

UPAT Delta Robot version 1.0 Assembly and Operations Manual ©2016 ANeMoS group University of Patras

Electrical & Computer Engineering Department Laboratory of Automation & Robotics

This document and any other relevant information regarding the UPAT Delta robot can be referenced as:

A. Tzes, G. Ntekoumes, K. Gkountas, and K. Giannousakis, 'Design and control of an open-source long-reach Delta-robot for attachment to an Unmanned Aerial Vehicle', Technical Report, December 2016 (URL: https://github.com/UPatras-ANeMoS/UPAT-Delta-Robot)

Contents

1	UPAT Delta Robot General Information	1
	1.1 UPAT Development Team	1
	1.2 Robot Overview	
	1.3 Robot Mechanical Components	
	1.4 Electrical and Electronic Components	
	1.5 Robot Attachment & Dimensions	
2	UPAT Delta Robot Assembly	5
3	Controller Software in ROS	9
4		11
	4.1 Geometric constraints	11
	4.2 Delta Robot Forward Kinematics	
	4.3 Delta Robot Inverse Kinematics	12
5	Simulation & Experimental Studies	13
	5.1 UPAT Delta Robot simulator in Gazebo	13
	5.2 Experimental study	

List of Figures

1.1	UPAT Delta Robot Componets	1
1.2	UPAT Delta Robot Upper Base	2
1.3	UPAT Delta Robot servo & 3D Upper Leg	2
1.4	UPAT Delta Robot Parallelogram & 3D Lower Base	3
1.5	UPAT Delta Robot Electronics Schematic	3
1.6	UPAT Delta Robot Attachment & Dimensions	4
1.7	UPAT Delta Robot Link Dimensions	4
2.1	UPAT Delta Robot Assembly #1	5
2.2	UPAT Delta Robot Assembly #2	5
2.3	UPAT Delta Robot Assembly #3	6
2.4	UPAT Delta Robot Assembly #4	6
2.5	UPAT Delta Robot Assembly #5	7
2.6	UPAT Delta Robot Assembly #6	7
2.7	UPAT Delta Robot Assembly #7	8
2.8	UPAT Delta Robot Assembly #8	8
3.1	Delta robot ROS-kernel terminal mode	C
3.2	Delta robot ROS-kernel termination screen	0
5.1	Gazebo simulator for UPatras arm	3
5.2	Gazebo UPatras Simulated Trajectory	4
5.3	UPatras Fixed Delta Manipulator (Simulation and Experiment)	5

UPAT Delta Robot General Information

1.1 UPAT Development Team

The research team at University of Patras (UPAT) comprised of Professor Anthony Tzes, senior undergraduate student Georgios Ntekoumes, and graduate students Konstantinos Gkountas and Konstantinos Giannousakis, designed, implemented, and controlled a 3 DoF robot arm relying on the delta-arm configuration. This robotic arm, to be called hereafter UPAT delta, to be used as part of the deliverable WP3 and for testing purposes in WP5 of EU's Horizon 2020 Aeroworks program in which UPAT participates.

1.2 Robot Overview

UPAT's Delta robot Version 1.0, is a long-reach manipulator, weighs 1 Kgr, has a workspace of $20 \text{cm} \times 20 \text{cm} \times 10 \text{cm} (x, y, z)$, has three Hitec HS-645MG actuators, requires at a maximum 18 W for operation (at a 12 Volt rated voltage), and can carry a payload of 300 gr.

It consists of a fixed base, 3 upper legs, 3 lower legs and the moving platform which is parallel to the fixed base. Analytically, the parts are, as shown in Figure 1.1.

Figure 1.1: UPAT Delta Robot Componets

1.3 Robot Mechanical Components

• Three 3D-printed parts composing the fixed upper base, shown in Figure 1.2.

Figure 1.2: UPAT Delta Robot Upper Base

- Three servos, servo hubs and servo horns, shown in Figure 1.3 (left).
- Three 3D-pinted upper legs with their three attached bearings, shown in Figure 1.3 (right).

Figure 1.3: UPAT Delta Robot servo & 3D Upper Leg

- Three aluminum lower legs (corresponding to the 4-bar parallelogram mechanism) and 12 custom-made rings, shown in Figure 1.4 (left)
- 3D-printed moving platform, shown in Figure 1.4 (right).

Figure 1.4: UPAT Delta Robot Parallelogram & 3D Lower Base

1.4 Electrical and Electronic Components

For the application of control commands, the Phidget Advanced Servo board is used; this board can connect up to 8 servos and demands a power voltage in the range 6-15 Volt. Each servo utilizes an internal P-control law employing Mitsubishi's M51660L IC. Rather than relying on the internal P-controller, an outer loop controller can also be employed. For this reason, there is direct access to the potentiometer attached to the servo. The resistance is measured via a simple circuit using a single supply LM324-N operational amplifier. The voltage corresponding to the measured voltage is measured by the 10-bit Analog-to-Digital Converter embedded on an Arduino UNO Rev 3 microcontroller.

Both the Arduino and Phidget boards are connected to a computer via their USB-ports, as shown in Figure 1.5, while the servos are powered via the Phidget-board.

Figure 1.5: UPAT Delta Robot Electronics Schematic

1.5 Robot Attachment & Dimensions

For the robot's attachment, six M4 symmetrically placed screws can be placed in their corresponding holes, as shown in Figure 1.6. In the sequel, the robot's coordinate-system (X_B, Y_B, Z_B) attached at its base is shown in the same Figure, with its origin $(\{x, y, z\} = \{0, 0, 0\})$ at the upper base's symmetrical point.

Figure 1.6: UPAT Delta Robot Attachment & Dimensions

In Figure 1.7 the robot links' dimensions are shown

Figure 1.7: UPAT Delta Robot Link Dimensions

	Description	mm		
s_B	Upper base equilateral triangle side	300		
s_P	Lower platform equilateral triangle side			
L	Upper leg's length	200		
l	Lower leg's parallelogram length	510		
h	Lower leg's parallelogram width	50		

UPAT Delta Robot Assembly

Besides for the Hitec HS-645MG servos and the flanged ball bearings MF84ZZ, and the screws, the remaining 3D-parts are are made of ABS-plastic, or of aluminum. In the sequel, the assembly of the robot is presented in a step-by-step basis.

1. The next figure shows how to assemble the upper (fixed) base of the robot, composed of three identical parts snapped and tightened with 6 screws.

Figure 2.1: UPAT Delta Robot Assembly #1

2. In each part of the base(A), as shown in the next figure, we place the servo(B), the servo hub(C) and the servo horn(D) on it, in the order shown.

Figure 2.2: UPAT Delta Robot Assembly #2

3. Subsequently, one bearing is attached at the axis of each upper leg, as shown in the following step (1), followed by placement of the upper leg in the designated space of the fixed base using the servo horn (2). For the attachment of the bearing, it is important to be in position for placement in its groove.

Figure 2.3: UPAT Delta Robot Assembly #3

4. The upper leg with the servo horn is attached at the base (3), followed by the proper screwing (4) of the upper leg to the servo horn and the remaining parts of the base. Since the bearing will remain fixed in its position, it is imperative to the test the limits from −90° to 90° of the servo.

Figure 2.4: UPAT Delta Robot Assembly #4

5. Placement of the rotational joint of the upper leg, along with the placement of the rings used for alignment.

Figure 2.5: UPAT Delta Robot Assembly #5

6. Construction of each lower leg of the robot's parallelogram; there are 6 legs each tapped at both sides.

Figure 2.6: UPAT Delta Robot Assembly #6

- 7. Assembly of the robot's moving platform, using three rotational joints with their assorted rings
- 8. Attachment of the moving platform to the legs of the parallelogram and the joint of the upper legs.

Figure 2.7: UPAT Delta Robot Assembly #7

Figure 2.8: UPAT Delta Robot Assembly #8

Controller Software in ROS

The outer loop controller was written in C (codes in Github) and tested in a computer running Ubuntu 16.04 LTS. The Robot Operating System (ROS) must be installed along with the libraries to operate with the Phidget Advanced Servo.

The first step is the creation of workspace delta in your home directory. The ROS-driver publisher (arduino) node and the subscriber (phidget) node have to be placed in the aforementioned workspace. Following this step, the program can be executed.

A terminal is opened and the packages in the delta workspace are built:

- $$ cd \sim /delta$
- \$ catkin_make

The program can be executed in two alternative ways:

1. There is a launch file, that runs automatically the nodes and opens a new terminal where the user can interact and control the movement of the robot. For this option, the user excutes the following command in a terminal:

\$ roslaunch phidget delta.launch

- 2. The alternative option is to execute the nodes manually.
 - In a terminal type:

\$ roscore

• Open a new terminal and run the command:

\$ rosrun arduino arduino

This is the publisher who provides the feedback of the servos and must be executed prior to the launch of the other node.

• Open a new terminal and type the command:

\$ rosrun phidget phidget

This command runs the main node and this is the terminal from which the user interacts with the robot.

When both nodes operate, the robot's software kernel engages its servos and awaits to get its first position command. In the last terminal there is interaction between the robot and the user. The user has the option of either providing the Cartesian coordinates where the robot's bottom (moving) platform is to move, or terminating the program.

If the user selects the first option, three (3) floating numbers (in an consequent manner, one at a time) must be inserted, corresponding to the platform's x, y, z coordinates expressed in meters, shown in Figure 3.1. This continues, until the user terminates the program, in which case the robots moves to its initial position and disengages its servos, shown in Figure 3.2.

Figure 3.1: Delta robot ROS-kernel terminal mode

```
Terminal

dt = 0.0160997

dt = 0.0136639

dt = 0.0141489

dt = 0.0160527

dt = 0.0138077

dt = 0.014168

dt = 0.0162026

dt = 0.0162228

dt = 0.0152928

dt = 0.012423

dt = 0.0129292

dt = 0.0138363

dt = 0.0140026

dt = 0.0140026

dt = 0.0140929

dt = 0.0139365

dt = 0.0140926

dt = 0.0139955

dt = 0.013955

dt = 0.0149959

dt = 0.0160128

Time elapsed = 4.57465 seconds.

For desired point press 1, for exit press anything else:

2

Disengage servos.

Closing...
```

Figure 3.2: Delta robot ROS-kernel termination screen

UPAT Delta Robot Kinematics

4.1 Geometric constraints

From Figure 1.7, the coordinates of the pivoting axes at the upper base and the bottom moving platform can be derived, as:

$${}^{B}\mathbf{B}_{1} = \begin{bmatrix} 0 \\ -w_{B} \\ 0 \end{bmatrix} \qquad {}^{B}\mathbf{B}_{2} = \begin{bmatrix} \frac{\sqrt{3}}{2}w_{B} \\ \frac{1}{2}w_{B} \\ 0 \end{bmatrix} \qquad {}^{B}\mathbf{B}_{3} = \begin{bmatrix} -\frac{\sqrt{3}}{2}w_{B} \\ \frac{1}{2}w_{B} \\ 0 \end{bmatrix}$$
$${}^{P}\mathbf{P}_{1} = \begin{bmatrix} 0 \\ -u_{P} \\ 0 \end{bmatrix} \qquad {}^{P}\mathbf{P}_{2} = \begin{bmatrix} \frac{s_{P}}{2} \\ w_{P} \\ 0 \end{bmatrix} \qquad {}^{P}\mathbf{P}_{3} = \begin{bmatrix} -\frac{s_{P}}{2} \\ w_{P} \\ 0 \end{bmatrix}$$

The coordinates of the moving platform can be computed as

$${B_{i}} + {B_{i}} + {B_{i}} + {B_{i}} = {B_{P}} + {B_{P}} + {B_{P}} + {P_{P}} = {B_{P}} + {P_{P}} = {B_{P}} + {P_{P}} = {B_{P}} + {B_{P}} = {B_{$$

where $\begin{bmatrix} B \\ P \end{bmatrix} = [\mathbf{I}_3]$, since the adopted delta robot configuration does not allow any relative rotation between upper base and the moving platform.

Given, the rotation angles θ_i , i = 1, 2, 3, the length L of the upper legs, the legs' attachment points can be computed

$${}^{B}\mathbf{L}_{1} = \begin{bmatrix} 0 \\ -L\cos\theta_{1} \\ -L\sin\theta_{1} \end{bmatrix} \qquad {}^{B}\mathbf{L}_{2} = \begin{bmatrix} \frac{\sqrt{3}}{2}L\cos\theta_{2} \\ \frac{1}{2}L\cos\theta_{2} \\ -L\sin\theta_{2} \end{bmatrix} \qquad {}^{B}\mathbf{L}_{3} = \begin{bmatrix} -\frac{\sqrt{3}}{2}L\cos\theta_{3} \\ \frac{1}{2}L\cos\theta_{3} \\ -L\sin\theta_{3} \end{bmatrix}$$

Substitution of these expressions to the aforementioned vector-loop closure equations yields:

$${}^{B}\mathbf{I}_{1} = \begin{bmatrix} x \\ y + L\cos\theta_{1} + a \\ z + L\sin\theta_{1} \end{bmatrix} \qquad {}^{B}\mathbf{I}_{2} = \begin{bmatrix} x - \frac{\sqrt{3}}{2}L\cos\theta_{2} + b \\ y - \frac{1}{2}L\cos\theta_{2} + c \\ z + L\sin\theta_{2} \end{bmatrix} \qquad {}^{B}\mathbf{I}_{3} = \begin{bmatrix} x + \frac{\sqrt{3}}{2}L\cos\theta_{3} - b \\ y - \frac{1}{2}L\cos\theta_{3} + c \\ z + L\sin\theta_{3} \end{bmatrix}$$

where: $a = w_B - u_P$, $b = \frac{s_P}{2} - \frac{\sqrt{3}}{2}w_B$, $c = w_P - \frac{1}{2}w_B$. The constrained geometrical equations (due to the robot's structure) can be written, as

$$2L(y+a)\cos\theta_1 + 2zL\sin\theta_1 + x^2 + y^2 + z^2 + a^2 + L^2 + 2ya - l^2 = 0$$
$$-L(\sqrt{3}(x+b) + y + c)\cos\theta_2 + 2zL\sin\theta_2 + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 + 2xb + 2yc - l^2 = 0$$
$$L(\sqrt{3}(x-b) - y - c)\cos\theta_3 + 2zL\sin\theta_3 + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 - 2xb + 2yc - l^2 = 0$$

The absolute vector knee points are found using ${}^{B}\mathbf{A}_{i} = {}^{B}\mathbf{B}_{i} + {}^{B}\mathbf{L}_{i}, i = 1, 2, 3$:

$${}^{B}\mathbf{A}_{1} = \begin{bmatrix} 0 \\ -w_{B} - L\cos\theta_{1} \\ -L\sin\theta_{1} \end{bmatrix} \qquad {}^{B}\mathbf{A}_{2} = \begin{bmatrix} \frac{\sqrt{3}}{2}(w_{B} + L\cos\theta_{2}) \\ \frac{1}{2}(w_{B} + L\cos\theta_{2}) \\ -L\sin\theta_{2} \end{bmatrix} \qquad {}^{B}\mathbf{A}_{3} = \begin{bmatrix} -\frac{\sqrt{3}}{2}(w_{B} + L\cos\theta_{3}) \\ \frac{1}{2}(w_{B} + L\cos\theta_{3}) \\ -L\sin\theta_{3} \end{bmatrix}$$

4.2 Delta Robot Forward Kinematics

The 3 DoF Delta Robot mapping from the three actuated joint angles $\boldsymbol{\theta} = \{\theta_1, \theta_2, \theta_3\}^T$, to the moving platform's center point ${}^B\mathbf{P}_P = \{x \mid y \mid z\}^T$, can easily be computed by tkaing onto account that the moving platform can only be translated with respect to the base. Given the vector knee points ${}^B\mathbf{A}_i$, i = 1, 2, 3, the virtual sphere centers are computed ${}^B\mathbf{A}_{iv} = {}^B\mathbf{A}_i - {}^P\mathbf{P}_i$, i = 1, 2, 3:

$${}^{B}\mathbf{A}_{1v} = \begin{bmatrix} 0 \\ -w_{B} - L\cos\theta_{1} + u_{P} \\ -L\sin\theta_{1} \end{bmatrix}, {}^{B}\mathbf{A}_{2v} = \begin{bmatrix} \frac{\sqrt{3}}{2}(w_{B} + L\cos\theta_{2}) - \frac{s_{P}}{2} \\ \frac{1}{2}(w_{B} + L\cos\theta_{2}) - w_{P} \\ -L\sin\theta_{2} \end{bmatrix}, (4.1)$$

$${}^{B}\mathbf{A}_{3v} = \begin{bmatrix} -\frac{\sqrt{3}}{2}(w_{B} + L\cos\theta_{3}) + \frac{s_{P}}{2} \\ \frac{1}{2}(w_{B} + L\cos\theta_{3}) - w_{P} \\ -L\sin\theta_{3} \end{bmatrix}$$
(4.2)

Let a sphere with center ${}^{B}\mathbf{C}$ and radius r be denoted as $S\left({}^{B}\mathbf{C},r\right)$; then the moving platform's coordinates of its center is derived from the intersection of three spheres, or

$${}^{B}\mathbf{P}_{P} = \bigcap_{i=1,2,3} S\left({}^{B}\mathbf{A}_{iv}, l\right) . \tag{4.3}$$

4.3 Delta Robot Inverse Kinematics

Given that the moving platform is always parallel to the base, the solution to the inverse position kinematics problem can be solved from simple geometric equations, using the constraint equations and the loop closure ones, as:

$$0 = E_{i} \cos \theta_{i} + F_{i} \sin \theta_{i} + G_{i} = 0, i = 1, 2, 3,$$

$$E_{1} = 2L(y+a), \qquad F_{1} = 2zL$$

$$G_{1} = x^{2} + y^{2} + z^{2} + a^{2} + L^{2} + 2ya - l^{2}$$

$$E_{2} = -L(\sqrt{3}(x+b) + y + c), \qquad F_{2} = 2zL$$

$$G_{2} = x^{2} + y^{2} + z^{2} + b^{2} + c^{2} + L^{2} + 2(xb + yc) - l^{2}$$

$$E_{3} = L(\sqrt{3}(x-b) - y - c), \qquad F_{3} = 2zL$$

$$G_{3} = x^{2} + y^{2} + z^{2} + b^{2} + c^{2} + L^{2} + 2(-xb + yc) - l^{2}$$

$$(4.4)$$

Simulation & Experimental Studies

5.1 UPAT Delta Robot simulator in Gazebo

A Gazebo-based simulator for: a) a standalone UPAT Delta arm, and b) an attached arm at the Ascending Technologies Neo UAV has been posted in the group's Github.

The manipulator is assumed to be attached via a 5 cm hollow cylinder at the base of the UAV. This cylinder is primarily used for visualization purposes, and it is up to the designers to decide on the proper attachment method.

Typical screenshots for the: a) the standalone arm, and b) the attached arm to the UAV are presented in Figures 5.1a and 5.1b, respectively.

Figure 5.1: Gazebo simulator for UPatras arm

In Figure 5.2 the difference in the achieved arm's trajectory for a clamped (standalone) arm for the previous trajectory and the one for the same arm coupled to a hovering UAV (Ascending Technology Neo) using its existing controller is provided. The starting, intermediate, and final points are provided in the ensuing section. It is apparent, that the attachment of the manipulator to the UAV causes the motion of the latter resulting in inaccurate end-effector (moving platform) positions.

Figure 5.2: Gazebo UPatras Simulated Trajectory

5.2 Experimental study

In the ensuing experimental study, the robot is commanded to move its "engaged" point to the point $\{0\ ,\, 0.05\ ,\, -0.6\}$, then to the $\{-0.06\ ,\, -0.05\ ,\, -0.57\}$ and final to the $\{0.06\ ,\, -0.05\ ,\, -0.54\}$. The outer loop PID-controller executes throughout this scenario; the robot is assumed to be in the neighborhood of each point if the actual angles measured by the potentiometer are within one degree 1° difference from the desired ones. In the occurrence of such an event, the robot waits the command to go to an another point or to terminate its operation. The selected gains of the PID-controller were computed so as to assure a smooth transition from point-to-point maneuvres without any 'large' overhoots in the event of carrying a payload. The user is encouraged not to alter these gains, despite the rather slow response of the manipulator.

In the sequel, we provide the experimental and simulated (based on direct kinematics) results for the aforementioned trajectory focusing only on the accuracy of the achieved final points.

Experimental Results

X(desired)	Y(desired)	$\mathbf{Z}(\mathbf{desired})$	X(actual)	Y(actual)	Z(actual)
0.00	0.05	-0.60	0.0013	0.0515	-0.5978
-0.06	-0.05	-0.57	-0.0639	-0.0488	-0.5720
0.06	-0.05	-0.54	0.0621	-0.0447	-0.5408

Simulated (Direct Kinematics) Results¹

X(desired)	Y(desired)	Z(desired)	X(simulation)	Y(simulation)	Z(simulation)
0.00	0.05	-0.60	-0.0004	0.0497	-0.6022
-0.06	-0.05	-0.57	-0.0593	-0.0499	-0.5722
0.06	-0.05	-0.54	0.0598	-0.0492	-0.5421

 $^{^{1}}$ The code for the robot's kinematics is include in Appendix A.

The experimental and simulated trajectories of the UPatras' manipulator are presented in Figures 5.3a and 5.3b, for the noted trajectory, respectively.

Figure 5.3: UPatras Fixed Delta Manipulator (Simulation and Experiment)

Appendix A - C code for UPatras Delta Robot Kinematics

• Forward Kinematics

```
double sB = 0.3; double sP = 0.05; double L = 0.2; double 1 = 0.51;
.... ... void ForwardKinematics(double &x, double &y, double &z, double &theta1, double &theta2, double &theta3) {
               double wB = (sqrt(3) / 6)*sB; double uB = (sqrt(3) / 3)*sB; double wP = (sqrt(3) / 6)*sP; double uP = (sqrt(3) / 3)*sP;
               double ur = (sqrt(3) / 3)*sr;
// Points Av
double x1 = 0; double y1 = -wB - L*cos(theta1*pi / 180) + uP; double z1 = -L*sin(theta1*pi / 180);
double x2 = (sqrt(3) / 2)*(wB + L*cos(theta2*pi / 180)) - sP / 2;
double y2 = (wB + L*cos(theta2*pi / 180)) / 2 - wP; double z2 = -L*sin(theta2*pi / 180);
double x3 = -(sqrt(3) / 2)*(wB + L*cos(theta3*pi / 180)) + sP / 2;
double y3 = (wB + L*cos(theta3*pi / 180)) / 2 - wP; double z3 = -L*sin(theta3*pi / 180);
                              == z2 && z1 == z3){
    double a = 2 * (x3 - x1);    double b = 2 * (y3 - y1);
    double c = -pow(x1, 2) - pow(y1, 2) + pow(x3, 2) + pow(y3, 2);
    double d = 2 * (x3 - x2);    double e = 2 * (y3 - y2);
    double f = -pow(x2, 2) - pow(y2, 2) + pow(x3, 2) + pow(y3, 2);
                              x = (c*e - b*f) / (a*e - b*d);

y = (a*f - c*d) / (a*e - b*d);
                               double A = 1; double B = -2 * z1;
                               double C = pow(z1, 2) - pow(1, 2) + pow(x - x1, 2) + pow(y - y1, 2); double z_1 = (-B + sqrt(pow(B, 2) - 4 * A*C)) / (2 * A); double z_2 = (-B - sqrt(pow(B, 2) - 4 * A*C)) / (2 * A);
                              if (z<sub>1</sub> < z<sub>2</sub>){ z = z<sub>1</sub>; }
else { z = z<sub>2</sub>; }
               else if (z1 == z3 \&\& z1 != z2){
                               double a1 = (b2 / a21) - (b1 / a11); double a2 = (a22 / a21) - (a12 / a11); double a3 = (a23 / a21); double a4 = -a3 / a2; double a5 = a1 / a2; double a6 = (-a12*a4) / a11; double a7 = (b1 - a12*a5) / a11;
                               double a = pow(a4, 2) + pow(a6, 2) + 1;
double b = 2 * a6*(a7 - x1) + 2 * a4*(a5 - y1) - 2 * ze;
double c = a7*(a7 - 2 * x1) + a5*(a5 - 2 * y1) + pow(x1, 2) + pow(y1, 2) + pow(ze, 2) - pow(1, 2);
                               double z_1 = (-b + sqrt(pow(b, 2) - 4 * a*c)) / (2 * a); double z_2 = (-b - sqrt(pow(b, 2) - 4 * a*c)) / (2 * a);
                              if (z<sub>1</sub> < z<sub>2</sub>){ z = z<sub>1</sub>; }
else { z = z<sub>2</sub>; }
                              x = a6*z + a7;
y = a4*z + a5;
               double a1 = (a22 / a21) - (a12 / a11); double a2 = (a13 / a11);
double a3 = (b2 / a21) - (b1 / a11); double a4 = a2 / a1; double a5 = a3 / a1;
double a6 = (-a22*a4) / a21; double a7 = (b2 - a22*a5) / a21;
                               double a = pow(a4, 2) + pow(a6, 2) + 1;
double b = 2 * a6*(a7 - x1) + 2 * a4*(a5 - y1) - 2 * z1;
double c = a7*(a7 - 2 * x1) + a5*(a5 - 2 * y1) + pow(x1, 2) + pow(y1, 2) + pow(z1, 2) - pow(1, 2);
                               double z_1 = (-b + sqrt(pow(b, 2) - 4 * a*c)) / (2 * a); double z_2 = (-b - sqrt(pow(b, 2) - 4 * a*c)) / (2 * a);
```

```
if (z_1 < z_2){ z = z_1; }
else { z = z_2; }

x = a6*z + a7; 
y = a4*z + a5;
}

else {

double aii = 2 * (x3 - x1); double ai2 = 2 * (y3 - y1); double ai3 = 2 * (z3 - z1); double ai2 = 2 * (x3 - x2); double a22 = 2 * (y3 - y2); double a23 = 2 * (z3 - z2); double bi = -pov(x1, 2) - pow(y1, 2) - pow(z1, 2) + pow(x3, 2) + pow(y3, 2) + pov(y3, 2); double b2 = -pov(x2, 2) - pow(y2, 2) - pow(z2, 2) + pow(x3, 2) + pow(y3, 2) + pov(x3, 2);

double a1 = (ai1 / ai3) - (a21 / a23); double a2 = (ai2 / ai3) - (a22 / a23); double a3 = (b2 / a23) - (b1 / ai3); double a4 = -a2 / ai; double a5 = -a3 / ai; double a6 = (-a21*a4 - a22) / a23; double a7 = (b2 - a21*a5) / a23;

double a = pow(a4, 2) + pow(a6, 2) + 1; double b = 2 * a4*(a5 - x1) - 2 * y1 + 2 * a6*(a7 - z1); double c = a5*(a5 - 2 * x1) + a7*(a7 - 2 * x1) + pow(x1, 2) + pow(y1, 2) + pow(z1, 2) - pow(1, 2); double y_1 = (-b + sqrt(pow(b, 2) - 4 * a*c)) / (2 * a); double y_2 = (-b - sqrt(pow(b, 2) - 4 * a*c)) / (2 * a); double x_2 = a4*y_2 + a5; double x_1 = a4*y_1 + a5; double x_2 = a4*y_2 + a5; double x_2 = a6*y_2 + a7; if (z_1 < z_2){ x = x_1; y = y_1; z = z_1; } else { x = x_2; y = y_2; z = z_2; } }
}
</pre>
```

• Inverse Kinematics