## meriskills-diabetes

## September 21, 2023

## 0.1 Import libs

```
[20]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

#### 0.2 load Dataset

```
[3]: df = pd.read_csv('diabetes.csv')
```

[5]: df

| [5]: | Pregnancies | Glucose | ${	t BloodPressure}$ | SkinThickness | Insulin | BMI  | \ |
|------|-------------|---------|----------------------|---------------|---------|------|---|
| 0    | 6           | 148     | 72                   | 35            | 0       | 33.6 |   |
| 1    | 1           | 85      | 66                   | 29            | 0       | 26.6 |   |
| 2    | 8           | 183     | 64                   | 0             | 0       | 23.3 |   |
| 3    | 1           | 89      | 66                   | 23            | 94      | 28.1 |   |
| 4    | 0           | 137     | 40                   | 35            | 168     | 43.1 |   |
|      | •••         | •••     | •••                  |               |         |      |   |
| 763  | 10          | 101     | 76                   | 48            | 180     | 32.9 |   |
| 764  | 2           | 122     | 70                   | 27            | 0       | 36.8 |   |
| 765  | 5           | 121     | 72                   | 23            | 112     | 26.2 |   |
| 766  | 1           | 126     | 60                   | 0             | 0       | 30.1 |   |
| 767  | 1           | 93      | 70                   | 31            | 0       | 30.4 |   |

|     | DiabetesPedigreeFunction | n Age | Outcome |
|-----|--------------------------|-------|---------|
| 0   | 0.627                    | 7 50  | 1       |
| 1   | 0.351                    | l 31  | 0       |
| 2   | 0.672                    | 2 32  | 1       |
| 3   | 0.167                    | 7 21  | 0       |
| 4   | 2.288                    | 33    | 1       |
|     |                          |       | •••     |
| 763 | 0.171                    | L 63  | 0       |
| 764 | 0.340                    | 27    | 0       |
| 765 | 0.245                    | 5 30  | 0       |
| 766 | 0.349                    | 9 47  | 1       |
| 767 | 0.315                    | 5 23  | 0       |

## $0.3\,\,$ Explore The Dataset

#### [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

| # | Column                           | Non-Null Count | Dtype   |
|---|----------------------------------|----------------|---------|
|   |                                  |                |         |
| 0 | Pregnancies                      | 768 non-null   | int64   |
| 1 | Glucose                          | 768 non-null   | int64   |
| 2 | BloodPressure                    | 768 non-null   | int64   |
| 3 | SkinThickness                    | 768 non-null   | int64   |
| 4 | Insulin                          | 768 non-null   | int64   |
| 5 | BMI                              | 768 non-null   | float64 |
| 6 | ${\tt DiabetesPedigreeFunction}$ | 768 non-null   | float64 |
| 7 | Age                              | 768 non-null   | int64   |
| 8 | Outcome                          | 768 non-null   | int64   |

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

## [9]: df.describe()

| [9]: |       | Pregnancies | Glucose      | BloodPressure       | SkinThick  | ness | Insulin    | \ |
|------|-------|-------------|--------------|---------------------|------------|------|------------|---|
|      | count | 768.000000  | 768.000000   | 768.000000          | 768.00     | 0000 | 768.000000 |   |
|      | mean  | 3.845052    | 120.894531   | 69.105469           | 20.53      | 6458 | 79.799479  |   |
|      | std   | 3.369578    | 31.972618    | 19.355807           | 15.95      | 2218 | 115.244002 |   |
|      | min   | 0.000000    | 0.000000     | 0.000000            | 0.00       | 0000 | 0.000000   |   |
|      | 25%   | 1.000000    | 99.000000    | 62.000000           | 0.00       | 0000 | 0.000000   |   |
|      | 50%   | 3.000000    | 117.000000   | 72.000000           | 23.00      | 0000 | 30.500000  |   |
|      | 75%   | 6.000000    | 140.250000   | 80.000000           | 32.00      | 0000 | 127.250000 |   |
|      | max   | 17.000000   | 199.000000   | 122.000000          | 99.00      | 0000 | 846.000000 |   |
|      |       |             |              |                     |            |      |            |   |
|      |       | BMI         | DiabetesPedi | ${	t greeFunction}$ | Age        | 0    | utcome     |   |
|      | count | 768.000000  |              | 768.000000          | 768.000000 | 768. | 000000     |   |
|      | mean  | 31.992578   |              | 0.471876            | 33.240885  | 0.   | 348958     |   |
|      | std   | 7.884160    |              | 0.331329            | 11.760232  | 0.   | 476951     |   |
|      | min   | 0.000000    |              | 0.078000            | 21.000000  | 0.   | 000000     |   |
|      | 25%   | 27.300000   |              | 0.243750            | 24.000000  | 0.   | 000000     |   |
|      | 50%   | 32.000000   |              | 0.372500            | 29.000000  | 0.   | 000000     |   |
|      | 75%   | 36.600000   |              | 0.626250            | 41.000000  | 1.   | 000000     |   |

[11]: df.isnull().sum()

max

67.100000

2.420000

81.000000

1.000000

[11]: Pregnancies 0 Glucose 0 BloodPressure 0 SkinThickness 0 Insulin 0 BMI0 0 DiabetesPedigreeFunction Age 0 Outcome 0 dtype: int64

[12]: df.duplicated().sum()

[12]: 0

### 0.3.1 so our data is very clean we will not make a preprocessing on it

[13]: df.hist(bins = 10, figsize = (20, 10))
plt.show()



[15]: plt.figure(figsize = (20, 10))
 df.boxplot()

[15]: <AxesSubplot:>



#### 0.3.2 lets work on diabetes factors

| [38]: | df.corr()                        |                    |    |         |            |          |               |   |
|-------|----------------------------------|--------------------|----|---------|------------|----------|---------------|---|
| [38]: | [38]:                            |                    | es | Glucos  | se BloodPı | ressure  | SkinThickness | \ |
|       | Pregnancies                      | 1.0000             | 00 | 0.12945 | 59 0       | .141282  | -0.081672     |   |
|       | Glucose                          | 0.1294             | 59 | 1.00000 | 0 0        | . 152590 | 0.057328      |   |
|       | BloodPressure                    | 0.1412             | 82 | 0.15259 | 1.000000   |          | 0.207371      |   |
|       | SkinThickness                    | -0.0816            | 72 | 0.05732 | 28 0       | . 207371 | 1.000000      |   |
|       | Insulin                          | -0.0735            | 35 | 0.33135 | 57 0       | .088933  | 0.436783      |   |
|       | BMI                              | 0.0176             | 83 | 0.22107 | 1 0        | . 281805 | 0.392573      |   |
|       | ${\tt DiabetesPedigreeFunction}$ | -0.0335            | 23 | 0.13733 | 0          | .041265  | 0.183928      |   |
|       | Age                              | 0.54434            |    | 0.26351 | .4 0       | . 239528 | -0.113970     |   |
|       | Outcome                          | 0.2218             | 98 | 0.46658 | 31 0       | .065068  | 0.074752      |   |
|       |                                  | Insulin            |    |         | DiabetesPe | •        |               |   |
|       | Pregnancies                      | -0.073535 0.017683 |    |         | -          | .033523  |               |   |
|       | Glucose                          | 0.331357           |    | 221071  |            |          | . 137337      |   |
|       | BloodPressure                    | 0.088933           |    | 281805  |            |          | .041265       |   |
|       | SkinThickness                    | 0.436783           |    | 392573  |            |          | .183928       |   |
|       | Insulin                          | 1.000000           |    | 197859  |            |          | . 185071      |   |
|       | BMI                              | 0.197859           |    | 000000  |            |          | . 140647      |   |
|       | DiabetesPedigreeFunction .       |                    |    | 140647  |            |          | .000000       |   |
|       | Age                              | -0.042163          |    | 036242  |            |          | .033561       |   |
|       | Outcome                          | 0.130548           | 0. | 292695  |            | 0        | . 173844      |   |
|       |                                  | ٨٥٥                | n  | utcome  |            |          |               |   |
|       | Pregnancies                      | Age<br>0.544341    |    | 221898  |            |          |               |   |
|       | reguancies                       | 0.044041           | Ο. | 221030  |            |          |               |   |

```
      Glucose
      0.263514
      0.466581

      BloodPressure
      0.239528
      0.065068

      SkinThickness
      -0.113970
      0.074752

      Insulin
      -0.042163
      0.130548

      BMI
      0.036242
      0.292695

      DiabetesPedigreeFunction
      0.033561
      0.173844

      Age
      1.000000
      0.238356

      Outcome
      0.238356
      1.000000
```

```
[40]: plt.figure(figsize = (10, 6))
sns.heatmap(df.corr(), annot = True, cbar = False, cmap = 'Blues')
plt.show()
```



#### $0.4\,$ Lets get insights from factors

```
[44]: #split data to only diabetes
di_df = df[df['Outcome'] == 1]
```

#### 0.5 Glucose

```
[54]: di_df['Glucose'].describe()
```

```
268.000000
[54]: count
               141.257463
      mean
      std
                31.939622
                 0.000000
      min
      25%
               119.000000
      50%
               140.000000
      75%
               167.000000
               199.000000
      max
```

Name: Glucose, dtype: float64

[55]: di\_df['Glucose'].hist()

## [55]: <AxesSubplot:>



[88]: plt.boxplot(di\_df['Glucose'])
plt.show()



#### 0.5.1 insights from glucose

most diabetes ranges with glucose factor from 100 to 200 thats mean this is dangerous area

glucose is the most factor which have effect on having diabetes so this is very sensitive

we have a positive relationship between glucose and insulin thats mean we want to make a balance between them

#### 0.6 Age

```
[51]: di_df['Age'].describe()
[51]: count
               268.000000
      mean
                 37.067164
                 10.968254
      std
                 21.000000
      min
      25%
                 28.000000
      50%
                 36.000000
                 44.000000
      75%
      max
                 70.000000
```

```
Name: Age, dtype: float64
[89]: Age_value_bins = pd.cut(di_df['Age'],
                           bins = [0, 20, 40, 60, np.inf],
                           labels =['0:20', '20:40', '40:60', '60 <'])
      Age_value_bins
[89]: 0
             40:60
      2
             20:40
      4
             20:40
      6
             20:40
             40:60
      755
             20:40
      757
            40:60
     759
              60 <
      761
            40:60
      766
             40:60
     Name: Age, Length: 268, dtype: category
      Categories (4, object): ['0:20' < '20:40' < '40:60' < '60 <']
[90]: sns.countplot(x =Age_value_bins)
```

[90]: <AxesSubplot:xlabel='Age', ylabel='count'>



#### 0.6.1 insights from Age

after oi split age to groups it seems somthing strange that is most of diabetes patiens are from 20 to 40 age this is very young age

but that explain the positive relationship between BMI , age and having diabetes

#### 0.7 BMI

[58]: di\_df['BMI'].describe() [58]: count 268.000000 mean35.142537 std 7.262967 min 0.000000 25% 30.800000 50% 34.250000 75% 38.775000 67.100000 maxName: BMI, dtype: float64

```
[77]: plt.boxplot(di_df['BMI'])
  plt.show()

di_df['BMI'].hist()
  plt.show()
```





```
[93]: plt.scatter(di_df['BMI'], di_df['SkinThickness'], color = 'r')
plt.show()
```



#### 0.7.1 insights from BMI

from histogram i can see the dangerous area of diabetes this is from 28 to 40

as heatmap told us we have a strong positive relationship between BMI and SkinThickness so thick persons have higher metabolic rate

from previous relationship we can suppose that Skin Thicknesses are most people that may have diabetes

#### 0.8 Pregnancies

```
6
       26
                       3
       53
8
                       2
755
       37
                       1
757
       52
                       0
759
       66
                       6
761
       43
                       9
766
       47
                       1
```

[268 rows x 2 columns]

```
[85]: plt.bar(preg_age_rel['Pregnancies'], preg_age_rel['Age'])
```

[85]: <BarContainer object of 268 artists>



```
[71]: plt.scatter(di_df['Outcome'], di_df['Pregnancies'], color = 'r') plt.show()
```



# []:

#### 0.8.1 Insights from Pregnancies

we can have a little suppose that say if num of Pregnancies increase the causation of diabetes will increase

but this is not all the time but it is very dangerous because most age have diabetes from 20 to 40 and this is a prime of women

#### 0.9 Insulin

```
[78]: plt.boxplot(di_df['Insulin'])
  plt.show()

di_df['Insulin'].hist()
  plt.show()
```





#### 0.9.1 insights from Insulin

we can not let our insulin to be low because it is very dangrous area from 0 to 170

Insulin have a great positive relationship with glucose and SkinThikness this is mean we want to make a balance between it and glucose

this is a positive resone to confirm my suppose that SkinThiknesses have higher possibility to have diabetes

[]: