Module 9 - Simple Linear Regression and Correlation

Overview

- Statistical investigations often aim to understand the relationship between variables in order to make accurate predictions.
- This module will cover the use of linear regression models for modelling relationships between two quantitative variables.

Linear Regression

- Correlation and simple linear regression are used to examine the relationship between two quantitative (discrete or continuous) variables.
- Predictor variable, x, provides information about some dependent variable, y.

$$y = \alpha + \beta x + \epsilon$$

Linear Regression

- y is the dependent variable, α is the constant/intercept, β is the slope, x is the predictor and ε is the random error/residuals.
- The error ε is assumed to be normally distributed with μ
 = 0 and σ. Linear regression also assumes that the variance of ε is constant and unchanging across the range of the predictor variable, x.
- The slope represents change in Y when X is increased by one unit. If slope is positive then we will have increase in Y and if it negative we would observe decrease in Y.

Should we fit Linear Regression? Check the scatter plot between Y and X Scatter plot must be linear

Fitting Linear Regression model to sample data using R

- Fitting a linear regression line to sample data is done using a method known as ordinary least squares (OLS).
- The idea behind this method is to minimise the sum of squared distances, S, for each (x_i, y_i) bivariate data point from a fitted regression line. The sum of squares is written as:

$$S = \sum_{i=1}^{n} d_i^2$$

Fitting Linear Regression model to

Example - Oxygen Uptake Efficiency

- Maximal oxygen consumption (VO₂ max) is a measure of aerobic fitness. However, measuring VO₂ max requires a subject to fully exert their aerobic system.
- Researchers are interested to know if the oxygen uptake efficiency slope (OUES), an indicator of cardiopulmonary reserve, can be used as a sub-maximal predictor of VO₂ max.

Example - Oxygen Uptake Efficiency

		x = OUES 3				
)	y = VO2 Max	Minutes	v2	x2	xy	
	1	4310.56	2626.44	18580927.51	6898187.074	11321427.2
	2	3157.98	2701.46	9972837.68	7297886.132	8531156.65
	3	3751.89	3308.54	14076678.57	10946436.93	12413278.1
	4	2791.33	2206.55	7791523.169	4868862.903	6159209.21
	5	4022.37	2608.16	16179460.42	6802498.586	10490984.5
	6		2090.39	9655624.023	4369730.352	6495573.36
	7		172.82	8364762.996	29866.7524	499828.275
	8		2122.35	16303748.08	4504369.523	8569603.60
	9		3584.09	14856322.27	12845701.13	13814480.
	10		705.59	9442222.752	497857.2481	2168151.0
	11		4279.19	30238671.06	18311467.06	23531137.
	12		2621.46	9141673.19	6872052.532	7926036.7
	13		4726.43	22267639.7	22339140.54	22303361.4
	14		1194.22	14304961.2	1426161.408	4516766.94
	15		4794.13	15666872.26	22983682.46	18975837.
	16		2500.85	11020142.52	6254250.723	8301971.7
	17		6678.83	35767815.58	44606770.17	39943544.
	18		1800.94			6259653.2
	19		1214.04		1473893.122	3046888.3
	20		2190.51	8300794.832	4798334.06	6311100.2
	21		3015.03	12807451.56	9090405.901	10790038.
			3959.55			17552051.
	22			19650070.47	15678036.2	
	23		2546.3		6483643.69	9170626.7
	24		3192.09		10189438.57	12598987
	25		1947.26	11892566.07	3791821.508	6715242.9
	26		3677.25	19089559.11	13522167.56	16066493.
	27		5230.23	37363634.26	27355305.85	31970199.
	28		6077.92	33061005.02	36941111.53	34947249.
	29		2307.5	15658402.98	5324556.25	9130939.0
	30		4074.82	22141542.03	16604158.03	19173984.
	31		3437.67	28251244.74	11817575.03	18271869.
	32		4584.79	31723028.58	21020299.34	25823004.
	33		1030.9	4697839.503		2234424.2
	34		1524.37	2884562.56	2323703.897	2588990.0
	35		2777.68	14574375.17	7715506.182	10604182.
	36		2073.59	9702041.336	4299775.488	6458838.8
	37		1605.88	12139231.54	2578850.574	5595110.7
	38		3426.48	15064334.44	11740765.19	13299128.
	39		1888.01	6464255.4	3564581.76	4800246.5
	40		2921.48	12094188.63	8535045.39	10159943.
	41		2974.7	10851753.64	8848840.09	9799256.
	42		4460.16	33535796.82	19893027.23	25828831.
	43		3352.15	12215793.91	11236909.62	11716132.
	44		3557.7	20187049	12657229.29	15984746
	45	5001.9	5333.79	25019003.61	28449315.76	26679084
	46	3464.99	1936.67	12006155.7	3750690.689	6710542.1
	47	4938.21	3389.12	24385918	11486134.37	16736186.
	48	3844.41	2727.18	14779488.25	7437510.752	10484398.
	49		1746.94			5997873.9
	50		1949.32	14195111.17	3799848.462	7344336.0
	Σ	194705.24	146853.52	807085161.3		6268129

Example - Oxygen Uptake Efficiency

Hypothesis and Assumptions for linear regression model

- H0: The data does not fit to linear regression model.
- HA: The data fits to linear regression model.
- We test the overall model using F-test.
- Assumptions:
- Independence (check research design)
- Linearity(Check scatter plot)
- Normality of residuals(check after model is fitted)
- Homoscedasticity (check after model is fitted)
- Decision Rules:
- Reject H0 if P-value for F statistics < a.

Example - Oxygen Uptake Regression output (R output)

Linear Regression is fitted using Im() function

Residual standard error: 567.2 on 48 degrees of freedom Multiple R-squared: 0.684, Adjusted R-squared: 0.6775

F-statistic: 103.9 on 1 and 48 DF, p-value: 1.345e-13

The regression model is Y=2107+0.6085X

So if we increase X by one unit, we have increase of 0.6085 in Y

Example - Oxygen Uptake Efficiency (R output)

- The R² value can range from 0 1.
- R² reflects the proportion of variability in the dependent variable that can be explained by a linear relationship with the predictor variable.

Example - Oxygen Uptake Efficiency (Routput)

- The R² is a measure of goodness of fit for linear regression. Higher R² indicates stronger relationship between Y and X.
- R² tends to overestimate the population R². The adjusted R² takes this overestimation into account and down-scales it. Which do you report?
- It does not really matter, just as long as you're clear on which one you use.

Example - Oxygen Uptake Efficiency (R output)

- The F statistic is testing
- H₀: The data do not fit the linear regression model
- H_A: The data fit the linear regression model
- the F statistic reported in the summary as F = 103.9, will have a F distribution with $df_1 = 1$ and $df_2 = n 2 = 50 2 = 48$.

Example - Oxygen Uptake Efficiency (R output) hypothesis testing for **a and** β

- To test if constant or slope is zero or not. The out put provide the p-value for the following tests:
- H_0 : $\alpha = 0$
- H_{Δ} : α ≠ 0
- And
- H_0 : $\beta = 0$
- H_Δ: β ≠ 0

Example - Oxygen Uptake Efficiency (R output) hypothesis testing for α and β

In R, we use the confint() function:

> confint(ouesvo2maxmodel)

```
2.5 % 97.5 % (Intercept) 1719.2061023 2494.521512 OUES_3 0.4884909 0.728532 R reports the 95% CI for \beta to be [.488, .729].
```

Example - Oxygen Uptake Efficiency (R output) 95% CI for the fitted line

- In the following graph we have:
- The blue line is the line of best fit for the linear regression. The green bands represent the 95% CI of mean VO₂ max readings for the regression line.
- The pink outer lines are the prediction intervals.
- The prediction intervals are where 95% of the data will fall assuming the residuals are normally distributed.

Example - Oxygen Uptake Efficiency (R output) 95% CI for the fitted line

Checking the regression assumptions

Assumptions

- Before we report the final regression model, we must validate all the following assumptions for linear regression.
- Independence (check research design)
- Linearity(Check scatter plot)
- Normality of residuals(check after model is fitted)
- Homoscedasticity (check after model is fitted)

Example - Oxygen Uptake Efficiency Residuals

The residuals are calculated as:

IF y_i is the observed score in the sample and ŷ_i is the predicted score based on the fitted regression model then the residual for the ith sample point is defined by

$$y_i - \hat{y_i}$$

For example, the predicted score for OUES = 4000 is

$$\hat{y} = a + bx_i = 2106.864 + 0.609(4000) = 4542.864$$

Example - Oxygen Uptake Efficiency (R output) Checking normality of residuals

Using

- qqPlot(ouesvo2maxmodel\$residuals, dist="norm")
- We get

Normal plot of residuals

Assumption of homoscedasticity, or constant variance.

- Homoscedasticity is related to the assumption of homogeneity of variance for the two-sample t-test.
- Check this assumption by looking at a scatter plot of the predicted values on the x axis and the residuals on the y.
- As we move across predicted values, the variance in the residuals should remain constant.

Assumption of **homoscedasticity**, or constant variance.

> mplot(ouesvo2maxmodel, 1)

Assumption of homoscedasticity, or constant variance

- The blue line in the plot is a non-parametric locally weighted scatterplot smoother (LOESS).
- The line fits to the data.
- The straighter the line, the safer the assumption of homoscedasticity.
- If the variance changed across predicted values, we would call the data **heteroscedastic**.
- Ordinary least squares linear regression is not appropriate for heteroscedastic data.

Assumption of homoscedasticity, or constant variance

Figure 3. Examples of homoscedasticity and heteroscedasticity

Example Write-up

- Prior to fitting the regression, a scatterplot assessing the bivariate relationship between VO₂ max and OUES 3 minutes was inspected.
- The scatterplot demonstrated evidence of a positive linear relationship.
- The overall regression model was statistically significant, F(1, 48) = 103.92, p < .001</p>
- The results show that OUES 3 minutes explains 68.4% of the variability in $V0_2$ max, $R^2 = .684$.

Example Write-up

- The estimated regression equation was $VO_2 = 2106.84 + .609*OUES$
- The positive slope for OUES 3 minutes was statistically significant, b = 0.609, t(48) = 10.194, p < .001, 95% CI [0.488, 0.729].</p>
- Final inspection of the residuals supported normality and homoscedasticity.

- The Pearson correlation coefficient, r, is a standardised measure of the strength of the linear relationship between two variables.
- Its value r is sqrt $(R^2 = .684) = 0.827$
- Pearson correlation can range from a perfect negative correlation, r = -1, to zero correlation, r = 0, and all the way through to a perfect positive correlation, r = 1.
- r and the slope, b, of a simple linear regression will have the same sign.
- We can calculate a quick correlation in R using the cor() function:

- > cor(VO2_Max,OUES_3,data = OUES)
- **[**1] 0.8270676

