## ĐẠI SỐ TUYỂN TÍNH

Chương 3: Không gian Euclide

TS. Đặng Văn Vinh

Bộ môn Toán Ứng Dụng Khoa Khoa học Ứng dụng Đại học Bách Khoa Tp.HCM

Tài liệu: Đặng Văn Vinh. Đại số tuyến tính. NXB ĐHQG tọ HCM, 2019

Ngày 11 tháng 3 năm 2020

HKHOACNCD

Vấn đề 1. Tích vô hướng và các khái niệm.

Vấn đề 2. Tìm cơ sở và số chiều của không gian bù vuông góc.

## TÀI LIỆU SƯU TẬP

BÓI HCMUT-CNCP



#### Định nghĩa

Cho V là một không gian véctơ thực. Tích vô hướng của hai véctơ x và y là một số thực và được ký hiệu (x, y) thỏa 4 tính chất sau:

- 1/ Tính xác định dương:  $\forall x \in V, (x, x) \ge 0$  và  $(x, x) = 0 \Leftrightarrow x = 0$ ;
- 2/ Tính giao hoán:  $\forall x, y \in V, (x, y) = (y, x);$
- 3/ Tính tuyến tính:  $\forall x \in V, \alpha \in \mathbb{R}, (\alpha x, y) = \alpha(x, y)$ ;
- 4/ Tính tuyến tính:  $\forall x, y, z \in V$ , (x + y, z) = (x, z) + (y, z).
- 1/ Độ dài véctơ  $x \in V$  là đại lượng:  $|x| = \sqrt{(x,x)}$
- là đại lượng:  $d(x,y) = ||x \mathbf{B} \mathbf{O}|| + \mathbf{O} \mathbf{M} \mathbf{U} \mathbf{T} + \mathbf{C} \mathbf{N} \mathbf{C} \mathbf{P}$
- 3/ Góc  $\alpha$  giữa hai véctơ x và y thỏa:  $\cos \alpha = \frac{(x,y)}{\|x\|_{\infty} \|y\|_{\infty}}$

#### Định nghĩa

Cho V là một không gian véctơ thực. Tích vô hướng của hai véctơ x và y là một số thực và được ký hiệu (x, y) thỏa 4 tính chất sau:

- 1/ Tính xác định dương:  $\forall x \in V, (x, x) \ge 0$  và  $(x, x) = 0 \Leftrightarrow x = 0$ ;
- 2/ Tính giao hoán:  $\forall x, y \in V, (x, y) = (y, x);$
- 3/ Tính tuyến tính:  $\forall x \in V, \alpha \in \mathbb{R}, (\alpha x, y) = \alpha(x, y);$
- 4/ Tính tuyến tính:  $\forall x, y, z \in V$ , (x + y, z) = (x, z) + (y, z).
- 1/ Độ dài véctơ  $x \in V$  là đại lượng:  $||x|| = \sqrt{(x,x)}$
- 2/ Mỗi véctơ tượng tiế tựch bương tầu hà đại lượng  $d(x,y) = \|\mathbf{x} \mathbf{x}\|_{\mathbf{R}} + \mathbf{x} + \mathbf{x} + \mathbf{y}$  là đại lượng  $d(x,y) = \|\mathbf{x} \mathbf{x}\|_{\mathbf{R}} + \mathbf{x} + \mathbf{y}$
- 3/ Góc  $\alpha$  giữa hai vécto x và y thỏa:  $\cos \alpha = \frac{(x,y)}{\|x\|_{L^{2}(\mathbb{R}^{n})}}$

#### Đinh nghĩa

Cho V là một không gian véctơ thực. Tích vô hướng của hai véctơ x và y là một số thực và được ký hiệu (x, y) thỏa 4 tính chất sau:

- 1/ Tính xác đinh dương:  $\forall x \in V, (x, x) \ge 0$  và  $(x, x) = 0 \Leftrightarrow x = 0$ ;
- 2/ Tính giao hoán:  $\forall x, y \in V, (x, y) = (y, x);$
- 3/ Tính tuyến tính:  $\forall x \in V, \alpha \in \mathbb{R}, (\alpha x, y) = \alpha(x, y);$
- 4/ Tính tuyến tính:  $\forall x, y, z \in V, (x + y, z) = (x, z) + (y, z)$ .
- 1/ Đô dài vécto  $x \in V$  là đai lương:  $|x| = \sqrt{(x,x)}$
- 2/ Mỗi véctơ trong không gian n chiều coi là một điểm. Khoảng cách giữa hai véctơ x và y là khoảng cách giữa hai điểm biểu diễn bởi x và y là đai lượng:  $d(x, y) = ||x - y|| = \sqrt{(x + y, x + y)}$

#### Định nghĩa

Cho V là một không gian véctơ thực. Tích vô hướng của hai véctơ x và y là một số thực và được ký hiệu (x, y) thỏa 4 tính chất sau:

- 1/ Tính xác định dương:  $\forall x \in V, (x, x) \ge 0$  và  $(x, x) = 0 \Leftrightarrow x = 0$ ;
- 2/ Tính giao hoán:  $\forall x, y \in V, (x, y) = (y, x);$
- 3/ Tính tuyến tính:  $\forall x \in V, \alpha \in \mathbb{R}, (\alpha x, y) = \alpha(x, y);$
- 4/ Tính tuyến tính:  $\forall x, y, z \in V$ , (x + y, z) = (x, z) + (y, z).
- 1/ Độ dài véctơ  $x \in V$  là đại lượng:  $||x|| = \sqrt{(x,x)}$
- 2/ Mỗi véctơ trong không gian n chiều coi là một điểm. Khoảng cách giữa hai véctơ x và y là khoảng cách giữa hai điểm biểu diễn bởi x và y là đại lượng:  $d(x,y) = ||x-y|| = \sqrt{(x-y,x-y)}$
- 3/ Góc  $\alpha$  giữa hai vécto x và y thỏa:  $\cos \alpha = \frac{(x,y)}{\|x\| \cdot \|y\|}$

#### Ví dụ

Trong  $\mathbb{R}_2$  cho tích vô hướng  $\forall x = (x_1; x_2), y = (y_1; y_2),$  với  $(x, y) = ((x_1; x_2), (y_1; y_2)) = 2x_1y_1 - x_1y_2 - x_2y_1 + 4x_2y_2.$ 

Cho hai vécto u = (3, 1), v = (2, -4). Tính:

1/(u,v);

 $3/\operatorname{góc} \alpha \operatorname{giữa} u, v;$ 

2/||u||,||v||;

4/ Khoảng cách giữa u và v.

1/(u,v) = ((3;1),(2;-4)) = 2. 3. -4) -12 + 4.1.(-4) = 6.

Ngoại ra ta có cách tính sau:

 $(x,y) = 2x_1y_1 - x_1y_2 - x_2y_1 + x_2y_2$ =  $(2x_1 - x_2)y_1 + T - A + 4 + 2 + E U SU'U TA$ 

 $= \left( \begin{array}{ccc} 2x_1 - x_2 & -x_1 + 4x_2 & \mathbf{B} & \mathbf{O}_{y_2}^{y_1} \mathbf{H} & \mathbf{CMUTQ} & \mathbf{N}_{\mathbf{C}_1} \mathbf{P} & \frac{2}{4} \end{array} \right) \left( \begin{array}{c} y_1 \\ y_2 \end{array} \right) = x \cdot M \cdot y^7$ 

Suy ra  $(u,v)=\begin{pmatrix} 3 & 1 \end{pmatrix}\begin{pmatrix} 2 & -1 & 2 \\ -1 & \text{BACHKHOACNCP.COM} \end{pmatrix}$ 

#### Ví du

Trong 
$$\mathbb{R}_2$$
 cho tích vô hướng  $\forall x = (x_1; x_2), y = (y_1; y_2),$  với  $(x, y) = ((x_1; x_2), (y_1; y_2)) = 2x_1y_1 - x_1y_2 - x_2y_1 + 4x_2y_2.$ 

Cho hai vécto 
$$u = (3, 1), v = (2, -4)$$
. Tính:

$$3/\operatorname{góc} \alpha \operatorname{giữa} u, v;$$

|2/||u||,||v||;

4/ Khoảng cách giữa *u* và *v*.

$$1/(u,v) = ((3;1),(2;-4)) = 2.3.2 - 3.(-4) - 1.2 + 4.1.(-4) = 6.$$

$$= \left( \begin{array}{ccc} 2x_1 - x_2 & -x_1 + 4x_2 & \mathbf{B} & \mathbf{O} & \mathbf{V}_1^T \\ \mathbf{O} & \mathbf{O} & \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} & \mathbf{O} \end{array} \right) \left( \begin{array}{c} y_1 \\ y_2 \end{array} \right) = x \cdot M \cdot y^T$$

Suy ra 
$$(u,v) = \begin{pmatrix} 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 & 2 \\ -1 & \text{BACHKHÖACNCP.COM} \end{pmatrix}$$

#### Ví du

Trong  $\mathbb{R}_2$  cho tích vô hướng  $\forall x = (x_1; x_2), y = (y_1; y_2), với$ 

$$(x,y) = ((x_1;x_2),(y_1;y_2)) = 2x_1y_1 - x_1y_2 - x_2y_1 + 4x_2y_2.$$

Cho hai vécto u = (3, 1), v = (2, -4). Tính:

1/(u,v);2/||u||,||v||;

 $3/\operatorname{góc} \alpha \operatorname{giữa} u, v;$ 

4/ Khoảng cách giữa *u* và *v*.

$$1/(u,v) = ((3;1),(2;-4)) = 2.3.2 - 3.(-4) - 1.2 + 4.1.(-4) = 6.$$

Ngoài ra ta có cách tính sau:

$$(x,y) = 2x_1y_1 - x_1y_2 - x_2y_1 + 4x_2y_2$$

 $=(2x_1-x_2)y_1+T-A+4L)/EUSUUTA$ 

$$= \left( \begin{array}{ccc} 2x_1 - x_2 & -x_1 + 4x_2 & \mathbf{B} & \mathbf{O} & \mathbf{J}_1 \\ \mathbf{O} & \mathbf{J}_2 & \mathbf{H} & \mathbf{C} & \mathbf{M} & \mathbf{U} & \mathbf{T} & \mathbf{Q} \\ \mathbf{C} & \mathbf{N} & \mathbf{C} & \mathbf{P} & \mathbf{J}_2 \\ \end{array} \right) = x \cdot M \cdot y^2$$

Suy ra  $(u,v) = \begin{pmatrix} 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & \text{BACHKHOACNCP.COM} \end{pmatrix}$ 

#### Ví du

Trong  $\mathbb{R}_2$  cho tích vô hướng  $\forall x = (x_1; x_2), y = (y_1; y_2), với$  $(x,y) = ((x_1;x_2),(y_1;y_2)) = 2x_1y_1 - x_1y_2 - x_2y_1 + 4x_2y_2.$ 

Cho hai vécto u = (3, 1), v = (2, -4). Tính:

1/(u,v);

2/||u||,||v||;

 $3/g\acute{o}c \alpha giữa u, v;$ 

4/ Khoảng cách giữa *u* và *v*.

1/(u,v) = ((3;1),(2;-4)) = 2.3.2 - 3.(-4) - 1.2 + 4.1.(-4) = 6.

Ngoài ra ta có cách tính sau:

$$(x,y) = 2x_1y_1 - x_1y_2 - x_2y_1 + 4x_2y_2$$

$$= (2x_1 - x_2)y_1 + (-x_1 + 4x_2)y_2$$

 $=(2x_1-x_2)y_1+(-x_1+4x_2)y_2$  $= \left( \begin{array}{ccc} 2x_1 - x_2 & -x_1 + 4x_2 & \mathbf{B} & \mathbf{O} & \mathbf{O$ 

#### Ví dụ

Trong  $\mathbb{R}_2$  cho tích vô hướng  $\forall x = (x_1; x_2), y = (y_1; y_2)$ , với  $(x, y) = ((x_1; x_2), (y_1; y_2)) = 2x_1y_1 - x_1y_2 - x_2y_1 + 4x_2y_2$ .

Cho hai vécto u = (3, 1), v = (2, -4). Tính:

1/(u,v);

2/||u||,||v||;

 $3/\operatorname{góc} \alpha \operatorname{giữa} u, v;$ 

4/ Khoảng cách giữa *u* và *v*.

1/(u,v) = ((3;1),(2;-4)) = 2.3.2 - 3.(-4) - 1.2 + 4.1.(-4) = 6.

Ngoài ra ta có cách tính sau:

$$(x,y) = 2x_1y_1 - x_1y_2 - x_2y_1 + 4x_2y_2$$

$$= (2x_1 - x_2)y_1 + (-x_1 + 4x_2)y_2$$

$$= \left( \begin{array}{ccc} 2x_1 - x_2 & -x_1 + 4x_2 \end{array} \right) \left( \begin{array}{c} y_1 \\ y_2 \end{array} \right) = \left( \begin{array}{ccc} x_1 & x_2 \end{array} \right) \left( \begin{array}{ccc} 2 & -1 \\ & 4 \end{array} \right) \left( \begin{array}{c} y_1 \\ y_2 \end{array} \right) = x \cdot M \cdot y^T$$

Suy ra  $(u,v) = \begin{pmatrix} 3 & 1 \end{pmatrix} \begin{pmatrix} -1 & \text{BACHKHOACNCP.COM} \end{pmatrix}$ 

#### Ví dụ

Trong  $\mathbb{R}_2$  cho tích vô hướng  $\forall x = (x_1; x_2), y = (y_1; y_2)$ , với  $(x, y) = ((x_1; x_2), (y_1; y_2)) = 2x_1y_1 - x_1y_2 - x_2y_1 + 4x_2y_2$ .

Cho hai vécto u = (3, 1), v = (2, -4). Tính:

1/(u,v);

2/||u||,||v||;

 $3/\operatorname{góc} \alpha \operatorname{giữa} u, v;$ 

4/ Khoảng cách giữa *u* và *v*.

1/(u,v) = ((3;1),(2;-4)) = 2.3.2 - 3.(-4) - 1.2 + 4.1.(-4) = 6.

Ngoài ra ta có cách tính sau:

$$(x,y) = 2x_1y_1 - x_1y_2 - x_2y_1 + 4x_2y_2$$

$$= (2x_1 - x_2)y_1 + (-x_1 + 4x_2)y_2$$

$$= \left(\begin{array}{ccc} 2x_1 - x_2 & -x_1 + 4x_2 \end{array}\right) \left(\begin{array}{c} y_1 \\ y_2 \end{array}\right) = \left(\begin{array}{ccc} x_1 & x_2 \end{array}\right) \left(\begin{array}{ccc} 2 & -1 \\ -1 & 4 \end{array}\right) \left(\begin{array}{ccc} y_1 \\ y_2 \end{array}\right) = x \cdot M \cdot y^T$$

Suy ra 
$$(u, v) = \begin{pmatrix} 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & \mathbf{B4.C} \end{pmatrix} \begin{pmatrix} 2 \\ \mathbf{KH4D} \end{pmatrix} = 6$$

#### BACHKHOACNCP.COM

Ngày 11 tháng 3 năm 2020

$$2/\|u\| = \sqrt{(u,u)} = \sqrt{u \cdot M \cdot u^{T}} = \sqrt{\left(3 \ 1\right) \left(\begin{array}{cc} 2 & -1 \\ -1 & 4 \end{array}\right) \left(\begin{array}{cc} 3 \\ 1 \end{array}\right)} = 4$$

$$\|v\| = \sqrt{(v,v)} = \sqrt{v \cdot M \cdot v^{T}} = \sqrt{\left(2 - 4\right) \left(\begin{array}{cc} 2 & -1 \\ -1 & 4 \end{array}\right) \left(\begin{array}{cc} 2 \\ -4 \end{array}\right)} = \sqrt{88}$$

$$3/\operatorname{Góc} \alpha \operatorname{giữa} u \operatorname{và} v \operatorname{thỏa}$$

$$\cos \alpha = \frac{(u,v)}{u} = \frac{6}{u} = \frac{1}{u} = \frac{1}{u} = \frac{3}{u} = \frac{3}{u$$

4/ Khoảng cách giữa li và T**ẬU SƯU TẬP** 

$$d(u,v) = ||u-v|| = ||(1;5)|| = \sqrt{1.5}$$

$$||u-v|| = ||(1;5)|| = \sqrt{92}.$$

$$2/\|u\| = \sqrt{(u,u)} = \sqrt{u \cdot M \cdot u^T} = \sqrt{\begin{pmatrix} 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix}} = 4$$

$$||v|| = \sqrt{(v,v)} = \sqrt{v \cdot M \cdot v^T} = \sqrt{2 - 4} \begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 2 \\ -4 \end{pmatrix} = \sqrt{88}$$

 $3/\operatorname{G\'oc} \alpha$  giữa u và v thỏa

$$\cos \alpha = \frac{(u, v)}{\|u\| \cdot \|v\|} = \frac{6}{4 \cdot \sqrt{88}} = \frac{3\sqrt{22}}{88} \Rightarrow \alpha = \arccos \frac{3\sqrt{22}}{88}$$

4/ Khoáng cách gi

## TAI LIEU SUU TAP

 $d(u,v) = ||u-v|| = ||(1;5)|| = \sqrt{1.5}$ 



$$2/||u|| = \sqrt{(u,u)} = \sqrt{u \cdot M \cdot u^T} = \sqrt{\left(3 \ 1\right) \left(\begin{array}{cc} 2 & -1 \\ -1 & 4 \end{array}\right) \left(\begin{array}{cc} 3 \\ 1 \end{array}\right)} = 4$$

$$||v|| = \sqrt{(v,v)} = \sqrt{v \cdot M \cdot v^T} = \sqrt{2 - 4} \begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 2 \\ -4 \end{pmatrix} = \sqrt{88}$$

 $3/\operatorname{G\'oc}\alpha$  giữa u và v thỏa

$$\cos \alpha = \frac{(u, v)}{\|u\| \cdot \|v\|} = \frac{6}{4 \cdot \sqrt{88}} = \frac{3\sqrt{22}}{88} \Rightarrow \alpha = \arccos \frac{3\sqrt{22}}{88}$$

4/ Khoảng cách giữa u và v:

$$d(u,v) = ||u-v|| = ||(1;5)|| = \sqrt{\binom{1}{5}} \begin{pmatrix} 2 & -1 \\ -1 & 4c \end{pmatrix} \begin{pmatrix} 1 \\ 5 \end{pmatrix} = \sqrt{92}.$$



### Định nghĩa

Cho F là không gian con của V. Tập hợp  $F^{\perp} = \{x \in V | x \perp F\}$  được gọi là phần bù vuông góc của không gian con F.

Trong không giThÀilch liÊiUgiSUiUi mJiÂiPig (P) với z = 0. Tîm không gian con bu vuông góc của F. BỞI HCMUT-CNCP

### Định nghĩa

Cho F là không gian con của V. Tập hợp  $F^{\perp} = \{x \in V | x \perp F\}$  được gọi là phần bù vuông góc của không gian con F.

#### Định lý

Cho F là không gian con của V. Khi đó  $F^{\perp}$  là không gian con của V.

#### Ví dụ

Trong không giản  $\mathbf{A}^{\dagger}$  let  $\mathbf{L}^{\dagger}$  let  $\mathbf{L}^{\dagger}$   $\mathbf{L}^{$ 

Không gian bù vuông góc của F là đường thắng qua gốc O và vuông góc với mặt phẳng (P)

### Đinh nghĩa

Cho F là không gian con của V. Tập hợp  $F^{\perp} = \{x \in V | x \perp F\}$  được gọi là phần bù vuông góc của không gian con F.

#### Đinh lý

Cho F là không gian con của V. Khi đó  $F^{\perp}$  là không gian con của V.

#### Ví du

Trong không gian  $\mathbb{R}^3$ , cho không gian con F là mặt phẳng (P) với phương trình 2x + 3y - z = 0. Tìm không gian con bù vuông góc của F.

### Định nghĩa

Cho F là không gian con của V. Tập hợp  $F^{\perp} = \{x \in V | x \perp F\}$  được gọi là phần bù vuông góc của không gian con F.

#### Định lý

Cho F là không gian con của V. Khi đó F<sup>1</sup> là không gian con của V.

#### Ví dụ

Trong không gian  $\mathbb{R}^3$ , cho không gian con F là mặt phẳng (P) với phương trình 2x + 3y - z = 0. Tìm không gian con bù vuông góc của F.

Không gian bù vuông góc của F là đường thẳng qua gốc O và vuông góc với mặt phẳng (P)

#### Định lý

Véctơ x vuông góc với không gian con F khi và chỉ khi x vuông góc với một tập sinh của F.

Các bước tìm số liều và mát re

**Bước 2.** 
$$\forall x \in F^{\perp} \Leftrightarrow x \perp F \Leftrightarrow x \perp$$

Giả sử 
$$(x,y) = xMy^T$$
. Kh**B ở** (**H CM**  $\int_{1}^{2} Mx^T = 0$  for  $\int_{1}^{2} Mx^T = 0$ 

Ở dạng ma trận, ta được: BACHKHOACNCP.COM

#### Định lý

Véctơ x vuông góc với không gian con F khi và chỉ khi x vuông góc với một tập sinh của F.

Các bước tìm số chiều và một cơ sở của F<sup>1</sup>.

## TÀI LIỆU SƯƯ TẬP

Giả sử  $(x,y) = xMy^T$ . KIB Ở I (H CM UT-CNCP

#### Định lý

Vécto x vuông góc với không gian con F khi và chỉ khi x vuông góc với một tập sinh của F.

Các bước tìm số chiều và một cơ sở của  $F^{\perp}$ . Bước 1. Tìm một tập sinh của F là  $E = \{f_1; f_2; \dots; f_k\}$ .

## TÀI LIỆU SƯU TẬP

Giả sử  $(x,y) = xMy^T$ . KIB Ở I (HEMUT-CNCP)

#### Định lý

Vécto x vuông góc với không gian con F khi và chỉ khi x vuông góc với một tâp sinh của F.

Các bước tìm số chiều và một cơ sở của  $F^{\perp}$ .

**Bước 1.** Tìm một tập sinh của F là  $E = \{f_1; f_2; \dots; f_k\}$ .

**Buốc 1.** Tim một tạp sinh của 
$$F$$
 là  $E = \{f_1, f_2, \cdots, f_k\}$ .

$$\begin{cases}
x \perp f_1 \\
x \perp f_2 \\
\cdots \\
x \perp f_k
\end{cases} \Leftrightarrow \begin{cases}
(f_1, x) = 0 \\
(f_2, x) = 0 \\
\cdots \\
(f_k, x) = 0
\end{cases}$$
(\*)

O dang ma trân, ta được: /BACHKHOACNCP.COM

#### Định lý

Véctơ x vuông góc với không gian con F khi và chỉ khi x vuông góc với một tập sinh của F.

Các bước tìm số chiều và một cơ sở của  $F^{\perp}$ . **Bước 1.** Tìm một tập sinh của F là  $E = \{f_1; f_2; \dots; f_k\}$ . Bước 2.  $\forall x \in F^{\perp} \Leftrightarrow x \perp F \Leftrightarrow x \perp E \Leftrightarrow \begin{cases} x \perp f_1 \\ x \perp f_2 \\ \dots \\ x \perp f_k \end{cases} \Leftrightarrow \begin{cases} (f_1, x) = 0 \\ (f_2, x) = 0 \\ \dots \\ (f_k, x) = 0 \end{cases}$ Giả sử  $(x, y) = xMy^T$ . Khi đó (\*)  $\Leftrightarrow \begin{cases} f_1Mx^T = 0 \\ f_2Mx^T = 0 \\ \dots \\ f_kMx^T = 0 \end{cases}$ (\*)

O dang ma trân, ta được: BACHKHOACNCP.COM

#### Định lý

Véctơ x vuông góc với không gian con F khi và chỉ khi x vuông góc với một tập sinh của F.

Các bước tìm số chiều và một cơ sở của  $F^{\perp}$ . **Bước 1.** Tìm một tập sinh của F là  $E = \{f_1; f_2; \cdots; f_k\}$ . Bước 2.  $\forall x \in F^{\perp} \Leftrightarrow x \perp F \Leftrightarrow x \perp E \Leftrightarrow \begin{cases} x \perp f_1 \\ x \perp f_2 \\ \dots \end{cases} \Leftrightarrow \begin{cases} (f_1, x) = 0 \\ (f_2, x) = 0 \\ \dots \end{cases}$ Giả sử  $(x, y) = xMy^T$ . Khi đó  $(*) \Leftrightarrow \begin{cases} f_1Mx^T = 0 \\ f_2Mx^T = 0 \\ \dots \end{cases}$ (\*) O dạng ma trận, ta được:  $FMx^TH \perp 0 OACNCP.COM$ 

#### Ví dụ

```
Trong không gian \mathbb{R}_3 với tích vô hướng chính tắc (x, y) = ((x_1; x_2; x_3), (y_1; y_2; y_3)) = x_1y_1 + x_2y_2 + x_3y_3, cho không gian con F = \{(x_1; x_2; x_3) | 2x_1 + 3x_2 - x_3 = 0\}. Tìm một cơ sở và số chiều của F^{\perp}.
```

Bước 1. Tìm tập Shh của A.  $\forall f = (a;b;c) \in F \Rightarrow 2a + 3b + c$   $\Rightarrow c = 0 + 3b$ . Suy ra f = (a;b;2a + 3b) = a(-0;2) + b(-1;3)Hay  $E = \{f_1 = (1;0;2), f_2 = (0;1;3) \text{ là târ sinh của } F$ . Bước 2. Tìm cơ sở, số chiều của  $F^{\perp}$ .

 $\forall x = (x_1; x_2; x_3) \mathbf{T} \mathbf{A} + \mathbf{L} \mathbf{I} \mathbf{\hat{E}} \mathbf{U} \mathbf{I} \mathbf{S} \mathbf{U} \mathbf{\hat{U}} \mathbf{I} \mathbf{\hat{A}} \mathbf{\hat{P}} \mathbf{\hat{K}} \mathbf{\hat{K}}$ 

BO HOMUT-CNCP

 $x_2 = \alpha \longrightarrow x = (2\alpha, 3\alpha, \alpha) = 0$ 

#### Ví du

Trong không gian  $\mathbb{R}_3$  với tích vô hướng chính tắc  $(x, y) = ((x_1; x_2; x_3),$  $(y_1; y_2; y_3) = x_1y_1 + x_2y_2 + x_3y_3$ , cho không gian con  $F = \{(x_1; x_2; x_3) | 2x_1 + 3x_2 - x_3 = 0\}$ . Tìm một cơ sở và số chiều của  $F^{\perp}$ .

#### Bước 1. Tìm tập sinh của F.

 $\forall f = (a; b; c) \in F \Rightarrow 2a + 3b + c \Leftrightarrow c$ Suy ra f = (a; b; 2a + 3b) = a(0; 2) + b(c; 3)

Hay  $E = \{f_1 = (1; 0; 2), f_2 = (0; 1; 3) | la tân sinh của F.$ 

# $\forall x = (x_1; x_2; x_3) T A + LI E U S U U T A P (x, f_1) = 0$

BACHKHOACNCP.COM Vây tâp sinh và cũng là cơ sở của F<sup>1</sup> là [(2;3;-1)] và dựn (F

#### Ví dụ

Trong không gian  $\mathbb{R}_3$  với tích vô hướng chính tắc  $(x, y) = ((x_1; x_2; x_3), (y_1; y_2; y_3)) = x_1y_1 + x_2y_2 + x_3y_3$ , cho không gian con  $F = \{(x_1; x_2; x_3) | 2x_1 + 3x_2 - x_3 = 0\}$ . Tìm một cơ sở và số chiều của  $F^{\perp}$ .

#### Bước 1. Tìm tập sinh của F.

$$\forall f = (a; b; c) \in F \Rightarrow 2a + 3b - c = 0 \Leftrightarrow c = 2a + 3b.$$

Suy ra f = (a; b; 2a + 3b) = a(0, 2) + b(0, 1; 3)Hay  $E = \{f_1 = (1; 0; 2), f_2 = (0; 1; 3) | 1a tay sinh của <math>F$ .

Bước 2. Tìm cơ sở, sô chiêu của F

# $\forall x = (x_1; x_2; x_3) \text{TÅ} + \text{LIEULSU} \underbrace{\{ \bigcup_{x = 1/2}^{x} \widehat{A} \widehat{P}(x, f_1) = 0 \}}_{(x, f_2) = 0}$

#### BO HOMUT-CNCP

 $\Rightarrow \begin{cases} x_1 + 2x_3 = 0 \\ x_2 + 3x_3 = 0 \end{cases} \Leftrightarrow \begin{cases} x_2 = -3\alpha \Rightarrow x = (-2\alpha; -3\alpha; \alpha) = -\alpha(2; 3; -1) \end{cases}$ 

Vây tập sinh và cũng là cơ sơ của F là {(2;3;-1)} và dịm(l

#### Ví dụ

```
Trong không gian \mathbb{R}_3 với tích vô hướng chính tắc (x, y) = ((x_1; x_2; x_3), (y_1; y_2; y_3)) = x_1y_1 + x_2y_2 + x_3y_3, cho không gian con F = \{(x_1; x_2; x_3) | 2x_1 + 3x_2 - x_3 = 0\}. Tìm một cơ sở và số chiều của F^{\perp}.
```

#### Bước 1. Tìm tập sinh của F.

$$\forall f = (a; b; c) \in F \Rightarrow 2a + 3b - c = 0 \Leftrightarrow c = 2a + 3b.$$

Suy ra 
$$f = (a; b; 2a + 3b) = a(1; 0; 2) + b(0; 1; 3)$$
.

Hay  $E = \{f_1 = (1; 0; 2), f_2 = (0; 1; 3) | la tais sinh của F.$ 

Bước 2. Tìm cơ sớ<sub>,</sub> sô chiêu của *F*-

# $\forall x = (x_1; x_2; x_3) \text{TÅ} + \text{LIEULSU} \underbrace{\{ \bigcup_{x = 1/2}^{x} \widehat{A} \widehat{P}(x, f_1) = 0 \}}_{(x, f_2) = 0}$

#### BO HOMUT-CNCP

 $\Leftrightarrow \left\{ \begin{array}{l} x_2 = -3\alpha \quad \Rightarrow x = (-2\alpha; -3\alpha; \alpha) = -\alpha(2; 3; -1) \\ x_2 = \alpha \end{array} \right.$ 

Vây tập sinh và cũng là cơ sơ của F là {(2;3;-1)} và dịm(l

#### Ví dụ

Trong không gian  $\mathbb{R}_3$  với tích vô hướng chính tắc  $(x, y) = ((x_1; x_2; x_3), (y_1; y_2; y_3)) = x_1y_1 + x_2y_2 + x_3y_3$ , cho không gian con  $F = \{(x_1; x_2; x_3) | 2x_1 + 3x_2 - x_3 = 0\}$ . Tìm một cơ sở và số chiều của  $F^{\perp}$ .

#### Bước 1. Tìm tập sinh của F.

$$\forall f = (a; b; c) \in F \Rightarrow 2a + 3b - c = 0 \Leftrightarrow c = 2a + 3b.$$

Suy ra 
$$f = (a; b; 2a + 3b) = a(1; 0; 2) + b(0; 1; 3)$$
.

Hay 
$$E = \{f_1 = (1, 0, 2), f_2 = (0, 1, 3)\}$$
 là tập sinh của  $F$ .

Bước 2. Tìm cơ sở $_{m{z}}$  số chiều của  $F^{m{\perp}}$ 

## $\forall x = (x_1; x_2; x_3) T A + LI E U S U U T A P (x, f_1) = 0$

BOT HOMUT-CNCP

 $x_2 = -3\alpha \implies x = (-2\alpha; -3\alpha; \alpha) = -\alpha(2; 3; -3\alpha; \alpha)$ 

Vây tập sinh và cũng là cơ sơ của F là ((2;3; -1) và địm()

#### Ví dụ

Trong không gian  $\mathbb{R}_3$  với tích vô hướng chính tắc  $(x, y) = ((x_1; x_2; x_3), (y_1; y_2; y_3)) = x_1y_1 + x_2y_2 + x_3y_3$ , cho không gian con  $F = \{(x_1; x_2; x_3) | 2x_1 + 3x_2 - x_3 = 0\}$ . Tìm một cơ sở và số chiều của  $F^{\perp}$ .

#### Bước 1. Tìm tập sinh của F.

$$\forall f = (a; b; c) \in F \Rightarrow 2a + 3b - c = 0 \Leftrightarrow c = 2a + 3b.$$

Suy ra 
$$f = (a; b; 2a + 3b) = a(1; 0; 2) + b(0; 1; 3)$$
.

Hay 
$$E = \{f_1 = (1; 0; 2), f_2 = (0; 1; 3)\}$$
 là tập sinh của  $F$ .

Bước 2. Tìm cơ sở, số chiều của  $F^{\perp}$ .

#### BO HOMUT-CNCP

 $\forall x = (x_1; x_2; x_3) \text{TALLIEUISU} \underbrace{\bigcup_{x = 1}^{n} \prod_{j = 0}^{n} P(x, f_1) = 0}_{(x, f_2) = 0}$ 

 $x = -3\alpha \implies x = (-2\alpha; -3\alpha; \alpha) = -\alpha$ 

Vây tập sinh và cũng là cơ sơ của F là  $\{(2,3,-1)\}$  và dịm $\{$ 

#### Ví du

Trong không gian  $\mathbb{R}_3$  với tích vô hướng chính tắc  $(x, y) = ((x_1; x_2; x_3), (y_1; y_2; y_3)) = x_1y_1 + x_2y_2 + x_3y_3$ , cho không gian con  $F = \{(x_1; x_2; x_3) | 2x_1 + 3x_2 - x_3 = 0\}$ . Tìm một cơ sở và số chiều của  $F^{\perp}$ .

#### Bước 1. Tìm tập sinh của F.

$$\forall f = (a; b; c) \in F \Rightarrow 2a + 3b - c = 0 \Leftrightarrow c = 2a + 3b.$$

Suy ra 
$$f = (a; b; 2a + 3b) = a(1; 0; 2) + b(0; 1; 3)$$
.

Hay 
$$E = \{f_1 = (1; 0; 2), f_2 = (0; 1; 3)\}$$
 là tập sinh của  $F$ .

Bước 2. Tìm cơ sở, số chiều của  $F^{\perp}$ .

$$\forall x = (x_1; x_2; x_3) \in F^{\perp} \Leftrightarrow x \perp F \Leftrightarrow x \perp E \Leftrightarrow \begin{cases} x \perp f_1 \\ x \perp f_2 \end{cases} \Leftrightarrow \begin{cases} (x, f_1) = 0 \\ (x, f_2) = 0 \end{cases}$$

BOH HOMUT-CNCP

 $\begin{cases} x_1 + 2x_3 = 0 \\ x_2 + 3x_3 = 0 \end{cases} \Leftrightarrow \begin{cases} x_2 = -3\alpha \Rightarrow x = (-2\alpha; -3\alpha; \alpha) = -\alpha(2; 3; -1) \\ x_3 = \alpha \end{cases}$ 

Vây tập sinh và cũng là cơ sơ của F la {(2;3;-1)} và dịm(l

#### Ví dụ

Trong không gian  $\mathbb{R}_3$  với tích vô hướng chính tắc  $(x, y) = ((x_1; x_2; x_3), (y_1; y_2; y_3)) = x_1y_1 + x_2y_2 + x_3y_3$ , cho không gian con  $F = \{(x_1; x_2; x_3) | 2x_1 + 3x_2 - x_3 = 0\}$ . Tìm một cơ sở và số chiều của  $F^{\perp}$ .

#### Bước 1. Tìm tập sinh của F.

$$\forall f = (a; b; c) \in F \Rightarrow 2a + 3b - c = 0 \Leftrightarrow c = 2a + 3b.$$

Suy ra 
$$f = (a; b; 2a + 3b) = a(1; 0; 2) + b(0; 1; 3)$$
.

Hay 
$$E = \{f_1 = (1; 0; 2), f_2 = (0; 1; 3)\}$$
 là tập sinh của  $F$ .

Bước 2. Tìm cơ sở, số chiều của  $F^{\perp}$ .

$$\forall x = (x_1; x_2; x_3) \in F^{\perp} \Leftrightarrow x \perp F \Leftrightarrow x \perp E \Leftrightarrow \begin{cases} x \perp f_1 \\ x \perp f_2 \end{cases} \Leftrightarrow \begin{cases} (x, f_1) = 0 \\ (x, f_2) = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 + 2x_3 = 0 \\ x_2 + 3x_3 = 0 \end{cases} \Leftrightarrow \begin{cases} x_1 \mathring{\bigcirc} + 2\alpha MUT - CNCP \\ x_2 = -3\alpha \Rightarrow x = (-2\alpha; -3\alpha; \alpha) = -\alpha(2; 3; -1). \\ x_3 = \alpha \\ x_{\mathsf{BACHKHOACNCP.COM}} \end{cases}$$

#### Ví du

Trong không gian  $\mathbb{R}_3$  với tích vô hướng chính tắc  $(x,y) = ((x_1;x_2;x_3),$  $(y_1; y_2; y_3) = x_1y_1 + x_2y_2 + x_3y_3$ , cho không gian con  $F = \{(x_1; x_2; x_3) | 2x_1 + 3x_2 - x_3 = 0\}$ . Tìm một cơ sở và số chiều của  $F^{\perp}$ .

#### Bước 1. Tìm tập sinh của F.

$$\forall f = (a; b; c) \in F \Rightarrow 2a + 3b - c = 0 \Leftrightarrow c = 2a + 3b.$$

Suy ra 
$$f = (a; b; 2a + 3b) = a(1; 0; 2) + b(0; 1; 3)$$
.

Hay 
$$E = \{f_1 = (1; 0; 2), f_2 = (0; 1; 3)\}$$
 là tập sinh của  $F$ .

Bước 2. Tìm cơ sở, số chiều của  $F^{\perp}$ .

$$\forall x = (x_1; x_2; x_3) \in F^{\perp} \Leftrightarrow x \perp F \Leftrightarrow x \perp E \Leftrightarrow \begin{cases} x \perp f_1 \\ x \perp f_2 \end{cases} \Leftrightarrow \begin{cases} (x, f_1) = 0 \\ (x, f_2) = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 + 2x_3 = 0 \\ x_2 + 3x_3 = 0 \end{cases} \Leftrightarrow \begin{cases} x_1 = 2\alpha \text{ MUT-CNCP} \\ x_2 = -3\alpha \Rightarrow x = (-2\alpha; -3\alpha; \alpha) = -\alpha(2; 3; -1). \\ x_3 = \alpha \\ x_3 = \alpha \end{cases}$$
Vậy tập sinh và cũng là cơ số của  $F^{\perp}$  là  $\{(2; 3; -1)\}$  và  $\dim(F^{\perp}) = 1$ .

Trong  $\mathbb{R}_3$  với tích vô hướng  $(x,y) = ((x_1; x_2; x_3)(y_1; y_2; y_3))$ =  $4x_1y_1 - x_1y_2 + 3x_1y_3 - x_2y_1 + 5x_2y_2 + 2x_2y_3 + 3x_3y_1 + 2x_3y_2 + 6x_3y_3$ , cho không gian con  $F = \{(x_1; x_2; x_3) | 2x_1 + 3x_2 - x_3 = 0\}$ . Tìm một cơ sở và số chiều của  $F^{\perp}$ .

Bước 1. Tập sinh của F là E = 0Bước 2. Tìm cơ số, số chiều của F

 $\forall x = (x_1; x_2; x_3) \in F^{\perp} \Leftrightarrow x \perp + x \perp$ 

X I EGP X I

 $x \perp f_2 \Leftrightarrow \{(f_2, f_2, f_3)\}$ 

 $\Leftrightarrow FMx^T = 0$ ,  $\forall i F = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix}$ ,  $M = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ 

## TAI LIEU SUUTAP

Cơ sở của F1 là ((315; 240; BACHKHOACNCP.COM

Trong  $\mathbb{R}_3$  với tích vô hướng  $(x,y)=((x_1;x_2;x_3)(y_1;y_2;y_3))$ =  $4x_1y_1-x_1y_2+3x_1y_3-x_2y_1+5x_2y_2+2x_2y_3+3x_3y_1+2x_3y_2+6x_3y_3$ , cho không gian con  $F=\{(x_1;x_2;x_3)|2x_1+3x_2-x_3=0\}$ . Tìm một cơ sở và số chiều của  $F^{\perp}$ .

**Bước 1.** Tập sinh của 
$$F$$
 là  $E = \{f_1 = (1,0,2), f_2 = (0,1,3)\}.$ 

 $\forall x = (x_1; x_2; x_3) \in F^{\perp} \Leftrightarrow x \perp \downarrow f_1 \Leftrightarrow \begin{cases} (f_1, x) = 0 \\ (f_2, x) = 0 \end{cases}$ 

Bước 2. Tìm cơ số số chiếu của

# $\Leftrightarrow FMx^T = 0$ , $v \Leftrightarrow FM$

 $\Rightarrow \begin{pmatrix} 10 & 3 & 15 \\ 8 & 11 & 20 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mathbf{B} \bullet (\mathbf{H}) \mathbf{CMUI} - \mathbf{CNC} \mathbf{E} \mathbf{A}0; -258)$ 

Cơ sở của F<sup>1</sup> là ((315; 240; BACHKHOACNCP.COM

#### Ví du

Trong  $\mathbb{R}_3$  với tích vô hướng  $(x, y) = ((x_1; x_2; x_3)(y_1; y_2; y_3))$  $=4x_1y_1-x_1y_2+3x_1y_3-x_2y_1+5x_2y_2+2x_2y_3+3x_3y_1+2x_3y_2+6x_3y_3,$ cho không gian con  $F = \{(x_1; x_2; x_3) | 2x_1 + 3x_2 - x_3 = 0\}.$ Tìm một cơ sở và số chiều của  $F^{\perp}$ .

**Bước 1.** Tập sinh của F là  $E = \{f_1 = (1, 0, 2), f_2 = (0, 1, 3)\}.$ Bước 2. Tìm cơ sở, số chiều của  $F^{\perp}$ .

 $\forall x = (x_1; x_2; x_3) \in F^{\perp} \Leftrightarrow x \perp \{x_1, x_2, x_3\} \in F^{\perp}$ 

# $\Leftrightarrow FMx^T = 0$ , với $F_{\bullet \bullet}$

Cơ sở của  $F^{\perp}$  là ((315; 240; BACHKHOACNCP.COM

Trong  $\mathbb{R}_3$  với tích vô hướng  $(x,y) = ((x_1; x_2; x_3)(y_1; y_2; y_3))$ =  $4x_1y_1 - x_1y_2 + 3x_1y_3 - x_2y_1 + 5x_2y_2 + 2x_2y_3 + 3x_3y_1 + 2x_3y_2 + 6x_3y_3$ , cho không gian con  $F = \{(x_1; x_2; x_3) | 2x_1 + 3x_2 - x_3 = 0\}$ . Tìm một cơ sở và số chiều của  $F^{\perp}$ .

**Bước 1.** Tập sinh của F là  $E = \{f_1 = (1; 0; 2), f_2 = (0; 1; 3)\}$ . **Bước 2.** Tìm cơ sở, số chiều của  $F^{\perp}$ .

$$\forall x = (x_1; x_2; x_3) \in F^{\perp} \Leftrightarrow x \perp F \Leftrightarrow x \perp E \Leftrightarrow \begin{cases} x \perp f_1 \\ x \perp f_2 \end{cases} \Leftrightarrow \begin{cases} (f_1, x) = 0 \\ (f_2, x) = 0 \end{cases}$$

## $\Leftrightarrow FMx^T = 0$ , $v\acute{o}i F = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 0 & 2 \end{pmatrix}$ , $M = \begin{pmatrix} -1 & 5 & 2 \\ 1 & 0 & 1 \end{pmatrix}$ TÀI LIỆU SƯU TẬP

 $\Leftrightarrow \begin{pmatrix} 10 & 3 & 15 \\ 8 & 11 & 20 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mathbf{B} \mathbf{O} \mathbf{I} \mathbf{H} \mathbf{CMUI} \mathbf{1} \mathbf{CNC} \mathbf{P} \mathbf{40}; -258)$ 

Cơ sở của  $F^{\perp}$  là ((315; 240; **BÁCHKHOACNCP.COM** 

Trong  $\mathbb{R}_3$  với tích vô hướng  $(x,y) = ((x_1; x_2; x_3)(y_1; y_2; y_3))$ =  $4x_1y_1 - x_1y_2 + 3x_1y_3 - x_2y_1 + 5x_2y_2 + 2x_2y_3 + 3x_3y_1 + 2x_3y_2 + 6x_3y_3$ , cho không gian con  $F = \{(x_1; x_2; x_3) | 2x_1 + 3x_2 - x_3 = 0\}$ . Tìm một cơ sở và số chiều của  $F^{\perp}$ .

**Bước 1.** Tập sinh của F là  $E = \{f_1 = (1, 0, 2), f_2 = (0, 1, 3)\}$ . **Bước 2.** Tìm cơ sở, số chiều của  $F^{\perp}$ .

$$\forall x = (x_1; x_2; x_3) \in F^{\perp} \Leftrightarrow x \perp F \Leftrightarrow x \perp E \Leftrightarrow \begin{cases} x \perp f_1 \\ x \perp f_2 \end{cases} \Leftrightarrow \begin{cases} (f_1, x) = 0 \\ (f_2, x) = 0 \end{cases}$$
  
$$\Leftrightarrow FMx^T = 0, \text{ v\'oi } F = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{pmatrix}, M = \begin{pmatrix} 4 & -1 & 3 \\ -1 & 5 & 2 \\ 3 & 2 & 6 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} 10 & 3 & 15 \\ 8 & 11 & 20 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} \mathbf{B} \overset{\bullet}{O} \mathbf{I} \overset{\bullet}{O} \mathbf{H} \overset{\bullet}{C} \overset{\bullet}{N} \overset{\bullet}{V} \overset{\bullet}{I} \overset{\bullet}{I} \overset{\bullet}{O} \mathbf{I} \overset{\bullet}{O} \overset{\bullet}{O}$$

Cơ sở của  $F^{\perp}$  là  $\{(315; 240; \mathbf{BACHKHOACNCP.COM}\}$ 

Trong  $\mathbb{R}_3$  với tích vô hướng  $(x,y) = ((x_1; x_2; x_3)(y_1; y_2; y_3))$ =  $4x_1y_1 - x_1y_2 + 3x_1y_3 - x_2y_1 + 5x_2y_2 + 2x_2y_3 + 3x_3y_1 + 2x_3y_2 + 6x_3y_3$ , cho không gian con  $F = \{(x_1; x_2; x_3) | 2x_1 + 3x_2 - x_3 = 0\}$ . Tìm một cơ sở và số chiều của  $F^{\perp}$ .

**Bước 1.** Tập sinh của F là  $E = \{f_1 = (1, 0, 2), f_2 = (0, 1, 3)\}$ . **Bước 2.** Tìm cơ sở, số chiều của  $F^{\perp}$ .

$$\forall x = (x_1; x_2; x_3) \in F^{\perp} \Leftrightarrow x \perp F \Leftrightarrow x \perp E \Leftrightarrow \begin{cases} x \perp f_1 \\ x \perp f_2 \end{cases} \Leftrightarrow \begin{cases} (f_1, x) = 0 \\ (f_2, x) = 0 \end{cases}$$
$$\Leftrightarrow FMx^T = 0, \text{ v\'oi } F = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{pmatrix}, M = \begin{pmatrix} 4 & -1 & 3 \\ -1 & 5 & 2 \\ 3 & 2 & 6 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} 10 & 3 & 15 \\ 8 & 11 & 20 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow x = \alpha(315; 240; -258)$$

Cơ sở của  $F^{\perp}$  là  $\{(315; 240; \mathbf{BACHKHOACNCP.COM}\}$ 

Trong  $\mathbb{R}_3$  với tích vô hướng  $(x,y) = ((x_1; x_2; x_3)(y_1; y_2; y_3))$ =  $4x_1y_1 - x_1y_2 + 3x_1y_3 - x_2y_1 + 5x_2y_2 + 2x_2y_3 + 3x_3y_1 + 2x_3y_2 + 6x_3y_3$ , cho không gian con  $F = \{(x_1; x_2; x_3) | 2x_1 + 3x_2 - x_3 = 0\}$ . Tìm một cơ sở và số chiều của  $F^{\perp}$ .

**Bước 1.** Tập sinh của F là  $E = \{f_1 = (1, 0, 2), f_2 = (0, 1, 3)\}$ . **Bước 2.** Tìm cơ sở, số chiều của  $F^{\perp}$ .

$$\forall x = (x_1; x_2; x_3) \in F^{\perp} \Leftrightarrow x \perp F \Leftrightarrow x \perp E \Leftrightarrow \begin{cases} x \perp f_1 \\ x \perp f_2 \end{cases} \Leftrightarrow \begin{cases} (f_1, x) = 0 \\ (f_2, x) = 0 \end{cases}$$
$$\Leftrightarrow FMx^T = 0, \text{ v\'oi } F = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{pmatrix}, M = \begin{pmatrix} 4 & -1 & 3 \\ -1 & 5 & 2 \\ 3 & 2 & 6 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} 10 & 3 & 15 \\ 8 & 11 & 20 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow x = \alpha(315; 240; -258)$$

Cơ sở của  $F^{\perp}$  là {(315; 240; =258)} và  $dim(F^{\perp}) = 10 \text{ M}$