Morphological Processing

Morphological Processing

- Analyze images
- Define structure
- Define regions and boundaries
- Based on set theory
- Unified theoretical approach

Morphology

The word morphology refers to the scientific branch that deals the forms and structures of animals/plants.

Morphology in image processing is a tool for extracting image components that are useful in the representation and description of region shape, such as **boundaries** and **skeletons**.

Furthermore, the morphological operations can be used for **filtering, thinning and pruning.**

The language of the Morphology comes from the set theory, where image objects can be represented by sets. For example an image object containing black pixels can be considered a set of black pixels in 2D space of \mathbb{Z}^2

Morphological Operations

- Dilation
 - Fill in gaps
- Erosion
 - Delete unneeded detail (noise)
- Opening
 - Smooth inner contours
- Closing
 - Smooth outer contours
- Hit or Miss Transformation
 - Detect shapes

Set Theory Summary

- a = (x, y) is an element of A
- elements of imagespixel coordinates
- subset
- union
- intersection
- complement
- difference

$$a \in A$$

$$A \subseteq B$$

$$A \bigcup B$$

$$A \cap B$$

$$A^{C} = \{ w \mid w \notin A \}$$

$$A - B = A \cap B^{C}$$

Dilation and Erosion

Dilation and erosion are the two fundamental operations used in morphological image processing. Almost all morphological algorithms depend on these two operations:

Dilation: Given A and B sets in Z2, the dilation of A by B, is defined by:

 $A \oplus B = \left\{ z \left| (\hat{B})_z \cap A \neq \emptyset \right\} \right\}$

The dilation of A and B is a set of all displacements, z, such that B and A overlap by *at least* one element.

Set B is referred to as the **structuring element** and used in dilation as well as in other morphological operations. **Dilation expands/dilutes a given image.**

Erosion

Erosion: Given A and B sets in Z^2 , the erosion of A by structuring element B, is defined by:

$$A \ominus B = \left\{ z \, \middle| (B)_z \subseteq A \right\}$$

The erosion of A by structuring element B is the **set of all** points **z**, **such that B**, **translated by z**, **is contained in A**.

Note that in erosion the structuring element B erodes the input image A at its boundaries. Erosion **shrinks** a given image.

Opening Operation

Opening: The process of erosion followed by dilation is called opening.

It has the effect of eliminating small and thin objects, breaking the objects at thin points and smoothing the boundaries/contours of the objects.

Given set A and the structuring element B. Opening of A by structuring element B is defined by:

$$A \circ B = (A \ominus B) \oplus B$$

The opening of A by the structuring element B is obtained by taking the union of all translates of B that fit into A.

$$A \circ B = \bigcup \{B_z | (B_z) \subseteq A\}$$

Opening Operation

abcd

FIGURE 9.8 (a) Structuring element B "rolling" along the inner boundary of A (the dot indicates the origin of B). (c) The heavy line is the outer boundary of the opening. (d) Complete opening (shaded).

Closing Operation

Closing: The process of dilation followed by erosion is called closing.

It has the effect of filling small and thin holes, connecting nearby objects and smoothing the boundaries/contours of the objects.

Given set A and the structuring element B. Closing of A by structuring element B is defined by:

$$A \bullet B = (A \oplus B) \Theta B$$

The closing has a similar geometric interpretation except that we roll B on the outside of the boundary.

$$A \bullet B = \bigcup \{ (B_z) | (B_z) \cap A \neq \emptyset \}$$

FIGURE 9.9 (a) Structuring element *B* "rolling" on the outer boundary of set *A*. (b) Heavy line is the outer boundary of the closing. (c) Complete closing (shaded).

Opening and Closing

- Opening
 - smooth contours
 - break narrow isthmus
 - eliminate narrow protrusions
- Closing
 - smooth contours
 - fuse breaks
 - eliminate holes
 - fill in small gaps

Region Filling

Region filling can be performed by using the following definition.

Given a symmetric structuring element B, one of the non-boundary pixels (Xk) is consecutively diluted and its intersection with the complement of A is taken as follows:

$$X_k = (X_{k-1} \oplus B) \cap A^c$$

$$k = 1,2,3,...$$
terminates when $X_k = X_{k-1}$

$$X_0 = 1 \text{ (inner pixel)}$$

Following consecutive dilations and their intersection with the complement of A, finally resulting set is the filled inner boundary region and its union with A gives the filled region F(A)

$$F(A) = X_k \cup A$$

a b c

FIGURE 9.16 (a) Binary image (the white dot inside one of the regions is the starting point for the region-filling algorithm). (b) Result of filling that region (c) Result of filling all regions.

Finding the starting points is often done manually