Задачи по Эконометрике временных рядов

Н.В. Артамонов

6 марта 2025 г.

Содержание

1	Работа с рядами в Python. Визуализация	1
2	ACF & PACF	4
3	Модель ARIMA 3.1 Спецификация и базовые свойства 3.2 ARIMA в Python	
4	Модель (*)ARCH	11
5	Многомерные ряды. Модель VAR/VECM. Коинтеграция	14
A	Библиотеки Python	21
1	Работа с рядами в Python. Визуализаци	Я
	1. Рассмотрим квартальные данные по ВВП США с 1990 Q1 по яд $gdp)$ и пусть $y=\log(gdp)$	н.в
	1. Задайте временной индекс	
	2. Визуализируйте ряд $gdp_t, y_t, \Delta y_t, \Delta^2 y_t$	
	3. Визуализируйте ряд $\Delta^{1/2} y_t, \Delta^{3/2} y_t$ (ширина временного окна 5))
	4. Постройте диаграмму рассеяния y_t vs y_{t-1}	

- 5. Постройте диаграмму рассеяния Δy_t vs Δy_{t-1}
- **№2**. Рассмотрим **месячные** данные по М2 США с 1990-01-01 по н.в. (ряд m2) и пусть $y = \log(m2)$
 - 1. Задайте временной индекс
 - 2. Визуализируйте ряд $m2, y_t, \Delta y_t, \Delta^2 y_t$
 - 3. Визуализируйте ряд $\Delta^{1/2} y_t, \Delta^{3/2} y_t$ (ширина временного окна 7)
 - 4. Постройте диаграмму рассеяния y_t vs y_{t-1}
 - 5. Постройте диаграмму рассеяния Δy_t vs Δy_{t-1}
- №3. Рассмотрим недельные данные по М2 США с 1990-01-01 по н.в.
 - 1. агрегируйте их в квартальные наблюдения (через усреднение)
 - 2. задайте временной индекс
 - 3. визуализируйте полученные наблюдения
- **№**4. Рассмотрим месячные данные краткосрочной (3-х мес, rate1) и долгосрочной (10-ти лет., rate2)) ставкам для США с 1990-01-01 по н.в. как многомерный временной ряд rates.
 - 1. Задайте временной индекс
 - 2. Визуализируйте ряд rates двумя способами
 - раздельные графики
 - общий график (два ряда на одном графике)
 - 3. Визуализируйте ряд $\Delta rates$ двумя способами
 - 4. Визуализируйте ряд $\Delta^2 \, rates$ двумя способами
 - 5. Постройте гистограммы для $rates, \Delta \, rates, \Delta^2 \, rates$ двумя способами
 - 6. Постройте диаграмму рассеяния rate1 vs rate2
 - 7. Постройте диаграмму рассеяния $\Delta rate1$ vs $\Delta rate2$

№5. Рассмотрим месячные данные по США

- краткосрочная (3-х мес) ставка
- долгосрочная (10-ти лет) ставка
- логарифм денежной массы М2

с 2000-01-01 по н.в. как многомерный временной ряд

- 1. задайте временной индекс
- 2. Визуализируйте многомерный ряд
- 3. Визуализируйте первую и вторую разность

№6. Из finance.yahoo.com загрузите данные по S&P500 с 2005-01-01 по н.в.

- 1. Сформируйте месячный временной ряд из цены закрытия на последний день каждого месяца
- 2. Задайте для него временной индекс
- 3. Визуализируйте ряд
- 4. Визуализируйте первую и вторую логарифмические разности

№7. Из finance.yahoo.com загрузите данные с 2005-01-01 по н.в. по ценам закрытия S&P500, Apple, Google

- 1. Сформируйте многомерный ряд из цен закрытия на последний день каждого месяца
- 2. Визуализируйте многомерный ряд
- 3. Визуализируйте первую и вторую логарифмические разности

2 ACF & PACF

Во всех задачах по умолчанию уровень значимости 5%.

№1. Рассмотрим **квартальные** данные по ВВП США с 1990 Q1 по н.в. (ряд gdp) и пусть $y = \log(gdp)$

- 1. Постройте графики ACF и PACF для $y_t, \Delta\, y_t, \Delta^2\, y_t$
- 2. Вычислите $\{r(h)\}_{h=1}^3$ и $\{r_{part}(h)\}_{h=1}^3$ для $\Delta\,y_t$
- 3. Значимы ли $r(3), r_{part}(3)$ для Δy_t ?

№2. Рассмотрим месячные данные по М2 США с 1990-01-01 по н.в. (ряд m2) и пусть $y = \log(m2)$

- 1. Постройте графики ACF и PACF для $y_t, \Delta\, y_t, \Delta^2\, y_t$
- 2. Вычислите $\{r(h)\}_{h=1}^3$ и $\{r_{part}(h)\}_{h=1}^3$ для $\Delta\,y_t$
- 3. Значимы ли $r(4), r_{part}(4)$ для Δy_t ?

№3. Рассмотрим месячные данные по 3-х месячной ставки США с 2000-01 по н.в. (ряд y)

- 1. Постройте графики ACF и PACF для $y_t, \Delta\, y_t, \Delta^2\, y_t$
- 2. Вычислите $\{r(h)\}_{h=1}^3$ и $\{r_{part}(h)\}_{h=1}^3$ для $\Delta\,y_t$
- 3. Значимы ли $r(3), r_{part}(3)$ для Δy_t ?

№4. Рассмотрим данные по S&P500 с 2000-01 по н.в. (ряд sp500) и пусть $y = \log(sp200)$

- 1. Постройте графики ACF и PACF для $y_t, \Delta\, y_t, \Delta^2\, y_t$
- 2. Вычислите $\{r(h)\}_{h=1}^3$ и $\{r_{part}(h)\}_{h=1}^3$ для $\Delta\,y_t$
- 3. Значимы ли $r(5), r_{part}(5)$ для Δy_t ?

3 Модель ARIMA

3.1 Спецификация и базовые свойства

№1. Рассмотрим модель ARIMA

$$\phi(L)(1-L)^d y_t = \theta(L)u_t \qquad u_t \sim WN(0, \sigma^2)$$

для следующих многочленов

$N_{\overline{0}}$	d	$\phi(z)$	$\theta(z)$
1	0	$1 - z + 0.25z^2$	1 + 0.8z
2	0	$1 + 0.8z - 0.7z^2$	$1 + 0.5z - 0.8z^2$
3	1	$1 - 0.2z + 0.08z^2$	$1 - 0.3z - 0.88z^2$
4	2	$1 + 1.9z - 0.2z^2$	$1 - 1.6z - 0.36z^2$

Для каждого случая проверьте условия стационарности и обратимости. Запишите спецификацию модели без использования лагового оператор.

3.2 ARIMA B Python

№1. Пусть y_t – логарифм US GDP (**квартальные данные**) с 1995 по н.в.

- 1. Подгонка модели заданного порядка
 - (а) Подгоните модели

Модель	drift/trend	спецификация
ARIMA(1,0,1)	+	$y_t = \alpha_0 + \alpha_1 t + \phi y_{t-1} + u_t + \theta u_{t-1}$
ARIMA(1,1,0)	+	$\Delta y_t = \alpha_0 + \phi \Delta y_{t-1} + u_t + \theta u_{t-1}$
ARIMA(1,1,1)	-	$\Delta y_t = \phi \Delta y_{t-1} + u_t + \theta u_{t-1}$
ARIMA(1,2,0)	-	$\Delta^2 y_t = \phi \Delta^2 y_{t-1} + u_t$

и постройте прогноз на 10 периодов. Значим ли снос/тренд?

- (b) Проведите диагностику каждой модели.
- (с) Проведите кросс-валидацию каждой модели. Какая предпочтительней?
- 2. Примените тесты единичного корня и найдите порядок интегрирования для y_t .

- 3. Подгонка «оптимальной модели»
 - (a) Подгоните «оптимальную» модель ARIMA
 - (b) проведите её диагностику
 - (с) Постройте прогноз на 10 периодов

№2. Пусть y_t – логарифм US M2 (месячные данные) с 1995 по н.в.

- 1. Подгонка модели заданного порядка
 - (а) Подгоните модели

Модель	drift/trend
ARIMA(2,0,2)	+
ARIMA(2,1,0)	+
ARIMA(2,1,1)	-
ARIMA(1,2,0)	-

и постройте прогноз на 10 периодов. Значим ли снос/тренд?

- (b) Проведите диагностику каждой модели.
- (с) Проведите кросс-валидацию каждой модели. Какая предпочтительней?
- 2. Примените тесты единичного корня и найдите порядок интегрирования для y_t .
- 3. Подгонка «оптимальной модели»
 - (a) Подгоните «оптимальную» модель ARIMA
 - (b) проведите её диагностику
 - (с) Постройте прогноз на 10 периодов

№3. Пусть y_t – логарифм US M2 (**недельные данные**) с 1995 по н.в.

- 1. Подгонка модели заданного порядка
 - (а) Подгоните модели

Модель	$\operatorname{drift/trend}$
$\overline{ARIMA(3,0,2)}$	+
ARIMA(2,1,0)	+
ARIMA(2,1,1)	-
ARIMA(2,2,0)	-

и постройте прогноз на 10 периодов. Значим ли снос/тренд?

- (b) Проведите диагностику каждой модели.
- (с) Проведите кросс-валидацию каждой модели. Какая предпочтительней?
- 2. Примените тесты единичного корня и найдите порядок интегрирования для y_t .
- 3. Подгонка «оптимальной модели»
 - (a) Подгоните «оптимальную» модель ARIMA
 - (b) проведите её диагностику
 - (с) Постройте прогноз на 10 периодов

№4. Пусть y_t – 10-летняя ставка (treasury securities with constant maturity месячные данные) с 2000 по н.в.

- 1. Подгонка модели заданного порядка
 - (а) Подгоните модели

Модель	drift/const
$\overline{\text{ARIMA}(2,0,2)}$	-
ARIMA(2,0,2)	+
ARIMA(2,1,0)	+
ARIMA(2,1,1)	_
ARIMA(2,2,0)	-

и постройте прогноз на 10 периодов. Значим ли снос/const?

- (b) Проведите диагностику каждой модели.
- (с) Проведите кросс-валидацию каждой модели. Какая предпочтительней?

- 2. Примените тесты единичного корня и найдите порядок интегрирования для y_t .
- 3. Подгонка «оптимальной модели»
 - (a) Подгоните «оптимальную» модель ARIMA
 - (b) проведите её диагностику
 - (с) Постройте прогноз на 10 периодов

№5. Пусть y_t – 10-летняя ставка (treasury securities with constant maturity) (дневные данные) с 2010 по н.в.

- 1. Подгонка модели заданного порядка
 - (а) Подгоните модели

Модель	m drift/const
ARIMA(3,0,2)	-
ARIMA(3,0,2)	+
ARIMA(3,1,0)	+
ARIMA(3,1,1)	-
ARIMA(2,2,0)	-

и постройте прогноз на 10 периодов. Значим ли снос/const?

- (b) Проведите диагностику каждой модели.
- (с) Проведите кросс-валидацию каждой модели. Какая предпочтительней?
- 2. Примените тесты единичного корня и найдите порядок интегрирования для y_t .
- 3. Подгонка «оптимальной модели»
 - (a) Подгоните «оптимальную» модель ARIMA
 - (b) проведите её диагностику
 - (с) Постройте прогноз на 10 периодов

№6. Пусть y_t — 3-месячная ставки (treasury bill, **месячные данные**) с 2000 по н.в.

- 1. Подгонка модели заданного порядка
 - (а) Подгоните модели

Модель	m drift/const
$\overline{\text{ARIMA}(2,0,2)}$	-
ARIMA(2,0,2)	+
ARIMA(2,1,0)	+
ARIMA(2,1,1)	-
ARIMA(2,2,0)	-

и постройте прогноз на 10 периодов. Значим ли снос/const?

- (b) Проведите диагностику каждой модели.
- (с) Проведите кросс-валидацию каждой модели. Какая предпочтительней?
- 2. Примените тесты единичного корня и найдите порядок интегрирования для y_t .
- 3. Подгонка «оптимальной модели»
 - (a) Подгоните «оптимальную» модель ARIMA
 - (b) проведите её диагностику
 - (с) Постройте прогноз на 10 периодов

№7. Пусть y_t — 3-месячная ставки (treasury bill, **дневные данные**) с 2010 по н.в.

- 1. Подгонка модели заданного порядка
 - (а) Подгоните модели

Модель	drift/const
$\overline{\text{ARIMA}(3,0,2)}$	-
ARIMA(3,0,2)	+
ARIMA(3,1,0)	+
ARIMA(3,1,1)	-
ARIMA(2,2,0)	-

и постройте прогноз на 10 периодов. Значим ли снос/const?

- (b) Проведите диагностику каждой модели.
- (с) Проведите кросс-валидацию каждой модели. Какая предпочтительней?
- 2. Примените тесты единичного корня и найдите порядок интегрирования для y_t .
- 3. Подгонка «оптимальной модели»
 - (a) Подгоните «оптимальную» модель ARIMA
 - (b) проведите её диагностику
 - (с) Постройте прогноз на 10 периодов

№8. Пусть y_t – логарифм S&P500 (дневные данные) с 2010 по н.в.

- 1. Подгонка модели заданного порядка
 - (а) Подгоните модели

Модель	drift/const
$\overline{\text{ARIMA}(2,0,2)}$	-
ARIMA(2,0,2)	+
ARIMA(2,1,0)	+
ARIMA(2,1,1)	-
ARIMA(2,2,0)	-

и постройте прогноз на 10 периодов. Значим ли choc/const?

- (b) Проведите диагностику каждой модели.
- (с) Проведите кросс-валидацию каждой модели. Какая предпочтительней?
- 2. Примените тесты единичного корня и найдите порядок интегрирования для y_t .
- 3. Подгонка «оптимальной модели»
 - (a) Подгоните «оптимальную» модель ARIMA
 - (b) проведите её диагностику
 - (с) Постройте прогноз на 10 периодов

№9. Запишите спецификации следующих моделей

- 1. ARIMA(0,1,1) без сноса и со сносом
- 2. ARIMA(0,1,2) без сноса и со сносом
- 3. ARIMA(1,1,0) без сноса и со сносом
- 4. ARIMA(2,1,0) без сноса и со сносом
- 5. ARIMA(0,2,0) без сноса и со сносом
- 6. ARIMA(1,2,0) без сноса и со сносом
- 7. ARIMA(0,2,1) без сноса и со сносом

4 Модель (*)ARCH

№1. Пусть y_t – лог-доходность US M2 (**недельные данные**) с 1995 по н.в.

1. Подгоните модели AR-GARCH(p,o,q)

Модель	λ
AR(1)- $GARCH(1,0,1)$	2
AR(1)- $GARCH(1,0,1)$	1
AR(2)- $GARCH(1,0,1)$	2
AR(2)- $GARCH(1,0,1)$	1

и постройте прогноз на 10 периодов для ряда и его волатильности.

- 2. Сравните модели по информационным критериям. Какая предпочтительней?
- 3. Проведите кросс-валидацию моделей. Какая предпочтительней?
- 4. Подгоните модели GARCH-in-Mean

Модель	f(x)
AR(2)- $GARCH(1,1)$	$\log x$
AR(2)- $GARCH(1,1)$	x
AR(2)- $GARCH(1,1)$	\sqrt{x}

и постройте прогноз на 10 периодов для ряда и его волатильности.

5. Сравните модели по информационным критериям. Какая предпочтительней?

№2. Пусть ряд y_t — первая разность 3-месячной ставки (treasury bill, **дневные данные**) с 2010 по н.в.

1. Подгоните модели AR-GARCH(p,o,q)

Модель	λ
AR(1)- $GARCH(1,0,1)$	2
AR(1)- $GARCH(1,0,1)$	1
AR(2)- $GARCH(1,0,1)$	2
AR(2)- $GARCH(1,0,1)$	1

и постройте прогноз на 10 периодов для ряда и его волатильности.

- 2. Сравните модели по информационным критериям. Какая предпочтительней?
- 3. Проведите кросс-валидацию моделей. Какая предпочтительней?
- 4. Подгоните модели GARCH-in-Mean

Модель
$$f(x)$$
 $AR(1)$ -GARCH(1,1) $\log x$
 $AR(1)$ -GARCH(1,1) x
 $AR(1)$ -GARCH(1,1) \sqrt{x}

и постройте прогноз на 10 периодов для ряда и его волатильности.

- 5. Сравните модели по информационным критериям. Какая предпочтительней?
- №3. Пусть ряд y_t первая разность 10-летней ставки (treasury securities with constant maturity, **дневные данные**) с 2010 по н.в.
 - 1. Подгоните модели AR-GARCH(p,o,q)

Модель	λ
$\overline{AR(1)\text{-}GARCH(1,0,1)}$	2
AR(1)- $GARCH(1,0,1)$	1
AR(2)- $GARCH(1,0,1)$	2
AR(2)- $GARCH(1,0,1)$	1

и постройте прогноз на 10 периодов для ряда и его волатильности.

- 2. Сравните модели по информационным критериям. Какая предпочтительней?
- 3. Проведите кросс-валидацию моделей. Какая предпочтительней?
- 4. Подгоните модели GARCH-in-Mean

Модель
$$f(x)$$
AR(1)-GARCH(1,1) $\log x$
AR(1)-GARCH(1,1) x
AR(1)-GARCH(1,1) \sqrt{x}

и постройте прогноз на 10 периодов для ряда и его волатильности.

5. Сравните модели по информационным критериям. Какая предпочтительней?

№4. Пусть ряд y_t – лог-доходность S&P500 (дневные данные) с 2010 по н.в.

1. Подгоните модели

Модель	λ
AR(1)- $GARCH(1,0,1)$	2
AR(1)- $GARCH(1,0,1)$	1
AR(1)- $GARCH(1,1,1)$	2
AR(1)- $GARCH(1,1,1)$	1

и постройте прогноз на 10 периодов для ряда и его волатильности.

2. Сравните модели по информационным критериям. Какая предпочтительней?

- 3. Проведите кросс-валидацию моделей. Какая предпочтительней?
- 4. Подгоните модели GARCH-in-Mean

Модель
$$f(x)$$
 $AR(1)$ -GARCH(1,1) $\log x$
 $AR(1)$ -GARCH(1,1) x
 $AR(1)$ -GARCH(1,1) \sqrt{x}

и постройте прогноз на 10 периодов для ряда и его волатильности.

5. Сравните модели по информационным критериям. Какая предпочтительней?

5 Многомерные ряды. Модель VAR/VECM. Коинтеграция

№1. Рассмотрим **недельные** данные с 2000 г по н.в. по следующим переменными

- первая разность 3-месячной ставки (3-Month Treasury Bill)
- первая разность 6-месячной ставки (6-Month Treasury Bill)
- первая разность 10-летней ставки (Treasury Securities at 10-Year Constant Maturity)

Сформируйте многомерный ряд и визуализируйте его.

- 1. Фиксированный порядок
 - (a) Подгоните модели VAR(1), VAR(2), VAR(3)
 - (b) постройте прогноз на 10 периодов по каждой модели
 - (с) Проведите кросс-валидацию моделей. Какая предпочтительней?
- 2. «Оптимизация» порядка
 - (a) Подгоните модель VAR «оптимального» порядка

- (b) Проведите её диагностику
- (c) Постройте прогноз на 5 периодов. Постройте FEVD
- (d) Постройте IRF, использую исходное упорядочивание переменных
- (е) Проведите тест Гренджера на причинность

№2. Рассмотрим **дневные** данные с 2000 г по н.в. по следующим переменными

- первая разность 3-месячной ставки (3-Month Treasury Bill)
- первая разность 6-месячной ставки (6-Month Treasury Bill)
- первая разность 10-летней ставки (Treasury Securities at 10-Year Constant Maturity)

Сформируйте многомерный ряд и визуализируйте его.

- 1. Фиксированный порядок
 - (a) Подгоните модели VAR(1), VAR(2), VAR(3)
 - (b) постройте прогноз на 10 периодов по каждой модели
 - (c) Проведите кросс-валидацию моделей. Какая предпочтительней?
- 2. «Оптимизация» порядка
 - (a) Подгоните модель VAR «оптимального» порядка
 - (b) Проведите её диагностику
 - (c) Постройте прогноз на 5 периодов. Постройте FEVD
 - (d) Постройте IRF, использую исходное упорядочивание переменных
 - (е) Проведите тест Гренджера на причинность

№3. Рассмотрим **месячные** данные с 1995 г по н.в. по следующим переменными

• первая разность 3-месячной ставки (3-Month Treasury Bill)

- первая разность 6-месячной ставки (6-Month Treasury Bill)
- первая разность 10-летней ставки (Treasury Securities at 10-Year Constant Maturity)
- лог-доходность US M2

Сформируйте многомерный ряд и визуализируйте его.

- 1. Фиксированный порядок
 - (a) Подгоните модели VAR(1), VAR(2), VAR(3)
 - (b) постройте прогноз на 10 периодов по каждой модели
 - (с) Проведите кросс-валидацию моделей. Какая предпочтительней?
- 2. «Оптимизация» порядка
 - (a) Подгоните модель VAR «оптимального» порядка
 - (b) Проведите её диагностику
 - (c) Постройте прогноз на 5 периодов. Постройте FEVD
 - (d) Постройте IRF, использую исходное упорядочивание переменных
 - (е) Проведите тест Гренджера на причинность

№4 (VECM). Рассмотрим **недельные** данные с 2005 г по н.в. по следующим переменными

- 3-месячная ставки (3-Month Treasury Bill)
- 6-месячная ставки (6-Month Treasury Bill)
- 1-летняя ставка (Treasury Securities at 1-Year Constant Maturity)
- 10-летняя ставка (Treasury Securities at 10-Year Constant Maturity)

Сформируйте многомерный ряд и визуализируйте его.

- 1. Найдите ранг коинтеграции
- 2. Оцените модель VECM «оптимального» порядка

- 3. Проведите её диагностику
- 4. Постройте прогноз на 5 периодов. Постройте FEVD
- 5. Постройте IRF, использую исходное упорядочивание переменных
- 6. Проведите тест Гренджера на причинность

№5 (VECM). Рассмотрим **месячные** данные с 2005 г по н.в. по следующим переменными

- 3-месячная ставки (3-Month Treasury Bill)
- 6-месячная ставки (6-Month Treasury Bill)
- 1-летняя ставка (Treasury Securities at 1-Year Constant Maturity)
- 10-летняя ставка (Treasury Securities at 10-Year Constant Maturity)

Сформируйте многомерный ряд и визуализируйте его.

- 1. Найдите ранг коинтеграции
- 2. Оцените модель VECM «оптимального» порядка
- 3. Проведите её диагностику
- 4. Постройте прогноз на 5 периодов. Постройте FEVD
- 5. Постройте IRF, использую исходное упорядочивание переменных
- 6. Проведите тест Гренджера на причинность

№6 (VECM). Рассмотрим **месячные** данные с 1995 г по н.в. по следующим переменными

- 3-месячная ставки (3-Month Treasury Bill)
- 6-месячная ставки (6-Month Treasury Bill)
- 1-летняя ставка (Treasury Securities at 1-Year Constant Maturity)
- 10-летняя ставка (Treasury Securities at 10-Year Constant Maturity)
- лог-М2

Сформируйте многомерный ряд и визуализируйте его.

- 1. Найдите ранг коинтеграции
- 2. Оцените модель VECM «оптимального» порядка
- 3. Проведите её диагностику
- 4. Постройте прогноз на 5 периодов. Постройте FEVD
- 5. Постройте IRF, использую исходное упорядочивание переменных
- 6. Проведите тест Гренджера на причинность

№7. Рассмотрим VAR(1)

$$oldsymbol{x}_t = oldsymbol{A} oldsymbol{x}_{t-1} + oldsymbol{u}_t \qquad \qquad oldsymbol{x}_t = egin{pmatrix} u_t \ y_t \end{pmatrix} \qquad \qquad oldsymbol{u}_t = egin{pmatrix} u_t \ v_t \end{pmatrix}$$

где

$$\boldsymbol{u}_t \sim WN(0, \Sigma)$$
 $\Sigma = \begin{pmatrix} \sigma_u^2 & \sigma_{uv} \\ \sigma_{uv} & \sigma_v^2 \end{pmatrix} > 0$

т.е. $u_t \sim WN(0, \sigma_u^2), v_t \sim WN(0, \sigma_v^2), \text{ cov}(u_t, v_t) = \sigma_{uv}.$ Проверить условие стационарности для следующих матриц

$$\mathbf{A} = \begin{pmatrix} 0.5 & 1 \\ 0 & 0.3 \end{pmatrix} \quad \begin{pmatrix} 0 & 0.5 \\ -0.5 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 3 \\ 0 & 0.2 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

№8. Рассмотрим VAR-модели

$$\begin{cases} x_t = x_{t-1} + u_t \\ y_t = y_{t-1} + v_t \end{cases} \begin{cases} x_t = x_{t-1} + u_t \\ y_t = cx_t + v_t \end{cases}$$
$$\begin{cases} x_t = x_{t-1} + u_t \\ y_t = cx_t + v_t \end{cases} \begin{cases} x_t = 3x_{t-1} - 7y_{t-1} + u_t \\ y_t = x_{t-1} - 2.5y_{t-1} + v_t \end{cases}$$

- 1. Запишите в матричном виде.
- 2. Проверить условие стационарности.
- 3. Какие ряды коинтегрированы?

- Если ряды коинтегрированы, то запишите VECM модель и найдите коинтеграционные соотношения
- Если ряды не коинтегрированы, то запишите VAR-модель для дифференцированных рядов.

№9. Рассмотрим VAR(1)

$$m{x}_t = m{A}m{x}_{t-1} + m{u}_t \qquad m{x}_t = egin{pmatrix} x_t \ y_t \ z_t \end{pmatrix} \qquad m{u}_t = egin{pmatrix} u_t \ v_t \ w_t \end{pmatrix} \sim WN(0, \Sigma)$$

Проверьте условие стационарности для матриц

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ -1 & 0 & -2 \\ 0 & 0 & 0.5 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 0.5 \\ 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \end{pmatrix}$$

№10. Рассмотрим VAR(2)

$$oldsymbol{x}_t = oldsymbol{A}_1 oldsymbol{x}_{t-1} + oldsymbol{A}_2 oldsymbol{x}_{t-2} + oldsymbol{u}_t \qquad oldsymbol{x}_t = egin{pmatrix} x_t \ y_t \end{pmatrix} \quad oldsymbol{u}_t = egin{pmatrix} u_t \ v_t \end{pmatrix} \sim WN(0, \Sigma)$$

Проверьте условие стационарности для матриц

1)
$$\mathbf{A}_1 = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$$
 $\mathbf{A}_2 = \begin{pmatrix} -1 & 3 \\ 0 & -0.25 \end{pmatrix}$
2) $\mathbf{A}_1 = \begin{pmatrix} 0 & 0.5 \\ 0.5 & 0 \end{pmatrix}$ $\mathbf{A}_2 = \begin{pmatrix} 0 & -0.25 \\ -0.25 & 0 \end{pmatrix}$

№11. Рассмотрим модели

$$\begin{cases} x_t = 2x_{t-1} - x_{t-2} + u_t \\ y_t = 1.5y_{t-1} - 0.5y_{t-2} + v_t \end{cases}$$

$$\begin{cases} x_t = 1.5x_{t-1} + y_{t-1} - 0.5x_{t-2} - y_{t-2} + u_t \\ y_t = -x_{t-1} - 0.5y_{t-1} + x_{t-2} + 1.5y_{t-2} + v_t \end{cases}$$

$$\begin{cases} x_t = x_{t-1} + u_t \\ y_t = x_t + x_{t-1} + v_t \\ z_t = x_t + y_{t-1} + w_t \end{cases}$$

$$\begin{cases} x_t = y_{t-1} + u_t \\ y_t = z_{t-1} + v_t \\ z_t = x_{t-1} + v_t \end{cases}$$

- 1. Запишите в матричном виде.
- 2. Проверить условие стационарности.
- 3. Какие ряды коинтегрированы?
 - Если ряды коинтегрированы, то запишите VECM модель и найдите коинтеграционные соотношения
 - Если ряды не коинтегрированы, то запишите VAR-модель для дифференцированных рядов.

А Библиотеки Python

Библиотека	Описание
pandas	Табличные данные
	(кросс-секции, панели, временные ряды)
numpy	Работа с массивами, преобразование данных
yfinance	Загрузка данных с finance.yahoo.com
pandas-datareader	Загрузка данных из внешних БД
	(FRED, finance.yahoo.com etc)
statsmodels	Регрессионный анализ,
	базовые модели временных рядов
arch	Тесты и модели временных рядов
pmdarima	ARIMA-модель
scikit-learn	Методы машинного обучения
sktime	анализ временных рядов и ML
scipy.stats	Статистические методы (распределения и др)
seaborn	Визуализация статистических данных
matplotlib	Визуализация данных
plotly	Визуализация данных

Таблица 1: Основные библиотеки Python для анализа временных рядов