Some Results on the Counterfeit Coins Problem

Li An-Ping

Beijing 100085, P.R.China apli0001@sina.com

Abstract

We will present some results on the counterfeit coins problem in a serial of papers.

Keywords: combinatorial search, counterfeit coins problem, information theoretic bound.

I. Introduction

Searching the counterfeit coins from the given coins by a balance is a well-known problem of combinatorial search, which there are several versions and a intensive researches, for the detail to see the papers [1]~[9].

From this paper, we will discuss some more general cases. Let S_1, \cdots, S_m be m sets of coins, in which each set S_i just contains one false coin, and the fakes are known with same weight but heavier than the normals, where $S_i \cap S_j = \emptyset$, for all $i \neq j$. Suppose that $\left|S_i\right| = n_i$, $1 \leq i \leq m$, define $g_1(n_1, n_2, \cdots, n_m)$ the least number of weighings to find all the m fakes in $\bigcup_{1 \leq i \leq m} S_i$, which will be simply written as $g_1(n|_m)$ when $n_i = n, 1 \leq i \leq m$. The present paper will give some estimations for $g_1(n|_m)$.

In the rest of the section, we introduce some symbols and notations which will be used in this paper.

L:R: A weighing or a comparison of coin set L against coin set R.

L > R (L < R, L = R): L is heavier (lighter, equal to) than R respectively.

 $X \cdot Y$: Cartesion product of sets X and Y.

 $\prec \quad : \quad \text{A partial order of the space} \quad \bigcup_{k=0}^{\infty} X^k \; , \quad \forall \, \alpha, \beta \in \bigcup_{k=0}^{\infty} X^k \; , \; \alpha \prec \beta \Longleftrightarrow \alpha = (x_1, \cdots, x_l), \; \text{ and } \; x \in \mathbb{R}^n$

$$\beta = (x_1, \dots, x_t, \dots)$$
.

 $X_{\{i,j,\cdots,l\}}\coloneqq X_i\cup X_j\cup\cdots\cup X_l \text{, and simply written as } X_{i,j,\cdots,l} \text{ if no confusability.}$

 $\lceil x \rceil$: The least integer no less than the real number x.

Ct(X): The number of fakes in the set X.

Let $A_0 = \{0\}$, $A = \{+,0,-\}$, for a positive integer k, we define $A_k = A_0 \cdot A^{k-1}$, $\mathcal{A} = \bigcup_{k=1}^{\infty} A_k$,

and
$$\mathcal{W} = \{ L : R \mid L, R \subset \bigcup_{i=1}^{m} S_i, |L| = |R| \}.$$

Definition 1. A map $F: \mathcal{A} \to \mathcal{W}$ is called an algorithm if $F(A_k) \subseteq W^k$ for $k \ge 1$, and

satisfy that $\alpha \prec \beta \Rightarrow F(\alpha) \prec F(\beta)$.

Let $S = \prod_{i=1}^m S_i$, then a algorithm F will induces a map $f: S \to \mathcal{A}: X \mapsto (0, a_1, a_2, \cdots)$,

where

$$a_1 = \operatorname{sgn}(|L_1 \cap X| - |R_1 \cap X|), \quad F(0) = L_1 : R_1,$$

 $a_i = \operatorname{sgn}(|L_i \cap X| - |R_i \cap X|), \quad F((0, a_1, \dots, a_{i-1})) = L_i : R_i, \text{ for } i > 1.$

Hence, $\forall \alpha \in \mathcal{S}$, α determines a subset \mathcal{S}_{α} of \mathcal{S} : $\mathcal{S}_{\alpha} = \{P \mid P \in \mathcal{S}, \alpha \prec f(P)\}$, we call \mathcal{S}_{α} as the objective set on the direction α .

Definition 2 For a algorithm F and a positive integer k, if $\forall \alpha \in A_k, |S_\alpha| \le 1$, then algorithm F is called k-completed.

2. Main results

It is well-known that

$$g_1(n) = \lceil \log_3 n \rceil. \tag{2.1}$$

So, there is a simple estimation

$$\left[\sum_{i=1}^{m} \log_{3} n_{i}\right] \leq g_{1}(n_{1}, \dots, n_{m}) \leq \sum_{i=1}^{m} \lceil \log_{3} n_{i} \rceil.$$
 (2.2)

In this paper, our main results are following estimate

Proposition 1

$$g_1(n|_2) \le \lceil \log_3 n \rceil + \lceil \log_3(n/5) \rceil + 1,$$
 (2.3)

$$g_1(n|_3) \le \lceil \log_3 n \rceil + \lceil \log_3(n/4) \rceil + \lceil \log_3(n/6) \rceil + 2, \tag{2.4}$$

$$g_1(n|_4) \le \lceil \log_3 n \rceil + \lceil \log_3(n/5) \rceil + \lceil \log_3(n/11) \rceil + \lceil \log_3(n/20) \rceil + 5.$$
 (2.5)

To prove the result above need the following individual results

Lemma 1

$$g_1(2|_3) = 2,$$
 (2.6)

$$g_1(2,4) = 2,$$
 (2.7)

$$g_1(4,20) = 4,$$
 (2.8)

$$g_1(5|_2) = 3,$$
 (2.9)

$$g_1(11|_4) = 9,$$
 (2.10)

Proof. The identities (2.6) and (2.7) are easier and left to the readers. The algorithms for the rest are put in the end as an appendix.

The results above have the following corollary

Corollary 1

$$g_1(4|_3) = 4,$$
 (2.11)

$$g_1(20|_4) = 11.$$
 (2.12)

Proof. (2.11) is followed by applying (2.6) twice, and (2.12) is from (2.8) and (2.9).

Proof of Proposition 1. Let

$$n = \lambda \cdot 3^k$$
, $1 \le \lambda \le 5$,

Where λ is a real number and k is a non-negative integer. We will take induction on k. By (2.6) and (2.9) in Lemma 1, (2.3) is stand for k=0. For k>0, suppose that A and B are two coin sets, |A|=|B|=n, Ct(A)=Ct(B)=1. Take subsets $A_1,A_2\subset A$, and $B_1,B_2\subset B$, such that $|A_1|=|A_2|=|B_1|=|B_2|=\lceil n/3\rceil$, and make two weighings $A_1:A_2$ and $B_1:B_2$, then it will be found the subsets $A'\subset A$ and $B'\subset B$ with $|A'|\leq \lceil n/3\rceil$, $|B'|\leq \lceil n/3\rceil$, Ct(A')=1, Ct(B')=1. Without loss generality, we may assume that |A'|=|B'|, then by the induction,

$$g_1(n|_2) \le 2 + \lceil \log_3 \lceil n/3 \rceil \rceil + \lceil \log_3 \lceil n/5 \rceil \rceil + 1$$

$$\le \lceil \log_3 n \rceil + \lceil \log_3 (n/5) \rceil + 1.$$

The proofs for (2.4) and (2.5) are similar but instead apply (2.6), (2.11) and (2.9), (2.10), (2.12) respectively, so which are omitted.

Note The upper bounds in Proposition 1 may be written as following form

$$g_1(n|_2) \le \lceil 2 \cdot \log_3 n + 0.071 \rceil,$$
 (2.3')

$$g_1(n|_3) \le \lceil 3 \cdot \log_3 n + 0.218 \rceil,$$
 (2.4')

$$g_1(n|_4) \le \lceil 4 \cdot \log_3 n + 0.274 \rceil.$$
 (2.5')

References

- [1] M. Aigner, Combinatorial Search. Wiley-Teubner 1988
- [2] R. Bellman, B. Glass, On various versions of the defective coin problem. *Inform. Control* 4, 141-147(1961)
- [3] A.P. Li, On the conjecture at two counterfeit coins, Disc. Math. 133 (1994), 301-306
- [4] A.P. Li, Three counterfeit coins problem, J. Comb. Theory Ser. A, 66 (1994), 93-101
- [5] A.P. Li, M. Aigner, Searching for counterfeit coins, *Graphs Comb*. 13 (1997), 9-20
- [6] A.P. Li, A note on counterfeit coins problem, arXiv, e-Print archive,0902.0841
- [7] B. Manvel, Counterfeit coin problem, Math. Mag. 50, 90-92 (1977)
- [8] L. Pyber, How to find many counterfeit coins? Graphs Comb. 2, 173-177(1986)
- [9] R. Tosic, Two counterfeit coins, Disc. Math. 46 (1983), 295-298

I The sketch of algorithm $g_1(4,20) = 4$

Let $X = \{x_i \mid 1 \le i \le 4\}$, $Y = \{y_i \mid 1 \le i \le 20\}$, Ct(X) = Ct(Y) = 1. The following is a 4-completed search algorithm

Fig.1

The rest two weighings are a routine work, so omitted.

Let $A = \{a_i \mid 1 \le i \le 5\}$, $B = \{b_i \mid 1 \le i \le 5\}$, Ct(A) = Ct(B) = 1. A 3-completed algorithm is as following

Fig.2

Let
$$A = \{a_i \mid 1 \le i \le 11\}$$
, $B = \{b_i \mid 1 \le i \le 11\}$, $C = \{c_i \mid 1 \le i \le 11\}$, $D = \{d_i \mid 1 \le i \le 11\}$, $Ct(A) = Ct(B) = Ct(C) = Ct(D) = 1$. For $X = A, B, C, or D$, let $X = \bigcup_{0 \le i \le 3} X_i$, $\left|X_i\right| = 3$, $i = Ct(A) = Ct(B) = Ct(C) = Ct(D) = 1$.

1,2,3, and $|X_0| = 2$. The sketch of a feasible algorithms is as following

Fig.3

The output are the objective sets after three or four weighings, the rest work are easy followed by applying (2.9), or (2.6), i.e. algorithms $g_1(5|_2) = 3$, or $g_1(2|_3) = 2$, so which are omitted.