الجمهورية الجزائرية الديمقراطية الشعبية

ثانوية محمد الصديق بن يحي الميلية امتحان البكالوريا

وزارة التربية الوطنية مديرية التربية لولاية جيجل التجريبي

الشعبة: علوم تجريبية

دورة ماي 2024

اختبار في مادة: العلوم الفيزيائية المدة: 03 سا و 30 د

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

يحتوي الموضوع على (04) صفحات (من الصفحة 1 من 8 الى الصفحة 4 من8)

الجزء الأول: (13 نقطة)

التمرين الأول: (06 نقاط)

 $ho = 260 kg \ / \ m^3$ الكتلة الحجمية للمواء $ho_{air} = 1,2 kg \ / \ m^3$ الكتلة الحجمية للمظلى $g = 9,8 m \ / \ s^2$

يسقط مظلي كتلته مع تجهيزه m=100kg النسبة m=100kg يسقط مظلي كتلته مع تجهيزه m=100kg النسبة لمعلم أرضي دون سرعة ابتدائية. يخضع أثناء سقوطه إلى قوة مقاومة الهواء عبارتها من الشكل f=kv و دافعة أرخميدس \overline{F}_A

يمثل البيان الشكل 1 تغيرات (a) تسارع مركز عطالة المظلى بدلالة سرعته (v).

 F_{A} و بين أن النسبة: P_{A} ، و شدة دافعة ارخميدس P_{A} و بين أن النسبة:

$$\frac{P}{F_A} = \frac{\rho}{\rho_{uir}}$$

2- بين انه يمكن اهمال دافعة ارخميدس امام قوة ثقل المظلي وتجهيزه خلال كل
 الحركة

A حيث $\frac{dv}{dt} = Av + B$: ميث المعادلة التفاضلية لحركة المظلي من الشكل A - A حيث A -

4- من خلال التحليل البعدي حدد المدلول الفيزيائي لـ A و B

5- عين بيانيا قيمة كل من:

أ. قيمة التسارع في اللحظة 0 = 1، وماذا تلاحظ.

ب السرعة الحدية للمظلي (v_{lim}).

 $\frac{m}{k}$ المابقة بالمقدار $\frac{m}{k}$ احسب قيمته من البيان، ثم احسب قيمة الثابت k

7- مثل بعناية عند اللحظات التالية 0 = 1، وفي النظام الدائم القوى المؤثرة على المظلى وفق سلم الرسم التالي $1cm \rightarrow 490N$

8- مثل كيفيا تغيرات سرعة المظلى بدلالة الزمن في المجال الزمنى : $8s \ge 1 \ge 0$.

التمرين الثاني: (07 نقاط)

$$m_{\omega_{Ni}} = 59,9154u$$
 ، $m_{\omega_{Co}} = 59,9190u$ ، $1u = 931,5\frac{MeV}{c^2}$ ، $N_A = 6,02 \times 10^{23} mol^{-1}$. $m_{1p} = 1,0087u$ ، $m_{1p} = 1,0073u$

يُستعمل أحد نظائر الكوبالت Co 200 في المجال الطبي لتدمير بعض الأورام السرطانية بفعل الطاقة المتحررة جراء

تفكك الأنوية تتفكُّك نواة الكوبالت60 بالنمط β-يوجد في مخبر طبّى عينة من الكوبالت60 كتلتها عند اللحظة t=0 هي $m_0=4\mu g$ مرفوقة بوثائق تحمل شرحا لكيفية حفظ واستعمال هذا النظير . من بين هذه الوثائق يوجد الرسم البياني المقابل الشكل2

- 1- ما هو الجسيم الناتج عن تفكك نواة الكوبالت60
- 2- اكتب معادلة تفكُّك الكوبالت 60 ، علما أن النواة البنت النيكل Ni يتتج في حالة مثارة
 - 3- ما هي خصائص التفكك الاشعاعي ؟ عرفها.
- 4- احسب عدد أنوية الكوبالت في العينة عند اللحظة 0 = 1.
- 5- اكتب قانون التناقص الاشعاعي. ثم بين ان عبارة النشاط للعينة في لحظة 1يكتب بالعلاقة t=0 مو نشاط العينة عند اللحظة A_0 ميث . $A(t)=A_0 \exp(-\lambda.t)$
 - 6- حدد زمن نصف العمر للكوبالت60
- A ZX 60 Co Z

الشكل 3

7- تُعتبر العينة غير نشطة ، ويُطلب عينة أخرى للمخبر عندما يصبح نشاطها يساوي 10 % من نشاطها الابتدائي. بعد كم من الوقت يجب استبدال العينة ؟ 8- يمثل الشكل-3 المقابل جزءا من مخطط سيقري حيث A-Z عدد النيترونات و Z عدد البروتونات.

و المنطقة الملوّنة تمثّل وادي الاستقرار

أ- بماذا تتميّز الأنوية الواقعة في هذه المنطقة الملونة ؟

ب- حدد على المخطط موضع النواة البنت الناتجة في التفكك السابق.

Y وضح رمز النواتين X

د- أحسب طاقة الربط لكل نيكليون لكل من النواة الأم 27 Co و النواة البنت 2 Ni وهل النتائج تتوافق و مفهوم النشاط الاشعاعي

الجزء الثانى: (07 نقاط)

التمرين التجريبي: (07 نقاط)

 $V_M = 22,4 \, L.mol^{-1}$: معطيات $M(Al) = 27 \, g \, / \, mol$ والحجم المولى للغازات في الشرطين النظاميين $M(Al) = 27 \, g \, / \, mol$ معطيات $\lambda_{CC} = 7,63 \, \text{mS.m}^2.\text{mol}^{-1}$ و $\lambda_{H,O^+} = 35 \, \text{mS.m}^2.\text{mol}^{-1}$

نقوم بتحليل تجربتين ، الهدف منهما المتابعة الزمنية لتفاعل مسحوق الألمنيوم (Al)مع محلول حمض كلور n(mmol) الهيدروجين (H_1O^+,Cl^-)

التجربة الأولى: نضع في حوجلة حجما من محلول حمض كلور الهيدروجين حجمه V = 600mL حجمه V = 600mL حجمه V = 600mL مهمل إلى مخبار مملوء بالماء ومنكس على حوض به الماء ، وذلك لقياس حجم غاز الهيدروجين المنطلق . نلقي في الحوجلة كمية من مسحوق الألمنيوم كتلتها $V_{H_2}(L)$ عند اللحظة $V_{H_2}(L)$ و وشوارد الهيدرونيوم $V_{H_2}(L)$

 $V_{H_2}(L)$ بدلالة حجم غاز الهيدروجين بعد ارجاعه للشروط

النظامية لدرجة الحرارة والضغط.

المنائيتان هما Al^{3+}/Al و H_3O^+/H_3 بين أن معادلة التفاعل المنمذج للتحول الحادث تكتب على الشكل التالى:

 $2Al(s) + 6H_3O^+ = 2Al^{3+}(aq) + 3H_2(g) + 6H_2O(\ell)$

(كمية المادة الابتدائية لكل متفاعل) $n_0(H_3O^+)$ و $n_0(Al)$ الرمزين الرمزين -2

 $x_{m} = 0.002mol$ من خلال البيان بين أن التقدّم الأعظمي -3

 $1cm \rightarrow 0,001mol$ هو 4-استنتج n (H O) و بين أن سلم محور تراتيب الشكل <math>-4 هو n (H O) = -4

 $m_0 \in C$ احسب التركيز المولي -5

6-ما هو التركيب المولى للمزيج المتفاعل في نهاية التفاعل ؟

التجرية الثانية: نعيد نفس التفاعل السابق حيث $C' = 0.01 mol. L^{-1}$ و نتابع التفاعل $m'_0 = 108 mg$

5 – الشكل الناقلية النوعية (σ) للمزيج الشكل

يمثل تغيّر الناقلية النوعية بدلالة الزمن.

المحلول عند الناقلية النوعية
$$(\sigma_0)$$
للمحلول عند $t=0$

2-بين أن الناقلية النوعية (σ) للمزيج المتفاعل
 تكتب على الشكل

$$\sigma = \sigma_0 + x.(\frac{2\lambda_{Al^{3+}} - 6\lambda_{H_3O^*}}{V})$$

 $\lambda_{n,n}$ قيمة قيمة - 3 ، احسب قيمة البيان الشكل - 5 ، احسب قيمة البيان الشكل - 5

4 المسرعة المجمية للتفاعل عند اللحظة 0 = 1.

بيّن أنه عند اللحظة
$$t=t_{1/2}$$
 يكون $\sigma(t_{1/2})=rac{\sigma_0+\sigma_f}{2}$ ، حيث $t=t_{1/2}$ هو زمن نصف التفاعل و σ هي -5

الناقلية النوعية عند نهاية التفاعل

 $t_{1/2}$ حدد قيمة زمن نصف التفاعل -6

7-اذكر باختصار طريقة أخرى لمتابعة هذا التفاعل

أكبر عائق أمام النّجاح هو خوف الفشل.

انتهى الموضوع الأول

الموضوع الثاني

يحتوي الموضوع على (04) صفحات (من الصفحة 5 الى الصفحة 8)

الجزء الأول: (13 نقطة)

التمرين الأول: (6 نقاط)

الطائرات بدون طيار (الدرونات) الترفيهية هي مسيرات جوية صغيرة. يتم التحكم في العديد منها بواسطة هاتف نقال باستخدام اتصال WiFi.

ندرس حركة G مركز عطالة الدرون التي كتلتها m=110 في معلم m=110 في معلم مرتبط بمرجع سطحي أرضى نعتبره عطالي (غاليلي).

 $g = 9.8 N \cdot kg^{-1}$ نعتبر حقل الجاذبية الأرضية منتظم: قيمة شدته

- البياني الممثل في الشكل 1.
 المطبقة على الدرون، قمنا بتصوير فيديو للإقلاع الشاقولي لها. بعد معالجة الفيديو ببرنامج مناسب تحصلنا على المنحنى البياني الممثل في الشكل 1.
 - انطلاقا من هذه المنحنى، اكتب عبارة $v_Z(t)$ احداثية شعاع سرعة الدرون وفق المحور الشاقولي (OZ).
 - 2) نعتبر أن الدرون تخضع فقط لثقلها \vec{P} وقوة الدفع \vec{F} عليها خلال مرحلة الإقلاع الشاقولي.
 - \vec{F} و \vec{P} بتطبیق القانون الثانی لنیوتن، قارن کمیا قیمتی القوبین \vec{P} و خلال الإقلاع. بزر جوابك.
 - ب) احسب قيمة قوة الدفع خلال الإقلاع.
- 3) نريد تثبيت كاميرا كتلتها "m" على الدرون. ماهى القيمة الأعظمية لكتلة هذه الكاميرا حتى يكون الإقلاع ممكن؟
- (4) يتم الآن تشغيل الدرون (الغير مزودة بكاميرا)، بحركة مستقيمة منتظمة على ارتفاع ثابت $m = 7.0 \, m$ وسرعة $\vec{v}_0 = 4.0 \, \vec{t} \, (m \cdot s^{-1})$ وسرعة النقال عند $\vec{v}_0 = 4.0 \, \vec{t} \, (m \cdot s^{-1})$ لحظة t = 0 . فتتوقف المحركات وتتعدم قيمة قوة الدفع. نعتبر أن الدرون في سقوط حر انطلاقا من الشاقول المار من نقطة توجد على مسافة $t = 20 \, m$ من المسبح الذي عرضه $t = 5 \, m$.
 - أ) اقترح رسم تخطيطي للوضعية المدروسة.
 - ب) بتطبيق القانون الثاني لنيوتن، جد المعادلات الزمنية لحركة الدرون x(t) و z(t)، مع توضيح جميع الخطوات المتبعة.
 - ج) عين الزمن ts الذي يتطلب على المشغل استعادة الاتصال بالدرون قبل ملامستها سطح الأرض.
 - إذا لم يتم استعادة الاتصال، هل تسقط الدرون في المسبح؟ برر جوابك.

اختبار في مادة: العلوم الفيزيائية / الشعبة: علوم تجريبية / بكالوريا تجريبية 2024

ر) باستعمال مبدأ انحفاظ الطاقة على الجملة (درون) بين لحظة توقف المحركات ولحظة الاصطدام بالأرض، عين عبارة قيمة سرعتها v_s عند لحظة الإصطدام بدلالة v_s و v_s ثم احسبها.

التمرين الثاني: (7 نقاط)

H N H
H ammonia NII)

الأمونياك (النشادر) NH_3 غاز قابل للانحلال في الماء. ينتج عن انحلاله محول أساسى للأمونياك.

تستعمل بعض المحاليل التجارية للأمونياك كمواد منظفة بعد تمديدها.

يهدف هذا التمرين إلى دراسة تفاعل الأمونياك مع الماء والمعايرة pH مترية له.

 $K_e = 10^{-14}$ المعطيات: جميع التجارب أنجزت عند درجة حرارة $^{\circ}C$ عندها يكون الجداء الشاردي للماء

خلال حصة الأعمال التطبيقية، نتابع تطور pH لمزيج تفاعلى خلال إضافة حجم V_A من محلول كلور الماء

رماسي محلول أساسي $V_B=20~mL$ من محلول أساسي $C_A=0.02~mol\cdot L^{-1}$ تركيزه المولى $H_3O^+(aq)+Cl^-(aq)$

 pH_0 وله $pH_3(aq)$ وله $C_B=0.01\ mol\cdot L^{-1}$ وله $NH_3(aq)$ وله $NH_3(aq)$

نتائج القياس الموافقة لنقاط معينة من المنحنى $pH=f(V_B)$ مدونة في الجدول التالي.

النقاط	Н	1	J	K	L	М	N
$V_A(mL)$	0	2	5	8	10	12	14
рН	10,6	9,8	9,2	8,6	5,7	2,9	2,6

- دراسة محلول مائي للأمونياك تركيزه المولي .C.
 - عزف الأساس حسب برونشند.
- 2) اكتب معادلة التفاعل المنمذجة لتفاعل الأمونياك مع الماء.
 - أنشئ جدول التقدم التفاعل.
- C_B و pK_e ، pH بدلالة T_f و و pK_e ، و عبارة نسبة النقدم النهائي T_f
 - 5) حدّد قيمة pH_0 واستنتج أن الأمونياك هو أساس ضعيف.
 - المعايرة pH مترية لمحلول الأمونياك.
 - أ) عرف التكافؤ حمض أساس.
- ب) حدّد مع التبرير النقطة الموافقة لنقطة التكافؤ ثم النقطة الموافقة لنقطة نصف التكافؤ من بين النقاط الممثلة
 في الجدول السابق.
 - ج) استنتج قيمة pK_a للثنائية (أساس/حمض) الموافقة للأمونياك.
 - 2) أ) اكتب معادلة تفاعل المعايرة للأمونياك بواسطة حمض كلور الماء وبين أنه تفاعل تام.
 - ب) بزر الخاصية الحمضية للمزيج عند نقطة التكافؤ.

اختبار في مادة: العلوم الفيزيائية / الشعبة: علوم تجريبية / بكالوريا تجريبية 2024

(3) من أجل السماح بالغمس الجيد لمسبار الـ pH متر في المزيج التفاعلي، نضيف حجم V_e من الماء المقطر الى $V_B = 20 \ mL$ السابق ونعيد المعايرة بنفس محلول كلور الماء.

. $p{H'}_0=10,3$ الابتدائي للمزيج التفاعلي يكون في هذه الحالة $p{H'}_0=10,3$

 $pH = \frac{1}{2}(pK_a + pK_e + logC_B)$: نعتبر أن الأمونياك ذو التركيز C_B يبقى ضعيفا وأن ال $pH = \frac{1}{2}(pK_a + pK_e + logC_B)$

- V_e قيمة قيمة pH_0 و pH_0 عنه بدلالة α ثابت يعبَر عنه بدلالة pH_0 و pH_0 ثم أحسب قيمة α (أ
- ب) في حالة القيام بهذا التمديد، حدد مع التبرير وبدون القيام بحسابات، هل المقادير التالية تبقى بدون تغيير أو
 تخضع لزيادة أو تخضع لنقصان؟
 - حجم الحمض المضاف لبلوغ التكافؤ.
 - الـ pH عند نصف التكافؤ.
 - الـ pH عند التكافؤ.

الجزء الثاني: (7 نقاط)

التمرين التجريبي: (7 نقاط)

لدينا في المخبر اثنين من ثنائيات أقطاب D_1 و D_2 ، أحدهما هو وشيعة ذاتيتها L ومقاومتها r والأخر هو ناقل أومي مقاومته مساوية لمقاومة الوشيعة، بالإضافة الى ثنائي قطب ثالث D_3 عبارة عن مكثقة سعتها مجهولة.

خلال حصة أعمال تطبيقية، كلِّفت مجموعة من التلاميذ بتحديد ثنائيات القطب هذه وتعيين المقادير المميزة لهما. من أجل ذلك، قامت المجموعة بتحقيق عدة تجارب باستعمال الأدوات التالية:

مولد مثالي للتوتر قوته المحركة الكهربائية E=6 V، مولد مثالي للتيار الثابت، ميكرو أمبير متر، مصباحين متماثلين L_2 و L_3 ، قاطعة L_4)، صمام ثنائي (Diode)، جهاز L_4 ، جهاز الحاسوب.

التجربة 1:

 D_{1} و D_{2} محقق التلاميذ دارة الشكل D_{2} لتحديد ثنائيي القطب D_{1}

مباشرة بعد غلق القاطعة (K)، لوحظ أن المصباح L_1 يضيء مباشرة بينما المصباح L_2 يضىء بشكل متأخر وتدريجيا.

- من بين ثنائيي القطب D_1 و D_2 حدّد مع التبرير أيهما يوافق الوشيعة.
 - 2) قارن مع التبرير، الإضاءة النهائية للمصباحين.

لتعيين المقادير المميزة لثنائيي القطب D_1 و D_2 ، حقق التلاميذ دارة الشكل D_1

اختبار في مادة: العلوم الفيزيائية / الشعبة: علوم تجريبية / بكالوريا تجريبية 2024

عند اللحظة t=0، نغلق القاطعة (K)، باستعمال التجربة المدعمة بالحاسوب ExAO، نسجل التطور خلال الزمن للشدّة i(t) للتيار الكهربائي المار في الدارة. المنحنى المحصل عليه ممثل في الشكل 4.

- 1) ما هو اللاقط المستعمل وكيف يتم ربطه مع الدارة.
- (2) بيّن أن المعادلة التفاضلية التي تحققها شدة التيار i(t) تكتب على الشكل: i(t) بيّن أن المعادلة التفاضلية التي تحققها شدة التيار i(t) بين أن المعادلة التفاضلية التي i(t) بين أن المعادلة التفاضلية التي تحققها أن المعادلة التفاضلية التي التعادلة التفاضلية التي التعادلة الت
 - $i(t) = A\left(1 e^{-\frac{t}{\tau}}\right)$: هذه المعادلة تقبل حل على الشكل (3
 - ماذا يمثل A ? جذ عبارته بدلالة E ، L ، E و T.
 - 4) باستغلال منحنى الشكل4.
 - عين قيمتي A و T.
 - ب)استنتج قيم L و r.
 - ج)عين قيمة الطاقة المغناطيسية المخزنة في الوشيعة في النظام الدائم.
 - عند فتح القاطعة (K)، شاهد التلاميذ شرارة بين طرفيها.
 اعط تفسير مختصر لهذه المشاهدة.
 - ب) لتفادي ظهور الشرارة، اقترح أحد التلاميذ ادراج صمام ثنائي في الدارة.
 - اعط رسم تخطيطى للدارة الجديدة.

الشكل 3

K

التجربة الثالثة

لتعيين السعة C لثنائي القطب D_3 ، طلب من التلاميذ انجاز الدارة المكونة من العناصر التالية المربوطة على التسلسل: مولد للتيار الثابت، قاطعة، ثنائي القطب D_3 وميكرو أمبيرمتر.

نغلق القاطعة عند لحظة t=0، فيثير الميكرو أمبيرمتر الى القيمة I=10 μA المنحنى الممثل في الشكل 5.

- 1) مثل مخطط الدارة المستعملة في هذه التجربة.
- C اعط عبارة E_C الطاقة المخزنة في المكثقة بدلالة شحنتها E_C وسعتها C.

انتهى الموضوع الثاني

(-1e) 10,55 y1 = 45 Wi Frank 1 -1 0,252 2_ معاولة النفكك: 29 Go 3- AN + E : A = 60 29 Go 12 27+1 = 28 28 Nei - 8 60 NA + 08 3- حصا نص التفكل الإستناعي: - تقاش و تدخل فين العواص الخارجية (العواص الحركية) 0,21x2 8/25/2 _ عشراتي: لا يمكن التشيؤ يد ـ حتى، يحد أل عاجلاً أم أ جلاً 0,25,2 No = mNA = 4 × 10 × 6,02 × 103 = 4,01 × 10 ney = No 0 1 - 4 NH=N=At 5- تما يُون النَّمَا رَهِي الإسْعَاجِي إ A(t) = - dN = - dN = Are Are : A(+) 8, he + LnA= «t+B] MLI Jain & return bis o Luli : tyl (G) 6 $\beta = 18,8$; $\alpha = \frac{4-18,8}{11280} = -0,134 \text{ ans}^{-1}$ In (Alt) = Aoe At) = In Alt) = lu Ao - At. - x = - ln2 = x =0 +1/2 = - ln2 = 5,28 cms ciso, In A(+) = In 0,1 + In Ac; lu Ac = B = 15,8 = 16,5 blow 1/2 t = 18,8 cms 8- 4- المنطقة الكونة: ` ترية مستقرة.". 0,4 ب - النواة البنت ؛ ع- زين النواس : إلى تراله على الأنوري نفس الحود أي لفنو(ع) 27 X = 27 Co 127 - 27 Co 0,26x2 EC (Ca) = (2mp+(A-2)mn-mx]. C= 8,77 Her/wec A 4 LP-)


```
3- حساب المحالم : عنى البيان عند الحالج النها ثين عا أنه لدينا نفس
                         X = 10 mel. : The like it is I The
       F = 5 + x, (2) +3+ -62 +30+)
       e, 14 = 0, 43 + 10-3 (2. ) (2. ) (2. ) (2. ) (2. ) (2. )
          = 0 /Al3+ = 18.163.5. m2. mel-7 = 18 m5. m2. med-1
0,25
                                  : += 0 nie Vist e 1 -4
      Will = 1 dx
0,25
       N= N+ X-k; k= 2 A4(3+ -6) H3 C4
                                             = -2,9x105.m.nd
      = D (do = k.dk) x k.V = D Viel = k.V. dr
                                                0,23-9,43
                                  = -2,9 ×102 0,6 20 -0
0,25
                             Vist = 5,75.10-5 mol/l. min
                                        : or (A112) 5, 45 -5
       x (+1/2) = 2m
9,25
        or (+1/2) = 00 + xm. k.; 00 = 00 + xm k = 0 xm = 00-00
6,25
              = 00 + 00 - 10 = 00 + 00 = 0,285 s.m 1
0,25
         ton = 20 min 15 ble y, = +1/8 2/15-6
925
           F- [ [ C d ( 100 ) : - 1 hal = 2 : 11 Hq - 4 7 75
0,25
          آديد اللولسية
                        - ميا م العنظ .
```

الحل النموذجي للموضوع الثاني /البكالوريا التجريبية 2024

	عناصر الاجابة	
	التمرين الأول:	
0,25	. ومنه $a_z=rac{dv_z}{dt}$ حيث $a_z=rac{dv_z}{dt}$ ثابت يتعلق بالشروط الابتدائية $a_z=rac{dv_z}{dt}$	1
0,25	$v_z(t)=a_z imes t$ ومنه $v_{z0}=c$ السرعة الابتدائية للدرون معدومة، لذن $v_{z0}=c$ ومنه $t=0$	
	$v_z(t)=2t$ ومن المنحنى الشكل 1: لدينا $a_z=rac{d^2z}{dt^2}=2$,0 $m\cdot s^{-2}$ نحصل على 1: ومن المنحنى الشكل	
0,25 0,25	بتطبيق القانون الثاني لنيوتن على الجملة (درون) في المرجع السطحي الأرضي (العطالي).	2
0,25	$\sum \vec{F}_{ext} = \vec{F} + \vec{P} = m \cdot \vec{a}_G$	1
	$F-P=m\cdot a_z$ بالإسقاط على المحور (oz) الشاقولي والموجه نحو الأعلى نجد:	
0.25	$F>P$ اي $F-P>0$ بما أن $a_z>0$ فإن	
0,25 0,25	$F = P + m \cdot a_z = m(g + a_z)$ حساب قیمهٔ F : مما سبق	ų
0.25	ت ع: F = 0,110 × (9,8 + 2,0) ≈ 1,3 N	
0,25	لا يكون الإقلاع يكون ممكن إذا كان الثقل أكبر من قوة الدفع (باعتبار أن هذه الأخيرة تبقى بدون تغيير).	3
0,25	$m' > \frac{F}{G} - m$ أي $m.g + m'g > F$ أي $P > F \Leftrightarrow (m + m').g > F$	
	$m' > 0,02 \ kg$ أي $m' > \frac{1,3}{9,8} - 0,110$	
	اذن القيمة العظمى لكتلة الكاميرا هي 0,02 kg (20 g).	
0,25	تمثيل الوضعية	4
0,25	A	,
	h= 7 m L=5m	
	d=20 m	
		1616
0,25	بتطبيق القانون الثاني لنيوتن على الجملة (درون) في المرجع السطحي الأرضي (العطالي). الجملة (درون) تخضع فقط لثقلها لأنها في سقوط حر.	7.
W ₂ ZJ	$ec{a}_G = ec{g}$ اي $ec{g} = m \cdot ec{a}_G$ اي $ec{g} = m \cdot ec{a}_G$	
0,25	$u_G - g$ بالإسقاط على المحورين الافقى (Ox) والشاقولى Oz	
0,25	$(a_x = 0)$	
	$a_z = -g$	
	$\left\{egin{align*} v_x = c_1 \\ v_z = -gt + c_2 \end{array} ight.$ ومنه $\left\{egin{align*} a_x = rac{dv_x}{dt} = 0 \\ a_z = rac{dv_z}{dt} = -g \end{array} ight.$	
0,25	$(v_z = -gt + c_2) a_z = \frac{dv_z}{dt} = -g$	
0,25	حيث c_2 و c_2 ثوابت تتعلق بالشروط الابتدائية للسرعة	
	$c_2=0$ عند اللحظة $t=0$ احداثيات شعاع السرعة الابتدائية هما $v_{0z}=0$ ومنه $v_{0z}=0$ و و	
Openius.	$\begin{cases} v_x = v_0 \ v_z = -gt \end{cases}$ نحصل علی	
0,25	$(v_z = -g\iota \circ -$	

الأستاذ: بعنو بوجمعة

	الأستاذ: بعنو							
0,25				55.10		$= v_0 t + c'_1$ $-\frac{1}{2}gt^2 + c'_2$		
	حيث c'_2 و c'_2 ثوابت تتعلق بالشروط الابتدائية للموضع،							
	$c'_2 = h \; c'_1 = 0$ عند اللحظة $t = 0$ احداثيات شعاع الموضع هما $z'_0 = t$ ومنه والحظة والمداثيات عند اللحظة والمداثيات عند اللحظة والمداثيات المداثيات							
			(20	(x(t))	$=v_0t$	AT THESE SHIPS IN		
				z(t) = -	$-\frac{1}{2}gt^2+h^{-2}$	نحصل في الأخير علم		
0,25 0,25		$t_s = $	$\frac{2h}{g}$ اي $-\frac{1}{2}g$	$\eta t_s^2 + h =$	$z(t_s) = 0$ اي	عند ملامسة الأرض: (M	
0.04						$t_s = \sqrt{\frac{2 \times 7,0}{9,8}}$: ت		
0,25						الفاصلة $x_{ m s}$ للدرون عند	4	
	طة انقطاع	هد 20 m من نق	مسبح الذي يب	لم تصل الى ال	4,8 m أي انها	تسقط الدرون على بعد		
						الانتصال.		
0,25	120		1924	Q 50 0		بتطبيق مبدأ انحفاظ الط	5	
	$v_s = \sqrt{v}$	$b_0^2 + 2gh$	40	1.00 NO. 100 NO.		$E_{c0} + W_{0 \to s}(\vec{P})$		
			$v_s =$	$\sqrt{4^2+2}$	9,8 × 7,0 ≈	ت ع: 12,4 m·s ⁻¹		
			ئاني	التمرين النا				
0,5	فلال تقاعل	+H (او اکثر) خ	فتساب برتون	ي قادر على اك	هو كل فرد كيميائ	الأساس حسب برونشند	1	
						كيميائي.		
0,25		NH_3 ($aq) + H_2($	$O(l) = NH_4$	+(aq) + HO	معادلة التفاعل: (aq)	2	
0,5						جدول النقدم:	3	
	المعدلة	$NH_3(aq) +$	$H_2O(l) =$	$NH_4^+(aq)$	+ HO ⁻ (aq)			
	الحالة الابتدائية	n_0	بوفرة	0	0			
	الحالة الانتقالية	$n_0 - x$	بوفرة	x	x			
	الحالة النهائية	$n_0 - x_f$	بوفرة	x_f	x_f			
0,25 0,25		$\tau_f = \frac{x_f}{x_{max}}$	$= \frac{n_f(HO)}{n_0(NH)}$	$\frac{1}{C_B} = \frac{[HO^{-1}]}{C_B \times C_B}$	V Co	52	4	
			K _e	10^{-pK_e}	10^{pH-pK_c}			
0,25		C _H ×	$[H_3O^+] = 0$	$C_R \times 10^{-pH}$	C _B			
0,25		<u>.</u>	حمض ضعية	اا $\tau_f \ll 1$ انیا		$H_0 = 10.6$ at $H_0 = 10.6$	5	
0,25						التكافؤ حمض-أساس ه	11	
0,5	$C \times V_{-} = C \times V_{-} and the second of the second of$					Ī		
0,5				1 - 210				

الأسئلاز بعيو بوجمعة

زو بوجمعه	Variation .	
	$V_{AE}=rac{0.01 imes20}{0.02}=10~mL$ نجد نقطة النكافؤ هي النقطة $V_{AE}=rac{0.01 imes20}{0.02}=10~mL$	Ų
	عند نصف التكافؤ يكون $mL=V_{AE}=0$ من الجدول النقطة الموافقة لنقطة نصف التكافؤ $V_{A}=\frac{V_{AE}}{2}=5$	
0,25	$pK_a=9$,2 الموافقة لنقطة نصف التكافؤ تمثل pK_a نجد من الجدول p	٥
0,25	$NH_3(aq) + H_3O^+(aq) = NH_4^+(aq) + H_2O(l)$ معادلة تقاعل المعايرة:	12
0,25	لنحسب ثابت التوازن المرافق لمعادلة التفاعل الكيميائي للمعايرة	1
0,25	$K = Q_{r, \ell q} = \frac{[NH_4^+]_{\ell q}}{[NH_3]_{\ell q} \times [H_3O^+]_{\ell q}} = \frac{1}{\kappa_a} = 10^{p\kappa_a} = 10^{14}$	
	ومنه تفاعل المعايرة تفاعل تام. $K\gg 10^4$	
0,25	عند التكافؤ، يتم الاستهلاك الكلي للأساس NH_3 والذي يتحول إلى الحمض المرافق NH_4^+ والذي هو	ų
	حمض ضعيف والذي يعطي الخاصية الحمضية للمزيج عند التكافؤ.	
0,5	$pH'_0 = \frac{1}{2}(pK_a + pK_e + \log C'_B)$ مما سيق: $pH_0 = \frac{1}{2}(pK_a + pK_e + \log C_B)$	13
	$pH_0 - pH'_0 = logC_B - logC'_B$	
	$pH_0 - pH'_0 = log \frac{c_B}{c'_B} = log \frac{v'_B}{v_B} = log \frac{v_B + v_e}{v_B}$	
	$pH_0 - pH_0' = \log\left(1 + \frac{v_e}{v_B}\right)$	
0,25	$10^{pH_0-pH'_0} = 1 + \frac{v_e}{v_e}$	
	$V_e = (10^{pH_0 - pH_0'} - 1)V_B$	
	$lpha=10^{pH_0-pH_0'}-1$ حيث $V_e=lpha V_B$ جيث ومنه نکتب	
	$V_e = (10^{10,6-10,3}-1) \times 20 \approx 60 \ mL$: \simeq	
0,5	$C_B imes V_B= rac{C_B imes V_B}{c_A}$ عند التمديد كمية المادة لا تتغير أي $n_B=n_B'$ أي $V_{AE}=rac{C_B imes V_B}{c_A}$	ų
	$C_B' \times V_B'$	
s)	. اذن $rac{C_B' imes V_B'}{C_A}$ ومنه فحجم الحمض المضاف عند التكافؤ لا يتغير $V_{AE} = rac{C_B' imes V_B'}{C_A}$	
0,5	. عند نصف التكافؤ (ثابت) $pH=pK_a=cte$ أي $pH=pH$ نصف التكافؤ لا يتغير	÷
0,5	ال pH عند التكافؤ هو لمحلول حمضي مخفف (التركيز أقل من التركيز قبل التخفيف) وبالتالي هناك	-
	تزايد في قيمة pH	
	التمرين التجريبي	
0,5	ثنائي القطب D ₂ يمثل الوشيعة لأن الوشيعة تؤخر ظهور النيار.	1
0,5	عند بلوغ النظام الدائم، تسلك الوشيعة سلوك ناقل أومي فقط، أي أن الفرعين لهما نفس المقاومة وبالتالي	2
	تكون شدة التيار هي نفسها في كلا الفرعين ولهذا نحصل على نفس الإضاءة.	
0,5	اللاقط المستعمل هو لاقط الأمبير متر ويربط على التسلسل.	1
0,5	$u_r(t) + u_b(t) = E$:قانون جمع التوترات	2
	$ri(t) + L\frac{di(t)}{dt} + ri(t) = E$ اي	
	$\frac{di(t)}{dt} + \frac{1}{\tau}i(t) = \frac{E}{L}$ بوضع $\tau = \frac{L}{2r}$ نكتب المعادلة التفاضلية $\tau = \frac{L}{L}$ بوضع وضع $\tau = \frac{L}{2r}$ بركتب المعادلة التفاضلية ولا أنها أنها التفاضلية ولا أنها التفاضلية ولا أنها أنه	
	dt t 1 2r dt 1	

ر بوجمعه	الاستاذ: بعن	
0,25	يمثل A شدة التيار في النظام الدائم.	3
West H.	$rac{di(t)}{dt}=0$ اذن $i(t)=A=cte$ (في النظام الدائم (ثابت)	
	نعوض في المعادلة التفاضلية نجد $A=rac{ au E}{L}$	
0,5	$ au = 25 \ ms + A = 150 \ mA$ بیانیا:	14
0,5 0,5 0,5	$L = \frac{25 \times 6}{150} = 1 H$ ت ع: $L = \frac{\tau E}{4}$	Ų
0,5	$r = \frac{1}{2 \times 25 \times 10^{-3}} = 20 \; \Omega$ ت ع: $r = \frac{L}{2\tau}$ اذن $\tau = \frac{L}{2\tau}$	
0,5	عبد النظام الدائم عبارة الطاقة المغناطيسية المخزنة في الوشيعة هي	ح
	$E_L = \frac{1}{2} \times 1 \times (150 \times 10^{-3})^2 = 11,25.10^{-3} J$: $E_L = \frac{1}{2} LA^2$	
0,5	يسبب التغير المفاجئ لشدة النيار الكهربائي ظهور توتر عالي بين طرفي الوشيعة مما يفرض مرور تيار	15
	في منطقة الفتح والذي يرافقه ظهور شرارة.	
0,25	E κ	9
	, A	
	D_1 D_2	
0,25	I_0	1
	l Con li l	
0.25		
0,25	$E_C=rac{q^2}{2C}$ عبارة الطاقة المخزنة في المكنَّفة	2
0,25 0,25 0,25	$q=I imes t$ اذن $I=rac{q}{t}$ ولدينا معبارة الطاقة تكتب و $\sqrt{E_C}=rac{q}{\sqrt{2C}}$ ولدينا	3
0,25	$\sqrt{E_C} = rac{I}{\sqrt{2C}}$ ومنه نحصل على	
	$\sqrt{E_C} = 5.10^{-3} t$ المنحنى عبارة عن دالة خطية معادلتها	
	$C = \frac{1}{2} \left(\frac{I}{5.10^{-3}} \right)^2 = \frac{1}{2} \left(\frac{10 \times 10^{-6}}{5.10^{-3}} \right)^2 = 2.10^{-6} F$ يالمطابقة نجد $\frac{I}{\sqrt{2C}} = 5.10^{-3}$ تحصل على	
	7.77	-

