Optical Communication Networks

Access networks

Access networks (1)

- Access networks
 - Network architecture
 - HFC
 - FTTX

Access networks (2)

- Provide last branch of TLC networks
 - From service provider to homes or offices
 - Ever increasing bandwidth request also at the access level
 - Need to approach fiber to users
 - High performance "business" access networks
 - Sonet/SDH, Ethernet, RPR
 - Business users, renting lines from 1.5 Mbps up to Gbps
 - Individual home access networks
 - Providing of more advanced services
 - Need to overcome limitations of telephone network
 - Main topic of this course chapter
 - In the past only two types of services to homes:
 - POTS on public phone network
 - TV on cable network (USA)

Access networks (3)

- In recent years data services have been added
 - DSL (Digital Subscriber Line) on phone network
 - Cable modem on cable network (USA)
- Request of high capacity access networks
 - Video-on-demand (VOD)
 - High-definition TV (HDTV)
 - Standard TV (SDTV)
 - Remote work
 - Online gaming
 - Internet access
 - Telephone
 - High speed data (HSD)

Access networks (4)

Service classification based on...

Bandwidth request

 From a few kHz (telephone) to MHz (video flux) up to hundreds of Mbps (rented lines)

Symmetrical or asymmetrical service

- Symmetrical (bidirectional), ex. videoconference
- Asymmetrical (unidirectional), ex. video broadcast
- Business services are typically symmetrical...
- ... other services have typically larger downstream than upstream bandwidth

Broadcast or switched service

- Broadcast: all users receive the same data
- Switched: different users receive different data

Access networks

- o Access networks
 - Network architecture
 - HFC
 - FTTX

Network architecture (1)

- Access network composed by
 - Hub
 - CO (local exchange) for phone networks
 - Head end for cable networks (USA)
 - Each hub provides services to different homes/offices through the NIU, hub belongs to a bigger network
 - Remote nodes (RN)
 - Second hierarchic level among hub and NIU
 - Each hub connected to different RN, each RN serves a group of NIU
 - Network interface units (NIU)
 - One NIU for each user (or small group)
- Access network= feeder network + distribution network

Network architecture (2)

- Feeder network: network between hub and RN
- Distribution network: network between RN and NIU
- Broadcast vs. switched services
 - All users receive same data or not
- Broadcast vs. switched distribution network
 - Network topology
 - All 4 service-network combinations are possible

Network architecture (3)

Broadcast distribution network

- RN broadcasts to all NIUs data from the hub
- Inexpensive networks, use of all equal NIUs
 - Intelligent functions at the NIU level
- Well suited for delivery of broadcast services
- Ex. Cable network (USA)

Switched distribution network

- RN processes data from the hub and sends separate data fluxes to all NIUs
- In general, use of different NIUs for different users
 - Intelligent functions at network level, NIUs are simple
- Higher security level
 - Against hackers and network failures
- Well suited for switched services delivery
- Ex. telephone network

Network architecture (4)

- Classification based on type of feeder network (hub - RN)
 - The network assigns to each NIU its dedicate bandwidth
 - Each NIU operates on different frequency
 - Possibility to guarantee QoS to users
 - NIU includes devices operating at the NIU bitrate
 - NIU share the total network bandwidth
 - NIU share the bandwidth in the time domain
 - Each NIU may in principle use all the bandwidth
 - Need for a MAC for upstream traffic
 - Very efficient for "bursty" traffic
 - Difficult to guarantee QoS
 - NIU include devices operating at the total line bitrate

Network architecture (5)

- Broadcast or switched distribution
- Feeder with either dedicated or shared bandwidth
- Telephone network
 - Switched distribution network
 - Feeder network with dedicated bandwidth of 4 kHz
- Cable network(USA)
 - Broadcast distribution network
 - Feeder network with shared bandwidth
- WPON
 - PON WDM network
 - Broadcast distribution network
 - Feeder network with dedicated bandwidth

Distribution	Feeder Network			
Network	Shared	Dedicated		
Broadcast Switched	Cable TV (HFC), TPON	WPON Telephony, DSL, WRPON		

Access networks

- Access networks
 - Network architecture
 - HFC
 - FTTX

Hybrid Fiber Coax (1)

- HFC (Hybrid Fiber Coax) network
- Reaches almost all homes (USA)
- Fiber optic links between head end and RN
- Channels from head end to RN in broadcast with SCM (Subcarrier Modulation) over a single laser
- From RNs coaxial cables to the homes
- Each RN serves from 500 to 2000 users
- Used bandwidth from 50 to 550 MHz, transmission of 78 TV AM-VSB channels spaced by 6 MHz (NTSC)
- Return channel from 5 and 40 MHz
- Operators look for upgrade to video transmission in digital format (Enhanced HFC)
- Broadcast network with shared bandwidth

Hybrid Fiber Coax (2)

- Telephone and cable networks are radically different
 - Phone network provides little band per user, but using complex network switching and management
 - Cable network provides large band per user, but it is broadcast and unidirectional, without switching

Access networks

- o Reti di accesso
 - Architettura di rete
 - HFC
 - FTTX

Fiber-to-the-Home (1)

FTTx (Fiber to the x)

- Strategy: bring the fiber as close as possible to final user
- Data digitally transmitted on optical fiber from hub to the nodes called ONUs (Optical Network Units)
- Depending on distance between ONU and user we may have
 - FTTH (Fiber-to-the-Home)
 - Fiber arrives to homes, ONU have NIU functionalities
 - FTTC/FTTB (Fiber-to-the-Curb/Building)
 - Each ONU serves a few tens of homes or buildings
 - Fiber arrives at about 100 m distance from users
 - Copper distribution section between ONU and NIU
 - FTTN (Fiber-to-the-Node)
 - Fiber terminates in a note at about 1 km from users

Fiber-to-the-Home (2)

- Connection CO RN with fiber
- Connection RN ONU with fiber, ONU terminates the fiber link
- Connection ONU NIU with copper

Fiber-to-the-Home (3)

- Typically the network between CO and ONU is a PON (Passive Optical Network)
- RN is typically a simple star coupler
 - Often directly placed in the CO
- Term FTTx indicates different architectures...
- However the classical version involves signal broadcast from CO to the ONUs
 - Total band shared among ONU using TDM
- Feeder network: between the CO and the RNs
- Distribution network: between the RNs and the ONUs
- We focus on the optical side of the access network
 - Must be simple, esasy to install and manage
 - Preference for passive vs active networks

Fiber-to-the-Home (4)

Passive Optical Networks (1)

PON (Passive Optical Networks)

- Optical networks without switching and control functions
- Only need power supply at their extremes
- Large cost reduction

ONU

- Simple structure in terms of low cost and flexibility
 - No laser or complex optical components
 - No cooling or temperature control device
- Intelligent functions at the CO level
 - Managed space, expensive components shared among all users

Passive Optical Networks (2)

PON structure

- RN composed by star coupler or static wavelength router
 - This has all of the previously seen advantages
- Fiber infrastructure is transparent to bitrate and modulation format
 - Ease of upgrade without changes to the network
- Different PON types in table
 - We are going to examinate them next (typically N = 16 32)

Architecture	Fiber Sharing	Power Splitting	ONU Bit Rate	Node Sync	CO Sharing
All fiber	No	None	1	No	No
TPON	Yes	1/N	N	Yes	Yes
WPON	Yes	1/N	1	Yes	No
WRPON	Yes	None	1	Yes	Yes

Standard per FTTH

- PTP (point-to-point) networks
 - IEEE 803.2ah (extension of Ethernet)
- PON networks
 - FSAN (Full Service Access Network)
 - BPON: 20 30 Mbps per user, TDM
 - o **EPON**: 30 − 40 Mbps per user
 - o **GPON**: up to 100 Mbps per user

	BPON	EPON	GPON
Standard	ITU-T G.983	IEEE803.2ah	ITU-T G.984
Bandwidth	Downstream up to 622Mbps Upstream 155Mbps	Up to symmetric 1.25Gbps	Downstream up to 2.5Gbps Upstream up to 2.5 Gbps
Downstream λ (nm)	1490 and 1550	1550	1490 and 1550
Upstream k (nm)	1310	1310	1310
Transmission	ATM	Ethernet	ATM, Ethernet, TDM

TPON (1)

TPON (PON for Telephony)

- Broadcast of downstream traffic from CO to all ONUs through a passive star coupler
- Delivery of switched services also possible by TDM
 - Different time slots for each ONU
- Upstream is shared, for example using TDM
 - Or other multi-access protocol
- TDM approach
 - ONU must by synchronized to common clock
 - Ranging process
 - Each ONU measures delay from CO
 - Clock adjustement and their synchronization with respect to CO
 - CO assigns necessary time slots to each ONU

TPON (2)

TPON (3)

- Expensive equipment at CO shared among the ONUs
- Use of standard low cost optical components
 - CO transmitter: LED or Fabry Perot laser
 - ONU transmitter: LED or Fabry Perot laser
 - ONU receiver: pinFET
 - o Inexpensive, does not require cooling
- Number of supported ONUs limited by power splitting at star coupler
- ONU with electronics working at aggregate bitrate
- Trade-off between transmitted power, receiver sensitivity, bitrate, distance, number of ONUs
- TPON less expensive with respect to Sonet/SDH,
 RPR and Ethernet for medium bitrat services

TPON (4)

Flexible bandwidth delivery

- TPON: by varying time slot distribution
- Sonet/SDH: latest device generation improves dynamic bandwidth management

Failures

- TPON: user failure does not affect others
 - Fieber breaks not easy to manage
- Sonet/SDH: failure makes the ring useless
 - However there are fast protection mechanisms

Adding new users

- TPON: very simple process
- Sonet/SDH: complex and lengthy process

WPON (1)

WPON (WDM PON)

- Evolution of standard TPON in order to increase capacity and flexibility
- Substitution of single transmitter at CO with
 - Array of WDM lasers or...
 - Single tunable laser
- CO broadcasts all wavelengths to all ONUs
- Each ONU selects its wavelength with a filter
 - Every ONU provided with electronics at its own bitrate and not at the aggregate bitrate
- Upstream channel shared in TDM at 1310 nm
- Remains the limitation due to the star coupler

WPON (2)

WRPON (1)

WRPON (Wavelength-Routing PON)

- Wavelength-routing distribution network
- Keeps advantages of WPON network but solves splitting problem at star coupler
- Possibility to provide point-to-point services to ONU
- RN with wavelength router to manage downstream traffic
 - Typically one uses an AWG
- Different WRPON versions
 - Different devices in CO and ONU
 - Different management of upstream traffic
- Ex. PPL (Photonics Loop)
 - o Downstream: 16 channels at 1310 nm
 - o Upstream: 16 channels at 1550 nm
 - Costly: two expensive lasers for each user

WRPON (2)

