Class 19: Genome Informatics

Jasmine Lee (PID: A15583527)

11/30/2021

Section 1. Proportion of G/G in a Population

 $Downloaded\ a\ CSV\ file\ from\ Ensemble\ https://uswest.ensembl.org/Homo_sapiens/Variation/Sample?db=core; r=17:39894595-39895595; v=rs8067378; vdb=variation; vf=105535077\#373531_tablePanel.$

Here we read this CSV file.

```
mxl <- read.csv("373531-SampleGenotypes-Homo_sapiens_Variation_Sample_rs8067378.csv")
head(mxl)</pre>
```

```
##
     Sample..Male.Female.Unknown. Genotype..forward.strand. Population.s. Father
## 1
                      NA19648 (F)
                                                          A|A ALL, AMR, MXL
## 2
                      NA19649 (M)
                                                          G|G ALL, AMR, MXL
## 3
                      NA19651 (F)
                                                          A|A ALL, AMR, MXL
## 4
                                                          G|G ALL, AMR, MXL
                      NA19652 (M)
## 5
                      NA19654 (F)
                                                          G|G ALL, AMR, MXL
## 6
                      NA19655 (M)
                                                          A|G ALL, AMR, MXL
##
    Mother
## 1
## 2
## 3
## 4
## 5
## 6
```

table(mxl\$Genotype..forward.strand.)

```
## A|A A|G G|A G|G
## 22 21 12 9

table(mxl$Genotype..forward.strand.) / nrow(mxl) * 100
```

```
## ## A|A A|G G|A G|G
## 34.3750 32.8125 18.7500 14.0625
```

##

Now let's look at a different population. I picked the GBR.

```
gbr <- read.csv("373522-SampleGenotypes-Homo_sapiens_Variation_Sample_rs8067378.csv")
head(gbr)</pre>
```

```
##
     Sample.. Male. Female. Unknown. Genotype.. forward. strand. Population.s. Father
## 1
                       HG00096 (M)
                                                           A|A ALL, EUR, GBR
## 2
                       HG00097 (F)
                                                           G|A ALL, EUR, GBR
## 3
                       HG00099 (F)
                                                           G|G ALL, EUR, GBR
## 4
                       HG00100 (F)
                                                           A|A ALL, EUR, GBR
## 5
                       HG00101 (M)
                                                           A|A ALL, EUR, GBR
## 6
                                                           A|A ALL, EUR, GBR
                       HG00102 (F)
##
     Mother
## 1
## 2
## 3
## 4
## 5
## 6
```

Find proportion of G|G.

```
table(gbr$Genotype..forward.strand.) / nrow(gbr) * 100

##
## A|A A|G G|A G|G
## 25.27473 18.68132 26.37363 29.67033
```

This variant that is associated with childhood asthma is more frequent in the GBR population than the MKL population.

Let's now dig into this further.

Section 4. Population Scale Analysis

Downloaded a TXT file with the normalization of 230 samples on a genome level https://bioboot.github.io/bggn213_W19/classmaterial/rs8067378_ENSG00000172057.6.txt. We want to determine whether there is any association of the 4 asthma-associated SNPs on ORMDL3 expression.

Q13. Read this file into R and determine the sample size for each genotype and their corresponding median expression levels for each of these genotypes. Hint: The read.table(), summary() and boxplot() functions will likely be useful here. There is an example R script online to be used ONLY if you are struggling in vein. Note that you can find the median value from saving the output of the boxplot() function to an R object and examining this object. There is also the median() and summary() function that you can use to check your understanding.

```
# Read TXT file in to R and store as expr
expr <- read.table("rs8067378_ENSG00000172057.6.txt")
head(expr)

## sample geno exp
## 1 HG00367 A/G 28.96038</pre>
```

```
## 2 NA20768 A/G 20.24449
## 3 HG00361 A/A 31.32628
## 4 HG00135 A/A 34.11169
## 5 NA18870 G/G 18.25141
## 6 NA11993 A/A 32.89721
```

Determine total number of samples nrow(expr)

[1] 462

Determine the sample size for each genotype table(expr\$geno)

```
## ## A/A A/G G/G
## 108 233 121
```

```
# Create a boxplot of expression vs. genotype and store as pop
pop <- boxplot(exp~geno, data=expr)</pre>
```


Determine the median expression levels for each genotype
The third row displays the median values for each genotype
round(pop\$stats, 2)

```
## [,1] [,2] [,3]

## [1,] 15.43 7.08 6.67

## [2,] 26.95 20.63 16.90

## [3,] 31.25 25.06 20.07

## [4,] 35.96 30.55 24.46

## [5,] 49.40 42.76 33.96
```

Answer: The sample size is 108 for genotype A|A, 233 for genotype A|G, and 121 for genotype G|G. The median expression level is 31.25 for genotype A|A, 25.06 for genotype A|G, and 20.07 for genotype G|G.

Q14. Generate a boxplot with a box per genotype. What could you infer from the relative expression value between A|A and G|G displayed in this plot? Does the SNP affect the expression of ORMDL3? **Hint**: An example boxplot is provided overleaf - yours does not need to be as polished as this one.

library(ggplot2)

Let's make a boxplot.

```
ggplot(expr) + aes(x=geno, y=exp, fill=geno) +
geom_boxplot(notch=TRUE) +
xlab("Genotype") +
ylab("Expression")
```


Answer: There appears to be a statistically significant difference in expression between the genotypes A|A and G|G. Thus, I infer that there is an association between the genotype of G|G at this location and reduced expression of ORMDL3. The SNP affects the expression of ORMDL3.