8.11 RREF, Free Variables, and Homogenous Linear Systems

Given a system of the form Ax = b, we can apply the reduction procedure to the augmented matrix (A, b) to obtain a reduced row echelon matrix (A', b') such that the system A'x = b' has the same solutions as the original system Ax = b. The advantage of the reduced system A'x = b' is that there is a simple test to check whether this system is solvable, and to find its solutions if it is solvable.

Indeed, if any row of the matrix A' is zero and if the corresponding entry in b' is nonzero, then it is a pivot and we have the "equation"

$$0 = 1$$
,

which means that the system A'x = b' has no solution. On the other hand, if there is no pivot in b', then for every row i in which $b'_i \neq 0$, there is some column j in A' where the entry on row i is 1 (a pivot). Consequently, we can assign arbitrary values to the variable x_k if column k does not contain a pivot, and then solve for the pivot variables.

For example, if we consider the reduced row echelon matrix

$$(A',b') = \begin{pmatrix} 1 & 6 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

there is no solution to A'x = b' because the third equation is 0 = 1. On the other hand, the reduced system

$$(A',b') = \begin{pmatrix} 1 & 6 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

has solutions. We can pick the variables x_2, x_4 corresponding to nonpivot columns arbitrarily, and then solve for x_3 (using the second equation) and x_1 (using the first equation).

The above reasoning proves the following theorem:

Theorem 8.16. Given any system Ax = b where A is a $m \times n$ matrix, if the augmented matrix (A, b) is a reduced row echelon matrix, then the system Ax = b has a solution iff there is no pivot in b. In that case, an arbitrary value can be assigned to the variable x_j if column j does not contain a pivot.

Definition 8.7. Nonpivot variables are often called *free variables*.

Putting Proposition 8.14 and Theorem 8.16 together we obtain a criterion to decide whether a system Ax = b has a solution: Convert the augmented system (A, b) to a row reduced echelon matrix (A', b') and check whether b' has no pivot.