Capture on J7 through CSI2RX Controller – Deep Dive

Camera
Serial
Interface

13th March 2019

Agenda

- Capture Use-cases on J7
- What's CSI2?
- CSI2RX Controller
- CSI2RX FVID2 Driver

Acronyms

- CMS Camera Mirror Systems
- OTF On the fly
- WDR Wide Dynamic Range
- VC CSI2 Virtual Channel
- DT CSI2 Data Type
- VISS Vision Imaging Sub System
- ISP Image Signal Processing
- bpp bits per pixel

- ECC Error Correction Code
- I2C Inter-Integrated Circuit
- UDMA Unified DMA Controller
- PSI Packet Streaming Interface
- EMI Electro Magnetic Interference
- CRC Cyclic Redundancy Check
- DDR Dual Data Rate
- SoC System on Chip

Capture Use-case on J7

Capture Use-case(1/3): Multi-Sensor (e.g. Surround View, CMS, Radar)

Capture Use-case(2/3): Single-Sensor (e.g. Front Camera, CMS, Radar)

Capture Use-case(3/3): Single-Sensor OTF (e.g. Front Camera, CMS)

What's CSI2?

Quick Facts

- Widely used in mobile and automotive applications
- High performance with low power and low EMI
- Compatible with MIPI D-PHY and/or MIPI C-PHY
- Unidirectional differential serial interface with high speed data and clock lanes
- Packet based protocol for data transmission
- Uses bi-directional control interface compatible with I2C standard

CSI2 Standard

- Up to 16 Virtual Channels(with v2.0)
- Data formats supported:
 - RAW6/7/8/9/10/12/14/(with v2.0)16/20
 - RGB444/555/565/666/888
 - YUV420 8/10 bit
 - YUV422 8/10 bit
- MIPI D-PHY: 2.5 Gbps per lane and 4 lanes in total

CSI2RX Controller

CSI2RX Controller: Features

- Compliant with MIPI CSI-2 v1.3
- Virtual channel extension and RAW16/20 for MIPI CSI2 v2.0 support
- Support of the MIPI CSI-2 protocol over DPHY PPI interface up to maximum 4*2.5 Gbps
- Configurable Data Lane positions
- Programmable Interrupt Events
- Protocol Error Detection
- Virtual Channel / Data type de-interleaving
- Processing of data on 4 independently configurable Streams
- Payload FIFO operation

CSI2RX FVID2 Driver

CSI2RX FVID2 Driver: Features

- FVID2 Interface for applications
- Capture of following formats:
 - RAW8/10/12/14/16/20
 - YUV422-10 bit
 - RGB888
- Up to 32 capture channels per CSI2RX controller instance
- OTF mode and loop-back mode to re-transmission pads of CSI2TX controller
- Error Handling and Recovery
- FIFO handling
- D-PHY configuration
- Configurable number of Data Lanes to use and their ordering
- Frame drop buffer programming in case of Queue did not happen in time

CSI2RX FVID2 Driver: Overview(1/2)

CSI2RX FVID2 Driver: Overview(2/2)

- Interface files:
 - pdk/packages/ti/drv/csirx/csirx.h
 - It is a capture driver interface file. Application should only include this file.
 - pdk/packages/ti/drv/csirx/include/csirx_cfg.h
 - It is a capture drivers configuration file.
- Implementation files:
 - pdk/packages/ti/drv/csirx/src
- SoC files:
 - pdk/packages/ti/drv/csirx/soc

CSI2RX FVID2 Driver: Understanding FVID2 Interface

- FVID2 APIs:
 - FVID2 init
 - Initializes the drivers and the hardware. Should be called before calling any of the FVID2 functions
 - FVID2 delnit
 - Un-initializes the drivers and the hardware
 - FVID2_create
 - · Opens a instance/channel video driver
 - FVID2 delete
 - · Closes a instance/channel of a video driver
 - FVID2 control
 - To send standard (set/get format, alloc/free buffers etc..) or device/driver specific control commands to video driver
 - FVID2_queue
 - Submit a video buffer to video driver. Used in display/capture drivers
 - FVID2_dequeue
 - Get back a video buffer from the video driver. Used in display/capture drivers
 - FVID2 start
 - · Start video capture or display operation.
 - FVID2_stop
 - · Stop video capture or display operation.

CSI2RX FVID2 Driver: Usage - Application(1/3)

Building CSI2RX Driver:

gmake.exe -s -j csirx BOARD=j721e_sim CORE=mcu2_0 BUILD_PR0FILE=release

Building CSI2RX Driver Sample Application:

gmake.exe -s -j csirx_capture_testapp BOARD=j721e_sim CORE=mcu2_0 BUILD_PROFILE=release

Application
Calling Sequence

CSI2RX FVID2 Driver: Usage-Configurations(2/3)

- Create parameters(Csirx_CreateParams):
 - numCh
 - Number of channels to be configured/processed
 - chCfg
 - Channel configuration
 - instCfg
 - · Instance configuration
 - frameDropBuf
 - Address of Frame Drop buffer
 - frameDropBufLen
 - Frame Drop buffer length in bytes

- Channel configuration(Csirx_ChCfg):
 - chld
 - Unique channel ID
 - chType
 - Channel type: Capture, OTF, loop-back
 - vcNum
 - Virtual channel number
 - inCsiDataType
 - CSI2 data format for capturing
 - outFmt
 - Frame attributes like dimension, storage format specifier
- Instance configuration(Csirx_InstCfg):
 - enableCsiv2p0Support
 - Optional CSI2 v2.0 support enable control
 - numDataLanes
 - Number of data lanes used for capturing
 - dataLanesMap
 - Position of data lanes
 - enableErrbypass
 - · Error bypass mode control

CSI2RX FVID2 Driver: Usage-Example(3/3)

Two channels RGB888 (1920 x 1080) capture configuration:

```
Code Snippet:
createPrms.numCh = 2U;
createPrms.chCfg[0U].chId = 0U;
createPrms.chCfg[0U].chType = CSIRX_CH_TYPE_CAPT;
createPrms.chCfg[0U].vcNum = 0U;
createPrms.chCfg[0U].inCsiDataType = FVID2 CSI2 DF RGB888;
createPrms.chCfg[0U].outFmt.width = 1920U;
createPrms.chCfg[0U].outFmt.height = 1080U;
createPrms.chCfg[0U].outFmt.pitch[0U] = (1920U * 4U);
createPrms.chCfg[0U].outFmt.dataFormat = FVID2_DF_BGRX32_8888;
createPrms.chCfg[1U].chId = 1U;
createPrms.chCfg[1U].chType = CSIRX_CH_TYPE_CAPT;
createPrms.chCfg[1U].vcNum = 1U;
createPrms.chCfg[1U].inCsiDataType = FVID2 CSI2 DF RGB888;
createPrms.chCfg[1U].outFmt.width = 1920U;
createPrms.chCfg[1U].outFmt.height = 1080U;
createPrms.chCfg[1U].outFmt.pitch[0U] = (1920U * 4U);
createPrms.chCfg[1U].outFmt.dataFormat = FVID2_DF_BGRX32_8888;
```

CSI2RX FVID2 Driver: Un-supported Features

- Capture of following formats:
 - RAW6/7
 - YUV420-8 bit
 - RGB565/RGB666
- Dynamic Stream configuration
- Lane Polarity Position change
- Clock Lane position configuration

Questions? Thank You

© Copyright 2019 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

