

Using down to a Single Scan Channel to Meet your Test Goals (Part 2)

Richard Illman

Member of Technical Staff

Motivation - Target Market

"Dialog Semiconductor creates energy-efficient, highly integrated, mixed signal circuits optimised for smartphones, tablets, ULTRABOOKS™ and other portable devices."

Implications:

Low pin count devices

Large volumes (10s millions to 100s millions)

Price competitive

Reducing Pin Count – Example Audio Design

Limited digital pins available:

Clock input/output 3 pins

I2C interface 2 pins

I2S interface 4 pins

Typically limited 3 or 4 pairs scan in/out pads

Dual use of audio analogue input pads

Analogue audio input pads can be as digital inputs in scan mode.

Issues:

- Typically must be level shifted in the chip to the digital supply levels.
- Load board must support both analogue and digital channels for the same pad.
- Mixes the analogue/digital design environments.

Requirement for high X-tolerance

Large amounts of non-scan elements latches

Ratio 2:1 of scan to non-scan elements

Register files, filter blocks etc.

Tolerance to problems in sub-chains in analogue blocks

Real Time Counter, PLL

High X tolerance DFTMAX architecture

Number of scan-in and scan-out pins	Maximum internal chains
2	4
3	12
4	32
5	80
6	192

DFTMAX X-mask statistics in example audio design

3875 scan patterns

302 mask-only patterns

230 patterns without X-masking (~6%)

3342 patterns with X-masking

Average 55 mask bits (chain length 181 bits)

High X tolerance DFTMAX with Serialiser

Serialiser Shift Clock Ratios

Compression – Goldilocks type problem?

DFTMAX – "too many pins"

DFTMAX Serialiser – "too slow, too much data"

DFTMAX Ultra – "baby bear" solution - just right?

DFTMAX Ultra Architecture

DFTMAX Ultra shift

Change to the Design Compiler Synthesis Flow

```
set dft configuration -scan compression enable
set scan compression configuration \
   -xtolerance high \
   -chain count 32 -inputs 4 -outputs 4 \
   -min power true
report scan compression configuration
set dft configuration -streaming compression enable
set streaming compression configuration \
   -chain count 120 -inputs 4 -outputs 4
report streaming compression configuration
```


DFTMax Ultra overhead (Design has 6,300 scan flops and 3,500 non-scan latches)

Architecture	#si/so pins	Internal Chains	Latches added	DFF added	Seq. element overhead*	Fault list overhead**
DFTMAX	4	32	0	0	0	0.23%
DFTMAX Ultra	4	40	38	84	1.3%	1.06%
DFTMAX Ultra	4	80	62	136	2.2%	2.05%
DFTMAX Ultra	4	120	78	168	2.7%	3.31%
DFTMAX Ultra	4	160	86	188	3.0%	4.25%
DFTMAX serializer	1	32	4	16	0.2%	0.29%
DFTMAX Ultra	1	32	36	72	1.2%	0.90%

Single SI/SO results

With "Minimum Detect" ATPG the reduction is 3.4

4 SI/SO test case

DFTMAX Ultra Budgeter

OUTPUT DATA									
SCAN In/Out PORT pairs	Number of flip	Compression Ratio		#Internal Scan Chains		# External Cycles		Internal Scan Chain length	
	flops [#DFFs]			(ScanCompression_mode)				(ScanCompression_mode)	
		User Target	Max Target	User Target	Max Target	User Target	Max Target	User Target	Max Target
4	6000	10	20	40	80	12	19	150	75
4	6000	20	20	80	80	19	19	75	75
4	6000	30	20	120	80	23	19	50	75
4	6000	40	20	160	80	26	19	38	75

DFTMAX Ultra Budgeter

	OUTPUT DATA						
Number of flip flops [#DFFs]	Compression Ratio		· · · · · · · · · · · · · · · · · · ·		# Internal Scan C (ScanCompression		
	User Target	Max Target	User Target	Max Target			
6000	10	20	40	80			
6000	20	20	80	80			
6000	30	20	120	80			
6000	40	20	160	80			

`And thirdly, the *Pirate Code* DFTMAX Ultra Budgeter is more what you'd call "guidelines" than actual rules.`

Captain Barbossa, "Pirates of the Caribbean"

Effective Chain Lengths

4 SI/SO test case

Information encoded in each pattern

DFTMAX

- Mask data for the unload of the *previous* pattern
- Decompressor mode for the current pattern
- Data is encoded on a cycle basis through the whole pattern

DFTMAX Ultra

- Mask data and compressor direction for the current pattern
- Decompressor mode and direction for the next pattern
- Data is encoded in separate dedicated bits

High X-tolerance DFTMAX patterns which utilise X-masking cannot be individually manipulated, DFTMAX Ultra patterns can.

ATPG Minimum Detect

```
set atpg -basic min detects per pattern { d d } \
           -fast min detects per pattern { d d }
                          parameters
                              minimum number of fault detects
                              limit on consecutive rejected patterns
 set i 8192
 while \{ \$i > 2 \} \{ \text{ set i } [\exp \$i/2] ;
                      set_atpg -fast_min_detect [list $i 20];
                      run atpg fast -auto }
```


DFTMAX Ultra Pattern Reordering Command Post ATPG (Beta status)

Pattern reordering – fault simulation based Extracting fault detections for each pattern

```
set limit [expr [sizeof_collection [get_patterns -all ]] -1 ]
for { set i 0 } { $i < $limit } { incr i } {
    run_fault_sim -first $i -last $i }</pre>
```

Very slow and inefficient

```
run_fault_sim -detected_pattern_storage
write_patterns filename -all
```

Fault list contains the first pattern where the fault is detected Not available with multi-processor

DFTMAX Ultra Pattern Reordering Command User defined list

The first list is the patterns to be removed. The corresponding item in the second list is the position it is to be placed.

If the item in the second list is "X" the pattern is deleted.

Over 50,000 patterns successfully reordered with a single command.

Legacy patterns reordered with:

write patterns filename -reorder file

DFTMAX Ultra with "minimum detect" 20 rejected pattern limit

Reordering of "minimum detect" patterns

"Legacy" design reordering Basic, single load sequential, multi load sequential

Regeneration of Patterns

Pattern Reordering

Key Advantages of DFTMAX Ultra

- Easy transition of the synthesis/ATPG flow
- Dramatically improved results for the single scan in/out implementation.
- Higher compression achieved when pin counts are limited (or achieve the same compression with reduced pin access on the ATE).
- More compact pattern sets can be generated
 - "minimum detect" and pattern reordering available even with High X tolerance

The power to be...

