2차시: 선물

선물시장의 구조와 운영

선물계약

▼ 선물계약의 규정

선물계약(futures contract) = 특정자산을 특정시점에 특정한 가격(선물가격)에 사고 팔기로 현재시점에서 맺은 표준화된 계약. 선도계약(forward contract)과 유사. (차이점은 아래에서 논의)

▼ 포지션

Long Futures

약속된 미래 시점에 약속된 가격(exercise price / transaction price)으로 자산을 구매(매수)할 의무

Short Futures

약속된 미래 시점에 약속된 가격(exercise price / transaction price)으로 자산을 판매(매도)할 의무

Closing Out

반대매매. (=Long Position인 사람은 같은 상품의 Short Position을 취하고, Short Position인 사람은 같은 상품의 Long Position을 취함으로써 기존 포지션을 상쇄시킨다. 실물인수도를 하지 않고 거래의 차액만 수취하는 형식) to. basis risk

⇒ 실물인수도로 이어지는 경우가 드물다!

포지션별 만기수익구조

선물가격(Futures Price)과 현물가격(Spot Price)의 수렴

(a) Futures Price > Spot Price 인 경우: 현물자산 매입 & 선물 매도 ⇒ 차익만큼 이득 (b) Futures Price < Spot Price 인 경우: 선물 매수 & 현물자산 매도 ⇒ 차익만큼 이득 선물가격 ≠ 현물가격 시 Arbitrage 기회가 생기고, 이를 착취하는 트레이더들로 인해 Futures Price = Spot Price 수렴하게 됨.

▼ 증거금(Margin)

개시증거금(Initial Margin, IM): 선물 계약 체결 당시 거래를 시작하기 위해 예치해야 하는 최소금액.

유지증거금(Maintenance Margin, MM): 거래기간 동안 유지되어야 하는 증거금 잔액. 주로 IM의 75% 수준.

마진콜(Margin Call): 증거금 잔액이 유지증거금 미만이 되면 청산소에서 거래자에게 추가증거 금을 요구하는 연락.

추가증거금(Variation Margin): 증거금 잔액이 유지증거금(MM)미만일 때 거래자가 지불해야 하는 증거금이며, 유지증거금(MM)이 아닌 **개시증거금(IM) 수준**까지 맞추어야 함.

일일정산(daily settlement, marking to market): 선물가격의 등락에 따른 손익을 청산소에서 매일 정산.

증거금 계정에서 이익만큼 증가시키고, 손실만큼 차감하는 원리.

<예시> 온스당 \$1,250 짜리 금 선물거래. 200온스

개시증거금(IM) = \$12,000, 유지증거금(MM) = \$9,000

▼ → \$250,000짜리 계약이지만, \$12,000만 있어도 선물거래 가능. (ft.지난주 교안)

현물매입과 선물계약 비교 (이자 미포함) + 보기추가 Q 검색 🚜 🚥 📈로 만들

<u>Aa</u> .	■ 현물 매입 (파운드 당 \$1.447)	■ 선물 매입 (파운드 당 \$1.441)	
투자금액	\$361,750	\$25,000	
2개월 뒤 현물가격 \$1.5일 때 이익	\$13,250	\$14,750	
2개월 뒤 현물가격 \$1.4일 때 이익	\$(-11,750)	\$(-10,250)	
+ 새로 만들기			

개수 3

현물매입과 선물계약 비교 (이자 미포함) + 보기추가 🤉 검색 🚜 🚥 🚾 새로만들

<u>Aa</u> .	■ 현물 매입 (파운드 당 \$1.447)	■ 선물 매입 (파운드 당 \$1.441)
투자금액	\$361,750	\$25,000
2개월 뒤 현물가격 \$1.5일 때 이익	\$13,250	\$14,750
2개월 뒤 현물가격 \$1.4일 때 이익	\$(-11,750)	\$(-10,250)

十 새로 만들기

개수 3

<Case 1> 선물가격의 하락:

온스당 \$1,250 → \$1,241 ⇒ Long position은 \$9 x 200 = \$1,800 손실

Long Position 증거금계정 차감: 12,000 - 1,800 = \$10,200

반대로 Short position은 \$9 x 200 = \$1,800 이익

Short Position 증거금계정 <mark>증가</mark>: 12,000 + 1,800 = \$13,800

<Case 2> 선물가격의 상승:

온스당 \$1,250 → \$1,259 ⇒ Long position은 \$9 x 200 = \$1,800 이익

Long Position 증거금계정 증가: 12,000 + 1,800 = \$13,800

반대로 Short position은 \$9 x 200 = \$1,800 손실

Short Position 증거금계정 차감: 12,000 - 1,800 = \$10,200

만약 선물가격이 계속 하락해서 Long Position의 증거금잔액(Margin account balance)이 유 지증거금(MM) 밑으로 떨어지면 마진콜 발생

Day	Trade price (\$)	Settlement price (\$)	Daily gain (\$)	Cumulative gain (\$)	Margin account balance (\$)	Margin call (\$)
1	1,250.00				12,000	
1		1,241.00	-1,800	-1,800	10,200	
2		1,238.30	-540	-2,340	9,660	
3		1,244.60	1,260	-1,080	10,920	
4		1,241.30	-660	-1,740	10,260	
5		1,240.10	-240	-1,980	10,020	
6		1,236.20	-780	-2,760	9,240	
7		1,229.90	-1,260	-4,020	7,980	4,020

마진콜 추가증거금 액수 \$4,020 = \$12,000(IM) -

\$7,980

▼ 장내시장의 결제소(청산소, Clearing House)

선물거래의 중개소.

하루동안 발생한 모든 거래를 추적해 순포지션을 계산, 한쪽 (손실 포지션)으로부터 돈을 받아서 반대쪽(이익 포지션)으로 전달해주는 역할.

※순포지션(net position): netting(상계)의 결과. 최종적으로 손실or이익 보는 쪽에 가야할 금액. 차액 개념이라고 생각하면 간편함!

회원들이 **개시증거금**을 모아서 Guaranty Fund(보증기금)를 운용, 거래당사자들이 마진콜에 응하지 않는 경우 Guaranty Fund로 메꿈.

⇒ 1:1로 거래하는 장외시장(OTC)에 비해 신용위험(거래당사자가 약속을 지키지 않을 위험)이 매우 낮다.

Margin Cash Flows When Futures
Price Increases

Margin Cash Flows When Futures Price Decreases

장외시장 (신용위험, 중앙청산소, 선물거래vs장외거래)

▼ 신용위험

거래소에서 결제소(청산소)를 통해 거래되는 장내파생상품과는 달리, 거래당사자 한 측이 약속을 안지키는 신용위험이 존재.

▼ 중앙청산소(Central Counterparties, CCP)

장내파생상품의 결제소(청산소)를 차용.

OTC 내에서의 표준화된 청산소로서, 거래당사자들의 신용위험을 흡수.

회원들은 개시증거금을 지불하고, 필요하면 추가증거금도 지불해야 함.

<예시> A가 B로부터 자산을 구입하기로 한 선도거래(실물인수도 O)

▼ 쌍방청산(Bilateral Clearing)

거래당사자 간에 신용보강부속서(Credit Support Annex, **CSA**)를 체결, 각 거래당사자로 부터 담보물을 요구.

새로운 규정: 중앙청산소(CCP)에서 청산되지 않는 금융기관 간의 거래는 CSA 체결이 필수(개시증거금, 추가증거금 포함)

▼ 선물(장내)거래 vs. 장외거래: 증거금 이자 비교

개시증거금: 둘 다 이자수익 O

추가증거금:

- (선물거래): 이자수익 X, 하루 단위로 추가되기 때문에 하루단위여서 이자수익 미발생

- (장외거래): 이자수익 O, 매일매일 아니기 때문에 이자수익이 발생

선물시세표 예시: 시카고무역거래소, CME (not중요) https://www.cmegroup.com/markets/products.html#sortAsc&sortField

Table 2.2 Futures quotes for a selection of CME Group contracts on commodities on May 3, 2016.

	Open	High	Low	Prior settlement	Last trade	Change	Volume
Gold 100 oz	, S per oz						
June 2016	1293.4	1303.9	1284.0	1295.8	1288.1	-7.7	202,355
Aug. 2016	1295.6	1306.0	1286.4	1298.1	1290.8	-7.3	26,736
Oct. 2016	1296.0	1307.7	1289.1	1300.0	1292.7	-7.3	1,005
Dec. 2016	1299.6	1309.1	1290.0	1301.9	1294.5	-7.4	3,465
Apr. 2017	1305.2	1305.8	1296.1	1305.7	1296.1	-9.6	250
Crude Oil 10	000 barrels	, S per bar	rel				
June 2016	44.92	45.35	43.36	44.78	43.51	-1.27	503,259
Aug. 2016	46.02	46.45	44.63	45.91	44.82	-1.09	50,439
Dec. 2016	47.09	47.55	45.99	47.09	46.24	-0.85	41,447
Dec. 2017	48.75	49.17	47.83	48.72	48.16	-0.56	13,032
Dec. 2018	50.27	50.40	49.30	49.99	49.59	-0.40	1,618
Corn 5000 b	ushels, cen	ts per bush	el				
July 2016	391.75	395.00	377.00	391.75	378.25	-13.50	215,808
Sept. 2016	392.00	394.75	378.75	392.25	379.50	-12.75	34,514
Dec. 2016	396.00	398.50	384.00	396.50	385.00	-11.50	70,460
Mar. 2017	403.50	406.00	392.50	404.50	393.25	-11.25	11,131
May 2017	408.75	410.75	397.75	409.25	398.25	-11.00	1,276
July 2017	413.00	415.00	402.00	413.50	403.25	-10.25	2,555
Soybeans 50	00 bushel,	cents per b	ushel				
July 2016	1043.75	1057.00	1023.00	1043.75	1033.25	-10.50	200,456
Aug. 2016	1043.75	1057.25	1025.00	1044.00	1034.75	-9.25	22,110
Sept. 2016	1027.75	1041.75	1012.25	1029.00	1021.00	-8.00	8,753
Nov. 2016	1017.00	1030.75	1003.00	1017.75	1011.75	-6.00	87,122
Jan. 2017	1018.00	1031.25	1004.00	1019.25	1012.00	-7.25	10,937
Mar. 2017	1010.00	1021.75	995.25	1010.75	1001.25	-9.50	12,906
Wheat 5000	bushel, cer	its per busi	hel				
July 2016	487.00	492.75	468.25	487.75	473.00	-14.75	106,051
Sept. 2016	497.00	503.25	478.75	498.50	483.25	-15.25	20,043
Dec. 2016	515.20	521.25	496.25	516.75	500.50	-16.25	23,374
Mar. 2017	535.00	538.00	513.00	534.00	517.50	-16.50	2,730
Live Cattle 40,000 lbs, cents per lb							
June 2016	116.550	116.850	115.750	115.800	116.500	+0.750	16,127
Aug. 2016	114.325	114.800	113.775	113.725	114.475	+0.750	10,595
Dec. 2016	114.150	114.425	113.575	113.700	114.350	+0.650	2,350
Apr. 2017	112.900	112.925	112.250	112.450	112.750	+0.300	430
Apr. 2017	112.900	112.923	112.230	112.430	112./30	+0.300	43

인도(실물인수도, physical delivery)

언제 실물인도를 할지는 Short Position이 결정: Short 트레이더가 브로커에게 전달 의사 밝히고, 브로커가 청산소로 관련 정보를 보내면 Long이 전달받는 구조. Long은 최초 거래자가 아닐 수 있음!

거래자 유형 (not중요)

- ▼ FCMs vs. Locals
 - 선물커미셔너는 고객의 지시를 따르고 그에 대한 수수료를 지급 받음 로컬은 자신의 계좌를 가지고 거래
- ▼ 투기자 유형
 - ▼ Scalper

초단기 거래자는 단기간의 가격추세를 관찰하여 작은 가격변동에서 시세차익을 추구 **몇 분 동안**만 포지션 유지

- ▼ Day trader
 - 당일마감 거래자들은 하루도 채 안되는 기간 동안만 포지션을 유지 하룻밤 **사이**에 일어나는 악재로 인한 위험 회피
- ▼ Position trader

 포지션 거래자들은 **중요한 시장변동**으로부터 많은 이익

주문의 유형 (not중요)

- ▼ 시장가 주문
 - 개인이 브로커에게 내는 주문, 주문이 접수된 시점에서 가장 유리한 가격으로 매매 체결 가장 단순한 형태
- ▼ 지정가 주문

특정 가격을 명시하여 명시된 가격이나 투자자에게 유리한 가격으로만 거래가 이루어지도록 하는 주문

▼ 역지정가 주문

현재의 시장가격이 하락/상승하여 지정된 가격에 도달하면 성립가 주문으로 매도/매입할 것을 지시하는 주문

시장 가격이 불리하게 움직이면 포지션을 종결하여 제한된 손실을 취하는데에 목적이 있음

▼ 지정폭 주문

지정가 + 역지정가 주문으로, 두 가지 가격이 모두 명시 되어야 함 역지정가 or 그보다 불리한 가격으로 시장가격이 형성되면 곧바로 지정가 주문으로 역지정가 = 지정가일 때, 역지정가-지정가 주문으로 불림

▼ MIT 주문

거래가 특정가격 or 그보다 유리한 가격으로 이루어지면 시장에서 이용 가능한 최선의 가격으로 거래가 이루어지도록 하는 주문

전광판 주문으로도 알려짐

▼ 재량 주문

유리한 가격을 얻기 위해 브로커의 재량으로 주문이 지연될 수 있음

▼ 시간지정 주문

주문이 체결될 수 있는 시간대를 명시

▼ 공개 주문

주문이 체결될 때 or 특정 계약의 거래 종료까지 유효한 주문

▼ 성립-취소 주문

주문이 즉시 체결되지 않으면 소멸

선물과 선도계약의 비교

<u>Aa</u> 차이 점	■ 선물거래	■ 선도거래
<u>where</u>	선물 거래소	장외시장(Over The Counter)
<u>how</u>	결제소를 통해, 불특정다수와 간접적인 거래	당사자 간의 직접적인 거래
<u>what</u>	계약이 표준화 (품질, 규격, 인도장소, 만기)	개별맞춤형 . 아무렇게든 합의만 되면 가능.
<u>when</u>	Range(기간: xx일부터 yy일까지)	정확한 일자
volatility	가격변동의 제한(by거래소)	가격변동 제한 없음
<u>maturity</u>	결제소(청산소)에 의한 일일정산 , 대부분 만기이전에 반대매매 (closing out)으로 청산	만기 에 결제, 실물인수도 (physical delivery)
<u>credit</u> <u>risk</u>	거의 없음	존재

선물을 이용한 헷징전략

가격의 증감에 따라 손익이 결정되는 상황에, 손익을 줄이는 방법

▼ 숏 헷지

자산을 현재 보유(또는 보유할 예정)하고 있으면서 미래에 판매할 계획일 때, **가격하락위험을 상 쇄**하기에 적합한 헷지방법.

원리: Short Futures(,선물매도) 포지션을 취함으로써 손익을 상쇄시킨다.

현재 시장가격: S_1 , 선물가격: F , 미래 시장가격: S_2

미래에 자산을 판매할 예정인 사람이 미래 시장가격(S_2)이 현재 가격(S_1 and F)보다 하락할 것으로 예상한다면 선물매도 포지션을 취하여 가격하락위험을 헷징한다.

장점: 가격하락위험에 유리, but

단점: 가격상승위험에 취약

<예시> 오늘로부터 3개월 후에 원유 1백만 배럴을 시장가격(Spot Price)에 판매하기로 약속. 배럴당 \$0.01 증가하면 \$10,000 수익, \$0.01 감소하면 \$10,000 손실인 상황.

((*가격하락 사례*)) 원유 선물가격(F) = \$49 / 9월 원유 시장가격(S1) = \$50 / 12월 원유 시장가격(S2) = \$45

전략: Short Futures Position에 들어가 3개월 후 \$49에 원유를 판매하기로 약속.

이익 = (F - S2) x 1,000,000배럴 = (\$49 - \$45) x 1백만 = \$4백만

숏헷지를 안하고 9월에 사서 12월에 팔았다면 발생했을 손해 = (\$50 - \$45) x 1백만 배럴 = \$5 백만

⇒ 하방리스크 대비에 효과적.

((가격상승 사례)) 원유 선물가격(F) = \$49 / 9월 원유 시장가격(S1) = \$50 / 12월 원유 시장가격(S2) = \$55

전략: Short Futures Position에 들어가 3개월 후 배럴당 \$49에 원유를 판매하기로 약속.

손해 = (S2 - F) x 1,000,000배럴 = (\$55 - \$49) x 1백만 = \$6백만

숏헷지를 안하고 9월에 사서 12월에 팔았다면 발생했을 발생했을 이익 = (\$55 - \$50) x 1백만 = \$5백만

⇒ 상방리스크 대비에 취약.

▼ 롱 헷지

자산을 미래 시점에 구매할 예정일 때, **가격상승위험을 상쇄**하기에 적합한 헷지방법 원리: Long Futures(,선물매수) 포지션을 취함으로써 손익을 상쇄시킨다.

현재 시장가격: S_1 , 선물가격: F , 미래 시장가격: S_2

미래에 자산을 구매할 예정인 사람이, 미래 시장가격 (S_2) 이 현재 가격 (S_1) and (S_2) 보다 상승할 것으로 예상한다면 선물매수 포지션을 취하여 가격상승위험을 헷징한다.

장점: 가격상승위험에 유리, but

단점: 가격하락위험에 취약

<예시> 4개월 후 100,000 파운드의 구리를 구매할 예정. 현물가격이 파운드 당 \$0.01 증가하면 \$1,000달러 손해인 상황.

전략: Long Futures Position에 들어가 4개월 후 파운드당 \$3.20에 구리를 구입하기로 약속.

이익 = (S2 - F) x 100,000 파운드 = (\$3.25 - \$3.20) x 100,000 = \$5,000

⇒ 상방리스크 대비에 효과적.

전략: Long Futures Position에 들어가 4개월 후 파운드당 \$3.20에 구리를 구입하기로 약속.

손해 = (F - S2) x 100,000파운드 = (\$3.20 - \$3.05) x 100,000 = \$15,000

⇒ 하방리스크 대비에 취약.

헷징에 대한 논쟁

<u>Aa</u> 긍정	= 부정
주주들은 회사의 위험을 잘 모르고, 개인 이 헷징하는 것보다는 회사 차원에서 헷징 하는 것이 비용이 덜 든다.(거래비용, 수수 료)	주주들은 분산투자를 잘하고 있고, 알아서 헷징할 수 있다.
시장변수(원재료가격, 이자율, 환율 등)을 고정시킴으로써 본업에 충실할 수 있다.	헷징 시에 손실이 나는 상황과 이익이 나는 상황을 각각 설명하기 어렵다.
제목 없음	경쟁사들이 모두 헷징을 안할 때, 혼자서만 헷징을 하는 것은 위험을 증가시킨다. (Long Futures Hedging의 경우: 원재료 가격이 떨어졌을 때, 경쟁사들의 이익률은 그대로, 우리회사의 이익률은 하락)

베이시스 위험

베이시스(basis, b) = 현물가격 - 선물가격 (비금융자산).

※금융자산의 베이시스는 선물가격-현물가격

베이시스 위험 = 현물가격과 선물가격의 **차이 (basis)에 대한 불확실성**으로부터 발생하는 위험. 발생 원인:

- (1) 헷지하고자 하는 대상자산과 선물의 기초자산이 달라서 (~교차헷지)
- (2) 헷지하고자 하는 기간과 선물의 만기가 일치하지 않아서

 S_1 : t1 시점의 시장가격

 S_2 : t2 시점의 시장가격

 F_1 : t1 시점의 선물가격

 F_2 : t2 시점의 선물가격

 b_1 : t1 시점의 베이시스 = S_1 - F_1 b_2 : t2 시점의 베이시스 = S_2 - F_2

Figure 3.1 Variation of basis over time.

² This is the usual definition. However, the alternative definition Basis = Futures price - Spot price is sometimes used, particularly when the futures contract is on a financial asset.

<Short Futures Hedge 매도선물혯지 예시> F_1 로 매도 헷지. 헷지기간은 t1시점에서 t2시점까지

$$S_1$$
 =\$25 / F_1 =\$22 / S_2 =\$20 / F_2 = \$19 \rightarrow b_1 = S_1 - F_1 = \$3 / b_2 = S_2 - F_2 = \$1 유효가격(실제수령액): 현물가격 + 선물로인한수익 = S_2 + (F_1 - F_2) = \$20 + \$3

t2시점 현금흐름(cash in): $S_2 + (F_1 - F_2) = F_1 + (S_2 - F_2) = F_1 + b_2 = \$20 + \$22 - \$19 = \$23$

 b_2 가 커지면 매도포지션은 이익이 증가!

b(베이시스)가 커질 것으로 예상할 땐 Short Futures Hedge(매도선물헷지)가 적합.

<Long Futures Hedge 매수선물헷지 예시> F_1 로 매수 헷지. 헷지기간은 t1시점에서 t2시점까지 F_1 =\$48.00 / S_2 =\$50.00 / F_2 = \$49.10. \rightarrow b_2 = S_2 - S_2 = \$0.90

유효가격(실제지불액): 현물가격 - 선물로인한수익 = S_2 - $(F_2$ - F_1) = \$50.00 - (\$49.10 - 48.00) = \$48.90

t2시점 현금흐름(cash out): S_2 - $(F_2$ - F_1) = F_1 + $(S_2$ - F_2) = F_1 + b_2 = \$48.00 + \$50.00 - \$49.10 = \$48.90

b(베이시스)가 작아질 것으로 예상할 땐 Long Futures Hedge(매수선물헷지)가 적합.

t2시점 현금흐름(=유효가격)공식:

<u>Aa</u> 이름	■ 매도 헷지	■ 매수 헷지	≣ 비고
<u>현물 가격</u>	S2	S2	
<u>선물로 인한 수</u> <u>익</u>	F1-F2	F2-F1	F-S가 아니라 F-F인 이유: closing out(반대매매) 를 하기 때문!!!!
<u>현금흐름(=유효</u> <u>가격)</u>	S2 + (F1-F2) = F1 + b2	S2 - (F2-F1) = F1 + b2	
<u>제목 없음</u>			

교차 헷징

교차 헷징: 헷지하고자 하는 대상자산과 선물의 기초자산이 다른 경우에 사용하는 헷징방법.

(i.e. 제트연료에 대한 수요를 가지고 있는 항공사. 제트연료에 대한 선물 계약은 없고, 유사한 난방유에 선물계약이 존재. → 교차헷지를 통해 헷지효과 기대 가능! 헷지비율이 중요)

헷지비율: (선물포지션 규모) / (위험노출(=헷징대상자산) 규모)

최적 헷지비율: 포지션 분산을 최소화시키는 비율. 현물가격의 변동(ΔS)과 선물가격의 변동(ΔF) 에 의해 결정.

Figure 3.3 Dependence of variance of hedger's position on hedge ratio.

최적헷지비율(=최적헷지비율)

 $h^* =
ho imes \sigma_S / \sigma_F$

ho: ΔS 와 ΔF 의 상관계수

 σ_S : 현물가격 변동의 표준편차

 σ_F : 선물가격 변동의 표준편차

h*은 ΔF에 대한 ΔS의 기울기로도 해석 가능.(not중요)

최적선물계약수(N*)

$$N^* = rac{h^* \cdot Q_A}{Q_F}$$

 Q_A : 헷지하는 포지션의 수

 Q_F : 선물계약 수

<예제>

제과회사는 설탕을 한달 후에 2백만 갤런 구매할 예정이고, 유사한 꿀로 헷징하기로 결정함.

설탕 현물가격의 표준편차 σ_S 가 0.0313, 꿀 선물가격의 표준편차 σ_F 가 0.0263이고, 둘의 상관계 수 ho=0.928일 때, 최적헷지비율 h^* 를 구하라.

$$\Rightarrow h^* =
ho imes \sigma_S / \sigma_F = 0.928 imes 0.0313 / 0.0263 = 0.78$$

꿀 선물계약 수가 42.000일 때, 최적선물계약수 N^* 를 구하라.

$$\Rightarrow N^* = h^* \times Q_A/Q_F = 0.78 \times 2,000,000/42,000 = 37$$

지금까지는 일일정산을 하지 않는다고 가정한 헷지비율, 계약수이다.

아래에서부터는 일일정산을 가정한 헷지비율, 계약수.

일일정산을 가정하면,

$$\hat{h} = \hat{
ho} rac{\hat{\sigma_S}}{\hat{\sigma_F}}$$

 \hat{h} : 최적 헷지비율

 $\hat{
ho}$: 현물, 선물가격 일일 변동률의 상관계수

 $\hat{\sigma_S}$: 현물가격 일일 변동률의 표준편차

 $\hat{\sigma_F}$: 선물가격 일일 변동률의 표준편차

최적선물계약수(N^*)

$$N^* = rac{\hat{h} V_A}{V_F}$$

 V_A : 헷지하는 포지션의 가치 (=현물가격 x #현물거래)

 V_F : 선물계약 가치 (=선물가격 x #선물거래)

<예제>

위의 예제에서 선물가격과 현물가격이 각 갤런 당 \$1.99, \$1.94이고 \hat{h} =0.75라고 가정.

 $V_A=2,000,000 imes 1.94=3,880,000$ 달러

 $V_F = 42,000 \times 1.99 = 83,580$ 달러

_ _.. _ _ _ _ _

최적선물계약수 N^* 는 $rac{0.75 imes3,880,000}{83.580}=34.82$

헷지의 연장

▼ 주가지수 선물

가상의 포트폴리오 위험을 헷지하는 선물계약 수:

$$N=etarac{V_A}{V_F}$$

 β : 포트폴리오 베타

 V_A : 포트폴리오 가치

 V_F : 선물계약 가치

▼ 베타 바꾸기

베타(β): 시장 대비 포트폴리오의 민감성 이므로, β 가 0에 가까워질수록 포트폴리오가 시장과 독립적으로 이동하게 됨.

기존의 베타보다 작은 베타 eta^* 를 만들고 싶다면, $N=(eta-eta^*) imes V_A/V_F$ 만큼 **매도선물** 계약 체결.

기존의 베타보다 큰 베타 eta^* 를 만들고 싶다면, $N=(eta^*-eta) imes V_A/V_F$ 만큼 **매수선물** 계약 체결.

▼ Stack and Roll - 94p

가끔씩 선물인수도일(delivery date)보다 헷지의 만기일이 늦는 경우 발생.

⇒ 반대매매 후 기존 포지션과 같은 포지션에 들어가는 것이 Stack과 Roll

Time t_1 : Short futures contract 1

Time t_2 : Close out futures contract 1

Short futures contract 2

Time t_3 : Close out futures contract 2

Short futures contract 3

÷

Time t_n : Close out futures contract n-1

Short futures contract n

Time T: Close out futures contract n.

선도와 선물 가격 결정

▼ 가정과 기호

가정

- 1. 거래비용이 없다.
- 2. 모든 거래 순이익에 대해 동일한 세율이 적용된다.
- 3. 차입이자율과 대출이자율이 모두 무위험이자율이다.
- 4. 시장참여자들은 차익거래기회를 이용한다.

기호 정의

- T; 계약의 인도일까지의 기간 (연간 기준)
- S_0 ; 기초자산의 현재가격
- F_0 ; 선물(선도)계약의 현재가격
- r; 무이표채의 현재 연간 무위험이자율 (연속복리 기준으로 T년)
- g: 연간 이익
- t; 투자 기간

K: 실물인수도 비용

투자자산의 선도가격

$$F_0=S_0e^{rt}$$

선물(선도)가격은 현물가격에 무위험이자율을 연속복리한 값

예정소득 투자자산의 선도가격

$$F_0 = (S_0 - I)e^{rt}$$

예정수익률 투자자산의 선도가격

$$F_0=S_0e^{(r-q)t}$$

선도계약의 평가

$$f = (F_0 - K)e^{-rt}$$

오늘날 선도계약의 가치(f)는 (선도가격-인도비용)에 무위험이자율만큼 할인!

선도가격과 선물가격은 동일한가?

단기 무위험이자율이 일정하고 **인도일이 같은 경우**에만 선도가격과 선물가격은 동일하다. 나머지의 경우, 다름.

보유비용

자산 유형에 따른 보유비용(cost of carry)

- (1) 무배당 주식: r (주식 보유를 위해 단기이자율이 기회비용)
- (2) 주가지수: r q (단기이자율 배당소득)
- (3) 화폐: $r r_f$ (단기이자율 무위험이자율)
- (4) Commodities: r-q+u (단기이자율 소득 + 보관비용)

소비자산 선물가격:

$$F_0 = S_0 e^{cT}$$

투자자산 선물가격:

$$F_0 = S_0 e^{(c-y)T}$$

c = 보유비용, y = 편의이익

선물가격과 기대현물가격

- ▼ 케인즈와 힉스
 - "헷저들이 매도, 투기자들이 매수를 한다면 선물가격<현물가격 일 것" 선물<현물 이어야 매수(투기자)가 수익을 볼 수 있기 때문.
 - "헷저들이 매수, 투기자들이 매도를 한다면 선물가격>현물가격 일 것" 선물>현물 이어야 매도(투기자)가 수익을 볼 수 있기 때문.
 - ⇒ 투기자가 이득을 보는 구조임
- ▼ 체계적 위험

체계적 위험 = 요구수익률(k) - 무위험이자율(r)

체계적 위험=0일 때, (k=r) 선물(선도)가격과 예상현물가격이 동일: $F_0=E(S_t)$

체계적 위험>0일 때, (k>r) 선물(선도)가격보다 예상현물가격이 큼: $F_0 < E(S_t)$

체계적 위험<0일 때, (k<r) 선물(선도)가격보다 예상현물가격이 작음: $F_0 > E(S_t)$

Table 5.5 Relationship between futures price and expected future spot price.

Underlying asset	Relationship of expected return k from asset to risk-free rate r	Relationship of futures price F to expected future spot price $E(S_T)$
No systematic risk	k = r	$F_0 = E(S_T)$
Positive systematic risk	k > r	$F_0 < E(S_T)$
Negative systematic risk	k < r	$F_0 > E(S_T)$

▼ 선물포지션의 위험

<예시> 선물매수포지션. 선물가격 (F_0) 만큼 무위험투자를 하고, 미래 시점(T)에 현물가격으로 판매. k는 요구수익률

오늘 지출: $-F_0 imes e^{-rT} \leftarrow$ 선물가격을 무위험이자율로 할인한 현재가치만큼 국채에 투자미래 소득: $S_T \leftarrow T$ 시점에서의 현물가격

투자의 현재가치: $-F_0 \times e^{-rT} + E(S_T) \times e^{-kT}$ \leftarrow 미래 현물가격을 요구수익률로 할인! 증권시장에서는 모든 투자의 NPV=0이 되도록 설계하므로, 투자의 현재가치 =0.

$$\rightarrow F_0 = E(S_T) \times e^{(r-k)T}$$

만약 이 자산으로부터의 수익이 주식시장과 상관관계가 0이라면(no systematic risk), 요구수익 = k는 무위험투자율 = r과 동일하다고 가정한다.

$$\Rightarrow F_0 = E(S_T)$$

만약 이 자산으로부터의 수익이 주식시장과 양의 상관관계를 가진다면(positive systematic risk), 요구수익률 k는 무위험투자율 r보다 크다고 가정한다.

$$\Rightarrow F_0 > E(S_T)$$

▼ 정상백워데이션과 콘탱고

Spot > Futures : 정상백워데이션 back-wardation

Spot < Futures : 콘탱고 contango