## Codility\_

### CodeCheck Report: training94DNQ6-AUN

Test Name:

Check out Codility training tasks

Summary Timeline





### **Tasks Details**

# 1. MaxProfit

of stock
prices Task Score
compute
the
maximum
possible

Correctness

Performance

100%

100%

Task description

earning.

Solution

Programming language used: Python

Total time used: 1 minutes

Effective time used: 1 minutes

Notes: not defined yet

1 von 3

An array A consisting of N integers is given. It contains daily prices of a stock share for a period of N consecutive days. If a single share was bought on day P and sold on day Q, where  $0 \le P \le Q < N$ , then the *profit* of such transaction is equal to A[Q] – A[P], provided that A[Q]  $\ge$  A[P]. Otherwise, the transaction brings *loss* of A[P] – A[Q].

For example, consider the following array A consisting of six elements such that:

A[0] = 23171 A[1] = 21011 A[2] = 21123 A[3] = 21366 A[4] = 21013 A[5] = 21367

If a share was bought on day 0 and sold on day 2, a loss of 2048 would occur because A[2] – A[0] = 21123 – 23171 = -2048. If a share was bought on day 4 and sold on day 5, a profit of 354 would occur because A[5] – A[4] = 21367 - 21013 = 354. Maximum possible profit was 356. It would occur if a share was bought on day 1 and sold on day 5.

Write a function,

def solution(A)

that, given an array A consisting of N integers containing daily prices of a stock share for a period of N consecutive days, returns the maximum possible profit from one transaction during this period. The function should return 0 if it was impossible to gain any profit.

For example, given array A consisting of six elements such that:

A[0] = 23171 A[1] = 21011 A[2] = 21123 A[3] = 21366 A[4] = 21013 A[5] = 21367

the function should return 356, as explained above.

Write an **efficient** algorithm for the following assumptions:

- N is an integer within the range [0..400,000];
- each element of array A is an integer within the range [0..200,000].

Copyright 2009–2023 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.



### Analysis summary

The solution obtained perfect score.

#### **Analysis**

Detected time complexity: O(N)

| expand all       | Example tes                                     | ests        |
|------------------|-------------------------------------------------|-------------|
| examp            | ple<br>le, length=6                             | <b>∠</b> OK |
| expand all       | Correctness t                                   | tests       |
| simpl<br>V-patte | e_1<br>ern sequence, length=7                   | <b>∠</b> OK |
|                  | e_desc<br>Iding and ascending<br>Ince, length=5 | <b>✓</b> OK |
| •                | e_empty<br>and [0,200000] sequence              | <b>∨</b> OK |
| two_h            | nills<br>creasing subsequences                  | <b>∠</b> OK |
| ▶ max_           | profit_after_max_an                             | <b>∠</b> OK |

2 von 3 18.07.23, 14:35

| ax profit is after global |               |
|---------------------------|---------------|
| naximum and before glob   | al            |
| ninimum                   |               |
| xpand all Perfo           | ormance tests |
| ► medium_1                | <b>✓</b> OK   |
| large value (99) follov   | wed by        |
| short V-pattern (value    | es from       |
| [15]) repeated 100 ti     | imes          |
| large_1                   | <b>✓</b> OK   |
| large value (99) follow   | wed by        |
| short pattern (values     | from [16])    |
| repeated 10K times        |               |
| large_2                   | ✓ OK          |
| chaotic sequence of 2     | 200K          |
| values from [100K12       | 20K], then    |
| 200K values from [0       | 100K]         |
| large_3                   | <b>✓</b> OK   |
| chaotic sequence of 2     | 200K          |
| values from [1200K]       |               |

3 von 3