A Mini-Project Report on

BREADTH FIRST TRAVERSAL

Submitted in III Semester

Bachelor of Engineering

Ι'n

Computer Science and Engineering

Submitted by

SHETTY PREETHIK LAXMAN	1DS17CS081
SATHVIK TN	1DS17CS101
SHRAVANAKUMAR BAJANTRI	1DS17CS106
SHREESHA MG	1DS17CS107

Under the guidance of SAHANA DAMALE, Asst. Professor, Dept. of CSE, DSCE

2018-2019

Department of Computer Science and Engineering,
DAYANANDA SAGAR COLLEGE OF ENGINEERING
BANGALORE – 560078

BFS OF A BINARY TREE

SYNOPSIS:

The project mainly deals with breadth-first traversing of the nodes of a tree. This is used to searching of a tree or graph data structures.

Breadth first search (BFS) is a traversing algorithm where you start traversing from a selected node (source or starting node) and traverse the tree layer-wise, thus exploring the neighbor nodes (nodes which are directly connected to source node). We move towards the next-level neighbor nodes.

Breadth first search (BFS) is an algorithm for traversing or searching tree or graph data structures. It starts at the tree root (or some arbitrary node of a graph, sometimes referred to as a 'search key'), and explores all of the neighbor nodes at the present depth prior to moving on to the nodes at the next depth level.

TABLE OF CONTENTS

- 1 Introduction
- 2 Design and Implementation
- 3 Result
- 4 Conclusion & Analysis
- 5 References

INTRODUCTION:

Breadth-first search (BFS) is a method for exploring a tree or graph. In a BFS, you first explore all the nodes one step away, then all the nodes two steps away, etc. Breadth-first search is like throwing a stone in the center of a pond. The nodes you explore "ripple out" from the starting point.

Here's a how a BFS would traverse this tree, starting with the root:

We'd visit all the immediate children (all the nodes that are one step away from our starting node):

Then we'd move on to all those node's children (all the nodes that are two steps away from our starting node):

And so on, until we reach the end. Breadth-first search is often compared with depth-first search.

IMPLEMENTATION:

The traversing will start from the source node(root) and push(enqueue) root to queue.

According to the fig, implementation is explained here.

Step 1:

- Root 10 will be popped from the queue and printed.
- Children of root i.e. 20 and 30 will be traversed and enqueued to queue.
- 10 is marked as 'visited'.

Step 2:

- 20 is popped from the queue.
- Children of 20 i.e. 40 and 50 are traversed and enqueued to queue.
- 20 is marked as 'visited'.

Step 3:

- 30 is popped from the queue.
- Children of 30 i.e. 60 is traversed.
- 30 is marked as 'visited'.

Step 4:

- 40 is popped from the queue.
- Since there are no children, there will be no enqueue.
- 40 is marked as 'visited'.

Step 5:

- 50 will be popped from the queue.
- Since there are no children, there will be no enqueue.
- 50 is marked as 'visited'

Step 6:

- 60 is popped from the queue
- Since there are no children, there will be no enqueue.
- 60 is marked as 'visited'

The queue is empty and it comes out of the loop. All the nodes have been traversed by using BFS.

RESULT:

```
Enter the number of node
5
Enter the nodes:
20 30 10 70 50
BFS traversal of the given tree is:
20 30 10 70 50 _
```

ANALYSIS/CONCLUSIONS:

This project deals with BFS where you should start traversing from a selected node (source or starting node) and traverse the tree layer-wise thus exploring the neighbor nodes (nodes which are directly connected to source node). We move towards the next-level neighbor node.

REFERENCES:

- 1 www.hackerearth.com
- 2 www.interviewcake.com
- 3 www.wikipedia.org

