

AIRSOFT ROUND AERODYNAMICS

Student Name : ENES ŞAHİNER

Student ID No : 030200018

Due Date : 06.04.2023

MAK 202E NUMERICAL

Lecture Name : METHODS

Lecturer : ALPER TOLGA ÇALIK

Course CRN : 22194

: ENES ŞAHİNER

PROBLEM DEFINITION

Figure 1: Infrared Radiation Based Projectile Speed Measurement System Scheme

Infrared radiation-based measurement units can be used to measure the speed of small arms rounds, as demonstrated in Figure 1. The setup involves two led strips and infrared receivers, which the round passes through, causing a decrease in the amount of light received. By measuring the time gap between the light decrement of the two strips, the average speed of the round can be calculated. However, the sensors used in this setup are susceptible to measurement errors due to their sensitivity to light conditions. Using a similar setup as Figure 1, Table 1 shows the measured speeds of an airsoft pistol's rounds at various distances from the pistol.

Homework Title Student Name : AIRSOFT ROUND AERODYNAMICS : ENES ŞAHİNER

Meter/	1	6					
Shot	meter						
1	109.5	90	76.8	65.2			
2	110	88.5	73.6	64			
3	109.3	88	74.6	63.6			
4	112.4	88.5	76.2				
5	108	87.5	76.1				
6	112.7	88.5	81				
7	107.4	87.9	75.9				
8	106.9	89.6	74.9				
9	105.2	91	76.4				
10	106.9	88.9	78.9				
Average	108.83	88.84	76.44	64.26667			
	V(x) m/s						

Table 1: Measured Round Longitudinal Speeds at Different Distances.

Airsoft guns typically use plastic spherical rounds that are subject to both aerodynamic and gravitational forces during flight. To ensure a safe and effective firing mechanism, it is important to accurately predict the drag coefficient (cd) of these rounds. Once this is done, the necessary parameters for a gas or electric mechanism can be determined to provide good range while maintaining a safe velocity that minimizes the risk of severe injury to the target. Figure 2 provides a kinematic and dynamic free body diagram (FBD) of the airsoft round.

Parameter	Definition	Value	Unit
m_{round}	Mass of the round.	0.28*10 ⁻³ ;	[g]
d	Diameter of the round.	6	[mm]
Т	Temperature of the test room.	16	[°C]
ф	Relative humidity of the test room air.	58	[%]
р	Absolute pressure of the test room.	1024	[mbar]
X ₀	Initial position of the round. (wrt. Global frame)	0	[m]
Y ₀	Initial position of the round. (wrt. Global frame)	1.5	[m]

Table 2: Parameters and initial condition for the solution

Answers

a.) Curve fitting

Chart 1: Curve fitting for experimental data

$$V(x) = 0.078167x^2 - 4.2506x + 112.6343$$

The value for the initial velocity obtained from this equation: V(0) = 112.6343

$\textbf{b.)} \ Classifying \ the \ equations \ of \ planar \ motion \ of \ an \ airsoft \ round \ using \ FBDs$

Fd : Air Drag Force

Fdy : Vertical Air Drag Force

Fd_x: Horizontal Air Drag Force

G: Weight

Figure 2: FBD for forces

Homework Title Student Name : AIRSOFT ROUND AERODYNAMICS : ENES ŞAHİNER

V : Vertical Velocity

Vx : Horizontal Velocity

Vy : Vertical Velocity

Figure 3: FBD for velocities

a. Calculating Air Density:

$$p = \frac{P-e}{R*T}$$
; here, e is $e = \phi * Psaturated$.

The values of $P_{\text{saturated}}$ and R were obtained through reference to thermodynamic tables, specifically Table A-4 and Table A-2

(a) 300 K sıcaklıkta					
Gaz	Kimyasal formülü	Gaz sabiti, <i>R</i> kJ/kg·K	<i>c_p</i> kJ/kg ⋅ K	<i>c</i> ₀ kJ/kg · K	k
Hava	_	0.2870	1.005	0.718	1.400
Argon	Ar	0.2081	0.5203	0.3122	1.667
Bütan	C_4H_{10}	0.1433	1.7164	1.5734	1.091
Karbon dioksit	CO ₂	0.1889	0.846	0.657	1.289
Karbon monoksit	CO	0.2968	1.040	0.744	1.400
Etan	C_2H_6	0.2765	1.7662	1.4897	1.186
Etilen	C_2H_4	0.2964	1.5482	1.2518	1.237
Helyum	He	2.0769	5.1926	3.1156	1.667
Hidrojen	H_2	4.1240	14.307	10.183	1.405
Metan	CH₄	0.5182	2.2537	1.7354	1.299
Neon	Ne	0.4119	1.0299	0.6179	1.667
Azot	N_2	0.2968	1.039	0.743	1.400
Oktan	C ₈ H ₁₈	0.0729	1.7113	1.6385	1.044
Oksijen	O_2	0.2598	0.918	0.658	1.395
Propan	C_3H_8	0.1885	1.6794	1.4909	1.126
Su buharı	$H_2^{\circ}O^{\circ}$	0.4615	1.8723	1.4108	1.327

Table 3: Thermodynamic Table A-2

TABLO A-4												
Doymuş	Doymuş su — Sıcaklık tablosu											
		<i>Özgül hacim,</i> İç enerji, m³/kg kJ/kg			<i>Entalpi,</i> kJ/kg			Entropi, kJ/(kg.K)				
Sıcaklık	Doymuş ., basıncı.,	Doymuş sıvı,	Doymuş buhar,	Doymuş sıvı,	Buhar.,	Doymuş buhar,	Doymuş sıvı,	Buhar.,	Doymuş buhar,	Doymus	•	Doymuş ., buhar,
T °C	P_{doy} kPa	V_f	v_g	u_{f}	u_{tg}	u_g	h_f	h_{fg}	h_g	S_f	$s_{\it fg}$	s_g
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	9.1556 8.9487 8.7488 8.5559 8.3696	9.0249 8.8999 8.7803
25 30 35	3.1698 4.2469 5.6291	0.001003 0.001004 0.001006	43.340 32.879 25.205	104.83 125.73 146.63	2304.3 2290.2 2276.0	2409.1 2415.9 2422.7	104.83 125.74 146.64	2441.7 2429.8 2417.9	2546.5 2555.6 2564.6	0.3672 0.4368 0.5051	8.1895 8.0152 7.8466	8.4520 8.3517

Table 4: Thermodynamic Table A-4

2436.1

188.44

2394.0

2582.4

0.6386

7.5247 8.1633

P_{saturated} is 1832.4 Pa

2247.7

b. Equations:

9.5953

0.001010

15.251

188.43

Forces:

$$Fd_x = \frac{1}{2} p C_d A_r V_x^2$$

45

$$Fd_y = \frac{1}{2} p C_d A_r V_y^2$$

$$G = mg$$

According to the Newton's Law: $\Sigma F = m\alpha$, so $\Sigma F x = m\ddot{x}$ ($\ddot{x} = \alpha_x$) and $\Sigma F y = m\ddot{y}$ ($\ddot{y} = a_y$)

Horizontal Motion:

$$m\ddot{x} = \mbox{-}{}^{1\!\!/_{\!\!2}} \ p \ C_d A_r V_x{}^2 \!\! = \mbox{-}{}^{1\!\!/_{\!\!2}} \ p \ C_d A_r \dot{x}^2$$

 $m\ddot{x} + \frac{1}{2} p C_d A_r \dot{x}^2 = 0$ #nonlienar second order homogenous equation

Vertical Motion:

$$m\ddot{y}=\frac{1}{2}~p~C_dA_rV_y{}^2-mg=\frac{1}{2}~p~C_dA_r\dot{y}^2$$
 - mg

 $m\ddot{y} + mg - \frac{1}{2}p C_d A_r \dot{y}^2 = 0$ #nonlienar second order nonhomogeneous equation

ISTANBUL TECHNICAL UNIVERSITY

c.) Euler Forward Formula

$$\begin{split} t &= t + dt \\ V_y &= V_y + \left[(\frac{1}{2} \ p \ C_d A_r V_y{}^2 - mg)/m \right] * dt \\ V_x &= V_x + \left[(\frac{1}{2} \ p \ C_d A_r V_x{}^2 - mg)/m \right] * dt \\ y &= y + V_y * dt \\ x &= x + V_x * dt \end{split}$$

C_d was determined by trial and error and its value is 0.545

d.) Plotting

The first graph displays both the longitudinal velocity results from the model and the experimental data plotted against distance on a single graph. The second graph shows the positions of the airsoft round.

Chart 2: Modeled Velocity and Position Relationships - displaying two graphs, one showing velocity-x direction versus position-x, and the other showing position-x versus position-y

e.) State the range of the pistol and the final velocity of the round. Calculate the energy of the round when it hits to a target at a distance of 20 meters

- a. According to the information taken from graphics, $V_{y, final}$ is 5.227 m/s and $V_{x, final}$ is 35.604 m/s; thus, the final velocity can be calculated by using this equation: $Vfinal = \sqrt{((Vy, final)^2 + (Vx, final)^2)}$. So, the final velocity value is 35.986 m/s.
- b. The following data points relate to the round hitting a target 20 meters away: $V_x = 55.89$ m/s, $V_y = 2.53$ m/s, and Y(x) = 1.157 m. Thus, by using kinetic equation $\Delta E = \Delta E k + \Delta E p + \Delta E e;$ $\Delta E k = \left(\frac{1}{2}\right) * 0.28 * 10^{-3} * (55.89^2 + 2.53^2);$ $\Delta E p = 0.28 * 10^{-3} * 9.81 * 1.157;$

$$\Delta E = 0.4382 + 0.003178 = 0.4414$$
 Joule

f.) Elaborating results

According to the obtained data, the CD coefficient was determined as 0.545. In addition, the energy value calculated at the point where the shot reached the target was measured as 0.4414 Joules. These results provide important information about the aerodynamic properties of the shot and its impact on the target. A lower CD coefficient allows the shot to encounter less air resistance and can therefore help achieve a higher accuracy rate. Also, the high energy value means that the shot has a significant impact on the target and covers a larger area. These results are an important source of information for evaluating and improving shooting performance.

g.) The code of the program

The code of the program is written in the MATLAB programming language. The code is designed to calculate and analyze different parameters of the shot. The program calculates the final velocity and range of the shot using inputs such as target distance, projectile weight, projectile initial velocity, and weather conditions. The program can also plot the ballistic curves of the shot and visualize the results for different target distances. The code is considered a useful tool for analyzing and improving the performance of the shot.

```
1. clear all, close all, clc
2. %-----
3. % Parameters:
4.
5. m_{\text{round}} = 0.28*10^{(-3)}; %kg
6. d = 0.006;
                         %K
7. T = 16 + 273.15;
8. fi = 58/100;
9. P = 1024*100;
                         %pa
10.X_0 = 0;
11.Y_0 = 1.5;
12.dt = 0.01;
13. Ar = (pi*d^2)/4; %m<sup>2</sup>
14.Cd = 0.545;
                         % determined by trial and error
15.g = 9.81;
                        %m/s^2
16.%-----
17.% Calculating air density:
19. %thermodynamic table-a4 for T = 16, P saturated = 1832.4 Pa
20.e = fi*1832.4;
21.% to calculate air_density
22. air_density = (P-e)/(287*T); %here 287 is R, table-a1
24.%-----
25.% a) Curve fitting:
27. \times 0 = 1; \times 1 = 6; \times 2 = 11; \times 3 = 16;
28.f_x0 = 108.83; f_x1 = 88.84; f_x2 = 76.44; f_x3 = 64.26667;
30.xs = [x0, x1, x2, x3];
31. f_x = [f_x0, f_x1, f_x2, f_x3];
33. p_0 = polyfit(xs, f_x, 2);
34.
35.x \text{ values} = linspace(0,16,100);
36.y_values = polyval(p_0,x_values);
37.
38.
39. equation = p_0(1)+"x^2\t" + p_0(2)+"x\t" + p_0(3); %The equation presented
   corresponds to the experimental data.
40. fprintf(equation)
41.
```

Homework Title Student Name : AIRSOFT ROUND AERODYNAMICS : ENES ŞAHİNER


```
42. %-----
43.% c) Euler Forward Formula
44.
45.%Initialize variables
46.v_x = 112.6343;
47. v_y = 0;
48.t = 0;
49.x = X_0;
50.y = Y_0;
51.times = t;
52.velocities_x = v_x;
53.velocities_y = v_y;
54. positions_x = x;
55.positions_y = y;
57.%Kinematic equations
58.while y > 0
59.
60.
      t = t + dt;
61.
      v_y = v_y + (((0.5*air_density*Cd*Ar*v_y^2) - (m_round*g))/m_round)*dt;
62.
63.
      v_x = v_x + (-0.5*air_density*Cd*Ar*v_x^2/m_round)*dt;
64.
65.
      y = y + v_y*dt;
66.
      x = x + v_x*dt;
67.
68.
      times = [times t];
69.
      velocities_x = [velocities_x v_x];
70.
71.
       positions_x = [positions_x x];
72.
73.
       velocities_y = [velocities_y v_y];
74.
       positions_y = [positions_y y];
75. end
76.
77.%-----
78.%Graphics:
79.
80. subplot(2,1,1)
81. plot(xs,f_x,'*',x_values,y_values)
82.xlabel('X(m)')
83.ylabel('V(x) m/s')
84.
85.hold on
86.plot(positions_x, velocities_x)
87. title("CD: "+Cd)
88.legend('Experimental data', 'Curve fitting', 'Modeled graphic')
89.
90. subplot(2,1,2)
91.plot(positions_x, positions_y)
92.xlabel('X(m)')
93.ylabel('Y(m)')
94.legend("Modeled graphic")
```