

Generated by elijahsheridan on 08 April 2020, 12:37:42

This report has been generated automatically by Madanalysis 5.

Please cite:

E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222-256,

arXiv:1206.1599 [hep-ph].

To contact us:

 ${\bf http://madanalysis.irmp.ucl.ac.be} \\ {\bf ma5team@iphc.cnrs.fr} \\$

Contents 1 Setup

1	Set	up	2
	1.1	Command history	2
	1.2	Configuration	6
2	Dat	easets	7
	2.1	signal	7
	2.2	bg_vbf_0_100	7
	2.3	bg_vbf_100_200	7
	2.4	bg_vbf_200_400	8
	2.5	bg_vbf_400_600	8
	2.6	bg_vbf_600_800	9
	2.7	bg_vbf_800_1200	9
	2.8	bg_vbf_1200_1600	10
	2.9	$\log_{vbf}1600_{inf}$	10
	2.10	\log_{dip}_0100	10
	2.11	bg_dip_100_200	11
	2.12	bg_dip_200_400	11
	2.13	bg_dip_400_600	12
	2.14	bg_dip_600_800	12
	2.15	bg_dip_800_1200	12
	2.16	bg_dip_1200_1600	13
	2.17	$\log_{dip}1600_{inf}$	13
3	Hist	tos and cuts	14
	3.1	Cut 1	14
	3.2	Histogram 1	15
	3.3	Histogram 2	16
	3.4	Histogram 3	17
	3.5	Histogram 4	18
	3.6	Histogram 5	19
	3.7	Histogram 6	20
	3.8	Histogram 7	21
	3.9	Histogram 8	22
	3.10	Histogram 9	23
		Histogram 10	24
	3.12	Histogram 11	25
	3.13	Histogram 12	26
	3.14	Histogram 13	27
	3.15	Histogram 14	28
	3.16	Histogram 15	29
	3.17	Histogram 16	30
4	Sun	nmary	31
	4.1	Cut-flow charts	31

1 Setup

1.1 Command history

```
ma5># set directory where running "./bin/ma5"; set lumi; define the signal significance
ma5>set main.currentdir = /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data
# need to change this directory path -> exit and type "pwd" to get the path
ma5>set main.lumi = 3000
ma5>set main.fom.formula = 5
ma5>set main.fom.x = 0.0
ma5># import samples -> change the path to the LHE file
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/axion_signal/-
axion_signal_gurrola_cuts_1MeV.lhe.gz as signal
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_0_100_merged.lhe.gz as bg_vbf_0_100
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_100_200_merged.lhe.gz as bg_vbf_100_200
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_200_400_merged.lhe.gz as bg_vbf_200_400
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_400_600_merged.lhe.gz as bg_vbf_400_600
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_600_800_merged.lhe.gz as bg_vbf_600_800
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_800_1200_merged.lhe.gz as bg_vbf_800_1200
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_1200_1600_merged.lhe.gz as bg_vbf_1200_1600
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/vbf_diphoton_background_
merged_lhe/vbf_diphoton_background_ht_1600_inf_merged.lhe.gz as bg_vbf_1600_inf
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_0_100_merged.lhe.gz as bg_dip_0_100
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_100_200_merged.lhe.gz as bg_dip_100_200
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_200_400_merged.lhe.gz as bg_dip_200_400
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_400_600_merged.lhe.gz as bg_dip_400_600
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_600_800_merged.lhe.gz as bg_dip_600_800
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_800_1200_merged.lhe.gz as bg_dip_800_1200
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_1200_1600_merged.lhe.gz as bg_dip_1200_1600
ma5>import /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/madgraph_data/diphoton_double_isr_back
merged_lhe/diphoton_double_isr_background_ht_1600_inf_merged.lhe.gz as bg_dip_1600_inf
ma5># define bg and signal samples
ma5>set signal.type = signal
ma5>set bg_vbf_0_100.type = background
ma5>set bg_vbf_100_200.type = background
ma5>set bg_vbf_200_400.type = background
```

```
ma5>set bg_vbf_400_600.type = background
ma5>set bg_vbf_600_800.type = background
ma5>set bg_vbf_800_1200.type = background
ma5>set bg_vbf_1200_1600.type = background
ma5>set bg_vbf_1600_inf.type = background
ma5>set bg_dip_0_100.type = background
ma5>set bg_dip_100_200.type = background
ma5>set bg_dip_200_400.type = background
ma5>set bg_dip_400_600.type = background
ma5>set bg_dip_600_800.type = background
ma5>set bg_dip_800_1200.type = background
ma5>set bg_dip_1200_1600.type = background
ma5>set bg_dip_1600_inf.type = background
ma5># define weights for the samples
ma5>#set sample_1.weight = 1
ma5>#set sample_2.weight = 1
ma5># a jet can be from a light quark or b quark
ma5>define jets = j
ma5>define e = e+ e-
ma5>define mu = mu+ mu-
ma5>define ta = ta+ ta-
ma5>define lept = e mu ta
ma5># cuts
ma5>select ((sdETA(jets[1] jets[2]) > 3.6 or sdETA(jets[1] jets[2]) < -3.6) and M(jets[1] jets[2]) < -3.6)
jets[2]) > 750) and (PT(a[1]) > 300 and M(a[1] a[2]) > 500)
ma5># define which plots to make
ma5>plot PT(jets[1])
ma5>plot ETA(jets[1])
ma5>plot PHI(jets[1])
ma5>plot PT(jets[2])
ma5>plot ETA(jets[2])
ma5>plot PHI(jets[2])
ma5>plot DELTAR(jets[1], jets[2])
ma5>plot M(jets[1] jets[2])
ma5>plot MET
ma5>plot sdETA(jets[1] jets[2])
ma5>plot M(a[1] a[2])
ma5>plot PT(a[1])
ma5>plot PT(a[2])
ma5>plot THT
ma5>plot MET
ma5>plot TET
ma5>#set the plot/graph parameters
ma5>set selection[2].xmax = 2000
ma5>set selection[2].xmin = 0
ma5>set selection[2].nbins = 200
ma5>set selection[2].logY = true
ma5>set selection[2].logX = false
ma5>set selection[2].rank = PTordering
```

```
ma5>#set selection[2].stacking_method = normalize2one
ma5>set selection[2].titleX = "p_{T}[j_{1}] (GeV)"
ma5>set selection[3].xmax = 8
ma5>set selection[3].xmin = -8
ma5>set selection[3].nbins = 160
ma5>set selection[3].logY = false
ma5>set selection[3].logX = false
ma5>set selection[3].rank = PTordering
ma5>#set selection[3].stacking_method = normalize2one
ma5>set selection[3].titleX = "#eta[j_{1}]"
ma5>set selection[4].xmax = 3.2
ma5>set selection[4].xmin = -3.2
ma5>set selection[4].nbins = 64
ma5>set selection[4].logY = false
ma5>set selection[4].logX = false
ma5>set selection[4].rank = PTordering
ma5>#set selection[4].stacking_method = normalize2one
ma5>set selection[4].titleX = "#phi[j_{1}]"
ma5>set selection[5].xmax = 1000
ma5>set selection[5].xmin = 0
ma5>set selection[5].nbins = 100
ma5>set selection[5].logY = true
ma5>set selection[5].logX = false
ma5>set selection[5].rank = PTordering
ma5>#set selection[5].stacking_method = normalize2one
ma5>set selection[5].titleX = "p_{T}[j_{2}] (GeV)"
ma5>set selection[6].xmax = 8
ma5>set selection[6].xmin = -8
ma5>set selection[6].nbins = 160
ma5>set selection[6].logY = false
ma5>set selection[6].logX = false
ma5>set selection[6].rank = PTordering
ma5>#set selection[6].stacking_method = normalize2one
ma5>set selection[6].titleX = "#eta[j_{2}]"
ma5>set selection[7].xmax = 3.2
ma5>set selection[7].xmin = -3.2
ma5>set selection[7].nbins = 64
ma5>set selection[7].logY = false
ma5>set selection[7].logX = false
ma5>set selection[7].rank = PTordering
ma5>#set selection[7].stacking_method = normalize2one
ma5>set selection[7].titleX = "#phi[j_{2}]"
ma5>set selection[8].xmax = 15
ma5>set selection[8].xmin = 0
ma5>set selection[8].nbins = 75
ma5>set selection[8].logY = false
ma5>set selection[8].logX = false
ma5>set selection[8].rank = PTordering
ma5>#set selection[8].stacking_method = normalize2one
```

```
ma5>set selection[8].titleX = "#DeltaR[j_{1},j_{2}]"
ma5>set selection[9].xmax = 8000
ma5>set selection[9].xmin = 0
ma5>set selection[9].nbins = 160
ma5>set selection[9].logY = false
ma5>set selection[9].logX = false
ma5>set selection[9].rank = PTordering
ma5>#set selection[9].stacking_method = normalize2one
ma5>set selection[9].titleX = "M[j_{1}, j_{2}] (GeV)"
ma5>set selection[10].xmax = 1000
ma5>set selection[10].xmin = 0
ma5>set selection[10].nbins = 100
ma5>set selection[10].logY = true
ma5>set selection[10].logX = false
ma5>set selection[10].rank = PTordering
ma5>#set selection[10].stacking_method = normalize2one
ma5>set selection[10].titleX = "#slash{E}_{T} (GeV)"
ma5>#set selection[11].stacking_method = normalize2one
ma5>set selection[11].titleX = "#Delta#eta(j_{1},j_{2})"
ma5>set selection[11].xmax = 15
ma5>set selection[11].xmin = -15
ma5>set selection[12].xmax = 4000
ma5>set selection[12].xmin = 0
ma5>set selection[12].nbins = 400
ma5>set selection[12].logY = true
ma5>set selection[12].logX = false
ma5>set selection[12].rank = PTordering
ma5>#set selection[12].stacking_method = normalize2one
ma5>set selection[12].titleX = "M[a_{1},a_{2}] (GeV)"
ma5>set selection[13].xmax = 2000
ma5>set selection[13].xmin = 0
ma5>set selection[13].nbins = 80
ma5>set selection[13].logY = false
ma5>set selection[13].logX = false
ma5>set selection[13].rank = PTordering
ma5>#set selection[13].stacking_method = normalize2one
ma5>set selection[13].titleX = "p_{T}[a_{1}]"
ma5>set selection[14].xmax = 2000
ma5>set selection[14].xmin = 0
ma5>set selection[14].nbins = 400
ma5>set selection[14].logY = true
ma5>set selection[14].logX = false
ma5>set selection[14].rank = PTordering
ma5>#set selection[14].stacking_method = normalize2one
ma5>set selection[14].titleX = "p_{T}[a_{2}] (GeV)"
ma5>set selection[15].xmax = 4000
ma5>set selection[15].xmin = 0
ma5>set selection[15].nbins = 80
ma5>set selection[15].logY = false
```

```
ma5>set selection[15].logX = false
ma5>set selection[15].rank = PTordering
ma5>#set selection[15].stacking_method = normalize2one
ma5>set selection[15].titleX = "THT"
ma5>#set selection[16].xmax = 1000
ma5>#set selection[16].xmin = 0
ma5>set selection[16].nbins = 200
ma5>set selection[16].logY = true
ma5>set selection[16].logX = false
ma5>set selection[16].rank = PTordering
ma5>#set selection[16].stacking_method = normalize2one
ma5>set selection[16].titleX = "MET"
ma5>set selection[17].xmax = 8000
ma5>set selection[17].xmin = 0
ma5>set selection[17].nbins = 80
ma5>set selection[17].logY = false
ma5>set selection[17].logX = false
ma5>set selection[17].rank = PTordering
ma5>#set selection[17].stacking_method = normalize2one
ma5>set selection[17].titleX = "TET"
ma5>submit four_cuts_lum3000
```

1.2 Configuration

- MadAnalysis version 1.6.33 (2017/11/20).
- Histograms given for an integrated luminosity of 3000.0fb⁻¹.

2 Datasets

2.1 signal

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/optimization .

• Sample consisting of: signal events.

 \bullet Generated events: 1000000 events.

• Normalization to the luminosity: 307056+/- 85 events.

• Ratio (event weight): 0.31.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
axion_pheno/-	1000000	0.102 @ 0.028%	0.0
madgraph_data/axion_signal/-			
axion_signal_gurrola_cuts_1MeV.ll			

$2.2 \quad bg_vbf_0_100$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/optimization .

• Sample consisting of: background events.

• Generated events: 1000000 events.

• Normalization to the luminosity: 911274+/- 1733 events.

 \bullet Ratio (event weight): 0.91 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/- vbf_diphoton_background_data/- merged_lhe/- vbf_diphoton_background_ht 0 10	1000000	0.304 @ 0.19%	0.0

$2.3 \quad \text{bg vbf} \ 100 \ 200$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/optimization .

• Sample consisting of: background events.

• Generated events: 965662 events.

- \bullet Normalization to the luminosity: 727149+/- 1245 $\,$ events.
- Ratio (event weight): 0.75.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/- vbf_diphoton_background_data/- merged_lhe/- vbf_diphoton_background_ht_100_	965662	0.242 @ 0.17%	0.0

$\mathbf{2.4} \quad \mathbf{bg_vbf_200_400}$

- \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/optimization .
- Sample consisting of: background events.
- Generated events: 984165 events.
- Normalization to the luminosity: 405994+/- 819 events.
- \bullet Ratio (event weight): 0.41 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
MG5_aMC_v2_6_5/-			
axion_pheno/madgraph_data/-	984165	0.135 @ 0.2%	0.0
vbf_diphoton_background_data/-	904100	0.133 @ 0.270	0.0
merged_lhe/-			
vbf_diphoton_background_ht_200_			

$\mathbf{2.5} \quad \mathbf{bg_vbf_400_600}$

- \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/optimization .
- Sample consisting of: background events.
- Generated events: 1000000 events.
- Normalization to the luminosity: 74013+/- 104 events.
- \bullet Ratio (event weight): 0.074 $\,$.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/- vbf_diphoton_background_data/- merged_lhe/- vbf_diphoton_background_ht_400_	1000000	0.0247 @ 0.14%	0.0

$\mathbf{2.6} \quad \mathbf{bg_vbf_600_800}$

- \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/optimization .
- Sample consisting of: background events.
- Generated events: 1000000 events.
- Normalization to the luminosity: 18905+/- 24 events.
- Ratio (event weight): 0.019.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/- vbf_diphoton_background_data/- merged_lhe/- vbf_diphoton_background_ht 600	1000000	0.0063 @ 0.13%	0.0

$2.7 \quad \ \, \rm bg_vbf_800_1200$

- \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/optimization .
- Sample consisting of: background events.
- \bullet Generated events: 400839 events.
- Normalization to the luminosity: 8607+/- 14 events.
- \bullet Ratio (event weight): 0.021 $\,$.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_pheno/madgraph_data/-$	400020	0.00287 @ 0.16%	0.0
vbf_diphoton_background_data/-	400839	0.00207 @ 0.10%	0.0
merged_lhe/-			
vbf_diphoton_background_ht_800_			

$2.8 \quad \ \, bg_vbf_1200_1600$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/optimization .

• Sample consisting of: background events.

• Generated events: 953803 events.

• Normalization to the luminosity: 1544+/- 3 events.

• Ratio (event weight): 0.0016 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_pheno/madgraph_data/-$	052002	0.000515 @ 0.1607	0.0
vbf_diphoton_background_data/-	953803	0.000515 @ 0.16%	0.0
merged_lhe/-			
vbf_diphoton_background_ht_1200			

2.9 bg vbf 1600 inf

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/optimization .

• Sample consisting of: background events.

 \bullet Generated events: 270148 $\,$ events.

• Normalization to the luminosity: 574+/-1 events.

• Ratio (event weight): 0.0021.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_pheno/madgraph_data/-$	270148	0.000191 @ 0.11%	0.0
vbf_diphoton_background_data/-	210140	0.000131 @ 0.1170	0.0
$merged_lhe/-$			
vbf_diphoton_background_ht_1600			

$2.10 \quad \text{bg dip } 0 \quad 100$

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/optimization .

• Sample consisting of: background events.

• Generated events: 1040000 events.

• Ratio (event weight): 195 - warning: please generate more events (weight larger than 1)!

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/-	1040000	67.8 @ 0.17%	0.0
diphoton_double_isr_background_d merged_lhe/- diphoton_double_isr_background_h	1040000	01.0 & 0.11/0	0.0

2.11 bg dip 100 200

- \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/optimization .
- Sample consisting of: background events.
- Generated events: 1040000 events.
- Normalization to the luminosity: 82152210+/- 114532 events.
- Ratio (event weight): 78 warning: please generate more events (weight larger than 1)!

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5 aMC v2 6 5/-			
axion_pheno/madgraph_data/-	1040000	27.4 @ 0.14%	0.0
diphoton_double_isr_background_o merged_lhe/-	,		
diphoton_double_isr_background_l			

$2.12 \quad \ \, \text{bg_dip_200_400}$

- \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/optimization .
- Sample consisting of: background events.
- Generated events: 1040000 events.
- Normalization to the luminosity: 17966163+/- 31035 events.
- Ratio (event weight): 17 warning: please generate more events (weight larger than 1)!

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
MG5_aMC_v2_6_5/-			
axion_pheno/madgraph_data/-	1040000	5.99 @ 0.17%	0.0
diphoton_double_isr_background_emerged lhe/-			
diphoton double isr background			

$2.13 \quad bg_dip_400_600$

- \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/optimization .
- Sample consisting of: background events.
- Generated events: 1040000 events.
- Normalization to the luminosity: 2159901+/- 3916 events.
- Ratio (event weight): 2.1 warning: please generate more events (weight larger than 1)!

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
MG5_aMC_v2_6_5/-			
$axion_pheno/madgraph_data/-$	1040000	0.72 @ 0.18%	0.0
diphoton_double_isr_background_o	1040000	0.72 @ 0.10/0	0.0
merged_lhe/-			
diphoton_double_isr_background_h			

2.14 bg dip 600 800

- \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/optimization .
- Sample consisting of: background events.
- \bullet Generated events: 662009 events.
- Normalization to the luminosity: 500577+/- 2070 events.
- Ratio (event weight): 0.76 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/-			
diphoton double isr background of	662009	0.167 @ 0.41%	0.0
merged_lhe/-			
diphoton_double_isr_background_l			

2.15 bg dip 800 1200

- \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/optimization .
- Sample consisting of: background events.
- Generated events: 1040000 events.
- \bullet Normalization to the luminosity: 220675+/- 380 $\,$ events.

• Ratio (event weight): 0.21 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
axion_pheno/madgraph_data/-	1040000	0.0736 @ 0.17%	0.0
diphoton_double_isr_background_o	1010000	0.0100 © 0.1170	0.0
merged_lhe/-			
diphoton_double_isr_background_l			

2.16 bg dip 1200 1600

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/optimization .

• Sample consisting of: background events.

• Generated events: 337115 events.

• Normalization to the luminosity: 38512+/- 198 events.

 \bullet Ratio (event weight): 0.11 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/- MG5_aMC_v2_6_5/- axion_pheno/madgraph_data/- diphoton_double_isr_background_d merged_lhe/- diphoton_double_isr_background_h	337115	0.0128 @ 0.51%	0.0

2.17 bg_dip_1600_inf

 \bullet Samples stored in the directory: /Users/elijahsheridan/MG5_aMC_v2_6_5/axion_pheno/optimization .

• Sample consisting of: background events.

 \bullet Generated events: $1040000\,$ events.

• Normalization to the luminosity: 14083+/- 21 events.

• Ratio (event weight): 0.014 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
/Users/elijahsheridan/-			
$MG5_aMC_v2_6_5/-$			
$axion_pheno/madgraph_data/-$	1040000	0.00469 @ 0.15%	0.0
diphoton_double_isr_background_d	1040000	0.00409 @ 0.15/0	0.0
$\mathrm{merged_lhe/-}$			
diphoton double isr background h			

3 Histos and cuts

3.1 Cut 1

* Cut: select ((sdETA (jets[1] jets[2]) > 3.6 or sdETA (jets[1] jets[2]) < -3.6) and M (jets[1] jets[2]) > 750.0) and (PT (a[1]) > 300.0 and M (a[1] a[2]) > 500.0)

Dataset	Events kept: K	Rejected events:	Efficiency: K / (K + R)	Cumul. efficiency: K / Initial
signal	57524 +/- 216	249532 +/- 226	0.187340 +/- 0.000704	0.187340 +/- 0.000704
bg_vbf_0_10	3.64 +/- 1.91	911270 +/- 1732	4.00e-06 +/- 2.09e-06	4.00e-06 +/- 2.09e- 06
bg_vbf_100_	87.35 + / - 9.35	727062 +/- 1244	1.20e-04 +/- 1.29e-05	1.20e-04 +/- 1.29e-05
bg_vbf_200_	453.4 +/- 21.3	405541 +/- 818	$oxed{1.12 ext{e-}03 + / ext{-} 5.24 ext{e-}05}$	1.12e-03 +/- 5.24e- 05
bg_vbf_400_	332.8 +/- 18.2	73680 +/- 104	$egin{array}{ccc} 0.004496 & +/- \ 0.000246 & \end{array}$	0.004496 + /- 0.000246
bg_vbf_600_	123.0 +/- 11.1	18782.8 +/- 26.0	$egin{array}{ccc} 0.006504 & +/- \ 0.000585 & \end{array}$	$0.006504 +/- \\ 0.000585$
bg_vbf_800_	46.68 +/- 6.81	8560.5 +/- 15.1	$0.005424 +/- \\ 0.000792$	$0.005424 + /- \\ 0.000792$
bg_vbf_1200	4.11 + /- 2.02	1540.57 + /- 3.23	0.00266 + / - 0.00131	0.00266 + / - 0.00131
bg_vbf_1600	0.428 + / - 0.654	573.959 +/- 0.917	0.000744 +/- 0.001138	0.000744 +/- 0.001138
bg_dip_0_10	0.0 +/- 0.0	203313540 +/- 345993	0.0 +/- 0.0	0.0 +/- 0.0
bg_dip_100_	237.1 +/- 15.4	82151972 +/- 114530	2.89e-06 +/- 1.87e-07	2.89e-06 +/- 1.87e- 07
bg_dip_200_	1433.7 +/- 37.9	17964729 +/- 31031	7.98e-05 +/- 2.11e-06	7.98e-05 +/- 2.11e-06
bg_dip_400_	920.1 + / - 30.4	2158980 +/- 3913	4.26e-04 +/- 1.40e-05	$\begin{array}{ccccc} 4.26 \text{e-} 04 & +/\text{-} & 1.40 \text{e-} \\ 05 & & & \end{array}$
bg_dip_600_	269.9 + / - 16.5	500307 +/- 2068	5.39e-04 +/- 3.28e-05	5.39e-04 +/- 3.28e- 05
bg_dip_800_	110.3 +/- 10.5	220565 +/- 379	5.00e-04 +/- 4.76e-05	5.00e-04 +/- 4.76e- 05
bg_dip_1200_	7.88 +/- 2.81	38505 +/- 197	2.05e-04 +/- 7.29e-05	2.05e-04 +/- 7.29 e-
bg_dip_1600	0.731 + / - 0.855	14083.0 +/- 20.9	5.19e-05 +/- 6.07e-05	5.19e-05 +/- 6.07 e-

3.2 Histogram 1

* Plot: PT (jets[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	57524	1.0	370.671	277.6	0.0	0.08114
bg_vbf_0_100	3.65	1.0	42.7818	7.815	0.0	0.0
bg_vbf_100_20	87.3	1.0	109.408	25.35	0.0	0.0
bg_vbf_200_40	453	1.0	214.843	58.14	0.0	0.0
bg_vbf_400_60	332	1.0	360.116	74.81	0.0	0.0
bg_vbf_600_80	122	1.0	512.148	95.26	0.0	0.0
bg_vbf_800_12	46.7	1.0	713.131	144.6	0.0	0.0
bg_vbf_1200_1	4.12	1.0	1037.47	214.8	0.0	0.0
bg_vbf_1600_i	0.436	1.0	1488.05	353.5	0.0	7.318
bg_dip_0_100	0.0 + / - 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	236	1.0	98.8303	32.52	0.0	0.0
bg_dip_200_40	1433	1.0	243.87	57.21	0.0	0.0
bg_dip_400_60	920	1.0	405.044	76.84	0.0	0.0
bg_dip_600_80	269	1.0	583.265	92.47	0.0	0.0
bg_dip_800_12	110	1.0	800.398	151.0	0.0	0.0
bg_dip_1200_1	7.88	1.0	1173.89	227.2	0.0	0.0
bg_dip_1600_i	0.731	1.0	1675.33	329.4	0.0	11.11

Figure 1.

3.3 Histogram 2

* Plot: ETA (jets[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	57524	1.0	-0.00426672	2.037	0.0	0.0
bg_vbf_0_100	3.65	1.0	0.873486	2.934	0.0	0.0
bg_vbf_100_20	87.3	1.0	0.133336	2.773	0.0	0.0
bg_vbf_200_40	453	1.0	-0.006481	2.235	0.0	0.0
bg_vbf_400_60	332	1.0	-0.0267496	1.928	0.0	0.0
bg_vbf_600_80	122	1.0	0.00605067	1.754	0.0	0.0
bg_vbf_800_12	46.7	1.0	-0.0592612	1.598	0.0	0.0
bg_vbf_1200_1	4.12	1.0	-0.0746631	1.45	0.0	0.0
bg_vbf_1600_i	0.436	1.0	0.0871655	1.227	0.0	0.0
bg_dip_0_100	0.0 + / - 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	236	1.0	1.65038	2.73	0.0	0.0
bg_dip_200_40	1433	1.0	0.146548	1.676	0.0	0.0
bg_dip_400_60	920	1.0	0.1076	1.425	0.0	0.0
bg_dip_600_80	269	1.0	-0.0364249	1.3	0.0	0.0
bg_dip_800_12	110	1.0	-0.0506134	1.215	0.0	0.0
bg_dip_1200_1	7.88	1.0	0.0264047	1.124	0.0	0.0
bg_dip_1600_i	0.731	1.0	-0.0490747	0.8389	0.0	0.0

Figure 2.

3.4 Histogram 3

* Plot: PHI (jets[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	57524	1.0	0.00274665	1.814	0.0	0.0
bg_vbf_0_100	3.65	1.0	-0.168141	1.997	0.0	0.0
bg_vbf_100_20	87.3	1.0	-0.0767497	1.778	0.0	0.0
bg_vbf_200_40	453	1.0	-0.0816388	1.818	0.0	0.0
bg_vbf_400_60	332	1.0	0.0212645	1.801	0.0	0.0
bg_vbf_600_80	122	1.0	-0.00569695	1.808	0.0	0.0
bg_vbf_800_12	46.7	1.0	0.0641089	1.814	0.0	0.0
bg_vbf_1200_1	4.12	1.0	0.0646329	1.787	0.0	0.0
bg_vbf_1600_i	0.436	1.0	0.217904	1.755	0.0	0.0
bg_dip_0_100	0.0 + / - 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	236	1.0	0.466209	0.3607	0.0	0.0
bg_dip_200_40	1433	1.0	-0.0522949	1.826	0.0	0.0
bg_dip_400_60	920	1.0	-0.125515	1.849	0.0	0.0
bg_dip_600_80	269	1.0	-0.113698	1.83	0.0	0.0
bg_dip_800_12	110	1.0	0.0576669	1.795	0.0	0.0
bg_dip_1200_1	7.88	1.0	-0.152016	1.941	0.0	0.0
bg_dip_1600_i	0.731	1.0	-0.0323032	1.815	0.0	0.0

Figure 3.

3.5 Histogram 4

* Plot: PT (jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	57524	1.0	102.403	76.9	0.0	0.0
bg_vbf_0_100	3.65	1.0	31.916	8.29	0.0	0.0
bg_vbf_100_20	87.3	1.0	53.936	17.53	0.0	0.0
bg_vbf_200_40	453	1.0	90.5854	37.67	0.0	0.0
bg_vbf_400_60	332	1.0	125.017	60.47	0.0	0.0
bg_vbf_600_80	122	1.0	168.787	85.77	0.0	0.0
bg_vbf_800_12	46.7	1.0	215.936	127.0	0.0	0.0
bg_vbf_1200_1	4.12	1.0	286.77	196.2	0.0	0.0
bg_vbf_1600_i	0.436	1.0	301.151	261.1	0.0	0.0
bg_dip_0_100	0.0 + / - 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	236	1.0	49.3379	16.83	0.0	0.0
bg_dip_200_40	1433	1.0	68.617	36.13	0.0	0.0
bg_dip_400_60	920	1.0	78.6224	56.28	0.0	0.0
bg_dip_600_80	269	1.0	94.6258	83.07	0.0	0.0
bg_dip_800_12	110	1.0	124.553	124.0	0.0	0.0
bg_dip_1200_1	7.88	1.0	176.706	198.4	0.0	0.0
bg_dip_1600_i	0.731	1.0	138.5	204.7	0.0	0.0

Figure 4.

3.6 Histogram 5

* Plot: ETA (jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	57524	1.0	0.00824761	3.058	0.0	0.0
bg_vbf_0_100	3.65	1.0	1.04772	3.507	0.0	0.0
bg_vbf_100_20	87.3	1.0	-0.324417	3.174	0.0	0.0
bg_vbf_200_40	453	1.0	0.0275519	2.946	0.0	0.0
bg_vbf_400_60	332	1.0	0.0664249	2.847	0.0	0.0
bg_vbf_600_80	122	1.0	-0.00657983	2.765	0.0	0.0
bg_vbf_800_12	46.7	1.0	0.123933	2.754	0.0	0.0
bg_vbf_1200_1	4.12	1.0	0.151477	2.787	0.0	0.0
bg_vbf_1600_i	0.436	1.0	-0.203626	2.95	0.0	0.0
bg_dip_0_100	0.0 + / - 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	236	1.0	0.140052	2.918	0.0	0.0
bg_dip_200_40	1433	1.0	0.291332	3.134	0.0	0.0
bg_dip_400_60	920	1.0	-0.0693841	3.116	0.0	0.0
bg_dip_600_80	269	1.0	0.0792687	3.236	0.0	0.0
bg_dip_800_12	110	1.0	0.0158785	3.221	0.0	0.0
bg_dip_1200_1	7.88	1.0	-0.142349	3.23	0.0	0.0
bg_dip_1600_i	0.731	1.0	-0.328753	3.419	0.0	0.0

Figure 5.

3.7 Histogram 6

* Plot: PHI (jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	57524	1.0	-0.00468976	1.813	0.0	0.0
bg_vbf_0_100	3.65	1.0	0.0859607	1.498	0.0	0.0
bg_vbf_100_20	87.3	1.0	0.17327	1.879	0.0	0.0
bg_vbf_200_40	453	1.0	-0.0817648	1.828	0.0	0.0
bg_vbf_400_60	332	1.0	-0.0599984	1.828	0.0	0.0
bg_vbf_600_80	122	1.0	0.0117494	1.812	0.0	0.0
bg_vbf_800_12	46.7	1.0	-0.0684445	1.824	0.0	0.0
bg_vbf_1200_1	4.12	1.0	-0.0586342	1.806	0.0	0.0
bg_vbf_1600_i	0.436	1.0	-0.198205	1.858	0.0	0.0
bg_dip_0_100	0.0 + / - 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	236	1.0	1.00733	1.634	0.0	0.0
bg_dip_200_40	1433	1.0	-0.0248154	1.887	0.0	0.0
bg_dip_400_60	920	1.0	-0.0373808	1.79	0.0	0.0
bg_dip_600_80	269	1.0	0.0797356	1.824	0.0	0.0
bg_dip_800_12	110	1.0	0.124598	1.781	0.0	0.0
bg_dip_1200_1	7.88	1.0	-0.323666	1.753	0.0	0.0
bg_dip_1600_i	0.731	1.0	-0.421228	1.806	0.0	0.0

Figure 6.

3.8 Histogram 7

* Plot: DELTAR (jets[1] , jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	57524	1.0	5.1046	1.028	0.0	0.0
bg_vbf_0_100	3.65	1.0	6.62263	0.3293	0.0	0.0
bg_vbf_100_20	87.3	1.0	5.99091	0.8146	0.0	0.0
bg_vbf_200_40	453	1.0	5.24335	0.8413	0.0	0.0
bg_vbf_400_60	332	1.0	4.96829	0.7025	0.0	0.0
bg_vbf_600_80	122	1.0	4.83273	0.5935	0.0	0.0
bg_vbf_800_12	46.7	1.0	4.73982	0.5158	0.0	0.0
bg_vbf_1200_1	4.12	1.0	4.67427	0.4511	0.0	0.0
bg_vbf_1600_i	0.436	1.0	4.62399	0.461	0.0	0.0
bg_dip_0_100	0.0 + / - 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	236	1.0	5.99929	0.4811	0.0	0.0
bg_dip_200_40	1433	1.0	4.87458	0.6286	0.0	0.0
bg_dip_400_60	920	1.0	4.6746	0.5749	0.0	0.0
bg_dip_600_80	269	1.0	4.64892	0.5595	0.0	0.0
bg_dip_800_12	110	1.0	4.61435	0.495	0.0	0.0
bg_dip_1200_1	7.88	1.0	4.51401	0.442	0.0	0.0
bg_dip_1600_i	0.731	1.0	4.44387	0.4353	0.0	0.0

Figure 7.

3.9 Histogram 8

* Plot: M (jets[1] jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	57524	1.0	1797.17	804.0	0.0	0.0
bg_vbf_0_100	3.65	1.0	886.102	84.95	0.0	0.0
bg_vbf_100_20	87.3	1.0	1373.99	562.4	0.0	0.0
bg_vbf_200_40	453	1.0	1686.56	787.6	0.0	0.0
bg_vbf_400_60	332	1.0	2066.12	824.9	0.0	0.0
bg_vbf_600_80	122	1.0	2497.1	840.0	0.0	0.0
bg_vbf_800_12	46.7	1.0	2990.13	928.2	0.0	0.0
bg_vbf_1200_1	4.12	1.0	3719.45	1119	0.0	0.03938
bg_vbf_1600_i	0.436	1.0	4126.54	1410	0.0	0.4886
bg_dip_0_100	0.0 + / - 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	236	1.0	1172.68	166.8	0.0	0.0
bg_dip_200_40	1433	1.0	1168.01	358.4	0.0	0.0
bg_dip_400_60	920	1.0	1373.0	458.4	0.0	0.0
bg_dip_600_80	269	1.0	1704.65	623.1	0.0	0.0
bg_dip_800_12	110	1.0	2097.6	885.2	0.0	0.0
bg_dip_1200_1	7.88	1.0	2709.62	1239	0.0	0.0
bg_dip_1600_i	0.731	1.0	2721.5	1274	0.0	0.0

Figure 8.

3.10 Histogram 9

* Plot: MET

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	57524	1.0	9.23621e-09	1.193e-08	0.0	0.0
bg_vbf_0_100	3.65	1.0	2.92664e-09	2.061e-09	0.0	0.0
bg_vbf_100_20	87.3	1.0	4.59216e-09	2.634e-09	0.0	0.0
bg_vbf_200_40	453	1.0	5.28184e-09	3.059e-09	0.0	0.0
bg_vbf_400_60	332	1.0	5.56314e-09	3.759e-09	0.0	0.0
bg_vbf_600_80	122	1.0	5.7028e-09	3.425e-09	0.0	0.0
bg_vbf_800_12	46.7	1.0	6.73764e-09	5.92e-09	0.0	0.0
bg_vbf_1200_1	4.12	1.0	1.72505e-08	1.831e-08	0.0	0.0
bg_vbf_1600_i	0.436	1.0	3.09154e-08	2.364e-08	0.0	0.0
bg_dip_0_100	0.0 + / - 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	236	1.0	2.6048e-09	5.584e-10	0.0	0.0
bg_dip_200_40	1433	1.0	5.15652e-09	2.886e-09	0.0	0.0
bg_dip_400_60	920	1.0	5.26293e-09	2.848e-09	0.0	0.0
bg_dip_600_80	269	1.0	5.42862e-09	2.905e-09	0.0	0.0
bg_dip_800_12	110	1.0	7.13192e-09	8.331e-09	0.0	0.0
bg_dip_1200_1	7.88	1.0	2.55869e-08	2.401e-08	0.0	0.0
bg_dip_1600_i	0.731	1.0	3.47198e-08	2.306e-08	0.0	0.0

Figure 9.

3.11 Histogram 10

* Plot: sdETA (jets[1] jets[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	57524	1.0	-0.0125143	4.892	0.0	0.0
bg_vbf_0_100	3.65	1.0	-0.174236	6.403	0.0	0.0
bg_vbf_100_20	87.3	1.0	0.457753	5.752	0.0	0.0
bg_vbf_200_40	453	1.0	-0.0340329	5.008	0.0	0.0
bg_vbf_400_60	332	1.0	-0.0931745	4.618	0.0	0.0
bg_vbf_600_80	122	1.0	0.0126305	4.376	0.0	0.0
bg_vbf_800_12	46.7	1.0	-0.183195	4.209	0.0	0.0
bg_vbf_1200_1	4.12	1.0	-0.226141	4.078	0.0	0.0
bg_vbf_1600_i	0.436	1.0	0.290791	3.996	0.0	0.0
bg_dip_0_100	0.0 + / - 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	236	1.0	1.51032	5.585	0.0	0.0
bg_dip_200_40	1433	1.0	-0.144784	4.518	0.0	0.0
bg_dip_400_60	920	1.0	0.176984	4.26	0.0	0.0
bg_dip_600_80	269	1.0	-0.115694	4.219	0.0	0.0
bg_dip_800_12	110	1.0	-0.0664918	4.119	0.0	0.0
bg_dip_1200_1	7.88	1.0	0.168753	4.051	0.0	0.0
bg_dip_1600_i	0.731	1.0	0.279678	4.007	0.0	0.0

Figure 10.

3.12 Histogram 11

* Plot: M (a[1] a[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	57524	1.0	1364.91	757.5	0.0	0.9384
bg_vbf_0_100	3.65	1.0	999.408	375.3	0.0	0.0
bg_vbf_100_20	87.3	1.0	847.835	279.9	0.0	0.0
bg_vbf_200_40	453	1.0	806.306	333.7	0.0	0.0
bg_vbf_400_60	332	1.0	757.771	293.6	0.0	0.0
bg_vbf_600_80	122	1.0	774.989	292.6	0.0	0.0
bg_vbf_800_12	46.7	1.0	795.097	304.5	0.0	0.0
bg_vbf_1200_1	4.12	1.0	827.522	348.5	0.0	0.0
bg_vbf_1600_i	0.436	1.0	902.86	410.2	0.0	0.0
bg_dip_0_100	0.0 + / - 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	236	1.0	674.287	36.08	0.0	0.0
bg_dip_200_40	1433	1.0	785.534	368.8	0.0	0.0
bg_dip_400_60	920	1.0	771.771	325.2	0.0	0.0
bg_dip_600_80	269	1.0	805.657	366.8	0.0	0.0
bg_dip_800_12	110	1.0	805.114	335.3	0.0	0.0
bg_dip_1200_1	7.88	1.0	924.629	435.1	0.0	0.0
bg_dip_1600_i	0.731	1.0	930.522	452.3	0.0	0.0

Figure 11.

3.13 Histogram 12

* Plot: PT (a[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	57524	1.0	718.918	350.1	0.0	0.7195
bg_vbf_0_100	3.65	1.0	379.899	64.59	0.0	0.0
bg_vbf_100_20	87.3	1.0	373.902	77.67	0.0	0.0
bg_vbf_200_40	453	1.0	391.46	92.25	0.0	0.0
bg_vbf_400_60	332	1.0	436.107	113.9	0.0	0.0
bg_vbf_600_80	122	1.0	516.8	150.3	0.0	0.0
bg_vbf_800_12	46.7	1.0	657.311	223.5	0.0	0.0
bg_vbf_1200_1	4.12	1.0	890.939	358.6	0.0	0.07854
bg_vbf_1600_i	0.436	1.0	1323.7	534.5	0.0	6.344
bg_dip_0_100	0.0 + / - 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	236	1.0	327.174	7.434	0.0	0.0
bg_dip_200_40	1433	1.0	393.477	77.89	0.0	0.0
bg_dip_400_60	920	1.0	475.422	123.4	0.0	0.0
bg_dip_600_80	269	1.0	603.382	164.2	0.0	0.0
bg_dip_800_12	110	1.0	778.016	241.8	0.0	0.0
bg_dip_1200_1	7.88	1.0	1095.08	412.4	0.0	0.0
bg_dip_1600_i	0.731	1.0	1602.75	495.3	0.0	18.53

Figure 12.

3.14 Histogram 13

* Plot: PT (a[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	57524	1.0	486.902	328.9	0.0	0.3176
bg_vbf_0_100	3.65	1.0	359.837	74.21	0.0	0.0
bg_vbf_100_20	87.3	1.0	285.217	94.57	0.0	0.0
bg_vbf_200_40	453	1.0	209.251	118.9	0.0	0.0
bg_vbf_400_60	332	1.0	159.332	118.8	0.0	0.0
bg_vbf_600_80	122	1.0	157.378	113.0	0.0	0.0
bg_vbf_800_12	46.7	1.0	159.508	121.4	0.0	0.0
bg_vbf_1200_1	4.12	1.0	167.561	142.6	0.0	0.0
bg_vbf_1600_i	0.436	1.0	183.782	190.2	0.0	0.0
bg_dip_0_100	0.0 + / - 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	236	1.0	253.391	44.39	0.0	0.0
bg_dip_200_40	1433	1.0	186.1	97.8	0.0	0.0
bg_dip_400_60	920	1.0	144.408	100.8	0.0	0.0
bg_dip_600_80	269	1.0	140.303	115.8	0.0	0.0
bg_dip_800_12	110	1.0	130.659	108.9	0.0	0.0
bg_dip_1200_1	7.88	1.0	151.48	146.8	0.0	0.0
bg_dip_1600_i	0.731	1.0	125.146	119.5	0.0	0.0

Figure 13.

3.15 Histogram 14

* Plot: THT

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	57524	1.0	473.074	297.8	0.0	0.0
bg_vbf_0_100	3.65	1.0	74.6978	15.53	0.0	0.0
bg_vbf_100_20	87.3	1.0	163.344	25.73	0.0	0.0
bg_vbf_200_40	453	1.0	305.428	55.11	0.0	0.0
bg_vbf_400_60	332	1.0	485.133	55.92	0.0	0.0
bg_vbf_600_80	122	1.0	680.936	55.85	0.0	0.0
bg_vbf_800_12	46.7	1.0	929.067	102.2	0.0	0.0
bg_vbf_1200_1	4.12	1.0	1324.24	99.5	0.0	0.0
bg_vbf_1600_i	0.436	1.0	1789.2	191.2	0.0	0.0
bg_dip_0_100	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	236	1.0	148.168	37.58	0.0	0.0
bg_dip_200_40	1433	1.0	312.487	53.59	0.0	0.0
bg_dip_400_60	920	1.0	483.667	56.67	0.0	0.0
bg_dip_600_80	269	1.0	677.891	53.6	0.0	0.0
bg_dip_800_12	110	1.0	924.952	102.7	0.0	0.0
bg_dip_1200_1	7.88	1.0	1350.6	122.7	0.0	0.0
bg_dip_1600_i	0.731	1.0	1813.83	223.3	0.0	0.0

Figure 14.

3.16 Histogram 15

* Plot: MET

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	57524	1.0	9.23621e-09	1.193e-08	0.0	0.0
bg_vbf_0_100	3.65	1.0	2.92664e-09	2.061e-09	0.0	0.0
bg_vbf_100_20	87.3	1.0	4.59216e-09	2.634e-09	0.0	0.0
bg_vbf_200_40	453	1.0	5.28184e-09	3.059e-09	0.0	0.0
bg_vbf_400_60	332	1.0	5.56314e-09	3.759e-09	0.0	0.0
bg_vbf_600_80	122	1.0	5.7028e-09	3.425e-09	0.0	0.0
bg_vbf_800_12	46.7	1.0	6.73764e-09	5.92e-09	0.0	0.0
bg_vbf_1200_1	4.12	1.0	1.72505e-08	1.831e-08	0.0	0.0
bg_vbf_1600_i	0.436	1.0	3.09154e-08	2.364e-08	0.0	0.0
bg_dip_0_100	0.0 + / - 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	236	1.0	2.6048e-09	5.584e-10	0.0	0.0
bg_dip_200_40	1433	1.0	5.15652e-09	2.886e-09	0.0	0.0
bg_dip_400_60	920	1.0	5.26293e-09	2.848e-09	0.0	0.0
bg_dip_600_80	269	1.0	5.42862e-09	2.905e-09	0.0	0.0
bg_dip_800_12	110	1.0	7.13192e-09	8.331e-09	0.0	0.0
bg_dip_1200_1	7.88	1.0	2.55869e-08	2.401e-08	0.0	0.0
bg_dip_1600_i	0.731	1.0	3.47198e-08	2.306e-08	0.0	0.0

Figure 15.

3.17 Histogram 16

* Plot: TET

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
signal	57524	1.0	1678.89	734.6	0.0	0.0
bg_vbf_0_100	3.65	1.0	814.434	141.3	0.0	0.0
bg_vbf_100_20	87.3	1.0	822.463	164.7	0.0	0.0
bg_vbf_200_40	453	1.0	906.139	195.9	0.0	0.0
bg_vbf_400_60	332	1.0	1080.57	211.3	0.0	0.0
bg_vbf_600_80	122	1.0	1355.11	216.7	0.0	0.0
bg_vbf_800_12	46.7	1.0	1745.89	291.5	0.0	0.0
bg_vbf_1200_1	4.12	1.0	2382.74	401.9	0.0	0.0
bg_vbf_1600_i	0.436	1.0	3296.68	649.6	0.0	0.0
bg_dip_0_100	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0
bg_dip_100_20	236	1.0	728.733	80.65	0.0	0.0
bg_dip_200_40	1433	1.0	892.065	159.2	0.0	0.0
bg_dip_400_60	920	1.0	1103.5	208.7	0.0	0.0
bg_dip_600_80	269	1.0	1421.58	241.6	0.0	0.0
bg_dip_800_12	110	1.0	1833.63	311.4	0.0	0.0
bg_dip_1200_1	7.88	1.0	2597.16	496.1	0.0	0.0
bg_dip_1600_i	0.731	1.0	3541.73	662.3	0.0	0.0

Figure 16.

4 Summary

4.1 Cut-flow charts

- \bullet How to compare signal (S) and background (B): S/sqrt(S+B+(xB)**2) .
- \bullet Object definition selections are indicated in cyan.
- $\bullet\,$ Reject and select are indicated by 'REJ' and 'SEL' respectively

Cuts	Signal (S)	Background (B)	S vs B
Initial (no cut)	307056.3 + / -84.5	308513727 + / - 365809	17.4729 + / - 0.0114
SEL: (($sdETA$ ($jets[1]$ $jets[2]$) > 3.6 or $sdETA$	57524 +/- 216	4031.1 +/- 63.6	231.855 +/- 0.481