INCIDÊNCIA DE MOSCA-BRANCA (HEMIPTERA: ALEYRODIDAE) EM CULTIVOS BERINJELA NA REGIÃO DA MATA PERNAMBUCANA

Apresentação: Pôster

Anderson Ricardo Galdino da Silva¹; Marcelânio Laurentino dos Santos²; Timóteo Ângelo do Nascimento³; Alisson Rocha da Silva⁴

Introdução

Devido ao crescente interesse da população por uma alimentação natural e saudável, com baixas calorias, com valor nutricional e de uso medicinal, o volume de comercialização da berinjela (*Melongena solanum* L.) vem aumentando (NODA,1980 *apud* FAO, 1998).

A berinjela vem sendo atacada por diversas pragas e doenças, sendo uma das principais a mosca-branca (*Bemisia argentifolli*). Sendo uma das pragas mais conhecidas no mundo e está presente em praticamente todas as regiões agrícolas, principalmente em regiões de clima tropical e subtropical (GODINHO, 2011). Esses insetos podem causar danos diretos, causados pela sucção da seiva, e indireto as culturas, como vetor de vários geminivírus com sintomatologia variada (MIZUNO, 1997).

Para reduzir ou minimizar o ataque da mosca-branca, o produtor pode utilizar o Manejo Integrado de Pragas (MIP), que consiste no controle de pragas com bases ecológicas que envolvem qualquer tipo de problema que limite a produção agrícola decorrente da competição interespecífica

¹ Agronomia, IFPE campus Vitória de Santo Antão, andersonrgs2013@gmail.com

² Agronomia, IFPE campus Vitória de Santo Antão, marcelaniolaurentino@gmail.com

³ Agronomia, IFPE campus Vitória de Santo Antão, timoteo.ifpe@gmail.com

⁴ Mestre em Agronomia, IFPE campus Vitória de Santo Antão, alisson.rocha@vitoria.ifpe.edu.br

(GALLO et al, 2002).

O objetivo desse trabalho foi avaliar a ocorrência de mosca-branca no cultivo de berinjela de forma preliminar, com vistas a orientar uma posterior avaliação da flutuação populacional deste inseto considerando todas as estações do ano.

Fundamentação Teórica

Na década de 1970, houve um alarmante crescimento populacional devido à expansão da área cultiva com soja, que é um dos hospedeiros desse inseto. Recentemente apareceu um novo biótipo dessa espécie chamada de *Bemisia tabaci* biótipo B ou *Bemisia argentifolii*, que causa maiores problemas (GALLO et al, 2002).

Segundo Scarpellini, os principais danos causados pela *Bemisia tabaci* (especialmente pertence ao biótipo B ou *B. argentifolii*) são a sucção e deformação das plantas por ninfas; aparecimento de fumagina; transmissão de viroses pelas ninfas prejudicando o crescimento, debilitando e deformando as plantas.

O Manejo Integrado de Pragas – MIP surge como uma ferramenta para o controle dos insetospraga. O MIP envolve o uso simultâneo de diferentes técnicas de supressão populacional, objetivando manter os insetos em um nível populacional que não cause danos econômicos (RAMIRO, 2000) e interfira o mínimo possível no equilíbrio do ecossistema.

O monitoramento de populações é uma prática capaz de conduzir o produtor a decisões mais abalizadas sobre o comportamento dos insetos, sejam eles pragas ou inimigos naturais. O conhecimento das épocas de pico de infestação do inseto-praga, sua distribuição e danos à planta constituem ferramentas importantes, uma vez que norteiam as atividades do produtor sobre a ocorrência de uma determinada praga numa época, permitindo o planejamento da produção com maior confiabilidade e segurança na utilização de produtos fitossanitários específicos para o inseto-praga (MALTA et al., 2000).

Metodologia

O estudo foi feito na Zona Rural do Município de Chã Grande, o qual está distante 82 km da capital do Estado de Pernambuco. Situado na Mesorregião da Mata Pernambucana, está a 434 m de

altitude e na latitude 8°13'43" S e longitude 35°27'43" W, além de possuir clima Tropical As', segundo classificação de Köppen (IBGE).

A técnica de amostragem utilizada foi à batida de folhas em bandeja de fundo branco, sugerido por Pedigo (1988) como a técnica de amostragem mais empregada para determinar as densidades populacionais dos insetos que exploram folhas como substrato alimentar. A técnica foi executada amostrando-se a região apical da planta (ramo terminal e os ramos laterais nesta região). As folhas foram sacudidas no interior da bandeja, usando-se movimentos bruscos e vibratórios, segurando-a de forma a não afugentar os adultos. A seguir, foram contadas as moscas-brancas presentes na mesma, descartando os indivíduos mortos. Foram feitas amostragens utilizando uma bandeja de plástico branca, com dimensões de 40 cm de comprimento x 35 cm de largura x 9 cm de profundidade.

Para escolha das lavouras, consideraram-se as que se encontravam sob ataque e que possuíam características homogêneas quanto à topografia, tipo de solo e espaçamento (BARRIGOSSI, 1997). As plantas avaliadas localizavam-se equidistantemente ao longo e entre as linhas de plantio, de modo a cobrir toda a área plantada e eliminar tendências direcionais (MIDGARDEN e al., 1993).

Foram monitoradas semanalmente 35 lavouras diferentes, de Setembro a Outubro de 2014. Os plantios possuíam área não superior a 1 ha. Observou-se a densidade populacional da mosca branca (*Bemisia tabaci* biótipo B ou *Bemisia argentifolli*) na fase adulta na cultura da berinjela na fase reprodutiva.

Foram elaborados gráficos e tabelas de forma a obter uma análise descritiva da ocorrência de mosca-branca na lavoura de berinjela.

Resultados e Discussões

Das lavouras monitoradas, 80% apresentaram ocorrência de *B. argentifolli*, sendo 17 lavouras com até 5 indivíduos amostrados, 7 lavouras contendo entre 6 e 10 indivíduos, 3 lavouras contendo entre 11 e 15 indivíduos e 1 lavoura contendo acima de 15 indivíduos (Tabela 1). Foram coletados no período amostral 156 indivíduos de *B. argentifolli*.

Como a simples ocorrência de insetos vetores inspira cuidados maiores (ZUCCHI et al., 1993), a ocorrência acentuada de *B. argentifolli* torna-se fator limitante a produção de berinjela na região, visto que medidas de controle não baseadas em um Manejo Integrado de Pragas vêm sendo tomadas e agravando a situação de olericultores na região, elevando os custos de produção ou até

mesmo fazendo com que produtores abandonem a cultura da berinjela.

A densidade de ataque registrada também demonstra que se faz necessária uma mudança de estratégias de controle, adotando aquelas que venham a reduzir o nível populacional deste inseto-praga na cultura de berinjela. O aspecto mais importante a se destacar é que este trabalho identificou a necessidade de se realizar um levantamento mais abrangente de *B. argentifolli* na lavoura e na região, tornando possível adotarem-se medidas de controle baseadas nas características edafoclimáticas e biológicas locais, com opções acessíveis ao agricultor da região.

Total de Data de Coleta 04/09 10/09 18/09 23/10 25/09 02/10 16/10 Insetos/área Sr. Sandro - 1 Sr. Sandro - 2 Sr. Bruno Gilvan Sr. Donga

Tabela 1: Densidade Populacional de Moscas-brancas e datas das amostragens. Fonte: Própria.

Conclusões

Total de Insetos

A cultura da berinjela produzida na região da Mata Pernambucana encontra-se sob elevado ataque de *Bemisia argentifolli*.

Fazem-se necessários estudos mais amplos de flutuação populacional deste inseto para a construção de estratégias de controle mais eficazes do que as atualmente adotadas na região.

Referências

BARRIGOSSI, J. A. F. Development of an integrated pest management for the mexican bean beetle (Epilachna varivestis Mulsant) as a pest of dry bean (Phaseoulus vulgaris L.). Nebraska: 1997, 125p. **Dissertation** (Doctor of Philosophy in Entomology), University of Nebrasca, 1997.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Divisão Territorial do Brasil

e Limites Territoriais. Visualizado em: 16 set 2015.

FAO. The state of the world's plant genetic resources for food and agriculture. Rome: Food and Agriculture Organization of United Nations, 1998. 510p.

GODINHO, R.; TUKAMOTO, H. Mosca-branca causa perdas de produtividade e lucratividade na horticultura, feijão, algodão e soja. Pesquisa IAHARA.

GALLO, D. et al. Entomologia Agrícola, Piracicaba, FEALQ, 2002.

MALTA, A.W.O.; RODRIGUES, E.J.R.; GONÇALVES, N.P.; REIS, P.R.; SILVA, R.A.; CALIL, A.C.P. Flutuação populacional das principais pragas transmissoras de viroses no tomateiro (Lycopersicon esculentum Mill) na meso-região metropolitana de Belo Horizonte. In: CONGRESSO BRASILEIRO DE OLERICULTURA, 45., 2000 Fortaleza-CE. **Anais**... Ceará. 2000. Disponível em: http://www.abhorticiencia.com.br/Biblioteca/Default.asp. Acesso em: 18 set. 2005.

MIDGARDEN, D. G.; YOUNGMAN, R. R.; FLEISCHER, S. J. Spatial analysis of counts of western corn rootworm (Coleoptera: Chrysomelidae) adults on yellow sticky traps in corn: geostatistics and dispersion indices. **Environmental Entomology**, Lanham, v. 22, n. 5, p. 1124-1133, Oct. 1993.

MIZUNO, A.C.R.; VILLAS BÔAS, G.L. **Biologia da mosca-branca (Bemisia argentifolii) em tomate e repolho.** Embrapa Hortaliças. nº 1, dez/1997.

PEDIGO, L.P. **Entomology and pest management.** New York: Macmillan. 1988, 646p.

RAMIRO, Z.A. Manejo integrado da mosca-branca Bemisia argentifolii. In: REUNIÃO ITINERANTE DE FITOSSANIDADE DO INSTITUTO BIOLÓGICO, 3., 2000, Mogi das Cruzes, SP. **Anais**..., São Paulo: Instituto Biológico, 2000. p. 68-78.

ZUCCHI, R.A.; SILVEIRA NETO, S.; NAKANO, O. **Guia de identificação de pragas agrícolas.** Piracicaba: FEALQ, 1993. 139p.