REAL ANALYSIS TOPIC 35 - MEASURE (PRELIMINARY))

PAUL L. BAILEY

1. Extended Real Numbers

Recall that the *extended real numbers* consist of the real numbers together with two symbols for plus and minus infinity:

$$\overline{R} = \mathbb{R} \cup \{\pm \infty\}.$$

We write ∞ for $+\infty$. We order the set $\overline{\mathbb{R}}$ by defining $-\infty < x < \infty$ for all $x \in \mathbb{R}$. It then makes sense to write $\overline{\mathbb{R}} = [-\infty, \infty]$. When this set is endowed with the order topology, it is homeomorphic to [0, 1].

We will use the following facts regarding extended real numbers without further comment.

- Every nonempty subset of $\overline{\mathbb{R}}$ has a supremum and an infimum in $\overline{\mathbb{R}}$.
- Every monotone sequence in $\overline{\mathbb{R}}$ has a limit in $\overline{\mathbb{R}}$.
- Every series of nonnegative real terms converges in $\overline{\mathbb{R}}$.

Date: March 8, 2019.

1

2. Set Functions

We are interested in functions which associate an extended real number to each set in a collection of sets. This will allow us to generalize the notion of the length of an interval.

Let X be a set and let $\mathcal{C} \subset X$. A set function on \mathcal{C} is a function

$$\gamma: \mathfrak{C} \to \overline{\mathbb{R}}.$$

A set function may have one or more of the following properties, assuming that $\mathcal C$ is closed under the appropriate unions (finite or countable unions).

• Monotone: for $C_1, C_2 \in \mathcal{C}$ with $C_1 \subset C_2$,

$$\gamma(C_1) \leq \gamma(C_2)$$
.

• Additive: for $C_1, C_2 \in \mathcal{C}$ with $C_1 \cap C_2 = \emptyset$,

$$\gamma(C_1 \cup C_2) = \gamma(C_1) + \gamma(C_2).$$

• Finitely additive: for $C_1, \ldots, C_n \in \mathcal{C}$ with $C_i \cap C_j = \emptyset$ for $i \neq j$,

$$\gamma(\cup_{i=1}^n C_i) = \sum_{i=1}^n \gamma(C_i).$$

• Countably additive: for each sequence (C_n) in \mathfrak{C} with $C_i \cap C_j = \emptyset$ for $i \neq j$,

$$\gamma(\cup_{i=1}^{\infty} C_i) = \sum_{i=1}^{\infty} \gamma(C_i).$$

• Subadditive: for $C_1, C_2 \in \mathcal{C}$,

$$\gamma(C_1 \cup C_2) \le \gamma(C_1) + \gamma(C_2).$$

• Finitely subadditive: for $C_1, dots, C_n \in \mathfrak{C}$,

$$\gamma(\bigcup_{i=1}^n C_i) \le \sum_{i=1}^n \gamma(C_i).$$

• Countably additive: for each sequence (C_n) in \mathcal{C} ,

$$\gamma(\bigcup_{i=1}^{\infty} C_i) \le \sum_{i=1}^{\infty} \gamma(C_i).$$

It is clear that additive implies finitely additive, by induction. Also, subadditive implies finitely subadditive. Also, countably additive implies additive, and countably subadditive implies subadditive.

Proposition 1. Let A be an algebra of subsets of a set X, and let $\gamma : A \to [0, \infty]$. If γ is additive, then γ is monotone and subadditive.

Proof. Suppose that γ is additive.

First we show that γ is monotone. Let $A_1, A_2 \in \mathcal{A}$ with $A_1 \subset A_2$. Then $B = A_2 \setminus A_1 = A_2 \cap A_1^c \in \mathcal{A}$. By additivity, $\gamma(A_2) = \gamma(A_1 \cup B) = \gamma(A_1) + \gamma(B)$, and since $\gamma(B)$ is nonnegative, $\gamma(A_2) \geq \gamma(A_1)$. Thus γ is subadditive.

Next we show that γ is subadditive. Let $A_1, A_2 \in \mathcal{A}$. Let $B = A_1 \cap A_2$. Now $A_1 \cup A_2 = (A_1 \setminus B) \cup B \cup (A_2 \setminus B) = (A_1 \cap B^c) \cup B \cup (A_2 \cap B^c) \in \mathcal{A}$. These sets are disjoint, so $\gamma(A_1 \cup A_2) = \gamma(A_1 \setminus B) + \gamma(B) + \gamma(A_2 \setminus B)$.

Proposition 2. Let \mathcal{A} be a σ -algebra of subsets of a set X, and let $\gamma: \mathcal{A} \to [0, \infty]$. If γ is countably additive, then γ is countably subadditive.

Proposition 3. Let A be a σ -algebra of subsets of a set X, and let $\gamma: A \to [0, \infty]$. If γ is additive and countably subadditive, then γ is countably additive.

3. Measures

Definition 1. Let X be a set and let \mathcal{E} be a σ -algebra of subsets of X. A measure on \mathcal{E} is a function $\mu: \mathcal{E} \to \overline{\mathbb{R}}$ such that

- (M1) $\mu(E) \geq 0$ for all $E \in \mathcal{E}$;
- **(M2)** $\mu(\emptyset) = 0;$
- (M3) (E_n) disjoint sequence in \mathcal{E} implies $\mu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu(E_n)$.

4. Length of Sets

It is plain that sci(A) is the intersection of all closed intervals which contain A.

Definition 2. Let $A \subset \overline{\mathbb{R}}$ be an interval. The *length* of A is

$$\ell(A) = b - a$$
 where $a = \inf A$ and $b = \sup A$.

Proposition 4. Let I be a collection of pairwise disjoint subintervals of an interval J. Then the sum of the lengths of the intervals in I is bounded above by the length of J:

$$\sum_{I \in \mathfrak{I}} \ell(I) \le \ell(J).$$

Proof. First assume that \mathfrak{I} is finite, say $\mathfrak{I} = \{I_1, \ldots, I_n\}$. Let $a_k = \inf I_k$, and $b_k = \sup I_k$. Let $a = \inf J$ and $b = \sup J$. Then

$$a \le a_1 \le b_1 \le a_2 \le b_2 \le \dots \le a_n \le b_n \le b.$$

Thus

$$(b-b_n) + (a_n - b_{n-1}) + \dots + (a_2 - b_1) + (a_1 - a) \ge 0,$$

which implies that $\ell(J) \geq \sum_{k=1}^{n} \ell(I_k)$. Next, suppose that $\mathfrak{I} = \{I_k \mid k \in \mathbb{N}\}$ is an infinite countable collection of intervals. Then for every partial sum, $\sum_{k=1}^{n} \ell(I_k) \leq \ell(J)$. The sequence of partial sums is a bounded nondecreasing sequence, so it converges; thus

$$\sum_{k\in\mathbb{N}}\ell(I_k)=\lim_{n\to\infty}\sum_{k=1}^n\ell(I_k)\leq\ell(J).$$

Definition 3. Let $G \subset \mathbb{R}$ be open. Define the *length* of G, denoted $\ell(G)$, to be the sum of the length of the disjoint components of G.

Let $F \subset \mathbb{R}$ be bounded and closed, and let $J = \mathrm{sci}(F)$. Define the length of F, denoted $\ell(F)$, to be $\ell(J) - \ell(J \setminus F)$.

DEPARTMENT OF MATHEMATICS AND CSCI, BASIS SCOTTSDALE Email address: paul.bailey@basised.com