Содержание

Предисловие Введение		2 5
	анализа	10
	Обобщенные функции и фундаментальные решения	10
	Пространства Соболева	13
2	Общие понятия теории уравнений с частными	
	производными	16
	Классификация уравнений. Характеристики	16
	Корректность постановки задач	21
3	Уравнения гиперболического типа	25
	Задача Коши для волнового уравнения	25
	Смешанная задача для полуограниченной струны	3 0
	Ограниченная струна. Метод Фурье	34
4	Уравнения параболического типа	38
	Краевая задача	38
	Задача Коши для уравнения теплопроводности	44
5	Уравнения эллиптического типа	49
	Гармонические функции	49
	Классическая постановка основных краевых задач	55
	Обобщенные решения	64
6	Решения отдельных задач	69
Ответы		106
Экзаменационные варианты		110

Предисловие

Ниже приводятся некоторые задачи, предлагавшиеся студентам механико-математического факультета МГУ на письменных экзаменах по уравнениям с частными производными и уравнениям математической физики в 1994–2003 годах. При подготовке данного списка было уменьшено количество стандартных задач, которые можно найти в существующих учебниках и учебных пособиях. Кроме того, при наличии нескольких близких по формулировкам задач в список, как правило, включалась лишь одна из них. В задачник также не включались теоретические вопросы из программы курса (определения, постановки задач, формулировки и доказательства теорем), которые обязательно присутствовали в любом экзаменационном варианте. Для того, чтобы у читателя возникло представление об этих экзаменах, в конце задачника приведены несколько таких вариантов с указанием условий проведения экзамена и критериев оценок.

В составлении вариантов экзаменационных заданий участвовали преподаватели кафедры дифференциальных уравнений механико-математического факультета МГУ им. М.В. Ломоносова: Т.Д. Вентцель, А.Ю. Горицкий, А.С. Калашников, В.А. Кондратьев, С.Н. Кружков, Е.М. Ландис, Е.В. Радкевич, Г.А. Чечкин, А.С. Шамаев, Т.А. Шапошникова. Отбор задач 1994—1998 годов и их редактирование выполнены А.С. Калашниковым. В окончательном составлении сборника принимали участие Т.Д. Вентцель, А.Ю. Горицкий, Т.О. Капустина, О.С. Розанова, Г.А. Чечкин.

Задачи разделены на пять тематических разделов. В каждом раздела кратко приведены основные факты, относящиеся к данной теме. Часть задач снабжена подробными решениями, и все задачи (кроме задач на доказательство) — ответами.

Курс уравнений с частными производными, как показывает практика, является традиционно одной из самых трудновоспринимаемых студентами мех-мата математических дисциплин. Поломаем эту традицию?!

Некоторые используемые обозначения

- \mathbb{N} множество всех натуральных чисел.
- \mathbb{Z} множество всех целых чисел.
- $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$ множество всех неотрицательных целых чисел.
- \mathbb{R} множество всех действительных чисел.
- \mathbb{R}_+ множество всех положительных действительных чисел.
- \mathbb{R}_- множество всех отрицательных действительных чисел.
- \mathbb{R}^n n-мерное действительное линейное пространство.
- (x_1,\ldots,x_n) декартовы координаты в \mathbb{R}^n .
- (ρ, θ) полярные координаты в \mathbb{R}^2 .
- Ω область (т. е. связное, открытое множество) в \mathbb{R}^n , ограниченная, если не оговорено противное.
- $\partial\Omega$ граница области Ω .
- u единичная внешняя нормаль к $\partial\Omega$.
- $B^n_a(x^0) = \{x \in \mathbb{R}^n \mid |x-x^0| < a\}$ n-мерный шар радиуса a с центром в точке $x^0.$
- $S^n_a(x^0)=\partial B^n_a(x^0)=\{x\in\mathbb{R}^n\mid |x-x^0|=a\}$ сфера радиуса a с центром в точке x^0 в \mathbb{R}^n .
- $Q_{\Omega}^T = \Omega imes (0,T] = \{(x,t) \in \mathbb{R}^{n+1} \mid x \in \Omega, \ 0 < t \leqslant T \}$ (область Ω может быть неограниченной).
- $Q_{\Omega}^{\infty} = \Omega \times \mathbb{R}_+ = \{(x,t) \in \mathbb{R}^{n+1} \mid x \in \Omega, \ 0 < t < +\infty \}$ (область Ω может быть неограниченной).
- $\Pi_T = \mathbb{R}^n \times (0, T] = \{(x, t) \in \mathbb{R}^{n+1} \mid x \in \mathbb{R}^n, \ 0 < t \leqslant T\}.$
- $\Delta u = u_{x_1x_1} + u_{x_2x_2} + \dots + u_{x_nx_n}$ оператор Лапласа.
- $L_p(\Omega)$ пространство функций, суммируемых с p-й степенью в области Ω .
- $L_{\infty}(\Omega)$ пространство функций, ограниченных и измеримых в области $\Omega.$
- $L_{p,\, {
 m loc}}(\Omega)$ пространство функций, принадлежащих $L_p(\Omega_1)$ для любой ограниченной подобласти Ω_1 , такой что $\overline{\Omega}_1\subset\Omega$.
- $L_{p,\, {
 m loc}}(\mathbb{R}^{\, n})$ пространство функций, принадлежащих пространству $L_p(B^n_a(0))$ при любом a>0.

 $C^l(\Omega)$ — множество функций, l раз непрерывно дифференцируемых в области Ω .

 $C_{\mathrm{b}}(\Omega) = C(\Omega) \cap L_{\infty}(\Omega)$ — множество ограниченных непрерывных в области Ω функций.

 $C^{\infty}(\Omega)$ — множество бесконечно дифференцируемых в области Ω функций.

 $\mathcal{D}(\Omega) = C_0^\infty(\Omega)$ — множество бесконечно дифференцируемых в области Ω функций, равных нулю в окрестности $\partial\Omega$.

 $\mathcal{D}(\mathbb{R}^n) = C_0^\infty(\mathbb{R}^n)$ — пространство бесконечно дифференцируемых финитных функций в \mathbb{R}^n .

 $H^1(\Omega)$ — пространство функций, принадлежащих пространству $L_{2}\left(\Omega\right)$ вместе со своими обобщенными производными в смысле Соболева первого порядка.

 $\overset{\circ}{H^1}(\Omega)$ — пополнение множества $C_0^\infty(\Omega)$ по норме $H^1(\Omega)$.

 $\mathcal{D}'(\mathbb{R}^n)$ — пространство линейных непрерывных функционалов на $\mathcal{D}(\mathbb{R}^n)$.

 $\delta \in \mathcal{D}'(\mathbb{R}^n)$ — "дельта-функция", т. е. функционал, определяемый формулой

$$\langle \delta, \varphi \rangle = \varphi(0) \quad \forall \varphi \in \mathcal{D}(\mathbb{R}^n).$$

 $\delta_{x^0}\in\mathcal{D}'(\mathbb{R}^n)$, где $x^0\in\mathbb{R}^n$, — "сдвинутая дельта-функция": $\langle \delta_{x^0}, \varphi \rangle = \varphi(x^0) \quad \forall \varphi \in \mathcal{D}(\mathbb{R}^n).$

 $\Theta(x)$ — Θ -функция Хевисайда: $\Theta(x)=egin{cases} 1 & \text{для } x\geqslant 0, \\ 0 & \text{для } x<0. \end{cases}$

 $x_+ = \max\{x,0\}; \quad x_- = \max\{-x,0\}.$

 ω_n — площадь единичной сферы $S_1^n(0)$ в \mathbb{R}^n . ∇ — оператор градиента в \mathbb{R}^n , $\nabla u = \left(\frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}\right)$.

Введение

Укажем некоторые определения и теоремы, которые необходимо знать, чтобы решать задачи настоящего сборника, а также учебники, в которых можно найти эти факты. Номера задач, приводимые в последующих пунктах, приведены для примера и могут не охватывать всех задач на данную тему.

1. Вспомогательные сведения из функционального анализа

- 1. Определение обобщенных функций, основных операций над ними и фундаментального решения дифференциального оператора. [1, Гл. II, §§ 5-7] (задачи 1.1-1.5, 2.17 6))
- **2.** Определение пространств H^1 и $\overset{\circ}{H^1}$. [11, Гл. III, § 5] (задачи **1.8–1.16**, **1.19–1.21**)
- **3.** Неравенство Фридрихса. [11], [13] (задачи **1.17–1.19**)

2. Общие понятия теории уравнений с частными производными

- 1. Классификация линейных уравнений второго порядка и приведение их к каноническому виду. $[6, \Gamma \pi. I, \S 6]$ (задачи 2.1–2.4, 2.7–2.9, 2.14, 2.15, 2.17 а))
- **2.** Определение характеристик. [6, Гл. I, \S 3] (задачи **2.5–2.7**, **2.11–2.13**, **3.3**, **3.4**)
- **3.** Теорема Коши-Ковалевской о существовании и единственности аналитического решения задачи Коши. $[6, \Gamma \pi. I, \S\S 10, 11]$ (задачи **2.16**, **2.22** а))
- 4. Корректность постановки задач для уравнений с частными производными. [6, Γ л. I, \S 8] (задачи **2.17–2.23**)

3. Уравнения гиперболического типа

1. Постановка задачи Коши для одномерного уравнения колебаний. Формула Даламбера. Область зависимости. [6, Гл. II, §§ 11–13] (задачи **3.1–3.2**, **3.5–3.12**)

- 2. Задача Коши для волнового уравнения в случае двух и трех пространственных измерений. Формулы Пуассона и Кирхгофа. Использование симметрии в начальных условиях. Область зависимости. [6, Гл. II, §§ 12, 13] (задачи 3.13-3.23)
- 3. Краевые задачи для полуограниченной струны. Условия согласования для начальных и граничных значений. Метод продолжения начальных значений и сведение краевой задачи к задаче Коши. [8, Гл. II, §§ 2, 4] (задачи 3.24–3.28, 3.31, 3.32)
- 4. Постановка основных краевых задач. Энергетическое тождество для решений краевых задач. $[6, \Gamma \pi. II, \S 18]$ (задачи **3.33**–**3.36**)
- **5.** Решение краевых задач с помощью метода Фурье. Периодичность решений краевых задач. $[6, \Gamma \pi. III, \S 20], [8, \Gamma \pi. II, \S 3]$ (задачи **3.37–3.40**)

4. Уравнения параболического типа.

- 1. Постановка задачи Коши и основных краевых задач. [6, Γ л. IV, §§ 38, 40], [12, § 4.3]
- 2. Принцип максимума в цилиндре. Единственность решения первой краевой задачи [6, Гл. IV, § 38], [12, § 4.4] (задачи 4.1, 4.3, 4.6, 4.7, 4.20, 4.21)
- **3.** Решение краевых задач методом Фурье. [6, Γ л. IV, \S 39] (задачи **4.8–4.19**)
- **4.** Принцип максимума в слое. [6, Гл. IV, \S 40], [12, \S 4.4] (задачи **4.27**, **4.31**)
- **5.** Теоремы о стабилизации для решения задачи Коши. (задачи **4.33–4.36**)

5. Уравнения эллиптического типа.

- 1. Определение гармонических функций. Теоремы о среднем. Теорема Лиувилля. $[6, \Gamma\pi. III, \S 30], [12, \S\S 3.5, 3.9]$ (задачи 5.1, 5.2, 5.3, 5.6, 5.7, 5.15, 5.42)
- **2.** Принцип максимума. Теорема о нормальной производной. [6, Γ л. III, § 8], [12, § 3.5] (задачи **5.9**, **5.10**, **5.11**, **5.12**, **5.13**, **5.28**, **5.33**, **5.18**)

- **3.** Формула Грина. Теорема о потоке. $[6, \S\S 30, 33], [12, \S\S 3.3, 3.5]$ (задачи **5.29**, **5.30**, **5.31**, **5.32**, **5.43**)
- **4.** Теорема об устранимой особенности. [6, Гл III, § 30], [12, § 3.10] (задачи **5.16**, **5.17**, **5.34**, **5.35**)
- **5.** Теория потенциалов. $[6, \Gamma \pi$. III, $\S 34], [12, \S 3.12]$ (задачи **5.36**, **5.37**)
- 6. Обобщенные производные в смысле обобщенных функций и в смысле Соболева. Обобщенное решение задачи Дирихле. Вариационный метод решения задачи Дирихле. [12, § 1.3], [11, Гл. IV, § 1] (задачи 5.48, 5.49, 5.50, 5.52, 5.51)

Библиография

- 1. Владимиров В.С. Уравнения математической физики. 5-ое издание. М.: Наука, 1988. 512 с.
- 2. Владимиров В.С. Обобщённые функции в математической физике. — 2-ое издание — М.: Наука, 1979. — 320 с.
- 3. Шилов Г.Е. *Математический анализ. Второй специальный курс.* 2-ое издание М.: Изд-во Моск. ун-та, 1984. 208 с.
- 4. Соболев С.Л. Некоторые применения функционального анализа в математической физике. 3-е издание. М.: Наука, 1988. 336 с.
- 5. Соболев С.П. Избранные вопросы теории функциональных пространств и обобщённых функций. М.: Наука, 1989. 254 с.
- 6. Петровский И.Г. Лекции об уравнениях с частными производными. 3-е издание М.: Физматгиз, 1961. 400 с.
- 7. Соболев С.Л. Уравнения математической физики. 5-е издание. М.: Наука, 1992. 432 с.
- 8. Тихонов А.Н., Самарский А.А. *Уравнения математичес-кой физики.* 6-е издание. М.: Изд-во Моск. ун-та, 1999. 798 с.
- 9. Курант Р. Уравнения с частными производными. М.: Мир, 1964.

- 10. Ильин А.М., Калашников А.С., Олейник О.А. Линейные уравнения второго порядка параболического типа //УМН.-1962.- т. 17, вып. 3.— с. 3–146 (см. также $Tpy\partial \omega$ семинара им. И.Г.Петровского.— 2001.— т. 21.— с. 9–193.)
- 11. Михайлов В.П. Дифференциальные уравнения в частных производных. М.: Наука, 1984.
- 12. Олейник О.А. Лекции об уравнениях с частными производными. М.: Изд-во мех-мат ф-та Моск. ун-та, 1976.
- 13. Олейник О.А. Лекции об уравнениях с частными производными. М.: Изд-во Моск. ун-та, 2004.
- 14. Комеч А.И., Практическое решение уравнений математической физики (Учебно-методическое пособие для студентов университетов) М.: Изд-во мех-мат ф-та Моск. ун-та, 1993.
- 15. Арнольд В. И., Лекции по уравнениям с частными производными М.: Изд-во МК НМУ, 1995.
- 16. Ладыженская О.А. Краевые задачи математической физики М.: Наука, 1973.
- 17. Эванс Л.К. Уравнения с частными производными Новосибирск.: Изд-во Научная книга, 2002.
- 18. Шубин М.А. Лекции об уравнениях математической физики М.: Изд-во МЦНМО, 2001. 302 с.
- 19. Будак Б.М., Самарский А.А., Тихонов А.Н. Сборник задач по математической физике М.: Гос. изд-во технико-теоретической литературы, 1956. 683 с.
- 20. Владимиров В.С. Сборник задач по уравнениям математической физике — М.: Изд-во Наука, 1982. — 256 с.
- 21. Бицадзе А.В., Калиниченко Д.Ф. Сборник задач по уравнениям математической физике М.: Изд-во Наука, 1977. 222 с.
- 22. Мизохата С., *Теория уравнений с частными производными* М.: Изд-во Мир, 1977. 504 с.
- 23. Берс Л., Джон Ф., Шехтер М. Уравнения с частными производными — М.: Изд-во Мир, 1966. — 351 с.
- 24. Гилбарг Д., Трудингер Н. Эллиптические дифференциальные уравнения с частными производными второго порядка М.: Изд-во Наука, 1989. 463 с.

- 25. Годунов С.К. Уравнения математической физики. Учебное пособие для студентов физико-математических специальностей университетов. 2-ое издание. М.: Наука, 1979. 392 с.
- 26. Годунов С.К., Золотарева Е.В. Сборник задач по уравнениям математической физики. Учебное пособие. Новосибирск: Изд-во Новосибирского гос. ун-та, 1987. 96 с.
- 27. Положий Г.Н. Уравнения математической физики. Учебное пособие для студентов механико-математических и физико-математических факультетов университетов. М.: Высшая школа, 1964. 559 с.
- 28. Смирнов М.М. Задачи по уравнениям математической физики. Учебное пособие. 6-ое издание. М.: Наука, 1975. 126 с.
- 29. Смирнов В.И. Курс высшей математики (для механикоматематических и физико-математических факультетов университетов. — М.: Физматгиз, 1959.
- 30. Михайлов В.П. Лекции по уравнениям математической физики: учебное пособие для студентов вузов. М.: Физматлит, 2001. —206 с.
- 31. Масленникова В.Н. Дифференциальные уравнения с частными производными. Учебное пособие. 2-е издание. М.: Изд-во РУДН, 2000. 229 с.
- 32. Егоров Ю.В. Лекции по уравнениям с частными производными. Дополнительные главы. Учебное пособие для студентов, обучающихся по специальности "математика". М.: Изд-во Моск. ун-та, 1985. 164 с.

1 Вспомогательные сведения из функционального анализа

Обобщенные функции и фундаментальные решения

Обобщенными функциями называются элементы пространства $\mathcal{D}'(\mathbb{R}^n)$ (или $\mathcal{D}'(\Omega)$), т.е. пространства линейных непрерывных функционалов над $\mathcal{D}(\mathbb{R}^n) = C_0^\infty(\mathbb{R}^n)$ (соответственно, над $\mathcal{D}(\Omega) = C_0^\infty(\Omega)$). Действие функционала $f \in \mathcal{D}'$ на $\varphi \in \mathcal{D}$ обозначается $f(\varphi)$ или (f,φ) .

В пространстве обобщенных функций выделяется класс регулярных обобщенных функций, то есть обычных функций $f(x) \in L_{1, \text{loc}}(\mathbb{R}^n)$ (или $f(x) \in L_{1, \text{loc}}(\Omega)$), действие которых определяется так:

$$(f,arphi)=\int f(x)arphi(x)dx\quad orallarphi\in\mathcal{D}$$

(интегрирование идет по пространству \mathbb{R}^n или по области Ω соответственно). Обобщенные функции, не являющиеся регулярными, называются **сингулярными**. Примером сингулярной обобщенной функции является δ -функция.

Производной обобщенной функции $f \in \mathcal{D}'$ по переменной x_i называется обобщенная функция, определяемая равенством

$$\left(\frac{\partial f}{\partial x_i}, \varphi\right) = -\left(f, \frac{\partial \varphi}{\partial x_i}\right) \quad \forall \varphi \in \mathcal{D}.$$

По индукции определяются производные обобщенной функции произвольного порядка.

Фундаментальным решением дифференциального оператора \mathcal{L} называется (вообще говоря, обобщенная) функция \mathcal{E} такая, что $\mathcal{L}(\mathcal{E}) = \delta$, то есть $(\mathcal{L}(\mathcal{E}), \varphi) = \varphi(0) \ \forall \varphi \in \mathcal{D}$.

Приведем примеры фундаментальных решений некоторых дифференциальных операторов.

Фундаментальное решение оператора Лапласа $\mathcal{L}=\Delta$ в пространстве размерности n имеет вид

$$\mathcal{E}_n(x) = rac{1}{\omega_n(2-n)|x|^{n-2}}, \qquad n\geqslant 3,$$
 $\mathcal{E}_2(x) = rac{1}{2\pi}\ln|x|, \qquad n=2.$

Для оператора теплопроводности $\mathcal{L}=rac{\partial}{\partial t}-a^2\Delta$ фундаментальным решением является функция

$$\mathcal{E}(x,t) = \frac{\Theta(t)}{\left(2a\sqrt{\pi t}\right)^n} e^{-\frac{|x|^2}{4a^2t}}.$$

Волновой оператор $\mathcal{L}=\frac{\partial^2}{\partial t^2}-a^2\Delta$ в зависимости от размерности $n,\ n=1,2,3,$ пространственной переменной x имеет следующие фундаментальные решения

$$\begin{split} \mathcal{E}_{1}(x,t) &= \frac{1}{2a}\Theta(at - |x|), & n = 1, \\ \mathcal{E}_{2}(x,t) &= \frac{\Theta(at - |x|)}{2\pi a \sqrt{a^{2}t^{2} - |x|^{2}}}, & n = 2, \\ \mathcal{E}_{3}(x,t) &= \frac{1}{4\pi a^{2}t}\delta(|x| - at), & n = 3. \end{split}$$

В отличие от случаев одной или двух пространственных переменных, \mathcal{E}_3 является сингулярной обобщенной функцией, действие которой на основные функции определено равенством

$$(\mathcal{E}_3,arphi) = \int\limits_{\mathbb{R}} rac{1}{4\pi a^2 t} \Big(\int_{|x|=at} arphi(x,t) \ dS_x \Big) dt \quad orall arphi(x,t) \in \mathcal{D}(\mathbb{R}^4),$$

 dS_x — элемент площади на сфере $S^3_{at}(0)$.

- 1.1. Пусть u(x,y) характеристическая функция квадрата $(-1,1)\times (-1,1).$ Найти $\frac{\partial^2 u}{\partial x\,\partial y}$ в смысле теории обобщённых функций.
- 1.2. При каких значениях параметра $a \in \mathbb{R}^1$ функция

$$u(x,t) = \begin{cases} 1 & \text{при } t \leqslant ax, \\ 0 & \text{при } t > ax, \end{cases} \qquad (x,t) \in \mathbb{R}^2,$$

является решением уравнения $u_t = u_x$ в смысле теории обобщенных функций?

- **1.3.** Пусть функция $y(x) \in \mathcal{D}'(\mathbb{R})$ и удовлетворяет уравнению y'=y как обобщенная функция. Докажите, что y(x) есть регулярная обобщенная функция Ce^x , $C=\mathrm{const.}$
- 1.4. Найти все фундаментальные решения оператора

$$\mathcal{L}u(x) = \frac{d^2u(x)}{dx^2} + \frac{du(x)}{dx}.$$

1.5. Найти фундаментальное решение оператора

$$\mathcal{L}u(x,y) = u_{xx}(x,y) - u_{yy}(x,y),$$

обращающееся в нуль при y < 0.

1.6. Докажите, что функция

$$E(x, x_0) = -\frac{\cos(\sqrt{c} r)}{4\pi r}, \qquad r = |x - x_0|,$$

является фундаментальным решением оператора

$$\Delta + c$$
, где $c = \mathrm{const} > 0$; $n = 3$.

Пространства Соболева

Обобщенной производной в смысле Соболева функции u(x) по переменной x_i в области Ω называется функция v(x) (обозначение: $v(x) = \partial u/\partial x_i$), удовлетворяющая интегральному тождеству

$$\int\limits_{\Omega}v(x)\varphi(x)\,dx=-\int\limits_{\Omega}u(x)\frac{\partial\varphi(x)}{\partial x_{i}}\,dx\quad\forall\varphi\in C_{0}^{\infty}\left(\Omega\right).$$

Пространством Соболева $H^1(\Omega)$ называется пространство функций u(x), принадлежащих пространству $L_2(\Omega)$ вместе со своими обобщенными производными $\partial u/\partial x_i$, $i=1,\ldots,n$, в смысле Соболева первого порядка.

Пространство $H^1(\Omega)$ является банаховым (т.е. полным нормированным) пространством. Норма в нем определяется следующим образом:

$$||u||_{H^{1}(\Omega)}^{2} = ||u||_{L_{2}(\Omega)}^{2} + ||\nabla u||_{(L_{2}(\Omega))^{n}}^{2} = \int_{\Omega} \left(|u|^{2} + \sum_{i=1}^{n} \left|\frac{\partial u}{\partial x_{i}}\right|^{2}\right) dx.$$

Пространством Соболева $\overset{\circ}{H^1}(\Omega)$ называется замыкание подпространства $C_0^\infty(\Omega)$ в пространстве $H^1(\Omega)$.

Неравенство Фридрихса. Для любой ограниченной области Ω существует константа $C(\Omega)$, такая что

$$\int\limits_{\Omega} |u|^2 dx \leqslant C(\Omega) \int\limits_{\Omega} \sum_{i=1}^n \left| \frac{\partial u}{\partial x_i} \right|^2 dx \quad \forall u \in \mathring{H}^1(\Omega).$$

В силу неравенства Фридрихса следующий функционал в $\overset{\circ}{H^{1}}(\Omega)$

$$||u||_{\mathring{H}^{1}(\Omega)}^{2} = ||\nabla u||_{(L_{2}(\Omega))^{n}}^{2} = \int_{\Omega} \sum_{i=1}^{n} \left| \frac{\partial u}{\partial x_{i}} \right|^{2} dx$$

задает норму, эквивалентную исходной норме пространства $H^1(\Omega).$

Пространство $\overset{\circ}{H^1}(\Omega)$ является гильбертовым относительно скалярного произведения

$$[u,v] = (\nabla u, \nabla v)_{(L_2(\Omega))^n} = \int_{\Omega} \sum_{i=1}^n \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i} dx.$$

Пространство $H^1(\Omega)$ также является гильбертовым со скалярным произведением

$$(u,v)_{H^1(\Omega)}=(u,v)+[u,v],$$
 где $(u,v)=\int\limits_{\Omega}u(x)v(x)\;dx$

— стандартное скалярное произведение в $L_2(\Omega)$.

- 1.7. Пусть $f(x) \in H^1(\Omega), \ a(x) \in C^\infty(\Omega)$. Доказать, что функция f(x)a(x) является дифференцируемой в смысле Соболева, и для нахождения ее производных первого порядка справедлива обычная формула Лейбница. Верно ли, что $f(x)a(x) \in H^1(\Omega)$?
- 1.8. Пусть $f\in H^1(B_1^n(0)).$ Возможно ли, что $f\notin L_\infty(B_1^n(0))$ а) при n=3; б) при n=2; в) при n=1?
- 1.9. Пусть u(x) ограниченная в $B_1^3(0)$ функция, гладкая в $B_1^3(0)\setminus\{0\}$. Можно ли утверждать, что $u\in H^1(B_1^3(0))$?
- ${f 1.10.}\,\,\,{
 m a})\,\,{
 m Докажите,}\,\,{
 m что}\,\,{
 m всякая}\,\,{
 m функция}\,\,{
 m u}\,{
 m s}\,\,{\overset{\circ}{H}}{}^1ig((0,1)ig)\,\,{
 m является}$ непрерывной.
- б) Всякая ли непрерывная функция u(x) на отрезке [0,1], такая, что u(0)=u(1)=0, принадлежит $\overset{\circ}{H^1}((0,1))$?
- 1.11. Пусть $u\in C(\overline\Omega)\cap H^1(\Omega)$ и u(x)=0 при $x\in\partial\Omega.$ Доказать, что $u\in \overset{\circ}H^1(\Omega)$.
- **1.12.** При каких α функция $u(x,y)=\left|\ln(x^2+y^2)\right|^{\alpha}$ принадлежит пространству $H^1(\Omega),$ если
 - a) $\Omega = B_{1/2}^2(0);$
 - 6) $\Omega = B_2^{2/2}(0) \setminus \overline{B_{1/2}^2(0)}$?

- **1.13.** При каких α функция $u(x,y)=\left|\ln(x^2+xy+2y^2)\right|^{\alpha}$ принадлежит $H^1(\Omega)$, где $\Omega=(-1/4,1/4)\times(-1/4,1/4)$?
- **1.14.** а) При каких α и n функция $f(x)=(\ln|x|)^{\alpha}/|x|^2$ принадлежит пространству $H^1(B^n_{1/2}(0))$?
 - б) Тот же вопрос для пространства $H^1(B_1^n(0))$.
- 1.15. При каких α, β функция $f(x) = |x|^{\alpha} \cos \beta x$ принадлежит пространству $\mathring{H}^1\big((-1,1)\big)$?
- **1.16.** При каких $\alpha,\beta\in\mathbb{R}$ функция $f(x)=\left|\ln|x|\right|^{\alpha}\cos(\beta|x|),$ где $x=(x_1,\dots,x_n),$ принадлежит пространству $\overset{\circ}{H^1}(B^n_{1/2}(0))$?
- 1.17. Пусть

$$D = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + \dots + x_{n-1}^2 < ax_n^2, 0 < x_n < +\infty\}.$$

Доказать, что для любой постоянной C>0 найдутся такая ограниченная область $\Omega\subset D$ и такая функция $f\in \overset{\circ}{H}{}^1(\Omega),$ что

$$\int\limits_{\Omega}f^{2}\left(x\right) dx>C\int\limits_{\Omega}\left\vert \nabla f(x)\right\vert ^{2}dx.$$

1.18. Справедливо ли неравенство Фридрихса в полосе

$$\Pi = \{(x, y) \mid 0 < x < 1, -\infty < y < +\infty\} \subset \mathbb{R}^2?$$

1.19. Пусть $Q=B_1^n(0)$. Справедливо ли следующее утверждение: существует постоянная C>0 такая, что

$$|u(0)| \leqslant C||u||_{H^1(Q)} \quad \forall u(x) \in C^{\infty}(\overline{Q})$$
?

- **1.20.** Рассмотрим в пространстве $\overset{\circ}{H^1}((-1,1))$ множество A гладких финитных функций $\varphi(x)$, удовлетворяющих условию $\varphi'(0) + \alpha \varphi(0) = 0$, $\alpha \in \mathbb{R}$. Найдите коразмерность замыкания \overline{A} множества A в $\overset{\circ}{H^1}((-1,1))$.
- 1.21. Постройте пример ограниченной области Ω на плоскости \mathbb{R}^2 , такой что функции $C^\infty(\overline{\Omega})$ не составляют всюду плотного множества в пространстве $H^1(\Omega)$, т. е. $\overline{C^\infty(\overline{\Omega})} \neq H^1(\Omega)$.

2 Общие понятия теории уравнений с частными производными

Классификация уравнений. Характеристики

Линейное уравнение второго порядка имеет вид

$$\sum_{i,j=1}^{n} a_{ij} u_{x_i x_j} + \sum_{i=1}^{n} a_i u_{x_i} + au = g(x), \qquad x \in \mathbb{R}^n, \ a_{ij} = a_{ji}.$$
 (1)

Вектор $\gamma=(\gamma_1,\ldots,\gamma_n)$ имеет характеристическое направление, если

$$\sum_{i,j=1}^{n} a_{ij} \gamma_i \gamma_j = 0.$$

Поверхность $\Phi(x)=0$ называется **характеристикой** уравнения (1), если нормаль к этой поверхности $\nu=\nabla\Phi$ имеет характеристическое направление в каждой точке, т.е.

$$\sum_{i,j=1}^{n} a_{ij} \frac{\partial \Phi}{\partial x_i} \frac{\partial \Phi}{\partial x_j} = 0.$$

Если матрицу (a_{ij}) привести к диагональному виду, то в соответствии со знаками диагональных элементов, уравнения подразделяются на эллиптические (когда все элементы ненулевые и одного знака), гиперболические (когда все элементы ненулевые и ровно один отличается по знаку от остальных), параболические (когда существует ровно один нулевой, а остальные элементы одного знака). Остальные типы мы не называем

У уравнения второго порядка с ∂ey мя независимыми переменными

$$a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} + b_1u_x + b_2u_y + cu = g(x, y)$$

характеристиками являются кривые, которые находятся из уравнения

$$a_{11}(dy)^2 - 2a_{12}dx dy + a_{22}(dx)^2 = 0,$$

называемого **характеристическим**. Если $a_{11} \neq 0$, то ищем решение в виде y = y(x), где

$$rac{dy}{dx} = rac{a_{12} \pm \sqrt{D}}{a_{11}}, \qquad D = a_{12}^2 - a_{11}a_{22} \quad - \quad$$
 дискриминант.

В зависимости от знака дискриминанта возникают три случая.

Гиперболический случай: D>0, два семейства характеристик $\xi(x,y)=C$ и $\eta(x,y)=C$. При замене

$$\begin{cases} \xi = \xi(x, y), \\ \eta = \eta(x, y). \end{cases}$$

уравнение приводится ко второй канонической форме

$$u_{\xi\eta} +$$
младшие члены $= 0$.

В случае замены

$$\begin{cases} \alpha = \xi + \eta, \\ \beta = \xi - \eta \end{cases}$$

уравнение приводится к первой канонической форме

$$u_{\alpha\alpha} - u_{\beta\beta} +$$
мла ∂uue члены $= 0.$

Параболический случай: D=0, одно семейства характеристик $\xi(x,y)=C$. Любой невырожденной заменой вида

$$\begin{cases} \xi = \xi(x, y), \\ \eta = \eta(x, y), \end{cases}$$

где $\eta(x,y)$ — некоторая функция от двух переменных, уравнение приводится к канонической форме

$$u_{nn} +$$
младшие члены = 0 .

Эллиптический случай: D<0, действительных характеристик нет, но есть два семейства комплексно сопряженных характеристик $\xi(x,y)\pm i\eta(x,y)=C$. Для приведения к канонической форме (только к первой) необходимо сделать замену

$$\left\{ \begin{array}{l} \xi = \xi(x,y), \\ \eta = \eta(x,y). \end{array} \right.$$

В этом случае уравнения приводится к виду

$$u_{\xi\xi} + u_{\eta\eta} +$$
младшие члены = 0.

2.1. Существует ли уравнение вида

$$\sum_{i,j=1}^{n} a_{ij}(x_1, \dots, x_n) \ u_{x_i x_j} = 0, \qquad a_{ij} \in C(\mathbb{R}^n),$$

являющееся эллиптическим на непустом множестве $D\subset\mathbb{R}^n$, $D\neq\mathbb{R}^n$, и гиперболическим на его дополнении $\mathbb{R}^n\backslash D$?

2.2. Верны ли следующие утверждения: если уравнение

$$\sum_{i,j=1}^{n} a_{ij}(x_1, \dots, x_n) \ u_{x_i x_j} = 0, \qquad a_{ij} \in C(\mathbb{R}^n),$$

— гиперболическое (эллиптическое, параболическое) в точке (x_1,\ldots,x_n) , то оно является гиперболическим (соответственно эллиптическим, параболическим) также в некоторой окрестности этой точки?

2.3. Для каких из трёх уравнений на плоскости

$$u_t = u_{xx}, \qquad u_{tt} = u_{xx}, \qquad u_{tt} = -u_{xx}$$

существует непостоянное решение с ограниченными и замкнутыми линиями уровня?

2.4. При каких $(x,y,z)\in\mathbb{R}^3$ уравнение

$$u_{xy} + (3x + y - z)u_{xz} + (3x - y + z)u_{yz} = 0$$

является гиперболическим?

- **2.5.** Найти характеристики уравнения $u_{xx} y^2 u_{yy} = 0$, проходящие через:
 - a) точку (1,2);
 - б) точку (1,0).

2.6. а) Найти все характеристики уравнения

$$u_{xy} - u_{yy} - u_x + u_y = 0.$$

- б) Найти его общее решение.
- **2.7.** а) Определить тип уравнения $2u_{xx} + u_{xy} = 1$.
 - б) Найти его характеристики.
 - в) Найти его общее решение.
- 2.8. а) Определить тип уравнения

$$u_{xx} - 2\alpha u_{xy} - 3\alpha^2 u_{yy} + \alpha u_y + u_x = 0$$
 (2)

в зависимости от действительного параметра α .

- б) Привести уравнение (2) к канонической форме.
- в) Найти общее решение этого уравнения.
- **2.9.** а) Найти все α , при которых существует линейная замена переменных $(x,y) \to (t,z)$, переводящая уравнение

$$u_{xx} + 4u_{xy} - \alpha u_{yy} = 0 \tag{3}$$

- в уравнение струны $u_{tt} = u_{zz}$;
- в уравнение теплопроводности $u_t = u_{zz}$.
 - б) Те же вопросы об уравнении

$$u_{xx} + 4u_{xy} - \alpha u_{yy} - \alpha u_x + \alpha^2 u_y = 0.$$

- в) Пусть функция $u(x,y)\in C^2(B_1^2(0))$ удовлетворяет уравнению (3) при некотором значении $\alpha<-10$. Возможно ли при этом $u\notin C^\infty(B_1^2(0))$?
 - г) Тот же вопрос для $\alpha > 10$.
- **2.10.** Пусть $\Omega = \{(x,y) \in \mathbb{R}^2 \mid x^2 + (y-2l)^2 < l^2\},$ функция $u \in C^2(\Omega)$ удовлетворяет уравнению

$$2u_{xx} + rac{ ext{sign }y}{2} \, u_{yy} = 0$$
 в области Ω .

- а) Возможно ли, что $u \notin C^3(\Omega)$ в случае l > 0?
- б) Тот же вопрос в случае l < 0.

2.11. На плоскости $(x,t) \in \mathbb{R}^2$ рассматриваются уравнения

$$u_t - u_x = 0, (4)$$

$$2u_{tt} - (\alpha + 1)^2 u_{tx} + 2\alpha u_{xx} = 0. (5)$$

- а) Найти характеристики уравнения (4).
- б) При каких α любое бесконечно дифференцируемое решение u(x,t) уравнения (4) является также и решением уравнения (5)?

Для каждого из найденных в п. б) значений параметра α :

- в) найти характеристики уравнения (5);
- г) указать некоторое решение u(x,t) уравнения (5), которое не является решением уравнения (4), или доказать, что такого решения нет.
 - д) Тот же вопрос об ограниченном решении.
- 2.12. Найти характеристические плоскости уравнения

$$u_{tt} = u_{xx} + u_{yy},$$

проходящие через прямую t = 0, y = x.

2.13. Найти все характеристики уравнения

$$u_{xx} + 2u_{yy} + 2\alpha u_{yz} + \alpha^2 u_{zz} + u_z + u = 1$$

при каждом $\alpha \in \mathbb{R}$.

2.14. Найти общее решение уравнения

$$u_{xx} + 2u_{xy} + 2u_{xz} + u_{yy} + 2u_{yz} + u_{zz} - u = 0.$$

2.15. а) Привести к виду, не содержащему несмешанных производных второго порядка, следующее уравнение:

$$u_{xx} + u_{xy} - 2u_{yy} + 3(x+y)u_x + 6(x+y)u_y + 9u = 0.$$

б) Найти общее решение исходного уравнения.

2.16. При каких вещественных α и β теорема о существовании и единственности аналитического решения нехарактеристической обобщенной задачи Коши применима к следующей задаче:

$$u_{xy} + 3u_{yy} + u = xy,$$
 $u|_{S} = u_{x}|_{S} = u_{y}|_{S} = 0,$

где S задается уравнением $\alpha x + \beta y = 1$?

2.17. а) Найти все значения α , для которых существует функция u(x,y), принадлежащая $C^1(\mathbb{R}^2) \cap C^2(\{x \ge 0\}) \cap C^2(\{x \le 0\})$, удовлетворяющая уравнению

$$\alpha u_{xx} + u_{xy} + u_{yy} = 0$$
 при $x \neq 0$

и условиям

$$u\big|_{x=0} = 1, \qquad u_x\big|_{x=0} = 0,$$

но не принадлежащая $C^2(B_a^2(0,y_0))$ ни при каких $y_0\in\mathbb{R}$ и a>0.

б) Найти все α , для которых при любой $f \in L_{1,\text{loc}}(\mathbb{R})$ функция u(x,y) = f(x+y) удовлетворяет в $\mathcal{D}'(\mathbb{R}^2)$ уравнению из пункта а).

Корректность постановки задач

Определение корректности. Пусть задано уравнение Lu=f с дополнительными условиями $B_j\,u=g_j$. Эта задача поставлена корректно в паре линейных нормированных пространств E_0 и E_1 , если

- 1) для всех наборов данных $(f,g_j)\in E_1$ существует решение $u\in E_0$:
- 2) это решение единственно;
- 3) существует такая постоянная K, не зависящая от (f,g_j) , что $\|u\|_{E_0} \leqslant K \|(f,g_j)\|_{E_1}$.

Подчеркнем, что пространства E_0, E_1 не обязаны быть банаховыми, т.е. полными.

2.18. Рассматривается задача

$$u_{tt} = u_{xx}, \qquad (x,t) \in \overline{\Omega} := \{(x,t) \mid 0 \leqslant t \leqslant 2x, \ 0 \leqslant x < +\infty\};$$

$$u\big|_{t=0} = 0, \qquad u\big|_{t=2x} = \varphi(x), \qquad 0 \leqslant x < +\infty;$$

$$\varphi \in C^{2}(\overline{\mathbb{R}}_{+}) \cap L_{\infty}(\overline{\mathbb{R}}_{+}), \qquad \varphi(0) = \varphi'(0) = \varphi''(0) = 0. \quad (6)$$

Корректна ли она в паре пространств (E_0, E_1) , где

$$\begin{split} E_0 &= C^2(\overline{\Omega}) \cap L_\infty(\overline{\Omega}), & \|u\|_{E_0} &= \sup_{\overline{\Omega}} |u(x,t)|, \\ E_1 &= \big\{\varphi(x) \mid \varphi \text{ удовлетворяет } (6)\big\}, & \|\varphi\|_{E_1} &= \sup_{\overline{\mathbb{R}}_+} |\varphi(x)|? \end{split}$$

2.19. Корректна ли краевая задача:

$$u_t = u_{xx},$$
 $(x,t) \in Q := (0,1) \times (0,2];$ $u\big|_{t=0} = \varphi(x),$ $0 \leqslant x \leqslant 1;$ $u\big|_{x=0} = u\big|_{x=1} = 0,$ $0 \leqslant t \leqslant 2,$

в паре пространств (E_0,E_1) , где

$$\begin{split} E_0 &= \big\{u(x,t) \mid u \in C_{x,t}^{2,1}(Q) \cap C(\overline{Q})\big\}, \qquad \|u\|_{E_0} = \max_{\overline{Q}}|u(x,t)|, \\ E_1 &= \big\{\varphi(x) \mid \varphi \in C^1([0,1]), \, \varphi(0) = \varphi(1) = 0\big\}, \\ &\qquad \|\varphi\|_{E_1} = \max_{[0,1]}|\varphi(x)|? \end{split}$$

2.20. Корректна ли задача Коши для уравнения

$$u_{tt} = u_{xx}$$

в полосе $\overline{Q} := \overline{Q_{\mathbb{R}}^T} \quad (0 < T < +\infty)$ с условиями

$$u\big|_{t=0} = \varphi_1(x), \qquad u_t\big|_{t=0} = \varphi_2(x), \qquad x \in \mathbb{R},$$

в паре пространств (E_0, E_1) , где

$$\begin{split} E_0 &= \big\{ u(x,t) \mid u \in C^2(\overline{Q}), \sup_{\overline{Q}} |u(x,t)| < +\infty \big\}, \\ &\|u\|_{E_0} = \sup_{\overline{Q}} |u(x,t)|, \\ E_1 &= \big\{ \Phi(x) = \big(\varphi_1(x), \varphi_2(x) \big) \mid \varphi_1 \in C^2(\mathbb{R}), \, \varphi_2 \in C^1(\mathbb{R}), \\ &\sup_{\mathbb{R}} |\varphi_j(x)| < +\infty \quad (j=1,2) \big\}, \\ &\|\Phi\|_{E_1} = \sup_{\mathbb{R}} |\varphi_1(x)| + \sup_{\mathbb{R}} |\varphi_2(x)| \end{split}$$

2.21. Корректна ли задача Коши для уравнения

$$u_t = -u_{xx}$$

в полосе $Q := Q_{\mathbb{R}}^{\,T} \; (0 < T < +\infty)$ с условием

$$u\big|_{t=0} = \varphi(x), \qquad x \in \mathbb{R},$$

в паре пространств (E_0,E_1) , где

$$E_0 = \big\{ u(x,t) \mid u \in C^{2,1}_{x,t}(Q) \cap C(\overline{Q}) \cap L_{\infty}(\overline{Q}) \big\},$$

$$egin{aligned} E_1 &= \Big\{ arphi(x) \; \Big| \; rac{d^j arphi}{dx^j} \in C(\mathbb{R}) \cap L_\infty(\mathbb{R}) \quad (j=0,1,\ldots,p) \Big\}, \ &\|u\|_{E_0} &= \sup_{\overline{Q}} |u(x,t)|, \qquad \|arphi\|_{E_1} = \sum_{j=0}^p \sup_{\mathbb{R}} \left| rac{d^j arphi(x)}{dx^j}
ight|, \end{aligned}$$

 $p \in \mathbb{N}$ фиксировано?

2.22. Рассматривается задача Коши для уравнения

$$u_{tt} = u_x$$

с условиями

$$u\big|_{t=0} = \varphi_1(x), \qquad u_t\big|_{t=0} = \varphi_2(x).$$

- а) Применима ли к ней теорема Коши Ковалевской в случае аналитических φ_1 и φ_2 ?
- 6) Корректна ли эта задача в паре пространств (E_0, E_1) , где $E_0 = \left\{ u(x,t) \mid u \in C^{1,2}_{x,t}(\overline{Q}) \cap L_{\infty}(\overline{Q}) \right\}, \qquad Q := Q^1_{\mathbb{R}},$ $E_1 = \left\{ \Phi = (\varphi_1, \varphi_2) \mid \frac{d^j \varphi_i}{dx^j} \in C(\mathbb{R}) \cap L_{\infty}(\mathbb{R}) \; (i=1,2; \; j=0,1,2) \right\},$ $\|u\|_{E_0} = \sup_{\overline{Q}} |u(x,t)|, \qquad \|\Phi\|_{E_1} = \sum_{i=1}^2 \sum_{j=0}^2 \sup_{\mathbb{R}} \left| \frac{d^j \varphi_i(x_1)}{dx^j} \right|?$
- 2.23. Рассматривается краевая задача

$$\begin{aligned} u_t + \alpha u_x &= 0, & (x,t) \in \overline{Q} := \overline{\mathbb{R}}_+ \times \overline{\mathbb{R}}_+; \\ u\big|_{t=0} &= g_1(x), \ x \in \overline{\mathbb{R}}_+; & u\big|_{x=0} &= g_2(t), \ t \in \overline{\mathbb{R}}_+. \end{aligned}$$

Найти все α , при которых эта задача корректна в паре пространств (E_0, E_1) , где

$$\begin{split} E_0 &= C^1(\overline{Q}) \cap L_\infty(\overline{Q})\}, \qquad \|u\|_{E_0} = \sup_{\overline{Q}} |u(x,t)|, \\ E_1 &= \big\{\Phi = (0,g_1,g_2) \mid g_j \in C^1(\overline{\mathbb{R}}_+) \cap L_\infty(\overline{\mathbb{R}}_+) \quad (j=1,2), \\ g_1(0) &= g_2(0), \ g_2'(0) + \alpha g_1'(0) = 0\big\}, \\ \|\Phi\|_{E_1} &= \sup_{\overline{\mathbb{R}}_+} |g_1(x)| + \sup_{\overline{\mathbb{R}}_+} |g_2(t)|. \end{split}$$

2.24. Рассмотрим задачу Коши в полосе $\Pi = \mathbb{R}^1_x \times [0,y_0]$ в $\mathbb{R}^2_{x,y}$

$$\begin{array}{cccc} \Delta \, u + u = 0 & \mathrm{B} & \Pi, & & u \in C^2(\Pi) \cap C^1(\overline{\Pi}), \\ u\big|_{y=0} = \varphi(x), & & u_y\big|_{y=0} = \psi(x), \end{array}$$

 $\varphi(x),\,\psi(x)$ — ограниченные непрерывные функции на \mathbb{R}^1_x . Корректна ли эта задача в паре пространств $u\in E_0,\,\Phi\equiv(\varphi,\psi)\in E_1,$ где

$$\begin{split} E_0 &= C(\Pi), & \|u\|_{E_0} = \sup_{\overline{\Pi}} |u(x,t)|, \\ E_1 &= C(\mathbb{R}^1_x) \times C(\mathbb{R}^1_x), & \|\Phi\|_{E_1} = \sup_{\mathbb{R}} |\varphi(x)| + \sup_{\mathbb{R}} |\psi(x)|? \end{split}$$

3 Уравнения гиперболического типа

- **3.1.** Существует ли функция $u \in C^2(\overline{B_1^2(0)} \setminus \{0\})$, удовлетворяющая в $\overline{B_1^2(0)} \setminus \{0\}$ уравнению $u_{x_1x_1} = u_{x_2x_2}$ и неограниченная в $\overline{B_1^2(0)} \setminus \{0\}$?
- **3.2.** Пусть функция $u(x) \in C^2(\mathbb{R}^2)$ удовлетворяет уравнению $u_{x_1x_1}=u_{x_2x_2}$ в \mathbb{R}^2 , и u(x)=0 при всех $x\in \overline{B_1^2(0)}$. Найти наибольшее множество в \mathbb{R}^2 , на котором необходимо u(x)=0.
- **3.3.** Рассмотрим задачу Коши на плоскости (x,t) с данными на характеристике $\{t=x\}$ для волнового уравнения

$$u_{tt} = u_{xx}, \qquad u\big|_{t=x} = \varphi(x), \quad u_x\big|_{t=x} = \psi(x).$$

Придумайте такие гладкие функции $\varphi(x),\ \psi(x),\$ чтобы данная задача не имела решения.

3.4. Привести пример функций $arphi, \psi \in C^2(\mathbb{R})$ таких, что задача Коши

$$u_{xx} + 5u_{xy} - 6u_{yy} = 0,$$
 $u|_{y=6x} = \varphi(x),$ $u_y|_{y=6x} = \psi(x)$

- а) имела бы решение. Единственно ли это решение?
- б) не имела бы решений.
- **3.5.** Пусть $\overline{Q}=[0,1]\times [0,1],\, f\in C^2(\partial Q).$ Единственно ли решение $u(x,t)\in C^2(\overline{Q})$ следующей задачи:

$$u_{tt} = u_{xx}, \quad (x,t) \in \overline{Q}; \qquad u|_{\partial Q} = f$$
?

Задача Коши для волнового уравнения

Классическим решением задачи Коши для волнового уравнения

$$u_{tt} = a^2 \Delta_x u + f(x, t) \quad (a > 0), \qquad x \in \mathbb{R}^n, \quad t > 0,$$

 $u|_{t=0} = \varphi(x), \qquad u_t|_{t=0} = \psi(x),$

где $\varphi(x),\ \psi(x),\ f(x,t)$ — заданные функции, называется функции $u(x,t)\in C^2(x\in\mathbb{R}^n,t>0)\cap C^1(x\in\mathbb{R}^n,t\geqslant0).$

Если выполняются условия

 $arphi(x)\in C^2(\mathbb{R}^1),\; \psi(x)\in C^1(\mathbb{R}^1),\; f(x,t)\in C^1(\mathbb{R}^1 imes\overline{\mathbb{R}}_+)\;\;(n=1);$ $arphi(x)\in C^3(\mathbb{R}^n), \psi(x)\in C^2(\mathbb{R}^n), f(x,t)\in C^2(\mathbb{R}^n imes\overline{\mathbb{R}}_+)\;\;(n=2,3),$ то решение задачи Коши существует, единственно и задается: при n=1 формулой Даламбера

$$\begin{split} u(x,t) &= \frac{1}{2} \Big[\varphi(x+at) + \varphi(x-at) \Big] + \frac{1}{2a} \int\limits_{x-at}^{x+at} \psi(\xi) \; d\xi \; + \\ &+ \frac{1}{2a} \int\limits_{0}^{t} \int\limits_{x-a(t-\tau)}^{x+a(t-\tau)} f(\xi,\tau) \; d\xi \; d\tau \; ; \end{split}$$

при n=2 формулой Пуассона

$$u(x,t) = \frac{1}{2\pi a} \int_{|\xi-x| < at} \frac{\psi(\xi) d\xi}{\sqrt{(at)^2 - |\xi-x|^2}} + \frac{\partial}{\partial t} \left[\frac{1}{2\pi a} \int_{|\xi-x| < at} \frac{\varphi(\xi) d\xi}{\sqrt{(at)^2 - |\xi-x|^2}} \right] + \frac{1}{2\pi a} \int_{0}^{t} \int_{|\xi-x| < a(t-\tau)} \frac{f(\xi,\tau) d\xi d\tau}{\sqrt{(a^2(t-\tau)^2 - |\xi-x|^2)}};$$

при n=3 формулой Кирхгофа

$$u(x,t) = \frac{1}{4\pi a^2 t} \int_{|\xi-x|=at} \psi(\xi) dS_{\xi} + \frac{\partial}{\partial t} \left[\frac{1}{4\pi a^2 t} \int_{|\xi-x|=at} \varphi(\xi) dS_{\xi} \right] + \int_0^t \frac{1}{4\pi a^2 (t-\tau)} \int_{|\xi-x|=a(t-\tau)} f(\xi,\tau) dS_{\xi} d\tau.$$

Замечание. Решение однородного волнового уравнения в любой точке (x,t) зависит от значений начальных функций φ и ψ

при n = 1 — на отрезке [x - at, x + at];

при n = 2 — в круге с центром в точке x радиуса at;

при n=3 — на сфере с центром в точке x радиуса at.

и не зависит от их значений вне данного множества.

3.6. Пусть $u(x,t),\,(x,t)\in\mathbb{R} imes\mathbb{R}_+,$ — решение задачи Коши

$$u_{tt} = u_{xx}, \qquad u\big|_{t=0} = 0, \quad u_t\big|_{t=0} = (1+x^2)^{\alpha} e^{\beta x^2}.$$

Найти все $\alpha, \beta,$ при которых $\sup_{\mathbb{R} \times \mathbb{R}_+} |u(x,t)| < +\infty.$

3.7. Пусть $u(x,t),\,(x,t)\in\mathbb{R} imes\mathbb{R}_+,$ — решение задачи Коши

$$u_{tt} = u_{xx}, \qquad u\big|_{t=0} = 0, \quad u_t\big|_{t=0} = (x^3 + \alpha^2 x^4)(1+x^2)^{\beta}.$$

Найти все $\alpha, \beta,$ при которых существует конечный $\lim_{t \to +\infty} u(0,t).$

3.8. Найти все комплексные a, при которых ограничено решение u(x,t) в полуплоскости $\mathbb{R} \times \overline{\mathbb{R}}_+$ эадачи

$$u_{tt} = u_{xx}, \qquad u\big|_{t=0} = 0, \quad u_t\big|_{t=0} = (1+x^2)^{\text{Im } a} e^{ax^2}$$

3.9. Пусть $u(x,t;a),\,(x,t)\in\mathbb{R} imes\mathbb{R}_+,$ — решение задачи Коши

$$u_{tt} = a^2 u_{xx}, \qquad u\big|_{t=0} = \frac{1}{1+x^2}, \quad u_t\big|_{t=0} = 0.$$

Доказать, что u(x,t;a) убывает по a.

3.10. Пусть $u(x,t),\,(x,t)\in\mathbb{R} imes\mathbb{R}_+,$ — решение задачи Коши

$$u_{tt} = a^2 u_{xx}, \qquad u\Big|_{t=0} = \varphi(x), \quad u_t\Big|_{t=0} = \psi(x),$$

причем $\varphi(x)=\psi(x)=0$ для $|x|\geqslant 1$.

Доказать, что для любого x_0 существуют такие числа t_0 и c, что $u(x_0,t)=c$ при всех $t\geqslant t_0.$ Найти эти числа.

3.11. Пусть $u(x,t),\,(x,t)\in\mathbb{R} imes\mathbb{R}_+,$ — решение задачи Коши

$$u_{tt} = a^2 u_{xx}, \qquad u|_{t=0} = \varphi(x), \quad u_t|_{t=0} = 0,$$

причём $|\varphi(x)|\leqslant 1$ для всех $x\in\mathbb{R}$, $\varphi(x)=0$ для $|x|\geqslant 1$.

Найти нижнюю грань множества таких значений τ , что при всех $t\geqslant \tau,\,x\in\mathbb{R}$ и любых φ с указанными свойствами выполняется неравенство $|u(x,t)|\leqslant 1/2$.

3.12. Пусть $\{u_k(x,t)\}\ (k=1,2,\ldots)$ — последовательность функций класса C^2 , удовлетворяющих соотношениям

$$\begin{split} \frac{\partial^2 u_k}{\partial t^2} &= k^\alpha \frac{\partial^2 u_k}{\partial x^2}, \qquad x \in \mathbb{R}, \quad 0 \leqslant t \leqslant k; \\ u_k\big|_{t=0} &> 0 \text{ при } k^\beta < x < +\infty, \quad u_k\big|_{t=0} = 0 \text{ при } -\infty < x \leqslant k^\beta; \\ \frac{\partial u_k}{\partial t}\big|_{t=0} &= 0, \quad x \in \mathbb{R}. \end{split}$$

При каких $\alpha>0,\,\beta>0$ найдется такое x_0 , не зависящее от k, что $u_k(x,t)=0$ для $(x,t)\in (-\infty,x_0]\times [0,k]$ $(k=1,2,\dots)$?

3.13. Найти решение u(x,y,t) в $\mathbb{R}^2 imes \mathbb{R}_+$ задачи:

$$u_{tt} = u_{xx} + u_{yy},$$
 $u\Big|_{t=0} = e^{-x^2} + \operatorname{arctg} y,$ $u_t\Big|_{t=0} = \cos x + \sin y.$

3.14. Найти решение $u(x,t), \, x=(x_1,x_2,x_3),$ в $\mathbb{R}^3 \times \mathbb{R}_+$ задачи:

$$u_{tt} = \Delta_x u, \qquad u\Big|_{t=0} = 0, \quad u_t\Big|_{t=0} = |x|^7.$$

3.15. Найти решение $u(x,t),\, x=(x_1,x_2,x_3),\,$ в $\mathbb{R}^3 imes\mathbb{R}_+$ задачи:

$$u_{tt} = \Delta_x u, \quad u\big|_{t=0} = 0, \quad u_t\big|_{t=0} = \frac{1}{1 + (x_1 + x_2 + x_3)^2}, \quad x \in \mathbb{R}^3.$$

3.16. Найти решение задачи Коши

$$u_{tt}=4\big(u_{xx}+u_{yy}+u_{zz}\big),\ t>0,\qquad u\big|_{t=0}=\varphi(x,y,z),\ u_t\big|_{t=0}=0$$
при следующих функциях $\varphi(x,y,z)$:

a)
$$\varphi = \sin x + e^{2z}$$
, 6) $\varphi = (yz)^2$, b) $\varphi = (3x - y + z)e^{3x - y + z}$.

3.17. Пусть u(x,t) — решение в $\mathbb{R}^3 \times \mathbb{R}_+$ задачи Коши:

$$u_{tt} = \Delta_x u, \qquad u\big|_{t=0} = 0, \qquad u_t\big|_{t=0} = (1+4|x|^2)^{-1/2}.$$

Найти $\lim_{t\to +\infty} u(0,t)$.

3.18. Пусть $u(x_1,x_2,t)$ — решение в $\mathbb{R}^2 \times \mathbb{R}_+$ задачи Коши:

$$u_{tt} = u_{x_1x_1} + u_{x_2x_2}, \quad u\big|_{t=0} = 0, \quad u_t\big|_{t=0} = \psi(x_1, x_2) \in C^2(\mathbb{R}^2),$$

где $\psi(x_1,x_2)>0$ в $B_1^2(0),\,\psi(x_1,x_2)=0$ в $\mathbb{R}^2\setminus B_1^2(0).$

- а) При каких (x_1, x_2, t) функция $u(x_1, x_2, t)$ равна нулю?
- б) Найти $\lim_{t \to +\infty} tu(x_1,x_2,t)$ в случае, когда

$$\psi(x_1, x_2) = (1 - x_1^2 - x_2^2)_+^3.$$

3.19. Пусть $u(x_1,x_2,t)$ — решение в $\mathbb{R}^2 \times \mathbb{R}_+$ задачи Коши:

$$u_{tt} = u_{x_1x_1} + u_{x_2x_2}, \quad u\big|_{t=0} = 0, \quad u_t\big|_{t=0} = \psi(x_1, x_2) \in C^2(\mathbb{R}^2),$$

где $\psi(x_1,x_2)=0$ при $(x_1,x_2)\in [0,1]\times [0,2],\ \psi(x_1,x_2)>0$ при остальных $(x_1,x_2).$

- а) Описать с помощью неравенств множество всех значений $(x_1,x_2,t)\in\mathbb{R}^2 imes\overline{\mathbb{R}}_+$, для которых $u(x_1,x_2,t)=0.$
 - б) Нарисовать это множество.
- **3.20.** Пусть u(x,t) решение в $\mathbb{R}^3 \times \mathbb{R}_+$ задачи Коши:

$$u_{tt} = \Delta_x u, \qquad u|_{t=0} = 0, \quad u_t|_{t=0} = \psi(x),$$

где $\psi(x)=0$ при $0.9\leqslant |x|\leqslant 1,\, \psi(x)>0$ для остальных x. При каких (x,t) функция u(x,t) равна нулю?

3.21. Пусть $\{u_{\varepsilon}(x,y,t)\}\ (0<\varepsilon\leqslant\frac{1}{2})$ — семейство функций класса C^2 , удовлетворяющих соотношениям

$$\varepsilon \frac{\partial^2 u_{\varepsilon}}{\partial t^2} = \frac{\partial^2 u_{\varepsilon}}{\partial x^2} + \frac{\partial^2 u_{\varepsilon}}{\partial y^2}, \qquad (x, y) \in \mathbb{R}^2, \quad 0 \leqslant t \leqslant \varepsilon^{-m};$$
$$u_{\varepsilon}\big|_{t=0} = 0, \quad (x, y) \in \mathbb{R}^2;$$

$$\left. \frac{\partial u_{\varepsilon}}{\partial t} \right|_{t=0} = 0$$
 при $x^2 + y^2 \leqslant \varepsilon^{-q}$, $\left. \frac{\partial u_{\varepsilon}}{\partial t} \right|_{t=0} > 0$ при $x^2 + y^2 > \varepsilon^{-q}$.

При каких $m>0,\,q>0$ найдется такое $\rho>0,$ не зависящее от $\varepsilon,$ что $u_{\varepsilon}(x,y,t)=0$ для $x^2+y^2\leqslant \rho^2,\,0\leqslant t\leqslant \varepsilon^{-m}\,\,(0<\varepsilon\leqslant \frac{1}{2})?$

3.22. Пусть u(x,t) — решение задачи Коши

$$u_{tt} = \Delta u, \quad x \in \mathbb{R}^n, \ t > 0, \qquad u|_{t=0} = 0, \quad u_t|_{t=0} = \psi(x),$$

причем $\psi(x)\geqslant 0$. При каких $n\in\{1,2,3\}$ справедливо утверждение: если множество $\{x\in\mathbb{R}^n\mid \psi(x)=0\}$ связно, то и множество $\{(x,t)\in\mathbb{R}^n\times\mathbb{R}_+\mid u(x,t)=0\}$ также связно?

3.23. Пусть $u(x,t)\in C^2\big(\mathbb{R}^3\times(0,+\infty)\big)\cap C^1\big(\mathbb{R}^3\times[0,+\infty)\big)$ — решение задачи Коши для волнового уравнения

$$u_{tt} = \Delta u, \qquad u\Big|_{t=0} = 0, \quad u_t\Big|_{t=0} = \varphi(x) \in C_0^{\infty}(\mathbb{R}^3).$$

Может носитель функции u лежать в цилиндре $B_R^3(0) \times [0,+\infty)$.

Смешанная задача для полуограниченной струны

Смешанной или начально-краевой задачей для полуограниченной струны называется задача о нахождении функции u(x,t), удовлетворяющей уравнению

$$u_{tt} = a^2 u_{xx}$$
 $(a > 0), x > 0, t > 0,$

начальным условиям при t=0

$$u|_{t=0} = \varphi(x), \quad u_t|_{t=0} = \psi(x), \quad x > 0,$$

и граничному условию при x=0

$$u\big|_{x=0}=\mu(t) \qquad \qquad \text{(условие I рода)},$$
 или $u_x\big|_{x=0}=\mu(t) \qquad \qquad \text{(условие II рода)},$ или $(u_x-\alpha u)\big|_{x=0}=\mu(t) \qquad \qquad \text{(условие III рода)}$

В случае когда $\mu(t)\equiv 0$, краевое условие называется однородным. Рассматриваются и другие виды граничных условий.

Для существования классического решения $u \in C^2(\mathbb{R}_+ \times \mathbb{R}_+)$ нужны дополнительные *условия согласования* начальных и граничных условий в точке (0,0). Например, классическое решение задачи с граничным условием I рода существует, если

$$\mu(0) = \varphi(0) (= u(0,0)), \qquad \mu'(0) = \psi(0) (= u_t(0,0)),$$

$$\mu''(0) = a^2 \varphi''(0) \quad (u_{tt}(0,0) = a^2 u_{xx}(0,0)).$$

Общее решение однородного уравнения струны имеет вид

$$u(x,t) = f(x - at) + g(x + at);$$

f(x-at) — волна, бегущая вправо, g(x+at) — влево.

Функции $f(\xi)$ и $g(\xi)$ при положительных значениях аргумента определяются из начальных условий, и тем самым при x>at решение находится по формуле Даламбера

$$u(x,t) = \frac{1}{2} \Big[\varphi(x+at) + \varphi(x-at) \Big] + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi) d\xi.$$

Для нахождения решения при 0 < x < at ищем функцию $f(\xi)$ при $\xi < 0$ из *граничного* условия при x = 0. Например, в случае условия первого рода имеем

$$u\big|_{x=0} = f(-at) + g(at) = \mu(t), \quad f(\xi) = \mu(-\xi/a) - g(-\xi), \quad \xi < 0.$$

В случае граничного условия второго или третьего рода функция $f(\xi),\ \xi<0,$ является решением обыкновенного дифференциального уравнения первого порядка и зависит от одной произвольной постоянной, которая находится из условия непрерывности решения u(x,t) на главной характеристике x=at.

Замечание. Если уравнение является $neo \partial nopo \partial nom$, то следует найти любое частное решение неоднородного уравнения w(x,t), представить искомое решение u(x,t) в виде суммы u(x,t)=v(x,t)+w(x,t), и подставить u(x,t) в уравнение, начальные и граничное условия. Тогда для новой неизвестной функции v(x,t) получится $o \partial nopo \partial noe$ уравнение с новыми начальными и граничными данными.

Частные случаи.

Для однородного граничного условия первого рода

$$u|_{x=0} = 0$$

общий метод дает тот же результат, что и метод нечетного $npo \partial on$ жения начальных условий. Функцию u(x,t) можно найти

по формуле Даламбера как решение задачи Коши $(x \in \mathbb{R})$ с нечетно продолженными в область x < 0 функциями φ и ψ

$$\tilde{\varphi}(x) = \left\{ \begin{array}{cc} \varphi(x), & x \geqslant 0, \\ -\varphi(-x), & x < 0, \end{array} \right. \qquad \tilde{\psi}(x) = \left\{ \begin{array}{cc} \psi(x), & x \geqslant 0, \\ -\psi(-x), & x < 0; \end{array} \right.$$

полученное решение следует рассматривать только при $x\geqslant 0$. В случае однородного граничного условия второго рода

$$u_x\big|_{x=0}=0$$

удобно применить метод uemhoro npodoлжения начальных условий. Функцию u(x,t) можно найти по формуле Даламбера как решение задачи Коши $(x\in\mathbb{R})$ с четно продолженными в область x<0 функциями φ и ψ

$$\tilde{\varphi}(x) = \left\{ \begin{array}{ll} \varphi(x), & x \geqslant 0, \\ \varphi(-x), & x < 0. \end{array} \right. \qquad \tilde{\psi}(x) = \left\{ \begin{array}{ll} \psi(x), & x \geqslant 0, \\ \psi(-x), & x < 0; \end{array} \right.$$

полученное решение рассматривать только при $x \geqslant 0$.

Условия согласования здесь переписываются в виде условий на гладкость в нуле функций $ilde{arphi}\in C^2(\mathbb{R})$ и $ilde{\psi}\in C^1(\mathbb{R}).$

3.24. Пусть u(x,t) — решение в $\overline{\mathbb{R}}_+ \times \overline{\mathbb{R}}_+$ задачи:

$$u_{tt} = u_{xx}, u_x \big|_{x=0} = 0,$$

$$u \big|_{t=0} = \begin{cases} -\sin^3 x, & \pi < x < 2\pi, \\ 0, & x \notin (\pi, 2\pi), \end{cases} u_t \big|_{t=0} = 0.$$

- а) Найти множество $\{(x,t)\in\overline{\mathbb{R}}_+ imes\overline{\mathbb{R}}_+\mid u(x,t)
 eq0\}.$
- б) Нарисовать это множество.
- в) Нарисовать графики $u(x,\frac{3\pi}{2}),\ u(x,\frac{5\pi}{2}).$

3.25. При каких $\lambda={\rm const}$ и $\varphi(x)$ существует функция $u(x,t)\in C^2(\overline{\mathbb{R}}_+\times\overline{\mathbb{R}}_+)$; являющаяся решением в $\overline{\mathbb{R}}_+\times\overline{\mathbb{R}}_+$ следующей задачи:

$$u_{tt} = u_{xx}, \quad (u_t + \lambda u_x) \Big|_{x=0} = 0, \quad u\Big|_{t=0} = \varphi(x), \quad u_t \Big|_{t=0} = 0$$
?

Найти эту функцию.

3.26. При каких $\varphi\in C^2(\mathbb{R})$ и $\psi\in C^2(\mathbb{R})$ существует решение $u\in C^2(\mathbb{R}^2)$ в \mathbb{R}^2 задачи:

$$u_{tt} = u_{xx}, \qquad u\big|_{t=x} = \varphi(x), \quad u_t\big|_{t=x} = \psi(x)$$
?

3.27. При каких A и ω существует решение $u\in C^2(\overline{\mathbb{R}}_+ imes\overline{\mathbb{R}}_+)$ в $\overline{\mathbb{R}}_+ imes\overline{\mathbb{R}}_+$ краевой задачи:

$$u_{tt} = u_{xx}, \quad u\big|_{x=0} = \cos \omega t, \quad u\big|_{t=0} = A e^{-x^2}, \quad u_t\big|_{t=0} = 0?$$

Найти это решение.

3.28. В четверти плоскости $\overline{\mathbb{R}}_+ imes \overline{\mathbb{R}}_+$ рассматривается задача

$$u_{tt} = \frac{1}{4}u_{xx}, \quad (u_x - u)\big|_{x=0} = \alpha(t), \quad u\big|_{t=0} = \varphi(x), \quad u_t\big|_{t=0} = 0.$$

- а) Пусть $\varphi(x)$ и $\alpha(t)$ 2π -периодические функции, равные нулю на отрезке $[\pi/2;3\pi/2]$. Найти и нарисовать максимальное множество, на котором функция u(x,t) заведомо равна 0.
- б) Пусть $\varphi(x)=\left(\cos_+(x)\right)^{\beta},$ (где $f_+(x)=\max(0,f(x))).$ Найти необходимое и достаточное условие на функцию $\alpha(t)$ и константу $\beta>0,$ при которых существует классическое решение этой задачи.
- **3.29.** При каких $k,\,\alpha$ и β существует решение $u(x,t)\in C^2(\overline{D})$ в $\overline{D}=\{(x,t)\mid kt\leqslant x<+\infty,\,0\leqslant t<+\infty\}$ следующей задачи

$$u_{tt} = u_{xx}, \quad u\big|_{x=kt} = \alpha t^{\beta}, \quad u\big|_{t=0} = u_t\big|_{t=0} = 0$$
?

Единственно ли оно?

3.30. Ищется решение u(x,t) задачи

$$u_{tt} = u_{xx};$$
 $u\Big|_{t=x} = \varphi(x) \in C^2([0,1]),$ $0 \leqslant x \leqslant 1;$ $u\Big|_{t=2x} = \psi(x) \in C^2([0,1/2]),$ $0 \leqslant x \leqslant 1/2.$

Здесь $\varphi^{(k)}(0) = \psi^{(k)}(0) = 0$ для k = 0, 1, 2.

- а) Описать с помощью неравенств множество всех значений $(x,t)\in\mathbb{R}^2,$ для которых однозначно определено решение u(x,t) этой задачи.
 - б) Нарисовать это множество.
 - в) Найти решение u(x,t) рассматриваемой задачи.

Ограниченная струна. Метод Фурье

Изучение собственных колебаний ограниченной струны с закрепленными концами приводит к задаче

$$u_{tt} = u_{xx}, \quad x \in (0, l), \ t > 0, \qquad u|_{x=0} = u|_{x=l} = 0,$$
 (7)
 $u|_{t=0} = \varphi(x), \qquad u_t|_{t=0} = \psi(x),$ (8)

Это так называемая смешанная, или начально-краевая, задача для уравнения струны. Решение этой задачи ищется в классе функций $u(x,t) \in C^2((0,l) \times \mathbb{R}_+) \cap C^1([0,l] \times \overline{\mathbb{R}}_+)$.

Краевые условия в (7) в каждом из концов x=0 и x=l могут быть заменены (независимо друг от друга) на условия одного из трех видов, указанных для полуограниченной струны. Соответственно, для существования классического решения задачи (7)-(8) необходимо выполнение условий согласования в ∂syx точках: (0,0) и (l,0).

Решение начально-краевой задачи на отрезке, как правило, строится стандартным методом Фурье в виде разложения в ряд по собственным функциям $X_k(x)$ соответствующей задачи Штурма-Лиувилля. В случае однородных краевых условий I и II рода на обоих концах базисные функции X_k имеют вид:

$$X_k\left(x
ight)=\sinrac{\pi kx}{l}\quad\left(k\in\mathbb{N}
ight)$$
 в случае $uig|_{x=0}=uig|_{x=l}=0;$ $X_0(x)\equiv1,\;X_k(x)=\cosrac{\pi kx}{l}$ в случае $u_xig|_{x=0}=u_xig|_{x=l}=0;$

$$X_k(x)=\sinrac{\piig(k-rac12ig)x}{l}$$
 в случае $uig|_{x=0}=u_xig|_{x=l}=0;$ $X_k(x)=\cosrac{\piig(k-rac12ig)x}{l}$ в случае $u_xig|_{x=0}=uig|_{x=l}=0,$

Например, решение задачи (7)-(8) дается формулой

$$u(x,t) = \sum_{k=1}^{\infty} \left(A_k \cos \frac{\pi k a t}{l} + B_k \sin \frac{\pi k a t}{l} \right) \sin \frac{\pi k x}{l},$$
$$A_k = \frac{2}{l} \int_0^l \varphi(x) \sin \frac{\pi k x}{l} dx, \quad B_k = \frac{2}{2\pi k a} \int_0^l \psi(x) \sin \frac{\pi k x}{l} dx.$$

Интегралом энергии для рассматриваемой смешанной задачи называется функция

$$E(t) = \int_0^l \left[rac{1}{2} \, u_t^2(x,t) + rac{a^2}{2} \, u_x^2(x,t)
ight] dx.$$

В случае, если в обоих концах x=0 и x=l имеются однородные краевые условия I или II рода, выполнено энергетическое $moж \, decm \, so$:

$$E(t) \equiv \mathrm{const}$$

для любого классического решения u(x,t) этой задачи.

3.31. Пусть u(x,t) — решение в $\overline{\mathbb{R}}_+ \times \overline{\mathbb{R}}_+$ задачи:

$$u_{tt} = u_{xx}, u_x|_{x=0} = 0,$$

$$u|_{t=0} = \begin{cases} \sin^3 x, & \pi < x < 2\pi, \\ 0, & x \notin (\pi, 2\pi), \end{cases} u_t|_{t=0} = 0.$$

- а) Нарисовать график $u(x, 2\pi)$.
- б) Тот же вопрос для случая, когда уравнение рассматривается для $x\in[0,2\pi],\,t\in\overline{\mathbb{R}}_+$ и ставится дополнительное условие $u\big|_{x=2\pi}=0.$
- в) Тот же вопрос для случая, когда последнее условие заменяется условием $u_x\big|_{x=2\pi}=0.$
- **3.32.** Указать все значения постоянных α, β и $\gamma,$ при которых существует решение $u \in C^2(\overline{Q})$ смешанной задачи

$$u_{tt} = u_{xx}, \qquad u\big|_{x=0} = u\big|_{x=\pi} = 0,$$

 $u\big|_{t=0} = \alpha x^4 + \beta x^3 + \sin x, \qquad u_t\big|_{t=0} = \gamma \cos x$

в квадрате $\overline{Q} = [0,\pi] \times [0,\pi].$ Найти это решение.

3.33. Пусть u(x,t) — решение в $[0,1] imes \overline{\mathbb{R}}_+$ смешанной задачи

$$u_{tt} = 4u_{xx},$$
 $u\Big|_{x=0} = u\Big|_{x=1} = 0,$ $u\Big|_{t=0} = 4\sin^3 \pi x,$ $u_t\Big|_{t=0} = 30x(1-x).$

- а) Найти $f(\frac{1}{3})$, где $f(t) = \int_0^1 \left[u_t^2(x,t) + 4u_x^2(x,t) \right] dx.$
- б) Найти u(x,2).

 ${f 3.34.}$ Пусть u(x,t) — решение в $[0,\pi] imes\overline{\mathbb{R}}_+$ смешанной задачи

$$u_{tt} = u_{xx}$$
, $u\big|_{x=0} = u\big|_{x=\pi} = 0$, $u\big|_{t=0} = \sin^{100} x$, $u_t\big|_{t=0} = 0$.

Верно ли, что $|u_t(x,\frac{\pi}{2})|>100$ на множестве, мера которого больше 1?

3.35. Пусть u(x,t) — решение в $[0,1] imes \overline{\mathbb{R}}_+$ смешанной задачи

$$u_{tt} = u_{xx}$$
, $u|_{x=0} = u|_{x=1} = 0$, $u|_{t=0} = 0$, $u_t|_{t=0} = x^2(1-x)$.

Найти $\lim_{t\to +\infty} \int_0^1 \left[u_t^2(x,t) + u_x^2(x,t)\right] dx.$

3.36. Пусть u(x,t) — решение в $[0,1] imes\overline{\mathbb{R}}_+$ смешанной задачи

$$u_{tt} = u_{xx}, \quad u\big|_{x=0} = u\big|_{x=1} = 0, \quad u\big|_{t=0} = 0, \quad u_t\big|_{t=0} = x^2(1-x)^2.$$

Найти
$$\lim_{t\to +\infty}\int_{0}^{1/2}\left[u_{t}^{2}(x,t)+u_{x}^{2}(x,t)\right]dx$$
.

3.37. Пусть u(x,t) — решение в $[0,\pi] imes\overline{\mathbb{R}}_+$ смешанной задачи

$$\begin{aligned} u_{tt} &= u_{xx} + \sin x \cos 5x \sin \omega t, \\ u\big|_{x=0} &= u\big|_{x=\pi} = 0, \quad u\big|_{t=0} = u_t\big|_{t=0} = 0. \end{aligned}$$

Найти все ω , для которых $\sup_{\overline{\Omega}}|u(x,t)|<+\infty.$

- 3.38. Пусть u(x,t) решение в $[0,1] imes \overline{\mathbb{R}}_+$ смешанной задачи $u_{tt} = u_{xx}, \quad u\big|_{x=0} = 0, \quad u\big|_{x=1} = \sin \alpha t, \quad u\big|_{t=0} = 0, \quad u_t\big|_{t=0} = \alpha x,$ Найти все α , для которых $\sup_{\overline{Q}} |u(x,t)| < +\infty$.
- **3.39.** а) Найти все k>0, для которых при некоторой функции $\varphi(x)\in C^\infty\left((0,\pi)\right)$ существует неограниченное решение в $[0,\pi] imes \overline{\mathbb{R}}_+$ задачи

$$\begin{split} u_{tt} &= 9u_{xx} \;, \qquad u\big|_{x=0} = (u_x - ku) \,\big|_{x=\pi} = 0, \\ u\big|_{t=0} &= 0, \qquad u_t \,\big|_{t=0} = \varphi(x). \end{split}$$

- б) Для k=1 описать все функции $\varphi(x)\in C^{\infty}ig((0,l)ig),$ для которых решение u(x,t) этой задачи ограничено.
- **3.40.** Пусть $u(x,t)\in C^2\left((0,\pi)\times(0,+\infty)\right)\cap C^1\left([0,\pi]\times[0,+\infty)\right)$ решение в $[0,\pi]\times\overline{\mathbb{R}}_+$ краевой задачи:

$$u_{tt} = u_{xx}, \quad u\big|_{x=0} = f(t), \quad u\big|_{x=\pi} = 0, \quad u\big|_{t=0} = u_t\big|_{t=0} = 0,$$

f(t) — гладкая функция и $f(t)\to 0$ при $t\to \infty.$ Может ли решение этой задачи неограниченно возрастать по времени, то есть по переменной t?

4 Уравнения параболического типа

Краевая задача

Первой смешанной, или начально-краевой, задачей для уравнения теплопроводности в ограниченной области Ω называется задача о нахождении функции $u(x,t)\in C^2(Q_\Omega^T)\cap C(\overline{Q}_\Omega^T),\, T>0$ или $T=+\infty$, удовлетворяющей условиям

$$u_t = \left. a^2 \Delta_x u, \qquad u \right|_{x \in \partial \Omega} = 0, \qquad u \big|_{t=0} = \varphi(x) \in C(\Omega),$$

где $\varphi(x)$ — заданная функция. Краевое условие может быть и неоднородным.

Если вместо условий на значения функции u при $x \in \partial \Omega$ заданы значения ее нормальной производной или линейной комбинации самой функции и ее нормальной производной, задача называется соответственно II и III краевой.

Принцип максимума в цилиндре. Если функция $u(x,t)\in C^2(Q_\Omega^T)\cap C(\overline{Q}_\Omega^T)$ удовлетворяет уравнению теплопроводности в цилиндре Q_Ω^T , то свое максимальное (и минимальное) значение в Q_Ω^T она принимает либо на нижнем основании цилиндра t=0, либо на его боковой поверхности $x\in\partial\Omega$.

Решение данной задачи, как правило, строится мето дом Φy -pbe. Например, решение одномерной по пространственной переменной $x \in (0,l)$ задачи

$$u_t = a^2 u_{xx}, \qquad u\big|_{x=0} = u\big|_{x=1} = 0, \qquad u\big|_{t=0} = \varphi(x)$$

дается формулой

$$u(x,t) = \sum_{k=1}^{\infty} C_k e^{-\left(\frac{\pi k a}{l}\right)^2 t} \sin \frac{\pi k x}{l}, \qquad C_k = \frac{2}{l} \int_0^l \varphi(x) \sin \frac{\pi k x}{l} dx.$$

- **4.1.** Может ли отличное от постоянной решение первой краевой задачи для уравнения теплопроводности принимать наименьшее значение во внутренней точке?
- **4.2.** Пусть $u\in C^{2,1}_{x,t}(\overline{Q})$ решение в $\overline{Q}:=[0,1]\times[0,1]$ задачи $u_t=u_{xx},\qquad u\big|_{x=0}=u\big|_{x=1}=0,\quad u\big|_{t=0}>0.$

Может ли функция $f(t) := \int_0^1 u^2(x,t) \ dx$ иметь максимум внутри интервала (0,1)?

4.3. Пусть $u\in C^{2,1}_{x,t}(Q)\cap C(\overline{Q})$ — решение в Q:=(-1,1) imes(0,1] уравнения

$$u_t = u_{xx} + q(x,t) \ u,$$
 где $q \in C(\overline{Q}).$

Обозначим $M:=\max_{\overline{Q}}u;\ m:=\max_{\Gamma}u,$ где $\Gamma:=\overline{Q}\setminus Q.$

Возможно ли, что M>m, если:

- a) $q(x,t) \equiv 0;$ 6) q(x,t) > 0; B) q(x,t) < 0, M > 0?
- 4.4. Пусть $Q:=(0,1)\times(0,1].$ Существует ли функция u(x,t) со следующими свойствами: $u\in C^{2,1}_{x,t}(Q)\cap C(\overline{Q});$

4.5. Пусть $\overline{Q}=\{(x,t)\in\mathbb{R}^2\,|\,x^2+t^2\leqslant 1\}.$ Существует ли функция $u\in C^2(\overline{Q})$, удовлетворяющая уравнению

$$u_t = u_{xx} + 1$$
 в \overline{Q} и условию $xu_x = tu$ на ∂Q ?

4.6. Пусть функция $u(x,t)\in C^{2,1}_{x,t}(\overline{Q})\cap C^3(Q)$ является решением в $Q:=(0,3)\times(0,1]$ краевой задачи

$$u_t = u_{xx}, \quad u\big|_{x=0} = e^{-t/4}, \quad u\big|_{x=3} = 2e^{-t/64}, \quad u\big|_{t=0} = \sqrt{x+1},$$

Верно ли, что u(x,t) в \overline{Q} убывает по t?

4.7. Пусть функции $u_k(x,t) \in C^{2,1}_{x,t}(Q_k) \cap C(\overline{Q}_k), \, k=1,2,$ являются решениями в $Q_k := Q_{(-k,k)}^{T}$ краевых задач

$$(u_k)_t = (u_k)_{xx}, \qquad u_k\big|_{x=\pm k} = 0, \qquad u_k\big|_{t=0} = \varphi(x), \quad |x| \leqslant k.$$

Здесь $\varphi \in C^1([-2,2]); \, \varphi(x) \, \geqslant \, 0$ при $|x| \, \leqslant \, 1$ и $\varphi(x) \, = \, 0$ при $1 \leqslant |x| \leqslant 2; \varphi \not\equiv 0.$

Доказать, что $u_1(x,t) < u_2(x,t) \quad \forall (x,t) \in [-1,1] \times (0,T].$

4.8. Пусть $u \in C^{2,1}_{x,t}(Q) \cap C(\overline{Q})$ — решение в $Q := Q^\infty_{(-\pi,\pi)}$

$$u_t = u_{xx}, \qquad u\big|_{x=+\pi} = 0, \qquad u\big|_{t=0} = \sin^2 x.$$

Найти $\lim_{t\to +\infty} \int_{\hat{\gamma}}^{\pi} u(x,t) dx.$

4.9. При каких условиях на функцию $arphi \in C_0^\inftyig((0,1)ig)$ любое решение u(x,t) в полуполосе $Q_{(0,1)}^{\infty}$ задачи

- a) $u_t = u_{xx}$, $u\big|_{x=0} = u_x\big|_{x=1} = 0$, $u\big|_{t=0} = \varphi(x)$; 6) $u_t = u_{xx}$, $u_x\big|_{x=0} = u_x\big|_{x=1} = 0$, $u\big|_{t=0} = \varphi(x)$

обладает свойством $u(x,t) \to 0$ при $t \to +\infty$?

4.10. Пусть $u \in C^{2,1}_{x,t}(Q) \cap C(\overline{Q})$ — решение в $Q := Q^{\infty}_{(0,1)}$ задачи

$$u_t = u_{xx} + \alpha u,$$
 $u\Big|_{x=0} = u\Big|_{x=1} = 0,$ $u\Big|_{t=0} = \varphi(x).$

Найти все такие $\alpha \in \mathbb{R}$, что для любой начальной функции $\varphi \in$ $C([0,1]), \varphi(0) = \varphi(1) = 0$, выполнено

$$\lim_{t \to +\infty} u(x,t) = 0 \quad \forall x \in [0,1].$$

4.11. Пусть u(x,t) — решение в $Q_{(0,\pi)}^{\infty}$ краевой задачи

$$u_t = u_{xx}, \qquad u\big|_{x=0} = u\big|_{x=\pi} = 0, \qquad u\big|_{t=0} = \varphi(x),$$

где $\varphi \in C^1([0,\pi]), \, \varphi(0) = \varphi(\pi) = 0.$ Указать класс всех таких функций $\varphi(x)$, для которых

$$\lim_{t \to +\infty} e^t u(x,t) = 0 \quad \forall x \in [0,\pi].$$

4.12. Пусть u(x,t) — решение в полуполосе $Q^{\infty}_{(0,3\pi)}$ задачи

$$u_t = u_{xx}, \qquad u\Big|_{x=0} = u\Big|_{x=3\pi} = 0, \qquad u\Big|_{t=0} = \varphi(x),$$

где $\varphi \in C^1([0,3\pi]), \, \varphi(0) = \varphi(3\pi) = 0.$ Указать класс всех таких функций $\varphi(x)$, для которых

- а) существует конечный $\lim_{t \to +\infty} e^{\sqrt{t}} u(x,t);$
- б) существует конечный $\lim_{t\to +\infty} e^t u(x,t);$
- в) существует конечный $\lim_{t \to +\infty} e^{t^2} u(x,t)$.

4.13. Пусть u(x,t) — решение в $Q_{(0,\pi/2)}^{\infty}$ краевой задачи

$$u_t = u_{xx}$$
, $u\big|_{x=0} = 1$; $u\big|_{x=\pi/2} = 4$, $u(x,0) = \cos^4 x + 4\sin^5 x$.

Найти $\lim_{t\to +\infty} u(x,t)$.

4.14. Пусть $u\in C^{2,1}_{x,t}(Q)\cap C(\overline{Q})$ — решение в $Q:=Q^\infty_\Omega$, где $\Omega = (0,1) \times (0,1)$, задачи

$$u_t = u_{x_1 x_1} + u_{x_2 x_2},$$

$$u|_{x_1=0} = u|_{x_2=0} = 0, \quad u|_{x_1=1} = x_2, \quad u|_{x_2=1} = x_1.$$

Найти $\lim_{t\to +\infty} u(x_1,x_2,t)$.

4.15. Пусть u(x,t) — решение в полуполосе $Q_{(0,l)}^{\infty}$ задачи

$$u_t = u_{xx}, \qquad u\big|_{x=0} = u\big|_{x=l} = t, \qquad u\big|_{t=0} = \varphi(x),$$

где
$$arphi \in C^1([0,l]), \, arphi(0) = arphi(l) = 0.$$
 Найти $\lim_{t \to +\infty} t^{-1} \, u(x,t).$

4.16. Пусть функции u_1 и u_2 удовлетворяют соотношениям

$$(u_k)_t = (u_k)_{xx}, \qquad 0 \leqslant x \leqslant \pi, \quad 0 \leqslant t < +\infty;$$

$$u_k\big|_{t=0} = \sin^2 x - \alpha \sin^4 x \qquad (k=1,2);$$

$$u_1\big|_{x=0} = u_1\big|_{x=\pi} = 0, \quad (u_2)_x\big|_{x=0} = (u_2)_x\big|_{x=\pi} = 0, \quad 0 \leqslant t < +\infty.$$

При каких α справедливо неравенство

$$\lim_{t \to +\infty} u_1(x,t) < \lim_{t \to +\infty} u_2(x,t) \qquad \forall x \in [0,\pi]?$$

4.17. Пусть функция u(x,t) — решение в $Q_{(0,2)}^{\infty}$ задачи

$$u_t = u_{xx}, \qquad u_x\big|_{x=0} = u_x\big|_{x=2} = 3, \qquad u\big|_{t=0} = x^3 - 3x^2 + 3x.$$

Найти $\lim_{t\to +\infty} u(x,t)$.

4.18. Пусть функция u(x,t) — решение в $Q_{(0,2)}^{\infty}$ задачи

$$u_t = u_{xx},$$
 $u_x \Big|_{x=0} = 1,$ $u_x \Big|_{x=2} = 13,$ $u \Big|_{t=0} = x^3 + x.$

Найти $\lim_{t\to +\infty} u(x,t)$.

4.19. а) Найти все l>0, для которых при некоторой функции $\varphi(x)\in C^\infty\left((0,l)\right)$ существует неограниченное решение в $Q_{(0,l)}^\infty$ краевой задачи

$$u_t = 2u_{xx}, \qquad u\big|_{x=0} = (u_x - 3u)\big|_{x=l} = 0, \qquad u\big|_{t=0} = \varphi(x).$$

- б) Для l=1 описать все функции $\varphi(x)\in C^{\infty}ig((0,l)ig),$ для которых решение этой задачи ограничено.
- **4.20.** а) Функция $u(x,t) \not\equiv \mathrm{const}$ удовлетворяет уравнению

$$u_t = u_{xx}$$

в области $\Omega_T = \{(x,t) \mid 0 < t < T, \ 0 < x < 5 - \exp(-t)\}.$

Доказать, что максимум этой функции на $\overline{\Omega}_T$ не может достигаться ни во внутренних точках области Ω_T , ни при t=T.

б) Пусть u(x,t) является решением задачи

$$\begin{array}{ll} u_t = u_{xx} & \text{в области} & t > 0, \ 0 < x < 5 - \exp{(-t)}, \\ u\big|_{x=0} = u\big|_{x=5-\exp{(-t)}} = 0, \quad u\big|_{t=0} = \varphi(x), \end{array} \tag{9}$$

где $\varphi(x) \in C_0^\infty ig((0;4) ig)$. Доказать. что $|u(x,t)| < C e^{-t/4}$.

в) Привести пример функции $\varphi(x)\in C_0^\inftyig((0,4)ig)$ такой, что для решения u(x,t) задачи (9) выполнено

$$\max_{x \in (0; 5-\exp(-t))} u(x,t) > e^{-t} \qquad \forall t > 0$$

в предположении, что такое решение существует.

4.21. Пусть u(x,t) — решение в $Q_{(0,\pi)}^{\infty}$ задачи

$$u_t = u_{xx}, \qquad u\big|_{x=0} = u_x\big|_{x=\pi} = 0, \qquad u\big|_{t=0} = \varphi(x),$$

где $\varphi(0) = \varphi'(\pi) = 0$.

- а) Доказать, что $\sup_{0 < x < \pi} |u(x,1)| \leqslant \sup_{0 < x < \pi} |\varphi(x)|.$ 6) Верно ли, что $\sup_{0 < x < \pi} |u(x,1)| \leqslant \frac{1}{2} \sup_{0 < x < \pi} |\varphi(x)|.$

4.22. Пусть функция $u(x,t) \in C^2(Q) \cap C(\overline{Q})$ является решением в $Q:=Q_{\Omega}^{T}$ краевой задачи

$$u_t = \Delta u + f(x), \qquad u\big|_{x \in \partial\Omega} = 0, \qquad u\big|_{t=0} = 0,$$

где $f(x) \leq 0$ при $x \in \Omega$. Доказать, что при фиксированном $x_0 \in$ Ω функция $u(x_0,t)$ является невозрастающей по $t\in(0,T)$.

4.23. Пусть $u(x,t) \in C^2(Q) \cap C(\overline{Q})$ — классическое решение в $Q:=Q_{(0,1)}^\infty$ краевой задачи

$$u_t = u_{xx} + v(x,t), \quad u\big|_{x=0} = u\big|_{x=1} = 0, \; u\big|_{t=0} = \varphi(x) \in C^{\infty}\big([0,1]\big),$$

v(x,t) — ограниченная измеримая функция, удовлетворяющая оценке $|v| \leqslant C, C > 0$ — заданная постоянная.

Можно ли так выбрать функцию v(x,t), что $u(x,t) \equiv 0$ при всех $t > t_*, t_*$ — некоторая положительная постоянная?

4.24. Пусть $u(x,t) \in C^2(Q) \cap C^1(\overline{Q})$ — классическое решение в $Q := Q_{(0,1)}^\infty$ краевой задачи

$$u_t = u_{xx} + 3u, \qquad u\Big|_{x=0} = u\Big|_{x=1} = 0,$$

Доказать, что для u(x,t) имеет место неравенство

$$|u(x,t)| \leqslant Ce^{-6t}, \qquad C = \text{const} > 0.$$

4.25. Пусть $u(x,t) \in C^2(Q) \cap C^1(\overline{Q})$ — решение в $Q := Q^{\infty}_{(0,1)}$ краевой задачи

$$u_t = u_{xx}, \quad u_x\big|_{x=0} = 1, \ u_x\big|_{x=1} = -1, \ u\big|_{t=0} = \varphi(x) \in C_0^{\infty}((0,1)).$$

Ограничено ли это решение на Q? (т.е. растет ли температура?)

4.26. Пусть u(x,t) — решение в $Q:=Q_{(0,1)}^{\infty}$ задачи

$$u_t = u_{xx}, \qquad u\big|_{x=0} = f(t), \quad u\big|_{x=1} = g(t), \qquad u\big|_{t=0} = \varphi(x),$$

f,g,arphi — гладкие функции, причем

$$f(t) o a$$
 при $t o \infty$, $g(t) o b$ при $t o \infty$.

Какой предел при $t \to \infty$ в пространстве C[0,1] (если таковой вообще есть) имеет решение u(x,t) этой задачи?

Задача Коши

Классическим решением задачи Коши для уравнения теплопроводности называется функция $u \in C^{2,1}_{x,t}(\Pi_T) \cap C(\overline{\Pi}_T)$, определенная в слое $\Pi_T = \{(x,t) \in \mathbb{R}^{n+1} \mid x \in \mathbb{R}^n, \ 0 < t \leqslant T\}$ и удовлетворяющая уравнению

$$u_t = a^2 \Delta_x u + f(x, t) \quad (a > 0), \qquad (x, t) \in \Pi_T$$

и краевым условиям

$$u|_{t=0} = \varphi(x) \in C_{\mathbf{b}}(\mathbb{R}^n),$$

где $\varphi(x),\,f(x,t)$ — заданные непрерывные ограниченные функтии

Решение задачи Коши в классе *ограниченных* функций существует, единственно и выражается интегралом Пуассона

$$\begin{split} u(x,t) &= \frac{1}{\left(2a\sqrt{\pi t}\,\right)^n} \int\limits_{\mathbb{R}^n} \exp\left[-\frac{|x-\xi|^2}{4a^2t}\right] \varphi(\xi) \; d\xi \; + \\ &+ \int\limits_0^t \int\limits_{\mathbb{R}^n} \frac{1}{\left(2a\sqrt{\pi(t-\tau)}\,\right)^n} \exp\left[-\frac{|x-\xi|^2}{4a^2(t-\tau)}\right] \; f(\xi,\tau) \; d\xi \; d\tau. \end{split}$$

Замечание. Пусть u(x,t) — решение задачи Коши

$$\begin{cases} u_t = \Delta u & \mathbf{B} \quad \mathbb{R}^n \times \mathbb{R}_+, \\ u\big|_{t=0} = \varphi_1(x_1) \, \dots \, \varphi_n(x_n), & x \in \mathbb{R}^n, \end{cases}$$

 $arphi_k(x_k)\in C(\mathbb{R})\cap L_\infty(\mathbb{R}), k=1,\ldots,n.$ Тогда $u(x,t)=\prod\limits_{k=1}^nu_k(x,t),$ где $u_k(x,t)$ — решения задач Коши

$$\begin{cases} (u_k)_t = (u_k)_{xx} & \mathbf{B} \quad \mathbb{R} \times \mathbb{R}_+, \\ u_k\big|_{t=0} = \varphi_k(x), & x \in \mathbb{R}, \quad k = 1, \dots, n. \end{cases}$$

Для ограниченных решений уравнения теплопроводности справедлив принцип максимума в слое: если функция $u(x,t)\in C^2(\Pi_T)\cap C_{\rm b}(\overline{\Pi}_T)$ удовлетворяет в слое Π_T однородному уравнению теплопроводности $u_t=a^2u_{xx}$, то

$$\inf_{x\in\mathbb{R}^n}u(x,0)\leqslant u(x,t)\leqslant \sup_{x\in\mathbb{R}^n}u(x,0)\quad orall (x,t)\in\overline{\Pi}_T.$$

Для ограниченных решений уравнения теплопроводности справедливы $meopembox{ }ocmabunusauuu:$ Пусть u(x,t) — ограниченное решение задачи Коши

$$\begin{cases} u_t = u_{xx} & \mathbf{B} \quad \mathbb{R} \times \mathbb{R}_+, \\ u\big|_{t=0} = \varphi(x), & x \in \mathbb{R}, \end{cases}$$

 $arphi(x)\in C(\mathbb{R})\cap L_\infty(\mathbb{R})$. Тогда

1. Если
$$\lim_{x \to \pm \infty} \varphi(x) = A_{\pm}$$
, то $\lim_{t \to +\infty} u(x,t) = \frac{A_{+} + A_{-}}{2}$.

2. Если
$$\lim_{l \to +\infty} \frac{1}{l} \int_{-l}^{l} \varphi(x) dx = A$$
, то $\lim_{t \to +\infty} u(x,t) = \frac{A}{2}$.

3. Если $\varphi(x)$ — периодическая функция, то $\lim_{t\to +\infty}u(x,t)=\varphi_0$, где φ_0 — нулевой коэффициент разложения функции $\varphi(x)$ в ряд Фурье, пространственное среднее.

- **4.27.** Справедлив ли принцип максимума в слое для уравнения $u_t + \Delta_x u = 0$ в том же виде, в каком он справедлив для уравнения теплопроводности?
- **4.28.** Доказать, что решение u(x,t) задачи Коши для уравнения $u_t = u_{xx}$ будет нечетным по x, если начальная функция u(x,0) нечетная.
- **4.29.** При каких t>0 существует интеграл, входящий в формулу, которая дает решение задачи Коши

$$u_t = u_{xx}, \qquad u\big|_{t=0} = \varphi(x),$$

если требование ограниченности $\varphi(x)$ заменяется предположением

$$|\varphi(x)| \leqslant M e^{Kx^2}, \quad M > 0, \quad K > 0$$
?

4.30. Докажите (используя интеграл Пуассона), что существует решение $u(x,t)\in C^2(\mathbb{R}\times\mathbb{R}_+)$ в $\mathbb{R}\times\mathbb{R}_+$ следующей задачи:

$$u_t = u_{xx}, \qquad u(x,t) \to \varphi(x)$$
 в $L_2(\mathbb{R})$ при $t \to 0$,

где $\varphi(x)$ — заданная функция из $L_2(\mathbb{R}_x)$ (не обязательно непрерывная!)

4.31. Единственна ли функция u(x,t) со следующими свойствами: $u \in C^{2,1}_{x,t}(\mathbb{R} \times (0,h]);$

$$u_t = u_{xx}, \quad (x,t) \in \mathbb{R} \times (0,h];$$

$$\lim_{t \to 0} u(x,t) = 0 \quad \forall x \in \mathbb{R}; \qquad \sup_{x \in \mathbb{R}} |u(x,t)| < +\infty \quad \forall t \in (0,h]?$$

- **4.32.** Пусть $\overline{G}=\{(x,t)\mid x\in\mathbb{R},t\in\overline{\mathbb{R}}_-\}$. Найти все функции u(x,t), принадлежащие $C^{2,1}_{x,t}(\overline{G})$, ограниченные в \overline{G} и удовлетворяющие в \overline{G} уравнению $u_t=u_{xx}$.
- **4.33.** Пусть u(x,t) решение в $\mathbb{R} imes \mathbb{R}_+$ задачи Коши

$$u_t = 4u_{xx}, \qquad u\big|_{t=0} = \frac{x^2 + \sin x}{1 + 2x^2}.$$

Найти $\lim_{t \to +\infty} u(x,t)$.

4.34. Пусть u(x,t) — решение в $\mathbb{R} \times \mathbb{R}_+$ задачи Коши

$$u_t = u_{xx}, \qquad u\big|_{t=0} = \operatorname{arcctg} x.$$

Найти $\lim_{t\to +\infty} u(x,t)$.

4.35. Пусть u(x,t) — ограниченное решение в $\mathbb{R} \times \mathbb{R}_+$ задачи Коши

$$u_t = u_{xx}, \qquad u\Big|_{t=0} = \varphi(x) \in C(\mathbb{R}) \cap L_{\infty}(\mathbb{R}).$$

Найти
$$\lim_{t \to +\infty} u(0,t),$$
 если $\lim_{l \to +\infty} \frac{1}{l} \int_{-l}^{l} \varphi(x) \ dx = A.$

4.36. Найти $\lim_{t\to +\infty}u(x,y,t),$ где u(x,y,t) — решение в $\mathbb{R}^2 \times \mathbb{R}_+$ задачи Коши

$$u_t = u_{xx} + u_{yy}, \qquad u\big|_{t=0} = \varphi(x, y)$$

при следующих начальных условиях:

a)
$$\varphi(x,y) = \frac{x^2}{1+2x^2}$$
, 6) $\varphi(x,y) = \sin^2 y$, b) $\varphi(x,y) = \frac{(x\sin y)^2}{1+2x^2}$.

4.37. а) Решить задачу Коши в $\mathbb{R}^3 \times \mathbb{R}_+$

$$u_t = \Delta u - 3u, \qquad u|_{t=0} = e^{-(x_1 + x_2 + x_3)}.$$

б) Найти $\lim_{t\to\infty} u(x,t)$.

4.38. Пусть u(x,t) — решение в $\mathbb{R} \times \mathbb{R}_+$ задачи Коши:

$$u_t = u_{xx}, \qquad u\big|_{t=0} = e^{-x^2}.$$

Найти $\lim_{t\to\infty}\int_0^\infty u(x,t)\;dx.$

4.39. Пусть u(x,t) — решение в $\mathbb{R} \times \mathbb{R}_+$ задачи Коши уравнения теплопроводности с "потенциалом":

$$u_t = u_{xx} - u, \qquad u\big|_{t=0} = \sin^2 x.$$

Доказать, что существует постоянная A, такая, что

$$\left| u(x,t) - Ae^{-t} \right| \leqslant \alpha(t)e^{-t},$$

где функция $\alpha(t) \to 0$ при $t \to \infty$. Найти постоянную A.

4.40. Пусть положительная ограниченная функция удовлетворяет уравнению

$$u_t=\Delta u$$
 в спое $\mathbb{R}^3 imes(0,1)$ и $u\equiv 0$ в кубе $(0,1) imes(0,1) imes(0,1)$.

Верно ли, что $u \equiv 0$ в слое $\mathbb{R}^3 \times (0,1)$?

4.41. Пусть $u\in C^2(Q^T_\mathbb{R})\cap C(\overline{Q}^T_\mathbb{R})$ — решение в полосе $Q^T_\mathbb{R}$ задачи Коши

$$u_t = u_{xx}, \qquad u|_{t=0} = 0 \quad \mathbf{z} \quad |u(x,t)| \leqslant C|x|.$$

Доказать, что $u \equiv 0$ в $Q_{\mathbb{R}}^T$.

- **4.42.** Пусть $\Pi:=\mathbb{R}\times\mathbb{R}_+\setminus\{(0,1)\}$ полуплоскость с одной "выколотой" точкой; u(x,t) решение уравнения теплопроводности в Π и |u(x,t)|< M при $(x,t)\in\Pi$. Доказать, что особенность в точке (0,1) устранима, т.е. можно так доопределить функцию u(x,t) в этой точке, что она будет решением уравнения теплопроводности в $\mathbb{R}\times\mathbb{R}_+$.
- **4.43.** Найти решение $u(x,t)\in C(\overline{\mathbb{R}}_+ imes\mathbb{R})$ задачи:

$$u_t = u_{xx}, \quad (x,t) \in \overline{\mathbb{R}}_+ \times \mathbb{R}, \qquad u\big|_{x=0} = \cos 5t, \quad t \in \mathbb{R};$$

$$\sup |u(x,t)| < \infty.$$

5 Уравнения эллиптического типа

Гармонические функции

Функция $u\in C^2(\Omega)$ называется гармонической в области $\Omega,$ если

$$\Delta u = 0$$
.

Теорема о среднем. Если u — гармоническая в области Ω функция, то

$$egin{aligned} u(x_0) &= rac{1}{|S_R^n(x_0)|} \int\limits_{S_R^n(x_0)} u(x) \ ds, \ \ u(x_0) &= rac{1}{|B_R^n(x_0)|} \int\limits_{B_R^n(x_0)} u(x) \ dx. \end{aligned}$$

Принцип максимума. Пусть u гармоническая в Ω и непрерывная в $\overline{\Omega}$ функция и $u(x_0)=M\equiv \max_{\overline{\Omega}},\ x_0\in\Omega,\$ тогда $u\equiv M$ в $\Omega.$

Теорема Лиувилля. Если u — гармоническая в \mathbb{R}^n ограниченная функция, то $u \equiv \text{const.}$

Лемма Хопфа-Олейник о нормальной производной. Пусть гармоническая в шаре B функция u(x) — отлична от постоянной, $u \in C(\overline{B})$ и пусть u принимает наименьшее (наибольшее) значение в точке $b \in \partial B$. Если в точке b существует производная $\frac{\partial u}{\partial \gamma}$, где γ — направление, образующее острый угол β с внешней нормалью к границе шара ∂B в точке b, то

$$\frac{\partial u}{\partial \gamma} < 0$$
 $\left(\frac{\partial u}{\partial \gamma} > 0\right)$.

Неравенство Харнака. Пусть u — гармоническая в шаре $B_R^n(0)$ и непрерывная в $\overline{B}_R^n(0)$ неотрицательная функция, тогда

$$u(0)R^{n-2}\frac{R-|x|}{(R+|x|)^{n-1}} \leqslant u(x) \leqslant u(0)R^{n-2}\frac{R+|x|}{(R-|x|)^{n-1}}.$$

Теорема об устранимой особенности. Если u — гармоническая функция в $\Omega \setminus \{0\}$ и

$$|u(x)| \leq \alpha(x) |\mathcal{E}_n(x)|,$$

где $\alpha(x) \to 0$ при $x \to 0$, а \mathcal{E}_n — фундаментальное решение оператора Лапласа, то функцию u можно доопределить в 0 так, чтобы u была гармонической везде в Ω .

Теорема о потоке. Если u — гармоническая функция в $\Omega,$ $u \in C^1(\overline{\Omega}),$ то

$$\int_{\partial \Omega} \frac{\partial u}{\partial \nu} dS = 0,$$

где ν — вектор внешней нормали к $\partial\Omega$.

5.1. Найти все гармонические в $\mathbb{R}^{\,2}$ функции u(x,y), для которых

$$u_y(x, y) = 3xy^2 - x^3$$
.

- **5.2.** Найти все гармонические в \mathbb{R}^n функции, принадлежащие $L_2(\mathbb{R}^n)$.
- **5.3.** Найти все гармонические в \mathbb{R}^2 функции u(x,y), для которых

$$u_x(x,y) < u_y(x,y) \qquad \forall (x,y) \in \mathbb{R}^2.$$

5.4. Пусть $\Omega = \left\{ (x,y) \in \mathbb{R}^2 \ \middle| \ 0 < x < 1, \ 0 < y < 1 \right\}, \ u \in C^2(\overline{\Omega}),$

$$\Delta u = 0 \quad \text{в} \quad \overline{\Omega}, \qquad u\big|_{y=0} = u\big|_{y=1} = 0 \quad \text{при} \quad 0 \leqslant x \leqslant 1.$$

Может ли функция $f(x) := \int\limits_0^1 u^2(x,y) \, dy$ иметь точку перегиба внутри интервала (0,1)?

$$\int\limits_{B^+} u(x) \; dx \quad \mathbf{u} \quad \int\limits_{B^-} u(x) \; dx,$$

где $B^+ = \left\{ x \in B^n_a(0) \; \middle| \; u(x) > 0 \right\}, \; B^- = \left\{ x \in B^n_a(0) \; \middle| \; u(x) < 0 \right\}.$

 ${f 5.6.}$ Пусть u – гармоническая в $\overline{B_1^2(0)}$ функция. Найти

$$\int_{0}^{2\pi} u_{\rho\rho}(1,\theta) d\theta.$$

5.7. Пусть $u(x) \in C^2(B_1^2(0)) \cap C(\overline{B_1^2(0)});$

$$\begin{array}{ll} \Delta u(x) = 0, & \quad x := (x_1, x_2) \in B_1^2(0); \\ u(x) = x_2^2, & \quad x \in S_1^2(0), \quad x_2 \geqslant 0; \\ u(x) = x_2, & \quad x \in S_1^2(0), \quad x_2 < 0. \end{array}$$

Найти $\int\limits_{B_{1/2}^2(0)} u(x) \ dx.$

5.8. Пусть $\Delta u(x)=1, \ x\in \overline{B_2^2(0)}ackslash B_1^2(0).$ Что больше:

$$\int\limits_{S_{1}^{2}(0)}\frac{\partial u}{\partial \rho}(\rho,\theta)\;ds\quad \text{или}\quad \int\limits_{S_{2}^{2}(0)}\frac{\partial u}{\partial \rho}(\rho,\theta)\;ds?$$

5.9. Пусть $\overline{\Omega}_1 \subset \Omega_2$; $u_k \in C^2(\Omega_k) \cap C(\overline{\Omega_k})$;

$$\begin{array}{ll} \Delta u_k(x) = 0, & x \in \Omega_k; & u_k(x) = f_k(x), & x \in \partial \Omega_k & (k = 1, 2); \\ f_1(x^1) < f_2(x^2) & \forall x^1 \in \partial \Omega_1, & \forall x^2 \in \partial \Omega_2; \end{array}$$

 $x^0 \in \Omega_1$ – произвольная точка. Что больше: $u_1(x^0)$ или $u_2(x^0)$?

5.10. Пусть $u \in C^2(B_1^2(0)) \cap C(\overline{B_1^2(0)});$

$$u_{x_1x_1} + u_{x_1x_2} + u_{x_2x_2} = 1, \qquad x := (x_1, x_2) \in B_1^2(0).$$

Может ли u(x) иметь внутри $B_1^2(0)$

- а) максимум;
- б) минимум?

5.11. Пусть $u \in C^2(\Omega) \cap C(\overline{\Omega}); q \in C(\overline{\Omega});$

$$\Delta u(x) + q(x) \; u(x) = 0, \;\; x \in \Omega; \qquad M = \max_{\overline{\Omega}} u(x); \;\; m = \max_{\partial \Omega} u(x).$$

Возможно ли, что M > m, если

- a) $q(x) \equiv 0$;
- 6) q(x) > 0;
- B) q(x) < 0, M > 0;
- r) q(x) < 0, M < 0?

5.12. Пусть $\overline{\Omega} = \{(x,y) \in \mathbb{R}^2 \mid 1 \leqslant x^2 + 2y^2 \leqslant 2\}; \ u \in C^2(\overline{\Omega});$

$$\begin{array}{ll} \Delta u(x,y)=0, & (x,y)\in\overline{\Omega};\\ u(x,y)=x+y, & x^2+2y^2=2;\\ \frac{\partial u(x,y)}{\partial \nu}+(1-x)u(x,y)=0, & x^2+2y^2=1. \end{array}$$

Найти $\max_{\overline{\Omega}} \big| u(x,y) \big|.$

5.13. Пусть $\Omega_{\infty} := \mathbb{R}^3 \setminus \overline{B_1^3(0)}; \quad u_k \in C^2(\Omega_{\infty}) \cap C(\overline{\Omega_{\infty}});$

$$\Delta u_k(x) = 0, \quad x \in \Omega_\infty \quad (k = 1, 2); \qquad u_1(x) < u_2(x) \quad \forall x \in \partial \Omega_\infty.$$

Следует ли отсюда, что $u_1(x) < u_2(x) \quad \forall x \in \Omega_\infty$?

5.14. Пусть $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$;

$$\Delta u(x) = 0, \quad x \in \Omega; \qquad \frac{\partial u(x)}{\partial \nu} = \psi(x), \quad x \in \partial \Omega.$$

Доказать, что $\psi(x)$ обращается в нуль не менее чем в двух точках на $\partial\Omega.$

5.15. Пусть $B_+:=\left\{x=(x_1,x_2,x_3)\in B_1^3(0)\ \middle|\ x_3>0\right\}$, функция u(x) определена и непрерывна в \overline{B}_+ , равна нулю при $x_3=0$ и является гармонической в B_+ . Верно ли, что u(x) можно продолжить до функции, гармонической всюду в $B_1^3(0)$?

5.16. a) Пусть $\Omega \subset \mathbb{R}^2$; $\Omega_{\infty} = \mathbb{R}^2 \setminus \overline{\Omega}$; $u \in C^2(\Omega_{\infty}) \cap C(\overline{\Omega_{\infty}}) \cap L_{\infty}(\Omega_{\infty})$;

$$\Delta u(x) = 0, \qquad x = (x_1, x_2) \in \Omega_{\infty}.$$

Доказать, что существует $\lim_{|x| \to \infty} u(x)$.

б) Найти этот предел в случае, когда $\Omega = B_1^2(0)$ и

$$\int_{0}^{2\pi} u(\cos\theta, \sin\theta) \, d\theta = 0.$$

5.17. Пусть $Q:=\left\{x=(x_1,x_2,x_3)\in\mathbb{R}^3\,\middle|\,x_1^2+x_2^2<1,\,|x_3|<1\right\};$ $L:=\left\{(0,0,x_3)\,\middle|\,|x_3|<\frac12\right\};$ функция u(x) является гармонической и ограниченной в $Q\backslash L$. Доказать, что функция u(x) может быть продолжена до функции, гармонической всюду в Q.

5.18. Справедлив ли принцип максимума для уравнения

$$\Delta u + u_x + u = 0,$$
 $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2},$

в ограниченной области Q на плоскости в той же форме, как для уравнения Лапласа?

5.19. Пусть u(x) — гармоническая в \mathbb{R}^3 функция и

$$\iiint\limits_{\mathbb{R}}\frac{u^2(x)\;dx}{(1+|x|)^3}<\infty.$$

Верно ли, что $u(x) \equiv \text{const B } \mathbb{R}^3$?

5.20. Существует ли положительная гармоническая функция в шаре $B_1^3(0)$, такая, что

$$u(0,0,0) = 1,$$
 $u(0,0,1/2) = 10?$

5.21. Пусть функция u(x), заданная в шаре $B_1^3(0)$, удовлетворяет уравнению

$$\Delta u = \lambda u \qquad (\lambda = const < 0)$$

и $u(x)\equiv 0$ в шаре $B^3_\delta(0)$ радиуса $\delta,\ \delta=const,\ 0<\delta<1.$ Докажите, что $u\equiv 0$ в $B^3_1(0)$.

5.22. Пусть $K = \{(r, \varphi) | 0 < r < 1, \ 0 < \varphi < \pi/6\}$ — круговой сектор раствором 30° , $u(r, \varphi)$ — гармоническая в K функция, принадлежащая $C^1(\overline{K})$. Докажите, что

$$\left|u(r,arphi)
ight|\leqslant C\,r^6, \qquad$$
где $C=\mathrm{const}>0.$

- **5.23.** Постройте пример ограниченной в шаре $B_1^3(0)$ гармонической функции u(x), такой, что $|\nabla u|$ неограничен в $B_1^3(0)$.
- **5.24.** Пусть функция $u(x),\,x\in\mathbb{R}^3$, удовлетворяет уравнению

$$\Delta u = u(x)$$
 в \mathbb{R}^3 ,

а также оценке

$$|u(x)| \leqslant C, \quad x \in \mathbb{R}^3.$$

Докажите, что $u \equiv 0$ в \mathbb{R}^3 .

5.25. Пусть u(x,y) — решение уравнения Лапласа в полуполосе $\Pi=(0,1)\times\mathbb{R}_+$ на плоскости $(x,y),\ \mathbb{R}_+\equiv\{y>0\},\ u\in C^2(\Pi)\cap C(\overline{\Pi}),$ удовлетворяющее граничным условиям

$$u\big|_{x=0} = u\big|_{x=1} = 0, \qquad y > 0,$$

причем $u(x,y) \to 0$ при $y \to +\infty$ равномерно по x. Докажите, что

$$|u(x,y)| \leqslant Ce^{-3.14 \cdot y},$$
 где $C = \mathrm{const} > 0.$

5.26. Пусть u(x,y) — гармоническая функция в полуплоскости $P=\{y>0\},\ u\in C(\overline{P}),$

$$\begin{array}{c|c} \left|u(x,y)\right| \leqslant M, & x \in \mathbb{R}, \ y \in \mathbb{R}_+ & \mathbf{w} \\ u\big|_{y=0} = 0 & \forall x \in \mathbb{R}_x^1, \end{array}$$

где M — некоторая постоянная. Докажите, что $u \equiv 0$ в P.

Классическая постановка основных краевых задач

Формулы Грина

Если $u,v\in C^2(\Omega)\cap C^1(\overline{\Omega}),$ то

$$\int_{\Omega} v \Delta u \ dx = \int_{\partial \Omega} v \frac{\partial u}{\partial \nu} \ ds - \int_{\Omega} \nabla u \nabla v \ dx,$$

$$\int\limits_{\Omega} \left(v\Delta u - u\Delta v\right) \; dx = \int\limits_{\partial\Omega} \left(v\frac{\partial u}{\partial\nu} - u\frac{\partial v}{\partial\nu}\right) ds, \tag{10}$$

где ν — вектор единичной внешней нормали к границе области $\partial\Omega.$

Внутренняя задача Дирихле

Пусть $\Omega \in \mathbb{R}^{\,n}$ – ограниченная область, $\partial \Omega$ – поверхность класса C^2

Классической задачей Дирихле называется задача о нахождении функции $u(x)\in C^2(\Omega)\cap C(\overline{\Omega})$:

$$\left\{ \begin{array}{l} \Delta u = f(x), & x \in \Omega, \\ \left. u \right|_{x \in \partial \Omega} = \varphi(x), \end{array} \right.$$

где $f(x) \in C(\Omega), \, \varphi(x) \in C(\partial\Omega)$ — заданные функции.

Решение внутренней задачи Дирихле существует и единственно.

Внутренняя задача Неймана

Классической задачей Неймана в ограниченной области Ω называется задача о нахождении функции $u(x) \in C^2(\Omega) \cap C^1(\overline{\Omega})$:

$$\left\{ \begin{array}{l} \Delta u = f(x), & x \in \Omega, \\ \left. \frac{\partial u}{\partial \nu} \right|_{x \in \partial \Omega} = \varphi(x), \end{array} \right. \tag{11}$$

где $f(x)\in C(\Omega),\, \varphi(x)\in C(\partial\Omega)$ – заданные функции, ν — вектор внешней нормали к $\partial\Omega.$

yсловием разрешимости задачи Неймана (11) является равенство на функции f(x) и $\varphi(x)$

$$\int_{\Omega} f(x) \ dx = \int_{\Omega} \Delta u \ dx = \int_{\partial \Omega} \frac{\partial u}{\partial \nu} \ dS = \int_{\partial \Omega} \varphi(x) \ dS,$$

(которое следует из формулы Грина (10) при $v(x) \equiv 1$). Решение задачи (11) не единственно, а определяется с точностью до произвольной аддитивной постоянной: если $u_1(x)$ и $u_2(x)$ – решения (11), то $u_1(x) - u_2(x) \equiv \text{const}$.

Внешняя задача Дирихле

Пусть $\Omega \in \mathbb{R}^n$ — ограниченная область с границей $\partial\Omega$ класса $C^2,\,\Omega_\infty \equiv \mathbb{R}^n \setminus \overline{\Omega}.$

Классической внешней задачей Дирихле в неограниченной области Ω_∞ называется задача о нахождении функции $u(x)\in C^2(\Omega_\infty)\cap C(\overline\Omega_\infty)$, удовлетворяющей системе

$$\Delta u = f(x), \quad x \in \Omega_{\infty}, \qquad u \big|_{x \in \partial \Omega_{\infty}} = \varphi(x),$$

и условию на бесконечности

$$\begin{array}{lll} u(x) \rightarrow 0 & \text{при} & |x| \rightarrow \infty & (n \geqslant 3), \\ |u(x)| \leqslant C & \text{при} & |x| \rightarrow \infty & (n=2), \end{array} \tag{12}$$

где $f(x)\in C(\Omega_\infty)\cap L_1(\Omega_\infty),\, \varphi(x)\in C(\partial\Omega)$ — заданные функции, C — некоторая постоянная.

Решение внешней задачи Дирихле существует и единственно.

Внешняя задача Неймана

Классической внешней задачей Неймана в неограниченной области Ω_∞ называется задача о нахождении функции $u(x)\in C^2(\Omega_\infty)\cap C^1(\overline{\Omega}_\infty)$, удовлетворяющей

$$\Delta u = f(x), \quad x \in \Omega_{\infty}, \qquad \left. \frac{\partial u}{\partial \nu} \right|_{x \in \partial \Omega_{\infty}} = \varphi(x),$$

и условию (12) на бесконечности; здесь $f(x)\in C(\Omega_\infty)\cap L_1(\Omega_\infty)$, $\varphi(x)\in C(\partial\Omega)$ – заданные функции, ν — вектор внешней нормали к $\partial\Omega_\infty$.

При $n\geqslant 3$ существует единственное решение внешней задачи Неймана.

При n=2 внешняя задача Неймана разрешима только при дополнительном условии

$$\int_{\Omega_{\infty}} f(x) \ dx = \int_{\partial \Omega_{\infty}} \varphi(x) \ dS;$$

ее решение определяется неоднозначно, с точностью до произвольной аддитивной постоянной.

Краевые задачи на плоскости

Решение краевых задач для уравнения Лапласа $\Delta u=0$ в круге или кольце можно получить, если перейти в полярные координаты

$$\Delta u(\rho,\theta) = \frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \theta^2} = 0,$$

и применить метод разделения переменных. Общее решение уравнения Лапласа имеет вид

$$u(\rho,\theta) = A_0 + B_0 \ln \rho + \sum_{n=1}^{\infty} \left(A_n \rho^n + \frac{B_n}{\rho^n} \right) \cos n\theta + \sum_{n=1}^{\infty} \left(C_n \rho^n + \frac{D_n}{\rho^n} \right) \sin n\theta.$$

Так как функция $u(\rho,\theta)$ должна быть ограничена в рассматриваемой области, то

- для задачи в кольце $(R_1 <
 ho < R_2)$ ненулевыми могут быть все коэффициенты,
- для задачи в круге $(\rho < R)$ $B_0 = B_n = D_n = 0$ (n = 1, 2, ...), для задачи во внешности круга $(\rho > R)$ $B_0 = A_n = C_n = 0$ (n = 1, 2, ...).

Оставшиеся коэффициенты определяются из граничного условия. Например, для решения внутренней задачи Дирихле

$$\Delta u = 0, \quad \rho < R, \qquad u \big|_{\rho = R} = f(\theta),$$

разложив функцию $f(\theta)$ в ряд Фурье по базису $\big\{1,\cos n\theta,\sin n\theta; n=1,2,\dots\big\},$ получим

$$A_0 = rac{1}{2\pi} \int\limits_0^{2\pi} f(heta) \, d heta, \qquad A_n = rac{1}{\pi R^n} \int\limits_0^{2\pi} f(heta) \cos n heta \, d heta,$$
 $C_n = rac{1}{\pi R^n} \int\limits_0^{2\pi} f(heta) \sin n heta \, d heta.$

Потенциалы

Расмотрим область Ω , граница которой удовлетворяет следующему условию Ляпунова:

Ньютонов потенциал

$$u_1(x) = \int\limits_{\Omega} \mathcal{E}_n(x-y) f(y) \ dy.$$

Такой потенциал называют ещё пространственным $(n \geqslant 3)$ или площадным (логарифмическим) (n=2).

Потенциал простого слоя

$$u_2(x) = \int\limits_{\partial\Omega} \mathcal{E}_n(x-y)q(y) \ ds_y.$$

Потенциал двойного слоя

$$u_3(x) = \int_{\partial \Omega} \frac{\partial \mathcal{E}_n(x-y)}{\partial \nu_y} \ m(y) \ ds_y.$$

Теорема о трёх потенциалах. Любая функция $u\in C^2(\Omega)\cap C^1(\overline{\Omega})$ представляется в сумму

$$u(x) = u_1(x) + u_2(x) + u_3(x),$$

где
$$f(y) = \Delta u(y), \ q(y) = -\frac{\partial u(y)}{\partial \nu}, \ \mathrm{a} \ m(y) = u(y).$$

Теорема о потенциале простого слоя. Потенциал простого слоя непрерывен в \mathbb{R}^n .

Теорема о скачке потенциала двойного слоя. Существуют функции $u_3^-\in C(\overline{\Omega})$ и $u_3^+\in C(\overline{\mathbb{R}^n\backslash\Omega})$ такие, что

1)
$$u_2^- = u_3$$
 B Ω , $u_2^+ = u_3$ B $\mathbb{R}^n \setminus \Omega$

$$\begin{array}{l} \text{ 1)} \ u_3^- = u_3 \ \ ext{в} \ \Omega, & u_3^+ = u_3 \ \ ext{в} \ \mathbb{R}^n \backslash \Omega \\ 2) \ \dfrac{u_3^- + u_3^+}{2} = u_3 \ \ ext{ha} \ \partial \Omega, \\ 3) \ u_3^+ - u_3^- = -2\pi m \ \ ext{ha} \ \partial \Omega. \end{array}$$

3)
$$u_2^+ - u_2^- = -2\pi m$$
 на $\partial \Omega$

Аналогичное утверждение верно про нормальную производную потенциала простого слоя.

Теорема о скачке нормальной производной потенциала простого слоя.

$$rac{\partial u_2\left(x_0
ight)}{\partial
u_{x_0}^{\mp}} = rac{\partial u_2\left(x_0
ight)}{\partial
u_{x_0}} \pm \pi q(x_0).$$

Здесь

$$\begin{split} \frac{\partial u_2(x_0)}{\partial \nu_{x_0}^-} &= \lim_{\substack{x',x'' \to x_0, \\ x',x'' \in \Omega, \\ x',x'' \in \nu_{x_0}}} \frac{u_2(x') - u_2(x'')}{|x' - x''|}. \quad \text{При этом } x' \in (x_0,x''). \\ \frac{\partial u_2(x_0)}{\partial \nu_{x_0}^+} &= \lim_{\substack{x',x'' \to x_0, \\ x',x'' \in \mathbb{R} \ ^n \setminus \Omega, \\ x',x'' \in \nu_{x_0}}} \frac{u_2(x') - u_2(x'')}{|x' - x''|}. \quad \text{При этом } x'' \in (x_0,x'). \end{split}$$

- 5.27. Написать формулу, дающую решение задачи Дирихле для уравнения Лапласа в $\overline{B_a^n(0)}$, и доказать, что функция, определяемая этой формулой, непрерывна на $S_a^n(0)$.
- **5.28.** Существует ли функция $G(x; x^0)$, определение которой отличается от определения функции Грина задачи Дирихле для области $\Omega \subset \mathbb{R}^3$ заменой условия

$$G(x;x^0)=0$$
 при $x\in\partial\Omega$

условием

$$\frac{\partial G(x;x^0)}{\partial \nu} = 0$$
 при $x \in \partial \Omega$?

5.29. При каких α существует решение $u(\rho,\theta)$ задачи Неймана для уравнения Лапласа в круге $B_1^2(0)$ с граничным условием

$$\left. \frac{\partial u}{\partial \rho} \right|_{\rho=1} = \alpha \cos^4 \theta + \alpha^2 \cos^2 \theta$$
?

5.30. При каких α, β существует решение краевой задачи для уравнения Лапласа в кольце $B_2^2(0)\backslash B_1^2(0)$ с граничными условиями

$$\left. \frac{\partial u}{\partial \rho} \right|_{\rho=1} = 1, \qquad \left. \left(\frac{\partial u}{\partial \rho} + \alpha u \right) \right|_{\rho=2} = \beta?$$

Найти решение во всех случаях, когда оно существует.

5.31. Существует ли гармоническая в $B_1^2(0) \setminus \{0\}$ функция u(x,y), удовлетворяющая условию

$$\left. \frac{\partial u}{\partial \rho} \right|_{\rho=1} = x - y^2?$$

5.32. Найти решение u(x,y) следующей задачи:

$$\Delta u = 0, \quad \rho > 1;$$
 $\frac{\partial u}{\partial \rho}\Big|_{\rho=1} = x(1-y);$ $\inf_{\rho > 1} u(x,y) = 0.$

5.33. а) Единственно ли решение следующей задачи: $u\in C^2(\overline{\Omega}),$ где $\overline{\Omega}=\overline{B_2^3(0)}\backslash B_1^3(0);$

$$\begin{split} \Delta u(x) &= 0, & x \in \overline{\Omega}; \\ \frac{\partial u(x)}{\partial \rho} &- \alpha_1 u(x) = f_1(x), & x \in S_1^3(0); \\ \frac{\partial u(x)}{\partial \rho} &+ \alpha_2 u(x) = f_2(x), & x \in S_2^3(0); \end{split}$$

 $\alpha_k = \text{const} > 0 \quad (k = 1, 2)$?

б) Тот же вопрос при $\alpha_k = \text{const} < 0 \quad (k = 1, 2).$

5.34. Найти все такие $\alpha > 0$, что решение u(x,y) задачи Дирихле для уравнения Лапласа в полуплоскости $\mathbb{R}_+ \times \mathbb{R}$, удовлетворяющее неравенству

$$|u(x,y)| \leqslant M(1+x+|y|)^{\alpha},$$

где M = const > 0, единственно.

5.35. Найти все такие $\alpha>0$, что решение u(x,y) задачи Дирихле для уравнения Лапласа в области $\{(x,y)\in\mathbb{R}^2\ \big|\ |y|<\frac{x}{\sqrt{3}}\}$, удовлетворяющее неравенству

$$|u(x,y)| \leqslant M(1+x^2+y^2)^{\alpha},$$

где M = const > 0, единственно.

5.36. Найти значения в точках отрицательной полуоси Oy логарифмического потенциала простого слоя u(x,y), распределённого на отрезке $x=0,\ 0\leqslant y\leqslant 2$ с плотностью, равной единице.

5.37. Найти
$$\lim_{x^2+y^2\to\infty} \int_{\xi^2+\eta^2=1} (\xi^2-2\eta^2) \ln\left[(x-\xi)^2+(y-\eta)^2\right] ds.$$

5.38. Пусть $\overline{B} = \overline{B_1^2(0)}$. Существуют ли две различные функции $u_i(x,y)$ со следующими свойствами: $u_i \in C^2(\overline{B})$;

$$\Delta u_i = 0$$
 в $\overline{B}, \qquad rac{\partial u_i}{\partial y} - u_i = 3x$ на ∂B $(i=1,2)$?

5.39. а) Пусть $K=\left\{1<|x|<2\right\}$ — "кольцевая" область в \mathbb{R}^2 . Единственно ли решение $u\in C^2(K)\cap C^1(\overline{K})$ следующей краевой задачи:

$$\Delta u = 0 \quad \text{B} \quad K, \qquad \left. \frac{\partial u}{\partial \, n} \right|_{|x|=1} = \varphi_1(x_1,x_2), \quad \left. u \right|_{|x|=2} = \varphi_2(x_1,x_2),$$

 $arphi_1,\ arphi_2$ — произвольные непрерывные функции на окружностях $\{|x|=1\}$ и $\{|x|=2\}$ соответственно?

б) Найдите решение поставленной в п. (а) задачи, если

$$\varphi_1 = \cos \theta, \qquad \varphi_2 = \sin \theta$$

 $(\theta - \pi)$ полярный угол на плоскости).

5.40. а) Докажите, что решение задачи Дирихле в полосе $\Pi = \{(x,y): \ 0 < x < 1, \ -\infty < y < +\infty \}$

$$\Delta u = 0$$
 B Π , $u\big|_{x=0} = \varphi_1(y)$, $u\big|_{x=1} = \varphi_2(y)$,

 $\varphi_1, \varphi_2 \in C(\mathbb{R}^1)$, неединственно.

б) Единственно ли решение предыдущей задачи с дополнительным условием

$$u(x,y) \to 0$$
 при $|y| \to \infty$?

5.41. Пусть Q — ограниченная область с границей ∂Q класса C^1 . Может ли решение $u\in C^2(Q)\cap C^1(\overline{Q})$ краевой задачи

$$\Delta u - u = 1$$
 B $Q, \qquad \left. rac{\partial u}{\partial n} \right|_{\partial Q} = 0,$

 $(\vec{n}$ — внешняя нормаль к $\partial Q)$ быть строго положительным в Q?

5.42. Пусть $K = B_1^2(0), \, u(x,y)$ — решение задачи

$$\Delta u = x^2 y, \qquad u\big|_{\partial K} = 0.$$

Найдите u(0,0).

 ${f 5.43.}$ При каждом ли $lpha\in\mathbb{R}^{\,1}$ задача

$$\begin{array}{c|c} \Delta u = 1 & \quad \mathbf{B} \quad K = \big\{ (r, \varphi) \ \big| \ 1 < r < 2 \big\}, \\ \left. \frac{\partial u}{\partial n} \right|_{r=1} = \sin \varphi, \quad \left. \left(\frac{\partial u}{\partial n} + \alpha u \right) \right|_{r=2} = \sin^2 \varphi, \end{array}$$

 $u\in C^2(K)\cap C^1(\overline{K}),$ имеет хотя бы одно решение? $(\vec{n}$ — внешняя нормаль к границе кольца K.)

5.44. При каких $a \in \mathbb{R}^1$ краевая задача

$$\Delta u + 2u = x - a$$
 b Ω , $u|_{\partial\Omega} = 0$,

 $\Omega = \big\{ (0,\pi) imes (0,\pi) \big\},$ имеет хотя бы одно решение?

5.45. Пусть Ω — ограниченная область на плоскости, $u(x) \in C^2(\Omega)$,

$$\Delta u = 0$$
 в Ω ,

arphi(x) — непрерывная функция на $\partial\Omega$ и

$$\lim_{\substack{x \to x_0 \\ x \in \Omega}} u(x) = \varphi(x_0)$$

для всех $x_0\in\partial\Omega$ кроме единственной точки $x^*\in\partial\Omega$. Назовем такую функцию "решением задачи Дирихле $\Delta u=0,$ $u\big|_{\partial\Omega}=\varphi(x)$ кроме одной граничной точки x^* ". Единственно ли решение такой задачи Дирихле?

5.46. Пусть $\Omega\subset\mathbb{R}^3$ — внешность единичного шара. Единственно ли решение $u(x)\in C^2(\Omega)\cap C(\overline{\Omega})$ внешней задачи Дирихле

$$\Delta u(x)=0, \quad |x|>1, \qquad u\big|_{|x|=1}=0$$

при дополнительном условии

a)
$$\int_{|\xi-x|<1} |u(\xi)|^2 d\xi = O(1)$$
 6) $\int_{|\xi-x|<1} |u(\xi)|^2 d\xi = o(1)$

при $|x| \to +\infty$?

5.47. а) Найти решение $u(\rho,\theta)$ задачи Дирихле для уравнения Лапласа в $B_1^2(0)$ с граничным условием

$$u|_{\rho=1} = \sum_{k=1}^{\infty} k^{-p-1} \sin(k^q \theta),$$

где p и q — заданные натуральные числа.

б) При каких p, q это решение принадлежит пространству $H^1(B_1^2(0))$?

Обобщенные решения

Задача Дирихле

Рассмотрим задачу Дирихле в области Ω в классической постановке

$$\left\{ \begin{array}{ll} \Delta\,u = f & \quad \text{B} \ \Omega, \\ u = \varphi & \quad \text{Ha} \ \partial\Omega. \end{array} \right. \eqno(13)$$

Пусть $f \in L_2(\Omega), \varphi \in H^1(\Omega)$.

Функция $u \in H^1(\Omega)$ называется обобщённым решением краевой задачи (13), если

$$\int\limits_{\Omega} \nabla u \nabla v \ dx = -\int\limits_{\Omega} f v \ dx$$

для любой $v\in \overset{\circ}{H^1}(\Omega)$ и $u-\varphi\in \overset{\circ}{H^1}(\Omega).$

Вариационной постановкой задачи (13) называется следующая минимизационная задача:

$$\inf_{w \,\in\, H^1(\Omega),\ w-\varphi \,\in\, \mathring{H^1}(\Omega)} \bigg[\int\limits_{\Omega} |\nabla w|^2 dx + 2\int\limits_{\Omega} f w\ dx\bigg]$$

или

$$\inf_{w \in \mathring{H^1}(\Omega)} \bigg[\int\limits_{\Omega} |\nabla w|^2 dx + 2 \int\limits_{\Omega} f w \ dx - 2 \int\limits_{\Omega} \nabla \varphi \nabla w \ dx \bigg].$$

Задача Неймана

Рассмотрим задачу Неймана в области Ω в классической постановке

$$\begin{cases} \Delta u = f & \text{B } \Omega, \\ \frac{\partial u}{\partial \nu} = \psi & \text{Ha } \partial \Omega. \end{cases}$$
 (14)

Пусть $f \in L_2(\Omega)$, $\psi \in L_2(\partial\Omega)$.

Функция $u \in H^1(\Omega)$ называется обобщённым решением краевой задачи Неймана (14), если

$$\int_{\Omega} \nabla u \nabla v \ dx = \int_{\partial \Omega} \psi v \ ds - \int_{\Omega} f v \ dx$$

для любой $v \in H^1(\Omega)$.

Вариационной постановкой задачи (13) называется следующая минимизационная задача:

$$\inf_{w \in H^1(\Omega)} \left[\int_{\Omega} |\nabla w|^2 dx + 2 \int_{\Omega} f w \ dx - 2 \int_{\partial \Omega} \psi w \ ds \right].$$

Третья краевая задача (задача Фурье)

Рассмотрим третью краевую задачу в области Ω в классической постановке

$$\left\{ \begin{array}{ll} \Delta u = f & \text{ B } \Omega, \\ \frac{\partial u}{\partial \nu} + \alpha u = \zeta & \text{ Ha } \partial \Omega. \end{array} \right. \tag{15}$$

Пусть $f \in L_2(\Omega)$, $\zeta \in L_2(\partial\Omega)$.

Функция $u \in H^1(\Omega)$ называется обобщённым решением третьей краевой задачи (15), если

$$\int_{\Omega} \nabla u \nabla v \ dx + \alpha \int_{\partial \Omega} uv \ ds = \int_{\partial \Omega} \zeta v \ ds - \int_{\Omega} fv \ dx$$

для любой $v \in H^1(\Omega)$.

Вариационной постановкой задачи (15) называется следующая минимизационная задача:

$$\inf_{w \in H^1(\Omega)} \bigg[\int\limits_{\Omega} |\nabla w|^2 dx + \alpha \int\limits_{\partial \Omega} w^2 \ ds - 2 \int\limits_{\partial \Omega} \zeta w \ ds + 2 \int\limits_{\Omega} f w \ dx \bigg].$$

Минимизант

Последовательность $\{u_k\}$ называется минимизирующей для функционала F, если $F(u_k) \longrightarrow m$ при $k \to \infty$ и $m = \inf F(v)$.

Отметим, что задача Неймана имеет единственное решение с точностью до аддитивной постоянной. Для однозначной разрешимости задачи часто предполагают, что у решения нулевое среднее по области. При таком допущении задача становится однозначно разрешимой и в этом случае можно применять общую схему исследования и классической постановки, и обобщённой, и вариационной.

Если последовательность $\{u_k\}$ является минимизирующей, то существует такое $u\in H^1(\Omega),$ что $u_k\longrightarrow u$ при $k\to\infty$ и F(u)=m.

Метод Ритца

Рассмотрим вариационную постановку задачи Дирихле. Пусть $F(w) = \int\limits_{\Omega} |\nabla w|^2 dx + 2 \int\limits_{\Omega} f w \ dx.$ Рассмотрим линейно независимую систему $\phi_1, \ldots \phi_j, \ldots$, конечные линейные оболочки которых плотны в $\overset{\circ}{H^1}(\Omega)$.

Тогда $\{u_k\},\ u_k=\sum\limits_{j=1}^k\alpha_j\phi_j,$ будет минимизирующей последовательностью, $k=1,2,\ldots,$ если α_j — решения системы линейных уравнений

$$\begin{cases} \alpha_1 \int\limits_{\Omega} \nabla \phi_1 \nabla \phi_1 dx + \alpha_2 \int\limits_{\Omega} \nabla \phi_2 \nabla \phi_1 dx + \ldots + \alpha_k \int\limits_{\Omega} \nabla \phi_k \nabla \phi_1 dx = \\ = -\int\limits_{\Omega} f \phi_1 dx \\ \ldots \\ \alpha_1 \int\limits_{\Omega} \nabla \phi_1 \nabla \phi_k dx + \alpha_2 \int\limits_{\Omega} \nabla \phi_2 \nabla \phi_k dx + \ldots + \alpha_k \int\limits_{\Omega} \nabla \phi_k \nabla \phi_k dx = \\ = -\int\limits_{\Omega} f \phi_k dx \end{cases}$$

5.48. Пусть $u \in C(\overline{B_1^2(0)});$ $u(x,y)\geqslant 0,$ $x^2+y^2=1;$ в $B_1^2(0)$ существуют обобщённые производные в смысле Соболева u_{xx} и u_{yy} , причём

$$u_{xx}+u_{yy}\leqslant 0$$
 почти всюду в $B_1^2(0).$

Доказать, что $u(x,y)\geqslant 0 \quad \forall (x,y)\in B_1^2(0)$.

5.49. Пусть $u \in C(\overline{B_1^2(0)})$; в $B_1^2(0)$ существуют обобщённые производные в смысле Соболева u_{xx} и u_{yy} , причём

$$u_{xx} + u_{yy} = 0$$
 почти всюду в $B_1^2(0)$.

Доказать, что
$$\left|u(x,y)\right|\leqslant \max_{S_1^2(0)}\left|u\right| \ \ \forall (x,y)\in B_1^2(0).$$

5.50. а) Сформулировать определение обобщённого решения задачи Дирихле для уравнения

$$\Delta u = h$$
 в Ω

с условием

$$u = f$$
 на $\partial \Omega$.

б) Найти обобщённое решение этой задачи в случае, когда

$$h(x) \equiv 0, \quad f(x) = |x|^2, \quad \Omega = B_1^n(0), \quad n \geqslant 3.$$

- в) Тот же вопрос в случае, когда $\Omega = B_1^n(0) \setminus \{0\}$.
- **5.51.** Пусть $B=B_1^4(0),\ \ell=\left\{x\in\mathbb{R}^4:\ x_1=0,\ x_2=0,\ x_3=0,\ 0< x_4<\frac{1}{2}\right\}$ отрезок в $\mathbb{R}^4,\ Q=B\setminus\ell$. Найдите обобщенное решение задачи Дирихле u(x):

$$\int\limits_{Q} (\nabla u, \nabla v) \ dx = 0 \qquad \forall \ v \in \mathring{H}^{1}(Q),$$

$$u-\varphi(x)\in \overset{\circ}{H^1}(Q),$$

$$\varphi(x)\in C_0^\infty(B)\quad \text{и}\quad \varphi(x)=1\quad \text{при}\quad x\in \ell.$$

5.52. Найти

$$\inf\int\limits_{B_1^2(0)} \left|\operatorname{grad} w(x)
ight|^2 dx$$

на множестве $\left\{w\in H^1(B_1^2(0))\ \middle|\ w-f\in \overset{\circ}{H^1}(B_1^2(0))
ight\},$ где $f(x_1,x_2)=x_2^2.$

5.53. Вычислить

$$\inf_{w-(|x|-1)\in \mathring{H}^1(\Omega)}\int\limits_{\Omega} \big(|\nabla w|^2-2w\big)dx,$$

если $\Omega = \{x = (x_1, x_2) : 1 < |x| < 2\}.$

5.54. Вычислить

$$\inf_{w-x_1\in\mathring{H}^1(\Omega)}\int\limits_{\Omega} \big(|\nabla w|^2+2\big(x_1^2-x_2\big)w\big)dx,$$

если $\Omega=B_1^2(0)$.

6 Решения отдельных задач

Задача 1.5.

Найти фундаментальное решение оператора

$$\mathcal{L}u(x,y) = u_{xx}(x,y) - u_{yy}(x,y),$$

обращающееся в нуль при y < 0.

Решение. Сначала решим (в обобщенных функциях) уравнение

$$\mathcal{LE}(x, y) = \mathcal{E}_{xx} - \mathcal{E}_{yy} = \delta(x, y),$$

сделав замену переменных (поворот на $\pi/4$):

$$z = \frac{x - y}{\sqrt{2}}, \qquad w = \frac{x + y}{\sqrt{2}}.$$

Тогда производные пересчитываются следующим образом:

$$\frac{\partial}{\partial x} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial z} + \frac{\partial}{\partial w} \right), \qquad \frac{\partial}{\partial y} = \frac{1}{\sqrt{2}} \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial w} \right),$$
$$\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} = 2 \frac{\partial^2}{\partial z \partial w}.$$

При ортогональных преобразованиях δ -функция остается δ -функцией, и уравнение в новых координатах примет вид

$$\frac{\partial^2}{\partial z \partial w} \mathcal{E}(z,w) = \frac{1}{2} \delta(z,w) = \frac{1}{2} \delta(z) \cdot \delta(w).$$

Интегрируя сначала по переменной z при фиксированном w, а потом наоборот, имеем

$$\frac{\partial}{\partial w} \mathcal{E}(z, w) = \frac{1}{2} (\Theta(z) + C_1) \delta(w),$$
$$\mathcal{E}(z, w) = \frac{1}{2} (\Theta(z) + C_1) (\Theta(w) + C_2).$$

Теперь среди всех найденных фундаментальных решений надо выбрать то (или те), которое при y<0 обращается в ноль. Заметим, что обобщенная функция $\mathcal{E}(z,w)$ — регулярная,

кусочно постоянная, равная в I, II, III и IV четвертях (относительно координат (z,w)) соответственно $(C_1+1)(C_2+1)/2$, $(C_1+1)C_2/2$, $C_1(C_2+1)/2$ и $C_1C_2/2$. Полуплоскость y<0 пересекается с тремя из четырех (кроме II) этих четвертей. По условию там $\mathcal{E}(z,w)=0$, то есть

$$(C_1 + 1)(C_2 + 1)/2 = C_1(C_2 + 1)/2 = C_1C_2/2 = 0$$

 $\iff C_1 = 0, C_2 = -1.$

Таким образом, искомое решение единственно и имеет вид

$$\mathcal{E}(z,w) = \frac{1}{2}\Theta(z)(\Theta(w) - 1) = -\frac{1}{2}\Theta(z)\Theta(-w).$$

Возвращаясь к старым координатам, имеем

$$\mathcal{E}(x,y) = -\frac{1}{2}\Theta\left(\frac{x-y}{\sqrt{2}}\right)\Theta\left(\frac{-x-y}{\sqrt{2}}\right) = -\frac{1}{2}\Theta(x-y)\Theta(-x-y).$$

Произведение двух Θ -функций равно нулю везде, кроме множества

$$x - y > 0, -x - y > 0 \iff y < x < -y \iff |x| < y,$$

где оно равно единице. Таким образом, ответ записывается в виде

$$\mathcal{E}(x,y) = -\frac{1}{2}\Theta(y-|x|).$$

Задача 1.12.

При каких α функция $u(x,y)=\left|\ln(x^2+y^2)\right|^{\alpha}$ принадлежит пространству $H^1(\Omega),$ если

a)
$$\Omega = B_{1/2}^2(0);$$

6)
$$\Omega = B_2^2(0) \setminus \overline{B_{1/2}^2(0)}$$
?

Решение. а) Функция $u=\left|\ln(x^2+y^2)\right|^{\alpha}=|2\ln r|^{\alpha}$, где $r=\sqrt{x^2+y^2}$, в области $\Omega=B_{1/2}^2(0)$ имеет особенность лишь в начале координат. Эта функция принадлежит пространству $L_2(\Omega)$ при любом α , так как

$$\int_{\Omega} \left| \ln(x^2 + y^2) \right|^{2\alpha} dx dy = 2\pi \int_{0}^{1/2} |2 \ln r|^{2\alpha} r dr < +\infty$$

ввиду того, что $|\ln r|^{2\,\alpha}r \to 0$ при $r \to +0$. Далее имеем:

$$\nabla u = \alpha |2 \ln r|^{\alpha - 1} \frac{2}{r} \nabla r, \qquad |\nabla u| = C \frac{|\ln r|^{\alpha - 1}}{r}.$$

Функция $u \in H^1(\Omega)$, если сходится следующий интеграл:

$$\int_{\Omega} |\nabla u|^2 dx dy = 2\pi C^2 \int_{0}^{1/2} \left(\frac{|\ln r|^{\alpha - 1}}{r}\right)^2 r dr$$
$$= 2\pi C^2 \int_{0}^{1/2} \frac{|\ln r|^{2(\alpha - 1)}}{r} dr.$$

Сделав замену $s=1/r,\, dr=-ds/s^2,\,$ сведем вопрос к сходимости интеграла

$$\int_0^{1/2} \frac{|\ln r|^{2(\alpha-1)}}{r} dr = \int_2^{+\infty} \frac{\ln^{2(\alpha-1)} s}{s} ds.$$

Как известно из курса математического анализа, последний интеграл сходится при $2(\alpha-1)<-1$, то есть $\alpha<1/2$. (Строго говоря, случай $\alpha=0$, то есть когда C=0, рассматривается отдельно.)

6) В области $\Omega=B_2^2(0)\backslash\overline{B_{1/2}^2(0)}$ у функции $u=|2\ln r|^{\alpha}$ и ее производных особенности могут быть лишь на множестве r=1, где логарифм обращается в ноль.

Так как $\ln r = \ln(1+(r-1)) \sim (r-1)$ при $r \to 1$, то интеграл

$$\int_{\Omega} \left| \ln(x^2 + y^2) \right|^{2\alpha} dx dy = 2\pi \int_{1/2}^{2} |2 \ln r|^{2\alpha} r dr$$

сходится тогда и только тогда, когда

$$\int_{1/2}^{2} |r - 1|^{2\alpha} dr < +\infty,$$

то есть при $\alpha>-1/2.$ В этом случае $u\in L_2(\Omega).$

Исследуем, когда

$$\int_{\Omega} |\nabla u|^2 dx dy = 2\pi C^2 \int_{1/2}^2 \frac{|\ln r|^{2(\alpha - 1)}}{r} dr < +\infty.$$

Подынтегральная функция при $r \to 1$ эквивалентна $|r-1|^{2(\alpha-1)}$, поэтому интеграл сходится тогда и только тогда, когда

$$2(\alpha - 1) > -1$$
, то есть $\alpha > 1/2$.

(На этот раз отдельно рассматриваемый случай $\alpha=0$ этому неравенству не удовлетворяет, но в ответ должен быть включен.)

Ответ: а) $\alpha < 1/2$; б) $\alpha > 1/2$ или $\alpha = 0$.

Задача 1.15.

При каких α, β функция $f(x) = |x|^{\alpha} \cos \beta x$ принадлежит пространству $\mathring{H}^{1}((-1,1))$?

Решение.

Известно, что $\overset{\circ}{H^1}(a,b)$ состоит из функций $f(x)\in H^1(a,b)$ таких, что f(a)=f(b)=0 (см. задачу 1.11). Так как функции из $H^1(a,b)$ непрерывны, то $\overset{\circ}{H^1}(a,b)$ состоит из непрерывных на (a,b) функций, таких, что f(a)=f(b)=0, для которых конечна их H^1 -норма.

- 1) f(x) непрерывна на (0,1) при $\alpha\geqslant 0.$
- 2) Условия на β того, что $f(\pm 1) = 0$, выглядят так:

$$\beta = \frac{\pi}{2} + \pi k, \qquad k \in \mathbb{Z}.$$

3) В окрестности каждой точки x_0 интервала (-1,1), за исключением, возможно, $x_0=0$, f(x) является непрерывно дифференцируемой, поэтому ее H^1 -норма конечна в окрестности каждой такой точки. Осталось исследовать точку $x_0=0$ и концевые точки.

Так как $f(x)\sim |x|^{\alpha}$ при $x\to 0$, то $f(x)\in H^1(-\delta,\delta),\ \delta>0,$ $\delta\ll 1$, если сходятся интегралы $\int_0^\delta |x|^{2\alpha}dx$ и $\int_0^\delta |x|^{2\alpha-2}dx$, что имеет место при $\alpha>\frac12.$

Далее, при $x \to 1-0$ функция $f(x) \sim \cos \beta x$. Сделаем замену z=1-x. Тогда при $x \to 1-0$ $(z \to 0+0)$, учитывая найденные

значения β , имеем, что

$$f(z) = \cos(-\beta z + \beta) = \cos\beta z \cos\beta + \sin\beta z \sin\beta =$$

$$= (-1)^k \sin\left[\left(\frac{\pi}{2} + \pi k\right)z\right] \sim C_k z, \qquad C_k = (-1)^k \left(\frac{\pi}{2} + \pi k\right).$$

Таким образом, $f(x)\in H^1(1-\delta,1)$ $\delta>0,$ $\delta\ll 1,$ если $f(z)\in H^1(0,\delta),$ то есть сходятся интегралы $C_k^2\int_0^\delta z^2dz$ и $C_k^2\int_0^\delta dz.$ Их сходимость имеет место при всех значениях k.

Подводя итог, получим, что $f(x) \in \overset{\circ}{H^1}(-1,1)$ при

$$\alpha > \frac{1}{2}, \qquad \beta = \frac{\pi}{2} (1 + 2k), \quad k \in \mathbb{Z}.$$

Задача 1.19.

Пусть $Q=B_1^3(0).$ Справедливо ли следующее утверждение: существует постоянная C>0 такая, что

$$|u(0)| \leqslant C||u||_{H^1(Q)} \quad \forall u(x) \in C^{\infty}(\overline{Q}) ?$$

Решение. Утверждение неверно. Пусть u(x) — произвольная функция из $C_0^\infty(Q)$, не равная 0 в начале координат, продолженная нулем вне Q. Таким образом, $u \in C^\infty(\mathbb{R}^3)$, u(x) = 0 при $|x| \geqslant 1$, $u(0) \neq 0$.

Рассмотрим последовательность функций $u_n(x)=u(nx)$. Имеем $u_n\in C^\infty(Q),\ u_n(x)=0$ при $|x|\geqslant 1/n,\ u_n(0)=u(0),\ \nabla u_n(x)=n\nabla u(nx)$. Из неравенства Фридрихса для функции $u_n(x)\in C_0^\infty(Q),$ получаем

$$||u_n||_{H^1(Q)}^2 = \int_Q (|u_n(x)|^2 + |\nabla u_n(x)|^2) dx$$

$$\leqslant (C(Q) + 1) \int_Q |\nabla u_n(x)|^2 dx$$

$$= (C(Q) + 1) n^2 \int_{|x| < 1/n} |\nabla u(nx)|^2 dx.$$

Сделаем замену переменных y = nx, $dx = dy/n^3$ (так как размерность пространства равна трем):

$$||u_n||_{H^1(Q)}^2 \leqslant \frac{C(Q)+1}{n} \int_{|y|<1} |\nabla u(y)|^2 dy \leqslant \frac{C(Q)+1}{n} ||u||_{H^1(Q)}^2.$$

Таким образом, построена последовательность функций $\{u_n\}$, $u_n \in C^{\infty}(\overline{Q})$, для которых значение в нуле постоянно и не равно нулю, и при этом $\|u_n\|_{H^1(Q)} \to 0$ при $n \to \infty$. Следовательно, ни при какой константе C > 0 мы не можем утверждать, что $|u(0)| \leqslant C \|u\|_{H^1(Q)}$ для всех функций $u \in C^{\infty}(\overline{Q})$.

Задача 2.8.

а) Определить тип уравнения

$$u_{xx} - 2\alpha u_{xy} - 3\alpha^2 u_{yy} + \alpha u_y + u_x = 0 \tag{2}$$

в зависимости от действительного параметра α .

- б) Привести уравнение (2) к канонической форме.
- в) Найти общее решение этого уравнения.

Решение. а) $D=4\alpha^2$. Уравнение гиперболическое при $\alpha \neq 0$, параболическое при $\alpha=0$.

б) Если $\alpha \neq 0$. Характеристики: $\xi=y+3\alpha x, \eta=y-\alpha x$. Каноническая форма: $16\alpha^2u_{\xi\eta}-4\alpha u_{\xi}=0$.

Если $\alpha = 0$, то $u_{xx} + u_x = 0$.

в) Если $\alpha \neq 0$. Каноническая форма: $16\alpha^2 u_{\xi\eta} - 4\alpha u_{\xi} = 0$. Интегрируем по ξ . Имеем $4\alpha u_{\eta} + u = C(\eta)$. Далее интегрируем по η и подставляем выражения для ξ и η . Имеем

$$u(x,y) = F(y + 3\alpha x)e^{\frac{y - \alpha x}{4\alpha}} + G(y - \alpha x).$$

Если $\alpha = 0$, то

$$u(x, y) = F(y) + G(y)e^{-x}$$
.

Задача 2.10.

Пусть $\Omega = \{(x,y) \in R^2 \mid x^2 + (y-2l)^2 < l^2\}$, функция $u \in C^2(\Omega)$ удовлетворяет уравнению

$$2u_{xx} + rac{ ext{sign }y}{2}\,u_{yy} = 0$$
 в области $\Omega.$

- а) Возможно ли, что $u \notin C^3(\Omega)$ в случае l>0? Ответ обосновать.
 - **б**) Тот же вопрос в случае l < 0.

Решение. а). При l>0 круг Ω радиуса l и с центром в (0,2l) лежит в полуплоскости y>0, в которой уравнение является эллиптическим и в переменных $(z,w)=(x/\sqrt{2},y\sqrt{2})$ становится уравнением Лапласа $u_{zz}+u_{ww}=0$. Таким образом, функция u(z,w) является гармонической, и, следовательно, бесконечно дифференцируемой как в переменных (z,w), так и в исходных переменных (x,y). Ответ: невозможно.

б). Если l<0, то круг Ω лежит в полуплоскости y<0, в которой уравнение гиперболическое — оно является уравнением струны

$$u_{yy} = 4u_{xx}$$
.

Примером решения $u \in C^2(\Omega) \backslash C^3(\Omega)$ может служить, например, u(t,x) = f(y-2x) или u = f(y+2x), где функция одного переменного $f(\xi)$ является класса C^2 , но не C^3 в окрестности точки $\xi = 2l$. Скажем, $f(\xi) = |\xi - 2l|^3$.

Задача 2.11.

На плоскости $(t,x)\in\mathbb{R}^2$ рассматриваются уравнения

$$u_t - u_x = 0, (4)$$

$$2u_{tt} - (\alpha + 1)^2 u_{tx} + 2\alpha u_{xx} = 0. (5)$$

- а) Найти характеристики уравнения (4).
- б) При каких α любое бесконечно дифференцируемое решение u(t,x) уравнения (4) является также и решением уравнения (5)?

Для каждого из найденных в п. б) значений параметра α :

- в) найти характеристики уравнения (5);
- г) указать некоторое решение u(t,x) уравнения (5), которое не является решением уравнения (4), или доказать, что такого решения нет.
 - д) Тот же вопрос об ограниченном решении.

Решение. а) Найдем характеристики уравнения (4):

$$dx + dt = 0 \iff x + t = \text{const}.$$

Общее решение уравнения (4) имеет вид u(t,x) = f(x+t), где $f(\xi)$ — произвольная гладкая функция одной переменной.

б) Подставим общее решение уравнения (4) в уравнение (5): $u_{tt} = u_{tx} = u_{xx} = f''(x+t)$,

$$[2 - (\alpha + 1)^{2} + 2\alpha]f''(x+t) = 0.$$

Уравнение (5) должно выполняться для любой бесконечно дифференцируемой функции f(x+t), следовательно,

$$2 - (\alpha + 1)^2 + 2\alpha = 0 \iff \alpha = \pm 1.$$

- 1. Случай $\alpha = 1$.
- в) При $\alpha=1$ уравнение (5) имеет вид $u_{tt}-2u_{tx}+u_{xx}=0.$ Его характеристиками будут линии

$$dx^2 + 2 dx dt + dt^2 = 0 \quad \Longleftrightarrow \quad \frac{dx}{dt} = -1 \quad \Longleftrightarrow \quad x + t = \text{const}.$$

г) Уравнение (5) имеет одно семейство характеристик, следовательно, это уравнение параболического типа. Заменой переменных $\xi=x+t,\ \eta=t,$ оно приводится к каноническому виду

$$u_{nn} = 0. (5')$$

Общим решением уравнения (5') является функция $u(\xi,\eta)=f(\xi)+\eta\,g(\xi)$, тогда общим решением уравнения (5) будет функция $u(t,x)=f(x+t)+t\,g(x+t)$. Решение уравнения (5), которое не является решением уравнения (4), — это, например, функция u(t,x)=t(x+t).

- д) Функция $u(t,x)=f(x+t)+t\,g(x+t)$ будет ограниченной, только если $g(x+t)\equiv 0$, и f(x+t) ограничена. Следовательно, любое ограниченное решение уравнения (5) является решением уравнения (4).
 - **2.** Случай $\alpha = -1$.

в) При $\alpha = -1$ уравнение (5) принимает вид $u_{tt} - u_{xx} = 0$. Его характеристиками будут линии

$$dx^2 - dt^2 = 0 \iff \frac{dx}{dt} = \pm 1 \iff x \pm t = \text{const}.$$

г) Уравнение (5) имеет два семейства характеристик, следовательно, это уравнение гиперболического типа. Заменой переменных $\xi=x+t,\;\eta=x-t,$ оно приводится к каноническому виду

$$u_{\xi\eta} = 0. (5'')$$

Общим решением уравнения (5") является функция $u(\xi,\eta)=f(\xi)+g(\eta)$, тогда общим решением уравнения (5) будет функция u(t,x)=f(x+t)+g(x-t). Функция u(x,t)=x-t является решением уравнения (5), но не является решением уравнения (4).

д) Функция $u(x,t) = \sin(x-t)$ служит примером ограниченного решения уравнения (5), которое не является решением уравнения (4).

Задача 2.24.

Рассмотрим задачу Коши в полосе $\Pi = \mathbb{R}^1_x \times [0, y_0]$ в $\mathbb{R}^2_{x,y}$

$$\begin{array}{ll} \Delta \, u + u = 0 & \mathrm{B} \quad \Pi, \qquad u \in C^2(\Pi) \cap C^1(\overline{\Pi}), \\ u\big|_{y = 0} = \varphi(x), \qquad u_y\big|_{y = 0} = \psi(x), \end{array}$$

 $\varphi(x), \ \psi(x)$ — ограниченные непрерывные функции на \mathbb{R}^1_x . Корректна ли эта задача в паре пространств $u \in E_0, \ \Phi \equiv (\varphi, \psi) \in E_1$, где

$$\begin{split} E_0 &= C(\Pi), & \|u\|_{E_0} = \sup_{\overline{\Pi}} |u(x,t)|, \\ E_1 &= C(\mathbb{R}^1_x) \times C(\mathbb{R}^1_x), & \|\Phi\|_{E_1} = \sup_{\mathbb{R}} |\varphi(x)| + \sup_{\mathbb{R}} |\psi(x)|? \end{split}$$

Решение. Докажем, что задача некорректна. Для этого построим пример, аналогичный примеру Адамара. Будем искать частное решение уравнения в виде u(x,y) = X(x)Y(y), где функция Y(y) должна быть неограниченной при y>0. Подставим u(x,y) в уравнение:

$$X''(x)Y(y) + X(x)Y''(y) + X(x)Y(y) = 0,$$

$$\frac{Y''(y)}{Y(y)} = -\frac{X''(x)}{X(x)} - 1 \equiv \lambda.$$

Для функции Y(y) получим уравнение $Y''(y) - \lambda Y(y) = 0$, которое имеет неограниченное решение при $\lambda > 0$: $Y(y) = e^{\sqrt{\lambda}y}$. Тогда решением уравнения $X''(x) + (\lambda + 1)X(x) = 0$ будет функция $X(x) = A \sin\left(\sqrt{\lambda + 1} \ x\right) + B \cos\left(\sqrt{\lambda + 1} \ x\right)$. Возьмем $\lambda = n^2$, $n \in \mathbb{N}$, и рассмотрим последовательность функций

$$u_n(x, y) = \frac{1}{n^2} e^{ny} \sin(\sqrt{n^2 + 1} x).$$

Функции $u_n(x,y)$ будут решениями задач

$$\Delta u_n + u_n = 0, \quad x \in \mathbb{R}^1, \quad y \in (0, y_0),$$

$$u_n(x, 0) = \varphi_n(x) = \frac{1}{n^2} \sin\left(\sqrt{n^2 + 1} x\right),$$

$$\frac{\partial u_n}{\partial y}(x, 0) = \psi_n(x) = \frac{1}{n} \sin\left(\sqrt{n^2 + 1} x\right).$$

При $n\to\infty$ последовательность начальных функций стремится к нулю по норме пространства $C(\mathbb{R}^1):\max_{x\in\mathbb{R}}\left|\varphi_n(x)\right|\to 0$, $\max_{x\in\mathbb{R}}\left|\psi_n(x)\right|\to 0$, но последовательность решений $u_n(x,y)$ не стремится к нулю. Нарушается условие непрерывной зависимости решения от начальных данных из определения корректности, следовательно, задача является некорректной.

Задача 3.4.

Привести пример функций $arphi,\psi\in C^2(\mathbb{R})$ таких, что задача Коши

$$u_{xx} + 5u_{xy} - 6u_{yy} = 0,$$
 $u\Big|_{y=6x} = \varphi(x),$ $u_y\Big|_{y=6x} = \psi(x)$

- а) имела бы решение. Единственно ли это решение?
- б) не имела бы решений.

Решение.

Найдем характеристики уравнения $u_{xx} + 5u_{xy} - 6u_{yy} = 0$:

$$(dy)^2 - 5 dy dx - 6(dx)^2 = 0,$$
 $y + x = C_1,$ $y - 6x = C_2,$

и запишем его общее решение

$$u(x, y) = f(y + x) + g(y - 6x),$$

где $f(\xi),\,g(\eta)\in C^2(\mathbb{R})$ — произвольные функции одной переменной. Подставим общее решение в начальные условия, заданные на одной из характеристик

$$\begin{cases} u\big|_{y=6x} &= f(7x) + g(0) = \varphi(x), \\ u_y\big|_{y=6x} &= f'(7x) + g'(0) = \psi(x). \end{cases}$$
(16)

Необходимое условие разрешимости системы (16) имеет вид

$$\varphi'(x) = 7\psi(x) + \text{const},$$

причем из системы (16) найти можно только функцию $f(\xi)$, а функция $g(\eta)$ не определяется.

а) Пример начальных данных, при которых задача Коши имеет решение:

$$\varphi(x) = 7x^2, \qquad \psi(x) = 2x.$$

Решение задачи неединственно:

$$u(t,x) = \frac{1}{7}(x+y)^2 + g(y-6x),$$

где $g(\eta) \in C^2(\mathbb{R})$ — любая функция, удовлетворяющая условиям g(0) = g'(0) = 0.

б) Пример начальных условий, при которых задача Коши не имеет решения:

$$\varphi(x) = x^2, \qquad \psi(x) = 2x.$$

В этом случае система (16) противоречива.

Задача 3.27.

При каких A и ω существует решение $u \in C^2(\overline{\mathbb{R}}_+ \times \overline{\mathbb{R}}_+)$ в $\overline{\mathbb{R}}_+ \times \overline{\mathbb{R}}_+$ краевой задачи:

$$u_{tt} = u_{xx}, \quad u\big|_{x=0} = \cos \omega t, \quad u\big|_{t=0} = A e^{-x^2}, \quad u_t\big|_{t=0} = 0$$
?

Найти это решение.

Решение. Общее решение уравнения струны имеет вид

$$u(x,t) = f(x-t) + g(x+t).$$

При x>t решение определяется по формуле Даламбера:

$$u(x,t) = f(x-t) + g(x+t) = \frac{A}{2} \left(e^{-(x-t)^2} + e^{-(x+t)^2} \right).$$

 Π ри x < t имеем

$$u(x,t) = f(x-t) + g(x+t) = f(x-t) + \frac{A}{2}e^{-(x+t)^2},$$

где падающая волна $g(\xi)$ та же, что при x>t, а отраженная волна $f(\xi)$, $\xi < 0$, находится из граничного условия:

$$u\big|_{x=0} = f(-t) + \frac{A}{2}e^{-t^2} = \cos\omega t \quad \Longleftrightarrow \quad f(\xi) = \cos\omega \xi - \frac{A}{2}e^{-\xi^2}.$$

Тогда при x < t

$$u(x,t) = \frac{A}{2} \left(e^{-(x+t)^2} - e^{-(x-t)^2} \right) + \cos \omega (x-t).$$

Функция u(x,t) принадлежит классу $C^2(\overline{\mathbb{R}}_+ imes \overline{\mathbb{R}}_+)$, если она имеет две непрерывные производные на угловой характеристике x=t. Для этого функция $f(\xi)$, задаваемая $f(\xi)=Ae^{-\xi^2}/2$ при $\xi\geqslant 0$ и $f(\xi)=-Ae^{-\xi^2}/2+\cos\omega\xi$ при $\xi<0$, должна быть класса C^2 в нуле, то есть

$$f(+0) = f(-0), \qquad \Longleftrightarrow \quad \frac{A}{2} = 1 - \frac{A}{2}, \quad \Longleftrightarrow \quad A = 1,$$

$$f'(+0) = f'(-0)$$
 (выполнено всегда),

$$f'(+0)=f'(-0) \qquad \hbox{ (выполнено всегда),}$$

$$f''(+0)=f''(-0) \qquad \Longleftrightarrow \quad -1=1-\omega^2 \quad \Longleftrightarrow \quad \omega=\pm\sqrt{2},$$

так как

$$\begin{split} f'(+0) &= -\xi e^{-\xi^2} \Big|_{\xi=0} = 0, \\ f'(-0) &= \left(\xi e^{-\xi^2} - \omega \sin \omega t \right) \Big|_{\xi=0} = 0, \\ f''(+0) &= \left(-e^{-\xi^2} + 2\xi^2 e^{-\xi^2} \right) \Big|_{\xi=0} = -1, \\ f''(-0) &= \left(e^{-\xi^2} - 2\xi^2 e^{-\xi^2} - \omega^2 \cos \omega \xi \right) \Big|_{\xi=0} = 1 - \omega^2, \end{split}$$

При найденных значениях A и ω получим дважды непрерывно дифференцируемое решение задачи:

$$u(t,x) = \begin{cases} \left(e^{-(x+t)^2} + e^{-(x-t)^2}\right)/2, & x \ge t, \\ \left(e^{-(x+t)^2} - e^{-(x-t)^2}\right)/2 + \cos\left(\sqrt{2}(x-t)\right), & x < t. \end{cases}$$

Задача 3.33.

Пусть u(x,t) — решение в $[0,1] imes\overline{\mathbb{R}}_+$ смешанной задачи

$$u_{tt} = 4u_{xx},$$
 $u|_{x=0} = u|_{x=1} = 0,$ $u|_{t=0} = 4\sin^3 \pi x,$ $u_t|_{t=0} = 30x(1-x).$

а) Найти
$$f(\frac{1}{3})$$
, где $f(t) = \int_0^1 \left[u_t^2(x,t) + 4u_x^2(x,t) \right] dx$.

б) Найти u(x,2).

Решение. а)

$$\begin{split} f'(t) &= \int_0^1 \left[2u_t(x,t)u_{tt}(x,t) + 8u_x(x,t)u_{tx}(x,t) \right] dx = \\ &= \{ \text{ из уравнения } u_{tt} = 4u_{xx} \} = \\ &= 8\int_0^1 \left[u_t(x,t)u_{xx}(x,t) + u_x(x,t)u_{tx}(x,t) \right] dx = \\ &= \{ \text{по частям} \} = 8u_t(x,t)u_x(x,t) \Big|_{x=0}^{x=1} - \\ &- 8\int_0^1 u_{tx}(x,t)u_x(x,t) dx + 8\int_0^1 u_x(x,t)u_{tx}(x,t) dx = 0; \end{split}$$

подстановка равна нулю из граничных условий:

$$u\big|_{x=0} = u\big|_{x=1} = 0 \implies u_t\big|_{x=0} = u_t\big|_{x=1} = 0.$$

Так как f'(t) = 0, то $f(t) \equiv {
m const}$, и

$$f\left(\frac{1}{3}\right) = f(0) = \int_0^1 \left[u_t^2(x,0) + u_x^2(x,0)\right] dx.$$

Для того, чтобы найти $u_x(x,0)$, продифференцируем начальное условие $u(x,0)=4\sin^3\pi x$ по x. Получим

$$f\left(\frac{1}{3}\right) = \int_0^1 \left[(30x(1-x))^2 + 4(12\pi\sin^2\pi x\cos\pi x)^2 \right] dx = 30 + 36\pi^2.$$

б) Найдем общее решение задачи методом Фурье:

$$u(x,t) = \sum_{n=1}^{\infty} \left[A_n \cos 2\pi nt + B_n \sin 2\pi nt \right] \sin \pi nx.$$

Тогда решение u(x,t) 1-периодично по времени, и

$$u(x,2) = \sum_{n=1}^{\infty} [A_n \cos 4\pi n + B_n \sin 4\pi n] \sin \pi nx =$$

$$= \sum_{n=1}^{\infty} A_n \sin \pi nx = u(x,0) = 4 \sin^3 \pi x.$$

Задача 3.39.

а) Найти все k>0, для которых при некоторой функции $\underline{\varphi}(x)\in C^\infty((0,\pi))$ существует неограниченное решение в $[0,\pi] imes$ задачи

$$\begin{split} u_{tt} &= 9u_{xx} \;, \qquad u\big|_{x=0} = (u_x - ku) \,\big|_{x=\pi} = 0, \\ u\big|_{t=0} &= 0, \qquad u_t\big|_{t=0} = \varphi(x). \end{split}$$

б) Для k=1 описать все функции $\varphi(x)\in C^\infty((0,l)),$ для которых решение u(t,x) этой задачи ограничено.

Решение. а) Разделяя переменные, получаем, что решение задачи ищется в виде ряда

$$u(t,x) = \sum_{j=1}^{\infty} T_j(t) X_j(x)$$

где система функций $X_j(x)\not\equiv 0$ — решение задачи Штурма-Лиувилля

$$X_{j}''(x) = \lambda_{j} X_{j}(x), \qquad X_{j}(0) = 0, \quad X_{j}'(\pi) - k X_{j}(\pi) = 0, \quad (17)$$

а функции $T_i(t)$ — решения задачи

$$T_{j}^{"}=9\lambda_{j}T_{j}, \quad T_{j}(0)=0, \ T_{j}^{"}(0)=\int_{0}^{\pi}\varphi(x)X_{j}(x)dx\Big/\int_{0}^{\pi}X_{j}^{2}(x)dx.$$

$$\tag{18}$$

Растущие по t решения у задачи (18) могут быть лишь в случае $\lambda_j\geqslant 0$, причем обязательно они и будут, если только $T'_j(0)\neq 0$. Таким образом, необходимо понять, когда у задачи Штурма-Лиувилля (17) бывают неотрицательные собственные значения λ_i .

Ненулевое решение $X_j(x)$ задачи (17) с $\lambda_j=0$ с точностью до умножения на константу имеет вид $X_j(x)=x$ (как линейная функция с нулевым значением в нуле) и существует только в случае, если эта функция удовлетворяет граничному условию в точке π , то есть

$$1 - k\pi = 0$$
 \iff $k = 1/\pi$.

В случае $\lambda_j=\omega^2>0,\ \omega>0,$ ввиду условия $X_j(0)=0$ это решение имеет вид $X_j(x)=\sin\omega x$ (опять-таки с точностью до умножения на константу), и оно существует в случае, если следующее уравнение относительно ω имеет решение

$$\omega \operatorname{ch} \omega \pi - k \operatorname{sh} \omega \pi = 0 \qquad \Longleftrightarrow \qquad k \operatorname{th} \omega \pi = \omega, \tag{19}$$

что, в свою очередь, будет, если производная функции $f(\omega) = k \operatorname{th} \omega \pi$ в нуле меньше 1, то есть $k\pi > 1$. Заметим, что в силу строгой выпуклости вверх функции $f(\omega)$ на положительной полуоси уравнение (19) имеет не более одного решения $\omega > 0$.

Следовательно, неограниченное по времени решение исходной задачи существует при $k\geqslant 1/\pi.$

б). Если k=1, то, как указано выше, задача Штурма-Лиувилля (17) имеет ровно одно положительное собственное значение $\lambda_1>0$, и решение u(t,x) будет ограничено тогда и только тогда, когда соответствующая собственная функция $X_1(x)$ не будет участвовать в разложении этого решения, то есть $T_1'(0)=0$. Это означает, что

$$\int_0^\pi \varphi(x) X_1(x) dx = 0.$$

Задача 4.9.

При каких условиях на функцию $\varphi\in C_0^\inftyig((0,1)ig)$ любое решение u(t,x) задачи

a)
$$\begin{cases} u_{t} = u_{xx}, & x \in (0, 1), t > 0 \\ u\Big|_{x=0} = u_{x}\Big|_{x=1} = 0 \\ u\Big|_{t=0} = \varphi(x) \end{cases}$$
 6)
$$\begin{cases} u_{t} = u_{xx}, & x \in (0, 1), t > 0 \\ u_{x}\Big|_{x=0} = u_{x}\Big|_{x=1} = 0 \\ u\Big|_{t=0} = \varphi(x) \end{cases}$$

обладает свойством $u(t,x) \to 0$ при $t \to +\infty$?

Решение.

а) Найдем решение задачи методом Фурье

$$u(t,x) = \sum_{n=0}^{\infty} \varphi_n e^{-\pi^2 (n + \frac{1}{2})^2 t} \sin \pi \left(n + \frac{1}{2}\right) x,$$

где φ_n — коэффициенты разложения функции $\varphi(x)$ по базису $\{\sin\pi\left(n+\frac{1}{2}\right)x,\ n=0,1,\ldots\}$. Следовательно, $u(t,x)\underset{t\to\infty}{\longrightarrow} 0$ при любой функции $\varphi(x)\in C_0^\infty(0,1)$.

б) При граничных условиях второго рода решение имеет вид

$$u(t,x) = \varphi_0 + \sum_{n=1}^{\infty} \varphi_n e^{-\pi^2 n^2 t} \cos(\pi n x),$$

где φ_n — коэффициенты Фурье разложения функции $\varphi(x)$ по базису $\left\{1;\cos(\pi nx),\,n\!=\!1,2,\ldots\right\}$. Следовательно, $\lim_{t\to\infty}u(t,x)=\varphi_0$,

а коэффициент $\varphi_0 = 0$ при следующем условии на функцию $\varphi(x)$:

$$\int_{0}^{1} \varphi(x) dx = 0.$$

С точки зрения физики это условие означает, что предельная температура стержня с теплоизолированными концами равна среднему значению начальной температуры. Температура стержня стремится к нулю с течением времени только в том случае, если среднее значение начальной температуры равно нулю.

Задача 4.21.

Пусть u(t,x) — решение в $Q_{(0,\pi)}^\infty$ задачи

$$u_t = u_{xx}, \qquad u\big|_{x=0} = u_x\big|_{x=\pi} = 0, \qquad u\big|_{t=0} = \varphi(x),$$

а) Доказать, что
$$\sup_{0 \le x \le \pi} |u(1,x)| \leqslant \sup_{0 \le x \le \pi} |\varphi(x)|$$

где
$$\varphi(0)=\varphi'(\pi)=0$$
. a) Доказать, что
$$\sup_{0< x<\pi}|u(1,x)|\leqslant \sup_{0< x<\pi}|\varphi(x)|.$$
 6) Верно ли, что
$$\sup_{0< x<\pi}|u(1,x)|\leqslant \frac{1}{2}\sup_{0< x<\pi}|\varphi(x)|\,?$$

Решение. a). Продолжим функцию u(t,x) четным образом через точку π на множество $x \in (\pi, 2\pi)$, то есть положим $\tilde{u}(t, x) =$ $u(t,2\pi-x)$ при $x\in(\pi,2\pi)$. Построенная функция $\tilde{u}(t,x)$ является решением краевой задачи

$$\tilde{u}_t = \tilde{u}_{xx}, \quad x \in (0, 2\pi), \quad t > 0,
\tilde{u}|_{x=0} = \tilde{u}|_{x=2\pi} = 0, \quad \tilde{u}|_{t=0} = \tilde{\varphi}(x),$$

где функция $\tilde{\varphi}(x)$ является аналогичным продолжением $\varphi(x)$ на отрезок $[0, 2\pi]$. В силу принципа максимума для уравнения теплопроводности в ограниченной области, решение $\tilde{u}(t,x)$ принимает максимальное по модулю значение при t=0 (так как $ilde{u}$ равно 0 на боковой границе x = 0 и $x = 2\pi$). Итак,

$$\sup_{0 < x < \pi} |u(1,x)| = \sup_{0 < x < 2\pi} |\tilde{u}(1,x)| \leqslant \sup_{0 < x < 2\pi} |\tilde{\varphi}(x)| = \sup_{0 < x < \pi} |\varphi(x)|.$$

б). Неверно. Пример: $\varphi(x)=\sin(x/2);$ соответствующее решение $u(t,x)=e^{-t/4}\sin(x/2),$ тогда

$$\sup_{0 < x < \pi} |u(1, x)| = e^{-1/4}, \qquad \sup_{0 < x < \pi} |\varphi(x)| = 1,$$

 $e^{-1/4} > 1/2$, так как $e < 2^4$.

Задача 4.33.

Пусть u(x,t) — решение в $\mathbb{R} \times \mathbb{R}_+$ задачи Коши

$$u_t = 4u_{xx}, \qquad u\big|_{t=0} = \frac{x^2 + \sin x}{1 + 2x^2}.$$

Найти $\lim_{t \to +\infty} u(x,t)$.

Задача 4.34.

Пусть u(x,t) — решение в $\mathbb{R} \times \mathbb{R}_+$ задачи Коши

$$u_t = u_{xx}, \qquad u\big|_{t=0} = \operatorname{arcctg} x.$$

Найти $\lim_{t \to +\infty} u(x,t)$.

Задача 4.35.

Пусть u(x,t) — ограниченное решение в $\mathbb{R} imes \mathbb{R}_+$ задачи Коши

$$u_t = u_{xx}, \qquad u\Big|_{t=0} = \varphi(x) \in C(\mathbb{R}) \cap L_{\infty}(\mathbb{R}).$$

Найти $\lim_{t \to +\infty} u(0,t),$ если $\lim_{l \to +\infty} \frac{1}{l} \int_{-l}^{l} \varphi\left(x\right) \, dx = A.$

Решение задач 4.33-4.35 основано на **теоремах о стабили**зации:

Пусть u(x,t) — ограниченное решение задачи Коши:

$$\begin{cases} u_t = u_{xx} & \text{B} \quad \mathbb{R} \times \mathbb{R}_+, \\ u\big|_{t=0} = \varphi(x), & x \in \mathbb{R}, \end{cases}$$

 $arphi(x)\in C(\mathbb{R})\cap L_\infty(\mathbb{R})$. Тогда

1. Если

$$\lim_{x\to +\infty} \varphi(x) = A, \lim_{x\to -\infty} \varphi(x) = B, \tag{20}$$

 $\label{eq:tolerange} \begin{array}{l} \text{ to } \lim_{t\to +\infty} u(x,t) = \frac{A+B}{2}. \\ \textbf{2. Если} \end{array}$

$$\lim_{l \to +\infty} \frac{1}{l} \int_{-l}^{l} \varphi(x) dx = A, \tag{21}$$

то $\lim_{t\to +\infty}u(x,t)=rac{A}{2}.$ 3. Если arphi(x) — периодическая функция, то $\lim_{t\to +\infty}u(x,t)=arphi_0,$ где $arphi_0$ — нулевой коэффициент разложения функции arphi(x) в ряд Фурье, то есть пространственное среднее функции $\varphi(x)$.

Доказательства.

1. Представим φ в виде суммы своей четной и нечетной составляющих $\varphi_+=\dfrac{\varphi(x)+\varphi(-x)}{2},$ $\varphi_-=\dfrac{\varphi(x)-\varphi(-x)}{2}.$ В силу формулы Пуассона получим, что

$$\begin{split} u(x,t) &= \frac{1}{2\sqrt{\pi t}} \int\limits_{-\infty}^{\infty} \varphi_{+}(\xi) \exp{(-\frac{\xi-x)^2}{4t}}) d\xi + \\ &+ \frac{1}{2\sqrt{\pi t}} \int\limits_{-\infty}^{\infty} \varphi_{-}(\xi) \exp{(-\frac{(\xi-x)^2}{4t})} d\xi = \left[\eta = \frac{\xi-x}{2\sqrt{t}}\right] = \\ &= \frac{1}{\sqrt{\pi t}} \int\limits_{-\infty}^{\infty} \varphi_{+}(x+2\sqrt{t}\eta) \exp{(-\eta^2)} d\eta + \end{split}$$

$$-\infty$$
 $+rac{1}{\sqrt{\pi t}}\int\limits_{-\infty}^{\infty}arphi_{-}(x+2\sqrt{t}\eta)\exp(-\eta^{2})d\eta=$

$$\begin{split} &=\frac{1}{\sqrt{\pi t}}\int\limits_{-\infty}^{\infty}\varphi_{+}(2\sqrt{t}\eta)\exp(-\eta^{2})d\eta+\frac{1}{\sqrt{\pi t}}\int\limits_{-\infty}^{\infty}\varphi_{-}(2\sqrt{t}\eta)\exp(-\eta^{2})d\eta+\\ &+\frac{1}{\sqrt{\pi t}}\int\limits_{-\infty}^{\infty}(\varphi_{+}(x+2\sqrt{t}\eta)-\varphi_{+}(2\sqrt{t}\eta))\exp(-\eta^{2})d\eta+\\ &+\frac{1}{\sqrt{\pi t}}\int\limits_{-\infty}^{\infty}(\varphi_{-}(x+2\sqrt{t}\eta)-\varphi_{-}(2\sqrt{t}\eta))\exp(-\eta^{2})d\eta+ \end{split}$$

Второй интеграл равен нулю, так как берется от нечетной функции по симметричному промежутку. Третий и четвертый допускают оценку по модулю величинами

$$\epsilon_{\pm} := |\varphi_{\pm}(x + 2\sqrt{t}\eta) - \varphi_{\pm}(2\sqrt{t}\eta)| = |\varphi_{\pm}(2\sqrt{t}(\eta + \frac{x}{2\sqrt{t}})) - \varphi_{\pm}(2\sqrt{t}\eta)|.$$

Если функция f(x) непрерывна, то $\tilde{f}(x)=f(kx),\,k=\mathrm{const}\neq 0,$ - тоже непрерывна, то есть $\tilde{f}(x+\Delta x)\to \tilde{f}(x),\Delta x\to 0.$ Выберем в качестве f(x) - любую из функций $\varphi_{\pm}(x),$ в качестве k - величину $2\sqrt{t},$ в качестве Δx - величину $\frac{x}{2\sqrt{t}}.$ Таким образом, $\epsilon_{\pm}\to 0$ при $\frac{x}{2\sqrt{t}}\to 0,$ то есть при $t\to\infty.$

Рассмотрим оставшийся первый интеграл. Он может быть преобразован как

$$\frac{1}{\sqrt{\pi t}} \int\limits_{-\infty}^{\infty} \left[\frac{\varphi(2\sqrt{t}\eta) + \varphi(-2\sqrt{t}\eta)}{2} - \frac{A+B}{2} \right] \exp(-\eta^2) d\eta + \frac{A+B}{2}.$$

В этом выражении интеграл стремится к нулю в силу (20) при $t \to \infty$. Таким образом, окончательно получим, что $\lim_{t \to +\infty} u(x,t) = \frac{A+B}{2}.$

2. Обозначим
$$F(x) = \int\limits_0^x \varphi(\xi) d\xi$$
. Условие (21) означает, что
$$\lim_{l \to \infty} \frac{F(l) - F(-l)}{l} = A. \tag{21*}$$

Обозначим $F_{+}(x)$ и $F_{-}(x)$ четную и нечетную составляющие функции F(x).

Согласно формуле Пуассона

$$\begin{split} u(x,t) &= \frac{1}{2\sqrt{\pi t}} \int\limits_{-\infty}^{\infty} \varphi_{+}(\xi) \exp(-\frac{\xi - x)^{2}}{4t}) d\xi + \\ &+ \frac{1}{2\sqrt{\pi t}} \int\limits_{-\infty}^{\infty} \varphi_{-}(\xi) \exp(-\frac{(\xi - x)^{2}}{4t}) d\xi = \\ &= \lim_{l \to \infty} \frac{1}{2\sqrt{\pi t}} F(\xi) \exp(-\frac{\xi - x)^{2}}{4t} |_{\xi = -l}^{\xi = l} - \\ &- \frac{1}{2\sqrt{\pi t}} \int\limits_{-\infty}^{\infty} F_{+}(\xi) \frac{x - \xi}{2t} \exp(-\frac{\xi - x)^{2}}{4t}) d\xi - \\ &- \frac{1}{2\sqrt{\pi t}} \int\limits_{-\infty}^{\infty} F_{-}(\xi) \frac{x - \xi}{2t} \exp(-\frac{\xi - x)^{2}}{4t}) d\xi. \end{split}$$

Обозначим эти выражения $L,\,I_1,\,I_2,\,$ и преобразуем их, сделав замену $\eta=rac{\xi-x}{2\sqrt{t}}.$

$$\begin{split} L &= \lim_{l \to \infty} \frac{1}{2\sqrt{\pi t}} F(x + 2\sqrt{t}\eta) \exp(-\eta^2) |_{\eta = -l}^{\eta = l} = \\ &\lim_{l \to \infty} \frac{1}{2\sqrt{\pi t}} (F(2\sqrt{t}l) - F(-2\sqrt{t}l)) \exp(-l^2) + \\ &+ \lim_{l \to \infty} \frac{1}{2\sqrt{\pi t}} (F(x + 2\sqrt{t}l) - F(2\sqrt{t}l)) \exp(-l^2) - \\ &- \lim_{l \to \infty} \frac{1}{2\sqrt{\pi t}} (F(-x - 2\sqrt{t}l) - F(-2\sqrt{t}l)) \exp(-l^2) = \\ &= \lim_{l \to \infty} \frac{Al}{\sqrt{\pi}} \exp(-l^2) + \lim_{l \to \infty} \frac{x}{2\sqrt{\pi t}} \varphi(2\sqrt{t}l + \theta_1 x) \exp(-l^2) - \\ &- \lim_{l \to \infty} \frac{x}{2\sqrt{\pi t}} \varphi(-2\sqrt{t}l - \theta_2 x) \exp(-l^2), \end{split}$$

 $\theta_1, \theta_2 \in (0,1)$, (мы воспользовались здесь теоремой Лагранжа). Если вспомнить, что функция φ ограничена, то получим, что L=0 для каждого фиксированного x. Далее,

$$\begin{split} I_1 &= \frac{1}{\sqrt{\pi t}} \int\limits_{-\infty}^{\infty} \frac{F(x+2\sqrt{t}\eta) + F(-x-2\sqrt{t}\eta)}{2} \eta \exp(-\eta^2) d\eta = \\ &= \frac{1}{\sqrt{\pi t}} \int\limits_{-\infty}^{\infty} \frac{F(2\sqrt{t}\eta) + F(-2\sqrt{t}\eta)}{2} \eta \exp(-\eta^2) d\eta + \\ &+ \frac{1}{\sqrt{\pi t}} \int\limits_{-\infty}^{\infty} \frac{F(x+2\sqrt{t}\eta) - F(2\sqrt{t}\eta)}{2} \eta \exp(-\eta^2) d\eta + \\ &+ \frac{1}{\sqrt{\pi t}} \int\limits_{-\infty}^{\infty} \frac{F(-x-2\sqrt{t}\eta) - F(-2\sqrt{t}\eta)}{2} \eta \exp(-\eta^2) d\eta. \end{split}$$

В первом из интегралов подынтегральная функция нечетная, поэтому он равен нулю. Модули следующих двух интегралов могут быть оценены с учетом теоремы Лагранжа как

$$\left| \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{\infty} \frac{F(\pm x \pm 2\sqrt{t}\eta) - F(\pm 2\sqrt{t}\eta)}{2} \eta \exp(-\eta^2) d\eta \right| \leq$$

$$\leq \frac{2}{\sqrt{\pi t}} \left| \int_{0}^{\infty} \pm x \varphi(\pm 2\sqrt{t}\eta + \theta x) \eta \exp(-\eta^2) d\eta \right| \leq$$

$$\leq \frac{2|x| \sup_{\xi \in \mathbb{R}} |\varphi(\xi)|}{\sqrt{\pi t}} \left(-\frac{\exp(-\eta^2)}{2} |_{0}^{+\infty} \right) = \frac{2|x| \sup_{\xi \in \mathbb{R}} |\varphi(\xi)|}{\sqrt{\pi t}},$$

 $\theta \in (0,1).$ Таким образом, в силу ограниченности φ в каждой фиксированной точке x интегралы стремятся к нулю при $t \to +\infty.$

Далее,

$$I_2=rac{1}{\sqrt{\pi t}}\int\limits_{-\infty}^{\infty}rac{F(x+2\sqrt{t}\eta)-F(-x-2\sqrt{t}\eta)}{2}\eta\exp(-\eta^2)d\eta=$$

$$\begin{split} &=\frac{1}{\sqrt{2\pi t}}\int\limits_{-\infty}^{\infty}\frac{F(2\sqrt{t}\eta)-F(-2\sqrt{t}\eta)}{2}\eta\exp(-\eta^2)d\eta+\\ &+\frac{1}{2\sqrt{\pi t}}\int\limits_{-\infty}^{\infty}(F(x+2\sqrt{t}\eta)-F(2\sqrt{t}\eta))\eta\exp(-\eta^2)d\eta-\\ &-\frac{1}{2\sqrt{\pi t}}\int\limits_{-\infty}^{\infty}(F(-x-2\sqrt{t}\eta)-F(-2\sqrt{t}\eta))\eta\exp(-\eta^2)d\eta. \end{split}$$

Последние два интеграла стремятся к нулю при $t \to +\infty$, как было показано выше, а первый может быть преобразован как

$$\begin{split} \frac{1}{\sqrt{2\pi t}} \int\limits_{-\infty}^{\infty} \frac{F(2\sqrt{t}\eta) - F(-2\sqrt{t}\eta)}{2\sqrt{t}\eta} 2\sqrt{t}\eta^2 \exp(-\eta^2) d\eta = \\ = \frac{1}{\sqrt{\pi}} \int\limits_{-\infty}^{\infty} \left(\frac{F(2\sqrt{t}\eta) - F(-2\sqrt{t}\eta)}{2\sqrt{t}\eta} - A \right) \eta^2 \exp(-\eta^2) d\eta + \\ + \frac{A}{\sqrt{\pi}} \int\limits_{-\infty}^{\infty} \eta^2 \exp(-\eta^2) d\eta. \end{split}$$

Второе слагаемое равно нулю в силу того, что

$$\int\limits_{-\infty}^{\infty}\eta^{2}\exp(-\eta^{2})d\eta=rac{\sqrt{\pi}}{2},$$

а первое может быть оценено по модулю как

$$egin{aligned} rac{1}{\sqrt{\pi}} \left| \int\limits_{-\infty}^{\infty} \left(rac{F(2\sqrt{t}\eta) - F(-2\sqrt{t}\eta)}{2\sqrt{t}\eta} - A
ight) \eta^2 \exp(-\eta^2) d\eta
ight| \leqslant \ & \leqslant rac{1}{2} \sup_{\eta \in \mathbb{R}} \left| rac{F(2\sqrt{t}\eta) - F(-2\sqrt{t}\eta)}{2\sqrt{t}\eta} - A
ight|. \end{aligned}$$

Но последнее выражение стремится к нулю при $t\to\infty$ в силу условия (21^*) . Собрав вместе все оценки, получим, что $u(x,t)\to \frac{A}{2},\,t\to+\infty$.

3. Обозначим период функции $\varphi(x)$ за 2l, тогда

$$\varphi(x) = \sum_{k=-\infty}^{+\infty} c_k \exp(\frac{ik\pi x}{l}).$$

Ряд сходится равномерно в силу непрерывности $\varphi(x)$, что позволяет его почленно интегрировать.

Представим решение задачи Коши согласно формуле Пуассона:

$$\begin{split} u(x,t) &= \frac{1}{2\sqrt{\pi t}} \int\limits_{-\infty}^{\infty} \varphi(\xi) \exp{\left(-\frac{(\xi-x)^2}{4t}\right)} d\xi = \\ &= \frac{c_0}{2\sqrt{\pi t}} \int\limits_{-\infty}^{\infty} \exp{\left(-\frac{\xi-x)^2}{4t}\right)} d\xi + \\ &+ \frac{1}{2\sqrt{\pi t}} \sum_{k=-\infty}^{+\infty} c_k \int\limits_{-\infty}^{\infty} \exp{\left(\frac{ik\pi x}{l}\right)} \exp{\left(-\frac{(\xi-x)^2}{4t}\right)} d\xi. \end{split}$$

Первый интеграл равен c_0 . Покажем, что второй стремится к нулю при $t \to +\infty$. Действительно, выделяя полный квадрат под знаком экспоненты, получим, что

$$\frac{1}{2\sqrt{\pi t}}\int\limits_{-\infty}^{\infty}\exp(\frac{ik\pi x}{l})\exp(-\frac{(\xi-x)^2}{4t})d\xi=$$

$$=\frac{1}{2\sqrt{\pi t}}\int\limits_{-\infty}^{\infty}\exp(\frac{4ik\pi t}{l}-\frac{4k\pi^2t^2}{l^2})\exp(-\frac{(\xi-(x+\frac{2ik\pi t}{l}))^2}{4t})d\xi=$$

$$=\exp(\frac{4ik\pi t}{l}-\frac{4k\pi^2t^2}{l^2})\to 0,\,t\to\infty.$$
 Таким образом, $u(x,t)\to c_0=\frac{1}{2l}\int\limits_{-l}^{l}\varphi(x)dx.$

Задача 4.36.

Найти $\lim_{t\to +\infty}u(x,y,t)$, где u(x,y,t) — решение в $\mathbb{R}^2 \times \mathbb{R}_+$ задачи Коши

$$u_t = u_{xx} + u_{yy}, \qquad u\big|_{t=0} = \varphi(x, y)$$

при следующих начальных условиях:

a)
$$\varphi(x,y) = \frac{x^2}{1+2x^2}$$
, 6) $\varphi(x,y) = \sin^2 y$, b) $\varphi(x,y) = \frac{(x\sin y)^2}{1+2x^2}$.

Решение. Здесь

$$\varphi(x,y) = \frac{(x\sin y)^2}{1 + 2x^2} = \varphi_1(x)\varphi_2(y),$$

$$\varphi_1(x) = \frac{x^2}{1 + 2x^2}, \qquad \varphi_2(y) = \sin^2 y,$$

следовательно

$$\lim_{t\to\infty}u(x,y,t)=\lim_{t\to\infty}u_{\mathbf{1}}(x,t)\cdot\lim_{t\to\infty}u(y,t).$$

Но

$$\lim_{t\to\infty}u_1(x,t)=\frac{1}{2}\quad (\hbox{теорема 1}),$$

а
$$\lim_{t \to \infty} u_2(y,t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sin^2 y dy = \frac{1}{2}$$
 (теорема 3).

Таким образом, $\lim_{t \to \infty} u(x, y, t) = \frac{1}{4}$.

Задача 5.3.

Найти все гармонические в \mathbb{R}^2 функции u(x,y), для которых

$$u_x(x,y) < u_y(x,y) \qquad \forall (x,y) \in \mathbb{R}^2.$$

Решение. Если u(x,y) — гармоническая функция в \mathbb{R}^2 , то и ее производные — гармонические функции. Поэтому $v=u_x-u_y$

— гармоническая во всей плоскости. По теореме Лиувилля — это константа. Таким образом, $u_x - u_y = C$.

Решаем это линейное неоднородное уравнение с частными производными 1-го порядка стандартным образом. Уравнения характеристик:

$$dx = -dy = \frac{du}{C}.$$

Эта система имеет два независимых первых интеграла

$$x + y = C_1, \qquad u - Cx = C_2,$$

т.е. решение имеет вид $u = Cx + \varphi(x+y)$ с произвольной гармонической функцией φ . Таким образом,

$$0 = \varphi_{xx} + \varphi_{yy} = 2\varphi''.$$

А это означает, что $\varphi(x+y)=K_1(x+y)+K_2$ или $u(x,y)=M_1x+M_2y+M_3.$ Т.к. $u_x< u_y,$ то $M_1< M_2.$

Задача 5.4.

Пусть $\Omega = \{(x,y) \in \mathbb{R}^2 \mid 0 < x < 1, \ 0 < y < 1\}, \ u \in C^2(\overline{\Omega}),$

$$\Delta u=0$$
 в $\overline{\Omega},$ $u\big|_{y=0}=u\big|_{y=1}=0$ при $0\leqslant x\leqslant 1.$

Может ли функция $f(x) := \int\limits_0^1 u^2(x,y) \, dy$ иметь точку перегиба внутри интервала (0,1)?

Решение. Функция $u^2(x,y) \in C^2(\Omega),$ поэтому $\int\limits_0^1 u^2(x,y) \ dy$

можно дважды дифференцировать по переменной x. Тогда, используя гармоничность функции u, имеем

$$f''(x) = 2 \int_{0}^{1} (u_x^2 + uu_{xx}) dy = 2 \int_{0}^{1} (u_x^2 - uu_{yy}) dy.$$

Интегрируя по частям второе слагаемое в правой части, с учетом краевых условий получаем

$$f''(x) = 2 \int_{0}^{1} (u_x^2 + u_y^2) dy \geqslant 0, \qquad x \in [0, 1].$$

Это означает, что перегиба быть не может.

Задача 5.7.

Пусть
$$u(x) \in C^2(B_1^2(0)) \cap C(\overline{B_1^2(0)});$$

$$\Delta u(x) = 0, \qquad x := (x_1, x_2) \in B_1^2(0);$$

$$u(x) = x_2^2, \qquad x \in S_1^2(0), \quad x_2 \geqslant 0;$$

$$u(x) = x_2, \qquad x \in S_1^2(0), \quad x_2 < 0.$$

$$\mathop{\rm Haŭtu}\int\limits_{B_{1/2}^2(0)}u(x)\,dx.$$

Решение. Согласно теореме о поверхностном среднем для гармонической функции при n=2 имеем, что

$$u(0) = \frac{1}{\sigma_2 R} \int_{S_R^2(0)} u(\xi) d\xi,$$

где σ_n - площадь единичной сферы в \mathbb{R}^n , $\sigma_2=2\pi$. Подставляя значения u(x) на окружности $S^2_R(0)$ (с учетом того, что на разных ее частях эти значения задаются разными выражениями) и переходя к полярным координатам, получим, что

$$u(0) = rac{1}{2\pi} \left[\int\limits_0^\pi \sin^2 arphi darphi + \int\limits_\pi^{2\pi} \sin arphi darphi
ight] = rac{1}{4} - rac{1}{\pi}.$$

С другой стороны, по теореме о пространственном среднем

$$u(0) = \frac{2}{\sigma_2 R^2} \int_{B_R^2(0)} u(x) dx.$$

Таким образом,
$$\int\limits_{B_{1/2}^2(0)} u(x) dx = \frac{\pi}{16} - \frac{1}{4}.$$

Задача 5.8.

Пусть $\Delta u(x)=1, \;\; x\in \overline{B_2^2(0)}ackslash B_1^2(0).$ Что больше:

$$\int\limits_{S_{1}^{2}(0)}\frac{\partial u}{\partial \rho}(\rho,\theta)\;ds\quad \text{или}\quad \int\limits_{S_{2}^{2}(0)}\frac{\partial u}{\partial \rho}(\rho,\theta)\;ds?$$

Решение. Применим формулу Гаусса-Остроградского, имея в виду, что

$$\frac{\partial u}{\partial \nu} = \frac{\partial u}{\partial \rho} \quad \text{при} \ \ s \in S^2_2\left(0\right); \qquad \frac{\partial u}{\partial \nu} = -\frac{\partial u}{\partial \rho} \quad \text{при} \ \ s \in S^2_1\left(0\right),$$

где ν — внешняя нормаль к границе области. Имеем

$$3\pi = \int\limits_{\overline{B_2^2(0)}\backslash B_1^2(0)} 1 \ dxdy = \int\limits_{\overline{B_2^2(0)}\backslash B_1^2(0)} \Delta u \ dxdy = \int\limits_{S_2^2(0)} \frac{\partial u}{\partial \rho} \, ds - \int\limits_{S_1^2(0)} \frac{\partial u}{\partial \rho} \, ds.$$

И, следовательно,

$$\int\limits_{S_2^2(0)} \frac{\partial u}{\partial \rho} \ ds = \int\limits_{S_1^2(0)} \frac{\partial u}{\partial \rho} \ ds + 3\pi > \int\limits_{S_1^2(0)} \frac{\partial u}{\partial \rho} \ ds.$$

Задача 5.11.

Пусть $u \in C^2(\Omega) \cap C(\overline{\Omega}); \ q \in C(\overline{\Omega});$

$$\Delta u(x) + q(x) \; u(x) = 0, \;\; x \in \Omega; \qquad M = \max_{\overline{\Omega}} u(x); \;\; m = \max_{\partial \Omega} u(x).$$

Возможно ли, что M > m, если

- a) $q(x) \equiv 0$;
- 6) q(x) > 0;
- B) q(x) < 0, M > 0;
- r) q(x) < 0, M < 0?

Решение. а) невозможно (принцип максимума);

б) возможно, пример (в случае n=1)

$$u'' + u = 0$$
 $\pi p x \ x \in (-\frac{\pi}{2}, \frac{\pi}{2}),$

при этом функция $u = \cos x$ является решением уравнения, для которой верно утверждение.

- в) невозможно, т.к. если во внутренней точке $x_0 \in \Omega$ достигается максимум $(u(x_0) = M)$, то $\Delta u \leqslant 0$;
 - г) возможно, пример (в случае n=1)

$$u'' - u = 0$$
 $\pi p \pi \ x \in (-1, 1),$

при этом функция $u=-\operatorname{ch} x$ является решением уравнения, для которой верно утверждение.

Задача 5.12.

Пусть
$$\overline{\Omega}=\left\{(x,y)\in\mathbb{R}^2\,\middle|\,1\leqslant x^2+2y^2\leqslant 2\right\};\;\;u\in C^2(\overline{\Omega});$$

$$\begin{array}{ccc} \Delta u(x,y)=0, & (x,y)\in\overline{\Omega};\\ u(x,y)=x+y, & x^2+2y^2=2;\\ \frac{\partial u(x,y)}{\partial \nu}+(1-x)u(x,y)=0, & x^2+2y^2=1. \end{array}$$

Найти $\max_{\Omega} |u(x,y)|$.

Решение. По принципу максимума $\max_{\overline{\Omega}} |u(x,y)|$ достигается на границе области. Следовательно, необходимо сравнить значения решения на границе.

Покажем, что на участке границы $x^2+2y^2=1$ выполняется тождество $u\equiv 0$. По лемме Хопфа-Олейник в точке максимума $\xi_{\max}\in\partial\Omega$ (минимума $\xi_{\min}\in\partial\Omega$) на границе $\dfrac{\partial u}{\partial\nu}(\xi_{\max})\geqslant 0$ $\left(\dfrac{\partial u}{\partial\nu}(\xi_{\min})\leqslant 0\right)$. С учетом того, что

$$(1-x) \geqslant 0$$
 при $x^2 + 2y^2 = 1$

заключаем, что в точке максимума на этом участке границы значение функции должно быть неположительным, а в точке минимума неотрицательным. Это означает, что функция должна быть нулевой константой.

Теперь найдем максимум решения на второй части границы, т.е.

$$\max_{x^2+2y^2=2} x+y.$$

Легко видеть, что максимум достигается в первом квадранте. Это означает, что надо искать максимум функции $f(y)=\sqrt{2-2y^2}+y$ для положительных y. Он достигается при $y=\frac{1}{\sqrt{3}}$ и равен $\sqrt{3}$.

Задача 5.30.

При каких α, β существует решение краевой задачи для уравнения Лапласа в кольце $B_2^2(0) \backslash \overline{B_1^2(0)}$ с граничными условиями

$$\left. \frac{\partial u}{\partial \rho} \right|_{\rho=1} = 1, \qquad \left(\frac{\partial u}{\partial \rho} + \alpha u \right) \right|_{\rho=2} = \beta?$$

Найти решение во всех случаях, когда оно существует.

Решение. Общий вид решения уравнения Лапласа в кольце:

$$u(\rho,\theta) = A_0 + B_0 \ln \rho + \sum_{k=1}^{\infty} \left(A_k \rho^k + B_k \rho^{-k} \right) \cos k\theta +$$
$$+ \sum_{k=1}^{\infty} \left(C_k \rho^k + D_k \rho^{-k} \right) \sin k\theta.$$

Соответственно,

$$\frac{\partial u}{\partial \rho}(\rho, \theta) = \frac{B_0}{\rho} + \sum_{k=1}^{\infty} \left(k A_k \rho^{k-1} - k B_k \rho^{-k-1} \right) \cos k\theta +$$

$$+ \sum_{k=1}^{\infty} \left(k C_k \rho^{k-1} - k D_k \rho^{-k-1} \right) \sin k\theta.$$

Тогда в силу граничных условий

$$B_0 + \sum_{k=1}^{\infty} (kA_k - kB_k) \cos k\theta + \sum_{k=1}^{\infty} (kC_k - kD_k) \sin k\theta = 1$$

$$\frac{B_0}{2} + \sum_{k=1}^{\infty} \left(k A_k 2^{k-1} - k B_k 2^{-k-1} \right) \cos k\theta +
+ \sum_{k=1}^{\infty} \left(k C_k 2^{k-1} - k D_k 2^{-k-1} \right) \sin k\theta +
+ \alpha \left(A_0 + B_0 \ln 2 + \sum_{k=1}^{\infty} \left(A_k 2^k + B_k 2^{-k} \right) \cos k\theta +
+ \sum_{k=1}^{\infty} \left(C_k 2^k + D_k 2^{-k} \right) \sin k\theta \right) = \beta.$$

Отсюда непосредственно следует, что

$$\begin{cases} B_0 = 1, \\ \frac{B_0}{2} + \alpha A_0 + \alpha B_0 \ln 2 = \beta, \\ A_k = B_k = 0, \quad k \in \mathbb{N} \end{cases}$$

Таким образом, если $\alpha=0,$ то $\beta=\frac{1}{2}$ и решение имеет вид $u(\rho,\theta)=A_0+\ln\rho$ (т.е. с точностью до аддитивной константы).

Если
$$lpha \neq 0$$
, то $A_0=rac{eta-rac{1}{2}}{lpha}-\ln 2$, при этом eta — любое и $u(
ho, heta)=rac{2eta-1}{2lpha}+\lnrac{
ho}{2}.$

Задача 5.33.

а) Единственно ли решение следующей задачи: $u \in C^2(\overline{\Omega})$, где $\overline{\Omega} = \overline{B_3^3(0)} \setminus B_1^3(0)$;

$$\begin{split} \Delta u(x) &= 0, & x \in \overline{\Omega}; \\ \frac{\partial u(x)}{\partial \rho} &- \alpha_1 u(x) = f_1(x), & x \in S_1^3(0); \\ \frac{\partial u(x)}{\partial \rho} &+ \alpha_2 u(x) = f_2(x), & x \in S_2^3(0); \end{split}$$

 $\alpha_k = \text{const} > 0 \quad (k = 1, 2)$?

б) Тот же вопрос при $\alpha_k = \text{const} < 0 \quad (k = 1, 2).$

Решение. Пусть $u_1(x)$ и $u_2(x)$ — два решения поставленной задачи. Рассмотрим разность $v(x)=u_1(x)-u_2(x)$, которая является решением аналогичной задачи с однородными краевыми условиями.

Применим первую формулу Γ рина для функции v(x). Имеем

$$0 = \int\limits_{\Omega} v \Delta v \ dx = -\int\limits_{S^3_{\frac{3}{2}}(0)} \frac{\partial v}{\partial \rho} v \ ds + \int\limits_{S^3_{\frac{3}{2}}(0)} \frac{\partial v}{\partial \rho} v \ ds - \int\limits_{\Omega} |\nabla v|^2 dx.$$

С учетом граничных условий

$$\alpha_1 \int_{S_1^3(0)} v^2 ds + \alpha_2 \int_{S_2^3(0)} v^2 ds + \int_{\Omega} |\nabla v|^2 dx = 0.$$

Таким образом, при $\alpha_1>0,\ \alpha_2>0$ это тождество может выполняться только для $v\equiv 0.$

Если же $\alpha_1<0$ и $\alpha_2<0$, то решением задачи с однородными краевыми условиями будет функция $v(x)=A_0+\dfrac{B_0}{\rho},$ при этом

$$\begin{cases} B_0 + \alpha_1 (A_0 + B_0) = 0, \\ \frac{B_0}{4} - \alpha_2 \left(A_0 + \frac{B_0}{2} \right) = 0 \end{cases}$$
 (22)

 ${\bf M},$ следовательно, коэффициенты α_1 и α_2 должны удовлетворять соотношению

$$\frac{\alpha_1}{4} + \alpha_2 + \frac{\alpha_1 \alpha_2}{2} = 0. \tag{23}$$

В этом случае решение исходной задачи неединственно.

Легко увидеть, что в противном случае (если не выполняется соотношение (23)) система (22) имеет только одно нулевое решение, что приводит к совпадению u_1 и u_2 (т.е. единственности решения).

100

Задача 5.34.

Найти все такие $\alpha>0$, что решение u(x,y) задачи Дирихле для уравнения Лапласа в полуплоскости $\mathbb{R}_+\times\mathbb{R}_+$ удовлетворяющее неравенству

$$|u(x, y)| \leqslant M(1 + x + |y|)^{\alpha},$$

где M = const > 0, единственно.

Решение. Пусть существует два решения u_1 и u_2 . Обозначим $v(x,y)=u_1(x,y)-u_2(x,y)$. Легко видеть, что v удовлетворяет однородной задаче Дирихле. Общее решение такой задачи в полуплоскости имеет вид

$$v(
ho, heta) = \sum_{k=1}^{\infty} \left(C_k
ho^k + D_k
ho^{-k}
ight) \sin k heta.$$

С учетом условия

$$|v| \leqslant |u_1| + |u_2| \leqslant M_1(1 + \rho\cos\theta + |\rho\sin\theta|)^{\alpha} \leqslant M_2(1 + \rho)^{\alpha}$$

заключаем, что решение имеет вид $v(\rho,\theta) = \sum\limits_{k=1}^K C_k \rho^k \sin k\theta.$ Здесь константа K равна целой части $\alpha.$

Таким образом, при $\alpha\geqslant 1$ существует ненулевая функция v и, следовательно, решение исходной задачи — неединственно. При $\alpha<1$ существует только нулевое v, поэтому решение исходной задачи — единственно.

Задача 5.35.

Найти все такие $\alpha>0$, что решение u(x,y) задачи Дирихле для уравнения Лапласа в области $\left\{(x,y)\in\mathbb{R}^2\left|\,|y|<\frac{x}{\sqrt{3}}\right.\right\}$, удовлетворяющее неравенству

$$|u(x,y)| \leqslant M(1+x^2+y^2)^{\alpha},$$

где M = const > 0, единственно.

Решение. Перейдем в полярные координаты. Область, в которой рассматривается задача Дирихле, представляет собой угловой сектор $|\varphi|<\frac{\pi}{6}$, неравенство перепишется в виде

$$|u(r,\varphi)| \leqslant M(1+r^2)^{\alpha}. \tag{24}$$

Если $w(r,\varphi)$ - другое решение данной задачи Дирихле, то $v(r,\varphi)=u(r,\varphi)-w(r,\varphi)$ - гармоническая функция в данной области, удовлетворяющая нулевым граничным условиям. Она тоже подчинена неравенству (24) (возможно, с большей константой), так как $|v|=|u-w|\leqslant |u|+|w|$. Таким образом, нам надо найти условия, при которых v - тождественный нуль.

 Φ ункция v имеет общий вид

$$v(r,\varphi) = \sum_{k=3} (A_k r^k + B_k r^{-k}) \cos k\varphi + \sum_{k=6} (C_k r^k + D_k r^{-k}) \sin k\varphi.$$

Так как в силу неравенства (*) эта функция ограничена в нуле, то все коэффициенты $B_i,\ i=3,...$ и $D_i,\ i=6,...$ равны нулю. Чтобы исключить решения задачи Дирихле с нулевыми граничными условиями, отличные от тождественного нуля, надо потребовать, чтобы рост $|v(r,\varphi)|$ на бесконечности был строго меньше, чем у r^3 . Таким образом, $\alpha<\frac{3}{2}$.

Задача 5.45.

Пусть Ω – ограниченная область на плоскости, $u(x) \in C^2(\Omega)$,

$$\Delta u = 0$$
 в Ω ,

arphi(x) — непрерывная функция на $\partial\Omega$ и

$$\lim_{\substack{x \to x_0 \\ x \in \Omega}} u(x) = \varphi(x_0)$$

для всех $x_0\in\partial\Omega$ кроме единственной точки $x^*\in\partial\Omega$. Назовем такую функцию "решением задачи Дирихле $\Delta u=0,$ $u\big|_{\partial\Omega}=\varphi(x)$ кроме одной граничной точки x^* ". Единственно ли решение такой задачи Дирихле?

Решение. Рассмотрим область $\Omega = \{0 < r < 1, \ 0 < \varphi < \pi/2\} \subset \mathbb{R}^2$, где (r,φ) – полярные координаты на плоскости, и граничную точку $x^* = 0 \in \partial\Omega$. Рассмотрим задачу Дирихле

$$\Delta u = 0, \quad x \in \Omega, \qquad u(x) \big|_{x \in \partial \Omega, \ x \neq 0} = 0.$$

Решение данной задачи не единственно: $u_1(r,\varphi)\equiv 0,\ u_2(r,\varphi)=\left(r^2-\frac{1}{r^2}\right)\sin 2\varphi$.

Задача 5.46.

Пусть $\Omega\subset\mathbb{R}^3$ — внешность единичного шара. Единственно ли решение $u(x)\in C^2(\Omega)\cap C(\overline{\Omega})$ внешней задачи Дирихле

$$\Delta u(x) = 0, \quad |x| > 1, \qquad u\Big|_{|x|=1} = 0$$

при дополнительном условии

a)
$$\int_{|\xi-x|<1} |u(\xi)|^2 d\xi = O(1)$$
 6) $\int_{|\xi-x|<1} |u(\xi)|^2 d\xi = o(1)$

при $|x| \to +\infty$?

Решение.

Известно, что решение внешней задачи Дирихле в \mathbb{R}^3 единственно при дополнительном условии $u(x) \to 0$ при $|x| \to +\infty$. Оценим u(x). По теореме о среднем для гармонических функций по шару с центром в точке x радиуса 1

$$\left|u(x)\right|^2 = \left|\frac{1}{4\pi/3} \int_{|\xi-x|<1} u(\xi) d\xi\right|^2 \leqslant$$

{неравенство Коши-Буняковского}

$$\leqslant \frac{1}{(4\pi/3)^2} \int\limits_{|\xi-x|<1} d\xi \, \cdot \int\limits_{|\xi-x|<1} \big|u(\xi)\big|^2 \, d\xi = \frac{1}{4\pi/3} \int\limits_{|\xi-x|<1} \big|u(\xi)\big|^2 \, d\xi.$$

Условие (а) эквивалентно условию |u(x)| = O(1) при $|x| \to +\infty$, которого недостаточно для единственности решения в \mathbb{R}^3 . Решение такой задачи неединственно. Пример: $u_1(x) \equiv 0$, $u_2(x) = 1 - |x|^{-1}$, $|u_2(x)| \leqslant 1$ при |x| > 1,

$$\Delta u_2(x) = 0, \quad |x| > 1, \qquad u_2|_{|x|=1} = 0,$$

$$\int\limits_{\left|\xi-x\right|<1}\left|u_{2}\left(\xi\right)\right|^{2}d\xi\leqslant\int\limits_{\left|\xi-x\right|<1}d\xi=\frac{4\pi}{3}=O\left(1\right)\quad\text{при}\quad\left|x\right|\rightarrow+\infty.$$

Из условия (б) следует, что $u(x) \to 0$ при $|x| \to +\infty$, значит, решение такой задачи единственно.

Задача 5.47.

а) Найти решение $u(\rho,\theta)$ задачи Дирихле для уравнения Лапласа в $B_1^2(0)$ с граничным условием

$$u|_{\rho=1} = \sum_{k=1}^{\infty} k^{-p-1} \sin(k^q \theta),$$

где p и q — заданные натуральные числа.

б) При каких p, q это решение принадлежит пространству $H^1(B_1^2(0))$?

Решение. а) Общий вид решения задачи Дирихле в круге

$$u(\rho,\theta) = A_0 + \sum_{n=1}^{\infty} A_n \rho^n \cos n\theta + \sum_{n=1}^{\infty} C_n \rho^n \sin n\theta.$$

Из граничного условия вытекает, что $A_n=0,\, n=0,1,\ldots$ при этом $n=k^q$ и $C_n=k^{-p-1}.$

Таким образом, решение

$$u(\rho, \theta) = \sum_{k=1}^{\infty} k^{-p-1} \rho^{k^q} \sin k^q \theta.$$

б) Легко посчитать квадрат градиента решения (при ho
eq 0)

$$|\nabla u(\rho,\theta)|^2 = \left(\left(\frac{\partial u}{\partial \rho} \right)^2 + \frac{1}{\rho^2} \left(\frac{\partial u}{\partial \theta} \right)^2 \right) = \sum_{k=1}^{\infty} k^{-2p+2q-2} \rho^{2k^q-2}$$

Если $u \in H^1(B^2_1(0)),$ то $\int\limits_{B^2_1(0)} |
abla u|^2 dx < \infty.$ Выберем δ такое,

что $0 < \delta < 1$, тогда

$$\int\limits_{0}^{2\pi}\int\limits_{0}^{\delta}\int\limits_{k=1}^{\infty}k^{-2p+2q-2}\rho^{2k^{q}-1}d\rho\,d\theta=2\pi\sum_{k=1}^{\infty}\frac{k^{-2p+2q-2}}{2k^{q}}\rho^{2k^{q}}\bigg|_{0}^{\delta}=$$

$$=\pi\sum_{k=1}^\infty k^{-2p+q-2}\delta^{2k^q}\longrightarrow \pi\sum_{k=1}^\infty k^{-2p+q-2}\qquad\text{при}\quad\delta\to1.$$

Ряд сходится, если -2p+q-2<-1, т.е.

$$q < 1 + 2p$$
.

Также можно проверить, что классический градиент функции uявляется обобщенным в шаре $B_1^2(0)$ и что при полученном соотношении сама функция u принадлежит пространству $L_2(B_1^2(0))$.

Ответы.

```
1.1. \delta_{(1,1)} + \delta_{(-1,-1)} - \delta_{(1,-1)} - \delta_{(-1,1)}. 1.2. a = -1.
1.4. \Theta(x)(1-e^{-x})+C_1+C_2e^{-x}. 1.5. -\Theta(y-|x|)/2. 1.7. Her.
1.8. а) Да; б) да; в) нет. 1.9. Нет, пример: u = \sin(1/|x|).
1.10. 6) Het, пример: u = \sqrt{x - x^2}.
1.12. a) \alpha < 1/2; 6) \alpha > 1/2, \alpha = 0. 1.13. \alpha < 1/2.
1.14. а) \alpha любое, если n \geqslant 7; \alpha < -1/2, если n = 6.
б) \alpha > 1/2 или \alpha = 0, если n \geqslant 7.
1.15. \alpha > 1/2, \ \alpha = 0; \ \beta = (2k-1)\pi/2, \ k \in \mathbb{Z}.
1.16. \beta = (2k-1)\pi, k \in \mathbb{Z};
\alpha любое, если n\geqslant 3; \alpha<1/2, если n=2; \alpha=0, если n=1.
1.18. Да. 1.19. Нет. 1.20. 0.
2.1. Нет. 2.2. Да — для гиперболического и эллиптического;
нет — для параболического. 2.3. Только у u_{tt} = u_{xx},
пример: u = x^2 + t^2. 2.4. z \neq y \pm 3x. 2.5 a) y = 2e^{\pm (x-1)}; б) y = 0.
2.6. a) x = C_1, x + y = C_2; б) u = e^y f(x) + g(x + y).
2.7. а) Гиперболическое; б) x - 2y = C_1, y = C_2;
B) u = xy + f(x - 2y) + g(y).
2.8. а) Гиперболическое при \alpha \neq 0, параболическое при \alpha = 0.
6) 16\alpha^{2}u_{\xi\eta} - 4\alpha u_{\xi} = 0 при \alpha \neq 0; u_{xx} + u_{x} = 0 при \alpha = 0.

B) u(x,y) = F(y+3\alpha x) \exp\left(\frac{y-\alpha x}{4\alpha}\right) + G(y-\alpha x) при \alpha \neq 0; u(x,y) = F(y) + G(y)e^{-x} при \alpha = 0; 2.9. a) \alpha > -4; \alpha \in \varnothing;
б) \alpha = 0; \alpha = -4; в) нет; г) да. 2.11. а) x + t = C; б) \alpha = \pm 1;
в) x + t = C при \alpha = 1; x \pm t = C при \alpha = -1;
г) пример: u = t(x + t) при \alpha = 1; u = x - t при \alpha = -1;
д) пример: u = \sin(x - t) при \alpha = -1; при \alpha = 1 решений нет.
2.12. x - y \pm t\sqrt{2} = 0. 2.13. z = C при \alpha = 0;
при \alpha \neq 0 действительных характеристик нет.
2.14. u = e^x f(x - y, x - z) + e^{-x} g(x - y, x - z).
2.15. a) \xi = x + y, \eta = 2x - y; u_{\xi\eta} + \xi u_{\xi} + u = 0;

6) u = e^{(x+y)(y-2x)} \left[ f(x+y) + \int_{0}^{2x-y} g(s)e^{-(x+y)s} ds \right].
2.16. \alpha\beta + 3\beta^2 \neq 0. 2.17. a) \alpha = 0; 6) \alpha = -2. 2.18. Her.
2.19. Да. 2.20. Да. 2.21. Нет. 2.22. а) Да; б) нет.
Контрпример: u = u_m(x,t) = \text{Re} \exp\{-\sqrt{m} + i m^2 t + \frac{1+i}{\sqrt{2}} mx\} =
\exp\{-\sqrt{m} + \frac{m}{\sqrt{2}}x\}\cos\left(m^2t + \frac{m}{\sqrt{2}}x\right). 2.23. \alpha > 0.
```

2.24 Het. Пример:
$$u_n(x,y) = \frac{1}{n^2} e^{ny} \sin\left(\sqrt{n^2+1} x\right)$$
.

3.1. Нет. **3.2.**
$$|x_1 \pm x_2| \leqslant \sqrt{2}$$
. **3.3.** Пример: $\varphi(x) = 1, \psi(x) = x$.

3.4. a)
$$\varphi(x) = 7x^2$$
, $\psi(x) = 2x$, Het; 6) $\varphi(x) = x^2$, $\psi(x) = x$.

3.5. Het.

3.6.
$$\beta < 0, \ \alpha$$
 — любое; $\beta = 0, \ \alpha < -1/2$.

3.7.
$$\alpha = 0, \beta$$
 — любое; $\alpha \neq 0, \beta < -5/2$. **3.8.** ????.

3.7.
$$\alpha=0,\,\beta$$
 — любое; $\alpha\neq0,\,\beta<-5/2.$ 3.8. ???. 3.10. $t_0=\frac{1+|x_0|}{a},\,c=\frac{1}{2a}\int_{-1}^1\psi(x)\,dx.$

3.11.
$$1/a$$
. **3.12.** $\beta \geqslant \alpha/2 + 1$. **3.13.** $u(x, y, t) = \left[e^{-(x+t)^2} + e^{-(x-t)^2} + \arctan(y+t) + \arctan(y-t) + (\cos x + \sin y) \sin t\right]/2$.

$$e^{-(x-t)^2} + \arctan(y+t) + \arctan(y-t) + (\cos x + \sin y) \sin t]/2.$$
3.14. $u(x,t) = \frac{1}{18|x|} [(t+|x|)^9 - |t-|x||^9], |x| \neq 0; u(0,t) = 0.$

3.15.
$$u = \frac{\arctan(x_1 + x_2 + x_3 + t\sqrt{3}) - \arctan(x_1 + x_2 + x_3 - t\sqrt{3})}{2\sqrt{3}}$$
.
3.16. a) $u(t, x, y, z) = \sin x \cos 2t + e^{2z} \cosh 4t$;
6) $u(t, x, y, z) = (yz)^2 + 4t^2(y^2 + z^2) + \frac{16}{3}t^4$;

3.16. a)
$$u(t, x, y, z) = \sin x \cos 2t + e^{2z} \operatorname{ch} 4t;$$

6)
$$u(t, x, y, z) = (yz)^2 + 4t^2(y^2 + z^2) + \frac{16}{3}t^4$$

B)
$$u(t,x,y,z) = \frac{1}{2} \Big[(3x - y + z + 2\sqrt{11}\,t) \exp(3x - y + z + 2\sqrt{11}\,t) + \Big]$$

$$(3x - y + z - 2\sqrt{11}t) \exp(3x - y + z - 2\sqrt{11}t)$$
.

3.17. 1/2. **3.18.** a)
$$x_1^2 + x_2^2 \geqslant (t+1)^2$$
; 6) 1/8. **3.19.** a) $0 \leqslant t \leqslant \min\{x_1, x_2, 1 - x_1, 2 - x_2\}$.

3.19. a)
$$0 \le t \le \min\{x_1, x_2, 1 - x_1, 2 - x_2\}.$$

3.20.
$$0 \le t \le 0.05, 0.9 + t \le |x| \le 1 - t;$$

$$0.9 \leqslant t \leqslant 1, |x| \leqslant \min(1-t, t-0.9).$$
 3.21. $q > 1/2 + m.$

3.22. а)
$$n=1,2$$
; контрпример для $n=3$ см. задачу **3.20**.

3.23. Her. **3.24.** a)
$$t \in (\pi - x, 2\pi + x), 0 \le x \le \pi/2;$$

$$t \in ((\pi - x)_+, 2\pi - x) \cup (\pi + x, 2\pi + x), \pi/2 < x < 3\pi/2;$$

$$t \in ((x-2\pi)_+, x-\pi) \cup (\pi+x, 2\pi+x), x \geqslant 3\pi/2.$$

3.25. I)
$$\lambda \neq 1$$
, $\varphi \in C^2(\overline{\mathbb{R}}_+)$, $\varphi'(0) = 0$, $\lambda \varphi''(0) = 0$:

$$u(x,t) = \begin{cases} (x-2\pi)_+, x-\pi & 0 \ (\pi+x, 2\pi+x), x \geqslant 3\pi/2. \\ 1, \varphi \in C^2(\overline{\mathbb{R}}_+), \varphi'(0) = 0, \lambda \varphi''(0) = 0; \\ \frac{1}{2} [\varphi(x+t) + \varphi(x-t)], & x \geqslant t, \\ \frac{1}{2} [\varphi(x+t) + \frac{\lambda+1}{\lambda-1} \varphi(t-x) - \frac{2}{\lambda-1} \varphi(0)], & x < t; \end{cases}$$

II)
$$\lambda = 1, \ \varphi(x) \equiv K = \mathrm{const}; \ u(x,t) = \begin{cases} K, & x \geqslant t, \\ K + f(t-x), & x < t, \end{cases}$$

где
$$f \in C^2(\overline{\mathbb{R}}_+), f(0) = f'(0) = f''(0) = 0.$$

3.26.
$$\varphi'(x) - 2\psi(x) = C$$
. **3.27.** $A = 1$, $\omega = \pm \sqrt{2}$;

$$u(x,t) = \begin{cases} \frac{1}{2} \left[e^{-(x+t)^2} + e^{-(x-t)^2} \right], & x \geqslant t, \\ \frac{1}{2} \left[e^{-(x+t)^2} - e^{-(x-t)^2} \right] + \cos\sqrt{2}(x-t), & x < t. \end{cases}$$

3.28. б) ??? **3.29**. $\alpha=0,\,\beta,k$ — любые; $\alpha\neq0,\,\beta>2,\,k<1;$ решение единственно при $k \geqslant -1$ и неединственно при k < -1.

3.30. a) $0 \le t + x \le 2$, $0 \le t - x \le 1/2$;

B)
$$u(x,t) = \varphi((t+x)/2) - \varphi(3(t-x)/2) + \psi(t-x)$$
.

3.32. $\alpha = \beta = \gamma = 0$; $u(x, t) = \sin x \cos t$.

3.33. a) $30 + 36\pi^2$; б) $4\sin^3 \pi x$. **3.34.** Het. **3.35.** 1/105.

3.36. 1/1260. **3.37.** $\omega \notin \{\pm 4; \pm 6\}$. **3.38.** $\alpha \neq \pm k\pi, k \in \mathbb{N}$.

3.39. а) $k \geqslant 1/\pi$; б) см. решение. **3.40.** Да.

4.1. Да. 4.2. Нет. 4.3. а) Нет; б) да; в) нет. 4.4. Нет. 4.5. Нет.

4.6. Да. **4.8.** 0. **4.9.** а) При любой
$$\varphi(x)$$
. б) $\int_0^1 \varphi(x) dx = 0$.

4.10.
$$\alpha < \pi^2$$
. **4.11.** $\int_0^{\pi} \varphi(x) \sin x \, dx = 0$.

4.12. а)
$$\varphi(x)$$
 — любая. б) $\int_0^{3\pi} \varphi(x) \sin \frac{kx}{3} dx = 0$ при $k = 1, 2;$

B)
$$\varphi(x) \equiv 0.$$
 4.13. $1 + 6x/\pi$. **4.14.** x_1x_2 . **4.15.** 1. **4.16.** $\alpha < 4/3$.

8)
$$\varphi(x) \equiv 0.4.13.1 + 6x/\pi.4.14. x_1x_2.4.13.1.4.10. \alpha < 4/3.$$
4.17. $3x-2.4.18.+\infty.4.19.$ a) $l > 1/3;$ 6) $\int_0^1 \varphi(x) \operatorname{sh}(\omega x) dx = 0,$

где $\omega > 0$ – решение уравнения $\omega = 3 \th \omega$.

4.20. a) ??? б) ??? в) ??? **4.21.** б) Нет. **4.23.** Можно.

4.25. Неограничено. **4.26.** a(1-x) + bx. **4.27.** Нет.

4.29. t < 1/4K. **4.31.** Het. **4.32.** u(x,t) = C. **4.33.** 1/2.

4.34. $\pi/2$. **4.35.** A/2. **4.36.** a) 1/2; b) 1/2; b) 1/4.

4.37. a), б) $u(t,x) = e^{-(x_1+x_2+x_3)}$ **4.38.** $\sqrt{\pi}$. **4.39.** A = 1/2.

4.40. Да.

5.1.
$$u(x,y) = xy^3 - x^3y + C_1x + C_2$$
. **5.2.** $u(x) \equiv 0$.

5.3. $u(x,y) = C_1 x + C_2 y + C_3$, где $C_1 < C_2$.

5.4. Нет. **5.5.** Сумма равна нулю. **5.6.** 0. **5.7.** $\pi/16 - 1/4$.

5.8. Второй интеграл. **5.9.** $u_2(x^0)$. **5.10.** a) Нет; б) да.

5.11. a) Нет; б) да; в) нет; г) да.

5.12. $\sqrt{3}$. **5.13.** Нет. **5.15.** Да. **5.16.** (б) 0.

5.18. Het. Пример: $Q = [0, \sqrt{2}\pi] \times [0, 2\pi],$

 $u(x, y) = \exp(-x/2)\sin(x/\sqrt{2})\sin(y/2)$.

5.19. Bepho, $u \equiv 0$. **5.20.** Het.

5.23. Функция u(x), полученная по формуле для решения задачи

Дирихле с разрывной граничной функцией, например:

$$\Delta u = 0, \ |x| < 1; \ u|_{|x|=1} = \begin{cases} 0, \ x_1 \geqslant 0, \\ 1, \ x_1 < 0. \end{cases}$$
5.28. Het. **5.29.** $\alpha \in \{-3/4; 0\}.$

5.28. Het. **5.29.**
$$\alpha \in \{-3/4; 0\}$$
.

5.30. I)
$$\alpha \neq 0, \forall \beta; \ u = \frac{2\beta - 1}{2\alpha} + \ln \frac{\rho}{2};$$

II)
$$\alpha = 0, \beta = 1/2; u = \ln \rho + C$$

5.30. I)
$$\alpha \neq 0$$
, $\forall \beta$, $\alpha = \frac{2\alpha}{2\alpha} + \ln \frac{2}{2}$, II) $\alpha = 0$, $\beta = 1/2$; $u = \ln \rho + C$.

5.31. Да. 5.32. $u = \frac{3\sqrt{3}}{4} + \frac{\cos \theta}{\rho} - \frac{\sin 2\theta}{2\rho^2}$.

5.33. a) Да; б) нет. 5.34. $\alpha < 1$. 5.35. $\alpha < 3/2$.

5.36. $u(0, y) = 2 + (y - 2) \ln(2 - y) - y \ln(-y)$.

5.37. $-\infty$, 5.38. Да.

5.33. a)
$$\Pi$$
a; 6) нет. **5.34.** $\alpha < 1$. **5.35.** $\alpha < 3/2$.

5.36.
$$u(0,y) = 2 + (y-2) \ln(2-y) - y \ln(-y)$$

$$5.37. -\infty. 5.38.$$
 Да.

5.39. a)
$$\Pi$$
a; 6) $u(r,\theta) = \frac{1}{5} \left(\frac{4}{r} - r\right) \cos \theta + \frac{2}{5} \left(\frac{1}{r} + r\right) \sin \theta$.

5.40. а) Пример:
$$u(x,y) = \sin(\pi x) \exp(\pi y)$$
. б) Да.

5.41. Het. **5.42.**
$$-1/25$$
. **5.43.** Het. **5.44** $a = \pi/2$.

5.47. a)
$$u(\rho,\theta) = \sum_{k=1}^{\infty} k^{-p-1} \rho^{kq} \sin(kq\theta);$$
 6) $q < 2p+1.$
5.50. 6) $u(x) \equiv 0;$ B) $u(x) \equiv 0.$ **5.51.** $u(x) \equiv 0.$

5.50. 6)
$$u(x) \equiv 0$$
; B) $u(x) \equiv 0$. **5.51.** $u(x) \equiv 0$

5.52.
$$\pi/2$$
. **5.53.** 2π . **5.54.** ???

Экзаменационные варианты

2003 год, поток экономистов, основной экзамен, лектор А.Ю.Горицкий

1. а) (1+1) Найти все β , при которых существует линейная замена переменных $(x,y) \to (t,z)$, переводящая уравнение

$$u_{xx} - 2u_{xy} + \beta u_{yy} = 0 (1)$$

- в уравнение струны $u_{tt} = u_{zz}$;
- в уравнение теплопроводности $u_t = u_{zz}$.
- б) (1+2) Те же вопросы об уравнении

$$u_{xx} - 2u_{xy} + \beta u_{yy} + 2\beta u_x - \beta^2 u_y = 0.$$

- в) (3) Пусть ограниченная функция $u(x,y) \in C^2(\mathbb{R}^2)$ удовлетворяет уравнению (1) с некоторым $\beta > 5$. Может ли при этом $u \not\equiv \text{const}$? Ответ обосновать.
- г) (2) Тот же вопрос для $\beta < -5$.
- 2. а) (1+1) Описать все π -периодические функции $\varphi(x)$ и $\psi(x),$ при которых решение u(t,x) задачи Коши

$$9u_{tt}=u_{xx}, \qquad u\big|_{t=0}=\varphi(x), \quad u_t\big|_{t=0}=\psi(x) \tag{2}$$

является периодической функцией по t. Найти этот период.

б) (2+1) Те же вопросы для задачи

$$9u_{tt} = u_{xx} + \sin t, \qquad u\big|_{t=0} = \varphi(x), \quad u_t\big|_{t=0} = \psi(x).$$

- в) (3) Может ли период по t у решения u(t,x) задачи Коши (2) быть меньше 2π при условии, что φ и ψ π -периодичны и не имеют меньших периодов?
- **3.** Пусть u(t,x) решение в полуполосе $(t,x)\in (0,+\infty)\times (0,\pi)$ краевой задачи

$$u_t = u_{xx}, \qquad u_x \big|_{x=0} = u \big|_{x=\pi} = 0, \quad u \big|_{t=0} = \varphi(x).$$

- а) (3) Доказать, что $\sup_{0 < x < \pi} |u(1,x)| \leqslant \sup_{0 < x < \pi} |\varphi(x)|.$
- б) (2) Верно ли, что для любого начального условия $\varphi(x)$ выполнено

$$\sup_{0 < x < \pi} |u(1, x)| \leq \frac{1}{2} \sup_{0 < x < \pi} |\varphi(x)| ?$$

- в) (3) Найти решение u(t,x) поставленной задачи с начальной функцией $\varphi(x)=(\pi-x)(\pi+x)$.
- 4. а) (1+1) Дать определение производной в смысле Соболева. Дать определение пространства $\overset{\circ}{H^1}(\Omega)$.
- б) (2) Привести пример нигде не дифференцируемой (в классическом смысле) функции, принадлежащей пространству $\overset{\circ}{H}{}^{1}(\Omega)$, $\Omega \subset \mathbb{R}^{2}$. Доказать ее принадлежность этому пространству. Ответ обосновать.
- в) (3) Рассматривается функция $f(x) = (|x|\sin(\omega|x|))^{\alpha}$ в единичном шаре $B_1 = \{x \in \mathbb{R}^3 \mid |x| < 1\}$. При каких α и ω выполнено $f(x) \in H^1(B_1)$?

Критерии оценок: "отлично" — 19 баллов; "хорошо" — 12 баллов; "удовлетворительно" — 5 баллов при максимально возможной сумме 32 балла. Время написания — 3 астрономических часа.

2000 год, поток механиков, пересдача, лектор А.Ю.Горицкий

Первая часть

1. а) (1) Определить тип уравнения

$$u_{xx} - 6u_{xy} + \alpha u_{yy} + 2u_x + (3 - \alpha)u_y + \frac{\alpha - 5}{4}u = 0 \qquad (*)$$

в зависимости от параметра $\alpha \in \mathbb{R}$.

- б) (1) Привести уравнение (*) к каноническому виду при $\alpha = 5$.
- в) (1) Тот же вопрос для $\alpha = 9$.
- г) (1) Найти общее решение уравнения (*) при $\alpha = 5$.
- в) (1) Тот же вопрос для $\alpha = 9$.
- **2.** а) (1) Дать определение функции Грина задачи Дирихле для уравнения Лапласа в ограниченной области $\Omega \subset \mathbb{R}^3$.
- б) (2) В предположении, что существует классическое решение задачи

$$\Delta u(x) = f(x), \quad x \in \Omega, \qquad u\big|_{x \in \partial \Omega} = \varphi(x),$$

вывести формулу, дающее это решение через функцию Грина. в) (1) Написать формулу Пуассона, дающее решение задачи Дирихле для уравнения Лапласа в шаре.

- **3.** а) (1) Сформулировать постановку задачи Коши для уравнения теплопроводности.
- б) (2) Сформулировать и доказать принцип максимума для уравнения теплопроводности в слое и теорему единственности для поставленной задачи Коши.

Вторая часть

1. Найти функцию u(x,y,z,t), являющуюся решением задачи Коши

$$\left\{ \begin{array}{ll} \frac{\partial u}{\partial t} \; = \; \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}, \\ u\big|_{t=0} \; = \; e^{-x^2} \cos(2y-z). \end{array} \right.$$

2. Найти, при каких a и b имеет решение следующая задача

$$\begin{cases} \Delta u = r^3 (a + \cos^2 \theta), & u = u(r, \theta), \quad r < 1, \\ \frac{\partial u}{\partial r} \Big|_{r=1} = b|\theta|, & -\pi < \theta < \pi. \end{cases}$$

Условия проведения экзамена. Время написания первой части работы — 1,5 астрономических часа. Для получения оценки "удовлетворительно" необходимо и достаточно набрать не менее 4 баллов из возможных 12. Для того чтобы претендовать на оценки "хорошо" и "отлично" необходимо набрать не менее соответственно 8 и 10 баллов, и тем самы пройти на вторую часть экзамена.

Далее, для получения оценки "отлично" или "хорошо" по результатам второй части экзамена необходимо решить соответственно обе или одну из предложенных задач.

2003 год, поток механиков, досрочный экзамен, лектор Г.А.Чечкин

1. a) (2) Дать определение автомодельного решения и найти автомодельные решения уравнения

$$u_t + \left(\frac{u^6}{6}\right)_r = 0\tag{1}$$

б) (2) Построить какое-нибудь нетривиальное неэнтропийное обобщённое решение задачи Коши для уравнения (1) с н.у.

$$u\big|_{t=0} = 0$$

2. а) (1) Определить тип уравнения

$$u_{xx} - 2\alpha u_{xy} - 3\alpha^2 u_{yy} + \alpha u_y + u_x = 0 (2)$$

в зависимости от действительного параметра α .

- б) (2) Привести уравнение (2) к канонической форме.
- в) (2) Найти общее решение этого уравнения.
- **3.** а) (1) Сформулировать вариационную постановку задачи Дирихле с неоднородными краевыми условиями.
- б) (1) Доказать ограниченность функционала снизу.
- в) (3) Вычислить

$$\inf_{w-(|x|-1)\in \mathring{H}^1(\Omega)}\int\limits_{\Omega}\left(|\nabla w|^2-2w\right)dx,$$

если
$$\Omega = \{x = (x_1, x_2) : 1 < |x| < 2\}.$$

Критерии оценок: "отлично" — 11 баллов; "хорошо" — 8 баллов; "удовлетворительно" — 5 баллов при максимально возможной сумме 14 баллов. Время написания — 1,5 астрономических часа.

2001 год, поток математиков, основной экзамен, лектор Е.В.Радкевич

- 1. a) (1) Дать определение слабого решения (решения в смысле интегрального тождества) уравнения Хопфа.
- б) (2) Построить кусочно-постоянное решение с 5-тью линиями разрыва.
- в) (2) Доказать, что не существует кусочно-постоянного решения с 4-мя линиями разрыва.
- **2.** а) (1) Дать определение автомодельного решения и найти автомодельные решения уравнения

$$u_t + u^3 u_x = 0$$

- б) (2) Доказать единственность решения, удовлетворяющего условию невозрастания энтропии, в классе автомодельных решений.
- **3.** а) (1) Сформулировать условие существования классического решения задачи Коши для волнового уравнения.
- б) (3) Пусть и классическое решение задачи Коши

$$u_{tt} = u_{xx}, 0 < t < T, x \in \mathbb{R}^1, u|_{t=0} = \varphi(x), u_t|_{t=0} = 0;$$

а u^N — классическое решение смешаной задачи

$$\begin{split} u^N_{tt} &= u^N_{xx}, & \quad 0 < t < T, \quad x \in [-N, N], \\ u^N\big|_{t=0} &= \varphi^N(x), & \quad u^N_t\big|_{t=0} = 0, & \quad \frac{\partial u^N}{\partial x}\bigg|_{x=N} = 0. \end{split}$$

При этом

$$arphi^N = arphi$$
 при $x \in (-M-lpha,\ M+lpha)$ и $arphi^N = 0$ при $x \not\in (-N+eta,\ N-eta)$

для достаточно малых фиксированных α и β таких, что $M+\alpha < N-\beta$. Доказать, что существует такое N_0 , что $u\equiv u^N$ на отрезке [-M,M] при $N>N_0$.

4. (3) Для каких из трёх уравнений на плоскости

$$u_t = u_{xx}, \qquad u_{tt} = u_{xx}, \qquad u_{tt} = -u_{xx}$$

существует нетривиальное решение с ограниченными и замкнутыми линиями уровня?

- 5. а) (1) Сформулировать лемму о нормальной производной.
- б) (3) Доказать, что гармоническая функция $u \in C^1(\overline{\Omega}),$

$$rac{\partial u}{\partial
u} = 0$$
 на $\Gamma_1, \qquad u = 0$ на $\Gamma_2,$

 $\overline{\Gamma}_1 \cup \overline{\Gamma}_2 = \partial \Omega$, $\operatorname{mes}_{n-1} \Gamma_2 \neq 0$, тождественно равна нулю.

6. а) (1) Сформулировать теорему о среднем для гармонических функций.

б) (2) Доказать, что функция $u\in C^2(\Omega)$, удовлетворяющая теореме о среднем для любого шара $\overline{K}\subset \Omega$, является гармонической.

7. (3) Пусть C — конус $\{(x,y) \mid \alpha \leqslant \frac{x}{y} \leqslant \beta\}$. Доказать, что не существует общей константы в неравенстве Фридрихса для всех ограниченных $\Omega \subset C$.

Критерии оценок: "отлично" — 16 баллов; "хорошо" — 13 баллов; "удовлетворительно" — 8 баллов при максимально возможной сумме 25 баллов. Время написания — 3 астрономических часа.

2000 год, поток математиков, досрочный экзамен, лектор А.С.Шамаев

1. a) (1) Напишите формулу Даламбера для решения уравнения колебаний струны.

б) (3) Пусть $K=\left\{(x,y)\in\mathbb{R}^2\;\middle|\;x^2+y^2<1\right\}$ — единичный круг в \mathbb{R}^2 . Корректна ли задача: найти $u(x,y)\in C^2(K)\cap C(\overline{K})$, такую что

$$u_{xx} - u_{yy} = 0$$
 B K , $u\big|_{\partial K} = \varphi(x,y)$,

 $arphi(x,y) \in C(\partial K)$ — произвольная непрерывная функция?

2. а) (1) Дайте определение пространства $H^{1}(Q)$.

б) (2) Докажите полноту пространства $H^1(Q)$.

в) (3) Пусть $Q=\{|x|<1,\ x\in\mathbb{R}^3\}$. Справедливо ли следующее утверждение: существует постоянная C>0, такая, что для любой $u(x)\in C^\infty(\overline{Q})$

$$|u(0)| \leqslant C ||u||_{H^1(\Omega)}$$
?

Если "да" — докажите, "нет" — приведите опровергающий пример.

3. а) (3) Пусть $K = \{1 < |x| < 2\}$ — "кольцевая" область в \mathbb{R}^2 . Единственно ли решение следующей краевой задачи:

$$\Delta u = 0$$
 b K , $u \in C^2(K) \cap C^1(\overline{K})$,

$$\left.\frac{\partial u}{\partial n}\right|_{|x|=1} = \varphi_1(x_1,x_2), \qquad u\big|_{|x|=2} = \varphi_2(x_1,x_2),$$

 φ_1, φ_2 — произвольные непрерывные функции на окружностях $\{|x|=1\}$ и $\{|x|=2\}$ соответственно? Ответ обоснуйте.

б) (2) Найдите решение поставленной в п. (а) задачи, если

$$\varphi_1 = \cos \theta, \qquad \varphi_2 = \sin \theta$$

 $(\theta$ — полярный угол на плоскости).

4. a) (1) Сформулируйте принцип максимума для уравнения Папласа.

б) (3) Справедлив ли принцип максимума для уравнения

$$\Delta u + u_x + u = 0,$$
 $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2},$

в ограниченной области Q на плоскости в той же форме, как для уравнения Лапласа? Ответ обоснуйте.

5. а) (1) Сформулируйте теорему Лиувилля для уравнения Лаписа

б) (3) Пусть u(x) — гармоническая в \mathbb{R}^3 функция и

$$\iiint\limits_{\mathbb{R}^3} \frac{u^2(x) \ dx}{(1+|x|)^3} < \infty.$$

Верно ли, что $u(x) \equiv \text{const}$ в \mathbb{R}^3 ? Ответ обоснуйте.

6. а) (1) Дайте определение потенциала двойного слоя.

б) (3) Докажите, что потенциал двойного слоя, создаваемый замкнутой поверхностью Ляпунова S и имеющий единичную плотность, равен 0 вне S и 4π внутри S.

7. a) (1) Напишите формулу Пуассона для решения задачи Коши для уравнения теплопроводности.

б) (3) Пусть u(x,t) — решение уравнения теплопроводности с "потенциалом":

$$u_t = u_{xx} - u, \qquad t > 0, \quad x \in \mathbb{R}^1,$$

удовлетворяющее начальному условию

$$u\big|_{t=0} = \sin^2 x.$$

Докажите, что существует постоянная A, такая, что

$$\left|u(t,x) - Ae^{-t}\right| \leqslant \alpha(t)e^{-t},$$

где функция $\alpha(t) \to 0$ при $t \to \infty$. Найдите постоянную A. Всего 31 балл

2000 год, поток математиков, основной экзамен, лектор A.C.Шамаев

1. а) (1) Сформулируйте определение характеристической поверхности для дифференциального оператора второго порядка. 6) (3) Рассмотрим задачу: найти в секторе

$$K = \{(x,t) | x > 0, t > 0, t < 2x\}$$

функцию $u(x,t)\in C^2(K)\cap C(\overline{K}),$ удовлетворяющую уравнению

$$u_{t\,t} = u_{x\,x}$$

и начальным и граничным условиям

$$u\big|_{t=0} = \varphi(x), \quad u_t\big|_{t=0} = \psi(x), \quad u\big|_{t=2x} = 0,$$

 $\varphi(x), \psi(x) \in C^{\infty} \big([0,\infty) \big)$. Имеет ли эта задача решение и если "да" — единственно ли оно? Ответ обоснуйте.

2. а) (2) Докажите неравенство Фридрихса.

б) (3) Справедливо ли неравенство Фридрихса в полосе

$$\Pi = \{(x, y) : 0 < x < 1, -\infty < y < \infty\}?$$

Если "да" — докажите, "нет" — приведите опровергающий пример.

3. а) (2) Приведите классическую постановку задачи Дирихле в ограниченной области Q и докажите единственность решения.

б) (3) Докажите, что решение задачи Дирихле в полосе $\Pi = \{(x,y): 0 < x < 1, -\infty < y < +\infty\}$

$$\Delta u = 0$$
 b Π , $u\big|_{x=0} = \varphi_1(y)$, $u\big|_{x=1} = \varphi_2(y)$,

 $\varphi_1, \varphi_2 \in C(\mathbb{R}^1)$ неединственно.

в) (2) Единственно ли решение предыдущей задачи с дополнительным условием

$$u(x,y) \to 0$$
 при $|y| \to \infty$?

Ответ обоснуйте.

4. (3) Пусть $Q = \{x \in \mathbb{R}^4, \, |x| < 1\}$ — шар в четырехмерном пространстве, $\ell = \{x \in \mathbb{R}^4: x_1 = 0, x_2 = 0, x_3 = 0, 0 < x_4 < 1/2\}$ — отрезок в $\mathbb{R}^4, \, Q_1 = Q \setminus \ell$. Найдите обобщенное решение задачи Дирихле u(x):

$$\int\limits_{Q_1} (\nabla u, \nabla v) \; dx = 0 \quad \forall v \in \overset{\circ}{H^1}(Q_1),$$

$$u-\varphi(x)\in \overset{\circ}{H^1}(Q_1),$$

 $arphi(x) \in C_0^\infty(Q)$ и arphi(x) = 1 при $x \in \ell$.

5. (2) Существует ли положительная гармоническая функция в шаре $Q=\{|x|<1\},\ x\in\mathbb{R}^3,\$ такая, что $u(0,0,0)=1,\ u(0,0,1/2)=10?$ Ответ обоснуйте.

6. (4) Пусть $u(t,x)\in C^2(\Pi)\cap C(\overline{\Pi})$ — классическое решение уравнения

$$u_t = u_{xx} + v(t, x),$$

где $\Pi=(0,+\infty)\times(0,1),$ v(t,x) — ограниченная измеримая функция, удовлетворяющая оценке $|v|\leqslant C,$ C>0 — заданная постоянная. Пусть

$$uig|_{t=0}=arphi(x),$$
 где $arphi(x)\in C^{\infty}ig([0,1]ig),$
$$uig|_{x=0}=uig|_{x=1}=0\quad \forall t>0.$$

Можно ли так выбрать функцию v(t,x), что $u(t,x) \equiv 0 \ \forall t > t_*$, t_* — некоторая положительная постоянная? Ответ обоснуйте. 7. (3) При каких значениях параметра $a \in \mathbb{R}^1$ функция u(t,x), равная нулю при t > ax и единице при $t \leqslant ax$, $(t,x) \in \mathbb{R}^2$, является решением уравнения

$$u_t = u_x$$

в смысле теории обобщенных функций? Ответ обоснуйте.

8. (3) Пусть $u(t,x) \in C^2(\Pi) \cap C^1(\overline{\Pi})$ — классическое решение уравнения

$$u_t = u_{xx} + 3u$$
 в полосе $\Pi = (0, +\infty) \times (0, 1),$

удовлетворяющее краевым условиям

$$u\big|_{x=0} = u\big|_{x=1} = 0, \quad t > 0.$$

Докажите, что для u(t,x) имеет место неравенство

$$|u(t,x)| \leqslant Ce^{-6t},$$

где C > 0 — некоторая постоянная.

Всего 31 балл

2000 год, поток математиков, пересдача, лектор А.С.Шамаев

- 1. а) (2) Сформулируйте теорему Коши—Ковалевской.
- б) (3) При каких вещественных α существует решение

$$u(x,t) \in C^2(K) \cap C^1(\overline{K}), \quad K = (0,+\infty) \times (0,+\infty),$$

следующей краевой задачи:

$$u_{tt} = u_{xx}$$
 в K ,

$$\begin{split} u\big|_{t=0} &= \varphi(x), \quad u_t\big|_{t=0} = \psi(x), \qquad \varphi(x), \; \psi(x) \in C_0^\infty\big((0,+\infty)\big), \\ & \qquad \qquad \big(u_x + \alpha u\big)\big|_{x=0} = 0 \quad \text{для} \quad t > 0? \end{split}$$

Ответ обоснуйте.

- **2.** а) (1) Приведите формулировку строгого принципа максимума для уравнения Лапласа.
- б) (2) Справедлив ли принцип максимума для уравнения

$$u_{tt} = u_{xx}$$
?

Если "да" — докажите, "нет" — приведите опровергающий пример.

3. (3) Пусть u(x,t) — решение задачи

$$\begin{split} u_{tt} &= u_{xx} \quad \mathbf{B} \quad \Pi = (0,\pi) \times (0,+\infty), \\ u\big|_{t=0} &= \varphi(x), \quad u_t\big|_{t=0} = \psi(x), \quad \varphi(x), \; \psi(x) \in C_0^\infty(0,\pi), \\ u\big|_{x=0} &= u\big|_{x=\pi} = 0 \quad \text{для} \quad t>0, \end{split}$$

 $u(x,t)\in C^2(\Pi)\cap C^1(\overline{\Pi})$ и $u(x^*,t)=0$ для всех $t>t^*,$ $t^*={
m const}>0$ и $\frac{x^*}{\pi}$ — иррациональное число. Верно ли, что $u(x,t)\equiv 0$ в Π ? Ответ обоснуйте.

- **4.** а) (1) Напишите формулу Пуассона для решения задачи Коши для волнового уравнения в случае двух пространственных переменных.
- б) (2) Докажите, что функция, определяемая формулой Пуассона, удовлетворяет начальным условиям при t=0.
- **5.** (3) Пусть функция u(x), заданная в шаре $Q_1 = \{x \in \mathbb{R}^3, \ |x| < 1\}$, удовлетворяет уравнению

$$\Delta u = \lambda u \qquad (\lambda = \text{const} < 0)$$

и $u(x)\equiv 0$ в шаре радиуса $\delta,\ Q_\delta=\left\{x\in\mathbb{R}^3,\ |x|<\delta\right\},\ \delta=\mathrm{const},\ 0<\delta<1$. Докажите, что $u\equiv 0$ в Q_1 .

6. (2) Пусть Q — ограниченная область с границей ∂Q класса C^1 . Может ли решение краевой задачи:

$$\Delta u - u = 1 \quad \text{B} \quad Q, \qquad u \in C^2(Q) \cap C^1(\overline{Q}), \qquad \left. \frac{\partial u}{\partial n} \right|_{\partial Q} = 0,$$

 $(\vec{n}$ — внешняя нормаль к $\partial Q)$ быть строго положительным в Q? Ответ обоснуйте.

7. (3) Пусть $Q = \left\{ x = (x_1, x_2) \in \mathbb{R}^2, \; |x| < 1 \right\}$ — единичный круг,

$$Q_+ \equiv Q \cap \{x_1 > 0\}, \quad Q_- \equiv Q \cap \{x_1 < 0\}$$

и функция $u(x)\in H^1(Q)$ принадлежит классам $C^\infty(\overline{Q}_+)$ и $C^\infty(\overline{Q}_-)$. Докажите, что функция u(x) непрерывна в Q.

8. (3) Пусть положительная ограниченная функция удовлетворяет уравнению

$$egin{array}{lll} u_t=\Delta u & ext{ в слоe} & (0,1) imes\mathbb{R}^3 & ext{ в} \ u(t,x)\equiv 0 & ext{ в кубe} & (0,1) imes(0,1) imes(0,1) imes(0,1). \end{array}$$

Верно ли, что $u \equiv 0$ в слое $(0,1) imes \mathbb{R}^3$? Ответ обоснуйте.

Всего 25 баллов

2000 год, поток математиков, пересдача, лектор А.С.Шамаев

1. а) (1) Сформулируйте неравенство Фридрихса.

б) (3) Справедливо ли неравенство Фридрихса для неограниченной области $\Omega = \big\{ (x,y): x>0, \ y>0 \big\}$ на плоскости? Если "да" — докажите, "нет" — приведите опровергающий пример.

2. (3) Рассмотрим следующую краевую задачу в области $\Omega = \{(x,y): 0 < x^2 + y^2 < 1\}$ на плоскости:

$$\Delta u(x,y) = 0$$
 в Ω ,

$$u(x, y) = \varphi(x, y)$$
 при $x^2 + y^2 = 1$,

где $\varphi(x,y)$ — заданная непрерывная функция,

$$\lim_{\substack{x \to 0 \\ y \to 0}} (x^2 + y^2) \ u(x, y) = a,$$

где a — заданное вещественное число. Существует ли решение такой задачи? Если "да", то единственно ли оно? Ответ обоснуйте.

3. (3) Пусть u(t,x) — решение задачи:

$$u_{tt} = u_{xx}$$

в полосе $\Pi \equiv [0,+\infty) \times [0,1]$ на плоскости, $x \in [0,1], t \in [0,+\infty),$ $u \in C^2(\Pi),$

$$u\big|_{x=0} = \varphi(t), \quad u\big|_{x=0} = 0, \quad u\big|_{t=0} = u_t\big|_{t=0} = 0$$
 для $x \in [0,1],$

 $|\varphi(t)|<arepsilon,$ arepsilon — заданное число, $\varphi(t)$ — гладкая функция. Можно ли так выбрать функцию $\varphi(t)$, чтобы решение u(t,x) данной задачи было бы неограниченной функцией на Π ? Ответ обоснуйте.

4. (3) Пусть Ω — ограниченная область в \mathbb{R}^n , u(x) —функция на Ω , удовлетворяющая уравнению

$$\Delta u - u = 0$$
 в Ω

из класса $C^2(\Omega)\cap C(\overline{\Omega}).$ Докажите, что если u=0 на $\partial\Omega,$ то $u\equiv 0$ в $\Omega.$

5. а) (2) Докажите, что всякая функция из $\overset{\circ}{H^1}[0,1]$ непрерывна. 6) (3) Всякая ли непрерывная функция u(x) на отрезке [0,1], такая, что u(0)=u(1)=0, принадлежит $\overset{\circ}{H^1}[0,1]$? Ответ обоснуйте.

6. (3) Найдите фундаментальное решение оператора

$$\mathcal{L} \equiv \frac{d^2}{dx^2} + 2\frac{d}{dx} - 1,$$

т.е. функцию u(x) такую, что

$$u'' + 2u' - u = \delta_0(x)$$
 B \mathbb{R}^1 ,

где $\delta_0(x)$ — "дельта-функция",

$$\left\langle \delta_0(x), \varphi \right\rangle = \varphi(0) \qquad \forall \varphi(x) \in C_0^{\infty}(\mathbb{R}^1).$$

Единственно ли такое решение?

7. (3) Пусть

$$T \equiv rac{\partial}{\partial t} - rac{\partial^2}{\partial x^2}$$

— оператор уравнения теплопроводности. Докажите, что функция

$$\mathcal{E}(t,x) \equiv rac{ heta(t)}{2\sqrt{\pi t}} \; e^{-rac{x^2}{4t}},$$

где $\theta(t)=0$ при t<0 и $\theta(t)=1$ при $t\geqslant0$, удовлетворяет уравнению

$$T\mathcal{E}(t,x) = \delta_0(t,x)$$

в смысле теории обобщенных функций.

Всего 24 балла

?? год, поток математиков, досрочный экзамен, лектор A.C.Шамаев

1. a) (1) Дайте определение характеристической поверхности для дифференциального оператора второго порядка.

б) (1) Постройте множества характеристических линий на плоскости (x,t) для операторов

$$\mathcal{L}u \equiv u_{tt} + 3u_x - 2u_{xx}, \qquad \mathcal{L} \equiv u_t - 3u_{xx} + xu_x.$$

2. а) (2) Пусть u(t,x) — решение задачи

$$u_{tt} = u_{xx}, \qquad t > 0, \quad x > 0,$$

$$u\big|_{x=0} = 0, \qquad u\big|_{t=0} = \varphi(x), \quad u_t\big|_{t=0} = 0,$$

 $\operatorname{supp}\varphi(x)\subset (0,+\infty), \varphi(x)\in C^2(0,\infty).$ Известно, что существует T>0, такое, что при t>T, $x\in (0,\infty)$ u(t,x) — бесконечногладкая функция. Верно ли, что $\varphi(x)$ — также бесконечногладкая функция? Ответ обоснуйте.

б) (2) Пусть u(t,x) — решение задачи

$$u_t = u_{xx}, \qquad t > 0, \quad x > 0,$$

$$u\big|_{x=0} = 0, \qquad u\big|_{t=0} = \varphi(x),$$

функция $\varphi(x)$ — та же, что в п. (а) и $|\varphi| \leqslant M$. Известно, что существует T>0, такое, что при t>T, $x\in (0,\infty)$ u(t,x) — бесконечногладкая функция. Верно ли, что $\varphi(x)$ — также бесконечногладкая функция? Ответ обоснуйте.

3. (3) Пусть $K = \{(x,y) \mid x^2 + y^2 < 1\}$ — единичный круг на плоскости $(x,y),\ u(x,y)$ — решение задачи

$$\Delta u = x^2 y, \qquad u \Big|_{\partial K} = 0.$$

Hайдите u(0,0).

- **4.** (2) Докажите полноту пространства $H^1(\Omega)$.
- 5. (4) Рассмотрим в пространстве $\overset{\circ}{H}{}^1(-1,1)$ множество A гладких финитных функций $\varphi(x)$, удовлетворяющих условию

$$\varphi'(0) + \alpha \varphi(0) = 0,$$

 $lpha\in\mathbb{R}.$ Найдите коразмерность замыкания \overline{A} множества A в $\overset{\circ}{H^1}(-1,1).$

6. (4) Пусть $\mu_i(x)$, $u_i(x)$ ($i=1,2,\ldots$) — собственные значения и собственные функции задачи Штурма-Лиувилля:

$$\mathcal{L}u_i = \mu_i u_i, \qquad u_i(0) = u_i(1) = 0, \qquad ||u_i||_{L_2(0,1)} = 1,$$

$$\mathcal{L} \equiv rac{d}{dx} \left(p(x) rac{d}{dx}
ight) - q(x),$$

p(x),q(x) — гладкие функции, удовлетворяющие оценке $p(x),q(x)\geqslant \alpha>0,\, \alpha={
m const}>0.$ Докажите неравенство

$$\sup_{x \in [0,1]} \left| u_i(x) \right| \leqslant \frac{1}{\sqrt{\alpha}} \sqrt{|\mu_i|}.$$

7. (3) Пусть последовательность гармонических в \mathbb{R}^n функций $\{u_n(x)\}$ слабо сходится при $n\to\infty$ к функции $u^*(x)\in L^2_{\mathrm{loc}}(\mathbb{R}^n)$, т.е. $\forall \varphi\in D(\mathbb{R}^n)$

$$\int_{\mathbb{R}^n} u_n(x)\varphi(x) dx \xrightarrow[n\to\infty]{} \int_{\mathbb{R}^n} u^*(x)\varphi(x) dx.$$

Верно ли, что $u^*(x)$ — гармоническая функция? Ответ обоснуйте

8. (3) Пусть $\varphi(x)\in L_2(\mathbb{R}^1)\cap C(\mathbb{R}^1)$. Докажите, что решение задачи Коши для уравнения теплопроводности

$$u_t = u_{xx}, \quad t > 0, \qquad u\big|_{t=0} = \varphi(x),$$

 $x\in (-\infty,\infty),$ стремится к нулю при $t\to\infty$ равномерно по $x\in (-\infty,\infty).$

Всего 25 баллов

2001 год, поток математиков, основной экзамен, лектор A.C.III амаев

1. (2) Пусть u(t,x) $(x\in\mathbb{R}^3)$ — решение задачи Коши для волнового уравнения

$$u_t = \Delta u$$
 в $(0,+\infty) imes \mathbb{R}^3$ и

$$u\big|_{t=0}=0, \qquad u_t\big|_{t=0}=\varphi(x)\in C_0^\infty(\mathbb{R}^3),$$

 $u\in C^2\left((0,+\infty) imes\mathbb{R}^3
ight)\cap C^1\left([0,+\infty) imes\mathbb{R}^3
ight)$. Может ли носитель функции u(t,x) лежать в цилиндре $\left\{|x|< R
ight\} imes[0,+\infty),$ если

$$\int\limits_{\mathbb{R}^3} \varphi(x) \ dx \neq 0?$$

- 2. (3) Докажите, что потенциал двойного слоя с непрерывной плотностью, создаваемый ограниченной поверхностью $S \in C^1$, убывает на бесконечности как $\frac{1}{r^2}$, где r — расстояние до некоторой фиксированной точки $O \stackrel{r}{\in} S$.
- 3. (3) Пусть $\Pi = \{(x,y)|\ 0 < x < a,\ 0 < y < b\}$ прямоугольник на плоскости и C>0 некоторая постоянная, такая что $\forall u(x,y) \in \check{H^1}(\Pi)$ справедливо неравенство Фридрихса

$$\int_{\Pi} u^2 dx \, dy \leqslant C \int_{\Pi} |\nabla u|^2 dx \, dy.$$

Докажите, что $C \geqslant \frac{a^2b^2}{\pi^2(a^2+b^2)}$.

4. (3) Пусть

$$\mathcal{L} \equiv a \frac{d^2}{dx^2} + b \frac{d}{dx} + c$$

— дифференциальный оператор. При каких $a,b,c\in\mathbb{R}^1$ существует непрерывное на \mathbb{R}^1 решение уравнения

$$\mathcal{L}u(x) = \delta(x),$$

- где $\delta(x)$ δ -функция (т.е. $\langle \delta, \varphi \rangle = \varphi(0) \ \forall \varphi \in C_0^\infty(\mathbb{R}^1)$)? 5. (3) Пусть $u(x) \in H^1(-\infty, +\infty)$, т.е. $u(x) \in L_2(\mathbb{R}^1)$ и существует обобщенная производная по Соболеву $u_x(x)=v(x)\in L_2(\mathbb{R}^1).$ Докажите, что u(x) — непрерывная функция и $u(x) \to 0$, если
- ${f 6.}$ (3) Пусть $K = \{(r, arphi)|\ 0 < r < 1,\ 0 < arphi < \pi/6\}$ круговой сектор раствором $30^{\circ},\ u(r,\varphi)$ — гармоническая в K функция, принадлежащая $C^1(\overline{K})$. Докажите, что

$$|u(r,\varphi)| \leqslant Cr^6$$
,

где C > 0 — некоторая постоянная.

7. (3) При каждом ли $\alpha \in \mathbb{R}^1$ задача

$$\Delta u = 1$$
 B $K = \{(r, \varphi) | 1 < r < 2\},$

$$\left. \frac{\partial u}{\partial n} \right|_{r=1} = \sin \varphi, \qquad \left(\frac{\partial u}{\partial n} + \alpha u \right) \right|_{r=2} = \sin^2 \varphi,$$

 $u\in C^2(K)\cap C^1(\overline{K}),$ имеет хотя бы одно решение? $(\vec{n}$ — внешняя нормаль к границе кольца K.)

- 8. (4) Постройте пример ограниченной в шаре $\{|x|<1\}, x\in\mathbb{R}^3$, гармонической функции u(x), такой, что $|\nabla u|$ неограничен в $\{|x|<1\}$.
- **9.** (4) Докажите (используя интеграл Пуассона), что существует решение следующей задачи: $u(t,x) \in C^2\left(\{t>0\} \times \mathbb{R}^1_x\right)$,

$$u_t = u_{xx}$$
 в $\{t>0\} imes \mathbb{R}^1_x$ и

$$u(t,x) o arphi(x)$$
 в $L_2(\mathbb{R}^1_x)$ при $t o 0,$

где $\varphi(x)$ — заданная функция из $L_2(\mathbb{R}^1_x)$ (не обязательно непрерывная!)

Всего 28 баллов

2001 год, поток математиков, пересдача, лектор А.С.Шамаев

1. (2) Струна, бесконечная в обе стороны, отклонена в начальный момент времени так, что ее профиль имеет вид

и начальная скорость равна 0. Функция u(t,x) удовлетворяет уравнению

$$u_{tt} = u_{xx}$$
.

Нарисуйте график функции $u\left(\frac{1}{4},x\right)$.

- 2. (3) Докажите, что если потенциал простого слоя, создаваемый замкнутой ограниченной поверхностью Ляпунова, равен нулю вне этой поверхности, то плотность потенциала нулевая (плотность предполагается непрерывной).
- **3.** (3) Рассмотрим задачу Коши в полосе $\Pi = [0,y_0] imes \mathbb{R}^1_x$ в $\mathbb{R}^2_{x,y}$:

$$\Delta u + u = 0 \quad {\rm B} \quad \Pi, \qquad u \in C^2(\Pi) \cap C^1(\overline{\Pi}),$$

$$u\big|_{u=0} = \varphi(x), \qquad u_y\big|_{u=0} = \psi(x),$$

 $\varphi(x),\,\psi(x)$ — ограниченные непрерывные функции на \mathbb{R}^1_x . Корректна ли эта задача в паре пространств

$$E_1 = C(\mathbb{R}^1_x) \times C(\mathbb{R}^1_x), \quad E_2 = C(\Pi), \qquad (\varphi, \psi) \in E_1, \quad u \in E_2$$
?

Если "да" — докажите, "нет" — приведите опровергающий пример.

4. (3) Справедлив ли принцип максимума для гармонических функций, заданных в полосе П из предыдущей задачи? Если "да" — докажите, "нет" — приведите опровергающий пример.

5. (3) При каких $a \in \mathbb{R}^1$ краевая задача

$$\Delta u + 2u = x - a$$
 B Ω , $u\big|_{\partial\Omega} = 0$,

 $\Omega = \big\{(0,\pi)\times(0,\pi)\big\}$ имеет хотя бы одно решение? Ответ обоснуйте.

6. (4) Рассмотрим краевую задачу

$$u_{tt} = u_{xx}$$
 B $[0,1] \times (0,+\infty)$,

$$u\big|_{x=0} = 0, \quad u_x\big|_{x=1} = f(t), \qquad u\big|_{t=0} = \varphi(x), \quad u_t\big|_{t=0} = \psi(x),$$

 $arphi(x), \psi(x)$ — гладкие финитные функции. Докажите, что можно так выбрать гладкую функцию f(t), что решение этой задачи u(t,x) будет неограниченной функцией в полосе $[0,1]\times(0,+\infty).$

7. (4) Рассмотрим краевую задачу

$$u_t = u_{xx}$$
 b $[0,1] \times (0,+\infty)$,

$$u\big|_{x=0} = f(t), \quad u\big|_{x=1} = g(t), \qquad u\big|_{t=0} = \varphi(x),$$

 f,g,φ — гладкие функции, причем

$$f(t) \to a \quad \text{при} \quad t \to \infty, \qquad g(t) \to b \quad \text{при} \quad t \to \infty.$$

Какой предел при $t \to \infty$ в пространстве C[0,1] (если таковой вообще есть) имеет решение u(t,x) этой задачи? Ответ обоснуйте.

8. (4) Постройте пример области Ω на плоскости \mathbb{R}^2 , такой что функции $C^{\infty}(\overline{\Omega})$ не составляют всюду плотного множества в пространстве $H^1(\Omega)$, т.е. $\overline{C^{\infty}(\overline{\Omega})} \neq H^1(\Omega)$.

Всего 26 баллов

2001 год, поток математиков, пересдача, лектор А.С.Шамаев

1. a) (1) Сформулируйте теорему Ковалевской о существовании и единственности аналитического решения.

б) (3) Пусть $\Omega \subset \mathbb{R}^n$ — область в \mathbb{R}^n и

$$\Delta^2 u = 0 \quad \mathbf{B} \quad \Omega,$$

 $u(x)\in C^4(\Omega).$ Докажите, что u(x) — вещественноаналитическая функция.

2. (3) Пусть

$$u_t=u_{xx}$$
 в полосе $\Pi=(0,T) imes\mathbb{R}^1_x, \qquad u\in C^2(\Pi)\cap C(\overline{\Pi}),$ $uig|_{t=0}=0 \quad orall x\in\mathbb{R}^1_x$ и $\left|u(t,x)
ight|\leqslant C|x|.$

Докажите, что $u \equiv 0$ в Π .

3. а) (1) Дайте определение пространства $H^1(\Omega)$.

б) (3) Пусть u(x) — ограниченная в единичном шаре $\mathbb{H} = \{|x| < 1\}, x \in \mathbb{R}^3$, функция, гладкая в $\mathbb{H} \setminus \{0\}$. Можно ли утверждать, что $u \in H^1(\mathbb{H})$? Если "да" — докажите, "нет" — приведите опровергающий пример.

4. (2) Существует ли решение уравнения

$$u_{tt} - u_{xx} = 0$$
 в \mathbb{R}^2 ,

такое, что $u \in C^{2001}(\mathbb{R}^2)$, но $u \notin C^{2002}(\mathbb{R}^2)$?

5. (3) Единичная сфера в \mathbb{R}^3 равномерно заряжена с постоянной плотностью Q (потенциал простого слоя). Найдите потенциал внутри и вне сферы.

6. (4) Пусть функция $u(x), x \in \mathbb{R}^3$, удовлетворяет уравнению

$$\Delta u = u(x)$$
 в \mathbb{R}^3 ,

а также оценке

$$|u(x)| \leqslant C, \quad x \in \mathbb{R}^3.$$

Докажите, что $u \equiv 0$ в \mathbb{R}^3 .

7. (4) Пусть функция $y(x)\in D'(\mathbb{R})$ и удовлетворяет уравнению y'=y как обобщенная функция. Докажите, что y(x) есть регулярная обобщенная функция, соответствующая функции Ce^x , $C=\mathrm{const}$.

8. (3) Пусть Ω — произвольная область в \mathbb{R}^2 , содержащаяся в полосе $[0,1] \times \mathbb{R}^1$. Докажите для Ω неравенство Фридрихса

$$\int\limits_{\Omega} u^2 dx \, dy \leqslant \int\limits_{\Omega} \left| \nabla u \right|^2 dx \, dy, \qquad u \in \overset{\circ}{H^1}(\Omega).$$

Всего 27 баллов

?? год, поток математиков, ?? экзамен, лектор A.C.Шамаев

- 1. а) (1) Дайте определение пространства $H^1(\Omega)$.
- б) (2) При каких $\alpha>0$ функция $\sin^{\alpha}x$ принадлежит $H^{1}[0,\pi]$? Ответ обоснуйте.
- **2.** (3) Пусть u(x,t) решение уравнения теплопроводности

$$u_t = u_{xx}$$
 в полосе $\Pi = [0,1] \times \mathbb{R}_+,$

 $\mathbb{R}_+ \equiv \{t>0\},\ u\in C^2(\Pi)\cap C^1(\overline{\Pi}),$ удовлетворяющее краевым условиям

$$u_x\big|_{x=0}=1, \qquad u_x\big|_{x=1}=-1$$

и начальным условиям

$$u\big|_{t=0}=\varphi(x), \qquad \varphi(x)\in C_0^\infty(0,1).$$

Ограничено ли это решение на Π ? (т.е. растет ли температура?) Ответ обоснуйте.

3. (4) Пусть u(x,y) — решение уравнения Лапласа в полуполосе $\Pi=(0,1)\times\mathbb{R}_+$ на плоскости $(x,y),\,\mathbb{R}_+\equiv\{y>0\},\,u\in C^2(\Pi)\cap C(\overline{\Pi}),$ удовлетворяющее граничным условиям

$$u\big|_{x=0} = u\big|_{x=1} = 0, \quad y > 0,$$

причем $u(x,y) \to 0$ при $y \to +\infty$ равномерно по x. Докажите, что

$$|u(x,y)| \leqslant C e^{-3.14 \cdot y},$$

где C > 0 — некоторая постоянная.

4. (4) Пусть u(x,y) — гармоническая функция в полуплоскости $P = \{y > 0\},$

$$\left|u(x,y)\right|\leqslant \textbf{\textit{M}},\quad x\in\mathbb{R},\ y\in\mathbb{R}_{+}\quad \text{\textit{in}}\quad u\big|_{y=0}=0\quad \forall x\in\mathbb{R}_{x}^{1},$$

 $u\in C(\overline{P}),$ где M — некоторая постоянная. Докажите, что $u\equiv 0$ в P.

5. (3) Рассмотрим задачу Коши с данными на характеристике $\{t=x\}$ для волнового уравнения

$$u_{tt} = u_{xx}$$
 на плоскости (x,t) ,

$$u\big|_{t=x} = \varphi(x), \quad u_x\big|_{t=x} = \psi(x).$$

Придумайте такие гладкие функции $\varphi(x),\ \psi(x),\$ чтобы данная задача не имела решения.

6. (3) Корректна ли задача

$$u_t=u_{xx}$$
 b $\Pi=(0,1) imes\mathbb{R}^1_x,\quad u\in C^2(\Pi)\cap C(\overline{\Pi}),\quad uig|_{t=0}=arphi(x),$

 $(\varphi(x)$ — заданная функция) в паре пространств (E_0,E_1) , где

$$E_0 = C(\mathbb{R}^{\frac{1}{x}}) \cap B(\mathbb{R}^{\frac{1}{x}}), \quad E_1 = C^2(\Pi) \cap C(\overline{\Pi}) \cap B(\Pi)$$

с нормами

$$\|arphi\|_{E_0}=\sup_{\mathbb{R}^1_x}|arphi(x)|,\quad \|u\|_{E_1}=\sup_{(x,t)\in\Pi}|u(x,t)|.$$

Ответ обоснуйте.

7. а) (1) Дайте определение потенциала простого слоя.

6) (3) Докажите, что потенциал простого слоя убывает при $r \to \infty$ как $\frac{C}{r}$, где r — расстояние от текущей точки до поверхности $S,\ S$ — ограниченная поверхность.

Всего 24 балла

2002 год, поток математиков, ?? экзамен, лектор А.С.Шамаев

Вариант 1 (первая часть).

1. (2) Решите краевую задачу

$$u_{tt} - u_{xx} = 0, \qquad t < 2x, \quad x > 0,$$

$$u|_{t=2x} = \sin x, \quad x > 0, \qquad u|_{t=0} = 0, \quad u_t|_{t=0} = 1.$$

130

2. (2) Решите задачу Дирихле в кольце $K = \big\{ 1 < |x| < 3 \big\},$

$$\Delta u = 0$$
 B K , $\left(\frac{\partial u}{\partial r} + u\right)\Big|_{r=1} = 1$, $\left.\frac{\partial u}{\partial r}\Big|_{r=3} = 2$,

r — радиальная координата.

3. (2) Дана задача Коши для волнового уравнения

$$u_{tt} = \Delta u(t, x), \qquad x \in \mathbb{R}^3, \quad t > 0,$$

$$u|_{t=0} = (1+|x|^2)^{-1}, \qquad u_t|_{t=0} = \sin|x|.$$

Найдите величину u(10,0,0,0).

Вариант 1 (вторая часть).

- 1. а) (1) Сформулируйте принцип максимума для уравнения теплопроводности.
- б) (1) Сформулируйте теоремы о среднем для гармонических функций.
- 2. (2) Найдите хотя бы одно решение уравнения

$$u'' + u = \delta'_0$$

в классе обобщенных функций.

- **3.** (2) Определите потенциал простого слоя и докажите, что он убывает на бесконечности как $\frac{C}{|x|}$.
- **4.** (3) Единственно ли решение следующей внешней задачи Дирихле:

$$\Delta u=0\quad \text{B}\quad \mathbb{R}^3\setminus\Omega, \qquad u\big|_{\partial\Omega}=\varphi(x), \quad \varphi(x)\in C(\partial\Omega),$$

$$\int\limits_{\mathbb{R}^3\setminus\Omega}\left(1+|x|\right)u^2(x)\;dx<\infty?$$

Ответ обоснуйте.

5. (3) Докажите неравенство Фридрихса. Пусть Ω_1 и Ω_2 — две ограниченные области и объем Ω_1 больше объема Ω_2 . Можно ли на основании этого сравнить постоянные в неравенствах Фридрихса для двух областей? Ответ обоснуйте.

Вариант 2 (первая часть).

1. (2) Решите краевую задачу

$$u_{tt} - u_{xx} = 0, \qquad x > 0, \quad t > 0,$$

$$\left. \left(\frac{\partial u}{\partial x} + 2u \right) \right|_{t=0} = \sin t, \quad t > 0, \qquad u \Big|_{t=0} = u_t \Big|_{t=0} = 0.$$

2. (2) Решите краевую задачу

$$u_t = u_{xx}$$
 при $0 < x < \pi$, $t > 0$,

$$\left. \frac{\partial u}{\partial x} \right|_{x=0} = 0, \quad \left. \frac{\partial u}{\partial x} \right|_{x=\pi} = 1, \quad \left. u \right|_{t=0} = 0.$$

3. (2) Пусть $u(t,x),\,x\in\mathbb{R}^3,\,t>0$ — решение задачи Коши

$$u_{tt} = \Delta u, \quad t > 0, \qquad u|_{t=0} = 0, \quad u_t|_{t=0} = \varphi(x),$$

где $\varphi(x)=0$ при $9\leqslant |x|\leqslant 10$ и $\varphi(x)>0$ для других значений $x\in\mathbb{R}^3$. При каких значениях переменной t>0 возможно равенство u(t,x)=0 для некоторого $x\in\mathbb{R}^3$? Ответ обоснуйте.

Вариант 2 (вторая часть).

- 1. a) (1) Дайте определение характеристической поверхности для уравнений с частными производными второго порядка.
- б) (1) Что такое корректно поставленная краевая задача?
- 2. (2) Найдите хотя бы одно решение уравнения

$$u''' + u = \delta(t)$$

в классе обобщенных функций.

- **3.** (2) Докажите, что потенциал двойного слоя, создаваемый поверхностью S в точке x и имеющий единичную плотность, равен телесному углу, под которым поверхность S видна из точки x.
- 4. (3) Сформулируйте и докажите теорему Лиувилля для гармонических функций. Верна ли эта теорема, если исходная гармоническая функция задана не во всем пространстве \mathbb{R}^3 , а в полупространстве $\{x_1>0\}$? А если еще дополнительно известно, что $u(0,x_2,x_3)=0$? Ответы обоснуйте.

5. (3) Дайте определение пространств $H^1(\Omega)$ и $\overset{\circ}{H^1}(\Omega)$. Докажите, что эти пространства не совпадают. Пусть $u(x)\in C^\infty(\Omega)\cap C(\overline{\Omega})$ и u(x)=0 на $\partial\Omega$. Верно ли, что $u\in \overset{\circ}{H^1}(\Omega)$? Ответ обоснуйте.

Вариант 3 (первая часть).

1. (2) Решите краевую задачу

$$u_{tt} - u_{xx} = 0, \qquad x > 0, \quad t > 0,$$

$$u\big|_{t=0} = u_t\big|_{t=0} = 0, \qquad (u_x + (\sin t)u)\big|_{x=0} = \sin t, \quad t > 0.$$

2. (2) Пусть $u(t,x), x \in \mathbb{R}^2$ — решение задачи Коши

$$u_t = \Delta u(t,x), \qquad u\big|_{t=0} = \left\{ egin{array}{ll} 1, & |x| < L \ 0, & |x| \geqslant L \end{array}
ight., \qquad L = \mathrm{const} > 0.$$

Найдите u(10,0,0).

3. (2) Решите краевую задачу

$$u_{tt} = u_{xx}, \qquad 0 < x < \pi, \quad t > 0,$$

$$u|_{x=0} = 0$$
, $u_x|_{x=\pi} = \sin t$, $u|_{t=0} = u_t|_{t=0} = 0$.

Вариант 3 (вторая часть).

- 1. a) (1) Сформулируйте строгий принцип максимума для гармонической функции в области.
- б) (1) Сформулируйте теорему единственности задачи Коши для уравнения теплопроводности.
- 2. (2) Найдите хотя бы одно решение уравнения

$$u' + \sin t \cdot u = \delta_0$$

в классе обобщенных функций.

- 3. (2) Докажите, что потенциал двойного слоя поверхности S определен для $x \in S$, если S поверхность Ляпунова.
- **4.** (3) Гармоническая функция $u(x_1, x_2, x_3)$ определена в полуцилиндре

$$\coprod \equiv \left\{ x_1^2 + x_2^2 < 1 \right\} \times \left\{ x_3 > 0 \right\}$$

и u=0 при $x_1^2+x_2^2=1$. Известно также, что $u\in C^1(\overline{\coprod})$ и $u(x)\to 0$ при $x_3\to +\infty$ равномерно по x_1 и x_2 . Докажите, что тогда имеет место оценка

$$\left|u(x)\right|\leqslant C\exp\left(-rac{\pi}{\sqrt{2}}\,x_3
ight),$$

где C > 0 — некоторая постоянная.

5. (3) Дайте определение пространств $H^1(\Omega)$ и докажите его полноту. Пусть Ω — ограниченная область в \mathbb{R}^n , $C^{\infty}(\overline{\Omega})$ — множество гладких в Ω функций, имеющих все производные, непрерывно продолжающиеся на $\overline{\Omega}$. Всегда ли это множество функций плотно в $H^1(\Omega)$? Ответ обоснуйте.

2002 год, Олимпиада, лектор А.С.Шамаев

1. (2) Докажите, что

$$\Delta^2(|x|) = C_0 \ \delta(x)$$

и найдите постоянную C_0 . Здесь $x=(x_1,x_2,x_3)\in\mathbb{R}^3$ и $|x|^2=x_1^2+x_2^2+x_3^2$.

2. (3) Пусть u(x,t) — решение краевой задачи:

$$u_{tt} = u_{xx}$$
 B $(0, \pi) \times (0, +\infty)$,

$$u\big|_{x=0} = f(t), \quad u\big|_{x=\pi} = 0, \qquad u\big|_{t=0} = u_t\big|_{t=0} = 0,$$

f(t) — гладкая функция и $f(t)\to 0$ при $t\to\infty,\ u\in C^2ig((0,\pi) imes (0,+\infty)ig)\cap C^1ig([0,\pi] imes [0,+\infty)ig).$ Может ли решение этой задачи неограниченно возрастать по времени, то есть по переменной t? Ответ обоснуйте.

3. (2) Пусть u(t,x) — решение задачи Коши для уравнения теплопроводности

$$u_t = u_{xx}, \qquad u\big|_{t=0} = \varphi(x),$$

 $\varphi(x)\in C(\mathbb{R})\cap B(\mathbb{R}).$ Является ли функция u(t,x) вещественно-аналитической по переменной x при фиксированном t? Ответ обоснуйте.

4. (3) Докажите тождество

$$\sum_{i=1}^{\infty} \frac{1}{\lambda_i} = \int_{0}^{1} G(x, x) dx,$$

где $\{\lambda_i\}$ — последовательность собственных значений задачи Штурма-Лиувилля на отрезке [0,1], G(x,y) — ее функция Грина

5. (3) Пусть Ω — ограниченная область на плоскости, $u(x) \in C^2(\Omega)$,

$$\Delta u = 0$$
 в Ω .

arphi(x) — непрерывная функция на $\partial\Omega$ и

$$\lim_{\substack{x \to x_0 \\ x \in \Omega}} u(x) = \varphi(x_0)$$

для всех $x_0\in\partial\Omega$ кроме единственной точки $x^*\in\partial\Omega$. Назовем такую функцию "решением задачи Дирихле $\Delta u=0,$ $u\big|_{\partial\Omega}=\varphi(x)$ кроме одной граничной точки x^* ". Единственно ли решение такой задачи Дирихле? Ответ обоснуйте.

6. (2) Корректна ли задача Коши на плоскости

$$\begin{split} \Delta u + \frac{\partial u}{\partial x} &= 0, \qquad \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}, \qquad x \in \mathbb{R}, \quad y > 0, \\ u\big|_{y=0} &= \varphi(x), \qquad u_y\big|_{y=0} &= \psi(x) ? \end{split}$$

Здесь $\varphi(x)$, $\psi(x)$ — непрерывные ограниченные функции, решение u(x,y) рассматривается в пространстве $C\left([0,y_0]\times\mathbb{R}_x\right)\cap B\left([0,y_0]\times\mathbb{R}_x\right)$. Ответ обоснуйте.

7. (3) Пусть u(t,x) — решение уравнения теплопроводности в полуплоскости с одной "выколотой" точкой

$$\Pi \equiv \{t > 0\} \times \mathbb{R}_x \setminus \{(1,0)\}$$

и |u(t,x)| < M в П. Докажите, что особенность в точке (1,0) устранима, т.е. можно так доопределить функцию u(t,x) в этой точке, что она будет решением уравнения теплопроводности в $\mathbb{R}_x \times \{t>0\}$.

Всего 18 баллов

2003 год, Олимпиада, лектор А.С.Шамаев

1. (2) Рассмотрим смешанную задачу для полуограниченной струны

$$\begin{aligned}
u_{tt} &= u_{xx}, & t > 0, & x > 0, \\
u\big|_{t=0} &= \varphi(x), & u_t\big|_{t=0} &= 0, \\
(u_x + \alpha u)\big|_{x=0} &= 0.
\end{aligned}$$

Имеет ли отраженная волна задний фронт, то есть будет ли расстояние от носителя решения до прямой x = 0 неограниченно возрастать при $t \to \infty$?

2. (2) Рассмотрим задачу Коши для волнового уравнения

$$\begin{split} u_{tt}(t,x) &= \Delta u(t,x), \qquad t>0, \ x\in\mathbb{R}^3, \\ u\big|_{t=0} &= \varphi(x), \qquad u_t\big|_{t=0} &= \psi(x), \qquad u(t,x)\not\equiv 0. \end{split}$$

Может ли $\operatorname{supp}\ u(t,x)$ принадлежать цилиндру $\{(t,x)\mid t\in$ $(0,\infty),\ x\in D\}$, где D – ограниченная область пространства

3. (3) Пусть u(x) – гармоническая функция в окрестности точки $\{0\}$ пространства \mathbb{R}^n ;

$$u(x) = \sum_{i=0}^{\infty} \sum_{|\alpha|=i} \frac{\mathcal{D}^{\alpha} u}{\alpha!} \Big|_{x=0} x^{\alpha} -$$

разложение функции u(x) в ряд Тейлора в точке $\{0\}$. Верно ли, что полиномы $P_i(x) \equiv \sum_{|lpha|=i} rac{\mathcal{D}^lpha u}{lpha!}igg|_{x=0} x^lpha$ — гармонические функции? Ответ обоснуйте.

4. (3) Пусть u(t,x) – решение задачи Коши для уравнения теплопроводности

$$u_t=u_{xx}\quad\text{при}\quad t>0,$$

$$u(t,x)\in C^2(\Pi_+)\cap C(\overline\Pi_+),\qquad \Pi_+\equiv\{(x,t),\,t>0\},$$

$$u\big|_{t=0}=\varphi(x),$$

 $\varphi(x)$ — ограниченная непрерывная функция, не равная тождественно нулю. Докажите, что не существует такого T>0, при котором $u(t,x)\equiv 0$, если $T\leqslant t$. (Иначе говоря, нагретый стержень не может полностью "остыть" за конечное время.)

5. (4) Пусть Ω – ограниченная область в \mathbb{R}^2 , u(x) – собственная функция задачи Дирихле, то есть

$$\Delta u(x) + \lambda u(x) = 0,$$

$$u(x)=0$$
 для $x\in\partial\Omega,$ $\lambda=\mathrm{const}\,.$

Может ли множество $\sigma = \{x \mid u(x) = 0, x \in \Omega\}$ быть отрезком ℓ прямой линии, не имеющим общих точек с границей области Ω ? Ответ обоснуйте.

6. (6) Пусть K — единичный круг на плоскости с центром в точке $\{0\}$. Докажите, что существует такая последовательность гладких функций $\{\varphi_n(x)\}, \varphi_n(x) \in C^{\infty}(\overline{K})$, что

$$\|\varphi_n\|_{H^1(K)} o 0$$
 при $n o \infty$,

но $\varphi_n(0)=1$ для любых $n=1,2,\dots$ (то есть функции из $H^1(K)$ не имеют "следа" в точке).

7. (5) Пусть Ш – единичный шар в \mathbb{R}^3 с центром в нуле, $\vec{v}(x)$ – такая вектор-функция в Ш, что

- 1) $\vec{v}(x) = \nabla u(x)$, u(x) гладкая скалярная функция в Ш;
- 2) $\operatorname{div} \vec{v}(x) = 0$ в Ш;
- 3) если продолжить $\vec{v}(x)$ нулем в \mathbb{R}^3 , то полученная в результате такого продолжения вектор-функция $\vec{w}(x)$ также удовлетворяет равенству $\operatorname{div} \vec{w}(x) = 0$ в \mathbb{R}^3 в смысле теории обобщенных функций. Найдите $\vec{v}(x)$.
- **8.** (6) Пусть u(t,x) решение задачи

$$u_{tt} = u_{xx}$$
 B Π , $\Pi \equiv [0, \pi] \times [0, \infty)$,

$$u\big|_{x=0}=u\big|_{x=\pi}=0\quad\forall\, t>0,\qquad u\big|_{t=0}=\varphi(x),\quad u_t\big|_{t=0}=\psi(x),$$

 $\psi(x), \varphi(x) \in C_0^\infty[0,\pi]$. Мы наблюдаем движение струны с закрепленными концами в точке 1, то есть нам известна функция

u(t,1) при t>0, но не абсолютно точно, а с точностью δ , где δ – любое положительное (но не равное нулю) число. Можно ли по такому наблюдению восстановить с любой наперед заданной точностью $\varepsilon>0$ функции $\psi(x)$, $\varphi(x)$? Ответ обоснуйте.

2001 год, поток математиков, основной экзамен, лектор Т.А.Шапошникова

Первая часть (1.5 астрономических часа)

1. а) (2) Найти общее решение уравнения

$$5u_{xx} - 4u_{xy} - u_{yy} = 0. (*)$$

б) (2) Найти решение уравнения (*), удовлетворяющее условиям

$$u(x,0) = 7x^2, \qquad u\left(x, \frac{x}{8}\right) = x^2.$$

2. (2) Решите задачу Коши

$$u_{tt} = \Delta u - |x|, \quad x \in \mathbb{R}^3, \ t > 0; \quad u|_{t=0} = 0, \ u_t|_{t=0} = \sin|x|.$$

3. (2) В круге $Q = \{x^2 + y^2 + 2x < 0\}$ решите задачу Дирихле

$$\Delta u = 0$$
 B Q , $u\big|_{\partial Q} = 4x^3 + 6x - 1$.

4. а) (2) Найдите решение задачи Коши

$$u_t = \Delta u, \quad x \in \mathbb{R}^n, \quad t > 0; \qquad u\big|_{t=0} = e^{-|x|^2}.$$

- **б)** (2) Найти $\lim_{|x| \to \infty} u(x,t)$. Ответ обосновать.
- **5. а)** (2) Найти решение задачи

$$\begin{aligned}
u_t &= u_{xx} - 7, & x \in (0, \pi), & t > 0; \\
u\big|_{x=0} &= 1, & u_x\big|_{x=\pi} &= 0; & u\big|_{t=0} &= 0.
\end{aligned}$$

б) (2) Найти $\lim_{t \to \infty} u(x,t)$. Ответ обосновать.

Вторая часть (1.5 астрономических часа)

1. (3) Пусть $\Omega = \{(x,t) \mid 0 < x < \pi, \ 0 < t < +\infty\}, \ u \in C^2(\overline{\Omega}),$

$$\begin{array}{cccc} u_{tt}=a^2u_{xx} & \mathbf{B} & \Omega; \\ u\big|_{x=0}=0, & u_x\big|_{x=\pi}=f(t); & u\big|_{t=0}=u_t\big|_{t=0}=0; \end{array}$$

 $f\in C^\inftyig([0,+\infty)ig),\, f(0)=0,\, \sup_{[0,\infty)}\, ig|f(t)ig|<+\infty.$ Верно ли, что

$$\sup_{\overline{\Omega}} |u(x,t)| < +\infty?$$

Ответ обосновать.

- **2. а)** (3) Потенциал двойного слоя с плотностью $\sigma_0(x)$ равен нулю, когда x лежит вне замкнутой поверхности $\Gamma = \partial \Omega$, то есть при $x \in \mathbb{R}^n \setminus \overline{\Omega}$. Верно ли, что $\sigma_0(x) \equiv 0$ на Γ ? Ответ обосновать.
- **б)** (3) Потенциал простого слоя с плотностью $\mu_0(x)$ равен нулю, когда x лежит вне замкнутой поверхности Γ . Верно ли, что $\mu_0(x) \equiv 0$ на Γ ?
- ${f 3.}$ (2) Найти какое-нибудь решение в ${\cal D}'$ 2 системы

$$\dot{y} = Ay + b \, \delta(x); \qquad y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \quad A = \begin{pmatrix} 2 & -1 \\ 3 & -1 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 2 \end{pmatrix}.$$

4. (3) Пусть u(x,y) — ограниченная, гармоническая на полуплоскости $\Pi=\left\{(x,y)\in\mathbb{R}^2\;\middle|\;y>0\right\}$ функция, $u\in C(\overline{\Pi})$. Доказать, что

$$\sup_{\overline{\Pi}} u = \sup_{\mathbb{R}^1} u(x,0).$$

Критерии оценок: "отлично" — $\geqslant 21$ балла; "хорошо" — $\geqslant 16$ баллов; "удовлетворительно" — $\geqslant 8$ баллов при максимально возможной сумме 30 баллов.

2002 год, поток математиков, основной экзамен, лектор Т.А.Шапошникова

Первая часть (1.5 астрономических часа)

1. (2) Найти характеристики уравнения

$$u_{tt} = u_{xx} + u_{yy},$$

пересекающиеся с плоскостью t=0 по прямой (l,x)=0, где $l=(l_1,l_2)\neq 0.$

2. (2) Решите краевую задачу для уравнения Лапласа в прямоугольнике $0\leqslant x\leqslant a,\ 0\leqslant y\leqslant b$ со следующими граничными условиями

$$u\Big|_{x=0} = \frac{\partial u}{\partial x}\Big|_{x=a} = 0; \qquad u\Big|_{y=0} = 0, \quad u\Big|_{y=b} = \sin\frac{5x \cdot \pi}{2a}.$$

3. (2) Пусть u(t,x) — решение задачи Коши

$$u_{tt} = \Delta u, \quad x = (x_1, x_2) \in \mathbb{R}^2, \quad t > 0;$$

 $u\Big|_{t=0} = \varphi(x), \quad u_t\Big|_{t=0} = \psi(x).$

Функции φ и ψ известны только в прямоугольнике $x_1 \in [0,a]$, $x_2 \in [0,b]$. Где можно определить u(t,x), t>0? Нарисуйте в \mathbb{R}^3_{t,x_1,x_2} эту область.

4. (2) Решите задачу

Найдите $\lim_{t\to\infty} u(t,x)$.

Вторая часть (1.5 астрономических часа)

1. (4) Пусть $\Omega = \{(x_1,x_2) \mid 0 < x_j < 1, \ j=1,2\}$. Докажите, что для любой функции $v \in \overset{\circ}{H^1}(\Omega)$, удовлетворяющей условию

$$\int_{\Omega} \sin \pi x_1 \cdot \sin \pi x_2 \cdot v(x_1, x_2) \, dx_1 \, dx_2 = 0,$$

справедливо неравенство

$$\left\|v\right\|_{L_2(\Omega)}^2 \leqslant \frac{1}{5\pi^2} \left\|\nabla v\right\|_{L_2(\Omega)}^2.$$

2. (3) Найдите потенциал простого слоя, распределенного с постоянной плотностью μ на цилиндре $\left\{x_1^2+x_2^2=R^2,\ 0\leqslant x_3\leqslant H\right\}$ в точках, лежащих на оси x_3 .

3. (3) Функция u(x,t) удовлетворяет уравнению теплопроводности

$$u_t = \Delta u$$

в цилиндре $Q_\infty=\Omega imes (0,\infty),\ x\in \Omega\subset \mathbb{R}^n,\ t>0;$ $\overline{\Omega}\subset \left\{|x_j|<\frac{\pi}{8},\ j=1,\dots,n\right\};$

$$u=0$$
 на $\partial\Omega\times(0,\infty)$;

 $u \in C^{2,1}(Q_\infty) \cap C(\overline{Q}_\infty)$. Докажите, что

$$|u| \leqslant C_0 e^{-4nt}, \quad C_0 = \text{const} > 0.$$

4. (2) Найдите в $\mathcal{D}'(\mathbb{R}^1)$ какое-нибудь решение системы

$$\dot{x} = x - y,$$
 $\dot{y} = y - 4x + 3\delta(t).$

Критерии оценок: "отлично" — $\geqslant 15$ баллов; "хорошо" — $\geqslant 10$ баллов; "удовлетворительно" — $\geqslant 6$ баллов при максимально возможной сумме 20 баллов.

2002 год, поток математиков, основной экзамен, лектор Т.А.Шапошникова

Первая часть (1.5 астрономических часа)

1. (2) При каких значениях $a \in \mathbb{R}^1$ плоскость $y+z=C={
m const}$ является характеристикой для уравнения

$$u_{xx} - 2au_{xy} + u_{yy} - a^2u_{zz} + u = 0?$$

(Ответ обосновать).

2. (2) Решите задачу

$$\begin{aligned} u_{tt} &= \Delta u, & 0 < x, y < 1, & t > 0; \\ u\big|_{x=0} &= u\big|_{x=1} = u\big|_{y=0} = u\big|_{y=1} = 0; \\ u\big|_{t=0} &= \sin 3\pi x \, \sin 7\pi y, & u_t\big|_{t=0} = -2 \sin \pi x \, \sin 4\pi y. \end{aligned}$$

3. (2) Пусть u(t,x) — решение задачи Коши

$$u_{tt} = \Delta u, \quad x = (x_1, x_2, x_3), \quad x \in \mathbb{R}^3, \quad t > 0;$$

 $u\big|_{t=0} = \varphi(x), \quad u_t\big|_{t=0} = \psi(x).$

Функции φ и ψ известны только в шаровом слое $1 \leqslant |x| \leqslant 2$. Где известно решение u(t,x)? (Ответ обосновать).

4. (2) Решите задачу Коши

$$u_t = \frac{1}{4} u_{xx}, \quad x \in \mathbb{R}^1, \ t > 0; \qquad u\big|_{t=0} = e^{-x^2 + 2x}, \quad x \in \mathbb{R}^1.$$

Вторая часть (1.5 астрономических часа)

1. (4) Найдите

$$\inf_{M} \left\{ \int_{\Omega} \left(|\nabla u|^2 + 2u \right) dx + \int_{|x|=1} u^2 dS \right\},$$

где $\Omega=\left\{1<|x|<2\right\},\;x=(x_1,x_2,x_3)\in\mathbb{R}^3;\;M=\left\{v\in H^1(\Omega)\;\middle|\;v=0\;\;\text{при}\;\;|x|=2\right\}.$

2. (3) Найти потенциал простого слоя, распределенного с плотностью $\mu=\sin^2\varphi$ на цилиндре $\left\{x_1^2+x_2^2=R^2,\ 0\leqslant x_3\leqslant H\right\}$ в точке, лежащей на оси x_3 .

3. (3) Пусть $u(x),\,x\in\mathbb{R}^3$, удовлетворяет уравнению

$$\Delta u = u$$
 в \mathbb{R}^3 ,

а также оценке

$$|u| \leqslant C$$
, $x \in \mathbb{R}^3$.

Докажите, что $u \equiv 0$ в \mathbb{R}^3 .

4. (2) Найдите какое-нибудь решение из $\mathcal{D}'(\mathbb{R}^1)$ уравнения

$$y'' + 4y' + 3y = -\delta(x)$$
.

Критерии оценок: "отлично" — $\geqslant 15$ баллов; "хорошо" — $\geqslant 10$ баллов; "удовлетворительно" — $\geqslant 6$ баллов при максимально возможной сумме 20 баллов.