33-120 Science & Science Fiction

Welcome!

Today:

Modern Physics – Einstein & Relativity (continued)

- Problem 2 due this Friday, September 15
 - Time dilation on the ISS
 - Details on Canvas

Announcements for Monday, September 11

- Spacetime Field Project Day: Monday, 9/18 (one week from today)
 - Einstein's Principle of Equivalence
 - No lecture gather data for project
 - Team assignments on Canvas (soon)
 - Pick up equipment this week

Previews of coming attractions...

- Special Theory of Relativity
 - Spacetime as a 4-dimensional "fabric"
 - Perception of space and time depend on relative motion
 - Moving clocks run slow relative to clocks at rest.
 - Time travel is possible! (into the future but not the past)

Review of Special Relativity so far...

$$t = \frac{t'}{\sqrt{1 - \frac{v^2}{c^2}}}$$

- Moving clocks run slow relative to clocks at rest.
- Take a round trip at close to the speed of light.
- Come home after 6 months (ship time) and arrive hundreds of years in the future (Earth time).

Is time travel possible?
YES! (into the future but not the past)

- Special Theory of Relativity, continued:
 - Speed of light constant for everyone
 - Only massless particles can travel at the speed of light.
 - Nothing can travel faster than light.

The constancy of the speed of light

The Big Bang Theory "The Isolation Permutation"

Directed by Mark Cendrowski Warner Brothers (2011)

Can anything travel faster than light?

Breaking News from CERN, 23 September 2011

"Faster-than-light particles at CERN: paradigm-shifting discovery, or just another Swiss export, as full of holes as their cheese?"

- Sheldon Cooper, 11/03/2011

- Neutrino speed apparently exceeded speed of light by few parts per million.
- Einstein says nothing can travel faster than light.
- Is this a paradigm shift? (Was Einstein wrong?)

"Faster-than-light particles at CERN: paradigm-shifting discovery, or just another Swiss export, as full of holes as their cheese?"

- Sheldon Cooper, 11/03/2011

- Papers published to explain it...
 - Claimed support for quantum gravity
- Or was there a simpler explanation?
 - YES! An identifiable mistake (faulty connection in timing system)
- The laws of physics are safe (for now).
- Quantum gravity papers retracted

"Faster-than-light particles at CERN: paradigm-shifting discovery, or just another Swiss export, as full of holes as their cheese?"

- Sheldon Cooper, 11/03/2011

- General Theory of Relativity
 - Gravity = distortion of spacetime near a large mass
 - gravitational time dilation
 - Black Holes (extreme distortion)
 - Gravitational waves
 - Effects of gravity propagate at speed of light, NOT instantaneously

General Relativity: Another way to mess with your perception of time

General Relativity: Fabric of spacetime distorted (stretched) near large mass

33-120 Science & Science Fiction

Gravitational Time Dilation:

$$t_r = t_{\infty} \sqrt{1 - \frac{2Gm}{rc^2}}$$

- $\succ t_r$ = time at some distance r from a mass m
- $ightharpoonup t_{\infty}$ = normal time (infinitely far from the distortion)
- \triangleright G = Newton's gravitational constant

General Relativity: Clocks run more slowly when closer to large mass

Tomorrow Never Dies

Directed by Roger Spottiswoode MGM/United Artists (1997)

Practical application of Relativity

https://www.ligo.caltech.edu/page/what-are-gw

Today... GPS: A Practical application of Special Relativity and General Relativity

33-120 Science & Science Fiction

Global Positioning System (GPS)

General Relativity: clocks run slow near large mass

$$t_r = t_{\infty} \sqrt{1 - \frac{2Gm}{rc^2}}$$

Special Relativity: moving clocks run slow

$$t'=t\sqrt{1-\frac{v^2}{c^2}}$$

Practical application of Relativity: Two competing effects for GPS

Global Positioning System (GPS)

GR: clocks on Earth run slower by 5 parts in 10¹⁰

$$t_r = t_{\infty} \sqrt{1 - \frac{2Gm}{rc^2}}$$

SR: clocks in orbit run slower by 1 part in 10¹⁰

$$t'=t\sqrt{1-\frac{v^2}{c^2}}$$

Practical application of Relativity: Two competing effects for GPS

What happens to the fabric of spacetime in the presence of a gravitationally completely collapsed object (a.k.a. a black hole)?

What happens to the fabric of *spacetime* when two such objects meet in space?

Is something like a Star Trek "warp drive" hypothetically possible?

More applications of General Relativity... Black Holes, Gravitational Waves, Warp Drive

- Gravitationally completely collapsed object
- Event horizon: point of no return, beyond which not even light can escape
- Curvature of spacetime may be so severe that classical physics breaks down

Black holes

- The term "black hole" (black star) foreshadowed in Sci-Fi (January 1967)
- "Black hole" first used by John Wheeler (Dec. 1967)
- Easier to say than "gravitationally completely collapsed object"

Black holes

Star Trek (original series) "Tomorrow is Yesterday"

Written by D.C. Fontana Paramount (1967)

Origin of the term "black hole"...

Foreshadowed in sci-fi months before first use in scientific discussions

33-120 Science & Science Fiction

The Black Hole

Directed by Tibor Takacs Equity Pictures (2005)

Movie depiction of a black hole... (doesn't get much worse than this)

Start-up of the LHC: 10 Sept. 2008 Protests in Europe: fear of black holes

CMU Fence painted (by physics majors?)

Irrational fear of science...
The LHC and the end of the world as we know it

- Gravitationally completely collapsed object
- Percent horizon: point of no return, beyond which not even light can escape (they will eat everything that comes close enough)
- Hawking Radiation: black holes are not completely black!

- Hawking Radiation: black holes are not completely black!
- A black hole must feed or it will eventually evaporate.
- Timescale for evaporation depends on size (smaller ones evaporate faster)

- Gravitationally completely collapsed object
- Event horizon: point of no return, beyond which not even light can escape
- Schwarzschild Radius:

$$r_{s} = \frac{2Gm}{c^{2}}$$

Despicable Me

Directed by Chris Renaud & Pierre Coffin Universal (2009)

Inspiration for Problem 3 (Due September 27) Calculate the Schwarzschild Radius for the Moon

33-120 Science & Science Fiction

Despicable Me

Calculate the Schwarzschild Radius for the Moon

$$r_{\rm S} = \frac{2Gm}{c^2}$$

If the Moon is shrunk to the size of a grapefruit, will it become a black hole?

Inspiration for Problem 3 (Due Feb. 15) Calculate the Schwarzschild Radius for the Moon

33-120 Science & Science Fiction

- Event horizon: point of no return, beyond which not even light can escape
- Schwarzschild Radius:

$$r_{\rm S} = \frac{2Gm}{c^2}$$

A Black Hole has a Schwarzschild Radius larger than its actual physical radius

- Gravitationally completely collapsed object
- Most important:
 Black holes are <u>real</u>,
 not just sci-fi

33-120 Science & Science Fiction

Image of M87

(in constellation Virgo)

from NASA's Chandra X-ray Observatory

https://www.nasa.gov/mission_pages/chandra/news/black-hole-image-makes-history

Close-ups of previous image of M87 from NASA's Chandra X-ray Observatory

33-120 Science & Science Fiction

First direct image of a black hole from NASA's Event Horizon Telescope April 2019

Next time... Can a black hole be used for time travel? Gravitational Waves and Warp Drive

Barry Luokkala
Teaching Professor of Physics
Carnegie Mellon University

Q&A...