

Lösung 05: Switching, Longest Prefix Matching

Demo: Cisco Small Business 300 Series Managed Switch, siehe Übung

- Zuordnung MAC Adresse zu Interface
- Anpassen der Aging Time -> Dynamic Address Settings

Aufgabe 1: Forwarding bei Ethernet Switches

a)

Schritt 1), A sendet Frame zu C

i. Wird gesehen von: S1, S2, S3 und S4ii. Switches, die fluten: S1, S2, S3 und S4

Schritt 2), C sendet Frame zu A

i. Wird gesehen von: S1, S2, S3 (nicht S4)

ii. Switches, die fluten: Keiner!

Schritt 3), D sendet Frame zu C

i. Wird gesehen von: S2, S3, S4

ii. Switches, die fluten: S4 (auch wenn hier nur über 1 Interface)

b) Hinweis: Im Folgenden ist jeweils angegeben, in welchem Schritt die jeweilige Information das erste Mal gelernt wurde.

Switch 1	Switch 2	Switch 3	Switch 4
A zu Port 1 (Schritt 1)			
C zu Port 2 (Schritt 2)	C zu Port 2 (Schritt 2)	C zu Port 3 (Schritt 2)	
	D zu Port 3 (Schritt 3)	D zu Port 1 (Schritt 3)	D zu Port 2 (Schritt 3)

- c) Es müssten noch die folgenden Frames gesendet werden:
 - Frame von B zu A: S1, S2 und S3 lernen wo B ist.
 - Frame von B zu D: S4 lernt wo B ist.
 - Frame von C zu D: S4 lernt wo C ist.
 - Frame von D zu A: S1 lernt wo D ist.

Aufgabe 2: Longest Prefix Matching

a) Es ergeben sich für die Bereiche die folgenden Start- und Zieladressen (Reihenfolge wie in Tabelle). Es gibt keine Überlappung!

1. Eintrag: Start: 224.0.0.0, Ende 224.0.255.255
2. Eintrag: Start: 224.1.0.0, Ende 224.1.255.255
3. Eintrag: Start: 224.2.0.0, Ende 225.255.255.255

b) Zunächst der Versuch einer 1:1 Übersetzung:

Destination IP Address Range	Next Hop
11100000 00000000 ****** ******	0
11100000 00000001 ****** ******	1
11100000 0000001* ****** ******* oder	2
1110000* ******* ****** *******?????	
****** ****** ******	3

Probleme gibt es beim 3. Eintrag. Das Problem: Man kann diesen Bereich nicht durch einen einzigen Präfix charakterisieren.

Der Trick ist, dass man den deutlich größeren Bereich als Präfix in die Routingtabelle einträgt. angibt.

Destination IP Address Range	Next Hop
11100000 00000000 ****** ******	0
11100000 00000001 ******* ******	1
1110000* ******* ****** ******	2
****** ****** ******	3

Der rote Eintrag deckt nun aber deutlich mehr IP Adressen ab, als er eigentlich sollte. Er enthält die Adressbereiche des 1. und 2. Eintrages komplett! Wegen **Longest Prefix Matching** funktioniert das Forwarding aber dennoch wie in Aufgabe a) spezifiziert. Es wird ja immer der "spezifischere Eintrag" gewählt, also mit dem längeren Präfix.

c)

Destination IP Address Range	Next Hop
224.0.0.0/16	0
224.1.0.0/16	1
224.0.0.0/7	2
0.0.0.0/0 (sonst)	3