Übung 7 (Massenwirkungsgesetz, Säuren/Basen)

1.	Wie viele der folgenden Faktoren beeinflussen den Wert der Gleichgewichtskonstanten <i>K</i> ? Druck, Anfangskonzentration, Volumen, Temperatur und Reaktionsgleichung.			
	1 2 2 3 4 C 0			
2.	Prüfungsaufgabe W 2016 a) Betrachten Sie das folgende Gleichgewicht in einem Gefäss:			
	$2 \text{ KClO}_3 (s) \implies 2 \text{ KCl } (s) + 3 \text{ O}_2(g)$	$\Delta_{ m r} H^\circ$	= - 78 kJ mol ⁻¹	
	Markieren Sie jeweils, ob und in welche Richtung das Gleichgewicht bei folgenden Störungen verschoben wird. (Lösungen ankreuzen)			
		Verschiebung		
		nach links	nach rechts	keine
KClO ₃ wird zur Reaktionsmischung gegeben.		6	0	
O ₂ wird zur Reaktionsmischung gegeben.				
O ₂ wird aus der Reaktionsmischung entfernt.				
KCl wird zur Reaktionsmischung gegeben.				
Die Reaktionstemperatur wird erhöht.				
Das Volumen des geschlossenen Gefässes wird halbiert.		C	•	

b) Betrachten Sie das Gasgleichgewicht:

$$H_2S(g) \implies 2 H_2(g) + S_2(g) \qquad K_p = 0.00024 (1073K)$$

- i) Formulieren Sie das Massenwirkungsgesetz für K_p .
- ii) Berechnen Sie den Reaktionsquotienten für eine Mischung aus 0.112 bar H_2 , 0.005 bar S_2 und 0.445 bar H_2S .
- iii) Befindet sich diese Mischung im Gleichgewicht? Falls nicht, in welche Richtung würde die Reaktion ablaufen?

3. **Prüfungsaufgabe W 2014**

Ein Gemisch aus 0.10 mol NO, 0.050 mol H₂ und 0.10 mol H₂O wird in ein 1.0-L-Gefäss gegeben. Es stellt sich das folgende Gleichgewicht ein:

$$2 \text{ NO } (g) + 2 \text{ H}_2(g)$$
 \Longrightarrow $N_2(g) + 2 \text{ H}_2\text{O} (g)$

Im Gleichgewicht ist die Konzentration c (NO) = 0.062 M.

- a) Berechnen Sie die Gleichgewichtskonzentrationen von H₂, N₂ und H₂O.
- b) Berechnen Sie K_c .
- 4. Bei 2000°C beträgt die Gleichgewichtskonstante der folgenden Reaktion $K_c = 2400$.

$$2 \text{ NO } (g) \implies N_2(g) + O_2(g)$$

Berechnen Sie die Gleichgewichtskonzentrationen aller Moleküle, wenn von reinem NO mit c (NO) = 0.200 M ausgegangen wird.

5. Prüfungsaufgabe W 2014

Bei 1000 K beträgt die Gleichgewichtskonstante der Reaktion

$$N_2(g) + 3 H_2(g)$$
 \longrightarrow 2 $NH_3(g)$

$$K_p = 2.40 \cdot 10^{-3}$$
.

Wie groß ist die Gleichgewichtskonstante der Reaktion

$$NH_3(g)$$
 = 1/2 $N_2(g) + 3/2 H_2(g)$

bei 1000 K?

- $2.40 \cdot 10^{-3}$
- $1.20 \cdot 10^{-3}$
- **417**
- **2**0.4
- C 209
- 6. Wie lauten die Formeln der konjugierten Brønsted-Lowry-Säure zu den folgenden Basen?
 - (i) NH₃
 - (ii) CN
 - (iii) NH₂
 - \square (i) NH₃, (ii) HCN, (iii) NH₃
 - (i) NH₄⁺, (ii) HCN, (iii) NH₃
 - (i) NH₂⁻, (ii) HCN, (iii) NH₄⁺
 - (i) NH₃, (ii) H₂CN⁺, (iii) NH₃
 - (i) NH₄⁺, (ii) H₂CN⁺, (iii) NH₃
- 7. Welche der folgenden Säuren ergibt bei gleicher Konzentration die sauerste wässrige Lösung?
 - Borsäure, $K_a = 5.8 \cdot 10^{-10}$
 - Milchsäure, $K_a = 1.4 \cdot 10^{-4}$
 - Phenol, $K_a = 1.3 \cdot 10^{-10}$
 - Saccharin, $K_a = 2.1 \cdot 10^{-12}$
 - Alle Lösungen der genannten Säuren sind gleich sauer, weil ihre Konzentrationen gleich sind.