18. Which of the following sets of equations corresponds correctly to the acid-base theory of the chemist/s who proposed it?

	Chemist/s	Equations
(a)	Johannes Brønsted and Thomas Lowry	$H^+(aq) + OH^-(aq) \rightarrow H_2O(\ell)$
	Humphry Davy	$HNO_3(aq) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + NO_3^-(aq)$
	Svante Arrhenius	$HC_2H_3O_2(aq) + H_2O(l) \rightleftharpoons C_2H_3O_2(aq) + H_3O(aq)$
(b)	Johannes Brønsted and Thomas Lowry	$HC_2H_3O_2(aq) + CH_3OH(aq) \rightleftharpoons CH_3OH_2^+(aq) + C_2H_3O_2^-(aq)$
	Humphry Davy	$H^+(aq) + OH^-(aq) \rightarrow H_2O(\ell)$
	Svante Arrhenius	$NH_3(g) + H_2O(\ell) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$
(c)	Johannes Brønsted and Thomas Lowry	$HC\ell(aq) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + C\ell^-(aq)$
	Humphry Davy	$H_3O^+(aq) + OH^-(aq) \rightarrow 2 H_2O(\ell)$
	Svante Arrhenius	$HNO_3(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + NO_3^-(aq)$
(d)	Johannes Brønsted and Thomas Lowry	$NH_3(aq) + CH_3OH(aq) \rightleftharpoons CH_3O^-(aq) + NH_4^+(aq)$
	Humphry Davy	$2 \ HC\ell(aq) + Mg(s) \rightarrow H_2(g) + Mg^{2+}(aq) + 2C\ell^{-}(aq)$
	Svante Arrhenius	$NaOH(s) \rightarrow Na^{+}(aq) + OH^{-}(aq)$