Листок 2

Топология в \mathbb{R}^n

Задача 1: Приведите пример множествак, которое открыто и замкнуто.

Решение: Таких всего 2, это: \mathbb{R} , \emptyset

Задача 2: Верно ли, что пересечение любого числа замкнутых множеств, замкнуто?

Решение:

Нужно доказать, что

Пусть выражение (1) равно A, если A замкнуто, то $\mathbb{R} \setminus A$ - открыто.

$$\mathbb{R} \setminus A = \mathbb{R} \setminus \bigcap_{\lambda \in \Lambda} U_{\lambda} = \bigcup_{\lambda \in \Lambda} U_{\lambda} \tag{2}$$

получили объединение замкнутых множеств, такое объединение всегда замкнуто!

Задача 3: Верно ли, что пересечение любого числа открытых множеств открыто?

Решение:

Нужно доказать, что

Рассмотрим пересечение:

$$\bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n} \right) \tag{4}$$

(4) явно пересечение открытых множеств, заметим что оно сходится к точке, а именно к $0. \{0\}$ - не открыто!

Ответ: не выполняется

Задача 4: Докажите, что непрерывность через определение "прообраз открытого открыт" совпадает с определением через $\varepsilon - \delta$.

Решение: пока мне не поддалось

Задача 5: Приведите пример подмножетсва:

 $U \subset K$, где K - компакт, так, что U не компакт т.е. условие замкнутости с лекции убрать нельзя

Решение:

Из лекции мы помним, что:

$$[A,B]$$
 - компакт (5)

очевидно что:

$$[A,B) \subset [A,B]$$
 — замкнуто и не компакт (6)

Ответ: смотрите (6)

Задача 6: Пусть K - компакт и $f:K\to\mathbb{R}$ - непрерывна, докажите, что f(K) - компакт.

Решение: Вспомним определение непрерывности через открыте множетсва (**Прообраз открытого тоже открыт**).

Рассмотрим некое покрытие для f(K),

$$\mathbb{R} \supset \bigcap_{\lambda \in \Lambda} U_{\lambda} \supset f(K) \tag{7}$$

По определению это пересечение открытых множеств, тогда мы можем рассмотреть их прообразы $U_{\lambda'}$, которые тоже будут открыты

$$\bigcap_{\lambda' \in \Lambda} U_{\lambda'} \supset K \tag{8}$$

Так как K - компакт, из (8) можно извлеч, конечное подпокрытие, если применить к нему f то получим конечное подпокрытие для $f(K) \Rightarrow f(K)$ - компакт, я когда-нибудь нарисую картинку

Задача 7: Существует ли непрерывная сюрьекция отрезка на плоскость? То есть сюрьективная функция $f:[A,B] \to \mathbb{R}^2$?

Решение: Вспомним, что [A,B] - компакт, из **задачи 6**: f([A,B]) - тоже компакт. \mathbb{R}^2 не компакт, так что **сюрьекции не существует!**

Задача 8: Пусть $K \subset \mathbb{R}$ - компакт, а $f: K \to \mathbb{R}$ - непрерывная функция.

а) Докажите, что непрерывная функция на компакте принимает минимальное и максимальное значение

Решение:

K - компакт, тогда f(K) тоже компакт, тогда f(K) - замкнуто и ограничено $\Rightarrow f$ ограничена на K Так как f(K) ограничено существуют

$$m = \inf_{x \in K} f(x), \ M = \sup_{x \in K} f(x) \tag{9}$$

f(K) - замкнуто \Rightarrow содержит все свои предельные точки, M - это верхняя грань f(K), значит существует последовательность $\{y_n\}\subset f(K)$, которая сходится к M Но f(K) - замкнуто, значит $M\in f(X)$

Аналогично для т!

Следовательно существуют такие точки $k_{\min}, k_{\max} \in K$ в которых функция примет значения m и M

b) Приведите пример функции $f: R \to R$, которая не достигает своих точных граней на некомпактном множестве.

Решение:

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = x \tag{10}$$

 \mathbb{R} - не компакт

с) Покажите, что условие непрерывности существенно: приведите пример разрывной функции на компакте, не достигающей своих точных граней.

Решение:

$$f:[0,1]\to\mathbb{R}$$

$$f(x)=\begin{cases} x,\ \mathrm{если}\ x\in(0,1)\\ 0,\ \mathrm{если}\ x=0\ \mathrm{или}\ x=1 \end{cases}$$

$$D_f=[0,1]\ \text{- компакт}$$

Функция никогда не примет свой супремум и инфинум

Задача 9: Докажите, что компакт в \mathbb{R} замкнут и ограничен (доказав это и пользуясь теоремой с лекции, получаем, что компакт в $\mathbb{R}^n \iff$ замкнут и ограничен).

Решение:

Пусть $K \subset \mathbb{R}$ - компакт

Нам нужно доказать 2 факта по очереди от противного:

1) K ограничено:

- Предположим, что множество K не ограничено.
- Тогда для любого $m \in \mathbb{N}$ найдётся точка $x_m \in K$ такая, что $|x_m| > m$.
- Рассмотрим открытые шары $B_m=B_1(x_m)$. Их объединение покрывает K:
- Поскольку K компактно, существует конечное подпокрытие $\{B_{m_1},...,B_{m_k}\}$.
- Среди $\{x_{m_1},...x_{m_k}\}$ есть точка с максимальной нормой, скажем $\left|x_{m_k}\right|=M.$
- Тогда любая точка $x \in K$ с |x| > M+1 не покрывается ни одним из B_{m_i} , так как:

$$\left| x - x_{m_i} \right| \ge |x| - \left| x_{m_i} \right| > (M+1) - M = 1. \tag{12}$$

Противорение: конечное подпокрытие не может покрыть всё K.

2) K замкнуто:

Метод: Через предельные точки.

- Пусть x' предельная точка K.
- Тогда существует последовательность $\{x_m\}\subset K$ такая, что $x_m\to x'$.
- Рассмотрим открытое покрытие

$$\mathbb{R}^n \setminus \{x'\} \tag{13}$$

- . Оно покрывает K, так как x' может не лежать в K.
- По компактности K существует конечное подпокрытие, но $x_m \to x'$, а значит, начиная с некоторого m, все x_m попадают в сколь угодно малую окрестность x', не покрытую этим конечным набором.