GIẢI TÍCH B1

GV: CAO NGHI THỤC

EMAIL: cnthuc@hcmus.edu.vn

Định nghĩa

Cho hàm số f(x) xác định trong (a;b) và $x_0 \in (a;b)$

Nếu $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ tồn tại thì được gọi là đạo hàm của hàm số f(x) tại x_0 và ký hiệu $f'(x_0)$

Nghĩa là
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

•Định nghĩa

Nếu đặt
$$\Delta x = x - x_0$$
; $\Delta y = f(x_0 + \Delta x) - f(x_0)$ thì
$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

Các quy tắc tính đạo hàm

1.
$$(c. u)' = c(u)'$$

2.
$$(u + v)' = (u)' + (v)'$$

3.
$$(u.v)' = u'v + u.v'$$

4.
$$\left(\frac{u}{v}\right)' = \frac{u'v - u \cdot v'}{v^2}$$

Bảng đạo hàm của một số hàm sơ cấp

1.
$$(c)' = 0$$

2.
$$(x^{\alpha})' = \alpha \cdot x^{\alpha - 1}; (x)' = 1; (\sqrt{x})' = \frac{1}{2\sqrt{x}}; (\frac{1}{x})' = -\frac{1}{x^2}$$

3.
$$(a^{x})' = a^{x} \ln a; (e^{x})' = e^{x}$$

4.
$$(\log_a x)' = \frac{1}{x \cdot \ln a}; (\ln x)' = \frac{1}{x}$$

Bảng đạo hàm của một số hàm số sơ cấp

5.
$$(\sin x)' = \cos x$$
; $(\cos x)' = -\sin x$; $(\tan x)' = \frac{1}{\cos^2 x}$; $(\cot x)' = -\frac{1}{\sin^2 x}$

6.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
; $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$;

$$(\arctan x)' = \frac{1}{1+x^2}; (\operatorname{arccot} x)' = -\frac{1}{1+x^2}$$

Ðịnh nghĩa

Hàm f(x) khả vi tại x₀ nếu

$$f(x_0 + \Delta x) - f(x_0) = f'(x_0) \Delta x + o(\Delta x)$$

Khi đó, tích $f'(x_0)\Delta x$ gọi là vi phân của f(x) tại x_0 Ký kiệu:

$$df = f'(x)\Delta x = f'(x).dx$$

■VD15 Tính vi phân của hàm $y = f(x) = 2^{\sqrt{\tan x}}$

$$y = f(x) = 2^{\sqrt{\tan x}}$$

$$dy = 2^{\sqrt{\tan x}} . \ln 2 . (\sqrt{\tan x})' . dx = \frac{2^{\sqrt{\tan x}} . \ln 2}{2\sqrt{\tan x} . \cos^2 x} . dx$$

<u>Các quy tắc tính vi phân</u>

Vi phân của tống, tích, thương d(u+v)=d(u)+d(v) d(uv)=vdu+udv

$$d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2} (v \neq 0)$$

Áp dụng vi phân tính gần đúng

Cho f(x) khả vi tại x_0 khi đó:

$$f(x_0 + \Delta x) - f(x_0) = f'(x_0) \Delta x + o(\Delta x)$$

Bỏ qua VCB bậc cao ta có

$$f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \Delta x$$

Hay
$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x$$

Hay

■ VD16 Tính gần đúng cos610

$$y = f(x) = \cos x, x_0 = \frac{\pi}{3}, \Delta x = \frac{\pi}{180}$$

$$f'(x) = -\sin x, f'(\frac{\pi}{3}) = -\sin \frac{\pi}{3} = -\frac{\sqrt{3}}{2}, f(\frac{\pi}{3}) = \cos \frac{\pi}{3} = \frac{1}{2}$$

$$\cos 61^0 = \cos(\frac{\pi}{3} + \frac{\pi}{180}) \approx \cos \frac{\pi}{3} + f'(\frac{\pi}{3}) \cdot \frac{\pi}{180}$$

$$\approx \frac{1}{2} + -\frac{\sqrt{3}}{2} \cdot \frac{\pi}{180} \approx 0.484$$

VD17 Cho hàm số $y = f(x) = \sqrt{x^3}$. Dùng vi phân tính gần đúng f(2,001).

Đạo hàm và Vi phân cấp cao

Đạo hàm cấp cao

Nếu f(x) có đạo hàm f'(x) thì f'(x) gọi là đạo hàm cấp 1 Nếu f'(x) có đạo hàm thì đạo hàm này gọi là đạo hàm cấp 2, ký hiệu f''(x)

. .

Đạo hàm của đạo hàm cấp n-1 gọi là đạo hàm cấp n, ký hiệu $f^{(n)}(x) = [f^{(n-1)}(x)]'$

Đạo hàm và Vi phân cấp cao

VD 18 Cho hàm số y= sinx. Tính $y^{(n)}(x)$

VD 19 Cho hàm số y= cosx. Tính $y^{(n)}(x)$

VD 20 Cho hàm số y= $\frac{1}{x}$. Tính $y^{(n)}(x)$

Đạo hàm và Vi phân cấp cao

<u>Vi phân cấp cao</u>

Nếu f(x) khả vi thì dy=f'(x).dx gọi là vi phân cấp 1 Vi phân của dy gọi là vi phân cấp 2, ký hiệu $d^2y = y''(x).dx^2$

. .

Tổng quát vi phân cấp n, ký hiệu $d^n y = y^{(n)}(x).dx^n$

Quy tắc L'Hospital

Áp dụng cho dạng vô định

$$\frac{0}{0}, \frac{\infty}{\infty}$$

Định lý 1 Cho f(x),g(x) xđ, khả vi tại lần cận $x = x_0$ (có thể trừ tại điểm x_0)

■
$$\lim_{x \to x_0} f(x) = 0$$
, $\lim_{x \to x_0} g(x) = 0$, $g'(x_0) \neq 0$
Ở lần cận $x = x_0$
Khi đó, nếu $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = A$ thì $\lim_{x \to x_0} \frac{f(x)}{g(x)} = A$

VD21 Tính

$$\lim_{x \to 0} \frac{x \cos x - \sin x}{x \sin x}$$

$$= \lim_{x \to 0} \frac{\cos x - x \sin x - \cos x}{\sin x + x \cos x} = \lim_{x \to 0} \frac{-x \sin x}{\sin x + x \cos x}$$

■VD22 Tính

$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 4 \cdot x + 3}$$

Quy tắc L'Hospital

Áp dụng cho dạng vô định

$$\frac{0}{0}, \frac{\infty}{\infty}$$

Định lý 2 Cho f(x),g(x) xđ, khả vi tại lân cận x = x_0 (có thể trừ tại điểm x_0)

$$\lim_{x \to x_0} f(x) = \infty, \lim_{x \to x_0} g(x) = \infty, g'(x_0) \neq 0$$

$$\operatorname{dian cận} x = x_0$$

Khi đó, nếu
$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = A$$
 thì $\lim_{x \to x_0} \frac{f(x)}{g(x)} = A$

•VD23 Tính
$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} (\alpha > 0)$$

■ VD24 Tính $\lim_{x\to 0^+} x^x$

Khai triển Taylor

Cho f(x) khả vi đến cấp n+1 trong khoảng (a,b). Khi đó với $x_0, c \in (a,b)$

Ta có công thức Taylor

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \dots$$

$$\frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}(1)$$

Khai triển Taylor

Đặt
$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-x_0)^{n+1} (1) = o((x-x_0)^n)$$

gọi là sai số tuyệt đối

c nằm giữa x và x₀

Công thức (1) được gọi là khai triển Taylor của hàm f tại x= x₀

Khai triển Taylor

Khi $x_0 = 0$: (1) trở thành

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}(2)$$

$$0 p \theta p 1$$

(2) được gọi là công thức MacLaurin

Công thức MacLaurin của 1 số hàm sơ cấp

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + o(x^{2n-1})$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^m \frac{x^{2m}}{(2m)!} + o(x^{2m})$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$$

Bài tâp

Bài 1: Tính các giới hạn sau (nêu có)

a.
$$\lim_{x \to 1} \frac{1-x}{1-\sin\frac{\pi x}{2}}$$
 b.
$$\lim_{x \to 0^+} x^{\sin x}$$
 c.
$$\lim_{x \to 0} \frac{x\cos x - \sin x}{x^3}$$

b.
$$\lim_{x \to 0^+} x^{\sin x}$$

$$\mathbf{C.} \lim_{x \to 0} \frac{x \cos x - \sin x}{x^3}$$

d.
$$\lim_{x \to 0} \frac{2x + \sin^2 x}{\sin^4 x + \sin^2 x - \tan^3 x}$$

Bài 2: Tính đạo hàm cấp n của các hàm số sau

a.
$$y = \frac{1}{1-x}$$
 b. $y = e^{-3x}$

b.
$$y = e^{-3x}$$

Bài tập

Bài 3: Viết khai triển Maclaurin đến số hạng x³ của

a.
$$y = e^{\sin x}$$

b.
$$y = 3^x$$

b.
$$y = 3^x$$
 c. $y = \tan(\sin x)$