ROB-GY 6323 reinforcement learning and optimal control for robotics

Lecture 2
Fundamentals of optimization
Linear Quadratic optimal control problems

Course material

All necessary material will be posted on Brightspace Code will be posted on the Github site of the class

https://github.com/righetti/optlearningcontrol

Discussions/Forum with Slack

Contact

ludovic.righetti@nyu.edu Office hours in person Wednesday 3pm to 4pm 370 Jay street - room 80 l (except next week)

Course Assistant

Armand Jordana aj2988@nyu.edu

Office hours Monday Ipm to 2pm

Rogers Hall 515

any other time by appointment only

A sequential decision making problem

The problem: find the "best sequence of actions" to make the dynamical system behave as desired (e.g. win the game or do a backflip)

Best sequence of actions?

- How to accelerate a car to reach a goal in minimum time?
- How to accelerate a car to reach a goal in minimum acceleration?
- How to accelerate a car to minimize fuel consumption?
- How to accelerate a car to maximize passenger comfort?

Different measures of "best" lead to very different answers

minimum time?

minimum acceleration?

Structure of an optimal control problem

$$\min_{u_0, u_1, \dots, u_N} \sum_{i=0}^{N} g_i(x_i, u_i)$$

Find actions that optimize a performance cost

Subject to:

$$x_{n+1} = f(x_n, u_n)$$

$$h_n(x_n, u_n) \leq 0$$

to control a dynamical system (maybe with constraints)

This is an optimization problem

Basics of optimization

Off-the-shelf optimization algorithms

Fundamental algorithms for scientific computing in Python

GET STARTED

scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None,
hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)

Optimization (scipy.optimize)

- Unconstrained minimization of multivariate scalar functions (minimize)
 - Nelder-Mead Simplex algorithm (method='Nelder-Mead')
 - Broyden-Fletcher-Goldfarb-Shanno algorithm (method='BFGS')
 - Avoiding Redundant Calculation
 - Newton-Conjugate-Gradient algorithm (method='Newton-CG')
 - Full Hessian example:
 - Hessian product example:
 - Trust-Region Newton-Conjugate-Gradient Algorithm (method='trust-ncg')
 - Full Hessian example:
 - Hessian product example:
 - Trust-Region Truncated Generalized Lanczos / Conjugate Gradient Algorithm (method='trust-krylov')
 - Full Hessian example:
 - Hessian product example:
 - Trust-Region Nearly Exact Algorithm (method='trust-exact')
- Constrained minimization of multivariate scalar functions (minimize)
 - Trust-Region Constrained Algorithm (method='trust-constr')
 - Defining Bounds Constraints:
 - Defining Linear Constraints:
 - Defining Nonlinear Constraints:
 - Solving the Optimization Problem:
 - Sequential Least SQuares Programming (SLSQP) Algorithm (method='SLSQP')
- Global optimization
- Least-squares minimization (least_squares)
 - Example of solving a fitting problem
 - Further examples
- Univariate function minimizers (minimize_scalar)
 - Unconstrained minimization (method='brent')
 - Bounded minimization (method='bounded')
- Custom minimizers
- Root finding
 - Scalar functions
 - Fixed-point solving
 - Sets of equations
 - Root finding for large problems
 - Still too slow? Preconditioning.
- Linear programming (linprog)
 - Linear programming example
- Assignment problems
 - Linear sum assignment problem example
- Mixed integer linear programming
 - Knapsack problem example

Minimizing a function

$$\min_{x} f(x)$$

subject to

$$g(x) = 0$$

$$g(x) = 0$$

$$h(x) \le 0$$

 $x \in \mathbb{R}^n$ is a vector of variables

 $f(x): \mathbb{R}^n \leftarrow \mathbb{R}$ is the objective function a scalar function we want to minimize or maximize we will assume it is at least continuously differentiable

g(x) = 0 and $h(x) \le 0$ are equality and inequality constraints a set of equations that the variables x must satisfy

$$\min_x x^2$$

 $f(x) = x^2$, its minimum is 0, which is reached when $x^* = 0$

$$\min_{x} 5x^2 - 10x$$

 $f(x) = 5x^2 - 10x$, its minimum is -5, which is reached when $x^* = 1$

$$\min_{x} \sin(x)$$

The minimum is -1 it is reached when $x^* = -\frac{\pi}{2} + k2\pi \quad \forall k \in \mathbb{N}$

$$\min_{x} -\cos(2x - 0.1x^2)e^{-0.1x^2}$$

The (global) minimum is -1 and it is reached at x=0There are several other "local" minimum

Constrained optimization

$$\min_{x} 5x^2 - 10x$$

$$x \le 0$$

subject to

$$c \leq 0$$

The minimum now 0 and it is reached at $x^* = 0$ (compared to a minimum of -5 without constraints, reached at x = 1)

Constrained optimization

$$\min_{x} 5x^2 - 10x$$

$$2x + 4 = 0$$

The minimum now 40 and it is reached at $x^* = -2$

Constrained optimization

$$\min_{x} 5x^2 - 10x$$

$$2x + 4 = 0$$
$$-x < 0$$

Unfeasible

$$\min_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\min_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\text{s.t.} \quad x_1 + 2x_2 + 3 = 0$$

$$\min_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_1 \end{bmatrix} = \lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_1 \end{bmatrix} = \lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_1 \end{bmatrix} = \lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_1 \end{bmatrix} = \lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

$$\lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_1 \end{bmatrix} = \lim_{x_1,x_2} \begin{bmatrix} x_1 \\ x_1 \end{bmatrix} = \lim_{x_1,x_2$$

Minimums (local and global)

A point x^* is a global minimizer if $f(x^*) \leq f(x)$ for all (admissible) x

A point x^* is a <u>local minimizer</u> if there is a neighborhood \mathcal{N} of x^* such that $f(x^*) \leq f(x)$ for all $x \in \mathcal{N}$

A point x^* is a <u>strict local minimizer</u> (or strong local minimizer) if there is a neighborhood \mathcal{N} of x^* such that $f(x^*) < f(x)$ for all $x \in \mathcal{N}$ with $x \neq x^*$

Minimums (local and global)

$$-\cos(2x - 0.1x^2)e^{-0.1x^2}$$

Minimums (local and global)

$$\min_{x,y} \begin{pmatrix} x \\ y \end{pmatrix}^T \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Any point on the line x=y is a global minimizer and a local minimizer but none of these points are strict local minimizers

Notation

If $f(x): \mathbb{R}^n \to \mathbb{R}$ then we write its gradient $\nabla f(x)$ as the vector of derivatives

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

The matrix of second partial derivatives of f, called the Hessian, is defined as

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & & & \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

Note that the Hessian is symmetric, since $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$ for all $i, j = 1, \dots, n$

Notation

When $f(x): \mathbb{R}^n \to \mathbb{R}^m$ is vector valued, we define $\nabla f(x)$ to be the $n \times m$ matrix whose ith column is $\nabla f_i(x)$, which means that

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_2} \\ \vdots & \vdots & & & \\ \frac{\partial f_1}{\partial x_n} & \frac{\partial f_2}{\partial x_n} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Often we might want to work with the transpose of the gradient, a matrix of dimension $m \times n$. This matrix is called the Jacobian is often written J(x). For example, the Jacobian from the forward kinematics function of a robot.

Recognizing a local minimum

$$\min_{x} f(x)$$

First order necessary conditions: If x^* is a local minimizer and f is continuously differentiable in an open neighborhood of x^* , then $\nabla f(x^*) = 0$

Second order necessary conditions: If x^* is a local minimizer and $\nabla^2 f$ exists and is continuous in an open neighborhood of x^* , then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semidefinite

Second order sufficient conditions: Suppose that $\nabla^2 f$ is continuous in an open neighborhood of x^* and that $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite. Then x^* is a strict local minimizer of f.

Example

$$\min_{x} \sin(x)$$

Example

$$\min_{x_1, x_2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2x_1$$

Example

$$\min_{x,y} \begin{pmatrix} x \\ y \end{pmatrix}^T \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Special case: convex functions

A subset C of a vector space S is convex if for any $x_1, x_2 \in C$ then $tx_1 + (1-t)x_2$ is also in C for any $t \in [0,1]$. It means that for any two points in C, any point on the segment between these points is also in C.

A scalar function f(x) defined over a convex set $x \in C$ is convex if for any $x_1, x_2 \in C$ we have $f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$ for any $t \in [0,1]$.

Special case: convex functions

A differentiable function f(x) defined on a convex domain is convex if and only if $f(x) \ge f(y) + \nabla f(y)^T (x - y)$ for all x and y

A twice differentiable function f(x) defined on a convex domain is convex if and only if its Hessian $\nabla^2 f(x)$ is positive semidefinite on the interior of the convex set

Special case: convex functions

When f is convex, any local minimizer x^* is a global minimizer of f. If in addition f is differentiable, then any point x^* for which $\nabla f(x^*) = 0$ is a global minimizer of f.

Recognizing a minimum in constrained optimization

$$\min_{x} f(x)$$

$$g(x) = 0$$

$$h(x) \le 0$$

$$h(x) \le 0$$

Recognizing a minimum in constrained optimization

$$\min_{x_1, x_2} x_1^2 + x_2^2$$
 subject to $(x_1 - 2)^2 + x_2^2 - 1 = 0$

Linear independence constraint qualification (LICQ)

$$\min_{x} f(x) \qquad \text{subject to} \qquad g(x) = 0$$

$$h(x) \le 0$$

The active set A(x) of any feasible point x consists of the equality constraints and the inequality constraints for which $h_i(x) = 0$

Given a point x and the active set of constraints $\mathcal{A}(x)$ we say that the linear independence constraint qualification (LICQ) holds if the gradients of all the active constraints are linearly independent

Karush Kuhn Tucker conditions of optimality

$$\min_{x} f(x) \qquad \text{subject to} \qquad g(x) = 0$$

$$h(x) \le 0$$

We define the Lagrangian as $L(x, \lambda, \mu) = f(x) + \lambda^T g(x) + \mu^T h(x)$

The vectors λ and μ are called the Lagrange multipliers

First order necessary conditions (KKT conditions)

Suppose that x^* is a local solution and that the LICQ holds at x^* (and that f, g_i and h_i are continuously differentiable). Then there are Lagrange multiplier vectors λ^* and μ^* such that the following conditions are satisfied

$$\nabla_x L(x^*, \lambda^*, \mu^*) = 0$$

$$g(x^*) = 0$$

$$h(x^*) \le 0$$

$$\mu_i \ge 0 \quad \forall i$$

$$\mu_i h_i(x^*) = 0 \quad \forall i$$

Complementarity condition

$$\mu_i h_i(x^*) = 0 \quad \forall i$$

Either $\mu_i^* = 0$ or $h_i(x^*) = 0$. It means that a Lagrange multiplier for the inequality cannot be non-zero "away" from the boundary of the constraint, i.e. only *active contraints* can have non-zero multipliers.

Lagrange multipliers and sensitivity

Optimal control of linear systems with quadratic costs

$$\min_{x_n, u_n} \sum_{n=0}^{N} x_n^T Q x_n + u_n^T R u_n$$
 subject to
$$x_{n+1} = A x_n + B u_n$$

$$x_0 \text{ given}$$