Chapitre 26

Variables aléatoires sur un univers fini

Sommaire

I	Notion de variable aléatoire
	1) Définition
	2) Loi d'une VA
	3) Image d'une VA par une fonction
II	Lois usuelles
	1) Variables certaines
	2) Loi uniforme
	3) Loi de Bernoulli
	4) Loi binomiale
III	Espérance et variance d'une variable aléatoire
	1) Espérance
	2) Variance et écart-type
	3) Cas des lois usuelles
IV	Couples de variables aléatoires
	1) Définitions
	2) Indépendance de variables aléatoires
	3) Applications de l'indépendance
	4) Covariance
V	Solution des exercices

Souvent, lors d'une expérience aléatoire, on ne s'intéresse pas vraiment à l'ensemble des résultats possibles, mais un aspect particulier du résultat, par exemple : la somme obtenue lors d'un lancer de deux dés, le temps d'attente du premier pile dans un lancer de pièce etc.

I NOTION DE VARIABLE ALÉATOIRE

1) Définition

Définition 26.1

Soit Ω un univers fini. Toute application $X: \Omega \to E$ est appelée **variable aléatoire**, lorsque $E = \mathbb{R}$, on dit que X est une variable aléatoire réelle (notée VAR). Lorsque X est constante, on parle de VA constante ou de variable aléatoire certaine.

Remarque 26.1 -

- Notons qu'une variable aléatoire n'est une pas une variable en réalité, mais une application, et n'a rien
- L'ensemble des images $X(\Omega)$ est un ensemble fini qu'on note parfois $X(\Omega) = \{x_1, \dots, x_n\}$.

Exemples:

- Expérience : on lance deux dés, on note X la somme des chiffres obtenus. Univers : $\Omega = [1; 6], X(\Omega) = [2; 12].$

 Expérience : on lance n fois une pièce, on note X le numéro du lancer où apparaît un pîle la première fois.

Univers :
$$\Omega = \{P, F\}^n$$
, $X(\Omega) = [0; n]$.

Définition 26.2 (variable indicatrice d'un événement)

Soit A un événement, l'application $\mathbb{1}_A \colon \Omega \to \mathbb{R}$ définie par $\mathbb{1}_A(\omega) = \begin{cases} 1si \ \omega \in A \\ 0 \ sinon \end{cases}$ est la **variable indicatrice de** A.

Remarque 26.2 -

- L'ensemble des VAR sur Ω est $\mathscr{F}(\Omega,\mathbb{R})$ qui a une structure de \mathbb{R} -espace vectoriel et d'anneau pour les lois usuelles.
- Si X: Ω → E est une VA et u: E → F est une application, alors u ∘ X est une VA sur Ω , elle est généralement notée u(X).

Événements liés à une VA

- Si X: Ω → E est une VA, si A est une partie de E alors X⁻¹(A) est un événement, on le note généralement (X ∈ A), on a donc (X ∈ A) = { ω ∈ Ω / X(ω) ∈ A}.
- − Plus généralement, si P(x) désigne une propriété définie sur E, l'événement $\{\omega \in \Omega / P(X(\omega))\}$ est noté (X vérifie P).
- Dans le cas particulier d'une VAR, on écrit pour tout $x \in \mathbb{R}$: $(X \le x) = \{\omega \in \Omega / X(\omega) \le x\}$; $(X \ge x) = \{\omega \in \Omega / X(\omega) \ge x\}$; etc. En particulier $(X \le x) = (X < x) \cup (X = x)$.

2) Loi d'une VA

👺 Théorème 26.1

Si X est une VA sur (Ω, \mathbb{P}) , l'application $\mathbb{P}_X \colon \mathscr{P}(X(\Omega)) \to [0; 1]$ définie par $\mathbb{P}_X(A) = \mathbb{P}(X \in A)$ pour toute partie A de $X(\Omega)$, est une probabilité sur $X(\Omega)$, on l'appelle **loi de** X.

 $\begin{aligned} \textbf{Preuve}: On \ a \ \mathbb{P}_X(X(\Omega)) &= \mathbb{P}(X \in X(\Omega)) = \mathbb{P}(\Omega) = 1. \ Soient \ A \ et \ B \ deux \ parties \ disjointes \ de \ X(\Omega) \ alors \ X^{-1}(A) \ et \ X^{-1}(B) \ sont \ deux \ événements incompatibles \ de \ \Omega, \ donc \ \mathbb{P}_X(A \cup B) &= \mathbb{P}(X^{-1}(A \cup B)) = \mathbb{P}(X^{-1}(A) \cup X^{-1}(B)) = \mathbb{P}(X^{-1}(A)) + \mathbb{P}(X^{-1}(B)) = \mathbb{P}(X^{-1}(A) \cup X^{-1}(B)) = \mathbb{P}(X^{-1}(A)) + \mathbb{P}(X^{-1}(B)) = \mathbb{P}(X^{-1}(A) \cup X^{-1}(B)) = \mathbb{P}(X^{-1}(A)) + \mathbb{P}(X^{-1}(B)) = \mathbb{P}(X^{-1}(A)) + \mathbb{P}(X^{-1}(B)) = \mathbb{P}(X^{-1}(A)) + \mathbb{P}(X^{-1}(B)) = \mathbb{P}(X^{-1}(A)) + \mathbb{P}(X^{-1}(B)) = \mathbb{P}(X^{-1}(A)) + \mathbb{P}(X^{-1}(A)) + \mathbb{P}(X^{-1}(A)) = \mathbb{P}(X^{-1}(A)) + \mathbb{P}(X^{-1}(A)) = \mathbb{P}(X^{-1}(A)) + \mathbb{P}(X^{-1}(A)) + \mathbb{P}(X^{-1}(A)) = \mathbb{P}(X^{-1}(A)) = \mathbb{P}(X^{-1}(A)) + \mathbb{P}(X^{-1}(A)) = \mathbb{P}(X^{-1}(A)) + \mathbb{P}(X^{-1}(A)) = \mathbb{P}(X^{-1}(A)) + \mathbb{P}(X^{-1}(A)) = \mathbb{P}(X^{-1}(A)) + \mathbb{P}(X^{-1}(A)) = \mathbb{P}(X^{-1}(A)) = \mathbb{P}(X^{-1}(A)) + \mathbb{P}(X^{-1}(A)) = \mathbb{P}(X^{-1}(A)) + \mathbb{P}(X^{-1}(A)) = \mathbb{P}(X^{-1}$

Remarque 26.3 – Si A est une partie de $X(\Omega)$ alors $\mathbb{P}(X \in A) = \mathbb{P}_X(A) = \sum_{x \in A} \mathbb{P}_X(\{x\}) = \sum_{x \in A} \mathbb{P}(X = x)$.

À retenir

Déterminer la loi de X, c'est déterminer $X(\Omega)$ et pour tout $x \in X(\Omega)$, la probabilité $\mathbb{P}(X = x)$. On remarquera que si X est une VA sur l'univers fini Ω , alors la famille d'événements $((X = x))_{x \in X(\Omega)}$ est un système complet d'événements.

Il est clair que ces événements sont incompatibles deux à deux et que :

$$\sum_{x \in (\Omega)} \mathbb{P}(X = x) = \mathbb{P}(\bigcup_{x \in X(\Omega)} (X = x)) = \mathbb{P}(\Omega) = 1$$

Remarque 26.4 – Parfois on ne connaît pas exactement $X(\Omega)$ mais un ensemble E contenant $X(\Omega)$, dans ce cas, pour $x \notin X(\Omega)$ on trouve $\mathbb{P}(X = x) = 0$.

★Exercice 26.1 On lance un dé deux fois, on note X la somme obtenue. Déterminer la loi de X.

★ Exercice 26.2 Soit X un VAR à valeurs entières, montrer que $\mathbb{P}(X = k) = \mathbb{P}(X \le k) - \mathbb{P}(X \le k - 1) = \mathbb{P}(X \ge k) - \mathbb{P}(X \ge k) - \mathbb{P}(X \ge k)$

3) Image d'une VA par une fonction

Soit X une VA sur (Ω, \mathbb{P}) et u une fonction définie sur $X(\Omega)$, notons $Y = u \circ X$ et $X(\Omega) = \{x_1, ..., x_n\}$, alors :

$$\forall\,y\in \mathrm{Y}(\Omega), \mathbb{P}(\mathrm{Y}=y) = \sum_{x\in u^{-1}(\{y\})} \mathbb{P}(\mathrm{X}=x)$$

Preuve: En effet, $(Y = y) = \{\omega \in \Omega \mid u \circ X(\omega) = y\} = (X \in u^{-1}(\{y\})).$

\pmExercice 26.3 On lance un dé successivement deux fois, on note X le premier résultat moins le deuxième, déterminer la loi de X, de |X| et de X^2 .

Comme on le voit dans l'exemple ci-dessus, deux VA peuvent avoir la même loi sans être égales pour autant!

Remarque 26.5 – $Si \times et \times Si \times e$

$$\mathbb{P}(\mathbf{X}+\mathbf{Y}=z) = \sum_{(x,y)\in \mathbf{I}_z} \mathbb{P}((\mathbf{X}=x)\cap (\mathbf{Y}=y)) \ o\grave{u} \ \mathbf{I}_z = \left\{(x,y)\in \mathbf{X}(\Omega)\times \mathbf{Y}(\Omega) \ / \ x+y=z\right\}$$

$$\mathbb{P}(\mathrm{XY}=z) = \sum_{(x,y) \in \mathrm{I}_z} \mathbb{P}((\mathrm{X}=x) \cap (\mathrm{Y}=y)) \ o\grave{u} \ \mathrm{I}_z = \big\{ (x,y) \in \mathrm{X}(\Omega) \times \mathrm{Y}(\Omega) \ / \ xy = z \big\}$$

II LOIS USUELLES

1) Variables certaines

Une VA est dire certaine lorsqu'elle est constante, auquel cas on a $X(\Omega) = \{x_1\}$ et donc $\mathbb{P}(X = x_1) = 1$.

2) Loi uniforme

On dit que la VAX suit une loi uniforme sur $X(\Omega) = \{x_1, \dots, x_n\}$ lorsque $\forall k \in [1; n], \mathbb{P}(X = x_k) = \frac{1}{n}$. Ce que l'on note $X \hookrightarrow \mathcal{U}(X(\Omega))$.

Exemple: On lance un dé parfait, on note X le chiffre obtenu alors $X \hookrightarrow \mathcal{U}(\llbracket 1; 6 \rrbracket)$.

3) Loi de Bernoulli

Soit $p \in [0;1]$ et q = 1 - p. On dit que la VA X suit une loi de Bernoulli de paramètre p, lorsque sur $X(\Omega) = \{0,1\}$, $\mathbb{P}(X = 1) = p$ et $\mathbb{P}(X = 0) = q$. Ce que l'on note $X \hookrightarrow \mathcal{B}(p)$.

Remarque 26.6 – Cette loi est utile pour les expériences aléatoires ayant deux issues possibles : succès avec probabilité p ou bien échec avec une probabilité de p – p, ce que l'on appelle des épreuves de Bernoulli.

Exemple: La variable indicatrice d'un événement A suit une loi de Bernoulli de paramètre $p = \mathbb{P}(A)$.

Remarque 26.7 – SiX etY sont deux VA qui suivent une loi de Bernoulli, alors XY également.

4) Loi binomiale

Soient $n \in \mathbb{N}$, $p \in [0;1]$ et q = 1 - p. On dit que la VA X suit une loi binomiale de paramètres n et p, $lorsque sur X(\Omega) = [0;n]$, $et \forall k \in [0;n]$, $et P(X = k) = {n \choose k} p^k (1-p)^{n-k}$. Ce que l'on note $X \hookrightarrow \mathcal{B}(n,p)$.

On vérifie qu'il s'agit bien d'une loi de probabilité sur [0; n].

-À retenir

La loi binomiale apparaît quand on considère le nombre X de succès dans une suite de n épreuves de Bernoulli **mutuellement indépendantes** et dans lesquelles la probabilité du succès est $p \in [0;1]$.

En effet, on a $X(\Omega) = [0; n]$ et l'événement (X = k) est l'ensemble des n-uplets de 1 ou 0 contenant k fois le nombre 1, il y en a $\binom{n}{k}$, la probabilité de chacun d'eux est $p^k(1-p)^{n-k}$ car les épreuves sont mutuellement indépendantes, d'où $\mathbb{P}(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$.

Exemples:

- On effectue n tirages successifs avec remise dans une urne contenant des boules blanches et noires dans des proportions de p et q = 1 - p. On note X le nombre de boules blanches obtenues, alors $X \hookrightarrow \mathcal{B}(n, p)$.
- Une pièce donne face avec une probabilité p et pile avec une probabilité q = 1 p. On effectue n lancers dans les mêmes conditions à chaque fois, on note X le nombre de faces obtenus, alors $X \hookrightarrow \mathcal{B}(n,p)$.

Ш ESPÉRANCE ET VARIANCE D'UNE VARIABLE ALÉATOIRE

1) **Espérance**

Définition 26.7

L'espérance d'une variable aléatoire X est le réel noté $\mathbb{E}(X)$ et défini par : $\mathbb{E}(X) = \sum_{x \in X(\Omega)} x \mathbb{P}(X = x).$

$$\mathbb{E}(X) = \sum_{x \in Y(\Omega)} x \mathbb{P}(X = x).$$

Lorsque son espérance est nulle, on dit que la variable aléatoire X est centrée.

Remarque 26.8 – Il s'agit de la moyenne pondérée des valeurs prises par X, car la somme des probabilités vaut 1.

Exemples:

- On lance un dé équilibré, X est le numéro de la face supérieure, $\mathbb{E}(X) = \sum_{i=1}^{6} \frac{i}{6} = \frac{21}{6} = \frac{7}{2}$.
- Si A est un événement, l'espérance de l'indicatrice de A est $\mathbb{E}(\mathbb{I}_A)$ = $\mathbb{P}(A)$
- L'espérance d'une variable certaine est la constante.

🔛 Théorème 26.3

Si X est une variable aléatoire sur (Ω, \mathbb{P}) alors $\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\})$.

Preuve : Soit $X(\Omega) = \{x_1, \dots, x_p\}$, soit $A_k = X^{-1}(\{x_k\})$, alors (A_1, \dots, A_p) est un système complet d'événements et $\mathbb{P}(A_k) = \{x_1, \dots, x_p\}$ $\sum_{\omega \in A_k} \mathbb{P}(\{\omega\})$. On a donc :

$$\begin{split} \sum_{\omega \in \Omega} \mathbf{X}(\omega) \mathbb{P}(\{\omega\}) &= \sum_{k=1}^{p} \left(\sum_{\omega \in \mathbf{A}_{k}} \mathbf{X}(\omega) \mathbb{P}(\{\omega\}) \right) \\ &= \sum_{k=1}^{p} \left(\sum_{\omega \in \mathbf{A}_{k}} x_{k} \mathbb{P}(\{\omega\}) \right) \\ &= \sum_{k=1}^{p} x_{k} \left(\sum_{\omega \in \mathbf{A}_{k}} \mathbb{P}(\{\omega\}) \right) \\ &= \sum_{k=1}^{p} x_{k} \mathbb{P}(\mathbf{A}_{k}) = \sum_{k=1}^{p} x_{k} \mathbb{P}(\mathbf{X} = x_{k}) = \mathbb{E}(\mathbf{X}). \end{split}$$

🔁 Théorème 26.4 (linéarité de l'espérance)

Si X et Y sont deux variables aléatoires sur (Ω, \mathbb{P}) alors pour tout réel λ :

$$\mathbb{E}(\lambda X + Y) = \lambda \mathbb{E}(X) + \mathbb{E}(Y).$$

Preuve : En utilisant le résultat du théorème précédent, on a :

$$\mathbb{E}(\lambda X + Y) = \sum_{\omega \in \Omega} [\lambda X(\omega) + Y(\omega)] \mathbb{P}(\{\omega\}) = \lambda \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\}) + \sum_{\omega \in \Omega} Y(\omega) \mathbb{P}(\{\omega\}) = \lambda \mathbb{E}(X) + \mathbb{E}(Y).$$

À retenir

Si X est une variable aléatoire alors $X - \mathbb{E}(X)$ est une variable aléatoire **centrée**. C'est la variable aléatoire centrée associée à X.

★Exercice 26.4 Une urne contient n boules numérotées de 1 à n, on les tire successivement et sans remise, on dit qu'il y a rencontre au tirage i lorsque la boule tirée est la boule numéro i . Déterminer le nombre moyen de rencontres.

Théorème 26.5 (positivité de l'espérance)

Si X est une variable aléatoire positive ou nulle sur (Ω, \mathbb{P}) alors :

- $\mathbb{E}(X) \geqslant 0$ (positivité).
- $\mathbb{E}(X) = 0 \iff \mathbb{P}(X = 0) = 1$, on dit que la variable X est **presque sûrement nulle**.

Preuve : Le premier point découle de la définition d'espérance $\mathbb{E}(X) = \sum_{k=1}^{n} x_k \mathbb{P}(X = x_k)$, car chaque valeur x_k de X est positive ou nulle et les probabilités aussi. Si cette somme est nulle, alors tous les termes doivent être nuls, X prend donc nécessairement la valeur 0 (sinon $\mathbb{E}(X) > 0$ car les probabilités ne peuvent pas être toutes nulles) et pour $x_k \neq 0$ on a forcément $\mathbb{P}(X = x_k) = 0$), ce qui entraîne que $\mathbb{P}(X = 0) = 1$ puisque la somme des probabilités doit faire 1. La réciproque est immédiate.

🙀 Théorème 26.6 (croissance de l'espérance)

Si X et Y sont deux variables aléatoires réelles définies sur (Ω, \mathbb{P}) telles que $X \leq Y$, alors $\mathbb{E}(X) \leq \mathbb{E}(Y)$.

Preuve: La variable Z = Y - X est positive, donc $\mathbb{E}(Z) \geqslant 0$, la linéarité permet alors d'écrire $\mathbb{E}(Y) - \mathbb{E}(X) \geqslant 0$ ce qui donne le résultat.

🙀 Théorème 26.7 (inégalité de Markov)

Pour tout variable aléatoire positive X on a :

$$\forall a > 0, \mathbb{P}(\{X \geqslant a\}) \leqslant \frac{\mathbb{E}(X)}{a}.$$

Preuve: Notons A = {
$$x \in X(\Omega) / x \ge a$$
}, A $\subset X(\Omega)$ donc:
$$\mathbb{E}(X) = \sum_{x \in X(\Omega)} x \mathbb{P}(X = x) \ge \sum_{x \in A} x \mathbb{P}(X = x) \ge a \sum_{x \in A} \mathbb{P}(X = x) = a \mathbb{P}(A), d'où \mathbb{P}(A) \le \frac{\mathbb{E}(X)}{a}.$$

Remarque 26.9 – On peut aussi montrer l'inégalité de Markov en remarquant que $\mathbb{1}_{X \geqslant a} \leqslant \frac{X}{a}$ et utiliser la croissance de l'espérance.

🙀 Théorème 26.8 (de transfert)

Si X est une variable aléatoire sur (Ω, \mathbb{P}) et si u est une application de $X(\Omega)$ vers \mathbb{R} , alors : $\mathbb{E}(u(X)) = \sum_{x \in X(\Omega)} u(x) \mathbb{P}(X = x).$

$$\mathbb{E}(u(X)) = \sum_{x \in X(\Omega)} u(x) \mathbb{P}(X = x).$$

Preuve : Posons $X(\Omega) = \{x_1, \dots, x_n\}$ et $A_k = X^{-1}(\{x_k\})$, alors (A_1, \dots, A_n) est un système complet d'événements de Ω , et on a:

$$\begin{split} \mathbb{E}(u(\mathbf{X})) &= \sum_{\omega \in \Omega} u(\mathbf{X}(\omega)) \mathbb{P}(\{\omega\}) \\ &= \sum_{k=1}^{n} \left(\sum_{\omega \in \mathbf{A}_{k}} u(\mathbf{X}(\omega)) \mathbb{P}(\{\omega\}) \right) = \sum_{k=1}^{n} u(x_{k}) \left(\sum_{\omega \in \mathbf{A}_{k}} \mathbb{P}(\{\omega\}) \right) \\ &= \sum_{k=1}^{n} u(x_{k}) \mathbb{P}(\mathbf{A}_{k}) = \sum_{k=1}^{n} u(x_{k}) \mathbb{P}(\mathbf{X} = x_{k}) \\ &= \sum_{x \in \mathbf{X}(\Omega)} u(x) \mathbb{P}(\mathbf{X} = x) \end{split}$$

Remarque 26.10 - La formule de droite proposée dans le théorème n'est autre que l'espérance de la variable aléatoire u sur l'espace probabilisé $(X(\Omega), \mathbb{P}_X)$. Cette formule fait intervenir la loi de probabilité de X mais pas celle de u(X), ce qui fait son interêt.

 \bigstar Exercice 26.5 $SiX \hookrightarrow \mathcal{U}(\llbracket 1; n \rrbracket)$, calculer $\mathbb{E}(X^2)$ et $\mathbb{E}(e^X)$.

2) Variance et écart-type

Définition 26.8 (moments d'une variable aléatoire)

Soit X un variable aléatoire réelle et $r \in \mathbb{N}$, on appelle **moment d'ordre** r **de la variable** X l'espérance de la variable aléatoire X^r , c'est à dire le nombre $\mathbb{E}(X^r) = \sum_{x \in X(\Omega)} x^r \mathbb{P}(X=x)$ (théorème de transfert), on le note parfois $m_r(X)$.

Remarque 26.11 – Le moment d'ordre 0 vaut 1, et le moment d'ordre 1 est l'espérance.

Définition 26.9 (variance, écart-type)

On appelle variance de la variable aléatoire X le réel $\mathbb{V}(X) = \mathbb{E}([X - \mathbb{E}(X)]^2)$, et l'écart-type de X est le réel $\sigma(X) = \sqrt{V(X)}$.

Remarque 26.12 –

- La définition a bien un sens puisque $X \mathbb{E}(X)$ est une variable aléatoire. Ces notions permettent de mesurer la dispersion de X autour de sa valeur moyenne.
- $-\mathbb{V}(X) = 0 \iff \mathbb{P}(X = \mathbb{E}(X)) = 1$, la variable aléatoire X est presque sûrement constante.
- Il résulte du théorème de transfert que $\mathbb{V}(X) = \sum_{x \in X(\Omega)} (x \mathbb{E}(X))^2 \mathbb{P}(X = x)$, mais la formule la plus utilisée est celle du théorème suivant.

Théorème 26.9 (formule de Kœnig-Huygens)

Si X est une variable aléatoire réelle sur (Ω, \mathbb{P}) alors $\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$.

Preuve: En effet:

 $(X - \mathbb{E}(X))^2 = X^2 + \mathbb{E}(X)^2 - 2X\mathbb{E}(X), \text{ l'espérance étant linéaire, on a } \mathbb{V}(X) = \mathbb{E}(X^2) + \mathbb{E}(X)^2 - 2\mathbb{E}(X)\mathbb{E}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2.$

★Exercice 26.6

1/ $Si X(\Omega) = [1; n] et P(X = k) = ak$. Calculer a, E(X) et V(X).

2/ Si X est une VAR, déterminer le minimum de la fonction $f: t \mapsto \mathbb{E}([X-t]^2)$ sur \mathbb{R} .

Il est parfois judicieux de calculer $\mathbb{E}(X(X-1))$ ou $\mathbb{E}(X(X+1))$ pour en déduire $\mathbb{E}(X^2)$.

Théorème 26.10 (propriétés)

Soit X une variable aléatoire réelle sur (Ω, \mathbb{P}) alors :

- $\mathbb{V}(X) \geqslant 0$.
- $\forall a, b \in \mathbb{R}$, $\mathbb{V}(aX + b) = a^2 \mathbb{V}(X)$ et $\sigma(aX + b) = |a|\sigma(X)$.
- Inégalité de Bienaymé-Tchebychev : $\forall \varepsilon > 0$, $\mathbb{P}(|X \mathbb{E}(X)| \ge \varepsilon|) \le \frac{\mathbb{V}(X)}{c^2}$.

- Par définition, $\mathbb{V}(X) = \mathbb{E}([X \mathbb{E}(X)]^2)$ qui est donc un réel positif par positivité de l'espérance.
- On a $\mathbb{E}(a\mathbf{X} + b) = a\mathbb{E}(\mathbf{X}) + b$ d'où $[(a\mathbf{X} + b) \mathbb{E}(a\mathbf{X} + b)]^2 = a^2[\mathbf{X} \mathbb{E}(\mathbf{X})]^2$ et donc $\mathbb{V}(a\mathbf{X} + b) = \mathbb{E}(a^2[\mathbf{X} \mathbb{E}(\mathbf{X})]^2) = a^2\mathbb{V}(\mathbf{X})$.
- En prenant la racine carrée on obtient $\sigma(aX+b)=|a|\sigma(X)$. Soit $Y=[X-\mathbb{E}(X)]^2$, alors $\mathbb{P}(|X-\mathbb{E}(X)|\geqslant \epsilon|)=\mathbb{P}(Y\geqslant \epsilon^2)\leqslant \frac{\mathbb{E}(Y)}{\epsilon^2}$ (inégalité de Markov), ce qui donne exactement le résultat.

Applications:

- Une variable aléatoire dont l'écart-type vaut 1 est appelée **variable aléatoire réduite**. Si X est une VAR dont la variance est non nulle, alors la variable aléatoire $X^* = \frac{X \mathbb{E}(X)}{\sigma(X)}$ est une variable aléatoire **centrée réduite**, appelée variable centrée réduite associée à X.
- L'inégalité de Bienaymé-Tchebychev apporte réellement un renseignement lorsque $\frac{V(X)}{\epsilon^2} \leqslant 1$, mais cette majoration est en général assez grossière et son intérêt est surtout théorique. Elle indique néanmoins que X prend des valeurs proches de sa moyenne avec une grande probabilité. On peut également l'écrire sous la forme : $\mathbb{P}(|X - \mathbb{E}(X)| < \varepsilon) \geqslant 1 - \frac{\mathbb{V}(X)}{\varepsilon^2}.$

3) Cas des lois usuelles

🚧 Théorème 26.11

- Si X est une variable certaine de valeur $a \in \mathbb{R}$, alors $\mathbb{E}(X) = a$ et $\mathbb{V}(X) = 0$.
- Si X suit la loi uniforme sur $\{x_1, \dots, x_n\}$ alors $\mathbb{E}(X) = \frac{x_1 + \dots + x_n}{n}$. En particulier si $X \hookrightarrow \mathcal{U}(\llbracket 1; n \rrbracket)$ alors $\mathbb{E}(X) = \frac{n+1}{2} \ et \ \mathbb{V}(X) = \frac{n^2-1}{12}.$
- Si X suit une loi de Bernoulli de paramètre $p \in [0;1]$ alors $\mathbb{E}(X) = p$ et $\mathbb{V}(X) = p(1-p)$.
- Si X suit une loi binomiale de paramètres n et p, alors $\mathbb{E}(X) = np$ et $\mathbb{V}(X) = np(1-p)$.

Preuve:

- Immédiat.
- Si X $\hookrightarrow \mathscr{B}(p)$, $\mathbb{E}(X) = \sum_{k=1}^{n} \frac{k}{n} = \frac{n+1}{2}$, $\mathbb{E}(X^2) = \sum_{k=1}^{n} \frac{k^2}{n} = \frac{(2n+1)(n+1)}{6}$, d'où $\mathbb{V}(X) = \frac{(2n+1)(n+1)}{6} \frac{(n+1)^2}{4} = \frac{(n+1)(n-1)}{12}$. Si X $\hookrightarrow \mathscr{B}(p)$, $\mathbb{E}(X) = \mathbb{P}(X=1) = p$, X^2 suit la même loi que X donc $\mathbb{V}(X) = p p^2 = p(1-p)$.
- Si X $\hookrightarrow \mathcal{B}(n,p)$, il s'agit de calculer $\mathbb{E}(X) = \sum_{k=0}^{n} k \binom{n}{k} p^k q^{n-k}$ (avec q=1-p), cette expression est la dérivée en 1 de la

function $f(x) = \sum_{k=0}^{n} {n \choose k} x^k p^k q^{n-k} = (px+q)^n$, d'où $f'(x) = pn(px+q)^{n-1}$ et donc f'(1) = np.

Autre méthode: une pièce donne face avec une probabilité p et pile avec une probabilité q = 1 - p. On effectue nlancers dans les mêmes conditions à chaque fois, on note X le nombre de faces obtenus, alors $X \hookrightarrow \mathcal{B}(n,p)$. Notons X_i la variable aléatoire valant 1 si on a obtenu face au lancer numéro i, 0 sinon, alors $X_i \hookrightarrow \mathcal{B}(p)$ et $X = X_1 + \cdots + X_n$, d'où $\mathbb{E}(X) = \mathbb{E}(X_1) + \cdots + \mathbb{E}(X_n) = np.$

Pour la variance, on calcule $\mathbb{E}(X(X-1)) = \sum_{k=0}^{n} k(k-1) {n \choose k} p^k q^{n-k} = f''(1)$ avec les notations ci-dessus, or $f''(x) = p^2 n(n-1)(px+q)^{n-2}$ et donc $\mathbb{E}(X(X-1)) = n(n-1)p^2 = \mathbb{E}(X^2) - \mathbb{E}(X)$, d'où $\mathbb{E}(X^2) = n(n-1)p^2 + np = np[np-p+1]$ et $\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^n = np[np - p + 1] - (np)^2 = np(1 - p).$

COUPLES DE VARIABLES ALÉATOIRES

Définitions

Définition 26.10

Soient X et Y deux variables aléatoires sur (Ω, \mathbb{P}) à valeurs dans E pour X et F pour Y, on appelle couple des variables X et Y, et on note Z = (X,Y), l'application :

Z:
$$\Omega \rightarrow E \times F$$

 $\omega \mapsto Z(\omega) = (X(\omega), Y(\omega))$

Remarque 26.13 – L'application Z est une variable aléatoire sur (Ω, \mathbb{P}) et $Z(\Omega) \subset X(\Omega) \times Y(\Omega)$.

Définition 26.11 (loi conjointe)

Soient X: $\Omega \to E$ et Y: $\Omega \to F$ deux variables aléatoires sur (Ω, \mathbb{P}) . On appelle **loi conjointe du couple** des variables X et Y, la loi de la variable aléatoire Z = (X, Y), c'est à dire l'application :

$$Z(\Omega) \rightarrow [0;1]$$

 $(x,y) \mapsto \mathbb{P}([X=x] \cap [Y=y])$

Remarque 26.14 – Déterminer la loi conjointe revient donc à déterminer $X(\Omega) = \{x_1, ..., x_n\}$ et $Y(\Omega) = \{x_1$ $\{y_1,\ldots,y_p\}$, puis à calculer les probabilités $p_{ij}=\mathbb{P}([X=x_i]\cap [Y=y_j])$ pour $(i,j)\in [1;n]\times [1;p]$. Dans la pratique on présente la loi conjointe sous forme d'un tableau :

X	y_1	<i>y</i> ₂		Ур
x_1	p_{11}	p_{12}	•••	p_{1p}
x_2	p_{21}	p_{22}		p_{2p}
:	:	÷		÷
x_n	p_{n1}	p_{n2}		p_{np}

Définition 26.12 (lois marginales)

Si (X,Y) est un couple de variables aléatoires sur (Ω,\mathbb{P}) , les lois de probabilités de X et de Y sont appelées lois marginales du couple.

√ À retenir

La loi conjointe permet d'obtenir les lois marginales, car on peut écrire (avec les notations précé-

$$\mathbb{P}(X = x_i) = \sum_{j=1}^{p} \mathbb{P}([X = x_i] \cap [Y = y_j]) = \sum_{j=1}^{p} p_{ij}$$

et:

P(Y =
$$x_j$$
) = $\sum_{i=1}^{n} \mathbb{P}([X = x_i] \cap [Y = y_j]) = \sum_{i=1}^{n} p_{ij}$.
Notation: on écrit $p_{i\bullet} = \mathbb{P}(X = x_i)$ et $p_{\bullet j} = \mathbb{P}(Y = y_j)$.

★Exercice 26.7 On lance 2 dés parfaits, on note X le minimum des deux résultats et Y le maximum. Déterminer la loi conjointe et les lois marginales.

Attention!

La connaissance des lois marginales ne permet pas en général de retrouver la loi conjointe, comme on peut s'en convaincre sur l'exemple précédent.

Définition 26.13

Soient X: $\Omega \to E$ et Y: $\Omega \to F$ deux variables aléatoires sur (Ω, \mathbb{P}) . Soit $y \in Y(\Omega)$, on appelle **loi conditionnelle de** X **sachant** (Y = y) la loi de X dans l'espace $(\Omega, \mathbb{P}_{(Y=y)})$, c'est à dire l'application :

$$\begin{array}{ccc} X(\Omega) & \to & [0;1] \\ x & \mapsto & \mathbb{P}_{(Y=y)}(X=x) = \frac{\mathbb{P}([X=x] \cap [Y=y])}{\mathbb{P}(Y-y)} \end{array}$$

 $x \mapsto \mathbb{P}_{(Y=y)}(X=x) = \frac{\mathbb{P}([X=x] \cap [Y=y])}{\mathbb{P}(Y=y)}.$ De même, soit $x \in X(\Omega)$, on appelle **loi conditionnelle de** Y **sachant** (X=x) la loi de Y dans l'espace $(\Omega, \mathbb{P}_{(X=x)})$, c'est à dire l'application :

$$\begin{array}{ccc} Y(\Omega) & \to & [0;1] \\ y & \mapsto & \mathbb{P}_{(X=x)}(Y=y) = \frac{\mathbb{P}([Y=y] \cap [X=x])}{\mathbb{P}(X=x)} \end{array}.$$

Exemple: En reprenant l'exercice précédent, la loi de X sachant (Y = 4) est :

x_i	1	2	3	4	5	6
$\mathbb{P}_{(Y=4)}(X=x_i)$	$\frac{2}{7}$	$\frac{2}{7}$	$\frac{2}{7}$	$\frac{1}{7}$	0	0

Plus généralement
$$\mathbb{P}_{(\mathbf{Y}=j)}(\mathbf{X}=i) = egin{cases} 0 & \text{si } i>j \\ \frac{1/36}{2j-1} = \frac{1}{2j-1} & \text{si } i=j \\ \frac{2/36}{\frac{2j-1}{2c}} = \frac{2}{2j-1} & \text{si } i< j \end{cases}$$

Il découle de la formule des probabilités totales :

[→] À retenir

Si (X, Y) est un couple de variables aléatoires sur (Ω, \mathbb{P}) , on suppose que pour tout $x \in X(\Omega)$ et tout Solution of the couple as $Y \in Y(\Omega)$, $\mathbb{P}(X = x) \neq 0$ et $\mathbb{P}(Y = y) \neq 0$, alors: $\mathbb{P}(X = x) = \sum_{y \in Y(\Omega)} \mathbb{P}(Y = y) \times \mathbb{P}_{(Y = y)}(X = x),$

$$\mathbb{P}(X = x) = \sum_{y \in Y(\Omega)} \mathbb{P}(Y = y) \times \mathbb{P}_{(Y = y)}(X = x),$$

et:

$$\mathbb{P}(Y = y) = \sum_{x \in X(\Omega)} \mathbb{P}(X = x) \times \mathbb{P}_{(X = x)}(Y = y),$$

La notion de couple de variables aléatoires se généralise à un n-uplet de variables aléatoires :

Définition 26.14 (généralisation : vecteurs aléatoires)

Soient, $X_1, ..., X_n$ des variables aléatoires sur (Ω, \mathbb{P}) à valeurs dans $E_1, ..., E_n$ respectivement, le vecteur aléatoire $Z = (X_1, ..., X_n)$ est l'application :

Z:
$$\Omega \rightarrow E_1 \times \cdots \times E_n$$

 $\omega \mapsto Z(\omega) = (X_1(\omega), \cdots, X_n(\omega))$

La loi conjointe du vecteur Z est la loi de probabilité de la variable aléatoire $Z = (X_1, ..., X_n)$, c'est à dire l'application :

$$\begin{array}{ccc} Z(\Omega) & \to \mathbb{R} \\ (x_1,\dots,x_n) & \mapsto & \mathbb{P}([X_1=x_1]\cap\dots\cap[X_n=x_n]) \end{array}.$$

et les lois des variables aléatoires $X_1, ..., X_n$ sont appelées lois marginales du vecteur Z.

Indépendance de variables aléatoires 2)

Définition 26.15

Soient X et Y deux variables aléatoires sur (Ω, \mathbb{P}) , on dit que X et Y sont indépendantes lorsque :

$$\forall A \subset X(\Omega), \forall B \subset Y(\Omega), \mathbb{P}([X \in A] \cap [Y \in B]) = \mathbb{P}(X \in A) \times \mathbb{P}(Y \in B),$$

c'est à dire les événements $(X \in A)$ et $(Y \in B)$ sont indépendants.

🙀 Théorème 26.12

Deux variables aléatoires X et Y sur (Ω, \mathbb{P}) sont indépendantes si et seulement si :

$$\forall (x,y) \in \mathrm{X}(\Omega) \times \mathrm{Y}(\Omega), \, \mathbb{P}([\mathrm{X}=x] \cap [\mathrm{Y}=y]) = \mathbb{P}(\mathrm{X}=x) \times \mathbb{P}(\mathrm{Y}=y).$$

Preuve: Le sens \implies est évident. Montrons la réciproque : soient A une partie de $X(\Omega)$ et B une partie de $Y(\Omega)$, on a alors $[X \in A] \cap [Y \in B] = \bigcup_{(x,y) \in A \times B} [X = x] \cap [Y = y]$ et ces événements sont incompatibles deux à deux, d'où :

$$\mathbb{P}([X \in A] \cap [Y \in B]) = \sum_{(x,y) \in A \times B} \mathbb{P}([X = x] \cap [Y = y])$$

$$= \sum_{(x,y) \in A \times B} \mathbb{P}(X = x) \times \mathbb{P}(Y = y) \text{ (d'après l'hypothèse)}$$

$$= \sum_{x \in A} \sum_{y \in B} \mathbb{P}(X = x) \times \mathbb{P}(Y = y)$$

$$= \left(\sum_{x \in A} \mathbb{P}(X = x)\right) \times \left(\sum_{y \in B} \mathbb{P}(Y = y)\right)$$

$$= \mathbb{P}(X \in A) \times \mathbb{P}(Y \in B)$$

donc les deux variables aléatoires sont indépendantes.

Remarque 26.15 – Lorsque X et Y sont deux variables aléatoires indépendantes sur (Ω, \mathbb{P}) , la connaissance des deux lois marginales permet de reconstituer la loi conjointe car $p_{ij} = p_{i\bullet} \times p_{\bullet j}$, et les lois conditionnelles sont égales aux lois marginales.

Exemple: Dans l'exercice 7, les variables aléatoires X et Y ne sont pas indépendantes.

Théorème 26.13 (indépendance de fonctions de variables aléatoires)

Soient X et Y deux variables aléatoires indépendantes sur (Ω, \mathbb{P}) , si f est une application sur $X(\Omega)$ et g une application sur $Y(\Omega)$, alors les variables aléatoires f(X) et g(Y) sont indépendantes.

Preuve: Soient $a \in \text{Im}(f)$ et $b \in \text{Im}(g)$, soit $A = f^{-1}(\{a\})$ et $B = g^{-1}(\{b\})$, alors:

$$\mathbb{P}([f(X) = a] \cap [g(Y) = b]) = \mathbb{P}([X \in A] \cap [Y \in B]) = \mathbb{P}(X \in A) \times \mathbb{P}(Y \in B) = \mathbb{P}(f(X) = a) \times \mathbb{P}(g(Y) = b)$$

Les variables aléatoires f(X) et g(Y) sont donc indépendantes.

Voici un autre résultat utile :

Soit X et Y deux variables aléatoires indépendantes sur (Ω, \mathbb{P}) , et $f: X(\Omega) \times Y(\Omega) \to E$, alors:

$$\mathbb{P}(f(\mathbf{X},\mathbf{Y})=z)=\sum_{(x,y)\in f^{-1}(\{z\})}\mathbb{P}(\mathbf{X}=x)\times\mathbb{P}(\mathbf{Y}=y).$$

En effet, il suffit de remarquer que l'événement (f(X,Y) = z) s'écrit

★Exercice 26.8 Soient X et Y deux variables aléatoires indépendantes sur (Ω, ℙ) suivant la même loi uniforme sur [1; n]. Déterminer les lois de X + Y et de X - Y.

Définition 26.16 (généralisation : indépendance de n variables aléatoires)

Soit $(X_1, ..., X_n)$ un vecteur aléatoire sur (Ω, \mathbb{P}) à valeurs dans $E_1 \times \cdots \times E_n$. On dit que ces n variables aléatoires sont :

- deux à deux indépendantes : lorsque pour tout couple $(i, j) \in [1; n]^2$, X_i et X_j sont indépendantes ;
- mutuellement indépendantes : lorsque pour toute partie A_1 de E_1 , A_2 de E_2 ,..., A_n de E_n , les événements $(X_1 \in A_1), ..., (X_n \in A_n)$ sont mutuellement indépendants.

Remarque 26.16 - Comme pour les événements, l'indépendance mutuelle des variables aléatoires entraîne l'indépendance deux à deux, mais la réciproque est fausse.

En généralisant la preuve du théorème 26.12

Théorème 26.14

Les variables aléatoires X_1, \ldots, X_n sur (Ω, \mathbb{P}) sont mutuellement indépendantes si et seulement si : pour tout $(x_1,...,x_n) \in X_1(\Omega) \times \cdots \times X_n(\Omega)$, les événements $(X_1 = x_1),...,(X_n = x_n)$ sont mutuellement indépendantes.

De même, on montrerait que $f_1(X_1), \ldots, f_n(X_n)$ sont mutuellement indépendantes, avec $f_i: X_i(\Omega) \to F_i$.

Théorème 26.15

On considère des variables aléatoires X_1, \ldots, X_n sur (Ω, \mathbb{P}) mutuellement indépendantes.

- Soit $1 , les variables aléatoires <math>Y = (X_1, ..., Y_p)$ et $Z = (X_{p+1}, ..., X_n)$ sont indépendantes.
- Si f est une fonction à p variables et g à n-p variables, alors $f(X_1,...,X_p)$ et $g(X_{p+1},...,X_n)$ sont indépendantes.

Preuve : Celle-ci est simple et laissée en exercice.

Remarque 26.17 – Le résultat ci-dessus se généralise au cas où on partage l'ensemble des n variables aléatoires en plus de deux parties, on remplace alors « indépendantes » par « mutuellement indépendantes » dans les conclusions. Par exemple, si X, Y, Z et T sont mutuellement indépendantes, alors XY et ZT sont indépendantes, les variables aléatoires X, Y + Z et T^2 sont mutuellement indépendantes etc.

3) Applications de l'indépendance

🔛 Théorème 26.16

 $Si X_1,...,X_n$ n variables aléatoires sur (Ω,\mathbb{P}) suivent toutes une même loi de Bernoulli de paramètre $p \in [0;1]$, et sont mutuellement indépendantes, alors la somme $X_1 + \cdots + X_n$ suit une loi binomiale de paramètre n et p.

Preuve: On a $X_i \hookrightarrow \mathcal{B}(p)$, soit $X = X_1 + \cdots + X_n$, alors $X(\Omega) = [0; n]$, l'événement (X = k) se réalise si et seulement si kdes variables X_i prennent la valeur 1 et les n-k autres la valeur 0, il y a donc $\binom{n}{k}$ cas possibles incompatibles deux à deux, calculons la probabilité d'un cas : notons X_{i_1},\dots,X_{i_k} celles qui prennent la valeur 1 et $X_{i_{k+1}},\dots,X_{i_n}$ les autres alors du fait de l'indépendance, on a :

$$\mathbb{P}([\mathbf{X}_{i_1}=1]\cap\cdots\cap[\mathbf{X}_{i_k}=1]\cap[\mathbf{X}_{i_{k+1}}=0]\cap\cdots\cap[\mathbf{X}_{i_n}=0]) = \\ \mathbb{P}(\mathbf{X}_{i_1}=1)\times\cdots\times\mathbb{P}(\mathbf{X}_{i_k}=1)\times\mathbb{P}(\mathbf{X}_{i_{k+1}}=0)\times\cdots\times\mathbb{P}(\mathbf{X}_{i_n}=0) = p^k(1-p)^{n-k}.$$
 par conséquent $\mathbb{P}(\mathbf{X}=k) = \binom{n}{k}p^k(1-p)^{n-k}$.

П

Si $X \hookrightarrow \mathcal{B}(n, p)$, alors on peut écrire $X = X_1 + \cdots + X_n$ où les X_i sont mutuellement indépendantes et suivent toutes la loi de Bernoulli de paramètre p. On a donc $\mathbb{E}(X) = \mathbb{E}(X_1) + \cdots + \mathbb{E}(X_n) = p + \cdots + p = np$.

 \bigstar Exercice 26.9 Soit $(X_k)_{k \in [\![1;m]\!]}$ m variables aléatoires sur (Ω,\mathbb{P}) qui suivent toutes une loi binomiale de paramètre (n_k,p) (respectivement) avec $p \in [0;1]$, et sont mutuellement indépendantes, alors :

$$X_1 + \cdots + X_m \hookrightarrow \mathcal{B}(n_1 + \cdots + n_m, p).$$

Théorème 26.17 (espérance d'un produit)

Si X et Y sont deux variables aléatoires indépendantes sur (Ω, \mathbb{P}) , alors $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$, mais la réciproque est fausse. Le résultat se généralise au produit de n variables aléatoires mutuellement indépendantes.

Preuve: Soit Z = (X, Y) et $u: (x, y) \mapsto xy$, alors:

$$\begin{split} \mathbb{E}(\mathbf{X}\mathbf{Y}) &= \mathbb{E}(u(\mathbf{Z})) = \sum_{(x,y) \in \mathbf{Z}(\Omega)} u(x,y) \mathbb{P}(\mathbf{Z} = (x,y)) \text{ (th\'eor\`eme de transfert)} \\ &= \sum_{(x,y) \in \mathbf{X}(\Omega) \times \mathbf{Y}(\Omega)} xy \mathbb{P}(\mathbf{X} = x) \times \mathbb{P}(\mathbf{Y} = y) \text{) (ind\'ependance)} \\ &= \left(\sum_{x \in \mathbf{X}(\Omega)} x \mathbb{P}(\mathbf{X} = x)\right) \left(\sum_{y \in \mathbf{Y}(\Omega)} y \mathbb{P}(\mathbf{Y} = y)\right) \\ &= \mathbb{E}(\mathbf{X}) \mathbb{E}(\mathbf{Y}) \end{split}$$

une récurrence permet ensuite la généralisation.

★Exercice 26.10 Soit X une variable aléatoire qui suit une loi uniforme sur {-1;0;1} et Y la fonction indicatrice de l'événement (X = 0). Montrer que $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ mais que X et Y ne sont pas indépendantes.

Théorème 26.18 (variance et indépendance)

Si X et Y sont deux variables aléatoires indépendantes sur (Ω, \mathbb{P}) , alors $\mathbb{V}(X + Y) = \mathbb{V}(X) + \mathbb{V}(Y)$. Le résultat se généralise au cas de n variables aléatoires mutuellement indépendantes.

Preuve : D'après la formule de Kœnig-Huygens, $\mathbb{V}(X+Y) = \mathbb{E}([X+Y]^2) - [\mathbb{E}(X) + \mathbb{E}(Y)]^2$ avec la linéarité de l'espérance, on a donc $\mathbb{V}(X+Y) = \mathbb{E}(X^2) + \mathbb{E}(Y^2) + 2\mathbb{E}(XY) - \mathbb{E}(X)^2 - \mathbb{E}(Y)^2 - 2\mathbb{E}(X)\mathbb{E}(Y) = \mathbb{V}(X) + \mathbb{V}(Y)$ car les variables aléatoires étant indépendantes, on a $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$. Une récurrence permet ensuite la généralisation.

Si $X \hookrightarrow \mathcal{B}(n,p)$, alors on peut écrire $X = X_1 + \cdots + X_n$ où les X_i sont mutuellement indépendantes et suivent toutes la loi de Bernoulli de paramètre p. On a donc $\mathbb{V}(X) = \mathbb{V}(X_1) + \cdots + \mathbb{V}(X_n) = p(1-p) + \cdots + p(1-p)$ $\cdots + p(1-p) = np(1-p).$

Covariance

Définition 26.17

Soient X et Y deux variables aléatoires réelles sur (Ω, \mathbb{P}) . On appelle **covariance de** X **et** Y le réel défini par:

$$cov(X,Y) = \mathbb{E}([X - \mathbb{E}(X)][Y - \mathbb{E}(Y)]).$$

Remarque 26.18 - C'est l'espérance du produit des variables centrées associées à X et Y. Lorsque Y = X on a $cov(X,X) = V(X) \geqslant 0$, on dit que la covariance est positive.

Théorème 26.19 (propriétés de la covariance)

Soient X et Y deux variables aléatoires réelles sur (Ω, \mathbb{P}) :

- $cov(X, Y) = \mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y)$;
- cov(Y, X) = cov(X, Y), la covariance est symétrique;
- La covariance est bilinéaire : cov(aX + Y,Z) = acov(X,Z) + cov(Y,Z) (même chose sur la deuxième variable);

- $\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y) + 2\operatorname{cov}(X,Y)$;
- Si X et Y sont indépendantes, alors cov(X, Y) = 0 mais la réciproque est fausse.

Preuve:

- On a $[X \mathbb{E}(X)][Y \mathbb{E}(Y)] = XY \mathbb{E}(X)Y \mathbb{E}(Y)X + \mathbb{E}(X)\mathbb{E}(Y)$, on applique ensuite la linéarité de l'espérance ce qui donne la formule;
- immédiat;
- On utilise la formule ci-dessus et la linéarité de l'espérance : $\mathbb{E}([aX+Y]Z) \mathbb{E}(aX+Y)\mathbb{E}(Z) = a\mathbb{E}(XZ) + \mathbb{E}(YZ) a\mathbb{E}(X)\mathbb{E}(Z) a\mathbb{E}(XZ) + \mathbb{E}(YZ) a\mathbb{E}(YZ) + \mathbb{E}(YZ) + \mathbb{E}(YZ) a\mathbb{E}(YZ) + \mathbb{E}(YZ) + a\mathbb{E}(YZ) + a\mathbb{E}(YZ)$ $\mathbb{E}(Y)\mathbb{E}(Z) = a\operatorname{cov}(X, Z) + \operatorname{cov}(Y, Z)$. Par symétrie on a la linéarité sur la deuxième variable.
- D'après un calcul fait plus haut : $\mathbb{V}(X+Y) = \mathbb{E}([X+Y]^2) [\mathbb{E}(X) + \mathbb{E}(Y)]^2$ avec la linéarité de l'espérance, on a donc $\mathbb{V}(X+Y) = \mathbb{E}(X^2) + \mathbb{E}(Y^2) + 2\mathbb{E}(XY) - \mathbb{E}(X)^2 - \mathbb{E}(Y)^2 - 2\mathbb{E}(X)\mathbb{E}(Y) = \mathbb{V}(X) + \mathbb{V}(Y) + 2\text{cov}(X,Y).$
- On sait que si X et Y sont indépendantes alors $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ ce qui donne cov(X,Y) = 0.

Remarque 26.19 – La covariance est une forme bilinéaire symétrique et positive, mais ce n'est pas un produit scalaire car $\mathbb{V}(X) = 0$ n'entraîne pas X = 0, mais seulement $\mathbb{P}(X = m) = 1$. On peut cependant établir l'inégalité de Cauchy-Schwarz pour ce type d'applications, ce qui ce traduit ici par :

$$cov(X,Y)^2 \le V(X)V(Y)$$
 ou encore $|cov(X,Y)| \le \sigma(X)\sigma(Y)$

★Exercice 26.11 On lance deux fois un dé équilibré dans les mêmes conditions, on note S la somme obtenue et D la différence (premier moins deuxième). Calculer cov(S,D). Les variables aléatoires S et S sont-elles indépendantes?

🔛 Théorème 26.20

 $Si\,X_1,\dots,X_n$ sont des variables aléatoires sur (Ω,\mathbb{P}) alors :

$$\mathbb{V}(\mathbf{X}_1 + \dots + \mathbf{X}_n) = \sum_{i=1}^n \mathbb{V}(\mathbf{X}_i) + 2 \sum_{1 \leqslant i < j \leqslant n} \operatorname{cov}(\mathbf{X}_i, \mathbf{Y}_j).$$

Si les variables aléatoires X_i sont **deux à deux indépendantes**, alors :

$$\mathbb{V}(\mathbf{X}_1 + \dots + \mathbf{X}_n) = \sum_{i=1}^n \mathbb{V}(\mathbf{X}_i).$$

Preuve : La deuxième formule découle de la première, et la première se montre par récurrence sur n.

Définition 26.18

Lorsque cov(X, Y) = 0 on sait que les variables aléatoires ne sont pas forcément indépendantes, on dit qu'elles sont non corrélées.

Plus généralement, lorsque $\mathbb{V}(X)$ et $\mathbb{V}(Y)$ sont non nuls, on sait que $\frac{\text{cov}(X,Y)}{\sigma(X)\sigma(Y)} \in [-1;1]$, ce nombre est appelé coefficient de corrélation entre X et Y.

- **\bigstar Exercice 26.12** On suppose que $\mathbb{V}(X)$ et $\mathbb{V}(Y)$ sont non nuls et le coefficient de corrélation vaut ± 1 . Montrer qu'il existe deux réels a et b tel que $\mathbb{P}(Y = aX + b) = 1$, c'est à dire il est presque sûr que Y = aX + b.
- ★Exercice 26.13 Montrer que deux variables de Bernoulli sont indépendantes si et seulement si elles sont non corrélées.

SOLUTION DES EXERCICES

Solution 26.1 $\Omega = [1;6]^2$, $X(\Omega) = [2;12]$ $et \mathbb{P}(X = k) = \mathbb{P}(\{(i,j) \in [1;6]\}^2 / i + j = k\})$. On doit avoir $j = k - i \in [1;6]$, d'où $k-6\leqslant i\leqslant k-1 \ avec \ i\in \llbracket 1;6
rbracket, \ alors\ \mathbb{P}(X=k)=\sum\limits_{i=1}^{k-1}\mathbb{P}(\{(i,k-i)\})=rbrac{k-1}{36},\ et\ si\ 7\leqslant k\leqslant 12\ alors$ $\mathbb{P}(X = k) = \sum_{i=k}^{6} \mathbb{P}(\{(i, k-i)\}) = \frac{13-k}{36}.$

Solution 26.2 Il suffit d'écrire que $(X \le k) = (X = k) \cup (X \le k - 1)$ et que $(X \ge k) = (X = k) \cup (X \ge k + 1)$ (réunion d'événements incompatibles).

Solution 26.3 $X(\Omega) = [-5;5]$, $si \ k = i - j \ alors \ i = k + j \in [1;6]$ $d'où \ 1 - k \le j \le 6 - k$, $d'où \ la \ discussion$, $si \ k \le 0$, $alors \ \mathbb{P}(X = k) = \sum_{j=1-k}^{6} \mathbb{P}(\{(k+j,j)\}) = \frac{6+k}{36}$, $et \ si \ k \ge 1$, $\mathbb{P}(X = k) = \sum_{j=1}^{6-k} \mathbb{P}(\{(k+j,j)\}) = \frac{6-k}{36}$. $\mathbb{P}(|X| = k) = \mathbb{P}((X = k) \cup (X = -k)) = \frac{1}{6} \ si \ k = 0 \ et \ \frac{6-k}{18} \ si \ k \in [\![1;5]\!].$ $\mathbb{P}(X^2 = k^2) = \mathbb{P}((X = k) \cup (X = -k)) = \frac{1}{6} et \frac{6-k}{12} si k \in [1;5].$

Solution 26.4 Soit X le nombre de rencontres, on demande $\mathbb{E}(X)$, notons X_i la variable aléatoire qui vaut 1 si le i^e tirage est une rencontre, 0 sinon (variable de Bernoulli), on a alors $X = X_1 + \cdots + X_n$ et donc $\mathbb{E}(X) = \sum_{i=1}^n \mathbb{E}(X_i) = \sum_{i=1}^n \mathbb{P}(X_i = 1)$. On peut modéliser l'expérience par le choix équiprobable d'une permutation des n boules, on alors $\mathbb{P}(X_i = 1) = \frac{(n-1)!}{n!} = \frac{1}{n}$ (autrement dit $X_i \hookrightarrow \mathcal{B}(\frac{1}{n})$) et donc $\mathbb{E}(X) = 1$.

Solution 26.5
$$\mathbb{E}(X^2) = \sum_{k=1}^n k^2 \frac{1}{n} = \frac{(2n+1)(n+1)}{6}$$
, $et \mathbb{E}(e^X) = \sum_{k=1}^n e^k \frac{1}{n} = \frac{e(e^n-1)}{n(e-1)}$.

Solution 26.6

1/ On doit avoir $\sum_{k=1}^{n} ak = 1$ d'où $a = \frac{2}{n(n+1)}$. $\mathbb{E}(X) = \sum_{k=1}^{n} ak^2 = \frac{2}{n(n+1)} \frac{(2n+1)n(n+1)}{6} = \frac{2n+1}{3}$. $\mathbb{E}(X^2) = \sum_{k=1}^{n} ak^3 = \frac{n(n+1)}{2}$, $\mathbb{E}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \frac{n(n+1)}{2} - \frac{(2n+1)^2}{9} = \frac{(n-1)(n+2)}{18}$.

2/ $f(t) = \mathbb{E}(X^2) - 2t\mathbb{E}(X) + t^2 = (t - \mathbb{E}(X))^2 + \mathbb{E}(X^2) - \mathbb{E}(X)^2 = (t - \mathbb{E}(X))^2 + \mathbb{V}(X)$, cette quantité est minimale lorsque $t = \mathbb{E}(X)$ et le minimum est $\mathbb{V}(X)$.

Solution 26.7 *On* $a X(\Omega) = Y(\Omega) = [1;6]$, $pour(i,j) \in [1;6]$, on $a p_{ij} = 0$ si i > j, $p_{ii} = \frac{1}{36}$ $et p_{ij} = \frac{1}{18}$ si i < j, d'où la table:

X	1	2	3	4	5	6	$p_{i\bullet}$
1	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{11}{36}$
2	0	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{11}{36}$ $\frac{9}{36}$ $\frac{7}{36}$
3	0	0	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{7}{36}$
4	0	0	0	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{18}$	<u>5</u> 36
5	0	0	0	0	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$
6	0	0	0	0	0	$\frac{1}{36}$	$\frac{1}{36}$
$p_{\bullet j}$	$\frac{1}{36}$	$\frac{1}{12}$	<u>5</u> 36	$\frac{7}{36}$	<u>9</u> 36	11 36	1

Solution 26.8 Soit Z = X + Y, $alors Z(\Omega) = [2; 2n]$ et:

$$\begin{split} \mathbb{P}(Z = k) &= \sum_{i = \max(k - n, 1)}^{\min(k - 1, n)} \mathbb{P}(X = i) \times \mathbb{P}(Y = k - i) \\ &= \frac{\min(k - 1, n) - \max(k - n, 1) + 1}{n^2} = \frac{n - |n + 1 - k|}{n^2} \\ &= \begin{cases} \frac{k - 1}{n^2} & \text{si } k \leqslant n + 1 \\ \frac{2n + 1 - k}{n^2} & \text{sinon} \end{cases} \end{split}$$

De même, en posant H = X - Y, on montre que $H(\Omega) = [-(n-1); (n-1)]$ et $\mathbb{P}(H = k) = \frac{n-|k|}{n^2}$.

Solution 26.9 Par récurrence sur m, il suffit de montrer le théorème pour m = 2: soit $Z = X_1 + X_2$, alors $Z(\Omega) = [0; n_1 + n_2]$ et .

$$\begin{split} \mathbb{P}(Z=k) &= \sum_{i=0}^{k} \mathbb{P}([X_{1}=i] \cap [X_{2}=k-i]) \\ &= \sum_{i=0}^{k} \mathbb{P}(X_{1}=i) \times \mathbb{P}(X_{2}=k-i) \; (ind\acute{e}pendance) \\ &= \sum_{i=0}^{k} \binom{n_{1}}{i} p^{i} (1-p)^{n_{1}-i} \binom{n_{2}}{k-i} p^{k-i} (1-p)^{n_{2}-k+i} \; (en \; convenant \; que \binom{n}{k} = 0 \; si \; k > n \; ou \; k < 0) \\ &= \sum_{i=0}^{k} \binom{n_{1}}{i} p^{i} (1-p)^{n_{1}-i} \binom{n_{2}}{k-i} p^{k-i} (1-p)^{n_{2}-k+i} \\ &= \sum_{i=0}^{k} \binom{n_{1}}{i} \binom{n_{2}}{k-i} p^{k} (1-p)^{n_{1}+n_{2}-k} \\ &= p^{k} (1-p)^{n_{1}+n_{2}-k} \sum_{i=0}^{k} \binom{n_{1}}{i} \binom{n_{2}}{k-i} \\ &= \binom{n_{1}+n_{2}}{k} p^{k} (1-p)^{n_{1}+n_{2}-k} \; (formule \; de \; Vandermonde) \end{split}$$

 $donc X_1 + X_2 \hookrightarrow \mathcal{B}(n_1 + n_2, p)$. Le passage du rang n au rang n + 1 se ramène au rang 2 en posant $X_2' = X_2 + \cdots + X_{n+1}$.

Solution 26.10 Ces variables ne sont pas indépendantes, car $\mathbb{P}([X=1] \cap [Y=1]) = \mathbb{P}([X=1] \cap [X=0]) = 0$ alors que $\mathbb{P}(X=1) \times \mathbb{P}(Y=1) = \frac{1}{9}$. D'autre part $\mathbb{E}(X) = 0$, $\mathbb{E}(Y) = \frac{1}{3}$, et $\mathbb{E}(XY) = 0$ car XY est une variable certaine égale à 0, on a donc $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.

Solution 26.11 Soit X le premier résultat et Y le second, alors S = X + Y et D = X - Y, on calcule donc cov(X + Y, X - Y) = V(X) - cov(X, Y) + cov(Y, X) - V(Y) = 0 car X et Y suivent la même loi uniforme sur [1; 6]. Les deux variables aléatoires ne sont pas indépendantes car par exemple $P([S = 3] \cap [D = 0]) = 0$ alors que P(S = 3) et P(D = 0) ne sont pas nulles.

Solution 26.12 Reprendre la démonstration du cas d'égalité de Cauchy-Schwarz vue dans les espaces euclidiens en partant de $\mathbb{V}(\lambda X + Y) \geqslant 0$ pour tout réel λ .

Solution 26.13 Il y a déjà un sens connu : indépendantes implique non corrélées. Supposons X et Y non corrélées et suivant une loi de Bernoulli de paramètres respectifs p_1 et p_2 , alors XY suit une loi de Bernoulli, de paramètre $p = \mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y) = p_1p_2$, par conséquent $\mathbb{P}([X=1] \cap [Y=1]) = \mathbb{P}(X=1) \times \mathbb{P}(Y=1)$, les événements (X=1) et (Y=1) sont indépendants, donc (X=0) et (Y=1) aussi etc. Les deux variables aléatoires sont indépendantes.