Contents

1	ON-I	LSTM		1
	1.1	My tak	ways	1
	1.2	The pro	lem to address in this paper	1
	1.3	Approa	n: ON-LSTM	1
		1.3.1	. Ordered Neurons	1
		1.3.2	ON-LSTM	
2	Refer	ences		

- ON-LSTM
 - My takeaways
 - The problem to address in this paper
 - Approach: ON-LSTM
 - * 1. Ordered Neurons
 - * 2. ON-LSTM
 - · 2.1 active function cumax
 - · 2.2 structured gating
- · References

1 ON-LSTM

1.1 My takeaways

- 1. The key designs of ON-LSTM.
 - 1. ordered neurons implemented through a new activation cumax().
 - 2. introduces a vector of master input and forget gates.
 - master input/forget gates ensure that some neurons are always more frequently updated than other neurons.
- 2. No theoretical analysis. The model architecture design is from intuition and inspiration.

1.2 The problem to address in this paper

- 1. Natural language is hierarchically structured.
- 2. There are some existing research and evidence show that LSTM with sufficient capacity potentially implements syntactic processing mechanisms by *encoding the tree structure implicitly*.

This paper proposes to design a better architecture equipped with an inductive bias towards learning such latent tree structures.

1.3 Approach: ON-LSTM

1.3.1 1. Ordered Neurons

- Ordered neurons is an inductive bias that forces neurons to represent information at different time-scales.
- · Neurons are split into high-ranking and low-ranking neurons.

low-ranking neurons	high-ranking neurons	
contains long-term or global information that lasts for several time steps to the entire sentence	encodes local information that lasts only one or a few time steps.	

The differentiation between high-ranking and low-ranking neurons is learned in a completely data-driven fashion by controlling the update frequency of single neurons 1. to erase (or update) high-ranking neurons, the model **should first erase (or update) all lower-ranking neurons**. 1. low-ranking neurons are always updated more frequently than high-ranking neurons others, and order

is pre-determined as part of the model architecture.

1.3.2 2. ON-LSTM

Recap standard LSTM equations:

$$\mathbf{f}_t = \sigma(W_f \mathbf{x}_t + U_f \mathbf{h}_{t-1} + \mathbf{b}_f) \tag{1}$$

$$\mathbf{i}_t = \sigma(W_i \mathbf{x}_t + U_i \mathbf{h}_{t-1} + \mathbf{b}_i) \tag{2}$$

$$\mathbf{o}_t = \sigma(W_o \mathbf{x}_t + U_o \mathbf{h}_{t-1} + \mathbf{b}_o) \tag{3}$$

$$\mathbf{c}_t = \tanh(W_c \mathbf{x}_t + U_c \mathbf{h}_{t-1} + \mathbf{b}_c) \tag{4}$$

$$\mathbf{h}_t = \mathbf{o}_t \circ \tanh(\mathbf{c}_t) \tag{5}$$

- · Standard LSTM:
 - $\ \mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \mathbf{c}_t.$
 - forget gate \mathbf{f}_t controls erasing on cell states
 - input data \mathbf{i}_t controls writing on cell states
 - cell states act indepently on each neurons.
- Modifications **ON-LSTM** maded to standard LSTM:
 - replace the update function for the cell state \mathbf{c}_t .
 - make input and forget gate for each neuron dependent on others

1.3.2.1 2.1 active function cumax

The cumax activation function: \hat{q} which is the cumulative sum of softmax.

$$\mathbf{g} = \operatorname{cumsum}(\operatorname{softmax}(...))$$

- 1. $\mathbf{g} = [0, ..., 0, 1, ..., 1]$ is a binary gate that splits the cell into two segments: the 0-segment and the 1-segment. As a result, the model can apply different update rules on the two segments.
- 2. **g** is the expectation of the binary gate g.
 - ideally, g should take the form of a discrete variable, but computing gradients when a discrete variable is included in the computation graph is not trivial.
 - gs hare is a continuous relaxation.

1.3.2.2 2.2 structured gating

1. Introduces two new gates: master forget gate \tilde{f}_t and master input gate \tilde{i}_t

$$\tilde{f}_t = \operatorname{cumax}(W_{\tilde{f}} x_t + U_{\tilde{f}} h_{t-1} + b_{\tilde{f}}) \tag{6}$$

$$\tilde{i}_t = 1 - \operatorname{cumax}(W_{\tilde{i}} x_t + U_{\tilde{i}} h_{t-1} + b_{\tilde{f}}) \tag{7}$$

$\overline{\widetilde{f}_t}$	$ ilde{i}_t$
controls the erasing behavior	controls the writing behavior
monotonically increasing	monotonically decreasing

- master gates only focus on coarse-grained control.
- it is computationally expensive and unnecessary to model them with the same dimensions as the hidden states.
- the paper sets \tilde{f}_t and \tilde{t}_t to bo $D_m = \frac{D}{C}$ where C is the chunk size factor.
- each dimension of the master gates are repeated C times before the element-wise multiplication with LSTM's origina forget gates f_t and input gates i_t .

2. New update rules for c_t based on master gates

$$\omega_t = \tilde{f}_t \circ \tilde{i}_t \tag{8}$$

$$\hat{f}_t = f_t \circ \omega_t + (\tilde{f}_t - \omega_t) = \tilde{f}_t \circ (f_t \circ \tilde{i}_t + 1 - \tilde{i}_t) \tag{9}$$

$$\hat{i}_t = i_t \circ \omega_t + (\tilde{i}_t - \omega_t) = \tilde{i}_t \circ (i_t \circ \tilde{f}_t + 1 - \tilde{f}_t) \tag{10}$$

$$c_t = \hat{f}_t \circ c_{t-1} + \hat{i}_t \circ \hat{c}_t \tag{11}$$

+ ω_t represents the overlap of \tilde{f}_t and \tilde{i}_t

2 References

1. Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks