

CachePool: Many-core cluster of customizable, lightweight scalar-vector PEs for irregular L2 data-plane workloads

Integrated Systems Laboratory (ETH Zürich)

Zexin Fu, Diyou Shen zexifu, dishen@iis.ee.ethz.ch

Alessandro Vanelli-Coralli avanelli@iis.ee.ethz.ch Luca Benini lbenini@iis.ee.ethz.ch

PULP Platform

Open Source Hardware, the way it should be!

Hardware Development

Hardware Development

Area Analysis

Area Analysis

ETH zürich

CachePool Single-Tile Cluster Area Breakdown [kGE]

Area Analysis

- More difficult routing encountered
- FPU occupies 1MGE
 - The compute-to-area around 20% without FPU
- Cache Area Scaling
 - Controller doubled from 128b to 512b
 - Due to scaling of FIFOs inside controller
 - Have some ideas to fix, will discuss internally first
 - Data bank increased by 20%
 - Due to lack of available macros
 - Tag bank reduced by 50%
 - Expected

Software Analysis – Different Cacheline Width

Performance does not differ much for hot cache

- Metrics: FPU/IPU Utilization
- 256b-cacheline performs bad in dotp
 - Encountered some conflicts between VFU and VLSU
 - Will be fixed soon by my colleague working on vector PE
- GEMV encounters performance drop with cacheline width
 - Encountered some evictions near the end of kernel

Software Analysis – Different Cacheline Width

Vector Kernel Performance

Thank you!

