

Politécnico de Coimbra

Sistemas de Informação II

2024/25 Trabalho Prático – Meta 2

João Rosa – 2022131973 Bruno Martins - 2022147149

Índice

1 - Selecionar o processo de negócio a modelar	3
1.2 - Questões de Negócio Mais Relevantes	3
1.3 - Processo Inicial a Modelar	3
1.4 - Razões para Escolher este Processo	3
2 - Avaliar a granularidade	4
2.1 - Objetivo da Granularidade	4
2.2 - Granularidade Proposta	4
2.3 - Justificação da Granularidade	4
3 - Dimensões e atributos	5
3.1 - Dimensões Propostas	5
3.2 - Relações Entre Dimensões e Factos	6
3.3 - Justificação da Escolha das Dimensões	6
4 - Factos	7
4.1 - Tabela de Factos Principal	7
4.2 - Factos Selecionados	7
4.3 - Chaves Estrangeiras	7
4.4 - Justificação dos Factos Selecionados	8
5 - Modelo em estrela	8
6 - Cálculo do tamanho aproximado do modelo	9
7. Tratamento do modelo em estrela no SQL Server	13
8. Vistas no Visual Studio Data Warehouse	14
8.1. Vista de Valor total de bolsas recebidas por curso em 2020	14
8.2. Vista de Estudantes em Regime de Frequência Integral por Ano Letivo	15
 8.3. Vista de Comparação de Propinas a Pagar e Bolsas Recebidas por Curso (2022-2023) 	16
8.4. Vista de Análise de Inscrições no Curso de Enfermagem por Ano Letivo e Seme 17	stre
8.5. Vista de Análise de Cursos com Número de Estudantes Superior a 650 no Ano Letivo de 2020	18
9. Dashboard's no Power Bl	19
 9.1. Dashboard - Análise do Desempenho Académico e Frequência dos Estudantes Ano Letivo 	por 19
9.2. Dashboard - Distribuição de Género por Curso na Instituição	20
9.3. Dashboard - Distribuição Geográfica da Residência dos Estudantes por Curso	21
9.4. Dashboard - Tendências de Entrada de Estudantes por Curso e Ranking de Cur Mais Exigentes	sos 22
9.5. Dashboard - Análise de Propinas Pagas e Receita Total por Ano e Localização	23
10. Conclusão	24
11. Referências	25

1 - Selecionar o processo de negócio a modelar

1.1 - Objetivo do Sistema

O sistema deve:

- Compreender e monitorizar o desempenho académico.
- Facilitar decisões estratégicas.
- Aumentar o sucesso dos alunos e melhorar a qualidade do ensino.

1.2 - Questões de Negócio Mais Relevantes

Perguntas que a universidade gostaria de responder imediatamente.

1. Desempenho Académico:

- Quais disciplinas têm maiores taxas de reprovação?
- Qual a taxa de sucesso dos alunos em cada curso por semestre/ano letivo?
- Existem padrões relacionados com condições socioeconómicas e desempenho?

2. Gestão Financeira:

- Qual o impacto das propinas em atraso no desempenho dos estudantes?
- Quantos alunos dependem de apoio financeiro?

3. Eficiência das Matrículas:

- Quantos estudantes têm matrículas pendentes?
- Qual a correlação entre a regularização de matrículas e a taxa de sucesso académico?

1.3 - Processo Inicial a Modelar

Baseando-nos no impacto estratégico e na disponibilidade de dados, o processo prioritário pode ser:

• Identificação dos fatores que influenciam o sucesso académico.

1.4 - Razões para Escolher este Processo

1. Impacto direto no sucesso do estudante:

Melhoria do ensino e estratégias de apoio.

2. Disponibilidade de dados imediata:

 A universidade já tem informações sobre notas, matrículas, e condições financeiras.

3. Benefícios de curto e longo prazo:

Garante intervenções rápidas e planeamento estratégico.

2 - Avaliar a granularidade

2.1 - Objetivo da Granularidade

- Capturar o nível mais baixo de detalhe necessário para responder às perguntas de negócio.
- Permitir a análise desde o nível individual (estudantes, disciplinas) até o nível agregado (cursos, semestres, anos).

2.2 - Granularidade Proposta

2.2.1 - Nível mais fino: Registo de desempenho por estudante e disciplina em cada semestre

- o Cada linha da tabela de factos representará:
 - Um estudante.
 - Uma disciplina.
 - Um semestre.
 - Informações financeiras associadas (propinas pagas, bolsas).

2.2.1 - Granularidade nas dimensões:

- o **Tempo**: Ano letivo e semestre.
- o **Estudantes**: Detalhes demográficos e socioeconómicos.
- o Cursos: Informações gerais (área, duração).
- o **Disciplinas**: Nome, carga horária, curso associado.

2.3 - Justificação da Granularidade

- **Análise detalhada**: Nível de disciplina e semestre permite identificar problemas e tendências específicas.
- Flexibilidade para agregação:
 - o Por curso: Sucesso académico de todos os estudantes.
 - o Por semestre/ano: Tendências de desempenho ao longo do tempo.
 - Por perfil socioeconómico: Impacto das condições financeiras no sucesso.

3 - Dimensões e atributos

3.1 - Dimensões Propostas

1. Dimensão Estudantes:

- Descreve os estudantes, incluindo informações demográficas e socioeconómicas.
- Atributos principais:
 - ID Estudante (chave primária)
 - Nome_Estudante
 - Genero
 - Idade
 - Situacao_socioeconomica (baixo = 1, médio = 2, alto = 3)
 - Regime Frequencia (tempo integral/parcial)
 - Ano Ingresso
 - Residência

2. Dimensão Cursos:

- Representa os cursos oferecidos pela universidade.
- Atributos principais:
 - ID Curso (chave primária)
 - Nome Curso
 - Area_Curso (Gestão, Tecnologia, Saúde)
 - Duração (anos)
 - Coordenado
 - Numero Estudantes
 - Taxa_Adesao
 - Taxa_Saída

3. Dimensão Disciplinas:

- o Detalha as disciplinas associadas aos cursos.
- Atributos principais:
 - ID_Disciplina (chave primária)
 - Nome Disciplina
 - Semestre (1 a 6)
 - Carga horaria (horas por semestre)
 - ECTS
 - Responsável

4. Dimensão Tempo:

- o Permite análises ao longo do tempo.
- Atributos principais:
 - ID_Tempo (chave primária)
 - Ano_letivo (2019 a 2024)
 - Semestre (1 a 2)

5. Dimensão Financeiro:

- Relaciona-se com o estado financeiro dos estudantes.
- Atributos principais:
 - ID_Financeiro (chave primária)
 - Total Propinas
 - Valor Bolsa

3.2 - Relações Entre Dimensões e Factos

- Cada dimensão está relacionada a uma tabela de factos central, que armazena medidas quantitativas como notas e taxas de sucesso.
- Exemplo de Fato Principal:
 - o Tabela de desempenho académico:
 - ID_Desempenho, Nota_Final, Frequencia, Matricula_Ativa, Propina_A_Pagar, Bolsa_Recebida, Ano_Letivo, Semestre, Curso_ID_Curso, Disciplinas_ID_Disciplinas, Tempo_ID_Tempo, Estudantes_ID_Estudantes, Finaceiro_ID_Financeiro

3.3 - Justificação da Escolha das Dimensões

- Dimensão Estudantes: Permite análises demográficas e socioeconómicas.
- Dimensão Cursos: Identifica os cursos mais populares e bem-sucedidos.
- Dimensão Disciplinas: Ajuda a identificar disciplinas com maior ou menor sucesso.
- Dimensão Tempo: Essencial para análises temporais.
- Dimensão Financeiro: Mostra o impacto da situação financeira no desempenho.

4 - Factos

4.1 - Tabela de Factos Principal

- Nome: desempenho_academico
- **Descrição**: Contém informações relacionadas ao desempenho académico, status financeiro e matrículas.

4.2 - Factos Selecionados

- 1. Nota Final:
 - o **Descrição**: Nota do estudante numa disciplina específica.
 - o **Tipo**: Numérico (0 a 20).
- 2. Frequência:
 - o **Descrição**: Percentagem de presença do estudante na disciplina.
 - Tipo: Numérico (0% a 100%).
- 3. Matrícula Ativa:
 - Descrição: Indica se o estudante está matriculado (Sim/Não).
 - o **Tipo**: Numérico (0 para nao, 1 para sim).
- 4. Propina Paga:
 - o **Descrição**: Valor das propinas pagas pelo estudante para a disciplina/curso.
 - o **Tipo**: Numérico (por exemplo, €697,00).
- 5. Bolsa Recebida:
 - o **Descrição**: Valor da bolsa recebida pelo estudante.
 - Tipo: Numérico (por exemplo, €1.000,00).
- 6. Ano Letivo e Semestre:
 - o **Descrição**: Período de tempo em que a disciplina foi frequentada.
 - o **Tipo**: Numérico.

4.3 - Chaves Estrangeiras

Estas chaves ligam a tabela de factos às dimensões:

- ID_Estudante: Relaciona com a Dimensão Estudantes.
- ID_Curso: Relaciona com a Dimensão Cursos.
- ID_Disciplina: Relaciona com a Dimensão Disciplinas.
- **ID_Tempo**: Relaciona com a Dimensão Tempo.
- ID_Financeiro: Relaciona com a Dimensão Financeiro.

4.4 - Justificação dos Factos Selecionados

- Relevância para as análises:
 - A Nota Final mede diretamente o desempenho académico.
 - A **Frequência** permite identificar padrões de envolvimento dos estudantes.
 - A **Propina Paga** e a **Bolsa Recebida** destacam o impacto financeiro no sucesso académico.
- Cobertura de perguntas de negócio:
 - Quais estudantes apresentam desempenho abaixo do esperado?
 - Como a frequência influencia as notas?
 - o Quais cursos têm maior impacto financeiro?

5 - Modelo em estrela

6 - Cálculo do tamanho aproximado do modelo

De seguida iremos efetuar os cálculos necessários para saber, aproximadamente, quanto irá ocupar o modelo:

Cálculo Parâmetros Físicos

HEADER FIXO (HF)= 84 bytes

HEADER VARIAVEL (HV)= 5 bytes por cada registo

(2 bytes header do registo + 1 byte com nº de colunas) + (2 bytes no Row directory)

PCTFREE = 10 (ENTRE 1 A 25)

PCTUSED = 70 (ENTRE 40 A 95)

TAMANHO DO BLOCO (T.B.) = 4096 Bytes (por defeito)

TAMANHO MEDIO DO REGISTO (T.M.R.) =

SOMA(Tamanho médio dos campos)

- + 5 bytes por registo (Header Variavel)
- + 1 byte por cada coluna do registo

ESPAÇO LIVRE NO BLOCO (E.L.B.) =

Tamanho do Bloco * (100 - PCTFREE) / 100 - Header Fixo

Nº DE REGISTOS POR BLOCO (N.R.B.) =

Espaço Livre do Bloco / Tamanho Médio do Registo (ARREDONDADO PARA BAIXO)

Cálculo do NEXT

Nº DE BLOCOS (N.B. Previstos) =

N° Registos Previstos / N° Registos por Bloco (ARREDONDADO PARA CIMA)

ESPAÇO NEXT DA TABELA (E.N.T.) =

Nº Blocos Previstos * Tamanho do Bloco

*INT = 4 bytes, VARCHAR(255) = 50 bytes, date&time = 8 bytes

Tabela desempenho_academico

- 30 cursos, com 40 alunos por turma.
- Cada aluno tem registos de desempenho para 6 disciplinas por semestre.
- 2 semestres por ano, totalizando 12 registos por aluno por ano.
- Dados para 5 anos.

Cálculo do número de registos:

30×40(alunos por curso)×12(registos por ano)×5(anos)=360.000registos

Tabela estudantes

- 30 cursos, com 40 alunos por turma.
- Dados de **5 anos**, assumindo renovação completa de estudantes a cada ano.

Cálculo do número de registos:

30×40(alunos por curso por ano)×5(anos)=6.000registos

Tabela financeiro

- Cada estudante tem um registo financeiro associado.
- O número de registos é o mesmo da tabela estudantes.

Cálculo do número de registos:

6.000registos (igual ao número de estudantes)

Tabela disciplinas

- Número fixo de disciplinas: 120.
- Não varia ao longo dos anos.

Cálculo do número de registos:

120 registos (fixo)

Tabela cursos

- Número fixo de cursos: 30.
- Não varia ao longo dos anos.

Cálculo do número de registos:

30 registos (fixo)

Tabela tempo

- Cada semestre é representado por um registo.
- Existem 5 anos, com 2 semestres por ano.

Cálculo do número de registos:

5×2=10 registos (fixo para 5 anos)

desempenho_academico (360.000 registos):

Tamanho médio do registo (T.M.R.) = 63 bytes Espaço livre no bloco (E.L.B.) = 4096 * (100 - 10) / 100 - 84 = 3671,60 bytes Número de registos por bloco (N.R.B.) = 3671,60 / 63 = 58Número de blocos (N.B.) = 360000 / 58 = 6207Espaço total da tabela (E.N.T.) = 6207 * 4096 = 25425408 bytes

estudantes (6000 registos):

Tamanho médio do registo (T.M.R.) = 222 bytes Espaço livre no bloco (E.L.B.) = 4096 * (100 - 10) / 100 - 84 = 3671,60 bytes Número de registos por bloco (N.R.B.) = 3671,60 / 222 = 16Número de blocos (N.B.) = 6000 / 16 = 375Espaço total da tabela (E.N.T.) = 375 * 4096 = 1536000 bytes

financeiro (6000 registos):

Tamanho médio do registo (T.M.R.) = 20 bytes Espaço livre no bloco (E.L.B.) = 4096 * (100 - 10) / 100 - 84 = 3671,60 bytes Número de registos por bloco (N.R.B.) = 3671,60 / 20 = 183Número de blocos (N.B.) = 6000 / 183 = 33Espaço total da tabela (E.N.T.) = 33 * 4096 = 135168 bytes

disciplinas (120 registos):

Tamanho médio do registo (T.M.R.) = 169 bytes Espaço livre no bloco (E.L.B.) = 4096 * (100 - 10) / 100 - 84 = 3671,60 bytes Número de registos por bloco (N.R.B.) = 3671,60 / 169 = 21Número de blocos (N.B.) = 120 / 21 = 6Espaço total da tabela (E.N.T.) = 6 * 4096 = 24576 bytes

cursos (30 registos):

Tamanho médio do registo (T.M.R.) = 175 bytes Espaço livre no bloco (E.L.B.) = 4096 * (100 - 10) / 100 - 84 = 3671,60 bytes Número de registos por bloco (N.R.B.) = 3671,60 / 175 = 20Número de blocos (N.B.) = 30 / 20 = 2Espaço total da tabela (E.N.T.) = 2 * 4096 = 8192 bytes

tempo (10 registos):

Tamanho médio do registo (T.M.R.) = 20 bytes Espaço livre no bloco (E.L.B.) = 4096 * (100 - 10) / 100 - 84 = 3671,60 bytes Número de registos por bloco (N.R.B.) = 3671,60 / 20 = 183Número de blocos (N.B.) = 10 / 183 = 1Espaço total da tabela (E.N.T.) = 1 * 4096 = 4096 bytes

Tamanho total do modelo = 25425408 + 1536000 + 135168 + 24576 + 8192 + 4096 = 27133440 bytes (~25,87 MB)

7. Tratamento do modelo em estrela no SQL Server

De forma a podermos trabalhar o problema no Visual Studio e no PowerBI foi necessário criarmos a BD na SQL Server e popular esta. Nas figuras 22 e 23 podemos ver a Base de dados no SQL Server e alguns dos dados embutidos nesta:

	id_estudante	nome_estudante	genero	idade	situacao_socioeconomica	regime_frequencia	ano_ingresso	residencia
1	1	Ulysses Rasher	F	28	3	Integral	2020	Drayton Valley
2	2	Ephraim Boick	M	21	1	Integral	2021	Loa Janan
3	3	Henrietta McIntosh	M	26	1	Parcial	2019	Dallas
4	4	Barbra Olennikov	M	29	1	Integral	2022	Pedome
5	5	Dominica Inman	F	19	2	Integral	2019	Corumbá
6	6	Aylmar Luscott	M	23	1	Integral	2018	La Unión
7	7	Cornelle Lucius	M	26	1	Integral	2023	Alilem
8	8	Cate Espley	М	27	1	Parcial	2022	Bollnäs
9	9	Joycelin Leeuwerink	M	26	2	Integral	2022	Almoínhas Velhas
10	10	Codi Mulgrew	M	22	3	Parcial	2019	Charyshskoye
11	11	Kliment Connell	М	19	2	Parcial	2021	Mae Wang
12	12	Kinny Fellowes	M	29	1	Parcial	2021	Cipesing
13	13	Orion Frears	F	19	1	Parcial	2018	Kukuna
14	14	Ker Habard	F	26	2	Integral	2019	Ercheng
15	15	Maudie Ranken	M	22	3	Parcial	2022	Nishinoomote
16	16	Elvira Edel	F	20	1	Parcial	2019	Ustrzyki Dolne
17	17	Qalli Ealak	Е	25	1	Integral	2010	Herenes

8. Vistas no Visual Studio Data Warehouse

Com o intuito de apoiar um gestor, foram escolhidas no Visual Studio Data Warehouse que proporcionam uma visão abrangente e estratégica do desempenho e das tendências de negócios. Cada perspetiva foi selecionada com base na sua capacidade de fornecer informações valiosas para apoiar as decisões do gestor no âmbito do processo de negócio.

8.1. Vista de Valor total de bolsas recebidas por curso em 2020

Objetivo:

Analisar o total de bolsas atribuídas por curso no ano letivo de 2020, identificando a repartição dos recursos financeiros.

Justificação:

A vista apoia decisões estratégicas ao revelar cursos com maior necessidade de bolsas, permitindo ajustes nas políticas de apoio financeiro e garantindo uma distribuição mais eficiente e equitativa dos recursos.

8.2. Vista de Estudantes em Regime de Frequência Integral por Ano Letivo

Objetivo:

Mostrar os estudantes em regime de frequência integral por ano letivo, permitindo identificar quais alunos estão inscritos neste regime específico.

Justificação:

Esta vista apoia a análise de padrões de frequência e do perfil dos estudantes, ajudando a instituição a compreender a adesão ao regime integral ao longo dos anos. Também facilita a identificação de grupos específicos para a alocação de recursos ou para a definição de políticas académicas direcionadas.

8.3. Vista de Comparação de Propinas a Pagar e Bolsas Recebidas por Curso (2022-2023)

Objetivo:

Comparar os valores de propinas a pagar e bolsas recebidas por curso nos anos letivos de 2022 e 2023, identificando a relação entre os custos e os apoios financeiros atribuídos.

Justificação:

Esta vista apoia a análise da distribuição financeira entre cursos, ajudando a universidade a avaliar a adequação dos apoios atribuídos em relação às propinas cobradas. Permite, assim, ajustar políticas de bolsas e garantir uma maior equidade entre cursos.

8.4. Vista de Análise de Inscrições no Curso de Enfermagem por Ano Letivo e Semestre

Objetivo:

Apresentar os estudantes matriculados no curso de Enfermagem por ano letivo e semestre, permitindo identificar os alunos inscritos neste curso em períodos específicos.

Justificação:

Esta vista facilita a análise da evolução das inscrições no curso de Enfermagem ao longo dos anos, ajudando a instituição a identificar tendencias de matrícula e a planear recursos académicos. Além disso, apoia a definição de estratégias específicas para melhorar a adesão e o sucesso no curso.

8.5. Vista de Análise de Cursos com Número de Estudantes Superior a 650 no Ano Letivo de 2020

Objetivo:

Identificar os cursos no ano letivo de 2020 com mais de 650 estudantes matriculados e mostrar os alunos associados, detalhando a frequência de cada um.

Justificação:

Esta vista permite à instituição analisar os cursos com elevada adesão no ano de 2020, ajudando a compreender a distribuição de estudantes em cursos populares. A informação é útil para planear recursos, como salas de aula, docentes e materiais, bem como para avaliar a capacidade de gestão de grandes turmas, promovendo um ensino mais eficiente e equilibrado.

9. Dashboard's no Power Bl

Aproveitando a potência do Power BI, os nossos dashboard's oferecem análises sólidas e intuitivas com base no modelo em estrela previamente estabelecido. Cada visualização foi cuidadosamente concebida para fornecer perceções valiosas sobre o processo de negócio em questão.

9.1. Dashboard - Análise do Desempenho Académico e Frequência dos Estudantes por Ano Letivo

Objetivo:

Fornecer uma visão geral do desempenho académico dos estudantes ao longo dos anos letivos, analisando a média das notas finais, a distribuição de aprovados e reprovados, e a relação entre frequência às aulas e sucesso académico.

Justificação:

Esta dashboard apoia a monitorização do desempenho dos estudantes e a identificação de tendências ao longo dos anos letivos. A análise permite compreender a relação entre frequência às aulas e aprovação, bem como avaliar o impacto de diferentes anos letivos na performance média. Esta informação é crucial para gestores académicos na definição de estratégias para aumentar as taxas de sucesso, melhorar a participação dos estudantes e otimizar os recursos educacionais.

9.2. Dashboard - Distribuição de Género por Curso na Instituição

Objetivo:

Analisar a distribuição de estudantes por género em cada curso, destacando as diferenças entre géneros e fornecendo uma visão geral do equilíbrio entre estudantes masculinos e femininos na instituição.

Justificação:

Esta dashboard permite identificar padrões de distribuição de género por curso, ajudando a instituição a compreender a diversidade entre os estudantes e a avaliar se existem desequilíbrios significativos em áreas específicas. Essas informações podem ser úteis para desenvolver estratégias de inclusão, promover uma maior diversidade nos cursos e ajustar campanhas de recrutamento para atingir públicos-alvo sub-representados.

9.3. Dashboard - Distribuição Geográfica da Residência dos Estudantes por Curso

Objetivo:

Visualizar a localização geográfica dos estudantes de acordo com as suas residências, permitindo filtrar e analisar a distribuição por curso.

Justificação:

Esta dashboard oferece uma visão espacial da origem dos estudantes, ajudando a instituição a compreender padrões de distribuição geográfica e a identificar áreas com maior concentração de alunos. Esta informação é essencial para planeamento estratégico, como o direcionamento de campanhas de recrutamento ou a adaptação de políticas académicas para atender às necessidades de estudantes de regiões específicas.

9.4. Dashboard - Tendências de Entrada de Estudantes por Curso e Ranking de Cursos Mais Exigentes

Objetivo:

Analisar a quantidade de estudantes a ingressar em diferentes cursos ao longo dos anos letivos e identificar os cursos mais exigentes com base na média de notas finais.

Justificação:

Esta dashboard permite observar tendências de ingresso em cursos ao longo dos anos, ajudando a compreender a popularidade dos programas e a planejar estratégias de recrutamento. A análise dos cursos mais exigentes, baseada na média de notas finais, é essencial para avaliar a dificuldade dos programas, ajustar currículos e oferecer suporte adicional para melhorar o desempenho dos estudantes em cursos desafiadores.

9.5. Dashboard - Análise de Propinas Pagas e Receita Total por Ano e Localização

Objetivo:

Avaliar a soma das propinas pagas por resultado académico (aprovado/reprovado), a receita total por ano e a distribuição geográfica dos valores pagos pelos estudantes.

Justificação:

Esta dashboard fornece uma visão abrangente da contribuição financeira dos estudantes para a instituição, segmentada por resultados académicos e anos letivos. A análise geográfica permite identificar padrões regionais nas propinas pagas, enquanto a comparação entre anos ajuda a monitorizar tendências financeiras. Esta informação é crucial para planear orçamentos, ajustar políticas de apoio financeiro e avaliar o impacto das taxas sobre os resultados académicos dos estudantes.

10. Conclusão

Através da modelagem em estrela e da implementação de vistas e dashboards no Power BI, foi possível desenvolver um modelo robusto e adaptável, alinhado às necessidades estratégicas de gestão da instituição. O trabalho realizado permitiu analisar de forma abrangente o desempenho académico, a gestão financeira e os padrões de inscrição dos estudantes, utilizando ferramentas como o Power BI e o SQL Server. Estas análises revelaram tendências relevantes, como a relação entre frequência e aprovação, e avaliaram o impacto de fatores financeiros, como propinas e apoios, nos resultados académicos.

A componente geográfica proporcionou uma perspetiva detalhada sobre a origem dos estudantes, auxiliando no planeamento de estratégias de recrutamento e inclusão. Simultaneamente, a análise de tendências de inscrição destacou os cursos mais populares e exigentes, fornecendo informações cruciais para a gestão de recursos e suporte aos alunos.

Durante o desenvolvimento, concluiu-se que o Power BI apresenta vantagens significativas em relação ao Visual Studio, especialmente pela sua interface intuitiva e flexibilidade nas visualizações. Esta ferramenta mostrou-se essencial para análises interativas e apoio à decisão, reforçando sua eficácia no contexto de sistemas de informação educacionais.

Este projeto destacou a importância de sistemas bem estruturados para transformar dados em informações estratégicas, contribuindo para o sucesso da gestão académica e institucional. Os resultados alcançados demonstram a utilidade prática do modelo para facilitar o planeamento estratégico, a alocação de recursos e o desenvolvimento de políticas mais equitativas e eficazes. Assim, o trabalho constitui uma base sólida para expansões futuras e melhorias no âmbito da gestão de dados educacionais.

11. Referências

- Fichas Práticas da cadeira Sistema de Informação II, 2024/25;
- PDFs Teóricos da cadeira Sistema de Informação II, 2024/25
- PDF Teórico sobre parâmetros físicos da cadeira de AABD 2023/24;
- Website para gerar dados
 - o https://mockaroo.com/
- Website para conversão de SQL
 - o https://sqlines.com/online
- Website para elaboração do modelo conceptual e físico
 - o https://onda.dei.uc.pt/v4/