常用代码及公式

$$\frac{1}{\sigma^2} \sum (X_i - \mu) \sim \chi_n^2$$

$$\frac{1}{\sigma^2} \sum (X_i - \overline{X}) \sim \chi_{n-1}^2$$

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1} \ (n \ge 30 \stackrel{\text{"}}{\to} \mathcal{N})$$

$$\mathbb{P}(X > z_\alpha) = \alpha$$

dnorm is PDF, pnorm is CDF, qnorm: quantile, $z_{1-\alpha}$, and rnorm 生成数据.

Hypothesis Testing

- 1. rejecting the null hypothesis in favor of the alternative hypothesis
- 2. there is not enough evidence to support the alternative hypothesis

Type I error α : reject a true H_0 , FP

Type II error β : don't reject a false H_0 , FN

 $1 - \beta$: power

Scales of Measurement

- 1. nominal: 没有 order 的 categories
- 2. ordinal: 有 order
- 3. interval: 数值按照等长区间分类
- 4. ratio: 单点的数值

数据的分类

- 1. Categorical / Qualitative: Nominal / Ordinal
- 2. Numerical / Quantitative: Discrete / Continuous

Basic Quantities

quantile(arr, 0.25): Q_1

 $Q_{1,2,3}$: 25%, 50%, 75% percentile

 $IQR = Q_3 - Q_1$

Skewness: 看尾巴在哪边

- 1. Left-Skewed: Negative Skewness
- 2. Right-Skewed: Positive Skewness

Why trimmed mean?

- 1. May have a lower SE when data is not normal
- 2. Balance between median and mean, protect against outliers

画冬

- 1. Stem and leaf plot: 左边是数字第一位,右边是 后面的,中间用 | 隔开(stem(x))
- 2. Histogram: hist(x)

transformation

log 把中心往右, exp 把中心往左

Log-normal distribution: $\log X \sim \mathcal{N}(\mu, \sigma^2)$

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\log x - \mu)}{2\sigma^2}}$$
$$\mu = e^{\mu + \frac{\sigma^2}{2}}, \ \sigma^2 = [\exp(\sigma^2) - 1]\exp(2\mu + \sigma^2)$$

Coefficient of Variation (CV): $\frac{\sigma}{\mu}$

Geomean = $\sqrt[n]{\prod X_i}$

Imposing a Normal PDF on the Histogram

hist(x)

xpt <- seq(from, to, by=by)
n_den <- dnorm(xpt, mean(return), sd(return))
ypt <- n_den * length(x) * 10
We notice that each data point in the return</pre>

We notice that each data point in the return dataset represents an area of 1 * 10, so the total area of the histogram would be * 10. lines(xpt, ypt, col="blue")

QQplot: $\left(\Phi^{-1}(q_i), \hat{F}_x^{-1}(q_i)\right)$

- 1. 左侧越低表示 longer left tail
- 2. 右侧越高表示 longer right tail

left skew 是两侧都高, right skew 是两侧都低 t 两个尾巴都长,是左低右高

Shapiro-Wilk Test: shapiro.test(x)

$$W = \frac{\left(\sum_{i=1}^{n} a_i x_i\right)^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
, a_i 是这个系统自带的常数 p 越小越 normal

Limitations:

- 1. Adversely affected when there are tied data
- $2.\,$ Has a bias by sample size. Statistically significant result, large sample.

box-plot: boxplot(x~group, data=x)

Outliers

classic tech: $|x_i - \overline{x}| > 2 \cdot \text{sd}$

boxplot rule: $x_i < Q_1 - 1.5 \cdot \mathrm{IQR}$ or $x_i > Q_3 + 1.5 \cdot \mathrm{IQR}$

Sampling Distribution: 那个 stat 的分布 Confidence Interval (CI): $\mathbb{P}(L \le \theta \le U) = 1 - \alpha$

 $1 - \alpha$: confidence coefficient / degree of confidence

 $X \sim \mathcal{N}(\mu, \sigma) : \overline{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$

 $X \sim \mathcal{N}(\mu,*): \overline{X} - t_{\alpha/2,n-1} \cdot \frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{\alpha/2,n-1} \cdot \frac{S}{\sqrt{n}}$ t-test: t.test(x, conf.level=0.95, mu=0) alt="less" 就是如果真实 μ 比较大不会拒

alt="greater" 就是如果真实 μ 比较小不会拒会给 conf interval,不管 alt 和 mu 给的都是一样的 **Proportion Test**:

有可能会不合理: $\hat{p} - z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} prop.test(x, n, p=.5, conf.level=.95, alt)$