MATH101 ASSIGNMENT 3

MARK VILLAR

$$\begin{array}{ll} \text{(1)} & \text{(a)} \ \, \bar{z}=7 \ \text{and} \ \, |z|=7 \\ & \text{(b)} \ \, \bar{z}=\sqrt{3}-i \ \text{and} \ \, |z|=\sqrt{3+1}=2 \\ & \text{(c)} \ \, z=\frac{2+i}{2-i}\times\frac{2+i}{2+i}=\frac{4+4i+i^2}{4+1}=\frac{3+4i}{5}=\frac{3}{5}+\frac{4}{5}i \\ & \bar{z}=\frac{3}{5}-\frac{4}{5}i \ \text{and} \ \, |z|=\sqrt{\frac{9}{25}+\frac{16}{25}}=1 \\ & \text{(d)} \ \, z=(i^2)^2=(-1)^2=1 \\ & \bar{z}=1 \ \, \text{and} \ \, |z|=1 \\ & \text{(e)} \ \, z=2^3-3(2)^2(3i)+3(2)(3i)^2-(3i)^3=8-36i-54+27i \\ & z=-46+9i \ \, \text{and} \ \, \bar{z}=-46-9i \\ & |z|=\sqrt{2116+81}=13\sqrt{13} \\ & \text{(f)} \ \, z=\frac{2^3+3(2)^2(3i)+3(2)(3i)^2+(3i)^3}{5^3-3(5)^2(2i)+3(5)(2i)^2-(2i)^3}=\frac{8+36i-54-27i}{125-150i-60+8i}=\frac{-46+9i}{65-142i} \\ & z=\frac{-46+9i}{65-142i}\times\frac{65+142i}{65+142i}=\frac{-2990-6532i+585i+1278i^2}{4225+20164}=\frac{-4268-5947i}{24389} \\ & z=-\frac{4268}{24389}-\frac{5947}{24389}i \ \, \text{and} \ \, \bar{z}=-\frac{4268}{24389}+\frac{5947}{24389}i \\ & |z|=\sqrt{\left(\frac{4268}{24389}\right)^2+\left(\frac{5947}{24389}\right)^2}=\sqrt{\frac{2197}{24389}} \ \, \text{or} \\ & |z|=\sqrt{\frac{46^2+9^2}{65^2+142^2}}=\sqrt{\frac{2116+81}{4225+20164}}=\sqrt{\frac{2197}{24389}} \\ & \text{(g)} \ \, z=\frac{(3+i)-(1-i)}{(1-i)(3+i)}=\frac{2+2i}{3+i-3i-3i-2}=\frac{2+2i}{4-2i} \\ & z=\frac{2+2i}{4-2i}\times\frac{4+2i}{4+2i}=\frac{8+44i+8i+4i^2}{16+4}=\frac{4+12i}{20}=\frac{1}{5}+\frac{3}{5}i \\ & \bar{z}=\frac{1}{5}-\frac{3}{5}i \ \, \text{and} \ \, |z|=\sqrt{\frac{1}{25}+\frac{9}{25}}=\frac{\sqrt{10}}{5} \end{array}$$

(2) In order for f to be a well-defined function, we must have $x \geq 0$ (since we cannot take the square root of a negative number in \mathbb{R}). Hence, the maximum subset is $X_f \subseteq [0,\infty) := \text{dom}(f) = \{x \in \mathbb{R} \mid x \geq 0\} := \mathbb{R}_0^+$

For
$$X_g$$
 we must have $x^2 - 1 \ge 0$ or equivalently, $|x| \ge 1$. This implies $X_g \subseteq (-\infty, -1] \cup [1, \infty) := \text{dom}(g) = \{x \in \mathbb{R} \mid x \le -1 \text{ or } x \ge 1\}.$

For X_h we must have $x \geq 1$. This is because g and h differ only by their codomains, with $\operatorname{codom}(h)$ restricted to \mathbb{R}_0^+ . So by deduction, we find $X_h \subseteq [1, \infty) := \operatorname{dom}(h) = \{x \in \mathbb{R} \mid x \geq 1\}.$

As square roots take only non-negative values in \mathbb{R} , the range (or image) of the functions f, g and h are all $\{x \in \mathbb{R} \mid x \geq 0\} := \mathbb{R}_0^+$.

$$f \circ g : \operatorname{im}(g) = \operatorname{dom}(f) = \{x \in \mathbb{R} \mid x \ge 0\}$$

$$f \circ h : \operatorname{im}(h) = \operatorname{dom}(f) = \{x \in \mathbb{R} \mid x \ge 0\}$$

$$g \circ f : \operatorname{im}(f) \ne \operatorname{dom}(g) \Leftrightarrow \{x \in \mathbb{R} \mid x \ge 0\} \ne \{x \in \mathbb{R} \mid x \le -1 \text{ or } x \ge 1\}$$

$$h \circ f : \operatorname{im}(f) \ne \operatorname{dom}(h) \Leftrightarrow \{x \in \mathbb{R} \mid x \ge 0\} \ne \{x \in \mathbb{R} \mid x \ge 1\}$$

Of the four compositions above, only $f \circ g$ and $f \circ h$ are defined.

$$f \circ g : X_g \to \mathbb{R}, \quad x \mapsto f(g(x)) = f(\sqrt{x^2 - 1}) = \sqrt{\left(\sqrt{x^2 - 1}\right)} \text{ where}$$

$$\operatorname{dom}(f \circ g) = \operatorname{dom}(g) := \left\{x \in \mathbb{R} \mid x \leq -1 \text{ or } x \geq 1\right\}$$

$$\operatorname{codom}(f \circ g) = \operatorname{codom}(f) := \mathbb{R}$$

$$\operatorname{im}(f \circ g) = \operatorname{im}(g) := \left\{x \in \mathbb{R} \mid x \geq 0\right\}$$

$$f \circ h : X_h \to \mathbb{R}, \quad x \mapsto f(h(x)) = f(\sqrt{x^2 - 1}) = \sqrt{\left(\sqrt{x^2 - 1}\right)} \text{ where}$$

$$\operatorname{dom}(f \circ h) = \operatorname{dom}(h) := \left\{x \in \mathbb{R} \mid x \geq 1\right\}$$

$$\operatorname{codom}(f \circ h) = \operatorname{codom}(f) := \mathbb{R}$$

$$\operatorname{im}(f \circ h) = \operatorname{im}(h) := \left\{x \in \mathbb{R} \mid x \geq 0\right\}$$

(3) (a) We must have $x \neq -1$ for f to be a function (since we cannot divide by 0). Thus, the maximum subset is $X := \{x \in \mathbb{R} \mid x \neq -1\}$ and the function $f: X \to \mathbb{R}, \quad x \mapsto \frac{1}{1+x}$ has $\operatorname{im}(f) = \{x \in \mathbb{R} \mid x \neq 0\}$.

Clearly, f is not surjective since $\operatorname{codom}(f) \neq \operatorname{im}(f)$, as there is no $x \in \mathbb{R}$ such that f(x) = 0. We give the following proof below.

Let y be in the codomain \mathbb{R} . We must find an x in the domain X such that $f(x) = \frac{1}{1+x} = y$. Solving for x, we find $x = \frac{1-y}{y}$ where $y \neq 0$. Thus, there is no $x \in \mathbb{R}$ which satisfies f(x) = 0.

However, the function is injective because f(x) = f(x') if and only if x = x'. We show this by direct proof. Assume f(x) = f(x'). That is, $\frac{1}{1+x} = \frac{1}{1+x'}$. Hence, 1 + x = 1 + x' and x = x'. Hence, f is injective.

Geometrically, this means every horizontal line intersects the graph of f in at most one point.

(b) If we write $\sqrt{x^4-x^2}$ in factorised form, $\sqrt{x^2(x^2-1)}$, then we must have $|x| \geq 1$ or x=0 for f to be a function. Thus, $X:=\{x\in\mathbb{R}\mid |x|\geq 1 \text{ or } x=0\}$ and $f:X\to\mathbb{R}, \ x\mapsto \sqrt{x^4-x^2}$ has $\operatorname{im}(f)=\{x\in\mathbb{R}\mid x\geq 0\}$.

Again, f is not surjective since $\operatorname{codom}(f) \neq \operatorname{im}(f)$, as there is no $x \in \mathbb{R}$ such that f(x) < 0. The function is also not injective and we prove this by contradiction.

Assume f(x) = f(x') such that $\sqrt{x^4 - x^2} = \sqrt{x'^4 - x'^2}$. Hence, $x^4 = x'^4$ and $x^2 = x'^2$. Observe that one solution to either equation is x = 2 and x' = -2. Hence, we have the following counterexample to f being injective. Suppose x = 2 and x' = 2, then

$$f(x) = f(2) = \sqrt{2^4 - 2^2} = \sqrt{16 - 4} = \sqrt{12}$$

$$f(x') = f(-2) = \sqrt{(-2)^4 - (-2)^2} = \sqrt{16 - 4} = \sqrt{12}$$

but $x \neq x'$. Thus f is neither injective nor surjective.

(c) For f to be a well-defined function, the maximum subset X is the set of all real numbers \mathbb{R} . So the function $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^3 - 13$ has $\operatorname{im}(f) = \mathbb{R}$.

This function is surjective since $\operatorname{codom}(f) = \operatorname{im}(f)$. In other words, its range coincides with its codomain. Geometrically, this means that every horizontal line intersects the graph of f in one or more points. In this particular case, each horizontal line intersects f exactly once.

It is also injective because f(x) = f(x') if and only if x = x'. Again, we assume f(x) = f(x') such that $x^3 = x'^3$. By taking cube roots, we find x = x'. Hence, f is injective.

Moreover, f is bijective.

(4) Let $\varepsilon > 0$ be given. Then we must find a number, $\delta > 0$, such that $|x| < \delta$ guarantees $\left|\frac{1}{1+x^2} - 1\right| < \varepsilon$. Algebraic steps yield

$$\left| \frac{1}{1+x^2} - 1 \right| = \left| \frac{1 - (1+x^2)}{1+x^2} \right| = \left| \frac{-x^2}{1+x^2} \right| = \frac{|-x^2|}{|1+x^2|}$$

The term $1+x^2$ is always positive (since $x^2>0$). So $1+x^2=|1+x^2|$. We also know that $|-x^2|=|x^2|=|x||-x|=|x||x|$. Therefore,

$$\left| \frac{1}{1+x^2} - 1 \right| = \frac{|x||x|}{1+x^2} = \frac{|x|}{1+x^2} |x|$$

Now we must estimate the largest value that the term $\frac{|x|}{1+x^2}$ can have for x in an interval centred at 0. We choose arbitrarily $-\frac{1}{2} < x < \frac{1}{2}$ which gives us $|x| < \frac{1}{2}$. Moreover $x^2 < \frac{1}{4}$, which implies $1+x^2 < \frac{5}{4}$ and thus $\frac{1}{1+x^2} < \frac{4}{5}$.

Combining these estimates together yields

$$\frac{|x|}{1+x^2} = |x| \ \frac{1}{1+x^2} < \frac{1}{2} \cdot \frac{4}{5} = \frac{2}{5}$$

and hence,

$$\left| \frac{1}{1+x^2} - 1 \right| = \frac{|x|}{1+x^2} |x| < \frac{2}{5} |x|$$

For this expression to be smaller than ε , we need $|x|<\frac{5}{2}\varepsilon$. Thus, given any $\varepsilon>0$ we have found $\delta=\min\left[\frac{1}{2},\frac{5}{2}\varepsilon\right]$ guarantees $\left|\frac{1}{1+x^2}-1\right|<\varepsilon$ whenever $|x|<\delta$.