Weld Defect Classification Using Deep Neural Network

Ante Sokosa

June 8, 2023 Dimitrios Fafalis, PhD MEM T380 - Applied ML in ME

Problem & Approach

Data Preparation

Combine subsets

pd.concat

Features

• Standardscaler()

Target

One-hot encode pd.get_dummies

ACCESS and load the data

PREPROCESS the data

DERIVE features

Data Exploration

[(None, 11)]

input 2

input:

Architecture: unified DNN with multi-level features

Kernel Initializer = Random Normal
Tensorflow Random Seed = 0
Train Test Split Random State = 42
Hidden Layer Activation = Rectified Linear Unit
Output Layer Activation = Sigmoid

Learning Rate = 0.001
Regularization = 0.01
Optimizer = Adam
Batch Size = 1
Epochs = 1000
Early Stop Patience = 100

Suboptimal Models

Confusion Matrix Comparison

Average Accuracy Under 5 Fold Cross Validation (%)					
	Research Paper Normalized Stratified K Fold	Ours - Normalized Data		Ours - Standardized Data	
		K Fold	Stratified K Fold	K Fold	Stratified K Fold
Training	97.95	91.03	92.01	98.06	98.26
Testing	91.36	89.97	91.41	93.80	94.60

Conclusion / Paper Review

Any Unbalanced Validation?

Learning Rate Regularization Loss

Epochs?
Early Stop Patience?

References

- [1] L. Yang and H. Jiang, "Weld defect classification in radiographic images using unified deep neural network with multi-level features," *Journal of Intelligent Manufacturing*, vol. 32, no. 2, pp. 459–469, 2020. doi:10.1007/s10845-020-01581-2
- [2] D. Fafalis, "Project Spring 2023," MEM T380 Applied Machine Learning in Mechanical Engineering

Thank You!

Questions?