107

Differentiating vector fields: why do it, and how not to do it

Spring 2023

Optimization on manifolds, MATH 512 @ EPFL

Instructor: Nicolas Boumal

Why we want to differentiate vector fields

Let $f: \mathcal{M} \to \mathbf{R}$ be smooth. Consider a smooth curve $c: \mathbf{R} \to \mathcal{M}$.

Taylor expand $g = f \circ c : \mathbf{R} \to \mathbf{R}$ beyond first order?

Taylor expand
$$g = f \circ c$$
: $\mathbb{R} \to \mathbb{R}$ beyond first order?

$$g(t) = g(0) + t g'(0) + \begin{bmatrix} t^2 & g''(0) \end{bmatrix} + \cdots$$

$$g(t) = f(c(0)) = f(x)$$

$$g'(t) = f(c(0)) = f(x)$$

$$= \langle g(adf(c(t)), c'(t) \rangle_{c(t)}$$

$$g(t) = f(x) + t \langle g(af(x), v) \rangle_{x} + \left[\frac{t^2}{2} - \cdots \right]$$

$$g'(0) = \langle g(adf(x), v) \rangle_{x}$$

$$g''(0) = \frac{d}{dt} \langle gradf(clt), c'(t) \rangle_{clt} |_{t=0}$$

We already know how to differentiate vector fields... right?

Let \mathcal{M} be an embedded submanifold of \mathcal{E} .

Say V is a smooth vector field on \mathcal{M} . That is:

$$V: \mathcal{M} \to T\mathcal{M}$$
 is smooth, and $V(x) \in T_x \mathcal{M}$ for all $x \in \mathcal{M}$

$$T\mathcal{M} = \{(x,v): x \in \mathcal{M} \text{ and } v \in T_x \mathcal{M}\}$$

How could we differentiate *V*?

Recall: If $G: \mathcal{M} \to \mathcal{N}$ is smooth, and \overline{G} is a smooth extension, then $DG(x)[v] = D\overline{G}(x)[v]$ for all $x \in \mathcal{M}$ and $v \in T_x\mathcal{M}$.

Example: Let
$$S^{d-1} = \{x \in \mathbf{R}^d : x^\top x = 1\}$$
, as a Riemannian submanifold of \mathbf{R}^d with $\langle u, v \rangle = u^\top v$. Let $f : S^{d-1} \to \mathbf{R}$ be defined by $f(x) = \frac{1}{2} x^\top A x$.

Task: compute $D(\operatorname{grad} f)(x)[v]$.

$$f: \mathbb{R}^d \to \mathbb{R}$$
, $f(x) = \frac{1}{2} e^{\tau} A x \mid Df(x)[v] = x^{\tau} A v$
 $grad f(x) = A x \mid Ax \mid Ax \mid Ax$
 $grad f(x) = Ry_x (grad f(x))$

$$T_{x}S^{d-1} = \left\{ V \in \mathbb{R}^{d} : V^{T} u = 0 \right\}$$

$$= \left(I - u u^{T} \right) A u$$

$$= A u - \left(u^{T} A u \right) u$$

$$= \left(I - u u^{T} \right)$$

Fine. Let's be pragmatic then... no?

The issue in the example is that DV(x)[u] might not be in $T_x\mathcal{M}$.

... Can't we just orthogonally project DV(x)[u] to $T_x\mathcal{M}$?

It's reasonable, but *kind of arbitrary*. Still:

- 1. We'll argue it's always a good option (among many).
- 2. It's the right option for Riemannian submanifolds.
- 3. For other Riemannian manifolds, there is another right option.