A12

Ein Würfel werde zweimal geworfen. Die beiden Ergebnisse seien die ZV X_1 und X_2 . Wir betrachten die ZV U=|X1-X2|, die den Unterschied der Augenzahl der beiden Würfe angibt. Bestimmen Sie die Verteilung von U.

U ist gegeben durch die W.Funktion

$$(n_1, n_2) \mapsto U(n_1, n_2) := |n_1 - n_2|$$

über die Menge $\{X_1 \times X_2\}$. (Dieses Ω entspricht im wesentlichen dem aus A10.) Anstatt alle Definitions- und Bildwerte von U aufzuzählen, eine Überlegung: Die Differenz von bel. fix. n_1^* und n_2^* ändert sich nicht, wenn man deren beiden Werte vertauscht. Das heißt konkret

$$\forall_{(n_1,n_2)\in\Omega} U(n_1,n_2) = U(n_2,n_1)$$

Aufgrund der Gleichverteilung des hier verwendeten W.Raums, ist die Wahrscheinlichkeit für ein Paar $\frac{1}{36}$ ist. Weiters gibt es nur 6 Paar-Tupel, womit die Wahrscheinlichkeit, dass die Zuvallsvariable U den Wert 0 annimmt bei $\frac{6}{36}$ liegt. Die maximale Differenz von 5 kann von nur 2 verschiedenen ω erreicht werden, nämlich (1,6) und (6,1). Die kleinste Differenz $\neq 0$ kann dagegen von 5 verschiedenen Kombinationen (10 Tupeln) von unterschiedlichen ω erreicht werden.

$$\frac{6}{36} + \frac{2}{36} + \frac{10}{36} = \frac{18}{36}$$

Auf die übrigen Differenzen (also den Bildwerten von U) 2, 3, und 4 müssen nun $\frac{18}{36}$ aufgeteilt werden. Unter Berücksichtigung der Gleichverteilung und der Struktur des Zufallsexperiments (nämlich der gleichen Differenz 1 zwischen aufeinanderfolgenden ω in einem sortierten Tupel mit allen $\omega \in \Omega$), ergibt sich daraus folgende Verteilung P_U :

$\mid k \mid$	0	1	2	3	4	5
$f_U(k)$	$\frac{6}{36}$	$\frac{10}{36}$	$\frac{8}{36}$	$\frac{6}{36}$	$\frac{4}{36}$	$\frac{2}{36}$