CSDS 391 Introduction to Artificial Intelligence

Written Assignment 5 ("W5")

Total Points: 100

Remember: name and case ID, answers concise, neat, and legible. Submit electronically via canvas. You can scan your hand-written assignment, but make sure all your answers are legible. Your file must be a .pdf file (.doc or .txt files are not allowed), and the filename should have the following format: W5_yourCaseID.pdf.

Note: Some of the questions below ask you to make plots and/or write simple programs. This might be more convenient to do in a language with a good plotting library such as Matlab or python using matplotlib.

Q1. Bernoulli trials and bias beliefs

Recall the binomial distribution describing the likelihood of getting y heads for n flips:

$$p(y|\theta,n) = \binom{n}{y} \theta^{y} (1-\theta)^{n-y}$$

where θ is the probability of heads.

a) Using the fact

$$\int_0^1 p(y|\theta, n)d\theta = \frac{1}{1+n}$$

derive the posterior distribution for θ assuming a uniform prior. (10 P.)

- b) Plot the likelihood for n = 4 and $\theta = 3/4$. Make sure your plot includes $\gamma = 0$. (10 P.)
- c) Plot the posterior distribution of θ after *each* of the following coin flips: head, head, tail, head. You should have four plots total. (10 P.)

Q2. After R&N 20.1 Bags O' Surprise

The data used for Figure 20.1 on page 804 can be viewed as being generated by h_5 .

- a) For each of the other four hypotheses, write code to generate a data set of length 100 and plot the corresponding graphs for $P(h_i|d_1,\ldots,d_N)$ and $P(D_{N+1}=\lim_i |d_1,\ldots,d_N)$. The plots should follow the format of Figure 20.1. Comment on your results. (20 P.)
- b) What is the mathematical expression for how many candies you need to unwrap before you are more 90% sure which type of bag you have? (10 P.)
- c) Make a plot that illustrates the reduction in variabilty of the curves for the posterior probability for each type of bag by averaging each curve obtained from multiple datasets. (20 P.)

Q3. k-means Clustering

In k-means clustering, μ_k is the vector mean of the k^{th} cluster. Assume the data vectors have I dimensions, so μ_k is a (column) vector $[\mu_1, \dots, \mu_I]_k^T$, where the symbol T indicates vector transpose.

Derive update rule for μ_k using the objective function

$$D = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} \| \boldsymbol{x}_{n} - \boldsymbol{\mu}_{k} \|^{2}$$

where \mathbf{x}_n is the n^{th} data vector, $r_{n,k}$ is 1 if \mathbf{x}_n is in the k^{th} class and 0 otherwise, and $\|\mathbf{x}\|^2 = \mathbf{x}^T \mathbf{x} = \sum_i x_i x_i = \sum_i x_i^2$. The update rule is derived by computing the gradient for each element of the k^{th} mean and solving for the value where the gradient is zero. Express your answer first in scalar form for $\mu_{k,i}$ and in vector form for μ_k . (20 P.)