5SENG003W - Algorithms, Week 1

Dr. Klaus Draeger

Introduction

Algorithms are everywhere

- Web search
- Computer Graphics
- Cryptography
- Image recognition
- Security
- Recommendations

Some main topics

- We will see ways of analysing and designing algorithms
 - Big-O notation
 - Some important complexity classes (logarithmic, linear, quadratic, exponential, ...)
 - How to determine them empirically (doubling hypothesis)
 - Strategies (Greedy, Divide-and-Conquer)
- We will also focus on the relationship between algorithms and data structures
 - Linear vs non-linear structures
 - Indexed vs linked structures

Some logistics

- In-person lectures
 - Live lecture recordings available on blackboard later
- Tutorials in labs
- One in-class test, one coursework
 - ▶ Worth 50% each
 - Need to score at least 30 in each and at least 40 on average

What is an algorithm?

- General idea: a set of instructions to solve a problem
 - ► Find a solution (search in a data set, solve equations, ...)
 - ► Find an **optimal** solution (shortest path, minimal solution of equations, ...)
 - ► Transform data (sort a data set, multiply matrices, ...)
- Instructions include
 - Atomic operations such as assignments
 - Decisions (branching or loops)
- Can be represented in different ways, including pseudocode and flowcharts

Pseudocode

- Similar to a program, but without irrelevant details
- Example: one of the earliest known algorithms is Euclid's algorithm for computing greatest common divisors

```
Input: x, y
Output: gcd of x and y
while x > 0
    if x < y
        y := y - x
else
    x := x - y
output y</pre>
```

Flowcharts

- Diagrams representing the flow of an algorithm
- Boxes represent instructions and decisions
- ▶ A flowchart for Euclid's algorithm could look like this:

Analysis of algorithms

- A central question about algorithms is how much time they take to solve a problem
 - Can also ask about other resources such as memory or bandwidth usage
- By "time" we can mean
 - Actual (milli-, micro-, ...) seconds
 - Directly measurable
 - But depends on implementation details, hardware etc
 - Number of atomic operations
 - Can be determined by analysing the (pseudo)code structure
 - More advanced tools like Master's Theorem for recursive algorithms
- Not straightforward: on which input?
 - Many different ones, of arbitrary sizes

Analysis of algorithms

- Algorithmic analysis
 - Considers the worst case (i.e. maximal) time required for any input size n
 - average case and best case complexity are also sometimes used
 - Focuses on the **order of growth**: for inputs of size n, does the time required grow like $\log n$? n^2 ? 2^n ?
- A related (harder) question is the complexity of the problem itself:
 - What is the best we can hope for from any algorithm?

Orders of growth

- Suppose we have a mathematical function in the variable n, like $f(n) = 5 \cdot 2^n + 3 \cdot n^4 + n \cdot \log n$
 - ► This could be the number of steps some algorithm needs on an input of size n
- Only the fastest-growing term is relevant
 - Among powers of n: the one with the highest exponent
 - ▶ 2ⁿ grows faster than any power, log *n* more slowly
 - The hierarchy looks like this:

$$1 < \log n < n < n \cdot \log n < n^2 < \ldots < 2^n < n \cdot 2^n < \ldots$$

- Constant factors are irrelevant: for the function f, the relevant term is 2^n , not $5 \cdot 2^n$
- ▶ So the order of growth of f is 2^n

Big-O and Theta notation

- In order to describe the complexity of an algorithm or problem, we use the Big-O and Theta(⊖) notation.
- Suppose f is some function of n.
- An algorithm
 - Is in O(f(n)) if its (worst case) runtime for inputs of size n grows no faster than f(n)
 - ▶ Is in $\Theta(f(n))$ if its (worst case) runtime for inputs of size n grows **no slower than** f(n)
- Similarly, a problem
 - Is in O(f(n)) if the time needed to solve it for inputs of size n grows no faster than f(n)
 - Is in $\Theta(f(n))$ if the time needed to solve it for inputs of size n grows **no slower than** f(n)

Big-O and Theta notation: example

- One important problem we will encounter in more detail later is sorting an array
- Atomic operations are
 - Comparing two values (array entries or other variables)
 - Assigning a new value (to an array entry or other variable)
- Some other operations can be treated as "essentially atomic", such as swapping two values
 - Can be done using three assignments
 - This constant factor 3 is ignored for the order of growth
- ▶ It can be proven that the sorting problem is in $\Theta(n \cdot \log n)$
- We will see some algorithms whose complexity is in $O(n \cdot \log n)$, i.e. as good as possible

Examples

- Complexity classes for some typical code samples:
 - Constant (O(1)): Atomic statement like a = 1;
 - ► Linear (*O*(*n*)):

```
for(int i = 0; i < n; i++)
a[i] = 1;</pre>
```

Quadratic (O(n²)):

```
for(int i = 0; i < n; i++)
  for(int j = 0; j < n; j++)
    a[i][j] = 1;</pre>
```

Or also

```
for(int i = 0; i < n; i++)
  for(int j = 0; j < i; j++)
    a[i][j] = 1;</pre>
```

Examples

- ▶ Generally, *e* nested loops which all run up to *n* are in $O(n^e)$
- More involved example:

- i runs up to n, so it counts
- ightharpoonup to n, so it counts
- k runs up to 3, independent of n, so doesn't count
- ▶ 1 runs up to i which runs up to n, so it counts
- m runs up to k which is independent of n, so doesn't count
- ▶ So this example takes $O(n^3)$ steps

Examples: logarithmic factors

- Complexity classes containing logarithmic factors, like
 - ► logarithmic (O(log n))
 - ▶ linearithmic $(O(n \cdot \log n))$

typically arise from divide-and-conquer algorithms which we will see later

- ► The core idea is to solve the problem by
 - cutting the data into halves
 - solving sub-problems on each half

Examples: exponential factors

- Complexity classes containing exponential factors usually arise when
 - We have a number of variables (or array entries, or ...) growing with n
 - We have to go through all combinations of values to find the solution
- Example: in the satisfiability (SAT) problem
 - ▶ We are given a logical formula like $(\neg A \lor B \lor C) \land (A \lor \neg C \lor \neg D) \land (\neg B \lor D \lor E) \land \dots$
 - We want to know if there is some way of assigning true or false to A, B, C,... which makes the formula true
 - The straightforward algorithm is to just try all combinations
 - For *n* variables, that is 2^n combinations

- We can get evidence regarding complexity by sampling runtimes of an implementation on a variety of inputs
- This is an example to the empirical approach used throughout science
- Advantage: easy to implement given an implementation of the algorithm and a way to obtain suitable inputs
- Some caveats:
 - Depends on chosen inputs
 - Many problems have easy special cases with lower complexity
 - ► How to ensure that our inputs are representative?
 - Depends on implementation details
 - You are essentially testing the implementation
 - This can help find implementation errors if you know what the complexity of the algorithm actually should be
 - Depends on hardware (memory, cache), amount of CPU used by other processes, . . .

- Basic idea: if the complexity of an implementation is
 - Logarithmic, then repeatedly **doubling** the input size will always increase the runtime by the **same amount**
 - Linear/quadratic/cubic, then repeatedly doubling the input size will always multiply the runtime by 2/4/8, respectively
 - Exponential, then repeatedly increasing the input size by a fixed amount will always multiply the runtime by some fixed amount
- These relations will usually be approximate only
- Need enough data points to draw any conclusions

Suppose we have measured these runtimes:

Algorithm 1	
7	
13	
27	
52	
	7 13 27

- The input size doubles from row to row
- ▶ Dividing each runtime by the previous one gives 13/7 = 1.857, 27/13 = 2.077, 52/27 = 1.926 so they are approximately doubling
- This is evidence that the algorithm's complexity is linear

Suppose we have measured these runtimes:

Input size	Algorithm 2	
100	17	
200	22	
400	28	
800	33	

- The input size doubles from row to row
- ► Taking the **differences** between successive runtimes gives 22 17 = 5, 28 22 = 6, 33 28 = 5
 - i.e. they don't change except for small fluctuations
- This is evidence that the algorithm's complexity is logarithmic