Q8. Identify two different assertions that would make the ontology inconsistent.

Una prima asserzione che posso fare per rendere la mia ontologia inconsistente è: dichiarare lo stesso individuo come istanza di due classi che ho dichiarato *disjoint*.

Ad esempio, posso dichiarare book1 membro sia della classe :Book sia della classe :Narrator. Questa asserzione provocherà un'inconsistenza nella mia ontologia dal momento che ho dichiarato le classi :Book e :Narrator *disjoint*.

Il secondo modo per generare un'inconsistenza nella mia ontologia è quello di violare un assioma, in particolare posso violare l'assioma in riferimento al vincolo dell'esatta cardinalità, dichiarando due individui della stessa classe come differenti (owl:differentIndividual). In OWL DB non si assume che gli individui siano diversi.

Ad esempio, posso aggiungere un'asserzione nella mia ontologia su un individuo della classe :Event (event1) e affermo che esso accade in due location che dichiaro individui differenti. In questo modo, l'assioma di esatta cardinalità per cui ogni evento può avvenire soltanto in una location viene violato.

Q9. Define the complex role inclusion axiom capturing the fact that if a narrator creates a narrative that is reported in a book that is published by a publisher, then the narrator has a contract with that publisher.

The *complex role inclusion axiom* ci permette di affermare che una proprietà è la composizione di altre proprietà. Uso le *object properties* per creare una *chain* dall'individuo i_1 all'individuo i_n , ciò implicherà che la proprietà in esame collegherà direttamente il primo individuo all'ultimo.

```
V_c = { :Narrator, :Narrative , :Book , :Publisher } V_{OP}= { :creates, :isReportedIn , :isPublishedBy , :hasContractWith }
```

SubObjectPropertyOf(ObjectPropertyChain(:creates :isReportedIn :isPublishedBy) :hasContractWith)

(creates \circ isReportedIn \circ isPublishedBy) \subseteq hasContractWith

Q10. Verify if the created ontology (including the complex role inclusion axiom defined in Q9) satisfies the global restrictions on the axioms of an OWL 2 DL ontology.

OWL2 DL ontology è caratterizzata da decidibilità e grande espressività, quest'ultima è vincolata da alcune restrizioni, le *Global restrictions*, le quali però ne permettono allo stesso tempo un controllo necessario. Di seguito, le restrizioni verificate sulla mia ontologia.

- La restrizione riguardante *owl:topDataProperty* è soddisfatta in quanto la mia ontologia non ha assiomi su *owl:topDataProperty*, non ho superclassi di questa classe ma solo sottoclassi.
- Le restrizioni riguardanti i *Datatypes* sono soddisfatte perché uso soltanto *datatypes* presi dall'OWL2 *datatype map* e non è definito nessuno data range.
- Un'altra restrizione necessaria per garantire la decidibilità di OWL2 DL riguarda i Simple roles.
 Una simple object property è una proprietà che non può comparire come conseguenza in una ObjectPropertyChain e non può essere transitiva, ciò vale anche per la sua proprietà inversa.
 Questa restrizione non è soddisfatta nella mia ontologia in quanto una composite object property è usata nella ObjectPropertyChain, infatti :hasContractWith è una disjointObjectProperty.
- La restrizione riguardante la *Property Hierarchy* è soddisfatta perché la *property chain* presente nella mia ontologia non crea un assioma ciclico.
- Le restrizioni sugli Individui anonimi sono soddisfatte in quanto non sono presenti individui anonimi nella mia ontologia ma, solo *named individuals*.

1. #Find how many events occurred in real locations, grouped by location.

2. #Find all the books with the ID of the publisher lower than 5000.

3. #Find all the events that do not have any human participants.

4. #Find the number of the narratives that are published in a book, along with the title of the book, the ISBN code of the book and the publisher of the book.

5. #Find all the distinct events that have a human participant or occur in a real location.

}