Three Sum Quadratic:

```
C:\Program Files\Java\jdk-17\bin\java.exe" ...

for N=800, Time: 9 milliseconds for ThreeSumQuadratic

for N=1600, Time: 8 milliseconds for ThreeSumQuadratic

for N=3200, Time: 16 milliseconds for ThreeSumQuadratic

for N=6400, Time: 46 milliseconds for ThreeSumQuadratic

for N=12800, Time: 208 milliseconds for ThreeSumQuadratic

Process finished with exit code 0
```

ThreeSumQuadraticWithCalipers:

ThreeSumQuadrithmic:

ThreeSumCubic:

```
Run ThreeSumCubic ×

C: ThreeSumCubic ×

"C:\Program Files\Java\jdk-17\bin\java.exe" ...
for N=100, Time: 19 milliseconds for ThreeSumCubic
for N=200, Time: 40 milliseconds for ThreeSumCubic
for N=400, Time: 171 milliseconds for ThreeSumCubic
for N=800, Time: 1002 milliseconds for ThreeSumCubic
for N=1600, Time: 6029 milliseconds for ThreeSumCubic

Process finished with exit code 0
```

a) UNIT TEST CASES PASSED:

```
□ Project ∨
                                                                                                                                            int[] ints = new int[]{-2, 0, 2};
ThreeSumQuadratic target = new ThreeSumQuadratic(ints);
 80
                                 > 🖹 randomwalk
                                 > 🖻 reduction
         G G $ □ | V Ø | F, K Ø, @ Ð :
                                                                         "C:\Program Files\Java\jdk-17\bin\java.exe" ...
ints: [-40, -20, -10, 0, 5, 10, 30, 40]

✓ testGetTriples0

✓ testGetTriples1

                                                                         Triples: [Triple{x=-40, y=0, z=40}, Triple{x=-40, y=10, z=30}, Triple{x=-20, y=-10, z=30}, Triple{x=-10, y=0, z=10}]

[Triple{x=-51, y=2, z=40}, Triple{x=-51, y=9, z=42}, Triple{x=-44, y=2, z=42}, Triple{x=-11, y=2, z=9}]

[Triple{x=-51, y=2, z=40}, Triple{x=-51, y=9, z=42}, Triple{x=-44, y=2, z=42}, Triple{x=-11, y=2, z=9}]

[-72, -50, -43, -29, -14, 5, 12, 24, 39, 54]

✓ testGetTriples2

✓ testGetTriplesC0

                                                                          ints: [-40, -20, -10, 0, 5, 10, 30, 40]
triples: [Triple{x=-40, y=0, z=40}, Triple{x=-40, y=10, z=30}, Triple{x=-20, y=-10, z=30}, Triple{x=-10, y=0, z=10}]
[Triple{x=-51, y=2, z=49}, Triple{x=-51, y=9, z=42}, Triple{x=-44, y=2, z=42}, Triple{x=-11, y=2, z=9}]
[Triple{x=-51, y=2, z=49}, Triple{x=-51, y=9, z=42}, Triple{x=-44, y=2, z=42}, Triple{x=-11, y=2, z=9}]
 (
                                                                           Process finished with exit code 0
```

b) SPREAD SHEET

	А	В	С	D
1 N		QUADRATIC(milliseconds)	QUADRITHMIC(milli)	
2	400	9	55	
3	800	8	146	
4	1600	16	395	
5	3200	46	1658	
6	6400	208	7226	
7				
8				
9				
10				
11 N		CUBIC(milliseconds)		
12	100	19		
13	200	40		
14	400	171		
15	800	1002		
16	1600	6029		
17				
18				

c) Why Quadratic Methods Work?

The quadratic method(s) work for solving the 3-SUM problem because the algorithm examines every possible pair of elements in the input array, resulting in a time complexity of $O(N^2)$. This approach ensures that every combination of three elements is considered, allowing for the identification of triplets whose sum equals zero.