

The Model of the AVL Trees

- Definition:
 - □ The AVL** tree is a binary search tree with the balance condition.
 - □ **Balance condition**: <u>for every node</u> in the tree, the **height** of the <u>left and right subtrees can differ by at</u> most 1.
 - \square We assume that the height of an empty tree is defined to be -1.

****AVL** - **A**delson-**V**elskii and **L**andis

3

The Model of the AVL Trees (cont...)

- AVL tree BST with balance condition
 - □ **Balance condition**: <u>for every node</u> in the tree, the **height** of the <u>left and right subtrees can differ by at most 1</u>.

AVL Tree

Binary Search Tree

The Model of the AVL Trees (cont...)

Example:

- **Left subtree** AVL tree of height 7 of minimum size.
- **Right subtree** AVL tree of height 8 of minimum size.
- Then we have: the **minimum number of nodes**, S(h), in an AVL tree of height h is given by S(h) = S(h-1) + S(h-2) + 1.

For
$$h = 0$$
, $S(h) = 1$.

For
$$h = 1$$
, $S(h) = 2$.

7

The Model of the AVL Trees (cont...)

- Theorem:
 - ☐ An **AVL tree** with **N** nodes has **O(logN)** height.
 - □ Proof: (some ideas)
 - N(h) = minimum number of nodes in an AVL tree of height h.
 - Base cases:

$$\square$$
 N(0) = 1, N(1) = 2

Induction:

$$\square$$
 N(h) = N(h-1) + N(h-2) + 1

• Then apply Fibonacci analysis . . .

The Model of the AVL Trees (cont...)

- Important points:
 - Operations Contain/Find, Insert and Delete (lazy deletion) can be performed in O(logN) time.
 - □ Note that when we do an **insertion**, we <u>need to update all</u> the balancing information for the nodes on the path back to the root, but the reason that insertion is potentially difficult is that inserting a node could violate the AVL tree property.

Lazy deletion: Each node contains a boolean field indicating if they are deleted or not. To delete a key from the tree, just find the node containing that key and mark it as deleted.

9

The Model of the AVL Trees (cont...)

- Important points:
 - Example: When we insert the key 6 into the AVL tree we would destroy the balance condition

AVL tree operations

- AVL Find:
 - □ Same as **BST** find
- AVL Insert:
 - □ **BST** insert, then check balance and potentially "repair" the **AVL** tree
 - □ Four different imbalance cases
- AVL Delete:
 - ☐ The "easy way" is lazy deletion.

11

Insert: detect potential imbalance

- Algorithm Ideas:
 - ☐ Insert the new node as in a **BST** (a new leaf)
 - □ Verify that for each node on the path (from the root to the new leaf), the insertion may (or may not) have changed the node's height
 - ☐ If height imbalance is detected (after insertion) then perform a **rotation** to restore balance at that node

All the action is in defining the correct **rotations** to restore balance

Insert: Double rotation

- If we do <u>both single rotations</u>, starting with the second, it works!
- Double rotation:
 - □ Rotate problematic child and grandchild
 - □ Rotate between self and new child

Insert: Double rotation

- Important points (right-left case):
 - □ Does not have to be implemented as two rotations; can just do:

- □ Easier to remember than you may think:
 - Move C to grandparent's position
 - Put A, B, X, U, and V in the only legal positions for a BST

23

Insert: Double rotation

- General case: left-right case:
 - ☐ The left-right is the mirror image of the right-left case

Insert: Summarized Ideas

- Insert as in a BST
- Check back up path for imbalance height, which will be:
 - □ Node's left-left grandchild is too tall
 - □ Node's left-right grandchild is too tall
 - □ Node's right-left grandchild is too tall
 - □ Node's right-right grandchild is too tall
- Note that only one case occurs because tree was balanced before insert
- After the single or double rotation, the smallestunbalanced subtree has the same height as before the insertion

25

AVL trees: Efficiency

- Worst-case complexity of find: O(logN)
 - ☐ Tree is balanced
- Worst-case complexity of insert: O(logN)
 - ☐ Tree starts balanced
 - \square A rotation is O(1) and there's an $O(\log N)$ path to root
 - ☐ Tree ends balanced
- Worst-case complexity of buildTree with N nodes: O(NlogN)

AVL Trees. Some Java Code

For a full version of the AVL-tree implementation please consult:

Author: Mark Weiss

http://users.cis.fiu.edu/~weiss/dsaajava/code/DataStructures/AvlTree.java

