

STATISTICAL ANALYSIS OF TERRAIN AND WATER BACKGROUNDS IN THE VICINITY OF PORT HUENEME, CALIFORNIA

> ANTHONY J. LaROCCA Infrared and Optics Division/

APRIL 1979

Approved for public release. Distribution unlimited.

DOC FILE COPY

Prepared for: **Naval Weapons Center** China Lake, California Contract No. N60530-78-C-0009

79 11 19 102

NOTICES

Sponsorship: The work reported herein was conducted by the Environmental Research Institute of Michigan for the Naval Weapons Center, China Lake, California, under Contract Number N60530-78-C-0009. The Project Manager was Dr. Jon Wunderlich. Contracts and grants to the Institute for the support of sponsored research are administered through the Office of Contracts Administration.

<u>Disclaimer</u>: The views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Department of Defense or of the U.S. Government.

<u>Final Disposition</u>: After this document has served its purpose, it may be destroyed. Please do not return it to the Environmental Research Institute of Michigan.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS REPORE COMPLETING FOR					
1 122200 2 m	3 RECIPIENT'S CATALOG NUME					
-132300-3-T	(.72					
TITLE (and Subtille)	5 VPE OF REPORT & PERIOD C					
Statistical Analysis of Terrain and Water Back-	Technical Report.					
grounds in the Vicinity of Port Hueneme,	6. PERFORMING ORG REPORT N					
The second secon	132300-3-T					
Z. AUTHOR(1)	B CONTRACT OR GRANT NUMB					
Anthony J. LaRocca (California)	N60530-78-C-0009/					
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10 PROGRAM ELEMENT PROJE					
Environmental Research Institute of Michigan	AREA & WORK UNIT NUMBER					
P.O. Box 8618	Y					
Ann Arbor, Michigan 48107						
Dr. Jon Wunderlich	12 REPORT DATE					
Code 39403 Naval Weapons Center	Aprin 1979					
Naval Weapons Center China Lake, California 93555	159					
14 MONITORING AGENCY NAME AND ADDRESS	15 SECURITY CLASS (of this repo					
(if different from Controlling Office)	UNCLASSIFIED					
Receiving Officer	UNCLASSIFIED					
Naval Weapons Center China Lake, California 93555	154 DECLASSIFICATION DOWN					
17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Rep	orti					
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
18. SUPPLEMENTARY NOTES						
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)						
Terrain Backgrounds, Water Backgrounds, IR Ima Multispectral Data	agery, Statistical Anal					
20. ASTRACT (Continue on reverse side if necessary and identify by block number)						
Data from infrared imagery on various terrain	and water backgrounds					
been collected by the Environmental Research Inst	itute of Michigan and					
been englished by assessed blade statistical force	m-1					
been analyzed to present their statistical featur	es. This work is bei					
funded by the Optical Signatures Program to Support	ort Navy Requirements.					

DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

1

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Abstract (Cont.)

Con

Pellipse 'pictures', and power spectra for the following infrared spectral bands: 2.0-2.6, 3.0-4.2, 4.5-5.5, and 9.0-11.4 μm. Special areas were chosen to demonstrate the variation in results with the selection of different backgrounds.

UNCLASSIFIED

SUMMARY

The work described herein was funded by the Optical Signatures Program to Support Navy Requirements. Data from infrared (IR) imagery on various terrain and water backgrounds in the vicinity of Port Hueneme, CA have been collected by the Environmental Research Institute of Michigan and have been analyzed to present their statistical features. The data were collected by the ERIM M-7 scanner, a multispectral scanner which operates in several wavelength bands in the visible and infrared portions of the E-M spectrum. The imagery was collected with the scanner looking both downward and in a direction elevated 55 degrees with respect to the nadir.

The various areas analyzed in this report are depicted in greymaps shown in the body of the report. The characteristics of the IR imagery and of the flight conditions are described in detail. The scanner footprint in the downward looking case is almost 4.4 ft x 4.4 ft, and in the slant case it is about 4.4 ft x 7.6 ft. The statistics calculated have been presented in figures and tables in the body of the report as histograms, spectral correlations, ellipses, and power spectra.

Histograms of probability-of-occurrence of the signal values are presented in terms of spectral radiance for the 2.0-2.6 μm wavelength band, and in terms of apparent temperature in the 3.0-4.2 μm , 4.5-5.5 μm , and 9.0-11.4 μm wavelength bands. The relationship between the temperature and radiance statistics of the three thermal bands is discussed in the text.

Spectral correlations are presented to show relationships between the signals of the various channels. These are given along with means and standard deviations for the different bands and the various scenes. A special analysis was made of a small area consisting of strong sun glint. These statistics are presented in a section separate from the ones describing the land areas.

Ellipse representations of scene features are presented, depicting area sizes which occur above (or below) given threshold levels. The basis for the formation of ellipses is described in an earlier report [1]. Each ellipse represents certain features in the scene in area and general orientation, except that the area is specialized to a simple geometric form.

Power spectra of each of the scenes are presented for comparing results of different spectral regions.

^[1] R. Spellicy, J. Beard, and J. R. Maxwell, Statistical Analysis of Terrain Background Measurements Data, Report 120500-12-F, ERIM, March 1977.

ACKNOWLEDGEMENTS

The author wishes to acknowledge the invaluable assistance of Ms. Abby Liskow in performing the extensive computer operations necessary for the successful completion of the analyses.

Under the supervision of Mr. Stephen Stewart, data were collected on the flight by instrumentation specialists Mr. Jimmie Ladd and Mr. William Juodawlkis. Mr. Stewart contributed Appendix B of the report.

TABLE OF CONTENTS

																								Page
SUM	MARY	٠.																						3
1.	INTRODUCTI	ON .																		•				13
2.	HISTOGRAMS							•													•			13
3.	SPECTRAL C	ORRE	LA?	ric	ONS	3.						•				•								41
4.	ELLIPSES										•													48
5.	POWER SPEC	TRA.												•										75
6.	SUN GLINTS			•																				75
7.	CONCLUSION	s				•																		111
APPI	ENDIX A - DI	ESCRI	[P]	'IV	Έ	MA	TE	RI	AL	C	N	IM	AG	ER	Y	AR	EA	S						A-1
APPENDIX B - ATMOSPHERIC CONSIDERATIONS FOR THE PORT HUENEME DATA. B-											B-1													

LIST OF FIGURES

Figure	<u>Title</u>	Page
1	Aerial Photograph - Port Hueneme	14
2a-b	Port Hueneme Imagery - 90° Depression (HUME1)	15-16
3a-b	Port Hueneme Imagery - 35° Depression (HUME2)	17-18
4	HUME1 Greymap	19
5	HUME2 Greymap	20
6a-c	Histogram of Area #1 at Port Hueneme	24-26
7a-c	Histogram of Area #2 at Port Hueneme	27-29
8a-c	Histogram of Total Area at Port Hueneme	30-32
9a-d	Histogram of Area #2 at Port Hueneme	33-36
10a-d	Histogram of Total Area at Port Hueneme	37-40
11a-j	Equivalent Elliptical Areas for Port Hueneme (HUME1) .	49-58
12a-p	Equivalent Elliptical Areas for Port Hueneme (HUME2) .	59-74
13a	Power Spectra - HUME1 Crosstrack	102
13b	Power Spectra - HUMEl Intrack	103
14a	Power Spectra - HUME2 Crosstrack	104
14ь	Power Spectra - HUME2 Intrack	105
15a-d	Histogram of Water Glints at Port Hueneme	106-109
16a-n	Equivalent Elliptical Areas for Port Hueneme (HUM2) (Water Glints)	112-125
17a-d	Equivalent Elliptical Areas for Port Hueneme (HUM2) (Open Water, Cold Spots)	146-149
A-1	Ellipse Scenery, Area Sizes	A-2
A-2	Ellipse Match With Imagery	A-3

LIST OF TABLES

<u>Table</u>	<u>Title</u>	Page
1	Pertinent Information About Port Hueneme Data	21
2	Area #1 - HUME1 - Statistical Data	42-43
3	Area #2 - HUME1 - Statistical Data	44
4	Total Scene - HUME1 - Statistical Data	45
5	Area #2 - HUME2 - Statistical Data	46
6	Total Scene - HUME2 - Statistical Data	47
7	HUME1 - Total Scene - Area Distributions	76-85
8	HUME2 - Total Scene - Area Distributions	86-101
9	Glints on Open Water - HUME2 - Statistical Data	110
10	HUME2 - Glints on Open Water - Area Distributions.	126-141
11	HUME2 - Cold Water Regions - Area Distributions	142-145
B-1	Apparent Temperature and Radiance Values for Two	B-4

1

INTRODUCTION

As part of a program to derive statistical information on the electromagnetic (EM), visible and IR characteristics of various terrain backgrounds, we have analyzed imagery of selected areas in the vicinity of Port Hueneme, CA, an aerial photo of which is shown in Figure 1. The actual imagery analyzed are shown in Figures 2 (HUME1) and 3 (HUME2). The imagery from which the analyses were made were collected with the ERIM M-7 scanner, described in detail in Reference 1. Briefly, the system is a multispectral scanner operating in several bands in the visible and IR portions of the E-M spectrum. The background data, along with signals from several calibrating sources, are digitally recorded on a high-density digital tape and converted to a computer-compatible tape from which the analyses are made.

We have concentrated on specific areas requested by the sponsor and indicated in the greymaps: Area #1 in Figure 4, Area #2 in Figures 4 and 5, and Area G in Figure 5. We have analyzed also a large part of the total area in each of the two runs designated as HUME1 and HUME2. The total areas comprise a large part of the land mass and some of the open water. The data were collected in the following wavelength bands: 2.0-2.6, 3.0-4.2, 4.5-5.5, and 9.0-11.4 μm . Pertinent information on these data is given in Table 1.

The analyses for this effort take the following forms: histograms, spectral correlations, ellipses, and power spectra.

2

HISTOGRAMS

After the imagery are calibrated and computer-processed to achieve line-by-line contiguity, the data are stored on magnetic tape in such a way that individual pixel data can be analyzed. For a given run, the pixel values are stored in data bins and counted for the purpose of

^[1] R. Spellicy, J. Beard, and J. R. Maxwell, Statistical Analysis of Terrain Background Measurements Data, Report 120500-12-F, ERIM, March 1977.

FIGURE 1. AERIAL PHOTOGRAPH - PORT HUENEME

FIGURE 2(a). PORT HUENEME IMAGERY - 90° DEPRESSION (HUME1)

FIGURE 2(b). PORT HUENEME IMAGERY - 90° DEPRESSION (HUMEI)

FIGURE 3(a). PORT HUENEME IMAGERY - 35° DEPRESSION (HUME2)

FIGURE 3(b). PORT HUENEME IMAGERY - 35° DEPRESSION (HUME2)

This is a mirror image of photographic imagery.) HUME1 GREYMAP (Note: FIGURE 4.

photographic imagery.) mirror image of B is This GREYMAP (Note: HUME2 5 FIGURE

Scanline #1616 -

TABLE 1

PERTINENT INFORMATION ABOUT PORT HUENEME DATA

HUME1 Data

Wavelength Bands:

2.0-2.6 μm, 3.0-4.2 μm, 4.5-5.5 μm, 9.0-11.4 μm

IFOV: 2.5 mrad

Altitude: 1750 ft

Depression Angle: 90°

Time: 1215 hrs

Flight Direction: West

Ground Speed: 202 ft-sec-1

Area Covered (Approx.):

#1) 1300 ft long x 1200 ft wide

#2) 900 ft long x 1850 ft wide

Total) 6350 ft long x 2800 ft wide

HUME2 Data

Wavelength Bands:

 $2.0-2.6 \mu m$, $3.0-4.2 \mu m$, $4.5-5.5 \mu m$, $9.0-11.4 \mu m$

IFOV: 2.5 mrad

Altitude: 1000 ft

Depression Angle: 35°

Time: 1420 hrs

Flight Direction: West

Ground Speed: 202 ft-sec-1

Area Covered (Approx.):

#2) 900 ft long x 1850 ft wide (same terrain as #2 in HUME1)

G) 1800 ft long x 900 ft wide (sun glint on water)

Total) 10,000 ft long x 2700 ft wide

creating histograms, and the mean values and standard deviations are computed. From these results, the temperature-related histograms are plotted. In the 2.0-2.6 μ m band, the histograms are plotted in terms of spectral radiance. In the other spectral regions, they are plotted in terms of temperature. Histograms for the HUME1 and HUME2 runs are shown respectively in Figures 6 through 8, and in Figures 9 and 10. The curve defined by the circles in each figure is a plot of the Gaussian distribution corresponding to the same mean and standard deviation as for the actual data. The circles are separated by 1/2 σ (σ =standard deviation).

Because of the sun's influence, the data tend to run off the scale for the short wavelength regions. However, if the scale of the radiance histograms (i.e., $2.0\text{--}2.6~\mu\text{m}$) were extended beyond that in the figures one would find that the pile-up of the data at the right edge does not necessarily indicate saturation. Nor is there necessarily a pile-up at the left edge of the radiance plots. The implied drop-off toward negative radiances simply means that the dark level in the calibration is difficult to choose accurately.

The 2.0-2.6 µm histograms are plotted in terms of spectral radiance inasmuch as a temperature plot would be meaningless, since the sun's influence is so great in this spectral region. We could have analyzed all of the spectral regions in terms of radiance, but reducing the values to equivalent temperature values makes intercomparison of data easier. In fact, in Reference 2, we did reduce the results in the thermal regions in terms of both temperature and radiance, and found that, within less than a 10% error, the radiance statistics can be deduced directly* from the temperature statistics through the Planck function. In view of this, we therefore omitted the radiance statistics for the thermal spectral region.

^[2] A. J. LaRocca and J. R. Maxwell, Statistical Analysis of Terrain Data, Report 132300-2-F, ERIM, February 1979.

^{*} Strictly speaking, because of the non-linearity of the Planck equation, we should not expect to derive radiance statistics from temperature statistics through the Planck equation. However, the temperature range of values is sufficiently small to allow this to be done without incurring a large error.

Histograms are produced in this report for the areas indicated in Table 1 (the sun glint #G is discussed below). The greymaps of Figures 4 and 5 were obtained from the digitized, calibrated imagery in the 2.0-2.6 µm band from both HUME1 and HUME2. They are helpful in identifying what part of the imagery, corresponding to areas of interest, is to be analyzed. Due to the reversal of the imagery in the processing, the greymaps are a mirror image of the pictures in Figures 1, 2, and 3.

One should note from the imagery of Figure 3 that, because of the angle at which the sensor is pointed for the 35° depression cases, vignetting causes an attenuation of signals on the edge. For that reason we have tried to take care to avoid these regions in certain of the analyses. Note also from the imagery of Figures 2 and 3, that the 3.0-4.2 μ m band introduced noise into the data which makes the results subject to greater error of interpretation than in the other bands. Some of the data of this band have been excluded from this report as unusable.

It is particularly interesting to note in the histograms of Figures 6 through 10 that the distributions in the thermal regions at 4.5-5.5 and 9.0-11.4 μm do not agree very well. The distribution at 9.0-11.4 μm extends well beyond that of the 4.5-5.5 μm band. We found no precedent for this behavior in earlier data, and decided to hand-check a few points to make sure that computing errors did not creep into the analysis. See Appendix B. The hand-checked points agreed with those obtained with the computer, so we have assumed that the behavior of the curves is real.

We are not unduly alarmed at these results because the temperatures shown on the abscissa are apparent; i.e., they are deduced from the actual radiance values, assumed to be originating from a blackbody in the respective spectral region. As such, therefore, they are subject to variations in the emissivities of the radiating surfaces, and to variations in atmospheric transmittance.

FIGURE 6b. HISTOGRAM OF AREA #1 AT PORT HUENEME

FIGURE 6c. HISTOGRAM OF AREA #1 AT PORT HUENEME

FIGURE 7a. HISTOGRAM OF AREA #2 AT PORT HUENEME

28

FIGURE 7c. HISTOGRAM OF AREA #2 AT PORT HUENEME

30

FIGURE 8c. HISTOGRAM OF TOTAL AREA AT PORT HUENEME

FIGURE 9c. HISTOGRAM OF AREA #2 AT PORT HUENEME

FIGURE 9d. HISTOGRAM OF AREA #2 AT PORT HUENEME

FIGURE 10a. HISTOGRAM OF TOTAL AREA AT PORT HUENEME

ERIM

The latter tends to be the more important in causing deviations between the two thermal spectral regions. We find that in the 9.0-11.4 μm band, the atmosphere is virtually non-attenuating for the approximately 2000-foot distance in each case between radiator and receiver. However, depending on humidity, the 4.5-5.5 μm band can be severely affected by $\rm H_2O$ vapor absorption. In fact, if one assumes (1) a transmittance of approximately 50 percent in this region (not at all unreasonable for moderate $\rm H_2O$ concentrations), causing a loss of 50 percent of the relatively high temperature radiation from the land surfaces, and (2) that the path between radiator and receiver re-radiates with 50 percent emissivity at approximately the water temperature of about 288K, then the difference in the temperature for the two spectral regions is about what we find from the mean temperatures given on the figures.

Furthermore, we should note that the peaks of the distributions, representing the water temperature with very little spread, are a nearly the same temperature for both bands, with the value for 4.5-5.5 μ m falling slightly below that for 9.0-11.4 μ m, as expected.

The above events are a good argument for representing the distributions in terms of temperature. Normalization of the Planck curve makes it easier to observe differences in the behavior of different thermal regions whether imaginary or real.

3

SPECTRAL CORRELATIONS

The overall statistics of the various regions are given in Tables 2 through 6 where the means and standard deviations are recorded, as well as the correlations between the different spectral bands. Table 2, for example, shows the values for Area #1, which was subdivided into four smaller, equal areas, designated by the numbers ①, ②, ③, and ④ on the greymap of Figure 4. Only Area #1 was subdivided. The spectral bands in this and the other tables are designated by channel number with the following correspondence:

TABLE 2 Area #1 - HUME1

Number of Subregions = 4

Pixel Subarea Divisions at: 1 138 276 Line Subarea Divisions at: 976 1126 1276

Line Increment Used = 1

Pixel Increment Used = 1

Correlation Channels: 6 (2.0 - 2.6 μ m) 11 (4.5 - 5.5 μ m) 12 (9.0 - 11.4 μ m)

Subarea (1)

 Correlation
 6
 11
 12

 6
 1.000

 11
 0.847
 1.000

 12
 0.832
 0.943
 1.000

Channels 6 11 12

Mean 5.7475E+01 2.9328E+02 2.9941E+02

St. Dev. 4.4586E+01 4.8267E+00 8.6960E+00

Total Pts. 20687. 20687. 20687.

Subarea 2

Correlation 6 11 12 6 1.000 11 0.904 1.000 12 0.903 0.959 1.000

Channels61112Mean1.1728E+012.8821E+022.9007E+02St. Dev.2.3041E+012.8879E+004.9011E+00Total Pts.20838.20838.20838.

TABLE 2 (Cont'd) Area #1 - HUME1

Subarea	3
Dubarca	()

Correlation	6	11	12
6	1.000		
11	0.416	1.000	
12	0.178	0.723	1.000

Channels	6	11	12
Mean	9.2962E+01	2.9515E+02	3.0190E+02
St. Dev.	4.6965E+01	3.2393E+00	5.7173E+00
Total Pts.	20550.	20550.	20550.

Subarea 4

Correlation	6	11	12
6	1.000		
11	0.798	1.000	
12	0.801	0.882	1.000

Channels	6	11	12
Mean	6.1556E+01	2.9299E+02	2.9793E+02
St. Dev.	4.8579E+01	4.5205E+00	7.7607E+00
Total Pts.	20700.	20770.	20770.

Total Area (Sum of Subareas)

Correlation	6	11	12	
6	1.000			
11	0.803	1.00	0	
12	0.757	0.92	0 1.000	
Channels	6		11	12
Mean	5.5789E	E+01	2.9240E+02	2.9731E+02
St. Dev.	5.1078E	E+01	4.7136E+00	8.2304E+00
Total Pts.	82775	; .	82775	82775

TABLE 3 Area #2 - HUME1

Number of Subregions = 1

Pixel Subarea Divisions at: 126 551 Line Subarea Divisions at: 416 616

Line Increment Used = 1
Pixel Increment Used = 1

Correlation Channels: 6 (2.0 - 2.6 µm)

11 (4.5 - 5.5 μ m) 12 (9.0 - 11.4 μ m)

 Correlation
 6
 11
 12

 6
 1.000

 11
 -0.004
 1.000

 12
 -0.068
 0.828
 1.000

Channels 6 11 12 2.9847E+02 3.0640E+02 Mean 1.0893E+02 2.9659E+00 5.2093E+00 St. Dev. 2.8583E+01 85425. Total Pts. 85425. 85425.

TABLE 4 Total Scene - HUME1 (Lines 101-1550)

Number of Subregions = 1

Pixel Subarea Divisions at: 10 636 Line Subarea Divisions at: 101 1550

Line Increment Used = 1

Pixel Increment Used = 1

Correlation Channels: $6 (2.0 - 2.6 \mu m)$

11 $(4.5 - 5.5 \mu m)$ 12 $(9.0 - 11.4 \mu m)$

Correlation	6	11	12
6	1.000		
11	0.791	1.000	
12	0.767	0.921	1.000

Channels 11 12 7.8128E+01 Mean 2.9454E+02 3.0054E+02 St. Dev. 5.0523E+01 4.7889E+00 7.9584E+00 907700. 907700. Total Pts. 907700.

TABLE 5 Area #2 - HUME2

Number of Subregions = 1

Pixel Subarea Divisions at: 123 523 Line Subarea Divisions at: 681 826

Line Increment Used = 1

Pixel Increment Used = 1

Correlation Channels: 6 (2.0 - 2.6 μ m)

10 $(3.0 - 4.2 \mu m)$ 11 $(4.5 - 5.5 \mu m)$ 12 $(9.0 - 11.4 \mu m)$

Correlation 6 10 11 12 6 1.000 10 0.350 1.000 11 0.460 0.327 1.000 12 0.339 0.300 0.836 1.000

10 12 6 11 Channels 3.0514E+02 3.0087E+02 2.9813E+02 Mean 6.7610E+01 9.1866E+00 2.9408E+00 4.8995E+00 St. Dev. 2.2000E+01 58400. 58400. 58400. 58400. Total Pts.

TABLE 6 Total Scene - HUME2 (Lines 101-1550)

Number of Subregions = 1

Pixel Subarea Divisions at: 123 523 Line Subarea Divisions at: 101 1550

Line Increment Used = 1

Pixel Increment Used = 1

Correlation Channels: 6 (2.0 - 2.6 μ m)

10 (3.0 - 4.2 μm) 11 (4.5 - 5.5 μm) 12 (9.0 - 11.4 μm)

Correlation	6	10	11	12
6	1.000			
10	0.608	1.000		
11	0.356	0.329	1.000	
12	0.048	0.177	0.876	1.000

Channels	6	10	11	12
Mean	6.3483E+01	2.9848E+02	2.9433E+02	2.9858E+02
St. Dev.	6.2949E+01	1.5527E+01	4.6401E+00	8.0460E+00
Total Pts.	580000.	580000.	580000.	580000.

Channel 6: $2.0-2.6 \, \mu \text{m} \, (\mu \text{w-cm}^{-2} - \text{sr}^{-1} - \mu \text{m}^{-1})$

Channel 10: 3.0-4.2 μm (°K)

Channel 11: 4.5-5.5 μm (°K)

Channel 12: 9.0-11.4 µm (°K)

The units for the means and standard deviations in the different spectral bands are given in parentheses.

In light of the statement made earlier (in Section 2) about radiance and temperature statistics, we felt sufficiently confident to compare the results of the $2.0-2.6~\mu m$ band with those of the thermal region.

4

ELLIPSES

One of the statistics that is being gathered on various scenes as part of this backgrounds analysis program is "ellipse" statistics. These statistics are two-dimensional analogs of threshold crossing and pulse length statistics in one dimension. They are generated by identifying those contiguous areas in the image with data values that exceed some threshold value. The area corresponding to each cluster of contiguous pixels is then determined and tabulated. The centroid and first and second moments for each area are also determined to define an equivalent elliptical area, and tabulations are made of the distribution of contiguous areas in the image that exceed the threshold by area, perimeter, shape factor, or ratio of major-to-minor axis. These ellipse statistics are determined for each of several threshold settings. Single pixel and contiguous twopixel exceedances are not included in the ellipse tabulations but the number of such exceedances are noted separately. The threshold levels are given in units of multiples (or fractions) of one standard deviation. Examples of ellipses for the various scenes are illustrated in Figures 11 and 12. Certain features in the ellipses are clearly associated with comparable details in the imagery shown in Figures 2 and 3.

#1550

Area: HUM1

Radiance Threshold

= Ave. + 1.00σ

Wavelength = $2.0 - 2.6 \mu m$

FIGURE 11a. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM1

Radiance Threshold

= Ave. + 1.50σ

Wavelength = $2.0 - 2.6 \mu m$

FIGURE 11b. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM1

Radiance Threshold

= Ave. + 2.0 σ

Wavelength = $2.0 - 2.6 \mu m$

FIGURE 11c. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM1

Temperature Threshold

= Ave. + 2.00σ

Wavelength = $4.5 - 5.5 \mu m$

FIGURE 11d. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM1

Temperature Threshold

= Ave. + 2.50 σ

Wavelength = $4.5 - 5.5 \mu m$

FIGURE 11e. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM1

Temperature Threshold

= Ave. + 3.00σ

Wavelength = 4.5 - 5.5 μm

FIGURE 11f. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM1

Temperature Threshold

= Ave. + 3.50σ

Wavelength = $4.5 - 5.5 \mu m$

FIGURE 11g. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM1

Temperature Threshold

= Ave. + 2.00σ

Wavelength = $9.0 - 11.4 \mu m$

FIGURE 11h. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM1

Temperature Threshold

= Ave. + 2.50 σ

Wavelength = $9.0 - 11.4 \mu m$

FIGURE 11i. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM1

Temperature Threshold

= Ave. + 3.00σ

Wavelength = $9.0 - 11.4 \mu m$

FIGURE 11j. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Radiance Threshold = Ave. + 1.00 σ

Wavelength = $2.0 - 2.6 \mu m$

FIGURE 12a. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Radiance Threshold ≈ Ave. + 1.50 σ

Wavelength = $2.0 - 2.6 \mu m$

FIGURE 12b. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM2 Radiance Threshold = Ave. + 2.00 σ

Wavelength = $2.0 - 2.6 \mu m$

FIGURE 12c. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Temperature Threshold

= Ave. + 1.00 σ

Wavelength = $3.0 - 4.2 \mu m$

FIGURE 12d. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM2
Temperature Threshold
= Ave. + 1.50 σ

Wavelength = 3.0 - 4.2 μm

FIGURE 12e. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM2

Temperature Threshold

= Ave. + 0.50σ

Wavelength = 4.5 - 5.5 μm

FIGURE 12f. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM2

Temperature Threshold

= Ave. + 1.00σ

Wavelength = 4.5 - 5.5 μm

FIGURE 12g. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM2

Temperature Threshold

= Aye. + 2.00σ

Wavelength = $4.5 - 5.5 \mu m$

FIGURE 12h. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM2

Temperature Threshold

= Ave. + 2.50σ

Wavelength = $4.5 - 5.5 \mu m$

FIGURE 12i. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM2

Temperature Threshold

= Ave. + 3.00σ

Wavelength = $4.5 - 5.5 \mu m$

FIGURE 12j. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM2

Temperature Threshold

= Ave. + 0.50σ

Wavelength = $9.0 - 11.4 \mu m$

FIGURE 12k. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM2

Temperature Threshold

= Ave. + 1.00σ

Wavelength = $9.0 - 11.4 \mu m$

FIGURE 12%. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM2

Temperature Threshold

= Ave. + 1.50σ

Wavelength = $9.0 - 11.4 \mu m$

FIGURE 12m. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM2

Temperature Threshold

= Ave. + 2.00 σ

Wavelength = $9.0 - 11.4 \mu m$

FIGURE 12n. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM2

Temperature Threshold

= Ave. + 2.50σ

Wavelength = $9.0 - 11.4 \mu m$

FIGURE 120. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

Scanline #101

#1550

Area: HUM2

Temperature Threshold

= Ave. + 3.00σ

Wavelength = $9.0 - 11.4 \mu m$

FIGURE 12p. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

Tables 7 and 8 show how the contiguous areas that exceed several thresholds are distributed by area (square meters), perimeter (meters), and shape factor. The shape factor (see Appendix A) is defined to be the ratio of the perimeter/ 2π and the square root of the area/ π , i.e.,

shape factor =
$$\frac{\text{perimeter}/2\pi}{(\text{area}/\pi)^{1/2}}$$

For a circular area, the shape factor would be unity.

Appendix A is included to show the sizes of the areas for which the ellipses were generated, and to give a little more insight into the ellipse representation of the scenery.

5

POWER SPECTRA

Included in the statistics of the areas analyzed are power spectra of the total area from each of the runs, HUMEl and HUME2. Considering the multimodal nature of the data, interpretation of the power spectra will be difficult. They are presented here for comparison of the different areas and spectral bands, and to show trends in the spatial quality of the data. The abscissa on these figures shows (amplitude) in order that we may put multiple curves on the same figure. However, for the 2.0-2.6 μ m band, the amplitude is actually μ w-cm⁻²-sr⁻¹- μ m, and for the other bands the amplitude is temperature in Kelvins. Figures 13 and 14 are one-dimensional power spectra identified as cross-track, and intrack, i.e., evaluated across and along the scan direction.

6

SUN GLINTS

A special area in the protected water region was analyzed from the HUME2 run to assess the effect of sun glint on the data. The histograms for these statistics are shown in Figures 15a-d, and the means, standard deviations and correlations are shown in Table 9. From the ellipse

TABLE 7
HUME1 - Total Scene
AREA DISTRIBUTIONS

DISTRIBUTION OF RECOGNIZED HOT SPOT Threshold = Ave. $+ 1.0 \sigma$ $2.0 - 2.6 \mu m$ BY AREA SQUARE METERS FREQUENCY 0.0 TO 5.0 TO 5.0 10.0 160 10.0 TO 15.0 237 15.0 TO 151 91

20.0 25.0 30.0 35.0 20.0 TO 25.0 TO 30.0 TO 35.0 TO 46 56 40.0 40 40.0 TO 45.0 TO 45.0 27 50.0 75.0 50.0 TO 90 75.0 TO 100.0 TO 150.0 TO 100.0 39 48 200.0 31 200.0 TU 250.0 300.0 250.0 10 20 300.0 TO 400.0 TO OVER 400.0 15 500.0 15 500.0 69

TOTAL NUMBER OF HOT SPOT # 1175

		BY PERIM	TER	BY SHAPE		
METER	9	FEET		FREQUENCY	SHAPE FACTUR	FREQUENCY
0 10	7	0 TO	55	0	0.0 70 1.0	0
7 10	10	55 TO	32	0	1.0 TO 1.1	0
10 TO	12	32 TO	39	0	1.1 TU 1.2	7
12 10	14	39 TO	45	31	1.2 10 1.3	45
14 TO	16	45 TO	52	0	1.3 10 1.4	59
16 TO	17	52 TO	55	97	1.4 TO 1.5	48
17 10	20	55 TO	65	118	1.5 70 1.6	106
20 10	55	65 TO	72	92	1.6 10 1.7	77
22 10	24	72 TO	78	0	1.7 TO 1.8	112
24 10	26	78 70	85	89	1.8 70 1.9	73
26 10	28	85 TO	91	63	1.9 TO 2.0	58
28 TO	30	91 TO	98	43	2.0 10 2.4	230
30 TO	32	98 TO	104	0	2.4 10 2.6	66
32 10	39	104 TO	127	140	8.5 01 8.5	56
39 TO	45	127 10	147	61	2.8 TO 3.0	59
45 10	55	147 TO	180	80	3.0 TO 3.5	59
55 TO	71	180 TO	232	71	3.5 TO 4.0	39
71 10	100	232 10	328		4.0 TO 4.5	
OVER	100			74		25
DAE	100	OVER	358	216	OVER 4.5	76

TABLE 7 (Cont'd)

DISTRIBUTION	OF	RECOGNIZED	HOT	SPOT
CISINIDOLION	Ur	MECHGNIZED	11(1)	300

BY AREA

 $\left(\begin{array}{c}
\text{Threshold} = \text{Ave.} + 1.5 \, \sigma \\
2.0 - 2.6 \, \mu\text{m}
\end{array}\right)$

SQUARE METE	R\$	FREQUENCY
0.0 TU	5.0	0
5.0 TO	10.0	42
10.0 TU	15.0	78
15.0 TO	20.0	44
20.0 TU	25.0	23
25.0 TO	30.0	16
30.0 TU	35.0	20
35.0 TO	40.0	14
40.0 TU	45.0	11
45.0 TO	50.0	11
50.0 TO	75.0	22
75.0 TO	100.0	16
100.0 TO	150.0	16
150.0 TO	200.0	6
200.0 TO	250.0	8
250.0 TO	300.0	2
300.0 TO	400.0	5
400.0 TO	500.0	3
OVER	500.0	18

TOTAL NUMBER OF HOT SPOT # 355

BY PERIMETER					BY SHAPE		
METER	S	FEET		FREQUENCY	SHAPE FACTOR	FREQUENCY	
0 10	7	0 TO	55	0	0.0 70 1.0	0	
7 10	10	22 10	32	0	1.0 70 1.1	0	
10 TO	12	32 TO	39	0	1.1 70 1.2	6	
12 10	14	39 TO	45	15	1.2 70 1.3	17	
14 TO	16	45 TO	52	0	1.3 TO 1.4	26	
16 10	17	52 TO	55	27	1.4 TO 1.5	5.5	
17 10	20	55 TO	65	36	1.5 10 1.6	51	
20 TO	55	65 TO	72	34	1.6 70 1.7	26	
22 10	24	72 10	78	0	1.7 70 1.8	38	
24 10	26	78 TO	85	23	1.8 TU 1.9	5.5	
26 10	28	85 10	91	55	1.9 10 2.0	55	
28 10	30	91 10	98	50	2.0 TO 2.4	58	
30 10	32	98 10	104	0	2.4 10 2.6	14	
32 10	39	104 TO	127	45	8.5 UT 8.5	17	
39 10	45	127 10	147	55	2.8 TU 3.0	9	
45 TO	55	147 10	180	23	3.0 TO 3.5	12	
55 10	71					8	
		180 TO	232	18			
71 10	100	535 10	328	21	4.0 10 4.5		
OVER	100	OVER	328	49	NVER 4.5	6	

TABLE 7 (Cont'd)

 $\left(\begin{array}{c}
\text{Threshold} = \text{Ave.} + 2.0 \text{ } \sigma \\
2.0 - 2.6 \text{ } \mu\text{m}
\end{array}\right)$

BY AREA

SQUARE	METE	R9	FREQUENCY
0.0	TO	5.0	0
5.0	TO	10.0	14
10.0	TO	15.0	21
15.0	TO	20.0	11
20.0	TO	25.0	12
25.0	TO	30.0	6
30.0	10	35.0	9
35.0	TO	40.0	6
40.0	TO	45.0	5
45.0	TO	50.0	3
50.0	TO	75.0	7
75.0		100.0	3
100.0		150.0	3
150.0	TO	200.0	2
200.0		250.0	1
250.0		300.0	2
300.0		400.0	2
400.0		500.0	2
	ER	500.0	5

TOTAL NUMBER OF HOT SPOT = 114

BY PERIMETER						BY SHAPE		
ME	TER	3	F	EET		FREQUENCY	SHAPE FACTOR	FREQUENCY
0	TO	7	0	TO	55	0	0.0 TU 1.0	0
7	TO	10	55	TU	32	0	1.0 TO 1.1	0
10	TO	12	32	TO	39	0	1.1 10 1.2	0
12	TU	14	39	TO	45	2	1.2 10 1.3	3
14	TO	16	45	TO	52	0	1.3 TO 1.4	8
16	TO	17	52	TO	55	9	1.4 TU 1.5	7
17	TO	20	55	TO	65	12	1.5 10 1.6	18
20	TO	2.2	65	TO	72	15	1.6 TO 1.7	15
55	10	24	72	TO	78	0	1.7 TO 1.8	13
24	TO	26	78	TO	85	8	1.8 TO 1.9	9
26	TO	28	85	TO	91	4	1.9 10 2.0	5
28	TO	30	91	TO	98	6	2.0 TO 2.4	23
30	TO	32	98	TO	104	0	2.4 10 2.6	5
32	TO	39	104	TO	127	17	8.5 OT 8.5	5
39	TO	45	127	TO	147	8	2.8 10 3.0	2
45	TO	55	147	TO	180	10	3.0 10 3.5	1
55	10	71	180	TO	232	3	3.5 TU 4.0	0
71	TO	100	232		328	7	4.0 10 4.5	0
	ER	100		ER	328	13	OVER 4.5	1

TABLE 7 (Cont'd)

 $\left(\begin{array}{c}
\text{Threshold} = \text{Ave.} + 2.0 \text{ } \sigma \\
4.5 - 5.5 \text{ } \mu\text{m}
\end{array}\right)$

BY AREA

SQUARE	MET	ERS	FREQUENCY
0.0	TO	5.0	0
5.0	TU	10.0	21
10.0	TU	15.0	35
15.0	TO	20.0	19
20.0	TO	25.0	11
25.0	TU	30.0	8
30.0	TO	35.0	6
35.0	TO	40.0	6
40.0	TU	45.0	6
45.0	TO	50.0	3
50.0	TO	75.0	8
75.0	TO	100.0	3
100.0	TO	150.0	7
150.0		200.0	6
200.0		250.0	1
250.0		300.0	2
300.0		400.0	1
400.0		500.0	5
	ER	500.0	4

TOTAL NUMBER OF HOT SPOT = 149

		BY PERIME	TER		BY SHAPE		
METER	3	FEET		FREQUENCY	SHAPE FACTOR	FREQUENCY	
0 10	7	0 10	55	0	0.0 70 1.0	0	
7 10	10	22 10	32	0	1.0 70 1.1	0	
10 10	12	32 TO	39	0	1.1 70 1.2	3	
12 10	14	39 TO	45	10	1.2 TU 1.3	10	
14 TO	16	45 TO	52	0	1.3 TO 1.4	16	
16 10	17	52 10	55	17	1.4 TO 1.5	12	
17 10	20	55 10	65	20	1.5 10 1.6	21	
20 TO	55	65 TO	72	13	1.6 TO 1.7	16	
22 10	24	72 10	78	0	1.7 TO 1.8	12	
24 TO	26	78 T()	85	10	1.8 70 1.9	11	
26 10	28	85 TO	91	9	1.9 TU 2.0	7	
28 10	30	91 10	98	9	2.0 10 2.4	19	
30 10	32	98 10	104	0	2.4 10 2.6	6	
32 10	39	104 TO	127	12	8.5 UT 8.8	4	
39 TO	45	127 TO	147	6	2.8 TO 3.0	3	
45 TO	55	147 TO	180	10	3.0 10 3.5		
55 10	71	180 TO	232	9	3.5 10 4.0	ĭ	
71 10	100	232 10	328	•	4.0 70 4.5	0	
OVER	100	OVER	328	17	OVER 4.5	0	
DAFK	100	HACK	250	17	UVER 4.5	V	

TABLE 7 (Cont'd)

Threshold = Ave. + 2.5 σ DISTRIBUTION OF RECOGNIZED HOT SPUT 4.5 - 5.5 μm BY AREA SQUARE METERS FREQUENCY 0.0 TO 5.0 TO 10.0 TO 15.0 TO 5.0 3 10.0 15.0 17 20.0 16 20.0 TO 0 25.0 TO 30.0 TO 30.0 35.0 3 3 3 3 35.0 TO 40.0 40.0 TO 45.0 45.0 TO 50.0 50.0 TU 75.0 TO 100.0 TO 150.0 TU 75.0 6132 100.0 150.0 200.0 200.0 TO 250.0 250.0 TO 300.0 TO

TOTAL NUMBER OF HOT SPOT 66

400.0 TO

OVER

300.0 400.0

500.0

500.0

	BY PERIMETER					BY SHAPE		
ME	TEH	3	FEET	in the second	FREQUENCY	SHAPE FACTOR	FREQUENCY	
0	to	7	0 TO	55	0	0.0 TU 1.0	0	
7	TO	10	22 10	32	0	1.0 TO 1.1	0	
10	10	12	32 TO	39	0	1.1 70 1.2	0	
12	TO	14	39 10	45	1	1.2 10 1.3	5	
14	TO	16	45 TO	52	0	1.3 10 1.4	6	
16	TO	17	52 TO	55	5	1.4 70 1.5	4	
17	TO	20	55 TO	65	5	1.5 10 1.6	8	
50	TO	55	65 10	72	9	1.6 70 1.7	7	
55	10	24	72 10	78	0	1.7 10 1.8	9	
24	TO	56	78 TO	85	9	1.8 TU 1.9	6	
26	TO	28	85 TO	91	4	1.9 70 2.0	3	
28	TO	30	91 TU	98	•	2.0 10 2.4	9	
30	TO	32	98 10	104	ō	2.4 10 2.6	2	
35	TO	39	104 TO	127	7	8.5 DT 8.5	3	
39	10	45	127 10	147	Ú.	2.8 10 3.0	2	
45	TO	55	147 TO	180	5	3.0 10 3.5	i	
55	10	71	180 10	232		3.5 TO 4.0	i	
71	10				·	4.0 10 4.5	:	
-		100	232 10	328		OVER 4.5	0	
U	ER	100	OVER	328	9	TIVER 4.5	U	

TABLE 7 (Cont'd)

DISTRIBUTION OF	RECOGNIZED	HOT SPOT	$ \begin{pmatrix} \text{Threshold} = \text{Ave.} + 3.0 \sigma \\ 4.5 - 5.5 \mu\text{m} \end{pmatrix} $
	ву	ARFA	4.5 - 5.5 μm
SQUARE METE	ERS	FREQUENCY	
0.0 TO	5.0	0	
5.0 TO	10.0	3	
10.0 TO	15.0	4	
15.0 TO	20.0	2	
20.0 TU	25.0	1	
25.0 TU	30.0	0	
30.0 TU	35.0	4	
35.0 10	40.0	0	
40.0 TO	45.0	0	
45.0 TO	50.0	0	
50.0 TU	75.0	2	
75.0 TO	100.0	0	
100.0 TO	150.0	0	
150.0 TO	200.0	0	
200.0 10	250.0	0	
250.0 TO	300.0	0	
300.0 10	400.0	1	
400.0 TO	500.0	0	
OVER	500.0	0	
TOTAL NUMBER OF	HOT SPOT	= 17	

			BY PERIM	ETER	BY SHAPE		
м	TER	8	FEET		FREQUENCY	SHAPE FACTOR	FREQUENCY
0	TO	7	0 10	2.2	0	0.0 TU 1.0	0
7	TO	10	22 10	32	0	1.0 TU 1.1	0
10	TO	12	32 10	39	0	1.1 70 1.2	0
12	TO	14	39 TO	45	1	1.2 10 1.3	1
14	TO	16	45 TO	52	0	1.3 TO 1.4	0
16	10	17	52 10	55	0	1.4 10 1.5	1
17	10	20	55 TO	65	3	1.5 TO 1.6	1
20	TO	55	65 TO	72	1	1.6 70 1.7	5
55	TO	24	72 10	78	0	1.7 70 1.8	3
24	TO	26	78 TO	85	2	1.8 TO 1.9	0
26	TO	28	85 TO	91	1	1.9 10 2.0	4
28	TO	30	91 TO	98	2	2.0 10 2.4	3
30	TO	32	98 TU	104	0	2.4 10 2.6	2
32	TU	39	104 TU	127	3	8.5 III 8.5	0
39	TO	45	127 10	147	0	2.8 TU 3.0	0
45	TO	55	147 TO	180	3	3.0 TU 3.5	0
55	TO	71	180 TO	232	Ó	3.5 10 4.0	0
71	TO	100	232 10	328	Ŏ	4.0 TU 4.5	0
	ER	100	OVER	328	1	TIVER 4.5	0

TABLE 7 (Cont'd)

SQUARE	METE	FREQUENC	
0.0	TO	5.0	0
5.0	TO	10.0	0
10.0	TO	15.0	1
15.0	TU	20.0	0
20.0	TO	25.0	0
25.0	TU	30.0	0
30.0	TO	35.0	0
35.0	TO	40.0	0
40.0	70	45.0	0
45.0	TU	50.0	0
50.0	TO	75.0	0
75.0	TO	100.0	0
100.0	TO	150.0	0
150.0	TO	200.0	0
200.0	TO	250.0	1
250.0	TO	300.0	0
300.0		400.0	0
400.0		500.0	0
	VER	500.0	0

TOTAL NUMBER OF HOT SPOT = 2

BY PERIMETER						BY SHAPE		
ME	TER	9	FEET		FREQUENCY	SHAPE FACTOR	FREQUENCY	
0	TO	7	0 10	22	0	0.0 TO 1.0	0	
7	to	10	22 10	32	0	1.0 70 1.1	0	
10	TO	12	32 10	39	0	1.1 70 1.2	0	
12	TO	14	39 TO	45	0	1.2 70 1.3	0	
14	10	16	45 TO	52	0	1.3 70 1.4	1	
16	TO	17	52 10	55	1	1.4 70 1.5	0	
17	TO	20	55 TO	65	0	1.5 TO 1.6	. 0	
20	TO	22	65 70	72	0	1.6 70 1.7	0	
55	TO	24	72 10	78	0	1.7 10 1.8	0	
24	TO	26	78 TO	85	0	1.8 10 1.9	0	
26	TO	28	85 TO	91	0	1.9 10 2.0	O	
28	TO	30	91 10	98	0	2.0 TU 2.4	0	
30	TO	32	98 TO	104	0	2.4 10 2.6	U	
32	TO	39	104 TO	127	0	8.5 DT 8.5	1	
39	TO	45	127 TO	147	0	2.8 10 3.0	0	
45	TO	55	147 TO	180	0	3.0 10 3.5	0	
55	TO	71	180 TO	535	0	3.5 10 4.0	0	
71	TU	100	232 10	328	0	4.0 10 4.5	0	
	/ER	100	OVER	328	1	OVER 4.5	0	

TABLE 7 (Cont'd)

DISTRIBUTION OF RECOGNIZED HOT	DISTRIBUTION	OF	RECOGNIZED	HOT	SPOT
--------------------------------	--------------	----	------------	-----	------

BY AREA

 $\left(\begin{array}{c}
\text{Threshold = Ave. + 2.0 } \sigma \\
9.0 - 11.4 \ \mu\text{m}
\end{array}\right)$

SQUARE	MET	ERS	FREQUENCY
0.0	10	5.0	0
5.0	TU	10.0	26
10.0	TO	15.0	47
15.0	TO	20.0	25
20.0	TO	25.0	18
25.0	TU.	30.0	7
30.0	TO	35.0	14
35.0	TO	40.0	7
40.0	TO	45.0	7
45.0	TO	50.0	3
50.0	TO	75.0	14
75.0	TO	100.0	2
100.0	TU	150.0	7
150.0	TO	200.0	7
200.0	TU	250.0	1
250.0	TO	300.0	3
300.0	TU	400.0	2
400.0	TO	500.0	2
UV	ER	500.0	5

TOTAL NUMBER OF HOT SPOT # 197

BY PERIMETER							BY SHAPE			
	ME	TER	3	,	FEET		FREQUENCY	SHAPE FAC	RUT	FREQUENCY
	0	TO	7	0	TO	22	0	0.0 70 1	. 0	0
	7	TO	10	55	TO	32	0	1.0 TU 1	. 1	0
1	10	TO	12	32	TO	39	0	1.1 TO 1		1
1	12	TO	14		TO	45	7	1.2 70 1		8
1	14	TO	16		TO	52	0	1.3 TO 1		23
-	16	TO	17		TO	55	26		.5	9
	17	TO	20	0.00		65	15	1.5 TU 1		34
	20	TO	55	-	TO	72	24	1.6 TU 1		16
	22	TO	24			78	0	1.7 10 1		23
	24	TO	26	78	TO	85	18	1.8 TU 1		10
	26	TO	28	85	10	91	8	1.9 70 2		9
	28	TO	30	91	10	98	11	2.0 TO 2		31
	30	TO	32	98	TO	104	0	2.4 10 2		5
		TO	39	104	TO	127	26	2.6 70 2		7
	39	TO	45	127	TO	147	7	2.8 TU 3		2
	45	TO	55		TO	-	10	3.0 10 3		
		10		147	. 40	180	14			12
			71	180	10	232	8	3.5 10 4		3
-	-	10	100	535		328	9	4.0 TU 4		4
	OV	ER	100	0	VER	328	24	OVER 4	.5	0

TABLE 7 (Cont'd)

DISTRIBUTION OF RECOGNIZED HOT SPOT	Threshold = Ave. $+ 2.5$
BY AREA	Threshold = Ave. + 2.5 c $9.0 - 11.4 \mu m$

SQUARE MET	ERS	FREQUENC
0.0 TU	5.0	0
5.0 TO	10.0	9
10.0 TO	15.0	19
15.0 TU	20.0	7
20.0 10	25.0	2
25.0 10	30.0	4
30.0 10	35.0	4
35.0 TO	40.0	2
40.0 TU	45.0	1
45.0 TO	50.0	2
50.0 TO	75.0	1 1
75.0 TO	100.0	1
100.0 TU	150.0	3
150.0 10	200.0	1
200.0 TO	250.0	0
250.0 TU	300.0	0
300.0 TO	400.0	2
400.0 TU	500.0	0
OVER	500.0	1

TOTAL NUMBER OF HOT SPOT = 59

BY PERIMETER						BY SHAPE			
	ME	TER	S		EET		FREQUENCY	SHAPE FACTOR	FREQUENCY
	9	TO	7	0	TO	22	0	0.0 TU 1.0	0
	7	TO	10	55	TO	32	0	1.0 TU 1.1	0
	10	TO	12	32	10	39	0	1.1 10 1.2	0
	12	10	14	39	TO	45	3	1.2 TU 1.3	5
	14	TO	16	45	TO	52	0	1.3 70 1.4	5 2
	16	TO	17	52	TO	55	6	1.4 TO 1.5	4
	17	TO	50	55	TO	65	8	1.5 TU 1.6	6
	20	TO	52	65	to	72	8	1.6 TO 1.7	7
	22	TO	24	72		78	0	1.7 10 1.8	14
	24	TO	26	78	TO	85	6	1.8 TO 1.9	3
	26	TO	85	85	100	91	4	1.9 TO 2.0	4
	28	TO	30	91	TO	98	1	2.0 10 2.4	5
	30	10	32	98	TO	104	0	2.4 10 2.6	2
	32	TO	39	104	TO	127	5	8.5 07 8.5	2
	39	TO	45	127	TO	147	4	2.8 10 3.0	5
	45	TO	55	147	TO	180	4	3.0 10 3.5	1
	55	TO	71	180	TO	232	4	3.5 TO 4.0	1
		TO	100	535		328	1	4.0 TO 4.5	0
		ER	100		VER	328	5	NVER 4.5	1

TABLE 7 (Concluded)

 $\left(\begin{array}{c}
\text{Threshold} = \text{Ave.} + 3.0 \text{ o} \\
9.0 - 11.4 \text{ } \mu\text{m}
\end{array}\right)$

BY AREA

300	ARE	MET	ERS	FREQUENC
0	. 0	TO	5.0	0
5	. 0	TO	10.0	1
10	. 0	TO	15.0	2
15	.0	TO	20,0	5
20	. 0	TO	25.0	0
25	. 0	TO	30.0	0
30	.0	TO	35.0	1
35	. 0	TO	40.0	1
40	. 0	TO	45.0	1
45	.0	TU	50.0	1
50	. 0	TO	75.0	1
75	.0	TO	100.0	0
100	. 0	TO	150.0	0
150	.0	TO	200.0	0
200	. 0	TO	250.0	1
250	.0	TO	300.0	0
300	.0	70	400.0	0
400	. 0	10	500.0	0
	(14	ER	500.0	0

TOTAL NUMBER OF HOT SPOT # 11

BY PERIMETER							BY SHAPE		
ME	TER	S		FEET		FREQUENCY	SHAPE FACTOR	FREQUENCY	
0	TO	7	0	TO	22	0	0.0 TO 1.0	0	
7	TO	10	22	TO	32	0	1.0 70 1.1	0	
10	TO	12	32	TO	39	0	1.1 70 1.2	0	
12	TO	14	39	TO	45	0	1.2 70 1.3	0	
14	TO	16	45	TO	52	0	1.3 TO 1.4	0	
16	10	17	52	T()	55	0	1.4 TO 1.5	5	
17	TO	20	55	TO	65	1	1.5 (0 1.6	0	
20	TO	55	65	TO	72	3	1.6 TO 1.7	0	
55	TO	24	72	TO	78	0	1.7 TO 1.8	0	
24	TO	26	78	TO	85	0	1.8 TO 1.9	3	
95	TO	28	85	TO	91	0	1.9 TO 2.0	0	
85	70	30	91	TO	98	1	2.0 TO 2.4	2	
30	TO	32	98	TO	104	0	2.4 70 2.6	0	
35	10	39	104	TO	127	0	8.5 01 8.5	1	
39	TO	45	127	TO	147	2	2.8 TO 3.0	1	
45	TO	55	147	TO	180	1	3.0 TO 3.5	5	
55	TO	71	180	TO	232	0	3.5 TO 4.0	0	
71	TO	100	232	TO	328	2	4.0 70 4.5	Ü	
0	ER	100	0	VER	328	1	OVER 4.5	0	

TABLE 8

HUME2 - Total Scene
AREA DISTRIBUTIONS

DISTRIBUTION OF			$ \begin{pmatrix} \text{Threshold} = \text{Ave.} + 1.0 \sigma \\ 2.0 - 2.6 \mu\text{m} \end{pmatrix} $
	BY	AREA	
SQUARE METE	RS	FREQUENCY	
0.0 10	5.0	0	
5.0 TO	10.0	56	
10.0 70	15.0	45	
15.0 TO		62	
20.0 10	25.0	28	
25.0 TU	30.0	11	
30.0 TU	35.0	17	
35.0 TO	40.0	6	
40.0 TO	45.0	10	
45.0 TO	50.0	5	
50.0 TO	75.0	23	
75.0 TO	100.0	16	
100.0 TO	150.0	23	
150.0 TO	200.0	8 2 1 2	
200.0 TO	250.0	2	
250.0 TO	300.0	1	
300.0 TU	400.0	2	
400.0 10	5.00.0	1	
OVER	500.0	10	
TOTAL NUMBER OF	HOT SPOT	= 326	

		BY PERIME	TER		BY SH	HAPE
METER	18	FEET		FREQUENCY	SHAPE FACTOR	FREQUENCY
0 TO	7	0 10	52	0	0.0 TU 1.0	0
7 10	10	22 TU	32	0	1.0 TU 1.1	0
10 10	12	32 TO	39	0	1.1 TO 1.2	43
12 TO	14	39 TO	45	25	1.2 10 1.3	42
14 10	16	45 TO	52	43	1.3 TO 1.4	58
16 TO	17	52 TO	55	1	1.4 10 1.5	25
17 TO	20	55 TO	65	66	1.5 TO 1.6	30
20 TO	2.2	65 TO	72	13	1.6 TO 1.7	31
22 10	24	72 10	78	16	1.7 TD 1.8	2.5
24 TO	26	78 TO	85	15	1.8 TU 1.9	7
26 10	28	85 TO	91	19	1,9 10 2.0	6
28 10	30	91 TO	98	15	2.0 10 2.4	5.5
30 TO	32	98 10	104	3	2.4 TO 2.6	4
32 10	39	104 TO	127	14	8.5 UT 8.5	6
39 TO	45	127 TO	147	20	2.8 10 3.0	8
45 TO	55	147 TO	180	10	3.0 TO 3.5	17
55 TO	71	180 TO	232	16	3.5 TU 4.0	3
71 TO	100	232 10	328	11	4.0 TO 4.5	- i
OVER	100	OVER	328	39	OVER 4.5	i

TABLE 8 (Cont'd)

 $\left(\begin{array}{c}
\text{Threshold} = \text{Ave.} + 1.5 \text{ } \sigma \\
2.0 - 2.6 \text{ } \mu\text{m}
\end{array}\right)$

BY AREA

SQUARE	METE	RS	FREQUENC
0.0	TO	5.0	0
5.0	TO	10.0	51
10.0	TO	15.0	33
15.0	TU	20.0	32
20.0	TO	25.0	25
25.0	TO	30.0	8
30.0	TO	35.0	8
35.0	TO	40.0	4
40.0	TO	45.0	2
45.0	TO	50.0	7
50.0	TO	75.0	15
75.0	TU	100.0	6
100.0	TO	150.0	4
150.0	TO	200.0	5
200.0	TO	250.0	0
250.0	TO	300.0	1
300.0	TO	400.0	0
400.0		500.0	3
	VER	500.0	4

TOTAL NUMBER OF HOT SPOT = 208

BY PERIMETER							BY SHAPE		
м	ETER	3		FEET		FREQUENCY	SHAPE FACTOR	FREQUENCY	
0	TO	7	0	TO	22	0	0.0 TO 1.0	0	
7	TO	10	55		32	0	1.0 TO 1.1	0	
10	TO	12	32	TO	39	0	1.1 70 1.2	33	
12	TO	14	39	TO	45	28	1.2 TO 1.3	21	
14	TO	16	45	TO	52	32	1.3 70 1.4	52	
16	10	17	52	TO	55	0	1.4 10 1.5	19	
17	TO	20	55	TO	65	38	1.5 10 1.6	10	
50	TO	55			72	3	1.6 70 1.7	5.5	
55		24	72		78	18	1.7 70 1.8	12	
24	TO	26	78	TO	85	12	1.8 TU 1.9	8	
56	TO	28	85	TO	91	4	1.9 10 2.0	6	
28	10	30	91	TO	98	7	2.0 10 2.4	15	
30		32	98	TO	104	6	2.4 70 2.6	1	
32	TO	39	104	TO	127	13	8.5 (17 6.5	1	
39	TO	45	127	TO	147	13	2.8 TO 3.0	3	
45		55	147	TO	180	9	3.0 TO 3.5	3	
	TO	71	180	TO	232	8	3.5 TO 4.0	1	
71		100	232		328	7	4.0 TO 4.5	0	
	VER	100		VER	328	10	OVER 4.5	1	

TABLE 8 (Cont'd)

DISTRIBUTION	OF	RECOGNIZED	HOT	SPUT	
		нч	AREA		

 $\left(\begin{array}{c}
\text{Threshold} = \text{Ave.} + 2.0 \text{ } \sigma \\
2.0 - 2.6 \text{ } \mu\text{m}
\end{array}\right)$

SQUARE M	ETERS	FREQUENC
0.0 TE	5.0	0
5.0 TO	10.0	36
10.0 TO	15.0	25
15.0 TU	20.0	20
20.0 TO	25.0	9
25.0 TE		6
30.0 TC	35.0	9
35.0 TU	40.0	1
40.0 TC	45.0	7
45.0 TI	50.0	2
50.0 TO	75.0	4
75.0 TO	100.0	7
100.0 TC	150.0	3
150.0 TC		2
200.0 TO	250.0	0
250.0 TC	300.0	0
300.0 TC	400.0	2
400.0 TO		0
OVER		4

TOTAL NUMBER OF HOT SPOT = 137

			BY PERI	METER	BY SHAPE		
ME	TER	3	FEE	T	FREQUENCY	SHAPE FACTOR	FREQUENCY
0	10	7	0 10	22	0	0.0 70 1.0	0
7	TO	10	22 10	32	0	1.0 TO 1.1	0
10	TO	12	32 TO	39	0	1.1 TO 1.2	55
12	TO	14	39 TO	45	17	1.2 10 1.3	15
14	TO	16	45 TO	52	55	1.3 TO 1.4	37
16	TO	17	52 TO	55	1	1.4 10 1.5	10
17	TO	50	55 TO	65	30	1.5 TO 1.6	15
20	TO	52	65 TO	72	6	1.6 10 1.7	8
55	TO	24	72 TO	78	6	1.7 TO 1.8	9
24	TO	26	78 TO	85	5	1.8 70 1.9	3
26	TO	8.5	85 10		6	1.9 TU 2.0	5
28	TO	30	91 TO		3	4.5 OT 0.5	10
30	TO	32	98 TO	104	1	2.4 10 2.6	3
32	TO	39	104 TO	127	10	8.5 07 8.5	5
39	TO	45	127 10	147	8	2.8 TO 3.0	0
45	TO	55	147 TU	180	6	3.0 TO 3.5	0
	TO	71	180 TO	232	5	3.5 70 4.0	0
71	TO	100	2 TO	328	4	4.0 10 4.5	0
-	ER	100	OVER	328	7	NVER 4.5	1

TABLE 8 (Cont'd)

 $\left(\begin{array}{c}
\text{Threshold} = \text{Ave.} + 1.0 \text{ } \sigma \\
3.0 - 4.2 \text{ } \mu\text{m}
\end{array}\right)$

BY AREA

ARE M	ETERS	FREQUENC
.0 TO	5.0	0
. 0 TO	10.0	513
.0 TO	15.0	256
. 0 TO	20.0	237
. 0 TO	25.0	101
. 0 TO	30.0	21
.0 TO	35.0	38
.0 TO	40.0	15
. 0 TU	45.0	20
.0 70	50.0	15
. 0 TO	75.0	31
. 0 TO	100.0	20
. 0 TO	150.0	13
. 0 TO	200.0	4
. 0 TU		5
.0 10	300.0	1
O TU	400.0	1
. O TO	500.0	5
OVER	500.0	5
	.0 TO	.0 TO

TOTAL NUMBER OF HOT SPOT = 1298

	BY PERIMETER						BY SHAPE		
ME	TER	S	F	EET		FREQUENCY	SHAPE FACTOR	FREQUENCY	
0	10	7	0	TO	22	0	0.0 TO 1.0	0	
7	TO	10	22	TO	32	0	1.0 TU 1.1	0	
10	10	12	32	TO	39	0	1.1 70 1.2	326	
12	TO	14	39	TO	45	301	1.2 TU 1.3	160	
14	TO	16	45	TO	52	239	1.3 TO 1.4	302	
16	TO	17	52	TO	55	4	1.4 10 1.5	101	
17	TO	20	55	TO	65	336	1.5 TU 1.6	118	
20	TO	22		TO	72	52	1.6 TO 1.7	74	
55	TO	24		TO	78	48	1.7 TO 1.8	62	
24	TO	26		TO	85	7.0	1.8 TO 1.9	31	
26	TO	28		TO	91	23	1.9 TO 2.0	33	
28	TO	30		TO	98	39	2.0 TU 2.4	5.7	
30	TO	32	98	TO	104	15	2.4 10 2.6	12	
32	TO	39	104	TO	127	47	8.5 OT 8.5	7	
39	TO	45	127	TO	147	34	2.8 TU 3.0	3	
45	TO	55	147	TO	180	28	3.0 10 3.5	1	
	TO	71		TO	232	21	3.5 10 4.0	5	
71	TO	100		TO	328	25	4.0 TU 4.5	1	
	VER	100		ER	328	16	OVER 4.5	5	

TABLE 8 (Cont'd)

 $\left(\begin{array}{c}
\text{Threshold} = \text{Ave.} + 1.5 \text{ } \sigma \\
3.0 - 4.2 \text{ } \mu\text{m}
\end{array}\right)$

BY AREA

SQUARE	METE	RS	FREQUENCY
0.0	70	5.0	0
5.0	TO	10.0	39
10.0	TO	15.0	21
15.0	TO	20.0	29
20.0	TO	25.0	14
25.0	TO	30.0	8
30.0	TO	35.0	5
35.0	TO	40.0	3
40.0	TO	45.0	3
45.0	TO	50.0	3
50.0	TO	75.0	8
75.0	TO	100.0	2
100.0	TO	150.0	2
150.0	70	200.0	0
200.0	TU	250.0	0
250.0	TO	300.0	1
300.0		400.0	1
400.0		500.0	0
	/ER	500.0	4

TUTAL NUMBER OF HOT SPOT = 143

		BY PERIME	BY SHAPE			
METER	9	FEET		FREQUENCY	SHAPE FACT()R	FREQUENCY
0 TO	7	0 10	52	0	0.0 TO 1.0	0
7 10	10	22 TO	32	0	1.0 TO 1.1	0
10 TO	12	32 TO	39	0	1.1 10 1.2	3.2
12 70	14	39 10	45	27	1.2 10 1.3	16
14 TO	16	45 TO	52	16	1.3 TO 1.4	40
16 TO	17	52 TO	55	0	1.4 TO 1.5	8
17 TO	20	55 TO	65	35	1.5 TO 1.6	17
20 10	22	65 TU	72	6	1.6 TO 1.7	8
55 10	24	72 10	78	8	1.7 10 1.8	7
24 TO	26	78 TO	85	5	1.8 10 1.9	4
26 10	28	85 10	91	7	1.9 TO 2.0	4
28 TO	30	91 TO	98	7	2.0 10 2.4	3
30 TO	32	98 TO	104	2	2.4 10 2.6	1
32 TO	39	104 TO	127	11	2.6 70 2.8	1
39 TO	45	127 10	147	8	2.8 TH 3.0	0
45 TO	55	147 10	180	2	3.0 TO 3.5	0
55 10	71	180 TO	232	1	3.5 10 4.0	0
71 10	100	232 10	328	i	4.0 10 4.5	0
OVER	100	DVER	328	5	OVER 4.5	2

TABLE 8 (Cont'd)

DISTRIBUTION OF RECO	GNIZED HOT	SPUT
----------------------	------------	------

BY AREA

 $\begin{pmatrix}
\text{Threshold} = \text{Ave.} + 0.5 & \sigma \\
4.5 - 5.5 & \mu\text{m}
\end{pmatrix}$

SQUARE	MET	ERS	FREQUENCY
0.0	TO	5.0	0
5.0	TO	10.0	101
10.0	TO	15.0	56
15.0	TO	20.0	84
20.0	TO	25.0	50
25.0	TU	30.0	19
30.0	TU	35.0	44
35.0	TO	40.0	50
40.0	TU	45.0	25
45.0	TO	50.0	18
50.0	TO	75.0	60
75.0	TO	100.0	35
100.0	TU	150.0	40
150.0	TO	200.0	21
200.0	TO	250.0	20
250.0	TO	300.0	18
300.0	TO	400.0	32
400.0	TU	500.0	17
0.4	ER	500.0	53

TUTAL NUMBER OF HOT SPOT # . 713

		BY PERIM	BY SHAPE			
METERS	3	FEET		FREQUENCY	SHAPE FACTUR	FREQUENCY
0 10	7	0 TO	55	0	0.0 TU 1.0	0
7 10	10	22 10	32	0	1.0 TO 1.1	0
10 TO	12	32 TO	39	0	1.1 TO 1.2	44
12 10	14	39 TO	45	19	1.2 10 1.3	41
14 TO	16	45 TO	52	79	1.3 TU 1.4	134
16 TO	17	52 10	55	4	1.4 TO 1.5	52
17 TO	20	55 TO	65	87	1.5 TO 1.6	64
20 TO	55	65 TO	72	29	1.6 10 1.7	56
22 10	24	72 TO	78	12	1.7 TU 1.8	55
24 TO	26	78 TO	85	33	1.8 TO 1.9	33
26 10	28	85 TO	91	55	1.9 TU 2.0	41
28 TO	30	91 TO	98	30	2.0 TU 2.4	120
30 10	32	98 TO	104	13	8.5 UT 4.5	19
32 10	39	104 TU	127	55	8.5 (17 8.5	11
39 TO	45	127 10	147	47	2.8 10 3.0	9
45 TO	55	147 TO	180	42	3.0 70 3.5	6
55 TO	71	180 10	232	54	3.5 TO 4.0	7
71 10	100	232 TO	328	47	4.0 10 4.5	3
OVER	100	DVER	328		OVER 4.5	18
DAFM	100	UVER	250	140	11VER 4.5	10

TABLE 8 (Cont'd)

 $\left(\begin{array}{c}
\text{Threshold = Ave. + 1.0 } \sigma \\
4.5 - 5.5 \ \mu\text{m}
\end{array}\right)$

BY AREA

	SQUARE	MET	ERS	FREQUENCY
	0.0	TO	5.0	0
	5.0	TO	10.0	120
	10.0	TO	15.0	70
	15.0	TO	20.0	117
	20.0	TO	25.0	55
	25.0	TO	30.0	30
	30.0	TO	35.0	41
	35.0	TO	40.0	16
	40.0	TO	45.0	55
	45.0	TO	50.0	32
	50.0	10	75.0	67
	75.0	TO	100.0	49
	100.0	TO	150.0	52
	150.0	TO	200.0	39
	200.0	TU	250.0	36
	250.0	TO	300.0	16
	300.0	TO	400.0	24
	400.0	TO	500.0	12
		VER	500.0	68
_				

TUTAL NUMBER OF HOT SPOT = 866

BY PERIMETER					BY SHAPE		
MET	ERS	FEET		FREQUENCY	SHAPE FACTOR	FREQUENCY	
0 T	0 7	0 10	22	0	0.0 TO 1.0	o	
7 1	0 10	22 TO	32	0	1.0 TO 1.1	0	
10 T	0 12	32 10	39	0	1.1 10 1.2	45	
12 1	0 14	39 TO	45	35	1.2 10 1.3	44	
14 T	0 16	45 TU	52	61	1.3 TO 1.4	137	
16 T	0 17	52 TU	55	2	1.4 10 1.5	76	
17 T	0 20	55 TO	65	134	1.5 TU 1.6	81	
20 T	0 55	65 TO	72	38	1.6 70 1.7	71	
22 T		72 70	78	12	1.7 10 1.8	70	
24 T	0 26	78 10	85	28	1.8 TU 1.9	46	
26 T		85 TO	91	41	1.9 TO 2.0	56	
28 1	0 30	91 TO	98	36	2.0 10 2.4	117	
	0 32	98 10	104	55	2.4 TU 2.6	2.8	
	0 39	104 TO	127	57	8.5 07 8.5	16	
39 1	0 45	127 10	147	37	2.8 TU 3.0	18	
45 1	0 55	147 TO	180	60	3.0 TU 3.5	23	
55 1		180 TO	232	64	3.5 TU 4.0	7	
71 T		232 10	328	67	4.0 10 4.5	6	
OVE	_	DVER	328	172	OVER 4.5	25	

TABLE 8 (Cont'd)

DISTRIBUTIO	N OF	RECOGNIZED	HOT SPUT

 $\left(\begin{array}{c}
\text{Threshold = Ave. + 2.0 } \sigma \\
4.5 - 5.5 \ \mu\text{m}
\end{array}\right)$

BY AREA

SQUARE	METE	RS	FREQUENC
0.0	TO	5.0	0
5.0	TO	10.0	19
10.0	TO	15.0	10
15.0	TO		26
20.0	TO		10
25.0	TO		7
30.0	TO	35.0	12
35.0	TO -	40.0	4
40.0	TO	45.0	3
45.0	TO	50.0	2
50.0	TO	75.0	11
75.0	TO	100.0	3
100.0	TO		5
150.0	TO	200.0	3
200.0	TO	250.0	0
250.0	TO	300.0	2
300.0	TO		1
400.0	TO		1
0)	ER		В
	0.0 5.0 10.0 20.0 25.0 30.0 35.0 40.0 75.0 100.0 200.0 250.0 250.0	3QUARE METE 0.0 TO 5.0 TO 10.0 TO 10.0 TO 20.0 TO 25.0 TO 30.0 TO 35.0 TO 45.0 TO 50.0 TO 50.0 TO 100.0 TO 100.0 TO 200.0 TO	5.0 TO 10.0 12.0 TO 15.0 15.0 TO 20.0 20.0 TO 25.0 20.0 TO 30.0 30.0 TO 35.0 35.0 TO 40.0 40.0 TO 45.0 45.0 TO 50.0 75.0 TO 100.0 100.0 TO 150.0 150.0 TO 200.0 200.0 TO 250.0 250.0 TO 200.0 250.0 TO 300.0 300.0 TO 400.0

TOTAL NUMBER OF HOT SPOT # 127

BY PERIMETER					BY SHAPE		
MET	ERS	FEET		FREQUENCY	SHAPE FACTOR	FREQUENCY	
0 T	0 7	0 10	22	0	0.0 70 1.0	0	
7 T	0 10	22 TO	32	0	1.0 TO 1.1	0	
10 T	51 0	32 10	39	0	1.1 70 1.2	9	
12 TI	0 14	39 TO	45	5	1.2 70 1.3	7	
14 TI	0 16	45 TO	52	15	1.3 TO 1.4	24	
16 T	0 17	52 TO	55	1	1.4 70 1.5	12	
17 T	0 20	55 TO	65	15	1.5 TO 1.6	13	
20 TI	5.5	65 TO	72	12	1.6 70 1.7	14	
22 TI	0 24	72 TO	78	7	1.7 10 1.8	7	
24 T	0 26	78 TO	85	6	1.8 TO 1.9	6	
26 TI	0 28	85 TO	91	5	1.9 70 2.0	5	
28 T	0 30	91 10	98	3	4.5 DT 0.5	14	
30 T	0 32	98 10	104	3	2.4 10 2.6	3	
32 T	0 39	104 TO	127	14	8.5 07 8.5	5	
39 T	0 45	127 TO	147	5	2.8 TU 3.0	0	
45 T	0 55	147 TO	180	8	3.0 10 3.5	4	
55 T		180 TU	232	8	3.5 10 4.0	2	
71 T		232 TO	328	6	4.0 70 4.5	0	
OVE		OVER	328	14	OVER 4.5	3	

TABLE 8 (Cont'd)

DISTRIBUTION OF	RECUGNIZED	HOT	SPOT
-----------------	------------	-----	------

BY AREA

 $\begin{pmatrix}
\text{Threshold = Ave. + 2.5 } \sigma \\
4.5 - 5.5 \ \mu\text{m}
\end{pmatrix}$

SQUARE	METE	RS	FREQUENC
0.0	TO	5.0	0
5.0	TO	10.0	12
10.0	TU	15.0	5
15.0	TU	20.0	11
20.0	TO	25.0	3
25.0	T,O	30.0	3
30.0	TO	35.0	5
35.0	TO	40.0	1
40.0	TO	45.0	1
45.0	10	50.0	1
50.0	TO	75.0	2
75.0	TO	100.0	0
100.0	TU	150.0	3
150.0	TO	200.0	0
200.0	to	250.0	0
250.0	TO	300.0	3
300.0	TO	400.0	1
400.0	10	500.0	1
01	VER	500.0	2

TOTAL NUMBER OF HOT SPOT # 51

BY PERIMETER					BY SHAPE		
ME	ETER	3	FEET		FREQUENCY	SHAPE FACTOR	FREQUENCY
0	TO	7	0 10	25	0	0.0 TU 1.0	0
7	TO	10	22 10	32	0	1.0 TO 1.1	0
10	TO	12	32 TO	39	0	1.1 10 1.2	6
12	TO	14	39 TO	45	6	1.2 70 1.3	4
14	TO	16	45 TO	52	4	1.3 TO 1.4	4
16	10	17	52 TO	55	0	1.4 TO 1.5	5
17	TO	20	55 TO	65	5	1.5 10 1.6	9
20	TO	55	65 TO	72	5	1.6 TO 1.7	3
22	TO	24	72 10	78	2	1.7 70 1.8	4
24	TO	26	78 TO	85	3	1.8 TU 1.9	3
26	TO	85	85 TO	91	2	1.9 10 2.0	1
28	10	30	91 TO	98	2	2.0 10 2.4	7
30	TO	32	98 TO	104	ī	2.4 10 2.6	1
32	TO	39	104 TO	127	6	8.5 01 6.5	5
39	TO	45	127 TO	147	2	2.8 TU 3.0	1
45	TO	55	147 TO	180	2	3.0 TO 5.5	1
55		71	180 TO	232	ī	3.5 TU 4.0	1
71	TU	100	232 10	328	1	4.0 TO 4.5	i
	/ER	100	OVER	328	7	OVER 4.5	i

TABLE 8 (Cont'd)

DISTRIBUTION OF		HOT SPOT	$ \left(\begin{array}{c} \text{Threshold = Ave. + 3.0 } \sigma \\ 4.5 - 5.5 \ \mu\text{m} \end{array}\right) $
	61	ARCA	
SQUARE METER	19	FREQUENCY	
0.0 TU	5.0	0	
5.0 TU	10.0	5	
10.0 TU	15.0	2	
15.0 TO	20.0	4	
20.0 10	25.0	5	
25.0 TO	30.0	0	
30.0 TU	35.0	0	
35.0 TO	40.0	0	
40.0 TO	45.0	1	
45.0 TO	50.0	0	
50.0 TO	75.0	0	
75.0 TO	100.0	1	
100.0 70	150.0	0	
150.0 TO	200.0	0	
200.0 TO	250.0	0	
250.0 TU	300.0	0	
300.0 10	400.0	0	
400.0 10	500.0	0	
OVER	500.0	0	

23 FEATURES WITH AREAS LESS THAN 8.00 SQ. METERS WERE ALSO RECOGNIZED

TOTAL NUMBER OF HOT SPOT = 18

BY PERIMETER					BY SHAPE		
	METER	RS	FEET		FREQUENCY	SHAPE FACTOR	FREQUENCY
	0 10	7	0 TO	22	0	0.0 TO 1.0	0
	7 10	10	22 10	32	0	1.0 TO 1.1	0
	10 TO	12	32 TU	39	0	1.1 70 1.2	1
	12 10	14	39 TU	45	0	1.2 TU 1.3	1
	14 10	16	45 TO	52	5	1.3 70 1.4	6
	16 TO	17	52 TO	55	0	1.4 70 1.5	2
	17 10	20	55 TO	65	3	1.5 10 1.6	3
	20 TO	55	65 TU	72	0	1.6 TU 1.7	0
	55 10	24	72 10	78	4	1.7 TO 1.8	2
	24 TO	26	78 TO	85	0	1.8 TO 1.9	0
	26 10	85	85 TO	91	2	1.9 TU 2.0	U
	28 TO	30	91 T()	98	0	2.0 (17 0.4	5
	30 TO	32	98 TO	104	1	2.4 10 2.6	0
	32 10	39	104 TO	127	1	8.5 10 2.8	Ü
	39 10	45	127 70	147	0	2.8 10 3.0	1
	45 TO	55	147 TO	190	0	3.0 TU 3.5	0
	55 10	71	180 TO	232	1	3.5 10 4.0	0
	71 10	100	232 10	328	i	4.0 10 4.5	0
	OVER	100	OVER	328	0	OVER 4.5	0

TABLE 8 (Cont'd)

 $\left(\begin{array}{c}
\text{Threshold = Ave. + 0.5 } \sigma \\
9.0 - 11.4 \ \mu\text{m}
\end{array}\right)$

BY AREA

TERS	FREQUENCY
5.0	0
10.0	111
15.0	77
0.05	98
25.0	65
30.0	32
35.0	35
40.0	19
45.0	24
50.0	24
75.0	64
100.0	29
150.0	34
0.005	25
250.0	24
300.0	12
400.0	32
500.0	55
500.0	43
	10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 75.0 U 100.0 150.0 200.0 250.0 30.0

TOTAL NUMBER OF HOT SPOT = 767

BY PERIMETER					BY SHAPE		
M	ETER	8	FEET		FREQUENCY	SHAPE FACTUR	FREQUENCY
0	TO	7	0 TO	22	0	0.0 TO 1.0	0
7	TO	10	22 TO	32	0	1.0 TU 1.1	0
10	TO	12	32 TO	39	0	1.1 70 1.2	38
12	TO	14	39 10	45	17	1.2 TO 1.3	37
14	TO	16	45 TO	52	82	1.3 TO 1.4	117
16	TO	17	. 52 TO	55	3	1.4 TO 1.5	71
17	TO	20	55 TO	65	102	1.5 TU 1.6	H 3
50	TO	22	65 TO	72	44	1.6 10 1.7	63
22	TO	24	72 TO	78	9	1.7 TO 1.8	64
24	TO	26	78 TO	85	35	1.8 TO 1.9	39
26	TO	85	85 TO	91	31	1.9 10 2.0	45
28	10	30	91 TO	98	33	2.0 10 2.4	112
30	TO	32	98 TO	104	25	2.4 TU 2.6	27
32	TO	39	104 TO	127	58	8.5 OT 8.5	20
39	TO	45	127 TO	147	48	2.8 TO 3.0	7
45	TO	55	147 TO	180	40	3.0 10 3.5	24
55	TO	71	180 TU	232	57	3.5 TU 4.0	4
71	TO	100	232 10	328	42	4.0 TO 4.5	4
	VER	100	OVER	328	141	OVER 4.5	12

TABLE 8 (Cont'd)

 $\left(\begin{array}{c}
\text{Threshold} = \text{Ave.} + 1.0 \text{ } \sigma \\
9.0 - 11.4 \text{ } \mu\text{m}
\end{array}\right)$

BY AREA

SQUARE METE	RS	FREQUENCY
0.0 TU	5.0	0
5.0 TO	10.0	146
10.0 TU	15.0	105
15.0 TO	20.0	130
20.0 TU	25.0	77
25.0 TU	30.0	29
30.0 TU	35.0	61
35.0 TO	40.0	85
40.0 TO	45.0	35
45.0 TO	50.0	30
50.0 TO	75.0	88
75.0 TO	100.0	56
100.0 TO	150.0	68
150.0 TO	200.0	37
200.0 10	250.0	43
250.0 TO	300.0	27
300.0 TU	400.0	25
400.0 TO	500.0	14
OVER	500.0	70

TUTAL NUMBER OF HOT SPOT = 1063

		BY PERIM	TER	BY SHAPF		
METER	3	FFET		FREQUENCY	SHAPE FACTUR	FREQUENCY
0 10	7	0 10	22	0	0.0 TU 1.0	0
7 TU	10	07 55	32	0	1.0 10 1.1	0
10 TU	12	32 TU	39	0	1.1 10 1.2	63
12 10	14	39 T()	45	37	1.2 10 1.3	54
14 10	16	45 TO	52	104	1.3 10 1.4	166
16 10	17	52 10	55	5	1.4 10 1.5	65
17 TO	20	55 TU	65	152	1.5 10 1.6	117
20 10	5.5	65 TO	72	40	1.6 TO 1.7	79
22 TO	24	72 10	78	18	1.7 10 1.8	84
24 10	26	78 T()	85	33	1.8 TO 1.9	53
26 10	28	85 TO	91	38	1.9 TU 2.0	55
28 TU	30	91 TO	98	39	2.0 10 2.4	155
30 TO	32	98 Tr)	104	32	2.4 TU 2.6	36
32 10	39	104 TI)	127	77	8.5 OT 8.5	32
39 TO	45	127 10	147	65	2.8 TU 5.0	5.5
45 TO	55	147 TO	180	72	3.0 TU 3.5	34
55 10	71	180 Tu	232	70	3.5 10 4.0	10
71 10	100	232 10	328	78	4.0 10 4.5	8
OVER	100				11VER 4.5	24
UVER	100	OVER	358	506	11VER 4.5	24

TABLE 8 (Cont'd)

BY AREA

 $\left(\begin{array}{c}
\text{Threshold} = \text{Ave.} + 1.5 \text{ } \sigma \\
9.0 - 11.4 \text{ } \mu\text{m}
\end{array}\right)$

SQUARE	METE	ERS	FREQUENC
0.0	TO	5.0	0
5.0	TO	10.0	61
10.0		15.0	40
15.0	TO	20.0	53
20.0	TU	25.0	46
25.0	7.0	30.0	13
30.0	TO	35.0	23
35.0	·TO	40.0	9
40.0	TO	45.0	19
45.0	TO	50.0	13
50.0	TU	75.0	24
75.0	TO	100.0	13
100.0	TO	150.0	17
150.0	TO	200.0	15
200.0	TO	250.0	7
250.0	T()	300.0	12
300.0	TO	400.0	7
400.0	TO	500.0	3
0	VER	500.0	22

TUTAL NUMBER OF HOT SPOT = 397

BY PERIMETER						BY SHAPE		
	METER	19	F	EET		FREQUENCY	SHAPE FACTUR	FREQUENCY
	0 TO	7	0	TO	22	0	0.0 TU 1.0	0
	7 10	10	55	TO	32	0	1.0 TO 1.1	0
1	0 10	12	32	TO	39	0	1.1 70 1.2	30
1	OT S	14	39	TO	45	19	1.2 10 1.3	25
1	4 10	16	45	TO	52	36	1.3 TO 1.4	63
1	6 10	17	52	TO	55	0	1.4 70 1.5	24
1	7 10	20	55	TU	65	69	1.5 TU 1.6	37
2	O TO	22	65	TO	72	18	1.6 TU 1.7	34
2	2 10	24	72	TO	78	8	1.7 TO 1.8	35
2	4 10	26	78	TO	85	19	1.8 TU 1.9	2.3
5	6 TO	85	85	TO	91	14	1.9 10 2.0	18
5	8 10	30	91	TO	98	17	2.0 10 2.4	58
3	0 10	32	98	TO	104	15	2.4 10 2.6	13
3	2 10	39	104	TO	127	22	8.6 TU 2.8	8
3	9 10	45	127	TO	147	26	2.8 10 3.0	9
4	5 10	55	147	TU	180	28	3.0 TU 3.5	11
5	5 10	71	180	TO	232	23	3.5 TO 4.0	5
7	1 10	100	232	TO	328	20	4.0 TO 4.5	0
	UVER	100	OV		328	63	OVER 4.5	ų.

TABLE 8 (Cont'd)

Threshold = Ave. + 2.0 σ $9.0 - 11.4 \mu m$

BY AREA SQUARE METERS FREQUENCY 0.0 TO 5.0 TO 10.0 TO 15.0 TO 5.0 19 15.0 10 20.0 20.0 TO 25.0 TO 30.0 TO 35.0 TO 40.0 TO 25.0 30.0 40.0 45.0 45.0 TO 50.0 TO 75.0 TO 100.0 TO 150.0 TO 50.0 75.0 100.0 150.0 200.0 200.0 TO 250.0 TO 300.0 TO 400.0 TO 250.0 300.0 400.0 500.0 4 5

TOTAL NUMBER OF HOT SPOT 82

500.0

OVER

			BY PERIM	TER	BY SHAPE		
MI	ETER	3	FEET		FREQUENCY	SHAPE FACTUR	FREQUENCY
0	TO	7	0 10	55	0	0.0 TU 1.0	0
7	TO	10	22 10	32	0	1.0 70 1.1	0
10	TO	12	32 TO	39	0	1.1 70 1.2	8
12	to	14	39 10	45	8	1.2 70 1.3	5
14	10	16	45 10	52	9	1.3 70 1.4	17
16	TO	17	52 10	55	0	1.4 10 1.5	9
17	TO	50	55 TO	65	13	1.5 10 1.6	5
20	TO	55	65 TU	72	2	1.6 70 1.7	. 3
55		24	72 10	78	ű.	1.7 70 1.8	7
24	TO	56	78 10	85	5	1.8 70 1.9	3
26	TO	28	85 TO	91	ž	1.9 TO 2.0	5
28	TO	30	91 70	98	1	2,0 10 2.4	12
30	0.00	32	98 10	104	3	2.4 10 2.6	
32		39	104 TO	127	<u> </u>	8.5 UT 8.5	i
39		45		-	-	2.8 TU 3.0	5
			127 10	147	2		
45		55	147 10	180	5	3.0 TO 3.5	4
55		71	180 TO	535	3	3.5 10 4.0	1
71	TO	100	232 TU	328	3	4.0 10 4.5	0
U	VER	100	OVER	328	14	OVER 4.5	0

TABLE 8 (Cont'd)

BY AREA

 $\left(\begin{array}{c}
\text{Threshold = Ave. + 2.5 } \sigma \\
9.0 - 11.4 \ \mu\text{m}
\end{array}\right)$

	0
0.0 10 5.0	
5.0 70 10.0	
10.0 70 15.0	ō
15.0 10 20.0	5
20.0 10 25.0	1
25.0 10 30.0	ò
30.0 TU 35.0	o
35.0 TO 40.0	1
40.0 TU 45.0	i
45.0 TU 50.0	i
50.0 TO 75.0	ò
75.0 TO 100.0	ō
100.0 TO 150.0	1
150.0 TO 200.0	i
200.0 TO 250.0	ò
250.0 TO 300.0	ŏ
300.0 TO 400.0	Ö
400.0 TU 500.0	ő
OVER 500.0	3
TUTAL NUMBER OF HOT SPOT	13

			BY PERIM	ETER	BY SHAPE		
ME	TER	3	FEET		FREQUENCY	SHAPE FACTUR	FREQUENCY
0	TO	7	0 10	22	0	0.0 TU 1.0	0
7	TO	10	22 TU	32	0	1.0 TO 1.1	0
10	TO	12	32 10	39	0	1.1 70 1.2	0
12	TO	14	39 TU	45	0	1.2 70 1.3	0
14	TO	16	45 TO	52	0	1.3 10 1.4	0
16	10	17	52 10	55	0	1.4 10 1.5	1
17	TO	50	55 to	65	2	1.5 TO 1.6	3
20	TO	55	65 70	72	2	1.6 70 1.7	0
55	TO	24	72 TO	78	0	1.7 TO 1.8	2
24	TO	26	78 TO	85	1	1.8 10 1.9	0
26	TO	28	85 70	91	0	1.9 TU 2.0	0
85	TO	30	91 10	98	0	2.0 TU 2.4	1
30	TO	32	98 10	104	0	2.4 70 2.6	0
32	TO	39	104 TO	127	0	8.5 07 8.5	2
39	TO	45	127 10	147	0	2.8 TH 5.0	1
45	TO	55	147 10	180		3.0 10 3.5	0
55	TO	71	180 10	232		3.5 TH 4.0	,
71	TO	100	232 10	328	0	4.0 TO 4.5	0
	ER	100	OVER	328	4	OVER 4.5	ĭ

TABLE 8 (Concluded)

ISTRIBUTION O	PECOGNIZE	D HOT SPOT	Threshold = Ave. + 3.0 σ 9.0 - 11.4 μ m
	н	AREA	9.0 - 11.4 µm
SQUARE MET	ERS .	FREQUENCY	
0.0 TO	5.0	0	
5.0 TU	10.0	1	
10.0 TO	15.0	1	
15.0 TO	20.0	2	
20.0 TU	25.0	1	
25.0 TU	30.0	0	
30.0 TU	35.0	0	
35.0 TO	40.0	0	
40.0 TU	45.0	0	
45.0 TU	50.0	0	
50.0 TU	75.0	1	
75.0 TO	100.0	0	
100.0 TO	150.0	0	
150.0 TO	200.0	0	
200.0 TU	250.0	0	
250.0 TO	300.0	0	
300.0 10	400.0	0	
400.0 10	500.0	0	
OVER	500.0	0	

3 FEATURES WITH AREAS LESS THAN 8.00 SQ. METERS WERE ALSO RECOGNIZED

TOTAL NUMBER OF HOT SPOT

			BY PE	RIM	TER	BY SHAPE		
ME	TER	9	F	EET		FREQUENCY	SHAPE FACT	OR FREQUENCY
0	TO	7	0	TO	55	0	0.0 TO 1.	0 0
7	TO	10		TO	32	0	1.0 TU 1.	1 0
10	TO	12		TO	39	0	1.1 TU 1.	2 0
12	TO	14	39	TO	45	0	1.2 70 1.	_
14	TO	16	45	TO	52	1	1.3 70 1.	
16	TO	17	52	TO	55	Ō	1.4 TO 1.	5 0
17	TO	20	55	TO	65	1	1.5 TO 1.	6 1
20	TO	22	65	TO	72	Ö	1.6 10 1.	_
55	TO	24	72	TO	78	0	1.7 10 1.	
24	TO	20	78	TO	85	0	1.8 TO 1.	
26	10	28		TO	91	Ō	1.9 TU 2.	
28	TO	30	91	TO	98	2	2.0 10 2.	
30	10	32	98	TO	104	ō	2.4 TU 2.	
32	TO	39		10	127	0	2.6 TU 2.	
39	TO	45		TO	147	•	2.8 TO 3.	
45	TO	55		TO	180	ò	3.0 TO 3.	
55		71		TO	232	Ô	3.5 TO 4.	
71	TO	100	232		328		4.0 10 4.	
	ER	100		ER	328	ò	OVER 4	

Area: HUM1 CROSSTRACK Wavelength = 2.0-2.6 (*), 4.5-5.5 (X), 9.0-11.4 () FIGURE 13a. POWER SPECTRA - HUME1, CROSSTRACK

Area: HUM1 INTRACK Wavelength = 2.0-2.6 (*), 4.5-5.5 (X), 9.0-11.4 (⊡)

FIGURE 13b. POWER SPECTRA - HUME1, INTRACK

Area: HUM2 CROSSTRACK Wavelength = 2.0-2.6 (*), 3.0-4.2 (+), 4.5-5.5 (X), 9.0-11.4 (C)

FIGURE 14a. POWER SPECTRA - HUME2, CROSSTRACK

Area: HUM2 INTRACK Wavelength = 2.0-2.6 (*), 3.0-4.2 (+), 4.5-5.5 (X), 9.0-11.4 (□) POWER SPECTRA - HUME2, INTRACK FIGURE 14b.

FIGURE 15a. HISTOGRAM OF WATER GLINTS AT PORT HUENEME

107

FIGURE 15c. HISTOGRAM OF WATER GLINTS AT PORT HUENEME

FIGURE 15d. HISTOGRAM OF WATER GLINTS AT PORT HUENEME

TABLE 9
Glints on Open Water - HUME2

Number of Subregions = 1

Pixel Subarea Divisions at: 301 500 Line Subarea Divisions at: 1351 1550

Line Increment Used = 1

Pixel Increment Used = 1

Correlation	6	10	11	12
6	1.000			
10	0.846	1.000		
11	0.892	0.683	1.000	
12	-0.094	-0.113	0.049	1.000

Channels 6 10 11 12 1.5025E+02 3.1405E+02 2.9083E+02 2.8846E+02 Mean 2.7197E+00 6.4991E-01 1.1205E+02 1.8863E+01 St. Dev. 39800. 39800. 39800. 39800. Total Pts.

figures, Figures 16a-n, one is able to discern this protected water area in certain of the spectral bands, and the large area associated with the continuous glint obtained as the depression angle allowed a convenient collection of sun highlights. Even in the 9.0-11.4 μm band, where, because of various slopes on the water surfaces, we might expect little in the way of glints, there are highlights of sufficient intensity to produce ellipses, due either to sunlight or other unpredictable phenomena. In choosing a glint area, we seem unavoidably to have included a small portion of the breakwater which persists in the ellipses of the 9.0-11.4 μm band, even out to large standard deviations. The "glints" in this spectral region are accordingly considerably less intense than the thermal radiation from solid areas.

In Figure 17, we have designated the coldest regions to be found in the water, i.e., regions in which the temperature is no greater than that corresponding to the standard deviation shown in the figure. Tables 10 and 11 are the ellipse statistics corresponding to Figures 16 and 17, respectively.

7

CONCLUSIONS

Examination of the histograms shows the evident multimodal nature of the different scenes, demonstrating the obvious non-homogeneity of even small areas, which is to be expected. The ellipse thresholds were chosen to show the levels at which various features in the scene stand out. We especially chose also a small area in the water containing a large sun glint activity. We were particularly interested in the 9.0-11.4 µm band where some singular features, which could perhaps be identified as glint, showed up. However, without a knowledge of the water conditions, it is not possible to say just what the causes of these singularities were. For comparison we looked also at the colder features in the glint area and found some similarities with the hot features.

Radiance Threshold

= Ave. + 0.50σ

Wavelength = $2.0 - 2.6 \mu m$

FIGURE 16a. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

Radiance Threshold

= Ave. + $1.00 \, \sigma$

Wavelength = $2.0 - 2.6 \mu m$

FIGURE 16b. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

Area: HUM2 (Water Glints)
Temperature Threshold
= Ave. + 0.00σ

Wavelength = $3.0 - 4.2 \mu m$

FIGURE 16c. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM2 (Water Glints)

Temperature Threshold

= Ave. + 0.50σ

Wavelength = $3.0 - 4.2 \mu m$

FIGURE 16d. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

Temperature Threshold

= Ave. + 0.50σ

Wavelength = $4.5 - 5.5 \mu m$

FIGURE 16e. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

Temperature Threshold

= Ave. $+ 1.00 \sigma$

Wavelength = $4.5 - 5.5 \mu m$

FIGURE 16f. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

Temperature Threshold

= Ave. + 2.00σ

Wavelength = $4.5 - 5.5 \mu m$

FIGURE 16g. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

2

0

0

#1550

Area: HUM2 (Water Glints)

Temperature Threshold

= Ave. + 2.50σ

Wavelength = $4.5 - 5.5 \mu m$

FIGURE 16h. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

Area: HUM2 (Water Glints)

Temperature Threshold

= Ave. + 3.00σ

Wavelength = $4.5 - 5.5 \mu m$

FIGURE 161. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

00

6

#1550

Area: HUM2 (Water Glints)

Temperature Threshold

= Ave. + 3.50σ

Wavelength = $4.5 - 5.5 \mu m$

FIGURE 16j. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

Õ

#1550

Area: HUM2 (Water Glints)

Temperature Threshold

= Ave. + 4.00σ

Wavelength = $4.5 - 5.5 \mu m$

FIGURE 16k. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

#1550

Area: HUM2 (Water Glints)

Temperature Threshold

= Ave. + 1.00σ

Wavelength = $9.0 - 11.4 \mu m$

FIGURE 16%. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

Area: HUM2 (Water Glints) Temperature Threshold

= Ave. + 2.00σ

Wavelength = $9.0 - 11.4 \mu m$

FIGURE 16m. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

Area: HUM2 (Water Glints)

Temperature Threshold

= Ave. + 3.00σ

Wavelength = $9.0 - 11.4 \mu m$

EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME FIGURE 16n.

TABLE 10
HUME2 - Glints on Open Water
AREA DISTRIBUTIONS

Threshold = Ave. + 0.5σ DISTRIBUTION OF RECOGNIZED HOT SPOT $2.0 - 2.6 \mu m$ HY AREA SQUARE METERS FREQUENCY 0.0 10 5.0 0 5.0 TO 10.0 TO 10.0 6 15.0 TU 20.0 TU 20.0 25.0 25.0 TU 30.0 30.0 TO 35.0 35.0 TU 40.0 40.0 TO 45.0 TO 45.0 50.0 50.0 TO 75.0 TO 100.0 TO 150.0 TO 75.0 100.0 150.0 200.0 200.0 10 250.0 250.0 10 300.0 300.0 TU 400.0 TU 400.0 500.0 OVER 500.0 TUTAL NUMBER OF HOT SPOT 30

BY PERIMETER			BY SHAPE			
METER	19	FEET		FREQUENCY	SHAPE FACTOR	FREDUENCY
0 10	7	0 10	55	0	0.0 TO 1.0	0
7 10	10	22 10	32	0	1.0 70 1.1	0
10 TO	12	32 11)	39	0	1.1 10 1.2	3
12 TO	14	39 TO	45	2	1.2 70 1.3	1
14 TO	16	45 TI)	52	2	1.3 70 1.4	4
16 TU	17	52 10	55	ī	1.4 70 1.5	2
17 TO	20	55 TO	65	7	1.5 TU 1.6	5
20 10	55	65 TG	72	3	1.6 10 1.7	3
25 10	24	72 10	78	0	1.7 10 1.8	2
24 10	56	78 TO	85	0	1.8 10 1.9	i
26 TO	28	85 TO	91	i	1.9 10 2.0	5
28 10	30	91 10	98		2.0 70 2.4	2
30 TO	32	98 TO	104		2.4 10 2.6	0
32 10	39	104 TO	127	7	2.6 10 2.8	,
39 10				3		
-	45	127 10	147	2	2.8 10 3.0	U
45 10	55	147 10	180	1	3.0 10 3.5	0
55 TO	71	180 T()	535	3	3.5 10 4.0	5
71 10	100	232 TO	328	1	4.0 (1) 4.5	0
OVER	100	OVER	328	2	OVER 4.5	U

TABLE 10 (Cont'd)

DISTRIBUTION OF RECOGNIZED MOT SPOT

 $\left(\begin{array}{c}
\text{Threshold = Ave. + 1.0 } \sigma \\
2.0 - 2.6 \ \mu\text{m}
\end{array}\right)$

BY AREA

SQUARE METE	RS.	FREQUENC
0.0 TU	5.0	0
5.0 TO	10.0	10
10.0 TO	15.0	6
15.0 TO	20.0	2
20.0 TU	25.0	2
25.0 TU	30.0	1
30.0 TO	35.0	3
35.0 TO	40.0	0
40.0 TO	45.0	0
45.0 TO	50.0	0
50.0 TO	75.0	5
75.0 TO	100.0	1
100.0 TO	150.0	3
150.0 TO	200.0	0
200.0 TU	250.0	0
250.0 TO	300.0	0
300.0 TO	400.0	0
400.0 TU	500.0	0
OVER	500.0	1

TOTAL NUMBER OF HOT SPOT = 31

BY PERIMETER					BY SHAPE		
METER	23	FE	ET	FREQUENCY	SHAPE FACTOR	FREQUENCY	
0 10	7	0 1	ro 22	0	0.0 70 1.0	U	
7 10	10	22 1		0	1.0 TO 1.1	0	
10 TO	12	32 1		0	1.1 70 1.2	5	
12 10	14	39 1		3	1.2 10 1.3	?	
14 TO	16	45 1		8	1.3 70 1.4	12	
16 TU	17	52 1		0	1.4 TU 1.5	1	
17 TO	20	55 1		7	1.5 10 1.6	0	
20 10	55	65 1		0	1.6 10 1.7	i	
22 10	24	72 1		i	1.7 TU 1.8	Š	
24 TO	56		0 85	•	1.8 TU 1.9	0	
26 TO	28	85 1		Š	1.9 10 2.0	ĭ	
28 TO	30			2	2.0 TO 2.4	,	
				-			
30 10	35		0 104	1	2.4 70 2.6		
32 TO	39		u 127	0	8.6 Tu 2.8	1	
39 10	45	127 T	(1) 147		2.8 TH 3.0	0	
45 TO	55	147 T	0 180	0	3.0 TU 3.5	0	
55 TO	71	180 T	(1) 232	2	3.5 TO 4.0	Ú	
71 10	100	232 1		2	4.0 19 4.5	()	
OVER	100	OVE		2	OVER 4.5	1	

TABLE 10 (Cont'd)

DISTRIBUTION OF RECOGNIZED HOT SPUT

BY ARFA

 $\left(\begin{array}{c}
\text{Threshold} = \text{Ave.} + 0.0 \text{ o} \\
3.0 - 4.2 \text{ } \mu\text{m}
\end{array}\right)$

SQUARE	ME	TERS	FREQUENCY
0.0	10	5.0	0
5.0	TU	10.0	19
10.0	TU	15.0	A
15.0	TU		10
20.0	TO	25.0	5
25.0	TO	30.0	2
30.0		35.0	0
35.0	TU	40.0	1
40.0	TO	45.0	1
45.0	TO	50.0	3
50.0	TO	75.0	2
75.0		100.0	1
100.0	TU	150.0	0
150.0		200.0	0
200.0		250.0	0
250.0	TU	300.0	0
300.0	TO		0
400.0		500.0	0
	ER	500.0	1
2741 - 10000000000			

TUTAL NUMBER OF HOT SPOT = 50

BY PERIMETER					BY SHAPE		
METER	9	FEET		FREQUENCY	SHAPE FACTOR	FREQUENCY	
0 10	7	0 10	22	0	0.0 70 1.0	0	
7 10	10	22 10	32	0	1.0 10 1.1	0	
10 10	12	32 TO	39	0	1.1 70 1.2	14	
12 10	14	39 TO	45	12	1.2 10 1.3	4	
14 10	16	45 71)	52	7	1.3 TU 1.4	6	
16 70	17	52 10	55	0	1.4 10 1.5	5	
17 10	20	55 TO	65	11	1.5 10 1.6	6	
20 10	5.5	65 TO	72	3.	1.6 10 1.7	5	
22 10	24	72 10	78	2	1.7 10 1.8	1	
24 TU	26	78 TU	85	1	1.8 10 1.9	0	
26 10	28	85 TO	91	0	1.9 10 2.0	5	
28 TO	30	91 10	98	3	2.0 70 2.4	4	
30 10	32	98 TO	104	1	2.4 111 2.6	1	
32 10	39	104 Ti)	127	4	8.5 UT 8.5	U	
39 10	45	127 70	147	2	2.8 10 3.0	1	
45 10	55	147 TO	180	0	3.0 10 3.5	0	
55 10	71	180 TO	232	2	3.5 TU 4.0	U	
71 10	100	232 TO	328	1	4.0 10 4.5	-)	
OVER	100	OVER	328	1	OVER 4.5	1	

TABLE 10 (Cont'd)

DISTR	THUT	ION	OF	RECOGNIZ	FD	HnT	SPILT

 $\left(\begin{array}{c}
\text{Threshold = Ave. + 0.5 } \sigma \\
3.0 - 4.2 \ \mu\text{m}
\end{array}\right)$

HY ARFA

SQUARE METE	RS	FREQUENC
0.0 TO	5.0	0
5.0 TO	10.0	18
10.0 TO	15.0	7
15.0 TO	20.0	3
20.0 TU	25.0	3
25.0 TO	30.0	3
30.0 10	35.0	3
35.0 TO	40.0	5
40.0 TU	45.0	1
45.0 TO	50.0	3
50.0 TO	75.0	3
75.0 TU	100.0	0
100.0 TO	150.0	0
150.0 TU	200.0	0
OT 0.005	250.0	0
250.0 TU	300,0	0
300.0 TO	400.0	0
400.0 TO	500.0	0
OVER	500.0	ž

TOTAL NUMBER OF HOT SPOT = 48

BY PERIMETER					BY SHAPE		
METER	15	FEET		FREQUENCY	SHAPE FACTOR	FREQUENCY	
0 TO	7	0 T()	55	0	0.0 TO 1.0	U	
7 10	10	22 TO	32	0	1.0 70 1.1	U	
10 TO	12	32 TO	39	0	1.1 TO 1.2	10	
12 10	14	39 TO	45	7	1.2 10 1.3	1	
14 TO	16	45 TO	52	9	1.3 TO 1.4	14	
16 10	17	52 TO	55	0	1.4 10 1.5	6	
17 10	20	55 TO	65	12	1.5 70 1.6	3	
20 10	55	65 TO	72	0	1.6 TU 1.7	1	
22 TO	24	72 10	78	1	1.7 TO 1.8	2	
24 TU	56	78 TO	85	ž	1.8 10 1.9	5	
26 10	28	85 TU	91	1	1.9 10 2.0	1	
28 TO	30	91 TO	98	2	2.0 70 2.4	4	
30 TO	32	98 TU	104	2	2.4 TU 2.6	1	
32 TO	39	104 TU	127	2	8.5 07 8.5	ò	
39 TO	45	127 10	147	2	2.8 TH 3.0	0	
45 TO	55	147 TO	180	u u	3.0 TO 3.5	0	
55 TO	71	180 TO	232		3.5 Til 4.0	,	
71 10	100		328		4.0 10 4.5		
	C 200	232 10					
OVER	100	OVER	328	2	NVER 4.5	1	

TABLE 10 (Cont'd)

DISTRIBUTION OF RECOGNIZED HOT SPOT

HY AREA

 $\left(\begin{array}{c}
\text{Threshold} = \text{Ave.} + 0.5 \text{ } \sigma \\
4.5 - 5.5 \text{ } \mu\text{m}
\end{array}\right)$

9004	RE MET	ERS	FR	ERUENCY
0.	0 TO	5.0		0
5.	0 70	10.0		5
10.	0 10	15.0		4
15.	O TO	20.0		12
20.	0 10	25.0		3
25.	0 10	30.0		0
30.	O TO	35.0		5
35.	0 10	40.0		0
40.	0 10	45.0		1
45.	0 10	50.0		2
50.	O TO	75.0		3
75.	0 70	100.0		0
100	0 70	150.0		5
150.	0 10	200.0		0
200	O TO	250.0		0
250.	0 10	300.0		0
300	0 TO	400.0		0
400.	0 10	500.0		0
	OVER	500.0		1
TUTAL NO	MBER O	F HOT SPOT		35

BY PERIMETER					BY SHAPE		
м	ETER	9	FEE	T	FREQUENCY	SHAPE FACTUR	FREQUENCY
0	TO	7	0 10	55	0	0.0 70 1.0	0
7	TO	10	22 10	32	0	1.0 70 1.1	0
10	TO	12	32 10	39	0	1.1 70 1.2	1
12	TO	14	· 39 TO	45	0	1.2 10 1.3	3
14	10	16	45 TO	52	3	1.3 TO 1.4	6
16	TO	17	52 TO	55	1	1.4 10 1.5	7
17	10	20	55 TO	65	11	1.5 70 1.6	3
50	TO	55	65 TO	72	3	1.6 10 1.7	5
55	TO	24	72 TU	78	2	1.7 TU 1.8	1
24	TO	26	78 TU	85	2	1.8 TO 1.9	1
26	TO	28	85 TO	91	1	1.9 10 2.0	3
58	TO	30	91 TO	98	1	2.0 TU 2.4	2
30	TO	32	98 10	104	1	2.4 10 2.6	1
32	10	39	104 TO		1	2.6 TO 2.8	1
39	TO	45	127 TO		2	2.8 TO 3.0	0
45	TO	55	147 TO	_	3	3.0 TO 3.5	0
55		71	180 TO	2000	0	3.5 TU 4.0	0
71	TO	100	232 TO			4.0 TU 4.5	0
	VER	100	OVER		i	OVER 4.5	i

TABLE 10 (Cont'd)

DISTRIBUTION OF RECOGNIZED HOT SPOT

BY AREA

Threshold = Ave. + 1.0 σ 4.5 - 5.5 μ m

FRS	FREDUENCY
5.0	0
10.0	5
	4
The second secon	6
	5
	1
	5
	t
	1
	Ó
	2
The same of the sa	Ō
	0
	0
	0
	0
	0
	0
500.0	4
	5.0 10.0 15.0 20.0 25.0 30.0 40.0 45.0 50.0 75.0 100.0 150.0 250.0 300.0 400.0

TOTAL NUMBER OF HUT SPOT . 28

BY PERIMETER							BY SHAPE		
ME'	TER	3		FET		FREQUENCY	SHAPE FACTOR	FREQUENCY	
0	TO	7	0	TO	22	0	0.0 10 1.0	0	
7	TO	10	. 55	TO	32	0	1.0 TO 1.1	0	
10	TO	12	32	to	39	0	1.1 10 1.2	1	
12	TO	14	39	70	45	1	1.2 10 1.3	0	
	TO	16		TO	52	2	1.3 TO 1.4	6	
	TO	17		TO	55	0	1.4 10 1.5	4	
	to	20	55	TO	65	7	1.5 TU 1.6	1	
Charles Color	TO	55	70000	TO	72	4	1.6 70 1.7	0	
	TO	24		TO	78	0	1.7 10 1.8	7	
	TO	26	78	TO	85	0	1.8 70 1.9	1	
2007	to	28		TO	91	ž	1.9 10 2.0		
	to	30	91	TO	98	,	2.0 10 2.4	;	
	TO	32	98	TO	104		2.4 10 2.6	,	
	10	39	104	to	127		8.5 UT 8.5	0	
100	to	45	127	to	147	9	2.A TO 3.0	0	
The same of		55				2		·	
	10		147	TO	180	•	3.0 10 3.5		
Transit Co.	TO	71	180	TO	232	0	3.5 TO 4.0	1	
	TO	100	535		328		4.0 10 4.5	1	
OVE	ER	100	01	VER	328	4	OVER 4.5	5	

TABLE 10 (Cont'd)

DISTRIBUTION OF	RECOGNIZED	HOT	SPOT
-----------------	------------	-----	------

 $\left(\begin{array}{c}
\text{Threshold} = \text{Ave.} + 2.0 \text{ } \sigma \\
4.5 - 5.5 \text{ } \mu\text{m}
\end{array}\right)$

BY AREA

SQUARE ME	TERS	FREQUENC
0.0 10	5.0	0
5.0 TO	10.0	1
10.0 TU	15.0	1
15.0 TO	20.0	3
20.0 TU	25.0	0
25.0 TO	30.0	1
30.0 TU		1
35.0 TU		1
40.0 TU	45.0	1
45.0 TU	50.0	1
50.0 TO	75.0	1
75.0 TU	100.0	0
100.0 TU		0
150.0 TU	200.0	1
200.0 TO		ō
250.0 TU	300.0	0
300.0 TO		1
400.0 TU	The state of the s	ò
OVER	500.0	3
Wen	300.0	
TUTAL NUMBER	OF HOT SPOT	= 16

			BY PERI	HETER		8 Y 3 H	APE
м	ETER	9	FEE	•	FREQUENCY	SHAPE FACTUR	FREQUENCY
0	TO	7	0 10	55	0	0.0 79 1.0	0
7	TU	10	22 10	32	0	1.0 10 1.1	0
10	TO	12	32 TO	39	0	1.1 70 1.2	0
12	10	14	39 TO	45	0	1.2 10 1.3	1
14	TO	16	45 TO	52	1	1.3 TO 1.4	1
16	10	17	52 10	55	0	1.4 TO 1.5	3
17	TO	50	55 TO	65	2	1.5 10 1.6	U
50	10	55	65 70	72	1	1.6 70 1.7	2
22	TO	24	72 TO	78	0	1.7 TO 1.8	4
24	TO	26	78 TO	85	0	1.8 10 1.9	0
26	TO	28	85 TO	91	i	1.9 TU 2.0	0
28	10	30	91 10	98		2.0 TU 2.4	3
30	TO	32	98 10	104	;	2.4 10 2.6	0
	TO	39	104 TU	127	o o	2.6 111 2.8	0
39	10	45	127 10	147	·		0
45	TO	55				2.8 10 3.0	
			147 10	180		3.0 10 3.5	1
55		71	180 10	232		3.5 10 4.0	1
71		100	232 TO	328	0	4.0 TH 4.5	0
0	VER	100	OVER	328	5	TIVER 4.5	0

TABLE 10 (Cont'd)

DISTRIBUTION OF RECOGNIZED HOT SPOT

BY AREA

 $\left(\begin{array}{c}
\text{Threshold = Ave. + 2.5 } \sigma \\
4.5 - 5.5 \ \mu\text{m}
\end{array}\right)$

S	FREQUENCY
5.0	0
10.0	5
15.0	1
20.0	3
25.0	2
30.0	0
35.0	1
	1
	0
	1
	1
	1
	0
	0
	0
	0
	0
	1
500.0	5
	5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 75.0 100.0 150.0 200.0 250.0 300.0

TUTAL NUMBER OF HOT SPOT = 16

	BY PERIMETER						BY SHAPE			
ме	ETER	3	,	EET		FREQUENCY	SHAPE	FACTUR	FREQUENCY	
0	10	7	0	10	55	0	0.0 7	0 1.0	0	
7	TU	10	55	TO	32	0	1.0 1	0 1.1	U	
10	TO	12	32	TO	39	0	1.1 T	0 1.2	0	
12	TO	14	39		45	0		1) 1.3	1	
14	10	16	45		52	0		(1 1.4	1	
16	TO	17	52	TO	55	0		0 1.5	1	
17	TO	20	55		65	4		U 1.6	6	
20	10	55	65	111111111111111111111111111111111111111	72	2		0 1.7	0	
5.5	TO	24			78	0		0 1.8	0	
24	to	26	78		85	0		11 1.9	4	
26	TO	28	85		91	1		0.5 0	0	
28	TO	30	91	TO	98	i		0 2.4	O	
30	TO	32	98	TO	104	i		0.5 U	1	
32	TO	39	104	TO	127			8.5 0	U	
34	10	45	127	TO	147	ò		U 3.0	0	
45	TO	55	147	TO	180	,		0 3.5	,	
55	TU	71	180	10	232	0		0 4.0	0	
						i			0	
100						;			0	
71	TO	100	232		328	1 3	4.0.1	0 4.5 R 4.5	0	

TABLE 10 (Cont'd)

DISTRIBUTION OF RECOGNIZED HOT SPOT

 $\left(\begin{array}{c}
\text{Threshold = Ave.} + 3.0 \text{ } \sigma \\
4.5 - 5.5 \text{ } \mu\text{m}
\end{array}\right)$

BY AREA

SQUAR	RE ME	TERS	FREQUENC
0.0	10	5.0	0
5.0	OT O	10.0	5
10.0	010	15.0	5
15.0	OT C	20.0	1
20.0	OT C	25.0	1
25.0	o Tu	30.0	0
30.0	TO.	35.0	0
35.	OT C	40.0	0
40.	OT C	45.0	0
45.	OT C	50.0	0
50.	OT C	75.0	0
75.	n Tu	100.0	0
100.	o To	150.0	0
150.	o To	200.0	0
200.	0 10	250.0	1
250.		300.0	0
300.		and the same of th	0
400.			0
(TVER	500.0	5
TAL NU	HER	OF HOT SPOT	= 9

			BY PERIM	ETER		HY SH	APF
ME	ETER	3	FEET		FREQUENCY	SHAPE FACTUR	FREQUENCY
0	TO	7	0 TO	22	0	0.0 10 1.0	0
7	10	10	22 TO	32	0	1.0 TU 1.1	0
10	10	12	32 10	39	0	1.1 10 1.2	1
12	TO	14	39 TO	45	0	1.2 10 1.3	1
14	TO	16	45 TO	52	2	1.3 10 1.4	1
16	TO	17	52 10	55	0	1.4 70 1.5	1
17	TO	20	55 TO	65	2	1.5 10 1.6	1
20	TO	55	65 TO	72	1	1.6 10 1.7	0
22	TO	24	72 10	78	0	1.7 70 1.8	1
24	TO	26	78 TO	85	1	1.8 10 1.9	0
26	TU	28	85 TO	91	0	1.9 10 2.0	1
28	TO	30	91 Tu	98	0	2.0 10 2.4	1
30	TO	32	98 TI)	104	0	2.4 10 2.6	0
32	TO	39	104 10	127	0	2.6 10 2.8	0
39	TO	45	127 10	147	0	2.8 TU 3.0	1
45	TO	55	147 TO	180	0	3.0 10 3.5	0
55		71	180 TO	232	C	3.5 TU 4.0	U
71	10	100	232 10	328	o o	4.0 10 4.5	0
	VER	100	OVER	328	3	NVER 4.5	0

TABLE 10 (Cont'd)

DISTRIBUTION	UF	RECUGNIZED	HOT	SPUT	

 $\left(\begin{array}{c}
\text{Threshold = Ave. + 3.5 } \sigma \\
4.5 - 5.5 \ \mu\text{m}
\end{array}\right)$

SQUARE	METE	RS	FREQUENCY
0.0	TU	5.0	0
5.0	10	10.0	1
10.0	TO	15.0	0
15.0	TU	20.0	0
20.0	TO	25.0	1
25.0	Tu	30.0	0
30.0	Tu	35.0	0
35.0	TU	40.0	1
40.0	TO	45.0	0
45.0	TO	50.0	0
50.0	TO	75.0	0
75.0	TO	100.0	0
100.0	TO	150.0	0
150.0		200.0	0
200 0	•		

BY AREA

75.0 TO 100.0 TO 150.0 TO 200.0 TO 250.0 TO 300.0 TO 400.0 TO OVER 300.0 500.0 500.0 TUTAL NUMBER OF HOT SPOT

250.0

8 FEATURES WITH AREAS LESS THAN 8.00 SQ. METERS WERE ALSO RECUGNIZED

0 0

	BY PERIMETER						BY SHAPE		
MET	EHS		FE	EET		FREQUENCY	SHAPE FACTUR	FREQUENCY	
0 1	ro	7	0 1	ro	22	0	0.0 10 1.0	0	
7 1	ro	10	22 '	(1)	32	0	1.0 TO 1.1	0	
10	10	12	32 1	TO	39	0	1.1 10 1.2	0	
12 1	ro	14	39	10	45	0	1.2 10 1.3	U	
14	10	16	45	TO	52	0	1.3 TO 1.4	U	
16 1	ro	17		ro	55	0	1.4 TO 1.5	1	
	0	20	55 1		65	0	1.5 TU 1.6	Ü	
20 1	ro	22	65		72	1	1.6 10 1.7	9	
22		24	72		78	Ô	1.7 70 1.8	0	
	10	26	78		85	0	1.8 Tu 1.9	0	
	[1]	28	85		91	0	1.9 10 2.0	1	
	10	30	-	TO	98	0	2.0 TU 2.4	,	
-	o	32		70	104	i	2.4 10 2.0	U	
	O	39		to	127		8.5 01 8.5	0	
	0	45		n	147	ò	2.8 TO 3.0	ï	
	0	55	T. 17	10	180	0	3.0 10 3.5	0	
	0.100					0			
	10	71		(1)	232	0	3.5 10 4.0	U	
71		100	535		328	0	4.0 10 4.5	0	
OVE	R	100	OVE	ER	328	2	NVFR 4.5	0	

TABLE 10 (Cont'd)

DISTRIBUTION OF RECOGNIZED HOT SPOT

HY AREA

 $\left(\begin{array}{c}
\text{Threshold = Ave. + 4.0 } \sigma \\
4.5 - 5.5 \ \mu\text{m}
\end{array}\right)$

300	JARE MI	ETERS		FRE	DUENC
(. o TO		5.0		0
	.0 TU		0.0		0
10	0.0 TO	1	5.0		3
15	.0 10	2	0.0		0
20	0.0 TU	2	5.0		0
25	.0 TO	3	0.0		0
30	0.0 TU	3	5.0		0
39	5.0 TO	4	0.0		0
4 (0.0 10	4	5.0		0
45	5.0 TU		0.0		0
50	0.0 10	7	5.0		0
75	5.0 10	10	0.0		0
100	0.0 10	15	0.0		0
150	0.0 TU	20	0.0		0
200	0.0 TU		0.0		0
25	0.0 10	30	0.0		0
30	0.0 TU		0.0		1
400	0.0 TO	50	0.0		0
	OVER		0.0		1
TUTAL !	NUMBER	OF HOT	SPOT		5

11 FEATURES WITH AREAS LESS THAN 8.00 SQ. METERS WERE ALSO RECOGNIZED

BY PERIMETER BY SHAPE SHAPE FACTOR FREQUENCY METERS FEFT FREQUENCY 0 10 0.0 70 1.0 0 55 7 0 10 0 1.0 70 1.1 0 7 10 10 55 10 0 32 TO 10 TO 12 1.2 10 1.3 12 10 14 39 TO 45 0 0 1.3 70 1.4 52 14 10 45 TI 16 1 1.4 TO 1.5 1.5 TO 1.6 0 55 16 10 17 52 10 0 17 TO 20 55 TO 0 65 TO 72 TO 20 10 1.6 10 1.7 0 22 72 78 1.7 70 1.8 55 10 0 0 24 1.8 TU 1.9 U 24 10 50 78 TO 85 0 26 10 85 TO 91 0 1.9 TO 2.0 0 28 10 30 91 TO 98 2.0 TO 2.4 U 2.4 10 2.6 30 10 98 TO 104 0 1 32 32 TO 39 TO 8.5 UT 8.5 39 104 TO 127 0 1 2.8 TU 5.0 45 127 TU 147 0 U 190 3.0 TO 3.5 45 10 55 147 10 55 TO 71 TO 3.5 TO 4.0 4.0 TO 4.5 71 232 180 TO 0 100 0 0 535 LO 358 OVER 100 OVER 328 OVER 4.5

TABLE 10 (Cont'd)

DISTRIBUTION OF RECOGNIZED HOT SPOT

 $\left(\begin{array}{c}
\text{Threshold} = \text{Ave.} + 1.0 \text{ } \sigma \\
9.0 - 11.4 \text{ } \mu\text{m}
\end{array}\right)$

HY AREA

ERS	FREQUENC
5.0	0
10.0	39
15.0	28
20.0	20
25.0	9
	5
	4
	0
	3
	1
	3
	0
	0
	5
300.0	1
	1
	1
	2
	10.0

TOTAL NUMBER OF HOT SPOT = 120

BY PERIMETER						BY SHAPE		
ME	TER	8	FEET	•	FREQUENCY	SHAPE FACTOR	FREQUENCY	
0	10	7	0 10	55	0	0.0 TO 1.0	0	
7	10	10	22 TU	32	0	1.0 70 1.1	0	
10	TO	12	32 TO	39	0	1.1 TU 1.2	8	
12	TO	14	39 TI)	45	6	1.2 70 1.3	7	
14	TO	16	45 TO	52	25	1.3 10 1.4	29	
16	10	17	52 T()	55	2	1.4 10 1.5	5	
17	TO	20	55 TO	65	31	1.5 TU 1.6	15	
50	TO	22	65 TO	72	10	1.6 TU 1.7	4	
25	TO	24	72 TO	78	1	1.7 TO 1.8	20	
24	10	26	78 TO	85	7	1.8 TO 1.9	1	
26	TO	28	85 TO	91	5	1.9 10 2.0	6	
85	10	30	91 10	98	4	2.0 TH 2.4	13	
30	TO	32	98 TO	104	0	2.4 10 2.6	3	
32	10	39	104 TO	127	8	8.5 01 8.5	2	
39	TU	45	127 10	147	4	2.8 TU 3.0	O	
45	TO	55	147 TO	180	3	3.0 10 3.5	4	
55	TO	71	180 TO	232	4	3.5 TO 4.0	1	
71	TO	100	232 10	328	2	4.0 TU 4.5	1	
OV	ER	100	OVER	328	8	NVER 4.5	4	

TABLE 10 (Cont'd)

BY AREA

DISTRIBUTION OF PECOGNIZED HOT SPOT $\begin{pmatrix}
\text{Threshold = Ave.} + 2.0 & \sigma \\
9.0 - 11.4 & \mu m
\end{pmatrix}$

SQUARE	. ME	TERS	3	FREQUENC
0.0	TO		5.0	0
5.0	TU		10.0	0
10.0	TU		15.0	0
15.0	TO		20.0	0
20.0	TU		25.0	0
25.0	TU		30.0	0
30.0	TO		35.0	0
35.0	TU		40.0	0
40.0	TU		45.0	0
45.0	TU		50.0	0
50.0	TO		75.0	0
75.0	TO		100.0	0
100.0	TO		150.0	0
150.0	TU		200.0	0
200.0	TO		250.0	0
250.0	TO		300.0	0
300.0	TO		400.0	0
400.0	TO		500.0	0
	VER		500.0	1
		a= .		

TUTAL NUMBER OF HUT SPOT = 1

		BY PERIM	BY SHAPE			
METE	RS	FFET		FREQUENCY	SHAPE FACTOR	FREQUENCY
0 10	7	0 10	55	0	0.0 10 1.0	0
7 10	10	22 10	15	0	1.0 10 1.1	0
10 TO	12	32 TO	39	0	1.1 70 1.2	U
12 10	14	39 TO	45	0	1.2 70 1.3	0
14 10	16	45 TO	52	. 0	1.3 70 1.4	0
16 10	17	52 10	55	0	1.4 10 1.5	0
17 10	50	55 TO	65	0	1.5 TU 1.6	0
20 10	5.5	65 TO	72	0	1.6 TU 1.7	0
22 10	24	72 10	78	0	1.7 10 1.8	0
24 10	56	78 TU	85	o o	1.8 TO 1.9	0
26 10	28	85 TO	91	0	1.9 70 2.0	0
28 10	30		98	0		1
				0		0
30 10	32	98 10	104	0	2.4 10 2.6	0
35 10	39	104 TO	127	0	2.6 10 2.8	0
39 10	45	127 10	147	0	2.8 10 3.0	0
45 10	55	147 70	180	0	3.0 11 3.5	O
55 10	71	180 10	232	0	3.5 TU 4.0	0
71 10	100	535 I()	328	0	4.0 TU 4.5	U
OVER	100	OVER	328	1	NVER 4.5	0

TABLE 10 (Cont'd)

DISTRIBUTION OF RECOGNIZED HO	ECOGNIZED HOT SPOT
-------------------------------	--------------------

BY AREA

 $\left(\begin{array}{c}
\text{Threshold = Ave. + 3.0 } \sigma \\
9.0 - 11.4 \ \mu\text{m}
\end{array}\right)$

SQUARE	METE	RS	FREQUENC
0.0	TO	5.0	0
5.0	10	10.0	0
10.0	TO	15.0	0
15.0	TO	20.0	0
20.0		25.0	0
25.0		30.0	0
30.0		35.0	0
35.0		40.0	0
40.0		45.0	0
45.0		50.0	0
50.0		75.0	0
75.0		100.0	0
100.0		150.0	0
150.0		200.0	0
200.0		250.0	0
250.0		300.0	0
300.0		400.0	0
400.0		500.0	0
	VER	500.0	1
		•	

TUTAL NUMBER OF HOT SPOT = 1

BY PERIMETER

BY SHAPE

BA BENIMETER						DI SHAFE		
MI	ETER	S	F	EET		FREQUENCY	SHAPE FACTOR	FREQUENCY
0	TO	7	0	TO	2.5	0	0.0 10 1.0	0
7	10	10	5.5	TO	32	0	1.0 TU 1.1	0
10	TO	12	32	TO	39	0	1.1 10 1.2	0
12	TO	14	39	TO	45	0	1.2 TU 1.3	0
14	TO	16	45	10	52	0	1.3 10 1.4	()
16	10	17	52	TO	55	0	1.4 10 1.5	0
17	TO	50		TO	65	0	1.5 10 1.6	0
20	TO	5.5		TO	72	0	1.6 TU 1.7	0
25	TO	24		10	78	0	1.7 10 1.8	U
24	TO	26		TO	85	0	1.8 10 1.9	0
26	TO	28	85	TO	91	0	1.9 10 2.0	0
28	TO	30	91	TO	98	0	2.0 10 2.4	t
30	TO	32	98	TO	104	0	2.4 10 2.6	0
32	TO	39	104	to	127	0	8.5 IIT 8.5	O
39	TO	45		TO	147	0	2.8 TO 3.0	0
45	TO	55	147	TO	180	0	3.0 TO 3.5	0
55	TO	71	180	TO	232	0	3.5 10 4.0	V
71	TO	100	232		328	0	4.0 TO 4.5	v
0	VER	100	DV		328	1	OVER 4.5	0

TABLE 10 (Cont'd)

DISTRIBUTION OF	RECOGNIZED	HAT SPOT	(Threshold = Ave. + 3.5 σ)
	нч	9.0 - 11.4 μm	
SQUARE METE	RS	FREQUENCY	
0.0 10	5.0	0	
5.0 TO	10.0	0	
10.0 70	15.0	0	
15.0 TO	20.0	0	
20.0 TO	25.0	0	
25.0 10	30.0	0	
30.0 TO	35.0	0	
35.0 TO	40.0	0	
40.0 70	45.0	0	
45.0 TU	50.0	0	
50.0 10	75.0	0	
75.0 10	100.0	0	
100.0 TO	150.0	0	
150.0 70	200.0	0	
200.0 10	250.0	0	
250.0 TD	300.0	0	
300.0 TO	400.0	0	
400.0 TO	500.0	0	
OVER	500.0	1	

TUTAL NUMBER OF HOT SPOT

		BY PERIM	ETER		BY SHAPE		
METER	18	FFFT		FREQUENCY	SHAPE FACTOR	FREQUENCY	
0 10	7	0 TO	. 22	0	0.0 70 1.0	O	
7 10	10	22 10	32	0	1.0 70 1.1	0	
10 TO	12	32 10	39	0	1.1 70 1.2	0	
12 10	14	39 TU	45	0	1.2 10 1.3	0	
14 10	16	45 TO	52	0	1.3 TO 1.4	O	
16 TO	17	52 TO	55	0	1.4 10 1.5	0	
17 10	20	55 TO	65	0	1.5 TO 1.6	0	
20 10	55	65 TO	72	0	1.6 10 1.7	0	
55 10	24	72 TO	78	0	1.7 10 1.8	0	
24 10	26	78 TO	85	0	1.8 10 1.9	0	
56 10	28	85 TO	91	0	1.0 10 2.0	0	
28 10	30	91 10	98	0	2.0 TU 2.4	1	
30 TO	32	98 TO	104	0	2.4 10 2.6	Ď	
32 10	34	104 TO	127	0	8.5 01 6.5	n	
39 TO	45	127 10	147	0	2.8 TI 3.0	0	
45 10				•		0	
	55	147 (1)	180	0	3.0 10 3.5		
55 10	71	180 10	232	0	3.5 10 4.0	0	
71 10	100	232 TU	328	0	4.0 10 4.5	C	
OVER	100	OVER	328	1	DVER 4.5	0	

TABLE 10 (Concluded)

ATETOTOUTTON	DE	0000004750	HAT	COULT
DISTRIBUTION	Ur	ME CUGNIZED	1.01	3501

BY AREA

 $\left(\begin{array}{c}
\text{Threshold = Ave. + 4.0 } \sigma \\
9.0 - 11.4 \ \mu\text{m}
\end{array}\right)$

SQUARE	METE	RS	FREQUENCY
0.0	70	5.0	0
5.0	TU	10.0	0
10.0	TO	15.0	0
15.0	TO	20.0	0
20.0	TO	25.0	0
25.0	TO	30.0	0
30.0	TO	35.0	0
35.0		40.0	0
40.0	TO	45.0	0
45.0	TU	50.0	0
50.0	TU	75.0	0
75.0	TO	100.0	0
100.0	TO	150.0	0
150.0		200.0	0
200.0		250.0	0
250.0	TO	300.0	0
300.0	TO	400.0	0
400.0		500.0	0
0	VER	500.0	1

BY PERIMETER

TOTAL NUMBER OF HOT SPOT . 1

BY SHAPE

HET	ERS	FEET		FREQUENCY	SHAPE FACTUR	FREQUENCY	
0 T	0 7	0 10	22	0	0.0 70 1.0	0	
7 1	D 10	22 10	32	0	1.0 70 1.1	0	
	0 12	32 10	39	0	1.1 10 1.2	0	
	0 14	39 TO	45	0	1.2 10 1.3	0	
	0 16	45 TO	52	0	1.3 10 1.4	2	
16 1	0 17	52 TO	55	0	1.4 TO 1.5	0	
	0 50	55 TO	65	0	1.5 10 1.6	0	
20 T		65 TO	72	0	1.6 TO 1.7	C	
22 T	22	72 TO	78	0	1.7 10 1.8	0	
	0 56	78 TO	85	0	1.8 TU 1.9	0	
26 T		85 TO	91	0	1.9 70 2.0	0	
28 T	-	91 10	98	0	2.0 10 2.4	1	
	n 32	98 10	104	0	2.4 TU 2.6	0	
32 T		104 TO	127	0	8.5 01 0.5	0	
	0 45	127 TD	147	0	2.8 TH 3.0	0	
45 T		147 TO	180	0	3.0 TO 3.5	0	
55 T		180 TO	232	0	3.5 111 4.0	0	
71 1		232 10	328	0	4.0 TI) 4.5	0	
OVE		OVER	328	1	OVER 4.5	0	

TABLE 11

HUME2 - Cold Water Regions AREA DISTRIBUTIONS

Threshold = -2.0σ DISTRIBUTION OF RECOGNIZED COLDSPOT $9.0 - 11.4 \mu m$ BY AREA SQUARE METERS FREQUENCY 0.0 TO 5.0 TO 5.0 0 0 10.0 TO 15.0 TO 20.0 TO 25.0 TO 30.0 TO 15.0 20.0 0 35.0 TO 40.0 TO 45.0 TO 40.0 45.0 50.0

TOTAL NUMBER OF COLDSPOT

100.0 150.0 200,0 250.0

300.0

400.0 500.0

500.0

50.0 TO 75.0 TO 100.0 TO 150.0 TO 200.0 TO

250.0 TO

300.0 TO 400.0 TO

OVER

2 FEATURES WITH AREAS LESS THAN 8.00 SQ. METERS WERE ALSO RECOGNIZED

0

BY PERIMETER					BY SHAPE		
METERS		FEET		FREQUENCY	SHAPE FACTOR FREQUENCY		
0 10	7	0 10	55	0	0.0 TO 1.0	0	
7 10	10	22 TO	32	0	1.0 70 1.1	0	
10 10	12	32 10	39	0	1.1 70 1.2	0	
15 10	14	39 TO	45	0	1.2 10 1.3	0	
14 10	16	45 TO	52	0	1.3 70 1.4	0	
16 70	17	52 10	55	0	1.4 10 1.5	0	
17 10	20	55 to	65	0	1.5 10 1.6	0	
20 10	5.5	65 TO	72	0	1.6 10 1.7	1	
25 10	24	72 70	78	0	1.7 TO 1.8	0	
24 10	26	78 TU	85	0	1.8 10 1.9	0	
26 10	28	85 TO	91	0	1.9 70 2.0	0	
28 TO	30	91 70	98	0	2.0 TU 2.4	0	
30 TO	32	98 10	104	0	2.4 10 2.6	0	
32 10	39	104 10	127	1	8.5 07 8.5	0	
39 TO	45	127 10	147	0	2.8 70 3.0	0	
45 10	55	147 TO	180	0	3.0 TU 3.5	0	
55 to	71	180 TO	232	0	3.5 TO 4.0	0	
71 10	100	232 TO	328	0	4.0 70 4.5	0	
OVER	100	DVFR	328	0	OVER 4.5	0	

TABLE 11 (Cont'd)

DISTRIBUTION UF	RECOGNIZED	COLDSPOT	$ \begin{pmatrix} \text{Threshold} = -1.5 & \sigma \\ 9.0 - 11.4 & \mu m \end{pmatrix} $	
	вч	(9.0 - 11.4 μm)		
SQUARE METE	RS	FREQUENCY		
0.0 70	5.0	0		
5.0 TU	10.0	0		
10.0 TO	15.0	2		
15.0 TO	20.0	0 2 0		
20.0 TO	25.0	1		
25.0 TU	30.0	0		
30.0 10	35.0	0		
35.0 TO	40.0	0		
40.0 TU	45.0	0		
45.0 TO	50.0	0		
50.0 TO	75.0	0		
75.0 TU	100.0	1		
100.0 70	150.0	0		
150.0 TO	200.0	0		
200.0 10	250.0	0		
250.0 TO	300.0	0		
300.0 TO		0		
400.0 TO	500.0	0		
OVER	500.0	0		
TOTAL NUMBER OF	TOUR DARROT	• 4		

BY PERIMETER					BY SHAPE			
METERS		FEET			FREQUENCY	SHAPE FACTUR	FREQUENCY	
0	TO	7	0	TO	55	0	0.0 TO 1.0	0
7	10	10	55	TO	32	0	1.0 TO 1.1	0
10	TO	12	32	TO	39	0	1.1 TU 1.2	0
12	TO	14	39	TO	45	0	1.2 10 1.3	0
14	TO	16	45	TO	52	0	1.3 TO 1.4	1
16	TO	17	52	TO	55	0	1.4 10 1.5	0
17	TO	20	55	TO	65	2	1.5 70 1.6	5
20	TO	55	65	TO	72	.0	1.6 70 1.7	0
5.5	TO	24	72	TO	78	0	1.7 TO 1.8	0
24	10	26	78	TO	85	0	1.8 70 1.9	0
26	TO	28	85	TO	91	1	1.9 TU 2.0	0
85	TO	30	91	TO	98	0	2.0 10 2.4	0
30	TO	32	98	TO	104	0	2.4 TU 2.6	1
32	10	39	104	TO	127	0	2.6 TU 2.8	0
39	TO	45	127	TO	147	0	2.8 TO 3.0	0
45	TO	55	147	TO	180	0	3.0 10 3.5	0
55	TO	71	180	TO	232	0	3.5 TU 4.0	0
71	TO	100	232		328		4,0 10 4,5	0
_	VER	100	100	ER	328	ō	OVER 4.5	0

TABLE 11 (Cont'd)

DISTRIBUTION OF RECUGNIZED COLDSPOT

 $\begin{pmatrix}
\text{Threshold} = -1.0 & \sigma \\
9.0 - 11.4 & \mu m
\end{pmatrix}$

BY AREA

SQUARE MET	ERS	FREQUENCY
0.0 10	5.0	0
5.0 TO	10.0	9
10.0 TO	15.0	3
15.0 TO	20.0	1
20.0 TO	25.0	2
25.0 TO	30.0	0
30.0 TO	35.0	1
35.0 TU	40.0	0
40.0 TU	45.0	0
45.0 TO	50.0	0
50.0 TO	75.0	0
75.0 TO	100.0	1
100.0 TO	150.0	0
150.0 TO	200.0	0
200.0 TO	250.0	0
250.0 TO	300.0	0
300.0 TU	400.0	0
400.0 TO	500.0	0
OVER	500.0	1

TOTAL NUMBER OF COLDSPOT . 18

BY PERIMETER					BY SHAPE		
METERS FEET		FREQUENCY	SHAPE FACTOR	FREQUENCY			
0 10	7	0 10	22	0	0.0 70 1.0	0	
7 10	10	22 10	32	0	1.0 70 1.1	0	
10 TO	12	32 10	39	0	1.1 70 1.2	3	
12 10	14	39 TO	45	3	1.2 70 1.3	1	
14 TO	16	45 TO	52	3	1.3 70 1.4	5	
16 10	17	52 10	55	3	1.4 70 1.5	1	
17 10	20	55 TO	65	2	1.5 10 1.6	3	
20 TO	22	65 TO	72	1	1.6 70 1.7	1	
22 10	24	72 10	78	0	1.7 70 1.8	3	
24 TO	26	78 TO	85	1	1.8 10 1.9	0	
26 10	28	85 TU	91	1	1.9 10 2.0	1	
28 10	30	91 TO	98	0	2.0 10 2.4	1	
30 10	32	98 70	104	1	2.4 10 2.6	0	
32 10	39	104 TO	127	0	8.5 UT 8.8	0	
39 TU	45	127 10	147	0	2.8 10 3.0	1	
45 10	55	147 TO	180	1	3.0 10 3.5	0	
55 TO	71	180 TO	232	0	3.5 TO 4.0	0	
71 10	100	232 10	328	i	4.0 10 4.5	0	
OVER	100	OVER	328		OVER 4.5	1	

TABLE 11 (Concluded)

DISTRIBUTION OF RECOGNIZED COLDSPOT

Threshold = -0.5σ 9.0 - 11.4 µm

BY AREA SQUARE METERS FREQUENCY 0.0 TO 5.0 TO 5.0 10.0 38 10.0 TO 15.0 TO 24 19 20.0 20.0 TO 25.0 25.0 TU 30.0 TO 30.0 3 35.0 35.0 TO 40.0 TO 45.0 TO 40.0 041942030 50.0 50.0 TO 75.0 75.0 TO 100.0 150.0 200.0 250.0 100.0 TO 150.0 TO 200.0 TO 250.0 TO 300.0 300.0 TO 400.0 TO 400.0

TOTAL NUMBER OF COLDSPOT 130

DVER

500.0

500.0

345 FLATURES WITH AREAS LESS THAN 8.00 SQ. METERS WERE ALSO RECOGNIZED

1

10

BY PERIMETER						BY SHAPE		
METERS			FEET			FREQUENCY	SHAPE FACTOR	FREQUENCY
0	TO	7	0	to	55	0	0.0 10 1.0	0
7	TO	10	55	TO	32	0	1.0 70 1.1	0
10	10	12	32	70	39	0	1.1 70 1.2	9
12	TO	14	39	TO	45	8	1.2 70 1.3	5
14	to	16	7.00	TO	52	16	1.3 10 1.4	28
16	TO	17	52	TO	55	5	1.4 70 1.5	4
17	10	20	55		65	28	1.5 TU 1.6	17
20	TO	5.5		TO	72	8	1.6 TU 1.7	5
55	TO	24		10	78	4	1.7 70 1.8	11
24	TO	26		TO	85	5	1.8 TU 1.9	4
26	TO	85		TO	91	6	1.9 10 2.0	7
28	TO	30		TO	98	6	2.0 70 2.4	14
30	TO	32		70	104	3	2.4 TU 2.6	4
32	TO	39		TO	127	3	2.6 10 2.8	2
39	TO	45		TU	147	4	2.8 TO 3.0	1
45	TO	55		TO	180		3.0 70 3.5	3
-	TO	71		TO	232	7	3.5 TO 4.0	2
71	TO	100	232		328	ú	4.0 TU 4.5	3
	VER	100	OV		328	17	OVER 4.5	11

#1351

Area: HUM2 (Open Water, Cold Spots) Temperature Threshold

= - 2.00 o

Wavelength = $9.0 - 11.4 \mu m$

FIGURE 17a. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

ERIM

#1550

Area: HUM2 (Open Water, Cold Spots)

Temperature Threshold $\approx -1.50 \text{ } \sigma$

Wavelength = $9.0 - 11.4 \mu m$

FIGURE 17b. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

ERIM

Area: HUM2 (Open Water, Cold Spots)
Temperature Threshold

 $= -1.00 \sigma$

Wavelength = $9.0 - 11.4 \mu m$

FIGURE 17c. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

Scanline #1351

Area: HUM2 (Open Water, Cold Spots)

Temperature Threshold

 $= -0.50 \sigma$

Wavelength = $9.0 - 11.4 \mu m$

FIGURE 17d. EQUIVALENT ELLIPTICAL AREAS FOR PORT HUENEME

Time-resolved pictures would yield a lot more information about the singularities, but we have no access in these data to that kind of information. Barring some unknown and peculiar temperature distribution, one could conceivably attribute at least some of the singularities to emissivity variation caused by localized pollution or by the geometry of the water swells, in both the hotspot and the coldspot cases.

APPENDIX A DESCRIPTIVE MATERIAL ON IMAGERY AREAS

As explained in greater detail in Reference 1, each ellipse is generated to represent a feature consisting of all contiguous pixels which occur about the preset threshold signal designated in the captions of the ellipse figures. The area of the ellipse is equal to the area of the thresholded feature, and the perimeter of the ellipse is the same as the perimeter of the feature. The shape of the ellipse is constructed to meet these two criteria. Thus, the shape factor is given by:

shape factor =
$$\frac{\text{perimeter}/2\pi}{\sqrt{\text{area}/\pi}}$$

For a circular area, the shape factor is, therefore, unity.

In Tables 7, 8, 10, and 11, the distributions of ellipses are tabulated in terms of area, perimeter, and shape factor. It is possible also from the statistics generated in the computation to pinpoint the exact centroids of the ellipses and their spatial orientations. These latter data are not included in this report.

In the ellipse figures, only the digital line numbers in the scenery are shown. For the purpose of picturing the sizes given in Table 1, the sizes corresponding to the areas in Figures 11, 12, 16, and 17 are shown in Figure A-1.

In Figure A-2, we have chosen (reproduced) a sample thermal image from Figure 3b and overlaid a transparency made up of Figure 12% to show the correspondence between the thermal image and the ellipse representative of the same scenery. It should be observed that, because the ellipses are made up of all contiguous areas above a given threshold (1.0 σ above the average in the demonstration), some ellipses do not correspond noticeably with obvious features in the photographic imagery.

^[1] R. Spellicy, J. Beard, and J. R. Maxwell, Statistical Analysis of Terrain Background Measurements Data, Report 120500-12-F, ERIM March 1977.

FIGURE A-1. ELLIPSE SCENERY, AREA SIZES

FIGURE A-2. ELLIPSE MATCH WITH IMAGERY

APPENDIX B

ATMOSPHERIC CONSIDERATIONS FOR THE PORT HUENEME DATA

Close examination of the apparent temperature histograms in Figures 6 through 10 for the 9.0-11.4 μm and 4.5-5.5 μm spectral bands reveals a large divergence in measured apparent temperatures between these two bands -- a divergence which seems to get greater as the temperatures go higher. While either calibration errors or spectral differences in target emissivity could account for this, it is felt that the more likely source of the temperature divergence is the relative effect of the intervening atmosphere on these two bands. This is based in part on the fact that (1) the data were checked and rechecked for possible calibration errors and none were found*, and (2) the large number of pixels used in the histograms represents a large number of ground objects -- a fact which would minimize gross target emissivity differences. Add to all of this the fact that atmospheric absorption in the $4.7-5.5~\mu m$ band is very strong (due to the presence of water vapor) while there is little absorption at all in the 9.0-11.4 μm region and it is apparent why the atmosphere is the likely cause of the observed differences.

To verify this, an atmospheric band model (ERIM's AGGREGATE) was used to generate spectral transmission and path radiance values in the two regions of interest for an atmosphere typical of Port Hueneme's latitude and the time of year. The most important environmental parameter to be inputted to the model was the relative humidity because of the strong water absorption in the mid-IR region. Since almost all of the data collected was within one mile of the Pacific Ocean, a relative humidity equal to 85% was somewhat arbitrarily chosen as representative of the conditions at the time of the overflights. All other inputted parameters were either obtained from local ground truth or from U.S. Standard Atmosphere Tables.

^{*}Normal calibration procedure is not to include any atmospheric considerations.

The spectral transmission and path radiance data obtained from the model (altitude=1750 ft, view angle=22° from nadir) were then integrated over the spectral response region of the detector/filter combination to find the average band values. The results of these integrations for the mid- and far-IR regions are shown below:

4.5-5.5 µm region:
$$\overline{\tau}$$
 = .52
 \overline{L}_{path} = .686 x 10⁻⁴ µw/cm²/sr
9.0-11.4 µm region: $\overline{\tau}$ = .86
 \overline{L}_{path} = .217 x 10⁻³ µw/cm²/sr

As was anticipated, the mid-IR band shows considerably more absorption than the far-IR band. But the question remains as to whether these above atmospheric values would in fact cause the magnitude of the temperature divergence observed in the data. This is discussed next.

The basic relationship which describes the effect of the atmosphere on the apparent ground temperatures measured at a scanner's aperture is given by Equation B-1.

$$L_{\text{scanner}}(\lambda, T_{\text{s}}) = \overline{\tau}L_{\text{ground}}(\lambda, T_{\text{G}}) + L_{\text{path}}$$
B-1

where $L_{ground}(\lambda,T_G)$ = band radiance from ground target at temperature T_G ,

 $L_{scanner}(\lambda,T_s)$ = band radiance from ground target at scanner aperture at apparent temperature T_s ,

 $\bar{\tau}$ = band transmission of atmosphere,

L = path radiance in band.

To verify that the collected data set at Port Hueneme did in fact obey the kind of relationship indicated in Equation B-1, various ground scene objects with apparent temperatures at the scanner's entrance aperture of T_A in the 4.5-5.5 μ m band and T_B in the 9.0-11.4 μ m band were tabulated as shown in Table B-1. Since the apparent temperature T_B was obtained essentially

through a clear atmosphere, we can assume that T_B represents the ground temperature T_G . Hence, by calculating the 4.5-5.5 band radiances corresponding to T_A and T_B in Table B-1 and equating T_A to T_S and T_B to T_G in Equation B-1, we can solve Equation B-1 for T_{A} and T_{B} using the technique of linear regression. Doing this, we get a measured transmission and path radiance in the mid-IR band of:

4.5-5.5 µm region:
$$\tau$$
 = .48
$$L_{path} = .736 \times 10^{-4} \, \mu m/cm/sr$$

$$r$$
 = .991 (coefficient of determination)

These above measured atmospheric parameters compare very favorably with the results estimated from the atmospheric band model which would indicate that the nominal atmosphere chosen for the model could indeed cause the temperature divergence observed in the data.

 $\begin{tabular}{llll} TABLE & B-1 \\ APPARENT & TEMPERATURE & AND & RADIANCE & VALUES & FOR & TWO & SPECTRAL & BANDS \\ \end{tabular}$

Area		T _A	T _B	Lscanner	Lground
HUM1	Area #1	287.8	288.5	1.43	1.46
		294.0	300.0	1.76	2.15
		298.0	307.0	2.02	2.68
		303.0	316.0	2.36	3.52
	Area #2	288.0	288.5	1.43	1.46
		298.0	305.0	2.02	2.51
		303.8	315.0	2.42	3.42
		306.4	319.5	2.63	3.90
		310.0	325.0	2.94	4.55
	Total Scene	287.5	288.9	1.41	1.52
		289.8	292.5	1.52	1.68
		297.8	305.4	2.01	2.55
HUM2	Area #2	289.5	291.5	1.51	1.62
		299.0	305.5	2.09	2.55
		306.5	320.4	2.64	4.01
		308.0	323.5	2.77	4.36
	Total Scene	286.5	286.5	1.36	1.36

