FINM 33000: Homework 5

Due Thursday, November 2, 2023 at 11:59pm

Problem 1

Let W be a Brownian motion and let

$$Z_t = \exp(W_t^2 - 1), \quad \text{for } t \ge 0.$$

Write Z_t in terms of drift and diffusion components. You may give your answer using differential notation, i.e. of the form

$$dZ_t = \underline{\qquad} dt + \underline{\qquad} dW_t,$$

or using integral notation. Give two solutions (a,b):

- (a) Let $X_t = W_t$, so $dX_t = dW_t$. Then apply Itô to $f(x) = e^{x^2 1}$.
- (b) Let $X_t = W_t^2 1$, so $dX_t = dt + 2W_t dW_t$. Then apply Itô to $f(x) = e^x$.
- (c) Is Z a martingale?

Comment on part (b)

When X is defined by $X_t = W_t^2 - 1$, how did we know that $dX_t = dt + 2W_t dW_t$.

One way is to use Ito's rule on the function $g(w) = w^2 - 1$, to obtain

$$dX_t = dg(W_t) = g'(W_t)dW_t + \frac{1}{2}g''(W_t)(dW_t)^2 = dt + 2W_t dW_t$$
, as claimed.

Alternatively, a second way is to recall that we already calculated $d(W_t^2)$ in L4.26, so we simply have $d(W_t^2 - 1) = d(W_t^2) - 0 = dt + 2W_t dW_t$, as claimed.

How do we know that $d(W_t^2 - 1) = d(W_t^2) - 0$?

First recall: by L4.10 second point, for any Ito processes F_t and G_t and any constants a, b,

$$d(aF_t + bG_t) = a dF_t + b dG_t$$

and recall L4.10 first point, for the particular case that F_t and G_t are: constant, or t, or W_t . Specifically, for any constants a, b, c, we have

$$d(at + bW_t + c) = adt + bdW_t$$

and in particular dc = 0 if c is constant.

a)
$$2t = e^{Wt^2-1}$$
 $2t = f(Xt)$
 $f(x) = e^{X^2-1}$ $f'(x) = e^{X^2-1} \cdot 2x$ $f'(x) = e^{X^2-1} \cdot 4x^2 + 2e^{X^2-1}$
 $Xt = Wt \Rightarrow dXt = dWt$
 $d2t = df(Xt) = f'(Xt) dXt + \frac{1}{2}f''(Xt)(dXt)^2$
 $= e^{Wt^2-1} \cdot 2Wt \cdot dWt + \left[2Wt^2 e^{Wt^2-1} + e^{Wt^2-1}\right](dWt)^2$
 $= 2Wt e^{Wt^2-1} dWt + \left[2Wt^2 e^{Wt^2-1} + e^{Wt^2-1}\right] dt$

b) Let
$$Xt = Wt^2 - 1$$

$$dXt = dt + 2Wt dWt$$

$$f(x) = e^{x} , f'(x) = e^{x} , f''(x) = e^{x}$$

$$d2t = df(Xt) = f'(xt) dXt + 2f''(xt) dXt)^{2}$$

$$= e^{Wt^2 - 1} [dt + 2Wt dWt] + 2e^{Wt^2 - 1} [dt + 2Wt dWt]^{2}$$

$$= e^{Wt^2 - 1} dt + 2Wt e^{Wt^2 - 1} dWt + 2e^{Wt^2 - 1} .$$

$$[dt^2 + 4Wt dt dWt + 4Wt^2 dWt^2]$$

$$= e^{Wt^2 - 1} + 2Wt^2 e^{Wt^2 - 1} dt + 2Wt e^{Wt^2 - 1} dWt$$

C). it is not martingale because it contains dt, it's Itô process not Itô integral that contains only dut. so it is not a maniflyable. diff dues not vanish

Problem 2

Let W be a Brownian motion. Define X by

$$dX_t = \kappa(\theta - X_t)dt + \sigma dW_t$$

where κ , θ , σ , and X_0 are all constants.

- (a) Write $e^{\kappa T}X_T$ as the sum of a constant, a Riemann integral with respect to $\mathrm{d}t$, and an Itô integral with respect to $\mathrm{d}W_t$, such that both integrands may depend on t, but not on X. Hint: As a first step, calculate $\mathrm{d}(e^{\kappa t}X_t)=\dots$
- (b) Find explicit formulas for the mean and variance of X_T .

In part (b) you may use the following fact (without providing a proof):

If β_t is a nonrandom piecewise continuous function of t, then

$$\int_0^T \beta_t dW_t \quad \text{has distribution:} \quad \text{Normal} \Big(\text{mean } 0, \text{ variance } \int_0^T \beta_t^2 dt \Big)$$

essentially because the sum of independent normals is normal; more specifically because

$$\sum_{n=0}^{N-1} \beta_{t_n} \Delta W_{t_n} \qquad \text{has distribution:} \qquad \text{Normal} \Big(\text{mean } 0, \text{ variance } \sum_{n=0}^{N-1} \beta_{t_n}^2 \Delta t \Big)$$

for all positive integer N, where $\Delta t := T/N$ and $t_n := n\Delta t$ and $\Delta W_{t_n} := W_{t_{n+1}} - W_{t_n}$.

Problem 3

On next page

a)
$$f(t_1 x) = e^{kt} x$$

 $d(e^{kt} x) = e^{kt} dx_1 + x_1 de^{kt} + dx_2 de^{kt}$ (14.32)
 $= e^{kt} dx_1 + x_2 e^{kt} \cdot k dt + 0$
 $= e^{kt} dx_1 + k e^{kt} x_2 dt$
 $= e^{kt} [k(0-x_1)dt + 6dw_1] + k e^{kt} x_2 dt$
 $= k \theta e^{kt} dt + 6e^{kt} dw_1$

$$\Rightarrow e^{kT}X_{T} = e^{ko}X_{0} + \int_{o}^{T} k \theta e^{kt} dt + \int_{o}^{T} 6e^{kt} dWt$$

$$= X_{0} + (\theta e^{kT} - \theta) + \int_{o}^{T} 6e^{kt} dWt$$

$$= X_{0} + \theta(e^{kT} - 1) + \int_{o}^{T} 6e^{kt} dWt$$

b) If $Bt = 6e^{kt}$ is a monrandom piecewise continuous function of t. then $\int_0^T 6e^{kt} dWt$ has distribution

~ NLO,
$$\int_{0}^{T} 6^{2}e^{2kt} dt = \frac{6^{2}}{2k} [e^{2kT} - 1])$$

.: $\int_{0}^{T} 6e^{kt} dWt \sim N(0, \frac{6^{2}}{2k} (e^{2kT} - 1))$
.: $e^{kT}X_{T} = X_{0} + \theta(e^{kT} - 1) + \int_{0}^{T} 6e^{kt} dWt$
.: $e^{kT}X_{T} \sim N(X_{0} + \theta(e^{kT} - 1), \frac{6^{2}}{2k} (e^{2kT} - 1))$
.: $X_{T} \sim N(\frac{X_{0} + \theta(e^{kT} - 1)}{e^{kT}}, \frac{\frac{6^{2}}{2k} (e^{2kT} - 1)}{e^{kT}})$

Problem 3

Here are 6 examples of the dynamics in Problem 2. All have the form

$$dX_t = \kappa(\theta - X_t)dt + \sigma dW_t$$

where $\sigma = 4$ and $X_0 = 10$ in all cases. For each of the $2 \times 3 = 6$ combinations of choices $\kappa \in \{3, 8\}$ and $\theta \in \{5, 10, 15\}$, I plotted some sample paths.

For each process (a,b,c,d,e,f), state the κ and the θ that I used to generate that process. No justification necessary.

Hint: In each case the process is *mean-reverting*. Intuitively, θ is the mean reversion "level" or the "long-term mean"; and κ is the mean reversion "rate" or "speed".

 $dXt = K(\theta - Xt)dt + 4dWt$

a k=8 0= 10

b K=3 8=15

c k= P 0= 15

d K=3 $\theta=10$

e κ= 3 θ= 5

t k=8 $\theta=2$