

MultiGPU programming

Presenter: Jiri Kraus (NVIDIA) Suraj Prabhakaran | April 9, 2014

German Research School for Simulation Sciences GmbH Laboratory for Parallel Programming

Using Multi GPUs

- Further speedup computations
- Single GPU memory not sufficient
- Increases performance/W
- Intra-node Multi-GPU
 - Easy-to-use, directly use the CUDA API
- Inter-node Multi-GPU
 - Network communication with MPI

Application scenario

Application scenario

Intra-node Multi-GPU

- Single CPU thread access Multiple GPUs
- CUDA calls issued to <u>current</u> GPU
- cudaSetDevice(x) sets the current GPU.
- Example

```
cudaSetDevice(0);
cudaMalloc(dst_0,...);
cudaMemcpy(dst_0, ...);
cudaSetDevice(1);
cudaMalloc(dst_1,...);
cudaMemcpy(dst_1, ...);
```

Intra-node Multi-GPU

- Current GPU can be changed even when async calls (kernels, async memcopies) are running
- Example

```
cudaSetDevice(0);
kernel<<<...>>(...);
cudaSetDevice(1);
cudaMemcpyAsync(...);
```

Multi-GPU Matrix Multiplication

1

Χ

X

В

Split A and C into two sets of rows

=

Α0

В

GPU 0

C1

=

A1

В

GPU 1

Exercise: Multi-GPU Matrix Multiplication

8

- Use Multiple GPUs to speed up Simple Matrix Multiplication
- Split A into 2 set of rows

Verify with NVVP that two GPUs are used.

Intra-node Multi-GPU Communication

- One GPU has to access data from another GPU
- Traditional method: Go about it through the CPU/Main Memory
- Due to UVA: Peer-to-peer memcopies (GPUDirect P2P)

Intra-node Multi-GPU Communication

- Check if the GPU can access Peer device cudaDeviceCanAccessPeer(&accessible, dev_x, dev_y);
- First enable Peer-to-peer communication cudaDeviceEnablePeerAccess(peer_device,0);
- Transfer data between two devices cudaMemcpy(dst, src, size, cudaMemcpyDeviceToDevice);
 - Also works if peer access is not possible or not enabled (fall back with host memory staging)

Exercise:

- Compare memcopies between two devices using:
 - Manual staging through main memory
 - Using GPUDirect Peer to Peer