CLAIMS

Therefore, having thus described the invention, at least the following is claimed:

1	1.	A nanostructure, comprising:
2		a free-standing, helical semiconductor oxide nanostructure including a
3		nanobelt having a substantially rectangular cross-section, wherein the nanobelt is
4		about 5 nanometers to about 200 nanometers in width and about 3 nanometers to
5		about 50 nanometers in height, and wherein the radius of the helical
5		semiconductor oxide nanostructure is about 200 to 5000 nanometers.
1	2.	The nanostructure of claim 1, wherein the semiconductor oxide is chosen from
2		oxides of zinc, cadmium, mercury, gallium, indium, tellurium, germanium, tin,
3		and lead.
l	3.	The nanostructure of claim 1, wherein the semiconductor oxide is zinc oxide.
l	4.	The nanostructure of claim 1, wherein the nanobelt is a single crystalline
2		structure.
l	5.	The nanostructure of claim 1, wherein the nanobelt is a polar surface dominated
2		zinc oxide nanobelt.

- 1 6. The nanostructure of claim 1, wherein the nanobelt includes polarized $\pm (0001)$
- 2 facets.
- 1 7. The nanostructure of claim 1, wherein the nanobelt has a substantially uniform
- width along the length of the free-standing helical semiconductor oxide
- 3 nanostructure.
- 1 8. The nanostructure of claim 1, wherein the semiconductor oxide is zinc oxide,
- wherein the nanobelt has a top $\pm (0001)$ surface, bottom $\pm (0001)$ surface, a right
- 3 side $\pm (10\overline{1}0)$ surface, and a left side $\pm (10\overline{1}0)$ surface.
- 1 9. The nanostructure of claim 1, wherein the semiconductor oxide is zinc oxide,
- wherein the nanobelt is described by characteristics selected from an interior
- 3 (0001)-Zn surface and an exterior (000 $\overline{1}$)-O surface, and an interior surface
- 4 $(000\overline{1})$ -O and exterior surface (0001)-Zn.

1 10. A nanostructure comprising: 2 a free-standing semiconductor oxide nanoring, wherein the nanoring has a 3 radius of about 500 to 10,000 nanometers, a height of about 5 to 2000 nanometers, 4 and a width of about 50 to 7500 nanometers. 11. 1 The nanostructure of claim 10, wherein the semiconductor is chosen from ZnS, 2 GaN, CdSe, and oxides of zinc, cadmium, gallium, indium, tin, lead, and, and 3 combinations thereof. 1 12. The nanostructure of claim 10, wherein the semiconductor oxide is zinc oxide. The nanostructure of claim 12, wherein the nanoring includes a nanobelt having a 1 13. 2 substantially rectangular cross-section, wherein the nanobelt is about 5 3 nanometers to about 200 nanometers in width and about 3 nanometers to about 50 4 nanometers in height. 1 14. The nanostructure of claim 13, wherein the nanoring includes about 1 to 250 loops 2 of the nanobelt. 1 15. The nanostructure of claim 13, wherein the semiconductor oxide is zinc oxide, 2 and wherein the nanobelt includes a top $\pm (0001)$ surface, a bottom $\pm (0001)$ surface, a right side $\pm (1210)$ surface, and a left side $\pm (1210)$ surface.

3

- 1 16. The nanostructure of claim 13, wherein the semiconductor oxide is zinc oxide,
- wherein the nanobelt has an interior (0001)-Zn surface and an exterior $\pm (000 \,\overline{1})$ -O
- 3 surface.
- 1 17. The nanostructure of claim 11, wherein the nanoring is a single crystalline
- 2 structure.

1	18.	A method of preparing nanostructures comprising:
2		exposing a homogeneous metal oxide powder mixture to thermal
3		conditions of about 900 to 1600 °C at a pressure of about 10 ⁻³ to 10 ⁻² torr for
4		about 5 to 100 minutes;
5		flowing an inert gas over the homogeneous metal oxide powder mixture;
6		and
7		forming a free-standing semiconductor oxide nanostructure via a
8		condensation reaction at a pressure of about 50 to 800 torr and at thermal
9		conditions of about 100 to 700 °C, each of the free-standing semiconductor oxide
10		nanostructures having a substantially rectangular cross-section.
1	19.	The method of claim 18, wherein the homogeneous metal oxide powder mixture
2		is selected from zinc oxide, lithium oxide, lithium carbonate, indium oxide,
3		gallium oxide, and combinations thereof.
1	20.	The method of claim 18, wherein the free-standing semiconductor oxide
2		nanostructure is a free-standing, helical semiconductor oxide nanostructure
3		including a nanobelt having a substantially rectangular cross-section, wherein the
4		nanobelt is about 5 nanometers to about 200 nanometers in width and about 3
5		nanometers to about 50 nanometers in height, and wherein the radius of the helical
6		semiconductor oxide nanostructure is about 200 to 5000 nanometers

- 1 21. The method of claim 18, wherein the free-standing semiconductor oxide
- 2 nanostructure is a free-standing semiconductor oxide nanoring, wherein the
- nanoring has a radius of about 500 to 10,000 nanometers, a height of about 5 to
- 4 2000 nanometers, and a width of about 50 to 7500 nanometers.