```
In [129]:
           #Import libraries
           import pandas as pd
           import seaborn as sns
           import matplotlib.pyplot as plt
           import statsmodels.api as sm
           from sklearn import linear model
           from sklearn.metrics import mean_squared_error, r2_score
           from scipy import stats
           #Import dataset
           df = pd.read csv("C:/Users/hkeim/OneDrive/Documents/School/D208/churn clean.csv")
In [130]:
           # Change object type to category codes
           df['State'] = df['State'].astype('category')
           df['State'] = df['State'].cat.codes
In [131]:
           df['Area'] = df['Area'].astype('category')
           df['Area'] = df['Area'].cat.codes
In [132]:
           df['TimeZone'] = df['TimeZone'].astype('category')
           df['TimeZone'] = df['TimeZone'].cat.codes
In [133]:
           df['Marital'] = df['Marital'].astype('category')
           df['Marital'] = df['Marital'].cat.codes
In [134]:
           df['Gender'] = df['Gender'].astype('category')
           df['Gender'] = df['Gender'].cat.codes
In [135]:
           df['Contract'] = df['Contract'].astype('category')
           df['Contract'] = df['Contract'].cat.codes
In [136]:
           df['PaymentMethod'] = df['PaymentMethod'].astype('category')
           df['PaymentMethod'] = df['PaymentMethod'].cat.codes
In [137]:
           df['InternetService'] = df['InternetService'].astype('category')
           df['InternetService'] = df['InternetService'].cat.codes
In [138]:
           # Create dummies for bianry objects
           df=pd.get_dummies(df, columns=['Churn', 'Techie', 'Port_modem', 'Tablet', 'Phone', 'Multiple'
                                                           'OnlineSecurity', 'OnlineBackup', 'DeviceProte
In [139]:
           # Drop 'No' dummies
           df=df.drop(['Churn_No', 'Techie_No', 'Port_modem_No', 'Tablet_No', 'Phone_No', 'Multiple_No',
                       StreamingTV_No', 'StreamingMovies_No', 'PaperlessBilling_No'], axis=1)
In [140]:
           # Use Pearson Correlation to choose initial model variables
```

In [141]:

In [142]:

```
plt.figure(figsize=(12,10))
cor = df.corr()
sns.heatmap(cor, annot=True, cmap=plt.cm.Reds)
plt.show()
```

```
1.00
        CaseOrder
             State
              7in
              Lat
              Lna
        Population
                                                                                                                   0.75
             Area
         TimeZone
          Children
              Age
           Income
            Marital
                                                                                                                   0.50
           Gender
Outage sec perweek
             Email
          Contacts
 Yearly_equip_failure
Contract
                                                                                                                   0.25
     InternetService
    PaymentMethod
            Tenure
     MonthlyCharge
 Bandwidth GB Year
Item1
                                                                                                                   0.00
             Item2
             Item3
             Item4
             Item5
             Item6
                                                                                                                  -0.25
             Item7
             Item8
         Churn_Yes-
         Techie Yes
    Port_modem_Yes
         Tablet_Yes
                                                                                                                   -0.50
         Phone_Yes
       Multiple_Yes
  OnlineSecurity_Yes
   OnlineBackup_Yes
DeviceProtection_Yes
TechSupport_Yes
                                                                                                                   -0.75
StreamingTV_Yes
StreamingMovies_Yes
 PaperlessBilling Yes
                                                  equip_failure
                                                                                   modem )
 # Create dataframe with initial variables
 df=df.filter(items=['CaseOrder', 'Tenure', 'Bandwidth_GB_Year', 'Churn_Yes'])
 df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 4 columns):
      Column
                              Non-Null Count
                                                  Dtype
      CaseOrder
                                                  int64
 0
                              10000 non-null
                              10000 non-null float64
 1
      Tenure
 2
      Bandwidth GB Year 10000 non-null float64
      Churn Yes
                              10000 non-null
                                                  uint8
dtypes: float64(2), int64(1), uint8(1)
memory usage: 244.3 KB
 # Summary statistics
 print(df.describe())
```

	CaseOrder	Tenure	Bandwidth_GB_Year	Churn_Yes
count	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	34.526188	3392.341550	0.265000
std	2886.89568	26.443063	2185.294852	0.441355
min	1.00000	1.000259	155.506715	0.000000
25%	2500.75000	7.917694	1236.470827	0.000000
50%	5000.50000	35.430507	3279.536903	0.000000
75%	7500.25000	61.479795	5586.141370	1.000000
max	10000,00000	71.999280	7158.981530	1.000000

In [143]:

Univariate and bivariate visualizations
sns.pairplot(df)

Out[143]: <seaborn.axisgrid.PairGrid at 0x1c8cd2a94c0>

In [144]:

Defining the dependent Variable
y=df['Bandwidth_GB_Year']

In [145]:

Defining the independent variables

```
X=df[['CaseOrder', 'Tenure', 'Churn Yes']]
In [146]:
           # Initial linear Regression Model
           model=linear model.LinearRegression()
In [147]:
           # Initial model training
           model.fit(X,y)
           linear model.LinearRegression(copy X=True, fit intercept=True,
                             n jobs=None, normalize= False)
Out[147]: LinearRegression()
In [148]:
           # Initial model coefficients ('CaseOrder', 'Tenure', 'Churn Yes')
           model.coef_
Out[148]: array([8.84048998e-04, 8.39413803e+01, 2.57074782e+02])
In [149]:
           # Initial model Y intercept
           model.intercept
Out[149]: 421.6201622108065
In [150]:
           # Initial model predict target
           y pred = model.predict(X)
           y_pred
Out[150]: array([ 992.04578262, 775.79011136, 1744.04741328, ..., 4410.69807842,
                 6398.32256269, 5748.21928137])
In [151]:
           # Initial model MSE
           mean_squared_error(y,y_pred)
Out[151]: 71038.72808569088
In [152]:
           # Initial model coefficient of determination
           r2 score(y,y pred)
Out[152]: 0.9851228917478336
In [153]:
           # Initial model residual plot
           residuals=(y-y_pred)
           plt.figure(figsize=(7,7))
           stats.probplot(residuals, dist="norm", plot=plt)
           plt.title("Normal Q-Q Plot")
Out[153]: Text(0.5, 1.0, 'Normal Q-Q Plot')
```



```
In [154]: # summary of the initial model, p values

X2 = sm.add_constant(X)
    est = sm.OLS(y, X2)
    est2 = est.fit()
    print(est2.summary())
```

R-squared:

0.985

OLS Regression Results

Bandwidth_GB_Year

Dep. variab		anii_acii_ab_ i	- 01	590	aa. ca.		0.505
Model:			DLS	_	R-squared:		0.985
Method:		Least Squar	res				2.206e+05
Date:	Tu	e, 12 Oct 20	921		(F-statistic)	:	0.00
Time:		21:12:	:49	Log-l	ikelihood:		-70044.
No. Observa	tions:	100	900	AIC:			1.401e+05
Df Residual	s:	99	996	BIC:			1.401e+05
Df Model:			3				
Covariance	Type:	nonrobu	ıst				
========	=========	========		=====			========
					P> t	-	-
					0.000		
const					0.000		
	0.0009				0.596		
					0.000		
Churn_Yes	257.0748	6.910	37	. 205	0.000	243.530	270.619
0	=======	262.4	=====		·		4 006
Omnibus:		262.0			in-Watson:		1.986
Prob(Omnibu	s):		900		ue-Bera (JB):		210.306
Skew:		0.2	277	Prob((JB):		2.15e-46
Kurtosis:		2.5	556	Cond.	No.		1.84e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.84e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Dep. Variable:

```
In [155]: #Using Pearson Correlation to choose reduced model variables
   plt.figure(figsize=(12,10))
   cor = df.corr()
   sns.heatmap(cor, annot=True, cmap=plt.cm.Reds)
   plt.show()
```


In [159]:

```
# Reduced model coefficients ('Churn Yes', 'Tenure')
           modelr.coef
Out[159]: array([257.03592381, 84.02141907])
In [160]:
           # Reduced model Y intercept
           modelr.intercept
Out[160]: 423.28771144043594
In [161]:
           # Predict bandwidth with reduced model
           y_predr = modelr.predict(Xr)
           y predr
Out[161]: array([ 994.25635259, 777.50961404, 1746.97325335, ..., 4407.32209736,
                 6396.84091342, 5746.11686826])
In [162]:
           # How close to the reduced model are the datapoints
           mean_squared_error(y,y_predr)
Out[162]: 71040.726404036
In [163]:
           # The coefficient of determination for reduced model
           r2_score(y,y_predr)
Out[163]: 0.9851224732550038
In [164]:
           # Reduced model residual plot
           residualsr=(y-y_predr)
           plt.figure(figsize=(7,7))
           stats.probplot(residualsr, dist="norm", plot=plt)
           plt.title("Normal Q-Q Plot")
Out[164]: Text(0.5, 1.0, 'Normal Q-Q Plot')
```



```
In [165]: # Reduced model summary Cond. No.

X2 = sm.add_constant(Xr)
    est = sm.OLS(y, X2)
    est2 = est.fit()
    print(est2.summary())
```

Dep. Variable:	Bandwidth_GB_Year	R-squared:	0.985			
Model:	OLS	Adj. R-squared:	0.985			
Method:	Least Squares	F-statistic:	3.310e+05			
Date:	Tue, 12 Oct 2021	<pre>Prob (F-statistic):</pre>	0.00			
Time:	21:14:03	Log-Likelihood:	-70044.			
No. Observations:	10000	AIC:	1.401e+05			
Df Residuals:	9997	BIC:	1.401e+05			

OLS Regression Results

Df Model: 2
Covariance Type: nonrobust

const 423.2877 5.778 73.255 0.000 411.961 43.255 Churn_Yes 257.0359 6.909 37.203 0.000 243.493 23.255 Tenure 84.0214 0.115 728.613 0.000 83.795 83.255 Omnibus: 261.693 Durbin-Watson: Prob(Omnibus): 0.000 Jarque-Bera (JB): 23.255	COVAL TAILCE	
Churn_Yes 257.0359 6.909 37.203 0.000 243.493 27 Tenure 84.0214 0.115 728.613 0.000 83.795 8		0.975]
Prob(Omnibus): 0.000 Jarque-Bera (JB): 23	Churn_Yes	434.614 270.579 84.247
Kurtosis: 2.556 Cond. No.	Prob(Omnibus Skew:	1.986 210.043 2.45e-46 134.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [166]: # Export regression data set
```

df.to_csv("C:/Users/hkeim/OneDrive/Documents/School/D208/churn_mlr.csv", index=False, header=
In []: