Números suma de dos cuadrados y ecuaciones diofantinas

Nicholas Mc-Donnell, Camilo Sanchez

2do semestre 2017

Resumen

Comenzaremos dando algunos ejemplos de ecuaciones diofantinas de la forma $x^2+y^2=p$, para después analizar cuales ecuaciones de la forma $x^2+y^2=n$ tienen solución. Después de esto, analizaremos unos pocos ejemplos de ecuaciones de las formas $x^2-p=y^n$ y $x^2+ny^2=p$, con sus respectivas soluciones.

1. Números suma de cuadrados

Teorema 1.1. Un número natural n se puede representar como una suma de dos cuadrados si y solo si todo factor primo de la forma p=4m+3 aparece con un exponente par en la factorización prima de n Para los primos p=4m+1 la ecuación $s^2\equiv -1 \mod p$ tiene dos soluciones $s\in\{1,2,...,p-1\}$, para p=2 hay una solución, mientras que para p=4m+3 no hay soluciones. Ningun numero de la forma n=4m+3 es la suma de dos cuadrados Todo primo de la forma p=4m+1 es la suma de dos cuadrados, en otras palabras, se puede escribir como $p=x^2+y^2$ con $x,y\in\mathbb{N}$

2. Ejemplos

2.1.
$$x^2 - 2y^2 = 2, x^2 + 2y^2 = 2$$

Definición 2.1. Norma: Función N de un anillo R a \mathbb{Z} , que cumple las siguientes propiedades:

$$a, b \in R$$

- 1. N(ab) = N(a)N(b)
- $2. \ a \mid b \implies N(a) \mid N(b)$
- 3. $a \text{ unidad} \implies N(a) = 1$

Norma típica de $\mathbb{Z}[\sqrt{x}]$ con $x \in \mathbb{Z}, \sqrt{x} \notin \mathbb{Z}$:

$$a + b\sqrt{x} \in \mathbb{Z}[\sqrt{x}], N(a + b\sqrt{x}) = a^2 - xb^2$$

2.2.
$$x^2 - p = y^4$$

$$x^2 - 17 = y^4$$

$$x^2 - 19 = y^4$$

$$x^2 - p = y^4$$