4/8/2019 Multivariate Contrasts

Multivariate Contrasts

David Lieberman, Yavuz Ramiz Çolak, Ryo Tamaki, Liana Wang April 5th, 2019

Challenge Question

In this pset, we will do the challenge question.

Environmental Attitude Survey:

For four questions, the scale is (1=Strongly Agree, 5=Strongly Disagree) v10: Modern science will solve our environmental problems with little change to our way of life v12: Almost everything we do in modern life harms the environment. V25: There is no point in doing what I can for the environment unless others do the same v47: Poorer countries should be expected to make less effort than richer countries to protect the environment

One question has a different scale: v38: In general, do you think that a rise in the world's temperature caused by the greenhouse effect is (1=Extremely Dangerous for you and family, 5=Not dangerous for you and family)

In addition, the following variables were measured V3: Country (Japan, US, Mexico, Netherlands) V200: Gender (1=male, 2=female) V201: Age in Years V202: Marital Status (1=Married, 2=Widowed, 3=Divorced, 4=Separated, 5=Single never married) V204: Years of education V205: Highest Degree obtained V246: Political Views (1=Extremely Liberal (Communist), 5=Extremely Conservative (Fascist))

```
envsurvey <- read.csv("http://www.reuningscherer.net/stat660/data/Environmental_Survey_MANOVA.c
sv", header=T)
envsurvey <- envsurvey[1:6]
envsurvey</pre>
```

##			V3	V10	V12	V25	V38	V47
##	1	USA-United	States	4	4	2	4	4
##	2	USA-United	States	4	3	2	3	4
##	3	USA-United	States	2	5	5	2	5
##	4	USA-United	States	3	2	2	2	3
##	5	USA-United	States	3	4	4	2	4
##	6	USA-United	States	4	1	4	1	4
##	7	USA-United	States	4	4	4	3	4
##	8	USA-United	States	2	3	4	3	3
##	9	USA-United	States	2	4	4	1	4
##	10	USA-United	States	4	4	5	2	3
##	11	USA-United	States	3	4	2	1	2
##	12	USA-United	States	5	4	3	3	2
##	13	USA-United	States	2	2	4	1	4
##	14	USA-United	States	3	2	4	3	4
##	15	USA-United		2	4	4	3	4
##		USA-United		2	3	5	3	4
##	17	USA-United		4	2	4	3	4
##		USA-United		4	4	3	2	4
##	_	USA-United		5	2	5	3	4
##		USA-United		5	2	4	1	1
##	21		States	2	2	2	3	4
##		USA-United		2	2	2	3	2
##		USA-United		4	2	4	2	2
##	_	USA-United		4	4	4	3	5
##	25	USA-United		1	2	4	3	2
##		USA-United		2	4	5	4	4
##	_	USA-United		4	2	4	3	5
##		USA-United		2	4	2	3	5
##	_	USA-United		4	5	5	1	5
##		USA-United		4	3	3	2	2
##		USA-United		4	2	4	1	4
##	32	USA-United		4	4	4	3	4
##		USA-United		1	2	3	4	2
##		USA-United			1	4	2	4
##		USA-United		3	2	3	3	5
		USA-United		2	2			
## ##		USA-United			4	2	1	2 5
##		USA-United		2	3	2	3	4
##		USA-United		3	2	2	2	1
##		USA-United		2	2	4	4	
		USA-United						2
##				1	1	4	1	3
##		USA-United		3	2	4	2	3
##	_	USA-United		4	2	1	1	5
##		USA-United		4	2	4	2	4
##	_	USA-United		4	4	2	3	5
##		USA-United		2	2	4	3	3
	47	USA-United		3	4	3	3	2
##		USA-United		3	3	3	4	3
##		USA-United		2	4	4	3	2
##		USA-United		3	3	4	3	3
	51	USA-United		3	3	4	1	4
##	52	USA-United	states	2	1	1	2	2

```
multicontrast <- function(contrast, data, grouping){</pre>
  # Groups
  groups <- as.vector(as.matrix(unique(grouping)))</pre>
  # Multivariate Means for Each Variable in Each Group
  M <- apply(data, 2, function(y) tapply(y, grouping, mean))</pre>
  M <- M[match(groups, row.names(M)),]</pre>
  # Counts for Each Group
  N <- table(grouping)</pre>
  N <- N[match(groups, row.names(N))]</pre>
  # Calculate Weighted Sum of Squared Weights
  SW <- sum(contrast^2 / N)
  # Calculate SSCP Between (Hypothesis Matrix)
  C_hat <- colSums(contrast*M)</pre>
  SSCP between <- (cbind(C hat) %*% rbind(C hat)) / SW
  # Calculate SSCP Within (Error Matrix)
  SSCP_within_each_group <- list()</pre>
  for (i in seq_along(groups)){
    X <- subset(data, grouping == groups[i])</pre>
    deviations <- matrix(0, nrow(X), ncol(X))</pre>
    for (j in 1:ncol(X)){
      deviations[,j] <- X[,j] - M[i,j]</pre>
    }
    SSCP_within_each_group[[i]] <- t(deviations) %*% deviations
  SSCP_within <- Reduce("+", SSCP_within_each_group)</pre>
  # Calculate Wilks' Lambda
  lambda <- det(SSCP_within) / det(SSCP_between + SSCP_within)</pre>
  # Calculate Degrees of Freedom
  p <- ncol(data) # no.variables</pre>
  m <- nrow(data) - length(groups) # no.observations - no.groups</pre>
  df1 <- p
  df2 <- m-p+1
  # Calculate approx. F
  F.stat <- (1 - lambda) / lambda * df2 / df1
  # Calculate p-value from F distribution
  p.value <- 1 - pf(F.stat, df1, df2)</pre>
  # Output
  out <- c(lambda, F.stat, df1, df2, p.value)</pre>
  names(out) <- c("Wilks", "approx.F", "df1", "df2", "p.value")</pre>
  return(out)
}
```

4/8/2019 Multivariate Contrasts

```
## V3
## 1 "USA-United States"
## 201 "NL-Netherlands"
## 401 "J-Japan"
```

Japan vs US

```
multicontrast(c(1,0,-1,0), envsurvey[2:6], envsurvey[1])
```

```
## Wilks approx.F df1 df2 p.value
## 0.7960165 40.5908514 5.00000000 792.00000000 0.00000000
```

US vs Rest of the World

601 "MEX-Mexico"

```
multicontrast(c(3,-1,-1), envsurvey[2:6], envsurvey[1])
```

```
## Wilks approx.F df1 df2 p.value
## 9.410041e-01 9.930834e+00 5.000000e+00 7.920000e+02 3.157384e-09
```

*We check our results by the SAS output presented in the lecture notes. We see that our R function gives the same result as the already-existing SAS function.

Bonus: Adjusted p-values

We also calculated the BONUS question of the original pset.

```
pvalues <- as.numeric(c(
multicontrast(c(3,-1,-1,-1), envsurvey[2:6], envsurvey[1])[5],
multicontrast(c(1,0,-1,0), envsurvey[2:6], envsurvey[1])[5]
))
p.adjust(pvalues, method="bonferroni")</pre>
```

```
## [1] 6.314768e-09 0.000000e+00
```

```
p.adjust(pvalues, method="holm")
```

```
## [1] 3.157384e-09 0.000000e+00
```

```
p.adjust(pvalues, method="hochberg")
```

```
## [1] 3.157384e-09 0.000000e+00
```