يوسف أحمد محمد ابراهيم

Assignment 2

Question 1:

1. code:

```
module dyn_arr();
    int dyn_array1[];
    int dyn_array2[];
    initial begin
       dyn_array2 = '{9, 1, 8, 3, 4, 4};
        dyn_array1 = new[6];
       foreach (dyn_array1[j]) dyn_array1[j] = j;
        $display("*** Array 1 : %p, size = %0d ***", dyn_array1, $size(dyn_array1));
       dyn array1.delete();
        dyn_array2.reverse();
        $display("*** Reversed Array 2 %p ***", dyn_array2);
        dyn_array2.sort();
        $display("*** Sorted Array 2 : %p ***", dyn_array2);
        dyn_array2.rsort();
        $display("*** Reverse sorted Array 2 : %p ***", dyn_array2);
        dyn_array2.shuffle();
        $display("*** shuffled Array 2 : %p ***", dyn_array2);
    end
endmodule
```

2. Results:

```
# *** Array 1 : '{0, 1, 2, 3, 4, 5}, size = 6 ***
# *** Reversed Array 2 '{4, 4, 3, 8, 1, 9} ***
# *** Sorted Array 2 : '{1, 3, 4, 4, 8, 9} ***
# *** Reverse sorted Array 2 : '{9, 8, 4, 4, 3, 1} ***
# *** shuffled Array 2 : '{8, 1, 4, 3, 9, 4} ***
```

Question 2:

1. RTL design:

```
module counter (clk ,rst_n, load_n, up_down, ce, data_load, count_out, max_count, zero);
parameter WIDTH = 4;
input clk;
input rst_n;
input load_n;
input up_down;
input ce;
input [WIDTH-1:0] data_load;
output reg [WIDTH-1:0] count_out;
output max_count;
output zero;
always @(posedge clk) begin
    if (!rst_n)
        count_out <= 0;
    else if (!load_n)
        count_out <= data_load;</pre>
    else if (ce)
        if (up_down)
            count_out <= count_out + 1;</pre>
        else
            count_out <= count_out - 1;</pre>
assign max_count = (count_out == {WIDTH{1'b1}})? 1:0;
assign zero = (count_out == 0)? 1:0;
endmodule
```

The design is working properly.

2. Verification plan:

3	Label	Design Requirement Description	Stimulus Generation	Functional Coverage	Functionality Check
3	RESET_TEST	When the reset is asserted, outputs should be low.	Directed at the start of the simulation, and called in radomization step.		check_result() verifies correct output using golden model task exp_out.
3		Output of the dut design is equal to the output of the golden model	Randomized test using rand_stimuls class with constraints 90% deactive reset, 90% active clock enable, 70% low up_down, 70% active clock enable and 70% active load enable.		<pre>check_result() verifies correct output using golden model task exp_out,</pre>

3. packege code:

```
package counter_pkg;
         parameter WIDTH = 4;
         class rand_stimuls;
             rand bit
                                   rst_n;
             rand bit
                                   load_n;
             rand bit
                                   up_down;
             rand bit
             rand bit [WIDTH-1:0] data_load;
             //no need for constructor, they will be initialized to 0
10
11
12
             constraint c1 {
13
                 rst_n dist {1 := 9, 0 := 1};
14
                 ce dist {1 := 9, 0 := 1};
                 load_n dist {0 := 7, 1 := 3}; //load_n active 70%
15
17
         endclass
18
     endpackage
```

```
import counter_pkg::";
module counter_tb();
    parameter WIDTH = 4;
    bit
                    rst n;
    bit
                    load n;
                    up down;
    hit
    bit
                    ce;
    bit [WIDTH-1:0] data_load;
    bit [WIDTH-1:0] count_out;
    bit
                    max_count;
                    zero;
    bit [WIDTH-1:0] count_out_exp;
                    max_count_exp;
    bit
                    zero_exp;
    rand_stimuls my_inputs;
    integer error_count, correct_count;
    counter dut(.*);
    initial begin
        clk = 0;
            #1 clk = -clk;
    end
    initial begin
       error_count = 0;
        correct_count = 0;
        load_n = 0;
        up_down = 0;
        ce = 0;
        data_load = 0;
        //reset test
        rst_n = 0;
        @(negedge clk);
        check_result();
        //randomized test
        my_inputs = new();
        for(int i = 0; i < 50; i++) begin
            assert(my_inputs.randomize());
            rst_n = my_inputs.rst_n;
            load_n = my_inputs.load_n;
            up_down = my_inputs.up_down;
            ce = my_inputs.ce;
            data_load = my_inputs.data_load;
            check_result();
        end
        $display("*** ERROR count: %0d, CORRECT count: %0d", error_count, correct_count);
    end
```

```
task check_result();
       @(negedge clk);
       exp_out(); //calculate the correct outputs
       if(count_out != count_out_exp || max_count != max_count_exp || zero != zero_exp) begin
          $display("*** ERROR! at time %8t, output = %8d, max_count = %8d, zero = %8d | EXPECTED : %8d, %8d, %8d ***",
              $time, count_out, max_count, zero, count_out_exp, max_count_exp, zero_exp);
           error_count++;
           correct_count++;
   endtask
   task exp_out();
      if (!rst_n) begin
          count_out_exp = 0;
           max_count_exp = 0;
          zero_exp = 1;
      end
       else if(!load_n)
         count_out_exp = data_load;
       else if(ce)
          if(up_down)
             count_out_exp++;
              count_out_exp--;
       if(count_out_exp == {WIDTH{1'b1}})
         max_count_exp = 1;
       else
           max_count_exp = 0;
       if(count_out_exp == 0)
          zero_exp = 1;
          zero_exp = 0;
   endtask
endmodule
```

5. Do file:

vlib work
vlog 2_pkg.sv 2_counter.v 2_counter_tb.sv +cover -covercells
vsim -voptargs=+acc work.counter_tb -cover
add wave *
coverage save 2_counter_tb.ucdb -onexit -du work.counter
run -all

No exceptions needed.

6. Qesta sim wave snippets (unsigned radix)


```
*** ERROR count: 0, CORRECT count: 51

** Note: $stop : 2_counter_tb.sv(57)

Time: 104 ns Iteration: 1 Instance: /counter_tb

Break in Module counter_tb at 2_counter_tb.sv line 57
```

```
Statement Coverage:
Enabled Coverage
                                                  Misses Coverage
                                                       0 100.00%
    Statements
        -----Statement Details------
Statement Coverage for instance /\counter_tb#dut --
                Item
   Line
                                         Count
                                                   Source
  File 2_counter.v
                                                   module counter (clk ,rst_n, load_n, up_down, ce, data_load, count_out, max_count, zero);
   9
                                                   parameter WIDTH = 4;
                                                   input clk;
   10
                                                   input rst_n;
    11
                                                   input load_n;
    12
                                                    input up_down;
                                                   input ce:
    14
                                                   input [WIDTH-1:0] data_load;
    16
                                                   output reg [WIDTH-1:0] count_out;
    17
                                                   output max_count;
                                                    output zero;
    19
                                                   always @(posedge clk) begin
    20
                                                       if (|rst_n)
    21
                                                           count_out <= 0;
                                                       else if (!load_n)
    24
                                            28
                                                           count out <= data load;
                                                       else if (ce)
                                                           if (up_down)
    26
                                                               count_out <= count_out + 1;
    27
                                                           else
    28
                                                               count_out <= count_out - 1;
   29
    30
    31
                                                    assign max_count = (count_out == {WIDTH{1'b1}})? 1:0;
                                                    assign zero = (count_out == 0)? 1:0;
```

8. Branch coverage report:

```
Branch Coverage:
   Enabled Coverage
                          Bins
                                  Hits
                                        Misses Coverage
   Branches
                            10
                                            0 100.00%
Branch Coverage for instance /\counter_tb#dut
   Line
             Item
                                 Count
                                         Source
 File 2_counter.v
       -----IF Branch-----
                                       Count coming in to IF
   21
              1
                                           if (!rst_n)
   21
                                   15
                                            else if (!load_n)
   23
                                    28
                                            else if (ce)
   25
                                         All False Count
Branch totals: 4 hits of 4 branches = 100.00%
-----IF Branch------
                                       Count coming in to IF
  26
                                   3
                                              if (up_down)
   28
               1
                                    2
                                               else
Branch totals: 2 hits of 2 branches = 100.00%
-----IF Branch-----
   32
                                       Count coming in to IF
                                         assign max_count = (count_out == {WIDTH{1'b1}})? 1:0;
   32
                                         assign max_count = (count_out == {WIDTH{1'b1}})? 1:0;
Branch totals: 2 hits of 2 branches = 100.00%
  33
                                    38 Count coming in to IF
   33
               1
                                    9
                                         assign zero = (count_out == 0)? 1:0;
   33
                                    29
                                         assign zero = (count_out == 0)? 1:0;
Branch totals: 2 hits of 2 branches = 100.00%
Condition Coverage:
   Enabled Coverage
                          Bins Covered
                                        Misses Coverage
                                            0 100.00%
   Conditions
                            2
```

9. Toggle coverage report:

```
Toggle Coverage:
   Enabled Coverage
                                    Hits
                            Bins
                                          Misses Coverage
   Toggles
                             30
                                     30
                                              0
                                                  100.00%
Toggle Coverage for instance /\counter_tb#dut --
                                            1H->0L 0L->1H "Coverage"
                                     Node
                                                          1
                                                 1
                                                                  100.00
                                       ce
                                      c1k
                                                                  100.00
                             count_out[3-0]
                                                 1
                             data_load[0-3]
                                                                 100.00
                                    load n
                                                                 100.00
                                 max_count
                                                                 100.00
                                                                 100.00
                                     rst_n
                                                1
                                                                 100.00
                                   up_down
                                      zero
                                                                  100.00
                         15
Total Node Count
Toggled Node Count
                         15
Untoggled Node Count =
Toggle Coverage
                      100.00% (30 of 30 bins)
Total Coverage By Instance (filtered view): 100.00%
```

Question 3:

1. RTL design:

```
module ALSU(A, B, cin, serial_in, red_op_A, red_op_B, opcode, bypass_A, bypass_B, clk, rst, direction, leds, out);
     parameter INPUT_PRIORITY = "A";
     parameter FULL_ADDER = "ON";
     input clk, cin, rst, red_op_A, red_op_B, bypass_A, bypass_B, direction, serial_in;
     input [2:0] opcode;
     input signed [2:0] A, B;
output reg [15:0] leds;
output reg signed [5:0] out;
     reg red_op_A_reg, red_op_B_reg, bypass_A_reg, bypass_B_reg, direction_reg, serial_in_reg;
     reg signed [1:0] cin_reg;
     reg [2:0] opcode_reg;
     reg signed [2:0] A_reg, B_reg;
     wire invalid_red_op, invalid_opcode, invalid;
     //Invalid handling
     assign invalid_red_op = (red_op_A_reg | red_op_B_reg) & (opcode_reg[1] | opcode_reg[2]);
     assign invalid_opcode = opcode_reg[1] & opcode_reg[2];
     assign invalid = invalid_red_op | invalid_opcode;
     //Registering input signals
23 ∨ always @(posedge clk or posedge rst) begin
   if(rst) begin
          cin_reg <= 0;
          red_op_B_reg <= 0;
          red_op_A_reg <= 0;
          bypass_B_reg <= 0;
          bypass_A_reg <= 0;
         direction_reg <= 0;
         serial_in_reg <= 0;
          opcode_reg <= 0;
         A_reg <= 0;
      B_reg <= 0;
end else begin
         cin_reg <= cin;
         red_op_B_reg <= red_op_B;
          red_op_A_reg <= red_op_A;
         bypass_B_reg <= bypass_B;
          bypass_A_reg <= bypass_A;
          direction_reg adirection;
          serial_in_reg <= serial_in;
          opcode_reg <= opcode;
          A_reg <= A;
          B_reg <= B;
      end
50 ∨ always @(posedge clk or posedge rst) begin
51 v if(rst) begin
        leds <= 0;
       end else begin
         if (invalid)
             leds <= -leds;
             leds <= 0;
       end
```

1. RTL design:

```
//ALSU output processing
      always @(posedge clk or posedge rst) begin
        if(rst) begin
          out <= 0;
        end
        else begin
          if (bypass_A_reg && bypass_B_reg)
            out <= (INPUT_PRIORITY == "A")? A_reg: B_reg;
          else if (bypass_A_reg)
            out <= A_reg;
          else if (bypass_B_reg)
            out <= B_reg;
          else if (invalid)
              out <= 8;
          else begin
              case (opcode_reg)
                3'h0: begin
                  if (red_op_A_reg && red_op_B_reg)
                    out <= (INPUT_PRIORITY == "A")? |A_reg: |B_reg;
                  else if (red_op_A_reg)
                    out <= |A_reg;
                  else if (red_op_B_reg)
                    out <= |B_reg;
                  else
                    out < A_reg | B_reg;
                end
                3'h1: begin
                  if (red_op_A_reg && red_op_B_reg)
                    out <= (INPUT_PRIORITY == "A")? ^A_reg: ^B_reg;
                  else if (red_op_A_reg)
                    out <= ^A_reg;
                  else if (red_op_B_reg)
                    out <= ^B_reg;
                  else
                    out <= A reg ^ B reg;
                end
                3'h2: out <= (FULL_ADDER)? (A_reg + B_reg + cin_reg) : A_reg + B_reg;
                3'h3: out <= A_reg * B_reg;
                3'h4: begin
                  if (direction_reg)
                    out <= {out[4:0], serial_in_reg};
182
                  else
103
                    out <= {serial_in_reg, out[5:1]};
194
195
                3'h5: begin
185
                  if (direction reg)
197
                    out <= {out[4:0], out[5]};
108
                  else
189
                    out <= {out[0], out[5:1]};
110
                end
111
                default : out <= 0;
              endcase
113
          end
114
        end
115
      end
      endmodule
```

1. RTL design:

Found and fixed the following bugs:

- 1. opcode used in the case statement rather than opcode_reg.
- 2. adder case didn't use cin according to **FULL_ADDER** parameter.

2. Verification plan:

.1	Label	Design Requirement Description	Stimulus Generation	Functional Coverage	Functionality Check
2	RESET_TEST	When the reset is asserted, outputs should be low.	Directed at the start of the simulation, and called in other radomization steps.	(*)	check_result() verifies correct output using a golden model().
3	RANDOMIZATION_TEST	Output of the dut design should equal to the output of the golden model with the rest of input randomized.	ALL inputs are randomized using the calss with the following constraints: rat is 90% low, any OPCODE have invalid value to valid one is 1:3, and A/B have is 2:1 when red_op_A/red_op_B is high and OPCODE = OR/XOR. And A/B have (MAXPOS, ZERO, MAXNG) value to any other value = 2:1 when OPCODE is MULT or ADD, bypass_A/bypass_B are 30% high. red_op_A/red_op_B are 30% low when OPCODE is not OR. XOR.		check_result() verifies correct output using a golden model().

3. packege code:

```
package ALSU_pkg;
         typedef enum bit[2:0] {
             OR,
             XOR.
             ADD,
             MULT,
             SHIFT,
             ROTATE,
             INVALID_6,
11
             INVALID_7
12
         } opcode_e;
13
14
         parameter MAXPOS = 3'b011;
         parameter ZERO = 3'b000;
         parameter MAXNEG = 3'b100;
         class rand_stimuls;
             rand bit [2:0] A;
             rand bit [2:0] B;
21
             rand bit
                              rst;
             rand bit
                              red op A;
23
             rand bit
                              red_op_B;
24
             rand bit
                              bypass_A;
             rand bit
                              bypass_B;
26
             rand bit
                              cin;
             rand bit
                              serial in;
             rand bit
                              direction;
             rand opcode_e
                              opcode;
             //no need for constructor, they will be initialized to 0
             constraint c1 {
                 rst dist {0 := 9, 1 := 1};
                 opcode dist {[OR:ROTATE] := 3, [INVALID_6:INVALID_7] := 1};
                 bypass_A dist {1 := 3, 0 := 7};
                 bypass_B dist {1 := 3, 0 := 7};
```

3. packege code:

```
if(opcode == OR || opcode == XOR) {
43
                      if(red_op_A) { //priority for A so red_op_B here doesn't matter
44
                          A dist {
                              [3'b000:3'b111] := 1,
                              3'b001 := 2,
                              3'b010 := 2,
                              3'b100 := 2
                              };
                          B == 3'b000;
                      else if(red_op_B){
                          A == 3'b000;
                         B dist {
                              [3'b000:3'b111] := 1,
                              3'b001 := 2,
                              3'b010 := 2,
                              3'b100 := 2
                              };
                 else {
                      red_op_A dist {0 := 7, 1 := 3};
                      red_op_B dist {0 := 7, 1 := 3};
                 if(opcode == ADD || opcode == MULT) {
                     A dist {[3'b001:3'b110] := 1, MAXPOS := 2, ZERO := 2, MAXNEG := 2};
                     B dist {[3'b001:3'b110] := 1, MAXPOS := 2, ZERO := 2, MAXNEG := 2};
         endclass
     endpackage
```

```
import ALSU_pkg::*;
module ALSU_tb();
   parameter INPUT_PRIORITY = "A";
    parameter FULL_ADDER = "ON";
   bit signed [2:0] A;
    bit signed [2:0] B;
    bit
                      cin:
                      serial_in;
    bit
                      red_op_A;
                      red_op_B;
    opcode_e
                      opcode;
                      bypass_A;
                      bypass_B;
                      clk;
                      rst;
                      direction;
              [15:0] leds;
    bit
   bit signed [5:0] out;
   reg red_op_A_reg, red_op_B_reg, bypass_A_reg, bypass_B_reg, direction_reg, serial_in_reg;
               [2:0] opcode_reg;
    reg signed [1:0] cin_reg;
    reg signed [2:0] A_reg, B_reg;
                      invalid;
    rand_stimuls my_inputs; //handle
    bit [15:0] leds_exp;
    bit [5:0] out_exp;
    integer correct_count, error_count;
    ALSU dut(.*);
    initial begin
       clk = 0;
        forever
           #1 clk = ~clk;
    initial begin
        correct_count = 0;
        error_count = 0;
        A = 0;
        B = 0;
        cin = 0;
        serial_in = 0;
        red_op_A = 0;
        red_op_B = 0;
        bypass_A = 0;
        bypass_B = 0;
       direction = 0;
```

```
//reset test
    rst = 1;
   check_result():
   my_inputs = new();
    //random test
    for(int i = 0; i<1000; i++) begin
        assert(my_inputs.randomize());
        A = my_inputs.A;
        rst = my inputs.rst;
        B = my_inputs.B;
        cin = my_inputs.cin;
        serial_in = my_inputs.serial_in;
        red_op_A = my_inputs.red_op_A;
        red_op_B = my_inputs.red_op_B;
        opcode = my_inputs.opcode;
        bypass_A = my_inputs.bypass_A;
        bypass_B = my_inputs.bypass_B;
        direction = my_inputs.direction;
        check_result();
    end
    $display("*** ERROR count: %0d, CORRECT count: %0d", error_count, correct_count);
    $stop;
//golden model
assign invalid = (red_op_A_reg | red_op_B_reg) & (opcode_reg[1] | opcode_reg[2])
    ||(opcode_reg[1] & opcode_reg[2]);
always @(posedge clk or posedge rst) begin
    if(rst) begin
        cin_reg <= 0;
        red_op_B_reg <= 0;
        red_op_A_reg <= 0;
        bypass_B_reg <= 0;
        bypass A reg <= 0;
        direction_reg <= 0;
        serial_in_reg <= 0;
        opcode_reg <= 0;
        A_reg <= 0;
        B_reg <= 8;
    end else begin
        cin_reg <= cin;
        red op B reg <= red op B;
        red op A reg <= red op A;
        bypass_B_reg <= bypass_B;
        bypass_A_reg <= bypass_A;
        direction_reg <= direction;
        serial_in_reg <= serial_in;
        opcode_reg <= opcode;
        A_reg <= A;
        B_reg <= B;
    end
end
```

```
always @(posedge clk or posedge rst) begin
115
116
               if(rst) begin
117
                    leds_exp <= 0;</pre>
118
               end else begin
119
                    if (invalid)
120
                        leds_exp <= ~leds_exp;</pre>
121
                   else
122
                        leds_exp <= 0;</pre>
123
               end
124
           end
125
126
           always @(posedge clk or posedge rst) begin
127
               if(rst)
128
                   out_exp <= 0;
129
               else begin
130
                    if (bypass_A_reg && bypass_B_reg)
131
                        out_exp <= A_reg;
132
                   else if (bypass A reg)
133
                        out_exp <= A_reg;
134
                   else if (bypass_B_reg)
135
                        out_exp <= B_reg;
                    else if (invalid)
136
137
                        out_exp <= 0;
138
                   else begin
139
                        case (opcode_reg)
                        3'h0: begin
                            if (red_op_A_reg && red_op_B_reg)
142
                                 out exp <= |A reg;
143
                            else if (red_op_A_reg)
                                 out_exp <= |A_reg;
145
                            else if (red_op_B_reg)
                                 out_exp <= |B_reg;
147
                            else
                                 out_exp <= A_reg | B_reg;</pre>
                        end
150
                        3'h1: begin
151
                            if (red_op_A_reg && red_op_B_reg)
152
                                 out_exp <= ^A_reg;
153
                            else if (red_op_A_reg)
154
                                 out_exp <= ^A_reg;
155
                            else if (red_op_B_reg)
156
                                 out_exp <= ^B_reg;
157
                            else
158
                                 out_exp <= A_reg ^ B_reg;</pre>
159
                        end
```

```
3'h2: out_exp <= A_reg + B_reg + cin_reg;
                       3'h3: out_exp <= A_reg * B_reg;
162
163
                       3'h4: begin
                            if (direction_reg)
                                out_exp <= {out_exp[4:0], serial_in_reg};</pre>
                                out_exp <= {serial_in_reg, out_exp[5:1]};</pre>
                       end
                       3'h5: begin
                            if (direction_reg)
                                out_exp <= {out_exp[4:0], out_exp[5]};
                                out_exp <= {out_exp[0], out_exp[5:1]};</pre>
                       endcase
                   end
               end
          end
          task check_result();
               @(negedge clk);
@(negedge clk);
               if(out != out_exp || leds != leds_exp) begin
                   $display("*** ERROR! at time %0t, out = %0d, Expected : %0d, leds = %0d, Expected : %0d ***"
184
                       , $time, out, out_exp, leds, leds_exp);
185
                   error_count++;
              end
                   correct_count++;
          endtask
      endmodule
```

5. Do file:

```
vlib work
vlog 3_pkg.sv 3_ALSU.v 3_ALSU_tb.sv +cover -covercells
vsim -voptargs=+acc work.ALSU_tb -cover
add wave *
coverage save 3_ALSU_tb.ucdb -onexit -du work.ALSU
coverage exclude -du ALSU -togglenode {cin_reg[1]}
coverage exclude -src 3_ALSU.v -line 111 -code b
coverage exclude -src 3_ALSU.v -line 111 -code s

run -all
```

6. Qesta sim wave snippets (decimal radix for A, B, OUT)

o first 80ns

second 80ns


```
# *** ERROR count: 0, CORRECT count: 1001
# ** Note: $stop : 3_ALSU_tb.sv(82)
# Time: 4004 ns Iteration: 1 Instance: /ALSU_tb
# Break in Module ALSU_tb at 3_ALSU_tb.sv line 82
```

Enabled Cov	verage	Bins	Hits	Misses Coverage	
Statements		48	48	0 100.00%	
		Statement	Details=		
tatement Cove	rage for inst	ance /\ALSU_tb	#dut		
Line	Item		Count	Source	
File 3_ALSU.					1
2				<pre>module ALSU(A, B, cin, serial_in, red_op_A, red_op_B, opcode, bypass_A, bypass_B, clk, rst, direction, leds, parameter INPUT_PRIORITY = "A";</pre>	out
3				parameter FULL_ADDER = "ON";	
4				input clk, cin, rst, red_op_A, red_op_B, bypass_A, bypass_B, direction, serial_in;	
5				input [2:0] opcode;	
6				input signed [2:0] A, B;	
7				output reg [15:0] leds;	
8				output reg signed [5:0] out;	
9					
10				reg red_op_A_reg, red_op_B_reg, bypass_A_reg, bypass_B_reg, direction_reg, serial_in_reg;	
11				reg signed [1:0] cin_reg;	
12				reg [2:0] opcode_reg;	
13				reg signed [2:0] A_reg, B_reg;	
14					
15				wire invalid_red_op, invalid_opcode, invalid;	
16					
17				//Invalid handling	
18	1		929	assign invalid_red_op = (red_op_A_reg red_op_B_reg) & (opcode_reg[1] opcode_reg[2]);	
19			844	assign invalid_opcode = opcode_reg[1] & opcode_reg[2];	
20	1		495	assign invalid = invalid_red_op invalid_opcode;	
21					
22				//Registering input signals	
23	1		1989	always @(posedge clk or posedge rst) begin	
24				if(rst) begin	
25	1		199	cin_reg <= 0;	
26	1		199	red_op_B_reg <= 0;	
27	1		199	red_op_A_reg <= 0;	
28	1		199	bypass_8_reg <= 0;	

1	28	1	199	bypass_B_reg <= 0;
11 199 serial_in_reg <= 0; 12 1 199 opcode_reg <= 0; 13 1 199 A_reg <= 0; 14 199 B_reg <= 0; 15 end else begin 16 1 1790 cin_reg <= cin; 17 1 1790 red_op_B_reg <= red_op_B; 18 1 1790 red_op_A_reg <= red_op_A; 19 bypass_B_reg <= bypass_B; 40 1 1790 bypass_B_reg <= bypass_B; 41 1 1790 direction_reg <= direction; 42 1 1790 serial_in_reg <= serial_in; 43 1 1790 apcode_reg <= apcode; 44 1 1790 A_reg <= A; 45 1 1790 B_reg <= B; 46 end 47 end 48 49 //leds output blinking 50 1 2005 always @(posedge clk or posedge rst) begin 51 if(rst) begin 52 1 305 leds <= 0; 53 end else begin 54 if (invalid) 55 1 645 leds <= nleds; 615 else 615 71 1145 leds <= 0; 616 c= 0; 617 else <= 0; 618	29	1	199	bypass_A_reg <= 0;
1 199	30	1	199	direction_reg <= θ;
1 199 A_reg <= 0; 34 1 199 B_reg <= 0; 35 end else begin 36 1 1790 cin_reg <= cin; 37 1 1790 red_op_B_reg <= red_op_B; 38 1 1790 bypass_B_reg <= red_op_A; 39 1 1790 bypass_B_reg <= bypass_B; 40 1 1790 bypass_A_reg <= bypass_A; 41 1 1790 direction_reg <= direction; 42 1 1790 serial_in_reg <= serial_in; 43 1 1790 apcode_reg <= opcode; 44 1 1790 A_reg <= A; 45 1 1790 B_reg <= B; 46 end 47 end 48 49 //leds output blinking 50 1 2005 always @(posedge clk or posedge rst) begin 51 if(rst) begin 52 1 305 leds <= 0; 53 end else begin 54 if (invalid) 55 1 645 leds <= -leds; 615 else 616	31	1	199	serial_in_reg <= θ;
1	32	1	199	opcode_reg <= 0;
and else begin 1 1790 cin_reg <= cin; 1 1790 red_op_8_reg <= red_op_8; 38 1 1790 red_op_A_reg <= red_op_A; 39 1 1790 bypass_8_reg <= bypass_8; 40 1 1790 bypass_A_reg <= bypass_A; 41 1 1 1790 direction_reg <= direction; 42 1 1790 serial_in_reg <= serial_in; 43 1 1790 opcode_reg <= opcode; 44 1 1790 A_reg <= A; 45 1 1790 8_reg <= B; 46 end 47 end 48 49 //leds output blinking 50 1 2095 always_@(posedge clk or posedge rst) begin 51 if(rst) begin 52 1 305 leds <= 0; 53 end else begin 54 if (invalid) 55 1 645 leds <= ~leds; 65 else 67 1 1145 leds <= 0; 68	33	1	199	A_reg <= 0;
1 1790 cin_reg <= cin; 1 1790 red_op_B_reg <= red_op_B; 1 1790 red_op_A_reg <= red_op_A; 1 1790 bypass_B_reg <= bypass_B; 40 1 1790 bypass_A_reg <= bypass_A; 41 1 1790 direction_reg <= direction; 42 1 1790 serial_in_reg <= serial_in; 43 1 1790 opcode_reg <= opcode; 44 1 1790 A_reg <= B; 45 1 1790 B_reg <= B; 46 end 47 end 48 49 //leds output blinking 50 1 2095 always @(posedge clk or posedge rst) begin 51 if(rst) begin 52 1 305 leds <= 0; 53 end else begin 54 if (invalid) 55 1 645 leds <= ~leds; 65 else 67 1 1145 leds <= 0; 68	34	1	199	B_reg <= 0;
1 1798 red_op_8_reg <= red_op_8; 1 1798 red_op_8_reg <= red_op_8; 1 1798 bypass_8_reg <= bypass_8; 40 1 1790 bypass_8_reg <= bypass_A; 41 1 1 1790 direction_reg <= bypass_A; 42 1 1790 serial_in_reg <= serial_in; 43 1 1790 opcode_reg <= opcode; 44 1 1790 A_reg <= A; 45 1 1790 serial_in_reg <= serial_in; 46 end 47 end 48 49 //leds output blinking 50 1 2095 always @(posedge clk or posedge rst) begin 51 if(rst) begin 52 1 305 leds <= 0; 53 end else begin 54 if (invalid) 55 1 645 leds <= ~leds; 615 else 57 1 1145 leds <= 0; 616	35			end else begin
1 1790	36	1	1790	cin_reg <= cin;
1 1790 bypass_B_reg <= bypass_B; 40 1 1790 bypass_B_reg <= bypass_B; 41 1 1790 direction_reg <= direction; 42 1 1790 serial_in_reg <= serial_in; 43 1 1790 opcode_reg <= opcode; 44 1 1790 A_reg <= A; 45 1 1790 B_reg <= B; 46 end 47 end 48 49 //leds output blinking 50 1 2095 always @(posedge clk or posedge rst) begin 51 if(rst) begin 52 1 305 leds <= 0; 53 end else begin 54 if (invalid) 55 1 645 leds <= ~leds; 65 else 57 1 1145 leds <= 0; 58	37	1	1790	red_op_B_reg <= red_op_B;
40 1 1790 bypass_A_reg <= bypass_A; 41 1 1790 direction_reg <= direction; 42 1 1790 serial_in_reg <= serial_in; 43 1 1790 opcode_reg <= opcode; 44 1 1790 A_reg <= A; 45 1 1790 B_reg <= B; 46 end 47 end 48 49 //leds output blinking 50 1 2095 always @(posedge clk or posedge rst) begin 51 if(rst) begin 52 1 305 leds <= 0; 53 end else begin 54 if (invalid) 55 1 645 leds <= ~leds; 56 else 57 1 1145 leds <= 0; 58	38	1	1790	red_op_A_reg <= red_op_A;
41 1 1790 direction_reg <= direction; 42 1 1790 serial_in_reg <= serial_in; 43 1 1790 opcode_reg <= opcode; 44 1 1790 A_reg <= A; 45 1 1790 B_reg <= B; 46 end 47 end 48 49 //leds output blinking 50 1 2095 always @(posedge clk or posedge rst) begin 51 if(rst) begin 52 1 305 leds <= 0; 53 end else begin 54 if (invalid) 55 1 645 leds <= ~leds; 66 else 57 1 1145 leds <= 0; 58	39	1	1790	bypass_B_reg <= bypass_B;
42 1 1790 serial_in_reg <= serial_in; 43 1 1790 opcode_reg <= opcode; 44 1 1790 A_reg <= A; 45 1 1790 B_reg <= B; 46 end 47 end 48 49 //leds output blinking 50 1 2095 always @(posedge clk or posedge rst) begin 51 if(rst) begin 52 1 305 leds <= 0; 53 end else begin 54 if (invalid) 55 1 645 leds <= ~leds; 56 else 57 1 1145 leds <= 0; 58 end	40	10	1790	bypass_A_reg <= bypass_A;
1 1790 opcode_reg <= opcode; 44 1 1790 A_reg <= A; 45 1 1790 B_reg <= B; 46 end 47 end 48 49 //leds output blinking 50 1 2095 always @(posedge clk or posedge rst) begin 51 if(rst) begin 52 1 305 leds <= 0; 53 end else begin 54 if (invalid) 55 1 645 leds <= -leds; 56 else 57 1 1145 leds <= 0; 58	41	1	1790	direction_reg <= direction;
44 1 1790 A_reg <= A; 45 1 1790 B_reg <= B; 46 end 47 end 48 49 //leds output blinking 50 1 2095 always @(posedge clk or posedge rst) begin 51 if(rst) begin 52 1 305 leds <= 0; 53 end else begin 54 if (invalid) 55 1 645 leds <= ~leds; 56 else 57 1 1145 leds <= 0;	42	1	1790	serial_in_reg <= serial_in;
45 1 1790 8_reg <= 8; 46 end 47 end 48 49 //leds output blinking 50 1 2095 always θ(posedge clk or posedge rst) begin 51 if(rst) begin 52 1 305 leds <= θ; 53 end else begin 54 if (invalid) 55 1 645 leds <= ~leds; 56 else 57 1 1145 leds <= θ; 58	43	1	1790	opcode_reg <= opcode;
46 end 47 end 48 49 //leds output blinking 50 1 2095 always @(posedge clk or posedge rst) begin 51 if(rst) begin 52 1 305 leds <= θ; 53 end else begin 54 if (invalid) 55 1 645 leds <= ~leds; 56 else 57 1 1145 leds <= θ; 58	44	1	1790	A_reg <= A;
47 end 48 49 //leds output blinking 50 1 2095 always @(posedge clk or posedge rst) begin 51 if(rst) begin 52 1 305 leds <= θ; 53 end else begin 54 if (invalid) 55 1 645 leds <= ~leds; 56 else 57 1 1145 leds <= θ; 58 end	45	1.	1790	B_reg <= B;
48 49	46			end
//leds output blinking //leds output blinking //leds output blinking 2095 always @(posedge clk or posedge rst) begin if(rst) begin 1 305 leds <= θ; end else begin if (invalid) 1 645 leds <= ~leds; else 1 1145 leds <= θ; end	47		er	nd
1 2095 always @(posedge clk or posedge rst) begin if(rst) begin 1 305 leds <= θ; end else begin if (invalid) 1 645 leds <= ~leds; else 1 1145 leds <= θ; end	48			
51 if(rst) begin 52 1 305 leds <= θ;	49		11	leds output blinking
52 1 305 leds <= θ;	50	1	2095 al	lways @(posedge clk or posedge rst) begin
53 end else begin 54 if (invalid) 55 1 645 leds <= ~leds;	51			if(rst) begin
54 if (invalid) 55 1 645 leds <= ~leds;	52	i.	305	leds <= 0;
55 1 645 leds <= ~leds; 56 else 57 1 1145 leds <= θ; 58 end	53			end else begin
56 else 57 1 1145 leds <= 0; 58 end	54			if (invalid)
57 1 1145 leds <= 0; 58 end	55	1	645	leds <= ~leds;
58 end	56			else
TELL TO THE STATE OF THE STATE	57	1	1145	leds <= 0;
59 end	58			end
	59		er	nd

59			end
60			
61			//ALSU output processing
62	1	1816	always @(posedge clk or posedge rst) begin
63			if(rst) begin
64	1	186	out <= 0;
65			end
66			else begin
67			if (bypass_A_reg && bypass_B_reg)
68	1	162	out <= (INPUT_PRIORITY == "A")? A_reg: B_reg;
69			else if (bypass_A_reg)
70	1	336	out <= A_reg;
71			else if (bypass_B_reg)
72	1	366	out <= 8_reg;
73			else if (invalid)
74	1	243	out <= 0;
75			else begin
76			case (opcode_reg)
77			3'h0: begin
78			if (red_op_A_reg && red_op_B_reg)
79	1	15	out <= (INPUT_PRIORITY == "A")? A_reg: B_reg;
80			else 1f (red_op_A_reg)
81	1	26	out <= A_reg;
82			else 1f (red_op_B_reg)
83	1	15	out <= B_reg;
84			else
85	1	151	out <= A_reg B_reg;
86			end
87			3'h1: begin
88			if (red_op_A_reg && red_op_B_reg)
89	1	6	out <= (INPUT_PRIORITY == "A")? ^A_reg: ^8_reg;

90			else if (red_op_A_reg)
91	1	20	out <= ^A_reg;
92			else if (red_op_B_reg)
93	1	26	out <= ^B_reg;
94			else
95	1	65	out <= A_reg ^ B_reg;
96			end
97	1	49	3'h2: out <= (FULL_ADDER)? (A_reg + B_reg + cin_reg) : A_reg + B_reg;
98	1	59	3'h3: out <= A_reg * B_reg;
99			3'h4: begin
100			if (direction_reg)
101	1	21	out <= {out[4:0], serial_in_reg};
102			else
103	1	28	<pre>out <= {serial_in_reg, out[5:1]};</pre>
104			end
105			3'h5: begin
106			if (direction_reg)
107	1	26	out <= {out[4:0], out[5]};
108			else
109	1	25	out <= {out[0], out[5:1]};
	A P		

8. Branch coverage report:

	Coverage	Bins	Hits	Misses	Coverage
Branches		31	31	0	100.00%
		====Branch De	tails====		
anch Cover	age for instance	/\ALSU_tb#du	rt		
Line	Item		Count	Source	
File 3_ALS	J.v				
		IF Br			
24	124				coming in to IF
24	1				st) begin
35	1		1790	end	else begin
anch total	s: 2 hits of 2 b	ranches = 100	.00%		
		IF Br	anch		
51			2095	Count	coming in to IF
51	1		305		st) begin
53	1		1790	end	else begin
anch total	s: 2 hits of 2 b	ranches = 100	.00%		
		IF Br	anch		
54			1790	Count	coming in to IF
54	1		645		if (invalid)
56	1		1145		else
anch total	s: 2 hits of 2 b	ranches = 100	.00%		
anch Lucar					
		IF Br	anch		
		IF Br			coming in to IF
	1	IF Br	1816	Count	
63 63	1	IF Br	1816 186	Count if(r	coming in to IF st) begin
63 63 66	1		1816 186 1630	Count if(r	coming in to IF
63 63 66	1 1 s: 2 hits of 2 b	ranches = 180	1816 186 1630 2.00%	Count if(r else	coming in to IF st) begin begin
63 63 66 anch total	1 1 s: 2 hits of 2 b	ranches = 180	1816 186 1630 3.00%	Count if(r else	coming in to IF st) begin begin
63 63 66 anch total:	1 1 5: 2 hits of 2 b	ranches = 180	1816 186 1630 3.00% ranch 1630	Count if(r else	coming in to IF st) begin begin coming in to IF
63 63 66 anch total	1 1 s: 2 hits of 2 b	ranches = 180	1816 186 1630 3.00%	Count if(r else	coming in to IF st) begin begin coming in to IF
63 63 66 anch total:	1 1 5: 2 hits of 2 b	ranches = 180	1816 186 1630 3.00% ranch 1630	Count if(r else Count if	coming in to IF st) begin begin coming in to IF
63 63 66 anch total: 67 67	1 1 s: 2 hits of 2 b	ranches = 180	1816 186 1630 0.00% ranch 1630 162	Count if(r else Count if	coming in to IF st) begin begin coming in to IF (bypass_A_reg && bypass_B_re
63 63 66 anch total: 67 67 67	1 1 5: 2 hits of 2 b	ranches = 180	1816 186 1630 0.00% ranch 1630 162 336	Count if(r else Count if el	coming in to IF st) begin begin coming in to IF (bypass_A_reg && bypass_B_reg)
63 63 66 anch total: 67 67 69	1 1 s: 2 hits of 2 b 1 1	ranches = 180	1816 186 1639 0.00% ranch 1630 162 336	Count if(r else Count if el el	coming in to IF st) begin begin coming in to IF (bypass_A_reg && bypass_B_re se if (bypass_A_reg) se if (bypass_B_reg)

8. Branch coverage report:

```
-----CASE Branch-----
                                 523
                                     Count coming in to CASE
                                207
                                             3'h0: begin
  87
                                             3'h1: begin
                                             3'h2: out <= (FULL_ADDER)? (A_reg + B_reg + cin_reg) : A_reg + B_reg;
                                 49
  97
                                 50
                                             3'h3: out <= A_reg * B_reg;
  98
                                 49
                                             3'h4: begin
  99
                                 51
                                              3'h5: begin
  105
Branch totals: 6 hits of 6 branches = 100.00%
 -----IF Branch-----
                                     Count coming in to IF
  78
                                               if (red_op_A_reg && red_op_B_reg)
  80
                                 26
                                              else if (red_op_A_reg)
                                              else if (red_op_B_reg)
  84
                                151
Branch totals: 4 hits of 4 branches = 100.00%
------IF Branch------
                               117 Count coming in to IF
  88
              1
                                               if (red_op_A_reg && red_op_B_reg)
  90
                                 20
                                              else if (red_op_A_reg)
  92
                                 26
                                              else if (red_op_B_reg)
Branch totals: 4 hits of 4 branches = 100.00%
 -----IF Branch-----
                                 49
                                     Count coming in to IF
  100
                                              if (direction_reg)
              1
                                 28
                                              else
Branch totals: 2 hits of 2 branches = 100.00%
-----IF Branch-----
                              51 Count coming in to IF
  106
                                 26
                                               if (direction_reg)
Branch totals: 2 hits of 2 branches = 100.00%
```

9. Toggle coverage report:

```
Toggle Coverage:
   Enabled Coverage
                                              Misses Coverage
                               Bins
                                        Hits
                                118
                                         118
                                                      100.00%
    Toggles
     -----Toggle Details------
Toggle Coverage for instance /\ALSU_tb#dut --
                                                  1H->0L 0L->1H
                                                                                            "Coverage"
                                          Node
                                        A[0-2]
                                                                                               100.00
                                    A_reg[2-0]
                                                                                               100.00
                                                                   1
                                       B[0-2]
                                                                                               100.00
                                    B_reg[2-0]
                                                                                               100.00
                                      bypass_A
                                                       1
                                                                                               100.00
                                   bypass_A_reg
                                                                                               100.00
                                      bypass_B
                                                       1
                                                                                               100.00
                                                                                               100.00
                                   bypass_B_reg
                                         cin
                                                                                               100.00
                                                       1
                                    cin_reg[0]
                                                                                               100.00
                                                                                               100.00
                                                                                               100.00
                                     direction
                                                                                               100.00
                                  direction_reg
                                       invalid
                                                                                               100.00
                                 invalid_opcode
                                                                                               100.00
                                 invalid_red_op
                                                                                               100.00
                                    leds[15-0]
                                                                                               100.00
                                   opcode[0-2]
                                                                                               100.00
                                opcode_reg[2-0]
                                                                                               100.00
                                      out[5-0]
                                                                                               100.00
                                      red_op_A
                                                                                               100.00
                                  red_op_A_reg
                                                                                               100.00
                                     red_op_B
                                                                                               100.00
                                                        1
                                  red_op_B_reg
                                                                                               100.00
                                                                                               100.00
                                     serial_in
                                                                                               100.00
                                  serial_in_reg
                                                                                               100.00
Total Node Count
                            59
Toggled Node Count =
                            59
Untoggled Node Count =
                             0
Toggle Coverage
                        100.00% (118 of 118 bins)
```

Total Coverage By Instance (filtered view): 100.00%