Variational inference Introduction to VB

Helge Langseth and Thomas Dyhre Nielsen

Variational inference – Part II

Introduction

Plan for this weeks

- Day 1: Bayesian networks Definition and inference
 - Definition of Bayesian networks: Syntax and semantics
 - Exact inference
 - Approximate inference using MCMC
- Day 2: Variational inference Introduction and basis
 - Approximate inference through the Kullback-Leibler divergence
 - Variational Bayes
 - The mean-field approach to Variational Bayes
- Day 3: Variational Bayes cont'd
 - Solving the VB equations
 - Introducing Exponential families
- Day 4: Scalable Variational Bayes
 - Variational message passing
 - Stochastic gradient ascent
 - Stochastic variational inference
- Day 5: Current approaches and extensions
 - Variational Auto Encoders
 - Black Box variational inference
 - Probabilistic Programming Languages

Recap from last time

- Bayesian networks are used to represent (high-dim) distributions over random variables.
 - Simple syntax: Nodes, links, DAG, conditional distributions. Plate notation.
 - Clear semantics: Nodes, links, Markov properties
- Inference: Find $p(\mathbf{z} \mid \mathbf{x})$, where \mathbf{z} are variables of interest, \mathbf{x} are the observed variables.
 - Exact inference: We looked at variable elimination, but more clever methods are available.
 - Markov Chain Monte Carlo: We looked at Gibbs sampling, where each unobserved node is sampled based on its conditional given the Markov blanket.

Approximate inference as optimization

Approximate inference as optimization

- The general setting for approximate inference in a BN is to somehow "resemble" the calculation of $p(\mathbf{z} \mid \mathbf{X} = \mathbf{x})$, but using less costly computational operations.
- We will call the approximation $q(\cdot)$, hence $q(\mathbf{z} \,|\, \mathbf{x}) \approx p(\mathbf{z} \,|\, \mathbf{X} = \mathbf{x})$
 - Often the conditioning part is dropped, hence $q(\mathbf{z})$ is a short-hand for $q(\mathbf{z} \mid \mathbf{x})$.

Formalization of approximate inference:

Given a family of tractable distributions $\mathcal Q$ and a similarity measurement between distributions Δ , choose

$$\hat{q}(\mathbf{z}) = \arg\min_{q \in \mathcal{Q}} \Delta(q(\mathbf{z}); p(\mathbf{z} \mid \mathbf{x}))$$

Remaining decisions to be made:

- How to define a family of distributions Q that is both flexible enough to generate god approximations, and at the same time restrictive enough to support efficient calculations?
- ullet How to define Δ so that we end up with a high-quality solution from \mathcal{Q} .

Approximate inference as projections in "distribution space"

- With a "target-set" $\mathcal Q$ and a distance function $\Delta(q;p)$ we can think of the approximation as a projection of p onto the sub-space defined by $\mathcal Q$.
- The projection ends up at \hat{q} , which minimizes $\Delta(q; p)$ over all $q \in \mathcal{Q}$.
- We should choose Δ so that it actually captures the "relevant" difference between p and q,
- ... and choose $\mathcal Q$ so that it is flexible enough to capture "most of" $p(\cdot)$, meaning that $\Delta(q;p)$ is "typically small".

Desiderata

To use Δ to measure the distance from a distribution f to a distribution g it would be relevant to require that Δ has the following properties:

Positivity: $\Delta(f;g) \geq 0$ and $\Delta(f;g) = 0$ if and only if f = g.

Symmetry: $\Delta(f;g) = \Delta(g;f)$

Triangle: For distributions f, g, and h we have that $\Delta(f;g) \leq \Delta(f;h) + \Delta(h;g)$.

Desiderata

To use Δ to measure the distance from a distribution f to a distribution g it would be relevant to require that Δ has the following properties:

Positivity: $\Delta(f;g) \geq 0$ and $\Delta(f;g) = 0$ if and only if f = g.

Symmetry: $\Delta(f;g) = \Delta(g;f)$

Triangle: For distributions f, g, and h we have that $\Delta(f;g) \leq \Delta(f;h) + \Delta(h;g)$.

Standard choice whe working with probability distributions

It has become standard to choose the *Kullback-Leibler divergence* as the distance measure, where

$$\mathrm{KL}\left(f||g\right) = \int_{\mathbf{z}} f(\mathbf{z}) \, \log\left(\frac{f(\mathbf{z})}{g(\mathbf{z})}\right) \mathrm{d}\mathbf{z} = \mathbb{E}_f\left[\log\left(\frac{f(\mathbf{z})}{g(\mathbf{z})}\right)\right].$$

Notice that while $\mathrm{KL}\left(f||g\right)$ obeys the positivity criterion, it satisfies neither symmetry nor the triangle inequality. It is thus **not a proper distance measure**.

Two alternative KL projections

Information-projection

- Minimizes $\mathrm{KL}\left(q||p\right)$, that is, the expected information loss under q if p is used instead of q.
- Factorizes as $\mathrm{KL}\left(q||p\right) = -\operatorname{\mathbb{E}}_q[\ln p(\mathbf{z})] \mathcal{H}_q.$
- Preference given to q that has:
 - High probability at p-probable regions.
 - Very small probability given to any region where p is small.
 - High entropy ("large variance")

Moment-projection

- Minimizes $\mathrm{KL}\left(p||q\right)$, that is, the expected information loss under p if q is used instead of p.
- Factorizes as $\mathrm{KL}\left(p||q\right) = -\mathbb{E}_p[\ln q(\mathbf{z})] \mathcal{H}_p.$
- Preference given to q that has:
 - High probability allocated to regions that are probable according to p.
 - Non-zero probability given to any region with p is non-negligible.
 - No explicit focus of entropy

Cheat-sheet:

- KL-divergence: $\mathrm{KL}\left(f||g\right) = \int_{\mathbf{z}} f(\mathbf{z}) \, \log\left(\frac{f(\mathbf{z})}{g(\mathbf{z})}\right) \mathrm{d}\mathbf{z} = \mathbb{E}_f\left[\log\left(\frac{f(\mathbf{z})}{g(\mathbf{z})}\right)\right].$
- Entropy: $\mathcal{H}_f = -\int_{\mathbf{z}} f(\mathbf{z}) \log (f(\mathbf{z})) d\mathbf{z} = -\mathbb{E}_f [\log (f(\mathbf{z}))].$

Code Task: Moment and Information projection in Python

Code Task: Moment and Information projection in Python

- We define a target function p_distribution_pdf, in this case a Mixture of Gaussians.
- Furthermore, we have an approximation q_distribution_pdf, a single Gaussians parameterized by μ and σ .
- Use <code>scipy.minimize</code>, which implements numerical minimization of scalar functions, to find the pair (μ, σ) that minimizes
 - Information-projection $\mathrm{KL}\left(q||p\right)$.
 - Moment-projection $\mathrm{KL}\left(p||q\right)$.
- Start from the partial implementation

```
students_M_and_I_projections.ipynb.
```

- Things to check:
 - What happens if p_distribution_pdf is a Gaussian (obtain this using, e.g., by setting w = 0. in p_distribution_pdf?
 - Do you see general patterns showing differences in behaviour of the two solutions?

Moment and Information projection – main difference

- Moment projection optimizing $\mathrm{KL}\left(p||q\right)$ has slightly larger variance.
- Similar means, but Information projection optimizing $\mathrm{KL}\,(q||p)$ focuses mainly on the most prominent mode.

Moment and Information projection – main difference

- Moment projection optimizing $\mathrm{KL}\left(p||q\right)$ has slightly larger variance.
- Similar means, but Information projection optimizing $\mathrm{KL}\,(q||p)$ focuses mainly on the most prominent mode.
- I-projection is zero-forcing, while M-projection is zero-avoiding.

Variational Bayes w/ Mean Field

VB uses information projections:

Variational Bayes uses on *information projections*, i.e., approximates $p(\mathbf{x} | \mathbf{z})$ by

$$\hat{q}(\mathbf{z}) = \arg\min_{q \in \mathcal{Q}} \mathrm{KL}\left(q(\mathbf{z})||p(\mathbf{z} \mid \mathbf{x})\right)$$

Positives:

- Very efficient inference when combined with cleverly chosen Q.
- General formulation for exponential family distributions (a specific distributional families we will cover next time).
- Clever interpretation when used for (Bayesian) learning.

Negatives:

- As we have seen, this may result in zero-forcing behaviour.
 - ullet The typical choice of ${\mathcal Q}$ can make this issue even more prominent.
- Somewhat difficult when working outside the class of exponential family distributions.

ELBO: Evidence Lower-BOund

Notice how we can rearrange the KL divergence as follows:

$$\begin{aligned} \operatorname{KL}\left(q(\mathbf{z})||p(\mathbf{z}\,|\,\mathbf{x})\right) &= & \mathbb{E}_q \left[\log \frac{q(\mathbf{z})}{p(\mathbf{z}\,|\,\mathbf{x})} \right] \\ &= & \mathbb{E}_q \left[\log \frac{q(\mathbf{z}) \cdot p(\mathbf{x})}{p(\mathbf{z}\,|\,\mathbf{x}) \cdot p(\mathbf{x})} \right] \\ &= & \log p(\mathbf{x}) - \mathbb{E}_q \left[\log \frac{q(\mathbf{z})}{p(\mathbf{z},\mathbf{x})} \right] = \log p(\mathbf{x}) - \mathcal{L}\left(q\right) \end{aligned}$$

where the Evidence Lower Bound (ELBO) is $\mathcal{L}\left(q\right) = -\mathbb{E}_q\left[\log\frac{q(\mathbf{z})}{p(\mathbf{z},\mathbf{x})}\right]$.

ELBO: Evidence Lower-BOund

Notice how we can rearrange the KL divergence as follows:

$$\begin{aligned} \operatorname{KL}\left(q(\mathbf{z})||p(\mathbf{z}\,|\,\mathbf{x})\right) &=& \mathbb{E}_q \left[\log \frac{q(\mathbf{z})}{p(\mathbf{z}\,|\,\mathbf{x})}\right] \\ &=& \mathbb{E}_q \left[\log \frac{q(\mathbf{z})\cdot p(\mathbf{x})}{p(\mathbf{z}\,|\,\mathbf{x})\cdot p(\mathbf{x})}\right] \\ &=& \log p(\mathbf{x}) - \mathbb{E}_q \left[\log \frac{q(\mathbf{z})}{p(\mathbf{z},\mathbf{x})}\right] = \log p(\mathbf{x}) - \mathcal{L}\left(q\right) \end{aligned}$$

where the Evidence Lower Bound (ELBO) is $\mathcal{L}\left(q\right) = -\mathbb{E}_q\left[\log\frac{q(\mathbf{z})}{p(\mathbf{z},\mathbf{x})}\right]$.

VB focuses on ELBO:

$$\log p(\mathbf{x}) = \mathcal{L}(q) + \mathrm{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}))$$

Since $\log p(\mathbf{x})$ is constant wrt. q and $\mathrm{KL}\left(q(\mathbf{z})||p(\mathbf{z}\,|\,\mathbf{x})\right) \geq 0$ it follows:

- We can minimize $\mathrm{KL}\left(q(\mathbf{z})||p(\mathbf{z}\,|\,\mathbf{x})\right)$ by maximizing $\mathcal{L}\left(q\right)$
- This is **computationally simpler** because it uses $p(\mathbf{z}, \mathbf{x})$ instead of $p(\mathbf{z} \mid \mathbf{x})$.
- ullet $\mathcal{L}\left(q
 ight)$ is a *lower bound* of the marginal data log likelihood $\log p(\mathbf{x})$.
- \rightarrow During inference, we will look for $\hat{q}(\mathbf{z}) = \arg \max_{q \in \mathcal{Q}} \mathcal{L}(q)$.

Bayesian learning using VB:

- We posit a model $p(y | \theta)$, and want to learn θ from a data-set $\mathcal{D} = \{y_1, \dots, y_N\}$.
- We cast the problem in a Bayesian setting by including a prior $p(\theta)$.
- We seek the posterior $p(\theta \mid \mathcal{D})$, which is approximated by

$$\hat{q}(\boldsymbol{\theta}) = \arg\min_{q \in \mathcal{Q}} \text{KL}\left(q(\boldsymbol{\theta})||p(\boldsymbol{\theta} | \mathcal{D})\right).$$

ullet This is identical to maximizing $\mathcal{L}\left(q\right)$ – a lower-bound of $p(\mathcal{D})$.

Variational Bayes and learning

Bayesian learning using VB:

- We posit a model $p(y | \theta)$, and want to learn θ from a data-set $\mathcal{D} = \{y_1, \dots, y_N\}$.
- We cast the problem in a Bayesian setting by including a prior $p(\theta)$.
- We seek the posterior $p(\theta \mid \mathcal{D})$, which is approximated by

$$\hat{q}(\boldsymbol{\theta}) = \arg\min_{q \in \mathcal{Q}} \text{KL}\left(q(\boldsymbol{\theta})||p(\boldsymbol{\theta} \mid \mathcal{D})\right).$$

ullet This is identical to maximizing $\mathcal{L}\left(q\right)$ – a lower-bound of $p(\mathcal{D})$.

Things to take notice of:

- When using variational Bayes to approximate $p(\theta \mid \mathcal{D})$, the resulting $\hat{q}(\theta)$ is chosen as the $q \in \mathcal{Q}$ that makes the data most probable.
- The VB objective is therefore reasonable in a learning-setting.
- The ELBO is a natural "quality score", much like expected log likelihood is in an EM-setting.

The mean field assumption

What we have ...

We now have the first building-block of the approximation:

$$\Delta(q; p) = \text{KL}(q(\mathbf{z})||p(\mathbf{z} | \mathbf{x})).$$

We still need the set Q:

We will use the **mean field assumption**, which states that Q consists of all distributions that *factorizes* according to the equation

$$q(\mathbf{z}) = \prod_{i} q_i \left(z_i \right)$$

Note! This may seem like a very restricted set. However, we can choose any $q(\mathbf{z}) \in \mathcal{Q}$, and this is how the magic (\sim "absorbing information from \mathbf{x} ") happens.

Simple example:

Regression model:

$$Y_i \mid \{\mathbf{w}, \mathbf{x}_i\} = \mathbf{w}^\mathsf{T} \mathbf{x}_i + \epsilon_i.$$

- For notational convenience we write \mathbf{x}_i for $[1, x_i]^\mathsf{T}$, x_i is a scaler.
- $\epsilon \sim N(0, 1/\gamma)$; γ known.
- $\bullet \ \mathbf{w} \sim \mathcal{N} (\boldsymbol{\mu}_0 = \mathbf{0}, \boldsymbol{\Sigma}_0 = \mathbf{I}_{2 \times 2}).$

Simple example:

• Regression model:

$$Y_i \mid \{\mathbf{w}, \mathbf{x}_i\} = \mathbf{w}^\mathsf{T} \mathbf{x}_i + \epsilon_i.$$

- For notational convenience we write \mathbf{x}_i for $[1, x_i]^\mathsf{T}$, x_i is a scaler.
- \bullet $\epsilon \sim N(0,1/\gamma)$; γ known.
- $\bullet \ \mathbf{w} \sim \mathcal{N} (\boldsymbol{\mu}_0 = \mathbf{0}, \boldsymbol{\Sigma}_0 = \mathbf{I}_{2 \times 2}).$

Exact Bayesian solution:

$$\mathbf{w} \mid \{\mathbf{x}, \mathbf{y}, \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0\} \sim \mathcal{N} \left(\gamma (\mathbf{I}_d + \gamma \mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{y}, (\mathbf{I}_d + \gamma \mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \right).$$

Simple example:

• Regression model:

$$Y_i \mid \{\mathbf{w}, \mathbf{x}_i\} = \mathbf{w}^\mathsf{T} \mathbf{x}_i + \epsilon_i.$$

- For notational convenience we write \mathbf{x}_i for $[1, x_i]^\mathsf{T}$, x_i is a scaler.
- \bullet $\epsilon \sim N(0,1/\gamma)$; γ known.
- $\bullet \ \mathbf{w} \sim \mathcal{N} (\boldsymbol{\mu}_0 = \mathbf{0}, \boldsymbol{\Sigma}_0 = \mathbf{I}_{2 \times 2}).$

Exact Bayesian solution:

$$\mathbf{w} \mid \{\mathbf{x}, \mathbf{y}, \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0\} \sim \mathcal{N} \left(\gamma (\mathbf{I}_d + \gamma \mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{y}, (\mathbf{I}_d + \gamma \mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \right).$$

Variational Bayesian solution w/ Mean Field:

Iterative approach; assumes factorized posterior.

Code Task: Implement VB for the regression example

- We are to find the approximation $q(w_0, w_1)$, which under the MF is defined by $q(w_0, w_1) = q(w_0) \cdot q(w_1)$.
- Each $q(w_j)$ is a Gaussian, parameterized by its mean and precision (inverse variance). We will optimize the parameters, that are denoted q_0_mean, q_0_prec, q_1_mean, and q_1_prec in the code.
- The update rules are given as follows:
 - q_0_prec $\leftarrow 1 + \gamma \cdot N$.
 - q_0_mean $\leftarrow (\gamma \cdot \sum_i y_i q_1_mean \cdot \sum_i x_i)/q_0_prec.$
 - q_1_prec $\leftarrow 1 + \gamma \cdot \sum_i x_i^2$.
 - q_1_mean $\leftarrow \gamma \cdot (\sum_i x_i y_i \text{q_0_mean} \cdot \sum_i x_i)/\text{q_1_prec.}$
- Notice how the different elements interact. To converge we need to run a couple of iterations (say, around 25).
- Start from the partial implementation

students_linreg_vb_projections.ipynb.

Important observations from the example

- The VB-MF solution approximates the mean of the true posterior well.
 - Not always the case depends on $\mathcal Q$ as well.
- VB-MF totally disregards correlation between W_1 and W_2 .
- VB-MF under-estimates the uncertainty of the true posterior, as shown by the 10%, 50% and 90% credibility intervals.
 - VB-MF's tendency to under-estimate the uncertainty is evident for each marginal, as well as for the full joint.

- Approximate inference can be seen as *optimization*, where we look for a "simple" distribution $q(\mathbf{z})$ that is close to a "difficult" distribution $p(\mathbf{z} \mid \mathbf{x})$.
- First we define a class Q of functions that are considered simple. In particular the mean-field assumption focus on distributions that factorize:

$$q(\mathbf{z}) = \prod_i q_i(z_i \,|\, \boldsymbol{\lambda}_i).$$

- In VB, parameters (λ_i for each q_i) are chosen to minimize $\mathrm{KL}\,(q||p)$.
- Practically we define the Evidence Lower Bound (ELBO),

$$\mathcal{L}(q) = -\mathbb{E}_q \left[\log \frac{q(\mathbf{z})}{p(\mathbf{z}, \mathbf{x})} \right],$$

and look for $\hat{q}(\mathbf{z}) = \arg \max_{q \in \mathcal{Q}} \mathcal{L}(q)$.