AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

 (previously presented): A method for the verification of anti-jamming in a communications system having several sensors or adaptive antennas, comprising the following steps:

estimating a mean power $\Box; ^{^{\mathsf{A}}}_{\mathsf{V}}$ of the output of the communications system,

estimating a respective power values Pu or P'u, of a station u, the antenna noise Pa or P'a, the thermal noise PT, or P'T,

estimating at least one of the following ratios:

$$J_{tot}/S_{tot} = (\sum_{j=1}^{p} P_{p_j})/(\sum_{j=1}^{p} P_{u_j})$$

with p = the jamming unit

= sum of the power values of the residual jamming units/sum of the power values of the stations on the reception band B

$$J_{tot}/S_{u} = (\sum_{p=1}^{p} P_{p})/P_{u}$$

= sum of the power values of the residual jamming units/power of the station u in the reception band B.

$$J_u/S_u = (\sum_{j=1}^{p} P_{pu})/P_u$$

with Ppu = power of the jamming unit p in the reception band Bu.

- comparing at least one of the three ratios with a threshold value.
- 2. (previously presented): The method for the verification of anti-jamming according to claim 1, comprising a step for estimating the mean power \Box ; $_{y}^{h}$, for an output from a number K of samples, y(k), $1 \le k \le K$ of this output, given by

$$\square; y = D \qquad 1; \dots; K \qquad \sum; k=1 \qquad |y(k)|^2$$

- 4. (previously presented): The method for the verification of anti-jamming according to claim 1, comprising an estimation $P_{,u}^{,,n}$, $P_{,u}^{,,n}$ of the power P_{u} , P'_{u} in using, firstly, a priori knowledge of the parameters w and G_{num} for a digital application of the adaptive filters and $|u|^2$, w and G for an analog application of the filters and secondly the estimation of the parameter u.
- 5. (previously presented): The method for the verification of anti-jamming according to claim 1, comprising a step of estimation $P_{, u}^{, h}$, $P_{, u}^{, h}$ of the power P_{u} , $P_{, u}^{, h}$ in using a priori knowledge of the parameters \mathbf{w} and G_{num} for a digital application of the adaptive filters and $|\mathbf{u}|^2$, \mathbf{w} and \mathbf{G} for an analog application of the filters and secondly the estimation of the parameter \mathbf{u} .

6. (previously presented): The method for the verification of anti-jamming according to claim 1, comprising a step of estimation $J_{tot}^{(1)}/S_{tot}^{(2)}$, of the ratio J_{tot}/S_{tot} given by

$$J_{, tot}^{\land} / S_{, tot}^{\land} = (\Box; y_{. \Sigma}^{\land}; ; P_{, u.}^{\land} P_{,$$

7. (previously presented): The method for the verification of anti-jamming according to claim 1, comprising a step of estimation $J_{tot}^{(a)}/S_{tot}^{(a)}/S_{tot}^{(a)}$, of the ratio J_{tot}/S_{u} , given by

$$J; \stackrel{\wedge}{tot} / S; \stackrel{\wedge}{u} = (\Box; \stackrel{\wedge}{y}. \stackrel{\sim}{\Sigma}; ; P; \stackrel{\wedge}{u}. P; \stackrel{\wedge}{u}. P; \stackrel{\wedge}{a}. P; \stackrel{\wedge}{T}) / P; \stackrel{\wedge}{u}$$

$$u = 1$$

8. (previously presented): The method of verification of anti-jamming according to claim 1, comprising a step of estimation $J; ^{\land}/S; ^{\land}u$, of the ratio J/Su in using the total power of residual jamming units in the Bu band of the working station u given by

$$J; '', S; '', U = (\Box; 'yu. P; 'u. E; 'vu. P; 'vu. P; 'au. P; 'Tu) / P; '$$
 (28)

- 9. (previously presented): A method of verification of anti-jamming according to claim 1 comprising a step of determination of the precision of estimation, and wherein this value is used to set the threshold.
 - 10. (canceled):

(27)

11. (canceled):

- 12. (previously presented): A use of the method according to claim 1.
- 13. (canceled):
- 14. (canceled):