A REPORT ON SMART AC SYSTEMS

HARDWARE DESIGN AND SPECIFICATIONS

EEE F241 Microprocessor Programming and Interfacing

Submitted by Group No. 32

Rakshith S.	2014B5A3829P
Raja Shukla	2014B5A3850P
Sumit Godara	2014B5A3858P
Reaa Saxena	2014B5A3861P

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE PILANI, RAJASTHAN-333031

27th April 2017

CONTENTS

SERIAL NO.	TITLE	PAGE NO.
1	Problem Statement	3
2	Assumptions	3
3	System Description	4
4	Hardware Devices	5
5	Memory and I/O mapping	6
6	Algorithm	8
7	Flow Chart	9
8	ASM Code	10
9	Circuit Diagram	26
10	References	26

PROBLEM STATEMENT

Problem No. 17: SMART AC SYSTEM

Description: This system opens/closes four AC vents based upon the current temperature in the Room. The temperature is maintained at a range of 16–35 °C. The AC vents can be gradually opened / closed. This is done in accordance with the temperature in the room. The room is a fairly large sized room so 4 temperature sensors are placed at different points of the room. Each sensor and AC vent is associated with part of the room. You can assume that the room is broken up into 4 sub-areas each with its own sensor and ac vent.

User Interface: LCD displaying Temperature in 0 C. Single push button to vary temperature between 16^{0} C – 35^{0} C.

The duration for which the system is ON can be set by the user in minutes ranging from 30 min. to 6 hours with a granularity of 30 min. Once the defined time has elapsed, the vents are closed.

ASSUMPTIONS

- 1. ALP is already stored in ROM in executable form.
- 2. The room is very big, so that the temperature of one part of room has no influence over the temperature of the other parts.
- 3. After system startup, the temperature of each part of the room varies between 16°C 35° C only.
- 4. When all AC vents are completely open, room temperature will be 16°C and when all are completely closed, the room temperature will be 35°C.
- 5. When the AC is switched off, all the vents are completely closed.
- 6. For each degree variation in temperature the stepper motor moves by 4 degrees.
- 7. The maximum angle stepper motor can be rotated is by 80 degrees.
- 8. When the microprocessor is switched on, its address is initialized to the starting address of the ROM.

SYSTEM DESCRIPTION

- 1. Intel 8086 microprocessor
- 2. INPUT DEVICE:
 - i. 4 temperature sensors
 - ii. 1 push button
 - iii. 1 switch
- 3. OUTPUT DEVICES:
 - i. LCD to display temperature
 - ii. 4 motors to open/close AC vents (simulated via LEDs)
- 4. Two 8255 (Programmable Peripheral Interface) chips interfaced to 8086
 - i. **8255-1:** Port-A is interfaced to the 8 data lines of LCD driverHD244780. Port-B is used for interfacing 8086 with the control lines of the LCD. PC0 is used to vary the mode of input (temperature/timer); PC1 is used for setting the values of time and temperature.
 - ii. **8255-2:** Port-A takes input from ADC0808 which is interfaced with the 4 temperature sensors LM35.Port-B is used as an output port connected to the motors (LEDs). Port-C is used to select a particular sensor from which input is taken.
- 5. **8284** clock is used to generate clock signal for 8086. (8284 clock generator not used in proteus design.)
- 6. 8253 is used to generate stepped down time signals for the given problem statement making use of the clock signal from 8284.

HARDWARE DEVICES

CHIP NUMBER	CHIP	USE
(No. of chips)	26	
8086 (1)	Microprocessor	Central Processing Unit (C.P.U)
6116(2)	RAM-2K (Total-4K)	Random Access Memory
		containing
		DS and SS segments.
2732(2)	ROM-4K (Total-8K)	Read only Memory which
		contains the code.
74LS373(3)	8-BIT LATCH	To Latch the Address Bus.
74LS245(4)	8-BIT BUFFER	To Buffer Data Bus
	(BIDIRECTIONAL)	
8255(2)	PROGRAMMABLE	Connected to Various Input/
	PERIPHERAL INTERFACE	Output Devices.
ADC0808(1)	ANALOG TO DIGITAL	CONVERTS ANALOG
	CONVERTER	VOLTAGE SIGNAL Vcc TO
		DIGITAL FORM
8253(1)	CLOCK TIMER	TO KEEP THE TRACK OF
		TIME FOR WHICH THE
		PROCESSOR WILL WORK
LM020L (1)	LCD DISPLAY	FOR DISPLAYING
		TEMPERATURE AND TIME
		VALUES
LM 35(4)	TEMPERATURE	TO PRODUCE ANALOG
	SENSOR	SIGNAL FOR THE
		TEMPERATURE IN ROOM
74154 (1)	4:16 DECODER	TO PRODUCE THE CHIP
		SELECT SIGNALS FOR I/O
		DEVICES
74138 (1)	3:8 DECODER	TO PRODUCE CHIP SELECT
		SIGNALS FOR ROM AND RAM
	LED-RED	TO SIMULATE THE OPENING
		AND CLOSING OF VENTS IN
		PROTEUS

MEMORY INTERFACING

This system uses 4KB of RAM (as 2x2KB chips for even and odd banks respectively) and 8KB of ROM (as 2x4KB chips for even and odd banks respectively). The memory is divided into even and odd banks because 8086 has a 16-bit data bus whereas memory is byte organized.

Random Access Memory (RAM) -6116

RAM1: 02000_H - 02FFF_H

Even Bank: $02000_H - 02FFE_H$ Odd Bank: $02001_H - 02FFF_H$

	A ₁₉	A ₁₈	A ₁₇	A ₁₆	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀
Start	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
End	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1

Read Only Memory (ROM) - 2732

ROM1: 00000_H - 01FFF_H

Even Bank: 00000_H - 01FFE_H

Odd Bank: 01001_H - 01FFF_H

	A ₁₉	A ₁₈	A ₁₇	A ₁₆	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A_5	A ₄	A ₃	A ₂	A ₁	A_0
Start	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
End	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1

I/O MAPPING

8255-A:

Serial No.	Port Name	Starting Address
1	Port A	10H
2	Port B	12H
3	Port C	14H
4	CR(Control Register)	16H

8255-B:

Serial No.	Port Name	Starting Address
1	Port A	20H
2	Port B	22H
3	Port C	24H
4	CR(Control Register)	26H

8253:

Serial No.	Port Name	Starting Address
1	COUNTER 1	30H
2	COUNTER 2	32H
3	COUNTER 3	34H
4	CR(Control Register)	36H

FLOWCHART

ALGORITHM

- 1. After booting, all vents are opened and the reference room temperature becomes 25°C. The duration for which the system is ON has a granularity of 30 minutes.
- 2. The input mode of the switch has two options, either to set the temperature of the AC system or to set the duration for which the system is ON.
- 3. a) Corresponding to the timer mode, the user can set the duration for which the AC system is ON, ranging from 30 minutes to 6 hours (360 minutes). If the time to be set goes beyond 360, it runs back to 30 minutes.
 - b) In the other mode, the temperature to be maintained is set, ranging from 16° C to 35° C by pressing the push button, one push increasing the temperature by 1° C. The user has to set the switch, once he has completed setting the temperature.
- 4. The temperature as sensed by the sensor is updated after certain interval (approximately 1sec). This temperature is compared with the temperature required to be set. If the two are not same, the AC valve is opened or closed depending on the temperature difference.
- 5. The LCD displays the temperature which is set as well as the time duration for which the AC is ON, depending on the mode of the switch.

CODE

.MODEL tiny .DATA ;DATA DECLARATIONS ;TIMER-1 ADDRESS MAIN TIMER CT0 EQU 30H CT1 EQU 32H CT2 EQU 34H CRG EQU 36H ; 8255-1 ADDRESS PA1 EQU 10H PB1 EQU 12H PC1 EQU 14H CA1 EQU 16H ; 8255-2 ADDRESS PA2 EQU 20H PB2 EQU 22H

PC2 EQU 24H

CA2 EQU 26H

	; USER DATA
UTMP DB 25	
TVAL DB 15	
OPV DB 00	
.CODE	
.STARTUP	
	;INITIALIZING 8255-1
MOV AL, 10001001B	
OUT CA1, AL	
	;INITIALIZING 8255-2
MOV AL, 90h	
OUT CA2, AL	
CALL LCD_INIT	; INITIALIZING THE LCD
	; INITIALIZING THE MAIN TIMER
MOV AL, 00110110B	
OUT CRG, AL	

MOV AL, 01110110B OUT CRG, AL

	MOV AL OOL	
	MOV AL, 88H	
	OUT CTO,AL	
	MOV AL, 13H	
	OUT CTO,AL	
	MOV AL, 60H	
	OUT CT1, AL	
	MOV AL, 0EAH	
	OUT CT1, AL	
		;ENTERING TIME IN THE MAIN TIMER
	MOV AL, 10010100B	
	OUT CRG, AL	
	MOV AL, 15	
	OUT CT2, AL	
RPT1:		
	IN AL, PC1	
	AND AL, 03H	
	ROR AL, 1	
	JC TM1	; JUMP TO TIMER MODE
	ROR AL, 1	
	JC X1	

	MOV AL, UTMP	
	INC AL	
	CMP AL, 35	
	JLE X2	
	MOV AL, 16	
X2:		
	MOV UTMP, AL	
X1:		
		; SHOW TEMPERATURE OUTPUT IN LCD
	CALL TEMP_WRITE	
	JMP E1	
		;TIMER MODE BEGINS FROM HERE
TM1:		;TIMER MODE BEGINS FROM HERE
TM1:	ROR AL, 1	;TIMER MODE BEGINS FROM HERE
TM1:	ROR AL, 1 JC X3	;TIMER MODE BEGINS FROM HERE
TM1:		;TIMER MODE BEGINS FROM HERE
TM1:	JC X3	;TIMER MODE BEGINS FROM HERE
TM1:	JC X3 MOV AL, TVAL	;TIMER MODE BEGINS FROM HERE
TM1:	JC X3 MOV AL, TVAL MOV AH, 00	;TIMER MODE BEGINS FROM HERE
TM1:	JC X3 MOV AL, TVAL MOV AH, 00 MOV BL, 15	;TIMER MODE BEGINS FROM HERE
TM1:	JC X3 MOV AL, TVAL MOV AH, 00 MOV BL, 15 DIV BL	;TIMER MODE BEGINS FROM HERE
TM1:	JC X3 MOV AL, TVAL MOV AH, 00 MOV BL, 15 DIV BL MOV AH, 00	;TIMER MODE BEGINS FROM HERE

JNZ X4 MOV AL, 15 X4: MOV TVAL, AL ;ENTER TIME IN THE MAIN TIMER MOV AL, 10010100B OUT CRG, AL MOV AL, TVAL ;MOVE THE MINUTES OUT CT2, AL X3: ;DISPLAY THE TIMER VALUE ON LCD CALL TIME_WRITE E1: ;AFTER TIMER MODE ;INPUT OF ROOM TEMPERATURE FROM TEMPERATURES SENSORS ;AND TRANSFER IT TO AL MOV AL, 00 ;TEMPERATURE SENSOR 1 CALL GET_TEMP CMP AL, UTMP JL TOK1 MOV AL, OPV OR AL, 01

MOV OPV, AL JMP TOK2 TOK1: MOV AL, OPV AND AL, OFEH MOV OPV,AL TOK2: ; TEMPERATURE SENSOR 2 MOV AL, 01 CALL GET_TEMP CMP AL, UTMP JL TOK3 MOV AL, OPV OR AL, 02 MOV OPV, AL JMP TOK4 TOK3: MOV AL, OPV AND AL, OFDH MOV OPV,AL TOK4: ; TEMPERATURE SENSOR 3 MOV AL, 02

	CALL GET_TEMP	
	CMP AL, UTMP	
	JL TOK5	
	MOV AL, OPV	
	OR AL, 04	
	MOV OPV, AL	
	JMP TOK6	
TOK5:		
	MOV AL, OPV	
	AND AL, OFBH	
	MOV OPV,AL	
ток6:		
		; TEMPERATURE SENSOR 4
	MOV AL, 03	; TEMPERATURE SENSOR 4
	MOV AL, 03 CALL GET_TEMP	; TEMPERATURE SENSOR 4
		; TEMPERATURE SENSOR 4
	CALL GET_TEMP	; TEMPERATURE SENSOR 4
	CALL GET_TEMP CMP AL, UTMP	; TEMPERATURE SENSOR 4
	CALL GET_TEMP CMP AL, UTMP JL TOK7	; TEMPERATURE SENSOR 4
	CALL GET_TEMP CMP AL, UTMP JL TOK7 MOV AL, OPV	; TEMPERATURE SENSOR 4
	CALL GET_TEMP CMP AL, UTMP JL TOK7 MOV AL, OPV OR AL, 08	; TEMPERATURE SENSOR 4
TOK7:	CALL GET_TEMP CMP AL, UTMP JL TOK7 MOV AL, OPV OR AL, 08 MOV OPV, AL	; TEMPERATURE SENSOR 4
TOK7:	CALL GET_TEMP CMP AL, UTMP JL TOK7 MOV AL, OPV OR AL, 08 MOV OPV, AL	; TEMPERATURE SENSOR 4
TOK7:	CALL GET_TEMP CMP AL, UTMP JL TOK7 MOV AL, OPV OR AL, 08 MOV OPV, AL JMP TOK8	; TEMPERATURE SENSOR 4

```
MOV OPV,AL;
TOK8:
      MOV AL, OPV
      OUT PB2, AL
 ;CALL DELAYX
      ; GET TIMER VAL
      ;IF ZERO REPEAT
      ;MOV AL,80H
      ;OUT CR2,AL
      ;IN AL, CT2
      ;CMP AL, 00
      ;JNZ RPT1
      JMP RPT1
                           ;GO BACK AND TAKE NEXT INPUT
                           ;FROM USER
      INT 3H
.EXIT
DELAYX PROC
       MOV SI, 43690
```

MOV BP, 43690 DELAY2: DEC BP NOP JNZ DELAY2 DEC SI CMP SI,0 JNZ DELAY2 RET **DELAYX ENDP** GET_TEMP PROC ;ASSUMING AL HAS THE ADDRESS OF SENSOR TO BE SELECTED PC2, al out ;give ale OR al,00100000b out PC2,al ;give soc

OR

al,00110000b

out

PC2,al

nop

nop

nop

nop

;make ALE 0

AND al,11011111b

out PC2,al

;make SOC 0

AND al,11001111b

out PC2,al

RE1:

IN AL, PC1

AND AL, 04H

JZ RE1

OR al,00001000b

out PC2, al

in al, PA2

RET

GET_TEMP ENDP

LCD_INIT PROC NEAR

MOV AL, 38H ;INITIALIZE THE LCD FOR 2 LINES AND ALSO 5*7 MATRIX

CALL COMNDWRT ;WRITE THE COMMAND TO LCD

CALL DELAY ;WAIT BEFORE SENDING THE NEXT COMMAND

MOV AL, 0EH ;SEND COMMAND FOR LCD ON, CURSOR ON

CALL COMNDWRT

CALL DELAY

MOV AL, 01 ;CLEAR THE LCD

CALL COMNDWRT

CALL DELAY

MOV AL, 06 ;COMMAND FOR SHIFTING CURSOR RIGHT

CALL COMNDWRT

CALL DELAY

RET

LCD_INIT ENDP

DATWRIT PROC

PUSH DX ;save DX

MOV DX,PA1 ;DX=port A address

OUT DX, AL ;issue the char to LCD

MOV AL, 00000101B ;RS=1, R/W=0, E=1 for H-to-L pulse

MOV DX, PB1 ;port B address

OUT DX, AL ;make enable high

MOV AL, 00000001B ;RS=1,R/W=0 and E=0 for H-to-L pulse

OUT DX, AL

POP DX

RET

DATWRIT ENDP

COMNDWRT PROC ;THIS PROCEDURE WRITES COMMANDS TO LCD

MOV DX, PA1

OUT DX, AL ;SEND THE CODE TO PORT A

MOV DX, PB1

MOV AL, 00000100B ;RS=0,R/W=0,E=1 FOR H-TO-L PULSE

OUT DX, AL

NOP

NOP

MOV AL, 00000000B ;RS=0,R/W=0,E=0 FOR H-TO-L PULSE

OUT DX, AL

RET

COMNOWRT ENDP

DELAY PROC

MOV CX, 1325 ;15.085*1325 USEC = 20 MSEC

W1:

NOP

NOP

NOP

NOP

NOP

LOOP W1

RET

DELAY ENDP

TEMP_WRITE PROC NEAR

PUSH AX

PUSH BX

CALL CLS

CALL DELAY ;WAIT BEFORE SENDING THE NEXT CHARACTER

MOV BL, 10

MOV AL, UTMP

MOV AH,00

DIV BL

ADD AL, '0' ;DISPLAY TENS OF TEMP

	CALL DATWRIT	;SEND IT TO LCD		
	CALL DELAY	;WAIT BEFORE SENDING THE NEXT CHARACTER		
	MOV AL, AH			
	ADD AL, '0'	;DISPLAY ONES OF TEMP		
	CALL DATWRIT	;SEND IT TO LCD		
	CALL DELAY	;WAIT BEFORE SENDING THE NEXT CHARACTER		
	POP BX			
	POP AX			
	RET			
TEMP_WRITE ENDP				
TIME_WRITE PROC NEAR				
	PUSH AX			
	PUSH BX			
	CALL CLS			
	CALL DELAY	;WAIT BEFORE SENDING THE NEXT CHARACTER		
	MOV BL, 10			
	MOV AL, TVAL			
	MOV AH,00			
	ADD AX, AX			

	DIV BL		
	MOV BH, AH		
	MOV AH,00		
	DIV BL		
	ADD AL, '0'	;DISPLAY HUNDREDS OF TEMP	
	CALL DATWRIT	;SEND IT TO LCD	
	CALL DELAY	;WAIT BEFORE SENDING THE NEXT CHARACTER	
	MOV AL, AH		
	ADD AL, '0'	;DISPLAY TENS OF TEMP	
	CALL DATWRIT	;SEND IT TO LCD	
	CALL DELAY	;WAIT BEFORE SENDING THE NEXT CHARACTER	
	MOV AL, BH		
	ADD AL, '0'	;DISPLAY ONES OF TEMP	
	CALL DATWRIT	;SEND IT TO LCD	
	CALL DELAY	;WAIT BEFORE SENDING THE NEXT CHARACTER	
	POP BX		
	POP AX		
	RET		
TIME_WRITE ENDP			

CLS PROC

MOV AL, 01 ;CLEAR THE LCD

CALL COMNDWRT

CALL DELAY

RET

CLS ENDP

END

<u>CIRCUIT DIAGRAM</u>: Included in the zip folder in pdf format.

REFERENCES

LM35 (Temperature sensor) (Device specifications)

Range: -55°C to 150°C

Vin: 4V to 20V

For $0^{\circ}C$: OUTPUT = 0mV

Increment 10mV/°C

(2.55 V/255)

Basic Centigrade Temperature Sensor (2°C to 150°C)

Full-Range Centigrade Temperature Sensor

Choose $R_1 = -V_S / 50 \mu A$ $V_{OUT} = 1500 \text{ mV at } 150^{\circ}\text{C}$ $V_{OUT} = 250 \text{ mV at } 25^{\circ}\text{C}$ $V_{OUT} = -550 \text{ mV at } -55^{\circ}\text{C}$