Introduction to Data Science

Table of Content

- What is Data Science
- Why Data Science important
- Data Science Workflow
- Components of Data Science
- Descriptive vs Inferential Statistics
- Regression Analysis example
- Types of Data
- Data Formats

What is Data Science?

Definition:

Data Science is the field that uses scientific methods, algorithms, and systems to extract knowledge and insights from structured and unstructured data.

Purpose:

Turn raw data into useful information for decision-making.

Why is Data Science Important?

- Data is growing exponentially
- Organizations rely on data to make decisions
- Drives innovation in healthcare, finance, e-commerce, and more

Data Science Workflow

Components of Data Science

- Statistics & Mathematics
- Programming (Python, R, etc.)
- Data Visualization
- Machine Learning
- Domain Knowledge

Introduction to Statistics in Data Science

Statistics is the foundation of data analysis.

Helps in summarizing, understanding, and interpreting data.

Two main types:

- → Descriptive Statistics
- → Inferential Statistics

What is Descriptive Statistics?

Definition:

Descriptive statistics involves methods for organizing and summarizing data.

Purpose:

To describe patterns and characteristics of a dataset without making conclusions beyond the data.

Includes:

Measures of central tendency: mean, median, mode Measures of dispersion: range, variance, standard deviation

Data visualization: histograms, boxplots, bar charts

What is Inferential Statistics?

Definition:

Inferential statistics uses sample data to make generalizations or predictions about a larger population.

Purpose:

To make conclusions, test hypotheses, and determine relationships.

Includes:

- Hypothesis testing
- Confidence intervals
- Regression analysis

Linear Regression Analysis with Example:

To understand the relationship between variables.

Goal: Predict student exam score based on hours studied.

Formula:

Score = $a + b \times (Hours Studied)$

Where:

a = intercept (score when study hours = 0)

b = slope (how much score increases with each hour studied)

Ex: If a = 50 and b = 5, then studying for 4 hours gives:

Score = $50 + 5 \times 4 = 70$

Definition:

Data is a collection of facts, figures, or information that can be processed and analyzed.

Types of Data:

- Qualitative vs Quantitative
- Structured vs Unstructured

Qualitative vs Quantitative Data

Quantitative (Numeric) Data

These variables represent measurable quantities and can be either:

- Discrete: Countable, finite values.
 - Examples include the number of students in a class, the number of cars in a parking lot.
 Can not be decimal.
- Continuous: Infinite possibilities within a range.
 - Examples include height, weight, temperature.

Qualitative(Categorical) Variables

These variables represent categories or groups and can be either:

- Nominal: No inherent order among categories.
 - Examples include colors (red, blue, green), gender (male, female).
- Ordinal: There is an inherent order, but the difference between levels is not quantifiable.
 - Examples include customer satisfaction ratings (poor, fair, good, excellent), education levels (high school, bachelor's, master's).

Structured vs Unstructured Data

Туре	Description	Example
Structured	Organized in rows/columns	Excel sheets, SQL tables
Unstructured	Free-form, lacks structure	Images, emails, audio, text
	31 ₩ Σ 6	
	UNSTRUCTURED DATA ST	RUCTURED DATA

Data Formats

Structured: CSV, Excel, SQL

Semi-structured: JSON, XML

Unstructured: Images, Videos, Emails, Social Media

