Discrete Structures

Number Theory

Division

Definition:

- $a \mid b \text{ iff } \exists c : b = ac$
- a divides b, b is a multiple of a, a is a factor of b
- If a does not divides b, we write $a \nmid b$

Properties:

- 1. $a \mid b, b \mid c \rightarrow a \mid c$
- 2. $a|b,a|c \rightarrow a|bx + cy$
- 3. $a|b,b|a \leftrightarrow |a| = |b|$
- 4. $a \mid 1 \leftrightarrow |a| = 1$
- 5. $a \mid b \rightarrow a \mid bc$
- 6. $\forall n \geq 1: a \mid b \leftrightarrow a^n \mid b^n$

Some Proofs

Proof (2):

$$a|b,a|c \rightarrow \exists b',c':b=ab',c=ac' \rightarrow bx=ab'x,cy=ac'y$$

 $\rightarrow bx+cy=a(b'x+c'y) \rightarrow a|bx+cy$

Proof (6):

$$a|b \rightarrow \exists c: b = ac \rightarrow b^n = a^n c^n \rightarrow a^n |b^n|$$

The reverse is not simple now; wait for GCD.

Problem:

if
$$x_1x_2 + x_2x_3 + \cdots + x_nx_1 = 0$$
 and $x_i \in \{1, -1\}$, then $4|n$

Solution:

It is clear 2|n. So, n/2 terms are +1 and n/2 terms -1 Multiply all terms. In one hand we have $(-1)^{n/2}$. In the other hand we have $(x_1x_2x_3 ... x_n)^2 = 1$. Then $(-1)^{n/2} = 1 \rightarrow 4|n$

Problem:

$$a-c \mid ab+cd \rightarrow a-c \mid ad+bc$$

Solution:

$$a - c|(ad + bc) - (ab + cd) = (a - c)(d - b)$$

Problem: $13|4^{2n+1}+3^{n+2}$

Solution:

- Basis Step: $13|4^1 + 3^2$
- Inductive Step:

$$13|4^{2n+1} + 3^{n+2} \rightarrow 13|4^{2(n+1)+1} + 3^{(n+1)+2}$$

$$(4^{2(n+1)+1}+3^{(n+1)+2}) - (4^{2n+1}+3^{n+2})$$

$$= 15 \times 4^{2n+1} + 2 \times 3^{n+2} = 13 \times 4^{2n+1} + 2(4^{2n+1}+3^{n+2})$$

Problem: $9|a^2 + ab + b^2 \to 3|a, 3|b$

Solution:

$$9|a^{2} + ab + b^{2} = (a - b)^{2} + 3ab \rightarrow 3|a - b$$

$$\rightarrow 9|(a - b)^{2} \rightarrow 9|3ab \rightarrow 3|a \vee 3|b$$

$$(3|a - b) \wedge (3|a \vee 3|b) \rightarrow 3|a \wedge 3|b$$

Greatest Common Divisor

Definition:

$$GCD(a,b) = d$$
 iff

- 1. d|a,d|b
- 2. $\forall d' : d' | a, d' | b \rightarrow d' \leq d$

Properties (Let's denote GCD(a, b) by (a, b)):

- 1. (a,b) = (b,a) = (-a,b) = (a,-b) = (-a,-b)
- 2. $\forall k: (a,b) = (a,b+ak)$
- 3. $\exists x, y: ax + by = (a, b)$
- 4. $(a,b) = (a,c) = 1 \rightarrow (a,bc) = 1$
- 5. $(a^n, b^n) = (a, b)^n$
- 6. $a|bc,(a,b) = 1 \to a|c$
- 7. (ka, kb) = |k|(a, b)
- 8. $a|c,b|c,(a,b) = 1 \to ab|c$

Some Proofs

Proof (2)

Let (a,b) = d, (a,b+ak) = d' $(a,b) = d \rightarrow d|a,d|b \rightarrow d|a,d|b+ak \rightarrow d \leq d'$ Similarly $d' \leq d$, and then d = d'

Proof (6)

$$(a,b) = 1 \rightarrow \exists x, y: ax + by = 1 \rightarrow acx + bcy = c$$

 $\rightarrow acx + aa'y = c \rightarrow a(cx + a'y) = c \rightarrow a|c$

Proof (8)

$$(a,b) = 1 \rightarrow \exists x, y: ax + by = 1 \rightarrow acx + bcy = c$$

 $\rightarrow abb'x + baa'y = c \rightarrow ab(b'x + a'y) = c \rightarrow ab|c$

Problem: show (3n + 2, 7n + 5) = 1

Soluton 1:

$$(3n + 2, 7n + 5) = d \rightarrow d|3n + 2, d|7n + 5 \rightarrow d|7(3n + 2) - 3(7n + 5) = -1 \rightarrow d = 1$$

Solution 2:

$$(3n + 2,7n + 5) = (3n + 2,7n + 5 - 2(3n + 2))$$

= $(3n + 2,n + 1) = (n + 1,3n + 2)$
= $(n + 1,3n + 2 - 3(n + 1)) = (n + 1,-1) = 1$

Problem: $a \mid b \leftrightarrow a^n \mid b^n$

Solution: $a^n|b^n \rightarrow (a^n,b^n) = a^n \rightarrow (a,b) = a \rightarrow a|b$

Definition:

if (a,b) = 1, they are called relatively prime

Problem: Among 5 consecutive numbers, there is one which is relatively prime to the other four numbers

Solution:

for any |a-b| < 5, we know (a,b) = 1,2,3, or 4It suffices to show there is a number x s.t. (x,6) = 1Between 5 consecutive numbers, there are two consecutive odd numbers. One of these two is not divisible by 3; otherwise their difference which is 2 must be divisible by 3. This number is the answer.

Problem: Prove problem for 16 consecutive numbers

Least Common Multiples

Definition:

- LCM(a,b) = L iff
- 1. L > 0
- 2. a|L,b|L
- 3. $\forall L': a|L', b|L' \rightarrow L \leq L'$

Properties (Let's denote LCM(a,b) by [a,b]):

- 1. [a,b] = [b,a] = [-a,b] = [a,-b] = [-a,-b]
- 2. $[a^n, b^n] = [a, b]^n$
- 3. [ka, kb] = |k|[a, b]
- 4. [a,b] = |ab|/(a,b)

Problem:
$$[a,b,c] = \frac{abc}{(ab,ac,bc)}$$

Solution:

$$[a,b,c] = [[a,b],c] = \left[\frac{ab}{(a,b)},c\right] = \frac{\overline{(a,b)}}{\overline{(a,b)}},c$$

$$=\frac{abc}{(a,b)} = abc$$

$$\frac{(ab,ac,bc)}{(ab,ac,bc)}$$

Division Algorithm

Theorem:

$$\forall a, b \neq 0 \ \exists q, r: a = bq + r, 0 \leq r < |b|$$

Proof:

- For simplicity assume a, b > 0
- Consider $R = \{a bq | a bq \ge 0\}$
- R has a least element; called it r; r = a bq for some q
- r must be smaller than b, otherwise
- $0 \le r b = a bq b = a b(q + 1) \to r b \in R$

Any number can be written in any of the following format

- 2k, 2k + 1
- 3k, 3k + 1, 3k + 2
- 4k, 4k + 1, 4k + 2, 4k + 3,
- •

Problem: show $120|n^5-n$ for odd n

Solution:

$$3 \times 5 \times 8 | n(n-1)(n+1)(n^2+1)$$

We know
$$3|n(n-1)(n+1)$$

$$5 \nmid n(n-1)(n+1) \rightarrow n = 5k \mp 2 \rightarrow 5|n^2 + 1$$

 $n = 2k + 1 \rightarrow 8|(n-1)(n+1)(n^2 + 1)$

Euclidean Algorithm

Assume a, b > 0, $r_0 = a$, $r_1 = b$

- $r_0 = r_1 q_0 + r_2$, $0 < r_2 < r_1$
- $r_1 = r_2 q_1 + r_3$, $0 < r_3 < r_2$
- $r_2 = r_3 q_2 + r_4$, $0 < r_4 < r_3$
- •
- $r_n = r_{n+1}q_n + r_{n+2}$, $0 < r_{n+2} < r_{n+1}$
- $r_{n+1} = r_{n+2}q_{n+1}$

Then
$$(a,b) = (r_0,r_1) = (r_1,r_2) = \cdots = (r_n,r_{n+1}) = (r_{n+1},r_{n+2}) = r_{n+2}$$

Representation of Integers

Let b>1. Any positive integer n can be written in form of $n=a_kb^k+\cdots+a_1b+a_0=(a_k\dots a_1a_0)_b$ where $0\leq a_i< b$, a_i is called a digit in base b

Examples:

$$859 = 8 \times 10^{2} + 5 \times 10 + 9$$

$$(10110)_{2} = 1 \times 2^{4} + 1 \times 2^{2} + 1 \times 2 = (22)_{10}$$

$$(3A0F)_{16} = 3 \times 16^{3} + 10 \times 16^{2} + 15 \times 16 = (14863)_{10}$$

How to compute digits of n base b:

- simply apply division algorithm
- $n = bq_0 + a_0, q_0 = bq_1 + a_1, ...$

Prime Numbers

Definition:

Any number greater than 1 whose factors are only 1 and itself is called a prime number. Otherwise; it is called composite.

Properties:

- 1. $p|ab \rightarrow p|a \vee p|b$
- 2. $(a,p) = 1 \lor p$
- 3. Any number has a prime factor
- 4. Any composite n has a prime factor p s.t. $p \le \sqrt{n}$
- 5. #primes is infinity
- 6. #primes in form of ak+b where (a,b)=1 is infinity
- 7. $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}, \alpha_i \ge 1$
- 8. At least a prime number exists between n and 2n

Some Proofs

Proof (3)

using strong induction

If n is prime, we are done. Otherwise n=ab where a,b>1. Now consider the prime factor of a which is a factor of n

Proof (4)

n=ab where a,b>1. then $\min(a,b)\leq \sqrt{n}$. Now consider a prime factor of $\min(a,b)$

Proof (5)

Assume all prime numbers are $\{p_1, ..., p_k\}$

Consider $N=p_1\dots p_k+1$ which has a prime factor p . $p|N\to (p,p_i)=1\to p$ is a new prime number.

Problem: find n s.t. $n \nmid (n-1)!$

Solution:

- If n is in form of n = ab, a, b > 1, $a \ne b$, then $n \mid (n 1)!$. Otherwise n = p or p^2 where p is prime
- n=p is of course is answer. If $n=p^2$, number p,2p exist in (n-1)! for p>2. Just check $n=2^2$.

Problem: find n s.t. $n^2 \nmid (n-1)!$

Theorem:

The power of
$$p$$
 in $n! = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor$

Problem: show $\frac{(n+m)!}{n!m!}$ is integer

Solution:

We have to show for any p, the power of p in (n+m)! is at least the power of p in n!m!

It is sufficient to show $\left\lfloor \frac{n+m}{p^i} \right\rfloor \geq \left\lfloor \frac{m}{p^i} \right\rfloor + \left\lfloor \frac{n}{p^i} \right\rfloor$ for any i

Problem: show $k!^{k^2+k+1} | k^3!$

Solution: show $(k^2 + k + 1) \left\lfloor \frac{k}{p^i} \right\rfloor \leq \left\lfloor \frac{k^3}{p^i} \right\rfloor$ for any prime p

Problem:

At least a prime number exists between n and n!

Solution:

One way is to show $n! \ge 2n$. The other way is to look at n! - 1 which is relatively prime to any number equal or less than n. So, this has a prime factor which is greater than n and of course less than n!.

Problem:

if p and $p^2 + 2$ are prime, then $p^3 + 2$ is prime Solution:

p=3 is the answer. Other prime numbers are of form 3k+1 or 3k+2. For both $3|p^2+2$

Congruence

Definition:

$$a \equiv b \pmod{m} \leftrightarrow m|a-b|$$

Properties:

- 1. $a \equiv a \pmod{m}$
- 2. $a \equiv b \pmod{m}, b \equiv c \pmod{m} \rightarrow a \equiv c \pmod{m}$
- 3. $a \equiv b \pmod{m} \leftrightarrow a + c \equiv b + c \pmod{m}$
- 4. $a \equiv b \pmod{m} \rightarrow ac \equiv bc \pmod{m}$
- 5. $ac \equiv bc \pmod{m} \rightarrow a \equiv b \pmod{m/(m,c)}$
- 6. $a \equiv b \pmod{m} \rightarrow a^n \equiv b^n \pmod{m}$
- 7. $a \equiv b \pmod{m} \rightarrow P(a) \equiv P(b)$ where P is a polynomial
- 8. $a \equiv r \pmod{m}$ where $a = mq + r, 0 \le r < m$
- 9. $0 \le i \ne j < m \rightarrow [i] \cap [j] = \emptyset$ where $[i] = \{x \mid x \equiv i \pmod{m}\}$

Some Proofs

Proof (5)

```
(c,m) = d \to c = c'd, m = m'd, (c',m') = 1

ac \equiv bc \ (mod \ m) \to m|c(a - b) \to m'd|c'd(a - b)

\to m'|c'(a - b), (m',c') = 1 \to m'|a - b \to a \equiv b \ (mod \ m')
```

Proof (7)

Let
$$P(x) = p_k x^k + \dots + p_1 x + p_0$$

 $a \equiv b \pmod{m} \rightarrow \forall i : p_i a^i \equiv p_i b^i \pmod{m} \rightarrow P(a) \equiv P(b) \pmod{m}$

Proof (9)

$$x \in [i] \cap [j] \rightarrow x \equiv i \equiv j \pmod{m} \rightarrow m|i-j, 0 \le i, j < m$$

 $\rightarrow i = j$

Problem: $x \equiv 1 \pmod{2} \rightarrow x^2 \equiv 1 \pmod{8}$

Solution: $x \equiv 1 \pmod{2} \to x = 4k + 1 \lor 4k + 3 \to x^2 \equiv 1 \pmod{8}$

Problem: Compute the remainder of 3×2^{1399} to 7

Solution:

$$2^{3} \equiv 1 \pmod{7} \rightarrow 2^{3 \times 466} \equiv 1 \pmod{7} \rightarrow 2^{1399} \equiv 2 \pmod{7} \rightarrow 3 \times 2^{1399} \equiv 6 \pmod{7}$$
 or simply write $3 \times 2^{1399} \equiv 3 \times 2 \times 2^{3 \times 466} \equiv 6 \times 1^{466} \equiv 6 \pmod{7}$

Problem:

Compute the rightmost digit of 1398¹³⁹⁹ base 10

Solution:

$$1398^{1399} \equiv 8^{1399} \equiv (-2)^{1399} \equiv -2^{1399} \pmod{10}$$

 $2^{1398} \equiv 2^{4 \times 349 + 2} \equiv 1^{349} \times 2^2 \equiv 4 \pmod{5} \rightarrow 2^{1399}$
 $\equiv 8 \pmod{10} \rightarrow 1398^{1399} \equiv 2 \pmod{10}$

Problem: $n = (a_k ... a_0)_{10} \rightarrow n \equiv a_k + \cdots + a_0 \pmod{9}$

Solution: $n = a_k 10^k + \dots + a_1 10 + a_0, 10 \equiv 1 \pmod{9}$

Problem: Find all prime p and q s.t. $p^2 + 2q^2 = x^2$ Solution:

 $p = 2 \rightarrow x = 2k \rightarrow q = 2$ but (2,2) is not the answer Otherwise, $p = 2k + 1 \rightarrow x = 2k' + 1 \rightarrow p^2 \equiv x^2 \equiv 1 \pmod{8}, p^2 + 2q^2 \equiv x^2 \pmod{8} \rightarrow 2q^2 \equiv 0 \pmod{8} \rightarrow q = 2 \rightarrow (x - p)(x + p) = 8 \rightarrow (x - p = 1 \land x + p = 8) \lor (x - p = 2 \land x + p = 4) \rightarrow x = 3, p = 1$

but 1 is not prime

Euler's Totient Function

Definition:

$$\Phi(n) = \{x | (x, n) = 1, 1 \le x \le n\}, \varphi(n) = |\Phi(n)|$$

$$\varphi(1) = 1, \varphi(2) = 1, \varphi(3) = 2, \varphi(4) = 2, \varphi(p) = p - 1$$

Theorem:
$$n = p_1^{\alpha_1} \dots p_k^{\alpha_k} \to \varphi(n) = n(1 - \frac{1}{p_1}) \dots (1 - \frac{1}{p_k})$$

Proof: show that $(m,n) = 1 \rightarrow \varphi(mn) = \varphi(m)\varphi(n)$

Lemma: $(a, n) = 1, i \neq j \in \Phi(n) \rightarrow ai \not\equiv aj \pmod{n}$

Lemma: $(a, n) = 1, i \in \Phi(n) \rightarrow \exists j: ai \equiv j \pmod{n}$

Then, there is a one-to-one correspondence between

 $\Phi(n)$ and $\{ax | x \in \Phi(n)\}$ mod n. Therefore,

$$\prod_{i \in \Phi(n)} i \equiv \prod_{i \in \Phi(n)} ai \pmod{n}$$
 and $(\prod_{i \in \Phi(n)} i, n) = 1 \rightarrow$

Theorem: $(a, n) = 1 \rightarrow a^{\varphi(n)} \equiv 1 \pmod{n}$

Problem: if d is the smallest natural number s.t. $a^d \equiv 1 \pmod{n}$ and $a^m \equiv 1 \pmod{n}$, then $d \mid m$

Solution:

$$m = dq + r, 0 \le r < d, a^m \equiv a^d \equiv 1 \pmod{n} \rightarrow a^r \equiv 1 \pmod{n} \rightarrow r = 0 \rightarrow d \mid m$$

Problem: $n|\varphi(2^n-1)$

Solution:

n is the smallest number s.t. $2^n \equiv 1 \pmod{2^n - 1}$

Since $2^{\varphi(2^n-1)} \equiv 1 \pmod{2^n-1}$, then $n|\varphi(2^n-1)$

Wilson's Theorem

Definition:

 a^* is called inverse of $a \mod n$ iff $aa^* \equiv 1 \pmod n$ Lemma: $(a^*$ exists iff (a,n)=1) and $a^* \equiv a^{\varphi(n)-1} \pmod n$

Theorem: if p is prime, then $(p-1)! \equiv -1 \pmod{p}$ Proof:

- For any $a \in \{1, ..., p-1\}$, inverse exists.
- If $a^* = a \rightarrow a^2 \equiv 1 \pmod{p} \rightarrow p | (a-1)(a+1) \rightarrow a = 1 \lor a = p-1$
- For other a, we have $a^* \neq a$
- Set $\{2,3,...,p-2\}$ can be decomposed into disjoint pairs (a,b) ($a \neq b$) s.t. $ab \equiv 1 \pmod{p}$

Chinese Remainder Theorem

Theorem:

 $\forall a, b \ \forall m, n \ s. \ t. \ (m, n) = 1 \ \textit{we have}$ $\exists x \ (x \equiv a \ (mod \ n) \land x \equiv b \ (mod \ m))$ There is an unique x in [0...mn-1] satisfying above

Solution: $x \equiv bn^*n + am^*m \pmod{mn}$ where $nn^* \equiv 1 \pmod{m}$ and $mm^* \equiv 1 \pmod{n}$

Theorem can be extended to k linear equations:

$$x \equiv a_1 \pmod{n_1} \dots x \equiv a_k \pmod{n_k}$$
 where $(n_i, n_j) = 1$

Example:

 $x \equiv 3 \pmod{7} \land x \equiv 5 \pmod{9} \rightarrow x \equiv 59 \pmod{63}$

Public Key Encryption

Public Key Encryption

Let n = pq where p and q are large prime numbers Bob's key is the pair n and e where e is the number s.t. (e,(p-1)(q-1)) = 1. Anybody else may have this key (indeed it is a public key).

Alice's key is the pair p and q and a number d s.t. $de \equiv 1 \pmod{(p-1)(q-1)}$ (the key is private)

See message M as an integer number

Bob sends $C = M^e \mod n$ instead of sending M

Alice computes $C^d \equiv M^{de} \equiv M^{k(p-1)(q-1)+1} \equiv M \pmod{n}$

To uniquely decrypt M, we need M < n. Then decompose original message into smaller pieces; each smaller than n

Without knowing p and q is hard to decrypt $M^e \mod n$ It is hard (time-consuming) to decompose n to pq.

Miscellaneous Problems

Problem:

$$x^{2} + y^{2} = z^{2} \leftrightarrow \exists m, n, d: x = (m^{2} - n^{2})d, y = 2 \text{mnd},$$

 $z = (m^{2} + n^{2})d$

Solution:

We can assume (x, y) = (x, z) = (y, z) = 1, x and z are odd and y is even.

$$y^{2} = (z - x)(z + x), (z - x, z + x) = 2 \to z - x = 2m^{2}, z + x$$
$$= 2n^{2} \to z = m^{2} + n^{2}, x = m^{2} - n^{2}, y = 2mn$$

We use the fact that $ab = x^2$, $(a, b) = 1 \rightarrow a = m^2$, $b = n^2$ The reverse is obvious. Just replace.

Miscellaneous Problems

```
Problem: (2^m-1, 2^n-1) = 2^{(m,n)}-1
Solution:
Let (2^m-1, 2^n-1) = d
2^{(m,n)} - 1|2^m - 1, 2^{(m,n)} - 1|2^n - 1 \rightarrow 2^{(m,n)} - 1|d
Let r be the smallest number s.t. 2^r \equiv 1 \pmod{d}
We know 2^n \equiv 1 \pmod{d}, 2^m \equiv 1 \pmod{d}.
So r|n, r|m \to r|(m, n) \to 2^{(m, n)} \equiv 1 \pmod{d} \to d|2^{(m, n)} - 1
Therefore, d = 2^{(m,n)} - 1
```

Miscellaneous Problems

Problem:

$$f_n = f_{n-1} + f_{n-2}, f_2 = f_1 = 1 \rightarrow (f_m, f_n) = f_{(m,n)}$$

Solution:

 f_n can be extended for negative n.

$$f_0 = 0, f_{-1} = 1, f_{-2} = -1, \dots$$

We can show $f_{-2n} = -f_{2n}$ and $f_{-2n+1} = f_{2n-1}$

We can also show $\forall n, m \in \mathbb{Z}$: $f_{n+m} = f_{n+1}f_m + f_nf_{m-1}$

Using this and induction, we can show $k|n \rightarrow f_k|f_n$ (assume n=ki and run induction on i)

Let
$$(f_m, f_n) = d$$

$$(m,n)|n,(m,n)|m \to f_{(m,n)}|f_m, f_{(m,n)}|f_n \to f_{(m,n)}|d$$

$$\exists x, y : mx + ny = (m, n) \to f_{(m,n)} = f_{mx+ny}$$

=
$$f_{mx+1}f_{ny} + f_{mx}f_{ny-1}$$
, $d|f_n|f_{ny}$, $d|f_m|f_{mx} \to d|f_{(m,n)}$