浙江工业大学 2017 - 2018 学年第一学期 概率论与数理统计试卷

姓名	: 学号:	班级:	任课教师:	得分:				
一. 塡	[空题,共 28 分,每空 2 分。							
1.	. 已知随机事件 A,B 满足 $P(AB)=P(\bar{A}\bar{B}),\ P(A)=0.3,\ 则\ P(B)=$							
2.	已知球员每次投篮的命中率 $p =$	_		篮 3 次中至少命中一次的概率为 				
3.	已知离散型随机变量 X 的分	布函数为						
		$F(x) = \begin{cases} 0 \\ 0 \\ 1 \end{cases}$	0, $x < -1$, 0.4, $-1 \le x < 0$, 0.8, $0 \le x < 2$, 1, $2 \le x$,					
	则 $P(X \ge 0) = $							
4.	己知随机变量 X 的分布函 $EX =$, $Var(X) =$		$f(x) + 0.7\Phi(\frac{x-1}{2}), \sharp +$	$\Phi(x)$ 为标准正态分布函数,则				
5.	已知 $\lambda > 0$,随机变量 $X \sim$	$P(\lambda)$,若 $P(X \le 1)$	$X \leq 2) = \frac{4}{5}$,则 $\lambda = $	$X = X^2 = X$.				
				$C=$, $Y=X^2$ 的密度函数				
7.	己知随机变量 X,Y , EX $E(X+2Y)=$, $Var(X)$		Var(X) = 1, $Var(Y)$	=4,相关系数 $ ho=-0.5$,则				
8.	设 X_1, X_2, \cdots, X_5 是来自正	态总体 $N(0,1)$ 的简	单样本. 令 $\bar{X} = \frac{1}{5}(X_1 -$	$-X_2 + \cdots + X_5$) 为样本均值. 若				
		$C \frac{1}{\sqrt{\sum}}$	$\frac{\bar{X}}{\sum_{i=1}^{5} (X_i - \bar{X})^2}$					
	服从 t-分布,则自由度为	, $C = $						

二. 选择题, 共12分, 每题3分。

1. 某随机变量的密度函数可能是

A)
$$\begin{cases} \sin x, & 0 \le x \le \\ 0, &$$
其他

B)
$$\begin{cases} \sin x, & 0 \le x \le \frac{3}{2} \\ 0, & 其他 \end{cases}$$

C)
$$\begin{cases} \sin x, & 0 \le x \le \frac{\pi}{2} \\ 0, & \text{if } \end{cases}$$

A)
$$\begin{cases} \sin x, & 0 \le x \le \pi \\ 0, & \text{其他} \end{cases}$$
B)
$$\begin{cases} \sin x, & 0 \le x \le \frac{3\pi}{2} \\ 0, & \text{其他} \end{cases}$$
C)
$$\begin{cases} \sin x, & 0 \le x \le \frac{\pi}{2} \\ 0, & \text{其他} \end{cases}$$
D)
$$\begin{cases} \sin x, & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ 0, & \text{其他} \end{cases}$$

- 2. 设 X_1, X_2, X_3, \cdots 是独立同分布随机变量序列,且 $EX_1 = 1$, $Var(X_1) = 2$. 令 $\Phi(x)$ 为标准正态分布函 数,则根据中心极限定理,().
 - A) $\lim_{n \to \infty} P(X_1 + X_2 + \dots + X_n n \le nx) = \Phi(x)$
 - B) $\lim_{n\to\infty} P(X_1 + X_2 + \dots + X_n n < \sqrt{n}x) = \Phi(x)$
 - C) $\lim_{n\to\infty} P(X_1 + X_2 + \dots + X_n n \le 2nx) = \Phi(x)$
 - D) $\lim_{n\to\infty} P(X_1 + X_2 + \dots + X_n n \le \sqrt{2n}x) = \Phi(x)$
- 3. 设 X_1, X_2, X_3, X_4 是来自正态总体 $N(\mu_0, \sigma^2)$ 的简单样本,其中 μ_0 已知而 σ^2 未知,则不为统计量的是 ().
 - A) $\frac{1}{4}(X_1 + X_2 + X_3 + X_4)$ B) $X_1 + X_4 2\mu$ C) $\max\{X_1, X_2, X_3, X_4\}$ D) $\frac{1}{\sigma^2}(X_1 X_2)^2$
- 4. 已知一批零件的长度服从正态分布 $N(\mu, \sigma^2)$, 其中 μ, σ^2 均未知. 设 X_1, X_2, \cdots, X_n 是 X 的一组简单样 本, \bar{X} 和 S 分别为样本均值和样本标准差,则 μ 的置信水平为 $1-\alpha$ 的双侧置信下限是 ().
 - A) $\bar{X} \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)$ B) $\bar{X} \frac{S}{\sqrt{n}} t_{\alpha}(n-1)$ C) $\bar{X} \frac{\sigma}{\sqrt{n}} Z_{\frac{\alpha}{2}}$ D) $\bar{X} \frac{\sigma}{\sqrt{n}} Z_{\alpha}$

三. 解答题, 共5题, 60分。

- 1. $(8\,)$ 电报通讯中不断发出信号 0 和 1,根据统计资料,发出信号为 0 和 1 的概率分别为 0.6,0.4. 由于受到信号干扰,若发出信号为 0 时,接收到的信号为 0,1 和模糊信号 x 的概率分别为0.7,0.1,0.2;而发出信号为 1 时,接收到的信号为 0,1,x 的概率分别为 0.05,0.85,0.1.
 - 1) 求接收到信号为x的概率;
 - 2) 若接收到的信号为 x, 求此时发出信号为 0 的概率.

2. (8分)设随机变量 X,Y 的分布律分别为

X	0	1
P	1/3	2/3

Y	-1	0	1
P	1/3	1/3	1/3

且满足 $P(X^2 = Y^2) = 1$.

- 1) 求 (X,Y) 的联合分布律;
- 2) 判断 X,Y 是否独立.

3. (10分)设连续型随机变量的密度函数为

$$f(x) = \begin{cases} \frac{C}{1+x^2}, & 0 < x < 1\\ 0, & 其他. \end{cases}$$

- 1) 求常数 C;
- 2) 求 $Y = X^2 + 1$ 的期望和方差.

4. (12 分)设二维随机变量 (X,Y) 的联合密度函数为

$$f(x,y) = \begin{cases} k(x^2 + y), & 0 < x < 1, 0 < y < 1, \\ 0, & \text{ 其他.} \end{cases}$$

- 1) 求常数 k;
- 2) 求 P(X < Y).
- 3) 求 X,Y 的边缘密度函数,并判断独立性.

5. $(10 \, \text{分})$ 假设某种产品的使用寿命(单位:小时)服从正态分布,标准差为 150. 现从一批产品中随机抽取 25 件样本,测得样本均值 $\bar{x}=2537$. 问:在显著水平 $\alpha=0.05$ 下,能否认为这批产品的平均寿命为 2500 小时? $(z_{0.025}=1.96, z_{0.05}=1.65)$

6. (12分)已知总体 X 的密度函数为

$$f(x;\theta) = \begin{cases} 2e^{-2(x-\theta)}, & x \ge \theta, \\ 0, & x < \theta, \end{cases}$$

其中 θ 为未知参数. 设 X_1, X_2, \cdots, X_n 是 X 的一组简单样本.

- 1) 求 θ 的矩估计量,并判断其是否为无偏估计;
- 2) 求 θ 的极大似然估计量.