$$Y = \beta_0 + \beta_1 X$$

Slope and intercept estimates Correlation Coefficient

$$R = \frac{Sxy}{Sxx}$$

 $\it r$, the sample correlation coefficient, is an estimate for ('rho') the population correlation coefficient.

By definition

$$-1 \le r \le 1$$

For a group of 15 students the following table shows the average numbers of hours per week spent on study and their final results in the corresponding examination.

No. of hours studied (x)	16	17.5	11.5	13.5	15	12.5	20.5
Exam mark (y)	77	85	48	59	75	41	95
No. of hours studied (x)	16.5	13.5	22	18.5	17	19.5	19.5
Exam mark (y)	80	70	99	85	83	97	89

Some useful values:

Summary statistics for these data are:

- ► Sum of **x** data = 247.5
- ▶ Sum of squares of \mathbf{x} data = 4218.75
- ► Sum of **y** data = 1155
- ► Sum of squares of y data = 92999
- Sum of products of \mathbf{x} and \mathbf{y} data = 19750.5

- Calculate the least squares regression line of y on x.
- ▶ Use the calculated line to predict examination marks for students who studied for (i) 16 hours. (ii) 20 hours.
- ► State, without calculation, which of these predictions is likely to be the more accurate. Explain your choice.