Stochastik für Info Statistische Modelle und ihre Kalibrierung

Hanno Gottschalk

June 21, 2023

Statistische Modelle Was muß ein 'statistisches Modell' leisten?	
Beispiele für Statistische Modelle Das Produktmodell	8
Zufallsvariable – Statistik – Schätzer Zufallsvariable und Statistik Statistik und Punktschätzer. Eigenschaften von Punktschätzern. Erwartungstreue der Empirischen Varianz Erwartungstreue der Empirischen Varianz II Bias und asymptotische Erwartungstreue. Konsistenz von Schätzern. MSE - Mean Square Error	
Das Maximum Likelihood Prinzip Das Maximum Likelihood Prinzip Argmax und Argmin Maximum Likelihood Schätzer - Definition Likelihood und Log-Likelihood. Unabhängige Wiederholungen Maximum Likelihood Gleichungen Maximum-Likelihood-Gleichungen II. Beispiel	
Log-Likelihood und Kullback-Leibler Information KL-Information	

	onsistenz von Maximum Likelihood Welche Rolle spielt die KL-Info? Mathematische Feinheiten	
Ν	umerische Beispiele	35
	ML für die Weibullverteilung	36
	Numerische Lösung	
	Konvergenz zu KL	38
	Konsistenz in der Simulation I	39

Inhaltsverzeichnis der Vorlesung

- Statistische Modelle
- Zufallsvariable Statistik Schätzer
- Gute Eigenschaften von Parameterschätzern
- Das Maximum Likelihood Prinzip
- Log-Likelihood und Kullback-Leibler Information
- Numerische Beispiele

Hanno Gottschalk

Stochastik für Informatiker - 2 / 39

Statistische Modelle

3/39

Was muß ein 'statistisches Modell' leisten?

- Begrifflicher Rahmen für stochastischen Ausgang von Zufallsexperimenten
- (Unabhängige) Wiederholung von (identischen) Zufallsexperimenten
- Modell f
 ür Stichprobe und Daten (uni- und multivariat)
- Vorauswahl f
 ür vermutete Verteilungsfamilie
- Anpassung der 'am besten passenden' Verteilung aus der Familie
- Konzept f
 ür Validierung der Vorauswahl

Hanno Gottschalk

Stochastik für Informatiker – 4 / 39

Statistische Modelle

Def. Ein statistisches Modell ist gegeben durch

- Eine Ereignismenge Ω
- ullet Zufallsvariablen $X,\ldots,X_n:\Omega o\mathbb{R}^d$ oder $o\mathbb{Z}^d$ oder andere Zustandsräume
- Eine Familie von W-Maßen P_{θ} auf Ω mit Parameterraum $\theta \in \Theta$

Bemerkung: Anstelle der W-Maße werden zumeist die Verteilungsfunktionen/Dichten $F_{X,\theta}$ / $f_{X,\theta}$ angegeben für

$$F_{X,\theta}(x) = P_{\theta}(X_{i,j} \le x_{i,j} \forall i, j) \quad X = \begin{pmatrix} X_{1,1} & \cdots & X_{1,d} \\ \vdots & \ddots & \vdots \\ X_{n,1} & \cdots & X_{n,d} \end{pmatrix}$$

Hanno Gottschalk

Stochastik für Informatiker - 5 / 39

Beispiele für Statistische Modelle

6/39

Das Produktmodell

Def.: Im *Produktmodell* modellieren wir die unabhängige Wiederholung von Zufallsexperimenten unter denselben Rahmenbedingungen.

Nehmen an, dass $X_j \sim F_{X,\theta}$ und (Unabhängigkeit der Zufallsexperimente – nicht der Merkmale!)

$$F_{X,\theta}(x) = F_{(X_1,\dots,X_n)',\theta}(x_{1,1},\dots,x_{n,d}) = \prod_{j=1}^n F_{X,\theta}(x_j)$$

bzw. dasselbe für Dichten (hier kontinuierlich)

$$f_{X,\theta}(x) = f_{(X_1,\dots,X_n)',\theta}(x_{1,1},\dots,x_{n,d}) = \prod_{j=1}^n f_{X,\theta}(\underline{x}_j)$$

Hanno Gottschalk

Stochastik für Informatiker – 7 / 39

Das Produktmodell - univariates Beispiel

Huhn legt an einem Tag mit W-keit p ein Ei oder nicht (W-keit 1-p)

 $n=200~{
m H\ddot{u}hner~im~Stall}$

Hanno Gottschalk

Stochastik für Informatiker - 8 / 39

Das Produktmodell - univariates Beispiel

- $\Omega = \{0, 1\}^{\times 200}, \, \omega = (0, 1, 1, 1, 0, \ldots) = (\omega_1, \omega_2, \ldots)$ $\Theta = [0, 1], \, \theta = p, \, P_p(\omega) = p^{\sum \omega_i} (1 p)^{n \sum \omega_i}$
- $X_j(\omega) = \omega_j$ Legeerfolg Huhn j ($\omega_j \in \{0, 1\}$)
- $f_{X,p}(0) = (1-p), f_{X,p}(1) = p$ diskrete Dichte
- Dichtefunktion

$$\begin{array}{lcl} f_{\underline{\underline{X}},p}(x_1,\ldots,x_{200}) & = & \left\{ \begin{array}{ll} p^{\sum x_i}(1-p)^{n-\sum x_i} & x \in \{0,1\}^{\times 200} \\ 0 & x \in \mathbb{Z}^{200} \text{ sonst} \end{array} \right. \\ & = & \left\{ \begin{array}{ll} \prod_{j=1}^n p^{x_j}(1-p)^{1-x_j} & x \in \{0,1\}^{\times 200} \\ 0 & \text{sonst} \end{array} \right. \end{array}$$

Hanno Gottschalk

Stochastik für Informatiker – 9 / 39

Zufallsvariable und Statistik

Def. Eine *Statistik* ist mathematisch einfach eine Zufallsvariable $S:\Omega\to\mathbb{R}$ (Messbarkeit weggelassen).

Warum unterscheidet man 'Zufallsvariale' und 'Statistik'?

Begriffe zwar math. identisch, aber mit unterschiedlicher Interpretation!

Zufallsvariable: Ergebnis von Zufallsexperiment → 'Datensatz'

Statistik: Möglichst aussagekräftige Kenngröße, die auf mehreren Datensätzen beruht

Beispiel Statistik: arith. Mittel von Z.V.: $\bar{X} = \frac{X_1 + \dots + X_n}{n}$.

Hanno Gottschalk

Stochastik für Informatiker – 11 / 39

Statistik und Punktschätzer

Def. Ein *Punktschätzer* ist eine Staistik, die speziell der Bestimmung eines Parameters θ_i eines statistischen Modells mit Parametern $\theta = (\theta_1, \dots, \theta_q) \in \Theta$ dient.

Beispiel: Das arithmetische Mittel \bar{Y} von Y is im lin. Modell zwar stets eine wichtige Statistik, im allgemeinen aber *kein* Punktschätzer für β .

Hanno Gottschalk

Stochastik für Informatiker – 12 / 39

Eigenschaften von Punktschätzern

Def.: In einem Stat. Modell heißt ein Punktschätzer $S:\Omega\to\mathbb{R}$ heißt *erwartungstreu* für einen Parameter θ_i , wenn

$$\mathbb{E}_{\theta}[S] = \theta_i, \ \forall \theta = (\theta_1, \dots, \theta_i, \dots, \theta_g) \in \Theta$$
 (1)

 \mathbb{E}_{θ} ist Erwartungswert bezüglich P_{θ}

Beispiel: Gegeben sei das univariate Produktmodell $X \sim N(\mu, \sigma^2)$ (oder andere Vert. mit μ als Parameter), dann ist \bar{X} ein erwartungstreuer Schätzer für μ

Denn:

$$\mathbb{E}_{\mu,\sigma^2}\left[\frac{X_1+\cdots+X_n}{n}\right] = \frac{\mathbb{E}_{\mu,\sigma^2}[X_1]+\cdots+\mathbb{E}_{\mu,\sigma^2}[X_n]}{n} = \frac{n\mu}{n} = \mu$$

Hanno Gottschalk

Stochastik für Informatiker - 13 / 39

Erwartungstreue der Empirischen Varianz

Gegeben sei das univariate Produktmodell $X \sim N(\mu, \sigma^2)$ (oder andere Vert. mit der Varianz σ^2 als Parameter), dann ist $\hat{\sigma}^2$ erwartungstreuer Schätzer für σ^2

$$\hat{\sigma}^2 = \hat{\sigma}^2(X_1, \dots, X_n) = \frac{1}{n-1} \sum_{j=1}^n (X_j - \bar{X})^2$$
 (2)

$$(n-1)\mathbb{E}_{\mu,\sigma^{2}}[\hat{\sigma}^{2}] = \sum_{j=1}^{n} \mathbb{E}_{\mu,\sigma^{2}} \left[\left((X_{j} - \mu) - (\bar{X} - \mu) \right)^{2} \right]$$

$$= \sum_{j=1}^{n} \left\{ \mathbb{E}_{\sigma^{2},\mu} [(X_{j} - \mu)^{2}] + \mathbb{E}_{\sigma^{2},\mu} [(\bar{X} - \mu)^{2}] - 2\mathbb{E}[(X_{j} - \mu)(\bar{X} - \mu)] \right\}$$

Hanno Gottschalk

Stochastik für Informatiker – 14 / 39

Erwartungstreue der Empirischen Varianz II

$$= \sum_{j=1}^{n} \left[\sigma^2 + \frac{\sigma^2}{n} - 2\operatorname{Cov}(X_j, \bar{X}) \right]$$
$$= (n+1-2)\sigma^2 = (n-1)\sigma^2$$

Denn:

$$Cov(X_j, \bar{X}) = \frac{1}{n} \sum_{k=1}^{n} Cov(X_j, X_k)$$
$$= \frac{1}{n} \sigma^2$$

ged.

Normierung 1/(n-1) nicht 1/n !!!!

Hanno Gottschalk

Stochastik für Informatiker - 15 / 39

Bias und asymptotische Erwartungstreue

Def.: Der *Bias* (Verzerrung) eines Schätzers S für θ_i in einem statistischen Modell ist

$$\operatorname{Bias}_{\theta}(S) = \mathbb{E}_{\theta}[S] - \theta_i, \quad \theta = (\theta_1, \dots, \theta_i, \dots, \theta_g) \in \Theta$$
 (3)

Der Bias ist der systematische Schätzfehler

Def. Ein Schätzer S (oder genauer eine Schätzerfamilie S_n) heißt *asymptotisch Erwartungstreu*, wenn

$$\operatorname{Bias}_{\theta}(S) = \operatorname{Bias}_{\theta}(S_n) \longrightarrow 0 \text{ für } n \to \infty$$
 (4)

Beispiel: $\frac{1}{n}\sum_{j=1}^n (X_j - \bar{X})^2$ is asymptotisch Erwartungstreu für σ^2 , denn der Bias ist $-\frac{\sigma^2}{n}$.

Hanno Gottschalk

Stochastik für Informatiker – 16 / 39

Konsistenz von Schätzern

Def.: Ein Schätzer S (oder genauer eine Schätzerfamilie S_n) für den Parameter θ_i heißt konsistent, wenn $S_n \to \theta_i$ nach Wahrscheinlichkeit

$$P(|S_n - \theta_i| > \epsilon) \to 0 \text{ für } n \to \infty \ \ \forall \epsilon > 0$$

Beispiel: \bar{X} ist konsistent für μ (schwaches Gesetz der gr. Zahlen)

Es gilt: S_n asymptotisch erwartungstreu und $Var(S_n) \to 0 \Rightarrow S_n$ ist konsistent.

Beweis: $\epsilon > 0$ und $n > n_0$ so dass $|\operatorname{Bias}(S_n)| < \epsilon/2 \Rightarrow$

$$P(|S_n - \theta_i| > \epsilon) \le P(|S_n - \mathbb{E}[S_n]| + |\operatorname{Bias}_{\theta}(S_n)| > \epsilon/2 + \epsilon/2)$$

 $\le P(|S_n - \mathbb{E}[S_n]| > \epsilon/2) \le \frac{4\operatorname{Var}(S_n)}{\epsilon^2} \to 0$

Hanno Gottschalk

Stochastik für Informatiker – 17 / 39

MSE - Mean Square Error

Def.: Der MSE eines Schätzers S (oder genauer einer Schätzefamilie S_n) ist definiert als

$$MSE_{\theta}(S) = \mathbb{E}_{\theta}[(S_n - \theta_i)^2]$$
 (5)

Es gilt die Bias-Varianz-Zerlegung:

$$MSE_{\theta}(S) = Var_{\theta}(S) + Bias_{\theta}(S)^{2}$$
 (6)

Denn: vgl. Skript Einf. Stoch.

Es gilt: Falls für einen Schätzer S gilt $MSE(S) \rightarrow 0 \Rightarrow S$ ist konsistent.

Denn: Der Schätzer ist dann asymptotisch Erwartungstreu und die Varianz verschwindet für $n \to \infty$

Hanno Gottschalk

Stochastik für Informatiker – 18 / 39

Das Maximum Likelihood Prinzip

- Beobachte Daten x_1, \ldots, x_n aus Zufallsexperiment
- Habe statistisches Modell $P_{\theta}^{(n)}, \theta \in \Theta$, für die Verteilung der n-fachen Wiederholung des Z.E. .
- Unter allen möglichen Modellen $P_{\theta}^{(n)}$ wähle dasjenige, welches den **beobachteten Daten** x_1, \ldots, x_n die höchste W.-keit zuordnet.

Dies kann als eine Schätzprozedur verstanden werden:

$$\hat{\theta}_{ML} = \hat{\theta}_{ML}(x_1, \dots, x_n) = \underset{\theta \in \Theta}{\arg\max} P_{\theta}(\{(x_1, \dots, x_n)\})$$
(7)

Hanno Gottschalk

Stochastik für Informatiker - 20 / 39

Argmax und Argmin

Def.: Das argmax einer Funktion $f:\Theta\to\mathbb{R}$ ist definiert als

$$\arg\max_{\theta \in \Theta} f(\theta) = \{\theta^* \in \Theta : f(\theta^*) \ge f(\theta) \ \forall \theta \in \Theta\}$$
(8)

Analog gilt für das argmin

$$\underset{\theta \in \Theta}{\operatorname{arg\,min}} f(\theta) = \{ \theta^* \in \Theta : f(\theta^*) \le f(\theta) \ \forall \theta \in \Theta \}$$
(9)

- Das argmax und argmin sind i.A. Mengen, d.h. mehrere Lösungen (oder keine) sind möglich
- Ist f stetig und Θ kompakt, so gibt es mindestens eine Lösung
- Sind argmin/argmax eindeutig, so identifiziere die Menge mit ihrem einzigen Element.

Hanno Gottschalk

Stochastik für Informatiker – 21 / 39

Maximum Likelihood Schätzer - Definition

Def.: $P_{\theta}^{(n)}$, $\theta \in \Theta$, sei ein statistisches Modell für das n-fach durchgefühte Zufallsexperiment X_1, \ldots, X_n .

(i) Sind die X_j diskret verteilt, so heißt eine Z.V. $\hat{\theta}_{ML}$ Maximum-Likelihood-Schätzer, falls

$$\hat{\theta}_{ML} = \hat{\theta}_{ML}(X_1, \dots, X_n) \in \operatorname*{arg\,max}_{\theta \in \Theta} P_{\theta}(\{(X_1, \dots, X_n)\}). \tag{10}$$

(ii) Sind die X_j kontinuierlich verteilt mit gemeinsamer Dichte $f(x_1,\dots,x_n|\theta)$, so heißt eine Z.V. $\hat{\theta}_{ML}$ Maximum-Likelihood-Schätzer, falls

$$\hat{\theta}_{ML} = \hat{\theta}_{ML}(X_1, \dots, X_n) \in \operatorname*{arg\,max}_{\theta \in \Theta} f(X_1, \dots, X_n | \theta). \tag{11}$$

Hier setzen wir nicht unbedingt die unabhängige oder identische Wiederholung der Zufallsexperimente voraus.

Hanno Gottschalk

Stochastik für Informatiker – 22 / 39

Likelihood und Log-Likelihood

Def.: Die **Likelihood** des statistischen Modells $P_{\theta}^{(n)}$, gegeben die Daten x_1, \ldots, x_n ist gegeben durch

$$\mathscr{L}(x_1, \dots, x_n | \theta) = \begin{cases} P_{\theta}(\{(x_1, \dots, x_n)\}) & \text{falls} X_j \text{ diskret} \\ f(x_1, \dots, x_n | \theta) & \text{falls} X_j \text{ kontinuierlich} \end{cases}$$
(12)

Der Logarithmus ist eine streng monoton steigende Funktion ⇒ (kontinuierlicher Fall)

$$\underset{\theta \in \Theta}{\operatorname{arg\,max}} f(X_1, \dots, X_n | \theta) = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \log \left(f(X_1, \dots, X_n | \theta) \right) \tag{13}$$

Def. Die log-Likelihood ist definiert als der Logarithmus der Likelihood-Funktion.

Hanno Gottschalk

Stochastik für Informatiker - 23 / 39

Unabhängige Wiederholungen

Wir betrachten den Spezialfall, dass X_1, \ldots, X_n unabhängig voneinander sind.

Insbesondere gilt im Produktmodell

$$\log \mathcal{L}(x_1, \dots, x_n | \theta) = \sum_{j=1}^n \log f(x_j | \theta)$$
(14)

Hanno Gottschalk

Stochastik für Informatiker - 24 / 39

Maximum Likelihood Gleichungen

Wie löst man das Optimierungsproblem in θ ?

- Ableiten in θ, Null setzen und Auflösen (ML-Gleichungen)
- Numerische Optimierungsmethoden

Def.: Die Maximum-Likelihood Gleichungen sind gegeben durch $(k=1,\ldots,q,\;\theta=(\theta_1,\ldots,\theta_q))$:

$$0 = \frac{\partial}{\partial \theta_k} \log \mathcal{L}(x_j | \theta) = \sum_{i=1}^n \frac{\partial}{\partial \theta_k} \log f(x_j | \theta), \tag{15}$$

Die score-Funktion ist gegeben als $l'(y|x,\theta) = \nabla_{\theta} l(x|y,\theta)$ mit $l(x|\theta) = \log f(x|\theta)$.

Hanno Gottschalk

Stochastik für Informatiker - 25 / 39

Maximum-Likelihood-Gleichungen II

Also können die ML-Gleichungen auch äquivalent über die Score-Funktionen formuliert werden:

Im Produktmodell gilt:

$$0 = \sum_{j=1}^{n} l'(x_j|\theta), \quad l(x,\theta) = \log f(x|\theta),$$

$$l'(x,\theta) = \nabla_{\theta} l(x,\theta) = \nabla_{\theta} \log f(x|\theta) = \frac{\nabla_{\theta} f(x|\theta)}{f(x|\theta)}.$$

Hanno Gottschalk

Stochastik für Informatiker - 26 / 39

Beispiel

 $X_j \sim \operatorname{Exp}(\lambda)$ sei exponentialverteilt, x_1, \dots, x_n Messwerte.

$$f(x|\lambda) = \lambda e^{-\lambda x}, \ x > 0.$$

$$l(x|\lambda) = \log(\lambda) - \lambda x$$

$$l'(x|\lambda) = \frac{1}{\lambda} - x$$

$$0 = \sum_{j=1}^{n} \left[\frac{1}{\lambda} - x_j\right] = \frac{n}{\lambda} - n\bar{x}$$

$$\hat{\lambda}_{ML} = \frac{1}{\bar{x}}$$

Hanno Gottschalk

Stochastik für Informatiker - 27 / 39

KL-Information

Def.: Gegeben sei ein statistisches Modell, das der Einfahheit halber mit kontinuierlichen Dichten $X_j \sim f(x,\theta)$ i.i.d. angenommen wird (Rechnungen für diskrete Diche analog), $\theta \neq \theta' \Rightarrow f(.|\theta) \neq f(.|\theta')$ (als L^1 -fkt.)

Die Kullback-Leibler Infomation ist gegeben durch

$$K(\theta_0|\theta) = -\mathbb{E}_{\theta_0} \left[\log \left(\frac{f(X|\theta)}{f(X|\theta_0)} \right) \right]$$
$$= -\int \log \left(\frac{f(x|\theta)}{f(x|\theta_0)} \right) f(x|\theta_0) dx \tag{16}$$

Satz: $K(\theta_0|\theta) \geq 0$ und Gleichheit gilt genau dann wenn $\theta = \theta_0$.

Hanno Gottschalk

Stochastik für Informatiker - 29 / 39

Jensensche Ungleichung

 $\log(t)$ ist strikt konkav $\Rightarrow -\log(t)$ ist strikt konvex.

Lemma: (Jensensche Ungleichung)

Y reelwertige Z.V. F konvex \Rightarrow

$$\mathbb{E}[F(Y)] \ge F(\mathbb{E}[Y])$$

Ist F strikt konvex, F''>0, dann gilt Gleichheit genau dann wenn Y=c fast sicher (Y deterministisch).

Bew.: Siehe Skript Einf. Stochastik.

Hanno Gottschalk

Stochastik für Informatiker – 30 / 39

Beweis eind. Minimum für die KL-Info

Anwendung: $Y = \frac{f(X|\theta)}{f(X|\theta_0)} \Rightarrow$

$$K(\theta_0|\theta) = \mathbb{E}_{\theta_0}[-\log(Y)] \ge -\log(\mathbb{E}_{\theta_0}[Y])$$

$$= -\log\left(\int \frac{f(x|\theta)}{f(x|\theta_0)} f(x|\theta_0) dx\right)$$

$$= -\log\left(\int f(x,\theta)\right) = -\log(1) = 0$$

Gleichheit gilt genau dann (Jensen) wenn $\frac{f(x|\theta)}{f(x|\theta_0)} = c \Leftrightarrow f(x|\theta) = cf(x|\theta_0)$.

Es muss gelten c = 1 (Normiertheit des Integrals über beide W.-keitsdichten), also

$$f(x|\theta) = f(x|\theta_0) \Rightarrow \theta = \theta_0$$
 qed.

Hanno Gottschalk

Stochastik für Informatiker – 31 / 39

Konsistenz von Maximum Likelihood

32 / 39

 $\operatorname{arg\,max} \mathscr{L}(X_1,\ldots,X_n|\theta)$

Welche Rolle spielt die KL-Info? Beobachtung: Sei wieder $P_{\theta}^{(n)}$ das Produktmodell zu $X_j \sim f(x|\theta_0)$.

D.h. θ_0 ist der wahre Parameter.

$$= \underset{theta \in \Theta}{\operatorname{arg max}} \log \mathcal{L}(X_1, \dots, X_n | \theta)$$

$$= \underset{\theta \in \Theta}{\operatorname{arg max}} \frac{1}{n} \log \mathcal{L}(X_1, \dots, X_n | \theta)$$

$$= \underset{\theta \in \Theta}{\operatorname{arg max}} \frac{1}{n} (\log \mathcal{L}(X_1, \dots, X_n | \theta) - \log \mathcal{L}(X_1, \dots, X_n | \theta_0))$$

$$= \underset{\theta \in \Theta}{\operatorname{arg max}} \frac{1}{n} (\log \mathcal{L}(X_1, \dots, X_n | \theta) - \log \mathcal{L}(X_1, \dots, X_n | \theta_0))$$

$$= \underset{\theta \in \Theta}{\operatorname{arg\,max}} \frac{1}{n} \sum_{j=1}^{n} [l(X_j | \theta) - l(X_j | \theta_0)]$$

$$\stackrel{?}{\to} \underset{\theta \in \Theta}{\operatorname{arg\,max}} \mathbb{E}_{\theta_0} \left[\log f(X|\theta) - \log f(X|\theta_0) \right] = -K(\theta_0|\theta) = \theta_0$$

Hanno Gottschalk

Stochastik für Informatiker – 33 / 39

Mathematische Feinheiten

Warum das Fragezeichen?

Zwar konvergiert die (redefinierte) log-Likelihood-Funktion gegen (minus) die KL-Information für jedes $\theta, \theta_0...$

Die minus KL-Info hat 1-deutiges Maximum in $\theta=\theta_0...$

Aber dürfen wir $\arg\max$ und Grenzwert (\rightarrow) einfach vertauschen?

Ja, unter geeigneten Voraussetzungen!

Hanno Gottschalk

Stochastik für Informatiker – 34 / 39

Numerische Beispiele

35 / 39

ML für die Weibullverteilung

Betrachten das Weibull-Produktmodell

$$f(x|\theta) = f(x|\eta, m) = \left(\frac{m}{\eta}\right) \left(\frac{x}{\eta}\right)^{m-1} \exp\left\{-\left(\frac{x}{\eta}\right)^{m}\right\}.$$
$$l(x|\theta) = l(x|\eta, m) = \log\left(\frac{m}{\eta}\right) + (m-1)\log\left(\frac{x}{\eta}\right) - \left(\frac{x}{\eta}\right)^{m}$$
$$\log \mathcal{L}(x_1, \dots, x_n|\eta, m) = \sum_{j=1}^{n} l(x_j|\eta, m)$$

Hanno Gottschalk

Stochastik für Informatiker - 36 / 39

Numerische Lösung

Da die ML-Gleichungen des Weibull-Produktmodells keine geschlossene Lösung haben, verwenden wir ein Verfahren mit numerischer Optimierung:

```
\begin{array}{lll} \text{n=}100 & \# \text{ set number of} \\ & \# \text{vei}(2,2) \text{ Pseudos} \\ \\ \text{theta0=c(2,2)} & \# \text{ set } \theta_0 \\ \\ \text{nlL=function(theta,X)} & -\text{sum(dweibull(X,} & \# \text{ def.} \\ \\ \text{scale=theta[1],shape=theta[2],log=TRUE))} & \# \text{ negLogLikelihood} \\ \\ \text{X=rweibull(n,scale=theta0[1],shape=theta0[2])} & \# \text{ generate sample} \\ \\ \text{thetaS=c(1,1)} & \# \text{ set start as Exp(1)} \\ \\ \text{optim(thetaS,nlL,X=X)} & \# \text{ calculate estimate} \\ \\ \text{ $\#$ by optimization of $\theta$} \\ \end{array}
```

Hanno Gottschalk

Stochastik für Informatiker - 37 / 39

Hanno Gottschalk

Stochastik für Informatiker - 38 / 39

Hanno Gottschalk

Stochastik für Informatiker – 39 / 39