Math 1432

Final Exam Review

1. Give the equation of the tangent line to the given graph at the point where x = 0

a.
$$f(x) = \ln(6x+1) + e^{2x}$$

b.
$$f(x) = \ln(2x+1) - 3e^{-4x}$$

c.
$$f(x) = \sqrt{9 - x^2}$$

2. Find the inverse of the following:

$$a. \quad f(x) = \frac{2}{3-x}$$

b.
$$f(x) = \frac{x+1}{x+2}$$

3. Find the derivative of the inverse for the following:

a.
$$f(x) = x^3 + 1$$
, $f(2) = 9$, $(f^{-1})'(9) =$

b.
$$f(-3) = 1$$
, $f(1) = 2$, $f'(-3) = 3$, $f'(1) = -2$, $(f^{-1})'(1) = -2$

- c. f(x) passes through the points (3, -2) and (-2, 1). The slope of the tangent line to the graph of f(x) at x = 3 is -1/4. Evaluate the derivative of the inverse of f at -2.
- 4. Find the equation of the tangent and the normal lines to the parametric curves at the given points:

a.
$$x(t) = -2\cos 2t$$
, $y(t) = 4 + 2t$, $(-2,4)$

b.
$$x(t) = 3\cos(3t) + 2t$$
, $y(t) = 1 + 5t$, (3,1)

5. Give an equation relating *x* and *y* for the curve given parametrically by

a.
$$x(t) = -1 + 3\cos t$$
 $y(t) = 1 + 2\sin t$

b.
$$x(t) = -1 + 3\cosh t$$
 $y(t) = 1 + 2\sinh t$

c.
$$x(t) = -1 + 4e^t$$
 $y(t) = 2 + 3e^{-t}$

6. Differentiate the function:

a.
$$f(x) = 3^{x^2}$$

b.
$$f(x) = \tan(\log_5 x)$$

c.
$$f(x) = x^{\sin x}$$

d.
$$f(x) = \sinh(3x)$$

e.
$$f(x) = \frac{\cosh x}{x}$$

7. Integrate:

a.
$$\int (\cosh(3x) + \sinh(2x)) dx$$

b.
$$\int 4^{3x} dx$$

c.
$$\int \frac{\log_2(x^3)}{x} dx$$

d.
$$\int (2^{7x} - \sinh(5x)) dx$$

$$e. \int \frac{\sin(3x)}{16 + \cos^2(3x)} dx$$

f.
$$\int \frac{6x}{4+x^4} dx$$

g.
$$\int \tan(3x)dx$$

h.
$$\int \frac{\arctan(3x)}{1+9x^2} dx$$

i.
$$\int \frac{1}{\sqrt{4+x^2}} dx$$

j.
$$\int \sqrt{9-x^2} \, dx$$

k.
$$\int 3\ln(4x)dx$$

$$1. \quad \int x^2 e^x dx$$

m.
$$\int \frac{5x+14}{(x+1)(x^2-4)} dx$$

n.
$$\int \frac{x^2 + 5x + 2}{(x+1)(x^2 + 1)} dx$$

$$0. \quad \int \frac{2x^2}{\sqrt{9-x^2}} dx$$

p.
$$\int 2 \arctan(10x) dx$$

q.
$$\int 3x \cos(2x) dx$$

8. Write an expression for the nth term of the sequence:

b. 2, -1,
$$\frac{1}{2}$$
, $-\frac{1}{4}$, $\frac{1}{8}$,....

9. Determine if the following sequences are monotonic. Also indicate if the sequence is bounded and if it is give the least upper bound and/or greatest lower bound.

a.
$$a_n = \frac{2n}{1+n}$$

b.
$$a_n = \frac{\cos n}{n}$$

10. Determine if the following sequences converge or diverge. If they converge, give the limit.

a.
$$\left\{ \left(-1\right)^n \left(\frac{n}{n+1}\right) \right\}$$

b.
$$\left\{ \frac{6n^2 - 2n + 1}{4n^2 - 1} \right\}$$

$$c. \quad \left\{ \frac{(n+2)!}{n!} \right\}$$

d.
$$\left\{\frac{3}{e^n}\right\}$$

$$e. \quad \left\{ \frac{4n+1}{n^2-3n} \right\}$$

f.
$$\left\{\frac{e^n}{n^3}\right\}$$

11. Determine if the following series (A) converge absolutely, (B) converge conditionally or (C) diverge.

a.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sqrt{n}}{n+3}$$

b.
$$\sum_{n=1}^{\infty} \frac{\cos \pi n}{n^2}$$

c.
$$\sum_{n=0}^{\infty} \frac{4n(-1)^n}{3n^2 + 2n + 1}$$

d.
$$\sum_{n=0}^{\infty} \frac{3(-1)^n}{\sqrt{3n^2 + 2n + 1}}$$

e.
$$\sum_{n=0}^{\infty} \frac{3n(-1)^n}{\sqrt{3n^2 + 2n + 1}}$$

f.
$$\sum_{n=0}^{\infty} \left(4(-1)^n \left(\frac{n}{n+3} \right)^n \right)$$

g.
$$\sum_{n=0}^{\infty} \left(\frac{2(-1)^n \arctan n}{3 + n^2 + n^3} \right)$$

h.
$$\sum_{n=0}^{\infty} \left(\frac{(-1)^n 3^n}{4^n + 3n} \right)$$

i.
$$\sum_{n=0}^{\infty} \left(\frac{(-1)^n 3}{(n+2) \ln(n+2)} \right)$$

12. Find the sum of the following convergent series:

a.
$$\sum_{n=0}^{\infty} 2\left(-\frac{4}{9}\right)^n$$

b.
$$\sum_{n=0}^{\infty} \left(\frac{1}{3^n} - \frac{5}{6^n} \right)$$

13. State the indeterminate form and compute the following limits:

a.
$$\lim_{n\to\infty} \frac{\ln(n+4)}{n+2}$$

b.
$$\lim_{n\to\infty} (3n)^{\frac{2}{n}}$$

$$c. \quad \lim_{n\to\infty} \left(1+\frac{3}{n}\right)^{2n}$$

d.
$$\lim_{n \to 0} \frac{x - \sin(2x)}{x + \sin(2x)}$$

e.
$$\lim_{x\to 0} \frac{e^{x^2}-1}{2x^2}$$

f.
$$\lim_{x\to 0+} \left(\frac{1}{x}\right)^x$$

g.
$$\lim_{x \to 0} \frac{3e^{x/3} - (3+x)}{x^2}$$

$$h. \quad \lim_{x \to \infty} \frac{x^2}{\ln x}$$

i.
$$\lim_{x\to 0} \frac{1+x-e^x}{x(e^x-1)}$$

j.
$$\lim_{x \to 0} \frac{\arctan(4x)}{x}$$

14. Give the derivative of each power series below:

a.
$$\sum_{n=0}^{\infty} \frac{(n+1)x^n}{n^2 + 2}$$

$$b. \quad \sum_{n=0}^{\infty} \frac{x^n}{2n+1}$$

- 15. For each of the problems in number 14, give the antiderivate F of the power series so that F(0)=0.
- 16. Evaluate each improper integral:

a.
$$\int_{0}^{27} x^{-2/3}$$

b.
$$\int_{0}^{4} \frac{1}{\sqrt{4-x}}$$

- 17. Find the formula for the area of $r = 1 + 2\sin\theta$
 - a. Inside inner loop
 - b. Inside outer loop but outside inner loop
 - c. Inside outer loop and below x-axis
- 18. Find the smallest value of n so that the nth degree Taylor Polynomial for $f(x) = \ln(1+x)$ centered at x = 0 approximates $\ln(2)$ with an error of no more than 0.001 (also be able to do this with some of the other Taylor Polynomials)
- 19. Find the radius of convergence and interval of convergence for the following Power series:

a.
$$\sum_{n=0}^{\infty} \frac{(x-2)^{n+1}}{(n+1)3^{n+1}}$$

b.
$$\sum_{n=0}^{\infty} \frac{1}{3^n} (x-1)^n$$

c.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{4^n}$$

$$d. \quad \sum_{n=1}^{\infty} \frac{\left(-1\right)^n x^n n!}{n^n}$$

20. Use logarithmic differentiation to find the derivative of:

a.
$$y = (3x - 1)^{\sin(x)}$$

b.
$$y = (x+1)^{\ln(x)}$$

c.
$$y = (x^2 + 2)^{(\frac{1}{\ln x})}$$

21. Determine the convergence or divergence for each series with the given general term:

Series

Converge or Diverge?

Test used

	-	
$\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n^3}}$		
$\sum_{n=1}^{\infty} \frac{2^n}{n^3}$		
$\sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n} \right)$		
$\sum_{n=1}^{\infty} \frac{3^{2n}}{n!}$		
$\sum_{n=1}^{\infty}\cos(\pi n)$		
$\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n^3}}$ $\sum_{n=1}^{\infty} \frac{2^n}{n^3}$ $\sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n}\right)$ $\sum_{n=1}^{\infty} \frac{3^{2n}}{n!}$ $\sum_{n=1}^{\infty} \cos(\pi n)$ $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n}$		
$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n^2}{3n^3 + 1}$		
$\sum_{n=0}^{\infty} 3\left(-\frac{1}{2}\right)^n$		
$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$		
$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ $\sum_{n=1}^{\infty} ne^{-n^3}$		
$\sum_{n=1}^{\infty} \left(\frac{n}{n+1} \right)^n$		
$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n$ $\sum_{n=1}^{\infty} \frac{1}{n^3 + 1}$		
$\sum_{n=0}^{\infty} \left(\frac{2}{9}\right)^n$		
$\sum_{n=0}^{\infty} \left(\frac{2}{9}\right)^n$ $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$		

$\sum_{n=1}^{\infty} (0.34)^n$	
$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$	
$\sum_{n=1}^{\infty} \frac{1}{2n+1}$	