CMSC5741 Big Data Tech. & Apps.

Assectured Projectes Scale Ip
Support / Yector Machines

Add WeChat powcoder

Prof. Michael R. Lyu
Computer Science & Engineering Dept.
The Chinese University of Hong Kong

Motivation

 Understand the model and parameter estimation method in terms of big data

Add WeChat powcoder

Motivation

Suppose we have 50 photographs of elephants and 50 photos of tigers.

We digitize them into 100 x 100 pixel images, so we have $x \in \mathbb{R}^n$ where n = 10,000.

Now, given a new (different) photograph we want to answer the question: is it an elephant or a tiger? [we assume it is one or the other.]

Motivation

Outline

- Support Vector Machines
 - History
 - Assignment Project Exam Help

 Linear Separable SVMs

 - Non-linear Separable Sylvesder.com
 - Soft Margin Add WeChat powcoder
 - Kernel Trick
- Parameter Estimation
- Further Reading

Outline

- Support Vector Machines
 - History
 - Assignment Project Exam Help

 Linear Separable SVMs

 - Non-linear Sehttps://pewcoder.com
 - Soft Margin Add WeChat powcoder
 - Kernel Trick
- Parameter Estimation
- Further Reading

SVMs: History

- Theoretically well motivated algorithm: developed from Statistical Learning Pheory (Vapnik & Chervonenkis) Aint Wth the Convergence
- Empirically good performance: successful applications in many fields (bioinformatics, text, image recognition, . . .)

SVMs: History

- Centralized website: www.kernel-machines.org.
- Several textbooks, e.g. "An introduction to Assignment Project Exam Help Support Vector Machines" by Cristianini and Shawe-Taylor is one. "An introduction to Exam Help Support Vector Machines" by Cristianini and Shawe-Taylor is one.
- A large and diverse community work on them: from machine learning, optimization, statistics, neural networks, functional analysis, etc.

Outline

- Support Vector Machines

 - Assignment Project Exam Help

 Linear SVMs

 - Non-linear SVhttps://powcoder.com
 - Soft Margin Add WeChat powcoder
 - Kernel Trick
- Parameter Estimation
- Further Reading

Linear SVMs

Data

- Training examples: $(x_1, y_1), \dots, (x_n, y_n)$ - Each $x_i \in \mathbb{R}^d, y_i \in \{+1, -1\}$

- Want to find a hipperplane $y = w^{-1}x + b$ to separate A'd'd fwor Cha't powcoder

 What's the best hyperplane defined by w?

Distance from the separating Assignment Project Exam Help the "confidence" of prediction https://powcoder.com
 Example: WeAldave Cobrepowcoder confidence to say A and B belong to "+" than C

Support Vectors: Examples closest to
Assignment Project Exam Help
the hyperplane • Margin ρ : width of wooder.com separation battweechat powcode support vectors of classes. W Support vector

Distance from example to

the separator is : Assignment Project Exam Help $r = y \frac{w^T x + b}{||w||}$ https://powcoder.com

• Proof:

Add WeChat powcoder

x' - x//w, unit vector is w/||w||, so line is rw/||w||, x' = x - yrw/||w||since x' is on the separator, $w^T x' + b = 0$ so $w^T(x - yrw/||w||) + b = 0, ||w|| = \sqrt{(w^T w)},$ so $w^T x - yr ||w|| + b = 0$, then we get $r = y \frac{w^T x + b}{\|w\|}$

 Assume that all data is at least distance 1 from the hyperplane, then the following constraints follow for a training set $\{(x_i, y_i)\}_{i=1}^{\text{Assignment Project Exam Help}}$

> https://powcoder.com $y_i(w^Tx_i + b) \ge 1$ Add WeChat powcoder

- For support vectors, the inequality becomes an equality
- Recall that $r=y\frac{w^Tx+b}{\|w\|}$ Margin is: $ho=\frac{2}{\|w\|}$

Linear SVMs

- Note that we assume that all data points are linearly separated by the hyperplane.
 Assignment Project Exam Help

 The margin is invariant to scaling of parameters.
- - i.e. by changing w, b to 5w, 5b, the margin doesn't change Add WeChat powcoder

Linear SVMs

- Maximize the margin
 - Good according to intuition, theory (VC dimension) & Assignment Project Exam Help
- The problem of the

$$\max_{w} \rho \underbrace{\frac{\mathbf{Add}}{\|w\|}}_{w} \text{WeChat powcoder}$$

$$s.t. \quad y_i(w^T x_i + b) \ge 1 \quad \forall i = 1, \dots, n$$

An equivalent form is:

$$\min_{w} \frac{1}{2} ||w||^{2}$$
s.t. $y_{i}(w^{T}x_{i} + b) \ge 1 \quad \forall i = 1, ..., n$

Outline

- Support Vector Machines
 - History
 - Assignment Project Exam Help

 Linear Separable SVMs

 - Non-linear Separable Sylvisder.com
 - Soft Margin Add WeChat powcoder
 - Kernel Trick
- Parameter Estimation
- Further Reading

Non-Linear Separable SVMs

 In reality, training samples are usually not linearly separable.
 Assignment Project Exam Help

 Soft Margin Classification

- Idea: allow errors but introduce margin \oplus slack variabled We Charatize v coder errors

 Still try to minimize training set errors, and to place hyperplane "far" from each class (large margin)

Soft Margin Classification

The problem becomes:

- Set C using cross validation powcoder

Soft Margin Classification

• If point x_i is on the wrong side of the margin Assignment Project Exam Help then get penalty ξ_i

• Thus all mistakes are not equally bad! Add WeChat powcoder

For each datapoint:

If margin ≥ 1, don't care

If margin < 1, pay linear penalty

Slack Penalty C

Soft Margin Classification

SVM in the "natural" form

• SVM uses "Hinge Loss":

In-class Practice

Go to <u>practice</u>

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Outline

- Support Vector Machines

 - Assignment Project Exam Help

 Linear SVMs

 - Non-linear SVMtps://powcoder.com
 - Soft Margin Add WeChat powcoder
 - Kernel Trick
- Parameter Estimation
- Further Reading

Non-linear Separable SVMs

 Linear classifiers aren't complex enough sometimes.

- Assignment Project Exam Help

 Map data into a richer feature space including nonlinear feature sttps://powcoder.com
- Then construct a hyperplane in that space so all other equations are the same

Non-linear Separable SVMs

Formally, process the data with:

Assignment Project Exam Help

• Then learn the map from $\Phi(x)$ to y https://powcoder.com

Add $\overline{W}e$ C hat powcoder

Example: Polynomial Mapping

Example: Polynomial Mapping

$$\Phi: \mathbb{R}^2 \to \mathbb{R}^3$$

$$(x_1, x_2) \mapsto (z_1, z_2, z_3) := (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

Assignment Project Exam Help

Example: MNIST

 Data: 60,000 training examples, 10000 test examples, 28x28

* Linear SVM has around 8.5% test error. Polynomial SVM has around 8.5% test error.

Add WeChatspowcoder
3536172869
4°0°9'1'12'4'3'2"7
38690560746
1877933985933
3°0°7°4°9°8°0°9°4°1
460456100
1716302117
8026783904
67146807831

MINST Results

	Classifier	Test Error
	linear	8.4%
A	ssignment Project Exa	ım Help
	RBF-SVM	1.4 %
	https://powcoder.co	m _{1.1 %}
	Add Weethat powc	oder%
	Boosted LeNet	0.7 %
	Translation invariant SVM	0.56 %

Choosing a good mapping $\Phi(\cdot)$ (encoding prior knowledge + getting right complexity of function class) for your problem improves results.

SVMs: Kernel Trick

 The Representer theorem (Kimeldorf & Wahba, 1971) shows that (for SVMs as a special case): Assignment Project Exam Help

http
$$s: \pi_{i=1}$$

for some variables α , instead of optimizing w directly, we can optimize α .

- The decision rule is: $f(x) = \sum_{i=1}^{m} \alpha_i \Phi(x_i) \cdot \Phi(x) + b$
 - We call $K(x_i, x) = \Phi(x_i) \cdot \Phi(x)^{i}$ the kernel function.

Kernels

- Why kernels?

 - Make non-separable problem separable.
 Assignment Project Exam Help
 Map data into better representational space
- Common used https://powcoder.com
 - Add WeChat powcoder Linear
 - Polynomial $K(x_i, x_j) = (1 + x_i^T \cdot x_j)^d$
 - Gives feature conjunctions
 - Radial basis function

$$K(x_i, x_j) = e^{-\|x_i - x_j\|^2 / 2\sigma^2}$$

Outline

- Support Vector Machines
 - History
 - Assignment Project Exam Help

 Linear Separable SVMs

 - Non-linear Sehttps://pewcoder.com
 - Soft Margin Add WeChat powcoder
 - Kernel Trick
- **Parameter Estimation**
- Further Reading

SVM: How to Estimate w, b

We take the soft margin classification for example:

$$\min_{w} \frac{1}{2} ||w||^2 \text{Assignment Project Exam Help}$$
s.t. $y_i(w^T x_i + b) > 1 / \xi_i$ $\xi_i > 0$ $\forall i = 1, ..., n$
https://powcoder.com

- Standard way: Use a solver!
 - Add WeChat powcoder
 Solver: software for finding solutions to "common" optimization problems, e.g. LIBSVM (
 http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
- Problems: Solvers are inefficient for big data!

SVM: How to Estimate w, b

• Want to estimate w, b ! $\min_{w} \frac{1}{2} ||w||^2 + C \sum \xi_i$

• Alternative approach:
$$s.t. \forall i \ y_i (w^T x_i + b) \ge 1 - \xi_i, \ \xi_i \ge 0$$
 Assignment Project Exam Help

Want to minimize f(w,b)

$$f(w,b) = \frac{1}{2} \sum_{j=1}^{d} (w_{i}^{(j)})^{2} + C \sum_{i=1}^{d} \max \{0, 1 - y_{i}(\sum_{j=1}^{d} w_{i}^{(j)} x_{i}^{(j)} + b)\}$$

- How to minimize convex functions f(z)
- Use gradient descent: $\min_{z} f(z)$
- Iterate: $z_{t+1} \leftarrow z_t \eta f'(z_t)$

SVM: How to Estimate w?

Want to minimize f(w,b):

$$f(w,b) = \frac{1}{2} \underbrace{\sum_{j=1}^{d} \underbrace{\operatorname{signiment}P_{j}}_{i=1}^{n} \underbrace{\operatorname{pojects} \underbrace{\operatorname{Exam} \underbrace{\operatorname{He}}_{j=1}^{d} w^{(j)} x_{i}^{(j)} + b)}_{j=1}^{d} + b)}_{https://powcoder.com}$$

Empirical loss L

• Compute the gradient $\nabla(j) w.r.t w^{(j)}$

$$\nabla(j) = \frac{\partial f(w,b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_j)}{\partial w^{(j)}}$$

$$\frac{\partial L(x_i, y_j)}{\partial w^{(j)}} = \begin{cases} 0 & \text{if } y_i(w \cdot x_i + b) \ge 1\\ -y_i x_i^{(j)} & \text{otherwise} \end{cases}$$

SVM: How to Estimate w?

Gradient descent:

Iterate untial convergence:

• For j = 1, ..., d Assignment Project Exam Help

```
- Evaluate: \sqrt{\text{typs:}} \frac{\sqrt{\text{powcoder.esm}}}{\partial w^{(j)}} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}
```

- Update: $w^{(j)}$ $\overline{\text{Add}}$ $\overline{\text{We}}$ $\overline{\text{Chait}}$ $\overline{\text{powcoder}}$ $\overline{\text{powcoder}}$ $C \dots$ regularization parameter

Problem:

- Computing $\nabla(i)$ takes O(n) time
 - n ... size of the training dataset

SVM: How to Estimate w?

Stochastic Gradient Descent

We just had:

$$\nabla(j) = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

 Instead of evaluating gradient over all examples, Assignment Project Exam Help evaluate it for each individual training example

$$\nabla(j,i) = w^{(j)} \underbrace{\text{https://pow}}_{\partial w^{(j)}} \text{coder.com}$$

• Stochastic gradient destent (SCID):

Iterate untial convergence:

• For $i=1,\ldots,n$ - For $j=1,\ldots,d$ * Evaluate: $\nabla(j,i)$ * Upadate: $w^{(j)} \leftarrow w^{(j)} - \eta \nabla(j,i)$

Example: Text Categorization

- Example by Leon Bottou:
 - Reuters RCV1 document corpus
 Assignment Project Exam Help
 Predict a category of a document
 - - One vs. the responsible of the com
 - n = 781,000 training examples (documents)
 23,000 test examples

 - -d = 50,000 features
 - One feature per word
 - Remove stop-words
 - Remove low frequency words

Examples: Text Categorization

Questions:

- Is SGD successful at minimizing f(w,b)?
 Assignment Project Exam Help
 How quickly does SGD find the min of f(w,b)?
- What is the erhttps://powgoder.com

	Training time 1	a Value of f(w,b) er	Test error
Standard SVM	23,642 secs	0.2275	6.02%
"Fast SVM"	66 secs	0.2278	6.03%
SGD SVM	1.4 secs	0.2275	6.02%

- SGD-SVM is successful at minimizing the value of f(w,b)
- SGD-SVM is super fast
- SGD-SVM test set error is comparable

Optimization "Accuracy"

For optimizing *f*(*w*,*b*) *within reasonable* quality *SGD-SVM* is super fast

SGD vs. Batch Conjugate Gradient

SGD on full dataset vs. Batch Conjugate

- Gradient on a sample of *n* training examples Assignment Project Exam Help Average Test Loss Theory says: Gradient descent converges in 0.4 n=10000 n=100000 n=781265 p=100000 p=1000000 p=100000 p=1000000 p=100000 p=1000000.35 gradient converges in \sqrt{k} . stochastic 0.3 eChat powcoder 0.25 0.2 0.15 0.1 0.001 0.01 0.1 10 100 1000 Time (seconds) Bottom line: Doing a simple (but fast) SGD update many times is better than doing a complicated (but slow) BCG update a few times k... condition number

• Need to choose learning rate η and t_0

$$w_{t+1} \leftarrow w_t - \frac{\eta_t}{\operatorname{Assign}} \left(w_t + C \frac{\partial L(x_i, y_i)}{\operatorname{Project}} \right)$$
Assignment Project Exam Help

- comparable with the expetred wire of the weights
 - Choose η :
 - Select a small subsample
 - Try various rates η (e.g., 10,1,0.1,0.01,...)
 - Pick the one that most reduces the cost
 - Use η for next 100k iterations on the full dataset

- Sparse Linear SVM:
 - Feature vector x_i is sparse (contains many zeros)

 Assignment Project Exam Help

 Do not do: $x_i = [0,0,0,1,0,0,0,0,5,0,0,0,0,0,0,0]$

 - But represenhutpss/apparsedectoom $x_i = [(4,1), (9,5), \ldots]$
 - Can we do the SGD update more efficiently? $w \leftarrow w \eta \left(w + C \frac{\partial L(x_i, y_i)}{\partial w} \right)$

$$w \leftarrow w - \eta \left(w + C \frac{\partial L(x_i, y_i)}{\partial w} \right)$$

– Approximated in 2 steps:

$$w \leftarrow w - \eta C \frac{\partial L(x_i, y_i)}{\partial w}$$
$$w \leftarrow w(1 - \eta)$$

Cheap: Xi is sparse and so few coordinates **j** of **w** will be updates Expensive: w is not sparse, all coordinates need to be updated

- Solution 1: $\mathbf{w} = \mathbf{s} \cdot \mathbf{v}$
 - Represent vector w as the product of scalar s Assignment Project Exam Help and the vector v
 - Then the update procedurerisom
 - 1) $v = v \mathcal{A} \overset{\partial L(x_i, y_i)}{\text{deChat powcoder}}$ Two step update procedure:
 - 2) $s = s(1 \eta)$

1.
$$w \leftarrow w - \eta C \frac{\partial L(x_i, y_i)}{\partial w}$$

Solution 2:

2.
$$w \leftarrow w(1-\eta)$$

- Perform only step 1) for each training example
- Perform step 2) with lower frequency and higher η

Stopping criteria:

How many iterations of SGD?
Assignment Project Exam Help

- Early stopping with cross validation

 Create validation set powcoder.com

 - Monitor cost function or hthe polidation set
 - Stop when loss stops decreasing

Stopping criteria:

How many iterations of SGD?
Assignment Project Exam Help

- Early Stopping
 - Extract two disjoint subsamples A and B of training data
 - Train on A, stapply walidating powecoder
 - Number of epochs is an estimate of k
 - Train for k epochs on the full dataset

What about Multiple Classes?

Idea 1: - One against all
Assignment Project Exam Help
Learn 3 classifiers https://powcoder.com • + vs. {o,-} Add WeChat powcoder • - vs. {o,+} • o vs. {+,-} Obtain: $w_{+}b_{+}, w_{-}b_{-}, w_{o}b_{o}$ Return class c $\operatorname{arg\,max}_c w_c x + b_c$

What about Multiple Classes?

- Idea 2:
 - Learn 3 sets of weights simultaneously
 Assignment Project Exam Help
 Want the correct class to have highest margin:

Multiclass SVM

Optimization problem:

$$\min_{w,b} \frac{1}{2} \sum_{c} ||w_{\mathbf{A}}||^{2} + C \sum_{i=1}^{n} \xi_{i}$$
 Project Exam Help
$$w_{y_{i}} x_{i} + b_{y_{i}} \geq w_{c} x_{i} + b_{c} + 1 - \xi_{i} \ \forall c \neq y_{i}, \xi_{i} \geq 0, \forall i$$

 $w_{y_i}x_i + b_{y_i} \ge w_c x_i + b_c + 1 - \xi_i \ \forall c \ne y_i, \xi_i \ge 0, \forall i$ - To obtain parameters w_c, b_c for each class c, we can use similar techniques as foliated as foliated as $w_c = 0$.

SVM is widely perceived a very powerful learning algorithm

Demo

Libsvm package for R:
Assignment Project Exam Help
http://cran.r-project.org/web/packages/e1071/index.html

https://powcoder.com

Add WeChat powcoder

Demo

```
> # load library, class, a dependence for the SVM library
> library(class)
> # load library, SVM
> library(e1071) Assignment Project Exam Help
> # load library, mlbench, a collection of some datasets from the UCI repository
> # load data, has 7 classes, details of data:
> library(mlbench)
    http://archive.ics.uci.edu/ml/datasets/Glass+Identification
> data(Glass, package = "mlbened d WeChat powcoder
> # get the index of all data
> index <- 1:nrow(Glass)</pre>
> # generate test index
> testindex <- sample(index, trunc(length(index)/3))
> # generate test set
> testset <- Glass[testindex, ]
> # generate trainin set
> trainset <- Glass[-testindex, ]
```

Demo

```
> # train sym on the training set
> # cost=100: the penalizing parameter for C-classification
> # gamma=1: the radial basis function-specific kernel parameter
> # Output values include Syl index reafst rearising parameter
> sym.model <- sym(Type~ ., data = trainset, cost = 100, gamma = 1)
> # a vector of predicted values // powcoder.com
> # for classification: a vector of labels
> sym.pred <- predict(sym.model, testset[, -10])
> # a cross-tabulation of the truedd we Chat powcoder
> # versus the predicted values
> table(pred = sym.pred, true = testset[, 10])
```

One-slide Takeaway

- SVM:
 - Linear Separable SVMs
 Assignment Project Exam Help
 Non-linear Separable SVMs: Soft Margin and Kernel
 - Non-linear Separable SVMs: Soft Margin and Kernel
 Trick https://powcoder.com
- Parameter Estimation Chat powcoder
 - Solver: e.g. libsvm, not efficient
 - Stochastic gradient descent

Outline

- Support Vector Machines
 - History
 - Assignment Project Exam Help

 Linear Separable SVMs

 - Non-linear Sehttps://pewcoder.com
 - Soft Margin Add WeChat powcoder
 - Kernel Trick
- Parameter Estimation
- Further Reading

Further Reading

- Early paper about SVM algorithm: http://

 link.springer.com/content/pdf/10.1007%2FBF0099

 4018.pdf Assignment Project Exam Help
- More kernel teethiques coder.com
 - Schölkopf, Berahard Burges Christopher J. C.; and Smola, Alexander J. (editors); Advances in Kernel Methods: Support Vector Learning, MIT Press, Cambridge, MA, 1999. ISBN 0-262-19416-3.

Further Reading

- More efficient learning algorithm for SVM:
 - Parallelizing Support Vector Machines on Distributed Assignment Project Exam Help Computers: https://code.google.com/p/psvm/

https://powcoder.com

Add WeChat powcoder

Reference

- http://www.stanford.edu/class/cs246/slides/13-svm.pdf
- http://www.stanford.edu/class/cs276/handouts/lecture14-SVMs.p <u>pt</u> Assignment Project Exam Help
- http://i.stanford.edu/~ullman/pub/ch12.pdf https://powcoder.com http://www.svms.org/tutorials/
- http://www.cs.coluadid.edchathpawtoodedocuments/jason_sv m tutorial.pdf
- http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Chang, E, Zhu, K, Wang, H, Bai, H, Li, J, Qiu, Z, and Cui, H. PSVM: Parallelizing support vector machines on distributed computers. NIPS, 20:257-264. 2007.

In-class Practice

 Consider building an SVM over the (very little) data set shown in above figure, compute the each SVM decision boundary.