Лекция 14.

Множествами в этой лекции будем называть подмножества пространства ${\it R}^{n}$.

Определение. Множество $G \subset I\!\!R^n$ называется открытым, если для любой точки $X \in G$ существует окрестность U(X) точки X, целиком лежащая в $G, U(X) \subset G$.

Примеры. Пространство R^n , открытый шар $U_{\varepsilon}(X)$, открытый параллелепипед – являются открытыми множествами.

Определение. Множество $G \subset \mathbb{R}^n$ называется замкнутым, если его дополнение CG в \mathbb{R}^n , $CG = \mathbb{R}^n \backslash G$ – открытое множество.

Примеры. Пространство \mathbb{R}^n , замкнутый шар $U_{\varepsilon}(X)$, замкнутый параллелепипед, отрезок и окружность на плоскости, пустое множество \emptyset – являются замкнутыми множествами.

Замечание. Множества R^n и \emptyset - являются открытыми и замкнутыми одновременно.

Определение. Точка X называется внутренней точкой множества G, если существует ε - окрестность $U_{\varepsilon}(X)$ точки X, целиком лежащая в G, $U_{\varepsilon}(X) \subset G$.

Множество внутренних точек множества G обозначается $G^{\,0}$ и, очевидно, является открытым множеством.

Замечание. Открытое множество можно определить, как множество, для которого $G = G^0$.

Определение. Точка X называется граничной точкой множества G, если любая окрестность U(X) точки X содержит как точки множества G, так и точки дополнения множества G в R^n , то есть $G \cap U(X) \neq \emptyset$, $CG \cap U(X) \neq \emptyset$.

Множество **всех** граничных точек множества G называется границей G и обозначается ΓG . Граничные точки могут принадлежать или не принадлежать множеству G.

Теорема. ΓG - замкнутое множество.

Доказательство.

Замечание. Если $G \subset \mathbf{R}^n$, то $\mathbf{R}^n = G^0 \cup \Gamma G \cup C G^0$, причём множества G^0 , ΓG и $C G^0$ попарно не пересекаются.

Определение. Замыканием множества G называется наименьшее замкнутое множество, обозначаемое \bar{G} , содержащее множество G.

Теорема. $\bar{G} = G \cup \Gamma G$.

Доказательство.

Следствие. Множество замкнуто, если оно содержит все свои граничные точки.

Теорема. Множество G замкнуто если и только если для любой сходящейся к точке X_0 последовательности $\{X_k\}$ точек, целиком содержащейся в G, точка X_0 также принадлежит G.

Доказательство.

Замечание. Последняя теорема даёт нам альтернативное определение замкнутого множества:

Определение. Множество G называется замкнутым, если для любой сходящейся к точке X_0 последовательности $\{X_k\}$ точек, целиком содержащейся в G, точка X_0 также принадлежит G.

Примеры.

Задача. Доказать, что:

- а) объединение любого числа открытых множеств есть открытое множество;
- б) пересечение конечного числа открытых множеств есть открытое множество;
- в) пересечение любого числа замкнутых множеств есть замкнутое множество;
- г) объединение конечного числа замкнутых множеств есть замкнутое множество;

Определение. Открытым покрытием множества G называется совокупность открытых множеств $\Phi = \{W_{\alpha}\}_{\alpha \in I}$, (здесь W_{α} - открытое множество, I- множество индексов), такая, что $G \subset \bigcup_{\alpha \in I} W_{\alpha}$. Покрытие Φ называется конечным, если множество I - конечно.

Определение. Множество $G \subset \mathbb{R}^n$ называется ограниченным, если $\exists M > 0 : \forall X \in G \Rightarrow |X| < M$.

Теорема. Пусть $\Phi = \{W_{\alpha}\}_{\alpha \in I}$ есть открытое покрытие ограниченного замкнутого множества $G \subset \mathbf{R}^n$, тогда существует конечное подмножество I_0 множества I, $I_0 \subset I$, такое, что $\Phi_0 = \{W_{\alpha}\}_{\alpha \in I_0}$ также является открытым покрытием множества G. (Или, что то же самое, из любого открытого покрытия ограниченного замкнутого множества можно выбрать конечное подпокрытие).

Лемма. . Пусть $\Phi = \{W_{\alpha}\}_{\alpha \in I}$ есть открытое покрытие ограниченного замкнутого множества $G \subset R^n$, тогда существует число $\varepsilon_{\Phi} > 0$, зависящее от покрытия Φ , такое, что для любой точки $X \in G$ существует элемент покрытия W_{α_X} , зависящий от X, такой, что $U_{\varepsilon_{\Phi}}(X) \subset W_{\alpha_X}$. (т.е. для любой точки X открытая ε_{Φ} -окрестность точки X содержится в некотором элементе W_{α_X} покрытия Φ).

Доказательство леммы.

Доказательство теоремы.

Определение. Множество $G \subset \mathbb{R}^n$ называется компактным, если из всякого его открытого покрытия можно выбрать конечное подпокрытие.

В силу последнего определения доказанную теорему можно сформулировать так:

Теорема. Всякое ограниченное замкнутое множество в ${\it R}^n$ компактно.

Примеры.