פתרון תרגיל מספר 11־ חישוביות וסיבוכיות

שם: מיכאל גרינבאום, ת.ז: 211747639

19 ביוני 2020

שאלה 3

 $set-cover \in \text{NP-COMPLETE}$ צ"ל:

הוכחה:

תחילה נראה ש־ $set-cover\in \mathrm{NP}$ עם מוודא פולינומי שהן הקבוצות שמחסות. גראה ש־ $I\subseteq [m]$ כאשר כאשר על $\{S_1,\ldots,S_n\}$, U, U מה שהמכונה הדטרמניטית תעשה זה:

- נבדוק ש־ |I|=k נבדוק ש- 1.
- נבדוק ש־ $I\subseteq [m]$, ואם לא נדחה 2
- נבדוק ש־ ג $\bigcup_{i\in I}S_i=U$, ואם לא נדחה 3
 - 4. נקבל

נשים לב כי |S| אחרת לכל היותר בשלב הראשון בזמן פולינומי ב־ U וגם וגם לב כי אחרת נקבל מייד, לכן נסתכל על החסם מלעיל שצוין פה.

נשים לב שהשלב הראשון לוקח לכל היותר $O\left(|S|\cdot k\right) = O\left(|S|^2\right)$, השלב השני לוקח, השלב השלישי לוקח, השלב הראשון לוקח לכל היותר $O\left(|U|^2\cdot|S|\right)$, השלב השלישי לוקח $O\left(|U|^2\cdot|S|\right)$, ולכן זמן הריצה של המכונה $O\left(|U|^2\cdot|S|\right)$

 $set-cover \in \mathrm{NP}$ כלומר הראנו מכונה דטרמניסטית שהיא מוודא פולינומי לשפה L, ולכן נפלומר הראנו מכונה דטרמניסטית שהיא מוודא פולינומי לשפה עתה נראה שי $set-cover \in \mathrm{NP}-HARD$

 $i\in[n]$ לכל $S_i=\{\{u,v_i\}\mid u\in U\land\{u,v_i\}\in E\}$ כאשר כאשר באשר וואר לכל $f\left(\left\langle\left\langle V=\{v_1,\ldots,v_n\},E\right\rangle,k\right\rangle\right)=\left\langle\left\{S_1,\ldots,S_n\right\},E,k\right\rangle$ נגדיר נשים לב ש־ f חשיבה בזמן פולינומי כי לחשב את S_i לוקח לכל היותר $O\left(|V|^2\cdot|E|\right)$ זמן ולכן חישוב של הרדוקציה לוקח

וזה פולינומי וגם מתקיים $O\left(\left|V
ight|^3\cdot\left|E
ight|
ight)$

$$\langle \langle V = \{v_1, \dots, v_n\}, E \rangle, k \rangle \in vertex - cover \\ \iff \exists V' \subseteq V \text{ s.t. } \left[\forall \{u, v\} \in E \rightarrow (u \in V' \lor v \in V') \right] \land |V'| = k \\ \iff \exists I \subseteq [|V|] \text{ s.t. } \left[\forall \{u, v\} \in E \rightarrow (u \in \{v_i \mid i \in I\} \lor v \in \{v_i \mid i \in I\}) \right] \land |I| = k \\ \iff \exists I \subseteq [|V|] \text{ s.t. } \left[\forall \{u, v\} \in E \rightarrow [\exists j \in I \text{ s.t. } (v = v_j \lor u = u_j)] \right] \land |I| = k \\ \iff \exists I \subseteq [|V|] \text{ s.t. } \left[\forall \{u, v\} \in E \rightarrow [\exists j \in I \text{ s.t. } (\{u, v\} \in S_j \lor \{v, u\} \in S_j)] \right] \land |I| = k \\ \iff \exists I \subseteq [|V|] \text{ s.t. } \left[\forall \{u, v\} \in E \rightarrow [\exists j \in I \text{ s.t. } \{u, v\} \in S_j] \right] \land |I| = k \\ \iff \exists I \subseteq [|V|] \text{ s.t. } \left[\forall \{u, v\} \in E \rightarrow \{u, v\} \in \bigcup_{i \in I} S_i \right] \land |I| = k \right]$$

$$\bigcup_{i \in I} S_i \subseteq E \\ \exists I \subseteq [|V|] \text{ s.t. } \left[E = \bigcup_{i \in I} S_i \right] \land |I| = k \right]$$

$$\bigvee_{i \in I} S_i \subseteq E \\ \exists I \subseteq [|V|] \text{ s.t. } \left[U = \bigcup_{i \in I} S_i \right] \land |I| = k \right]$$

$$\iff \langle \{S_1, \dots, S_n\}, E, k \rangle \in set - cover \iff f \left(\langle \langle V = \{v_1, \dots, v_n\}, E \rangle, k \rangle \right) \in set - cover \right)$$

כלומר הראנו שקיימת פונקציה f חשיבה בזמן פולינומי המקיימת

$$\langle V, E \rangle \in vertex - cover \iff f(\langle \langle V = \{v_1, \dots, v_n\}, E \rangle, k \rangle) \in set - cover$$

 $vertex-cover \leq_p set-cover$ ולכן מתקיים כי $vertex-cover \leq_p set-cover \leq_p set-cover$ כלומר $vertex-cover \leq_p set-cover \leq_p set-cover \leq_p set-cover \leq_p set-cover \in NP-HARD$ ולכן מטרנזטיביות נקבל שי $vertex-cover \in NP-HARD$ ולכן $vertex-cover \in NP-HARD$ כנדרש $vertex-cover \in NP-HARD$ וגם כי $vertex-cover \in NP-HARD$ וגם כי $vertex-cover \in NP-HARD$ ולכן $vertex-cover \in NP-HARD$ כנדרש $vertex-cover \in NP-HARD$ מ.ש.ל. $vertex-cover \in NP-Cover \in NP-HARD$