

Electrically Small Spiral Transmission Line-Connected Triple-Arm Folded Monopole Antenna

Milan Polívka, David Vrba Czech Technical University in Prague Faculty of Electrical Engineering

Motivation

Addressing two issues:

- Approaching fundamental bounds with a simple manufacturable geometries (cylinders, cuboids, NOT sphere) of el. small antenna composed of horizontal metallic layers and vias only
- Application of self-resonant short multiple-arm not too closely spaced monopoles ($s > 0.05 \lambda_0$) how does it affect Z_{in} ?

Outline

- 1. Short multiple-arm monopoles
- 2. Triple-arm monopole antenna
- 3. Input impedance/resistance
- 4. Comparison with fundamental bounds
- 5. Summary

Short multiple-arm monopoles

- Dipole/monopole: $R_{rad} \sim c(h/\lambda)^2$, c depends on the type of current distribution
- Multiple-arms: a technique for increasing radiation resistance, $R_{\text{rad, N dipoles}} \sim N^2 R_{\text{rad, dipole}}$ for dipole spacing $s < 0.05 \, \lambda_0$
- In-phase feeding must be ensured between monopoles, possibly

by e.g.

 \circ ~ $\lambda/2$ winding¹⁾

- o reactive (capacitive, inductive) loading 2)
- o MTM cells 3)

¹⁾ Fenwick, R. C., TAP 1965

²⁾ Best, S., APM 2005, ...

³⁾ Antoniades, and Eleftheriades, AWPL 2008, Kokkinos, and Feresidis, TAP 2009, ...

Triple-arm monopole antenna design

Cylindrical geometry:

$$d = \lambda_0/10$$
, is $h = \lambda_0/20$, $f_0 = 3.0$ GHz -> $ka = 0.44$

Spiral TL:

$$r(\varphi) = \alpha \varphi, r(\varphi = 4\pi) = \lambda_0/20 => \alpha = \lambda_0/(80\pi) \text{ and } I_{TL} + 2h = \lambda_0/2$$

monopole distance $0.05 < s < 0.01 \lambda_0$

- Winding/spiral TL occupy specific area
- Are dipoles still closely spaced? Does spacing larger than $s > 0.05 \lambda_0$ affect significantly $\sim N^2$?
- How close to fundamental bounds is it?

Input impedance

Evaluation of Z_{in} of an array of N closely spaced elements by method of induced electromotive forces (EMF) 4, 5)

$$\frac{V}{N} = \sum_{N} I_{N} Z_{1N} = I_{1} Z_{11} + I_{2} Z_{12} + I_{3} Z_{13}$$

supposing $I_1 \approx I_2 \approx I_3 \approx I$ and $Z_{11} \approx Z_{1N}$ gives

$$Z_{in} = \frac{V}{I} = N^2 Z_{11}$$

If we assume $Z_{11} \neq Z_{1N}$ then we acquire

$$Z_{in} = \frac{V}{I} = N(Z_{11} + Z_{12} + Z_{13})$$

⁴⁾ Carter, TAP 1932

⁵⁾ Balanis, C., Antenna Theory, Analyzes and Design, 1997

Input impedance

Mutual impedance of two dipoles ⁶⁾

$$Z_{pq} = \frac{j\eta}{4\pi k} \int_{-h/2 - h/2}^{h/2} \int_{-Ip}^{h/2} \frac{I_p(z)I_q(z')}{I_pI_q} \left(\partial_z^2 + k^2\right) G_{pq}(z-z') dzdz' \qquad G_{pq}(z-z') = \frac{e^{-jkR_{pq}}}{R_{pq}}, \quad R_{pq} = \sqrt{(z-z')^2 + s_{pq}^2}$$

• Assuming uniform current distribution $I_p = I_q = I$ we get

$$Z_{pq} = \frac{j\eta}{4\pi k} \int_{-h/2-h/2}^{h/2} \int_{-k/2-h/2}^{h/2} \left(\partial_z^2 + k^2\right) G_{pq}(z-z') dz dz'$$

$$\left(\partial_z^2 + k^2\right) G_{pq}(z-z') = \frac{(1+jkR)(3(z-z')-R^2)-k^2R^2(z-z')^2 + k^2R^4}{R^5} e^{-jkR}$$

• Using Euler relation $e^{-jkR} = \cos(kR) - j\sin(kR)$ we get for R_{pq}

$$R_{pq} = \frac{\eta}{4\pi k} \iint \left\{ \sin(kR) (\frac{3(z-z')^2}{R^5} - \frac{1+k^2(z-z')^2}{R^3} + \frac{k^2}{R}) - \cos(kR) (\frac{3k(z-z')^2}{R^4} - \frac{k}{R^2}) \right\} dz dz'$$

⁶⁾ Orfanidis, S., Electromagnetic waves and applications, http://www.ece.rutgers.edu/~orfanidi/ewa/

Input resistance

• R_{pq} evaluated numerically for $N = \{2, 3, 4\}$; $s_{pq} > 0.05 \lambda_0$

$$\begin{split} N &= 2 \colon s_{12} = 0.1 \, \lambda_0 & Z_{\text{in}} = N(Z_{11} + Z_{12}) \\ N &= 3 \colon s_{12} = s_{13} = \sqrt{3} \lambda_0 / 20 = 0.087 \lambda_0 & Z_{\text{in}} = N(Z_{11} + (N-1)Z_{12}) \\ N &= 4 \colon s_{12} = s_{14} = \sqrt{2} \lambda_0 / 20 = 0.071 \lambda_0, \, s_{13} = 0.1 \lambda_0 & Z_{\text{in}} = N(Z_{11} + (N-2)Z_{12} + Z_{13}) \end{split}$$

• Monopole, uniform current distribution: $R_{11} = 40(kh)^2$

$$N$$
 = 2: R_{11} = 3.95 Ω, and R_{12} = 3.62 Ω
 N = 3: R_{12} = R_{13} = 3.69 Ω
 N = 4: and R_{12} = R_{14} = 3.77 Ω, R_{13} = 3.62 Ω

• R_{in} of spiral TL-fed multiple-arm monopole antenna - calculated by EMF and compared with EM simulation (MoM IE3D)

Parameters

• $R_{\rm in}$, radiation efficiency, $\sim N^{\rm x}$ dependence

N	f _{res} (GHz)	R _{in,N,sim} (Ω)	R _{in,N,EMF} (Ω)	eff _{r, sim} (%)	R _{in,N,sim} /	R _{in,N,EMF} /	X _{sim}	X _{emf}
2	2.86	16.6	15.1	86.6	4.2	3.8	2.07	1.93
3	3.00	42.7	34.0	88.1	10.8	8.6	2.17	1.96
4	3.05	69.9	60.4	89.7	17.74	15.3	2.07	1.97

• $R_{\text{in, N}} \sim N^{x}R_{\text{in}}$ where $x \sim 2$ even for $0.05 < s < 0.1 \lambda_0$

Triple-arm monopole antenna design

Prototype:

low permittivity substrate Taconic TLP - 3-0050-c1/c1 ($\epsilon_{\rm r}$ = 2.33, tan δ = 0.0009 @2.5 GHz), height 0.13 mm, suspended above GND

at height 4.9 mm ground plane size 1.4 \times 1.4 λ_0

 $FBW_{meas} = 0.83\%$ (VSWR = 2) @2.96 GHz $Q_{FBWmeas} = 85$

	f _{rez} (GHz)	R _{rad} (Ω)	Radiation efficiency (%)
3 Arms - Simulated	3.00	42,7	88,1
3 Arms - Measured	2.96	60,.0	81,7

xz-plane

yz-plane

10

Comparison with fundamental limitations

- $Q_{Chu} = 1/(ka)+1/(ka)^3$
- $Q_{Thal} = 1/(\sqrt{2}ka) + 1.5/(ka)^3$
- $Q_{Gustafsson} = 1.5/((ka)^3\gamma_1^{norm})^7$, D = 1.5, $\eta = 0.5$ (absorbtion efficiency), rational approximations for norm. polarizability

$$\frac{\gamma_{\rm cv}(\xi)}{a^3} \approx \xi \frac{6.241 + 59.056\xi + 36.097\xi^2}{1 + 5.2995\xi - 1.92\xi^2 + 7.453\xi^3}$$

- $Q/Q_{Chu} = 7.5$
- $Q/Q_{Thal} = 4.5$
- $Q/Q_{Gustafsson} = 2.2$ (cylindrical geometry, vertical polarization)

Summary

- Short triple-arm self-resonant spiral TL-fed monopole antenna proposed
- Simple manufacturable geometry
- Cylindrical geometry with aspect ratio h/d = 1/2 (incl. mirror currents h/d = 1)
- $R_{\text{rad, N}} \sim N^{x}R_{\text{rad}}$ where x ~ 1.96 for 0.05 < s < 0.1 λ_0
- $Q/Q_{Gustafsson} = 2.2$

Thank you for attention

polivka@fel.cvut.cz

