Chapitre 23

Ensembles finis et dénombrements

Rappelons la propriété fondamentale de \mathbb{N} : toute partie non vide de \mathbb{N} admet un plus petit élément (*i.e.* si $P \subset \mathbb{N}$ et $P \neq \emptyset$, il existe $m \in P$ tel que $m \leqslant n$ pour tout $n \in P$). De même, tout partie non vide majorée de \mathbb{N} admet un plus grand élément (*i.e.* si $P \subset \mathbb{N}$ et $P \neq \emptyset$ et il existe $A \in \mathbb{N}$ tel que $A \geqslant n$ pour tout $n \in P$, alors il existe $M \in P$ tel que $M \geqslant n$ pour tout $n \in P$).

Dans tout le chapitre, on note $E_n = [1, n]$.

1 Cardinal d'un ensemble fini

Définition 1.1 (Ensemble fini)

Un ensemble E est fini s'il existe un entier $n \in \mathbb{N}$ et une bijection de [1, n] sur E. L'entier n est alors unique, et s'appelle le cardinal de E (ou nombre d'éléments), et est noté card(E), ou |E|, ou #E.

Remarques.

- 1. L'ensemble vide est le seul ensemble de cardinal 0, puisque $[1,0] = \emptyset$.
- 2. Une bijection de [1, n] sur E permet de numéroter les éléments de E.

Proposition 1.2

Soit E un ensemble fini.

1. Si $x \in E$, alors $E \setminus \{x\}$ est un ensemble fini de cardinal card(E) - 1.

2. Un sous-ensemble E' de E est fini, et $\operatorname{card}(E') \leq \operatorname{card}(E)$ avec égalité si et seulement si E' = E.

Remarque.

Un ensemble fini n'est donc jamais en bijection avec un de ses sousensembles strict. C'est faux pour les ensembles infinis. Par exemple, l'application qui à un entier naturel associe son double est une bijection de \mathbb{N} vers l'ensemble des entiers naturels pairs.

Proposition 1.3

Un sous-ensemble de N non vide est fini si et seulement s'il est majoré.

2 Opérations sur les ensembles finis

Proposition 2.1

- 1. Soient A, B deux ensembles finis disjoints. Alors $A \cup B$ est un ensemble fini et $card(A \cup B) = card(A) + card(B)$.
- 2. Soient $n \in \mathbb{N}^*$ et $(A_k)_{k=1,\dots,n}$ une famille d'ensembles finis deux à deux disjoints. Alors leur union est un ensemble fini et on a

$$\operatorname{card}\left(\bigcup_{k=1}^{n} A_k\right) = \sum_{k=1}^{n} \operatorname{card}(A_k).$$

Proposition 2.2

Soient A et B deux sous-ensembles d'un ensemble fini E. Alors

$$\operatorname{card}(C_E A) = \operatorname{card}(E) - \operatorname{card}(A).$$

et

$$\operatorname{card}(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B) - \operatorname{card}(A \cap B).$$

Proposition 2.3

1. Soient E et F deux ensembles finis. Alors l'ensemble $E \times F$ est fini et on a

$$\operatorname{card}(E \times F) = \operatorname{card}(E) \times \operatorname{card}(F).$$

2. Soient $p \in \mathbb{N}^*$ et E_1, \ldots, E_p des ensembles finis. Alors $E_1 \times \cdots \times E_p$ est fini et

$$\operatorname{card}(E_1 \times \cdots \times E_p) = \operatorname{card}(E_1) \times \cdots \times \operatorname{card}(E_p).$$

3 Fonctions sur les ensembles finis

Proposition 3.1

Deux ensembles finis sont en bijection si et seulement s'ils ont même cardinal.

Proposition 3.2

Soient E et F deux ensembles finis et $f \in \mathcal{F}(E, F)$.

- 1. On a $\operatorname{card}(f(E)) \leqslant \operatorname{card}(F)$ avec égalité si et seulement si f est surjective.
- 2. On a $\operatorname{card}(f(E)) \leq \operatorname{card}(E)$ avec égalité si et seulement si f est injective.

Remarque.

Soit f une fonction de E vers F. Si f est injective et F est fini, alors E est fini, et si f est surjective et E est fini, alors F est fini.

Théorème 3.3

Soient E et F deux ensembles finis de même cardinal et $f \in \mathcal{F}(E, F)$. Alors

f est bijective $\iff f$ est injective $\iff f$ est surjective.

4 Arrangements

Définition 4.1 (p-listes)

Soit $p \in \mathbb{N}^*$ et E un ensemble. Une p-liste d'éléments de E est un élément de E^p , i.e. un p-uplet d'éléments de E.

Remarque.

L'ensemble des p-listes de E est en bijection avec l'ensemble des fonctions $[1, p] \longrightarrow E$. En effet, la fonction

$$E^{[1,p]} \longrightarrow E^p$$

$$f \longmapsto (f(1), \dots, f(p))$$

est une bijection (la fonction f est entièrement déterminée par le p-uplet $(f(1), \ldots, f(p))$.

Définition 4.2 (p-arrangements)

Soit $p \in \mathbb{N}^*$ et E un ensemble. Un p-arrangement d'éléments de E est une p-liste d'éléments de E deux à deux distincts.

Remarque.

L'ensemble des p-arrangements de E est en bijection avec l'ensemble des fonctions $[\![1,p]\!] \longrightarrow E$ injectives. En effet, en notant $\mathcal I$ l'ensemble des fonctions injectives de $[\![1,p]\!]$ dans E, et $\mathcal A$ l'ensembles des p-arrangements de E, la fonction

$$\mathcal{I} \longrightarrow \mathcal{A}
f \longmapsto (f(1), \dots, f(p))$$

est une bijection (la fonction f étant injective, le p-uplet $(f(1), \ldots, f(p))$ est un arrangement de E).

Définition 4.3 (A_n^p)

On note A_n^p le nombre de p-arrangements d'un ensemble de cardinal n.

Remarque.

Le nombre d'arrangements et de listes d'un ensemble ne dépend que du cardinal de l'ensemble.

Théorème 4.4 (Nombre d'arrangements)

Soient $n \in \mathbb{N}$ et $p \in \mathbb{N}^*$. Alors

$$A_n^p = \begin{cases} \frac{n!}{(n-p)!} & \text{si } p \leqslant n \\ 0 & \text{si } p > n \end{cases}.$$

Remarque.

Par convention, on définit $A_n^0 = 1$, cohérent avec la formule ci-dessus : il y a un 0-arrangement, c'est \emptyset .

5 Dénombrement de fonctions

Proposition 5.1 (Cardinal de l'ensemble des fonctions)

Soient E et F deux ensembles finis. L'ensemble $F^E = \mathcal{F}(E, F)$ des fonctions de E dans F est un ensemble fini et

$$\operatorname{card}(F^E) = (\operatorname{card}(F))^{\operatorname{card}(E)}.$$

Proposition 5.2 (Nombre d'injections)

Soient E et F deux ensembles finis non vides de cardinals respectifs p et n avec $p \leq n$. Le nombre d'injection de E dans F est A_n^p .

Corollaire 5.3 (Nombre de permutations)

Soit E un ensemble fini non vide de cardinal n. Le nombre de permutaions de E (i.e. le nombre de bijections de E dans lui-même) est n!.

Corollaire 5.4 (Cardinal de l'ensemble des parties)

Soit E un ensemble fini. L'ensemble $\mathcal{P}(E)$ des sous-ensembles de E est un ensemble fini dont le cardinal est

$$2^{\operatorname{card}(E)}$$
.

6 Combinaisons

Définition 6.1 (p-combinaisons)

Soient $n, p \in \mathbb{N}$. Une p-combinaison d'un ensemble E à n-éléments est un sous-ensemble à p éléments de E.

Définition 6.2 $\binom{n}{p}$

Soient $n, p \in \mathbb{N}$. On note $\binom{n}{p}$ le nombre de p-combinaisons à n-éléments, i.e. le nombre de sous-ensembles à p éléments d'un ensemble à n éléments.

Remarque.

Ce nombre ne dépend que du cardinal de l'ensemble considéré.

Théorème 6.3 (Nombre de p-combinaisons)

Soient $n, p \in \mathbb{N}$. Alors

$$\binom{n}{p} = \begin{cases} \frac{n!}{p!(n-p)!} & \text{si } p \leq n \\ 0 & \text{sinon.} \end{cases}.$$

Proposition 6.4

Soient $n, p \in \mathbb{N}$ avec $p \leq n$. Alors

$$\binom{n}{n-p} = \binom{n}{p}, \qquad \sum_{p=0}^{n} \binom{n}{p} = 2^{n}, \qquad \text{et si } n, p \in \mathbb{N}^{*}, \ \binom{n}{p} = \binom{n-1}{p-1} + \binom{n}{p-1} = \binom{n-1}{p-1} + \binom{n-1}{p-1} = \binom{n-1}{p-1} + \binom{n}{p-1} = \binom{n-1}{p-1} + \binom{n-1}{p-1} = \binom{n-1}{p-1} + \binom{n-1}{p-1} = \binom{n-1$$

Proposition 6.5

Soient
$$n, p \in \mathbb{N}^*$$
. Alors $\binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1}$.

Proposition 6.6 (Formule du binôme de Newton)

Soient a et b deux éléments d'un anneau commutatif K, et $n \in \mathbb{N}^*$. Alors

$$(a+b)^n = \sum_{j=0}^n \binom{n}{j} a^j b^{n-j}.$$

Méthode 6.7

- 1. Les p-combinaisons correspondent aux tirages simultanés de p boules dans une urne.
- 2. Les p-listes correspondent aux tirages successifs avec remise de p boules (et l'ordre et important).
- 3. Les p-arrangements correspondent aux tirages successifs sans remise de p boules (où l'ordre est important).

7 Compétences