

Si tratta di modelli che considerano il problema di come dividere (allocare) risorse limitate tra varie esigenze in competizione tra loro.

Si tratta di modelli che considerano il problema di come dividere (allocare) risorse limitate tra varie esigenze in competizione tra loro.

Con *risorse* si possono intendere disponibilità di macchinari, mano d'opera, energia, tempi macchina, capitali, etc...

Si tratta di modelli che considerano il problema di come dividere (allocare) risorse limitate tra varie esigenze in competizione tra loro.

Con *risorse* si possono intendere disponibilità di macchinari, mano d'opera, energia, tempi macchina, capitali, etc...

Distinguiamo tra risorse alternative e risorse concorrenti

Un' impresa può usare 3 procedimenti differenti P_1, P_2, P_3 per la produzione di un bene.

Un' impresa può usare 3 procedimenti differenti P_1, P_2, P_3 per la produzione di un bene.

Per la produzione di un'unità di bene è necessario l'impiego di tre macchine per tempi che dipendono dal procedimento usato e che sono riportati nella seguente tabella (in ore):

Un' impresa può usare 3 procedimenti differenti P_1, P_2, P_3 per la produzione di un bene.

Per la produzione di un'unità di bene è necessario l'impiego di tre macchine per tempi che dipendono dal procedimento usato e che sono riportati nella seguente tabella (in ore):

	P1	P2	P3
Macchina A	2	1	3
Macchina B	4	2	3
Macchina C	3	4	2

continua...

Ogni macchina è disponibile per 50 ore.

Il **profitto netto** per la vendita di un'unità di prodotto **dipende dal procedimento usato** ed è riportato nella seguente tabella:

	P1	P2	P3
Profitto	15	18	10

Ogni macchina è disponibile per 50 ore.

Il **profitto netto** per la vendita di un'unità di prodotto **dipende dal procedimento usato** ed è riportato nella seguente tabella:

	P1	P2	P3
Profitto	15	18	10

Formulare un problema di PL che permetta di massimizzare il profitto:

a. supponendo che un'unità di bene deve essere processata in sequenza sulle macchine A, B, C

Ogni macchina è disponibile per 50 ore.

Il **profitto netto** per la vendita di un'unità di prodotto **dipende dal procedimento usato** ed è riportato nella seguente tabella:

	P1	P2	P3
Profitto	15	18	10

Formulare un problema di PL che permetta di massimizzare il profitto:

- a. supponendo che un'unità di bene deve essere processata in sequenza sulle macchine $A, B, C \rightarrow \text{RISORSE}$ CONCORLENTI
- b. supponendo che un'unità di bene può essere prodotta indifferentemente su A, B, C con tre procedimenti diversi su ciascuna macchina → KIRKE AUELNATUE

• Nel caso a. distinguiamo tra unità di bene prodotta con procedimento P_1 , P_2 o P_3

- Nel caso a. distinguiamo tra unità di bene prodotta con procedimento P_1 , P_2 o P_3
- Nel caso b. distinguiamo tra unità di bene prodotta con procedimento i ($i = P_1$, P_2 o P_3) utilizzando la macchina j (j = A, B, C), ovvero con modalità ij

Schema generale

Supponiamo di disporre di m risorse R_1, R_2, \ldots, R_m

Schema generale

Supponiamo di disporre di m risorse R_1, R_2, \ldots, R_m e di voler fabbricare n prodotti P_1, P_2, \ldots, P_n

Schema generale

Supponiamo di disporre di m risorse R_1, R_2, \ldots, R_m e di voler fabbricare n prodotti P_1, P_2, \ldots, P_n

Il problema della pianificazione delle risorse consiste nel determinare le quantità da fabbricare di ciascun prodotto P_1, P_2, \ldots, P_n in modo che

Schema generale

Supponiamo di disporre di m risorse R_1, R_2, \ldots, R_m e di voler fabbricare n prodotti P_1, P_2, \ldots, P_n

Il problema della pianificazione delle risorse consiste nel determinare le quantità da fabbricare di ciascun prodotto P_1, P_2, \ldots, P_n in modo che

• il profitto sia massimizzato

Schema generale

Supponiamo di disporre di m risorse R_1, R_2, \ldots, R_m e di voler fabbricare n prodotti P_1, P_2, \ldots, P_n

Il problema della pianificazione delle risorse consiste nel determinare le quantità da fabbricare di ciascun prodotto P_1, P_2, \ldots, P_n in modo che

- il profitto sia massimizzato
- siano rispettati i vincoli sulle risorse disponibili o sui livelli di produzione richiesti

Schema generale

Sia a_{ij} i = 1, ..., m; j = 1, ..., nla quantità di risorsa R_i necessaria per fabbricare un'unità del prodotto P_j

Schema generale

Sia a_{ij} i = 1, ..., m; j = 1, ..., nla quantità di risorsa R_i necessaria per fabbricare un'unità del prodotto P_j

Schema generale

Sia a_{ij} i = 1, ..., m; j = 1, ..., nla quantità di risorsa R_i necessaria per fabbricare un'unità del prodotto P_j

Schema generale

Sia a_{ij} i = 1, ..., m; j = 1, ..., nla quantità di risorsa R_i necessaria per fabbricare un'unità del prodotto P_j

	P_1	 P_{j}	 P_n
R_1	a ₁₁	 a_{1j}	 a_{1n}
R_2	a ₂₁	 a_{2j}	 a_{2n}

Schema generale

Sia a_{ij} i = 1, ..., m; j = 1, ..., nla quantità di risorsa R_i necessaria per fabbricare un'unità del prodotto P_j

	P_1	 P_{j}	 P_n
R_1	a ₁₁		a_{1n}
R_2	a ₂₁	 a_{2j}	 a_{2n}
•	•		:
R_i	a_{i1}	 a _{ij}	 a _{in}

Schema generale

Sia a_{ij} i = 1, ..., m; j = 1, ..., nla quantità di risorsa R_i necessaria per fabbricare un'unità del prodotto P_j

	P_1	 P_{j}	 P_n
R_1	a ₁₁	 a_{1j}	 a_{1n}
R_2	a ₂₁	 a_{2j}	 a_{2n}
:	•		:
R_i	a_{i1}	 a _{ij}	 a _{in}
:	•		•
R_m	a_{m1}	 a _{mj}	 a _{mn}

Schema generale

Supponiamo che ciascuna risorsa R_i non possa superare un valore prefissato b_i , $i=1,\ldots,m$

Schema generale

Supponiamo che ciascuna risorsa R_i non possa superare un valore prefissato b_i , $i=1,\ldots,m$

R_1	R_2	• • •	R_m
b_1	b_2		b_m

Schema generale

Supponiamo che ciascuna risorsa R_i non possa superare un valore prefissato b_i , $i=1,\ldots,m$

$$\begin{array}{c|ccccc} R_1 & R_2 & \dots & R_m \\ \hline b_1 & b_2 & \dots & b_m \end{array}$$

e che nella vendita di ciascuna unità di prodotto P_j si ricavi un profitto netto c_j , $j=1,\ldots,n$

Schema generale

Supponiamo che ciascuna risorsa R_i non possa superare un valore prefissato b_i , $i=1,\ldots,m$

$$\begin{array}{c|ccccc} R_1 & R_2 & \dots & R_m \\ \hline b_1 & b_2 & \dots & b_m \end{array}$$

e che nella vendita di ciascuna unità di prodotto P_j si ricavi un profitto netto c_i , $j=1,\ldots,n$

$$\begin{array}{c|ccccc} P_1 & P_2 & \dots & P_n \\ \hline c_1 & c_2 & \dots & c_n \end{array}$$

Schema generale - RISORSE CONCORRENTI

Il bene fabbricato, per essere finito e pronto per la vendita deve utilizzare tutte le risorse anche se in misura diversa

Schema generale - RISORSE CONCORRENTI

Il bene fabbricato, per essere finito e pronto per la vendita deve utilizzare tutte le risorse anche se in misura diversa

• variabili: $x_1, x_2, ..., x_n$ rappresentano la quantità di prodotto $P_1, P_2, ..., P_n$ fabbricato

Schema generale - RISORSE CONCORRENTI

Il bene fabbricato, per essere finito e pronto per la vendita deve utilizzare tutte le risorse anche se in misura diversa

- variabili: $x_1, x_2, ..., x_n$ rappresentano la quantità di prodotto $P_1, P_2, ..., P_n$ fabbricato
- funzione obiettivo: $c^T x = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$ (profitto)

Schema generale - RISORSE CONCORRENTI

Il bene fabbricato, per essere finito e pronto per la vendita deve utilizzare tutte le risorse anche se in misura diversa

- variabili: $x_1, x_2, ..., x_n$ rappresentano la quantità di prodotto $P_1, P_2, ..., P_n$ fabbricato
- funzione obiettivo: $c^T x = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$ (profitto)
- Vincoli di capacità produttiva:

$$R_1 \rightarrow a_{11}x_1 + \dots + a_{1n}x_n \leq b_1$$

 \vdots
 $R_i \rightarrow a_{i1}x_1 + \dots + a_{in}x_n \leq b_i$
 \vdots
 $R_m \rightarrow a_{m1}x_1 + \dots + a_{mn}x_n \leq b_n$

Schema generale - RISORSE CONCORRENTI

Il bene fabbricato, per essere finito e pronto per la vendita deve utilizzare tutte le risorse anche se in misura diversa

- variabili: $x_1, x_2, ..., x_n$ rappresentano la quantità di prodotto $P_1, P_2, ..., P_n$ fabbricato
- funzione obiettivo: $c^T x = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$ (profitto)
- Vincoli di capacità produttiva:

$$R_1 \rightarrow a_{11}x_1 + \dots + a_{1n}x_n \leq b_1$$

 \vdots
 $R_i \rightarrow a_{i1}x_1 + \dots + a_{in}x_n \leq b_i$
 \vdots
 $R_m \rightarrow a_{m1}x_1 + \dots + a_{mn}x_n \leq b_n$

• Vincoli di non negatività: $x_i \ge 0$, i = 1, ..., n

Schema generale - RISORSE ALTERNATIVE

Il bene fabbricato, per essere finito e pronto per la vendita necessita esclusivamente di una risorsa

Schema generale - RISORSE ALTERNATIVE

Il bene fabbricato, per essere finito e pronto per la vendita necessita esclusivamente di una risorsa

• variabili: x_{ij} i = 1, ..., m; j = 1, ..., n rappresentano la quantità di prodotto P_j fabbricato utilizzando la risorsa R_i

Schema generale - RISORSE ALTERNATIVE

Il bene fabbricato, per essere finito e pronto per la vendita necessita esclusivamente di una risorsa

- variabili: x_{ij} i = 1, ..., m; j = 1, ..., n rappresentano la quantità di prodotto P_i fabbricato utilizzando la risorsa R_i
- funzione obiettivo:

$$c_1 \sum_{i=1}^m x_{i1} + c_2 \sum_{i=1}^m x_{i2} + \ldots + c_n \sum_{i=1}^m x_{in}$$

Schema generale - RISORSE ALTERNATIVE

Il bene fabbricato, per essere finito e pronto per la vendita necessita esclusivamente di una risorsa

- variabili: x_{ij} i = 1, ..., m; j = 1, ..., n rappresentano la quantità di prodotto P_i fabbricato utilizzando la risorsa R_i
- funzione obiettivo:

$$c_1 \sum_{i=1}^m x_{i1} + c_2 \sum_{i=1}^m x_{i2} + \ldots + c_n \sum_{i=1}^m x_{in} = \sum_{j=1}^n c_j \sum_{i=1}^m x_{ij}$$

Schema generale - RISORSE ALTERNATIVE

Il bene fabbricato, per essere finito e pronto per la vendita necessita esclusivamente di una risorsa

- variabili: x_{ij} i = 1, ..., m; j = 1, ..., n rappresentano la quantità di prodotto P_i fabbricato utilizzando la risorsa R_i
- funzione obiettivo:

$$q_{i} = \sum_{j=1}^{m} x_{i1} + c_2 \sum_{i=1}^{m} x_{i2} + \ldots + c_n \sum_{j=1}^{m} x_{in} = \sum_{j=1}^{n} c_j \sum_{i=1}^{m} x_{ij}$$

• Vincoli di capacità produttiva:

$$R_1 \rightarrow a_{11}x_{11} + \dots + a_{1n}x_{1n} \leq b_1$$

 \vdots
 $R_m \rightarrow a_{m1}x_{m1} + \dots + a_{mn}x_{mn} \leq b_n$

Schema generale - RISORSE ALTERNATIVE

Il bene fabbricato, per essere finito e pronto per la vendita necessita esclusivamente di una risorsa

- variabili: x_{ij} i = 1, ..., m; j = 1, ..., n rappresentano la quantità di prodotto P_i fabbricato utilizzando la risorsa R_i
- funzione obiettivo:

$$c_1 \sum_{i=1}^m x_{i1} + c_2 \sum_{i=1}^m x_{i2} + \ldots + c_n \sum_{i=1}^m x_{in} = \sum_{j=1}^n c_j \sum_{i=1}^m x_{ij}$$

Vincoli di capacità produttiva:

$$R_1 \rightarrow a_{11}x_{11} + \dots + a_{1n}x_{1n} \leq b_1$$

$$\vdots$$

$$R_m \rightarrow a_{m1}x_{m1} + \dots + a_{mn}x_{mn} \leq b_n$$

• Vincoli di non negatività: $x_{ij} \geq 0$, $i = 1, \ldots, n$, $j = 1, \ldots, m$