HW

Hückel theory

- The molecular orbitals are linear combination of atomic orbitals
- Standard approximation of Hückel theory

$$- H_{ii} - ES_{ii} = \alpha$$

-
$$H_{i,i} - ES_{i,i} = \beta$$
, When $i = j \pm 1$

-
$$H_{ij} - ES_{ij} = 0$$
, Others

• Calculate the delocalize energy

Example 1,3-Butadiene

trans-1,3-Butadiene

1. Linear combination of molecular

orbitals
$$|\psi_i\rangle = \sum_i^4 c_{ij} |p_i\rangle |\psi_i\rangle = c_{i1}|p_1\rangle + c_{i2}|p_2\rangle + c_{i3}|p_3\rangle + c_{i4}|p_4\rangle$$

2. For solving the ith molecular orbital $|\psi_i\rangle$ need to solve

$$\begin{bmatrix} H_{11} - ES_{11} & H_{12} - ES_{12} & H_{13} - ES_{13} & H_{14} - ES_{14} \\ H_{12} - ES_{12} & H_{22} - ES_{22} & H_{23} - ES_{23} & H_{24} - ES_{24} \\ H_{13} - ES_{13} & H_{23} - ES_{23} & H_{33} - ES_{33} & H_{34} - ES_{34} \\ H_{14} - ES_{14} & H_{24} - ES_{24} & H_{34} - ES_{34} & H_{44} - ES_{44} \end{bmatrix} \times \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = 0$$

3. By standard approximation of Hückel theory the matrix become

$$\begin{bmatrix} \alpha & \beta & 0 & 0 \\ \beta & \alpha & \beta & 0 \\ 0 & \beta & \alpha & \beta \\ 0 & 0 & \beta & \alpha \end{bmatrix} \times \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = 0$$

4. If c_1, c_2, c_3, c_4 is not trivial then the determinant is 0. E is the eigenvalue

$$\begin{vmatrix} \alpha - E & \beta & 0 & 0 \\ \beta & \alpha - E & \beta & 0 \\ 0 & \beta & \alpha - E & \beta \\ 0 & 0 & \beta & \alpha - E \end{vmatrix} = 0$$

5. Simplify by divided by
$$\beta$$
 and $x = \frac{\alpha - E}{\beta}$ then $\begin{vmatrix} x & 1 & 0 & 0 \\ 1 & x & 1 & 0 \\ 0 & 1 & x & 1 \\ 0 & 0 & 1 & x \end{vmatrix} = 0$

6. Solve the equation
$$x^4 - 3x^2 + 1 = 0$$
 $x^2 = \frac{3 \pm \sqrt{5}}{2}$

7. Derive the E₁, E₂, E₃, E₄
$$E_1=\alpha+1.618\beta$$
 $E_2=\alpha+0.618\beta$ $E_3=\alpha-0.618\beta$ $E_4=\alpha-1.618\beta$

8. The electron configeration and shape(by HF/6-31G*)

9. Calculate the energy of molecular orbitals E_{π} (butadiene) = $2 \times E_1 + 2 \times E_2 + 0 \times E_3 + 0 \times E_4$ = $2(\alpha + 1.618\beta) + 2(\alpha + 0.618\beta)$ = $4\alpha + 4.472\beta$

- 10. Compare the energy of butadiene with two ethylene
- The **delocalization energy** is about $0.48\beta = -35 \text{ kJ/mol}$
- The delocalization can stable the molecular

$$E_{\pi}$$
(butadiene) = 2 × E_{π} (ethylene)
= 2 × 2(α + β)
= 4 α + 4 β

(b) The wavefunction of the π MOs (ψ_{π}) of benezne

$$\psi_{\pi} = c_1 \phi_{p_z,1} + c_2 \phi_{p_z,2} + c_3 \phi_{p_z,3} + c_4 \phi_{p_z,4} + c_5 \phi_{p_z,5} + c_6 \phi_{p_z,6}$$

(c) The Hamiltonian matrix for benezene

$$\begin{bmatrix} \alpha & \beta & 0 & 0 & 0 & 0 \\ \beta & \alpha & \beta & 0 & 0 & 0 \\ 0 & \beta & \alpha & \beta & 0 & 0 \\ 0 & 0 & \beta & \alpha & \beta & 0 \\ 0 & 0 & 0 & \beta & \alpha & \beta \\ 0 & 0 & 0 & 0 & \beta & \alpha \end{bmatrix}$$

(d)

$$E = \alpha + \beta, \alpha - \beta, \alpha + 2\beta, \alpha - 2\beta, \alpha + \beta, \alpha - \beta$$

(e)

(f)

	Molden Orbital Select			
	Nr.	Eigenvalue	Occupation	
	7	-0,495004	2,00	₩
	8	-0.489402	2,00	
	9	-0.476350	2,00	
	10	-0.476350	2,00	_
	11	-0.474754	2,00	
	12	-0,421397	2,00	
	13	-0.421397	2,00	
	14	-0,402525	2,00	
	15	-0.402525	2,00	
	16	-0,221196	0.00	
	17	-0,221196	0.00	
	18	-0.089923	0.00	
	19	0.118024	0.00	₽

• π_5^*

- $E2-E1 \neq E6-E5$
 - E1 = -0.474754
 - E2 = -0.402525
 - E3 = -0.402525
 - E4 = -0.221196
 - E5 = -0.221196
 - E6 = -0.089923

2.

generate files and directory

for dir in aN nN aA nN;do mkdir \$dir ; cp naphthalene.xyz \$dir;done

aA xtb

- parameter
 - charge: -1

- unpair-electrons: 1
- -opt
- –molden
- command

- Energy:
 - E = -25.638035481112 Eh
 - LUMO = -0.033169

nN xtb

- parameter
 - charge: 0
 - unpair-electrons: 0
 - -opt
 - molden
- command

- Energy:
 - E = -25.474386099963 Eh
 - LUMO = -0.257933

aN xtb

The aN is the anion with the ground state geometry - Use nN naphthalene_opt.xyz(ground state geometry) - parameter - charge: -1 - unpair-electrons: 1 - -molden - command

- Energy
 - E = -25.633869367054 Eh
 - LUMO = -0.035127

Conclude

	E(hartree)	LUMO
nN	-25.474386099963	-0.257933
aA	-25.638035481112	-0.033169
aN	-25.633869367054	-0.035127
•	$EA_{vertical} = -0.1595 El$	n = -4.3402183 eV
	EA 0.16264	0204 El 4 4 E 2 4

- $EA_{adiabatic} = -0.163649381 Eh = -4.45312877 eV$
- $EA(exp) = -0.200 \pm 0.050 \text{ eV}$

HOMO, LUMO and their difference for oligothiophene

Structure bulid

- 1. Draw the structure by the following html http://www.cheminfo.org/flavor/malaria/Utilities/SMILES_generator__check er/index.html
- 2. Output the structure by SMILES
- 3. Use Avogadro to optimize the structure
- 4. Output with the file.xyz

HOMO,LUMO

• Search HOMO,LUMO grep "Occu" -B 2 molden.input

n	1	2	3	4	5
НОМО	-0.39302	-0.370329	-0.361751	-0.357424	-0.354870
LUMO	-0.24234	-0.272395	-0.284796	-0.291401	-0.295524
Gap	0.15068	0.097933	0.076967	0.066022	0.05934

• The energy gap become narrow as the n inrease

• The homo increase and lumo decrease as the n increase

MOs for VF₅

Splitting field

square pyramidal

• Energy: -25.830963344050 Eh

bond length

(c) • 25d_{x²-y²}

• $24d_{z^2}$

• 23d_{xy}

• 22d_{xz},21d_{yz}

• E:

Molden Orbital Select – 🗵				
Nr.	Eigenvalue	Occupation		
16	-0.572693	2,00	Δĺ	
17	-0.563997	2.00	<u>ت</u>	
18	-0,561667	2,00		
19	-0.561636	2.00		
20	-0.555149	2.00		
21	-0,417597	0.00		
22	-0.417564	0.00		
23	-0,417255	0.00		
24	-0.346189	0.00		
25	-0.022611	0.00		
26	0,370289	0.00		
27	0.485351	0.00		
28	0.485745	0.00	℧	

•

trigonal bipyramidal

• Energy: -25.835167715651 Eh

bond length

(c) •

 $25d_{z^2}$

• 24 d_{xy},23 $d_{x^2-y^2}$

• 22 d_{xz}, 21 d_{yz}

Nr.	Eigenvalue	e Occupation
17	-0,566645	2,00
18	-0,564275	2,00
19	-0,563893	2,00
20	-0.563884	2,00
21	-0.423404	0.00
22	-0,423398	0.00
23	-0.370851	0.00
24	-0,370847	0.00
25	-0.059249	0.00
26	0.432751	0.00
27	0,432756	0.00
28	0,491821	0.00
29	0,609983	0.00

bond angle

(b)

• The sqare pyramidal is more stable

(d)

• Element V d-orbital E = -0.198747

Questions

1. The molecular orbitals have like d orbital but in low orbital

2. How to calculate the degenerate orbitals $\frac{1}{\sqrt{4}-\sqrt{4}}$

repository

https://github.com/pumachu/2022-xTB-summer-school