RELIC: Reproducibility and Extension on LIC metric in quantifying bias in captioning models

Machine Learning Reproducibility Challenge (MLRC), NeurIPS 2023

Paula Antequera, Egoitz Gonzalez, Marta Grasa, Martijn van Raaphorst

Paper to reproduce

Quantifying Societal Bias Amplification in Image Captioning Yusuke Hirota Yuta Nakashima Noa Garcia Osaka University Osaka University Osaka University y-hirota@is.ids.osaka-u.ac.jp n-yuta@ids.osaka-u.ac.jp noagarcia@ids.osaka-u.ac.jp Bias Score Abstract Humans a close up of a child eating something eating a slice of pizza in a restaurant We study societal bias amplification in image captionis sitting on a bed with a teddy bear ing. Image captioning models have been shown to perpetuate gender and racial biases, however, metrics to measure, vearing a fight suit in a garage quantify, and evaluate the societal bias in captions are not vet standardized. We provide a comprehensive study on the red dress standing in front of a bus strongths and limitations of each matric and propose IIC

Context Procedure Results Extension - Age Conclusions

Claims

- 1. LIC is robust against encoders. Its overall tendency is maintained across all language models (LSTM, BERT-ft, BERT-pre).
- 2. All models amplify both gender and race bias.
- 3. Racial bias is not as apparent as gender bias
- 4. *NIC+Equalizer* increases gender bias, but not racial bias, with respect to the baseline (*NIC+*).

LIC metric

$$LIC = LIC_M - LIC_D$$

$$LIC_M = \frac{1}{|\hat{\mathcal{D}}|} \sum_{(\hat{y}, a) \in \hat{\mathcal{D}}} \hat{s}_a(\hat{y}) \mathbb{1}[\hat{f}(\hat{y}) = a]$$

$$LIC_D = \frac{1}{|\mathcal{D}|} \sum_{(y^*, a) \in \mathcal{D}} s_a^*(y^*) \mathbb{1}[f^*(y^*) = a]$$

 \mathcal{D} : test data

a: protected attribute

f: classifier

y: caption

s: bias score

- COCO dataset
- Gender + race bias

Hirota et al. 2022

Models:

- CNN enc + LSTM dec: NIC, SAT, FC, Att2in, updn
- Transformers: transformer, OSCAR
- *NIC+*: *NIC* + trained on gender bias
- NIC+Equalizer: NIC+ + gender bias mitigation

Classifiers:

- LSTM
- BERT fine-tuned
- BERT pre-trained

Claim 1: LIC is robust against encoders

Claim 2: All models amplify gender and race bias

Claim 3: Racial bias is not as apparent as gender bias

Claim 4: *NIC+Equalizer* increases gender bias, but not racial bias, with respect to the baseline (*NIC+*)

Context Procedure Results Extension - Age Conclusions

Age: Hand-annotated data

COCO dataset hand-annotated using our own tool

Claim 1: LIC is robust against encoders

Claim 2: All models amplify age bias

Is age bias as apparent as gender and race bias?

Does *NIC+Equalizer* increase age bias with respect to the baseline (*NIC*+)?

NeurIPS 2023

Context Procedure Results Extension - Age Conclusions

Conclusions

- Not difficult to reproduce
- Results align with original paper
- Extension also shows same trend

RELIC: Reproducibility and Extension on LIC metric in quantifying bias in captioning models

Machine Learning Reproducibility Challenge (MLRC), NeurIPS 2023

Paula Antequera, Egoitz Gonzalez, Marta Grasa, Martijn van Raaphorst

