CCP 2004. Filière MP. MATHÉMATIQUES 1.

Corrigé de JL. Lamard (jean-louis.lamard@prepas.org)

Résultats préliminaires.

- 1. a. Si f est périodique, continue par morceaux et de classe \mathcal{C}^1 par morceaux alors sa série de Fourier converge simplement sur \mathbb{R} vers sa régularisée de Dirichlet $\widetilde{f}: x \longmapsto \frac{1}{2} (f(x^+) + f(x^-))$. \square
 - b. Si f n'est pas continue alors la convergence ne saurait être uniforme sur $\mathbb R$ puisqu'alors, par théorème de récupération uniforme de la continuité, f serait continue. \square
- **2.** φ n'est pas de classe \mathcal{C}^1 par morceaux sur \mathbb{R} car $\lim_{x\to 0^+} \varphi'(x) = \lim_{x\to 0^+} \varphi'(x) = +\infty$. \square
- 3. a. Comme $u_n \ell$ tend vers 0 on a $u_n l = o(v_n)$ avec $v_n = 1$. Le théorème de sommation de la relation o fournit alors, puisque la série $\sum v_n$ est à termes positifs et divergente, que $\sum_{k=0}^{n} (u_k - \ell) = o\left(\sum_{k=0}^{n} v_k\right)$ c'est à dire :

$$\sum_{k=0}^{n} (u_k - \ell) = o(n+1). \quad \Box$$

b. Ainsi
$$\frac{\sum\limits_{k=0}^{n}(u_k-\ell)}{n+1} \xrightarrow[n\to+\infty]{} 0$$
 i.e. $\frac{u_0+u_1+\cdots+u_n}{n+1} \xrightarrow[n\to+\infty]{} \ell$. \square

- 4. Soit f continue sur \mathbb{R} et périodique dont la série de Fourier converge simplement sur \mathbb{R} vers une fonction notée g. D'après le théorème de Césàro la suite $(\sigma_n(f))$ converge également simplement sur \mathbb{R} vers g. Mais d'après le théorème de Fejér elle converge uniformément donc a fortiori simplement sur $\mathbb R$ vers f. Ainsi g=f. \square
- 5. Soit (u_n) une suite de réels positifs qui converge vers 0. Notons $d_n = \sup\{u_k\}$ ce qui a bien un sens puisque, comme la suite (u_n) est convergente elle est bornée la suite (u_n) est convergente, elle est bornée.

On a bien sûr $0 \le u_n \le d_n$ pour tout n.

Par ailleurs la suite (d_n) est évidemment décroissante.

En outre elle tend vers 0. En effet soit $\varepsilon > 0$ donné quelconque. Comme la suite (u_n) tend vers 0, il existe un entier N_{ε} tel que $0 \leqslant u_n \leqslant \varepsilon$ pour tout $n \geqslant N_{\varepsilon}$. Ainsi $0 \leqslant d_{N_{\varepsilon}} \leqslant \varepsilon$ ce qui prouve bien que la suite (d_n) tend vers 0puisqu'elle est décroissante. \square

Un exemple de série de Fourier divergente en un point.

6. On a évidemment $|f_n(x)| \leq \frac{1}{n^2}$ pour tout n et tout $x \in [0,\pi]$ ce qui prouve bien que la série $\sum f_n$ converge normalement sur $[0,\pi]$. \square

REMARQUE : Comme $x \mapsto \sum_{n=1}^{+\infty} f_n(x)$ est continue sur $[0,\pi]$ par théorème de récupération uniforme de la continuité, la fonction f définie déjà sur $[-\pi,\pi]$ par parité puis sur $\mathbb R$ par 2π -périodicité est bien continue sur $\mathbb R$. \square

- 7. a. Nous avons $2\sin\left(\frac{2k+1}{2}t\right)\cos(pt) = \sin\left(\left(\frac{2k+1}{2}+p\right)t\right) + \sin\left(\left(\frac{2k+1}{2}-p\right)t\right)$ d'où immédiatement : $I_{p,k} = \frac{1}{2k+1+2n} + \frac{1}{2k+1-2p} = \frac{1}{2(k-p)+1} + \frac{1}{2(k+p)+1}.$
- **7.** b. Il en découle que $T_{q,k} = \frac{1}{2k+1} + \sum_{i=k-q}^{j=k+q} \frac{1}{2i+1}$.

Si $q \leq k$ cette somme est évidemment po

Sinon elle s'écrit
$$T_{q,k} = \frac{1}{2k+1} + \sum_{j=-(q-k)}^{-1} \frac{1}{2j+1} + \sum_{j=0}^{k+q} \frac{1}{2j+1} = \frac{1}{2k+1} - \sum_{j=1}^{q-k} \frac{1}{2j-1} + \sum_{j=1}^{k+q+1} \frac{1}{2j-1}$$

 $\operatorname{donc} T_{q,k} = \frac{1}{2k+1} + \sum_{j=q-k+1 \geqslant 0}^{q+k+1} \frac{1}{2j-1} \text{ et est donc encore positive.}$

Ainsi on a bien $T_{q,k} \geqslant 0$ pour tout couple (q,k) d'entiers naturels. \Box

7. c. On a classiquement par comparaison à une intégrale : $\int_0^{N+1} \frac{\mathrm{d}\,t}{2t+1} \leqslant \sum_{k=0}^N \frac{1}{2k+1} \leqslant 1 + \int_0^N \frac{\mathrm{d}\,t}{2t+1} \text{ i.e.}$

$$\frac{1}{2}\ln(2N+3)\leqslant \sum_{k=0}^{N}\frac{1}{2k+1}\leqslant 1+\frac{1}{2}\ln(2N) \text{ d'où, par le principe des gendarmes, } \sum_{k=0}^{N}\frac{1}{2k+1}\sim \frac{1}{2}\ln N. \quad \Box$$

7. d. Nous avons
$$T_{k,k} = \frac{1}{2k+1} + \sum_{j=0}^{2k} \frac{1}{2j+1}$$
 donc $T_{k,k} \sim \frac{1}{2} \ln(2k) \sim \frac{1}{2} \ln k$.

8. Comme f est paire, nous avons :

$$a_p(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \cos(pt) dt = \frac{1}{\pi} \int_{0}^{\pi} f(t) \cos(pt) dt = \frac{1}{\pi} \int_{0}^{\pi} \left(\sum_{n=1}^{+\infty} \frac{1}{n^2} \sin\left(\left(2^{n^3} + 1\right) \frac{t}{2}\right) \cos(pt) \right) dt.$$

Or la série qui figure sous l'intégrale étant normalement convergente sur $[0, \pi]$ (même démonstration qu'à la question 6) on peut intégrer terme à terme d'où (en remarquant que $2^{n^3} + 1 = 2k + 1$ avec $k = 2^{n^3 - 1}$):

$$a_{p}(f) = \frac{2}{\pi} \sum_{n=1}^{+\infty} \frac{1}{n^{2}} I_{p,2^{p^{3}-1}}. \quad \Box$$

REMARQUE : Cette relation est également vraie pour p=0 et pas simplement pour p entier naturel non nul comme il est demandé dans l'énoncé!

 $\textbf{9. Nous avons } S_{2^{p^3-1}}(f)(0) = -\frac{a_0(f)}{2} + \sum_{k=0}^{2^{p^3-1}} a_k(f) = -\frac{a_0(f)}{2} + \sum_{k=0}^{2^{p^3-1}} \Big(\frac{2}{\pi} \sum_{n=1}^{+\infty} \frac{1}{n^2} I_{k,2^{n^3-1}} \Big).$

Donc (par linéarisation de séries convergentes) :

$$S_{2^{p^3-1}}(f)(0) = -\frac{a_0(f)}{2} + \frac{2}{\pi} \sum_{n=1}^{+\infty} \left(\frac{1}{n^2} \sum_{k=0}^{2^{p^3-1}} I_{k,2^{n^3-1}} \right) = -\frac{a_0(f)}{2} + \frac{2}{\pi} \sum_{n=1}^{+\infty} \frac{1}{n^2} T_{2^{p^3-1},2^{n^3-1}}.$$
 Or cette dernière série est à termes positifs donc sa somme est supérieure en partriculier à son terme de rang p

Or cette dernière série est à termes positifs donc sa somme est supérieure en partriculier à son terme de rang p d'où $S_{2p^3-1}(f)(0) \geqslant -\frac{a_0(f)}{2} + \frac{2}{\pi p^2} T_{2p^3-1,2p^3-1}$. \square

D'après la question 7.d, nous avons $T_{2^{p^3-1},2^{p^3-1}} \sim \frac{1}{2} \ln \left(2^{p^3-1} \right) = \frac{\ln 2}{2} (p^3-1) \sim \frac{\ln 2}{2} p^3$.

Il découle alors immédiatement de l'inégalité ci-dessus que $S_{2^{p^3-1}}(f)(0) \xrightarrow[p \to +\infty]{} +\infty$

Il en résulte que la suite $(S_n(f)(0))$ diverge puisqu'il existe une suite extraite tendant vers $+\infty$.

Fonctions à variations bornées. Théorème de Jordan.

10. Commençons par remarquer que la "subdivision" σ_n proposée est bien une subdivision de [0,1]! Il vient :

$$V(\sigma_n, f) = \underbrace{\left| \frac{1}{2n} \cos(n\pi) \right|}_{1/2n} + \underbrace{\sum_{k=1}^{n-1} \left| \frac{1}{2(n-k)} \cos((n-k)\pi) - \frac{1}{2(n+1-k)} \cos((n+1-k)\pi) \right|}_{V_n} + \underbrace{\left| -\frac{1}{2} \cos(\pi) \right|}_{1/2}.$$

Or $\cos((n-k)\pi) = (-1)^{n-k}$ et $\cos((n-k+1)\pi) = (-1)^{n-k+1}$ de sorte que $V_n = \sum_{k=1}^{n-1} \left(\frac{1}{2(n-k)} + \frac{1}{2(n-k+1)}\right)$

c'est à dire
$$V_n = \frac{1}{2} \sum_{i=1}^{n-1} \frac{1}{i} + \frac{1}{2} \sum_{i=2}^{n} \frac{1}{i} = \sum_{i=1}^{n} \frac{1}{i} - \frac{1}{2} - \frac{1}{2n}$$
.

En conclusion $V(\sigma_n, f) = \sum_{j=1}^n \frac{1}{j} \sim \ln n$ ce qui prouve bien que f n'est pas à variations bornées. \square

- **11.**a.Il est immédiat que si f est monotone sur [a,b] alors $V(\sigma,f)=|f(b)-f(a)|$ pour toute subdivision σ de [a,b] de sorte que f est à variations bornées et que V([a,b],f)=|f(b)-f(a)|. \square
- **11.**b.Il est également immédiat que si σ est une subdivision de [a,b] on a $V(\sigma,f+g) \leq V(\sigma,f) + V(\sigma,g)$. Ainsi la somme de deux fonctions à variatons bornées (et en particulier de deux fonctions monotones) sur [a,b] est-elle à variations bornées. \square
- **11.c.** Si f est continue et de classe \mathcal{C}^1 par morceaux, on a $f(x_{i+1}) f(x_1) = \int_{x_1}^{x_{i+1}} f'(t) \, \mathrm{d}t$ d'après la relation fondamentale primitivation-intégration. De sorte que $|f(x_{i+1}) f(x_1)| \leq M_1(x_{i+1} x_1)$ en notant $M_1 = \sup_{t \in [a,b]} |f'(t)|$ (par la majoration fondamentale du calcul intégral). Ainsi $V(\sigma, f) \leq M_1(b-a)$ pour toute subdivision σ de [a,b] de sorte que f est à variations bornées. \square
- 12.Si σ_1 est une subdivision quelconque de [a,c] et σ_2 de [c,b] alors $\sigma=\sigma_1\cup\sigma_2$ est une subdivision de [a,b] et $V(\sigma_1,f)+V(\sigma_2,f)=V(\sigma,f)\leqslant V([a,b],f)$. Ce qui prouve que $V(\sigma_1,f)\leqslant V([a,b],f)$ donc que f est bien à variations bornées sur [a,c]. De même sur [c,b]. En outre en passant au sup dans l'inégalité ci-dessus pour σ_1 puis σ_2 on obtient $V([a,c],f)+V([c,b],f)\leqslant V([a,b],f)$. \square

REMARQUE : l'égalité annoncée dans l'énoncé est très facile à établir. En effet soit f à variations bornées sur [a,c] et [c,b] et soient σ une subdivision quelconque de [a,b] et σ' la subdivision obtenue en rajoutant (éventuellement) le point c. Par inégalité triangulaire il est clair que $V(\sigma,f) \leq V(\sigma',f)$. Soient alors σ_1 et σ_2 les subdivisions de [a,c] et [c,b] telles que $\sigma'=\sigma_1\cup\sigma_2$. Nous avons $V(\sigma',f)=V(\sigma_1,f)+V(\sigma_2,f)\leq V([a,c],f)+V([c,b],f)$. Ainsi $V(\sigma,f)\leq V([a,c],f)+V([c,b],f)$ ce qui prouve bien que f est à variations bornées sur [a,b] et que $V([a,b],f)\leq V([a,c],f)+V([c,b],f)$.

En conclusion finale, f est à variations bornées sur [a,b] si et seulement si elle l'est sur [a,c] et [c,b] et alors V([a,b],f) = V([a,c],f) + V([c,b],f).

13.a. Remarquons d'une manière générale que si f est à variations bornées sur [a,b] alors $|f(x)-f(y)| \leq V([a,b],f)$ pour tout couple (x, y) d'éléments de [a, b].

Donc ici
$$\left| \int_{x_{k-1}}^{x_k} (f(t) - f(x_k)) e^{-int} dt \right| \le \int_{x_{k-1}}^{x_k} |f(t) - f(x_k)| dt \le V_k(f)(x_k - x_{k-1}).$$

D'où évidemment
$$\left| \sum_{k=1}^{|n|N} \underbrace{\int_{x_{k-1}}^{x_k} \big(f(t) - f(x_k) \big) e^{-int} \, \mathrm{d} \, t}_{= \alpha_n} \right| \leq \sum_{k=1}^{|n|N} V_k(f) (x_k - x_{k-1}). \quad \Box$$

REMARQUE: $\sum_{k=1}^{|n|N} V_k(f)(x_k - x_{k-1}) = \frac{2\pi}{|n|N} \sum_{k=1}^{|n|N} V_k(f) \leqslant \frac{2\pi}{|n|N} V(\sigma, f) \leqslant \frac{2\pi}{|n|N} V([0, 2\pi], f)$ d'après la question 12.

13.b. On a
$$\int_{x_{k-1}}^{x_k} f(x_k) e^{-int} dt = \frac{i}{n} f(x_k) \left(e^{-i\varepsilon \times 2k\pi/N} - e^{-i\varepsilon \times 2(k-1)\pi/N} \right)$$
 avec $\varepsilon = \frac{n}{|n|}$. Donc:

$$\sum_{k=1}^{|n|N} \int_{x_{k-1}}^{x_k} f(x_k) e^{-int} dt = \frac{i}{n} \left(\sum_{k=1}^{|n|N} f(x_k) e^{-i\varepsilon \times 2k\pi/N} - \sum_{k=0}^{|n|N-1} f(x_{k+1}) e^{-i\varepsilon \times 2k\pi/N} \right)
= \frac{i}{n} \left(f(2\pi) - f(x_1) + \sum_{k=1}^{|n|N-1} \left(f(x_k) - f(x_{k+1}) \right) e^{-i\varepsilon \times 2k\pi/N} \right)
= \frac{i}{n} \left(f(0) - f(x_1) + \sum_{k=1}^{|n|N-1} \left(f(x_k) - f(x_{k+1}) \right) e^{-i\varepsilon \times 2k\pi/N} \right)
= \frac{i}{n} \sum_{k=0}^{|n|N-1} \left(f(x_k) - f(x_{k+1}) \right) e^{-i\varepsilon \times 2k\pi/N}$$

Ainsi
$$\left| \underbrace{\sum_{k=1}^{|n|N} \int_{x_{k-1}}^{x_k} f(x_k) e^{-int} dt}_{==\beta_n} \right| \leqslant \frac{1}{|n|} \sum_{k=0}^{|n|N-1} \left| f(x_k) - f(x_{k+1}) \right| = \frac{1}{|n|} V(\sigma, f) \leqslant \frac{1}{|n|} V([0, 2\pi], f). \quad \Box$$

13.c. Par la relation de Chasles nous avons $2\pi c_n(f) = \alpha_n + \beta_n$. Or $|\beta_n| \leq \frac{1}{|n|} V([0, 2\pi], f)$ par la question 13.b. et $|\alpha_n| \leq \frac{2\pi}{|n|N} V([0, 2\pi], f)$ d'après la remarque de la question 13.a.

Donc $2\pi |c_n(f)| \leq \frac{1}{|n|} V([0, 2\pi], f) + \frac{2\pi}{|n|N} V([0, 2\pi], f)$ et cela pour tout entier relatif n non nul et tout entier N > 0.

En fixant n dans cette inégalité et en faisant tendre N vers $+\infty$ il vient :

$$|c_n(f)| \leqslant \frac{1}{2|n|\pi} V([0, 2\pi], f)$$
 pour tout entier relatif non nul. \square

14.a. En uitilisant la définition de
$$\sigma_n$$
 il vient par un calcul immédiat que :
$$k(S_n-L)-(n+k)(\sigma_{n+k-1}-L)+n(\sigma_{n-1}-L)=S_n+\cdots+S_{n+k-1}-kS_n.\\ =u_{n+1}+\left(u_{n+1}+u_{n+2}\right)+\cdots+\left(u_{n+1}+\cdots+u_{n+k-1}\right). \quad (1) \quad \Box$$

14.b. Comme par hypothèse $|u_{n+p}| \leq \frac{A}{n+p+1} \leq \frac{A}{n+2}$ pour tout entier $p \geq 1$, la valeur absolue du membre de

droite de l'égalité (1) ci-dessus est majorée par $\frac{k(k-1)}{2} \times \frac{A}{n+2}$.

Par ailleurs $\left| -(n+k)(\sigma_{n+k-1}-L) + n(\sigma_{n-1}-L) \right| \le (n+k)d_{n+k-1} + nd_{n-1} \le (k+2n)d_{n-1}$ (car (d_n) décroît). L'égalité (1) prouve alors par inégalité triangulaire que : $\left| S_n - L \right| \le \left(1 + \frac{2n}{k} \right) d_{n-1} + A \frac{k-1}{2(n+2)}$ pour tout entier $n \ge 1$ et tout entier $k \ge 1$. (2) \square

$$|S_n - L| \le \left(1 + \frac{2n}{k}\right) d_{n-1} + A \frac{k-1}{2(n+2)}$$
 pour tout entier $n \ge 1$ et tout entier $k \ge 1$. (2)

14.c. Fixons n dans l'inégalité ci-dessus et choisissons $k=1+\operatorname{Int}(2n\sqrt{d_{n-1}})$ i.e. $(k-1)^2\leqslant 4n^2d_{n-1}< k^2$. Il vient alors $\frac{2n}{k}<\frac{1}{\sqrt{d_{n-1}}}$ et $\frac{k-1}{2(n+2)}<\frac{k-1}{2n}\leqslant \sqrt{d_{n-1}}$.

Il vient alors
$$\frac{2n}{k} < \frac{1}{\sqrt{d_{n-1}}}$$
 et $\frac{k-1}{2(n+2)} < \frac{k-1}{2n} \leqslant \sqrt{d_{n-1}}$

Il découle alors de (2) que $|S_n - L| \le d_{n-1} + (1+A)\sqrt{d_{n-1}}$. \square

Ainsi la série $\sum_{n=0}^{+\infty} u_n$ est-elle convergente de somme L. \square

En d'autres termes si une série de nombres complexes $\sum u_n$ converge au sens de Césàro et si $u_n = O(\frac{1}{n})$ alors la série converge (évidemment vers la même somme par le théorème de Cesàro).

- 15.• Comme F est continue, d'après le théorème de Fejér sa série de Fourier converge uniformément au sens de Cesàro vers f. C'est à dire que la suite $\left(\sup_{x\in\mathbb{R}}\left|\sigma_n(f)(x)-f(x)\right|\right)$ tend vers 0. D'après la question 5, cette suite est majorée par une suite (d_n) décroissante de limite nulle. Ainsi $\left|\sigma_n(f)(x)-f(x)\right|\leqslant d_n$ pour tout $x\in\mathbb{R}$.
 - Notons $u_n(x) = c_{-n}(f)e^{-inx} + c_n(f)(x)e^{inx}$ pour $n \in \mathbb{N}^*$ et $u_0(x) = c_0(f)$.

D'après la question 13.c, on a $|u_n(x)| \leq \frac{V([0,2\pi],f)}{n\pi}$ pour $n \geq 1$ et tout $x \in \mathbb{R}$. Or $\frac{1}{n} \leq \frac{2}{n+1}$ pour $n \geq 1$.

Ainsi $|u_n(x)| \leq \frac{2V([0,2\pi],f)}{\pi} \times \frac{1}{n+1}$ pour $n \geq 1$ et tout $x \in \mathbb{R}$.

Donc $|u_n(x)| \leq \frac{A}{n+1}$ pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$ avec $A = \max \left\{ |c_0(f)|, \frac{2V([0, 2\pi], f)}{\pi} \right\}$.

- Nous sommes alors dans la situation de la question 14 pour la suite $(u_n(x))$ avec la même constante A et la même suite (d_n) pour tout $x \in \mathbb{R}$. Il en découle que $|S_n(f)(x) f(x)| \leq d_{n-1} + (1+A)\sqrt{d_{n-1}}$ pour tout $x \in \mathbb{R}$ ce qui prouve bien que la série de Fourier de f converge uniformément sur \mathbb{R} vers f. \square
- **16.**Il suffit de prouver que f est à variations bornées sur $[-\pi, \pi]$ (ce qui entraı̂ne par périodicité qu'elle l'est sur $[0, 2\pi]$). Or pour $x \in [-\pi, \pi]$ on a $\varphi(x) = \varphi_1(x) + \varphi_2(x)$ avec $\varphi_1(x) = \sqrt{-x}$ si $x \in [-\pi, 0]$ et 0 sinon et $\varphi_2(x) = \sqrt{x}$ si $x \in [0, \pi]$ et 0 sinon. La fonction φ_1 est décroissante sur $[-\pi, \pi]$ et φ_2 croissante. Il en découle que f est à variations bornées sur $[-\pi, \pi]$ par la question 11.b. \square
- 17. En remarquant qu'une fonction lipschitzienne sur un intervalle y est à variations bornées (immédiat) et bien sûr continue, on a immédiatement la conclusion de cette question. \Box

