Heritage Institute of Technology Paper Name:-Probability and Numerical Methods Lab

Paper Code:- MATH2212

Write a program in 'C' to solve a system of linear equations by Gauss - Seidel's method. Use your program to find the solution to the following system of linear algebraic equations and Take the tolerance limit as .00001(i.e correct upto four decimal places)

$$9x_1 - 3x_2 + 2x_3 = 20$$

$$4x_1 + 10x_2 - x_3 = 33$$

$$x_1 + 5x_2 + 4x_3 = 9$$

x2=1.964285 x3=-0.978991 No of iterations= 12 Output:- x1=3.094538

2. (a) Write a program in 'C' to approximate a definite integral by Simpson's $\frac{1}{3}$ rd rule. Test your program with the definite integral $\int_0^1 \frac{\sin x}{1+x^3} dx$, [Take number of subintervals n = 10]

Output:- Value of the integration 0.347000

(b) Write a program in 'C' to approximate a definite integral by Trapezoidal Rule. Calculate the value of the integral $\int_0^6 \frac{e^x}{1+x^4} dx$, [Take number of subintervals n=6] Output:- Value of the integration 3.143786

Write a program in 'C' to implement the Newton's Forward Interpolation formula. 3. Hence find f(0.5) from the following set of data.

<i>x</i> :	0	1	2	3	4	
y = f(x):	1	1.5	2.2	3.1	4.3	

Output:-

The Forward Difference Table is:

0.00000 1.00000 0.50000 0.20000 -0.00000 0.10000

1.00000 1.50000 0.70000 0.20000 0.10000

2.00000 2.20000 0.90000 0.30000

3.00000 3.10000 1.20000

4.00000 4.30000

The required interpolated value of f(0.500)=1.221094

4. (a) Write a program in 'C' to implement Runge-kutta method of order 4. Hence calculate the value of y at the point x=1.5 of the following differential equation.

$$\frac{dy}{dx} = xe^x + 2y, given that at x = 1, y = 1, and h = 0.1$$

Output:- y(1.5)=6.292050

(b) Write a program in 'C' to implement Euler's method.

$$\frac{dy}{dx} = 3x \log x + y^2, given that at x = 1, y = 1.2, and h = 0.1$$

Hence calculate the value of y at the point x=1.5 of the following differential equation.

Output:- y(1.5)=2.990168

(c) Write a program in 'C' to implement Modified Euler's method.

Hence calculate the value of y at the point x=2 of the following differential equation.

Hence calculate the value of y at the point
$$x=2$$
 of the following $\frac{dy}{dx} = x^2 * y$, given that at $x = 1$, $y = 1$, and $h = 0.1$

Output:- y(2)=10.693639

- 5.(a) Write a program in 'C' to find a real root of a algebraic equation by Regula-Falsi method. Find a real positive root of the equation $x^3 \tan x + x^2 2x 5 = 0$
 - (b) Write a program in 'C' to find a real root of a algebraic equation using *Newton-Raphson* method. Hence find a real positive root of the equation $x^6 + 2x^4 x^3 1 = 0$ For both the problem 5(a) and 5(b) take tolerance limit 0.00001 or correct upto 4 decimal places.

Output:- 5.(a) Regula Falsi Method 3.18030 5.(b) Newton raphson Method 0.882789

6. Write a program in 'C' to solve a system of linear equations by Gaussian Elimination method. Use your program to find the solution to the following system of linear algebraic equations:

$$9x_1 + 4x_2 + 2x_3 = 26$$

 $6x_1 + 3x_2 + x_3 = 20$
 $2x_1 + 2x_2 + 6x_3 = 10$

Output:- Gaussian Elimination Method:-

Upper triangular matrix:

9.000000 4.000000 2.000000 26.000000

0.000000 0.333333 -0.333333 2.666666

0.000000 0.000000 6.666667 -4.666667

x[3]=-0.700000

x[2]=7.300000

x[1]=-0.200000

Write a program in 'C' to implement the Lagrange's Interpolation formula.
 Test your program to find f(6.60) from the following table using Lagrange's Interpolation.

х	6.55	6.58	6.59	6.61	6.63
y = f(x)	2.8156	2.8182	2.8189	2.8202	2.8224

Output:- f(6.60)=2.819531

8.(a) Find the Mean, Median, Mode and Standard Deviation of the following grouped data:

Variate/vi)	20-30	30-40	40-50	50-60	60-70
Variate(x):	20-30	5	20	10	5
Frequency(f):	3				

Output:- Mean= 47.093021 Median= 46.75000 Mode= 46.0000 S.D.= 10.243124

(b) Find the Mean , Median, Mode and Standard deviation of the following ungrouped data:

36, 38, 9, 58, 38, 61, 58, 38, 5, 58, 96, 102, 38, 76, 91

Output:- Mean= 53.466667 Median= 58.00000 Mode= 38.0000 S.D.= 28.625086

9. Write a program in 'C' to determine the *Correlation Coefficient* between the following two random variables and the *Regression equation of y on x*.

the Kegression equ	unon of f	** ***					
Variable(v)	-3	-2	-1	0	1	2	3
Variable(x):	9	4	1	0	1	4	8
Variable(y).		-	1				

Output:- sdx=2.000000 sdy=3.270149 cov=-0.428572 correlation coefficient is=-0.065528 regression line Y on X is (y-3.857143)=-0.107143(x-0.000000)