### ADVANCED DEEP LEARNING MODELS FOR NATURAL LANGUAGE PROCESSING

自然語言處理的進階深度模型

張家瑋博士

國立臺中科技大學資訊工程系助理教授





```
The -> [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]

cat -> [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]

jump -> [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]

over -> [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]

the -> [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]

dog -> [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]

The -> [0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

ate -> [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]

my -> [0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]

homework -> [0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]
```





# RECURRENT NEURAL NETWORK, RNN

### RNN STRUCTURE



### PROBLEMS OF RNN

- RNN 對 short-term 敏感
- RNN 對 long-term 容易遺忘
- 越前面的字越會遺忘... 這就是RNN的梯度消失...

$$h_t = W * h_{t-1} + U * x_t + b$$

$$h_t = (W^2 * h_{t-2} + W * U * x_{t-1} + W * b) + U * x_t + b$$
...
$$h_t = (W^t * h_0 + ...) + U * x_t + b$$

公式  $h_0$  對  $h_t$  的影響力為 w 的 t 次方,通常,w 會小於 1,離目標字越遠的字詞經過越多次傳遞(連乘)... 影響力幾乎不見了

# LONG SHORT TERM MEMORY, LSTM

### LSTM STRUCTURE





### LSTM STRUCTURE



1. 純的 input,下面三個gate會影響這個input能否被記住 或作為輸出

\_\_\_

- 2. Input gate,如果值為O就擋住,不給進下一層 (sigmoid)
- 3. Forget gate,如果值近似0,就把區塊裡記住的值忘掉 (sigmoid)
- 4. Output gate,決定在區塊記憶中的input是否能輸出 (sigmoid)

# TRANSFORMER

### WHAT IS ATTENTION?



### WHY



無法有效地平行運算

14







Scaled Dot-Product Attention

### Self-attention









教授課程內示意圖

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$



### RESULTS



### BIDIRECTIONAL ENCODER REPRESENTATIONS FROM TRANSFORMERS, BERT

### BERT = ENCODER OF TRANSFORMER

Bidirectional Encoder
Representations from Transformers
(BERT)

• BERT = Encoder of Transformer

Learned from a large amount of text without annotation





### BERT STRUCTURE







### TRAINING OF BERT



### KEY POINTS OF BERT

BERT sentence pair encoding (with tensors for PyTorch implementation)

### Input likes ##ing [PAD] [CLS] dog cute [SEP] he [SEP] play my Token E<sub>play</sub> E,sing Emy E<sub>dog</sub> E<sub>cute</sub> E<sub>[CLS]</sub> E<sub>[SEP]</sub> $\mathsf{E}_{\mathsf{he}}$ E<sub>[SEP]</sub> $\mathsf{E}_{\mathsf{is}}$ $\mathsf{E}_{\mathsf{likes}}$ **Embeddings** Segment $\mathsf{E}_\mathsf{B}$ Embeddings Position E<sub>10</sub> Embeddings 9527 tokens tensor segments\_tensor

masks\_tensor

0

