Test Fall 2019

Question 1. Divide-and-Conquer [20 MARKS]

Write a divide-and-conquer algorithm that finds the maximum difference between any two elements of a given array of n numbers (not necessarily distinct) in O(n) time. For example, on input $A = [4.5, 10, -2, \pi, -7.115]$, your algorithm should return 17.115.

Justify briefly that your algorithm is correct and runs within the required time bound. (For your reference, the Master Theorem states that a recurrence of the form $T(n) = aT(n/b) + \Theta(n^d)$ has solution $\Theta(n^d)$ if $a < b^d$, $\Theta(n^d \log n)$ if $a = b^d$, and $\Theta(n^{\log_b a})$ if $a > b^d$.)

Note: For full marks, your answer *must* make use of the divide-and-conquer method. Partial marks will be given for an $O(n \log n)$ divide-and-conquer method.

SAMPLE SOLUTION:

The maximum difference is simply the difference between the maximum and the minimum elements. We find the pair (minimum element, maximum element) recursively (using divide-and-conquer), then return their difference.

Procedure MinMax runs in time $\Theta(n)$ because its worst-case running time satisfies the recurrence $T(n) = 2T(n/2) + \Theta(1)$, so MaxDiff also runs in time $\Theta(n)$.

Question 2. Greedy [20 MARKS]

Consider the following *Art Gallery Guarding* problem. We are given a set $\{p_1, p_2, ..., p_n\}$ of positive numbers that specify the positions of paintings in a long hallway in an art gallery. We want to position guards in the hallway to protect every painting, using as few guards as possible. Suppose that a guard at location x can protect all paintings within 1 distance (i.e. in interval [x-1,x+1]), and any painting protected by at least one guard is considered protected.

We propose to solve this problem using the following greedy algorithm.

```
Sort the positions so p_1 \leq p_2 \leq \cdots \leq p_n. G \leftarrow \emptyset # current set of guards' locations g \leftarrow -\infty # position of rightmost guard in G = maximum number in G for i \leftarrow n, \ldots, 1: # start at the rightmost painting and move to the left if p_i - g > 1: # p_i is unprotected by the guards currently in G # Place a guard 1 unit to the right of p_i. g \leftarrow p_i + 1 G = G \cup \{g\} return G
```

PAGE 1 OF 3 OVER...

CSC373H1 Midterm

(a) (2.5 marks) The above algorithm does not quite work. Provide a counterexample of painting positions where the above algorithm would use more guards than required. No justification is needed.

- (b) (2.5 marks) The above algorithm can be fixed by changing a single line. What is the change needed to make the algorithm always find a solution with the minimum number of guards? For partial marks, you can propose any other greedy algorithm which always finds a solution with the minimum number of guards.
- (c) (2.5 mark) What is the time complexity of your algorithm from part (b)?
- (d) (10 marks) Prove that your fix to the algorithm (or any other greedy algorithm you proposed) in (b) is correct.
- (e) (2.5 marks) The exhibition is then moved to another gallery where the art is put up on easels in a wide open space, i.e., each painting is placed at a 2D point $p_i = (x_i, y_i)$. Suppose we use a variant of your fixed greedy algorithm from part (b), where you sort the paintings by x-coordinate, check if a painting p_i is greater than a unit Euclidean distance from the current guard (i.e., $||p_i g|| > 1$), and if so, place a new guard at $g \leftarrow p_i + (1,0)$. Either prove that this algorithm will always return a solution with the minimum number of guards or provide a counterexample.

Note: The Euclidean distance is given by $||(x,y)-(x',y')|| = \sqrt{(x-x')^2+(y-y')^2}$.

SAMPLE SOLUTION:

Let $G_0, G_1, ..., G_n$ be the partial solutions generated by the algorithm. Say G_i is "promising" iff there is some solution G_i^* such that:

- $G_i \subseteq G_i^*$ (G_i^* contains every guard position in G_i);
- $\forall g \in G_i^* G_i$, $g > g_i = \max\{g' \in G_i\}$ (every additional guard in G_i^* is positioned further right than the last guard in G_i)—we say G_i^* "extenda" G_i if it satisfies the first two properties;
- $|G_i^*|$ is minimum (G_i^*) is optimum.

CLAIM: $\forall i \geq 0, G_i$ is promising.

Proof: By induction on i.

Base Case: $G_0 = \emptyset$. Let G^* be any optimum solution. Then $G_0 \subseteq G^*$ and $\forall g \in G^*, g > g_0 = -\infty$.

Ind. Hyp.: Suppose $i \ge 0$ and G_i^* extends G_i .

Ind. Step: Either $G_{i+1} = G_i$ or $G_{i+1} = G_i \cup \{p_{i+1} + 1\}$.

Case 1: If $G_{i+1} = G_i$, then $G_{i+1} = G_i \subseteq G_i^*$ and $\forall g \in G_i^* - G_{i+1}, g \in G_i^* - G_i \Rightarrow g > g_i = g_{i+1}$. So G_i^* already extends G_{i+1} .

Case 2: If $G_{i+1} = G_i \cup \{p_{i+1} + 1\}$, then either $p_{i+1} + 1 \in G_i^*$ or $p_{i+1} + 1 \notin G_i^*$.

Subcase A: If $p_{i+1} + 1 \in G_i^*$ then G_i^* already extends G_{i+1} : $G_{i+1} = G_i \cup \{p_{i+1} + 1\} \subseteq G_i^*$ and $\forall g \in G_i^* - G_{i+1}, g > g_i \land g \neq p_{i+1} + 1 \Rightarrow g > g_{i+1} = p_{i+1} + 1$.

Subcase B: If $p_{i+1} + 1 \notin G_i^*$ then $p_{i+1} > g_i + 1$ (from the algorithm) so p_{i+1} is unprotected by any guard in G_i . This means there is some $g \in G_i^* - G_i$ with $g > g_i$ (by the I.H.) and $g \le p_{i+1} + 1$ (else p_{i+1} would be unprotected by G_i^*). Then, every painting protected only by g is also protected by $p_{i+1} + 1$. So $G_{i+1}^* = G_i^* - \{g\} \cup \{pi + 1 + 1\}$ is an optimum solution that extends G_{i+1} .

Hence, G_i is promising for i = 0, 1, ..., n. In particular, G_n is promising: $G_n \subseteq G_n^*$ and $\forall g \in G_n^* - G_n, g > g_n$, for some optimum G_n^* . But this means $G_n = G_n^*$, as desired.

PAGE 2 OF 3 CONT'D...

Test Fall 2019

Question 3. Dynamic Programming [20 MARKS]

A new country Oddistan has a currency *oddollar* with coins of denomination 3, 5 and 7.

(a) (2.5 marks) Can you always purchase an item worth n oddollars, where $n \ge 5$, with exact change in coins. If so, explain why; otherwise, provide the smallest counterexample $n \ge 5$ (no justification is needed).

- (b) (2.5 marks) For all n that you can pay for exactly, is the combination of coins unique? If so, explain why; otherwise, provide a example n and two ways to make up n using the coin denominations.
- (c) (15 marks) A new government wants to the change the coin denominations to 3, 11 and 13. Write a dynamic programming algorithm that returns (true/false) whether an exact change can be made for n oddollars, given any integer n > 0. Clearly define the quantity that your dynamic programming algorithm computes, write a Bellman equation, briefly argue that your Bellman equation is correct, identify the initial conditions, and analyze the time and space complexity of your algorithm.

SAMPLE SOLUTION:

```
Recursive Structure: If N = 3x + 11y + 13z for some x, y, z \in \mathbb{N}, then either x > 0 and N = 3 + 3(x - 1) + 11y + 13z, or y > 0 and N = 11 + 3x + 11(y - 1) + 13z, or z > 0 and N = 13 + 3x + 11y + 13(z - 1).
```

Array: For i = -24, -23, ..., -1, 0, 1, ..., N, A[i] = True if i nuggets can be purchased exactly (False otherwise).

```
Recurrence: A[-24] = \cdots = A[-1] = \text{False} A[0] = \text{True} \ (0 = 3 \cdot 0 + 11 \cdot 0 + 13 \cdot 0) A[i] = A[i-3] \lor A[i-11] \lor A[i-13], for i = 1, ..., N (from argument above)
```

Algorithm:

```
for i = -24,...,-1:

A[i] \leftarrow \text{False}

A[0] \leftarrow \text{True}

for i = 1,...,N:

A[i] = A[i-3] \lor A[i-11] \lor A[i-13]

return A[N]
```

Runtime is $\Theta(N)$.

PAGE 3 OF 3