

# ระบบบันทึกบัญชีครัวเรือนจากใบเสร็จ

# Household Accounting System from Receipts

นายอดิศักดิ์ ยงปัญญา

664230034

หมู่เรียน 66/46

โครงงานนี้เป็นส่วนหนึ่งของการศึกษารายวิชา 7204903

โครงงานด้านเทคโนโลยีสารสนเทศ 2

สาขาวิชาเทคโนโลยีสารสนเทศ คณะวิทยาศาสตร์และเทคโนโลยี

มหาวิทยาลัยราชภัฏนครปฐม

ภาคเรียนที่ 1 ปีการศึกษา 2567

# บทที่ 1

## บทน้ำ

# 1.1 ความเป็นมาและความสำคัญของปัญหา

ในปัจจุบัน นักศึกษามีภาระค่าใช้จ่ายย่อยในชีวิตประจำวันจำนวนมาก ไม่ว่าจะเป็น ค่าอาหาร ค่าเดินทาง หรือของใช้จิปาถะ ซึ่งการบันทึกรายจ่ายเหล่านี้ยังคงอาศัยวิธีการดั้งเดิมคือการ จดบันทึกด้วยตนเอง วิธีการดังกล่าวสร้างภาระและใช้เวลามาก ทำให้เกิดพฤติกรรมการละเลยการจด บันทึก ส่งผลให้ข้อมูลค่าใช้จ่ายไม่ครบถ้วนและขาดความต่อเนื่อง ปัญหาเหล่านี้ทำให้การวิเคราะห์ พฤติกรรมการใช้จ่ายเพื่อวางแผนการเงินเป็นไปได้ยาก และอาจนำไปสู่การขาดวินัยทางการเงินใน ระยะยาวได้

แม้จะมีแอปพลิเคชันสำหรับบันทึกรายจ่าย แต่ส่วนใหญ่ยังคงต้องให้ผู้ใช้งานพิมพ์ข้อมูลจาก ใบเสร็จด้วยตนเอง ประกอบกับรูปแบบของใบเสร็จที่ได้รับในแต่ละวันมีความหลากหลาย ทั้งใน รูปแบบกระดาษและรูปภาพ ทำให้การจัดการข้อมูลยิ่งมีความซับซ้อนและไม่เป็นระบบ ดังนั้น การ พัฒนาระบบที่สามารถลดขั้นตอนและเพิ่มความสะดวกในการบันทึกข้อมูลจึงมีความสำคัญอย่างยิ่ง

## 1.2 แนวคิดในการแก้ไขปัญหา

เพื่อแก้ไขปัญหาการบันทึกรายจ่ายที่ยุ่งยากและไม่ต่อเนื่อง โครงงานนี้จึงมุ่งพัฒนาระบบ บันทึกบัญชีครัวเรือนโดยนำเทคโนโลยีสารสนเทศเข้ามาประยุกต์ใช้ โดยให้ผู้ใช้งานสามารถบันทึก รายจ่ายได้ง่ายและรวดเร็วเพียงแค่ถ่ายภาพใบเสร็จผ่านเว็บแอปพลิเคชัน

เทคโนโลยีหลักที่ใช้คือ การรู้จำอักขระจากภาพ (Optical Character Recognition OCR) ซึ่งจะทำหน้าที่สกัดข้อมูลสำคัญจากภาพใบเสร็จโดยอัตโนมัติ โดยโครงงานนี้ได้เลือกใช้บริการ ไอแอป เอไอ – รีซีท โอซีอาร์ (iApp AI – Receipt OCR) ซึ่งเป็นเทคโนโลยีที่ถูกออกแบบมาสำหรับ ประมวลผลใบเสร็จภาษาไทยโดยเฉพาะ ทำให้สามารถดึงข้อมูล เช่น ชื่อร้านค้า วันที่ และยอดรวม ได้ อย่างแม่นยำ หลังจากนั้น ระบบจะทำการประมวลผลข้อมูล เช่น การแปลงรูปแบบวันที่ และเปิด โอกาสให้ผู้ใช้ตรวจสอบ แก้ไข และเลือกหมวดหมู่ของรายจ่ายได้ สุดท้ายข้อมูลทั้งหมดจะถูกจัดเก็บลง

ฐานข้อมูลและแสดงผลสรุปผ่านแดชบอร์ดและกราฟ เพื่อให้ผู้ใช้สามารถวิเคราะห์พฤติกรรมการใช้ จ่ายของตนเองได้อย่างมีประสิทธิภาพ

# 1.3 วัตถุประสงค์ของระบบ

- 1.3.1 เพื่อพัฒนาระบบบันทึกรายจ่ายที่สามารถดึงข้อมูลจากภาพใบเสร็จโดยอัตโนมัติ โดย อาศัยเทคโนโลยี ไอแอป เอไอ รีซีท โอซีอาร์ (iApp AI Receipt OCR) เพื่อลดภาระการพิมพ์ ข้อมูลด้วยตนเอง
- 1.3.2 เพื่อออกแบบกระบวนการประมวลผลข้อมูลหลังจากการทำโอซีอาร์ (Post-OCR Processing) สำหรับตรวจสอบความถูกต้องเบื้องต้นและแปลงรูปแบบข้อมูล เช่น รูปแบบวันที่ ให้ พร้อมสำหรับการจัดเก็บ
- 1.3.3 เพื่อพัฒนาระบบฐานข้อมูลสำหรับจัดเก็บรายจ่าย และสร้างแดชบอร์ดสรุปผลที่ สามารถแสดงข้อมูลตามช่วงเวลาที่กำหนดได้

#### 1.4 ขอบเขตการศึกษา

#### 1.4.1 ขอบเขตของระบบ

- 1.4.1.1 ผู้ดูแลระบบ
  - ก) จัดการและควบคุมฐานข้อมูล MySQL ที่จัดเก็บข้อมูลผู้ใช้และข้อมูลรายจ่าย
  - ข) ตรวจสอบและดูแลการทำงานของเซิร์ฟเวอร์และบริการที่เกี่ยวข้อง
- 1.4.1.2 ผู้ใช้งานระบบ
  - ก) ผู้ใช้ทั่วไปสามารถสมัครสมาชิกและเข้าสู่ระบบเพื่อจัดการข้อมูลส่วนตัวได้
- ข) สามารถบันทึกรายจ่ายได้ 2 วิธี คือ การกรอกข้อมูลด้วยตนเอง และการ อัปโหลดหรือถ่ายภาพใบเสร็จเพื่อให้ระบบสกัดข้อมูลอัตโนมัติ
  - ค) สามารถตรวจสอบ แก้ไข และลบข้อมูลรายจ่ายของตนเองได้
  - ง) สามารถดูสรุปผลรายจ่ายผ่านหน้าแดชบอร์ดในรูปแบบกราฟได้

#### 1.4.2 ฮาร์ดแวร์ที่ใช้ในการพัฒนา

1.4.2.1 โน้ตบุ๊ก เอชพี (HP) รุ่นซีพียู อินเทล คอร์ ไอไฟว์ เจน 12 แรม 16 กิก พื้นที่ จัดเก็บ เอสเอสดี 512 กิก (12th Gen Intel® Core™ i5-12450H) ใช้เป็นเครื่องหลักสำหรับการ พัฒนาและทดสอบระบบ 1.4.2.2 สมาร์ทโฟน ซัมซุง กาแล็กซี่ เอ็ม ทเวนตี้-ทรี ไฟว์จี (Samsung Galaxy M25 5G) สำหรับทดสอบการถ่ายภาพใบเสร็จ

#### 1 4 3 ซอฟต์แวร์ที่ใช้ในการพัฒนา

- 1.4.3.1 ระบบปฏิบัติการ ไมโครซอฟต์ วินโดวส์ 11 (Microsoft Windows 11) ใช้ เป็นระบบปฏิบัติการหลักสำหรับการพัฒนา
- 1.4.3.2 วิชวล สตูดิโอ โค้ด (Visual Studio Code) ใช้เป็นเครื่องมือหลักในการ เขียนและแก้ไขโค้ด
- 1.4.3.3 เอชทีเอ็มแอล5 (HTML5) ซีเอสเอส3 (CSS3) จาวาสคริปต์ (JavaScript) ใช้ สำหรับการสร้างและออกแบบส่วนติดต่อกับผู้ใช้
- 1.4.3.4 โน้ดเจเอส (Node.js) ใช้เป็นสภาพแวดล้อม (Runtime) สำหรับการรันโค้ด ฝั่งเซิร์ฟเวอร์
- 1.4.3.5 เอ็กซ์เพรสเจเอส (Express.js) ใช้เป็นเฟรมเวิร์กสำหรับสร้างเว็บเซิร์ฟเวอร์ และจัดการ API
  - 1.4.3.6 มายเอสคิวแอล (MySQL) ใช้เป็นระบบจัดการฐานข้อมูลหลัก
- 1.4.3.7 ด็อกเกอร์ (Docker) ใช้สำหรับจำลองสภาพแวดล้อมและรันฐานข้อมูล MySQL
- 1.4.3.8 พีเอชพีมายแอดมิน (phpMyAdmin) ใช้เป็นเครื่องมือสำหรับบริหารจัดการ ฐานข้อมูล MySQL ผ่านหน้าเว็บ
- 1.4.3.9 โพสต์แมน (Postman) ใช้เป็นเครื่องมือสำหรับทดสอบและดีบักเอพีโอ (API) ของระบบ เพื่อตรวจสอบการทำงานของฝั่งเซิร์ฟเวอร์

## 1.4.4 ไลบรารีและแพ็กเกจที่ใช้ในการพัฒนา

- 1.4.4.1 มายเอสคิวแอล2 (MySQL2) ใช้เป็นไดรเวอร์สำหรับเชื่อมต่อแอปพลิเคชัน Node.js กับฐานข้อมูล MySQL
- 1.4.4.2 บีคริปต์ (bcrypt) ใช้เป็นไลบรารีสำหรับเข้ารหัสรหัสผ่านของผู้ใช้งานเพื่อ ความปลอดภัย
- 1.4.4.3 เอ็กซ์เพรส-เซสซัน (express-session) ใช้เป็นมิดเดิลแวร์สำหรับจัดการเซส ซัน (Session) การเข้าสู่ระบบของผู้ใช้
- 1.4.4.4 มัลเตอร์ (Multer) ใช้เป็นมิดเดิลแวร์สำหรับจัดการการอัปโหลดไฟล์รูปภาพ ใบเสร็จ

- 1.4.4.5 แอกซิออส (axios) ใช้สำหรับสร้างและส่งคำขอ HTTP เพื่อเชื่อมต่อกับ บริการภายนอก
- 1.4.4.6 ชาร์ตเจเอส (Chart.js) ใช้เป็นไลบรารีสำหรับสร้างกราฟและแดชบอร์ดเพื่อ แสดงผลสรุปรายจ่าย
- 1.4.4.7 สวีทอะเลิร์ททู (SweetAlert2) ใช้สำหรับสร้างหน้าต่างแจ้งเตือนผู้ใช้ (Popup) ให้สวยงาม

#### 1.4.5 บริการแบบคลาวด์ที่ใช้ในการพัฒนา

- 1.4.5.1 ไอแอป เอไอ รีซีท โอซีอาร์ (iApp AI Receipt OCR) บริการแบบ คลาวด์สำหรับสกัดข้อมูลจากรูปภาพใบเสร็จ
- 1.4.5.2 เอ็นเอทเอ็น (n8n) บริการแบบคลาวด์สำหรับสร้างกระบวนการทำงาน อัตโนมัติ
- 1.4.5.3 ไฟร์เบส (Firebase) บริการแบบคลาวด์สำหรับใช้เป็นสภาพแวดล้อมในการ พัฒนา (IDX) และโฮสต์เว็บแอปพลิเคชัน
- 1.4.5.4 กิตฮับ (GitHub) บริการแบบคลาวด์สำหรับใช้ในการจัดเก็บและควบคุม เวอร์ชันของซอร์สโค้ด

# 1.5 ประโยชน์ที่ได้คาดว่าจะได้รับ

- 1.5.1 ลดขั้นตอนในการจดบันทึก ทำให้สามารถ "บันทึกได้อย่างต่อเนื่อง"
- 1.5.2 เพิ่มความครบถ้วนและความถูกต้องของข้อมูลจากใบเสร็จร้านค้าในชีวิตจริง
- 1.5.3 สนับสนุนวินัยทางการเงิน เห็นแนวโน้มและหมวดค่าใช้จ่ายที่ควรปรับลดชัดเจน

## 1.6 คำนิยาม

- 1.6.1 โอซีอาร์ (OCR Optical Character Recognition) หมายถึง เทคโนโลยีการรู้จำ อักขระจากภาพ เป็นกระบวนการที่ใช้ซอฟต์แวร์วิเคราะห์รูปภาพเพื่อแปลงตัวอักษรที่อยู่ในภาพให้อยู่ ในรูปแบบของข้อความที่คอมพิวเตอร์สามารถนำไปประมวลผลต่อได้
- 1.6.2 เวิร์กโฟลว์ ออโตเมชัน (Workflow Automation) หมายถึง การสร้างกระบวนการ ทำงานแบบอัตโนมัติ โดยกำหนดขั้นตอนการรับ-ส่ง และประมวลผลข้อมูลระหว่างซอฟต์แวร์หรือ บริการต่างๆ ให้ทำงานต่อเนื่องกันได้เองโดยไม่ต้องมีผู้ใช้งานเข้ามาควบคุมในทุกขั้นตอน

- 1.6.3 ฟรอนต์เอนด์ (Frontend) หมายถึง ส่วนประกอบของเว็บแอปพลิเคชันที่ผู้ใช้งาน สามารถมองเห็นและโต้ตอบด้วยได้โดยตรงผ่านเว็บเบราว์เซอร์ ทำหน้าที่รับข้อมูลจากผู้ใช้และ แสดงผลข้อมูล
- 1.6.4 แบ็กเอนด์ (Backend) หมายถึง ส่วนประกอบของเว็บแอปพลิเคชันที่ทำงานอยู่บน เครื่องเซิร์ฟเวอร์ ทำหน้าที่ประมวลผลคำสั่ง จัดการตรรกะทางธุรกิจ และเชื่อมต่อกับฐานข้อมูล ซึ่ง ผู้ใช้งานไม่สามารถมองเห็นส่วนนี้ได้โดยตรง
- 1.6.5 เอพีไอ (API Application Programming Interface) หมายถึง ช่องทางหรือ ชุดคำสั่งที่ซอฟต์แวร์ใช้ในการสื่อสารและแลกเปลี่ยนข้อมูลระหว่างกัน เช่น การที่ส่วนแบ็กเอนด์ (Backend) ส่งคำขอข้อมูลไปยังบริการโอซีอาร์ (OCR)
- 1.6.6 ฐานข้อมูล (Database) หมายถึง แหล่งที่ใช้สำหรับจัดเก็บข้อมูลอย่างเป็นระบบและ มีโครงสร้าง เพื่อให้สามารถเรียกใช้ แก้ไข และจัดการข้อมูลได้อย่างมีประสิทธิภาพ
- 1.6.7 แดชบอร์ด (Dashboard) หมายถึง หน้าจอที่แสดงผลสรุปข้อมูลภาพรวมในรูปแบบที่ เข้าใจง่าย โดยมักใช้กราฟ แผนภูมิ หรือตาราง เพื่อช่วยให้ผู้ใช้สามารถวิเคราะห์ข้อมูลได้อย่างรวดเร็ว
- 1.6.8 เจซัน (JSON JavaScript Object Notation) หมายถึง รูปแบบมาตรฐานในการ จัดเก็บและแลกเปลี่ยนข้อมูลในรูปแบบข้อความที่คอมพิวเตอร์สามารถอ่านและประมวลผลได้ง่าย มัก ใช้ในการส่งข้อมูลระหว่างเอพีไอ (API)
- 1.6.9 มิดเดิลแวร์ (Middleware) หมายถึง ฟังก์ชันหรือซอฟต์แวร์ที่ทำงานอยู่ตรงกลาง ระหว่างคำขอ (Request) และการตอบกลับ (Response) ในฝั่งเซิร์ฟเวอร์ ทำหน้าที่ประมวลผล บางอย่างก่อนที่คำขอจะถูกส่งไปจัดการในขั้นตอนสุดท้าย เช่น การตรวจสอบสิทธิ์ การจัดการเซสชัน หรือการจัดการไฟล์อัปโหลด

# บทที่ 2

# หลักการและทฤษฎีที่เกี่ยวข้อง

ในการพัฒนาระบบบันทึกบัญชีครัวเรือนจากใบเสร็จ ผู้พัฒนาได้ศึกษาหลักการ ทฤษฎี และ เทคโนโลยีที่เกี่ยวข้องหลายส่วน เพื่อนำมาประยุกต์ใช้ในการสร้างระบบให้สามารถทำงานได้อย่างมี ประสิทธิภาพ ตั้งแต่การจัดการหน้าเว็บสำหรับผู้ใช้งาน การประมวลผลภาพใบเสร็จด้วยเทคโนโลยี รู้จำอักขระ การสร้างกระบวนการทำงานอัตโนมัติ การจัดการฐานข้อมูล ไปจนถึงการแสดงผลข้อมูล สรุปค่าใช้จ่าย ซึ่งมีรายละเอียดดังต่อไปนี้

#### 2.1 ระบบงานเดิม

ระบบงานเดิมที่ใช้ในการบันทึกรายจ่ายส่วนบุคคลโดยทั่วไปมักเป็นการจดบันทึกด้วยตนเอง เช่น การเขียนลงสมุดบันทึก หรือการพิมพ์ข้อมูลลงในแอปพลิเคชันและโปรแกรมสเปรดชีต (Spreadsheet) ซึ่งทำให้เกิดข้อจำกัดหลายประการ ได้แก่ ข้อมูลอาจสูญหาย ค้นหาได้ยาก ขาดความ ต่อเนื่องในการบันทึก และไม่สามารถนำข้อมูลมาวิเคราะห์ผลได้อย่างสะดวก ส่งผลให้ผู้ใช้งานอาจ พลาดการติดตามพฤติกรรมการใช้จ่ายที่สำคัญ ดังนั้น การพัฒนาระบบใหม่ที่นำเทคโนโลยีมา ประยุกต์ใช้เพื่อลดขั้นตอนและเพิ่มความถูกต้องแม่นยำ จึงเป็นแนวทางที่ช่วยแก้ปัญหาดังกล่าวและ เพิ่มความสะดวกสบายให้กับผู้ใช้งาน

## 2.2 ระบบงานอื่นที่เกี่ยวข้อง

กฤษดา กลิ่นจันทร์ และ สุพัตรา ฤทธิ์บำรุง (2561) ได้นำเสนอโครงงานวิจัยเรื่อง "การ พัฒนาแอปพลิเคชันบัญชีรายรับ-รายจ่าย บนระบบปฏิบัติการแอนดรอยด์" โดยมีวัตถุประสงค์เพื่อ สร้างเครื่องมือที่ช่วยในการวางแผนการใช้จ่ายและส่งเสริมการออม แอปพลิเคชันที่พัฒนาขึ้นนี้ทำงาน บนระบบปฏิบัติการแอนดรอยด์ ถูกออกแบบมาให้ใช้งานง่าย ไม่ซับซ้อน ผู้ใช้สามารถบันทึกข้อมูล รายรับ-รายจ่ายด้วยตนเอง และระบบสามารถแสดงผลสรุปยอดคงเหลือและรายงานในรูปแบบกราฟ ได้ ผลการประเมินคุณภาพโดยผู้เชี่ยวชาญและการประเมินความพึงพอใจโดยผู้ใช้งานจริง พบว่าแอป พลิเคชันมีคุณภาพและสร้างความพึงพอใจอยู่ในระดับดีมาก ซึ่งแสดงให้เห็นถึงความต้องการแอป พลิเคชันที่ช่วยจัดการการเงินส่วนบุคคลที่ใช้งานง่ายและมีประสิทธิภาพ2.3 องค์ความรู้ที่เกี่ยวข้อง

ธีรพงศ์ ธนเจริญพาณิชย์ และคณะ (2567) ได้นำเสนอโครงงานวิจัยเรื่อง "การศึกษา ประสิทธิภาพของเทสเซอร์แรค โอซีอาร์ สำหรับการประมวลผลภาพใบเสร็จธุรกรรมทางการเงิน" โดย มีวัตถุประสงค์เพื่อเพิ่มความแม่นยำในการรู้จำข้อมูลสำคัญจากรูปภาพใบเสร็จการโอนเงิน งานวิจัยนี้ ได้ศึกษาและเปรียบเทียบเทคนิคการประมวลผลภาพ (Image Processing) หลายรูปแบบ เช่น การ ปรับความคมชัด (Contrast) และการใช้เทคนิค Sauvola Threshold ก่อนนำภาพเข้าสู่เอนจินเทส เซอร์แรค โอซีอาร์ (Tesseract OCR) ผลการศึกษาพบว่าการเตรียมภาพที่เหมาะสมสามารถเพิ่ม ประสิทธิภาพและความแม่นยำในการรู้จำตัวอักษรได้อย่างมีนัยสำคัญ โดยมีความแม่นยำ (Accuracy) สูงถึง 81.03% ซึ่งแสดงให้เห็นถึงความสำคัญของการประมวลผลภาพเบื้องต้นในการพัฒนาระบบโอซี อาร์ (OCR)

# 2.3 องค์ความรู้ที่เกี่ยวข้อง

#### 2.3.1 ไมโครซอฟท์ วินโดวส์ 11 (Microsoft Windows 11)

โครงงานนี้พัฒนาขึ้นบนระบบปฏิบัติการไมโครซอฟท์ วินโดวส์ 11 เนื่องจากเป็น ระบบปฏิบัติการที่มีเสถียรภาพสูง รองรับซอฟต์แวร์และเครื่องมือพัฒนาที่หลากหลาย อีกทั้งยังมี ระบบการจัดการไฟล์และการรักษาความปลอดภัยที่เหมาะสมต่อการพัฒนาและทดสอบเว็บแอป พลิเคชัน ทำให้ผู้พัฒนาสามารถใช้งานเครื่องมือทั้งฝั่งเซิร์ฟเวอร์และฝั่งไคลเอนต์ได้ภายใน สภาพแวดล้อมเดียวกัน



#### ภาพที่ 2.1 ไมโครซอฟท์ วินโดวส์ 11

ที่มา https://commons.wikimedia.org/wiki/FileWindows\_11\_logo.svg

## 2.3.2 ไอแอป เอไอ – รีซีท โอซีอาร์ (iApp AI – Receipt OCR)

เป็นบริการรู้จำอักขระจากภาพ (Optical Character Recognition) ที่ถูกพัฒนาขึ้น เพื่อสกัดข้อมูลจากใบเสร็จภาษาไทยโดยเฉพาะ ในโครงงานนี้ เทคโนโลยีดังกล่าวถูกนำมาใช้เป็น เครื่องมือหลักในการแปลงข้อมูลจากภาพถ่ายใบเสร็จให้อยู่ในรูปแบบข้อความที่มีโครงสร้าง เช่น ชื่อ ร้านค้า วันที่ และยอดรวม ซึ่งช่วยลดขั้นตอนการพิมพ์ข้อมูลด้วยตนเองและเพิ่มความถูกต้องของ ข้อมูล

## 2.3.3 เทคโนโลยีรู้จำอักขระทางเลือก (Alternative OCR Technologies)

ในการพัฒนาโครงงาน ได้มีการศึกษาเทคโนโลยีรู้จำอักขระอื่นๆ เพื่อเปรียบเทียบ ประสิทธิภาพและความเหมาะสมในการใช้งานกับใบเสร็จภาษาไทย ซึ่งประกอบด้วย

## 2.3.3.1 โอซีอาร์ดอทสเปซ (ocr.space)

เป็นบริการโอซีอาร์ (OCR) ออนไลน์ที่ให้บริการผ่านเอพีไอ (API) มีจุดเด่นที่ ใช้งานง่ายและรองรับการแปลงภาพเป็นข้อความได้อย่างรวดเร็ว เหมาะสำหรับงานสกัดข้อความ ทั่วไป แต่ความแม่นยำในการตีความโครงสร้างของใบเสร็จอาจไม่เฉพาะทางเท่าบริการที่ถูกออกแบบ มาโดยเฉพาะ

#### 2.3.3.2 เทสเซอร์แรค โอซีอาร์ (Tesseract OCR)

เป็นเอนจินโอซีอาร์ (OCR) แบบโอเพนซอร์ส (Open Source) ที่พัฒนาโดยกู เกิล (Google) ได้รับความนิยมอย่างสูงและรองรับภาษาไทย อย่างไรก็ตาม การนำมาใช้งานเพื่อให้ได้ ความแม่นยำสูงกับใบเสร็จที่มีรูปแบบหลากหลาย มักจำเป็นต้องมีกระบวนการประมวลผลภาพ เบื้องต้น (Image Pre-processing) เพิ่มเติม

## 2.3.3.3 โดนัท (Donut - Document Understanding Transformer)

เป็นโมเดลปัญญาประดิษฐ์ที่ใช้วิธีการแบบทรานส์ฟอร์มเมอร์ (Transformer) ซึ่งสามารถทำความเข้าใจโครงสร้างของเอกสารได้โดยตรงโดยไม่ต้องพึ่งพาเอนจินโอซีอาร์ (OCR) แบบดั้งเดิม จัดเป็นเทคโนโลยีที่ทันสมัยและมีศักยภาพสูงในการตีความเอกสารที่มีโครงสร้างซับซ้อน เช่น ใบเสร็จ

# 2.3.3.4 อีซี่ โอซีอาร์ (Easy OCR)

เป็นไลบรารีภาษาไพทอน (Python) ที่ได้รับความนิยมสำหรับการทำโอซี อาร์ (OCR) มีจุดเด่นที่ติดตั้งและใช้งานง่าย รองรับภาษาไทย และเป็นทางเลือกที่ดีสำหรับนักพัฒนาที่ ต้องการสร้างระบบ OCR ด้วยตนเอง

#### 2.3.3.5 แพดเดิล โอซีอาร์ (Paddle OCR)

เป็นชุดเครื่องมือโอซีอาร์ (OCR) แบบโอเพนซอร์สที่พัฒนาโดยไป่ตู้ (Baidu) มีจุดเด่นด้านความแม่นยำสูงและรองรับได้หลายภาษา รวมถึงภาษาไทย เป็นอีกหนึ่งทางเลือกที่มี ประสิทธิภาพสูงสำหรับการพัฒนาโปรแกรมรู้จำอักขระ

#### 2.3.4 เอ็นเอทเอ็น (n8n)

เป็นเวิร์คโฟลว์ออโตเมชั่นทูล (Workflow Automation Tool) ที่ใช้สร้าง กระบวนการทำงานแบบอัตโนมัติ ในโครงงานนี้ทำหน้าที่เป็นตัวกลางเชื่อมต่อระหว่างระบบต่างๆ โดย จะรับข้อมูลภาพใบเสร็จจากผู้ใช้ ส่งต่อไปยังบริการ ไอแอป เอไอ – รีซีท โอซีอาร์ รับผลลัพธ์ที่ได้ กลับมาประมวลผล



ภาพที่ 2.2 เอ็นเอทเอ็น

ที่มา https://n8n.io/brandguidelines/

## 2.3.5 โน้ดเจเอส (Node.js)

เป็นจาวาสคริปต์รันไทม์ (JavaScript runtime) ที่ใช้สำหรับรันโค้ดจาวาสคริปต์ฝั่ง เซิร์ฟเวอร์ ช่วยให้สามารถพัฒนาเว็บแอปพลิเคชันส่วนหลังบ้าน (Backend) ได้อย่างมีประสิทธิภาพ ในโครงงานนี้ โน้ดเจเอสถูกนำมาใช้เพื่อสร้างเซิร์ฟเวอร์ จัดการคำขอ (Request) จากผู้ใช้ และ เชื่อมต่อกับฐานข้อมูล



ภาพที่ 2.3 โหนดเจเอส

ที่มา https://nodejs.org/en/about/branding#nodejs-logo

## 2.3.6 เอ็กซ์เพรสเจเอส (Express.js)

เป็นเว็บแอปพลิเคชันเฟรมเวิร์ก (Web application framework) สำหรับโน้ดเจ เอส (Node.js) ที่ช่วยลดความซับซ้อนในการสร้างเว็บเซิร์ฟเวอร์และ API ในโครงงานนี้ถูกนำมาใช้ เพื่อจัดการเส้นทาง (Routing) การจัดการมิดเดิลแวร์ (Middleware) เช่น การรับไฟล์อัปโหลด และ การจัดการเซสชันของผู้ใช้งาน

#### 2.3.7 มายเอสคิวแอล (MySQL)

เป็นระบบจัดการฐานข้อมูลเชิงสัมพันธ์ (Relational Database Management System) ที่ใช้สำหรับจัดเก็บข้อมูลอย่างเป็นระบบ ในโครงงานนี้มายเอสคิวแอลถูกใช้เพื่อเก็บข้อมูลที่ สกัดได้จากใบเสร็จ เช่น รายละเอียดค่าใช้จ่าย วันที่ ยอดรวม และข้อมูลที่เกี่ยวข้องกับผู้ใช้งาน



#### ภาพที่ 2.4 มายเอสคิวแอล

ทีมา https://commons.wikimedia.org/wiki/FileMySQL\_textlogo.svg

## 2.3.8 ด็อกเกอร์ (Docker)

เป็นแพลตฟอร์มสำหรับจำลองสภาพแวดล้อม (Containerization) ที่ช่วยให้ นักพัฒนาสามารถสร้างและใช้งานแอปพลิเคชันในสภาพแวดล้อมที่แยกออกจากกันได้ ในโครงงานนี้ด็ อกเกอร์ถูกนำมาใช้เพื่อรันฐานข้อมูลมายเอสคิวแอล (MySQL) และพีเอชพีมายแอดมิน (phpMyAdmin) ทำให้การติดตั้งและจัดการฐานข้อมูลมีความสะดวกและสอดคล้องกัน



#### ภาพที่ 2.5 ด็อกเกอร์

ที่มา https://www.docker.com/company/newsroom/media-resources/

#### 2.3.9 กิตฮับ (GitHub)

เป็นบริการสำหรับจัดเก็บซอร์สโค้ดและควบคุมเวอร์ชัน (Version Control) ของ โปรเจกต์โดยใช้ระบบกิต (Git) ทำให้ผู้พัฒนาสามารถติดตามการเปลี่ยนแปลงของโค้ด ทำงานร่วมกับ ผู้อื่น และย้อนกลับไปยังเวอร์ชันก่อนหน้าได้ ซึ่งเป็นเครื่องมือสำคัญในการจัดการและสำรองข้อมูล โค้ดของโครงงานนี้



ภาพที่ 2.6 กิตฮับ

ที่มา https://commons.wikimedia.org/wiki/FileGitHub Invertocat Logo.svg

## 2.3.10 พีเอชพีมายแอดมิน (phpMyAdmin)

เป็นเครื่องมือสำหรับบริหารจัดการฐานข้อมูลมายเอสคิวแอล (MySQL) ผ่านหน้า เว็บอินเทอร์เฟซ ช่วยให้นักพัฒนาสามารถดูข้อมูล สร้างตาราง และจัดการฐานข้อมูลได้โดยง่ายโดยไม่ ต้องใช้คำสั่งที่ซับซ้อน



ภาพที่ 2.7 พีเอชพีมายแอดมิน

ที่มา https://commons.wikimedia.org/wiki/FilePhpMyAdmin\_logo.svg

#### 2.3.11 โพสต์แมน (Postman)

เป็นแพลตฟอร์มสำหรับพัฒนาและทดสอบเอพีไอ (API) ที่ได้รับความนิยมอย่าง แพร่หลาย โดยมีเครื่องมือที่ช่วยให้นักพัฒนาสามารถสร้างและส่งคำขอเอชทีทีพี (HTTP Request) ไปยังเซิร์ฟเวอร์ ดูผลลัพธ์การตอบกลับ (Response) และดีบักข้อผิดพลาดได้อย่างสะดวกและรวดเร็ว ในโครงงานนี้ โพสต์แมนถูกใช้เป็นเครื่องมือสำคัญในการทดสอบการทำงานของเอพีไอ (API) ฝั่ง เซิร์ฟเวอร์ เพื่อให้แน่ใจว่าฟังก์ชันต่างๆ เช่น การสมัครสมาชิก การเข้าสู่ระบบ และการอัปโหลดไฟล์ สามารถทำงานได้อย่างถูกต้องตามที่ออกแบบไว้



#### ภาพที่ 2.8 โพสต์แมน

ที่มา: https:://www.postman.com/company/press-media/

## 2.3.12 เอชทีเอ็มแอล (HTML)

เป็นภาษาเครื่องหมาย (Markup language) สำหรับสร้างโครงสร้างของหน้าเว็บ ใน โครงงานนี้ใช้เพื่อกำหนดโครงสร้างของหน้าเว็บแอปพลิเคชัน เช่น ฟอร์มอัปโหลดใบเสร็จ และหน้า แดชบอร์ดแสดงผลรายจ่าย



ที่มา https://www.w3.org/html/logo/

#### 2.3.13 ซีเอสเอส (CSS)

เป็นภาษาสำหรับจัดรูปแบบการแสดงผล (Cascading Style Sheets) ใช้ เพื่อ ควบคุมการจัดวาง สีสัน และการตกแต่งองค์ประกอบต่างๆ ของหน้าเว็บที่สร้างด้วยเอชทีเอ็มแอล (HTML) ช่วยให้ส่วนติดต่อผู้ใช้มีความสวยงามและเป็นมิตรต่อการใช้งาน



ที่มา https://commons.wikimedia.org/wiki/FileOfficial CSS Logo.svg

## 2.3.14 จาวาสคริปต์ (JavaScript)

เป็นภาษาสคริปต์ที่ใช้เขียนฟังก์ชันและตรรกะการทำงานบนหน้าเว็บ ในโปรเจกต์นี้ จาวาสคริปต์ถูกนำมาใช้เพื่อจัดการการโต้ตอบกับผู้ใช้ ตรวจสอบข้อมูลในฟอร์ม ส่งข้อมูลไปยัง เซิร์ฟเวอร์ผ่านเอพีไอ (API) และแสดงผลข้อมูลบนแดชบอร์ด เช่น การสร้างกราฟรายจ่าย



ภาพที่ 2.11 จาวาสคริปต์

ที่มา https://commons.wikimedia.org/wiki/FileJavaScript-logo.png

## 2.3.15 มัลเตอร์ (Multer)

เป็นมิดเดิลแวร์ (Middleware) ของโน้ดเจเอส ที่ใช้สำหรับจัดการการอัปโหลดไฟล์ (File upload handling) ในโครงงานนี้มีหน้าที่รับไฟล์รูปภาพใบเสร็จที่ผู้ใช้งานส่งเข้ามาผ่านฟอร์ม บนหน้าเว็บ เพื่อนำไปประมวลผลต่อ

#### 2.3.16 แอกซิออส (axios)

เป็นไลบรารีสำหรับสร้างและส่งคำขอเอชทีทีพี (HTTP client) จากฝั่งเซิร์ฟเวอร์ ใน โครงงานนี้ใช้สำหรับส่งข้อมูลรูปภาพใบเสร็จจากเซิร์ฟเวอร์ที่พัฒนาด้วยโน้ดเจเอสไปยัง เว็บฮุก (Webhook) ของ n8n เพื่อเริ่มต้นกระบวนการทำงานอัตโนมัติ

#### 2.3.16 ชาร์ตเจเอส (Chart.js)

เป็นไลบรารีจาวาสคริปต์ที่ใช้สำหรับสร้างกราฟและแผนภูมิที่สวยงามและสามารถ โต้ตอบได้ ในโครงงานนี้นำมาใช้เพื่อแสดงข้อมูลสรุปค่าใช้จ่ายในรูปแบบของกราฟบนหน้าแดชบอร์ด ทำให้ผู้ใช้เห็นภาพรวมการใช้จ่ายได้ง่ายขึ้น

# 2.3.17 สวีทอะเลิร์ททู (SweetAlert2)

เป็นไลบรารีสำหรับสร้างหน้าต่างแจ้งเตือน (Alert/Modal) ที่สวยงามและปรับแต่ง ได้ง่าย ใช้เพื่อเพิ่มประสบการณ์ที่ดีให้กับผู้ใช้ เช่น การแจ้งเตือนเมื่ออัปโหลดไฟล์สำเร็จ หรือเมื่อเกิด ข้อผิดพลาดในการบันทึกข้อมูล

# บทที่ 3

## วิธีการดำเนินงาน

การวิเคราะห์และออกแบบระบบบันทึกบัญชีครัวเรือนจากใบเสร็จได้ถูกดำเนินการอย่าง เป็นขั้นตอนเพื่อให้ระบบสามารถทำงานได้อย่างมีประสิทธิภาพ ซึ่งมีรายละเอียดในการดำเนินงาน ดังต่อไปนี้

# 3.1 การศึกษาเบื้องต้น

จากการศึกษาข้อมูลเบื้องต้นพบว่า การบันทึกรายจ่ายในปัจจุบันยังมีข้อจำกัด ซึ่งสามารถ เปรียบเทียบระหว่างระบบงานเดิมและระบบงานใหม่ได้ดังนี้

- 3.1.1 ระบบงานเดิม ผู้ใช้ส่วนใหญ่มักบันทึกรายจ่ายด้วยตนเอง ไม่ว่าจะเป็นการจดลง สมุด หรือการพิมพ์ข้อมูลลงในแอปพลิเคชัน ซึ่งกระบวนการดังกล่าวใช้เวลามาก มีโอกาสเกิดความ ผิดพลาดจากการพิมพ์ และมักทำให้การบันทึกขาดความต่อเนื่อง ส่งผลให้ข้อมูลไม่สมบูรณ์และยาก ต่อการนำไปวิเคราะห์ผล
- 3.1.2 ระบบงานใหม่ ระบบใหม่ที่พัฒนาขึ้นจะช่วยลดขั้นตอนและความยุ่งยากในการ บันที่ข้อมูล โดยผู้ใช้เพียงแค่อัปโหลดภาพถ่ายใบเสร็จ จากนั้นระบบจะใช้เทคโนโลยีโอซีอาร์ (OCR) ในการสกัดข้อมูลโดยอัตโนมัติ ผู้ใช้มีหน้าที่ตรวจสอบความถูกต้องและยืนยันการบันทึก ทำให้การเก็บ ข้อมูลรายจ่ายมีความสะดวก รวดเร็ว และครบถ้วนมากยิ่งขึ้น

## 3.2 การกำหนดความต้องการของระบบ

เพื่อให้การพัฒนาระบบเป็นไปตามเป้าหมาย ได้มีการกำหนดความต้องการของระบบใน ด้านต่างๆ ดังนี้

#### 3.2.1 ขอบเขตของระบบ

3.2.1.1 ผู้ดูแลระบบ สามารถจัดการฐานข้อมูลของผู้ใช้งานและข้อมูลรายจ่าย ทั้งหมดในระบบได้ 3.2.1.2 ผู้ใช้งานระบบ สามารถลงทะเบียนเข้าใช้งาน อัปโหลดภาพใบเสร็จเพื่อให้ ระบบสกัดข้อมูล แก้ไขข้อมูลก่อนบันทึก และดูสรุปรายจ่ายของตนเองผ่านหน้าแดชบอร์ดและกราฟ ได้

## 3.2.2 ฮาร์ดแวร์ที่ใช้กับระบบงาน

- 3.2.2.1 ฝั่งผู้พัฒนา ใช้เครื่องคอมพิวเตอร์โน้ตบุ๊กสำหรับการเขียนโปรแกรมและ ทดสอบระบบ และใช้สมาร์ทโฟนสำหรับทดสอบการถ่ายและอัปโหลดภาพใบเสร็จ
- 3.2.2.2 ฝั่งผู้ใช้งาน สามารถใช้งานระบบผ่านเว็บเบราว์เซอร์บนอุปกรณ์คอมพิวเตอร์ หรือสมาร์ทโฟนที่เชื่อมต่ออินเทอร์เน็ตได้

#### 3.2.3 ซอฟต์แวร์ที่ใช้กับระบบงาน

ระบบถูกพัฒนาขึ้นโดยใช้เทคโนโลยีหลายส่วนประกอบกัน โดยมี โน้ดเจเอส (Node.js) และ เอ็กซ์เพรส (Express) เป็นแกนหลักในการทำงานฝั่งเซิร์ฟเวอร์ มายเอสคิวแอล (MySQL) เป็นระบบจัดการฐานข้อมูล เอ็นเอทเอ็น (n8n) เป็นเครื่องมือจัดการกระบวนการทำงาน อัตโนมัติเพื่อเชื่อมต่อกับบริการ โอซีอาร์ (OCR) และในส่วนหน้าบ้านใช้ เอชทีเอ็มแอล (HTML) ซีเอส เอส (CSS) และจาวาสคริปต์ (JavaScript) ในการแสดงผลและโต้ตอบกับผู้ใช้งาน

#### 3.3 การออกแบบระบบ

การออกแบบระบบบันทึกบัญชีครัวเรือนจากใบเสร็จประกอบด้วยการออกแบบ สถาปัตยกรรม การออกแบบฐานข้อมูล และการออกแบบส่วนติดต่อกับผู้ใช้

#### 3.3.1 การออกแบบระบบ

3.3.1.1 แผนภาพลำดับการทำงานของกระบวนการเข้าสู่ระบบ (Authentication Flow)



ภาพที่ 3.2 แผนภาพลำดับการทำงานของกระบวนการเข้าสู่ระบบ

3.3.1.2 แผนภาพลำดับการทำงานของกระบวนการเพิ่มค่าใช้จ่าย (Add Expense

Flow)



ภาพที่ 3.3 แผนภาพลำดับการทำงานของกระบวนการเพิ่มค่าใช้จ่าย

3.3.1.3 แผนภาพลำดับการทำงานของกระบวนการจัดการข้อมูล (DataManagement Flow)



ภาพที่ 3.4 แผนภาพลำดับการทำงานของกระบวนการจัดการข้อมูล

# 3.3.2 การออกแบบฐานข้อมูล (Database Design)

3.3.2.1 แผนภาพแสดงความสัมพันธ์ของข้อมูล (Entity-Relationship Diagram)



ภาพที่ 3.5 แผนภาพแสดงความสัมพันธ์ของข้อมูล

3.3.2.2 พจนานุกรมข้อมูล (Data Dictionary)

พจนานุกรมข้อมูล (Data Dictionary) คือ เอกสารที่อธิบายรายละเอียดของข้อมูล ต่างๆ ในฐานข้อมูล เช่น ชื่อคุณสมบัติ (Attribute) คำอธิบาย ขนาด ประเภทข้อมูล และประเภทของ คีย์ ซึ่งพจนานุกรมข้อมูลของระบบมีรายละเอียดดังต่อไปนี้

ตารางที่ 3.1 ตารางจัดเก็บข้อมูลผู้ใช้งาน (users)

| ลำดับ | คุณสมบัติ     | คำอธิบาย                       | ประเภท       | ประเภทคีย์ |
|-------|---------------|--------------------------------|--------------|------------|
| (No)  | (Attribute)   | (Description)                  | (Type)       | (Key Type) |
| 1     | id            | รหัสอ้างอิงของผู้ใช้งาน        | int          | PK         |
| 2     | username      | ชื่อสำหรับเข้าสู่ระบบของผู้ใช้ | varchar(50)  | UNIQUE     |
| 3     | email         | อีเมลของผู้ใช้                 | varchar(100) | -          |
| 4     | password_hash | รหัสผ่านที่ถูกเข้ารหัสแล้ว     | varchar(255) | -          |
| 5     | created_at    | วันที่และเวลาที่สร้างบัญชี     | timestamp    | -          |

ตารางที่ 3.2 ตารางจัดเก็บข้อมูลรายจ่าย (expenses)

| ลำดับ | คุณสมบัติ    | คำอธิบาย                           | ประเภท       | ประเภทคีย์ |
|-------|--------------|------------------------------------|--------------|------------|
| (No)  | (Attribute)  | (Description)                      | (Type)       | (Key Type) |
| 1     | id           | รหัสอ้างอิงของรายการรายจ่าย        | int          | PK         |
| 2     | user_id      | รหัสอ้างอิงของผู้ใช้ที่เป็นเจ้าของ | int          | FK         |
|       |              | รายจ่าย                            |              |            |
| 3     | item         | ชื่อหรือรายละเอียดของรายการ        | text         |            |
|       |              | รายจ่าย                            |              |            |
| 4     | amount       | จำนวนเงินของรายจ่าย                | decimal(102) |            |
| 5     | expense_date | วันที่ที่เกิดรายการรายจ่าย         | date         |            |
| 6     | Category     | หมวดหมู่ของรายจ่าย                 | varchar(50   |            |
| 7     | created_at   | วันที่และเวลาที่บันทึกข้อมูล       | timestamp    |            |

# 3.3.3 การออกแบบส่วนติดต่อกับผู้ใช้

การออกแบบส่วนติดต่อกับผู้ใช้สำหรับการพัฒนาระบบบันทึกบัญชีครัวเรือนจากใบเสร็จ มุ่งเน้นความเรียบง่ายและใช้งานสะดวก เพื่อให้ผู้ใช้สามารถเข้าถึงฟังก์ชันต่างๆ ได้อย่างรวดเร็ว โดย เป็นการออกแบบโครงร่างหน้าจอและส่วนประกอบต่างๆ เพื่อใช้เป็นแนวทางในการพัฒนาเว็บแอป พลิเคชัน ซึ่งมีรายละเอียดในการออกแบบหน้าจอหลักๆ ดังต่อไปนี้

# 3.3.3.1 การออกแบบหน้าเข้าสู่ระบบและสมัครสมาชิก

เป็นหน้าจอแรกสำหรับให้ผู้ใช้งานเข้าสู่ระบบเพื่อจัดการข้อมูลส่วนตัว หรือทำการ สมัครสมาชิกเพื่อสร้างบัญชีผู้ใช้ใหม่ ประกอบด้วยช่องสำหรับกรอกชื่อผู้ใช้ อีเมล และรหัสผ่าน เพื่อ ยืนยันตัวตนก่อนเข้าใช้งานระบบ



ภาพที่ 3.6 หน้าการเข้าสู่ระบบ

## 3.3.3.2 การออกแบบหน้าหลัก (รายการค่าใช้จ่าย)

หลังจากเข้าสู่ระบบสำเร็จ ผู้ใช้จะพบกับหน้าหลักซึ่งทำหน้าที่แสดงรายการค่าใช้จ่าย ทั้งหมดที่เคยบันทึกไว้ โดยจะแสดงข้อมูลเบื้องต้น เช่น ชื่อรายการและจำนวนเงิน ผู้ใช้สามารถคลิกที่ แต่ละรายการเพื่อเข้าไปดูรายละเอียดเพิ่มเติม แก้ไข หรือลบรายการนั้นๆ ได้



ภาพที่ 3.7 หน้าหลักแสดงรายจ่ายแต่ละรายการ

## 3.3.3.3 การออกแบบหน้าเพิ่มค่าใช้จ่าย

หน้าจอนี้เป็นหัวใจหลักของระบบประกอบด้วยฟอร์มสำหรับบันทึกข้อมูลซึ่งรองรับ การทำงาน 2 รูปแบบ คือ

ก) การกรอกข้อมูลด้วยตนเองผู้ใช้สามารถพิมพ์รายละเอียดต่างๆ เช่น รายการ จำนวนเงิน วันที่ และเลือกหมวดหมู่ได้โดยตรง



ภาพที่ 3.8 หน้าจอเพิ่มค่าใช้จ่าย

ข) การสแกนจากรูปภาพ ผู้ใช้สามารถเลือกอัปโหลดหรือถ่ายภาพใบเสร็จ เมื่อ ระบบประมวลผลผ่านโอซีอาร์ (OCR) เสร็จสิ้น ข้อมูลที่สกัดได้จะถูกนำมากรอกลงในฟอร์มโดย อัตโนมัติ เพื่อให้ผู้ใช้ตรวจสอบความถูกต้อง แก้ไข และเลือกหมวดหมู่ก่อนทำการบันทึก



ภาพที่ 3.9 หน้าจออัปโหลดและถ่ายภาพใบเสร็จ

## 3.3.3.4 ผลการทำงานที่ได้จากการออกแบบหน้าแดชบอร์ด

เป็นหน้าที่แสดงผลสรุปข้อมูลค่าใช้จ่ายในรูปแบบของกราฟ เช่น กราฟวงกลมที่ จำแนกรายจ่ายตามหมวดหมู่ เพื่อช่วยให้ผู้ใช้สามารถเห็นภาพรวมและวิเคราะห์พฤติกรรมการใช้จ่าย ของตนเองได้ง่ายและรวดเร็วยิ่งขึ้น



ภาพที่ 3.10 หน้าจอแดชบอร์ดสรุปผลรายจ่าย

# 3.3.3.5 ผลการทำงานที่ได้จากการออกแบบหน้าโปรไฟล์ผู้ใช้

เป็นหน้าที่รวบรวมฟังก์ชันสำหรับจัดการบัญชีส่วนตัว ผู้ใช้สามารถแก้ไขข้อมูล ส่วนตัว เช่น ชื่อผู้ใช้ อีเมล เปลี่ยนรหัสผ่าน รวมถึงการออกจากระบบ (Logout) และการลบบัญชี ผู้ใช้งาน (Delete Account) ได้จากหน้านี้



ภาพที่ 3.11 หน้าจอโปรไฟล์ผู้ใช้งาน

#### 3.4 การพัฒนาระบบ

ในการศึกษาและพัฒนาระบบบันทึกบัญชีครัวเรือนจากใบเสร็จนั้น ผู้พัฒนาระบบได้มีการ วางแผนและออกแบบขั้นตอนการพัฒนาระบบอย่างเป็นลำดับ ดังต่อไปนี้

#### 3.4.1 วิเคราะห์ระบบ

การวิเคราะห์ระบบมาจากการศึกษาระบบงานเดิมและความต้องการของผู้ใช้งาน จากปัญหาที่การบันทึกรายจ่ายด้วยตนเองมีความล่าช้า เสี่ยงต่อความผิดพลาด และมักขาดความ ต่อเนื่อง ซึ่งเป็นปัญหาหลักที่เกิดขึ้นในระบบงานเดิม ผู้พัฒนาจึงได้วิเคราะห์ความต้องการเพื่อสร้าง ระบบใหม่ที่สามารถแก้ปัญหาเหล่านี้ได้โดยตรง

#### 3.4.2 ออกแบบระบบ

การออกแบบระบบเริ่มจากการออกแบบส่วนติดต่อกับผู้ใช้ (User Interface) ซึ่ง ประกอบด้วยหน้าจอหลักๆ ได้แก่ หน้าเข้าสู่ระบบ หน้าแสดงรายการค่าใช้จ่าย หน้าเพิ่มค่าใช้จ่ายที่ รองรับทั้งการกรอกข้อมูลเองและการอัปโหลดใบเสร็จ และหน้าแดชบอร์ดสรุปผล นอกจากนี้ยังได้ ออกแบบสถาปัตยกรรมของระบบ (System Architecture) ที่มีการทำงานเชื่อมต่อกันระหว่างส่วน หน้าบ้าน (Frontend) ส่วนหลังบ้าน (Backend) และบริการภายนอกอย่างเป็นระบบ

#### 3.4.3 พัฒนาระบบ

ในการพัฒนาระบบ ผู้จัดทำได้แบ่งการดำเนินงานออกเป็นส่วนต่างๆ ตามเทคโนโลยี ที่ใช้ ดังนี้

- 3.4.3.1 การพัฒนาส่วนหลังบ้าน (Backend Development) พัฒนาเว็บเซิร์ฟเวอร์ ด้วย โน้ดเจเอส (Node.js) และ เอ็กซ์เพรส (Express) เพื่อสร้างเอพีไอ (API) สำหรับจัดการฟังก์ชัน ต่างๆ ของระบบ เช่น การสมัครสมาชิก การเข้าสู่ระบบ การจัดการเซสชัน (Session) การรับ-ส่ง ข้อมูลรายจ่าย และการจัดการการอัปโหลดไฟล์ภาพใบเสร็จ
- 3.4.3.2 การพัฒนาส่วนหน้าบ้าน (Frontend Development) พัฒนาส่วนติดต่อกับ ผู้ใช้ด้วย เอชทีเอ็มแอล (HTML) ซีเอสเอส (CSS) และ จาวาสคริปต์ (JavaScript) เพื่อสร้างหน้าเว็บที่ ผู้ใช้สามารถโต้ตอบได้ รวมถึงการนำไลบรารี ชาร์ตเจเอส (Chart.js) มาใช้ในการแสดงผลข้อมูลสรุป รายจ่ายในรูปแบบของกราฟบนหน้าแดชบอร์ด
- 3.4.3.3 การพัฒนากระบวนการทำงานอัตโนมัติ (Workflow Automation) สร้าง เวิร์กโฟลว์ (Workflow) บน เอ็นเอทเอ็น (n8n) เพื่อจัดการกระบวนการประมวลผลใบเสร็จโดย อัตโนมัติ โดยเวิร์กโฟลว์จะทำหน้าที่รับไฟล์ภาพจากเซิร์ฟเวอร์ ส่งต่อไปยังบริการ โอซีอาร์ (OCR) รับ ผลลัพธ์กลับมา และส่งข้อมูลที่สกัดได้กลับไปยังเซิร์ฟเวอร์เพื่อแสดงผลให้ผู้ใช้ตรวจสอบ

3.4.3.4 การพัฒนาระบบฐานข้อมูล (Database Development) ออกแบบและ สร้างฐานข้อมูลด้วย มายเอสคิวแอล (MySQL) เพื่อจัดเก็บข้อมูลผู้ใช้งานและข้อมูลรายจ่ายทั้งหมด ของระบบ โดยใช้ ด็อกเกอร์ (Docker) ในการจำลองสภาพแวดล้อมและรันฐานข้อมูลเพื่อให้ง่ายต่อ การจัดการ

#### 3.4.4 ทดสอบระบบ

ทำการทดสอบระบบโดยการใช้งานจริงในสถานการณ์ต่างๆ เพื่อให้ทราบถึง ข้อผิดพลาดที่อาจเกิดขึ้น เช่น ทดสอบการสมัครสมาชิก การอัปโหลดไฟล์ภาพใบเสร็จที่มีคุณภาพ แตกต่างกัน การบันทึกและแก้ไขข้อมูล และการแสดงผลข้อมูลบนแดชบอร์ด เพื่อนำผลลัพธ์ที่ได้มา ปรับปรุงแก้ไขระบบให้มีความถูกต้อง เสถียร และน่าเชื่อถือมากที่สุดก่อนนำไปใช้งานจริง

# บรรณานุกรม

- ธีรพงศ์ ธนเจริญพาณิชย์ และคณะ. (2567). การศึกษาประสิทธิภาพของเทสเซอร์แรค โอซีอาร์ สำหรับการประมวลผลภาพใบเสร็จธุรกรรมทางการเงิน. *วารสารวิทยาการและเทคโนโลยี* สารสนเทศ, 10(1), 156-171.
- สุพัตรา ฤทธิ์บำรุง และ กฤษดา กลิ่นจันทร์. (2561). การพัฒนาแอปพลิเคชันบัญชีรายรับ-รายจ่าย บนระบบปฏิบัติการแอนดรอยด์. *วารสารวิชาการโครงการวิทยาศาสตร์และเทคโนโลยี*, 3(1), 33-39.