ASSESMENT 2

21BCE0516

ANUSHKA

anushka.2021a@vitstudent.ac.in (mailto:anushka.2021a@vitstudent.ac.in)

1. Download the dataset: House Price India dataset is downloaded.

```
In [4]: import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import rcParams
import seaborn as sns
```

2. Load The dataset

```
In [5]: df = pd.read_csv('House Price India.csv')
    df.head()
```

Out[5]:

	id	Date	number of bedrooms	number of bathrooms	living area	lot area	number of floors	waterfront present	number of views	condi of hc
(6762810145	42491	5	2.50	3650	9050	2.0	0	4	
•	6762810635	42491	4	2.50	2920	4000	1.5	0	0	
2	2 6762810998	42491	5	2.75	2910	9480	1.5	0	0	
3	6762812605	42491	4	2.50	3310	42998	2.0	0	0	
4	6762812919	42491	3	2.00	2710	4500	1.5	0	0	

5 rows × 23 columns

3. Perform the Below Visualizations. □ Univariate Analysis □ Bi - Variate Analysis □ Multivariate Analysis

Typesetting math: 0%

```
In [6]: # Univariate Analysis (Analysis on single feature 'living area')
    plt.figure(figsize=(8, 5))
    plt.hist(df['living area'], bins=10, edgecolor='k', alpha=0.7)
    plt.title('Histogram of Living Area')
    plt.xlabel('Living Area')
    plt.ylabel('Frequency')
    plt.show()
```



```
In [7]: #Bi-variate analysis
    plt.figure(figsize=(8, 5))
    plt.scatter(df['lot area'], df['Price'], alpha=0.7)
    plt.title('Scatter Plot of Lot Area vs. Price')
    plt.xlabel('Lot Area')
    plt.ylabel('Price')
    plt.grid(True) # Add grid Lines
    plt.show()
```


In [11]: # Multivariate analysis
sns.pairplot(df)

Out[11]: <seaborn.axisgrid.PairGrid at 0x1f41fc01f50>

4. Perform descriptive statistics on the dataset

Typesetting math: 0%

In [8]: df.describe()

Out[8]:

	id	Date	number of bedrooms	number of bathrooms	living area	lot area	
count	1.462000e+04	14620.000000	14620.000000	14620.000000	14620.000000	1.462000e+04	14
mean	6.762821e+09	42604.538646	3.379343	2.129583	2098.262996	1.509328e+04	
std	6.237575e+03	67.347991	0.938719	0.769934	928.275721	3.791962e+04	
min	6.762810e+09	42491.000000	1.000000	0.500000	370.000000	5.200000e+02	
25%	6.762815e+09	42546.000000	3.000000	1.750000	1440.000000	5.010750e+03	
50%	6.762821e+09	42600.000000	3.000000	2.250000	1930.000000	7.620000e+03	
75%	6.762826e+09	42662.000000	4.000000	2.500000	2570.000000	1.080000e+04	
max	6.762832e+09	42734.000000	33.000000	8.000000	13540.000000	1.074218e+06	

8 rows × 23 columns

 \blacktriangleleft

5. Handle the Missing values.

In [9]: df.isnull().any() #check n if no null values we don't have to handle it.

Out[9]:	id	False
	Date	False
	number of bedrooms	False
	number of bathrooms	False
	living area	False
	lot area	False
	number of floors	False
	waterfront present	False
	number of views	False
	condition of the house	False
	grade of the house	False
	Area of the house(excluding basement)	False
	Area of the basement	False
	Built Year	False
	Renovation Year	False
	Postal Code	False
	Lattitude	False
	Longitude	False
	living_area_renov	False
	lot_area_renov	False
	Number of schools nearby	False
	Distance from the airport	False
	Price	False
	dtype: bool	