Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №1.1.4

по курсу общей физики на тему:

«Измерение интенсивности радиационного фона»

Работу выполнил: Третьяков Александр (группа Б02-206)

Долгопрудный 24 сентября 2022 г.

• Цель работы: применение методов обработки экспериментальных данных для изучения статистических закономерностей при измерении интесивности радиационного фона

В работе исппользуется: счетчик Гейгера-Мюллера(СТС-6), блок питания, компьютер с интерфейсом связи со счетчиком.

• Теоретические сведения:

Значительную часть радиационного фона составляет поток космических частиц, изменяющийся со временем случайным образом. Космические лучи разделяют на первичные - поток стабилных частиц, имеющих большую кинетическую энергию $(10^9-10^{21}~{\rm pB})$ и вторичные, которые возникают при вза-имодействии первичных с атмосферой Земли и составляют основную часть космичексих лучей, доходящих до поверхности Земли. Установлено, что в космическом пространстве поток частиц изотропен.

• Устройство счетчика Гейгера-Мюллера.

Счетчик, используемый в данной работе (СТС-6), представляет собой наполненный газом сосуд с двумя электродами: катодом (тонкостенным металлическим цилиндром) и анодом (тонкой нитью, натянутой вдоль оси циллиндра). На электроды подается напряжение 400 В. Частицы космических лучей ионизируют газ, находящийся в счетчике, а также выбивают электроны из его стенок; таким образом появляются свободные электроны. Под действием электрического поля между электродами электрон разгоняется и врезается в другие атомы, вибивая из них новые электроны. Развиваясь лавинообразно, этот процесс завершается образованием в межэлектродном пространстве электронно-ионного облака, резко увеличивающего его проводимость. По существу, при попадании в счетчик Гейгера частицы в нём вспыхивает (зажигается) самостоятельный газовый разряд, видимый (если баллон прозрачный) даже простым глазом.

• Основные расчётные формулы:

Ошибка единичного измерения $\sigma = \sqrt{n}$. (В данном эксперименте n - это число импульсов)

В полосе $n \pm \sqrt{n}$ лежит 68% точек.

Ошибка среднего $\overline{\sigma} = \sqrt{\overline{n}}$.

Стандартное отклонение $\sigma = \frac{\overline{\sigma}}{\sqrt{N}},$ где N - это количество измерений.

• Графики:

По этому графику через равные промежутки времени измеряем полосу, в которую попадают все точки, и укорачиваем ее в $\frac{2}{3}$ раза, а потом делим пополам. Это и будет наша ошибка. Также по графику можем оценить среднее значение и сравнить его с реальным с помощью графика ниже.

Рис. 1: Основной эксперимент

Опираясь на предыдущие данные, которые мы уже получили(ошибку среднего), вычисляем стандартное отклонение по формуле $\sigma=\frac{\overline{\sigma}}{\sqrt{N}}$ и сравниваем с реальным по графику.

Рис. 2: Стандартное отклонение

По гистограмме видим на какое число импульсов приходится максимум и убеждаемся в нормальности распределения нашей случайной величины, так как кривая красиво ложится на гауссиану.

Рис. 3: Гистограмма

Сравнив результаты основного и демонстрационного опыта, можно заметить, что данные получились довольно похожими, даже несмотря на меньшее количество измерений во втором опыте. Из этого можно сделать вывод, что распределение нормальное, а ошибка случайная.

• Результаты измерений и обработка данных:

Количество измерений	80	160	240	320	400
Оценка ошибки по полосе	2.0	2.5	2.5	3.0	3.2
Оценка среднего	12	12	12	12	12
Реальное среднее	11.9	11.3	11.2	11.5	11.4
Оценка ошибки среднего	3.5	3.5	3.5	3.5	3.5
Оценка стандартного отклонения	0.39	0.28	0.22	0.20	0.18
Реальное стандартное отклонение	0.39	0.23	0.21	0.19	0.18

	Чи	cu	o c	раба	тыва	аний	СЧЁ	тчи	ка з	a 20) ce	ĸ.	Аанные для		
K 2 c	опыта	1	1	2	3	4	5	6	7	8	9	10	чело честении честении	Число случаев	Аоля случаев
	0		31	14	26	23	37	21	26	31	23	28	3	1	0.0025
	10 20		22 23	19 18	24	19	24	25	26	22	19	25	4 5	3	0.0075
	30		19	17	22	27	25 24	28	21 18	27	23 20	22	5	5 15	0.0125 0.0375
	40		30	19	28								7	28	0.0373
	50	i	21	24	28	20 18	25 20	21	28 18	32 25	20	19 15	8	29	0.0725
	60	i	17	21	20	22	19	25	24	27	28	20	9	33	0.0825
	70	1	21	27	27	23	19	19	23	21	21	16	10 11	53 48	0.1325 0.12
	80		18	20	22	22	15	19	17	18	28	17	12	47	0.1175
	90 100		26 25	21 17	19 15	32 29	29	32 20	29 24	31 22	18	28	13	32	0.08
	110			27	16	18	26	25	20	22	17 20	23 23	14 15	24 32	0.06 0.08
	12			18	14	22	26	25	24	21	20	18	16	18	0.045
	13				24	26	30	26	19	29	33	34	17 18	17 5	0.0425 0.0125
and the same	14					17	19	29	21	27 26	30 15	24	19	6	0.0125
	15				17	22	27	26				27	20	2	0.005
		0				19 23	17 13	18 26	19	17 30	20 28	20 19	21 23		0.0025 0.0025
		Ö				31	14	36	12	21	13	30			0.0020

Слева предствалена гистограмма, где данные за каждые 10 секунд, а справа за каждые 20. По гистограммам можно понять, что наибольшее число случаев приходится на значение примерно 10 импульсов за 10 секунд.

• Заключение:

Нам удалось измерить интенсивность радиационного фона. Мы применили статистические методы для анализа данных и пришли к выводу, что радиационный фон стабилен. Также нам удалось довольно хорошо оценить погрешности, среднее значение и стандартное отклонение.