4.2.1

¬¬p→p

1 F(¬¬p→p)	1
2 T(¬p→p)	1,T¬ ✓
3 T¬p	2,F→ ✓
4 Fp	2,F→
5 Fp	3,T¬

This is not valid because we can falsify it

 $((p \rightarrow q) \rightarrow p) \rightarrow p$

((P / 9/ / P/ / P		
	1. F((p→q)→p)→p ✓	
	1,F→ ✓	
	3. Fp, 1,F→	
4. F(p→q), 2,T→ ✓		5. Tp , 2,T→
6. T(p), 4, F→		
7. F(q), 4F→		

Unable to falsify , both branches require P to be true

 $(\neg p \rightarrow \neg q) \rightarrow (q \rightarrow p)$

<u> </u>		
	1. $F((\neg p \rightarrow \neg q) \rightarrow (q \rightarrow p)) \checkmark$	
	2. T(¬p→¬q), 1,F→✓	
	3. F (q→p), 1,F→✓	
	4. T(q), 2,F→	
	5. F(p), 2,F→	
6. F(¬p), 4,T→✓		7. T(¬q), 4,T→ ✓
8. T(p), 6, F¬		9. F(q), 7, T¬

Unable to falsify

 $p \rightarrow (p \land (q \lor p))$

	1. F(p→(p \((q \(\rangle p))) ✓	
	2. T(p), 1,F→	
	3. $F(p \land (q \lor p))$, 1, $F \rightarrow \checkmark$	
4. F(p), 3,F ∧		5. F(q∨p), 3,F∧ ✓
		6. F(q) , 5,F ∨
		7. F(p) , 5,F ∨

Unable to falsify, P is once false and once true

$(p \vee (q \wedge r)) \rightarrow ((p \vee q) \wedge (p \vee r))$

(4) (4) (7) (4)	177 (41 - 777	1 $E((n)/(a \wedge r)) \rightarrow ((n)/(a) \wedge (n)/(r))$		
		1. $F((p \lor (q \land r)) \rightarrow ((p \lor q) \land (p \lor r)) \checkmark$		
		2. T(p∨(q∧r)) 1,F→ ✓		
		3. $F((p \lor q) \land (p \lor r))$ 1, $F \rightarrow \checkmark$		
4. T(p)	, 2,T∨		5. T(q∧r),	2, T ∨ √
8. F(p∨q), 3,F∧ ✓	9. F(p∨r), 3,F∧ ✓		6. T(q) , 5, T △	
10. F(p) , 8, F∨	12. F(p) , 9, F∨		7. T(r), 5, T △	
				15. F(p∨r),
11. F(q), 8,F \vee	13. F(r) , 9, F∨		14. F(p∨q), 3,F∧ ✓	3,F ∕ ✓
			16. F(p) , 14, F \vee	18. F(p) , 15, F∨
			17. F(q), 14,F \vee	19. F(r) , 15, F∨

Unable to falsify

4.4.1

¬(¬¬p→p)	Negate
р→р	Convert to NNF
¬p ∨ p	Convert to NNF
[¬p ,p]	CNF

$\neg (((p \rightarrow q) \rightarrow p) \rightarrow p)$	Negate
((p→q)→p) ∧¬p	Convert to NNF
(¬(p→q)∨p)∧¬p	Convert to NNF
$(p \land \neg q \lor p) \land \neg p$	Convert to NNF
$((p \lor p) \land (\neg q \lor p)) \land \neg p$	Convert to CNF
[[p,p],[¬q,p],[¬p]]	CNF

$\neg((\neg p \rightarrow \neg q) \rightarrow (q \rightarrow p))$	Negate
$(\neg p \rightarrow \neg q) \land \neg (q \rightarrow p)$	Convert to NNF
(¬p→¬q) ∧ (q ∧ ¬p)	Convert to NNF
$(\neg\neg p \lor \neg q) \land (q \land \neg p)$	Convert to NNF
$(p \lor \neg q) \land (q \land \neg p)$	Convert to CNF
[[p,¬q],[q],[¬p]]	CNF

$\neg (p \rightarrow (p \land (q \lor p)))$	Negate
$p \land \neg (p \land (q \lor p)))$	Convert to NNF
$p \wedge (\neg p \vee \neg (q \vee p))$	Convert to NNF
$p \wedge (\neg p \vee (\neg q \wedge \neg p))$	Convert to NNF
$p \wedge ((\neg p \vee \neg q) \wedge (\neg p \vee \neg p))$	Convert to CNF
[[p],[¬p,¬q],[¬p,¬p]]	CNF

$\neg ((p \lor (q \land r)) \rightarrow ((p \lor q) \land (p \lor r)))$	Negate
$(p \vee (q \wedge r)) \wedge (\neg((p \vee q) \wedge (p \vee r)))$	Convert to NNF
$(p \lor (q \land r)) \land (\neg (p \lor q) \lor \neg (p \lor r))$	Convert to NNF
$(p \lor (q \land r)) \land ((\neg p \land \neg q) \lor (\neg p \land \neg r))$	Convert to NNF
$((p \lor q) \land (p \lor r)) \land ((\neg p \land \neg q) \lor (\neg p \land \neg r))$	Convert to CNF
$((p \lor q) \land (p \lor r)) \land ((\neg p \lor (\neg p \land \neg r)) \land (\neg q \lor (\neg p \land \neg r)))$	Convert to CNF
$((p \lor q) \land (p \lor r)) \land ((\neg p \lor \neg p) \land (\neg p \lor \neg r) \land (\neg q \lor \neg p) \land (\neg q \lor \neg r))$	Convert to CNF
[[p,q],[p,r],[¬p,¬p],[¬p,¬r],[¬q,¬p],[¬q,¬r]]	CNF

4.4.5

[¬p, q¬]	Set
[¬p,p]	Resolution using p, not possible to create
	empty set.
[[p,p],[¬q,p],[¬p]]	CNF
[[p],[¬q,p],[¬p]]	SET
[[],],[¬q,p],[]]	Resolution with p
[[p,-q],[q],[-p]]	CNF allready in set
[[],[¬q,p],[]]	Resolution with p
[[p],[¬p,¬q],[¬p,¬p]]	CNF
[[p],[¬p,¬q],[¬p]]	SET
[[],[¬p,¬q],[]]	Resolution with p
[[p,q],[p,r],[¬p,¬p],[¬p,¬r],[¬q,¬p],[¬q,¬r]]	CNF
[[p,q],[p,r],[¬p],[¬p,¬r],[¬q,¬p],[¬q,¬r]]	SET
[[q],[p,r],[],[¬p,¬r],[¬q,¬p],[¬q,¬r]]	Resolution with p

Formulate axioms in first-order logic that describes the properties of the spatial relations used in the image models.

```
\forall x \forall y (SUPPORTS(x,y) \rightarrow TOUCH(x,y))
\forall x \forall y (TOUCH(x,y) \rightarrow TOUCH(y,x))
\forall x \forall y (NEAR(x,y) \rightarrow NEAR(y,x))
\exists x \exists y (TOUCH(x,y) \rightarrow SUPPORTS(x,y))
\forall x \forall y (TOUCH(x,y) \rightarrow \neg PART\_OF(x,y))
\forall x \forall y (PART\_OF(x,y) \rightarrow \neg (SUPPORT(x,y) \land TOUCH(x,y) \land NEAR(x,y)))
\forall x \forall y (NEAR(x,y) \rightarrow \neg (PART\_OF(x,y) \land TOUCH(x,y)))
\forall x \forall y (PART\_OF(x,y) \rightarrow \neg PART\_OF(y,x))
```