Course 1: NEURAL NETWORKS AND DEEP LEARNING

Supervised Learning

Input(x)	Output (y)	Application	
Home features	Price	Real Estate Stude	
Ad, user info	Click on ad? (0/1)	Online Advertising	
Image	Object (1,,1000)	Photo tagging 3 CNN	
Audio	Text transcript	Speech recognition } KNN	
English	Chinese	Machine translation	
Image, Radar info	Position of other cars	Autonomous driving Custon/	

Supervised Learning

Structured Data

Size	#bedrooms	 Price (1000\$s)
2104	3)	400
1600	3	330
2400	3	369
1	1	1
3000	4	540

V	V		V
User Age	Ad Id	***	Click
41)	93242		1
80	93287		0
18	87312		1
	E		1
27	71244		1

Unstructured Data

Audio

Image

Four scores and seven years ago...

Text

Binary Classification

Notation

$$(x,y)$$
 $\times \in \mathbb{R}^{n_x}$, $y \in \{0,1\}$
 m training examples : $\{(x^{(i)},y^{(i)}),(x^{(i)},y^{(i)}),...,(x^{(m)},y^{(m)})\}$
 $M = M$ train

 M test = $\#$ test examples.

$$X = \begin{bmatrix} \begin{pmatrix} 1 & 1 & 1 \\ X^{(1)} & X^{(2)} & \dots & X^{(m)} \end{bmatrix}$$

$$X = \begin{bmatrix} X^{(1)} & X^{(2)} & \dots & X^{(m)} \end{bmatrix}$$

$$X = \begin{bmatrix} X^{(1)} & X^{(2)} & \dots & X^{(m)} \end{bmatrix}$$

$$X \in \mathbb{R}^{n \times m}$$

Logistic Regression

Given
$$\times$$
, want $\hat{y} = \frac{P(y=1|x)}{0 \le \hat{y} \le 1}$

Parartes: WERX, BER.

Output
$$\hat{y} = 5(\underline{w}^T \times + \underline{b})$$

$$G(z) = \frac{1}{1+e^{-z}}$$
If $z \mid \text{large } G(z) \approx \frac{1}{1+0} = 1$
If $z \mid \text{large regarts ranke}$

$$G(z) = \frac{1}{1+e^{-z}} \approx \frac{1}{1+\text{Bignum}} \approx 0$$
Andrew 1

Logistic Regression cost function

Given
$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$
, want $\hat{y}^{(i)} \approx y^{(i)}$.

Loss (error) function: $\int_{\mathcal{C}} (\hat{y}, y) = \frac{1}{2} (\hat{y} - y)^2$

The second implementation of $\int_{\mathcal{C}} (\hat{y}, y) = -\log \hat{y} \in \mathcal{C}$ want $\int_{\mathcal{C}} (\hat{y}, y) = -\log \hat{y} \in \mathcal{C}$ want $\int_{\mathcal{C}} (\hat{y}, y) = -\log \hat{y} \in \mathcal{C}$ want $\int_{\mathcal{C}} (\hat{y}, y) = -\log \hat{y} \in \mathcal{C}$ want $\int_{\mathcal{C}} (\hat{y}, y) = -\log \hat{y} \in \mathcal{C}$ want $\int_{\mathcal{C}} (\hat{y}, y) = -\log \hat{y} \in \mathcal{C}$ want $\int_{\mathcal{C}} (\hat{y}, y) = -\log \hat{y} \in \mathcal{C}$ want $\int_{\mathcal{C}} (\hat{y}, y) = -\log (1-\hat{y}) \in \mathcal{C}$ want $\int_{\mathcal{C}} (\hat{y}, y) = -\log (1-\hat{y}) \in \mathcal{C}$ want $\int_{\mathcal{C}} (\hat{y}, y) = -\log (1-\hat{y}) \in \mathcal{C}$ want $\int_{\mathcal{C}} (\hat{y}, y) = -\log (1-\hat{y}) \in \mathcal{C}$ want $\int_{\mathcal{C}} (\hat{y}, y) = -\log (1-\hat{y}) \in \mathcal{C}$ want $\int_{\mathcal{C}} (\hat{y}, y) = -\log (1-\hat{y}) \in \mathcal{C}$ want $\int_{\mathcal{C}} (\hat{y}, y) = -\log (1-\hat{y}) \in \mathcal{C}$

Intuition about derivatives

Computing derivatives

VECTORIZATION:

Avoid for loops and just use dot function -- this will allow better parallel use of MPU power.

What is a Neural Network?

Relu is really good - no vanishing gradient.

Pros and cons of activation functions

if only linear activations then its no better to use hidden layers, all linear and last sigmoid is just logistic regression. To learn interesting functions you need non linearity.

Exception: Use linear output neuron for regression problems but inner hidden layers are all sigmoid or tanh or relu

Activation function

Given x:

$$\Rightarrow \begin{bmatrix} z^{[1]} = W^{[1]}x + b^{[1]} \\ a^{[1]} = g^{[1]}(z^{[1]}) \\ \Rightarrow z^{[2]} = W^{[2]}a^{[1]} + b^{[2]} \\ \Rightarrow a^{[2]} = g^{[2]}(z^{[2]}) \end{aligned}$$

$$\alpha^{(1)} = 2^{(1)} = \omega^{(1)} \times + b^{(1)}$$

$$\alpha^{(1)} = 2^{(1)} = \omega^{(1)} \times + b^{(1)}$$

$$\alpha^{(1)} = \omega^{(1)} \left(\omega^{(1)} \times + b^{(1)} \right) + b^{(1)}$$

$$= \left(\omega^{(1)} \times + b^{(1)} \right) \times + \left(\omega^{(1)} \times b^{(1)} \right)^{(1)}$$

$$= \omega^{(1)} \times + b^{(1)}$$

What happens if you initialize weights to zero?

Very good overview of dimensions of W and b.

Circuit theory and deep learning

Informally: There are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

Forward and backward functions

Forward and backward functions

What are hyperparameters?

Parameters: $\underline{W^{[1]}}$, $b^{[1]}$, $W^{[2]}$, $b^{[2]}$, $W^{[3]}$, $b^{[3]}$...

Hyperparameters: hearning state of
#titerations

#hilden layur L

hilden layur L

thoice of autivortion function

don't. Momentar, mini-bath cize, regularjohns...

Forward and backward propagation

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

$$\vdots$$

$$A^{[L]} = g^{[L]}(Z^{[L]}) = \hat{Y}$$

$$dZ^{[L]} = A^{[L]} - Y$$

$$dW^{[L]} = \frac{1}{m} dZ^{[L]} A^{[L]^T}$$

$$db^{[L]} = \frac{1}{m} np. \operatorname{sum}(dZ^{[L]}, axis = 1, keepdims = True)$$

$$dZ^{[L-1]} = dW^{[L]^T} dZ^{[L]} g'^{[L]} (Z^{[L-1]})$$

$$\vdots$$

$$dZ^{[1]} = dW^{[L]^T} dZ^{[2]} g'^{[1]} (Z^{[1]})$$

$$dW^{[1]} = \frac{1}{m} dZ^{[1]} A^{[1]^T}$$

$$db^{[1]} = \frac{1}{m} np. \operatorname{sum}(dZ^{[1]}, axis = 1, keepdims = True)$$