Graphische Darstellung

1) Die Federkonstante k einer Federwaage soll nach dem Hookschen Gesetz $F=k\cdot x$ bestimmt werden. Hierzu werden verschiedene Gewichte m an die Federwaage gehängt und die jeweilige Ausdehnung x gemessen.

m [g]	x [cm]
2	1.6
3	2.7
4	3.2
5	3.5
6	4.0

Tragen Sie die Daten in ein m-x Diagramm ein und bestimmen Sie die Ausgleichsgerade $x=a\cdot m+b$. Hierbei ist a=g/k mit der Schwerebeschleunigung $g=9.81m/s^2$

2) In einem Experiment soll die Brennweite einer Linse bestimmt werden. Hierzu wird eine Lampe im Abstand g vor die $d\ddot{u}nne$ Linse gestellt. Auf der anderen Seite der Linse befindet sich im Abstand b ein Schirm, der solange verschoben wird, bis ein scharfes Bild zu sehen ist. Die Brennweite f der Linse läßt sich dann durch die Linsengleichung

$$\frac{1}{f} = \frac{1}{g} + \frac{1}{b} \tag{1}$$

berechnen.

Für sechs verschiedene Gegenstandsweiten q wurde die Bildweite b bestimmt.

Gegenstandsweite g [mm]	Bildweite b [mm]
60	285
80	142
100	117
110	85
120	86
125	82

- a) Berechnen Sie für die sechs verschiedenen Kombinationen die Brennweite f der dünnen Linse. Verwenden sie die Linsengleichung. Berechnen Sie aus den sechs Brennweiten den Mittelwert, die Standardabweichung und den Fehler des Mittelwertes.
- b) Tragen Sie die Daten in ein G-B Diagramm ein, mit $G = \frac{1}{g}$ und $B = \frac{1}{b}$. Bestimmen Sie hieraus die Brennweite f mittels Linearer Regression.
- c) Vergleichen Sie die beiden Ergebnisse.

3) In einem Experiment wurde das Absorptionsgesetz $N=N_0\cdot e^{-\mu d}$ überprüft. Hierzu wurden verschieden dicke Bleiplatten zwischen die radioaktive Quelle und dem Detektor gesetzt. Es wurde die Anzahl der Gamma-Quanten N gezählt, die in t=60 s durch die Bleiplatte der Dicke d den Detektor erreichen. Aus dem Absorptionsgesetz kann dann durch graphische Auswertung der Absorptionskoeffizient μ bestimmt werden.

d [cm]	N [1/60s]
0.1	7565
0.2	6907
0.3	6214
0.4	5531
0.5	4942
1.0	2652
1.2	2166
1.5	1466
2.0	970
3.0	333
4.0	127
5.0	48

Berechnen Sie die Messunsicherheiten für N und tragen Sie die Daten (mit Messunsicherheiten) in ein d-N Diagramm ein. Die Messunsicherheit $\Delta N = \sqrt{N}$ folgt aus der Poisson-Statistik. Wählen Sie hierzu einmal eine lineare (lin-lin) Darstellung und eine halblogarithmische (lin-log) Darstellung. Bestimmen Sie den Absorptionskoeffizienten μ , indem Sie das Absorptionsgesetz an die Daten anpassen.