Increasing the Insight from Network Flows - Connecting Science to Operational Reality

Grant Babb

Research Scientist

Intel Data Center Group – Cloud Platforms

Objectives

- The BIG question
- Why netflows?
- Why transform them?
- What analytics to use?

The BIG Question

What are the patterns in my network flow data that will identify a potential security threat?

Bridging the Gap

Security Events – Large amount of time information lost, only know occurrence, further analysis difficult if not impossible

Real-time alerting on what you know already

Network Flows – sampling makes analysis feasible, some information lost but not much, still a high noise-low signal problem

Telemetry data to find new insight, or deeper analysis from events

of Analysis

2X

X

Packet Stream – no sampling of data, would require a complete copy of network data for analysis

Forensic data for an identified threat you want to observe

Netflows as Time Series

Transforming Netflows

- Training load sample of IP channels as composite 12-bit/52-bit keys
- Optimization create the set of empirical quantiles using index keys in the training data
- Transform use quantiles and binary search to split processing across workers, add or update values in matrix

Algorithm Results

Order of Complexity ... Scalable!

Binary search $O(\log n)$ + Direct search $O(c \log n)$ = Algorithm O(n [1+c] log n)Compare to O(n²)

Analytic Approach

Graph Analysis: Latent Dirichlet Allocation

- Tries to put a population into sub-groups based on their similarity
- Used with documents and the words in them to suggest "topics"
- IP addresses are nodes, flow details are edges
- Use to cluster on known (profiling) or unknown (automated behavior)

LDA results

Overview: Topic Bubble Chart

- Question: What are the strongest matches for groups based on automated communication to wellknown ports?
- Answer: Seven ports in four different groups are the strongest matches


```
In []: gname = 'netflow_topic'
g = get_graph(gname)
graph_result1 = g.query.gremlin("g.V.has('dport').has('lda_result',T.gte,0.9f).has('dport',T.lte,1024)")
print 'results retrieved'
```


The Use of PCs to summarize ... climatological fields has been found to be so valuable that is almost routine — Joliffe, Principal Component Analysis

PCA Results

- Question: Are there any anomalous patterns in this data?
- Answer: One source IP is talking to several destination IP's that do not exist (horizontal scan)

Signal Analysis: Fast Fourier Transform

- Represent flow data as a function of sines and cosines (waves)
- Jump from time domain to frequency domain (and back)
- Easily filter noise from signal, or remove other frequencies

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right) \quad x \in (-\pi, \pi]$$

Signal Analysis - FFT

172.0.0.1 -> 172.30.0.3

10.170.148.64 -> 172.20.0.3

Visual Analytics: IPython and D3

```
In [46]: %%javascript
     var viz = 'files/ipython/network.html'
     parent.document.getElementById('vizView').contentWindow.location.re
                                                               450
       180
          180
```

References

- Babb, Grant; Ross, Alan: Increasing the Insight from Network Flows Connecting Science to Operational Reality, Draft Publication
- Kutz, J. Nathan: Data-Driven Modeling & Scientific Computation
- Joliffe, I. T.: Principal Component Analysis
- Blei, David M.: Introduction to Probabilistic Topic Models
- Chakravarty, Sambuddho et al: On the Effectiveness of Traffic Analysis Against Anonymity Networks Using Flow Records
- Cloudera Hadoop: http://cloudera.com
- Intel Analytics Toolkit: <u>http://www.intel.com/content/www/us/en/software/intel-graph-solutions.html</u>
- IPython, NumPy, Matplotlib: http://ipython.org
- SciPy: http://scipy.org
- D3: http://d3js.org

