

IE 33000: Probability and Statistics in Engineering II (Fall 2022) School of Industrial Engineering, Purdue University

Homework 6

Instruction: There are 4 problems in total.

1) Problems 1-4 – 25 points Due November 14, 2022 (11:59 pm)

For all problems, provide both hand-written solutions and R codes (for 30 points bonus), wherever applicable.

Problem 1

Consider the following computer output for an experiment. The factor was tested over four levels.

Solution $M \leq_T$

- (a) How many replicates did the experimenter use?
- (b) Fill in the missing information in the ANOVA table. Use bounds for the P-value if you use the tables, not a calculator nor R.
- (c) What conclusions can you draw about differences in the factor-level means?

a)
$$trearments = 21$$
 b) $From F-tuble!$ $p-vnl = 0.0115$
 $M = dF+1$
 $= 31+1$
 $= 31+1$
 $= 32$
 $MS_E = 74.767$
 $MS_E = 31-3$
 $SSE = MS_E \cdot 0F_E$
 $= 30.41.89$
 $SSE = MS_E \cdot 0F_E$
 $= 30.93.48$

he say Fstat= 4.42 > p-val = 0.0117 which is
$$\angle \alpha = 0.07$$
 So we reject the and say there are difference in the factor level means.

Problem 2

A research study described an experiment to determine the effect of C₂F₆ flow rate on the uniformity of the etch on a silicon wafer used in integrated circuit manufacturing. Three flow rates are used in the experiment, and the resulting uniformity (in percent) for six replicates follows.

C ₂ F ₆ Flow (SCCM)	Observations					_	
	1	2	3	4	5	6	- AVG (Ÿ)
125	2.7	4.6	2.6	3.0	3.2	3.8	3,35
160	4.9	4.6	5.0	4.2	3.6	4.2	4.42
200	4.6	3.4	2.9	3.5	4.1	5.1	3.93

- (a) Does C₂F₆ flow rate affect etch uniformity? Perform the analysis of variance using $\alpha = 0.05$.
- (b) Apply Fisher's LSD method with $\alpha = 0.01$ and determine which levels of the

B) LSD =
$$t_{\frac{0.01}{3}, (18-1)} \cdot \sqrt{2.08} = 0.698 \cdot 0.338$$

= 0.690
SCCM 135 and 160

Problem 3

An article investigated four different methods of preparing the superconducting compound PbMo6S8. The authors contend that the presence of oxygen during the preparation process affects the material's superconducting transition temperature T_c . Preparation methods 1 and 2 use techniques that are designed to eliminate the presence of oxygen, and methods 3 and 4 allow oxygen to be present. Five observations on T_c (in ${}^{\circ}K$) were made for each method, and the results are as follows:

Preparation Method		Transition	n Temperat	ure T _c (°K))	
1	14.8	14.8	14.7	14.8	14.9	14.8
2	14.6	15.0	14.9	14.8	14.7	14.8
3	12.7	11.6	12.4	12.7	12.1	13.3
4	14.2	14.4	14.4	12.2	11.7	13.4

- (a) Is there evidence to support the claim that the presence of oxygen during preparation affects the mean transition temperature? Use $\alpha = 0.05$.
- (b) What is the P-value for the F-test in part (a)?
- (c) Find a 95% confidence interval on mean Tc when method 1 is used to prepare the material.
- (d) Apply Fisher's LSD method with $\alpha = 0.05$ and determine which levels of the factor differ.

SST =
$$\frac{1}{5} \cdot \frac{5}{5} \cdot \left[\left(\frac{1}{5} \cdot \frac{1}{5} \right)^{3} + \left(\frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \right)^{3} + \left(\frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \right)^{3} + \left(\frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \right)^{3} + \left(\frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \right)^{3} + \left(\frac{1}{5} \cdot \frac{$$

Problem 4

An article reported a study on the effects of additives on final polymer properties. In this case, polyurethane additives were referred to as cross-linkers. The average domain spacing was the measurement of the polymer property. The data are as follows:

Cross-Linker Level	Domain Spacing (nm)							
-1	8.2	8	8.2	7.9	8.1	8		
-0.75	8.3	8.4	8.3	8.2	8.3	8.1		
-0.5	8.9	8.7	8.9	8.4	8.3	8.5		
0	8.5	8.7	8.7	8.7	8.8	8.8		
0.5	8.8	9.1	9.0	8.7	8.9	8.5		
1	8.6	8.5	8.6	8.7	8.8	8.8		

- (a) Is there a difference in the cross-linker level? Draw comparative box plots and perform an analysis of variance. Use $\alpha = 0.05$.
- (b) Find the P-value of the test. Estimate the variability due to random error.
- (c) Plot average domain spacing against cross-linker level and interpret the results.
- (d) Apply Fisher's LSD method with $\alpha = 0.05$ and determine which levels of the factor differ.

hes this a difference a gradual increase thin

hull hope and say the

() 0.5

3