Definition: random variable

 (Ω, \mathcal{F}, P) . A **random variable** X is a measurable function from $\Omega \to \mathbb{R}$. That is, for any $A \in \mathcal{B}(\mathbb{R})$,

$$X^{-1}(A) := \{\omega : X(\omega) \in A\} \in \mathcal{F}.$$

Theorem

X is a random variable if and only if $\{\omega : X(\omega) \leq x\} \in \mathcal{F} \ \forall \ x \in \mathbb{R}$.

Proof

 (\Rightarrow) : the set $(-\infty, x]$ is in the Borel set.

$$(\Leftarrow)$$
: show that $\mathcal{B}(\mathbb{R}) \subseteq \mathcal{A} = \{A \subseteq \mathbb{R} : X^{-1}(A) \in \mathcal{F}\}$

Claim. For a simple r.v. X,

$$\{\omega: X(\omega) \leq x\} \in \mathcal{F} \ \forall \ x \in \mathbb{R} \Leftrightarrow \{\omega: X(\omega) = x\} \ \forall \ x \in \mathbb{R}.$$

Proof

 $(\Rightarrow):$ intersection of a set and a complement of another set is still in $\mathcal{F}.$

$$(\Leftarrow)$$
: $\{\omega: X(\omega) \leq x\} = \bigcup_{y \leq x} \{\omega: X(\omega) = y\} \in \mathcal{F}$. Here we restrict y to be in the range of x .

Definition: measurable function

A function $f: \mathbb{R} \to \mathbb{R}$ is (Borel) measurable if

$$f^{-1}(A) \in \mathcal{B}(\mathbb{R}) \ \forall \ A \in \mathcal{B}(\mathbb{R}).$$

Theorem

Any composition of measurable functions is measurable. In particular, given $X: \Omega \to \mathbb{R}$ measurable and $f: \mathbb{R} \to \mathbb{R}$ measurable, then Y = f(X) is measurable wrt \mathcal{F} , *i.e.* Y is a r.v.

Proof

Take $A \in \mathcal{B}(\mathbb{R})$, want to show that $(f \circ X)^{-1}(A) \in \mathcal{F}$. Note that $(f \circ X)^{-1}(A) = X^{-1}(f^{-1}(A)) \in \mathcal{F}$ since f^{-1} yields another Borel set by definition of measurable function and X^{-1} of a Borel set is still in \mathcal{F} by definition of X being a r.v.

Note. Given a constant $c, x + c, cX, X^2, |X|$ are all measurable.

Proof: |X|

f(x) = |x|. Given $y \in \mathbb{R}$, want to show $\{x : f(x) \le y\} \in \mathcal{B}(\mathbb{R})$.

Example. X + Y, X - Y, XY are measurable.

Proof: X + Y

$$\begin{split} \{X+Y \leq x\} &= \{\omega: (X+Y)(\omega) \leq x\} \\ &= \{\omega: X(\omega) + Y(\omega) \leq x\} \\ &= \bigcup_{r \in \mathbb{R}} (\{X \leq r\} \cap \{Y \leq x - r\}) \end{split}$$

Claim. can restrict the union to rational number because $\mathbb Q$ is dense in $\mathbb R$.

Then the union becomes countable, hence it's in \mathcal{F} .

Proof: XY

$$XY = \frac{1}{2}[(X+Y)^2 - X^2 - Y^2]$$