

March 30, 2024

Maryland Department of the Environment Air and Radiation Management Administration 1800 Washington Boulevard, Suite 715 Baltimore, Maryland 21230-1720 Attention: Daniel Davis, Compliance Program

Dear Daniel:

Enclosed are the Wheelabrator Baltimore L.P. 2023 Annual Title V Permit No. 24-510-01886 Compliance Certification and Emission Certification Reports. Any questions regarding this report should be forwarded to Tim Porter, Director Air Quality (tportert@win-waste.com) or 603-498-2134.

Specifically, this report contains:

- 1. EPA Form A -Comp Annual Compliance Certification
- 2. Plant Wide Conditions Certifications
- 3. MDE Emissions Certification Report
 - a. Form 1 General Facility Information Report
 - b. Form 2 Criteria Air Pollutants Emission Certification Reports
 - c. Form 3 Emission Certification Report Particulate Matter
 - d. Form 4 Toxic Air Pollutants Emission Certification Reports
 - e. Form 5 Billable Toxic Air Pollutants Emission Certification Reports
 - f. Form 6 Greenhouse Gas Air Pollutants Emissions Certification Reports
- 4. Annual Emission Calculation Sheet and Information

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information is, to the best of my knowledge and belief, true, accurate, and complete. I am aware of the significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Please advise if additional information is required.

Sincerely

Jim Robertson Plant Manager

cc: Associate Director

Office of Enforcement and Permit Review (3AP10)

U.S. EPA Region III 1650 Arch Street

Philadelphia, PA 19103-2029 (with)

MARYLAND DEPARTMENT OF THE ENVIRONMENT

1800 Washington Boulevard, Suite 715 Baltimore Maryland 21230-1720 410-537-3000 1-800-633-6101 http://www.mde.state.md.us Air and Radiation Management Administration Air Quality Compliance Program 410-537-3220

FORM 1:

GENERAL FACILITY INFORMATION EMISSIONS CERTIFICATION REPORT

				Do Not Write in This Space
 FACILITY IDEN acility Name Whee 	TIFICATION plabrator Baltimore, L.P.			Date Received Regional
Address 1801 Annap	olis Road		•	Date Received State
City Baltimore	County City of Ball	timore Zip Code 21230)	AIRS Code
Briefly describe the	ne major function of the	facility	•	FINDS Code
		olid waste combustor which	processes up to 2,250	SIC Code
ons of municipal solid v	vaste per day and has the	capacity to generate 60,000	kilowatts of energy.	Facility Number:
				TEMPO ID:
				TEMPO ID:
C. SEASONAL PROI	DUCTION (%, if applica	ble)		Reviewed by:
1111	Carlan (Man)	Summer (Jun - Aug)	Call (Cant Man)	
Winter (DecFeb.)	Spring (Mar – May)	Summer (Jun - Aug)	Fall (Sept - Nov)	
<u>Winter</u> (DecFeb.) 25.1%	18.7%	28.9%	27.4%	
				Name Date
25.1% D. Explain any increa	18.7% ases or decreases in emis	28.9%	27.4% calendar year for each	registration at this facility.
25.1% D. Explain any increa	18.7% ases or decreases in emis	28.9% ssions from the previous of	27.4% calendar year for each	registration at this facility.
25.1% D. Explain any increase thanges due to seasonate CONTROL DEV	18.7% ases or decreases in emis	28.9% ssions from the previous of related) as well as annual value.	27.4% calendar year for each	registration at this facility.
25.1% D. Explain any increation in the seasons of the control of	18.7% ases or decreases in emis I variability (weather / fuel r	28.9% ssions from the previous of related) as well as annual value.	27.4% calendar year for each priability in stack test resu	registration at this facility.
25.1% D. Explain any increation in the seasons of the control of	18.7% ases or decreases in emis I variability (weather / fuel r	28.9% ssions from the previous of related) as well as annual value.	27.4% calendar year for each priability in stack test resu	registration at this facility.
25.1% D. Explain any increation in the seasons of	18.7% ases or decreases in emis I variability (weather / fuel r	28.9% ssions from the previous of related) as well as annual value.	27.4% calendar year for each priability in stack test resu	registration at this facility.

Jim Robertson	Plant Manager	3/29/2024	
Name (Print/Type)	Title	Date	
Alles and		(410) 234-0808 x212	
Signature /		Telephone	
V			

CRITERIA AIR POLLUTANTS EMISSIONS CERTIFICATION REPORT

Facility Name:	Wheelabrator Baltimore, L.P.	Facility ID#:	24-510-01886	Pollutant:	Carbon Monoxide (CO)

Equipment Description/	SCC			Actual E	missions		Operating Sch	edule (Actual)		TOSD	01	erating Sched	ule	Emissions
Registration No.	Number	Fuel		Tons/yr	Lbs/day	Hrs/dy	Dys/wk	Wk/yr	Days/yr	Lbs/dy	Hrs/dy	Start	End	Methods
2-24-0255 Boiler 1		MSW	S F	19.9	159	24	7	52	251		24	00:00	24:00	C-1
2-24-0256 Boiler 2		MSW	S F	18.2	104	24	7	52	350		24	00:00	24:00	C-1
2-24-0257 Boiler 3		MSW	S F	17.3	102	24	7	52	339		24	00:00	24:00	C-1
			S											
			S											
			S											
			S F											
***************************************			S							17				
*****************			S F											
			S F											
Total				55.4	365									

S-Stack Emissions

F-Fugitive Emissions

Daily emissions (lbs/day) are lbs/operating day of source

TOSD: Typical Ozone Season Day means a typical day of that period of the year during which conditions for photochemical conditions are most favorable, which is generally during sustained periods of direct sunlight and warm temperatures (April-September). This section needs to be completed only for VOC and NOx sources.

Fuel: Include emissions for each fuel used. If more than one fuel is used, calculate and list emissions separately for each fuel.

MSW = Municipal Solid Waste

Emission Estimation Method

A1-U.S. EPA Reference Method A2-Other Particulate Sampling Train A3-Liquid Absorption technique A4-Solid Absorption Technique A5-Freezing Out technique A9-Other, Specify C1-User calculated based on source
test or other measurement
C2-User calculated based on material balance
using engineering knowledge of the process
C3-User calculated based on AP-42
C4-User calculated by best guess/engineering
Judgment

C5-User calculated based on a State or local agency emission factor
C6-New construction, not operational
C7-Source closed, operation ceased
C8-Computer calculated based on standard

Calendar Year:

2023

CRITERIA AIR POLLUTANTS EMISSIONS CERTIFICATION REPORT

					Calendar Year:	2023
Facility Name:	Wheelabrator Baltimore, L.P.	Facility ID#:	24-510-01886	Pollutant:	Lead	

Equipment Description/	SCC	Fuel		Actual E	missions		Operating Sch	iedule (Actual)		TOSD	Or	perating Sched	ule	Emissions
Registration No.	Number	ruei		Tons/yr	Lbs/day	Hrs/dy	Dys/wk	Wk/yr	Days/yr	Lbs/dy	Hrs/dy	Start	End	Methods
2-24-0255 Boiler 1		D. CCENT	S	0.0173	0.138	24	7		251		24	00.00	24.00	C-1
	}	MSW	F			24	/	52	251		24	00:00	24:00	
2-24-0256 Boiler 2		NACSNI.	S	0.0047	0.027	24	7	- 52	350		24	00.00	24.00	C-1
	}	MSW	F			24		52	350		24	00:00	24:00	
2-24-0257 Boiler 3		MSW	S	0.009	0.009	24	7	53	339		24	00.00	24-00	C-1
		MISW	F			24	/	52	339		24	00:00	24:00	
			S											
			F											
B-04-04A-04A-04-04B-04-04B-04-04B-04-04B-04-04B-04-04B-04-04-04-04-04-04-04-04-04-04-04-04-04-			S]			1					
		_	F											
			S											
			F											
			S											
			F							ļ				
***************************************			S											
			F											
>			S			-								
						<u> </u>				-	1		-	
\$ 00 00 0 00 0 00 0 00 0 00 0 0 0 0 0 0	-		S			1				\vdash	-			
Taral			-				E. Ch. S. S. D. Ch. S. S.							
Total				0.0236	0.174									

S-Stack Emissions

F-Fugitive Emissions

Daily emissions (lbs/day) are lbs/operating day of source

TOSD: Typical Ozone Season Day means a typical day of that period of the year during which conditions for photochemical conditions are most favorable, which is generally during sustained periods of direct sunlight and warm temperatures (April-September). This section needs to be completed only for VOC and NOx sources.

Include emissions for each fuel used. If more than one fuel is used, calculate and list emissions separately for each fuel.

MSW = Municipal Solid Waste

Emission Estimation Method

A1-U.S. EPA Reference Method A2-Other Particulate Sampling Train A3-Liquid Absorption technique A4-Solid Absorption Technique A5-Freezing Out technique A9-Other, Specify

C1-User calculated based on source test or other measurement C2-User calculated based on material balance

using engineering knowledge of the process

C3-User calculated based on AP-42

C4-User calculated by best guess/engineering Judgment

C5-User calculated based on a State or local agency emission factor C6-New construction, not operational

C7-Source closed, operation ceased

C8-Computer calculated based on standard

Facility Name:

Wheelabrator Baltimore, L.P.

CRITERIA AIR POLLUTANTS EMISSIONS CERTIFICATION REPORT

24-510-01886

Facility ID#:

Calendar Year:	2023

Nitrogen Oxides (NOx)

Equipment Description/	SCC	Fuel		Actual E	missions		Operating Sch	edule (Actual)		TOSD	0	perating Sched	ule	Emissions
Registration No.	Number	Luci		Tons/yr	Lbs/day	Hrs/dy	Dys/wk	Wk/yr	Days/yr	Lbs/dy	Hrs/dy	Start	End	Methods
2-24-0255 Boiler 1		MSW	S	195.5	1558	24	7	52	251		24	00.00	24.00	C-1
		INISAA	F			24	/	54	251		24	00:00	24:00	
2-24-0256 Boiler 2		D. COLL	S	274.4	1568	24	7		250			00.00	*4.00	C-1
		MSW	F			24	/ i	52	350		24	00:00	24:00	
2-24-0257 Boiler 3			S	268.2	1582	2.1	_		222					C-1
	1	MSW	F			24	7	52	339		24	00:00	24:00	
			S											
			F											
			S											
			F								ĺ			
			S											
			F											
			S					-						
			F								1			
			S			- "	-							
			F								1			
			S											
			F											
			S											
h		L	F											
Total				738.1	4708								J. 17 6	

S-Stack Emissions

F-Fugitive Emissions

Daily emissions (lbs/day) are lbs/operating day of source

TOSD: Typical Ozone Season Day means a typical day of that period of the year during which conditions for photochemical conditions are most favorable, which is generally during sustained periods of direct sunlight and warm temperatures (April-September). This section needs to be completed only for VOC and NOx sources.

Fuel: Include emissions for each fuel used. If more than one fuel is used, calculate and list emissions separately for each fuel.

MSW = Municipal Solid Waste

Pollutant:

Emission Estimation Method

A1-U.S. EPA Reference Method A2-Other Particulate Sampling Train A3-Liquid Absorption technique A4-Solid Absorption Technique A5-Freezing Out technique A9-Other, Specify C1-User calculated based on source test or other measurement C2-User calculated based on material balance using engineering knowledge of the process C3-User calculated based on AP-42

C4-User calculated by best guess/engineering Judgment

C5-User calculated based on a State or local agency emission factor
C6-New construction, not operational
C7-Source closed, operation ceased
C8-Computer calculated based on standard

Facility Name: Wheelabrator Baltimore, L.P.

<u>CRITERIA AIR POLLUTANTS</u> EMISSIONS CERTIFICATION REPORT

Facility ID#: 24-510-01886

Calendar Year:	2023

Pollutant:

Sulfur Dioxide (SO2)

Equipment Description/	SCC	Fuel		Actual E	missions		Operating Sch	edule (Actual)		TOSD	Oı	perating Sched	ule	Emissions
Registration No.	Number	ruei		Tons/уг	Lbs/day	Hrs/dy	Dys/wk	Wk/yr	Days/yr	Lbs/dy	Hrs/dy	Start	End	Methods
2-24-0255 Boiler 1		MSW	S F	29.9	238	24	7	52	251		24	00:00	24:00	C-1
2-24-0256 Boiler 2		MSW	S F	67.5	386	24	7	52	350		24	00:00	24:00	C-1
2-24-0257 Boiler 3		MSW	S	60.3	356	24	7	52	339		24	00:00	24:00	C-1
			S F											
			S F											
			S F											
			S F											
			S											
			S F											
***************************************			S											ļ
Total				157.7	980		SIKE 17						313	1 2 1

S-Stack Emissions

F-Fugitive Emissions

Daily emissions (lbs/day) are lbs/operating day of source

TOSD: Typical Ozone Season Day means a typical day of that period of the year during which conditions for photochemical conditions are most favorable, which is generally during sustained periods of direct sunlight and warm temperatures (April-September). This section needs to be completed only for VOC and NOx sources.

Fuel: Include emissions for each fuel used. If more than one fuel is used, calculate and list emissions separately for each fuel.

MSW = Municipal Solid Waste

Emission Estimation Method

A1-U.S. EPA Reference Method A2-Other Particulate Sampling Train A3-Liquid Absorption technique A4-Solid Absorption Technique A5-Freezing Out technique A9-Other, Specify C1-User calculated based on source test or other measurement C2-User calculated based on material balance using engineering knowledge of the process C3-User calculated based on AP-42 C4-User calculated by best guess/engineering Judgment C5-User calculated based on a State or local agency emission factor
C6-New construction, not operational
C7-Source closed, operation ceased
C8-Computer calculated based on standard

FORM 2:

Facility Name: Wheelabrator Baltimore, L.P.

CRITERIA AIR POLLUTANTS EMISSIONS CERTIFICATION REPORT

		Calendar Year:	2023
Facility ID#:	24-510-01886	Pollutant: VOC	

		1				,								
				Actual E	missions		Operating Sch	redule (Actual)		TOSD	0	perating Sched	ule	1
Equipment Description/ Registration No.	SCC Number	Fuel		Tons/yr	Lbs/day	Hrs/dy	Dys/wk	Wk/yr	Days/yr	Lbs/dy	Hrs/dy	Start	End	Emissions Methods
2-24-0255 Boiler 1		MSW	S F	0.5	4.0	24	7	52	251		24	00:00	24:00	C-1
2-24-0256 Boiler 2		MSW	S F	0.7	4.0	24	7	52	350		24	00:00	24:00	C-1
2-24-0257 Boiler 3		MSW	S F	0.7	4.1	24	7	52	339		24	00:00	24:00	C-1
			S											
***************************************			S F											
			S F											
			S F											
^~^^			S F											
***************************************			S F											
			S F											
Total				1.9	12.1									

S-Stack Emissions

F-Fugitive Emissions

Daily emissions (lbs/day) are lbs/operating day of source

TOSD: Typical Ozone Season Day means a typical day of that period of the year during which conditions for photochemical conditions are most favorable, which is generally during sustained periods of direct sunlight and warm temperatures (April-September). This section needs to be completed only for VOC and NOx sources.

Fuel: Include emissions for each fuel used. If more than one fuel is used, calculate and list emissions separately for each fuel.

MSW = Municipal Solid Waste

Emission Estimation Method

A1-U.S. EPA Reference Method A2-Other Particulate Sampling Train A3-Liquid Absorption technique A4-Solid Absorption Technique A5-Freezing Out technique A9-Other, Specify C1-User calculated based on source test or other measurement C2-User calculated based on material balance using engineering knowledge of the process C3-User calculated based on AP-42 C4-User calculated by best guess/engineering Judgment C5-User calculated based on a State or local agency emission factor
C6-New construction, not operational
C7-Source closed, operation ceased
C8-Computer calculated based on standard

FORM 3: PM

EMISSIONS CERTIFICATION REPORT

											Calendar	Year:	2023
Facility Name: Wheelabra	tor Baltimore	e, L.P.			Facility ID#:	24-510-01886	5			Pollutant:	Particulate !	Matter	
Equipment Description/	SCC	Fuel		PM - Fi	ilterable	PM 10 -	Filterable	PM 2.5 -	Filterable	PM Cor	idensable	Operation	Emissions Methods
Registration No	Number			Tons/yr	Lbs/day	Tons/yr	Lbs/day	Tons/yr	Lbs/day	Tons/yr	Lbs/day	Days/yr	
2-24-0255 Boiler 1		MSW	S	5.4	43	5.4	43	5.4	43	19	151.4		C-1/A-1
2-24-0256 Boiler 2		MSW	S	4.1	23.4	4.1	23.4	4.1	23.4	7.4	42.3	-	C-1/A-1
2-24-0257 Boiler 3		MSW	S	1.0	5.9	1.0	5.9	1.0	5.9	14.7	86.7		C-I/A-1
			S										
			S										
***************************************			S F										
			S F	_									
			S										
			S										
			S										

384.4

S-Stack Emissions

F-Fugitive Emissions

Daily emissions (lbs/day) are lbs/operating day of source

Fuel: Include emissions for each fuel used. If more than one fuel is used, calculate and list emissions separately for each fuel.

10.5

384.4

MSW = Municipal Solid Waste

41.1

384.4

10.5

Emission Estimation Method

Total

A1-U.S. EPA Reference Method A2-Other Particulate Sampling Train A3-Liquid Absorption technique A4-Solid Absorption Technique A5-Freezing Out technique A9-Other, Specify C1-User calculated based on source test or other measurement C2-User calculated based on material balance using engineering knowledge of the process C3-User calculated based on AP-42

10.5

C4-User calculated by best guess/engineering
Judgment

C5-User calculated based on a State or local agency emission factor
C6-New construction, not operational
C7-Source closed, operation ceased
C8-Computer calculated based on standard

280.4

TOXIC AIR POLLUTANTS

<u>NTS</u>

EMISSIONS CERTIFICATION REPORT

Facility Name: Wheelabrator Baltimore, L.P. Facility ID: 24-510-01886 Pollutant: Arsenic*

Equipment Description/	Ac	tual Emissi	ons		
Registration Number	Tons/yr	Lbs/day	Lbs/hour	Control Device **	% Efficiency
2-24-0255 Boiler 1	0.0005	0.004	0.00017	S/B	
2-24-0256 Boiler 2	0.0003	0.0017	0.00006	S/B	
2-24-0257 Boiler 3	0.0001	0.0006	0.00003	S/B	
					=
				91 15-	
TOTALS	0.0009	0.0063	0.00026		

^{*}Please attach all calculations.

**Control_Device

S = Scrubber

Calendar Year: 2023

B = Baghouse

ESP = Electrostatic Precipitator

A = Afterburner

C = Condenser

AD = Adsorbtion

^{*}See Attachment 1 for the minimum reporting values

Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

TOXIC AIR POLLUTANTS

Calendar Year: 2023

EMISSIONS CERTIFICATION REPORT

Facility Name: Wheelabrator Baltimore, L.P. Facility ID: 24-510-01886 Pollutant: Cadmium*

Equipment Description/	A	ctual Emissi	ons		
Registration Number 1	Tons/yr	Lbs/day	Lbs/hour	Control Device **	% Efficiency
2-24-0255 Boiler 1	0.0004	0.003	1.39E-04	S/B	
2-24-0256 Boiler 2	0.0004	0.002	9.85E-05	S/B	
2-24-0257 Boiler 3	0.0001	0.001	5.05E-05	S/B	
TOTALS	0.0236	0.006	2.88E-04		

^{*}Please attach all calculations.

**Control Device

S = Scrubber

B=Baghouse

ESP Electrostatic Precipitator

A = Afterburner

C = Condenser

AD = Adsorbtion

^{*}See Attachment 1 for the minimum reporting values

Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

TOXIC AIR POLLUTANTS

Calendar Year: 2023

EMISSIONS CERTIFICATION REPORT

Facility Name: Wheelabrator Baltimore, L.P. Facility ID: 24-510-01886 Pollutant: Chromium*

Equipment Description/	A	ctual Emiss	ions]	58 <u>010</u>
Registration Number	Tons/yr	Lbs/day	Lbs/hour	Control Device **	% Efficiency
2-24-0255 Boiler 1	0.0014	0.0112	4.90E-04	S/B	
2-24-0256 Boiler 2	0.0015	0.0086	3.63E-04	S/B	
2-24-0257 Boiler 3	0.0014	0.0083	1.33E-04	S/B	
A-1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1					

TOTALS	0.0043	0.0281	9.86E-04		

^{*}Please attach all calculations.

**Control Device

S = Scrubber

B = Baghouse

ESP = Electrostatic Precipitator

A = Afterburner

 $C \equiv Condenser$

AD = Adsorbtion

^{*}See Attachment 1 for the minimum reporting values

¹ Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

TOXIC AIR POLLUTANTS

Calendar Year: 2023

EMISSIONS CERTIFICATION REPORT

Facility Name: Wheelabrator Baltimore, L.P. Facility ID: 24-510-01886 Pollutant: Copper*

Equipment Description/	Ac	tual Emissi	ons			
Registration Number 1	Tons/yr	Lbs/day	Lbs/hour	Control Device **	% Efficiency	
2-24-0255 Boiler 1	0.0031	0.0265	0.0011	S/B		
2-24-0256 Boiler 2	0.0045	0.0262	0.0011	S/B		
2-24-0257 Boiler 3	0.0042	0.0262	0.0011	S/B		
					_10	
TOTALS	0.0118	0.079	0.0033			

^{*}Please attach all calculations.

S = Scrubber

B = Baghouse

ESP = Electrostatic Precipitator

A = Afterburner

C = Condenser

AD = Adsorbtion

^{*}See Attachment 1 for the minimum reporting values

^{**}Control Device

¹ Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

TOXIC AIR POLLUTANTS

EMISSIONS CERTIFICATION REPORT

Facility Name: Wheelabrator Baltimore, L.P. Facility ID: 24-510-01886 Pollutant: Dioxins/Furans

Equipment Description/	A	ctual Emissi	ons]	
Registration Number	Tons/yr	Lbs/day	Lbs/hour	Control Device **	% Efficiency
2-24-0255 Boiler 1	5.6E-07	4.50E-07	1.98E-07	S/B	
2-24-0256 Boiler 2	8.0E-7	4.60E-07	1.96E-07	S/B	
2-24-0257 Boiler 3	7.6E-7	4.48E-07	1.96E-07	S/B	
	,				
TOTALS	2.12E-06	1.36E-05	5.90E-07		

^{*}Please attach all calculations.

S = Scrubber

Calendar Year: 2023

B = Baghouse

ESP = Electrostatic Precipitator

A = Afterburner

C = Condenser

AD = Adsorbtion

^{*}See Attachment 1 for the minimum reporting values

^{**}Control Device

¹ Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

TOXIC AIR POLLUTANTS

Calendar Year: 2023

EMISSIONS CERTIFICATION REPORT

Facility Name: Wheelabrator Baltimore, L.P. Facility ID: 24-510-01886 Pollutant: Formaldehyde

Equipment Description/	Ac	tual Emissi	ons			
Equipment Description/ Registration Number ¹	Tons/yr	Lbs/day	Lbs/hour	Control Device	% Efficiency	
2-24-0255 Boiler 1	0.1973	1.57	0.07	S/B		
2-24-0256 Boiler 2	0.2863	1.64	0.07	S/B		
2-24-0257 Boiler 3	0.2708	1.59	0.07	S/B		
TOTALS	0.7539	4.8	0.210			

^{*}Please attach all calculations.

**Control Device

S = Scrubber

B = Baghouse ESP = Electrostatic Precipitator

A Afterburner

C = Condenser

AD = Adsorbtion

^{*}See Attachment 1 for the minimum reporting values

¹ Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

TOXIC AIR POLLUTANTS

Calendar Year: 2023

EMISSIONS CERTIFICATION REPORT

Hydrogen Chloride* Facility Name: Wheelabrator Baltimore, L.P. Facility ID: 24-510-01886 Pollutant:

Equipment Description/	Ac	tual Emissi	ons		191
Registration Number 1	Tons/yr	Lbs/day	Lbs/hour	Control Device **	% Efficiency
2-24-0255 Boiler 1	3.1	24.7	1.11	S/B	
2-24-0256 Boiler 2	7.6	43.4	1.86	S/B	
2-24-0257 Boiler 3	7.3	43.1	1.88	S/B	_50

TOTALS	18	111.2	4.85		

^{*}Please attach all calculations.

ESP = Electrostatic Precipitator

A = Afterburner

C = Condenser

AD = Adsorbtion

^{*}See Attachment 1 for the minimum reporting values

^{**}Control Device S = Scrubber

B = Baghouse

¹ Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

TOXIC AIR POLLUTANTS

Calendar Year: 2023

EMISSIONS CERTIFICATION REPORT

Facility Name:

Wheelabrator Baltimore, L.P. Facility ID:

24-510-01886

Pollutant:

Hydrogen Fluoride*

Equipment Description/	Ac	tual Emissi	ons		1000	
Registration Number 1	Tons/yr	Lbs/day	Lbs/hour	Control Device **	% Efficiency	
2-24-0255 Boiler 1	0.14	1.12	0.050	S/B		
2-24-0256 Boiler 2	0.20	1.14	0.050	S/B		
2-24-0257 Boiler 3	0.27	1.59	0.050	S/B		
					- 10	
0.0000000000000000000000000000000000000						
TOTALS	0.61	3.85	0.150			

^{*}Please attach all calculations.

ESP = Electrostatic Precipitator

A = Afterburner

^{*}See Attachment 1 for the minimum reporting values

^{**}Control Device

S = Scrubber

B = Baghouse

C = Condenser

AD = Adsorbtion

O = Other

¹ Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

TOXIC AIR POLLUTANTS

Calendar Year: 2023

EMISSIONS CERTIFICATION REPORT

Facility Name: Wheelabrator Baltimore, L.P. Facility ID: Pollutant: Manganese* 24-510-01886

Equipment Description/	Ac	tual Emissi	ons		150
Registration Number	Tons/yr	Lbs/day	Lbs/hour	Control Device **	% Efficiency
2-24-0255 Boiler 1	0.0029	0.023	0.0010	S/B	
2-24-0256 Boiler 2	0.0053	0.030	0.0013	S/B	
2-24-0257 Boiler 3	0.0017	0.010	0.0004	S/B	
THE PROPERTY OF THE PROPERTY O					
TOTALS	0.0099	0.063	0.0027		

^{*}Please attach all calculations.

^{*}See Attachment 1 for the minimum reporting values

^{**}Control Device

S = Scrubber

B = Baghouse ESP = Electrostatic Precipitator

A = Afterburner

C = Condenser

AD = Adsorbtion

O = Other

¹ Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

TOXIC AIR POLLUTANTS

Calendar Year: 2023

EMISSIONS CERTIFICATION REPORT

Facility Name:

Wheelabrator Baltimore, L.P. Facility ID:

24-510-01886

Pollutant:

Mercury*

Equipment Description/	A	ctual Emiss	ions]	0.345
Equipment Description/ Registration Number ¹	Tons/yr	Lbs/day	Lbs/hour	Control Device **	% Efficiency
2-24-0255 Boiler 1	0.0006	0.005	2.14E-04	S/B	
2-24-0256 Boiler 2	0.0007	0.004	1.71E-04	S/B	
2-24-0257 Boiler 3	0.0005	0.003	1.29E-04	S/B	
TOTALS	0.0018	0.012	5.14E-03		1

^{*}Please attach all calculations.

$\frac{\text{**Control Device}}{S = Scrubber}$

B = Baghouse

ESP = Electrostatic Precipitator

A = Afterburner

C = Condenser

AD = Adsorbtion

^{*}See Attachment 1 for the minimum reporting values

Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

TOXIC AIR POLLUTANTS

Calendar Year: 2023

EMISSIONS CERTIFICATION REPORT

Facility Name: Wheelabrator Baltimore, L.P. Facility ID: 24-510-01886 Pollutant: Nickel*

Equipment Description/	A	ctual Emiss	Actual Emissions			
Registration Number ¹	Tons/yr	Lbs/day	Lbs/hour	Control Device **	% Efficiency	
2-24-0255 Boiler 1	0.0016	0.023	5.53E-04	S/B		
2-24-0256 Boiler 2	0.0023	0.0131	5.73E-04	S/B		
2-24-0257 Boiler 3	0.0022	0.0130	3.73E-04	S/B		
aranananan						
Na company installed a second control of the						
TOTALS	0.0061	0.0388	1.50E-03			

^{*}Please attach all calculations.

S = Scrubber

B = Baghouse

ESP = Electrostatic Precipitator

A = Afterburner

C = Condenser

AD = Adsorbtion

^{*}See Attachment 1 for the minimum reporting values

^{**}Control Device

¹ Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

FORM 5

Calendar Year: 2023

BILLABLE TOXIC AIR POLLUTANTS

EMISSIONS CERTIFICATION REPORT

Facility Name: Wheelabrator Baltimore, L.P.

Facility ID#: 24-510-01886

0	CAS	ТП		Actual Emissions	- 1	Estimation	
Chemical Name	Number		Tons/year	Lbs/day	Lbs/hr	Method	Emission Estimation Method
		S			8	F-34	A1-U.S. EPA Reference Method
carbon disulfide	75-15-0	F					A2-Other Particulate Sampling Train
		S			9	1	A3-Liquid Absorption Technique
carbonyl sulfide	463-58-1	F					A4-Solid
		S				6	A5-Freezing Out Technique
chlorine	7782-50-5	F					A9-Other, Specify
		S					
cyanide compounds	57-12-5	F					_
		S	18.0	111.2	4.85	A1, C1	
hydrochloric acid	7647-01-0	F					C1-User calculated based on source test or other measurement
	Ì	S	0.53	3.38	0.17	A1, C1	C2-User calculated based on material balance using
hydrogen fluonde*	7664-39-3	F					engineering knowledge of the process
		S					C3-User calculated based on AP-42
methyl chloroform	71-55-6	F					C4-User calculated by best guess/engineering judgment
		S				3.0	C5-User calculated based on a State or local agency factor
methylene chloride	75-09-2	F					C6-New construction, not operational
		S				- 33	C7-Source closed, operation ceased
perchloroethylene	127-18-4	F				003	C8-Computer calculated bsed on standards
		S				100	-
phosphine	7803-51-2	F					_
		S				111	_
titanium tetrachloride	7550-45-0	F					
TOTALS			18.53	114.58	5.02	III III. Ikore	This form to include only the eleven chemicals identified

S-Suck Emissions | Flugday Emission | Daily emissions (Ru/day) are Its/operating day of the source |
PLEASE NOTE: Be sure to attach all data and calculations necessary to support the emissions figures shown above.

See Attachment 1 for minimum reporting values
* Hydrogen flouride results non-detect

Calendar Year: 2023

GREENHOUSE GAS AIR POLLUTANTS

EMISSIONS CERTIFICATION REPORT

Facility Name:

Wheelabrator Baltimore

Facility ID:

24-510-01886

Pollutant:

Methane

Equipment Description/	Actual Emissions							
Registration Number 1	Tons/yr	Lbs/day	Lbs/hour					
2-24-0255 Boiler 1	0.5	4.0	0.17					
2-24-0256 Boiler 2	0.7	4.0	0.16					
2-24-0257 Boiler 3	0.6	3.5	0.16					
TOTALS	1.8	11.5	0.49					

This form must be used to report Greenhouse gas emissions:

- carbon dioxide (CO₂)
- methane (CH₄)
- nitrous oxide (N₂O)
- hydrofluorocarbons (HFCs)
- perfluorocarbons (PFCs)
- sulfur hexafluoride (SF₆)

*Use a separate form for each pollutant.

*Please attach all calculations

¹ Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

GREENHOUSE GAS AIR POLLUTANTS

EMISSIONS CERTIFICATION REPORT

Facility Name: Wheelabrator Baltimore Facility ID: 24-510-01886 Pollutant: Carbon Dioxide

Equipment Description/	Actual Emissions							
Registration Number ¹	Tons/yr	Lbs/day	Lbs/hour					
2-24-0255 Boiler 1	184,550	1470520	65,551					
2-24-0256 Boiler 2	276,434	1579624	66,683					
2-24-0257 Boiler 3	251,955	1486462	63,641					
	-							
TOTALS	712,940	4536607	194,875					

This form must be used to report Greenhouse gas emissions:

Calendar Year: 2023

- carbon dioxide (CO₂)
- methane (CH₄)
- nitrous oxide (N₂O)
- hydrofluorocarbons (HFCs)
- perfluorocarbons (PFCs)
- sulfur hexafluoride (SF₆)

^{*}Use a separate form for each pollutant.

^{*}Please attach all calculations

¹ Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

Calendar Year: 2023

GREENHOUSE GAS AIR POLLUTANTS

EMISSIONS CERTIFICATION REPORT

Facility Name: Wheelabrator Baltimore

Facility ID:

24-510-01886

Pollutant:

Nitrous Oxide

Equipment Description/	A	S			
Registration Number	Tons/yr	Lbs/day	Lbs/hour		
2-24-0255 Boiler 1	8.3	70.5	2.938		
2-24-0256 Boiler 2	12.2	70.5	2.939		
2-24-0257 Boiler 3	11.5	69.8	2.908		
Land transferred to the first fine better that the first section of the					
TOTALS	31.9	210.8	8.79		

This form must be used to report Greenhouse gas emissions:

- carbon dioxide (CO₂)
- methane (CH₄)
- nitrous oxide (N₂O)
- hydrofluorocarbons (HFCs)
- perfluorocarbons (PFCs)
- sulfur hexafluoride (SF₆)

^{*}Use a separate form for each pollutant.

^{*}Please attach all calculations

Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

GREENHOUSE GAS AIR POLLUTANTS

EMISSIONS CERTIFICATION REPORT

Facility Name: Wheelabrator Baltimore, L.P. Facility ID: 24-510-01886 Pollutant: Hydrofluorocarbons

Equipment Description/	Actual Emissions								
Registration Number ¹	Tons/yr	Lbs/day	Lbs/hour						
2-24-0255 Boiler 1									
2-24-0256 Boiler 2	Not Emitted								
2-24-0257 Boiler 3		I							
TOTALS	0	0	0						

This form must be used to report Greenhouse gas emissions:

Calendar Year: 2023

- carbon dioxide (CO₂)
- methane (CH₄)
- nitrous oxide (N₂O)
- hydrofluorocarbons (HFCs)
- perfluorocarbons (PFCs)
- sulfur hexafluoride (SF₆)

^{*}Use a separate form for each pollutant.

^{*}Please attach all calculations

¹ Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

GREENHOUSE GAS AIR POLLUTANTS

EMISSIONS CERTIFICATION REPORT

Facility Name: Wheelabrator Baltimore, L.P. Facility ID: 24-510-01886 Pollutant: Perfluorocarbons

Equipment Description/	Actual Emissions							
Registration Number ¹	Tons/yr	Lbs/day	Lbs/hour					
2-24-0255 Boiler 1								
2-24-0256 Boiler 2	Not Emitted							
2-24-0257 Boiler 3								

			:					

TOTALS	0	0	0					

This form must be used to report Greenhouse gas emissions:

Calendar Year: 2023

- carbon dioxide (CO₂)
- methane (CH₄)
- nitrous oxide (N₂O)
- hydrofluorocarbons (HFCs)
- perfluorocarbons (PFCs)
- sulfur hexafluoride (SF₆)

*Use a separate form for each pollutant.

*Please attach all calculations

¹ Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

GREENHOUSE GAS AIR POLLUTANTS

EMISSIONS CERTIFICATION REPORT

Facility Name: Wheelabrator Baltimore, L.P. Facility ID: 24-510-01886 Pollutant: Sulfur hexafluoride

Equipment Description/	Actual Emissions								
Registration Number ¹	Tons/yr	Lbs/day	Lbs/hour						
2-24-0255 Boiler 1									
2-24-0256 Boiler 2	Not Emitted								
2-24-0257 Boiler 3									
	-								
TOTALS	0	0	0						

This form must be used to report Greenhouse gas emissions:

Calendar Year: 2023

- carbon dioxide (CO₂)
- methane (CH₄)
- nitrous oxide (N₂O)
- hydrofluorocarbons (HFCs)
- perfluorocarbons (PFCs)
- sulfur hexafluoride (SF₆)

*Use a separate form for each pollutant.

*Please attach all calculations

¹ Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

Wheelabrator Baltimore	Annual Emissi	ons Calculati	ons													
		23 Data Shad		1												
Plant:	Wheelabrator			4												
, iant.	Unit 1	Unit 2	Unit 3	Total	٦				Unit 1	Unit 2	Unit 3]				
Tons processed	162,653	234,935	221,204	618,792	Ops Stats					alent Operating						
Total Operating Hours	5,718	8,291	7,918	21,927	> of CEMS or	r Onstats			251	350	339					
Steam Flow Avg (klbs/hr)	189.3	189.4	187.3	21,327	Ops Stats	Орзгас			231		333]				
Stack test air flow					Ops stats											
(dscfm 7% O2)	75,353	74,569	73,776		Stack Test											
Stack Test Steam Flow					Stack Test											
Average klb/hr	192	192	192		Stack Test											
Natural Gas Usage (Therms)	9,884	14,461	13,624	37,969	Ops Stats											
Availability		95%	90%	0.7555	Unit 1	Unit 2	Unit 3	Plant	Unit 1	Unit 2	Unit 3	Plant	Unit 1	Unit 2	Unit 3	Plant
,	Annual CEM A			Data Source		lbs/hr			-	lbs/day				Tons per Year		
SO2 (MW=64)	14	22	21	CEMS	10.59	16.50	15.44	42.53	238	386	352	976	29.9	67.5	59.6	157.0
NOx (MW=46)	129	126	130	CEMS	69.36	67.09	68.70	205.15	1,558	1,568	1,565	4,691	195.5	274.4	265.3	735.2
CO (MW=28)	22	14	14	CEMS	7.06	4.45	4.44	15.95	159	104	101	364	19.9	18.2	17.1	55.2
55 (4												·	
	Stack Test Ave	e-ppm7% O2	Outlet	1		lbs/hr	HCl+HF=	5.000		lbs/day	HCI+HF=	114.58		Tons per Year	HCI+HF=	18.53
HCI (MW=36.46)	2.6	4.4	4.5	Stack Test	1.11	1.86	1.88	4.85	24.7	43.4	43.1	111.2	3.1	7.6	7.3	18.0
HF (MW=20)***	<0.20	<0.20	<0.20	Stack Test	0.050	0.050	0.050	0.150	1.12	1.14	1.12	3.38	0.14	0.20	0.19	0.53
, , ,		-				lbs/hr				lbs/day				Tons per Year		
Dioxin ng/dscm 7%O2	0.70	0.70	0.70	Stack Test	1.98E-07	1.96E-07	1.93E-07	5.87E-07	4.50E-06	4.60E-06	4.42E-06	1.35E-05	5.60E-07	8.00E-07	7.50E-07	2.11E-06
Stack Test			•	•										•	•	
Steam flow Avg klb/hr	192	192	192	Stack Test						lbs/day				Tons per Year		
PM/PM10 (filterable)- lbs/hr	1.93	1.00	0.27	Stack Test					43.0	23.4	5.9	72.4	5.4	4.1	1.0	10.5
PM (condensable) - lbs/hr	6.75	1.8	3.8	Stack Test		lbs/hr			151.4	42.3	86.7	280.4	19.0	7.4	14.7	41.1
VOC (THC as Methane) ppm7%	0.88	0.88	0.88	Stack Test	0.170	0.160	0.160	0.490	4.0	4.0	3.5	11.5	0.50	0.70	0.60	1.8
Stack Test																
Steam flow Avg. klb/hr	192	192	192	Plant						lbs/day				Tons per Year		
Cadmium - lbs/hr	1.39E-04	9.85E-05	5.05E-05	2.88E-04					0.003	0.002	0.001	0.006	0.0004	0.0004	0.0002	0.0010
Lead - lbs/hr	6.15E-03	1.14E-03	4.08E-04	7.70E-03					0.138	0.027	0.009	0.174	0.0173	0.0047	0.0016	0.0236
Mercury - lbs/hr	2.14E-04	1.71E-04	1.29E-04	5.14E-04	_				0.005	0.004	0.003	0.012	0.0006	0.0007	0.0005	0.0018
Stack Test					1							·	-			
Other metals - Stack Test			_	Plant					ļ	lbs/day	,			Tons per Year		
Arsenic - lbs/hr		6.32E-05	3.30E-05	2.63E-04	4				0.0040	0.0017	0.0006	0.0063	0.0005	0.0003	0.0001	0.0009
Chromium - lbs/hr		3.63E-04	1.33E-04	9.86E-04	1				0.0112	0.0086	0.0083	0.0281	0.0014	0.0015	0.0014	0.0043
Nickel - lbs/hr	5.53E-04	5.73E-04	3.73E-04	1.50E-03	_				0.0127	0.0131	0.0130	0.0388	0.0016	0.0023	0.0022	0.0061
																
Others				Plant		lbs/hr		Plant	<u> </u>	lbs/day				Tons per Year		
Copper - ug/dscm7%	3.91	3.91	3.91	3.910	0.0011	0.0011	0.0011	0.0033	0.0247	0.0257	0.0248	0.075	0.0031	0.0045	0.0042	0.0118
Formaldehyde - ppm7%	0.193	0.193	0.193	0.193	0.070	0.070	0.070	0.210	1.57	1.64	1.59	4.80	0.1973	0.2863	0.2703	0.7539
Manganese - ug/dscm7%	3.60	4.60	1.60	3.267	0.0010	0.0013	0.0004	0.0027	0.023	0.030	0.010	0.063	0.0029	0.0053	0.0017	0.0099
						L										
						lbs/hr		Plant		lbs/day	,	Plant		Tons per Year		Plant
CO2 Emisssion From eGGRT					64551	66683	63641	194875	1470520	1579624	1486462	4536607	184550	276434	251955	712940
Others	Example Calcu	ılations:											·			
Cu Millbury 2019-22	CEM and Stack	c Test ppm @	7% O2 Pollut	ants: lbs/hr = (ppm@7%O2/:	1000000)*(Airflow dscfi	m7%O2)*60*(Mol. Wt./385.3)	where Airflow	= Stack Test va	alue				
									/dscm) where A							
, , ,	Stack Test lb/h	_		- , ,					•							
	-				A /C+1. T	C+ F	\ \/2000									
U1 condensible ave 2022-2023 as	tons/vear = in	s/hr*Oneratir	ng Hours*(Ani	iuai Steam Fini	W AVE/STACK I	est Steam F	10W1/2UUU									
U1 condensible ave 2022-2023 as high urea feed during 2023 test					w Avg/Stack i	est Steam F	low)/2000									