Федеральное государственное автономное образовательное учреждение высшего образования

Санкт-Петербургский Политехнический университет Петра Великого Физико-Механический институт

Лабораторная 5

Выполнил студент гр. 5030102/20101:	Бугайцев М.В.	
Преподаватель:	Баженов А. Н.	
Работа принята:	Дата	

Содержание

1	Постановка задачи	2
2	Теоретическое обоснование	2
	2.1 Основные понятия	2
	2.1 Основные понятия	2
	2.2 Метод максимального правдоподобия (ММП)	2
	2.2 Метод максимального правдоподобия (ММП)	2
	2.3 Правило проверки гипотезы о законе распределения по методу χ^2	2
3	Практическая часть	4
	3.1 Нормальное распределение, $n = 20$	4
	3.2 Нормальное распределение, $n = 100$	5
	3.3 Равномерное распределение, $n = 20$	5
	3.4 Равномерное распределение, $n=100$	6
4	Заключение	8

1 Постановка задачи

Сгенерировать выборку объёмом 100 элементов для нормального распределения N(x,0,1). По сгенерированной выборке оценить параметры μ и σ нормального закона методом максимального правдоподобия. В качестве основной гипотезы H_0 будем считать, что сгенерированное распределение имеет вид $N(x,\hat{\mu},\hat{\sigma})$. Проверить основную гипотезу, используя критерий согласия χ^2 . В качестве уровня значимости взять $\alpha=0.05$. Привести таблицу вычислений χ^2 . Исследовать точность (чувствительность) критерия χ^2 – сгенерировать выборки равномерного распределения и равномерного распределения объёма 20 элементов. Проверить их на нормальность.

2 Теоретическое обоснование

2.1 Основные понятия

Гипотеза H_0 - это предположение о том, что исследуемая выборка принадлежит генеральной совокупности с заданным законом распределения F(x). В данной работе:

- в качестве H_0 выдвинута гипотеза о нормальном распределении $N(x, \mu, \sigma)$;
- ullet альтернативная гипотеза H_1 распределение не является нормальным.

Критерий согласия χ^2 - метод проверки гипотезы о законе распределения, основанный на сравнении наблюдаемых частот n_i с теоретическими частотами np_i , где p_i - вероятность попадания в интервал Δ_i при условии истинности H_0 .

2.2 Метод максимального правдоподобия (ММП)

Для оценки параметров нормального распределения μ и σ используются:

Оценка для μ:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

• Оценка для σ (несмещённая):

$$\hat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu})^2}.$$

Эти оценки обеспечивают наилучшее соответствие выборки предполагаемому нормальному распределению.

2.3 Правило проверки гипотезы о законе распределения по методу χ^2

- 1. Выбираем уровень значимости α .
- 2. По таблице находим квантиль $\chi^2_{1-\alpha}(k-1)$ распределения хи-квадрат с k-1 степенями свободы порядка $1-\alpha$.
- 3. С помощью гипотетической функции распределения F(x) вычисляем вероятности $p_i = P(X \in \Delta_i), i = 1, ..., k$.
- 4. Находим частоты n_i попадания элементов выборки в подмножества Δ_i , i=1,...,k.
- 5. Вычисляем выборочное значение статистики критерия χ^2 :

$$\chi_B^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}.$$
 (1)

- 6. Сравниваем χ_B^2 и квантиль $\chi_{1-\alpha}^2(k-1)$.

 а) Если $\chi_B^2 < \chi_{1-\alpha}^2(k-1)$, то гипотеза H_0 на данном этапе проверки принимается.

 б) Если $\chi_B^2 >= \chi_{1-\alpha}^2(k-1)$, то гипотеза H_0 отвергается, выбирается одно из альтернативных распределений, и процедура проверки повторяется.

3 Практическая часть

3.1 Нормальное распределение, n = 20

Таблица 1: Таблица расчёта статистики χ^2 для проверки нормальности выборки $n=20, \; \alpha=0.05$

n_i	np_i	$\frac{(n_i - np_i)^2}{np_i}$
2	0.81	1.76
0	1.39	1.39
3	2.06	0.43
2	2.66	0.16
5	2.98	1.36
2	2.90	0.28
1	2.45	0.86
2	1.80	0.02
2	1.14	0.64
1	0.63	0.22
	2 0 3 2 5 2 1 2 2	2 0.81 0 1.39 3 2.06 2 2.66 5 2.98 2 2.90 1 2.45 2 1.80 2 1.14

Рис. 1: Гистограмма и теоретическая плотность для нормальной выборки, n=20.

3.2 Нормальное распределение, n = 100

Таблица 2: Таблица расчёта статистики χ^2 для проверки нормальности выборки $n=100,~\alpha=0.05$

i			
Интервал	n_i	np_i	$\frac{(n_i - np_i)^2}{np_i}$
[-2.55, -2.07)	1	1.58	0.21
[-2.07, -1.59)	5	3.86	0.34
[-1.59, -1.11)	10	7.70	0.69
[-1.11, -0.62)	13	12.53	0.02
[-0.62, -0.14)	18	16.63	0.11
[-0.14, 0.34)	13	18.00	1.39
[0.34, 0.82)	14	15.88	0.22
[0.82, 1.31)	13	11.43	0.22
[1.31, 1.79)	5	6.71	0.43
[1.79, 2.27)	8	3.21	7.15

Рис. 2: Гистограмма и теоретическая плотность для нормальной выборки, n=100.

3.3 Равномерное распределение, n = 20

Таблица 3: Таблица расчёта статистики χ^2 для проверки нормальности выборки $n=20,~\alpha=0.05$

Интервал	n_i	np_i	$\frac{(n_i - np_i)^2}{np_i}$
[-1.49, -1.17)	4	0.73	14.53
[-1.17, -0.85)	1	1.10	0.01
[-0.85, -0.53)	0	1.52	1.52
[-0.53, -0.20)	1	1.92	0.44
[-0.20, 0.12)	1	2.22	0.67
[0.12, 0.44)	2	2.36	0.05
[0.44, 0.76)	2	2.29	0.04
[0.76, 1.08)	2	2.04	0.00
[1.08, 1.41)	4	1.66	3.29
[1.41, 1.73)	3	1.24	2.49

Рис. 3: Гистограмма и теоретическая плотность для равномерной выборки, n=20.

3.4 Равномерное распределение, n = 100

Таблица 4: Таблица расчёта статистики χ^2 для проверки нормальности выборки $n=100,~\alpha=0.05$

Интервал	n_i	np_i	$\frac{(n_i - np_i)^2}{np_i}$
[-1.69, -1.35)	12	5.13	9.21
[-1.35, -1.01)	10	7.75	0.65
[-1.01, -0.67)	15	10.46	1.98
[-0.67, -0.34)	11	12.57	0.20
[-0.34, 0.00)	6	13.49	4.16
[0.00, 0.34)	12	12.90	0.06
[0.34, 0.68)	8	11.01	0.82
[0.68, 1.02)	11	8.37	0.82
[1.02, 1.36)	4	5.68	0.50
[1.36, 1.70)	11	3.44	16.62

Рис. 4: Гистограмма и теоретическая плотность для равномерной выборки, n=100.

4 Заключение

Проведённое исследование показало, что при большом объёме выборки (n=100) критерий χ^2 надёжно подтверждает нормальность распределения, а оценки ММП дают $\hat{\mu}\approx 0, \hat{\sigma}\approx 1$. Для малых выборок (n=20) статистическая нестабильность частот может приводить к ложным выводам. Проверка равномерно распределённых выборок (n=20,100) отвергает гипотезу нормальности.