Section 1.1: Propositional Logic

Objectives: Students will be able to understand and explain:

- The language of propositions, including connectives, truth values, and truth tables
- Applications such as translating English sentences, system specifications, logic puzzles, and logic circuits
- Logical equivalences that include important equivalences, showing equivalences, and satisfiability

Pr	оро	sitio	ona	Lo	ogic
			0 0		\sim

A is a declarative sentence that is either	true or false.
--	----------------

Example: Which of the following are propositions?

- a) The Moon is made of green cheese.
- b) Sit down!
- c) Carson City is the capital of Nevada.
- d) What time is it?
- e) San Francisco is the capital of California.
- f) 1+1=2
- g) x + 3 = 10
- h) 0+3=0
- i) x + y = z

Constructing Propositions

We use letters (typically p, q, r, s,...) to denote ______ (or sentential variables).

Let p be a proposition. The negation of p, denoted by $\neg p$ (also denoted by \overline{p}), is the statement

"It is not the case that p."

The proposition $\neg p$ is read "not p." The truth value of the negation of p, $\neg p$, is the opposite of the truth value of p.

Note: Other notations for negation include:

Example: Find the negation of the proposition and express this in simple English.

- a) Max's car has four-wheel drive.
- b) Elaina's computer is a MacBook.

Truth Tables The truth value of a proposition is true, denoted, if it is a true proposition, and the truth value of a proposition is false, denoted, if it is a false proposition.
The Truth Table for the Negation of a Proposition
Let p and q be propositions. The <i>conjunction</i> of p and q , denoted by $p \wedge q$, is the proposition " p and q ." The conjunction $p \wedge q$ is true when both p and q are true and is false otherwise.
The Truth Table for the Conjunction of Two Propositions Note: The word "but" sometimes is used instead of "and" in a conjunction.

"The sun is shining, but it is raining." In other words...

Example: Find the conjunction of the propositions p and q where p is the proposition "I bought a lottery ticket this week" and q is the proposition "I won the million dollar jackpot."

		f p and q , denoted by $p \lor q$, is the proposition oth p and q are false and is true otherwise.
The Truth Table for the	e Disjunction of Two Pro	positions
Note: A disjunction is tr	ue when at least one of th	te two propositions is true.
computer science can t	ake this class" in a state	who have taken calculus or introductory ement in proposition logic. ons <i>p</i> and <i>q</i> where <i>p</i> is the proposition "I proposition "I won the million dollar
		of p and q , denoted by $p \oplus q$ (or p XOR q), is of p and q is true and is false otherwise.
The Truth Table for the	e Exclusive Or of Two Pr	opositions

Example: Let p and q be the propositions that state "A student can have a salad with dinner" and "A student can have soup with dinner," respectively. What is the exclusive or of p and q?

Example: Express the statement "I will use all my savings to travel to Europe or to buy an electric car" in propositional logic.

Conditional Statements

Let p and q be propositions. The *conditional statement* $p \to q$ is the proposition "if p, then q." The conditional statement $p \to q$ is false when p is true and q is false, and true otherwise. In the conditional statement $p \to q$, p is called the *hypothesis* (or *antecedent* or *premise*) and q is called the *conclusion* (or *consequence*).

Note: A conditional statement is also called a ______.

The Truth Table for the Conditional Statement			

Expressions for a conditional statement:

Example: Let p be the statement, "TY gets 100% on the final" and q the statement, "TY will get an A in the course". Express the statement $p \square q$ as a statement in English.

Note: In mathematical reasoning, we consider conditional statements of a more general sort than we use in English. Our definition of a conditional statement specifies its truth values; it is not based on English usage. Propositional language is an artificial language; we only parallel English usage to make it easy to use and remember.

Example: "If Ethan has a smartphone, then 2+3 = 5."

Example: "If Ethan has a smartphone, then 2+3=6."

Converse, Contrapositive, and Inverse

The proposition	_ is called the	of $p \square q$.
The proposition	is called the	$_$ of $p \Box q$
The proposition	is called the	of $p \square q$

- The **contrapositive**, but neither the converse or inverse, of a conditional statement is equivalent to it.
- When two compound propositions always have the same truth tables, regardless of the truth values of its propositional variables, we call them ______.

Example: Find the contrapositive, the converse, and the inverse of the conditional statement, "The home team wins whenever it is raining."

Biconditionals

Let p and q be propositions. The *biconditional statement* $p \leftrightarrow q$ is the proposition "p if and only if q." The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise. Biconditional statements are also called *bi-implications*.

The Truth Table for the Biconditional		

Expressions for a Biconditional Statement:

Example: Determine whether each of these biconditionals are true or false.

- a) 2+2=4 if and only if 1+1=2.
- b) 1+1=2 if and only if 2+3=4.
- c) 1+1=3 if and only if monkeys can fly.
- d) 0>1 if and only if 2>1.

Implicit Use of Biconditionals

We will always distinguish between the conditional statement $p \Box q$ and the biconditional statement $p \leftrightarrow q$.

Why?

Truth Tables of Compound Propositions

Example: Construct the truth table of the compound proposition

$$(p \vee \neg q) \to (p \wedge q)$$

Precedence of Logical Operators

Precedence of Logical Operators

Precedence of Logical Operators			
Operator	Precedence		

Example:

Logic and Bit Operations

Computers represent information using bits. A ____ is a symbol with two possible values, namely 0 (zero) and 1 (one).

Truth Value	Bit	

Table for Bit Operators OR, AND, and XOR

A *bit string* is a sequence of zero or more bits. The *length* of this string is the number of bits in the string.

Example: 10101001 is a bit string of length _____.

Bit Strings

Example: Find the bitwise *OR*, bitwise *AND*, and bitwise *XOR* of the bit strings 01 1011 0110 and 11 0001 1101.