ECON 713B - Problem Set 1

Alex von Hafften*

4/1/2021

1 All Pay Auction

Consider a symmetric IPV (independent private values) setting with N bidders. Find an equilibrium of the all-pay auction when each bidder's valuation is an iid draw from $F(x) = x^a$ for $a \in (0, \infty)$ and $x \in [0, 1]$.

(a) Define this auction as a Bayesian game.

A Bayesian game is a five-tuple $(I, \{S_i\}, \{u_i(\cdot)\}, \Theta, F(\cdot))$:

- The set of players is $I = \{1, ..., N\}$.
- The action set of player $i \in I$ is $S_i = [0, \infty)$.
- The payoff for player $i \in I$ is

$$u_i(b_1, ..., b_N; v_1, ..., v_N) = u_i(b_1, ..., b_N; v_i) = \begin{cases} v_i - b_i & \text{if } b_i > \max_{j \neq i} b_j \\ \frac{1}{2}(v_i - b_i) + \frac{1}{2}(-b_i) & \text{if } b_i = \max_{j \neq i} b_j \\ -b_i & \text{if } b_i < \max_{j \neq i} b_j \end{cases}$$

- $\Theta = [0, 1] \times ... \times [0, 1].$
- $F(x) = x^a$ for $a \in (0, \infty)$
- (b) Find equilibrium strategies of all players.

Focus on BNE with symmetric, strictly increasing, and differentiable bids $b(v_i)$. Since the F is continuous and $b(v_i)$ is strictly increasing, the probability of a tie is zero. The expected payoff for bidder i is:

$$E[u_i(b_1, ..., b_N; v_i)] = (v_i - b_i) \Pr(b_i > b_j, \forall j \neq i) + (-b_i) \Pr(b_i < b_j, \forall j \neq i)$$

= $v_i \Pr(b_i > b_j, \forall j \neq i) - b_i$

Suppose bidder $j \neq i$ submit $b(v_j)$:

$$\Pr(b_i > b_j, \forall j \neq i) = \Pr(b(v_i) > b(v_j), \forall j \neq i)$$

$$= \Pr(b^{-1}(b(v_i)) > v_j, \forall j \neq i)$$

$$=^{iid} F(b^{-1}(b(v_i)))^{N-1}$$

$$= ((b^{-1}(b(v_i)))^a)^{N-1}$$

$$= (b^{-1}(b(v_i)))^{aN-a}$$

^{*}I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, and Ryan Mather. I also discussed problems with Sarah Bass, Emily Case, Danny Edgel, and Katherine Kwok.

Thus, the expected payoff of bidder i is:

$$E[u_i(b_1, ..., b_N; v_i)] = v_i(b^{-1}(b(v_i)))^{aN-a} - b(v_i)$$

FOC $[b(v_i)]$:

$$0 = (aN - a)v_i(b^{-1}(b(v_i)))^{aN-a-1}\frac{1}{b'(v_i)} - 1$$

$$\implies b'(v_i) = (aN - a)v_i^{aN-a}$$

$$\implies b(v_i) = \frac{aN - a}{aN - a + 1}v_i^{aN-a+1} + c_i$$

For $v_i = 0$, bidder i would bid zero: $b(v_i) = 0 \implies c_i = 0$.

$$\implies b(v_i) = \frac{aN - a}{aN - a + 1} v_i^{aN - a + 1}$$

Since aN - a + 1 > 0 and $\frac{aN - a}{aN - a + 1}$, b is strictly increasing.

(c) Verify that the strategies that you have found do constitute an equilibrium.

We can verify that b is an equilibrium strategy by verifying that $b(v_i)$ is the best response for player i when bidders $j \neq i$ bid $b(v_i)$.

$$\begin{split} E[u_i(b_1,...,b_N;v_i)] &= v_i \Pr\left(b_i > \frac{aN-a}{aN-a+1} v_j^{aN-a+1}, \forall j \neq i\right) - b_i \\ &= v_i \Pr\left(\left(\frac{aN-a+1}{aN-a}b_i\right)^{\frac{1}{aN-a+1}} > v_j, \forall j \neq i\right) - b_i \\ &= v_i \left(\frac{aN-a+1}{aN-a}b_i\right)^{\frac{aN-a}{aN-a+1}} - b_i \end{split}$$

FOC $[b_i]$:

$$0 = v_i \frac{aN - a}{aN - a + 1} \left(\frac{aN - a + 1}{aN - a} b_i \right)^{\frac{aN - a}{aN - a + 1} - 1} \frac{aN - a + 1}{aN - a} - 1$$

$$\implies \frac{1}{v_i} = \left(\frac{aN - a + 1}{aN - a} b_i \right)^{\frac{-1}{aN - a + 1}}$$

$$\implies b_i = b(v_i) = \frac{aN - a}{aN - a + 1} v_i^{aN - a + 1}$$

Thus, all bidders playing $b(\cdot)$ is an equilibrium.

(d) Does the bidding become more competitive when a increases? Explain.

Conditional on v_i and N, a higher a results in more mass closer to 1. Thus, the probability that bidder i wins the auction decreases, so bidder i should decrease her bid. This makes the bidding less competitive. Unconditional on v_i , a higher a results in higher realizations of v_i , so the bids are correspondingly larger.

Consider the derivative of the bidder function with respect to a

$$\frac{\partial}{\partial a}b(v_i) = \frac{\partial}{\partial a} \left(\frac{aN - a}{aN - a + 1} v_i^{aN - a + 1} \right)
= \frac{N - 1}{aN - a + 1} v_i^{aN - a + 1} - \frac{(aN - a)(N - 1)}{(aN - a + 1)^2} v_i^{aN - a + 1} + \frac{(N - 1)(aN - a)}{aN - a + 1} v_i^{aN - a + 1} \log(v_i)$$

The derivative is not strictly positive or negative, so increasing a may increase competition and may decrease competition. But for a sufficiently large a, the derivative is negative, so an increase in a decreases a bid conditional on v_i .

We can see that a higher a reduces bids for a sufficiently large a in the figure below $(N = 5, a \in (0, 2), v_i \in \{0.25, 0.5, 0.75\})$:

$$N = 5$$

(e) Compute the expected payoff from each bidder before and after she learns her value. The expected payoff of bidder i conditional on v_i is:

$$\begin{split} E[u_i(v_i)] &= v_i^{aN-a+1} - b(v_i) \\ &= v_i^{aN-a+1} - \frac{aN-a}{aN-a+1} v_i^{aN-a+1} \\ &= \frac{v_i^{aN-a+1}}{aN-a+1} \end{split}$$

The unconditional expected payoff of bidder i is:

$$\begin{split} \int_0^1 E[u_i(v_i)]f(v_i)dv_i &= \int_0^1 \frac{v_i^{aN-a+1}}{aN-a+1} a v_t^{a-1} dv_i \\ &= \int_0^1 \frac{a v_i^{aN}}{aN-a+1} dv_i \\ &= \left[\frac{a v_i^{aN+1}}{(aN-a+1)(aN+1)} \right]_0^1 \\ &= \frac{a}{(aN-a+1)(aN+1)} \end{split}$$

2 Tricky Seller

Two people are interested in one object. Their valuations are drawn independently from F(x) = x and $F(x) = x^2$, respectively, with $x \in [0,1]$. The seller's value (a cost, perhaps) for the object is known, $c \in [0,1]$.

(a) Describe outcome of the First-Price Auction with a reserve price r.

A Bayesian game is a five-tuple $(I, \{S_i\}, \{u_i(\cdot)\}, \Theta, F(\cdot))$:

- The set of players is $I = \{1, 2\}$.
- The action set of player $i \in I$ is $B_i = [0, \infty)$.
- The payoff for player $i \in I$ is

$$u_i(b_1, b_2; x_1, x_2) = u_i(b_1, b_2; x_i) = \begin{cases} x_i - b_i & \text{if } b_i > b_j \\ \frac{1}{2}(x_i - b_i) & \text{if } b_i = b_j \\ 0 & \text{if } b_i < b_j \end{cases}$$

- $\Theta = [0,1] \times [0,1].$ $F_1(x) = x$ and $F_2(x) = x^2.$

The expected payoff of bidder 1 playing $b_2(\cdot)$:

$$E[u_1(b_1,b_2;x_1)] = (x_1 - b_1)\Pr(b_1 > b_2(x_2)) = (x_1 - b_1)\Pr(b_2^{-1}(b_1) > x_2) = (x_1 - b_1)F_2(b_2^{-1}(b_1)) = (x_1 - b_1)(b_2^{-1}(b_1))^2$$

$$E[u_2(b_1,b_2;x_2)] = (x_2 - b_2)\Pr(b_2 > b_1(x_1)) = (x_2 - b_2)\Pr(b_1^{-1}(b_2) > x_1) = (x_2 - b_2)F_1(b_1^{-1}(b_2)) = (x_2 - b_2)b_1^{-1}(b_2)$$

(b) Describe outcome of the Second-Price Auction with a reserve price r.

. . .

(c) What auction and what r will the seller choose? Which player wins more often?

. . .

(d) Suppose now that c=0 and there is no reserve price. Suppose that a seller can offer discount of α to one of the bidders in the second-price auction. If a bidder is offered a discount $\alpha \in [0, 1]$, then, if she wins, she pays only a fraction α of what she had to pay otherwise. Who should be offered a discount? Compute the optimal discount and expected revenues.

3 Third Price Auction

Consider a third-price auction with three players: an auction in which bidder with the highest value wins, but pays only the third highest bid. Assume that valuation of players are iid from the uniform distribution on [0, 1].

(a) Define the auction as a Bayesian game.

For this part, I consider a third-price auction with only three players. A Bayesian game is a five-tuple $(I, \{S_i\}, \{u_i(\cdot)\}, \Theta, F(\cdot))$:

- The set of players is $I = \{1, 2, 3\}.$
- The action set of player $i \in I$ is $B_i = [0, \infty)$.
- The payoff for player $i \in I$ is

$$u_i(b_1, b_2, b_3; v_1, v_2, v_3) = u_i(b_1, b_2, b_3; v_i) = \begin{cases} v_i - b_k & \text{if } b_i > b_j \ge b_k, \\ \frac{1}{3}(v_i - b_k) & \text{if } b_i = b_j = b_k, \\ \frac{1}{2}(v_i - b_k) & \text{if } b_i = b_j > b_k, \\ 0 & \text{otherwise.} \end{cases}$$

- $\Theta = [0,1] \times [0,1] \times [0,1]$.
- F(v) = v.
- (b) Prove that a bid of $b_i(v_i) = \frac{n-1}{n-2}v_i$ is a symmetric Bayes Nash equilibrium of the third-price auction.

In this part, I consider a third-price auction with n bidders. I show that bidder i's best response to $b(v_{-i}) = \frac{n-1}{n-2}v_{-i}$ is to play $b(v_i) = \frac{n-1}{n-2}v_i$ below and thus it is a symmetric Bayes Nash equilibrium. The expected payoff of bidder i is

$$\begin{split} E[u_i(b_1,...,b_n;v_i)] &= (v_i - E[b_{(n-2)}|b_i > b_j, j \neq i]) \Pr(b_i > b_j, j \neq i) \\ &= \left(v_i - \frac{n-1}{n-2} E\left[v_{(n-2)}|b_i > \frac{n-1}{n-2}v_j, j \neq i\right]\right) \Pr\left(b_i > \frac{n-1}{n-2}v_j, j \neq i\right) \\ &= \left(v_i - \frac{n-1}{n-2} E\left[v_{(n-2)}\left|\frac{n-2}{n-1}b_i > v_j, j \neq i\right]\right) \Pr\left(\frac{n-2}{n-1}b_i > v_j, j \neq i\right) \\ &= \left(v_i - \frac{n-1}{n-2} E[w_{(n-2)}]\right) F\left(\frac{n-2}{n-1}b_i\right)^{n-1} \\ &= \left(v_i - \frac{n-1}{n-2} \frac{n-2}{n-1}b_i \frac{n-2}{n}\right) \left(\frac{n-2}{n-1}b_i\right)^{n-1} \\ &= \left(v_i - \frac{n-2}{n-2}b_i\right) \left(\frac{n-2}{n-1}b_i\right)^{n-1} \\ &= \left(v_i - \frac{n-2}{n}b_i\right) \left(\frac{n-2}{n-1}b_i\right)^{n-1} \\ &= \left(\frac{n-2}{n-1}\right)^{n-1} v_i b_i^{n-1} - \frac{n-2}{n}\left(\frac{n-2}{n-1}\right)^{n-1} b_i^n \end{split}$$

where $w_j \sim U(0, \frac{n-2}{n-1}b_i)$ for $j \neq i$. Generally, note that if $X_1, ..., X_n \sim U(0, 1)$, then the kth order statistic $X_{(k)} \sim Beta(k, n-k+1) \implies E[X_{(k)}] = \frac{k}{n+1}$. So, $E[w_{(n-2)}] = \frac{n-2}{n-1}b_i\frac{n-2}{n}$.

FOC $[b_i]$:

$$(n-1)\left(\frac{n-2}{n-1}\right)^{n-1}v_ib_i^{n-2} = n\frac{n-2}{n}\left(\frac{n-2}{n-1}\right)^{n-1}b_i^{n-1} \implies b_i(v_i) = \frac{n-1}{n-2}v_i$$

Thus, $b_i(v_i) = \frac{n-1}{n-2}v_i$ is a best response.

(c) Show that the expected revenue of a seller in the third-price auction is $R_3 = \frac{n-1}{n+1}$. The expected seller revenue is the expected value of the third highest bid:

$$R_3 = E[b(v_{(n-2)})]$$

$$= E\left[\frac{n-1}{n-2}v_{(n-2)}\right]$$

$$= \frac{n-1}{n-2}E[v_{(n-2)}]$$

$$= \frac{n-1}{n-2}\frac{n-2}{n+1}$$

$$= \frac{n-1}{n+1}$$

(d) What is the symmetric Bayes-Nash equilibrium strategy in a kth price auction? (You need only state how each bidder bids; you need not provide a detailed analysis.)

From lecture notes and this problem, we know the bidding function in symmetric BNEs for $k \in \{1, 2, 3\}$:

$$b(v_i) = \begin{cases} \frac{n-1}{n}v_i & k = 1\\ v_i & k = 2\\ \frac{n-1}{n-2}v_i & k = 3 \end{cases}$$

These findings suggest that $b(v_i) = \frac{n-1}{n-k+1}$ for all $k \in \mathbb{N}$ is a candidate.