小作业零: pow_a

1. openmp_pow.cpp 和 mpi_pow.cpp 中修改后函数 pow_a 的源代码。

openmp_pow.cpp:

```
void pow_a(int *a, int *b, int n, int m) {
 2
         // TODO: 使用 omp parallel for 并行这个循环
         #pragma omp parallel for
 3
         for (int i = 0; i < n; i \leftrightarrow ) {
 4
 5
              int x = 1;
             for (int j = 0; j < m; j \leftrightarrow)
 6
 7
                  x *= a[i];
 8
             b[i] = x;
9
         }
   }
10
```

mpi_pow.cpp:

```
void pow_a(int *a, int *b, int n, int m, int comm_sz /* 总进程数 */) {
 2
         // TODO: 对这个进程拥有的数据计算 b[i] = a[i]^m
 3
         int local_n = n / comm_sz;
         for (int i = 0; i < local_n; i \leftrightarrow) {
 4
             int x = 1;
 5
 6
             for (int j = 0; j < m; j \leftrightarrow ) {
 7
                  x \star = a[i];
             }
 8
9
             b[i] = x;
10
        }
11
    }
```

2. 对 openmp 版本,报告使用 1, 7, 14, 28 线程在 n=112000,m=100000 下的运行时间,及相对单线程的加速比。

线程数	运行时间(us)	加速比
1	14005383	1.00
7	2011009	6.96
14	1021626	13.71
28	510356	27.44

3. 对 MPI 版本,报告 1×1 , 1×7 , 1×14 , 1×28 , 2×28 进程($N\times P$ 表示 N 台机器,每台机器 P 个进程)在 n=112000, m=100000 下的运行时间,及相对单进程的加速比。

进程数	运行时间(us)	加速比
1x1	14014714	1.00
1x7	2016049	6.95
1x14	1025108	13.66
1x28	504580	27.76
2x28	351082	39.89