Calculer les volumes des solides ci-dessous et donner le résultat en cm^3 .

Savoir calculer le volume de n'importe quel solide usuel

Feuille 1

Calculer les volumes des solides ci-dessous et donner le résultat en cm^3 .

Tableau de conversion - les mètres cubes (m^3)

km ³	hm ³	$ dam^3 $	m^3	dm^3	cm^3	mm^3	
				1 L			

Exercice 1:

Effectuer les conversions suivantes.

$$c. 205 \text{ mm}^3 = ... \text{cm}^3$$

d.
$$15.42 \text{ km}^3 = \dots \text{dam}^3$$

f.
$$678\ 543,6\ m^3 = \dots km^3$$

Exercice 2:

Effectuer les conversions suivantes.

e.
$$56.78 \text{ cm}^3 = \text{dL}$$

Savoir effectuer des conversions dans l'unité choisie

Feuille 2

Tableau de conversion - les mètres cubes (m^3)

km ³		hm^3		dam^3		m^3		dm^3			cm^3			mm^3						
														1 L						
						-												-		

Exercice 1:

Effectuer les conversions suivantes.

c.
$$205 \text{ mm}^3 = ... \text{cm}^3$$

d.
$$15.42 \text{ km}^3 = \dots \text{dam}^3$$

f.
$$678\ 543,6\ m^3 = \dots km^3$$

Exercice 2:

Effectuer les conversions suivantes.

a.
$$34 \text{ dm}^3 = \dots$$

b.
$$8 \text{ m}^3 =$$

e.
$$56.78 \text{ cm}^3 = \text{dL}$$

Sur la figure ci-contre, SABCD est une pyramide à base carrée de hauteur [SA] telle que AB = 9 cm et SA = 12 cm. Le triangle SAB est rectangle en A.

EFGH est la section de la pyramide SABCD par le plan parallèle à la base et telle que SE = 3 cm.

- 1) Calculer EF.
- 2) Calculer SB
- a) Calculer le volume de la pyramide SABCD.
 b) Donner le coefficient de réduction permettant de passer de la pyramide SABCD à la pyramide SEFGH.
 - c) En déduire le volume de SEFGH.

Utiliser les théorèmes de Thalès et de Pythagore dans une section de solide

Feuille 3

Sur la figure ci-contre, SABCD est une pyramide à base carrée de hauteur [SA] telle que AB = 9 cm et SA = 12 cm. Le triangle SAB est rectangle en A.

EFGH est la section de la pyramide SABCD par le plan parallèle à la base et telle que SE = 3 cm.

- 1) Calculer EF.
- 2) Calculer SB
- 3) a) Calculer le volume de la pyramide SABCD.
 - b) Donner le coefficient de réduction permettant de passer de la pyramide SABCD à la pyramide SEFGH.
 - c) En déduire le volume de SEFGH.

Utiliser les théorèmes de Thalès et de Pythagore dans une section de solide

Feuille 3

Sur la figure ci-contre, SABCD est une pyramide à base carrée de hauteur [SA] telle que AB = 9 cm et SA = 12 cm. Le triangle SAB est rectangle en A.

EFGH est la section de la pyramide SABCD par le plan parallèle à la base et telle que SE = 3 cm.

- 1) Calculer EF.
- 2) Calculer SB
- 3) a) Calculer le volume de la pyramide SABCD.
 - b) Donner le coefficient de réduction permettant de passer de la pyramide SABCD à la pyramide SEFGH.
 - c) En déduire le volume de SEFGH.

