Seminar 7 - GAL

Et. Endomorfisme. Diagonalizare

1) Fie f \in End(\mathbb{R}^3), \mathbb{R}_0 = \{q_1 e_2, e_3\} reperul canenic in \mathbb{R}^3

a) $\{f(e_1) = e_2 \}$ $\{f(e_2) = e_1 + e_2 + e_3 \}$ $\{f(e_3) = e_2 \}$ $\{f(e_3) = e_2 \}$ $\{f(e_3) = e_1 \}$ Precitati Vaite un reper R in \mathbb{R}^3 ai $[f]_{R,R}$ esti

matrice diagonald

② Fie $f \in End(\mathbb{R}^3)$, $\mathcal{R}_0 = \{q_1 e_2 e_3\}$ reper l'eanonic in \mathbb{R}^3

a) $\mathbb{E}_{f} \mathcal{I}_{o_{f}} \mathcal{I}_{o} = A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

b) $[f]_{R_0,R_0} = A = \begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}$

 $R) (f) R_0 R_0 = A = \begin{pmatrix} 1 & -3 & 4 \\ 41 & -7 & 8 \end{pmatrix}$

Precipati daca 7 un ryer R in R3 ai Ef IR, R este matrice diagonalà. In cux afirmativ, sa a det acesta.

(3) Fre $f \in End(\mathbb{R})$, $[f]_{\mathcal{R}_0,\mathcal{R}_0} = \begin{pmatrix} -1 & 0 & -3 \\ 3 & 2 & 3 \\ -3 & 0 & -1 \end{pmatrix} = A$

a) Det valorele proprii si sulespatiile proprii coresp

b) Det R rybe in R3 ai [f] R/R = A' = didgonala

ry Ro C R Det. C

d) La a calculeze An

- (5) fe End (R3) Daca $\lambda_1 = 3$, $\lambda_2 = -2$, $\lambda_3 = 1$ sunt valorile fropriu λ_1 $v_1 = (-3_1 2_1 1), v_2 = (-2_1 1_1 0), v_3 = (-6_1 3_1 1)$ sunt vectorii proprii roresp, atunci care esti matricea $A = [f]_{R_0}, R_0$?
- (6) Fix $f: \mathbb{R} \to \mathbb{R}^3$, $f(x) = (4x_1 + x_2 + x_3) x_1 + 4x_2 + x_3$, $x_1 + x_2 + 4x_3$ Precigati dacă Fun reperkin rap. cu care LFIR, 2 et diagonala.

El Forme bilimiare. Fie $g: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ forma bilimiara Vimetrica \mathcal{R}_{o} $\mathcal{F}\left\{e_{1}e_{2}\right\}$ reperul sanonic in \mathbb{R}^{2} si $g(e_{1},e_{2})=5$. Precipati matricea asse lui g in raport en Ro.

(8) Fix $g: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$, $g(x_1y) = x_1y_1 - x_2y_2 - x_1y_3 - x_3y_1 + 2x_2y_3 + 2x_3y_2$ a) $g \notin L^{s}(\mathbb{R}^{3}, \mathbb{R}^{3}, \mathbb{R})^{(j)}$

b) Precipati matricea G asrciata lui g în rap en Ro = [4,6,6] c) Kerg =? Este g nedegenerată?

d) sa ce afle matricea 6' asciata lui g in rap cu reperul $\mathcal{R}' = \{ e_1' = (1,1,1), e_2' = (1,2,1), e_3' = (0,0,1) \}.$

Ex9. Fie feEndlR3), gel (R3, R3; R)

Fie gt: R3xR3 -> R, ge (ay) = g(f(a)y), YayeR3

a) $97 \in L(\mathbb{R}^3, \mathbb{R}^3; \mathbb{R})$ b) Daca $G = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ -2 & -1 & -1 \end{pmatrix} A^{1} A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}$

sunt matricele asreiate lui q si f, in raport eu reperul ranonic Ro sa sa afle 6 matricea asreiata lui ge in raport ru Ro.

EXIO The $g: \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}$, $g(x_1y_1) = x_1y_1 + x_1y_3 + 3x_2y_1 + x_2y_2 + 2x_2y_3 + 2x_3y_1 - x_3y_2 + x_3y_3$, G matricea as n hapoulo. Fie $G^{\Delta} = \frac{1}{2}(G + G^{T}), G^{\alpha} = \frac{1}{2}(G - G^{T})$ Sa se det $g: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ at G sunt matricele as R. G in rap cu R o 9 = 9 + 9 $L^{3}(\mathbb{R}^{3},\mathbb{R}^{3};\mathbb{R})$ $L^{3}(\mathbb{R}^{3},\mathbb{R}^{3};\mathbb{R})$