Trial Higher School Certificate Examination

2008

Mathematics Extension 1

Total Marks - 84

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen
- Attempt ALL questions.
- Begin each question on a new booklet
- Write your student number on each page
- All necessary working must be shown.
- Diagrams are not to scale.
- Board-approved calculators may be used.
- The mark allocated for each question is listed at the side of the question.

Students are advised that this is a Trial Examination only and does not necessarily reflect the content or format of the Higher School Certificate Examination.

TABLE OF STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1}x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x}dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a}e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a}\sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a}\cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a}\tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a}\sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a}\tan^{-1}\frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

Note
$$\ln x = \log_e x$$
, $x > 0$

© Board of Studies NSW 1998

Question 1 – (12 marks)

Marks

a) Find $\frac{d}{dx} (e^x \sin^{-1} x)$

2

2

2

2

b) Evaluate $\int_0^2 \frac{dx}{(4+x^2)}$

Solve for $x: \frac{x+3}{x-2} \ge 2$

d) Find the general solution of $2 \sin \theta + 1 = 0$

e) Use the substitution u = 1 + x to evaluate $\int_0^1 \frac{x}{\sqrt{(1+x)^3}} dx$

Ouestion 2 - (12 marks)

Marks

3

2

2

1

a) The curves $y = x^2 - 4x + 2$ and $y = e^x + 1$ intersect at the point (0, 2). Find the acute angle between the two curves at this point.

b) If $log_a 2 = 0.75$, find the value of $log_a 3$ correct to two decimal places.

c) Solve for $x: \ln (\ln x) = 0$

d) (i) Sketch the graph of $y = 3\cos^{-1}\left(\frac{x}{2}\right)$ clearly indicating the domain, the range and any intercepts.

(ii) The region bounded by this curve, the x-axis and the y-axis, is rotated about the y-axis. Show that the volume of the solid so formed is given by $\pi \int_0^{\frac{3\pi}{2}} 4\cos^2\left(\frac{y}{3}\right) dy$

(iii) Hence find the volume of this solid.

2

τ.	
040	Ci-la Iliah Cahaal
Of Ces	rge Girls High School
Tester	ISC Examination – Mathematics Extension 1–2008

Page 4

Qu	estion :	3 – (12 marks)	Marks
a)	(i)	Find the value of b if $x - 2$ is a factor of $P(x) = 2x^3 + x^2 - bx + 6$	1
	(ii)	Hence solve for x : $P(x) = 0$	2
b)	disp	article is moving along the x-axis such that its velocity, v m/s, a clacement x metres, is given by $v=\sqrt{(5x-x^2)}$. Find the acceleration of particle when $x=4$	t f 2
c)	Use	mathematical induction to prove that	
	(1>	$(1!)+(2 \times 2!)+(3 \times 3!)++(n \times n!) = (n+1)!-1$ for all positive integers	<i>n</i> . 3
ď) (i)	Write down the co-efficient of x^r in the expansion of $(5+2x)^{12}$ is simplest terms.	n 1
	(ii)	Hence find the greatest co-efficient in the expansion of $(5 + 2x)^{12}$	3

George Girls High School		
ial HSC Evamination _Mathematics Extension	m 1.	_ 2.008

Page 5

ues	tion 4	4 – (12 marks)	Mark
)	(i)	Find the largest possible domain of positive values for which the function $f(x) = x^2 - 4x + 9$ has an inverse which is a function.	1
	(ii)	Find $f^{-1}(x)$ clearly stating the domain and range.	2
	(iii)	Find $f^{-1}[f(2-a^2)]$	1
))	outs repa	by borrowed \$400 000 over 30 years at 6.6%pa reducible monthly. If the standing balance at the end of n months is \$ B_n and the monthly syment is \$ R Show that $B_n = 400\ 000(1.0055)^n - \frac{R(1.0055^n - 1)}{0.0055}$;
	(ii)	Find the value of <i>R</i> required to repay the loan and interest over 30 years. Before making the first repayment, Jenny decides to increase her monthly repayments to \$2 800. What time period is required to pay out the loan?	
c)	T =	temperature of a cooling body, T° C, at time t minutes, is given by $20 + 40 e^{-0.04t}$. At what rate is the temperature changing when the operature is 30° C?	!

Question 5 - (12 marks)

Marks

a)

a) In the diagram below, the points P and Q lie on the circle centre O of radius r. The chord PQ divides the sector OPSQ into two regions of equal area.

(i) Show that $\theta = 2\sin\theta$

2

(ii) The first approximation to the solution of the equation θ - $2\sin\theta=0$ is $\theta=1.91$ radians. Use one application of Newton's method to find a better approximation correct to 4 decimal places.

4

2

b) A ladder, 12 metres long, leans against a vertical wall with its lower end on horizontal ground. The lower end is slipping away from the wall at 3m/s. Find the rate at which the upper end is slipping down the wall when the lower end is 7.2 m from the wall.

5

The velocity, v m/s, of a particle moving in a straight line is given by $v = \frac{e^{-2x}}{2}$. Initially the particle was at the origin. Find its displacement after 2 seconds.

3

)ues	stion 6 – (12 marks)	Marks
a)	A particle moves along a straight line such that its displacement, x metres, at time t seconds, is given by $x=5\sin 2t+5\cos 2t$	
	(i) Show that this motion is simple harmonic by showing that $\ddot{x} = -4x$	2
	(ii) Find the period of the motion.	1
	(iii) Show that the velocity function can be written in the form $x = R \cos(2t + \alpha)$ where $R > 0$ and $0 < \alpha < \pi$	2
	(iv) Find the first occasion when the velocity is $5\sqrt{2}$ m/s	1
b)	The point $P(2at, at^2)$ is a variable point on the parabola $x^2 = 4ay$. The normal at P cuts the y-axis at Q . PQ is then produced to R such that $PQ = QR$.	
	(i) Show that the equation of the normal at P is $x + ty = at^3 + 2at$	2
	(ii) Find the co-ordinates of Q and R .	2
	(iii) Deduce the equation of the locus of R	2

Question 7 – (12 marks)

Marks

4

2

2

a) The top of a tower is viewed from two points, *A* and *B*. *A* is due East of the tower and *B* is due South of *A*. The angles of elevation of the top from *A* and *B* are 40° and 20° respectively. If the distance from *A* to *B* is 100m, find the height of the tower.

b) A ball is kicked with velocity Vm/s at an angle of 45° to the ground towards a person who will catch it 2 metres above ground level. At the instant the ball is kicked, the person is 20m from the kicker and is running away at a speed of 2m/s. The person continues to run away at this speed. Using $g = 10 \text{ m/s}^2$

- (i) Derive the six equations of motion for the ball.
- (ii) Find the maximum height reached by the ball in terms of V.
- (iii) Find V correct to one decimal place.

Q5 Ext Solutions 100 % Trial QI e Sin x عر عد 6 dx 1/1-212 = 0,00 Sinix (b) clx. 4+22 : . (0) x+32+3 -2 20 [x (x-2)] X - 2 2+3-12+4 $x^{L} - 8x + 8$ 9x + 14 <0 7-26 20 Conticul value Tost a= 3

i •		(.	• [
	(ii) V= \(\tau\) (f[y]) dy = 3 cos (\(\frac{x}{2}\))			(b)
	y = an-1(1/2)			
	12 3			•
·	= $\pi / \left(2 \cos \left(\frac{y}{3} \right) \right) dy \qquad \cos \left(\frac{y}{3} \right) = x$,	
	/0 15			
	$= \pi \int_{-2}^{2} 4 \cos^{2}\left(\frac{y}{3}\right) dy \qquad -2 \cos\left(\frac{y}{3}\right) = \chi$			
	/6			
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
	(1) $V = \frac{3}{2}\pi \left[\cos \left(\frac{2y}{3} \right) + 1 \right] dy$ $2 \cos \left(\frac{y}{3} \right) = \cos \left(\frac{2y}{3} \right) + 1$			
	70 , 317			(0
	= 2 T [] Sin (24) + y] 10			ļ
·				
	> LM (3 x Sin T + JT) - 0			
· · · · · · · · · · · · · · · · · · ·		***		
· · · · · · · · · · · · · · · · · · ·	$=3\pi^2$ whi wh.			ļ
		·		ļ
<u> </u>	C(X) = P(X) = 0		•	-
· A A	(a) (i) $P(2) = 0$ $2 \times 2^3 + 2^3 - 2 = 0$			 -
	26-26 =0			-
	∑ b = 13			-
	$(ii) \qquad 2x^2 + 5x - 3$	***************************************		-
	$(x-x) 2x^3+x^2-13x+6$			+
	22'-42'		<u>*</u>	
:	$5x^2-13x+6$	<u> </u>		+
	5x -10x		•	1
	-321+6		-	·
	-32 +6			1.
		 -		-
· · · · ·	$P(x) = (x-2)(2x^{2}+5x-3)$	-	•	
	= (x-1)(2x-1)(x+3)	•	•	-
	let P(2) = 0.		•	
•	then sc= 2 \frac{1}{2} and -3.			
•				

	1
7	(b) $V = \left(\frac{1}{2} x^2 \right)$ $\alpha = \frac{d}{dx} \left[\frac{1}{2} v^2 \right]$
	·
	$\alpha = \frac{d}{dx} \left[\frac{1}{2} \left(5x - x^2 \right) \right]$
	$\alpha = \frac{1}{2} (5 - 2\alpha)$
	Wen x = 4
_	$a = \frac{1}{2} (5-8)$
	$= -\frac{3}{3} \text{ m/sa}^2$
_	
	(c) (i) let n=1
	then h.H. and R.H. $(1+1)!-1=2!-1$
	= <u>L</u> -1
	True for N=1
	N Z
	(1) assume result is true for n=k, k a positive
	integer.
	Then (1x1)+(2x2!)+(3x3!)1+(kxk!)=(k+1)!
	(11) Next value of n n > 4+1
	has L.H.S.
	$(1\times1!)+(2\times2!)+(3\times3!)++(k\times k!)+[(k+1)\times(k+1)!]$
	= (k+1)!-1+[(k+1)x(k+1)!]
·····	= (k+1)! (k+1)+1 -1 (From (ii)]
	$= \frac{(k+1)!}{x(k+1)} = 1$
· · ·	= (R+L)! -1
•	= (R+1)+1) -1
	as required for R.II.S
٠.	

1 < t, < t, < t, > t, > . Createst weff: == $\frac{1}{3!} = \frac{12!}{3!} \times 5^9 \times 2^3$ = [Lillx10] x59 x L = 11.5 . 3 Q4 (a) (i) n= - (-4) axis 2 - 2 (0,9) larget possible domain $\alpha \geq 1$ y = 22-42 + 4 +5 x 2 2 y= (2-2)2+5 8 y-5= (2-2)2 Vy-5 = x -2 $x = 2 + \sqrt{y-5}$ bruen Coc 25 $f^{-1}(x) = 2 + \sqrt{x-5}$ Drune $f^{-1}[f(2-a^2)] = 2+a^2$ (2+a2)≥2 for all a

	@ (i) x= 55mi 2t + 5 cos 2t
	ν= x= 10 ω, λt - 10 sin λt
•	a= x=-losinht-howsht
	= -4 [5sizt + 5costt]
	$\ddot{\alpha} = -4\alpha$
	satisfies acceleration proportional to displacement S.H. &
	ล์ = -ท่างเ
	(ii) T= 2T : T= T period.
	$ \begin{array}{cccc} (ii) & \dot{x} &= & 10 \cos \lambda t & - & 10 \sin \lambda t \\ & \dot{a} &= & 10 \sqrt{\lambda} \left[\frac{1}{\sqrt{\lambda}} \cos \lambda t - \frac{1}{\sqrt{\lambda}} \sin^2 \lambda t \right] \end{array} $
	$a = 10/2 \left(\frac{1}{\sqrt{2}} \cos 2t - \frac{1}{\sqrt{2}} \sin 2t \right)$
	10 10/2
	=10/2 [cos2t cos # - sn2t sn #]
	$\dot{x} = 10\sqrt{2} \cos\left(2t + \frac{\pi}{2}\right)$
	tan 0 = 1
	α> Τ
	$\frac{0 < \alpha < \pi}{(i')} \text{for } \alpha = 5\sqrt{2} = 10\sqrt{2} \cos\left(2t + \frac{\pi}{4}\right)$
	(iv) lut \(\frac{1}{2} = \frac{1}{2} \)
	$\omega_{S}\left(2t+\frac{\pi}{t}\right)=\frac{1}{2}$
	{ >0
	Then $2t + \frac{\pi}{4} = \frac{\pi}{5}, \frac{5\pi}{5}$.
	4 5 3 5
	2t= I
	→ 注 12 七= オ 24
•	2 5 5 5/s
	fort when t= T ke.
	24
<u> </u>	

$$0B^{2} = 0A^{2} + AB^{2}$$

$$AB^{2} = 0B^{2} - 0A^{2}$$

$$100^{2} = \frac{h^{2}}{4\pi n^{2}20^{9}} - \frac{h^{2}}{4m^{2}40^{9}}$$

$$= h^{2} \left(\frac{1}{4\pi n^{2}20^{9}} - \frac{1}{4\pi n^{2}40^{9}} \right)$$

$$= h^{2} \left(\frac{1}{4\pi n^{2}40^{9}} - \frac{1}{4\pi n^{2}40^{9}} \right)$$

$$h^{2} = \frac{100^{2} + 4n^{2}20^{9} + 4n^{2}40^{9}}{4\pi n^{2}40^{9} - \frac{1}{4\pi n^{2}20^{9}}}$$

h = 40.395m correct to 3 dec. pl.

(b) (i) Vertical Horizontal
$$\dot{y} = -10$$

$$\dot{y} = -10t + C, \qquad \dot{x} = C_3$$
when $t = 0$ $\dot{y} = \frac{V}{42}$

$$\dot{y} = -10t + \frac{V}{42}$$

$$\dot{y} = -10t + \frac{V}{42}$$

$$\dot{y} = -\frac{10t}{2} + \frac{Vt}{42} + C_2$$
when $t = 0$ $y = 0$

$$\dot{y} = -\frac{10t^2}{2} + \frac{Vt}{42}$$

$$= -5t^2 + \frac{Vt}{42}$$
Horizontal
$$\dot{z} = 0$$

$$\dot{x} = C_3$$
when $t = 0$ $\dot{x} = \frac{V}{42}$

$$\dot{x} = \frac{V}{42}$$
when $t = 0$ $x = 0$

$$\dot{x} = \frac{Vt}{42}$$

1i) Maximum height when
$$\dot{y} = 0$$

$$-10t + \frac{1}{\sqrt{2}} = 0$$

$$t = \frac{1}{\sqrt{2}}$$

Find y when
$$t = \frac{V}{10N2}$$
 for maximum height
$$y = \frac{V}{N2} \cdot \frac{V}{10N2} - 5\left(\frac{V}{10N2}\right)^{2}$$

$$= \frac{V^{2}}{20} - \frac{5V^{2}}{200}$$

$$= \frac{V^{2}}{400}$$

(iii) Require ball and catcher at the same x value when y = 2

Let time T elapse for outch to be taken

horizontal distance for ball is $x = \frac{VT}{\sqrt{2}}$

distance from kicker for catcher is x = 20+27

$$\frac{VT}{\sqrt{12}} = 20 + 2T$$

$$\frac{VT}{\sqrt{12}} = 20$$

$$T(\frac{V}{\sqrt{12}} - 2) = 20$$

$$T = \frac{20\sqrt{2}}{V - 2\sqrt{2}}$$

At this time
$$y = 2$$

 $y = \frac{\sqrt{100}}{\sqrt{100}} + 5t^2$
 $z = \frac{\sqrt{100}}{\sqrt{100}} + 5t^2$
 $z = \frac{\sqrt{1000}}{\sqrt{1000}} - 5(\frac{2000}{\sqrt{1000}})^2$
 $z(v-2\sqrt{100})^2 = 20v(v-2\sqrt{100}) + 5(\frac{20\sqrt{100}}{\sqrt{1000}})^2$

$$2(V^{2}-|\overline{z}V+8) = 20V^{2}-40\sqrt{z}V-4000$$

$$V^{2}-4\sqrt{z}V+8 = 10V^{2}-20\sqrt{z}V-2000$$

$$0 = 9V^{2}-16\sqrt{z}V-2008$$

$$V = \frac{16\sqrt{z}}{\sqrt{(16\sqrt{z})^{2}+4\times 9\times 2008}}$$

$$V > 0$$

$$V = \frac{16\sqrt{z}}{\sqrt{z}} = \frac{16\sqrt{z$$