Université d'Évry Val d'Essonne 2011-2012

M54 algèbre et arithmétique 2

Feuille 2 — Sous-anneaux, sous-corps, anneaux engendrés

Exercice 1. Parmi les sous-ensembles suivants de \mathbf{C} , lesquels sont des sous-anneaux, voire des sous-corps?

- L'ensemble des nombres de la forme $a \cdot 10^{-n}$ avec $a \in \mathbb{Z}$ et $n \in \mathbb{N}$.
- L'ensemble des nombres de la forme a + ib avec a et b dans \mathbf{Z} .
- L'ensemble des nombres de la forme a + ib avec a et b dans \mathbf{Q} .

Exercice 2. Montrer que $\{0,1\}$ est un sous-anneau de $(\mathbf{Z}/2\mathbf{Z})^2$, et que c'est un corps. Remarque : on voit ici qu'un anneau non intègre peut contenir un corps.

Exercice 3. Monter que $\mathbf{Z} \times \mathbf{Q}$ et $\mathbf{Q} \times \mathbf{Z}$ sont des sous-anneaux de $\mathbf{Q} \times \mathbf{Q}$ mais que leur union n'en est pas un.

Exercice 4. Déterminer le sous-anneau de \mathbf{Q} engendré par 1/5.

Exercice 5. On note $\mathbf{Z}[\sqrt{2}]$ le sous-anneau de \mathbf{C} engendré par $\sqrt{2}$.

1. Montrer que $\mathbf{Z}[\sqrt{2}] = \operatorname{im} \varphi$ où φ est le morphisme d'anneaux

$$\varphi \colon \mathbf{Z}[X] \to \mathbf{C}$$

 $X \mapsto \sqrt{2}$,

ce qui justifie la notation.

- 2. Montrer que $\mathbf{Z}[\sqrt{2}] = \{a + b\sqrt{2}, \text{ où } (a,b) \in \mathbf{Z}^2\}$. On admet que cette écriture est unique.
- 3. Montrer que l'application φ définie par $\varphi(a+b\sqrt{2})=\varphi(a-b\sqrt{2})$ est un automorphisme de $Z[\sqrt{2}]$.
- 4. Montrer que les seuls endomorphismes de $\mathbf{Z}[\sqrt{2}]$ sont l'indentité et l'application φ ci-dessus.
- 5. Montrer qu'il n'y a pas de morphisme de $\mathbf{Z}[\sqrt{2}]$ vers $\mathbf{Z}[\sqrt{3}]$.

Exercice 6. Montrer que le seul sous-corps de \mathbf{Q} est \mathbf{Q} . Remarque : on dit que \mathbf{Q} est un corps primitif.