Théorie de l'information, MA7W08EX : Examen du 11 décembre 2015

Master Sciences et Technologies, mention Mathématiques ou Informatique, spécialité
Cryptologie et Sécurité informatique

Responsable: Gilles Zémor

Durée : 3h. Sans document. Les exercices sont indépendants.

– EXERCICE 1. Soient X une variable aléatoire de Bernoulli de loi uniforme P(X=0) = P(X=1) = 1/2. Soient Y et Z deux variables de même loi que X et telles que X, Y, Z sont indépendantes dans leur ensemble. Calculer l'information mutuelle I(X+Y,X+Y+Z) où l'addition s'entend dans les entiers.

- EXERCICE 2. On considère le canal dont l'entrée X prend ses valeurs dans l'alphabet $\{0,1,2,3\}$ et dont la sortie Y prend ses valeurs dans $\{0,1,2,3,4\}$ et est obtenue à partir de X en lui ajoutant l'entier 0 ou l'entier 1, avec probabilité 1/2. En faisant l'hypothèse raisonnable que l'information mutuelle I(X,Y) est maximisée pour une loi de X telle que P(X=0)=P(X=3) et P(X=1)=P(X=2), trouver la capacité du canal.
- EXERCICE 3. Soit \mathcal{C} un canal discret sans mémoire. Soit X_1, X_2 deux variables aléatoires, prenant chacune leurs valeurs dans l'alphabet d'entrée du canal. Soient Y_1 et Y_2 les variables de sortie correspondantes. En supposant que X_1 et X_2 sont indépendantes de même loi, montrer que $I((X_1, X_2), (Y_1, Y_2)) = 2I(X_1, Y_1)$.
- Exercice 4. Soit C un code de Hamming binaire en longueur $15 = 2^4 1$.
 - a) Rappeler quels sont ses paramètres.
 - b) Montrer qu'étant données deux positions distinctes $i, j \in \{1, 2, ..., 15\}$, il existe un unique mot $\mathbf{x} = (x_1, x_2, ... x_{15})$ du code C de poids 3 tel que $x_i = x_j = 1$. En constatant qu'un mot \mathbf{x} de poids 3 admet 3 paires de positions $\{i, j\}$ telles que $x_i = x_j = 1$, en déduire le nombre total de mots de C de poids 3.
 - c) On considère maintenant un code de Hamming ternaire (sur l'alphabet $\{0, 1, -1\}$) de longueur $13 = (3^3 1)/2$. Calculer le nombre de mots de poids 3 du code.
- Exercice 5. Soit la matrice de parité

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}.$$

Alice transmet un 7-uple binaire $\mathbf{x} = [x_1, \dots, x_7]$ à Bob avec la convention que le message secret associé est le syndrome $\sigma(\mathbf{x})$. Pour communiquer un secret de trois bits, on transmet donc sur le canal sept symboles binaires. On suppose que \mathbf{x} , et donc \mathbf{s} , suivent des lois uniformes dans $\{0,1\}^7$ et $\{0,1\}^3$.

On suppose maintenant que Alice communique à Bob deux secrets de trois bits, soit \mathbf{s} et \mathbf{t} , en transmettant les deux 7-uples $\mathbf{x} = [x_1, \dots, x_7]$ et $\mathbf{y} = [y_1, \dots, y_7]$. Une espionne, Eve, est capable d'intercepter jusqu'à 7 des 14 symboles transmis, mais pas plus. Montrer qu'elle est capable d'obtenir un des secrets, mais que quels que soient les symboles qu'elle intercepte, elle a zéro bit d'information sur au moins un des deux secrets \mathbf{s} ou \mathbf{t} .

– Exercice 6. On considère le code linéaire ternaire C de matrice de parité

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & 0 & 1 & 0 & 0 \\ -1 & 1 & -1 & 0 & 0 & 1 & 0 \\ -1 & -1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

- a) Quels sont les paramètres du code C?
- b) Combien le code C a-t-il de mots de poids minimum?

– EXERCICE 7. Montrer que si un code linéaire C a une distance minimale 4, alors il existe des mots \mathbf{x} de l'espace tels que pour tout mot de code $\mathbf{c} \in C$, la distance de Hamming de \mathbf{x} à \mathbf{c} vérifie $d(\mathbf{x}, \mathbf{c}) \geqslant 2$. En déduire qu'il n'existe pas de code linéaire binaire de paramètres [7, 4, 4].

- EXERCICE 8. On considère le code binaire C de matrice de parité

$$\mathbf{H} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

- a) Quels sont les paramètres de ce code?
- b) On reçoit le mot

où la première coordonnée a été effacée. En faisant l'hypothèse qu'au plus une coordonnée non effacée est en erreur, montrer qu'on peut retrouver le mot de code d'origine sans ambiguïté et le donner.

- c) Donner une configuration minimale d'effacements (avec un nombre minimum d'effacements) non corrigible, et une configuration maximale d'effacements corrigible.
- d) Quels sont les paramètres du code dual C^{\perp} ?
- e) Calculer le nombre de mots de l'espace $\{0,1\}^{10}$ qui ne sont pas à distance 0 ou 1 d'un mot de code.