Inference on Two Population Means

Inference on Two Population Means: Two-Sample t Confidence

Paired T-Test

Lecture 13

Inference on Two Population Means

Text: Chapter 6

STAT 8010 Statistical Methods I February 27, 2020

Whitney Huang Clemson University

aired T-Test

Inference on Two Population Means: Two-Sample t Confidence Intervals/Tests

Comparing Two Population Means

Inference on Two Population Means: Two-Sample t Confidence Intervals/Tests

- We often interested in comparing two groups (e.g.)
 - Does a particular pesticide increase the yield of corn per acre?
 - Do men and women in the same occupation have different salaries?
- The common ingredient in these questions: They can be answered by conducting statistical inferences of two populations using two (independent) samples, one from each of two populations

Parameters:

- Population means: μ_1, μ_2
- Population standard deviations: σ_1, σ_2

Statistics:

- Sample means: \bar{X}_1, \bar{X}_2
- Sample standard deviations: s₁, s₂
- Sample sizes: n_1, n_2

- Point estimate: $\bar{X}_1 \bar{X}_2$
- Interval estimate: Need to figure out $\sigma_{\bar{X}_1 \bar{X}_2}$
- Hypothesis Testing:
 - Upper-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 > 0$
 - Lower-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 < 0$
 - Two-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 \neq 0$

If we are willing to **assume** $\sigma_1 = \sigma_2$, then we can "pool" these two (independent) samples together to estimate the common σ using s_n :

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

We can then derive the (estimated) standard error of $\bar{X}_1 - \bar{X}_2$, which takes the following form

$$\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

With CLT (assuming sample sizes are sufficiently large), we obtain the $(1-\alpha)\times 100\%$ CI for $\mu_1-\mu_2$:

$$\underbrace{\bar{X}_1 - \bar{X}_2}_{\text{point estimate}} \pm t_{\alpha/2, n_1 + n_2 - 1} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}_{\text{margin of error}}$$

Inference on Two Population Means

Inference on Two Population Means: Two-Sample t Confidence Intervals/Tests

• We will use s_1^2, s_2^2 as the estimates for σ_1^2 and σ_2^2 to obtain the standard error:

Inference on Two Population Means Two-Sample t Confidence Intervals/Tests

Paired 1-Test

$$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

 The formula for the degrees of freedom is somewhat complicated:

$$\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$

• We can then construct the $(1 - \alpha) \times 100\%$ CI for $\mu_1 - \mu_2$:

$$\underbrace{\bar{X}_1 - \bar{X}_2}_{\text{point estimate}} \pm t(\alpha/2, \text{ df calculated from above }) \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}_{\text{margin of error}}$$

Inference on Two

We could perform the following test:

- $H_0: \sigma_1^2/\sigma_2^2 = 1$ vs. $\sigma_1^2/\sigma_2^2 \neq 1$
- Test statistic: $F^* = s_1^2/s_2^2$. Under H_0 , $F^* \sim F(n_1 1, n_2 1)$
- For a given α , we reject H_0 if the P-value $< \alpha$ (or $F_{obs} > F_{\alpha}(n_1, n_2)$)
- If we fail to reject H_0 , then we will use s_p as an estimate for σ and we have $s_{\bar{X}_1 \bar{X}_2} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$. Otherwise, we use $s_{\bar{X}_1 \bar{X}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

Example

UNIVERSITY
Inference on Two

Paired T-Test

An experiment was conducted to evaluate the effectiveness of a treatment for tapeworm in the stomachs of sheep. A random sample of 24 worm-infected lambs of approximately the same age and health was randomly divided into two groups. Twelve of the lambs were injected with the drug (treatment group) and the remaining twelve were left untreated (control group). After a 6-month period, the worm counts were recorded:

Treatment	l											7
Control	40	54	26	63	21	37	39	23	48	58	28	39

- n₁ = n₂ = 12 ⇒ sample size is perhaps not large enough for CLT to work. But the boxplots suggest the distributions are symmetric with no outliers
- The untreated lambs (control group) appear to have higher average worm counts than the treated lambs (treatment group). But do we have enough evidence?

Inference on Two

```
> apply(dat, 2, mean)
treatment control
26.58333 39.66667
> apply(dat, 2, sd)
treatment control
14.36193 13.85859
> var.test(treatment, control)
```

F test to compare two variances

```
data: treatment and control F=1.074, num df = 11, denom df = 11, p-value = 0.9079 alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: 0.3091686 3.7306092 sample estimates: ratio of variances 1.073959
```

We fail to reject $\sigma_1 = \sigma_2 = \sigma$. Therefore we will use s_p , the pooled standard deviation, as an estimate for σ

Example Cont'd

Inference on Two Population Means: Two-Sample t Confidence Intervals/Tests

Paired T-Test

• Place a 95% confidence interval on μ_1 – μ_2 to assess the size of the difference in the two population means

• Test whether the mean number of tapeworms in the stomachs of the treated lambs is less than the mean for untreated lambs. Use an α = 0.05 test

Another Example

Inference on Two Population Means

Inference on Two Population Means: Two-Sample t Confidence Intervals/Tests

Paired T-Tes

A simple random sample with sample size 37 is taken and are subjected to a treatment ($\bar{X}_1 = 19.45, s_1 = 4.3$). A Simple random sample with sample size 31 is taken and given a placebo ($\bar{X}_2 = 18.2, s_2 = 2.2$). At the 10% level can we say that the means are different between the two groups?

Insurance handlers are concerned about the high estimates they are receiving for auto repairs from garage I compared to garage II. To verify their suspicions, each of 15 cars recently involved in an accident was taken to both garages for separate estimates of repair costs. The estimates from the two garages are given in the following table

Garage I	Garage II	Garage	Garage II	Garage	Garage II
	Garage II	Garage	Garage II	Garage i	Garage II
17.6	17.3	20.2	19.1	19.5	18.4
11.3	11.5	13.0	12.7	16.3	15.8
15.3	14.9	16.2	15.3	12.2	12.0
14.8	14.2	21.3	21.0	22.1	21.0
16.9	16.1	17.6	16.7	18.4	17.5

Example Cont'd

Inference on Two Population Means

CLEMS N

Suppose we perform a two-sample test

Sample statistics: $\bar{X}_1 = 16.85, \bar{X}_2 = 16.23, s_1 = 3.20, s_2 = 2.94$

$$\bullet$$
 $H_0: \mu_1 - \mu_2 = 0$ vs. $H_a: \mu_1 - \mu_2 > 0$

$$\bullet \ t_{obs} = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{s_1} + \frac{s_2^2}{s_2}}} = \frac{16.85 - 16.23}{\sqrt{\frac{3.2^2}{15} + \frac{2.94^2}{15}}} = \frac{0.62}{1.12} = 0.55$$

- Critical value for rejection region: $t_{0.05,df=27} = 1.70$
- Since t_{obs} is not in the rejection region. We fail to reject H₀ at 0.05 level.

Boxplots and R Output

Welch Two Sample t-test

Garage I

Garage II

Inference on Two Population Means

Inference on Two Population Means Two-Sample t Confidence Intervals/Tests

For all but one of the 15 cars, the estimates from garage I were higher than that from garage II.

16

6 18 Garagel

14

20

22

12

Analyzing Matched Pairs

Inference on Two
Population Means:
Two-Sample t
Confidence
Intervals/Tests

- Matched pairs are dependent samples where each unit in the first sample is directly linked with a unit in the second sample
- This could occur in several situations, for example, before/after study, study on twins, pairing subjects based on similar characteristics
- We need different strategy for testing two dependent samples ⇒ Paired T-Tests

Paired T-Tests

Inference on Two
Population Means:
Two-Sample t
Confidence
Intervals/Tests

- $H_0: \mu_{diff} = 0$ vs. $H_a: \mu_{diff} > 0$ (Upper-tailed); $\mu_{diff} < 0$ (Lower-tailed); $\mu_{diff} \neq 0$ (Two-tailed)
- Test statistic: $t^* = \frac{\bar{X}_{diff} 0}{\frac{\bar{S}_{diff}}{\sqrt{n}}}$. If $\mu_{diff} = 0$, then $t^* \sim t_{df=n-1}$
- Use rejection region method or P-value method to make a decision

Car Repair Example Revisited

- First, compute the difference in paired samples
- Ompute the sample mean and standard deviation for the differences
- Then perform a one sample t-test

$$\bar{X}_{diff} = 0.61, s_{diff} = 0.39$$

- **1** $H_0: \mu_{diff} = 0$ vs. $H_a: \mu_{diff} > 0$
- $t_{obs} = \frac{0.61}{\frac{0.39}{\sqrt{15}}} = 6.03$
- Oritical value for rejection region: $t_{0.05,df=14} = 1.76 \Rightarrow \text{reject}$ H_0
- We do have enough evidence that the true mean repair cost difference for the garage I and II is greater than 0

Boxplot and R Output

Inference on Two

Paired T-Test

Paired t-test