Hirschberg

Hint: Many test values are taken from project Algorithms for Bioninformatics of Alexander Mattheis or the lectures.

Test 1 (used Needleman-Waterman-Implementation for calculation)

Input

Sequence A: AATCG Sequence B: AACG

Deletion: 2
Insertion: 2
Match: -1
Mismatch: 1

Output

1. $Trace(A_1, A_2, T_3, C_4, G_5 | A_1, A_2, C_3, G_4)$:

		Α	Α	С	G
	0	2	4	6	8
Α	2	-1	1	3	5
Α	4	1	-2	0	2
T	6	3	0	-1	1
С	8	5	2	-1	0
G	10	7	4	1	-2

		G	С	Α	Α
	0	2	4	6	8
G	2	-1	1	3	5
С	4	1	-2	0	2
T	6	3	0	-1	1
Α	8	5	2	-1	-2
Α	10	7	4	1	-2

	0	1	j=2	3	4
i=3	6	3	0	-1	1
	1	-1	0	3	6
Σ	7	2	0	2	7

	Α	Α	С	G
Α				
Α				
Т				
C G				
G				

1.1.	Trace	(A_1, A_2)	$ A_1,$	A_2):
------	-------	--------------	---------	----------

		Α	Α
	0	2	4
Α	2	-1	1
Α	4	1	-2

		Α	Α
	0	2	4
Α	2	-1	1
Α	4	1	-2

	0	j=1	2
	2	-1	1
i=1	1	-1	2
Σ	3	-2	3

	Α	Α
Α		
Α		

1.1.1. $Trace(|A_1)$:

return length(A) <= 1

 \rightarrow select most left

	j=0	Α
i=0		

1.1.2. $Trace(A_2|A_1, A_2)$:

return length(A) <= 1

→ select most right (because right node)

	Α	A j=2
A i=2		

1.2. $Trace(C_4, G_5|A_2, C_3, G_4)$:

		Α	С	G
	0	2	4	6
С	2	1	1	3
G	4	3	2	0

		G	С	Α
	0	2	4	6
G	2	-1	1	3
С	4	1	-2	0

	0	2	j=3	4
i=4	2	1	1	3
	3	1	-1	2
Σ	5	2	0	5

	Α	С	G
С			
G			

1.2.1. $Trace(|A_2, C_3)$: return length(A) <= 1

1.2.2. $Trace(C_4|C_3, G_4)$: return length(A) <= 1

→ select most right (because right node)

	С	G j=4
G i=5		

so:

30.				
	Α	Α	С	G
Α				
Α				
Т				
С				
G				

Test 2 (used Needleman-Waterman-Implementation for calculation)

Input

Sequence A: TCG Sequence B: TCTAG

Deletion: 2
Insertion: 2
Match: -1
Mismatch: 1

Output

1. $Trace(T_1, C_2, G_3 | T_1, C_2, T_3, A_3, G_4)$:

		T	C	T	A	G
	0	2	4	6	8	10
Т	2	-1	1	3	5	7
С	4	1	-2	0	2	4
G	6	3	0	-1	1	1

		G	Α	T	С	T
	0	2	4	6	8	10
G	2	-1	1	3	5	7
С	4	1	0	2	2	4
Т	6	3	2	-1	1	1

$$i = \left\lceil \frac{\text{length(A)}}{2} \right\rceil = \left\lceil \frac{3}{2} \right\rceil = 2$$

	0	1	j=2	3	4	5
i=2	4	1	-2	0	2	4
	4	2	2	0	1	4
Σ.	8	3	0	0	3	8

	T	С	T	Α	G
T					
С					
G					

1.1. $Trace(T_1|T_1, C_2)$: return length(A) <= 1

 \rightarrow select most left

1.2. $Trace(G_1|C_2,T_3,A_3,G_4)$: return length(A) <= 1

→ select most right (because right node)

so:

	T	С	T	Α	G
Т					
С					
G					

logic completion: (maybe wrong and other minima has to be stored)

(not possible)

	T	С	T	Α	G
T					
С			Χ	Х	Х
G					

(possible)

	T	С	T	Α	G
Т					
С			Χ	Χ	
G					