Math 2210 Prelim Exam 1 (February 23, 2017)

NAME:	Section:
• Time: you have 90 minute	es (7:30-9:00PM).
v v	ustifications. The final answers must be "reasonably" simplinal number must be given in the form $\frac{a}{b}$ for some integers a
• The use of calculators (an	nd other electronic devices) or notes is not permitted.
• You may use both sides o	f the paper.
• Make sure you have 7 pa	ges and 5 problems before starting the exam.
SIGNATURE:	not give, use, or receive unauthorized aid.
	Problem 1: / 20 Problem 2: / 20 Problem 3: / 20 Problem 4: / 20 Problem 5: / 20
	Total: / 100

Problem 1: Consider the system of linear equations

$$\begin{cases} x - 2y + z = 3 \\ 2x + y + 3z = b \\ 3x + ay - z = 5 \end{cases}$$

- (a) For which values of a and b, if any, does this system have a unique solution?
- (b) For which values of a and b, if any, does this system have no solution?
- (c) For which values of a and b, if any, does this system have infinitely many solutions?

Problem 2: Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be the transformation defined by

$$T(x_1, x_2, x_3, x_4) = (x_4, x_1, x_2, x_3)$$
.

- (a) Verify that this transformation is *linear*.
- (b) Find the $standard\ matrices$ for T and T^2 .

(Here
$$T^2(\mathbf{x}) = T \circ T(\mathbf{x}) = T(T(\mathbf{x})).)$$

Problem 3: Consider the linear map

$$\begin{cases} T \colon \mathbb{R}^4 \to \mathbb{R}^3 \\ \mathbf{x} \mapsto A\mathbf{x} \end{cases}, \text{ where } A = \begin{pmatrix} 0 & 1 & -1 & 2 \\ 1 & 2 & 1 & -1 \\ 1 & -1 & 0 & 1 \end{pmatrix}$$

- (a) Compute Image(T). Is T surjective (onto)?
- (b) Compute Kernel(T). Is T injective (one-to-one)?

Recall: Image $(T) = \{T(\mathbf{x}) \colon \mathbf{x} \in \mathbb{R}^4\}$, Kernel $(T) = \{\mathbf{x} \in \mathbb{R}^4 \colon T(\mathbf{x}) = \mathbf{0}\}$.

Problem 4: Consider the matrix

$$A = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

Is this matrix invertible? If it is, compute its inverse A^{-1} .

Problem 5: Let A and B be any two matrices such that the product AB is defined. Suppose that $Kernel(A) = \{0\}$. Show that

$$Kernel(B) = Kernel(AB)$$
.

In other words, prove $\mathbf{x} \in \text{Kernel}(B)$ if and only if $\mathbf{x} \in \text{Kernel}(AB)$.

(extra blank page)