MAT224 Notes

Tianyu Du

January 2018

Info.

Created: January. 9 2018

Last modified: January 16, 2018

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Contents

1	Lecture1 Jan.9 2018			
	1.1	Vector spaces		
	1.2	Examples of vector spaces		
		Some properties of vector spaces		
2	Lecture2 Jan.10 2018			
	2.1	Some properties of vector spaces-Cont'd		
	2.2			
	2.3	Examples of subspaces		
	2.4	Recall from MAT223		
3	Lecture3 Jan.16 2018			
	3.1	Linear Combination		
	3.2	Combination of subspaces		

1 Lecture Jan. 9 2018

1.1 Vector spaces

Definition A $\underline{\text{real}}$ ¹ **vector space** is a set V together with two vector operations vector addition and scalar multiplication such that

1. **AC** Additive Closure: $\forall \vec{x}, \vec{y} \in V, \vec{x} + \vec{y} \in V$

¹A vector space is real if scalar which defines scalar multiplication is real.

- 2. C Commutative: $\forall \vec{v}, \vec{y} \in V, \vec{x} + \vec{y} = \vec{y} + \vec{x}$
- 3. **AA** Additive Associative: $\forall \vec{x}, \vec{y}, \vec{z} \in V, (\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
- 4. **Z** Zero Vector: $\exists \vec{0} \in Vs.t. \forall \vec{x} \in V, \vec{x} + \vec{0} = \vec{x}$
- 5. **AI** Additive Inverse: $\forall \vec{x} \in V, \exists -\vec{x} \in V s.t. \vec{x} + (-\vec{x}) = \vec{0}$
- 6. **SC** Scalar Closure: $\forall \vec{x}, c \in \mathbb{R}, c\vec{x} \in V$
- 7. **DVA** Distributive Vector Additions: $\forall \vec{x}, \vec{y} \in V, c \in \mathbb{R}, c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$
- 8. **DSA** Distributive Scalar Additions: $\forall \vec{x} \in V, c, d \in \mathbb{R}, (c+d)\vec{x} = c\vec{x} + d\vec{x}$
- 9. **SMA** Scalar Multiplication Associative: $\forall \vec{x} \in V, c, d \in \mathbb{R}, (cd)\vec{x} = c(d\vec{x})$
- 10. **O** One: $\forall \vec{x} \in V, 1\vec{x} = \vec{x}$

Note For V to be a vector space, need to know or be given operations of vector additions multiplication and check <u>all</u> 10 properties hold.

1.2 Examples of vector spaces

Example 1 \mathbb{R}^n w.r.t. usual component-wise addition and scalar multiplication.

Example 2 $\mathbb{M}_{m \times n}(\mathbb{R})$ set of all $m \times n$ matrices with real entry. w.r.t. usual entry-wise addition and scalar multiplication.

Example 3 $\mathbb{P}_n(\mathbb{R})$ set of polynomials with real coefficients, of degree <u>less or equal</u> to n, w.r.t. usual degree-wise polynomial addition and scalar multiplication.

Note If define $\mathbb{P}_n^{\star}(\mathbb{R})$ as set of all polynomials of degree <u>exactly equal</u> to n w.r.t. normal degree-wise multiplication and addition.

Then it is **NOT** a vector space.

Explanation:
$$(1+x^n), (1-x^n) \in \mathbb{P}_n^{\star}(\mathbb{R})$$
 but $(1+x^n)+(1-x^n)=2 \notin \mathbb{P}_n^{\star}(\mathbb{R})$

Example 4 Something unusual, define V as

$$V = \{(x_1, x_2) | x_1, x_2 \in \mathbb{R}\}\$$

with vector addition

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1 + 1, x_2 + y_2 + 1)$$

and scalar multiplication

$$c(x_1, x_2) = (cx_1 + c - 1, cx_2 + c - 1)$$

This is a vector space.

1.3 Some properties of vector spaces

Suppose V is a vector space, then it has the following properties.

Property 1 The zero vector is unique. *proof.*

Assume $\vec{0}, \vec{0^{\star}}$ are two zero vectors in V WTS: $\vec{0} = \vec{0^{\star}}$ Since $\vec{0}$ is the zero vector, by Z $\vec{0^{\star}} + \vec{0} = \vec{0^{\star}}$ Similarly, $\vec{0} + \vec{0^{\star}} = \vec{0}$ Also, $\vec{0} + \vec{0^{\star}} = \vec{0^{\star}} + \vec{0}$ by commutative vector addition. So, $\vec{0^{\star}} = \vec{0}$

Property 2 $\forall \vec{x} \in V$, the additive inverse $-\vec{x}$ is unique. *proof.*

Exercise.

Property 3 $\forall \vec{x} \in V, 0\vec{x} = \vec{0}.$ proof.

By property of number 0:
$$0\vec{x} = (0+0)\vec{x}$$

By DSA: $0\vec{x} = 0\vec{x} + 0\vec{x}$
By AI, $\exists (-0\vec{x})s.t.$
 $0\vec{x} + (-0\vec{x}) = 0\vec{x} + 0\vec{x} + (-0\vec{x})$
By AA
 $\implies 0\vec{x} = \vec{0}$

Property 4 $\forall c \in \mathbb{R}, c\vec{0} = \vec{0}$ proof.

Exercise.

2 Lecture 2Jan. 10 2018

2.1 Some properties of vector spaces-Cont'd

Property 5 For a vector space V, $\forall \vec{x} \in V$, $(-1)\vec{x} = (-\vec{x})$. (we could use this property to find the <u>additive inverse</u> with scalar multiplication with (-1)). proof.

$$(-\vec{x})=(-\vec{x})+\vec{0}$$
 By property of zero vector
$$=(-\vec{x})+0\vec{x}$$
 By property3
$$=(-\vec{x})+(1+(-1))\vec{x}$$
 By property of zero as real number
$$=(-\vec{x})+1\vec{x}+(-1)\vec{x}$$

$$=\vec{0}+(-1)\vec{x}$$

$$=(-1)\vec{x}$$

Property 6 For a vector space V, let $\vec{x} \in V$ and $c \in \mathbb{R}$, then,

$$c\vec{x} = \vec{0} \implies c = 0 \lor \vec{x} = \vec{0}$$

proof.

Exercise.

2.2 Subspaces

Loosely A subspace is a space contained within a vector space.

Definition Let V be a vector space and $W \subseteq V$, W is a **subspace** of V if W is itself a vector space w.r.t. operations of vector addition and scalar multiplication from V.

Theorem Let V be a vector space, and $W \subseteq V$, W has the same operations of vector addition and scalar multiplication as in V. Then, W is a subspace of V iff:

- 1. W is non-empty. $W \neq \emptyset$.
- 2. W is closed under addition. $\forall \vec{x}, \vec{y} \in W, \ \vec{x} + \vec{y} \in W$.
- 3. W us closed under scalar multiplication. $\forall \vec{x} \in W, c \in \mathbb{R}, c\vec{x} \in W$.

Proof.

Forward:

If W is a subspace

$$\implies \vec{0} \in W$$

$$\implies W \neq \emptyset$$

Also, additive and scalar multiplication closures \implies (ii), (iii)

Backward:

Let $W \neq \emptyset \land (ii) \land (iii)$

WTS. 10 axioms in definition of vector space hold

 $(ii) \implies \text{Additive Closure}$

 $(iii) \implies$ Scalar Multiplication Clousure

Because $W \subseteq V$, and V is a vector space, so properties hold $\forall \vec{w} \in W$.

Additive inverse: by property 5 and scalar multiplication closure,

$$\forall \vec{x} \in W, -\vec{x} = (-1)\vec{x} \in W.$$

Also, existence of additive identity: $(-\vec{x}) + \vec{x} = \vec{0} \in W$.

2.3 Examples of subspaces

Example 1 Let $V = \mathbb{M}_{n \times n}(\mathbb{R})$, V is a subspace.

Example 2 Define W as

$$W = \{A \in \mathbb{M}_{n \times n}(\mathbb{R}) | A \text{ is } \underline{\text{not}} \text{ symmetric} \}$$

Explanation: Let
$$A_1=\begin{bmatrix}0&-2\\-1&0\end{bmatrix}$$
 and $A_2=\begin{bmatrix}0&2\\1&0\end{bmatrix}$ $A_1,A_2\in W$ but $A_1+A_2=\begin{bmatrix}0&0\\0&0\end{bmatrix}\notin W.$

Example 3 Let $V = \mathbb{P}_2(\mathbb{R})$, is W defined as following,

$$W=\{p(x)\in V|p(1)=0\}$$

a subspace of V?

proof.

WTS: (i)
Let
$$z(x) = 0$$
 or $z(x) = x^2 - 1, \forall x \in \mathbb{R}$

$$\implies W \neq \emptyset$$

WTS: (ii)

Let $p_1, p_2 \in W$, which means $p_1(1) = p_2(1) = 0$

$$\begin{array}{l} (p_1+p_2)(1)=p_1(1)+p_2(1)=0+0=0\\ \Longrightarrow p_1+p_2\in W\\ \Longrightarrow W \text{ is closed under addition.}\\ \text{WTS: (iii) Let }p\in W \text{ and }c\in\mathbb{R}\\ \Longrightarrow p(1)=0\\ \text{Since }(c*p)(x)=c*p(x), \text{ we have }(c*p)(1)=c*p(1)=c*0=0\\ \Longrightarrow cp\in W.\\ \text{So W is a subspace of V.} \end{array}$$

2.4 Recall from MAT223

Let $A \in \mathbb{M}_{m \times n}(\mathbb{R})$, then Nul(A) is a subspace of \mathbb{R}^n and Col(A) is a subspace of \mathbb{R}^m .

3 Lecture 3Jan. 16 2018

3.1 Linear Combination

Definition Let V be a vector space, $\vec{v_1}, \ldots, \vec{v_n} \in V$, $a_1, \ldots, a_n \in \mathbb{R}$ the expression

$$c_1\vec{v_1} + \cdots + c_n\vec{v_n}$$

is called a linear combination of $\vec{v_1}, \ldots, \vec{v_n}$.

Theorem Let V be a vector space, W is a subspace of V, $\forall \vec{w_1}, \dots \vec{w_k} \in W, c_1, \dots, c_k \in \mathbb{R}$, we have

$$c_1\vec{w_1} + \dots + c_k\vec{w_k} \in W$$

Subspaces are <u>closed</u> under linear combinations, since subspaces are closed under scalar multiplication and vector addition.

Theorem Let V be a vector space, let $\vec{v_1}, \dots, \vec{v_k} \in V$ then the set of all linear combination of $\vec{v_1}, \dots, \vec{v_k}$

$$W = \{ \sum_{i=i}^{k} c_i \vec{v_i} | c_i \in \mathbb{R} \forall i \}$$

is a subspace of V. proof.

Consider
$$\vec{0} \in W$$

So, $W \neq \emptyset$
Let $c \in \mathbb{R}$, Let $\vec{x} \in W \land \vec{y} \in W$
By definition of span, we have,

$$\vec{x} = \sum_{i=1}^{k} a_i \vec{v_i}, \quad \vec{y} = \sum_{i=1}^{k} b_i \vec{v_i}$$
Consider, $\vec{x} + c\vec{y}$

$$\vec{x} = \sum_{i=1}^{k} a_i \vec{v_i} + c \sum_{i=1}^{k} b_i \vec{v_i} = \sum_{i=1}^{k} (a_i + cb_i) \vec{v_i} \in W$$

Definition Let V be a vector space, $\vec{v_1}, \ldots, \vec{v_k} \in V$, **span** of the set of vectors $\{\vec{v_i}\}_{i=1}^k$ is defined as the collection of all possible linear combinations of $\{\vec{v_i}\}_{i=1}^k$. By pervious theorem, span is a subspace.

3.2 Combination of subspaces

Definition Let W_1, W_2 be two sets, then the **union** of W_1, W_2 is defined as:

$$W_1 \cup W_2 = \{ \vec{w} \mid \vec{w} \in W_1 \land \vec{w} \in W_2 \}$$

the **intersection** of W_1, W_2 is defined as:

$$W_1 \cap W_2 = \{ \vec{w} \mid \vec{w} \in W_1 \lor \vec{w} \in W_2 \}$$

Now consider W_1, W_2 to be two subspaces of vector space V, then we have,

- 1. $W_1 \cup W_2$ is **not** a subspace.
- 2. $W_1 \cap W_2$ is a subspace.

proof.

Falsify the statement by providing counter-example:

Consider,

$$\begin{aligned} W_1 &= \{(x_1, x_2) \mid x_1 \in \mathbb{R}, x_2 = 0\} \\ W_2 &= \{(x_1, x_2) \mid x_2 \in \mathbb{R}, x_1 = 0\} \\ \binom{0}{1} \in W_1 \cup W_2 & \binom{1}{0} \in W_1 \cup W_2 \\ \text{But}, & \binom{0}{1} + \binom{1}{0} = \binom{1}{1} \notin W_1 \cup W_2 \end{aligned}$$

proof.

Because W_1 and W_2 are both subspaces, so

$$\vec{0} \in W_1 \cap W_2 \implies W_1 \cap W_2 \neq \emptyset$$
Let $\vec{x}, \vec{y} \in W_1 \cap W_2, c \in \mathbb{R}$
Consider, $\vec{x} + c\vec{y}$
Sine W_1, W_2 are subspaces,
 $\vec{x} + c\vec{y} \in W_1 \wedge \vec{x} + c\vec{y} \in W_2$
 $\implies \vec{x} + c\vec{y} \in W_1 \cap W_2$
So, $W_1 \cap W_2$ is a subspace.

Definition Let W_1, W_2 be subspaces of vector space V, define the **sum** of two subspaces as:

$$W_1 + W_2 = \{ \vec{x} + \vec{y} \mid \vec{x} \in W_1 \land \vec{y} \in W_2 \}$$

Note Let $\vec{x} = \vec{0} \in W_1$, $\forall \vec{y} \in W_2$, $\vec{y} \in W_1 + W_2$ so that, $W_2 \subseteq W_1 + W_2$. Similarly, let $\vec{y} = 0 \in W_2$, $\forall \vec{x} \in W_1$, $\vec{x} \in W_1 + W_2$. so that, $W_1 \subseteq W_1 + W_2$. So we have $\forall \vec{v} \in W_1 \cap W_2$, $\vec{v} \in W_1 + W_2$. So that,

$$W_1 \cap W_2 \subseteq W_1 + W_2$$

Note $W_1 + W_2$ is a subspace of V. *proof.*

Let
$$\vec{x_1}, \vec{x_2} \in W_1, \vec{y_1}, \vec{y_2} \in W_2$$

By properties of subspaces,
 $\forall c \in \mathbb{R}, \vec{x_1} + c\vec{x_1} \in W_1 \land \vec{y_2} + c\vec{y_2} \in W_2$
Consider, $\vec{x_1} + \vec{y_1} \in W_1 + W_2, \vec{x_2} + \vec{y_2} \in W_1 + W_2$
 $(\vec{x_1} + \vec{y_1}) + c(\vec{x_2} + \vec{y_2})$
 $= (\vec{x_1} + c\vec{x_2}) + (\vec{y_1} + c\vec{y_2}) \in W_1 + W_2$

Definition Let W_1, W_2 be subspaces of vector space V, say V is **direct sum** of W_1 and W_2 , written as $V = W_1 \bigoplus W_2$, if every $\vec{x} \in V$ can be written <u>uniquely</u> as $\vec{x} = \vec{w_1} + \vec{w_2}$ where $\vec{w_1} \in W_1$ and $\vec{w_2} \in W_2$.

Equivalently Let W_1 and W_2 be subspaces of V, $V = W_1 \bigoplus W_2 \iff V = W_1 + W_2 \wedge W_1 \cap W_2 = \{\vec{0}\}.$