1 The TWK Format Specification

1.1 TGZF specification

TGZF is a variation of BGZF used in the BAM and BCF formats (https://samtools.github.io/hts-specs/) that in turn are slightly modified gzip blocks concatenated together back-to-back to enable random access lookups. In short, TGZF lifts the size restriction in BGZF that uncompressed data cannot exceed 2^{16} bytes and instead asserts that the compressed TGZF data described the BSIZE field is smaller than 2^{32} bytes. When a block of uncompressed data is dispatched to the compressor and sent to disk is contextually determined and is available as a modifiable variable in many cases.

Notably, as the TGZF/BGZF format naturally extend the ZLIB library (http://zlib.net/), all multi-byte values are little endian (as required by the gzip specification). Endianness is not asserted in the uncompressed data.

${f Field}$		Description	Type	Value
	List of compression blocks (until the end of the file)			
ID1		gzip IDentifier1	uint8_t	31
ID2		gzip IDentifier2	uint8_t	139
CM		gzip Compression Method	uint8_t	8
FLG		gzip FLaGs	uint8_t	4
MTIME		gzip Modification TIME	uint32_t	
XFL		gzip eXtra FLags	uint8_t	0
OS		gzip Operating System	uint8_t	255
XLEN		gzip eXtra LENgth	uint16_t	8
	$Extra\ subfield(s)\ (total\ size=XLEN)$			
		Additional RFC1952 extra subj	fields if present	
SI1		Subfield Identifier1	uint8_t	84
SI2		Subfield Identifier2	uint8_t	90
SLE	V	Subfield LENgth	uint16_t	2
BSIZ	Έ	total Block SIZE	uint32_t	
	Additional RFC1952 extra subfields if present			
CDATA		Compressed DATA by zlib::deflate()	uint8_t[BSIZE-XLEN-19]	
CRC32		CRC-32	uint32_t	
ISIZE		Input SIZE (length of uncompressed data)	uint32_t	

1.2 Template type data bounds

The Tomahawk data structure described below uses different integer types based on the number of samples in the imported file. This Template field is reinterpreted from the byte buffer as follows:

Field	Description
uint8_t	$0 < ext{n_samples} < 16 \ (2^4)$
uint16_t	$16 < {\sf n_samples} < 4096~(2^{12})$
uint32_t	$4096 < n_samples < 268435456 (2^{28})$
uint64_t	$268435456 < n_samples < 1152921504606846976 (2^{60})$

Using this approach, Tomahawk run-length encodes genotypes with the lowest 4 bits being the alleles and the remainder size of (Template) *8 - 4 bits as the run-length.

1.3 TWK organization

A TWK file comprises of a binary (non-compressed) header followed by a series of TGZF-compressed binary blocks of TWK records and ended with a binary EOF marker.

The TWK format asserts that:

• Contig information is specified in the header: this data must minimally include a contig identifier (such as a unique string name in VCF or unique integer in BCF) and contig length in base pairs

- Entries must be bi-allelic SNVs
- Entries in the imported VCF / BCF file are sorted by contig identifier followed by genomic coordinates (base position of SNV)
- There is > 1 sample in the file
- If importing from the BCF format: is version 2.2 or later
- If importing from the VCF format: is version 4 or later

The fields INFO and FORMAT are dropped from imported VCF/BCF files as they are not used in the current implementation

1.4 TWI: Random access

Searching to the beginning of a specified TGZF block is aided by TWI entries specifying virtual offsets into the TWK file. Importantly, unlike BAM and BCF, none of TWK/TWI/TWO/TOI permits data to be split over multiple blocks. This intentional restriction guarantees that the uncompressed data is completely disjoint and this assertion renders parallel computing exceedingly more tractable.

Unlike BCI/BAI, TWI/TOI stores the virtual file offset to every single TGZF block. This permits complete random access to any part of a TWK/TWO file. This makes TWI/TOI indices larger than BCI/BAI indices but still remain very small. For example, the TWI file for HRC.v1-1 is < 2 MB.

Field	Description	Type	Value
MAGIC	Start of file identifier string	char[10]	TOTEMPOLE\1
version	Tomahawk major version	float	
samples	Number of samples	uint64_t	
controller	Currently unused	uint8_t	0
n_blocks	Number of TGZF blocks in Twk file	uint32_t	
n_largest	Size in bytes of largest uncompressed TGZF block	uint32_t	
header_offset	Relative disk offset until this position (start of data)	uint32_t	
n_contigs	Number of contigs in header	uint32_t	
	List of contig data (n_contigs)		
bp_contig	Length of contig in bases	uint32_t	
I_contig	Length of contig name	uint32_t	
contig_name	Contig name	char[l_contig]	
	List of sample identifiers (n_samples)		
I_name	Length of sample name	uint32_t	
sample_name	Sample name	char[l_name]	
TGZF_block	Compressed DATA by zlib::deflate(). DATA keeping		
1 GZ1 _DIOCK	VCF header and any changes made to the file		
	Totempole entries until end-of-file		
byte_offset	Virtual file offset to start to TGZF block	$\mathtt{uint}64_\mathtt{t}$	
contigID	All variants belong to this contig identifier	int32_t	
min_position	Smallest variant position	uint32_t	
max_position	Largest variant position	uint32_t	
n_variants	Number of variants	uint16_t	
uncompressed_size	Uncompressed size of data	uint32_t	
EOF_string	End-of-file marker	char*	

1.5 TWK format

F	ield	Description	Type	Value
N	IAGIC	Start of file identifier string	char[9] TOMAHAWK\1	
V	ersion	Tomahawk major version	float	
Sa	mples	Number of samples	uint64_t	
		$TGZF\ blocks\ until\ end-of-file$		
	For n_var	riants (described in TWI)		
	nos nius	pos<<30 phased<<1 missing; Genomic coordinate;	uint32_t	
	pos_plus	flag if all data is phased; flag if any data is missing	ullit32_t	
	ref_alt	REF<<4 ALT	uint8_t	
	MAF	Minor allele frequency	float	
	HWE_P	Hardy-Weinberg P-value (Fisher's exact test)	float	
	n_runs	Number of runs for this variant	Template	
	Until end of TGZF block			
	RLE	Run-length encoded data	Template*	
Е	OF_string	End-of-file marker	char*	

1.6 TWO format

TWO entry

Field	Description	Type	Value
MAGIC	Start of file identifier string	char[17]	TOMAHAWK~OUTPUT\1
version	Tomahawk major version	float	
samples	Number of samples	uint64_t	
n_contigs	Number of contigs in header	uint32_t	
	List of contig data (n_contigs)		
bp_contig	Length of contig in bases	uint32_t	
I_contig	Length of contig name	uint32_t	
contig_name	Contig name	char[l_contig]	
TGZF_block	Compressed DATA by zlib::deflate(). DATA keeping		
I GZI _DIOCK	VCF header and any changes made to the file		
EOF_string	End-of-file marker	char*	
TGZF blocks of TWO entries until EOF			

TWO entries

Field	Description	Type	Value
FLAG	Bit-wise flags	uint16_t	
AcontigID	Variant A contig map identifier, $0 \le AcontigID < n$ _ref	uint32_t	
Aposition	pos<<30 phased<<1 missing	uint32_t	
BcontigID	Variant B contig map identifier, $0 \le BcontigID < n_ref$	uint32_t	
Bposition	pos<<30 phased<<1 missing	uint32_t	
p1	Haplotype counts for A1B1 (Ref-Ref). Is estimated if FLAG bit 1 is unset	float	
p2	Haplotype counts for A1B2 (Ref-Alt). Is estimated if FLAG bit 1 is unset	float	
q1	Haplotype counts for A2B1 (Alt-Ref). Is estimated if FLAG bit 1 is unset	float	
q2	Haplotype counts for A2B2 (Alt-Alt). Is estimated if FLAG bit 1 is unset	float	
D	Coefficient of linkage disequilibrium (D)	float	
Dprime	Normalised D value	float	
R2	Tomahawk major version	float	
Р	Tomahawk major version	double	
chiSqFisher	Exact Fisher's test or Chi-squared test (see FLAG bit)	double	
	for the 2x2 haplotype contingency table	doubte	
chiSqModel	Chi-squared critical value for the 3x3 genotype contingency table	double	

1.7 TWO FLAG field

The TWO FLAG

Bit	Description
1	Both variant lines were phased OR equations used for phased genotypes was used
2	Either variant has missing values
3	A field is incomplete (A1B1, A1B2, A2B1, or A2B2 has 0 observations)
4	There are multiple possible biological solutions (valid roots in cubic equation)
5	Both variants are on the same contig
6	There is ¿ 1 million base pairs between the variants
7	There is > 1 million base pairs between the variants
8	Variant A failed Hardy-Weinberg test (P < 1E-6)
9	Variant B failed Hardy-Weinberg test (P < 1E-6)
10	Variant A has a low minor allele frequency (< 1%)
11	Variant B has a low minor allele frequency (< 1%)
12	Currently unused
13	Currently unused
14	Currently unused
15	Currently unused
16	Currently unused