- 1. [10 marks] Circle the letter corresponding to the correct answer.
 - (a) Which statement is **FALSE**?
 - A: For Negative Binomial data the likelihood ratio statistic is a discrete random variable.
 - B: The distribution of the likelihood ratio statistic based on a random sample Y_1, Y_2, \dots, Y_n is approximately $\chi^2(1)$ for large n.
 - C: For Exponential data, the likelihood ratio statistic is a continuous random variable.
 - \square : For Binomial (n, θ) data, an approximate 95% confidence interval for θ based on the asymptotic Normal pivotal quantity only contains values inside the interval [0, 1].
 - E: For Exponential(θ) data, an approximate 95% confidence interval for θ based on a 15% likelihood interval only contains values of θ greater than zero.
 - (b) Which of the following statements is **TRUE**?
 - A: A large observed value of the likelihood ratio test statistic indicates good agreement between the data and the null hypothesis.
 - **B**: For Binomial (n, θ) data, the p-value for testing $H_0: \theta = \theta_0$ using the likelihood ratio test statistic can be approximated by the G(0, 1) distribution for large n.
 - C: For Binomial (n, θ) data and $H_0: \theta = \theta_0$, the p-value obtained using the likelihood ratio test is the same p-value obtained using the test statistic based on the asymptotic Normal pivotal quantity.
 - D: If $-2 \log R(\theta_0) = 5$ then the value $\theta = \theta_0$ is inside a 15% likelihood interval.
 - (c) Let $y_1, y_2, ..., y_{25}$ be a random sample from Poisson(θ). Suppose [7.8, 9.6] is a 15% likelihood interval for the unknown parameter θ . If we use the likelihood ratio test statistic to test $H_0: \theta = 10$, then we can conclude
 - A: the approximate p value is larger than 0.15.
 - B: the approximate p-value is larger than 0.05.
 - \mathbb{C} the approximate p-value is smaller than 0.05.
 - D: nothing about the p-value because it is not related to the likelihood interval.
 - (d) Suppose that a data set $y_1, y_2, ..., y_{36}$ is assumed to be an observed random sample from a $G(\mu, \sigma)$ distribution where μ and σ are unknown. Suppose also that the data set is stored in the variable y and that the command
 - t.test(y,0,conf.level=0.90)

has been run in R and the following output obtained:

```
One Sample t-test
data: y
t = 3.0374, df = 35, p-value = 0.004488
alternative hypothesis: true mean is not equal to 0
90 percent confidence interval:
0.4700055 1.6483278
sample estimates:
```

mean of x

1.059167

Based on this information the sample standard deviation to 3 decimal places is equal to

A: 3.037 B: 2.092

C: 4.378

D: Not enough information to determine.

(e) In the simple linear regression model with a single covariate x, which of the following random variables has a Gaussian distribution?

A:
$$\frac{\tilde{\beta}-\beta}{S_e/\sqrt{s_{xx}}}$$

B:
$$\frac{(n-2)S_e^2}{\sigma^2}$$

B:
$$\frac{(n-2)S_e^2}{\sigma^2}$$
C:
$$\frac{\tilde{\mu}(x) - \mu(x)}{S_e \sqrt{\frac{1}{n} + \frac{(x-\bar{x})^2}{S_{xx}}}}$$

$$\mathbb{D}: \tilde{\mu}(x) = \tilde{\alpha} + \tilde{\beta}x \text{ for a given } x$$

(f) Suppose for data (x_i, y_i) , i = 1, 2, ..., n we assume the model $Y_i \sim G(\alpha + \beta x_i, \sigma)$, $i = 1, 2, \dots, n$ independently. Which statement is **FALSE**?

A:
$$\sum_{i=1}^{n} \left(y_i - \hat{\alpha} - \hat{\beta} x_i \right)^2 = S_{YY} - \hat{\beta} S_{XY}$$

B:
$$S_{YY} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

C:
$$S_{YY} = \sum_{i=1}^{n} (y_i - \bar{y}) y_i$$

$$\mathbf{D}: \hat{\alpha} = \bar{y} + \hat{\beta}\bar{x}$$

- E: The least squares estimate of α and β , and the maximum likelihood estimates of α and β both minimize the function $g(\alpha, \beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$.
- (g) Suppose for data (x_i, y_i) , i = 1, 2, ..., n we assume the model $Y_i \sim G(\alpha + \beta x_i, \sigma)$, $i = 1, 2, \dots, n$ independently. Which statement is **FALSE**?
 - A: The parameter σ represents the variability in the response variate in the study population for each value of the explanatory variate x.
 - B: The parameter β represents the change in the mean of the response variate in the study population for a one unit increase in the explanatory variate.
 - \mathbb{C} : The parameter α represents the intercept of the least squares line.
 - D: The parameter $\mu(x) = \alpha + \beta x$ represents the mean response in the study population for units with explanatory variate equal to x.
- (h) Which of the following statements about the simple linear regression model is **TRUE**?
 - A: If $\hat{\beta} \neq 0$, then we can conclude that there is a linear relationship between the explanatory variate x and the response variate Y.
 - **B**: The relationship between the least squares estimate of the slope $\hat{\beta}$ and the sample correlation r is $\hat{\beta} = r \left(S_{yy} / S_{xx} \right)^{1/2}$.
 - C: S_e is the maximum likelihood estimator of σ .
 - D: The least squares estimates $\hat{\alpha}$ and $\hat{\beta}$ maximize $\sum_{i=1}^{n} (y_i \alpha \beta x_i)^2$.

(i) Suppose the simple linear regression model has been fit to the data (x_i, y_i) , i = 1, 2, ..., 100. The standardized residual plot $(x_i, \frac{y_i - \hat{\alpha} - \hat{\beta}x_i}{s_e})$, i = 1, 2, ..., 100 for these data is:

Based on this plot we would conclude that:

- A: the simple linear regression model is not an appropriate model for these data because the assumption of constant standard deviation does not hold.
- B: the simple linear regression model is not an appropriate model for these data because the assumption that the mean of the response variate is a linear function of the explanatory variate does not hold.
- C: the simple linear regression model is not an appropriate model for these data because the sample size is too small.
- D: the simple linear regression model is an appropriate model for these data.
- (j) Suppose the simple linear regression model has been fit to the data (x_i, y_i) , i = 1, 2, ..., 100. The qqplot of the standardized residuals $\hat{r}_i^* = \left(y_i \hat{\alpha} \hat{\beta}x_i\right)/s_e$, i = 1, 2, ..., 100 for these data is:

Based on this plot we would conclude that:

- A: the simple linear regression model is not an appropriate model for these data because the assumption of constant standard deviation does not hold.
- B: the simple linear regression model is not an appropriate model for these data because the assumption that the mean of the response variate is a linear function of the explanatory variate does not hold.
- C: the simple linear regression model is not an appropriate model for these data because the Gaussian distribution assumption for the residuals does not hold
- D: the simple linear regression model is an appropriate model for these data.

2. [11 marks] Suppose y_1, y_2, \ldots, y_n is an observed random sample from the distribution with probability function

$$f(y;\theta) = (y+1)(1-\theta)^2 \theta^y$$
 for $y = 0, 1, ...; \theta \in (0,1)$

where θ is an unknown parameter.

(a) [4] Find the maximum likelihood estimate $\hat{\theta}$ for θ . Show your steps clearly.

The likelihood function, after dropping the constants, is

$$L(\theta) = \prod_{i=1}^{n} (1 - \theta)^{2} \theta^{y_{i}} = (1 - \theta)^{2n} \theta^{\sum_{i=1}^{n} y_{i}}$$
$$= (1 - \theta)^{2n} \theta^{n\bar{y}} \text{ for } \theta \in (0, 1).$$

The log likelihood function is

$$l(\theta) = 2n \log(1 - \theta) + n\bar{y} \log \theta$$
 for $\theta \in (0, 1)$.

Since

$$\frac{dl(\theta)}{d\theta} = \frac{-2n}{1-\theta} + \frac{n\bar{y}}{\theta} = \frac{n}{\theta(1-\theta)} \left[-2\theta + \bar{y}(1-\theta) \right]$$
$$= \frac{n}{\theta(1-\theta)} \left[-\theta(2+\bar{y}) + \bar{y} \right] = 0$$

if

$$\theta = \frac{\bar{y}}{2 + \bar{y}}$$

therefore the maximum likelihood estimate of θ is

$$\hat{\theta} = \frac{\bar{y}}{2 + \bar{y}}$$

(b) [2] If n = 30 and the observed sample mean is $\bar{y} = 2.5$, show that R(0.5) = 0.4339 where $R(\theta)$ is the relative likelihood function.

The relative likelihood function

$$R(\theta) = \frac{L(\theta)}{L(\hat{\theta})} = \left(\frac{1-\theta}{1-\hat{\theta}}\right)^{2n} \left(\frac{\theta}{\hat{\theta}}\right)^{n\bar{y}}$$
$$= \left[\frac{(1-\theta)(2+\bar{y})}{2}\right]^{2n} \left[\frac{\theta(2+\bar{y})}{\bar{y}}\right]^{n\bar{y}}$$

Since $n = 30, \bar{y} = 2.5,$

$$R(0.5) = \left[\frac{(1-0.5)(2+2.5)}{2} \right]^{60} \left[\frac{0.5(2+2.5)}{2.5} \right]^{75} = 0.4339$$

- (c) [5] Given that n=30 and R(0.5)=0.4339, use the likelihood ratio test statistic to test the null hypothesis $H_0: \theta=0.5$. Show your work. Write your final numerical answers to 3 decimal places in the space provided.
 - (i) [1] The observed value of the likelihood ratio test statistic is 1.67

$$\lambda(0.5) = -2\log R(0.5) = -2\log(0.4339) = 1.670343 = 1.67$$

$$p-value = 2(1-P(Z \le \sqrt{1.670343})) = 2(1-0.90147) = 0.19706,$$
 where $Z \sim N(0,1)$.

(iii) [2] State your conclusion regarding the hypothesis $H_0: \theta = 0.5$ in a sentence.

Since p-value>0.1, we conclude that there is no evidence based on the data against the null hypothesis $H_0:\theta=0.5$.

Note: The p-value must be referred to in the conclusion.

3. [9 marks] Suppose the data set x_1, x_2, \ldots, x_{35} are stored in the vector x and the data set y_1, y_2, \ldots, y_{35} are stored in the vector y in R. These data are to be analyzed using the simple linear regression model

$$Y_i \sim G(\alpha + \beta x_i, \sigma)$$
 $i = 1, 2, \dots, 35$ independently

where α, β, σ are unknown parameters and the x_i 's are known constants.

The following code was run in R:

RegModel<-lm(y~x)
summary(RegModel)</pre>

The output obtained was:

Call:

lm(formula = y ~x)

Residuals:

Min 1Q Median 3Q Max -8.1989 -2.9508 0.2016 3.3276 6.4129

Coefficients:

Estimate Std. Error t value
$$Pr(>|t|)$$

(Intercept) 3.6246 1.3712 2.643 0.0125 * x 0.3743 0.1109 3.375 0.0019 **

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

Residual standard error: 4.202 on 33 degrees of freedom Multiple R-squared: 0.2566, Adjusted R-squared: 0.2341 F-statistic: 11.39 on 1 and 33 DF, p-value: 0.001903

Answer the following questions based on this information. Use all the decimals given in the output.

- (a) [1] The least squares estimate of β is _______.
- (b) [1] The maximum likelihood estimate of α is 3.6246
- (c) [1] The equation of the fitted least squares line is y = 3.6246 + 0.3743x
- (e) [1] The p-value for testing $H_0: \beta=0$ is equal to ______0.0019 or ____0.001903 _.
- (f) [2] State your conclusion with justification regarding the hypothesis $H_0: \beta = 0$ in a sentence.

Since $0.001 , we conclude that there is strong evidence based on the data against the null hypothesis <math>H_0: \beta = 0$.

Note: The p-value must be referred to in the conclusion.

(g) [2] The following additional code was run:

```
xbar<-mean(x)
Sxx<-(n-1)*var(x)
se<-summary(RegModel)$sigma
cat("xbar = ", xbar,", Sxx = ", Sxx, ", se = ", se)
The output obtained was:
xbar = 10.57429 , Sxx = 1435.367 , se = 4.202233</pre>
```

Based on this information and the information from the output on the previous page determine a 95% prediction interval for a response at x = 2 is (show your work).

$$[-4.545, 13.291]$$

We want is $P(T \le a) = 0.975$ where $T \backsim t(33)$. From t tables the closest value is $P(T \le 2.0423) = 0.975$ where $T \backsim t(30)$.

Predicted value for x = 2 is $\hat{\mu}(2) = 3.6246 + 0.3743(2) = 4.3732$.

The 95% prediction interval for a response at x=2 is

$$3.6246 + 0.3743(2) \pm 2.0423(4.202233)\sqrt{1 + \frac{1}{35} + \frac{(2 - 10.57429)^2}{1435.367}}$$

$$= 4.3732 \pm 8.918041$$

$$= [-4.544841, 13.29124]$$