Index

- HW4 Ex1 Why sup $g([a,x,]) infg([a,x,]) \le M-m$? graph?
- Ex Suppose $f: [0,1] \to \mathbb{R}$ is integrable , If 1 is bounded Prove that $\int_{m}^{1} f dx \to \int_{0}^{1} f dx$ as $n \to \infty$ Fix $\epsilon > 0$, sup If 1 = M
- $Ex: f: (-1,1) \rightarrow \mathbb{R}$ diff at each $x \in (-1,1) \Rightarrow f': (-1,1) \rightarrow \mathbb{R}$
- Ex . 7.25 <u>Thms</u>: Mean Value Thm

 Darboux's Thm

Rolle's Thm

* Thm: If $f: [a,b] \to \mathbb{R}$ attains a max/min at c, then f'(c) = 0

Case 1:
$$x_i \in [a,b]$$
, $x_i = a$ or $x_i = b$

7hm:

Recall:

 $g: [a,b] \rightarrow \mathbb{R}$ is integrable

 \iff for any $\varepsilon > 0$, there is a partition $P = \{x_0, x_1, \dots, x_n\}$

s.t. U(g, P) - L(g, P) < E

Fix E>0.

Pick an $x_i \in (a,b)$ s.t.

$$X_1 - a < \frac{\mathcal{E}}{2(m-n)}$$

There is a partition $P' = \{x_1, \dots, x_{n-1}, x_n\}$ of $[x_1, b]$ s.t.

Take $P = \{a\} \cup P' = \{a', x_1, x_2, \dots, x_n\}$ $\cup (g, P) - \cup (g, P)$

= supg([a,x,])(x,-a) + U(g,P') - [infg([a,x,])(x,-a) + L(g,P')]

= supg([a,x,])(x,-a) - infg([a,x,])(x,-a) + [U(g,P') - L(g,P')]

$$= (\sup_{\text{only over } [a,x,]}) + (U(g,P') - L(g,P'))$$

$$\leq M - m$$

< (M-m)(x,-a) + 돌

$$< (M-m)\frac{\varepsilon}{2(M-m)} + \frac{\varepsilon}{2} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

General Case: $f \neq g$ at $x_1, x_2, \dots, x_p \in [a,b]$

 $g_{1} \quad g_{2} \quad g_{3} \quad \cdots \quad g_{p} = g$ $x_{1} \quad x_{1}.x_{2} \quad x_{1},x_{2}.x_{3} \quad x_{1}.x_{2}, \cdots .x_{p}$ $a \quad \downarrow \quad \downarrow \quad \downarrow$ $g \quad \text{int. over } [a,x_{1}] \quad g \quad \text{int. over } [x_{1},b]$ $\Rightarrow g \quad \text{is integrable}$

$$g$$
 is integrable
$$\int_a^b g \, dx = \int_a^b g \, dx$$