1 Билеты №21. Теорема Виета

Теорема Виета

ullet Пусть K — коммутативное кольцо, $a_1, \dots, a_n \in K$ (не обязательно все числа различны). Введем обозначения:

$$\sigma_1(a_1,\ldots,a_n)=a_1+a_2+\cdots+a_n;$$

$$\sigma_2(a_1,\ldots,a_n) = \sum\limits_{1 \leq i < j \leq n} a_i a_j$$
 (сумма всех произведений по два

числа);

$$\sigma_k(a_1,\dots,a_n) = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} a_{i_1} a_{i_2} \dots a_{i_k}$$
 (сумма всех произведений по k чисел); $\sigma_n(a_1,\dots,a_n) = a_1 a_2 \dots a_n.$

Теорема 12

Пусть
$$f = c_n t^n + \dots + c_1 t + c_0 \in K[t]$$
, причем $f = c_n (t - a_1) \dots (t - a_n)$. Тогда $\frac{c_i}{c_n} = (-1)^{n-i} \sigma_{n-i} (a_1, \dots, a_n)$ для каждого $i \in \{0, \dots, n-1\}$.

Доказательство. • $\frac{c_i}{c_n}$ — это коэффициент многочлена $(t-a_1)\ldots(t-a_n)$ при t^i .

 \bullet Из i скобок мы должны выбрать t, а из остальных n-iскобок вида $(t - a_i)$ должны выбрать $-a_i$. Перемножим все выбранные числа, сложим по всем выборкам и вынесем $(-1)^{n-i}$ — получим в точности $\sigma_{n-i}(a_1,\ldots,a_n)$.

Билеты №22. Интерполяция: формула Лагранжа 2

Интерполяция

- Пусть К поле, даны различные числа $x_0, x_1, \ldots, x_n \in K$ и (не обязательно различные) $y_0, y_1, \dots, y_n \in K$.
- Нужно построить интерполяционный многочлен $f \in K[t]$: такой, что $\deg(f) \le n$ и $f(x_i) = y_i$ для всех $i \in \{0, 1, \ldots, n\}.$

Лемма 9

Существует не более одного интерполяционного многочлена для заданных $x_0, x_1, \ldots, x_n \in K$ (различных) $u y_0, y_1, \ldots, y_n \in K$.

Доказательство. \bullet Пусть f_1 и f_2 — два разных интерполяционных многочлена. Тогда $\mathit{f}_1 - \mathit{f}_2 \in \mathit{K}[\mathit{t}]$, $\deg(f_1-f_2)\leq \max(\deg(f_1),\deg(f_2))\leq n.$

ullet Однако, многочлен f_1-f_2 имеет n+1 различных корней x_0, \ldots, x_n (так как $f_1(x_i) = f_2(x_i)$), противоречие с Теоремой 7.

Вспомогательный пример. Пусть $f_1 = a_3x^3 + a_2x^2 + a_1x + a_0$, $f_2 = b_3x^3 + b_2x^2 + b_1x + b_0$. Тогда $h = f_1 - f_2 = (a_3 - b_3)x^3 + (a_2 - b_2)x^2 + (a_1 - b_1)x + (a_0 - b_0) \neq 0$. Многочлен $h \neq 0$ и $h \in K[t]$, так как иначе $f_1 = f_2$.

Так как $h(x_i) = f_1(x_i) - f_2(x_i) = 0$. Отсюда следует, что $h(x_1) = h(x_2) = h(x_3) = h(x_4) = 0$. То есть у многочлена h есть 4 корня, но так как $h = (a_3 - b_3)x^3 + (a_2 - b_2)x^2 + (a_1 - b_1)x + (a_0 - b_0)$, то он имеет не больше 3 корней. Противоречие...

Интерполяционный многочлен Лагранжа

- Построим такой многочлен f_i степени не более n, что $f_i(x_i) = 1$ и $f_i(x_i) = 0$ при $j \in \{1, \dots, n\}, j \neq i$.
- Пусть $\varphi(t) = (t x_0)(t x_1) \dots (t x_n)$, а $\varphi_i(t) = \frac{\varphi(t)}{(t x_i)}$ это тоже многочлен из K[t].
- ullet Так как $f_i(x_j)=0$ при $j\in\{1,\ldots,n\},\ j
 eq i$, по Теореме 7 $f_i(t)\ \vdots\ arphi_i(t)$. Так как $\deg(f_i)=\deg(arphi_i)$, мы имеем $f_i=c_iarphi_i(t)$, где $c_i\in K$.
- ullet Подставим x_i , чтобы найти c_i : $1=f_i(x_i)=c_i arphi_i(x_i)$, откуда $c_i=rac{1}{arphi_i(x_i)}.$
- ullet По Лемме 7, $arphi'(t)=\sum\limits_{i=0}^n arphi_i(t)$. При j
 eq i мы имеем $arphi_j(x_i)=0$. Следовательно, $arphi'(x_i)=arphi_i(x_i)$.
- ullet Таким образом, $f_i(t) = rac{arphi_i(t)}{arphi_i(x_i)} = rac{arphi(t)}{arphi'(x_i)\cdot(t-x_i)}.$
- Следовательно,

$$f(t) = \sum_{i=0}^{n} y_i f_i(t) = \sum_{i=0}^{n} y_i \cdot \frac{\varphi(t)}{\varphi'(x_i) \cdot (t - x_i)}.$$

Пример.

$$\varphi_1 = \frac{(x - x_2)(x - x_3)(x - x_4)}{(x_1 - x_2)(x_1 - x_3)(x_1 - x_4)}$$

$$\varphi_2 = \frac{(x - x_1)(x - x_3)(x - x_4)}{(x_2 - x_1)(x_2 - x_3)(x_1 - x_4)}$$

$$\varphi_3 = \frac{(x - x_1)(x - x_2)(x - x_4)}{(x_3 - x_1)(x_3 - x_2)(x_3 - x_4)}$$

$$\varphi_4 = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_4 - x_1)(x_4 - x_2)(x_4 - x_3)}$$

Эти многочлены имеют интересное свойство. Рассмотрим, например, φ_1 . Во всех значениях, кроме x_1 , он превращается в 0. Когда мы подставляем x_1 он обращается в 1.

Пусть $f(x_i) = f_i$. Тогда многочлен будет выглядеть следующим образом:

$$f(x) = \varphi_1 f_1 + \varphi_2 f_2 + \varphi_3 f_3 + \varphi_3 f_3$$
$$f(x_1) = f_1, \ f(x_2) = f_2, \ f(x_3) = f_3, \ f(x_4) = f_4$$

Ура, работает!

Пример [править | править код]

Найдем формулу интерполяции для $f(x) = \operatorname{tg}(x)$ имеющей следующие значения:

$$\begin{aligned} x_0 &= -1.5 & f(x_0) &= -14,1014 \\ x_1 &= -0.75 & f(x_1) &= -0,931596 \\ x_2 &= 0 & f(x_2) &= 0 \\ x_3 &= 0.75 & f(x_3) &= 0,931596 \\ x_4 &= 1.5 & f(x_4) &= 14,1014. \end{aligned}$$

$$\begin{aligned} l_0(x) &= \frac{x-x_1}{x_0-x_1} \cdot \frac{x-x_2}{x_0-x_2} \cdot \frac{x-x_3}{x_0-x_3} \cdot \frac{x-x_4}{x_0-x_4} &= \frac{1}{243}x(2x-3)(4x-3)(4x+3) \\ l_1(x) &= \frac{x-x_0}{x_1-x_0} \cdot \frac{x-x_2}{x_1-x_2} \cdot \frac{x-x_3}{x_1-x_3} \cdot \frac{x-x_4}{x_1-x_4} &= -\frac{8}{243}x(2x-3)(2x+3)(4x-3) \\ l_2(x) &= \frac{x-x_0}{x_2-x_0} \cdot \frac{x-x_1}{x_2-x_1} \cdot \frac{x-x_3}{x_2-x_3} \cdot \frac{x-x_4}{x_2-x_4} &= \frac{3}{243}(2x+3)(4x+3)(4x-3)(2x-3) \\ l_3(x) &= \frac{x-x_0}{x_3-x_0} \cdot \frac{x-x_1}{x_3-x_1} \cdot \frac{x-x_2}{x_3-x_2} \cdot \frac{x-x_4}{x_3-x_4} &= -\frac{8}{243}x(2x-3)(2x+3)(4x+3) \\ l_4(x) &= \frac{x-x_0}{x_4-x_0} \cdot \frac{x-x_1}{x_4-x_1} \cdot \frac{x-x_2}{x_4-x_2} \cdot \frac{x-x_3}{x_4-x_3} &= \frac{1}{243}x(2x+3)(4x-3)(4x+3). \end{aligned}$$

Получим

$$L(x) = rac{1}{243} \Big(f(x_0)x(2x-3)(4x-3)(4x+3) \\ -8f(x_1)x(2x-3)(2x+3)(4x-3) \\ +3f(x_2)(2x+3)(4x+3)(4x-3)(2x-3) \\ -8f(x_3)x(2x-3)(2x+3)(4x+3) \\ +f(x_4)x(2x+3)(4x-3)(4x+3) \Big) \\ =4,834848x^3-1,477474x.$$