Chapter 8 Geometric Relationships (1)

1. Angle Relationships in Triangles and Other Polygons

Vertex - point where two or more sides meet. The vertex is always labelled with a capital letter. Ex. A, B, C.

Interior Angle - Angle formed on the inside of a polygon by two sides meeting at the vertex.

Exterior Angle - Angle formed on the outside of a geometric shape by extending one of the sides past the vertex.

exterior

angle

intérior angle

- 1) The three interior angles of a triangle add up to 180° $x + y + z = 180^{\circ}$
- 2) The exterior angles of a triangle add up to 360° $a + b + c = 360^{\circ}$
- 3) The exterior angle at each vertex of a triangle is equal to the sum of the interior angles at the other two vertices. (see diagram to the right)
- 4) The interior angle is always supplementary to an exterior angle at that vertex.

Example: Find the unknown angles.

b)
$$\angle x = 180 - 75 = 105^{\circ}$$

 $\angle c = 180 - 135 = 45^{\circ}$
 $\angle a = 180 - 45 - 75 = 60^{\circ}$

Class Practice: Find the unknown angles.

Polygon - a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain.

Convex Polygon – a polygon with no part of any line segment joining two points on the polygon outside the polygon.

Concave Polygon – a polygon with parts of some line segments joining two points on the polygon outside the polygon.

For n-sided polygon:

- 1) The sum of the interior angles of an n-sided polygon is 180° (n 2).
- 2) The sum of the exterior angles of an n-sided polygon is 360°.
- 3) Number of distinct diagonals in an n-sided polygon is $\frac{n(n-3)}{2}$

Example:

- 1. Find the measure of each interior angle of a regular polygon with 8 sides. $180^{\circ} (8 2) / 8 = 135^{\circ}$
- 2. How many sides does a polygon have if the number of distinct diagonals is 5?

$$\frac{n(n-3)}{2} = 5$$

$$n(n-3) = 10$$

Guess and check: n = 5 sides

2. Midpoints and Medians in Triangles

A **conjecture** is a guess that can be either supported, proved, or disproved. In order to prove a conjecture is true, we need to conduct proper geometric proving procedures. Using measurement by hand or Geometer's Sketchpad (GSP) cannot prove anything, but just support or reject the conjecture.

A **counterexample** is an example that can be used to reject a conjecture. We only need one counterexample to disprove a conjecture.

Example: Disprove the conjecture: The quadrilateral that has perpendicular diagonals is either a kite or a rhombus.

Solution: Any quadrilateral could have perpendicular diagonals.

Midpoint: A point that divides a line segment into two equal segments.

Theorem 1: A line segment joining the midpoints of two sides of a triangle is parallel to the third side.

Proof:

Continue the straight line segment ED to its own length to the point F and connect the points B and F by the straight line segment BF.

- •• Point E, D are the midpoints
- \cdot CD = BD, and CE = EA
- \angle EDC = \angle FDB (vertical \angle)

CD = BD

ED = FD

- Triangles EDC and FDB are congruent (SAS)
- \angle ECD = \angle DBF and CE = EA = BF
- AC // BF (Alternate \angle)
 - \therefore AE // BF and AE = BF
 - \therefore EF // AB and EF = AB

Theorem 2: The straight segment connecting midpoints of the two sides of a triangle (midsegment) is of half of the length of the third side of the triangle.

Proof:

Continue with the above proof:

- AB = EF and EF = DF
 - \therefore ED = $\frac{1}{2}$ EF
 - \therefore ED = $\frac{1}{2}$ AB

Theorem 3: The height of a triangle formed by joining the midpoints of two sides of a triangle is half the height of the original triangle.

Proof:

- Point E, D are the midpoints
 - \therefore CD = BD, and CE = EA
 - $AE = \frac{1}{2}AB$
- EF // BG
- $\cdot \cdot \angle AEF = \angle ABG$ (corresponding \angle)
- AG is the height
- • \angle AFE = \angle AGB = 90°
- \checkmark FAE = \angle GAB
- •• Triangles AEF and ABG are similar (AAA)
- $AF = \frac{1}{2} AG$

Median: the line segment joining a vertex of a triangle to the midpoint of the opposite side.

Bisect: Divide into 2 equal parts

Theorem 1: The medians of a triangle bisect its area.

Proof:

Construct a height AD from A to BC.

- \therefore AD \perp BE and AD \perp EC and AD \perp BC
- • Area of ABE = $\frac{1}{2}$ (BE)(AD), Area of AEC = $\frac{1}{2}$ (EC)(AD)
- BE = EC
- Area of ABE = Area of AEC

Practice in class:

- 1. Calculate the total sum of the interior angles for the following convex polygons.
- a. 4 sides

b. 6 sides

- c. 9 sides
- 2. Determine the number of sides of each convex polygon with the following interior angle sums.
- a. 540°

b. 900°

c. 1080°

- 3. In \triangle ABC, CA is extended to D and CB is extended to E.
- a. If $\angle ABC$ is 47° and $\angle ACB$ is 49°, what is the measure of $\angle DAB$?
- B y B

- b. Determine ∠ABE.
- c. If $\angle ABC$ is b and $\angle ACB$ is c, write a formula for $\angle DAB$ in terms of b and c.
- d. If we join D and B, we form a new triangle, $\triangle BCD$. If $\angle ABD$ is y and $\angle ADB$ is x, what is the measure of $\angle BAC$ in terms of x and y?
- e. Can $\angle ABD$ ever be greater than $\angle BAC$? Why or why not?
- 4. In isosceles \triangle EFG, GE = GF. EG is extended to point H. If \angle HGF is 32°, what is the measurement angle of \angle GEF?

5. Find the length of XY in each of the triangles below.

a)

b)

