BACHELOR OF COMPUTER SCIENCE AND ENGINEERING EXAMINATION, 2016

(2nd Year, 1st Semester)

DIGITAL CIRCUITS

Time: Three Hours Full Man		s: 100	
		Answer any five questions.	
1.	a) b) c)	and the first recovery current.	8 4 8
2	/	Explain the operation of a TTL gate. Estimate the no-load Power Supply Currents of the same. Why do you require open-collector gates?	12 4 4
3.	b)	Explain the operation of an n-MOS Inverter. How can the NAND and NOR gates be implemented using n-MOS FET? Estimate the rise time of an n-MOS gate.	8 4 8
4.	b)	With the help of a block diagram explain the operations of a 555 IC-Timer chip. How can you connect the same for generating a clock? Deduce the expressions for frequency and duly cycle for the same. How can a clock with 50% duly cycles be generated?	6 4 6 4
5.	a) b)	With the help of a circuit diagram explain the operations of a bipolar memory cell using two dimensional selection technique. How the same may be implemented by using MOS FET?	10 10
6.	a) b) c)	Explain the operation of a R-2R Ladder Type DAC. How can the effect of R_L be eliminated? What will be the modified output? What are its relative merits and demerits?	10 2+4 4
7.	a) b) c)	Explain the operation of a 3-bit direct comparison type ADC. Design the encoder circuit. How can a 6-bit ADC be implemented using 3-bit ADC's?	8 4 8
8.	Wı	rite notes on any four of the following:	4x5
	a) b) c) d) e) f) g)	HTL gates; Tristate gates; C-MOS gates; Frequency Multiplication; EPROM's; 1's complement DAC; Sample/Hold circuits; Analog Multiplexers.	=20