Листок 5

Тема 5(2.1). Конечные поля. Расширения полей

Упражнения и задачи

- 1. Завершите доказательство леммы: пусть k поле характеристики p, тогда $\forall \alpha, \beta \in k$ $\forall d \in \mathbb{Z}_+ \ (\alpha + \beta)^{p^d} = \alpha^{p^d} + \beta^{p^d}$.
- 2. Докажите, что многочлен $x^2 + x + 1$ неприводим над \mathbb{F}_2 (т.е. $\mathbb{F}_2[x]/(x^2 + x + 1)$ является полем). Выпишите таблицы операций сложения и умножения элементов в этом поле, а также обратные элементы.
- 3. Найдите все неприводимые многочлены степени 4 над полем \mathbb{F}_2 .
- 4. Пусть L/K, M/L конечные расширения (произвольных) полей. Докажите, что расширение M/K также конечно и [M:K] = [K:L][L:K].
- 5. Докажите, что если L/K конечное расширение, то оно является алгебраическим.
- 6. Пусть $q = p^n$, $\mathbb{F}_{q^m}/\mathbb{F}_q$ расширение. Докажите, что если $f \in \mathbb{F}_q$ неприводимый, то \mathbb{F}_{q^m} поле разложения f.
- 7. Пусть p, q различные простые. Чему равно число неприводимых многочленов степени q в $\mathbb{F}_p[x]$?
- 8. Докажите следующие оценки для числа неприводимых многочленов степени n над \mathbb{F}_p :

$$\frac{1}{n}p^n - \frac{p}{n(p-1)}(p^{\frac{n}{2}} - 1) \leqslant \nu(n) \leqslant \frac{1}{n}(p^n - p).$$

- 9. Пусть $\sigma_j(f) = \sum_{g|f}' (Ng)^j$, где суммирование берется по неприводимым унитарным делителям g (для $f \in \mathbb{F}_q[x]$ степени $\deg f = n \ Nf = q^n$). Докажите, что
 - $\sum_{f} \frac{\sigma_0(f)}{(Nf)^s} = \frac{1}{(1-q^{1-s})^2};$
 - $\sum_{f} \frac{\sigma_1(f)}{(Nf)^s} = \frac{1}{(1-q^{1-s})(1-q^{2-s})}$.
- 10. Пусть $\alpha \in \mathbb{F}_q^*$. Докажите, что $x^n = \alpha$ разрешимо $\Leftrightarrow \alpha^{(q-1)/d=1}$, где d = (n, q-1), причем если разрешимо, то d решений.
- 11. Как выглядит подгруппа всех квадратов в \mathbb{F}_{2^n} ?
- 12. Пусть n|q-1, докажите, что $G=\{\alpha\in\mathbb{F}_q^*: x^n=\alpha$ разрешимо $\}$ подгруппа в \mathbb{F}_q^* , $|G|=\frac{q-1}{n}$.
- 13. Пусть $n|q-1, F=\mathbb{F}_q, K/F$ расширение конечных полей, [K:F]=n. Докажите, что $\forall \alpha \in F^*$ уравнение $x^n=\alpha$ имеет n решений в K.
- 14. Пусть K/F расширение конечных полей, char $F \neq 2$, [K:F] = 3. Докажите, что если α не является квадратом в F, то α не является квадратом и в K.
- 15. Пусть $F = \mathbb{F}_q$, K/F расширение конечных полей, $\alpha \in \mathbb{F}_q$, n|q-1 и $x^n = \alpha$ не разрешимо в \mathbb{F}_q . Тогда $x^n = \alpha$ не разрешимо в K, если (n, [K:F]) = 1.

1

16. Пусть $F = \mathbb{F}_q$, K/F — расширение конечных полей, [K:F] = 2. Докажите, что $\forall \beta \in K \ \beta^{1+q} \in F$. Более того, $\forall \alpha \in F \ \exists \beta \in K \colon \alpha = \beta^{1+q}$.

SageMath

- Исследуйте основные функции SageMath связанные с заданием и свойствами конечных полей
 - Определение конечного поля: FiniteField(), GF();
 - Неприводимый многочлен задающий конечное поле: polynomial(), опция modulus в FiniteField() для явного задания неприводимого многочлена модели конечного поля;
 - Решение уравнения $x^n = \alpha$: nth_root();
 - Поле разложения: splitting_field();
 - Расширение полей: extension().

Темы для самостоятельного изучения

• Поле \mathbb{F}_q , $q=p^n$, однозначно определено в $\overline{\mathbb{F}}_p$ как поле разложения многочлена z^q-z . Всякое конечное поле изоморфно одному и только одному \mathbb{F}_q . ([Степ], [LN])