Statistical Power

Maarten Voors, Jake Bowers

9 August 2023

What is power?

Comparative statics

Analytical calculations of power

Simulation-based power calculation

Power with covariate adjustment

Power for cluster randomization

What is power?

What is power?

- ▶ We want to separate signal from noise.
- Power = probability of rejecting null hypothesis, given true effect $\neq 0$.
- ► In other words, it is the ability to detect an effect given that it exists.
- Formally: (1 Type II) error rate.
- ▶ Thus, power \in (0, 1).
- Standard thresholds: 0.8 or 0.9.

Starting point for power analysis

- Power analysis is something we do before we run a study.
 - Helps you figure out the sample you need to detect a given effect size.
 - Or helps you figure out a minimal detectable difference given a set sample size.
 - May help you decide whether to run a study.
- Goal: To discover whether our planned design has enough power to detect effects if they exist
- It is hard to learn from an under-powered null finding.
 - Was there an effect, but we were unable to detect it? or was there no effect? We can't say.

Power

➤ Say there truly is a treatment effect and you run your experiment many times. How often will you get a statistically significant result?

Power

- Say there truly is a treatment effect and you run your experiment many times. How often will you get a statistically significant result?
- Some guesswork to answer this question (main inputs to power analysis).
 - How big is your treatment effect?
 - How many units are treated, measured?
 - ▶ How much noise is there in the measurement of your outcome?

Power analysis

With power analysis, you can see how sensitive the probability of getting significant results is to changes in your assumptions.

- ▶ Many disciplines have settled on a target power value of 0.80.
- Reasons to move to 0.90?
- ▶ Researchers will tweak their designs and assumptions until they can be confident that their experiments will return statistically significant results 80% of the time.
- Requires lots of educated guesses, but its often very sobering

Comparative statics

Power is increasing in N I

```
## use the overall SD or a standardized noise measure wrapped into effect
## ie Cohen's d: d = {m_{1} - m_{2}} / {/sigma}
some_ns <- seq(10, 1000, by = 10)
pow_by_n <- sapply(some_ns, function(then) {
   power.t.test(n = then, delta = 0.25, sd = 1, sig.level = 0.05)$power
   # pwr.t.test(n = then, d = 0.25, sig.level = 0.05)$power
})
plot(some_ns, pow_by_n,
   xlab = "Sample Size",
   ylab = "Power"
)
abline(h = .8)</pre>
```

Power is increasing in N II

Strategoes to increase sample

- Relates to
 - Budget
 - Population
 - Spillovers
 - Clusters
- Add more t vs more N

Power increases with treatment effect size

Strategoes to increase treatment effect

- What minimal effects would you want to be able to show with your study?
 - What effect is realistic?
 - ▶ In collaborative work: what effect is desirable?
 - Would this effect-size be "satisfactory"? (cost effectiveness, other studies, rules of thumb)
- Boost dosage / avoid very weak treatments
 - One or multiple arms?
 - Effect of treatment on what?
 - ► Avoid outcomes close to floor and ceiling
 - ▶ When to capture outcome?

Power decreases with noise in outcome

Noise (sigma)

- Reduce noise. How?
 - Measurement, time interval
 - Blocking. Conduct experiments among subjects that are more similar
 - Collect baseline covariates
 - Collect multiple measures of outcomes (t)

egap

Approaches to power calculation

- Analytical calculations of power
- Simulation

Power calculation tools

- Interactive
 - ► EGAP Power Calculator
 - see Exersize
 - rpsychologist
- R Packages
 - pwr
 - ► DeclareDesign, see also https://declaredesign.org/

egap

Analytical calculations of power

Analytical calculations of power

► Formula:

Power =
$$\Phi\left(\frac{|\tau|\sqrt{N}}{2\sigma} - \Phi^{-1}(1 - \frac{\alpha}{2})\right)$$

- Components:
 - $ightharpoonup \phi$: standard normal CDF is monotonically increasing
 - ightharpoonup au: the effect size
 - ► N: the sample size
 - \triangleright σ : the standard deviation of the outcome
 - $ightharpoonup \alpha$: the significance level (typically 0.05)

Example: Analytical calculations of power

```
# Power for a study with 80 observations and effect
# size of 0.25, and SD of 0.5
library(pwr)
power.t.test(
  n = 40, delta = 0.25, sd = 0.5,
  sig.level = 0.05, power = NULL
)
```

Two-sample t test power calculation

```
n = 40
delta = 0.25
    sd = 0.5
sig.level = 0.05
    power = 0.5981
alternative = two.sided
```

NOTE: n is number in *each* group

Example: Analytical calculations of power

```
# Power for a study with 80 observations and effect
# size of 0.25
power.t.test(
  n = 40, delta = NULL, sd = 0.5,
  sig.level = 0.05, power = 0.8
)
```

```
Two-sample t test power calculation
```

```
delta = 0.3171
    sd = 0.5
sig.level = 0.05
    power = 0.8
alternative = two.sided
```

n = 40

NOTE: n is number in *each* group

Example: Analytical calculations of power

```
# Power for a study with 80 observations and effect
# size of 0.25
power.t.test(
  n = NULL, delta = 0.25, sd = 0.5,
  sig.level = 0.05, power = 0.8
)
```

Two-sample t test power calculation

```
delta = 0.25
    sd = 0.5
sig.level = 0.05
    power = 0.8
alternative = two.sided
```

n = 63.77

NOTE: n is number in *each* group

Limitations to analytical power calculations

- Only derived for some test statistics (differences of means)
- Makes specific assumptions about the data-generating process
- ► Incompatible with more complex designs

Simulation-based power calculation

Simulation-based power calculation

- We use a package called DeclareDesign, see https://declaredesign.org/
 - See Blair et al 2019, Declaring and Diagnosing Research Designs. American Political Science Review)
- ► Helps evaluate our designs with multiple diagnosands:
 - Power
 - Bias
 - RMSE
 - Coverage

DeclareDesign

- ▶ Define the sample and the potential outcomes function.
- ▶ Define the treatment assignment procedure.
- Create data.
- Assign treatment, then estimate the effect.
- Do this many times.

Examples

- ► Complete randomization
- ► Adding a covariate
- Cluster randomization

egap

Example: Simulation-based power for complete randomization

```
# install.packages("randomizr")
library(randomizr)
library(estimatr)
## YO is fixed in most field experiments.
## So we only generate it once:
make Y0 <- function(N) {</pre>
  rnorm(n = N)
repeat experiment and test <- function(N, YO, tau) {
  # N is size of experimental pool; YO is potential outcome to control
  # tau is effect size (here, a constant additive effect)
  Y1 <- Y0 + tau
  Z \leftarrow complete_ra(N = N)
  Yobs \leftarrow Z * Y1 + (1 - Z) * Y0
  estimator <- lm_robust(Yobs ~ Z)</pre>
  pval <- estimator$p.value[2]</pre>
  return(pval)
```

Example: Simulation-based power for complete randomization

```
power_sim <- function(N, tau, sims) {</pre>
  YO \leftarrow make YO(N)
  pvals <- replicate(</pre>
    n = sims.
    repeat_experiment_and_test(N = N, YO = YO, tau = tau)
  pow <- sum(pvals < .05) / sims
  return(pow)
set.seed(12345)
## Notice simulation variability with sims=100
power sim(N = 80, tau = .25, sims = 100)
[1] 0.15
power_sim(N = 80, tau = .25, sims = 100)
```

[1] 0.21

Example: Using DeclareDesign I

```
library(DeclareDesign)
library(tidyverse)
PO <- declare_population(N, u0 = rnorm(N))
# declare Y(Z=1) and Y(Z=0)
00 <- declare_potential_outcomes(Y_Z_0 = 5 + u0, Y_Z_1 = Y_Z_0 + tau)
# design is to assign m units to treatment
A0 <- declare_assignment(m = round(N / 2), legacy = TRUE)
# estimand is the average difference between Y(Z=1) and Y(Z=0)
estimand_ate <- declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0))</pre>
R0 <- declare_reveal(Y, Z)</pre>
design0 base <- P0 + A0 + O0 + R0
## For example with N=100 and tau=.25:
design0 N100 tau25 <- redesign(design0 base, N = 100, tau = .25)
dat0_N100_tau25 <- draw_data(design0_N100_tau25)</pre>
head(dat0 N100 tau25)
```

Example: Using DeclareDesign II

4.8458 0.5569

```
ID u0 Z Z_cond_prob Y_Z_0 Y_Z_1 Y
1 001 -0.2060 0 0.5 4.794 5.044 4.794
2 002 -0.5875 0
                  0.5 4.413 4.663 4.413
3 003 -0.2908 1 0.5 4.709 4.959 4.959
4 004 -2.5649 0
              0.5 2.435 2.685 2.435
5 005 -1.8967 0 0.5 3.103 3.353 3.103
6 006 -1.6401 1 0.5 3.360 3.610 3.610
with(dat0 N100 tau25, mean(Y Z 1 - Y Z 0)) # true ATE
Γ1] 0.25
with(dat0_N100_tau25, mean(Y[Z == 1]) - mean(Y[Z == 0])) # estimate
[1] 0.5569
lm robust(Y ~ Z, data = dat0 N100 tau25)$coef # estimate
(Intercept)
```

egap

Example: Using DeclareDesign III

```
EO <- declare estimator(Y ~ Z,
  .method = lm robust, label = "t test 1",
  inquiry = "ATE"
t test <- function(data) {
  test \leftarrow with(data, t.test(x = Y[Z == 1], y = Y[Z == 0]))
  data.frame(statistic = test$statistic, p.value = test$p.value)
TO <- declare_test(handler = label_test(t_test), label = "t test 2")
designO plus tests <- designO base + EO + TO
design0 N100 tau25 plus <- redesign(design0 plus tests, N = 100, tau = .25)
## Only repeat the random assignment, not the creation of YO. Ignore warning
names(design0 N100 tau25 plus)
[1] "P0"
               "AO"
                          "00"
                                      "RO"
                                                 "t test 1" "t test 2"
design0 N100 tau25 sims <- simulate design(design0 N100 tau25 plus,
  sims = c(1, 100, 1, 1, 1, 1)
) # only repeat the random assignment
```

Example: Using DeclareDesign IV

Warning: We recommend you choose a number of simulations higher than 30.

```
\begin{tabular}{ll} \# \ design0\_N100\_tau25\_sims \ has \ 200 \ rows \ (2 \ tests * 100 \ random \ assignments) \\ \# \ just \ look \ at \ the \ first \ 6 \ rows \\ \ head(design0\_N100\_tau25\_sims) \\ \end{tabular}
```

```
design N tau sim_ID estimator term estimate std.error sta
1 design0_N100_tau25_plus 100 0.25
                                   1 t test 1 Z
                                                    0.1108
                                                             0.2150
2 design0_N100_tau25_plus 100 0.25
                                   1 t test 2 <NA>
                                                        NA
                                                                 NA
3 design0_N100_tau25_plus 100 0.25
                                   2 t test 1 Z 0.2458
                                                             0.2154
4 design0_N100_tau25_plus 100 0.25
                                   2 t test 2 <NA>
                                                        NA
                                                                 NA
5 design0 N100 tau25 plus 100 0.25 3 t test 1 Z 0.5463
                                                             0.2133
6 design0_N100_tau25_plus 100 0.25
                                   3 t test 2 <NA>
                                                        NA
                                                                 NA
 step_1_draw step_2_draw
2
3
                     2
4
5
6
```

Example: Using DeclareDesign V

Power with covariate adjustment

Covariate adjustment and power

- ► Co-variate adjustment can improve power because it mops up variation in the outcome variable.
 - If prognostic, covariate adjustment can reduce variance dramatically. Lower variance means higher power.
 - If non-prognostic, power gains are minimal.
- All co-variates must be pre-treatment. Do not drop observations on account of missingness.
 - See the module on threats to internal validity and the 10 things to know about covariate adjustment.
- ► Freedman (2008) pointed out that covariance-adjusted estimators of the ATE are biased.
- ▶ Lin (2013) shows that bias decreases with N.

Blocking

- ▶ Blocking: randomly assign treatment within blocks
 - "Ex-ante" covariate adjustment
 - Higher precision/efficiency implies more power
 - Reduce "conditional bias": association between treatment assignment and potential outcomes
 - Benefits of blocking over covariate adjustment clearest in small experiments

egap

Example: Simulation-based power with a covariate I

```
## Y0 is fixed in most field experiments. So we only generate it once
make_Y0_cov <- function(N) {
  u0 <- rnorm(n = N)
  x <- rpois(n = N, lambda = 2)
  Y0 <- .5 * sd(u0) * x + u0
  return(data.frame(Y0 = Y0, x = x))
}
## X is moderarely predictive of Y0.
test_dat <- make_Y0_cov(100)
test_lm <- lm_robust(Y0 ~ x, data = test_dat)
summary(test_lm)</pre>
```

Call:

Example: Simulation-based power with a covariate II

```
x 0.44 0.0814 5.413 0.000000441 0.279 0.602 98
```

Multiple R-squared: 0.231 , Adjusted R-squared: 0.223 F-statistic: 29.3 on 1 and 98 DF, p-value: 0.000000441

Example: Simulation-based power with a covariate III

```
## now set up the simulation
repeat_experiment_and_test_cov <- function(N, tau, YO, x) {
  Y1 <- Y0 + tau
  Z \leftarrow complete_ra(N = N)
  Yobs \leftarrow Z * Y1 + (1 - Z) * Y0
  estimator <- lm_robust(Yobs ~ Z + x, data = data.frame(Y0, Z, x))</pre>
  pval <- estimator$p.value[2]</pre>
  return(pval)
## create the data once, randomly assign treatment sims times
## report what proportion return p-value < 0.05
power_sim_cov <- function(N, tau, sims) {</pre>
  dat <- make Y0 cov(N)
  pvals <- replicate(n = sims, repeat experiment and test cov(</pre>
    N = N.
   tau = tau, YO = dat $YO, x = dat $x
  ))
  pow <- sum(pvals < .05) / sims
  return(pow)
```

Example: Simulation-based power with a covariate IV

```
set.seed(12345)
power_sim_cov(N = 80, tau = .25, sims = 100)

[1] 0.13

power_sim_cov(N = 80, tau = .25, sims = 100)

[1] 0.19
```

Power for cluster randomization

Power and clustered designs

- Recall the randomization lecture
- ightharpoonup Given a fixed N, a clustered design is weakly less powered than a non-clustered design.
 - ► The difference is often substantial.
- We have to estimate variance correctly:
 - Clustering standard errors (the usual)
 - Randomization inference
- To increase power:
 - Better to increase number of clusters than number of units per cluster.
 - How much clusters reduce power depends critically on the intra-cluster correlation (the ratio of variance within clusters to total variance).

A note on clustering in observational research

- Often overlooked, leading to (possibly) wildly understated uncertainty.
 - Frequentist inference based on ratio $\hat{\beta}/\hat{s}e$
 - If we underestimate \hat{se} , we are much more likely to reject H_0 . (Type-I error rate is too high.)
- Many observational designs much less powered than we think they are.

Example: Simulation-based power for cluster randomization

```
## YO is fixed in most field experiments. So we only generate it once
make YO clus <- function(n indivs, n clus) {
  # n indivs is number of people per cluster
  # n clus is number of clusters
  clus_id <- gl(n_clus, n_indivs)</pre>
  N <- n clus * n indivs
  u0 <- fabricatr::draw_normal_icc(N = N, clusters = clus_id, ICC = .1)
  YO <- u0
  return(data.frame(YO = YO, clus_id = clus_id))
test_dat <- make_Y0_clus(n_indivs = 10, n_clus = 100)
# confirm that this produces data with 10 in each of 100 clusters
table(test dat$clus id)
```

```
10 10
10
   10
       10
          10
              10
                   10
                              10
                                  10
                                      10
                                          10
                                             10
                                                  10
                                                      10
                                                          10
                                                             10
                                                                 10
                                                                     10
                                                                         10
           37
                       40 41
                             42
                                                                         53
34
   35
       36
               38
                   39
                                  43
                                      44
                                          45 46
                                                  47
                                                      48
                                                         49
                                                             50
                                                                 51
                                                                     52
10
   10
       10
          10
              10
                   10
                      10
                         10
                              10
                                  10
                                      10
                                         10
                                             10
                                                 10
                                                      10
                                                         10
                                                             10
                                                                 10
                                                                     10
                                                                         10
67
   68
       69
           70
               71
                   72
                      73
                          74
                              75
                                  76
                                      77
                                          78
                                             79
                                                  80
                                                      81
                                                         82
                                                             83
                                                                     85
                                                                         86
                                                                 84
10
   10
       10
          10
               10
                  10 10
                          10
                              10
                                  10
                                     10
                                         10
                                              10
                                                 10
                                                      10
                                                         10
                                                             10
                                                                 10
                                                                     10
                                                                         10
```

10 11 12 13 14 15 16

8 9

17 18 19

```
P1 <- declare_population(
    N = n_clus * n_indivs,
    clusters = gl(n_clus, n_indivs),
    u0 = draw_normal_icc(N = N, clusters = clusters, ICC = .2)
)
O1 <- declare_potential_outcomes(Y_Z_0 = 5 + u0, Y_Z_1 = Y_Z_0 + tau)
A1 <- declare_assignment(Z = conduct_ra(N = N, clusters = clusters))
estimand_ate <- declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0))
R1 <- declare_reveal(Y, Z)
design1_base <- P1 + A1 + O1 + R1 + estimand_ate
```



```
## Only repeat the random assignment, not the creation of YO. Ignore warning
## We would want more simulations in practice.
set.seed(12355)
design1_sims <- simulate_design(design1_plus_tosim,
    sims = c(1, 1000, rep(1, length(design1_plus_tosim) - 2))
)</pre>
```

Warning: We recommend you choose a number of simulations higher than 30.

```
design1_sims %>%
  group_by(estimator) %>%
  summarize(
  pow = mean(p.value < .05),
  coverage = mean(estimand <= conf.high & estimand >= conf.low),
  .groups = "drop"
)
```

```
library(DesignLibrary)
## This may be simpler than the above:
d1 <- block_cluster_two_arm_designer(</pre>
 N blocks = 1.
 N clusters in block = 10,
 N_i_in_cluster = 100.
 sd block = 0,
  sd cluster = .3,
  ate = .25
d1_plus <- d1 + E1b + E1c
d1_{sims} \leftarrow simulate_{design}(d1_{plus}, sims = c(1, 1, 1000, 1, 1, 1, 1, 1))
d1 sims %>%
  group_by(estimator) %>%
  summarize(
    pow = mean(p.value < .05),
    coverage = mean(estimand <= conf.high & estimand >= conf.low),
    .groups = "drop"
```

A tibble: 3 x 3

Exercize

- ► Try the calculator at: https://egap.shinyapps.io/power-app/
- ► For cluster randomization designs, try adjusting:
 - Number of clusters
 - Number of units per clusters
 - Intra-cluster correlation
 - ► Treatment effect

Comments

- Know your outcome variable.
- ▶ What effects can you realistically expect from your treatment?
- What is the plausible range of variation of the outcome variable?
- ► A design with limited possible movement in the outcome variable may not be well-powered.