of EEE201

# CMOS Digital Integrated Circuits

Department of Electrical & Electronic Engineering Xi'an Jiaotong-Liverpool University (XJTLU)

Monday, 2<sup>nd</sup> December 2024

#### □ RAM & ROM

- memory architecture
- memory cells of SRAM & DRAM
- memory cell of EEPROM
- > address decoder



# Circuits for Storing Digital Data

(access time & storage density)

- □ To <u>process</u> digital data, combinational logic circuits are needed to perform logic functions (e.g. addition, multiplication, multiplexing).
- □ It is equally important to have electronic circuits to store digital data either temporarily or for a long time. Such digital circuits are memory circuits.
  - ➤ Short **access time** is expected in retrieving the *stored* digital data.
  - High density of storage capacity is always preferred whenever possible because of the ever increasing amounts of digital data (e.g. videos, images, music, etc.)

# **Digital Memory Circuits**

(RAM & ROM)

- ☐ The silicon CMOS technology that is good for realisation of **combinational logic circuits** in general can also be used to make **memory circuits**.
  - ➤ The semiconductor fabrication however may be modified for optimal manufacturing of memory circuits.
- ☐ There are two basic types of **memory circuits** which can be implemented using CMOS transistors for storing digital data *electronically*.
  - > random access memory (RAM) volatile
  - > read-only memory (ROM) non-volatile
  - ➤ A **volatile memory** loses its stored data when power is removed.



#### Semiconductor Memories

(memory types)

 Semiconductor memories are predominantly used for storing digital data with its fast <u>electronic</u> retrieval and processing.
 Semiconductor Memories

**Volatile Memories** 

Non-volatile Memories

Dynamic RAM (DRAM)

Static RAM (SRAM)

Programmable ROM (PROM)

Mask (Fuse)

**ROM** 

Electrically Erasable PROM (EEPROM)

Erasable **PROM** (**EPROM**)

 Among EEPROM, there are flash memory, ferroelectric RAM, magnetoresistive RAM, resistive RAM, phase-change RAM



#### Memory Architecture

(array of storage cells)



From: R. C. Jaeger & T. N. Blalock, *Microelectronic Circuit Design*, 4e, © 2010 McGraw-Hill, USA.

- □ Both RAM and ROM share the same basic memory architecture.
  - ▶ It consists of an array of storage cells with 2<sup>M</sup> columns and 2<sup>N</sup> rows.
  - Each storage cell (or called memory cell) can store one bit of digital data "1" or "0".



# Storage Cell or Memory Cell

(varying from RAM to ROM)

- ☐ The **memory cell** varies from RAM to ROM.
- ☐ There are two types of RAM, namely <u>static</u> RAM (<u>SRAM</u>) and <u>dynamic</u> RAM (<u>DRAM</u>), and their <u>memory</u> cells are different.
  - ➤ The **SRAM** and **DRAM** have their <u>trade-off</u> in the **access time** and **memory density** (i.e. amounts of digital data stored per unit chip area). It is again <u>performance</u> and <u>cost trade-off</u>.
- □ Regardless the types of RAM or ROM, the **memory cell** uses typically the **voltage** or **charge** to store digital data.

Semester 1, 2024/2025 by **S.Lam@XJTLU** 

➤ **Information** must be *represented*by **physical states** when stored or
processed.

EEE201 CMOS Digital Integrated Circuits



### Memory Cell of <u>Dynamic</u> RAM

(one transistor & one capacitor)

☐ The **memory cell** of the **DRAM** typically consists of only two devices: a transistor and a capacitor.



- ➤ The **charge** on the capacitor is used to store one bit of digital data.
- ➢ Since the charge on the capacitor decays with a finite time constant (about a few millisecond), a periodic refresh is needed to restore the charge so that the DRAM does not lose the memory.
- Using only two devices in each memory cell, DRAM can be of very high memory density.

From: R. C. Jaeger & T. N. Blalock, Microelectronic Circuit Design, 4e, © 2010 McGraw-Hill, USA

### Memory Cell of <u>Dynamic</u> RAM

(DRAM cell structure)

☐ In the **DRAM memory cell**, the transistor is typically an nMOSFET.



From: D.A. Hodges et al., Analysis and Design of Digital Integrated Circuits: In Deep Submicron Technology, 3<sup>rd</sup> edition, © 2003 McGraw Hill, USA.



(two inverters for bistable flip-flop)

- ☐ The memory cell of the SRAM consists of a basic bistable flip-flop circuit that needs only an applied DC voltage to retains its memory.
  - > The bistable flip-flop circuit can be built by two **inverters**.



- Typically <u>six</u> <u>transistors</u> are used.
- > Compared with the DRAM, no refresh cycle is needed to retain the memory.
  - ⇒ *static* RAM



(cross-coupled inverter pair)

☐ The basic electronic storage part in the SRAM cell consists of two **inverters** connected in a loop.



From: R. C. Jaeger & T. N. Blalock,

Microelectronic Circuit Design,

4e. © 2010 McGraw-Hill, USA.



- ➤ The output of the second inverter is fed back to the input of the first inverter.
- ➤ It forms a logically stable configuration, having two stable states. It is therefore called a **bistable circuit**.
- ➤ The alternate representation in the form of a pair of *cross-coupled* inverters is often called a **latch**.
- > The inverter **voltage transfer characteristics** can be used to study the circuit behaviour.

(six transistor implementation)

□ Two additional transistors are added to the two bistable circuit (i.e. two inverters in a loop) to isolate it from other memory cells and to provide an electrical path to <u>read</u> and <u>write data</u> to the cell.



4e. © 2010 McGraw-Hill, USA.

- ➤ A CMOS logic inverter is formed by one *p*-channel and one *n*-channel MOSFETs.
- Such an implementation is called a *six-transistor* (6T)
   SRAM cell.



(layout of 6T SRAM cell)



- The 6T SRAM cell can be implemented with the IC layout as shown here.
- Note that the MOS transistor sizes are not optimised here.

➤ Can you recognise the six transistors and determine their rough sizes?



(array of SRAM cells)



From: S.-M. Kang & Y. Leblebici, *CMOS Digital Integrated Circuits: Analysis & Design*, 3<sup>rd</sup> edition, © 2003 McGraw-Hill, USA.

- □ The 6T SRAM cell layout are duplicated in an array of 2<sup>M</sup> columns and 2<sup>N</sup> rows for storing 2<sup>M+N</sup> bits of digital data.
- The IC layout shown here is a 16-bit SRAM.



(sense amplifier)

☐ To read data stored in the SRAM cell, a **sense amplifier** is needed to detect the voltages in the bistable circuit.



- The sense amplifier typically pre-charges the capacitors  $C_{BL}$  of the **bit** line (BL) to a voltage of half of the  $V_{DD}$ .
- $C_{BL}$  > When the **word line** (WL) is activated, voltage signals of the bistable circuit pass to  $C_{BL}$  via  $M_{A1}$  &

 $M_{A2}$ .

Xi'an Jiaotong-Liverpool University 西交利物浦大學

(sense amplifier & read-write circuitry)



In Deep Submicron Technology, 3rd edition, © 2003 McGraw Hill, USA.

**EEE201 CMOS Digital Integrated Circuits** Semester 1, 2024/2025 by S.Lam@XJTLU

☐ The sense amplifier (and also the write driver) can be shared among multiple memory cells by using circuits to select the memory cells.



#### Memory Cell of <u>EEPROM</u>

(electrically erasable programmable)

☐ In the case of the ROM, the **memory cell** can consist of only one device (e.g. transistor).



From: R. C. Jaeger & T. N. Blalock, *Microelectronic Circuit Design*, 4e, © 2010 McGraw-Hill, USA.

- In the <u>electrically erasable</u>
  <u>programmable</u> ROM
  (EEPROM), the device in the memory cell is a MOSFET with a control gate and a floating gate.
  - Charges (namely electrons) are stored in the floating gate.
- > Such EEPROM is also known as **flash** memory, used in USB memory sticks. あ交利が消入学

#### Memory Cell of <u>EEP</u>ROM

(floating gate for storing charges)



(a) From: D.A. Hodges et al., Analysis and Design of Digital Integrated Circuits: In Deep Submicron Technology, 3<sup>rd</sup> edition, © 2003 McGraw Hill, USA.





- □ The EEPROM memory cell is essentially a MOSFET, but with an additional internal node in the gate electrode.
  - ➤ Note the two gate capacitors in series in the equivalent circuit diagram; charges can be stored in the bottom capacitor *C*<sub>1</sub>.



### Memory Cell of <u>EEPROM</u>

(threshold voltage of MOS transistor)

- $\Box$  The presence of charges in the **floating gate** give a different **threshold voltage**  $V_{\text{Tn}}$  sensed at the control gate of the MOS transistor.
  - $\triangleright$  Reading data involves *sensing* the  $V_{Tn}$  of the transistor.
- □ Erasure of data requires a voltage (+ve or -ve) of larger magnitude applied to the **control gate** to introduce or remove charges into or from the **floating gate**.





From: R. C. Jaeger & T. N. Blalock, Microelectronic Circuit Design, 4e, © 2010 McGraw-Hill, USA.



#### Memory Cell of **EEPROM**

(I-V curve of the MOSFET with a floating gate)

The presence of electrons in the **floating gate** give a higher **threshold voltage**  $V_{\text{Tn}}$  sensed at the control gate of the nMOS transistor. From: D.A. Hodges *et al.*, Analysis and Design of Digital Integrated Circuits: In Deep Submicron Technology, 3rd edition, © 2003 McGraw Hill, USA.



- $\triangleright$  After removal of electrons in the floating gate,  $V_{\rm Tn}$  decreases when sensed at the control gate.
- The  $I_D$ - $V_{GS}$  curve of the nMOS transistor is shifted horizontally accordingly.



#### Memory Cell of <u>EEP</u>ROM

(write & erasure processes)

☐ In writing data to the EEPROM memory cell, the charges (typically electrons) are injected to the floating gate at the drain end, by hot carrier injection (HCI).

> In erasing data, electrons are removed at the source

end from the floating gate.





西交利物浦大学

From: D.A. Hodges *et al.*, *Analysis and Design of Digital Integrated Circuits: In Deep Submicron Technology*, 3<sup>rd</sup> edition, © 2003 McGraw Hill, USA.

EEE201 CMOS Digital Integrated Circuits Semester 1, 2024/2025 by S.Lam@XJTLU

### Memory Cell of <u>EEPROM</u>

(electrically erasable programmable)

☐ In some EEPROMs, the erasure of data can also be accomplished more easily with the use of UV light.



An electron can gain energy by absorbing a photon and hence overcoming the energy barrier to get away from the floating gate.

From: D.A. Hodges et al., Analysis and Design of Digital Integrated Circuits: In Deep Submicron Technology, 3<sup>rd</sup> edition, © 2003 McGraw Hill, USA.



#### Memory Cell of <u>EEP</u>ROM

(additional select transistor)

☐ In some EEPROMs, there is an additional transistor for selecting the memory cell to read/write data.



Despite
 certain
 reliability
 advantages,
 the bit
 density is
 lower in such
 EEPROM
 design.

From: D.A. Hodges *et al.*, *Analysis and Design of Digital Integrated Circuits: In Deep Submicron Technology*, 3<sup>rd</sup> edition, © 2003 McGraw Hill, USA.



### Flash Memory

(NOR array)



Deep Submicron Technology, 3rd edition, © 2003 McGraw Hill, USA.

#### Address Decoder

(use combinational logic circuits)

■ When the memory cells are arranged in an array, address decoders are needed to read/write data from/to specific cells.



- Address decoders are combinational logic circuits and can be implemented using basic logic gates.
- ➤ A 2-bit address decoder shown here can address four rows or columns.



#### SRAM vs. DRAM

(memory density)

- ☐ It can be seen that the **SRAM** cell occupies relatively much <u>chip area</u>.
  - ➤ As a result, the memory size of the **SRAM** can be quite limited. A modern microprocessor has 25 MB SRAM.
  - ➤ 1 MB = 1024 KB; 1 KB =  $\underline{1024}$  byte =  $\underline{2^{10}}$  byte; 1 byte = 8 bit. How many SRAM cells are needed for storing 25MB digital data?
- ☐ With only one transistor and one capacitor, the DRAM cell uses up far less chip area than that of the SRAM.
  - The DRAM can have very high memory density (e.g. 16 GB). 1 GB = 1024 MB. But it has lower speed and larger power consumption.
    Xi'an Jiaotong-Liverpool University 西交利が消え学

### SRAM, DRAM & Flash Memory

(applications)

- With much faster read/write speed (typically 10 ns or less) of the SRAM, it is used as cache memory in microprocessors.
  - ➤ With its relatively lower cost but reasonable read/write speed, the **DRAM** is used as the main computational memory of the computer.
- ☐ The **flash memory** has only one transistor in the memory cell.
  - > As a result, it has somewhat even higher memory density.
  - ➤ It is used for memory cards, USB memory sticks and solidstate drives.

Semester 1, 2024/2025 by S.Lam@XJTLU

> However, its write speed can be very low (> 10 μs). EEE201 CMOS Digital Integrated Circuits

西交利物浦大學