次の問8は必須問題です。必ず解答してください。

問8 次のプログラムの説明及びプログラムを読んで、設問1~3に答えよ。

事務計算においては、数値を見やすく表示(印字)するために、例えば3桁ごとに 区切りの","を挿入するなどの編集処理がよく行われる。

関数 Edit は,指定された編集パターンに従って,数値を編集するプログラムである。表 1 に,関数 Edit を用いた編集例を示す。例 1 では,3 桁ごとに区切りの","を挿入している。例 2 では,例 1 の編集に加え,上位の空いた桁を"*"で埋めている。例 3 では,数値の右端から 2 桁目と 3 桁目の間に"."を挿入している。

編集パターン 例1 例 2 例3 "_00,000" "*00,000" "_00**■.** 00" "____123" "___1, 23" "****123" 123 1234 "__1, 234" "**1, 234" "__12.34" "_12, 345" "*12, 345" "_{_}123, 45" 12345

表 1 関数 Edit を用いた編集例

ここで、編集パターン中の文字 "□" 及び "■" は、数字と対応付けされた制御文字 を表している。また、"□" は空白文字を表している。

〔プログラムの説明〕

(1) 関数 Edit は、次の形式で呼び出され、二つの引数をもつ。

関数: Edit(文字型: Pattern[], 文字型: Value[])

Pattern[] には,編集パターンの文字列が格納されている。Value[] には,編集する数値を表す文字列が格納されている。各配列の添字は,0 から始まる。文字列Pattern[] の i 番目の文字は Pattern[i - 1] と表記する。文字列 Value[] についても同様である。

- (2) Pattern[]は,1 文字以上から成る文字列であって,表示可能な図形文字及び制御文字("□"及び"■")から構成される。
- (3) Value[]は,数値を表す文字列であって,数字 "0" ~ "9"の並びの後に,数値が正又は 0 なら "+"を,負なら "-"を付加した形式である。数字の個数は,Pattern[]中の文字 "□"及び "■"の個数と一致するように,必要であれば前方に "0"を付加する。例えば,Pattern[]の内容が "*□□,□■□"のとき,Value[]には,数値が123なら "00123+",0なら "00000+", -123なら "00123-"を指定する。
- (4) 関数 Edit は、Value[]で与えられた数値を Pattern[]に従って編集し、編集結果で Pattern[]を置き換える。

[編集方法]

Pattern[] 中の各文字について、先頭から順に 1 文字ずつ、次の ① \sim ③ のいずれか一つの操作を実行していく。

- ① 関数 Edit が呼び出されたときの Pattern[] 中の先頭の文字(以下, fill 文字という)で置き換える。
- ② Value[]中の対応する桁の数字で置き換える。
- ③ 置き換えないで、そのまま残す。
- (5) 論理型変数 signif は, on 又は off の値を取る。この変数の実行開始時の値は off であり、Value[]中に最上位から"0"が連続した後に"0"でない数字が見つ かると on になる、などの使い方をする。
- (6) 関数 Edit が呼び出されるとき、各引数には正しい値が設定されているものとする。

〇関数: Edit(文字型: Pattern[], 文字型: Value[])

○文字型: fill ○論理型: signif ○整数型: p, v

fill ← Pattern[0]

signif ← off

• v ← 0

表 2 現在の変数・配列要素の内容に応じた更新処理

	現在の	更新処理				
ケース	Pattern[p]	signif	Value[v]	Value[v+1]	Pattern[p]	signif
1	"D"	off	"0"		fill 文字	off
2	" " "	off	"0"	"+"以外	fill 文字	on
3	" I "	off	"0"	"+"	fill 文字	off
4	"□"又は"■"	off	"1" ~ "9"	"+" 以外	Value[v]	on
5	"□"又は"■"	off	"1" ~ "9"	"+"	Value[v]	off
6	"□"又は"■"	on	"0" ~ "9"	"+" 以外	Value[v]	on
7	"□"又は"■"	on	"0" ~ "9"	"+"	Value[v]	off
8	"□"と"■"以外	off			fill 文字	off
9	"□"と"■"以外	on			そのまま残す	on

注記 網掛け部分は,内容を判定しない。

設問1 次の記述中の に入れる正しい答えを、解答群の中から選べ。

引数 Pattern[] 及び Value[] に幾つかのデータを与えて、関数 Edit を実行した結果を、表3に示す。

表3 関数 Edit の実行結果

実行前	実行後の内容	
Pattern[]	Value[]	Pattern[]
"JJ00, 000"	"01234+"	"1, 234"
"*00,000#"	"00000+"	а
"*000.00#"	"00012-"	b
"*DO I . DO#"	"00012+"	С

aに関する解答群

ウ "*****0#" エ "*****0*"

b, cに関する解答群

ア "****12#" イ "****12*"

ウ "****.12#" エ "****.12*"

才 "***0.12#" 力 "***0.12*"

設問2 次の記述中の に入れる正しい答えを、解答群の中から選べ。

プログラム中の破線で囲んだ部分の処理(表2のケース1~7の処理)を,詳 細なプログラムとして記述すると,次のようになる。

d, eに関する解答群

ア "1" ≦ Value[v] and Value[v] ≦ "9"

イ Value[v] = "0"

ウ Value[v + 1] = "-"

工 Value[v + 1] = "+"

オ Value[v + 1] ≠ "-"

カ Value[v + 1] ≠ "+"

設問3	次の記述中の	に入れる正しい答えを,	解答群の中から選べ
DC [FI] C	のくのとに対していて	に入れる正しい合えて、	件合件の下かり送、。

関数 Edit では、例えば、fill 文字を"」"とする編集パターンを指定することによって、数値が正なら"」」1,234」"、負なら"」」1,234-"と編集することができる。表 2 のケース $1\sim7$ のうち、数値が正なら数値の後に続く文字を fill 文字で置き換えるために用意されたケースは f である。

fに関する解答群

ア 2,4及び7

イ 3,5及び7

ウ 4及び7

エ 5及び7