Network Theory Homework 2

Manoj Gopalkrishnan

14 August 2018

Homework is not to be submitted. If you prepare a solution and upload it to Moodle, you may be eligible for extra credit, as per the course rules.

"Valkenburg" is the book "Network Analysis, 3rd Edition" by M. E. Van Valkenburg. It is available for purchase on Amazon, and is not very expensive.

1. Define the following:

- (a) Homomorphism of graphs
- (b) The line graph L_n and the undirected line graph $\overline{L_n}$.
- (c) The cycle graph C_n and the undirected cycle graph $\overline{C_n}$.
- (d) Directed path in a graph
- (e) Undirected path in a graph
- (f) An undirected graph
- (g) A connected graph
- (h) A strongly connected graph
- (i) A tree
- (j) An undirected cycle in a graph
- (k) A directed cycle in a graph
- (1) A spanning tree
- 2. Let (N, E) be a graph. Define the map δ . What are the domain and codomain of this map? Prove/ disprove: δ is a linear map. If $N = \{1, 2, 3, 4\}$ and $E = \{(1, 2), (2, 3), (3, 4), (4, 2)\}$ then write down the matrix corresponding to δ . Define the map δ^T . What are the domain and codomain of this map?
- 3. Define W_{KCL} and W_{KVL} . Prove or disprove: A vector $v \in W_{KVL}$ iff v satisfies Kirchhoff's voltage law. (Hint: Prove forward direction and backward direction separately. For backward direction, define a potential function V by "integration" and show path-independence of V. For forward direction, take an arbitrary cycle and show that KVL holds.)
- 4. Prove/disprove: If $v \in W_{KVL}$ and $i \in W_{KCL}$ then the "Power" $\sum_{e \in E} i_e v_e = 0$.

- 5. Prove/ disprove: The following are equivalent for a connected undirected graph G:
 - (a) G is a tree, i.e., for every pair of nodes n_1, n_2 in G, there is exactly one path from n_1 to n_2 .
 - (b) G has n-1 edges.
 - (c) G has no undirected cycles.
- 6. Prove/ disprove: If $v \in W_{KVL}$ and $i \in \mathbb{R}^E$ and $\sum_{e \in E} i_e v_e = 0$ then $i \in W_{KCL}$.
- 7. Prove/ disprove: $W_{KCL} \cap W_{KVL} = \{0\}.$
- 8. Consider the graph with $N = \{1, 2, 3, 4\}$ and $E = \{(1, 2), (2, 3), (3, 4), (4, 2)\}$. What is the dimension of W_{KCL} ? What is the dimension of W_{KVL} ? Find a basis for W_{KCL} and for W_{KVL} and explain the meaning of the basis elements in terms of the graph. How many equations will node variable analysis on this graph give? How many equations will loop variable analysis on this graph give?
- 9. Prove/ Disprove: For an arbitrary graph G with n nodes and |E| edges and k connected components, the dimension of W_{KVL} is n-k and the dimension of W_{KCL} is |E|-n+k.
- 10. Prove/ disprove: The dimension of W_{KVL} equals the number of equations from node variable analysis. (Hint: Don't forget the case where the graph is not connected.) The dimension of W_{KCL} equals the number of equations from loop variable analysis.