MATH243 Statistical Inference

Exercise 3 (Parameter Estimation II: Rao-Blackwell Theorem)

Cramer-Rao lower bound:

- 1. Let X be a random sample of size n from Bi(1, θ). Find the maximum likelihood estimator for θ and verify in this case the Cramer-Rao Inequality. Comment on what you have found.
- 2. Let X be a random sample of size n from an exponential distribution with parameter $\frac{1}{\theta}$. The p.d.f. is

 $f(x;\theta) = \frac{1}{\theta} \exp\left(-\frac{x}{\theta}\right), \quad x \in (0,\infty)$

Find the Cramer-Rao lower bound and deduce whether or not \bar{X} is a fully efficient estimator for θ .

Exponential family, Sufficient Statistic, Rao-Blackwell Theorem

- 3. Show that the following p.d.f.'s belong to the exponential family (discrete case)
 - (a) Poisson;
 - (b) Binomial;
 - (c) Negative Binomial.
- 4. Show that the following p.d.f.'s belong to the exponential family (continuous cases).
 - (a) Gamma $(\theta; k)$, where k > 0 is known;
 - (b) $N(\theta;1)$;
 - (c) $N(0;\theta)$.
- 5. Let $X_1, X_2, ..., X_n$ be a random sample of size n from a geometric distribution that has p.d.f. $f(x;\theta) = (1-\theta)^x \theta$, $x = 0, 1, 2, ..., 0 < \theta < 1$, zero elsewhere. Show that $\sum_{i=1}^{n} X_i$ is a sufficient statistic for θ .
- 6. Show that the sum of the items of a random sample of size n from a gamma distribution which has p.d.f. $f(x;\theta) = (1/\theta)e^{-x/\theta}$, $0 < x < \infty$, $0 < \theta < \infty$, zero elsewhere, is a sufficient statistic for θ .
- 7. Suppose we have a random sample X of size n from a normal distribution $N(0,\theta), \ \theta \in \mathbb{R}^+$. Show that

$$T = t(X) = \sum_{i=1}^{n} X_i^2$$

is a sufficient statistic for θ .

- 8. Let $X = (X_1, ..., X_n)$ be a random sample from a uniform distribution over the interval $[0, \theta]$. Show that $Y = \max(X_1, X_2, ..., X_n)$ is sufficient for θ .
- 9. Prove that the sum of the items of a random sample of size n from a Poisson distribution having parameter θ , $0 < \theta < \infty$, is a sufficient statistic for θ .

1

- 10. Consider a random sample of size n drawn from a Bernoulli distribution. Show that the single statistic, $X_k, k \in \{1, 2, ..., n\}$, is an unbiased estimator for θ , the probability of success, but not sufficient for θ . Show that $Y = \sum_{i=1}^{n} X_i$ is sufficient for θ . Find an improved unbiased estimator provided by the Rao-Blackwell Theorem.
- 11. Let the random variable X denote the time to failure of television tubes and assume that X is exponentially distributed with unknown mean θ . Let $X = (X_1, X_2)$ be a random sample from this distribution
 - (a) Show that X_1, X_2 are unbiased estimator for θ but not sufficient for θ .
 - (b) Show that $Y = X_1 + X_2$ is sufficient for θ .
 - (c) Hence obtain an unbiased estimator for θ which has variance which is not greater than that of X_1 or X_2 for all $\theta(0 < \theta < \infty)$.
- 12. If X_1, X_2 denote a random sample of size 2 from a distribution having p.d.f.

$$f(x;\theta) = (1/\theta)e^{-x/\theta}, \quad 0 < x < \infty, \quad 0 < \theta < \infty.$$

- (a) Find the joint p.d.f. of $Y_1 = X_1 + X_2$, and $Y_2 = X_2$.
- (b) Show that Y_2 is an unbiased estimator for θ having variance θ^2 , and apply Rao-Blackwell Theorem to find an improved estimator. Does the variance of the improved estimator attain the Cramer-Rao lower bound?
- 13. Write the p.d.f.

$$f(x;\theta) = \frac{1}{6\theta^4} x^3 e^{-x/\theta}, \qquad 0 < x < \infty, \ 0 < \theta < \infty,$$

zero elsewhere, in the exponential form. If $X_1, X_2, ..., X_n$ is a random sample from this distribution, find a complete sufficient statistic Y_1 for θ and the unique continuous function $\varphi(Y_1)$ of this statistic which is the best statistic for θ . Is $\varphi(Y_1)$ itself a complete sufficient statistic?

- 14. Let $X_1, X_2, ..., X_n$ denote a random sample of size n > 2 from a distribution with p.d.f. $f(x; \theta) = \theta e^{-\theta x}$, $0 < x < \infty$, zero elsewhere, and $\theta > 0$. Then $Y = \sum_{i=1}^{n} X_i$ is a sufficient statistic for θ . Prove that (n-1)/Y is the best statistic for θ .
- 15. Let $X_1, X_2, ..., X_n$ denote a random sample from a distribution which is $b(1, \theta)$. Find the best statistic for the variance $n\theta(1-\theta)$ of $Y=\Sigma X_i$.
- 16. Let $X_1, X_2, ..., X_n$ denote a random sample from a distribution which is $n(0, \theta)$. Then $Y = \sum X_i^2$ is a sufficient statistic for θ . Find the best statistic for θ^2 .
- 17. Let X_1, X_2, \ldots, X_n denote a random sample of size n > 2 from a distribution with p.d.f. $f(x;\theta) = \theta e^{-\theta x}, 0 < x < \infty$, zero elsewhere, and $\theta > 0$. Find the best estimator for θ .
- 18. Let $(X_1,...,X_n)$ be a sample from $P_0(\lambda)$, find the UMVUE of $\tau(\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$ for any k = 0, 1, 2, ...
- 19. Let X be a r.v. having the Negative Binomial distribution with known k and parameter $\theta \in \Omega = (0,1)$. Find the UMVU estimator of $g(\theta) = 1/\theta$ and determine its variance.
- 20. Let $X_1, \ldots X_n$ be i.i.d. r.v.'s from the Gamma distribution with α known and $\theta \in \Omega = (0, \infty)$ unknown, i.e.

$$f(x,\theta) = \frac{x^{\alpha-1}e^{-x/\theta}}{\theta^{\alpha}\Gamma(\alpha)}.$$

Then show that the UMVU estimator of θ is

$$U(X_1, \dots X_n) = \frac{1}{n\alpha} \sum_{j=1}^n X_j$$

and its variance attains the Cramer-Rao bound.

21. Let X be a r.v. denoting the life length of an equipment. Then the reliability of the equipment at time x, R(x), is defined as the probability that X > x. If X has the exponential distribution with parameter $\theta \in \Omega = (0, \infty)$, find the UMVU estimator of the reliability $R(x, \theta)$ on the basis of n observations on X.

Difficult questions:

- 22. Let $Y_1 < Y_2 < Y_3 < Y_4 < Y_5$ be the order statistics of a random sample of size 5 from the uniform distribution having p.d.f. $f(x;\theta) = 1/\theta$, $0 < x < \theta$, $0 < \theta < \infty$, zero elsewhere. Show that $2Y_3$ is an unbiased statistic for θ . Determine the joint p.d.f. of Y_3 and the sufficient statistic Y_5 for θ . Find the conditional expectation $E(2Y_3|y_5) = \varphi(y_5)$. Compare the variances of $2Y_3$ and $\varphi(Y_5)$.
- 23. Let the random variables X and Y have the joint p.d.f. $f(x,y) = (2/\theta^2)e^{-(x+y)/\theta}$, $0 < x < y < \infty$, zero elsewhere.
 - (a) Show that the mean and the variance of Y are, respectively, $3\theta/2$ and $5\theta^2/4$.
 - (b) Show that $E(Y|x) = x + \theta$. In accordance with the Rao-Blackwell theorem, the expected value of $X + \theta$ is that of Y, namely, $3\theta/2$, and the variance of $X + \theta$ is less than that of Y. Show that the variance of $X + \theta$ is in fact $\theta^2/4$.
- 24. Let a random sample of size n be taken from a distribution of the discrete type with p.d.f. $f(x;\theta) = 1/\theta$, $x = 1, 2, ..., \theta$, zero elsewhere, where θ is an unknown positive integer.
 - (a) Show that the largest item, say Y, of the sample is a complete sufficient statistic for θ .
 - (b) Prove that

$$[Y^{n+1} - (Y-1)^{n+1}]/[Y^n - (Y-1)^n]$$

is the unique best statistic for θ .

- 25. Suppose X_1, \ldots, X_n are independent random variable with distribution B(1,p).
 - (a) Find the maximum likelihood estimator of $\theta = (1 p)^2$.
 - (b) Show that $\hat{\theta}$ is an unbiased estimator of θ , where $\hat{\theta} = 1$ if $X_1 + X_2 = 0$ and $\hat{\theta} = 0$ otherwise.
 - (c) Find the best estimator for θ .
- 26. Let X_1, \ldots, X_n be i.i.d. r.v.'s from the $U(\theta, 2\theta), \theta \in \Omega = (0, \infty)$ distribution and set

$$U_1 = \frac{n+1}{2n+1}Y_n$$
 and $U_2 = \frac{n+1}{5n+4}[2Y_n + Y_1]$.

Then show that both U_1 and U_2 are unbiased estimators of θ and the U_2 is better than U_1 .

- 27. Let $X_1, ..., X_n$ be independent r.v.'s distributed as $N(\theta, 1)$. Show that $\bar{X}^2 (1/n)$ is the UMVU estimator of $g(\theta) = \theta^2$. Also show that the Cramer-Rao bound is not attained.
- 28. Let $X_1, ..., X_n$ be independent r.v.'s distributed as $N(\mu, \sigma^2)$, where both μ and σ^2 are unknown. Find the UMVU estimator of μ/σ .
- 29. Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be two independent random samples with the same mean θ and known variances σ_1^2 and σ_2^2 , respectively. Then show that for every $c \in [0, 1]$, $U = c\bar{X} + (1 c)\bar{Y}$ is an unbiased estimator of θ . Also find the value of c for which the variance of U is minimum.

3