

Cost Optimization For the unmanned aircraft delivery system with Public Transportation

vehicle routing problem

Miae Kim May 13, 2016

Computer and Information Technology

Drone delivery system uses UAV's instead of delivery driver

There are still some obstacles for delivery system.

· Deliver one item at a time

Figure 1: deliver back and forth

Drone delivery system uses UAV's instead of delivery driver

There are still some obstacles for delivery system.

· Deliver one item at a time

Figure 1: deliver back and forth

Limited battery

Drone delivery system uses UAV's instead of delivery driver

There are still some obstacles for delivery system.

· Deliver one item at a time

Figure 1: deliver back and forth

- · Limited battery
 - · Most UAV's have maximum 90 minutes of battery life [1]

Drone delivery system uses UAV's instead of delivery driver

There are still some obstacles for delivery system.

· Deliver one item at a time

Figure 1: deliver back and forth

- Limited battery
 - · Most UAV's have maximum 90 minutes of battery life [1]
 - · If drone deliver packages, expected battery life will be reduced

Table of contents

- 1. Introduction
- 2. Literature Review
- 3. Methodology
- 4. Experiment Design

Introduction

Statement of Problem

What if UAV's can exploit current transportation system?

Adapting public transportation makes delivery system be able to deliver multiple packages at a same time and it reduces the total time of delivery.

Therefore, the new rendering algorithm will deliver massive packages in limited time by reducing cost.

What is the effect of a having the transportation system on the drone delivery system?

For example, when a UAV delivers five packages from warehouse w to destination d, which is the cheapest way to deliver the packages?

We can think of three ways to deliver the packages.

Use only UAV's to deliver the packages

For example, when a UAV delivers five packages from warehouse w to destination d, which is the cheapest way to deliver the packages?

We can think of three ways to deliver the packages.

- · Use only UAV's to deliver the packages
- Use public transportation to deliver packages to the nearest bus stops then deliver packages with UAV's

For example, when a UAV delivers five packages from warehouse w to destination d, which is the cheapest way to deliver the packages?

We can think of three ways to deliver the packages.

- · Use only UAV's to deliver the packages
- Use public transportation to deliver packages to the nearest bus stops then deliver packages with UAV's

For example, when a UAV delivers five packages from warehouse w to destination d, which is the cheapest way to deliver the packages?

We can think of three ways to deliver the packages.

- Use only UAV's to deliver the packages
- Use public transportation to deliver packages to the nearest bus stops then deliver packages with UAV's
 - the optimization algorithm will approach in this way

Assumptions - UAV

- Every UAV can deliver only one package at a time
- Every UAV can fly up to 15 minutes with its battery
- Every UAV can charge itself on top of the bus
 - The bus has the charging board on top of the bus and the bottom of the drone.
- Every UAV in this paper is a vertical take-off and landing (VTOL) aircraft. In this study, the drone have average speed of 15 km/h.

Assumptions - Others

- Every agents already know where the bus is based on bus schedule.
 - The schedule is easily obtained in the homepage of the bus company. The average speed of bus is 14 km/h [2].
- · Customer demands are known in advance.

Literature Review

TSP and VRP

Figure 2: image source: http://www.mdpi.com/2071-1050/6/7/4658/htm

Find the most minimum traveling distance

TSP is a simple model of VRP

- · one vechle
- · no capacity
- · no time windows, etc

How to solve VRP

VRP is NP-hard problem

- · Brute force
- · Linear programming
- · Heruistic approach

Methodology

Find the optimal bus route

- · Find the optimal bus route
 - Given packages with destination, find any proper bus route for packages

- Find the optimal bus route
 - Given packages with destination, find any proper bus route for packages
 - If the destination is near from the warehouse, UAV's deliver directly to destination

- · Find the optimal bus route
 - Given packages with destination, find any proper bus route for packages
 - If the destination is near from the warehouse, UAV's deliver directly to destination

 H_{01} : The bus route has nothing to do with the total cost of delivery.

H_{A1}: Proper bus route reduces the total cost of delivery.

Figure 3: Campus bus route and customer demand

Figure 4: After route selection

 $\boldsymbol{\cdot}$ Given bus with packages, build path from bus to the destination

- · Given bus with packages, build path from bus to the destination
 - Calculate distance between the bus stop and build pairwise distances

- · Given bus with packages, build path from bus to the destination
 - Calculate distance between the bus stop and build pairwise distances
 - build graph model

- · Given bus with packages, build path from bus to the destination
 - Calculate distance between the bus stop and build pairwise distances
 - · build graph model
 - VRP with Pickup and Delivery(VRPPD)

- · Given bus with packages, build path from bus to the destination
 - Calculate distance between the bus stop and build pairwise distances
 - · build graph model
 - VRP with Pickup and Delivery(VRPPD)

 H_{02} : The routing algorithm will not reduce running time of UAV's by delivering multiple package at a time H_{A2} : The routing algorithm will reduce running time of UAV's by delivering multiple package at a time

Build Path - Build Graph

Figure 5: Simplified transportation graph

 w_1 is a warehouse, s_n is n-th bus stop and d_n is n-th destination.

Build Path - Convert Graph

minimal cost through bus
$$c_{wd} = \min_{ij \in S} U_{wi} + O_{ij} + U_{jd}$$
 where $i, j \in S$ (1)

Convert graph by removing bus stops and update distances to accumulate them as stopovers

This converted graph is compatible with Traveling Salesman Problem(TSP).

Experiment Design

Goal

 to find the cost-effectiveness threshold of the number of packages compared to the current UAV's delivery system.

Goal

- to find the cost-effectiveness threshold of the number of packages compared to the current UAV's delivery system.
- to find the best route for the UAV's delivery with the public transportation

minimize total mileage of UAV's

$$\min \sum_{i}^{V} \sum_{j}^{V} x_{ij} c_{ij} \tag{2}$$

$$W = \{w_1, w_2, \cdots w_m\}$$

$$D = \{d_1, d_2, \cdots d_n\}$$

$$X_{ij} = \begin{cases} 1, & \text{path from } i \text{ to } d, i \in W \cup D, j \in D. \\ 0, & \text{otherwise.} \end{cases}$$

Variables[']

Independent variables

- · The number of customers' orders
- · The number of UAV's
- · The delivery method
- Routing algorithm

Dependent variables

- · Total time consumed for delivery
- · Total mileage of each UAV
- · Delivery range of the system

Analysis

- Treatment group
 - · Deliver with bus and UAV
- · Control group
 - · Deliver with UAV
- · Effect Size

mean of treatment group – mean of control group standard deviation of control group

(4)

- · < 0.1 = trivial effect
- 0.1 0.3 = small effect
- 0.3 0.5 = moderate effect
- · > 0.5 = large difference effect

Simulation environment

- · Purdue University campus area
 - · map data
 - · bus route
 - · bus schedule
- · randomly scatter customer demand
- · repeat 1000 time
- · UAV
 - · run for 15 minutes
 - · average speed is 15km/h
- · Average speed of bus is 38km/h

References I

dronelife.com.

Buy a drone, 2016.

[Online; accessed 30-March-2016].

D. Hinebaugh.

Characteristics of bus rapid transit for decision-making. Technical report, 2009.