CS 171: Intro to ML and DM

Christian Shelton

UC Riverside

Slide Set 9: Nearest Neighbor II

Slides from CS 171

- From UC Riverside
 - CS 171: Introduction to Machine Learning and Data Mining
 - Professor Christian Shelton
- DO NOT REDISTRIBUTE
 - ► These slides contain copyrighted material (used with permission) from
 - ► Elements of Statistical Learning (Hastie, et al.)
 - ► Pattern Recognition and Machine Learning (Bishop)
 - An Introduction to Machine Learning (Kubat)
 - Machine Learning: A Probabilistic Perspective (Murphy)
 - ► For use only by enrolled students in the course

k-Nearest Neighbor Practical Considerations

- How to pick k
- How to pick distance measure (and scaling)
- How to reduce computational costs

Testing Set

Validation Set

2

k = 11

CV error rate error rate 0.1 35 5 10 20

2

-2

Selection of Distance Metric

Use cross validation

Selection of Distance Metric

- Use cross validation
- Fine unless you have lots of distance metrics to try (overfitting to the validation set!)
- If distance metric also includes axis scaling, need something else

Attribute Scaling

• Distance metric learning algorithms (beyond the scope of this course)

Attribute Scaling

- Distance metric learning algorithms (beyond the scope of this course)
- "Normalize" the attributes
 - ▶ Scale and translate so that the min is 0 and the max is 1:

$$\begin{aligned} \min_j &= \min_i x_{i,j} \\ \max_j &= \max_i x_{i,j} \\ x_{i,j} &\leftarrow \frac{x_{i,j} - \min_j}{\max_j - \min_j} \end{aligned}$$

Attribute Scaling

- Distance metric learning algorithms (beyond the scope of this course)
- "Normalize" the attributes
 - ▶ Scale and translate so that the min is 0 and the max is 1:

$$\begin{aligned} \min_j &= \min_i x_{i,j} \\ \max_j &= \max_i x_{i,j} \\ x_{i,j} &\leftarrow \frac{x_{i,j} - \min_j}{\max_j - \min_j} \end{aligned}$$

Scale and translate so that the mean is 0 and the standard deviation is 1 (z-normalization and many other names)

$$\begin{aligned} \mathsf{mean}_j &= \frac{1}{m} \sum_i x_{i,j} \\ \mathsf{std}_j &= \sqrt{\frac{1}{m} \sum_i (x_{i,j} - \mathsf{mean}_j)^2} \\ x_{i,j} &\leftarrow \frac{x_{i,j} - \mathsf{mean}_j}{\mathsf{std}_j} \end{aligned}$$

Iris Scaling

"as given" scale

Iris Scaling

in original axes

Iris Scaling

z-normalized

in original axes

Problem specification: to classify land use from satelite imagery.

Problem specification: to classify land use from satelite imagery.

- Each pixel corresponds to an area on the Earth.
- Observations are the intensity from four different spectral bands (two visible spectrum, two infrared)
- 7 different classes: red soil, cotton, vegetation stubble, mixture, gray soil, damp gray soil, very damp gray soil

Problem specification: to classify land use from satelite imagery.

- Each pixel corresponds to an area on the Earth.
- Observations are the intensity from four different spectral bands (two visible spectrum, two infrared)
- 7 different classes: red soil, cotton, vegetation stubble, mixture, gray soil, damp gray soil, very damp gray soil

Attributes: the four values from the pixel in question,

Problem specification: to classify land use from satelite imagery.

- Each pixel corresponds to an area on the Earth.
- Observations are the intensity from four different spectral bands (two visible spectrum, two infrared)
- 7 different classes: red soil, cotton, vegetation stubble, mixture, gray soil, damp gray soil, very damp gray soil

Attributes: the four values from the pixel in question, plus the four values from each of the neighboring eight pixels. (total 36 attributes)

Using k=5, performance is better than any other tried method (error rate of 9.5%). Spectral Band 1 Spectral Band 2 Spectral Band 3

Spectral Band 4

Using k=5, performance is better than any other tried method (error rate of 9.5%). Spectral Band 1 Spectral Band 2 Spectral Band 3

Using k=5, performance is better than any other tried method (error rate of 9.5%). Spectral Band 1 Spectral Band 2 Spectral Band 3

The time to test a single point is O(m) (linear in the size of the training data).

The time to test a single point is O(m) (linear in the size of the training data). (or is it?)

The time to test a single point is O(m) (linear in the size of the training data). (or is it?) This is a problem for large datasets.

The time to test a single point is O(m) (linear in the size of the training data). (or is it?) This is a problem for large datasets.

We can try to prune the dataset.

There are many ways...

- 4 Add a single random point to the current point set
- 2 In random order:
 - Take a point and classify it according to the current point set
 - 2 If it is incorrectly classified, add it to the current point set

- 4 Add a single random point to the current point set
- 2 In random order:
 - Take a point and classify it according to the current point set
 - If it is incorrectly classified, add it to the current point set

May need to be repeated to find consistent set

CS 171

CS 171

k-Nearest Neighbor

When is it good?

- Low-dimensional space
- Lots of data
- Lots of computational power
- Highly irregular decision surface