

临床意义 - 时间依赖 AUC

网址: https://www.xiantao.love

更新时间: 2023.02.13

目录

基本概念 3
应用场景 3
分析流程 3
结果解读6
数据格式 8
参数说明 10
时间点 10
置信区间 12
线 13
点
标题文本 15
图注
坐标轴 16
风格 17
图片
结果说明 19
主要结果: 单个预测变量多个预测时间点
主要结果: 多个预测变量多个预测时间点
补充结果: 单个预测变量多个预测时间点的情况 20
补充结果:多个预测变量多个预测时间点的情况(且计算置信区间的前提下) 22
方法学 24
如何引用
常见问题

基本概念

- ➤ 受试者工作特征曲线(receiver operating characteristic curve, ROC): 一种坐标图式的分析工具,可用于选择最佳的模型、舍弃次佳的模型或者在同一模型中设定最佳阈值。比如,一些新标志物的预测模型会用 ROC 曲线来评价其性能。
- ▶ 时间依赖 ROC: ROC 曲线在生存资料类型的模型中的一种特殊的应用,对于 给定的时间点,如果一个样本在时间 0 和时间 t 之间发病,那么其会被划分 到病例组,否则则划分到对照组。对于每一个自变量不同的阈值划分分组最 终就能得到每个阈值下的敏感度、特异度,获得最佳阈值并且评估生存资料 类型模型的好坏。
- ▶ 时间依赖 AUC:用折线的形式来展示不同变量在不同时间下其对应 ROC 曲线下面积(AUC)的变化情况

应用场景

时间依赖 AUC 曲线主要用于连续变量来预测带有生存资料的结局事件,找到连续变量最佳的 cut-off 值;或者用于评估变量对于带有生存资料的结局的预测效能;或英语评估预测变量之间在不同预测时间下的情况

分析流程

上传数据 → 数据处理(清洗) → AUC 相关分析 → AUC 曲线可视化

➤ 数据格式: xlsx / text / csv

- 第1列数据作为结局变量(事件发生情况),需要是数值类型数据,用(0 和1,0表示未发生事件,1表示发生了事件)或(1和2,1表示未发生 事件,2表示发生了事件)表示,注: 第1列(结局变量)不能都是删失
- 第2列数据作为时间变量(具体时间/生存时间,必须以天作为单位,并且时间要长于1年以上),需要是数值类型数据,注:第2列(时间变量)不能都是同一个时间,并且不能出现小于0(负数)和非数值的情况

4	Α	В	C
1	event	time	group
2	1	400	14.5
3	0	4500	1.1
4	1	1012	1.4
5	1	1925	1.8
6	0	1504	3.4
7	1	2503	0.8
8	0	1832	1
9	1	2466	0.3
10	1	2400	3.2
11	1	51	12.6
12	1	3762	1.4
13	1	304	3.6
14	0	3577	0.7
15	1	1217	0.8
16	1	3584	0.8

■ 第3列开始直至后面每1列都代表一个变量/样本/....,必须是<u>数值</u> 类型数据

■ 注:

- ◆ 数据都是要是数值类型的数据
- ◆ 不管是第1列(事件)、第2列(时间)还是其他列变量,都不能 是一个值(单分类),也不能上传非法数值(非法字符等)
- **♦**
- ▶ 数据处理:分别对第1列(事件)、第2列(时间)、第3列开始后的所有 变量进行清洗(去除掉数据中的非数值或者不符合条件的数据)

➤ AUC 相关分析:

■ 统计描述: 在预测的各个不同时间点, 统计各变量的生存情况

■ ROC 结果:在预测的各个不同时间点,计算各变量的最佳阈值(cut-off 值)、敏感度、特异度等

■ AUC 信息:在预测的各个不同时间点,计算各变量 ROC 曲线下面积 (AUC)、累计生存率、累计发病率等

.

➤ AUC 可视化

- 将分析所得到变量(group)的各个不同时间点对应的 AUC(曲线下面积) 值进行可视化,结果如下:
 - ◆ 模块(样本数据)默认选择(1,2,3,4,5(年))来作为预后时间, 其各时间点对应的 AUC 值为:

变量	时间(年)	天数	曲线下面积(AUC)	累计生存率	累计发病率
group	1	365	0.82298	0.92823	0.07177
group	2	730	0.77483	0.88022	0.11978
group	3	1095	0.83417	0.80133	0.1961
group	4	1460	0.85934	0.75158	0.24842
group	5	1825	0.86228	0.70287	0.29713

结果解读

- ▶ 横坐标表示预测时间
- > 纵坐标表示曲线下面积
- ➤ 每一条折线表示: 每一个预测变量在参数设定的时间点内的 AUC 值的变化 情况
 - 一条折线即表示一个预测变量
 - 如上结果所示:左侧为一个预测变量在5个预测时间点的结果,右侧为两个预测变量在5个预测时间点的不同结果
- ▶ 每一个点表示:每一个预测变量在参数设定的时间点内各时间节点的 AUC 取值
 - 每一个点表示预测变量在某个预测时间对应的 AUC 值

补充:

- ▶ 当一个变量(危险因素)的值是促进事件发生的趋势时,该分子的 AUC 会>0.5, 此时面积越大(AUC 值越接近于 1)说明预后效能越好
 - AUC 在 0.5~0.7 时, 预后效能较低
 - AUC 在 0.7~0.9 时,有一定预后效能

- AUC 在 0.9 以上时, 预后效能较好
- ▶ 当一个变量(保护因素)的值与事件发生的趋势相反时,则这个分子的 AUC 会
 <0.5,此时面积越小(AUC 值越接近于 0)说明预后效能越好</p>
- 如果某个时间点对应的曲线下面积为NA,表示该时间点下曲线下面积不存在,如果某个时间点的事件数为0,则该时间点无法进行相关的ROC分析和可视化

数据格式

1	Α	В	С
1	event	time	group
2	1	400	14.5
3	0	4500	1.1
4	1	1012	1.4
5	1	1925	1.8
6	0	1504	3.4
7	1	2503	0.8
8	0	1832	1
9	1	2466	0.3
10	1	2400	3.2
11	1	51	12.6
12	1	3762	1.4
13	1	304	3.6
14	0	3577	0.7
15	1	1217	0.8

- 4	Α	В	С	D
1	event	time	group	group1
2	1	400	14.5	1
3	0	4500	1.1	2
4	1	1012	1.4	3
5	1	1925	1.8	4
6	0	1504	3.4	5
7	1	2503	0.8	6
8	0	1832	1	7
9	1	2466	0.3	8
10	1	2400	3.2	9
11	1	51	12.6	10
12	1	3762	1.4	11
13	1	304	3.6	12
14	0	3577	0.7	13
15	1	1217	0.8	14

数据要求:

- ▶ 数据至少3列30行
- ▶ 最多支持 8 列和 5000 行数据
- ▶ 第一列是事件发生情况,用 0 和 1 表示, 0 表示未发生事件, 1 表示发生了事件。例如,事件可以定义为死亡,当受试发生了死亡,该受试的事件就定义为 1,当受试未发生死亡(删失),该受试的事件就定义为 0
- ▶ 第二列是具体时间,必须以天作为单位,并且时间要长于 1 年以上
- ▶ 第三列及以后为预测的变量

▶ 第一组结果为单个预测变量与多个预测时间点的分析结果,第二组为多个预测变量与多个预测时间点的分析结果

参数说明

(说明:标注了颜色的为常用参数。)

时间点

- 时间点:单位为年的数值,用逗号隔开,可以使用英文下的逗号也可使用中文下的逗号
 - 至少需要输入3个不同时间节点作为预测时间;如下:
 - ◆ 输入2个不同的预测时间

◆ 输入2个重复时间

◆ 输入多(>=3)个重复时间

时间单位:可以选择上传数据预测时间列的单位,默认以年为单位,可以选择月、天为单位,如下:

置信区间

- ▶ 是否计算:可以选择是否需要进行 AUC (曲线下面积)置信区间相关计算、或在多个预测变量进行分析时可以计算其组间检验,对于数据量比较大的情况下,强制是不会进行进行置信区间的计算的
 - 默认为不计算
 - 还可以选择进行计算,表示会计算 AUC 置信区间,结果会在补充结果部分展示:

变量	时间(年)	天数	曲线下面积(AUC)	置信区间	累计生存率	累计发病率
group	1	365	0.82298	0.7516 - 0.8944	0.92823	0.07177
group	2	730	0.77483	0.7051 - 0.8445	0.88022	0.11978
group	3	1095	0.83417	0.7855 - 0.8828	0.80133	0.1961
group	4	1460	0.85934	0.8166 - 0.9021	0.75158	0.24842
group	5	1825	0.86228	0.8202 - 0.9044	0.70287	0.29713

变量1	变量2	时间(年)	天数	p值
group	group1	1	365	8.72e-0
group	group1	2	730	4.93e-0
group	group1	3	1095	6.22e-1
group	group1	4	1460	0
group	group1	5	1825	5.4e-14

线

▶ 颜色:线条颜色,有多少个预测变量取多少个颜色

》 线条类型: AUC 曲线的线条类型, 默认为实线, 可以选择虚线类型

> 线条粗细:可以选择修改 AUC 曲线线条粗细,默认为 0.75pt

点

- ▶ 填充色: 可以修改上传时间点的对应颜色, 一条 AUC 曲线上的各个时间点的颜色一致, 有多少个预测变量就有多少条 AUC 曲线, 也就有多少中点的颜色
- ▶ 描边颜色: AUC 曲线上时间点的的描边颜色, 跟填充颜色对应
- ▶ 样式:点的样式,默认是圆形,还可以同时选择正方形、菱形、三角形、倒三角形

标题文本

▶ 大标题:大标题文本

> x 轴标题: x 轴标题文本

> y轴标题: y轴标题文本

补充: 在要换行的中间插入\n。如果需要上标,可以用两个英文输入法下的大括号括住,比如 {{2}};如果需要下标,可以用两个英文输入法下的中括号括住,比如 [[2]]

图注

图注		~
是否展示		
图注标题	图注标题内容	
图注位置	默认	~

▶ 是否展示: 可以选择是否展示图注信息, 默认展示

▶ 图注标题:可以修改图注标题的内容

▶ 图注位置:默认为图片的右下,还可以选择右

坐标轴 ~ x轴范围+刻度 逗号隔开 y轴范围+刻度 逗号隔开

- ➤ x 轴范围+刻度:可以控制 x 轴范围和刻度,可只提供 2 个值来控制范围,也可提供多个值同时控制范围和刻度。形如 0,0,50,100,150,200,250,300。(如果调整过大可能会无作用)
- ▶ y轴范围+刻度:可以控制 y轴范围和刻度,可只提供 2 个值来控制范围,也可提供多个值同时控制范围和刻度。形如 0.1, 0.1, 0.2, 0.3 (最小值和最大值不能不能可视化数据范围 20%,如果调整过大可能会无作用)

风格

▶ 边框:是否添加主图的外框

▶ 网格:是否添加网格

> xy 颠倒: 是否进行 x 轴与 y 轴颠倒

文字大小: 控制整体文字大小, 默认为 7pt

图片

▶ 宽度:图片横向长度,单位为 cm

▶ 高度: 图片纵向长度,单位为 cm

▶ 字体:可以选择图片中文字的字体

结果说明

主要结果: 单个预测变量多个预测时间点

主要结果: 多个预测变量多个预测时间点

补充结果: 单个预测变量多个预测时间点的情况

计描述					
变量	时间(年)	天数	事件数(截至当前时间)	生存数(截至当前时间)	删失数(截至当前时间)
group	1	365	30	388	0
group	2	730	50	365	3
group	3	1095	81	312	25
group	4	1460	100	245	73
group	5	1825	115	197	106

- ·如果某个时间点的事件数为0,则该时间点无法进行分析和可视化
- ·如果某些时间点的事件数、生存数、删失数相同,建议增加时间间隔(如果时间点大于数据的最大时间,这些结果也会相同)
- ·注意: 数据默认在分析前统一删除变量缺失的样本

这里的表格提供不同时间点的事件情况

- ▶ 如果某个时间点的事件数为 0,则该时间点无法进行分析和可视化
- 如果某些时间点的事件数、生存数、删失数相同,建议增加时间间隔(如果时间点大于数据的最大时间,这些结果也会相同)
- > 数据默认在分析前统一删除变量缺失的样本

OC结果表							
变量	时间(年)	天数	最佳阈值(cut-off)	敏感度	特异度	阳性预测值	阴性预测值
group	1	365	2.3	0.86667	0.69845	0.18182	0.98545
group	2	730	2.2	0.75969	0.69863	0.25542	0.95528
group	3	1095	2.2	0.80302	0.76603	0.45649	0.9408
group	4	1460	2.2	0.78896	0.80408	0.57101	0.92018
group	5	1825	1.9	0.8062	0.80711	0.63858	0.90784

ROC结里表 xlsx

- ·先通过(敏感度+(1-特异度),得到最大对应的第一个cut_off作为最佳阈值(cut_off),再通过timeROC包计算得到最佳阈值(cut_off)下的部分ROC相关信息和数据
- \cdot timeROC包值提供单个cut_off值的灵敏度、特异度、阳性预测值和阴性预测值的结果,因此无法提供其他ROC相关的指标结果
- ·如果对应的时间点内无事件发生(相当于无阳性事件发生),则无法计算则无法进行相关的时间依赖ROC分析

这里的表格为 ROC 结果表格,提供不同时间点的 ROC 曲线下面积的结果及其其 他指标

➤ 先通过(敏感度+(1-特异度))得到最大对应的第一个 cut_off 作为最佳阈值 (cut_off),再通过 timeROC 包计算得到最佳阈值 (cut_off)下的部分 ROC 相关信息和数据

- ➤ timeROC 包值提供单个 cut_off 值的灵敏度、特异度、阳性预测值和阴性预测值的结果,因此无法提供其他 ROC 相关的指标结果
- ▶ 如果对应的时间点内无事件发生(相当于无阳性事件发生),则无法计算对应的曲线下面积

变量	时间(年)	天数	曲线下面积(AUC)	累计生存率	累计发病率
group	1	365	0.82298	0.92823	0.07177
group	2	730	0.77483	0.88022	0.11978
group	3	1095	0.83417	0.80133	0.1961
group	4	1460	0.85934	0.75158	0.24842
group	5	1825	0.86228	0.70287	0.29713

[·]通过timeROC包计算得到每个时间点对应的曲线下面积和累计生存率

这里的表格为 AUC 信息表,提供不同预测时间点的信息

- ▶ 通过 timeROC 包计算得到每个时间点对应的曲线下面积和累计生存率
- ▶ 如果对应的时间点内无事件发生(相当于无阳性事件发生),则无法计算对应的曲线下面积

[·]如果对应的时间点内无事件发生(相当于无阳性事件发生),则无法计算对应的曲线下面积

补充结果: 多个预测变量多个预测时间点的情况(且计算置信区间的前提下)

变量	时间(年)	天数	事件数(截至当前时间)	生存数(截至当前时间)	删失数(截至当前时间)
group	1	365	30	388	0
group	2	730	50	365	3
group	3	1095	81	312	25
group	4	1460	100	245	73
group	5	1825	115	197	106
roup1	1	365	30	388	0
roup1	2	730	50	365	3
roup1	3	1095	81	312	25
roup1	4	1460	100	245	73
group1	5	1825	115	197	106

[·]如果某个时间点的事件数为0,则该时间点无法进行分析和可视化

[·]注意: 数据默认在分析前统一删除变量缺失的样本

OC结果表							
变量	时间(年)	天数	最佳阈值(cut-off)	敏感度	特异度	阳性预测值	阴性预测值
group	1	365	2.3	0.86667	0.69845	0.18182	0.98545
group	2	730	2.2	0.75969	0.69863	0.25542	0.95528
group	3	1095	2.2	0.80302	0.76603	0.45649	0.9408
group	4	1460	2.2	0.78896	0.80408	0.57101	0.92018
group	5	1825	1.9	0.8062	0.80711	0.63858	0.90784
group1	1	365	103.0	0.6	0.23454	0.057143	0.8835
group1	2	730	103.0	0.60013	0.2274	0.095599	0.80691
group1	3	1095	165.0	0.48089	0.39423	0.16267	0.75629
group1	4	1460	165.0	0.45394	0.45306	0.21527	0.71511
group1	5	1825	213.0	0.40636	0.72589	0.38526	0.74309

ROC结果表.xlsx

AUC信息表

变量	时间(年)	天数	曲线下面积(AUC)	置信区间	累计生存率	累计发病率
group	1	365	0.82298	0.7516 - 0.8944	0.92823	0.07177
group	2	730	0.77483	0.7051 - 0.8445	0.88022	0.11978
group	3	1095	0.83417	0.7855 - 0.8828	0.80133	0.1961
group	4	1460	0.85934	0.8166 - 0.9021	0.75158	0.24842
group	5	1825	0.86228	0.8202 - 0.9044	0.70287	0.29713
group1	1	365	0.43694	0.3209 - 0.553	0.92823	0.07177
group1	2	730	0.47158	0.3747 - 0.5685	0.88022	0.11978
group1	3	1095	0.46642	0.3929 - 0.5399	0.80133	0.1961
group1	4	1460	0.48801	0.4174 - 0.5587	0.75158	0.24842
group1	5	1825	0.5456	0.4775 - 0.6137	0.70287	0.29713

[·]通过timeROC包计算得到每个时间点对应的曲线下面积和累计生存率

[·]如果某些时间点的事件数、生存数、删失数相同,建议增加时间间隔(如果时间点大于数据的最大时间,这些结果也会相同)

[·]先通过(敏感度+(1-特异度))得到最大对应的第一个cut_off作为最佳阈值(cut_off),再通过timeROC包计算得到最佳阈值(cut_off)下的部分ROC相关信息和数据

 $[\]cdot$ timeROC包值提供单个cut_off值的灵敏度、特异度、阳性预测值和阴性预测值的结果,因此无法提供其他ROC相关的指标结果

[·]如果对应的时间点内无事件发生(相当于无阳性事件发生),则无法计算则无法进行相关的时间依赖ROC分析

[·]如果对应的时间点内无事件发生(相当于无阳性事件发生),则无法计算对应的曲线下面积

变量1	变量2	时间(年)	天数	p值
group	group1	1	365	8.72e-07
group	group1	2	730	4.93e-06
group	group1	3	1095	6.22e-15
group	group1	4	1460	0
group	group1	5	1825	5.4e-14

- ▶ timeROC 包的 compare 函数是可以比较同一个时间点下不同变量的 AUC 之间是否有差异的检验方法
- ▶ 当预测变量相同时,其对应的p值没有意义,即为NA

方法学

统计分析和可视化均在 R 4.2.1 版本中进行

涉及的 R 包: timeROC (用于分析), ggplot2 包 (用于可视化)

处理过程:

(1) 通过 timeROC 包对数据进行分析,得到 AUC 相关信息

(2) 使用 ggplot2 包将所得 AUC 结果进行可视化

如何引用

生信工具分析和可视化用的是 R 语言,<mark>可以直接写自己用 R 来进行分析和可视化即可</mark>,可以无需引用仙桃,如果想要引用仙桃,可以在致谢部分 (Acknowledge) 致谢仙桃学术(www.xiantao.love)。

方法学部分可以参考对应说明文本中的内容以及一些文献中的描述。

常见问题

1. 多个预测变量的时候是什么样子的,多个预测变量的时候还能预测多个时间节点吗?

答: 多个预测变量结果如图:

预测时间点不变, 但是最多只能预测 10 个时间点, 最多支持 6 个预测变量

2. 为什么有多个曲线,没有给出统计检验的 p 值?

答:同一个预测变量不同时间点没办法进行统计检验(timeROC包不提供); 只有不同预测变量同一个时间点才会有统计检验的结果

3. 为什么 AUC 会小于 0.5

答: timeROC 包固定了 (无法修改) 在一个时间段内发生事件的作为病例组, 所以当一个分组数值的趋势时与预后结局趋势相反 (类似保护因素 HR<1) 时,则会出现 AUC<0.5,此时 AUC 越接近 0,说明预测效能越好