Caterpillar Tube Pricing Prediction with Elastic Net and Tree-based Boosting

ST697 Project

Dept. of Mechanical Engineering

Ziye Liu

Background

- Project from Kaggle data competition 2015 Caterpillar Tube Pricing
- Caterpillar manufactures construction and mining equipment
- Those equipment use lots of tubes assemblies
- Tubes assembly
 - One or more components
 - Different base materials
 - Number of bends
 - Bend radius
 - End type

Problem Statement

- Given the detailed information of tube, components, and quantity
- Predict the quote price

Data Description

Train (# 30213)
tube_assembly_id
supplier
quote_date
annual_usage
min_order_quality
bracket_pricing
quantity
cost (target)
Test (# 30235)

tube_assembly_id supplier quote date annual_usage min_order_quality bracket pricing quantity

•
Tube
tube_assembly_id
material_id
diameter
length
num_bends
end_a_1x
end_a_2x
end_x_1x
end_x_2x
end_a
end_x
number_boss
number_bracket
other

forming

Type_Connection connection_type_id name

Type_Component component_id name

Evaluation Metric

Root Mean Square Log Error (RMSLE)

$$RMSLE(y_i, \hat{y}_i) = \sqrt{\frac{1}{n} \sum_{1}^{n} [\log(y_i + 1) - \log(\hat{y}_i + 1)]^2}$$
$$= \sqrt{\frac{1}{n} \sum_{1}^{n} \left[\log\left(\frac{y_i + 1}{\hat{y}_i + 1}\right) \right]^2}$$

n the number of quotes

 \hat{y}_i Predicted price

 y_i actual price

log(x) the natural logarithm

More focus on relative error

Convert into RMSE

$$z = \log(1+y)$$

$$= \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{z}_i - z_i)^2} = \text{RMSE}(z_i, \hat{z}_i)$$

Data Preprocessing

- Assemble all tables together
- Data cleaning
 - Fill all NA values as 0
 - Unified the units (units not consistent, convert SI units into English unit)
 - Fix errors
- One-hot encoding all categorical features
- Log transform target variable and use RMSE evaluation metric

	J	κ	L	l n
_siz	thread_pi	nominal_size_1	end_form_id_2	connection
L87	12	NA	A-004	NA
312	16	NA	A-004	NA
L 87	12	NA	A-004	NA
	NA	22.22	A-005	B-002
1	14	NA	A-004	NA
1	14	See Drawing	A-004	NA
	NA	25.4	A-001	B-002

Feature Engineering

- Construct new features
 - Cross-section area of tube
 - Total number of components
 - Total/mean/min/max weight of components
 - Total thread length
 - Total number of unique feature
 - ...

Special Consideration for Cross Validation

If randomly shuffle the datasets during cross validation

Training						
tube_asembly_id	features	quantity	cost			
TA-00056		1	28.6468			
TA-00056		25	5.87570			
TA-00056		100	5.28034			

Validation						
tube_asembly_id	features	quantity	cost			
TA-00056		10				
TA-00056		50				
TA-00056		250				

- Cross validation would not work
- Treat records with same "tube_assembly_id" as a group
- Shuffle the groups

Linear Model (Elastic Net) Prediction

- Grid search + cross validation to find optimal α and λ
- Optimal $\alpha = 1.0$ (complete lasso) with test RMLSE = 0.51937

Boosting Model (xgboost) Prediction

- Grid search + cross validation to find optimal max tree depth and number of boosting rounds (i.e., number of trees)
- Min cv error rule performs better than one standard error rule
- Optimal max tree depth = 6, number of boosting rounds = 1495

Kaggle Ranking

- Using best xgboost model selected by min cv error rule
- Leader board results
 - Public leader board RMSLE: 0.233753
 - Private leader board RMSLE: 0.22411
 - Ranking: 390/1323

Conclusion

- xgboost has better predictive accuracy than elastic net.
- For xgboost, model selected by min cv error rule is better than one standard error rule.

Thanks! Any questions?