

FIG. 1

FIG. 2

NUMBER OF ENCODED LINES (n)	n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10	1. 1. 1. 1. 1. 1. 1.	1. 2. 3. 4. 5. 6. 7. 8. 9.	1. 3. 6. 10. 15. 21. 28. 36. 45.	1. 4. 10. 20. 35. 56. 84. 120.	1. 5. 15. 35. 70. 126. 210.	1. 6. 21. 56. 126. 252.	1. 7. 28. 84. 210.	1. 8. 36. 120.	1. 9. 45.	1. 10.	1.
		p=0	p=1	p=2	p=3	p=4	p=5	p=6	p=7	p=8	p=9	p=10

NUMBER OF ONES (P) IN AN ENCODED WORD

FIG. 4

V	<u>68</u>

ENCODED WORD LENGTH	CODE STATES	INPUT WORD LENGTH	EXTRA LINES
3	2 6	1 2	2 2
4 5	10	3	2
6 7	20 35	4 5	2
8 9	70 126	6 6	3
10 11	252 462	7 8	3 3
12 13	924 1716	9 10	3 3
14	3432	11 12	3
15 16	6435 12870	13	3
17 18	24310 48620	14 15	3 3
19 20	92378 184756	16 17	3 3
21	352716	18	3 .

FIG. 5

FIG. 7

162

FIG. 8

FIG. 13

note: x is a, b, or c for respective sub-word

FIG. 18

	De	code f	ath M	ux Con	trol									
Ea4-0	Gas	Has	Fas	Jas	_Kas	Block		Da5	Da4	Da3	Da2	Da1	Da0	
10000	1	0	0	0	0	G'		0	0	0	Ea5_	0	0	רו
01000	1	0	0	0	0	G'		0	0	0	Ea5_	0	1	>278a
00100	1	0	0	0	0	G'	1	0	0	0	Ea5_	1	0	l (
00010	1	0	0	0	0	G•	ļ	0	0	0	Ea5_	_ 1	1)
11101	-	1	0	0	0	н'	 	Ea6_·Ea5_	1	1	Ea5_	0	0	٦
11011	0	1	0	0	0	H'	-	Ea6_·Ea5_	1	1	Ea5_	0	1	> 280a
10111	0	1	0	0	0	н'	1	Ea6Ea5_	1	1	Ea5_	1	0	l (
01111	0	1	00	0	0	н′	<u> </u>	Ea6_·Ea5_	11	1	Ea5_	1	1	7
11000	-	0	1	0	-	F'	┼──	Ea5	Ea5	Ea5	Ea5	0	0	<u> </u>
10100	0	0	1	0	o l	F'		Ea5	Ea5	Ea5	Ea5	0.	1	282a
01011	0	0	1	0	0	F'		Ea5	Ea5	Ea5	Ea5	1	0	7 2028
00111	0	0	1	0	0	F'	ļ	Ea5	Ea5	Ea5	Ea5_	_1_	1_)
10010	-	. 0	0	1	0	J,	-	Ea5·Ea6	Ea6Ea5	Ea5_	0	0	0	Ь
10001	0	0	0	1	0	J'		Ea5-Ea6	Ea6Ea5	Ea5_	0	0	1	{
01100	0	0	0	1	0	J'	1	Ea5-Ea6	Ea6_·Ea5	Ea5_	lol	1	0	ΙΙ .
01010	0	0	0	1	0	J ʻ		Ea5-Ea6	Ea6_·Ea5	Ea5_	0	1	1 1	> 284a
01001	0	0	0	1	0	J*	1	Ea5-Ea6	Ea6Ea5	Ea5_	1	0	0	1 (2040
00110	0	0	0	1	0	J,		Ea5·Ea6	Ea6Ea5	Ea5_	1	0	1	1
00101	0	0	0	1	0	J'		Ea5-Ea6	Ea6_·Ea5	Ea5_	1	1	0) •
00011		0	0	1		J ′	<u> </u>	Ea5-Ea6	Ea6_·Ea5	Ea5_	1	1	1	
11100	0	0	0	0	1	κ′	<u> </u>	Ea6 xor Ea5	Ea6_ + Ea5	Ea5_	0	0	0	$\overline{}$
11010	0	Ó	Ó	Ō	1	κ'		Ea6 xor Ea5	Ea6_ + Ea5	Ea5	0	0	1)
11001	0	0	0	0	1	K'		Ea6 xor Ea5	Ea6_ + Ea5	Ea5	0	1	0	
10110	0	Ó	Ô	Ô	1	κ.		Ea6 xor Ea5	Ea6_ + Ea5	Ea5	0	1	1	\ 286a
10101	0	0	0	0	1	K'		Ea6 xor Ea5	Ea6_ + Ea5	Ea5	1	0	0	7 2000
10011	0	0	0	0	1	' K'		Ea6 xor Ea5	Ea6_ + Ea5	Ea5_	1	0	1	(
1110	0	0	0	0	1	K*		Ea6 xor Ea5	Ea6_ + Ea5	Ea5_	1	1	0)
1101	0	0	0	0	1	K'		Ea6 xor Ea5	Ea6_ + Ea5 /	Ea5_	1		1 1	

Post Inversion Logic

Invert Results of sub---- a decode if W5subCh_c =1

Invert decoded value for sub-word a if the weight of sub-word c equals 5

^L290a

FIG. 19

			3-45 A			1								i
Eb4-0	Gos	ecode i Hbs	−atn M Fbs	ux Cor Jbs	troi Kbs	Block	т	Db5	Db4	Db3	Db2	Db1	Db0	İ
10000	1	0	- 0	0	0	G'	+	0	0	0	0			-
01000	1	ō	ō	Ö	ō	Ğ,	1		Ö	0	0	0	0	278ъ
00100	1	Ö	. 0	ō	0	Ğ,	1	0	0	0	0	1	6	2/00
00010	1	0	Ō	<u> </u>	0	Ğ,	<u> </u>	ŏ	0	0	o	1	1])
11101	0	1	0	0	0	H'	<u> </u>	1 1	1	+ 1	1	0	0	15
11011	0	1	ō	ō	0	H'	1	i i	1		,	0	1	280ъ
10111	0	. 1	0	0	0	н'		1	1	i	1	1	0	2000
01111	0	1	0	0	0	H'		1	1	1	1	i	1])
11000	0	0		0	0	E'	-	Eb5	Eb5	Eb5	Eb5	0	0]_
10100	ŏ	ŏ	1	Ö	0 1	F'	1	Eb5	Eb5	Eb5	Eb5_	0		1 /
01011	o	0	1	ŏ	0	F,		Eb5	Eb5	Eb5	Eb5_	1	0	> 282ъ
00111	0	0	1	Ö	Ŏ	F'		Eb5	Eb5	Eb5	Eb5_	1	1)
	<u> </u>						<u> </u>	<u> </u>]_
10010	0	0	0	1	0	J'	İ	Eb5-Eb6	Eb6_	Eb5_	0	0	0	
10001	0	0	0 .	1	0	J,	1	Eb5-Eb6	Eb6_	Eb5_	0	0	1	1 1
01100	0	0	0	1	0	J'	l	Eb5-Eb6	Eb6_	Eb5_	0	1	0	(·
01010	0	0	0	1	0	J'	l	Eb5·Eb6	Eb6_	Eb5_	0	1	1	> 284ъ
01001	0	0	0	1	0	J'		Eb5·Eb6	Eb6_	Eb5_	1 1	0	0	
00110	0	0	0	1	0	1,	l	Eb5.Eb6	Eb6_	Eb5_	1	0	1	} .
00101	0	0	0	1	0	ر		Eb5-Eb6	Eb6_	Eb5_	1 1	1	0	1 /
00011		<u> </u>			-	<u></u>		Eb5·Eb6	Eb6_	Eb5_	1	1	1	
11100	0	0	0	0	1	K.		Eb6 + Eb5	Eb6_	Eb5_	0	0	0	
11010	0	0	0	0	1	K,		Eb6 + Eb5:	Eb6_	Eb5_	0	0	1	
11001	0	0	0	0	1	κ'.		Eb6 + Eb5	Eb6_	Eb5_	0	1	0	1 /
10110	0	0	0	0	1	K,		Eb6 + Eb5	Eb6_	Eb5_	0	1	1	> 286ъ
10101	0	0	0	0	1	κ'		Eb6 + Eb5	Eb6_	Eb5_	1	0	0	1 / 2000
10011	0	0	0	0	1	K ^r		Eb6 + Eb5	Eb6_	Eb5_	1	0	1	
01110	0	0	0	0	. 1	K ⁴		Eb6 + Eb5	Eb6_	Eb5_	1	1	0	l j
01101	0	0	0	0 .	<u>.1.1</u>	K'		Eb6 + Eb5	Eb6	Eb5_	1	1	_ 1	

Post Inversion Logic

Invert Results of sub-worp _b decode if W5subCh_c + W2subCh_a =1 W5subCh_c = Kcs·Ec6·Ec5 + Hcs·(Ec6 + Ec5) W2subCh_a = Jas·Ea6_:Ea5_ + Gas·(Ea6_ + Ea5_)

Invert decoded value for sub-word b if the weight of sub-word c = 5 and/or the weight of sub-word a = 2

^L290b

FIG. 20

Decode Mux Truth Table Sub-word c Decode Path Mux Control Ec4-0 Hcs Fcs Kcs Block Dc5 Dc4 Dc3 Dc2 Dc1 Dc0 O Gʻ Ec6_+Ec5_ Ec5_ G' Ec6_+Ec5_ 278c Ec5_ G' Ec6_+Ec5_ Ec5_ g' Ec6_+Ec5_ Ec5 H' Ec5 **H**′ 280c Ec5_ H' Ec5_ H' Ec5 Ec5 Ec5 Ec5 Ec5_ F, Ec5 Ec5 Ec5 Ec5_ 282c Eය Eය Ec5 Ec5_ £' Ec5 Ec5 Ec5 Ec5 (Ec5 xor Ec6)_ Ec6_ · Ec5 Ec5_ (Ec5 xor Ec6)_ Ec6_ · Ec5 Ec5_ (Ec5 xor Ec6)_ Ec6_ · Ec5 Ec5_ (Ec5 xor Ec6)_ Ec6_ · Ec5 Ec5_ 284c (Ec5 xor Ec6)_ Ec6_ Ec5 Ec5_ (Ec5 xor Ec6)_ Ec6_ · Ec5 Ec5_ (Ec5 xor Ec6)_ Ec6_ · Ec5 Ec5_ (Ec5 xor Ec6) Ec6_ · Ec5 Ec5_ K' Ec6 + Ec5 Ec8_ + Ec5 Ec5_ K' K' Ec6 + Ec5 Ec6_ + Ec5 Ec5_ Ec6 + Ec5 Ec6_ + Ec5 Ec5_ K' K' K' Ec6 + Ec5 Ec6_ + Ec5 Ec5_ 286c Ec6 + Ec5 Ec6_ + Ec5 Ec5_

Post Inversion Logic

Invert Results of sub-word b decode if W2subCh a =1

W2subCh_a = Jas·Ea6_·Ea5_ + Gas·(Ea6_ + Ea5_)

invert decoded value for sub-word c if the weight of sub-word a = 2

Ec6 + Ec5

Ec6 + Ec5

Ec6 + Ec5

290c

Ec6_ + Ec5

Ec6_.+ Ec5

Ec6_'+ Ec5

Ec5_

Ec5_

FIG. 21

(4B/6L EXAMPLE) CORRESPONDENCE BETWEEN DECIMAL, BINARY, AND ENCODED VALUES

304	306	308
DECIMAL VALUE	BINARY VALUE	ENCODED VALUE
DECIMAL	BINARY	BINOMIAL
COUNT	COUNT	COUNT
0	0000	000111
1	0001	00111
	0010	001011
3	0010	001110
4	0100	010011
5	0101	010101
6	0110	010110
7	0111	011001
8	1000	011010
9	1001	011100
10	1010	100011
11	1011	100101
12	1100	100110
13	1101	101001
14	1110	101010
15	1111	101100
16	EXTRA	110001
17	EXTRA	110010
18	EXTRA	110100
19	EXTRA	111000 ;
		7 × 1

FIG. 22

$$n_p = \frac{(n (n-1) (n-2) \dots n-[p-1])}{1 \cdot 2 \cdot 3 \dots p}$$

$$58_{10} = 11000110$$

$$310b$$

FIG. 23