Problem sheet for chapter 7: Linear maps and transformation matrices

Problem 1:

Consider the following maps $\mathbb{R}^2 \to \mathbb{R}^2$:

$$A_1: \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} -y \\ x \end{pmatrix} \qquad A_2: \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} x+1 \\ y \end{pmatrix} \qquad A_3: \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} x+y \\ y \end{pmatrix}$$

- (a) Which of the maps are linear?
- (b) For the linear maps: Write down the representation matrices.
- (c) For the linear maps: Draw pictures how they transform the letter F:

Lösung:

(a) All maps except A_2 are linear.

(b)
$$A_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, $A_3 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

(c) Images of *F* under the linear maps:

Problem 2:

Consider the letter F and the two transforms R and S shown below:

$$\mathbf{S} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 2 \end{pmatrix}, \qquad \mathbf{R} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

- (a) Draw the letter F after the transform $\mathbf{R} \cdot \mathbf{S}$ has been applied to it. What are the coordinates of the transformed point *A*?
- (b) Draw the letter F after the transform $\mathbf{S} \cdot \mathbf{R}$ has been applied to it. What are the coordinates of the transformed point A?

Lösung:

S is a scaling transform, **R** is a rotation by 45°.

(a) The point A = (1, 1) gets transformed as follows:

$$R \cdot S \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{2} & 2 \\ -\frac{1}{2} & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{2\sqrt{2}} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \approx \begin{pmatrix} 1.7678 \\ 1.0607 \end{pmatrix}$$

(b) The point A = (1, 1) gets transformed as follows:

$$S \cdot R \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \approx \begin{pmatrix} 0.7071 \\ 0 \end{pmatrix}$$

Problem 3:

Consider the rotation matrix $\mathbf{R}(\varphi) = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$.

- (a) Verify that it has unit determinant, i.e. $det(\mathbf{R}(\varphi)) = 1$,
- (b) Verify that it is orthogonal: $\mathbf{R}(\varphi)^T = \mathbf{R}(\varphi)^{-1}$
- (c) Verify that the composition of two rotations is a rotation by the sum of the angles, i.e.

$$\mathbf{R}(\varphi) \cdot \mathbf{R}(\theta) = \mathbf{R}(\varphi + \theta)$$

Hint: Use the addition theorems $\sin(\varphi + \theta) = \sin(\varphi)\cos(\theta) + \cos(\varphi)\sin(\theta)$ and $\cos(\varphi + \theta) = \cos(\varphi)\cos(\theta) - \sin(\varphi)\sin(\theta)$.

Lösung:

- (a) $\det(\mathbf{R}(\varphi)) = \cos^2(\varphi) + \sin^2(\varphi) = 1$
- (b) It is orthogonal because

$$\mathbf{R}^{T}(\varphi) \cdot \mathbf{R}(\varphi) = \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ -\sin(\varphi) & \cos(\varphi) \end{pmatrix} \cdot \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix} = \mathbf{E}$$

implying that $\mathbf{R}(\varphi)^T = \mathbf{R}(\varphi)^{-1}$.

$$\begin{aligned} & \text{(c)} \quad \mathbf{R}(\varphi) \cdot \mathbf{R}(\theta) = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix} \cdot \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \\ & = \begin{pmatrix} \cos(\varphi)\cos(\theta) - \sin(\varphi)\sin(\theta) & -\sin(\varphi)\cos(\theta) - \cos(\varphi)\sin(\theta) \\ \sin(\varphi)\cos(\theta) + \cos(\varphi)\sin(\theta) & \cos(\varphi)\cos(\theta) - \sin(\varphi)\sin(\theta) \end{pmatrix} = \begin{pmatrix} \cos(\varphi + \theta) & -\sin(\varphi + \theta) \\ \sin(\varphi + \theta) & \cos(\varphi + \theta) \end{pmatrix}$$

Problem 4:

Consider the following two vectors in \mathbb{R}^3 :

$$\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \qquad \vec{w} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

- (a) What is the angle between \vec{v} and \vec{w} .
- (b) Find a 3 × 3 rotation matrix **R** that rotates \vec{v} into \vec{w} , i.e. satisfies $\vec{w} = \mathbf{R} \cdot \vec{v}$.
- (c) Check that R is orthogonal and has a determinant of 1.
- (d) Find a matrix that rotates \vec{w} into \vec{v} .

Lösung:

(a)

$$\vec{v} \cdot \vec{w} = 1 = |\vec{v}| \cdot |\vec{w}| \cos(\theta) = 2\cos(\theta) \implies \theta = \frac{\pi}{3}$$

(b) The axis of rotation \vec{u} is perpendicular to both vectors, i.e. can be computed as cross product:

$$\vec{v} \times \vec{w} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \implies \vec{u} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$

With $c := \cos(\theta) = \frac{1}{2}$ and $s := \sin(\theta) = \frac{\sqrt{3}}{2}$ we get

$$su_k = \pm \frac{1}{2}$$
, $(1-c)u_k^2 + c = \frac{2}{3}$, $(1-c)u_ku_j = \pm \frac{1}{6}$

The axis-angle formula then gives:

$$\mathbf{R} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{6} + \frac{1}{2} & -\frac{1}{6} - \frac{1}{2} \\ -\frac{1}{6} - \frac{1}{2} & \frac{2}{3} & \frac{1}{6} - \frac{1}{2} \\ -\frac{1}{6} + \frac{1}{2} & \frac{1}{6} + \frac{1}{2} & \frac{2}{3} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & 1 & -2 \\ -2 & 2 & -1 \\ 1 & 2 & 2 \end{pmatrix}$$

One can check that it satisyfies $\mathbf{R} \cdot \vec{v} = \vec{w}$.

- (c) To check orthogonality one calculates $\mathbf{R} \cdot \mathbf{R}^T = \mathbf{E}$.
- (d) Because of orthogonality we have $\mathbf{R}^T \cdot \vec{w} = \vec{v}$ which can easily be checked.