

Author Index Volume 3 (1985)

(The issue number is given in front of page numbers)

Afsarinejad, K. , see Y. Dodge	(3) 187-200
Bailey, R.A. , A note on loosely balanced incomplete block designs ³	(2) 115-117
Bailey, R.A. , Response to R.F. Cromp and N.V. Findler ³	(2) 121-122
Baker, R.J., M.R.B. Clarke and P.W. Lane , Zero entries in contingency tables ²	(1) 33- 45
Baker, R.J., M.R.B. Clarke and P.W. Lane , Further comment on M.B. Brown and C. Fuchs, "On maximum likelihood estimation in sparse contingency tables" ³	(2) 125-127
Baker, R.J., M.R.B. Clarke and P.W. Lane , Comment on the Rejoinder by M.B. Brown and C. Fuchs ³	(2) 131
Barlow, W.E. and P. Feigl , Analyzing binomial data with a non-zero baseline using GLIM ³	(3) 201-204
Brown, M.B. and C. Fuchs , Rejoinder to Comment by Baker, Clarke and Lane ³	(2) 129-130
Brown, M.B. , Rejoinder to Kullback and Keegel note on the minimum discrimination information approach ³	(2) 143-144
Clarke, M.R.B. , see R.J. Baker	(1) 33- 45
Clarke, M.R.B. , see R.J. Baker	(2) 125-127
Clarke, M.R.B. , see R.J. Baker	(2) 131
Cléroux, R. , see P. Robert	(1) 25- 32
Cromp, R.F. and N.V. Findler , Rejoinder to R.A. Bailey's critique "A note on loosely balanced incomplete block designs" ³	(2) 119-120
Cromp, R.F. and N.V. Findler , Reply to R.A. Bailey's response ³	(2) 123-124
Denteneer, D. and A. Verbeek , A fast algorithm for iterative proportional fitting in log-linear models ¹	(4) 251-264
Dodge, Y. and K. Afsarinejad , Minimal 2 ⁿ connected factorial experiments ³	(3) 187-200
Feigl, P. , see W.E. Barlow	(3) 201-204
Findler, N.V. , see R.F. Cromp	(2) 119-120
Findler, N.V. , see R.F. Cromp	(2) 123-124
Fuchs, C. , see M.B. Brown	(2) 129-130
Gebski, V.J. , Some properties of splicing when applied to non-linear smoothers ¹	(3) 151-157
Gupta, R., R. Tripathi, J. Michalek and T. White , An exact test for the mean of a normal distribution with a known coefficient of variation ¹	(4) 219-226
Haber, M. Maximum likelihood methods for linear and log-linear models in categorical data ¹	(1) 1- 10

¹ Appeared in Section I (Methodology).

² Appeared in Section II (Applications and Comparative Studies).

³ Appeared in Section III (Notes).

Heilbrun, L.K. and D.L. McGee Sample size determination for the comparison of normal means when one sample size is fixed¹ (2) 99–102

Kappenman, R.F., Estimation for the three-parameter Weibull, lognormal and gamma distributions¹ (1) 11– 23

Keegel, J.C., see **S. Kullback** (2) 133–141

Keegel, J.C., see **S. Kullback** (2) 145–146

Kroonenberg, P.M., see **A. Verbeek** (3) 159–185

Kullback, S. and J.C. Keegel, The minimum discrimination information approach to the analysis of contingency tables³ (2) 133–141

Kullback, S. and J.C. Keegel, Response to M.B. Brown³ (2) 145–146

Lane, P.W., see **R.J. Baker** (1) 33– 45

Lane, P.W., see **R.J. Baker** (2) 125–127

Lane, P.W., see **R.J. Baker** (2) 131

Lesage, J.P. and S.D. Simon, Numerical accuracy of statistical algorithms for microcomputers² (1) 47– 57

Matuszewski, A. and D. Sotres, A basic statistical problem: Confidence interval for the Bernoulli parameter² (2) 103–114

Matuszewski, A. and D. Sotres, A simple test for the Behrens–Fisher problem¹ (4) 241–249

McGee, D.L., see **L.K. Heilbrun** (2) 99–102

Michalek, J., see **R. Gupta** (4) 219–226

Ranger, N., see **P. Robert** (1) 25– 32

Robert, P., R. Cléroux and N. Ranger, Some results on vector correlation¹ (1) 25– 32

Sadler, W.A. and M.H. Smith, A reliable method of estimating the variance function in immunoassay¹ (4) 227–239

Simon, S.D., see **J.P. Lesage** (1) 47– 57

Smith, M.H., see **W.A. Sadler** (4) 227–239

Sotres, D., see **A. Matuszewski** (2) 103–114

Sotres, D., see **A. Matuszewski** (4) 241–249

Tango, T., Statistical model of changes in repeated multivariate measurements associated with the development of disease¹ (2) 77– 88

Tripathi, R., see **R. Gupta** (4) 219–226

Verbeek, A. and P.M. Kroonenberg, A survey of algorithms for exact distributions of test statistics in $r \times c$ contingency tables with fixed margins² (3) 159–185

Verbeek, A., see **D. Denteneer** (4) 251–264

Wang, C.M., Applications and computing of mosaics¹ (2) 89– 97

White, T., see **R. Gupta** (4) 219–226

Package Report/Review Index Volume 3 (1985)

(The issue number is given in front of page numbers)

Elsevier Scientific Software	(1) 60
OMNISENSE	(4) 274
P-STAT on IBM PC/XT and PC/AT	(1) 67
P-STAT 8	(1) 68
QScan	(4) 275
SAS/AF Software for end users	(3) 213
SAS/IML Software	(3) 214
SAS System on IBM PC	(3) 212
SAS Version 5	(3) 215
SPSS Graphics for DEX VAX/VMS	(3) 210
SPSS/PC +	(4) 277
SPSS Tables Software	(4) 208
SPSS-X software for VAX	(1) 72
Statpro for the IBM PC	(1) 59
StatWorks for Macintosh	(3) 207

