Bayes Filter Example

Joey Wilson, Maani Ghaffari January 26, 2024

Overview

- 1. Review Bayes Filter
- 2. Example notebook

Bayes Filter

Bayes' Rule

- Derive from conditional probability
- Equation to update prior distribution given data

$$p(x,y) = p(x|y)p(y) = P(y|x)p(x)$$

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)} = \frac{p(y|x)p(x)}{\sum_{x \in \mathcal{X}} p(y|x)p(x)}$$

$$p(\mathsf{hypothesis}|\mathsf{data}) = \frac{p(\mathsf{data}|\mathsf{hypothesis})p(\mathsf{hypothesis})}{p(\mathsf{data})}$$

$$Posterior = \frac{Likelihood \times Prior}{Evidence (Marginal Likelihood)}$$

Framework

- Given:
 - ▶ Stream of observations $z_{1:t}$ and action data $u_{1:t}$
 - Sensor/measurement model $p(z_t|x_t)$
 - ightharpoonup Action/motion/transition model $p(x_t|x_{t-1},u_t)$
- Wanted:
 - \blacktriangleright The state X_t of dynamical system
 - ▶ The posterior of state is called belief $bel(x_t) = p(x_t|z_{1:t}, u_{1:t})$

Markov Assumption

The Markov property states that "the future is independent of the past if the present is known." A stochastic process that has this property is called a Markov process.

Assumption (Markov Assumption)

 z_n is independent of z_1, \ldots, z_{n-1} if we know x.

$$p(x|z_1, \dots, z_n) = \frac{p(z_n|x)p(x|z_1, \dots, z_{n-1})}{p(z_n|z_1, \dots, z_{n-1})}$$
$$= \eta_n \ p(z_n|x)p(x|z_1, \dots, z_{n-1}) = \eta_{1:n} \ \prod_{i=1}^n p(z_i|x)p(x)$$

where $\eta_{1:n} := \eta_1 \eta_2 \cdots \eta_n$.

Algorithm

Algorithm Bayes-filter

```
Require: Belief bel(x_{t-1}) = p(x_{t-1}|z_{1:t-1}, u_{1:t-1}), action u_t, measurement z_t;
```

- 1: for all state variables do
- 2: $\overline{bel}(x_t) = \int p(x_t|x_{t-1},u_t)bel(x_{t-1})\mathrm{d}x_{t-1}$ // Predict using action/control input u_t
- 3: $bel(x_t) = \eta p(z_t|x_t)\overline{bel}(x_t)$ // Update using perceptual data z_t
- 4: return $bel(x_t)$

Example Problem

The Problem

- Consider a robot navigating a 1-D world
- The world is discretized, with twenty cells
 - O In a circle, so the robot doesn't fall off the Earth!
- The robot can move one cell <u>forward</u>, or stay at the current location

Motion Model

- Let k represent the time step, u the motion, and x the state
- If the robot moves forward $(u_{k-1} = 1)$ then:

$$p(x_k|x_{k-1}, u_{k-1}) = \begin{cases} 1, & \text{if, } x_k = x_{k-1} + 1, \\ 0, & \text{otherwise} \end{cases}$$

If the robot stays in place, then:

$$p(x_k|x_{k-1}, u_{k-1}) = \begin{cases} 1, & \text{if, } x_k = x_{k-1}, \\ 0, & \text{otherwise} \end{cases}$$

Motion Model Code

```
[2] # Motion model
    # Motion model changes the belief based on action u
    def motion_model(xi, xj, u):
        if u == 1: # move forward
            dx = xi - xj
            if dx == 1 or dx == -19:
                p = 1
            else:
                p = 0
        elif u == 0: # stay
            dx = xi - xj
            if dx == 0:
                p = 1
            else:
                p = 0
        # print(p)
        # else:
           assert (u == 1 or u == 0), 'The action is not defined'
        return p
```

Measurement Model

- The robot has a sensor which can help with localization
- However, the sensor only has a strong reading (z = 1) at positions 4, 9, and 13 and is noisy

$$p(z_k = 1 | x_k) = \begin{cases} 0.8, & \text{if, } x_k = 4, 9, or 13, \\ 0.05, & \text{otherwise.} \end{cases}$$

The probability of no reading can be easily calculated

$$p(z_k = 0|x_k) = \begin{cases} 0.2, & \text{if, } x_k = 4, 9, or 13, \\ 0.95, & \text{otherwise.} \end{cases}$$

Update

Use measurement model to update the beliefs of each state

$$bel(x_t) = \eta p(z_t|x_t)\overline{bel}(x_t)$$
 // Update using perceptual data z_t

Calculate the marginal likelihood for normalization

$$\eta = \frac{1}{\sum_{x_t} p(z_t | x_t) \overline{bel}(x_t)}$$

Implementation

- Loop over each possible state (since it is discrete)
- Calculate the likelihood using measurement model for each state
- Calculate un-normalized belief
- Normalize beliefs

```
eta = 0 # normalization constant
for i in range(len(X)):
    likelihood = measurement_model(X[i], likelihood_map, z=1) # get measurement likelihood
    bel[:, i] = likelihood * bel_predicted[:, i] # unnormalized Bayes update
    eta = eta + bel[:, i]
bel = bel / eta # normalize belief
```

How It Works

Algorithm Review

Algorithm Bayes-filter

```
Require: Belief bel(x_{t-1}) = p(x_{t-1}|z_{1:t-1}, u_{1:t-1}), action u_t, measurement z_t;
```

- 1: for all state variables do
- 2: $\overline{bel}(x_t) = \int p(x_t|x_{t-1},u_t)bel(x_{t-1})\mathrm{d}x_{t-1}$ // Predict using action/control input u_t
- 3: $bel(x_t) = \eta p(z_t|x_t)\overline{bel}(x_t)$ // Update using perceptual data z_t
- 4: return $bel(x_t)$

First Step

Initialize state to uniform prior

 Suppose we detect a positive measurement and move forward. How will our posterior change?

Second Step

- More likely to be at locations 4, 9, or 13 before motion
- After motion, more likely locations 5, 10, 14

Next, suppose we detect no measurement and move forward.

Third Step

Why do locations 5, 10, 14 have low probability?

Next, we move a few more steps.

Fifth Step

Negative sensor reading, which is unlikely at positions 4, 9, and 13

Sixth Step

Positive sensor reading, which is likely at positions 4, 9, and 13

Demo