Guaranteed Learning of Latent Variable Models through Spectral and Tensor Methods

Anima Anandkumar

U.C. Irvine

Application 1: Clustering

- Basic operation of grouping data points.
- Hypothesis: each data point belongs to an unknown group.

Application 1: Clustering

- Basic operation of grouping data points.
- Hypothesis: each data point belongs to an unknown group.

Probabilistic/latent variable viewpoint

- The groups represent different distributions. (e.g. Gaussian).
- Each data point is drawn from one of the given distributions. (e.g. Gaussian mixtures).

Application 2: Topic Modeling

Document modeling

- Observed: words in document corpus.
- Hidden: topics.
- Goal: carry out document summarization.

Application 3: Understanding Human Communities

Social Networks

- Observed: network of social ties, e.g. friendships, co-authorships
- Hidden: groups/communities of actors.

Application 4: Recommender Systems

Recommender System

- Observed: Ratings of users for various products, e.g. yelp reviews.
- Goal: Predict new recommendations.
- Modeling: Find groups/communities of users and products.

Application 5: Feature Learning

Label		Features				
	0	2.1	5.2	0	0	
	1	0	0	2	1	
	1	1.1	0	0	0 —	
	0	0	0	7	0	
					_	

Feature Engineering

- Learn good features/representations for classification tasks, e.g. image and speech recognition.
- Sparse representations, low dimensional hidden structures.

Application 6: Computational Biology

- Observed: gene expression levels
- Goal: discover gene groups
- Hidden variables: regulators controlling gene groups

How to model hidden effects?

Basic Approach: mixtures/clusters

• Hidden variable *h* is categorical.

Advanced: Probabilistic models

- ullet Hidden variable h has more general distributions.
- Can model mixed memberships.

This talk: basic mixture model. Tomorrow: advanced models.

Basic goal in all mentioned applications

Discover hidden structure in data: unsupervised learning.

Basic goal in all mentioned applications

Discover hidden structure in data: unsupervised learning.

Challenge: Conditions for Identifiability

- When can model be identified (given infinite computation and data)?
- Does identifiability also lead to tractable algorithms?

Basic goal in all mentioned applications

Discover hidden structure in data: unsupervised learning.

Challenge: Conditions for Identifiability

- When can model be identified (given infinite computation and data)?
- Does identifiability also lead to tractable algorithms?

Challenge: Efficient Learning of Latent Variable Models

- Maximum likelihood is NP-hard.
- Practice: EM, Variational Bayes have no consistency guarantees.
- Efficient computational and sample complexities?

Basic goal in all mentioned applications

Discover hidden structure in data: unsupervised learning.

Challenge: Conditions for Identifiability

- When can model be identified (given infinite computation and data)?
- Does identifiability also lead to tractable algorithms?

Challenge: Efficient Learning of Latent Variable Models

- Maximum likelihood is NP-hard.
- Practice: EM, Variational Bayes have no consistency guarantees.
- Efficient computational and sample complexities?

In this series: guaranteed and efficient learning through spectral methods

This talk

• Start with the most basic latent variable model: Gaussian mixtures.

- Start with the most basic latent variable model: Gaussian mixtures.
- Basic spectral approach: principal component analysis (PCA).

- Start with the most basic latent variable model: Gaussian mixtures.
- Basic spectral approach: principal component analysis (PCA).
- Beyond correlations: higher order moments.

- Start with the most basic latent variable model: Gaussian mixtures.
- Basic spectral approach: principal component analysis (PCA).
- Beyond correlations: higher order moments.
- Tensor notations, PCA extension to tensors.

- Start with the most basic latent variable model: Gaussian mixtures.
- Basic spectral approach: principal component analysis (PCA).
- Beyond correlations: higher order moments.
- Tensor notations, PCA extension to tensors.
- Guaranteed learning of Gaussian mixtures.

- Start with the most basic latent variable model: Gaussian mixtures.
- Basic spectral approach: principal component analysis (PCA).
- Beyond correlations: higher order moments.
- Tensor notations, PCA extension to tensors.
- Guaranteed learning of Gaussian mixtures.
- Introduce topic models. Present a unified viewpoint.

- Start with the most basic latent variable model: Gaussian mixtures.
- Basic spectral approach: principal component analysis (PCA).
- Beyond correlations: higher order moments.
- Tensor notations, PCA extension to tensors.
- Guaranteed learning of Gaussian mixtures.
- Introduce topic models. Present a unified viewpoint.
- Tomorrow: using tensor methods for learning latent variable models and analysis of tensor decomposition method.

- Start with the most basic latent variable model: Gaussian mixtures.
- Basic spectral approach: principal component analysis (PCA).
- Beyond correlations: higher order moments.
- Tensor notations, PCA extension to tensors.
- Guaranteed learning of Gaussian mixtures.
- Introduce topic models. Present a unified viewpoint.
- Tomorrow: using tensor methods for learning latent variable models and analysis of tensor decomposition method.
- Wednesday: implementation of tensor methods.

Resources for Today's Talk

- "A Method of Moments for Mixture Models and Hidden Markov Models." by A., D. Hsu, and S.M. Kakade. Proc. of COLT, June 2012.
- "Tensor Decompositions for Learning Latent Variable Models." by A., R. Ge, D. Hsu, S.M. Kakade and M. Telgarsky, Oct. 2012.
- Resources available at http://newport.eecs.uci.edu/anandkumar/MLSS.html

Outline

- Introduction
- 2 Warm-up: PCA and Gaussian Mixtures
- 3 Higher order moments for Gaussian Mixtures
- 4 Tensor Factorization Algorithm
- **5** Learning Topic Models
- 6 Conclusion

Warm-up: PCA

Optimization problem

For (centered) points $x_i \in \mathbb{R}^d$, find projection P with $\mathrm{Rank}(P) = {\color{red}k}$ s.t.

$$\min_{P \in \mathbb{R}^{d \times d}} \frac{1}{n} \sum_{i \in [n]} ||x_i - Px_i||^2.$$

Warm-up: PCA

Optimization problem

For (centered) points $x_i \in \mathbb{R}^d$, find projection P with $\mathrm{Rank}(P) = \mathbf{k}$ s.t.

$$\min_{P \in \mathbb{R}^{d \times d}} \frac{1}{n} \sum_{i \in [n]} ||x_i - Px_i||^2.$$

Result: If $S = \operatorname{Cov}(X)$ and $S = U\Lambda U^{\top}$ is eigen decomposition, we have $P = U_{(k)}U_{(k)}^{\top}$, where $U_{(k)}$ are top-k eigen vectors.

Warm-up: PCA

Optimization problem

For (centered) points $x_i \in \mathbb{R}^d$, find projection P with $\mathrm{Rank}(\underline{P}) = \underline{k}$ s.t.

$$\min_{P \in \mathbb{R}^{d \times d}} \frac{1}{n} \sum_{i \in [n]} ||x_i - Px_i||^2.$$

Result: If $S = \operatorname{Cov}(X)$ and $S = U\Lambda U^{\top}$ is eigen decomposition, we have $P = U_{(k)}U_{(k)}^{\top}$, where $U_{(k)}$ are top-k eigen vectors.

Proof

- By Pythagorean theorem: $\sum_i \|x_i Px_i\|^2 = \sum_i \|x_i\|^2 \sum_i \|Px_i\|^2$.
- Maximize: $\frac{1}{n} \sum_{i} ||Px_{i}||^{2} = \frac{1}{n} \sum_{i} \operatorname{Tr} \left[Px_{i}x_{i}^{\top} P^{\top} \right] = \operatorname{Tr}[PSP^{\top}].$

Review of linear algebra

For a matrix S, u is an eigenvector if $Su=\lambda u$ and λ is eigenvalue.

- ullet For symm. $S \in \mathbb{R}^{d \times d}$, there are d eigen values.
- $S = \sum_{i \in [d]} \lambda_i u_i u_i^{\mathsf{T}}$. U is orthogonal.

Review of linear algebra

For a matrix S, u is an eigenvector if $Su=\lambda u$ and λ is eigenvalue.

- ullet For symm. $S \in \mathbb{R}^{d \times d}$, there are d eigen values.
- $S = \sum_{i \in [d]} \lambda_i u_i u_i^{\mathsf{T}}$. U is orthogonal.

Rayleigh Quotient

For matrix S with eigenvalues $\lambda_1 \geq \lambda_2 \dots \lambda_d$ and corresponding eigenvectors $u_1, \dots u_d$, then

$$\max_{\|z\|=1} z^{\mathsf{T}} S z = \lambda_1, \quad \min_{\|z\|=1} z^{\mathsf{T}} S z = \lambda_d,$$

and the optimizing vectors are u_1 and u_d .

Review of linear algebra

For a matrix S, u is an eigenvector if $Su=\lambda u$ and λ is eigenvalue.

- ullet For symm. $S \in \mathbb{R}^{d \times d}$, there are d eigen values.
- $S = \sum_{i \in [d]} \lambda_i u_i u_i^{\mathsf{T}}$. U is orthogonal.

Rayleigh Quotient

For matrix S with eigenvalues $\lambda_1 \geq \lambda_2 \dots \lambda_d$ and corresponding eigenvectors $u_1, \dots u_d$, then

$$\max_{\|z\|=1} z^{\mathsf{T}} S z = \lambda_1, \quad \min_{\|z\|=1} z^{\mathsf{T}} S z = \lambda_d,$$

and the optimizing vectors are u_1 and u_d .

Optimal Projection

$$\max_{\substack{P:P^2=I\\ \mathrm{Rank}(P)=k}} \mathrm{Tr}(P^\top SP) = \lambda_1 + \lambda_2 \ldots + \lambda_k \text{ and } P \text{ spans } \{u_1,\ldots,u_k\}.$$

- k Gaussians: each sample is x = Ah + z.
- $h \in [e_1, \dots, e_k]$, the basis vectors. $\mathbb{E}[h] = w$.
- $A \in \mathbb{R}^{d \times k}$: columns are component means.
- Let $\mu := Aw$ be the mean.
- $z \sim \mathcal{N}(0, \sigma^2 I)$ is white Gaussian noise.

- k Gaussians: each sample is x = Ah + z.
- $h \in [e_1, \ldots, e_k]$, the basis vectors. $\mathbb{E}[h] = w$.
- $A \in \mathbb{R}^{d \times k}$: columns are component means.
- Let $\mu := Aw$ be the mean.
- $z \sim \mathcal{N}(0, \sigma^2 I)$ is white Gaussian noise.

$$\mathcal{N}(0, \sigma^2 I)$$
 is white Gaussian noise.
$$\mathbb{E}[(x - \mu)(x - \mu)^\top] = \sum_{i \in [k]} w_i (a_i - \mu) (a_i - \mu)^\top + \sigma^2 I.$$

- k Gaussians: each sample is x = Ah + z.
- $h \in [e_1, \ldots, e_k]$, the basis vectors. $\mathbb{E}[h] = w$.
- $A \in \mathbb{R}^{d \times k}$: columns are component means.
- Let $\mu := Aw$ be the mean.
- $z \sim \mathcal{N}(0, \sigma^2 I)$ is white Gaussian noise.

$$\mathbb{E}[(x-\mu)(x-\mu)^{\top}] = \sum_{i \in [k]} w_i (a_i - \mu) (a_i - \mu)^{\top} + \sigma^2 I.$$

How the above equation is obtained

$$\mathbb{E}[(x-\mu)(x-\mu)^{\top}] = \mathbb{E}[(Ah-\mu)(Ah-\mu)^{\top}] + \mathbb{E}[zz^{\top}]$$

= $\sum_{i \in [k]} w_i (a_i - \mu)(a_i - \mu)^{\top} + \sigma^2 I.$

$$\mathbb{E}[(x-\mu)(x-\mu)^{\top}] = \sum_{i \in [k]} w_i (a_i - \mu) (a_i - \mu)^{\top} + \sigma^2 I.$$

• The vectors $\{a_i - \mu\}$ are linearly dependent: $\sum_i w_i(a_i - \mu) = 0$. The PSD matrix $\sum_{i \in [k]} w_i(a_i - \mu)(a_i - \mu)^{\top}$ has rank $\leq k - 1$.

$$\mathbb{E}[(x-\mu)(x-\mu)^{\top}] = \sum_{i \in [k]} w_i (a_i - \mu) (a_i - \mu)^{\top} + \sigma^2 I.$$

- The vectors $\{a_i \mu\}$ are linearly dependent: $\sum_i w_i(a_i \mu) = 0$. The PSD matrix $\sum_{i \in [k]} w_i(a_i \mu)(a_i \mu)^{\top}$ has rank $\leq k 1$.
- (k-1)-PCA on covariance matrix $\cup \{\mu\}$ yields span(A).
- Lowest eigenvalue of covariance matrix yields σ^2 .

$$\mathbb{E}[(x-\mu)(x-\mu)^{\top}] = \sum_{i \in [k]} w_i (a_i - \mu) (a_i - \mu)^{\top} + \sigma^2 I.$$

- The vectors $\{a_i \mu\}$ are linearly dependent: $\sum_i w_i(a_i \mu) = 0$. The PSD matrix $\sum_{i \in [k]} w_i(a_i \mu)(a_i \mu)^{\top}$ has rank $\leq k 1$.
- (k-1)-PCA on covariance matrix $\cup \{\mu\}$ yields span(A).
- Lowest eigenvalue of covariance matrix yields σ^2 .

How to Learn A?

Learning through Spectral Clustering

Learning A through Spectral Clustering

- Project samples x on to span(A).
- Distance-based clustering (e.g. *k*-means).
- A series of works, e.g. Vempala & Wang.

Learning through Spectral Clustering

Learning A through Spectral Clustering

- Project samples x on to span(A).
- Distance-based clustering (e.g. *k*-means).
- A series of works, e.g. Vempala & Wang.

Failure to cluster under large variance.

Learning Gaussian Mixtures Without Separation Constraints?

• How to learn the component means A (not just its span) without separation constraints?

- How to learn the component means A (not just its span) without separation constraints?
- PCA is a spectral method on (covariance) matrices.
 - Are higher order moments helpful?

- How to learn the component means A (not just its span) without separation constraints?
- PCA is a spectral method on (covariance) matrices.
 - ► Are higher order moments helpful?
- What if number of components is greater than observed dimensionality k > d?

- How to learn the component means A (not just its span) without separation constraints?
- PCA is a spectral method on (covariance) matrices.
 - Are higher order moments helpful?
- What if number of components is greater than observed dimensionality k > d?
 - ▶ Do higher order moments help to learn overcomplete models?

- How to learn the component means A (not just its span) without separation constraints?
- PCA is a spectral method on (covariance) matrices.
 - ► Are higher order moments helpful?
- What if number of components is greater than observed dimensionality k > d?
 - ▶ Do higher order moments help to learn overcomplete models?
- What if the data is not Gaussian?

- How to learn the component means A (not just its span) without separation constraints?
- PCA is a spectral method on (covariance) matrices.
 - ► Are higher order moments helpful?
- What if number of components is greater than observed dimensionality k > d?
 - ▶ Do higher order moments help to learn overcomplete models?
- What if the data is not Gaussian?
 - Moment-based Estimation of probabilistic latent variable models?

Outline

- Introduction
- Warm-up: PCA and Gaussian Mixtures
- 3 Higher order moments for Gaussian Mixtures
- Tensor Factorization Algorithm
- **5** Learning Topic Models
- 6 Conclusion

Tensor Notation for Higher Order Moments

- Multi-variate higher order moments form tensors.
- Are there spectral operations on tensors akin to PCA?

Matrix

- $\mathbb{E}[x \otimes x] \in \mathbb{R}^{d \times d}$ is a second order tensor.
- $\bullet \ \mathbb{E}[x \otimes x]_{i_1,i_2} = \mathbb{E}[x_{i_1}x_{i_2}].$
- For matrices: $\mathbb{E}[x \otimes x] = \mathbb{E}[xx^{\top}].$

Tensor

- $\mathbb{E}[x \otimes x \otimes x] \in \mathbb{R}^{d \times d \times d}$ is a third order tensor.
- $\bullet \ \mathbb{E}[x \otimes x \otimes x]_{i_1,i_2,i_3} = \mathbb{E}[x_{i_1}x_{i_2}x_{i_3}].$

Third order moment for Gaussian mixtures

- Consider mixture of k Gaussians: each sample is x = Ah + z.
- ullet $h \in [e_1, \dots, e_k]$, the basis vectors. $\mathbb{E}[h] = w$.
- $A \in \mathbb{R}^{d \times k}$: columns are component means. $\mu := Aw$ be the mean.
- $z \sim \mathcal{N}(0, \sigma^2 I)$ is white Gaussian noise.

$$\mathbb{E}[x \otimes x \otimes x] = \sum_{i} w_{i} a_{i} \otimes a_{i} \otimes a_{i} + \sigma^{2} \sum_{i} (\mu \otimes e_{i} \otimes e_{i} + \ldots)$$

Intuition behind equation

$$\mathbb{E}[x \otimes x \otimes x] = \mathbb{E}[(Ah) \otimes (Ah) \otimes (Ah)] + \mathbb{E}[(Ah) \otimes z \otimes z] + \dots$$
$$= \sum_{i} w_{i} \cdot a_{i} \otimes a_{i} \otimes a_{i} + \sigma^{2} \sum_{i} \mu \otimes e_{i} \otimes e_{i} + \dots$$

How to recover parameters A and w from third order moment?

Simplifications

$$\mathbb{E}[x \otimes x \otimes x] = \sum_{i} w_{i} a_{i} \otimes a_{i} \otimes a_{i} + \sigma^{2} \sum_{i} (\mu \otimes e_{i} \otimes e_{i} + \ldots)$$

- σ^2 is obtained from $\sigma_{\min}(\mathsf{Cov}(x))$.
- $\mathbb{E}[x \otimes x] = \sum_{i} w_i a_i \otimes a_i + \sigma^2 I$.

Simplifications

$$\mathbb{E}[x \otimes x \otimes x] = \sum_{i} w_{i} a_{i} \otimes a_{i} \otimes a_{i} + \sigma^{2} \sum_{i} (\mu \otimes e_{i} \otimes e_{i} + \ldots)$$

- σ^2 is obtained from $\sigma_{\min}(\mathsf{Cov}(x))$.
- $\mathbb{E}[x \otimes x] = \sum_i w_i a_i \otimes a_i + \sigma^2 I$.

Can obtain

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i$$
$$M_2 = \sum_i w_i a_i \otimes a_i.$$

How to obtain parameters A and w from M_2 and M_3 ?

Tensor Slices

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i, \quad M_2 = \sum_i w_i a_i \otimes a_i.$$

Multilinear transformation of tensor

$$M_3(B, C, D) := \sum_i w_i(B^{\top} a_i) \cdot (C^{\top} a_i) \cdot (D^{\top} a_i)$$

Tensor Slices

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i, \quad M_2 = \sum_i w_i a_i \otimes a_i.$$

Multilinear transformation of tensor

$$M_3(B, C, D) := \sum_i w_i(B^\top a_i) \cdot (C^\top a_i) \cdot (D^\top a_i)$$

Slice of a tensor

$$M_3(I,I,r) = \sum_i w_i a_i \otimes a_i \langle a_i,r \rangle = A \mathsf{Diag}(w) \mathsf{Diag}(A^\top r) A^\top$$

$$\begin{split} M_3(I,I,r) &= \textbf{\textit{A}} \cdot \mathsf{Diag}(w) \mathsf{Diag}(A^\top r) \cdot \textbf{\textit{A}}^\top \\ M_2 &= \textbf{\textit{A}} \cdot \mathsf{Diag}(w) \cdot \textbf{\textit{A}}^\top \end{split}$$

 $M_3(I,I,r) = \mathbf{A} \cdot \mathsf{Diag}(w) \mathsf{Diag}(A^\top r) \cdot \mathbf{A}^\top, \quad M_2 = \mathbf{A} \cdot \mathsf{Diag}(w) \cdot \mathbf{A}^\top.$

$$M_3(I,I,r) = \mathbf{A} \cdot \mathsf{Diag}(w) \mathsf{Diag}(A^\top r) \cdot \mathbf{A}^\top, \quad M_2 = \mathbf{A} \cdot \mathsf{Diag}(w) \cdot \mathbf{A}^\top.$$

$$M_3(I,I,r) = {\color{red} {A}} \cdot \mathsf{Diag}(w) \mathsf{Diag}(A^\top r) \cdot {\color{red} {A}}^\top, \quad M_2 = {\color{red} {A}} \cdot \mathsf{Diag}(w) \cdot {\color{red} {A}}^\top.$$

- $M_2 = U\Lambda U^{\top}$ be eigen-decomposition. $U \in \mathbb{R}^{d \times k}$.
- $U^{\top}M_2U = \Lambda \in \mathbb{R}^{k \times k}$ is invertible.

$$M_3(I,I,r) = \mathbf{A} \cdot \mathsf{Diag}(w) \mathsf{Diag}(A^\top r) \cdot \mathbf{A}^\top, \quad M_2 = \mathbf{A} \cdot \mathsf{Diag}(w) \cdot \mathbf{A}^\top.$$

- $M_2 = U\Lambda U^{\top}$ be eigen-decomposition. $U \in \mathbb{R}^{d \times k}$.
- $U^{\top}M_2U = \Lambda \in \mathbb{R}^{k \times k}$ is invertible.

$$X = (U^{\top} M_3(I, I, r) U) (U^{\top} M_2 U)^{-1} = V \cdot \mathsf{Diag}(\tilde{\lambda}) \cdot V^{-1}.$$

$$M_3(I,I,r) = \mathbf{A} \cdot \mathsf{Diag}(w) \mathsf{Diag}(A^\top r) \cdot \mathbf{A}^\top, \quad M_2 = \mathbf{A} \cdot \mathsf{Diag}(w) \cdot \mathbf{A}^\top.$$

- $M_2 = U\Lambda U^{\top}$ be eigen-decomposition. $U \in \mathbb{R}^{d \times k}$.
- $U^{\top}M_2U = \Lambda \in \mathbb{R}^{k \times k}$ is invertible.

$$X = \left(U^{\top} M_3(I, I, r) U \right) \left(U^{\top} M_2 U \right)^{-1} = \underline{V} \cdot \mathsf{Diag}(\tilde{\lambda}) \cdot \underline{V}^{-1}.$$

- Substitution: $X = (U^{\top}A) \text{Diag}(A^{\top}r)(U^{\top}A)^{-1}$.
- We have $v_i \propto U^{\top} a_i$.

$$M_3(I,I,r) = \mathbf{A} \cdot \mathsf{Diag}(w) \mathsf{Diag}(A^\top r) \cdot \mathbf{A}^\top, \quad M_2 = \mathbf{A} \cdot \mathsf{Diag}(w) \cdot \mathbf{A}^\top.$$

Assumption: $A \in \mathbb{R}^{d \times k}$ has full column rank.

- $M_2 = U\Lambda U^{\top}$ be eigen-decomposition. $U \in \mathbb{R}^{d \times k}$.
- $U^{\top}M_2U = \Lambda \in \mathbb{R}^{k \times k}$ is invertible.

$$X = \left(U^{\top} M_3(I, I, r) U \right) \left(U^{\top} M_2 U \right)^{-1} = \underline{V} \cdot \mathsf{Diag}(\tilde{\lambda}) \cdot \underline{V}^{-1}.$$

- Substitution: $X = (U^{\top}A) \text{Diag}(A^{\top}r)(U^{\top}A)^{-1}$.
- We have $v_i \propto U^{\top} a_i$.

Technical Detail

 $r=U\theta$ and θ drawn uniformly from sphere to ensure eigen gap.

Learning Gaussian Mixtures through Eigen-decomposition of Tensor Slices

$$M_3(I,I,r) = \mathbf{A} \cdot \mathsf{Diag}(w) \mathsf{Diag}(A^{\top}r) \cdot \mathbf{A}^{\top}, \quad M_2 = \mathbf{A} \cdot \mathsf{Diag}(w) \cdot \mathbf{A}^{\top}.$$

$$\left[\left(U^{\top} M_3(I, I, r) U \right) \left(U^{\top} M_2 U \right)^{-1} = V \mathsf{Diag}(\tilde{\lambda}) V^{-1}. \right]$$

Recovery of A (method 1)

• Since $v_i \propto U^{\top} a_i$, recover A upto scale: $a_i \propto \underline{U} v_i$.

Learning Gaussian Mixtures through Eigen-decomposition of Tensor Slices

$$M_3(I,I,r) = \mathbf{A} \cdot \mathsf{Diag}(w) \mathsf{Diag}(A^{\top}r) \cdot \mathbf{A}^{\top}, \quad M_2 = \mathbf{A} \cdot \mathsf{Diag}(w) \cdot \mathbf{A}^{\top}.$$

$$\left[\left(U^{\top} M_3(I, I, r) U \right) \left(U^{\top} M_2 U \right)^{-1} = V \mathsf{Diag}(\tilde{\lambda}) V^{-1}. \right]$$

Recovery of A (method 1)

• Since $v_i \propto U^{\top} a_i$, recover A upto scale: $a_i \propto \underline{U} v_i$.

Recovery of A (method 2)

- Let $\Theta \in \mathbb{R}^{k \times k}$ be a random rotation matrix.
- Consider k slices $M_3(I, I, \theta_i)$ and find eigen-decomposition above.
- Let $\tilde{\Lambda} = [\tilde{\lambda}_1 | \dots | \tilde{\lambda}_k]$ be the matrix of eigenvalues of all slices.
- Recover A as : $A = U\Theta^{-1}\tilde{\Lambda}$.

Implications

- Learn Gaussian mixtures through slices of third-order moment.
- Guaranteed learning through eigen decomposition.

"A Method of Moments for Mixture Models and Hidden Markov Models." by A. , D. Hsu, and S.M. Kakade. Proc. of COLT, June 2012.

Implications

- Learn Gaussian mixtures through slices of third-order moment.
- Guaranteed learning through eigen decomposition.

"A Method of Moments for Mixture Models and Hidden Markov Models." by A. , D. Hsu, and S.M. Kakade. Proc. of COLT, June 2012.

Shortcomings

 \bullet The resulting product is not symmetric. Eigen-decomposition $V \mathsf{Diag}(\tilde{\lambda}) V^{-1}$ does not result in orthonormal V. More involved in practice.

Implications

- Learn Gaussian mixtures through slices of third-order moment.
- Guaranteed learning through eigen decomposition.

"A Method of Moments for Mixture Models and Hidden Markov Models." by A., D. Hsu, and S.M. Kakade. Proc. of COLT, June 2012.

Shortcomings

- \bullet The resulting product is not symmetric. Eigen-decomposition $V\mathsf{Diag}(\tilde{\lambda})V^{-1}$ does not result in orthonormal V . More involved in practice.
- Require good eigen-gap in $\mathsf{Diag}(\tilde{\lambda})$ for recovery. For $r = U\theta$, where θ is drawn uniformly from unit sphere, gap is $1/k^{2.5}$. Numerical instability in practice.

Implications

- Learn Gaussian mixtures through slices of third-order moment.
- Guaranteed learning through eigen decomposition.

"A Method of Moments for Mixture Models and Hidden Markov Models." by A., D. Hsu, and S.M. Kakade. Proc. of COLT, June 2012.

Shortcomings

- \bullet The resulting product is not symmetric. Eigen-decomposition $V\mathsf{Diag}(\tilde{\lambda})V^{-1}$ does not result in orthonormal V . More involved in practice.
- Require good eigen-gap in $\mathsf{Diag}(\tilde{\lambda})$ for recovery. For $r = U\theta$, where θ is drawn uniformly from unit sphere, gap is $1/k^{2.5}$. Numerical instability in practice.
- $M_3(I,I,r)$ is only a (random) slice of the tensor. Full information is not utilized.

Implications

- Learn Gaussian mixtures through slices of third-order moment.
- Guaranteed learning through eigen decomposition.

"A Method of Moments for Mixture Models and Hidden Markov Models." by A. , D. Hsu, and S.M. Kakade. Proc. of COLT, June 2012.

Shortcomings

- The resulting product is not symmetric. Eigen-decomposition $V \operatorname{Diag}(\tilde{\lambda}) V^{-1}$ does not result in orthonormal V. More involved in practice.
- Require good eigen-gap in $\mathsf{Diag}(\tilde{\lambda})$ for recovery. For $r = U\theta$, where θ is drawn uniformly from unit sphere, gap is $1/k^{2.5}$. Numerical instability in practice.
- $M_3(I,I,r)$ is only a (random) slice of the tensor. Full information is not utilized.

More efficient learning methods using higher order moments?

Outline

- Introduction
- Warm-up: PCA and Gaussian Mixtures
- 3 Higher order moments for Gaussian Mixtures
- 4 Tensor Factorization Algorithm
- **5** Learning Topic Models
- 6 Conclusion

Tensor Factorization

• Recover A and w from M_2 and M_3 .

- $a \otimes a \otimes a$ is a rank-1 tensor since, its $(i_1, i_2, i_3)^{\text{th}}$ entry is $a_{i_1}a_{i_2}a_{i_3}$.
- ullet M_3 is a sum of rank-1 terms.

Tensor Factorization

• Recover A and w from M_2 and M_3 .

- $a \otimes a \otimes a$ is a rank-1 tensor since, its $(i_1, i_2, i_3)^{\text{th}}$ entry is $a_{i_1}a_{i_2}a_{i_3}$.
- M_3 is a sum of rank-1 terms.
- When is it the most compact representation? (Identifiability).
- Can we recover the decomposition? (Algorithm?)

Tensor Factorization

• Recover A and w from M_2 and M_3 .

- $a \otimes a \otimes a$ is a rank-1 tensor since, its $(i_1, i_2, i_3)^{\text{th}}$ entry is $a_{i_1}a_{i_2}a_{i_3}$.
- M_3 is a sum of rank-1 terms.
- When is it the most compact representation? (Identifiability).
- Can we recover the decomposition? (Algorithm?)
- The most compact representation is known as CP-decomposition (CANDECOMP/PARAFAC).

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i.$$

What if A has orthogonal columns?

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i.$$

What if A has orthogonal columns?

• $M_3(I, a_1, a_1) = \sum_i w_i \langle a_i, a_1 \rangle^2 a_i = w_1 a_1.$

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i.$$

What if A has orthogonal columns?

- $M_3(I, a_1, a_1) = \sum_i w_i \langle a_i, a_1 \rangle^2 a_i = w_1 a_1$.
- a_i are eigenvectors of tensor M_3 .
- Analogous to matrix eigenvectors: $Mv = M(I, v) = \lambda v$.

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i.$$

What if A has orthogonal columns?

- $M_3(I, a_1, a_1) = \sum_i w_i \langle a_i, a_1 \rangle^2 a_i = w_1 a_1.$
- a_i are eigenvectors of tensor M_3 .
- Analogous to matrix eigenvectors: $Mv = M(I, v) = \lambda v$.

Two Problems

- How to find eigenvectors of a tensor?
- A is not orthogonal in general.

Whitening

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i, \quad M_2 = \sum_i w_i a_i \otimes a_i.$$

- Find whitening matrix W s.t. $W^{\top}A = V$ is an orthogonal matrix.
- When $A \in \mathbb{R}^{d \times k}$ has full column rank, it is an invertible transformation.

Using Whitening to Obtain Orthogonal Tensor

Multi-linear transform

- $M_3 \in \mathbb{R}^{d \times d \times d}$ and $T \in \mathbb{R}^{k \times k \times k}$
- $T = M_3(W, W, W) = \sum_i w_i (W^{\top} a_i)^{\otimes 3}$.
- ullet $T = \sum_{i \in [k]} w_i \cdot v_i \otimes v_i \otimes v_i$ is orthogonal.
- Dimensionality reduction when $k \ll d$.

How to Find Whitening Matrix?

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i, \quad M_2 = \sum_i w_i a_i \otimes a_i.$$

- Use pairwise moments M_2 to find W s.t. $W^{\top}M_2W = I$.
- Eigen-decomposition of $M_2 = U \mathsf{Diag}(\tilde{\lambda}) U^{\top}$, then $W = U \mathsf{Diag}(\tilde{\lambda}^{-1/2})$.
- $V := W^{\top} A \text{Diag}(w)^{1/2}$ is an orthogonal matrix.

$$T = M_3(W, W, W) = \sum_i w_i^{-1/2} (W^{\top} a_i \sqrt{w_i})^{\otimes 3}$$
$$= \sum_i \lambda_i v_i \otimes v_i \otimes v_i, \quad \lambda_i := w_i^{-1/2}.$$

$$T = \sum_{i \in [k]} \lambda_i v_i \otimes v_i \otimes v_i, \quad \langle v_i, v_j \rangle = \delta_{i,j}, \ \forall i, j.$$

- $T(I, v_1, v_1) = \sum_i \lambda_i \langle v_i, v_1 \rangle^2 v_i = \lambda_1 v_1.$
- v_i are eigenvectors of tensor T.

$$T = \sum_{i \in [k]} \lambda_i v_i \otimes v_i \otimes v_i, \quad \langle v_i, v_j \rangle = \delta_{i,j}, \ \forall i, j.$$

- $T(I, v_1, v_1) = \sum_i \lambda_i \langle v_i, v_1 \rangle^2 v_i = \lambda_1 v_1$.
- v_i are eigenvectors of tensor T.

Tensor Power Method

$$\bullet \ \, \text{Start from an initial vector } v. \overline{ \left| v \mapsto \frac{T(I,v,v)}{\|T(I,v,v)\|}. \right| }$$

$$T = \sum_{i \in [k]} \lambda_i v_i \otimes v_i \otimes v_i, \quad \langle v_i, v_j \rangle = \delta_{i,j}, \ \forall i, j.$$

- $T(I, v_1, v_1) = \sum_i \lambda_i \langle v_i, v_1 \rangle^2 v_i = \lambda_1 v_1$.
- v_i are eigenvectors of tensor T.

Tensor Power Method

• Start from an initial vector v. $v \mapsto \frac{T(I,v,v)}{\|T(I,v,v)\|}.$

$$v \mapsto \frac{T(I, v, v)}{\|T(I, v, v)\|}.$$

Canonical recovery method

- Randomly initialize the power method. Run to convergence to obtain v with eigenvalue λ .
- Deflate: $T \lambda v \otimes v \otimes v$ and repeat.

Putting it together

- Gaussian mixture: x = Ah + z, where $\mathbb{E}[h] = w$.
- $z \sim \mathcal{N}(0, \sigma^2 I)$.

$$M_2 = \sum_i w_i a_i \otimes a_i, \quad M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i.$$

- Obtain whitening matrix W from SVD of M_2 .
- Use W for multilinear transform: $T = M_3(W, W, W)$.
- ullet Find eigenvectors of T through power method and deflation.

What about learning other latent variable models?

Outline

- Introduction
- Warm-up: PCA and Gaussian Mixtures
- 3 Higher order moments for Gaussian Mixtures
- Tensor Factorization Algorithm
- **5** Learning Topic Models
- 6 Conclusion

Topic Modeling

k topics (distributions over vocab words). Each document \leftrightarrow mixture of topics. Words in document \sim _{iid} mixture dist.

Probabilistic Topic Models

- Useful abstraction for automatic categorization of documents
- Observed: words. Hidden: topics.
- Bag of words: order of words does not matter

Graphical model representation

- l words in a document x_1, \ldots, x_l .
- *h*: proportions of topics in a document.
- Word x_i generated from topic y_i .
- Exchangeability: $x_1 \perp x_2 \perp \ldots \mid h$
- $A(i,j) := \mathbb{P}[x_m = i | y_m = j]$: topic-word matrix.

Distribution of the topic proportions vector h

If there are k topics, distribution over the simplex Δ^{k-1}

$$\Delta^{k-1} := \{ h \in \mathbb{R}^k, h_i \in [0, 1], \sum_i h_i = 1 \}.$$

- Simplification for today: there is only one topic in each document.
 - ▶ $h \in \{e_1, \dots, e_k\}$: basis vectors.
- Tomorrow: Latent Dirichlet allocation.

Distribution of the topic proportions vector h

If there are k topics, distribution over the simplex Δ^{k-1}

$$\Delta^{k-1} := \{ h \in \mathbb{R}^k, h_i \in [0, 1], \sum_i h_i = 1 \}.$$

- Simplification for today: there is only one topic in each document.
 - ▶ $h \in \{e_1, \dots, e_k\}$: basis vectors.
- Tomorrow: Latent Dirichlet allocation.

Formulation as Linear Models

Distribution of the words x_1, x_2, \ldots

- Order d words in vocabulary. If x_1 is j^{th} word, assign $e_i \in \mathbb{R}^d$.
- Distribution of each x_i : supported on vertices of Δ^{d-1} .

Properties

$$\Pr[x_1|\text{topic } \mathbf{h} = i] = \mathbb{E}[x_1|\text{topic } \mathbf{h} = i] = a_i$$

- Linear Model: $\mathbb{E}[x_i|h] = Ah$.
- Multiview model: h is fixed and multiple words (x_i) are generated.

Geometric Picture for Topic Models

Topic proportions vector (h)

Geometric Picture for Topic Models

Single topic (h)

Geometric Picture for Topic Models

Single topic (h)

Word generation (x_1, x_2, \ldots)

Gaussian Mixtures vs. Topic Models

(spherical) Mixture of Gaussian:

(single) Topic Models

- k means: $a_1, \ldots a_k$
- Component h = i with prob. w_i
- observe x, with spherical noise,

$$x = a_i + z, \quad z \sim \mathcal{N}(0, \sigma_i^2 I)$$

- k topics: $a_1, \ldots a_k$
- Topic h = i with prob. w_i
- observe *l* (exchangeable) words

$$x_1, x_2, \dots x_l$$
 i.i.d. from a_i

- Unified Linear Model: $\mathbb{E}[x|h] = Ah$
- Gaussian mixture: single view, spherical noise.
- Topic model: multi-view, heteroskedastic noise.
- Three words per document suffice for learning.

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i, \quad M_2 = \sum_i w_i a_i \otimes a_i.$$

Outline

- Introduction
- Warm-up: PCA and Gaussian Mixtures
- 3 Higher order moments for Gaussian Mixtures
- 4 Tensor Factorization Algorithm
- **(5)** Learning Topic Models
- 6 Conclusion

Recap: Basic Tensor Decomposition Method

Toy Example in MATLAB

- Simulated Samples: Exchangeable Model
- Whiten The Samples
 Second Order Moments
 Matrix Decomposition
- Orthogonal Tensor Eigen Decomposition
 Third Order Moments
 Power Iteration

Simulated Samples: Exchangeable Model

Model Parameters

• Hidden State:

$$h \in \mathsf{basis}\ \{e_1,\ldots,e_k\}$$

 $k=2$

Observed States:

$$x_i \in \text{basis } \{e_1, \dots, e_d\}$$

 $d = 3$

Conditional Independency:

$$x_1 \perp \!\!\! \perp x_2 \perp \!\!\! \perp x_3 | h$$

Transition Matrix: A

• Exchangeability:

$$\mathbb{E}[x_i|h] = Ah, \ \forall i \in 1, 2, 3$$

Simulated Samples: Exchangeable Model

Model Parameters

• Hidden State:

$$h \in \mathsf{basis} \ \{e_1, \dots, e_k\}$$

 $k = 2$

Observed States:

$$x_i \in \text{basis } \{e_1, \dots, e_d\}$$

 $d = 3$

Conditional Independency:

$$x_1 \perp \!\!\! \perp x_2 \perp \!\!\! \perp x_3 | h$$

Transition Matrix: A

• Exchangeability:

$$\mathbb{E}[x_i|h] = Ah, \ \forall i \in 1,2,3$$

Generate Samples Snippet

```
for t = 1 : n
  \% generate h for this sample
  h\_category=(rand()>0.5) + 1;
  h(t,h\_category)=1;
  transition_cum=cumsum(A_true(:,h_category));
  \% generate \times 1 for this sample | h
  x_category=find(transition_cum > rand(),1);
  \times 1(t, \times \text{-category}) = 1;
  \% generate x2 for this sample | h
  x_category=find(transition_cum >rand(),1);
  \times 2(t, \times category) = 1;
  \% generate x3 for this sample | h
  x_{category} = find(transition_cum > rand(),1);
  \times 3(t,x_category)=1;
  end
```

Whiten The Samples

Second Order Moments

$$\bullet M_2 = \frac{1}{n} \sum_t x_1^t \otimes x_2^t$$

Whitening Matrix

$$W = U_w L_w^{-0.5},$$

$$[U_w, L_w] = \mathsf{k-svd}(M_2)$$

Whiten Data

•
$$y_1^t = W^{\top} x_1^t$$

Orthogonal Basis

$$V = W^{\top}A \to V^{\top}V = I$$

Whitening Snippet

$$\begin{split} & \text{fprintf('The second order moment M2:');} \\ & \text{M2} = \text{x1'*x2/n} \\ & [\text{Uw, Lw, Vw}] = \text{svd(M2);} \\ & \text{fprintf('M2 singular values:'); Lw} \\ & \text{W} = \text{Uw(:,1:k)* sqrt(pinv(Lw(1:k,1:k)));} \\ & \text{y1} = \text{x1 * W; y2} = \text{x2 * W; y3} = \text{x3 * W;} \end{split}$$

Third Order Moments

$$T = \frac{1}{n} \sum_{t \in [n]} y_1^t \otimes y_2^t \otimes y_3^t \approx \sum_{i \in [k]} \lambda_i v_i \otimes v_i \otimes v_i, \quad V^\top V = I$$

Gradient Ascent

$$T(I, v_1, v_1) = \frac{1}{n} \sum_{t \in [n]} \langle v_1, y_2^t \rangle \langle v_1, y_3^t \rangle y_1^t \approx \sum_i \lambda_i \langle v_i, v_1 \rangle^2 v_i = \lambda_1 v_1.$$

• v_i are eigenvectors of tensor T.

$$T \leftarrow T - \sum_{j} \lambda_{j} v_{j}^{\otimes^{3}}, \quad v \leftarrow \frac{T(I, v, v)}{\|T(I, v, v)\|}$$

Power Iteration Snippet

```
V = zeros(k,k): Lambda = zeros(k,1):
for i = 1:k
  v_old = rand(k,1); v_old = normc(v_old);
  for iter = 1 · Maxiter
    v_new = (y1'* ((y2*v_old).*(y3*v_old)))/n;
    if i > 1
    % deflation
      for i = 1: i-1
         v_new=v_new-(V(:,i)*(v_old'*V(:,i))2)* Lambda(i);
      end
    end
    lambda = norm(v\_new); v\_new = normc(v\_new);
    if norm(v_old - v_new) < TOL
      fprintf('Converged at iteration %d.', iter):
      V(:,i) = v_new; Lambda(i,1) = lambda;
      break:
    end
    v\_old = v\_new:
  end
end
```

$$T \leftarrow T - \sum_{j} \lambda_{j} v_{j}^{\otimes 3}, \quad v \leftarrow \frac{T(I, v, v)}{\|T(I, v, v)\|}$$

Power Iteration Snippet

```
V = zeros(k,k): Lambda = zeros(k,1):
for i = 1:k
  v_old = rand(k,1); v_old = normc(v_old);
  for iter = 1 · Maxiter
    v_new = (y1'* ((y2*v_old).*(y3*v_old)))/n;
    if i > 1
    % deflation
      for i = 1: i-1
         v_new=v_new-(V(:,i)*(v_old'*V(:,i))2)* Lambda(i);
      end
    end
    lambda = norm(v\_new); v\_new = normc(v\_new);
    if norm(v_old - v_new) < TOL
      fprintf('Converged at iteration %d.', iter):
      V(:,i) = v_new; Lambda(i,1) = lambda;
      break:
    end
    v\_old = v\_new:
  end
end
```


Green: Groundtruth

Red: Estimation at each iteration

Conclusion

- Gaussian mixtures and topic models. Unified linear representation.
- Learning through higher order moments.
- Tensor decomposition via whitening and power method.

Tomorrow's lecture

Latent variable models and moments. Analysis of tensor power method.

Wednesday's lecture: Implementation of tensor method.

Code snippet available at

http://newport.eecs.uci.edu/anandkumar/MLSS.html

