

Trabajo Práctico 2

Rutas en Internet

11 de noviembre de 2015

Teoría de las Comunicaciones 2do Cuatrimestre de 2015

Grupo 5

Integrante	LU	Correo electrónico	
Abásolo, Nicolás	310/08	nabasolo@dc.uba.ar	
Garrone, Javier	151/10	javier3653@gmail.com	
Negri, Franco	693/13	franconegri2004@hotmail.com	
Santos, Diego	874/03	diego.h.santos@gmail.com	

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina

Tel/Fax: (54 11) 4576-3359 http://www.fcen.uba.ar ÍNDICE ÍNDICE

${\rm \acute{I}ndice}$

1.	Introducción 1.0.1. Host Destino	
2.	Desarrollo	2
3.	Análisis de datos	4
	3.1. Universidad París Descartes - Francia	4
	3.2. Universidad de Mosku - Rusia	6
	3.3. Universidad de Hong Kong - China	9
	3.4. Universidad de Sydney - Australia	
4.	Conclusiones	16

1. Introducción

En el siguiente trabajo práctico hemos realizado nuestra propia implementación de la herramienta traceroute. Esta herramienta permite conocer la ruta de los paquetes en una conexión end $to\ end$. En nuestra implementación enviamos paquetes ICMP e incrementamos gradualmente el valor de TTL empezando con un valor fijo igual a 1 (uno). Utilizamos la herramienta para realizar distintas experimentaciones, entre ellas conocer las rutas que atraviesan los paquetes hasta que llegan a cuatro universidades localizadas en distintos puntos de la Tierra, y calcular los RTTs promedio de los distintos saltos. Una vez obtenida esta información se utilizó para detectar enlaces submarinos entre continentes. Nos hemos basado que ante grandes variaciones de RTT podríamos estar en presencia de un enlace submarino.

1.0.1. Host Destino

Se han utilizado sitios web de universidades dado que es más probable que los servidores web se encuentren en el propio país. Las universidades están ubicadas en otros continentes. Antes de los análisis hemos hecho un ping para comprobar el estado de la comunicación de nuestro host con el host destino. De esta manera no sólo hemos comprobado la conexión sino que además hemos obtenido la IP del host destino.

Se utilizarán como objetivos las siguientes universidades:

- 1. Universidad París Descartes Francia (www.univ-paris5.fr) (IP: 193.51.86.16)
- 2. Universidad de Musku Rusia (www.msu.ru) (IP: 188.44.50.103)
- 3. Universidad de Hong Kong China (www.ust.hk) (IP: 143.89.14.2)
- 4. Universidad de Sydney Australia (www.sydney.edu.au) (IP: 129.78.5.11)

1.0.2. Instrucciones de Compilación

Para ejecutar el programa de monitoreo se debe ingresar el comando:

sudo python redes-tp2_5.py ip

donde ip es la IP del host al que queremos realizar el traceroute.

2. Desarrollo

Hemos implementado una versión traceroute en Python utilizando la biblioteca Scapy. Hicimos uso del campo $Time\ To\ Live\ (TTL)$, el cual fuimos incrementando sucesivamente para alcanzar todos los nodos intermedios en la ruta hacia el host final (en nuestro caso una Universidad). Durante estos envíos almacenamos las IPs de los nodos alcanzados y calculamos el RTT promedio desde el origen hasta cada nodo. Una vez que hemos calculado la media RTT se calculó el desvío estandard para cada salto mediante la herramienta std^1 que nos ofrece la biblioteca Numpy. Por último, a partir del RTT promedio, hemos obtenido el valor $\Delta\ RTT$ de cada enlace calculando la diferencia con el salto anterior:

$$\Delta RTT = RTT_i - RTT_{i-1} \tag{1}$$

Nuestro principal objetivo es detectar enlaces submarinos. Al ser un enlace punto a punto suponemos que el RTT debe aumentar de forma significativa al pasar por un enlace submarino. Nuestra suposición se basa en que no hay nodos intermedios y se recorre una gran cantidad de

¹http://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html

kilómetros. Por lo tanto, nos interesa identificar los outliers (valores atípicos) de la distribución de los RTT.

Se han tomado los Δ RTT para detectar los *outliers* mediante el Test de $Grubbs^2$. Dicho test asume que los datos iniciales siguen una distribución normal.

Hemos utilizado la herramienta $normalTest^3$ de Scipy. Con esta herramienta calculamos la probabilidad de que los Δ RTT sigan una distribución normal. En nuestra implementación no toleramos una probabilidad menor al 95 %. En caso de lograr una probabilidad mayor se indica el valor Alpha de probabilidad de rechazo de la hipótesis. Una vez que hemos obtenido una buena probabilidad del test de normalidad se ha procedido a generar un test de hipótesis basándonos en el mencionado Test de Grubbs. Grubbs sugiere que en caso de existir outliers la hipótesis de que no existen valores atípicos es rechazada. Por lo cual tomaremos como outliers aquellos saltos que hagan rechazar la hipótesis. Estos outliers, suponemos, son producidos en las mediciones por los enlaces submarinos que alteran el Δ RTT promedio.

Posteriormente hemos contrastado lo realizado y medido contra la realidad. Mediante la herramienta de geolocalización 4 pudimos ubicar en un mapa la localización aproximada de las direcciones IP que nuestro traceroute nos brinda. Al graficarnos una ruta hasta el host final hemos podido verificar si los outliers que hemos detectado corresponden a enlaces submarinos y comprender con mayor precisión lo que está sucediendo.

²https://en.wikipedia.org/wiki/Grubbs'_test_for_outliers

 $^{^3 \}rm http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.normaltest.html$

 $^{^4}http://www.plopip.com/$

3. Análisis de datos

Para cada host destino se ha monitoreado la ruta durante un tiempo considerable. De esta manera se ha buscado que los datos se estabilicen y sean lo más certero posible.

A continuación detallamos la información obtenida en las mediciones. Es importante aclarar que en las tablas de monitoreo la información de Ubicación fue obtenida de la herramienta http: //www.plopip.com/. Cómo hemos hallado inconsistencias, dicha ubicación podría ser modificada en las conclusiones finales.

3.1. Universidad París Descartes - Francia

Presentamos en la siguiente tabla los resultados obtenidos del último monitoreo.

Hop	IP	RTT promedio (s)	deltaRTT promedio	Ubicación
1	192.168.0.1	0,006502	0,006502	Argentina - Buenos Aires
2	200.89.164.189	0,025426	0,018924	Argentina - Buenos Aires
3	200.89.165.5	0,022739	0	Argentina - Buenos Aires
4	200.89.165.250	0,023967	0,001227	Argentina - Buenos Aires
5	206.165.31.213	0,023886	0	Estados Unidos
6	67.16.139.18	0.153896	0,130009	Estados Unidos - Manhattan
7	213.248.76.189	0,147402	0	Europa (Telia Network Services)
8	62.115.143.64	0,173705	0,026303	Europa (Telia Network Services UK)
9	213.155.130.86	0,174316	0,000610	Europa (Telia Network Services UK)
10	80.239.132.130	0,183801	0,009485	Alemania (Telia AB/Telia Int. Carrier)
11	195.2.30.46	0,249497	0,065696	Europa
12	195.2.28.154	0,244204	0	Europa
13	195.2.10.145	0,243621	0	Europa
14	195.10.54.66	0,269441	0,025820	Francia (Dyson Ltd)
15	193.51.177.25	0,271685	0,002243	Francia - Paris
16	193.51.177.116	0,258662	0	Francia - Paris
17	193.51.181.101	0,258660	0	Francia - Paris
18	195.221.127.166	0,269296	0,010635	Francia - Paris
19	193.51.86.16	0,256802	0	Francia
20	193.51.181.101	0,258082	0,001279	Francia
21	193.51.181.101	0,254919	0	Francia
22	193.51.181.101	0,255926	0,001007	Francia
23	193.51.181.101	0,254769	0	Francia
24	193.51.181.101	0,256566	0,001797	Francia

Con estos datos hemos obtenido que los Δ RTT siguen una distribución normal con una probabilidad del 99,5 % ($\alpha=0{,}005$). Se ha realizado el test de Grubbs y nos ha devuelto que los outliers se encuentran en los saltos 6 y 11.

A continuación mostramos que ocurre con los RTT promedio de cada salto y con los zScore promedio de cada salto:

Análisis RTT por Hop

Universidad de Francia - IP: 193.51.86.16

Figura 1: RTT promedio por hop - Universidad de Francia

Análisis zScore por Hop

Universidad de Francia - IP: 193.51.86.16

Figura 2: zScore promedio por hop - Universidad de Francia

En ambos gráficos se puede apreciar como en los saltos 6 y 11 (los que nos habían dado como outliers en el test de Grubbs) hay un cambio abrupto en la distribución de los datos. En el gráfico de RTT podemos notar cómo sube de golpe el RTT promedio. En el otro gráfico podremos observar cómo se forman picos en estos saltos.

Nos ha llamado la atención que figuren dos *outliers* cuando el enlace submarino debería ser solamente uno para ir hacia Francia. Verificando las ubicaciones de los host intermedios notamos

que el primer outlier corresponde a un host que se encuentra en Estados Unidos (el cual nosotros desde Argentina estamos a más de 8000 kilómetros). El salto 5, según nos indica la herramienta de geolocalización, se encontraría en Estados Unidos pero no creemos que sea cierto dado que el RTT es muy similar a los hosts ubicados en Argentina.

El segundo outlier detectado corresponde al salto 11 donde ya nos ubicamos en un host europeo. Aquí claramente ya hemos atravesado un enlace submarino desde Estados Unidos hacia Europa. También nos ha llamado la atención al localizar los hosts anteriores del salto 11: los hemos localizado en Europa. Sin embargo no tienen un cambio de RTT significativo por lo que estimamos que se encuentran en Estados Unidos. Los saltos 7, 8, 9 y 10 corresponden a hosts de la empresa de telecomunicaciones Telia y estimamos que debe contratar servicios en Estados Unidos. Por este motivo no notamos en los RTT cambios abruptos ni picos en los zScore obtenidos.

Para los demás saltos hemos notado que los Δ RTT son similares y los host debe estar equidistantes hasta llegar al host destino dado que no hemos observado valores atípicos.

A continuación hemos trazado en un mapa la ruta de nuestro host hasta el host destino ubicado en Francia:

Figura 3: Ruta en Internet - Universidad de Francia

3.2. Universidad de Mosku - Rusia

Presentamos en la siguiente tabla los resultados obtenidos del último monitoreo.

Hop	IP	RTT promedio (s)	deltaRTT promedio	Ubicación
1	192.168.0.1	0.003286	0.003286	Argentina
2	200.89.164.165	0.018267	0.014980	Argentina
3	200.89.165.130	0.018018	0	Argentina
4	200.89.165.222	0.023129	0.005110	Argentina
5	206.165.31.213	0.0159362	0	United States
6	67.17.75.66	0.153266	0.137330	United States
7	4.68.111.121	0.144784	0	United States
8	4.69.158.253	0.267091	0.122307	United States
9	4.69.158.253	0.266443	0	United States
10	213.242.110.198	0.313186	0.046742	United Kingdom
11	194.85.40.229	0.313147	0	Russian Federation
12	194.190.254.118	0.295875	0	Russian Federation
13	93.180.0.172	0.310500	0.014625	Moscow City Russian Federation
14	188.44.33.30	0.293746	0	Moscow City
15	188.44.50.103	0.286035	0	Moscow City

Con estos datos hemos obtenido que los Δ RTT siguen una distribución normal con una probabilidad del 99,5 % ($\alpha=0{,}005$). Se ha realizado el test de Grubbs y nos ha devuelto que los outliers se encuentran en los saltos 6 y 8.

A continuación mostramos que ocurre con los RTT promedio de cada salto y con los zScore promedio de cada salto:

Análisis zScore por Hop

Universidad De Mosku 4 3.5 3 2.5 2 1.5 1 0.5 0 1 2 5 6 7 8 9 10 12 13 3 11 14 15 Hop

Figura 4: zScore promedio por hop - Universidad de Mosku

Análisis RTT por Hop

Universidad de Mosku

Figura 5: RTT promedio por hop - Universidad de Mosku

De manera preliminar puede verse que la diferencia temporal entre los diferentes saltos permanece en el orden de los 10^{-3} segundos, habiendo tan solo dos casos en que esto no sucede. Primero en el salto 6 y luego en el salto 8 que se encuentran en el orden de los 10^{-1} segundos. Cómo en el caso de la universidad anterior corresponden a los saltos detectados como *outliers*.

Al calcular los zScore apreciamos cuán alejados están los valores de la media. Aquí también puede verse que los saltos 6 y 8 son los mas patológicos y por lo tanto, los mejores candidatos a ser enlaces submarinos.

Aún así nos resulta extraño ver que tanto en el salto 6 como en el 8 las IPs dicen estar asignadas a hosts de Estados Unidos. Suponemos que el lugar físico donde se encuentren sea otro aunque la IP corresponda a Estados Unidos. Utilizando la herramienta http://www.infobyip.com/ pudimos observar algunos de los nombres de los hosts por los cuales hicimos el traceroute.

De esta herramienta conseguimos la siguiente información:

hop	IP	Host name
5	206.165.31.213	xe-8-3-0.ar3.eze1.gblx.net
6	67.17.75.66	po3-20G.ar3.MIA2.gblx.net
7	4.68.111.121	ae5.edge2.miami2.level3.net
8	4.69.158.253	ae-114-3504.bar1.Stockholm1.Level3.net

Tomando como hipótesis que los nombres de los hosts se corresponden con su ubicación geográfica, entonces nuestros resultados sobre cuales son los enlaces submarinos parecerían estar en lo correcto. Esto se debe a que del salto 5 al salto 6 el paquete habría viajado desde Argentina hacia Miami. Y del salto 7 al salto 8 el paquete parecería haber viajado de Miami hacia Estocolmo.

A continuación hemos trazado en un mapa la ruta de nuestro host hasta el host destino ubicado en Rusia tomando como cierta esta última información:

Figura 6: Ruta en Internet - Universidad de Mosku

3.3. Universidad de Hong Kong - China

Presentamos en la siguiente tabla los resultados obtenidos del último monitoreo.

Hop	IP	RTT promedio (s)	deltaRTT promedio	Ubicación
1	192.168.0.1	0.021503	0.021503	Argentina - Buenos Aires
2	200.89.166.177	0.028651	0.007148	Argentina - Buenos Aires
3	200.89.165.130	0.025739	0	Argentina - Buenos Aires
4	200.89.165.222	0.031074	0.005334	Argentina - Buenos Aires
5	208.178.195.205	0.02794	0	Estados Unidos - Florida
6	67.17.106.162	0.1641088	0.136164	Estados Unidos - Kansas
7	64.212.107.98	0.1607451	0	Estados Unidos - Kansas
8	129.250.3.172	0.1631746	0.002429	Estados Unidos - Colorado
9	129.250.2.219	0.1854111	0.022236	Estados Unidos - Colorado
10	129.250.7.69	0.1903247	0.004913	Estados Unidos - Colorado
11	129.250.2.177	0.307158	0.116833	Estados Unidos - Colorado
12	129.250.6.144	0.313425	0.006267	Estados Unidos - Colorado
13	129.250.2.222	0.366600	0.0531743	Estados Unidos - Colorado
14	129.250.6.125	0.351373	0	Estados Unidos - Colorado
15	129.250.3.11	0.3576226	0.006249	Estados Unidos - Colorado
16	203.131.246.154	0.391269	0.0336466	Hong Kong - Districto Central
17	115.160.187.110	0.387334	0	Hong Kong - Districto Central
18	202.130.98.102	0.373508	0	Hong Kong - Districto Central
19	203.188.117.130	0.380355	0.006846	Hong Kong - Districto Central
20	202.14.80.153	0.378142	0	Hong Kong - Districto Central
21	143.89.14.2	0.380775	0.002632	Hong Kong - Districto Central
22	143.89.14.2	0.382564	0.001789	Hong Kong - Districto Central
23	143.89.14.2	0.383357	0.000793	Hong Kong - Districto Central
24	143.89.14.2	0.384837	0.001479	Hong Kong - Districto Central
25	143.89.14.2	0.384046	0	Hong Kong - Districto Central
26	143.89.14.2	0.385690	0.001644	Hong Kong - Districto Central

on estos datos hemos obtenido que los Δ RTT siguen una distribución normal con una probabilidad del 99,5 % ($\alpha=0{,}005$). Se ha realizado el test de Grubbs y nos ha devuelto que los outliers se encuentran en los saltos 6 y 11.

A continuación mostramos que ocurre con los RTT promedio de cada salto y con los zScore promedio de cada salto:

Figura 7: RTT promedio por hop - Universidad de Hong Kong

Figura 8: zScore promedio por hop - Universidad de Hong Kong

Cómo hemos notado en las universidades anteriores, los outliers detectados por el test de Grubbs notamos que el RTT crece abruptamente y que los zScore tienen picos en ambos saltos.

Cómo nos ha sucedido para la Universidad en Francia, el salto 6 corresponde a un salto desde Argentina hacia Estados Unidos. Al existir una gran distancia entre ambos hosts nuestro test lo detecta.

Con respecto al salto 11 nos ha llamado la atención que la ubicación nos de en Estados Unidos. Los saltos anteriores tienen una IP muy parecida y el RTT acompaña la idea que esos host se encuentren en América del Norte. Suponemos que el host del salto 11 no se encuentra en Estados Unidos dado que nos figura como outlier en la distribución de los Δ RTT. Seguramente este host se encuentre en China y lo mismo para los host de los saltos siguientes que tienen un RTT promedio mayor a 0,3 s. Por lo tanto llegamos a la conclusión que en este salto existe un enlace submarino y nuevamente que no podemos tomar como válida la ubicación de la herramienta utilizada.

A continuación hemos trazado en un mapa la ruta de nuestro host hasta el host destino ubicado en Hong Kong - China:

Figura 9: Ruta en Internet - Universidad de Hong Kong

3.4. Universidad de Sydney - Australia

Presentamos en la siguiente tabla los resultados obtenidos del último monitoreo.

Hop	IP	RTT promedio (s)	deltaRTT promedio	Ubicación
1	192.168.0.1	0.00317819338096	0.00317819338096	Argentina - Buenos Aires
2	200.89.165.169	0.0273115007501	0.0241333073691	Argentina - Buenos Aires
3	200.89.165.5	0.0295196944161	0.00220819366606	Argentina - Buenos Aires
4	200.89.165.250	0.0303499635897	0.000830269173572	Argentina - Buenos Aires
5	207.136.166.241	0.0279953793476	0	Estados Unidos
6	67.16.139.18	0.15700549953	0.129010120183	Estados Unidos - Illinois
7	64.208.27.102	0.151270602879	0	Estados Unidos
8	129.250.3.172	0.15870277662	0.00743217374149	Estados Unidos - Colorado
9	129.250.2.219	0.176934030495	0.0182312538749	Estados Unidos - Colorado
10	129.250.7.69	0.185023287409	0.00808925691404	Estados Unidos - Colorado
11	129.250.3.123	0.185811053765	0.000787766356217	Estados Unidos - Colorado
12	204.1.253.166	0.185876883959	0.0000658301930679	Estados Unidos - California
13	202.158.194.172	0.3106533885	0.124776504542	Australia - New South Wales
14	113.197.15.68	0.305794251593	0	Australia - New South Wales
15	113.197.15.66	0.331599779819	0.0258055282267	Australia - New South Wales
16	113.197.15.62	0.330528166733	0	Australia - New South Wales
17	113.197.15.13	0.330654288593	0.000126121859801	Australia - New South Wales
18	138.44.5.47	0.337141043261	0.00648675466839	Australia
19	129.78.5.11	0.337009869124	0	Australia - Sydney
20	129.78.5.11	0.337688013127	0.000678144003216	Australia - Sydney
21	129.78.5.11	0.336762147514	0	Australia - Sydney
22	129.78.5.11	0.338513030818	0.00175088330319	Australia - Sydney
23	129.78.5.11	0.336039300028	0	Australia - Sydney
24	129.78.5.11	0.339367595158	0.00332829513048	Australia - Sydney

Con estos datos hemos obtenido que los Δ RTT siguen una distribución normal con una probabilidad del 99,5 % ($\alpha=0{,}005$). Se ha realizado el test de Grubbs y nos ha devuelto que los outliers se encuentran en los saltos 6 y 13.

A continuación mostramos que ocurre con los RTT promedio de cada salto y con los zScore promedio de cada salto:

Figura 10: RTT promedio por hop - Universidad de Sydney

Figura 11: zScore promedio por hop - Universidad de Sydney

Tanto en la tabla como en los gráficos se puede observar claramente que hubo dos outliers, uno de los cuales fue el esperado salto transatlántico: desde Estados Unidos hacia Australia (salto 13). Dicho enlace submarino (con un RTT promedio que supera los 300 ms), contrasta con los RTT de los hops anteriores que se encontraban por debajo de los 200 ms. En este caso la ubicación obtenida de la herramienta ha acompañado los datos.

El otro outlier detectado (salto 6) se produce cuando se viaja desde Argentina hacia Estados

Unidos, nuevamente nos es extraño que no se detecta en el primer hop hasta dicho país, sino en el segundo. Seguimos bajo la suposición que la primera IP que se geolocaliza en Estados Unidos, la 207.136.166.241, tiene un servidor alojado en Argentina o en algún país limítrofe, ya que el RTT promedio hasta allí es muy bajo (similiar a host situados en Argentina).

A continuación hemos trazado en un mapa la ruta de nuestro host hasta el host destino ubicado en Australia:

Figura 12: Ruta en Internet - Universidad de Sydney

Éste es un claro ejemplo de lo ineficente que pueden llegar a ser las rutas en internet. Tal vez se deba a la falta de enlaces entre América Latina y Australia, ya que un recorrido recto podría haber llegado a ahorrar casi la mitad del tiempo.

4. Conclusiones

Una vez finalizados los experimentos nos encontramos con el problema de que las herramientas de geolocalización no son del todo correctas. Dichas herramientas utilizadas, en algunos casos, nos dieron como resultado ubicaciones muy inexactas o ilógicas tomando como base los RTT promedio obtenidos. Donde seguramente debería existir un enlace submarino las IPs de ambos lados de la ruta nos dieron dentro de un mismo país o en ubicaciones muy cercanas. Relacionado con este tema no queríamos dejar de mencionar que existen routers que resultan invicibles al traceroute. Estos routers no contestan los paquetes echo - request y por lo tanto no podemos averiguar su IP ni sus tiempos de respuesta. Estos routers que no brindan información perjudican el análisis de la información y la correcta ubicación de las rutas.

Todos los experimentos hacia las universidades fueron realizados bajo el proveedor de Internet Fibertel. Siempre han pasado por Estados Unidos. El caso de la universidad de Sydney nos generó curiosidad dado que se encuentran ambos host (el nuestro y el de la universidad) en el hemisferio sur. Sin embargo la ruta de internet pasa por Estados Unidos provocando que se extiendan los tiempos de respuesta. Si existiese algún proveedor de internet que no pase siempre por Estados Unidos se podrían generar distintas rutas que podrían ser favorables o no según el destino. Por ejemplo, es favorable ir hasta Estados Unidos si queremos llegar a Hong Kong pero no lo es si queremos ir a Australia.

Hemos podidos visualizar que los paquetes no van directo al destino sino que pasan por varios servidores antes de llegar al host final. También hemos notado que no siempre tardan el mismo tiempo en llegar y aunque un destino esté geográficamente más cerca podría tardar más tiempo en llegar dado que puede haber pérdida de paquetes o errores en los mismos lo que genera una retransmisión de los mensajes.

Con respecto a los enlaces submarinos los hemos podido detectar mediante los cambios de los RTT promedios. Esto era de esperarse dado que recorren miles de kilómetros sin nodos intermedios. Los incidentes los tuvimos al tratar de ubicar físicamente los host dado que, como aclaramos anteriormente, las herramientas de geolocalización nos brindan una ubicación aproximada y hasta inexacta.