

Numerical Integration

Dr. Himanshu Pathak

himanshu@iitmandi.ac.in

Numerical Integration

- Evaluate the integral, $I = \int_a^b f(x) dx$ without doing the calculation analytically.
- In essence, Integrand is too complicated to integrate analytically. $\int_0^2 \frac{2 + \cos(1 + \sqrt{x})}{\sqrt{1 + 0.5x}} e^{0.5x} dx$

$$\int_{a}^{b} f(x)dx = \text{area}$$

$$\int_{a}^{b} f(x)dx = \text{area} \qquad \qquad \int_{c}^{d} \int_{a}^{b} f(x)dxdy = \text{volume}$$

$$\int_0^2 \frac{2 + \cos(1 + \sqrt{x})}{\sqrt{1 + 0.5x}} e^{0.5x} dx$$

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_{k}) \Delta x$$

where
$$\Delta x = \frac{b-a}{a}$$

 $\rightarrow \Delta x \leftarrow$

sum of height × width

Integration is a summing process. Thus virtually all numerical approximations can be represented by

$$I = \int_{a}^{b} f(x)dx = \sum_{i=1}^{n} w_{i} f(x_{i}) + E_{t}$$

 $I = \int_{a}^{b} f(x)dx = \sum_{i=1}^{n} w_{i} f(x_{i}) + E_{t}$ w_i are the weights, x_i are the sampling points, and E_i is the truncation error.

Newton-Cotes Integration

- **→** Newton-Cotes formulas are the most common numerical integration schemes.
- → It replaces a complicated function with an approximating function that is easy to integrate numerically.

By Newton-Cotes formulas
$$I = \int_{a}^{b} f(x) dx \cong \int_{a}^{b} f_{n}(x) dx$$
 $f_{n}(x) = a_{0} + a_{1}x + \dots + a_{n-1}x^{n-1} + a_{n}x^{n}$

$$f_n(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n$$

1st order Polynomial

2nd order Polynomial

1st order Polynomial segment wise

Trapezoidal Rule

→ The trapezoidal rule is the first order example of the Newton-Cotes closed integration formulas.

$$I = \int_{a}^{b} f(x) dx \cong \int_{a}^{b} f_{1}(x) dx$$

Using linear interpolation
$$\frac{f_1(x) - f(x_0)}{x - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Trapezoidal Rule

Trapezoidal Rule
$$I = \int_{a}^{b} f(x) dx \cong \int_{a}^{b} f_1(x) dx \iff f_1(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

$$I = \int_{a}^{b} \left[f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \right] dx$$

$$I = (b - a) \frac{f(a) + f(b)}{2}$$
 $I \cong \text{width} \times \text{average height}$

$$I = h \frac{f(a) + f(b)}{2} - \frac{1}{12} f''(\xi) h^{3}$$
Trapezoidal rule Truncation error

$$E_t = -\frac{1}{12}f''(\xi)(b - a)^3$$

Trapezoidal Rule

Example: Numerically integrate the following polynomial

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$
 from $a = 0$ to $b = 0.8$.

The exact value of the integral can be determined analytically to be 1.640533.

Trapezoidal Rule
$$I = (b - a) \frac{f(a) + f(b)}{2}$$
 $f(0) = 0.2$ $f(0.8) = 0.232$

$$f(0) = 0.2$$

 $f(0.8) = 0.232$

Integral
$$I \approx 0.8 \frac{0.2 + 0.232}{2} = 0.1728$$

Turneation Error
$$E_t = 1.640533 - 0.1728 = 1.467733$$

$$\varepsilon_t = 89.5\%$$
.

Multiple-Application Trapezoidal Rule

- One way to improve the accuracy of the trapezoidal rule is to divide the integration interval from a to b into a number of segments and apply the method to each segment.
- → The areas of individual segments can then be added to yield the integral for the entire interval.
- → The resulting equations are called multiple-application, or composite, integration formulas.

n+1 equally spaced base points (x0, x1, x2, ..., xn). \square n segments of equal width

Segment Width $h = \frac{b-a}{a}$

$$h = \frac{b-a}{n}$$

Total Integrals
$$I = \int_{x_0}^{x_1} f(x) \, dx + \int_{x_1}^{x_2} f(x) \, dx + \dots + \int_{x_{n-1}}^{x_n} f(x) \, dx$$

$$I = h \frac{f(x_0) + f(x_1)}{2} + h \frac{f(x_1) + f(x_2)}{2} + \dots + h \frac{f(x_{n-1}) + f(x_n)}{2}$$

$$I = \underbrace{(b-a)}_{\text{Width}} \underbrace{\frac{f(x_0) + 2\sum_{i=1}^{n-1} f(x_i) + f(x_n)}{2n}}_{\text{Average height}}$$

$$E_t = -\frac{(b-a)^3}{12n^3} \sum_{i=1}^n f''(\xi_i)$$

Multiple-Application Trapezoidal Rule

Example: Numerically integrate the following polynomial

 $f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$ from a = 0 to b = 0.8.

The exact value of the integral can be determined analytically to be 1.640533.

Multiple-Application Trapezoidal Rule

$$n = 2 (h = 0.4)$$

$$I = (b - a) \underbrace{\int_{i=1}^{n-1} f(x_i) + f(x_n)}_{\text{Width}}$$
Average height

f(0) = 0.2 $f(0.4) = 2.456$ $f(0.8) = 0.232$
--

n	h	1	ε _t (%)
2	0.4	1.0688	34.9
3	0.2667	1.3695	16.5
4	0.2	1.4848	9.5
5	0.16	1.5399	6.1
6	0.1333	1.5703	4.3
7	0.1143	1.5887	3.2
8	0.1	1.6008	2.4
9	0.0889	1.6091	1.9
10	0.08	1.6150	1.6

Integral $I = 0.8 \frac{0.2 + 2(2.456) + 0.232}{4} = 1.0688$

Turncation Error

$$E_t = 1.640533 - 1.0688 = 0.57173$$
 $\varepsilon_t = 34.9\%$

2 segments

5 segments

MATLAB[®] Script

MATLAB Program for Multiple-Application Trapezoidal Rule

```
clear all
clc
a=0; % lower limit
b = 0.8; % upper limit
c = 10; % No of segments
x=linspace(a,b,c+1); % point generation
n = length(x);
h = (b-a)/(n-1);
sum = 0;
for i=2:n
  X1 = int\_fun(x(i-1));
  X2 = int\_fun(x(i));
  sum = sum + h*((XI + X2)/2);
end
sum
```

Simpson's Rule

- One way to improve the accuracy of the trapezoidal rule is to use higher order polynomial in function approximation.
- → As compared with Trapezoidal rule (function is approximated by first order polynomial); Simpson's 1/3 rule use second-order Lagrange polynomial for each integrant segment.
- → Simpson's 3/8 rule use third-order Lagrange polynomial for each integrant segment.

2nd order (Simpson's 1/3)

3rd order (Simpson's 3/8)

Simpson's 1/3 Rule

→ A second-order interpolating polynomial is substituted the integrant.

Simpson's 1/3 Rule
$$I = \int_a^b f(x) dx \cong \int_a^b f_2(x) dx$$

If a and b are designated as x_0 and x_2 and $f_2(x)$ is represented by a second-order Lagrange

polynomial.

omial.

$$I = \int_{x_0}^{x_2} \left[\frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2) \right] dx$$

$$I \cong \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$

$$I \cong (b - a) \underbrace{\frac{f(x_0) + 4f(x_1) + f(x_2)}{6}}_{\text{Width}}$$
Average height

$$E_t = -\frac{(b-a)^5}{2880} f^{(4)}(\xi)$$

Simpson's 1/3 Rule

Example: Numerically integrate the following polynomial

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$
 from $a = 0$ to $b = 0.8$.

The exact value of the integral can be determined analytically to be 1.640533.

Simpson's 1/3 Rule
$$I \cong (b-a) \underbrace{\frac{f(x_0) + 4f(x_1) + f(x_2)}{6}}_{\text{Width}}$$
Average height

$$f(0) = 0.2$$
 $f(0.4) = 2.456$ $f(0.8) = 0.232$

Integral
$$I \approx 0.8 \frac{0.2 + 4(2.456) + 0.232}{6} = 1.367467$$

Truncation Error

$$E_t = 1.640533 - 1.367467 = 0.2730667$$
 $\varepsilon_t = 16.6\%$

Approximately 5 times more accurate than for a single application of the Trapezoidal rule

Multiple-Application Simpson's 1/3 Rule

- One way to improve the accuracy of the Simpson's 1/3 Rule is to divide the integration interval from a to b into a number of segments and apply the method to each segment.
- → The areas of individual segments can then be added to yield the integral for the entire interval.

n+1 equally spaced base points (x0, x1, x2, . . . , xn).

n segments of equal width

Segment Width $h = \frac{b-a}{a}$

$$h = \frac{b - a}{n}$$

Total Integrals
$$I = \int_{x_0}^{x_1} f(x) \, dx + \int_{x_1}^{x_2} f(x) \, dx + \dots + \int_{x_{n-1}}^{x_n} f(x) \, dx$$

$$I \cong 2h \frac{f(x_0) + 4f(x_1) + f(x_2)}{6} + 2h \frac{f(x_2) + 4f(x_3) + f(x_4)}{6} + \dots + 2h \frac{f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)}{6}$$

$$E_a = -\frac{(b-a)^5}{180n^4} \bar{f}^{(4)}$$

Multiple-Application Simpson's 1/3 Rule

Example: Numerically integrate the following polynomial

 $f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$ from a = 0 to b = 0.8.

The exact value of the integral can be determined analytically to be 1.640533.

Multiple-Application Simpson's 1/3 Rule n = 4 (h = 0.2)

$$n = 4 (h = 0.2)$$

$$I \cong (b-a) \xrightarrow{f(x_0) + 4 \sum_{i=1,3,5}^{n-1} f(x_i) + 2 \sum_{j=2,4,6}^{n-2} f(x_j) + f(x_n)} \frac{3n}{\text{Average height}}$$

$$f(0) = 0.2$$
 $f(0.2) = 1.288$
 $f(0.4) = 2.456$ $f(0.6) = 3.464$
 $f(0.8) = 0.232$

Integral

$$I = 0.8 \frac{0.2 + 4(1.288 + 3.464) + 2(2.456) + 0.232}{12} = 1.623467$$

Truncation Error
$$E_t = 1.640533 - 1.623467 = 0.017067$$

$$\varepsilon_t = 1.04\%$$

Simpson's 3/8 Rule

→ A third order Lagrange polynomial can be fit to four points and integrated.

Simpson's 3/8 Rule
$$I = \int_a^b f(x) dx \cong \int_a^b f_3(x) dx$$

Here, $f_3(x)$ is represented by a third-order Lagrange polynomial.

$$I \cong (b-a) \underbrace{\frac{f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)}{8}}_{\text{Width}}$$
Average height

$$E_t = -\frac{(b-a)^5}{6480} f^{(4)}(\xi)$$

Simpson's 3/8 Rule

Example: Numerically integrate the following polynomial

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$
 from $a = 0$ to $b = 0.8$.

(a) Use Simpson's 3/8 rule (b) Use Simpson's 1/3 and Simpson's 3/8 for total 5 segments

(a) Simpson's 3/8 Rule Requires four equally spaced points

$$f(0) = 0.2$$
 $f(0.2667) = 1.432724$
 $f(0.5333) = 3.487177$ $f(0.8) = 0.232$

$$I \cong \underbrace{(b-a)}_{\text{Width}} \underbrace{\frac{f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)}{8}}_{\text{Average height}}$$

Integral
$$I \approx 0.8 \frac{0.2 + 3(1.432724 + 3.487177) + 0.232}{8} = 1.519170$$

Truncation Error
$$E_t = 1.640533 - 1.519170 = 0.1213630$$
 $\varepsilon_t = 7.4\%$

Simpson's 3/8 Rule

Example: Numerically integrate the following polynomial

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$
 from $a = 0$ to $b = 0.8$.

(a) Use Simpson's 3/8 rule (b) Use Simpson's 1/3 and Simpson's 3/8 for total 5 segments

(b) Simpson's 1/3 and Simpson's 3/8 Requires at least 6 equally spaced points or 5 segments

$$f(0) = 0.2$$
 $f(0.16) = 1.296919$
 $f(0.32) = 1.743393$ $f(0.48) = 3.186015$
 $f(0.64) = 3.181929$ $f(0.80) = 0.232$

Integral for the first two segments is obtained using Simpson's 1/3 rule

$$I \cong 0.32 \frac{0.2 + 4(1.296919) + 1.743393}{6} = 0.3803237$$

Integral for the last three segments is obtained using Simpson's 3/8 rule

$$I \cong 0.48 \frac{1.743393 + 3(3.186015 + 3.181929) + 0.232}{8} = 1.264754$$

MATLAB[®] Script

MATLAB Program for Simpson's 1/3 Rule

```
clear all
clear all
                                              clc
clc
                                              a= 0; % lower limit
a=0; % lower limit
                                             b = 0.8; % upper limit
b = 0.8; % upper limit
                                              c = 2; % No of segments
x = linspace(a,b,3);
                                              x=linspace(a,b,2*c+1); % point generation
y = int\_fun(x);
                                              n = length(x);
Integral = (b-a)*(y(1) + 4*y(2) + y(3))/6
                                             h = (b-a)/(n-1);
                                             for i=1:n
                                                y(i) = int\_fun(x(i));
                                              end
                                              Segment = sum(y(:,1:2:end-2)+4*y(:,2:2:end-2)
                                              1)+y(:,3:2:end),1)*h/3;
                                              Integral = sum(Segment)
```

MATLAB[®] Script

MATLAB Program for Simpson's 3/8 Rule

```
clear all

cle

cle

a = 0; % lower limit

b = 0.8; % upper limit

x = linspace(a,b,4);

y = int\_fun(x);

lintegral = (b-a)*(y(1) + 3*y(2) + 3*y(3) + y(4))/8
```

```
function y = int\_fun(x)
% Function for integration purpose
y = 0.2 + 25*x - 200*x.^2 + 675*x.^3 - 900*x.^4 + 400*x.^5;
```

Integration with Unequal Segments

- Integration scheme, if segement size is not equal.
- Apply trapezoidal rule to each segment and sum the results:

Segment wise Trapezoidal Rule
$$I = h_1 \frac{f(x_0) + f(x_1)}{2} + h_2 \frac{f(x_1) + f(x_2)}{2} + \dots + h_n \frac{f(x_{n-1}) + f(x_n)}{2}$$

Segment data:

x	f(x)	x	f(x)
0.0	0.200000	0.44	2.842985
0.12	1.309729	0.54	3.507297
0.22	1.305241	0.64	3.181929
0.32	1.743393	0.70	2.363000
0.36	2.074903	0.80	0.232000
0.40	2.456000		

$$I = 0.12 \frac{1.309729 + 0.2}{2} + 0.10 \frac{1.305241 + 1.309729}{2} + \dots + 0.10 \frac{0.232 + 2.363}{2}$$
$$= 0.090584 + 0.130749 + \dots + 0.12975 = 1.594801$$

$$\varepsilon_t = 2.8\%$$

Newton-Cotes Integration

Segments (n)	Points	Name	Formula	Truncation Error
1	2	Trapezoidal rule	$(b-a)\frac{f(x_0)+f(x_1)}{2}$	– (1/12)h³f"(ξ)
2	3	Simpson's 1/3 rule	$(b-a)\frac{f(x_0)+4f(x_1)+f(x_2)}{6}$	- (1/90)h ⁵ f ⁽⁴⁾ (ξ)
3	4	Simpson's 3/8 rule	$(b-a)\frac{f(x_0)+3f(x_1)+3f(x_2)+f(x_3)}{8}$	$-(3/80)h^5f^{(4)}(\xi)$
4	5	Boole's rule	$(b-a)\frac{7f(x_0)+32f(x_1)+12f(x_2)+32f(x_3)+7f(x_4)}{90}$	$-(8/945)h^7f^{(6)}(\xi)$
5	6		$(b-a)\frac{19f(x_0)+75f(x_1)+50f(x_2)+50f(x_3)+75f(x_4)+19f(x_5)}{288}$	- (275/12,096)h ⁷ f ⁽⁶⁾ (<i>§</i>)

Gauss Quadrature

Weighted sum of function values at specified points within the domain of integration.

Gauss Quadrature Approximation (two points) $I = \int_{a}^{b} f(x) dx \approx c_1 f(x_1) + c_2 f(x_2)$

Gauss Quadrature Approximation (higher points)

$$I \cong c_0 f(x_0) + c_1 f(x_1) + \dots + c_{n-1} f(x_{n-1})$$

Limit Conversion

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{b-a}{2}x + \frac{b+a}{2}\right) dx$$

Points	Weighting Factors	Function Arguments	Truncatio Error
2	$c_0 = 1.0000000$ $c_1 = 1.0000000$	$x_0 = -0.577350269$ $x_1 = 0.577350269$	$\cong f^{(4)}(\xi)$
3	$c_0 = 0.5555556$ $c_1 = 0.8888889$ $c_2 = 0.5555556$	$x_0 = -0.774596669$ $x_1 = 0.0$ $x_2 = 0.774596669$	$\cong f^{(c)}(\xi)$
4	$c_0 = 0.3478548$ $c_1 = 0.6521452$ $c_2 = 0.6521452$ $c_3 = 0.3478548$	$x_0 = -0.861136312$ $x_1 = -0.339981044$ $x_2 = 0.339981044$ $x_3 = 0.861136312$	$\cong f^{(8)}(\xi)$
5	$c_0 = 0.2369269$ $c_1 = 0.4786287$ $c_2 = 0.5688889$ $c_3 = 0.4786287$ $c_4 = 0.2369269$	$x_0 = -0.906179846$ $x_1 = -0.538469310$ $x_2 = 0.0$ $x_3 = 0.538469310$ $x_4 = 0.906179846$	$\cong f^{(10)}[\xi]$
6	$c_0 = 0.1713245$ $c_1 = 0.3607616$ $c_2 = 0.4679139$ $c_3 = 0.4679139$ $c_4 = 0.3607616$ $c_5 = 0.1713245$	$x_0 = -0.932469514$ $x_1 = -0.661209386$ $x_2 = -0.238619186$ $x_3 = 0.238619186$ $x_4 = 0.661209386$ $x_5 = 0.932469514$	$\cong f^{[12]}[\xi]$

Gauss Quadrature 1.3

Example: Numerically integrate the following function: $\int 5xe^{-2x}dx$

$$\int_{0.1}^{1.3} 5xe^{-2x} dx$$

Conversion of integration limit
$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{b-a}{2}x + \frac{b+a}{2}\right) dx$$

$$\int_{0.1}^{1.3} f(x) dx = \frac{1.3 - 0.1}{2} \int_{-1}^{1} f\left(\frac{1.3 - 0.1}{2}x + \frac{1.3 + 0.1}{2}\right) dx \longrightarrow \int_{0.1}^{1.3} f(x) dx = 0.6 \int_{-1}^{1} f(0.6x + 0.7) dx$$

Three point Gauss Quadrature

$$I = \int_{a}^{b} f(x) dx \approx c_1 f(x_1) + c_2 f(x_2) + c_3 f(x_3)$$

$$c_1 = 0.5556, c_2 = 0.8889, c_3 = 0.5556$$

 $x_1 = -0.7746, x_2 = 0, x_3 = 0.7746$

Points	Weighting	Function	Truncatio
	Factors	Arguments	Error
3	$c_0 = 0.5555556$ $c_1 = 0.8888889$ $c_2 = 0.5555556$	$x_0 = -0.774596669$ $x_1 = 0.0$ $x_2 = 0.774596669$	$\cong f^{(c)}(\xi)$

Gauss Quadrature

$$\int_{0.1}^{1.3} 5xe^{-2x} dx$$

$$I = \int_{a}^{b} f(x)dx \approx c_1 f(x_1) + c_2 f(x_2) + c_3 f(x_3)$$

$$c_1 = 0.5556, c_2 = 0.8889, c_3 = 0.5556$$

 $x_1 = -0.7746, x_2 = 0, x_3 = 0.7746$

$$0.6 \int_{-1}^{1} f(0.6x + 0.7) dx \approx 0.6 \left[0.5556 \times f(0.6 \times -0.7746 + 0.7) + 0.8889 \times f(0.6 \times 0 + 0.7) + 0.5556 \times f(0.6 \times 0.7746 + 0.7) \right]$$

$$0.6 \int_{-1}^{1} f(0.6x + 0.7) dx \approx 0.6 \left[0.5556 \times f(0.2352) + 0.8889 \times f(0.7) + 0.5556 \times f(1.165) \right]$$

$$f(0.2352) = 5 \times 0.2352 \times e^{-2 \times 0.2352} = 0.7347$$
$$f(0.7) = 5 \times 0.7 \times e^{-2 \times 0.7} = 0.8630$$
$$f(1.165) = 5 \times 1.165 \times e^{-2 \times 1.165} = 0.5668$$

Gauss Quadrature

$$0.6 \int_{-1}^{1} f(0.6x + 0.7) dx \approx 0.6 \left[0.5556 \times f(0.2352) + 0.8889 \times f(0.7) + 0.5556 \times f(1.165) \right]$$

$$0.6 \int_{-1}^{1} f(0.6x + 0.7) dx \approx 0.6 [0.5556 \times 0.7347 + 0.8889 \times 0.8630 + 0.5556 \times 0.5668]$$

$$I = \int_{0.1}^{1.3} 5xe^{-2x} dx \approx 0.8942$$

Gauss Point (n)	Integration Value (I)	Relative Error (ε)
1	1.036	15.89
2	0.9101	1.89
3	0.8942	0.03
4	0.8939	0

THANK YOU

Questions??