Homework 2 (4%) Bayesian Regression

The goal of this homework is to provide you a chance to get familiar with the basic procedure in Bayesian regression. Recall that the posterior distribution of weights and precision is

$$p(w, \beta | \mathbf{t})$$

$$= N(w | m_N, \beta^{-1} S_N) Gam(\beta | a_N, b_N)$$

$$m_N = S_N [S_0^{-1} m_0 + \Phi^T \mathbf{t}]$$

$$\beta S_N^{-1} = \beta (S_0^{-1} + \Phi^T \Phi)$$

$$a_N = a_0 + \frac{N}{2}$$

$$b_N = b_0 + \frac{1}{2} \left(m_0^T S_0^{-1} m_0 - m_N^T S_N^{-1} m_N + \sum_{n=1}^N t_n^2 \right)$$

We are interested in seeing how the choice of S_0 influence the prediction accuracy. Split the records in Idpa30_train.csv into two sets. The records from the Week 1 to 270 are Set1 and the remaining records are Set2. Our target variable is week_return13 and our basis function includes week_return1 and week_return4 (and a constant 1). Set $m_0=0$, $a_0=b_0=1$. Assume that $S_0=\lambda I$. Train your model using Set1. Used the learned coefficients to predict Set2. Vary λ and plot the RMSE with respect to λ . Note that to conduct prediction you should:

- 1. Compute S_N , m_N , a_N , and b_N ,
- 2. Draw β from $Gamma(a_N, b_N)$
- 3. Draw w from $N(w|m_N, \beta^{-1}S_N)$
- 4. Use w to make prediction.
- 5. Compute error.