

Issued: 2017-03-27

TEST REPORT

Applicant Name & : ASSA ABLOY Hong Kong Ltd

Address Flat/RM 1901 Tower 3 19/F China Hong Kong City, 33 Canton Road, Tsim

Sha Tsui

Sample Description

Product : Electronic Hotel Door Lock

FCC ID : 2AK2H-6600103

Model No. : 6600103 Electrical Rating : 6Vdc

Date Received : 10 January, 2017

Date Test Conducted : 10 January, 2017 –24 March, 2017

Test standards : 47 CFR PART 15 Subpart C: 2015 section 15.225

Test Result : Pass

Conclusion : The submitted samples complied with the above rules/standards.

Remark : No

Prepared and Checked By:

anvel. He

Approved By:

Daniel He

Project Engineer

Intertek Guangzhou

Heien Ma Team Leader

Intertek Guangzhou

27 March 2017 Date

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. The test report only allows to be revised within three years from its original issued date unless further standard or the requirement was noticed.

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch
Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou, China
Tel / Fax: 86-20-8213 9688/86-20-3205 7538
© 2016 Intertek

Issued: 2017-03-27

CONTENT

TEST 1	REPOR	T	1		
CONT	ENT		2		
1.0	Sumn	nary of Test	3		
2.0		ral Description			
	2.1	Product Description	4		
	2.2	Related Submittal(s) Grants			
	2.3	Test Methodology	4		
	2.4	Test Facility	4		
3.0	Syste	m Test Configuration			
	3.1	Justification	5		
	3.2	EUT Exercising Software	6		
	3.3	Special Accessories	6		
	3.4	Measurement Uncertainty	6		
	3.5	Equipment Modification			
	3.6	Support Equipment List and Description	7		
4.0	Meas	urement Results	8		
	4.1	Antenna Requirement:	8		
	4.2	Occupied Bandwidth:	9		
	4.3	Radiated Emission	11		
	4.4	Frequency Stability	19		
5.0	Test Equipment List				

Issued: 2017-03-27

1.0 **Summary of Test**

TEST	TEST REQUIREMENT	TEST METHOD	RESULT	
Antenna Requirement	FCC PART 15 C	FCC PART 15 C	PASS	
Amemia Requirement	Section 15.203	Section 15.203	1 ASS	
Occupied Bandwidth	FCC PART 15 C	ANSI C63.10: Clause 6.9	PASS	
Occupied Bandwidth	section 15.215(c)	ANSI CO3.10. Clause 0.9		
	FCC PART 15 C	ANSI C63.10: Clause 6.4 &	PASS	
Radiated Emission	section 15.225 (a), (b), (c), (d)	6.5		
Frequency Stability	FCC PART 15 C	ANSI C63.10: Clause 6.8	PASS	
Dama vis.	section 15.225 (e)	711151 C03.10. Clause 0.0	11100	

Remark:

N/A: not applicable. Refer to the relative section for the details. EUT: In this whole report EUT means Equipment Under Test.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radio Frequency.

ANSI C63.10: the detail version is ANSI C63.10:2013 in the whole report.

Issued: 2017-03-27

2.0 General Description

2.1 Product Description

Operating Frequency 13.56 MHz

Type of Modulation: ASK

Number of Channels 1 Channel

Channel Separation: N/A

Antenna Type Cooper Wire printed circuit board

Antenna gain: 0 dBi
Power Supply: 6Vdc
Power cord: N/A

2.2 Related Submittal(s) Grants

This is an application for certification of:

DXX- Low Power Communications Device Transmitter

2.3 Test Methodology

Radiated emission measurement was performed according to the procedures in ANSI C63.10:2013. Radiated emission measurement was performed in semi-anechoic chamber. For radiated emission measurement, preliminary scans and final tests were performed in the semi-anechoic chamber to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise.

2.4 Test Facility

All of the tests are performed at:

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch.

Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou, China 510663.

This test facility and site measurement data have been fully placed on file with the FCC, test firm registration number is 549654.

Issued: 2017-03-27

3.0 System Test Configuration

3.1 Justification

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. It was powered by 6Vdc.

When below 30MHz, the measurement antenna was positioned with its plane perpendicular to the ground at the specified distance. When perpendicular to the ground plane, the lowest height of the magnetic antenna was 1 m above the ground and was positioned at 3m distance from the EUT. During testing the loop antenna was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane. For each measurement antenna alignment, the EUT shall be rotated through 0° to 360° on a turntable. When above 30MHz, the antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. The spurious emissions more than 20 dB below the permissible value are not reported.

For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in the following table:

Frequency range of radiated emission measurements

Lowest frequency generated in the device	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower
At or above 10 GHz to below 30 GHz	5th harmonic of highest fundamental frequency or to 100 GHz, whichever is lower
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz, whichever is lower, unless otherwise specified

Number of fundamental frequencies to be tested in EUT transmit band

Frequency range in which	Number of	Location in frequency
device operates	frequencies	range of operation
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle and 1 near bottom

Issued: 2017-03-27

3.2 EUT Exercising Software

No

3.3 Special Accessories

No special accessories used.

3.4 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	RF output power (conducted)	1.1 dB
2	Occupied Channel Bandwidth	2.3%
3	Power Spectral Density	1.5dB
4	Spurious Emission (TX)-Radiated	4.7 dB (25 MHz-1 GHz) 4.8 dB (1 GHz-18 GHz)
5	Spurious Emission (TX)-Conducted	1.5 dB
6	Spurious Emission (RX) -Radiated	4.7 dB (25 MHz-1 GHz) 4.8 dB (1 GHz-25 GHz)
7	Spurious Emission (RX)-Conducted	1.5 dB
8	Conducted Emissions at Mains Terminals	2.58dB
9	Temperature	0.5 °C
10	Humidity	0.4 %
11	Time	1.2%

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

Uncertainty and Compliance – Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

Issued: 2017-03-27

3.5 **Equipment Modification**

Any modifications installed previous to testing by ASSA ABLOY Hong Kong Ltd will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd. Guangzhou Branch.

3.6 Support Equipment List and Description

The client make a continuous transmit sample for test.

Issued: 2017-03-27

4.0 Measurement Results

4.1 Antenna Requirement:

Standard requirement

15.203 requirement:

For intentional device. According to 15.203. An intentional radiator shall be designed to Ensure that no antenna other than that furnished by the responsible party shall be used with the device.

EUT Antenna

The antenna is a Cooper Wire printed circuit board and integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0 dBi.

Issued: 2017-03-27

4.2 Occupied Bandwidth:

Test Requirement: FCC PART 15 C section 15.215(c)

(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is

operated

Test Method: ANSI C63.10: Clause 6.9

Test Status: Pre-Scan has been conducted to determine the worst-case mode.

Test Configuration:

Test Procedure:

The transmitter was operated at its maximum carrier power measured under normal test conditions.

- a) The instrument center frequency was set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer was between 1.5 times and 5.0 times the OBW(20 dB Bandwidth).
- b) The nominal IF filter bandwidth (3 dB RBW) was in the range of 1% to 5% of the OBW, and VBW was approximately equal to the RBW.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral

Issued: 2017-03-27

envelope was more than [10 log (OBW/RBW)] below the reference level.

- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) The dynamic range of the instrument at the selected RBW was more than 10 dB below the target "-20 dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW was at least 30 dB below the reference value.
- f) Peak detection and max hold mode (until the trace stabilizes) was used.
- g) Used the 20dB bandwidth function of the instrument and reported the measured bandwidth.
- h) The occupied bandwidth was reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division was clearly labeled. Tabular data was reported in addition to the plot(s).

20 dB bandwidth:

Frequency	20 dB bandwidth	lower frequency	upper frequency	Assigned Band	Result
(MHz)	(kHz)	(MHz)	(MHz)	(MHz)	
13.560	7.22	13.556	13.564	13.553-13.567	Pass

Result plot as follows:

Issued: 2017-03-27

4.3 Radiated Emission

Test Requirement:

FCC PART 15 C section 15.225 (a), (b), (c), (d)

The field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

15.225(a): The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.i.e. $124.0dB\mu V/m$ @ 3 m.

15.225(b): Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters. i.e. 90.5dB μ V/m @ 3 m.

15.225(c): Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters. i.e. $80.5dB\mu V/m$ @ 3 m.

15.225(d): The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

15.209 (a):

- 1) Within the bands 0.009-0.490MHz of any emissions shall not exceed 2400/F (kHz) microvolts/meter at 300 meters. i.e. $128.5dB\mu V/m$ to $93.8~dB\mu V/m$ @ 3 m.
- 2) Within the bands 0.490-1.705MHz of any emissions shall not exceed 24000/F (kHz) microvolts/meter at 300 meters. i.e. $128.5dB\mu V/m$ to $93.8~dB\mu V/m$ @ 3 m.

§ 15.209 Limit:

Frequency (MHz)	Field Strength
	$(dB\mu V/m @ 3m)$
0.009-0.490	128.5 to 93.8
0.490-1.705	68.9 to 62.9
1.705-30.0	69.5
30-88	40
88-216	43.5
216-960	46
Above 960	54

Test Method:

ANSI C63.10: Clause 6.4 and 6.5.

Issued: 2017-03-27

Test Status: Pre-Scan has been conducted to determine the worst-case mode

from all possible configuration.

Test site: Measurement Distance: 3m (Semi-Anechoic Chamber)

Detector: Quasi-Peak detector:

RBW=200 Hz for 9 kHz to 150 kHz RBW=9 kHz for 150 kHz to 30 MHz RBW=120 kHz for 30 MHz to 1GHz

Sweep = auto Trace = max hold

Section 15.205 Restricted bands of operation.

MHz	MHz	MHz	GHz
0.090 - 0.110 10.495 - 0.505 2.1735 - 2.1905 4.125 - 4.128 4.17725 - 4.17775 4.20725 - 4.20775 6.215 - 6.218 6.26775 - 6.26825 6.31175 - 6.31225 8.291 - 8.294 8.362 - 8.366 8.37625 - 8.38675 8.41425 - 8.41475 12.29 - 12.293 12.51975 - 12.52025 12.57675 - 12.57725 13.36 - 13.41	16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138 149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9 162.0125 - 167.17 167.72 - 173.2 240 - 285 322 - 335.4	399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500 2655 - 2900 3260 - 3267 3332 - 3339 3345.8 - 3358 3600 - 4400	4.5 - 5.15 5.35 - 5.46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2 9.3 - 9.5 10.6 - 12.7 13.25 - 13.4 14.47 - 14.5 15.35 - 16.2 17.7 - 21.4 22.01 - 23.12 23.6 - 24.0 31.2 - 31.8 36.43 - 36.5

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in 15.209.

Issued: 2017-03-27

Test Configuration:
1) 9 kHz to 30 MHz emissions:

2) 30 MHz to 1 GHz emissions:

Issued: 2017-03-27

Test Procedure:

1) 9 kHz to 30 MHz emissions:

For testing performed with the loop antenna. The centre of the loop was positioned 1 m above the ground and positioned with its plane vertical at the special distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane.

2) 30 MHz to 1 GHz emissions:

For testing performed with the bi-log type antenna. The measurement is performed with the EUT rotated 360°, the antenna height scanned between 1m and 4m, and the antenna rotated to repeat the measurement for both the horizontal and vertical antenna polarizations.

3) The receiver was scanned from 9 kHz to 200 MHz. When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. The worst case emissions were reported.

Issued: 2017-03-27

Radiated Emissions (Below 30 MHz)

Pre-test the loop antenna on three orientation (X, Y, Z), Finally find the worst case was X orientation

From 9kHz to 30MHz:

Notes: All other emissions were greater than 20 dB below the limit.

Issued: 2017-03-27

Radiated emission from 13.11MHz to 14.01MHz:

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
13.27	3.0	21.1	24.1	80.5
13.56	19.9	21.0	40.9	124.0
13.65	4.6	21.0	25.6	90.5
13.92	4.6	21.0	25.6	80.5

Remark:

Final Test Level =Receiver Reading + Correction Factor

Correction Factor = Antenna Factor + Cable Loss.

Issued: 2017-03-27

Radiated Emissions

(30MHz -200MHz, 10th harmonic of highest fundamental frequency)

Horizontal:

Quasi-peak measurement

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
108.40	11.4	12.3	23.7	43.5
149.08	13.6	9.1	22.7	43.5
176.20	14.2	10.5	24.7	43.5

Remark:

Final Test Level =Receiver Reading + Correction Factor

Correction Factor = Antenna Factor + Cable Loss.

Issued: 2017-03-27

Vertical:

Quasi-peak measurement

Frequency (MHz)	Receiver Reading Level (dBµV)	Correction factors (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)
43.16	5.5	13.8	19.3	40.0
49.00	6.2	14.1	20.3	40.0
108.40	9.0	12.3	21.3	43.5

Remark:

 $Final\ Test\ Level = Receiver\ Reading + Correction\ Factor$

Correction Factor = Antenna Factor + Cable Loss.

Issued: 2017-03-27

4.4 Frequency Stability

Test Requirement:

FCC Part 15 C section 15.225 (e)

(e) The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Test Method: ANSI C63.10: Clause 6.8

Test Procedure:

- (1) Supply the EUT with a new battery. Turn the EUT OFF and place it inside the environmental temperature chamber.
- (2) Set the temperature control on the chamber to +50 degrees C and allow the oscillator heater and the chamber temperature to stabilize.
- (3) While maintaining a constant temperature inside the environmental chamber, turn the EUT ON and record the operating frequency.
- (4) Switch OFF the EUT. Lower the chamber temperature by not more that 10 °C, and allow the temperature inside the chamber to stabilize. Repeat step 3) through step 4) down to the lowest specified temperature.
- (5) At a temperature of 20°C, record the frequency at 85% and 115% of the nominal supply voltage.

Issued: 2017-03-27

Test Result:

Operating Frequency: 13.560 MHz,

Limit: total emission within +/- 1.356 kHz (+/- 0.01% of the operating frequency)

Frequency stability vs. temperature			
Environment	Measured	Frequency Measure with Time Elapsed	
Temperature	Frequency	Total emission within kHz	
(°C)	(MHz)		
50	13.5603	0.3	
40	13.5602	0.3	
30	13.5601	0.1	
20	13.5600	0	
10	13.5600	0	
0	13.5603	0.3	
-10	13.5602	0.2	
-20	13.5604	0.4	

Frequency stability vs.input voltage						
Power Supplied	Measured	Frequency Measure with Time Elapsed				
(Vdc)	Frequency	Total emission within kHz				
	(MHz)					
5.1	13.5602	0.2				
6.0	13.5600	0				
6.6	13.5601	0.1				
6.9	13.5602	0.2				

Issued: 2017-03-27

5.0 Test Equipment List

Radiated Emission

Equipment No.	Equipment	Model	Manufacturer	Cal. Due date (YYYY-MM-DD)	Calibration Interval
EM030-04	3m Semi-Anechoic Chamber	9×6×6 m ³	ETS•LINDGRE N	2017/5/9	1Y
EM031-02	EMI Test Receiver (9 kHz~7 GHz)	R&S ESR7	R&S	2017/6/7	1Y
EM031-03	Signal and Spectrum Analyzer (10 Hz~40 GHz)	R&S FSV40	R&S	2017/6/3	1Y
EM011-04	Loop antenna (9 kHz-30 MHz)	HFH2-Z2	R&S	2017/6/6	1Y
EM061-03	TRILOG Super Broadband test Antenna (30 MHz-1.5 GHz) (TX)	VULB 9161	SCHWARZBECK	2017/6/6	1Y
EM033-01	TRILOG Super Broadband test Antenna(30 MHz-3 GHz) (RX)	VULB 9163	SCHWARZBECK	2017/9/8	1Y
EM033-02	Bouble-Ridged Waveguide Horn Antenna (800 MHz-18 GHz)(RX)	R&S HF907	R&S	2017/6/6	1Y
EM033-03	High Frequency Antenna & preamplifier(18 GHz~26.5 GHz) (RX)	R&S SCU-26	R&S	2017/4/1	1Y
EM033-04	High Frequency Antenna & preamplifier (26 GHz-40 GHz)	R&S SCU-40	R&S	2017/4/1	1Y
EM031-02-01	Coaxial cable(9 kHz-1 GHz)	N/A	R&S	2017/5/30	1Y
EM033-02-02	Coaxial cable(1 GHz-18 GHz)	N/A	R&S	2017/5/30	1Y
EM033-04-02	Coaxial cable(18 GHz~40 GHz)	N/A	R&S	2017/4/1	1Y
EM031-01	Signal Generator (9 kHz~6 GHz)	SMB100A	R&S	2017/6/11	1Y
SZ180-10	Signal Generator (10MHz-40GHz)	68369B	Wiltron	2017/5/23	1Y
EM040-01	Band Reject/Notch Filter	WRHFV	Wainwright	N/A	1Y
EM040-02	Band Reject/Notch Filter	WRCGV	Wainwright	N/A	1Y
EM040-03	Band Reject/Notch Filter	WRCGV	Wainwright	N/A	1Y
EM022-03	2.45 GHz Filter	BRM50702	Micro-Tronics	2017/5/9	1Y
SA016-16	Programmable Temperature & Humidity Test Chamber	MHU-800LJ	TERCHY	2017/10/21	1Y
SA012-74	Digital Multimeter	FLUKE175	FLUKE	2017/10/13	1Y
EM010-01	Regulated DC Power supply	PAB-3003A	GUANHUA	N/A	1Y
SA040-22	Regulated DC Power supply	IT6721	ITECH	2017/9/18	1Y
EM084-06	Audio Analyzer	8903B	HP	2017/3/29	1Y
EM084-07	Modulation Analyzer	8901B	HP	2017/6/5	1Y