Frequentist Hypothesis Testing: Intuitions

Objectives

- Develop a robust intuition for the frequentist approach to hypothesis testing
- Distinguish a population distribution from a sampling distribution
- Relate the area under a sampling distribution to P-values
- Perform a Z-test
- Contrast the use-case of a t-test vs a Z-test

Real or random?

 The goal of hypothesis testing is to determine if an effect is statistically significant based on data

Example:

- Do SmartCards™ product actually improve SAT scores?
- Take a random sample of 25 students, have them study with the cards:
 - Population mean (without SmartCards): 1000
 - Experimental mean: 1050
- Can we quantify our certainty that this effect isn't due to randomness?

Sampling Distributions

~~ Draw 25 person samples ~~

Nasty population distributions still have nice and normal sampling distributions

Nasty population distributions still have nice and normal sampling distributions

Nasty population distributions still have nice and normal sampling distributions

Nasty population distributions still have nice and normal sampling distributions

Who do we have to thank for this?

THE CENTRAL LIMIT THEOREM

Our friend, the standard error

- The standard deviation of sample means
- Measures the stability of sample means
- Depends on:
 - The population standard deviation
 - Sample size

$$SE = \frac{\sigma}{\sqrt{n}}$$

Sample Size affects the sampling distribution

SAT Population Distribution

SAT Sampling Distribution (n = 4)

Mean: 1000

Standard deviation: 100

Mean: 1000

Standard error: 50

Sample Size affects the sampling distribution

SAT Population Distribution

SAT Sampling Distribution (n = 25)

Mean: 1000

Standard error: 20

Mean: 1000 Standard deviation: 100

Sample Size affects the sampling distribution

SAT Population Distribution

SAT Sampling Distribution (n = 100)

Mean: 1000

Standard error: 10

Mean: 1000 Standard deviation: 100

Probability <> area under the curve

 We can calculate the probability of drawing a mean or greater based on area under the curve

P = 0.85

Probability <> area under the curve

 We can calculate the probability of drawing a mean or greater based on area under the curve

P = 0.50

Probability <> area under the curve

 We can calculate the probability of drawing ranges of means based on area under the curve

P = 0.046

Back to the SAT example

• Standard SAT population:

• Mean: 1000

• STD: 100

• Sampling distribution (n = 25):

• Mean: 1000

Standard Error: 20

Experimental Results

• Mean: 1050

$$Z = \frac{1050 - 1000}{20}$$

Where the Z-test falters...

- We used *known* population parameters, mean and standard deviation to construct a sampling distribution
- It is rare to have that information

Mean: ???

Standard deviation: ???

... the t-test prevails

- We don't know the exact population mean and standard deviation, so we conservatively estimate them based on samples themselves
- If we didn't know SAT population parameters we might:
 - Test one random sample of 25, untreated as the control
 - Test another random sample of 25 who studied the flash cards
 - Compute test statistic and p-value based on t-distribution, as opposed to the normal (z)
 distribution

$$t = \frac{M_1 - M_2}{SE} \qquad SE = \sqrt{\frac{s_1^2 + s_2^2}{n}}$$

Summary

- The Central Limit Theorem makes sampling distributions predictable
- We construct a sampling distribution based on the null-hypothesis
- If it seems unlikely that the observed data came from that distribution, we reject the null hypothesis
- Use a t-test (or some other hypothesis test) when population parameters are unknown (which is most of the time). However

Further reading

- Khan on T-distribution vs Z-distribution https://www.youtube.com/watch?v=5ABpqVSx331
- Free Udacity course on inferential statistics https://www.udacity.com/course/intro-to-inferential-statistics--ud201
- Wikipedia (has surprisingly good articles on these topics)
 - https://en.wikipedia.org/wiki/Sampling_distribution
 - https://en.wikipedia.org/wiki/Student%27s_t-test
 - https://en.wikipedia.org/wiki/Confidence_interval
 - https://en.wikipedia.org/wiki/Analysis_of_variance