CS3485 Deep Learning for Computer Vision

Lec 2: Linear Classification and Perceptron

Announcements

- Lab1 is out:
 - Make sure to find a pair to work on it with. If you can't find one, let me know by Wednesday.
 - It is an easy lab: you'll just need the basis of Python/Numpy + this slide deck. Feel free to ask me or come to my office hours if you have questions about either Python or Numpy.
 - The instructions carry a little info on what I expect in the report. I'll go easy on the grade this time, so you know what to improve for the next lab.
 - Keep in mind your late day budget (4 for **all labs**).
- Office hours starting today:
 - Mon & Wed 4:30-5:30 @ Searles 121.
 - Shoot me an email if none of these times work for you.
- Let me know if any of you have enrollment questions.

(Tentative) Lecture Roadmap

■ The first task in Computer Vision we are tackling is that of Image Classification:

- We want a model (or rule) that effectively categorizes (unseen) images into a set of target classes.
- In order to find this rule, we have a set of labeled example images at our disposal that we can train our model on and learn that rule.
- This process of finding such a model from labeled data is called **Supervised Learning**.

Labeled images of cats

Labeled images of dogs

The first task in Computer Vision we are tackling is that of Image Classification:

- We want a model (or rule) that effectively categorizes (unseen) images into a set of target classes.
- In order to find this rule, we have a set of labeled example images at our disposal that we can train our model on and learn that rule.
- This process of finding such a model from labeled data is called Supervised Learning.

■ The first task in Computer Vision we are tackling is that of Image Classification:

- We want a model (or rule) that effectively categorizes (unseen) images into a set of target classes.
- In order to find this rule, we have a set of labeled example images at our disposal that we can train our model on and learn that rule.
- This process of finding such a model from labeled data is called **Supervised Learning**.

The first task in Computer Vision we are tackling is that of Image Classification:

Image Classification the process of recognition, understanding, and grouping of images into preset categories or classes.

- We want a model (or rule) that effectively categorizes (unseen) images into a set of target classes.
- In order to find this rule, we have a set of labeled example images at our disposal that we can train our model on and learn that rule.
- This process of finding such a model from labeled data is called **Supervised Learning**.

Unseen (unlabeled) images

(Predicted)

■ The first task in Computer Vision we are tackling is that of Image Classification:

Image Classification the process of recognition, understanding, and grouping of images into preset categories or classes.

- We want a model (or rule) that effectively categorizes (unseen) images into a set of target classes.
- In order to find this rule, we have a set of labeled example images at our disposal that we can train our model on and learn that rule.
- This process of finding such a model from labeled data is called **Supervised Learning**.

Unseen (unlabeled) images (P

(Predicted)

■ The first task in Computer Vision we are tackling is that of Image Classification:

- We want a model (or rule) that effectively categorizes (unseen) images into a set of target classes.
- In order to find this rule, we have a set of labeled example images at our disposal that we can train our model on and learn that rule.
- This process of finding such a model from labeled data is called **Supervised Learning**.

■ The first task in Computer Vision we are tackling is that of Image Classification:

- We want a model (or rule) that effectively categorizes (unseen) images into a set of target classes.
- In order to find this rule, we have a set of labeled example images at our disposal that we can train our model on and learn that rule.
- This process of finding such a model from labeled data is called Supervised Learning.

The first task in Computer Vision we are tackling is that of Image Classification:

- We want a model (or rule) that effectively categorizes (unseen) images into a set of target classes.
- In order to find this rule, we have a set of labeled example images at our disposal that we can train our model on and learn that rule.
- This process of finding such a model from labeled data is called **Supervised Learning**.

Supervised Classification Pipeline

Example of Classification Problem

New Unlabeled Datapoint

Linear Classifiers

- We need to find a classification rule (decision boundary) based on the labeled data.
- Today's choice:

Linear Classifiers

- Which means: "If x is on one side of the line, it is a triangle, otherwise it is a square".
- How to definite the line and its sides mathematically, so we can come up with algorithms?

A linear classifier in 2D

- In 2D, we represent a line using three numbers:
 - Two to form a vector $w = [w_1, w_2]$ called **weight vector**;
 - One number called **bias**, b.
- If a new point $x = [x_p, x_2]$ comes in, we just check whether:

$$w_1x_1 + w_2x_2 > b$$

- If True, x lies on one side of the plane, if False it belongs to the other side
- If equal, it x is exactly on the line, and it can be classified as either True or False.

A linear classifier in 2D

• We can also define the weight vector to include b, making:

$$w = [w_0, w_1, w_2]$$

where $b = -w_0$.

Now, because of that change in w, we need we add a new dimension with a "1" to all data points x:

$$x = [1, x_1, x_2]$$

- For example, if x was [5, 7] initially, now it will be [1, 5, 7].
- We'll use this change in today's examples.

A linear classifier in 2D

Finally, we can use the following notation:

$$w^{\mathsf{T}}x = [w_0, w_1, w_2]^{\mathsf{T}}[1, x_1, x_2]$$

= $w_0 + w_1x_1 + w_2x_2$

where ^T is the transpose operation.

- This notation is called the **inner product**, and it is handy since it is the same even if our data points are of D > 2 dimensions.
- **Mathematically**, the predicted class \hat{y} of a point x by a linear classifier given by w is:

$$\hat{y} = \operatorname{sign}(w^{\top} x) = \begin{cases} 1, & \text{if } w^{\top} x \ge 0 \\ -1, & \text{if } w^{\top} x < 0 \end{cases}$$

Add a slide explaining how the direction of w discerns + and -

Using these concepts, we can build a model for classification called perceptron!

■ Below, you have some important nomenclature of the inner workings of the perceptron:

■ This process is called **Forward Pass.**

Exercise (In pairs)

Find weights $w = [w_0, w_1, w_2]$ for the lines that separate the triangles from the rectangles. Hint: define one type to be of class one and the other of class -1.

Neurons and the perceptron

- The perceptron model was developed to mathematically model human neurons!
- It was proposed Warren MuCulloch (neuroscientist) and Walter Pitts (logician) in 1943.
- It is considered the first Artificial Neural Network model and is the basis of deep learning.

The Neuron

Supervised Learning with the Perceptron

- The perceptron needs a linear classifier when classifying.
- We need then a way to compute the perceptron weights w_o , w_t , w_y , ..., w_D .
- We can **learn** them from a training dataset S using the **Perceptron Algorithm**, first implemented by **Frank Rosenblatt** in 1958.
- If S is linearly separable, it necessarily finds an optimal decision boundary.

Frank Rosenblatt working on the perceptron algorithm implementation at Cornell in 1958.

Examples of linear separability in datasets

Linearly separable dataset

Non-Linearly separable datasets

- There are n points $x^{(1)}$, ..., $x^{(n)}$ in D dimensions*, each with a class $y^{(1)}$, ..., $y^{(n)}$ of either -1 or +1.
- The perceptron algorithm is:
 - 1. Start with a random w in D+1 dimensions*.
 - 2. For i in 1 to n, do:
 - a. Find the **predicted class**, $\hat{y}^{(i)} = a(w^T x^{(i)})$
 - b. If $y(i) = \hat{y}(i)$, keep w the same ($x^{(i)}$ is correctly classified in this case).
 - c. If $y^{(i)} = +1$ and $\hat{y}^{(i)} = -1$: Do $w = w + x^{(i)}$
 - d. If $y^{(i)} = -1$ and $\hat{y}^{(i)} = +1$: Do $w = w x^{(i)}$
 - 3. Repeat step 2 (go over the dataset again) until all points are correctly classified.

^{*} Remember that the points are added a new dimension with a 1 to account for the bias term, go here for more details.

- There are n points $x^{(1)}$, ..., $x^{(n)}$ in D dimensions*, each with a class $y^{(1)}$, ..., $y^{(n)}$ of either -1 or +1.
- The perceptron algorithm is:
 - 1. Start with a random w in D+1 dimensions*.
 - 2. For i in 1 to n, do:
 - a. Find the **predicted class**, $\hat{y}^{(i)} = a(w^T x^{(i)})$
 - b. If $y(i) = \hat{y}(i)$, keep w the same ($x^{(i)}$ is correctly classified in this case).

c. If
$$y^{(i)} = +1$$
 and $\hat{y}^{(i)} = -1$: Do $w = w + x^{(i)}$

d. If
$$y^{(i)} = -1$$
 and $\hat{y}^{(i)} = +1$: Do $w = w - x^{(i)}$

3. Repeat step 2 (go over the dataset again) until all points are correctly classified.

Set triangles to have label +1 and squares to have label -1.

^{*} Remember that the points are added a new dimension with a 1 to account for the bias term, go here for more details.

- There are n points $x^{(1)}$, ..., $x^{(n)}$ in D dimensions*, each with a class $y^{(1)}$, ..., $y^{(n)}$ of either -1 or +1.
- The perceptron algorithm is:
 - 1. Start with a random w in D+1 dimensions*.
 - 2. For i in 1 to n, do:
 - a. Find the **predicted class**, $\hat{y}^{(i)} = a(w^T x^{(i)})$
 - b. If $y(i) = \hat{y}(i)$, keep w the same ($x^{(i)}$ is correctly classified in this case).

c. If
$$y^{(i)} = +1$$
 and $\hat{y}^{(i)} = -1$: Do $w = w + x^{(i)}$

d. If
$$y^{(i)} = -1$$
 and $\hat{y}^{(i)} = +1$: Do $w = w - x^{(i)}$

3. Repeat step 2 (go over the dataset again) until all points are correctly classified.

Start with a random w, which represents a random line.

^{*} Remember that the points are added a new dimension with a 1 to account for the bias term, go here for more details.

- There are n points $x^{(1)}$, ..., $x^{(n)}$ in D dimensions*, each with a class $y^{(1)}$, ..., $y^{(n)}$ of either -1 or +1.
- The perceptron algorithm is:
 - 1. Start with a random w in D+1 dimensions*.
 - 2. For i in 1 to n, do:
 - a. Find the **predicted class**, $\hat{y}^{(i)} = a(w^T x^{(i)})$
 - b. If $y(i) = \hat{y}(i)$, keep w the same ($x^{(i)}$ is correctly classified in this case).

c. If
$$y^{(i)} = +1$$
 and $\hat{y}^{(i)} = -1$: Do $w = w + x^{(i)}$

d. If
$$y^{(i)} = -1$$
 and $\hat{y}^{(i)} = +1$: Do $w = w - x^{(i)}$

3. Repeat step 2 (go over the dataset again) until all points are correctly classified.

Go over the points, until you find one whose \hat{y}_i does not match with its true class, y_i .

^{*} Remember that the points are added a new dimension with a 1 to account for the bias term, go here for more details.

- There are n points $x^{(1)}$, ..., $x^{(n)}$ in D dimensions*, each with a class $y^{(1)}$, ..., $y^{(n)}$ of either -1 or +1.
- The perceptron algorithm is:
 - 1. Start with a random w in D+1 dimensions*.
 - 2. For i in 1 to n, do:
 - a. Find the **predicted class**, $\hat{y}^{(i)} = a(w^T x^{(i)})$
 - b. If $y(i) = \hat{y}(i)$, keep w the same ($x^{(i)}$ is correctly classified in this case).

c. If
$$y^{(i)} = +1$$
 and $\hat{y}^{(i)} = -1$: Do $w = w + x^{(i)}$

d. If
$$y^{(i)} = -1$$
 and $\hat{y}^{(i)} = +1$: Do $w = w - x^{(i)}$

3. Repeat step 2 (go over the dataset again) until all points are correctly classified.

Change w according to the mismatch.

^{*} Remember that the points are added a new dimension with a 1 to account for the bias term, go here for more details.

- There are n points $x^{(1)}$, ..., $x^{(n)}$ in D dimensions*, each with a class $y^{(1)}$, ..., $y^{(n)}$ of either -1 or +1.
- The perceptron algorithm is:
 - 1. Start with a random w in D+1 dimensions*.
 - 2. For i in 1 to n, do:
 - a. Find the **predicted class**, $\hat{y}^{(i)} = a(w^T x^{(i)})$
 - b. If $y(i) = \hat{y}(i)$, keep w the same ($x^{(i)}$ is correctly classified in this case).
 - c. If $y^{(i)} = +1$ and $\hat{y}^{(i)} = -1$: Do $w = w + x^{(i)}$
 - d. If $y^{(i)} = -1$ and $\hat{y}^{(i)} = +1$: Do $w = w x^{(i)}$
 - 3. Repeat step 2 (go over the dataset again) until all points are correctly classified.

Go to the next data points where there is a mismatch.

^{*} Remember that the points are added a new dimension with a 1 to account for the bias term, go here for more details.

- There are n points $x^{(1)}$, ..., $x^{(n)}$ in D dimensions*, each with a class $y^{(1)}$, ..., $y^{(n)}$ of either -1 or +1.
- The perceptron algorithm is:
 - 1. Start with a random w in D+1 dimensions*.
 - 2. For i in 1 to n, do:
 - a. Find the **predicted class**, $\hat{y}^{(i)} = a(w^T x^{(i)})$
 - b. If $y(i) = \hat{y}(i)$, keep w the same ($x^{(i)}$ is correctly classified in this case).

c. If
$$y^{(i)} = +1$$
 and $\hat{y}^{(i)} = -1$: Do $w = w + x^{(i)}$

d. If
$$y^{(i)} = -1$$
 and $\hat{y}^{(i)} = +1$: Do $w = w - x^{(i)}$

3. Repeat step 2 (go over the dataset again) until all points are correctly classified.

Change \boldsymbol{w} according to the mismatch.

^{*} Remember that the points are added a new dimension with a 1 to account for the bias term, go here for more details.

- There are n points $x^{(1)}$, ..., $x^{(n)}$ in D dimensions*, each with a class $y^{(1)}$, ..., $y^{(n)}$ of either -1 or +1.
- The perceptron algorithm is:
 - 1. Start with a random w in D+1 dimensions*.
 - 2. For i in 1 to n, do:
 - a. Find the **predicted class**, $\hat{y}^{(i)} = a(w^T x^{(i)})$
 - b. If $y(i) = \hat{y}(i)$, keep w the same ($x^{(i)}$ is correctly classified in this case).

c. If
$$y^{(i)} = +1$$
 and $\hat{y}^{(i)} = -1$: Do $w = w + x^{(i)}$

d. If
$$y^{(i)} = -1$$
 and $\hat{y}^{(i)} = +1$: Do $w = w - x^{(i)}$

3. Repeat step 2 (go over the dataset again) until all points are correctly classified.

Do that until there are no mismatches.

^{*} Remember that the points are added a new dimension with a 1 to account for the bias term, go here for more details.

- There are n points $x^{(1)}$, ..., $x^{(n)}$ in D dimensions*, each with a class $y^{(1)}$, ..., $y^{(n)}$ of either -1 or +1.
- The perceptron algorithm is:
 - 1. Start with a random w in D+1 dimensions*.
 - 2. For i in 1 to n, do:
 - a. Find the **predicted class**, $\hat{y}^{(i)} = a(w^T x^{(i)})$
 - b. If $y(i) = \hat{y}(i)$, keep w the same ($x^{(i)}$ is correctly classified in this case).

c. If
$$y^{(i)} = +1$$
 and $\hat{y}^{(i)} = -1$: Do $w = w + x^{(i)}$

d. If
$$y^{(i)} = -1$$
 and $\hat{y}^{(i)} = +1$: Do $w = w - x^{(i)}$

3. Repeat step 2 (go over the dataset again) until all points are correctly classified.

Do that until there are no mismatches.

^{*} Remember that the points are added a new dimension with a 1 to account for the bias term, go here for more details.

Measuring classification efficiency

- For non-linearly separable datasets, the perceptron algorithm won't find a linear classifier that correctly classifies all points.
- If the classification isn't perfect, we need to find a measure of how good it is.
- One possible measure is our Classification Accuracy (Acc):

$$Acc = \frac{Number of correctly classified points}{Total number of points}$$

If triangles are +1 and squares -1, the above classifier has an accuracy of 10/15 = 0.66%

- It is easy to evaluate a model's performance with it, since $0 \le Acc \le 1$ and the accuracy higher the better.
- However, Acc only assumes "discrete" values, since we have a discrete number of points, which can be a hindrance to many learning algorithms.
- For that reason we may use a closely related measure called **loss** (*more on it next time*).

Classification Pipeline for the Perceptron

Exercise (In pairs)

- You have the points $x_1 = [-1, 0]$, $x_2 = [0, -1]$ and $x_3 = [1, 1]$. Assume rectangles are of class -1 and the triangle of class 1. Do the following:
 - Say we start with w = [2, -1] and b = 0. Draw on the image above the linear separator that w and b generates.
 - Redefine w to be $w = [w_0, w_1, w_2]$. Change the definitions of x_1, x_2 and x_3 , accordingly.
 - Perform each step of the perceptron algorithm to find the a new value w.
 - Draw on the image above the new linear separator defined by w.
 - Draw point $x_4 = [2, -2]$ and classify it using the new value for w.

