

Yield Learning in 7nm Semiconductor Technologies: Test Chip Design

SHAWN BLANTON

Advanced Chip Testing Laboratory
ECE Department
Carnegie Mellon University
www.ece.cmu.edu/~actl
January 5, 2020

Advanced Chip Testing Laboratory (ACTL)

Hardware Security

Trojans

Counterfeiting

Reverse engineering

Obfuscation

Logic locking

Machine Learning

Security Computing

Design Automation

Test

Diagnosis

Yield

Hardware Acceleration

Yield Learning

Diagnosis

Pata Analytics
Test Chip Design

Typical Process Development Cycle

- Fast yield improvement is crucial for new manufacturing process
- Test chip is one tool for yield learning during the process development cycle

	Stage I: Technology exploration	Stage II: Module definition	Stage III: Process validation	Stage IV: Technology validation	Stage V: Process yield ramp	Stage VI: Product yield ramp
-	Proof-of- technology	Proof-of- module	Single-layer structures	Short-flow FEOL/BEOL	Short-flow FEOL/BEOL	Product
Test chips		Transistor structures	Std. cell structures	Full-flow small SAPR	Full-flow large SAPR	Full-flow SAPR
		SRAM (2Mb)	SRAM (2Mb)	SRAM (2Mb)	SRAM (2Mb)	
PDK version	N	Α 0.0) 01 0.	.1 0.!	5 · 1	.0

Yield Learning with Test Strucutres

- Process development requires test structures that:
 - Range from simple wires to product-like designs
 - Are transparent to failure
- **♦ Logic is the most difficult to yield**
- ♦ Logic characterization vehicle (LCV) design is ad hoc
 - Typically a sub-circuit from a legacy design
 - Lacks sufficient transparency to failure

OBJECTIVE: A design methodology for LCVs that are reflective of actual designs and failure transparent

Transparency and Reflection

- - That is, testable, diagnosable
- Reflection ≡ LCV has demographics of real designs
 - E.g., contains the same standard cells

Reflective Design .vs. Transparency

Industry Survey

LC\	V Objectives and Needs	<u>Score</u>
1.	Identify Troublesome Layout Patterns	11
2.	Evaluate Place and Route	11
3.	Improved Defect Characterization	10
4.	Improved Testability	9
5.	Investigate Known Yield Issues	9
6.	BEOL Design Rules	8
7.	BEOL DFM Guidelines	8
8.	Neighborhood Effects	8
9.	Standard Cell Evaluation	7
10.	FEOL Design Rules	6
11.	FEOL DFM Guidelines	6
12.	Reduced Test Time	6
13.	Increased Density	5
14.	Reduced Cost	5
15.	Verification	3

Carnegie Mellon LCV

Insight: Logic and layout are separable

- Logic function, structure → test, diagnosis
- Layout→ Libraries, DFM, place-&-route, etc.

Logic design and structure

- 2D logic array of FUBs
- Optimal test and diagnosis
- Maximal design density
- High fault coverage of every FUB

Layout design

- Virtually independent of logic function
- Custom, synthesis + P&R, etc.
- FEOL, MEOL and/or BEOL emphasis
- Reflect properties of actual products

CM-LCV Architecture: 2D FUB Array

- **♦ Each FUB implements a bijective function**
- Bijectivity guarantees constant-testability
 - C-testable: Each FUB is fully testable with min. tests
 - Diagnosable: Error outputs intersect with defective FUB
 - Diversity: Properties hold regardless of FUB logic
 - Scalable: Properties hold regardless or array size

FUB Array C-Testability

2D array of bijective FUBs is C-testable*

- FUBs are exhaustively tested with min. no. of tests
- True regardless of array size
- Each IP fault (truth table row) is tested (verified)

Test no 2

D • •	_ •	•		1
VII.	ACTIV	$I \cap til$	I M C T I	\mathbf{o}
DII	ecu	ve fu		OH
,				•

•	In	Out
	0	3
	1	2
	2	0
	3	1

lest no. 1						
2	0	3	1	2		
0	3	1	2	0		
3	1	2	0	3		
1	2	0	3	1		

1630110. 2						
1	2	0	3	1		
2	0	က	1	2		
0	3	1	2	0		
3	1	2	0	3		

163	1631 110. 5						
3	1	2	0	3			
1	2	0	3	1			
2	0	3	1	2			
0	3	1	2	0			

Tact no 3

	C 110			
0	3	1	2	0
3	1	2	0	3
1	2	0	3	1
2	0	3	1	2

Test no. 4

Each test is just a rotated version of the previous test

FUB Array Diagnosability

- Error pattern shown below is guaranteed
- Top-Left erroneous outputs identifies defective FUB(s)

FUB Array Diversity

Each FUB function is bijective but logic can vary

FUB Array Scalability

Testability and diagnosability are independent of size, shape

CM-LCV Test and Design Properties

TEST AND DIAGNOSIS

IN	OUT
0000	1110
0001	1101
:	:
1111	1011

VH-Bijective FUB function

C-TESTABILITY EFFICIENT BIST IDEAL DIAGNOSTIC RESOLUTION IDEAL DIAGNOSTIC ACCURACY 100% PSEUDO-EXHAUSTIVE

CM-LCV: Cell Library Charcterization

Cell library

- ♦ Include all gates from the cell library
- ♦ Exhaustively test each cell (not just FUBs)
- **♦ Characterize cells that fail testing**
- **♦ Make the LCV as small possible**
- **♦ Make LCV design process automatable**
- **♦ Make the LCV resemble real ICs**

CM-LCV Design Flow

FUB Library Creation

Circuit	NAND2	AND2	OR2	OR3	XOR2	XOR3
FA1	0	2	1	0	2	0
FA2	0	3	0	1	0	1
FA3	9	0	0	0	0	0

IP Fault Coverage Characterization

Circuit	IP fault coverage	Redundant instances	Redundant classes	Diagnostic coverage
FA1	95%	1	1	71.4%
FA2	89.2%	3	3	85%
FA3	80.6%	7	1	58.3%

FUB Template Formation

Design reflection

$$\begin{bmatrix} 0 & 0 & 9 \\ 2 & 3 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} FA1 \\ FA2 \\ FA3 \end{bmatrix} \cong \begin{bmatrix} 900 \\ 360 \\ 150 \\ 30 \\ 805 \\ 200 \end{bmatrix}$$

IP fault instance detection

$$\begin{bmatrix} 1 & 3 & 7 \end{bmatrix} \cdot \begin{bmatrix} FA1 \\ FA2 \\ FA3 \end{bmatrix} \cong \begin{bmatrix} 0 \end{bmatrix}$$

IP fault class detection

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ \vdots & \vdots & \vdots \end{bmatrix} \cdot \begin{bmatrix} FA1 \\ FA2 \\ FA3 \end{bmatrix} \ge \begin{bmatrix} 1 \\ 1 \\ \vdots \end{bmatrix}$$

ISCAS89 Design Reflection

Fault Coverage

	SSL fault		IP fault		IP fault classes	
Circuit	Coverage	No. of tests	Coverage	No. of tests	Missing	Redundant
ISCAS89	99.5%	584	89.4%	1,336	1,372	2
ITC99	99.0%	5,026	72.0%	10,583	1,186	6
FUB	99.4%	64	92.4%	64	0	0

Circuit	Inputs	Outputs	Cell counts
ISCAS89	6,202	6,994	18,741
ITC99	13,239	13,280	190,394
FUB (6 I/O, 12x12)	72	72	7,552

ISCAS89 Reflection-Testability Tradeoff

Defect Coverage

SLIDER Tool [VTS'11, TCAD'12]

- Layout-level defect-induction
- Circuit-level defect simulation
- Applied to all cells (including x1,x2, etc.)

	Redundant	Defect
Circuit	defects	coverage
ISCAS89	2,079	96.6%
ITC99	54,677	90.0%
FUB Array	0	100%

Diagnostic Coverage

IP fault class = truth table entry of a standard cell

$$DC = \frac{No.\,of\,fault\,signatures}{Faults}$$

Multi-Level Diagnosis

Array level

FUB level

Cell level

- 1. Array: Identify defective FUBs (custom tool)
- 2. FUB: Identify defective interconnects
- 3. Cell: Identify defective cells

Multiple defect diagnosis feasible because FUB size < few hundred gates

Diagnostic Data Analytics

Outcome of LCV Fabrication

Logic .vs. Layout Reflection

With nearly identical usage of standard cells, fewer than 0.001% common layout patterns

Reflection

Layout demographics are separated into 3 categories:

- Intra-cell
- Inter-cell
- Inter-connect

Focus on cell neighborhoods

Goal: match cell neighborhoods

Focus on cell neighborhoods

Goal: match cell neighborhoods

- Focus on cell neighborhoods
- Goal: match cell neighborhoods

- Focus on cell neighborhoods
- Goal: match cell neighborhoods

- Layout rewiring [ITC'16]
 - Select a representative product design
 - Leave placed cells, remove all wires
 - Rewire cells to create CM-LCV functionality
- Inter-cell layout geometries incorporation [ITC'17]
 - Identify the representative neighborhoods
 - Create CM-LCV functionality with all cell neighborhoods of interest
 - Incorporate inter-cell layout via place and route

Inter-connect Reflection

- Focus on inter-connect
- Inter-connect = wires, vias
- Goal: match interconnect geometries

Inter-connect Reflection

- Focus on inter-connect
- Inter-connect = wires, vias
- Goal: match interconnect geometries

Inter-connect Reflection

- Focus on inter-connect
- Inter-connect = wires, vias
- Goal: match interconnect geometries

Key Insight: Inter-connect Reflection

- Treat the layout geometries of interest as logic components
- Identify the logic for "component" incorporation
- Optimize routing and placement for physical implementation

Design Flow for Inter-connect Reflection

Layout Geometry Characterization

- Identify layout geometries of interest
- Describe layout geometries as topological patterns
- Abstract layout geometries to the logical level

LCV Netlist Generation

- Create and characterize a FUB library for layout geometries
- Add optimization constraints for layout inclusion
- Optimization creates array with cells for layout geometries

Layout Geometries Physical Implementation

- Layout geometries are not incorporated automatically
- Optimization creates net connection to layout geometries
- Creating LCV layout via placement and routing

Design Experiments

- Objective: Evaluate LCV inter-connect reflection design flow
 - Defect testability:
 - SSL, bridging, input pattern and path-delay fault coverage
 - Routing complexity:
 - Unique geometry and defect site density
- Synthesized ITC and product designs for reflection and comparison
 - b17 and L2B (sub-circuit from OpenSparc T2)
- Designs constructed using 65nm and 45nm cell libraries

Testability Comparison

Routing Complexity Comparison (45nm)

Routing Complexity Comparison (65nm)

Summary

CM-LCV

- Straightforward, automated design
- Scalable
- High testability and diagnosable
- Demographic reflection
- Silicon dense

Over 60 designs have been fabricated

- 14nm AND 7nm
- Have analyzed fail data for two designs

Current Work

- 1) Improve CM-LCV design efficiency using ML
- 2) High-dimension FUB array
- 3) Bijective function exploration
- 4) Efficient solver for CM-LCV

Acknowledgments

We like to thank our sponsors and collaborators

CM-LCV Publications

- 1. Z. Liu, P. Fynan, and R. D. Blanton, "Improving Test Chip Design Efficiency via Machine Learning," *IEEE International Test Conference*, Nov. 2019.
- 2. Z. Liu and R. D. Blanton, "Back-End Layout Reflection for Test Chip Design," *IEEE International Conference on Computer Design*, Oct. 2018.
- 3. Z. Liu, P. Fynan, and R. D. Blanton, "Front-End Layout Reflection for Test Chip Design," *IEEE International Test Conference*, Oct.-Nov. 2017.
- 4. B. Niewenhuis, S. Mittal and R. D. Blanton, "Multiple-Defect Diagnosis for Logic Characterization Vehicles," *IEEE European Test Symposium*, May 2017.
- 5. S. Mittal, Z. Liu, B. Niewenhuis and R. D. Blanton, "Test Chip Design for Optimal Cell-Aware Diagnosability" *IEEE International Test Conference*, Nov. 2016.
- 6. P. Fynan, Z. Liu, B. Niewenhuis, S. Mittal, M. Strojwas and R. D. Blanton, "Logic Characterization Vehicle Design Reflection via Layout Rewiring," *International Test Conference*, Nov. 2016.
- 7. Z. Liu, S. Mittal, B. Niewenhuis and R. D. Blanton, "Achieving 100% Cell-Aware Coverage by Design" *Design, Test and Automation in Europe*, March 2016.
- 8. R. D. Blanton, Z. Liu and B. Niewenhuis, "Design Reflection for Optimal Test-Chip Implementation," *International Test Conference*, Oct. 2015.
- 9. B. Niewenhuis and R. D. Blanton, "Efficient Built-in Self-Test of Regular Logic Characterization Vehicles," *IEEE VLSI Test Symposium*, April 2015.
- 10. R. D. Blanton, C. Taylor and B. Niewenhuis, "Logic Characterization Vehicle Design for Maximal Information Extraction for Yield Learning," *International Test Conference*, Oct. 2014.