Digital Image Processing

Lab 04_ Optical Flow

Phương trình bảo toàn cường độ sáng (Brightness Constancy Constraint Equation - BCCE) trong Optical Flow xuất phát từ giả định rằng cường độ của một điểm ảnh không thay đổi theo thời gian khi nó di chuyển trong một chuỗi hình ảnh.

1. Giả định cơ bản

Khi một vật thể di chuyển trong một cảnh, ta giả định rằng **cường độ sáng của mỗi điểm ảnh vẫn giữ nguyên**, tức là nếu một điểm ảnh (x,y) tại thời điểm t có giá trị cường độ là I(x,y,t), thì sau một khoảng thời gian nhỏ dt, điểm ảnh đó di chuyển đến vị trí (x+dx,y+dy) và có giá trị cường độ tương tự:

$$I(x, y, t) = I(x + dx, y + dy, t + dt)$$

Điều này có nghĩa là không có sự thay đổi đáng kể về ánh sáng hoặc tính chất của vật thể trong quá trình chuyển động.

2. Áp dụng khai triển Taylor

Chúng ta áp dụng khai triển Taylor bậc nhất cho hàm I(x,y,t) tại điểm (x+dx,y+dy,t+dt):

$$I(x+dx,y+dy,t+dt)pprox I(x,y,t)+rac{\partial I}{\partial x}dx+rac{\partial I}{\partial y}dy+rac{\partial I}{\partial t}dt$$

Vì theo giả định bảo toàn cường độ sáng:

$$I(x, y, t) = I(x + dx, y + dy, t + dt)$$

Nên lấy hiệu hai vế:

$$I(x + dx, y + dy, t + dt) - I(x, y, t) = 0$$

Suy ra:

$$\frac{\partial I}{\partial x}dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt = 0$$

Chia cả hai vế cho dt:

$$I_x rac{dx}{dt} + I_y rac{dy}{dt} + I_t = 0$$

Do:

$$\frac{dx}{dt} = u, \quad \frac{dy}{dt} = v$$

ta có phương trình:

$$I_x u + I_y v + I_t = 0$$

Đây chính là **phương trình bảo toàn cường độ sáng**, là nền tảng của phương pháp Horn-Schunck và Lucas-Kanade trong Optical Flow.

Phương pháp Horn-Schunck

1. Công thức chính của Horn-Schunck

Horn-Schunck dựa trên phương trình bảo toàn cường độ sáng:

$$I_x u + I_y v + I_t = 0$$

trong đó:

- I_x, I_y là đạo hàm của ảnh theo hướng ${f x}$ và ${f y}$.
- ullet I_t là đạo hàm của ảnh theo thời gian (sự thay đổi cường độ pixel giữa hai khung hình).
- u, v là các thành phần của vector vận tốc cần tìm.

Do phương trình trên có một ẩn số ít hơn phương trình (ill-posed problem), Horn-Schunck bổ sung thêm một ràng buộc về độ trơn:

$$E = \iint \left((I_x u + I_y v + I_t)^2 + \lambda (\|
abla u\|^2 + \|
abla v\|^2)
ight) dx dy$$

với:

- Thành phần đầu tiên: giữ cho nghiệm của phương trình bảo toàn sáng đúng.
- **Thành phần thứ hai**: đảm bảo trường vận tốc trơn, với hệ số λ kiểm soát mức độ trơn.

2. Phương trình Euler-Lagrange

Tối thiểu hoá năng lượng **E** bằng cách lấy đạo hàm theo u và v, ta thu được hệ phương trình đạo hàm

$$I_x(I_xu+I_yv+I_t)-\lambda
abla^2u=0$$

$$I_y(I_x u + I_y v + I_t) - \lambda
abla^2 v = 0$$

trong đó $abla^2 u$ và $abla^2 v$ là Laplacian của u và v, được tính như:

$$abla^2 u = rac{\partial^2 u}{\partial x^2} + rac{\partial^2 u}{\partial y^2}$$

$$abla^2 v = rac{\partial^2 v}{\partial x^2} + rac{\partial^2 v}{\partial y^2}$$

3. Biến đổi thành dạng số (Numerical Methods)

Bây giờ, ta cần chuyển phương trình trên sang dạng rời rac để có thể lập trình trên máy tính.

Bước 1: Xấp xỉ đạo hàm ảnh

ullet Đạo hàm không gian I_x,I_y có thể tính bằng **bộ lọc Sobel**:

$$I_x = rac{1}{8} egin{bmatrix} -1 & 0 & 1 \ -2 & 0 & 2 \ -1 & 0 & 1 \end{bmatrix} * I$$

$$I_y = rac{1}{8} egin{bmatrix} -1 & -2 & -1 \ 0 & 0 & 0 \ 1 & 2 & 1 \end{bmatrix} * I$$

• Đạo hàm thời gian I_t có thể lấy bằng hiệu trung bình giữa hai ảnh liên tiếp:

$$I_t=rac{1}{2}(I_{t+1}-I_t)$$

HVUS 2

Digital Image Processing

Bước 2: Xấp xỉ toán tử Laplacian

Toán tử Laplacian của u và v được tính bằng trung bình lân cận 4 hướng:

$$abla^2 u = \bar{u} - u$$

$$abla^2 v = \bar{v} - v$$

trong đó \bar{u}, \bar{v} là giá trị trung bình của u và v từ 4 điểm lân cận:

$$\bar{u}_{i,j} = \frac{1}{4}(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1})$$

$$ar{v}_{i,j} = rac{1}{4}(v_{i+1,j} + v_{i-1,j} + v_{i,j+1} + v_{i,j-1})$$

Bước 3: Giải hệ phương trình bằng phép lặp

Sau khi xấp xỉ, ta có công thức cập nhật u,v theo từng bước lặp:

$$u^{(n+1)} = ar{u}^{(n)} - rac{I_x(I_xar{u}^{(n)} + I_yar{v}^{(n)} + I_t)}{\lambda + I_x^2 + I_v^2}$$

$$v^{(n+1)} = ar{v}^{(n)} - rac{I_y(I_xar{u}^{(n)} + I_yar{v}^{(n)} + I_t)}{\lambda + I_x^2 + I_y^2}$$

Quá trình này được lặp lại cho đến khi u và v hội tụ hoặc đạt đến số vòng lặp tối đa.

4. Tóm tắt quy trình số hóa Horn-Schunck

- 1. **Tính đạo hàm không gian** I_x, I_y bằng bộ lọc Sobel.
- 2. **Tính đạo hàm thời gian** I_t bằng hiệu trung bình giữa hai ảnh.
- 3. Khởi tạo ban đầu u,v=0.
- 4. Tính toán trung bình lân cận \bar{u}, \bar{v} .
- 5. **Cập nhật** u,v bằng công thức lặp trên.
- 6. Dừng lại khi đạt điều kiện hội tụ hoặc số vòng lặp tối đa.

Hãy viết chương trình hiện thực phương pháp Horn-Schunck.

Input: 02 frame liên tục trong 1 video

Output: 02 ma trận u và v biểu diễn vận tốc của các pixels theo trục x và trục y.

HVUS 3