2311 4PM1 Paper 2 Mark Scheme

Question	Scheme	Marks
1	$b^2 - 4ac > 0 \Longrightarrow 8^2 - 4 \times k \times 3k > 0$	M1
	$64 - 12k^2 > 0$	
	cvs: $k = \pm \sqrt{\frac{64}{12}} = \left[\pm \frac{4\sqrt{3}}{3}\right]$ or $\left[\pm \frac{4}{\sqrt{3}}\right]$	M1A1
	$\Rightarrow -\frac{4\sqrt{3}}{3} < k < \frac{4\sqrt{3}}{3}$	M1A1 [5]
Total 5 marks		

Mark	Notes	
M1	Applies the correct values, with the correct inequality to $b^2 - 4ac > 0$	
M1	Attempts to find two critical values by solving the quadratic equation, which must be	
	of the form $k^2 = \text{constant}$ [oe] using a correct method.	
	Accept as a minimum solution $k = \pm \sqrt{\text{constant}}$	
	Allow simplified or unsimplified.	
	Ignore any inequalities, equal signs etc	
A1	For the correct critical values simplified or unsimplified	
	Award this mark for correct critical values. Ignore =, <, > or even \leq , \geq	
	M0M1A1 is a possible marking pattern.	
M1	Simplifies the critical values to the required form and writes down the inside region for	
	their TWO critical values. If they solve a linear equation for k this mark is not	
	available.	
	Allow use of x for this mark and also allow \leq in place of \leq .	
A1	For the correct region specified correctly in either of the two forms specified in terms	
	of <i>k</i> . That is, a continuous inside region.	
	Accept $-\frac{4}{\sqrt{3}} < k < \frac{4}{\sqrt{3}}$ oe	
	Accept also for example $k > -\frac{4}{\sqrt{3}}$ AND $k < \frac{4}{\sqrt{3}}$	