Лабораторная работа №13.

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДОМ ЗЕЙДЕЛЯ

Цель работы: приобретение и закрепление практических навыков при решении систем линейных алгебраических уравнений методом Зейделя.

Задание. Решить систему линейных алгебраических уравнений с погрешностью $\varepsilon = 0,001$ методом Зейделя. Указать количество итераций, при котором была достигнута заданная точность решения.

Варианты заданий взять из лабораторной работы №12.

Отчет по лабораторной работе должен содержать:

- тему лабораторной работы, полный текст задания и исходные данные в соответствии с номером варианта;
- преобразование исходной системы линейных алгебраических уравнений к виду, при котором обеспечивается условие доминирования диагональных элементов;
- приведение преобразованной системы линейных алгебраических уравнений к виду, удобному для применения метода Зейделя;
- необходимые расчеты в соответствие с алгоритмом метода
 Зейделя;
 - таблицу результатов вычислений методом Зейделя;
 - проверку полученного решения;
 - выводы по работе.

Пример. Методом Зейделя решить с точностью до $\varepsilon = 0,001$ систему линейных алгебраических уравнений:

$$\begin{cases} 4,5 x_1 - 1,8 x_2 + 3,6 x_3 = -1,7; \\ 3,1 x_1 + 2,3 x_2 - 1,2 x_3 = 3,6; \\ 1,8 x_1 + 2,5 x_2 + 4,6 x_3 = 2,2. \end{cases}$$

Для решения заданной системы линейных алгебраических уравнений методом Зейделя воспользуемся полученными выше уравнениями (1) из лабораторной работы №12:

$$\begin{cases} x_1 = -0.0658 x_2 - 0.3158 x_3 + 0.2500; \\ x_2 = -0.2418 x_1 - 0.4835 x_3 + 1.0659; \\ x_3 = 0.2241 x_1 - 0.0345 x_2 - 0.2414. \end{cases}$$

В этом случае итерационные формулы Зейделя будут иметь вид:

$$\begin{cases} x_1^{(k)} = & -0.0658 \ x_2^{(k-1)} - 0.3158 x_3^{(k-1)} + 0.2500; \\ x_2^{(k)} = -0.2418 x_1^{(k)} & -0.4835 x_3^{(k-1)} + 1.0659; \\ x_3^{(k)} = & 0.2241 x_1^{(k)} - 0.0345 x_2^{(k)} & -0.2414. \end{cases}$$

Используя в качестве начального приближения нулевой вектор $x^{(0)} = (0; 0; 0)^T$, получаем $x^{(1)} = (0, 2500; 1, 0055; -0, 2200)^T$. Теперь подставляя полученные значения в рекуррентные формулы Зейделя, получаем второе приближение к точному решению заданной системы: $x^{(2)} = (0, 2533; 1, 1111; -0, 2229)^T$. При этом расхождение между двумя полученными приближениями составляет:

$$||x^{(2)} - x^{(1)}|| = \max\{|0,0033|; |0,1056|; |-0,0029|\} = 0,1056 > \varepsilon.$$

Продолжая процесс вычислений дальше, получаем последовательность приближенных решений заданной системы уравнений, сходящуюся к точному решению.

Результаты вычислений представлены в таблице 1.

Таблица 1 **Результаты вычислений по методу Зейделя**

k	$X_1^{(k)}$	$x_2^{(k)}$	$X_3^{(k)}$	$ x^{(k)} - x^{(k-1)} $
0	0,000	0,000	0,000	
1	0,2500	1,0055	-0,2200	1,0055
2	0,2533	1,1111	-0,2229	0,1056
3	0,2473	1,1139	-0,2244	0,0060
4	0,2476	1,1146	-0,2243	0,0006
5	0,2475	1,1146	-0,2243	0,0001
6	0,2475	1,1146	-0,2243	0,0000

Очевидно, что на *пятой* итерации заданная точность достигнута. Таким образом, решение заданной системы линейных алгебраических уравнений методом Зейделя с точностью $\varepsilon = 0,001$ имеет вид:

$$x_1 = 0,248 \pm 0,001$$
; $x_2 = 1,115 \pm 0,001$; $x_3 = -0,224 \pm 0,001$.

Контрольные вопросы

- 1. В чём заключается метод Зейделя решения системы линейных уравнений?
 - 2. Чем метод Зейделя отличается от метода простых итераций?
- 3. Как преобразовать исходную систему линейных уравнений к виду, удобному для применения Зейделя?
 - 4. Сформулировать достаточные условия сходимости метода Зейделя.