Geometría 2 – Grado en Matemáticas

Prueba de clase del tema 2 – Grupo B

11 de mayo de 2020

Instrucciones para realizar el examen.

- 1. Lee detenidamente estas instrucciones y el examen.
- 2. Si tienes alguna pregunta sobre el examen o sobre su realización, puedes hacerla **antes de las 16:00** a través del chat de PRADO o por correo electrónico a jmmanzano@ugr.es y será respondida lo antes posible.
- 3. Al finalizar el examen, escanea o fotografía tus soluciones manuscritas bien iluminadas, de forma que que se lea sin dificultad todo lo que has escrito. En cada página o foto debe aparecer tu DNI/pasaporte (no el número, sino el documento físico).
- 4. Envía los documentos generados (en formato PDF/TIFF/PNG/JPG/... o similar) desde tu cuenta @correo.ugr.es a la dirección jmmanzano@ugr.es antes de las 17:00. No se valorarán las soluciones pasadas las 17:10 (hora del servidor de correo).

Si experimentas incidencias técnicas que no te permitan cumplir estas normas, notificalas a la mayor brevedad por correo electrónico y se te hará un examen oral alternativo.

Instrucciones para responder al examen.

En el examen hay tres parámetros en rojo para generar los ejercicios, correspondientes a los tres últimos dígitos de tu DNI (o pasaporte en su defecto) omitiendo todas las letras.

- El parámetro a es el antepenúltimo dígito.
- El parámetro b es el penúltimo dígito.
- El parámetro c es el último dígito.

Por ejemplo, si tu DNI es 93175486H, entonces $\mathbf{a} = 4$, $\mathbf{b} = 8$ y $\mathbf{c} = 6$.

Presta atención ya que no se valorarán respuestas con parámetros erróneos.

Ejercicio 1. Consideremos la métrica b en \mathbb{R}^5 dada en la base usual por la matriz

$$G = \begin{pmatrix} 2 & -1 & 0 & 0 & -\mathbf{b} - 1 \\ -1 & 2 & 0 & \frac{\mathbf{a} - 5}{2} & 0 \\ 0 & 0 & (\mathbf{c} + 2)^2 & 0 & \mathbf{c} + 2 \\ 0 & \frac{\mathbf{a} - 5}{2} & 0 & 2 & 0 \\ -\mathbf{b} - 1 & 0 & \mathbf{c} + 2 & 0 & \mathbf{b}^2 + 2\mathbf{b} + 2 \end{pmatrix}.$$

- (a) (2 puntos) Halla una base ortogonal del espacio vectorial métrico (\mathbb{R}^5, b).
- (b) (2 puntos) Consideremos las métricas g_1 y g_2 de \mathbb{R}^5 cuyas formas cuadráticas están dadas, respectivamente, por los siguientes polinomios homogéneos de segundo grado:

$$\phi_1(x_1, x_2, x_3, x_4, x_5) = x_1^2 + x_2^2 + (x_4 - x_5)^2 + (x_4 + x_5)^2 + x_5^2,$$

$$\phi_2(x_1, x_2, x_3, x_4, x_5) = x_1 x_2 + x_3^2 + x_4^2 + x_5^2.$$

¿Es el espacio vectorial métrico (\mathbb{R}^5 , b) isométrico a (\mathbb{R}^5 , g_1)? ¿Y a (\mathbb{R}^5 , g_2)?

(c) (2 puntos) Razona si las matrices G y $G-2I_5$ son congruentes, siendo I_5 la matriz identidad de orden 5.

Ejercicio 2 (1 punto por apartado). A lo largo de todo este ejercicio, trabajaremos en un espacio vectorial métrico (V, b) de dimensión n.

- Si $0 \le a \le 3$, razona la veracidad o falsedad de las siguientes afirmaciones:
 - (a) Si los polinomios homogéneos de segundo grado asociados a b en coordenadas en ciertas bases \mathbb{B} y \mathbb{B}' coinciden, entonces $\mathbb{B} = \mathbb{B}'$.
 - (b) Si $u \in V^{\perp}$ y $v \in V V^{\perp}$ cumplen que b(u, u) = b(v, v) = b(u, v) = 0, entonces existe una base ortogonal de V que contiene a u y v.
 - (c) Si la restricción de b a un subespacio $U \subseteq V$ de dimensión 2 es no degenerada, entonces $\dim(U^{\perp}) = n 2$.
 - (d) Si n=3 y $U_1, U_2 \subset V$ son planos tales que la restricción de b a U_1 es definida positiva y la restricción a U_2 es indefinida, entonces b es no degenerada y tiene índice 1.
- Si $4 \le a \le 6$, razona la veracidad o falsedad de las siguientes afirmaciones:
 - (a) Si b' es otra métrica en V que tiene la misma matriz que b en cierta base \mathbb{B} de V, entonces b'=b.
 - (b) Dado $u \in V$ no nulo, existe una base ortogonal de (V, b) que contiene a u.

- (c) Si U es un subespacio de V generado por dos vectores $u, v \in V$ linealmente independientes tales que $b(u, v) \neq 0$, entonces $\dim(U^{\perp}) = n 2$.
- (d) Si n = 4 y $U \subset V$ es tal que $U \oplus U^{\perp} = V$ y las restricciones de b a U y U^{\perp} son ambas indefinidas, entonces b es no degenerada y tiene índice 2.
- Si $7 \le a \le 9$, razona la veracidad o falsedad de las siguientes afirmaciones:
 - (a) Si la matriz de b en una base \mathbb{B} es la identidad, entonces la matriz de b en cualquier otra base de V tiene determinante 1.
 - (b) Si $u, v \in V$ son tales que $b(u, u) + b(v, v) \neq 0$ y b(u, v) = 0, entonces u y v son linealmente independientes.
 - (c) Si U es un subespacio de V, entonces $\dim(U^{\perp}) + \dim(U) \geq \dim(V)$.
 - (d) Supongamos que n=3 y que $U\subset V$ es un plano tal que la restricción de b a U es indefinida. Si existe $v\in V-U$ es tal que b(v,v)<0, entonces b tiene nulidad 0 e índice 2.

Solución al ejercicio 1. Vamos a resolverlo para todo valor de los parámetros a, b y c aunque en el examen sólo se pedía la resolución siendo éstos los últimos dígitos del DNI. Vamos a contestar al apartado (a) de dos formas distintas:

1. **Mediante completación de cuadrados.** La forma cuadrática asociada a *b* se expresa como el polinomio

$$\begin{split} \phi(x_1,x_2,x_3,x_4,x_5) &= 2x_1^2 - 2x_1x_2 + 2x_2^2 + (\mathbf{c}+2)^2x_3^2 + (\mathbf{a}-5)x_2x_4 + 2x_4^2 \\ &\quad - 2\mathbf{b}x_1x_5 + 2(\mathbf{c}+2)x_3x_5 + (1+(\mathbf{b}+1)^2)x_5^2 \\ &= ((\mathbf{c}+2)x_3 + x_5)^2 + ((\mathbf{b}+1)x_5 - x_1)^2 + x_1^2 - 2x_1x_2 + 2x_2^2 \\ &\quad + (\mathbf{a}-5)x_2x_4 + 2x_4^2 \\ &= ((\mathbf{c}+2)x_3 + x_5)^2 + ((\mathbf{b}+1)x_5 - x_1)^2 + (x_1 - x_2)^2 \\ &\quad + (x_2 - \frac{\mathbf{a}-5}{2}x_4)^2 + \frac{-\mathbf{a}^2 + 10\mathbf{a} - 17}{4}x_4^2. \end{split}$$

Esta es la forma más rápida de ir introduciendo cuadrados, eliminando variables en el orden $x_3 \to x_5 \to x_1 \to x_2 \to x_4$, aunque se puede hacer de muchas formas. Una base ortogonal para b es la base dual $\{u_1,u_2,u_3,u_4,u_5\}$ de la base formada por las formas lineales $\varphi_1=(\mathbf{c}+2)x_3+x_5, \, \varphi_2=(\mathbf{b}+1)x_5-x_1, \, \varphi_3=x_1-x_2, \, \varphi_4=x_2-\frac{\mathbf{a}-5}{2}x_4$ y $\varphi_5=x_4$ (estas formas son independientes porque $\mathbf{b},\mathbf{c}\geq 0$). Resolviendo el sistema $\varphi_i(u_j)=\delta_{ij}$, se llega fácilmente a que

$$\begin{split} u_1 &= (0,0,\frac{1}{(\mathbf{b}+1)(\mathbf{c}+2)},0,\frac{-1}{\mathbf{b}+1}), \quad u_2 = (0,0,\frac{1}{\mathbf{c}+2},0,0), \quad u_3 = (1,0,\frac{-1}{(\mathbf{b}+1)(\mathbf{c}+2)},0,\frac{1}{\mathbf{b}+1}), \\ u_4 &= (1,1,\frac{-1}{(\mathbf{b}+1)(\mathbf{c}+2)},0,\frac{1}{\mathbf{b}+1}), \quad u_5 = (\frac{5-\mathbf{a}}{2},\frac{5-\mathbf{a}}{2},\frac{\mathbf{a}-5}{2(\mathbf{b}+1)(\mathbf{c}+2)},1,\frac{5-\mathbf{a}}{2(\mathbf{b}+1)}). \end{split}$$

2. Construyendo la base. Vamos añadiendo vectores ortogonales a los ya añadidos tales que la forma cuadrática no se anula sobre ellos (mientras podamos) y completamos con una base de $(\mathbb{R}^5)^{\perp}$. Opcionalmente, si previamente calculamos $\det(G) = -\frac{1}{4} (\mathbf{a}^2 - 10\mathbf{a} + 17) (\mathbf{b} + 1)^2 (\mathbf{c} + 2)^2 \neq 0$ (puesto que $\mathbf{a} \in \mathbb{Z}$ y $\mathbf{b}, \mathbf{c} \geq 0$), sabremos que b es no degenerada y que no habrá que añadir vectores de $(\mathbb{R}^5)^{\perp}$.

Hay muchas formas de elegir los vectores, pero resumimos el proceso indicando una posible elección y las ecuaciones de ortogonalidad que vamos obteniendo

$$\begin{array}{lll} u_1 = (1,0,0,0,0), & b(u_1,u_1) = 2, & \{u_1\}^{\perp} \equiv 2x_1 - x_2 - (\mathbf{b} + 1)x_5 = 0, \\ u_2 = (0,0,1,0,0), & b(u_2,u_2) = (\mathbf{c} + 2)^2, & \{u_2\}^{\perp} \equiv (\mathbf{c} + 2)x_3 + x_5 = 0, \\ u_3 = (0,0,0,1,0), & b(u_3,u_3) = 2, & \{u_3\}^{\perp} \equiv (\mathbf{a} - 5)x_2 + 4x_4 = 0, \\ u_4 = (\frac{\mathbf{b} + 1}{2},0,\frac{-1}{\mathbf{c} + 2},0,1), & b(u_4,u_4) = \frac{(\mathbf{b} + 1)^2}{2}, & \{u_4\}^{\perp} \equiv x_2 - (\mathbf{b} + 1)x_5 = 0, \\ u_5 = (1,1,\frac{-1}{(\mathbf{b} + 1)(\mathbf{c} + 2)},\frac{5-a}{4},\frac{1}{\mathbf{b} + 1}), & b(u_5,u_5) = \frac{-\mathbf{a}^2 + 10\mathbf{a} - 17}{8}. \end{array}$$

Para responder al apartado (b), comencemos analizando las métricas g_0 y g_1 . La métrica g_1 tiene índice 0 ya que es suma de cuadrados, pero nulidad 1 ya que las formas lineales en los cuadrados sólo generan un espacio de dimensión 4. La métrica g_2 , cambiando $x_1x_2 = \frac{1}{4}(x_1 + x_2)^2 - \frac{1}{4}(x_1 - x_2)^2$, vemos que tiene índice 1 y nulidad 0. Analicemos finalmente la métrica b del enunciado, para lo que distinguiremos dos casos:

- Si $\mathbf{a} \in \{0, 1, 2, 8, 9\}$, entonces $-\mathbf{a}^2 + 10\mathbf{a} 17 < 0$, luego en la base ortogonal calculada en el apartado anterior obtendremos que $b(u_i, u_i)$ es positivo para cuatro vectores de la base y negativo para uno solo, por lo que b tiene nulidad 0 e índice 1. Deducimos que (\mathbb{R}^5, b) es isométrico a (\mathbb{R}^5, g_2) pero no a (\mathbb{R}^5, g_1) .
- Si $\mathbf{a} \in \{3, 4, 5, 6, 7\}$, entonces $-\mathbf{a}^2 + 10\mathbf{a} 17 > 0$ y la base ortogonal calculada en el apartado anterior cumple que $b(u_i, u_i) > 0$ para los cinco vectores, luego b tiene índice 0 y nulidad 0. Deducimos que (\mathbb{R}^5, b) no es isométrico a (\mathbb{R}^5, g_1) ni a (\mathbb{R}^5, g_2) .

Finalmente, vamos a responder al apartado (c). Teniendo en cuenta la clasificación de b que hemos obtenido en el apartado (b), distinguimos dos casos:

- Si $\mathbf{a} \in \{0, 1, 2, 8, 9\}$, entonces G y $G 2I_5$ no son congruentes puesto que sus determinantes no tienen el mismo signo, sin necesidad de clasificar la métrica dada por $G 2I_5$. Por un lado, $\det(G 2I_5) = \frac{1}{4}(\mathbf{a} 5)^2(\mathbf{b} + 1)^2(\mathbf{c}^2 + 4\mathbf{c} + 2) > 0$ y, por otro lado, $\det(G) < 0$ por tener índice 1 (sin necesidad de calcular $\det(G)$).
- Si $\mathbf{a} \in \{3, 4, 5, 6, 7\}$, hemos visto que G representa una métrica definida positiva, pero $G-2I_2$ tiene elementos nulos en la diagonal, luego es cero sobre ciertos vectores de la base usual de \mathbb{R}^5 . Por tanto, $G-2I_5$ no puede representar una métrica definida positiva y deducimos que en este caso las matrices tampoco son congruentes.

Solución al ejercicio 2.

- 1. Si los polinomios homogéneos de segundo grado asociados a b en coordenadas en ciertas bases \mathbb{B} y \mathbb{B}' coinciden, entonces $\mathbb{B} = \mathbb{B}'$.
 - **FALSO.** Como contrajemplo, $\mathbb{B} = ((1,0),(0,1))$ y $\mathbb{B}' = ((1,0),(0,-1))$ distintas bases distintas de $V = \mathbb{R}^2$. Con el producto escalar usual b, la forma cuadrática en la base \mathbb{B} es el polinomio dado por $\phi(x_1,x_2) = (x_1,x_2)M(b,\mathbb{B})(x_1,x_2)^t = x_1^2 + x_2^2$ y es el mismo en la base \mathbb{B}' ya que $M(b,\mathbb{B}) = M(b',\mathbb{B}) = I_2$.
- 2. Si $u \in V^{\perp}$ y $v \in V V^{\perp}$ cumplen que b(u, u) = b(v, v) = b(u, v) = 0, entonces existe una base ortogonal de V que contiene a u y v.
 - **FALSO.** Como contrajemplo, consideremos $b(x,y) = x_1y_1 x_2y_2$ en $V = \mathbb{R}^3$, que tiene índice 1 y nulidad 1. Sean u = (0,0,1) y v = (1,1,0). Tenemos que $u \in V^{\perp}$ ya que $b(x,u_1) = 0$ para todo $x \in \mathbb{R}^3$, pero $v \notin V^{\perp}$ ya que $b(v,(1,0,0)) = 1 \neq 0$. También es fácil comprobar que b(u,u) = b(u,v) = b(v,v) = 0. Por reducción al absurdo, si existiera w tal que $\mathbb{B} = \{u,v,w\}$ es base ortogonal de (\mathbb{R}^3,b) , tendríamos que $M(b,\mathbb{B})$ sería diagonal con dos ceros en la diagonal, luego b tendría nulidad al menos 2 contradiciendo que la nulidad es 1.
- 3. Si la restricción de b a un subespacio $U \subseteq V$ de dimensión 2 es no degenerada, entonces $\dim(U^{\perp}) = n 2$.
 - **VERDADERO.** Sea $\{u_1, u_2\}$ una base ortogonal de U. Como la restricción es no degenerada, tendremos que $b(u_1, u_1) \neq 0$ y $b(u_2, u_2) \neq 0$. Por tanto, podemos aplicar el algoritmo de construcción de bases ortogonales y completarla hasta una base ortogonal $\{u_1, \ldots, u_n\}$ de V. Está claro que $L\{u_3, \ldots, u_n\} \subseteq U^{\perp}$ por ser la base ortogonal y también se da la inclusión contraria ya que si $v = \lambda_1 u_1 + \ldots + \lambda_n u_n \in U^{\perp}$, entonces multiplicando por u_1 y u_2 tenemos que $\lambda_1 = \lambda_2 = 0$, luego $v \in L\{u_3, \ldots, u_n\}$. Esto prueba que $\dim(U^{\perp}) = n 2$.
- 4. Si n = 3 y $U_1, U_2 \subset V$ son planos tales que la restricción de b a U_1 es definida positiva y la restricción a U_2 es indefinida, entonces b es no degenerada y tiene índice 1.
 - **VERDADERO.** Sea $\{u_1, u_2\}$ una base ortogonal de U_1 . Como la restricción es definida positiva, sabemos que $b(u_1, u_1) > 0$ y $b(u_2, u_2) > 0$. Mediante el proceso de construcción de bases podemos añadir un tercer vector u_3 linealmente independiente y ortogonal a estos dos. Si $b(u_3, u_3) \ge 0$, entonces b tiene índice 0 y $b(v, v) \ge 0$ para todo $v \in V$, contradiciendo que la restricción a U_2 es indefinida. Por tanto, tiene que ser $b(u_3, u_3) < 0$, luego b tiene índice 1 y nulidad 0.
- 5. Si b' es otra métrica en V que tiene la misma matriz que b en cierta base $\mathbb B$ de V, entonces b'=b.

VERDADERO. Si escribimos $\mathbb{B} = \{e_1, \dots, e_n\}$, la condición que nos dan $M(b, \mathbb{B}) = M(b', \mathbb{B})$ puede escribirse elemento a elemento como $b(e_i, e_j) = b'(e_i, e_j)$ para todo $i, j \in \{1, \dots, n\}$. Por tanto, para cualesquiera $u, v \in V$, expresando $u = u_1e_1 + \dots + u_ne_n$ y $v = v_1e_1 + \dots + v_ne_n$, tendremos que

$$b(u,v) = \sum_{i,j=1}^{n} u_i v_j b(e_i, e_j) = \sum_{i,j=1}^{n} u_i v_j b'(e_i, e_j) = b'(u, v).$$

- 6. Dado $u \in V$ no nulo, existe una base ortogonal de (V, b) que contiene a u.
 - **FALSO.** Como contraejemplo tomemos la métrica $b(x,y) = x_1y_1 x_2y_2$ en \mathbb{R}^2 . Si existiera una base ortogonal de V que contiene u = (1,1), se tendría que la matriz de b en esa base es diagonal con un cero en la diagonal ya que b(u,u) = 0, luego se tendría que b es degenerada, pero claramente no lo es porque su matriz en la base usual tiene determinante $-1 \neq 0$.
- 7. Si U es un subespacio de V generado por dos vectores $u, v \in V$ linealmente independientes tales que $b(u, v) \neq 0$, entonces $\dim(U^{\perp}) = n 2$.
 - **FALSO.** Como contraejemplo, consideremos la métrica degenerada $b(x,y) = x_1y_1$ en \mathbb{R}^2 y como U el propio \mathbb{R}^2 generado por u = (1,1) y v = (1,-1), que cumplen que $b(u,v) = 1 \neq 0$. Ahora bien, $U^{\perp} = L\{(0,1)\}$ tiene dimensión 1 distinta de n-2=0.
- 8. Si n=4 y $U\subset V$ es tal que $U\oplus U^{\perp}=V$ y las restricciones de b a U y U^{\perp} son ambas indefinidas, entonces b es no degenerada y tiene índice 2.
 - **VERDADERO.** Si las restricciones a U y U^{\perp} son indenfinidas, entonces estos subespacios tienen dimensión al menos 2. Como $U \oplus U^{\perp} = V$ y $\dim(V) = 4$, necesariamente $\dim(U) = \dim(U^{\perp}) = 2$. Tomemos bases ortogonales $\{u_1, u_2\}$ de U y $\{u_3, u_4\}$ de U^{\perp} tales que $b(u_1, u_1) > 0$, $b(u_2, u_2) < 0$, $b(u_3, u_3) > 0$ y $b(u_4, u_4) < 0$. Como todos los vectores de U son ortogonales a todos los vectores de U^{\perp} y la suma es directa, tenemos que $\{u_1, u_2, u_3, u_4\}$ es una base ortogonal de V. Los signos discutidos anteriormente nos aseguran que b tiene índice 2 y nulidad 0.
- 9. Si la matriz de b en una base \mathbb{B} es la identidad, entonces la matriz de b en cualquier otra base de V tiene determinante 1.
 - **FALSO.** La ecuación del cambio de base para formas bilineales nos dice que si B y B son las matrices de b en ciertas bases y P es la matriz del cambio de base, entonces $A = P^t B P$. Tomando determinantes, tenemos que $\det(A) = \det(P)^2 \det(B)$, luego el enunciado sólo es cierto si la matriz de cambio de base tiene determinante ± 1 .

Aunque lo anterior ya demuestra que el resultado es falso, como contrajemplo explícito podemos poner la base usual $\mathbb{B}_u = ((1,0),(0,1))$ y la base $\mathbb{B} = ((1,0),(0,2))$ en

 $V = \mathbb{R}^2$. El producto escalar usual b cumple que

$$M(b, \mathbb{B}_u) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad M(b, \mathbb{B}) = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}.$$

10. Si $u, v \in V$ son no nulos tales que $b(u, u) + b(v, v) \neq 0$ y b(u, v) = 0, entonces u y v son linealmente independientes.

VERDADERO. Por reducción al absurdo, si u y v son linealmente dependientes, como son no nulos, existirá $\lambda \neq 0$ tal que $u = \lambda v$. La condición b(u, v) = 0 nos dice que $\lambda b(u, u) = 0$, luego b(u, u) = 0 ya que $\lambda \neq 0$. Eso implica que $b(v, v) = \lambda^{-2}b(u, u) = 0$, contradiciendo la hipótesis de que $b(u, u) + b(v, v) \neq 0$.

11. Si U es un subespacio de V, entonces $\dim(U^{\perp}) + \dim(U) \geq \dim(V)$.

VERDADERO. Sea $\{u_1, \ldots, u_k\}$ una base de U, siendo $k = \dim(U)$. Como $U^{\perp} = \{u_1, \ldots, u_k\}^{\perp}$, se sigue que $v \in U^{\perp}$ si, y sólo si, $g(u_1, v) = \ldots = g(u_k, v) = 0$. Ahora bien, en coordenadas en una base \mathbb{B} arbitraria, cada una de las condiciones $g(u_i, v) = 0$ se traduce en una ecuación lineal sobre las coordenadas de v en base \mathbb{B} . Por tanto, U^{\perp} está dado por k ecuaciones lineales en la base \mathbb{B} . Esto nos dice que $\dim(U^{\perp}) \geq n - k = \dim(V) - \dim(U^{\perp})$ (no se tiene en general la igualdad puesto que estas ecuaciones pueden no ser independientes).

12. Supongamos que n=3 y que $U\subset V$ es un plano tal que la restricción de b a U es indefinida. Si existe $v\in V-U$ es tal que b(v,v)<0, entonces b tiene nulidad 0 e índice 2.

FALSO. Como contraejemplo consideremos la métrica $b(x,y) = x_1y_1 + x_2y_2 - x_3y_3$ en \mathbb{R}^3 y el plano U de ecuación $x_1 = 0$. Una base ortogonal de este plano es la dada por (0,1,0) y (0,0,1), sobre la que la forma cuadrática vale 1 y -1, luego la restricción de b a U es indefinida. El vector $v = (1,0,2) \notin U$ cumple que b(v,v) = -3 < 0, pero b tiene índice 1 ya que su polinomio asociado es $x_1^2 + x_2^2 - x_3^2$.