Network Security

Chapter 8

Cryptography

- Introduction
- Substitution ciphers
- Transposition ciphers
- One-time pads
- Fundamental cryptographic principles

- Encryption: The process of transforming data or information into something random or meaningless.
- Decryption: The process of transforming random or meaningless data into pure data.
- Symmetric key cryptography

Symmetric key cryptography is an **encryption** system in which the sender and receiver of a message share a single, common **key** that is used to encrypt and decrypt the message.

Asymmetric key cryptography

Asymmetric key cryptography is a system that uses pairs of keys(public and private) to encrypt and decrypt data. Public keys can be shared to everyone and private are known only to the owner.

Introduction

The encryption model (for a symmetric-key cipher).

Substitution Ciphers

plaintext: ciphertext:

abcdefghijklmnopqrstuvwxyz QWERTYUIOPASDFGHJKLZXCVBNM

Monoalphabetic substitution

Transposition Ciphers

Rearrange the order of plain text

1. Rail fence cipher 2. Row transposition cipher Plaintext

pleasetransferonemilliondollarsto myswissbankaccountsixtwotwo

AFLLSKSOSELAWAIA TOOSSCTCLNMOMANT ESILYNTWRNNTSOWDPAEDOBUOERIRICXB

Public-key Algorithms

Assymmetric Key Encription

- RSA
 - Authors: Rivest, Shamir, Adleman
- Other Public-Key Algorithms

RSA (1)

Method Summary

- 1. Choose two large primes, p and q
- 2. Compute $n = p \times q$ and $z = (p 1) \times (q 1)$.
- 3. Assume e such that gcd(e,z)=1
- 4. Assume d such that d*e mod z=1 public key={e,n}
 Private key={d,n}

RSA (2)

Plaintext (P)		Ciphertext (C)			After decryption		
Symbolic	Numeric	P ³	P ³ (mod 33)	<u>C</u> ⁷	C ⁷ (mod 33)	Symbolic	
S	19	6859	28	13492928512	19	S	
U	21	9261	21	1801088541	21	U	
Z	26	17576	20	1280000000	26	Z	
A	01	1	1	1	01	Α	
N	14	2744	5	78125	14	N	
N	14	2744	5	78125	14	N	
E	05	125	26	8031810176	05	E	
		~					
Sender's computation			on	Receiver's computation			

An example of the RSA algorithm

IDEA Algorithm

Computer Networks, Fillin Edition by Andrew Tanenbaum and David Weinerall, © Pearson Education-Frentice Hall, 2011

Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Digital signatures

 Digital signature is an authentication technique that combines user authentication and message authentication using public key cryptography.

- Sender A calculates a message digest from the communication text
- Sender A encrypts the message digest using sender A's private key
- Sender A sends the communication text and cipher text to recipient B
- Recipient B decrypts the cipher text using sender A's public key
- Recipient B calculate message digest from received communication text
- Recipient B compares the message digest decrypted in

 (4) with the message digest calculated in (5). If these two
 are the same, it is confirmed that A is the sender and the
 communication text is not falsified

