Technische Universität Berlin

Fakultät II – Institut für Mathematik Hoffmann/Karow/Scheutzow WS 07/08 7. April 2008

April – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:	Vorna	me:			• • • • • •	
MatrNr.:	Studi	engang	:			
Neben einem handbeschriebenen A4 lazugelassen.	Blatt r	nit No	tizen s	ind ke	ine Hil	fsmittel
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht ge			_	ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die Ver Rechenaufwand mit den Kenntnissen a wenn nichts anderes gesagt ist, immer	aus der	Vorles	sung lö	sbar se	in. Gel	_
Die Bearbeitungszeit beträgt eine Stu	nde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 12				,	•	
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe 8 Punkte

Welche der folgenden Aussagen sind wahr, welche sind falsch? Notieren Sie Ihre Lösungen **ohne** Begründung auf einem separaten Blatt. Für eine richtige Antwort bekommen Sie einen Punkt, für eine falsche verlieren Sie einen Punkt. Die minimale Punktzahl dieser Aufgabe beträgt 0.

- a) Die Vereinigung zweier offener Mengen ist eine offene Menge.
- b) Lineare Abbildungen von \mathbb{R}^n nach \mathbb{R}^m sind stetig.
- c) Stetige Funktionen auf Mengen, die weder offen noch abgeschlossen sind, haben niemals Maximalstellen.
- d) Der Gradient einer differenzierbaren Funktion $v: \mathbb{R}^3 \to \mathbb{R}$ ist immer eine positive Zahl.
- e) Extrema unter Nebenbedingungen sind immer strikt.
- f) Der Rand des Einheitskreises ist eine glatte Kurve.
- g) Das Kurvenintegral eines Potentialfeldes über eine geschlossene Kurve ist immer 0.
- h) Die Oberfläche der Einheitskugel ist konvex.

2. Aufgabe 7 Punkte

Gegeben sei die Funktion $h: [-1,1] \times]-1,1] \to \mathbb{R}, h(x,y) = \frac{1}{y+1}$.

- a) Ist h auf $[-1,1] \times]-1,1]$ stetig?
- b) Zeigen Sie, dass h keine Maximalstelle unter der Nebenbedingung $g(x,y) = x^2 + y^2 1 = 0$ hat.

3. Aufgabe 9 Punkte

- a) Geben Sie für den in der xy-Ebene liegenden Viertelkreis $\vec{\gamma}$ mit Radius 1 und Anfangspunkt (0,1,0) sowie Endpunkt (-1,0,0) eine Parametrisierung an.
- b) Gegeben sei das Vektorfeld $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$, $\vec{v}(x,y,z) = (1,0,0)^T$ und $\vec{\beta}$ die direkte Verbindungsstrecke von (0,1,0) nach (-1,0,0). Begründen Sie, weshalb

$$\int_{\vec{\gamma}} \vec{v} \cdot \, \vec{ds} = \int_{\vec{\beta}} \vec{v} \cdot \, \vec{ds}$$

gilt.

c) Berechnen Sie $\int_{\vec{\beta}} \vec{v} \cdot \vec{ds}$.

4. Aufgabe 8 Punkte

Gegeben sei ein Vektorfeld $\vec{v}:\mathbb{R}^3\to\mathbb{R}^3$ mit stetigen partiellen Ableitungen und rot $\vec{v}(x,y,z)=\vec{0}$ für $z\leq \frac{1}{2}$. F sei der Teil der Oberfläche der halben Einheitskugel mit $z\geq 0$ und Mittelpunkt (0,0,0) (ohne Boden). Nutzen Sie den Satz von Stokes um zu zeigen, dass

$$\iint_{F} \operatorname{rot} \vec{v} \cdot d\vec{O} = 0$$

gilt. Warum dürfen Sie den Satz von Stokes anwenden?

5. Aufgabe 8 Punkte

Geben Sie jeweils ein Beispiel ohne Begründung für

- a) eine nicht konvergente Folge \vec{a}_n im \mathbb{R}^3 ,
- b) eine differenzierbare Funktion $g: \mathbb{R}^2 \to \mathbb{R}$ und ihre Ableitungsmatrix,
- c) eine Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit striktem globalem Minimum in (0,0),
- d) eine Kurve der Länge 1 in \mathbb{R}^2 ,

an.