# MODUL LOGIKA MATEMATIKA

# KATA HUBUNG KALIMAT

MI041 - 3 SKS







UNIVERSIT BUDGE

# FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS BUDI LUHUR

JAKARTA
SEPTEMBER 2019

TIM PENYUSUN

Rizky Pradana, M.Kom Riri Irawati, M.Kom





# MODUL PERKULIAHAN #2 JUDUL POKOK BAHASAN

| Capaian Pembelajaran | : | Mahasiswa memahami konsep dasar pembentukan dan penentuan variabel dan model pembuatan tabel kebenaran.                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sub Pokok Bahasan    | : | <ul><li>1.1. Konsep dasar pembentukan variabel</li><li>1.2. Penggunaan penghubung negasi, konjungsi, disjungsi, implikasi dan biimplikasi</li><li>1.3. Pembentukan tabel kebenaran</li></ul>                                                                                                                                                                                                                                                                                                    |
| Daftar Pustaka       | : | <ol> <li>Ayres. (1965). Modern Algebra. Schaum's</li> <li>Gallier, Jean H, (1986.) Logic for Computer<br/>Science. Harper &amp; Row Publisher. New York</li> <li>JP Tremblay &amp; R.Manohar. (1975). Discrete<br/>Mathematical Structure with Application to<br/>comp.science. Mc Graw Hill Cs.Series.</li> <li>Lipschutz. (2007). Discrete Mathematics.<br/>Schaum's outline series.</li> <li>Siang, Jong Taek. (2002). Matematika Diskrit<br/>dan Aplikasinya Pada ilmu Komputer.</li> </ol> |

# 1. Konsep Dasar Pembentukan Variabel

Dalam logika dikenal 5 buah penghubung, ditunjukkan pada tabel berikut.

| Perangkai                         | Simbol            |
|-----------------------------------|-------------------|
| Dan (Konjungsi)                   | ^                 |
| Atau (Disjungsi)                  | V                 |
| Tidak/bukan (Negasi)              | ٦                 |
| Implikasi (Jikamaka)              | $\rightarrow$     |
| Biimplikasi (jika dan hanya jika) | $\leftrightarrow$ |

# **1.1 Negasi** [¬]

Negasi suatu kalimat akan mempunyai nilai kebenaran yang berlawanan dengan nilai kebenaran kalimat aslinya. Jadi, jika p bernilai benar maka  $\neg p$  bernilai salah. Sebaliknya, jika p bernilai salah, maka  $\neg p$  akan bernilai benar. Penulisan negasi dapat juga berupa  $\sim A$ ,  $\bar{A}$ , -A atau  $\neg A$ . Negasi pada pernyataan biasanya menggunakan kata 'tidak', 'bukan', 'tidak benar'. Di bawah ini adalah tabel kebenaran negasi.

| р | -р |
|---|----|
| Т | F  |
| F | Т  |

#### Contoh 1.1

Apa bentuk kebalikan (negasi) dari proposisi berikut?

- a. Hari ini adalah hari sabtu.
- b. Tidak ada musim hujan di Indonesia.
- c. Jakarta ibukota RI.
- d. Zainal memakai kacamata.
- e. Gunung Merapi terletak di 2 Propinsi dan 3 Kabupaten.

- a. Hari ini bukan hari sabtu.
- b. Ada musim hujan di Indonesia.
- c. Jakarta bukan ibukota RI.
- d. Zainal tidak memakai kacamata.
- e. Gunung Merapi bukan terletak di 2 Propinsi dan 3 Kabupaten.

# **1.2 Konjungsi** [∧]

Misalkan p dan q adalah 2 buah proposisi. Proposisi "p dan q", yang disimbolkan dengan p  $\land$  q, adalah proposisi yang bernilai benar, hanya jika p dan q keduanya bernilai benar, yang lainnya bernilai salah. Definisi di atas lebih mudah dipahami dengan menggunakan tabel kebenaran berikut ini.

| р | q | рлф |
|---|---|-----|
| Т | Т | Т   |
| Т | F | F   |
| F | Т | F   |
| F | F | F   |

#### Contoh 1.2

p: Fahmi makan nasi.

q: Fahmi minum kopi.

Maka  $p \wedge q$ : Fahmi makan nasi dan minum kopi.

#### Contoh 1.3

p: Hari ini panas.

q: Hari ini cerah

Nyatakan kalimat dibawa ini dengan simbol logika:

- a. Hari ini tidak panas tetapi cerah.
- b. Hari ini tidak panas dan tidak cerah.
- c. Tidak benar bahwa hari ini panas dan cerah.

- a. Kata-kata "tetapi" mempunyai arti yang sama dengan "dan", sehingga kalimat (a) bisa dinyatakan sebagai : ¬**p** Λ **q**
- b. ¬**p ∧ q**
- c. Kalimat "hari ini panas dan cerah" dapat dinyatakan sebagai  $p \land q$ , sehingga kalimat (c) bisa dinyatakan sebagai  $\neg (p \land q)$

# 1.3 Disjungsi [v]

Misalkan p dan q adalah proposisi. Proposisi "p atau q", yang disimbolkan dengan p  $\vee$  q, adalah proposisi yang bernilai salah, jika nilai p dan q keduanya bernilai salah, maka lainnya pasti bernilai benar. Di bawah ini adalah tabel kebenaran dari Disjungsi.

| р | q | p v q |
|---|---|-------|
| Т | Т | Т     |
| Т | F | Т     |
| F | Т | Т     |
| F | F | F     |

#### Contoh 1.4

p: 5 adalah bilangan prima.

q: 5 adalah bilangan ganjil.

Maka p v q : 5 adalah bilangan prima atau ganjil.

Benar bahwa 5 bisa dikatakan bilangan prima sekaligus bilangan ganjil.

#### Contoh 1.5

Mana diantara proposisi majemuk p $\vee$ q berikut yang bernilai benar dan mana yang bernilai salah.

- 1. 2 + 1 = 3 atau Irian Jaya terletak di Indonesia Timur.
- 2. 8 habis dibagi 2 atau 7 bilangan genap
- 3.7 + 2 = 10 atau 8 < 11.
- 4.2 + 1 = 5 dan Bogor terletak di Jawa Timur

- 1. Benar karena proposisi p benar dan q benar maka proposisi p  $\lor$  q juga benar (menurut baris ke-1 tabel kebenaran)
- 2. Benar (baris ke-2 tabel kebenaran)
- 3. Benar (baris ke-3 tabel kebenaran)
- 4. Salah (baris ke-4 tabel kebenaran)

# Contoh 1.6

Buatlah tabel kebenaran untuk pernyataan-pernyataan berikut!

- a. p ∨ −q
- b. −p ∨ −q
- **c.** −**p** ∧ **q**
- d.  $(p \lor q) \land r$

# Penyelesaian:

a.

| р | q | -q | p ∨ -q |
|---|---|----|--------|
| Т | T | F  | Т      |
| Т | F | T  | Т      |
| F | T | F  | F      |
| F | F | Т  | Т      |

b.

| р | q | -р | -q | -p ∨ -q |
|---|---|----|----|---------|
| Т | Т | F  | F  | F       |
| Т | F | F  | Т  | Т       |
| F | Т | Т  | F  | Т       |
| F | F | Т  | Т  | Т       |

c.

| р | q | -р | р ∧ -q |
|---|---|----|--------|
| Т | Т | F  | Т      |
| Т | F | Т  | Т      |
| F | T | F  | F      |
| F | F | Т  | Т      |

d.

| р | q | r | (p ∨ q) | (p∨q)∧r |
|---|---|---|---------|---------|
| Т | Т | Т | Т       | Т       |
| Т | Т | F | Т       | F       |
| Т | F | Т | Т       | Т       |
| Т | F | F | Т       | F       |
| F | Т | Т | Т       | Т       |
| F | Т | F | Т       | F       |
| F | F | Т | F       | F       |
| F | F | F | F       | F       |

# **1.4 Implikasi** [→]

Misalkan p dan q adalah suatu proposisi. Implikasi dari "p implikasi q", yang disimbolkan dengan p  $\rightarrow$  q adalah proposisi yang bernilai salah, jika nilai p bernilai benar dan nilai q bernilai salah, dan jika lainnya pasti benar. Pada implikasi ini, p disebut *antecedent* (hipotesa/premis) dan q disebut *consequence* (kesimpulan). Di bawah ini adalah tabel kebenaran dari Implikasi.

| р | q | $\mathbf{p} 	o \mathbf{q}$ |
|---|---|----------------------------|
| Т | Т | Т                          |
| Т | F | F                          |
| F | Т | Т                          |
| F | F | Т                          |

#### Contoh 1.7

p = besok cerah

q = aku akan kerumahmu

Maka  $p \rightarrow q$ : Jika besok cerah maka aku akan kerumahmu.

Kalimat  $p \rightarrow q$  dapat dibaca dalam beberapa bentuk kalimat antara lain:

- Bila p maka q
- q apabila p
- p hanya bila q
- p adalah syarat cukup untuk q
- q adalah syarat perlu untuk p

# **1.5 Biimplikasi** [↔]

Misalkan p dan q adalah proposisi. Biimplikasi "p jika dan hanya jika q", yang disimbolkan dengan p  $\leftrightarrow$  q adalah proposisi yang bernilai benar, jika nilai p bernilai benar dan q bernilai benar, dan nilai p bernilai salah dan nilai q bernilai salah. Di bawah ini adalah tabel kebenaran dari Biimplikasi.

| р | q | p ↔ q |
|---|---|-------|
| Т | Т | Т     |
| Т | F | F     |
| F | Т | F     |
| F | F | Т     |

#### Contoh 1.8

Tentukan nilai kebenaran biimplikasi di bawah ini!

a. 20 + 7 = 27 jika dan hanya jika 27 bukan bilangan prima.

b. 2 + 5 = 7 jika dan hanya jika 7 adalah bilangan genap.

c.  $tan^2 45^\circ + cos^2 45^\circ = 2$  jika dan hanya jika  $tan^2 45^\circ = 2$ .

- a. 20 + 7 = 27 (benar) dan 27 bukan bilangan prima (benar) maka kalimat tersebut bernilai **benar.**
- b. 2 + 5 = 7 (benar) dan 7 adalah bilangan genap (salah) maka kalimat tersebut bernilaisalah.
- c.  $tan^2 45^\circ + cos^2 45^\circ = 2$  (salah) dan  $tan^2 45^\circ = 2$  (salah) maka kalimat tersebut bernilai **benar.**

### Rangkuman

- 1. Negasi suatu kalimat akan mempunyai nilai kebenaran yang berlawanan dengan nilai kebenaran kalimat aslinya.
- 2. Konjungsi merupakan proposisi "p dan q", yang disimbolkan dengan p ∧ q, adalah proposisi yang bernilai benar, hanya jika p dan q keduanya bernilai benar, yang lainnya bernilai salah.
- 3. Disjungsi merupakan proposisi "p atau q", yang disimbolkan dengan p v q, adalah proposisi yang bernilai salah, jika nilai p dan q keduanya bernilai salah, maka lainnya pasti bernilai benar.
- 4. Misalkan p dan q adalah suatu proposisi. Implikasi dari "p implikasi q", yang disimbolkan dengan p  $\rightarrow$  q adalah proposisi yang bernilai salah, jika nilai p bernilai benar dan nilai q bernilai salah, dan jika lainnya pasti benar.
- 5. Misalkan p dan q adalah proposisi. Biimplikasi "p jika dan hanya jika q", yang disimbolkan dengan p ↔ q adalah proposisi yang bernilai benar, jika nilai p bernilai benar dan q bernilai benar, dan nilai p bernilai salah dan nilai q bernilai salah.

# Latihan

- 1. Diketahui p: 12 adalah bilangan genap dan q: 4 adalah faktor dari 30. Tulislah lambang-lambang dibawah ini dalam bahasa sehari-hari!
  - a.p ∧ q
  - b.  $q \wedge p$
  - c. p ∧ −q
  - d.  $-(p \wedge q)$
  - e. −p ∧ −q
- 2. Tentukan konjungsi dan disjungsi dari masing-masing pasangan berikut beserta nilai kebenarannya!
  - a. p: 7 adalah bilangan prima
    - q: 7 adalah faktor dari 21
  - b. p: 3 > 8
    - q: 4 < 7
  - c. p: 4 adalah faktor dari 7
    - q: 7 5 = 2
- 3. Buatlah tabel kebenaran untuk pernyataan-pernyataan berikut!
  - a.  $(p \land q) \lor -p$
  - b.  $(p \land -q) \lor (-p \land q)$
  - c. –(p  $\vee$  r)  $\wedge$  –q
  - d.  $(p \rightarrow q) \rightarrow r$
  - e.  $p \leftrightarrow -q$
- 4. Buatlah tabel kebenaran untuk pernyataan-pernyataan berikut!
  - a.  $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$
  - b.  $(p \land q) \lor (((\neg p \land q) \rightarrow p) \land \neg q)$
- 5. Misalkan:
  - p: David sedang bermain di kolam
  - q : David ada didalam rumah

- r : David sedang mengerjakan PR
- s: David sedang mendengarkan radio

Nyatakanlah kalimat-kalimat dibawah ini dengan simbol-simbol logika beserta dengan penghubung-penghubungnya!

- a. David sedang bermain dikolan atau ia ada didalam rumah.
- b. David tidak bermain di kolam dan tidak sedang mengerjakan PR.
- c. David sedang bermain dikolam dan tidak sedang mengerjakan PR.
- d. Jika David ada didalam rumah dan tidak mengerjakan PR, ia pasti sedang bermain di kolam sambil mendengarkan radio.
- e. David sedang mendengarkan radio jika ia ada di dalam rumah.



# FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS BUDI LUHUR

Jl. Raya Ciledug, Petukangan Utara, Pesanggrahan Jakarta Selatan, 12260

Telp: 021-5853753 Fax : 021-5853752

http://fti.budiluhur.ac.id