Math 220 Homework 8 Question 8

November 08, 2021

Question 8a. To show it is an equivalence relation we must show it is reflexive, symmetric and transitive. For reflexive, let u = 1. Then $[u]_n$ is obviously invertible since $1 \cdot 1 = 1 \mod n$, and $\forall x \in \mathbb{Z}, xu = x \cdot 1 = x \implies xRx$, i.e. R is reflexive.

For symmetric, assume xRy. Then $\exists u$ s.t. $[u]_n$ is invertible and xu=y. Let u^{-1} be this inverse. The $xuu^{-1}=x=yu^{-1}$. Since u^{-1} is invertible (it's inverse is simply u itself) then yRx as symmetry requires. Thus R is symmetric as well.

Finally for transitivity, assume xRy and yRz. Then $\exists u_1, u_2 \text{ s.t. } xu_1 = y$ and $yu_2 = z$ and $[u_1]_n, [u_2]_n$ are invertible. If follows that $\exists u_1^{-1}, u_2^{-1} \text{ s.t. } u_1u_1^{-1} \equiv 1 \mod n$ and $u_2u_2^{-1} \equiv 1 \mod n$. Then we get that

$$x \cdot u_1 \cdot u_2 = y \cdot u_2 = z$$

Note that $[u_1u_2]_n$ is invertible with inverse $u_1^{-1}u_2^{-1}$. Thus xRy and yRz implies that xRz, so R is transitive. Since we have shown that R is reflexive, symmetric and transitive it is an equivalence relation. \square

Question 8b. The invertible elements of \mathbb{Z}_6 are

- $[1]_6$ with inverse $[1]_6$
- $[5]_6$ with inverse $[5]_6$

Using these we find that $[2]_6R[4]_6$, since $[2]_6[5]_6 = [4]_6$. Also $[1]_6R[5]_6$ since $[1]_6[5]_6 = [5]_6$. Also note that $[3]_6[5]_6 = [3]_6$ and $[3]_6[1]_6 = [3]_6$ so it is only related to itself. Thus the equivalence classes of R are $\{[1]_6, [5]_6\}, \{[2]_6, [4]_6\}$ and $\{[3]_6\}$. \square