HW 02 - Nonlinear Systems Simulation

Table of Contents

Document Information:	1
HW 01 - Nonlinear Systems Simulation:	1
Van der Pol Oscillator:	

Document Information:

• Author: Bardia Mojra

• Date: 09/14/2021

• Title: HW 02 - Nonlinear Systems Simulation

• Term: Fall 2021

• Class: EE 5323 - Nonlinear Systems

· Dr. Lewis

HW 01 - Nonlinear Systems Simulation:

- 1. Duffing's Equation
- 2. Lozenz Attractor Chaotic System
- 3. Voltera Predator-Prey System

Van der Pol Oscillator:

Duffing's equation is interesting in that it exhibits bifurcation, or dependence of stability properties and number of equilibrium points on a parameter. The undamped Duffing equation is * \$\$ \dd{x} + \alpha x + x^3 = 0 \$\$. a.0)=0.2 \$\$ as initial conditions. # ITEM1 # ITEM2 * Plot \$\$ y(t) vs. t .* Plotthephaseplaneplot v'(t) vs. v(t) \$\$.

```
Error updating Text.
```

String scalar or character vector must have valid interpreter syntax: \$\$ as initial conditions. # ITEM1 # ITEM2 * Plot \$\$

Error updating Text.

String scalar or character vector must have valid interpreter syntax: \$ \dd{x} + \alpha x + x^3 = 0 \\$\$

clc
close all

HW 02 - Nonlinear Systems Simulation

Published with MATLAB® R2021a