STAT 578: Advanced Bayesian Modeling

Week 7 – Lesson 2

Gibbs Sampling

The Gibbs Sampler

Goal: Formulate a Markov chain

$$\theta^0$$
, θ^1 , θ^2 , ...

with the posterior as its stationary (and limiting) distribution.

Then simulate from this chain, eventually producing a (dependent) sample from the posterior (approximately), to use for approximating Bayesian tools.

Our first kind of Markov chain: The Gibbs sampler

It is the basic approach used by JAGS and OpenBUGS.

2

Conditional Posteriors

Suppose

$$\theta = (\theta_1, \dots, \theta_d)$$

The (joint) posterior density is

$$p(\theta \mid y) = p(\theta_1, \dots, \theta_d \mid y)$$

Let

$$\theta_{-j} = \theta$$
 without θ_j

The conditional posterior (or full conditional) distribution of θ_j has density

$$p(\theta_j \mid \theta_{-j}, y)$$

Gibbs Sampler Algorithm

Choose starting value θ^0 .

For t = 1, 2, ...

- 1. Set $\theta^* = \theta^{t-1}$.
- 2. For $j=1,\ldots,d$ Replace θ_j^* with a sample from $p(\theta_j\mid\theta_{-j}^*,y).$
- 3. Let $\theta^t = \theta^*$.

Continue until sufficiently many samples are taken.

4

In words:

Repeatedly cycle through the components of θ , updating each with a sample from its conditional posterior.

Record θ at the end of each cycle.

The Gibbs sampler is a Markov chain:

 θ^t is sampled using only components of θ^{t-1} .

It is also time-invariant: The same conditional posteriors are used in each cycle.

The posterior is stationary for the Gibbs sampler:

Let θ^* have the posterior distribution, and replace θ_j^* with a draw θ_j^{**} from its conditional posterior to get θ^{**} . Then

- $lackbrack heta_{-j}^{**} = heta_{-j}^*$, so they trivially have the same marginal posterior, and
- ► The conditional posterior distribution of θ_j^{**} given $\theta_{-j}^{**} = \theta_{-j}^*$ is the same as the conditional posterior distribution of θ_j^* given θ_{-j}^* .

So θ^{**} has the same distribution as θ^{*} .

The posterior also tends to be the limiting distribution (with rare exceptions).

Limitation: Every conditional posterior must be easy to sample.

May be true for θ_i if

- lt is only one-dimensional, or
- lts conditional posterior is a standard distribution, as when the prior is chosen to make θ_i partially conjugate.

In either case, methods are available that do not require the normalizing factor.

(Later: More sophisticated sampling schemes)

A Gibbs sampler is easiest to implement when the prior is chosen to make all components of θ partially conjugate.

Even in cases where this is not feasible, *data augmentation* can sometimes restore partial conjugacy – see BDA3, Sec. 12.1.

Problem: Variates from a Gibbs sampler tend to be highly dependent when components of θ have high posterior dependence (e.g., BDA3, Fig. 11.2).

Possible remedies:

- ▶ Block updates (multivariate θ_i)
- ► Parameter expansion (BDA3, Sec. 12.1)