KNOWLEDGE REPRESENTATION AND REASONING: Constraint Satisfaction Problems

Chapter 5

Outline of the lecture

- Introduction
- Constraint Networks
- CSPs: the Logical View
- Assignments, Consistency, Solutions
- Backtracking

Constraint Satisfaction Example: Minesweeper

Reasoning Prob.

Constraint Satisfaction Example: Sudoku

5			4		2		6	
		9		5		1		
		8		9	1	7		5
							2	6
1	2	5	3	4	6	8	9	7
6	9							
9		6	1	3		2		
		3		2		6		
	4		8		5			1

Lave to satisfy in order to solve

Constraint Satisfaction: Car Sequencing

CSPs: a general class of problems

- \Diamond General problem: find an arrangement agreeing with a set of constraints
 - distribution of mines and non-mines giving the right numbers
 - ways to fill in squares so that rows, columns and blocks are all permutations of (1, ..., 9)
 - order of cars so that every assembly job gets done smoothly
- ♦ Situation can be described by a set of variables
- Constraint is a condition the variables must meet
- Problem: find assignments of values satisfying all constraints
- \diamondsuit May want any solution, all solutions, a good/best solution, . . .

Example: 8 queens problem

♦ Variables: positions of the 8 queens

92 soins

- ♦ Domains: squares of the board
- \diamondsuit Constraints: no 2 queens in the same row, column or diagonal

Binary constraint network

- \diamondsuit A constraint network is a triple $\langle V, D, C \rangle$
- $\diamondsuit V$ a finite set of variables v_1, \ldots, v_n
- \diamondsuit D a set of [finite] sets D_{v_1}, \ldots, D_{v_n}
- $\diamondsuit \ C \text{ a set of binary relations } \{C_{u,v} \mid u,v \in V, u \neq v\}$ $C_{u,v} \subseteq D_u \times D_v \quad \text{[Constrains between } u \text{ & } v = \text{ Set } f \text{ pairs } \text{(State } u, \text{State } v] \text{]}$

E.g. $V = \{a, b\}$. Suppose $D_a = \{1, ..., 10\}$ and $D_b = \{8, ..., 20\}$.

If we require a > b then $C_{a,b}$ is the set $\{(9,8), (10,8), (10,9)\}.$

Constraint network: notes

- A constraint $C_{u,v}$ is the allowed pairs of assignments to u and v
- These are arbitrary relations: they need not have an intuitive reading
- Sometimes require domains to be finite (FD problem) using/based on what one fresh to be Sometimes allow domains to be infinite (e.g. integers, reals) we even without conscious
- Extension to non-binary constraints is simple. [can be wantered to binary]
- SAT is the special case where all domains have just 2 values.
- Linear programming is the special case where domains are the real numbers and all constraints are linear inequalities.

Extendentially

Queens problem again

- \diamondsuit Variables: $V = \{v_1, v_2, v_3, v_4\}$. Row of queen in each column
- \diamondsuit Domains: For all v, $D_v = \{1, 2, 3, 4\}$

e.g.
$$C_{v_1,v_3} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$

 \diamondsuit Assignment above is $v_1 \leftarrow 3, \ v_2 \leftarrow 1, \ v_3 \leftarrow 4, \ v_4 \leftarrow 2$

The logical view

- ♦ In interesting cases, problems have logical descriptions
- Interpretation of logic: assign a relation to each predicate, and a function to each function symbol.
- Makes formulae true or false.
- \Diamond Interpreted over finite domain, need to specify value of each function f for each choice of arguments.
 - E.g. decide that f(a) = 3
- \diamondsuit So term f(a) corresponds to a decision variable
 - Has a set of possible values (its domain)
 - Is assigned a value from this domain on any interpretation
- ♦ Constraints can be written as logical formulae
 - Succinct and readable formulation
- ♦ Solutions to the CSP are exactly models of the theory

interpretations to make the Meens to have.

Chapter 5 11 us.

From a logical point of view

Given: monadic function symbol $q(_{-})$.

Find: interpretation satisfying

$$\forall x \forall y ([q(x) = q(y)] \to [x = y])$$

$$\forall x \forall y ([abs(q(x)-q(y))=abs(x-y)] \rightarrow [x=y])$$

over the domain $\{1, 2, 3, 4\}$

Consistency

Definition (Consistency). Let $\langle V, D, C \rangle$ be a constraint network.

Let a be a partial assignment.

/ some variables instead of all variables/ a is inconsistent if there are variables a, a in a and a constraint a in asuch that a(u) and a(v) are defined, and $(a(v), a(u)) \notin C_{u,v}$

In that case, a violates the constraint $C_{u,v}$

 \diamondsuit Consistency is <u>local</u>: inconsistent a already violates a constraint.

Solution

Definition (Solution). Let $\gamma = \langle V, D, C \rangle$ be a constraint network.

a is a solution to γ if it is a total consistent assignment for γ .

If a solution to γ exists, then γ is solvable. Otherwise it is unsolvable or over-constrained.

A partial assignment a can be extended to a solution if there is a solution which agrees with a wherever a is defined.

Not every consistent partial assignment can be extended to a solution

eg. [empty or No assignments]

Consistent & Being pour of solution

Searching for solutions

- ♦ Search: Systematic enumeration of partial assignments
 - If a complete assignment is found, that's a solution
 - If the search space is exhausted, there are no [more] solutions
- Backtracking: Pruning of inconsistent partial assignments (and all their extensions)
- Inference: Reasoning about a partial assignment, to tighten constraints
 and reduce domains for its extensions
- There is a tradeoff, reduction in number of search nodes vs runtime needed for inference

Pure Backtracking

```
function Backtrack(\gamma, a) returns solution, or "inconsistent"
   if a is inconsistent with \gamma then return "inconsistent"
   if a is total then return a
   select variable v for which a is not defined
   for each d in D_v do
      a' \leftarrow a \cup \{(v,d)\}
      a'' \leftarrow \text{BACKTRACK}(\gamma, a')
      if a'' \neq "inconsistent" then return a'
      return "inconsistent"
                                                                / neuro backtracking
   end
call: Backtrack(\gamma, { })
```

Pure Backtracking: notes

♦ Informal version:

Recursively instantiate variables one by one, backing up out of a search branch if the partial assignment is inconsistent.

- Detter that exhaustive search: avoids enumerating many inconsistent (partial) assignments by detecting them early
- \Diamond Advantages:

Very simple to implement

Very fast (per node of the search tree)

Complete (always gives a decision)

♦ Disadvantages:

Does no reasoning except detecting actual inconsistency

Cannot look further ahead than the current state

Summary

- Constraint networks consist of Variables associated with (usually finite) domains and Constraints which are [binary] relations specifying allowed pairs (or tuples) of values.
- A partial assignment maps some variables to values; a total assignment does so for all variables. A partial assignment is consistent if it does not violate any constraint. A consistent total assignment is a solution.
- The constraint satisfaction problem (CSP) consists in finding a solution for a constraint network. Applications are everywhere!
- Backtracking instantiates variables one by one, cutting branches when inconsistent partial assignments occur.