Unit 2:- Solar Energy

Lecture 6

- Solar Thermal Power
- Concentrated Solar Power
- Solar Thermal Flat Panels
- Parabolic Trough Solar Power Plant
- Linear Fresnel Reflector
- Single and Two Axis Solar Tracking
- Two Axis Solar Tracking
- Parabolic Dish Sterling Engine
- Solar Wind Energy Down Draft Tower
- Concentrated Solar Power Tower
- Evacuated Tube for Hot Water & Electricity
- Photo Voltaic with Thermal
- Energy calculations.

Solar Thermal Power

Concentrated Solar Power

Solar Thermal flat Panels

Parabolic Trough Solar Power Plant

Linear Fresnel Reflectors

Single and Two Axis Solar Tracking

Shown are different solar trackers used in both PV and CPV; (a) dual-axis tracker, (b) polar aligned single-axis tracker, and (c) horizontal single-axis tracker.

Two Axis Solar Tracking

Dual-axis Tracker

Q L-6 Unit 2

Parabolic Dish Sterling Engine

Sterling Motor Engine

Parabolic Dish Sterling Engine

Solar Wind Energy Down Draft Tower

Concentrated Solar Power Tower

Concentrated Solar Power Tower

Evacuated Tube for Hot Water & Electricity

Photovoltaic with Thermal

How much of Solar Energy is converted into Electrical Energy in Photovoltaic Cells?

The energy conversion efficiency is a measure of how much of the solar energy is converted into electrical energy. The calculation for the energy conversion factor is,

$$\eta = (Pm / (E * A)) * 100$$

Where,

 η = Energy conversion factor, percent.

Pm = Maximum power output, watts.

E = Solar energy, insolation, watts per square meter.

A = Area of the solar cell, square meters.

For example, what is the energy conversion efficiency of a 175-watt solar panel that measures 0.75×1.50 meters, if the solar insolation is $1,000 \text{ W/m}^2$?

Since the area of the solar cell is $0.75 * 1.50 = 1.125 \text{ m}^2$, the efficiency is,

$$\eta = (175 / (1.125 * 1,000)) * 100$$

 $\eta = 15.6\%$.

This particular unit converts 15.6% of the available solar energy into electrical energy.

Thank You