Sec:3.3

Fixed-Point Iteration

Tithe noundoer is is sixed point for a gigerent function if. if.

$$p = g(p)$$

Example:

Determine any fixed points of the function $g(x) = x^2 - 2$.

solution

$$p = g(p)$$

$$p = p^{2} - 2$$

$$0 = p^{2} - p - 2$$

$$p = -1, p = 2$$

A fixeedppointhofor og our curre pisety is et lynvillen the paraforh of interior expression of y = x

Theorem 2.3

- (i) If $g \in C[a, b]$ and $g(x) \in [a, b]$ for all $x \in [a, b]$, then g has at least one fixed point in [a, b].
- (ii) If, in addition, g(x) exists on (a, b) and a positive constant k < 1 exists with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$,

then there is **exactly one** fixed point in [a, b].

Example

Show that $g(x) = 3h \text{ is batiseats to a fixed fixed fixed fixed the fixed f$

Example

Show that $g(x) = \frac{x^2}{100}$ as painting que fixed point on the interval [-1, 1].

The number p is a sixed point force given function of if p=g(p)

Example

Find the ities by the function $g(x) = e^{-x}$

$$p_{i+1} = g(p_i)$$
 $p_{i+1} = e^{-p_i}$

Starting with an initial guess of $p_0 = 0$

$$p_{\mathbf{p}_{1}} = g(p_{00}) = e^{-0} = 1$$

$$p_{\mathbf{p}_{2}} = g(p_{1}) = e^{-1} = 0.367879$$

$$p_{\mathbf{p}_{3}} = g(p_{2}) = e^{-0.367879} = 0.692201$$

n	p _m
1	0.000000000000
2	1.0000000000000
3	0.3678794411714
4	0.6922006275553
5	0.5004735005636
6	0.6062435350856
7	0.5453957859750
8	0.5796123355034
9	0.5601154613611
10	0.5711431150802
11	0.5648793473910
12	0.5684287250291

Thus, each iteration brings the estimate closer to the true fixed point: 0.56714329

The number is a differ opinit for a giving a function g f. if.

$$p = g(p)$$

Finding fixed point of g(x)

Reob Finding of of f(x)

p **lis a fixed point** of g(x)

$$p$$
Is a root of $f(x)$

$$f(x) = x - gg(x)$$

simple fixed-point iteration

Step 1

rearranging the diunction

$$f(x) = 0$$

so that is no the left here right in the side of the equation:

$$x = g(x_k) \quad (*)$$

Step 2

given an imitial guess at the root p(*) can be beed to sed to pare present of the interpresed by the iterative formula

$$p_{i+1} = g(p_i)$$

Example 1

$$x^2 - 2x + 3 = 0$$

can be significant parameter that $x^2 + 3$

to yield
$$x = \frac{x^2 + 3}{2}$$

 $x = g(x)$

Example 2

$$sin(x) = 0$$

can be simply harmonical table do to yield $x = x + \sin(x)$

$$x = x + \sin(x)$$
$$x = g(x)$$

Convert the problem from root-finding to finding fixed-point

Step 1

rearrangging the function

$$x = e^{-x}$$
$$x = g(x)$$

Step 2

$$p_{i + 1} = g(pp)_i$$

$$\boldsymbol{p_{i+1}} = \boldsymbol{e^{-p_i}}$$

Starting with an initial guess of $p_0 = 0$

$$x_1 = g(p_0) = e^{-\theta} = 1$$

$$p_2 = g(p_1) = e^{-1} = 0.367879$$

$$p_{33} = g_{9} p_{22} = e^{-0.367879} = 0.692201$$

Example1

Use simple fixed-point iteration to locate the root of

$$f(x) = e^{-x} - x$$

p_m

- 1 0.0000000000000
- 2 1.0000000000000
- 3 0.3678794411714
- 4 0.6922006275553
- 5 0.5004735005636
- 6 0.6062435350856
- 7 0.5453957859750
- 8 0.5796123355034
- 9 0.5601154613611
- 10 0.5711431150802
- 11 0.5648793473910
- 12 0.5684287250291

Thus, each iteration brings the estimate closer to the true value of the root: 0.56714329

```
clear; clc; format long

p(1) = 0;

g = @(x) \exp(-x);

true\_root = 0.56714329;

for k=1:11

p(k+1) = g(p(k));

rel=abs((p(k) - true\_root) / true\_root);

fprintf('%d %10.4f %10.4f \n', k,p(k),rel);

end
```


n	p_m	$\boldsymbol{\varepsilon_{t}}(\%)$
1	0.0000000000000	100.00
2	1.00000000000000	76.32
3	0.3678794411714	35.13
4	0.6922006275553	22.05
5	0.5004735005636	11.75
6	0.6062435350856	6.89
7	0.5453957859750	3.83
8	0.5796123355034	2.19
9	0.5601154613611	1.23
10	0.5711431150802	0.70
11	0.5648793473910	0.39
12	0.5684287250291	0.22

Notice that the true percent relative error for each iteration is roughly proportional (by a factor of about 0.5 to 0.6) to the error from the previous iteration. This property, called *linear convergence*

The devivative mean-value theorem states that if affunfutiction and (xi) sainstide first identification are continuous over an interval athen these lexibits nat ltereste conseste a latel coffet winth in a the influence at a factor than the interval such that

 $g'(\xi) = \frac{g(b) - g(a)}{\text{this bequation is the slope}}$ The right-hand side of this bequation is the slope

of the line joining and .
The right-hand side of this equation is the slope of the line joining g(a) and g(b).

$$g(b) - g(a) = g'(\xi)(b - a)$$

Convergence

Suppose that the true solution is

$$p = g(p)$$

the iterative equation is

$$\boldsymbol{p}_{n+1} = \boldsymbol{g}(\boldsymbol{p}_n)$$

Subtracting these equations yields

$$p - p_{n+1} = g(p) - g(p_n)$$

The derivative mean-value theorem gives

$$p - p_{n+1} = g \rangle (\xi) (p - p_n)$$

where is is somewhere between and p_n

If the true error for iteration n is defined as $E_m \equiv p = p_m$

$$E_{n+1} \equiv g'(\xi) E_{n}$$

$$|E_{n+1}| = |g''(E_n)| \cdot |E_{n}|$$

$$|E_{n+1}| = |g''(\xi)| \cdot |E_{n}|$$

$$|E_{n}| \quad (\text{If } |g(\xi)| \leq k) k < 1)$$

the errors decrease with each iteration

$$|E_{m+1}| \leqslant k |E_m|$$

$$|E_{10}| < k |E_{9}| < \cdots < k^{9} |E_{11}| < k^{19} |E_{0}|$$
 $|E_{m}| < k^{n} |E_{0}|$

Step 1

rearranging in the fluor ction (x) = 0 so that is is one the Herith hide of the equation: g(x)

SelectSglec $tso\ that$ $|g'(\xi)| < 1$

Theorem 2.4 (Fixed-Point Theorem)

Let $g \in C[a, b]$ be such that $g(x) \in [a, b]$, for all x in [a, b]. Suppose, in addition, that g' exists on (a, b) and that a constant 0 < k < 1 exists with

$$|g(x)| \le k$$
, for all $x \in (a, b)$.

Then for any number p_0 in [a, b], the sequence defined by

$$p_n = g(p_{n-1}), n \ge 1,$$

converges to the unique fixed point p in [a, b].

Corollary 22.5

Iff g sattisfies the hypophothes sets to be or blown and or how blown and or blown

 $p ext{ are given by } |p_n - p| \le k^n \max\{p_0 - a, b - p_0\}$ (2.5) and $|p_n - p| \le \max\{p_0 - a, b - p_0\}$ (2.5) and

$$|p_n - p| \le \frac{k^n}{|p_1|} |p_1 - p_0|$$
, for all $n \ge 1$. (2.6)
 $|p_n - p| \le |\frac{1}{|p_1|} |p_0|$, for all $n \ge 1$. (2.6)

Two important error equation

Corollaryy2.2.5

If g sattisfies the hypophotheses of state of the core of the continuous important sets of the continuous interest sets of the continuous

Remark 1

The smaller the value of k, the faster the convergence, which may be very slow if k is close to 1,

Remark 2

the rate at which { *pn* } converges

Q:2 (6+7+7) Let
$$f(x) = x - e^{-x}$$
. To find a root of $f(x) = 0$ using Fixed-Point method, consider two equivalent fixed point equations $x = g_1(x) = e^{-x}$ and $x = g_2(x) = -\ln(x)$.

(a) Determine for which equation, the Fixed Point Method converges in the interval [0.2, 0.9].

The function g(x) is decreasing
$$g(0.2) = 0.8187$$
 $g(0.9) = 0.407$

 $[0.407, 0.8187] \in [0.2, 0.9]$ $g(x) \in [a, b]$, for all x in [a, b]

(a)
$$g'(x) = -\bar{e}^{x}$$
, $|g'(x)| = |\bar{e}^{x}| = \bar{e}^{\circ \cdot 2} = K < 1$ ②
 $g'(x) = -\frac{1}{x}$, $|g'(x)| = |\frac{1}{x}| > 1$, $0.2 \le x \le 0.9$

1) The fixed point method converges for x=g(x).

Q:2 (6+7+7) Let $f(x) = x - e^{-x}$. To find a root of f(x) = 0 using Fixed-Point method, consider two equivalent fixed point equations $x = g_1(x) = e^{-x}$ and $x = g_2(x) = -\ln(x)$.

(b) Using $x_0 = 0.8$ and $g_1(x)$, estimate how many of iterations are necessary to obtain the root accurate to 10^{-2} . (accurate to two decimal places)

$$\begin{array}{l} p_{n} p_{n}$$

$$|P_{1}| p_{n} P|_{p} \leq |\frac{nn}{1-k}| p_{1} Pp_{0}|_{p} |P_{0}|_{p} |P_{0}|_{p$$

Q:2 (6+7+7) Let $f(x) = x - e^{-x}$. To find a root of f(x) = 0 using Fixed-Point method, consider two equivalent fixed point equations $x = g_1(x) = e^{-x}$ and $x = g_2(x) = -\ln(x)$.

(c) Compute the root accurate to 10⁻² and note the number of iterations actually needed.

(C)
$$x_1 = e^{-0.8} = 0.44933$$

①
$$\chi_{4} = 0.58960$$
① $\chi_{5} = 0.55455$

$$0 = 0.57433$$

$$0 = 0.56308$$