Text Analytics: Spam Classification

Team 1-03: Eric Fung, Michael McKenna, Rebecca Wood

Agenda

- Business Problem
- Data Information
- Models
 - ★ Naive-Bayes
 - ★ Generalized Linear Model
 - ★ Generalized Additive Model
 - ★ Support Vector Machines
 - Linear
 - Radial
 - Polynomial
 - **★** Classification Trees
 - Information
 - Gini
 - **★** Random Forest
 - Boosting
- Conclusion
- Further Research

Business Problem

- With the recent increase in phishing, spoofing and email advertising, spam emails have made their way into customers' inboxes.
- Zoho, based out of California, has hired us to improve upon their spam detection model for their company-client based email service.

UCI Machine Learning Repository Data

- 4601 emails (observations)
- > 57 attributes (predictors)
 - Most indicate whether a word or character is frequently occuring in an email
 - Run length attributes measure frequency of consecutive capital letters
- ➤ 1 response variable
 - o Spam: 1
 - o Not spam: 0
- Emails broken down into 57 attributes:
 - Word frequency top 48 words
 - Character frequency special characters
 - o Capitalization run length, total

4	A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0
1	v1	v2	v3	v4	v5	v6	v7	v8	v9	v10	v11	v12	v13	v14	v15
2	0	0.64	0.64	0	0.32	0	0	0	0	0	0	0.64	0	0	
3	0.21	0.28	0.5	0	0.14	0.28	0.21	0.07	0	0.94	0.21	0.79	0.65	0.21	0.1
4	0.06	0	0.71	0	1.23	0.19	0.19	0.12	0.64	0.25	0.38	0.45	0.12	0	1.7
5	0	0	0	0	0.63	0	0.31	0.63	0.31	0.63	0.31	0.31	0.31	0	
6	0	0	0	0	0.63	0	0.31	0.63	0.31	0.63	0.31	0.31	0.31	0	
7	0	0	0	0	1.85	0	0	1.85	0	0	0	0	0	0	
8	0	0	0	0	1.92	0	0	0	0	0.64	0.96	1.28	0	0	
9	0	0	0	0	1.88	0	0	1.88	0	0	0	0	0	0	
10	0.15	0	0.46	0	0.61	0	0.3	0	0.92	0.76	0.76	0.92	0	0	
11	0.06	0.12	0.77	0	0.19	0.32	0.38	0	0.06	0	0	0.64	0.25	0	0.1
12	0	0	0	0	0	0	0.96	0	0	1.92	0.96	0	0	0	
13	0	0	0.25	0	0.38	0.25	0.25	0	0	0	0.12	0.12	0.12	0	
14	0	0.69	0.34	0	0.34	0	0	0	0	0	0	0.69	0	0	
15	0	0	0	0	0.9	0	0.9	0	0	0.9	0.9	0	0.9	0	
16	0	0	1.42	0	0.71	0.35	0	0.35	0	0.71	0	0.35	0	0	
17	0	0.42	0.42	0	1.27	0	0.42	0	0	1.27	0	0	0	0	
18	0	0	0	0	0.94	0	0	0	0	0	0	0	0	0	
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
20	0	0	0.55	0	1.11	0	0.18	0	0	0	0	0	0.92	0	0.1
21	0	0.63	0	0	1.59	0.31	0	0	0.31	0	0	0.63	0	0	1.2
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
23	0.05	0.07	0.1	0	0.76	0.05	0.15	0.02	0.55	0	0.1	0.47	0.02	0	
24	0	0	0	0	2.94	0	0	0	0	0	0	0	0	0	
25	0	0	0	0	1.16	0	0	0	0	0	0	0.58	0	0	
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
27	0.05	0.07	0.1	0	0.76	0.05	0.15	0.02	0.55	0	0.1	0.47	0.02	0	
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
29	0	0	0	0	0	0	1.66	0	0	0	0	0	0	0	

Naive-Bayes Model

Model:

- Method = 'nb'
- Repeated 10-fold cross-validation
- Data is centered and scaled
- Processed predictors with principal component analysis (PCA)

- ➤ 87 % accuracy
- > Type 1 Error: 15 %
- Type 2 Error: 11 %

```
Confusion Matrix and Statistics
          Reference
Prediction 0
         0 472 39
         1 85 323
               Accuracy: 0.8651
                 95% CI: (0.8413, 0.8865)
   No Information Rate: 0.6061
   P-Value [Acc > NIR]: < 2.2e-16
                  Kappa: 0.7236
Mcnemar's Test P-Value: 5.32e-05
            Sensitivity: 0.8474
            Specificity: 0.8923
         Pos Pred Value: 0.9237
         Neg Pred Value: 0.7917
             Prevalence: 0.6061
         Detection Rate: 0.5136
   Detection Prevalence: 0.5560
      Balanced Accuracy: 0.8698
       'Positive' Class: 0
```

Generalized Linear Model (GLM)

Model:

- Method = 'bayesglm'
- Repeated 10-fold cross-validation
- Data is centered and scaled
- Processed predictors with principal component analysis (PCA)

- ➤ 92 % accuracy
- Type 1 Error: 5 %
- Type 2 Error: 12 %

```
Confusion Matrix and Statistics
Prediction 0
         0 529 42
               Accuracy: 0.9238
                 95% CI: (0.9047, 0.9401)
   No Information Rate: 0.6061
    P-Value [Acc > NIR]: <2e-16
                  Kappa: 0.8394
Mcnemar's Test P-Value: 0.1202
            Sensitivity: 0.9497
            Specificity: 0.8840
         Pos Pred Value: 0.9264
         Neg Pred Value: 0.9195
             Prevalence: 0.6061
         Detection Rate: 0.5756
   Detection Prevalence: 0.6213
      Balanced Accuracy: 0.9169
       'Positive' Class: 0
```

Generalized Additive Model (GAM)

Model:

- Method = 'gamboost'
- Repeated 10-fold cross-validation
- Data is centered and scaled
- Processed predictors with principal component analysis (PCA)

- ➤ 92 % accuracy
- ➤ Type 1 Error: 5 %
- ➤ Type 2 Error: 12 %

```
Confusion Matrix and Statistics
          Reference
Prediction 0 1
        0 529 45
        1 28 317
               Accuracy: 0.9206
                 95% CI: (0.9012, 0.9372)
   No Information Rate: 0.6061
   P-Value [Acc > NIR]: < 2e-16
                  Kappa: 0.8323
Mcnemar's Test P-Value: 0.06112
           Sensitivity: 0.9497
            Specificity: 0.8757
         Pos Pred Value: 0.9216
        Neg Pred Value: 0.9188
             Prevalence: 0.6061
         Detection Rate: 0.5756
  Detection Prevalence: 0.6246
      Balanced Accuracy: 0.9127
       'Positive' Class: 0
```

Support Vector Machine - Linear

Model:

- Repeated 10-fold cross-validation
- Data is centered and scaled
- Processed predictors with principal component analysis (PCA)
- Tuned for best cost value

- 93 % accuracy
- Type 1 Error: 5 %
- Type 2 Error: 12 %

```
Confusion Matrix and Statistics
          Reference
Prediction 0
         0 531 45
         1 26 317
               Accuracy: 0.9227
                 95% CI: (0.9035, 0.9392)
    No Information Rate: 0.6061
    P-Value [Acc > NIR]: < 2e-16
                  Kappa: 0.8367
 Mcnemar's Test P-Value: 0.03266
            Sensitivity: 0.9533
            Specificity: 0.8757
         Pos Pred Value: 0.9219
         Neg Pred Value: 0.9242
             Prevalence: 0.6061
         Detection Rate: 0.5778
   Detection Prevalence: 0.6268
      Balanced Accuracy: 0.9145
       'Positive' Class: 0
```

Support Vector Machine - Radial

Model:

- Repeated 10-fold cross-validation
- Data is centered and scaled
- Processed predictors with principal component analysis (PCA)
- Tuned for best cost and sigma values

- ➤ 93 % accuracy
- > Type 1 Error: 5 %
- Type 2 Error: 10 %

```
Confusion Matrix and Statistics
          Reference
Prediction 0
         0 530 37
               Accuracy: 0.9304
                 95% CI: (0.9119, 0.946)
   No Information Rate: 0.6061
    P-Value [Acc > NIR]: <2e-16
                  Kappa: 0.8534
            Sensitivity: 0.9515
            Specificity: 0.8978
         Pos Pred Value: 0.9347
         Neg Pred Value: 0.9233
             Prevalence: 0.6061
         Detection Rate: 0.5767
   Detection Prevalence: 0.6170
      Balanced Accuracy: 0.9247
       'Positive' Class: 0
```

Support Vector Machine - Polynomial

Model:

- Data is centered and scaled
- Repeated 10-fold cross-validation
- Processed predictors with PCA
- Tuned for best cost, scale, and degree values

- 93 % accuracy
- Type 1 Error: 4 %
- Type 2 Error: 11 %

```
Confusion Matrix and Statistics
          Reference
Prediction 0
         1 23 323
               Accuracy: 0.9325
                 95% CI: (0.9143, 0.9479)
    No Information Rate: 0.6061
    P-Value [Acc > NIR]: < 2e-16
                  Kappa: 0.8576
Mcnemar's Test P-Value: 0.05678
            Sensitivity: 0.9587
            Specificity: 0.8923
         Pos Pred Value: 0.9319
         Neg Pred Value: 0.9335
             Prevalence: 0.6061
         Detection Rate: 0.5811
   Detection Prevalence: 0.6235
      Balanced Accuracy: 0.9255
       'Positive' Class: 0
```

Classification Trees - Information

Model:

- Create initial tree
- Identify optimal cp, minbucket, minsplit parameters
- > Prune tree and evaluate test set

- 92 % accuracy
- > Type 1 Error: 6 %
- > Type 2 Error: 10 %

```
Confusion Matrix and Statistics
          Reference
Prediction 0 1
         0 521 35
         1 36 327
               Accuracy: 0.9227
                 95% CI: (0.9035, 0.9392)
    No Information Rate: 0.6061
    P-Value [Acc > NIR]: <2e-16
                  Kappa: 0.8383
Mcnemar's Test P-Value: 1
            Sensitivity: 0.9354
            Specificity: 0.9033
         Pos Pred Value: 0.9371
         Neg Pred Value: 0.9008
             Prevalence: 0.6061
         Detection Rate: 0.5669
   Detection Prevalence: 0.6050
      Balanced Accuracy: 0.9193
       'Positive' Class: 0
```

Classification Trees - Gini

Model:

- Enumerate through values of minsplit & minbucket
- Identify cp, minbucket, minsplit parameters with highest accuracy
- Prune tree using this information
- Evaluate test set performance

- ➤ 92 % accuracy
- > Type 1 Error: 6 %
- Type 2 Error: 11 %

```
Confusion Matrix and Statistics
          Reference
Prediction 0 1
         0 525 41
         1 32 321
               Accuracy: 0.9206
                 95% CI: (0.9012, 0.9372)
   No Information Rate: 0.6061
   P-Value [Acc > NIR]: <2e-16
                  Kappa: 0.8329
 Mcnemar's Test P-Value: 0.3491
            Sensitivity: 0.9425
            Specificity: 0.8867
         Pos Pred Value: 0.9276
         Neg Pred Value: 0.9093
             Prevalence: 0.6061
         Detection Rate: 0.5713
   Detection Prevalence: 0.6159
      Balanced Accuracy: 0.9146
       'Positive' Class: 0
```

Random Forest

Model:

- Find optimal mtry value
 - Enumerate through vector of values
- Train new random forest model
- Predict on test set
- Compute accuracy scores

- 95 % accuracy
- Type 1 Error: 3 %
- Type 2 Error: 8 %

```
Confusion Matrix and Statistics
          Reference
Prediction 0 1
         0 525 41
         1 32 321
               Accuracy: 0.9206
                 95% CI: (0.9012, 0.9372)
    No Information Rate: 0.6061
    P-Value [Acc > NIR]: <2e-16
                  Kappa: 0.8329
 Mcnemar's Test P-Value: 0.3491
            Sensitivity: 0.9425
            Specificity: 0.8867
         Pos Pred Value: 0.9276
         Neg Pred Value: 0.9093
             Prevalence: 0.6061
         Detection Rate: 0.5713
   Detection Prevalence: 0.6159
      Balanced Accuracy: 0.9146
       'Positive' Class: 0
```

Random Forest - AdaBoost

Model:

- Find optimal nu value
- > Rebuild boost tree with new nu value
- Train new boost model
- > Predict on test set
- Compute accuracy scores

- ➤ 96 % accuracy
- ➤ Type 1 Error: 3 %
- > Type 2 Error: 6 %

```
Confusion Matrix and Statistics
          Reference
Prediction 0 1
         0 538 21
        1 19 341
               Accuracy: 0.9565
                 95% CI: (0.9412, 0.9687)
    No Information Rate: 0.6061
                  Kappa: 0.9088
Mcnemar's Test P-Value: 0.8744
            Sensitivity: 0.9659
            Specificity: 0.9420
         Pos Pred Value: 0.9624
         Neg Pred Value: 0.9472
             Prevalence: 0.6061
         Detection Rate: 0.5854
  Detection Prevalence: 0.6083
      Balanced Accuracy: 0.9539
       'Positive' Class: 0
```

Random Forest - GBM Boost

Model:

- Find optimal parameters
- Train boost model with optimal shrinkage and decision boundary
- Predict on test set
- Compute accuracy scores

- 94 % accuracy
- > Type 1 Error: 4 %
- > Type 2 Error: 8 %

```
Confusion Matrix and Statistics
Prediction 0
        0 533 30
        1 24 332
               Accuracy: 0.9412
                 95% CI: (0.924, 0.9556)
   No Information Rate: 0.6061
   P-Value [Acc > NIR]: <2e-16
                  Kappa: 0.8766
Mcnemar's Test P-Value: 0.4962
            Sensitivity: 0.9569
            Specificity: 0.9171
         Pos Pred Value: 0.9467
         Neg Pred Value: 0.9326
             Prevalence: 0.6061
         Detection Rate: 0.5800
  Detection Prevalence: 0.6126
      Balanced Accuracy: 0.9370
       'Positive' Class: 0
```

Random Forest - XGBoost

Model:

- Train initial XGBoost model
- Identify optimal decision boundary
- > Predict on test set

- ➣ 96 % accuracy
- Type 1 Error: 4 %
- Type 2 Error: 5 %

```
Confusion Matrix and Statistics
          Reference
Prediction 0 1
         0 533 17
         1 24 345
               Accuracy: 0.9554
                 95% CI: (0.94, 0.9678)
    No Information Rate: 0.6061
    P-Value [Acc > NIR]: <2e-16
                  Kappa: 0.9069
Mcnemar's Test P-Value: 0.3487
            Sensitivity: 0.9569
            Specificity: 0.9530
         Pos Pred Value: 0.9691
         Neg Pred Value: 0.9350
             Prevalence: 0.6061
         Detection Rate: 0.5800
   Detection Prevalence: 0.5985
      Balanced Accuracy: 0.9550
       'Positive' Class: 0
```

Conclusion

	Accuracy	Type1	Type2
NaiveBayes	86.50707	15.26032	10.773481
GLM	92.38303	5.026930	11.602210
GAM	92.05658	5.026930	12.430939
SVMLinear	92.27421	4.667864	12.430939
SVMRadial	93.03591	4.847397	10.220994
SVMPolynomial	93.25354	4.129264	10.773481
TreeInformation	92.27421	6.463196	9.6685080
TreeGini	92.05658	5.745063	11.325967
RandomForest	95.10337	2.692998	8.2872930
AdaBoost	95.64744	3.411131	5.8011050
GbmBoost	94.12405	4.308797	8.2872930
XgBoost	95.53863	4.308797	4.6961330

Optimal Model: XGBoost

Next Steps

- Accounting for Type 2 Errors: willing to sacrifice accuracy for lower false positives
 - Adding or removing attributes
 - Using decision boundaries to identify Type 2 Errors
 - Use ROC curve to reduce Type 2 Errors
- Use hard-coded rules for outliers and remaining emails
- Aggregate various models