PROIECT TEHNICI CAD

VU-METRU

STUDENT: VÎTCĂ DIANA-NICOLETA

GRUPA 2127

CUPRINS

DATELE DE PROIECTARE ALE CIRCUITULUI	3
SCHEMA BLOC	3
AMPLIFICAREA	
FILTRAREA	
DETECTIA DE PRAGURI	_
CREAREA LEDURILOR	

PROIECT VU-METRU

Date de proiectare

Specificatii proiectare		Amplitudinea semnalului de	Banda de frecventa [Hz]		vcc	Semnalizari
		intrare [uV]	fmin	fmax		
29	Vitca Diana-Nicoleta	1800	120	4500	19	5

Schema bloc a circuitului

Amplificarea semnalului

<u>Dimensionarea componentelor</u>

Amplificator neinversor cu reactie negativa

O să dimensionez rezistentele R1 si R2

AO cu RN => v_D =0

• Un amplificator echipat cu reactie negativa este mai stabil, distorsioneaza mai putin semnalul de intrare si, in general, este capabil de amplificarea unor frecvente mai largi. Dezavantajul este un factor de amplificare mai scazut

$$V_{D}=v^{+}-v^{-}$$

$$v^{-}=\frac{R1}{R1+R2}^{*} \text{ Vout1}$$

$$=> \text{Vin} - \frac{R1}{R1+R2}^{*} \text{ Vout1}=0$$

$$=> \text{Vin} = \frac{R1}{R1+R2}^{*} \text{ Vout1}$$

$$A_{v}=\frac{Vout1}{Vin}=1+\frac{R2}{R1}$$

!!! Amplificarea este data de cele 2 rezistente

Am ales Vout1= 50mV
$$A_v = \frac{Vout1}{Vin} = \frac{90m}{1.8m} = 27.77 \sim 28$$
 =>50=1+ $\frac{R2}{R1}$ => $\frac{R2}{R1}$ =49 => $\frac{R2}{R1}$ =49

Am ales R1=1k Ω => R2=49k Ω (pentru standardizare voi folosi o rezistenta de 51k Ω)

Schema electrica a circuitului

- Am utilizat o sursa de tip Vsin pentru a obtine un semnal sinusoidal
 - ❖ Voff=0 (nu avem componenta continua)
 - ❖ VAmpl=1.8mV(amplitudinea semnalului de intrare ⇒ 1800uV=1.8mV)
 - Freq=120Hz(frecventa minima din banda de frecventa)
- Am utilizat un amplificator TL082

Profilul de simulare pentru vizualizarea formelor de unda a semnalului de intrare si a semnalului de iesire

Forma de unda a semnalului de intrare

• La intrare am setat amplitudinea 1.8mV si dupa cum se poate observa am obtinut valoarea in urma masurarii cu ajutorul cursoarelor

Forma de unda a semnalui de iesire dupa prima amplificare

Am masurat cu ajuturul cursoarelor amplitudinea semnalului de iesire

!!! Amplificam a doua oara circuitul

O să dimensionez rezistentele R3 si R4

AO cu RN =>
$$v_D$$
=0

$$V_{D}=v^{+}-v^{-}$$

$$v^{-}=\frac{R3}{R3+R4}* \text{ Vout2}$$

$$v^{+}=\text{Vout1}$$

$$=> \text{Vout1} - \frac{R3}{R3+R4}* \text{ Vout2}=0$$

$$=> \text{Vout1} = \frac{R3}{R3+R4}* \text{ Vout2}=0$$

$$=> \text{Vout1} = \frac{R3}{R3+R4}* \text{ Vout2}=0$$

$$=> \text{Vout2} = \frac{R3}{R3+R4}* \text{ Vout2}=0$$

!!! Amplificarea este data de cele 2 rezistente

Am ales Vout2= 5V
$$A_v = \frac{Vout2}{Vout1} = \frac{5}{50*10^{-3}} = 100$$

$$= >100 = 1 + \frac{R4}{R3} = > \frac{R4}{R3} = 99 = > R4 = 99*R3$$

$$A_v = 1 + \frac{R4}{R3}$$

Am ales R3=1k Ω => R4=99k Ω (am folosit o rezistenta de 100k Ω)

Forma de unda a semnalului de iesire dupa a doua amplificare

 Am masurat cu ajutorul cursoarelor amplitudinea semnalului de iesire si am obtinut valorea aleasa 5V

!!! Amplificam a treia oara circuitul

> O să dimensionez rezistentele R5 si R6

AO cu RN =>
$$v_D$$
=0

$$V_{D}=v^{+}-v^{-}$$

$$v^{-}=\frac{R5}{R5+R6}* Vout3$$

$$v^{+}=Vout2$$

$$=> Vout2 - \frac{R5}{R5+R6}* Vout3=0$$

$$=> Vout2 = \frac{R5}{R5+R6}* Vout3$$

$$\bullet A_{v}=\frac{Vout3}{Vout2}=1+\frac{R6}{R5}$$

• !!! Amplificarea este data de cele 2 rezistente

Am ales R3=1k Ω => R4=2k Ω

Forma de unda a semnalului de iesire dupa a treia amplificare

 Am masurat cu ajutorul cursoarelor amplitudinea semnalului de iesire si am obtinut cat valoarea aleasa de 15V

Schema electrica a circuitului -Amplificarea totala

- Am amplificat circuitul de trei ori pentru a avea un echilibru
- Tensiunea de intrare este de 19V ,iar la iesirea circuitului in urma dimensionarii va rezulta o tensiune de 15V

Filtrarea

> Filtrul trece banda

Fmin=120Hz

Fmax=4500Hz

Banda de frecventa= 4500-120=4380HZ

Am ales C1=100nF C2=1nF.

Fmin=
$$\frac{1}{2*\pi*R1*C1}$$
=> R1= $\frac{1}{2*\pi*120*100*10^{-9}}$ =13.26k=> 13k

Fmax=
$$\frac{1}{2*\pi*R2*C2}$$
 => R2= $\frac{1}{2*\pi*4500*1*10^{-9}}$ =35.36k => 35k

Schema electrica a filtrului trece banda

Pentru a vizualiza banda de frecventa am folosit o sursa Vac si o analiza de tip AC SWEEP

in figura de mai jos se poate observa semnalul amplificat nefiltrat-portocaliu si semnalul amplificat filtrat-albastru

Valoarea tensiunilor de iesire inainte si dupa filtrare

> Am masurat cu ajutorul cursoarelor frecventa minima si frecventa maxima

Schema electrica cu amplificarea si filtrarea

Detectia pragurilor

> Am 5 semnalizari asadar voi avea 5 praguri

Aplitudinea semnalului amplificat este 15V

1)0-3V

$$V_D = v^+ - v^-$$

$$v^- = 0$$

$$v^+ = Vcc = 19V$$

Comparator neiversor pentru primul prag

$$v^{+}=Vcc=19V$$
 $v^{-}=3V$
 $v^{-}=\frac{R20}{R18+R20}*Vcc$
 $v^{-}=\frac{R20}{R18+R20}*Cc$
 $v^{-}=\frac{R20}{R18+R20}*6.3=1$
 $0.3*R20=R18+R20$
 $0.3*R20=R18$
 $0.3*R20=R18$
 $0.3*R20=R18$

$$v^{+}=Vcc=19V$$
 $v^{-}=6V$
 $v^{-}=\frac{R10}{R9+R10}*Vcc$
 $=>6=\frac{R10}{R9+R10}*3.16=1$
 $3.16*R10=R9+R10$
 $3.16*R10=R9$
 $aleg R10 = 1K => R9=2.16K$

4) 9-12V

$$v^{+}=Vcc=19V$$
 $v^{-}=9V$
 $v^{-}=\frac{R13}{R12+R13}*Vcc$
 $=>\frac{R13}{R2+R13}*2.11=1$
 $2.11*R13=R12+R13$
 $1.11*R13=R12$
 $aleg R13 = 1K => R12=1.11K$

5) 12-15V

$$v^{+}=Vcc=19V$$
 $v^{-}=12V$
 $v^{-}=\frac{R16}{R15+R16}*Vcc$
 $=> 12=\frac{R16}{R15+R16}*19$
 $=>\frac{R16}{R15+R16}*1.58=1$
 $1.58*R16=R15+R16$
 $0.58*R16=R15$
 $aleg R16 = 1K => R15=0.58K$

Am folosit o sursa Vsin si o analiza Time domain pentru a verifica pragurile de tensiune

Schema cu toate comporatoarele pentru detectia de praguri

Vizualizarea domeniilor de tensiune

Amplificare+filtrare+detectie de praguri

Semnalele de iesire ale pragurilor

CREAREA LEDURILOR

➤ In Model Editor am facut 5 leduri

LED PORTOCALIU

V1=9V

Vd=2.1V

I(LED)=20mA

$$R = \frac{V_R}{I_{LED}} = \frac{9V - 2.1V}{20mA} = 345\Omega$$

Caracteristica I(LED)=f(Vled) pentru ledul portocaliu

LED VERDE

V1=9V

Vd=2.1V

I(LED)=20mA

$$R = \frac{V_R}{I_{LED}} = \frac{9V - 2.1V}{20mA} = 345\Omega$$

Caracteristica I(LED)=f(Vled) pentru ledul verde

LED ALBASTRU

V1=9V

Vd=3.3V

I(LED)=20mA

$$R = \frac{V_R}{I_{LED}} = \frac{9V - 3.3V}{20mA} = 285\Omega$$

Caracteristica I(LED)=f(Vled) pentru ledul albastru

LED ROSU

V1=9V

Vd=2V

I(LED)=20mA

$$R = \frac{V_R}{I_{LED}} = \frac{9V - 2V}{20mA} = 350\Omega$$

Caracteristica I(LED)=f(Vled) pentru ledul rosu

LED GALBEN

V1=9V

Vd=2.1V

I(LED)=20mA

$$R = \frac{V_R}{I_{LED}} = \frac{9V - 2.1V}{20mA} = 395\Omega$$

Caracteristica I(LED)=f(Vled) pentru ledul galben

Ledurile in circuitul final

R21=(Vcc-VD_galben)/ID_galben=(19V-2.1V)/

20mA=845 Ω

R19=(Vcc-VD_albastru)/ID_albastru=(19V-3.3V)/20mA=785 Ω

R11=(Vcc-VD_verde/ID_verde=(19V-2.1V)/20mA=845 Ω

R14=(Vcc-VD_rosu)/ID_rosu==(19V-2V)/20mA=850 Ω

R17=(Vcc-VD_portocaliu)/ID_portocaliu=(19V-2.1V)/20mA=845 Ω

Bibliografie

http://www.bel.utcluj.ro/dce/didactic/cef/

http://www.bel.utcluj.ro/dce/didactic/de/de.htm

https://sites.google.com/site/bazeleelectronicii/home/filtre/4-passive-band-pass-filter

https://www.farnell.com/datasheets/1671521.pdf

https://www.farnell.com/datasheets/1671521.pdf

https://www.farnell.com/datasheets/1519875.pdf

https://www.farnell.com/datasheets/1660998.pdf

cursuri si laboratoare CAD