《模形式初步》勘误表

跨度: 2020—2022

李文威

2022-07-07

以下页码和标号等信息参照科学出版社 2020 年 6 月出版之《模形式初步》, ISBN: 978-7-03-064531-9, 和网络版可能有异. 部分错误未见于网络版. 列出的错误均已在修订版改正 (2022 年 4 月网络发布, 纸本待出).

感谢胡龙龙指正

- **◇ 命题 1.1.9 证明最后一行** 去掉 "这" 字, 改为 "如此就描述了..."
- \diamond (1.5.3) 原文 在 Γ 作用下不变 更正 在 γ 作用下不变

感谢冯煜阳指正

◇ 定义 1.6.7 第二项原文 $\delta' \Delta(x_0)$ 更正 $\delta' D(x_0)$

感谢朱子阳指正

- (2.5.4) 上两行
 原文
 $J(-x,\tau) = J(x,\tau)$ 更正
 $J(-x,\tau) = -J(x,\tau)$ 感谢冯煜阳

 指正
- \diamond 定理 2.5.8 (iv) 最后一行原文 $\sigma_r^{\bar{v}}(n) := \cdots$ 更正 $\sigma_{k-1}^{\bar{v}}(n) := \cdots$ 感谢汤一鸣指正
- 令 命题 3.5.6 的叙述和证明 (出现三次)
 原文
 $Nrd(q)^{-1}q$ 更正
 $Nrd(q)^{-1}\overline{q}$ 感谢

 李时璋指正
- **◇命题 3.6.7 证明最后一段** 原文 而且该极限对 $u \in [0,x]$ 是一致的... 因为 $u \in [0,x]$ 更正 而且该极限对 $u \in [0,y]$ 是一致的... 因为 $u \in [0,y]$ 感谢李时璋指正
- ◇ 命题 3.7.4 的前一段话 (纸本) 原文 内积系, 相对于 更正 内积系相对于
- ◇注记 3.8.16原文对于全实域 F 上仅对一个嵌入 $F \hookrightarrow \mathbb{R}$ 分裂的四元数代数 B更正对于 \mathbb{Q} 上对嵌入 $\mathbb{Q} \hookrightarrow \mathbb{R}$ 分裂,但在 \mathbb{Q} 上非分裂的四元数代数 B感谢李时璋指正李时璋指正

- ◇ §4.4 第二段 (网络版) "定义了模判别式..."之前 2.4 多出现了一次. 感谢汤一鸣指正
- **⋄ 练习 4.4.7 的表述** 将列表第一项的 $M(1)_k$ 改为 $M_k(1)$.

将最后一句 "进一步,说明 S(1) 也来自一个分次理想 $S(1)_{\mathbb{Z}} \subset M(1)_{\mathbb{Z}}$." 改为: "进一步描述 $M(1)_{\mathbb{Z}}$ 的分次理想 $M(1)_{\mathbb{Z}} \cap S(1)$." 感谢李时璋指正

 \diamond 练习 4.4.7 提示的第一句原文取 $M(1)_{\mathbb{Z}} \cdot \Delta$ 更正取 $M(1)_{\mathbb{Z}}$ 为所有 Fourier系数均为整数的模形式给出的子环、并应用前述定理.

上一句经过修正后, 结尾处再插入以下脚注: "相关的整性问题可以参考 Serge Lang 的 *Introduction to Modular Forms* (Grundlehren der mathematischen Wissenschaften, Volume 222), Chapter X, Theorems 4.2—4.4. 论证是初等的." 感谢李时璋指正

- ◇ §4.5 第一句 补上一句 "所有 Riemann 曲面均默认为紧的." 感谢李时璋指正
- ◇ 定理 5.5.5 (i)
 原文
 则 $[\Gamma'_{\lambda}]$ 是中心元;
 更正
 则对所有 $(h,k) \in \mathcal{D}$ 皆有 $[\Gamma'_{h,k}]$ *

 $[\Gamma'_{\lambda}] = [\Gamma'_{hd,kd}]$;
 感谢于惠施指正

- **定理 6.2.5 (i)** 原文
 则 [$\Gamma'_{\lambda}(N)$] 是中心元;
 更正
 则对所有 $(h,k) \in \mathfrak{D}(N)$ 皆有 [$\Gamma'_{hk}(N)$] * [$\Gamma'_{\lambda}(N)$] = [$\Gamma'_{hd,kd}(N)$];
- ◇ **命题 6.3.2 之前** 将"回忆到 §6.2 定义的子代数…"一句和后续的表格删除, 因为不正确而且不需要 (见下一条更正). 感谢李时璋指正
- 。命题 6.3.2 证明倒数第二段 原文 基于 $\mathfrak{K}_1(N)$ 已知的结构… 由引理 6.1.4 料理. 更正 基于和引理 6.1.4 相同的论证, 说明 $\Gamma_1(N)\gamma\alpha\gamma^{-1}\Gamma_1(N)=\Gamma_1(N)\alpha\Gamma_1(N)$ 即可. 易见 $\gamma\alpha\gamma^{-1}$ 既属于 $\Delta_1(N)$, 又属于 α 的 $\Gamma_0(N)$ -双陪集, 而定理 6.2.9 说明 $\Gamma_1(N)\setminus\Delta_1(N)/\Gamma_1(N)\to\Gamma_0(N)\setminus\Delta_0(N)/\Gamma_0(N)$ 是双射, 于是 $\gamma\alpha\gamma^{-1}$ 和 α 确实属于相同的 $\Gamma_1(N)$ -双陪集. 感谢李时璋指正
- ◇ §7.5 第一行 "沿用…… 亦即 $a_0(f) = 0$." 删除此行.

- ◇ 定理 8.6.4 的陈述
 原文
 $[\cdot]: End(E) \xrightarrow{\sim} \emptyset$ 更正
 $[\cdot]: \emptyset \xrightarrow{\sim} End(E)$

 原文
 ... 都有 $[\alpha]^*\omega$...
 更正
 ... 和 $\alpha \in \emptyset$ 都有 $[\alpha]^*\omega$...
- ◇ 定义 9.1.6 条列 将条列的两项修正为:
 - $> \Gamma(V, \omega_{\Gamma}) := \mathcal{O}_V(\mathrm{d}z \cdot \alpha^{-1})|_{U \setminus \{t\}},$ 其中 $V := \pi(U)$, 截面的限制映射按自明方式定义:
 - ♦ $1 \mapsto dz \cdot \alpha^{-1}$ 给出平凡化 $\mathcal{O}_V \xrightarrow{\sim} \omega_{\Gamma|_V}$.
- \diamond 命题 9.2.4 之后的第一条显示公式原文 \cdots $\overset{d}{\to}$ $\mathcal{O}_{Y(\Gamma)} \to 0$,更正 \cdots $\overset{d}{\to}$ $\Omega_{Y(\Gamma)} \to 0$ 0,感谢杜长江指正
- **引理 9.3.4 证明**将第一句末的 "定义-命题 9.3.1" 改成 "定义 9.3.2". 将证明中最后一条显示公式中的 $\mathrm{d}\xi_k = f_k$ 改成 $\xi_k = \mathrm{d}f_k$.感谢杜长江指正
- ◇ **注记 9.4.14 之上一句 原文** 这是 Petersson 的... **更正** 这是 Petersson 内积的...
- ♦ (10.1.1) 将图表中的 $\mathbb{C} \xrightarrow{\sim} \mathbb{C}^{\times}$ 改成 $\mathbb{C} \xrightarrow{} \mathbb{C}^{\times}$.
- ◇介于 (10.4.1) 和 (10.4.2) 之间的显示公式将后半部两个 \cdots ($Y_1(N)$, $R^1\pi_*(\mathbb{Q}_\ell)$) 都改成 \cdots ($Y_1(N)$, $\operatorname{Sym}^k R^1\pi_*(\mathbb{Q}_\ell)$).感谢杜长江指正
- ◇ 定义 10.4.1 原文 … $\mathcal{W}_{\ell,p} \times \mathcal{W}_{\ell,p} \to \mathbb{Q}_{\ell}$, 满足… 更正 … $\mathcal{W}_{\ell,p} \times \mathcal{W}_{\ell,p} \to \mathbb{Q}_{\ell}$ 。 ② $_{\ell}(-k-1)$,其中 $\mathbb{Q}_{\ell}(-k-1)$ 是所谓的 Tate 挠 (仅影响 Galois 作用), 满足…
- ◇ 命题 10.5.5 (i) 将第二个 → 改成 →.
- **⋄ 练习 10.6.5** 删除提示.
- ◇ 注记 10.6.9原文故 $V_{\ell}(J)$ 为 \mathbb{Z}_{ℓ} -模更正故它们的 \lim_{m} 为 \mathbb{Z}_{ℓ} -模另外, 将显示公式 $V_{f,\lambda} := V_{\ell}(J) \underset{\mathbb{T}_{\ell},\phi_f}{\otimes} K_{f,\lambda}$ 及其下一行出现的 ϕ_f 都改为 $\phi_{f,\lambda}$.
- ◇ **定理 10.6.10 之后第二段, 从"回忆推论 6.5.6 和 6.5.7 ..." 起** 删除"回忆推论 6.5.6 和 6.5.7 ..." 一段, 删除后续的命题 10.6.11 及其证明, 代换为"今后主要考虑 ƒ 为新形式的情形." (起新行), 接上原有的"我们以关于定理 10.6.7 的几点注记收尾."
- **◇ 定义 10.7.2 之下两行 (纸本) 原文** 同源等价 **更正** 同源等价类.
- \diamond 练习 10.7.3 之后第二段: "模性有一系列等价陈述…" 原文 无非是 Abel–Jacobi 映射 $\phi: X_0(N) \to J_0(N)$ 和… 更正 无非是 Abel–Jacobi 映射 $\phi: X_0(N) \to J_0(N)$ (选定基点) 和…

- ◇ 定义 B.5.2 之上四段, 加粗部分 原文 平凡从 更正 平凡丛 感谢王未指正
- ◇ 参考文献 56 该书已经正式出版 (Graduate Texts in Mathematics 288, Springer, 2021).

《模形式初步》勘误表 跨度: 2022 年至 2024 年 8 月

李文威

2024-10-18

◇ 第 2 页第一行 (仅 PDF 版) 原文 透过过 更正 透过 原文 $\partial D := D \setminus D^{\circ}$ 更正 $\partial D := \overline{D} \setminus D^{\circ}$ ⋄ 导言的拓扑空间符号部分 感谢雷嘉乐 指正 ◇ 导言的矩阵符号部分中部 原文 $\operatorname{im}[\operatorname{SL}(n,R) \to \operatorname{PGL}(n,\mathbb{R})]$ 更正 $\operatorname{im}[\operatorname{SL}(n,R) \to$ PGL(*n*, *R*)] 感谢雷嘉乐指正 原文 [50] 更正 [59] ⋄ §1.1 第一个脚注 (仅纸本) 感谢孙超超指正 原文 (1-1) 更正 (-11) ◇ 命题 **1.4.12** 关于 Stab_{SL(2,ℤ)}(ρ) 生成元的描述 谢余君指正 ◊ 引理 2.1.5 证明倒数第二行 (仅 PDF 版) 感谢 Wenjun Huang 指正 原文 线性代群 更正 线性代数群 ◇ 例 3.5.4 之前的 (i) 感谢杨箐浩指正 ◇ **定义 3.6.4 之后的讨论条列第二项** 从 "变 α 为 $\alpha\beta$..." 之后关于 g^* 的公式起, 直到 "... 只差一个因子 a^{-k} ." 为止, 所有的 a^{-k} 都应该改成 a^{k} (共 5 处) 感谢余君指正 原文 所以 $\gamma \in \Gamma$ 更正 所以 $\gamma' \in \Gamma$ 感谢张羽扬指 ⋄定理 5.2.7 证明第一段最末 īF ◇ 等式 (5.2.1) 的下一行 原文 $\Gamma \cdot \Gamma \alpha \Gamma$ 更正 $\Gamma' \cdot \Gamma \alpha \Gamma$ 感谢汤一鸣指正 原文 $f(\delta_1\delta_1)$ 更正 $f(\delta_1\delta_2)$ ◇ 等式 (5.4.1) 的下一行 感谢汤一鸣指正 ◇ 公式 (6.2.3) 将两处 L/L' 改成 L'/L.

感谢张羽扬指正

\diamond 定理 6.5.1 证明 将证明中间 "定义 $S_k(\Gamma(N))$ 的线性自同态…" 之前一行的显示公式中的 $\alpha_n(f)$ 改为 $\alpha_n(\varphi)$.

感谢余君指正

 \diamond 定理 7.1.2 证明第一行在 "命题 2.6.3" 之后加上一条脚注: "该节构造的 Eisenstein 级数, 其 Fourier 展开和对应的直和分解都可以通过解析延拓推及 k=1,2 的情形, 细节比较复杂, 详阅 [41, §7.2]."

感谢彭也博指正

令 命题 7.3.4 之上的显示公式 将 $r_m(n) := \cdots$ 右边的 k 都代换为 m (三处), 将 $\cdots = m$ 代 换为 $\cdots = n$.

感谢金志扬指正

- ◇ 练习 10.1.3 之前一行 原文 … 有奇点 更正 … 无奇点 感谢刘亚迪指正
- ◇ **引理 A.1.2 之前两行** 原文 … 连续的最粗拓扑 更正 … 连续的最细拓扑 感谢李钦浩指正
- \diamond 引理 A.1.10 证明第三行 G/K 更正 G/H