

Machine Learning I

Random Forests

August 8th 2020

Supervised

Unsupervised

Labelled Data

Туре	Name				
Linear	Linear Regression				
Linear	Logistic Regression				
Survival	Cox Proportional Hazard				
Tues bessel	Random Forest				
Tree-based	Gradient Boosting				
Neural Network	Neural Networks				

Туре	Name				
Linear	Linear Regression				
	Logistic Regression				
Survival	Cox Proportional Hazard				
Tues based	Random Forest				
Tree-based	Gradient Boosting				
Neural Network	Neural Networks				

Let's Build an Orange Classifier!

citrus?

sweet?

weight?

fruit	citrus
1	yes
2	yes
3	yes
4	yes
5	yes
6	yes

fruit	citrus	sugar
1	yes	10
2	yes	11
3	yes	7
4	yes	10
5	yes	6
6	yes	5

fruit	citrus	sugar	weight
1	yes	10	130
2	yes	11	115
3	yes	7	120
4	yes	10	200
5	yes	6	190
6	yes	5	123

fruit	citrus	sugar	weight	orange
1	yes	10	130	1
2	yes	11	115	1
3	yes	7	120	1
4	yes	10	200	0
5	yes	6	190	0
6	yes	5	123	0

A Bad Question

Is it a citrus fruit?

A Better Question

Is sugar >= 10g

A Much Better Question

Is weight < 150g

Stack the Questions

YES

Is sugar >= 7g

N(

Decision Tree

YES

NO

Is sugar >= 7g

 $\mathcal{N}($

Decision Tree

YES

Is sugar >= 7g

YES

N(

Which questions should you ask first?

Randomness

Pure! (e=0)

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

A measure of randomness!

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Go through each class and add

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Proportion of fruits in each class * log2 proportion of fruits in each class

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

(-prop(oranges)*log2(prop(oranges))

+

(-prop(grapefruits)*log2(prop(grapefruits))

Decision Trees

Is it a citrus fruit?

$$(3/6)x-\log 2(3/6) + (3/6)x-\log 2(3/6)$$

=1

Decision Trees

$$(\frac{2}{3})x-\log_2(\frac{2}{3}) + (\frac{1}{3})x-\log_2(\frac{1}{3})$$

$$=0.92$$

$$(\frac{2}{3})x-\log_2(\frac{2}{3}) + (\frac{1}{3})x-\log_2(\frac{1}{3})$$

$$= 0.92$$

Decision Trees

Is weight < 150g

$$(\frac{3}{4})x - \log_2(\frac{3}{4}) + (\frac{1}{4})x - \log_2(\frac{1}{4})$$

= 0.81

$$(2/2)x-log2(2/2)$$

= ()

Weight Sugar Citrus

Larger dataset?

Many more questions!

fruit	citrus	sugar	weight	Col in	Col out	pit	seeds	round	soft	orange
1	yes	10	130	yellow	yellow	yes	no	yes	yes	0
2	yes	11	115	orange	orange	no	yes	no	no	1
3	yes	7	120	red	green	no	yes	no	yes	0
4	yes	10	200	yellow	yellow	no	no	no	no	0
5	yes	6	190	white	yellow	no	yes	yes	no	0
6	yes	5	123	green	green	no	no	no	no	0

Many more questions!

Multiple trees!

Many more columns!

Tree #1

weight
130
115
120
200
190
123

pit	seeds
yes	no
no	yes
no	yes
no	no
no	yes
no	no

orange
0
1
0
0
0
0

Many more columns!

citrus	sugar
yes	10
yes	11
yes	7
yes	10
yes	6
yes	5

Col out
yellow
orange
green
yellow
yellow
green

Tree #2

orange
0
1
0
0
0
0

Many more columns!

Tree #3

Col in
yellow
orange
red
yellow
white
green

round	soft	orange
yes	yes	0
no	no	1
no	yes	0
no	no	0
yes	no	0
no	no	0

Wisdom of the crowds!

Random Forest Parameters

max_depth	n_estimators
Maximum number of questions asked for each branch	Number of trees to grow.

Random Forest Implementation

Python Exercise

Model Training

Parameter Tuning

Model

Maximize Performance

Classification Assessment

 \uparrow \rightarrow

TEST MODEL

Confusion Matrix

		Predicted Class	
		No	Yes
Observed Class	No	TN	FP
	Yes	FN	TP

TN	True Negative
FP	False Positive
FN	False Negative
TP	True Positive

Model Performance

Accuracy	= (TN+TP)/(TN+FP+FN+TP)		
Precision	=TP/(FP+TP)		

Sensitivity = TP/(TP+FN)

Specificity = TN/(TN+FP)

3- Split to Train and Test

(398,) (171,)

```
#split the data to 70% train and 30% test
x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.3,random_state=42)

print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)

(398, 30)
(171, 30)
```


4- Train your model: Random Forest

```
rf_model = RandomForestClassifier(max_depth=3,n_estimators=15)  #define the model
rf_model.fit(x_train, y_train)  #fit the model (train)
rf_model.score(x_train,y_train)  #predict on new observations
```

#what is the accuracy of this model?

0.9849246231155779