The Design of Approximation Algorithms

RtB*

Last edited in: March 13, 2025

 $^{{}^*}$ School of Artificial Intelligence, Southeast University

Contents

1	The	Set Cover Problem	1
	1.1	Problem Description	1
	1.2	Linear Program	1
	1.3	A Deterministic Algorithm	1
	1.4	A Dual Solution	2
		1.4.1 Rounding the Dual Solution	3
	1.5	A Greedy Algorithm	4
		A Randomized Rounding Algorithm	

1 The Set Cover Problem

1.1 Problem Description

Given a ground set of elements $E = \{e_1, \ldots, e_n\}$, some subsets of those elements S_1, \ldots, S_m where each $S_j \subseteq E$, and a nonnegative weight $w_j \ge 0$ for each subset S_j . The goal is to find a minimum-weight collection of subsets $I \subseteq \{1, \ldots, m\}$ that minimizes $\sum_{j \in I} w_j$ subject to $\bigcup_{j \in I} S_j = E$.

The problem can be description as a **integer program**:

minimize
$$\sum_{j=1}^m w_j x_j$$
 subject to
$$\sum_{j:e_i \in S_j} x_j \ge 1, \qquad i=1,\dots,n$$

$$x_j \in \{0,1\}, \quad j=1,\dots,m$$

1.2 Linear Program

By extending the domain of x_j to the field of real numbers, the problem can be transformed into a linear programming problem.

minimize
$$\sum_{j=1}^{m} w_j x_j$$
 subject to
$$\sum_{j:e_i \in S_j} x_j \ge 1, \quad i = 1, \dots, n$$

$$x_j \ge 0, \quad j = 1, \dots, m$$

1.3 A Deterministic Algorithm

Given the LP solution x^* , let $f_i = |\{j : e_i \in S_j\}|, i = 1, ..., n$ and $f = \max_{i,...,n} f_i$, the subset S_j with $x_j^* \ge 1/f$ will be take into the solution. Let I indexes the set cover.

Lemma 1. The collection of subsets S_j , $j \in I$ is a set cover.

Proof. Consider the element e_i , there are only less than f subsets that contain e_i , and we have $\sum_{j:e_i \in S_j} x_j^* \geq 1$. Thus, there must be at least one subset S_j with $x_j^* \geq 1/f$ that contains e_i . Therefore, the collection of subsets S_j , $j \in I$ is a set cover.

Theorem 1. The rounding algorithm is an f-approximation algorithm for the set cover problem.

Proof. Let Z_{LP}^* be the value of the optimal linear program solution, and OPT be the value of the optimal integer program solution. We have

$$\sum_{j \in I} w_j \le \sum_{j=1}^m w_j \cdot (f \cdot x_j^*)$$

$$= f \cdot \sum_{j=1}^m w_j x_j^*$$

$$= f \cdot Z_{LP}^*$$

$$\le f \cdot \text{OPT}$$

The key of the proof is to find the connection between the rounding solution and the LP solution. A trick used in this solution is to introducing variables through constants by the rounding algorithm condition $1 \leq f \cdot x_j^*$ for each $j \in I$. And because the feasible solution of integer program is a subset of the feasible solution of the linear program, we have $Z_{LP}^* \leq \text{OPT}$.

1.4 A Dual Solution

The dual program of the set cover linear programming relaxation is

maximize
$$\sum_{i=1}^{n} y_{i}$$
 subject to
$$\sum_{i:e_{i} \in S_{j}} y_{i} \leq w_{j}, \quad j = 1, \dots, m$$

$$y_{i} \geq 0, \qquad i = 1, \dots, n$$

The **dual problem** can be derived through the following steps. First, we can write the Lagrangian function of the linear program:

$$L(x, y, \lambda) = \sum_{j=1}^{m} w_j x_j + \sum_{i=1}^{n} y_i \left(1 - \sum_{j: e_i \in S_j} x_j \right) - \sum_{j=1}^{m} \lambda_j x_j$$
$$= \sum_{j=1}^{m} \left(w_j - \sum_{i: e_i \in S_j} y_i - \lambda_j \right) x_j + \sum_{i=1}^{n} y_i$$

And the Lagrange dual function is:

$$g(y, \lambda) = \inf_{x_1, \dots, x_m} L(x, y, \lambda)$$

Notice that if $w_j - \sum_{i:e_i \in S_j} y_i - \lambda_j \ge 0$, then $\left(w_j - \sum_{i:e_i \in S_j} y_i - \lambda_j\right) x_j$ must be 0, else $g(y,\lambda) = -\infty$. In order to prevent the function from diverging, we need to add the constraint $w_j - \sum_{i:e_i \in S_j} y_i - \lambda_j \ge 0$. Therefore, the dual optimization problem can be formulated as

maximize
$$\sum_{i=1}^{n} y_{i}$$
 subject to
$$\sum_{i:e_{i} \in S_{j}} y_{i} + \lambda_{j} \leq w_{j}, \quad j = 1, \dots, m$$

$$y_{i} \geq 0, \quad i = 1, \dots, n$$

$$\lambda_{j} \geq 0, \quad j = 1, \dots, m$$

 λ_i can be directly eliminated through simplification.

1.4.1 Rounding the Dual Solution

An simple idea is to choose the subset that satisfy the condition $\sum_{i:e_i \in S_j} y_i = w_j$. Let I' denote the indices of the subsets in the solution, we will show that this is a set cover.

Lemma 2. The collection of subsets S_j , $j \in I'$ is a set cover.

Proof. Suppose there exist e_i that is not covered, then for any subset S_j that contains e_i , we must have $\sum_{i:e_i \in S_j} y_i < w_j$. We can increase the value of y_i to get the larger $\sum_{i=1}^n y_i$ until at least subset that contain e_i is chosen. \square

Theorem 2. The dual rounding algorithm described above is an f-approximation algorithm for the set cover problem.

Proof.

$$\sum_{j \in I'} w_j = \sum_{j \in I'} \sum_{i: e_i \in S_j} y_i^*$$

$$= \sum_{i=1}^n |\{j \in I' : e_i \in S_j\}| \cdot y_i^*$$

$$\leq f \cdot \sum_{i=1}^n y_i^*$$

$$\leq f \cdot \text{OPT}$$

The key of the proof lies in swapping the order of the summation to articulate the optimization objective.

1.5 A Greedy Algorithm

Let n_k denote the number of elements that remain uncoverd at the start of the kth iteration, let I_k denote the indices of the sets chosen in iterations 1 through k-1, and for each $j=1,\ldots,m$, let \hat{S}_j denote the set of uncovered elements in S_j at the start of this iteration. Then we have a greedy algorithm. Let $H_k = 1 + \frac{1}{2} + \cdots + \frac{1}{k}$, we have the following theorem.

```
\begin{split} I \leftarrow \emptyset; \\ \hat{S}_{j} \leftarrow S_{j} & \forall j; \\ \textbf{while } I \text{ is not a set cover } \textbf{do} \\ & I \leftarrow \arg\min_{j: \hat{S}_{j} \neq \emptyset} \frac{w_{j}}{|\hat{S}_{j}|}; \\ & I \leftarrow I \cup l; \\ & \hat{S}_{j} \leftarrow \hat{S}_{j} - S_{l} & \forall j; \\ & \textbf{end} \end{split}
```

Algorithm 1: A greedy algorithm for the set cover problem.

Theorem 3. The greedy algorithm is an H_n -approximation algorithm for the set cover problem.

Proof. First, we will show that

$$w_j \le \frac{n_k - n_{k+1}}{n_k} \cdot \text{OPT}$$

The inequation can be derived from the fact:

$$\min_{i=1,\dots,k} \frac{a_i}{b_i} \le \frac{\sum_{i=1}^k a_i}{\sum_{i=1}^k b_i} \le \max_{i=1,\dots,k} \frac{a_i}{b_i}$$

Using the fact, let O contains the indices of the sets in an optimal solution, we can get:

$$\min_{j: \hat{S}_j \neq \emptyset} \frac{w_j}{|\hat{S}_j|} \le \min_{j \in O} \frac{w_j}{|\hat{S}_j|} \le \frac{\sum_{j \in O} w_j}{\sum_{j \in O} |\hat{S}_j|} = \frac{\text{OPT}}{n_k}$$

where the first inequality follows the definition of \hat{S}_j , if $j \in O$ but $\hat{S}_j = 0$, we must have $\frac{w_j}{|\hat{S}_j|} = \infty$. else it can be considered by $\min_{j:\hat{S}_j \neq \emptyset}$.

Then due to the algorithm choose the j which minimize the ratio $\frac{w_j}{|\hat{S}_j|}$, we have

$$w_j \le \frac{|\hat{S}_j| \cdot \text{OPT}}{n_k} = \frac{n_k - n_{k+1}}{n_k} \cdot \text{OPT}$$

Notice that the elements in \hat{S}_j are covered in the k+1 iteration, so $|\hat{S}_j| = n_k - n_{k+1}$.

Let I contain the indices of the sets in the algorithm solution, we have

$$\sum_{j \in I} w_j = \sum_{k=1}^l \frac{n_k - n_{k+1}}{n_k} \cdot \text{OPT}$$

$$\leq \text{OPT} \cdot \sum_{k=1}^l \left(\frac{1}{n_k} + \frac{1}{n_k - 1} + \dots + \frac{1}{n_{k+1} + 1} \right)$$

$$= \text{OPT} \cdot \sum_{i=1}^n \frac{1}{i}$$

$$= H_n \cdot \text{OPT}$$

Theorem 4. The solution of the greedy algorithm satisfy $\sum_{j \in I} w_j \leq H_g \cdot Z_{LP}^*$, where g is the maximum size of any subset S_j .

Proof. To prove the theorem, we can consider the conclution in dual program: for the feasible solution of the dual program, we have $\sum_{i=1}^n y_i' \leq Z_{LP}^*$. We want to construct the solution so that we have $\sum_{j \in I} w_j = H_g \sum_{i=1}^n y_i' \leq H_g \cdot Z_{LP}^*$ First, we need to construct the solution of the dual program. suppose we choose to add subset S_j to our solution in iteration k. Then for each $e_i \in \hat{S}_j$, we set $y_i = \frac{w_j}{|\hat{S}_j|}$. Since each e_i is chosen only once, so we have $\sum_{j \in I} w_j = \sum_{i=1}^n = y_i$. That is not a feasible solution for the dual program because we only consider the subsets in I. Then we need to show that $y' = \frac{1}{H_g} y$ is feasible.

For an arbitrary subset S_j , let a_k denote the number of elements in this subset that are still uncovered at the beginning of the kth iteration. Let A_k be the uncovered elements of S_j , so $|A_k| = a_k - a_{k+1}$. If S_j is chosen in the kth iteration, then for each element $e_i \in A_k$ covered in the kth iteration,

$$y_i' = \frac{w_p}{H_g|\hat{S}_p|} \le \frac{w_j}{H_g a_k}$$

Thus, we have

$$\sum_{i:e_i \in S_j} y_i' = \sum_{k=1}^l \sum_{i:e_i \in A_k} y_i'$$

$$\leq \sum_{k=1}^l (a_k - a_{k+1}) \frac{w_j}{H_g a_k}$$

$$\leq \frac{w_j}{H_g} \sum_{i=1}^{|S_j|} \frac{1}{i}$$

$$= \frac{w_j}{H_g} H_{|S_j|}$$

$$\leq w_j$$

Therefore, the solution y' is feasible for the dual program.

If we calculate $\sum_{i:e_i \in S_j} y_i$ straightforwardly, we can get $\sum_{i:e_i \in S_j} y_i \leq w_j \cdot H_{|S_j|}$, then we may consider to find a factor bigger than $H_{|S_j|}$ to make it feasible.

1.6 A Randomized Rounding Algorithm

Let X^* be an optimal LP solution to the LP relaxation. The idea of the randomized algorithm is is that we interpret the fractional value x_j^* as the probability that \hat{x}_j should be set to 1.

Let X_j be a random variable that is 1 if subset S_j is included in the solution, and 0 otherwise. Then the expected value of the solution is

$$\mathbb{E}\left[\sum_{j=1}^{m} w_j X_j\right] = \sum_{j=1}^{m} w_j \Pr[X_j = 1] = \sum_{j=1}^{m} w_j x_j^* = Z_{LP}^*$$

But the problem lies in the fact that the solution may be not a set cover. And we can get the probability of this situation.

$$\Pr[e_i \text{ is not covered}] = \prod_{j:e_i \in S_j} (1 - x_j^*)$$

$$\leq \prod_{j:e_i \in S_j} e^{-x_j^*}$$

$$= e^{-\sum_{j:e_i \in S_j} x_j^*}$$

$$\leq e^{-1}$$

The first inequality is due to $e^{-x} \ge 1 - x$, the second inequality is due to $\sum_{j:e_i \in S_j} x_j^* \ge 1$ in the LP program.

Consider to impose a guarantee in keeping with our focus on polynomial-time algorithms, for any constant c, we could devise a polynomial-time algorithm whose chance of failure is at most an inverse polynomial n^{-c} , then we say that we have an algorithm that works with high probability

For example, we consider the following algorithm. For each Subset S_j , we choose $c \ln n$ times with equal probability x_j^* , if it is chosen at least once, we include S_j in the solution. Then we have

$$\Pr\left[e_i \text{ is not covered}\right] = \sum_{j:e_i \in S_j} (1 - x_j^*)^{c \ln n}$$

$$\leq e^{-c \ln n \sum_{j:e_i \in S_j} x_j^*}$$

$$\leq \frac{1}{n^c}$$

Theorem 5. The algorithm is a randomized $O(\ln n)$ -approximation algorithm that produces a set cover with high probability

Proof. Let $p_j(x_j^*)$ be the probability that S_j is included in the solution, we know that $p_j(x_j^*) = 1 - (1 - x_j^*)^{(c \ln n)}$. If $x_j^* \in [0, 1]$ and $c \ln n \ge 1$, we have

$$p'_{j}(x_{j}^{*}) = c \ln n (1 - x_{j}^{*})^{c \ln n} \le c \ln n$$

where p'_j is the derivative of p_j .

Then we have

$$\mathbb{E}\left[\sum_{j=1}^{m} w_j X_j\right] = \sum_{j=1}^{m} w_j \Pr\left[X_j = 1\right]$$

$$\leq c \ln n \sum_{j=1}^{m} w_j x_j^*$$

$$= (c \ln n) Z_{LP}^*$$

However, we want to consider the situation that our solution can give a set cover. Let F be the event that the solution obtained by the procedure is

a feasible set cover, let \bar{F} be the complement of this event, we have

$$\Pr[\bar{F}] = \Pr[\text{there exists an element uncoverd}]$$

$$\leq \sum_{i=1}^{n} \Pr[e_i \text{ is not covered}]$$

$$= \frac{1}{n^{c-1}}$$

The inequality can be proved by inclusion-exclusion principle. So $\Pr[F] \ge 1 - \frac{1}{n^{c-1}}$, and we have

$$\mathbb{E}\left[\sum_{j=1}^{m} w_j X_j\right] = \mathbb{E}\left[\sum_{j=1}^{m} w_j X_j \middle| F\right] \Pr[F] + \mathbb{E}\left[\sum_{j=1}^{m} w_j X_j \middle| \bar{F}\right] \Pr[\bar{F}]$$

Since $w_j \geq 0$ for all j,

$$\mathbb{E}\left[\sum_{j=1}^{m} w_j X_j \middle| \bar{F}\right] \ge 0$$

Thus

$$\mathbb{E}\left[\sum_{j=1}^{m} w_j X_j \middle| F\right] = \frac{1}{\Pr[F]} \left(\mathbb{E}\left[\sum_{j=1}^{m} w_j X_j\right] - \mathbb{E}\left[\sum_{j=1}^{m} w_j X_j \middle| \bar{F}\right]\right)$$

$$\leq \frac{(c \ln n) Z_{LP}^*}{1 - \frac{1}{n^{c-1}}}$$

If $n \geq 2$ and $c \geq 2$, we have

$$\mathbb{E}\left[\sum_{j=1}^{m} w_j X_j \middle| F\right] \le 2c(\ln n) Z_{LP}^*$$

References

[1] David P. Williamson and David B. Shmoys. *The Design of Approximation Algorithms*. Cambridge University Press, 2011.