1 Question 1 (10 points)

1. Code a function $Count_Pairs(X,R)$ that counts the number of pairs of points in a set X located at a distance less than R.

We want to implement a function that returns a Strauss-like point process. A Strauss process is based on iterations upon a constrained Poisson process in a window of size $[0;1] \times [0;1]$, where X_0 will denote the initial set of points. At each iteration, one of the points is slightly moved (e.g. according to a normal distribution of low variance). We then consider the quantity α defined as follows.

- If the point leaves the observation window, it returns to its initial position, i.e. $\alpha = 0$.
- If Count_Pairs(X_{n+1} ,R) is less than Count_Pairs(X_n ,R), with X_n the set of points at the iteration n and R a parameter of the process, then $\alpha = 1$.
- Else $\alpha = \gamma^{(\mathtt{Count_Pairs}(X_{n+1},R) \mathtt{Count_Pairs}(X_n,R))}$, with γ a parameter of the process.
- Finally, a number β is drawn randomly between 0 and 1. If $\beta < \alpha$, then the point set is updated with the shifted element. Otherwise, the original set is retained.
- **2.** Code a function Strauss(n,gamma,R,N) that generates a Strauss point process of n points and with parameters $\gamma \in [0;1]$, R>0 and N the number of iterations.
 - a. Test your Strauss(n,gamma,R,N) function with $n=100, \gamma=0.1, R=0.2$ and $N\geq 1000.$
 - **b.** Test your Strauss(n,gamma,R,N) function with $n=100,\,\gamma=0.1,\,R=0.05$ and $N\geq 1000.$
 - **c.** What happens if $\gamma = 1$?

The possible outcomes of questions \mathbf{a} , \mathbf{b} and \mathbf{c} are illustrated below.

¹A constrained Poisson process has a fixed number of points which doesn't follow on a Poisson law anymore.

3. How could you both quantitatively and qualitatively characterise the different point process you can generate with this function? (Bonus: do it.)

Useful Python function: scipy.spatial.distance.pdist.

Useful MATLAB function: pdist.

2 Question 2 (10 points)

Let us consider a set of binary images of size 1024×1024 made of white particles on a black background. The particles are disks or ellipses of random radius.

Propose and implement a method to retrieve the characteristics of the mean particle for each set of images at your disposal: area, perimeter and mean radius for disks; mean equivalent radius for ellipses.

Explain your methodology and any assumptions you may have to make.

Miles formulas in 2-D:

$$\frac{A}{W_{size}} = 1 - e^{-\lambda a}$$

$$\frac{P}{W_{size}} = e^{-\lambda a} \times \lambda p$$
(1)

$$\frac{P}{W_{size}} = e^{-\lambda a} \times \lambda p \tag{2}$$

$$\frac{\pi \chi}{W_{size}} = e^{-\lambda a} \left(\pi x - \frac{1}{4} (\lambda p)^2 \right) \tag{3}$$

where A, P and χ are the expected value of area, perimeter and euler's number measured on the images, and a, p and x their counterpart for the mean particle. The parameter λ would be the density of particles.

Useful Python functions: skimage.measure.area, skimage.measure.perimeter, skimage.measure.euler_number.

Optional, yet useful, Python function: scipy.optimize.fmin.

Useful MATLAB functions: bwarea, bwperim, bweuler. Optional, yet useful, MATLAB function: fminsearch.