# Теория по производной для №12 из ЕГЭ от «Школково»

# Содержание

| 1 | Таблица производных и правила дифференцирования |  |  |  |  |
|---|-------------------------------------------------|--|--|--|--|
|   | 1.1 Таблица производных элементарных функций    |  |  |  |  |
|   | 1.2 Правила дифференцирования                   |  |  |  |  |
| 2 | Поиск точек экстремума функции                  |  |  |  |  |
|   | 2.1 Точки экстремума функции                    |  |  |  |  |
|   | 2.2 План решения задач                          |  |  |  |  |
|   | Поиск наибольшего/наименьшего значения функции  |  |  |  |  |
|   | 3.1 План решения задач                          |  |  |  |  |

## 1 Таблица производных и правила дифференцирования

## 1.1 Таблица производных элементарных функций

|   | Функция у                      | Производная $y'$          |
|---|--------------------------------|---------------------------|
| 1 | $a \ (a \in \mathbb{R})$       | 0                         |
| 2 | $x^a \ (a \in \mathbb{R})$     | $a \cdot x^{a-1}$         |
| 3 | $e^x$                          | $e^x$                     |
| 4 | $a^x \ (a > 0)$                | $a^x \cdot \ln a$         |
| 5 | $\ln x$                        | $\frac{1}{x}$             |
| 6 | $\log_a x \ (a > 0, a \neq 1)$ | $\frac{1}{x \cdot \ln a}$ |
| 7 | $\sin x$                       | $\cos x$                  |
| 8 | $\cos x$                       | $-\sin x$                 |
| 9 | $\operatorname{tg} x$          | $\frac{1}{\cos^2 x}$      |

|    | Функция у                 | Производная $y'$          |
|----|---------------------------|---------------------------|
| 10 | $\operatorname{ctg} x$    | $-\frac{1}{\sin^2 x}$     |
| 11 | $\arcsin x$               | $\frac{1}{\sqrt{1-x^2}}$  |
| 12 | $\arccos x$               | $-\frac{1}{\sqrt{1-x^2}}$ |
| 13 | $\operatorname{arctg} x$  | $\frac{1}{1+x^2}$         |
| 14 | $\operatorname{arcctg} x$ | $-\frac{1}{1+x^2}$        |
|    | Важные час                | тные случаи               |
| 15 | x                         | 1                         |
| 16 | $\frac{1}{x}$             | $-\frac{1}{x^2}$          |
| 17 | $\sqrt{x}$                | $\frac{1}{2\sqrt{x}}$     |

## 1.2 Правила дифференцирования

| Функция                             | Производная                                          |
|-------------------------------------|------------------------------------------------------|
| $a \cdot f(x) \ (a \in \mathbb{R})$ | $a \cdot f'(x)$                                      |
| $f(x) \pm g(x)$                     | $f'(x) \pm g'(x)$                                    |
| $f(x) \cdot g(x)$                   | $f'(x) \cdot g(x) + f(x) \cdot g'(x)$                |
| $\frac{f(x)}{g(x)}$                 | $\frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$ |
| f(g(x))                             | $f'(g(x)) \cdot g'(x)$                               |

1. Производная функции  $a\cdot f(x)$ , где a — число, равна  $a\cdot f'(x)$ . Например,

$$(2\cos x)' = 2 \cdot (\cos x)' = 2 \cdot (-\sin x) = -2\sin x.$$
$$\left(-\frac{x^3}{3}\right)' = -\frac{1}{3} \cdot (x^3)' = -\frac{1}{3} \cdot 3x^2 = -x^2.$$

Производная суммы функций равна сумме производных этих функций.

$$(\sqrt{x} - 3x + 1)' = (\sqrt{x})' - (3x)' + 1' = \frac{1}{2\sqrt{x}} - 3 + 0 = \frac{1}{2\sqrt{x}} - 3.$$

3. Производная произведения функций

Например,

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Например,

$$((x^2 - 3) \cdot e^x)' = (x^2 - 3)' \cdot e^x + (x^2 - 3) \cdot (e^x)' =$$

$$= ((x^2)' - 3') \cdot e^x + (x^2 - 3) \cdot e^x = 2x \cdot e^x + (x^2 - 3) \cdot e^x = e^x(x^2 + 2x - 3).$$

4. Производная частного функций

Таблица производных и правила дифференцирования

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

Например,

$$\left(\frac{x+2}{e^x}\right)' = \frac{(x+2)' \cdot e^x - (x+2) \cdot (e^x)'}{(e^x)^2} = \frac{1 \cdot e^x - (x+2) \cdot e^x}{e^{2x}} = \frac{e^x \cdot (1 - (x+2))}{e^{2x}} = -\frac{x+1}{e^x}$$

5. Сложная функция — это функция вида f(g(x)), где f(y) и g(x) — функции.

Производная сложной функции

$$(f(g(x)))' = f'(g(x)) \cdot g'(x).$$

Например,

$$\left(\sqrt{-x^2 + 2 - 6x}\right)' = \frac{1}{2\sqrt{-x^2 + 2 - 6x}} \cdot (-x^2 + 2 - 6x)' = \frac{-\left(x^2\right)' + 2' - (6x)'}{2\sqrt{-x^2 + 2 - 6x}} = \frac{-2x - 6}{2\sqrt{-x^2 + 2 - 6x}} = -\frac{x + 3}{\sqrt{-x^2 + 2 - 6x}}.$$

$$\left(\log_7\left(x^2 + 16x + 100\right)\right)' = \frac{1}{\left(x^2 + 16x + 100\right) \cdot \ln 7} \cdot \left(x^2 + 16x + 100\right)' = \frac{\left(x^2\right)' + (16x)' + 100'}{\left(x^2 + 16x + 100\right) \cdot \ln 7} = \frac{2x + 16}{\left(x^2 + 16x + 100\right) \cdot \ln 7}.$$

# 2 Поиск точек экстремума функции

## 2.1 Точки экстремума функции

Вспомним, что:

- 1. Если функция f(x) определена и непрерывна на промежутке X и во всех внутренних точках этого промежутка имеет положительную производную (f'(x) > 0), то функция возрастает на промежутке X.
- 2. Если функция f(x) определена и непрерывна на промежутке X и во всех внутренних точках этого промежутка имеет отрицательную производную (f'(x) < 0), то функция убывает на промежутке X.

<u>Определение</u> Точка  $x_0$  называется *точкой экстремума* функции f(x), если в некоторой её окрестности, которая не включает в себя саму точку  $x_0$ , выполняется либо неравенство  $f(x_0) > f(x)$  (тогда точка называется *точкой максимума*), либо  $f(x_0) < f(x)$  (тогда точка называется *точкой минимума*).

## Теорема

Если функция имеет экстремум в точке  $x_0$ , то её производная в этой точке либо равна 0, либо не существует.

Определение Точка  $x_0$ , в которой  $f'(x_0)$  равна нулю или не существует, называется критической точкой функции f(x).

**ВАЖНО!** Таким образом, все точки экстремума функции являются её критическими точками. Обратное, вообще говоря, неверно. Поэтому для поиска точек экстремума функции необходимо найти все её критические точки и определить какие из них являются точками максимума или минимума.

Рассмотрим условия, при которых критическая точка  $x_0$  является точкой максимума или минимума.

Если в точке  $x_0$  функция определена, непрерывна и меняется с возрастающей на убывающую (то есть производная f'(x) в точке  $x_0$  меняет свой знак с «+» на «-» , если смотреть слева направо), то точка  $x_0$  — moчка максимума функции f(x).

Если в точке  $x_0$  функция определена, непрерывна и меняется с убывающей на возрастающую (то есть производная f'(x) в точке  $x_0$  меняет свой знак с «—» на «+», если смотреть слева направо), то точка  $x_0$  — moчка минимума функции f(x).

## 2.2 План решения задач

- 1. Находим область определения функции.
- 2. Находим производную функции, то есть f'(x).
- 3. Находим все критические точки, то есть точки, в которых производная равна нулю или не существует.
- 4. На координатной оси отмечаем область определения функции и критические точки. С помощью метода интервалов находим знаки производной на получившихся промежутках и отмечаем, на каких из них функция возрастает, а на каких убывает.
- 5. Если при переходе через точку функция f(x) меняется с возрастающей на убывающую, то эта точка является точкой максимума функции, а если с убывающей на возрастающую, то точкой минимума.

## Пример 1

Найдите точку минимума функции  $y = \frac{x^3}{3} - \frac{x^2}{2} - 7$ .

#### Решение

1. Область определения функции  $x \in \mathbb{R}$ .

2. Найдем производную:

$$y' = \frac{3x^2}{3} - \frac{2x}{2} = x^2 - x$$

3. Найдём критические точки.

Точки, в которых производная равна нулю:

$$x^{2} - x = 0$$
  $\Leftrightarrow$   $x(x - 1) = 0$   $\Leftrightarrow$  
$$\begin{bmatrix} x = 0 \\ x = 1 \end{bmatrix}$$

Точек, в которых производная не существует, нет.

4. Рисуем координатную ось и отмечаем на ней область определения и критические точки. Затем расставляем знаки производной на трёх получившихся промежутках и отмечаем, на каких из них функция возрастает, а на каких убывает:



5. Видим, что x = 0 является точкой максимума, а x = 1 -точкой минимума.

## Пример 2

Найдите точку максимума функции  $y = \ln(x+5) - 2x + 9$ .

## Решение

- 1. Область определения функции x > -5.
- 2. Найдем производную:

$$y' = \frac{1}{x+5} \cdot (x+5)' - 2 = \frac{1}{x+5} - 2$$

3. Найдём критические точки.

Точки, в которых производная равна нулю:

$$\frac{1}{x+5} - 2 = 0 \quad \Leftrightarrow \quad \frac{1}{x+5} = 2 \quad \Leftrightarrow \quad x+5 = 0.5 \quad \Leftrightarrow \quad x = -4.5$$

Производная не существует в точке x = -5.

4. Рисуем координатную ось и отмечаем на ней область определения и критические точки. Затем расставляем знаки производной на двух получившихся промежутках и отмечаем, на каких из них функция возрастает, а на каких убывает:



5. Видим, что x = -4.5 — это точка максимума.

## Пример 3

Найдите точку минимума функции  $y = \frac{3}{2} \cdot \sqrt[3]{x^2} - x$ .

#### Решение

- 1. Область определения функции  $x \in \mathbb{R}$ .
- 2. Найдем производную:

$$y' = \frac{3}{2} \cdot \left(x^{\frac{2}{3}}\right)' - (x)' = \frac{3}{2} \cdot \frac{2}{3} \cdot x^{-\frac{1}{3}} - 1 = \frac{1}{\sqrt[3]{x}} - 1$$

3. Найдём критические точки.

Точки, в которых производная равна нулю:

$$\frac{1}{\sqrt[3]{x}} - 1 = 0 \quad \Leftrightarrow \quad \frac{1}{\sqrt[3]{x}} = 1 \quad \Leftrightarrow \quad \sqrt[3]{x} = 1 \quad \Leftrightarrow \quad x = 1$$

Производная не существует в точке x = 0.

4. Рисуем координатную ось и отмечаем на ней область определения и критические точки. Затем расставляем знаки производной на трёх получившихся промежутках и отмечаем, на каких из них функция возрастает, а на каких убывает:



5. Видим, что x = 0 является точкой минимума, а x = 1 — точкой максимума.

Рассмотрим задачи, в которых можно исследовать функцию без помощи производной.

#### Пример 4

Найдите точку минимума функции  $y = \sqrt{x^2 - 6x + 11}$ .

#### Решение

Перепишем функцию в виде

$$y = \sqrt{x^2 - 6x + 11} = \sqrt{(x^2 - 6x + 9) + 2} = \sqrt{(x - 3)^2 + 2}$$

Найдём область определения функции:  $(x-3)^2 + 2 \ge 0$ , откуда получаем  $x \in \mathbb{R}$ .

Функция y является композицией двух функций: возрастающей при  $x\geqslant 0$  функции  $y_1=\sqrt{x}$  и убывающей при  $x\leqslant 3$  и возрастающей при  $x\geqslant 3$  функции  $y_2=(x-3)^2+2$ . Следовательно, исходная функция убывает при  $x\leqslant 3$  как композиция убывающей и возрастающей функций и возрастает при  $x\geqslant 3$  как композиция двух возрастающих функций. Тогда x=3 является точкой минимума.

#### Пример 5

Найдите точку максимума функции  $y = \log_2 (3 + 2x - x^2) - 2$ .

#### Решение

Перепишем функцию в виде

$$y = \log_2(3 + 2x - x^2) - 2 = \log_2(-(x^2 - 2x + 1) + 4) - 2 = \log_2(-(x - 1)^2 + 4) - 2.$$

Найдем область определения функции:  $-(x-1)^2+4>0$ , откуда получаем  $x\in(-1;3)$ .

Эта функция является композицией двух функций: возрастающей при x>0 функции  $y_1=\log_2 x-2$  и возрастающей при  $x\leqslant 1$  и убывающей при  $x\geqslant 1$  функции  $y_2=-(x-1)^2+4$ . Следовательно, исходная функция возрастает при  $x\in (-1;1]$  как композиция двух возрастающих функций и убывает при  $x\in [1;3)$  как композиция убывающей и возрастающей функций. Тогда x=1 является точкой максимума.

# 3 Поиск наибольшего/наименьшего значения функции

Вспомним, что:

- 1. Если функция f(x) определена и непрерывна на промежутке X и во всех внутренних точках этого промежутка имеет положительную производную (f'(x) > 0), то функция возрастает на промежутке X.
- 2. Если функция f(x) определена и непрерывна на промежутке X и во всех внутренних точках этого промежутка имеет отрицательную производную (f'(x) < 0), то функция убывает на X.

## 3.1 План решения задач

- 1. Находим область определения функции.
- 2. Берем производную функции, то есть находим f'(x).
- 3. Находим все критические точки, то есть точки, в которых производная равна нулю или не существует.
- 4. На координатной оси отмечаем область определения функции, заданный в условиях отрезок и критические точки. С помощью метода интервалов находим знаки производной на получившихся промежутках и отмечаем, на каких из них функция возрастает, а на каких убывает.
- 5. Находим значение, которое требуется в задаче.

## Пример 1

Найдите наибольшее значение функции  $y = x^{\frac{3}{2}} - 3x + 1$  на отрезке [1; 9].

## Решение

- 1. Область определения функции  $x \ge 0$ .
- 2. Найдем производную:

$$y' = \frac{3}{2} \cdot x^{\frac{1}{2}} - 3 = \frac{3}{2} \sqrt{x} - 3.$$

3. Найдем критические точки.

Нули производной:

$$\frac{3}{2}\sqrt{x} - 3 = 0 \quad \Leftrightarrow \quad \sqrt{x} = 2 \quad \Leftrightarrow \quad x = 4.$$

Точек, в которых производная не существует, нет.

4. Отрезок [1;9] полностью лежит в области определения, поэтому будем исследовать функцию на этом отрезке. Рисуем координатную ось, отмечаем на ней отрезок [1;9] и критические точки. Затем расставляем знаки производной на двух получившихся промежутках и отмечаем, на каких из них функция возрастает, а на каких убывает:



5. На полученном эскизе видно, что наибольшее значение на отрезке [1;9] функция принимает или в точке x = 1, или в точке x = 9.

Чтобы решить задачу, осталось найти значения функции в точках x=1 и x=9 :

$$y(1) = 1^{\frac{3}{2}} - 3 \cdot 1 + 1 = 1 - 3 + 1 = -1$$
  
$$y(9) = 9^{\frac{3}{2}} - 3 \cdot 9 + 1 = (3^2)^{\frac{3}{2}} - 27 + 1 = 3^3 - 27 + 1 = 1$$

Так как 1 > -1, то наибольшее значение функции на отрезке [1; 9] равно 1.

#### Пример 2

Найдите наибольшее значение функции  $y = (3x^2 - 36x + 36)e^x$  на отрезке [-1; 4].

#### Решение

- 1. Область определения функции  $x \in \mathbb{R}$ .
- 2. Найдем производную:

$$y' = (3x^2 - 36x + 36)' \cdot e^x + (3x^2 - 36x + 36) \cdot (e^x)' =$$

$$= (6x - 36) \cdot e^x + (3x^2 - 36x + 36) \cdot e^x = (3x^2 - 30x) \cdot e^x$$

3. Найдем критические точки.

Нули производной:

$$(3x^2 - 30x) \cdot e^x = 0 \quad \Leftrightarrow \quad 3x^2 - 30x = 0 \quad \Leftrightarrow \quad \begin{bmatrix} x = 0 \\ x = 10 \end{bmatrix}$$

Точек, в которых производная не существует, нет.

4. Отрезок [-1;4] полностью лежит в области определения, поэтому будем исследовать функцию на этом отрезке. Рисуем координатную ось, отмечаем на ней отрезок [-1;4], из критических точек на этот отрезок попадает только точка x=0. Затем расставляем знаки производной на двух получившихся промежутках и отмечаем, на каких из них функция возрастает, а на каких убывает:



5. На получениом эскизе видно, что наибольшее значение на отрезке [-1;4] функция принимает в точке x = 0.

Чтобы решить задачу, осталось найти значение функции в точке x=0:

$$y(0) = (3 \cdot 0^2 - 36 \cdot 0 + 36) \cdot e^0 = 36 \cdot 1 = 36.$$

## Пример 3

Найдите наибольшее значение функции  $y = 12\cos x + 6\sqrt{3} \cdot x - 2\sqrt{3}\pi + 6$  на отрезке  $\left[0; \frac{\pi}{2}\right]$ .

## Решение

- 1. Область определения функции  $x \in \mathbb{R}$ .
- 2. Найдем производную:

$$y' = -12\sin x + 6\sqrt{3}$$

3. Найдем критические точки.

Нули производной:

$$-12\sin x + 6\sqrt{3} = 0 \quad \Leftrightarrow \quad \sin x = \frac{\sqrt{3}}{2} \quad \Leftrightarrow \quad \begin{bmatrix} x = \frac{\pi}{3} + 2\pi k, \ k \in \mathbb{Z} \\ x = \frac{2\pi}{3} + 2\pi k, \ k \in \mathbb{Z} \end{bmatrix}$$

Точек, в которых производная не существует, нет.

4. Отрезок  $\left[0;\frac{\pi}{2}\right]$  полностью лежит в области определения, поэтому будем исследовать функцию на этом отрезке. Рисуем координатную ось, отмечаем на ней отрезок  $\left[0;\frac{\pi}{2}\right]$ , из критических точек на этот отрезок попадает только точка  $x=\frac{\pi}{3}$ . Затем расставляем знаки производной на двух получившихся промежутках и отмечаем, на каких из них функция возрастает, а на каких убывает:



5. На полученном эскизе видно, что наибольшее значение на отрезке  $\left[0;\frac{\pi}{2}\right]$  функция принимает в точке  $x=\frac{\pi}{3}.$ 

Чтобы решить задачу, осталось найти значение функции в точке  $x=\frac{\pi}{3}$  :

$$y\left(\frac{\pi}{3}\right) = 12\cos\frac{\pi}{3} + 6\sqrt{3} \cdot \frac{\pi}{3} - 2\sqrt{3}\pi + 6 = 6 + 6 = 12.$$

#### Пример 4

Найдите наибольшее значение функции  $y=3 \lg x -3x +5$  на отрезке  $\left[-\frac{\pi}{4};0\right]$  .

## Решение

- 1. Область определения функции:  $x \neq \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$ .
- 2. Найдем производную:

$$y' = \frac{3}{\cos^2 x} - 3 = 3 \cdot \left(\frac{1}{\cos^2 x} - 1\right) = 3 \operatorname{tg}^2 x$$

3. Найдем критические точки.

Нули производной:

$$\operatorname{tg}^2 x = 0 \quad \Leftrightarrow \quad \operatorname{tg} x = 0 \quad \Leftrightarrow \quad x = \pi k, \, k \in \mathbb{Z}.$$

Производная не существует в точках  $x=\frac{\pi}{2}+\pi k,\,k\in\mathbb{Z}.$ 

Тогда критические точки можно записать так:  $\frac{\pi k}{2}$ ,  $k \in \mathbb{Z}$ .

4. Отрезок  $\left[-\frac{\pi}{4};0\right]$  полностью лежит в области определения, поэтому будем исследовать функцию на этом отрезке. Рисуем координатную ось, отмечаем на ней отрезок  $\left[-\frac{\pi}{4};0\right]$ , из критических точек на этот отрезок попадает только точка x=0. Получился один промежуток, находим на нем знак производной и отмечаем, возрастает или убывает функция.



5. Так как функция возрастает на отрезке  $\left[-\frac{\pi}{4};0\right]$ , то наибольшее значение функция принимает в точке x=0.

Чтобы решить задачу, осталось найти значение функции в точке x=0:

$$y(0) = 3 \operatorname{tg} 0 - 3 \cdot 0 + 5 = 5.$$

Рассмотрим задачи, в которых можно исследовать функцию без помощи производной.

## Пример 5

Найдите наибольшее значение функции  $y = \sqrt{5 - 4x - x^2}$ .

#### Решение

Перепишем функцию в виде

$$y = \sqrt{5 - 4x - x^2} = \sqrt{-(x^2 + 4x + 4) + 9} = \sqrt{-(x + 2)^2 + 9}$$

Заметим, что

$$-(x+2)^{2} \le 0$$
$$-(x+2)^{2} + 9 \le 9$$
$$\sqrt{-(x+2)^{2} + 9} \le 3$$

Так как равенство достигает при x = -2, то наибольшее значение функции равно 3.

## Пример 6

Найдите наименьшее значение функции  $y = 2^{x^2 + 2x + 5}$ .

#### Решение

Перепишем функцию в виде

$$y = 2^{(x^2+2x+1)+4} = 2^{(x+1)^2+4}$$
.

Заметим, что

$$(x+1)^{2} \ge 0$$
$$(x+1)^{2} + 4 \ge 4$$
$$2^{(x+1)^{2} + 4} \ge 2^{4}$$
$$2^{(x+1)^{2} + 4} \ge 16$$

Так как равенство достигает при x = -1, то наименьшее значение функции равно 16.