Course 157

Note on solutions to Example sheet 1

- 1) Absolute error = $\left|A \tilde{A}\right|$ a) 0.012 b) 0.0002 c) 2×10^9 Relative error = $\left|A \tilde{A}\right| / \left|A\right|$ a) ≈ 0.0012 b) ≈ 0.0423 c) ≈ 0.003
- $\begin{array}{llll} 2) & a+b & := & 0.469 \times 10^{-2} & |RE| \approx 0.15 \times 10^{-5} \\ & a-b & := & 0.473 \times 10^{-2} & |RE| \approx 0.15 \times 10^{-5} \\ & a\times b & := & -0.871 \times 10^{-7} & |RE| \approx 0.35 \times 10^{-10} \\ & a/b & := & -0.255 \times 10^{3} & |RE| \approx -0.4054 \end{array}$

note the symbol := is used to denote *computed as*.

- 3) Analysis of the truncation error as in the notes for $e^{0.1}$ does not work here. Why? To get the truncation error compare the computed result with the exact answer using MATLAB.
- 4) For very small h there is a cancellation between $\{\sin(x+h) \sin(x)\}$ which makes the estimate of derivative poor. For even smaller h, the computed value x+h is stored as x and the estimate of the derivative is zero.
- 5) a = 2 $x_0 = \frac{a}{2} = 1$ $x_1 = \frac{1}{2} \left(1 + \frac{2}{1} \right) = \frac{3}{2} = 1.5$ $x_2 = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} \right) = \frac{17}{12} = 1.416666666667$ $x_3 = \frac{577}{408} = 1.414215686275$ $x_4 = \frac{665857}{470832} = 1.414213562375$ error = 0.1 × 10⁻¹¹

Note: the error at step i+1 approximately satisfies $\varepsilon_{i+1} = O\left(\varepsilon_i^2\right)$

- 6) 111 (since $7 = 4 + 2 + 1 = 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$) 11011 0.001 (since $0.125 = 2^{-3} = 0 \times 2^0 + 0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$) 1110.11 0.01001100110011...
- 7) (0.111000, +11) (Note: the exponent is also in binary form i.e $3 \rightarrow 11$) (0.110110, +101) (0.100000, -10) (0.111011, +100) (0.100110, -1)