

Highly Regio- and Stereoselective Synthesis of Polysubstituted Cyclopropane Compounds via the Pd(0)-Catalyzed Coupling-Cyclization Reaction of 2-(2',3'-Allenyl)malonates with Organic Halides

Shengming Ma,* Ning Jiao, Qing Yang, and Zilong Zheng

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, P. R. China

> masm@mail.sioc.ac.cn Received April 22, 2004

Abstract: A new method for highly regio- and stereoselective synthesis of polysubstituted cyclopropane compounds via the Pd(0)-catalyzed coupling-cyclization reaction of 2-(2',3'-allenyl)malonates with organic halides is described. In these reactions, the starting materials are easily available and the operation is convenient. The ratios of *trans*-isomer/ cis-vinylic cyclopropanes are up to 98:2.

The cyclopropyl group has been playing a prominent role in organic chemistry. This smallest cycloalkane is found as a basic structural element in a wide range of naturally occurring compounds² and has also been used as a versatile synthetic intermediate in organic synthesis.^{3–5} Thus, it still is of current interest to develop efficient methods for the stereoselective synthesis of polysubstituted functionalized cyclopropanes.

Recently, palladium-catalyzed reactions of allenes have been most extensively investigated to achieve numerous transformations. 6,7 On the basis of our previous work, 8,9 a Pd(0)-catalyzed coupling-cyclization reaction of 2-(2',3'-

* Address correspondence to this author. Fax: (+86)21-64167510. (1) For some reviews, see: (a) Special thematic issue on cyclopropanes and related rings: de Meijere, A. Chem. Rev. 2003, 103, 931–1648. (b) Taylor, R. E.; Engelhardt, F. C.; Schmitt, M. J. Tetrahedron 2003, 59, 5623. (c) de Meijere, A.; Kozhushkov, S. I.; Fokin, A. A.; Emme, I.; Redlich, S.; Rchreiner, P. R. Pure Appl. Chem. 2003, 75, 549. (d) Donaldson, W. A. Tetrahedron 2001, 75, 8589.

(2) (a) Faust, R. Angew. Chem. Int. Ed. 2001, 40, 2251. (b) Salaün, Top. Curr. Chem. 2000, 207, 1. (c) Salaun, J. Curr. Med. Chem. 1995, 2, 511. (d) Djerassi, C.; Doss, G. A. New J. Chem. 1990, 14, 713.

(3) For reviews on the divinylcyclopropane rearrangements leading to more functionalized alkanes, see: (a) Davies, H. M. L. *Tetrahedron* **1993**, *49*, 5203. (b) Hudlicky, T.; Fan, R.; Reed, J.; Gadamasetti, K. G. *Org. React.* **1992**, *41*, 1. (c) Piers, E. In *Comprehensive Organic* Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, UK, 1991; Vol. 5, p 971. (d) Mann, J. Tetrahedron 1986, 42, 4611.

(4) For reviews on the vinylcyclopropane rearrangements leading to functionalized alkanes, see: (a) Hudlicky, T.; Reed, J. W. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, UK, 1991; Vol. 5, p 899. (b) Goldschmidt, Z.; Crammer, B. Chem. Soc. Rev. 1988, 17, 229. (c) Hudlicky, T.; Kutchan, T. M.; Naqvi, S. M. Org. React. 1985, 33, 247.

(5) For reviews on ring-opening reactions of cyclopropane leading to acylic compounds, see: (a) Nonhebel, D. C. Chem. Soc. Rev. 1993, 22, 347. (b) Wong, H. N. C.; Hon, M. Y.; Tse, C. W.; Yip, Y. C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165. (c) Salaün, J. R. Y. Top. Curr. Chem. 1988, 144, 1. (d) Reissig, H. U. Top. Curr. Chem. 1988, 144, 73

SCHEME 1

$$R^{5}X$$
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{5}
 R^{4}
 R^{4}

allenyl)malonates with organic halides was developed for the regioselective synthesis of cyclopropane or cyclopentene derivatives via a π -allyl palladium intermediate.¹⁰ It is a challenge to control both the regio- and stereoselectivity of the reactions if there is a substitutent R² at the 2'-position of the allenic compounds (Scheme 1). Here, we wish to report our recent observation on the highly regio- and stereoselective synthesis of polysubstituted cyclopropane derivatives.

Synthesis of 2-(2',3'-alkadienyl)malonates 2. Compounds 2a-e were prepared from the Pd(PPh₃)₄-catalyzed alkylation reaction of malonates in ClCH2CH2Cl with the corresponding 2,3-alkadienyl acetates 1a-e, which, in turn, were prepared from the corresponding 2,3allenols¹¹ and acetic anhydride (Scheme 2).¹²

Cyclization Reaction of 2-(2',3'-Allenyl)malonates with Organic Halides. When the reaction of dimethyl

(6) (a) For a review on the palladium-catalyzed chemistry of allenes, see: Zimmer, R.; Dinesh, C. Û.; Nandanan, Ĕ.; Khan, F. A. Chem. Rev. 2000, 100, 3067. (b) For a recent highlight, see: Hashmi, A. S. K. Angew. Chem. Int. Ed. 2000, 39, 3590. (c) Ma, S. Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.-i., Ed.; John Wiley & Sons: Hoboken, NJ, 2002; Vol. 1, pp 1491–1521. (d) Ma, S. Acc. Chem. Res. 2003, 36, 701.

(7) (a) Ohno, H.; Toda, A.; Miwa, Y.; Taga, T.; Osawa, E.; Yamaoka, Y.; Fujii, N.; Ibuka, T. *J. Org. Chem.* **1999**, *64*, 2992. (b) Jeong, I.-Y.; Nagao, Y. *Tetrahedron Lett.* **1998**, *39*, 8677. (c) Nemoto, H.; Yoshida, M.; Fukumoto, K. *J. Org. Chem.* **1997**, *62*, 6450. (d) Oppolzer, W.; Pimm, A.; Stammen, B.; Hume, W. E. *Helv. Chim. Acta* **1997**, *80*, 623. (e) Okuro, K.; Alper, H. J. Org. Chem. 1997, 62, 1566. (f) Grigg, R.; Xu, L. *Tetrahedron Lett.* **1996**, *37*, 4251. (g) Grigg, R.; Rasul, R.; Redpath, J.; Wilson, D. *Tetrahedron Lett.* **1996**, *37*, 4609. (h) Larock, R. C.; Zenner, J. M. J. Org. Chem. 1995, 60, 482. (i) Ma, S.; Negishi, K. C., Zehler, J. M. J. Org. Chem. **1994**, *59*, 4730. (j) Walkup, R. D.; Guan, L.; Mosher, M. D.; Kim, S. W.; Kim, Y. S. *Synlett* **1993**, **88**. (k) Larock, R. C.; Berrios-Pena, N. G.; Fried, C. A. *J. Org. Chem.* **1991**, *56*, 2615. (8) (a) Ma, S.; Zhao, S. *Org. Lett.* **2000**, *2*, 2495. (b) Ma, S.; Jiao, N.;

(8) (a) Ma, S.; Zhao, S. Org. Lett. 2000, 2, 2495. (b) Ma, S.; Jiao, N.; Zhao, S.; Hou, H. J. Org. Chem. 2002, 67, 2837. (9) (a) Ahmar, M.; Cazes, B.; Gore, J. Tetrahedron Lett. 1985, 26, 3795. (b) Ahmar, M.; Cazes, B.; Gore, J. Tetrahedron 1987, 43, 3453. (c) Cazes, B. Pure Appl. Chem. 1990, 62, 1867. (d) Besson, L.; Bazin, J.; Gore, J.; Cazes, B. Tetrahedron Lett. 1994, 35, 2881. (e) Gamez, P.; Ariente, C.; Gore, J.; Cazes, B. Tetrahedron 1998, 54, 14835. (f) Variety V. Ariente, V. Albarour M. Evijivara N. Chem. 2012, 281 Yamamoto, Y.; Almasum, M.; Fujiwara, N. *Chem. Commun.* **1936**, 381. (g) Oh, C. H.; Rhim, C. Y.; Song, C. H.; Ryu, J. H. *Chem. Lett.* **2002**,

(10) (a) Shimizu, I.; Tsuji, J. Chem. Lett. 1984, 233. (b) Ahmar, M.;

Cazes, B.; Gore, J. *Tetrahedron Lett.* **1984**, *25*, 4505. (11) Xu, D.; Li, Z.; Ma, S. *Chem. Eur. J.* **2002**, *8*, 5012.

(12) Fleming, I.; Higgins, D.; Lawrence, N. I.; Thomas, A. P. J. Chem. Soc., Perkin Trans. 1 1992, 24, 3331.

SCHEME 2

SCHEME 3

trans-4aa:cis-4aa = 96:4

2-(1'-methyl-2'-butyl-2',3'-butadienyl)malonate (**2a**) and PhI (**3a**) was carried out in the presence of 5 mol % of Pd(PPh₃)₄, 10 mol % of n-Bu₄NBr as the phase transfer catalyst, and 4.0 equiv of K_2CO_3 in the CH_3CN under reflux, it was very interesting to find that the cyclopropane derivative **4aa** was formed as the sole product in 94% yield with the ratio of trans-**4aa**/cis-**4aa** as high as 96:4 (Scheme 3). The stereochemistry of **4aa** was determined by the ${}^1H^{-1}H$ NOESY spectra (Figure 1). The formation of the cyclopentene derivative **5aa** was not observed.

The Pd(PPh₃)₄-catalyzed coupling—cyclization reaction of dimethyl 2-(1'-methyl-2'-hexyl-2',3'-butadienyl)malonate (2b) and PhI in different solvents was studied (Table 1). The reaction in CH₃CN gave 4ba in 86% yield (trans-4ba:cis-4ba = 95:5) (entry 1, Table 1). When the reaction was carried out in DMSO, low yield and stereoselectivity of 4ba were observed (entry 3, Table 1). The reactions in DMF and toluene gave similar results; however, they were slower (entries 4 and 5, Table 1). Therefore, we defined Conditions A (5 mol % of Pd(PPh₃)₄, 10 mol % of n-Bu₄NBr, 4.0 equiv of K₂CO₃, CH₃CN, reflux) for the highly regio- and stereoselective preparation of cyclopropane derivative **4ba**. If the reaction was conducted in the absence of n-Bu₄NBr (Conditions B: 5 mol % of Pd(PPh₃)₄, K₂CO₃ (4.0 equiv), CH₃CN, reflux) the ratio of trans-4ba/cis-4ba decreased slightly while the yield was higher (compare entry 2 with entry 1, Table 1).

On the basis of these preliminary results, we extended this reaction to different 2-(2, 3-allenyl)malonates. The

FIGURE 1.

TABLE 1. The Pd(PPh₃)₄-Catalyzed Coupling—Cyclization Reaction of Dimethyl 2-(1'-Methyl-2'-hexyl-2',3'-butadienyl)malonate (2b) with PhI in Different Solvents^a

5 mol% Pd(PPh₃)₄

 a PhI (1.2 equiv) was used. b The first letter refers to the allene while the second letter refers to the halide. c The reaction was carried out in the absence of Bu₄NBr.

results of these reactions leading to cyclopropane derivatives **4** as the sole products are summarized in Table 2.

The results of the $Pd(PPh_3)_4$ -catalyzed coupling—cyclization reactions of $\bf 2b$ and $\bf 2c$ with different organic halides under Conditions A and B were summarized in Table 3. It should be noted that the configuration of the C=C bond in 1-alkenyl iodide remained unchanged during the reaction (entries 2, 4, and 6, Table 3).

In summary, we have developed a new protocol for the highly regio- and stereoselective synthesis of polysubstituted cyclopropane compounds. Further studies in this area are being pursued in our laboratory.

Experimental Section

Starting Materials. (1) Synthesis of (3-n-Butyl)penta-3,4-dien-2-yl Acetate (1a). Typical procedure A: Acetic anhydride (1.1 mL, 11.2 mmol) was added to the mixture of (3-n-butyl)penta-3,4-dien-2-ol (1.12 g, 8 mmol), Et₃N (1.52 mL, 11 mmol), and DMAP (97 mg, 0.8 mmol) in Et₂O (25 mL). The solution was stirred at room temperature for 1 h as monitored by TLC. Evaporation and purification via flash chromatography

TABLE 2. The Pd(PPh₃)₄-Catalyzed Coupling-Cyclization Reactions of 2 with PhI in CH₃CN^a

2			yield (<i>c/t</i>) ^a		
entry	$R^{1}/R^{2}/(2)$	time (h) b	4 ^c	Cond. A	Cond. B
1	n-C ₆ H ₁₃ /Me/(2b)	17 (10)	4ba	86 (5:95)	93 (6:94)
2	n-C ₆ H ₁₃ /Ph/(2c)	36 (13)	4ca	86 (4:96)	91 (4:96)
3	Me/Me/(2d)	21 (25)	4da	93 (6:94)	72 (5:95)
4	Bn/Me(2e)	42 (25)	4ea	88 (20:80)	80 (13:87)

 a PhI (1.2 equiv) was used. b The reaction time for Conditions A. The reaction time for Conditions B is given in parentheses. c The first letter refers to the allene while the second letter refers to the halide. d c/t = cis/trans.

on silica gel (eluent: petroleum ether:ethyl acetate = 20:1) afforded 1.455 g (100%) of $1a.^{11}$ The analytical data are the same as what were reported by us in ref 11.

(2) Synthesis of Dimethyl 2-(1'-methyl-2'-butyl-2',3'-butadienyl)malonate (2a). Typical procedure B: To a mixture of NaH (60% dispersion in mineral oil, 11 mg, 1.1 equiv) and Pd(PPh₃)₄ (14.5 mg, 5 mol %) in dry ClCH₂CH₂Cl (2.0 mL) was added subsequently dimethyl malonate (0.09 mL, 3.0 equiv) and (3-n-butyl)penta-3,4- dien-2-yl acetate $1a^{11}$ (46 mg, 0.25 mmol) under nitrogen. The resulting mixture was stirred at room temperature for 24 h as monitored by TLC. Then the solution was quenched with an aqueous solution of saturated NaCl (2 mL) and extracted with ether (20 mL). The organic layer was washed with brine (3 × 8 mL) and dried over anhydrous sodium

sulfate. After evaporation, the residue was purified by flash chromatography on silica gel (eluent: petroleum ether:ethyl acetate = 20:1) to afford 53 mg (83%) of **2a**; liquid; IR (neat) 2956, 1955, 1760, 1739, 1435 cm $^{-1}$; 1 H NMR (300 MHz, CDCl₃) δ 4.63 $^{-4}$.78 (m, 2 H), 3.73 (s, 3 H), 3.70 (s, 3 H), 3.48 (d, J = 10.4 Hz, 1 H), 2.62 $^{-2}$.77 (m, 1 H), 1.92 $^{-2}$.02 (m, 2 H), 1.24 $^{-1}$.45 (m, 4 H), 1.07 (d, J = 6.60 Hz, 3 H), 0.89 (t, J = 7.15 Hz, 3 H); 13 C NMR (75.4 MHz, CDCl₃) δ 204.7, 169.2, 168.9, 106.8, 78.5, 57.2, 52.6, 52.5, 36.4, 30.8, 29.8, 22.5, 17.9, 14.1; MS m/z (%) 254 (M $^{+}$, 12.20), 93 (100); HRMS m/z (EI) calcd for $C_{14}H_{22}O_{4}$ 254.15181, found 254.15498.

Pd(0)-Catalyzed Coupling-Cyclization Reaction of Allenylmalonates with Organic Halides. Conditions A: Preparation of 1,1-Bis(methoxycarbonyl)-2-butyl-2-(1'phenyl-ethenyl)-3-methylcyclopropane (4aa). Typical procedure: To a mixture of potassium carbonate (112 mg, 0.8 mmol), n-Bu₄NBr (6.4 mg, 10 mol %), and Pd(PPh₃)₄ (12 mg, 5 mol %) in CH₃CN (2 mL) was added dimethyl 2-(1'-methyl-2'butyl-2',3'-butadienyl) malonate 2a (51 mg, 0.2 mmol) and iodobenzene (49 mg, 1.2 equiv, 0.24 mmol) subsequently under nitrogen. The resulting mixture was refluxed for 24 h as monitored by TLC. After filtration, washing with ether, and evaporation, the residue was purified by flash chromatography on silica gel (eluent: petroleum ether:ethyl acetate = 20:1) to afford 62 mg (94%) of **4aa** (cis-**4aa**:trans-**4aa** = 4:96); liquid; IR (neat) 2955, 1733, 1626, 1576, 1435, 1229 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) trans-**4aa**, δ 7.51 (d, J = 8.80 Hz, 2 H), 7.11-7.26 (m, 3 H), 5.62 (s, 1 H), 5.12 (s, 1 H), 3.73 (s, 3 H), 3.36 (s, 3 H), 2.21 (q, J = 6.80 Hz, 1 H), 1.82-1.96 (m, 1 H), 1.01-1.32 (m, 8 H), 0.71 (t, J = 7.05 Hz, 3 H); ¹³C NMR (75.4 MHz, CDCl₃) δ 168.7, 167.9, 145.5, 138.5, 128.4, 127.7, 126.5, 116.5, 52.6, 52.5, 43.9, 43.5, 30.2, 29.8, 29.1, 23.1, 14.3, 10.6; the following data were discernible for the cis isomer, cis-4aa, 7.62 (d, J = 8.60Hz, 2 H), 5.80 (s, 1 H), 4.98 (s, 1 H), 3.77 (s, 3 H), 3.29 (s, 3 H),

TABLE 3. The Pd(PPh₃)₄-Catalyzed Coupling-Cyclization Reactions of 2 with Organic Halides in CH₃CN^a

^a RI (1.2 equiv) was used. ^b The reaction time for Conditions A. The reaction time for Conditions B is given in parentheses. ^c The first letter refers to the allene while the second letter refers to the halide. ^d c/t = cis/trans.

JOC Note

0.82 (t, J = 6.96 Hz, 3 H); MS m/z (%) 330 (M $^+$, 3.35), 270 (100). Anal. Calcd for C $_{20}$ H $_{26}$ O $_4$: C 72.73, H 7.88. Found: C 72.70, H 7.71.

Conditions B: Preparation of 1,1-Bis(methoxycarbonyl)-2-hexyl-2-(1'-phenylethenyl)-3-methylcyclopropane (4ba). Typical procedure: To a mixture of potassium carbonate (140 mg, 1.0 mmol) and Pd(PPh₃)₄ (15 mg, 5 mol %) in CH₃-CN (2 mL) was added dimethyl 2-(1'-methyl-2'-hexyl-2',3'butadienyl)malonate 2b (70 mg, 0.25 mmol) and iodobenzene (61 mg, 1.2 equiv, 0.3 mmol) subsequently under nitrogen. The resulting mixture was refluxed for 16 h as monitored by TLC. After filtration, washing with ether, and evaporation, the residue was purified by flash chromatography on silica gel (eluent: petroleum ether:ethyl acetate = 20:1) to afford 83 mg (93%) of **4ba** (trans-**4ba**: cis-**4ba** = 94:6). **4ba** viscous liquid; IR (neat) 2954, 1736, 1623, 1575, 1435, 1222 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) trans-**4ba**, δ 7.52 (d, J = 9.70 Hz, 2 H), 7.15-7.28 (m, 3 H), 5.64 (s, 1 H), 5.13 (s, 1 H), 3.75 (s, 3 H), 3.36 (s, 3 H), 2.17 2.27 (m, 1 H), 1.83-1.98 (m, 1 H), 1.20 (d, J = 6.75 Hz, 3 H), 1.02-1.29 (m, 9 H), 0.74 (t, J = 7.03 Hz, 3 H); the following data were discernible for the cis isomer, *cis*-**4ba**, δ 7.64 (d, J = 9.0 Hz, 2 H), 7.28–7.17 (m, 3 H), 5.81 (s, 1 H), 4.98 (s, 1 H), 3.78 (s, 3 H), 3.31 (s, 3 H); MS m/z (%) 358 (M $^+$, 7.03), 298 (100). Anal. Calcd for $C_{22}H_{30}O_4$: C 73.74, H 8.38. Found: C 73.43, H 8.23.

Acknowledgment. Financial support from the Major State Basic Research Development Program (Grant No. G2000077500), the National Natural Science Foundation of China, and Shanghai Municipal Committee of Science and Technology is greatly appreciated.

Supporting Information Available: Typical experimental procedures, analytical data for compounds not listed in the text, ¹H NMR and ¹³C NMR spectra of those compounds, and the NOSEY spectra of **4aa**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO049323U