Algorithm for Optimal Chance Constrained Knapsack with Applications to Multi-robot Teaming

Stony Brook University, New York, USA

Fan Yang, Nilanjan Chakraborty, {fan.yang.3, nilanjan.chakraborty}@stonybrook.edu

Introduction

We consider a multi-robot teaming problem.

- A route with known distance (*L* in Eq.1) need to be traversed for patrolling or environmental sensing (see Fig.1).
- A set of available robots with known operation costs (c_i in Eq.1) and uncertain travel distance capacity (l_i in Eq.1) in one battery charge cycle, which are random variables.
- The goal is to find a team of robots from the given set to cover the route with a pre-specified probability (*p* in Eq.1) while the total operation cost is minimized.

Fig. 1. A route with given length should be traversed by robots with random travel distances. The goal is to select a team of robots from the given set to minimize the total cost such that the route is traversed with probabilistic guarantee.

Chance-Constrained Knapsack

The team selection problem with uncertain travel distance capacity is a chance-constrained knapsack problem (CC-KAP):

min
$$\sum_{i=1}^{n} c_i f_i$$
s.t.
$$\mathbb{P}\left(\sum_{i=1}^{n} \ell_i f_i \ge L\right) \ge p$$

$$f_i \in \{0, 1\}, \quad \forall i = 1, \dots, n$$

$$(1)$$

- The solution is a vector where each entry f_i is a binary decision variable indicating that a robot is selected when $f_i = 1$.
- The chance constraint guarantees that under any realization of the random travel distance, the selected team covers the route with a pre-specified probability *p*.
- The chance constraint is equivalent to a deterministic constraint

$$\sum_{i} \mu_{i} f_{i} - C \sqrt{\sum_{i} \sigma_{i}^{2} f_{i}} \geq L \text{ where } C \text{ is a}$$
 constant determined by p .

Risk-Averse Knapsack Problem

It is difficult to solve the CC-KAP directly. Instead we solve a sequence of deterministic problems, called risk-averse knapsack problem (RA-KAP).

min
$$\sum_{i=1}^{n} c_i f_i$$
s.t.
$$\sum_{i=1}^{n} \mu_i f_i - \lambda \sum_{i=1}^{n} \sigma_i^2 f_i \ge L'$$

$$f_i \in \{0, 1\}, \quad \forall i = 1, \dots, n$$

In RA-KAP the travel distances of robots are linear combinations of means (μ_i) and variances (σ_i^2) , λ is risk-averse parameter and the route length is L'.

Geometric Interpretation

- The problem is analyzed on a 2D variancemean plane (see Fig.2) where x-axis, y-axis represent the sum of variances and means of the selected robots respectively.
- Any robot team can be represented as a point on variance-mean plane.
- The optimal solution is the point in the non-convex feasible region (above blue parabola in Fig.2a) with the highest objective value.

Fig. 2. Illustration of our two-step algorithm. The feasible region of CC-KAP (\mathcal{R}) is the non-convex space above the parabola. Fig.(a) illustrates the first step, where we find a feasible solution of CC-KAP (s_2) which is optimal in the intersection region \mathcal{R}_2 . Fig.(b) zooms in the remaining feasible region $\mathcal{R}\setminus\mathcal{R}_2$. It illustrates the second step, where we find several feasible solutions, (s_4 , s_5) that are optimal in the intersection region of CC-KAP and the corresponding RA-KAP, (\mathcal{R}_4 , \mathcal{R}_5) such that the union of those intersection regions and the region in the first step, \mathcal{R}_2 covers the feasible region of CC-KAP, e.g. $\mathcal{R}\subseteq \bigcup_{i\in\{2,4,5\}}\mathcal{R}_i$.

Relationship

Observations on the relationship between CC-KAP and RA-KAP help us to find the optimal solution in non-convex region.

- The optimal solution of CC-KAP is the optimal solution of a RA-KAP with appropriate choice of (λ, L') .
- Thus, the problem is converted to a two-dimensional search (λ , L') on variancemean plane.

Algorithm

We develop a two-step algorithm to solve the CC-KAP optimally:

- 1. Solve a sequence of RA-KAPs by methodically increasing λ that controls the slope of the straight line until the optimal solution of a RA-KAP (s_2 in Fig. 2a) is feasible to CC-KAP.
- 2. Solve RA-KAPs by methodically changing parameters (λ, L') that control the slope and y-intercept of the straight line. If the optimal solution of a RA-KAP is feasible to CC-KAP, we obtain a solution that is optimal in the intersection of feasible regions of CC-KAP and RA-KAP, e.g., \mathcal{R}_4 , \mathcal{R}_5 in Fig.2b.

The *procedure terminates* when the intersection regions corresponding to those feasible solutions, e.g., \mathcal{R}_4 , \mathcal{R}_5 , cover the remaining feasible region of CC-KAP at the end of the first step, i.e., $\mathcal{R} \setminus \mathcal{R}_2$, in Fig.2a.

Simulation Results

Simulations are performed based on randomly generated means and variances for travel distance capacity of each robot. We count the number of RA-KAPs solved which influence the efficiency and scalability of our algorithm.

- Fig. 3 shows the scalability of our algorithm as a function of the number of robots varying from 10 to 100. The results shown are obtained from 100 randomly generated scenarios.
 - ➤ The average numbers of RA-KAP solved is constant (< 3) irrespective of the number of robots while the maximum number is at most 7 (see Fig.3).
- Our algorithm is scalable with the number of robots or variances of travel distances (not shown in poster).

Fig. 3. For a given number of robots (varying from 10 to 100), the average and maximum number of RA-KAPs solved are less than 3 and 7 respectively. Results are based on 100 simulations with randomly generated mean and variance for travel distance of each robot.

Conclusion

- We present a novel approach that uses the solutions of a small number of deterministic RA-KAPs to solve stochastic CC-KAP optimally.
- We analyze the relationship between CC-KAP and RA-KAP on variance-mean plane.
 The geometric insight is helpful for solving other problems with chance constraint.
- We present simulation results showing that our method is efficient and scalable with the number of robots and the uncertainty inn travel distance capacity.

Acknowledgements

This work was supported in part by AFOSR award FA9550-15-1-0442.