マイクロコンピュータ基礎 (3)

- 実験年月日 2018年5月7日
- 提出年月日 2018年5月14日
- 班番号 6
- 報告者 3年19番6班 末田 貴一
- 共同実験者
 - 7番 川上 求
 - 42番 山崎 敦史
 - o 47番 ロンサン

目的

前回(第二回)に引き続きアセンブリ言語を利用したプログラムについて学習する. 第三回ではジャンプ命令を利用した繰り返し処理やサブルーチンを利用したプログラムを作成する.

概要

使用器具

ボードマイコンMT-Z (前回と同様) ACアダプタ

実験1

内容

1から10までの和(55)を8500番地に書き込むプログラムを完成させる↓

プログラムをメモリに書き込んで実行

プログラムの実行後に8500番地を確認して値が正しく書き込まれているかを確認する.

プログラム

アドレス	機械語	ラベル	ニーモニック	備考
8400	3E 00		LD A,(00H)	Aレジスタに00Hを転送する
8402	06 0A		LD B,(0AH)	BレジスタにOAHを転送する
8404	80		ADD B	AレジスタにBを加算する
8405	05		DEC B	Bレジスタを-1する
8406	C2 04 84		JP NZ,8404H	0でないときに8404番地にジャンプ
8409	32 00 85		LD (8500H),A	8500番地にAレジスタを転送する
840C	C3 00 00		JP 0000H	CPU停止命令

結果

アドレス	内容
8500H	37H

37Hは55Dであるので実験は成功している

実験2

内容

実験1の内容を変更して1から15までの数字の和を算出するプログラムを作成

↓ 実行

* 結果確認する

プログラム

変更前↓

アドレス	機械語	ラベル	ニーモニック	備考
8400	3E 00		LD A,(00H)	Aレジスタに00Hを転送する
8402	06 0A		LD B,(0AH)	BレジスタにOAHを転送する
8404	80		ADD B	AレジスタにBを加算する
8405	05		DEC B	Bレジスタを−1する
8406	C2 04 84		JP NZ,8404H	0でないときに8404番地にジャンプ
8409	32 00 85		LD (8500H),A	8500番地にAレジスタを転送する
840C	C3 00 00		JP 0000H	CPU停止命令

変更後↓

アドレス	機械語	ラベル	ニーモニック	備考
8400	3E 00		LD A,(00H)	Aレジスタに00Hを転送する
8402	06 0F		LD B,(0FH)	BレジスタにOFHを転送する
8404	80		ADD B	AレジスタにBを加算する
8405	05		DEC B	Bレジスタを-1する
8406	C2 04 84		JP NZ,8404H	0でないときに8404番地にジャンプ
8409	32 00 85		LD (8500H),A	8500番地にAレジスタを転送する
840C	C3 00 00		JP 0000H	CPU停止命令

8402番地の内容を変更

結果

アドレス	内容
8500	78H

78Hは120Dであり、1から15までの和は120Dなので実験は成功している.

実験3

8500H番地の値と8501H番地の内容を比較して大き方の値を8502H番地に格納するプログラムを完成させる

ļ

プログラムをメモリに書き込む

1

実行

ı

8502H番地の内容を確認する.

プログラム

アドレス	機械語	ラベル	ニーモニック	備考
8400	3A 00 85		LD A,(8500H)	Aレジスタに8500番地を転送する
8403	47		LD B,A	BレジスタにAレジスタを転送する
8404	3A 01 85		LD A,(8501H)	Aレジスタに8501番地を転送する
8407	В8		СР В	Aレジスタの内容とBレジスタの内容を比
8408	F2 OC 84		JP P,840CH	正の値のとき840CH番地にジャンプする
840B	78		LD A,B	AレジスタにBレジスタを転送する
840C	32 02 85		LD (8502H),A	8502番地にAレジスタを転送する
840F	C3 00 00		JP 0000H	CPU停止命令
8500	43 2F		DB 43H,2FH	事前に書き込んでおくデータ

結果

アドレス	内容
8502	43H

43H>2Fなので実験は成功している.

実験4

内容

実験絵のプログラムを変更して8500H番地の値と8501H番地の内容を比較して小さい方を8502H番地に格納するプログラムを作成する

1

書き込んで実行.

ī

結果を確認

プログラム

アドレス	機械語	ラベル	ニーモニック	備考
8400	3A 00 85		LD A,(8500H)	Aレジスタに8500番地を転送する
8403	47		LD B,A	BレジスタにAレジスタを転送する
8404	3A 01 85		LD A,(8501H)	Aレジスタに8501番地を転送する
8407	В8		СР В	Aレジスタの内容とBレジスタの内容を比
8408	FA OC 84		JP M,840CH	負の値のとき840CH番地にジャンプする
840B	78		LD A,B	AレジスタにBレジスタを転送する
840C	32 02 85		LD (8502H),A	8502番地にAレジスタを転送する
840F	C3 00 00		JP 0000H	CPU停止命令
8500	43 2F		DB 43H,2FH	事前に書き込んでおくデータ

結果

アドレス	内容
8502H	2FH

2FH<43Hなので実験は成功している.

実験5

内容

- 1. 実験書の図のCSバーが0になるようなA1~A7の入力
- 2. ポートA, ポートB, ポートC, コントロールポートはA1とA0の値で決定されるそうなのでそれを求める

(参考文献:マイクロコンピュータ講義 p. 154)

3. 各ポートを使用するためのI/Oアドレスを求める.

1の結果

$A_7 A_6 A_5 A_4 A_3 A_2$
000001

2の結果

ポート名	Α0	A1
ポートA	0	0
ポートB	1	0
ポートC	0	1
コントロールポート	1	1

3の結果

ポート名	I/Oアドレス _{2進数}	I/Oアドレス _{16進数}	プログラム中のラベル
	$A_7 A_6 A_5 A_4 A_3 A_2$ $A_1 A_0$		
ポートA	00000100	04	PTA
ポートB	00000101	05	PTB
ポートC	00000110	06	PTC
コントロールポート	00000111	07	CWR

実験6

8255をモード0でポートAをを入力, BとCは出力に設定する必要がある. このときのコントロールワードを求める

結果

参考書を参考にして

10010000という2進数を求めたこれは90Hという16進数で表される.

実験7

内容

ポートBに接続されている発光ダイオードをすべて点灯させるプログラムを完成させる.

 \downarrow

メモリに書き込む

1

光らない場合は修正する

プログラム

アドレス	機械語	ラベル	ニーモニック	備考
		PTB:	EQU 05	ポートB
		CWR:	EQU 07	コントロールポート
8400	3E 90		LD A,90	Aレジスタに90を転送する
8402	D3 07		OUT (CWR),A	Aレジスタをコントロールポートに出力
8404	3E FF		LD A,FFH	すべてを点灯させる命令
8406	P3 05		OUT (PTB),A	AレジスタをポートBに出力
8408	C3 00		JP 0000H	CPU停止命令

結果

LEDが全て点灯した.

実験8

```
実験7ですべて点灯しているLEDを消灯させるプログラムを作る
↓
書き込む
↓
実行
```

プログラム

機械語	ラベル	ニーモニック	備考
	PTB:	EQU 05	ポートB
	CWR:	EQU 07	コントロールポート
3E 90		LD A,90	Aレジスタに90を転送する
D3 07		OUT (CWR),A	Aレジスタをコントロールポートに出力
3E 00		LD A,00H	すべてを消灯させる命令
P3 05		OUT (PTB),A	AレジスタをポートBに出力
C3 00		JP 0000H	CPU停止命令
	3E 90 D3 07 3E 00 P3 05 C3 00	PTB: CWR: 3E 90 D3 07 3E 00 P3 05 C3 00	PTB: EQU 05 CWR: EQU 07 3E 90 LD A,90 D3 07 OUT (CWR),A 3E 00 LD A,00H P3 05 OUT (PTB),A C3 00 JP 0000H

結果

LEDが全て消灯した.

実験9

内容

LEDが交互に発光するプログラムを作成
↓
書き込む
↓
実行

プログラム

交互に点灯する状態を 10101010と表した場合↓

アドレス	機械語	ラベル	ニーモニック	備考
		PTB:	EQU 05	ポートB
		CWR:	EQU 07	コントロールポート
8400	3E 90		LD A,90	Aレジスタに90を転送
0400	3L 90		LD A,90	Aレンペラに30で4A区
8402	D3 07		OUT (CWR),A	Aレジスタをコントロールポートに出力
8404	3E AA		LD A,AAH	AにAAを転送する
8406	P3 05		OUT (PTB),A	AレジスタをポートBに出力
8408	C3 00 00		JP 0000H	CPU停止命令
<				

または 01010101と表した場合↓

アドレス	機械語	ラベル	ニーモニック	備考
		PTB:	EQU 05	ポートB
		CWR:	EQU 07	コントロールポート
8400	3E 90		LD A,90	Aレジスタに90を転送
8402	D3 07		OUT (CWR),A	Aレジスタをコントロールポートに出力
8404	3E 55		LD A,55H	Aレジスタに55を転送
8406	P3 05		OUT (PTB),A	AレジスタをポートBに出力
8408	C3 00 00		JP 0000H	CPう停止命令
<				>

結果

AAの場合は点灯を1,消灯を0とすれば10101010で点灯した. 55の場合は01010101で点灯した.

実験10

```
スイッチの入力に合わせてLEDが点灯するプログラムを完成させる↓
書き込む↓
いい感じのタイミングでRESキーを押して停止させる.↓
正しく表示できていない場合は修正する
```

プログラム

アドレス	機械語	ラベル	ニーモニック	備考
		PTA:	EQU 04	ポートA
		PTB:	EQU 05	ポートB
		CWR:	EQU 07	コントロールポート
8400	3E 90		LD A,90	Aレジスタに90を転送
8402	D3 07		OUT (CWR),A	Aレジスタをコントロールポートに出力
8404	DB 04	KEYIN:	IN A,(PTA)	AレジスタにポートAを転送
8406	D3 05		OUT (PTB),A	ポートBをにAレジスタを出力
8408	C3 04 84		JP KEYIN	CPU停止命令
8408			JP KEYIN	CPU停止命令

結果

スイッチを上にしたところだけが光った.

考察課題

1. メモリマップドI/OとI/OマップドI/Oについてそれぞれの長所と短所を説明しなさい.

メモリマップドI/Oは入出力を特別扱いせずにCPUの内部回路を簡略化し,高速化や低価格化が用意な入出力方式のことである.

I/OマップドI/Oは別名ポートマップドI/Oと言い, CPUのアドレス空間が限られている場合, 入出力とメモリが別れているため, CPUのアドレスをすべてメモリに使用できるというメリットがある.

またアセンブリ言語の場合は特別な命令を利用するため場所が即座に分かるといったメリット もある.

最近は使われていない

2. プログラマブルインターフェースまたは周辺Isiにはどのような種類があるか、名称と機能を簡単に説明しなさい.

- ROM 読み込み専用のメモリ
- RAM 書き込み読み込み自由なメモリ 揮発性のメモリ
- PIO パラレル入出力 入力を読み込んだり, 結果を出力したりする
- SIOシリアル入出力他のCPUと通信したりする

URL

https://hackmd.io/s/rJX1jCHCf (https://hackmd.io/s/rJX1jCHCf)