1. We see that a path with the probability p^{ℓ} must have ℓ number of edges such that ℓ is the distance from the start vertex s. Let $L = floor\{log_p q\}$ such that L is the length of the longest possible s-t path and p^L is the lowest possible probability greater than q.

We create a two-dimensional array $A_1[0...L][1...n]$ where n is number of vertices. A_1 will keep track of the minimum cost of traveling from s to some vertex v with probability p^{ℓ} for $\ell \in [0...L]$.

$$\textbf{Base Cases} \begin{cases} A_1[0][s] = 0 \text{ because there is no cost at the start vertex} \\ A_1[0][n] = \infty \text{ because there is no cost if no edges were traveled} \\ A_1[1...L][1...n] = \infty \text{ acting as placeholders} \end{cases}$$

Then, we have another two-dimensional array $A_2[0...L][1..m]$ where m is the number of edges. A_2 will keep track of the maximum probability of traveling from s to some vertex v such that the end probability of that path will be p^{ℓ} for $\ell \in [0...L]$.

Base Case: $A_2[0][m] = \infty$ because there is no cost if no edges were traveled.

For all possible ℓ from [0...L], we check each edge m such that:

- i. For each edge e in [1...m], $A_2[\ell][e] = A_1[e-1][e] + c_v$ where e an edge in the set of edges [1...m], and v a vertex in the set of vertices [1...n]. The minimum cost of this path will the be minimum cost to travel from s to the second to last vertex v-1 plus the cost to travel to the current vertex v.
- ii. We fill out A_2 using a for loop that will iterate over m starting from 1 such that $A_1[\ell][e] = \min(A_1[e][n], A_2[e][m])$. We search through all the edges in $D[\ell]$ to see which one leads to n_2 with the minimum cost. If there is no edge in $D[\ell]$ that leads to a vertex n, then $A_1[e][n]$ will be ∞ , meaning that it is unreachable for a certain distance ℓ away from s.

We return $min(A_1[\ell][t])$ for all $0 \le \ell \le L$ giving us the lowest possible cost to reach vertex t from s with a path length of at most L. This will give us running time $O(m \cdot log_p q)$ because $L = log_p q$) and our for loop will iterate over [1..m] for all ℓ in [0...L].

2. To write this as a DP algorithm, we must take into consideration three cases where potential barrier can be placed relative to the current seat at (i, j):

Base Case: If j = 0, then the cost is whatever the cost is of P[i][j].

- i. A barrier can be placed at (i-1,j) directly to the left of the current seat.
- ii. A barrier can be placed at (i, j + 1) directly under the current seat.
- iii. A barrier can be placed at (i+1,j) directly to the right of the current seat.

We can generalize the algorithm to determine the minimum cost of completing the barrier using the three cases:

$$F(i, j) = min\{F(i-1, j-1), F(i, j-1), F(i+1, j)\} + F(i, j)$$

This equation represents the three different potential places where seats can be placed to complete the barrier. We add the cost of the current seat P[i][j] to the equation because it is included in the overall cost of the barrier. The algorithm operates as follows: We will apply the recursive characterization stated above in a DP algorithm using nested for loops to iterate over the current seat of the barrier (i, j). This operates in O(mn) time because we are iterating over the rows m and columns n of the grid.

3. Let G be a graph $G = \{V, E\}$. We set V = (i, j, t) where i is the index of the nucleobase string x[1...n], j is the index of the nucleobase string y[1...n], and t is the number of possible consecutive insertions and deletions up to i that is needed so that x == y is true.

We draw each vertex using a triple nested for-loop representing all possible combinations of i, j, t and draw three edges out from each vertex to represent substitution, insertion, and deletion.

$$E = \begin{cases} (i+1, j+1) & \text{substitution} \\ (i, j+1) & \text{insertion} \\ (i+1, j) & \text{deletion} \end{cases}$$

We know that p + kq is the cost of starting and continuing a chain of insertions and deletions. Thus, a single insertion or deletion would cost p + q and a continuation of an existing chain of insertions of deletions would cost an additional q. We imagine each edge as a single operation weighted on D(i, j, t) defined as

$$D(i,j,t) = \min \begin{cases} D(i-1,j-1,t) + c(x[i],y[j]), \\ D(i-1,j,t) + \begin{cases} p+q \text{ if } t=0, \\ q \text{ otherwise} \end{cases} \\ D(i,j-1,t) + \begin{cases} p+q \text{ if } t=0, \\ q \text{ otherwise} \end{cases}$$

We set the start vertex $s \in V$ as s = (0,0) and the terminal vertex $t \in V$ as t = (n,n) and use DAG shortest path to find the minimum total weight of an s-t path on G. This is possible in $O(n^3)$ because creating G using a triple nested for-loop takes $O(n^3)$ for $n \cdot n \cdot n$ or n^3 vertices with an 3 outgoing edges from each vertex. When traversing the graph, we only take on of the three possible edges, giving us $O(n^3)$ traversal time for $O(n^3)$ overall.