주차장 얼만큼 차 있나요

목차

- 1. 소개
- 2. Data
- 3. Model
- 4. test

PARKING

1. 소개

주차 전에 주차장에 얼마나 주차되어 있는 지, 남은 자리가 얼마가 있을 지 미리 알면 좋겠다는 생각으로 시작

Input

* 주차장 이미지

Output

- * 주차장이 주차되어 있다면 빨간색 박스
- * 비어/있다면 초록색 박스

1. Data

busy

free

약 4000개

1. Data: preprocessing

- 1. Gray scale : 연산량 줄이기 위함 * Channel : 3 -> 1 2. Guassian blur : noise 줄임
 - * kernel 크기: (7*7) 강하게 흐림
- 3. Adaptive threshold: 외곽선 따기
 - * 이미지 작은 영역별로 임계처리
 - * k = 5 * block size(이미지 영역 크기)
 - * C = 1.5 : 평균에서 차감할 값

1. Data: preprocessing

original

Gray scaling

Gaussian blur

Adaptive Threshold

2. Model

Supervised learning
Base architecture: VGG19 (CNN)

- * image 특징 추출
- * 무난한 ImageNet사용
- * Lenet, Alexnet보다는 성능이 좋음
- * 연산량이 GoogLenet보다 많음

Output net: DNN

- * ReLU, SeLU의 조합
- * 마지막 분류시, softmax activation function 사용
 - * 단일 라벨 분류이기 때문

2. Model

2. Model

Details

- 1. class_weights
 - Busy data(8000개)
 - Free data (4000개) 더 큰 가중치 설정
 - 불균형 해결
- 2. loss: categorical crossentropy
 - Softmax loss
 - Multi-label이 아닌 multi-class problem
- 3. Validation accuracy: 97%

```
- ETA: 12:22 - loss: 0.0538 - accuracy: 0.9792
```

3. Test

3. Test

original

result

직접 찍은 학교 사진

3. Test : 아쉬운 점

밤: 빛이 없음. 정확함

밤: 빛이 있음. 부정확함

빛에 따라 정확도가 떨어지는 경향이 보임