Guorui Zhao

Wuhan University of Technology Wuhan, China (+86)18871887989 gc2mjojo@gmail.com TOEFL (iBT): 99 GRE General Test: 322

EDUCATION

Wuhan University of Technology, Wuhan, China

2021.09 - 2024.06

Master Degree in Automobile Engineering

Cumulative GPA: 83.1/100.00

Thesis Title: Reinforcement Learning for Proprioceptive Quadrupedal Locomotion

Wuhan University of Technology, Wuhan, China

2017.09 - 2021.06

Bachelor Degree in Automobile Engineering

Cumulative GPA: 81.7/100.00

Thesis Title: Design of the Braking system for a compact SUV

ACADEMIC EXPERIENCE

Reinforcement Learning for Proprioceptive Quadrupedal Locomotion (leader)

2023.04 — Present

Locomotion of the Unitree Go1 quadrupedal robot without perception sensors via reinforcement learning and PPO algorithm.

- Design the reinforcement learning architecture of quadruped locomotion.
- Build the training environment and extra sim2sim for the policy algorithm and.
- Deploy our policy on the Unitree GO1 robot.

Wheel-legged Robot Dynamics and Control System (core member)

 $2022.03 -\!\!-\! 2023.10$

A massive quadruped robot with hub motors on its body as driving wheels. This wheel-legged robot can switch mode by standing-up or lying-down.

- Utilizing model predictive control in quadrupedal locomotion control.
- Utilizing kalman filter to realizing state estimation for the controller.
- Test our walking controller in Pybullet simulation then in the robot with ROS.

Legged Robot with Reconfigurable Jansen Mechanism (core member)

2021.09 - 2022.10

A massive robot with reconfigurable leg structure to acquire both load capacity and enough mobility.

- Complete dynamic verification calculations based on vehicle parameters.
- Design the leg structure and complete parts of its component 3D models.
- Build up the robot first and second prototype.

Wheel-tracked Vehicle Platform (member)

2022.05

Validating the system design of a wheel-tracked vehicle platform by simulation.

- Complete dynamic verification calculations based on vehicle parameters.
- Implement hydraulic system simulation in Amesim based on the hydraulic schematic of the suspension system.

Design of the Braking system for a compact SUV $({\rm leader})$

2020.12 -- 2021.6

Designing the main hydraulic system components of a compact SUV.

- Perform hydraulic system and brake design calculations and selection based on automotive parameters.
- Construct a longitudinal dynamics model of the vehicle using Simulink to simulate the working principle of ABS.
- Conduct thermodynamic finite element analysis of the brake disc and friction plate using Abaqus.
- Complete the 3D model design of the brake system and draw engineering blueprints for brake calipers, brake discs, etc.

HONOR/AWARDS

The Second Prize Scholarship of Graduate Student	2021.10
The Second Prize Scholarship of Graduate Student	2022.10
The Second Prize Scholarship of Graduate Student	2023.10
The 9th Energy Equipment Innovative Design Competition for China Postgraduate	2022.10
Legged Robot with Reconfigurable Jansen Mechanism	National First Prize
The 1st National Undergraduate Student Robot Competition	2023.12
Terrain Adaptive Wheel-legged Robot	National Second Prize

SKILLS

- Programming: Python, C/C++, Matlab
- Engineering Software: Solidworks, AutoCAD, Matlab/Simulink, Abaqus
- Develope Toolkits and Environments:: Git, Linux, ROS, Cmake, Pytorch, Isaac Gym, Pybullet