CSDS 440: Machine Learning

Soumya Ray (he/him, sray@case.edu)
Olin 516
Office hours T, Th 11:15-11:45 or by appointment
Zoom link

Recap

•	A convex set is a set where for any pair of points, the I joining them
•	A convex function is a function whose e is convex.
•	Convex functions satisfy J i
•	For convex functions, every I o is a
•	In constrained optimization, the constraints define a f r where
•	In a linear program, the feasible region is a p and the solution lies at a
	V
•	From a primal linear program, we can create a d LP.
•	The conditions for optimality of a primal-dual convex system are given by the conditions.
•	What is "integrate and fire" in an actual neuron?
•	In a perceptron, there are i units and an o unit. Each e has a w associated with it. If the d p between i and w is g than the a t, the perceptron will fire.
•	The perceptron is a p model. The p are the w and the b .

Today

Artificial Neural Networks (Ch 4, Mitchell)

Training Phase

Given Data:

x_1	x_2	\mathcal{Y}
0	0	-1
0	1	1

• Find (\mathbf{w}, σ) so that the resulting perceptron matches y

Loss Function

• We will define a function called a "loss function" $L(\mathbf{w}, \sigma)$

- This function will measure the difference between our *current estimates* of y (\hat{y}) and the *true* y (which is known), over all training examples, with respect to (\mathbf{w}, σ)
- Then our goal will be to *minimize* the loss function with respect to (\mathbf{w}, σ)

Training Phase

Given a training sample and their class labels

$$D = \begin{pmatrix} x_{11} & \dots & x_{1n} & -1 & y_1 \\ \vdots & & \vdots & \vdots & \vdots \\ x_{m1} & \dots & x_{mn} & -1 & y_m \end{pmatrix}$$

• Find parameters $\mathbf{W} = (w_1, w_2, w_3, ..., w_n, \sigma)$

• To minimize "loss"
$$L(\mathbf{w})$$

ŷ

Loss function

A common loss function is "squared loss"

$$L(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2 = \frac{1}{2} \sum_{i=1}^{m} (y_i - sign(\mathbf{w} \cdot \mathbf{x}_i))^2$$

- Notice that sign(1)=1 and sign(-1)=-1, so if we can get $\mathbf{w} \cdot \mathbf{x}$ to equal \mathbf{y} we can drop the sign function
 - This is easier to deal with (differentiable)

$$L(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

Iterative parameter update

$$L(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

Calculate gradient with respect to parameters w:

$$\nabla_{\mathbf{w}} L = \sum_{i=1}^{m} (y_i - \mathbf{w} \cdot \mathbf{x}_i) (-\mathbf{x}_i)$$

Parameter Update:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} L$$

Learning rate or step size

Convergence

- This is gradient descent
- Notice that this loss function is everywhere differentiable and bounded below
 - A well defined (unique!) minimum exists for any D
 - This iterative procedure will find it

Stochastic G.D. vs Regular G.D.

Instead of summing the gradients across all examples, could perform update separately for each example (or a few examples)

Regular Stochastic $\nabla_{\mathbf{w}} L = \sum_{i=1}^{m} (y_i - \mathbf{w} \cdot \mathbf{x}_i) (-\mathbf{x}_i)$ $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} L$ $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} L$ $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} \tilde{L}$ $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} \tilde{L}$

Stochastic Gradient Descent

 Since the total gradient is a vector sum, this isn't the same as summing the gradient first

 But it is incremental, useful for online updates and can help with local minima (when it exists)

Stochastic G. D. Convergence

• If doing stochastic gradient descent, technically need η to go to zero and $\Sigma\eta^2$ to be bounded

 Since we'll usually perform finitely many parameter updates, often ignore this in practice

Geometry of the Perceptron

 A perceptron's separating surface defines a hyperplane in feature space

Linear Separability

- Since the perceptron defines a linear decision boundary, any dataset that it can separate with no error is said to be "linearly separable"
 - Such a dataset will have zero loss wrt our loss function

Logic with a perceptron

Conjunctions

$$x_1 \wedge x_2 \wedge x_3 \Leftrightarrow y$$
$$1 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3 \ge 3$$

• At least *m*-of-*n*

$$(x_1 \wedge x_2) \vee (x_1 \wedge x_3) \vee (x_2 \wedge x_3) \Leftrightarrow y$$
$$1 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3 \ge 2$$

Things that can't be learned

Complex disjunctions

$$(x_1 \land x_2) \lor (x_3 \land x_4) \Leftrightarrow y$$

Exclusive-OR

$$(x_1 \land \neg x_2) \lor (\neg x_1 \land x_2) \Leftrightarrow y$$

XOR and the Perceptron

How to fix this?

Idea

- So far, single "neuron"
- Let's connect them into a network

"Feedforward" Network Topology

Representation Ability

- Every Boolean function can be represented by a network with one hidden layer of units (Minsky and Papert)
- Every bounded continuous function can be represented by a network with one hidden layer (Cybenko et al)*
- Every function on \mathbb{R}^n can be represented by a network with two hidden layers! (Cybenko et al)*
 - *(with arbitrary numbers of hidden units)

Tradeoffs

- Very large number of degrees of freedom
 - Network topology
 - Number of layers, number of hidden units in each layer, edge configuration, even different activation functions
 - Network parameter values
- Power comes at a price
 - Very very easy to overfit if structure is complex
 - Very long time and large samples required to train
 - Structure and function relationship is opaque to people (and often uninterpretable even when not)

Training Phase (ANN)

 As before, given a training sample and their class labels

$$D = \begin{pmatrix} x_{11} & \dots & x_{1n} & -1 & y_1 \\ \vdots & & \vdots & \vdots \\ x_{m1} & \dots & x_{mn} & -1 & y_m \end{pmatrix}$$

Find parameters

• To minimize "loss" $L(\mathbf{w})$

Hidden Layer Activation Function

 For a perceptron, we used a sign() function as an activation function

- This function is problematic for optimization because it isn't differentiable
 - For perceptron this was OK, we were able to remove the sign() and handle this
 - But for a general ANN we need a smooth activation function

Activation Functions

Sigmoid

$$h(\mathbf{x};\mathbf{w}) = (1 + e^{-\mathbf{w} \cdot \mathbf{x}})^{-1}$$

Radial Basis Function

$$h(\mathbf{x}; \mathbf{w}, \mathbf{c}, \beta) = e^{\beta \|\mathbf{w} \cdot \mathbf{x} - \mathbf{c}\|^2}$$

Hyperbolic Tangent

$$h(\mathbf{x}; \mathbf{w}, a, b) = a \frac{(e^{b\mathbf{w} \cdot \mathbf{x}} - e^{-b\mathbf{w} \cdot \mathbf{x}})}{(e^{b\mathbf{w} \cdot \mathbf{x}} + e^{-b\mathbf{w} \cdot \mathbf{x}})}$$

Activation Function: Sigmoid

$$h(u) = (1 + e^{-u})^{-1}$$

Backpropagation

Backpropagation

 Feed the examples forward through the network, observe the output and calculate the loss

- Perform "layer-wise" gradient descent on the loss function with respect to each weight, starting with output layer
 - For each weight in each layer, calculate its
 contribution to the overall loss using the chain rule
 - Update the weight in the negative gradient direction

Backpropagation (SGD)

- Let x_{ii} be the i^{th} input to unit j
- Let w_{ii} be the parameter associated with x_{ii}
- Let $n_j = \sum w_{ji} x_{ji}$ be the "net input" to unit j

• Observe that
$$\frac{\partial L}{\partial w_{ji}} = \frac{\partial L}{\partial n_j} \frac{\partial n_j}{\partial w_{ji}} = \frac{\partial L}{\partial n_j} x_{ji}$$