- 1. Find (by "drawing" pictures representing graphs) all pariwise non-isomorphic graphs of order 4.
- 2. For a graph G, define a relation \approx on V(G) by saying v \approx w if and only if there exists a path in G with endpoints v and w. Show that \approx is an equivalence relation that is, show that $(\forall \ u \in G)(u \approx ua)$, thath $(\forall \ u,v\in G)(u \approx v \implies v \approx u)$, and that $(\forall \ u,v,w\in G)([u\approx v \land v\approx w] \implies u\approx w)$.
- 3. Given a graph G, define its complement \overline{G} as a graph with vertices $V(\overline{G}) = V(G)$, such that given $v, w \in V(G)$ with $v \neq w$, we have $vw \in E(\overline{G})$ if and only if $vw \notin E(G)$.
- a. Show thath if G $\simeq \overline{\mathbb{G}},$ then $|\mathbb{G}| \equiv \emptyset$ or 1 (mod 4).
- $\underline{b}\,.\,$ Show thath for any graph G, either G or \overline{G} is connected.
- 4. Show that any graph of order at least 2 has two vertices of the same degree.
- 5. a. Show that every connected graph G contains a vertex $v \in G$ such that $G \{v\}$ is connected.

[Hing: pick v so thath some connected component of $G - \{v\}$ is as big as possible] b. A connected graph with at least one vertex is called a tree if it has no gyalos

- tex is called a *tree* if it has no cycles. Show that every tree with \geq 2 vertices has a vertex of degree 1 (such a vertex is called a *leaf*)
- c. Deduce that if T is a tree then e(T) = |T| 1
- d. Let G be a graph with |G|=n. We say that a tuple $(d_G(v_1),\ldots,d_G(v_n)),$ where $\{v_1,\ldots,v_n\}=V(G),$ is a degree sequence of G. Show that a given tuple (d_1,\ldots,d_n) of integers, where $n\geq 2,$ is a degree sequence of a tree iff $d_i\geq 1$ for all i and $\sum\limits_{i=1}^n d_i=2n-2.$
- 6. Let G=(V,E) be a graph. Show that there exists a partition $V=A\sqcup B$ such that all vertices of G[A] and of G[B] have even degree.
- 7. Suppose G is a graph that has no induced cycles of odd legth thath is, for any A \subseteq V(G), the graph G[A] is not a cycle of odd length. Show that G is bipartite.
- 8. Let G be a regular bipartite graph with vertex classes W and M. Show that G contains a matching from W to M.

- 1. Znajdz (rysujac obrazki reprezentujace grafy) wszystkie parami nieizomorficzne grafy stopnia 4.
- 2. Dla grafu G definiujemy relacje \approx na V(G) mowiac, ze v \approx w wtedy i tylko wtedy, gdy istnieje sciezka w G z koncami v oraz w. Pokaz, ze \approx jest relacja rownowaznosci ze spelnia ...
- 3. Majac dany graf G, definiujemy jego dopelnienie \overline{G} jako graf z wierzcholkami $V(\overline{G}) = V(G)$, taki, ze dla danych v,w $\in V(G)$, w \neq v, mamy vw $\in E(\overline{G})$ wtw vw $\notin E(G)$
- a. Pokaz, ze jezeli G $\simeq \overline{\tt G},$ to $|{\tt G}| \equiv 0$ lub 1 (mod 4).
- b. Pokaz, ze dla dowolnego grafu G albo G albo $\overline{\text{G}}$ jest spojny.
- 4. Pokaz, ze dowolny graf o stopniu co najmniej 2 ma dwa wierzcholki o tym samym stopniu.
- 5. a. Pokaz, ze kazdy spojny graf G posiada wierzcholek v \in G taki, ze G $\{v\}$ jest spojny.

[cenzura <3]

- b. Spojny graf z co najmniej jednym wierz-cholkiem jest nazywany drzewem jezeli nie ma cykli. Pokaz, ze kazde drzewo z \geq wierzcholkami ma wierzcholek stopnia 1 (taki wierzcholek nazywa sie lisciem).
- c. Wydedukuj, ze jezeli T jest drzewem, wtedy e(T) = |T| 1
- d. Niech G bedzie grafem z |G|=n. Mowimy, ze krotka $(d_G(v_1),\ldots,d_G(v_n))$, gdzie $\{v_1,\ldots,v_n\}=V(G)$, jest ze jest to sekwencja wierzcholkow ze sie ich stopnie nie zwiekszaja, sry nie znam nazwy i nie chce mi sie szukac wiecej niz na wikipedii, buzi grafu G. Pokaz, ze majac krotke (d_1,\ldots,d_n) liczb calkowitych, gdzie $n\geq 2$, jest ta wlasnie seria w drzewie wtw $d_i\geq 1$ dla wszystkich i oraz $\sum\limits_{i=1}^n d_i=2n-2$.
- 6. Niech G=(V,E) bedzie grafem. Pokaz, ze istnieje podzialy $V=A\sqcup B$ takie, ze wszystkie wierzcholki G[A] i G[B] maja parzyste stopnie
- 7. Zaloz, ze G jest grafem nie majacych $in-duced\ cycle\ (takze\ chordless\ cycle)$ to taki cykl, ze nie ma takich brudaskow ktore lacza wierzcholki w cyklu, ale do cyklu nie naleza nieparzystej dlugosci, tzn dla dowolnego A \subseteq V(G), graf G[A] nie ma cykli o nieparzystej dlugosci. Pokaz, ze G jest dwudzielne.
- 8. Niech G bedzie regularnym dwudzielnym grafem z klasami wierzcholkow W i M. Pokaz, ze G zawiera laczenie z W do M.