Question 1:

Id	Υ	D0	hx1(x1>6)	Hx2(x2>6.5)	D1	hx1(x1>8.5)	hx2(x2>9)
1	-	1/10	-	-	1/4e	-	-
2	-	1/10	1	+	1/4e	-	<mark>+</mark>
3	-	1/10	1	-	1/4e	•	1
4	-	1/10	<mark>+</mark>	+	e/4	-	-
5	-	1/10	1	-	1/4e	-	1
6	-	1/10	1	-	1/4e	•	1
7	+	1/10	+	+	1/4e	<mark>-</mark>	<mark>-</mark>
8	+	1/10	<mark>-</mark>	+	e/4	<mark>-</mark>	+
9	+	1/10	+	+	1/4e	+	+
10	+	1/10	+	+	1/4e		-

For round 1:

error= 2/10=0.2

alpha= ½ln(1- error / error)

 $alpha = \frac{1}{2}ln(1-0.2/0.2)$

alpha= 1

Z1 = sqrt(error(1-error))

Z1=4/10

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$D(1,1) = 1/10 e^{(-1*-1*-1)/(4/10)} = 1/4e$$

We can do similarly for D(1,i) where $1 \le i \le 10$

For round 2:

error= 3/10=0.3

alpha= ½ln(1- error / error)

alpha= $\frac{1}{2}\ln(1-0.3/0.3)$

alpha= .6115

Final Hypothesis is based on

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

Id	Υ
1	1
1 2 3 4 5 6 7	ı
3	ı
4	+
5	1
6	ı
7	+
8 9	-
	+
10	+

Question 2:

Stocastic Gradient Descent for abeight updates
In our problem we de our loss function is
cross supply.
E= 8 log - (1-8) log 9
finding gradient of loss function corret weights connecting hidden layer to act put.
DE = DE DG, DOG, - a
(1) DE 9: + 1-9: - 9: -9: DS: -9: (1-9) - (2)
2581 = 23 - 3
Substituting (1 (2) (3) equations in (6) as get gradient of Loss cort to weights connecting hidden
to output. DE = 9: 9: 9: (1-9:)2; = (5:-9:)23
DE (G; -4) Z; layer node
Jang index of output
leeyer node.

•	Computing gradient of loss Conction and to exeignts from input leger to hidden leger.
	De JE DE
	botting at each Component Separathey $\frac{\partial E}{\partial g_i} = g_i \cdot g_i \cdot \frac{\partial Sg_i}{\partial z_i} = cos_i \cdot \frac{\partial z_i}{\partial Sz_i} = x$ $\frac{\partial E}{\partial g_i} = g_i \cdot g_i \cdot \frac{\partial Sg_i}{\partial z_i} = cos_i \cdot \frac{\partial z_i}{\partial Sz_i} = x$
•	petting bock everything together
	DE = 5 (g; -y) w; (1-z;)xx. Jair i=1 g-) node in hidden lager K-> node in input lager.
	no > outpunumber of output nodes.
•	

Learning Rate	Weight initialization	Halting criteria	Validation Accuracy
0.0000063	Gaussian distribution	1000 epoch	88.56
0.000004	Gaussian distribution	1000epoch	86.85
0.0000006	Gaussian distribution	1000 epoch	83.78
0.0000063	Random initialization	1000epoch	10.53

The way I selected hyper parameters for my network is by selecting the combination of parameters that gave me the best validation accuracy. So from the above table I have decided to choose learning rate of 0.0000063, initialize weights from a Gaussian distribution and 1000 epoch of training

Plot of training vs validation

From the graph we can say that network is improving the performance as we increase the number of epochs. This plot is for 500 epochs.

The testing accuracy I get is 86.8.

Summary of Findings:

- 1. Identifying correct hyper parameters is crucial for neural network performance.
- 2. Network weights have to be initialized from a Gaussian distribution
- 3. If we initialize network weights randomly the network for some reason always guesses same label
- 4. Matrix operations have using batch learning the program runs very fast

Assignment 4 Name: Seshasai

- 5. Online learning for neural network coded on python is very very slow.
- 6. For some reason my network seems to converge at validation accuracy of 87%-89% and train accuracy of 91% and there is no improvement of accuracy beyond this point
- 7. I guess there is something wrong with how I am initializing my weights. I feel so because I think the gradient descent algorithm is finding a local minima and not global minima.