P. Maurer ENS Rennes

Leçon 157. Endomorphismes trigonalisables. Endomorphismes nilpotents.

Devs:

- Décomposition de Dunford
- Morphismes de S^1 vers $GL_n(\mathbb{R})$

Références:

- 1. Gourdon, Algèbre
- 2. Objectif Agrégation

On se donne E un espace vectoriel de dimension finie sur un corps commutatif k, et $f \in \mathcal{L}(E).$

1 Endomorphismes trigonalisables

1.1 Polynômes d'endomorphismes

Proposition 1. $(\mathcal{L}(E), +, \circ)$ est une k-algèbre.

 $L'application \varphi_f: \begin{cases} (k[X], +, \times) & \rightarrow (\mathcal{L}(E), +, \circ) \\ P & \mapsto P(f) \end{cases}$ est un morphisme de k-algèbre. Son

noyau est un idéal de k[X], appelé idéal annulateur de f.

L'ensemble $\{P(f) \mid P \in k[X]\}$ est alors une sous-algèbre commutative de $\mathcal{L}(E)$.

Définition 2. k[X] étant principal, il existe un unique polynôme unitaire $P \in k[X]$ tel que $(P) = \text{Ker } \varphi_f$. Ce polynôme s'appelle polynôme minimal de f, et est noté μ_f .

Proposition 3. Soit $\lambda \in k$. Alors $\lambda \in \operatorname{Sp}(f) \iff \mu_f(\lambda) = 0$.

Théorème 4. (Lemme des noyaux)

Soit $P = P_1 \cdots P_r \in k[X]$ tels que P_1, \dots, P_r soient premiers entre eux deux à deux. Alors :

$$\operatorname{Ker} P(f) = \operatorname{Ker} P_1(f) \oplus \cdots \oplus \operatorname{Ker} P_r(f)$$

Définition 5. On appelle polynôme caractéristique de A (resp. de f) le polynôme de k[X] défini par $\chi_A(X) = \det(A - XI_n)$ (resp. $\chi_f(X) = \det(f - X\operatorname{Id})$).

Proposition 6. χ_A est un polynôme de degré n. Si $\chi_A = (-1)^n \sum_{k=0}^n a_k X^k$, alors on a $a_n = 1$, $a_{n-1} = -\text{Tr}(A)$ et $a_0 = (-1)^n \det(A)$.

Théorème 7. (Cayley-Hamilton) On a $\chi_f(f) = 0$. Autrement dit, $\mu_f | \chi_f$.

Corollaire 8. Les valeurs propres de f sont racines de son polynôme caractéristique (en fait, ce sont les seules).

1.2 Trigonalisation

Définition 9. Un endomorphisme $f \in \mathcal{L}(E)$ est dit trigonalisable s'il existe une base B de E dans laquelle la matrice de f soit triangulaire supérieure. On dit que B trigonalise f. Une matrice $A \in \mathcal{M}_n(K)$ est dite trigonalisable si A est semblable à une matrice triangulaire supérieure.

Proposition 10. Si f est trigonalisable, les coefficients diagonaux de sa matrice dans une base adaptée sont les valeurs propres de f. Notons $\lambda_1, \ldots, \lambda_r$ les valeurs propres de f, chacune de multiplicité algébrique $m_a(\lambda_i)$, on a alors $\operatorname{Tr}(f) = \sum_{i=1}^r m_a(\lambda_i) \lambda_i$ et $\det(f) = \prod_{i=1}^r \lambda_i^{m_a(\lambda_i)}$.

Théorème 11. Un endomorphisme $f \in \mathcal{L}(E)$ est trigonalisable si et seulement si son polynôme caractéristique χ_f est scindé sur K.

Corollaire 12. Si K est algébriquement clos, tout endomorphisme est trigonalisable sur K.

Exemple 13. Pour $A \in \mathcal{M}_n(\mathbb{C})$, on a $\det(\exp(A)) = \exp(\operatorname{Tr}(A))$.

1.3 Trigonalisation simultannée

Proposition 14. Soit $f, g \in \mathcal{L}(E)$ tels que $f \circ g = g \circ f$. Alors les sous-espaces propres de f sont g-stables.

Proposition 15. Soit f et g deux endomorphismes trigonalisables qui commutent. Alors il existe une base commune de trigonalisation. On dit que f et q sont cotrigonalisables.

Proposition 16. On prend $K = \mathbb{C}$. Soit $f, g \in \mathcal{L}(E)$ tels que fg = 0. Alors f et g sont cotrigonalisables.

2 Nilpotence

2.1 Noyaux itérés

Proposition 17. La suite $(\operatorname{Ker} f^n)_{n\in\mathbb{N}}$ est croissante et stationnaire. La suite $(\operatorname{Im} f^n)_{n\in\mathbb{N}}$ est décroissante et stationnaire.

2 Section 3

Définition 18. On appelle indice de f le plus petit entier p tel que $\operatorname{Ker} f^{p+k} = \operatorname{Ker} f^p$ pour tout $k \in \mathbb{N}$.

Théorème 19. On a $p \le n$ et $E = \operatorname{Ker} f^p \oplus \operatorname{Im} f^p$.

2.2 Endomorphismes nilpotents

Définition 20. On dit que f est nilpotent s'il existe $p \in \mathbb{N}$ tel que $f^p = 0$. On note $\mathcal{N}(E)$ l'ensemble des endomorphismes nilpotents de E.

Exemple 21. La dérivation $P \mapsto P'$ sur $\mathbb{C}_n[X]$ est nilpotente.

Définition 22. On appelle indice de nilpotence le plus petit entier $p \in \mathbb{N}$ tel que $f^p = 0$. L'indice de nilpotence est exactement l'indice de f (définition 18).

Développement 1 :

Lemme 23. Si $M \in \mathcal{M}_n(K)$ est nilpotente non nulle, alors il existe $X \in \text{Ker}(N^2) \setminus \text{Ker}(N)$.

Application 24. Les morphismes continus de \mathbb{U} vers $GL_n(\mathbb{R})$ sont de la forme :

$$\varphi \colon e^{it} \mapsto Q \begin{pmatrix} R_{tk_1} & & & & \\ & \ddots & & & (0) & & \\ & & R_{tk_r} & & & \\ & & & 1 & & \\ & & & 0) & & \ddots & \\ & & & & 1 \end{pmatrix} Q^{-1}$$

Où $Q \in GL_n(\mathbb{R})$, $r \in \mathbb{N}$, $k_1, \ldots, k_r \in \mathbb{Z}^*$ et $R_\theta = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ pour tout $\theta \in \mathbb{R}$

Théorème 25. Les propositions suivantes sont équivalentes :

- f est nilpotent.
- $\chi_f = (-1)^n X^n$.
- Il existe $p \in \mathbb{N}$ tel que $\pi_f = X^p$.
- f est trigonalisable avec des zéros sur la diagonale.
- f est trigonalisable et sa seule valeur propre est zéro.

Proposition 26. On suppose que car(K) = 0. Alors f est nilpotent si et seulement si pour tout $k \in \mathbb{N}$, on a $Tr(f^k) = 0$.

Remarque 27. Si $K = \mathbb{F}_p$, le résultat est faux, par exemple en prenant $g = \mathrm{Id}_{(\mathbb{F}^p)^p}$.

2.3 Le cône nilpotent

Proposition 28. $\mathcal{N}(E)$ est un cône : pour f nilpotent et $\lambda \in K$, l'endomorphisme λf est encore nilpotent.

Remarque 29. $\mathcal{N}(E)$ n'est pas stable par addition. Par exemple $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ est somme de deux matrices nilpotentes, mais elle est inversible.

Proposition 30. Pour $M \in \mathcal{M}_2(K)$, $\chi_M = X^2 - \text{Tr}(M) X + \det M$

Corollaire 31. $M \in \mathcal{M}_2(K)$ est nilpotente si et seulement si $\operatorname{Tr}(M) = \det(M) = 0$. L'ensemble des matrices nilpotentes de $\mathcal{M}_2(K)$ est décrit ainsi : $\left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} : -a^2 - bc = 0 \right\}$.

Proposition 32. Soit $u, v \in \mathcal{N}(E)$. Si u et v commutent, alors u + v est nilpotent.

Proposition 33. Soit u et f deux endomorphismes de E avec u nilpotent. Si u et f commutent, alors $u \circ f = f \circ u$ est nilpotent.

Théorème 34. On a $\operatorname{Vect}(\mathcal{N}(E)) = \operatorname{Ker}(\operatorname{Tr}) = \{u \in \mathcal{L}(E) : \operatorname{Tr}(u) = 0\}.$

3 Application à la réduction

3.1 Décomposition de Dunford

Développement 2 :

Proposition 35. Soit $P = P_1 \cdots P_r$ un polynôme annulateur de f avec P_1, \ldots, P_r premiers entre eux deux à deux. On a $E = \operatorname{Ker} P_1(f) \oplus \cdots \oplus \operatorname{Ker} P_r(f)$, et la projection sur $\operatorname{Ker} P_i(f)$ parallèlement à $\bigoplus_{j \neq i} \operatorname{Ker} P_j(f)$ est un polynôme en f.

Théorème 36. (Décomposition de Jordan-Chevalley)

On suppose que χ_f est scindé sur k. Alors il existe un unique couple (d,n) d'endomorphismes de $\mathcal{L}(E)$ tels que :

- d est diagonalisable, n est nilpotent.
- f = d + n et $d \circ n = n \circ d$

De plus, d et n sont des polynômes en f.

Application à la réduction 3

Proposition 37. On considère une norme d'algèbre $\|.\|$ sur $\mathcal{M}_n(k)$, par exemple la norme d'opérateur. On rappelle que $(\mathcal{M}_n(k), \|.\|)$ est alors un espace de Banach.

La série $\sum_{k \in \mathbb{N}} \frac{A^k}{k!}$ est normalement convergente, donc convergente. **Définition 38.** On note $\exp(A) = \sum_{n=0}^{+\infty} \frac{A^n}{n!}$.

Proposition 39. Si A = D + N avec D diagonalisable et N nilpotente, alors :

$$\exp(A) = \exp(D)\exp(N)$$

Remarque 40. Si χ_A est scindé sur k, la réduction de Jordan-Chevalley donne alors une méthode simple pour calculer $\exp(A)$. En effet, $\exp(D)$ se calcule facilement par la proposition 50, et le calcul de $\exp(N)$ est immédiat puisque $N^n=0$ implique que $\exp(N) = \sum_{k=0}^{n-1} \frac{N^k}{k!}.$

3.2 Endomorphismes cycliques et réduction de Frobenius

Notation 41. Si $x \in E$, on note P_x le polynôme unitaire engendrant l'idéal $\{P \in \mathbb{K}[X]\}$: P(f)(x) = 0, et E_x l'ensemble $\{P(f)(x) : P \in \mathbb{K}[X]\}$.

Dans la suite, on notera k le degré de π_f et ℓ_x le degré de P_x pour $x \in E$.

Proposition 42. L'ensemble E_x est un sous-espace vectoriel de E de dimension ℓ_x , dont une base est $(x, \ldots, f^{\ell_x-1}(x))$.

Théorème 43. Il existe $x \in E$ tel que $P_x = \pi_f$.

Définition 44. On dit que f est cyclique s'il existe $x \in E$ tel que $E_x = E$. D'après ce qui précède, ceci équivaut à dire que $k = \deg(\pi_f) = n$, ou encore que $\pi_f = (-1)^n \chi_f$, où χ_f désigne le polynôme caractéristique de f.

Définition 45. Soit $P = X^p + a_{p-1}X^{p-1} + \cdots + a_0$ un polynôme unitaire de $\mathbb{K}[X]$. On appelle matrice compagnon de P la matrice $\mathcal{C}(P)$ (voire annexe).

Proposition 46. Le polynôme caractéristique $\chi_{\mathcal{C}(P)}$ de $\mathcal{C}(P)$ vérifie $\chi_{\mathcal{C}(P)} = (-1)^p P$.

Développement 2 :

Théorème 47. (Invariants de similitude)

Soit $f \in \mathcal{L}(E)$. Il existe une suite finie F_1, \ldots, F_r de sous-espaces vectoriels de E, tous stables par f, telle que

- 1. $E = \bigoplus_{i=1}^{r} F_i$,
- 2. pour tout $i \in [1, r]$, $f_{|F|}$ est un endomorphisme cyclique,
- 3. $si P_i = \pi_{f_i}$, on a $P_{i+1}|P_i$ pour tout $i \in [1, r-1]$.

La suite P_1, \ldots, P_r ne dépend que de f et non du choix de la décomposition. On l'appelle suite des invariants de similitude de f.

Application 48. (réduction de Frobenius)

Soit $f \in \mathcal{L}(E)$ et P_1, \ldots, P_r la suite des invariants de similitude de f. Alors il existe une base \mathcal{B} de E dans laquelle $\operatorname{mat}_{\mathcal{B}}(f) = \operatorname{diag}(\mathcal{C}(P_1), \dots, \mathcal{C}(P_r))$. On a $P_1 = \pi_f$ et $P_1 \cdots P_r$ est le polynôme caractéristique de f, à un facteur $(-1)^n$ près.