STROJNO UČENJE

2. Domaća Zadaća

Krešimir Špes 0036419866 ak. god. 2011. / 2012.

Naivni Bayes:

Emprijska pogreska: 6.496% Pogreska generalizacije: 8.15%

Naivni Bayes uz Laplaceovo zaglađivanje:

Emprijska pogreska: 6.689% Pogreska generalizacije: 7.262%

Vrijednosti su izrčunate i uprosiječene na 1000 eksperimenata u kojima se svaki puta nasumično presloži skup podataka i razdijeli.

Kao što možemo vidjeti, uz laplaceovo zaglađivanje dobivamo nešto manje pogreške generalizacije što je i logčino jer u skupu podataka ima vjerojatnosti koje su 0

evo jedan primjer izračunatih vjerojatnosti u programu (1 eksperiment):

Naivni Bayes:			Naivni B	Naivni Bayes uz Laplaceovo zaglađiv		
setosa(1)	setosa(2)	setosa(3)	setosa(1)	setosa(2)	setosa(3)	
0.794 0.000 1.000	0.206 0.235 0.000 0.000	0.000 0.765 0.000 0.000	0.743 0.029 0.943 0.943	0.229 0.229 0.029 0.029	0.029 0.743 0.029 0.029	
versi(1)	versi(2)	versi(3)	versi(1)	versi(2)	versi(3)	
0.094 0.531 0.000 0.000	0.594 0.312 0.938 0.906	0.312 0.156 0.062 0.094	0.135 0.541 0.027 0.027	0.649 0.324 0.865 0.811	0.216 0.135 0.108 0.162	
virgi(1)	virgi(2)	virgi(3)	virgi(1)	virgi(2)	virgi(3)	
.029 .412 .000	0.235 0.353 0.059 0.059	0.735 0.235 0.941 0.941	0.027 0.324 0.027 0.027	0.270 0.378 0.054 0.054	0.703 0.297 0.919 0.919	
Emprijska pogreska: 6.0% Pogreska generalizacije: 10.0%				Emprijska pogreska: 6.0% Pogreska generalizacije: 8.0%		

Vidi se da su neke vrijednosti u naivnom bayesu == 0, dok su u zaglađenom bayesu malo veće od nule. (napomena vjerojatnosti s lijeva i desna nisu na istom skupu jer se set podataka nasumično mješa)

U nastavku je dan ispis python koda za ovaj zadatak (također dan kao zasebna datoteka):

```
data=[]
p1 = []
p2 = []
p3 = []
nEksperimenata = 1
def log(s):
       #pass
       print s
def ml(stupac, vrijednost, klasa):
       nKlasa = 0
       nVrijednost = 0
       for i in data:
        if i[4] == klasa:
                 nKlasa += 1
                 if i[stupac] == vrijednost: nVrijednost += 1
# naivni bayes
       if nKlasa == 0: return 0
       return float(nVrijednost) / nKlasa
# bayes sa laplaceovim zagladjivanjem
       #return float(nVrijednost + 1) / (nKlasa + 3)
# parsaj podatke
f = open('dataset.txt','r')
for line in f:
       lst = line.split(',')
       data.append([float(lst[0]), float(lst[1]), float(lst[2]), float(lst[3]), lst[4].replace('\n',").replace('\ris-',")])
f.close()
def diskretiziraj(stupac):
       lst = []
       for i in data:
        lst.append(i[stupac])
       lst.sort()
       granica1 = Ist[int(len(lst)/3)]
       granica2 = Ist[int(2*Ien(Ist)/3)]
       for i in data:
        if i[stupac] < granica1: i[stupac] = 0
        elif i[stupac] < granica2: i[stupac] = 1
        else: i[stupac] = 2
```

import random

```
for i in range(0,4):
       diskretiziraj(i)
def greska(set):
       nKrivih = 0
       for i in set:
        a = p1[0][i[0]] * p1[1][i[1]] * p1[2][i[2]] * p1[3][i[3]]
        b = p2[0][i[0]] * p2[1][i[1]] * p2[2][i[2]] * p2[3][i[3]]
        c = p3[0][i[0]] * p3[1][i[1]] * p3[2][i[2]] * p3[3][i[3]]
        if a > b and a > c: y = 'setosa'
        elif b > c: y = 'versicolor'
        else:
                       y = 'virginica'
        if y != i[4]:
                log(str(a) + "," + str(b) + "," + str(c) + "," + str(y) + " ---> " + repr(i))
                nKrivih += 1
       return float(nKrivih) / len(set)
empirijska = 0
generalizacijska = 0
for i in range(0,nEksperimenata): # napravi 1000 eksperiminata radi tocnijih mjerenja
       p2 = []
       p3 = []
       random.shuffle(data)
       validation_set = data[2*len(data)/3:]
       data = data[:2*len(data)/3]
       log('setosa(1)\tsetosa(2)\tsetosa(3)')
       log('----')
       for i in range(0,4):
        p1.append([ml(i, j, 'setosa') for j in range(0,3)])
        log("%.3f\t\t%.3f\t\t%.3f" % (p1[i][0], p1[i][1], p1[i][2]))
       log('versi(1)\tversi(2)\tversi(3)')
       log('----')
       for i in range(0,4):
        p2.append([ml(i, j, 'versicolor') for j in range(0,3)])
        log("%.3f\t\t%.3f\t\t%.3f" % (p2[i][0], p2[i][1], p2[i][2]))
       log('-----')
       log('virgi(1)\tvirgi(2)\tvirgi(3)')
       for i in range(0,4):
        p3.append( [ ml(i, j, 'virginica') for j in range(0,3) ] )
        log("%.3f\t\t%.3f\t\t%.3f" % (p3[i][0], p3[i][1], p3[i][2]))
       log('----')
       empirijska += greska(data)*100
```

```
generalizacijska += greska(validation_set)*100
log('-----')
data += validation_set

print 'Emprijska pogreska: ' + str(empirijska/nEksperimenata) + '%'
print 'Pogreska generalizacije: ' + str(generalizacijska/nEksperimenata) + '%'
```