Trigonométrie dans le cercle

Table des matières

Ang	gles dans un cercle	
1.1	Cercle trigonométrique	
1.2	Le radian	
1.3	Angles dans le cercle trigonométrique	
Ligi	nes trigonométriques	
2.1	Définitions	
2.2	Tableau des angles remarquables	
Ron	résentation des fonction sinus cosinus et tangente	
	1.1 1.2 1.3 Ligr 2.1 2.2 2.3 2.4	1.1 Cercle trigonométrique

1 Angles dans un cercle

1.1 Cercle trigonométrique

<u>Définition</u> 1: On appelle cercle trigonométrique dans un repère orthogonal direct $(O; \overrightarrow{i}; \overrightarrow{j})$, le cercle de centre O et de rayon 1.

1.2 Le radian

<u>Définition</u> 2 : La radian est une unité de mesure d'un angle comme le degré.

Il est défini comme la longueur de l'arc entre 2 points du cercle unité.

Le demi cercle unité a un longueur de π et donc correspond à un angle de π radian. On a alors : 180° = π rd

La mesure en degré de 1 radian vaut donc :

$$1 \text{ rd} = \frac{180}{\pi} \simeq 57^{\circ}$$

Remarque: Le radian est une grande unité qui n'est pas intuitive contrairement au degré qui est notre unité première.

Avantage: Permet de connaître la longueur d'un arc. Unité du système international

Il est important de connaître les angles remarquables en radian :

Degré	30°	45°	60°	90°
Radian	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$

Exemple: Convertir en radian les angles en degré suivants:

Pour convertir un angle en radian, on utilise la conversion $180^\circ = \pi$ rd, soit pour x degré on a : $\frac{x \pi}{180}$ radian.

On obtient alors:

Degré	15°	36°	75°	120°	135°	150°
Dadian	π	π	5π	2π	3π	5π
Radian	<u>12</u>	5	12	3	$\overline{4}$	6

Exemple : Convertir en degré les angles en radian suivant :

$$\frac{\pi}{8}$$
 , $\frac{7\pi}{12}$, $\frac{5\pi}{18}$, $\frac{11\pi}{6}$

Pour convertir un angle en degré, on utilise la conversion $180^\circ = \pi$ rd, soit pour y radian on a : $\frac{y\,180}{\pi}$ degré.

Radian	$\frac{\pi}{8}$	$\frac{7\pi}{12}$	$\frac{5\pi}{18}$	$\frac{11\pi}{6}$
Degré	22,5°	105°	50°	330°

1.3 Angles dans le cercle trigonométrique

Définition 3 : La mesure d'un angle α repéré par un point M dans le cercle trigonométrique, est la valeur algébrique de la longueur de l'arc AM où A(1;0) Le sens trigonométrique ou direct correspond au sens antihoraire.

On a représenté deux angles α et β dont l'un est positif α et l'autre négatif β .

On remarquera que l'on a indiqué le sens trigonométrique

On peut noter les angles remarquables sur le cercle trigonométrique. Il est important de visualiser l'emplacement des angles pour s'en faire une idée.

Propriété 1 : Un même angle α peut avoir plusieurs mesures.

Si un angle α , repéré par le point M sur le cercle trigonométrique, a comme mesures x et y, alors on a la relation suivante :

 $y = x + k 2\pi$ ou plus simplement $y = x [2\pi] y$ égal x modulo 2π

Exemple: Soit deux mesures sur le cercle trigonométrique d'un même angle:

Sur la figure ci-contre on a tracé deux mesures d'un même angle repéré par un point M.

Par exemple $x = \frac{\pi}{6}$ et $y = -\frac{11\pi}{6}$. En effet :

$$\frac{\pi}{6} - \left(-\frac{11\pi}{6}\right) = \frac{(1+11)\pi}{6} = 2\pi$$

Définition 4 : On appelle **mesure principale** d'un angle α , la mesure x qui se trouve dans l'intervalle $]-\pi;\pi]$

Exemple: Trouver la mesure principale des angles dont les mesures sont : $\frac{17\pi}{4}$ et $-\frac{31\pi}{6}$

 $\frac{17\pi}{4}$ est un mesure trop grande, il faut donc lui enlever un nombre k de tours (2π) pour obtenir la mesure principale :

$$\frac{17\pi}{4} - k2\pi = \frac{\pi(17 - 8k)}{4} = \frac{\pi}{4}$$
 avec $k = 2$

 $-\frac{31\pi}{6}$ est une mesure trop petite, il faut donc lui rajouter un nombre k de tours (2π) pour obtenir la mesure principale :

$$-\frac{31\pi}{6} + k2\pi = \frac{\pi(-31 + 12k)}{6} = \frac{5\pi}{6} \text{ avec } k = 3$$

2 Lignes trigonométriques

2.1 Définitions

Définition S: Soit un angle α repéré par un point M sur le cercle trigonométrique. On appelle :

- $\cos \alpha = \overline{OH}$ projection de M sur l'axe des abscisses
- $\sin \alpha = \overline{OK}$ projection de M sur l'axe des ordonnées
- $\tan \alpha = \overline{AM'}$ intersection de (OM) avec la tangente en A

Remarque: Pour tout réel x, on a:

$$-1 \leqslant \cos x \leqslant 1 \quad \text{et} \quad -1 \leqslant \sin x \leqslant 1$$
$$\cos^2 x + \sin^2 x = 1 \quad \text{et} \quad 1 + \tan^2 = \frac{1}{\cos^2 x}$$

2.2 Tableau des angles remarquables

Comme déjà vu dans le chapitre sur les configurations, voici le tableau à très bien connaître :

Angle	0	$\frac{\pi}{6}$	$rac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$?

2.3 Relations entre deux angles

a) Angles opposés

$$\sin(-\alpha) = -\sin\alpha$$
$$\cos(-\alpha) = +\cos\alpha$$

$$tan(-\alpha) = -tan \alpha$$

On peut constater que les fonctions sinus et tangente sont impaires tandis que la fonction cosinus est paire

b) Angles supplémentaires et opposés supplémentaires

Angles supplémentaires

$$\sin(\pi - \alpha) = +\sin\alpha$$

$$\cos(\pi - \alpha) = -\cos\alpha$$

$$\tan(\pi - \alpha) = -\tan\alpha$$

Angles opposés supplémentaires

$$\sin(\pi + \alpha) = -\sin\alpha$$

$$\cos(\pi + \alpha) = -\cos\alpha$$

$$tan(\pi + \alpha) = + tan \alpha$$

c) Angles complémentaires et opposés complémentaires

Angles complémentaires

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$$

Angles opposés complémentaires

$$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

2.4 Lignes trigonométriques dans le cercle

Voici sur le cercle trigonométrique l'ensemble des lignes trigonométriques des angles remarquables dans le cercle trigonométrique.

Exemple: Calculer le cosinus, le sinus et la tangente des angles suivants:

$$-\frac{\pi}{3} , \frac{5\pi}{6} , \frac{7\pi}{4}$$
• Avec $-\frac{\pi}{3}$

$$\cos\left(-\frac{\pi}{3}\right) = \cos\frac{\pi}{3} = \frac{1}{2}$$

$$\cos\left(-\frac{\pi}{3}\right) - \cos\frac{\pi}{3} - \frac{\pi}{2}$$

$$\sin\left(-\frac{\pi}{3}\right) = -\sin\frac{\pi}{3} = -\frac{\sqrt{2}}{2}$$

$$\tan\left(-\frac{\pi}{3}\right) = -\tan\frac{\pi}{3} = -\sqrt{3}$$

• Avec
$$\frac{5\pi}{6}$$

$$\cos\frac{5\pi}{6} = \cos\left(\pi - \frac{\pi}{6}\right) = -\cos\frac{\pi}{6} = -\frac{\sqrt{3}}{2}$$

$$\sin\frac{5\pi}{6} = \sin\left(\pi - \frac{\pi}{6}\right) = \sin\frac{\pi}{6} = \frac{1}{2}$$

$$\tan\frac{5\pi}{6} = \tan\left(\pi - \frac{\pi}{6}\right) = -\tan\frac{\pi}{6} = -\frac{\sqrt{3}}{3}$$

• Avec
$$\frac{7\pi}{4} = -\frac{\pi}{4}$$
 $[2\pi]$
$$\cos \frac{7\pi}{4} = \cos\left(-\frac{\pi}{4}\right) = \cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

$$\sin\frac{7\pi}{4} = \sin\left(-\frac{\pi}{4}\right) = -\sin\frac{\pi}{4} = -\frac{\sqrt{2}}{2}$$

$$\tan\frac{7\pi}{4} = \tan\left(-\frac{\pi}{4}\right) = -\tan\frac{\pi}{4} = -1$$

3 Représentation des fonction sinus, cosinus et tangente

Les courbes des fonction sinus et cosinus s'appelle des sinusoïdes. Elle sont identiques à une translation près.

La courbe de la fonction tangente n'a pas de nom. On peut remarquer que la fonction tangente n'est pas définie en $\frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$.

