#### **Lecture 8: Statistical Inference**

Ailin Zhang

2023-05-30

## **Agenda**

- t-Test of a Single  $\beta_j$
- Confidence Intervals for Coefficients
- Confidence Intervals for Prediction
- Prediction Intervals for Prediction
- Sum of Squares
- Model Comparison (F-test, Today)

### **Nested Models**

- We say Model 2 is nested in Model 1 if Model 2 is a submodel of Model 1 (and Model 1 is an extension of Model 2)
  - Model A:  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$
  - Model B:  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$
  - Model C:  $Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \epsilon$
  - Model D:  $Y = \beta_0 + \beta_1(X_1 + X_2) + \epsilon$
- B is nested in A since A reduces to B when  $\beta_3 = 0$
- C is nested in A since A reduces to C when  $\beta_2 = 0$
- D is nested in B since B reduces to D when  $\beta_2 = \beta_1$
- B and C are NOT nested in either way
- D is not nested in C

# **Motivating Question: Model Comparison**

When two models are nested (Model 1 is nested in Model 2)

- The simpler model is called the reduced model (Model 1)
- The more general model is called the full model (Model 2)

Which model is better?

- SST? Full and ruduced model have equal SST.
- SSE?

$$SSE_{full} \leq SSE_{reduced}$$

SSR?

$$SSR_{full} \geq SSR_{reduced}$$

## **General Framework for Testing Nested Models**

 $H_0$ : Reduced model is true v.s.  $H_1$ : Full model is true

- Simplicity or Accuracy?
  - The full model fits the data better (with a smaller SSE) but it is more complex.
  - The reduced model doesn't fit as well but it is simpler.
  - If  $SSE_{reduced} \approx SSE_{full}$ : one can sacrifice a bit of accuracy in exchange for simplicity.
  - If SSE<sub>reduced</sub> >> SSE<sub>full</sub>:it would sacrifice too much in accuracy in exchange for simplicity. The full model is preferred.
- How to quantify?
  - F statistic!

### Construction of the F-statistic

- Consider the complexity (difference in the number of parameters)  $df_{H_h} df_{H_h}$
- and the fit

$$SSE_{H_0} - SSE_{H_A} = RSS_{H_O} - RSS_{H_A}$$

The F distribution with a,b degrees of freedom is defined to be the distribution of the ratio  $\frac{\chi_a^2/a}{\chi_b^2/b}$  when  $\chi_a^2$  and  $\chi_b^2$  are independent.

• Hence a reasonable test statistic is  $\frac{(SSE_{reduced} - SSE_{full})/(df_{reduced} - df_{full})}{SSE_{full}/df_{full}}$ 

For denominator  $SSE_{full}/df_{full}=MSE=\hat{\sigma}^2$  we use  $MSE_{full}$  rather than  $MSE_{reduced}$  since the full model is always true as the reduced model is a special case of the full model.

### The F-Statistic

$$F = \frac{(SSE_{reduced} - SSE_{full})/(df_{reduced} - df_{full})}{MSE_{full}}$$

- Under  $H_0$ , F statistic has an F-distribution with  $(df_{reduced} df_{full}, df_{full})$  degrees of freedom
- $F \ge 0$  since  $SSE_{reduced} \ge SSE_{full}$
- The smaller the F-statistic, the more the reduced model is favored

### **Decision Rule**



- Reject  $H_0$  if p-value  $< \alpha$  (usually  $\alpha = 5\%$ )
- Accept  $H_0$  otherwise

# **Example 1: Testing All Coefficients Equal to Zero**

$$H_0: \beta_1 = \beta_2 \cdots = \beta_p = 0$$
 v.s.  $H_a$ : not all  $\beta_1, \ldots, \beta_p = 0$ 

- The is a test to evaluate the **overall significance** of a model.
  - Full:  $y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip} + \epsilon_i$
  - Reduced:  $y_i = \beta_0 + \epsilon_i$  (All predictors are unnecessary)
- The OLS estimate for  $\beta_0$  in the reduced model is  $\hat{\beta}_0 = \bar{y}$ , so  $SSE_{reduced} = \sum_{i=1}^{n} (y_i \bar{y})^2 = SST_{full}$
- $F = \frac{(SSE_{reduced} SSE_{full})/(df_{reduced} df_{full})}{MSE_{full}} = \frac{(SST_{full} SSE_{full})/(n 1 (n p 1))}{MSE_{full}} = \frac{SSR_{full}/p}{MSE_{full}} = \frac{MSR_{full}}{MSE_{full}}$
- Moreover,  $F \sim F_{p,n-p-1}$  under  $H_0: \beta_1 = \beta_2 \cdots = \beta_p = 0$ .

## **Example 1: Testing All Coefficients Equal to Zero**

In R, the F statistic and p-value are displayed in the last line of the output of the summary() command.

```
data(trees)
trees$Diameter = trees$Girth
lmtrees = lm(log(Volume) ~ log(Diameter) + log(Height), data=trees)
summary(lmtrees)
##
## Call:
## lm(formula = log(Volume) ~ log(Diameter) + log(Height), data = trees)
##
## Residuals:
##
        Min
                   10
                        Median
                                      30
                                               Max
## -0.168561 -0.048488 0.002431 0.063637 0.129223
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.63162 0.79979 -8.292 5.06e-09 ***
  log(Diameter) 1.98265 0.07501 26.432 < 2e-16 ***
## log(Height) 1.11712 0.20444 5.464 7.81e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08139 on 28 degrees of freedom
## Multiple R-squared: 0.9777, Adjusted R-squared: 0.9761
## F-statistic: 613.2 on 2 and 28 DF. p-value: < 2.2e-16
```

# ANOVA (Analysis of Variance) and F-Test

The test of all coefficients = 0 is summarized in an ANOVA table:

| Source     | df    | Sum of Squares | Mean Squares | F                     |
|------------|-------|----------------|--------------|-----------------------|
| Regression | р     | SSR            | MSR          | $F = \frac{MSR}{MSE}$ |
| Error      | n-p-1 | SSE            | MSE          | IVISE                 |
| Total      | n-1   | SST            |              |                       |

- ANOVA is the shorthand for analysis of variance.
- It decomposes the total variation in the response (SST) into separate pieces that correspond to different sources of variation,

like SST = SSR + SSE in the regression setting.

# Example 2: General Test on Full and Reduced Models

```
lmfull = lm(log(Volume) \sim log(Diameter) + log(Height),
           data=trees)
lmreduced = lm(log(Volume) ~ 1, data=trees)
anova(lmreduced. lmfull)
## Analysis of Variance Table
##
## Model 1: log(Volume) ~ 1
## Model 2: log(Volume) ~ log(Diameter) + log(Height)
##
    Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 30 8.3087
## 2 28 0.1855 2 8.1232 613.19 < 2.2e-16 ***
```

anova (model1, model2)

# Example 3: Testing Some Coefficients Equal to Non-Zero Values

In the model for the trees data,

$$\log(\text{Volume}) = \beta_0 + \beta_1 \log(\text{Diameter}) + \beta_2 \log(\text{Height}) + \epsilon$$

recall we think that  $\beta_1 = 2$  and  $\beta_2 = 1$ .

We can test both coefficients in one test.

$$H_0: \beta_1 = 2, \beta_2 = 1$$

- Note in the reduced model, the coefficients of log(Diameter) and log(Height) are both known
- Terms with known coefficients in an MLR model are called offsets.
   One can add an offset term in an lm() model

lmreduced = lm(log(Volume) ~ 1, offset=2\*log(Diameter)+log(Heddata=trees)

# Example 3: Testing Some Coefficients Equal to Non-Zero Values

```
anova(lmreduced, lmfull)
```

```
## Analysis of Variance Table
##
## Model 1: log(Volume) ~ 1
## Model 2: log(Volume) ~ log(Diameter) + log(Height)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 30 0.18769
## 2 28 0.18546 2 0.0022224 0.1678 0.8464
```

## **Example 4: Testing the Equality of Coefficients**

Testing 
$$H0: \beta_1=\beta_2=\beta_3$$
 under the model  $Y=\beta_0+\beta_1X_1+\beta_2X_2+\beta_3X_3+\beta_4X_4+\epsilon$ , the reduced model is  $Y=\beta_0+\beta_1(X_1+X_2+X_3)+\beta_4X_4+\epsilon$ 

- Make a new variable  $W = X_1 + X_2 + X_3$
- Fit the reduced model by regressing Y on W and X4
- What is  $df_{reduced} df_{full}$ ? 2

```
lmfull = lm(Y ~ X1 + X2 + X3 + X4)
W = X1 + X2 + X3
lmreduced = lm(Y ~ W + X4)
# or simply
lmreduced = lm(Y ~ I(X1 + X2 + X3) + X4)
anova(lmreduced, lmfull)
```

### **Other Scenarios**

Testing Equality of Coefficients

```
lmfull = lm(Y ~ X1 + X2 + X3 + X4)
lmreduced = lm(Y ~ X1 + I(X2 + X3) + I(X2 + X4))
anova(lmreduced, lmfull)
```

Testing Coefficients under Constraints

```
lmfull = lm(Y \sim X1 + X2 + X3 + X4)
lmreduced = lm(Y \sim I(X1 + 2*X2) + X3 + X4)
anova(lmreduced, lmfull)
```

• Testing Coefficients under Constraints

```
lmfull = lm(Y ~ X1 + X2)
lmreduced = lm(Y ~ I(X1 - X2), offset = X2)
anova(lmreduced, lmfull)
```

## F-Test on a Single $\beta_j$ in equivalent to t-Test

If you want to test a single  $\beta_3 = 0$  in the model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$$

- You can accomplish the hypothesis test with a t-statistics for  $X_3$  from the output for summary( $lm(Y \sim X1 + X2 + X3)$ )
- Alternatively, you can conduct an F-test comparing the models

Full model: 
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$$

Reduced model: 
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

anova(
$$lm(Y \sim X1 + X2 + X3)$$
,  $lm(Y \sim X1 + X2)$ )

One can show that the F-statistic =  $(t-statistic)^2$  and the P-values are the same, thus the two tests are equivalent.

The proof involves complicate matrix algebra and it hence omitted.

## **Example**

```
lm1 = lm(log(Volume) ~ log(Diameter) + log(Height), data = trees)
lmreduced = lm(log(Volume) \sim log(Diameter), data = trees)
anova(lmreduced.lm1)
## Analysis of Variance Table
##
## Model 1: log(Volume) ~ log(Diameter)
## Model 2: log(Volume) ~ log(Diameter) + log(Height)
    Res.Df
               RSS Df Sum of Sq F Pr(>F)
        29 0.38324
## 1
## 2
        28 0.18546 1 0.19778 29.86 7.805e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summarv(lm1)$coef
                 Estimate Std. Error t value
##
                                                 Pr(>|t|)
## (Intercept)
              -6.631617 0.79978973 -8.291701 5.057138e-09
```

•  $(t\text{-statistics})^2 = 5.464^2 \approx 29.86 = \text{F-statistic}$ 

## log(Diameter) 1.982650 0.07501061 26.431592 2.422550e-21

• The P-values are both 7.8e - 6 (The slight difference is due to rounding)

1.117123 0.20443706 5.464388 7.805278e-06

## log(Height)