A Resolvent Example

by

Francis J. Narcowich November, 2014

Problem. Let $k(x,y) = xy^2$, $Ku(x) = \int_0^1 k(x,y)u(y)dy$, and $Lu = u - \lambda Ku$. Assume that L has closed range.

- 1. Determine the values of λ for which Lu = f has a solution for all f. Solve Lu = f for these values of λ .
- 2. For the remaining values of λ , find a condition on f that guarantees a solution to Lu = f. When f satisfies this condition, solve Lu = f.

Solution. (1) Because R(L) is closed, the Fredholm alternative applies. We begin by finding $N(L^*)$. First, we have that $L^* = I - \bar{\lambda}K^*$, where $K^*w = \int_0^1 k(y,x)w(y)dy = \int_0^1 yx^2w(y)dy$. We want to find all w for which $L^*w = w - \bar{\lambda} \int_0^1 x^2yw(y)dy = 0$. Note that $w = \bar{\lambda}x^2 \int_0^1 yw(y)dy$, so $w = Cx^2$. Putting this back into the equation for w yields $Cx^2 = \bar{\lambda}Cx^2 \int_0^1 y^2ydy = C(\bar{\lambda}/4)x^2$. Thus, $C = (\bar{\lambda}/4)C$. If $\bar{\lambda}/4 \neq 1$, then C = 0 and $N(L^*) = \{0\}$. Thus, if $\bar{\lambda}/4 \neq 1$ – i.e., $\lambda \neq 4$, Lu = f has a solution for all $f \in L^2[0,1]$.

Thus, if $\bar{\lambda}/4 \neq 1$ – i.e., $\lambda \neq 4$, Lu = f has a solution for all $f \in L^2[0,1]$. To find u, note that $u - \lambda x \int_0^1 y^2 u(y) dy = f$, and so we only need to find $\int_0^1 y^2 u(y) dy$. The trick for doing this is to multiply Lu = f by x^2 and then integrate. Doing this results in $\int_0^1 y^2 u(y) dy - \frac{\lambda}{4} \int_0^1 y^2 u(y) dy = \int_0^1 y^2 f(y) dy$. From this we get $\int_0^1 y^2 u(y) dy = \frac{1}{1 - \lambda/4} \int_0^1 y^2 f(y) dy$. Finally, we arrive at

$$u(x) = f(x) + \frac{4\lambda}{4-\lambda}x \int_0^1 y^2 f(y) dy = f(x) + \frac{4\lambda}{4-\lambda}Kf(x).$$

In operator form,

$$(I - \lambda K)^{-1} = I + \frac{4\lambda}{4 - \lambda} K.$$

The operator $(I - \lambda K)^{-1}$ is called the *resolvent* of K.

(2) When $\lambda=4$, $N(L^*)=\mathrm{span}\{x^2\}$. By the Fredholm alternative, Lu=f has a solution if and only if $\int_0^1 x^2 f(x) dx=0$. To solve $u-4x\int_0^1 y^2 u(y) dy=f$ for u, we first note that $\int_0^1 y^2 u(y) dy$ is not determined, because $\int_0^1 y^2 u(y) dy - \frac{4}{4} \int_0^1 y^2 u(y) dy = \int_0^1 y^2 f(y) dy=0$. This really just says that we have consistency. The constant $C=\int_0^1 y^2 u(y) dy$ is thus arbitrary, and u(x)=f(x)+Cx.

Previous: Projection Theorem, etc.

Next: compact operators