FORMAL NULLSTELLENSATZ: Let R be a ring, I an ideal, and $f \in R$. Then $V(f) \supseteq V(I)$ if and only if $f \in \sqrt{I}$.

COROLLARY 1: Let R be a ring. There is a bijection

 $\{\text{radical ideals in } R\} \longleftrightarrow \{\text{closed subsets of } \operatorname{Spec}(R)\}.$

DEFINITION: Let R be a ring and I an ideal. A **minimal prime** of I is a prime \mathfrak{p} that contains I, and is minimal among primes containing I. We write Min(I) for the set of minimal primes of I.

LEMMA: Every prime that contains I contains a minimal prime of I.

COROLLARY 2: Let R be a ring and I be an ideal. Then

$$\sqrt{I} = \bigcap_{\mathfrak{p} \in \operatorname{Min}(I)} \, \mathfrak{p}.$$

DEFINITION: A subset W of a ring R is **multiplicatively closed** if $1 \in W$ and $u, v \in W$ implies $uv \in W$.

PROPOSITION: Let R be a ring and W be a multiplicatively closed subset. Then every ideal I such that $I \cap W = \emptyset$ is contained in a prime ideal $\mathfrak p$ such that $\mathfrak p \cap W = \emptyset$.

- (1) Proof of Formal Nullstellensatz and Corollaries.
 - (a) Show the direction (\Leftarrow) of Formal Nullstellensatz.
 - **(b)** Verify that $W = \{f^n \mid n \ge 0\}$ is a multiplicatively closed set. Then apply the Proposition to prove the direction (\Rightarrow) of Formal Nullstellesatz.
 - **(c)** Prove Corollary 1.
 - **(d)** Prove the Lemma.
 - **(e)** Prove Corollary 2.
 - **(f)** What does Corollary 2 say in the special case I = (0)?
- **(2)** Use the Formal Nullstellensatz to fill in the blanks:

$$f$$
 is nilpotent $\iff V(f) = \underline{\qquad} \iff D(f) = \underline{\qquad}$.

What property replaces "nilpotent" if you swap the blanks for V and D above?

- **(3)** Prove¹ the Proposition.
- (4) Let R be a ring. Show² that $\operatorname{Spec}(R)$ is connected as a topological space if and only if $R \not\cong S \times T$ for rings³ S, T.

¹Hint: Take an ideal maximal among those that don't intersect W.

²Start with the (\Rightarrow) direction. For the other direction, use CRT.

³Recall that the zero ring is not a ring.