Phil/LPS 31 Introduction to Inductive Logic Lecture 15

David Mwakima dmwakima@uci.edu Department of Logic and Philosophy of Science University of California, Irvine

May 22nd 2023

Topics

- Ordinal Utilities
- ► Strict Dominance Principle
- Cardinal Utilities
- ► Expected Utility and Risk
- Principles of Rational Choice

▶ Specify the states of the dinner party example.

- ▶ Specify the states of the dinner party example.
- Specify the acts that you may take.

- Specify the states of the dinner party example.
- Specify the acts that you may take.
- Suppose you do not know what the host will serve, how would you decide what wine to bring? You are making a decision under ignorance or lack of information.

- Specify the states of the dinner party example.
- Specify the acts that you may take.
- Suppose you do not know what the host will serve, how would you decide what wine to bring? You are making a decision under ignorance or lack of information.
- Suppose you know that there are even odds that the host will serve red meat or white meat, how would you decide what to bring? You are making a decision under information.

- Specify the states of the dinner party example.
- Specify the acts that you may take.
- Suppose you do not know what the host will serve, how would you decide what wine to bring? You are making a decision under ignorance or lack of information.
- ➤ Suppose you know that there are even odds that the host will serve red meat or white meat, how would you decide what to bring? You are making a decision under information.
- In any case, what is the rational choice for you?

▶ Specify the states of President Biden's decision problem.

- ▶ Specify the states of President Biden's decision problem.
- ▶ Specify the acts that President Biden may take

- Specify the states of President Biden's decision problem.
- ► Specify the acts that President Biden may take
- ➤ Suppose President Biden after returning from his trip from Japan does not knows how the leaders of U.S. House of Representative will take his deal proposal. President Biden is faced with a decision under ignorance or lack of information.

- Specify the states of President Biden's decision problem.
- ► Specify the acts that President Biden may take
- Suppose President Biden after returning from his trip from Japan does not knows how the leaders of U.S. House of Representative will take his deal proposal. President Biden is faced with a decision under ignorance or lack of information.
- Suppose that President Biden knows the odds are 3:5 that the U.S. House of Representative Leaders will take his deal. President Biden here is faced with a decision under information or certainty.

- Specify the states of President Biden's decision problem.
- ► Specify the acts that President Biden may take
- Suppose President Biden after returning from his trip from Japan does not knows how the leaders of U.S. House of Representative will take his deal proposal. President Biden is faced with a decision under ignorance or lack of information.
- Suppose that President Biden knows the odds are 3:5 that the U.S. House of Representative Leaders will take his deal. President Biden here is faced with a decision under information or certainty.
- In any case, what is the rational choice for President Biden?

▶ In order to articulate the principles of rational choice in decision problems. We shall distinguish between decision problems under ignorance from decision problems under information.

- ▶ In order to articulate the principles of rational choice in decision problems. We shall distinguish between decision problems under ignorance from decision problems under information.
- Decision problems under ignorance are also known as decision problems under lack of information or decision problems under uncertainty.

- ▶ In order to articulate the principles of rational choice in decision problems. We shall distinguish between decision problems under ignorance from decision problems under information.
- Decision problems under ignorance are also known as decision problems under lack of information or decision problems under uncertainty.
- ► The relevant sense of "information" here is information about the probability distribution of states.

- ▶ In order to articulate the principles of rational choice in decision problems. We shall distinguish between decision problems under ignorance from decision problems under information.
- Decision problems under ignorance are also known as decision problems under lack of information or decision problems under uncertainty.
- ► The relevant sense of "information" here is information about the probability distribution of states.
- ► The relevant sense of "uncertainty" here is that we don't know the probabilities with which the states will occur with certainty.

► The principles of rational choice under ignorance can be formulated by ranking or ordering utilities based on the desirability of their consequences. This leads to the concept of ordinal utilities.

- ► The principles of rational choice under ignorance can be formulated by ranking or ordering utilities based on the desirability of their consequences. This leads to the concept of ordinal utilities.
- ▶ In what follows, we shall use lower case u to denote the utility of an act A given a state S and write $u(A \mid S)$

- ► The principles of rational choice under ignorance can be formulated by ranking or ordering utilities based on the desirability of their consequences. This leads to the concept of ordinal utilities.
- ▶ In what follows, we shall use lower case u to denote the utility of an act A given a state S and write $u(A \mid S)$
- ▶ We write $A_i > A_j$ to mean Act i is preferred more than Act j.

- ► The principles of rational choice under ignorance can be formulated by ranking or ordering utilities based on the desirability of their consequences. This leads to the concept of ordinal utilities.
- In what follows, we shall use lower case u to denote the utility of an act A given a state S and write $u(A \mid S)$
- ▶ We write $A_i \succ A_j$ to mean Act *i* is preferred more than Act *j*.
- ▶ We write $A_i \sim A_j$ to mean Act i is preferred equally to Act j.

▶ Let A_1 , A_2 , A_3 denote the acts of bringing white wine, red wine or rosé to the dinner party, respectively. And let S_1 , S_2 denote the state in which the host serves fish or chicken, respectively.

- Let A_1 , A_2 , A_3 denote the acts of bringing white wine, red wine or rosé to the dinner party, respectively. And let S_1 , S_2 denote the state in which the host serves fish or chicken, respectively.
- Suppose that given S_1 , we can order our preferences as $A_1 \succ A_3 \succ A_2$. This means that if our host serves fish, we would prefer bringing white wine more than we would prefer bringing either rosé or red wine; and we would prefer to bring rosé more than we would prefer to bring red wine.

- ▶ Let A_1 , A_2 , A_3 denote the acts of bringing white wine, red wine or rosé to the dinner party, respectively. And let S_1 , S_2 denote the state in which the host serves fish or chicken, respectively.
- Suppose that given S_1 , we can order our preferences as $A_1 \succ A_3 \succ A_2$. This means that if our host serves fish, we would prefer bringing white wine more than we would prefer bringing either rosé or red wine; and we would prefer to bring rosé more than we would prefer to bring red wine.
- An ordinal utility function is an assignment of utilities to acts that respects the preference ordering or ranking of the acts.

- ▶ Let A_1 , A_2 , A_3 denote the acts of bringing white wine, red wine or rosé to the dinner party, respectively. And let S_1 , S_2 denote the state in which the host serves fish or chicken, respectively.
- Suppose that given S_1 , we can order our preferences as $A_1 \succ A_3 \succ A_2$. This means that if our host serves fish, we would prefer bringing white wine more than we would prefer bringing either rosé or red wine; and we would prefer to bring rosé more than we would prefer to bring red wine.
- ► An ordinal utility function is an assignment of utilities to acts that respects the preference ordering or ranking of the acts.
- Consider the following utility function: $u(A_1 | S_1) = 4$, $u(A_2 | S_1) = 2$ and $u(A_3 | S_1) = 3$

- ▶ Let A_1 , A_2 , A_3 denote the acts of bringing white wine, red wine or rosé to the dinner party, respectively. And let S_1 , S_2 denote the state in which the host serves fish or chicken, respectively.
- Suppose that given S_1 , we can order our preferences as $A_1 \succ A_3 \succ A_2$. This means that if our host serves fish, we would prefer bringing white wine more than we would prefer bringing either rosé or red wine; and we would prefer to bring rosé more than we would prefer to bring red wine.
- ► An ordinal utility function is an assignment of utilities to acts that respects the preference ordering or ranking of the acts.
- Consider the following utility function: $u(A_1 | S_1) = 4$, $u(A_2 | S_1) = 2$ and $u(A_3 | S_1) = 3$
- ▶ Here we see that 4 > 3 > 2. So this utility function respects the preference ordering of the acts. 4, 3 and 2 are ordinal utilities.

▶ Suppose now that the host serves chicken, S₂. You think that if the host serves chicken you'd much rather bring white wine than either red wine or rosé. Assume also that if you can't find white wine at Trader Joe's you'd much rather bring rosé than red wine.

- ▶ Suppose now that the host serves chicken, S₂. You think that if the host serves chicken you'd much rather bring white wine than either red wine or rosé. Assume also that if you can't find white wine at Trader Joe's you'd much rather bring rosé than red wine.
- Exercise.

- ▶ Suppose now that the host serves chicken, S₂. You think that if the host serves chicken you'd much rather bring white wine than either red wine or rosé. Assume also that if you can't find white wine at Trader Joe's you'd much rather bring rosé than red wine.
- Exercise.
 - 1 Write down the preference ordering on the Acts.

- ▶ Suppose now that the host serves chicken, S₂. You think that if the host serves chicken you'd much rather bring white wine than either red wine or rosé. Assume also that if you can't find white wine at Trader Joe's you'd much rather bring rosé than red wine.
- Exercise.
 - 1 Write down the preference ordering on the Acts.
 - 2 Using the following set of utility values $\{1,3,5\}$ determine your ordinal utility function.

- ▶ Suppose now that the host serves chicken, S₂. You think that if the host serves chicken you'd much rather bring white wine than either red wine or rosé. Assume also that if you can't find white wine at Trader Joe's you'd much rather bring rosé than red wine.
- Exercise.
 - 1 Write down the preference ordering on the Acts.
 - 2 Using the following set of utility values $\{1,3,5\}$ determine your ordinal utility function.
 - 3 Verify that your utility function respects your preference ordering.

▶ Utilities on an ordinal scale have certain properties:

- ▶ Utilities on an ordinal scale have certain properties:
 - (1) They are unique up to strictly increasing transformations.

- Utilities on an ordinal scale have certain properties:
 - (1) They are unique up to strictly increasing transformations.
 - (2) You can't multiply or add ordinal utilities. A fancy word for this you will often see is that transformations of ordinal utilities are not linear.

- Utilities on an ordinal scale have certain properties:
 - (1) They are unique up to strictly increasing transformations.
 - (2) You can't multiply or add ordinal utilities. A fancy word for this you will often see is that transformations of ordinal utilities are not linear.
 - (3) From (2) we can't calculate expected utility using ordinal utilities. See Barrett and Huttegger Section 4.9.

- Utilities on an ordinal scale have certain properties:
 - (1) They are unique up to strictly increasing transformations.
 - (2) You can't multiply or add ordinal utilities. A fancy word for this you will often see is that transformations of ordinal utilities are not linear.
 - (3) From (2) we can't calculate expected utility using ordinal utilities. See Barrett and Huttegger Section 4.9.
 - (4) Provide no information about the strength of preferences.

Making Decisions with Ordinal Utilities

From the previous exercises we obtain the following desirability table for acts based on our ordinal utility function.

	Fish	Chicken
White	4	5
Red	2	1
Rosé	3	3

From the previous exercises we obtain the following desirability table for acts based on our ordinal utility function.

	Fish	Chicken
White	4	5
Red	2	1
Rosé	3	3

Suppose that you are faced with a decision problem under ignorance of bringing either white wine, red wine or rosé. How would you decide?

From the previous exercises we obtain the following desirability table for acts based on our ordinal utility function.

	Fish	Chicken
White	4	5
Red	2	1
Rosé	3	3

- Suppose that you are faced with a decision problem under ignorance of bringing either white wine, red wine or rosé. How would you decide?
- Decision theorists propose the following principles:

► From the previous exercises we obtain the following desirability table for acts based on our ordinal utility function.

	Fish	Chicken
White	4	5
Red	2	1
Rosé	3	3

- Suppose that you are faced with a decision problem under ignorance of bringing either white wine, red wine or rosé. How would you decide?
- ▶ Decision theorists propose the following principles:
 - Decide on the basis of the weak dominance principle.

From the previous exercises we obtain the following desirability table for acts based on our ordinal utility function.

	Fish	Chicken
White	4	5
Red	2	1
Rosé	3	3

- Suppose that you are faced with a decision problem under ignorance of bringing either white wine, red wine or rosé. How would you decide?
- Decision theorists propose the following principles:
 - Decide on the basis of the weak dominance principle.
 - Decide on the basis of the strong dominance principle.

From the previous exercises we obtain the following desirability table for acts based on our ordinal utility function.

	Fish	Chicken
White	4	5
Red	2	1
Rosé	3	3

- Suppose that you are faced with a decision problem under ignorance of bringing either white wine, red wine or rosé. How would you decide?
- Decision theorists propose the following principles:
 - Decide on the basis of the weak dominance principle.
 - Decide on the basis of the strong dominance principle.
 - Decide on the basis of the maximin principle.

	Fish	Chicken
White	4	5
Red	2	1
Rosé	3	3

	Fish	Chicken
White	4	5
Red	2	1
Rosé	3	3

Here no matter what the true state of world turns out to be we'd prefer to bring white wine rather than either red wine or rosé.

	Fish	Chicken
White	4	5
Red	2	1
Rosé	3	3

- Here no matter what the true state of world turns out to be we'd prefer to bring white wine rather than either red wine or rosé.
- ▶ We say that A_1 "dominates" both A_2 and A_3 .

	Fish	Chicken
White	4	5
Red	2	1
Rosé	3	3

- Here no matter what the true state of world turns out to be we'd prefer to bring white wine rather than either red wine or rosé.
- ▶ We say that A_1 "dominates" both A_2 and A_3 .
- Similarly A_3 "dominates" A_2 .

	Fish	Chicken
White	4	5
Red	2	1
Rosé	3	3

- Here no matter what the true state of world turns out to be we'd prefer to bring white wine rather than either red wine or rosé.
- ▶ We say that A_1 "dominates" both A_2 and A_3 .
- ► Similarly A_3 "dominates" A_2 .
- A widely accepted dominance principle in decision theory prescribes that dominated acts must not be chosen.

An act can be dominant in one of two ways: which we call strict and weak.

- An act can be dominant in one of two ways: which we call strict and weak.
- ▶ We denote weak dominance using \succeq and write $A_i \succeq A_j$ to mean A_i weakly dominates A_j .

- An act can be dominant in one of two ways: which we call strict and weak.
- ▶ We denote weak dominance using \succeq and write $A_i \succeq A_j$ to mean A_i weakly dominates A_j .
- ▶ We denote strict dominance using \succ and write $A_i \succ A_j$ to mean A_i strictly dominates A_j

- An act can be dominant in one of two ways: which we call strict and weak.
- ▶ We denote weak dominance using \succeq and write $A_i \succeq A_j$ to mean A_i weakly dominates A_j .
- ▶ We denote strict dominance using \succ and write $A_i \succ A_j$ to mean A_i strictly dominates A_j
- ▶ Weak Dominance: $A_i \succeq A_j$ if and only if $u(A_i|S) \ge u(A_j|S)$ for every state S (at least as good)

- An act can be dominant in one of two ways: which we call strict and weak.
- ▶ We denote weak dominance using \succeq and write $A_i \succeq A_j$ to mean A_i weakly dominates A_j .
- ▶ We denote strict dominance using \succ and write $A_i \succ A_j$ to mean A_i strictly dominates A_j
- ▶ Weak Dominance: $A_i \succeq A_j$ if and only if $u(A_i|S) \ge u(A_j|S)$ for every state S (at least as good)
- ▶ **Strict Dominance**: $A_i \succ A_j$ if and only if (1) $u(A_i|S_n) \ge u(A_j|S_n)$ for every state S_n (at least as good) and (2) there exists a state S_m such that $u(A_i|S_m) > u(A_j|S_m)$ (at least one better).

	Fish	Chicken
White	4	5
Red	2	1
Rosé	3	3

	Fish	Chicken
White	4	5
Red	2	1
Rosé	3	3

► Exercise. Refer to the desirability table for the dinner party example to answer the following questions.

		Fish	Chicken
•	White	4	5
	Red	2	1
	Rosé	3	3

- Exercise. Refer to the desirability table for the dinner party example to answer the following questions.
 - $ightharpoonup A_1 \succeq A_3$?

		Fish	Chicken
	White	4	5
	Red	2	1
	Rosé	3	3

- Exercise. Refer to the desirability table for the dinner party example to answer the following questions.
 - $ightharpoonup A_1 \succeq A_3$?
 - $A_1 \succ A_2?$

		Fish	Chicken
	White	4	5
	Red	2	1
	Rosé	3	3

- Exercise. Refer to the desirability table for the dinner party example to answer the following questions.
 - $ightharpoonup A_1 \succeq A_3$?
 - $ightharpoonup A_1 \succ A_2$?
 - $ightharpoonup A_3 \succeq A_2$?

	Fish	Chicken	Lamb
White	3	4	1
Red	2	1	4
Rosé	3	4	4

	Fish	Chicken	Lamb
White	3	4	1
Red	2	1	4
Rosé	3	4	4

► Exercise. Refer to the desirability table for the dinner party example to answer the following questions.

	Fish	Chicken	Lamb
White	3	4	1
Red	2	1	4
Rosé	3	4	4

- ► Exercise. Refer to the desirability table for the dinner party example to answer the following questions.
 - $ightharpoonup A_1 \succeq A_3$?

		Fish	Chicken	Lamb
•	White	3	4	1
	Red	2	1	4
	Rosé	3	4	4

- Exercise. Refer to the desirability table for the dinner party example to answer the following questions.
 - $ightharpoonup A_1 \succeq A_3$?
 - $A_3 \succ A_1?$

		Fish	Chicken	Lamb
	White	3	4	1
	Red	2	1	4
	Rosé	3	4	4

- ► Exercise. Refer to the desirability table for the dinner party example to answer the following questions.
 - $ightharpoonup A_1 \succeq A_3$?
 - $ightharpoonup A_3 \succ A_1$?
 - $ightharpoonup A_3 \succeq A_2$?

		Fish	Chicken	Lamb
	White	3	4	1
	Red	2	1	4
	Rosé	3	4	4

- Exercise. Refer to the desirability table for the dinner party example to answer the following questions.
 - $ightharpoonup A_1 \succeq A_3$?
 - $ightharpoonup A_3 \succ A_1$?
 - $ightharpoonup A_3 \succeq A_2$?
 - $A_3 \succ A_2?$

		Fish	Chicken	Lamb
	White	3	4	1
	Red	2	1	4
	Rosé	3	4	4

- Exercise. Refer to the desirability table for the dinner party example to answer the following questions.
 - ► $A_1 \succeq A_3$?
 - $ightharpoonup A_3 \succ A_1$?
 - $ightharpoonup A_3 \succeq A_2$?
 - $ightharpoonup A_3 \succ A_2$?
 - Does the strong dominance principle imply the weak dominance principle?

Maximin Principle

Cardinal Utilities

Minimax: MINimize the MAXimum regret

Decision Problems Under Risk

Expected Utility and Risk

$$U(A_1) = u(A|S_1)P(S_1) + u(A|S_2)P(S_1) + \dots + u(A|S_n)P(S_n)$$

= $\sum_{i=1}^{n} u(A|S_i)P(S_i)$

Maximize Expected Utility