基本概念:

分析方法:

难点:

电路名称	电路	关系式
反相比例 运算	$\begin{array}{c c} & i_f & R_f \\ \hline u_s & R_2 & V \\ \hline \end{array}$	$A_{\rm uf} = \frac{u_{\rm o}}{u_{\rm S}} = -\frac{R_f}{R_1}$
同相比例 运算	$\begin{array}{c c} \mathbf{i_1} & \mathbf{R_1} & \mathbf{R_f} \\ \mathbf{u_s} & \mathbf{R_2} & \mathbf{u_o} \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & $	$A_{\rm uf} = \frac{u_{\rm o}}{u_{\rm S}} = 1 + \frac{R_f}{R_1}$
加法运算	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$u_{o} = -\left(\frac{R_{f}}{R_{11}}u_{S1} + \frac{R_{f}}{R_{12}}u_{S2} + \frac{R_{f}}{R_{13}}u_{S3}\right)$
减法运算	$\begin{array}{c c} \mathbf{u}_{s_1} & \mathbf{R}_1 & \mathbf{R}_5 \\ \mathbf{u}_{s_2} & \mathbf{R}_2 & \mathbf{R}_3 \\ \mathbf{u}_{s_2} & \mathbf{R}_3 & \mathbf{u}_{s_2} \end{array}$	$u_{O} = -\frac{R_{f}}{R_{l}}u_{S1} + \frac{R_{l} + R_{f}}{R_{l}} \times \frac{R_{3}}{R_{2} + R_{3}}u_{S2}$
积分运算	$\begin{array}{c c} \mathbf{i_1} & \mathbf{C_f} \\ \mathbf{u_s} & & \\ \mathbf{R_2} & & \\ \mathbf{Y} & & \\ $	$u_{o} = -\frac{1}{R_{1}C_{f}} \int u_{S} dt$
微分运算		$u_{o} = -R_{f}C_{1}\frac{\mathrm{d}u_{S}}{\mathrm{d}t}$

一、填空题

1.运算放大器工作在线性区的分析依据是<u> $u_+=u_-$ </u>和<u> $i_+=i_.≈0$ </u>。

2.运算放大器工作在饱和区的分析依据是 $\underline{u}_+ > \underline{u}_-, \underline{u}_0 = \underline{U}_{O(sat)}$ 和 $\underline{u}_+ < \underline{u}_-, \underline{u}_0 = -\underline{U}_{O(sat)}$ 。

3.运算放大器工作在线性区的条件 引入深度负反馈 。

4.运算放大器工作在非线性区的条件 开环或引入正反馈 。

5. "虚短"是指运算放大器工作在线性区时 u+=u.

6. "虚断"是指运算放大器工作在线性区时 $i_{+}=i$ ≈0

7.反相比例运算电路中,由于 $u_+=u_{\sim}0$,所以反相输入端又称为 "虚地" 点。

8.运算放大器的输出端与同相输入端的相位关系是 同相 。

9.运算放大器的输出端与反相输入端的相位关系是 反相 。

10 反相比例运算电路的反馈类型是 并联电压负反馈 。

11.同相比例运算电路的反馈类型是 串联电压负反馈

12.集成运算放大器 $A_{uo}=10^5$,用分贝表示_____dB。

二、计算题

1. 图示反相比例运算电路,设 R_1 =3.3k Ω , R_F =680 k Ω 。试求放大倍数 A_{uf} 和平衡电阻 R_2 。若 u_i =10mV,则 u_o 为多少?

解:
$$A_{uf} = -\frac{R_f}{R_1} = -\frac{680}{3.3} = -206$$

$$R_2 = R_f // R_1 = 3.3 // 680 \approx 3.28 k\Omega$$

当 u_i =10mV 时, $u_o = A_{uf} \times u_i = -206 \times 10 = -2.06 V$

2. 图示同相比例运算电路,已知 R_1 =5k Ω , R_F =50 k Ω , R_2 =2k Ω , R_3 =18k Ω 。试求放大倍数 A_{uf} 。若 u_i =1V,则 u_o 为多少?

$$\stackrel{\text{fiff}:}{\cancel{H}} : \quad A_{uf} = \frac{R_2}{R_2 + R_3} (1 + \frac{R_F}{R_1}) = \frac{2}{2 + 18} (1 + \frac{50}{5}) = 1.1$$

 $\stackrel{\text{def}}{=} u_i = 1 \text{V} \text{ iff}, \quad u_o = A_{u_f} \times u_i = 1 \times 1.1 = 1.1 \text{V}$

3. 图示同相比例运算电路,已知 R_i =10k Ω , R_F =100k Ω 。试求放大倍数 A_{uf} 。若 u_i =10mV,则 u_o 为多少?

解:
$$A_{uf} = (1 + \frac{R_F}{R_1}) = (1 + \frac{100}{10}) = 11$$

当
$$u_i$$
=1V 时, $u_o = A_{uf} \times u_i = 11 \times 10 = 0.11 V$

4. \triangle 图示电路,试求放大倍数 A_{uf} 。若 u_i =0.3V,则 u_o 为多少?

解:设 I_1 、 I_f 电流如图所示

曲
$$u_{+}=u_{-}=0$$
 ,则 $I_{f}=\frac{u_{o}}{10}$
$$I_{1}=\frac{(2/2)u_{i}}{2+(2/2)}\div 2=\frac{1}{6}u_{i}$$

又
$$i_+=i_-=0$$
 则 $I_f=-I_1$, 故: $A_{uf}=\frac{u_o}{u_i}=-\frac{5}{3}$

当
$$u_i$$
=0.3V 时, $u_o = A_{uf} \times u_i = -\frac{5}{3} \times 0.3 = 0.5 V$

5. △图示电路,已知 R_1 =10k Ω , R_3 =15k Ω , R_4 =5k Ω 。当 u_i =0.1V 时, u_o =-1V。试求 R_F 值。

解:设 I_1 、 I_f 电流如图所示

曲
$$u_+=u_-=0$$
 ,则 $I_1=\frac{u_i}{R_1}$

$$I_f = \frac{(R_4 // R_F) u_o}{R_3 + (R_4 // R_F)} \div R_F$$

又 $i_+=i_-=0$ 则 $I_f=-I_1$

$$A_{uf} = -\left[\frac{R_3(R_4 + R_F)}{R_4 R_F} + 1\right] \frac{R_F}{R_1} = \frac{u_o}{u_i} = -\frac{1}{0.1} = -10$$

$$R_F = \frac{R_4}{R_3 + R_4} (10R_1 - R_3) = \frac{5}{15 + 5} (10 \times 10 - 15) = 21.5k\Omega$$

6. △图示电路, 已知 R_2 =10k Ω , R_3 =30k Ω 。试求 u_i =1V 时, u_0 的值。

解: 由
$$u_{-}=u_{+}=u_{i}$$
 , $\chi_{i_{+}=i_{-}=0}$ 则 $u_{-}=\frac{R_{3}}{R_{2}+R_{3}}u_{o}$

故
$$u_o = (1 + \frac{R_2}{R_3})u_i = \frac{4}{3} \times 1 \approx 1.33 V$$

7. △图示电路,已知 R_1 =11k Ω , R_F =33k Ω , U_Z =3V。(1) 试问负载电阻变化时,输出电压 U_O 有无变化;(2) 求输出电压 U_O 的范围为多少?

解:设 I_1 、 I_f 电流如图所示

由
$$u_{-}=u_{+}=0$$
 , 则 $I_{1}=\frac{U_{z}}{R_{1}}=\frac{3}{11}mA$

又
$$i_+$$
= i_- =0,则 I_f = $-I_1$, $U_o = I_f R_F = -\frac{3}{11} R_F$

故(1)负载电阻变化时,输出电压 Uo 无变化。

又 $R_{\rm F}$ 在 $0\sim33$ k Ω 变化,则(2)输出电压 $U_{\rm O}$ 的范围为 $0\sim-9$ V。

8. △图示电路, 求 u_i 和 u_o 的关系式。

解:设 I_1 、 I_2 、 I_f 电流如图所示由 $i_+=i_-=0$,则 $I_2=i_+=0$, $u_i=u_+$ 又 $u_-=u_+=u_i$,故 $I_1=0$ 故 $I_f=-I_1=0$ 故 $u_o=u_i$ 9. △图示电路,求输出电压 u_o 。

解:设
$$I_1$$
、 I_f 电流如图所示由 $u_- = u_+ = 0$
则 $I_1 = \frac{1}{10} = 0.1 \, mA$
又 $i_+ = i_- = 0$,则 $I_f = -I_1$

故:
$$u_o = -I_1 R_f = -0.1 \times 20 = -2 V$$

10. △图示电路,写出输出电流 I_o表达式。

解:设 U_o 、 I_1 电流如图所示

$$u_+ = U_s$$
, $U_o = u_-$

又 $u_- = u_+$,故 $U_0 = U_s$

又 $i_+=i_-=0$,则 $I_o=I_1$

故
$$I_o = \frac{U_s}{R}$$

10. △图示电路,写出输出电流 I_o表达式。

解:设 U_o 、 I_1 、 I_f 电流如图所示

曲
$$i_+$$
= i_- =0,则 I_f = $-I_s$, 又 u_- = u_+ =0,则 U_o = $-I_s R_2$

$$I_1 = \frac{U_o}{R_1} = -\frac{R_2}{R_1} I_s \qquad , \qquad I_o = I_1 + I_f = -(1 + \frac{R_2}{R_1}) I_s$$

11. \triangle 图示电路,写出输出电压 U_0 表达式。

解:设 I_1 、 I_f 电流如图所示

由
$$u_{-}=u_{+}$$
, $u_{+}=U_{s}$, 则 $I_{1}=-\frac{U_{s}}{R_{1}}$, 又 $i_{+}=i_{-}=0$, 则 $I_{f}=-I_{1}$

故:
$$U_o = U_s + I_f R_2 = (1 + \frac{R_2}{R_1})U_s$$

12. \triangle 利用两级运算放大器组成高输入电阻的差动放大电路如图示。求输出电压 u_0 与 u_{i1} 、 u_{i2} 的运算关系式。

解:第一级运放电路为同相比例运放电路,其输出为

$$u_{o1} = (1 + \frac{R_1/K}{R_1})u_{i1} = \frac{1+K}{K}u_{i1}$$

第二级运放电路由
$$u_{-}=u_{+}$$
, $i_{+}=i_{-}=0$ 有 $\frac{u_{i2}-u_{o1}}{R_{2}}=\frac{u_{o}-u_{i2}}{KR_{2}}$

$$u_o = (1 + K)u_{i2} - Ku_{o1} = (1 + K)(u_{i2} - u_{i1})$$

13. △图示电路中,己知: u_{i1} =30mV, u_{i2} =50mV, 求输出电压 u_0 =?

解:第一级运放电路为反相比例运放电路,其输出为

$$u_{o1} = -\frac{1}{2}u_{i1}$$
 第二级运放电路为加法运算电路,其输出为
$$u_o = -(\frac{100}{1}u_{o1} + \frac{100}{2}u_{i2}) = -50(u_{i2} - u_{i1}) = -50(50 - 30) = -1V$$