Machine-Learning for Neuroimaging

State of the art

Laila SALHI Clément TRASSOUDAINE

EURECOM

January 18th, 2018

- 1 Introduction
- 2 Techniques
 - A statistical view
 - Regression and Classification
 - Clustering
- 3 Case studies
 - Diseases and condition prediction
- 4 Conclusion

Introduction

Introduction

Neuroimaging 101

NMR Techniques

- MRI
 - GMD
- fMRI
 - BOLD

Other techniques

- PET
- MEG/EEG
- NIRS/SPIR
- ..

Techniques

Selecting part of interest

L Techniques

Regression and Classification

Regression and Classification

- Support Vector Machine
 - Find an hyperplane that maximizes the distance of the closest points.
 - Focus on the max margin size.
- Logistic Regression
 - Find an hyperplane that maximize the probability (P(Y = y|X)) for points to be on the good side.
 - Uses a likelihood function.

Table 1 | Five fold cross validation accuracy scores obtained for different values of parameter C (± SD), best scores are shown in bold.

C value	0.0005	0.001	0.005	0.01	0.05	0.1
ℓ ₁ Logistic regression	0.50 ± 0.02	0.50 ± 0.02	0.57 ± 0.13	0.63 ± 0.11	0.70 ± 0.12	0.70 ± 0.12
ℓ ₂ Logistic regression	0.60 ± 0.11	0.61 ± 0.12	0.63 ± 0.13	0.63 ± 0.13	0.64 ± 0.13	0.64 ± 0.13
ℓ ₁ SVM classifier (SVC)	0.50 ± 0.06	0.55 ± 0.12	0.69 ± 0.11	0.71 ± 0.12	0.69 ± 0.12	0.68 ± 0.12
ℓ ₂ SVM classifier (SVC)	0.67 ± 0.12	0.67 ± 0.12	0.67 ± 0.12	0.66 ± 0.12	0.65 ± 0.12	0.65 ± 0.12

Semi-supervised learning

- Inputs : Labeled and non-labeled data
- Clustering for classification LDS: Low-density separation TSVM: Transductive SVM

Extracting brain's network with ICA

- Limits Neuroimaging
- Need for cognitive ontology (BrainMap Database)
- Improving Reverse Inference

Clustering with K-means approach

■ Each voxels is assigned to the nearest center, forming clusters

Kmeans, 1000 clusters

Kmeans, 100 clusters

^{1.} Abraham, Alexandre et al. "Machine Learning for Neuroimaging with Scikit-Learn." Frontiers in Neuroinformatics 8 (2014): 14. PMC. Web. 28 Oct. 2017.

Case studies

Case studies

Case studies

Diseases and condition prediction

Age and dementia prediction

- Record MRI based on GMD.
- Train a dementia classification model and an age regression model.
- Look at the involved parts of the brain.

Case studies

Diseases and condition prediction

Feelings and emotions

- Showing uncomfortable pictures while recording fMRI (BOLD).
- Getting "bad feeling grades" back (1 to 5)
- Train the model and evaluate it using K-Fold cross-validation

^{1.} Chang LJ, Gianaros PJ, Manuck SB, Krishnan A, Wager TD (2015) A Sensitive and Specific EURECOM Neural Signature for Picture-Induced Negative Affect. PLoS Biol 13(6): e1002180. https://doi.org/10.1371/journal.pbio.1002180

Conclusion

Conclusion

Reverse inference Limits

- Neuroimaging limits
- Need for cognitive ontology (BrainMap Database)
- Improving Reverse Inference

^{1.} Russell A. Poldrack, Can cognitive processes be inferred from neuroimaging data?, In Trends EURECC Cognitive Sciences, Volume 10, Issue 2, 2006, Pages 59-63, ISSN 1364-6613, https://doi.org/10.1016/j.tics.2005.12.004.

The future of machine learning for Neuroimaging

- Be able to detect and understand physical disease such as ADHD
- Be able to detect and understand mental disease such as schizophrenia
- European Brain Project

Conclusion

Questions?

