4.1 Clean df_demographics

- (a) Some fields may have been missing or scarped incorrectly resulting in nonsensical values or NaN → we made sure columns have appropriate numeric data types, and dropped rows with missing values, or values not in expected range.
- (b) All countries had valid, numeric life expectancy values, in range [40, 100].
- (c) All countries had valid, numeric population density and urban population values.
- (d) Country names are inconsistent between datasets → In order to keep as many countries as possible when merging datasets down the line, we applied a normalization scheme to country names.
- (f) Overall, 7 countries were affected. For Brunei, a leading space was removed. The rest of the mismatches were caused by irregular capitalization (as Python's str.title() does not handle words such as "and" or "of" and abbreviations).

Old value	New value
Antigua and Barbuda	Antigua And Barbuda
Bosnia and Herzegovina	Bosnia And Herzegovina
Brunei	Brunei
Côte d'Ivoire	Côte D'Ivoire
DR Congo	Dr Congo
State of Palestine	State Of Palestine
Trinidad and Tobago	Trinidad And Tobago

• Rows before cleaning: 200

• Rows after cleaning: 200 (0 dropped)

4.2 Clean df_gdp

Issues encountered:

- Non-numeric characters (commas, currency symbols, etc.) in the GDP_per_capita_PPP column → prevented direct float conversion
- Missing values introduced when malformed strings were coerced to ${\tt NaN} \to {\tt needed}$ to be documented and removed
- Potential outliers in the GDP distribution \rightarrow important to flag for downstream analysis
- Duplicate country entries \rightarrow required de-duplication logic
- Inconsistent country names \rightarrow needed standardization

Actions taken:

1. Type conversion

Cast GDP_per_capita_PPP to string, stripped all non-digit/decimal characters, then converted to numeric (no invalid rows found).

2. Missing-value handling

Exported rows where GDP_per_capita_PPP was NaN to output/dropped_gdp.csv, then dropped them from the DataFrame (no rows were dropped).

3. Outlier detection (Tukey method)

Calculated Q1, Q3, and IQR; flagged values outside [Q1 - 1.5·IQR, Q3 + 1.5·IQR] as outliers (found 6 outliers).

4. Duplicate removal

Removed duplicate rows by Country (no duplicates were found).

5. Country-name standardization

Applied the same normalization as df_demographics.

• Rows before cleaning: 213

• Rows after cleaning: 213 (0 dropped)

4.3 Clean df_pop

Issues encountered:

- Non-numeric characters (spaces, commas, text) in the Population column \rightarrow prevented direct numeric conversion
- Missing values created when malformed strings were coerced to NaN \rightarrow needed to be documented and removed
- Potential outliers in the population distribution (on a \log_{10} scale) \to important to flag for review
- Duplicate country entries → required de-duplication logic
- Inconsistent country names \rightarrow needed standardization

Actions taken:

1. Type conversion

Cast Population to string, removed all non-digit/decimal characters, then converted to numeric (no invalid rows found).

2. Missing-value handling

Rows Population was NaN were dropped (no such rows found).

3. Outlier detection (Tukey on log scale)

Computed $\log_{10}(Population)$, then calculated Q1, Q3, and IQR; flagged values outside [Q1 - 1.5·IQR, Q3 + 1.5·IQR] as outliers (1 outlier found).

4. Duplicate removal

Removed duplicate rows by Country (no duplicates were found).

5. Country-name standardization

Applied the same normalization as df_demographics.

- Rows before cleaning: 260
- Rows after cleaning: 260 (0 dropped)