Solving recurrence

Tree method

1.
$$T(n) = T(n-1) + d, n>1$$

= c, n=1

1.
$$T(n) = T(n-1) + d$$
, $n>1$
= c, $n=1$

1.
$$T(n) = T(n-1) + d$$
, $n>1$
= c, $n=1$

1.
$$T(n) = T(n-1) + d$$
, $n>1$
= c, $n=1$

1.
$$T(n) = T(n-1) + d, n>1$$

= c, n=1

1.
$$T(n) = T(n-1) + d, n>1$$

= c, n=1

Level k

Number of

Levels Level 0 Level 1 Level 2	Size n n-1	Number of nodes 1 1	Cost d d	Total d d
 Level i	n-i	1	d	d
Level k	1	1	С	С

Prepared by Pawan R.

8

Prepared by Pawan R.

2.
$$T(n) = 2T(n/2) + d$$
, $n>1$
= c , $n=1$

3.
$$T(n) = 2T(n/2) + n$$
, $n>1$
= c, $n=1$

Home Work

O(n)

5.
$$T(n) = 4T(n/3) + 6n^2$$
, $n>1$
= 11, $n=1$ $O(n^2)$

