

# Архитектура фон Неймана

Архитектура фон Неймана — также известная как модель фон Неймана или архитектура Принстона — это компьютерная архитектура, основанная на Первом черновике отчета по ЕDVAC [ 1 ] , написанном Джоном фон Нейманом в 1945 году, описывающем проекты, обсуждавшиеся с Джоном Мочли и Дж. Преспером Экертом в Школе электротехники Мура Пенсильванского университета . В документе описывается архитектура проекта электронного цифрового компьютера, состоящего из «органов», которые, как позже поняли, имели следующие компоненты:



Схема архитектуры фон Неймана

- Процессорное <u>устройство</u> с <u>арифметико-логическим устройством</u> и <u>регистрами</u> процессора
- Блок управления, включающий регистр команд и счетчик программ.
- Память, в которой хранятся данные и инструкции
- Внешнее запоминающее устройство
- Механизмы ввода и вывода [1][2]

Приписывание изобретения архитектуры фон Нейману является спорным, не в последнюю очередь потому, что Эккерт и Мокли проделали большую часть необходимой проектной работы и утверждают, что у них возникла идея хранить программы задолго до обсуждения этих идей с фон Нейманом и Германом Голдстайном . [3]

Термин «архитектура фон Неймана» развился для обозначения любого компьютера с хранимой программой, в котором выборка инструкций и операция с данными не могут происходить одновременно (поскольку они используют общую шину ). Это называется узким местом фон Неймана , которое часто ограничивает производительность соответствующей системы. [4]

Архитектура фон Неймана проще, чем архитектура Гарварда (которая имеет один выделенный набор шин адреса и данных для чтения и записи в память, а также другой набор шин адреса и данных для выборки инструкций ).

Компьютер <u>с хранимой программой</u> использует тот же базовый механизм для кодирования как программных инструкций, так и данных, в отличие от конструкций, которые используют такой механизм, как дискретная коммутационная панель или фиксированная схема управления для реализации инструкций. Компьютеры с хранимой программой были шагом вперед по сравнению с вручную перенастраиваемыми или фиксированными по функциям компьютерами 1940-х годов, такими как <u>Colossus</u> и <u>ENIAC</u>. Они программировались путем установки <u>переключателей</u> и вставки соединительных кабелей для маршрутизации данных и сигналов управления между различными функциональными блоками.

Подавляющее большинство современных компьютеров используют один и тот же аппаратный механизм для кодирования и хранения как данных, так и программных инструкций, но имеют кэши между ЦП и памятью, а для кэшей, расположенных ближе всего к ЦП, имеют отдельные кэши для инструкций и данных, так что большинство выборок инструкций и данных используют отдельные шины ( архитектура с разделенным кэшем ).

### История

Самые ранние вычислительные машины имели фиксированные программы. Некоторые очень простые компьютеры все еще используют эту конструкцию, либо для простоты, либо в целях обучения. Например, настольный калькулятор (в принципе) является компьютером с фиксированной программой. Он может выполнять базовые математические операции, но не может запускать текстовый процессор или игры. Изменение программы машины с фиксированной программой требует перемонтажа, реструктуризации или перепроектирования машины. Самые ранние компьютеры были не столько «запрограммированы», сколько «разработаны» для определенной задачи. «Перепрограммирование» — когда это вообще было возможно — было трудоемким процессом, который начинался с блок-схем и бумажных заметок, за которыми следовали подробные инженерные проекты, а затем часто трудоемкий процесс физического перемонтажа и перестройки машины. Настройка и отладка программы на ENIAC могла занять три недели. [5]

С появлением компьютера с хранимой программой ситуация изменилась. Компьютер с хранимой программой по своей конструкции включает набор инструкций и может хранить в памяти набор инструкций (программу), которые детализируют вычисления.

Хранимая программа также допускает <u>самомодифицирующийся код</u>. Одной из ранних мотиваций для такой возможности была потребность в программе для увеличения или иного изменения адресной части инструкций, что операторы должны были делать вручную в ранних разработках. Это стало менее важным, когда <u>индексные регистры</u> и <u>косвенная адресация</u> стали обычными функциями архитектуры машины. Другим применением было встраивание часто используемых данных в поток инструкций с использованием немедленной адресации.

Когда фон Нейман описывал автоматические вычислительные системы, используя терминологию, отличную от той, которая обычно описывается с помощью модели. В первом <u>черновике отмета по EDVAC [1]</u> архитектура состояла из «высокоскоростной памяти M, центрального арифметического устройства CA, внешнего носителя записи R, входного органа I, выходного органа O и центрального управления CC» [6]

#### Возможности

В больших масштабах способность рассматривать инструкции как данные — это то, что делает возможными ассемблеры , компиляторы , компоновщики , загрузчики и другие автоматизированные инструменты программирования. Это делает возможными «программы, которые пишут программы». 

[7] Это привело к расцвету сложной самохостинговой вычислительной экосистемы вокруг машин с архитектурой фон Неймана.

Некоторые <u>языки высокого уровня</u> используют архитектуру фон Неймана, предоставляя абстрактный, независимый от машины способ манипулирования <u>исполняемым кодом</u> во время выполнения (например, <u>LISP</u>) или используя информацию во время выполнения для настройки <u>оперативной</u>

<u>компиляции</u> (например, языки, размещенные на <u>виртуальной машине Java</u>, или языки, встроенные в веб-браузеры ).

В меньшем масштабе некоторые повторяющиеся операции, такие как <u>BITBLT</u> или <u>пиксельные и вершинные шейдеры,</u> могут быть ускорены на процессорах общего назначения с помощью методов компиляции JIT. Это одно из применений самомодифицирующегося кода, которое осталось популярным.

# Разработка концепции хранимой программы

Математик <u>Алан Тьюринг</u>, которого натолкнули на проблему математической логики лекции <u>Макса Ньюмена</u> в <u>Кембриджском университете</u>, написал в 1936 году статью под названием « *О вычислимых числах с приложением к проблеме <u>Entscheidungsproblem»</u>, которая была опубликована в <i>Трудах Лондонского математического общества*. [8] В ней он описал гипотетическую машину, которую он назвал *универсальной вычислительной машиной*, теперь известную как « <u>Универсальная машина Тьюринга</u> ». Гипотетическая машина имела бесконечный магазин (память в сегодняшней терминологии), который содержал как инструкции, так и данные. <u>Джон фон Нейман</u> познакомился с Тьюрингом, когда он был приглашенным профессором в Кембридже в 1935 году, а также во время года обучения Тьюринга в докторантуре <u>Института перспективных исследований</u> в <u>Принстоне, штат</u> Нью-Джерси, в 1936—1937 годах. Неясно, знал ли он в то время о статье Тьюринга 1936 года.

В 1936 году <u>Конрад Цузе</u> в двух патентных заявках также предположил, что машинные инструкции могут храниться в том же хранилище, что и данные. [9]

Независимо друг от друга, Дж. Преспер Эккерт и Джон Мокли , которые разрабатывали <u>ENIAC</u> в <u>Школе электротехники Мура</u> Пенсильванского <u>университета</u> , написали о концепции хранимой программы в декабре 1943 года. [10][11] Планируя новую машину, <u>EDVAC</u> , Эккерт в январе 1944 года писал, что они будут хранить данные и программы в новом адресуемом запоминающем устройстве, <u>памяти с линией задержки на</u> ртутном металле . Это был первый случай, когда было предложено создание практической машины с хранимой программой. В то время он и Мокли не знали о работе Тьюринга.

<u>Джек Коупленд</u> считает, что «исторически некорректно называть электронные цифровые компьютеры с хранимой программой «машинами фон Неймана » .  $\frac{[13]}{[14]}$  Его коллега из Лос-Аламоса Стэн Франкель сказал об отношении фон Неймана к идеям Тьюринга  $\frac{[14]}{[14]}$ 

Я знаю, что в 1943 или 1944 году или около того фон Нейман был хорошо осведомлен о фундаментальной важности статьи Тьюринга 1936 года... Фон Нейман познакомил меня с этой статьей, и по его настоянию я внимательно ее изучил. Многие люди провозгласили фон Неймана «отцом компьютера» (в современном смысле этого слова), но я уверен, что он сам

никогда бы не совершил такой ошибки. Его, возможно, можно было бы назвать повивальной бабкой, но он твердо подчеркивал мне и другим, я уверен, что фундаментальная концепция обязана Тьюрингу — в той мере, в какой ее не предвосхитил Бэббидж... И Тьюринг, и фон Нейман, конечно, также внесли существенный вклад в « приведение к практике » этих концепций, но я бы не считал их сопоставимыми по важности с введением и объяснением концепции компьютера, способного хранить в своей памяти программу своих действий и изменять эту программу в ходе этих действий.

В то время, когда был распространен отчет «Первый черновик», Тьюринг работал над отчетом под названием «Предлагаемый электронный калькулятор» . В нем подробно описывалась его идея машины, которую он назвал Автоматической вычислительной машиной (АСЕ) . [15] Он представил ее исполнительному комитету Британской национальной физической лаборатории 19 февраля 1946 года. Хотя Тьюринг знал по своему военному опыту в Блетчли-парке, что то, что он предложил, осуществимо, секретность, окружающая «Колосс» , которая впоследствии поддерживалась в течение нескольких десятилетий, помешала ему сказать об этом. Были созданы различные успешные реализации проекта АСЕ.

В статьях фон Неймана и Тьюринга описывались компьютеры с хранимой программой, но более ранняя статья фон Неймана получила большее распространение, а описанная в ней архитектура компьютера стала известна как «архитектура фон Неймана». В публикации 1953 года « *Быстрее мысли: симпозиум по цифровым вычислительным машинам*» (под редакцией Б. В. Боудена) раздел в главе « *Компьютеры в Америке*» звучит следующим образом: [16]

#### Машина Института перспективных исследований, Принстон

В 1945 году профессор Дж. фон Нейман, работавший тогда в Школе инженерии Мура в Филадельфии, где был построен ENIAC, от имени группы своих коллег опубликовал отчет о логическом проектировании цифровых компьютеров. Отчет содержал подробное предложение по проектированию машины, которая с тех пор стала известна как EDVAC (электронный дискретно-переменный автоматический компьютер). Эта машина была только недавно завершена в Америке, но отчет фон Неймана вдохновил на создание EDSAC (электронный запаздывающий автоматический калькулятор) в Кембридже (см. стр. 130).

В 1947 году Беркс, Голдстайн и фон Нейман опубликовали еще один отчет, в котором описывалась конструкция другого типа машины (на этот раз параллельной машины), которая была бы чрезвычайно быстрой, способной, возможно, на 20 000 операций в секунду. Они указали, что нерешенной проблемой при создании такой машины была разработка подходящей памяти с мгновенно доступным содержимым. Сначала они предложили использовать специальную вакуумную трубку — называемую « Селектор », — которую изобрели Принстонские лаборатории RCA. Эти трубки были дорогими и сложными в изготовлении, поэтому фон Нейман впоследствии решил построить машину на основе памяти Уильямса . Эта машина, завершенная в июне 1952 года в Принстоне, стала широко известна как «Маньяк». Конструкция этой машины вдохновила по крайней мере на полдюжины машин, которые сейчас строятся в Америке, все они известны как «Джониаки».

В той же книге первые два абзаца главы об АСЕ звучат следующим образом: [17]

#### Автоматические вычисления в Национальной физической лаборатории

Один из самых современных цифровых компьютеров, воплощающий разработки и усовершенствования в технике автоматических электронных вычислений, был недавно продемонстрирован в Национальной физической лаборатории в Теддингтоне, где он был спроектирован и построен небольшой группой математиков и инженеров-исследователей электроники из штата Лаборатории, которым помогали несколько инженеровпроизводственников из English Electric Company, Limited. Оборудование, установленное на сегодняшний день в Лаборатории, является лишь пилотной моделью гораздо более крупной установки, которая будет известна как Автоматическая вычислительная машина, но хотя она сравнительно мала по размеру и содержит всего около 800 термоионных вентилей, как можно судить по таблицам XII, XIII и XIV, это чрезвычайно быстрая и универсальная вычислительная машина.

Основные понятия и абстрактные принципы вычислений с помощью машины были сформулированы доктором А. М. Тьюрингом, членом Королевского общества, в докладе , прочитанном перед Лондонским математическим обществом в 1936 году, но работа над такими машинами в Британии была задержана войной. Однако в 1945 году исследование проблем было проведено в Национальной физической лаборатории г-ном Дж. Р. Уомерсли, тогдашним суперинтендантом математического отдела лаборатории. К нему присоединились доктор Тьюринг и небольшой штат специалистов, и к 1947 году предварительное планирование было достаточно продвинуто, чтобы оправдать создание уже упомянутой специальной группы. В апреле 1948 года последняя стала Электронным отделом лаборатории под руководством г-на Ф. М. Колбрука.

### Ранние компьютеры с архитектурой фон Неймана

В *первом черновике* описывалась конструкция, которая использовалась многими университетами и корпорациями для создания своих компьютеров. [18] Среди этих различных компьютеров только ILLIAC и ORDVAC имели совместимые наборы инструкций.

- ARC2 (Биркбек, Лондонский университет) официально вступил в строй 12 мая 1948 года. [19]
- <u>Manchester Baby</u> ( Университет Виктории в Манчестере, Англия) осуществил первый успешный запуск сохраненной программы 21 июня 1948 года.
- EDSAC ( Кембриджский университет , Англия) был первым практическим электронным компьютером с хранимой программой (май 1949 г.)
- Manchester Mark 1 ( Манчестерский университет , Англия), разработанный на основе Ваby (июнь 1949 г.)
- <u>CSIRAC</u> ( <u>Совет по научным и промышленным исследованиям</u> ) Австралия (ноябрь 1949 г.)
- <u>МЭСМ</u> в <u>Киевском электротехническом институте</u> в <u>Киеве</u> , <u>Украинская ССР</u> (ноябрь 1950 г.)
- <u>EDVAC</u> ( <u>Лаборатория баллистических исследований</u>, вычислительная лаборатория на <u>Абердинском испытательном полигоне</u>, 1951 г.)
- Машина IAS в Институте перспективных исследований (1951)
- <u>ORDVAC</u> (Университет Иллинойса) на <u>испытательном полигоне Абердин</u>, Мэриленд (завершен в ноябре 1951 г.) [20]

- MANIAC I в Лос-Аламосской научной лаборатории (март 1952 г.)
- ILLIAC в Университете Иллинойса (сентябрь 1952 г.)
- БЭСМ-1 в Москве (1952)
- AVIDAC в Аргоннской национальной лаборатории (1953)
- ORACLE в Окриджской национальной лаборатории (июнь 1953 г.)
- BESK в Стокгольме (1953)
- ДЖОННИАК в корпорации RAND (январь 1954 г.)
- DASK в Дании (1955)
- WEIZAC в Институте науки Вейцмана в Реховоте , Израиль (1955)
- ПЕРМ в Мюнхене (1956)
- SILLIAC в Сиднее (1956)

## Ранние компьютеры с хранимой программой

Информацию о датах в следующей хронологии трудно расположить в правильном порядке. Некоторые даты относятся к первому запуску тестовой программы, некоторые даты относятся к первой демонстрации или завершению работы компьютера, а некоторые даты относятся к первой поставке или установке.

- IBM <u>SSEC</u> обладал способностью обрабатывать инструкции как данные и был публично продемонстрирован 27 января 1948 года. Эта способность была заявлена в <u>патенте США</u> . [21][22] Однако он был частично <u>электромеханическим</u>, а не полностью электронным. На практике инструкции считывались с <u>бумажной ленты</u> из-за ее ограниченной памяти. [23]
- ARC2 , разработанный Эндрю Бутом и <u>Кэтлин Бут</u> в <u>Биркбеке</u>, Лондонском университете, официально вошел в эксплуатацию 12 мая 1948 года. [19] Он был оснащен первым вращающимся барабанным устройством хранения данных. [24][25]
- Маnchester <u>Baby</u> был первым полностью электронным компьютером, который запускал сохраненную программу. Он запускал программу факторизации в течение 52 минут 21 июня 1948 года, после запуска простой программы деления и программы, показывающей, что два числа являются взаимно простыми.
- ENIAC был модифицирован для работы в качестве примитивного компьютера с хранимой программой, доступной только для чтения (с использованием таблиц функций для ПЗУ программ), и был продемонстрирован в таком качестве 16 сентября 1948 года, выполняя программу Адель Голдстайн для фон Неймана.
- BINAC провел несколько испытательных программ в феврале, марте и апреле 1949 года, однако завершил их только в сентябре 1949 года .
- Manchester Mark 1 был разработан на основе проекта Baby. Промежуточная версия Mark 1 была доступна для запуска программ в апреле 1949 года, но была завершена только в октябре 1949 года.
- Первая программа EDSAC была реализована 6 мая 1949 года .
- EDVAC был доставлен в августе 1949 года, но у него возникли проблемы , из-за которых его не вводили в регулярную эксплуатацию до 1951 года.
- Первая программа CSIR Mk I была запущена в ноябре 1949 года.
- SEAC был продемонстрирован в апреле 1950 года.
- Pilot <u>ACE</u> провел свою первую программу 10 мая 1950 года и был продемонстрирован в декабре 1950 года.
- SWAC был завершён в июле 1950 года.
- Строительство <u>«Вихря»</u> было завершено в декабре 1950 года, а в апреле 1951 года он был введен в эксплуатацию.

■ Первый ERA Atlas (позднее коммерческий ERA 1101/UNIVAC 1101) был установлен в декабре 1950 года.

### Эволюция

В течение десятилетий 1960-х и 1970-х годов компьютеры в целом стали и меньше, и быстрее, что привело к эволюции их архитектуры. Например, отображаемый в память ввод/вывод позволяет обрабатывать устройства ввода и вывода так же, как память. 

[ 26 ] Единая системная шина может использоваться для обеспечения модульной системы с более низкой стоимостью . Иногда это называют «упорядочиванием» архитектуры. 
[ 27 ] В последующие десятилетия простые микроконтроллеры иногда исключали функции модели для снижения стоимости и размера. Более крупные компьютеры добавляли функции для более высокой производительности.



Эволюция архитектуры единой системной шины

### Ограничения конструкции

#### узкое место фон Неймана

Использование одной и той же шины для извлечения инструкций и данных приводит к узкому месту фон Неймана , ограниченной пропускной способности (скорости передачи данных) между центральным процессором (ЦП) и памятью по сравнению с объемом памяти. Поскольку одна шина может получить доступ только к одному из двух классов памяти одновременно, пропускная способность ниже скорости, с которой может работать ЦП. Это серьезно ограничивает эффективную скорость обработки, когда ЦП требуется выполнять минимальную обработку больших объемов данных. ЦП постоянно вынужден ждать, пока необходимые данные будут перемещены в память или из нее. Поскольку скорость ЦП и объем памяти увеличились намного быстрее, чем пропускная способность между ними, узкое место стало большей проблемой, проблемой, серьезность которой возрастает с каждым новым поколением ЦП.

Узкое место фон Неймана было описано <u>Джоном Бэкусом</u> в его лекции <u>на вручении премии</u> <u>Тьюринга АСМ в 1977 году</u> . По словам Бэкуса:

Конечно, должен быть менее примитивный способ внесения больших изменений в хранилище, чем проталкивание огромного количества слов вперед и назад через узкое место фон Неймана. Эта трубка не только является буквальным узким местом для трафика данных проблемы, но, что более важно, это интеллектуальное узкое место, которое удерживает нас привязанными к мышлению пословно, вместо того чтобы побуждать нас думать в терминах более крупных концептуальных единиц текущей задачи. Таким образом, программирование в основном планирует и детализирует огромный трафик слов через узкое место фон Неймана, и большая часть этого трафика касается не самих значимых данных, а того, где их найти. [28][29]

#### Смягчение последствий

Существует несколько известных методов смягчения узкого места производительности фон Неймана. Например, все нижеперечисленное может улучшить производительность:

- Предоставление кэша между ЦП и основной памятью.
- Предоставление отдельных кэшей или отдельных путей доступа для данных и инструкций (так называемая модифицированная гарвардская архитектура ).
- Использование алгоритмов и логики прогнозирования ветвлений.
- Предоставление ограниченного стека ЦП или другой встроенной <u>оперативной памяти</u> для сокращения доступа к памяти.
- Реализация иерархии ЦП и памяти в виде <u>системы на кристалле</u>, обеспечивающая большую <u>локальность ссылок</u> и, таким образом, уменьшающая задержку и увеличивающая пропускную способность между <u>регистрами процессора</u> и основной памятью.

Проблему также можно обойти, используя параллельные вычисления, например, архитектуру с неравномерным доступом K памяти (NUMA) ЭТОТ подход обычно используется суперкомпьютерами . Менее ясно, сильно ли изменилось интеллектуальное узкое место , которое критиковал Бэкус, с 1977 года. Предложенное Бэкусом решение не оказало большого влияния. Современное функциональное программирование и объектно-ориентированное программирование гораздо меньше ориентированы на «передачу огромного количества слов туда и обратно», чем более ранние языки, такие как FORTRAN, но внутренне это все еще то, на что компьютеры тратят большую часть своего времени, даже высокопараллельные суперкомпьютеры.

#### Самоизменяющийся код

Помимо узкого места фон Неймана, изменения программ могут быть весьма вредными, как случайно, так и намеренно. В некоторых простых конструкциях компьютеров с хранимой программой неисправная программа может повредить себя, другие программы или операционную систему, что может привести к сбою компьютера. Однако эта проблема применима и к обычным программам, в которых отсутствует проверка границ . Защита памяти и различные элементы управления доступом обычно защищают как от случайных, так и от вредоносных изменений программ.

### Смотрите также

- Наглядное пособие по вычислениям CARDboard
- Узкое место в межсоединении
- Маленький компьютер для человека
- Машина с произвольным доступом
- Гарвардская архитектура
- машина Тьюринга

#### Ссылки

- 1. фон Нейман, Джон(1945), *Первый черновик отчета по EDVAC* (https://web.archive.org/web/20130314123032/http://qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf) (PDF), заархивировано изоригинала (https://sites.google.com/site/michaeldgodfrey/vonneumann/vnedvac.pdf) (PDF)14 марта 2013 г., извлечено 24 августа 2011 г..
- 2. Ганесан 2009.

- 3. Бергин, Томас Дж. (2000), Пятьдесят лет армейских вычислений: от ENIAC до MSRC, Исследовательская лаборатория армии США (https://www.govinfo.gov/app/details/GOVPU B-D105-PURL-LPS58495), стр. 34, получено 5 ноября 2024 г. (https://www.govinfo.gov/app/details/GOVPUB-D105-PURL-LPS58495)
- 4. Маркграф, Джои Д. (2007), Узкое место фон Неймана (https://web.archive.org/web/201312 12205159/http://aws.linnbenton.edu/cs271c/markgrj/), архивировано из оригинала (http://aws.linnbenton.edu/cs271c/markgrj/) 12 декабря 2013 г. (https://web.archive.org/web/201312122 05159/http://aws.linnbenton.edu/cs271c/markgrj/) (http://aws.linnbenton.edu/cs271c/markgrj/).
- 5. Коупленд 2006, стр. 104.
- 6. фон Нейман, Джон (1966). *Теория самовоспроизводящихся автоматов*. Издательство Иллинойсского университета. стр. 10. ISBN 978-0252727337.
- 7. MFTL (My Favorite Toy Language) запись Жаргонный файл 4.4.7 (http://catb.org/~esr/jargon/html/M/MFTL.html), получено 11 июля 2008 г..
- 8. Тьюринг, Алан М. (1936), «О вычислимых числах с приложением к проблеме Entscheidungsproblem», *Труды Лондонского математического общества*, 2, т. 42 (опубликовано в 1937 г.), стр. 230–265 , doi : 10.1112/plms/s2-42.1.230 (https://doi.org/10.11 12%2Fplms%2Fs2-42.1.230) , S2CID 73712 (https://api.semanticscholar.org/CorpusID:73712) (https://doi.org/10.1112%2Fplms%2Fs2-42.1.230) (https://api.semanticscholar.org/CorpusID:7 3712)и Тьюринг, Алан М. (1938), «О вычислимых числах с приложением к проблеме Entscheidungsproblem. Исправление», *Труды Лондонского математического общества*, 2, т. 43, № 6 (опубликовано в 1937 г.), стр. 544–546 , doi : 10.1112/plms/s2-43.6.544 (https://doi.org/10.1112%2Fplms%2Fs2-43.6.544) (https://doi.org/10.1112%2Fplms%2Fs2-43.6.544).
- 9. Уильямс, ФК; Килберн, Т. (25 сентября 1948 г.), «Электронные цифровые компьютеры», Nature, 162 (4117): 487, Bibcode: 1948Natur.162..487W (https://ui.adsabs.harvard.edu/abs/1948Natur.162..487W), doi: 10.1038/162487a0 (https://doi.org/10.1038%2F162487a0), S2CID 4110351 (https://api.semanticscholar.org/CorpusID:4110351) (https://ui.adsabs.harvard.edu/abs/1948Natur.162..487W) (https://doi.org/10.1038%2F162487a0) (https://api.semanticscholar.org/CorpusID:4110351).
- 10. <u>Лукофф, Герман</u> (1979). *Om Dits to Bits: личная история электронного компьютера* . Портленд, Орегон: Robotics Press. <u>ISBN</u> <u>0-89661-002-0</u>. <u>LCCN</u> <u>79-90567</u> (https://lccn.loc.go v/79-90567) .
- 11. В отчете администратора проекта ENIAC Гриста Брейнерда от декабря 1943 года о ходе работ по первому периоду разработки ENIAC неявно предлагалась концепция хранимой программы (одновременно отвергалась ее реализация в ENIAC), в котором говорилось, что «чтобы иметь максимально простой проект и не усложнять ситуацию», ENIAC будет построен без какого-либо «автоматического регулирования».
- 12. Коупленд 2006, стр. 113.
- 13. Копленд, Джек (2000), *Kpamкaя ucmopuя вычислений: ENIAC и EDVAC* (http://www.alanturing.net/turing\_archive/pages/Reference%20Articles/BriefHistofComp.html#ACE), получено 27 января 2010 г. (http://www.alanturing.net/turing\_archive/pages/Reference%20Articles/BriefHistofComp.html#ACE).
- 14. Копленд, Джек (2000), *Kpamкaя ucmopuя вычислений: ENIAC u EDVAC* (http://www.alanturing.net/turing\_archive/pages/Reference%20Articles/BriefHistofComp.html#ACE), получено 27 января 2010 г. (http://www.alanturing.net/turing\_archive/pages/Reference%20Articles/BriefHistofComp.html#ACE)(работа, в которой цитируются Рэнделл, Брайан (1972), Мельцер, Б.; Мичи, Д. (ред.), «Об Алане Тьюринге и происхождении цифровых компьютеров», *Machine Intelligence*, **7**, Эдинбург: Edinburgh University Press: 10, ISBN 0-902383-26-4.
- 15. Коупленд 2006, стр. 108-111.
- 16. Боуден 1953, стр. 176, 177.
- 17. Боуден 1953, стр. 135.
- 18. "Electronic Computer Project" (http://www.ias.edu/people/vonneumann/ecp/) . Institute for Advanced Study . 11 сентября 2009 г. . Получено 26 мая 2011 г. . (http://www.ias.edu/people/vonneumann/ecp/)

- 19. Кэмпбелл-Келли, Мартин (апрель 1982 г.). «Развитие компьютерного программирования в Великобритании (1945–1955 гг.)». *IEEE Annals of the History of Computing*. **4**(2):121–139.doi:10.1109/MAHC.1982.10016 (https://doi.org/10.1109%2FMAHC.1982.10016). S2CID14861159 (https://api.semanticscholar.org/CorpusID:14861159). (https://doi.org/10.1109%2FMAHC.1982.10016) (https://api.semanticscholar.org/CorpusID:14861159)
- 20. Робертсон, Джеймс Э. (1955), *Illiac Design Techniques*, номер отчета UIUCDCS-R-1955—146, Лаборатория цифровых компьютеров, Иллинойсский университет в Урбане-Шампейне.
- 21. Электронный калькулятор селективной последовательности (веб-сайт USPTO) (http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=2636672).
- 22. Электронный калькулятор с селективной последовательностью (патенты Google) (https://patents.google.com/patent/US2636672).
- 23. Грош, Герберт Р. Дж. (1991), *Компьютер: кусочки жизни* (http://www.columbia.edu/acis/history/computer.html), книги третьего тысячелетия, ISBN (http://www.columbia.edu/acis/history/computer.html) 0-88733-085-1.
- 24. Лавингтон, Саймон, ред. (2012). *Алан Тьюринг и его современники: создание первых компьютеров в мире*. Лондон: <u>Британское компьютерное общество</u>. стр. 61. <u>ISBN</u> <u>978-</u>1906124908.
- 25. Джонсон, Роджер (апрель 2008 г.). «Школа компьютерных наук и информационных систем: краткая история» (http://www.dcs.bbk.ac.uk/site/assets/files/1029/50yearsofcomputin g.pdf)(PDF). Колледж Биркбек. Лондонский университет. Получено 23 июля 2017 г. \_(htt p://www.dcs.bbk.ac.uk/site/assets/files/1029/50yearsofcomputing.pdf)
- 26. <u>Белл, К. Гордон</u>; Кэди, Р.; Макфарланд, Х.; О'Лафлин, Дж.; Нунан, Р.; Вульф, В. (1970), « Hoвaя архитектура для мини-компьютеров DEC PDP-11» (http://research.microsoft.com/e n-us/um/people/gbell/CGB%20Files/New%20Architecture%20PDP11%20SJCC%201970%20 c.pdf)(PDF), Весенняя совместная компьютерная конференция, стр. 657–675 (http://research.microsoft.com/en-us/um/people/gbell/CGB%20Files/New%20Architecture%20PDP11%2 OSJCC%201970%20c.pdf).
- 27. Null, Линда; Lobur, Джулия (2010), <u>Основы организации и архитектуры компьютера</u> (htt ps://books.google.com/books?id=f83XxoBC\_8MC&pg=PA36) (3-е изд.), Jones & Bartlett Learning, стр. 36, 199–203 , ISBN (https://books.google.com/books?id=f83XxoBC\_8MC&pg=PA36) 978-1-4496-0006-8.
- 28. Бэкус, Джон В. (август 1978 г.). «Можно ли освободить программирование от стиля фон Неймана? Функциональный стиль и его алгебра программ» (https://doi.org/10.1145%2F359 576.359579). Сообщения АСМ. 21 (8): 613—641. doi: 10.1145/359576.359579 (https://doi.org/10.1145%2F359576.359579). S2CID 16367522 (https://api.semanticscholar.org/CorpusID:1 6367522). (https://doi.org/10.1145%2F359576.359579) (https://doi.org/10.1145%2F359576.359579) (https://api.semanticscholar.org/CorpusID:16367522)
- 29. Дейкстра, Эдсгер В. "Архив Э. В. Дейкстры: обзор лекции о вручении премии Тьюринга 1977 года" (http://www.cs.utexas.edu/~EWD/transcriptions/EWD06xx/EWD692.html). Получено 11 июля 2008 г. (http://www.cs.utexas.edu/~EWD/transcriptions/EWD06xx/EWD69 2.html)

### Дальнейшее чтение

- Боуден, Б.В., ред. (1953), *Быстрее, чем мысль: симпозиум по цифровым вычислительным машинам*, Лондон: Sir Isaac Pitman and Sons Ltd.
- Рохас, Рауль; Хашаген, Ульф, ред. (2000), *Первые компьютеры: история и архитектура*, MIT Press, ISBN 0-262-18197-5
- Дэвис, Мартин (2000), Универсальный компьютер: путь от Лейбница к Тьюрингу, Нью-Йорк: WW Norton & Company Inc., ISBN 0-393-04785-7переиздано как: Дэвис, Мартин (2001), Двигатели логики: Математики и происхождение компьютеров, Нью-Йорк: WW Norton & Company, ISBN 978-0-393-32229-3

- Можно ли освободить программирование от стиля фон Неймана?. Бэкус , Джон . Лекция на церемонии вручения премии Тьюринга ACM 1977 года. Communications of the ACM, август 1978 г., том 21, номер 8. Онлайн-формат PDF. (http://www.stanford.edu/class/c s242/readings/backus.pdf) Архивировано (https://web.archive.org/web/20070621162552/htt p://www.stanford.edu/class/cs242/readings/backus.pdf) 21 июня 2007 г. на Wayback Machine . Подробности см. на сайте https://www.cs.tufts.edu/~nr/backus-lecture.html .
- Белл, К. Гордон; Ньюэлл, Аллен (1971), *Компьютерные структуры: материалы и примеры*, McGraw-Hill Book Company, Нью-Йорк. Массивный (668 страниц)
- Коупленд, Джек (2006), «Колосс и расцвет современного компьютера», в Коупленд, Б. Джек (ред.), *Колосс: Секреты взлома кодов компьютеров Блетили-Парка*, Оксфорд: Oxford University Press, ISBN 978-0-19-284055-4
- Ганесан, Дипак (2009), Модель фон Неймана (https://web.archive.org/web/2012042508322 7/http://none.cs.umass.edu/~dganesan/courses/fall09/handouts/Chapter4.pdf) (PDF), заархивировано из оригинала (http://none.cs.umass.edu/~dganesan/courses/fall09/handouts/Chapter4.pdf) (PDF) 25 апреля 2012 г., извлечено 22 октября 2011 г.
- Маккартни, Скотт (1999). *ENIAC: Триумфы и трагедии первого в мире компьютера* (http s://archive.org/details/eniac00scot) . Walker & Co. ISBN 0-8027-1348-3.
- Голдстайн, Герман X. (1972). *Компьютер от Паскаля до фон Неймана* (https://archive.org/details/computerfrompasc00herm). Princeton University Press. ISBN 0-691-08104-2.
- Шуркин, Джоэл (1984). *Двигатели разума: история компьютера*. Нью-Йорк, Лондон: WW Norton & Company. ISBN 0-393-01804-0.

#### Внешние ссылки

- Гарвард против фон Неймана (http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.f aqs/ka11516.html)
- Инструмент, имитирующий поведение машины фон Неймана. (https://web.archive.org/web/ 20080219131555/http://home.gna.org/vov/)
- ДЖОННИ: Простой симулятор машины фон Неймана с открытым исходным кодом для образовательных целей (http://sourceforge.net/projects/johnnysimulator/)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Von\_Neumann\_architecture&oldid=1291491503"