Chem 1142—Exam 4A Spring 2011

Name:		
maiii C.		

Multiple Choice. [4 pts. Each] Circle the best response.

- Q1. A certain chemical reaction has $\Delta H^o = +32$ kJ/mol and $\Delta S^o = 78.0$ J/mol·K. When does this reaction proceed spontaneously?
 - a) The reaction is never spontaneous
- b) The reaction is only spontaneous at low temperatures
- c) The reaction is always spontaneous
- d) The reaction is only spontaneous at high temperatures
- Q2. An example of a reaction that is likely to have a large and positive value of ΔS^{o} is:

a)
$$Ag^+(aq) + Cl^-(aq) \longrightarrow AgCl(s)$$

b)
$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

c)
$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$

d)
$$2O_3(g) \longrightarrow 3O_2(l)$$

e)
$$CO_2(g) + H_2(g) \longrightarrow CO(g) + H_2O(g)$$

Q3. Methanol has a freezing point of -94 °C. Pick the correct set of values for ΔH , ΔS , and ΔG at a temperature of -91 °C for the process: methanol(s) \longrightarrow methanol(l)

	ΔH	ΔS	ΔG
a	+	-	0
Ь		-	+
С	+	+	_
d	+	+	+
e	_	1	ı

- Q4. What is the equilibrium constant of a reaction with $\Delta G^{o} = -3.2$ kJ/mol at a temperature of 298 K?
 - a) 3.64
- b) 0.275
- c) 950
- d) 0.990
- e) 0.288

Q5. Calculate E^{o}_{cell} for the following electrochemical cell:

 $Pt(s)|H^+(aq, 1M)|H_2(g, 1 atm)||Ag^+(aq, 1M)|Ag(s)|$

- a) 1.60 V
- b) 0.80 V
- c) 0.00 V
- d) -0.80 V
- e) -1.60 V
- Q6. Where does oxidation occur in an electrochemical cell?
 - a) Anode
- b) Salt Bridge
- c) Voltmeter
- d) Cathode
- e) Faraday
- Q7. How many moles of electrons flow when an electrical current of 13.0 A flows for 2.00 minutes?
 - a) 26.0 mol
- b) 6.50 mol
- c) 1.5 x 10⁸ mol d) 0.108 mol
- e) 0.0162 mol

Short Response Questions. Show ALL work to receive credit.

Q8. [15 pts.] Balance the following redox reaction	using the ½ reaction	method. Be sure	to clearly	identify
the oxidation numbers of all atoms/ions in this rea	ction.			

$$Zn(s) + VO^{2+}(aq) \longrightarrow V^{2+}(aq) + Zn^{2+}(aq)$$

Q9. [10 pts.] The chemical reaction: $3H_2(g) + N_2(g) \longrightarrow 2NH_3(g)$ has a value of ΔG^o equal to -33.2 kJ/mol at a temperature of 25 °C. If the partial pressures of H_2 , N_2 , and NH_3 are 0.0320 atm, 0.290 atm, and 48.0 atm respectively, then calculate ΔG for this reaction. What does this value of ΔG tell you about the reaction?

Q10. [10 pts.] How many grams of Al(s) causing a current of 182 A for a time period of	an be formed from the electrolysis of molten aluminum bromide, of 432 minutes?
	lue of ΔG° equal to –12.0 kJ/mol at a temperature of 23 °C, and a nperature of 48 °C. Calculate ΔS° for this reaction.
Q12. [10 pts.] Write formulas for the follo	wing compounds:
a) lithium phosphate:	
b) ammonium sulfate:	
c) calcium sulfate trihydrate:	
d) perchloric acid:	
e) heptanitrogen disulfide:	

Useful Information

$$\Delta G = -nFE_{\text{cell}} \qquad \Delta G^{\circ} = -nFE_{\text{cell}}^{\circ} \qquad E_{\text{cell}}^{o} = \frac{RT}{nF} \ln K$$

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{RT}{nF} \ln Q \qquad E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ} \qquad F = 96,500 \text{ C/mol e}^{-}$$

$$R = 8.3145 \text{ J mol}^{-1} \cdot \text{K}^{-1} \qquad Q \text{ (charge)} = I \cdot t \qquad \Delta G = \Delta H - T\Delta S$$

$$\Delta S = q/T \qquad \Delta G = \Delta G^{\circ} + RT \ln Q \qquad \Delta G^{\circ} = -RT \ln K$$

Periodic Table of the Elements

IA	IIA		. 0	, d. 0 .	abic (J. 1.10						IIIA	IVA	VA	VIA	VIIA	VIIIA
1	ı																18
1																	2
Н																	He
1.01	2											13	14	15	16	17	4.00
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											ΑI	Si	P	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	l I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
		57	58	59	60	61	62	63	64	65	66	67	68	69	70]	
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
		138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04		
	i	89	90	91	92	93	94	95	96	97	98	99	100	101	102	1	
	**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		