

Pre-Treatment Procedures

- * Animal health procedure: all animals received a clinical examination for ill-health on arrival and a veterinary clinical examination during the acclimatization period.
- 5 * Acclimatization period: at least 3 weeks between animal arrival and start of treatment.

Experimental Design

- * Allocation to treatment groups was performed during the acclimatization period using a random allocation procedure based on body weight classes.
- 10 * Animals were assigned to the treatment groups shown in Table 1. The dose levels administered were shown in Table 2.

Administration of the Test/Control Articles**Group 1 and 2 Animals**

- * Method of administration: injection in the left inguinal lymph node.
- 15 Animals were lightly anaesthetized before each administration by an intramuscular injection of ketamine hydrochloride (Imalgene® 500 - Merial, Lyon, France). The same lymph node was injected on each occasion (left side). Each injection was followed by a local disinfection with iodine (Vétédine® - Vétoquinol, Lure, France).

Group 3

- * Route: subcutaneous.
- * Method of administration: bolus injection using a sterile syringe and needle introduced subcutaneously. Four injection sites were used followed by a local disinfection with iodine (Vétédine® - Vétoquinol, Lure, France).
- 25 Animals were also lightly anaesthetized before each administration by an intramuscular injection of ketamine hydrochloride (Imalgene® 500 - Merial, Lyon, France) in order to be under the same conditions as groups 1 and 2 animals.

Four injection sites in the dorsal cervical/interscapular regions were used as shown in Table 3.

• **ELISPOT Analysis**

An ELISPOT assay was used in order to assess the cell mediated immune response generated in the monkeys in the various treatment groups. In particular, an ELISPOT IFN γ assay was used in order to measure IFN γ production from T lymphocytes obtained from the monkeys in response to gp100 antigens.

10 **Materials and Methods**

Plates: MILLIPORE Multiscreen HA plate / MAHA S45.10 (96 wells).

Capture antibodies: MABTECH monoclonal anti-IFN γ antibodies/G-Z4 1 mg/mL.

Detection antibodies: MABTECH monoclonal anti-IFN γ antibodies/7-B6-1-15 biotin 1 mg/mL.

Enzyme: SIGMA, Extravidin-PA conjugate/E2636

Substrate: BIORAD, NBT/BCIP - Alkaline phosphatase conjugate substrate kit/ref: 170-64 32.

Coating

20 Place 100 μ L per well of capture antibodies at 1 μ g/mL diluted at 1/1000 in carbonate bicarbonate buffer 0.1M pH 9.6 into the multiwell plate. Incubate overnight at 4°C. Wash 4 times in 1X PBS.

Saturation

Place 200 μ L per well of RPMI supplemented with 10% FCS, non essential amino acids, pyruvate, Hepes buffer and Peni-Strepto. Incubate 2 hours at 37°C.

Test

Cells from the immunized animals are tested against (a) medium alone; (b) pooled peptides at a concentration of 1 mg/mL; and (c) a non specific

stimulus (PMA-Iono). The pooled peptides used in this Example to stimulate IFN- γ production were derived from gp100 and are illustrated in Tables 4 to 7. The final volume of each sample is 200 μ L. Incubate 20 hours at 37°C.

- 5 Wash 4 times in 1X PBS and 0.05% Tween 20.
Detection

Place 100 μ L per well of detection antibodies at 1 μ g/mL diluted in 1/1000 1X PBS, 1% BSA and 0.05% Tween 20. Incubate 2 hours at room temperature. Wash 4 times in 1X PBS and 0.05% Tween 20.

- 10 **Reaction**

Place 100 μ L per well of Extravidin-PA conjugate diluted 1/6000 in 1X PBS, 1% BSA and 0.05% Tween 20. Incubate 45 minutes at room temperature.

Wash 4 times in 1X PBS and 0.05% Tween 20.

Substrate Addition

- 15 Place 100 μ L per well of substrate previously prepared. For example, for 1 plate, prepare: 9.6 mL of distilled water, 0.4 mL of 25X buffer, 0.1 mL of solution A (NBT) and 0.1 mL of solution B (BCIP). Incubate 30-45 minutes at room temperature. Wash in distilled water. Dry and transfer to a plastic film. The number of spots are counted using a Zeiss image analyzer. Each
20 spot corresponds to an individual IFN- γ secreting T cell.

Results

- The animals that tested positive on the ELISPOT analysis are shown in Figures 1-4. Overall, the results demonstrate that of the animals tested, 2
25 out of 2 (i.e. 100%) of the animals that received the intranodal administration of the gp100 antigen, and 2 out of 4 (i.e. 50%) of the animals that received the subcutaneous administration of the gp100 antigen had a positive cell mediated immune response.

ELISA Analysis

The ELISA was performed utilizing standard methodology known in the art. Briefly, the human gp100 ("hgp100"; produced in Baculovirus) was diluted in 5 coating buffer (carbonate-bicarbonate, pH9.6) and added to 96 wells at 0.5ug/well. Plates were placed at 4°C overnight. Plates were then washed and blocking buffer (phosphate buffered saline/0.5% Tween 20/1.0% BSA, pH7.2) was added for 2 hours at 37°C. The plates were then washed and the sera was diluted in dilution buffer (phosphate buffered saline/0.5 % 10 Tween 20/ 0.1 BSA, pH7.2). For this study, monkey sera was diluted to 1:800 and "7" serial 3 fold dilutions were done for each sample tested. The human sera controls were diluted to 1:50 in dilution buffer and "7" serial 2 fold dilutions were performed. Each dilution was done in duplicate. The plates were incubated a further 2 hours at 37°C. The plates were washed 15 and the horse radish peroxidase (HRP)-conjugated anti-human secondary antibody (anti-human Ig whole antibody from sheep (Amersham Life Science, NA933)) diluted 1:100 in dilution buffer was added to the wells and incubated for 1 hour at 37°C. The plates were washed and OPD (o-phenylenediamine dihydrochloride) substrate with H₂O₂ in substrate buffer 20 (50mM phosphate/25mM citrate, pH 7.2) was added to the wells. For a kinetics ELISA, the plate was read repeatedly (2 minute intervals for 15 minutes) unstopped (without "stop" buffer). Plates were read at 450nm.

Results

25 The results of the above experiment are presented in Table 8 and in Figure 5. The animals of group 2 received intranodal injections of ALVAC(2)-gp100(mod) followed by boosts with the modified gp100 peptides 209(2M) and 290(9V); the animals in group 3 received a subcutaneous

injection of the ALVAC(2) construct followed by peptide boosts; the animals in group 1 received intranodal injections of saline as a control.

As can be seen from Figure 5, intranodal injection of the antigens induced a humoral response that was much greater than when the antigen
5 was injected subcutaneously.

In summary, the results of this Example demonstrate that intranodal injection of a tumor antigen induces both a humoral and cell mediated response that is much greater than when the tumor antigen is injected by the conventional subcutaneous route of administration.

10 While the present invention has been described with reference to what are presently considered to be the preferred examples, it is to be understood that the invention is not limited to the disclosed examples. To the contrary, the invention is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the
15 appended claims.

All publications, patents and patent applications are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.

TABLE 1

Group Number	Route of administration	Treatment days and compound administered	Number of Animals
1	Intranodal	Saline (NaCl 0.9%); days 26, 42, 56 Then 70, 71, 72, 73, 74 Then 84, 85, 86, 87 and 88	4
2	Intranodal	ALVAC(2) - gp100 mod; days 28, 42, 56 *mgp100 peptides: days 70, 71, 72, 73, 74 Then 84, 85, 86, 87 and 88	4
3	Subcutaneous	Saline (NaCl 0.9%); day 1 ALVAC(2) - gp100 mod; days 28, 42, 56 *mgp100 peptides: days 70 and 84	4

*209(2M)-IMDQVPPFSY; 290(9V) YLEPGPVTV

- 5 * Group 1 animals (control) received the control article (saline for injection (NaCl 0.9%)).
 * Group 3 animals received the control article (saline for injection (NaCl 0.9%)) on day 1 only.

36
TABLE 2

Group Number	Dose level	Dose volume (ml/administration)
1	Saline (NaCl 0.9%): 0	0.250
2	Dose: $0.25 \times 10^{7.4}$ CCID 50 ALVAC (2) - gp100 mod: $0.25 \times 10^{7.4}$ CCID50 Dose: 200 µg (Total) of peptides IMDQVPFSY (209(2M)) and YLEPGPVTV (290(9V)) (100µg each)	0.250 0.2
3	Saline (NaCl 0.9%) ALVAC(2) - gp100 mod: $0.25 \times 10^{7.4}$ CCID 50 Dose: 200 µg (Total) of peptides IMDQVPFSY (209(2M)) and YLEPGPVTV (290(9V)) (100µg each)	0.250 0.250 0.2

37
TABLE 3

Days	Sites used
1 and 28	lower left
42	upper left
56	upper right
70	lower left
84	lower right

TABLE 4

Peptide Pool #1

Peptide	Sequence	SEQ.ID.NO.
1329	HLAVIGALLAVGATK	SEQ.ID.NO.3
1330	GALLAVGATKVPRNQ	SEQ.ID.NO.4
1331	VGATKVPRNQDWLGV	SEQ.ID.NO.5
1332	VPRNQDWLGVSRLQR	SEQ.ID.NO.6
1333	DWLGVSRLRTKAWN	SEQ.ID.NO.7
1334	SRQLRTKAWNRQLYP	SEQ.ID.NO.8
1335	TKAwnRQLYPEWTEA	SEQ.ID.NO.9
1336	RQLYPEWTEAQRLDC	SEQ.ID.NO.10
1337	EWTEAQRLDCWRGGO	SEQ.ID.NO.11
1338	QRLLDCWRGGQVSLKV	SEQ.ID.NO.12
1339	WRGGQVSLKVSNDGP	SEQ.ID.NO.13
1340	VSLKVSNDGPTLIGA	SEQ.ID.NO.14
1344	IALNFPGSQKVLPDG	SEQ.ID.NO.15
1345	PGSQKVLPDGQVIWV	SEQ.ID.NO.16
1346	VLPDGQVIWVNNTII	SEQ.ID.NO.17
1347	QVIWVNNTIINGSQV	SEQ.ID.NO.18
1348	NNTHINGSQVWGGQP	SEQ.ID.NO.19
1349	NGSQVWGGQPVYPQE	SEQ.ID.NO.20
1350	WGGQPVYPQETDDAC	SEQ.ID.NO.21
1351	VYPQETDDACIFPDG	SEQ.ID.NO.22
1352	TDDACIFPDGGPCPS	SEQ.ID.NO.23
1353	IFPDGGPCPSGSWSQ	SEQ.ID.NO.24
1355	GSWSQKRSFVYVWKT	SEQ.ID.NO.25
1356	KRSFVYVWKTWGQYW	SEQ.ID.NO.26
1357	YVWKTWGQYWQVLGG	SEQ.ID.NO.27
1358	WGQYWQVLGGPVSGL	SEQ.ID.NO.28
1359	QVLGGPVSGLSIGTG	SEQ.ID.NO.29

39
TABLE 5

Peptide Pool #2

Peptide	Sequence	SEQ.ID.NO.
1360	PVSGLSIGTGRAMLG	SEQ.ID.NO.30
1361	SIGTGRAMLGTHTME	SEQ.ID.NO.31
1362	RAMLGTHTMEVTYVH	SEQ.ID.NO.32
1363	THTMEVTYHRRGSR	SEQ.ID.NO.33
1364	VTYVHRRGSRSYVPL	SEQ.ID.NO.34
1365	RRGSRSYVPLAHSSS	SEQ.ID.NO.35
1366	SYVPLAHSSSAFTIT	SEQ.ID.NO.36
1368	AFTITDQVPFSVSVS	SEQ.ID.NO.37
1369	DQVPFSVSVSQRLAL	SEQ.ID.NO.38
1370	SVSVSQRALADGGNK	SEQ.ID.NO.39
1372	DGGNKHFLRNQPLTF	SEQ.ID.NO.40
1373	HFLRNQPLTFALQLH	SEQ.ID.NO.41
1374	QPLTFALQLHDPSGY	SEQ.ID.NO.42
1375	ALQLHDPSGYLAEAD	SEQ.ID.NO.43
1379	DFGDSSGTTLISRALV	SEQ.ID.NO.44
1380	STGLISRALVVTHTY	SEQ.ID.NO.45
1381	SRALVVTHYLEPGP	SEQ.ID.NO.46
1382	VTHYLEPGPVTAQV	SEQ.ID.NO.47
1383	LEPGPVTAQVVLQAA	SEQ.ID.NO.48
1384	VTAQVVLQAAIPLTS	SEQ.ID.NO.49
1385	VLOAAIPLTSCGSSP	SEQ.ID.NO.50
1386	IPLTSCGSSPVPGTT	SEQ.ID.NO.51
1388	VPGTTDGHRPTAEAP	SEQ.ID.NO.52
1389	DGHRPTAEAPNTTAG	SEQ.ID.NO.53
1390	TAEAPNTTAGQVPTT	SEQ.ID.NO.54
1392	QVPTTEVVGVTPGQA	SEQ.ID.NO.55
1393	EVVGTTPGOAPTAEP	SEQ.ID.NO.56

40
TABLE 6

Peptide Pool #3

Peptide	Sequence	SEQ.ID.NO.
1394	TPGQAPTAEPSGTTS	SEQ.ID.NO.57
1395	PTAEPSGTTSVQVPT	SEQ.ID.NO.58
1396	SGTTSVQVPTTEVIS	SEQ.ID.NO.59
1397	VQVPTTEVISTAPVQ	SEQ.ID.NO.60
1398	TEVISTAPVQOMPTAE	SEQ.ID.NO.61
1399	TAPVQOMFTAESTGMT	SEQ.ID.NO.62
1400	MPTAESTGMTPEKVP	SEQ.ID.NO.63
1401	STGMTPEKVPVSEVM	SEQ.ID.NO.64
1402	PEKVPVSEVMGTTLA	SEQ.ID.NO.65
1403	VSEVMGTTLAEMSTP	SEQ.ID.NO.66
1404	GTTLAEMSTPEATGM	SEQ.ID.NO.67
1405	EMSTPEATGMTPAEV	SEQ.ID.NO.68
1408	SIVVLSGTTAAQVTT	SEQ.ID.NO.69
1409	SGTTAAQVTTTEWVE	SEQ.ID.NO.70
1410	AQVTTTEWVETTARE	SEQ.ID.NO.71
1411	TEWVETTARELPIPE	SEQ.ID.NO.72
1412	TTARELPIPEPEGPD	SEQ.ID.NO.73
1413	LPIPEPEGPDASSIM	SEQ.ID.NO.74
1414	PEGPDASSIMSTESI	SEQ.ID.NO.75
1415	ASSIMSTESITGSLG	SEQ.ID.NO.76
1416	STESITGSLGPLLDG	SEQ.ID.NO.77
1417	TGSLGPLLDGTATLR	SEQ.ID.NO.78
1418	PLLDGTATLRLVKRQ	SEQ.ID.NO.79
1419	TATLRLVKRQVPLDC	SEQ.ID.NO.80
1420	LVKRQVPLDCVLYRY	SEQ.ID.NO.81
1421	VPLDCVLYRYGSFSV	SEQ.ID.NO.82
1422	VLYRYGSFSVTLDIV	SEQ.ID.NO.83

41
Table 7

Peptide Pool #4

Peptide	Sequence	SEQ.ID.NO.
1424	TLDIVQGIESAEILQ	SEQ.ID.NO.84
1425	QGIESAEILQAVPSG	SEQ.ID.NO.85
1426	AEILQAVPSGEGLDGF	SEQ.ID.NO.86
1427	AVPSGEGLDGFELTVS	SEQ.ID.NO.87
1428	EGDAPELTVSCQGGL	SEQ.ID.NO.88
1429	ELTVSCQGGLPKEAC	SEQ.ID.NO.89
1430	CQGGGLPKEACMEISS	SEQ.ID.NO.90
1431	PKEACMEISSPGCQP	SEQ.ID.NO.91
1432	MEISSPGCQPAPQRL	SEQ.ID.NO.92
1434	PAQRLCOPVLPLSPAC	SEQ.ID.NO.93
1435	CQPVLPLSPACQLVLH	SEQ.ID.NO.94
1436	PSPACQLVLHQIQLKG	SEQ.ID.NO.95
1437	QLVLHQIQLKGGSGTY	SEQ.ID.NO.96
1441	LADTNNSLAVVSTQLI	SEQ.ID.NO.97
1442	SLAVVSTQLIMPQOE	SEQ.ID.NO.98
1443	STOLIMPQOEAGLGQ	SEQ.ID.NO.99
1444	MPGQEAGLGQVPLIV	SEQ.ID.NO.100
1445	AGLGQVPLIVGILLV	SEQ.ID.NO.101
1448	LMAVVVLASLIYRRRL	SEQ.ID.NO.102
1450	YRRRLMKQDFSVVPQL	SEQ.ID.NO.103
1451	MKQDFSVVPQLPHSSS	SEQ.ID.NO.104
1452	SVPQLPHSSSHWLRL	SEQ.ID.NO.105
1453	PHSSSHWLRLPRIFC	SEQ.ID.NO.106
1454	HWLRLPRIFCSCPPIG	SEQ.ID.NO.107
1455	PRIFCSCPPIGENSPL	SEQ.ID.NO.108

TABLE 8

Monkey #	DAY (mOD/min)			
	0	57	68	96
1	3	5	2	2
2	4	6	12	10
3	7	6	10	8
4	7	6	8	8
5	5	9	20	15
6	11	8	10	12
7	11	23	51	30
8	7	30	70	22
9	1	7	5	3
10	2	6	6	4
11	3	7	14	8
12	6	9	15	6

We claim:

1. A method for inducing an immune response in an animal to a tumor antigen comprising administering an effective amount of a tumor antigen or a nucleic acid sequence encoding a tumor antigen to a lymphatic site in the animal.
2. A method according to claim 1 wherein the tumor antigen is selected from the group consisting of CEA, gp100, the MAGE family of proteins, DAGE, GAGE, RAGE, NY-ESO 1, Melan-A/MART 1, TRP-1, TRP-2, tyrosinase, HER-2/neu, MUC-1, p53, KSA, PSA, PSMA, and fragments and modified versions thereof.
3. A method according to claim 1 or 2 wherein the lymphatic site is a lymph node.
4. A method according to any one of claims 1 to 3 wherein the nucleic acid is selected from the group consisting of viral nucleic acid, bacterial DNA, plasmid DNA, naked/free DNA, and RNA.
5. A method according to claim 4 wherein the viral nucleic acid is selected from the group consisting of adenoviral, alphaviral and poxviral nucleic acid.
6. A method according to claim 5 wherein the poxviral nucleic acid is selected from the group consisting of avipox, orthopox and suipox nucleic acid.
7. A method according to claim 5 wherein the poxviral nucleic acid is selected from the group consisting of vaccinia, fowl pox, canarypox and swinepox nucleic acid.

8. A method according to claim 5 wherein the poxviral nucleic acid is selected from the group consisting of MVA, NYVAC, TROVAC, and ALVAC nucleic acid.
5
9. A method according to any one of claims 1 to 8 wherein the nucleic acid is contained in a vector.
10. A method according to claim 9 wherein the vector is a recombinant virus or bacteria.
10
11. A method according to claim 10 wherein the recombinant virus is selected from the group consisting of adenovirus, alphavirus and poxvirus.
15
12. A method according to claim 11 wherein the poxvirus is selected from the group consisting of avipox, orthopox and suipox.
13. A method according to claim 11 wherein the poxvirus is selected from the group consisting of vaccinia, fowlpox, canarypox and swinepox.
20
14. A method according to claim 11 wherein the poxvirus is selected from the group consisting of MVA, NYVAC, TROVAC, and ALVAC.
- 25 15. A method according to any one of claims 1 to 8 wherein the nucleic acid is contained in a cell.
16. A method according to any one of claims 1 to 14 wherein the tumor antigen or nucleic acid coding therefor is contained in a vaccine.
30

- 45
17. A method according to any one of claims 1 to 16 wherein the tumor antigen is gp100, CEA or a fragment or modified version of gp100 or CEA.
- 5 18. A method according to claim 17 wherein the modified gp100 comprises the sequence IMDQVPPFSY (SEQ ID NO: 1) and/or YLEPGPVTV (SEQ ID NO:2).
- 10 19. A method according to claim 17 wherein the modified CEA comprises the sequence shown in Figure 8 (SEQ ID NO:112) and/or YLSGADLNL (SEQ ID NO:113).

1/11

FIGURE 1
Monkey #6 (Intranodal Administration)

2/11

FIGURE 2

Monkey #7 (Intranodal Administration)

3/11

FIGURE 3
Monkey # 11 (Subcutaneous Administration)

Spots/1E6 Cells

4/11

FIGURE 4
Monkey #10 (Subcutaneous Administration)

5/11

FIGURE 5

6/11

FIGURE 6

ATGG ATCTGGTCTT AAAAAGATGC CTTCTTCATT TGGCTGTGAT
AGGTGCTTTG CTGGCTGTGG GGGCTACAAA AGTACCCAGA AACCAAGACT GGCTTGGTGT
CTCAAGGCAA CTCAGAACCA AAGCCTGGAA CAGGCAGCTG TATCCAGAGT GGACAGAAC
CCAGAGACTT GACTGCTCGA GAGGTGGTCA AGTGTCCCTC AAGGTCAGTA ATGATGGGCC
TACACTGATT GGTGCAAATG CCTCCTTCTC TATTGCTTG AACCTCCCTG GAAGCCAAAA
GGTATTGCCA GATGGGCAGG TTATCTGGGT CAACAATACC ATCATCAATG GGAGCCAGGT
GTGGGGAGGA CAGCCASTGT ATCCCCAGGA AACTGACGAT GCCTGCATCT TCCCTGATGG
TGGACCTTGC CCATCTGGCT CTTGGTCTCA AAAGAGAACC TTTGTTTATG TCTGGAAGAC
CTGGGGCCAA TACTGGCAAG TTCTAGGGGG CCCAGTGTCTT GGGCTGAGCA TTGGGACAGG
CAGGGCAATG CTGGGCACAC ACACGATGGA AGTGACTGTC TACCATCGCC GGGGATCCCC
GAGCTATGTG CCTCTTCTC ATTCCAGCTC AGCCCTTCACC ATTATGGACC AGGTGCCCTT
CTCCGTGAGC GTGTCCCAGT TGCGGGCCTT GGATGGAGGG AACAAAGCACT TCCGTGAGAAA
TCAGCCCTCTG ACCTTTGCCCTC TCCAGCTCCA TGACCCCCAGT GGCTATCTGG CTGAAGCTGA
CCTCTCTAC ACCTGGGACT TTGGAGACAG TAGTGGAACCT CTGATCTCTC GGGCACTTGT
GGTCACTCAT ACTTACCTGG AGCCTGGCCC AGTCACTGTT CAGGTGGTCC TGCAGGCTGC
CATTCCTCTC ACCTOCTGTG GCTCCTCCCC AGTTCCAGGC ACCACAGATG GGCACAGGCC
AACTGGCAGAG GCCCCCTAACCA CCACAGCTGG CCAAGTGCCT ACTACAGAACG TTGTGGGTAC
TACACCTGGT CAGGCGCCAA CTGCAGAGCC CTCTGGAACCC ACATCTGTGC AGGTGCCAAC
CACTGAAGTC ATAAGCAGTC CACCTGTGCA GATGCCAACT GCAGAGAGCA CAGGTATGAC
ACCTGAGAAG GTGCCAGTTT CAGAGGTCAT GGGTACCACTA CTGGCAGAGA TGTCAACTCC
AGAGGCTACA GGTATGACAC CTGCAGAGGT ATCAATTGTG GTGCTTCTG GAACCACAGC
TGCACAGGTA ACAACTACAG AGTGGGTGGA GACCACAGCT AGAGAGCTAC CTATCCCTGA
GCCTGAAGGT CCAGATGCCA GCTCAATCAT GTCTACGGAA AGTATTACAG GTTCCCTGGG
CCCCCTGCTG GATGGTACAG CCACCTTAAG GCTGGTGAAG AGACAAGTCC CCCTGGATTG
TGTCTGTAT CGATATGGTT CCTTTCCGT CACCCCTGGAC ATTGTCCAGG CTATTGAAAG
TGCCGAGATC CTGCAGGCTG TGCCGTCCGG TGAGGGGGAT GCATTTGAGC TGACTGTGTC
CTGCCAAGGC GGGCTGCCCA AGGAAGCCTG CATGGAGATC TCATCGCCAG GGTGCCAGCC
CCCCCTCCCCAG CGGCTGTGCC AGCTGTGCT ACCCAGGCCA GCCTGCCAGC TGGTTCTGCA
CCAGATACTG AAGGGTGGCT CGGGGACATA CTGCCTCAAT GTGTCTCTGG CTGATACCAA
CAGCCTGGCA GTGGTCACCA CCCAGCTTAT CATGCCCTGGT CAAGAAGCAG GCCTTGGGCA
GGTCCCGCTG ATCGTGGCA TCTTGCTGGT GTTGATGGCT GTGGTCCCTTG CATCTCTGAT
ATATAGGCAGC AGACTTATGA AGCAAGACCTT CTCCGTACCC CAGGTGCCAC ATAGCAGCAG
TCACTGGCTG CGTCTACCCC GCATCTTCTG CTCTGTCCC ATTGGTGAGA ACAGCCCCCT
CCTCAGTGGG CAGCAGGCT GA

7/11

FIGURE 7

Met Asp Leu Val Leu Lys Arg Cys Leu Leu His Leu Ala Val Ile Gly
 1 5 10 15
 Ala Leu Leu Ala Val Gly Ala Thr Lys Val Pro Arg Asn Gln Asp Trp
 20 25 30
 Leu Gly Val Ser Arg Gln Leu Arg Thr Lys Ala Trp Asn Arg Gln Leu
 35 40 45
 Tyr Pro Glu Trp Thr Glu Ala Gln Arg Leu Asp Cys Trp Arg Gly Gly
 50 55 60
 Gln Val Ser Leu Lys Val Ser Asn Asp Gly Pro Thr Leu Ile Gly Ala
 65 70 75 80
 Asn Ala Ser Phe Ser Ile Ala Leu Asn Phe Pro Gly Ser Gln Lys Val
 85 90 95
 Leu Pro Asp Gly Gln Val Ile Trp Val Asn Asn Thr Ile Ile Asn Gly
 100 105 110
 Ser Gln Val Trp Gly Gly Gln Pro Val Tyr Pro Gln Glu Thr Asp Asp
 115 120 125
 Ala Cys Ile Phe Pro Asp Gly Gly Pro Cys Pro Ser Gly Ser Trp Ser
 130 135 140
 Gln Lys Arg Ser Phe Val Tyr Val Trp Lys Thr Trp Gly Gln Tyr Trp
 145 150 155 160
 Gln Val Leu Gly Gly Pro Val Ser Gly Leu Ser Ile Gly Thr Gly Arg
 165 170 175
 Ala Met Leu Gly Thr His Thr Met Glu Val Thr Val Tyr His Arg Arg
 180 185 190
 Gly Ser Arg Ser Tyr Val Pro Leu Ala His Ser Ser Ser Ala Phe Thr
 195 200 205
 Ile Met Asp Gln Val Pro Phe Ser Val Ser Val Ser Gln Leu Arg Ala
 210 215 220
 Leu Asp Gly Gly Asn Lys His Phe Leu Arg Asn Gln Pro Leu Thr Phe
 225 230 235 240
 Ala Leu Gln Leu His Asp Pro Ser Gly Tyr Leu Ala Glu Ala Asp Leu
 245 250 255
 Ser Tyr Thr Trp Asp Phe Gly Asp Ser Ser Gly Thr Leu Ile Ser Arg
 260 265 270
 Ala Leu Val Val His Thr Tyr Leu Glu Pro Gly Pro Val Thr Val
 275 280 285
 Gln Val Val Leu Gln Ala Ala Ile Pro Leu Thr Ser Cys Gly Ser Ser
 290 295 300
 Pro Val Pro Gly Thr Thr Asp Gly His Arg Pro Thr Ala Glu Ala Pro
 305 310 315 320
 Asn Thr Thr Ala Gly Gln Val Pro Thr Thr Glu Val Val Gly Thr Thr
 325 330 335
 Pro Gly Gln Ala Pro Thr Ala Glu Pro Ser Gly Thr Thr Ser Val Gln
 340 345 350
 Val Pro Thr Thr Glu Val Ile Ser Thr Ala Pro Val Gln Met Pro Thr
 355 360 365

8/11

FIGURE 7 (CONT'D)

Ala Glu Ser Thr Gly Met Thr Pro Glu Lys Val Pro Val Ser Glu Val
 370 375 380
 Met Gly Thr Thr Leu Ala Glu Met Ser Thr Pro Glu Ala Thr Gly Met
 385 390 395 400
 Thr Pro Ala Glu Val Ser Ile Val Val Leu Ser Gly Thr Thr Ala Ala
 405 410 415
 Gln Val Thr Thr Glu Trp Val Glu Thr Thr Ala Arg Glu Leu Pro
 420 425 430
 Ile Pro Glu Pro Glu Gly Pro Asp Ala Ser Ser Ile Met Ser Thr Glu
 435 440 445
 Ser Ile Thr Gly Ser Leu Gly Pro Leu Leu Asp Gly Thr Ala Thr Leu
 450 455 460
 Arg Leu Val Lys Arg Gln Val Pro Leu Asp Cys Val Leu Tyr Arg Tyr
 465 470 475 480
 Gly Ser Phe Ser Val Thr Leu Asp Ile Val Gln Gly Ile Glu Ser Ala
 485 490 495
 Glu Ile Leu Gln Ala Val Pro Ser Gly Glu Gly Asp Ala Phe Glu Leu
 500 505 510
 Thr Val Ser Cys Gln Gly Gly Leu Pro Lys Glu Ala Cys Met Glu Ile
 515 520 525
 Ser Ser Pro Gly Cys Gln Pro Pro Ala Gln Arg Leu Cys Gln Pro Val
 530 535 540
 Leu Pro Ser Pro Ala Cys Gln Leu Val Leu His Gln Ile Leu Lys Gly
 545 550 555 560
 Gly Ser Gly Thr Tyr Cys Leu Asn Val Ser Leu Ala Asp Thr Asn Ser
 565 570 575
 Leu Ala Val Val Ser Thr Gln Leu Ile Met Pro Gly Gln Glu Ala Gly
 580 585 590
 Leu Gly Gln Val Pro Leu Ile Val Gly Ile Leu Leu Val Leu Met Ala
 595 600 605
 Val Val Leu Ala Ser Leu Ile Tyr Arg Arg Arg Leu Met Lys Gln Asp
 610 615 620
 Phe Ser Val Pro Gln Leu Pro His Ser Ser Ser His Trp Leu Arg Leu
 625 630 635 640
 Pro Arg Ile Phe Cys Ser Cys Pro Ile Gly Glu Asn Ser Pro Leu Leu
 645 650 655
 Ser Gly Gln Gln Val
 660

9/11

FIGURE 8

ATGGAGTCTCCCTCGGCCCTCCCCACASATGGTGCATCCCCCTGGCAGAGGCTCCCTCTC
 1 +-----+-----+-----+-----+-----+-----+-----+-----+-----+
 TACCTCGAGCGSAGCCGGGAGGGGTGTCTACCACGTAGGGGACCGCTCCGAGGACGAG
 a M E S P S A P P H R W C I P W Q R L L L -

 ACAGCCTCACTTCTAACCTCTGGAAACCCGCCACACACTGCCAAGCTCACTATTGAATCC
 51 +-----+-----+-----+-----+-----+-----+-----+-----+-----+
 TGTCGGAGTGAAGATTGGAAGACCTTGGGGGGCTGGTACGGFTGAGSTGATAACTTGG
 a T A S L L T F W N F P T T T A K L T I E S -

 ACGCCGTTCAATGTGCCAGAGGGGAAGGGAGGTCTTCTACTTGTCACAATCTGCCAG
 121 +-----+-----+-----+-----+-----+-----+-----+-----+-----+
 TCGGGCAAGTTACAGCGTCCTCCCTCTCCACDGAAGATGAACAGGTGTTAGACGGGTC
 a T P F N V A E G K E V L L L V S N L P Q -

 CATCTTTGGCTACAGCTGGTACAAAGGTGAAAGACTGGATGCCAACCGTCAAATTATA
 181 +-----+-----+-----+-----+-----+-----+-----+-----+-----+
 CTAGAAAAAACCGATGTCGACCATGTTCCACTTCTCACCTACCGTGGCAGTTAAATAT
 a B L F G Y S W Y K G S R V D G N R Q I I -

 CGATATGTTATAGGAACCTCAACAGCTACCCAGSGCCCGCATACACTCGTCGAGAGATA
 241 +-----+-----+-----+-----+-----+-----+-----+-----+-----+
 CCTATACATTTATCCCTGAGTTCTCGATGGGTCCCGGCTATGTCACCAAGCTCTAT
 a G Y V I G T Q Q A T P G P A Y S G R E I -

 ATATAACCCCAATGCATCCCTGGTGTGATCCAGAACATCCTCCAGAACATGACACAGGATTCTAC
 301 +-----+-----+-----+-----+-----+-----+-----+-----+-----+
 TATATGGGGTTACGTAGGGACCACTAGGTCTTGTAGTAGGTCTTACTGTGTCTAAGATG
 a I Y P N A S L L I Q N I I Q N D T G F Y -

 ACCCTACACGTCTAAAGTCAGATCTTGTGAATGAAGAACGAACTGGCCAGTTCCGGTA
 361 +-----+-----+-----+-----+-----+-----+-----+-----+-----+
 TGGGATGTCAGTTCTAGTCTAGAACACTTACTTCTCGTGTGACCGGTCAAGCCGAT
 a T D H V I K S D L V N E S A T G Q F R V -

 TACCCGGAGCTGCCAACGCCCTCCATCTCCAGCAACRACTCCRAACCGCTGGAGGACAAG
 421 +-----+-----+-----+-----+-----+-----+-----+-----+-----+
 ATGGGCCTCGACGGGTTGGGGAGGTACAGCTCGTTGTGAGGTTGGCACCTCTGTTC
 a Y P E L P K P S I S S N N S K P V E D K -

 GATGCTGTCGGCTTACCTGTCAACCTGAGACTCAGGACGCAACCTAACCTGTGTCGGTA
 481 +-----+-----+-----+-----+-----+-----+-----+-----+-----+
 CTACGACACCCGGAACTGGACACTGGACTCTGAGTCCTGGCTTGGATGGCACACCACCAT
 a D A V A F T C S P E T Q S A T Y L W W V -

 AACAAATCGAGGCTCCCGGTCACTGCAACCTGAGACTCAGGACGCAACCTAACCTGTC
 541 +-----+-----+-----+-----+-----+-----+-----+-----+-----+
 TTGGTAGTCGGAGGCCAGTCAGGCTCGACGCTGACAGGTTACCGTGTGTCCTGGAG
 a N N Q S L P V S P R L Q L S N G N R T L -

 ACTCTATTCAATGTCACAAAGAAATGACACAGCAASCTACAAATCTGAAACCCRGAAACCA
 601 +-----+-----+-----+-----+-----+-----+-----+-----+-----+
 TGAGATRACTTACACTCTTACTGTGTCGGTACACTTGGGTCTTGGAG
 a T L F N V T R N D T A S Y K C E T Q N P -

 CTGAGTGCAGGCCAGTCAGTCATCTGTGAAATGTCCTCTATGGCCGGATGCC
 661 +-----+-----+-----+-----+-----+-----+-----+-----+-----+
 CACTCACGCTCCCGTCACTAACGTCAGTAGGACTTACAGGAGATAACCGGGCTAAGGGGG
 a V S A R R S D S V I L N V L Y G P D A E -

10/11

FIGURE 8 (CONT'D)

ACCAATTCCTCTAAACACATTACAGATCAGGGAAATCTGAACCTCTCCAC
 721 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 780
 TGGTAAAGGGAGATTGTGAGAATGTCTAGTCCCTTTAGACTTGAGAGGACCGTC

 a T I S P L N T S Y R S G E N L N L S C H -

 GCAGCCCTCTAACCCACCTGCACAGTACTCTGGTTCTCAATGGACTTTCCAGCAATCC
 781 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 840
 CGTCGGAGATTGGGTGGACGTTCATGAGAACCAACAGTTACCCCTGAAAGCTGTTAGG

 a A A S N P P A Q Y S W F V N G T F Q Q S -

 ACCCAACAGCTCTTATCCCCAACATCACTGTGATAATAGTGGATCCCTATACGTGCACAA
 841 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 900
 TGGGTTCTCGAGAAATAGGGCTGTAGTGCACACTTATTATCACCTAGGATATGCACGGTT

 a T Q E L F I P N I T V N N S G S Y T C Q -

 GCCCATTAACCTCACAGACACTGGCCTCAATAGGACCACAGTCACGACGATCACAGTCATGAG
 901 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 960
 CGGGTATTCACTCTGTGACGGAGTTATCTGGTGTAGTGTGCTAGTGTAGATAC

 a A H N S D T G L N R T T V T T I T V Y S -

 CCACCCRAACCCCTTCATCACCAAGCAACAACCTCAACCCCGTGGAGGATGAGGATGCTGTA
 961 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1020
 GGTTGGTTGGGAAGTAGTGGCTGTTGAGGTTGGGACCTCTACTCCACGACAT

 a P P K F F I T S N N S N P V E D E D A V -

 GCCTTAACCTGTGAAACCTGAGATTCAAGAACACAAACCTACCTGTGGTGTAAATATCAG
 1021 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1080
 CGGAATTGGACACTGGACTCTAAGTCTGTGTTGACACCCATTTATTAGTC

 a A L T C E S E I Q N T T Y L W W V N N Q -

 AGCCCTCCGTCAGTCCCAGGCTGCAGCTGTCAATGACAACAGGACCCACTCTACTC
 1081 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1140
 TCGGAGGGCCACTCAGGSTCGACCTCGACAGTTACTGTTCTGGACTGAGATGAG

 a S L P V S P R L Q L S N D N R T L T L L -

 AGTGTCAACAGGATCATGTGGACCCCTATGAGTGTGAAATCCAGAACGAAATTAGTGT
 1141 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1200
 TCACACTGTTCTTACTACATCTGGATACTCACACCTTGGCTTGTAAATTCAACAA

 a S V T R N D V G P Y E C G I Q N B L S V -

 GACCAACAGGACCCAGTCATCTGAATGTCTCTATGGCCCGAGCGACCCACCCATTCC
 1201 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1260
 CTGGTGTGCTGGCTCAGTAGGACTTACAGGAGATACCGGGCTGCTGGGTGGTAAAGG

 a D H S D F V I L N V L Y G P S S P T I S -

 CCCTCATACACCTTACCGTCCAGGGGTGAACTCAGCTCTCTGCCTGCAAGCCCTCT
 1261 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1320
 GGGAGTATGTGATAATGGCGGGCCACCTTGGAGTGGAGGACGGTACGCTGGAGA

 a P S Y T Y Y R P G V N L S L S C H A A S -

 AACCCACCTGCACAGTATTCTGGCTGATTGATGGAAACATCCAGCAACACACAGAG
 1321 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1380
 TTGGGTGGACGTTGTCAAGAACCGACTRACTACCCCTGTAGGCTCTGTGTGTTCTC

 e N P P A Q Y S W L I D G N I Q Q H T Q S -

 CTCTTATCTCCAACATCACTGAGGAGAACAGCGACTCTATAACCTCCAGGCCATAAC
 1381 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1440
 GAGAAATAGAGGTTGTAGTGTACTCTTGTGCGCTGAGATATGGACCCGTCGGTTATG

 a L F I S N I T E K N S G L Y T C Q A N N -

SUBSTITUTE SHEET (RULE 26)

11/11

FIGURE 8 (CONT'D)

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

In national Application No

PCT/CA 00/01253

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 A61K39/00 A61P35/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

MEDLINE, CANCERLIT, LIFESCIENCES, EMBASE, SCISEARCH, EPO-Internal, BIOSIS, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 97 47271 A (GUO YAJUN) 18 December 1997 (1997-12-18) page 23, line 14 -page 24, line 22 ----- RAO V S ET AL: "PARTIAL CHARACTERIZATION OF TWO SUBPOPULATIONS OF T-4 CELLS INDUCED BY ACTIVE SPECIFIC INTRALYMPHATIC IMMUNOTHERAPY IN MELANOMA PATIENTS" PROCEEDINGS AMERICAN ASSOCIATION FOR CANCER RESEARCH ANNUAL MEETING, vol. 27, 1986, page 325 XP000990377 ISSN: 0197-016X the whole document ----- -/-	1-3,15, 16
X		1,2,16

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

Z document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

16 March 2001

26/03/2001

Name and mailing address of the ISA

European Patent Office, P.O. 5618 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2046, Tx: 31 651 epo NL
Fax: (+31-70) 340-3016

Authorized officer

Covone, M

INTERNATIONAL SEARCH REPORT

International Application No

PCT/CA 00/01253

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	MACKENSEN ANDREAS ET AL: "Homing of intravenously and intralymphatically injected human dendritic cells generated in vitro from CD34+ hematopoietic progenitor cells." CANCER IMMUNOLOGY IMMUNOTHERAPY, vol. 48, no. 2-3, May 1999 (1999-05), pages 118-122, XP000990346 ISSN: 0340-7004 the whole document -----	1-19
A	IRVINE KARI R ET AL: "Recombinant virus vaccination against "self" antigens using anchor-fixed immunogens." CANCER RESEARCH, vol. 59, no. 11, 1 June 1999 (1999-06-01), pages 2536-2540, XP002161590 ISSN: 0008-5472 the whole document -----	1-19

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l. Application No

PCT/CA 00/01253

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9747271	A 18-12-1997	AU 727955	B	04-01-2001
		AU 4228397	A	07-01-1998
		CA 2258082	A	18-12-1997
		CN 1221349	A	30-06-1999
		EP 0956046	A	17-11-1999
		JP 11514666	T	14-12-1999