

EME Fundamentals

... from basic physics to digi-modes...

Joe Taylor
K1JT

Overview

- EME fundamentals and limits
- Tweaking your setup
- Software and Digi-modes for EME

* Noise temperature, Kelvins

EME Path Loss

$$p_r = p_t g_t g_r l$$

$$l = \frac{\eta \lambda^2 r^2}{64 \pi^2 d^4}$$

Two-Way EME Path Loss with Isotropic Antennas

Frequency (MHz)	Average Path Loss (dB)
50	-242.9
144	-252.1
222	-255.8
432	-261.6
902	-268.0
1296	-271.2
2304	-276.2
3456	-279.7
5760	-284.1
10368	-289.2
24048	-293.5

Signal-to-Noise Ratio

$$\frac{S}{N} = \frac{p_r}{p_n} = \frac{p_t g_t g_r l}{k T_s B}$$

System noise temperature

$$T_s = T_a + T_r$$

Received bandwidth

Galactic
Noise
144 MHz

System Noise Temperature T_s

Signal-to-Noise Ratio

$$\frac{S}{N} = \frac{p_r}{p_n} = \frac{p_t g_t g_r l}{k T_s B}$$

System noise temperature

$$T_s = T_a + T_r$$

Received bandwidth

Q: What can I control ??

What type
of antenna
??

How much power ??

(Assume S/N = 0 dB, B = 100 Hz)

Freq (MHz)	Ant Type ¹	G (dBi)	HPBW (deg)	TxPwr (W)	
50	4×12 m	19.7	18.8	1200	
144	4×6 m	21.0	15.4	500	
432	4×6 m	25.0	10.5	250	
1296	3 m	29.5	5.5	160	0 dB
2304	3 m	34.5	3.1	60	
3456	2 m	34.8	3.0	120	
5760	2 m	39.2	1.8	60	
10368	2 m	44.3	1.0	25	-15 dB

EMECalc by VK3UM

<https://www.vk5dj.com/doug.html>

**W2ZQ
EME echoes
SNR = -15.3 dB**

<https://wsjt.sourceforge.io/wsjt.html>

Testing your setup...

W2ZQ: Sun Noise, 1296 MHz

Antenna Pattern

Focus Adjustment

Before: $Y_{\text{sun}} = 10 \text{ dB}$

After: $Y_{\text{sun}} = 12 \text{ dB}$

Software and Digi-Modes

WSJT-X

QMAP

Q65

WSJT-X

WSJT-X Waterfall

WSJT-X - Wide Graph

W7GJ works an EME pileup

UTC	dB	DT	Freq	Message
1613	-19	2.8	1622	: W7GJ VE1JF -18
1613	-23	2.8	945	: W7GJ NOTB -15
1615	-19	2.8	1622	: W7GJ VE1JF -18
1615	-21	2.9	945	: W7GJ NOTB -15
1619	-14	2.8	1622	: W7GJ VE1JF -18
1621	-19	2.8	1620	: W7GJ VE1JF RRR
1621	-24	2.8	697	: W7GJ N8JX EN73
1621	-20	2.8	1420	: W7GJ W1VD FN31
1637	-21	2.9	940	: W7GJ NOTB -15
1637	-22	2.8	1417	: W7GJ W1VD R-24
1639	-21	2.9	940	: W7GJ NOTB -15
1639	-24	2.8	1417	: W7GJ W1VD 73
1647	-27	2.9	692	: W7GJ N8JX EN73
1647	-21	2.9	938	: W7GJ NOTB 73
1655	-21	2.9	938	: W7GJ NOTB -24

WSJT-X Doppler Tracking

WSJT-X - Astronomical Data X

2024 Jul 15

UTC: 16:05:35

Az: 86.1

El: -34.2

SelfDop: 2821

Width: 13

Delay: 2.68

DxAz: 0.0

DxEl: 0.0

DxDop: 0

DxWid: 0

Dec: -18.7

SunAz: 141.7

SunEl: 67.2

Freq: 1296.1

Tsky: 4

Dpol: -49.8

MNR: 0.0

Dist: 401078

Dgrd: -2.2

Doppler tracking

Doppler tracking

Full Doppler to DX Grid

Own Echo

Constant frequency on Moon

On DX Echo

Call DX

None

Sked frequency

Rx: 1,296.065 000

Tx: 1,296.065 000

Press and hold the CTRL key to
adjust the sked frequency
manually with the rig's VFO dial or
enter frequency directly into the
band entry field on the main
window.

Echo Mode

RIT 0 Hz Dither

WSJT-X Echo Mode

Echo Mode: K1JT, 144 MHz

Doppler corrected; predicted spread 2.6 Hz

Echo Mode: G3WDG, 10 GHz

Single-pulse Echo, 10 GHz

10 GHz echo at libration minimum

QMAP: Wideband Decoding

QMAP: Wideband Decoding

QMAP: High-resolution Waterfall

QMAP main window

QMAP v0.4 by K1JT et al.

File View Mode Save Help

UTC	Frx	Fsked	DT	dB	Q65-	Message
010000	117.635	115.0	2.59	0	30B	WA3GFZ OK1DFC RRR
010000	63.641	61.0	3.23	-11	60C	KB2SA SP5GDM R-12
010000	72.228	69.6	3.08	-5	60C	W2ZQ UA5Y KO72
010000	72.898	70.2	2.62	-14	60C	W2ZQ YU1SAN 73
010000	87.658	85.0	2.62	-12	60C	K5QE PA3FXB R-09
010000	61.625	59.0	2.93	-17	60C	W3HMS OK2AQ JN89
010000	84.140	81.5	2.62	-18	60C	CQ G7TZZ IO92
010030	117.644	115.0	2.66	-16	30B	OK1DFC W3HZU FN10

1296.080 Monitor Erase Decode

50
40
30
20
10
24 dB

2024 Jul 15
14:54:43

100 Tol Max Drift 0

Offset 1500 Hz

NB

231028_0100.iq Rx: 24.3 0.0 % Q65-60C 58.5 s 8/10 Save decoded

WSJT-X: Active Stations

Click to
work a
station

WSJT-X - Active Stations

N	Frx	Fsked	S/N	Q65	Call	Grid	Tx	Age
1.	57.813	55.4	-07	60C	K3WM	FN00	1	0 #
2.	57.789	55.4	-17	60C	RX6AIA	...	1	6 #
3.	58.273	55.9	-12	60C	UA9FAD	LO88	1	0 #
4.	60.356	58.0	-12	60C	YO2LAM	KN05	1	8 #
5.	61.082	58.7	-14	60C	YU1SAN	KN03	1	2 #
6.	63.816	61.4	-12	60C	SP5GDM	...	1	0 #
7.	72.912	70.5	-15	60C	LU8ENU	GF05	1	0 #
8.	84.315	81.9	-18	60C	G7TZZ	IO92	1	0 #*
9.	87.397	85.0	-06	60C	UA5Y	K072	1	0 #
10.	97.765	95.4	-15	60C	PA3HDG	J031	1	0 #
11.	98.128	95.7	-16	60C	PA0TBR	J021	1	4 #
12.	107.345	105.0	-18	60C	OZ1CTZ	...	1	10 #
13.	117.429	115.0	-14	30B	N9HF	EL99	0	4 #
14.	117.813	115.4	-01	30B	OK1DFC	...	1	0 #
15.	117.874	115.5	-15	30B	OM4XA	JN98	0	0 #

Max Age 10 ▲ # Wanted only * CQ only QSOs: 5

EME Digi-modes

- 50 MHz: Q65-60A
- 144 MHz: Q65-60B, JT65B
- 222, 432 MHz: Q65-60B
- 1296 MHz: Q65-60C Q65-30B
- 2.3+ GHz (depends on Doppler spread)
Q65-60C, -60D, -60E

Programming Details

- User interface: C++ and Qt
- Number crunching: Fortran
- Core developers: K1JT, G3WJS (SK),
K9AN, IV3NWV, DG2YCB, N9ADG,
G3WDG
- Open source: GPLv3 license
- Version control with git:

```
$ git clone https://git.code.sf.net/p/wsjt/wsjtx
```