ESP32-C3-MINI-1 ESP32-C3-MINI-1U

Datasheet

Small-sized module with 15 GPIOs

Built around RISC-V single-core SoC with a 4 MB flash in package

Supporting IEEE 802.11b/g/n (2.4 GHz Wi-Fi) and Bluetooth 5 (LE)

About This Document

This document provides specifications for the ESP32-C3-MINI-1 and ESP32-C3-MINI-1U modules.

Document Updates

Please always refer to the latest version on https://www.espressif.com/en/support/download/documents.

Revision History

For revision history of this document, please refer to the last page.

Documentation Change Notification

Espressif provides email notifications to keep you updated on changes to technical documentation. Please subscribe at www.espressif.com/en/subscribe.

Certification

Download certificates for Espressif products from www.espressif.com/en/certificates.

1 Module Overview

1.1 Features

MCU

- ESP32-C3FH4 or ESP32-C3FN4 embedded, 32bit RISC-V single-core processor, up to 160 MHz
- 4 MB embedded flash
- 384 KB ROM
- 400 KB SRAM (16 KB for cache)
- 8 KB SRAM in RTC

Wi-Fi

- IEEE 802.11 b/g/n-compliant
- Center frequency range of operating channel: 2412 ~ 2484 MHz
- Supports 20 MHz, 40 MHz bandwidth in 2.4 GHz band
- 1T1R mode with data rate up to 150 Mbps
- Wi-Fi Multimedia (WMM)
- TX/RX A-MPDU, TX/RX A-MSDU
- Immediate Block ACK
- Fragmentation and defragmentation
- Transmit opportunity (TXOP)
- Automatic Beacon monitoring (hardware TSF)
- 4 × virtual Wi-Fi interfaces
- Simultaneous support for Infrastructure BSS in Station mode, SoftAP mode, Station + SoftAP mode, and promiscuous mode

Note that when ESP32-C3 family scans in Station

mode, the SoftAP channel will change along with the Station channel

- Antenna diversity
- 802.11mc FTM

Bluetooth®

- Bluetooth LE: Bluetooth 5, Bluetooth mesh
- Speed: 125 Kbps, 500 Kbps, 1 Mbps, 2 Mbps
- Advertising extensions
- Multiple advertisement sets
- Channel selection algorithm #2

Hardware

- Interfaces: GPIO, SPI, UART, I2C, I2S, remote control peripheral, LED PWM controller, general DMA controller, TWAI[®] controller (compatible with ISO 11898-1), USB Serial/JTAG controller, temperature sensor, SAR ADC
- 40 MHz crystal oscillator
- Operating voltage/Power supply: 3.0 ~ 3.6 V
- Operating ambient temperature:
 - 85 °C version module: -40 ~ 85 °C
 - 105 °C version module: -40 ~ 105 °C
- Dimensions: See Table 1

Test

HTOL/HTSL/uHAST/TCT/ESD/Latch-up

1.2 Description

ESP32-C3-MINI-1 and ESP32-C3-MINI-1U are two general-purpose Wi-Fi and Bluetooth LE module. The rich set of peripherals and a small size make the two modules an ideal choice for smart homes, industrial automation, health care, consumer electronics, etc.

ESP32-C3-MINI-1 comes with a PCB antenna. ESP32-C3-MINI-1U comes with a U.FL connector for an external IPEX antenna. ESP32-C3-MINI-1 and ESP32-C3-MINI-1U have two variants:

- 85 °C version integrating the ESP32-C3FN4 chip and operating at $-40 \sim 85$ °C
- 105 °C version integrating the ESP32-C3FH4 chip and operating at $-40 \sim 105$ °C

The two variants only differ in chip integrated and ambient operating temperature. In this datasheet unless otherwise stated, ESP32-C3-MINI-1 refers to the ESP32-C3-MINI-1 module in 85 °C and 105 °C versions, and ESP32-C3-MINI-1U refers to the ESP32-C3-MINI-1U module in 85 °C and 105 °C versions.

The ordering information for the two modules is as follows:

Table 1: Ordering Information

Module	Chip embedded	Module dimensions (mm)
ESP32-C3-MINI-1 (85 °C version)	ESP32-C3FN4	13.2 × 16.6 × 2.4
ESP32-C3-MINI-1 (105 °C version)	ESP32-C3FH4	10.2 × 10.0 × 2.4
ESP32-C3-MINI-1U (85 °C version)	ESP32-C3FN4	13.2 × 12.5 × 2.4
ESP32-C3-MINI-1U (105 °C version)	ESP32-C3FH4	1 13.2 × 12.3 × 2.4

The ESP32-C3FN4 chip for the 85 °C version and the ESP32-C3FH4 chip for the 105 °C version fall into the same category, namely ESP32-C3 chip family. They both have a 32-bit RISC-V single-core processor and a 4 MB flash. The only difference lies in the ambient temperature. For details, please refer to $Family\ Member\ Comparison$ in $ESP32-C3\ Family\ Datasheet$.

ESP32-C3 family of chips integrate a rich set of peripherals, ranging from UART, I2C, I2S, remote control peripheral, LED PWM controller, general DMA controller, TWAI® controller, USB Serial/JTAG controller, temperature sensor, and ADC. It also includes SPI, Dual SPI and Quad SPI interfaces.

1.3 Applications

- Smart Home
 - Light control
 - Smart button
 - Smart plug
 - Indoor positioning
- Industrial Automation
 - Industrial robot
 - Mesh network
 - Human machine interface (HMI)
 - Industrial field bus
- Health Care
 - Health monitor

- Baby monitor
- Consumer Electronics
 - Smart watch and bracelet
 - Over-the-top (OTT) devices
 - Wi-Fi and bluetooth speaker
 - Logger toys and proximity sensing toys
- Smart Agriculture
 - Smart greenhouse
 - Smart irrigation
 - Agriculture robot
- Retail and Catering
 - POS machines

- Service robot
- Audio Device
 - Internet music players
 - Live streaming devices

- Internet radio players
- Generic Low-power IoT Sensor Hubs
- Generic Low-power IoT Data Loggers

Contents

1	Module Overview	3
1.1	Features	3
1.2	Description	3
1.3	Applications	4
2	Block Diagram	10
3	Pin Definitions	11
3.1	Pin Layout	11
3.2	Pin Description	11
3.3	Strapping Pins	12
4	Electrical Characteristics	15
4.1	Absolute Maximum Ratings	15
4.2	Recommended Operating Conditions	15
4.3	DC Characteristics (3.3 V, 25 °C)	15
4.4	Current Consumption Characteristics	16
4.5	Wi-Fi Radio	17
	4.5.1 Wi-Fi RF Standards	17
	4.5.2 Wi-Fi RF Transmitter (TX) Specifications	17
	4.5.3 Wi-Fi RF Receiver (RX) Specifications	18
4.6	Bluetooth LE Radio	19
	4.6.1 Bluetooth LE RF Transmitter (TX) Specifications	19
	4.6.2 Bluetooth LE RF Receiver (RX) Specifications	21
5	Module Schematics	24
6	Peripheral Schematics	26
7	Physical Dimensions and PCB Land Pattern	27
7.1	Physical Dimensions	27
7.2	Recommended PCB Land Pattern	28
7.3	U.FL Connector Dimensions	30
8	Product Handling	31
8.1	Storage Conditions	31
8.2	Electrostatic Discharge (ESD)	31
8.3	Reflow Profile	31
9	Learning Resources	32
9.1	Must-Read Documents	32
9.2	Important Resources	32

Revision History

33

List of Tables

1	Ordering Information	4
2	Pin Definitions	11
3	Strapping Pins	13
4	Parameter Descriptions of Setup and Hold Times for the Strapping Pin	14
5	Absolute Maximum Ratings	15
6	Recommended Operating Conditions	15
7	DC Characteristics (3.3 V, 25 °C)	15
8	Current Consumption Depending on RF Modes	16
9	Current Consumption Depending on Work Modes	16
10	Wi-Fi RF Standards	17
11	TX Power with Spectral Mask and EVM Meeting 802.11 Standards	17
12	TX EVM Test	17
13	RX Sensitivity	18
14	Maximum RX Level	19
15	RX Adjacent Channel Rejection	19
16	Transmitter General Characteristics	19
17	Transmitter Characteristics - Bluetooth LE 1M	20
18	Transmitter Characteristics - Bluetooth LE 2M	20
19	Transmitter Characteristics - Bluetooth LE 125K	20
20	Transmitter Characteristics - Bluetooth LE 500K	21
21	Receiver Characteristics - Bluetooth LE 1M	21
22	Receiver Characteristics - Bluetooth LE 2M	22
23	Receiver Characteristics - Bluetooth LE 125K	22
24	Receiver Characteristics - Bluetooth LE 500K	22

List of Figures

1	ESP32-C3-MINI-1 Block Diagram	10
2	ESP32-C3-MINI-1U Block Diagram	10
3	Pin Layout (Top View)	11
4	Setup and Hold Times for the Strapping Pin	14
5	ESP32-C3-MINI-1 Schematics	24
6	ESP32-C3-MINI-1U Schematics	25
7	Peripheral Schematics	26
8	ESP32-C3-MINI-1 Physical Dimensions	27
9	ESP32-C3-MINI-1U Physical Dimensions	27
10	ESP32-C3-MINI-1 Recommended PCB Land Pattern	28
11	ESP32-C3-MINI-1U Recommended PCB Land Pattern	29
12	U.FL Connector Dimensions	30
13	Reflow Profile	31

Block Diagram 2

Figure 1: ESP32-C3-MINI-1 Block Diagram

Figure 2: ESP32-C3-MINI-1U Block Diagram

Pin Definitions

3.1 Pin Layout

The pin diagram below shows the approximate location of pins on the module. For the actual diagram drawn to scale, please refer to Figure 7.1 Physical Dimensions.

Figure 3: Pin Layout (Top View)

Pin Description 3.2

The module has 53 pins. See pin definitions in Table 2.

For peripheral pin configurations, please refer to ESP32-C3 Family Datasheet .

Table 2: Pin Definitions

Name	No.	Туре	Function
GND	1, 2, 11, 14, 36-53	Р	Ground
3V3	3	Р	Power supply

Cont'd on next page

Table 2 - cont'd from previous page

Name	No.	Туре	Function
NC	4, 7, 9, 10, 15, 17, 24, 25, 28, 29, 32-35	_	NC
IO2	5	I/O/T	GPIO2, ADC1_CH2, FSPIQ
IO3	6	I/O/T	GPIO3, ADC1_CH3
EN	8	I	High: on, enables the chip. Low: off, the chip powers off. Note: Do not leave the EN pin floating.
100	12	I/O/T	GPIO0, ADC1_CH0, XTAL_32K_P
IO1	13	I/O/T	GPIO1, ADC1_CH1, XTAL_32K_N
IO10	16	I/O/T	GPIO10, FSPICS0
IO4	18	I/O/T	GPIO4, ADC1_CH4, FSPIHD, MTMS
IO5	19	I/O/T	GPIO5, ADC2_CH0, FSPIWP, MTDI
106	20	I/O/T	GPIO6, FSPICLK, MTCK
107	21	I/O/T	GPIO7, FSPID, MTDO
IO8	22	I/O/T	GPIO8
109	23	I/O/T	GPIO9
IO18	26	I/O/T	GPIO18, USB_D-
IO19	27	I/O/T	GPIO19, USB_D+
RXD0	30	I/O/T	GPIO20, U0RXD,
TXD0	31	I/O/T	GPIO21, U0TXD

3.3 Strapping Pins

Note:

The content below is excerpted from Section Strapping Pins in <u>ESP32-C3 Family Datasheet</u>. For the strapping pin mapping between the chip and modules, please refer to Chapter 5 *Module Schematics*.

ESP32-C3 family has four strapping pins:

- GPI02
- GPI08
- GPI09
- GPIO10

Software can read the values of GPIO2, GPIO8 and GPIO10 from GPIO_STRAPPING field in GPIO_STRAP_REG register. For register description, please refer to Section GPIO Matrix Register Summary in ESP32-C3 Technical Reference Manual.

During the chip's system reset, the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is powered down or shut down.

Types of system reset include:

- power-on-reset
- RTC watchdog reset
- brownout reset
- analog super watchdog reset
- crystal clock glitch detection reset

By default, GPIO9 is connected to the internal pull-up resistor. If GPIO9 is not connected or connected to an external high-impedance circuit, the latched bit value will be "1"

To change the strapping bit values, you can apply the external pull-down/pull-up resistances, or use the host MCU's GPIOs to control the voltage level of these pins when powering on ESP32-C3 family.

After reset, the strapping pins work as normal-function pins.

Refer to Table 3 for a detailed boot-mode configuration of the strapping pins.

Table 3: Strapping Pins

	Booting Mode ¹					
Pin	Default	SPI Boot	Download Boot			
GPIO2	N/A	1	1			
GPIO8	N/A	Don't care	1			
GPIO9	Internal pull-up	1	0			
	Enab	oling/Disabling ROM Code Print Du	ring Booting			
Pin	Default	Functionality				
		When the value of eFuse field EFUS	E_UART_PRINT_CONTROL is			
		0 (default), print is enabled and not controlled by GPIO8.				
GPIO8	N/A	1, if GPIO8 is 0, print is enabled; if GPIO8 is 1, it is disabled.				
		2, if GPIO8 is 0, print is disabled; if GPIO8 is 1, it is enabled.				
		3, print is disabled and not controlled by GPIO8.				
	Co	ontrolling JTAG Signal Source Durin	g Booting			
Pin	Default	Functionality				
		When the value of eFuse bit EFUSE	_STRAP_JTAG_SEL is			
GPIO10	N/A	0 (default), JTAG signals come from	USB Serial/JTAG controller.			
GI IOTO	IV/A	1, if GPIO10 is 0, JTAG signals come from chip pins;				
		if GPIO10 is 1, JTAG signals com	e from USB Serial/JTAG controller.			

¹ The strapping combination of GPIO8 = 0 and GPIO9 = 0 is invalid and will trigger unexpected behavior.

Figure 4 shows the setup and hold times for the strapping pin before and after the CHIP_EN signal goes high. Details about the parameters are listed in Table 4.

Figure 4: Setup and Hold Times for the Strapping Pin

Table 4: Parameter Descriptions of Setup and Hold Times for the Strapping Pin

Parameter	Description	Min (ms)
t _o	Setup time before CHIP_EN goes from low to high	0
t_1	Hold time after CHIP_EN goes high	3

Electrical Characteristics

Absolute Maximum Ratings 4.1

Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Table 5: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
VDD33	Power supply voltage	-0.3	3.6	V
T_{STORE}	Storage temperature	-40	150	°C

Recommended Operating Conditions

Table 6: Recommended Operating Conditions

Symbol	Parameter		Min	Тур	Max	Unit
VDD33	Power supply voltage			3.3	3.6	V
$ V_{VDD} $	Current delivered by external power supply			_	_	Α
T_A	Ambient	85 °C version	-40		85	°C
	temperature	105 °C version	<u>–</u> 40		105	C
Humidity	Humidity cond	dition	_	_	85	%RH

DC Characteristics (3.3 V, 25 °C)

Table 7: DC Characteristics (3.3 V, 25 °C)

Symbol	Parameter	Min	Тур	Max	Unit
C_{IN}	Pin capacitance	_	2	_	рF
V_{IH}	High-level input voltage	$0.75 \times VDD^1$		VDD ¹ + 0.3	V
V_{IL}	Low-level input voltage	-0.3		$0.25 \times VDD^1$	V
$ I_{IH} $	High-level input current			50	nA
$ I_{IL} $	Low-level input current	_		50	nA
V_{OH}^2	High-level output voltage	$0.8 \times VDD^1$		_	V
V_{OL}^2	Low-level output voltage	_		$0.1 \times VDD^1$	V
Larr	High-level source current (VDD1= 3.3 V,		40		mA
$ _{OH}$	$V_{OH} >= 2.64 \text{ V, PAD_DRIVER} = 3)$	_	40		ША
Lor	Low-level sink current (VDD 1 = 3.3 V, V $_{OL}$ =		28		mA
OL	0.495 V, PAD_DRIVER = 3)		20		ША
R_{PU}	Pull-up resistor	_	45		kΩ
R_{PD}	Pull-down resistor		45		kΩ

Cont'd on next page

Table 7 - cont'd from previous page

Symbol	Parameter	Min	Тур	Max	Unit
V_{IH_nRST}	Chip reset release voltage	$0.75 \times VDD^1$	_	VDD ¹ + 0.3	V
V_{IL_nRST}	Chip reset voltage	-0.3	_	$0.25 \times VDD^1$	V

¹ VDD is the I/O voltage for a particular power domain of pins.

4.4 Current Consumption Characteristics

With the use of advanced power-management technologies, the module can switch between different power modes. For details on different power modes, please refer to Section Low Power Management in ESP32-C3 Family Datasheet.

Table 8: Current Consumption Depending on RF Modes

Work mode	Desc	cription	Peak (mA)
		802.11b, 1 Mbps, @21 dBm	350
Active (RF working)	TV	802.11g, 54 Mbps, @19 dBm	295
	1/	802.11n, HT20, MCS 7, @18.5 dBm	290
	ng)	802.11n, HT40, MCS 7, @18.5 dBm	290
	DV	802.11b/g/n, HT20	82
		802.11n, HT40	84

¹ The current consumption measurements are taken with a 3.3 V supply at 25 °C of ambient temperature at the RF port. All transmitters' measurements are based on a 100% duty cycle.

Table 9: Current Consumption Depending on Work Modes

Work mode	Description		Тур	Unit
Modem-sleep ^{1, 2}	The CPU is	160 MHz	20	mA
Modern-sleep.	powered on ³	80 MHz	15	mA
Light-sleep	_		130	μΑ
Deep-sleep	RTC timer + RTC memory		5	μΑ
Power off	CHIP_PU is se	t to low level, the chip is powered off	1	μΑ

¹ The current consumption figures in Modem-sleep mode are for cases where the CPU is powered on and the cache idle.

 $^{^2\ {\}rm V}_{OH}$ and ${\rm V}_{OL}$ are measured using high-impedance load.

² The current consumption figures for in RX mode are for cases when the peripherals are disabled and the CPU idle.

² When Wi-Fi is enabled, the chip may switch between Active and Modem-sleep modes. Therefore, current consumption changes accordingly.

³ In practice, software can adjust CPU's frequency according to CPU load to reduce current consumption.

4.5 Wi-Fi Radio

4.5.1 Wi-Fi RF Standards

Table 10: Wi-Fi RF Standards

Name		Description	
Center frequency range of operating channel ¹		2412 ~ 2484 MHz	
Wi-Fi wireless standard		IEEE 802.11b/g/n	
		11b: 1, 2, 5.5 and 11 Mbps	
Data rate	20 MHz	11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps	
Data Tale		11n: MCS0-7, 72.2 Mbps (Max)	
	40 MHz	11n: MCS0-7, 150 Mbps (Max)	
Antenna type		PCB antenna and IPEX antenna	

¹ Device should operate in the center frequency range allocated by regional regulatory authorities. Target center frequency range is configurable by software.

4.5.2 Wi-Fi RF Transmitter (TX) Specifications

Target TX power is configurable based on device or certification requirements. The default characteristics are provided in Table 11.

Table 11: TX Power with Spectral Mask and EVM Meeting 802.11 Standards

Rate	Min	Тур	Max
nate	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps	_	20.5	_
802.11b, 11 Mbps		20.5	
802.11g, 6 Mbps	_	20.0	_
802.11g, 54 Mbps		18.0	
802.11n, HT20, MCS 0	_	19.0	_
802.11n, HT20, MCS 7	_	17.5	_
802.11n, HT40, MCS 0	_	18.5	_
802.11n, HT40, MCS 7		17.0	_

Table 12: TX EVM Test

Data	Min	Тур	SL ¹
Rate	(dB)	(dB)	(dB)
802.11b, 1 Mbps, @21 dBm	_	-24.5	-10
802.11b, 11 Mbps, @21 dBm	_	-25.0	-10
802.11g, 6 Mbps, @21 dBm		-23.0	-5
802.11g, 54 Mbps, @19 dBm	_	-28.0	-25
802.11n, HT20, MCS 0, @20 dBm		-23.5	-5
802.11n, HT20, MCS 7, @18.5 dBm	_	-30.5	-27

Cont'd on next page

Table 12 - cont'd from previous page

Rate	Min (dB)	Typ (dB)	SL ¹ (dB)
802.11n, HT40, MCS 0, @20 dBm		-26.5	-5
802.11n, HT40, MCS 7, @18.5 dBm	_	-30.5	-27

¹ SL stands for standard limit value.

4.5.3 Wi-Fi RF Receiver (RX) Specifications

Table 13: RX Sensitivity

Rate	Min (dBm)	Typ (dBm)	Max (dBm)
802.11b, 1 Mbps	_	-98.0	_
802.11b, 2 Mbps	_	-96.0	_
802.11b, 5.5 Mbps	_	-93.0	_
802.11b, 11 Mbps	_	-88.6	_
802.11g, 6 Mbps	_	-92.8	_
802.11g, 9 Mbps	_	-91.8	_
802.11g, 12 Mbps	_	-90.8	_
802.11g, 18 Mbps	_	-88.4	_
802.11g, 24 Mbps	_	-85.4	_
802.11g, 36 Mbps	_	-82.0	_
802.11g, 48 Mbps	_	-77.8	_
802.11g, 54 Mbps	_	-76.2	_
802.11n, HT20, MCS 0	_	-92.6	_
802.11n, HT20, MCS 1	_	-90.6	_
802.11n, HT20, MCS 2	_	-88.0	_
802.11n, HT20, MCS 3	_	-84.8	_
802.11n, HT20, MCS 4	_	-81.6	_
802.11n, HT20, MCS 5	_	-77.4	_
802.11n, HT20, MCS 6	_	-75.6	_
802.11n, HT20, MCS 7	_	-74.4	_
802.11n, HT40, MCS 0	_	-90.0	_
802.11n, HT40, MCS 1	_	-87.6	_
802.11n, HT40, MCS 2	_	-84.8	_
802.11n, HT40, MCS 3	_	-81.8	_
802.11n, HT40, MCS 4	_	-78.4	
802.11n, HT40, MCS 5	_	-74.2	
802.11n, HT40, MCS 6	_	-72.6	
802.11n, HT40, MCS 7	_	-71.2	

Table 14: Maximum RX Level

Rate	Min	Тур	Max
Tideo	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps		5	
802.11b, 11 Mbps	_	5	
802.11g, 6 Mbps	_	5	
802.11g, 54 Mbps	_	0	
802.11n, HT20, MCS 0	_	5	_
802.11n, HT20, MCS 7		0	_
802.11n, HT40, MCS 0		5	
802.11n, HT40, MCS 7		0	_

Table 15: RX Adjacent Channel Rejection

Rate	Min	Тур	Max
nate	(dB)	(dB)	(dB)
802.11b, 1 Mbps		35	
802.11b, 11 Mbps	_	35	_
802.11g, 6 Mbps	_	31	
802.11g, 54 Mbps	_	14	_
802.11n, HT20, MCS 0		31	_
802.11n, HT20, MCS 7	_	13	_
802.11n, HT40, MCS 0	_	19	_
802.11n, HT40, MCS 7	_	8	_

Bluetooth LE Radio 4.6

4.6.1 Bluetooth LE RF Transmitter (TX) Specifications

Table 16: Transmitter General Characteristics

Parameter	Min	Тур	Max	Unit
RF transmit power	_	0	_	dBm
Gain control step	_	3	_	dB
RF power control range	-27	_	18	dBm

Table 17: Transmitter Characteristics - Bluetooth LE 1M

Parameter	Description	Min	Тур	Max	Unit
	$F = F0 \pm 2 MHz$	_	-37.62	_	dBm
In-band emissions	$F = F0 \pm 3 \text{ MHz}$	_	-41.95	_	dBm
	$F = F0 \pm > 3 \text{ MHz}$	_	-44.48	_	dBm
	$\Delta f 1_{avg}$	_	245.00	_	kHz
Modulation characteristics	$\Delta f2_{max}$	_	208.00	_	kHz
	$\Delta f 2_{\rm avg}/\Delta f 1_{\rm avg}$	_	0.93	_	_
Carrier frequency offset	_	_	-9.00	_	kHz
Carrier frequency drift	$ f_0 - f_n _{n=2, 3, 4,k}$	_	1.17	_	kHz
	$ f_1 - f_0 $	_	0.30	_	kHz
	$ f_{n}-f_{n-5} _{n=6, 7, 8,k}$		4.90		kHz

Table 18: Transmitter Characteristics - Bluetooth LE 2M

Parameter	Description	Min	Тур	Max	Unit
	F = F0 ± 4 MHz	_	-43.55	_	dBm
In-band emissions	F = F0 ± 5 MHz	_	-45.26	_	dBm
	$F = F0 \pm > 5 MHz$	_	-47.00	_	dBm
	$\Delta f 1_{ ext{avg}}$	_	497.00	_	kHz
Modulation characteristics	$\Delta f2_{max}$	_	398.00	_	kHz
	$\Delta f 2_{\text{avg}}/\Delta f 1_{\text{avg}}$	_	0.95	_	_
Carrier frequency offset	_	_	-9.00	_	kHz
Carrier frequency drift	$ f_0 - f_n _{n=2, 3, 4,k}$	_	0.46	_	kHz
	$ f_1-f_0 $	_	0.70	_	kHz
	$ f_{n}-f_{n-5} _{n=6, 7, 8,k}$	_	6.80	_	kHz

Table 19: Transmitter Characteristics - Bluetooth LE 125K

Parameter	Description	Min	Тур	Max	Unit
	$F = F0 \pm 2 MHz$	_	-37.90	_	dBm
In-band emissions	$F = F0 \pm 3 \text{ MHz}$	_	-41.00		dBm
	$F = F0 \pm > 3 MHz$		-42.50	_	dBm
Modulation characteristics	$\Delta f1_{ ext{avg}}$	_	252.00	_	kHz
Modulation Characteristics	$\Delta f1_{ ext{max}}$		200.00	_	kHz
Carrier frequency offset	_	_	-13.70	_	kHz
	$ f_0 - f_n _{n=1, 2, 3,k}$	_	1.52	_	kHz
Carrier frequency drift	$ f_0-f_3 $	_	0.65	_	kHz
	$ f_{n}-f_{n-3} _{n=7, 8, 9,k}$		0.70	_	kHz

Table 20: Transmitter Characteristics - Bluetooth LE 500K

Parameter	Description	Min	Тур	Max	Unit
	$F = F0 \pm 2 MHz$	_	-37.90	_	dBm
In-band emissions	$F = F0 \pm 3 \text{ MHz}$	_	-41.30	_	dBm
	$F = F0 \pm > 3 \text{ MHz}$	_	-42.80	_	dBm
Modulation characteristics	$\Delta f2_{ ext{avg}}$	_	220.00	_	kHz
Modulation Characteristics	$\Delta f2_{ ext{max}}$	_	205.00	_	kHz
Carrier frequency offset	_	_	-11.90	_	kHz
	$ f_0 - f_n _{n=1, 2, 3,k}$	_	1.37	_	kHz
Carrier frequency drift	$ f_0 - f_3 $	_	1.09	_	kHz
	$ f_{n}-f_{n-3} _{n=7, 8, 9,k}$	_	0.51	_	kHz

4.6.2 Bluetooth LE RF Receiver (RX) Specifications

Table 21: Receiver Characteristics - Bluetooth LE 1M

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	_	_	-96	_	dBm
Maximum received signal @30.8% PER	_	_	10	_	dBm
Co-channel C/I	_	_	8	_	dB
	F = F0 + 1 MHz		-4	_	dB
	F = F0 – 1 MHz		-3		dB
Adjacent channel selectivity C/I	F = F0 + 2 MHz		-32	_	dB
Adjacent charmer selectivity C/1	F = F0 - 2 MHz		-36	_	dB
	$F \ge F0 + 3 \text{ MHz}^{(1)}$		_	_	dB
	$F \le F0 - 3 MHz$		-39	_	dB
Image frequency	_		-29		dB
Adjacent channel to image frequency	$F = F_{image} + 1 \text{ MHz}$		-38	_	dB
Adjacent channel to image frequency	$F = F_{image} - 1 \text{ MHz}$		-34		dB
	30 MHz ~ 2000 MHz		-9		dBm
Out-of-band blocking performance	2003 MHz ~ 2399 MHz	_	-18	_	dBm
Out-or-band blocking pendimance	2484 MHz ~ 2997 MHz	_	-16	_	dBm
	3000 MHz ~ 12.75 GHz	_	-6	_	dBm
Intermodulation	_	_	-44		dBm

 $^{^{1}}$ Refer to the value of Adjacent channel to image frequency when F = F_{image} – 1 MHz.

Table 22: Receiver Characteristics - Bluetooth LE 2M

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	_	_	-93	_	dBm
Maximum received signal @30.8% PER	_		0	_	dBm
Co-channel C/I	_	_	10	_	dB
	F = F0 + 2 MHz		-7	_	dB
	F = F0 – 2 MHz	_	-7	_	dB
Adjacent channel selectivity C/I	$F = F0 + 4 MHz^{(1)}$	_	_	_	dB
Adjacent channel selectivity C/1	F = F0 – 4 MHz	_	-34	_	dB
	$F \ge F0 + 6 MHz$		-39	_	dB
	$F \le F0 - 6 MHz$		-39		dB
Image frequency	_		-27		dB
Adjacent channel to image frequency	$F = F_{image} + 2 \text{ MHz}$	_	-39	_	dB
Adjacent channel to image frequency	$F = F_{image} - 2 \text{ MHz}^{(2)}$		_	_	dB
	30 MHz ~ 2000 MHz		-17		dBm
Out-of-band blocking performance	2003 MHz ~ 2399 MHz	_	-19	_	dBm
Out-or-band blocking pendimance	2484 MHz ~ 2997 MHz	_	-16	_	dBm
	3000 MHz ~ 12.75 GHz	_	-22	_	dBm
Intermodulation	_		-40	_	dBm

¹ Refer to the value of Image frequency.

Table 23: Receiver Characteristics - Bluetooth LE 125K

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	_	_	-104	_	dBm
Maximum received signal @30.8% PER	_	_	10	_	dBm
Co-channel C/I	_	_	2	_	dB
	F = F0 + 1 MHz	_	-6	_	dB
	F = F0 – 1 MHz	_	-5	_	dB
Adjacent channel selectivity C/I	F = F0 + 2 MHz	_	-40	_	dB
Adjacent channel selectivity C/1	F = F0 – 2 MHz	_	-42	_	dB
	$F \ge F0 + 3 \text{ MHz}^{(1)}$	_	_	_	dB
	$F \le F0 - 3 \text{ MHz}$	_	-46	_	dB
Image frequency	_	_	-34	_	dB
Adjacent channel to image frequency	$F = F_{image} + 1 \text{ MHz}$	_	-44	_	dB
Aujacent channel to image frequency	$F = F_{image} - 1 \text{ MHz}$	_	-37	_	dB

¹ Refer to the value of Adjacent channel to image frequency when $F = F_{image} - 1$ MHz.

Table 24: Receiver Characteristics - Bluetooth LE 500K

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	_		-99	_	dBm

Cont'd on next page

 $^{^{2}}$ Refer to the value of Adjacent channel selectivity C/I when F = F0 + 2 MHz.

Table 24 - cont'd from previous page

Parameter	Description	Min	Тур	Max	Unit
Maximum received signal @30.8% PER	_	_	10	_	dBm
Co-channel C/I	_	_	3		dB
	F = F0 + 1 MHz	_	-5		dB
	F = F0 – 1 MHz	_	-7	_	dB
Adjacent channel selectivity C/I	F = F0 + 2 MHz	_	-39		dB
Adjacent channel selectivity C/1	F = F0 – 2 MHz	_	-40		dB
	$F \ge F0 + 3 \text{ MHz}^{(1)}$	_	_		dB
	$F \le F0 - 3 \text{ MHz}$	_	-40		dB
Image frequency	_	_	-34	_	dB
Adjacent channel to image frequency	$F = F_{image} + 1 \text{ MHz}$	_	-43	_	dB
Adjacent channel to image frequency	$F = F_{image} - 1 \text{ MHz}$	_	-38		dB

 $^{^{1}}$ Refer to the value of Adjacent channel to image frequency when F = F_{image} – 1 MHz.

5 Module Schematics

This is the reference design of the module.

S

Module Schematics

Figure 5: ESP32-C3-MINI-1 Schematics

S

Figure 6: ESP32-C3-MINI-1U Schematics

6 Peripheral Schematics

This is the typical application circuit of the module connected with peripheral components (for example, power supply, antenna, reset button, JTAG interface, and UART interface).

Figure 7: Peripheral Schematics

- Soldering the EPAD to the ground of the base board is not a must, though doing so can get optimized thermal performance. If you do want to solder it, please ensure that you apply the correct amount of soldering paste.
- To ensure the power supply to the ESP32-C3 family chip is stable during power-up, it is advised to add an RC delay circuit at the EN pin. The recommended setting for the RC delay circuit is usually R = 10 k Ω and C = 1 μ F. However, specific parameters should be adjusted based on the power-up timing of the module and the power-up and reset sequence timing of the chip. For power-up and reset sequence timing diagram of the ESP32-C3 family chip, please refer to Section *Power Scheme* in *ESP32-C3 Family Datasheet*.

7 Physical Dimensions and PCB Land Pattern

7.1 Physical Dimensions

Figure 8: ESP32-C3-MINI-1 Physical Dimensions

Figure 9: ESP32-C3-MINI-1U Physical Dimensions

7.2 Recommended PCB Land Pattern

Figure 10: ESP32-C3-MINI-1 Recommended PCB Land Pattern

Figure 11: ESP32-C3-MINI-1U Recommended PCB Land Pattern

U.FL Connector Dimensions

Figure 12: U.FL Connector Dimensions

8 Product Handling

8.1 Storage Conditions

The products sealed in moisture barrier bags (MBB) should be stored in a non-condensing atmospheric environment of < 40 °C and /90%RH. The module is rated at the moisture sensitivity level (MSL) of 3.

After unpacking, the module must be soldered within 168 hours with the factory conditions 25±5 °C and /60%RH. If the above conditions are not met, the module needs to be baked.

8.2 Electrostatic Discharge (ESD)

Human body model (HBM): 2000 V
Charged-device model (CDM): 500 V

8.3 Reflow Profile

Solder the module in a single reflow.

Figure 13: Reflow Profile

9 Learning Resources

9.1 Must-Read Documents

Please familiarize yourself with the following documents:

• ESP32-C3 Family Datasheet

This is an introduction to the specifications of ESP32-C3 family's hardware, including overview, pin definitions, functional description, peripheral interface, electrical characteristics, etc.

• ESP-IDF Programming Guide

Extensive documentation for the ESP-IDF development framework, ranging from hardware guides to API reference.

• ESP32-C3 Technical Reference Manual

Detailed information on how to use ESP32-C3 family's memory and peripherals.

• ESP32-C3 Hardware Design Guidelines

The guidelines outline recommended design practices when developing standalone or add-on systems based on the ESP32-C3 series of products, including ESP32-C3 SoCs, ESP32-C3 modules and ESP32-C3 development boards.

• Espressif Products Ordering Information

9.2 Important Resources

Here are the important ESP32-C3-related resources.

• ESP32 BBS

Engineer-to-Engineer (E2E) Community for Espressif products where you can post questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

Revision History

Date	Version	Release notes
2021-04-16	V0.7	Added information about ESP32-C3-MINI-1U module
2021-02-22	V0.6	Updated the value of C7 to 0.1 μ F in Chapter 5 <i>Module Schematics</i>
2021-02-05	V0.5	Preliminary release

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice.

ALL THIRD PARTY'S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2021 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.