Set Items Description

S1 668 S AU=(HUNT, A? OR HUNT A?)

S2 1 S ANTHONY (2N) HUNT

S3 230340 S HEART? ? OR CARDIO? OR CARDIA? OR ECG OR EKG OR ELECTROCARDIO? OR MYOCARDI? OR AV()NODE? ? OR PURKINJE

S4 6 S S1 AND S3

; show files

[File 350] Der went WPIX 1963-2008/UD=200901

(c) 2009 Thomson Reuters. All rights reserved.

[File 35] Dissertation Abs Online 1861-2008/Nov

(c) 2008 ProQuest Info&Learning. All rights reserved.

[File 65] Inside Conferences 1993-2009/Jan 06

(c) 2009 BLDSC all rts. reserv. All rights reserved.

4/5/1 (Item 1 from file: 350)

Fulltext available through: Order File History

Derwent WPIX

(c) 2009 Thomson Reuters. All rights reserved.

0018501035 & & Drawing available WPI Acc no: 2008-O21376/200882 XRPX Acc No: N2009-049022

Non-invasive method of measuring drug induced changes in cardiac muscle, involves obtaining simulated epicardial electrocardiogram and biophysical electrical transmission in person body surface through filter function

Patent Assignee: PSI HEARTSIGNALS GLOBAL LTD (PSIH-N)

Inventor: HUNT A C

Patent Family (1 patents, 121 & countries)

Patent Number	Kind	Date	Application Number	Kind	Date	Update	Туре
WO 2008149159	A2	20081211	WO 2008GB50418	A	20080606	200882	В

Priority Applications (no., kind, date): GB 200710963 A 20070608

Patent Details

Patent Number	Kind	Lan Pgs Draw I	Filing Notes
WO 2008149159	A2	EN 39 5	
National Designated	AE AG AL AM AO AT AU AZ BA BB BG B	H BR BW BY BZ CA	
States, Original	CH CN CO CR CU CZ DE DK DM DO DZ E	C EE EG ES FI GB GD	
	GE GH GM GT HN HR HU ID IL IN IS JP K	E KG KM KN KP KR KZ	

	LA LC LK LR LS LT LU LY MA MD ME MG MK MN MW MX MY
	MZ NA NG NI NO NZ OM PG PH PL PT RO RS RU SC SD SE SG
	SK SL SM SV SY TJ TM TN TR TT TZ UA UG US UZ VC VN ZA
	ZM ZW
Regional Designated	AT BE BG BW CH CY CZ DE DK EA EE ES FI FR GB GH GM GR
States, Original	HR HU IE IS IT KE LS LT LU LV MC MT MW MZ NA NL NO OA
	PL PT RO SD SE SI SK SL SZ TR TZ UG ZM ZW

Alerting Abstract WO A2

NOVELTY - The method involves obtaining a filter function using mathematical convolution of an electrocardiogram (ECG) to represent biophysical electrical transmission characteristic in a person body surface. The filter function is applied on mathematical convolution of an ECG recorded on the body surface of a person who is administered with a test drug so as to obtain ECG representing myocardial wedge simulated epicardial ECG. The drug induced changes in the cardiac muscle based on the epicardial ECG and electrical transmission. DESCRIPTION - INDEPENDENT CLAIMS are included for the following:

- 1. apparatus for obtaining ECG;
- 2. method of generating lumped action potential of person from epicardial ECG; and
- 3. apparatus for non-invasive measurement of drug induced changes.

USE - Non-invasive method of measuring drug induced changes in cardiac muscle. ADVANTAGE - The drug induced changes in the cardiac muscle can be measured efficiently. DESCRIPTION OF DRAWINGS - The drawing shows a flow diagram explaining the method of obtaining epicardial ECG.

Title Terms /Index Terms/Additional Words: NON; INVADE; METHOD; MEASURE; DRUG; INDUCE; CHANGE; CARDIAC; MUSCLE; OBTAIN; SIMULATE; EPICARDIUM; ECG; ELECTRIC; TRANSMISSION; PERSON; BODY; SURFACE; THROUGH; FILTER; FUNCTION

Class Codes

International Patent Classification

IPC	Class Leve	1 Scope	Position	Status	Version Date	
A61B-0005/0452	A	I	F	В	20060101	
A61B-0005/0452	С	I		В	20060101	

File Segment: EngPI; EPI; DWPI Class: S05; P31

Manual Codes (EPI/S-X): S05-D01A1

4/5/2 (Item 2 from file: 350)

Fulltext available through: Order File History

Derwent WPIX

(c) 2009 Thomson Reuters. All rights reserved.

0015056798 & & Drawing available WPI Acc no: 2005-404827/200541 XRPX Acc No: N2005-328542

Method for measuring QT interval of electrocardiogram signal, involves determining end of T wave, based on timing of intersection of upright T wave of set of electrocardiogram signal data with inverted T wave of another set of data

Patent Assignee: PSI HEARTSIGNALS LTD (PSIH-N); PSI HEARTSIGNALS GLOBAL LTD (PSIH-N)

Inventor: HUNT A; HURT A C; HUNT A C

Patent Family (5 patents, 105 & countries)

Patent Number	Kind	Date	Application Number	Kind	Date	Update	Туре
WO 2005044102	A1	20050519	WO 2003GB4436	Α	20031010	200541	В
AU 2003269280	A1	20050526	AU 2003269280	Α	20031010	200561	Е
			WO 2003GB4436	A	20031010		
EP 1677672	A1	20060712	EP 2003751058	A	20031010	200648	Е
			WO 2003GB4436	Α	20031010		
US 20080262366	A1	20081023	WO 2003GB4436	Α	20031010	200872	Е
			US 2007575340	Α	20070621	111	
EP 1677672	B1	20081126	EP 2003751058	Α	20031010	200880	Е
			WO 2003GB4436	Α	20031010		

Priority Applications (no., kind, date): WO 2003GB4436 A 20031010

Patent Details

Patent Number	Kind	Lan	Pgs	Draw	Filing Notes
WO 2005044102	A1	EN	29	7	
National Designated	AE AG AL AM .	AT A	U A	Z BA	BB BG BR BY BZ CA CH CN CO CR CU
States, Original	CZ DE DK DM I	DZ E	C EI	E EG E	S FI GB GD GE GH GM HR HU ID IL IN
	IS JP KE KG KP	KR	KZ I	C LK	LR LS LT LU LV MA MD MG MK MN
	MW MX MZ NI	NO I	NZ (OM PG	PH PL PT RO RU SC SD SE SG SK SL SY
	TJ TM TN TR T	ΓTZ	UA	UG U	S UZ VC VN YU ZA ZM ZW
Regional Designated	AT BE BG CH C	CY CZ	Z DE	E DK E	EA EE ES FI FR GB GH GM GR HU IE IT
States, Original	KE LS LU MC N	ΛW Ν	AZ N	IL OA	PT RO SD SE SI SK SL SZ TR TZ UG ZM
	ZW				

AU 2003269280	A1	EN	PCT Application WO 2003GB4436
			Based on OPI patent WO 2005044102
EP 1677672	A1	EN	PCT Application WO 2003GB4436
			Based on OPI patent WO 2005044102

Regional Designated	AT BE BG CH C	Y CZ	DE DK I	EE ES FI FR GB GR HU	IE IT LI LU MC					
States, Original	NL PT RO SE SI	NL PT RO SE SI SK TR								
US 20080262366	A1	EN		PCT Application	WO 2003GB4436					
EP 1677672	B1	EN		PCT Application	WO 2003GB4436					
				Based on OPI patent	WO 2005044102					
Regional Designated	AT BE BG CH C	AT BE BG CH CY CZ DE DK EE ES FI FR GR HU IE IT LI LU MC NL PT								
States, Original	RO SE SI SK TR	_								

Alerting Abstract WO A1

NOVELTY - The method involves determining the end of T wave, based on the timing of intersection at which an upright T wave of a set of derived electrocardiogram (ECG) signal data intersects with an inverted T wave of another set of derived ECG signal data. The derived ECG signal data sets are superimposed along an isoelectric line within the trough after the positive T wave peak.

DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

- 4. apparatus for measuring QT interval of electrocardiogram signal; and
- 5. record carrier storing QT interval measuring program.

USE - For measuring QT interval of electrocardiogram (ECG) signal.

ADVANTAGE - Enables to automatically and accurately measure the QT interval of ECG signal, using an improved technique.

DESCRIPTION OF DRAWINGS - The figure shows the upright squared ECG signal and superimposed inverted squared ECG signal.

Title Terms/Index Terms/Additional Words: METHOD; MEASURE; INTERVAL; ECG; SIGNAL; DETERMINE; END; WAVE; BASED; TIME; INTERSECT; UPRIGHT; SET; DATA; INVERT

Class Codes

International Patent Classification

IPC	Class Level	Scope	Position	Status	Version Date
A61B-0005/0452	Α	I		R	20060101
A61B-0005/0452	Α	I	F	В	20060101
A61B-0005/0452	C	I		В	20060101
A61B-0005/0452	C	I		R	20060101
A61B-0005/0452	С	I	F	В	20060101

ECLA: A61B-005/0452

US Classification, Current Main: 600-516000

US Classification, Issued: 600516

File Segment: EngPI; EPI;

DWPI Class: S05; T01; P31

Manual Codes (EPI/S-X): S05-D01A1; T01-J06A; T01-S03

4/5/3 (Item 3 from file: 350)

Fulltext available through: Order File History

Derwent WPIX

(c) 2009 Thomson Reuters. All rights reserved.

0013684666 & & Drawing available WPI Acc no: 2003-781490/200374 XRPX Acc No: N2003-626103

Electrocardiogram measurement method involves squaring and adding amplitudes measured by orthogonal

leads to produce resultant waveform

Patent Assignee: HUNT A C (HUNT-I); PSI HEARTSIGNALS GLOBAL LTD (PSIH-N)

Inventor: HUNT A C

Patent Family (2 patents, 1 & countries)

Patent Number	Kind	II Date	Application Number	Kind	Date	Update	Туре
GB 2387442	A	20031015	GB 20028115	A	20020409	200374	В
GB 2387442	В	20061018				200668	E

Priority Applications (no., kind, date): GB 20028115 A 20020409

Patent Details

Patent Number	Kind	Lan	Pgs		Filing Notes
GB 2387442	Α	EN	12	3	

Alerting Abstract GB A

NOVELTY - The amplitude of the electrical heart-activity measured by the orthogonal leads, are squared. The squared values are added and a resultant waveform having a longest QT interval is produced. The resultant waveform is inverted to create a reflected waveform. The intersection of the resultant and reflected waveforms along the isoelectric baseline, within the following trough defines the end of T-wave.

USE - For measuring the QT interval in electrocardiogram (ECG).

ADVANTAGE - Since small values are smoothed by squaring, identification of the trough is more accurate hence, QT interval measurement is accurate.

DESCRIPTION OF DRAWINGS - The figures show the graph of the electrocardiograms.

Title Terms /Index Terms/Additional Words: ECG; MEASURE; METHOD; SQUARE; ADD; AMPLITUDE; ORTHOGONAL; LEAD; PRODUCE; RESULT; WAVEFORM

Class Codes

International Patent Classification

IPC	Class Level	Scope	Position	Status	Version Date	
A61B-0005/04	A	I	F	В	20060101	$ lab{1}$
A61B-0005/0452	A	I	L	В	20060101	floor
A61B-0005/0452	A	I		R	20060101	\prod
G06F-0017/00	A	I	L	В	20060101	floor
A61B-0005/04	C	I	F	В	20060101	
A61B-0005/0452	C	I	L	В	20060101	\prod
A61B-0005/0452	C	I		R	20060101	m I
G06F-0017/00	C	I	L	В	20060101	\prod

ECLA: A61B-005/0452

File Segment: EngPI; EPI; DWPI Class: S05; P31

Manual Codes (EPI/S-X): S05-D01A1

4/5/4 (Item 1 from file: 65)

Inside Conferences

(c) 2009 BLDSC all rts. reserv. All rights reserved. 03610928 Inside Conference Item ID: CN038042518

Atrial Systolic Function in Left Heart Failure

Hunt, A. C.; Denslow, C.; Carson, K.; Kilbey, R.; Murray, S.; Burrows, M.

Conference: Computers in cardiology - Conference; 27th COMPUTERS IN CARDIOLOGY , 2000 P: 575-578

IEEE, 2000

ISSN: 0276-6547 ISBN: 0780365585; 0780365577; 0780365593

Language: English Document Type: Conference Papers

Editor: Murray, A.

Sponsor: Institute of Electrical and Electronics Engineers

Location: Cambridge, MA 2000; Sep (200009) (200009)

British Library Item Location: 3394.895000 Descriptors: cardiology; computers; IEEE

4/5/5 (Item 2 from file: 65)

Inside Conferences

(c) 2009 BLDSC all rts. reserv. All rights reserved.

03610886 Inside Conference Item ID: CN038042099

Fractal Structure of Alternate T Waves by Wavelet Analysis

Hunt, A. C.

Conference: Computers in cardiology - Conference; 27th COMPUTERS IN CARDIOLOGY, 2000 P: 415-418

IEEE, 2000

ISSN: 0276-6547 ISBN: 0780365585; 0780365577; 0780365593

Language: English Document Type: Conference Papers

Editor: Murray, A.

Sponsor: Institute of Electrical and Electronics Engineers

Location: Cambridge, MA 2000; Sep (200009) (200009)

British Library Item Location: 3394.895000 Descriptors: cardiology; computers; IEEE

4/5/6 (Item 3 from file: 65)

Inside Conferences

(c) 2009 BLDSC all rts. reserv. All rights reserved.

03610838 Inside Conference Item ID: CN038041617

Computational Method to Model Flow through the Mitral Valve and Early Diastolic Filling of the Left

Ventricle

Hunt, A. C.

Conference: Computers in cardiology - Conference; 27th COMPUTERS IN CARDIOLOGY, 2000 P: 223-226

IEEE, 2000

ISSN: 0276-6547 ISBN: 0780365585; 0780365577; 0780365593

Language: English Document Type: Conference Papers

Editor: Murray, A.

Sponsor: Institute of Electrical and Electronics Engineers

Location: Cambridge, MA 2000; Sep (200009) (200009)

British Library Item Location: 3394.895000 Descriptors: cardiology; computers; IEEE