedia cite), which inherently suggests that TEFLON consists the higher temperature property. It has been held that a preamble is denied the effect of a limitation where the claim is drawn to a structure and the portion of the claims following the preamble is a self-contained description of the structure (such as high temperature property of the insulation material) not depending for completeness upon the introductory clause, Kropa v. Robie, 88 USPQ 478.

 $Application/Control\ Number:\ 10/723,389$

Art Unit: 1791

Moreover, when the preamble states a purpose or intended use for the invention, it is not limiting: it merely indicates the environment in which the claimed invention operates, *Loctite Corp. V. Ultraseal Ltd.*, 228 USPQ 90, 94.

- 44. Claims 73 and 80 are recited the limitations of the process steps for depositing the insulation material either spray coating techniques or vapor deposition techniques. With regard to the claim recitations regarding the method of forming the apparatus, such relate only to the method of producing the claimed apparatus, which does not impart patentability to the apparatus claims. The determination of the patentability is based on the product apparatus itself, *In re Brown, 173 USPQ 685, 688*, and the patentability of the product does not depend on its method of the production, *In re Pilkington, 162 USPQ 145, 147: In re Thrope, 227 USPQ 964 (CAFC 1985).*
- 45. It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to modify the invention of Ready et al. by providing an insulation material of Dudley ('207) because such an alignment is involved to prevent freeze off of the die plate during the extrusion process.

Conclusion

46. Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE**

Art Unit: 1791

FINAL. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to DIMPLE N. BODAWALA whose telephone number is (571)272-6455. The examiner can normally be reached on Monday - Friday at 8:30 am - 5:00 pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, PHILLIP C. TUCKER can be reached on (571) 272-1095. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 1791

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Dimple N Bodawala Examiner Art Unit 1791

/D. N. B./ Examiner, Art Unit 1791

/Philip C Tucker/ Supervisory Patent Examiner, Art Unit 1791