Looking at PTZ and bout length as a high active state, I have a dataframe with subjects, bout lengths and timeframes:

#### > head(AllPTZ)

| Subject | BoutLength | TimeFactor |
|---------|------------|------------|
| 1       | 1          | 1          |
| 1       | 1          | 1          |
| 1       | 3          | 1          |
| 1       | 1          | 1          |
| 1       | 1          | 1          |
| 1       | 2          | 1          |
|         |            |            |

I am sending you this dataframe, saved a table and R code, so you can check things for yourself as well and here is what I have checked:

1. I extracted max per each of 144 subjects(example for first few, run the code if you want to see all):

```
> max_bouts_PTZ<-merge(aggregate(BoutLength ~ Subject, data = AllPTZ,
FUN = max), AllPTZ)
```

- > max\_bouts\_PTZ<-max\_bouts\_PTZ[order(max\_bouts\_PTZ[,1]),]</pre>
- > max\_bouts\_PTZ<-max\_bouts\_PTZ[!duplicated(max\_bouts\_PTZ[,1]),]</pre>
- > head(max\_bouts\_PTZ)

| Subject | BoutLength | TimeFact | or |
|---------|------------|----------|----|
| 1       | 13         | 11       |    |
| 2       | 16         | 12       |    |
| 3       | 15         | 5        |    |
| 4       | 13         | 6        |    |
| 5       | 12         | 3        |    |
| 6       | 17         | 2        |    |
|         |            |          |    |

out of this I checked the min, max, mean and sd of the max values:

```
> min(max_bouts_PTZ$BoutLength)
[1] 8
> max(max_bouts_PTZ$BoutLength)
[1] 53
> mean(max_bouts_PTZ$BoutLength)
[1] 17.21528
> sd(max_bouts_PTZ$BoutLength)
[1] 6.177065
```

So the minimum is 8, which is quite low, but sorting the maximum bout lengths and looking at the occurrences, the majority is from 10 to 20 long:

> hist(max\_bouts\_PTZ\$BoutLength)\$counts
[1] 6 56 51 19 7 3 1 0 0 1
> hist(max\_bouts\_PTZ\$BoutLength)\$breaks
[1] 5 10 15 20 25 30 35 40 45 50 55

#### Histogram of max\_bouts\_PTZ\$BoutLength



More precisely, the proportions of max bout lengths of all subjects, bigger then 10,15 and 20:

- > length(max\_bouts\_PTZ\$BoutLength[max\_bouts\_PTZ\$BoutLength>10])/144
  [1] 0.9583333
- > length(max\_bouts\_PTZ\$BoutLength[max\_bouts\_PTZ\$BoutLength>15])/144
  [1] 0.5694444
- > length(max\_bouts\_PTZ\$BoutLength[max\_bouts\_PTZ\$BoutLength>20])/144
  [1] 0.2152778

# Looking at the occurrences regarding the time frame:

```
> hist(max_bouts_PTZ$TimeFactor)$counts
[1] 16 15 13 11 11 18 14 12 6 5 13 10
> hist(max_bouts_PTZ$TimeFactor)$breaks
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13
```

#### Histogram of max\_bouts\_PTZ\$TimeFactor



# Going a bit further and checking the first five max length bouts:

```
> max_5_bouts_PTZ<-aggregate(BoutLength ~ Subject, data = AllPTZ,
function(x) {return(-sort(-x)[1:5])})
```

> head(max\_5\_bouts\_PTZ)

| Subject | BoutLength.1 | BoutLength.2 | BoutLength.3 | BoutLength.4 | BoutLength.5 |
|---------|--------------|--------------|--------------|--------------|--------------|
| 1       | 13           | 13           | 11           | 11           | 11           |
| 2       | 16           | 11           | 10           | 10           | 10           |
| 3       | 15           | 12           | 12           | 12           | 11           |
| 4       | 13           | 12           | 11           | 11           | 11           |
| 5       | 12           | 11           | 10           | 10           | 9            |
| 6       | 17           | 9            | 9            | 9            | 9            |

#### The mean of the first five max:

```
> mean_max_5_bouts_PTZ<-
as.data.frame(cbind(max_5_bouts_PTZ$Subject,apply(max_5_bouts_PTZ[,-
1],1,mean)))
> colnames(mean_max_5_bouts_PTZ)<-c("Subject","MeanBoutLength_Max_5")
> min(mean_max_5_bouts_PTZ$MeanBoutLength_Max_5)
[1] 7.2
> max(mean_max_5_bouts_PTZ$MeanBoutLength_Max_5)
[1] 28.2
> mean(mean_max_5_bouts_PTZ$MeanBoutLength_Max_5)
[1] 13.77778
> sd(mean_max_5_bouts_PTZ$MeanBoutLength_Max_5)
[1] 4.120025
```

### And the distribution:

> hist(mean\_max\_5\_bouts\_PTZ\$MeanBoutLength\_Max\_5)\$counts
[1] 3 19 38 28 27 11 8 2 3 1 3 1
> hist(mean\_max\_5\_bouts\_PTZ\$MeanBoutLength\_Max\_5)\$breaks
[1] 6 8 10 12 14 16 18 20 22 24 26 28 30

#### $Histogram\ of\ mean\_max\_5\_bouts\_PTZ\$MeanBoutLength\_Max\_5$



# Proportions of mean first five max bout lengths bigger than 10, 15, 20:

```
>length(mean_max_5_bouts_PTZ$MeanBoutLength_Max_5 [mean_max_5_bouts_PT
Z$MeanBoutLength_Max_5>10])/144
[1] 0.8472222
>length(mean_max_5_bouts_PTZ$MeanBoutLength_Max_5 [mean_max_5_bouts_PT
Z$MeanBoutLength_Max_5>15])/144
[1] 0.2708333
>length(mean_max_5_bouts_PTZ$MeanBoutLength_Max_5 [mean_max_5_bouts_PT
Z$MeanBoutLength_Max_5>20])/144
[1] 0.06944444
```

Count the number of bouts equal or longer than the minimum maximum bout length of all subjects, which is 8.

```
> count_high_active_PTZ<-aggregate(BoutLength ~ Subject, data =
AllPTZ, function(x) {return(length(x[x>=8]))})
> colnames(count_high_active_PTZ)<-c("Subject", "CountBoutsOver_8")
> min(count_high_active_PTZ$CountBoutsOver_8)
[1] 1
> max(count_high_active_PTZ$CountBoutsOver_8)
[1] 127
> mean(count_high_active_PTZ$CountBoutsOver_8)
[1] 27.80556
> sd(count_high_active_PTZ$CountBoutsOver_8)
[1] 24.43495
```

#### And the distribution:

```
> hist(count_high_active_PTZ$CountBoutsOver_8)$counts
[1] 24 51 28 13 5 9 3 3 3 0 2 2 1
>
> hist(count_high_active_PTZ$CountBoutsOver_8)$breaks
[1] 0 10 20 30 40 50 60 70 80 90 100 110 120 130
```

#### Histogram of count\_high\_active\_PTZ\$CountBoutsOver\_8



Proportions of these counts bigger than 5, 10, 20 (these counts=total number of bouts bigger than the minimum maximum bout length):

```
>length(count_high_active_PTZ$CountBoutsOver_8 [count_high_active_PTZ$
CountBoutsOver_8>5])/144
[1] 0.9305556
>length(count_high_active_PTZ$CountBoutsOver_8 [count_high_active_PTZ$
CountBoutsOver_8>10])/144
[1] 0.8333333
>length(count_high_active_PTZ$CountBoutsOver_8 [count_high_active_PTZ$
CountBoutsOver_8>15])/144
[1] 0.625
```

It might help to see the distribution of the first 3 max length bouts, so you know when to look, although it seems almost uniform:

```
> max_3_bouts_time_frames<- max_bouts_PTZ$TimeFactor
> get_time_frames<-merge(aggregate(BoutLength ~ Subject, data =</pre>
AllPTZ, function(x) {return(-sort(-x)[2])}),AllPTZ)
> get_time_frames<-get_time_frames[order(get_time_frames[,1]),]</pre>
> get_time_frames<-get_time_frames[!</pre>
duplicated(get_time_frames[,1]),3]
> max 3 bouts time frames <- c (max 5 bouts time frames, get time frames)
> get_time_frames<-merge(aggregate(BoutLength ~ Subject, data =</pre>
AllPTZ, function(x) {return(-sort(-x)[3])}),AllPTZ)
> get_time_frames<-get_time_frames[order(get_time_frames[,1]),]</pre>
> get time frames<-get time frames[!</pre>
duplicated(get_time_frames[,1]),3]
> max_3_bouts_time_frames<-c(max_5_bouts_time_frames,get_time_frames)
> hist(max_3_bouts_time_frames)$counts
 [1] 50 61 39 59 47 58 60 45 35 29 53 40
> hist(max_3_bouts_time_frames) $breaks
 [1] 1 2 3 4 5
                      6
                        7
                            8
                               9 10 11 12 13
```

#### Histogram of max\_3\_bouts\_time\_frames



Mean number of bouts longer than 4, 6, 8, 10, 15 per time frame, over all subjects. Note that they can not be exactly seen as mean per subject as the mean is over all counts pooled together, not per subject summed.

```
> mean_count_long_bouts_15_PTZ<-aggregate(BoutLength ~ TimeFactor, data = AllPTZ,
function(x) {return(length(x[x>=15])/144)})
> colnames(mean_count_long_bouts_15_PTZ)<-c("TimeFactor", "MeanCountLongBouts")</pre>
> mean_count_long_bouts_15_PTZ
   TimeFactor MeanCountLongBouts
1
                        0.0625000
             1
             2
2
                         0.1666667
3
             3
                         0.2430556
4
             4
                         0.2361111
5
             5
                         0.3194444
6
             6
                         0.2500000
7
             7
                         0.2708333
8
             8
                         0.2638889
9
             9
                         0.1527778
10
           10
                         0.1666667
                         0.1041667
11
            11
12
           12
                         0.1736111
13
           13
                         0.1597222
```

plot(mean\_count\_long\_bouts\_15\_PTZ\$TimeFactor,mean\_count\_long\_bouts\_15\_PTZ\$MeanCount
LongBouts)



- > mean\_count\_long\_bouts\_10\_PTZ<-aggregate(BoutLength ~ TimeFactor, data = AllPTZ, function(x) {return(length(x[x>=10])/144)})
- > colnames (mean\_count\_long\_bouts\_10\_PTZ) <-c("TimeFactor", "MeanCountLongBouts")</pre>
- > mean\_count\_long\_bouts\_10\_PTZ

|    | TimeFactor | MeanCountLongBouts |
|----|------------|--------------------|
| 1  | 1          | 0.2430556          |
| 2  | 2          | 0.7847222          |
| 3  | 3          | 1.0138889          |
| 4  | 4          | 1.1666667          |
| 5  | 5          | 1.1666667          |
| 6  | 6          | 0.9722222          |
| 7  | 7          | 1.2569444          |
| 8  | 8          | 1.1736111          |
| 9  | 9          | 1.0069444          |
| 10 | 10         | 0.8541667          |
| 11 | 11         | 0.9652778          |
| 12 | 12         | 1.0763889          |
| 13 | 13         | 1.1388889          |
| >  |            |                    |

plot(mean\_count\_long\_bouts\_10\_PTZ\$TimeFactor,mean\_count\_long\_bouts\_10\_PTZ\$MeanCount
LongBouts)



- > mean\_count\_long\_bouts\_8\_PTZ<-aggregate(BoutLength ~ TimeFactor, data = AllPTZ, function(x) {return(length(x[x>=8])/144)})
- > colnames (mean\_count\_long\_bouts\_8\_PTZ) <- c("TimeFactor", "MeanCountLongBouts")</pre>
- > mean\_count\_long\_bouts\_8\_PTZ

|    | TimeFactor | MeanCountLongBouts |
|----|------------|--------------------|
| 1  | 1          | 0.777778           |
| 2  | 2          | 1.8888889          |
| 3  | 3          | 2.2500000          |
| 4  | 4          | 2.4027778          |
| 5  | 5          | 2.2152778          |
| 6  | 6          | 2.2500000          |
| 7  | 7          | 2.3750000          |
| 8  | 8          | 2.3541667          |
| 9  | 9          | 2.1666667          |
| 10 | 10         | 2.1111111          |
| 11 | 11         | 2.4097222          |
| 12 | 12         | 2.2708333          |
| 13 | 13         | 2.3333333          |
| >  |            |                    |

plot(mean\_count\_long\_bouts\_8\_PTZ\$TimeFactor,mean\_count\_long\_bouts\_8\_PTZ\$MeanCountLo
ngBouts)



> mean\_count\_long\_bouts\_6\_PTZ<-aggregate(BoutLength ~ TimeFactor, data = AllPTZ, function(x) {return(length(x[x>=6])/144)})

> colnames(mean\_count\_long\_bouts\_6\_PTZ)<-c("TimeFactor", "MeanCountLongBouts")</pre>

> mean\_count\_long\_bouts\_6\_PTZ

|    | TimeFactor | MeanCountLongBouts |
|----|------------|--------------------|
| 1  | 1          | 2.465278           |
| 2  | 2          | 4.576389           |
| 3  | 3          | 4.979167           |
| 4  | 4          | 5.201389           |
| 5  | 5          | 4.854167           |
| 6  | 6          | 5.402778           |
| 7  | 7          | 5.131944           |
| 8  | 8          | 5.208333           |
| 9  | 9          | 5.076389           |
| 10 | 10         | 5.000000           |
| 11 | 11         | 5.326389           |
| 12 | 12         | 5.048611           |
| 13 | 13         | 5.402778           |
| >  |            |                    |

plot(mean\_count\_long\_bouts\_6\_PTZ\$TimeFactor,mean\_count\_long\_bouts\_6\_PTZ\$MeanCountLo
ngBouts)



```
> mean_count_long_bouts_4_PTZ<-aggregate(BoutLength ~ TimeFactor, data = AllPTZ, function(x) {return(length(x[x>=4])/144)})
```

- > colnames(mean\_count\_long\_bouts\_4\_PTZ)<-c("TimeFactor","MeanCountLongBouts")</pre>
- > mean\_count\_long\_bouts\_4\_PTZ

|    | TimeFactor | MeanCountLongBouts |
|----|------------|--------------------|
| 1  | 1          | 11.11806           |
| 2  | 2          | 12.15972           |
| 3  | 3          | 12.46528           |
| 4  | 4          | 12.70833           |
| 5  | 5          | 12.07639           |
| 6  | 6          | 12.73611           |
| 7  | 7          | 12.31250           |
| 8  | 8          | 12.71528           |
| 9  | 9          | 12.67361           |
| 10 | 10         | 12.19444           |
| 11 | 11         | 12.59722           |
| 12 | 12         | 12.48611           |
| 13 | 13         | 12.86806           |
| >  |            |                    |

plot(mean\_count\_long\_bouts\_4\_PTZ\$TimeFactor,mean\_count\_long\_bouts\_4\_PTZ\$MeanCountLo
ngBouts)



Box plots of bouts of length from 8 to 16 and over 16 per time frame(characteristics of longer bouts per time, over all subjects=they are in the box)

```
 \begin{tabular}{ll} PTZ\_long\_bouts\_8\_16<-aggregate(BoutLength ~ TimeFactor, data = AllPTZ, function(x) & {return(x[x>=8 & x<16])}) & boxplot(sapply(PTZ\_long\_bouts\_8\_16[,2], '[', seq(max(sapply(PTZ\_long\_bouts\_8\_16[,2],length))))) & topolotical content of the property of the property
```



Sorry for the missing labels, x is time frame (0-12=1-13), y is bout length and as you can see from the ylim, they go from 8 up to but not including 16.

## Same here except the bout length is from including 16 and over:

```
\label{eq:ptz_long_bouts_16<-aggregate} $$ PTZ_long_bouts_16<-aggregate(BoutLength ~ TimeFactor, data = AllPTZ, function(x) $$ \{return(x[x>=16])\})$$ boxplot(sapply(PTZ_long_bouts_16[,2], '[', seq(max(sapply(PTZ_long_bouts_16[,2],length)))))$$ $$
```



# Last, the boxplots of counts of bouts longer then 8,12,6 per time frame over all subjects(subjects form the box)

```
count_longer_8_bouts_PTZ<-aggregate(BoutLength ~ Subject, data =
AllPTZ[AllPTZ$TimeFactor==1,], function(x){return(length(x[x>=8]))})

for(time_frame in 2:13){
        count_longer_8_bouts_PTZ<-cbind(count_longer_8_bouts_PTZ,
        aggregate(BoutLength ~ Subject, data = AllPTZ[AllPTZ$TimeFactor==time_frame,],
        function(x){return(length(x[x>=8]))})[,2])
}

colnames(count_longer_8_bouts_PTZ)<-
c("Subject", "TimeFrame1", "TimeFrame2", "TimeFrame3", "TimeFrame4", "TimeFrame5", "TimeFrame6", "TimeFrame7", "TimeFrame8", "TimeFrame9", "TimeFrame10", "TimeFrame11", "TimeFrame12", "TimeFrame13")</pre>
```



```
count_longer_12_bouts_PTZ<-aggregate(BoutLength ~ Subject, data =
AllPTZ[AllPTZ$TimeFactor==1,], function(x) {return(length(x[x>=12]))})

for(time_frame in 2:13) {
        count_longer_12_bouts_PTZ<-cbind(count_longer_12_bouts_PTZ,
        aggregate(BoutLength ~ Subject, data = AllPTZ[AllPTZ$TimeFactor==time_frame,],
        function(x) {return(length(x[x>=12]))})[,2])
}

colnames(count_longer_12_bouts_PTZ)<-
c("Subject", "TimeFrame1", "TimeFrame2", "TimeFrame3", "TimeFrame4", "TimeFrame5", "TimeFrame6", "TimeFrame7", "TimeFrame8", "TimeFrame9", "TimeFrame10", "TimeFrame11", "TimeFrame12", "TimeFrame13")</pre>
```

boxplot(count\_longer\_12\_bouts\_PTZ[,-1])



```
count_longer_6_bouts_PTZ<-aggregate(BoutLength ~ Subject, data =
AllPTZ[AllPTZ$TimeFactor==1,], function(x) {return(length(x[x>=6]))})

for(time_frame in 2:13) {
        count_longer_6_bouts_PTZ<-cbind(count_longer_6_bouts_PTZ,
        aggregate(BoutLength ~ Subject, data = AllPTZ[AllPTZ$TimeFactor==time_frame,],
        function(x) {return(length(x[x>=6]))})[,2])
}

colnames(count_longer_6_bouts_PTZ)<-
c("Subject", "TimeFrame1", "TimeFrame2", "TimeFrame3", "TimeFrame4", "TimeFrame5", "TimeFrame6", "TimeFrame7", "TimeFrame8", "TimeFrame9", "TimeFrame10", "TimeFrame11", "TimeFrame12", "TimeFrame13")</pre>
```



