Lecture 1d. Limits Review

COMP90051 Statistical Machine Learning

Sem2 2020 Lecturer: Ben Rubinstein

This lecture

- About COMP90051
- Review: Probability theory
- Review: Linear algebra
- Review: Sequences and limits

Sequences and Limits

Sequences arise whenever we have iterations (e.g. training loops, growing data sample size). Limits tell us about where sequences tend towards.

Infinite Sequences

- Written like x_1, x_2, \dots or $\{x_i\}_{i \in \mathbb{N}}$
- Formally: a function from the positive (from 1) or non-negative (from 0) integers
- Index set: subscript set e.g. ℕ
- Sequences allow us to reason about test error when training data grows indefinitely, or training error (or a stopping criterion) when training runs arbitrarily long

Limits and Convergence

- A sequence $\{x_i\}_{i\in\mathbb{N}}$ converges if its elements become and remain arbitrarily close to a fixed limit point L.
- Formally: $x_i \to L$ if, for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$ we have $||x_n L|| < \varepsilon$

Notes:

- Epsilon ε represents distance of sequence to limit point
- Distance can be arbitrarily small
- Definition says we eventually get that close (at some finite N) and we stay at least that close for ever more

Wikipedia public domain

Supremum

Generalising the maximum: When a sequence never quite peaks.

When does the Maximum Exist?

- Can you always take a max of a set?
- Finite sets: what's the max of {1, 7, 3, 2, 9}?

Closed, bounded intervals: what's the max of [0,1]?

Open, bounded intervals: what's the max of [0,1)?

Open, unbounded intervals: what's the max of [0,∞)?

What about "Least Upper Bound"?

- Can you always take a least-upper-bound of a set? (much more often!)
- Finite sets: what's the max of {1, 7, 3, 2, 9}?

Closed, bounded intervals: what's the max of [0,1]?

Open, bounded intervals: what's the max of [0,1)?

Open, unbounded intervals: what's the max of [0,∞)?

The Supremum

- Consider any subset S of the reals
- Upper bound $u \in \mathbb{R}^+$ of set S has: $u \geq x$ for all $x \in S$
- If u is no bigger than any other upper bound of Sthen it's called a least upper bound or supremum of S, written as $\sup(S)$ and pronounced "soup":

* $z \ge u$ for all upper bounds $z \in \mathbb{R}^+$ of S

FreeSVG public domain

 When we don't know, or can't guarantee, that a set or sequence has a max, it is better to use its sup

Infimum

- The greatest lower bound or infimum is generalisation of the minimum
- Written inf(S) pronounced "inf"
- Useful if we're minimising training error but don't know if the minimum is ever attained.

Stochastic Convergence

When random events or quantities can sometimes be expected to converge (e.g. test error likely drops to a minimal value)

Why Simple Limits Aren't Enough

- Consider running your favourite learner on varying numbers of n training examples giving classifier c_n
- If your learner minimises training error, you'd wish its test error wasn't much bigger than its training error
- If $R_n = err_{test}(c_n) err_{train}(c_n)$, you'd wish for $R_n \to 0$ as this would mean eventually tiny test error
- But both training data and test data are random!
- Even if $R_n \to 0$ usually happens, it won't always!!

Stochastic Convergence

- A sequence $\{X_n\}$ of random variables (CDFs F_n) converges in distribution to random variable X (CDF F) if $F_n(x) \to F(x)$ for all constants x
- A sequence $\{X_n\}$ of random variables converges in probability to random variable X if for all $\varepsilon > 0$: $\Pr(|X_n X| > \varepsilon) \to 0$
- A sequence $\{X_n\}$ of random variables converges almost surely to random variable X if: $\Pr(X_n \to X) = 1$
- Chain of implications:
 - almost sure (strongest) \Rightarrow in probability \Rightarrow in distribution (weakest)

But don't worry...

- We're not going to do any calculations with stochastic convergence
- Close understanding of it won't be necessary in this subject
- But it's good to be aware that its "out there" and we may refer to it (v briefly) within StatML theory

CCA4.0 Vincent Le Moign

Summary

- Sequences
- Limits of sequences
- Supremum is the new maximum
- Stochastic convergence

Next time: L02 Statistical schools

Homework week #1: Watch all week 1 recordings. Jupyter notebooks setup and launch (at home)