KDS 41 10 05 : 2022

건축구조기준 총칙

2022년 10월 11일 개정 http://www.kcsc.re.kr

건설기 준제정 또는개정에 따른경과조치

이 기준은 발간 시점부터 사용하며, 이미 시행 중에 있는 설계용역이나 건설공 사는 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

건설기준 제 · 개정 연혁

- 이 기준은 건설기준 코드체계 전환에 따라 기존 건설기준(설계기준, 표준시방서) 간 중복· 상충을 비교 검토하여 코드로 통합 정비하였다.
- 이 기준은 기존의 건축 구조물 및 공작물 등의 구조설계에 해당되는 부분을 통합 정비하여 기준으로 제정한 것으로 제·개정 연혁은 다음과 같다.

건설기준	주요내용	제·개정 (년.월)
건축구조설계기준	• 건축구조 설계기준 제정	제정 (2005.4.5.)
건축구조설계기준	• 재검토기한 신설 등 개정	개정 (2009.8.27.)
건축구조기준	• 부분 개정	개정 (2009.12)
건축구조기준	• 재검토기한의 연도 수정 등 개정	개정 (2013.12)
건축구조기준	• 특정한 지형조건의 기본지상적설하중 등 개정	개정 (2015.10)
건축구조기준	• 성능설계법 도입 및 돌발상황에 의한 하중 추가 등 기준 전반에 대한 최근 연구결과 및 개선된 공법 반영	개정 (2016.5)
KDS 41 10 05 : 2016	• 건설기준 코드체계 전환에 따라 코드화로 통합 정비함	제정 (2016.6)
KDS 41 10 05 : 2016	• 한국산업표준과 건설기준 부합화에 따라 수정함	수정 (2018.7)
KDS 41 10 05 : 2019	• 내진설계기준 공통사항을 반영하여 개정	개정 (2019.3)
KDS 41 10 05 : 2022	• 건축분야 건설기준 정비에 따라 개정	개정 (2022.10)

제 정 : 2016년 6월 30일 개 정 : 2022년 10월 11일

심 의 : 중앙건설기술심의위원회 자문검토 : 국가건설기준센터 건설기준위원회

소관부서 : 국토교통부 건축안전과

관련단체 : 대한건축학회 작성기관 : 대한건축학회

• 국토교통부장관은 「훈령·예규 등의 발령 및 관리에 관한 규정」에 따라 이 고시에 대하여 2023년 1월 1일 기준으로 매 3년이 되는 시점(매 3년째의 12월 31일까지를 말한다)마다 그 타당성을 검토하여 개선 등의 조치를 하여야 한다.

목차

1. 일반사항	1
1.1 목적	1
1.2 적용범위	1
1.3 규정내용	1
1.4 기준의 구성	1
1.5 관련 구조기준 및 시방서	2
2. 용어의 정의	2
3. 건축물의 중요도분류	7
3.1 중요도(특)	7
3.1 중요도(특) 3.2 중요도(1)	7
3.3 중요도(2)	
3.4 중요도(3)	7
4. 구조설계	۶
4.1 구조설계의 원칙	ع
4.2 구조설계법 ·····	۶
4.3 구조설계의 단계	<u>C</u>
5. 각종 검사와 검증	··· 11
6. 구조안전의 확인	··· 11
6.1 구조설계도서의 구조안전 확인	12
6.2 시공상세도서의 구조안전 확인	12
6.3 시공 중 구조안전 확인	12
6.4 유지·관리 중 구조안전 확인 ·····	13
7. 책임구조기술자	13
7.1 책임구조기술자의 자격	13
7.2 책임구조기술자의 책무	··· 13
7.3 책임구조기술자의 서명·날인 ···································	13

1. 일반사항

1.1 목적

(1) KDS 41 00 00은 건축법과 주택법 등의 관련 법령에 따라 건축물 및 공작물의 구조에 대한 설계, 검사 및 검증, 설계하중, 재료별 설계방법, 재료강도, 제작 및 설치, 시공, 품질관리 등의 기술적 사항을 규정함으로써 건축물 및 공작물의 안전성, 사용성, 내구성 및 친환경성을 확보하는 것을 그 목적으로 한다.

1.2 적용범위

(1) 건축법과 주택법 등에 따라 신축·증축·개축·재축·이전 등 건축하거나 대수선 및 유지· 관리하는 건축물 및 공작물(이하 '건축구조물'이라 한다)의 구조체와 부구조체 및 비구조요 소, 그리고 이들의 공사를 위한 가설구조물 등의 설계·시공·공사감리·유지·관리업무는 KDS 41 00 00에 따라야 한다. 또한, KDS 43 00 00의 특수목적 건축구조물은 이 기준과 KDS 43 00 00의 해당 기준을 함께 적용하여야 한다.

1.3 규정내용

(1) KDS 41 10 05에서는 이 기준의 목적, 적용범위, 구성, 용어의 정의, 건축물의 중요도 분류, 구조설계, 각종 검사와 실험 및 구조재료의 성능검증, 구조안전의 확인, 책임구조기술자에 관한 사항을 규정한다.

1.4 기준의 구성

(1) KDS 41 00 00의 내용은 다음과 같다.

KDS 41 10 00	일반사항
KDS 41 12 00	건축물 설계하증
KDS 41 17 00	건축물 내진설계기준
KDS 41 19 00	건축물 기초구조 설계기준
KDS 41 20 00	건축물 콘크리트구조 설계기준
KDS 41 30 00	건축물 강구조 설계기준
KDS 41 40 00	건축물 합성구조 설계기준
KDS 41 50 00	목구조 설계기준
KDS 41 60 00	조적식구조 설계기준
KDS 41 80 00	기타 재료구조 설계기준

1.5 참고 기준

(1) 다음 ① ⑤의 국토교통부에서 제정, 고시 또는 공고한 최근의 기준 및 시방서는 필요한 경우,

이 기준의 일부로 사용한다. 그러나 설계·시공·재료물성에서 다음 각 호의 기준이나 이와 관련된 다른 기준 및 시방서의 내용이 이 기준과 상충될 경우에는 이 기준에 따른다.

- ① KDS 14 20 00 콘크리트구조 설계기준
- ② KDS 14 30 00 강구조설계(허용응력설계법)
- ③ KDS 14 31 00 강구조설계(하중저항계수설계법)
- ④ KDS 11 50 00 기초설계기준
- ⑤ KCS 41 00 00 건축공사표준시방서

2. 용어의 정의

- (1) KDS 41 00 00에서 사용하는 용어의 뜻은 다음과 같다.
- 가설구조물: 건축구조물의 축조를 위하여 임시로 설치하는 시설 또는 구조물. 가설공연장·가설전람회장·견본주택 등 가설건축물을 포함한다.
- 감쇠: 구조물이 진동할 때 진동에너지가 다른 형태로 변환되어 소산됨으로써 진폭이 작아지 는 현상
- 강도: 구조물이나 구조부재가 외력에 의해 발생하는 힘 또는 모멘트에 저항하는 능력
- 강도감소계수: 재료의 공칭강도와 실제강도의 차이, 부재를 제작 또는 시공할 때 설계도와 완성된 부재의 차이, 그리고 내력의 추정과 해석에 관련된 불확실성을 고려하기 위한 안전계수
- 강도설계법: 구조부재를 구성하는 재료의 비탄성거동을 고려하여 산정한 부재단면의 공칭강도에 강도감소계수를 곱한 설계용 강도의 값(설계강도)과 계수하중에 의한 부재력(소요강도)이상이 되도록 구조부재를 설계하는 방법.
- 강성: 구조물이나 구조부재의 변형에 대한 저항능력을 말하며, 발생한 변위 또는 회전에 대한 적용된 힘 또는 모멘트의 비율
- 건설가치공학: 건축공사의 기획·설계·시공·유지관리·해체 등 일련의 과정에서 최저 비용으로 최대의 가치를 창출하기 위하여 여러 기능을 분석하여 개선해 가는 조직적 활동("밸류엔지니어링" 또는 "V.E.(브이이)"라고 약칭)
- 건축구조물: 건축물과 공작물 등 이 기준에서 규정하는 대상물을 총칭
- 건축물: 토지에 정착하는 공작물 중 지붕과 기둥 또는 벽이 있는 것과 이에 부수되는 시설물, 지하 또는 고가의 공작물에 설치하는 사무소·공연장·점포·차고·창고 기타「건축법」이 정하 는 것
- 건축비구조요소:건축구조물을 구성하는 부재중에서 구조내력을 부담하지 않는 구성요소.

배기구, 부가물·장식물, 부착물, 비구조벽체, 악세스플로어(이중바닥), 유리·외주벽, 천장, 칸막이, 캐비닛, 파라펫, 표면마감재, 표지판·광고판 등을 포함한다.(KDS 41 17 00(표 18.3-1)참조)

- 계수하중: 사용하중에 하중계수를 곱한 하중
- 계획설계: 구조체에 대한 구조기준, 사용재료강도, 설계하중을 결정하고 구조형식을 선정하여 구조개념도와 주요 구조부재의 크기·단면·위치를 표현한 구조평면도 작성까지 기본설계전 단계의 일련의 초기설계과정의 일
- 골조해석: 구조설계의 한 과정으로 해당 구조체가 하중 등 외력에 반응할 때 구조공학의 이론을 이용하여 그 구조체의 각 구성요소에 생기는 부재력과 변위의 값 및 지점에서의 반력값을 찾아내는 일
- 공사시방서(구조분야): 구조분야 공사에 관한 시방서
- 공작물: 인공적으로 지반에 고정하여 설치한 물체 중 건축물을 제외한 것. 계단탑, 교통신호 등·교통표지판 등 교통관제시설, 광고판, 광고탑, 고가수조, 굴뚝, 기계기초, 기념탑, 기계식주 차장, 기름탱크, 냉각탑, 방음벽, 배관지지대, 보일러구조, 사일로 및 벙커, 송전지지물, 송전탑, 승강기탑, 옥외광고물, 옹벽, 우수저류조, 육교, 장식탑, 저수조. 전철지지물, 조형물, 지하대피호, 철탑, 플랜트구조, 항공관제탑, 항행안전시설, 기타 구조물을 포함한다.
- 공칭강도: 구조체나 구조부재의 하중에 대한 저항능력으로서, 적합한 구조역학원리나 현장 실험 또는 축소모형의 실험결과(실험과 실제여건간의 차이 및 모형화에 따른 영향을 감안)로 부터 유도된 공식과 규정된 재료강도 및 부재치수를 사용하여 계산된 값
- 구조 : 자중이나 외력에 저항하는 역할을 담당하는 건축구조물의 구성요소. 구조체와 부구조 체 및 비구조요소를 포함한다.
- 구조감리:건축구조물의 구조에 대한 공사감리
- 구조검토: 건축구조물이 구조안전성을 확보하였는지에 대하여 책임구조기술자의 경험과 기술력을 바탕으로 하여 그 타당성 여부를 판단하는 일. 구조설계도서와 시공상세도서, 증축, 용도변경, 구조변경, 시공상태, 유지·관리상태에 대한 구조안전성 검토를 포함한다.
- 구조계산: 구조체에 작용하는 각종 설계하중에 대하여 각부가 안전한가를 확인하기 위해 구 조역학적인 계산을 하는 일
- 구조계획: 건축구조물의 사용목적에 맞추어 각종 외력과 하중 및 지반에 대하여 안전하도록 구조체에 대한 3차원공간의 구조형태와 각종 하중에 대한 저항시스템, 기초구조 등을 선정하고 또한 경제성을 고려하여 구조부재의 재료와 형상, 개략적인 크기를 결정하여 구조적으로 안정된 공간을 창조하는 일련의 초기 작업과정

- 구조부재:기둥·기초·보·가새·슬래브·벽체 등 구조체의 각 구성 요소
- 구조설계: 구조계획에 따라 형성된 3차원공간의 구조체에 대하여 구조역학을 기초로 한 골조 해석 및 구조계산으로 이 기준에 따라 구조안전을 확인하고 구조체 각부에 대하여 이를 시공 가능한 도서로 작성하여 표현하는 일련의 창조적 과정의 업무
- 구조설계도: 구조설계의 최종결과물로서 구조체의 구성, 부재의 형상, 접합상세 등을 표현하는 도면
- 구조설계도서: 건축구조물의 구조체공사를 위해서 필요한 도서로서 구조설계도와 구조설계 서, 구조분야 공사시방서 등을 통틀어서 이르는 것
- 구조설계서: 구조계획과 골조해석 및 부재설계의 결과를 책임구조기술자의 경험과 기술력으로 평가·조정하여 경제적이고 시공성이 우수한 구조체가 되도록 표현한 도면화 전 단계의 성과품. 구조설계개요, 구조특기시방, 구조설계요약, 구조계산 등을 포함한다.
- 구조안전: 건축구조물이 외력이나 주변조건에 대하여 단기적으로나 장기적으로 충분한 저항 력을 지니고 있는 것
- 구조체: 건축구조물에 작용하는 각종 하중에 대하여 그 건축구조물을 안전하게 지지하는 구조물의 뼈대 자체를 말하며, 일반적으로 부구조체를 제외한 기본뼈대를 지칭
- 기계·전기비구조요소: 건축구조물에 부착된 기계 및 전기 시스템 비구조요소와 이를 지지하는 부착물 및 장비(KDS 41 17 00(표 18.4-1)참조)
- 내구성: 건축구조물의 안전성을 일정한 수준으로 유지하기 위해 필요한 것으로서 장기간에 걸친 외부의 물리적, 화학적 또는 기계적 작용에 저항하여 변질되거나 변형되지 않고 처음의 설계조건과 같이 오래 사용할 수 있는 구조물의 성능
- 내진공학 전문가: 내진설계시 성능기반설계법을 적용할 경우에 제3자 검토를 수행하는 건축 구조기술사, 내진공학 박사학위 소지자, 건축구조 관련 박사학위 취득 후 내진공학 관련 실무 또는 연구 경력이 5년 이상인 자
- 내풍공학 전문가: 내풍설계시 풍동실험, 진동평가를 수행할 경우에 제3자 검토를 수행하는 건축구조기술사, 내풍공학 박사학위 소지자, 건축구조 관련 박사학위 취득 후 내풍공학 관련 실무 또는 연구 경력이 5년 이상인 자
- 내화공학전문가: 내화설계시 성능기반설계법을 적용할 경우에 제3자 검토를 수행하는 건축 구조기술사, 내화공학 박사학위 소지자, 건축구조 관련 박사학위 취득 후 내화공학 관련 실무 또는 연구 경력이 5년 이상인 자
- 리모델링: 건축물의 노후화 억제 또는 기능 향상 등을 위하여 대수선 또는 일부 증축하는 행위
- 배근시공도 : 배근공사를 구조설계도의 취지에 맞게 하기 위하여 철근을 설치할 위치와 간격

등을 상세히 나타낸 도면

- 부구조체: 건축구조물의 구조체에 부착하며, 구조설계단계의 골조해석에서는 하중으로만 고려하고, 시공단계에서 상세를 결정하여 시공하는 구조부재. 커튼월·외장재·유리구조·창호 틀·천정틀·돌붙임골조 등을 포함한다.
- 부재력: 하중 및 외력에 의하여 구조부재의 가상절단면에 생기는 축방향력·휨모멘트·전단력·비틀림 등
- 비구조요소:건축비구조요소와 기계·전기비구조요소를 총칭
- 비선형해석: 실제 구조물에 큰 변형이 예상되거나 변형률의 변화가 큰 경우 또는 사용재료의 응력-변형률 관계가 비선형인 경우에 이를 고려하여 실제 거동에 가장 가깝게 부재력과 변위 가 산출되도록 하는 해석
- 사용성: 과도한 처짐이나 불쾌한 진동, 장기변형과 균열 등에 적절히 저항하여 마감재의 손상 방지, 건축구조물 본래의 모양유지, 유지관리, 입주자의 쾌적성, 사용중인 기계의 기능유지 등 을 충족하는 구조물의 성능
- 사용수명: 건축구조물의 안전성 및 사용성을 유지하며 사용할 수 있는 기한
- 사용하중: 고정하중 및 활하중과 같이 이 기준에서 규정하는 각종 하중으로서 하중계수를 곱하지 않은 하중. 작용하중이라고도 한다.
- 설계하중:이 기준에 따라 건축구조물이 저항해야 하는 하중
- 성능기반설계법:이 기준에서 규정한 목표성능을 만족하면서 건축구조물을 건축주가 선택한 성능지표(안전성능, 사용성능, 내구성능 및 친환경성능 등)에 만족하도록 설계하는 방법
- 시공상세도: 구조설계도의 취지에 맞게 실제로 시공할 수 있도록 각 구조부재의 치수 등을 시 공자가 상세히 작성한 도면
- 실시설계: 기본설계를 바탕으로 건축주와 설계사 및 시공사 등 관련자가 협의하여 기본설계의 문제점을 보완하고 기본설계도를 수정하여 최종 공사용 도면과 최종 구조계산서 및 구조체공사 특기시방서 등을 작성하는 일련의 최종 설계과정의 일
- 안전성: 건축구조물의 예상되는 수명기간동안 최대하중에 대하여 저항하는 능력으로서, 각 부재가 항복하거나 좌굴·피로·취성파괴 등의 현상이 생기지 않고 회전·미끄러짐·침하 등에 저 항하는 구조물의 성능
- 안전진단: 건축구조물에 대하여 물리적·기능적 결함을 발견하고 그에 대한 신속하고 적절한 조치를 취하기 위하여 구조적 안전성 및 결함의 원인 등을 조사·측정·평가하여 보수·보강 등의 방법을 제시하는 행위
- 오프셋: 기준이 되는 선에서 일정거리 떨어진 것
- 워킹포인트: 제작·설치작업의 기준점

• 유리구조: 건축구조물의 구조체에 부착되어, 바람과 눈 및 자중을 지지하는, 유리와 유리고정물을 포함한 구조. 유리벽·유리지붕(썬루프)·유리난간·유리문 등을 포함한다.

- 응력: 하중 및 외력에 의하여 구조부재에 생기는 단위면적당 힘의 세기
- 인성: 높은 강도와 큰 변형을 발휘하여 충격에 잘 견디는 성질. 재료에 계속해서 힘을 가할 때 탄성적으로 변형하다가 소성변형 후 마침내 파괴될 때까지 소비한 에너지가 크면 인성이 크다 고 말한다.
- 제작·설치도: 구조설계도면의 취지에 맞게 실제로 제작 및 설치할 수 있도록 구조 각부의 치수 등을 시공자 또는 제작·설치자가 상세히 작성한 도면
- 제작물:부품 또는 제작 후 건축구조물에 설치하기 이전에 절단·천공·용접·이음·접합·냉간작업·교정과정을 거친 재료들로 구성된 조립품
- 중간설계:계획설계를 바탕으로 정적·동적해석을 통한 내진안전성 평가를 포함한 정밀구조해석과 주요부에 대한 사용성 평가 및 기본설계용 구조계산서 작성, 각층 구조평면도와 슬래 브·보·기둥·벽체 등 각종 배근도 및 주요부재의 배근상세도 작성, 착공용 기초도면 작성 등, 계획설계와 실시설계의 중간단계에서 진행하는 일련의 구조설계과정의 일
- 책임구조기술자: 건축구조분야에 대한 전문적인 지식, 풍부한 경험과 식견을 가진 전문가로 서 이 기준에 따라 건축구조물의 구조에 대한 구조설계 및 구조검토, 구조검사 및 실험, 시공, 구조감리, 안전진단 등 관련업무를 책임지고 수행하는 기술자
- 치올림:보나 트러스 등 수평부재에서 하중재하시 생길 처짐을 고려하여 미리 중앙부를 들어올리는 것 또는 들어올린 거리
- 친환경성: 자연환경을 오염하지 않고 자연 그대로와 환경과 잘 어울리는 건축구조물의 성능
- 탄성해석: 구조물이 탄성체라는 가정아래 응력과 변형률의 관계를 1차 함수관계로 보고 구조 부재의 부재력과 변위를 산출하는 해석
- 하중계수:실제하중의 사용하중에 대한 편차, 하중을 하중효과로 변환하는 해석상의 불확실성, 2개 이상의 최대하중이 동시에 발생할 확률 등을 고려하여 사용하중에 곱하는 계수
- 한계상태설계법: 한계상태를 명확히 정의하여 하중 및 내력의 평가에 준해서 한계상태에 도달하지 않는 것을 확률통계적 계수를 이용하여 설정하는 설계법
- 허용강도설계법: 허용강도법 하중조합 아래에서 부재의 허용강도가 소요강도 이상이 되도록 구조부재를 설계하는 방법
- 허용응력설계법: 탄성이론에 의한 구조해석으로 산정한 부재단면의 응력이 허용응력(안전율을 감안한 한계응력)을 초과하지 아니하도록 구조부재를 설계하는 방법

3. 건축물의 중요도 분류

(1) 건축물의 중요도는 용도 및 규모에 따라 다음과 같이 중요도(특), 중요도(1), 중요도(2) 및 중요도(3)으로 분류한다.

3.1 중요도(특)

- (1) 연면적 1,000 ㎡ 이상인 위험물 저장 및 처리시설
- (2) 연면적 1,000 ㎡ 이상인 국가 또는 지방자치단체의 청사·외국공관·소방서·발전소·방송국·전 신전화국, 데이터센터
- (3) 종합병원, 수술시설이나 응급시설이 있는 병원
- (4) 지진과 태풍 또는 다른 비상시의 긴급대피수용시설로 지정한 건축물
- (5) 중요도(특)으로 분류된 건축물의 기능을 유지하는데 필요한 부속 건축물 및 공작물

3.2 중요도(1)

- (1) 연면적 1,000 ㎡ 미만인 위험물 저장 및 처리시설
- (2) 연면적 1,000 ㎡ 미만인 국가 또는 지방자치단체의 청사·외국공관·소방서·발전소·방송국·전 신전화국, 데이터센터
- (3) 연면적 5,000㎡이상인 공연장·집회장·관람장·전시장·운동시설·판매시설·운수시설(화물터 미널과 집배송시설은 제외함)
- (4) 아동관련시설·노인복지시설·사회복지시설·근로복지시설
- (5) 5층 이상인 숙박시설·오피스텔·기숙사·아파트
- (6) 학교
- (7) 수술시설과 응급시설 모두 없는 병원, 기타 연면적 1,000㎡이상인 의료시설로서 중요도(특) 에 해당하지 않는 건축물

3.3 중요도(2)

(1) 중요도(특), (1), (3)에 해당하지 않는 건축물

3.4 중요도(3)

- (1) 농업시설물, 소규모창고
- (2) 가설구조물

4. 구조설계

4.1 구조설계의 원칙

(1) 건축구조물은 안전성, 사용성, 내구성을 확보하고 친환경성을 고려하여야 한다.

4.1.1 안전성

(1) 건축구조물은 유효적절한 구조계획을 통하여 건축구조물 전체가 KDS 41 12 00과 KDS 41 17 00에 따른 각종 하중에 대하여 이 기준에 따라 구조적으로 안전하도록 한다.

4.1.2 사용성

(1) 건축구조물은 사용에 지장이 되는 변형이나 진동이 생기지 아니하도록 충분한 강성과 인성의 확보를 고려한다.

4.1.3 내구성

(1) 구조부재로서 특히 부식이나 마모훼손의 우려가 있는 것에 대해서는 모재나 마감재에 이를 방지할 수 있는 재료를 사용하는 등 필요한 조치를 취한다.

4.1.4 친환경성

(1) 건축구조물은 저탄소 및 자원순환 구조부재를 사용하고 피로저항성능, 내화성, 복원가능성 등 친환경성의 확보를 고려한다.

4.2 구조설계법

(1) 구조설계는 강도설계법, 한계상태설계법, 허용응력설계법, 허용강도설계법 또는 성능기반 설계법에 따르거나 국토교통부장관이 이와 동등 이상의 성능을 확보할 수 있다고 인정하는 구조설계법에 따른다.

4.2.1 강도설계법 또는 한계상태설계법

- (1) 강도설계법 또는 한계상태설계법에 따라 구조부재의 설계를 할 때에는 다음 방법에 따른다.
 - ① 구조부재는 KDS 41 12 00과 KDS 41 17 00에 따른 하중 및 외력을 사용하여 산정한 부재

력을 KDS 41 12 00(1.7.1)에 따라 하중계수를 곱하여 조합한 소요강도 중 가장 불리한 값으로 설계한다.

②구조부재의 계수하중에 따른 소요강도는 그 부재단면의 공칭강도에 강도감소계수를 곱한 설계강도를 초과하지 않도록 한다.

4.2.2 허용응력설계법 또는 허용강도설계법

- (1) 허용응력설계법 또는 허용강도설계법에 따라 구조부재의 설계를 할 때에는 다음 방법에 따른다.
 - ① 구조부재는 KDS 41 12 00과 KDS 41 17 00을 사용하여 산정한 부재력을 KDS 41 12 00(1.7.2)에 따라 조합하여 가장 불리한 값으로 설계한다.
 - ②①의 설계하중 및 하중조합에 따른 구조부재의 응력 또는 부재력은 KDS 41 19 00, KDS 41 50 00 및 KDS 41 60 00의 허용응력 또는 허용강도 이하가 되도록 한다.

4.2.3 성능기반설계법

- (1) 성능기반설계법에 따라 구조부재의 설계를 할 때에는 다음 방법에 따른다.
 - ① 구조물은 적절한 수준의 신뢰성과 경제성을 확보하면서 목표하는 사용수명 동안 발생가능한 모든 하중과 환경에 대하여 요구되는 구조적 안전성능, 사용성능, 내구성능 및 친환경성능을 갖도록 설계한다.
 - ② 구조부재의 설계는 의도하는 성능수준에 적합한 하중조합에 근거하여야하며, 재료 및 구조물 치수에 대한 적절한 설계 값을 선택한 후 합리적인 거동이론을 적용하여 구한 구조성 능이 요구되는 한계기준을 만족한다는 것을 검증한다. 구조부재의 강성·강도와 감쇠·물성 치는 관련기준 또는 실험결과를 기초로 한다.
 - ③ 실험절차는 KDS 41 10 10에 따른다.
 - ④ 구조부재, 비구조부재 및 그 연결부는 해석 또는 실험과 해석에 의하여 강도설계법에 따라 설계된 부재에서 기대되는 신뢰성 이상의 강도·강성을 보유한 것이 입증되어야한다.

4.3 구조설계의 단계

4.3.1 구조계획

- (1) 건축구조물의 구조계획에는 건축구조물의 용도, 사용재료 및 강도, 지반특성, 하중조건, 구조형식, 장래의 중축 여부, 용도변경이나 리모델링 가능성 등을 고려한다.
- (2) 기둥과 보의 배치는 건축평면계획과 잘 조화되도록 하며, 보춤을 결정할 때는 기둥간격 외에 층고와 설비계획도 함께 고려한다.

(3) 지진하중이나 풍하중 등 수평하중에 저항하는 구조요소는 평면상 균형뿐만 아니라 입면상 균형도 고려한다.

(4) 구조형식이나 구조재료를 혼용할 때는 강성이나 내력의 연속성에 유의하며, 사용성에 영향을 미치는 진동과 변형도 미리 검토한다.

4.3.2 골조해석 및 부재설계

- (1) 골조해석은 탄성해석을 원칙으로 하되 필요한 경우 비선형해석도 함께 수행하여 실제구조물의 거동에 가까운 부재력이 산출되도록 노력한다.
- (2) 부재설계는 4.2(구조설계법)에 따른다.

4.3.3 구조설계서의 작성

- (1) 구조설계서에는 최소한 다음의 내용을 포함하여야한다. 단, 4.3.2(골조해석 및 부재설계)를 수행한 책임구조기술자가 4.3.4(구조설계도의 작성)을 직접 수행하거나 6.1(구조설계도서 의 구조안전 확인)을 수행하는 경우에는 이 조항에 따른 구조설계서 작성을 생략할 수 있다.
 - ① 구조설계개요

구조형식에 대한 설명, 사용재료 및 강도, 하중조건 등 4.3.1(구조계획)에서 검토하고 고려한 사항들을 기술한다.

- ② 구조특기사항
 - 구조안전에 꼭 필요하여 구조체공사시방서에 반영하여야 할 주요사항을 기술한다.
- ③ 구조설계요약

구조계산결과를 책임구조기술자의 경험과 기술력으로 평가·조정하여 경제적이고 시공성이 우수한 구조체가 되도록 구조평면, 부재단면, 접합의 유형을 스케치하고, 구조계산으로는 산정할 수 없으나 구조실험이나 경험으로 구조안전이 확인된 상세와 이 기준에 규정한구조세칙 등을 표현한다.

④ 구조계산

골조해석과 이 기준의 재료별 설계법에 따른 계산결과를 싣는다.

4.3.4 구조설계도의 작성

(1) 구조설계도는 구조평면도와 구조계산에 의하여 산정된 부재의 단면 및 접합부 상세를 표현하고, 아울러 구조계산에는 포함되지 않았으나, 이 기준에 규정한 구조세칙과 구조실험이나 경험 등으로 구조안전이 확인된 관련 상세까지도 표현하여 구조설계취지에 부합하도록 작성하여야한다.

(2) 구조설계도는 설계의 진척도에 따라 계획설계, 중간설계, 실시설계의 3단계로 나누어 작성할 수 있다.

- (3) 구조설계도에 포함할 내용은 다음과 같다.
 - ① 구조기준
 - ② 활하중 등 주요설계하중
 - ③ 구조재료강도
 - ④ 구조부재의 크기 및 위치
 - ⑤ 철근과 앵커의 규격, 설치 위치
 - ⑥ 철근정착길이, 이음의 위치 및 길이
 - ⑦ 강부재의 제작·설치와 접합부 설계에 필요한 전단력·모멘트·축력 등의 접합부 소요강도
 - ⑧ 기둥중심선과 오프셋, 워킹 포인트
 - ⑨접합의 유형
 - ⑪ 치올림이 필요할 경우 위치, 방향 및 크기
 - ⑪ 부구조체의 시공상세도 작성에 필요한 경우 상세기준
 - ②기타 구조시공상세도 작성에 필요한 상세와 자료
 - ③ 책임구조기술자, 자격명 및 소속회사명, 연락처
 - (A) 구조설계 연월일

4.3.5 구조체공사시방서의 작성

(1) 구조체공사시방서는 해당 장의 관련부분을 포함하고, 별도의 특기시방서를 통하여 구조설 계도면에 나타낼 수 없는 골조공사의 특기사항을 기술함으로써 구조설계취지에 부합하도록 작성하여야한다.

5. 각종 검사와 검증

(1) 구조설계에 적용한 재료 및 제작물 등의 품질확인, 성능검증의 절차 및 방법과 기준지정 외 재료 사용 또는 특수한 해석, 설계 및 시공공법을 적용할 경우의 사용승인을 위한 기술적 방법, 내진성능 구조실험 등에 필요한 사항은 KDS 41 10 10에 따라야 한다.

6. 구조안전의 확인

(1) 건축구조물의 안전성, 사용성, 내구성을 확보하고 친환경성을 고려하기 위해서는 설계단계에서부터 시공, 감리 및 유지·관리·단계에 이르기까지 이 기준에 적합하여야하며, 이를 위한 각 단계별 구조적합성과 구조안전의 확인사항은 다음과 같다.

6.1 구조설계도서의 구조안전 확인

(1) 건축구조물의 구조체에 대한 구조설계도서는 책임구조기술자가 이 기준에 따라 작성하여 구조적합성과 구조안전이 확보되도록 설계하였음을 확인하여야한다.

6.2 시공상세도서의 구조안전 확인

- (1) 시공자가 작성한 시공상세도서 중 이 기준의 규정과 구조설계도서의 의도에 적합한지에 대하여 책임구조기술자로부터 구조적합성과 구조안전의 확인을 받아야 할 도서는 다음과 같다.
 - ① 구조체 배근시공도
 - ② 구조체 제작·설치도(강구조 접합부 포함)
 - ③ 구조체 내화상세도
 - ④ 부구조체(커튼월·외장재·유리구조·창호틀·천정틀·돌붙임골조 등) 시공도면과 제작·설치도
 - ⑤ 건축 비구조요소의 설치상세도(구조적합성과 구조안전의 확인이 필요한 경우만 해당)
 - ⑥건축설비(기계·전기 비구조요소)의 설치상세도
 - ⑦가설구조물의 구조시공상세도
 - ⑧건설가치공학(V.E.) 구조설계도서
 - ⑨기타 구조안전의 확인이 필요한 도서

6.3 시공 중 구조안전 확인

- (1) 시공과정에서 구조적합성과 구조안전을 확인하기 위하여 책임구조기술자가 이 기준에 따라 수행해야하는 업무의 종류는 다음과 같다.
 - ① 구조물 규격에 관한 검토·확인
 - ② 사용구조자재의 적합성 검토·확인
 - ③ 구조재료에 대한 시험성적표 검토
 - ④ 배근의 적정성 및 이음·정착 검토
 - ⑤ 설계변경에 관한 사항의 구조검토·확인

- ⑥ 시공하자에 대한 구조내력검토 및 보강방안
- ⑦기타 시공과정에서 구조의 안전이나 품질에 영향을 줄 수 있는 사항에 대한 검토

6.4 유지 • 관리 중 구조안전 확인

- (1) 유지·관리 중에 이 기준에 따라 구조안전을 확인하기 위하여 건축주 또는 관리자가 책임구조 기술자에게 의뢰하는 업무의 종류는 다음과 같다.
 - ① 안전진단
 - ②리모델링을 위한 구조검토
 - ③ 용도변경을 위한 구조검토
 - ④ 증축을 위한 구조검토

7. 책임구조기술자

7.1 책임구조기술자의 자격

(1) 책임구조기술자는 건축구조물의 구조에 대한 설계, 시공, 감리, 안전진단 등 관련 업무를 각각 책임지고 수행하는 기술자로서, 책임구조기술자의 자격은 건축관련 법령에 따른다.

7.2 책임구조기술자의 책무

(1) 이 기준의 적용을 받는 건축구조물의 구조에 대한 구조설계도서(구조계획서, 구조설계서, 구조설계도 및 구조체공사시방서)의 작성, 시공, 시공상세도서의 구조적합성 검토, 공사단계에서의 구조적합성과 구조안전의 확인, 유지·관리 단계에서의 구조안전확인, 구조감리 및 안전진단 등은 해당 업무별 책임구조기술자의 책임아래 수행하여야한다.

7.3 책임구조기술자의 서명 • 날인

- (1) 구조설계도서와 구조시공상세도서, 구조분야 감리보고서 및 안전진단보고서 등은 해당 업무별 책임구조기술자의 서명·날인이 있어야 유효하다.
- (2) 건축주와 시공자 및 감리자는 책임구조기술자가 서명·날인한 설계도서와 시공상세도서 등으로 각종 인·허가행위 및 시공·감리를 하여야한다.

집필위원

성명	소속	성명	소속
정석재	쓰리디엔지니어링	홍성걸	서울대학교
차광찬	㈜건우기술	서규석	선구조엔지니어링
김승철	다원구조안전기술사무소	윤병익	아이맥스트럭처

자문위원

성명	소속	성명	소속
강현구	서울대학교	이철호	서울대학교
김석구	㈜쓰리디엔지니어링	전봉수	(주)전우구조건축
김종호	㈜창민우구조컨설탄트	정광량	㈜동양구조안전기술
김홍진	경북대학교	정란	단국대학교
민경원	단국대학교	정재철	국민대학교(명예교수)
박문재	국립산림과학원	조봉호	아주대학교
박지훈	인천대학교	천성철	인천대학교
박홍근	서울대학교	최경규	숭실대학교
신성우	한양대학교	최창식	한양대학교
이경구	대한건축학회	하영철	금오공과대학
이기학	세종대학교	홍건호	호서대학교
이리형	한양대학교(명예교수)	홍성걸	서울대학교
이상현	단국대학교	홍성목	서울대학교(명예교수)

국가건설기준센터 및건설기준위원회

성명	소속	성명	소속
이영호	한국건설기술연구원	신영수	이화여자대학교
구재동	한국건설기술연구원	강현구	서울대학교
김기현	한국건설기술연구원	곽동삼	㈜원우구조기술사사무소
김태송	한국건설기술연구원	김대영	㈜한빛구조이엔지
김희석	한국건설기술연구원	김대호	㈜한울구조안전기술사무소
류상훈	한국건설기술연구원	김두기	공주대학교
안준혁	한국건설기술연구원	김세일	빛과울구조컨설팅
원훈일	한국건설기술연구원	김승원	뉴테크구조기술사사무소
이상규	한국건설기술연구원	박지훈	인천대학교
이승환	한국건설기술연구원	양영태	㈜건우기술
이여경	한국건설기술연구원	이강민	충남대학교
이용수	한국건설기술연구원	이현호	동양대학교
주영경	한국건설기술연구원	임준택	㈜한양풍동실험연구소
최봉혁	한국건설기술연구원	최준식	㈜단이엔씨
허원호	한국건설기술연구원		

중앙건설기술심의위원회

성명	소속	성명	소속
김태진	티아이구조기술사사무소	이지은	한국토지주택공사
류은영	㈜태암엔지니어링	장범수	국토안전관리원
송복 섭	한밭대학교	한용섭	㈜사림엔지니어링
이영도	경동대학교		

국토교통부

성명	소속	성명	소속
김연희	국토교통부 건축안전과	조윤빈	국토교통부 건축안전과
이지형	국토교통부 건축안전과		

KDS 41 10 05 : 2022 건축구조기준 총칙

2022년 10월 11일 개정

소관부서 국토교통부 건축안전과

관련단체 대한건축학회

06687 서울특별시 서초구 효령로 87(방배동 917-9) Tel: 02-525-1841 E-mail: webmaster@aik.or.kr

http://www.aik.or.kr/

작성기관 대한건축학회

06687 서울특별시 서초구 효령로 87(방배동 917-9) Tel: 02-525-1841 E-mail: webmaster@aik.or.kr

http://www.aik.or.kr/

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

http://www.kcsc.re.kr