Théorie linéaire : plaques rectangulaires élastiques

Exercice 1:

On considère une plaque élastique rectangulaire de dimension $L_1 \times L_2$ en appui simple sur son pourtour soumise à une densité surfacique de force uniformément répartie $p \vec{e_3}$ sur une portion de la plaque (voir figure ci-dessous).

- 1. En exprimant la densité surfacique de force appliquée $p(x_1, x_2)$ sous forme de doubles séries de Fourier (solution de Navier), déterminer le déplacement vertical $w(x_1, x_2)$ dans le cadre de la théorie de Love-Kirchhoff.
- 2. a. Déterminer le déplacement vertical au centre de la plaque pour une plaque élastique rectangulaire soumise à une force ponctuelle $P\vec{e_3}$ appliquée en (ξ_1, ξ_2) .
 - **b.** En déduire le déplacement vertical au centre de la plaque pour une plaque élastique carrée de côté L soumise à une force ponctuelle $P\vec{e_3}$ appliquée au milieu de la plaque.

Exercice 2:

On considère une plaque rectangulaire de côtés L_1 et L_2 simplement supportée sur son pourtour, obéissant à la **théorie de Love-Kirchhoff**, soumise à une densité linéique de moment $-m(x_2)\vec{e_2}$ en $x_1 = -L_1/2$ et $+m(x_2)\vec{e_2}$ en $x_1 = L_1/2$. La plaque n'est soumise à aucune densité surfacique de force.

On cherche la solution pour le déplacement vertical $w(x_1, x_2)$ sous la forme :

$$w(x_1, x_2) = \sum_{i=1}^{+\infty} W_i(x_1) \sin(\lambda_i x_2)$$
 avec $\lambda_i = \frac{i\pi}{L_2}$

1. Déterminer l'équation différentielle vérifiée par $W_i(x_1)$ et en déduire que sa solution générale peut s'écrire sous la forme :

$$W_i(x_1) = (A_i + \lambda_i B_i \ x_1) \operatorname{sh}(\lambda_i x_1) + (C_i + \lambda_i D_i \ x_1) \operatorname{ch}(\lambda_i x_1)$$

2. On exprime la densité linéique de moment sous la forme $m(x_2) = \sum_{i=1}^{+\infty} m_i \sin(\lambda_i x_2)$.

En exploitant la symétrie du problème et en écrivant les conditions aux limites, montrer que $W_i(x_1)$ s'écrit :

$$W_i(x_1) = B_i \left[\lambda_i \ x_1 \ \text{sh}(\lambda_i x_1) - \alpha_i \ \text{th}(\alpha_i) \ \text{ch}(\lambda_i x_1) \right]$$

avec $\alpha_i = \frac{\lambda_i L_1}{2}$ et B_i à expliciter en fonction des données du problème.

3. Montrer que $m_i = \frac{2}{L_2} \int_0^{L_2} m(x_2) \sin(\lambda_i x_2) dx_2$.

Calculer m_i pour une densité linéique de moment uniforme $m(x_2) = m = \text{cste}$.

Exercice Supplémentaire :

On considère une plaque élastique rectangulaire de dimension $L_1 \times L_2$ en appui simple sur son pourtour soumise à une pression hydrostatique $p(\frac{x_1}{L_1})\vec{e_3}$.

- 1. En exprimant, le déplacement vertical $w(x_1, x_2)$ et la densité surfacique de force appliquée $p(x_1, x_2)$ sous forme de doubles séries de Fourier (solution de Navier), déterminer le déplacement vertical au centre de la plaque dans le cadre de la théorie de Love-Kirchhoff.
- 2. Reprendre la question 1. via la méthode de Lévy.