sine basis 06

Design matrix

Statistics: p-values adjusted for search volume

set-	level	cluster-level				peak-level					mm mm mm		
p	С	p_{FWE-c}	<i>g</i> corrFDR-c	orr E	p _{uncorr}	p_{FWE-c}	g corrFDR-co	T orr	(Z_{\equiv})	$ ho_{ m uncorr}$			
		1.000	0.786	5	0.494	1.000		2.98	2.97	0.001	38		-40
		1.000 1.000	0.786 0.786	_	0.352 0.545	1.000 1.000	0.633 0.730	2.98 2.91	2.97 2.90	0.001	-42 -2		-36 -40
		1.000	0.786		0.451	1.000	0.732	2.90	2.89	0.002	-30	-66	42
		1.000 1.000	0.786 0.786	2 12	0.682 0.282	1.000 1.000	0.737 0.744	2.89 2.86	2.88 2.84	0.002 0.002	26 -20	-80 -62	-4 2
		1.000	0.786	4	0.545	1.000 1.000	0.831 0.744	2.67 2.85	2.66 2.84	0.004 0.002	-16 44	-60 -72	-6 -2
		1.000	0.647		0.127	1.000	0.744	2.84	2.83	0.002	-28	4	-8
		1.000	0.786 0.786	6 5	0.451 0.494	1.000	0.744 0.744	2.84	2.83 2.82	0.002	-18 -38	6 -56	0 4
		1.000	0.786	2	0.682	1.000	0.745	2.83	2.81	0.002	-5 4	-70	22
		1.000	0.786 0.786	5 3	0.494 0.605	1.000	0.749 0.823	2.82 2.75	2.80 2.74	0.003	10 -8	-88 -92	34 4
		1.000	0.786	3	0.605	1.000	0.823	2.74	2.73	0.003	20	30	38
		1.000	0.786 0.786	7 6	0.414 0.451	1.000 1.000	0.824 0.824	2.71 2.71	2.70 2.70	0.003	-36 54	-44 -66	-10 2
		1.000	0.786	1	0.786	1.000	0.824	2.70	2.69	0.004	10	-66	14
		1.000 1.000 1.000	0.786 0.786 0.786	2 2 5	0.682 0.682 0.494	1.000 1.000 1.000	0.824 0.826 0.831	2.70 2.69 2.68	2.69 2.68 2.67	0.004 0.004 0.004	34 -20 6	-60 -26 14	66 38 38
		1.000	0.786	5	0.494	1.000	0.831	2.66	2.65	0.004	42	-44	16

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.33, p = 0.010 (1.00 Ω) egrees of freedom = [1.0, 498.0]

Extent threshold: k = 0 voxels FWHM = 6.9 6.7 6.7 mm mm mm; 3.4 3.4 3.4 {voxels} Expected voxels per cluster, $\langle k \rangle = 11.220$ Volume: 1667152 = 208394 voxels = 4957.5 resels Expected number of clusters, $\langle c \rangle = 209.44$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 38.99 voxels) FWEp: 5.095, FDRp: 4.531, FWEc: 286, FDRage 286