Unsupervised learning Clustering

Abdessalam Bouchekif

abdessalam.bouchekif@epita.fr

Supervised learning

Training set: $\{(x^{(1)}, x^{(1)}), (x^{(2)}, x^{(2)}), ..., (x^{(m)}, x^{(m)})\}$

Unsupervised learning

Training set: $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$

K-Means Clustering

- Organizing data into classes such that there is
 - High intra-class similarity
 - Low extra-class similarity

 \circ k is number of class

Data input

Initialization

Assign points

Each data point is assigned to the cluster center it is closest to

Data input

Initialization

Assign points

Recompute centers (1)

The cluster centers are updated to be the mean of the assigned points

Data input

Initialization

Assign points (1)

Recompute centers (1)

Reassign points (2)

Recompute centers (2)

Reassign points (3)

Recompute centers (3)

cluster centers remained unchanged → stop

K-Means: Example

K-Means: Example

<i>A</i> 1, <i>A</i> 8}	$\mu_1 = (3, 9.5)$
A3, A4, A5, A6}	$\mu_2 = (6.5, 5.25)$
{ <i>A</i> 2, <i>A</i> 7}	$\mu_3 = (1.5, 3.5)$

$$\{A1, A4, A8\}$$
 $\mu_1 = (3.66, 9)$
 $\{A3, A5, A6\}$ $\mu_2 = (7, 4.33)$
 $\{A2, A7\}$ $\mu_3 = (1.5, 3.5)$

The assignment of points to cluster centers remained Unchanged → stop

K-Means optimization objective

- o $c^{(i)}$ index of cluster (1, 2, ..., k) to which example $x^{(i)}$ is currently assigned
- $\circ \mu_k$ cluster centroid $k (\mu_k \in \mathbb{R}^n)$

 $c^{(1)},\ldots,c^{(m)}$

 μ_1, \ldots, μ_k

 $\circ \mu_{c^{(i)}}$ cluster centroid of cluster to which example $x^{(i)}$ has been assigned

Optimization objective

Objective function
$$J(c^{(1)}, ..., c^{(m)}, \mu_1, ..., \mu_k) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

$$\min J(c^{(1)}, ..., c^{(m)}, \mu_1, ..., \mu_k)$$

What's the problems

Solution: repeat many times and take the best solution

What's the problems

Clusters of non-globular shape

Each cluster is defined by its center \implies convex shape \implies k-means can only capture relatively simple shapes

What's the problems

\circ Select ion of k

What is the right value of k?

Solution (Elbow method)

Best solution = where the graph « bends»

Hierarchical clustering

- ☐ Produces a set of nested clusters organized as a hierarchical tree
- ☐ Two types of hierarchical clustering algorithms

Agglomerative (*i. e* bottom-up)

Start with each sample as an individual cluster and merge the closest pairs of clusters until only one cluster remains.

Divisive (i. e top-down)

Start with one cluster that encompasses all our samples, and we iteratively split the cluster into smaller cluster until each cluster only contains one sample

Agglomerative

Distance between two clusters

- O How do we define distance between two sets of points?
 - ✓ Single-link distance
 - ✓ Complete-link
 - ✓ Average-link

Single-link clustering

 \circ Single-link distance between clusters C_i and is C_j the minimum distance between any object in C_i and any object in C_j

The distance is defined by the two most similar objects

$$D_{single} = \min\{d(x, y) \mid x \in C_i, y \in C_j\}$$

Single-link clustering: example

Nested clusters

Dendrogram

Complete-link clustering

O Complete-link distance between clusters C_i and C_j is the maximum distance between any object in C_i and any object in C_i

• The distance is defined by the two most dissimilar objects

$$D_{complete} = \max\{d(x,y) \mid x \in C_i, y \in C_j\}$$

Complete-link clustering: example

Nested clusters

Dendrogram

Average-link clustering

The distance between two clusters is represented by the the average distance of all pairs of data objects belonging to different clusters

$$D_{average} = \arg \{d(x, y) \mid x \in C_i, y \in C_j\}$$

Average-link clustering: example

Centroid clustering

• Centroid distance between two clusters C_i et C_j is the distance between the centroid r_i of C_i and the centroid r_i of C_j

$$D_{centroids}(C_i, C_j) = d(r_i, r_j)$$

