Contingency Tables (Continued)

Coco Kusiak & Liz Austin, based on Agresti Chapters 2&3 and other related Bayesian content
9/12/2017

General Notation for Contingency Tables:

IJ Tables represent 2 categorical variables

	Y_1	Y_2		Y_J	
X_1	n_11	n_12			n_1+
X_2	n_21				n_2+
			${ m n_ij}$		
X_I				n_IJ	
	n_+1	n_+2			n

 $n_{ij} = \text{counts with X} = i \text{ and Y} = j$

 π_{ij} = population parameter representing the true probability of being in the ij^{th} cell (when X = i and Y = j)

= joint probability of X and Y
=
$$Pr(X = i, Y = j)$$

with $\{\pi_{ij} : i = 1, ..., I; j = 1, ..., J\}$

 $P_{ij} = \text{sample/observed probabilities}$

 $n = \sum_{i,j} n_{ij}$

 $\pi_{i+} = \text{marginal distribution across rows} = \sum_{i} \pi_{ij}$

 $\pi_{+j} = \text{marginal distribution across columns} = \sum_i \pi_{ij}$

 $\pi_{j|i}=\text{conditional}$ probability of j given i $=\frac{\pi_{ij}}{\pi_{i+}}=Pr(Y=j|X=i)$

Note: This is equivalent to E[Y|X] in regression.

Sampling Types:

1. Poisson

- The overall n is not fixed
- There is generally a time interval implied
- Example: A prospective longitudinal cohort study about developing a disease

	Disease		
X1	n_1		
X2	n_2		
X3	n_3		

 $n_1 = \text{total} \# \text{ of people in catergory X1}$ with the disease

	Number of Accidents	Number of Fatal Accidents
AM	n_11	n_12
PM	n_21	n_22

• Example: # of accidents at an intersection over a year

 $n_{12} = \text{total} \# \text{ of fatal accidents which occurred in the morning}$

2. Multinomial

a. with fixed n

• Example: A cohort study with 3 categories of socioeconomic status and a binary outcome of illness (a fixed # of people are enrolled in the study)

	Sick	Not Sick	Total
SE_1	n_11	n_12	n_1+
SE_2	n_21		
SE_3			
Total	n_+1		2000

b. row or column totals are fixed

• Example: A case-control study

	Case	Control
SE_1		
SE_2		
SE_3		
Total	1000	1000

χ^2 Tests

Test Statistic =
$$\frac{\sum (O - E)^2}{E}$$
 over all cells/counts

with E = expected # of counts under the null hypothesis

- We reject H_0 if the test statistics is "large"
 - A larger TS means larger deviations from expected counts
- Test is 2-sided by virtue of $(...)^2$
- Compare to a $(1-\alpha)\%$ ile of the χ^2_{df} distribution

Goodness of Fit χ^2 Test

$$H_0: P_1 = P_{0_1}, P_2 = P_{0_2}, ..., P_k = P_{0_k}$$

This answers the question: Does a set of counts follow a specified distribution?

 $\mathbf{n} = \text{total} \ \# \ \text{of observations}$

 $E_i = P_{0_i} \cdot n$

 $\mathbf{df} = k - 1$

Note: $P_1 = P_2 = \dots = P_k$ is a special case

Birth Order and Gender

We have data on 1,000 2-child families. It is typically thought that birth order/gender of two offspring from the same parents are i.i.d. Bernoulli(0.5). So, we can fill in the expected values as 250 for each group.

$$H_0: P_1 = P_2 = P_3 = P_4 = 0.25$$

 H_a : at least 1 $P_i \neq 0.25$

First Child	Μ		F		
Second Child	Μ	\mathbf{F}	M	\mathbf{F}	Totals
Count					1000
Expected Value	250	250	250	250	1000

$$TS = \frac{\sum_{k=1}^{4} (n_{obs} - n_{exp})^2}{n_{exp}}$$

$$n = 1000, \ k = 4, df = \text{k-1} = 3$$

 $\alpha = 0.05$

```
n_obs <- c(218, 227, 278, 277)
n_exp <- c(250, 250, 250, 250)
ts <- sum((n_obs-n_exp)^2/n_exp)
ts</pre>
```

[1] 12.264

```
pval <- 1 - pchisq(ts, df = 3)
pval</pre>
```

[1] 0.006531413

With a p-value of 0.0065, we reject the null hypothesis at a significance level of 0.05. We have evidence to suggest that at least 1 $P_k \neq 0.25$.

Chi-Square Density Graph

Test of Independence

Definition: Two variables are independent if $\forall i \in \{1,...,I\}, j \in \{1,...,J\}, \pi_{ij} = \pi_{i+}\pi_{+j}$.

This is equivalent to: $Pr(X=i,Y=j) = Pr(X=i) \cdot Pr(Y=j)$.

If true, this implies $\pi_{j|i} = \frac{\pi_{ij}}{\pi_{i+}} = \frac{\pi_{i+}\pi_{+j}}{\pi_{i+}} = \pi_{+j}$.

For χ^2 Test:

$$H_0: \pi_{ij} = \pi_{i+} \cdot \pi_{+j} \ \forall_{i,j}$$

$$\hat{\pi}_{i+} = \frac{n_{i+}}{n}, \ \hat{\pi}_{+j} = \frac{n_{+j}}{n}$$

$$E_{ij} = \hat{\mu}_{ij} = n \cdot \hat{\pi}_{i+} \cdot \hat{\pi}_{+j} = \frac{n_{i+}n_{+j}}{n}$$

$$df = (\#rows - 1)(\#columns - 1)$$

Book suggestion: Expand a small table and include the n_{ij} , E_{ij} , and the $(O - E)_{ij}$ for each cell. This may allow you to see patterns and information in the data beyond just the p-value.

Bayesian Multinomial

The likelihood of Y is a vector of counts with the # of observations for each category/outcome j.

$$P(Y|\theta) \propto \prod_{j=1}^{k} \theta_{j}^{y_{i}} \text{ where } \sum_{j=1}^{k} \theta_{j} = 1$$

In this case, the conjugate prior distribution is a multivariate generalization of Beta called the Dirichlet Distribution.

$$P(\theta|\alpha) \propto \prod_{j=1}^k \theta_j^{\alpha_j - 1}$$
 with $\theta_j \ge 0$ with $\sum_{j=1}^k \theta_j = 1$

This implies the posterior follows the Dirichlet Distribution:

$$P(\theta|Y) \sim Dirichlet(\alpha_1 + y_1, \alpha_2 + y_2..., \alpha_k + y_k)$$

Choices for priors:

- 1. $\alpha_j = 1 \ \forall \ j$
 - this distribution assigns equal density to any vector θ such that $\sum \theta_j = 1$
- 2. $\alpha_j = 0 \ \forall \ j$
 - this is an improper prior, but it is uniform on $log(\theta_i)$
 - as long as $y_j > 0 \ \forall j$, then there are no problems with your posterior