CSE250: Circuits and Electronics Practice Problems Set 1

1.	Calculate the amount of charge represented by 6.667 billion protons. Answer	<i>ver:</i> 1.0681× 10 ⁻⁹ c
2.	If the potential difference between two points is 60 V, how much energy is expended to bring 8 mC from one point to the other?	Answer: ±0.48 J
3.	How much charge passes through a radio battery of 9 V if the energy expended is 72 J?	Answer: ±8 C
4.	To move charge q from point b to point a requires 25 J. Find the voltage drop v_{ab} if: (a) $q = 5$ C, (b) $q = -10$ C.	(b) - 2.5 V
5.	If 10 J work is done on a $-2C$ charge in moving it from point A to point B, where $V_B = 20$ V, what is the potential of point A?	Answer: 25V
6.	The total charge entering a terminal is given by $q = (10 - 10e^{-2t})$ mC. Calculate the current at $t = 0.5$ s.	
7.	A home electric heater draws 10 A when connected to a 115 V outlet. How much energy is consumed by the heater over a period of 6 hours?	Answer: 6.9 kWh

8. Find the power supplied/absorbed by each of the elements shown in the circuit below.

Answer: $-180 W_1$

Answer: -180 W, 72 W, 54 W, 28 W, 56 W, -30 W

9. Find the power supplied/absorbed by each of the elements shown in the circuit below.

10. Find the power supplied/absorbed by each of the elements shown in the circuit below Answer: -9 W, 6

- 11. For the network shown below,
 - **a.** Determine the open-circuit voltage V_L .
 - **b.** If the 2.2 k Ω resistor is short circuited, what is the new value of V_L ?
 - c. Determine V_L if the 4.7 k Ω resistor is replaced by an open circuit.

Answer: 6.13 V, 9 V, 9 V.

12. Find R_3 , I_3 , I_2 , I, R_T , and E.

Answer:

12 Ω , IA, $\frac{4}{3}A$, $\frac{13}{3}A$, $\frac{36}{13}A$, 12 V

13. Assuming identical supplies, determine the current I and resistance R *Answer: 3 A* for the parallel network shown below.

14. Given the circuit below, use KVL to find the branch voltages V_1 to V_4

Answer: -8 *V*, 6 *V*

-11V,7V

15. Obtain v_1 through v_3 in the following circuit.

Answer: 2 V, -22 V, 10 V.

16. Find V_1 and V_2 in the following circuit.

Answer: $16 V_1 - 8 V_2$.

17. Using circuit laws determine the power of the 600 *V* source.

Answer: −7 kW

18. Using the voltage divider rule, find the unknown resistance for the configuration below.

Answer: $1.5 M\Omega$.

19. Find R_{eq} and i_0 in the circuit shown below.

Answer: 7.5, 3.5 A

20. Find R_{ab} for the circuit shown below.

Answer: 19Ω

21. Find the equivalent resistance at terminals a - b.

Answer: 27.5Ω .

