SUMMARY

USC ID: 4858298719

Datapoints

M+N	Time in MS (Basic)	Time in MS (Efficient)	Memory in	Memory in
			KB (Basic)	КВ
				(Efficient)
16	0.051975250244140625	0.1049041748046875	11816	12496
64	0.47206878662109375	0.8776187896728516	12496	12636
128	1.7960071563720703	3.164052963256836	12360	11904
256	6.686925888061523	11.3067626953125	12864	12076
384	15.285968780517578	25.389909744262695	13648	12580
512	24.68395233154297	40.7559871673584	13732	12520
768	55.94134330749512	91.64190292358398	14312	12160
1024	98.18387031555176	166.34106636047363	15624	11992
1280	175.41813850402832	263.87596130371094	16492	12424
1536	266.6192054748535	394.8700428009033	18868	12588
2048	427.5631904602051	698.7409591674805	22152	12280
2560	683.323860168457	1067.8069591522217	27392	12476
3072	983.3829402923584	1486.3018989562988	31880	12692
3584	1346.4970588684082	1992.3992156982422	41896	12868
3968	1712.5568389892578	2527.4500846862793	44672	12736

Insights

Graph1 – Memory vs Problem Size (M+N)

Nature of the Graph (Logarithmic/Linear/Polynomial/Exponential)

Basic: Polynomial Efficient: Linear

Explanation: The basic algorithm uses a dynamic programming solution to calculate the cost of alignment at ever combination of inputs s and t. Therefore the dp array needed to fill in all of those costs is M*N in size or polynomial with respect to the inputs M and N. On the other hand, the efficient algorithm uses a trick to only allocate 2 arrays of size N and then "fill out" the same dp costs by only using the two arrays column by column instead of the entire M*N array. Therefore the efficient is linear in respect to the input N in terms of memory.

Graph2 – Time vs Problem Size (M+N)

Nature of the Graph (Logarithmic/Linear/Polynomial/Exponential)

Basic: Polynomial Efficient: Polynomial

Explanation: Both algorithms are polynomial as they are related to the input sizes M and N with both having a O(M*N) time complexity. However the difference in the plotted lines occurs because if the basic algorithm had a C*M*N time complexity, the memory efficient algorithm would then have a 2*C*M*N time complexity. The divide step in efficient leads to double the needed time to find the solution as each divide step level requires solving a subproblem of $\frac{1}{2}$ size of the previous level. Example: C*M*N, 0.5*C*M*N, 0.25*C*M*N, ... which when summed = 2*C*M*N.

Contribution

One man team.