Full code for Example 1 of the paper 'climate4R: An Ecosystem of R packages for Climate Data Access, Post-processing and Bias Correction'

M. Iturbide, J. Bedia, S. Herrera, J. Baño, J. Fernández, M. D. Frías, R. Manzanas, D. San Martín, E. Cimadevilla, A.S. Cofiño, J. M. Gutiérrez

2018-03-22

Contents

1	Intr	coduction	1			
2	Example 1: Climate Indices from CORDEX Projections					
	2.1	Loading, collocating and harmonizing data				
	2.2	Post-processing: Bias Correction	7			
		Working with daily data				

1 Introduction

Packages in climate4R:

2 Example 1: Climate Indices from CORDEX Projections

2.1 Loading, collocating and harmonizing data

Define the study area.

```
lon <- c(-10, 20)
lat <- c(35, 46)
```

2.1.1 Cliamte data loading from OpenDap server: E-OBS observational data

Overview of the dataset with function dataInventory:

```
eobs<-"http://opendap.knmi.nl/knmi/thredds/dodsC/e-obs_0.25regular/tx_0.25deg_reg_v16.0.nc"
di <- dataInventory(eobs)</pre>
```

Loading with loadGridData:

2.1.1.1 Using a dictionary

Standard variable naming:

```
## dictionary: standard names
C4R.vocabulary()
```

##		identifier	standard name	units
##	1	hurs	2-meter relative humidity	%
##	2	hursmax	maximum 2-meter relative humidity	%
##	3	hursmin	minimum 2-meter relative humidity	%
##	4	hus	specific humidity	kg.kg-1
##	5	huss	2-meter specific humidity	kg.kg-1
##	6	hussmax	maximum 2-meter specific humidity	kg.kg-1
##	7	hussmin	minimum 2-meter specific humidity	kg.kg-1
##	8	lm	land binary mask	1
##	9	orog	surface altitude	m
##	10	ps	air pressure at surface level	Pa
##	11	psl	air pressure at sea level	Pa
##	12	rlds	surface downwelling longwave radiation	W.m-2
##	13	rlut	toa outgoing longwave flux	W.m-2
##	14	rsds	$\hbox{surface downwelling shortwave radiation}\\$	W.m-2
##	15	sftlf	land area fraction	1
##	16	ta	air temperature	degrees Celsius
##	17	tas	2-meter air temperature	degrees Celsius
##	18	tasmax	maximum 2-m air temperature	degrees Celsius
##	19	tasmin	minimum 2-m air temperature	degrees Celsius
##	20	tdps	2-meter dewpoint temperature	degrees Celsius
##		pr	total precipitation amount	mm
	22	prr	total rainfall amount	mm
##	23	prsn	total snowfall amount	mm
##		ua	eastward wind	m.s-1
##	25	uas	eastward near-surface wind	m.s-1
##	26	va	northward wind	m.s-1
	27	vas	northward near-surface wind	m.s-1
	28	WSS	near-surface wind speed	m.s-1
##		wssmax	maximum near-surface wind speed	m.s-1
##	30	wsg	wind speed of gust	m.s-1

```
## 31
         wsgmax
                              maximum wind speed of gust
                                                                   {\tt m.s-1}
                                                                  m2.s-2
## 32
                                            geopotential
              Z
## 33
              zg
                                     geopotential height
## 34
                                    surface geopotential
                                                                  m2.s-2
              zs
## 35
             zsg
                             surface geopotential height
```

Create dic file (dictionary explained in the loadeR wiki: https://github.com/SantanderMetGroup/loadeR/wiki/Harmonization)

Repit loading operation but using the created dictionaty file:

2.1.1.2 Annual aggregation using transformeR

```
SU.annual <- aggregateGrid(SU, aggr.y = list(FUN = "sum"))
```

2.1.1.3 visualization using visualizeR

First we create color palettes

2.1.2 Cliamte data loading from local files: CORDEX climate change projections

```
#historical data
wdch <- "/myDirectoryOfHistoricalData/"
#climate change data
wdc <- "/myDirectoryOfClimateChangeData/"
list.files(wdc, recursive = T)</pre>
```

character(0)

Figure 1: Southern Europe summer days for E-OBS and the historical period 1971-2000. Fig. 2a in the manuscript.

${\bf Create\ catalogs:}$

```
makeAggregatedDataset(source.dir = wdc, recursive = T, ncml.file = "CDX_rcp85.ncml")
makeAggregatedDataset(source.dir = wdch, recursive = T, ncml.file = "CDX_hist.ncml")
```

Check temperature units:

```
di <- dataInventory("CDX_hist.ncml")</pre>
str(di$tasmax)
## List of 4
   $ Description: chr "Daily Maximum Near-Surface Air Temperature"
##
   $ DataType
                : chr "float"
##
   $ Units
                 : chr "K"
   $ Dimensions :List of 3
##
##
     ..$ time:List of 4
                   : chr "Time"
     .. ..$ Type
##
     .... $ TimeStep : chr "1.0 days"
##
##
     .. ..$ Units
                   : chr "days since 1949-12-01 00:00:00"
##
     ....$ Date_range: chr "1951-01-01T12:00:00Z - 2005-12-31T12:00:00Z"
     ..$ lat :List of 3
##
##
     ....$ Type : chr "GeoY"
##
     ....$ Units : chr "degrees"
##
     ....$ Values: num [1:103] -23.2 -22.8 -22.3 -21.9 -21.4 ...
##
     ..$ lon :List of 3
##
     ....$ Type : chr "GeoX"
##
     .... $ Units : chr "degrees"
     ....$ Values: num [1:106] -28.2 -27.8 -27.3 -26.9 -26.4 ...
```

We see that the variable name is standard but not the units. This can be also controlled by a dictionary:

```
latLim = lat,
years = 1971:2000,
aggr.m = "sum",
threshold = 25,
condition = "GT",
dictionary = "dicCDX.dic")
```

Annual aggragation and visualization of cordex historical data:

Figure 2: Southern Europe summer days for CORDEX and the historical period 1971-2000. Fig. 2b in the manuscript.

2.1.3 Bias eobs vs cordex. Illustrates interpGrid

Loading data for the rcp8.5 scenario and period 2071-2100 using the same dictionary

Figure 3: Southern Europe summer days for interpolated CORDEX and the historical period 1971-2000. Fig. 2c in the manuscript.

Figure 4: Southern Europe summer days bias for CORDEX and the historical period 1971-2000. Fig. 2d in the manuscript.

2.1.4 Calculate "Delta" signal

Figure 5: Southern Europe summer days for the interpolated EC-EARTH driven, RCP8.5 scenario in the future period 2071-2100. Fig. 3a in the manuscript.

2.2 Post-processing: Bias Correction

Figure 6: Southern Europe summer days 'delta' for the EC-EARTH driven, RCP8.5 scenario in the future period 2071-2100. Fig. 3b in the manuscript.

Figure 7: Southern Europe summer days for the bias corrected (additive scaling) EC-EARTH driven, RCP8.5 scenario in the future period 2071-2100. Fig. 3c in the manuscript.

Figure 8: Southern Europe summer days 'delta' for the bias corrected (additive scaling) EC-EARTH driven, RCP8.5 scenario in the future period 2071-2100. Not shown in the manuscript.

Figure 9: Annual summer days time series for a single gridbox (Zaragoza, Spain) for the observations (E-OBS) and the projection (original and bias corrected) in the historical and future periods. Fig. 4 in the manuscript.

2.3 Working with daily data

```
TX <- loadGridData(eobs,
                   var = "tasmax",
                     season = 1:12,
                         lonLim = lon,
                         latLim = lat,
                         years = 1971:2000,
                         dictionary = "dicEOBS.dic")
TXh <- loadGridData(dataset = "CDX_hist.ncml",
                     var = "tasmax",
                     season = 1:12,
                     lonLim = lon,
                     latLim = lat,
                     years = 1971:2000,
                     dictionary = "dicCDX.dic")
TXf <- loadGridData(dataset = "CDX_rcp85.ncml",
                     var = "tasmax",
                     season = 1:12,
                     lonLim = lon,
                     latLim = lat,
                     years = 2071:2100,
                     dictionary = "dicCDX.dic")
TXf.bc <- biasCorrection(y = TX,
                         x = TXh,
                         newdata = TXf,
                         method = "eqm",
                         window = c(30, 7),
                         extrapolation = "constant")
SUf <- climdexGrid(tx = TXf, index.code = "SU")
SUf.bc <- climdexGrid(tx = TXf.bc, index.code = "SU")
SUf.interp <- interpGrid(SUf, getGrid(TX))</pre>
SUf.interp <- gridArithmetics(SUf.interp, eobs.mask, operator = "+")
spatialPlot(climatology(SUf.interp), backdrop.theme = "countries",
            at = seq(0, 260, 10), col.regions = colorRampPalette(colsindex))
                                                                                    250
                                                                                    200
                                                                                   150
                                                                                    100
                                                                                   50
```

Figure 10: Southern Europe summer days for the EC-EARTH driven, RCP8.5 scenario in the future period 2071-2100 (calculated with package climate4R.climdex from daily data). Not shown in the manuscript.

Figure 11: Southern Europe summer days for the bias corrected (emipirical quantile mapping) EC-EARTH driven, RCP8.5 scenario in the future period 2071-2100 (calculated with package climate4R.climdex from daily data). Fig. 5 in the manuscript.