

	KNN Regression (k-nearest neighbors regression)
Recali	for LR: we have a really strong global assumption about f
	$f(\chi) = \chi \beta$
	>
	e.s. in ID y $ \hat{f}(x) = \beta x $
	preds change by $\hat{\beta}$ as I more along X
	as I more along t
Fur Ben	thermore: traing data affects the fit far away efit: strong global assurption make f practical to find
L NN	
	> k = integer that determines how many "nearby" trains points we consider
Given	trains duta {(\lambda, y_n)}n=1

ENN fits f as $f(\chi) = \frac{1}{k} \sum_{n \in N_{k}(\chi)} \frac{avg. y_n \text{ over}}{k \text{ news+ newhbors}}$ Nk(x) = k neighborhood of & = indius of k nearest trains pts for numeric typically use euclidean distance R=2 b=4 What happens as me Change to? general rule: le contrals the flexibility of the of a function of is Small & -> very flexible method
es. k=1 interpolates data le -> very inflexible method es-k=N I just predict g haty

Comparison W/OLS:
OLS reduces F to a p-dim'l space.
· · · · · · · · · · · · · · · · · · ·
KNN reduces & to a Mp dim'e space.
as b 1 I reduce
the dim of the space (VC dimension Vapnik-Chervonensk)
CONVERTE ho I increase the dim VC dimension is beyond the scope of the class