Pareto Distribution

Background

- Vilfredo Pareto (1897) presents a versatile functional relation that well describes wealth distribution across countries and centuries.
- Same concept is applied to several other fields and colloquially called Pareto Principle.
 - 80% of land owned by 20% of individuals (revenue \sim products; sales \sim clients; etc)
- Generally, it follows a power law probability distribution, where one
 measure varies constantly as an exponential of another, independently
 of initial values.
 - Example: if one increases the side length of a square by x, its area increases by x^2 , independently of initial area of square.

Functional Form

The Pareto Distribution is defined by

$$f(y, \underline{y}, \alpha) = \frac{\alpha \underline{y}^{\alpha}}{y^{\alpha+1}}, \quad 0 < \underline{y} < y$$

and

$$F(y, \underline{y}, \alpha) = 1 - \left(\frac{\underline{y}}{\underline{y}}\right)^{\alpha}, \quad 0 < \underline{y} < y$$

where:

- y: wealth measure
- y: lower bound (or scale parameter or threshhold value)
- α : Pareto's α (or shape/slope parameter)

Graphical Visualisation I

Graphical Visualisation II

Properties

Pareto's α :

- Approx. interpretation: for a percentage increase in y, the proportion of *richer* individuals by α percents.
- Higher α values \Rightarrow less inequality.¹
- Several inequality indices can be estimated based on α .
 - Example: Gini coefficient: $\frac{1}{2\alpha-1}$.

Possible problems:

- High flexibility on estimating the lower bound
- ullet Sensibility of α due to choice of the lower bound y

¹for inequality measures satisfying the Weak Transfers Principle (Cowell 2011, p. 93).