How to keep it togetheR

List-columns in a dataframe

Marc A.T. Teunis, Ph.D. - Hogeschool Utrecht, Lab. Innovative Testing
Last update: 2019-01-28 14:08:24

Demo for the Utrecht University R Cafe, 28 January 2019

What is R to me?

- Every day go-to for analytics of very different types of data
- Statistical analysis {lme}, {lme4}, {nlme}
- Genomics {DESeq2}, {edgeR}, {limma}, {Glimma}
- Microbiome analysis Bioconductor & qiime2
- Interactivity with {Shiny} and {flexdashboards}
- Reproducibility {rmarkdown}, {bookdown}, {blogdown}
- Tutorials and teaching {learnr}, {reticulate} combine Python & R
- Getting data {plumber}, {getGEO}, {rentrez}
- Text mining {tidytext}, {igraph}, {ggiraph}
- Visualizations {ggplot2}, {tidygraph}, {gganimate}, {tmap}

Content for today

PART I: Starting with List-columns

There is more in this demo than we can cover today

PART II: MORE LIST-COLUMNS (do-it-yourself)

Getting access and materials

Clone the repository to your RStudio Environment from:

Packages

The packages used in this tutorial

```
library(tidyverse)
library(modelr)
library(lubridate)
library(broom)
library(purrr)
library(repurrrsive)
```

Prequisites

See "resources.html" for tips on learning:

- Import data with {readr}
- Tidy data with {tidyr}
- Data wrangling with {dplyr}
- Using lapply() and/or map() for loops
- Visualize data with {ggplot2}

Dataframes and lists are recursive vectors

```
table1 <- tribble(</pre>
                   ~d,
 ~a, ~b, ~c,
      1, TRUE, 1.45,
 "x",
 "y",
      2, FALSE, 3.88,
 "z",
      3, TRUE,
                   33.5
 )
table1
## # A tibble: 3 x 4
##
   a
             bс
                        d
   <chr> <dbl> <lgl> <dbl>
## 1 x 1 TRUE 1.45
             2 FALSE 3.88
## 2 y
## 3 z
             3 TRUE 33.5
is.atomic(table1$a)
## [1] TRUE
```

Column containing a list (in a dataframe)

```
"x",
                     TRUE,
                               1.45,
                                        1:10,
  "y",
            2,
                     FALSE,
                               3.88,
                                        c(TRUE, FALSE),
  "z",
            3,
                     TRUE,
                               33.5,
                                        "Utrecht"
is.list(table2$e)
## [1] TRUE
is.vector(table2$e)
## [1] TRUE
```

Iterate over a dataframe

```
map(table1, class)

## $a
## [1] "character"

##
## $b
## [1] "numeric"

##
## $c
## [1] "logical"

##
## $d
## [1] "numeric"
```

Iterate over a list-column

```
map(table2$e, nchar)

## [[1]]
## [1] 1 1 1 1 1 1 1 1 1 2

##
## [[2]]
## [1] 4 5

##
## [[3]]
## [1] 7
```

Case data

Let's switch to RStudio and open the file:

demo.Rmd

Data origin

Whooping cough outbreaks from The World Health Organization

http://data.euro.who.int/cisid/?TabID=463987

See for variable and data collection also:

http://ecdc.europa.eu/sites/portal/files/documents/Pertussis%20AER.pdf

for more details see file: "load_data.R"

Load the tidy version of the dataset

The code for cleaning and tidying the data is in the file "./load_data.R"

```
source(file = file.path(root,
                         "load_data.R"))
head(pertussis_data_tidy, n = 2)
## # A tibble: 2 x 4
##
       key country year
                               annual_pertussis_cases
##
     <dbl> <chr>
                   <date>
                                                 <int>
         2 Albania 1980-01-01
## 1
                                                    NA
         5 Andorra 1980-01-01
                                                    NA
names(pertussis_data_tidy)
## [1] "key"
                                 "country"
## [3] "year"
                                 "annual_pertussis_cases"
```

Overall trend

Overall mean annual Whooping Cough cases per year

Data for individual countries, over time

Data for only The Netherlands

The Netherlands; Whooping Cough cases

Plot linear model for NL

How can we apply this to every country in the dataset?

Without doing the above 53 times

Split the data by country and apply the model or graphing code to each subset

- In fact, data for each country is a subset of the full dataset
- We can subset the original dataframe into seperate dataframes for each country

List-columns to track your results and models

```
nested_pertussis <- pertussis_data_tidy %>%
  na.omit() %>%
  dplyr::select(country, year, annual_pertussis_cases) %>%
  group_by(country) %>%
   nest()
```

Inspecting the nested dataframes

```
head(nested_pertussis, 2) ## you see the grouping by country
## # A tibble: 2 x 2
## country data
```

```
## <chr> ## 1 Albania <tibble [22 x 2]>
## 2 Armenia <tibble [23 x 2]>
head(nested_pertussis$data[[1]], 2) ## you get the individual country df

## # A tibble: 2 x 2
## year annual_pertussis_cases
## <date> <int>
## 1 1991-01-01 275
## 2 1992-01-01 51
```

Label (name) the idividual elements of the list column

```
names(nested_pertussis$data) <- nested_pertussis$country
head(nested_pertussis$data[1])</pre>
```

```
## $Albania
## # A tibble: 22 x 2
##
     year annual_pertussis_cases
##
      <date>
                                 <int>
## 1 1991-01-01
                                   275
## 2 1992-01-01
                                    51
## 3 1993-01-01
                                   124
## 4 1994-01-01
                                   244
## 5 1995-01-01
                                   136
## 6 1996-01-01
                                   228
## 7 1997-01-01
                                    78
## 8 1998-01-01
                                    24
## 9 1999-01-01
                                    27
## 10 2000-01-01
                                    89
## # ... with 12 more rows
```

Linear model for each country

First we write a function that creates the linear model for one country

```
country_model_lm <- function(df){
  model <- lm(
    annual_pertussis_cases ~ year,
    data = df)
  return(model)
}</pre>
```

Iterate the model function over nested \$data with purrr::map()

```
models <- map(
  nested_pertussis$data, country_model_lm
  )
head(models, 2)</pre>
```

\$Albania

```
##
## Call:
## lm(formula = annual_pertussis_cases ~ year, data = df)
##
## Coefficients:
## (Intercept)
                       year
     356.23325
                  -0.02502
##
##
## $Armenia
##
## Call:
## lm(formula = annual_pertussis_cases ~ year, data = df)
##
## Coefficients:
## (Intercept)
                       year
     297.70414
                   -0.02168
```

Keep it togetheR

- We have the models now
- Better to store them together with the data and the group ('country') info
- By using dplyr::mutate() in conjunction with map()

[map() vs. lapply()]https://stackoverflow.com/questions/45101045/why-use-purrrmap-instead-of-lapply)

Create an additional list-column on the basis of an existing one

Add model summaries as a list-column

Extracting information from a list-column of models; glance() & pluck()

```
nested_pertussis <- nested_pertussis %>%
  mutate(params_lm = map(models_lm, broom::glance)) %>%
  mutate(p_value = map(params_lm, pluck, "p.value"))
nested_pertussis$params_lm[[1]]
## # A tibble: 1 x 11
    r.squared adj.r.squared sigma statistic p.value
                                                        df logLik
                                                                    AIC
##
         <dbl>
                       <dbl> <dbl>
                                    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1
         0.529
                       0.505 58.8
                                        22.4 1.27e-4
                                                         2 -120. 246. 249.
## # ... with 2 more variables: deviance <dbl>, df.residual <int>
nested_pertussis$p_value[[1]] %>% round(6)
## [1] 0.000127
```

Adding a list of plots in a column

A function that creates a graph for a single country

```
plot_line <- function(df, key){</pre>
  model <- lm(</pre>
  annual_pertussis_cases ~ year,
  data = df %>%
    na.omit()
## plot model for NL
plot <- df %>%
  na.omit() %>%
  add_predictions(model) %>%
  ggplot(aes(x = year,
             y = pred)) +
  geom_line() +
  geom_point(
    data = df,
    aes(x = year,
    y = annual_pertussis_cases),
    colour = "red") +
  geom_line(
    data = df %>% na.omit, ## note the pipe to remove NA
    aes(x = year,
        y = annual_pertussis_cases),
    colour = "red",
    linetype = "dashed"
  ggtitle(paste("Linear model for", key %>% as.character()))
  return(plot)
}
```

Iterate plot function over nested data

```
nested_pertussis <- nested_pertussis %>%
 mutate(
   plots_lm = map2(data, country, plot_line)
nested_pertussis
## # A tibble: 52 x 7
##
      country data
                       models_lm models_lm_summa~ params_lm    p_value plots_lm
##
      <chr> <chr> <chr> <chr> <chr> 
                                 <list>
                                                 <list>
                                                            t> <list>
## 1 Albania <tibbl~ <S3: lm> <S3: summary.lm> <tibble [~ <dbl [~ <S3: gg>
## 2 Armenia <tibbl~ <S3: lm> <S3: summary.lm> <tibble [~ <dbl [~ <S3: gg>
## 3 Austria <tibbl~ <S3: lm> <S3: summary.lm> <tibble [~ <dbl [~ <S3: gg>
## 4 Azerbaij~ <tibbl~ <S3: lm> <S3: summary.lm> <tibble [~ <dbl [~ <S3: gg>
## 5 Belarus <tibbl~ <S3: lm> <S3: summary.lm> <tibble [~ <dbl [~ <S3: gg>
## 6 Belgium <tibbl~ <S3: lm> <S3: summary.lm> <tibble [~ <dbl [~ <S3: gg>
## 7 Bosnia a~ <tibbl~ <S3: lm> <S3: summary.lm> <tibble [~ <dbl [~ <S3: gg>
## 8 Bulgaria <tibbl~ <S3: lm> <S3: summary.lm> <tibble [~ <dbl [~ <S3: gg>
## 9 Croatia <tibbl~ <S3: lm> <S3: summary.lm> <tibble [~ <dbl [~ <S3: gg>
## 10 Cyprus
               <tibbl~ <S3: lm> <S3: summary.lm> <tibble [~ <dbl [~ <S3: gg>
## # ... with 42 more rows
```

Name elements in the list-column

```
names(nested_pertussis$plots_lm) <- nested_pertussis$country</pre>
```

Show a plot

Linear model for Belarus

Panel of plots

Consider this

Imagine you are writing/using a function to loop over data or models in a list-(column) with map() or lapply, but it throws an ERROR half way through the list, stopping the loop

How would you solve this?

The answer is PART II below

Learn more?

'Managing many models with R' by Hadley Wickham - Lecture https://www.youtube.com/watch?v=rz3_ FDVt9eg

'R for Data Science' by Garret Grolemund & Hadley Wickham https://r4ds.had.co.nz/ Especially chapters: 21 - https://r4ds.had.co.nz/iteration.html 25 - https://r4ds.had.co.nz/many-models.html

PART II; Extracting more information from a list column

ADVANCED

For another day...

Looking at quantative statistical measures for model quality

```
r_squared <- nested_pertussis %>%
  dplyr::filter(country != "Monaco") %>% ## remove Monaco (incomplete data)
  mutate(glance = map(models_lm, broom::glance)) %>%
  unnest(glance, drop = TRUE) %>%
  select(country, r.squared, AIC, BIC) %>%
  arrange(r.squared)
```

Plotting r.sqared values

Plotting pertussis cases for countries with low r.squared over time

- 1. Filter countries with r.squared <=0.25
- 2. Put countries in vector
- 3. Plot data

Step 1

```
low_r_squared <- r_squared %>%
  dplyr::filter(r.squared <= 0.25) %>%
  dplyr::select(country)
low_r_squared <- low_r_squared$country</pre>
```

Step 2

```
low_r_squared_nested <- nested_pertussis %>%
  dplyr::filter(country %in% low_r_squared) %>%
  select(country, data) %>%
  unnest()
```

Step 3

What is happening to the pertussis vaccination grade over the past 8 years?

Store ggplot2 objects in a list-column

- 1. Create a function that makes the plot
- 2. Test function on single dataframe
- 3. Apply the function using mutate() and map() to all dataframes or models

Apply plotting function to nested data

Add countries as names to new list-column

```
names(nested_pertussis$plots_cases_over_time) <-
   c(nested_pertussis$country)

nested_pertussis$plots_cases_over_time[1]</pre>
```

\$Albania

Pull out "The Netherlands"

Plotting a panel of 4 graphs

Armenia

Austria

Ukraine

Netherlands

Literature

For some background on the pattern we are seeing

- https://www.scientificamerican.com/article/why-whooping-cough-vaccines-are-wearing-off/
- http://outbreaknewstoday.com/pertussis-cases-up-significantly-in-the-eu-netherlands-and-uk-worst-hit-55315/

Exploring many more models

Let's add a quadratic model in the mix. Assume we want to explore non-linear relationships in this dataset non_linear_model <- function(df, model_params){

Creating a safe version of this function

Test function on one country

```
test_non_linear %>% broom::glance()
## # A tibble: 1 x 11
##
    r.squared adj.r.squared sigma statistic p.value
                                                       df logLik
                                                                   AIC
##
                      <dbl> <dbl>
                                      <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
        <dbl>
        0.607
                      0.566 55.0
                                       14.7 1.39e-4
                                                        3 -118.
## 1
## # ... with 2 more variables: deviance <dbl>, df.residual <int>
```

Apply model to all countries

We rerun the steps above to add this new model and new graphs to the nested dataframe

Add new model to the nested table

Set names to elements in the list-column

```
To be able to pluck() by name later
```

```
names(nested_pertussis$models_nl_2$result) <- nested_pertussis$country</pre>
```

Pluck results in new list-column

```
nested_pertussis$models_nl_2$result[[1]] %>% summary

##
## Call:
## lm(formula = annual_pertussis_cases ~ poly(year, model_params),
## data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -135.782 -19.621 -3.885 7.188 114.303
##
```

```
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
                               67.50
## (Intercept)
                                          11.73 5.753 1.52e-05 ***
## poly(year, model_params)1 -278.33
                                          55.03 -5.057 7.00e-05 ***
## poly(year, model_params)2
                              107.53
                                          55.03
                                                  1.954
                                                         0.0656 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 55.03 on 19 degrees of freedom
## Multiple R-squared: 0.6074, Adjusted R-squared: 0.5661
## F-statistic: 14.7 on 2 and 19 DF, p-value: 0.0001389
nested_pertussis <- nested_pertussis %>%
 mutate(statistics_nl = pluck(models_nl_2, "result"))
nested_pertussis$statistics_nl[[1]] %>% summary
##
## Call:
## lm(formula = annual_pertussis_cases ~ poly(year, model_params),
      data = df)
##
## Residuals:
       Min
                    Median
                 1Q
                                   3Q
                                           Max
## -135.782 -19.621 -3.885
                                7.188 114.303
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                               67.50
                                          11.73 5.753 1.52e-05 ***
                                          55.03 -5.057 7.00e-05 ***
## poly(year, model_params)1 -278.33
## poly(year, model_params)2
                                          55.03
                                                  1.954
                                                         0.0656 .
                              107.53
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 55.03 on 19 degrees of freedom
## Multiple R-squared: 0.6074, Adjusted R-squared: 0.5661
## F-statistic: 14.7 on 2 and 19 DF, p-value: 0.0001389
```

Tidy the list-column with {broom}

```
nested_pertussis <- nested_pertussis %>%
  mutate(parameters_nl = map(statistics_nl, glance))
```

Looking at quantative statistical measures for model quality

```
r_squared_nl <- nested_pertussis %>%
select(country, parameters_nl) %>%
unnest()
```

Plotting r.sqared values

Let's examine two models for two countries where the non-linear did and did not not improve the R.squared: Ireland (improved) and Belgium (not-improved)

```
x <- nested_pertussis %>%
  select(country,
          data,
          models_lm,
          statistics nl) %>%
  gather(models_lm:statistics_nl, key = "models", value = "model_params") %>%
print()
## # A tibble: 104 x 4
##
      country
                                data
                                                    models model_params
##
      <chr>>
                                st>
                                                    <chr> <chr>
## 1 Albania
                                <tibble [22 x 2]> models_lm <S3: lm>
                                <tibble [23 x 2]> models_lm <S3: lm>
## 2 Armenia
                           <tibble [22 x 2] > models_lm <S3: lm>
<tibble [23 x 2] > models_lm <S3: lm>
<tibble [23 x 2] > models_lm <S3: lm>
<tibble [22 x 2] > models_lm <S3: lm>
## 3 Austria
## 4 Azerbaijan
## 5 Belarus
                                <tibble [22 x 2]> models_lm <S3: lm>
## 6 Belgium
                                <tibble [21 x 2]> models_lm <S3: lm>
## 7 Bosnia and Herzegovina <tibble [19 x 2]> models_lm <S3: lm>
                               <tibble [22 x 2]> models_lm <S3: lm>
## 8 Bulgaria
## 9 Croatia
                                <tibble [23 x 2]> models_lm <S3: lm>
## 10 Cyprus
                                <tibble [23 x 2]> models lm <S3: lm>
## # ... with 94 more rows
```

Remove 'empty model'

```
ind <- x$model_params == "NULL"
#ind <- x$data == "NULL"
x <- x[!ind, ]</pre>
```

Add prediction-list column

Set names

```
names(predictions$predictions) <- predictions$country</pre>
```

Belgium

Ireland

Learn more?

To practice with more examples have a look at

```
source(file = file.path(root, "R", "render_help.R"))
help_console(topic = "repurrrsive")
help_console(topic = "purrr")
```

Disclaimer & Licence

The work presented here may be shared, remixed or adapted as long as the original references and the authors of this document are mentioned in the redistribution: LICENCE: CC BY-SA

Credits

Much of this material has been derived in one way or the other from the work of Hadley Wickham and Garret Grolemund and many others. For a more elaborate reference list see the resources.Rmd file in the project root.

Thanks to Hadley & Garret for writing the book "R for Data Science" http://r4ds.had.co.nz/ and for their work in general to innovate the R world.

Work on integration of Git/Github with R/RStudio is thoroughly and wit-fully documented by Jenny Brian. I also very much appreciate her work on the use of RMarkdown and thanks for pointing me into the direction of using the rprojroot package (CSAMA Course 2016). See also:

https://github.com/jennybc/happy-git-with-r & http://stat545.com/block007_first-use-rmarkdown.html