

Module 28

Searching & Sorting

Acknowledgement

Walker M. White Cornell University

def linear_search(v,b):

"""Returns: first occurrence of v in b; -1 if not found

Parameter v: The value to search for

Precondition: None (v can be any value)

Parameter b: The sequence to search for

Precond: b is a sequence

11 11 11

def linear_search(v,b):

"""Returns: first occurrence of v in b; -1 if not found

Parameter v: The value to search for

Precondition: None (v can be any value)

Parameter b: The sequence to se

Precond: b is a sequence

11 11 11

How many entries do we have to look at?


```
def linear_search(v,b):
  """Returns: first occurrence of v in b (-1 if not found)
   Precond: b a list of number, v a number
  11 11 11
 # Loop variable
 i = 0
 while i < len(b) and b[i] != v:
   i = i + 1
 if i == len(b): # not found
   return -1
 return i
```



```
def linear_search(v,b):
  """Returns: first occurrence of v in b (-1 if not found)
   Precond: b a list of number, v a number
  11 11 11
 # Loop variable
 i = len(b) - 1
 while i \ge 0 and b[i]!=v:
   i = i - 1
 # Equals -1 if not found
 return i
```



```
def linear_search(v,b):
```

"""Returns: occurrence of v in b (-1 if not found)
Precond: b a list of number, v a number

11 11 11

```
# Loop variable

i = len(b) - 1

while i \ge 0 and b[i] != v:

i = i - 1
```

Equals -1 if not found return i

How many entries do we have to look at?


```
def linear_search(v,b):
```

"""Returns: first occurrence of v in b (-1 if not found)
Precond: b a list of number, v a number

11 11 11

```
# Loop variable

i = len(b) - 1

while i \ge 0 and b[i]! = v:

i = i - 1
```

Equals -1 if not found return i

How many entries do we have to look at?

All of them!

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right
- Goal: Keep # guesses low
 - Use my answers to help
- Strategy?

Thinking of number 0..100

- You get to guess number
- I tell you higher or lower
- Continue until get it right
- Goal: Keep # guesses low
 - Use my answers to help

Strategy?

- Start guess in the middle
- Answer eliminates half
- Go to middle of remaining

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right
- Goal: Keep # guesses low
 - Use my answers to help
- Strategy?
 - Start guess in the middle
 - Answer eliminates half
 - Go to middle of remaining

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right
- Goal: Keep # guesses low
 - Use my answers to help
- Strategy?
 - Start guess in the middle
 - Answer eliminates half
 - Go to middle of remaining

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right
- Goal: Keep # guesses low
 - Use my answers to help
- Strategy?
 - Start guess in the middle
 - Answer eliminates half
 - Go to middle of remaining

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right
- Goal: Keep # guesses low
 - Use my answers to help
- Strategy?
 - Start guess in the middle
 - Answer eliminates half
 - Go to middle of remaining

Binary Search

def binary_search(v,b):

"""Returns: an occurrence of v in b

Parameter v: The value to search for

Precondition: None (v can be any value)

Parameter b: The sequence to search for

Precond: b is a **sorted** sequence

11 11 11

Binary Search


```
def b_search(v,b):
 #Loop variable(s)
 i = 0
 j = len(b)
 mid = (i+j)//2
 while i < j:
   if b[mid] < v:
     i = mid + 1
   else:
     j = mid
   mid = (i+j)//2
 if i < len(b) and b[i] == v:
   return i
```

Requires that the data is sorted!

But few checks!

Observation About Sorting

- Sorting data can speed up searching
 - Sorting takes time, but do it once
 - Afterwards, can search many times
- Not just searching. Also speeds up
 - Duplicate elimination in data sets
 - Data compression
 - Physics computations in computer games
- Why it is a major area of computer science

The Sorting Challenge

- Given: A list of numbers
- Goal: Sort those numbers using only
 - Iteration (while-loops or for-loops)
 - Comparisons (< or >)
 - Assignment statements
- Why? For proper analysis.
 - Methods/functions come with hidden costs
 - Everything above has no hidden costs
 - Each comparison or assignment is "1 step"

This Requires Some Notation

- As the list is sorted...
 - Part of the list will be sorted
 - Part of the list will not be sorted
- Need a way to refer to portions of the list
 - Notation to refer to sorted/unsorted parts
- And have to do it without slicing!
 - Slicing makes a copy
 - Want to sort original list, not a copy

This Requires Some Notation

- As the list is sorted...
 - Part of the list will be sorted
 - o Part of the
- Need a w

Notation t

But we will not be very formal!

- And have to do it without slicing!
 - Slicing makes a copy
 - Want to sort original list, not a copy

- m..n is a range containing n+1-m values
 - \circ 2..5 contains 2, 3, 4, 5. Contains 5+1 2 = 4 values
 - 2..4 contains 2, 3, 4.
 - 2..3 contains 2, 3.
 - o 2...2 contains 2.
 - 2.1 contains ???

Contains 4+1-2=3 values

Contains 3+1-2=2 values

Contains 2+1-2=1 values

What does 2..1 contain?

A: nothing

B: 2,1

C: 1

D: 2

E: something else

What does 2..1 contain?

A: nothing

B: 2,1

C: 1

D: 2

E: something else

- m..n is a range containing n+1-m values
 - \circ 2..5 contains 2, 3, 4, 5. Contains 5+1 2 = 4 values
 - \circ 2..4 contains 2, 3, 4. Contains 4+1 2 = 3 values
 - \circ 2..3 contains 2, 3. Contains 3+1 2 = 2 values
 - \circ 2...2 contains 2. Contains 2+1 2 = 1 values
 - 2..1 contains ????
- The notation m..n, always implies that m <= n+1
 - So you can assume that even if we do not say it
 - If m = n+1, the range has 0 values

- m..n is a range containing n+1-r
 - 2..5 contains 2, 3, 4, 5. Contain
 - 2..4 contains 2, 3, 4.
 - 2..3 contains 2, 3.
 - 2..2 contains 2. Contains 2+
 - 2.1 contains ???

Not the same as range(m,n)

- The notation m..n, always implies that m <= n+1
 - So you can assume that even if we do not say it
 - If m = n+1, the range has 0 values

Horizontal Notation

- Want a pictorial way to visualize this sorting
 - Represent the list as long rectangle
 - We saw this idea in divide-and-conquer

- Do not show individual boxes
 - Just dividing lines between regions
 - Label dividing lines with indices
 - But index is either left or right of dividing line

$$(h+1) - h = 1$$

Horizontal Notation

- Label regions with properties
 - Example: Sorted or ???

	0	k	n
b	sorted	???	

- \circ b[0..k-1] is sorted
- o b[k..n-1] unknown (might be sorted)
- Picture allows us to track progress

Visualizing Sorting

Start: b ????

O n
Sorted

O i n

sorted

???

In-Progress: b

Insertion Sort


```
n
                    sorted
              b
i = 0
while i < n:
 # Push b[i] down into its
                                     2 4 4 5 6 6 7
  # sorted position in
  b[0..i]
 i = i+1
```

Insertion Sort

$$i = 0$$
while $i < n$:

Push b[i] down into its

sorted position in

b[0..i]

$$i = i+1$$

Remember the restrictions!


```
i = 0
while i < n:
  push_down(b,i)
  i = i+1
def push_down(b, i):
   j = i
  while j > 0:
                         swap shown in the
   if b[j-1] > b[j]:
                         lecture about lists
     swap(b, j-1, j)
```

0 i
2 4 4 6 6 7 5

j = j-1


```
i = 0
while i < n:
  push_down(b,i)
  i = i+1
def push_down(b, i):
   j = i
  while j > 0:
   if b[j-1] > b[j]:
     swap(b, j-1, j)
   j = j-1
```

swap shown in the lecture about lists


```
i = 0
while i < n:
  push_down(b,i)
  i = i+1
def push_down(b, i):
  while j > 0:
   if b[j-1] > b[j]:
     swap(b, j-1, j)
   j = j-1
```

swap shown in the
lecture about lists

```
2 4 4 6 6 7
```



```
i = 0
while i < n:
                                                 2 4 4 6 6 7
 push_down(b,i)
 i = i+1
def push_down(b, i):
 while j > 0:
                        swap shown in the
   if b[j-1] > b[j]:
                        lecture about lists
     swap(b, j-1, j)
                                                 2 4 4 5 6 6 7
   j = j-1
```


The Importance of Helper Functions


```
i = 0
while i < n:
 push_down(b,i)
 i = i + 1
def push_down(b, i):
 while j > 0:
   if b[j-1] > b[j]:
     swap(b, j-1, j)
   j = j-1
```

```
while i < n:
 j = 1
  while j > 0:
    if b[j-1] > b[j]:
     temp = b[j]
     b[j] = b[j-1]
     b[j-1] = temp
   j = j - 1
  i - i + 1
```


The Importance of Helper Functions


```
i = 0
while i < n:
 push_down(b,i)
  i = i + 1
def push_down(b, i):
 while j > 0:
   if b[j-1] > b[j]:
     swap(b, j-1, j)
   j = j-1
```

```
Can you
i = 0
                    understand
while i < n:
                    all this code
 j = 1
                    below?
  while j > 0:
   if b[j-1] > b[j]:
     temp = b[j]
     b[j] = b[j-1]
     b[j-1] = temp
   j = j - 1
  i - i + 1
```


Measuring Performance

- Performance is a tricky thing to measure
 - Different computers run at different speeds
 - Memory also has a major effect as well
- Need an independent way to measure
 - Measure in terms of "basic steps"
 - Example: Searching counted # of checks
- For sorting, we measure in terms of swaps
 - Three assignment statements
 - Present in all sorting algorithms

Insertion Sort: Performance


```
def push_down(b, i):
  """Push value at position i
  into sorted position in b[0..i-1]"""
  j = i
 while j > 0:
   if[b[j-1] > b[j]:
      swap(b, j-1, j)
   j = j-1
```

- b[0..i-1]: i elements
- Worst case:
 - i = 0: 0 swaps
 - i = 1: 1 swap
 - i = 2: 2 swaps
- Pushdown is in a loop
 - Called for i in 0..n
 - o i swaps each time

Total Swaps: $0 + 1 + 2 + 3 + ... (n-1) = (n-1)*n/2 = (n^2-n)/2$

Insertion Sort: Performance


```
def push_down(b, i):
  """Push value at position i
  into sorted position in b[0..i-1]"""
  j = i
  while j > 0:
    if[b[j-1] > b[j]:
      swap(b,j-1,j)
                            Insertion sort is
   j = j-1
                            an n<sup>2</sup> algorithm
```

• b[0..i-1]: i elements

Worst case:

○ i = 0: 0 swaps

○ i = 1: 1 swap

○ i = 2: 2 swaps

Pushdown is in a loop

Called for i in 0..n

o i swaps each time

Total Swaps: $0 + 1 + 2 + 3 + ... (n-1) = (n-1)*n/2 = (n^2-n)/2$

Algorithm "Complexity"

- Given: a list of length n and a problem to solve
- Complexity: rough number of steps to solve worst case
- Suppose we can compute 1000 operations a second

Complexity	n=10	n=100	n=1000
log n	0.003 s	0.006 s	0.01 s
n	0.01 s	0.1 s	1 s
n log n	0.016 s	0.32 s	4.79 s
n^2	0.1 s	10 s	16.7 m
n^3	1 s	16.7 m	11.6 d
2 ⁿ	1 s	$4x10^{19} y$	$3x10^{290} y$

Algorithm "Complexity"

- Given: a list of length n and a problem to solve
- Complexity: rough number of steps to solve worst case
- Suppose we can compute 1000 operations a second

Complexity	D' C 1	n=100	n=1000
log n	Binary Search	0.006 s	0.01 s
n	Linear Search	0.1 s	1 s
n log n	0.016 s	0.32 s	4.79 s
n^2	Insertion Sort	10 s	16.7 m
n^3	1 S	16.7 m	11.6 d
2 ⁿ	1 s	$4x10^{19} y$	$3x10^{290} y$

Insertion Sort is Not Great

- Typically n² is okay, but not great
 - Will perform horribly on large data
 - Very bad when performance critical (games)
- We would like to do better than this
 - Can we get n swaps (no)?
 - How about n log n (maybe)
- This will require a new algorithm
 - Let's return to horizontal notation

A New Algorithm

Start: b ?

Goal: b sorted

In-Progress: b sorted, \leq b[i.. n-1] \geq b[0..i-1]

First segment always contains smaller values

Selection Sort

$$i = 0$$
 0
 i
 n
 b
 $sorted, \le b[i..]$
 $\ge b[0..i-1]$

 while $i < n$:
 i
 n

 # Find minimum in $b[i..n]$
 i
 n

 # Swap it with position i
 i
 n
 $i = i+1$
 Remember the restrictions!

Selection Sort

How fast is this?

```
i = 0
```

```
while i < n:
```

```
j = index of min of b[i..n-1]
```

swap(b, i, j)

$$i = i+1$$

Selection Sort

This is also n²!

i = 0

j = index of min of b[i..n-1]

This is n steps

swap(b, i, j)

i = i+1

What is the Problem

- Both insertion, selection sort are nested loops
 - Outer loop over each element to sort
 - Inner loop to put next element in place
 - Each loop is n steps. $n \times n = n^2$
- To do better we must eliminate a loop
 - Out with what?

What is the Problem

- Both insertion, selection sort are nested loops
 - Outer loop over each element to sort
 - Inner loop to put next element in place
 - \circ Each loop is n steps. $n \times n = n^2$
- To do better we must eliminate a loop
 - But with what? Recursion!

What is the Problem

- Both insertion, selection sort are nested loops
 - Outer loop over each element to sort
 - Inner loop to put next element in place
 - Each loop is n steps. $n \times n = n^2$
- To do better we must eliminate a loop
 - Out with what? Recursion!
- But to do this we have to step back
 - Need to introduce an intermediate algorithm

The Problem Statement

Given a list b[h..k] with some value x in b[h]:

Start: b x ?

Swap elements of b[h..k] to get this answer

Indices **h**,**k** important!
Might partition only part

Partition Algorithm

• Given a list b[h..k] with some value x in b[h]:

Start: b
$$x$$
 ?

Goal: b
$$\stackrel{\text{i}}{=}$$
 $\stackrel{\text{i}}{=}$ $\stackrel{\text{i}}{$

- •x is called the pivot value
 - x is not a program variable
- denotes value initially in b[h]

partition(b,h,k), not partition(b[h:k+1])

Remember, slicing always copies the list!

We want to partition the **original** list

<= h	X	i	i+	?) j	>= y	k
1	2	3	1	5	0	6	3	8

<= h	X	i	i+	?		j >	>= <u>y</u>	k
1	2	3	1	5	0	6	3	8
h		\	i	i+	1	j		k
1	2	1	3	5	0	6	3	8

<=	X	X	ı	?		, >	>= y	K
h	= X	i	i+	1		j		k
1	2	3	1	5	0	6	3	8
h		>	i	i+	1	<u></u> j		k
1	2	1	3	5	0	6	3	8
-			_					•
h			1		J	\leftarrow		k
1	2	1	3	$\mid 0 \mid$	5	6	3	8

<=	X	X	١.	?		, , >	>= >	
h		1	1+	1		j		k
1	2	3	1	5	0	6	3	8
h		>	i	i+	1	j j		k
1	2	1	3	5	0	6	3	8
h			i		i			k
h			i		j◀	(k
	2	1	i 3	0	j - 5	<u>←</u> 6	3	
	2	1	i 3	0	j _ 5	6	3	
	2	1	<u>'</u>	0 i		6	3	
1	2		→	·	j	6		8

def partition(b, h, k):

""" Returns the new position of pivot in partitioned list b[h..k]. Partition list b[h..k] around a pivot x = b[h]"""


```
def partition(b, h, k):
 """Partition list b[h..k] around a pivot x = b[h]"""
 i = h; j = k+1; x = b[h]
 while i < j-1:
   if b[i+1] > = x:
     # Move to end of block.
     swap(b,i+1,j-1)
     j = j - 1
   else: #b[i+l] < x
     swap(b,i,i+1)
     i = i + 1
```


return i

Why is this Useful?

- Will use this algorithm to replace inner loop
 - The inner loop costs us n swaps every time
- Can this reduce the number of swaps?
 - Worst case is k-h swaps
 - This is n if partitioning the whole list
 - But less if only partitioning part
- Idea: Break up list and partition only part?
 - This is Divide-and-Conquer!

Sorting with Partitions

Given a list segment b[h..k] with some value x in b[h]:

Sorting with Partitions

Given a list segment b[h..k] with some value x in b[h]:

```
\begin{array}{c|c} h & k \\ \hline \textbf{Start:} \ \ b & \hline \textbf{x} & ? \\ \hline \end{array}
```


Sorting with Partitions

Given a list segment b[h..k] with some value x in b[h]:

	h	<u>k</u>	
Start: b	X	?	

QuickSort


```
def quick_sort(b, h, k):
 """Sort the array fragment b[h..k]"""
 if b[h..k] has fewer than 2 elements:
   return
 j = partition(b, h, k)
 \#b[h..j-1] \le b[j] \le b[j+1..k]
 \# Sort b[h..j-l] and b[j+l..k]
 quick_sort(b, h, j-1)
 quick_sort(b, j+l, k)
```

- Worst Case: array already sorted
 - Or almost sorted
 - o n² in that case
- Average Case: array is scrambled

b

pre:

post: b

- o n log n in that case
- Best sorting time!

h			k
X		?	
h	i	i+1	k
<= X	X	>= X	

So Does that Solve It?

- Worst case still seems bad! Still n²
 - Only happens in small number of cases
 - Just happens that case is common (already sorted)
- Can greatly reduce issue with randomization
 - Swap start with random element in list
 - Now pivot is random and already sorted unlikely

So Does that Solve It?

- Worst case still seems bad! Still n²
 - Only happens in small number of cases
 - Just hap

Makes it "good enough" for most applications

Can great

Swap sta

Now pivot is random and already sorted unlikely

Can We Do Better?

- There is guaranteed n log n sorting algorithm
 - Called merge sort (beyond scope of course)
 - Used heavily in large databases
 - But it has high overhead (slower on small data)
- What does the sort() method use?
 - Uses Timsort (invented by Tim Peters in 2002)
 - Combination of insertion sort and merge sort
 - Insertion on small data, merge sort on large

Can We Do Better?

- There is guaranteed n log n sorting algorithm
 - Called merge sort (beyond scope of course)
 - Used heavily in large databases

Quicksort is 1959!

- But it has high overhead (slower on small data)
- What does the sort() method use?
 - Uses Timsort (invented by Tim Peters in 2002)
 - Combination of insertion sort and merge sort
 - Insertion on small data, merge sort on large

