ЛАБОРАТОРНАЯ РАБОТА №21

ФАЗОВАЯ И ГРУППОВАЯ СКОРОСТЬ УЛЬТРАЗВУКА В ЖИДКОСТИ. ДИФРАКЦИЯ СВЕТА НА УЛЬТРАЗВУКЕ

Поляков Даниил, 19.Б23-ф3

Цель работы: экспериментально определить фазовую скорость ультразвука в воде прямым фазовым и частотно-фазовым методами, определить групповую скорость ультразвука в воде, исследовать явление дифракции света на ультразвуке.

Схемы установок

Рис. 1. Схема экспериментальной установки для измерения фазовой и групповой скоростей ультразвука

- 1) Генератор электрических колебаний;
- 2) Пьезоэлектрический излучатель ультразвуковых колебаний на оптической скамье;
- 3) Пьезоэлектрический приёмник ультразвуковых колебаний на оптической скамье;
- 4) Двухканальный осциллограф;
- 5) Сосуд с водой.

Рис. 2. Схема экспериментальной установки для наблюдения дифракции света на ультразвуке

- 1) Лазер с длиной волны $\Lambda = 635 \ нм;$
- 2) Генератор электрических колебаний;
- 3) Пьезоэлектрический излучатель ультразвуковых колебаний;
- 4) Сосуд с водой/спиртом;
- 5) Экран (в работе использовалась стена);
- 6) Осциллограф.

Расчётные формулы

• Длина волны ультразвука (прямой фазовый метод):

$$\lambda = \left| \frac{\Delta l}{\Delta n} \right|$$

 Δl — расстояние, пройденное приёмником; Δn — число длин волн, укладывающихся в расстояние, пройденное приёмником.

• Фазовая скорость ультразвука (прямой фазовый метод):

$$c = \lambda f$$

 λ — длина волны ультразвука; f — частота ультразвука.

• Фазовая скорость ультразвука (частотно-фазовый метод):

$$c_{i} = \frac{l_{i+1} - l_{i}}{\frac{m_{i+1}}{f_{m-1} - f_{i+1}} - \frac{m_{i}}{f_{m} - f_{i}}}$$

 $l_i,\ l_{i+1}$ — соседние положения приёмника; $f_i,\ f_{i+1}$ — частоты, соответствующие соседним положениям приёмника;

$$c = \frac{\sum_{i}^{n} c_{i}}{n}$$

 f_{m_i} , $f_{m_{i+1}}$ — увеличенные частоты, соответствующие соседним положениям приёмника;

 m_i , m_{i+1} — число периодов, добавленное между источником и приёмником в результате увеличения частоты.

• Групповая скорость ультразвука:

$$u = \left| \frac{\Delta l}{\Delta t} \right|$$

 Δl — расстояние, пройденное приёмником; Δt — изменение задержки сигнала после сдвига приёмника.

• Длина волны ультразвука (дифракционный метод):

$$\lambda = \frac{m \Lambda L}{d}$$

m — число промежутков между крайними максимумами;

 Λ – длина волны лазера;

L — расстояние от середины ультразвукового пучка до дифракционной картины; d — расстояние между крайними максимумами.

- Формулы для вычисления погрешностей:
 - Абсолютная погрешность косвенных измерений:

$$\Delta f(x_1, x_2, \dots) = \sqrt{\left(\frac{\partial f}{\partial x_1} \cdot \Delta x_1\right)^2 + \left(\frac{\partial f}{\partial x_2} \cdot \Delta x_2\right)^2 + \dots}$$

• Фазовая скорость ультразвука (прямой фазовый метод):

$$\Delta c = \sqrt{\left(\frac{\partial c}{\partial \lambda} \cdot \Delta \lambda\right)^2 + \left(\frac{\partial c}{\partial f} \cdot \Delta f\right)^2} = \sqrt{(f \cdot \Delta \lambda)^2 + (\lambda \cdot \Delta f)^2}$$

• Фазовая скорость ультразвука (частотно-фазовый метод):

$$\begin{split} &\Delta \, c_i \! = \! \sqrt{\left(\frac{\partial \, c_i}{\partial \, l_i} \! \cdot \! \Delta \, l_i\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, l_{i+1}} \! \cdot \! \Delta \, l_{i+1}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_i} \! \cdot \! \Delta \, f_i\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{i+1}} \! \cdot \! \Delta \, f_{i+1}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! \cdot \! \Delta \, f_{m_i}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_{i+1}}} \! \cdot \! \Delta \, f_{m_{i+1}}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! \cdot \! \Delta \, f_{m_i}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_{i+1}}} \! \cdot \! \Delta \, f_{m_i}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! \cdot \! \Delta \, f_{m_i}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! \cdot \! \Delta \, f_{m_i}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! \cdot \! \Delta \, f_{m_i}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! \cdot \! \Delta \, f_{m_i}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! \cdot \! \Delta \, f_{m_i}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! \cdot \! \Delta \, f_{m_i}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! \cdot \! \Delta \, f_{m_i}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! \cdot \! \Delta \, f_{m_i}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! \cdot \! \Delta \, f_{m_i}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! \cdot \! \Delta \, f_{m_i}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! \cdot \! \Delta \, f_{m_i}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! \cdot \! \Delta \, f_{m_i}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! \cdot \! \Delta \, f_{m_i}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! \cdot \! \Delta \, f_{m_i}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! - \! f_{i+1}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! - \! f_{i+1}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! - \! f_{i+1}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! - \! f_{i+1}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! - \! f_{i+1}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! - \! f_{i+1}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! - \! f_{i+1}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! - \! f_{i+1}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! - \! f_{i+1}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! - \! f_{i+1}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! - \! f_{i+1}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! - \! f_{i+1}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! - \! f_{i+1}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! - \! f_{i+1}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! - \! f_{i+1}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! - \! f_{i+1}\right)^2 \! + \! \left(\frac{\partial \, c_i}{\partial \, f_{m_i}} \! - \! f_{i+1}\right)$$

• Длина волны ультразвука (дифракционный метод):

$$\Delta \lambda = \sqrt{\left(\frac{\partial \lambda}{\partial L} \cdot \Delta L\right)^2 + \left(\frac{\partial \lambda}{\partial d} \cdot \Delta d\right)^2} = \lambda \sqrt{\left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta d}{d}\right)^2}$$

Порядок измерений

1. Включим генератор в режиме непрерывных колебаний и осциллограф. Подключим приёмник к осциллографу. Выставим приёмник и излучатель колебаний на максимальном расстоянии друг от друга в сосуде с водой и добьёмся максимальной амплитуды сигнала с приёмника на осциллографе, выставив их ровно друг напротив друга. Регулируя частоту генератора, подберём резонансную частоту пьезоэлементов f_p , при которой амплитуда сигнала на осциллографе максимальна. Подключим ко второму входу осциллографа выход генератора и переключим синхронизацию развёртки на 2-ой канал.

Определим скорость ультразвука прямым фазовым методом. Зафиксируем положение l приёмного пьезоэлемента по шкале оптической скамьи. Будем плавно перемещать его в сторону излучающего пьезоэлемента и считать количество периодов n, на которое сдвинулась синусоида на экране осциллографа. Через каждые 20 периодов будем снимать положение приёмника l.

- 2. Определим скорость ультразвука частотно-фазовым методом. Установим приёмник на максимальном расстоянии от излучателя и снимем положение приёмника l. Установим частоту генератора f ближе к резонансной, но при этом удобную для отсчёта периодов (например, чтобы максимум сигнала совпадал с границей экрана осциллографа). Будем увеличивать частоту генератора и считать количество периодов m, на которое сдвинулась синусоида на экране осциллографа. Достигнув максимального m, при котором ещё не происходит искажения сигнала, снимем соответствующее значение частоты f_m . Проделаем аналогичные измерения для других положений приёмника.
- 3. Измерим групповую скорость ультразвука. Переведём генератора в импульсный режим. Выведем оба сигнала (с генератора и приёмника) на экран осциллографа, синхронизируем осциллограф по сигналу генератора. Установим приёмник на максимальном расстоянии от излучателя. Перемещая приёмник в сторону излучателя, будем снимать положение приёмника l и соответствующее ему время задержки импульса t между излучателем и приёмником.
- 4. Соберём экспериментальную установку для наблюдения дифракции света на ультразвуке. В кювету нальём воду. Установим максимальную амплитуду сигнала генератора и, перемещая кювету, получим стоячую волну и интерференционную картину на экране. Измерим рулеткой расстояние L от середины кюветы до экрана. Измерим линейкой расстояние d между крайними дифракционными максимумами. Потом заменим воду в кювете на спирт, снова получим дифракционную картину и измерим расстояние d.

Таблицы и обработка данных

Коэффициенты аппроксимации линейных зависимостей и их погрешности найдены по методу наименьших квадратов с помощью ПО MATLAB.

Погрешности коэффициентов аппроксимации рассчитаны с доверительной вероятностью P=0.95.

Погрешность измеренных частот принята равной цене деления генератора:

$$\Delta f = 1 \kappa \Gamma u$$

Погрешность измеренных положений приёмника принята равной цене деления шкалы оптической скамьи:

$$\Delta l = 0.1 \ cM$$

1. Определение скорости ультразвука прямым фазовым методом

Подобранная резонансная частота пьезоэлементов:

$$f_p = 4514 \pm 1 \, \kappa \Gamma y$$

Таблица 1. Зависимость положения приёмника от числа пройденных периодов

n	l, см		
0	17.0		
20	17.7		
40	18.3		
60	19.0		
80	19.6		
100	20.3		
120	20.9		
140	21.6		
160	22.3		
180	22.9		
200	23.6		

График 1. Зависимость положения приёмника от числа пройденных периодов

Экспериментальные точки лежат на одной прямой. Длину волны ультразвука находим как коэффициент наклона аппроксимирующей прямой:

$$\lambda = 329 \pm 3 MKM$$

Находим фазовую скорость ультразвука в воде:

$$c = 1483 \pm 15 \text{ m/c}$$

2. Определение скорости ультразвука частотно-фазовым методом

Таблица 2. Определение скорости ультразвука частотно-фазовым методом

l, см	m	f, кГц	f _m , κΓų	с, м/с
17.0	20	4514	4798	_
19.0	20	4519	4866	1560 ± 120
21.0	20	4514	4969	1460 ± 110
23.0	15	4504	4992	1510 ± 110

Находим окончательное значение скорости звука как среднее всех результатов:

$$c = 1510 \pm 70 \text{ m/c}$$

Погрешность данного метода определения скорости ультразвука получилась больше, чем прямого фазового метода. Это скорее всего связано с малым числом отсчитываемых периодов сдвига m. Однако отсчитать большее число периодов не представляется возможным, т.к. происходит удаление от резонансной частоты, из-за чего сигнал сильно искажается. Другой вклад в погрешность, как и в случае прямого метода, вносит низкая точность отсчёта положения приёмника l. Попробуем вычислить c по двум точкам, находящимся на наибольшем удалении друг от друга, т.е. по первой и последней, которые находятся на расстоянии 6 см:

$$c = 1510 \pm 40 \text{ m/c}$$

Погрешность получилась ниже, чем у каждого из трёх значений, указанных в таблице, вычисленных с шагом 2 см, и ниже, чем у их среднего. Однако точность прямого фазового метода всё равно выше.

3. Измерение групповой скорости ультразвука

Таблица 3. Зависимость задержки импульса от положения приёмника

l, см	t, мкс
17.0	72
18.0	64
19.0	58
20.0	50
21.0	44
22.0	37
23.0	30
24.0	24
25.0	17

График 3. Зависимость положения приёмника от задержки импульса Экспериментальные точки лежат на одной прямой. Групповую скорость ультразвука находим как модуль коэффициента наклона аппроксимирующей прямой:

$$u = 1470 \pm 30 \text{ m/c}$$

Полученная групповая скорость ультразвука совпадает с полученной фазовой скоростью.

4. Дифракция света на ультразвуке

На полученной дифракционной картине и для воды, и для спирта наблюдались максимумы до 2-го порядка включительно.

Таблица 4. Дифракция света на ультразвуке

T		Вода		Спирт	
L, см	m	d, см	λ, мкм	d, см	λ, мкм
529 ± 3	4	4.3 ± 0.1	312 ± 7	4.8 ± 0.1	280 ± 6

К сожалению, вычислить численные значения скорости ультразвука в этой части работы не удастся, т.к. неизвестна частота излучателя. Можно только сделать вывод, что скорость ультразвука в воде больше, чем скорость ультразвука в спирте.

Выводы

• Определена скорость ультразвука в воде прямым фазовым и частотно-фазовым методами. Точность прямого фазового метода оказалась выше:

$$c_{n.\,d.} = 1483 \pm 15 \,\text{M/c}$$

$$c_{y-d} = 1510 \pm 40 \text{ M/c}$$

Скорость ультразвука в воде при 20° С, указанная в справочнике^[1]:

$$c = 1481 \text{ m/c}$$

Полученная в работе обоими способами скорость ультразвука совпадает с этим значением в пределах погрешности;

• Определена групповая скорость ультразвука импульсным методом. Её значение совпало со значением фазовой скорости ультразвука:

$$u = 1470 \pm 30 \text{ m/c}$$

Можно сделать вывод, что вода не является диспергирующей средой;

 Исследовано явление дифракции света на ультразвуке. Ультразвуковые волны с достаточной амплитудой действуют на свет по принципу дифракционной решётки.