







### MODULE 5: CONTROLLED EXPERIMENT DESIGN

Nicholas Ho, PhD
Institute of System Science, NUS



### Pepper: A Human-Robot-Interaction Focused Robot







CITEC conducted research on humanrobot interaction using Pepper (which is developed by SoftBank Robotics); to study social interaction and how patterns of motion are learned

- One 3-D and two HD cameras
- Two ultrasonic microphones and speakers
- Six laser sensors
- Four directional microphones
- Tablet computer as an input interface
- Three omni-directional wheels





### Pepper: A Human-Robot-Interaction Focused Robot





#### Researchers at CITEC

- Transformed Pepper into a robot that is able to reliably recognize its environment and attentively understand reactions from humans
- Are especially interested in the interface between human and robot; include integrating AR system to allow people to view Pepper's status from an AR device (e.g. planning route, battery level)
- Taught Pepper to throw a ball in a cup and also to be a museum guide that has to deal with customers' behavior



### Pepper: A Human-Robot-Interaction Focused Robot







Source: https://www.youtube.com/watch?v=0cR26duOhDA









# EMPIRICAL RESEARCH FOR HUMAN-ROBOT INTERACTION









Empirical Research What, Why and How?

Observations and Measurements

Research Questions

Terminology

Experiment Design

Acknowledgement: these slides were adapted from Scott MacKenzie's course in CHI and Shengdong Zhao's workshop in NUS.



### What is Empirical Research???







### **Empirical Research is ...**

- Experimentation to discover and interpret facts, revise theories or laws
- Capable of being verified or disproved by observation or experiment





### Why do Empirical Research???







### We conduct empirical research to

 Answer (and raise!) questions about new or existing user interface designs or interaction techniques





- Find cause-and-effect relationships
- Transform baseless opinions into informed opinions supported by evidence
- Develop or test models that describe or predict behavior (of humans interacting with robots/computers)



### How do we do Empirical Research???







### We conduct empirical research through ...

a program of inquiry conforming to the scientific method

#### The scientific method involves ...

- The recognition and formulation of a problem
- The formulation and testing of hypotheses
- The collection of data through observation and experiment



### **Observe and Measure**







### Observations are gathered ...

- Manually (human observers)
- Automatically (computers, software, cameras, sensors, etc)

#### A measurement is a recorded observation



"When you cannot measure, your knowledge is of a meager and unsatisfactory kind."

--- William Thomson, 1st Baron Kelvin (1824 - 1907)



### **Scales of Measurement**







- Nominal
- Ordinal
- Interval
- Ratio



sophisticated







- Nominal data (a.k.a. categorical data) are arbitrary codes assigned to attributes
  - M = male, F = female
  - 1 = mouse, 2 = touchpad, 3 = laser pen
- Obviously, the statistical mean cannot be computed on nominal data
- Usually, it is the count that is important
  - "Are females or males more likely to ..."
  - "Do left or right handers have more difficulty with ..."



### **Nominal Data Example**







- Observe students "on the move" on university campus
- Code and count students by ...
  - Gender (male, female)
  - Mobile phone usage (not using, using)

| Condor | Mobile Phone Usage |       | Total | %     |  |
|--------|--------------------|-------|-------|-------|--|
| Gender | Not Using          | Using | Total | 70    |  |
| Male   | 683                | 98    | 781   | 51.1% |  |
| Female | 644                | 102   | 746   | 48.9% |  |
| Total  | 1327               | 200   | 1527  |       |  |
| %      | 86.9%              | 13.1% |       |       |  |







- Ordinal data associate order or rank to an attribute
- The attribute is any characteristic or circumstance of interest
  - Users try 3 different GPS systems for a period of time
  - Then rank them: 1st, 2nd, 3rd choice
- More sophisticated than nominal data
  - o Comparisons of "greater than" or "less than" possible



### Ordinal Data Example







#### How many text messages do you send each day?

- o < 10
- 0 10 50
- o 51 99
- 0 100 200
- o > 200







- Equal distances between adjacent values
- But, no absolute zero
- Classic example: temperature (°F, °C)
- Statistical mean possible
  - The mean midday temperature during July
- Ratio no possible
  - Cannot say 10 °C is twice 5 °C



### **Interval Data Example**







- Questionnaires often solicit a level of agreement to a statement
- Responses on a Likert scale
- Likert scale characteristics
  - Statement soliciting level of agreement
  - Responses are symmetric about a neutral middle value
  - Gradations between responses are equal (more-or-less)
- Assuming "equal gradations", the statistical mean is valid (and related statistical tests are possible)









|                                                  | Strongly<br>Disagree | Mildly<br>Disagree | Neutral | Mildly<br>Agree | Strongly<br>Agree |
|--------------------------------------------------|----------------------|--------------------|---------|-----------------|-------------------|
| The new system is easy to use                    | 1                    | 2                  | 3       | 4               | 5                 |
| The new system can complete the task             | 1                    | 2                  | 3       | 4               | 5                 |
| I am aware of the system status most of the time | 1                    | 2                  | 3       | 4               | 5                 |







- Most sophisticated of the four scales of measurement
- Preferred scale of measurement
- Absolute zero, therefore many calculations possible
- Summaries and comparisons are strengthened
- A "count" is a ratio-scale measurement
  - Time (the number of seconds to complete a task)
- Enhance counts by adding further ratios where possible
  - Facilitates comparisons
  - E.g. A 10-word phrase was entered in 30 seconds
    - $\triangleright$  BAD: t = 0.5 minute
    - ➤ GOOD: Entry rate = 20 words-per-minute



### Ratio Data Example











### **Research Questions**







### Consider the following questions

- o Is it viable?
- o Is it better than current practice?
- Which of the several design alternatives is the best?
- What are the performance limits and capabilities?
- What are the strengths and weaknesses?
- Does it work well for novices, for experts?
- How much practice is required to become proficient?
- Are these good questions?



### Human-Robot Interaction by The University of British Columbia



Source: https://www.youtube.com/watch?v=5AQ-E3njViw



## Testable Research Questions







- Preceding questions, while unquestionably relevant, are not testable
- Try to re-cast as testable questions (even though the new question may appear less important)
- Scenario ...
  - You have invented a new user interface for photo taking using flying cameras, and you think it is better than the existing joystick/joypad interface widely used today
  - You decide to undertake a program of empirical enquiry to evaluation your system
  - o What are your research questions?



# **Testable Research Questions (cont'd)**







- Is the new technique any good?
- Is the new technique better than joystick?
- Is the new technique faster than joystick?
- Is the new technique faster than joystick to compose a photo with one object of interest?

Weak & untestable

Stronger & more testable











Low

Is the new technique faster than joystick to compose a photo with one object of interest?

Is the new technique better than joystick?

Narrow

**Broad** 

Breadth of Question

(External Validity)









#### Definition:

- The extent to which the effects observed are due to the test conditions
- E.g. joystick vs new

### Statistically ...

- Differences (in the means) are due to inherent properties of the test conditions
- Variances are due to participant differences
- Other potential source of variance are controlled or exist equally and randomly across the test conditions









#### Definition:

 The extent to which the results are generalizable to other people and other situations

### Statistically ...

- The participants are representative of the broader intended population of users
- The test environment and experiment tasks are representative of real world situations with the interface or technique will be used



# Test Environment Example







- Scenario ...
  - You wish to compare two interfaces for flying camera photography
- External validity is improved if the test environment mimics expected usage
- Test environment should probably involves ..
  - Taking selfie in a scenery place, e.g., the Marina Bay
  - Let participants use their own mobile devices
  - Let them take photos freely as they like
- But ... is internal validity compromised?











- There is tension between internal and external validity
- The more the test environment and experimental tasks are "relaxed" (to mimic real-world situations), the more the experiment is susceptible to uncontrolled sources of variation, such as environmental variations, distractions, or secondary tasks.
- How can we deal with the tradeoff??



### **Best of both worlds**







#### Internal and external validity are increased by ...

- Posing multiple narrow (testable) questions that cover the range of outcomes influencing the broader (untestable) questions
- E.g., A technique that is faster, is more accurate, take fewer steps,
   is easier to learn, and is easier to remember, is generally better

#### The good news

- There is usually a positive correlation between the testable and untestable questions
  - Participants generally find a system **better** if it is faster, more accurate, takes fewer step, easier to learn and remember, etc



# Common Terminology for Controlled Experiment Design





- Participant
- Independent variable (a.k.a. factor)
- Test conditions (a.k.a. levels)
- Dependent variable
- Control variable
- Confounding variable
- Within subjects vs Between subjects
- Counterbalancing
- Latin square









- The people participating in an experiment are referred to as participants
- Previously the term subjects was used, but it is no long in vogue
- When referring specifically to the experiment, use the term participants
  - E.g. "all participants exhibited a high error rate ..."
- General comments on the problem or conclusion drawn may use other terms
  - E.g. "these results suggest that users are less likely to ..."
- Report the selection criteria and give relevant demographic information or prior experience
  - E.g. "8 volunteers (2 female, 6 male, aged 23–30) were recruited from the university community and the IT industry. All participants had prior experience taking photos, and 3 had experience flying drones."



# Independent variable (a.k.a. factor)







- An independent variable is a variable that is manipulated through the design of the experiment
- It is "independent" because it is independent of participant behaviour
  - there is nothing a participant can do to influence an independent variable
- E.g., interface, device, feedback mode, button layout, visual layout, gender, age, expertise, etc



# Test conditions (a.k.a. levels)







- The level, values, or settings for an independent variable are the test conditions
- Provide a name for both the factor (independent variable) and its levels (test conditions)
- E.g.

| Factor<br>(Independent variable) | Levels<br>(Test Conditions)               |  |
|----------------------------------|-------------------------------------------|--|
| Device                           | mouse, trackball, joystick                |  |
| Feedback mode                    | visual, audio, tactile, some combinations |  |
| Task                             | pointing, dragging                        |  |



### **Dependent variable**







- A dependent variable is a variable representing the measurements or observations on an independent variable
- E.g., task completion time, speed, accuracy, error rate, etc
- Give a name to the dependent variable, separate from its units
  - E.g. "Text entry speed" is a dependent variable with units "words per minute"









- A control variable is a circumstance (not under investigation) that is kept constant to test the effect of an independent variable
- More control means the experiment is less generalizable, i.e. less applicable to other people and other situations
- E.g. room size, initial battery level, wind speed



### **Confounding variable**







- A confounding variable is a circumstance that varies systematically with an independent variable
- It should be controlled or randomized to avoid misleading results
- E.g. 1, "Order"
  - All participants are tested on A, followed by B, followed by C
  - Performance might improve due to order (practice)
  - "Order" is a confounding variable
- E.g. 2, "Prior experience" (search engine interfaces)
  - All participants have prior experience with Google, but no experience with a new search engine
  - "Prior experience" is a confounding variable



### Within Subjects, Between Subjects







- Two ways to assign conditions to participants
  - Within-subjects: each participant is tested on each condition (a.k.a. repeated measures)
  - Between-subjects: each participant is tested on

one condition only

| Participant | Test Condition |   |   |
|-------------|----------------|---|---|
| 1           | А              | В | С |
| 2           | А              | В | С |

| Participant | Test Condition |
|-------------|----------------|
| 1           | А              |
| 2           | А              |
| 3           | В              |
| 4           | В              |
| 5           | С              |
| 6           | С              |



### Within Subjects, Between Subjects (cont)







|                               | Within Subjects                         | Between Subjects                                    |
|-------------------------------|-----------------------------------------|-----------------------------------------------------|
| # participants                | Fewer, easier to recruit, schedule, etc | More, harder to recruit, schedule, etc              |
| Variation due to participants | Less                                    | More                                                |
| Balance groups                | No need                                 | Need to ensure the groups are more or less the same |
| Order effects                 | Interference between test conditions    | No interference between test conditions             |



### Counterbalancing







- For within-subjects designs, participants may benefit from the first condition and consequently perform better on the second condition - we don't want this!
- To compensate, the order of presenting conditions is counterbalanced
- Participants are divided into groups, and a different order of administration is used for each group
- The order is best governed by a Latin Square (next slide)









- The defining characteristic of a Latin Square is that each condition occurs only once in each row and column
- E.g.

| Α | В | С |
|---|---|---|
| В | С | А |
| С | Α | В |

| А | В | С | D |
|---|---|---|---|
| В | O | D | A |
| С | D | А | В |
| D | Α | В | С |

| А | В | С | D |
|---|---|---|---|
| В | D | Α | С |
| D | С | В | Α |
| С | Α | D | В |

Note: In a **Balanced Latin Square** each condition both precedes and follows each other condition an equal number of times









### The Future of Human Robot Interactions by Accenture Technology



Source: https://www.youtube.com/watch?v=8CfRLTk8wpw









# The Future of Human Robot Interactions by MIT CSAIL

(Computer Science & Artificial Intelligence Laboratory)



Source: https://www.youtube.com/watch?v=Zd9WhJPa2Ok









### The Future of Human Robot Interactions by Disney Research



Source: https://www.youtube.com/watch?v=D8\_VmWWRJgE&feature=youtu.be







### **THANK YOU**

Email: nicholas.ho@nus.edu.sg