Clase nº19

Cálculo II

Universidad de Valparaíso Profesor: Juan Vivanco

13 de Octubre 2021

Objetivo de la clase

- ► Calcular áreas en coordenadas polares.
- ► Calcular el volumen de un sólido de revolución.

Cálculo de áreas en coordenadas polares

Ejemplo 63

Encuentre el área en el interior del círculo $r = 5\cos\theta$ y fuera del cardioide $r = 2 + \cos(\theta)$.

Lucgo los angulos buscades son: 0= 1 v 0= 1

El exer busindo es:
$$A = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{1}{2} \cdot [5 \cos^{2} \theta - \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{1}{2} \cdot [1 + \cos^{2} \theta + \cos^{2} \theta] d\theta$$

$$= 25 \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \cos^{2} \theta d\theta - \frac{1}{2} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} (4 + 4 \cos^{2} \theta + \cos^{2} \theta) d\theta$$

 $= 6 \cdot \left(\frac{\pi}{3} + \frac{511(\frac{2\pi}{3})}{2} - \left(-\frac{\pi}{3} \right) - \frac{1}{2} \cdot \sin\left(-\frac{2\pi}{3} \right) \right) - \frac{4\pi}{3} - 2\left(\frac{2\sqrt{3}}{2} \right)$

$$= \frac{24}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} (5^{3} \theta d\theta - \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} 2 d\theta - \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} 2 d\theta - \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} (5^{3} \theta d\theta - \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} 2 d\theta - \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} (5^{3} \theta d\theta - \int_$$

Volúmenes de sólidos de revolución

Definición 31

Llamaremos sólido de revolución a la figura que se obtiene al girar una región plana (dos dimensiones) en torno a un eje de rotación que está fijo.

Volúmenes de sólidos de revolución

Ejemplo 64

a) El cilindro circular recto, que se obtiene al girar un rectángulo en torno a uno de sus lados que se mantiene inmóvil.

b) El cono circular recto, que se obtiene al girar un triángulo sobre uno de sus lados.

Volúmenes de sólidos de revolución

Ejemplo 65

a) La esfera se genera al girar una circunferencia en torno a su diámetro.

b) El toro se genera cuando un círculo rota en torno a un eje externo a él.

El siguiente teorema nos permitirá calcular el volumen de sólidos de revolución que se generan al girar una región del plano en torno al eje X.

Teorema 32

Sea $f:[a,b]\to\mathbb{R}$ una función continua y no negativa. Entonces el volumen del sólido que se obtiene al girar la región R,

$$R = \{(x, y) : x \in [a, b], 0 \le y \le f(x)\},\$$

en torno al eje X está dado por la fórmula

$$V = \pi \int_a^b [f(x)]^2 dx.$$

Método de los discos Al votor of entorno el eye x una superficie en el plemo tridinensional, Calcularus el volumen de Sf. = a+ i (b-a) En [ti., ti] consideremos cie [ti-1, E.] y el rectérque de bese (t:-ti-) y altru f(ci).

Al voter el rectingulo al rededor del eje x se obtiene un ciliades de volumen

phtonies

$$I(P_n,g) \leq \tilde{Z} \pi \left[\sum_{i=1}^n \left[\sum_{j=1}^n \left[\sum_{i=1}^n \left[\sum_{j=1}^n \left[\sum_{i=1}^n \left[\sum_{j=1}^n \sum_{i=1}^n \left[\sum_{j=1}^n \sum_{i=1}^n \left[\sum_{j=1}^n \sum_{i=1}^n \left[\sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{i=1}^n \left[\sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{j=1$$

Si
$$y \to \infty$$
 entonces
$$V(S_f) = \pi \int_{\alpha}^{\alpha} [f(x)]^{2} dx.$$

Ejemplo 66

Calcular el volumen de una esfera generada al girar el semicírculo $y=\sqrt{a^2-x^2},$ en torno a su diámetro.

Notes of
$$x \in [-a, b]$$
,

$$V(S_{\Gamma}) = \pi \int_{-a}^{a} \left[f(x) \right]^{2} dx = \pi \int_{-a}^{a} \left(u^{2} - x^{2} \right)^{2} dx$$

$$= \pi \int_{-a}^{a} a^{2} - x^{2} dx$$

$$= \pi \left(a^{2} x - \frac{x^{3}}{3} \right) \Big|_{-a}^{a}$$

$$= \pi \left(a^{2} a - \frac{a^{3}}{3} - \left(a^{2} \cdot (-a) - \frac{(-a)^{3}}{3} \right) \right)$$

$$= \pi \left(2a^{3} - 2a^{3} \right) = \frac{4}{3} \pi a^{3}.$$

Ejemplo 67

Encuentre el volumen del cono generado al rotar el triángulo formado por los segmentos de las rectas $y = \frac{x}{4}$ con $x \in [-4, 0], x = -4$ y el eje X, en torno al eje X.

$$y = -\frac{x}{4}$$

$$y =$$

Ejemplo 68

Calcular el volumen generado al rotar la figura pintada en torno al eje X.

Asi.
$$V_{1} = \pi \int_{0}^{b} \left[\frac{x}{2} \right]^{3} dx = \frac{\pi}{4} \frac{x^{3}}{3} \Big|_{0}^{b}$$

$$= \frac{\pi}{12} \cdot \left(\frac{16}{5} \right)^{3}.$$

. ـ ا دانه .

$$V_{2} = \pi \int_{\frac{16}{5}}^{4} (g - 2x)^{2} dx = \pi \int_{\frac{16}{5}}^{4} 64 - 32x + 4x^{2} dx$$

$$= \pi \left(64x - \frac{32x^{2}}{2} + \frac{4x^{3}}{3} \right) \Big|_{\frac{16}{5}}^{4}$$

$$V_{4} = \pi \int_{0}^{6} 4^{2} dx = 16\pi \times /_{0}^{6} = 16.6\pi = 96\pi$$

 $V_3 = V_1 + V_2 = \frac{T}{12} \left(\frac{16}{5} \right)^3 + \frac{256}{375} T$

$$V(S_{\nu}) = V_{4} - V_{3} = 96\pi - \frac{11}{12} \left(\frac{16}{5}\right)^{3} - \frac{256}{575} \cdot \pi$$

Ejercicio propuesto

- a) Calcular el volumen del paraboloide circular generado al rotar el segmento de parábola $y=\sqrt{2x}$ con $x\in[0,3]$ en torno al eje X.
- b) Sea la región

$$R = \{(x,y) \in \mathbb{R}^2: -x^2 + 4 \ge y \quad \land \quad y \ge x^2 \quad \land \quad y \le 3\}.$$

Determinar el volumen generado por R al rotar con respecto al eje X.

Bibliografía

	Autor	Título	Editorial	Año
1	Stewart, James	Cálculo de varias variables: trascendentes tempranas	México: Cengage Learning	2021
2	Burgos Román, Juan de	Cálculo infinitesimal de una variable	Madrid: McGraw- Hill	1994
3	Zill Dennis G.	Ecuaciones Diferenciales con Aplicaciones	Thomson	2007
4	Thomas, George B.	Cálculo una variable	México: Pearson	2015

 $Pue de \ encontrar \ bibliografía \ complementaria \ en \ el \ programa.$