## Projeté orthogonal

**Définition 1.** Le projeté orthogonal d'un point M sur une droite (d) est le point d'intersection H de la droite (d) et de la perpendiculaire à (d) passant par M.



E1



Reproduisez la figure à main levée, puis indiquez les projetés orthogonaux si ce sont des points nommés. Dans le cas contraire, tracez à main levée le projeté orthogonal et lui donner un nom.

- **a.** B sur (CD)
- **b.** A sur (BC)
- **c.** C sur (AB)
- ${
  m d.}~B~{
  m sur}~(AC)$
- **e.** A sur (BE)
- **f.** B sur (CE)
- **g.** E sur (CA)
- h. D sur (BC)
- **i.** D sur (EB)
- **j.** E sur (CD)
- k. E sur (BC)

EO



Les points qui semblent alignés le sont. Mêmes consignes que dans l'exercice précédent.

- **a.** C sur (BD)
- **b.** B sur (AC)
- **c.** B sur (DF)
- **d.** E sur (DC)
- **e.** D sur (BC)
- **f.** D sur (AB)
- **g.** A sur (EB)
- h. F sur (AB)

**Propriété 1.** Dans un triangle, le projeté orthogonal d'un sommet sur le côté opposé est le pied de la hauteur issue de ce sommet.

## E3

- **a.** Placez dans un repère orthonormé les points  $A(-3\;;\;2)$ ,  $B(6\;;\;-1)$  et  $C(-1\;;\;-2)$ .
- **b.** Déterminez par lecture graphique les coordonnées du point D pied de la hauteur issue de C dans le triangle ABC.
- c. Déterminez par lecture graphique les coordonnées du point E pied de la hauteur issue de B dans le triangle ABC.
- **d.** Déterminez par lecture graphique le point de concours des trois hauteurs du triangle ABC.
- **e.** Notons F le point d'intersection de (AH) et (BC). Montrez que le projeté orthogonal de A sur (BC) est F.

Tracer un triangle ABC rectangle en A tel que  $AB=3\,\mathrm{cm}$  et  $AC=4\,\mathrm{cm}$ . Notons H le projeté orthogonal de A sur (BC).

- **a.** Calculez l'aire du triangle ABC.
- **b.** Calculez BC.
- c. Déterminez une autre manière de calculer l'aire du triangle ABC pour en déduire la longueur de AH .
- **d.** Calculez BH.
- **e.** Calculez l'aire du triangle AHC. Indications:  $2.4\times1.8=4.32$   $2.4^2=5.76$   $7.68\div2=3.84$   $\sqrt{3.24}=1.8$   $\sqrt{10.24}=3.2$   $12\div5=2.4$   $4.32\div2=2.16$   $3.2\times2.4=7.68$

**Définition 2.** La distance entre un point et une droite est la longueur du segment joignant le point à son projeté orthogonal sur la droite.

Soient [Ox) et [Oy) deux demi-droites d'origine un point O du plan et soit A un point distinct de O et équidistant de ces deux demi-droites. Soient M et N les projetés orthogonaux de A sur [Ox) et [Oy) respectivement.

- **a.** Démontrez que  $OM^2=ON^2$ .
- **b.** Démontrez que (OA) est la bissectrice de l'angle  $\widehat{MON}$  .

ABC est un triangle tel que  $AB=8\,\mathrm{cm}$ ,  $AC=11\,\mathrm{cm}$  et  $\widehat{BAC}=30\,^\circ$ . Le point H est le projeté orthogonal de B sur (AC).

- **a.** Calculer BH.
- **b.** Calculer l'aire du triangle ABC.
- **c.** Calculer la distance du point C à (AB).
- **d.** Calculer la distance du point C à (BH).

Indications  $:sin(30^\circ) = cos(60^\circ) = \frac{1}{2}$  et  $sin(60^\circ) = cos(30^\circ) = \frac{\sqrt{3}}{2}$ 

ABC est un triangle tel que AB=8, BC=4 et  $AC=4\sqrt{3}$ . Soit D le point de AC=4 tel que AD=12. Soit E le point de  $AED=60^\circ$ .

- **a.** Démontrez que C est le projeté orthogonal de B sur (AD).
- **b.** Sachant que  $\cos(60^\circ)=\frac{1}{2}$ , démontrez que les droites (BC) et (DE) sont parallèles.
- **c.** Montrez que  $DE=4\sqrt{3}$ .