北京郵電大学

人工智能原理实验报告

LNG 站点聚类

学	院	<u>计算机学院</u>
专	业	计算机科学与技术
班	级	2020211302
小组成	战员	鄭毓恒
学	号	2020211262
小组点	战员	刘言
学	号	2020211268
小组成	战员	李梓硕
学	号	2020211250

2022年 12 月

运行环境

硬件信息

• CPU: AMD Ryzen 7 5800H

内存条: 2 * 8GB

软件和操作系统

操作系统: Windows 11编程语言: PythonPython 版本: 3.10

操作指令

- 输入以下指令安装 scikit-learn, numpy, pandas pip install scikit-learn pip install numpy pip install pandas
- 输入以下指令运行程序 python lng_station.py

数据预处理和算法分析

数据预处理

```
cur_dir = os.getcwd()
data_dir = cur_dir + '/data/lng2.csv'
data = pd.read_csv(data_dir, delim_whitespace=True, header=None)
data.columns = ['mmsi', 'time', 'state', 'speed', 'longtitude', 'latitude', 'draft']
data.dropna()
data = data[data['draft'] != 0]
state = data['state'][:]
data = data[(state == 1) | (state == 5) | (state == 15)]
```

以上是数据预处理部分的代码。Csv 文件存储在同一目录的 data 文件夹内,读 csv 至 dataframe 中。首先删除含有空值的行,然后由于船舶吃水度不可能为 0,删除吃水度为 0 的无效数据。根据网上查询,航行状态 1 和 5 分别代表抛锚和系泊,船舶是停止的。同时,航行状态 15 是默认状态,船舶也是静止的。因此,只取航行状态为 1、5 和 15 的数据。

算法分析

经过预处理后,大概还有五百多万条数据。数据中还有许多噪点,而且 LNG 站点和锚点的数量未知。因此,综合时间效率和聚类方法考虑,使用 DBSCAN 算法,以密度为聚类标准。而由于 DBSCAN 算法需要 O(n²)的内存空间,实验硬件不足以直接对 500 万条数据进行聚类,需要先进行分片再聚类。

以上是分片聚类部分的代码。按存储数据的 Dataframe 的索引顺序进行分片,一次为 30000 条数据进行聚类。 DBSCAN 函数中的 eps 参数为 5/6371 表示簇范围是 5km,参数 min_sample 表示每簇至少有 300 点,参数 N_jobs=12 表示使用 12 个线程。因为参数 metric 是 haversine,只接受弧度,所以用 np.radians 函数进行变换。每次聚类后,计算每个簇的中心点并保存。

完成所有数据的分片聚类后,得到的所有中心点再进行一次 DBSCAN 聚类。 这次聚类的目的是合并接近的中心点,所以调到 eps 参数到 30/6371,合并范围 30km 的点。聚类完后再进行一次计算,得到每个簇的中心点,为聚类的最终结果。

```
clusters.insert(cluster_center.shape[1], 'isLNG', False)
clusters.insert(cluster_center.shape[1], 'IN', False)
clusters.insert(cluster_center.shape[1], 'OUT', False)
```

聚类完毕后,还需要给站点进行分类。先插入三列,用于存储后续分类结果。

```
station_data = data[['mmsi', 'longtitude', 'latitude', 'draft']]
pre = station_data.iloc[0]
count = 0
draft_first, draft_final = pre['draft'], pre['draft']
|for index, row in station_data.iterrows():
        avg[1] += cur['latitude']
        draft_final = cur['draft']
       pre = cur
            avg[1] = avg[1] / (count + 1)
            draft_change = draft_final - draft_first
            if closest_pt != -1:
                if draft_change > 5:
                    clusters.at[closest_pt, 'OUT'] = True
                elif draft_change < -5:</pre>
                    clusters.at[closest_pt, 'isLNG'] = True
        avg = [pre['longtitude'], pre['latitude']]
```

对原数据中的每一条进行判断。假如与上一条的距离小于 30km 且 mmsi 一样,视为同一艘船在同一经纬度的数据。计算这些数据的经纬度的平均值得到中心点,然后找到聚类结果中最近的点。根据吃水量变化,给点进行分类。吃水量增加就是出口 LNG,站点是出站;吃水量减少就是入口 LNG,站点是入站。吃水量不变或变化不超过 5,视站点为锚点。

代码运行结果及分析

```
D:\python\sem5hw\LNG>python lng_station.py
LNG Station Number: 157
IN Station Number: 126
OUT Station Number: 84
Mooring Point Number: 67
DBSCAN Clustering Time: 426.4456830024719 second
Total Time: 1118.1872277259827 second
```

程序总共分出了 157 个 LNG 站点, 其中有 126 个入站和 84 个出站, 以及 67 个锚点。DBSCAN 聚类部分运行时间是 426 秒,程序总运行时间是 1118 秒。

输出的 json 文件内容如上,符合题目要求格式。

LNG站点分布

使用输出的 json 文件,画出以上地图,标出了 LNG 出入站和船只泊点。从上图可见得到的 LNG 站点分布。经过简单检查,出站基本分布于 LNG 的主要出口国,入站基本分布于主要入口国。

仔细观察地图,还是可以看见一些应当属于同一点的坐标被分为了不同点。 原因可能在于 DBSCAN 聚类时的 eps 参数设置太小,但经过测试,假如设置再 大一点,得到的 LNG 站点数量减少。虽然确实可以合并同一坐标的点,但也失 去了一些正确的站点坐标。

程序的运行时间大概有 20 分钟,其中超过一半是在给聚类结果分类。这是因为分类的代码是一个 for 循环,将循环五百多万次,花费了很多时间。想到的一个改进方法是,不用原数据,而是用分片聚类后,二次聚类之前的数据来判断站点类型,可以将循环次数从百万减少至数万。但是,由于担心这样做会影响 LNG 站点分类的准确性,所以没有采用。

实验总结

经过这次实验我们学到了很多知识,对各种聚类算法有了一定的了解,了解了它们算法的原理和应用。实验过程中,花费了许多时间在于调整 DBSCAN 聚类算法的参数。

一开始我们计划尽可能通过预处理数据,减少数据量,使得程序可以通过一次聚类解决。但这样对参数要求很高,稍有不慎就会导致发生内存不足,而结果精确度也很低。改为分片聚类后,即使可以通过少量数据测试程序,但参数的实际效果还得看在原始数据上的运行结果。每次运行都需要十几二十分钟,才能知道判断是不是理想的参数,花费了很多时间。这次实验是少有的,面对巨大数据量的实验,在编写代码和测试程序时需要更加谨慎,是一次难得的体验,对以后的研究和工作都很有帮助。