EC Assignment #4 (NSGA-II)

電機系(碩一)陳昕佑 61375017H

The **NSGA-II** (Non-dominated Sorting Genetic Algorithm II) is a popular multi-objective optimization algorithm designed to solve problems like the ZDT suite effectively, it follows these main steps:

1. Initialization:

Population: Generate an initial population of size N with random solutions within the problem's bounds.

Representation: Each individual represents a solution with decision variables $x = (x_1, \dots, x_n)$.

Evaluation: Compute the objective functions $f_1(x)$, ..., $f_k(x)$ for all individuals.

2. Non-dominated Sorting:

Definition: A solution a dominates b if:

 $f_i(a) \le f_i(b) \forall i$ (better or equal in all objectives).

 $f_i(a) < f_i(b)$ for at least one i (strictly better in at least one objective).

Procedure: Sort the population into Pareto fronts

Front 1 (F_1) : Non-dominated solutions.

Front 2 (F_2) : Solutions dominated by F_1 but not by each other.

Continue for all fronts.

3. Crowding Distance:

Purpose: Ensures diversity by maintaining a spread of solutions on the Pareto front. For each front:

For each objective i, sort solutions by f_i .

Compute crowding distance for solution j: $d_j = \sum_{i=1}^k \frac{f_i^{j+1} - f_i^{j-1}}{f_i^{max} - f_i^{min}}$

where f_i^{max} and f_i^{min} are the max/min values of f_i .

Boundary solutions are assigned infinite distance to preserve edge diversity.

4. Selection (Binary Tournament):

Select N individuals for mating based on:

Rank: Solutions in better (lower-rank) fronts are preferred.

Crowding Distance: Among solutions of the same rank, those with higher crowding distances are preferred.

5. Crossover and Mutation:

Generate offspring by combining parent solutions:

Simulated Binary Crossover (SBX): Combines two parents to create new offspring by blending their variables.

Polynomial Mutation: Perturbs a single solution by adding small random changes to its variables.

Offspring solutions inherit properties from parents, allowing exploration and exploitation of the search space.

6. Environmental Selection:

Combine parents and offspring into a combined population (2N).

Perform non-dominated sorting on the combined population.

Select the top *N* solutions based on:

Rank: Lower-ranked solutions are preferred.

Crowding Distance: Preserves diversity.

7. Termination:

Repeat steps 3–6 until the stopping criterion is met (e.g., maximum evaluations or generations).

Output the final population, which approximates the Pareto front.

How NSGA-II Solves ZDT Problems

1. Handling Multiple Objectives

NSGA-II maintains a **Pareto-optimal set** of solutions by performing non-dominated sorting.

For ZDT problems, it simultaneously optimizes $f_1(x)$ and $f_2(x)$ while balancing:

Convergence: Ensuring solutions reach the Pareto front. **Diversity:** Spreading solutions across the Pareto front.

2. Challenges Addressed

ZDT1 (Convex Front): NSGA-II's diversity preservation ensures a uniform distribution across the simple convex front.

ZDT2 (Non-convex Front): The algorithm's rank and crowding distance mechanisms work together to converge to the complex front.

ZDT3 (**Disconnected Front**): NSGA-II's ability to preserve solutions in different Pareto fronts ensures it finds and maintains the disjoint segments.

ZDT4 (Multimodal Landscape): Exploration mechanisms (mutation and crossover) allow NSGA-II to escape local optima and converge to the Pareto front.

ZDT6 (Non-uniform Distribution): NSGA-II adapts to the non-uniform density of the Pareto front through its crowding distance mechanism.

3. Exploration vs. Exploitation

Exploration: Achieved through mutation and crossover.

Exploitation: Non-dominated sorting ensures convergence toward the Pareto front.

4. Computational Efficiency

NSGA-II uses an $O(N^2)$ non-dominated sorting algorithm, which is computationally efficient even for large populations.

Advantages of NSGA-II for ZDT Problems

1. Maintains Diversity:

Crowding distance prevents premature convergence to specific regions of the Pareto front.

2. Scalable:

Works well with high-dimensional problems like ZDT4 and ZDT6.

3. Handles Complex Fronts:

Discontinuous (ZDT3), non-convex (ZDT2), and multimodal (ZDT4) fronts are efficiently solved.

4. No Need for Explicit Scalarization:

NSGA-II optimizes all objectives simultaneously without weighting.

Output of NSGA-II

After optimization, NSGA-II produces:

1. Pareto-Optimal Front:

A set of solutions approximating the true Pareto front for the given problem.

2. Diversity:

A well-distributed set of solutions across the Pareto front.

```
from pymoo.algorithms.moo.nsga2 import NSGA2
from pymoo.problems import get_problem
from pymoo.optimize import minimize
import matplotlib.pyplot as plt

# Function to solve a problem
def solve_problem(problem_name, n_var):
    # Get the problem
    problem = get_problem(problem_name, n_var=n_var)
    # Set up the NSGA-II algorithm
    algorithm = NSGA2(pop_size=100)
    # Perform optimization (limiting to 25000 evaluations)
    res = minimize(
        problem,
        algorithm,
        ('n_eval', 25000), # Stopping criteria based on evaluations
        seed=1,
        verbose=True)

return res.F
```

```
zdt results = {
  "ZDT1": solve problem("zdt1", n var=30), # ZDT1 with 30 variables
  "ZDT2": solve problem("zdt2", n var=30), # ZDT2 with 30 variables
  "ZDT3": solve problem("zdt3", n var=30), # ZDT3 with 30 variables
  "ZDT4": solve problem("zdt4", n var=10), # ZDT4 with 10 variables
  "ZDT6": solve_problem("zdt6", n var=10),  # ZDT6 with 10 variables
fig, axes = plt.subplots(2, 3, figsize=(18, 12))
for i, (zdt_name, results) in enumerate(zdt_results.items()):
  ax.scatter(results[:, 0], results[:, 1], label=zdt name)
  ax.set title(zdt name)
  ax.set xlabel("f1")
  ax.set ylabel("f2")
  ax.legend()
  ax.grid()
axes[1, 2].axis("off")
# Adjust layout
plt.tight layout()
plt.show()
```


The plot visually represents the Pareto fronts generated for the five ZDT problems (ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6) after being solved with the NSGA-II algorithm.

1. ZDT1 (Top-left)

Pareto Front: Convex.

Explanation: The plot shows a smooth, convex curve where \boldsymbol{f}_2 decreases as \boldsymbol{f}_1 increases. NSGA-II has successfully captured the evenly distributed solutions on the front.

2. ZDT2 (Top-middle)

Pareto Front: Non-convex.

Explanation: The curve is slightly steeper compared to ZDT1 due to its non-convex nature. The algorithm captures the shape of the front, demonstrating its ability to handle non-convex problems.

3. ZDT3 (Top-right)

Pareto Front: Disconnected (multiple segments).

Explanation: The plot shows several disjoint segments, reflecting the problem's discontinuous nature. NSGA-II has successfully identified and maintained diversity across all segments of the Pareto front.

4. ZDT4 (Bottom-left)

Pareto Front: Convex with multimodal decision space.

Explanation: Although the Pareto front is similar in shape to ZDT1, ZDT4 includes 219 local optima due to multimodality. NSGA-II has converged to the true Pareto front, showcasing its robustness in multimodal landscapes.

5. ZDT6 (Bottom-right)

Pareto Front: Non-convex and non-uniformly distributed.

Explanation: The plot shows a steep initial slope near $f_1=0.3$, with solutions becoming sparse at $f_1\to 1$. NSGA-II has captured the front's shape and non-uniform density, reflecting its ability to handle challenging distributions.

The plots confirm that:

Convergence: NSGA-II can find solutions close to the true Pareto front for all five ZDT problems.

Diversity: The solutions are well-distributed along the front, including disconnected (ZDT3) and non-uniform (ZDT6) cases.