Байесовское мультимоделирование: графические модели

Московский Физико-Технический Институт

2021

Графические модели

Условная независимость

События X,Y называются условно независимыми при условии $Z: X \perp Y|Z$, если

$$P(X|Y,Z)=P(X|Z).$$

Условная зависимость

События X,Y называются условно зависимыми при условии множества всех событий $\mathfrak{S}:X,Y\in\mathfrak{S},$ если

$$X \not\perp Y | \mathfrak{S} \setminus \{X, Y\}.$$

Графическая модель

Вероятностная модель называется графической, если ее можно представить в виде графа, где ребро ставится между условно зависимыми событиями.

Не графические модели

Не являются графическими моделями:

- Многослойные перцептроны (в общем виде), дервеья решений и пр.
- Ненаправленные модели со сложным взаимодействием (есть взаимодейсвтие на уровне подмножества вершин, но нет взаимодейсвтия на уровне клик).

Виды графических моделей

- Направленные (байесовские сети)
 - ▶ Удобны для проектирования моделей
- Ненаправленные (марковские сети)
- Фактор-графы
 - ▶ Удобны для вывода и оптимизации

Байесовские сети

- Задается направленным графом без циклов
- Совметное распределение для графа К вершин:

$$p(v_1,\ldots,v_k) = \prod_{i=1}^K p(v_i|\mathsf{parent}(v_i))$$

• Пример: линейная регрессия

DAG и Plate notation (Bishop)

Plate notation для модели регрессии (Bishop)

Элементы причинного графа

$$X
ightarrow Y
ightarrow Z$$
 — цепочка

Пример:

- X бюджет школы
- Y средний балл учеников
- Z доля поступающих в ВУЗы

Свойства:

① X и Y, Y и Z — зависимы:

$$\exists x, y : P(Y = y | X = x) \neq p(Y = y)$$

$$\exists y, z : \mathbf{P}(Z = z | Y = y) \neq p(Z = z)$$

- ② Z и X скорее всего, зависимы
- 3 $Z \perp X | Y$ условно независимы: $\forall x, y, z$

$$P(Z = z | X = x, Y = y) = P(Z = z | Y = y)$$

(если Y фиксировано, то X и Z независимы)

Элементы причинного графа

$$X \leftarrow Y
ightarrow Z$$
 — вилка

Пример:

- X продажи мороженого
- Y средняя дневная температура воздуха
- ✓ Z число преступлений

Свойства:

- $oldsymbol{2}$ X и Z скорее всего, зависимы
- $3 X \perp Z | Y$ условно независимы

Элементы причинного графа

$$Y o X \leftarrow Z$$
 — коллайдер

Пример (заболевание вирусом):

- X осложнения
- Y возраст
- \bullet Z хронические болезни

Свойства:

- 2 Y и Z независимы
- $oldsymbol{3} Y
 ot\perp Z | X$ условно зависимы

Путь P блокируется переменной Z, если:

- f 1 P содержит A o B o C, $A \leftarrow B o C$, $B \in Z$
- ② P содержит $A o B \leftarrow C$, $B \notin Z$ и все потомки $B \notin Z$

Если Z блокирует все пути из X в Y, то X и Y **d-разделимы**:

$$X \perp Y|Z$$
.

Путь P блокируется переменной Z, если:

- \blacksquare Р содержит $A \rightarrow B \rightarrow C$, $A \leftarrow B \rightarrow C$, $B \in Z$
- **2** P содержит $A \rightarrow B \leftarrow C$, $B \notin Z$ и все потомки $B \notin Z$

Если Z блокирует все пути из X в Y, то X и Y **d**-разделимы.

Пример:

Упорядоченная пара вершин	d-разделяющее множество
(Z_1,W)	X

Путь P блокируется переменной Z, если:

 \bigcirc P содержит $A \rightarrow B \rightarrow C$, $A \leftarrow B \rightarrow C$, $B \in Z$

2 P содержит $A \to B \leftarrow C$, $B \notin Z$ и все потомки $B \notin Z$

Если Z блокирует все пути из X в Y, то X и Y **d**-разделимы.

Пример:

Упорядоченная пара вершин	d-разделяющее множество
(Z_1,W)	X
(Z_1,Y)	${Z_3, X, Z_2}, {Z_3, W, Z_2}$

Путь P блокируется переменной Z, если:

- \bigcirc P содержит $A \rightarrow B \rightarrow C$, $A \leftarrow B \rightarrow C$, $B \in Z$
- **2** P содержит $A \rightarrow B \leftarrow C$, $B \notin Z$ и все потомки $B \notin Z$

Если Z блокирует все пути из X в Y, то X и Y **d-разделимы**.

Упорядоченная пара вершин	d-разделяющее множество
(Z_1,W)	X
(Z_1,Y)	${Z_3, X, Z_2}, {Z_3, W, Z_2}$
(X,Y)	$\{W, Z_3, Z_1\}$

Марковские случайные поля

Модели представимы в виде ненаправленного графа.

Отличия от байесовских сетей:

- ullet Нет направленности o нельзя выявить причинность события, только наличие взаимодействия.
- Правдоподобие факторизуется следующим образом:

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi(\mathbf{X}_{C}),$$

где ${m X}_C$ — максимальная клика на графе, $\psi \ge 0$ — потенциальная функция.

ullet Условная независимость: если все пути от A до B проходят через C, то $A\perp B|C$.

Вывод в цепочках

Наивный подсчет правдоподобия для x_n :

$$p(x_n) = \sum_{x_1} \sum_{x_2} \dots, \sum_{x_{n-1}} \sum_{x_{n+1}} \dots \sum_{x_N} p(\boldsymbol{x}),$$

Для N дискретных переменных с K состояниями сложность: $O(K^N)$

Вывод в цепочках: перегруппировка слагаемых

$$p(x_n) = \sum_{x_1} \sum_{x_2} \dots, \sum_{x_{n-1}} \sum_{x_{n+1}} \dots \sum_{x_N} p(\mathbf{x}),$$

$$p(\mathbf{x}) = \psi(x_1, x_2)\psi(x_2, x_3)\dots\psi(x_{N-1}, x_N).$$

Перегруппируем слагаемые:

$$p(x_n) = \sum_{x_{n-1}} \psi(x_{n-1}, x_n) \dots \left(\sum_{x_1} \psi(x_1, x_2)\right) \times$$

$$\times \left(\sum_{x_{n+1}} \psi(x_n, x_{n+1}) \dots \left(\sum_{x_N} \psi(x_{N-1}, x_N)\right)\right).$$

За счет группировку слагаемых и "скобочек" сложность: $O(NK^2)$.

Message passing

$$p(x_n) = \underbrace{\sum_{x_{n-1}} \psi(x_{n-1}, x_n) \dots \left(\sum_{x_1} \psi(x_1, x_2)\right)}_{\mu_a(x_n)} \times \underbrace{\left(\sum_{x_{n+1}} \psi(x_n, x_{n+1}) \dots \left(\sum_{x_N} \psi(x_{N-1}, x_N)\right)\right)}_{\mu_b(x_n)}.$$

Интерпретация: $\mu_a(x_n)$ — сообщение, переданное вперед от x_{n-1} до x_n , $\mu_b(x_n)$ — сообщение, переданное назад от x_{n+1} .

Вывод в цепочках: детали

Вывод представим в виде итеративного алгоритма:

- вычисляем вектор $\sum_{x_1} \psi(x_1, x_2) = \mu_a(\mathbf{x}_2)$, хранящий значение $\mu_a(x_2)$ для всех значений переменной x_2 ;
- ullet вычисляем вектор $\sum_{\mathsf{x}_2} \psi(\mathsf{x}_2,\mathsf{x}_3) ig(\sum_{\mathsf{x}_1} \psi(\mathsf{x}_1,\mathsf{x}_2) ig) = \sum_{\mathsf{x}_2} \psi(\mathsf{x}_2,\mathsf{x}_3) \mu_\mathsf{a}(\mathsf{x}_2) = oldsymbol{\mu}_\mathsf{a}(oldsymbol{x}_3);$
- ...
- ullet вычисляем вектор $\sum_{x_{n+1}} \psi(x_n, x_{n+1}) \mu_b(x_{n+1}) = \mu_b(x_n).$
- для направленных моделей, где

$$\psi(x_1, x_2) = p(x_1)p(x_2|x_1), \quad \psi(x_i, x_{i+1}) = p(x_{i+1}|x_i),$$

вычислять μ_b не требуется:

$$\mu_b(x_n) = \sum_{x_{n+1}} \psi(x_n, x_{n+1}) \dots \left(\sum_{x_N} \psi(x_{N-1}, x_N) \right) =$$

$$= \sum_{x_{n+1}} p(x_{n+1}|x_n) \dots \left(\sum_{x_N} p(x_N|x_{N-1}) \right) = 1.$$

Фактор-графы

Определение

Фактор-граф — это двудольный граф с двумя типами вершин: переменными и факторами.

Правдоподобие определяется как произведение факторов:

$$p(\mathbf{x}) = \prod_{i} f_i.$$

Пример: модель $p(x_1)p(x_2)p(x_3|x_2,x_1)$ и два варианта факторизации:

$$f = p(x_1)p(x_2)p(x_3|x_2,x_1), \quad f_a = p(x_1), f_b = p(x_2), f_3 = p(x_1)p(x_2)p(x_3|x_2,x_1).$$

13 / 18

Вывод в фактор-графах: иллюстрация

Алгоритм sum-product: правдоподобие расписывается через композицию сообщений, получаемых от факторов до переменных вершин.

Пример моделей: RBM

$$p(\mathbf{x}, \mathbf{h}) = \frac{1}{Z} \exp(-E(\mathbf{x}, \mathbf{h})),$$

$$E = -\mathbf{w}_1^\mathsf{T} \mathbf{x} - \mathbf{w}_2^\mathsf{T} \mathbf{h} - \mathbf{x}^\mathsf{T} \mathbf{W}_3 \mathbf{h}.$$

Пример моделей: Structured VAEs

В основе модели SLDS:

$$z_{t+1}|z_t \sim \pi^{t+1},$$

$$y_t \sim \mathcal{N}(MLP^{z_t}(x_t)).$$

Оптимизация — оптимизация вариационной оценки правдоподобия.

При выводе и оптимизации используется message passing.

Литература и прочие ресурсы

- Bishop C. M. Pattern recognition //Machine learning. 2006. T. 128. №. 9.
- Edwards D. Introduction to graphical modelling. Springer Science & Business Media, 2012.
- Pearl J., Glymour M., Jewell N. P. Causal inference in statistics: A primer. John Wiley & Sons, 2016.
- Hinton G. E., Salakhutdinov R. R. Reducing the dimensionality of data with neural networks //science. – 2006. – T. 313. – №. 5786. – C. 504-507.
- https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
- Johnson M. J. et al. Structured VAEs: Composing probabilistic graphical models and variational autoencoders //arXiv preprint arXiv:1603.06277. – 2016. – T. 2. – C. 2016.
- Johnson M. J. et al. Composing graphical models with neural networks for structured representations and fast inference //Advances in neural information processing systems. – 2016. – T. 29. – C. 2946-2954.

Перекрестные доклады по лабам

- Время на доклад: до двух минут
- Нужно донести:
 - Какая задача решалась в лабе
 - ▶ Как это было решено (если есть какие-то технически особенности)
 - Какие графики получены и как их интерпретировать
- Лабораторные для докладов будут распределены случайно (см. гитхаб)