(命名) 实体识别 NER 已有古文预训练模型测评实验报告

数据集

数据集A取自《新五代史》《北史》等古籍,训练集,验证集和测试集分别为21128,2831,2148,平均句长为26,采用BIO,共有5种实体类型,[O,B-NOUN_BOOKNAME,I-NOUN_BOOKNAME,B-NOUN-OTHER]

数据集 B 取自《春秋谷梁传》等古籍,训练集,验证集和测试集分别为 7528, 865, 877, 平均字长为 85, 采用 BIO, 共有 13 种实体类型, [O,B-PER,I-PER,B-ORG,I-ORG,B-LOC,I-LOC, B-JOB,I-JOB,B-WAR, I-WAR, B-BOO, I-BOO]

实验数据下载:

https://github.com/jizijing/C-CLUE https://github.com/Ethan-yt/CCLUE

评价指标

准确率(Accuracy)

Accuracy 是从整体上衡量模型的性能,即模型预测正确的样本占全部样本的比例。它的计算公式如下:

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

其中, TP (True Positive)表示真正例,即模型预测为正例且实际上也为正例的样本数量; FP (False Positive)表示假正例,即模型预测为正例但实际上为负例的样本数量; TN (True Negative)表示真负例,即模型预测为负例且实际上也为负例的样本数量; FN (False Negative)表示假负例,即模型预测为负例但实际上为正例的样本数量。

精确率(Precision)

Precision 关注的是模型预测为正例的样本中有多少是真正的正例。换句话说,它衡量的是模型预测的正例中有多少是正确的,计算公式为:

$$Precision = \frac{TP}{TP + FP}$$

其中,TP(True Positive)表示真正例,即模型预测为正例且实际上也为正例的样本数量;FP(False Positive)表示假正例,即模型预测为正例但实际上为负例的样本数量。

F1 值(F1 Score)

F1 分数是精确率和召回率的调和平均值,用于衡量模型的准确性。它的计算公式如下:

$$F1 = 2 imes rac{ ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$

其中,精确率 (Precision) 是指模型预测为正例的样本中真正为正例的比例, 召回率 (Recall) 是指所有真正的正例样本中被模型预测为正例的比例。

召回率(Recall)

召回率是指在所有真正的正例样本中,被模型正确预测为正例的比例。它的计算公式如下:

$$Recall = \frac{TP}{TP + FN}$$

其中, TP (True Positive)表示真正例,即模型预测为正例且实际上也为正例的样本数量; FN (False Negative)表示假负例,即模型预测为负例但实际上为正例的样本数量。

Micro-Average

Micro-Average 把所有类别的结果汇总起来计算平均值。它将所有类别的贡献视为等同,因此对于样本量大的类别,Micro-Average 更加敏感。

$$\begin{aligned} &\text{Micro-Average Precision} = \frac{\sum TP}{\sum TP + \sum FP} \\ &\text{Micro-Average Recall} = \frac{\sum TP}{\sum TP + \sum FN} \\ &\text{Micro-Average F1} = 2 \times \frac{(\text{Micro Precision} \times \text{Micro Recall})}{(\text{Micro Precision} + \text{Micro Recall})} \end{aligned}$$

Macro-Average

Macro-Average 分别计算每个类别的性能指标,然后计算这些指标的算术平均值。它给予每个类别同等的权重,无论类别的样本量大小,因此对于样本量小的类别更加敏感。

$$\begin{aligned} &\text{Macro-Average Precision} = \frac{1}{N} \sum \frac{TP_i}{TP_i + FP_i} \\ &\text{Macro-Average Recall} = \frac{1}{N} \sum \frac{TP_i}{TP_i + FN_i} \\ &\text{Macro-Average F1} = \frac{1}{N} \sum 2 \times \frac{(Precision_i \times Recall_i)}{(Precision_i + Recall_i)} \end{aligned}$$

模型 BERT

Pre-training

BertModel 部分包含了 BERT 的所有主要组件,包括词嵌入层、位置嵌入层、令牌类型嵌入层、层归一化层和 Dropout 层。

BertEncoder 部分负责处理输入序列,通过多个 BERT 层来进行特征提取。每个 BERT 层都包含注意力机制和前馈神经网络。

BertForTokenClassification 模型的最后一部分是一个线性分类器,它将 BERT 编码器的输出映射到目标类别的概率分布上。

- **1.Transformer 架构:** BERT 建立在 Transformer 模型的基础上,这是一种使用自注意力机制(Self-Attention Mechanism)的深度神经网络。Transformer 允许模型在处理序列数据时同时关注序列中的所有位置,而不是像传统的循环神经网络 (RNN) 或卷积神经网络 (CNN) 那样逐步处理。
- **2.预训练策略:** BERT 采用了无监督的预训练策略,通过大规模的语言模型预训练来学习丰富的语义表示。该模型通过对大量文本数据进行"遮蔽语言模型" (Masked Language Model, MLM) 任务的预训练,使得模型能够理解词汇和语法结构,并捕捉单词之间的关系。
- **3.双向性:** BERT 在预训练时考虑了双向信息,即使用上下文信息来理解每个词的语义。这种双向性有助于模型更好地理解文本中的语境和关联,提高了对上下文相关性的捕捉。
- **4.Fine-tuning:** 预训练后, BERT 模型可以通过微调 (fine-tuning) 来适应特定的下游任务, 如命名实体识别、情感分析等。这种能力使得 BERT 在各种 NLP 任务中都表现出色, 无需从零开始训练新的模型。
- **5.Contextual Embeddings:** BERT 生成的词向量是上下文相关的,每个词的表示取决于整个输入句子的上下文,而不是简单地从固定的嵌入中获取。这种上下文敏感的嵌入有助于更准确地捕捉语义信息。

实验结果

Bert-ancient-Chinese

训练最终结果

数据集	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
	Precision			Accuracy		Runtime
数据集 A	0.97302	0.9734486	0.9732050	0.97344862	0.15202167	4.6471
	2168545	209964412	34052774	09964412	630195618	
	7736		1			
数据集 B	0.98920	0.9911334	0.9900857	0.99113343	0.02559696	10.0205
	0309989	325396826	67321637	25396826	696698665	
	5879		7		6	

数	Micro-	Micro-	Micro-	Macro-	Macro-	Macro-
据	Average	Average	Average F1	Average	Average	Average F1
集	Precision	Recall		Precision	Recall	
数	0.9734486	0.9734486	0.9734486	0.87108227	0.84944382	0.85995161
据	209964412	209964412	209964412	09848423	76449081	97788132
集						
Α						

数	0.9911334	0.9911334	0.9911334	0.24364633	0.21699121	0.21620752
据	325396826	325396826	325396826	330184382	039347588	290443754
集						
В						

模型介绍和分析

这是一个基于 BERT 的模型,专门训练用于古汉语处理。它适用于古文的语义理解和文本生成,旨在提高对古汉语的处理能力。

训练过程分析

数据集 A

En	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
Ер	Eval	Eval Recall	Eval F1	EVdI	Eval LOSS	
ОС	Precision			Accuracy		Runt
h						ime
2	0.96510314	0.96663701	0.96519286	0.96663701	0.101541459	4.63
	56399267	06761566	55745571	06761566	56039429	65
4	0.96787065	0.96699844	0.96731658	0.96699844	0.103966549	4.59
	59288105	30604982	04611824	30604982	03888702	78
6	0.97147898	0.97194728	0.97158174	0.97194728	0.099879525	4.62
	22369363	64768683	12063057	64768683	60186386	08
8	0.97185354	0.97178047	0.97176333	0.97178047	0.133839875	4.61
	15569596	15302492	88042668	15302492	45967102	13
10	0.97325514	0.97381005	0.97347128	0.97381005	0.137059137	4.63
	87821443	3380783	20803293	3380783	22515106	48

数据集 B

Ер	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
ос	Precision			Accuracy		Runt
h						ime
2	0.98443603	0.9921875	0.98829656	0.9921875	0.029304953	7.61
	515625		86274511		292012215	38
4	0.98742432	0.99166489	0.98949328	0.99166489	0.025786744	7.55
	24761378	51247166	91321785	51247166	4306612	13
6	0.98801467	0.99187748	0.98918420	0.99187748	0.024214763	7.45
	02085819	01587301	4109248	01587301	194322586	68
8	0.98864103	0.99132830	0.98988397	0.99132830	0.024256916	7.50
	37332172	2154195	45068818	2154195	716694832	93
10	0.98953438	0.99117772	0.99022276	0.99117772	0.025142531	7.47
	98980461	10884354	60139274	10884354	841993332	57

SikuRoberta

训练最终结果

数据集 Ev	val Eval Recall	Eval F1 Eval	Eval Loss	Eval
--------	-----------------	--------------	-----------	------

	Precision			Accuracy		Runtime
数据集 A	0.97104	0.9716136	0.9712887	0.97161365	0.15085685	3.5724
	9537254	565836299	62010626	65836299	25314331	
	9688		7			
数据集 B	0.98963	0.9911068	0.9903303	0.99110685	0.02541288	7.8184
	9677599	594104309	96788302	94104309	547217846	
	6501		3			

数据集	Micro-	Micro-	Micro-	Macro-	Macro-	Macro-
	Average	Average	Average	Average	Average	Average
	Precision	Recall	F1	Precision	Recall	F1
数据集 A	0.971613	0.971613	0.971613	0.864802	0.842991	0.853425
	65658362	65658362	65658362	89745921	83475158	21643909
	99	99	99	76	23	03
数据集 B	0.991106	0.991106	0.991106	0.231851	0.230711	0.221999
	85941043	85941043	85941043	15660763	27190351	41287605
	09	09	09	794	204	457

模型介绍和分析

这个模型是 Siku Quanshu(四库全书)的基础上训练的 RoBERTa 变体。它对古典文献中的文本理解有很强的能力,适合处理古籍和文献分析任务。

训练过程分析

数据集 A

Ер	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
ос	Precision			Accuracy		Runt
h						ime
2	0.96083311	0.96160475	0.96014807	0.96160475	0.118305407	3.56
	8499789	97864769	41181836	97864769	46450424	16
4	0.96757056	0.96805493	0.96746086	0.96805493	0.103166840	3.55
	9968203	77224199	79832772	77224199	9705162	9
6	0.96917842	0.96994550	0.96946201	0.96994550	0.109539739	3.57
	68414622	71174378	4966379	71174378	78757858	63
8	0.97179422	0.97228091	0.97200139	0.97228091	0.130345419	3.57
	33651111	63701067	51812252	63701067	049263	41
10	0.97108461	0.97150244	0.97126974	0.97150244	0.137427598	3.55
	94442453	6619217	69725421	6619217	23799133	55

数据集 B

Ep	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
ос	Precision			Accuracy		Runt
h						ime
2	0.98443603	0.9921875	0.98829656	0.9921875	0.029090946	5.43
	515625		86274511		540236473	47
4	0.98735217	0.99180661	0.98954351	0.99180661	0.025082616	5.27

	26932424	84807256	36377729	84807256	13547802	25
6	0.98752439	0.99191291	0.98926084	0.99191291	0.023758890	5.23
	2029138	09977324	41941434	09977324	107274055	86
8	0.98878774	0.99158517	0.99002233	0.99158517	0.024264896	5.46
	15659296	57369615	63677141	57369615	288514137	21
10	0.98936904	0.99123086	0.99020889	0.99123086	0.024774728	5.23
	56522269	73469388	12819328	73469388	34289074	45

AnchiBERT

训练最终结果

数据集	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
	Precision			Accuracy		Runtime
数据集 A	0.96772	0.9684719	0.9680270	0.96847197	0.16520337	3.0608
	6471010	75088968	67726180	5088968	760448456	
	9994		2			
数据集 B	0.98981	0.9911068	0.9903980	0.99110685	0.02563157	7.6369
	3124692	594104309	65962140	94104309	305121421	
	8284		8		8	

数	Micro-	Micro-	Micro-	Macro-	Macro-	Macro-
据	Average	Average	Average F1	Average	Average	Average F1
集	Precision	Recall		Precision	Recall	
数	0.9684719	0.9684719	0.9684719	0.8426885	0.82060433	0.83101526
据	75088968	75088968	75088968	820191009	51382434	89098269
集						
Α						
数	0.9911068	0.9911068	0.9911068	0.2512589	0.24764968	0.23697334
据	594104309	594104309	594104309	632357055	296968584	205426301
集						
В						

模型介绍和分析

AnchiBERT 是针对古代汉语的 BERT 变体,提供了对古汉语语料的更深入的理解。它优化了 BERT 架构以适应古汉语的特殊需求,适合古文翻译和解析。

训练过程分析

数据集 A

Ер	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
ос	Precision			Accuracy		Runt
h						ime
2	0.96003681	0.96202179	0.96050850	0.96202179	0.116751648	3.04
	25761395	71530249	30338348	71530249	48566055	96
4	0.96362474	0.96421819	0.96360568	0.96421819	0.116235248	3.07
	02560569	39501779	10176072	39501779	74448776	19

6	0.96702017	0.96783251	0.96734084	0.96783251	0.116239771	3.06
	12841807	77935944	21844694	77935944	2469101	06
8	0.96688934	0.96844417	0.96726425	0.96844417	0.143406972	3.05
	23942839	25978647	57197699	25978647	2890854	03
10	0.96825936	0.96897241	0.96852979	0.96897241	0.151419401	3.06
	09860043	99288257	74658393	99288257	16882324	45

数据集 B

Ер	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
ос	Precision			Accuracy		Runt
h						ime
2	0.98612550	0.99209892	0.98896008	0.99209892	0.027748765	5.07
	86400601	29024944	64359019	29024944	42389393	94
4	0.98649524	0.99194834	0.98906720	0.99194834	0.024718163	4.82
	49481542	18367347	28096879	18367347	534998894	41
6	0.98849344	0.99170032	0.98993204	0.99170032	0.024498600	4.98
	37504811	59637188	85624267	59637188	512742996	91
8	0.98926487	0.99128401	0.99021190	0.99128401	0.024361521	5.38
	99954938	36054422	89568483	36054422	005630493	6
10	0.98922827	0.99119543	0.99011360	0.99119543	0.025130053	4.86
	63694249	65079365	42309379	65079365	982138634	51

guwenbert-base

训练最终结果

数	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
据	Precision			Accuracy		Runt
集						ime
数	0.97582891	0.97620106	0.97598140	0.97620106	0.1170888915	2.75
据	07635478	76156584	42908822	76156584	6579971	89
集						
Α						
数	0.99591997	0.99592545	0.99586389	0.99592545	0.0130802895	6.87
据	07856833	35147393	48914785	35147393	87378502	21
集						
В						

数	Micro-	Micro-	Micro-	Macro-	Macro-	Macro-
据	Average	Average	Average F1	Average	Average	Average F1
集	Precision	Recall		Precision	Recall	
数	0.97620106	0.97620106	0.97620106	0.88416424	0.86803984	0.87581740
据	76156584	76156584	76156584	31251063	26337851	96034843
集						
Α						

数	0.99592545	0.99592545	0.99592545	0.40479139	0.41109825	0.39143839
据	35147393	35147393	35147393	253470026	24602927	70521158
集						
В						

模型介绍和分析

guwenbert-base 是一个专门为古文设计的 BERT 模型。它利用大量古文语料进行训练,目标是提高古文文本的理解和处理能力。

训练过程分析

数据集 A

Ер	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
ос	Precision			Accuracy		Runt
h						ime
2	0.96616543	0.96741548	0.96662958	0.96741548	0.110058732	2.69
	25093485	04270463	24622826	04270463	3307991	51
4	0.96761796	0.96880560	0.96764848	0.96880560	0.103007376	2.66
	2053998	49822064	92367837	49822064	19400024	98
6	0.97278685	0.97264234	0.97263619	0.97264234	0.094608858	2.66
	40697165	87544484	29489298	87544484	2277298	26
8	0.97489096	0.97486654	0.97477620	0.97486654	0.112511061	2.65
	85689006	80427047	81255394	80427047	1319542	97
10	0.97490283	0.97503336	0.97491338	0.97503336	0.115471594	2.72
	35985271	29893239	71389762	29893239	03562546	61

数据集 B

Ер	Eval	Eval Recall	Eval F1	Eval	Eval Loss	Eval
ОС	Precision			Accuracy		Runt
h						ime
2	0.99313401	0.99490681	0.99359175	0.99490681	0.020061865	4.01
	95989583	68934241	61585891	68934241	44895172	95
4	0.99412462	0.99546485	0.99449116	0.99546485	0.016725214	4.06
	81408016	26077098	69147691	26077098	198231697	48
6	0.99547706	0.99561543	0.99525561	0.99561543	0.014112563	4.27
	1732981	36734694	96658517	36734694	803792	64
8	0.99588148	0.99625318	0.99586504	0.99625318	0.012881815	4.10
	85623937	87755102	30433779	87755102	433502197	83
10	0.99601992	0.99594316	0.99591807	0.99594316	0.013141417	4.61
	91173533	89342404	74967511	89342404	875885963	96

比较分析

数据集 A

guwenbert-base

guwenbert-base 在各方面表现优越。f1、precision、accuracy、recall 在 1-2 个 epoch 之间

有显著提升,在后续 epoch 中表现优秀,处于最高位。loss 在 1-2 个 epoch 之间有显著下降,在后续 epoch 中表现优秀,处于最低位。训练时间在四个模型中最短。

Bert-ancient-Chinese

Bert-ancient-Chinese 在整个训练中相对优秀。f1、precision、accuracy、recall 在 1-2 个 epoch 之间变化最小,在后续 epoch 中表现稳定,处于第二高位。loss 在 1-2 个 epoch 之间也变化最小,在后续 epoch 中表现平稳,处于第二低位。但训练时间在四个模型中最长。

AnchiBERT

AnchiBERT 在整个训练中相对差。f1、precision、accuracy、recall 在 1-2 个 epoch 之间变化较小,在后续 epoch 中表现稳定,处于最低位。loss 在 1-2 个 epoch 之间也变化较小,在后续 epoch 中表现平稳,处于最高位。训练时间在四个模型中是第二短。

SikuRoberta

SikuRoberta 与 AnchiBERT 在整个训练中类似,各方面比 AnchiBERT 相对较好,但训练时间处在第二长。

数据集 B

guwenbert-base

guwenbert-base 在各方面表现优越。Recall、accuracy、f1 在训练中逐步提升,precision 在 1-6 个 epoch 之间有显著上升, 在后续 epoch 中较为平稳, 处于最高位。loss 在 1-6 个 epoch 之间有显著下降,在后续 epoch 中较为平稳,处于最低位。训练时间在四个模型中最短。

Bert-ancient-Chinese

Bert-ancient-Chinese 在各方面都明显不如 guwenbert-base。训练时间在四个模型中最长。

AnchiBERT

AnchiBERT 在各方面都明显不如 guwenbert-base, Recall、accuracy、f1、precision、loss 同 Bert-ancient-Chinese 的相似。训练时间在四个模型中处在第二短。

SikuRoberta

SikuRoberta 在各方面都明显不如 guwenbert-base, Recall、accuracy、f1、precision、loss 同 Bert-ancient-Chinese 的相似。训练时间在四个模型中处在第二长。

综合比较

guwenbert-base 表现相对出色,且在整个训练过程中稳定增长。

实验整体分析

数据集 A

模型	Micro-	Micro-	Micro-	Macro-	Macro-	Macro-
	Average	Average	Average	Average	Average	Average
	Precision	Recall	F1	Precision	Recall	F1
Bert-	0.9734486	0.9734486	0.9734486	0.8710822	0.8494438	0.8599516
ancie	20996441	20996441	20996441	70984842	27644908	19778813
nt-	2	2	2	3	1	2
Chine						
se						
SikuR	0.9716136	0.9716136	0.9716136	0.8648028	0.8429918	0.8534252
obert	56583629	56583629	56583629	97459217	34751582	16439090
a	9	9	9	6	3	3
Anchi	0.9684719	0.9684719	0.9684719	0.8426885	0.8206043	0.8310152
BERT	75088968	75088968	75088968	82019100	35138243	68909826
				9	4	9
guwe	0.9762010	0.9762010	0.9762010	0.8841642	0.8680398	0.8758174
nbert	67615658	67615658	67615658	43125106	42633785	09603484
-base	4	4	4	3	1	3

数据集 B

<u>жиж г</u>						
模型	Micro-	Micro-	Micro-	Macro-	Macro-	Macro-
	Average	Average	Average	Average	Average	Average F1
	Precision	Recall	F1	Precision	Recall	
Bert-	0.9911334	0.9911334	0.9911334	0.2436463	0.2169912	0.2162075
ancie	32539682	32539682	32539682	333018438	103934758	229044375
nt-	6	6	6	2	8	4
Chine						
se						
SikuR	0.9911068	0.9911068	0.9911068	0.2318511	0.2307112	0.2219994
obert	59410430	59410430	59410430	566076379	719035120	128760545
а	9	9	9	4	4	7
Anchi	0.9911068	0.9911068	0.9911068	0.2512589	0.2476496	0.2369733
BERT	59410430	59410430	59410430	632357055	829696858	420542630
	9	9	9		4	1
guwe	0.9959254	0.9959254	0.9959254	0.4047913	0.4110982	0.3914383
nbert	53514739	53514739	53514739	925347002	524602927	970521158
-base	3	3	3	6		

Micro-Average 指标反映了所有类别的总体性能,这意味着在考虑样本不平衡的情况下,guwenbert-base 在整体上取得了最好的平衡性能。

Macro-Average 指标展示了模型对所有类别同等对待的性能, guwenbert-base 表现最佳, 表明其对于少数类别的识别能力较强。