

Calcolo differenziale — Scheda di esercizi n. 5 20 Novembre 2023 — Compito n. 00009

Istruzioni: le prime due caselle $(\mathbf{V} \ / \ \mathbf{F})$ permettono di selezionare la risposta vero/falso. La casella " \mathbf{C} " serve a correggere eventuali errori invertendo la risposta data.

Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes o \boxdot).

Nome:					
Cognome:					
Matricolae					

	1A	1B	1C	1D	2A	2B	2C	2D	3A	3B	3C	3D	4A	4 B	4C	4D
\mathbf{v}																
\mathbf{F}																
\mathbf{C}																

- 1) Dire se le seguenti affermazioni sono vere o false.
- 1A)

$$\lim_{x \to +\infty} \frac{\sin(8x)}{6x} = \frac{4}{3}.$$

1B)

$$\lim_{x \to -\infty} \frac{x^2 + 8x}{x + 6} = -\infty.$$

1C)

$$\lim_{x \to 0^+} \frac{\tan(7x)}{3x} \neq \lim_{x \to 0^-} \frac{3x}{\log(1+7x)}$$

1D)

$$\lim_{x \to 0} x^8 \sin\left(\frac{4}{x}\right) \text{ non esiste.}$$

- 2) Dire se le seguenti affermazioni sono vere o false.
- 2A)

$$\lim_{x \to +\infty} \left[\sqrt{9x + 2\sqrt{x}} - 3\sqrt{x} \right] = \frac{1}{3}.$$

2B)

$$\lim_{x \to -\infty} \left(1 + \frac{9}{x} \right)^x = e^{-9}.$$

2C)

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos(9x)}{x - \frac{\pi}{2}} = 9.$$

2D)

$$\lim_{x \to 0^+} \frac{\mathrm{e}^{-2/x}}{x^7} = 0.$$

3) Sia

$$f(x) = \begin{cases} \frac{\log(1+8x^2)}{x} & \text{se } x > 0, \\ \cos(6x) & \text{se } x \le 0. \end{cases}$$

- **3A)** Il dominio della funzione f(x) non è tutto \mathbb{R} .
- **3B)** La funzione f(x) è continua in 3.
- **3C)** La funzione f(x) non è continua in -8.
- **3D)** La funzione f(x) non è continua in 0.
- **4)** Sia

$$f(x) = \begin{cases} 7x + 6 & \text{se } x \ge 0, \\ \frac{\sin(6x)}{x} & \text{se } x < 0. \end{cases}$$

- **4A)** La funzione f(x) non è continua in 2.
- **4B)** La funzione f(x) è continua in -7.
- **4C)** La funzione f(x) è continua in 0.
- **4D)** La funzione f(x) ha massimo e minimo su [-7,2].

Docente

- ☐ Garroni [A, F]
 - Orsina [Ġ, Z]

$$f(x) = x^6 e^x - 4.$$

$$\lim_{x \to +\infty} f(x)$$
, $\lim_{x \to -\infty} f(x)$

- $\lim_{x\to +\infty} f(x)\,,\qquad \lim_{x\to -\infty} f(x)\,.$ b) Dimostrare che esiste $0< x_0< 4$ tale che $f(x_0)=0$. c) Dimostrare che f(-6)>0. d) Dimostrare che esiste $x_1<-6$ tale che $f(x_1)=0$.

Cogno	me Nome	Matricola	Compito 00009
-------	---------	-----------	---------------

$$f(x) = e^{8x} - (x^2 - 11x + 28).$$

a) Calcolare

$$\lim_{x \to +\infty} f(x), \qquad \lim_{x \to -\infty} f(x).$$

Soluzioni del compito 00009

1) Dire se le seguenti affermazioni sono vere o false.

1A)

$$\lim_{x \to +\infty} \frac{\sin(8x)}{6x} = \frac{4}{3}.$$

Falso: Si tratta del prodotto di una funzione limitata $(\sin(8x))$ e di una infinitesima $(\frac{1}{6x})$. Il limite vale, pertanto, zero.

1B)

$$\lim_{x\to -\infty} \frac{x^2+8x}{x+6} = -\infty.$$

Vero: Si ha

$$\lim_{x \to -\infty} \left[x^2 + 8x \right] = +\infty \,,$$

perché è un polinomio di secondo grado (pari), e

$$\lim_{x \to -\infty} [x+6] = -\infty.$$

Dato che il grado del numeratore è maggiore, e che la frazione è negativa (per x sufficientemente negativo) si ha

$$\lim_{x \to -\infty} \frac{x^2 + 8x}{x + 6} = -\infty.$$

 $\lim_{x\to -\infty}\frac{x^2+8x}{x+6}=-\infty\,.$ Alternativamente, si poteva mettere in evidenza x^2 al numeratore e x al denominatore, e semplificare:

$$\frac{x^2 + 8x}{x + 6} = \frac{x^2}{x} \frac{1 + \frac{8}{x}}{1 + \frac{6}{x}} = x \frac{1 + \frac{8}{x}}{1 + \frac{6}{x}},$$

da cui segue che

$$\lim_{x \to -\infty} \frac{x^2 + 8x}{x + 6} = \lim_{x \to -\infty} x \frac{1 + \frac{8}{x}}{1 + \frac{6}{x}} = (-\infty) \cdot \frac{1 + 0}{1 + 0} = -\infty.$$

1C)

$$\lim_{x \to 0^+} \frac{\tan(7x)}{3x} \neq \lim_{x \to 0^-} \frac{3x}{\log(1+7x)}$$

Vero: Dato che $\tan(7x) \approx 7x$ e che $\log(1+7x) \approx 7x$ per x tendente a zero, si ha

$$\lim_{x \to 0^+} \frac{\tan(7\,x)}{3\,x} = \lim_{x \to 0^+} \frac{7\,x}{3\,x} = \frac{7}{3}\,,$$

e

$$\lim_{x \to 0^{-}} \frac{3x}{\log(1+7x)} = \lim_{x \to 0^{-}} \frac{3x}{7x} = \frac{3}{7},$$

e quindi i due limiti sono diversi

1D)

$$\lim_{r\to 0} x^8 \sin\left(\frac{4}{r}\right)$$
 non esiste.

Falso: Si tratta del prodotto tra una funzione limitata ed una infinitesima. Il limite, pertanto, vale

2A)

$$\lim_{x \to +\infty} \left[\sqrt{9x + 2\sqrt{x}} - 3\sqrt{x} \right] = \frac{1}{3}.$$

Vero: Razionalizzando "al contrario" si ha

$$\sqrt{9x + 2\sqrt{x} - 3\sqrt{x}} = \frac{\left[\sqrt{9x + 2\sqrt{x} - 3\sqrt{x}}\right]\left[\sqrt{9x + 2\sqrt{x} + 3\sqrt{x}}\right]}{\sqrt{9x + 2\sqrt{x} + 3\sqrt{x}}} \\
= \frac{9x + 2\sqrt{x} - 9x}{\sqrt{9x + 2\sqrt{x} + 3\sqrt{x}}} = \frac{2\sqrt{x}}{\sqrt{9x + 2\sqrt{x} + 3\sqrt{x}}}.$$

Pertanto, mettendo in evidenza $3\sqrt{x}$ al denominatore, si ha

$$\sqrt{9x + 2\sqrt{x}} - 3\sqrt{x} = \frac{2\sqrt{x}}{3\sqrt{x}\left[\sqrt{1 + \frac{2/9}{\sqrt{x}}} + 1\right]} = \frac{2}{3}\frac{1}{\sqrt{1 + \frac{2/9}{\sqrt{x}}} + 1}.$$

Dato che $\frac{2/9}{\sqrt{x}}$ tende a zero quando x tende a più infinito, si ha

$$\lim_{x \to +\infty} \left[\sqrt{9\,x + 2\,\sqrt{x}} - 3\,\sqrt{x} \right] = \lim_{x \to +\infty} \, \frac{2}{3} \, \frac{1}{\sqrt{1 + \frac{2/9}{\sqrt{x}}} + 1} = \frac{2}{3} \, \frac{1}{1+1} = \frac{1}{3} \, .$$

2B)

$$\lim_{x \to -\infty} \left(1 + \frac{9}{x} \right)^x = e^{-9}.$$

Falso: Si ha, con il cambio di variabile y = -x,

$$\lim_{x \to -\infty} \left(1 + \frac{9}{x} \right)^x = \lim_{y \to +\infty} \left(1 + \frac{9}{-y} \right)^{-y} = \lim_{y \to +\infty} \frac{1}{\left(1 - \frac{9}{y} \right)^y} = \frac{1}{e^{-9}} = e^9 \neq e^{-9}.$$

2C)

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos(9x)}{x - \frac{\pi}{2}} = 9.$$

Falso: Si ha, con il cambio di variabile $y = x - \frac{\pi}{2}$,

$$\lim_{x \to \frac{\pi}{2}} \, \frac{\cos(9 \, x)}{x - \frac{\pi}{2}} = \lim_{y \to 0} \, \frac{\cos(9 \, y + 9 \, \pi/2)}{y} \, .$$

Ricordando le formule di addizione degli archi, si ha

$$\cos(9y + 9\pi/2) = \cos(9y)\cos(9\pi/2) - \sin(9y)\sin(9\pi/2) = -\sin(9y).$$

Pertanto,

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos(9 \, x)}{x - \frac{\pi}{2}} = \lim_{y \to 0} - \frac{\sin(9 \, y)}{y} = -9 \neq 9 \, .$$

2D)

$$\lim_{x \to 0^+} \frac{e^{-2/x}}{x^7} = 0.$$

Vero: Si ha, con il cambio di variabile $y = \frac{1}{x}$,

$$\lim_{x \to 0^+} \frac{e^{-2/x}}{x^7} = \lim_{y \to +\infty} y^7 e^{-2y} = \lim_{y \to +\infty} \frac{y^7}{e^{2y}} = 0,$$

dato che $e^{2y} \bigcirc y^2$.

$$f(x) = \begin{cases} \frac{\log(1+8x^2)}{x} & \text{se } x > 0, \\ \cos(6x) & \text{se } x \le 0. \end{cases}$$

3A) Il dominio della funzione f(x) non è tutto \mathbb{R} .

Falso: Dato che $1 + 8x^2 > 1$ per ogni x > 0, l'argomento della funzione logaritmo è sempre positivo (e quindi il logaritmo può essere calcolato); inoltre, se x > 0 si ha $x \neq 0$, e quindi è possibile dividere per x. Se $x \leq 0$, invece, $\cos(6x)$ è definita.

3B) La funzione f(x) è continua in 3.

Vero: In un intorno di 3 > 0 si ha $f(x) = \frac{\log(1+8x^2)}{x}$, che è una funzione continua essendo il rapporto di funzioni continua (con il denominatore diverso da zero).

3C) La funzione f(x) non è continua in -8.

Falso: In un intorno di -8 < 0 si ha $f(x) = \cos(6x)$, che è una funzione continua.

3D) La funzione f(x) non è continua in 0.

Vero: Si ha, ricordando che $\log(1+8x^2)\approx 8x^2$ quando x tende a zero,

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\log(1 + 8x^2)}{x} = \lim_{x \to 0^+} \frac{8x^2}{x} = \lim_{x \to 0^+} 8x = 0,$$

mentre

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \cos(6x) = 1.$$

Dato che i due limiti sono diversi, non esiste il limite di f(x) per x tendente a zero (e quindi f(x) non è continua in 0.

$$f(x) = \begin{cases} 7x + 6 & \text{se } x \ge 0, \\ \frac{\sin(6x)}{x} & \text{se } x < 0. \end{cases}$$

4A) La funzione f(x) non è continua in 2.

Falso: In un intorno di 2 > 0 si ha f(x) = 7x + 6, che è una funzione continua essendo un polinomio di primo grado.

4B) La funzione f(x) è continua in -7.

Vero: In un intorno di -7 < 0 si ha $f(x) = \frac{\sin(6x)}{x}$, che è una funzione continua essendo il rapporto di funzioni continua (con il denominatore diverso da zero).

4C) La funzione f(x) è continua in 0.

Vero: Si ha, ricordando che $\sin(6x) \approx 6x$ quando x tende a zero,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\sin(6x)}{x} = \lim_{x \to 0^{-}} \frac{6x}{x} = 6,$$

e

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} [7x + 6] = 6 = f(0).$$

Dato che i due limiti sono uguali, esiste il limite di f(x) per x tendente a zero, e vale 6. Dato che tale limite è uguale a f(0), la funzione è continua in 0.

4D) La funzione f(x) ha massimo e minimo su [-7,2].

Vero: La funzione f(x) è continua su [-7,0) (come rapporto di funzioni continue con il denominatore diverso da zero), è continua in (0,2] (essendo un polinomio di primo grado), ed è continua in 0 (per l'esercizio **4C**). Pertanto è continua sull'intervallo chiuso e limitato [-7,2] e quindi ha massimo e minimo per il teorema di Weierstrass.

$$f(x) = x^6 e^x - 4.$$

a) Calcolare

$$\lim_{x \to +\infty} f(x), \qquad \lim_{x \to -\infty} f(x).$$

- **b)** Dimostrare che esiste $0 < x_0 < 4$ tale che $f(x_0) = 0$
- c) Dimostrare che f(-6) > 0.
- d) Dimostrare che esiste $x_1 < -6$ tale che $f(x_1) = 0$.

Soluzione:

a) Si ha

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} [x^6 e^x - 4] = (+\infty) \cdot (+\infty) - 4 = +\infty.$$

Inoltre

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} [x^6 e^x - 4] = [\lim_{x \to -\infty} x^6 e^x] - 4,$$

e quindi si tratta di calcolare

$$\lim_{x \to -\infty} x^6 e^x.$$

Ponendo y = -x si ha

$$\lim_{x \to -\infty} x^6 e^x = \lim_{y \to +\infty} (-y)^6 e^{-y} = \lim_{y \to +\infty} \frac{y^6}{e^y} = 0,$$

dato che $e^y \otimes y^6$. Pertanto,

$$\lim_{x \to -\infty} f(x) = -4.$$

b) Si ha f(0) = -4 > 0 e

$$f(4) = 4^6 e^4 - 4 > 4^6 - 4 > 4 - 4 = 0$$
.

Dato che la funzione f(x) è continua su \mathbb{R} , applicando il teorema di esistenza degli zeri all'intervallo [0,4], si ha che esiste x_0 in (0,4) tale che $f(x_0)=0$.

c) Si ha

$$f(-6) = (-6)^6 e^{-6} - 4 = 6^6 e^6 - 4 = \left(\frac{6}{6}\right)^6 - 4$$
.

Ricordando che e < 3 si ha

$$\left(\frac{6}{e}\right)^6 > \left(\frac{6}{3}\right)^6 = 2^6 > 4$$
,

e quindi f(-6) > 0.

d) Già sappiamo, dall'esercizio precedente, che f(-6) > 0. Dall'esercizio a) sappiamo che f(x) tende a -4 quando x tende a meno infinito. Quindi, per il teorema della permanenza del segno, esiste $x_- < 0$ tale che $f(x) \le -2 < 0$ per ogni $x \le x_-$. Scegliendo $x_- < -6$, abbiamo così costruito l'intervallo $[x_-, -6]$ sul quale la funzione è continua ed è tale che $f(x_-) < 0 < f(-6)$. Per il teorema di esistenza degli zeri, esiste x_1 in $[x_-, -6]$ tale che $f(x_1) = 0$.

$$f(x) = e^{8x} - (x^2 - 11x + 28).$$

a) Calcolare

$$\lim_{x \to +\infty} f(x), \qquad \lim_{x \to -\infty} f(x).$$

- **b)** Dimostrare che f(x) ha massimo e minimo su [4,7].
- c) Dimostrare che esiste x_0 in \mathbb{R} tale che $f(x_0) = 0$.
- d) Dimostrare che per ogni t in \mathbb{R} esiste x_t in \mathbb{R} tale che $f(x_t) = t$.

Soluzione:

a) Si ha, ricordando che e^{8x} (x^k per ogni k > 0,

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[e^{8x} - (x^2 - 11x + 28) \right] = +\infty.$$

Ricordando poi che e^{8x} tende a zero per x tendente a meno infinito, mentre $x^2 - 11x + 28$ tende a più infinito, si ha

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left[e^{8x} - (x^2 - 11x + 28) \right] = 0 - (+\infty) = -\infty.$$

- b) La funzione f(x) è continua su \mathbb{R} . Pertanto lo è sull'intervallo chiuso e limitato [4, 7]. Per il teorema di Weierstrass, esistono massimo e minimo di f(x) su tale intervallo.
- c) Dai risultati del punto a) sappiamo che f(x) diverge positivamente a più infinito, e quindi esiste $x_+ > 0$ tale che $f(x_+) > 0$. Dato che f(x) diverge negativamente a meno infinito, esiste $x_- < 0$ tale che $f(x_-) < 0$. Ma allora la funzione continua f(x) soddisfa le ipotesi del teorema di esistenza degli zeri sull'intervallo chiuso e limitato $[x_-, x_+]$, e quindi esiste x_0 in tale intervallo per il quale si ha $f(x_0) = 0$.
- d) Consideriamo la funzione g(x) = f(x) t; la funzione g(x) è continua (come differenza tra una funzione continua ed una costante), ed è tale che

$$\lim_{x \to +\infty} g(x) = +\infty, \qquad \lim_{x \to -\infty} g(x) = -\infty,$$

dato che la sottrazione di t non cambia i limiti. In poche parole, la funzione g(x) ha le stesse proprietà della funzione f(x). Ripetendo lo stesso ragionamento del punto \mathbf{c}), si dimostra che esiste x_t in \mathbb{R} tale che $g(x_t) = 0$. Ma allora

$$0 = g(x_t) = f(x_t) - t \qquad \Longrightarrow \qquad f(x_t) = t,$$

come volevasi dimostrare.