Test 8(Week 16)

Discrete Mathematics 2

- 1. 如果一个小猪储钱罐中有1美分、5美分、10 美分、25美分、50 美分等硬币,那么20个硬币有()种不同的组合.
- 2. The number of spanning trees of the following simple graph is ()

3. 下面是平面图的是()

- 4. 递推关系 $a_n=3a_{n-1}+2n$ 的所有解,具有 $a_1=2$ 的解是()
- 5. 下列两图之间的一个同构是() (写出点的对应关系)

- 6. There exist () one-to-one functions from an m-element set to an n-element set.
- 7. If G is a simple graph with n vertices with $n\geq 3$ such that () for every pair of nonadjacent vertices u and v in G, then G has a Hamilton circuit.
- 8. 方程 $x_1+x_2+x_3+x_4+x_5+x_6=29$ 有()个解使得其中 $x_i(i=1,2,3,4,5,6)$ 是非负整数,并且 $x_1<8,x_2>8$.

Probability Theory and Mathematical Statistics

1. 设 X,Y 是相互独立的随机变量, 它们分别服从参数为 λ_1,λ_2 的泊松分布, 证明 Z=X+Y 服从 参数为 $\lambda_1+\lambda_2$ 的泊松分布。

2. 设 X_1,X_2,\cdots,X_n 是来自总体 X 的简单随机样本,已知 $EX^k=\alpha_k(k=1,2,3,4)$ 。证明 当 n 充分大时,随机变量 $Z_n=\frac{1}{n}\sum_{i=1}^nX_i^2$ 近似服从正态分布,并指出其分布参数。

3. 设随机变量 X, Y 相互独立, 且服从同一分布. 试证明

$$P\{a < \min(X, Y) \leqslant b\} = [P\{X > a\}]^2 - [P\{X > b\}]^2$$

4	设	X	为随机].变量	C	是常数,	证明·
→.	1X	∠1	ノンドロバ	1又里,	\sim	从上门双队	шη,

$$D(X) < E\left[(X-C)^2
ight], \quad$$
 对于 $C
eq E(X).$ (由于 $D(X) = E[X-E(X)]^2$, 上式表明 $E\left[(X-C)^2
ight]$ 当 $C=E(X)$ 时取到最小值.)

Data structure

- 1. 分发饼干:假设你是一位很棒的家长,想要给你的孩子们一些小饼干. 但是,每个孩子最多只能给一块饼干. 对每个孩子i 都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸; 并且每块饼干 j,都有一个尺寸 s[j] . 如果 $s[j] \geq g[i]$,我们可以将这个饼干 j分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值.
 - 这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩.

2. 给定一个区间的集合 intervals ,其中 intervals[i] = [starti, endi] 。返回需要移除区间的最小数量,使剩余区间互不重叠。

3. 给定数组49、38、65、97、76、13、27、49模拟快速排序的算法过程.

Computer organization and structure

omputer organization and structure	
1. I/O有哪些编址方式? 各有何特点?	
2. 简要说明CPU与I/O之间传递信息可采用哪几种联络方式?它们分别用于什么场合?	
3. 说明中断向量地址和入口地址的区别和联系。	
4. 什么是多重中断? 实现多重中断的必要条件是什么?	
5. CPU对DMA请求和中断请求的响应时间是否一样?为什么?	