BMD ENG 301 Quantitative Systems Physiology (Nervous System)

Lecture 5: Resting Membrane Potential 2022 v1

Professor Malcolm A. MacIver

Recording passive and active electrical signals in a nerve cell

NEUROSCIENCE 6e, Figure 2.2 (Part 1) © 2018 Oxford University Press

Recording passive and active electrical signals in a nerve cell

Plasma Membrane Structure

Ion channels

- Allow ions to diffuse down concentration gradient
- Are selectively permeable to certain ions

TABLE 2.1 ■ Extracellular and Intracellular Ion Concentrations

	Concentration (mM)	
lon	Intracellular	Extracellular
Squid neuron		
Potassium (K+)	400	20
Sodium (Na+)	50	440
Chloride (Cl ⁻)	40-150	560
Calcium (Ca ²⁺)	0.0001	10
Mammalian neuron		
Potassium (K+)	140	5
Sodium (Na+)	5–15	145
Chloride (Cl-)	4-30	110
Calcium (Ca ²⁺)	0.0001	1–2

Squid Axon

Intracellular: 400 + 50 - 95

Extracellular: 20 + 440 + 20 - 560

Mammalian Neuron

Intracellular: 140 + 10 -17

Extracellular: 5 + 145 + 3 - 110

TABLE 2.1 ■ Extracellular and Intracellular Ion Concentrations

Concentration (mM)	
Intracellular	Extracellular
400	20
50	440
40-150	560
0.0001	10
140	5
5–15	145
4-30	110
0.0001	1–2
	400 50 40-150 0.0001 140 5-15 4-30

NEUROSCIENCE 6e, Table 2.1
© 2018 Oxford University Press

Squid neuron

- Intracellular excess of cations
- Extracellular excess of anions

Mammalian neuron

- Intracellular excess of cations
- Extracellular excess of cations

One might expect there to be an excess of intracellular anions and extracellular cations to account for the negative resting membrane potential, but a -65 mV membrane potential is obtained without affecting mM ion concentrations.

TABLE 2.1 ■ Extracellular and Intracellular Ion Concentrations

	Concentration (mM)	
lon	Intracellular	Extracellular
Squid neuron		
Potassium (K+)	400	20
Sodium (Na+)	50	440
Chloride (Cl ⁻)	40-150	560
Calcium (Ca ²⁺)	0.0001	10
Mammalian neuron		
Potassium (K+)	140	5
Sodium (Na+)	5–15	145
Chloride (Cl-)	4-30	110
Calcium (Ca ²⁺)	0.0001	1–2

The Remarkable Giant Nerve Cells of Squid

NEUROSCIENCE 6e, Box 2A © 2018 Oxford University Press

NEUROSCIENCE 6e, Figure 2.8 (Part 1) © 2018 Oxford University Press

NEUROSCIENCE 6e, Figure 2.8 (Part 2)
© 2018 Oxford University Press

The role of Na⁺ in generating an action potential in a squid giant axon

NEUROSCIENCE 6e, Figure 2.9 © 2018 Oxford University Press

Resting membrane potential does depend on [Na⁺]_{OUT}

Resting Potential

Resting membrane potential depends on both K⁺ and Na⁺, but the dependence on K⁺ ions is clearly more important