1200V/5.5mΩ Half Bridge SiC MOSFET Module

Description

The DFS05HF12EYR1 is a half bridge SiC MOSFET Power Module. It integrates high performance SiC MOSFET chips designed for the applications such as Solar Inverter Systems, Fuel cell-DC/DC converter, Uninterruptible Power Supplier, Energy Storage Systems.

Features

- Blocking voltage:1200V
- $5.5 \text{m}\Omega \text{ R}_{ds(on)}$
- Low Switching Losses
- 175°C maximum junction temperature
- Si₃N₄ AMB
- Thermistor inside

Applications

- Solar inverter Systems
- Fuel cell-DC/DC converter
- Uninterruptible Power Supplier
- Energy Storage Systems

Circuit diagram

Figure 1. Out drawing & circuit diagram for DFS05HF12EYR1

1200V/5.5mΩ Half Bridge SiC MOSFET Module

Pin Configuration and Marking Information

Figure 2. Pin configuration

Symbol	Description	
AC	Output terminal of half bridge	
S2	Low side source signal terminal	
G2	Low side gate signal terminal	
DC+	DC+ Bus connection	
DC-	DC- Bus connection	
S1	High side source signal terminal	
G1	High side gate signal terminal	
T1	Thermistor connection 1	
T2	Thermistor connection 2	

Module

Parameter	Conditions	Value	Unit
Isolation voltage	Isolation voltage RMS, f=50Hz, t=1min		kV
Classics	Terminal to Terminal	5	mm
Clearance	Terminal to Heatsink	10	mm
Constant distant	Terminal to Terminal	6.3	mm
Creepage distance	Terminal to Heatsink	12.7	mm
Comparative Tracking Index	-	600	-
Weight	-	26	g

1200V/5.5mΩ Half Bridge SiC MOSFET Module

Maximum Ratings (T_j=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
$V_{ m DSS}$	Drain-Source Voltage	G-S Short	1200	V
V_{GSS}	Gate-Source Voltage(+)	D-S Short	21	V
V_{GSS}	Gate-Source Voltage(-)	D-S Short	-2	V
V _{GSSSurge}	G-S Voltage(t _{surge} <300nsec)	D-S Short, Note1	-6 to 23	V
I_{DS}	DC Continuous Drain Current	T _f =95°C, Note2	150	A
I _{SD}	Source (Body diode) Current	T _f =95°C, with ON signal	150	A
I_{DP}	Drain Pulse Current, Peak	Less than 1ms, Note3	400	A
Tj	junction temperature	-	-40 to 175	°C
T _{stg}	Storage temperature	-	-40 to 125	°C

Note1: Recommended Operating Value, +18V/0V.

Note2: Case temperature(Tc) is defined on the surface of base plate just under the chips.

Note3: Pulse width limited by maximum junction temperature

NTC characteristics

Carrala al	Damanastan	Contract	Value			Unit
Symbol Parameter		Condition	Min.	Тур.	Max.	UIII
R ₂₅	Resistance	T _C =25°C	-	5	-	kΩ
ΔR/R	Deviation of R100	$T_C = 100$ °C, $R_{100} = 493\Omega$	5	-	5	%
P ₂₅	Power dissipation	T _C =25°C	-	-	20	mW
B _{25/50}	B-value	R2 =R25 exp [B _{25/50} (1/T2 - 1/(298,15 K))]	-	3375	-	K
B _{25/80}	B-value	R2 =R25 exp [B _{25/80} (1/T2 - 1/(298,15 K))]	-	3411	-	K
B _{25/100}	B-value	R2 =R25 exp [B _{25/100} (1/T2 - 1/(298,15 K))]	-	3433	-	K

1200V/5.5mΩ Half Bridge SiC MOSFET Module

$\textbf{MOSFET Electrical characteristics (} \textbf{T}_{j} = 25^{\circ} \text{C unless otherwise specified, chip} \textbf{)}$

6	T	Item Condition			Value		TT .*4
Symbol	item			Min.	Тур.	Max	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V$, $I_D = 1 \text{ mA}$		1200	-	-	V
I _{DSS}	Zero gate voltage drain current	$V_{DS} = 1200V, V_{GS} = 0V$	7	-	-	160	μΑ
V _{GS(th)}	Gate-source threshold voltage	$I_D=73$ mA, $V_{DS}=V_{GS}$		2.8	-	4.8	V
I_{GSS^+}	Gate-Source Leakage Current	$V_{GS} = 21V, V_{DS} = 0V, T$	$\Gamma_{\rm j}$ =25°C	-	-	200	nA
I _{GSS} -		$V_{GS} = -2V, V_{DS} = 0V, T$	_j =25°C	-200	-	-	nA
R _{DS(on)}	Static drain-source	I _D =150A	T _j =25°C	-	5.5	6.9	mΩ
(Chip)	On-state resistance	$V_{GS} = +18V$	T _j =175°C	-	13	-	mΩ
V _{DS(on)}	Static drain-source	I _D =150A	T _j =25°C	-	0.83	1.04	V
(Chip)	On-state voltage	$V_{GS} = +18V$	T _j =175°C	-	1.95	-	V
Ciss	Input capacitance		•	-	14.5	-	nF
Coss	Output capacitance	V _D =10V, V _{GS} =0V, f=200kHz		-	0.4	-	nF
Crss	Reverse transfer capacitance			-	0.03	-	nF
QG	Total gate charge	V _{DD} =600V, I _D =150A, V _{GS} =+15/0V		-	520	-	пC
RGint	Internal Gate Resistance	T _j =25°C		-	1.9	-	Ω
,	m 11		T _j =25°C	-	58	-	
t _{d(on)}	Turn-on delay time		T _j =150°C	-	55	-	ns
,	D' ('		T _j =25°C	-	27	-	
$t_{\rm r}$	Rise time	$V_{DD}=600V$	T _j =150°C	-	18	-	ns
,	T (C.1.1	$I_D = 150A$	T _j =25°C	-	245	-	
t _{d(off)}	Turn-off delay time	$V_{GS} = +18/0V$	T _j =150°C	-	290	-	ns
4.	F-114:	$R_G=3.3\Omega$	T _j =25°C	-	40	-	
t_{f}	Fall time	Inductive load	T _j =150°C	-	43	-	ns
E	T 1: -i4:	switching operation	T _j =25°C	-	3.54	-	T
Eon	Turn-on power dissipation		T _j =150°C	-	3.35	-	mJ
Е	T 26		T _j =25°C	1	1.59	-	Т
Eoff	Turn-off power dissipation	T _j =150°C	ı	1.76	-	mJ	
R _{th(j-c)}	FET Thermal Resistance	Junction to Case/MOSFET		1	0.12	-	K/W
R _{th(c-f)}	Contact thermal resistance	With thermal conductive grease/MOSFET		-	0.15	-	K/W

Assumes Thermal Conductivity of grease is 2.8 W/m·K and thickness is 50um.

1200V/5.5mΩ Half Bridge SiC MOSFET Module

Body Diode Electrical characteristics (T_j=25°C unless otherwise specified, chip: Target)

Carrell al	14	Condition		Value			TT .*4
Symbol	Item			Min.	Тур.	Max	Unit
V	D. d. D. d. E	V _{GS} =0V	T _j =25°C	-	3.3	-	V
$ m V_{SD}$	Body Diode Forward Voltage	$I_{SD} = 150A$	T _j =150°C	-	4.0	-	V
Trr	Reverse recovery time	V _{DD} =600V	T _j =25°C	-	41.5	-	
		$I_D = 150A$	T _j =150°C	1	45	-	ns
Q _{rr} Reverse recovery of	D	$V_{GS} = +18/0V$	T _j =25°C	-	2.19	-	C
	Reverse recovery charge	$R_G=3.3\Omega$	T _j =150°C	-	3.94	-	μC
Err	Diode switching power	Inductive load	T _j =25°C	-	0.64	-	т.
	dissipation	switching operation	T _j =150°C	-	1.42	-	mJ

Test Conditions

Figure 3. Switching time measure circuit

Figure 4. Switching time definition

1200V/5.5mΩ Half Bridge SiC MOSFET Module

1200V/5.5mΩ Half Bridge SiC MOSFET Module

1200V/5.5mΩ Half Bridge SiC MOSFET Module

Package dimensions

Pin table				
Pin	X	Υ		
1	-9.6	12.8		
2	-9.6	9.6		
3	-6.4	12.8		
4	3.2	12.8		
5 6 7	3.2	9.6		
6	12.8	12.8		
7	16	12.8		
8	16	9.6		
9	16	-6.4		
10	16	-9.6		
11	16	-12.8		
12	9.6	0		
13	6.4	0		
14	3.2	0		
15	0	0		
16	-3.2	0		
17	3.2	-3.2		
18	3.2	-9.6		
19	3.2	-12.8		
20	-9.6	-6.4		
21	-9.6	-9.6		
22	-9.6	-12.8		
23	-16	0		
24	-16	3.2		

IMPORTANT NOTICE

This product data sheet describes the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively under the terms and conditions of the supply agreement. There will be no guarantee or of any kind for the product and its characteristics.

The data contained in this document is exclusively intended for technically trained staff. You and your technical departments will have to evaluate the product's suitability for the intended application and the completeness of the product data concerning such application.

Due to technical requirements, our product may contain dangerous substances. For information on the types in question, please contact the sales staff responsible for you.

Changes to this product data sheet are reserved.

Please contact the sales staff (Sales@leapers-power.com) for further information on the product, technology, delivery terms, conditions and prices.

Preliminary datasheet _Ver.C EN