Quantifying Rearrangements in Pangenomes

Leonard Bohnenkämper

Bielefeld University

May 15th, 2025

Rearrangements

INVERSIONS IN THE CHROMOSOMES OF DROSOPHILA PSEUDOOBSCURA*

TH. DOBZHANSKY AND A. H. STURTEVANT California Institute of Technology, Pasadena, California

INDEPENDENT FUNCTIONS OF VIRAL PROTEIN AND NUCLEIC ACID IN GROWTH OF BACTERIOPHAGE*

By A. D. HERSHEY AND MARTHA CHASE
(From the Department of Genetics, Carnegie Institution of Washington, Cold Spring
Harbor, Long Island)
(Received for publication, April 9, 1952)

- \sim 30,000 inversions affect more bases of the human genome than \sim 5,000,000 SNVs
- Pivotal role in:
 - ► Evolution
 - Disease
- ightharpoonup Rearrangement Quantification for Structural Variants pprox Alignment for SNVs

Classical models: Only one copy of each marker per genome.

SPP - Ancestral Reconstruction with a Given Tree

Joint work with Daria Frolova (, Jens Stoye, Daniel Doerr)

Background: Plasmids

- Extrachromosomal DNA
- Common in bacteria
- Mostly circular
- Some plasmids can be transferred between hosts (even cross-species)
- Often carry resistance or virulence genes

Plasmid image by en: User:Spaully on English wikipedia, CC BY-SA 2.5, via Wikimedia Commons

Application: Plasmids

Insertions and Deletions

Insertions and Deletions

Insertions and Deletions

 d_1, d_2, d_3, d_4, d_5 : (Minimum number of) DCJ and indel operations between the genomes.

Algorithm 1 Capping-free Small Parsimony

Objective

Minimize

$$\sum_{E \in E(T)} (\alpha \mathbf{f}_E + (\alpha - 1) \mathbf{w}_E)$$

For each genome $\mathbb{A} = (\mathcal{E} \cup \mathcal{T}, \mathcal{M} \cup \mathcal{A})$ of phylogeny T:

(C.01)
$$\mathbf{g}_u = \mathbf{g}_v$$
 with $(u, v) \in \mathcal{M}$

(C.02)
$$\sum_{m \in F} \mathbf{g}_{m^h} \ge L_L^h$$
 for each family F

$$(C.03) \sum_{uv \in A} \mathbf{a}_{uv} = \mathbf{g}_{v} \quad \forall v \in \mathcal{E} \cup \mathcal{T}$$

Local level

For each edge $E = (A, B) \in E(T)$ with $CFMRD(A, B) = (E \cup T, E_{adj})$

$$E_{\mathrm{ext}} \cup E_{\mathrm{self}}$$
):

$$\mathbf{w}_E = \sum_{e \in E_{\text{adj}}} \mathbf{w}(e) x_e$$

$$\begin{array}{ccc} \text{(C.05)} & \text{if } E = \text{n}_E - \text{c}_E + \text{q}_E + \text{s}_E \\ \text{(C.05)} & \text{for } E = \text{n}_E - \text{c}_E + \text{q}_E + \text{s}_E \\ \text{(C.05)} & \text{for } E = \text{n}_E - \text{c}_E + \text{q}_E + \text{s}_E \\ \text{(C.05)} & \text{for } E = \text{n}_E - \text{c}_E + \text{q}_E + \text{s}_E \\ \text{(C.05)} & \text{for } E = \text{n}_E - \text{c}_E + \text{q}_E + \text{s}_E \\ \text{(C.05)} & \text{for } E = \text{n}_E - \text{c}_E + \text{q}_E + \text{s}_E \\ \text{(C.05)} & \text{for } E = \text{n}_E - \text{c}_E + \text{q}_E + \text{s}_E \\ \text{(C.05)} & \text{for } E = \text{n}_E - \text{c}_E + \text{q}_E + \text{s}_E \\ \text{(C.05)} & \text{for } E = \text{n}_E - \text{c}_E + \text{q}_E + \text{s}_E \\ \text{(C.05)} & \text{for } E = \text{n}_E - \text{c}_E + \text{q}_E + \text{s}_E \\ \text{(C.05)} & \text{for } E = \text{n}_E - \text{c}_E + \text{q}_E + \text{s}_E \\ \text{(C.05)} & \text{for } E = \text{n}_E - \text{c}_E + \text{q}_E + \text{s}_E \\ \text{(C.05)} & \text{for } E = \text{n}_E - \text{c}_E + \text{q}_E + \text{s}_E \\ \text{(C.05)} & \text{for } E = \text{n}_E - \text{c}_E + \text{q}_E + \text{s}_E \\ \text{(C.05)} & \text{for } E = \text{n}_E - \text{c}_E + \text{q}_E + \text{s}_E \\ \text{(C.05)} & \text{for } E = \text{n}_E - \text{c}_E + \text{q}_E + \text{s}_E \\ \text{(C.05)} & \text{for } E = \text{n}_E - \text{c}_E + \text{q}_E + \text{s}_E \\ \text{(C.05)} & \text{for } E = \text{c}_E + \text{c}_E + \text{c}_E + \text{c}_E \\ \text{(C.05)} & \text{for } E = \text{c}_E + \text{c}_E + \text{c}_E + \text{c}_E \\ \text{(C.05)} & \text{for } E = \text{c}_E + \text{c}_E + \text{c}_E + \text{c}_E + \text{c}_E \\ \text{(C.05)} & \text{for } E = \text{c}_E + \text{c}_E + \text{c}_E + \text{c}_E + \text{c}_E + \text{c}_E + \text{c}_E \\ \text{(C.05)} & \text{for } E = \text{c}_E + \text{c}_E$$

(C.06)
$$\mathbf{n}_E = \frac{1}{2} \sum_{e \in E_{\text{ext}}} \mathbf{r}_e^e$$
(C.07)
$$\mathbf{c}_E = \sum_{e \in E_{\text{ext}}} \mathbf{r}_e^e$$

$$\begin{array}{lll} \text{(C.06)} & \text{$1_E = \frac{1}{2}\sum_{e \in E_{ext}} \mathbf{x}_e$} \\ \text{(C.07)} & \text{$\mathbf{c}_E = \sum_{v \in E} \mathbf{r}_v^v$} \\ \text{(C.08)} & \text{$2\mathbf{q}_E \geq \mathbf{p}_E^{ab} + \mathbf{p}_E^{max} a + \mathbf{p}_E^{max} b - \mathbf{p}_E^{AB}$} \\ \end{array}$$

Heuristic Solution: Filter Adjacencies Based on Leafs

Heuristic Solution: Filter Adjacencies Based on Leafs

Degenerate Genomes

(Slightly) Adapted from (Doerr, Chauve, 2021).

Degenerate Genomes - the Good

On simulated data (ZOMBI+pre-filtering with DeCoSTAR), if the ground truth adjacencies are represented in the degenerate genome:

Degenerate Genomes - the Bad

► Good pre-filtering (DeCoSTAR) requires gene trees.

Is not exact.

- Filter out adjacencies that are provably not needed.
 - \rightarrow Exploit features of the data:

- Filter out adjacencies that are provably not needed.
 - \rightarrow Exploit features of the data:
 - Conserved adjacencies at the leaves

- Filter out adjacencies that are provably not needed.
 - \rightarrow Exploit features of the data:
 - Conserved adjacencies at the leaves

- Filter out adjacencies that are provably not needed.
 - \rightarrow Exploit features of the data:
 - Conserved adjacencies at the leaves
 - ► Conserved "Core" structure

- Filter out adjacencies that are provably not needed.
 - \rightarrow Exploit features of the data:
 - Conserved adjacencies at the leaves
 - Conserved "Core" structure
- Solver Tricks:
 - lacktriangle Good solutions are easily guessed ightarrow "warm start"

- Filter out adjacencies that are provably not needed.
 - \rightarrow Exploit features of the data:
 - Conserved adjacencies at the leaves
 - Conserved "Core" structure
- Solver Tricks:
 - ▶ Good solutions are easily guessed → "warm start"
 - Solve progressively more complex versions of the problem:
 - Subtrees

- Filter out adjacencies that are provably not needed.
 - \rightarrow Exploit features of the data:
 - Conserved adjacencies at the leaves
 - Conserved "Core" structure
- Solver Tricks:
 - ▶ Good solutions are easily guessed → "warm start"
 - Solve progressively more complex versions of the problem:
 - Subtrees
 - ▶ Weighted adjacencies (strong weights → no weights)

- Filter out adjacencies that are provably not needed.
 - → Exploit features of the data:
 - Conserved adjacencies at the leaves
 - Conserved "Core" structure
- Solver Tricks:
 - ► Good solutions are easily guessed → "warm start"
 - ► Solve progressively more complex versions of the problem:
 - Subtrees
 - ▶ Weighted adjacencies (strong weights → no weights)

- Filter out adjacencies that are provably not needed.
 - → Exploit features of the data:
 - ► Conserved adjacencies at the leaves ✓
 - Conserved "Core" structure
- Solver Tricks:
 - ► Good solutions are easily guessed → "warm start"
 - Solve progressively more complex versions of the problem:
 - Subtrees
 - lacktriangle Weighted adjacencies (strong weights o no weights) \checkmark

Extremely Preliminary Results

gurobi 12 on 1 thread with 1 hour time limit on all lineages (17) with 20 leaves or fewer

Extremely Preliminary Results

gurobi 12 on 1 thread with 1 hour time limit on all lineages (17) with 20 leaves or fewer

Extremely Preliminary Results

gurobi 12 on 1 thread with 1 hour time limit on all lineages (17) with 20 leaves or fewer

Main problem seems to be closing the gap.

► Transfer bounds from less complex (sub-) problems

- ► Transfer bounds from less complex (sub-) problems
- ▶ ILP solving $\stackrel{?}{\rightleftarrows}$ SAT solving

- Transfer bounds from less complex (sub-) problems
- ▶ ILP solving $\stackrel{?}{\rightleftharpoons}$ SAT solving
- ➤ SPP-variant that can model other types of events (horizontal transfers, chromosome duplication,...)

- ► Transfer bounds from less complex (sub-) problems
- ► ILP solving $\stackrel{?}{\rightleftharpoons}$ SAT solving
- ➤ SPP-variant that can model other types of events (horizontal transfers, chromosome duplication,...)
- ► Large Parsimony problem (no given tree)

Joint work with Jens Stoye

CARP - A Specialized Problem for Pangenomes

Quantifying Rearrangement Complexity in Pangenomes - Intuition

Quantifying Rearrangement Complexity in Pangenomes - Intuition

 $d_B = 107$

Quantifying Rearrangement Complexity in Pangenomes - Intuition

Boring Simple Pangenome $d_X = 0$

- ► GFA format (w/o sequence) can be represented as an MBPG
- ▶ Note: We still assume local variants have been filtered

MBPG of a Simple Pangenome

lacktriangle Simple pangenome \iff adjacencies are a perfect matching

▶ No rearrangements via Homologous Recombination.

MBPG and Homologous Recombinations

Homologous Recombinations don't change the graph!

► No change in adjacencies!

- ► No change in adjacencies!
 - $\rightarrow \ \mathsf{Non\text{-}Adjacency} \ \mathsf{Modifying} \ \mathsf{Operations} \ (\mathsf{Namos})$

- ► No change in adjacencies!
 - → Non-Adjacency Modifying Operations (Namos)
 - $\leftrightarrow \mathsf{Adjacency}\ \mathsf{Modifying}\ \mathsf{Operations}\ (\mathsf{Amos})$

- No change in adjacencies!
 - → Non-Adjacency Modifying Operations (Namos)
 - $\leftrightarrow \mathsf{Adjacency}\ \mathsf{Modifying}\ \mathsf{Operations}\ (\mathsf{Amos})$

Amos can introduce structural complexity!

Amos - Example: Segmental Duplication

Amos - Example: Segmental Duplication

Amos - Example: Segmental Duplication

▶ #Amos in s: measure of the Structural Complexity.

- #Amos in s: measure of the Structural Complexity.
- ▶ * with minimal #Amos

k-Coalescence – an important Namo

k-Coalescence – an important Namo

Problem name	Given genomes	Classical Formulation	Namos (N)
Distance problem	Genomes X, Y on the same marker set (single copy)	Find the minimum number of operations in M to transform X to Y .	- (2-coalescence)
Median problem	Genomes X_1, \ldots, X_k on the	Find a genome Y that minimizes the total	-
	same marker set (single	distance to X_1, \dots, X_k .	(k-coalescence)

 Very limited interaction between genomes (mostly coalescence, sometimes chromosome (de-)duplication)

Problem name	Given genomes	Classical Formulation	Namos (N)
Distance problem	Genomes X, Y on the same marker set (single copy)	Find the minimum number of operations in M to transform X to Y .	- (2-coalescence)
Median problem	Genomes X_1, \ldots, X_k on the same marker set (single	Find a genome Y that minimizes the total distance to X_1, \ldots, X_k .	- (k-coalescence)

- Very limited interaction between genomes (mostly coalescence, sometimes chromosome (de-)duplication)
- ▶ Pangenomes → phylogenetic closeness → more interaction/horizontal effects

Problem name	Given genomes	Classical Formulation	Namos (N)
Distance problem	Genomes X, Y on the same marker set (single copy)	Find the minimum number of operations in M to transform X to Y .	- (2-coalescence)
Median problem	Genomes X_1, \ldots, X_k on the same marker set (single	Find a genome Y that minimizes the total distance to X_1, \ldots, X_k .	- (k-coalescence)

- Very limited interaction between genomes (mostly coalescence, sometimes chromosome (de-)duplication)
- ▶ Pangenomes → phylogenetic closeness → more interaction/horizontal effects
- \rightarrow Classical Problem Formulations would overestimate structural complexity for pangenomes (missing Namos substituted with Amos)

Problem name	Given genomes	Classical Formulation	Namos (N)
Distance problem	Genomes X, Y on the same marker set (single copy)	Find the minimum number of operations in M to transform X to Y .	(2-coalescence)
Median problem	Genomes $X_1,, X_k$ on the same marker set (single	Find a genome Y that minimizes the total distance to X_1, \ldots, X_k .	- (k-coalescence)

- Very limited interaction between genomes (mostly coalescence, sometimes chromosome (de-)duplication)
- ▶ Pangenomes → phylogenetic closeness → more interaction/horizontal effects
- → Classical Problem Formulations would overestimate structural complexity for pangenomes (missing Namos substituted with Amos)
- → For a lower bound, we need a "maximally powerful" set of Namos

Obervations from the MBPG

Observation

Given a Namo o and pangenomes \mathbb{P}, \mathbb{P}' , where $\mathbb{P} \stackrel{\circ}{\to} \mathbb{P}'$, the MBPGs of \mathbb{P} and \mathbb{P}' are identical.

Obervations from the MBPG

Observation

Given a Namo o and pangenomes \mathbb{P}, \mathbb{P}' , where $\mathbb{P} \stackrel{o}{\to} \mathbb{P}'$, the MBPGs of \mathbb{P} and \mathbb{P}' are identical.

Definition

A set of Namos N is called MBPG-complete, if for all pairs of pangenomes \mathbb{P}, \mathbb{P}' with the same MBPG there is a sequence of Namos $o_1 o_2 \dots o_k \in N^*$, such that $\mathbb{P} \stackrel{o_1}{\longrightarrow} \stackrel{o_2}{\longrightarrow} \dots \stackrel{o_k}{\longrightarrow} \mathbb{P}'$.

SCJ - A simple Amo

SCJ-CARP Theoretical result

► SCJ Large Parsimony is NP-hard

SCJ-CARP Theoretical result

- SCJ Large Parsimony is NP-hard
- ► However SCJ-CARP:

Lemma

One needs exactly $|E_C|$ SCJs to transform a pangenome into a simple one where $E_C \subset E_A$ is a subset of adjacency edges that can be determined in linear time.

SCJ-CARP Tracks Rearrangements

Pearson Coefficient: 0.88

SCJ-CARP Does Not Track Horizontal Effects

Pearson Coefficient: -0.01

SCJ-CARP Reconstructs Ancestral Adjacencies (to a Limited Extent)

► Tree/Lineages implied by CARP scenario

- ► Tree/Lineages implied by CARP scenario
- CARP for more complex rearrangement models (DCJ/HP/BI...)

- Tree/Lineages implied by CARP scenario
- CARP for more complex rearrangement models (DCJ/HP/BI...)
 - → Characterize Pangenome by vector of CARP measures $(m_{SCJ}, m_{DCJ}, m_{HP}, m_{BI}, ...)$.

- ► Tree/Lineages implied by CARP scenario
- CARP for more complex rearrangement models (DCJ/HP/BI...)
 - → Characterize Pangenome by vector of CARP measures $(m_{SCJ}, m_{DCJ}, m_{HP}, m_{BI}, ...)$.
 - ightarrow Compare vectors to compare pangenomes
- ightharpoonup Comparing pangenomes $\mathbb{P}_a, \mathbb{P}_b$ on the same marker set
 - ▶ Among all possible CARP ancestors A_a , A_b

- ► Tree/Lineages implied by CARP scenario
- CARP for more complex rearrangement models (DCJ/HP/BI...)
 - → Characterize Pangenome by vector of CARP measures $(m_{SCJ}, m_{DCJ}, m_{HP}, m_{BI}, ...)$.
 - ightarrow Compare vectors to compare pangenomes
- ightharpoonup Comparing pangenomes $\mathbb{P}_a, \mathbb{P}_b$ on the same marker set
 - \blacktriangleright Among all possible CARP ancestors A_a, A_b
 - $\qquad \qquad d(\mathbb{P}_a, \mathbb{P}_b) = \min_{\mathbb{A}_a \in A_a, \mathbb{A}_b \in A_b} d(\mathbb{A}_a, \mathbb{A}_b)$
- Weighted Namos

► Rearrangements are interesting both from a computational and from a biological perspective.

- ► Rearrangements are interesting both from a computational and from a biological perspective.
- ► Simple changes to a problem can make it (computationally) a lot easier.

- Rearrangements are interesting both from a computational and from a biological perspective.
- Simple changes to a problem can make it (computationally) a lot easier.
- ► There is a wealth of theoretical results for rearrangements that only need slight adaptations to make them useful in practice.

- ► Rearrangements are interesting both from a computational and from a biological perspective.
- Simple changes to a problem can make it (computationally) a lot easier.
- ► There is a wealth of theoretical results for rearrangements that only need slight adaptations to make them useful in practice.
- ► Future work: (Formal definition for) Marker segmentation on pangenomes

