0.1 Preliminary remarks on set theory

References. Literature for this chapter:

- Sophie Morel Homological Algebra I.1,
- Daniel Murfet Foundations for Category Theory,
- Saunders MacLane Categories for the Working Mathematician I.6.

In this course we always assume a model of set theory that satisfies the Zermelo-Fraenkel axioms + the axiom of choice (ZFC).

Definition (Grothendieck universe; we assume ZFC). A universe \mathcal{U} is a set which has the following properties:

- (i) \emptyset , $\mathbb{N} \in \mathcal{U}$,
- (ii) $X \in \mathcal{U}$ and $y \in X \implies y \in \mathcal{U}$,
- (iii) $X \in \mathcal{U} \implies \{X\} \in \mathcal{U}$,
- (iv) $X \in \mathcal{U} \implies \mathcal{P}(X) \in \mathcal{U}$,
- (v) If $I \in \mathcal{U}$ and $\{X_i\}_{i \in I}$ is a family of members $X_i \in \mathcal{U}$, then $\bigcup_{i \in I} X_i \in \mathcal{U}$.

The existence of a universe is equivalent to the existence of a strongly inaccessible cardinal. (Thomas Jech - Set Theory)

Axiom (Axiom of universes (Grothendieck)). Every set lies in a universe. (We will assume this)

Definition. If \mathcal{U} is our chosen universe, then:

- A \mathcal{U} -set is an element in \mathcal{U} .
- A \mathcal{U} -class is a subset of \mathcal{U} .
- A \mathcal{U} -group is a group (G, e, \cdot) with $G \in \mathcal{U}$ and $\cdot : G \times G \to G \in \mathcal{U}$.
- A \mathcal{U} -ring is a ring $(R,0,1,+,\cdot)$ with $R \in \mathcal{U}$ and also $+,\cdot$
- etc.

Convention. We fix a \mathcal{U} and drop \mathcal{U} - in all terms.