1. Operações em Computadores Digitais

1.1 Introdução

Quando um engenheiro necessitar de algum resultado numérico para o desenvolvimento de seus projetos, ele certamente fará uso de um computador digital.

A utilização maciça da simulação em computadores digitais é uma das diferenças da ciência contemporânea comparada à ciência clássica. A simulação contribuiu para uma revolução científica e tecnológica no mundo.

A revolução na ciência se iniciou quando Galileu descreveu o princípio de que tudo poderia ser medido. Medidas numéricas de processos físicos levam a leis físicas expressadas matematicamente. Assim, cria-se um círculo virtuoso: medidas mais apuradas levam a refinamento de leis, que por sua vez levam a avanços tecnológicos, tendo como conseqüência melhores medidas fechando o círculo. É a simulação de processos físicos a partir de modelos matemáticos utilizando computação digital. É a revolução da computação numérica.

Em diversas áreas do desenvolvimento humano, necessita-se uma elevada demanda computacional:

Áreas da Engenharia (Exemplo: desenvolvimento de bons produtos num curto espaço de tempo e ao menor custo – indústria automobilística)

- Áreas da Química, Mecânica e Física
- Astrofísica e Cosmologia
- Dinâmica dos fluídos e turbulências
- Microeletrônica
- Supercondutividade
- Modelagem de estudos climáticos globais
- Microbiologia
- Genética
- Nanotecnologia

1.1.1 Lista de Máquinas com Maior Capacidade Computacional no Mundo (http://www.top500.org/)

TOP30 List - November 2007

 R_{max} and R_{peak} values are in GFlops. For more details about other fields, check the $\underline{TOP500}$ description.

Rank	Site	Computer	Processors	Year	R_{max}	R_{peak}
1	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution IBM	212992	2007	478200	596378
2	Forschungszentrum Juelich (FZJ) Germany	JUGENE - Blue Gene/P Solution IBM	65536	2007	167300	222822
3	SGI/New Mexico Computing Applications Center (NMCAC) United States	SGI Altix ICE 8200, Xeon quad core 3.0 GHz SGI	14336	2007	126900	172032
4	Computational Research Laboratories, TATA SONS India	EKA - Cluster Platform 3000 BL460c, Xeon 53xx 3GHz, Infiniband Hewlett-Packard	14240	2007	117900	170880

Rank	Site	Computer	Processors	Year	R_{max}	R _{peak}
5	Government Agency Sweden	Cluster Platform 3000 BL460c, Xeon 53xx 2.66GHz, Infiniband Hewlett-Packard	13728	2007	102800	146430
6	NNSA/Sandia National Laboratories United States	Red Storm - Sandia/ Cray Red Storm, Opteron 2.4 GHz dual core Cray Inc.	26569	2007	102200	127531
7	Oak Ridge National Laboratory United States	<u>Jaguar - Cray XT4/XT3</u> Cray Inc.	23016	2006	101700	119350
8	IBM Thomas J. Watson Research Center United States	BGW - eServer Blue Gene Solution IBM	40960	2005	91290	114688
9	NERSC/LBNL United States	Franklin - Cray XT4, 2.6 GHz Cray Inc.	19320	2007	85368	100464
10	Stony Brook/BNL, New York Center for Computational Sciences United States	New York Blue - eServer Blue Gene Solution IBM	36864	2007	82161	103219
30	The Earth Simulator Center Japan	Earth-Simulator NEC	5120	2002	35860	40960

TOP500 List - June 2008 (1-100)

 R_{max} and R_{peak} values are in TFlops.

Rank	Site	Computer/Year Vendor	Cores	R_{max}	R _{peak}
1	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz , Voltaire Infiniband / 2008 IBM	122400	1026.00	1375.78
2	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}
3	Argonne National Laboratory United States	Blue Gene/P Solution / 2007 IBM	163840	450.30	557.06
4	Texas Advanced Computing Center/Univ. of Texas United States	Ranger - SunBlade x6420, Opteron Quad 2Ghz, Infiniband / 2008 Sun Microsystems	62976	326.00	503.81
5	DOE/Oak Ridge National Laboratory United States	<u>Jaguar - Cray XT4 QuadCore 2.1 GHz</u> / 2008 Cray Inc.	30976	205.00	260.20
6	Forschungszentrum Juelich (FZJ) Germany	JUGENE - Blue Gene/P Solution / 2007 IBM	65536	180.00	222.82
7	New Mexico Computing Applications Center (NMCAC) United States	Encanto - SGI Altix ICE 8200, Xeon quad core 3.0 GHz / 2007 SGI	14336	133.20	172.03
8	Computational Research Laboratories, TATA SONS India	EKA - Cluster Platform 3000 BL460c, Xeon 53xx 3GHz, Infiniband / 2008 Hewlett-Packard	14384	132.80	172.61
9	<u>IDRIS</u> France	Blue Gene/P Solution / 2008 IBM	40960	112.50	139.26
10	Total Exploration Production France	SGI Altix ICE 8200EX, Xeon quad core 3.0 GHz / 2008 SGI	10240	106.10	122.88

TOP500 List - November 2008 (1-100)

 \mathbf{R}_{max} and \mathbf{R}_{peak} values are in TFlops. For more details about other fields, check the $\underline{TOP500}$ description.

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}
1	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz , Voltaire Infiniband / 2008 IBM	129600	1105.00	1456.70
2	Oak Ridge National Laboratory United States	<u>Jaguar - Cray XT5 QC 2.3 GHz</u> / 2008 Cray Inc.	150152	1059.00	1381.40
3	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0/2.66 GHz / 2008 SGI	51200	487.01	608.83

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}
4	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38
5	Argonne National Laboratory United States	Blue Gene/P Solution / 2007 IBM	163840	450.30	557.06
6	Texas Advanced Computing Center/Univ. of Texas United States	Ranger - SunBlade x6420, Opteron QC 2.3 Ghz, Infiniband / 2008 Sun Microsystems	62976	433.20	579.38
7	NERSC/LBNL United States	Franklin - Cray XT4 QuadCore 2.3 GHz / 2008 Cray Inc.	38642	266.30	355.51
8	Oak Ridge National Laboratory United States	Jaguar - Cray XT4 QuadCore 2.1 GHz / 2008 Cray Inc.	30976	205.00	260.20
9	NNSA/Sandia National Laboratories United States	Red Storm - Sandia/ Cray Red Storm, XT3/4, 2.4/2.2 GHz dual/quad core / 2008 Cray Inc.	38208	204.20	284.00
10	Shanghai Supercomputer Center China	Dawning 5000A - Dawning 5000A, QC Opteron 1.9 Ghz, Infiniband, Windows HPC 2008 / 2008 Dawning	30720	180.60	233.47

TOP500 List - June 2009 (1-100)

 R_{max} and R_{peak} values are in TFlops. For more details about other fields, check the TOP500 description.

Rank	Site	Computer/Year Vendor	Cores	R_{max}	R _{peak}
1	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2008 IBM	129600	1105.00	1456.70
2	Oak Ridge National Laboratory United States	Jaguar - Cray XT5 QC 2.3 GHz / 2008 Cray Inc.	150152	1059.00	1381.40
3	Forschungszentrum Juelich (FZJ)	JUGENE - Blue Gene/P Solution / 2009 IBM	294912	825.50	1002.70

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}
	Germany				
4	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0/2.66 GHz / 2008 SGI	51200	487.01	608.83
5	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38
6	National Institute for Computational Sciences/University of Tennessee United States	Kraken XT5 - Cray XT5 QC 2.3 GHz / 2008 Cray Inc.	66000	463.30	607.20
7	Argonne National Laboratory United States	Blue Gene/P Solution / 2007 IBM	163840	458.61	557.06
8	Texas Advanced Computing Center/Univ. of Texas United States	Ranger - SunBlade x6420, Opteron QC 2.3 Ghz, Infiniband / 2008 Sun Microsystems	62976	433.20	579.38
9	DOE/NNSA/LLNL United States	Dawn - Blue Gene/P Solution / 2009 IBM	147456	415.70	501.35
10	Forschungszentrum Juelich (FZJ) Germany	JUROPA - Sun Constellation, NovaScale R422-E2, Intel Xeon X5570, 2.93 GHz, Sun M9/Mellanox QDR Infiniband/Partec Parastation / 2009 Bull SA	26304	274.80	308.28

TOP500 List - November 2009 (1-100)

 \mathbf{R}_{max} and \mathbf{R}_{peak} values are in TFlops. For more details about other fields, check the $\underline{TOP500}$ description.

Rank	Site	Computer/Year Vendor	Cores	R_{max}	R_{peak}	Power
1	Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 Cray Inc.	224162	1759.00	2331.00	6950.60
2	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2009 IBM	122400	1042.00	1375.78	2345.50
3	National Institute for Computational Sciences/University of	Kraken XT5 - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009	98928	831.70	1028.85	

Rank	Site	Computer/Year Vendor	Cores	R_{max}	R _{peak}	Power
	<u>Tennessee</u> United States	Cray Inc.				
4	Forschungszentrum Juelich (FZJ) Germany	JUGENE - Blue Gene/P Solution / 2009 IBM	294912	825.50	1002.70	2268.00
5	National SuperComputer Center in Tianjin/NUDT China	Tianhe-1 - NUDT TH-1 Cluster, Xeon E5540/E5450, ATI Radeon HD 4870 2, Infiniband / 2009 NUDT	71680	563.10	1206.19	
6	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0 GHz/Nehalem EP 2.93 Ghz / 2009 SGI	56320	544.30	673.26	2348.00
7	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38	2329.60
8	Argonne National Laboratory United States	Blue Gene/P Solution / 2007 IBM	163840	458.61	557.06	1260.00
9	Texas Advanced Computing Center/Univ. of Texas United States	Ranger - SunBlade x6420, Opteron QC 2.3 Ghz, Infiniband / 2008 Sun Microsystems	62976	433.20	579.38	2000.00
10	Sandia National Laboratories / National Renewable Energy Laboratory United States	Red Sky - Sun Blade x6275, Xeon X55xx 2.93 Ghz, Infiniband / 2009 Sun Microsystems	41616	423.90	487.74	

TOP500 List - June 2010 (1-100)

 \mathbf{R}_{max} and \mathbf{R}_{peak} values are in TFlops. For more details about other fields, check the <u>TOP500</u> description.

Power data in KW for entire system

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
1	Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 Cray Inc.	224162	1759.00	2331.00	6950.60
2	National Supercomputing Centre in Shenzhen (NSCS)	Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla C2050 GPU / 2010	120640	1271.00	2984.30	

next

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
	China	Dawning				
3	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2009 IBM	122400	1042.00	1375.78	2345.50
4	National Institute for Computational Sciences/University of Tennessee United States	Kraken XT5 - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 Cray Inc.	98928	831.70	1028.85	
5	Forschungszentrum Juelich (FZJ) Germany	JUGENE - Blue Gene/P Solution / 2009 IBM	294912	825.50	1002.70	2268.00
6	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX/8400EX, Xeon HT QC 3.0/Xeon Westmere 2.93 Ghz, Infiniband / 2010 SGI	81920	772.70	973.29	3096.00
7	National SuperComputer Center in Tianjin/NUDT China	Tianhe-1 - NUDT TH-1 Cluster, Xeon E5540/E5450, ATI Radeon HD 4870 2, Infiniband / 2009 NUDT	71680	563.10	1206.19	
8	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38	2329.60
9	Argonne National Laboratory United States	Intrepid - Blue Gene/P Solution / 2007 IBM	163840	458.61	557.06	1260.00
10	Sandia National Laboratories / National Renewable Energy Laboratory United States	Red Sky - Sun Blade x6275, Xeon X55xx 2.93 Ghz, Infiniband / 2010 Sun Microsystems	42440	433.50	497.40	

TOP500 List - November 2010 (1-100)

 R_{max} and R_{peak} values are in TFlops.

Rank	Site	Computer/Year Vendor	Cores	R_{max}	R _{peak}	Power
1	National Supercomputing Center in Tianjin China	Tianhe-1A - NUDT TH MPP, X5670 2.93Ghz 6C, NVIDIA GPU, FT-1000 8C / 2010 NUDT	186368	2566.00	4701.00	4040.00

Rank	Site	Computer/Year Vendor	Cores	R_{max}	R_{peak}	Power
2	DOE/SC/Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron 6-core 2.6 GHz / 2009 Cray Inc.	224162	1759.00	2331.00	6950.60
3	National Supercomputing Centre in Shenzhen (NSCS) China	Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla C2050 GPU / 2010 Dawning	120640	1271.00	2984.30	2580.00
4	GSIC Center, Tokyo Institute of Technology Japan	TSUBAME 2.0 - HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows / 2010 NEC/HP	73278	1192.00	2287.63	1398.61
5	DOE/SC/LBNL/NERSC United States	Hopper - Cray XE6 12-core 2.1 GHz / 2010 Cray Inc.	153408	1054.00	1288.63	2910.00
6	Commissariat a l'Energie Atomique (CEA) France	<u>Tera-100 - Bull bullx super-</u> node S6010/S6030 / 2010 Bull SA	138368	1050.00	1254.55	4590.00
7	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2009 IBM	122400	1042.00	1375.78	2345.50
8	National Institute for Computational Sciences/University of Tennessee United States	Kraken XT5 - Cray XT5-HE Opteron 6-core 2.6 GHz / 2009 Cray Inc.	98928	831.70	1028.85	3090.00
9	Forschungszentrum Juelich (FZJ) Germany	JUGENE - Blue Gene/P Solution / 2009 IBM	294912	825.50	1002.70	2268.00
10	DOE/NNSA/LANL/SNL United States	Cielo - Cray XE6 8-core 2.4 GHz / 2010 Cray Inc.	107152	816.60	1028.66	2950.00

1.1.2 Etapas de um Projeto em Computação Científica

É bem conhecido que computadores digitais não podem representar números reais ou complexos de forma exata. As operações individuais de soma, subtração, multiplicação e divisão são realizadas com precisão aritmética finita, gerando, erros ao longo de suas execuções.

Os algoritmos para simulações de processos físicos são implementados em computadores digitais com estas deficiências. Como é impossível monitorar cada operação, é necessário que sejam feitas avaliações à priori sobre os efeitos dos erros nos resultados dos algoritmos. Desta forma, é importante que se tenha um conhecimento razoável da aritmética de precisão finita utilizada pelos computados, delimitando, se possível, os erros gerados. Também é importante na simulação dos processos físicos fazer uma distinção entre *problemas mal-condicionados* e *algoritmos numericamente instáveis*.

Em computação numérica nunca se espera chegar a uma resposta exata. Inexatidões são inerentes à esta computação.

Neste contexto, é importante a definição de confiabilidade. A confiabilidade mede a freqüência que uma implementação computacional falha, no sentido de que o erro resultante seja maior que o esperado.

1.2 Erros

Em computação numérica, as quantidades são em geral aproximadas, assim, é importante que se tenha uma medida de quão próximo uma quantidade está do valor "exato", ou seja, uma medida de **exatidão** de uma quantidade.

É comum utilizar-se o erro para quantizar esta aproximação. Seja:

 \hat{x} Δ aproximaç \tilde{a} para x

A exatidão da quantidade \hat{x} pode ser medida através do erro absoluto:

$$e_A = x - |$$

Será o erro absoluto uma boa medida?

Sejam os dois exemplos:

Caso 1
$$\implies$$
 $x = ,234$ $\hat{x} = ,233$ $|x - x| = 0^-$

Caso 2
$$\implies$$
 $x = 0.002$ $\hat{x} = 0.001$ $|x - x| = 0^-$

No caso 1, \hat{x} é uma boa aproximação para x, entretanto no caso 2, se |x| é uma boa medida do tamanho da quantidade, \hat{x} não é uma boa aproximação para x. Neste caso o erro absoluto não é uma boa medida para quantizar a exatidão.

Outra medida para a exatidão de uma quantidade é o erro relativo, definido conforme a expressão:

$$e_R = \frac{|x - \dot{x}|}{|x|}$$

O erro relativo é útil quando |x| é uma boa medida do tamanho da quantidade.

Como foi visto, o erro é uma forma de quantificar a exatidão de uma quantidade aproximada. Em computação numérica, não devemos confundir exatidão com precisão de uma grandeza. A exatidão está associado a quantificar a aproximação do valor computado com o valor real. A precisão está associado ao número de dígitos com os quais uma grandeza é representada em uma máquina. A precisão está associada à máquina utilizada para a realização dos cálculos.

Seja o valor $\sqrt{2}$ = ,413213562 considerado como "valor exato".

Suponha que temos os seguintes valores computados para $\sqrt{2}$:

- a) 1,4142
- b) 1,41

Qual o valor mais exato? Qual o valor mais preciso?

Pode-se observar que no caso a) a representação é feita por 5 (cinco) dígitos, portanto é mais precisa que no caso b) cuja representação é através de 3 (três) dígitos. Para medir a exatidão deve-se calcular o erro. Considerando o erro absoluto, observa-se também que a representação do caso a) também é mais exata.

Suponha agora os seguintes valores computados para $\sqrt{2}$:

- a) 1,4149
- b) 1,414

Qual o valor mais exato? Qual o valor mais preciso?

Pode-se observar que no caso a) a representação é feita por 5 (cinco) dígitos, portanto é mais precisa que no caso b) cuja representação é através de 4 (quatro) dígitos. Para medir a exatidão deve-se calcular o erro. Considerando o erro absoluto, observa-se que neste caso a letra b), embora menos precisa, ela é mais exata.

Adicionalmente ao erro, define-se o resíduo absoluto e o resíduo relativo. A expressão do resíduo é muito útil no estudo de aritméticas finitas utilizadas por computadores digitais.

O resíduo absoluto é definido por:

$$\rho: x- :)$$

O resíduo relativo é definido por:

$$\rho: \frac{(x-x)}{x}$$

A partir do resíduo absoluto e relativo, chega-se a expressões muito úteis para o estudo de aritméticas finitas.

A partir do resíduo absoluto, chega-se a:

$$\hat{x} = x + \gamma$$
 para $\rho \leq z$

A partir do resíduo absoluto, chega-se a:

$$\hat{x} = x(1-\beta)$$
 para $\rho \leq x$

Pela interpretação desta expressão, pode-se observar que uma grandeza computada é igual ao seu valor exato multiplicado por uma tolerância.

A definição do erro é em geral subjetiva, e um dos aspectos mais complexos da computação numérica. Entretanto, devemos ter em mente que na engenharia o aspecto crucial não é o valor exato, mas a ordem de grandeza.

Assim, pode-se dizer que x é de uma ordem de grandeza τ , onde τ é uma potência de 10, se:

$$|x| = \mu \tau$$
 $para$ $1 \le \mu < 0$

Exemplo: $0,0005 = 5 \times 0^{-}$, portanto 0,0005 é de ordem 10^{-} .

1.3 Fontes de Erros

A utilização da computação numérica em engenharia está associada a resolver um problema físico. Em todo o processo para a solução desse problema físico teremos fontes de erros.

As possíveis fontes de erros podem ser divididas em:

A incerteza de dados é sempre uma possibilidade, quando se está trabalhando com dados relativos a um problema real. Ela pode advir de erros de medição de quantidades físicas, erros de armazenamento de dados no computador ou se os dados são originados pela solução numérica de outro problema que já carregam erros.

Os erros de truncamento advém dos métodos numéricos originados a partir de considerações de um número finito de termos de uma série, isto é, pelo truncamento de uma série.

Os erros de arredondamento são consequências de se trabalhar com uma aritmética de precisão finita.

Como a ênfase do curso é a computação numérica, será visto com maiores detalhes os erros de arredondamento.

1.4 Representação de Números

No nosso cotidiano estamos acostumados a lidar com números na base 10m entretanto, em computação numérica esta base pode ser diferente de 10. É o caso de microcomputadores e estações de trabalho que utilizam a base 2, ou computadores de grande porte da linha IBM que utilizam a base 16. Assim, é importante conhecer a representação de números em bases diferentes da base decimal. A própria representação do número em uma determinada base pode ser já uma fonte de erros. Uma representação exata em uma base, não significa que tenha representação exata em uma outra base.

1.4.1 Fórmula Geral

Um número N qualquer pode ser descrito numa base β de acordo com a seguinte expressão polinomial:

Parte Inteira

Parte Fracionária

$$N = a_m \beta^{-1} + \iota_{m-1} \beta^{-1-1} + \dots + \iota_1 \beta^1 + \iota_o + a_{-1} \beta^{-1} + \iota_{-2} \beta^{-2} + \dots + \iota_{-} \beta$$

Onde: $0 \le a_k < 3$

Exemplos:

$$(0.347)_{10} = 1 \times 0^2 + 1 \times 0^1 + 1 \times 0^0$$

$$(1101)_2 = \times 1^3 + \times 1^2 + 1 \times 1^1 + \times 1^0$$

Observe que os algarismos que representam o número na base β são os coeficientes da expressão polinomial. É importante também observar que o deslocamento da vírgula no número é realizado pela multiplicação da número pela correspondente potência da base do número.

Exemplos:

$$(0,2345)_{10} = 23,45 \times 0^{-})_{10}$$

 $(0,1101)_{2} = 11,01 \times 0^{-})_{2}$

1.4.2 Conversão de Bases

a) Base β — Base Decimal

Levar os coeficientes á expressão polinomial geral e calcular o valor. Observe que a solução numérica da expressão polinomial sempre resulta num número N na base decimal.

Exemplo:

$$(0,111)_2 = \times 1^- + \times 1^- + \times 1^- = 0,875)_{10}$$

b) Decimal \longrightarrow Base β

A conversão da base decimal para uma base β qualquer se dá em duas etapas, numa primeira etapa se converte a parte inteira do número e numa segunda etapa a parte fracionária do número.

b.1) Parte Inteira

Dividir o número sucessivamente pela base β até que o último quociente seja maior que zero e menor que β . O número é representado pelo último quociente e os restos na ordem inversa.

Exemplo:

$$(13)_{10} \rightarrow 101)_2$$

b.2) Parte Fracionária

Multiplicar sucessivamente a parte fracionária por β até que a mesma seja zero se a representação for exata. No caso da representação não ser exata, haverá uma sequência infinita na parte fracionária. O número é representado pelas partes inteiras resultantes. Exemplo:

$$(0.875)_{10} \rightarrow ,111)_{2}$$

$$0,875$$
 $0,750$ $0,500$
 $\frac{\times}{1,750}$ $\frac{\times}{1,500}$ $\frac{\times}{1,000}$

A representação de $(0,1)_{10}$ não possui representação exata na base 2.

$$(0,10)_{10} \rightarrow ,0001100110 \ 0...)_{2}$$

Em virtude da representação não ser exata, a operação seguinte não terá resultado exato na utilização de microcomputadores.