Chapter 1

COMBINATORIAL METHODS

1.1 Counting

In this chapter we learn counting techniques that will be useful to when calculating discrete probabilities.

Theorem 1.1.1 (Counting Rule for Compound Events) If a process/operation/choice consists of two steps where the first can be done in (n_1) ways and the second can be done in (n_2) ways, then the entire process can be done in (n_1) ways.

Example 1.1.2 Q: How many different meal options can be made from a choice of 13 appetizers and 25 main dishes?

$$n_1 \cdot n_2 = 3 \cdot 2 = 6$$
different
options

M, M2 M, M2 M, M2

Definition: If A and B are sets, we may form a new set

If
$$A$$
 and B are sets, we may form a new set
$$(A \times B) = \{(x,y) | x \in A, y \in B\}$$

$$(x,y)$$

of all (ordered) pairs of elements from A and B. $A \times B$ is called the Cartesian product of A and B. YEB

If A and B are finite and have respectively m and n elements, then $A \times B$ has mn elements.

Example: A 14 A has 3 elements and B has 2 elements, then A×B has 3.2=6 elements.

Theorem 1.1.3 If a process consists of k steps where each can be done in n_i ways (for i = 1, 2, ..., k) then the entire process can be done in $n_1 \cdot n_2 \cdot \cdots \cdot n_k$ ways.

Definition: Generalize the Cartesian product to k sets, A_1, \ldots, A_k , an ordered k-typle $A_1 \times \cdots \times A_k = \{(x_1, \dots, x_k) | x_i \in A_i \text{ for } i \in \{1, \dots k\}\}.$ by

Thus if A_1, \ldots, A_k are finite and have n_1, \ldots, n_k elements respectively, then $A_1 \times \cdots \times A_k$ has $\underline{n_1 \cdots n_k}$ elements.

Example 1.1.4 A university room number is an ordered triple $(f, h, n) \in F \times H \times N$ where

$$F = \{1, 2\}, \quad H = \{A, B, C\}, \quad N = \{8, 9\}.$$

Q: How many room numbers are there?

The following tree diagram demonstrates the general counting rule

The set F has 2 elements

The set H has 3 elements

The set N has 2 elements

we find the number of room numbers,

we find the number of elements is a

in F×H×N. This number is 2.3.2=12.

There are 12 room numbers.

Permutations and Combinations

An ordered arrangement of elements of a set S, in which no element occurs more than once, is called a **permutation** of S.

Example: Let $S = \{a, b, c\}$.

Q: How many permutations of S are there?

The example hints at the following theorem:

Theorem 1.2.1 The number of permutations of n distinct objects is

$$n! = n \cdot (n-1) \cdot \ldots \cdot 3 \cdot 2 \cdot 1.$$
"A factorial"

Example: Let $S = \{R, O, Y, G, B, I, V\}$ be the seven rainbow lours.

7 elements

7 leaves 7! = 7.6.5.4.

1. How many permutations of S are there? colours.

2. How many different flags, composed of three vertical bars with distinct colours can be made from S?

Theorem 1.2.2 The number of permutations of n distinct objects taken

r at a time is

$${}_{n}P_{r} = \frac{n!}{(n-r)!}$$

$${}_{n}P_{r} = \frac{n!}{(n-r)!}$$

$$+ 3 = \frac{7!}{(7-3)!} + \frac{7 \cdot 6 \cdot 5 \cdot \cancel{5} \cdot \cancel{5} \cdot \cancel{5}}{\cancel{4} \cdot \cancel{5} \cdot \cancel{2} \cdot \cancel{4}}$$

Example: Permutations with Repeated Elements

Ex: How many different permutations of the word "coolio" are there?

Objects are c,0,0,1,i,0 Note that not all objects are distinct. (the letter o appears in 3 copies) C,0,0,1,i,0

• Index each "o" to get the set {c,o₁,o₂,o₃, l, i}. Dow we can the 3 o's from one another.

• There are 6! permutations of these distinct objects.

• In each permutation, the 3! arrangements of o_1,o_2,o_3 give the o_1,o_2,o_3 give the same word. e.g. the following are the same:

6=3! The 3 copies of the letter of combe arrowned among themselves in 3! ways.

• Therefore there are $\frac{6!}{3!} = 120$ different permutations of the word "coolio".

so there owe 120 different words one com form would using the letters coolio.

Ex: How many different words can you form using the letters in BANANA.

6 letters in total

3 $\frac{4}{5}$ 2 $\frac{6}{3}$ 1 $\frac{6}{3}$ 1 $\frac{6}{3}$ A'S

N'S

B

N'S

B

One words can you

8.5.4.3.24

6.5.4.3.24

6.5.4.3.24

6.5.4.3.24

Theorem 1.2.4 (Permutations with Repeated Elements) The number of permutations of n objects of which n_1 are of one kind, n_2 are of a second kind, ..., n_k are of a kth kind and $n = n_1 + n_2 + \cdots + n_k$ is

$$\binom{n}{n_1, n_2, \dots, n_k} = \frac{n!}{n_1! \cdot n_2! \cdot \dots \cdot n_k!}.$$

Example: How many different numbers can be formed with the single digits 1, 2, 2, 3, 3, 3, 3?