Karth Bhatia 19103294 BG Page Her Date ! Assign mend -1 0 = A < TI (M)= N2 = over function $\frac{\alpha_{o-1}}{\pi} \int_{-\pi}^{\pi} \frac{2 dx = \alpha^3}{3} \int_{0}^{\pi} \frac{\pi}{\pi}$ an = 2 J = 2 count dx = 2 T/+ COMM dx = 8 = 12 Sinm - San sin nm dx = 12 sin rm - [-211 (0) 174 - \ 2 (0) 1 = 12 Signa + 200 com + 2 signa] TT y (-1) = ((~) = 712 + E 4 (-15" CODAY Scanned with CamScanner

	Page No.	
	Date:	
	Mar 712 + 4 - 100 M + 100 2m - 100 3m 2]
	3 6 1 22 36	<u>J</u> .
		<u> </u>
	(m) = n = TT	
	$\frac{71^{2}-71^{2}+4\left(\frac{1}{1}+\frac{1}{1}+\frac{1}{3^{2}}+\cdots \right) }{3}$	
	$\frac{71^2 - 4 \left(1 + \frac{1}{2} + \frac{1}{32} + \frac{1}{32}\right)}{1} = 0$	
	6 2	
	Pod M=0.	
	$- \pi^{2} = 4 \left[-1 + 1 - \frac{1}{2} + \dots \right]$ $3 \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{3} + \dots \right]$	
CA (C)		-
	$\frac{71^{2} - 1 - 1 + 1 + \cdots - 2}{2^{2} + 3^{2}}$	
)	$12 2^2 3$	
	1)2 = 1+ 1 + 1 + +	10 01 01
	8 32 52	0
A 2.	a) 4x - x Vry + 3Ux + 5=0	
112		
	N:1 B = -1 C = 0	
	B2-4/1c=1	
	B2-UAC > 0	
	HINU PAR TO hyperbolic	

Scanned with CamScanner

	Page No.	1
	Date:	j
5)	MUxx - 24xy + Muyy + 4x = 0	
	y (gy+1x 20	-
-	$A = \alpha$	
	B = -2	
	(=M	
	B=4A(= 4-4x2=4(1-2)	
	2 ()	
	$n^2 \in [0,\infty)$	
	$-\alpha^{2} \in (-\infty, 1]$ $1-\alpha^{2} \in (-\infty, 1]$	
	form=1 it is parabolic	
-	Jos why values it is elliptical	
		1
- <u></u> ()	4yy + 24x + 4y+ 3 = 0	
-	C= 1 A=0	
-,	B=0	
	B = 4AC = 0	
	15 (41) - 6	
	Henry PDE is Parabolic as B-4Ac = 0	
	2000 000 176 20	
-		
-		
-		
-		
-		
*		

	Page No	
to compare	Date:	ال
AJ.	On diminional hast equation	
	34 = 62 3 by -0	demonstration of the second
	1 3t 312	promoteria note i
	In study state	territori stato Baracan
	du zo	
) dt	
	From exuation 0	-
	$\frac{(^2)^{1/2}}{(^2)^{1/2}} = 0 \Rightarrow \frac{3}{2} + \frac{3}{2} = 0$	
	7 ~ 1 = 1 () = 1 ()	
	D = A ≥ U(m) = Ax+B - D	
	· Boundary Conditions u(0+)=0	
	ucl, t)= 100	
	u(1) = B = 0 u(1) = A1+B => 100= hl => 1=100	
	u(1) = A1+B -> 100= A1 -> 1=100	
	M(1+)=1001=f(A)	
	All the state of	
	Fith study state not not put on 25 2 2	
	After steady state had has put on 25° < it end A and 75° c at end B Boundary Corditions ary u(cf) = 25	
	Borrowy colory $u(t) = 15$	
	Initial Condition u(ma) = 1001 = ((4)	
191956		

	Page No. Date:	\exists
	Since Brownday Conditions are non-horogenous	
	=: Solution of heat 19 untion is :- u(m,t) = 488(n) + 441(m,t) -3)	
	455 (e) = 75	
	Du - Jy = 0 has Salution as	
	4/s (m) = AM+B 4/s (o) = B = B = 25	
	15= A1+25 => A=50	
,	USS = 501 + 25 -(4)	
	Now from justion -3) u(nt) = uss(m) + 44 (nt)	
	4(0+) = 455(0) + 459(0+) 25 = 75 + 41, (0+)	
	$\begin{bmatrix} u(o,t) = o \\ ln \end{bmatrix}$	
	u(1,t) = us(1) + ut(1,t) 7s = 75 + uts (1,t)	
	4, 61, n) = 0	

Scanned with CamScanner

Page No.	
Date:	7
For Ut, Bourday Corditions are haragenous	
449 (0,+) = 0 = 449 (01,+) -> BC/	y U/y
Now finding intig/ (orditions:	1 1 1 2 7
From equation u(mo) = 45 (m) + u(n (rc)	
100 N = SON + 25 + 4/h ()	
Son - 25 = 4th (m, 0) initial condition	[01]
1	
Hence we have to pind the Solution of Collows	rg
head mustion.	
at and	
with Bc: 4tg (at) = 0 = 4tg (1+)	
initial condition: utn(mc) = (5ad-18)=(m)	
Solution of grayh 1000 10 00000	² †
$ \frac{1}{\sqrt{t}} \left(\sqrt{t} \right) = \frac{2}{\sqrt{t}} \left(\sqrt{t} \sqrt{t} \right) \left(\sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t} \right) \left(\sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t} \right) \left(\sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t} \right) \left(\sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t} \right) \left(\sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t} \right) \left(\sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t} \sqrt{t}$	
when dn = 2 f (m) sin (nTIN) dx	
dn = 2 ((Son - 25) Sin (NOM) dr	(
10	

Scanned with CamScanner

Page No. Date:

	Page No.
	-4n272 L Date:
	= E (-Sc) sin (2mm) e 12
	Horry Conyelite Solution is
	u(A+) = 45= (a) + 44 (x+)
	- 4n 1/2
	4(1,t) = son + 25 + \(\int (-so) \cdot \(\text{8 in (2 ntm)e} \)
	λ
	() () () () () ()
Q4.	$4/5 80) = 50x5 + 25 + 5 = 50 \ 10 \ 10 \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	422 x (0 1009) x 8
	20
	42 2
	= 75 + (-50) & 1 Din /ATT) { 1 x 3.3424 }
	2 0 1 1 1 (2)
	-9.310
	= 75 - Se (t + 1x0 + 160 0)
7.77	