Name: _	Marking	Key	s	core:	/ 22
---------	---------	-----	---	-------	------

Section 1 is worth approximately 42% of your final test mark.

No calculators or notes are to be used.

Access to approved Mathematics Specialist formulae sheet is permitted.

Simplify answers where possible.

Time limit = 25

minutes.

- 1. [4 marks: 3, 1]
- a) On the axes below, draw the graphs of $\arg(z+3i)=\frac{3\pi}{4}$ and |z|=3, for $0\leq\theta\leq2\pi$

b) Write down the coordinates of the point where the graphs intersect.

(-3,0) or 3 cis T or 3 cis (-11)

2. [7 marks: 3, 4]

(a) Sketch $\{z: |1-z| \le |z+i-2|\}$ on the Argand diagram. Identify important features.

Shading of points (1,0) and (2,-i) of points (1,0) and (2,-i) of perpendicular bisecting line of

(b) Sketch the region of the complex plane defined by (4 marks)

 $\{z: -\frac{\pi}{4} \le \arg z \le \frac{\pi}{2} \quad \bigcirc \quad 1 < |z| < 2\}$ Identify important features.

shading /
do fled lines r= 1 and r= 2

critical points /
Shape of region /

3. [6 marks: 1, 1, 1, 3]

The complex numbers of z and w are such that:

$$z = 2 + 5i$$

$$w = 4 - 3i$$
.

Express each of the following in the form a + bi.

a)
$$z+w$$

 $2-5i+4-3i$
= $6-8i$

c)
$$wz = (2+5i)(4-3i)$$

= $8-6i+20i-15i^2$
= $23+14i$

b)
$$(4-3i)(4-3i)$$

= $16-12i-12i+9i^2$
= $7-24i$

d)
$$\frac{1}{100} = \frac{2+5i}{4-3i} \times \frac{4+3i}{4+3i} / \frac{4+3i}{25} / \frac{4+3i}{2$$

4. [5 marks]

Factorise the polynomial $x^4 - 2x^3 - 7x^2 + 8x + 12$.

$$f(1) \neq 0$$
, $f(-1) = 0 + f(2) = 0$
 $so(x+1)$ and $(x-2)$ are factors $\sqrt{(x+1)(x-2)(ax^2+bx+c)} = f(x)$
By inspection $a = 1 c = -6$
 $so(x^2-x-2)(x^2+bx-6) = f(x)$
Equating x^3 terms: $b-1 = -2$
 $so(x+1)(x-2)(x^2-x-6) = f(x)$
 $\therefore (x+1)(x-2)(x-3)(x+2) = f(x)$

West Coast Collaborative Specialist Mathematics Units 3 & 4 Test 1 2017 Calculator Section

Name:	Marking Key.

Score: ___ / 31

Section 2 is worth 58% of your final test mark.

Calculators allowed and 1 page of A4 notes, writing on both sides.

Access to approved Mathematics Specialist formulae sheet is permitted.

Time limit = 30 minutes

5. [4 marks: 2, 2]

Use De Moivre's Theorem to find the exact value in polar form of

a)
$$(1-\sqrt{3}i)^{11}$$

= $(2 \text{ cis}(-1\sqrt{3})^{11})$
= $(\sqrt{2} \text{ cis}(3\sqrt{4})^{15})$
= $\sqrt{2} \text{ cis}(3\sqrt{4})^{15}$
= $\sqrt{2} \text{ cis}(-15 \times 3\sqrt{4})$
Av $(1024 + 1024 \cdot 53 i)$
= $\sqrt{2} \text{ cis}(3\sqrt{4})$
= $\sqrt{2} \text{ cis}(3\sqrt{4})$

o. [5 marks

By finding z^3 if $z = cis\theta$, show that $\sin 3\theta = 3\sin\theta - 4\sin^3\theta$

$$(\cos\theta + i\sin\theta)^3 = \cos^3\theta + 3\cos^2\theta i\sin\theta + 3\cos\theta i^2\sin^2\theta + i^3\sin^3\theta$$

$$= \cos^3\theta - 3\cos\theta\sin^2\theta + 3\cos^2\theta i\sin\theta - i\sin^3\theta /$$
By De Moivre's Theorem = cos 30 + isin 30

Equating Imaginary parts /

Sin 30 = $3\cos^2\theta\sin\theta - \sin^3\theta$ /

= $3\sin\theta - 3\sin^3\theta - \sin^3\theta$ /

= $3\sin\theta - 3\sin^3\theta - \sin^3\theta$ /

= 3 sin0 - 4 sin30

7. [3 marks]

If $z = 4cis\theta$ and $z = Acis\left(\frac{2\pi}{3}\right)$ are two of the four, fourth roots of w.

Find, exactly, all values of A and θ , where $-\pi \le \theta \le \pi$, for the four roots.

$$A = 4\sqrt{2}$$

$$\text{Let } Z_1 = 4 \text{ cis } (2\frac{7}{3}) \sqrt{2}$$

$$\text{Hen } Z_2 = 4 \text{ cis } (2\frac{7}{3} + \frac{7}{2}) = 4 \text{ cis } (-\frac{57}{6}) \sqrt{2}$$

$$Z_3 = 4 \text{ cis } (-\frac{57}{6} + \frac{7}{2}) = 4 \text{ cis } (-\frac{7}{3}) \sqrt{2}$$

$$Z_4 = 4 \text{ cis } (-\frac{7}{3} + \frac{7}{2}) = 4 \text{ cis } (\frac{7}{6}) \sqrt{2}$$

8. [7 marks: 2, 1, 4]

For z, a complex number where $z = \cos\theta + i\sin\theta$;

Show that
$$\frac{1}{z^n} = \cos n\theta - i \sin n\theta$$

LHS = $\frac{1}{\cosh \theta + i \sin n\theta} \times \frac{\cos n\theta - i \sin n\theta}{\cos n\theta - i \sin n\theta}$

= $\frac{\cos n\theta - i \sin n\theta}{\cos n\theta + i \sin n\theta} = \frac{\cos n\theta - i \sin n\theta}{\cos n\theta + i \sin n\theta}$

= $\frac{\cos n\theta - i \sin n\theta}{\cos n\theta + i \sin n\theta} = \frac{\cos n\theta - i \sin n\theta}{\cos n\theta + i \sin n\theta}$

= $\frac{\cos n\theta - i \sin n\theta}{\cos n\theta + i \sin n\theta} = \frac{\cos n\theta - i \sin n\theta}{\cos n\theta + i \sin n\theta}$

b) Hence, or otherwise, show that $2\cos n\theta = z^n + \frac{1}{z^n}$

Hence show that
$$\cos^5 \theta = \frac{1}{16} (\cos 5\theta + 5\cos 3\theta + 10\cos \theta)$$

$$(z + \frac{1}{z})^{5} = (2\cos\theta)^{5}$$

$$LHS = z^{5} + \frac{5z^{4}}{z^{2}} + \frac{10z^{2}}{z^{2}} + \frac{10z^{2}}{z^{3}} + \frac{5z}{z^{4}} + \frac{1}{z^{5}}$$

$$= z^{5} + 5z^{3} + 10z + \frac{10}{z} + \frac{5}{z^{3}} + \frac{1}{z^{5}}$$

$$= (z^{5} + \frac{1}{z^{5}}) + 5(z^{3} + \frac{1}{z^{3}}) + 10(z + \frac{1}{z})$$

$$= 2(\cos 5\theta + 5\cos 3\theta + 10\cos\theta)$$

$$RHS = 2^{5}\cos^{5}\theta : \cos^{5}\theta = \frac{1}{16}(\cos 5\theta + 5\cos 3\theta + 10\cos\theta)$$

9. [4 marks]

 $2x^n + ax^2 - 6$ leaves a remainder of -7 when divided by x - 1, and 129 when divided by x + 3. Find a and n, given that $a, n \in \mathbb{Z}$

$$f(1) = 2 \times 1^{n} + a - 6 = -7$$

$$\Rightarrow a = -3$$

$$f(-3) = 2(-3)^{n} + -3(-3)^{2} - 6 = 129$$

$$\Rightarrow 2(-3)^{n} - 27 - 6 = 129$$

$$\Rightarrow (-3)^{n} = 81$$

$$\Rightarrow n = 4$$

10. 11. [8 marks]

3+i is a root of $z^4-2z^3+az^2+bz+10$, where a and b are real. Determine a and b and the other roots of the equation.

Therefore
$$2^4 - 2z^2 - 13z^2 + 34z + 10 = 0$$

3-i is also a root since all coefficients are real $\sqrt{2}$

So $z - 3 + i$ and $z - 3 - i$ are both factors

So $(z^2 - 6z + 10)(cz^2 + dz + e) = z^4 - 2z^3 + az^2 + bz + 10$

By inspection, $c = 1 e = 1$.

So $(z^2 - 6z + 10)(z^2 + dz + e) = f(z)$

Comparing z^3 terms

 $d - 6 = -2 = 0$

Therefore $z^4 - 2z^2 - 13z^2 + 34z + 10 = 0$

Therefore $z^4 - 2z^2 - 13z^2 + 34z + 10 = 0$

$$a = -13b = 34$$