P1 Chapter 10: Trigonometry Equations

Chapter Practice

Key Points

- **1** For a point P(x, y) on a unit circle such that OP makes an angle θ with the positive x-axis:
 - $\cos \theta = x = x$ -coordinate of P
 - $\sin \theta = y = y$ -coordinate of P
 - $\tan \theta = \frac{y}{x} = \text{gradient of } OP$

2 You can use the quadrants to determine whether each of the trigonometric ratios is positive or negative.

3 You can use these rules to find sin, cos or tan of any positive or negative angle using the corresponding **acute** angle made with the *x*-axis, *θ*.

Key Points

4 The trigonometric ratios of 30°, 45° and 60° have exact forms, given below:

$$\sin 30^\circ = \frac{1}{2}$$

$$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

$$\tan 30^\circ = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

$$\sin 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

$$\sin 45^\circ = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$
 $\cos 45^\circ = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$

$$\tan 45^{\circ} = 1$$

$$\sin 60^{\circ} = \frac{\sqrt{3}}{2}$$
 $\cos 60^{\circ} = \frac{1}{2}$

$$\cos 60^{\circ} = \frac{1}{2}$$

$$\tan 60^{\circ} = \sqrt{3}$$

- **5** For all values of θ , $\sin^2 \theta + \cos^2 \theta = 1$
- **6** For all values of θ such that $\cos \theta \neq 0$, $\tan \theta = \frac{\sin \theta}{\cos \theta}$
- **7** Solutions to $\sin \theta = k$ and $\cos \theta = k$ only exist when $-1 \le k \le 1$
 - Solutions to $\tan \theta = p$ exist for all values of p.
- 8 When you use the inverse trigonometric functions on your calculator, the angle you get is called the principal value.
- **9** Your calculator will give principal values in the following ranges:
 - cos⁻¹ in the range 0 ≤ θ ≤ 180°
 - \sin^{-1} in the range $-90^{\circ} \le \theta \le 90^{\circ}$
 - tan^{-1} in the range $-90^{\circ} \le \theta \le 90^{\circ}$

- 1 Write each of the following as a trigonometric ratio of an acute angle:
 - a cos 237°
- **b** sin 312°
- c tan 190°
- 2 Without using your calculator, work out the values of:
 - a cos 270°
- **b** sin 225°
- c cos 180°
- d tan 240°
- e tan 135°
- 3 Given that angle A is obtuse and $\cos A = -\sqrt{\frac{7}{11}}$, show that $\tan A = \frac{-2\sqrt{7}}{7}$
- 4 Given that angle B is obtuse and $\tan B = +\frac{\sqrt{21}}{2}$, find the exact value of: **a** sin B **b** cos B
- 5 Simplify the following expressions:
 - a $\cos^4 \theta \sin^4 \theta$

- **b** $\sin^2 3\theta \sin^2 3\theta \cos^2 3\theta$
- $\cos^4\theta + 2\sin^2\theta\cos^2\theta + \sin^4\theta$
- 6 a Given that $2(\sin x + 2\cos x) = \sin x + 5\cos x$, find the exact value of $\tan x$.
 - **b** Given that $\sin x \cos y + 3 \cos x \sin y = 2 \sin x \sin y 4 \cos x \cos y$, express $\tan y$ in terms of tan x.
- 7 Prove that, for all values of θ :
 - **a** $(1 + \sin \theta)^2 + \cos^2 \theta \equiv 2(1 + \sin \theta)$ **b** $\cos^4 \theta + \sin^2 \theta \equiv \sin^4 \theta + \cos^2 \theta$
- 8 Without attempting to solve them, state how many solutions the following equations have in the interval $0 \le \theta \le 360^{\circ}$. Give a brief reason for your answer.
 - a $2\sin\theta = 3$

b $\sin \theta = -\cos \theta$

 $c 2 \sin \theta + 3 \cos \theta + 6 = 0$

d $\tan \theta + \frac{1}{\tan \theta} = 0$

- **9 a** Factorise $4xy y^2 + 4x y$. (2 marks)
 - **b** Solve the equation $4 \sin \theta \cos \theta \cos^2 \theta + 4 \sin \theta \cos \theta = 0$, in the interval $0 \le \theta \le 360^\circ$. (5 marks)
- 10 a Express $4\cos 3\theta \sin(90^\circ 3\theta)$ as a single trigonometric function. (1 mark)
 - **b** Hence solve $4\cos 3\theta \sin(90^\circ 3\theta) = 2$ in the interval $0 \le \theta \le 360^\circ$. Give your answers to 3 significant figures. (3 marks)
- 11 Given that $2 \sin 2\theta = \cos 2\theta$.
 - a Show that $\tan 2\theta = 0.5$. (1 mark)
 - **b** Hence find the values of θ , to one decimal place, in the interval $0 \le \theta \le 360^{\circ}$ for which $2 \sin 2\theta = \cos 2\theta$. (4 marks)
- 12 Find all the values of θ in the interval $0 \le \theta \le 360^{\circ}$ for which:
 - $a \cos(\theta + 75^{\circ}) = 0.5,$
 - **b** $\sin 2\theta = 0.7$, giving your answers to one decimal place.
- 13 Find the values of x in the interval $0 \le x \le 270^{\circ}$ which satisfy the equation

$$\frac{\cos 2x + 0.5}{1 - \cos 2x} = 2$$
 (6 marks)

14 Find, in degrees, the values of θ in the interval $0 \le \theta \le 360^{\circ}$ for which $2\cos^2\theta - \cos\theta - 1 = \sin^2\theta$ Give your answers to 1 decimal place, where appropriate. (6 marks)

15 A teacher asks one of his students to solve the equation $2 \sin 3x = 1$ for $-360^{\circ} \le x \le 360^{\circ}$. The attempt is shown below:

$$\sin 3x = \frac{1}{2}$$

$$3x = 30^{\circ}$$

$$x = 10^{\circ}$$
Additional solution at $180^{\circ} - 10^{\circ} = 170^{\circ}$

a Identify two mistakes made by the student.

(2 marks)

b Solve the equation.

- (2 marks)
- 16 a Sketch the graphs of $y = 3 \sin x$ and $y = 2 \cos x$ on the same set of axes $(0 \le x \le 360^\circ)$.
 - **b** Write down how many solutions there are in the given range for the equation $3 \sin x = 2 \cos x$.
 - c Solve the equation $3 \sin x = 2 \cos x$ algebraically, giving your answers to one decimal place.
- 17 The diagram shows the triangle ABC with AB = 11 cm, BC = 6 cm and AC = 7 cm.
 - a Find the exact value of cos B, giving your answer in simplest form. (3 marks)
 - **b** Hence find the exact value of sin B.

(2 marks)

18 The diagram shows triangle PQR with PR = 6 cm, QR = 5 cm and angle $QPR = 45^{\circ}$.

a Show that
$$\sin Q = \frac{3\sqrt{2}}{5}$$

(3 marks)

b Given that Q is obtuse, find the exact value of cos Q.

(2 marks)

19 a Show that the equation $3\sin^2 x - \cos^2 x = 2$ can be written as $4\sin^2 x = 3$.

(2 marks)

b Hence solve the equation $3\sin^2 x - \cos^2 x = 2$ in the interval $-180^\circ \le x \le 180^\circ$, giving your answers to 1 decimal place.

(7 marks)

20 Find all the solutions to the equation $3\cos^2 x + 1 = 4\sin x$ in the interval $-360^{\circ} \le x \le 360^{\circ}$, giving your answers to 1 decimal place.

(6 marks)

Challenge

Solve the equation $\tan^4 x - 3 \tan^2 x + 2 = 0$ in the interval $0 \le x \le 360^\circ$.

Chapter Answers

b
$$-\frac{\sqrt{2}}{2}$$

d
$$\sqrt{3}$$

3 Using
$$\sin^2 A = 1 - \cos^2 A$$
, $\sin^2 A = 1 - \left(-\sqrt{\frac{7}{11}}\right)^2 = \frac{4}{11}$.
Since angle *A* is obtuse, it is in the second quadrant

and sin is positive, so $\sin A = \frac{2}{\sqrt{11}}$.

Then
$$\tan A = \frac{\sin A}{\cos A} = \frac{2}{\sqrt{11}} \times \left(-\sqrt{\frac{11}{7}}\right) = -\frac{2}{\sqrt{7}} = -\frac{2}{7}\sqrt{7}$$
.

4 **a**
$$-\frac{\sqrt{21}}{5}$$
 b $-\frac{2}{5}$

$$-\frac{2}{5}$$

5 a
$$\cos^2\theta - \sin^2\theta$$

b
$$\sin^4 3\theta$$

$$\mathbf{b} \quad \tan y = \frac{4 + \tan x}{2 \tan x - 3}$$

7 **a** LHS =
$$(1 + 2 \sin \theta + \sin^2 \theta) + \cos^2 \theta$$

= $1 + 2 \sin \theta + 1$

$$= 1 + 2 \sin \theta +$$

 $= 2 + 2 \sin \theta$

$$= 2 + 2 \sin \theta$$

$$= 2(1 + \sin \theta) = RHS$$

b LHS =
$$\cos^4 \theta + \sin^2 \theta$$

$$= (1 - \sin^2 \theta)^2 + \sin^2 \theta$$

$$=1-2\sin^2\theta+\sin^4\theta+\sin^2\theta$$

$$= (1 - \sin^2 \theta) + \sin^4 \theta$$

$$=\cos^2\theta + \sin^4\theta = RHS$$

8 a No solutions:
$$-1 \le \sin \theta \le 1$$

b 2 solutions:
$$\tan \theta = -1$$
 has two solutions in the interval.

c No solutions:
$$2 \sin \theta + 3 \cos \theta > -5$$

so $2 \sin \theta + 3 \cos \theta + 6$ can never be equal to 0.

d No solutions: $\tan^2 \theta = -1$ has no real solutions.

9 **a**
$$(4x - y)(y + 1)$$
 b 14.0° , 180° , 194°

10 a
$$3\cos 3\theta$$

11 a
$$2\sin 2\theta = \cos 2\theta \Rightarrow \frac{2\sin 2\theta}{\cos 2\theta} = 1$$

$$\Rightarrow 2 \tan 2\theta = 1 \Rightarrow \tan 2\theta = 0.5$$

Chapter Answers

16 a

- **b** 2
- c 33.7°, 213.7°
- 17 a $\frac{9}{11}$
- **b** $\frac{\sqrt{40}}{11}$
- **18 a** Using sine rule: $\sin Q = \sin 45 \times \frac{6}{5} = \frac{\sqrt{2}}{2} \times \frac{6}{5} = \frac{3\sqrt{2}}{5}$
 - **b** $-\frac{\sqrt{7}}{5}$
- 19 a $3\sin^2 x (1 \sin^2 x) = 2$.

Rearrange to give $4 \sin^2 x = 3$.

- **b** -120°, -60°, 60°, 120°
- 20 -318.2°, -221.8°, 41.8°, 138.2°

Challenge

45°, 54.7°, 125.3°, 135°, 225°, 234.7°, 305.3°, 315°