Paper Reading

卢宁 ¹

2020年11月8日

目录

Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning

② Graph Convolution for Multimodal Information Extraction from Visually Rich Documents

Lu Ning Cover 2020 年 11 月 8 日 2/36

Table of Contents

Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning

2 Graph Convolution for Multimodal Information Extraction from Visually Rich Documents

 Lu Ning
 Cover
 2020 年 11 月 8 日
 3/36

动机

- 中文字符比拉丁字符要多很多
- ② 中文字符的分布特别不平衡
- ◎ 每个字符的训练样本有限

Lu Ning Cover 2020 年 11 月 8 日 4/36

贡献

- 提出了更大的中文新数据集 C-SVT,比已有最大的中文数据集大 14 倍
- ② 提出了一种利用完全和弱标注信息的,基于部分监督的端到端可训练中文识别网络。

Lu Ning Cover 2020 年 11 月 8 日 5/36

- 430000 中文数据集, 比现有的数据大 14 倍
- 全标注:标注了精确文本区域位置和内容。弱标注:标注了 ROI 的区域 mask 和文字
- ⑤ 完全监督学习:只用全标注数据。弱监督学习:只用弱标注数据。 部分监督:两者混着用。

 Lu Ning
 Cover
 2020 年 11 月 8 日
 6/36

全标注

train:val:test 4:1:1, 29966 images, 243537 text lines, 1509256 chars

7/36

弱标注

400000 images, 5 M chars

8/36

总体框架

Text Detection Branch

FOTS 1 like: ResNet 50 (shared backbone) + FPN $L_{det} = L_1 + L_{reg}$

Lu Ning Cover 2020 年 11 月 8 日 10 / 36

 $^{^1\}mbox{Xuebo}$ Liu et al., 2018, FOTS: Fast Oriented Text Spotting with a Unified Network \sim

Perspective ROI Transform

固定高度,等宽高比进行透视变换,与 ROIRotate 不同的是参数是可学习的。

Spatial Transformer Network¹

$$\begin{pmatrix} x_{i}^{s} \\ y_{i}^{s} \end{pmatrix} = \mathcal{T}_{\theta}\left(G_{i}\right) = \mathbf{A}_{\theta} \begin{pmatrix} x_{i}^{t} \\ y_{i}^{t} \\ 1 \end{pmatrix} = \begin{bmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \\ \theta_{31} & \theta_{32} & 1 \end{bmatrix} \begin{pmatrix} x_{i}^{t} \\ y_{i}^{t} \\ 1 \end{pmatrix}$$
 (1)

$$V_i^c = \sum_{n=1}^{H} \sum_{m=1}^{W} U_{nm}^c \max(0, 1 - |x_i^s - m|) \max(0, 1 - |y_i^s - n|)$$
 (2)

Lu Ning Cover 2020 年 11 月 8 日 11 / 36

Perspective ROI Transform

Perspective ROI Transform

变换矩阵 M 是直接通过将三个基础变换旋转,缩放和平移组合成一个仿射变换而成的。(为什么不学习?)

$$\mathbf{M} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$= s \begin{bmatrix} \cos \theta & -\sin \theta & t_x \cos \theta - t_y \sin \theta \\ \sin \theta & \cos \theta & t_x \sin \theta + t_y \cos \theta \\ 0 & 0 & \frac{1}{s} \end{bmatrix}$$
(3)

Lu Ning Cover 2020 年 11 月 8 日 13 / 36

¹Xuebo Liu et al., 2018, FOTS: Fast Oriented Text Spotting with a Unified Network

Text Recognition Branch

Soft-attention Based Bidirectional GRUs. Please refer to code

14/36

Online Proposal Matching

$$d^w(i) = \frac{1}{T^w} \sum_{t=1}^{T^w} \left\| f\left(\mathbf{h}_t^w, \mathbf{W}_h\right) - f\left(\mathbf{e}_t^w, \mathbf{W}_e\right) \right\| \quad \text{(4)}$$

$$L_{opm} = \frac{1}{N} \sum_{i=1}^{N} \left[s^{w}(i) \right]^{2}$$
 (5)

features
$$\mathbf{F}_s^w$$
 Attention-based RNN decoder \mathbf{F}_t^w Embedding module \mathbf{F}_t^w Embedding \mathbf{F}_t^w \mathbf{F}_t^w

Encoded

where $s^w(i) = d^w(i)$ if the text proposal $P^w(i)$ is a positive sample that matches the keyword y^w , otherwise $s^w(i) = max(0, 1 - d^w(i))$.

Fully and Weakly Supervised Joint Traning

Fully Supervised Training

$$L_{full} = L_{det} + \beta L_{recog} \tag{6}$$

Partially Supervised Training

$$L_{total} = L_{det} + \beta \left(L_{recog} + L_{recog}^{w} \right) \tag{7}$$

$$L_{recog}^{w} = \frac{1}{\sum_{i=1}^{N} m(i)} \sum_{i=1}^{N} m(i) l_{recog}^{w}(i)$$
 (8)

4日 (日本) (日本) (日本) (日本)

$$m(i)=1$$
 if $d_m(i) \leq \tau$ otherwise $m(i)=0$

$$l_{recog}^{w}(i) = -\frac{1}{T^{w}} \sum_{t=1}^{T^{w}} \log p\left(\mathbf{y}_{t}^{w} | \mathbf{y}_{t-1}^{w}, \mathbf{h}_{t-1}^{w}, \mathbf{c}_{t}^{w}\right)$$
(9)

Lu Ning Cover 2020 年 11 月 8 日 16 / 36

Training Pipeline

17/36

实现细节

- random scale [0.5, 1.0, 2.0, 3.0] -> random crop -> resize longer side to 512 -> padding to 512*512 with 0
- oroi transform to 8*64, less padding and larger bilinear resizing
- weakly annotated image resize to 512*512 with padding
- 8 GPUs NIVIDIA Tesla P40, 16 batch size with 32 proposals when fully supervised, 8 fully and 8 weakly with 32 proposals when partially supervised
- **3** Adam with learning rate $10^{-4}~\lambda = 0.01~\beta = 0.02$

18 / 36

实验结果

		Valid					Test								
Method	Training data	Detection		End-to-end			Detection			End-to-end					
		R %	P %	F %	R %	P %	F %	AED	R %	P %	F %	R %	P %	~ /-	AED
EAST 46 + Attention 35	Train	71.74	77.58	74.54	23.89	25.83	24.82	22.29	73.37	79.31	76.22	25.02	27.05	25.99	21.26
EAST[46]+CRNN[34]	Train	71.74	77.58	74.54	25.78	27.88	26.79	20.30	73.37	79.31	76.22	26.96	29.14	28.0	19.25
	Train				26.83										
End2End -	Train + 4.4K Extra Full														
					29.91										
End2End-PSL /2	Train + 25K Weak				29.44										
	Train + 50K Weak				29.96										
	Train + 100K Weak				30.55										
	Train + 200K Weak				31.31										
\longrightarrow	Train + 400K Weak	73.31	79.73	76.38	31.80	34.58	33.13	18.14	75.21	81.71	78.32	32.53	35.34	33.88	17.59

Table of Contents

Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning

② Graph Convolution for Multimodal Information Extraction from Visually Rich Documents

动机

- 同样的文字在不同位置代表不同的语义,同样的位置不同模板代表不同语义
- ② 鲁棒性不足(模板,拍照环境)
- ③ 无法编码空间依赖特性

Lu Ning Cover 2020 年 11 月 8 日 21/36

贡献

- 第一个使用 GCN 来编码文字框结构和文本特征来做 VRD 的 IE 任务
- ② 实验表明,结合结构和文字特征的方法会比 baseline 方法更好。

Lu Ning Cover 2020 年 11 月 8 日 22 / 36

VATI (增值税发票)

16 个字段(购买方,出售方,日期,总额),统一模板,有一些干扰

IPR (国际购物小票)

4 个字段(发票号,商户名,购买方,总额),146 个模板

Train:Val:Test 0.75:0.15:0.15

 Lu Ning
 Cover
 2020 年 11 月 8 日
 23 / 36

GCN 简单介绍

图卷积网络将卷积运算从传统数据(例如图像)推广到图数据。其核心思想是学习一个函数映射 f(.) ,通过该映射图中的节点 v_i 可以聚合它自己的特征 x_i 与它的邻居特征 $x_j \in N(v_i)$ 来生成节点 v_j 的新表示。图卷积网络是许多复杂图神经网络模型的基础,包括基于自动编码器的模型、生成模型和时空网络等。

Lu Ning Cover 2020 年 11 月 8 日 24 / 36

CRF 简单介绍

条件随机场的定义

如果随机变量 Y 构成一个由无向图 G=(V,E) 表示的马尔可夫随机场,对任意节点 $v\in E$ 都成立,即

$$P\left(Y_v|X,Y_w,w\neq v\right) = P\left(Y_v|X,Y_w,w\sim v\right)$$

对任意节点 v 都成立,则称 P(Y|X) 是条件随机场。式中 $w\neq v$ 表示 w 是除 v 以外的所有节点, $w\sim v$ 表示 w 是与 v 相连接的所有节点。

线性链条件随机场定义

设两组随机变量, $\mathbf{X}=(X_1,...,X_n)$ 和 $\mathbf{Y}=(Y_1,...,Y_n)$,那么线性链条件随机场的定义为:

$$P(Y_i|\mathbf{X},Y_i,...,Y_{i-1},Y_{i+1},...,Y_n) = P(Y_i|\mathbf{X},Y_{i-1},Y_{i+1})$$

〈□ゝ〈♂ゝ〈きゝ〈きゝ き かへで Lu Ning Cover 2020 年 11 月 8 日 25 / 36

CRF 简单介绍

特征函数

线性链条件随机场的参数化形式

$$P(y|x) = \frac{1}{Z(x)} \exp \left(\sum_{i,k} \lambda_k t_k(y_{i-1},y_i,x,i) + \sum_{i,l} \mu_l s_l(y_i,x,i) \right)$$

$$Z(x) = \sum_y \left(\sum_{i,k} \lambda_k t_k(y_{i-1},y_i,x,i) + \sum_{i,l} \mu_l s_l(y_i,x,i) \right)$$

其中

 t_k 是定义在 **边**上的特征函数,称为转移特征 s_l 是定义在 **结点**上的特征函数,称为状态特征 注意到这种表达就是不同特征的加权求和形式, t_k,s_l 都依赖于位置,是局部特征函数。

Lu Ning Cover 2020 年 11 月 8 日 26 / 36

CRF 简单介绍

- ① 前向后向算法,计算 $P(Y=y_i|x)$ 和 $P(Y_{i-1}=y_{i-1},Y_i=y_i|x)$
- ② 解码算法, 找到一个概率最大的最优序列, 维特比算法 具体细节, 请参考 here

Lu Ning Cover 2020 年 11 月 8 日 27/36

文档建模

Mathematically, a document D is a tuple (T,E), where $T=t_1,t_2,\cdots,t_n$, $t_i\in T$ is a set of n text boxes/nodes, $R=\{r_{i1},r_{i2},\cdots,r_{ij}\},\ r_{ij}\in R$ is a set of edges, and $E=T\times R\times T$ is a set of directed edges (dense?) of the form (t_i,r_{ij},t_j) where $t_i,t_j\in T$ and $r_{ij}\in R$. In our experiments, every node is connected to each other.

□ → < □ → < □ → < □ →
 □ → < □ →

28/36

初始特征抽取

● 节点信息: 通过 BiLSTM 编码文本信息,字符级别输入

② 边信息: $r_{ij} = [x_{ij}, y_{ij}, w_i/h_i, h_j/h_i, w_j/h_i]$ 归一化

Lu Ning Cover 2020 年 11 月 8 日 29/36

GCN

30/36

Lu Ning Cover 2020 年 11 月 8 日

GCN

$$\mathbf{h}_{ij} = g\left(\mathbf{t}_{i}, \mathbf{r}_{ij}, \mathbf{t}_{j}\right) = \text{MLP}\left(\left[\mathbf{t}_{i} \left\|\mathbf{r}_{ij}\right\| \mathbf{t}_{j}\right]\right) \tag{10}$$

$$\mathbf{t}_{i}' = \sigma \left(\sum_{j \in \{1, \dots, n\}} \alpha_{ij} \mathbf{h}_{ij} \right) \tag{11}$$

$$\alpha_{ij} = \frac{\exp\left(\text{ LeakyRelu } \left(\mathbf{w}_{a}^{T}\mathbf{h}_{ij}\right)\right)}{\sum_{j \in \{1, \cdots, n\}} \exp\left(\text{ Leaky Relu } \left(\mathbf{w}_{a}^{T}\mathbf{h}_{ij}\right)\right)}$$
(12)

$$\mathbf{r}'_{ij} = \text{MLP}\left(\mathbf{h}_{ij}\right) \tag{13}$$

Lu Ning Cover 2020 年 11 月 8 日 31 / 36

BiLSTM-CRF with graph embedding

训练细节

首先标注关键字段的值和位置,然后使用 OCR 系统跑一遍数据,将两个结果的框进行匹配,如果匹配超过某个阈值就认为匹配上了,然后再通过字符串匹配方法对 OCR 系统出来的文字内容进行 IOB 标注。

Lu Ning Cover 2020 年 11 月 8 日 33 / 36

实验结果

Model	VATI	IPR
Baseline I	0.745	0.747
Baseline II	0.854	0.820
BiLSTM-CRF + GCN	0.873	0.836

Entities	Baseline I	Baseline II	Our model
Invoice #	0.952	0.961	0.975
Date	0.962	0.963	0.963
Price	0.527	0.910	0.943
Tax	0.584	0.902	0.924
Buyer	0.402	0.797	0.833
Seller	0.681	0.731	0.782

实验结果

Configurations/Datasets	VATI	IPR
Full model	0.873	0.836
w/o vis. features	0.808	0.775
w/o text features	0.871	0.817
w/o attention	0.872	0.821

Model	VATI	IPR
BiLSTM-CRF + GCN	0.873	0.836
+ Multi-task	0.881	0.849

 Lu Ning
 Cover
 2020 年 11 月 8 日
 36 / 36