Lecture 14 Radix Sort

Department of Computer Science Hofstra University

Radix and Radix Sort

- Radix = "The base of a number system"
- Radix is another term of "base": number of unique digits, including the digit zero, used to represent numbers
- Radix of numbers:
 - Binary numbers have a radix of 2
 - decimals have a radix of 10
 - hexadecimals have a radix of 16

Radix and Radix Sort

- Radix sort was first used in 1890 U.S. census by Hollerith
- Very efficient when sorting a large number of elements
 - O(n*k). n: number of elements; k: number of digits in the largest number
- May use more space than other sorting algorithms
 - E.g., bubble sort is in-place sorting.
- Basic idea: Bucket sort on each digit, from least significant digit to most significant digit.

Radix Sort Algorithm

```
radix_sort(A, n, k) {
  /* A: array; n: number of elements; k: number of digits in the largest
  number */
  create buckets (buckets can be arrays or lists)
  for (d = 0; d < k; d++) {
       /* sort A using digit position d as the key. */
       for (i = 0; i<n; i++) {
              p = the d-th digit (from right) of A[i]
              Add A[i] to bucket p
     A = Join the buckets
                              Time complexity O(n*k)
```

Bucket Sort

- Bucket sort is a comparison sort algorithm that works by distributing the elements of an array into a number of buckets and then each bucket is sorted individually using a stable sorting algorithm, e.g., Insertion Sort or Merge Sort.
- This algorithm is efficient when the input is uniformly distributed over a range.

3 49 9 37 21 49 37 0 - 910 - 1920 - 2930 - 3940-49 Elements are distributed among bins 20 - 290 - 910-19 30-39 40-49 43 49 Then, elements are sorted within each bin

Bucket Sort | GeeksforGeeks https://www.youtube.com/watch?v=VuXbEb5ywrU

Bucket Sort as used in Radix Sort

- Use bucket array of size R for radix of R
- Put elements into the correct bucket in the array
- R = 5; unique digits (0,1,2,3,4); list = (0,1,3,4,3,2,1,1,0,4,0)

Bucke	ets	
=0	0,0,0	
= 1	1,1,1	Sorted list:
= 2	2	0,0,0,1,1,1,2,3,3,4,4
= 3	3,3	
= 4	4,4	

Radix Sort: bucket sort on every digit/bit

- For N elements between (L, H), using H-L+1 buckets can sort the elements in one round
- Problem: the range (L, H) may be too large.
 - Sorting 4-byte unsigned integers, range is $[0, 2^{32}-1] \rightarrow 2^{32}$ buckets
- Solution(radix sort): apply bucket sort on every digit/bit

		1
2	0 1 0	
0	0 0 0	
5	1 0 1	
1	0 0 1	Use two buckets
7	1 1 1	0 and 1
3	0 1 1	
4	100	
6	1 1 0	

Radix Sort Animations | Data Structure | Visual How https://www.youtube.com/watch?v=Om4BljCs qE

You can choose an appropriate radix value

- Numbers in different formats
 - decimal whole numbers: (126, 328, 636, 341, 416, 131, 328)

 - Octal numbers: (0176, 0510, 1174, 0525, 0640, 0203, 0510)
 - Hexadecimal numbers: (07E, 148, 27C, 1A0, 083, 148)
- Radix sort of decimal numbers using ten buckets: 0 to 9

10

Example 1 Example 2

References

- Radix Sort
 - https://www.geeksforgeeks.org/radix-sort/
 - https://www.geeksforgeeks.org/time-and-space-complexity-of-radix-sortalgorithm/
- Bucket Sort
 - https://www.geeksforgeeks.org/bucket-sort-2/
- Time Complexities of all Sorting Algorithms
 - https://www.geeksforgeeks.org/time-complexities-of-all-sorting-algorithms/