SMD-Abgabe

Blatt 2, Kai Brügge (kai.bruegge@tu-dortmund.de) und Marian Bruns (marian. bruns@tu-dortmund.de)

Aufgabe 5

Figure 1:

a)

- für $x<10^2$ sind numerisches und algabraisches Ergebnis ungefähr gleich
- Abweichung <1% liegt im gleichen bereich vor für $x>10^{35}$ wird das numerische Ergebis 0

b)

- Übereinstimmung für $|x| > 10^{-4}$
- für $-8 \cdot 10^{-6} < x < 8 \cdot 10^{-6}$ wird das numerische Ergebnis0

Aufgabe 6

a)

Die Gleichung ist numerisch nicht stabil, da für gewisse θ durch kleine Zahlen geteilt wird. Beim graphischen Darstellen mit Python ist diese jedoch nicht zu sehen...

Zu erwarten wäre Ungenauigkeit für θ gegen $n \cdot \pi$, wobei n eine ganze Zahl ist, denn da $\beta \approx 1$ ist, geht dann der Nenner gegen 0.

b)

Umgeformte Funktion:

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{s} \left(\frac{2 + \sin^2(\theta)}{\frac{1}{\gamma^2} \cos^2(\theta) + \sin^2(\theta)} + \frac{2 \sin^4 \theta}{(\frac{1}{\gamma^2} \cos^2(\theta) + \sin^2(\theta))^2} \right)$$

c)

Was man nicht sieht kann man nicht beheben (ansonsten siehe e)).

d)

Konditionszahl nach WolframAlpha wobei x dem Winkel entspricht:

$$\frac{-\frac{\sin(2x)\left(\left(3b^2-5b+4\right)\cos(2x)+3b^2-3b-2\right)}{2\left(b\cos^2(x)-1\right)^3}}{\frac{2+\sin^2(x)}{1-b\cos^2(x)}-\frac{2\sin^4(x)}{\left(1-b\cos^2(x)\right)^2}}$$

Figure 2:

Figure 3:

Aufgabe 7

Groesse

60 80 100 120 140 160 180 200

0 └ 40

60 80 100 120 140 160 180 200

a)

- Binning zu fein -> Verteilung nicht erkennbar da Stichprobe zu klein
- Bei der Größe irgendwas zwischen 5 und 15.
- Beim Gewicht etwa 20 Bins. Wenn weniger Bins gewählt werden ist die Zentrierung nicht erkennbar.

b)

- Je mehr desto besser
- Unterschiedliche Binanzahl aufgrund unterscheidlicher Streuung (Varianz) der Daten
- Bei Größe Binbreite nicht kleiner als 1.0 cm. Dann ist die Position des i-ten bins zentriert bei (0.5 + 1 * i) cm
- Beim Gewicht Binbreite nicht kleiner als 1.0 kg. Dann ist die Position des i-ten bins zentriert bei (0.5 + 1 * i) kg

c)

• Bei zu feinem Binning werden niedrige Bins eventuell nicht gefüllt da die Logarithmusfunktion in dem Bereich sehr steil ist.

Aufgabe 8

- a) 1/9
- b) 1/2
- c) 1/18
- d) 1/36
- e) 1/6
- f) 1/3
- g) 1/6