

Užduotis: BinSearch

Pradiniai duomenys stdin Rezultatai stdout

```
bool binary_search(int n, int p[], int target){
   int left = 1, right = n;
   while(left < right){
      int mid = (left + right) / 2;
      if(p[mid] == target)
           return true;
      else if(p[mid] < target)
           left = mid + 1;
      else
           right = mid - 1;
   }
   if(p[left] == target) return true;
   else return false;
}</pre>
```

Gerai žinoma, kad jei p yra surikiuotas, šis kodas grąžina true tada ir tik tada, jei target yra p viduje. Kita vertus, taip gali ir neatsitikti, jei p nesurikiuotas.

Duotas teigiamas sveikasis skaičius n ir seka $b_1, \ldots, b_n \in \{\text{true}, \text{false}\}$. Taip pat žinoma, kad $n = 2^k - 1$ kokiam nors teigiamam sveikajam skaičiui k. Sugeneruokite $\{1, \ldots, n\}$ kėlinį p, kuris atitiktų tam tikras sąlygas. Tegul S(p) yra indeksų $i \in \{1, \ldots, n\}$ kiekis, kuriems binary_search(n, p, i) negrąžina b_i . Parinkite p tokį, kad S(p) būtų toks mažas kaip aprašyta skyriuje "Ribojimai").

Pastaba: $\{1, \ldots, n\}$ kėlinys yra n sveikųjų skaičių seka, kurią sudaro skaičiai nuo 1 iki n sekoje sutinkami lyqiai vieną kartą.

Pradiniai duomenys

Įvestį sudaro keletas testų. Pirmoje eilutėje įrašytas testų skaičius T. Tolesnėse pateikti testai.

Pirmoje testo eilutėje pateiktas skaičius n. Antroje testo eilutėje pateikta n ilgio simbolių eilutė, kurią sudaro tik simboliai '0' ir '1'. Šie simboliai nėra atskirti tarpais. Jei i-asis simbolis yra '1', tai $b_i = \mathtt{true}$, o jei '0', tai $b_i = \mathtt{false}$.

Rezultatai

Rezultatus sudaro kiekvieno iš T testų sprendiniai. Konkretaus testo sprendinį sudaro sudaro kėlinys p, sugeneruotas tam testui.

Ribojimai

- Tegul $\sum n$ yra visų n suma vienoje įvestyje.
- $1 \le \sum n \le 100000$.
- $1 \le T \le 7000$.
- $n = 2^k 1$ kokiam nors $k \in \mathbb{N}, k > 0$.
- Jei $S(p) \le 1$ visiems dalinės užduoties testams, tada skiriama 100% tos dalinės užduoties taškų.
- Kitu atveju, jei $0 \le S(p) \le \lceil \log_2 n \rceil$ (t.y. $1 \le 2^{S(p)} \le n+1$) visiems dalinės užduoties testams, tada skiriama 50% tos dalinės užduoties taškų.

#	Taškai	Ribojimai
1	3	$b_i = { t true}.$
2	4	$b_i = { t false}.$
3	16	$1 \le n \le 7$.
4	25	$1 \le n \le 15.$
5	22	$n=2^{16}-1$ ir kiekvienas b_i parinktas tolygiai ir nepriklausomai atsitiktinai iš $\{\texttt{true}, \texttt{false}\}$.
6	30	Papildomų ribojimų nėra.

Pavyzdys

Pradiniai duomenys	Rezultatai
4	1 2 3
3	1 2 3 4 5 6 7
111	3 2 1
7	7 6 5 4 3 2 1
1111111	
3	
000	
7	
00000000	
2	3 2 1
3	7 3 1 5 2 4 6
010	
7	
0010110	

Paaiškinimai

Pavyzdys 1. Pirmajame pavyzdyje pirmuose dviejuose testuose turime S(p) = 0.

Trečiame teste turime S(p)=1. Taip yra, nes binary_search(n, p, 2) grąžina true, nors $b_2=$ false. Ketvirtame teste turime S(p)=1. Taip yra, nes binary_search(n, p, 4) grąžina true, nors $b_4=$ false.

Pavyzdys 2. Turime S(p) = 0 abiems testams.