15 Wednesday, March 9, 2011

Theorem. Let A be a finite type algebra and a domain, and let K be the field of fractions. Then the integral closure of A is a finite extension L/K, and is a finite A-module.

18.721 Notes

Proof. Had the trace pairing $L \times L \to K$, $x, y \sim tr(xy)$. It's non-degenerate because:

$$yx \neq 0$$
, put $y = x^{-1}$

$$\langle x, y \rangle = t(1) = [L : K]$$

Reduce to the case of A integrally closed by Noether Normalization.

 $k[y] \subset A$, A a finite k[y]-module

 $k[y] \subset K \subset L$.

Replace A by k[y].

 \therefore , we may assume that A is integrally closed. Then if $\alpha \in L$ is integral over $A, tr(\alpha) \in A$.

Therefore, if B is any subring of L, and a finite A-module, then all elements are integral over A. Therefore, $B \times B \to A$, $x, y \leadsto \langle x, y \rangle = tr(xy)$.

We want to show that there is a maximal such B. Then B is the integral closure in L.

Start with one, B_0 , big enough so that it contains a basis for L/K. (We can do this because for any $\gamma \in L$, γ is algebraic in K; $\gamma^n - a_1 \gamma^{n-1} + \cdots \pm a_n = 0$ with $a_i \in K$. Since K is the field of fractions, we can clear denominators, getting $d\gamma^n - a'_1\gamma^{n-1} + \cdots \pm a'_n = 0$, with $d, a'_i \in A$. Then $d\gamma$ is integral over A; multiply everything by d^{n-1} .) Denote the basis by (v_1, \ldots, v_n) , $v_i \in B_0$, n = [L : K].

Investigate some larger algebra (which is still a finite A-module) B. Then $A \subset B_0 \subset B$.

$$B \times B \to A$$
$$\beta, v_i \leadsto b_i := \langle \beta, v_i \rangle \in A$$

map

$$\beta \leadsto (b_1, \dots, b_n) \in A^n$$

$$B \stackrel{\Phi}{\to} A^n$$

This is A-linear (homomorphism of A-modules)

 Φ is injective: $\Phi(\beta) = 0$ means $\langle \beta, v_i \rangle = 0$ for all i. Since $\{v_i\}$ is a basis for L/K, $\langle \beta, y \rangle = 0$ for all $y \in L$. Thus, $\beta = 0$.

Then we can identify B with $\Phi(B)$ as a submodule of A^n . Since A is noetherian, submodules have the ascending chain condition.

(DIGRESSION ABOUT GALOIS GROUPS AND G-ORIBTS NOT INCLUDED)

Let $A \subset B$ be a domain, A finite-type and integrally closed, and B a finite A-module.

What about prime ideals in A and B?

extended ideal of $P \subset A$ is $P^e = PB$ ideal of B

contracted ideal of $Q \subset B$ is $Q^c = A \cap Q$ ideal of A

Fact (General Fact). If Q is a prime ideal of B, then Q^c is a prime ideal of A.

The image is a domain, so Q^c is a prime ideal.

Back to the case above,

$$A \hookrightarrow B$$
 $P' \qquad Q' \qquad \text{we mean } P' = A \cap Q'$
 $P \qquad Q \qquad P = A \cap Q, \quad Q' \supset Q$

18.721 Notes

Fact 15.1 (Lying Over). Given P a prime ideal of A, there exists a A prime ideal of B, with $A \cap Q = P$. (The map PSpec $B \to P$ Spec A is injective.)

Fact 15.2 (Going Up). Given

$$A \xrightarrow{} B$$

$$P' \qquad Q' \leftarrow \text{exists}$$

$$P \qquad Q$$

Fact 15.3 (Going Down). If A is integrally closed, then given

$$A \hookrightarrow B$$

$$P' \qquad Q'$$

$$P \qquad Q \leftarrow \text{exists}$$

Lemma. Given

$$A \xrightarrow{} B$$

$$P' \qquad Q'$$

$$P \qquad Q$$

If P' = P, then Q' = Q.

Proof. Case 1: P=0. We need to show that if P'=0, then Q'=0. Take $\alpha \in Q' \subset B$. Then α is integral over A (because it's in B?). We have $\alpha^r - a_1 \alpha^{r-1} + \cdots \pm a_r = 0$. Since $a_r \in Q'$ and $a_r \in A$, we have $a_r \in P' = \{0\}$. Thus $a_r = 0$. If $\alpha \neq 0$, then cancel α from the relation, and repeat until r=1. Then $\alpha^1 - a_1 = 0$. Since $a_1 \in A$ and $a_1 \in Q'$, $a_1 \in P'$. Then $a_1 = 0$ and $\alpha = 0$, which is a contradiction.

Case 2: (general case). Go to $\bar{A} = A/P \subset \bar{B} = B/Q$.

$$\bar{A} \xrightarrow{} \bar{B}$$
 $\bar{P}' \qquad \bar{Q}'$
(0) (0)

Then case 1 says that $\bar{P}'=(0)$ implies that $\bar{Q}'=(0)$. Then $\bar{P}'=(0) \iff P'=P$ and $\bar{Q}'=(0) \iff Q'=Q$.

Lemma. If Q is a maximal ideal of B, then $Q^c = P$ is maximal in A.

Proof. Q is maximal in B if and only if $\bar{B}=B/Q$ is a field. Then $A/P=\bar{A}\subset \bar{B}$ is a field. Then \bar{B} is a finite \bar{A} -module.

<i>Proof.</i> Take a non-zero element in $\alpha \in A$ (we want to show that it's invertible). Then α is invertible.	rtible
in B. Since B is a finite A-module, so $u = \alpha^{-1}$ is integral over A. Then $u^r - a_1 u^{r-1} + \cdots \pm a_n$	r = 0
with $a_i \in A$. Multiply by α^{r-1} . Then we get $u - a_1 + a_2 \alpha - \cdots \pm a_r \alpha^r = 0$, with all of	these
elements of A .	
(To be finished next time?)	

18.721 Notes