

Planetary characterization in the presence of stellar activity. The case of TOI-396.

Irene Amateis

Master Degree in Astrophysics at University of Turin (Italy)
Master Thesis at The Space Research Institute in Graz (Austria)

The scientific case

Fundamental planetary parameters

Radial velocity method

Mass

Radius

Transit method

Density

Composition
Internal structure
Formation and evolution

OEAW.AC.AT/IWF Irene Amateis

Radial Velocity Method

78 HARPS spectra

Radial velocity time series

Planetary mass determination

OEAW.AC.AT/IWF Irene Amateis

Transit Method

TESS transit observations

Planetary radius determination

Periodic dimming of the brightness of the star as the orbiting planet transits in front of it

OEAW.AC.AT/IWF

Irene Amateis

Stellar Activity

Star spots, flares, faculae

Correlation with stellar rotational period

Potentially masking a planetary signal

RV detrending using break-point method Stellar activity is not stationary

Axel Hahlin et al. (2018)

Stellar Activity

TOI-396 c RV signal is not statistically detected

Hypothesis: $P_{rot} \approx P_c$

Periodograms of activity indicators

Stellar activity covered the RV signal generated by TOI-396 c

OEAW.AC.AT/IWF

Results

- Discovery paper: Vanderburg (2019)
 - Radii determination using transit method

- My work: Joint analysis of RV time series and transits using a Markov Chain Monte Carlo code (Bonfanti & Gillon, 2020)
 - Masses and radii determination

THE ASTROPHYSICAL JOURNAL LETTERS, 881:L19 (11pp), 2019 August 10 © 2019. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/2041-8213/ab322d

TESS Spots a Compact System of Super-Earths around the Naked-eye Star HR 858

Andrew Vanderburg^{1,27}, Chelsea X. Huang^{2,28}, Joseph E. Rodriguez^{3,29}, Juliette C. Becker^{4,30,31}, George R. Ricker², Roland K. Vanderspek², David W. Latham³, Sara Seager^{2,5}, Joshua N. Winn⁶, Jon M. Jenkins⁷, Brett Addison⁸,

Irene Amateis

 $R_c \simeq 2.1 R_{\oplus}$

 $M_c < 3.8 M_{\oplus}$

 $\rho_{c} < 2.5 \text{ g cm}^{-3}$

Transit timing variations (TTV)

Anti-correlation pattern in TTV of TOI-396 b and c

Mean motion resonance

$$\frac{P_c}{P_b} \cong 1,666213 \approx 5:3$$

Proof that TOI-396 c orbits around TOI-396

Comparison with known systems

The outer planet is denser than the inner planet

Unusual system

Atmospheric characterization needed

A paper on this thesis is the process of being submitted

Relevant Studies

"Element of Eliophysics and Space Weather" elective class "Physics of the Matter in Fluids and Plasma state" elective class

Ground and space-based data analysis
Object-oriented programming in C++, Root (Cern)
R, Python
Experience in working in a research group