Assignment 2

- I. Propositional Logic (8 marks)
 - a. Knowledge representation with propositional logic. (1 marks)

```
10
      i) ok, i
      11) 75+1,1
      111) 7 br, 1
      1v) - wp,,
      N) brill ↔ (b+1's ∧ b+2'1)
      11) St1,2 ( Wp1,1 V Wp2,2 V Wp1,3)
      All) PLS'I (b+1"1 1 b+ 3"1 1 b+ "5"5)
      VIII) Ok 2.2 (7 P+2,2 1 - wp2,2)
1
      ( ) ok z,1 ( ) ( ) p+ z,1 / - wp z,1 )
      x) oh 1,2 ( > ( > pt 1,2 / 7 wp 1,2 )
Xi) St 1, 2
X11) -1-pr 1.5
      X111) 7 br1,2 -> 7 pt,3
.8
      XN) 7 br 1,2 -> 7 pt 2,2
      X1) - pr1/5 -> - bf 1/1
     XVI) 7 St 2,1
ğ, ğ
     XVII) - Stz, 1 -> - wp1,1
XVIII) - S+2,1 -> - wp2,2
     (XIX) - Stall -> - wp 3,1
     xx) brail
1
     xx1) 7 br 1,1 -> 7p+ 1,2
    Istyr ~ lil adr (11xx
    XXXII) 7 5+ 1,1 -> 7 WP 1,2
    1,5 gw - (1117 - (VIXX
    xxv) (br2,1 1 0kz,2 1 0k1,1) -> pt3,1
```

b. Consider above Wumpus Knowledge base KB: (6 marks)

c. Convert to CNF. (1 mark)

c) convert to CNF 7[(-acob)vd]->[(CAb)vavd] ~ [(a () b) vd] -> [(c) b) vavd] -[(-a)b) (b) ra)vd]-[(chb)vavd] TECANDIA (ADVAA) NO] -> [(CAD) VAVO] 7d -> [(a/b) Vavd] d V [(CA b) Vavd] dv ((avc) n (avb) vd) Cantel dv (avc) A (avb) (duc) Van (aub) (duc) va duLVa

II. First Order Logic (8 marks)

1. Unification. (2 mark)

For each pair of sentences find the unifier. Lower case letters are variables.

II.1) Unification

a)
$$\{A/x, B/y\}$$
b) $\{F(x)/y, B/z\}$
c) $\{F(y)/x, x/F(B)\}$
d) $\{3\}$: c cannot be z and y
e) $\{x/y, y/x\}$
F) $\{x/A\}$
g) $\{x/B, A/y\}$
h) $\{3\}$: x connot be both $P(F(v))$ and $P(v)$
1) $\{y/x\}$
J) $\{y/x\}$

2. Consider a FOL Knowledge base KB: (6 marks)

a. Prove by resolution

Vicky Mohammad mohammav@uoguelph.ca

Prowe:
$$kB \neq k(A)$$
 $7R(A)$
 $P(A) \land (\neg P(g) \lor Q(y, g) \land (\neg Q(g, e) \lor R(e) \land \neg R(A))$
 $Q(y, g)$
 $Q(y, g)$
 $Q(y, g)$
 $Q(A) \land (\neg P(g) \lor Q(y, g) \land (\neg Q(g, e) \lor R(e) \land \neg R(A))$
 $Q(A) \land (\neg P(g) \lor Q(y, g) \land (\neg Q(g, e) \lor R(e) \land \neg R(A))$
 $Q(A) \land (\neg P(g) \lor Q(y, g) \land (\neg Q(g, e) \lor R(e) \land \neg R(A))$
 $Q(A) \land (\neg P(g) \lor Q(y, g) \land (\neg Q(g, e) \lor R(e) \land \neg R(A))$
 $Q(A) \land (\neg P(g) \lor Q(y, g) \land (\neg Q(g, e) \lor R(e) \land \neg R(A))$
 $Q(A) \land (\neg P(g) \lor Q(y, g) \land (\neg Q(g, e) \lor R(e) \land \neg R(A))$
 $Q(A) \land (\neg P(g) \lor Q(y, g) \land (\neg Q(g, e) \lor R(e) \land \neg R(A))$
 $Q(A) \land (\neg P(g) \lor Q(y, g) \land (\neg Q(g, e) \lor R(e) \land \neg R(A))$
 $Q(A) \land (\neg P(g) \lor Q(y, g) \land (\neg Q(g, e) \lor R(e) \land \neg R(A))$
 $Q(A) \land (\neg P(g) \lor Q(y, g) \land (\neg Q(g, e) \lor R(e) \land \neg R(A))$

b. Prove by forward chaining

Prove
$$kB \neq R(A)$$
 by backward chaining

 $F_1: Q \notin A, y_2 \ni \neg R(A)$
 $C = \{x_3 \mid A\}$
 $Rz: P(A) \rightarrow Q(y_1, A)$
 $C = \{x_4 \mid A\}$
 $C = \{x_4 \mid A\}$

c. Prove by Backward chaining

2.b) Prove
$$KB \neq R(A)$$
 by forward chaining

 $Fi: P(A)$
 $Pi: P(A) \rightarrow Q(y_i, A)$ with Fi
 $O = \{x, /A\}$
 $R_2: Q(A, y_3) \rightarrow R(A)$ with RI
 $O = \{x_3 / A\}$
 $\therefore KB \neq R(A)$ by Forward chaining