UNIVERSIDADE FEDERAL DE VIÇOSA – UFV DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL CURSO DE ENGENHARIA ELÉTRICA

PRIMEIRA PROVA DE MÁQUINAS ELÉTRICAS II– ELT 342 VALOR: 25 PONTOS

<u>ALUNO:</u> <u>DATA:</u> 11/03/2021

QUESTÕES

Primeira Questão – Explique como ocorrem as distribuições de potências ativa e reativa entre dois geradores síncronos síncronos de mesma potência aparente e entre um gerador e o barramento infinito.

Segunda Questão – Os seguintes resultados de ensaios foram obtidos para uma máquina síncrona trifásica de 15 KV, 195MVA, 60 Hz, quatro pólos, ligada em estrela. Despreze a resistência do estator.

I_{F}	Tensão de linha em	Corrente de curto	Tensão de linha de
(A)	vazio	circuito	entreferro (KV)
	(KV)	(A)	
750	15	7000	20

- Se a máquina é conectada a um barramento infinito e entrega 85 MVA em um fator de potência de 0,9 avançado, desprezando a resistência do estator, determine;
- i) A tensão de excitação e o ângulo de potência (trace o diagrama fasorial);
- ii) A máxima potência que o gerador possa suprir ao barramento e calcule a corrente e o fator de potência nesta condição;
- iii) Se a corrente de campo referente ao item i) é aumentada em 30% (sem variar a potência mecânica da máquina primária), determine a corrente do estator, o fator de potência e a potência reativa fornecida pela máquina;
- iv) Quando a máquina é ligada na rede como motor e absorve 165,8KW em um ângulo de potência de 15⁰, determine a tensão de excitação, a corrente do estator e o fator de potência;

- 3 Um gerador síncrono de polos não salientes trifásico, 120 MVA, 12 KV, 60 Hz, f.p de 0,85 atrasado, Ra = 0,015 p.u e Xs = 0,85 p.u, ligado em estrela, é acionado por um turbina a vapor. Calcule:
 - a) A tensão de excitação E_F quando o gerador estiver entregando potência no barramento infinito nas suas condições nominais. Trace o diagrama fasorial
 - b) Nas condições nominais o rendimento é 92%, para este rendimento calcule:
 - c) As perdas de potência na resistência de armadura;
 - d) As perdas rotacionais;
 - e) O torque em N.m aplicado no eixo pela turbina a vapor
- 4 Um conjunto formado por um gerador síncrono e um motor síncrono é mostrado na figura a abaixo.. As potências nominais das máquinas são:

Gerador: trifásico, 1 MVA, 2300 V, 60 Hz, fator de potência de 0,85 atrasado, X_S = 0,9 p.u

Motor : trifásico, 1 MVA, 500 KVA, 2300 V, 60 Hz, fator de potência de 0,85 adiantado, $X_S = 0.8$ p.u O gerador é projetado com regulador de tensão que mantém a tensão terminal no valor nominal. O motor entrega no eixo 500 HP, e sua corrente de campo é ajustada para fazer com que o mesmo opere com fator de potência unitário. Determine:

- a) As reatâncias síncronas em ohms;
- b) A tensão de excitação de cada máquina;
- c) Trace o diagrama fasorial;

