Telco Churn Rate Analysis

Team Composition

- 1. Nathan Murstein (NathanMurstein) Data Scientist
- 2. **Hisham** Salem (HishamSalem) Data Analyst
- **3. Dany** Stefan (dany-stefan) Data Scientist
- **4. Jeewon** Kim (jeewonk) Data Scientist
- 5. Diwei Zhu (JuniperZhuDiwei) Business Analyst
- 6. Oleg Kartavtsev (oleg19989) Business Intelligence
- 7. Uzair Ahmad (uzairahmadxy) Project Manager

Github Repository - MMA4_ChurnPrediction

Context and Data Source

Objective - reduce churn among Telco's clients

Why?

- Churn leads to higher Customer Acquisition Costs & reduced revenue – acquiring new customers is more costly than keeping the existing ones
- High churn rates are more likely to compound over time

Ideal scenario for the company – increased revenue, higher customer satisfaction and loyalty, higher market share

https://www.kaggle.com/blastchar/telco-customer-churn

Churn - the annual percentage rate at which customers stop subscribing to a service

Possible reasons – cancelling the service altogether, switching to a competitor, etc.

Methodology Overview

Expected outcome

Prediction model - optimal model with high F1
Optimization - optimal monetary value of coupon promotion

Primary performance measure - F1

Why? Based on our tests a balanced approach is the most monetary worthwhile approach for our business strategy hence why we optimize for f1. In the scope of the project, identifying churn is more important than eliminating false positives and missing actual positive cases

Exploratory data analysis

Dataset overview:

- Target: Churn (binary)
- Customer demographic/subscription variables: gender, senior, monthly charge, contract type, tenure,
- Telco service variables: phone/internet service type, security/backup service, tech support...

Data preparation:

- Drop NA, cleaned empty values (shown as " " (a space string), not null)
- Encoded categorical and binary variables into integers

EDA: (full version on GitHub)

Distribution of numerical data

Distribution of categorical data

Correlation matrix

	Churn	gender	SeniorCitizen	Partner	Dependents
Churn	1.000000	0.008545	0.150541	-0.149982	-0.163128
gender	0.008545	1.000000		0.001379	
SeniorCitizen	0.150541	0.001819	1.000000		-0.210550
Partner	-0.149982	0.001379	0.016957	1.000000	0.452269
Dependents	-0.163128	-0.010349	-0.210550	0.452269	1.000000
tenure	-0.354049	-0.005285	0.015683	0.381912	0.163386
PhoneService	0.011691	0.007515		0.018397	-0.001078
MultipleLines	0.036148	0.010284	0.113769		
InternetService	0.316350	0.009643	0.259030	0.000938	-0.177789
OnlineSecurity	0.023014	0.013233	0.081766		-0.028964
OnlineBackup	0.073934	0.011081	0.144762		-0.061970

— Causality check

Check causality between every binary variable and the Churn by treating binary variables as treatments in turn.

ATE result of all tests:

Jui	Treatment	LR	XGBoost_T	Neural Network	XGBoost_BaseX	XGBoost_BaseR
0	PaperlessBilling	0.046118	0.052412	0.126943	0.048250	0.045284
1	gender	0.003772	0.003416	0.006964	0.003699	0.004890
2	SeniorCitizen	0.045521	0.058722	-0.248546	0.058871	0.052779
3	Partner	-0.000546	0.005794	-0.088505	0.004461	0.002543
4	Dependents	-0.021127	-0.019804	-0.094128	-0.017211	-0.017628
5	PhoneService	-0.091797	-0.076322	0.236776	-0.133274	0.019827
6	PaymentMethod_Bank transfer (automatic)	0.033476	-0.002217	-0.049749	0.024361	0.020069
7	PaymentMethod_Credit card (automatic)	0.027120	-0.030238	-0.327045	-0.012907	-0.001930
8	PaymentMethod_Electronic check	0.102619	0.050909	0.238761	0.049111	0.017346
9	PaymentMethod_Mailed check	0.026782	-0.042788	-0.096065	-0.021721	-0.004676

- Target: either 0 or 1.
- The largest ATE is 0.23, but not consistent across tests.
- Cannot say there is significant differences in ATEs for Churn for the binary predictors

- Train-Validation-Test Approach
- Feature Selection Boruta
- Imbalanced data Oversampling, Undersampling
- Models: Logistic Regression, Naive Bayes, SVM, Random Forest, LGBM, XGB,
- Model Tuning Optuna
- Custom Prediction Threshold Precision, Recall Curves

Feature Selection

yes.	Accuracy	Precision	Recall	F1Score
naive_bayes	0.773608	0.700948	0.954722	0.808359
mlp	0.784746	0.763662	0.838015	0.791452
gb	0.807869	0.765488	0.887651	0.821981
Ir	0.797579	0.746702	0.900969	0.816447
svc	0.575303	0.576032	0.571913	0.573936
rf	0.822760	0.810742	0.842373	0.826166
xgb	0.791162	0.710759	0.982324	0.824724
lightGBM	0.782082	0.699186	0.990799	0.819784

Train 5 fold Average Undersample Results

	Accuracy	Precision	Recall	F1Score
naive_bayes	0.688853	0.623999	0.950787	0.753445
mlp	0.768445	0.831456	0.680014	0.742383
gb	0.816566	0.837837	0.787278	0.811205
Ir	0.679086	0.638884	0.823440	0.719389
svc	0.612152	0.613959	0.606341	0.609531
rf	0.786895	0.799839	0.766285	0.782379
xgb	0.740957	0.672893	0.939225	0.783792
lightGBM	0.734437	0.661048	0.963828	0.784081

OverSample

UnderSample

OverSample (No Tuning)

	Accuracy	Precision	Recall	F1Score	True Negative	False Negative	True Positive	False Positive
lightGBM	0.634684	0.414634	0.909091	0.569514	553	34	340	480
xgb	0.665245	0.435591	0.877005	0.582076	608	46	328	425
naive_bayes	0.648188	0.421326	0.866310	0.566929	588	50	324	445
Ir	0.712864	0.476636	0.818182	0.602362	697	68	306	336
mlp	0.712864	0.476038	0.796791	0.596000	705	76	298	328
gb	0.742715	0.510490	0.780749	0.617336	753	82	292	280
rf	0.734186	0.500000	0.577540	0.535980	817	158	216	216
svc	0.589197	0.337061	0.564171	0.422000	618	163	211	415

UnderSample (No Tuning)

	Accuracy	Precision	Recall	F1Score	True Negative	False Negative	True Positive	False Positive
lightGBM	0.466951	0.323640	0.922460	0.479167	312	29	345	721
xgb	0.475480	0.326996	0.919786	0.482468	325	30	344	708
naive_bayes	0.647477	0.420779	0.866310	0.566434	587	50	324	446
lr	0.739161	0.505983	0.791444	0.617310	744	78	296	289
mlp	0.534471	0.333333	0.751337	0.461791	471	93	281	562
rf	0.604833	0.373961	0.721925	0.492701	581	104	270	452
gb	0.589197	0.362162	0.716578	0.481149	561	106	268	472
svc	0.586354	0.339506	0.588235	0.430528	605	154	220	428

OptunaTuned Models (F1 Emphasis)

	Accuracy	Precision	Recall	F1Score	True Negative	False Negative	True Positive	False Positive
lr	0.704335	0.468182	0.826203	0.597679	682	65	309	351
xgb	0.700782	0.462400	0.772727	0.578579	697	85	289	336
gb	0.736318	0.502582	0.780749	0.611518	744	82	292	289
lightGBM	0.621180	0.406139	0.919786	0.563473	530	30	344	503

	Recall	Precision	Fscore	Threshold
lr	0.775401	0.494881	0.604167	0.542832
xgb	0.748663	0.489510	0.591966	0.659565
gb	0.770053	0.514286	0.616702	0.500000
lightGBM	0.756684	0.521179	0.617230	0.870174

Logistic Regression

XGBoost

Gradient Boosting

Light GBM

Logistic Regression

XGBoost

Gradient Boosting

Light GBM

False Positive Rate (False Alarm)

Models	Base	Custom
Logistic Regression	34%	29%
XGB	33%	28%
Gradient Boosting	27%	26%
Light GBM	49%	25%

Optimization (Appendix)

Assumptions

- If a customer is predicted to churn, it's monthly value will be expected as zero. (Otherwise it will be equal to the previous month's value.)
- If we send a 20% coupon to a customer predicted to churn, the customer will not churn.

Decision Variables

 $Coupon_{i (i=1,...,7043)}$

Whether to send customer i a coupon or not.

Coupon i = 1 if Telco decides to send coupon to customer i, otherwise 0.

Objective Function

$$\begin{aligned} \textit{Minimize} \ & \sum_{i=1}^{n} [Coupon_i * (MonthlyCharge_{S_i} - Mailingcost_i - Couponamount_i)] \\ & + \sum_{i=1}^{n} [(1 - Coupon_i) * (PredChurn_i - MonthlyCharge_{S_i})] \end{aligned}$$

Result

- We can get the **target list of customers to send coupon** (customer i whose coupon i = 1)
- Based on the ground truth ('Churn' value), we can calculate the monetary value of coupon promotion, calculating 'Expected loss w/o promotion Realized loss w/ promotion'

Key motivation:

If Telco can predict the customer's churn before they leave, it can send coupons to prevent churn, eventually **achieving minimized loss**.

Technical tool:

With Gurobi, based on predicted churn, we identified target customers to send coupons and calculate the monetary upside of the customer-retained condition with each predictive model.

```
[('custom_XGB', 34355.45181236676),
  ('base_XGB', 33576.85181236675),
  ('custom_Light GBM', 33565.20181236675),
  ('custom_Gradient Boosting', 33033.151812366756),
  ('base_Gradient Boosting', 32844.80181236676),
  ('custom_Logistic Regression', 31798.401812366745),
  ('base_Logistic Regression', 31433.101812366745),
  ('base_Light GBM', 24032.70181236674)]
```

With prediction generated by 'Custom_XGB', we expect to see **the most monetary upside.**

The strategy brings financial upside that is more than 24K with every predictive model.

Risk and Next step

Threats to Validity

- Uncertainties remain; Change in environmental factors or Data integrity issues may exist
- The assumption for the optimization model may become a threat to validity -We can't guarantee that customers will be retained only by coupons.

Next step for Predictive model:

- To further optimize our models, we can use custom loss functions.
- Potentially apply the SPO+ loss by Adam Elmachtoub and Paul Grigas.
- We can utilize Optuna to optimize multiple scores concurrently.

Next step for Optimization model:

- We used constant coupon rate here, but we can incorporate 'optimal coupon value' as a decision variable as the next step.
- To guarantee coupon promotion's efficiency, we can conduct an additional A/B test to calculate the causal effect of coupons on retention rate.

Thanks!

Questions?