Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di TE1

A.A. 2009-2010 - Docente: Prof. F. Pappalardi Tutori: Annamaria Iezzi e Dario Spirito

Tutorato 9 13 MAGGIO 2010

1. Determinare dei campi F tali che $\operatorname{Gal}_{\mathbb Q} F$ sia isomorfo a:

a)
$$\mathbb{Z}_{13}$$

b)
$$\mathbb{Z}_3 \times \mathbb{Z}_6$$

c)
$$\mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}_5$$

2. Determinare se i seguenti numeri sono costruibili e, in caso affermativo, determinarne esplicitamente una costruzione:

a)
$$\sqrt{1+\sqrt{2}}$$

e)
$$\sqrt{\sqrt{4} - \sqrt{5}}$$

i)
$$\sin\left(\frac{2\pi}{5}\right)$$

b)
$$-64i\sqrt{2}$$

f)
$$\xi_{32} + \xi_{32}^{-1}$$

j)
$$\sin\left(\frac{3\pi}{9}\right)$$

c)
$$\frac{4}{9}\sqrt{\frac{6}{7}}\sqrt{3}$$

e)
$$\sqrt{\sqrt{4} - \sqrt{5}}$$
 i) $\sin\left(\frac{2\pi}{5}\right)$
f) $\xi_{32} + \xi_{32}^{-1}$
g) $\sqrt{1 + \sqrt[3]{2 + \sqrt{2}} + \sqrt{3}}$ j) $\sin\left(\frac{3\pi}{8}\right)$

d)
$$\sqrt{e}$$

h)
$$\xi_{51}$$

k)
$$Re(\xi_{88}^2 + \xi_{87})$$

3. Per $n \in \{4, 5, 6\}$, determinare un polinomio di grado n irriducibile su \mathbb{Q} che abbia tutte radici reali.

4. Determinare il numero di radici in \mathbb{F}_{81} dei polinomi $X^{80}-1,\,X^{81}-1$ e $X^{88}-1.$

5. Fattorizzare il polinomio $X^4 + 1$ in $\mathbb{F}_5[X]$, $\mathbb{F}_{25}[X]$ e $\mathbb{F}_{125}[X]$.

6. Siano p e q numeri primi. Dimostrare che per $n \geq 1$ il numero di polinomi di grado p^n irriducibili in $\mathbb{F}_q[X]$ è

$$\frac{q^{p^n} - q^{p^{n-1}}}{p^n}$$

Dedurne il numero di fattori irriducibili del polinomio $X^{255}-1\in\mathbb{F}_2[X]$. Quali sono i fattori irriducibili di $X^{255}-1\in\mathbb{Q}[X]$?