- 1. Given three sets A, B, and C, please prove the following statements
 - a. $(A \cap B) \subseteq A$;
 - b. $A \cap (B A) = \emptyset$;
 - c. $A \cup (B-A) = A \cup B$;
 - d. $A B = A \cap \overline{B}$;
 - e. $(A \cap B) \cup (A \cap \overline{B}) = A$;
 - f. $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$.
- 2. Show the following Cartesian products are not the same.
 - a. $A \times B$ and $B \times A$, unless A = B;
 - b. $A \times B \times C$ and $(A \times B) \times C$;

- 1. Determine whether the function $f: Z \times Z \rightarrow Z$ is onto if
 - a. f(m,n) = m + n;
 - b. $f(m,n) = m^2 + n^2$;
 - c. f(m,n)=m;
 - $\mathsf{d.} \ \ f(m,n) = |n|;$
 - e. f(m, n) = m n.
- 2. If f and $f \circ g$ are onto, does it follow that g is onto? Justify your answer.
- 3. Let S be a subset of a universal set U. The characteristic function f_S of S is the function from U to $\{0,1\}$ such that $f_S(x) = 1$ if x belongs to S and $f_S(x) = 0$ if x does not belong to S. Let A and B be sets. Show that for all $x \in U$,
 - a. $f_{A\cap B}(x) = f_A(x) \cdot f_B(x)$;
 - b. $f_{A \cup B}(x) = f_A(x) + f_B(x) f_A(x) \cdot f_B(x)$;
 - c. $f_{\overline{A}}(x) = 1 f_A(x)$.

Tutorial 6 Cont'd

- 4. Show that the function f(x) = ax + b from R to R is invertible, where a and b are constants, with $a \neq 0$, and find the inverse of f.
- 5. Prove or disprove each of these statements about the floor and ceiling functions.
 - a. $\lceil |x| \rceil = |x|$ for all real numbers x;
 - b. $\lfloor 2x \rfloor = 2 \lfloor x \rfloor$ whenever $x \in R$;
 - c. [xy] = [x][y] for all $x, y \in R$;
 - d. $\lceil \frac{x}{2} \rceil = \lfloor \frac{x+1}{2} \rfloor$ for all $x \in R$.
- 6. Please formulate the following problem as a formal mathematical problem via using indicator functions: Input:

Universal set
$$U = \{u_1, u_2, \dots, u_n\}$$

Subsets $S_1, S_2, \dots, S_m \subseteq U$

Goal:

Find k subsets that maximizes their total coverage, i.e., set $\bigcup_{i \in k} S_i$ contains the most elements of U

- 1. Determine whether each of these sets is countable or uncountable. For those that are countably infinite, exhibit a one-to-one correspondence between the set of positive integers and that set.
 - a. all bit strings not containing the bit 0;
 - b. the integers that are multiples of 7;
 - c. the irrational numbers between 0 and 1;
 - d. the real numbers between 0 and $\frac{1}{2}$.
- 2. Give an example of two uncountable sets A and B such that $A \cap B$ is
 - a. finite;
 - b. countably infinite;
 - c. uncountable;

Tutorial 7 Cont'd

- 3. Explain why the set A is countable if and only if $|A| \leq |Z^+|$.
- 4. Show that if A and B are sets, A is uncountable, and $A \subseteq B$, then B is uncountable.
- 5. Show that if A, B, and C are sets such that $|A| \le |B|$ and $|B| \le |C|$, then $|A| \le |C|$.

1. Let
$$A = \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix}$$
,

- a. Find A^T , A^{-1} , and A^3 ;
- b. Find $(A^{-1})^3$ and $(A^3)^{-1}$.
- 2. Suppose that $A \in \mathcal{R}^{n \times n}$ where n is a positive integer. Show that $A + A^T$ is symmetric.

3. Let
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$. Find $A \wedge B$, $A \vee B$, and $A \odot B$.

- 4. Let A be a zero-one matrix. Show that
 - a. $A \lor A = A$;
 - b. $A \wedge A = A$.
- 5. Let A be an $n \times n$ zero-one matrix. Let I be the $n \times n$ identity matrix. Show that $A \odot I = I \odot A = A$.

