Методы оптимизации Оптимизация без ограничений. Выпуклость

Н. В. Артамонов

МГИМО МИД России

4 октября 2023 г.

Содержание

- Безусловная оптимизация
- Численная оптимизация
 - Градиентный спуск
 - Метод Ньютона
- Выпуклость и глобальный экстремум

Безусловная оптимизация

- Численная оптимизация
 - Градиентный спуск
 - Метод Ньютона

3 Выпуклость и глобальный экстремум

Локальный экстремум

Пусть функция f определена на множестве $\mathsf{dom}(f) \subset \mathbb{R}^n$.

Теорема (FOC)

Eсли $\hat{x} \in \mathsf{dom}(f)$ – локальный экстремум, то

$$f'_{x_i}(\hat{\mathbf{x}}) = \frac{\partial f}{\partial x_i}(\hat{\mathbf{x}}) = 0$$
 $i = 1, \dots, n$

Матричная запись: на оптимальном решении

$$\operatorname{grad} f(\hat{x}) = 0$$

Локальный экстремум

Teopeмa (SOC)

Пусть $\hat{\mathbf{x}} \in \mathsf{dom}(f)$ удовлетворяет FOC.

Тогда

- lacktriangle если $\mathsf{Hess}(\hat{\pmb{x}}) > 0$, то $\hat{\pmb{x}}$ локальный минимум;
- $oldsymbol{e}$ если $\operatorname{Hess}(\hat{x}) < 0$, то \hat{x} локальный максимум;
- \odot если $\operatorname{Hess}(\hat{x})$ не знакоопределена то \hat{x} не локальный экстремум.

В последнем случаем \hat{x} – седловая точка

Знакоопределённость проверяем по критерию Сильвестра.

Фирма производит n товаров и продаёт их по ценам P_1,\ldots,P_n .

Пусть $Q=(Q_1,\ldots,Q_n)$ – объёмы производства

Издержки производства определяются функцией издержек

$$C(Q) = C(Q_1, \ldots, Q_n)$$

Фирма производит n товаров и продаёт их по ценам P_1,\ldots,P_n .

Пусть $Q=(Q_1,\ldots,Q_n)$ – объёмы производства

Издержки производства определяются функцией издержек

$$C(Q) = C(Q_1, \ldots, Q_n)$$

Тогда функция прибыли имеет вид

$$\pi(Q) = R - C = PQ - C(Q) = \sum_{i=1}^{n} P_i Q_i - C(Q_1, \dots, Q_n)$$

Постановка: Найти оптимальные объёмы производства

Модель:

$$\max_{Q} \pi(Q)$$

Постановка: Найти оптимальные объёмы производства

Модель:

$$\max_{Q} \pi(Q)$$

Необходимые условия:

$$\begin{cases} \pi'_{Q_1} = 0 \\ \vdots \\ \pi'_{Q_n} = 0 \end{cases} \Rightarrow \begin{cases} P_1 = C'_{Q_1} \\ \vdots \\ P_n = C'_{Q_n} \end{cases}$$

Интерпретация: На оптимальном решении предельные издержки равны ценам.

Безусловная оптимизация

- Численная оптимизация
 - Градиентный спуск
 - Метод Ньютона

3 Выпуклость и глобальный экстремум

Описание метода

Основной алгоритм численного решения задачи безусловной оптимизации — метод градиентного спуска.

Идея: Строим последовательные приближения

$$\textit{\textbf{x}}_0, \textit{\textbf{x}}_1, \textit{\textbf{x}}_2, \ldots,$$

которые в «хорошем случае» сходятся к (локальному!) экстремуму функции f.

Переход от x_i к x_{i+1} осуществляется по направлению

- градиента для задачи на тах
- противоположного к градиенту для задачи на min

Реализация для min

- Выбираем «начальное приближение» x₀.
- Отроим последовательность

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \lambda_i \nabla f(\mathbf{x}_i)$$
 $i = 0, 1, \dots$

здесь λ_i – параметр метода (обычно убывает).

Условие остановки:

$$\|\mathbf{x}_{i+1} - \mathbf{x}_i\| < \varepsilon$$

или

$$|f(x_{i+1})-f(x_i)|<\varepsilon$$

где ε – заданная точность

Проблема сходимости

Пусть \hat{x} – локальный минимум и x_0 «достаточно близко» к \hat{x} .

Тогда последовательность $\{m{x}_i\}_{i=0}^n$ сходится к $\hat{m{x}}$

Проблема практической реализации:

- выбор x₀
- выбор λ_i («скорости спуска»)

Важно!

При неправильном выборе \mathbf{x}_0 и λ_i метод может расходиться!

Реализация для тах

- Выбираем «начальное приближение» x₀.
- Отроим последовательность

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \lambda_i \nabla f(\mathbf{x}_i)$$
 $i = 0, 1, \dots$

здесь λ_i – параметр метода (обычно убывает).

Условие остановки:

$$\|\mathbf{x}_{i+1} - \mathbf{x}_i\| < \varepsilon$$

или

$$|f(x_{i+1})-f(x_i)|<\varepsilon$$

где ε – заданная точность

Безусловная оптимизация

- Численная оптимизация
 - Градиентный спуск
 - Метод Ньютона

3 Выпуклость и глобальный экстремум

Реализация

Строим последовательные приближения

$$x_0, x_1, x_2, \dots$$

по правилу

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \gamma \mathsf{Hess}_f^{-1}(\mathbf{x}_i) \nabla f(\mathbf{x}_i)$$

где $\gamma \in (0,1]$ – параметр

Условие остановки:

$$\|\mathbf{x}_{i+1} - \mathbf{x}_i\| < \varepsilon$$

или

$$|f(x_{i+1})-f(x_i)|<\varepsilon$$

где ε – заданная точность.

Проблема сходимости

Пусть \hat{x} – локальный экстремум и x_0 «достаточно близко» к \hat{x} .

Тогда последовательность $\{x_i\}_{i=0}^n$ сходится к \hat{x}

Проблема практической реализации:

- выбор x₀
- ullet выбор γ

Важно!

При неправильном выборе \mathbf{x}_0 и γ метод может расходиться!

Безусловная оптимизация

- Численная оптимизация
 - Градиентный спуск
 - Метод Ньютона

Выпуклость и глобальный экстремум

Выпуклое множество

Одно из важных понятий в оптимизации – выпуклость. Оно используется для нахождения глобальных экстремумов.

Выпуклое множество

Одно из важных понятий в оптимизации – выпуклость. Оно используется для нахождения глобальных экстремумов.

Определение

Множество $X\subset\mathbb{R}^n$ называется выпуклым, если a

$$\forall M.N \in X \Rightarrow [M,N] \subset X$$

т.е. для любых двух точек из множества отрезок, их соединяющий, также лежит в этом множестве.

a
Здесь $[M,N]=\{\lambda M+(1-\lambda)N|\lambda\in[0,1]\}$

Примеры: круг, шар, треугольник, прямоугольник, ромб, \mathbb{R}^n_+

Выпуклые и вогнутые функции

Пусть числовая функция f определена на $\mathsf{dom}(f) \subset \mathbb{R}^n$

График функции: поверхность в \mathbb{R}^{n+1}

$$\Gamma = \{(x, f(x)) : x \in \mathsf{dom}(f)\}$$

Далее будем предполагать, что dom(f) – выпуклое множество

Выпуклые функция

Определение

Функция f называется выпуклой, если для любых $x, y \in \text{dom}(f)$ отрезок, соединяющий точки на графике (x, f(x)) и (y, f(y)), лежит выше графика функции (или на нём).

Формально: для всех $\lambda \in [0,1]$

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

Вогнутые функция

Определение

Функция f называется вогнутой, если для любых $x, y \in \text{dom}(f)$ отрезок, соединяющий точки на графике (x, f(x)) и (y, f(y)), лежит ниже графика функции (или на нём).

Формально: для всех $\lambda \in [0,1]$

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \ge \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

Строгая выпуклость и вогнутость

Определение

Выпуклая функция называется строго выпуклой, если для всех $\mathbf{x},\mathbf{y}\in \mathsf{dom}(f)$ и $\lambda\in (0,1)$ выполнено

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) < \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

Определение

Вогнутая функция называется строго вогнутой, если для всех $\mathbf{x},\mathbf{y}\in \mathsf{dom}(f)$ и $\lambda\in (0,1)$ выполнено

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) > \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

Геометрическая интерпретация: график не содержит отрезков («не участков линейности»)

◆ロト ◆部ト ◆草ト ◆草ト 草 りなび

Базовые свойства

- f (строго) выпукла тогда и только тогда, когда -f (строго) вогнута.
- ullet f (строго) выпукла и $lpha>0 \Rightarrow lpha f$ (строго) выпукла.
- f (строго) вогнута и $\alpha>0$ \Rightarrow αf (строго) вогнута.
- ullet f и g выпуклы (вогнуты) $\Rightarrow f+g$ выпукла (вогнута).

Теорема

Дважды непрерывно дифференцируемая функция f выпукла \iff $\operatorname{Hess}_f(\mathbf{x}) \geq 0$ для $\operatorname{всеx} \mathbf{x} \in \operatorname{dom}(f)$.

Теорема

Дважды непрерывно дифференцируемая функция f выпукла \iff Hess $_f(x) \geq 0$ для всех $x \in \text{dom}(f)$.

Eсли $\operatorname{Hess}_f(\mathbf{x}) > 0$ для $\operatorname{всеx} \mathbf{x} \in \operatorname{dom}(f)$, то функция строго выпукла на $\operatorname{dom}(f)$.

Теорема

Дважды непрерывно дифференцируемая функция f выпукла \iff Hess $_f(x) \geq 0$ для всех $x \in \text{dom}(f)$.

Eсли $\operatorname{Hess}_f(\mathbf{x}) > 0$ для $\operatorname{всеx} \mathbf{x} \in \operatorname{dom}(f)$, то функция строго выпукла на $\operatorname{dom}(f)$.

Следствие

Дважды непрерывно дифференцируемая функция f вогнута \iff $\operatorname{Hess}_f(x) \leq 0$ для всех $x \in \operatorname{dom}(f)$.

Теорема

Дважды непрерывно дифференцируемая функция f выпукла \iff Hess $_f(x) \geq 0$ для всех $x \in \text{dom}(f)$.

Eсли $Hess_f(x) > 0$ для Bсех $x \in dom(f)$, то функция строго выпукла на dom(f).

Следствие

Дважды непрерывно дифференцируемая функция f вогнута \iff $\operatorname{Hess}_f(x) \leq 0$ для всех $x \in \operatorname{dom}(f)$.

Если $\operatorname{Hess}_f(\mathbf{x}) < 0$ для всех $\mathbf{x} \in \operatorname{dom}(f)$, то функция строго вогнута на $\operatorname{dom}(f)$.

Выпуклая оптимизация

Теорема

Пусть f – выпуклая функция. Если $\hat{\mathbf{x}}$ – локальный минимум, то он будет глобальным минимумом.

Если f строго выпукла, то глобальный минимум единственный.

Следствие

Пусть f – вогнутая функция. Если $\hat{\mathbf{x}}$ – локальный максимум, то он будет глобальным максимумом.

Если f строго вогнута, то глобальный максимум единственный.

Случай 2D

Случай двух переменных: f = f(x, y)

$$\mathsf{Hess}(x,y) = \begin{pmatrix} f''_{\mathsf{xx}} & f''_{\mathsf{xy}} \\ f''_{\mathsf{xy}} & f''_{\mathsf{yy}} \end{pmatrix} \qquad \Delta_1 = f''_{\mathsf{xx}} \qquad \Delta_2 = f''_{\mathsf{xx}} f''_{\mathsf{yy}} - \left(f''_{\mathsf{xy}}\right)^2$$

Тогда

Hess
$$\geq 0 \iff f''_{xx}, f'''_{yy} \geq 0, f''_{xx}f'''_{yy} - (f''_{xy})^2 \geq 0$$

Hess
$$\leq 0 \iff f''_{xx}, f'''_{yy} \leq 0, f''_{xx}f'''_{yy} - (f''_{xy})^2 \geq 0$$

Оптимизация

Предложение

Функция двух переменных

$$ullet$$
 выпукла $\iff f_{xx}'', f_{yy}'' \geq 0, f_{xx}'' f_{yy}'' - \left(f_{xy}''\right)^2 \geq 0$

• вогнута
$$\iff f_{xx}'', f_{yy}'' \le 0, f_{xx}'' f_{yy}'' - \left(f_{xy}''\right)^2 \ge 0$$

Рассмотрим производственную функцию Кобба-Дугласа

$$f(K, L) = cK^{\alpha}L^{\beta}$$
 $dom(f) = \mathbb{R}^{2}_{+}$ $\alpha, \beta > 0$

Рассмотрим производственную функцию Кобба-Дугласа

$$f(K, L) = cK^{\alpha}L^{\beta}$$
 $dom(f) = \mathbb{R}^{2}_{+}$ $\alpha, \beta > 0$

Тогда

$$f'_{K} = \alpha c K^{\alpha - 1} L^{\beta} = \frac{\alpha f}{K}$$
 $f'_{L} = \beta c K^{\alpha} L^{\beta - 1} = \frac{\beta f}{L}$

Рассмотрим производственную функцию Кобба-Дугласа

$$f(K, L) = cK^{\alpha}L^{\beta}$$
 $dom(f) = \mathbb{R}^{2}_{+}$ $\alpha, \beta > 0$

Тогда

$$f'_{\mathsf{K}} = \alpha \mathsf{c} \mathsf{K}^{\alpha - 1} \mathsf{L}^{\beta} = \frac{\alpha \mathsf{f}}{\mathsf{K}}$$
 $f'_{\mathsf{L}} = \beta \mathsf{c} \mathsf{K}^{\alpha} \mathsf{L}^{\beta - 1} = \frac{\beta \mathsf{f}}{\mathsf{L}}$

И

$$\begin{split} f_{\mathsf{K}\mathsf{K}}'' &= \alpha(\alpha-1)\mathsf{c}\mathsf{K}^{\alpha-2}\mathsf{L}^{\beta} = \frac{\alpha(\alpha-1)\mathsf{f}}{\mathsf{K}^2} \\ f_{\mathsf{L}\mathsf{L}}'' &= \beta(\beta-1)\mathsf{c}\mathsf{K}^{\alpha}\mathsf{L}^{\beta-2} = \frac{\beta(\beta-1)\mathsf{f}}{\mathsf{L}^2} \\ f_{\mathsf{K}\mathsf{L}}'' &= f_{\mathsf{L}\mathsf{K}}'' = \alpha\beta\mathsf{c}\mathsf{K}^{\alpha-1}\mathsf{L}^{\beta-1} = \frac{\alpha\beta\mathsf{f}}{\mathsf{K}\mathsf{L}} \end{split}$$

Гессиан функции Кобба-Дугласа

$$\begin{aligned} \mathsf{Hess}_f &= \begin{pmatrix} f''_{\mathsf{KK}} & f''_{\mathsf{KL}} \\ f''_{\mathsf{LK}} & f''_{\mathsf{LL}} \end{pmatrix} = \begin{pmatrix} \frac{\alpha(\alpha-1)f}{\mathsf{K}^2} & \frac{\alpha\beta f}{\mathsf{KL}} \\ \frac{\alpha\beta f}{\mathsf{KL}} & \frac{\beta(\beta-1)f}{\mathsf{L}^2} \end{pmatrix} = \\ & \frac{f}{\mathsf{K}^2 L^2} \begin{pmatrix} \alpha(\alpha-1)L^2 & \alpha\beta\mathsf{KL} \\ \alpha\beta\mathsf{KL} & \beta(\beta-1)\mathsf{K}^2 \end{pmatrix} \end{aligned}$$

Угловые миноры функции Кобба-Дугласа

$$\Delta_1(K, L) = \frac{\alpha(\alpha - 1)f}{K^2}$$

$$\Delta_2(K, L) = \det \mathsf{Hess}_f = \frac{\alpha\beta(1 - \alpha - \beta)f^2}{K^2L^2}$$

Угловые миноры функции Кобба-Дугласа

$$\Delta_1(K, L) = \frac{\alpha(\alpha - 1)f}{K^2}$$

$$\Delta_2(K, L) = \det \mathsf{Hess}_f = \frac{\alpha\beta(1 - \alpha - \beta)f^2}{K^2L^2}$$

Случай $\alpha+\beta<1$: $\Delta_1<0$ и $\Delta_2>0$ для всех K,L>0. Следовательно, функция f строго вогнута.

Угловые миноры функции Кобба-Дугласа

$$egin{aligned} \Delta_1(\mathcal{K}, \mathcal{L}) &= rac{lpha(lpha - 1)f}{\mathcal{K}^2} \ \Delta_2(\mathcal{K}, \mathcal{L}) &= \det \mathsf{Hess}_f &= rac{lphaeta(1 - lpha - eta)f^2}{\mathcal{K}^2 \mathcal{L}^2} \end{aligned}$$

Случай $\alpha+\beta<1$: $\Delta_1<0$ и $\Delta_2>0$ для всех K,L>0. Следовательно, функция f строго вогнута.

Случай $\alpha+\beta=1$: $f_{KK}'', f_{LL}''<0$ и $\Delta_2=0$ для всех K,L>0. Следовательно, функция f вогнута.

Угловые миноры функции Кобба-Дугласа

$$egin{aligned} \Delta_1(\mathcal{K}, \mathcal{L}) &= rac{lpha(lpha - 1)f}{\mathcal{K}^2} \ \Delta_2(\mathcal{K}, \mathcal{L}) &= \det \mathsf{Hess}_f &= rac{lphaeta(1 - lpha - eta)f^2}{\mathcal{K}^2 \mathcal{L}^2} \end{aligned}$$

Случай $\alpha+\beta<1$: $\Delta_1<0$ и $\Delta_2>0$ для всех K,L>0. Следовательно, функция f строго вогнута.

Случай $\alpha+\beta=1$: $f_{KK}'',f_{LL}''<0$ и $\Delta_2=0$ для всех K,L>0. Следовательно, функция f вогнута.

Случай $\alpha+\beta>1$: $\Delta_2<0$ и гессиан не знакоопределен. Следовательно, функция f не выпукла и не вогнута.