DIALOG(R) File 352: Derwent WPI

(c) 2004 Thomson Derwent. All rts. reserv.

WPI Acc No: 2003-865706/200380

XRPX Acc No: NO3-691000

Electroluminescence display device for use in e.g. mobile telephone, selects current or voltage corresponding to external data signal, and supplies selected output to data line connected to pixel circuit

Patent Assignee: SEIKO EPSON CORP (SHIH)

Inventor: IMAMURA Y

Number of Countries: 029 Number of Patents: 003

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
WO 200391980 A1 20031106 WO 2003JP5309 A 20030424 200380 B
JP 2004004789 A 20040108 JP 2003116368 A 20030421 200405
JP 2004004787 A 20040108 JP 2003116224 A 20030421 200405

Priority Applications (No Type Date): JP 2003116368 A 20030421; JP 2002123036 A 20020424

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

WO 200391980 A1 J 51 G09G-003/30

Designated States (National): CN KR

Designated States (Regional): AT BE BG CH CY CZ DE DK EE ES F1 FR GB GR

HU IE IT LU MC NL PT RO SE SI SK TR

JP 2004004789 A 24 G09G-003/30

JP 2004004787 A 24 G09G-003/30

Abstract (Basic): WO 200391980 A1

NOVELTY - The output units (D/Aa, D/Ab) output current or voltage corresponding to external data signal (Mdatam) and magnitude of D/Aa output, respectively. The switches (Swa, Swb) select one or both the outputs of the output units, and supply selected output to data line (loutm) connected to pixel circuit (Pmn).

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the

following: (1) electronic apparatus; and (2) display device drive method. USE - For electronic apparatus (claimed) such as mobile telephone. camera and projector. ADVANTAGE - Image reproducibility in the low-luminance lowgradation display area of the display device, is improved. DESCRIPTION OF DRAWING(S) - The figure shows a block diagram of the display device. (Drawing includes non-English language text). pixel circuit (Pmn) data signal (Mdatam) switches (Swa, Swb) data line (loutm) output units (D/Aa, D/Ab) pp; 51 DwgNo 2/13 Title Terms: ELECTROLUMINESCENT; DISPLAY; DEVICE; MOBILE; TELEPHONE; SELECT ; CURRENT; VOLTAGE; CORRESPOND; EXTERNAL; DATA; SIGNAL; SUPPLY; SELECT; OUTPUT; DATA; LINE; CONNECT; PIXEL; CIRCUIT Derwent Class: P85; T04; U14; W01 International Patent Class (Main): G09G-003/30

International Patent Class (Additional): G09G-003/20; G09G-003/36;

H05B-033/14

?

File Segment: EPI; EngPI

(19) 日本国特許庁(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-4789 (P2004-4789A)

(43) 公開日 平成16年1月8日(2004.1.8)

(51) Int.Cl. ⁷	FI		テーマコード(参考)			
GO9G 3/30	G09G	3/30	J	3K007		
GO9G 3/20	G09G	3/30	K	5C080		
HO5B 33/14	G09G	3/20	611E			
	G09G	3/20	612F			
	G09G	3/20	621F			
	審査請求	有 請求項	頁の数 34 〇L	(全 24 頁)	最終頁に続く	
(21) 出願番号	特願2003-116368 (P2003-116368)	(71) 出願人	000002369			
(22) 出願日	平成15年4月21日 (2003.4.21) セイコーエブソン株式会社					
(31) 優先権主張番号	特願2002-123036 (P2002-123036) 東京都新宿区西新宿2丁目4番1号					
(32) 優先日	平成14年4月24日 (2002.4.24)	(74) 代理人	100095728			
(33) 優先權主張国	日本国 (JP)		弁理士 上柳	雅誉		
		(74) 代理人				
			弁理士 藤枫	英吉		
		(74)代理人				
			弁理士 須澤	修		
		(72) 発明者				
		•		大和3丁目3番	5号 セイコ	
			ーエブソン株式会社内			
		ド <i>ターム</i> (多 	多考) 3K007 AB17	BAU6 DB03	BA06 DB03 GA04	
				最	と終頁に続く	

(54) 【発明の名称】電子装置、電子機器、および電子装置の駆動方法

(57)【要約】

【課題】EL素子を利用した表示装置の低輝度低階調表示領域における画像再現性を改善する。

【解決手段】電子素子を備える単位回路(Pmn)、単位回路(Pmn)に接続されたデータ線(Ioutm)、外部から供給されたデータ信号(Mdatam)に対応した電流または電圧を第1の出力として出力するための第1出力手段(D/Aa)、第1の出力の大小に対応した電流または電圧を第2の出力として出力するための第2出力手段(D/Ab)、および第1出力手段(D/Ab)からの第1の出力または第2出力手段(D/Ab)からの第2の出力の一方または双方を選択してデータ線(Ioutm)に供給可能に構成された選択供給手段(Swa,Swb)を備える電子装置である。

【選択図】 図2

【特許請求の範囲】

【請求項1】

. .

電子素子を備える単位回路と、

前記単位回路に接続されたデータ線と、

データ信号に対応した電流または電圧を第1の出力として出力するための第1出力手段と

前記第1の出力のレベルに対応した電流または電圧を第2の出力として出力するための第2出力手段と、

前記第1出力手段からの前記第1の出力または前記第2出力手段からの前記第2の出力の一方または双方を選択して前記データ線に供給するための選択供給手段と、を備える電子 10 装置。

【請求項2】

前記選択供給手段は、少なくとも一つのスイッチング素子を備える、請求項1に記載の電子装置。

【請求項3】

前記データ線は、当該データ線を流れる電流を受ける負荷手段を備えている、請求項1に記載の電子装置。

【請求項4】

前記単位回路における定電流駆動能力と前記負荷手段における電流受容能力との比が、前記第1出力手段における電流供給能力と前記第2出力手段における電流供給能力との比と 20 実質的に同等である、請求項3に記載の電子装置。

【請求項5】

前記負荷手段は、前記第2出力手段から見て前記データ線の末端に設けられている、請求項3に記載の電子装置。

【請求項6】

前記負荷手段は、前記選択供給手段が前記第2出力手段からの前記第2の電流を選択しデータ線に供給している場合に、当該データ線を流れる電流を受容するように構成されている、請求項3に記載の電子装置。

【請求項7】

前記選択供給手段は、前記電子素子に出力を供給すべき出力期間の少なくとも終わりの所 30 定期間は前記第1出力手段からの前記第1の出力のみを選択して前記データ線に供給する、請求項1に記載の電子装置。

【請求項8】

前記選択供給手段は、前記電子素子に出力を供給すべき出力期間の少なくとも初めの所定期間は少なくとも前記第2出力手段からの前記第2の出力を選択して前記データ線に供給する、請求項1に記載の電子装置。

【請求項9】

前記第2出力手段は、前記第1出力手段の出力する前記第1の出力の出力値よりも大きな出力値を有する前記第2の出力を出力可能に構成されている、請求項1に記載の電子装置

【請求項10】

前記選択供給手段は、前記電子素子に出力を供給すべき出力期間の初めの所定期間は少なくとも前記第2出力手段からの前記第2の出力を選択して前記データ線に供給し、当該出力期間の終わりの所定期間は少なくとも前記第1出力手段からの前記第1の出力を選択して前記データ線に供給する、請求項1に記載の電子装置。

【請求項11】

前記選択供給手段は、前記データ線の実質的に同一箇所において前記第1出力手段および前記第2出力手段からの出力を供給することが可能に構成されている、請求項1に記載の電子装置。

【請求項12】

前記第2出力手段は、外部から供給されたデータ信号に対応した電流または電圧を前記第2の出力として出力する、請求項1に記載の電子装置。

【請求項13】

前記第1出力手段、前記第2出力手段、および前記選択供給手段からなる出力供給手段が一の前記データ線に対して複数設けられ、一の前記出力供給手段が前記データ信号に基づく電流値または電圧値を記憶している間に、他の少なくとも一の前記出力供給手段が前記データ線に出力を供給する、請求項1に記載の電子装置。

【請求項14】

各前記電流供給手段は、複数の水平走査期間中における前後する二つの水平走査期間を前記データ線に対する出力供給のための期間とし、残りの水平走査期間を前記単位回路の制 10 御のための期間とする、請求項13に記載の電子装置。

【請求項15】

所定数の前記電子装置が一組を構成しており、

前記水平走査期間を所定数で分割したサブ期間のそれぞれにおいて、各前記電子装置が各々対応する前記データ信号に基づく電流値または電圧値を記憶するように構成されている、請求項14に記載の電子装置。

【請求項16】

一対の前記単位回路が一の前記データ線に接続されており、各前記単位回路には、各前記 電子素子の出力を制御する一対の制御線のいずれか一方が接続されており、

各前記制御線には互いに近接もしくは隣接した逆位相部を有する制御信号が供給可能に構 20 成されている、請求項1に記載の電子装置。

【請求項17】

前記制御線には、所定のデューティ比のパルスが連続的に出力可能に構成されている、請求項16に記載の電子装置。

【請求項18】

一対の前記制御線は、隣接する前記単位回路毎に交差している、請求項 1 6 に記載の電子装置。

【請求項19】

所定数の前記単位回路が一組を構成しており、

隣接する組の前記単位回路に供給される前記制御信号は、前記隣接する組間で近接もしく 30 は隣接した逆位相を有するように構成されている、請求項16に記載の電子装置。

【請求項20】

請求項1乃至請求項19のいずれか一項に記載の電子装置において、前記電子素子は、電流駆動素子である電子装置。

【請求項21】

請求項1乃至請求項19のいずれか一項に記載の電子装置において、前記電子素子は、電気光学素子である電子装置。

【請求項22】

請求項1乃至請求項19のいずれか一項に記載の電子装置を備えた電子機器。

【請求項23】

電子素子を備えた単位回路に出力を供給するための電子装置の駆動方法において、

外部から供給されたデータ信号に対応した電流または電圧を第1の出力として出力するステップと、

前 記 第 1 の 出 力 の レ ベ ル に 対 応 し た 第 2 の 出 力 を 出 カ す る ス テ ッ プ と 、

前記第1の出力または前記第2の出力の一方または双方を選択して、前記単位回路が接続されたデータ線に供給するステップと、を備える電子装置の駆動方法。

【請求項24】

前記データ線に供給するステップでは、前記電子素子に出力を供給すべき出力期間の少なくとも終わりの所定期間は前記第1の出力のみを選択して前記データ線に供給する、請求項23に記載の電子装置の駆動方法。

50

【請求項25】

٠.

前 記 デ ー タ 線 に 供 給 す る ス テ ッ プ で は 、 前 記 電 子 素 子 に 出 力 を 供 給 す べ き 出 力 期 間 の 少 な くとも初めの所定期間は少なくとも前記第2の出力を選択して前記データ線に供給する、 請求項23に記載の電子装置の駆動方法。

【請求項26】

前記第2の出力を出力するステップでは、前記第1の出力の有する出力値よりも大きな出 力値を有する前記第2の出力を出力する、請求項23に記載の電子装置の駆動方法。

【請求項27】

前記データ線に供給するステップでは、前記電子素子に出力を供給すべき出力期間の初め の所定期間は少なくとも前記第2の出力を選択して前記データ線に供給し、当該出力期間 10 の終わりの所定期間は少なくとも前記第1の出力を選択して前記データ線に供給する、請 求項23に記載の電子装置の駆動方法。

【請求項28】

前記第2の出力を出力するステップでは、外部から供給されたデータ信号に対応した電流 値または電圧値を有する前記第2の出力を出力する、請求項23に記載の電子装置の駆動 方法。

【請求項29】

前 記 第 1 の 出 力 を 出 力 す る ス テ ッ プ お よ び 前 記 第 2 の 出 力 を 出 力 す る ス テ ッ プ の 少 な く と も一方において、前記第1の出力または前記第2の出力を出力する前に、前記電流値また は前記電圧値を記憶するステップを備える、請求項23に記載の電子装置の駆動方法。 【請求項30】

前 記 第 1 の 出 力 お よ び 前 記 第 2 の 出 力 か ら な る 出 力 供 給 組 を 一 の 前 記 デ ー タ 線 に 対 し て 複 数組出力可能な場合において、一の前記出力供給組が前記電流値または前記電圧値を記憶 するステップを実行している間に、他の少なくとも一の前記出力供給組において、前記デ ータ線に出力するステップを実行する、請求項29に記載の電子装置の駆動方法。

【請求項31】

複数の水平走査期間中における前後する二つの水平走査期間において各前記ステップを実 行し、残りの水平走査期間において実行される、前記単位回路を制御するステップを備え る、請求項30に記載の電子装置の駆動方法。

【請求項32】

前記電流値または電圧値を記憶するステップでは、前記水平走査期間を所定数で分割した サブ期間のそれぞれにおいて、各々対応する前記データ信号に基づく電流値または電圧値 を記憶する、請求項29に記載の電子装置の駆動方法。

【請求項33】

電 子 素 子 を 備 え る 一 対 の 単 位 回 路 が 一 の デ ー タ 線 に 接 続 さ れ て お り 、

各 前 記 単 位 回 路 に は 、 各 前 記 電 子 索 子 の 出 力 を 所 定 の デ ュ ー テ ィ 比 で 制 御 す る ー 対 の 制 御 線のいずれか一方が接続されており、

各前記制御線には互いに近接もしくは隣接した逆位相部を有する制御信号が供給可能に構 成されている、電子装置。

【請求項34】

30

隣接する前記単位回路もしくは前記単位回路の組では、互いの能動期間が近接もしくは隣 接した逆位相部を有するように所定のデューティ比で制御される、電子装置の駆動方法。

【発明の詳細な説明】

[00001]

【発明の属する技術分野】

本発明は有機エレクトロルミネセンス(以下、「EL」という。)等を利用する電気光学 素子の駆動回路に関し、特に、低階調表示領域においても鮮明に正確な明るさで発光させ るための駆動方法の改良に関する。

[00002]

【従来の技術】

EL素子等の電気光学素子を駆動する方法として、クロストークが無く、低電力で駆動でき、電気光学素子の耐久性を向上させることが可能な、アクティブマトリックス駆動方式が利用されている。EL素子は、供給される電流の大きさに対応した輝度で発光するため、所望の明るさを得るためには正確な電流値をEL素子に供給することが必要である。

[0003]

図13に、アクティブマトリックス駆動方式に基づく表示装置のブロック図を示す。図13に示すように、当該表示装置では、画像を表示するための表示領域に走査線 $Vs1\sim VsN$ (N は走査線最大数)およびデータ線I data $1\sim I$ dataM(M はデータ線最大数)が格子状に配置され、それぞれの線の交差部分にE L 素子を含む画素回路Pmn($1\leq m\leq M$ 、 $1\leq n\leq N$)が配置されている。走査回路により、走査線Vsnが順番に選り、状され、D / A 変換器から、中間階調値に応じたデータ信号が各データ線I datam に供給される。

[0004]

【特許文献1】

国際公開WO98/36407号パンフレット

[0005]

【発明が解決しようとする課題】

しかしながら、表示装置において、低階調のデータ信号を書き込みには時間にかかり、書き込み不足等の問題が生ずることがある。

[0006]

特に、電流プログラム方式と呼ばれる、階調に応じた電流レベルを有するデータ信号を供給する方式では、上記の問題が顕著となる。まず、データ線に供給するプログラム電流の値は画素(ドット)で表示される階調に対応しているため、低階調の画像に対してはデータ線を流れる電流が極めて少なくなる。電流値が小さいとデータ線の寄生容量を充放電するために時間がかかるようになるため、画素回路に所定の電流値をプログラムするまでの時間が長くなって、所定の書き込み期間(一般には1水平走査期間)内に書き込みを完了することが難しくなる。この結果、EL素子の発光効率が上昇するに従い、プログラム電流は益々少なくなり、正確な電流値を画素回路にプログラムできなくなる場合が生じていた。

[00007]

また、低階調表示領域における電流値は数10nA以下とトランジスタのリーク電流に近い値となる。このため、リーク電流がプログラム電流に与える影響が無視できなくなってS/N比が低下し、表示装置の低階調表示領域における鮮明さが悪化していた。

[0008]

さらにディスプレイの解像度が上がるほどに、データ線の数が多くなり、画素マトリックス基板と外付けのドライバ・コントローラとの接続本数の増大、接続ピッチの縮小のため、画素マトリックス基板と接続が難しくなり、表示装置の製造コストが上昇していた。

[0009]

【課題を解決するための手段】

上記した課題を解決するために、本発明は、低階調表示領域においても鮮明に正確な明る 40 さで画像表示でき、しかもコストアップを防止することが可能な電子装置、電子機器、および電子装置の駆動方法を提供することを目的とする。

[0010]

本発明は、電子素子を備える単位回路と、単位回路に接続されたデータ線と、外部から供給されたデータ信号に対応した電流または電圧を第1の出力として出力するための第1出力手段と、前記第1の出力の大小あるいはレベルに対応した第2の出力を出力するための第2出力手段と、第1出力手段からの第1の電流または第2出力手段からの第2の出力の一方または双方を選択してデータ線に供給するための選択供給手段と、を備える電子装置である。

[0011]

50

ここで、選択供給手段は、少なくとも一つのスイッチング素子を備えていてもよい。このスイッチング素子は、第1の出力または第2の出力の一方または双方の出力を禁止または許可するものである。スイッチング素子の他に、加算回路などによって所定の書き込み期間内に選択供給手段の出力能力を可変とする機能を実現可能な構成を備えていてもよい。

また、データ線は、当該データ線を流れる電流を受ける負荷手段を備えていてもよい。このとき、単位回路における定電流駆動能力と負荷手段における電流受容能力との比が、第1出力手段における電流供給能力との比と実質的に同等であるように設定することは好ましい。また、負荷手段は、第2出力手段から見てデータ線の末端に設けられていることは好ましい。単位回路を介して出力手段と負荷手段が10対峙する構成である。さらに負荷手段は、選択供給手段が第2出力手段からの第2の電流を選択しデータ線に供給している場合に、当該データ線を流れる電流を受容するように構成されていることは好ましい。第2の電流が大電流である場合に単位回路に流れる以外の電流を受容する手段である。

[0013]

[0012]

٠,

また、選択供給手段は、電子素子に出力を供給すべき出力期間の少なくとも終わりの所定期間は第1出力手段からの第1の出力のみを選択してデータ線に供給するように構成してもよい。

[0014]

また、選択供給手段は、電子素子に出力を供給すべき出力期間の少なくとも初めの所定期 20間は少なくとも第2出力手段からの第2の出力を選択してデータ線に供給するように構成してもよい。

[0015]

ここで、第2出力手段は、第1の出力の有する出力値よりも大きな出力値を有する前記第2の出力を出力可能に構成されていることは好ましい。大きな電流で電流のプログラムを確実にでき、S/Nを向上させるために好ましい。

[0016]

また、選択供給手段は、電子素子に出力を供給すべき出力期間の初めの所定期間は少なくとも第2出力手段からの第2の出力を選択してデータ線に供給し、当該出力期間の終わりの所定期間は少なくとも第1出力手段からの第1の出力を選択してデータ線に供給するよ 30 うに構成してもよい。

[0017]

また、選択供給手段は、データ線のほぼ同一箇所において第1出力手段および第2出力手段からの出力を供給することが可能に構成されている。

[0018]

また、第2出力手段は、外部から供給されたデータ信号に対応した電流または電圧を前記第2の出力として出力するように構成してもよい。このように構成すれば、第2の出力の 出力値もデータに基づいて任意の値に設定できるようになる。

[0019]

ここで、第1出力手段、第2出力手段、および選択供給手段からなる出力供給手段が一の 40 データ線に対して複数設けられ、一の出力供給手段がデータ信号に基づく電流値または電圧値を記憶している間に、他の少なくとも一の出力供給手段がデータ線に出力を供給するように構成してもよい。

[0020]

このとき、各出力供給手段は、複数の水平走査期間中における前後する二つの水平走査期間をデータ線に対する出力供給のための期間とし、残りの水平走査期間を単位回路の制御のための期間としてもよい。

[0021]

さらにこの構成において、所定数の単位回路が一組を構成しており、水平走査期間を所定数で分割したサブ期間のそれぞれにおいて、各電子装置が各々対応するデータ信号に基づ 50

く電流値または電圧値を記憶するように構成されていてもよい。

[0022]

٠.

また、一対の単位回路が一のデータ線に接続されており、各単位回路には、各電子素子の 出力を制御するための一対の制御線のいずれか一方が接続されており、各制御線には互い に近接もしくは隣接した逆位相部を有する制御信号が供給可能に構成されていてもよい。 近接もしくは隣接した逆位相部を有する制御信号によってデータ線腺方向に隣接する電子 素 子 が 視 覚 的 に 差 の で な い 短 時 間 内 で 逆 位 相 に 駆 動 さ れ 、 例 え ば パ ル ス 駆 動 の 断 続 性 を 補 償することが可能である。

[0023]

ここで、 例 え ば 、 制 御 線 に は 、 所 定 の デュー ティ 比 の パ ル ス が 連 続 的 に 出 力 可 能 に 構 成 さ 10. れている。デューティ比を変えることによって電子素子の駆動期間を変更することができ

[0024]

さらに一対の制御線は、隣接する単位回路毎に交差していてもよい。交差することによっ て 、 制 御 線 方 向 に 隣 接 す る 電 子 素 子 が 視 覚 的 に 差 の で な い 短 時 間 内 で 逆 位 相 に 駆 動 さ れ 、 例えばパルス駆動の断続性を補償することが可能である。

[0025]

ここで、所定数の単位回路が一組を構成しており、一対の制御線は、隣接する組の単位回 路毎に交差していてもよい。所定数の単位回路単位の補償をする趣旨であり、例えば単位 回路を画素回路とし、複数の原色によるカラー表示を複数原色の画素回路を組みとするカ 20 ラー画素単位で行う場合である。

[0026]

ここで、本発明の電子素子は、電流駆動素子であってもよい。さらに、本発明の電子素子 は、電気光学素子であってもよい。

[0027]

ここで、「電気光学素子」とは、電気的作用によって発光するあるいは外部からの光の状 態 を 変 化 さ せ る 素 子 一 般 を い い 、 自 ら 光 を 発 す る も の と 外 部 か ら の 光 の 通 過 を 制 御 す る も の双方を含む。例えば、電気光学素子には、EL素子、液晶素子、電気泳動素子、電界の 印加により発生した電子を発光板に当てて発光させる電子放出素子(FED)が含まれる

[0028]

ここで、上記電気光学素子は、電流駆動素子、例えばエレクトロルミネッセンス(EL) 素子であることが好ましい。「エレクトロルミネッセンス素子」とは、その発光性物質が 有機であるか無機であるか(2n:Sなど)を問わず、電界の印加によって、陽極から注 入された正孔と陰極から注入された電子とが再結合する際に再結合エネルギーにより発光 性物質を発光させるエレクトロルミネッセンス現象を利用したもの一般をいう。またエレ クトロルミネッセンス素子は、その電極で挟まれる層構造として、発光性物質からなる発 光 層 の 他 、 正 孔 輸 送 層 お よ び 電 子 輸 送 層 の い ず れ か ま た は 双 方 を 備 え て い て も よ い 。 具 体 的に は 、 層 構 造 と し て 、 陰 極 / 発 光 層 / 陽 極 の 他 、 陰 極 / 発 光 層 / 正 孔 輸 送 層 / 陽 極 、 陰 極 / 電 子 輸 送 層 / 発 光 層 / 陽 極 、 ま た は 陰 極 / 電 子 輸 送 層 / 発 光 層 / 正 孔 輸 送 層 / 陽 極 な 🛛 🗛 どの層構造を適用可能である。

[0029]

また本発明は、本発明の電子装置を備えた電子機器でもある。ここで「電子機器」には限 定が無いが、例えば、テレビ受像機、カーナビゲーション装置、POS、パーソナルコン ピュータ、ヘッドマウントディスプレイ、リア型またはフロント型のプロジェクター、表 示 機 能 付 き フ ァ ッ ク ス 装 置 、 電 子 案 内 板 、 輸 送 車 両 等 の イ ン フ ォ メ ー シ ョ ン パ ネ ル 、 ゲ ー ム 装 置 、 工 作 機 械 の 操 作 盤 、 電 子 ブ ッ ク 、 お よ び デ ジ タ ル カ メ ラ や 携 帯 型 T V 、 D S P 装 置、PDA、電子手帳、携帯電話、ビデオカメラ等の携帯機器等をいう。

[0030]

本 発 明 は 、 電 子 素 子 を 備 え た 単 位 回 路 に 出 力 を 供 給 す る た め の 電 子 装 置 の 駆 動 方 法 に お い 50

て、外部から供給されたデータ信号に対応した電流または電圧を第1の出力として出力するステップと、第1の出力の大小に対応した第2の出力を出力するステップと、第1の出力または第2の出力の一方または双方を選択して、単位回路が接続されたデータ線に供給するステップと、を備える電子装置の駆動方法である。

[0031]

ここで、データ線に供給するステップでは、電子素子に出力を供給すべき出力期間の少なくとも終わりの所定期間は第1の出力のみを選択してデータ線に供給するようにしてもよい。

[0032]

ここで、データ線に供給するステップでは、電子素子に出力を供給すべき出力期間の少な 10 くとも初めの所定期間は少なくとも第2の出力を選択してデータ線に供給するようにしてもよい。

[0033]

ここで、第2の出力を出力するステップでは、第1の出力の有する出力値よりも大きな出力値を有する第2の出力を出力可能に構成されていてもよい。

[0034]

ここで、データ線に供給するステップでは、電子素子に出力を供給すべき出力期間の初めの所定期間は少なくとも第2の出力を選択してデータ線に供給し、当該出力期間の終わりの所定期間は少なくとも第1の出力を選択してデータ線に供給するようにしてもよい。

[0035]

ここで、第2の出力を出力するステップでは、外部から供給されたデータ信号に対応した 電流または電圧を第2の出力として出力するようにしてもよい。

[0036]

ここで、第1の出力を出力するステップおよび第2の出力を出力するステップの少なくとも一方において、第1の出力または第2の出力を出力する前に、電流値または電圧値を記憶するステップを備えていてもよい。

[0037]

ここで、第1の出力および第2の出力からなる出力供給組を一のデータ線に対して複数組出力可能な場合において、一の出力供給組が電流値または電圧値を記憶するステップを実行している間に、他の少なくとも一の出力供給組において、データ線に出力するステップ 30を実行する。

[0038]

ここで、複数の水平走査期間中における前後する二つの水平走査期間において各ステップを実行し、残りの水平走査期間において実行される、単位回路を制御するステップを備えていてもよい。

[0039]

ここで、電流値または電圧値を記憶するステップでは、水平走査期間を所定数で分割した サブ期間のそれぞれにおいて、各々対応するデータ信号に基づく電流値または電圧値を記 憶するようにしてもよい。

本発明は、電子素子を備える一対の単位回路が一のデータ線に接続されており、各前記単 40位回路には、各前記電子素子の出力を所定のデューティ比で制御する一対の制御線のいずれか一方が接続されており、各前記制御線には互いに近接もしくは隣接した逆位相部を有する制御信号が供給可能に構成されている、電子装置である。

本発明は、隣接する前記単位回路もしくは前記単位回路の組では、互いの能動期間が近接もしくは隣接した逆位相部を有するように所定のデューティ比で制御される、電子装置の駆動方法である。

[0040]

【発明の実施の形態】

次に、本発明の好適な実施の形態を、図面を例示として参照しながら説明する。以下の形態は、本発明を実施の形態の例示に過ぎず、その適用範囲を限定するものではない。

50

[0041]

<実施形態1>

本発明の実施形態は、電気光学素子としてEL素子を利用した駆動回路を備える電気光学装置に関する。図1に当該電気光学装置を含む電子機器全体のプロック図を示す。

[0042]

図 1 に示すように、当該電子機器はコンピュータにより所定の画像を表示する機能を有し、少なくとも表示回路 1、駆動コントローラ 2、およびコンピュータ装置 3 を備える。

[0043]

コンピュータ装置 3 は汎用または専用のコンピュータ装置であって、各画素(ドット)に対して中間値で表される階調を表示させるためのデータ(階調表示データ)を駆動コント 10 ローラ 2 に出力するようになっている。カラー画像の場合には各原色を表示させるドットに対する中間階調が階調表示データで指定され、指定された各原色のドットの中間階調の合成が特定のカラー画素の色として表現される。

[0044]

駆動コントローラ2は、例えばシリコン単結晶の基板上に形成され、少なくともD/A変換器21(本発明における第1および第2出力手段)、表示メモリ22、および制御回路23を備えている。制御回路23はコンピュータ装置3との階調表示データの送受信を制力可能になっている。表示メモリ22は、コンピュータ装置3から供給されるでいる。階調表示データが画素(ドット)のアドレスに対応させて格納されるようになっている。D/A変換器21は、1出力当たり大小二つの電流出力能力を有するD/A変換器(D/A変換器21は、カータを、対応する電流値にのアドレスから高端よったデジタルデータである階調表示データを、対応する電流値に変換100階1とででいる。D/A変換器21は、データ線の数だけ(水平方向のドット数)Ioutを行っている。D/A変換器21は、データ線の数だけ(水平方向のドット数)Ioutを発っている。D/A変換器21は、データ線の数だけ(水平方向のドット数)にを発いている。D/A変換器21は、データ線の数だけ(水平方向の路2と表示回路1は本発の多くでいる。表示回路1と駆動コントローラ2との組み合わせは画像の電子装置を含んでいる。表示回路1と駆動コントローラ2との組み合わせは画像の電子装置を含んでいる。表示回路1と駆動コントローラ2との組み合わせは画像の電子装置を含んでいる。表示回路1と駆動コントローラ2との組み合わせは画像の電子装置を含んでいる。表示回路1と駆動コントローラ2との組み合わせは画像の電子機能を備え、コンピュータ装置3の有無を含めて本発明の電子機器に相当する。

[0045]

[0046]

[0047]

次に、図2に基づいて本発明の実施形態1の基本的な動作を説明する。図2は、マトリクス状に配置されたドット(画素)において、データ線に対応してセレクト線Vsnで選択される画素回路Pmn、およびそれに電流を供給する定電流出力手段CImと電流ブースタ回路Bmを図示したものである。定電流出力回路CImは、第1および第2定電流出力回路D/Aa・D/Abとからなる2つのD/A変換器を備え、プログラム電流(第1定電流出力回路D/Aaが出力する)より大きなブースト電流(第2定電流出力回路D/Abが出力する)または前記プログラム電流のいずれか一方または双方を選択的に供給可能に構成されている。プースト電流はプログラム電流の、例えば数倍以上、望ましくは数十倍以上とすることができる。

[0048]

10

図2に示すように、本実施形態において、制御回路は、画素回路Pmnに対してプログラム電流を供給するための電流プログラム期間の前期において少なくともプースト電流を供給させ、当該電流プログラム期間の後期においてプログラム電流を供給させる。具体体表では、電流プログラム期間の後期においてプログラム電流を供給させる。具体を活させ、当該電流プログラム期間の後期においてプログラム電流を供給させる。チング素子Swbは導通させ、また電流プースター路路面が出土の場合では、第1定電流出力回路D/Aaと第2定電流出力回路D/Aaと第2定電流出力回路のでは、アータ線の電圧が出力電流ででの近くでの近くでないに、データ線の電圧が出力電流値とデータ線をにで変化し、データ線の電圧が出力電流値とデータ線をにで変化し、プログラム電流を供給した場合に本来達するペイッチング素子Swbを遮断し、第1スイッチング素子Swbを遮断し、第1スイッチング素子Swbを遮断し、第1スイッチンの定定する。この時点で第2スイッチング素子Swbを遮断し、第1スイッチンの定定を明通させて、第1定電流出力回路D/Aaがプログラム電流を供給したときに到達する画素回路内のトランジスクロの路D/Aaがプログラム電流を供給したときに到達する画素回路内のトランジスクロの路D/Aaがプログラム電流を供給したときに到達する画素のとになる。

[0049]

このように本発明では、電流プログラム期間の前期においては、プログラム電流の数倍以上のプログラム電流に比例した大きな電流を供給することにより、プログラム電流のみを供給する場合や一定時間データ線にプリチャージする方法よりもデータ線 Ioutmの電圧を早期に所定の電圧付近に到達させることができる。さらに電流プログラム期間の後期30においては、電流プースタ回路をオフすると共にシリコン駆動コントローラ 2 で高精度に生成された本来のプログラム電流のみを画素回路に供給して、正確なプログラム電流値を最終的にプログラムさせることができる。

[0050]

なお、本実施形態においては、前期においてブースト電流のみを流すようにしているが、 プログラム電流がブースト電流に比べ小さいことに鑑み、ブースト電流を供給する期間に おいても同時にプログラム電流を供給するようにし、画素回路をデータ線に接続させない ようにしてもよい。

[0051]

図3に、さらに具体的な駆動回路の構成を示す。図3は、マトリクス状に配置された一つ 40の画素回路 P m n およびその画素回路に階調表示データに対応する電流を供給する定電流 出力回路 C I m および電流ブースタ回路 B m を示している。

[0052]

画素回路Pmnは、データ線から供給されたプログラム電流の電流値を保持し保持された電流値で電気光学素子を駆動する回路、すなわちEL素子を発光させるための電流プログラム方式に対応した回路を備えている。

[0053]

画素回路は、アナログ電流メモリ(T1、T2、C1)と、EL素子OELDと、アナログ電流メモリとデータ線との接続を行うスイッチングトランジスタT3と、アナログ電流メモリとEL素子との接続を行うスイッチングトランジスタT4と、が図3に示すように 50

10

接続されて構成される。

この画素回路の構成において、電流プログラム期間にセレクト線Vsnが選択されるとトランジスタT2およびT3が導通状態になる。トランジスタT2およびT3が導通状態になる。トランジスタT2およびT3が導通状態になると、トランジスタT1がプログラム電流に応じた時間後に定常状態に達し、コンデンサ C1にIoutmに応じた電圧Vgsが記憶される。表示期間(発光期間)では、セレクト線Vsnを非選択状態としてトランジスタT2およびT3を遮断状態にし一旦データ線上の定電流を遮断した後、発光制御線Vgnを選択する。この結果トランジスタT4が導通状態となり、コンデンサC1に記憶された電圧Vgsに対応する定電流IoutがトランジスタT1およびT4経由で有機EL素子に供給され、当該プログラム電流に対応した階調の輝度で有機EL素子OELDが発光する。

[0054]

なお図3に示した画素回路は一例であり、電流プログラムが可能なものであれば他の回路 構成を適用することが可能である。

[0055]

定電流出力回路CImは、第1電流出力回路D/Aaと第2電流出力回路D/Abからな る一対のD/A変換器を備え、プログラム電流より大きなブースト電流またはプログラム 電 流 の い ず れ か 一 方 ま た は 双 方 を 選 択 的 に 供 給 可 能 に 構 成 さ れ て い る 。 具 体 的 に は 、 プ ロ グ ラ ム 電 流 を 供 給 す る た め の 第 1 電 流 出 カ 回 路 D / A a と 、 ブ ー ス ト 電 流 を 供 給 す る た め の第2電流出力回路D/Abと、が並列にデータ線Ioutmに接続されて構成されてい る。第1電流出カ回路D/Aaと第2電流出カ回路D/Abとの電流駆動能力の比は、画 20 素回路中のトランジスタT1と電流ブースト回路中のT33との電流駆動能力の比と同等 になるように設定されていることが好ましい。このときトランジスタT1とT33は、ト ランジスタT2とT31により飽和領域動作をするように設定されている。この電流駆動 能力比を同等にすることにより、電流ブースタ回路を負荷手段として第2電流出力回路D / A b が プ ー ス ト 電 流 を デ ー 夕 線 に 供 給 し た と き に 到 達 す る デ ー 夕 線 電 圧 が 、 画 素 回 路 を 負荷として第1電流出カ回路D/Aaがプログラム電流を供給したときに到達するトラン ジスタT1のゲート・ソース 間電 圧 Vgsとほぼ 等しい 値にすることができる。 電流プー スタ回路は、ドット面積の制約を受けずに大きなトランジスタサイズとすることができる ので、プースト電流は、すべての階調においてプログラム電流の数倍から数十倍以上の値 とすることができる。この結果、プログラム電流が微小となる低階調領域においてもデー 30 タ線の電圧やトランジスタ T 1 のゲート・ソース間電圧 V g s を所定の値に早く変化させ ることができる。

[0056]

電流プースタB中の電流プースタ回路Bmは、D/A変換器21中の定電流出力回路CImと協働してプースト電流をデータ線に流すための構成を備えている。具体的には、トランジスタT31~T33を備えている。トランジスタT33がプースタトランジスタT33がプースタトランジスタT33を定電流領域で導通させるスイッチ素子である。トランジスタ32はチャージオフ信号が供給された場合にプースタトランジスタT33のゲートに蓄えられた電荷を強制的に放電させプースタトランジスタT33のゲートに蓄えられた電荷を強制的に放電させプースタトランジスタT33の電流出力能力と画素回路のトランジスタT1の電流出力能力との比は、上述したように第2電流出力回路D/Abの電流出力能力と第1電流出力回路D/Aaの電流出力能力との比と同等にしておくことが好ましい。

[0057]

この構成において、それぞれの表示メモリ出力Mdataには、一走査期間毎に対応するドット(画素)の階調表示データが、一水平ライン分同時に表示メモリ22から出力される。この階調表示データを2つの電流出力回路D/AaとD/Abとが受け、共通の基準電流源(図示せず)を基にしてプログラム電流とブースト電流を生成する。書き込みイネーブル信号WEaもしくはWEbが供給されるとトランジスタTIaまたはTIbが導通状態になり、各電流出力変換回路からプログラム電流もしくは同時にブースト電流がデー50

夕線に出力される。

[0058]

次に、図4のタイミングチャートを参照して図3に示す本実施形態1の詳細な動作を説明する。図4のタイミングチャートは、走査線nについて、画像表示のためのフレーム期間を構成する複数の水平走査期間のうち、電流プログラムを行うための一つの水平走査期間日を中心に示したものである。この1Hの期間が電流プログラム期間に相当している。この電流プログラム期間では、制御回路は発光制御線Vgnを非選択状態として有機EL素子OELDの発光を停止させておく。表示メモリ出力線Mdataには各画素に対応する階調表示データが一走査期間毎に出力されている。

[0059]

10

[0060]

時刻 t 2 からは走査線 n に対する電流プログラム期間の前期が開始する。制御回路は書き込みイネーブル信号WE b を時刻 t 2 の後に許可状態にする。これにより、第 2 電流出力回路 D / A b からはブースト電流が出力されてデータ線 I o u t mに出力される。走査線 n における総ての画素について同時にこの書き込みイネーブル信号が供給されるので、各画素のデータ線 I o u t m にはそれぞれの電流が出力される。このブースト電流によって表示階調の小さな場合でも、すなわち目標電流値が小さくプログラムに時間が要する場合であっても短時間に目標電流値の近傍までデータ線の電圧を到達させることができる。時刻 t 3 でブースト期間が終了すると、制御回路はプースト電流に関する書き込みイネーブル信号WE b を非許可状態にして、第 2 電流出力回路 D / A b からのブースト電流の供給を停止させる。そして、イネーブル信号WE a を許可状態にすると同時にセレクト線 V s n を選択状態にして、残りの電流プログラム期間の後期(時刻 t 3 ~ t 4)の間、プログラム電流のみで画素回路 P m n への電流供給が行われるようにする。これによって最終的な目標電流値を正確にプログラムすることができる。

[0061]

時刻 t 4 で電流プログラム期間が終了すると、制御回路はセレクト線を非選択状態にすると同時に発光制御線 V g n を選択状態にして、画素回路 P m n の有機 E L 素子 O E L D に 30 電流を流し表示期間に移行させる。このとき、画素回路 P m n には新たな電流値によるプログラムが完了しているので、新しい電流値でE L 素子 O E L D に電流が供給され、それに対応した新たな輝度で有機 E L 素子 O E L D が発光する。その結果、輝度の違いによって画素 P m n の階調が表示されることになる。

[0062]

以上、本実施形態1によれば、プログラム電流の小さな低階調表示領域においても、プログラム電流値よりも大きなブースト電流を使用するので書き込み時間の不足やノイズの影響を排除し、再現性のよい鮮明な画像を表示させることができる。

[0063]

なお、本実施形態1の方法を用いれば、高速にプログラム電流を画素回路に書き込むこと 40 ができるので、例えば、D/A変換器と画素回路の中間に本発明の駆動回路方式を取り入れた電流ラッチを設けることによって、複数の画素に対応するプログラム電流を時分割多重して書き込むことが可能となる。これによって図1に示す駆動コントローラ2と表示回路1を接続するデータ線の数を大幅に削減することができる。これを示したものが次に示す本発明の実施形態2である。

[0064]

<実施形態2>

本 発 明 の 実 施 形 態 2 は 、 上 述 し た よ う に 、 実 施 形 態 1 に 示 し た よ う な 電 子 装 置 お よ び 電 子 機 器 に お い て 、 さ ら に 発 展 さ せ た 態 様 を 備 え る も の で あ る 。

[0065]

図5に本実施形態2における具体的な電子装置の構成を、図8にその動作を説明するタイミングチャートを示す。図5は、色表示を行う一つのカラー画素 Pmn Cと、そのカラー画素に電流を供給する電流ラッチ回路 Lmと、D/A変換器 CImと、電流プースタ回路 Bmとを示している。各画素回路、電流プースタ回路、および定電流出力回路(D/A変換器) CImのプロック(破線で示す)は実施形態 1と同様であるので説明を簡単にする。また、図7に、電流ラッチ回路 Lmの回路例を示す。

[0066]

本実施形態では以下の点において実施形態 1 の構成と異なる。まず、電流ラッチ回路 L mが、新たに D / A 変換器 C I m と画素回路 P m n との間に設けられている。すなわち、本発明の駆動方法により動作する電子装置が、 D / A 変換器 C I m、電流ラッチ回路 L m、 10 画素回路 P m n C、および電流ブースタ回路 B m とにより構成されている。

[0067]

電流ラッチ回路Lmは、D/A変換器CImと協働するブースタ電流供給手段としての機能と、D/A変換器CImが出力する定電流をラッチして出力する機能とを有している。また電流ラッチ回路Lmには、D/A変換器CImと電流ラッチLmとの間において時分割多重してシリアル化されて伝送された、最終的なプログラム電流に対応する電気信号をパラレルに変換して電流出力する機能と、画素回路に電流プログラムする時間を最大限確保するためのダブルバッファ機能と、を備えている。特に、本実施形態2では、カラー表示のための三原色、R(赤)、G(緑)、B(青)の階調表示データを一単位として扱う例を示す。ただし、本発明はこれに限定されるものではない。

[0068]

カラー画素 P m n C は、原色数の画素回路で構成される。ここでは R (赤)、 G (緑)、 B (青)にそれぞれ対応した画素回路 P m n R、 P m n G、および P m n B によって一つのカラー画素 P m n C が構成されている。各画素回路は同一の回路構成を備え、本発明の実施形態 1 で示したようにデータ線から供給されたプログラム電流の電流値を保持し保持された電流値で電気光学素子、すなわち E L 素子を発光させる電流プログラム方式に対応した回路を備えている。

[0069]

電流プースタ回路 B m R , G , B は、実施形態 1 で示した回路と同等な同一の回路構成を備え、電流ラッチ回路 L m と協働してプースト電流をデータ線に流すための構成を備えて 30 いる。プースタトランジスタT33の電流出力能力と画素回路のトランジスタT1の電流出力能力との比は、電流ラッチ回路 L m のプースト電流出力トランジスタT20の電流出力能力とプログラム電流出力トランジスタT10の電流出力能力との比と同等にしておくことが好ましい。

[0070]

以上、本実施形態2の電子装置の構成において、図示しない表示メモリ(図1参照)から 表示 が 時分割 して出力されてくる。 D / A 変換器 C I m では、この階調表示データが時分割して出力されてくる。 D / A 変換器 C I m では、この階調表示データが受力を表示 1 電流出力回路 D / A 変換器 C I m では、この階調表示データが受力、共通の基準電流とである第1電流とプログラム電流とブースト電流を生成 A 変換器 C I m では、図3で説明したように、トランジスタ T 1 0 または T 2 0 が導流 で を 数 B C I m では、図3 で説明したように、トランジスタ T 1 0 または T 2 0 が 導流 で なり、各電流出力回路から プログラム電流がアナログ表示データ は なり、各電流出力回路から で は、カースト電流がアナログ表示 S d a t a m に 出力される。それぞれのシリアルデータ線 S d a t a m に 出力される。それぞれのシリアルデータ線 C L T で は、 実施形態 1 と同様に、 時分割された期間の みが 供給され正確な電流値が電流 で は に 供給される。期間の後半では、プログラム電流のみが供給され正確な電流値が で プリッチ L m に 円 に 保持される。これに よってプログラム電流を早く正確に 駆動コントロラッチ L m に 一時保持される。とともに接続端子数を任意の時分割多重度(ここでは / 3)に比例して減らすことが可能となる。

[0071]

こ こ で 、 本 実 施 形 態 2 に お け る 電 流 ラ ッ チ 回 路 L m に お け る ダ ブ ル バ ッ フ ァ 構 造 を 詳 し く 説 明 す る 。 図 6 に 基 づ い て 、 本 実 施 形 態 に お け る ダ ブ ル バ ッ フ ァ の 動 作 原 理 を 説 明 す る 。 電 流 ラ ッ チ 回 路 L m は 、 一 つ の デ ー 夕 線 I o u t m に 対 し て 二 つ 相 似 の 回 路 が 電 流 出 カ 可 能 に 配 置 さ れ た ダ ブ ル バ ッ フ ァ 構 造 を 備 え て い る 。 電 流 ラ ッ チ 回 路 は 、 一 の デ ー 夕 線 に 対 応して一対が設けられている。すなわち、データ線Ioutmに対しては電流ラッチ回路 グループLmxとLmyとが並列に接続されている。ちなみに図5では、電流ラッチ回路 グループLmxは電流ラッチ回路LmRx、LmGxおよびLmBxにより、電流ラッチ 回路グループLmyは電流ラッチ回路LmRy、LmGyおよびLmByから構成されて いる。それぞれの電流ラッチ回路グループのペアとなるLmxとLmyとは同じシリアル データ線Sdatamに接続されているが、異なるタイミングでイネーブルされるラッチ 10 イネーブル信号LExおよびLEyによってシリアルデータ線に出力されているアナログ データをラッチ可能に構成されている。同一電流ラッチ回路グループ内であっても、異な る画素の電流ラッチ回路(例えば、LmRxとL(m+1)Rx)は、異なるシリアルデ ータ線Sdataに接続されている。制御回路23(図1参照)は、それぞれの書き込み 許 可 信 号 W E お よ び ラ ッ チ イ ネ ー ブ ル 信 号 L E の タ イ ミ ン グ を 調 整 し て 、 一 方 の ラ ッ チ 回 路グループが前記入カアナログデータをラッチしている間に、他方のラッチ回路グループ がデータ線Ioutにプログラム電流を出力させるように制御する。すなわち、図6の第 一 走 査 期 間 に お い て は 、 書 き 込 み 許 可 信 号 W E x が 非 許 可 状 態 と さ れ ラ ッ チ イ ネ ー ブ ル 信 号LExが許可状態とされるため、電流ラッチ回路グループLmxはシリアルデータSd a t a m のアナログデータをラッチする。一方この第一走査期間においては、書き込み許 20 可信号WEyが許可状態とされラッチイネーブル信号LEyが非許可状態とされるため、 電 流 ラッチ 回路 グループ Lmyは データ のラッチ を 禁止 する 一方 、 内 部 に ラッチ されて い たアナログデータに対応する電流値をデータ線IoutmA、IoutmBに出力する。 続 く 第 二 走 査 期 間 に お い て は 、 こ の ラ ッ チ と 電 流 出 カ と の 関 係 を 双 方 の 電 流 ラ ッ チ 回 路 グ ループ間で逆転させる。この操作の繰り返しにより、ひとつの画素に対する電流プログラ ム時間を一走査期間分確保できるので、スイッチングスピードの遅いTFT回路において も本発明のブースタ方式の画素回路プログラムを有効に機能させることが可能となる。

[0072]

次に、図8のタイミングチャートおよび図7を参照して図5に示す本実施形態2の詳細な動作を説明する。図8のタイミングチャートは、走査線 n について、画像表示のためのフ 30レーム期間を構成する複数の水平走査期間Hのうち、アナログ表示データの伝送と電流プログラムとを行うための二つの水平走査期間(2H)を中心に示したものである。この2Hの期間の後半の1Hが電流プログラム期間に相当している。本実施例では、この電流プログラム期間では、制御回路は発光制御線Vgnを非選択状態として有機EL素子OELDの発光を停止させておく。

[0073]

ジリアルデータ線Sdatamには、各原色の階調に対応するアナログ表示データが時分割出力されている。ラッチ処理をする前記2Hの前半の期間(時刻t1~t4)はシリアルデータ線の多重度(ここでは原色数3)で時分割されている。時分割された各期間において、それぞれの原色に対応するデータをラッチさせるように、制御回路はラッチイネー 40 ブル信号を出力する。

[0074]

すなわち、時刻 t 1 においてシリアルデータ線 S d a t a m に赤色に関するアナログ表示データが送出されると、ラッチイネーブル信号 L E R b が許可状態になる。これにより電流ラッチ回路グループ L m x 内の L m R x におけるトランジスタ T 2 1 と T 2 2 が導通し、シリアルデータ線 S d a t a m からアナログ表示データ D m n R のプースト電流がトランジスタ T 2 0 に流れる。ラッチイネーブル信号 L E R b が非許可状態になるとそのときのトランジスタ T 2 0 のゲート・ソース電圧がコンデンサ C 3 に保持される。この後、ラッチイネーブル信号 L E R a が許可状態になるとともに、シリアルデータ線 S d a t a m がアナログ表示データ D m n R のプログラム電流に切り替わる。ラッチイネーブル信号 L 50

ERaが非許可状態になる時点 t 2 で、より正確なプログラム電流をトランジスタT10が供給するためのゲート・ソース電圧がコンデンサC 2 に保持される。赤色に対応した電流のラッチが終了すると、同様に時刻 t 2 から緑色DmnGに対応した電流のラッチが、時刻 t 3 から青色DmnBに対応した電流のラッチが行われる。三原色のラッチが終了すると、電流プログラム期間の前期が終了する。一方、電流ラッチ回路LmRy、LmGy、LmByは時刻 t 1 から t 4 までの間、書き込みイネーブル信号WEbyとWEayとが相前後して許可状態となり、それぞれデータ線IoutR、IoutG、IoutBにアナログ表示データIoutm(n-1)R、Ioutm(n-1)Bを供給する。

[0075]

٠.

10

次に時刻 t 4 からは、電流ラッチ回路グループL m x から画素回路 P m n C への電流プログラム期間が開始する。制御回路は書き込みイネーブル信号W E b x を時刻 t 4 の後流が出力は態にする。これによりトランジスタT20から時刻 t 6 の手前までブースト電流のの力される。時刻 t 4 では総ての原色に関する電流のカッチが終わっており、総ての原色について同時にこの書き込みイネーブル信号が供給されるので、各原色のデータ線 I o u t m R , G , B にはそれぞれの電流が出力される。このブータ線 I o u t m R , G , B にはそれぞれの電流が出力さくプラムによって表示階調の小さな場合でも、すなわち目標電流値がルカンシスタ T 1 のがのかで、各原色のであっても短時間に目標電流値の近傍までがかれる。このがカムに時間が終度に関する書き込みイネーブル信号W E b x を非許可状態に関する書き込みイネーブル信号W E b x を非許可状態にして、トランシスタ T 2 0 からのブースト電流の供給を停止させる。制御回路は、そのできる。であると、が許可状態にする。残りの電流プログラム後期の期間(t 6 ー t 7)は、プログラム電流のみで画素回路 P m n C への電流供給が行われる。これによって最終的な目標電流値を正確にプログラムすることができる。

[0076]

ちなみに電流ラッチ回路グループLmyについては、以上述べた電流ラッチ回路グループ Lmxと同様の動作が一走査期間ずれたタイミングでプログラム電流のラッチと書き込みが行われる。

[0077]

30

時刻 t 7 で電流プログラム期間が終了したら、制御回路は発光制御線 V g n を選択状態にして画素回路 P m n の有機 E L 素子 O E L D に電流を流し表示期間に移行させる。このとき、各原色の画素回路 P m n R , G , B には対応するデータ線からの新たな電流値によるプログラムが完了しているので、新しい電流値で電流が供給され、それに対応する新たな輝度で対応する色の有機 E L 素子 O E L D が発光する。その結果、異なる三原色の輝度の違いによってカラー画素 P m n C の発光色が変化し新たな色で発光させることができる。

以上により本実施形態によれば、駆動コントローラ2と表示回路1を接続するデータ線の数を大幅に削減でき、またドットピッチを数分の1以下の低密度で接続ができるので、製造コスト削減や高信頼化ならびに接続ピッチに制約されないディスプレイの高精細化が可 40能となる。

[0079]

[0078]

く実施形態3>

本発明の実施形態3は、本発明の目的である階調(輝度)調整範囲を拡大するために実施形態2に加え、さらに発展した態様を備えるものである。特に、本実施形態3においては、有機EL素子がμsecオーダーの高速スイッチングが可能であることに着目し、実施形態1および2で示した画素回路の発光制御線Vgnを利用して有機EL素子をパルス駆動することを特徴とするものである。

[0080]

図 9 に本実施形態 3 における駆動回路のブロック図を、図 1 0 に本実施形態 3 の原理説明 50

図を、図11に本実施形態3における駆動回路のタイミングチャートを示す。図9、11において、実施形態2と異なる部分は、画素回路の発光制御線VgnとVg(n-1)の制御方法と画素回路への結線である。図9では、隣接する二つの走査線nとn-1との間で発光制御線VgnとVg(n-1)とがカラー画素ごとに交差している。水平および垂直方向に隣接しているカラー画素は異なる発光制御線によって発光期間が制御されるようになっている。この隣接する発光制御線VgnとVg(n-1)との間では、表示期間中に互いに発光期間が近接もしくは隣接したパルス発光制御信号が供給されるようになっていて、発光制御信号のパルス数は、1フレーム期間に複数あるのが好ましいが、単パルスであってもよい。その他の回路構成や動作については、実施形態2と同一であるので、説明を省略する。

10

[0081]

本実施形態 3 は、次の動作原理上の特徴を備える。図10に基づいて、本実施形態における発光のパルス制御についての動作原理を説明する。本実施形態において、制御回路 2 3 (図1参照)は、表示期間中、それぞれの発光制御線に互いに近接もしくは隣接した逆位相部を有するパルス(発光制御信号)を供給するようになっている。このような構成により、垂直(列)方向に隣接する画素 P x n と P x (n-1) との間では、供給されるパルスが近接もしくは隣接した逆の位相部を有するようになっている。また、この一対の走査線に対応する一対の発光制御線 V g n と V g (n+1) とが隣接するカラー画素 P m n C と P (m+1) n C との間でも供給されるパルスが近接もしくは隣接した逆の位相部を有するようになっている。このような構成により、水平(行)方向に隣接するカラー画素 P m n C と P (m+1) n C との間でも供給されるパルスが近接もしくは隣接した逆の位相部を有するよのになってのため、発光制御線によって有機 E L 素子をフレーム周波数近くまで点滅させても明るさの変動領域が市松模様になって明るさの変動を隣接する画素が補い合うので、フリッカや擬似輪郭等の副作用現象の発生を防止できる。また画素のオンオフによる画素電源電圧の変動を相殺し、表示の均一性劣化を低減することができる。

[0082]

本実施形態では、制御回路は、表示期間中、発光制御線に所定のデューティ比のパルスを連続的に出力するように制御する。この場合、前述したようなフリッカ防止対策が採られているため、それぞれの発光制御線Vgnに出力されるパルスの周波数を変えることによって、画表の明るさが低い低階調表示領域では、プラムを動いる電流値が少なくなるためS/Nが低下し、鮮明でない画像が表示される場合があるが、本実施形態の構成によれば、パルス周波数やデューティ比によって明るさを落とすことが可能となる。このことはプログラム電流値を変えずに発光制御線のパルス周波数やデューティ比を変えることはプログラム電流値を変えずに発光制御線のパルス周波数やデューティ比を変えることによって、表示画面全体の明るさを調節できることを意味する。したがって、低階調表示領域および低輝度領域であってもプログラム電流を小さくしなくて済むので高いS/N比で鮮明な画像表示が行えるようになるのである。この構成は、実施形態1、2のプーストプログラム方式と独立して利用してもよいが、併

[0083]

次に、図11のタイミングチャートを参照して図9に示す本実施形態3の詳細な動作を説 40 明する。図11のタイミングチャートは、走査線 n と n - 1 とについて、画像表示のためのフレーム期間を構成する複数の水平走査期間のうち、電流プログラムを行うための二つの水平走査期間Hを中心に示したものである。

用することによって単独利用より広い階調(輝度)調整範囲を得ることができる。

[0084]

図11に例示されるように、パルス駆動の周期は、数 μ sからフレーム周期の数分の1まで表示要求に応じて好適に設定される。これによって画素の平均輝度が下がるので、同一の輝度(階調度)を得るのにパルス駆動しない場合に比べてプログラム電流値を大きくすることができ好ましい。

[0085]

電流ラッチ回路LmxとLmyのそれぞれにおいて、この2Hの期間のいずれか一方がラ 50

ッチ処理期間となり、他方が電流プログラムのためにラッチされた電流をデータ線に出力する期間となる。この 2 Hのラッチ処理期間および電流出力期間(電流プログラム期間)では、制御回路は発光制御線 V g n を非選択状態として有機 E L 素子 O E L D の発光を停止させておく。ただし厳密に発光を停止させなければならない期間は画素回路に対して電流が供給される電流プログラム期間であり、電流ラッチ回路に対するラッチ処理は平行して画素回路における発光処理を継続してもよい。このため、制御回路は走査線ごとに発光制御信号により発光を停止させる期間を異ならせてもよい。電流プログラム期間が終了したら、制御回路は発光制御線 V g n を選択状態にして画素回路 P m n の有機 E L 素子 O E L D に電流を流す。

[0086]

10

本実施形態3によれば、発光制御線VgnとVg(n-1)との間で出力されている発光制御信号のパルスの位相が逆転している。このため、垂直方向の画素間(PmnCとPm(n-1)C)間でフリッカが発生しない。また、発光制御線VgnとVg(n-1)とがカラー画素ごとに交差しているので、水平方向の画素間(PmnCとP(m+1)nC)間でもフリッカが発生しない。さらに発光制御信号のパルス周波数やデューティを変更することで、表示領域の明るさを制御することが可能である。

[0087]

<実施形態4>

本実施形態は、上記実施形態で説明した電子装置において、電子素子に電気光学素子を用いて構成された電気光学装置を備える電子機器に関する。

20

[0088]

図12に、本発明の電子装置を備える電気光学装置1を適用可能な電子機器の例を挙げる

[0089]

図12(a)は携帯電話への適用例であり、当該携帯電話30は、アンテナ部31、音声出力部32、音声入力部33、操作部34、および電気光学装置1を備えている。このように本電気光学装置は携帯電話の表示部として利用可能である。

[0090]

図12(b)はビデオカメラへの適用例であり、当該ビデオカメラ40は、受像部41、操作部42、音声入力部43、および本電気光学装置1を備えている。このように本電気 30 光学装置は、ファインダーやビデオカメラの表示部として利用可能である。

[0091]

図12(c)は携帯型パーソナルコンピュータへの適用例であり、当該コンピュータ50は、カメラ部51、操作部52、および本電気光学装置1を備えている。このように本電気光学装置は、コンピュータ装置の表示部として利用可能である。

[0092]

図12 (d) はヘッドマウントディスプレイへの適用例であり、当該ヘッドマウントディスプレイ60は、バンド61、光学系収納部62および本電気光学装置1を備えている。このように本電気光学装置はヘッドマウントディスプレイにおける画像表示源として利用可能である。

[0093]

40

図12(e)はリア型プロジェクターへの適用例であり、当該プロジェクター70は、筐体71に、光源72、合成光学系73、ミラー74・75ミラー、スクリーン76、および本電気光学装置1を備えている。このように本電気光学装置はリア型プロジェクターの画像表示源として利用可能である。

[0094]

図12(f)はフロント型プロジェクターへの適用例であり、当該プロジェクター80は、 筐体82に光学系81および本電気光学装置1を備え、画像をスクリーン83に表示可能になっている。このように本電気光学装置はフロント型プロジェクターの画像表示源として利用可能である。

[0095]

上記例に限らず本発明の電子装置を備えた電気光学装置は、アクティブマトリクス型の表示装置を適用可能なあらゆる電子機器に適用可能である。例えば、この他に、テレビ受像機、カーナビゲーション装置、POS、パーソナルコンピュータ、表示機能付きファックス装置、電子案内板、輸送車両等のインフォメーションパネル、ゲーム装置、工作機械の操作盤、電子ブック、および携帯型TV、携帯電話等の携帯機器等にも活用することができる。

[0096]

くその他の変形例>

本発明は、上記各実施形態に限定されることなく、種々に変更して実施することが可能で 10 ある。

[0097]

例えば、上記実施形態1乃至3では、表示の階調度に対応して第2の出力手段であるブースト電流供給回路の出力能力を変えていたが、階調度を大括りに高中低等の複数の範囲に分けて、これに応じて第2の出力手段の出力能力を切り替えるように構成しても、本発明の目的を達成することができる。この場合、第2の出力手段は、予め想定されるデータ線の到達電圧の中心値を出力するようにしてもよい。このように構成した場合には、電流ブースタ回路を不要とすることができる。さらに、第2の出力手段は、電圧出力型のD/A変換器として、電流プログラム期間の前期には第2の出力手段を動作させてデータ線の電圧を目標到達電圧近傍に持っていき、電流プログラム期間の後期には第1の出力手段によ20り正確にプログラムするように構成することが好ましい。

また図3で示されるブースタトランジスタT33と同一と同一のタイミングで動作するトランスファスイッチ回路を、ブースタトランジスタT33が形成されている同一のアクティブ基板上でしかも選択供給手段とデータ線との間に設けて、第1の出力と第2の出力をタイミング精度よく切り替えるようにしてもよい。

[0098]

【発明の効果】

本発明によれば、少なくとも以下に述べるような利点がある。

[0099]

本発明によれば、第1の出力または第2の出力の一方または双方を選択して出力可能に構 30成したので、駆動回路の目的に応じて、本来必要な第1の出力に代えてまたはそれに加えて第2の出力を補助的に供給することができる。例えば、電流プログラムを要する表示装置に本発明を適用する場合、プログラム電流の小さな低階調表示領域においても、プログラム電流値よりも大きなブースト電流を補助的に使用してノイズの影響を排除し鮮明な画像を表示させることができる。また、この大きな電流によって短時間に目標電流値に近づけることができるので目標電流値からずれることがなくなるため、正確な明るさで画像表示できる。

[0100]

本発明によれば、プースト電流プログラム機能とダブルバッファ機能とを有する出力手段をデータ線に設けたので、データ線の数を大幅に削減することができる。このため、例え 40 ば、接続ピッチが制限されている表示装置に本発明を適用する場合には、髙精細なディスプレイ装置を実現することが可能になる。

[0101]

本発明によれば、垂直方向に隣接する画素間で供給されるパルスが近接もしくは隣接した逆の位相部を有するようになっているため、パルス幅が広くなっても明るさの変動を隣接する画素が補い合うので、フリッカが発生することを防止できる。また水平方向に隣接する画素間でも一対の発光制御線が交差しているため供給されるパルスが近接もしくは隣接した逆の位相部を有するようになり、パルス幅が広くなっても明るさの変動を隣接する画素が補い合い、垂直方向と同様に、フリッカが発生することを防止できる。また画素のオンオフによる画素電源電圧の変動を相殺し、表示の均一性劣化を低減することができる。

このパルス駆動の方法は、実施形態 1 および 2 とは独立に用いてもよく、これによって本発明の目的である階調(輝度)調整範囲の拡大が可能である。

[0102]

以上説明したように本発明によれば、電子素子、例えば電気光学変換素子の変換効率の向上や開口率の向上に対応して、階調および表示の明るさをより広い範囲で精度よく制御できる。また高速な電流プログラムが可能となることから、高解像度ディスプレイにも有効である。

【図面の簡単な説明】

- 【図1】本実施形態の電子機器のブロック図である。
- 【図2】実施形態1の電流プーストの動作原理説明図である。

【図3】実施形態1の駆動回路の回路図である。

- 【図4】実施形態1の駆動回路におけるタイミングチャートである。
- 【図5】実施形態2の駆動回路の回路図である。
- 【図 6 】 実 施 形 態 2 の ダ ブ ル バ ッ フ ァ 式 に よ る 電 流 ラ ッ チ 回 路 の 動 作 原 理 説 明 図 で あ る 。
- 【図7】実施形態2における電流ラッチ回路の構成例である。
- 【図8】実施形態2の駆動回路におけるタイミングチャートである。
- 【図9】実施形態3の駆動回路の回路図である。
- 【図 1 0 】 実 施 形 態 3 の パ ル ス 駆 動 に お け る 画 素 回 路 間 の 関 係 を 示 す 図 で あ る 。
- 【図11】実施形態3の駆動回路におけるタイミングチャートである。
- 【図12】実施形態4における電子機器の例である。
- 【図13】アクティブマトリックス駆動方式に基づく表示装置のプロック図である。

【符号の説明】

V s n …セレクト線

Vgn…発光制御線

Idatam…データ線

Pmn…画素回路

PmnC…カラー画案

OELD…有機EL素子

Lm…電流ラッチ回路

Bm…電流プースタ回路

30

10

フロントページの続き

(51) Int. Cl. ⁷	FI			テーマコード(参考)
	G 0 9 G	3/20	623B	
	G 0 9 G	3/20	623F	
	G 0 9 G	3/20	623R	
	G 0 9 G	3/20	6 2 4 B	
	G 0 9 G	3/20	641A	
	G 0 9 G	3/20	641D	
	H 0 5 B	33/14	Α	

Fターム(参考) 5C080 AA06 BB05 CC03 DD05 DD06 DD08 EE29 FF01 FF07 FF11 JJ02 JJ04 KK01 KK07 KK43 KK47