Lecture 8: Supervised Burden Tests and Variance Component Test for Rare Variants

Timothy Thornton and Michael Wu

Summer Institute in Statistical Genetics 2015

Lecture Overview

- 1. Collapsing/Burden Tests, continued
 - 1.1 Supervised Burden Tests
- 2. Variance Component Tests

Recall: Region Based Analysis of Rare Variants

- Single variant test is not powerful to identify rare variant associations
- Strategy: Region based analysis
 - ► Test the joint effect of rare/common variants in a gene/region while adjusting for covariates.

Major Classes of Tests

- Burden/Collapsing tests
- Supervised/Adaptive Burden/Collapsing tests
- Variance component (similarity) based tests
- Omnibus tests: hedge against difference scenarios

Burden Tests So Far

- Tests
 - Binary Collapsing: CAST
 - CMC
 - Count Collapsing: MZ (GRANVIL)
 - Weighted Sum Test
- Power of burden tests depends on
 - Number of associated variants
 - Number of non-associated variants
 - Direction of the effects.
- Powerful if most variants are causal and have effects in the same direction.

Burden vs. Single Variant Test

	Single Variant Test	Combined Test
10 variants / all have risk 2 / All have frequency .005	.05	.86
10 variants / all have risk 2 / Unequal Frequencies	.20	.85
10 variants / average risk is 2, but varies / frequency .005	.11	.97

[Li and Leal (2008) AJHG]

- Power from simulated data
- Combining variants can greatly increase the power.

Burden vs. Single Variant Test

	Single Variant Test	Combined Test
10 disease associated variants	.05	.86
10 disease associated variants + 5 null variants	.04	.70
10 disease associated variants + 10 null variants	.03	.55
10 disease associated variants + 20 null variants	.03	.33

[Li and Leal (2008) AJHG]

- Null variants reduce the power.
- Existence of variants whose effects are in different directions can reduce power more substantially (Next Topic).

Burden Test: Mixed effect directions

▶ Lose power if variants have positive and negative effects.

Burden Test: Mixed effect directions

▶ Lose power if variants have positive and negative effects.

G ₁	G	G ₃	G ₄		С
1	0	0	0		1
0	1	0	0		1
0	0	0	0		0
0	0	0	0		0
0	0	1	0		1
0	0	0	1		1
	1 0 0	1 0 0 1 0 0 0 0 0 0	1 0 0 0 1 0 0 0 0 0 0 0 0 0 1	0 1 0 0 0 0 0 0 0 0 0 0 0 0 1	1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Rare Variant Association Tests: Supervised Burden tests

Burden Test: Mixed effect directions

- Several methods have been developed to estimate association directions and incorporate them in the burden test framework.
 - Adaptive Sum Test
 - Estimated regression coefficient (EREC) test

Rare Variant Association Tests: Supervised Burden tests

Adaptive sum test

Han F and Pan W. (2010) Hum Hered

► Model:

$$C_i = \sum_{j=1}^{p} w_j g_{ij}$$
 $logit(Pr(Y = 1)) = \alpha_0 + C_i \beta$

Fit individual SNP models

$$logit(Pr(Y=1)) = \alpha_0 + g_j\beta_j$$

- Assign $w_i = -1$ if $\widehat{\beta}_i < 0$ and the p-value is small
- $w_j = 1$ otherwise.

Rare Variant Association Tests: Supervised Burden tests

Adaptive sum test

- Compute p-values using permutation.
- Step-up procedure assign $w_j = 0$ if g_j is unlikely associated with the trait (Hoffmann *et al.*Plos One, 2010)

Estimated regression coefficient (EREC) test

Lin DY. and Tang Z. (2011) AJHG

Estimate regression coefficient β and use it as a weight.

$$C_i = \sum_{j=1}^p w_j g_{ij}, \quad w_j = \widehat{\beta}_j$$

- ▶ Motivation: True β_j is the optimal weight
- lacktriangle Estimate \widehat{eta}_j by fitting individual SNP regression models
- Use $w_j = \beta_j + \delta$ when the sample size is small (n< 2000)

Estimated regression coefficient (EREC) test

Calculate

$$C_i = \sum_{j=1}^p w_j g_{ij}, \quad w_j = \widehat{\beta}_j$$

Test statistic:

$$T_{EREC} = \sum_{i=1}^{n} C_i (y_i - \widehat{\mu}_{0,i}).$$

- Use score test statistics
- P-values from the parametric bootstrap.

Collapsing/Burden Tests, Continued

Rare Variant Association Tests: Supervised Burden tests

Estimated regression coefficient (EREC) test

- ► Cons:
 - Individual SNP regression models are difficult to fit for very rare variants.
 - ▶ The constant δ is arbitrary.

Lecture 8: Supervised Burden Tests and Variance Component Test for Rare Variants LCollapsing/Burden Tests, Continued

Rare Variant Association Tests: Supervised Burden tests

Adaptive burden test

- Adaptive burden tests have robust power.
- Compute p-values through permutation or bootstrap
 - Computationally intensive

Rare variants test: Variance component test

Variance component test

- Burden tests are not powerful, if there exist variants with different association directions or many non-causal variants
- ▶ Variance component tests have been proposed to address it.
- "Similarity" based test

C-alpha test

Neale BM, et al.(2011). Plos Genet.

- Case-control studies without covariates.
- ▶ Assume the jth variant is observed n_{j1} times, with r_{j1} times in cases.

а	Α	Total
r_{j1}	r _{j2}	r
s_{j1}	s_{j2}	S
n_{j1}	n_{j2}	n
	r _{j1}	r_{j1} r_{j2} s_{j1} s_{j2}

▶ Under H₀

$$r_{j1} \sim Binomial(n_{j1}, q) \quad (q = r/n)$$

Rare variants test: Variance component test

C-alpha test

► Risk increasing variant:

$$r_{j1}-qn_{j1}>0$$

Risk decreasing variant:

$$r_{j1}-qn_{j1}<0$$

Test statistic:

$$T_{\alpha} = \sum_{j=1}^{p} (r_{j1} - q n_{j1})^2 - \sum_{j=1}^{p} n_{j1} q (1-q)$$

► This test is robust in the presence of the opposite association directions.

C-alpha test

Weighting scheme

$$T_{\alpha} = \sum_{j=1}^{p} w_j (r_{j1} - q n_{j1})^2 - \sum_{j=1}^{p} w_j n_{j1} q (1-q)$$

- ► Test for the over-dispersion due to genetic effects
 - ▶ Neyman's $C(\alpha)$ test.

C-alpha test, P-value calculation

Using normal approximation, since the test statistic is the sum of random variables.

$$T_{\alpha} = \sum_{j=1}^{p} (r_{j1} - q n_{j1})^2 - \sum_{j=1}^{p} n_{j1} q (1-q)$$

- ▶ Doesn't work well when *p* is small (or moderate).
 - P-value is computed using permutation.

Rare variants test: Variance component test

C-alpha test

- C-alpha test is robust in the presence of the different association directions
- ► Disadvantages:
 - Permutation is computationally expensive.
 - Cannot adjust for covariates.

Sequence Kernal Association Test (SKAT)

Wu et al.(2010, 2011). AJHG

Recall the original regression models:

$$\mu_i/logit(\mu_i) = \alpha_0 + \mathbf{X}_i^T \boldsymbol{\alpha} + \mathbf{G}_i^T \boldsymbol{\beta}$$

- Variance component test:
 - Assume $\beta_j \sim dist.(0, w_i^2 \tau)$.
 - $H_0: \beta_1 = \cdots = \beta_p = 0 <=> H_0: \tau = 0.$

Sequence Kernel Association Test (SKAT)

- ▶ $β_j \sim dist.(0, w_j^2 τ)$: τ = 0 is on the boundary of the hypothesis.
- Score test statistic for $\tau = 0$:

$$Q_{SKAT} = (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0)' \mathbf{K} (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0),$$

▶ $\mathbf{K} = \mathbf{GWWG}'$: weighted linear kernel $(\mathbf{W} = diag[w_1, \dots, w_p])$.

Sequence Kernel Association Test (SKAT)

- ► The C-alpha test is a special case of SKAT
 - ▶ With no covariates and flat weights:

$$Q_{SKAT} = \sum_{j=1}^{p} (r_{j1} - q n_{j1})^2$$

SKAT

Q_{SKAT} is a weighted sum of single variant score statistics

$$Q_{SKAT} = (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0)' \mathbf{GWWG}' (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0)$$
$$= \sum_{j=1}^{p} w_j^2 [\mathbf{g}_j' (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0)] = \sum_{j=1}^{p} w_j^2 U_j^2$$

where $U_j = \sum_{i=1}^n g_{ij}(y_i - \widehat{\mu}_{0i})$.

 $ightharpoonup U_i$ is a score of individual SNP j only model:

$$\mu_i/logit(\mu_i) = \alpha_0 + \mathbf{X}_i^T \boldsymbol{\alpha} + \mathbf{g}_{ij}\beta_j$$

SKAT

▶ Q_{SKAT} (asymptotically) follows a mixture of χ^2 distribution under the NULL.

$$\begin{split} Q &= (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0)' \mathbf{K} (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0) \\ &= (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0)' \widehat{\mathbf{V}}^{-1/2} \widehat{\mathbf{V}}^{1/2} \mathbf{K} \widehat{\mathbf{V}}^{1/2} \widehat{\mathbf{V}}^{-1/2} (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0) \\ &= \sum_{j=1}^{p} \lambda_j [\mathbf{u}_j' \widehat{\mathbf{V}}^{-1/2} (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0)]^2 \\ &\approx \sum_{j=1}^{p} \lambda_j \chi_{1,j}^2 \end{split}$$

Rare variants test: Variance component test

SKAT

 λ_j and \mathbf{u}_j are eigenvalues and eigenvectors of $\mathbf{P}^{1/2}\mathbf{K}\mathbf{P}^{1/2}$. where $\mathbf{P} = \widehat{\mathbf{V}}^{-1} - \widehat{\mathbf{V}}^{-1}\widetilde{\mathbf{X}}(\widetilde{\mathbf{X}}'\widehat{\mathbf{V}}^{-1}\widetilde{\mathbf{X}})^{-1}\widetilde{\mathbf{X}}'\widehat{\mathbf{V}}^{-1}$ is the project matrix to account that α is estimated.

SKAT: P-value calculation

- P-values can be computed by inverting the characteristic function using Davies' method (1973, 1980)
 - Characteristic function

$$\varphi_{\mathsf{x}}(t) = \mathsf{E}(\mathsf{e}^{\mathsf{i}\mathsf{t}\mathsf{x}}).$$

▶ Characteristic function of $\sum_{j=1}^{p} \lambda_{j} \chi_{1,j}^{2}$

$$\varphi_{\mathsf{x}}(t) = \prod_{i=j}^{p} (1 - 2\lambda_{j}it)^{-1/2}.$$

Inversion Formula

$$P(X < u) = \frac{1}{2} - \frac{1}{\pi} \int_0^\infty \frac{Im[e^{-itu}\varphi_X(t)]}{t} dt.$$

- When the sample size is small and the trait is binary, asymptotics does not work well.
- SKAT test statistic:

$$\begin{aligned} Q_{SKAT} &= (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0)' \mathbf{K} (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0) \\ &= \sum_{v=1}^p \lambda_v \eta_v^2, \end{aligned}$$

 \triangleright η_v s are asymptotically independent and follow N(0,1).

Rare variants test: Variance component test

Small sample adjustment

- ▶ When the trait is binary and the sample size is small:
 - $Var(\eta_v) < 1$.
 - η_v s are negatively correlated.

▶ Mean and variance of the Q_{SKAT}

	Mean	Variance
Large Sample Small Sample	$\sum_{\sum \lambda_j} \lambda_j$	$\sum_{j} \lambda_{j}^{2} \\ \sum_{j} \lambda_{j} \lambda_{k} c_{jk}$

▶ Adjust null distribution of *Q_{SKAT}* using the estimated small sample variance.

- Variance adjustment is not enough to accurately approximate far tail areas.
- Kurtosis adjustment:
 - ► Estimate the kurtosis of *Q_{SKAT}* using parametric bootstrapping:
 - $ightharpoonup \widehat{\gamma}$ (estimated kurtosis)
 - ▶ D.F. estimator: $\widehat{df} = 12/\widehat{\gamma}$
 - Null distribution

$$(Q_{SKAT} - \sum \lambda_j^2) \frac{\sqrt{2 \widehat{df}}}{\sqrt{\sum \lambda_j \lambda_k c_{jk}}} + \widehat{df} \sim \chi_{\widehat{df}}^2$$

Figure: ARDS data (89 samples)

General SKAT

General SKAT Model:

$$\mu_i/logit(\mu_i) = \alpha_0 + X_i\alpha + h_i$$

where $h_i \sim GP(0, \tau K)$.

▶ Kernel $K(\mathbf{G}_i, \mathbf{G}_{i'})$ measures genetic similarity between two subjects.

General SKAT

- Examples:
 - ▶ Linear kernel=linear effect

$$K(\mathbf{Z}_{i},\mathbf{Z}_{i'}) = w_{1}^{2} Z_{i1} Z_{i'1} + \cdots w_{p}^{2} Z_{ip} Z_{i'p}$$

▶ IBS Kernel (Epistatic Effect: SNP-SNP interactions)

$$K(\mathbf{Z}_i, \mathbf{Z}_j) = \frac{\sum_{k=1}^{p} w_k^2 IBS(Z_{ik}, Z_{jk})}{2p}$$