Задание 2. Магнитное динамо

Теория возникновения и существования магнитного поля Земли до настоящего времени окончательно не разработана. В данном задании вам предстоит проанализировать примитивную модель, на первый взгляд, позволяющую описать возникновение магнитного поля, благодаря эффекту магнитного динамо.

Не вызывает сомнений, что магнитное поле Земли существует благодаря, во-первых, наличию в ядре Земли хорошо

проводящего слоя расплавленного железа, во-вторых, вращению Земли вокруг своей оси.

Рассмотрим следующую модель: тонкий цилиндрический слой проводящего вещества вращается вокруг своей оси с постоянной угловой скоростью ω . Обозначим внутренний радиус этого слоя R, а его толщину h, причем h << R, удельное электрическое сопротивление этого слоя равно ρ , диэлектрическими и магнитными свойствами слоя пренебрегаем $\varepsilon = \mu = 1$. Этот слой находится в непроводящей среде.

Основная идея генерации магнитного поля следующая. Пусть на внутренней поверхности слоя случайно возник электрический заряд, поверхностная плотность которого равна $+\sigma$, тогда на внешней поверхности появится равный по модулю электрический заряд с поверхностной плотностью $-\sigma$. При вращении слоя эти заряды создают магнитное поле, которое воздействует на электроны в проводящем слое, что может приводить к возникновению электрического тока между внутренней и внешней поверхностью рассматриваемого поля, что, в свою очередь, может приводить к увеличению плотности зарядов и как, следствие, к усилению самого магнитного поля.

Подсказки

Если на боковой поверхности цилиндра находится равномерно распределенный заряд с поверхностной плотностью σ , то эти заряды создают радиальное электрическое поле у поверхности цилиндра, напряженность которого равна

$$E = \frac{\sigma}{\varepsilon_0} \ . \tag{1}$$

Внутри цилиндра электрическое поле отсутствует. В данном задании можно считать, что модуль напряженности электрического поля в рассматриваемом тонком слое постоянен и определяется формулой (1)

Если по обмотке цилиндрического соленоида протекает электрический ток силы I, то этот ток внутри цилиндра создает однородное магнитное поле, направленное вдоль оси цилиндра, модуль которого равен

$$B = \mu_0 n I \,, \tag{2}$$

где n - плотность намотки (число витков на единицу длины). Вне соленоида магнитное поле отсутствует.

Электрическая постоянная
$$\, arepsilon_0 = 8,85 \cdot 10^{-12} \, rac{arPhi}{M} \, . \,$$
 Магнитная постоянная $\, \mu_0 = 1,26 \cdot 10^{-6} \, rac{arGamma_H}{M} \, .$

Часть 1. Поле в слое

Для описания рассматриваемого явления введем декартовую систему координат внутри слоя:

Ось x - радиально, перпендикулярно боковым поверхностям слоя;

Ось у - по касательной к внутренней поверхности слоя,

перпендикулярно его оси;

Ось z - параллельно оси слоя;

начало координат находится на внутренней поверхности слоя.

- **1.1** В листе ответов укажите направления векторов: напряженности электрического поля \vec{E} , индукции магнитного поля \vec{B} , скорости движения \vec{v} в точке, находящейся внутри слоя на оси x.
- **1.2** Выразите модуль индукции магнитного поля внутри слоя B через поверхностную плотность зарядов σ , угловую скорость вращения ω и радиус слоя R.
- **1.3** В листе ответов укажите направления сил, действующих на электрон внутри слоя: \vec{F}_E со стороны электрического поля, \vec{F}_B со стороны магнитного поля.
- **1.4** Укажите, чему равны модули сил $\vec{F}_{\scriptscriptstyle E}$ и $\vec{F}_{\scriptscriptstyle B}$.

Часть 2. Заряды и токи

В этой части массой электроном следует пренебречь.

- **2.1** Получите уравнение, описывающее изменение поверхностной плотности зарядов с течением времени $\frac{\Delta \sigma}{\Delta t}$, включающее только характеристики проводящего слоя и физические постоянные.
- **2.2** Определите «критическую» скорость движения слоя $V^* = \omega^* R$, при превышении которой магнитное поле внутри слоя может возрастать с течением времени. Рассчитайте ее численное значение.

Будем считать, что радиус слоя равен $R = 3.5 \cdot 10^6 \, M$ (что равно радиусу ядра Земли), удельное электрическое сопротивление слоя $\rho = 1.4 \cdot 10^{-6} \, OM \cdot M$ (сопротивление расплавленного железа).

- **2.3** Рассчитайте длительность суток на Земле, если скорость движения рассматриваемого слоя достигнет критической величины V^{*} .
- **2.4** Пусть поверхностная плотность зарядов на поверхностях слоя в некоторый момент равна σ_0 . Оцените характерное время исчезновения этих зарядов, если угловая скорость вращения слоя равна угловой скорости вращения Земли.

Часть 3. Спасает ли модель масса электрона?

В этой части вам необходимо модифицировать рассматриваемую модель с учетом массы электрона $m_e = 9,1\cdot 10^{-31}\,\kappa c$ (заряд электрона $e = 1,6\cdot 10\cdot 10^{-19}\,K$ л). Считайте, что рассматриваемый слой вращается с угловой скоростью равной угловой скорости вращения Земли.

- **3.1** Покажите, что при учете массы электрона, возможно существования стационарных зарядов на поверхностях слоя. Получите формулу для поверхностной плотности этих зарядов.
- **3.2** Рассчитайте индукцию магнитного поля внутри слоя в этом случае. Сравните полученное значение со средним значением индукции магнитного поля на поверхности земли $B_0 \approx 40 \text{мк} T \text{л}$.
- **3.3** Сделайте вывод: описывает ли рассмотренная модель механизм возникновения магнитного поля Земли?