Vorlesung Algorithmen und Wahrscheinlichkeit, D-INFK, ETH Zürich Angelika Steger & Emo Welzl

Flüsse in Netzwerken: Anwendungen (Teil 1)

I Matchings – Problemstellung

Maximum Bipartite Matching Problem. Gegeben ein bipartiter Graph, finde ein maximum (d.h. kardinalitätsmaximales) Matching.

Graph, ungerichtet, ungewichtet.

Matching - Definition

Eine Kantenmenge $M \subseteq E$ heisst Matching in einem Graphen G = (V, E), falls kein Knoten des Graphen zu mehr als einer Kante aus M inzident ist, d.h., wenn

 $e \cap f = \emptyset$ für alle $e, f \in M$ mit $e \neq f$.

Bipartiter Graph – Definition

Die Knotenmenge eines **bipartiten Graphen** $G = (U \uplus W, E)$ besteht aus zwei disjunkten Mengen U und W und die Kanten von G verlaufen nur zwischen den beiden Mengen, d.h.

$$\forall e \in E : |e \cap U| = |e \cap W| = 1$$
.

Graph zu Netzwerk (für Matchings)

Wir bilden jeden bipartiten Graphen (mit vorgegebener Knotenpartition $U \uplus W$) auf ein Netzwerk ab.

$$\overbrace{G = (U \uplus W, E)}^{\text{bipartiter Graph}} \quad \mapsto \quad \overbrace{N_G = (\underbrace{U \uplus W \uplus \{s, t\}}_{\text{Knotenmenge}}, A, c, s, t)}^{\text{Netzwerk}}$$

- ightharpoonup s
 eq t zusätzliche Knoten.
- $A := \{s\} \times U \cup \{(u, w) \in U \times W \mid \{u, w\} \in E\} \cup W \times \{t\}.$
- $ightharpoonup c \equiv 1.$

Graph zu Netzwerk (für Matchings)

Maximale Flüsse in N_G

Maximale Flüsse in N_G

Maximale Flüsse in N_G

Satz (Ford-Fulkerson, ganzzahlig)

Sei Nein Netzwerk mit ganzz. Kapazitäten ≤ U. Dann gibt es einen ganzz. maximalen Fluss. Er kann in Zeit O(mnU) berechnet werden.

Hier: U=1.

 $c \equiv 1$

 $c \equiv 1$

Matching M in $G \mapsto \text{Fluss } f_M \text{ in } N_G \text{ mit } \text{val}(f_M) = |M|$.

$$c\equiv 1$$

Matching M in $G \mapsto \text{Fluss } f_M \text{ in } N_G \text{ mit } \text{val}(f_M) = |M|$. Ganzz. Fluss f in $N_G \mapsto \text{Matching } M \text{ in } G \text{ mit } |M| = \text{val}(f)$.

 $c \equiv 1$

Matching M in $G \mapsto \text{Fluss } f_M \text{ in } N_G \text{ mit } \text{val}(f_M) = |M|$. Ganzz. Fluss f in $N_G \mapsto \text{Matching } M \text{ in } G \text{ mit } |M| = \text{val}(f)$.

Maximum Matching in G ,, \simeq " ganzz. Maxflow in N_G .

$$\max_{M \text{ Matching in } G} |M| = \max_{f \text{ Fluss in } N_G} \text{val}(f)$$

 $c \equiv 1$

Matching M in $G \mapsto \text{Fluss } f_M \text{ in } N_G \text{ mit } \text{val}(f_M) = |M|$. Ganzz. Fluss f in $N_G \mapsto \text{Matching } M \text{ in } G \text{ mit } |M| = \text{val}(f)$.

Maximum Matching in G ,, \simeq " ganzz. Maxflow in N_G .

$$\max_{M \text{ Matching in } G} |M| = \max_{f \text{ Fluss in } N_G} \text{val}(f)$$

II Kantendisjunkte Pfade

Kantendisjunkte Pfade Problem. Gegeben ein Graph G mit zwei ausgezeichneten Knoten u und v, $v \neq u$, bestimme eine möglichst grosse Menge kantendisjunkter u-v-Pfade.

Zur Erinnerung:

Satz (Menger)

Sei G = (V, E) ein Graph. G ist genau dann k-kantenzusammenhängend, wenn es für alle Paare von Knoten $u, v \in V$, $u \neq v$, mindestens k kantendisjunkte u-v-Pfade gibt.

Graph zu Netzwerk (für kantendisjunkte Pfade)

$$\overbrace{G = (V, E), u, v \in V}^{\mathsf{Graph mit 2 Knoten}} \quad \mapsto \quad \overbrace{N_G^* = (V, A, c, u, v)}^{\mathsf{Netzwerk}}$$

- $A := \{(x,y), (y,x) \mid \{x,y\} \in E\} .$
- $ightharpoonup c \equiv 1$.

Nun haben wir entgegen gerichtete Kanten im Netzwerk!

- ▶ Berechne ganzz. max. Fluss f in N_G^* \Rightarrow Flusswerte $\in \{0, 1\}$.
- ▶ Für alle Knoten $w \notin \{u, v\}$ gilt: $indeg_f(w) = outdeg_f(w)$.
- $ightharpoonup \operatorname{val}(f) = \operatorname{outdeg}_f(u) \operatorname{indeg}_f(u) = \operatorname{indeg}_f(v) \operatorname{outdeg}_f(v).$

Quelle Senke

0
1
a
b
c

Ein-/Ausgrade bzgl. Fluss 1 Kanten.

- ▶ Berechne ganzz. max. Fluss f in N_G^* \Rightarrow Flusswerte $\in \{0, 1\}$.
- ▶ Für alle Knoten $w \notin \{u, v\}$ gilt: $indeg_f(w) = outdeg_f(w)$.
- $ightharpoonup \operatorname{val}(f) = \operatorname{outdeg}_f(u) \operatorname{indeg}_f(u) = \operatorname{indeg}_f(v) \operatorname{outdeg}_f(v).$

▶ Beginnend bei *u* laufe entlang gerichteten ungebrauchten Kanten mit Fluss 1 bis man bei *v* ankommt. Unterwegs durchlaufene Kanten werden als gebraucht markiert.

- ▶ Berechne ganzz. max. Fluss f in N_G^* \Rightarrow Flusswerte $\in \{0, 1\}$.
- ▶ Für alle Knoten $w \notin \{u, v\}$ gilt: $indeg_f(w) = outdeg_f(w)$.
- $ightharpoonup \operatorname{val}(f) = \operatorname{outdeg}_f(u) \operatorname{indeg}_f(u) = \operatorname{indeg}_f(v) \operatorname{outdeg}_f(v).$

- ▶ Beginnend bei *u* laufe entlang gerichteten ungebrauchten Kanten mit Fluss 1 bis man bei *v* ankommt. Unterwegs durchlaufene Kanten werden als gebraucht markiert.
- ightharpoonup Wiederhole val(f) Mal. Das gibt val(f) kantendisjunkte Pfade

- ▶ Berechne ganzz. max. Fluss f in N_G^* \Rightarrow Flusswerte $\in \{0, 1\}$.
- ▶ Für alle Knoten $w \notin \{u, v\}$ gilt: $indeg_f(w) = outdeg_f(w)$.
- $ightharpoonup \operatorname{val}(f) = \operatorname{outdeg}_f(u) \operatorname{indeg}_f(u) = \operatorname{indeg}_f(v) \operatorname{outdeg}_f(v).$

- ▶ Beginnend bei *u* laufe entlang gerichteten ungebrauchten Kanten mit Fluss 1 bis man bei *v* ankommt. Unterwegs durchlaufene Kanten werden als gebraucht markiert.
- ▶ Wiederhole val(f) Mal. Das gibt val(f) kantendisjunkte Pfade (nach Entfernen von Kreisen).

- ▶ Berechne ganzz. max. Fluss f in N_G^* \Rightarrow Flusswerte $\in \{0, 1\}$.
- ▶ Für alle Knoten $w \notin \{u, v\}$ gilt: $indeg_f(w) = outdeg_f(w)$.
- $ightharpoonup \operatorname{val}(f) = \operatorname{outdeg}_f(u) \operatorname{indeg}_f(u) = \operatorname{indeg}_f(v) \operatorname{outdeg}_f(v).$

- ▶ Beginnend bei *u* laufe entlang gerichteten ungebrauchten Kanten mit Fluss 1 bis man bei *v* ankommt. Unterwegs durchlaufene Kanten werden als gebraucht markiert.
- ► Wiederhole val(f) Mal. Das gibt val(f) kantendisjunkte Pfade (nach Entfernen von Kreisen).

Maxflow-Mincut Theorem vs. Satz von Menger

Satz (Maxflow-Mincut)

Jedes Netzwerk erfüllt

$$\max_{f \in Fluss} val(f) = \min_{(S,T) s-t-Schnitt} cap(S,T)$$
.

Und ganzzahlige Netzwerke haben ganzzahlige maximale Flüsse.

Maxflow-Mincut Theorem vs. Satz von Menger

Satz (Maxflow-Mincut)

Jedes Netzwerk erfüllt

$$\max_{f \in Fluss} val(f) = \min_{(S,T) s-t-Schnitt} cap(S,T)$$
.

Und ganzzahlige Netzwerke haben ganzzahlige maximale Flüsse.

 \Downarrow

Satz (Menger, Variante)

Sei G ein Graph mit Knoten u und v, $u \neq v$.

min # Kanten, die u und v trennen

("trennen" heisst, nach Entfernen der Kanten sind u und v in verschiedenen Zusammenhangskomponenten des Graphen).

Maxflow-Mincut Theorem vs. Satz von Menger

Satz (Maxflow-Mincut)

Jedes Netzwerk erfüllt

$$\max_{f \in Fluss} val(f) = \min_{(S,T) s-t-Schnitt} cap(S,T)$$
.

Und ganzzahlige Netzwerke haben ganzzahlige maximale Flüsse.

Satz (Menger, Variante)

Sei G ein Graph mit Knoten u und v, $u \neq v$.

max # kantendisjunkter u-v-Pfade in G

min # Kanten, die u und v trennen

("trennen" heisst, nach Entfernen der Kanten sind u und v in verschiedenen Zusammenhangskomponenten des Graphen).

Flüsse helfen bei ...

- Matchings, hier: bipartites maximum Matching in O(mn) (geht besser in $O((m+n)\sqrt{n})$ [Hopcroft&Karp'73]).
- Schnitten zwischen Knoten u und v (Knoten-/Kantenzusammenhang).
- ► Kantendisjunkten Pfaden (auch knotendisjunkten Pfaden).
- Beweis Satz von Menger (aus Maxflow-Mincut).