CS 516: COMPILERS

Lecture 12

Topics

- Parsing (finding derivations in a grammar)
 - LR Grammars
 - Shift/Reduce parsing
 - LR(0) Grammars
 - Menhir

LR GRAMMARS

- LR(k) parser:
 - Left-to-right scanning
 - Rightmost derivation
 - k lookahead symbols

- LR(k) parser:
 - Left-to-right scanning
 - Rightmost derivation
 - k lookahead symbols
- LR grammars are more expressive than LL
 - Can handle left-recursive (and right recursive) grammars; virtually all programming languages
 - Easier to express programming language syntax (no left factoring)

- LR(k) parser:
 - Left-to-right scanning
 - Rightmost derivation
 - k lookahead symbols
- LR grammars are more expressive than LL
 - Can handle left-recursive (and right recursive) grammars; virtually all programming languages
 - Easier to express programming language syntax (no left factoring)
- Technique: "Shift-Reduce" parsers
 - Work bottom up instead of top down
 - Construct right-most derivation of a program in the grammar
 - Preferred Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.)
 - Better error detection/recovery

 Consider the leftrecursive grammar:

$$S \mapsto S + E \mid E$$

 $E \mapsto \text{number} \mid (S)$

- (1+2+(3+4))+5
- What part of the tree must we know after scanning just "(1 + 2"?
- In top-down, must be able to guess which productions to use...

 Consider the leftrecursive grammar:

$$S \mapsto S + E \mid E$$

 $E \mapsto \text{number} \mid (S)$

- (1+2+(3+4))+5
- What part of the tree must we know after scanning just "(1 + 2"?
- In top-down, must be able to guess which productions to use...

Reduces a string to the start symbol by inverting productions.

Token Stream	Production
int * int + int	T → int
int * T + int	T → int * T
T + int	T → int
T + T	E →T
T + E	E →T + E
E	

$$E \mapsto T + E \mid T$$
 $T \mapsto int * T \mid int \mid (E)$

Reduces a string to the start symbol by inverting productions.

input string:

Token Stream

int * int + int

$$T \mapsto int$$

int * T + int

 $T \mapsto int * T$
 $T \mapsto int$
 $T \mapsto int$
 $T \mapsto int$
 $T \mapsto T$
 $T \mapsto T$

$$E \mapsto T + E \mid T$$
 $T \mapsto int * T \mid int \mid (E)$

• **Reduces** a string to the start symbol by **inverting** productions.

	Token Stream	Production
input string:	int * int + int	T →int
	int * T + int	T → int * T
	T + int	T → int
	T + T	E ⊷T
	T + E	E →T + E
start symbol:	E	

$$E \mapsto T + E \mid T$$
 $T \mapsto int * T \mid int \mid (E)$

Reduces a string to the start symbol by inverting productions.

	Token Stream Ran the pro-	duction backwards)n
input string:	int * int + int	T → int
	int * T + int	T → int * T
	T + int	T → int
	T + T	E ⊷T
	T + E	E →T + E
start symbol:	E	

$$E \mapsto T + E \mid T$$
 $T \mapsto int * T \mid int \mid (E)$

• Reduces a string to the start symbol by inverting productions.

		, ,
	Token Stream Ran the production	backwards)n
input string:	int * int + int	T → int
	int * T + int	T → int * T
	T + int	T → int
	T + T	E ⊷T
	T + E	E
start symbol:	E	

$$E \mapsto T + E \mid T$$
 $T \mapsto int * T \mid int \mid (E)$

Reduces a string to the start symbol by inverting productions.

$$E \mapsto T + E \mid T$$
 $T \mapsto int * T \mid int \mid (E)$

Reduces a string to the start symbol by inverting productions.

	Token Stream	Production
input string:	int * int + int	T → int
	int * T + int	T → int * T
	T + int	T → int
	T + T	E ⊷T
	T + E	E →T + E
start symbol:	E	

$$E \mapsto T + E \mid T$$
 $T \mapsto int * T \mid int \mid (E)$

Reduces a string to the start symbol by inverting productions.

 $E \mapsto T + E \mid T$ $T \mapsto int * T \mid int \mid (E)$

Reduces a string to the start symbol by inverting productions.

$$E \mapsto T + E \mid T$$
 $T \mapsto int * T \mid int \mid (E)$

• The productions, read backwards, trace a rightmost derivation

Token Stream	Production
int * int + int	T → int
int * T + int	T → int * T
T + int	T → int
T + T	E ⊷T
T + E	E →T + E
E	

• The productions, read backwards, trace a rightmost derivation

Token Stream		Production
int * int + int	1	T → int
int * T + int		T → int * T
T + int	parsi	T → int
T + T	ng	E →T
T + E		E
E		

The productions, read backwards, trace a rightmost derivation

Rightmost nonterminal is expanded

- Important Fact #1:
 - A bottom-up parser traces a rightmost derivation in reverse.

int	*	int	+	int
int	*	Т	+	int
T +	ir	nt		
T +	Т			
T +	Ε			
E				

- Important Fact #1:
 - A bottom-up parser traces a rightmost derivation in reverse.

```
int * int + int
```

int * int + int

- Important Fact #1:
 - A bottom-up parser traces a rightmost derivation in reverse.

- Important Fact #1:
 - A bottom-up parser traces a rightmost derivation in reverse.

- Important Fact #1:
 - A bottom-up parser traces a rightmost derivation in reverse.

- Important Fact #1:
 - A bottom-up parser traces a rightmost derivation in reverse.

int	*	int	+	int
int	*	Т	+	int
T +	ir	nt		
T +	Т			
T +	E			

- Important Fact #1:
 - A bottom-up parser traces a rightmost derivation in reverse.

int	*	int	+	int
int	*	Т	+	int
T +	ir	nt		
T +	Т			
T +	Ε			
E				

SHIFT REDUCE PARSING

- Important Fact #1:
 - A bottom-up parser traces a rightmost derivation in reverse.

- Consequences:
 - Let $\alpha\beta\omega$ be a step of a bottom-up parse
 - Assume the next reduction is by $X \mapsto \beta$
 - Then ω is a string of terminals
- Why?
 - Because $\alpha X \omega \mapsto \alpha \beta \omega$ is a step in a right-most derivation

αΧω

terminals & nonterminals

rightmost nonterminal terminals only

unexamined input

- Idea: split string into two substrings:
 - Right substring is as yet unexamined by parsing
 - Left substring has terminals and non-terminals
 - The dividing point is marked by a "|"

- Bottom-up parsing uses only two kinds of actions:
- **Shift**: Move | one place to the right
 - Shifts a terminal to the left string

ABC
$$xyz \Rightarrow ABCx yz$$

- **Reduce**: Apply an inverse production at the right end of the left string
 - If A→xy is a production, then

int * int + int	reduce T → int
int * T + int	reduce T → int * T
T + int	reduce T → int
T + T	reduce E → T
T + E	reduce E → T + E
E	

int * int + int	shift
int * int + int	shift
int * int + int	shift
int * int + int	reduce $T \mapsto int$
int * T + int	reduce $T \mapsto int * T$
T + int	shift
T + int	shift
T + int	reduce $T \mapsto int$
T + T	reduce E → T
T + E	reduce E → T + E
E	

int * int + int

int * int + int

int * int + int

```
|int * int + int
int | * int + int
int * | int + int
int * int | + int
```

```
int * int + int
```

```
|int * int + int
int | * int + int
int * | int + int
int * int | + int
```

```
|int * int + int
int | * int + int
int * | int + int
int * int | + int
int * T | + int
```

```
|int * int + int
int | * int + int
int * | int + int
int * int | + int
int * T | + int
```



```
|int * int + int
int | * int + int
int * | int + int
int * | int | + int
int * int | + int
Int * T | + int
T | + int
```



```
|int * int + int
int | * int + int
int * | int + int
int * | int | + int
int * int | + int
Int * T | + int
T | + int
```



```
int * int + int
int | * int + int
int * | int + int
int * int | + int
int * T | + int
T | + int
T + | int
T + int
```



```
int * int + int
int | * int + int
int * | int + int
int * int | + int
int * T | + int
T | + int
T + | int
T + int
T + T
T + E
E
```


IMPLEMENTING SHIFT/REDUCE

- Parser state:
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input
- $S \mapsto S + E \mid E$ $E \mapsto \text{number} \mid (S)$
- Parsing is a sequence of shift and reduce operations:
- Shift: move look-ahead token to the stack
- Reduce: Replace symbols γ at top of stack with nonterminal X such that $X \mapsto \gamma$ is a production. (pop γ , push X)

<u>Stack</u>	<u>Input</u>	<u>Action</u>
	(1+2+(3+4))+5	shift (
(1 + 2 + (3 + 4)) + 5	shift 1
(1	+2+(3+4))+5	reduce: E → number
(E	+2+(3+4))+5	reduce: $S \mapsto E$
(S	+2+(3+4))+5	shift +
(S +	2 + (3 + 4)) + 5	shift 2
(S + 2)	+(3+4))+5	reduce: E → number

Simple LR parsing with no look ahead.

LR(0) GRAMMARS

LR Parser States

- Goal: know what set of reductions are legal at any given point.
- Idea: Summarize all possible stack prefixes α as a finite parser state.
 - Parser state is computed by a DFA that reads the stack σ .
 - Accept states of the DFA correspond to unique reductions that apply.
- Example: LR(0) parsing
 - Left-to-right scanning, Right-most derivation, zero look-ahead tokens
 - Too weak to handle many language grammars (e.g. the "sum" grammar)
 - But, helpful for understanding how the shift-reduce parser works.

Example LR(0) Grammar: Tuples

Example grammar for non-empty tuples and identifiers:

$$S \mapsto (L) \mid id$$

 $L \mapsto S \mid L, S$

- Example strings:
 - X
 - -(x,y)
 - -((((x))))
 - (x, (y, z), w)
 - (x, (y, (z, w)))

Parse tree for: (x, (y, z), w)

Example: Shift/Reduce Parsing of Tuples

- Parser state:
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input
- Parsing is a sequence of shift and reduce operations:
- Shift: move look-ahead token to the stack: e.g.

<u>Stack</u>	<u>Input</u>	<u>Action</u>
	(x, (y, z), w)	shift (
(x, (y, z), w)	shift x

• Reduce: Replace symbols γ at top of stack with nonterminal X such that $X \mapsto \gamma$ is a production. (pop γ , push X): e.g.

<u>Stack</u>	<u>Input</u>	<u>Action</u>
(x	, (y, z), w)	reduce S → id
(S	, (y, z), w)	reduce $L \mapsto S$

 $S \mapsto (L) \mid id$

 $L \mapsto S \mid L, S$

Example: Run

Stack	Input	Action
	(x, (y, z), w)	shift (
(x, (y, z), w)	shift x
(x	, (y, z), w)	$reduce\ S \mapsto id$
(S	, (y, z), w)	$reduce \ L \longmapsto S$
(L	, (y, z), w)	shift ,
(L,	(y, z), w)	shift (
(L, (y, z), w)	shift y
(L, (y	, z), w)	$reduce\ S \mapsto id$
(L, (S	, z), w)	$reduce \ L \longmapsto S$
(L, (L	, z), w)	shift ,
(L, (L,	z), w)	shift z
(L, (L, z), w)	$reduce\ S \mapsto id$
(L, (L, S), w)	reduce $L \mapsto L$, S
(L, (L), w)	shift)
(L, (L)	, w)	reduce $S \mapsto (L)$
(L, S	, w)	reduce $L \mapsto L$, S
(L	, w)	shift ,
(L,	w)	shift w
(L, w)	$reduce \; S \mapsto id$
(L, S)	reduce $L \mapsto L$, S
(L 16: Compile	rs (via UPenn ⁾ 341)	shift)
(L)	(1121 01 01)	reduce $S \mapsto (L)$

 $S \mapsto (L) \mid id$ $L \mapsto S \mid L, S$

Action Selection Problem

- Given a stack σ and a look-ahead symbol b, should the parser:
 - Shift b onto the stack (new stack is σ b)
 - Reduce a production $X \mapsto \gamma$, assuming that $\sigma = \alpha \gamma$ (new stack is αX)?
- Sometimes the parser can reduce but shouldn't
 - For example, $X \mapsto \varepsilon$ can always be reduced
- Sometimes the stack can be reduced in different ways
- Main idea: decide what to do based on a *prefix* α of the stack plus the look-ahead symbol.
 - The prefix α is different for different possible reductions since in productions $X \mapsto \gamma$ and $Y \mapsto \beta$, γ and β might have different lengths.
- Main goal: know what set of reductions are legal at any point.
 - How do we keep track?

LR(0) States

- An LR(0) *state* is a *set* of *items* keeping track of progress on possible upcoming reductions.
- An LR(0) item is a production from the language with an extra separator "." somewhere in the right-hand-side

$$S \mapsto (L) \mid id$$

 $L \mapsto S \mid L, S$

- Example *items*: $S \mapsto \bullet(L)$ or $S \mapsto (\bullet L)$ or $L \mapsto S \bullet$
- Intuition:
 - Stuff before the '•' is already on the stack (beginnings of possible γ's to be reduced)
 - Stuff after the '•' is what might be seen next
 - The prefixes α are represented by the state itself

Constructing the DFA: Start state & Closure

- First step: Add a new production $S' \mapsto S$ \$ to the grammar
- Start state of the DFA = empty stack, so it contains the item:

$$S' \longrightarrow \bullet S$$
\$

- Closure of a state:
 - Adds items for all productions whose LHS nonterminal occurs in an item in the state just after the '•'
 - The added items have the '•' located at the beginning (no symbols for those items have been added to the stack yet)
 - Note that newly added items may cause yet more items to be added to the state... keep iterating until a fixed point is reached.
- Example: $CLOSURE(\{S' \mapsto \bullet S\}\}) = \{S' \mapsto \bullet S\}, S \mapsto \bullet(L), S \mapsto \bullet id\}$
- Resulting "closed state" contains the set of all possible productions that might be reduced next.

$$S' \mapsto S\$$$

 $S \mapsto (L) \mid id$
 $L \mapsto S \mid L, S$

• First, we construct a state with the initial item $S' \mapsto \bullet S$ \$

$$S' \mapsto S$$

 $S \mapsto (L) \mid id$
 $L \mapsto S \mid L, S$

- Next, we take the closure of that state: $CLOSURE(\{S' \mapsto \bullet S\}\}) = \{S' \mapsto \bullet S\}, S \mapsto \bullet (L), S \mapsto \bullet id\}$
- In the set of items, the nonterminal S appears after the '•'
- So we add items for each S production in the grammar

$$S' \mapsto S$$

 $S \mapsto (L) \mid id$
 $L \mapsto S \mid L, S$

- Next we add the transitions:
- First, we see what terminals and nonterminals can appear after the '•' in the source state.
 - Outgoing edges have those label.
- The target state (initially) includes all items from the source state that have the edge-label symbol after the '•', but we advance the '•' (to simulate shifting the item onto the stack)


```
S' \mapsto S

S \mapsto (L) \mid id

L \mapsto S \mid L, S
```

- Finally, for each new state, we take the closure.
- Note that we have to perform two iterations to compute $CLOSURE(\{S \mapsto (\bullet L)\})$
 - First iteration adds $L \mapsto \bullet S$ and $L \mapsto \bullet L$, S
 - Second iteration adds $S \mapsto \bullet(L)$ and $S \mapsto \bullet id$

 $S' \mapsto S_{\bullet} \$$

Full DFA for the Example

Full DFA for the Example

Full DFA for the Example

Using the DFA

- Run the parser stack through the DFA.
- The resulting state tells us which productions might be reduced next.
 - If not in a reduce state, then shift the next symbol and transition according to DFA.
 - If in a reduce state, $X \mapsto \gamma$ with stack $\alpha \gamma$, pop γ and push X.
- Optimization: No need to re-run the DFA from beginning every step
 - Store the state with each symbol on the stack: e.g. $_1(_3(_3L_5)_6)$
 - On a reduction $X \mapsto \gamma$, pop stack to reveal the state too: e.g. From stack $_1(_3(_3L_5)_6)$ reduce $S \mapsto (L)$ to reach stack $_1(_3)$
 - Next, push the reduction symbol: e.g. to reach stack ₁(₃S
 - Then take just one step in the DFA to find next state: $_{1}(_{3}S_{7})$

Implementing the Parsing Table

Represent the DFA as a table of shape:

state * (terminals + nonterminals)

- Entries for the "action table" specify two kinds of actions:
 - Shift and goto state n
 - Reduce using reduction $X \mapsto \gamma$
 - First pop γ off the stack to reveal the state
 - Look up X in the "goto table" and goto that state

Example Parse Table

	()	id	,	\$	S	L
1	s3		s2			g4	
2	S⊷id	S⊷id	S⊷id	S⊷id	S⊷id		
3	s3		s2			g7	g5
4					DONE		
5		s6		s8			
6	$S \mapsto (L)$	$S \longmapsto (L)$	$S \longmapsto (L)$	$S \longmapsto (L)$	$S \longmapsto (L)$		
7	$L \mapsto S$	$L \longmapsto S$	$L \longmapsto S$	$L \longmapsto S$	$L \longmapsto S$		
8	s3		s2			g9	
9	L → L,S	$L \mapsto L,S$	$L \mapsto L,S$	$L \mapsto L,S$	$L \mapsto L,S$		

sx = shift and goto state xgx = goto state x

Example

Parse the token stream: (x, (y, z), w)\$

Stack	Stream
$\mathbf{\epsilon}_1$	(x, (y, z), w)\$
$\varepsilon_1(_3)$	x, (y, z), w)\$
$\varepsilon_1(_3x_2)$, (y, z), w)\$
$\varepsilon_1({}_3S$, (y, z), w)\$
$\varepsilon_1 ({}_3S_7$, (y, z), w)\$
$\varepsilon_1(_3L$, (y, z), w)\$
$\varepsilon_1(_3L_5$, (y, z), w)\$
$\varepsilon_1 (_3 L_{5'8})$	(y, z), w)\$
$\varepsilon_1 (_3 L_{5'8} (_3$	y, z), w)\$

Action (according to table)		
s3		
s2		
Reduce: S⊷id		
g7 (from state 3 follow S)		
Reduce: L→S		
g5 (from state 3 follow L)		

LR(0) Limitations

- An LR(0) machine only works if states with reduce actions have a *single* reduce action.
 - In such states, the machine always reduces (ignoring lookahead)
- With more complex grammars, the DFA construction will yield states with shift/reduce and reduce/reduce conflicts:
 OK shift/reduce reduce/reduce

$$S \mapsto (L).$$

$$S \longmapsto (L).$$

 $L \longmapsto .L, S$

$$S \mapsto L$$
, S . $S \mapsto S$.

 Such conflicts can often be resolved by using a look-ahead symbol: LR(1)

Examples

Consider the left associative and right associative "sum" grammars:

left right

$$S \mapsto S + E \mid E$$

 $E \mapsto \text{number} \mid (S)$

$$S \mapsto E + S \mid E$$

 $E \mapsto number \mid (S)$

- One is LR(0) the other isn't... which is which and why?
- What kind of conflict do you get? Shift/reduce or Reduce/reduce?
- Ambiguities in associativity/precedence usually lead to shift/reduce conflicts.

SLR(1): "simple" LR(1) Parsers

- What conflicts are there in LR(0) parsing?
 - reduce/reduce conflict: an LR(0) state has two reduce actions
 - shift/reduce conflict: an LR(0) state mixes reduce and shift actions
- Can we use lookahead to disambiguate?
- SLR(1) uses the same DFA construction as LR(0)
 - modifies the actions based on lookahead
- Suppose reducing nonterminal A is possible in some state:
 - compute Follow(A) for the given grammar
 - if the lookahead symbol is in Follow(A), then reduce, otherwise shift
 - can disambiguate between reduce/reduce conflicts if the follow sets are disjoint

SLR(1): Simple LR(1) Parsers

- SLR parsing is a simple refinement of LR(0). We can do more.
- Algorithm is similar to LR(0) DFA construction:
 - LR(1) state = set of LR(1) items
 - An LR(1) item is an LR(0) item + a set of look-ahead symbols:

$$A \mapsto \alpha.\beta$$
 , \mathcal{L}

- LR(1) closure is a little more complex:
- Form the set of items just as for LR(0) algorithm.
- Whenever a new item $C \mapsto .\gamma$ is added because $A \mapsto \beta.C\delta$, \mathcal{L} is already in the set, we need to compute its look-ahead set \mathcal{M} :
 - 1. The look-ahead set $\mathfrak M$ includes FIRST(δ) (the set of terminals that may start strings derived from δ)
 - 2. (*Propagate*) If δ is or can derive ϵ (i.e. it is nullable), then the look-ahead $\mathcal M$ also contains $\mathcal L$

$$S' \mapsto S$$

 $S \mapsto E + S \mid E$
 $E \mapsto \text{number} \mid (S)$

$$S' \mapsto S$$

 $S \mapsto E + S \mid E$
 $E \mapsto \text{number} \mid (S)$

• Start item: $S' \mapsto .S$ \$, {}

$$S' \mapsto S$$

 $S \mapsto E + S \mid E$
 $E \mapsto \text{number} \mid (S)$

- Start item: $S' \mapsto .S$ \$, {}
- Since S is to the right of a '.', add:

```
S \mapsto .E + S , \{\$\} Note: \{\$\} is FIRST(\$) S \mapsto .E , \{\$\}
```

$$S' \mapsto S$$

 $S \mapsto E + S \mid E$
 $E \mapsto \text{number} \mid (S)$

- Start item: $S' \mapsto .S$ {}
- Since S is to the right of a '.', add:

$$S \mapsto .E + S$$
 , $\{\$\}$
 $S \mapsto .E$, $\{\$\}$

Note. {\$} is FIRST(\$)

$$S' \mapsto S$$

 $S \mapsto E + S \mid E$
 $E \mapsto \text{number} \mid (S)$

- Start item: $S' \mapsto .S$ {}
- Since S is to the right of a '.', add:

$$S \mapsto .E + S$$
 , $\{\$\}$
 $S \mapsto .E$, $\{\$\}$

Note. {\$} is FIRST(\$)

Need to keep closing, since E appears to the right of a '.' in '.E + S':

$$E \mapsto .number$$
, $\{+\}$
 $E \mapsto .(S)$, $\{+\}$

Note: + added for reason 1 FIRST(+ S) = {+}

$$S' \mapsto S$$

 $S \mapsto E + S \mid E$
 $E \mapsto \text{number} \mid (S)$

- Start item: $S' \mapsto .S$ {}
- Since S is to the right of a '.', add:

$$S \mapsto .E + S$$
 , $\{\$\}$
 $S \mapsto .E$, $\{\$\}$

Note. {\$} is FIRST(\$)

Need to keep closing, since E appears to the right of a '.' in '.E + S':

$$E \mapsto .number$$
, $\{+\}$
 $E \mapsto .(S)$, $\{+\}$

Note:
$$+$$
 added for reason 1
FIRST($+$ S) = { $+$ }

$$S' \mapsto S$$

 $S \mapsto E + S \mid E$
 $E \mapsto \text{number} \mid (S)$

- Start item: $S' \mapsto .S$ {}
- Since S is to the right of a '.', add:

$$S \mapsto .E + S$$
 , $\{\$\}$
 $S \mapsto .E$, $\{\$\}$

Note. {\$} is FIRST(\$)

Need to keep closing, since E appears to the right of a '.' in '.E + S':

$$E \mapsto .number$$
, $\{+\}$
 $E \mapsto .(S)$, $\{+\}$

Note: + added for reason 1 FIRST(+ S) = {+}

Because E also appears to the right of '.' in '.E' we get:

$$E \mapsto .number$$
, $\{\$\}$
 $E \mapsto .(S)$, $\{\$\}$

Note: \$ added for reason 2 δ is ϵ

$$S' \mapsto S$$

 $S \mapsto E + S \mid E$
 $E \mapsto \text{number} \mid (S)$

- Start item: $S' \mapsto .S$ {}
- Since S is to the right of a '.', add:

$$S \mapsto .E + S$$
 , $\{\$\}$
 $S \mapsto .E$, $\{\$\}$

Note. {\$} is FIRST(\$)

Need to keep closing, since E appears to the right of a '.' in '.E + S':

$$E \mapsto .number$$
, $\{+\}$
 $E \mapsto .(S)$, $\{+\}$

Note: + added for reason 1 FIRST(+ S) = {+}

Because E also appears to the right of '.' in '.E' we get:

$$E \mapsto .number$$
, $\{\$\}$
 $E \mapsto .(S)$, $\{\$\}$

Note: \$ added for reason 2 δ is ϵ

$$S' \mapsto S$$

 $S \mapsto E + S \mid E$
 $E \mapsto \text{number} \mid (S)$

- Start item: $S' \mapsto .S$ \$ (}
- Since S is to the right of a '.', add:

$$S \mapsto .E + S$$
 , $\{\$\}$
 $S \mapsto .E$, $\{\$\}$

Note. {\$} is FIRST(\$)

Need to keep closing, since E appears to the right of a '.' in '.E + S':

$$E \mapsto .number$$
, $\{+\}$
 $E \mapsto .(S)$, $\{+\}$

Note: + added for reason 1 FIRST(+ S) = {+}

Because E also appears to the right of '.' in '.E' we get:

$$E \mapsto .number$$
, $\{\$\}$
 $E \mapsto .(S)$, $\{\$\}$

Note: \$ added for reason 2 δ is ϵ

All items are distinct, so we're done

$$S' \mapsto S$$

 $S \mapsto E + S \mid E$
 $E \mapsto \text{number} \mid (S)$

- Start item: $S' \mapsto .S$ {}
- Since S is to the right of a '.', add:

$$S \mapsto .E + S$$
 , $\{\$\}$
 $S \mapsto .E$, $\{\$\}$

Note. {\$} is FIRST(\$)

Propagate

Need to keep closing, since E appears to the right of a '.' in '.E + S':

```
E \mapsto .number, \{+\}
E \mapsto .(S), \{+\}
```

Note: + added for reason 1 FIRST(+ S) = {+}

Because E also appears to the right of '.' in '.E' we get:

 $E \mapsto .number$, $\{\$\}$ $E \mapsto .(S)$, $\{\$\}$ Note: \$ added for reason 2 δ is ϵ

All items are distinct, so we're done

Using the DFA

- The behavior is determined if:
 - There is no overlap among the look-ahead sets for each reduce item, and
 - None of the look-ahead symbols appear to the right of a '.'

Fragment of the Action & Goto tables

LR variants

- LR(1) gives maximal power out of a 1 look-ahead symbol parsing table
 - DFA + stack is a push-down automaton
- In practice, LR(1) tables are big.
 - Modern implementations (e.g. menhir) directly generate code
- LALR(1) = "Look-ahead LR"
 - Merge any two LR(1) states whose items are identical except for the look-ahead sets:

- Such merging can lead to nondeterminism (e.g. reduce/reduce conflicts), but
- Results in a much smaller parse table and works well in practice
- This is the usual technology for automatic parser generators: yacc, ocamlyacc
- GLR = "Generalized LR" parsing
 - Efficiently compute the set of all parses for a given input
 - Later passes should disambiguate based on other context

Classification of Grammars

Debugging parser conflicts. Disambiguating grammars.

MENHIR IN PRACTICE

Practical Issues

- Dealing with source file location information
 - In the lexer and parser
 - In the abstract syntax
 - See range.ml, ast.ml
- Lexing comments / strings

Menhir output

- You can get verbose ocamlyacc debugging information by:
 - menhir --explain ...
 or, if using dune, adding this stanza:
 (menhir
 (modules parser)
 (flags --explain))
- The result is a <basename>.conflicts file that contains a description of the error
 - The parser items of each state use the '.' just as described above
- The flag --dump generates a full description of the automaton
- Example: see start-parser.mly

Precedence and Associativity Declarations

- Parser generators, like menhir often support precedence and associativity declarations.
 - Hints to the parser about how to resolve conflicts.
 - See: good-parser.mly

• Pros:

- Avoids having to manually resolve those ambiguities by manually introducing extra nonterminals (as seen in hand-parser.mly)
- Easier to maintain the grammar

• Cons:

- Can't as easily re-use the same terminal (if associativity differs)
- Introduces another level of debugging

• Limits:

 Not always easy to disambiguate the grammar based on just precedence and associativity.

Consider this grammar:

```
S \mapsto \text{if (E) } S

S \mapsto \text{if (E) } S \text{ else } S

S \mapsto X = E

E \mapsto \dots
```

- Consider this grammar:
 - $S \mapsto \text{if (E) } S$ $S \mapsto \text{if (E) } S \text{ else } S$ $S \mapsto X = E$ $E \mapsto \dots$

Consider how to parse:

Consider this grammar:

$$S \mapsto \text{if (E) } S$$

 $S \mapsto \text{if (E) } S \text{ else } S$
 $S \mapsto X = E$
 $E \mapsto \dots$

Consider how to parse:

if
$$(E_1)$$
 if (E_2) S_1 else S_2

Consider this grammar:

$$S \mapsto \text{if (E) } S$$

 $S \mapsto \text{if (E) } S \text{ else } S$
 $S \mapsto X = E$
 $E \mapsto \dots$

Consider how to parse:

if
$$(E_1)$$
 if (E_2) S_1 else S_2

Consider this grammar:

$$S \mapsto \text{if (E) } S$$

 $S \mapsto \text{if (E) } S \text{ else } S$
 $S \mapsto X = E$
 $E \mapsto \dots$

Consider how to parse:

if
$$(E_1)$$
 if (E_2) S_1 else S_2

Consider this grammar:

$$S \mapsto \text{if (E) } S$$

 $S \mapsto \text{if (E) } S \text{ else } S$
 $S \mapsto X = E$
 $E \mapsto \dots$

Consider how to parse:

if
$$(E_1)$$
 if (E_2) S_1 else S_2

• Is this grammar OK?

 This is known as the "dangling else" problem.

Consider this grammar:

$$S \mapsto \text{if (E) } S$$

 $S \mapsto \text{if (E) } S \text{ else } S$
 $S \mapsto X = E$
 $E \mapsto \dots$

Consider how to parse:

if
$$(E_1)$$
 if (E_2) S_1 else S_2

- This is known as the "dangling else" problem.
- What should the "right" answer be?

Consider this grammar:

$$S \mapsto \text{if (E) } S$$

 $S \mapsto \text{if (E) } S \text{ else } S$
 $S \mapsto X = E$
 $E \mapsto \dots$

Consider how to parse:

if
$$(E_1)$$
 if (E_2) S_1 else S_2

- This is known as the "dangling else" problem.
- What should the "right" answer be?

Consider this grammar:

$$S \mapsto \text{if (E) } S$$

 $S \mapsto \text{if (E) } S \text{ else } S$
 $S \mapsto X = E$
 $E \mapsto \dots$

Consider how to parse:

if
$$(E_1)$$
 if (E_2) S_1 else S_2

- This is known as the "dangling else" problem.
- What should the "right" answer be?
- How do we change the grammar?

How to Disambiguate if-then-else

Want to rule out:

if
$$(E_1)$$
 { if (E_2) S_1 else S_2

Observation: An un-matched 'if' should not appear as the 'then' clause of a containing 'if'.

```
S \mapsto M \mid U  // M = "matched", U = "unmatched" 
 U \mapsto if (E) S  // Unmatched 'if' 
 U \mapsto if (E) M = U // Nested if is matched 
 M \mapsto if (E) M = U // Matched 'if' 
 M \mapsto X = E  // Other statements
```

See: else-resolved-parser.mly

Alternative: Use {}

Ambiguity arises because the 'then' branch is not well bracketed:

```
if (E_1) { if (E_2) { S_1 } else S_2 // unambiguous if (E_1) { if (E_2) { S_1 } else S_2 } // unambiguous
```

- So: could just require brackets
 - But requiring them for the else clause too leads to ugly code for chained ifstatements:

```
if (c1) {
    ...
} else {
    if (c2) {

    } else {
        if (c3) {

        } else {
        }
    }
}
```

So, compromise? Allow unbracketed else block only if the body is 'if':

```
if (c1) {
} else if (c2) {
} else if (c3) {
} else {
}
```

Benefits:

- Less ambiguous
- Easy to parse
- Enforces good style