Project Design Phase-II Technology Stack (Architecture & Stack)

Date	14 October 2022
Team ID	PNT2022TMID01028
Project Name	Project – SMART FARMER -IOT ENABLED SMART FARMING APPLICATION SYSTEM
Maximum Marks	4 Marks

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

Guidelines:

1. Include all the Technology Block)

(As an application logic /

- 2. Provide infrastructural demarcation (Local / Cloud)
- 3. Indicate external interfaces (third party API's etc.)
- 4. Indicate Data Storage processes components / services
- 5. Indicate interface to machine learning models (if applicable)

- The different soil parameters temperature, soil moistures and then humidity are sensed using different sensors and obtained value is stored in the ibm cloud.
- Aurdino UNO is used as a processing Unit that process the data obtained from the sensors and whether data from the weather API.
- NODE-RED is used as a programming tool to write the hardware, software and APIs. The MQTT protocol is followed for the communication.
- All the collected data are provided to the user through a mobile application that was developed using the MIT app inventor. The user could make a decision through an app, weather to water the crop or not depending upon the sensor values. By using the app they can remotely operates the motor switch.

Table-1: Components & Technologies:

S.No	Component	Description	Technology	
1.	User Interface	How user interacts with application e.g. Web UI, Mobile App.	HTML, CSS, JavaScript / Angular Js / React Js etc.	
2.	Application Logic-1	Logic for a process in the application	Python	
3.	Application Logic-2	Logic for a process in the application	IBM Watson IOT service	
4.	Application Logic-3	Logic for a process in the application	IBM Watson Assistant	
5.	Database	Data Type, Configurations etc.	MySQL, NoSQL, etc.	
6.	Cloud Database	Database Service on Cloud	IBM Cloud	
7.	File Storage	File storage requirements	IBM Block Storage or Other Storage Service or Local Filesystem	
8.	External API-1	Purpose of External API used in the application	IBM Weather API, etc.	
9.	Machine Learning Model	Purpose of Machine Learning Model	Object Recognition Model, etc.	
10.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration: Cloud Server Configuration :	Local, Cloud Foundry, Kubernetes, etc.	

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology	
1.	Open-Source Frameworks	List the open-source frameworks used	Technology of Opensource framework	
2.	Security Implementations	Sensitive and private data must be protected from their production until the decision-making and storage stages.	e.g. Node-Red, Open weather App API, MIT App Inventor , etc	
3.	Scalable Architecture	scalability is a major concern for IoT platforms. It has been shown that different architectural choices of IoT platforms affect system scalability and that automatic real time decision-making is feasible in an environment composed of dozens of thousand.	Technology used	
4.	Availability	Automatic adjustment of farming equipment made possible by linking information like crops/weather and equipment to auto-adjust temperature, humidity, etc.	Technology used	
5.	Performance	The idea of implementing integrated sensors with sensing soil and environmental or ambient parameters in farming will be more efficient for overall monitoring.	Technology used	