Homework 34

The due date for this homework is Tue 7 May 2013 12:00 AM EDT.

This is a homework assignment for...an unusual Lecture. Consider it as optional, as this is not at the core of single-variable calculus. But if you enjoy thinking about the fourth dimension (and more), then enjoy!

Question 1

Consider a four-dimensional box (or "rectangular prism") with side lengths 1, 1/2, 1/3, and 1/4. What is the 4-dimensional volume of this box?

- \bigcirc $\frac{1}{12}$
- ₀ 1
- \bigcirc $\frac{1}{2}$
- \circ $\frac{1}{6}$

Question 2

In the 4-d box of Question 1, what is the "diameter" —the farthest distance between two points in the box?

- ₀ 2
- \bigcirc $\frac{1}{2\sqrt{6}}$

Question 3

Consider an n-dimensional "hypercube" C of all side lengths equal to 1. Its n-dimensional volume is, clearly, 1. Now consider what happens when you shrink the hypercube's side lengths by 1 percent (concentrically, so that the shrunken cube has the same center as the original) and remove it from the original cube. By subtracting the n-dimensional volume of this slightly smaller hypercube, conclude how much volume remains in the 1-percent "shell".

- $n^{0.99}$
- 0.01
- n/100
- $(0.99)^n$
- $1-(0.99)^n$

Question 4

In Question 3, what happens to the volume of the 1-percent shell as $n \to \infty$?

- $_{\bigcirc}$ The volume of the shell limits to 0.
- $_{\bigcirc}$ The volume of the shell limits to 1.
- The volume of the shell limits to 1/2.

- $_{\frown}$ The volume of the shell limits to 1/e.
- $_{\frown}$ The volume of the shell limits to 0.01.

Question 5

We showed in lecture that the n-dimensional volume of a *unit radius* ball in dimension n converges to zero as $n\to\infty$. But what about a really large ball? For a ball of radius $R=10^{10}$ meters in dimension n, what is the limit as $n\to\infty$ of its volume? (in unit of meters-to-the- n^{th})

- 0
- ∞
- 10^{10}
- Surely, you can't be serious.
- In accordance with the Honor Code, I certify that my answers here are my own work.

Submit Answers

Save Answers