Química Orgânica

Fábio de Lima

9 de março de 2023

1/69

Outline

- Química Orgânica
- 2 Tipos de carbonos
- Cadeias Carbônicas
- Tipos de Cadeia
- 6 Hidrocarbonetos
- 6 Alcanos
- Alcenos
- 8 Alcinos
- Alcadienos
- Ciclanos
- Ciclenos
- Hidrocarbonetos Ramificados
- Nomeclatura
- Momenclatura Exemplos
- Hidrocarbonetos cadeia mista

2/69

Breve Histórico

Precusores

- 1807 Jöns J. Berzelius Teoria da Força Vital.
- 1807 Jöns J. Berzelius Teoria da Força Vital.
- 1828 primeiro composto orgânico sintetizado em laboratório Uréia

$$\begin{array}{ccc} NH_4CNO & & \Delta & O = C \\ \hline Cianato & & \Delta & O = C \\ de amônio & & Ureia \\ \end{array}$$

- Tudo que tem "vida" possui compostos orgânicos,mas nem todos compostos orgânicos possuem vida.
- 1851 à 1861 Friederich A. Kekulé
 - Formulou três postulados que vigoram até hoje.

Fábio de Lima Química Orgánica

Postulados de Kekulé

Postulado I

• Os átomos de carbono são tetravalentes.

Ligações Covalentes

$$H-C\equiv C-C-H$$

4/69

Ligações Múltiplas

Tipo de Ligação	Exemplo	Estrutura de Lewis
Ligação dupla entre dois átomos de carbono	c=c	c::c
Ligação dupla entre um átomo de oxigênio e carbono	∑c=o	<u>:</u> c:::ö:
Ligação tripla entre dois átomos de carbono	—c≡c—	•c ∷ c•
Ligação tripla entre um carbono e ni- trogênio	—c≡n	·C∷N:

Fábio de Lima Química Orgánica

Postulados de Kekulé

Postulado 2

• As quatro valências do carbono são equivalentes.

Figura 1: Clorofórmio

Postulados de Kekulé

3° Postulado

• O carbono possui a capacidade ÚNICA de formas cadeias.

7/69

Classificação dos carbonos

Carbono	Definição	
Primário	ligado diretamente, no máximo, a 1 outro carbono	
Secundário	ligado diretamente a 2 outros carbonos	
Terciário	ligado diretamente a 3 outros carbonos	
Quartenário	ligado diretamente a 4 outros carbonos	

carbonos C = primários carbonos C = secundários carbonos C = terciários carbonos C = quartenários

o de Lima Químico Orgánico

Cadeias Carbônicas

Heteroátomo

- Estrutura formada por todos os átomos de carbono e os heteroátomos.
- Heteroátomo é um átomo diferente do carbono e do hidrogênio posicionado entre dois carbonos na cadeia.

$$CH_3 - CH_2 - O - CH_2 - CH_3$$

Oxigênio é heteroátomo

$$CH_3 - CH_2 - CH_2 - CH_2 - OH$$

Oxigênio NÃO é heteroátomo

9/69

ábio de Lima Química Orgânica

Classificação das Cadeias Carbônicas I

Cadeia aberta

 Cadeia aberta ou aciclíca: Os átomos de carbono se ligam entre si de modo a terem os extremos livres

de Lima Químico Orgánico

Classificação das Cadeias Carbônicas II

Cadeia Fechada

• Cadeia fechada ou ciclíca: Os átomos de carbono se ligam entre si de modo a formarem um ciclo.

ábio de Lima Química Orgânica

Classificação das Cadeias Carbônicas III

Cadeia Mista

• Os atomos se ligam formando um ciclo e tem as extremidades livres.

12/69

ábio de Lima Química Orgânica

Cadeias Abertas I

Cadeia aberta Normal	Cadeia Aberta Ramificada
Carbonos, primários, secundários	Ao menos um carbono terciário ou quartenário
$-\begin{array}{c c} 1 & 2 & 3 \\ -C & C & C \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Carbono I: primário	
Carbono 2: secundário	Carbono 2: terciário
Carbono 3: primário	Carbonos I, 3 e 4: primários

de Lima Químico Orgânica

Cadeias Abertas II

Cadeia aberta homogênea	Cadeia aberta heterogênea
Apresentam somentes átomos de carbono	Ao menos um átomo heteroátomos
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Este oxigênio não é heteroátomo	

de Lima Químico Orgânica

Cadeias Abertas III

Cadeia aberta saturada Cadeia aberta insaturada Apresentam somentes átomos de carbono Apresenta ao menos dois átomos de carbono apresentam ligações simples ligados pela dupla ou tripla ligação -c-c-c-c-c---c-c-c-o-O átomo de carbono que apresenta ligação A átomo que apresenta ligação dupla ou tripla simple é chamado de carbono saturado. é chamado de carbono insaturado.

Fábio de Lima Química Orgánica

Cadeias Fechadas I

Cadeia fechada aromática	Cadeia aberta alicíclica
Cadeia cíclica formada por 6 atomos de carbono alternados em simples e duplas liga-	Cadeia cíclica que não constitui anel benzênico
ção C C C C C C C C C C C C C C C C C C	
Esses clicos recebem o nome de benzeno	

Fábio de Lima Química Orgânica

Cadeias Fechadas II

Cadeia aromática mononuclear	Cadeia aromática polinuclear
Cadeia aromática com apenas um núcleo	Cadeia aromática com dois ou mais núcleos benzênicos
benzênico C C C C C C C C C C C C C C C C C C	Cadeia aromática Cadeia aromática Cadeia aromática Cadeia aromática
	polinuclear condensada polinuclear isolada
Esses clicos recebem o nome de <i>benzeno</i>	

Fábio de Lima Química Orgânica

Cadeias Fechadas III

Cadeia alicíclica homocíclica	Cadeia alicíclica heterocíclica
Cadeia cíclica alicíclica formada apenas por	Cadeia cíclica alicíclica que apresenta heteroátomo
átomos de carbono	

e Lima Químico Orgánico

Cadeias Fechadas IV

Cadeia alicíclica saturada	Cadeia alicíclica insaturada
Cadeia cíclica alicíclica formada apenas por	Cadeia cíclica alicíclica formada apenas por ligações duplas
ligações simples	ou triplas $C = C$ C $C = C$ C C C C C C C C C
C - C	H ₃ C CH ₃

e Lima Químico Orgânico

Hidrocarbonetos

São compostos orgânicos formados exclusivamente por átomos de carbono e de hidrogênio.

²⁰/69

Hidrocarbonetos

 Podem ser obtidos a partir da destilação fracionada do petróleo. Esquema de uma torre de fracionamento.

Figura 2: Esquema de uma torre de fracionamento.

Química Orgânica

Frações Típicas do Petróleo

Fração	T. de Ebulição (°C)	Composição aproximada	Usos
Gás residual	-	C_1-C_2	gás combustível
Gás liquefeito de	Até 40	C ₃ -C ₄	gás combustível engarrafado, uso doméstico e indrustrial
petróleo - GLP			
Gasolina	40-175	C ₅ -C ₁₀	combustível de automóveis,
Gasonna	40-173	C5 C10	solvente
Oueresens	175-235 C ₁₁ -C ₁₂	C -C	iluminação, combustível de aviões a
Querosene		$C_{11}^{-}C_{12}$	jato
Gasoléo leve	235-305	C ₁₃ -C ₁₇	diesel, fornos
Casaláa pasada	305-400	C -C	combustível, matéria-prima para
Gasoléo pesado		C ₁₈ -C ₂₅	lubrificantes
Lubrificantes	400-510	C ₂₆ -C ₃₈	óleos librificantes
Resíduo	Acima de 510	C ₃₈	asfalto, piche, impermeabilizantes

Fábio de Lima Química Orgânica

Grupos

 Os nomes alcanos, alcenos, alcinos, alcadienos ciclanos, ciclenos e aromáticos designam grupos aos quais os hidrocarbonetos pertencem

23/69

Subdivisões dos hidrocarbonetos I

Tabela 1: Subdivisões importantes dos hidrocarbonetos

Subgrupo	Característica	Exemplos	Fórmula geral
Alcanos ou parafinas	Cadeia aberta Ligações simples	H ₃ C — CH ₂ — CH ₂ — CH ₃ CH ₃	C_nH_{2n+2}
·		$H_3C - C - CH_2 - CH - CH_3$	
		$ \begin{array}{c c} & \downarrow \\ & CH_3 & CH_3 \\ \hline & H_2C = CH - CH_2 - CH_3 \end{array} $	
Alcenos,	Cadeia aberta	$H_2C = CH - CH_2 - CH_3$ CH_3	
alquenos ou	com I ligação		C_nH_{2n}
olefinas	dupla	$H_3C-C=CH-CH_3$	
Alcinos ou	Cadeia aberta I	$HC \equiv C - CH_2 - CH_3$ CH_3	
alguinos	ligação tripla		C_nH_{2n-1}
arquirios	"Bagao a ipia	H_3C $ C$ $ CH_2$ $ C$ \equiv C $ CH_3$	
		I	
		CH_3	

Subdivisões dos hidrocarbonetos II

Alcadienos ou	Cadeia aberta 2	$H_2C = C = CH_2$	C_nH_{2n-2}
dienos	ligações duplas	$H_2C = CH - CH = CH_2$	on·i2n−2
Ciclanos	Cadeia fechada		C _n H2n
Cicianos	Ligações simples		C _n H2II
Cialanaa	Cadeia fechada		СП
Ciclenos	uma ligação dupla		C_nH_{2n-2}
Aromáticos	Contêm anel benzênico	CH ₃	C_nH_{2n-6}

Fábio de Lima Química Orgânica

Regra

- A nomenclatura de compostos orgânicos segueas regras elaboradas pela IUPAC.
- De acordo com as regras da IUPAC, o nome de um composto orgânico é formado pela união de três fragmentos: prefixo + infixo + sufixo.

de Lima Químico Orgânico

• O prefixo, a parte inicial, indica o número de átomos de carbono presentes na molécula.

Tabela 2: Prefixo que indicam o número de carbonos

Prefixo	Número de carbonos	Prefixo	Número de carbonos
met	l	undec	П
et	2	dodec	12
prop	3	tridec	13
but	4	tretadec	14
pent	5	pentadec	15
hex	6	hexadec	16
hept	7	hepdec	17
oct	8	octadec	18
non	9	nonadec	19
dec	10	icosa	20

• O infixo indica o tipo de ligação química entre os átomos de carbono.

Tabela 3: Infixos para a nomenclatura orgânica

Infixo	Tipo de Ligação
an	simples
en	dupla
in	tripla

• O sufixo, a parte final, indica a classe funcional do composto.

Tabela 4: Sufixo para a nomenclatura orgânica

Sufixo	Classe funcional
0	hidrocarbonet o
ol	álco <mark>ol</mark>
al	al deído
ona	cet ona
óico	ácido carboxíl ico

Tabela 5: Infixos para a nomenclatura orgânica

Infixo	Tipo de Ligação
an	simples
en	dupla
in	tripla

u Lima Química Orgánico (769)

Alcenos et en o $H_2C = CH_2$ hidrocarboneto → Ligação dupla entre carbono 2 carbonos $H_2C = CH - CH_3$ prop en o ou Ligação dupla entre carbono $CH_3 - CH = CH_2$ 3 carbonos É a mesma molécula, porém escrita de modo diferentes

Fábio de Lima Química Orgânica

Alcenos

Numeração correta

$$H_3$$
⁴ - $\overset{3}{C}H_2$ - $\overset{2}{C}H$ = $\overset{1}{C}H_2$

Nome correto: but-I-eno

Extremidade mais próxima da insaturação

Numeração incorreta

$$H_3\overset{1}{C} - \overset{2}{C}H_2 - \overset{3}{C}H = \overset{4}{C}H_2$$

Nome incorreto: but-3-eno

Extremidade mais próxima da insaturação

Alcenos

Numeração correta

$$H_3 \overset{4}{C} - \overset{3}{C}H_2 - \overset{2}{C}H = \overset{1}{C}H_2$$

Nome correto: but-I-eno

Extremidade mais próxima da insaturação

Numeração correta

$$H_3\overset{1}{C} - \overset{2}{C}H = \overset{3}{C}H - \overset{4}{C}H_3$$

Nome correto: but-2-eno

Posição da dupla ligação difere entre as moléculas

Alcinos

Quando houver mais de uma possibilidade para a localização da insaturação, deve-se indicar sua posição de modo similar ao que foi feito no caso dos alcenos.

$$\begin{array}{lll} HC \mathop{\equiv} CH_2 - CH_3 & \text{but-1-ino} \\ H_3C - C \mathop{\equiv} C - CH_3 & \text{but-2-ino} \\ H_3C - CH_2 - C \mathop{\equiv} CH & \text{but-1-ino} \end{array}$$

• No caso da estrutura do but-l-ino é a mesma molécula.

Fábio de Lima Química Orgánica

Dienos

Exemplo

de Lima Químico Orgánica

Ciclanos

Ciclenos

Outros casos

Em casos como os seguintes, é necessário localizar as duplas ligações. A numeração deve ser feita de modo que as insatuarações sejam representadas com os menores números possíveis.

ciclo-octa-1,4-dienc

ciclo-hexa-1,3,5-trieno

(também denominado **benzeno**, nome aceito pela IUPAC e muito mais utilizado que o apresentado aqui)

Hidrocarbonetos Ramificados

Ramificação

• A expressão grupos substituintes orgânicos ou, simplesmente grupos orgânicos é usada para designar qualquer grupo de átomos que apareça com freqüência nas moléculas orgânicas.

$$--$$
 CH₃ $--$ CH₂ $--$ CH₃ metil etil

⁴⁰/₆₉

Grupos substituintes I

Tabela 6: Grupos substituintes orgânicos formados por carbono e hidrogênio

Grupos Alquila			
I carbono	metil	— CH ₃	
2 carbonos	etil	— CH ₂ — CH ₃	
3 carbonos	propril	— CH ₂ — CH ₂ — CH ₃ isoprop	il — CH — CH₃ CH₃
4 carbonos	butil	CH ₂ (CH ₂) ₂ CH ₃ isobutil	U — СН₂ — СН — СН₂ СН₃

Grupos substituintes II

s-butil (sec-butil)
$$-CH-CH_2CH_3$$
 t-butil (terc-butil) $-CH_3$ $-C-CH_3$ $-CH_3$ $-C$

Outros substituintes I

Hidrocarbonetos Ramificados - Cadeia Principal I

Definição

 Cadeia principal é a maior seqüência de carbonosque contenha as ligações duplas e triplas (se houver). Em caso de duas sequencias igualmente longas, é a mais ramificada. Os carbonos que não fazem parte da cadeia principal pertencem às ramificações.

[↑] I⁰ Exemplo

A cadeia principal é a maior sequencia de carbonos

$$\begin{array}{c} \text{Cadeia Principal} \\ \text{H}_3\text{C} - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 & \longrightarrow \begin{array}{c} \text{C} - \text{C} - \text{C} - \text{C} - \text{C} \\ \text{C} - \text{C} - \text{C} - \text{C} - \text{C} \end{array} \\ \text{CH}_3 & \\ \text{Ramificação} \end{array}$$

Hidrocarbonetos Ramificados - Cadeia Principal II

2º Exemplo

A cadeia principal nem sempre está na horizontal

de Lima Química Orgânica

Hidrocarbonetos Ramificados - Cadeia Principal III

[↑]3⁰ Exemplo

No caso de duas ou mais sequências igualmente longas, a cadeia principal é a mais ramificada

Lima Química Orgânica

Hidrocarbonetos Ramificados - Cadeia Principal IV

• Podem existir duas ou mais cadeias equivalentes, neste caso:

47/69

Hidrocarbonetos Ramificados - Cadeia Principal V

mais longa não contém a dupla

Ouímica Oreánica

Ouímica Oreánica

Nomenclatura

Regras

- Localize a cadeia principal.
- Numere os carbonos da cadeia principal. Para decidir por qual extremidade deve começar a numeração, baseia-se nos seguintes critérios:
- Se a cadeia for insaturada, comece pela extremidade que apresente insaturação mais próxima a ela.
- Se a cadeia for saturada, comece pela extremidade que tenha uma ramificação mais próxima a ela.
- Escreva o número de localização da ramificação e, a seguir, separando com um hífen, o nome do grupo orgânico que corresponde à ramificação.
- Finalmente, escreva o nome do hidrocarboneto correspondente à cadeia principal, separando-o do nome da ramificação por um hífen

Nomenclatura Exemplos I

e Lima Químico Orgânico

Nomenclatura Exemplos II

Extremidade mais próxima da ramificação $H_3\overset{1}{\text{C}}-\overset{2}{\text{CH}}_2-\overset{3}{\text{C}}\text{H}-\overset{4}{\text{C}}\text{H}_2-\overset{5}{\text{C}}\text{H}_2-\overset{6}{\text{C}}\text{H}_3$ 4-metil-hexano está incorreto 3-metil-hexano

de Lima Químico Orgânica

Nomenclatura Exemplos III

⁵²/69

Nomenclatura Exemplos IV

Exemplo 4

Se houver mais de um substituinte, deve-se numerar a cadeia principal começando pela extremidade da qual haja uma ramificação mais próxima.

$$H_3$$
¹ $\stackrel{?}{-}$ $\stackrel{?}{C}$ H $\stackrel{?}{-}$ $\stackrel{?}{C}$ H_2 $\stackrel{5}{-}$ $\stackrel{-}{C}$ H_3 $\stackrel{-}{-}$ $\stackrel{-}{C}$ H_3 $\stackrel{-}{-}$ $\stackrel{-}{C}$ H_3 $\stackrel{-}{-}$ $\stackrel{-}{C}$ $\stackrel{-}{H}_3$ $\stackrel{-}{-}$ $\stackrel{-}{-}$ $\stackrel{-}{C}$ $\stackrel{-}{H}_3$ $\stackrel{-}{-}$ $\stackrel{-}{$

Segue e menor numeração para o radicais usar vírgula para ponto e hífen para os nomes

de Lima Químico Orgânico

Nomenclatura Exemplos V

Exemplo 5

2,2-dimetil-pentano

Note a repetição da númeração use *di* para indicar dois radicais idênticos

⁵⁴/₆₉

Nomenclatura Exemplos VI

Exemplo 6

$$H_3$$
¹C $-$ C $-$ C $-$ C $+$ C

2,2,3-dimetil-pentano

(3,3,4-trimetil-pentano está incorreto)

⁵⁵/69

Nomenclatura Exemplos VII

⁵⁶/₆₉

Nomenclatura Exemplos VIII

57/69

o de Lima Química O

Nomenclatura Exemplos IX

de Lima Químico Orgânica

Nomenclatura Exemplos X

59/69

Nomenclatura Exemplos XI

60/69

Nomenclatura Exemplos XII

61/69

Nomenclatura Exemplos XIII

Nomenclatura Exemplos XIV

Exemplo 15

$$H_3C \stackrel{?}{=} CH_2$$

$$H_3C \stackrel{?}{=} CH_2$$

$$CH_2$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

Hidrocarbonetos cadeia mista

 Quando um hidrocarboneto possui cadeia mista, a nomenclatura é semelhante as cadeias ramificadas abertas. Veja os exemplos.

Hidrocarbonetos cadeia mista

• Quando há dois substituintes diferentes, eles devem ser citados em ordem alfabética. O número l é dado ao subtituinte citado primeiro de acordo com a ordem alfabética.

CH₂ CH₂ — CH₂ — CH₃ I-metil-4-propil-ciclo-hexano

ordem alfabética: "m" antes de "p'

Fábio de Lima Q

Química Orgâni

 Se houver mais de dois substituintes, eles serão citados em ordem alfabética. O número 1 deve ser dado ao substituinte que permitir que um segundo substituintes receba o menor número possível

$$H_3C-CH_2$$
 $CH_2-CH_2-CH_3$
 CH_3

4-etil-2-metil-1-propil-ciclo-hexano

$$CH_3$$
 C_2H_5
 C_2H_5

No exemplo ao lado - C_2H_5 é uma maneira de representar o grupo etil $-CH_2-CH_3$

2.4-dietil-I-metil-benzeno

• Quando uma molécula de benzeno que contém dois grupos substituintes ligados ao anel, podemos usar o prefixo *orto*, *meta* e *para*.

Os prefixos orto, meta e para podem ser utilizados apenas quando um anel benzênico possuir dois grupos ligados a ele ligados:

• orto indica 1, 2; • meta indica 1, 3; • para indica 1, 4

orto-dimetil-benzeno orto:indica posição 1,2

orto-dimetil-benzeno meta:indica posição 1,3

orto-dimetil-benzeno para:indica posição 1,4

Cadeia Mista - Nomenclatura trivial

 Alguns exemplos de nomes triviais de hidrocarbonetos aromáticos são: tolueno, orto-xileno, meta-xileno e para-xileno.

Cadeis Mistas - Outros exemplos

$$C_2H_5$$
 C_2H_5 C_2H_5

orto-etil-metil-benzeno meta-etil-metil-benzeno para-etil-metil-benzeno 2,4-dietil-l-metil-benzeno

 Os prefixos orto, meta e para vêm do grego e podem ser traduzidos, respectivamente, por "diretamente", "depois de" e "mais longe de"