

Towards Remote Differential Diagnosis of Mental and Neurological Disorders using Automatically Extracted Speech and Facial Features

Vanessa Richter¹, Michael Neumann¹ and Vikram Ramanarayanan^{1,2}

¹Modality.Al, Inc., San Francisco, CA, USA

²University of California, San Francisco, San Francisco, CA, USA

vikram.ramanarayanan@modality.ai

Introduction

- The development of clinically valid, automatically extracted digital biomarkers for neurological & mental disorders has the potential to (a) aid clinicians in achieving quicker and more reliable diagnoses, and (b) offer fast and objective insights into patients' states.
- Research Questions:
 - How accurately can a machine learning classifier differentially distinguish between multiple disorders: depression (DEP), schizophrenia (SCHIZ), bulbar symptomatic (BS) and bulbar presymptomatic (BP) ALS?
 - Which modalities and features are most useful for this multi-class classification task?

Data & Methods

Audiovisual data

collected using

Tasks included:

intelligibility test

Diadochokinesis

syllables, (c) Read

(Bamboo reading

description task

(DDK) involving

repetition of

speech task

passage), (d)

Picture

(a) **Sentence**

(SIT), (b)

multimodal dialog

the Modality

system

Figure 1. Data collection and datasets: The number of sessions is displayed in (3) below the cohorts; mean age in years (y) and male/female ratio in brackets.

#	Cluster domain	Metrics	Tasks
1	Energy	SNR	all
2	Timing alignment	CTA	all
3	Timing, pauses	PPT	all
4	Timing, speaking (1)	articulation/speaking duration	Picture Description
5	Energy & articulation skills	SNR, syl.rate, syl.count & cTV	DDK
6	Timing, speaking (2)	articulation/speaking rate/time	$SIT_{5,9}$
7	Timing, speaking (3)	articulation/speaking rate/time	SIT_{-} {7,11,13,15},
			Bamboo task
8	Voice quality (DDK skills)	HNR, jitter & shimmer	DDK
9	Voice quality (periodicity)	HNR	all except DDK
10	Voice quality (amplitude variation)	shimmer	all except DDK
11	Voice quality (frequency variation)	jitter	all except DDK
12	Frequency (mean, min)	min & mean F0	all
13	Frequency (max, std)	max & std F0	all

Table 1(a) & (b). Audiovisual features and clusters of task-metric combinations derived using hierarchical clustering.

#	Cluster domain	Metrics	Tasks
1	Lip movement (1)	speed, acc. & jerk measures	all except DDK
2	Lip width	mean & max lip width	all
3	Mouth opening	mean & max lip aperture, mouth surface area	all
4	Lip movement (2)	speed, acc. & jerk metrics	DDK
5	Jaw movement (1)	speed, acc. & jerk metrics	DDK
6	Jaw movement (2)	speed, acc. & jerk metrics	SIT_7
7	Jaw movement (3)	speed, acc. & jerk metrics	SIT_5
8	Jaw movement (4)	min + max speed, acc. & jerk metrics	Picture Description
9	Jaw movement (5)	speed, acc. & jerk metrics	SIT_{9,11,13,15}, Bamboo,
			Picture Description (mean)
10	Mouth symmetry	mean mouth symmetry	all
11	Eye opening	mean and max eye opening	all

Figure 2. Feature Selection & Classification Pipeline.

- See Figure 2 for an overview of the methods applied.
- Additional classification & evaluation details (4+5):
 - Binary and multi-class classification using a MLP classifier.
 - Feature selection based on highest effect size per feature cluster within each fold.
 - Evaluation using F1 score, sensitivity, and specificity.

Results

Cohort	Speech	Facial	Speech + Facial		
	F1	F1	F1	SEN	SP
SCHIZ	0.72	0.53	0.72	0.72	0.91
BP ALS	0.55	0.36	0.57	0.57	0.86
BS ALS	0.62	0.47	0.64	0.65	0.88
DEP	0.61	0.46	0.64	0.64	0.88
Average	0.63	0.46	0.64	0.65	0.88

Figure 3. 4-class confusion matrix using both speech and facial features. F1-score: 0.64

Table 3. 4-class classification results. SEN: Sensitivity, SP: Specificity

- See Table 2 & 3: Overall, **employing both speech and facial features** is **beneficial** (exception: adding facial information does not enhance performance in binary HC vs. ALS cohorts experiments).
- See Table 1 & 2 + Figure 3:
 - **Best results** in detecting **schizophrenia**, followed by BS ALS in 4-class classification (Binary baseline: approximately equal performance in these disorders).
 - Greatest challenge in accurately predicting BP ALS (both binary & 4-class).

	•		,	,
facial_metrics_BambooPassage_aJC_abs_max	-0.51			
facial_metrics_SIT_11_width_max	-0.35	-0.44	0.31	
speech_metrics_SIT_05_shimmer	0.97		-0.31	
speech_metrics_DDK-AMR_shimmer	0.35		-0.63	
speech_metrics_SIT_09_jitter	0.43	0.26	-0.48	-0.2
speech_metrics_SIT_13_CTA	-1.4	-0.31	-1.2	
speech_metrics_DDK-AMR_SNR	1.9		2.4	
speech_metrics_SIT_07_speaking_rate	-0.73	0.59	-1.3	-0.31
speech_metrics_BambooPassage_speaking_rate	-2		-1.8	
speech_metrics_DDK-AMR_HNR	1	-0.3	0.86	
speech_metrics_SIT_15_HNR	0.94		0.75	
speech_metrics_DDK-AMR_cTV	0.39	0.43	1.8	
	SCHIZ	DEP	BS ALS	BP ALS

Figure 4. Effect Sizes for features selected across all multi-class classification folds. Magnitudes: small: 0.2 - 0.5, medium: 0.5 - 0.8 and large: > 0.8

- See Figure 4: Consistently chosen features primarily include speech features
 of timing, voice quality, and energy domains. Additionally, two facial features
 stand out: maximum lip width and maximum absolute acceleration of jaw
 movements.
- Many features show statistical significance across disorders when compared to controls, while the effect size magnitudes, feature combinations and in some cases the direction of effects differ.

Conclusions

- Combining speech and facial information proved particularly beneficial in the more complex task of multi-classification, with varying accuracy across disorders; highest separability shown for schizophrenia, lowest for BP ALS.
- Feature analysis indicates several features that are relevant across experiments (speech > facial).
- Future work: improve generalizability & explainability, while addressing limitations such as small sample size and lack of information on comorbidities.