Joseph Dowling.

Exercise 1

Want to show for fixed $A \in \mathbb{U}, \forall E \in \mathbb{U}, \lambda(E) = \mu(A \cap E)$ is a measure.

- I) $\lambda(\emptyset) = \mu(A \cap \emptyset) = \mu(\emptyset) = 0$
- II) Let $E \in \mathbb{U}$. $\lambda(E) = \mu(E \cup A) \geq 0$ as μ is a measure and $E \cup A \subseteq A \in \mathbb{U}$.
- III) Let E_1, E_2, \ldots be disjoint subsets of \mathbb{U} such that $\cup_i E_i = E \in \mathbb{U}$.

$$\lambda(\cup_{n=1}^{\infty} E_n) = \lambda(E)$$

$$= \mu(A \cap E) = \mu(\cup_{n=1}^{\infty} (A \cap E_n))$$

$$= \sum_{n=1}^{\infty} \mu(A \cap E_n)$$

$$= \sum_{n=1}^{\infty} \lambda(E_n)$$

Hence we have that λ is a measure on \mathbb{U} .

Exercise 8

Let X be a set of at least two elements. Set $\mathbb{X} = \{\emptyset, X\}$. Then trivially (X, \mathbb{X}) is a measure space. Define $\mu : \mathbb{X} \to \overline{\mathbb{R}}$ by $\mu(X) = \mu(\emptyset) = 0$. Then (X, \mathbb{X}, μ) is not complete as $\exists A \subset X$ with $A \notin \mathbb{X}$ but $\mu(X) = 0$.

Exercise 12

a) Want to show $f_n \to f$ uniform. Let $\epsilon > 0, N > \frac{1}{\epsilon}$. Then for $n \ge N$ there are two cases. Case 1 for $x \in [0, n]$

$$|f_n(x) - f(x)| = |\frac{1}{n} - 0| = \frac{1}{n} \le \frac{1}{N} < \epsilon$$

Case 2 for $x \notin [0, n]$

$$|f_n(x) - f(x)| = 0 < \epsilon$$

Now want to show $\int f dm \neq \lim \int f_n dm$.

We know trivially that $\int f dm = 0$ as f is the zero function. So Now

$$\lim_{n} \int f_{n} dm = \lim_{n} \frac{1}{n} m([0, n]) = \lim_{n} \frac{n}{n} = 1$$

So we have that

$$\int f dm = 0 \neq 1 = \lim_{n} \int f_n dm$$

Fatous lemma is applicable here but, this does not contradict the Monotone Convergence Theorem as (f_n) is not monotone non-decreasing.

b) Want to show $\int gdm \neq \lim \int g_n dm$. We know trivially that $\int gdm = 0$ as g is the zero function. So Now

$$\lim_{n} \int g_n dm = \lim_{n} nm([\frac{1}{n}, \frac{2}{n}]) = n(\frac{2}{n} - \frac{1}{n}) = 1$$

So we have that

$$\int gdm = 0 \neq 1 = \lim_{n} \int g_n dm$$

 (g_n) converges uniform to g, Fatous lemma is applicable here, and (g_n) is monotone increasing so MCT applies also.