funciones de n variables con valores reales, que en el punto $(x_1, \ldots, x_n) = \mathbf{x}$, se definen como

$$\frac{\partial f}{\partial x_j}(x_1, \dots, x_n) = \lim_{h \to 0} \frac{f(x_1, x_2, \dots, x_j + h, \dots, x_n) - f(x_1, \dots, x_n)}{h}$$
$$= \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{e}_j) - f(\mathbf{x})}{h}$$

si los límites existen, donde $1 \leq j \leq n$ y \mathbf{e}_j es el vector j-ésimo de la base canónica definido por $\mathbf{e}_j = (0, \dots, 1, \dots, 0)$, con 1 en la posición j-ésima (véase la Sección 1.5). El dominio de la función $\partial f/\partial x_j$ es el conjunto de $\mathbf{x} \in \mathbb{R}^n$ para los que el límite existe.

En otras palabras, $\partial f/\partial x_j$ es la derivada de f respecto de la variable x_j , considerando fijas las restantes variables. Si $f \colon \mathbb{R}^3 \to \mathbb{R}$, a menudo utilizaremos la notación $\partial f/\partial x$, $\partial f/\partial y$, $\partial f/\partial z$ en vez de $\partial f/\partial x_1$, $\partial f/\partial x_2$, $\partial f/\partial x_3$. Si $f \colon U \subset \mathbb{R}^n \to \mathbb{R}^m$, entonces podemos escribir

$$f(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n)),$$

de modo que podemos hablar de las derivadas parciales de cada componente; por ejemplo, $\partial f_m/\partial x_n$ es la derivada parcial de la componente m-ésima respecto de x_n , la variable n-ésima.

Ejemplo 1

Si
$$f(x,y) = x^2y + y^3$$
, hallar $\partial f/\partial x$ y $\partial f/\partial y$.

Solución

Para hallar $\partial f/\partial x$ hacemos y constante (considérese que es un número, por ejemplo, 1) y diferenciamos solo con respecto de x; esto da

$$\frac{\partial f}{\partial x} = \frac{\partial (x^2 y + y^3)}{\partial x} = 2xy.$$

De forma similar, para hallar $\partial f/\partial y$ hacemos x constante y diferenciamos solo con respecto de y:

$$\frac{\partial f}{\partial y} = \frac{\partial (x^2y + y^3)}{\partial y} = x^2 + 3y^2.$$

Para indicar que una derivada parcial debe evaluarse en un punto concreto, por ejemplo, en (x_0, y_0) , escribimos

$$\frac{\partial f}{\partial x}(x_0, y_0)$$
 o $\frac{\partial f}{\partial x}\Big|_{x=x_0, y=y_0}$ o $\frac{\partial f}{\partial x}\Big|_{(x_0, y_0)}$.

Cuando escribimos z = f(x, y) para la variable dependiente, en ocasiones escribiremos $\partial z/\partial x$ en vez de $\partial f/\partial x$. Estrictamente hablando, dado que z también representa una variable, esto es un abuso de notación, pero es una práctica común utilizar estas dos notaciones de forma indistinta.