Detyra e dytë në lëndën Arkitekturë e Kompjuterëve, Grupi 16

Detyra 1

Të tregohet forma e normalizuar binare si dhe vlera decimale që paraqesin numrat vijues të cilët janë paraqitur në formatin IEEE754 32-bitësh.

- a) 0 10011110 0100111100000000000000000
- b) 1 10010101 1110110011000000000000000 $_{(2)}$
- c) 0 10011100 0010010110000000000000000 $_{(2)}$

Detyra 2

Të shkruhet programi në gjuhë të ulët programuese i cili kryen punët në vijim.

a) Vendos vlerat e regjistrave me vlerat si në vijim.

$$BX = 2A41_{(16)}, \quad CX = 9E67_{(16)}, \quad DX = C821_{(16)}$$

b) Deklaron variablat dy-bajtëshe të pa-inicializuara (pas kodit kryesor).

$$VAR1 = ?$$
, $VAR2 = ?$, $VAR3 = ?$

c) Llogarit vlerat e variablave sipas formulave në vijim (duke pasur kujdes në rendtitje të operacioneve).

$$\begin{array}{lll} \mathtt{VAR1} &=& \mathtt{DX} - (\mathtt{BX} \vee 51) \\ \mathtt{VAR2} &=& ((24 \vee \mathtt{DX}) + \mathtt{BX}) - \mathtt{CX} \\ \mathtt{VAR3} &=& (\mathtt{CX} \vee (37 - 71)) + \mathtt{DX} \end{array}$$

d) Pas llogaritjes, të tregohet cila variabël është më e vogla duke e ruajtur indeksin e saj në regjistrin CX. Psh. nëse është variabla VAR2 atëherë në regjistrin CX të ruhet vlera 2.

Detyra 3

Të shkruhet programi në gjuhë të ulët programuese i cili i numëron numrat tek ndërmjet numrit 15 dhe numrit 58 (përfshirë kufirin e poshtëm dhe të lartëm). Rezultati të ruhet në regjistrin DX. Programi duhet të realizohet përmes kërcimeve.

Detyra 4

Të tregohen statuset (flags) e ALU (CF, OF, ZF, PF) që fitohen pas llogaritjes së secilës nga shprehjet në vijim.

- a) $B7_{(16)} + 5C_{(16)}$
- b) $9C_{(16)} \wedge A5_{(16)}$
- c) $83_{(16)} + CE_{(16)}$
- d) $0F_{(16)} + 98_{(16)}$
- e) $B7_{(16)} \lor E8_{(16)}$

Detyra 5

Procesori ka qasje në hapësirë memorike 32-bitëshe e cila është e adresueshme në nivel të bajtit. Memoria është e organizuar në blloqe 128 bajtëshe. Cache memoria L1 ka kapacitet prej 256KB.

- a) Të skicohet ndarja e memories kryesore nëse për L1 cache përdorim teknikat në vijim.
 - 1. Mapim direkt.
 - 2. Mapim asociativ.
 - 3. Mapim set-asociativ 16-linjësh.
- b) Nëse kemi adresat memorike në vijim:

$$8F3915FA_{(16)}$$
, $8E0FEA37_{(16)}$, $BF3C9F77_{(16)}$

Atëherë për secilën nga këto adresa të tregohen informatat vijuese në formë heksadecimale.

- 1. Tagu, linja, dhe wordi për mapimin direkt.
- 2. Tagu dhe wordi për mapimin asociativ.
- 3. Tagu, seti, dhe wordi për mapimin set-asociativ 16-linjësh.

Detyra 6

Në tabelën 1 është paraqitur memoria kryesore (RAM) e madhësisë 128B e cila është e organizuar në 16 blloqe. Në tabelën 2 është paraqitur një cache memorie me 4 linja e cila e pasqyron memorien kryesore me metodën direkte. Në fillim cache memoria është e zbrazët. Procesori kërkon sekuencën e këtyre adresave heksadecimale nga memoria:

Të skicohet gjendja e cache memories pas leximit të adresave dhe të tregohet sa herë është qëlluar cache (cache hit).

Table 1: RAM Memoria.

Blloku w_0 w_1 w_2 w_3 w_4 w_5 w_6 w_7 B_0 4D 9E 42 0C CD D5 B7 A1 0C 0C 6C B_1 OB DF 59 9B ED B_2 81 7F E2 2C 4B OD D1 15 DC EC CO C6 B_3 CO B2 **B5** 1E B_4 70 BF 5F C8 4E AB 37 E9 EC B_5 12 55 E6 1A 58 BB E1 89 E2 ΕO 66 20 5E F3 B_6 55

5D 63 1B ВЗ 32 57 79 B_7 1D A6 9E **B7 A6 B8** D9 89 B_8 64 B_9 BD6E 52 00 3B 19 85 93 B_A ЗВ B1 65 83 29 B8 62 2A EF B_B 5F 5B 45 F9 6D F6 АЗ B_C DD DO 80 9C 0B 2B 4C D6 7F 7E B_D 03 76 80 В8 10 98 B_E 50 EC D8 F5 1A 1A 23 1A B_F 6D D0 54 84 60 1C 4B FD

Table 2: Cache Memoria.

Linja	w_0	w_1	w_2	w_3	w_4	w_5	w_6	$\overline{w_7}$
$\overline{L_0}$?	?	?	?	?	?	?	?
L_1	?	?	?	?	?	?	?	?
L_2	?	?	?	?	?	?	?	?
L_3	?	?	?	?	?	?	?	?