Firefly synchronization in multiple scenarios

Mezzina Marco

Objective

Study the convergence time of fireflies which synchronize their flashing using only the interactions between the individual ones in specific scenarios.

Parameters

Starting from the NetLogo basic model

Fixed parameters

Strategy	flash-length	flashes-to-reset	cycle-length
Delay	1	1	10

- Tested parameters (combined)
 - Fireflies number at equals density: 100, 250, 500 and 1000
 - Fireflies motion: ON and OFF
 - Fireflies byzantine percentage: 1%, 5%, 10%, 15% and 30%
 - ► Fireflies byzantine fault probability: 1%, 2% and 30%

Metrics

The used metrics to test the previous parameters have been

- ► Flashing fireflies
- ► Fireflies flashes per ticks
- ► Window emission length
- Consecutive flashes

Behaviour classes

- Convergence
- Divergency
 - periodic
 - ► chaos
 - perturbation of the periodic behaviour

Convergence

This situation surely appears in the system when the motion is granted and, independently by the fireflies number, no byzantine fault occurs.

Figure 1: Convergence

Indipendently by the fireflies number with motion parameter fixed to OFF happens that:

- periodic behaviour appears: some fireflies regions are synchronized separately
- connectors fireflies
- empty window emission length

Some experiments...

FN	М	BP	BFP
100	OFF	0%	0%

FN	М	BP	BFP
250	OFF	0%	0%

FN	М	BP	BFP
500	OFF	0%	0%

FN	М	BP	BFP
1000	OFF	0%	0%

The experiments show that the network is really sensitive to byzantine faults.

- ▶ BP and BFP fixed to 1%
 - temporary convergence
- BP and BFP greater or equals to 2%
 - rare temporary convergence
 - no window emission length with a lot of fireflies
- Increasing the nodes number the window emission length grows up as also the ticks to reach the temporary convergence.
- ► The euristic treshold values are BP=15% and BFP=2%, after them the chaos is unmanageble also for low number nodes networks.

Some experiments...

FN	М	BP	BFP
100	ON	1%	1%

Very similar behaviour for the case with 250 fireflies.

FN	М	BP	BFP
100	ON	5%	2%

FN	М	BP	BFP
100	ON	15%	2%

FN	М	BP	BFP
1000	ON	1%	1%

Very similar behaviour for the case with 500 fireflies.

FN	М	BP	BFP
1000	ON	5%	2%

- ► The system staticity is conditioned by the byzantine perturbations
- It's obtained a perturbation of the periodic behaviour

Some experiments...

${\sf Divergency} \; \big({\sf Motion} \, + \, {\sf BP} \; {\sf and} \; {\sf BFP} \big)$

FN	М	BP	BFP
100	OFF	5%	1%

It's interesting to observ that if we significantly increase the BP and BFP values without motion we obtain a system behaviour more or less similar to the previous cases.

FN	М	BP	BFP
100	OFF	30%	30%

FN	М	BP	BFP
1000	OFF	5%	1%

It's interesting to observ that if we significantly increase the BP and BFP values without motion we obtain a system behaviour more or less similar to the previous cases.

FN	М	BP	BFP
1000	OFF	30%	30%

Final Considerations

At the end, we can say:

- ► The fireflies motion is the most important parameter to obtain light stimuli distributed perception. Without motion only periodic behaviour appears.
- Byzantine faults cause frequency and shapes alterations of periodic structures, also with very poor values variation it's difficult to reach a consistent convergence.
- ► The fireflies number variation involves different convergence time, but doesn't really affect the convergence of the system.

