الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية الديوان الوطني للامتحانات والمسابقات

دورة: 2023

امتحان بكالوريا التعليم الثانوي

الشعبة: تسيير واقتصاد

المدة: 03 سا و30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

$$u_{n+1}=rac{3}{5}u_n-rac{6}{5}$$
 ، n ومن أجل كلّ عدد طبيعي $u_0=2$: المتتالية العددية المعرّفة ب

$$u_n > -3$$
 ، n برهن بالتراجع أنّه: من أجل كلّ عدد طبيعي (1

بيّن أنّ
$$(u_n)$$
 متناقصة تماما ثمّ استنتج أنّها متقاربة.

$$V_n = u_n + 3$$
 بنالية العددية المعرّفة على \mathbb{N} بنالية العددية المعرّفة على (V_n) (3

$$v_0$$
 أين أنّ المتتالية (v_n) هندسية أساسها $\frac{3}{5}$ يُطلب تعيين حدّها الأول

$$u_n=5igg(rac{3}{5}igg)^n-3$$
 ، n عيّن عبارة الحدّ العام v_n بدلالة v_n استنتج أنّه: من أجل كلّ عدد طبيعي v_n بدلالة v_n

$$\lim_{n\to +\infty} u_n$$
 احسب (ج

$$T_n = u_0 + u_1 + \dots + u_n$$
 و $S_n = v_0 + v_1 + \dots + v_n$ ، n نضع: من أجل كلّ عدد طبيعي (4 $T_n = \frac{19}{2} - 3n - \frac{15}{2} \left(\frac{3}{5}\right)^n$ ، n عدد طبيعي S_n عدد طبيعي S_n احسب S_n

التمرين الثاني: (04 نقاط)

$$(1-x)(10x^2+9x-1)=0$$
 المعادلة \mathbb{R} المعادلة (1)

$$10x^2 + 9x - 1 = (x+1)(10x-1)$$
 ، x عدد حقیقی عدد حقیقی با تحقّق أنّه: من أجل كلّ عدد حقیقی

$$(1 - \ln x)(10(\ln x)^2 + 9(\ln x) - 1) = 0$$
 أ) استنتج في المجال $(10(\ln x)^2 + 9(\ln x) - 1) = 0$ مجموعة حلول المعادلة (2

$$(1-e^x)(10e^{2x}+9e^x-1)\leq 0$$
 مجموعة حلول المتراجحة \mathbb{R} مجموعة حلول المتراجحة

$$\ln(10x^2+9x) \ge 0$$
 المتراجحة $]0;+\infty[$ المجال على المجال (3

اختبار في مادة: الرياضيات / الشعبة: تسيير واقتصاد / بكالوريا 2023

التمربن الثالث: (04 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كل حالة من الحالات الآتية مع التبرير.

$$n$$
 عدد طبيعي u_n المتتالية الحسابية التي حدّها الأول 3 وأساسها u_n . من أجل كلّ عدد طبيعي u_n

$$u_n = 3 - 4(n-1)$$
 ($u_n = 3 - 4n$ ($u_n = 3 \times (-4)^n$ ($u_n = 3 \times ($

$$f(x) = 1 + \ln(x+1)$$
 :ب $]-1;+\infty[$ الدّالة المعرّفة على المجال $f(x) = 1 + \ln(x+1)$

$$\left(O;\overline{i},\overline{j}\,
ight)$$
 تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس المستوي المنسوب إلى المعلم المتعامد والمتجانس المستوي

معادلةً لِمماس $\left(C_{f}
ight)$ عند النقطة ذات الفاصلة

$$y = x - 1 \quad (\Rightarrow \quad y = x + 1) \quad ($$

$$g(x) = 2x - \frac{1}{x}$$
 بـ: $g(x) = 2x - \frac{1}{x}$ بـ: $g(x) = 2x - \frac{1}{x}$ بالدّالة المعرّفة على المجال

دالتها الأصلية G على المجال $]0;+\infty$ والتي تنعدم من أجل القيمة $[0;+\infty]$

القيمة المتوسطة للدّالة
$$3(x+1)^2$$
 على المجال $[0;1]$ تساوي:

التمرين الرابع: (08 نقاط)

$$f(x) = x + 1 - \frac{3}{e^x + 1}$$
 بالدّالة المعرّفة على المجال $f(x) = 0$ بناء المعرّفة على المجال $f(x)$

 $(2\ cm\$ وحدة الطول) $(O;ec{i},ec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)

$$\lim_{x \to +\infty} f(x) = +\infty$$
 بيّن أنّ: (1)

$$+\infty$$
 عند (C_f) عند $y=x+1$ مقارب مائل لـ Δ عند (2) بيّن أنّ المستقيم Δ

$$\left(\Delta
ight)$$
 ادرس وضعية (C_{f}) بالنسبة إلى

$$f'(x) = 1 + \frac{3e^x}{(e^x + 1)^2}$$
 ، $[0; +\infty[$ من المجال x من عدد حقیقی عدد حقیقی (أ (3

ب) استنتج أنّ الدّالة f متزايدة تماما على المجال $[0;+\infty[$ ثمّ شكّل جدول تغيّراتها.

$$0,28 < \alpha < 0,29$$
 بيّن أنّ المعادلة $f(x) = 0$ تقبل حلا وحيدا α

$$(C_{\!f})$$
 و (Δ) ارسم (5

$$F(x)=3x-3\ln\left(e^x+1\right)$$
 بـ: $\left[0;+\infty\right[$ للمحرّفة على المجال المعرّفة على المجال F (6 $\left[0;+\infty\right[$ معلى المجال المجال $\left[0;+\infty\right[$ أصلية للدّالة $\left[0;+\infty\right[$ على المجال المجال المجال المحال المحال

$$[0,+\infty[$$
 تحقق ال F على المجان F الصلاية للذاته e^x+1

(
$$\Delta$$
) والمستقيمين اللذين معادلتاهما $x=\ln 2$ و $x=0$ والمستقيمين اللذين معادلتاهما $x=\ln 2$

اختبار في مادة: الرياضيات / الشعبة: تسيير واقتصاد / بكالوريا 2023

الموضوع الثانى

التمرين الأول: (04 نقاط)

 $u_{n+1}=rac{1}{4}u_n+3$ ، $u_{n}=u_n=0$ ومن أجل كلّ عدد طبيعي $u_0=0$ المتتالية العددية المعرّفة ب

 $u_n < 4$ ، n برهن بالتراجع أنّه: من أجل كلّ عدد طبيعي (1

بیّن أنّ (u_n) متزایدة تماما ثمّ استنتج أنّها متقاربة.

 $v_n=u_n-4$ بالمتتالية العددية المعرّفة على $\mathbb N$ بالمتتالية العددية المعرّفة المعرّفة على (v_n)

 v_0 أين أنّ المتتالية (v_n) هندسية أساسها أ $\frac{1}{4}$ يُطلب تعيين حدّها الأول أ

 $u_n=-2\left(rac{1}{4}
ight)^n+4$ ، n عيّن عبارة الحدّ العام v_n بدلالة v_n استنتج أنّه: من أجل كلّ عدد طبيعي v_n عين عبارة الحدّ العام

 $\lim_{n\to +\infty} u_n$ (=

 $T_n = u_0 + u_1 + \dots + u_n$ و $S_n = v_0 + v_1 + \dots + v_n$ ، n نضع: من أجل كلّ عدد طبيعي (4

 $T_n=4n+rac{4}{3}+rac{2}{3}igg(rac{1}{4}igg)^n$ ، n عدد طبیعی S_n عدد شریعی S_n احسب S_n

التمرين الثاني: (04 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كل حالة من الحالات الآتية مع التبرير.

 $e^{2x}+4e^{x}-5=0$ هي: المعادلة و $e^{2x}+4e^{x}$

 $\{-5;0\}$ (\Rightarrow $\{1;0\}$ (\downarrow

 $u_{n+1} = 5u_n - 4$ ، n عدد حقیقي و $u_0 = \alpha$ المتتالیة المعرّفة ب α (2 عدد طبیعي α) عدد حقیقي و α (2 تکون المتتالیة α (α) ثابتة من أجل:

 $\alpha = 1$ (\Rightarrow $\alpha = -4$ (\Rightarrow $\alpha = 5$ (\uparrow

 $f(x) = \frac{2e^x}{e^x + 1}$:ب \mathbb{R} على f (3

الدّالة الأصلية F على $\mathbb R$ للدّالة f والتي تنعدم من أجل القيمة $\mathbb R$ معرّفة بـ:

 $F(x) = \ln\left(\frac{e^x + 1}{2}\right)$ ($\Rightarrow F(x) = 2\ln(e^x + 1) - \ln 4$ ($\Rightarrow F(x) = -2\ln(e^x + 1) + \ln 4$ (\Rightarrow

:ساوي $\lim_{x\to +\infty} (x+1-e^x)$ (4

 $0 + \infty + \infty$

اختبار في مادة: الرياضيات / الشعبة: تسيير واقتصاد / بكالوريا 2023

التمرين الثالث: (04 نقاط)

$$x^3 - 6x^2 + 11x - 6 = 0$$
 المعادلة \mathbb{R} حلّ في

$$(\ln x)^3 - 6(\ln x)^2 + 11(\ln x) - 6 = 0$$
 أي استنتج في المجال $|0;+\infty|$ مجموعة حلول المعادلة (2

$$e^{3x}-6e^{2x}+11e^x-6=0$$
 استنتج في $\mathbb R$ مجموعة حلول المعادلة

$$\ln(x^3 - 6x^2 + 11x - 5) \ge 0$$
 المتراجحة $[2; +\infty]$ المجال على المجال (3

التمرين الرابع: (08 نقاط)

$$f(x) = x^2 - x - \ln x$$
 :ب] $0; +\infty$ الدّالة المعرّفة على المجال f

$$\left(o; \overrightarrow{i}, \overrightarrow{j} \,
ight)$$
 تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_{f} \,
ight)$

ا أيا احسب النتيجة هندسيا. $\lim_{x \to 0} f(x)$ النتيجة هندسيا.

$$\lim_{x \to +\infty} f(x) = +\infty : ٺنّ: \infty + = +\infty$$
 بيّن أَنّ:

$$f'(x) = \frac{(2x+1)(x-1)}{x}$$
 ، $]0; +\infty[$ من المجال x عدد حقیقی x من المجال عدد عقیقی (1) من المجال x

ب) استنتج أنّ الدّالة f متناقصة تماما على $[0\,;1]$ ومتزايدة تماما على $[1\,;+\infty[$ ثمّ شكّل جدول تغيّراتها.

$$2$$
 عيّن معادلة لـ $T)$ المماس للمنحني الفاصلة (C_f) عيّن معادلة لـ عيّن عادلة الفاصلة عيّن عادلة لـ عيّن عادلة الفاصلة (T)

$$(C_f)$$
 و (T) احسب (3) احسب (4

$$F(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 + x - x \ln x$$
 بالدّالة المعرّفة على المجال $[0; +\infty[$ بين المجال $[0; +\infty[$

$$]0;+\infty$$
ما المجال على المجال F أصلية للدالة أ

ب) احسب مساحة الحيّز المستوي المحدّد بالمنحني (
$$C_f$$
) وحامل محور الغواصل $x=3$ و المستقيمين اللذين معادلتاهما $x=3$

العلامة						
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)				
التمرين الأول (04 نقاط)						
1	0.25	البرهان بالتراجع: التحقق من صحة الخاصية الابتدائية	1			
-	0.75	إثبات صحّة الاستلزام (إثبات أنّ الخاصية وراثية)				
	0.25	$u_n + 3 > 0$ و $u_{n+1} - u_n = -\frac{2}{5}(u_n + 3)$ ، n من أجل كلّ عدد طبيعي	2			
0.5		إذن (u_n) متناقصة تماما				
	0.25	متناقصة تماما ومحدودة من الأسفل فهي متقاربة (u_n)				
	2 × 0.25	$v_0 = 5$ ، $v_{n+1} = \frac{3}{5}v_n$ ، $v_0 = 5$) من أجل كلّ عدد طبيعي (أ	3			
	0.5	$v_n = 5\left(\frac{3}{5}\right)^n$ ، n عدد طبیعي من أجل كلّ عدد طبیعي				
1.75	0.5	$u_n = 5\left(\frac{3}{5}\right)^n - 3$ ، n من أجل كلّ عدد طبيعي				
	0.25	$\lim_{n \to +\infty} \left(\frac{3}{5}\right)^n = 0 : $ لأن $\lim_{n \to +\infty} u_n = -3 $ (ج.)				
0.75	2 × 0.25	$S_n = v_0 \frac{1 - q^{n+1}}{1 - q} = \frac{25}{2} \left[1 - \left(\frac{3}{5} \right)^{n+1} \right]$ ، n من أجل كلّ عدد طبيعي n	4			
0.75	0.25	$T_n = S_n - 3(n+1) = \frac{19}{2} - 3n - \frac{15}{2} \left(\frac{3}{5}\right)^n$				
		التمرين الثاني (04 نقاط)				
1.75	4x0.25	$\left\{-1 \; ; \; rac{1}{10} \; ; \; 1 \; ight\}$: مجموعة حلول المعادلة هي $\Delta = 121$ (أ	1			
	0.75	$10x^2 + 9x - 1 = (x+1)(10x-1)$ ، x عدد حقیقی				
	3x0.25	$\left\{e^{-1};\;e^{rac{1}{10}};e^{1}\; ight\}:$ أ) مجموعة حلول المعادلة هي	2			
1.5	0.25	$(1-e^x)(e^x+1)(10e^x-1) \le 0$ تکافئ $(1-e^x)(10e^{2x}+9e^x-1) \le 0$ ب				
	0.25	$(1-e^x)(10e^x-1)$ إشارة				
	0.25	مجموعة الحلول هي $]\infty+[0]\cup[0;+\infty]$				
		ا ب رق ی ا در این ا				

ملاحظة: تُقبل وتُراعى جميع الطرائق الصحيحة الأخرى مع التقيد التام بسلم التنقيط

1	0.5	الاقتراح الصحيح هو: أ)	4			
	0.5	$\lim_{x \to +\infty} (x+1-e^x) = \lim_{x \to +\infty} x \left(1 + \frac{1}{x} - \frac{e^x}{x}\right) = -\infty : $				
التمرين الثالث (04 نقاط)						
2	1	$(x-2)(x^2-4x+3)=x^3-6x^2+11x-6$ ، x عدد حقیقی (أ) من أجل كلّ عدد حقیقی (أ)	1			
	4x0.25	$(x-2)(x^2-4x+3)=0$ تكافئ $x^3-6x^2+11x-6=0$ (ب $\Delta=4$ ، مجموعة الحلول هي : $\{1;2;3\}$				
1.5	3x0.25	ر مجموعة الحلول هي : $\{e^1;e^2;e^3\}$ الحلول هي (أ	2			
	3x0.25	$(e^{x}-1)(e^{x}-2)(e^{x}-3)=0$ تكافئ $e^{3x}-6e^{2x}+11e^{x}-6=0$ (ب) مجموعة الحلول هي $\{0; \ln 2; \ln 3\}$				
0.5	0.25	$x^3 - 6x^2 + 11x - 6 \ge 0$ تكافئ $\ln(x^3 - 6x^2 + 11x - 5) \ge 0$	3			
	0.25	$[2;+\infty[$ إشارة $x^3-6x^2+11x-6$ من أجل x حقيقي من المجال $[3;+\infty[$ مجموعة الحلول هي $[3;+\infty[$				
التمرين الرابع (08 نقاط)						
	0.75	$\lim f(x) = +\infty (1)$				
1.75	0.25	$x \stackrel{hh}{\to} 0$ المنحني (C_f) يقبل المستقيم ذا المعادلة $x = 0$ مقاربا له	1			
	0.75	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \left(x - 1 - \frac{\ln x}{x} \right) = +\infty (\downarrow)$				
2.75	1	$f'(x) = \frac{(2x+1)(x-1)}{x}$ ، $]0; +\infty[$ من أجل كلّ عدد حقيقي x من المجال	2			
	0.5	x و $f'(x)$ و و $f'(x)$ و و و و و و و و و و و و و و و و و و و				
	0.5	الدّالة f متناقصة تماما على $[0;1]$ ومتزايدة تماما على $[1;+\infty[$				
	0.75	$egin{array}{c ccccccccccccccccccccccccccccccccccc$				

الصفحة 5 من 6

1	2×0.5	$y = f'(2)(x-2) + f(2) = \frac{5}{2}x - 3 - \ln 2$ هي: (T) هيادلة ل	3
	0.25	$f(3) = 6 - \ln 3$	4
1	0.25	رسم (C_f) (C_f) (C_f) (C_f) روسم C_f (C_f) (C_f	
1.5	1	، $]0;+\infty[$ نقبل الاشتقاق على $]0;+\infty[$ ومن أجل كلّ عدد حقيقي x من $F'(x)=x^2-x-\ln x$	5
	2×0.25	$\int_{1}^{3} f(x) dx = [F(x)]_{1}^{3} = (\frac{20}{3} - 3\ln 3)u.a \qquad (-1)$	

ملاحظة: تُقبل وتُراعى جميع الطرائق الصحيحة الأخرى مع التقيّد التام بسلم التنقيط