Notes Masters Thesis

Alexander Uhlmann* Supervisor: Prof. Dr. Peter Hintz May 17, 2022

Abstract

Notes

^{*}auhlmann@ethz.ch

1 Null Conjugate Points

Definition 1.1 (Null Conjugate Point). Let $\gamma_{q,w}:[0,b]\to M$ be a null geodesic. We then call $p=\gamma_{q,w}(b)$ a null conjugate point if there exists a nontrivial variation $\mathbf{x}:[0,b]\times(-\varepsilon,\varepsilon)\to M$ of $\gamma_{q,w}$ through null geodesics such that $\mathbf{x}_v(b,0)=0$.

We have the following useful characterization:

Proposition 1.2. Let $\gamma_{q,w}:[0,b]\to M$ be a null geodesic. Then $p=\gamma_{q,w}(b)$ is a null conjugate point if and only if $\exp_q:L_qM\to M$ is singular at bw, i.e. if there exists a nonzero $\xi\in T_{bw}(L_qM)$ such that $d\exp_q(\xi)=0$.

Proof. We begin by proving the backwards direction and to that end assume that there exist a nonzero $\xi \in T_{bw}(L_q M)$ such that $d \exp_q(\xi) = 0$. By the construction of the tangent space there thus exists a non-constant path $\xi : (-\varepsilon, \varepsilon) \to L_q M$ with $\xi(0) = bw$. This allows us to construct the variation $\mathbf{x}(u, v) = \exp_q(\frac{u}{b}\xi(v))$ which has $\mathbf{x}(t, 0) = \gamma_{q,w}(t)$ and is a variation through null geodesics. Finally we have $\mathbf{x}_v(b, 0) = d \exp_q(\xi) = 0$ by the chain rule.

For the other direction we first note that by definition $\mathbf{x}(u,v) = \exp_q(u\mathbf{x}_u(0,v))$ and $\mathbf{x}_u(0,v) \in L_qM$ as \mathbf{x} is a variation through *null* geodesics. Now again by the chain rule we have $0 = \mathbf{x}_v(b,0) = d \exp_q|_{bw} \circ \frac{d}{dv}(bx_u(0,v))|_{v=0}$. But since $\xi := \frac{d}{dv}(bx_u(0,v))|_{v=0} \in T_{bw}(L_qM)$ we are done.

Null conjugate points are also conformal invariants:

Proposition 1.3. Let $\Phi: (M,g) \to (N,h)$ be a conformal diffeomorphism and $\gamma: [0,b] \to M$ a null geodesic. Then $\gamma(b)$ is a null conjugate point of γ if and only if $\Psi(\gamma(b))$ is a null conjugate point of $\Psi \circ \gamma$.

Proof. ((Cite relevant prop)) Because of the symmetry of the situation we only need to prove one direction and suppose that $\gamma(b)$ is a null conjugate point of γ . We thus have a variation \mathbf{x} of γ through null geodesics. But since Φ maps null geodesics to null geodesics, $\Phi \circ \mathbf{x}$ is a variation of $\Phi \circ \gamma$ through null geodesics in N, which implies that $\Phi(\gamma(b))$ is a null conjugate point of $\Phi \circ \gamma$.

2 Reconstruction from null cone observations

Theorem 2.1 (Baby Case). Let (M_j, g_j) , j = 1, 2 be two open globally hyperbolic, time-oriented Lorentzian manifolds. For $p_j^- \ll p_j^+$ two points in M_j we denote $K_j = J(p_j^-, p_j^+) \setminus I^-(p_j^+)$, the closed and compact backwards light cone from p_j^+ cut off at the intersection with the forwards light cone of p_j^- . We assume that there exist a conformal diffeomorphism $\Phi : K_1 \to K_2$ and that none of the past null geodesics starting at p_j^+ have a cut point in K_j .

Now let V_j be open sets such that $\overline{V_j} \subset \operatorname{int} J(p_j^-, p_j^+)$ is compact. We assume that no null geodesic starting in V_j has a conjugate point on K_j .

Then, if

$$\widetilde{\Phi}(\mathcal{P}_{K_1}(V_1)) = \mathcal{P}_{K_2}(V_2)$$

there exists a conformal diffeomorphism $\Phi: V_1 \to V_2$ that preserves causality.

2.1 Preliminary Constructions

((Intro))

Lemma 2.2. Let $(M, g), K, V, p^+, p^-$ be as in the statement of theorem 2.1 (we suppress the indices to simplify notation) then the following holds:

- (1) $(J^{-}(p^{+}) \setminus I^{-}(p^{+})) \cap K = \mathcal{L}_{p^{+}}^{-} \cap K \text{ and thus } K = \mathcal{L}_{p^{+}}^{-} \cap J^{+}(p^{-}).$
- (2) There exists a surjective smooth map $\Psi: S^n \times [0,1] \to K$ such that the curves $t \mapsto \Psi(v,t), v \in S^n$ are null geodesics and

$$\Psi(S^n \times \{1\}) = \{p^+\}, \quad \Psi(S^n \times \{0\}) = (J^-(p^+) \setminus I^-(p^+)) \cap J^+(p^-)$$

(3) There exist $0 < t_{-} < t_{+} < 1$ such that the restriction $\Psi|_{S^{n} \times [t_{-}, t_{+}]}$ is a diffeomorphism onto its image and that for all $v \in S^{n}$, we have

$$\Psi(v,t_{-}) \notin \bigcup_{q \in \overline{V}} J^{+}(q), \quad \Psi(v,t_{+}) \in \bigcap_{q \in \overline{V}} J^{+}(q).$$

Proof. ((Overhaul)) As we have no cut point in $J(p_1^-, p_1^+)$, the exponential map at p_1^+ is a diffeomorphism onto $J(p_1^-, p_1^+)$. Thus the preimage $\exp_{p_1^+}^{-1}(R)$ of the smooth submanifold

$$R = (J^-(p_j^+) \setminus I^-(p_j^+)) \cap (J^+(p_j^-) \setminus I^+(p_j^-)) = \mathcal{L}_{p_1^+}^- \cap \mathcal{L}_{p_1^-}^+$$

is a smooth submanifold of $L_{p_1^+}^-M$. We then let $\mathcal{A}=R$ and denote by $\mu_a(s)=\gamma_{p_1^+,a}(1-s)$ for $a\in R$. It is then easily checked that this parameterization satisfies all requirements and we are done.

Note that this implies that K is a smooth n-dimensional submanifold of M at any point away from its boundary. We will often treat K itself as a submanifold when it is clear that we are working away from the boundary. This is almost always the case since any light cone originating in \overline{V} will intersect K in $\Psi(S^n \times (t_-, t_+)) \subset K$.

The next proposition allows us to endow K with a number of "laboratory frames" we will use to conveniently describe the light cone observations on K.

Proposition 2.3 (Laboratory Frames). Let $(M_j, g_j), K_j, V_j, p_j^+, p_j^-, \Phi$ be as in the statement of theorem 2.1 Then there exists a family of future pointing, null geodesics $\mu_a^{(1)}: [0,1] \to K_1$ indexed by $a \in \mathcal{A}$ where \mathcal{A} is a metric space. Furthermore we can require the map $[0,1] \times \mathcal{A} \to K_1; (s,a) \mapsto \mu_a^{(1)}(s)$ to be open ((almost, needed?)) and continuous. If we then take $\mu_a^{(2)} := \Phi(\mu_a^{(1)})$ we can achieve

$$K_j = \bigcup_{a \in A} \mu_a^{(j)}([0, 1]). \tag{1}$$

Remark 2.4. To simplify notation we will continue with the construction on just one Lorentzian manifold (M, g) of dimension 1 + n and assume that we are given the following data to construct the required conformal diffeomorphism ((explain better)) from theorem 2.1.

- 1. A the quasi-manifold K,
- 2. the conformal class of $g|_K$ (but not only restricted to tangent vectors in K ((i think??))),
- 3. the paths $\mu_a:[0,1]\to K, a\in\mathcal{A}$,
- 4. the set $\mathcal{P}_K(V)$ where V is open and $\overline{V} \subset \operatorname{int} J(p^-, p^+)$ is compact.

Note that these data are invariant under conformal diffeomorphism, and any map we construct from it will thus also be invariant. We also remark that $\overline{V} \subset \operatorname{int} J(p^-, p^+)$ implies that $q \notin K$ for any $q \in \overline{V}$.

2.1.1 Geometry of Light Observation Sets

Lemma 2.5. For any $q \in \overline{V}$ the restriction of the exponential map to null vectors $\exp_q : L_q^+ M \to M$ is transverse to K, i.e. for all $w \in L_q^+ M$ such that $\gamma_{q,w}(1) = p \in K$ we have $\gamma'_{q,w}(1) \notin T_p K$.

Proof. We first establish that $\mathcal{L}_{p^+}^- \cap \overline{V} = \emptyset$. By remark 2.4 we have $\overline{V} \cap K = \emptyset$. By lemma 2.2(1) we know that $K = \mathcal{L}_{p^+}^- \cap J^+(p^-)$. This means any intersection of \overline{V} and $\mathcal{L}_{p^+}^-$ must occur in $\mathcal{L}_{p^+}^- \setminus J^+(p^-)$. But since \overline{V} lies entirely within $J^+(p^-)$ this is also impossible and $\mathcal{L}_{p^+}^- \cap \overline{V}$ must be empty.

In order to achieve a contradiction we now assume that there exists a $q \in \overline{V}$ and a $w \in L_q^+M$ such that with $v := \gamma_{q,w}(1) \in L_pK$. Since K is generated by backwards null geodesics originating at p^+ there exists a $u \in L_{p^+}^-M$ such that there exists a $t \in \mathbb{R}_+$ with $\gamma_{p^+,u}(t) = p, \gamma'_{p^+,u}(t) = -v$. We can thus obtain an unbroken

past-pointing null geodesic from p^+ to q by connecting $\gamma_{p^+,u}$ and $\gamma_{p,-v}$. But this implies that $q \in \mathcal{L}_{p^+}^-$ which is a contradiction to our previous fact.

Finally we prove that this implies that $\exp_q: L_q^+M \to M$ is transverse to K, i.e. we need to prove that for every $w \in L_q^+M$ with $\exp_q(w) = p \in K$ we have

$$\operatorname{im}(d\exp_{a}|_{w}) \oplus T_{p}K = T_{p}M.$$

As T_pK is a null hypersurface we only need to prove that $\operatorname{im}(d\exp_q|_w)$ contains a null vector which is not a multiple of the null vector $v \in T_pK$ generating $T_pK = v^{\perp}$. But by the properties of the exponential map, $\operatorname{im}(d\exp_q|_w)$ contains $v' = \gamma'_{q,w}(1) \in T_pM$. And since we just proved that $v' \notin T_pK$, v + v' must be a timelike vector and $\operatorname{im}(d\exp_q|_w) \oplus T_pK = T_pM$, as desired.

Lemma 2.6. For $q \in \overline{V}$ and $w \in L_q^+M$ there exists exactly one $t \in (0, \infty)$ such that $\gamma_{q,w}(t) \in K$.

Proof. Let $q \in \overline{V}$ and $w \in L_q^+M$, by ((Leavescompact)) any geodesic starting in the compact set $J(p^-, p^+)$ must eventually leave it, intersecting the boundary. Thus there exists at least one $t \in (0, \infty)$ with $p = \gamma_{q,w}(t) \in K$. ((Do compactness argument?)) We WLOG assume that t is the smallest such value. Now, by the previous lemma, we have $\gamma'_{q,w}(t) \notin T_pK$. ((But now we are outside $J^-(p^+)$))

Lemma 2.7 (Direction Reconstruction). ((Iso = Bijection)) Let $p \in K$ then there exists an isomorphism Φ between the space S of spacelike hyperplanes $S \subset T_pK$ and the space V of rays $\mathbb{R}_+V \subset T_pM$ along future-directed outward facing null vectors, given by the mapping $S \in S$ to the unique future-directed outward pointing null ray $\Phi(S)$ contained in S^{\perp} . The inverse map is given by $V \ni \mathbb{R}_+V \mapsto T_pK \cap V^{\perp} \in S$.

Moreover there exists an isomorphism between S and the space N of linear null hypersurfaces $N \subset T_pM$ which contain a future-directed outward pointing null vector given by $S \mapsto S \oplus \operatorname{span} \Phi(S) \in \mathcal{N}$.

Proof. Let $p \in K$, and $S \subset T_pK$ be a spacelike hyperplane. The orthogonal complement $S^{\perp} \subset T_pM$ then is a two-dimensional lorentzian subspace. There thus exist four light rays V, -V, W, -W in S^{\perp} . Since $T_pK = v^{\perp}$ for some future-pointing null vector $v \in T_pK$, we have $v \in S^{\perp}$ and can WLOG assume V = v. This leaves W as the unique future-pointing outward null ray which is perpendicular to S, and we can thus set $\Phi(S) = W$.

For the other we let $0 \neq V \in T_pM$ be an outward future-pointing null vector. In particular this means that $V \notin T_pK$. Thus $S = V^{\perp} \cap T_pK$ is a spacelike hyperplane in T_pK which satisfies $S = \Phi^{-1}(V)$. ((... do isomorphism fun?))

For the final claim we note that ((... Why iso?))

Definition 2.8 (Observation Preimage). For any $q \in \overline{V}$ with light observation set $\mathcal{P}_K(q) \subset K$ we define the *observation preimage* $L_q^K M$ to be the preimage of K under the exponential map restricted to $L_q^+ M$, i.e.

$$L_q^K M := (\exp_q|_{L_q^+ M})^{-1}(K) \subset L_q^+ M$$

Lemma 2.9. For any $q \in \overline{V}$, the observation preimage $L_q^K M$ is a n-1-dimensional submanifold of $T_p M$.

Furthermore, for any $w \in L_q^K M$ there exist a relatively open neighborhood $\mathcal{W} \subset L_q^K M$ such that $\exp_q : \mathcal{W} \to \exp_q(\mathcal{W}) \subset \mathcal{P}_K(q)$ is a diffeomorphism.

Proof. By lemma 2.5, $\exp_q : L_q^+M \to M$ is transverse to K (here we treat L_q^+M and K as submanifolds as the points where they fail to be submanifolds can be removed without impacting the proof). Thus by the preimage lemma $L_q^KM := (\exp_q|_{L_q^+M})^{-1}(K)$ is a n-1-dimensional submanifold of L_q^+M .

For the second part let $w \in L_q^K M$, since $p := \exp_q(w) \in K$ and we assumed that such a p cannot be a null conjugate point, we know that $\exp_q : L_q M \to M$ has an invertible differential at w. Thus, by the implicit function theorem, there exists an open neighborhood $\mathcal{W}' \subset L_q M$ of w such that $\exp_q : \mathcal{W}' \to \exp_q(\mathcal{W}')$ is a diffeomorphism. If we then restrict \exp_q to $\mathcal{W} := \mathcal{W}' \cap L_q^K M$ the map is still a diffeomorphism as desired.

Lemma 2.10. Let $q \in \overline{V}$ and $p \in \mathcal{P}_K(q)$ then there exist only finitely many $v_1, \ldots, v_n \in L_q^K M$ such that $\exp_q(v_i) = p$. Furthermore for any neighborhood $W \subset L_q^K M$ of v_1, \ldots, v_n , there exists a neighborhood $V \subset \mathcal{P}_K(q)$ of p such that $\exp_q^{-1}(V) \cap L_q^+ M \subset W$.

Proof. ((Overhaul))

Let $q \in \overline{V}$ and $v \in L_q^+M$ such that $p = \exp_q(v)$. Since we required that $p \in K$ cannot be a null conjugate point of q, \exp_q must be a local diffeomorphism around v. This means that there exist open sets $v \in \mathcal{O}_v \subset L_qM, p \in \mathcal{U}_v \subset M$ such that $\exp_q : \mathcal{O}_v \to \mathcal{U}_v$ is a diffeomorphism. But this means that there cannot exist another $v' \in \mathcal{O}_v$ with $\exp_q(v') = p$. We now restrict ourselves only to null directions at q i.e. the quotient $L_q^+M/\mathbb{R}_+ \simeq S^{n-1}$. Since any null vector v with $\exp_q(v) = p$ has an open neighborhood where no other vector can have this property, the set of null directions in S^{n-1} which hit p is discrete and thus finite because S^{n-1} is compact. Because we only have finitely many null directions which hit p, $\pi^{-1}(p) \cap \overrightarrow{\mathcal{P}_K}(q)$ can only have finitely many elements, as desired.

We can immediately put these lemmas to use and prove this proposition characterizing the light observation set. **Proposition 2.11.** Let $q \in \overline{V}$ and $p \in \mathcal{P}_K(q)$. There exists a neighborhood \mathcal{O} of p, a positive integer N and N pairwise transversal codimension 1 submanifolds of $\mathcal{V}_i \subset K$ such that $\mathcal{P}_K(q) \cap \mathcal{O} = \bigcup_{i=1}^N \mathcal{V}_i$.

Proof. Let $q \in \overline{V}$ and $p \in \mathcal{P}_K(q)$. By the previous lemma we know that there can only be finitely many $w_1, \ldots, w_n \in L_q^K M$ with $\exp_q(w_i) = p$.

By lemma 2.9, for each w_i there exists a neighborhood $\mathcal{W}_i \subset L_q^K M$ of w_i such that $\exp_q : \mathcal{W}_i \to \mathcal{V}_i := \exp_q(\mathcal{W}_i)$ is a diffeomorphism. Thus $\mathcal{V}_i \subset \mathcal{P}_K(q)$ is a submanifold of K and we have $\bigcup_{i=1}^N \mathcal{V}_i \subset \mathcal{P}_K(q)$.

Now we use the second part of the previous lemma to obtain an open neighborhood $\mathcal{O} \subset \mathcal{P}_K(q)$ of p, such that $\exp_q^{-1}(\mathcal{O}) \cap L_q^+M \subset \bigcup_{i=1}^N \mathcal{W}_i$. Thus any point $p \in \mathcal{P}_K(q) \cap \mathcal{O}$ is contained in some \mathcal{V}_i and we have $\bigcup_{i=1}^N \mathcal{V}_i \supset \mathcal{P}_K(q) \cap \mathcal{O}$. After possibly shrinking some \mathcal{W}_i we get equality.

The fact that each \mathcal{V}_i is spacelike follows as it can be written as the intersection of two transversal null hypersurfaces, \mathcal{L}_q^+ and K.

Finally to prove that they are transversal at p, we assume by contradiction that there exist $i \neq j$ such that $T_p \mathcal{V}_i = T_p \mathcal{V}_j$. But by lemma 2.7 this would imply that $v_i = c * v_j$ for a $c \in \mathbb{R}_+$, where $v_i = \gamma'(1)_{q,w_i}$. Thus we would have $w_i = w_j$, a contradiction.

Definition 2.12 (Regular Point). We call a point $p \in \mathcal{P}_K(q)$ regular if there exists an open neighborhood $\mathcal{O} \subset M$ of p such that $\mathcal{O} \cap \mathcal{P}_K(q)$ is a submanifold.

Corollary 2.13. The subset of regular points is dense in $\mathcal{P}_K(q)$.

Proof. It suffices to show that for every cut point $p \in \mathcal{P}_K(q)$, every relatively open neighborhood $\mathcal{O} \subset \mathcal{P}_K(q)$ contains a regular point. By the previous proposition, for \mathcal{O} small enough we have $\mathcal{P}_K(q) \cap \mathcal{O} = \bigcup_{i=1}^N \mathcal{V}_i$, where \mathcal{V}_i are pairwise transversal. This means their intersection is of lower dimension and we can find a $p' \in \mathcal{V}_i$ for some $i \in 1, \ldots, N$ such that $p' \notin \mathcal{V}_j$ for $j \neq i$. Thus we can find an open neighborhood \mathcal{O}' around p' such that $\mathcal{O}' \cap \mathcal{P}_K(q) \subset \mathcal{V}_i$ which means p' is a regular point, as desired.

2.1.2 Observation Time Functions

Definition 2.14 (Observation Time Function). For $a \in \mathcal{A}$ the observation time function is defined as

$$f_a: \overline{V} \to [0, 1]$$

 $q \mapsto \inf(\{s \in [0, 1] \mid \mu_a(s) \in J^+(q)\} \cup \{1\}).$

Moreover, let $\mathcal{E}_a(q) := \mu_a(f_a(q)) \in M$ be the earliest point where μ_a sees light from q.

Lemma 2.15. Let $a \in A$ and $q \in \overline{V}$. Then

- (1) It holds that $t_{-} \leq f_a(q) \leq t_{+}$.
- (2) We have $\mathcal{E}_a(q) \in J^+(q)$ and $\tau(q, \mathcal{E}_a(q)) = 0$. Moreover the function $s \mapsto \tau(q, \mu_a(s))$ is continuous, non-decreasing on [0, 1] and strictly increasing on $[f_a(q), 1]$.
- (3) Let $p \in K$. Then $p = \mathcal{E}_a(q)$ with some $a \in \mathcal{A}$ if and only if $p \in \mathcal{P}_K(q)$ and $\tau(p,q) = 0$. Furthermore, these are equivalent to the fact that there are $v \in L_q^+M$ and $t \in [0, \rho(q, v)]$ such that $p = \gamma_{q,v}(t)$.
- (4) The function $q \mapsto f_a(q)$ is continuous on \overline{V} .

Proof. Let $a \in \mathcal{A}$ and $q \in \overline{V}$.

We begin by showing (1): By lemma 2.2(3) we have that $\mu_a(t_-) \notin J^+(q)$ and $\mu_a(t_+) \in J^+(q)$. The second part immediately yields $f_a(q) \leq t_+$ as $f_a(q)$ is the infimum over all observation times. For the first part we assume by contradiction that there were to exist a $t_{-2} < t_-$ with $\mu_a(t_{-2}) \in J^+(q)$. This allows us to construct a causal path from q to $\mu_a(t_-)$ by joining the causal path from $q \to \mu_a(t_{-2})$ and the null geodesic μ_a from t_{-2} to t_- . Since this would imply that $\mu_a(t_-) \in J^+(q)$ this is a contradiction and $f_a(q)$ must be bigger than t_- proving (1).

(2) By the definition of the infimum we can find a sequence $t_n \searrow f_a(q)$ such that for all t_n we have $\mu_a(t_n) \in J^+(q)$. Now since $t \mapsto \mu_a(t)$ is continuous we have that $\mu_a(t_n) \to \mu_a(f_a(q)) = \mathcal{E}_a(q)$. Since $J^+(q)$ is closed this yields $\mathcal{E}_a(q) \in J^+(q)$.

For the second part we assume by contradiction that $\tau(q, \mathcal{E}_a(q)) > 0$. Since this means that a timelike path from q to $\mathcal{E}_a(q)$ exists we have $\mathcal{E}_a(q) \in I^+(q)$. Then, since $I^+(q)$ is open we can find a $t < f_a(q)$ such that $\mu_a(t) \in I^+(q) \subset J^+(q)$. This is a contradiction since $f_a(q)$ is the infimum over such t.

To show that $s \mapsto \tau(q, \mu_a(s))$ is continuous and non-decreasing on [0, 1] we first note that it is the composition of two continuous functions. Non-decreasing then follows from the reverse triangle inequality together with the fact that μ_a is a null path.

Finally to show that $s \mapsto \tau(q, \mu_a(s))$ is strictly increasing in $[f_a(q), 1]$ we let $f_a \leq t_1 < t_2 \leq 1$. Now by ((REF)) there exists a causal geodesic $\gamma_1 : [0, 1] \to M$ with $\gamma_1(0) = q$ and $\gamma_1(1) = \mu_a(t_1)$ such that $L(\gamma_1) = \tau(p, \mu_a(t_1))$. If we then connect γ_1 to $\mu_a|_{[t_1,t_2]}$ we get a path γ_2 connecting q to $\mu_a(t_2)$ which has length $L(\gamma_2) = L(\gamma_1)$ as μ_a is a null geodesic. Next we argue that γ_2 must have a break at the connecting point, i.e. $\gamma'_1(1) \neq c\mu'_a(t_1)$ for any $c \in \mathbb{R}_+$. If γ_1 is timelike this observation is trivial as μ_a is lightlike. If however, γ_1 is lightlike (which is exactly the case if $t_1 = f_a(1)$), this fact follows from the transversality of light cone observations as noted in proposition 2.5. This means that γ_2 is a broken causal

geodesic, which by ((REF)) implies that there exists a strictly longer timelike path γ_3 connecting the endpoints and we get

$$\tau(q, \mu_a(t_2)) \ge L(\gamma_3) > L(\gamma_2) = L(\gamma_1) = \tau(q, \mu_a(t_1)).$$

Next to prove (3): To prove the fist direction we assume that $p = \mathcal{E}_a(q)$ for some $a \in \mathcal{A}$. Now by (2) we have $\mathcal{E}_a(q) \in J^+(q)$ and $\tau(q, \mathcal{E}_a(q)) = \tau(q, p) = 0$. But now, by ((REF)) there exists a null geodesic from q to p which means $p \in \mathcal{P}_K(q)$.

For the other direction we let $p \in \mathcal{P}_K(q)$ with $\tau(q, p) = 0$. Now let $a \in \mathcal{A}$ such that $p = \mu_a(t)$ for some $t \in [0, 1]$. We then assume by contradiction that $\mathcal{E}_a(q) \neq p$, i.e. $f_a(q) < t$. But by (2) we have that $s \mapsto \tau(q, \mu_a(s))$ is strictly increasing after $f_a(q)$ which is in contradiction with $\tau(q, p) = 0$.

The other equivalence follows the definition of $\mathcal{P}_K(q)$ together with the definition of cut points.

Finally we prove (4): Let $q_i \to q$ in \overline{V} , let $t_i = f_a(q_i)$ and $t = f_a(q)$. Since τ is continuous, for any $\varepsilon > 0$ we have $\lim_{j \to \infty} \tau(q_j, \mu_a(t + \varepsilon)) = \tau(q, \mu_a(t + \varepsilon)) > 0$. Thus for j big enough we have $\tau(q_i, \mu_a(t + \varepsilon) > 0$. But by (3) this implies that a must have observed q_i before $t + \varepsilon$ i.e. $f_a(q_i) < t + \varepsilon = f_a(q) + \varepsilon$. As ε was arbitrary we get $\lim \sup_{j \to \infty} t_j \le t$.

We assume now that $\liminf_{j\to\infty} t_j = t' < t$. Let (t_i) be a convergent subsequence such that $f_a(q_i) = t_i \to t' < f_a(q)$. Now by the continuity of τ and μ_a we have

$$0 = \tau(q_i, \mu_a(f_a(q_i))) \to \tau(q, \mu_a(t')).$$

Furthermore by ((REF)) $\mu(s_i) \in J^+(q_i)$ for all i implies $\mu(s') \in J^+(q)$. But now we have $\mu(s') \in \mathcal{P}_K(q)$ and $\tau(q, \mu_a(s')) = 0$ which by (3) implies that $\mu_a(s') = \mathcal{E}_a(q) = \mu_a(f_a(q))$. But this is a contradiction as $s' < f_a(q)$. ((More in-detail?))

By (3) of the above lemma, for any $q \in \overline{V}$ and $a \in \mathcal{A}$ we have $\mathcal{E}_a(q) \in \mathcal{P}_K(q)$. Since $\mathcal{P}_K(q) \subset J^+(q)$, we can see using definition 2.14 that the set of earliest observations $\mathcal{P}_K(q)$ and the path μ_a completely determine the functions

$$f_a(q) = \min\{s \in [-1, 1] \mid \mu_a(s) \in \mathcal{P}_U(q)\}, \quad \mathcal{E}_a(q) = \mu_a(f_a(q))$$
 (2)

2.1.3 Set of earliest observations

Definition 2.16 (Set of earliest observations). For $q \in \overline{V}$ we define

$$\mathcal{D}_{K}(q) = \{ (p, v) \in L^{+}K \mid (p, v) = (\gamma_{q, w}(t), \gamma'_{q, w}(t))$$
where $w \in L_{q}^{+}M, 0 \le t \le \rho(q, w) \},$

$$\mathcal{D}_{K}^{reg}(q) = \{ (p, v) \in L^{+}K \mid (p, v) = (\gamma_{q, w}(t), \gamma'_{q, w}(t))$$
where $w \in L_{q}^{+}M, 0 < t < \rho(q, w) \},$

We say that $\mathcal{D}_K(q)$ is the direction set of q and $\mathcal{D}_K^{reg}(q)$ is the regular direction set of q.

Let $\mathcal{E}_U(q) = \pi(\mathcal{D}_U(q))$ and $\mathcal{E}_U^{reg}(q) = \pi(\mathcal{D}_U^{reg}(q))$, where $\pi: TU \to U$ is the canonical projection. We say that $\mathcal{E}_U(q)$ is the set of earliest observations and $\mathcal{E}reg_U(q)$ is the set of earliest regular observations of q in U. We denote the collection of earliest observation sets by $\mathcal{E}_U(V) = {\mathcal{E}_U(q) \mid q \in V}$.

Note that $\mathcal{E}_U(q) = \{\mathcal{E}_a(q) \mid a \in \mathcal{A}\}.$

Proposition 2.17. For any $q \in \overline{V}$ it holds that

- (1) $\mathcal{E}_{K}^{reg}(q)$ is a n-1-dimensional nonempty spacelike submanifold of K which is open relative to $\mathcal{P}_{K}(q)$ and has $\overline{\mathcal{E}_{K}^{reg}(q)} = \mathcal{E}_{K}(q)$ and,
- (2) $\mathcal{E}_K(q)$ fails to be a submanifold exactly at cut points,
- (3) \mathcal{D}_{K}^{reg} is a nonempty submanifold of $\overrightarrow{K} := \pi^{-1}(K)$ ((...)) which is open

Proof. We begin by proving (1):

Let p

Note that since $\mathcal{E}_K^{reg}(q)$ is exactly $\mathcal{E}_K(q)$ without the cut points, it is also the collection of all points where $\mathcal{E}_K(q)$ is locally a submanifold.

Proposition 2.18. For any $q \in \overline{V}$, $\mathcal{E}reg_K(q) \subset K$ and $\mathcal{D}_K^{reg}(q) \subset TU$ are smooth submanifolds of dimension n-1 ((D has dim n)).

Proof. ((TODO))

We will focus our attention to the case of $\mathcal{E}reg_U(q)$ as the argument for $\mathcal{D}_U^{reg}(q)$ is analogous Note first that $\mathcal{E}reg_U(q)$ can be rewritten as

$$\{\exp_q(w) \mid w \in L_q^+ M \text{ with } 1 < \rho(q, w)\}.$$

Next by lower semi-continuity of ρ we get that $R = \{w \in L_q^+M \mid 1 < \rho(q, w) \text{ is an open set and thus a dimension } (n-1) \text{ submanifold (this is because } L_q^+M \text{ itself is of dimension } (n-1)). But since <math>\rho(q,w)$ describes where \exp_q first fails to be a diffeomorphism we get that the surjection $\exp_p: R \to \mathcal{E}reg_U(q)$ is a diffeomorphism. Thus, since R was a manifold of dimension (n-1), $\mathcal{E}reg_U(q)$ is also a manifold and has the required dimension.

Finally in this section we will prove

Proposition 2.19. Let $q \in \overline{V}$, then

$$\mathcal{E}_K(q) = \{ p \in \mathcal{P}_K(q) \mid \text{there are no } p' \in \mathcal{P}_K(q) \text{ such that } p'$$

Proof. ((Still True?)) For the left inclusion assume $p \in \mathcal{E}_U(q)$, i.e. there exists an $a \in \mathcal{A}$ such that $\mathcal{E}_a(q) = p$. Then lemma 2.15(3) immediately yields, $p \in \mathcal{P}_U(q)$ and $\tau(q,p) = 0$. Now suppose there were a $p' \in \mathcal{P}_U(q)$ with $p' \ll p$. By as $\mathcal{P}_U(q) \subset J^+(q)$ we have $q \leq p'$, then as $p' \ll p$ we get $q \ll p$. But this would imply $\tau(p,q) > 0$, a contradiction.

For the other direction we assume we have $p \in \mathcal{P}_U(q)$ such that there are no $p' \in \mathcal{P}_U(q)$ such that $p' \ll p$. Again by lemma 2.15(3) we only need to prove that $\tau(p,q) = 0$. Suppose that $\tau(p,q) > 0$. By equation 1 there exists an $a \in \mathcal{A}$ and a $s \in [-1,1]$ such that $\mu_a(s) = p$. Now since $\tau(p,q) > 0$, we must have $s > f_a(q)$. But then $\mathcal{E}_a(q) = \mu_a(f_a(q)) \ll \mu_a(s)$, since μ_a is timelike, which is a contradiction. \square

Thus $\mathcal{E}_U(q)$ truly deserves to be called the "set of earliest observations".

2.2 Constructive Solution of the Inverse Problem

((Intro))

2.2.1 Reconstruction ...

Lemma 2.20. Thing with dir set reconstruction Also intersection is spacelike somewhere

Proposition 2.21. ((Given data)) The light observations $\mathcal{P}_K(q)$ uniquely determines the light direction observation set $\mathcal{C}_K(q)$ and the set of earliest observations $\mathcal{E}_K(q)$.

Proof. 2nd part: from formula

1st part: from lemma + only finite nonconj cut points + we can parameterize $\mathcal{P}_K(q)$ by a spacelike submanifold of the forwards lightcone

Proposition 2.22. ((Given data)) Given the light direction observation set $\mathcal{P}_K(q)$ and the set of earliest observations $\mathcal{E}_K(q)$, we can determine the sets $\mathcal{E}reg_K(q)$, $\mathcal{D}_K(q)$ and $\mathcal{D}_K^{reg}(q)$.

Proof. ((Take $\pi^-1(\mathcal{E}_K(q)) \cap \mathcal{C}_K(q)$ for $\mathcal{D}_U(q)$, then remove all cut points (in this case points with equal p but different v) in $\mathcal{D}_U(q)$ to obtain $\mathcal{D}_K^{reg}(q)$ and project again))

2.2.2 Construction of V as a topological manifold

((Intro))

Next we aim to reconstruct the topological and differential data of V. To that end we define the following functions.

For $q \in \overline{V}$ we define the function $F_q : \mathcal{A} \to \mathbb{R}$ by $a \mapsto f_a(q)$. We can then define the function

$$\mathcal{F}: \overline{V} \to \mathbb{R}^{\mathcal{A}}$$
$$q \mapsto F_q$$

mapping a $q \in \overline{V}$ to the function $F_q : \mathcal{A} \to \mathbb{R}$. We endow the set $\mathbb{R}^{\mathcal{A}} = \{f : \mathcal{A} \to \mathbb{R}\}$ with the product topology.

We begin by establishing the topological structure:

Lemma 2.23. $(V \text{ or } \overline{V}?)$ The map $\mathcal{F}: V \to \mathcal{F}(V)$ is a homeomorphism.

Proof. ((Works the same, use direction set reconstruction))

2.2.3 Construction of V as a smooth manifold

Having established the topological structure of V we next aim to establish coordinates on $\mathcal{F}(V)$ near any $\mathcal{F}(q)$ that make $\mathcal{F}(V)$ diffeomorphic to V.

Definition 2.24 (Coordinates on V). We first define

$$\mathcal{Z} = \{ (q, p) \in V \times K \mid p \in \mathcal{E}_{U}^{reg}(q) \}.$$

Then for every $(q, p) \in \mathcal{Z}$ there is a unique $w \in L_q^+M$ such that $\gamma_{q,w}(1) = p$ and $\rho(q, w) > 1$. Existence follows from lemma 2.15 while uniqueness follows from the fact that $p \in \mathcal{E}_U^{reg}(q)$ and thus cannot be a cut point. We can then define the map

$$\Theta: \mathcal{Z} \mapsto L^+ V$$
$$(q, p) \mapsto (q, w)$$

Note that this map is injective. Below we will $W_{\varepsilon}(q_0, w_0) \subset TM$ be a ε -neighborhood of (q_0, w_0) with respect to the Sasaki-metric induced on TM by g^+ .

Lemma 2.25. Let $(q_0, p_0) \in \mathcal{Z}$ and $(q_0, w_0) = \Theta(q_0, p_0)$. When $\varepsilon > 0$ is small enough the map

$$X: \mathcal{W}_{\varepsilon}(q_0, w_0) \to M \times M$$

 $(q, w) \mapsto (q, \exp_q(w))$

is open and defines a diffeomorphism $X: \mathcal{W}_{\varepsilon}(q_0, w_0) \to \mathcal{U}_{\varepsilon}(q_0, p_0) := X(\mathcal{W}_{\varepsilon}(q_0, w_0)).$ When ε is small enough, Θ coincides in $\mathcal{Z} \cap \mathcal{U}_{\varepsilon}(q_0, p_0)$ with the inverse map of X. Moreover \mathcal{Z} is a (2n-1)-dimensional manifold and the map $\Theta: \mathcal{Z} \to L^+M$ is smooth. *Proof.* ((Works the same with minor adjustments?))

((Explain what we're doing now))

Proposition 2.26. Let $q \in \overline{V}$ and $(q_0, p_j) \in \mathcal{Z}, j = 1, ..., n$ and $w_j \in L_{q_0}^+ M$ such that $\gamma_{q_0, w_j}(1) = p_j$. Assume that $w_j, j = 1, ..., n$ are linearly independent. Then, if $a_j \in A$ and $\overrightarrow{a} = (a_j)_{j=1}^n$ are such that $p_j \in \mu_{a_j}$, there is a neighborhood $V_1 \subset M$ of q_0 such that the corresponding observation time functions

$$\mathbf{f}_{\overrightarrow{a}}(q) = (f_{a_i}(q))_{i=1}^n$$

define smooth coordinates on V_1 . Moreover $\nabla f_{a_j}|_{q_0}$, i.e. gradient of f_{a_j} with respect to q at q_0 , satisfies $\nabla f_{a_j}|_{q_0} = c_j w_j$ for some $c_j \neq 0$.

Proof. ((Works almost the same, maybe clarify implicit function theorem stuff)) \Box

Definition 2.27 (Observation Coordinates). Let $\widehat{q} = \mathcal{F}(q) \in \widehat{V}$ and $\overrightarrow{d} = (a_j)_{j=1}^n \subset \mathcal{A}^n$ with $p_j = \mathcal{E}_{a_j}(q)$ such that $p_j \in \mathcal{E}_U^{reg}(q)$ for all $j = 1, \ldots, n$. Let $s_{a_j} = f_{a_j} \circ \mathcal{F}^{-1}$ and $\mathbf{s}_{\overrightarrow{d}} = \mathbf{f}_{\overrightarrow{d}} \circ \mathcal{F}^{-1}$. Let $W \subset \widehat{V}$ be an open neighborhood of \widehat{q} . We say that $(W, \mathbf{s}_{\overrightarrow{d}})$ are C^0 -observation coordinates around \widehat{q} if the map $\mathbf{s}_{\overrightarrow{d}} : W \to \mathbb{R}^n$ is open and injective. Also we say that $(W, \mathbf{s}_{\overrightarrow{d}})$ are C^∞ -observation coordinates around \widehat{q} if $\mathbf{s}_{\overrightarrow{d}} \circ \mathcal{F} : \mathcal{F}^{-1}(W) \to \mathbb{R}^n$ are smooth local coordinates on $V \subset M$.

Note that by the invariance of domain theorem, the above $\mathbf{s}_{\overrightarrow{d}}: W \to \mathbb{R}^n$ is open if it is injective. Although for a given $\overrightarrow{d} \in \mathcal{A}^n$ there might be several sets W for which $(W, \mathbf{s}_{\overrightarrow{d}})$ form C^0 -observation coordinates to clarify the notation we will sometimes denote the coordinates $(W, \mathbf{s}_{\overrightarrow{d}})$ as $(W_{\overrightarrow{d}}, \mathbf{s}_{\overrightarrow{d}})$.

We will consider $\mathcal{F}(V)$ a topological space and denote $\mathcal{F}(V) = \widehat{V}$. We denote the points of this manifold by $\widehat{q} = \mathcal{F}(q)$. Next we construct a differentiable structure on \widehat{V} that is compatible with that of V and makes \mathcal{F} a diffeomorphism.

Proposition 2.28. Let $\widehat{q} \in \widehat{V}$. Then there exist C^{∞} -observation coordinates $(W_{\overrightarrow{q}}, \mathbf{s}_{\overrightarrow{q}})$ around \widehat{q} .

Furthermore, given the data from 2.4 we can determine all C^0 -observation coordinates around \hat{q} .

Finally given any C^0 -observation coordinates $(W_{\overrightarrow{a}}, \mathbf{s}_{\overrightarrow{a}})$ around \widehat{q} , the data 2.4, allows us to determine whether they are C^{∞} -observation coordinates around \widehat{q} .

Proof. ((Works the same way))
$$\Box$$

2.2.4 Construction of the conformal type of the metric

We will denote by $\widehat{g} = \mathcal{F}_* g$ the metric on $\widehat{V} = \mathcal{F}$ that makes $\mathcal{F} : V \to \widehat{V}$ an isometry. Next we will show that the set $\mathcal{F}(V)$, the paths μ_a and the conformal class of the metric on U determine the conformal class of \widehat{g} on \widehat{V} .

Lemma 2.29. The data given in 2.4 determine a metric G on $\widehat{V} = \mathcal{F}(V)$ that is conformal to \widehat{g} and a time orientation on \widehat{V} that makes $\mathcal{F}: V \to \widehat{V}$ a causality preserving map.

Proof. ((Works the same)) \Box

3 Applications

Definition 3.1 (Einstein Universe). Let $(\mathbb{R}, -dt^2)$ be the real line with negatively definite metric $-dt^2$ and (S^n, h) the n-sphere with the canonical Riemannian metric. The 1 + n dimensional *Einstein universe* is then defined as the product $(\mathbb{R} \times S^n, -ds^2 \oplus h)$

Remark 3.2. We can parameterize S^n by an angle $\alpha \in (0, \pi)$ and a point $\omega \in S^{n-1}$ via the map

$$S: (0,\pi) \times S^{n-1} \to S^n$$

 $(\alpha,\omega) \mapsto (\cos \alpha, \sin \alpha \omega)$

If for a $X \in S^n$ we write $X = (X_0, \overrightarrow{X}), X_0 \in \mathbb{R}, \overrightarrow{X} \in \mathbb{R}^n$. We can invert S by

$$\alpha = \arccos X_0, \quad \omega = \frac{\overrightarrow{X}}{\|\overrightarrow{X}\|}.$$

Note that S has the irregular points $(\pm 1, 0, \dots, 0)$

We can now construct our conformal embedding:

Proposition 3.3. Let $(\mathbb{R} \times S^n, g)$ be the 1+n dimensional Einstein universe and $(\mathbb{R}^{1+n}, h = dt^2 - dx_n dx^n)$ the 1+n dimensional Minkovski space. Then the map

$$\Psi: \mathbb{R} \times S^n \to \mathbb{R}^{1+n} \tag{3}$$

$$(T,X) \mapsto \frac{1}{\cos T + X_0} (\sin T, \overrightarrow{X})$$
 (4)

is a conformal diffeomorphism from a suitable subset $U \subset \mathbb{R} \times S^n$ to the whole Minkovski space.

4 Stability Results

((Overhaul, include globally hyperbolic stability)) We aim to show the reconstruction result in a simplified case and first establish that small deviations from the minkovsky metric on a compact set introduce no conjugate points:

Proposition 4.1. Let $K \subset \mathbb{R}^n_1$ be a compact subset of the 1 + n-dimensional minkovsky space with metric $g = -dt^2 + \sum_{i=1}^n dx_i^2$. And let \widetilde{g} be a slightly disturbed metric $\widetilde{g} = g + \varepsilon h$ where $\varepsilon > 0$ and h is another metric.

Then we can choose $\varepsilon > 0$ small enough such that under the disturbed metric \widetilde{g} no causal geodesic starting in K has a conjugate point in K.

Proof. We begin by defining the set $H = \{(p, v) \in TK \mid \exp_p(v) \in K\}$. Note that for $\varepsilon > 0$ small enough this set is compact as well. This is because in the minkovsky case, every geodesic starting in K leaves K in a finite time which depends continuously on the starting point and initial direction. This property still holds for \widetilde{g} if ε is small enough and thus H is compact.

Recall that ((REF GEOD)) for a geodesic $\gamma_{p,v}$ starting at p with initial velocity $v, q = \gamma_{p,v}(b)$ is a conjugate point of $p = \gamma_{p,v}(0)$ if and only if the differential of the exponential map $d \exp_p$ is singular at bv. We we then define

$$\varepsilon_{p,v} = \frac{1}{2} \sup \{ \varepsilon' > 0 \mid d \exp \}$$

((Bla bla bla, do it with open cover instead)) By compactness of H we can achieve that exp is never singular on it which means that no geodesic starting in K has a conjugate point in K.

((Is global hyperbolicity needed?)) Note that this proof can be directly generalized to show that if K is a compact subset of a globally hyperbolic manifold (M, g) and every causal geodesic starting in K has no conjugate point in K, then also for a slightly perturbed $(M, g + \varepsilon h)$, causal geodesics starting in K have no conjugate points in K. ((Expand conj point to cut points?))

References

- [Bee81] Easley Beem Ehrlich. Global Lorenzian Geometry. Pure and Applied Mathematics, 1981.
- [Hal08] Rodney G Halburd. "Partial Differential Equations in General Relativity". In: Journal of Physics A: Mathematical and Theoretical 41.47 (2008), p. 479003.
- [KLU17] Yaroslav Kurylev, Matti Lassas, and Gunther Uhlmann. *Inverse problems* for Lorentzian manifolds and non-linear hyperbolic equations. 2017. arXiv: 1405.3386 [math.DG].
- [One83] Barrett O'neill. Semi-Riemannian geometry with applications to relativity. Academic press, 1983.