EE101:Electrical Sciences, Tutorial-7

DEPARTMENT OF ELECTRONICS & ELECTRICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

[Q-1 is for pre-tutorial. Solve it in the space provied and submit at beginning of tutorial]

Name:	Roll No.:	Tutorial Group:

1. Write advantages / applications of a three phase network or circuit. Find the line voltages for a balanced three phase network if the phase voltages are given as $v_{an} = V_P sin(\omega t + 20^o)$, $v_{bn} = V_P sin(\omega t - 100^o)$ and $v_{cn} = V_P sin(\omega t - 220^o)$. Draw the phasor diagram showing all the line and phase voltages.

Polyphase Circuits

2. A balanced three-wire single phase system (Fig.Q2) has loads $Z_{AN}=Z_{NB}=10\Omega$ and a load $Z_{AB}=16+j12\Omega$. The three lines may be assumed to be resistanceless. If $V_{an}=V_{nb}=120\angle0^0$ rms, find the currents I_{aA} and I_{nN} . If the system is made unbalanced by connecting another 10Ω resistance in parallel with Z_{AN} , find the currents I_{aA} , I_{bB} and I_{nN} .

Fig.Q2

3. Three star connected impedances $Z_1 = 20 + j37.7\Omega$ per phase are in parallel with three delta connected impedances $Z_2 = 30 - j159.3\Omega$ per phase. The line voltage is 398 volts rms. Find the line currents, power factor, power and reactive volt ampere taken by the combination.

Basic Electronics (Theme: Build with blocks)

- 4. A thermistor can be found in many (old) electronic appliances/systems. Some of its applications include (a) in fire alarm system (b) as a temperature detector in ovens, air-conditioners, etc. Design a block level fire alarm system that gets activated for temperatures above 100°C using the following components:
 - A 9V battery
 - a 103 (10 \times 10³ Ω at 25°C) thermistor. Assume a linear variation in the resistance value with a temperature coefficient of -120Ω /°C
 - other blocks/components required: comparator, an alarm/buzzer with an enable input, and $10k\Omega$ resistors (only)
- 5. Convert the above system into a 4-bit temperature sensor. Procedure: Divide the temperature range between 25°C and 100°C into 16 levels (including 25°C and 100°C) and assign a 4-bit code to each level starting from 0000 to 1111. Use 16 comparators with appropriate reference voltages to detect the temperature. Use a digital logic to encode the outputs of 16 comparators to 4-bits.