Imitation Learning: A Review

Emanuele Ghelfi

February 28, 2023

Imitation Learning

Assumptions:

- Reward function not easy to formalize
- Access to expert demonstrations

Goal:

Determine a policy that imitates the expert policy

Imitation Learning

Two main variants:

- ► Behavior Cloning
- ► Inverse Reinforcement Learning

Behavior Cloning

- Supervised Learning approach
- ▶ Demonstrations not uniformly sampled across the state space
- Compounding error

Inverse Reinforcement Learning

- ▶ What's the reward function "followed" by the expert?
- Recover a reward function from the expert demonstrations
- ► Train a RL agent using the learned reward function
- Highly inefficient

Dagger [Ross et al., 2011]

- One of the main BC method
- ► Simple idea: use dataset aggregation to improve generalization on unseen scenario

Algorithm 1 Dagger

- 1: Collect an initial set of trajectories using the expert
- 2: **for** i = 1 to *N* **do**
- Train policy with BC
- 4: Collect data with policy and correct it with the expert
- 5: Aggregate Dataset
- 6: end for

Dagger

Cons:

- Frequent interactions with environment and expert using trained policy
- ▶ Alleviated by Learning by Cheating [Chen et al., 2020]
 - ► Train an agent with **privileged** (perfect) information (expert)
 - The privileged agent acts a teacher that trains a standard (non-privileged) agent

GAIL [Ho and Ermon, 2016]

- GAN and maximum entropy IRL
- Main idea: use a discriminator that learns to discriminate real (expert) trajectories (π_E) from fake (agent) trajectories (π)
- Combines IRL and BC
- ▶ Discriminator → Reward
- Generator learns directly the policy during training
- Does NOT require expert interaction during training
- Requires environmental interaction for closed loop training

Learning objective for the discriminator D:

$$\max_{D} \mathbb{E}_{\pi} \left[\log(D(s, a)) + \mathbb{E}_{\pi_{E}} \left[\log(1 - D(s, a)) \right] \right]$$

Learning objective for the discriminator D:

$$\max_{D} \mathbb{E}_{\pi} \left[\log(D(s, a)) + \mathbb{E}_{\pi_E} \left[\log(1 - D(s, a)) \right] \right]$$

Simple idea:

▶ $D(s, a) \rightarrow \text{probability that } (s, a) \sim \pi \text{ (fake trajectory)}$

Learning objective for the discriminator D:

$$\max_{D} \mathbb{E}_{\pi} \left[\log(D(s, a)) + \mathbb{E}_{\pi_E} \left[\log(1 - D(s, a)) \right] \right]$$

Simple idea:

- ▶ $D(s, a) \rightarrow probability that <math>(s, a) \sim \pi$ (fake trajectory)
- ▶ $D(s,a) \rightarrow 1$ when $(s,a) \sim \pi$

Learning objective for the discriminator D:

$$\max_{D} \mathbb{E}_{\pi} \left[\log(D(s, a)) + \mathbb{E}_{\pi_{E}} \left[\log(1 - D(s, a)) \right] \right]$$

Simple idea:

- ▶ $D(s, a) \rightarrow probability that <math>(s, a) \sim \pi$ (fake trajectory)
- ▶ $D(s,a) \rightarrow 1$ when $(s,a) \sim \pi$
- ▶ $D(s,a) \rightarrow 0$ when $(s,a) \sim \pi_E$

Learning objective for the agent is to "confuse" the discriminator:

$$\min_{\pi} \max_{D} \mathbb{E}_{\pi} \left[\log(D(s, a)) + \mathbb{E}_{\pi_{E}} \left[\log(1 - D(s, a)) \right] \right]$$

The agent uses the discriminator as reward (cost) function. $D(s,a) \rightarrow 0$

Algorithm 2 GAIL

- 1: Collect an initial set of trajectories using the expert policy π_E
- 2: **for** i = 1 to *N* **do**
- 3: Sample trajectories with agent policy π_i
- 4: Update discriminator D with the gradient:

$$abla_D = \mathbb{E}_{\pi_i} \left[\nabla \log(D(s, a)) + \mathbb{E}_{\pi_E} \left[\nabla \log(1 - D(s, a)) \right] \right]$$

- 5: $\pi_i \to \pi_{i+1}$ using TRPO with cost function $\log(D(s,a))$
- 6: end for

InfoGAIL [Li et al., 2017]

GAIL applied to autonomous driving (TORCS) [Video]

- (a) Network architecture for the policy/generator π_{θ} .
- (b) Network architecture for the discriminator D_{ω} .

InfoGAIL

- ► End to End
- ▶ Just 3 actions: steering, acceleration, breaking
- ► Handles multiple experts [Chen et al., 2016]
- ▶ Better than BC, GAIL and Human

Table 2: Average rollout distances.

Method	Avg. rollout distance
Behavior Cloning	701.83
GAIL	914.45
InfoGAIL \ RB	1031.13
InfoGAIL \ RA	1123.89
InfoGAIL \ WGAN	1177.72
InfoGAIL (Ours)	1226.68
Human	1203.51

GAIL - Issues

$$\mathbb{E}_{\pi}\left[\log(D(s,a)\right] + \mathbb{E}_{\pi_{E}}\left[\log(1-D(s,a)\right]$$

What's the gradient wrt π ?

GAIL - Issues

$$\mathbb{E}_{\boldsymbol{\pi}}\left[\log(D(s,a)] + \mathbb{E}_{\pi_{E}}\left[\log(1-D(s,a))\right]\right]$$

What's the gradient wrt π ?

- $ightharpoonup \pi$ affects the data distribution but does not appear in the objective
- ➤ A common solution is to use REINFORCE-like methods ([Williams, 1992] [Schulman et al., 2015]) that tends to have high variance
- Model-Based methods (MGAIL) make the objective differentiable end-to-end

MGAIL [Baram et al., 2016]

Model-free GAIL

MGAIL [Baram et al., 2016]

Model-based GAIL

Symphony [Igl et al., 2022]

- Making simulation realistic by learning agents behaviour from logged trajectories
- Parallel Beam Search, Model Based GAIL (MGAIL) and Hierarchical Policies
- Playback Agents and Interactive Agents
- Useful when you need Interactive Agents in simulation

Symphony - Beam Search

- Select a set of trajectories from the training set
- Propose a goal with a goal generating policy
- Goal-conditioned policy proposes actions evaluated by the beam search algorithm
- ▶ Each node in the tree is evaluated by the discriminator
- Nodes with high score (fake) are pruned away
- Nodes with low score are kept and the rollout continues

Symphony - Goal Generation

- ▶ Goal: routes \rightarrow sequence of roadgraph lane segments
- ► For each agent, explore the road graph and use a network to classify the most probable ordered set of segments
- During training, train the network to classify the set of segments with minimal displacement from the GT trajectory
- Goal as input to the control policy

Symphony - Architecture

- ▶ BC: Discrete action space of 7 x 21 discretized accelerations and steering angles
- MGAIL: Continuous action space specifying the xy displacement (Delta Action Model)

Symphony - Dataset

- ► Each training batch: 16 run segments of 10 s. Actions computed at 5 Hz
- ▶ Proprietary Dataset: 1.1M run segments
- ▶ WOMD: 64.5K run segments

Hierarchical Model-Based Imitation Learning for Planning in Autonomous Driving [Bronstein et al., 2022]

- ► Focus on Ego-vehicle
- Closed loop evaluation with simulated agents (Symphony)
- ▶ Delta Action model
- BC loss with MGAIL losses

- ► High-Level route generation
- ► Given the scene features and the route the policy outputs the parameters of a GMM
- ► The GMM gives a distribution over actions (delta-actions)

$$\mathcal{L} = \mathcal{L}_{\mathcal{D}} + \mathcal{L}_{\mathcal{P}} + \mathcal{L}_{\mathcal{BC}}$$

$$\mathcal{L} = \mathcal{L}_{\mathcal{D}} + \mathcal{L}_{\mathcal{P}} + \mathcal{L}_{\mathcal{BC}}$$

 $\mathcal{L}_{\mathcal{D}}$: Discriminator Loss (GAIL)

$$\mathcal{L}_{\mathcal{D}} = -\mathbb{E}_{\pi} \left[\log(D(s)] - \mathbb{E}_{\pi_{E}} \left[\log(1 - D(s)) \right] \right]$$

$$\mathcal{L} = \mathcal{L}_{\mathcal{D}} + \mathcal{L}_{\mathcal{P}} + \mathcal{L}_{\mathcal{BC}}$$

 $\mathcal{L}_{\mathcal{D}}$: Discriminator Loss (GAIL)

$$\mathcal{L}_{\mathcal{D}} = -\mathbb{E}_{\pi} \left[\log(D(s)) - \mathbb{E}_{\pi_{E}} \left[\log(1 - D(s)) \right] \right]$$

 $\mathcal{L}_{\mathcal{P}}$: Policy Loss (GAIL)

$$\mathcal{L}_{\mathcal{P}} = \mathbb{E}_{\pi} \left[\log(D(s)) \right]$$

$$\mathcal{L} = \mathcal{L}_{\mathcal{D}} + \mathcal{L}_{\mathcal{P}} + \mathcal{L}_{\mathcal{BC}}$$

 $\mathcal{L}_{\mathcal{D}}$: Discriminator Loss (GAIL)

$$\mathcal{L}_{\mathcal{D}} = -\mathbb{E}_{\pi} \left[\log(D(s)) - \mathbb{E}_{\pi_{E}} \left[\log(1 - D(s)) \right] \right]$$

 $\mathcal{L}_{\mathcal{P}}$: Policy Loss (GAIL)

$$\mathcal{L}_{\mathcal{P}} = \mathbb{E}_{\pi} \left[\log(D(s)) \right]$$

 $\mathcal{L}_{\mathcal{BC}}$: BC Loss

$$\mathcal{L}_{\mathcal{BC}} = -\mathbb{E}_{\pi_{F}}\left[\log(\pi(s, a))\right]$$

Hierarchical Model-Based Imitation Learning for Planning in Autonomous Driving - Interactive agents

- Using just playback agents is not enough for closed loop evaluation (especially if we condition on novel routes)
- Road Users should be interactive and should diverge in response
- ▶ Idea: Use Symphony agents for other Road Users
- Symphony agents are not used during training because they condition the AV on the true route → the AV should not diverge too much from the GT trajectory

TABLE I: Logged Route on the Unbiased Test Set.

	Success	Route Failure	Collision	Off-road	Route Progress
Method	rate (%)	rate (%)	rate (%)	rate (%)	ratio (%)
Playback	98.62±0.08	1.07 ± 0.07	0.05 ± 0.02	0.26 ± 0.03	100.00±0.00
BC	86.07±0.24	9.63 ± 0.20	4.53 ± 0.14	2.21 ± 0.10	105.59±0.40
BC + Route	94.18±0.16	0.69 ± 0.06	4.60 ± 0.14	0.75 ± 0.06	98.10 ± 0.33
MGAIL	88.90±0.21	9.73 ± 0.20	1.28 ± 0.08	1.00 ± 0.07	101.22±0.32
MGAIL + Route	97.45±0.11	0.74 ± 0.06	1.20 ± 0.07	0.77 ± 0.06	100.85±0.29
MGAIL + BC	89.84±0.21	8.93 ± 0.19	1.25 ± 0.08	0.73 ± 0.06	105.58±0.36
MGAIL + BC + Route	98.22±0.09	0.69 ± 0.06	0.77 ± 0.06	0.37 ± 0.04	105.30±0.32

Imitation Is Not Enough [Lu et al., 2022]

- Imitation Learning often fails to account for safety and reliability
- ▶ Imitation Learning with RL using simple rewards

Imitation Is Not Enough

Imitation Is Not Enough

Use a mixture of RL and IL objectives:

$$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t} \gamma^{r} R(s_{t}, a_{t}) \right] + \lambda \mathbb{E}_{s, a \sim \pi_{E}} \left[\log(\pi(s, a)) \right]$$

Imitation Is Not Enough

Simple reward function:

$$R = R_{\text{collision}} + R_{\text{off-road}}$$

$$R_{\text{collision}} = \min(d_{\text{collision}} - 1.0, 0.0)$$

$$R_{\mathrm{off\text{-}road}} = \mathrm{clip}(-1.0 - d_{\mathrm{to\text{-}edge}}, 0.0, 2.0)$$

Imitation Is Not Enough

- Do not use reactive agents
- Imitative Loss discourage the learned policy to deviate too far from logs
- In this case the logged trajectories are enough

Imitation Is Not Enough - Results

Method	Training	Top1 (%)	Top10 (%)	Top50 (%)	All (%)	Route Progress Ratio, All(%)
BC	All	9.74±0.49	6.72 ± 0.47	5.14 ± 0.39	4.35 ± 0.27	99.00±0.39
MGAIL	All	7.28±0.98	4.22 ± 0.77	3.40 ± 0.97	2.48 ± 0.29	99.55 ± 1.91
SAC	All	5.29±0.66	4.64 ± 1.08	4.12 ± 0.74	6.66 ± 0.44	77.82 ± 8.21
BC-SAC	All	3.72±0.62	2.88 ± 0.23	2.64 ± 0.21	3.35 ± 0.31	95.26 ± 8.64
BC	Top10	5.79±0.82	3.45 ± 0.72	2.71 ± 0.57	3.64 ± 0.31	98.06±0.18
MGAIL	Top10	4.21±0.95	2.57 ± 0.52	2.20 ± 0.52	2.45 ± 0.35	96.57 ± 1.19
SAC	Top10	4.33±0.47	4.11 ± 0.63	3.66 ± 0.47	5.60 ± 0.86	71.05 ± 2.47
BC-SAC	Top10	2.59±0.31	2.01 ± 0.29	1.76 ± 0.20	2.81 ± 0.26	87.63 ± 0.58
BC	Top1	7.66±1.13	7.84 ± 0.92	6.63 ± 0.78	6.85 ± 0.65	94.10±1.00
MGAIL	Top1	4.24±0.95	3.16 ± 0.43	2.74 ± 0.46	3.79 ± 0.46	93.10 ± 11.72
SAC	Top1	4.15±0.31	3.87 ± 0.12	3.46 ± 0.16	5.98 ± 1.03	75.63 ± 2.19
BC-SAC	Top1	3.61±0.87	2.96 ± 1.11	2.69 ± 0.87	3.38 ± 0.48	75.00 ± 17.21

Table 2: Failure rates (lower is better) and progress ratios (higher is better) of BC-SAC and baselines on different training/evaluation subsets.

Imitation Is Not Enough - Results

Figure 6. Visualizations of win cases against baseline agents. The cyan car is controlled. Example 1: MGAIL. Collides with a pedestrian coming out of a double parked car while BC-SAC was able to be leave an appropriately wide-clearance. Example 2: MGAIL does not provide sufficient clearance and collides with the incoming whether Example 3: SAC slows down in an intersection resulting in an rear collision. In contrast, BC-SAC keeps an appropriate speed profile through the intersection without a collision.

Model-Based Imitation Learning for Urban Driving [Hu et al., 2022]

- Related to World Models [Ha and Schmidhuber, 2018]
- Jointly learns a model of the world and a policy
- Leverages 3D geometry
- Trained offline without online interaction with the environment
- ► Can predict diverse and plausible states and actions, that can be interpretably decoded to BEV semantic segmentation

The observation encoder e_ϕ lifts image features to 3D, pools them to bird's-eye view, and compresses them to a 1D vector.

Observing

1/5

The **prior distribution** $\mathcal{N}(\mu_{\theta}(\mathbf{h}_1), \sigma_{\theta}(\mathbf{h}_1)\boldsymbol{I})$, representing what the model imagines will happen, and the **posterior distribution** $\mathcal{N}(\mu_{\phi}(\mathbf{h}_1, \mathbf{x}_1), \sigma_{\phi}(\mathbf{h}_1, \mathbf{x}_1)\boldsymbol{I})$, representing what actually happened, **are matched** (KL divergence).

2/5

The **image decoder** g_{θ} and **bird's-eye view decoder** l_{θ} output the reconstructed observation and bird's-eye segmentation respectively.

The **driving policy** π_{θ} outputs the vehicle control.

3/5

- Decoding used just for closed loop evaluation (not training)
- Decoding just used as auxiliary task
- ➤ "For simplicity, we have set the weight parameter of the image reconstruction to 0." Cit.

MP3 [Casas et al., 2021]

► Map, Perceive, Predict, Plan

► Input: 10 LiDAR sweeps (1s)

► Range: 140 x 80

► Resolution: 0.2m/voxels

MP3

Map:

- Drivable area
- Reachable lanes
- Intersection

Occupancy:

- Current Occupancy
- Forward occupancy flow

Routing:

- For each pixel: probability that driving to it is aligned with the input plan
- 3 Networks: turn right, turn left, go straight

More

- ► Learning from All the Vehicles (LAV) [Chen and Krähenbühl, 2022]
- ▶ Reinforcement Learning Coach (ROACH) [Zhang et al., 2021]
- ► TransFuser: Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [Chitta et al., 2022]

Our case

- ▶ BC training is ready using the recorded sequences
- Closed loop training requires a simulator
- Probably our simulator is not yet ready
 - Sim2real?
 - ► Environments?
 - Experts?
- Input representation problem:
 - ▶ Point cloud→ simulation is difficult
 - ► Images → simulation is very difficult
 - ▶ Boxes → simulation is easy
- MVMap can help in the scenario generation but what about radars?

Bibliography I

- Baram, N., Anschel, O., and Mannor, S. (2016). Model-based adversarial imitation learning. arXiv preprint arXiv:1612.02179.
- Bronstein, E., Palatucci, M., Notz, D., White, B., Kuefler, A., Lu, Y., Paul, S., Nikdel, P., Mougin, P., Chen, H., et al. (2022).

Hierarchical model-based imitation learning for planning in autonomous driving.

In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 8652–8659. IEEE.

Casas, S., Sadat, A., and Urtasun, R. (2021).

Mp3: A unified model to map, perceive, predict and plan.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14403–14412.

Bibliography II

Chen, D. and Krähenbühl, P. (2022). Learning from all vehicles.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 17222–17231.

Chen, D., Zhou, B., Koltun, V., and Krähenbühl, P. (2020). Learning by cheating.

In Conference on Robot Learning, pages 66-75. PMLR.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P. (2016).

Infogan: Interpretable representation learning by information maximizing generative adversarial nets.

Advances in neural information processing systems, 29.

Bibliography III

Transfuser: Imitation with transformer-based sensor fusion for autonomous driving.

IEEE Transactions on Pattern Analysis and Machine Intelligence.

Ha, D. and Schmidhuber, J. (2018). World models. arXiv preprint arXiv:1803.10122.

Ho, J. and Ermon, S. (2016).

Generative adversarial imitation learning.

Advances in neural information processing systems, 29.

Bibliography IV

Hu, A., Corrado, G., Griffiths, N., Murez, Z., Gurau, C., Yeo, H., Kendall, A., Cipolla, R., and Shotton, J. (2022). Model-based imitation learning for urban driving. arXiv preprint arXiv:2210.07729.

Igl, M., Kim, D., Kuefler, A., Mougin, P., Shah, P., Shiarlis, K., Anguelov, D., Palatucci, M., White, B., and Whiteson, S. (2022).

Symphony: Learning realistic and diverse agents for autonomous driving simulation. *arXiv*.

Li, Y., Song, J., and Ermon, S. (2017). Infogail: Interpretable imitation learning from visual demonstrations.

Advances in Neural Information Processing Systems, 30.

Bibliography V

- Lu, Y., Fu, J., Tucker, G., Pan, X., Bronstein, E., Roelofs, B., Sapp, B., White, B., Faust, A., Whiteson, S., et al. (2022). Imitation is not enough: Robustifying imitation with reinforcement learning for challenging driving scenarios. arXiv preprint arXiv:2212.11419.
- Ross, S., Gordon, G., and Bagnell, D. (2011).

 A reduction of imitation learning and structured prediction to no-regret online learning.
 - In Proceedings of the fourteenth international conference on artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Proceedings.
- Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015).

Trust region policy optimization.

In *International conference on machine learning*, pages 1889–1897. PMLR.

Bibliography VI

Williams, R. J. (1992).

Simple statistical gradient-following algorithms for connectionist reinforcement learning.

Reinforcement learning, pages 5–32.

Zhang, Z., Liniger, A., Dai, D., Yu, F., and Van Gool, L. (2021).

End-to-end urban driving by imitating a reinforcement learning coach.

In Proceedings of the IEEE/CVF international conference on computer vision, pages 15222-15232.