

Mathématiques

Classe: **Bac Maths**

Série: Série Nº14

Thème: Prototype devoir de contrôle 1

Nom du Prof: BENMBAREK MAHMOUD

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

Q 35 min

6 pts

Dans la figure ci-contre Γ est la courbe représentative d'une fonction f définie sur \mathbb{R}^* .

- ☐ f est continue sur chacun des intervalles] $-\infty$; 0[et]0; $+\infty$ [.
- $\ \ \square$ $\ \Gamma$ coupe l'axe des abscisses aux points d'abscisses α et $\beta.$
- \square L'axe des ordonnées et la droite $\mathfrak{D}: y = x + 1$ sont deux asymptotes à Γ .

- 1 En s'aidant du graphique, déterminer:
 - a $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to -\infty} (f(x)-x)$
 - $\lim_{x \to -\infty} \left(f(x) + x^2 \right)$
 - Etudier la limite de $\frac{f(\sin x)}{x}$ en 0.
- 2 Soit la fonction φ définie par $\varphi(x) = f \circ f(x)$.
 - a Déterminer l'ensemble de définition **%** de φ.

 - $oldsymbol{\mathsf{c}}$ En déduire la branche infinie à la courbe de $oldsymbol{\phi}$ au voisinage de $+\infty$.
- Soit la fonction g définie par $g(x) = x \cdot f\left(\frac{1}{x}\right)$.
 - a Justifier que g est définie sur \mathbb{R}^* .
 - b Calculer g(-1), $\lim_{x\to -\infty} g(x)$ et $\lim_{x\to 0^-} g(x)$
 - C Montrer que g est strictement croissante sur $]-\infty;-1]$.

d Déterminer alors $g(]-\infty;-1]$

Exercice 2

- **Q** 43 min
- 7 pts

Partie A: Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n \frac{1}{n+k}$.

- - b Montrer que pour tout $n \in \mathbb{N}^*$, $\frac{1}{2} \leqslant S_n < 1 \frac{1}{n+1}$.
 - $\qquad \qquad \text{Montrer que la suite } (S_n) \text{ converge vers un réel } l \text{ de l'intervalle } \left[\frac{1}{2};1\right].$
- Pour tout $n \in \mathbb{N}^*$, on pose $U_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$.
 - a Montrer, par récurrence, que pour tout $n\in\mathbb{N}^*$, on a: $U_{2n}=S_n$.
 - b Vérifier que pour tout $n \in \mathbb{N}^*$, on a: $U_{2n+1} = S_n + \frac{1}{2n+1}$.
 - c Montrer que (U_n) converge vers l.

 $\textbf{Partie B: } n \text{ un entier naturel non nul. On considère la fonction } f_n \text{ définie sur } [0\,;1] \text{ par } f_n(x) = (x+n) \sin\left(\frac{\pi}{2}x\right)$

- a Montrer que l'équation $f_n(x)=1$ admet dans]0;1[une solution unique α_n .
 - b Montrer que (α_n) est décroissante.
 - c Montrer que (α_n) converge vers 0.
 - d Montrer que $\lim_{n\to+\infty} n\alpha_n = \frac{2}{\pi}$.
- Pour tout $n \in \mathbb{N}^*$, on pose $W_n = \sum_{k=n}^{2n} \frac{1}{\alpha_k + k}$.
 - $\text{ Montrer que pour tout } n \in \mathbb{N}^* \text{, on a: } \frac{1}{2n+1} + S_n \leqslant W_n \leqslant S_n + \frac{1}{n}.$
 - b Déterminer alors $\lim_{\mathfrak{n} \to +\infty} W_{\mathfrak{n}}$

Exercice 3

Q 42 min

7 pts

m étant un nombre complexe différent de i.

- On considère dans \mathbb{C} l'équation d'inconnue z définie par: (E) : $z^2 \mathfrak{i}(\overline{m} + 2 + \mathfrak{i})z 2(\overline{m} + \mathfrak{i}) = 0$. On désigne par Δ le discriminat de (E).
 - a Vérifier que $\Delta = -(\overline{m} 2 + i)^2$.
 - b Résoudre alors l'équation (E).

On désigne par z_1 et z_2 les solutions de (E) où z_1 est la solution indépendante de m.

Le plan complexe est rapporté à un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

- On désigne par I, M et P les points d'affixes respectives i, m et $z_p = \frac{z_1}{z_2}$.
 - a Vérifier que $\frac{z_{\overrightarrow{OP}}}{z_{\overrightarrow{IM}}} = \frac{2}{|m-i|^2}$.
 - b On note par z_Q l'affixe du point Q, le symétrique de M par rapport à l'axe des ordonnées. Vérifier que $z_Q=-\overline{m}$.
- A et B désignent les points d'affixes respectives 2i et -i.

 Montrer que pour tout point M distinct de A et B on a: $(\overrightarrow{PA}, \overrightarrow{PB}) \equiv \pi + (\overrightarrow{QA}, \overrightarrow{QB})[2\pi]$.
- Dans la suite, on prendra $m = \frac{i}{2} + \frac{3}{2}e^{ii\frac{\pi}{3}}$ et soit J le milieu du segment [AB].
 - Montrer que BMA est un triangle rectangle en M et que $(\overrightarrow{\overline{u}},\overrightarrow{JM})\equiv \frac{\pi}{3}[2\pi]$.
 - **b** Construire M puis déduire une construction du point P.