Учреждение образования

г -	U	U	
«Бепопусский	государственный	технопогическии	VHURENCUTETS
"Desire py commit	тобударотнонный	10/1110310111 100Itilli	Jimbopomio

Лабораторная работа №3

Метод ветвей и границ. Задача коммивояжера и методы её решения.

Выполнил:

Студент 2 курса 1 группы ФИТ

Самсоник Анастасия Ивановна

ЦЕЛЬ РАБОТЫ: освоить общие принципы решения задач методом ветвей и границ, решить задачу о коммивояжере данным методом, сравнить полученное решение задачи с комбинаторным методом перестановок.

<u>Задание 1.</u> Сформулировать условие задачи коммивояжера с параметром. Для этого:

- принять элементы матрицы расстояний равными:

где n — номер варианта (Вариант 8)

Город	1	2	3	4	5	
1	INF	16	29	INF	8	
2	8	INF	23	60	76	
3	10	24	INF	86	57	
4	25	50	32	INF	24	
5	85	74	52	21	INF	

Задание 2. Решить сформулированную задачу методом ветвей и границ.

Возьмем в качестве произвольного маршрута:

$$X_0 = (1,5);(4,5);(4,1);(2,1);(2,3)$$

Тогда
$$F(X_0) = 8 + 19 + 86 + 12 + 89 = 244$$

Для определения нижней границы множества воспользуемся **операцией редукции** или приведения матрицы по строкам, для чего необходимо в каждой строке матрицы D найти минимальный элемент. $d_i = min(j) \ d_{ii}$

Город	1	2	3	4	5	di
1	INF	16	29	INF	8	8
2	8	INF	23	60	76	8
3	10	24	INF	86	57	10
4	25	50	32	INF	24	24
5	85	74	52	21	INF	21

Затем вычитаем d_i из элементов рассматриваемой строки. В связи с этим во вновь полученной матрице в каждой строке будет как минимум один ноль.

Город	1	2	3	4	5
1	INF	8	21	INF	0
2	0	INF	15	52	68
3	0	14	INF	76	47
4	1	26	8	INF	0
5	64	53	31	0	INF

Такую же операцию редукции проводим по столбцам, для чего в каждом столбце находим минимальный элемент: $d_i = min(i) \; d_{ii}$

Город	1	2	3	4	5
1	INF	8	21	INF	0
2	0	INF	15	52	68
3	0	14	INF	76	47
4	1	26	8	INF	0
5	64	53	31	0	INF
di	0	8	8	0	0

После вычитания минимальных элементов получаем полностью редуцированную матрицу, где величины d_i и d_j называются константами приведения.

Сумма констант приведения определяет нижнюю границу H: $H = \sum d_i + \sum d_i$

Город	1	2	3	4	5		
1	INF	0	13	INF	0		
2	0	INF	7	52	68		
3	0	6	INF	76	47	H =	87
4	1	18	0	INF	0		
5	64	45	23	0	INF		

Элементы матрицы d_{ij} соответствуют расстоянию от пункта i до пункта j. Поскольку в матрице n городов, то D является матрицей n x n c неотрицательными элементами $d_{ij} \geq 0$

Каждый допустимый маршрут представляет собой цикл, по которому коммивояжер посещает город только один раз и возвращается в исходный город.

Длина маршрута определяется выражением:

$$F(M_k) = \sum d_{ij}$$

Причем каждая строка и столбец входят в маршрут только один раз с элементом d_{ij} .

Шаг №1.

Определяем ребро ветвления и разобьем все множество маршрутов относительно этого ребра на два подмножества (i,j) и (i^*,j^*) .

С этой целью для всех клеток матрицы с нулевыми элементами заменяем поочередно нули на М(бесконечность) и определяем для них сумму образовавшихся констант приведения, они приведены в скобках.

Город	1	2	3	4	5
1	INF	0(6)	13	INF	0(0)
2	0(7)	INF	7	52	68
3	0(6)	6	INF	76	47
4	1	18	0(7)	INF	0(0)
5	64	45	23	0(75)	INF

Наибольшая сумма констант приведения равна (52+23) = 75 для ребра (5,4), следовательно, множество разбивается на два подмножества (5,4) и (5*,4*).

Исключение ребра (5,4) проводим путем замены элемента $d_{54} = 0$ на *INF*, после чего осуществляем очередное приведение матрицы расстояний для образовавшегося подмножества (5*,4*), в результате получим редуцированную матрицу.

Город	1	2	3	4	5	di		
1	INF	0	13	INF	0	0		
2	0	INF	7	52	68	0		
3	0	6	INF	76	47	0	H(5*,4*) =	75
4	1	18	0	INF	0	0		
5	64	45	23	INF	INF	23		
	0	0	0	52	0	75		

Включение ребра (5,4) проводится путем исключения всех элементов 5-ой строки и 4-го столбца, в которой элемент d_{45} заменяем на M, для исключения образования негамильтонова цикла.

В результате получим другую сокращенную матрицу (4 х 4), которая подлежит операции приведения.

После операции приведения сокращенная матрица будет иметь вид:

Город	1	2	3	5
1	INF	0	13	0
2	0	INF	7	68
3	0	6	INF	47
4	1	18	0	INF

Шаг №2.

Определяем ребро ветвления и разобьем все множество маршрутов относительно этого ребра на два подмножества (i,j) и (i^*,j^*) . С этой целью для всех клеток матрицы с нулевыми элементами заменяем поочередно нули на *INF* (бесконечность) и определяем для них сумму образовавшихся констант приведения, они приведены в скобках.

Город	1	2	3	5	di
1	INF	0(6)	13	0(47)	0
2	0(7)	INF	7	68	0
3	0(6)	6	INF	47	0
4	1	18	0(8)	INF	0
dj	0	0	0	0	0

Наибольшая сумма констант приведения равна (0 + 47) = 47 для ребра (1,5), следовательно, множество разбивается на два подмножества (1,5) и (1*,5*).

Исключение ребра (1,5) проводим путем замены элемента $d_{15} = 0$ на *INF*, после чего осуществляем очередное приведение матрицы расстояний для образовавшегося подмножества $(1^*,5^*)$, в результате получим редуцированную матрицу.

Город	1	2	3	5	di
1	INF	0	13	INF	0
2	0	INF	7	68	0
3	0	6	INF	47	0
4	1	18	0	INF	0
dj	0	0	0	47	47

$$H(1^*,5^*)=$$
 47

Включение ребра (1,5) проводится путем исключения всех элементов 1ой строки и 5-го столбца, в которой элемент d_{51} заменяем на *INF*, для исключения образования негамильтонова цикла.

В результате получим другую сокращенную матрицу (3 х 3), которая подлежит операции приведения.

После операции приведения сокращенная матрица будет иметь вид:

Город	1	2	3	di
2	0	INF	7	0
3	0	6	INF	0
4	1	18	0	0
dj	0	6	0	6

Сумма констант приведения сокращенной матрицы: $\sum d_i + \sum d_j = 6$ Так как во втором столбце отсутствует ноль, то находим минимальное число в столбце и отнимает его от каждого значения в столбце и добавляем к минимальному маршруту.

Тогда основной минимальный маршрут теперь равен:

Шаг №3.

Определяем ребро ветвления и разобьем все множество маршрутов относительно этого ребра на два подмножества (i,j) и (i^*,j^*) .

С этой целью для всех клеток матрицы с нулевыми элементами заменяем поочередно нули на *INF* (бесконечность) и определяем для них сумму образовавшихся констант приведения, они приведены в скобках.

Город	1	2	3	di
2	0(7)	INF	7	0
3	0(6)	6	INF	0
4	1	18	0(8)	0
dj	0	6	0	6

Город	1	2	3	di	
2	0	INF	7	0	
3	0	0	INF	0	
4	1	12	0	1	
dj	0	0	7	8	

$$H(4*,3*)=$$
 8

Наибольшая сумма констант приведения равна (1+7) = 8 для ребра (4,3), следовательно, множество разбивается на два подмножества (4,3) и (4*,3*).

Исключение ребра (4,3) проводим путем замены элемента $d_{43} = 0$ на *INF*, после чего осуществляем очередное приведение матрицы расстояний для образовавшегося подмножества (4*,3*), в результате получим редуцированную матрицу.

Город	1	2	3	di
2	0	INF	7	0
3	0	0	INF	0
4	1	12	INF	1
dj	0	0	7	8

Включение ребра (2,1) проводится путем исключения всех элементов 2-ой строки и 1-го столбца, в которой элемент d_{12} заменяем на *INF*, для исключения образования негамильтонова цикла.

В результате получим другую сокращенную матрицу (2 х 2), которая подлежит операции приведения.

После операции приведения сокращенная матрица будет иметь вид:

Город	2	3	di
3	0	INF	0
4	0	0	0
dj	0	0	0

Сумма констант приведения сокращенной матрицы:

$$\textstyle\sum d_i + \textstyle\sum d_j = 0$$

Длина маршрута равна Н = 93

<u>Задание 3.</u> Проверка полученного решения при помощи генератора перестановок:

```
С:\Users\Acer\Desktop\MП\MathPr_Lab3\Debug\MathPr_Lab3.exe

- Задача коммивояжера --
- количество городов: 5
- матрица расстояний:
INF 16 29 INF 8
8 INF 23 60 76
10 24 INF 86 57
25 50 32 INF 24
85 74 52 21 INF
- оптимальный маршрут: 0-->4-->3-->2-->1-->0
- длина маршрута : 93
Для продолжения нажмите любую клавишу . . . _
```