CS9223 Programming for Big Data - Assignment 2

Due Date: March 22th 11PM EST

Details

You **must use** Hadoop Map/Reduce (Java or Python) or Pig, (Spark as extra credit) to analyze the Yelp data challenge: https://www.yelp.com/dataset_challenge.

The Challenge Dataset:

- 4.1M reviews and 947K tips by 1M users for 144K businesses
- 1.1M business attributes, e.g., hours, parking availability, ambience
- Aggregated check-ins over time for each of the 125K businesses
- 200,000 pictures from the included businesses

Cities:

- U.K.: Edinburgh
- Germany: Karlsruhe
- Canada: Montreal and Waterloo
- U.S.: Pittsburgh, Charlotte, Urbana-Champaign, Phoenix, Las Vegas, Madison, Cleveland

Specifically, you *must* provide the answers (and code) to the 5 following questions:

- 1. Summarize the number of unique *reviewers* by US city, by business category. That is, count the unique reviewers by city, by business.
- 2. Rank all cities by # of stars descending, for each category
- 3. What is the average rank (# stars) for businesses within 15 km of Edinburgh Castle, Scotland, by type of business (category)? Note: A business with more than one category will be listed more than once, once per category,

Center: Edinburg Castle, Scotland, UK

Latitude/Longitude: 55.9469753, -3.2096308

The bounding circle for this problem is a 15 km radius. A business falls in the region if it's coordinates are within the circle.

The shortest distance (the <u>geodesic</u>) between two given points $P_1 = (lat_1, lon_1)$ and $P_2 = (lat_2, lon_2)$ on the surface of a sphere with radius R is the <u>great circle distance</u>. It can be calculated using the formula:

$$dist = \arccos(\sin(lat_1) \cdot \sin(lat_2) + \cos(lat_1) \cdot \cos(lat_2) \cdot \cos(lon_1 - lon_2)) \cdot R$$
(1)

For example, the distance between the Statue of Liberty at $(40.6892^{\circ}, -74.0444^{\circ}) = (0.7102 \text{ rad}, -1.2923 \text{ rad})$ and the Eiffel Tower at $(48.8583^{\circ}, 2.2945^{\circ}) = (0.8527 \text{ rad}, 0.0400 \text{ rad}) - \text{assuming a spherical approximation}^{\circ}$ of the figure of the Earth with radius R = 6371 km - 1320 rad is:

$$dist = \arccos(\sin(0.7102) \cdot \sin(0.8527) + \cos(0.7102) \cdot \cos(0.8527) \cdot \cos(-1.2923 - 0.0400)) \cdot 6371 \text{ km}$$

$$= 5837 \text{ km}$$
(2)

Radians = Degrees * PI / 180, Degrees = Radians * 180 / PI

4. Rank reviewers **in Q3** by their number of reviews. For the top 10 reviewers, show their average number of stars, by category.

5. For the top 10 and bottom 10 category *Food* businesses in Q3, (in terms of stars), summarize star rating for reviews in January through May only.

Grading (total 150 points)

This assignment **MUST** be completed on your own. Duplicate assignments will be flagged and failed. 30 points each question (1-5) = 125 points

Extra Points (100 extra points)

Complete the assignment in Apache Spark (Scala, Java or Python) (you must still complete the original exercise). 20 points per question.

Extra Points (20 extra points)

1. Provide visualizations for results (distributions, graphs, maps, in any suitable package).

Submission:

In a single zip package, with your name in the filename, submit:

- runnable code for all questions, clearly labeled (no dataset).
- results data for each question.

References

Apache Spark: http://spark.apache.org/

Pig JSON loader: https://pig.apache.org/docs/r0.10.0/func.html#jsonloadstore
Pig Latin: https://infolab.stanford.edu/~olston/publications/sigmod08.pdf

R maps – leaflet: https://rstudio.github.io/leaflet/