Project: Digital Calibration Certificates

<u>Duncan Butler</u> and Sabeena Beveridge **ARPANSA**

- What the laboratory does
- How we create calibration reports now
- How we would like to create calibration reports
- The project components

Primary Standard Dosimetry Laboratory (the Lab) Chambe

We **calibrate** instruments (chambers) which detect X-rays

Calibrate means:

- Compare against a standard instrument
- Report the result
- Calibration coefficient
 N = (TRUE VALUE) / (CHAMBER READING)
 Units = Gy / C (Gray per Coulomb)

Calibration (A) Client instrument (chamber) X-ray X-rays source Monitor chamber

MEX = Medium Energy X-rays

Measurement result =

Electrical current from client chamber

Electrical current from monitor chamber

Raw MEX measurement data 1Client.csv

Calibration (B)

Measurement result =

Electrical current from **standard chamber**Electrical current from **monitor chamber**

Raw MEX measurement data 1Lab.csv

Data

1 set of measurements = 2 files

Raw MEX measurement data 1Lab.csv

Raw MEX measurement data 1Client.csv

Gives one set of results.

Entire measurement is repeated at least once, so have 1...5 sets of measurements.

Excel analysis

Excel – average and report

Raw MEX measurement data 1Client.csv

1	А	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р
1	[COMET X-RAY MEASUREMENT]								This is the	machine	we are doi:	ng the mea	surement	s onwe a	re asking y	
2	Filename	Filename C:\CRData\2Jul2021-11-07_IBAF			FC65-Gsn1	1612.csv			This is just the location of where this .csv file lives							
3	Date		***********							date of m	easureme	nt				
4	Chamber		IBA FC65-	G 1612						chamber i	d					
5	Description	n	Standard	ratio meas	urement					text field						
6	Software		S:\Medica	I_Rad\Rad	liotherapy\	lonizing f	Radiation\IR	S Inhouse S	Software\	Twin Web	lines LEX a	nd MEX\Tv	vin Weblin	e Comet v	8_1_PROD	UCTION.vi
7	Backgrour	nds	90							These cha	nge - chan	ges the ler	gth of the	file and re	cords	
8	Measuren	nents	30							There are	the numb	er of readi	ngs taken o	during the	session - s	o we take E
9	Trolley (m	ım)	1090							just a reco	ord					For the me
10	SCD (mm)		1000							just a reco	ord					
11	Aperture	wheel	2 CM							Open, 1cn	n, 2cm6ci	m These ar	e fixed op	tions (thes	e are the s	even optio
12	Comment		QA chamb	er measur	ement set	1				Text field	for comme	ents				
13	Monitor e	lectromet	Medium							Low, Med	, High opti	ons				
14	Monitor H	IV	300							number						
15	MEFAC-IC	electrom	Low							Low, Med	, High opti	ons				
16	IC HV		-300							number						
17	[DATA]															
18	kV	mA	BarCode	XraysOn	HVLFilter	Filter	FilterRead	HVLReady	N	Current1(Current2(P(kPa)	T(MC)	T(Air)	T(SC)	H(%)
19	40	20	NXB	FALSE	0	NXJ40	FALSE	TRUE	1	-0.2	0	100.955	22.94494	23.08626	23.13623	45.06609
20	40	20	NXB	FALSE	0	NXJ40	FALSE	TRUE	2	-0.35	0	100.955	22.94494	23.08626	23.13623	45.06609
21	40	20	NXB	FALSE	0	NXJ40	FALSE	TRUE	3	0	0	100.955	22.94494	23.08626	23.13623	45.06609
22	40	20	NXB	FALSE	0	NXJ40	FALSE	TRUE	4	0	0.001	100.955	22.94494	23.08626	23.13623	45.06609
23	40	20	NXB	FALSE	0	NXJ40	FALSE	TRUE	5	0	0	100.955	22.94494	23.08626	23.13623	45.06609
24	40	20	NXB	FALSE	0	NXJ40	FALSE	TRUE	6	0.1	0.001	100.955	22.94494	23.08626	23.13623	45.06609
25	40	20	NXB	FALSE	0	NXJ40	FALSE	TRUE	7	-0.05	0.001	100.955	22.94494	23.08626	23.13623	45.06609
26	40	20	NXB	FALSE	0	NXJ40	FALSE	TRUE	8	0	0.001	100.955	22.94494	23.08626	23.13623	45.06609
27	40	20	NXB	FALSE	0	NXJ40	FALSE	TRUE	9	0.15	0.001	100.955	22.94494	23.08626	23.13623	45.06609
28	40	20	NXB	FALSE	0	NXJ40	FALSE	TRUE	10	0.1	0	100.955	22.94494	23.08626	23.13623	45.06609
29	40	20	NXB	FALSE	0	NXJ40	FALSE	TRUE	11	0	0.001	100.955	22.94494	23.08626	23.13623	45.06609
20	40	20	NVD	FALCE	0	NIVIAO	FALSE	TRUE	12	0	0.001	100.055	22.04404	22.00626	22 12622	45.06600

Result of analysis

81	Formula	(exposure): N _X =	Rs * k * k	т * kн / l	[R _I *m]	; (air keri	ma) N _K =	N _X * 33.9	7				
82		-	-			_		_		Cu	Calib	ration coeff	icient	
83/	BEAM	kV	mΑ		Added	d Filter		H	VL	Effective	Exposure	Exposure	Air-kerma	Air
9/4	No.		(during							energy	N _x	N _x	N _K	kerma
/85			IC run)	mm Pb	mm Sn	mm Cu	mm Al	mm Cu	mm Al	keV	C/kg/C	R/C	Gy/C	mGy/nC
86											\			
87	NXJ40	40	20.0				0.50		0.57	18.0	1.405E+06	5.447E+09	4.774E+07	47.741
88	NXJ50	50	20.0				0.50		0.68	19.5	1.393E+06	5.398E+09	4.731E+07	47.310
89	NXJ60	60	20.0				0.50		0.79	20.9	1.382E+06	5.356E+09	4.694E+07	46.937
90	NXJ70	70	20.0				0.50		0.90	22.1	1.374E+06	5.326E+09	4.668E+07	46.679
91	NXJ80	80	20.0				0.50		1.02	23.5	1.368E+06	5.302E+09	4.647E+07	46.467
92	NXJ90	90	20.0				0.50		1.15	24.9	1.361E+06	5.277E+09	4.625E+07	46.246
93	NXJ100	100	19.9				0.50		1.30	26.3	1.356E+06	5.257E+09	4.607E+07	46.074
94	NXK40	40	20.0				1.00		0.93	20.9	1.359E+06	5.269E+09	4.618E+07	46.180
95	NXK50	50	20.0				1.00		1.12	22.6	1.354E+06	5.249E+09	4.600E+07	46.004
96	NXK60	60	20.0				1.00		1.29	24.1	1.349E+06	5.228E+09	4.582E+07	45.817
97	NXK70	70	20.0				1.00		1.46	25.4	1.346E+06	5.216E+09	4.572E+07	45.717
98	NXK80	80	20.0				1.00		1.64	26.8	1.342E+06	5.201E+09	4.559E+07	45.586
99	NXK90	90	20.0				1.00		1.84	28.3	1/339E+06	5.190E+09	4.549E+07	45.487
100	NXK100	/ 100	20.0				1.00		2.05	29.9	1/.336E+06	5.179E+09	4.539E+07	45.389
101	NXA40	40	20.0				4.00	0.06	1.90	27.1	/1.330E+06	5.156E+09	4.519E+07	45.192
10/2	NXA50 /	50	20.0				4.00	0.08	2.39	29.9	1.328E+06	5.149E+09	4.513E+07	45.129
103	NXA60	60	20.0				4.00	0.10	2.81	32.3	1.330E+06	5.155E+09	4.518E+07	45.183
10.4	NVAZO	70	20.0				4 00	0.11	3 10	2// 2	1 330F±06	5 155F±00	4 518F±07	45 178

Report

Primary Standards Dosimetry Laboratory, Medical Radiation Services
619 Lower Plenty Road, Yallambie, Victoria 3085, Australia
Tel: +613 9433 2211 Fax: +613 9421 835
E-mail: psdf@arpansa.gov.au Web: www.arpansa.gov.au

In reply please quote:

CAL00000/03

CALIBRATION REPORT on a therapy ionisation chamber for MEDIUM-ENERGY KILOVOLTAGE X-RAYS

Test Client

Addr Line 1 Addr Line 2

PTW 30012, serial number 123456 Ionisation chamber

1 January 2020 - 3 April 2021 Period of tests

Previous calibration

Test and report by Duncan Butler

1 January 2021

Chris Oliver Direct inquiries to Tel: (03) 9433 2333 Email: psdl@arpansa.gov.au

Duncan Butler, Director, Primary Standards Dosimetry Laboratory per C-M Larsson, CEO of ARPANSA

Australian Government

Australian Radiation Protection and Nuclear Safety Agency

Table 2: Complete set of air kerma calibration coefficients for all MEX beams

Beam code	Tube voltage	Added filter	Added filter	HVL	HVL	Nominal effective energy [1]	Nominal air kerma rate	N _K [2]	U
	kV	mm Al	mm Cu	mm Al	mm Cu	keV	mGy/s	mGy/nC	%
NXJ40	40	0.5		0.57		18	1.8	41.10	1.7
NXK40	40	1.0		0.93		21	1.1	41.80	1.6
NXA40	40	4.0		1.90	0.06	27	0.2	42.50	1.6
NXJ50	50	0.5		0.68		20	2.7	41.20	1.7
NXK50	50	1.0		1.12		23	1.6	41.90	1.6
NXA50	50	4.0		2.39	0.08	30	0.4	42.60	1.6
NXB50	50	4.5		2.53	0.08	31	0.3	43.10	1.5
NXJ60	60	0.5		0.79		21	3.5	41.30	1.6
NXK60	60	1.0		1.29		24	2.1	42.00	1.6
NXA60	60	4.0		2.81	0.10	32	0.6	42.70	1.6
NXJ70	70	0.5		0.90		22	4.1	41.40	1.6
NXK70	70	1.0		1.46		25	2.6	42.10	1.6
NXA70	70	4.0		3.19	0.11	34	0.8	42.80	1.6
NXB70	70	4.5		3.39	0.12	35	0.7	43.20	1.5
NXC70	70	6.0		3.95	0.14	38	0.5	43.60	1.5
NXJ80	80	0.5		1.02		23	4.8	41.50	1.6
NXK80	80	1.0		1.64		27	3.2	42.20	1.6
NXA80	80	4.0		3.62	0.13	36	1.1	42.90	1.5
NXJ90	90	0.5		1.15		25	5.5	41.60	1.6
NXK90	90	1.0		1.84		28	3.7	42.30	1.6
NXA90	90	4.0		4.04	0.15	38	1.4	43.00	1.5
NXJ100	100	0.5		1.30		26	6.1	41.70	1.6
NXK100	100	1.0		2.05		30	4.3	42.40	1.6
NXB100	100	4.5		4.74	0.18	42	1.6	43.30	1.5
NXC100	100	6.0		5.49	0.22	45	1.2	43.70	1.5
NXD100	100	9.0		6.61	0.29	49	0.8	44.10	1.5
NXB120	120	4.5		5.56	0.23	46	2.2	43.40	1.5
NXC120	120	6.0		6.38	0.28	49	1.8	43.80	1.5
NXD120	120	9.0	0.5	7.59	0.37	54	1.2	44.20	1.5
NXE120	120	4.0	0.5	10.31	0.63	65	0.7	44.60	1.5
NXB140	140	4.5		6.33	0.28	50	3.0	43.50	1.5
NXC140	140	6.0		7.20	0.34	53	2.5	43.90	1.5
NXD140	140	9.0	0.5	8.44	0.45	58	1.8	44.30	1.5
NXE140	140	4.0	0.5		0.77	70	1.2	44.70	1.5
NXF140	140	4.0	1.0	7.58	1.03	79 55	0.6	45.10	1.5
NXC150	150	6.0			0.38		2.8	44.00	1.5
NXD150	150 150	9.0 4.0	0.5	8.83	0.49	60 72	2.1 1.4	44.40 44.80	1.5 1.5
NXE150 NXF150	150	4.0	1.0		0.84 1.13	72 81		44.80	
							0.9		1.5
NXG150	150	4.0	1.6		1.38	89	0.4	45.60	1.5

...continued p5

Calibration No.: CAL00000/03 1 January 2021 Checked: Page 4 of 6

Workflow (now)

- Identification of equipment
- Settings

3

Anything non-standard?

Project: replace Excel

Raw MEX measurement data 1Client.csv

Raw MEX measurement data 1Lab.csv

Raw MEX measurement data 2Client.csv

Raw MEX measurement data 2Lab.csv

Raw MEX measurement data 3Client.csv

Raw MEX measurement data 3Lab.csv

GUI

GUI/database suggestion

MEX Total is integer 0, 1, ... (max unlikely to be more than 5) Total runs 3 Total selected for report Compare data Add new run (opens new window, graphs results, (manually select 2 files via option to omit each run) dropdown lists) button button Create PDF Human-readable report measurement report button Human and machine-readable Create DCC measurement report Digital **Calibration Certificate** button (following an XML schema)

MEX compare data

E_eff / keV

Beam quality	E_eff	Run1_NK	Run2_NK	Run 3_NK	Average	Run1/Average	Run2/Average	Run3/Average
NXJ40 NXJ50	40.1 40.1	33.1 33.2	33.6 33.7	38.1 38.1	36.0 36.0	0.920 0.920	0.933 0.933	1.050 1.050
 NXF320								

Proposed calibration workflow

Request sequence of measurements?

Measurement results

Calculations to produce results

Check validity of data (QA)

Reference instrument

Human

Client instrument

PC with data acquisition

software

0.000 -0.003 _M

(text files)

PDF of measurement report

The Laboratory Name, Calibration Section E-mail: laboratory@lab.org.au Web: www.laboratory.org.au

> References: REF2019/01 CAL00099

CALIBRATION REPORT

on a radiotherapy electrometer

Client The Demo Company

106 Client Street Montmorency

Victoria 3000

PTW UNIDOS T10002, serial number 12345 Electrometer

Period of tests From 9 June 2020 To 14 June 2020

Max Hanlon Report by Chris Oliver 20 June 2020 Report date

Direct inquiries to Chris Oliver

Tel: (03) 0000 0000 Email: laboratory@lab.org.au

Fred Jones, Laboratory Technical Manager

The results of the tests, calibrations and/or

CIPM MRA This contificate is consistent with the canabilities that are

Included in Appendix C of the MRA drawn up by the CIPM. Under the MRA, all participating institutes recognize the validity of each other's calibration and nent certificates for the quantities, ranges and

Calibration No.: CAL00099 20 June 2020 Checked:

Leakage checks

 The electrometer leakage current was checked with and without an ionisation chamber NE 2571 er 2384 attached, using the 'Low' range and polarizing voltage setting '+300 V' on splay. The results are shown in Table 1.

Time

300

300

meter was tested in accordance with ARPANSA Standard Operating Procedure

Settings

chamber

er attached

-SOP-0000 Version 10.

Charge collected

pC

1.00

1.00

Average leakage

current, fA

3.33

3.33

eakage checks GENERAL COMMENTS

lectrometer

240V, 50 Hz

no obvious damage or faults on receipt.

fect the calibration factor

nce quantities such as temperature and pressure, if present, were disabled.

cient is the number by which the charge reading on the screen must be obtain the "true" charge.

calibrated by first measuring the current from a Farmer-type ionisation

chamber was then used to deliver a known charge to the electrometer, and is the ratio of the known charge to the charge shown on the electrometer. ie calibration is traceable to Australian standards of voltage and resistance. rge combine the current with measurements of time, which are traceable to rd for time.

lifier is *floating*, which means the outer electrode of a connected ionisation potential and the guard electrode and collector are at the bias voltage. lectrometer use different conventions for specifying the polarising voltage. rity of the collecting electrode as either "Central Electode Positive (CEP)" or gative (CEN)". Here "Central Electrode" refers to the electrode connected to

ng Voltage

triaxial connector.

e was measured with the chamber attached using an 11 G Ω resistor in series er to provide a displayed voltage which is proportional to the polarizing mpedance that did not interfere with the electrometer. The electrometer was ated voltage source which was adjusted until the reading on the voltmeter eading when the electrometer was in place.

triaxial connector was found to be at a potential of -301 V. The inner the guard electrode of the chamber. The electrometer at the time was set to display and the resulting polarity was CEP.

ibration Laboratory Logo / Masthead

oratory details: Web site: Address

eter Charge Calibration Certificate

e Demo Company

W UNIDOS T10002 sn 12345

ins 240V, 50 Hz

00 V' on Webline display

e Table 2

un 2020 - 14 Jun 2020

nce level of approximately 95% (k=2)

2: Electrometer calibration factors

Timer	Units of electrometer	Calibration factor	Uncertainty		
	reading	nC per reading	%		
Internal	nC	1.001	0.3		
External	nC	1.002	0.3		
Internal	nC	0.999	0.3		
External	nC	0.999	0.3		

tinuously and a charge measurement is started manually and terminated

collecting charge continuously and the source is turned on manually and

20 June 2020 17,00000 Checked: Page 3 of 4

Calibrated by Max Hanlon

Calibration No.: CAL00099 Checked: Page 4 of 4

Calibration No.: CAL00099 20 June 2020 Checked: DB

Digital Calibration Certificate (DCC)


```
Demo_Excel_DCC_v1.dcc - Notepad
File Edit Format View Help
<?xml version="1.0" encoding= "UTF-8"?>
<dcc:digitalCalibrationCertificate</pre>
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "https://ptb.de/dcc https://ptb.de/dcc/v2.3.0/dcc.xsd"
xmlns:dcc = "https://ptb.de/dcc"
xmlns:si = "https://ptb.de/si"
schemaVersion="2.3.0">
<!--Schema Copyright (c) 2019 PTB -->
<!--This DCC produced using Excel VBA for demonstration purposes only. -->
<dcc:administrativeData>
<dcc:dccSoftware>
<dcc:software id="Excel VBA script">
<dcc:name>
<dcc:content>VBA script - Demo Excel DCC.xlsm - testing only</dcc:content>
</dcc:name>
<dcc:release>v0.0.0</dcc:release>
<dcc:description id="dcc44-1">
<dcc:content lang="en">Homepage: None
</dcc:content>
</dcc:description>
</dcc:software>
</dcc:dccSoftware>
<dcc:coreData>
<dcc:countryCodeIS03166 1>AU</dcc:countryCodeIS03166 1>
<dcc:usedLangCodeIS0639 1>en</dcc:usedLangCodeIS0639 1>
<dcc:mandatoryLangCodeIS0639 1>en</dcc:mandatoryLangCodeIS0639 1>
<dcc:uniqueIdentifier>CAL00099</dcc:uniqueIdentifier>
<dcc:identifications>
<dcc:identification>
<dcc:issuer>calibrationLaboratory</dcc:issuer>
<dcc:value></dcc:value>
<dcc:description>
<dcc:content lang="en">Reference No.</dcc:content>
</dcc:description>
</dcc:identification>
</dcc:identifications>
<dcc:beginPerformanceDate>09-06-20</dcc:beginPerformanceDate>
<dcc:endPerformanceDate>14-06-20</dcc:endPerformanceDate>
</dcc:coreData>
<dcc:items>
```

Project components

- 1. Create database for raw data
- 2. Calculation: analyse two raw files -> results
- 3. Develop GUI for above
- 4. Create PDF from results
- 5. Create DCC (xml) from results