

CLAIM AMENDMENTS

1 - 3. (canceled)

1 4. (currently amended) The system unit according to
2 claim 15, ~~characterized in that wherein~~ the [[first]] upstream
3 expansion vessel [[A]] for the gas mixture obtained by desorption
4 comprising hydrogen and carbon monoxide, has a line going to the
5 heat exchanger [[E]] and a line going to the expansion vessel [[B]]
6 for the methanol containing liquid.

1 5. (currently amended) The system unit according to
2 claim 15, ~~characterized in that the second further comprising a~~
3 middle expansion vessel [[B]] for the carbon dioxide gas obtained
4 by desorption has a line going to the heat exchanger [[E]] and a
5 line going to the expansion vessel [[C]] for the methanol
6 containing liquid.

1 6. (currently amended) The system unit according to
2 claim 15, ~~characterized in that wherein~~ the expansion vessel [[C]]
3 for the gaseous carbon dioxide obtained by desorption has a line
4 [[(1)]]going to the heat exchanger [[E]] and a line for the
5 methanol containing liquid to the ~~upstream~~ absorber which ~~for its~~
6 part ~~is~~ connected by a line [[(2)]] feeding the methanol heated up
7 there to the liquid/gas separator [[D]].

1 7. (currently amended) The system unit according to
2 claim 15, ~~characterized in that~~ wherein the liquid/gas separator
3 [[D]] has a branch line (3) for the feeding gaseous carbon dioxide
4 and another line (4) ~~provided for~~ feeding [[the]] separated
5 methanol to the downstream regenerator.

1 8. (currently amended) [[The]] A process for desorption
2 of carbon dioxide and other gaseous impurities from methanol in the
3 system [[unit]] in accordance with claim 15, wherein the desorption
4 is carried out stepwise in ~~a multiplicity of sequentially arranged~~
5 the expansion vessels, ~~at least one~~ the heat exchanger and ~~at least~~
6 one the liquid/gas separator, ~~characterized in that~~ the process
7 comprising the steps of:

8 feeding the methanol leaving the expansion vessel C at a
9 temperature of $-60^{\circ}\text{C} \pm 10^{\circ}\text{C}$ and a pressure of 1 to 2 bar ~~is fed~~
10 into the heat exchanger E, ~~heated there~~

11 heating the methanol in the heat exchanger to a
12 temperature of $-10 \pm 5^{\circ}\text{C}$ and [[fed]] thereafter feeding the heated
13 methanol into the liquid/gas separator D, and

14 flowing substances between the expansion vessels and to
15 the heat exchanger and liquid/gas separator primarily by a
16 thermosiphon effect.

9. (canceled)

1 10. (currently amended) The process according to claim
2 ~~8, characterized in that wherein in the upstream expansion vessel~~
3 [[A]] the pressure decreases from about 55 bar to about 9 bar and
4 mainly hydrogen and carbon monoxide are desorbed at a temperature
5 of about -45°C, ~~the method further comprising the steps of wherein~~
6 ~~the~~

7 recovering a gas fraction obtained after passing through
8 ~~the heat exchanger E is recovered to the process, [[while]] and~~
9 ~~feeding the liquid fraction is fed to a second middle~~
10 ~~expansion vessel [[B]] between the upstream and downstream vessels.~~

1 11. (currently amended) The process according to claim
2 ~~8, characterized in that wherein in the second a middle expansion~~
3 ~~vessel [[B]] between the upstream and downstream vessels the~~
4 pressure decreases from about 9 bar to about 2.7 bar and a liquid
5 fraction is obtained along with gaseous carbon dioxide is obtained
6 at a temperature of about -45°C, to about -52°C, which is fed the
7 process further comprising the step of

8 feeding the gaseous carbon dioxide through the heat
9 exchanger E and thence out of the system subsequently obtained for
10 the process, while feeding the liquid fraction obtained is fed to
11 the [[third]] downstream expansion vessel [[C]].

1 12. (currently amended) The process according to claim
2 8, ~~characterized in that wherein, in the [[third]] downstream~~
3 expansion vessel C, the pressure decreases from [[of]] about 2.7
4 bar ~~decreases~~ to about 1.2 bar and gaseous carbon dioxide is
5 obtained at a temperature of about -52°C, to about -60°C, ~~which is~~
6 fed the process further comprising the step of
7 feeding the gaseous carbon dioxide through the heat
8 exchanger and thence out of the system E and subsequently can be
9 obtained for the process.

1 13. (currently amended) The process according to claim
2 8, ~~characterized in that a further comprising the steps of~~
3 dividing a liquid fraction contained in the [[third]]
4 downstream expansion vessel C is divided into two streams, wherein
5 feeding one of the streams is fed to the upstream
6 absorber [[(5)]] and
7 passing the second other stream after passing through the
8 heat exchanger [[E]] via the output line (2) is fed and feeding it
9 to the liquid/gas absorber [[D]].

1 14. (currently amended) The process according to claim
2 8, ~~characterized in that the further comprising the steps of:~~
3 recovering a liquid fraction (4) recovered in the
4 liquid/gas separator, D is fed

5 feeding the recovered liquid fraction to a downstream the
6 regenerator [[(6)]] for removal of the last traces of carbon
7 dioxide, and

8 purifying a [[the]] gas fraction (3) preferably purified
9 with further carbon dioxide rich gas fractions is obtained to the
10 process.

15. (new) A system comprising:

an absorber in which high-pressure methanol is contacted with synthesis gas to transfer impurities including carbon dioxide from the gas to the methanol;

a heat exchanger having a top side and a bottom side;
a plurality of series-connected expansion vessels including an upstream expansion vessel and a downstream expansion vessel;

means for feeding impurity-laden methanol from the absorber through the heat exchanger and into the downstream expansion vessel for forming in the downstream expansion vessel a body of methanol having a liquid level;

a liquid/gas separator;
an inlet line feeding methanol from the downstream expansion vessel through the bottom side into the heat exchanger, the inlet line having a portion about 0.5 m below the bottom side, whereby carbon dioxide is desorbed from the methanol in the separator;

an output line extending from the top side of the heat exchanger to the liquid/gas separator to form therein a body of methanol having a liquid level, the liquid/gas separator and downstream expansion vessel being relatively oriented such that the liquid level in the downstream expansion vessel is between 1 m and 20 m above the liquid level in the liquid/gas separator, the liquid/gas separator and the heat exchanger being relatively oriented such that the liquid level in the liquid/gas separator is about 0.5 m above the top side of the heat exchanger; and

a regenerator receiving methanol from the liquid-gas separator.