Análise Numérica (M2018)— 2016/2017 — UP3 — trabalho

Prazo limite de entrega do relatório: aula teórica de 19 de abril de 2017

- 1. Dado n e um conjunto de n+1 pontos $(x_i, f_i)_{i=0}^n$ de abcissas distintas
 - (a) escrevam um programa que, usando o método de Lagrange ou o método de Newton em diferenças divididas, permita construir o polinómio interpolador do conjunto de pontos.
 - (b) escrevam um programa que permita construir o spline cúbico natural que interpola o conjunto de pontos.
- 2. Usem os programas escritos para resolver os problemas seguintes:
 - (a) Na seguinte tabela apresenta-se o número de animais de uma determinada espécie, p(t), medido em vários tempos t:

$$t \text{ (em anos)} \quad 0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30$$

 $p(t) \text{ (em milhões)} \quad 100 \quad 89.5560 \quad 78.4905 \quad 67.2706 \quad 56.3897 \quad 46.2842 \quad 37.2687$

- i. calculem $pol_n(9)$, um valor aproximado do número de animais dessa espécie ao fim de 9 anos, por interpolação polinomial sobre aquela tabela;
- ii. calculem um majorante do erro cometido sabendo que a população da espécie pode ser modelada por $p(t) = \frac{300}{2 + e^{0.06t}}$.
- (b) Considerem a função $f(x) = \text{sen}(2\pi x)$, para $-1 \le x \le 1$
 - i. construam um conjunto de n+1=21 pontos, $(x_i, f_i=f(x_i))_{i=0}^n$, de abcissas $x_i, i=0, \ldots, n$ igualmente espaçadas no intervalo [-1, 1];
 - ii. construam o polinómio interpolador e o spline cúbico natural daquele conjunto de pontos e comparem os gráficos destas funções com o de f no intervalo dado.
 - iii. Considerando agora dados perturbados: $f(x_i) = \text{sen}(2\pi x_i) + (-1)^{i+1} \times 10^{-4}, i=0,\ldots,n,$ repitam as alíneas (i) e (ii).
 - iv. Observem e comentem os resultados obtidos.
- (c) Considerem a função $f(x) = \frac{1}{(x-0.3)^2 + 0.01} + \frac{1}{(x-0.9)^2 + 0.04} 6$, para $0 \le x \le 1$
 - i. construam um conjunto de n+1=11 pontos, $(x_i, f_i=f(x_i))_{i=0}^n$, de abcissas $x_i, i=0, \ldots, n$ igualmente espaçadas no intervalo [0,1];
 - ii. construam o polinómio interpolador e o spline cúbico natural daquele conjunto de pontos e comparem os gráficos destas funções com o de f no intervalo dado.
 - iii. Repitam as alíneas (i) e (ii) para valores maiores de n.
 - iv. Observem e comentem os resultados obtidos.