ESERCITAZIONE STATISTICA Lezione 11 - Statistica (Stima di ML)

Stima ML & Soluzioni in R

1. Sia $X_1,...,X_n$ un campione casuale dalla popolazione con funzione di densità:

$$f_X(x;\theta) = \theta x^{-(\theta+1)}, \quad x > 1, \quad \theta > 0, \tag{1}$$

e sia \mathbf{x}_n un generico campione osservato.

- Determinare la funzione di verosimiglianza di θ e indicarne il nucleo.
- Determinare lo stimatore di massima verosimiglianza di θ , $T_1(\mathbf{X}_n)$.
- Per il campione di n=3 osservazioni $x_3=(2,2,3)$, calcolare la stima di massima verosimiglianza di θ e verificare quale, tra i valori $\theta_0=2$ e $\theta_1=3$ risulta più verosimile.
- Determinare la stima di massima verosimiglianza di $h(\theta) = \sqrt{\theta} + 1$.

2. Sia $\boldsymbol{X}_n=(X_1,...,X_n)$ un campione casuale dalla popolazione con funzione di densità:

$$f_X(x;\theta) = \frac{2}{\theta} (1 - \frac{x}{\theta}) I_{[0,\theta]}(x), \quad \theta > 0.$$
 (2)

- Determinare la funzione di verosimiglianza.
- Verificare che $E_{\theta}(X) = \frac{\theta}{3}$.

3. Si consideri un campione casuale di n osservazioni da una popolazione X con distribuzione di probabilità:

$$f_X(x,\theta) = \frac{1}{\theta^2} x \exp\left(-\frac{x}{\theta}\right), \quad \theta > 0, \quad x > 0.$$
 (3)

- Determinare la funzione di verosimiglianza.
- Determinare lo stimatore di massima verosimiglianza per θ .
- Determinare l'espressione dell'informazione osservata di Fisher.

4. Sia $X_1, ..., X_n$ un campione casuale proveniente da una popolazione geometrica di parametro incognito θ , la cui funzione di massa di probabilità è:

$$f_X(x;\theta) = \theta(1-\theta)^{(x-1)}, \quad x = 1, 2,; \quad \theta \in (0,1)$$
 (4)

- $\bullet\,$ Determinare la funzione di verosimiglianza di θ associata a un generico campione osservato.
- Determinare la stima di massima verosimiglianza di θ .
- In un campione di n=5 osservazioni, si è rilevato che $x=\{3,5,1,2,4\}$. Utilizzando la stima di massima verosimiglianza di θ , determinare la probabilità che la v.a. X assuma valori maggiori di 3.