

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 28 Jul 2022 1 of 9

Sample Information

Patient Name: 李瀛春 Gender: Male ID No.: 0100157464 History No.: 32050401

Age: 65

Ordering Doctor: DOC6266E 徐千富 Ordering REQ.: 0BXSWTC Signing in Date: 2022/07/28

Path No.: S111-97805 **MP No.:** MY22020

Assay: Oncomine Myeloid Assay **Sample Type:** Bone Marrow

Bone Marrow Aspirating Date: 2022/07/18

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Acute Myeloid Leukemia

Table of Contents	Page
Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	2
Biomarker Descriptions	2
Relevant Therapy Summary	3
Relevant Therapy Details	3
Prognostic Details	6
Diagnostic Details	7

Report Highlights

- 1 Relevant Biomarkers
- 4 Therapies Available
- 0 Clinical Trials

Relevant Acute Myeloid Leukemia Variants

Gene	Finding	Gene	Finding
ABL1	None detected	MECOM	None detected
ASXL1	None detected	MLLT3	None detected
CEBPA	CEBPA p.(D107*) c.318_319insT	MYH11	None detected
CREBBP	None detected	NPM1	None detected
FLT3	None detected	NUP214	None detected
IDH1	None detected	RARA	None detected
IDH2	None detected	RUNX1	None detected
KMT2A	None detected	TP53	None detected

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	CEBPA p.(D107*) c.318_319insT CCAAT enhancer binding protein alpha Allele Frequency: 75.90%	cytarabine + daunorubicin cytarabine + idarubicin cytarabine + mitoxantrone gemtuzumab ozogamicin + chemotherapy	None	0
	Prognostic significance: ELN 2017 Diagnostic significance: Acute Myo			

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA Sequence Variants								
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
CEBPA	p.(D107*)	c.318_319insT		chr19:33793002	75.90%	NM_004364.4	nonsense	809
PRPF8	p.(F2267=)	c.6801C>T		chr17:1554454	48.40%	NM_006445.4	synonymous	2000
CEBPA	p.(H195_P196dup)	c.589_590insACCCG C		chr19:33792731	11.14%	NM_004364.4	nonframeshift Insertion	
RUNX1	p.(V452G)	c.1355T>G		chr21:36164520	49.67%	NM_001754.4	missense	1999

Biomarker Descriptions

CEBPA (CCAAT enhancer binding protein alpha)

Background: The CEBPA gene encodes the enhancer binding protein alpha, a member of the basic region leucine zipper family of transcription factors that recognizes the CCAAT promoter¹. CEBPA gives rise to two protein isoforms— p42 and p30, where p30 is the shorter isoform lacking the N-terminal 117 amino acids that is present in p42. Both isoforms contain the basic leucine zipper (bZip) domain involved in hetero/homo-dimerization with other CEBP family members and are required for DNA binding¹. CEBPA is a tumor suppressor gene that plays a critical role in the development of granulocytes¹. Specifically, CEBPA can influence the expression of granulocyte colony-stimulating factor (G-CSF) and interleukin 6 (IL-6), which are required for neutrophil maturation².³. CEBPA also directly interacts and inhibits cell cycle kinases, including CDK2 and CDK4, thereby hindering cell proliferation⁴. CEBPA is the target of monoallelic or biallelic mutations leading to a loss of function, which can promote the development of cancers such as acute myeloid leukemia (AML)⁵. Germline mutations in CEBPA are also frequent among AML patients and are associated with predisposition to the disease^{6,7}.

Alterations and prevalence: Mutations in CEBPA are reported in 6-18% of all AML cases^{8,9,10,11}. In AML, CEBPA mutations are observed to occur as either monoallelic (single mutant) or bi-allelic (double mutant)^{11,12,13}. Biallelic CEBPA mutations are heterozygous and occur as a specific combination of an N-terminal frameshift on one allele and a C-terminal in frame mutation on the other, referred to as an N/C mutant^{13,14}. Frameshift mutations result in the N-terminal truncation of approximately 120 amino acids while preserving the remaining 300 amino acids that are initiated further downstream¹⁴. C-terminal in-frame mutations disrupt the bZip domain which interferes with DNA binding and hetero/homo-dimerization with other CEBP family members. Specifically, N/C mutants possess one N-terminal truncated allele coding for the p30 isoform while the other allele codes for either p30 or p42 isoforms harboring C-terminal mutations¹³.

Potential relevance: Biallelic CEBPA mutations are recognized as a diagnostic entity for AML by the World Health Organization $\overline{(WHO)^{15}}$. Biallelic CEBPA mutations are associated with favorable risk and improved prognosis in AML^{11,15,16,17,18}.

Relevant Therapy Summary

In this cancer type

O In other cancer type

In this cancer type and other cancer types

X No evidence

CEBPA p.(D107*) c.318_319insT

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
cytarabine + daunorubicin	×		×	×	×
cytarabine + idarubicin	×	•	×	×	×
cytarabine + mitoxantrone	×	•	×	×	×
gemtuzumab ozogamicin + cytarabine + daunorubicin	×		×	×	×
gemtuzumab ozogamicin + cytarabine + fludarabine + idarubicin + filgrastim	×	•	×	×	×

Relevant Therapy Details

Current NCCN Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

NCCN information is current as of 2022-06-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

CEBPA p.(D107*) c.318_319insT

cytarabine + daunorubicin

Cancer type: Acute Myeloid Leukemia

Variant class: CEBPA mutation

NCCN Recommendation category: 1

Population segment (Line of therapy):

(Induction therapy)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 1.2022]

cytarabine + idarubicin

Cancer type: Acute Myeloid Leukemia

Variant class: CEBPA mutation

NCCN Recommendation category: 1

Population segment (Line of therapy):

(Induction therapy)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 1.2022]

Date: 28 Jul 2022 4 of 9

CEBPA p.(D107*) c.318_319insT (continued)

cytarabine + daunorubicin

Cancer type: Acute Myeloid Leukemia Variant class: CEBPA mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ (Induction therapy)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 1.2022]

cytarabine + idarubicin

Cancer type: Acute Myeloid Leukemia Variant class: CEBPA mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

(Induction therapy)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 1.2022]

cytarabine + mitoxantrone

Cancer type: Acute Myeloid Leukemia Variant class: CEBPA mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

(Induction therapy)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 1.2022]

gemtuzumab ozogamicin + cytarabine + daunorubicin

Cancer type: Acute Myeloid Leukemia Variant class: CEBPA mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ (Induction therapy); Preferred intervention

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 1.2022]

gemtuzumab ozogamicin + cytarabine + daunorubicin

Cancer type: Acute Myeloid Leukemia Variant class: CEBPA mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ (Induction therapy)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 1.2022]

Date: 28 Jul 2022 5 of 9

CEBPA p.(D107*) c.318_319insT (continued)

gemtuzumab ozogamicin + cytarabine + fludarabine + idarubicin + filgrastim

Cancer type: Acute Myeloid Leukemia Variant class: CEBPA mutation

NCCN Recommendation category: 2B

Population segment (Line of therapy):

■ (Induction therapy)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 1.2022]

Prognostic Details

Current NCCN Information

NCCN information is current as of 2022-06-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

CEBPA p.(D107*) c.318_319insT

Prognostic significance: ELN 2017: Favorable

Cancer type: Acute Myeloid Leukemia Variant class: CEBPA mutation

NCCN Recommendation category: 2A

Summary:

Genetic Abnormality: Biallelic mutated CEBPA.

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 1.2022]

Current ESMO Information

ESMO information is current as of 2022-06-01. For the most up-to-date information, search www.esmo.org.

CEBPA p.(D107*) c.318_319insT

Prognostic significance: ELN 2017: Favorable

Cancer type: Acute Myeloid Leukemia Variant class: CEBPA mutation

Summary:

■ Double-mutant CEBPA

Reference: ESMO Clinical Practice Guidelines - ESMO-Acute Myeloblastic Leukaemia in Adult Patients [Ann Oncol (2020); 31(6): 697-712.]

Date: 28 Jul 2022 7 of 9

Diagnostic Details

Current ESMO Information

ESMO information is current as of 2022-06-01. For the most up-to-date information, search www.esmo.org.

CEBPA p.(D107*) c.318_319insT

Diagnostic significance: Acute Myeloid Leukemia

Variant class: CEBPA mutation

Diagnostic notes:

■ CEBPA biallelic mutations; AML with recurrent genetic abnormalities; WHO classification of AML

Reference: ESMO Clinical Practice Guidelines - ESMO-Acute Myeloblastic Leukaemia in Adult Patients [Ann Oncol (2020); 31(6): 697-712.]

Date: 28 Jul 2022

8 of 9

Signatures

Testing Personnel:

Laboratory Supervisor:

Pathologist:

References

- Pabst et al. Complexity of CEBPA dysregulation in human acute myeloid leukemia. Clin. Cancer Res. 2009 Sep 1;15(17):5303-7.
 PMID: 19706798
- Zhang et al. Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein alpha (C/EBP alpha) is critical for granulopoiesis. J. Exp. Med. 1998 Sep 21;188(6):1173-84. PMID: 9743535
- 3. Heath et al. C/EBPalpha deficiency results in hyperproliferation of hematopoietic progenitor cells and disrupts macrophage development in vitro and in vivo. Blood. 2004 Sep 15;104(6):1639-47. PMID: 15073037
- Wang et al. C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol. Cell. 2001 Oct;8(4):817-28.
 PMID: 11684017
- 5. Lourenço et al. A tumor suppressor role for C/EBPα in solid tumors: more than fat and blood. Oncogene. 2017 Sep 14:36(37):5221-5230. PMID: 28504718
- 6. Pabst et al. Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia. J. Clin. Oncol. 2008 Nov 1;26(31):5088-93. PMID: 18768433
- 7. Tawana et al. Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood. 2015 Sep 3;126(10):1214-23. PMID: 26162409
- 8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- Benthaus et al. Rapid and sensitive screening for CEBPA mutations in acute myeloid leukaemia. Br. J. Haematol. 2008 Oct;143(2):230-9. PMID: 18752591
- 10. Su et al. Mutational spectrum of acute myeloid leukemia patients with double CEBPA mutations based on next-generation sequencing and its prognostic significance. Oncotarget. 2018 May 18;9(38):24970-24979. PMID: 29861846
- 11. Dufour et al. Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J. Clin. Oncol. 2010 Feb 1;28(4):570-7. PMID: 20038735
- 12. Green et al. Prognostic significance of CEBPA mutations in a large cohort of younger adult patients with acute myeloid leukemia: impact of double CEBPA mutations and the interaction with FLT3 and NPM1 mutations. J. Clin. Oncol. 2010 Jun 1;28(16):2739-47. PMID: 20439648
- 13. Avellino et al. Expression and regulation of C/EBPα in normal myelopoiesis and in malignant transformation. Blood. 2017 Apr 13;129(15):2083-2091. PMID: 28179278
- 14. Pabst et al. Transcriptional dysregulation during myeloid transformation in AML. Oncogene. 2007 Oct 15;26(47):6829-37. PMID: 17934489
- 15. Arber et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016 May 19;127(20):2391-405. PMID: 27069254
- 16. Kühnl et al. Molecular markers in acute myeloid leukaemia. Int. J. Hematol. 2012 Aug;96(2):153-63. PMID: 22791509
- 17. Barjesteh et al. Biallelic mutations in the CEBPA gene and low CEBPA expression levels as prognostic markers in intermediate-risk AML. Hematol. J. 2003;4(1):31-40. PMID: 12692518
- 18. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 1.2022]