[Name of document] Specification

[Title of the Invention] A novel polypeptide, a method for producing it, cDNA encoding it, a vector carrying the cDNA, a host cell transformed with the vector, an antibody against the polypeptide and a pharmaceutical composition containing the polypeptide or the antibody

[Claims]

[Claim 1] A substantially purified form of the polypeptide comprising the amino acid sequence shown in SEQ ID NOS. 1, 4, 6, 9 or 12, homologue thereof, fragment thereof or homologue of the fragment.

[Claim 2] A polypeptide according to claim 1 comprising the amino acid sequence shown in SEQ ID NOS. 1, 4, 6, 9 or 12.

[Claim 3 A cDNA encoding the polypeptide according to claim 1.

[Claim 4] A cDNA according to claim 3 comprising the nucleotide sequence shown in SEQ ID NOS. 2, 5, 7, 10 or 13, or a fragment cDNA selectively hybridized to the cDNA.

[Claim 5] A cDNA according to claim 3 comprising the nucleotide sequence shown in SEQ ID NOS. 3, 8, 11 or 14, or a fragment cDNA selectively hybridized to the cDNA.

[Claim 6] A replication or expression vector carrying the cDNA according to claims 3 to 5.

[Claim 7] A host cell transformed with the replication or expression vector according to claim 6.

[Claim 8] A method for producing the polypeptide according to claim 1 or 2

which comprises culturing a host cell according to claim 7 under a condition effective to express the polypeptide according to claim 1 or 2.

[Claim 9] A monoclonal or polyclonal antibody against the polypeptide according to claim 1 or 2.

[Claim 10] A pharmaceutical composition containing the polypeptide according to claim 1 or 2 or the antibody according to claim 9, in association with pharmaceutically acceptable diluent and/or carrier.

[Detailed description of the Invention]

[Technical Field of the Invention]

The present invention relates to a novel polypeptide, a method for preparation of it, a cDNA encoding it, a vector containing the cDNA, a host cell transformed with the vector, an antibody against the peptide, and a pharmaceutical composition containing the polypeptide or the antibody.

[Problem to be dissolved by the Invention]

The present inventors et al. have diligently performed certain investigation in order to isolate novel factors (polypeptides) useful for treatment, diagnosis and/or study, particularly, secretory proteins containing secretory signal and membrane protein.

[Background of the Invention]

Until now, when a man skilled in the art intends to obtain a particular polypeptide or a cDNA encoding it, he generally utilizes methods by confirming an aimed biological activity in a tissue or in a cell medium, isolating and purifying the polypeptide and then cloning a gene or methods by "expression-cloning" with the guidance of the said biological activity. However, physiologically active polypeptides in living body have often many kinds of activities. Therefore, it happens increasingly that after cloning a

gene, the isolated gene is found to be identical to that encoding a polypeptide already known. In addition, some factors could be generated in only a very slight amount and/or under specific conditions and it makes difficult to isolate and to purify the factor and to confirm its biological activity.

[Related Arts]

Recent rapid developments in techniques for constructing cDNAs and sequencing techniques have made it possible to quickly sequence a large amount of cDNAs. By utilizing these techniques, a process, which comprises constructing cDNAs library using various cells or tissues, cloning the cDNA at random, identifying the nucleotide sequences thereof, expressing novel polypeptides encoded by them, is now in progress. Although this process is advantageous in that a gene can be cloned and information regarding its nucleotide sequence can be obtained without any biochemical or genetic analysis, the target gene can be discovered thereby only accidentally in many cases.

[Mean to dissolve the problem]

The present inventors have studied cloning method to isolate genes encoding proliferation and/or differentiation factors functioning in hematopoietic systems and immune systems. Focusing their attention on the fact that most of the secretory proteins such as proliferation and/or differentiation factors (for example various cytokines) and membrane proteins such as receptors thereof (hereafter these proteins will be referred to generally as secretory proteins and the like) have sequences called signal peptides in the N-termini, the inventors have conducted extensive studies on a process for efficiently and selectively cloning a gene encoding for a signal peptide. Finally, we have successfully developed a screening method for the signal peptides (signal sequence trap (SST)) by using mammalian cells (See Japanese Patent Application No. Hei 6-13951). We also developed yeast SST method on the same concept. By the method based on the same

conception using yeast, (yeast SST method), genes including sequence encoding signal peptide can be identified more easily and efficiently (See USP No. 5, 536, 637).

By using the present invention, the present inventors et al. achieved to find novel secretory proteins and membrane proteins produced from cell lines and tissue, for example, human adult brain tissue, cell lines derived from human brain tissue and cell line derived from human bone marrow, and cDNAs encoding them, and then completed the present invention.

The present invention provides the cDNA sequences identified as clones OC001, OM237, OA004b which were isolated by the said yeast SST method using cDNA libraries prepared from human adult brain tissue and cell lines derived from human brain tissue (T98G, ATCC No. CRL-1690). Clones OC001, OM237, OA004b were full-length cDNA including full cDNA sequences encoding membrain proteins (Each protein is represented as OC001, OM237, OA004b protein, respectively).

It was indicated from the results of homology search for the public database of the nucleic acid sequences by using BLASTN and FASTA, and for the public database of the amino acid sequences by using BLASTX, BLASTP and FASTA, that there was no sequence identical to the polypeptide sequence and the nucleotide sequences of OC001, OM237, OA004b of the present invention. In addition, the polypeptides of the present invention were expected to possess the transmembrane region by hydrophobisity analysis of the obtained amino acid sequences. From these results, it was proved that polypeptides OC001, OM237, OA004b of the present invention were new membrane proteins.

The present invention provides the cDNA sequence identified as clone OAF075b which was isolated by the said yeast SST method using cDNA libraries prepared from human bone marrow cell line HAS303 (human bone marrow cell line: provided from Prof. Keisuke Sotoyama, Dr. Makoto Aizawa, First Medicine, Tokyo Medical College. see J. Cell. Physiol. 148, 245-251, 1991 and Experimental Hematol. 22, 482-487, 1994). Clone

OAF075b was a full-length cDNA including a full cDNA sequence encoding secretory protein (this protein is represented as OAF075b protein).

It was indicated from the results of homology search for the public database of the nucleic acid sequences by using BLASTN and FASTA, and for the public database of the amino acid sequences by using BLASTX, BLASTP and FASTA, that there was no sequence identical to the polypeptide sequence and the nucleotide sequence of OAF075b of the present invention. In addition, the polypeptide of the present invention was expected to possess no transmembrane region by hydrophobisity analysis of the obtained amino acid sequence. From these results, it was proved that polypeptide of the present invention was a new secretory protein.

[The structure of the Invention]

The present invention relates to

- (1) a polypeptide comprising an amino acid sequence of SEQ ID NOS. 1, 4, 6, 9 or 12,
 - (2) a cDNA encoding the polypeptide described in (1),
- (3) a cDNA comprising a nucleotide sequence of SEQ ID NOS. 2, 5, 7, 10 or 13, and
- (4) a cDNA comprising a nucleotide sequence of SEQ ID NOS. 3, 8, 11 or 14.

The present invention relates to a substantially purified form of the polypeptide comprising the amino acid sequence shown in SEQ ID NOS. 1, 4, 6, 9 or 12, homologue thereof, fragment thereof or homologue of the fragment.

Further, the present invention relates to cDNAs encoding the above peptides. More particularly the invention is provided cDNAs comprising nucleotide sequence shown in SEQ ID NOS. 2, 5, 7, 10 or 13, and cDNA containing a fragment which is selectively hybridizing to the cDNA comprising nucleotide sequence shown in SEQ ID NOS. 2, 5, 7, 10, 13, 3, 8, 11 or 14. A said cDNA capable for hybridizing to the cDNA includes the contemporary

sequence of the above sequence.

A polypeptide comprising amino acid sequence shown in SEQ ID NOS. 1, 4, 6, 9 or 12 in substantially purified form will generally comprise the polypeptide in a preparation in which more than 90%, e.g. 95%, 98% or 99% of the polypeptide in the preparation is that of the SEQ ID NOS. 1, 4, 6, 9 or 12.

A homologue of polypeptide comprising amino acid sequence shown in SEQ ID NOS. 1, 4, 6, 9 or 12 will be generally at least 70%, preferably at least 80 or 90% and more preferably at least 95% homologous to the polypeptide comprising the said amino acid sequence over a region of at least 20, preferably at least 30, for instance 40, 60 or 100 more contiguous amino acids. Such a polypeptide homologue will be referred to a polypeptide of the present invention.

Further, a fragment of polypeptide comprising amino acid sequence shown in SEQ ID NOS. 1, 4, 6, 9 or 12 or its homologues will be at least 10, preferably at least 15, for example 20, 25, 30, 40, 50 or 60 amino acids in length.

A cDNA capable of selectively hybridizing to the cDNA comprising nucleotide sequence shown in SEQ ID NOS. 2, 5, 7, 10, 13, 3, 8, 11 or 14 will be generally at least 70%, preferably at least 80 or 90% and more preferably at least 95% homologous to the cDNA comprising the said nucleotide sequence over a region of at least 20, preferably at least 30, for instance 40, 60 or 100 or more contiguous nucleotides. Such a cDNA will be referred to "a cDNA of the present invention".

Fragments of the cDNA comprising nucleotide sequence shown in SEQ ID NOS. 2, 5, 7, 10, 13, 3, 8, 11 or 14 will be at least 10, preferably at least 15, for example 20, 25, 30 or 40 nucleotides in length, and will be also referred to "a cDNA of the present invention" as used herein.

A further embodiment of the present invention provides replication and expression vectors carrying cDNA of the present invention. The vectors may be, for example, plasmid, virus or phage vectors provided with an origin

of replication, optionally a promoter for the expression of the said cDNA and optionally a regulator of the promoter. The vector may contain one or more selectable marker genes, for example ampicillin resistance gene. The vector may be used in vitro, for example of the production of RNA corresponding to the cDNA, or used to transfect a host cell.

A further embodiment of the present invention provides host cells transformed with the vectors for the replication and expression of the cDNA of the present invention, including the cDNA comprising nucleotide sequence shown in SEQ ID NOS. 2, 5, 7, 10, 13, 3, 8, 11 or 14 or the open reading frame thereof. The cells will be chosen to be compatible with the vector and may for example be bacterial, yeast, insect cells or mammalian cells.

A further embodiment of the present invention provides a method of producing a polypeptide which comprises culturing host cells of the present invention under conditions effective to express a polypeptide of the present invention. Preferably, in addition, such a method is carried out under conditions in which the polypeptide of the present invention is expressed and then produced from the host cells.

cDNA of the present invention may also be inserted into the vectors described above in an antisense orientation in order to prove for the production of antisense RNA. Such antisense RNA may be used in a method of controlling the levels of a polypeptide of the present invention in a cell.

The invention also provides monoclonal or polyclonal antibodies against a polypeptide of the present invention. The invention further provides a process for the production of monoclonal or polyclonal antibodies to the polypeptides of the present invention. Monoclonal antibodies may be prepared by common hybridoma technology using polypeptides of the present invention or fragments thereof, as an immunogen. Polyclonal antibodies may also be prepared by common means which comprise inoculating host animals, (for example a rat or a rabbit etc.), with polypeptides of the present invention and recovering immune serum.

The present invention also provides pharmaceutical compositions containing a polypeptide of the present invention, or an antibody thereof, in association with a pharmaceutically acceptable diluent and/or carrier.

The polypeptide of the present invention specified in (1) includes that which a part of their amino acid sequence is lacking (e.g., a polypeptide comprised of the only essential sequence for revealing a biological activity in an amino acid sequence shown in SEQ ID NO. 1), that which a part of their amino acid sequence is replaced by other amino acids (e. g., those replaced by an amino acid having a similar property) and that which other amino acids are added or inserted into a part of their amino acid sequence, as well as those comprising the amino acid sequence shown in SEQ ID NOS. 1, 4, 6, 9 or 12.

As known well, there are one to six kinds of codon as that encoding one amino acid (for example, one kind of codon for Methionine (Met), and six kinds of codon for Leucine (Leu) are known). Accordingly, the nucleotide sequence of cDNA can be changed in order to encode the polypeptide having the same amino acid sequence.

The cDNA of the present invention, specified in (2) includes a group of every nucleotide sequence encoding polypeptides (1) shown in SEQ ID NOS. 1, 4, 6, 9 or 12. There is a probability that yield of a polypeptide is improved by changing a nucleotide sequence.

The cDNA specified in (3) is the embodiment of the cDNA shown in (2), and indicate the sequence of natural form.

The cDNA shown in (4) indicates the sequence of the cDNA specified in (3) with natural non-translational region.

cDNA carrying nucleotide sequence shown in SEQ ID NOS. 3, 8, 11 or 14 is prepared by the following method:

Brief description of Yeast SST method (see USP No. 5, 536, 637) is as follows.

Yeast such as Saccharomyces cerevisiae should secrete invertase into the medium in order to take sucrose or raffinose as a source of energy or

carbon. (Invertase is an enzyme to cleave raffinose into sucrose and melibiose, sucrose into fructose and glucose). It is known that many known mammalian signal sequence make yeast secrete its invertase. From these knowledge, SST method was developed as a screening method to find novel signal peptide which make it possible can to secrete yeast invertase SST method uses yeast growth on from mammalian cDNA library. raffinose medium as a marker. Non-secretory type invertase gene SUC2 (GENBANK Accession No. V 01311) lacking initiation codon ATG was inserted to yeast expression vector to prepare yeast SST vector pSUC2. In this expression vector, ADH promoter, ADH terminator (both were derived from AAH5 plasmid (Gammerer, Methods in Enzymol. 101, 192-201, 1983)), 2μ ori (as a yeast replication origin), TRP1 (as a yeast selective marker), ColE1 ori (as a E. Coli replication origin) and ampicillin resistance gene (as a drug resistance marker) were inserted. Mammalian cDNA was inserted into the upstream of SUC2 gene to prepare yeast SST cDNA library. Yeast lacking secretory type invertase, was transformed with this library. inserted mammalian cDNA encodes a signal peptide, yeast could survive in raffinose medium as a result of restoring secretion of invertase. Only to culture yeast colonies, prepare plasmids and determine the nucleotide sequence of the insert cDNAs, it is possible to identify novel signal peptide rapidly and easily.

Preparation of yeast SST cDNA library is as follows:

- (1) mRNA is isolated from the targeted cells, double-strand synthesis is performed by using random primer with certain restriction enzyme (enzyme I) recognition site,
- (2) obtained double-strand cDNA is ligated to adapter containing certain restriction endonuclease (enzyme II) recognition site, differ from enzyme I, digested with enzyme I and fractionated in a appropriate size,
- (3) obtained cDNA fragment is inserted into yeast expression vector on the upstream region of invertase gene which signal peptide is deleted and the library was transformed.

Detailed description of each step is as follows:

(1) mRNA is isolated from mammalian organs and cell lines stimulate them with appropriate stimulator if necessary) by known methods (Molecular Cloning (Sambrook, J., Fritsch, E. F. and Maniatis, T., Cold Spring Harbor Laboratory Press, 1989) or Current Protocol in Molecular Biology (F. M. Ausubel et al, John Wiley & Sons, Inc) if not remark especially).

HAS303 (human bone marrow stroma cell line: provide from Professor Keisuke Sotoyama, Dr. Makoto Aizawa of First Medicine, Tokyo Medical College; see J. Cell. Physiol., 148, 245-251, 1991 and Experimental Hematol., 22, 482-487, 1994) or human glioblastoma cell line TG98G (ATCC No. CRL-1690) are chosen as a cell line. Human adult brain is chosen as a tissue source. Double-strand cDNA synthesis using random primer is performed by known methods.

Any sites may be used as restriction endonuclease recognition site I which is linked to adapter and restriction endonuclease recognition site II which is used in step (2), if both sites are different each other. Preferably, XhoI is used as enzyme I and EcoRI as enzyme II.

In step (2), cDNA is created blunt-ends with T4 DNA polymerase, ligated enzyme II adapter and digested with enzyme I. Fragment cDNA is analyzed with agarose-gel electrophoresis (AGE) and is selected cDNA fraction ranging in size from 300 to 800 bp. As mentioned above, any enzyme may be used as enzyme II if it is not same the enzyme I.

In step (3), cDNA fragment obtained in step (2) is inserted into yeast expression vector on the upstream region of invertase gene which signal peptide is deleted. E. Coli was transformed with the expression vector. Many vectors are known as yeast expression plasmid vector. For example, YEp24 is also functioned in E. Coli. Preferably pSUC2 as described above is used.

Many host E. Coli strains are known for transformation, preferably DH10B competent cell is used. Any known transformation method is available, preferably it is performed by electropolation method.

Transformant is cultured by conventional methods to obtain cDNA library for yeast SST method.

However not every all of the clones do not contain cDNA fragment. Further all of the gene fragments do not encode unknown signal peptides. It is therefore necessary to screen a gene fragment encoding for an unknown signal peptide from the library.

That is to say, screening of fragments containing a sequence encoding an appropriate signal peptide is performed by transformation of the cDNA library into Saccharomyces cerevisiae (e. g. YT455 strain) which lack invertase (it may be prepared by known methods). Transformation of yeast is performed by known methods, e. g. lithium acetate method. Transformant is cultured in a selective medium, then transferred to a medium containing raffinose as a carbon source. Survival colonies are selected and then prepared plasmid. Survival colonies on a raffinose-medium indicates that some signal peptide of secretory protein was inserted to this clone.

As for isolated positive clones, the nucleotide sequence is determined. As to a cDNA encodes unknown protein, full-length clone may be isolated by using cDNA fragment as a probe and then determined to obtain full-length nucleotide sequence. These manipulation is performed by known methods.

Once the nucleotide sequences shown in SEQ ID NO. 2, 5, 7, 10 or 13 are determined partially or preferably fully, it is possible to obtain DNA encode mammalian protein itself, homologue or subset. cDNA library or mRNA derived from mammals was screened by PCR with any synthesized oligonucleotide primers or by hybridization with any fragment as a probe. It is possible to obtain DNA encodes other mammalian homologue protein from other mammalian cDNA or genome library.

If a cDNA obtained above contains a nucleotide sequence of cDNA fragment obtained by SST (or consensus sequence thereof), it will be thought that the cDNA encodes signal peptide. So it is clear that the cDNA will be full-length or almost full. (All signal peptides exist at N-termini of a protein

and are encoded at 5'-temini of open reading frame of cDNA)

The confirmation may be carried out by Northern analysis with the said cDNA as a probe. It is thought that the cDNA is almost complete length, if length of the cDNA is almost the same length of the mRNA obtained in the hybridizing band.

Once the nucleotide sequences shown in SEQ ID NOS. 2, 5, 7, 10 or 13 are determined, DNAs of the invention are obtained by chemical synthesis, or by hybridization making use of nucleotide fragments which are chemically synthesized as a probe. Furthermore, DNAs of the invention are obtained in desired amount by transforming a vector that contains the DNA into a proper host, and culturing the transformant.

The polypeptides of the present invention may be prepared by:

- (1) isolating and purifying from an organism or a cultured cell,
- (2) chemically synthesizing, or
- (3) using recombinant cDNA technology, preferably, by the method described in (3) in an industrial production.

Examples of expression system (host-vector system) for producing a polypeptide by using recombinant cDNA technology are the expression systems of bacteria, yeast, insect cells and mammalian cells.

In the expression of the polypeptide, for example, in E. Coli, the expression vector is prepared by adding the initiation codon (ATG) to 5' end of a cDNA encoding mature peptide, connecting the cDNA thus obtained to the downstream of a proper promoter (e. g., trp promoter, lac promoter, λ PL promoter, T7 promoter etc.), and then inserting it into a vector (e. g., pBR322, pUC18, pUC19 etc.) which functions in an E. Coli strain.

Then, an E. Coli strain (e. g., E. Coli DH1 strain, E. Coli JM109 strain, E. Coli HB101 strain, etc.) which is transformed with the expression vector described above may be cultured in a appropriate medium to obtain the desired polypeptide. When a signal sequence of bacteria (e. g., signal sequence of pel B) is utilized, the desired polypeptide may be also released in periplasm. Furthermore, a fusion protein with other polypeptide may be

also produced readily.

In the expression of the polypeptide, for example, in a mammalian cells, for example, the expression vector is prepared by inserting the cDNA encoding nucleotide shown in SEQ ID NOS. 3, 8, 11 or 14 into the downstream of a proper promoter (e. g., SV40 promoter, LTR promoter, metallothionein promoter etc.) in a proper vector (e. g., retrovirus vector, papilloma virus vector, vaccinia virus vector, SV40 vector, etc.). A proper mammalian cell (e. g., monkey COS-7 cell, Chinese hamster CHO cell, mouse L cell etc.) is transformed with the expression vector thus obtained, and then the transformant is cultured in a proper medium to express the aimed secretory protein and membrane protein of the present invention by the following method.

In case of secretory protein as for the present invention, the aimed polypeptide was expressed in the supernatant of the cells. In addition, fusion protein may be prepared by conjugating cDNA fragment encoding the other polypeptide, for example, Fc portion of antibody.

On the other hand, in case of membrane protein as for the present invention, the aimed polypeptide was expressed on the cell membrane. A cDNA encoding the nucleotide sequence of SEQ ID NOS. 2, 5, 7, 10 or 13 with deletion of extracellular region was inserted into the said vector, transfected into the an adequate mammalian cells to secret the aimed soluble polypeptide in the culture medium. In addition, fusion protein may be prepared by conjugating cDNA fragment encoding the said mutant with deletion of extracellular region and other polypeptide, for example, Fc portion of antibody.

The polypeptide available by the way described above can be isolated and purified by conventional biochemical method.

[Effect of the Invention]

It is considered that the polypeptide of the present invention and a cDNA which encodes the polypeptide will show one or more of the effects or

biological activities (including those which relates to the assays cited below)
The effects or biological activities described in relation to the polypeptide of
the present invention are provided by administration or use of the polypeptide
or by administration or use of a cDNA molecule which encodes the
polypeptide (e. g., vector suitable for gene therapy or cDNA introduction).

[Cytokine activity and cell proliferation/differentiation activity]

The protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a polypeptide of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines.

[Immune stimulating/suppressing activity]

The protein of the present invention may also exhibit immune stimulating or immune suppressing activity. The protein of the present invention may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e. g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral infection such as HIV as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using the polypeptide of the present invention, including infections by HIV, hepatitis viruses, herpes viruses, mycobacteria, leshmania, malaria and various fungal infections such as candida. Of course, in this regard, the protein of the

present invention may also be useful where a boost to the immune system generally would be indicated, i. e., in the treatment of cancer.

The protein of the present invention may be useful in the treatment of allergic reactions and conditions, such as asthma or other respiratory problems. The protein of the present invention may also be useful in the treatment of the other conditions required to suppress the immuno system (for example, asthma or respiratory disease)

The protein of the present invention may also suppress chronic or acute inflammation, such as, for example, that associated with infection such as septic shock or systemic inflammatory response syndrome (SIRS), inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-I wherein the effect was demonstrated by IL-11.

[Hematopoiesis regulating activity]

The protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis. The said biological activities are concerned with the following all or some example(s). e. g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemia or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i. e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelosuppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in

place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vitro or ex-vivo (i. e. in conjunction with bone marrow transplantation) as normal cells or genetically manipulated for gene therapy.

The activity of the protein of the present invention may, among other means, be measured by the following methods:

[Tissue generation/regeneration activity]

The protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, Ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair, and in the treatment of bums, incisions and ulcers.

The protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, may be applied to the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing the protein of the present invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

The protein of the present invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. The protein of the present invention may also be useful in the

treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. The protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, may be applied to the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing the protein inducing a tendon/Ligament-like tissue may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or The compositions of the present invention may provide an ligaments. environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon Ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. compositions of the present invention may also be useful in the treatment of tendinitis, Carpal tunnel syndrome and other tendon or ligament defects. compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue. i. e. for the treatment of central and peripheral nervous system diseases and neuropathies. as well as mechanical and traumatic disorders, which involve

degeneration, death or trauma to neural cells or nerve tissue. More specifically, the protein of the present invention may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using the polypeptide of the present invention.

It is expected that the protein of the present invention may also exhibit activity for generation of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the proliferation of cells comprising such tissues. Part of the desired effects may be by inhibition of fibrotic scarring to allow normal tissue to regenerate.

The protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

[Activin/Inhibin activity]

The protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, the protein of the present invention alone or in heterodimers with a member of the inhibin *a family, may be useful as a

contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the present invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin-*b group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary (See USP 4, 798, 885). The protein of the present invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

[Chemotactic/chemokinetic activity]

The protein of the present invention may have chemotactic or chemokinetic activity e. g., functioning as a chemokine, for mammalian cells, including, for example, monocytes, neutrophils, T-cells, mast cells, eosinophils and/or endothelial cells. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

If a protein or peptide can stimulate, directly or indirectly, the directed orientation or movement of such cell population, it has chemotactic activity for a particular cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

[Hemostatic and thrombolytic activity]

The protein of the present invention may also exhibit hemostatic or thrombolyic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the present invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom such as, for example, infarction or stroke.

[Receptor/ligand activity]

The protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including cellular adhesion molecules such as Selectins, Integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses. Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. The protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

[Other activity]

The protein of the present invention may also exhibit one or more of the following additional activities or effects: inhibiting growth of or killing the infecting agents including bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) body characteristics including height, weight, hair color, eye color, skin, other tissue pigmentation, or organ or body part size or shape such as, for example, breast augmentation or diminution etc.; effecting elimination of dietary fat, protein, carbohydrate; effecting behavioral characteristics including appetite, libido, stress, cognition (including cognitive disorders), depression and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases.

The protein with above activities, is suspected to have following functions by itself or interaction with its ligands or receptors or association with other molecules. For example, proliferation or cell death of B cells, T cells and/or mast cells; specific induction by promotion of class switch of immunoglobulin genes; differentiation of B cells to antibody-forming cells; proliferation, differentiation, or cell death of precursors of granulocytes; proliferation, differentiation, or cell death of precursors of monocytesmacrophages; proliferation, of up regulation or cell death of neutrophils, monocytes-macrophages, eosinophils and/or basophils; proliferation, or cell death of precursors of megakaryocytes; proliferation, differentiation, or cell death of precursors of neutrophils; proliferation, differentiation, or cell death of precursors of T cells and B cells; promotion of production of erythrocytes; sustainment of proliferation of erythrocytes, neutrophils, eosinophils, basophils, monocytes-macrophages, mast cells, precursors megakaryocyte; promotion of migration of neutrophils, monocytesmacrophages, B cells and/or T cells; proliferation or cell death of thymocytes; suppression of differentiation of adipocytes; proliferation or cell death of natural killer cells; proliferation or cell death of hematopoietic stem cells; suppression of proliferation of stem cells and each hematopoietic precursor cells; promotion of differentiation from mesenchymal stem cells to osteoblasts or chondrocytes, proliferation or cell death of mesenchymal stem cells, osteoblasts or chondrocytes and promotion of bone absorption by activation of osteoclasts and promotion of differentiation from monocytes to osteoclasts.

The present polypeptide is also suspected to function to nervous system, so expected to have functions below; differentiation to kinds of neurotransmitter-responsive neurons, survival or cell death of these cells; promotion of proliferation or cell death of glial cells; spread of neural dendrites; survival or cell death of gangriocytes; proliferation, promotion of differentiation, or cell death of astrocytes; proliferation, survival or cell death of peripheral neurons; proliferation or cell death of Schwann cells; proliferation, survival or cell death of motoneurons.

Furthermore, in the process of development of early embryonic, the present polypeptide is expected to promote or inhibit the organogenesis of epidermis, brain, backbone, and nervous system by induction of ectoderm, that of notochord connective tissues (bone, muscle, tendon), hemocytes, heart, kidney, and genital organs by induction of mesoderm, and that of digestive apparatus (stomach, intestine, liver, pancreas), respiratory apparatus (lung, trachea) by induction of endoderm. In adult, also, this polypeptide is thought to proliferate or inhibit the above organs.

Therefore, the polypeptide of the present invention itself is expected to be used as an agent for the prevention or treatment of disease of progression or suppression of immune, nervous, or bone metabolic function, hypoplasia or overgrowth of hematopoietic cells: for example, inflammatory disease (rheumatism, ulcerative colitis, etc.), decrease of hematopoietic stem cells after bone marrow transplantation, decrease of leukocytes, platelets, B-cells, or T-cells after radiation exposure or chemotherapeutic dosage against cancer or leukemia, anemia, infectious disease, cancer, leukemia, AIDS, bone metabolic disease (osteoporosis etc.), various degenerative disease (Alzheimer's disease, multiple sclerosis, etc.), or nervous lesion.

In addition, since the present polypeptide is thought to induce the differentiation or growth of organs derived from ectoderm, mesoderm, and endoderm, this polypeptide is expected to be an agent for tissue repair (epidermis, bone, muscle, tendon, heart, kidney, stomach, intestine, liver, pancreas, lung, and trachea, etc.).

By using polyclonal or monoclonal antibodies against the said polypeptide, quantitation of the said polypeptide in the body can be performed. It can be used in the study of relationship between this polypeptide and disease or diagnosis of disease, and so on. Polyclonal and monoclonal antibodies can be prepared using this polypeptide or its fragment as an antigen by conventional methods.

Identification, purification or molecular cloning of known or unknown proteins which bind the present polypeptide (preferably polypeptide of extracellular domain) can be performed using the said polypeptide by, for example, preparation of the affinity-column.

Identification of the downstream signal transmission molecules which interact with the said polypeptide in cytoplasma and molecular cloning of the gene can be performed by west-western method using the said polypeptide (preferably polypeptide of transmembrane region or intracellular domain), or by yeast two-hybrid system using the cDNA (preferably cDNA encoding transmembrane region or cytoplasmic domain of the polypeptide).

Agonists/antagonists of this receptor polypeptide and inhibitors between receptor and signal transduction molecules can be screened using the present polypeptide.

cDNAs of the present invention are useful not only the important and essential template for the production of the polypeptide of the present invention which is expected to be largely useful, but also be useful for diagnosis or therapy (for example, treatment of gene lacking, treatment to stop the expression of the polypeptide by antisense cDNA (mRNA)). Genomic cDNA may be isolated with the cDNA of the present invention, as a probe. As the same manner, a human gene encoding which can be highly homologous to the cDNA of the present invention, that is, which encodes a polypeptide highly homologous to the polypeptide of the present invention and a gene of animals excluding mouse which can be highly homologous to the cDNA of the present invention, also may be isolated.

[Application to Medicaments]

The polypeptide of the present invention or the antibody specific for the polypeptide of the present invention is administered systemically or topically and in general orally or parenterally, preferably parenterally, intravenously and intraventricularly, for preventing or treating the said diseases.

The doses to be administered depend upon age, body weight, symptom, desired therapeutic effect, route of administration, and duration of the treatment etc. In human adults, one dose per person is generally between 100 μ g and 100 mg, by oral administration, up to several times per day, and between 10 μ g and 100 mg, by parental administration up to several times per day.

As mentioned above, the doses to be used depend upon various conditions. Therefore, there are cases in which doses lower than or greater than the ranges specified above may be used.

The compounds of the present invention, may be administered as solid compositions, liquid compositions or other compositions for oral administration, as injections, liniments or suppositories etc. for parental administration.

Solid compositions for oral administration include compressed tablets, pills, capsules, dispersible powders, and granules. Capsules include soft or hard capsules.

In such compositions, one or more of the active compound(s) is or are admixed with at least one inert diluent (such as lactose, mannitol, glucose, hydroxypropyl cellulose, microcrystalline cellulose, starch, polyvinylpyrrolidone, magnesium metasilicate aluminate, etc.). The compositions may also comprise, as is normal practice, additional substances other than inert diluents: e. g. lubricating agents (such as magnesium stearate etc.), disintegrating agents (such as cellulose calcium glycolate, etc.), stabilizing agents (such as human serum albumin, lactose etc.), and assisting agents for dissolving (such as arginine, asparaginic acid etc.).

The tablets or pills may, if desired, be coated with a film of gastric or enteric materials (such as sugar, gelatin, hydroxypropyl cellulose or hydroxypropylmethyl cellulose phthalate, etc.), or be coated with more than two films. And then, coating may include containment within capsules of absorbable materials such as gelatin.

Liquid compositions for oral administration include pharmaceutically-acceptable emulsions, solutions, syrups and elixirs. In such compositions, one or more of the active compound(s) is or are contained in inert diluent(s) commonly used (purified water, ethanol etc.). Besides inert diluents, such compositions may also comprise adjuvants (such as wetting agents, suspending agents, etc.), sweetening agents, flavoring agents, perfuming agents, and preserving agents.

Other compositions for oral administration include spray compositions which may be prepared by known methods and which comprise one or more of the active compound(s). Spray compositions may comprise additional substances other than inert diluents: e. g. stabilizing agents (sodium sulfite etc.), isotonic buffer (sodium chloride, sodium citrate, citric acid, etc.). For preparation of such spray compositions, for example, the method described in the United States Patent No. 2, 868, 691 or 3, 095, 355 (herein incorporated in their entireties by reference) may be used.

Injections for parental administration include sterile aqueous or non-aqueous solutions, suspensions and emulsions. In such compositions, one or more active compound(s) is or are admixed with at least one inert aqueous diluent(s) (distilled water for injection, physiological salt solution, etc.) or inert non-aqueous diluents(s) (propylene glycol, polyethylene glycol, olive oil, ethanol, POLYSOLBATE 80 (Trade mark) etc.).

Injections may comprise additional compound other than inert diluents: e. g. preserving agents, wetting agents, emulsifying agents, dispersing agents, stabilizing agent (such as human serum albumin, lactose, etc.), and assisting agents such as assisting agents for dissolving (arginine, asparaginic acid, etc.).

[Examples]

The invention is illustrated by the following examples relating to clone OC001 of the present invention, but not limit the invention.

Preparation of Poly(A)*RNA

Total RNA was prepared from human placenta tissue by TRIzol reagent (Trade Mark, marketed from GIBCOBRL Co.). Poly(A)+RNA was purified from the total RNA by mRNA Purification Kit (Trade name, marketed from Pharmacia Co.).

Preparation of yeast SST cDNA library

Double strand cDNA was synthesized by Super Script Plasmid System for cDNA Synthesis and Plasmid Cloning (Trade name, marketed from GIBCOBRL Co.) with above poly(A)*RNA as template and random 9mer as primer which was containing Xhol site:

5'-CGATTGAATTCTAGACCTGCCTCGAGNNNNNNNNN-3'

cDNA was ligated EcoRI adapter by DNA ligation kit ver. 2 (Trade name, marketed from Takara-Shuzo Co., this kit was used in all ligating steps hereafter) and digested by XhoI. cDNAs were separated by agarose-gel electrophoresis. 300~800 bp cDNAs were isolated and were ligated to EcoRI/NotI site of pSUC2 (see US Patent No. 5, 536, 637). E. Coli DH10B strains were transformed by pSUC2 with electropolation to obtain yeast SST cDNA library.

Screening by SST method and determination of nucleotide sequence of SST positive clone

Plasmids of the said cDNA library were prepared. Yeast YTK12 strains were transformed by the plasmids with lithium acetate method (Current Protocols In Molecular Biology 13.7.1). The transformed yeast were plated on triptphan-free medium (CMD-Trp medium) for selection. The

plate was incubated for 48 hour at 30 °C. Replica of the colony (transformant) which was obtained by Accutran Replica Plater (Trade name, marketed from Schleicher & Schuell Co.) were placed onto YPR plate containing raffinose for carbon source, and the plate was incubated for 14 days at 30°C. After 3 days, each colony appeared was streaked on YPR plate again. The plates were incubated for 48 hours at 30°C. Single colony was inoculated to YPD medium and was incubated for 48 hours at 30°C. Then plasmids were prepared. Insert cDNA was amplified by PCR with two kind primers which exist end side of cloning site on pSUC2 (sense strand Biotinylated single strand of cDNAs were primers were biotinylated). purified with Dynabeads (Trade name, marketed from DYNAL Co.) and the nucleotide sequences were determined. Sequencing was performed by Dye Terminator Cycle Sequencing Ready Reaction with DNA Sequencing kit (Trade name, marketed from Applied Biosystems Inc.) and sequence was determined by DNA sequencer 373 (Applied Biosystems Inc.) (All sequencing hereafter was carried out with this method).

We tried to carry out cloning of full-length cDNA which was proved to be new one according to the homology search for the obtained nucleotide sequences and deduced amino acid sequences in data base.

Cloning of a full-length cDNA and determination of nucleotide

A full-length cDNA was cloned using Marathon cDNA Amplification Kit (Trade name, marketed from Clontech Co.) according to 3' RACE (Rapid Amplification of cDNA End) method. I. e., poly (A)+RNA in human adult brain tissue 27mer primer OC001-F1:

5'-GTCCTTCAGCAAAACAGTGGATTTAAA-3'

containing the deduced initiation ATG codon region based on the information of nucleotide sequence obtained by SST, was prepared. PCR was performed with the said primer and adapter primer attached in the kit. A cDNA which was amplified with clone OC001 specifically, was separated with agarose-gel electrophoresis, ligated to pT7 Blue-2 T-Vector (Trade name,

marketed from Novagen Co) and transfected into E. Coli DH5 α to prepare the plasmid. Nucleotide sequences of 5'-end were determined, and the existence of nucleotide sequence OC001 SST cDNA was confirmed. Nucleotide sequence of full-length OC001 SST cDNA was determined and then sequence shown in SEQ ID NO. 3 was obtained. An open reading frame was determined and deduced amino acid sequence and nucleotide sequence shown in SEQ ID NOS. 1, 2, 4 and 5, respectively, were obtained.

It was indicated from the results of homology search for the public database of the nucleic acid sequences by using BLASTN and FASTA, and for the public database of the amino acid sequences by using BLASTX, BLASTP and FASTA, that there was no sequence identical to the polypeptide sequence and the nucleotide sequence of OC001 of the present invention. In addition, the polypeptide of the present invention was expected to possess the transmembrane region at C-terminal and to be GPI anchor type by hydrophobisity analysis of the obtained amino acid sequence. From these results, it was proved that polypeptide of the present invention was new membrane protein. Further, the search using BLASTX, BLASTP and FASTA revealed a significant homology between clone OC001 (region of 12th~ 344th amino acid in SEQ ID NO. 1) and neurotrimin [Rattus norvegicus] (region of 9th \sim 344th amino acid of Genbank Accession U16845) and opioid-binding cell adhesion molecule [Homo sapiens] (region of 9th~345th amino acid of Genbank Accession L34774). Based on these homologies, clone OC001 and nervous cell adhesion molecule family including neurotrimin and opioid-binding cell adhesion molecule were expected to share at least some activity.

In Example relating to clone OM237 of the present invention, the same procedure as in Example of OC001 was used except for the following points.

Cloning of a full-length cDNA and determination of nucleotide

A full-length cDNA was cloned by the same procedure as OC001 using Marathon cDNA Amplification Kit (Trade name, marketed from Clontech

Co.) according to 3'RACE. A double-strand cDNA was prepared from RNA derived from each clone, i. e., poly(A)⁺RNA of human adult brain tissue. 27mer primer OM237-F1:

5'-CCAGAAAGCACAGCCCTGATTCTGCGT-3'

containing the deduced initiation ATG codon region based on the information of nucleotide sequence obtained by SST, was prepared. PCR was performed with the said primer and adapter primer attached in the kit. A cDNA which was amplified with clone OM237 specifically, was recloned by the same method as OC001 to determine full necleotide sequence and obtain the sequence shown in SEQ ID NO. 8. An open reading frame was determined and deduced amino acid sequence and nucleotide sequence shown in SEQ ID NOS. 6 and 7, respectively, were obtained.

It was indicated from the results of homology search for the public database of the nucleic acid sequences by using BLASTN and FASTA, and for the public database of the amino acid sequences by using BLASTX, BLASTP and FASTA, that there was no sequence identical to the polypeptide sequence and the nucleotide sequence of OM237 of the present invention. In addition, the polypeptide of the present invention was expected to possess the transmembrane region by hydrophobisity analysis of the obtained amino acid sequence. From these results, it was proved that polypeptide of the present invention was new membrane protein.

In Example relating to clone OA004b of the present invention, the same procedure as in Example of OC001 was used except for the following points.

prepparation of poly(A)+RNA

Total RNA was prepared from human glioblastoma cell line T98G (ATCC No. CRL-1690) by TRIzol reagent (Trade Mark, marketed from GIBCOBRL Co.). Poly(A) + RNA was purified from total RNA by mRNA Purification Kit (Trade name, marketed from Pharmacia Co.).

Cloning of a full-length cDNA and determination of amino acid segunce

A full-length cDNA was cloned by GENETRAPPER cDNA Positive Selection System (GIBCOBRL Co.). First, dT-primed cDNA library was prepared using plasmid pSPORT1 (GIBCOBRL Co.) as a vector from poly(A) ⁺RNA of human glioblastoma cell line T98G by Super Script Plasmid System for cDNA Synthesis and Plasmid Cloning (Trade name, marketed from GIBCOBRL Co.). After preparing 27mer biotinylated primer OA004-F1:

5'-biotin-ATGCACATCTTCAAGCATGCTCAG-3', based on the information of nucleotide sequence obtained by SST, plasmid hybridized specifically with the biotinylated primer were recovered from the cDNA library according to the method of Gene Trapper Kit and then transfected into E. Coli DH10B. Colony hybridization with OA004 SST cDNA which was labeled with ³²P-dCTP, as a probe, was performed by using Random Primer DNA Labeling kit (Trade name, marketed from Takara-Shuzo Co.) according to known method to isolate the positive clone and to prepare the plasmid. Full Nucleotide sequences was determined, and then sequence shown in SEQ ID NO. 11, which was named as OA004b, was obtained. An open reading frame was determined and deduced amino acid sequence and nucleotide sequence shown in SEQ ID NOS. 9 and 10, respectively, were obtained.

It was indicated from the results of homology search for the public database of the nucleic acid sequences by using BLASTN and FASTA, and for the public database of the amino acid sequences by using BLASTX, BLASTP and FASTA, that there was no sequence identical to the polypeptide sequence and the nucleotide sequence of OA004b of the present invention. In addition, the polypeptide of the present invention was expected to possess the transmembrane region by hydrophobisity analysis of the obtained amino acid sequence. From these results, it was proved that polypeptide of the present invention was new membrane protein. However, the search using BLASTX, BLASTP and FASTA revealed a significant homology between

clone OA004b (region of 171st~311st amino acid in SEQ ID NO. 9) and Hypothetical 52.8kD protein [Caenorhabdtis elegans] (region of 299th~453rd amino acid of Swiss Prot Accession YJ95_CAEEL), and between OA004b (region of 194th~277th amino acid in SEQ ID NO. 9) and presenilin-2 [Homo sapiens] (region of 340th~416th amino acid of Genbank Accession A56993). Based on these homologies, clone OA004b and presenilin family were expected to share at least some activity.

In Example relating to clone OAF075b of the present invention, the same procedure as in Example of OC001 was used except for the following points.

Preparation of poly(A)+RNA

Total RNA was prepared from human bone marrow stroma cell line HAS303 (provided from Prof. Keisuke Sotoyama, Dr. Makoto Aizawa, First Medicine, Tokyo Medical College) by TRIzol reagent (Trade Mark, marketed from GIBCOBRL Co.). Poly(A)+RNA was purified from the total RNA by mRNA Purification Kit (Trade name, marketed from Pharmacia Co.).

Cloning of a full-length cDNA and determination of amino acid sequnce

A full-length cDNA was cloned by the same procedure as OC001 using Marathon cDNA Amplification Kit (Trade name, marketed from Clontech Co.) according to 3'RACE. A double-strand cDNA was prepaid from RNA derived from each clone, i. e., poly(A)+RNA of HAS303. 27mer primer OAF075-F1:

5'-CCCCGGGGACATGAGGTGGATACTGTT-3'

containing the deduced initiation ATG codon region based on the information of nucleotide sequence obtained by SST, was prepared. PCR was performed with the said primer and adapter primer attached in the kit. A cDNA which was amplified with clone OAF075B specifically, was recloned by the same method as OC001 to determine full necleotide sequence and obtain

the sequence shown in SEQ ID NO. 14, which was named as OAF075b. An open reading frame was determined and deduced amino acid sequence and nucleotide sequence shown in SEQ ID NOS. 12 and 13, respectively, were obtained.

It was indicated from the results of homology search for the public database of the nucleic acid sequences by using BLASTN and FASTA, and for the public database of the amino acid sequences by using BLASTX, BLASTP and FASTA, that there was no sequence identical to the polypeptide sequence and the nucleotide sequence of OAF075b of the present invention. In addition, the polypeptides of the present invention was expected to possess no transmembrane region by hydrophobisity analysis of the obtained amino acid sequences. From these results, it was proved that polypeptide of the present invention was new secretory protein. Further, the search using BLASTX, BLASTP and FASTA revealed a significant homology between clone OAF075b (region of 1st~359th amino acid in SEQ ID NO. 12) and preprocarboxypeptidase A2 [Homo sapiens] (region of 1st~355th amino acid of Genbank Accession U19977). Based on these homologies, clone OAF075b and preprocarboxypeptidase A2 [Homo sapiens] were expected to share at least some activity.

[Sequence List] SEQ ID NO.: 1 Length: 344 Type: amino acid Topology: liner Molecule type : protein Sequence Description Met Lys Thr Ile Gln Pro Lys Met His Asn Ser Ile Ser Trp Ala Ile -28 -25-20-15 Phe Thr Gly Leu Ala Ala Leu Cys Leu Phe Gln Gly Val Pro Val Arg -10-5 1 Ser Gly Asp Ala Thr Phe Pro Lys Ala Met Asp Asn Val Thr Val Arg 5 10 15 20 Gln Gly Glu Ser Ala Thr Leu Arg Cys Thr Ile Asp Asn Arg Val Thr 25 30 Arg Val Ala Trp Leu Asn Arg Ser Thr Ile Leu Tyr Ala Gly Asn Asp 40 45 50 Lys Trp Cys Leu Asp Pro Arg Val Val Leu Leu Ser Asn Thr Gln Thr 55 60 65 Gln Tyr Ser Ile Glu Ile Gln Asn Val Asp Val Tyr Asp Glu Gly Pro 70 75 80

| Ser | Ser

		135					140					145			
Val	Gly	Phe	Val	Ser	Glu	Asp	Glu	Tyr	Leu	Glu	Ile	Gln	Gly	Ile	Thr
	150					155					160				
Arg	Glu	Gln	Ser	Gly	Asp	Tyr	Glu	Cys	Ser	Ala	Ser	Asn	Asp	Val	Ala
165					170					175					180
Ala	Pro	Val	Val	Arg	Arg	Val	Lys	Val	Thr	Val	Asn	Tyr	Pro	Pro	Tyr
				185					190					195	
Ile	Ser	Glu	Ala	Lys	Gly	Thr	Gly	Val	Pro	Val	Gly	Gln	Lys	Gly	Thr
			200					205					210		
Leu	Gln	Cys	Glu	Ala	Ser	Ala	Val	Pro	Ser	Ala	Glu	Phe	Gln	Trp	Tyr
		215					220					225			
Lys	Asp	Asp	Lys	Arg	Leu	Ile	Glu	Gly	Lys	Lys	Gly	Val	Lys	Val	Glu
	230					235					240				
Asn	Arg	Pro	Phe	Leu	Ser	Lys	Leu	Ile	Phe	Phe	Asn	Val	Ser	Glu	His
245					250					255					260
Asp	Tyr	Gly	Asn	Tyr	Thr	Cys	Val	Ala	Ser	Asn	Lys	Leu	Gly	His	Thr
				265					270					275	
Asn	Ala	Ser	Ile	Met	Leu	Phe	Gly	Pro	Gly	Ala	Val	Ser	Glu	Val	Ser
			280					285					290		
Asn	Gly	Thr	Ser	Arg	Arg	Ala	Gly	Cys	Val	Trp	Leu	Leu	Pro	Leu	Leu
		295					300					305			
Val	Leu	His	Leu	Leu	Leu	Lys	Phe								
	310					315									

SEQ ID NO. : 2

 $Length \;:\; 1032$

Type : nucleic acid Strandness : single

Topology : liner

Molecule type : cDNA to mRNA

Sequence Description

ATGAAAACCA	TCCAGCCAAA	AATGCACAAT	TCTATCTCTT	GGGCAATCTT	CACGGGGCTG	60
GCTGCTCTGT	GTCTCTTCCA	AGGAGTGCCC	GTGCGCAGCG	GAGATGCCAC	CTTCCCCAAA	120
GCTATGGACA	ACGTGACGGT	CCGGCAGGGG	GAGAGCGCCA	CCCTCAGGTG	CACTATTGAC	180
AACCGGGTCA	CCCGGGTGGC	CTGGCTAAAC	CGCAGCACCA	TCCTCTATGC	TGGGAATGAC	240
AAGTGGTGCC	TGGATCCTCG	CGTGGTCCTT	CTGAGCAACA	CCCAAACGCA	GTACAGCATC	300
GAGATCCAGA	ACGTGGATGT	GTATGACGAG	GGCCCTTACA	CCTGCTCGGT	GCAGACAGAC	360
AACCACCCAA	AGACCTCTAG	GGTCCACCTC	ATTGTGCAAG	TATCTCCCAA	AATTGTAGAG	420
ATTTCTTCAG	ATATCTCCAT	TAATGAAGGG	AACAATATTA	GCCTCACCTG	CATAGCAACT	480
GGTAGACCAG	AGCCTACGGT	TACTTGGAGA	CACATCTCTC	CCAAAGCGGT	TGGCTTTGTG	540
AGTGAAGACG	AATACTTGGA	AATTCAGGGC	ATCACCCGGG	AGCAGTCAGG	GGACTACGAG	600
TGCAGTGCCT	CCAATGACGT	GGCCGCGCCC	GTGGTACGGA	GAGTAAAGGT	CACCGTGAAC	660
TATCCACCAT	ACATTTCAGA	AGCCAAGGGT	ACAGGTGTCC	CCGTGGGACA	AAAGGGGACA	720
CTGCAGTGTG	AAGCCTCAGC	AGTCCCCTCA	GCAGAATTCC	AGTGGTACAA	GGATGACAAA	780
AGACTGATTG	AAGGAAAGAA	AGGGGTGAAA	GTGGAAAACA	GACCTTTCCT	CTCAAAACTC	840
ATCTTCTTCA	ATGTCTCTGA	ACATGACTAT	GGGAACTACA	CTTGCGTGGC	CTCCAACAAG	900
CTGGGCCACA	CCAATGCCAG	CATCATGCTA	TTTGGTCCAG	GCGCCGTCAG	CGAGGTGAGC	960
AACGGCACGT	CGAGGAGGGC	AGGCTGCGTC	TGGCTGCTGC	CTCTTCTGGT	CTTGCACCTG	1020
CTTCTCAAAT	TT					1032

SEQ ID NO. : 3

Length: 1693

Type : nucleic acid

Strandness : single

Topology : liner

Molecule type : cDNA to mRNA

Original source

Organism : Homo sapiens

Clone Name: 0C001 Sequence Description Feature Name/Key : CDS Location: 130..1161 Identification method: S Name/Key: sig peptide Location: 130..213 Identification method: S Name/Key: mat peptide Location : 214..1161 Identification method: S Sequence Description GTCCTTCAGC AAAACAGTGG ATTTAAATCT CCTTGCACAA GCTTGAGAGC AACACAATCT 60 ATCAGGAAAG AAAGAAGAA AAAAAACCGA ACCTGACAAA AAAGAAGAAA AAGAAGAAGA 120 AAAAAAATC ATG AAA ACC ATC CAG CCA AAA ATG CAC AAT TCT ATC TCT 168 Met Lys Thr Ile Gln Pro Lys Met His Asn Ser Ile Ser -28-25-20TGG GCA ATC TTC ACG GGG CTG GCT GCT CTG TGT CTC TTC CAA GGA GTG 216 Trp Ala Ile Phe Thr Gly Leu Ala Ala Leu Cys Leu Phe Gln Gly Val -15 -10-5 1 CCC GTG CGC AGC GGA GAT GCC ACC TTC CCC AAA GCT ATG GAC AAC GTG 264 Pro Val Arg Ser Gly Asp Ala Thr Phe Pro Lys Ala Met Asp Asn Val 5 10 15 ACG GTC CGG CAG GGG GAG AGC GCC ACC CTC AGG TGC ACT ATT GAC AAC 312 Thr Val Arg Gln Gly Glu Ser Ala Thr Leu Arg Cys Thr Ile Asp Asn

Organelle: human adult brain tissue

30

25

20

CGG	GTC	ACC	CGG	GTG	GCC	TGG	CTA	AAC	CGC	AGC	ACC	ATC	CTC	TAT	GCT	360
Arg	Val	Thr	Arg	Val	Ala	Trp	Leu	Asn	Arg	Ser	Thr	Ile	Leu	Tyr	Ala	
	35					40					45					
GGG	AAT	GAC	AAG	TGG	TGC	CTG	GAT	CCT	CGC	GTG	GTC	CTT	CTG	AGC	AAC	408
Gly	Asn	Asp	Lys	Trp	Cys	Leu	Asp	Pro	Arg	Val	Val	Leu	Leu	Ser	Asn	
50					55					60					65	
ACC	CAA	ACG	CAG	TAC	AGC	ATC	GAG	ATC	CAG	AAC	GTG	GAT	GTG	TAT	GAC	456
Thr	Gln	Thr	Gln	Tyr	Ser	Ile	Glu	Ile	Gln	Asn	Val	Asp	Val	Tyr	Asp	
				70					75					80		
GAG	GGC	CCT	TAC	ACC	TGC	TCG	GTG	CAG	ACA	GAC	AAC	CAC	CCA	AAG	ACC	504
Glu	Gly	Pro	Tyr	Thr	Cys	Ser	Val	Gln	Thr	Asp	Asn	His	Pro	Lys	Thr	
			85					90					95			
TCT	AGG	GTC	CAC	CTC	ATT	GTG	CAA	GTA	TCT	CCC	AAA	ATT	GTA	GAG	ATT	552
Ser	Arg	Val	His	Leu	Ile	Val	Gln	Val	Ser	Pro	Lys	Ile	Val	Glu	Ile	
		100					105					110				
				TCC												600
Ser		Asp	Ile	Ser	Ile	Asn	Glu	Gly	Asn	Asn	Ile	Ser	Leu	Thr	Cys	
	115					120					125					
				AGA												648
	Ala	Thr	Gly	Arg		Glu	Pro	Thr	Val	Thr	Trp	Arg	His	Ile	Ser	
130					135					140					145	
				GGC												696
Pro	Lys	Ala	Val	Gly	Phe	Val	Ser	Glu		Glu	Tyr	Leu	Glu		Gln	
000	1 m O	1.00	000	150	0.0		~~~		155					160		
				GAG												744
Gly	11e	Inr		Glu	GIn	Ser	Gly		Tyr	Glu	Cys	Ser		Ser	Asn	
0.4.0	ama	000	165	000	0.00	0.00.1	000	170					175			
				CCC												792
Asp	vai	Ala	Ala	Pro	val	Val	Arg	Arg	Val	Lys	Val	Thr	Val	Asn	Tyr	

180	185	190	
CCA CCA TAC ATT TCA GAA G	GCC AAG GGT ACA GGT GT	C CCC GTG GGA CAA	840
Pro Pro Tyr Ile Ser Glu A	Ala Lys Gly Thr Gly Va	l Pro Val Gly Gln	
195 2	200 20	15	
AAG GGG ACA CTG CAG TGT G	GAA GCC TCA GCA GTC CC	CC TCA GCA GAA TTC	888
Lys Gly Thr Leu Gln Cys G	Glu Ala Ser Ala Val Pr	o Ser Ala Glu Phe	
210 215	220	225	
CAG TGG TAC AAG GAT GAC A	AAA AGA CTG ATT GAA GG	A AAG AAA GGG GTG	936
Gln Trp Tyr Lys Asp Asp I	Lys Arg Leu Ile Glu Gl	y Lys Lys Gly Val	
230	235	240	
AAA GTG GAA AAC AGA CCT T	TTC CTC TCA AAA CTC AT	C TTC TTC AAT GTC	984
Lys Val Glu Asn Arg Pro F	Phe Leu Ser Lys Leu Il	e Phe Phe Asn Val	
245	250	255	
TCT GAA CAT GAC TAT GGG A	AAC TAC ACT TGC GTG GC	C TCC AAC AAG CTG	1032
Ser Glu His Asp Tyr Gly A	Asn Tyr Thr Cys Val Al	a Ser Asn Lys Leu	
260	265	270	
GGC CAC ACC AAT GCC AGC A	ATC ATG CTA TTT GGT CC	A GGC GCC GTC AGC	1080
Gly His Thr Asn Ala Ser I	lle Met Leu Phe Gly Pr	o Gly Ala Val Ser	
275 2	280 28	35	
GAG GTG AGC AAC GGC ACG T	TCG AGG AGG GCA GGC TG	C GTC TGG CTG CTG	1128
Glu Val Ser Asn Gly Thr S	Ser Arg Arg Ala Gly Cy	's Val Trp Leu Leu	
290 295	300	305	
CCT CTT CTG GTC TTG CAC C	CTG CTT CTC AAA TTT TG	ATGTGAGT GCCACTTCCC	1181
Pro Leu Leu Val Leu His I	Leu Leu Lys Phe		
310	315		
CACCCGGGAA AGGCTGCCGC CAC			1241
GCAACCAATC AGATATATAC AAA			1301
TTGAGGGAGG GGAACAAAGA ATA			1361
ATTGCCTTGC AGATATTTAG GTA	ACAATGGA GTTTTCTTTT CC	CAAACGGG AAGAACACAG	1421

CACA	CCCC	GC 7	rtgg/	ACCCA	C TO	GCAA(GCTGC	AT(CGTGC	CAAC	CTCT	TTG(GTG	CCAGI	rgtggg	ř ,	1481
CAAC	GGCT	CA (GCCT	СТСТО	C CC	CACAC	GAGTG	CCC	CCCAC	CGTG	GAAC	CATTO	CTG	GAGCT	rggcca	L	1541
TCCC	CAAAT	TTC A	AATC/	AGTCC	CA TA	AGAGA	ACGAA	CA(GAAT(GAGA	CCTT	CCG	GCC	CAAGO	CGTGGC	;	1601
GCT	CGG	GCA (CTTT(GTAC	GA C	rgtg(CCACC	AC(GCGT	GTG	TTGT	GAA/	ACG	TGAAA	AAAAT	١.	1661
AGAG	CAA	AAA A	AAAA/	\AAA/	AA AA	AAAA/	AAAA	. AA									1693
SEQ	ID N	10.	: 4														
Leng	th :	313	3														
Туре	e : a	amino	o aci	id													
Topo	ology	y :]	line	•													
Mole	ecule	e typ	pe :	prot	tein												
Sequ	ience	e Des	scrip	otion	1												
Arg	Ser	Gly	Asp	Ala	Thr	Phe	Pro	Lys	Ala	Met	Asp	Asn	Val	Thr	Val	٠.	
1				5					10					15			
Arg	Gln	Gly	Glu	Ser	Ala	Thr	Leu	Arg	Cys	Thr	Ile	Asp	Asn	Arg	Val		
			20					25					30	l			
Thr	Arg	Val	Ala	Trp	Leu	Asn	Arg	Ser	Thr	Ile	Leu	Tyr	Ala	Gly	Asn		
		35					40					45					
Asp	Lys	Trp	Cys	Leu	Asp	Pro	Arg	Val	Val	Leu	Leu	Ser	Asn	Thr	Gln		
	50					55					60						
Thr	Gln	Tyr	Ser	Ile	Glu	Ile	Gln	Asn	Val	Asp	Val	Tyr	Asp	Glu	Gly		
65					70					75					80		
Pro	Tyr	Thr	Cys	Ser	Val	Gln	Thr	Asp	Asn	His	Pro	Lys	Thr	Ser	Arg		
				85					90					95			
Val	His	Leu	Ile	Val	Gln	Val	Ser	Pro	Lys	He	Val	Glu	Ile	Ser	Ser		
			100					105					110)			

Asp Ile Ser Ile Asn Glu Gly Asn Asn Ile Ser Leu Thr Cys Ile Ala

Thr Gly Arg Pro Glu Pro Thr Val Thr Trp Arg His Ile Ser Pro Lys

	130					135					140				
Ala	Val	Gly	Phe	Val	Ser	Glu	Asp	Glu	Tyr	Leu	Glu	Ile	Gln	Gly	Ile
145					150					155					160
Thr	Arg	Glu	Gln	Ser	Gly	Asp	Tyr	Glu	Cys	Ser	Ala	Ser	Asn	Asp	Val
				165					170					175	
Ala	Ala	Pro	Val	Val	Arg	Arg	Val	Lys	Val	Thr	Val	Asn	Tyr	Pro	Pro
			180					185					190		
Tyr	Ile	Ser	Glu	Ala	Lys	Gly	Thr	Gly	Val	Pro	Val	Gly	Gln	Lys	Gly
		195					200					205			
Thr	Leu	Gln	Cys	Glu	Ala	Ser	Ala	Val	Pro	Ser	Ala	Glu	Phe	Gln	Trp
	210					215					220				
Tyr	Lys	Asp	Asp	Lys	Arg	Leu	Ile	Glu	Gly	Lys	Lys	Gly	Val	Lys	Val
225					230					235					240
Glu	Asn	Arg	Pro	Phe	Leu	Ser	Lys	Leu	Ile	Phe	Phe	Asn	Val	Ser	Glu
				245					250	٠				255	
His	Asp	Tyr	Gly	Asn	Tyr	Thr	Cys	Val	Ala	Ser	Asn	Lys	Leu	Gly	His
			260					265					270		
Thr	Asn	Ala	Ser	Ile	Met	Leu	Phe	Gly	Pro	Gly	Ala	Val	Ser	Glu	Val
		275					280					285			
Ser	Asn	Gly	Thr	Ser	Arg	Arg	Ala	Gly	Cys	Val	Trp	Leu	Leu	Pro	Leu
	290					295					300				
Leu	Val	Leu	His	Leu	Leu	Leu	Lys	Phe							
305					310										

SEQ ID NO. : 5

Length: 939

Type : nucleic acid

Strandness : single

Topology : liner

Molecule type : cDNA to \mathtt{mRNA}

Sequence Description

CGCAGCGGAG	ATGCCACCTT	CCCCAAAGCT	ATGGACAACG	TGACGGTCCG	GCAGGGGGAG	60
AGCGCCACCC	TCAGGTGCAC	TATTGACAAC	CGGGTCACCC	GGGTGGCCTG	GCTAAACCGC	120
AGCACCATCC	TCTATGCTGG	GAATGACAAG	TGGTGCCTGG	ATCCTCGCGT	GGTCCTTCTG	180
AGCAACACCC	AAACGCAGTA	CAGCATCGAG	ATCCAGAACG	TGGATGTGTA	TGACGAGGGC	240
CCTTACACCT	GCTCGGTGCA	GACAGACAAC	CACCCAAAGA	CCTCTAGGGT	CCACCTCATT	300
GTGCAAGTAT	CTCCCAAAAT	TGTAGAGATT	TCTTCAGATA	TCTCCATTAA	TGAAGGGAAC	360
AATATTAGCC	TCACCTGCAT	AGCAACTGGT	AGACCAGAGC	CTACGGTTAC	TTGGAGACAC	420
ATCTCTCCCA	AAGCGGTTGG	CTTTGTGAGT	GAAGACGAAT	ACTTGGAAAT	TCAGGGCATC	480
ACCCGGGAGC	AGTCAGGGGA	CTACGAGTGC	AGTGCCTCCA	ATGACGTGGC	CGCGCCCGTG	540
GTACGGAGAG	TAAAGGTCAC	CGTGAACTAT	CCACCATACA	TTTCAGAAGC	CAAGGGTACA	600
GGTGTCCCCG	TGGGACAAAA	GGGGACACTG	CAGTGTGAAG	CCTCAGCAGT	CCCCTCAGCA	660
GAATTCCAGT	GGTACAAGGA	TGACAAAAGA	CTGATTGAAG	${\tt GAAAGAAAGG}$	GGTGAAAGTG	720
GAAAACAGAC	CTTTCCTCTC	AAAACTCATC	TTCTTCAATG	TCTCTGAACA	TGACTATGGG	7 80
AACTACACTT	GCGTGGCCTC	CAACAAGCTG	GGCCACACCA	ATGCCAGCAT	CATGCTATTT	840
GGTCCAGGCG	CCGTCAGCGA	GGTGAGCAAC	GGCACGTCGA	GGAGGGCAGG	CTGCGTCTGG	900
CTGCTGCCTC	TTCTGGTCTT	GCACCTGCTT	CTCAAATTT			939

SEQ ID NO.: 6

Length: 478

Type: amino acid

Strandness: single

Topology: liner

Molecule type : protein

Sequence Description

Met Phe Lys Phe His Gln Met Lys His Ile Phe Glu Ile Leu Asp Lys

1 5 10 15

Met Arg Cys Leu Arg Lys Arg Ser Thr Val Ser Phe Leu Gly Val Leu

			20					25					30		
Val	Ile	Phe	Leu	Leu	Phe	Met	Asn	Leu	Tyr	Ile	Glu	Asp	Ser	Tyr	Val
		35					40					4 5			
Leu	Glu	Gly	Asp	Lys	Gln	Leu	Ile	Arg	Glu	Thr	Ser	Thr	His	Gln	Leu
	50					55					60				
Asn	Ser	Glu	Arg	Tyr	Val	His	Thr	Phe	Lys	Asp	Leu	Ser	Asn	Phe	Ser
65					70		-			75					80
Gly	Ala	Ile	Asn	Val	Thr	Tyr	Arg	Tyr	Leu	Ala	Ala	Thr	Pro	Leu	Gln
				85					90					95	
Arg	Lys	Arg	Tyr	Leu	Thr	Ile	Gly	Leu	Ser	Ser	Val	Lys	Arg	Lys	Lys
			100					105					110		
Gly	Asn	Tyr	Leu	Leu	Glu	Thr	Ile	Lys	Ser	Ile	Phe	Glu	Gln	Ser	Ser
		115					120					125			
Tyr	Glu	Glu	Leu	Lys	Glu	He	Ser	Val	Val	Ile	His	Leu	Ala	Asp	Phe
	130					135					140				
Asn	Ser	Ser	Trp	Arg	Asp	Ala	Met	Val	Gln	Asp	Ile	Thr	Gln	Lys	Phe
145					150					155					160
Ala	His	His	Ile	Ile	Ala	Gly	Arg	Leu	Met	Val	Ile	His	Ala	Pro	Glu
				165					170					175	
Glu	Tyr	Tyr	Pro	Ile	Leu	Asp	Gly	Leu	Lys	Arg	Asn	Tyr		Asp	Pro
			180					185					190		
Glu	Asp	Arg	Val	Lys	Phe	Arg		Lys	Gln	Asn	Val			Thr	Phe
		195					200					205			
Leu		Asn	Phe	Cys	Ala		Thr	Ser	Asp	Tyr		Val	Met	Leu	Glu
	210					215					220				
	Asp	Val	Arg	Cys		Lys	Asn	Phe	Leu		Ala	He	Lys	Lys	
225					230			_		235	_	a -		~	240
Ile	Ala	Ser	Leu			Thr	Tyr	Trp	Val	Thr	Leu	Glu	Phe		
				245					250					255	

Leu	Gly	Tyr	lle	Gly	Lys	Leu	Tyr	His	Ser	His	Asp	Leu	Pro	Arg	Leu
			260					265					270		
Ala	His	Phe	Leu	Leu	Met	Phe	Tyr	Gln	Glu	Met	Pro	Cys	Asp	Trp	Leu
		275					280					285			
Leu	Thr	His	Phe	Arg	Gly	Leu	Leu	Ala	Gln	Lys	Asn	Val	Ile	Arg	Phe
	290					295					300				
Lys	Pro	Ser	Leu	Phe	Gln	His	Met	Gly	Tyr	Tyr	Ser	Ser	Tyr	Lys	Gly
305					310					315					320
Thr	Glu	Asn	Lys	Leu	Lys	Asp	Asp	Asp	Phe	Glu	Glu	Glu	Ser	Phe	Asp
				325					330					335	
Ile	Pro	Asp	Asn	Pro	Pro	Ala	Ser	Leu	Tyr	Thr	Asn	Met	Asn	Val	Phe
			340					345					350		
Glu	Asn	Tyr	Glu	Ala	Ser	Lys	Ala	Tyr	Ser	Ser	Val	Asp	Glu	Tyr	Phe
		355					360					365			
Trp	Gly	Lys	Pro	Pro	Ser	Thr	Gly	Asp	Val	Phe	Val	Ile	Val	Phe	Glu
	370					375					380				
Asn	Pro	Ile	Ile	Ile	Lys	Lys	Ile	Lys	Val	Asn	Thr	Gly	Thr	Glu	Asp
385					390					395					400
Arg	Gln	Asn	Asp	Ile	Leu	His	His	Gly	Ala	Leu	Asp	Val	Gly	Glu	Asn
				405					410					415	
Val	Met	Pro	Ser	Lys	Gln	Arg	Gly	Gln	Cys	Ser	Thr	Tyr	Leu	Arg	Leu
			420					425					430		•
Gly	Glu	Phe	Lys	Asn	Gly	Asn	Phe	Glu	Met	Ser	Gly	Val	Asn	Gln	Lys
		435					440					445			
Ile	Pro	Phe	Asp	Ile	His	Cys	Met	Arg	Ile	Tyr	Val	Thr	Lys	Thr	Gln
	450					455					460				
Lys	Glu	Trp	Leu	Ile	Ile	Arg	Ser	Ile	Ser	Ile	Trp	Thr	Ser		
465					470					475					

SEQ ID NO.: 7

Length: 1434

Type : nucleic acid

Strandness : single

Topology : liner

Molecule type : cDNA to \mathtt{mRNA}

Sequence Description

ATGTTTAAAT	TTCATCAAAT	GAAACATATT	TTTGAAATAC	TTGATAAAAT	GAGATGCCTG	60
AGAAAACGTT	CTACAGTGTC	ATTCTTGGGA	GTTCTTGTCA	TTTTTCTCCT	TTTTATGAAC	120
TTGTACATTG	AAGATAGCTA	TGTTCTGGAA	GGAGACAAAC	AACTTATAAG	GGAAACATCC	180
ACACATCAAC	TGAATTCAGA	ACGCTATGTT	CATACTTTCA	AGGATTTATC	TAATTTCTCA	240
GGAGCCATAA	ATGTCACCTA	TCGCTACCTA	GCTGCCACAC	CTTTACAAAG	AAAGCGGTAT	300
CTTACAATTG	GACTTTCTTC	AGTAAAGCGA	AAAAAAGGAA	ACTATTTACT	TGAGACAATT	360
AAGTCAATTT	TTGAGCAATC	CAGCTATGAA	GAGCTGAAGG	AAATTTCAGT	GGTGATTCAC	420
CTAGCAGACT	TTAATTCTTC	CTGGCGTGAT	GCCATGGTCC	AGGATATTAC	ACAGAAATTT	480
GCGCACCATA	TTATTGCAGG	AAGATTAATG	GTTATACATG	CTCCAGAGGA	GTATTACCCA	540
ATCCTAGATG	GCCTTAAAAG	AAATTACAAT	GATCCAGAAG	ATAGAGTCAA	ATTTCGTTCC	600
AAGCAAAATG	TAGATTATAC	TTTTCTGCTT	AATTTTTGTG	CCAATACTTC	AGACTATTAT	660
GTAATGCTTG	AAGATGATGT	TCGATGTTCA	AAAAATTTCT	TAACTGCCAT	CAAGAAAGTC	720
ATTGCATCCC	TAGAAGGAAC	TTACTGGGTA	ACTCTTGAAT	TCTCTAAGCT	TGGCTACATT	780
GGTAAACTCT	ATCATTCTCA	TGATCTCCCA	CGTTTGGCCC	ATTTTTTATT	AATGTTTTAT	840
CAAGAAATGC	CTTGTGATTG	GCTATTGACT	CATTTCCGTG	${\tt GTCTGTTGGC}$	TCAGAAAAAT	900
GTGATCCGTT	TTAAACCATC	TCTCTTTCAG	CACATGGGCT	ATTATTCATC	ATACAAAGGG	960
ACGGAGAATA	AGCTGAAGGA	TGATGATTTT	GAAGAGGAGT	CATTTGACAT	TCCTGATAAC	1020
CCCCTGCAA	GTCTGTACAC	CAACATGAAT	GTGTTTGAAA	ATTATGAAGC	AAGCAAGGCT	1080
TACAGTAGTG	TTGATGAGTA	CTTTTGGGGG	AAACCACCTT	CAACAGGAGA	TGTTTTTGTG	1140
ATTGTATTTG	AAAATCCAAT	TATAATAAAA	AAAATTAAAG	TAAATACTGG	AACAGAAGAT	1200
CGGCAAAATG	ATATTTTGCA	TCATGGAGCC	CTAGATGTTG	GGGAAAACGT	TATGCCTAGC	1260
AAACAAAGGG	GACAATGTTC	TACTTACTTA	AGACTAGGAG	AATTCAAAAA	TGGAAACTTT	1320

GAAAIGICAG GIGI	AAAICA AAAAAIIC	CA TITGATATAC	C ATTGTATGAG GATATATGTC	1380
ACCAAAACAC AAAA	GGAATG GCTAATTA	ATT AGGAGTATTA	A GCATTTGGAC TTCT	1434
SEQ ID NO. : 8		•		
Length: 2131				
Type : nucleic	acid			
Strandness : si	ngle			
Topology : line	r			
Molecule type :	cDNA to mRNA			
Original source				
Organism : Hom	o sapiens			
Organelle : hu	man adult brain	tissue		
Clone Name : 0	M237			
Sequence Descri	ption Feature	•		
Name/Key : CDS		•		
Location: 114	1547			
Identification	method : S			
Sequence Descri	ption			
CCAGAAAGCA CAGCO	- CCTGAT TCTGCGTG	AG AAAGGCTATC	TCTACAGAAA CTAAAACGGT	60
			TCTTAAGAAG AGA ATG	116
			Met	110
			1	
TTT AAA TTT CAT	CAA ATG AAA CA	T ATT TTT GAA	ATA CTT GAT AAA ATG	164
			Ile Leu Asp Lys Met	101
5		10	15	
	ልልል ቦርፕ ፕሮፕ ልቦ		TTG GGA GTT CTT GTC	919
				212
20	Lys arg ser in		Leu Gly Val Leu Val	
ΔU	/.	.:1	30	

ATT TTT CTC CTT TTT ATG AAC TTG TAC ATT GAA GAT AGC TAT GTT CTG

Ile	Phe	Leu	Leu	Phe	Met	Asn	Leu	Tyr	Ile	Glu	Asp	Ser	Tyr	Val	Leu	
	35					40					45					
GAA	GGA	GAC	AAA	CAA	CTT	ATA	AGG	GAA	ACA	TCC	ACA	CAT	CAA	CTG	AAT	308
Glu	Gly	Asp	Lys	Gln	Leu	Ile	Arg	Glu	Thr	Ser	Thr	His	Gln	Leu	Asn	
50					55					60					65	
TCA	GAA	CGC	TAT	GTT	CAT	ACT	TTC	AAG	GAT	TTA	TCT	AAT	TTC	TCA	GGA	356
Ser	Glu	Arg	Tyr	Val	His	Thr	Phe	Lys	Asp	Leu	Ser	Asn	Phe	Ser	Gly	
				70					75					80		
GCC	ATA	AAT	GTC	ACC	TAT	CGC	TAC	CTA	GCT	GCC	ACA	CCT	TTA	CAA	AGA	404
Ala	Ile	Asn	Val	Thr	Tyr	Arg	Tyr	Leu	Ala	Ala	Thr	Pro	Leu	Gln	Arg	
			85					90					95			
AAG	CGG	TAT	CTT	ACA	ATT	GGA	CTT	TCT	TCA	GTA	AAG	CGA	AAA	AAA	GGA	452
Lys	Arg	Tyr	Leu	Thr	Ile	Gly	Leu	Ser	Ser	Val	Lys	Arg	Lys	Lys	Gly	
		100					105					110				
AAC	TAT	TTA	CTT	GAG	ACA	ATT	AAG	TCA	ATT	TTT	GAG	CAA	TCC	AGC	TAT	500
Asn	Tyr	Leu	Leu	Glu	Thr	Ile	Lys	Ser	Ile	Phe	Glu	Gln	Ser	Ser	Tyr	
	115					120			•		125					
GAA	GAG	CTG	AAG	GAA	ATT	TCA	GTG	GTG	ATT	CAC	CTA	GCA	GAC	TTT	AAT	548
Glu	Glu	Leu	Lys	Glu	Ile	Ser	Val	Val	Ile	His	Leu	Ala	Asp	Phe	Asn	
130					135					140					145	
TCT	TCC	TGG	CGT	GAT	GCC	ATG	GTC	CAG	GAT	ATT	ACA	CAG	AAA	TTT	GCG	596
Ser	Ser	Trp	Arg	Asp	Ala	Met	Val	Gln	Asp	Ile	Thr	Gln	Lys	Phe	Ala	
				150					155					160		
CAC	CAT	ATT	ATT	GCA	GGA	AGA	TTA	ATG	GTT	ATA	CAT	GCT	CCA	GAG	GAG	644
His	His	Ile	Ile	Ala	Gly	Arg	Leu	Met	Val	Ile	His	Ala	Pro	Glu	Glu	
			165					170					175			
TAT	TAC	CCA	ATC	CTA	GAT	GGC	CTT	AAA	AGA	AAT	TAC	AAT	GAT	CCA	GAA	692
Tyr	Tyr	Pro	Ile	Leu	Asp	Gly	Leu	Lys	Arg	Asn	Tyr	Asn	Asp	Pro	Glu	
		180					185					190				

GAT	AGA	GTC	AAA	TTT	CGT	TCC	AAG	CAA	AAT	GTA	GAT	TAT	ACT	TTT	CTG	740
Asp	Arg	Val	Lys	Phe	Arg	Ser	Lys	Gln	Asn	Val	Asp	Tyr	Thr	Phe	Leu	
	195					200					205					
CTT	AAT	TTT	TGT	GCC	AAT	ACT	TCA	GAC	TAT	TAT	GTA	ATG	CTT	GAA	GAT	788
Leu	Asn	Phe	Cys	Ala	Asn	Thr	Ser	Asp	Tyr	Tyr	Val	Met	Leu	Glu	Asp	
210					215					220					225	
GAT	GTT	CGA	TGT	TCA	AAA	AAT	TTC	TTA	ACT	GCC	ATC	AAG	AAA	GTC	ATT	836
Asp	Val	Arg	Cys	Ser	Lys	Asn	Phe	Leu	Thr	Ala	Ile	Lys	Lys	Val	Ile	
				230					235					240		
GCA	TCC	CTA	GAA	GGA	ACT	TAC	TGG	GTA	ACT	CTT	GAA	TTC	TCT	AAG	CTT	884
Ala	Ser	Leu	Glu	Gly	Thr	Tyr	Trp	Val	Thr	Leu	Glu	Phe	Ser	Lys	Leu	
			245					250					255			
GGC	TAC	ATT	GGT	AAA	CTC	TAT	CAT	TCT	CAT	GAT	CTC	CCA	CGT	TTG	GCC	932
Gly	Tyr	Ile	Gly	Lys	Leu	Tyr	His	Ser	His	Asp	Leu	Pro	Arg	Leu	Ala	
		260					265					270				
														CTA		980
His		Leu	Leu	Met	Phe	Tyr	Gln	Glu	Met	Pro	Cys	Asp	Trp	Leu	Leu	
	275					280					285					
														TTT		1028
	His	Phe	Arg	Gly		Leu	Ala	Gln	Lys	Asn	Val	Ile	Arg	Phe	Lys	
290					295					300					305	
														GGG		1076
Pro	Ser	Leu	Phe		His	Met	Gly	Tyr		Ser	Ser	Tyr	Lys	Gly	Thr	
0.10		~		310					315					320		
														GAC		1124
Glu	Asn	Lys		Lys	Asp	Asp	Asp		Glu	Glu	Glu	Ser	Phe	Asp	Ile	
0.07	0 + m		325		~	.0_		330					335			
														TTT		1172
Pro	Asp	Asn	Pro	Pro	Ala	Ser	Leu	Tyr	Thr	Asn	Met	Asn	Val	Phe	Glu	

		340					345					350				
AAT	TAT	GAA	GCA	AGC	AAG	GCT	TAC	AGT	AGT	GTT	GAT	GAG	TAC	TTT	TGG	1220
Asn	Tyr	Glu	Ala	Ser	Lys	Ala	Tyr	Ser	Ser	Val	Asp	Glu	Tyr	Phe	Trp	
	355	ė				360					365					
GGG	AAA	CCA	CCT	TCA	ACA	GGA	GAT	GTT	TTT	GTG	ATT	GTA	TTT	GAA	AAT	1268
Gly	Lys	Pro	Pro	Ser	Thr	Gly	Asp	Val	Phe	Val	Ile	Val	Phe	Glu	Asn	
370					375					380					385	
CCA	ATT	ATA	ATA	AAA	AAA	ATT	AAA	GTA	AAT	ACT	GGA	ACA	GAA	GAT	CGG	1316
Pro	Ile	Ile	Ile	Lys	Lys	Ile	Lys	Val	Asn	Thr	Gly	Thr	Glu	Asp	Arg	
			•	390					395					400		
CAA	AAT	GAT	ATT	TTG	CAT	CAT	GGA	GCC	CTA	GAT	GTT	GGG	GAA	AAC	GTT	1364
Gln	Asn	Asp	Ile	Leu	His	His	Gly	Ala	Leu	Asp	Val	Gly	Glu	Asn	Val	
			405					410					415			
ATG	CCT	AGC	AAA	CAA	AGG	GGA	CAA	TGT	TCT	ACT	TAC	TTA	AGA	CTA	GGA	1412
Met	Pro	Ser	Lys	Gln	Arg	Gly	Gln	Cys	Ser	Thr	Tyr	Leu	Arg	Leu	Gly	
		420					425					430				
GAA	TTC	AAA	TAA	GGA	AAC	TTT	GAA	ATG	TCA	GGT	GTA	AAT	CAA	AAA	ATT	1460
Glu	Phe	Lys	Asn	Gly	Asn	Phe	Glu	Met	Ser	Gly	Val	Asn	Gln	Lys	Ile	
	435					440					445					
CCA	TTT	GAT	ATA	CAT	TGT	ATG	AGG	ATA	TAT	GTC	ACC	AAA	ACA	CAA	AAG	1508
Pro	Phe	Asp	Ile	His	Cys	Met	Arg	He	Tyr	Val	Thr	Lys	Thr	Gln	Lys	
450					455					460					465	
		CTA											TAGO	CAAT	'TA	1557
Glu	Trp	Leu	Ile	Ile	Arg	Ser	Ile	Ser	He	Trp	Thr	Ser				
				470					475							
AATC	AGTA	TG T	TCAG	TTTC	T GA	AGCA	GTTC	TTC	CTGC	TTC	GTCT	TTTG	CT A	.CCTT	TGTCT	1617
															AGTTT	1677
															AACGT	1737
CTGA	AGTT	GA A	TATC	AGTC	T AT	AGCT	AATG	CTA	CTTT	CAT	TTAT	ATTT	TT A	AATG	TTCTT	1797

AGTTTTAAAA	TTTCAACTGA	TTGTCGAAAG	GGTAATATGA	AAGATTTTAA	ATGAAAAAAA	1857
TTTGTTGGAT	GATGATTTTT	GAAAAATAGT	CACCAACTGT	ATATACTTCC	TCAAGAACTG	1917
ATAATTCATT	ATATCATCAG	ATAGCTTTTA	TTAAGCATCT	GTGGGAATAT	ACAGTTGGGT	1977
GGAATGATAA	TCTGGTTTAT	TTTTTCTGTA	AACTTAAGTT	TCCGTTGACT	TCTGTACATC	2037
TACAATGAAT	ACCTCCTCAT	AGAAGTGGTG	TCTTTACATA	ATTTTTTGTG	TAGGTGACAC	2097
TATGGAAAAA	AAAAAAAAA	${\tt AAAAAAAAA}$	AAAA			2131

SEQ ID NO.: 9

Length: 335

Type: amino acid

Strandness : single

Topology: liner

Molecule type : protein

Sequence Description

Met Asp Ser Ala Leu Ser Asp Pro His Asn Gly Ser Ala Glu Ala Gly

1 5 10 15

Gly Pro Thr Asn Ser Thr Thr Arg Pro Pro Ser Thr Pro Glu Gly Ile
20 25 30

Ala Leu Ala Tyr Gly Ser Leu Leu Met Ala Leu Leu Pro Ile Phe
35 40 45

Phe Gly Ala Leu Arg Ser Val Arg Cys Ala Arg Gly Lys Asn Ala Ser 50 55 60

Asp Met Pro Glu Thr Ile Thr Ser Arg Asp Ala Ala Arg Phe Pro Ile
65 70 75 80

Ile Ala Ser Cys Thr Leu Leu Gly Leu Tyr Leu Phe Phe Lys Ile Phe
85 90 95

Ser Gln Glu Tyr Ile Asn Leu Leu Leu Ser Met Tyr Phe Phe Val Leu 100 105 110

Gly Ile Leu Ala Leu Ser His Thr Ile Ser Pro Phe Met Asn Lys Phe

		115	•				120)				125			
Phe	Pro	Ala	Ser	Phe	Pro	Asn	Arg	Gln	Tyr	Gln	Leu	Leu	Phe	Thr	Glr
	130					135	i				140				
Gly	Ser	Gly	Glu	Asn	Lys	Glu	Glu	Ile	lle	Asn	Tyr	Glu	Phe	Asp	Thr
145					150					155					160
Lys	Asp	Leu	Val	Cys	Leu	Gly	Leu	Ser	Ser	lle	Val	Gly	Val	Trp	Tyr
				165					170					175	
Leu	Leu	Arg	Lys	Val	Phe	Gly	Thr	Asn	Val	Met	Val	Thr	Val	Ala	Lys
			180					185					190		
Ser	Phe	Glu	Ala	Pro	Ile	Lys	Leu	Val	Phe	Pro	Gln	Asp	Leu	Leu	Glu
		195					200					205			
Lys	Gly	Leu	Glu	Ala	Asn	Asn	Phe	Ala	Met	Leu	Gly	Leu	Gly	Asp	Val
	210					215					220				
Val	Ile	Pro	Gly	Ile	Phe	Ile	Ala	Leu	Leu	Leu	Arg	Phe	Asp	Ile	Ser
225					230					235					240
Leu	Lys	Lys	Asn	Thr	His	Thr	Tyr	Phe	Tyr	Thr	Ser	Phe	Ala	Ala	Tyr
				245					250					255	
Ile	Phe	Gly		Gly	Leu	Thr	Ile	Phe	Ile	Met	His	Ile	Phe	Lys	His
			260					265					270		
Ala	Gln		Ala	Leu	Leu	Tyr		Val	Pro	Ala	Cys	Ile	Gly	Phe	Pro
	_	275					280					285			
Val		Val	Ala	Leu	Ala		Gly	Glu	Val	Thr	Glu	Met	Phe	Ser	Tyr
0.1	290			_		295					300				
	Glu	Ser	Asn	Pro		Asp	Pro	Ala	Ala		Thr	Glu	Ser	Lys	Glu
305	mt.	a 1	4.1	0	310			~ -	_	315					320
Gly	Inr	Glu	Ala		Ala	Ser	Lys	Gly		Glu	Lys	Lys	Glu		
				325					330					332	

SEQ ID NO. : 10

Length: 1005

Type: nucleic acid

Strandness: single

Topology: liner

Molecule type : cDNA to mRNA

Sequence Description

ATGGACTCGG	CCCTCAGCGA	TCCGCATAAC	GGCAGTGCCG	AGGCAGGCGG	CCCCACCAAC	60
AGCACTACGC	GGCCGCCTTC	CACGCCCGAG	GGCATCGCGC	TGGCCTACGG	CAGCCTCCTG	120
CTCATGGCGC	TGCTGCCCAT	CTTCTTCGGC	GCCCTGCGCT	CCGTACGCTG	CGCCCGCGGC	180
AAGAATGCTT	CAGACATGCC	TGAAACAATC	ACCAGCCGGG	ATGCCGCCCG	CTTCCCCATC	240
ATCGCCAGCT	GCACACTCTT	GGGGCTCTAC	CTCTTTTTCA	AAATATTCTC	CCAGGAGTAC	300
ATCAACCTCC	TGCTGTCCAT	GTATTTCTTC	GTGCTGGGAA	TCCTGGCCCT	GTCCCACACC	360
ATCAGCCCCT	TCATGAATAA	GTTTTTTCCA	GCCAGCTTTC	CAAATCGACA	GTACCAGCTG	420
CTCTTCACAC	AGGGTTCTGG	GGAAAACAAG	GAAGAGATCA	TCAATTATGA	ATTTGACACC	480
AAGGACCTGG	TGTGCCTGGG	CCTGAGCAGC	ATCGTTGGCG	TCTGGTACCT	GCTGAGGAAG	540
GTATTTGGCA	CCAATGTGAT	GGTGACAGTG	GCCAAGTCCT	TCGAGGCACC	AATAAAATTG	600
GTGTTTCCCC	AGGATCTGCT	GGAGAAAGGC	CTCGAAGCAA	ACAACTTTGC	CATGCTGGGA	660
CTTGGAGATG	TCGTCATTCC	AGGGATCTTC	ATTGCCTTGC	TGCTGCGCTT	TGACATCAGC	7 20
TTGAAGAAGA	ATACCCACAC	CTACTTCTAC	ACCAGCTTTG	CAGCCTACAT	CTTCGGCCTG	780
GGCCTTACCA	TCTTCATCAT	GCACATCTTC	AAGCATGCTC	AGCCTGCCCT	CCTATACCTG	840
GTCCCCGCCT	GCATCGGTTT	TCCTGTCCTG	GTGGCGCTGG	CCAAGGGAGA	AGTGACAGAG	900
ATGTTCAGTT	ATGAGGAGTC	AAATCCTAAG	GATCCAGCGG	CAGTGACAGA	ATCCAAAGAG	960
GGAACAGAGG	CATCAGCATC	GAAGGGGCTG	GAGAAGAAAG	AGAAA		1005

SEQ ID NO. : 11

Length: 1486

Type: nucleic acid

Strandness : single

Topology : liner

Original source Organism: Homo sapiens Cell line: T98G Clone Name: OA004b Sequence Description Feature Name/Key : CDS Location: 117..1121 Identification method: S Sequence Description CACGTCACTT CCTGTTGCCT TAGGGGAACG TGGCTTTCCC TGCAGAGCCG GTGTCTCCGC 60 CTGCGTCCCT GCTGCAGCAA CCGGAGCTGG AGTCGGATCC CGAACGCACC CTCGCC 116 ATG GAC TCG GCC CTC AGC GAT CCG CAT AAC GGC AGT GCC GAG GCA GGC 164 Met Asp Ser Ala Leu Ser Asp Pro His Asn Gly Ser Ala Glu Ala Gly 5 1 10 15 GGC CCC ACC AAC AGC ACT ACG CGG CCG CCT TCC ACG CCC GAG GGC ATC 212 Gly Pro Thr Asn Ser Thr Thr Arg Pro Pro Ser Thr Pro Glu Gly Ile 20 25 30 GCG CTG GCC TAC GGC AGC CTC CTG CTC ATG GCG CTG CTG CCC ATC TTC 260 Ala Leu Ala Tyr Gly Ser Leu Leu Leu Met Ala Leu Leu Pro Ile Phe 35 40 45 TTC GGC GCC CTG CGC TCC GTA CGC TGC GCC CGC GGC AAG AAT GCT TCA 308 Phe Gly Ala Leu Arg Ser Val Arg Cys Ala Arg Gly Lys Asn Ala Ser 50 55 60 GAC ATG CCT GAA ACA ATC ACC AGC CGG GAT GCC GCC CGC TTC CCC ATC 356 Asp Met Pro Glu Thr Ile Thr Ser Arg Asp Ala Ala Arg Phe Pro Ile 65 70 75 80 ATC GCC AGC TGC ACA CTC TTG GGG CTC TAC CTC TTT TTC AAA ATA TTC 404 Ile Ala Ser Cys Thr Leu Leu Gly Leu Tyr Leu Phe Phe Lys Ile Phe

Molecule type : cDNA to mRNA

				85					90					95		
TCC	CAG	GAG	TAC	ATC	AAC	CTC	CTG	CTG	TCC	ATG	TAT	TTC	TTC	GTG	CTG	452
Ser	Gln	Glu	Tyr	Ile	Asn	Leu	Leu	Leu	Ser	Met	Tyr	Phe	Phe	Val	Leu	
			100					105					110			
GGA	ATC	CTG	GCC	CTG	TCC	CAC	ACC	ATC	AGC	CCC	TTC	ATG	AAT	AAG	TTT	500
Gly	Ile	Leu	Ala	Leu	Ser	His	Thr	Ile	Ser	Pro	Phe	Met	Asn	Lys	Phe	
		115					120					125				
TTT	CCA	GCC	AGC	TTT	CCA	AAT	CGA	CAG	TAC	CAG	CTG	CTC	TTC	ACA	CAG	548
Phe	Pro	Ala	Ser	Phe	Pro	Asn	Arg	Gln	Tyr	Gln	Leu	Leu	Phe	Thr	Gln	
	130					135					140					
GGT	TCT	GGG	GAA	AAC	AAG	GAA	GAG	ATC	ATC	AAT	TAT	GAA	TTT	GAC	ACC	596
Gly	Ser	Gly	Glu	Asn	Lys	Glu	Glu	Ile	Ile	Asn	Tyr	Glu	Phe	Asp	Thr	
145					150					155					160	
AAG	GAC	CTG	GTG	TGC	CTG	GGC	CTG	AGC	AGC	ATC	GTT	GGC	GTC	TGG	TAC	644
Lys	Asp	Leu	Val	Cys	Leu	Gly	Leu	Ser	Ser	Ile	Val	Gly	Val	Trp	Tyr	
				165					170					175		
CTG	CTG	AGG	AAG	GTA	TTT	GGC	ACC	AAT	GTG	ATG	GTG	ACA	GTG	GCC	AAG	692
Leu	Leu	Arg	Lys	Val	Phe	Gly	Thr	Asn	Val	Met	Val	Thr	Val	Ala	Lys	
			180					185					190			
TCC	TTC	GAG	GCA	CCA	ATA	AAA	TTG	GTG	TTT	CCC	CAG	GAT	CTG	CTG	GAG	740
Ser	Phe	Glu	Ala	Pro	Ile	Lys	Leu	Val	Phe	Pro	Gln	Asp	Leu	Leu	Glu	
		195					200					205				
AAA	GGC	CTC	GAA	GCA	AAC	AAC	TTT	GCC	ATG	CTG	GGA	CTT	GGA	GAT	GTC	788
Lys	Gly	Leu	Glu	Ala	Asn	Asn	Phe	Ala	Met	Leu	Gly	Leu	Gly	Asp	Val	
	210					215					220					
GTC	ATT	CCA	GGG	ATC	TTC	ATT	GCC	TTG	CTG	CTG	CGC	TTT	GAC	ATC	AGC	836
Val	Ile	Pro	Gly	Ile	Phe	Ile	Ala	Leu	Leu	Leu	Arg	Phe	Asp	Ile	Ser	
225					230					235					240	
TTG	AAG	AAG	AAT	ACC	CAC	ACC	TAC	TTC	TAC	ACC	AGC	ТТТ	GCA	GCC	TAC	884

Leu	Lys	Lys	Asn	Thr	His	Thr	Tyr	Phe	Tyr	Thr	Ser	Phe	Ala	Ala	Tyr	
				245					250					255		
ATC	TTC	GGC	CTG	GGC	CTT	ACC	ATC	TTC	ATC	ATG	CAC	ATC	TTC	AAG	CAT	932
Ile	Phe	Gly	Leu	Gly	Leu	Thr	Ile	Phe	Ile	Met	His	Ile	Phe	Lys	His	
			260					265					270			
GCT	CAG	CCT	GCC	CTC	CTA	TAC	CTG	GTC	CCC	GCC	TGC	ATC	GGT	TTT	CCT	980
Ala	Gln	Pro	Ala	Leu	Leu	Tyr	Leu	Val	Pro	Ala	Cys	Ile	Gly	Phe	Pro	
		275					280					285				
GTC	CTG	GTG	GCG	CTG	GCC	AAG	GGA	GAA	GTG	ACA	GAG	ATG	TTC	AGT	TAT	1028
Val	Leu	Val	Ala	Leu	Ala	Lys	Gly	Glu	Val	Thr	Glu	Met	Phe	Ser	Tyr	
	290					295					300					
GAG	GAG	TCA	AAT	CCT	AAG	GAT	CCA	GCG	GCA	GTG	ACA	GAA	TCC	AAA	GAG	1076
Glu	Glu	Ser	Asn	Pro	Lys	Asp	Pro	Ala	Ala	Val	Thr	Glu	Ser	Lys	Glu	
305					310					315					320	
GGA	ACA	GAG	GCA	TCA	GCA	TCG	AAG	GGG	CTG	GAG	AAG	AAA	GAG	AAA		1121
Gly	Thr	Glu	Ala	Ser	Ala	Ser	Lys	Gly	Leu	Glu	Lys	Lys	Glu	Lys		
				325					330					335		
TGAT	GCGG	CT 6	GTGC	CCGA	G CC	TCTC	AGGG	CCA	GACC	AGA	CAGA	TGGG	GG C	TGGG	CCCAC	1181
ACAG	GCGT	'GC A	CCGG	TAGA	G GG	CACA	.GGAG	GCC	AAGG	GCA	GCTC	CAGG	AC A	.GGGC	AGGGG	1241
GCAG	CAGG	AT A	CCTC	CAGO	C AG	GCCT	CTGT	GGC	CTCT	'GTT	TCCT	TCTC	CC I	TTCT	TGGCC	1301
CTCC	TCTG	CT C	CTCC	CCAC	A CC	CTGC	AGGC	AAA	AGAA	ACC	CCCA	GCTT	CC C	CCCT	CCCCG	1361
GGAG	CCAG	GT G	GGAA	AAGT	'G GG	TGTG	ATTT	TTA	GATT	TTG	TATI	GTGG	AC T	'GATT	TTGCC	1421
TCAC	ATTA	AA A	ACTC	ATCC	C AT	GGCC	AGGG	CGG	GCCA	CTG	TGCT	CCTG	AA A	AAAA	AAAAA	1481
AAAA	A															1486

SEQ ID NO. : 12

Length: 360

Type : amino acid

Strandness : single

10	boro	gy:	lin	er											
Мо	lecu	le t	уре	: pro	otei	n									
Se	quen	ce D	escr	iptio	on										
Me	t Ar	g Tr	p Il	e Lei	ı Phe	e Ile	e Gly	y Ala	a Lei	ı Ile	e Gly	' Ser	Ser	· Ile	Cys
	6 -1					-10					-5				
Gl	y Gl	n Gl	u Ly:	s Phe	Phe	e Gly	/ Asp	Glr	ı Val	Phe	Arg	: Ile	Asn	Val	Arg
	1			5					10					15	
Ası	n Gl	y As	p Glu	ı Ile	Ser	Lys	Lei	ı Ser	Gln	Leu	Val	Asn	Ser	Asn	Asn
			20					25					30		
Leu	ı Lys	s Lei	u Asr	n Phe	Trp	Lys	Ser	Pro	Ser	Ser	Phe	Asn	Arg	Pro	Val
		38					40					45			
Asp	Va]	Lei	ı Val	Pro	Ser	Val	Ser	Leu	Gln	Ala	Phe	Lys	Ser	Phe	Leu
	50)				55					60				
Arg	Ser	Glr	ı Gly	Leu	Glu	Tyr	Ala	Val	Thr	Ile	Glu	Asp	Leu	Gln	Ala
65					70					7 5					80
Leu	Leu	Asp) Asn	Glu	Asp	Asp	Glu	Met	Gln	His	Asn	Glu	Gly	Gln	Glu
				85					90					95	
Arg	Ser	Ser	Asn	Asn	Phe	Asn	Tyr	Gly	Ala	Tyr	His	Ser	Leu	Glu	Ala
			100					105					110		
Ile	Tyr	His	Glu	Met	Asp	Asn	Ile	Ala	Ala	Asp	Phe	Pro	Asp	Leu	Ala
		115					120					125			
Arg	Arg	Val	Lys	Ile	Gly	His	Ser	Phe	Glu	Asn	Arg	Pro	Met	Tyr	Val
	130					135					140				
Leu	Lys	Phe	Ser	Thr	Gly	Lys	Gly	Val	Arg	Arg	Pro	Ala	Val	Trp	Leu
145					150					155					160
Asn	Ala	Gly	Ile	His	Ser	Arg	Glu	Trp	Ile	Ser	Gln	Ala	Thr	Ala	Ile
				165					170					175	
Trp	Thr	Ala	Arg	Lys	Ile	Val	Ser	Asp	Tyr	Gln	Arg .	Asp 1	Pro .	Ala	Ile
			180					185				,	190		

Thr Ser Ile Leu Glu Lys Met Asp Ile Phe Leu Leu Pro Val Ala Asn Pro Asp Gly Tyr Val Tyr Thr Gln Thr Gln Asn Arg Leu Trp Arg Lys Thr Arg Ser Arg Asn Pro Gly Ser Ser Cys Ile Gly Ala Asp Pro Asn Arg Ser Trp Asn Ala Ser Phe Ala Gly Lys Gly Ala Ser Asp Asn Pro Cys Ser Glu Val Tyr His Gly Pro His Ala Asn Ser Glu Val Glu Val Lys Ser Val Val Asp Phe Ile Gln Lys His Gly Asn Phe Lys Cys Phe Ile Asp Leu His Ser Tyr Ser Gln Leu Leu Met Tyr Pro Tyr Gly Tyr Ser Val Lys Lys Ala Pro Asp Ala Glu Glu Leu Asp Lys Val Ala Arg Leu Ala Ala Lys Ala Leu Ala Ser Val Ser Gly Thr Glu Tyr Gln Val Gly Pro Thr Cys Thr Thr Val Leu

SEQ ID NO. : 13

Length : 1080

Type: nucleic acid

Strandness: single

Topology : liner

Molecule type : cDNA to mRNA

Sequence Description

ATGAGGTGGA TACTGTTCAT TGGGGCCCTT ATTGGGTCCA GCATCTGTGG CCAAGAAAAA

TTTTTTGGGG	ACCAAGTTTT	TAGGATTAAT	GTCAGAAATG	GAGACGAGAT	CAGCAAATTG	120
AGTCAACTAG	TGAATTCAAA	CAACTTGAAG	CTCAATTTCT	GGAAATCTCC	CTCCTCCTTC	180
AATCGGCCTG	TGGATGTCCT	GGTCCCATCT	GTCAGTCTGC	AGGCATTTAA	ATCCTTCCTG	240
AGATCCCAGG	GCTTAGAGTA	CGCAGTGACA	ATTGAGGACC	TGCAGGCCCT	TTTAGACAAT	300
GAAGATGATG	AAATGCAACA	CAATGAAGGG	CAAGAACGGA	GCAGTAATAA	CTTCAACTAC	360
GGGGCTTACC	ATTCCCTGGA	AGCTATTTAC	CACGAGATGG	ACAACATTGC	CGCAGACTTT	420
CCTGACCTGG	CGAGGAGGGT	GAAGATTGGA	CATTCGTTTG	AAAACCGGCC	GATGTATGTA	480
CTGAAGTTCA	GCACTGGGAA	AGGCGTGAGG	CGGCCGGCCG	TTTGGCTGAA	TGCAGGCATC	540
CATTCCCGAG	AGTGGATCTC	CCAGGCCACT	GCAATCTGGA	CGGCAAGGAA	GATTGTATCT	600
GATTACCAGA	GGGATCCAGC	TATCACCTCC	ATCTTGGAGA	AAATGGATAT	TTTCTTGTTG	660
CCTGTGGCCA	ATCCTGATGG	ATATGTGTAT	ACTCAAACTC	AAAACCGATT	ATGGAGGAAG	720
ACGCGGTCCC	GAAATCCTGG	AAGCTCCTGC	ATTGGTGCTG	ACCCAAATAG	AAGCTGGAAC	780
GCTAGTTTTG	CAGGAAAGGG	AGCCAGCGAC	AACCCTTGCT	CCGAAGTGTA	CCATGGACCC	840
CACGCCAATT	CGGAAGTGGA	GGTGAAATCA	GTGGTAGATT	TCATCCAAAA	ACATGGGAAT	900
TTCAAGTGCT	TCATCGACCT	GCACAGCTAC	TCGCAGCTGC	TGATGTATCC	ATATGGGTAC	960
TCAGTCAAAA	AGGCCCCAGA	TGCCGAGGAA	CTCGACAAGG	TGGCGAGGCT	TGCGGCCAAA	1020
GCTCTGGCTT	CTGTGTCGGG	CACTGAGTAC	CAAGTGGGTC	CCACCTGCAC	CACTGTCTTA	1080

SEQ ID NO.: 14

Length: 3156

Type : nucleic acid

Strandness: single

Topology : liner

Molecule type : cDNA to $\mathbf{m}\mathbf{R}\mathbf{N}\mathbf{A}$

Original source

Organism : Homo sapiens

Cell line: human bone marrow stroma cell HAS303

Clone Name: OAF075b

Sequence Description Feature

Name/Key : CDS Location: 11..1090 Identification method: S Name/Key: sig peptide Location : 11..58 Identification method: S Name/Key: mat peptide Location : 59..1090 Identification method: S Sequence Description CCCCGGGGAC ATG AGG TGG ATA CTG TTC ATT GGG GCC CTT ATT GGG TCC 49 Met Arg Trp Ile Leu Phe Ile Gly Ala Leu Ile Gly Ser -16 - 15-10-5 AGC ATC TGT GGC CAA GAA AAA TTT TTT GGG GAC CAA GTT TTT AGG ATT 97 Ser Ile Cys Gly Gln Glu Lys Phe Phe Gly Asp Gln Val Phe Arg Ile 1 5 10 AAT GTC AGA AAT GGA GAC GAG ATC AGC AAA TTG AGT CAA CTA GTG AAT 145 Asn Val Arg Asn Gly Asp Glu Ile Ser Lys Leu Ser Gln Leu Val Asn 15 20 25 TCA AAC AAC TTG AAG CTC AAT TTC TGG AAA TCT CCC TCC TCC TTC AAT 193 Ser Asn Asn Leu Lys Leu Asn Phe Trp Lys Ser Pro Ser Ser Phe Asn 30 35 40 45 CGG CCT GTG GAT GTC CTG GTC CCA TCT GTC AGT CTG CAG GCA TTT AAA 241 Arg Pro Val Asp Val Leu Val Pro Ser Val Ser Leu Gln Ala Phe Lys

55

TCC TTC CTG AGA TCC CAG GGC TTA GAG TAC GCA GTG ACA ATT GAG GAC

Ser Phe Leu Arg Ser Gln Gly Leu Glu Tyr Ala Val Thr Ile Glu Asp

60

289

50

			65					70					75			
CTG	CAG	GCC	CTT	TTA	GAC	AAT	GAA	GAT	GAT	GAA	ATG	CAA	CAC	AAT	GAA	337
Leu	Gln	Ala	Leu	Leu	Asp	Asn	Glu	Asp	Asp	Glu	Met	Gln	His	Asn	Glu	
		80					85					90				
GGG	CAA	GAA	CGG	AGC	AGT	AAT	AAC	TTC	AAC	TAC	GGG	GCT	TAC	CAT	TCC	385
Gly	Gln	Glu	Arg	Ser	Ser	Asn	Asn	Phe	Asn	Tyr	Gly	Ala	Tyr	His	Ser	
	95					100					105					
CTG	GAA	GCT	ATT	TAC	CAC	GAG	ATG	GAC	AAC	ATT	GCC	GCA	GAC	TTT	CCT	433
Leu	Glu	Ala	Ile	Tyr	His	Glu	Met	Asp	Asn	Ile	Ala	Ala	Asp	Phe	Pro	
110					115					120					125	
GAC	CTG	GCG	AGG	AGG	GTG	AAG	ATT	GGA	CAT	TCG	TTT	GAA	AAC	CGG	CCG	481
Asp	Leu	Ala	Arg	Arg	Val	Lys	Ile	Gly	His	Ser	Phe	Glu	Asn	Arg	Pro	
				130					135					140	*.	
ATG	TAT	GTA	CTG	AAG	TTC	AGC	ACT	GGG	AAA	GGC	GTG	AGG	CGG	CCG	GCC	529
Met	Tyr	Val	Leu	Lys	Phe	Ser	Thr	Gly	Lys	Gly	Val	Arg	Arg	Pro	Ala	
			145					150					155			
GTT	TGG	CTG	AAT	GCA	GGC	ATC	CAT	TCC	CGA	GAG	TGG	ATC.	TCC	CAG	GCC	577
Val	Trp	Leu	Asn	Ala	Gly	Ile	His	Ser	Arg	Glu	Trp	Ile	Ser	Gln	Ala	
		160					165					170				
ACT	GCA	ATC	TGG	ACG	GCA	AGG	AAG	ATT	GTA	TCT	GAT	TAC	CAG	AGG	GAT	625
Thr	Ala	lle	Trp	Thr	Ala	Arg	Lys	Ile	Val	Ser	Asp	Tyr	Gln	Arg	Asp	
	175					180					185					
CCA	GCT	ATC	ACC	TCC	ATC	TTG	GAG	AAA	ATG	GAT	ATT	TTC	TTG	TTG	CCT	673
Pro	Ala	Ile	Thr	Ser	Ile	Leu	Glu	Lys	Met	Asp	Ile	Phe	Leu	Leu	Pro	
190					195					200					205	
GTG	GCC	AAT	CCT	GAT	GGA	TAT	GTG	TAT	ACT	CAA	ACT	CAA	AAC	CGA	ATT	721
Val	Ala	Asn	Pro	Asp	Gly	Tyr	Val	Tyr	Thr	Gln	Thr	Gln	Asn	Arg	Leu	
				210					215					220		
TGG	AGG	AAG	ACG	CGG	TCC	CGA	ААТ	CCT	GGA	AGC	TCC	TGC	ΤΤΔ	CCT	CCT	769

Tr	p .	Arg	Lys	Thr	Arg	Ser	Arg	Asn	Pro	Gly	Ser	Ser	Cys	Ile	Gly	Ala	
				225					230					235			
GA	C	CCA	AAT	AGA	AGC	TGG	AAC	GCT	AGT	TTT	GCA	GGA	AAG	GGA	GCC	AGC	817
As	p i	Pro	Asn	Arg	Ser	Trp	Asn	Ala	Ser	Phe	Ala	Gly	Lys	Gly	Ala	Ser	
			240					245					250				
G/	C.	AAC	CCT	TGC	TCC	GAA	GTG	TAC	CAT	GGA	CCC	CAC	GCC	AAT	TCG	GAA	865
As	sp ,	Asn	Pro	Cys	Ser	Glu	Val	Tyr	His	Gly	Pro	His	Ala	Asn	Ser	Glu	
	,	255					260					265					
GI	G	GAG	GTG	AAA	TCA	GTG	GTA	GAT	TTC	ATC	CAA	AAA	CAT	GGG	AAT	TTC	913
Va	ıl	Glu	Val	Lys	Ser	Val	Val	Asp	Phe	Ile	Gln	Lys	His	Gly	Asn	Phe	
27	0					275					280					285	
A.A	G '	TGC	TTC	ATC	GAC	CTG	CAC	AGC	TAC	TCG	CAG	CTG	CTG	ATG	TAT	CCA	961
Ly	'S	Cys	Phe	Ile	Asp	Leu	His	Ser	Tyr	Ser	Gln	Leu	Leu	Met	Tyr	Pro	
					290					295					300		
TA	T	GGG	TAC	TCA	GTC	AAA	AAG	GCC	CCA	GAT	GCC	GAG	GAA	CTC	GAC	AAG	1009
Ту	r	Gly	Tyr	Ser	Val	Lys	Lys	Ala	Pro	Asp	Ala	Glu	Glu	Leu	Asp	Lys	
				305					310					315			
GI	'G	GCG	AGG	CTT	GCG	GCC	AAA	GCT	CTG	GCT	TCT	GTG	TCG	GGC	ACT	GAG	1057
٧a	ıl.	Ala	Arg	Leu	Ala	Ala	Lys	Ala	Leu	Ala	Ser	Val	Ser	Gly	Thr	Glu	
			320					325					330				
TA	C (CAA	GTG	GGT	CCC	ACC	TGC	ACC	ACT	GTC	TTA	TAA	ACTG(CCA A	AAAC'	rgggag	1110
Ту	r	Gln	Val	Gly	Pro	Thr	Cys	Thr	Thr	Val	Leu						
		335					340										
ΑΊ	'AC'	TCAT	CA (GATT(GCTC	CA AC	CAGAA	AGAG(G AGO	GAAG	GCTC	TCC	CGAG	GGC '	TGTC	CAGGAG	1170
AC	TAC	AAAA	TT	СТАС	CCTT	rt c	TTT	CTTT	TG/	TAA	GGAG	TTT	CGTT	rcg (CTCT	rgttgc	1230
CC	AG	GCT	GA (GTGC/	ATG(GC GT	rgat(CTCCA	A CTO	CATC	GCAA	CTT	CCGC	CTC (CCAG	GTTCAA	1290
GC	GA'	TTCC	CCC 1	rgcc7	rcag(CC TO	CCCGA	\GTA/	A CTO	GGAT	TAT	AGG	CATG	rgc (CCCA	CCCCA	1350
AC	TA	TTA	TT (TAT	TTT	AG TA	AGAG <i>A</i>	TGG(G GT	TCT	CCAT	GTT	GGTCA	AGT (CTGG'	ICTTGA	1410
GC	TC	CCGA	CC 7	rcag(GTGAT	rc to	GCCC	CCTO	C GGO	CCTCT	ГСАА	AGTO	GCTG(GGA '	TTACA	AGGCGT	1470

GAGCCACAGC ACCCGGCCAA	AATGTCCACC	TTTTCTAAGA	GCCCATCTTC	CATATTCTTT	1530
ATAGGCCTTG TCTGTCCTTG	TTTTTTCAAA	AAAAAAACAA	TCAATTTTTG	TATAATAGCA	1590
CTCTATCCAA CGCCATAGGT	TATGGTGTGT	GCTACATACA	CAGTCGACGT	TTGTCCTTTC	1650
AAGTGCTGGG CCTTTTCCTA	GATCGCCATT	TTAGAGGAAA	ATAATTCTAA	AATGGATTTT	1710
ACACTCTTCT GCCTTCTAAA	ACAGAGCATG	GAGAAGAGAT	TTAAGCCCCT	TTTTTCATGG	1770
TTAAGTGTAC TTCTCAACCT	CAGTTCGTAT	ATGCTAAAGG	CCTACTCTGC	CGTCTTGGAC	1830
TGTTTGGACC TTCTGCTAAA	TGATCCTGGC	СТСТТТТССТ	TCTTGTGTTT	GCTTTGTAGA	1890
GTTTTGTGTC TCCTTTCTCC	TGCCAGACTG	TCAGCAGTAG	CTTGTATTGC	TTCAGGCCAA	1950
CAGCCTCTAG CAACCCTTTC	CCCTCCTCTT	CACTGATTCT	GCTCCAGGAA	GGGCTTGGAA	2010
ACAAGTTCTT TGGGTTCATC	TGACTTGTGG	ATAACACAGT	TTCATGTACT	TTTTGTAGTT	2070
CATAAGCGTG GTGATTGGGT	TTTCACGCTC	ATGTGTGACA	TATGCCTTCC	TCCAATTTTG	2130
TTACAATGTT GGTGCGTTAC	CCATCAGACA	TGGGGGAAGA	AAGGGTGTTC	ATGACAGCAT	2190
TATCCATAGT TACAAAAGAC	ATGTACAGGG	GCCAAGGGAA	AACTTCCCCT	TTGCCTTCTG	2250
AAGGTTCATT GAAAAATCAA	CTGACCAAAG	GCAGATCGAT	AGGAGAAAAG	GCATACAAAA	2310
TTTTATTTTA GTGTGCATGG	CACAGGGGAA	TCACAGGAGA	ATGATTTCCC	AATAACCCAA	2370
TGGGGCACAG AAGCTTGTAT	ACCCTTTTTC	ATACAGGAGG	GAGGAGATGT	ATGGACTGGG	2430
GAGGTGGGAG GCAGATATTA	CAGGAAGGTG	AGGGGCGGAG	CTGTACAGGA	ACAAAGCTTG	2490
TCTTATTAAG CAGATAAAGT	CCTCCAGGCA	ATCTCTTGGA	GCTGCTCTCA	GAAGAATAGA	2550
TGAAGTCTGT CTGGGTGTGG	TGATGATTCC	CAGTCTCATC	TCTTCTGGTG	GTTTATCTTT	2610
CTTGGTTATT TGATGAGACC	TCTAGGGAGG	GTGTTTAAGA	CAATTGCATT	TCTTTTGGAA	2670
AGATGCTTTC TTGGTCAGAT	GAGGAAATTT	CCAAAGACAG	ACAGTCCCTC	CCTGTGTTTG	2730
GTGGTGGGGC AGGTATGGGG	AACAAGAAGT	TAGAGGGACC	TTGGTTCGGG	GGCGGCTTCT	2790
GAGGGCCCTC AGCATGTCAA	AACATCAGCC	TTTGGGATAT	CACTTTCTGA	GCCCCAACCC	2850
TTGTAAGTGT CTAAAATGTC	CACCTAGAGA	ATGCAGGATA	AATACACATT	TGGTGCATTC	2910
ACACAATGCA GCACTACGGA	GCCCTTAAAT	GAATGAGGTA	GATCTATGTG	CGCTAAAAGG	2970
GAATACTCAC CAATTGTTAA	TTGAAAAATA	CATGTGCAGA	ACAGCGTTAA	TAGTGTGTTC	3030
CCATTTTTTG TTGTTGTTAT	TGTTTTTAAA	GAGTAGGTAG	ACTTTCAGCA	GGGACCCAAA	3090
TAAAGTGAAG TTTACAAACT	TCGTCATTTT	GACTGAAAAA	AAAAAAAA	AAAAAAAA	3150
AAAAA					3156