ML01 – Introduction to Machine Learning Linear Regression

Thierry Denœux

tdenoeux@utc.fr
https://www.hds.utc.fr/~tdenoeux

Université de technologie de Compiègne

Spring 2021

Linear regression

- Linear regression is a simple approach to supervised learning. It assumes that the dependence of Y on X_1, X_2, \ldots, X_p is linear.
- True regression functions are never linear!

• Although it may seem overly simplistic, linear regression is very useful both conceptually and practically.

"Essentially, all models are wrong, but some are useful" (George E. P. Box)

Movie Box Office data

- Data about 62 movies released in 2009 (from Econometric Analysis, Greene, 2012)
- Response: Box Office receipts
- 11 predictors:
 - MPAA (Motion Picture Association of America) rating (G, PG, PG13)
 - Budget
 - Star power
 - Sequel (yes or no)
 - Genre (action, comedy, animated, horror)
 - Internet buzz

Questions we might ask

- Is there a relationship between the budget of a movie and its commercial success?
- How strong is the relationship between internet buzz and the commercial success of a movie?
- Which factors influence the commercial success of a movie?
- Can we predict the box-office success before the movie has been released?
- Is there synergy among the factors that influence success (e.g., between genre and budget)?

Overview

- The method of least squares
 - LS estimates
 - Analysis of variance
 - Application in R and interpretation of the coefficients
- 2 Inference
 - Additional assumptions and properties of the estimates
 - Tests of significance
 - Prediction

The model

• We have an vector $X = (X_1, ..., X_p)^T$ of predictors and we want to predict a real-valued response Y. The linear regression model has the form

$$Y = \beta_0 + \sum_{j=1}^{p} \beta_j X_j + \epsilon,$$

$$\underbrace{f(X) = \mathbb{E}(Y|X)}$$

with $\mathbb{E}(\epsilon) = 0$.

- The linear model either assumes that the regression function f(X) is linear, or that the linear model is a reasonable approximation.
- The β_i 's are unknown parameters or coefficients.

Choice of the predictors

- The predictor variables X_i can come from different sources:
 - Quantitative inputs
 - Transformations of quantitative inputs, such as log, square-root or square
 - 3 Basis expansions, such as $X_2 = X^2$, $X_3 = X^3$, leading to a polynomial representation
 - **1** Interactions between variables, for example, $X_3 = X_1 \cdot X_2$. This allows us to model synergy (interaction) between variables
 - **5** Dummy coding of the levels of qualitative inputs (see next slide).
- In cases 2-4, the relationship between Y and the inputs is actually nonlinear. Yet, the method is still called linear regression, because f(X) is linear in the coefficients β_j .

Representation of a nominal variable (factor)

- Let G be a qualitative (nominal) variable with K levels.
- For example, let *G* be the genre of a movie, with four levels: action, comedy, animated, horror.
- We can encode G as 4 dummy variables:
 - $X_1 = I(G = action)$
 - $X_2 = I(G = \text{comedy})$
 - $X_3 = I(G = animated)$
 - $X_4 = I(G = horror)$
- Since $\sum_{j=1}^{4} X_j = 1$, we have to use only 3 out of the 4 dummy variables.

Overview

- The method of least squares
 - LS estimates
 - Analysis of variance
 - Application in R and interpretation of the coefficients
- 2 Inference
 - Additional assumptions and properties of the estimates
 - Tests of significance
 - Prediction

Estimation

• Typically we have a set of training data $(x_1, y_1), \ldots, (x_n, y_n)$ from which to estimate the parameters β . Each $x_i = (x_{i1}, x_{i2}, \ldots, x_{ip})^T$ is a vector of predictor measurements for the *i*th case.

• The most popular estimation method is least squares, in which we minimize the sum of squared residuals (differences between y_i and $f(x_i)$).

The RSS criterion

• The mean squared error or residual sum of squares (RSS) is

$$RSS(\beta) = \sum_{i=1}^{n} (\underbrace{y_i - f(x_i)}_{\text{residuals}})^2 = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

• To find the vector β that minimizes RSS(β), it is convenient to use matrix notation.

Matrix notation

• Denote by X the $n \times (p+1)$ design matrix with each row an input vector (with a 1 in the first position). Similarly let y be the n-vector of outputs in the training set:

$$\mathbf{X} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1j} & \cdots & x_{1p} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{i1} & \cdots & x_{ij} & \cdots & x_{ip} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \cdots & x_{nj} & \cdots & x_{np} \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_i \\ \vdots \\ y_n \end{pmatrix}$$

- Let $\beta = (\beta_0, \beta_1, \dots, \beta_p)$ be the (p+1)-vector of coefficients.
- The vector of predicted values $(f(x_1), \ldots, f(x_n))^T$ can be written as $\mathbf{X}\beta$.

Thierry Denœux (UTC)

Reformulation of the RSS criterion

With this notation, we can rewrite the RSS as

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{T}(\mathbf{y} - \mathbf{X}\beta)$$
$$= \mathbf{y}^{T}\mathbf{y} \underbrace{-\mathbf{y}^{T}\mathbf{X}\beta - \beta^{T}\mathbf{X}^{T}\mathbf{y}}_{-2\beta^{T}\mathbf{X}^{T}\mathbf{y}} + \beta^{T}\mathbf{X}^{T}\mathbf{X}\beta$$

• This is a quadratic function in the p+1 parameters. To minimize RSS(β), we need to solve the equation

$$\frac{\partial \mathsf{RSS}}{\partial \beta} = 0,$$

where $\frac{\partial RSS}{\partial \beta} = \left(\frac{\partial RSS}{\partial \beta_0}, \dots, \frac{\partial RSS}{\partial \beta_p}\right)^T$ is the gradient of RSS with respect to β .

上海大学中欧工程技术学院

Reminder

Proposition

Let **A** be a constant matrix and β is a vector. We have

$$\frac{\partial \beta^T \mathbf{A} \beta}{\partial \beta} = (\mathbf{A} + \mathbf{A}^T) \beta \qquad (1a)$$

$$\frac{\partial \beta^T \mathbf{A} \gamma}{\partial \beta} = \mathbf{A} \gamma \qquad (1b)$$

$$\frac{\partial \beta^{\mathsf{T}} \mathbf{A} \gamma}{\partial \beta} = \mathbf{A} \gamma \tag{1b}$$

If A is symmetric, (1a) becomes

$$\frac{\partial \beta^T \mathbf{A} \beta}{\partial \beta} = 2\mathbf{A} \beta \tag{1c}$$

Least-squares estimate

• Differentiating RSS(β) with respect to β we obtain

$$\frac{\partial RSS}{\partial \beta} = \frac{\partial}{\partial \beta} \left(\mathbf{y}^T \mathbf{y} - 2\beta^T \mathbf{X}^T \mathbf{y} + \beta^T \mathbf{X}^T \mathbf{X} \beta \right)$$
(2a)

$$= -2\mathbf{X}^{\mathsf{T}}\mathbf{y} + 2\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} \tag{2b}$$

• Setting the gradient to zero, we get

$$-\mathbf{X}^{T}\mathbf{y} + \mathbf{X}^{T}\mathbf{X}\boldsymbol{\beta} = 0 \tag{3}$$

 Assuming that X has full column rank, X^TX has full rank and is nonsingular. Then we get the unique solution:

$$\widehat{eta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

• $\widehat{\beta}$ is called the Least-Squares Estimate (LSE) of β .

Fitted values

• Let $\hat{\mathbf{y}} = (\hat{y}_1, \dots, \hat{y}_n)^T$ be the vector of fitted values at the training inputs,

$$\widehat{y}_i = \widehat{\beta}_0 + \sum_{j=1}^p \widehat{\beta}_j x_{ij}.$$

It can be computed as

$$\widehat{\mathbf{y}} = \mathbf{X}\widehat{\boldsymbol{\beta}} = \underbrace{\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T}_{\mathbf{H}} \ \mathbf{y}$$

 Matrix H is sometimes called the hat matrix because it puts the hat on y.

Overview

- The method of least squares
 - I S estimates
 - Analysis of variance
 - Application in R and interpretation of the coefficients
- - Additional assumptions and properties of the estimates
 - Tests of significance
 - Prediction

Variance decomposition formula

Proposition (Analysis of variance equation)

$$\underbrace{\sum_{i=1}^{n} (y_i - \overline{y})^2}_{TSS} = \underbrace{\sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2}_{ESS} + \underbrace{\sum_{i=1}^{n} (y_i - \widehat{y}_i)^2}_{RSS}$$

Interpretation:

TSS: Total sum of squares, measures the variability of the y_i

ESS: Explained sum of squares, measures the variability of the \hat{y}_i (the variability explained by the predictors)

RSS: Residual sum of squares, measures the variability of the residuals (the variability not explained by the predictors).

R-squared

The fraction of variance explained by the regression is

$$R^{2} = \frac{\text{ESS}}{\text{TSS}} = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}},$$

- Properties:
 - $0 \le R^2 \le 1$
 - $R^2 = 1$ iff RSS = 0, i.e. $\mathbf{y} = \hat{\mathbf{y}} \in \mathcal{S}$: all the variability of the y_i 's is explained by the predictors.
 - $R^2 = 0$ iff TSS = RSS, i.e., the predictors play no role in explaining the variability of the y_i 's.

Overview

- The method of least squares
 - LS estimates
 - Analysis of variance
 - Application in R and interpretation of the coefficients
- 2 Inference
 - Additional assumptions and properties of the estimates
 - Tests of significance
 - Prediction

0.685153

Application en R

> fit

> fit<- lm(BOX ~ ., data=movie)</pre>

Call: lm(formula = BOX ~ ., data = movie)

-0.654258

```
Coefficients:
 (Intercept)
                MPRATINGPG
                              MPRATTNGPG13
                                              MPRATTNGR.
                                                             BUDGET
                                                                      STARPOWR.
   15,172989
                  0.069498
                                 -0.273367
                                              -0.443641
                                                          0.409218
                                                                      0.006427
      SEQUEL
                    ACTION
                                    COMEDY
                                               ANIMATED
                                                             HORROR
                                                                           BUZZ
```

0.035994

-0.826735

21 / 58

0.337876

0.337698

Example

```
> summary(fit)
Call:
lm(formula = BOX ~ ., data = movie)
Residuals:
Min 1Q Median 3Q Max
-2.22095 -0.36924 0.05168 0.41682 1.41499
Residual standard error: 0.7183 on 50 degrees of freedom
Multiple R-squared: 0.5244, Adjusted R-squared: 0.4198
F-statistic: 5.013 on 11 and 50 DF, p-value: 3.26e-05
```


Interpretation of the coefficients

- We interpret β_i as the average effect on Y of a one unit increase in X_i , holding all other predictors fixed.
- This interpretation may be delicate when the predictors are correlated!
- Example:
 - Y total amount of change in your pocket
 - $X_1 = \#$ of coins
 - $X_2 = \#$ of 10 cts and 20 cts.

By itself, regression coefficient of Y on X_2 will be > 0. But how about with X_1 in model?

Overview

- The method of least squares
 - LS estimates
 - Analysis of variance
 - Application in R and interpretation of the coefficients
- Inference
 - Additional assumptions and properties of the estimates
 - Tests of significance
 - Prediction

Statistical significance

- From the result of the regression analysis, can we infer that, say, there is a relation between the budget of a movie and box office receipts?
- Can we infer which factors contribute to box office receipts?
- It is difficult to answer these questions because, even if $\beta_j = 0$ for some predictor X_j , i.e., if there is no relation between X_j and the response variable Y, the estimated coefficient $\widehat{\beta}_j$ will not be exactly equal to 0.
- Which values of $\widehat{\beta}_i$ can be considered statistically significant?
- To answer this question, we need to make additional assumptions.

Overview

- The method of least squares
 - LS estimates
 - Analysis of variance
 - Application in R and interpretation of the coefficients
- Inference
 - Additional assumptions and properties of the estimates
 - Tests of significance
 - Prediction

Additional assumptions

- Up to now we have made minimal assumptions about the true distribution of the data.
- In order to study the sampling properties of $\widehat{\beta}$, we now assume that
 - **1** The observations Y_i are uncorrelated and have constant variance σ^2 :

$$Var(Y_i) = \sigma^2$$
, $Cov(Y_i, Y_i) = 0, \forall i \neq j$,

which we can write as

$$Var(\mathbf{Y}) = \sigma^2 \mathbf{I}_n,$$

where **Y** is the random vector $\mathbf{Y} = (Y_1, \dots, Y_n)$. (The expectation of **Y** is $\mathbb{E}(\mathbf{Y}) = \mathbf{X}\beta$).

2 The x_i are fixed (nonrandom), so **X** is a constant matrix.

Mean and variance of $\widehat{\beta}$

Proposition

If A is a constant matrix and Y is a random vector, then

$$\mathbb{E}(AY) = A \mathbb{E}(Y)$$
 and $Var(AY) = A Var(Y) A^T$

Here, from $\widehat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$, we get

$$\mathbb{E}(\widehat{\beta}) = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \underbrace{\mathbb{E}(\mathbf{Y})}_{\mathbf{X}\beta} = \beta,$$

so $\widehat{\beta}$ is an unbiased estimate of β , and

$$\mathsf{Var}(\widehat{\boldsymbol{\beta}}) = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \underbrace{\mathsf{Var}(\mathbf{Y})}_{\sigma^2 \mathbf{I}_n} \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1}$$

$$= (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2.$$

Variance estimation

• Typically one estimates the variance σ^2 by

$$\widehat{\sigma}^2 = \frac{1}{n-p-1} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 = \frac{\text{RSS}}{n-p-1}$$

• The n-p-1 rather than n in the denominator makes $\hat{\sigma}^2$ an unbiased estimate of σ^2 :

$$\mathbb{E}(\widehat{\sigma}^2) = \sigma^2.$$

ullet The variance of \widehat{eta} can be estimated by

$$\widehat{\mathsf{Var}(\widehat{\beta})} = (\mathbf{X}^T \mathbf{X})^{-1} \widehat{\sigma}^2.$$

Gaussian errors

- To draw inferences about the parameters and the model, additional assumptions are needed.
- We now assume that the deviations of Y around its expectation are Gaussian. Hence

$$Y_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \epsilon_i$$

with $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

Consequently,

$$\mathbf{Y} \sim \mathcal{N}(\mathbf{X}\beta, \sigma^2 \mathbf{I}_n)$$

Simulation example

• Assume p = 1, n = 11, $x_i \in \{0, 0.1, 0.2, \dots, 0.9, 1\}$, and

$$Y_i = 1 + 0.5x_i + \epsilon_i$$

with $\epsilon_i \sim \mathcal{N}(0, (0.5)^2)$.

- So, $\beta_0 = 1$ and $\beta_1 = 0.5$.
- We generated N = 5000 datasets (y_1, \ldots, y_n) , for the same values of x_i .

Some datasets with the LS line

ıtseus

ML01 - Linear Regression

Spring 2021

Empirical distribution of $\widehat{\beta}$

Distribution of the estimates

Proposition

If **Y** has a normal distribution and **A** is a constant matrix, then **AY** has a normal distribution.

Consequently, from

$$\widehat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

and

$$\mathbf{Y} \sim \mathcal{N}(\mathbf{X}\beta, \sigma^2 \mathbf{I}_n),$$

we can deduce that

$$\widehat{\beta} \sim \mathcal{N}(\beta, (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2)$$

Overview

- The method of least squares
 - LS estimates
 - Analysis of variance
 - Application in R and interpretation of the coefficients
- 2 Inference
 - Additional assumptions and properties of the estimates
 - Tests of significance
 - Prediction

Significance of a coefficient

- ullet Assume that we have observed the estimate \widehat{eta}_j for predictor X_j .
- We always have $\widehat{\beta}_j \neq 0$. Can we deduce that $\beta_j \neq 0$?
- Let H_{j0} denote the hypothesis $\beta_j = 0$ (the "null hypothesis")
- Method of approach: compute the distribution of $\widehat{\beta}_j$ assuming that H_{j0} is true.
- If it is unlikely that the observed value of $\widehat{\beta}_j$ was drawn from this distribution, then we can reject hypothesis H_{j0} .

Significance of a coefficient

- We have seen that $\widehat{\beta} \sim \mathcal{N}(\beta, (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2)$. Let v_j be the jth diagonal element of matrix $(\mathbf{X}^T \mathbf{X})^{-1}$.
- Assuming $\beta_j = 0$, we have

$$\widehat{eta}_i \sim \mathcal{N}(0, v_j \ \sigma^2), \quad \text{i.e.,} \quad \frac{\widehat{eta}_j}{\sigma \sqrt{v_j}} \sim \mathcal{N}(0, 1).$$

• We don't know σ , but we can replace it by $\widehat{\sigma}$. We can show that

$$T_j = \frac{\widehat{\beta}_j}{\widehat{\sigma}\sqrt{v_j}} \sim \mathcal{T}_{n-p-1}$$

where \mathcal{T}_{n-p-1} denotes Student distribution with n-p-1 degrees of freedom. Variable T_j is called the standardized coefficient. Utseu

Student distribution

Significance of a coefficient

- As the distribution of T_j under hypothesis H_{j0} is centered around 0, if we observe t_j far from 0, it makes H_{j0} unlikely.
- How far from 0 should t_j be to make us reject H_{j0} ?
- We define the p-value as the probability, if H_{j0} is true, that $|T_j|$ is at least as large as the observed value $|t_j|$:

$$p_j = \mathbb{P}_{H_0}(|T_j| \ge |t_j|) = \mathbb{P}_{H_0}(T_j \ge |t_j|) + \mathbb{P}_{H_0}(T_j \le -|t_j|)$$

(see example on next slide)

- The smaller this value, the more we doubt that $\beta_j = 0$.
- Usual reference values: ≤ 0.1 (weakly significant), ≤ 0.05 (significant), ≤ 0.01 (very significant).
- For $t_i = 2$ we have $p \approx 0.05$.

Examples

$$t = 2.5$$
, $p = 0.021$

$$t = 1, p = 0.33$$

Example (Movies dataset)

```
> summary(fit)
Coefficients:
                 Estimate
                             Std. Error
                                           t value
                                                     Pr(>|t|)
                 15.172989
                             0.890296
                                           17.043
                                                     < 2e-16
 (Intercept)
 MPRATINGPG
                 0.069498
                             0.554641
                                           0.125
                                                     0.9008
 MPRATTNGPG13
                 -0.273367
                                                     0.6459
                             0.591322
                                           -0.462
 MPRATINGR.
                 -0.443641
                             0.595927
                                           -0.744
                                                     0.4601
 BUDGET
                 0.409218
                             0.191454
                                           2.137
                                                     0.0375
 STARPOWR.
                 0.006427
                             0.013812
                                           0.465
                                                     0.6437
 SEQUEL
                 0.337876
                             0.293126
                                           1.153
                                                     0.2545
 ACTION
                                           -2.138
                                                     0.0374
                 -0.654258
                             0.305963
 COMEDY
                 0.035994
                             0.275897
                                           0.130
                                                     0.8967
 ANIMATED
                 -0.826735
                             0.462680
                                           -1.787
                                                     0.0800
 HORROR.
                 0.685153
                             0.385951
                                           1.775
                                                     0.0819
 BUZZ
                 0.337698
                             0.077204
                                           4.374
                                                     6.19e-05
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Utseus

Test of overall significance

- Assume we want to test hypothesis $H_0: \beta_1 = \beta_2 = \ldots = \beta_p = 0$, meaning that no predictor can explain the variability of Y.
- We cannot simply consider all the previous p-values, because if there are many predictors, there is a high chance that some $|t_j|$ will be large even if H_0 is true.
- We can show that, if H_0 is true, the statistic

$$F = \frac{R^2}{1 - R^2} \frac{n - p - 1}{p}$$

has a Fisher distribution $\mathcal{F}_{p,n-p-1}$ with p and n-p-1 df.

Spring 2021

Fisher distribution

Test of overall significance

- When $R^2 \to 1$, $F \to +\infty$: a large value of f corresponds to a value of R^2 close to 1, and it is evidence against H_0 .
- The p-value of the test of overall significance of the regression is

$$p = \mathbb{P}_{H_0}(F \geq f).$$

• It is the probability, if H_0 is true (no relation between the X_j 's and Y), of observing a value of statistics F at least as high as the value f that we did observe.

Example

> summary(fit)

```
Coefficients:
                            Std. Error
                                          t value
                                                   Pr(>|t|)
                Estimate
 (Intercept)
                15.172989
                            0.890296
                                          17.043
                                                    < 2e-16
 MPRATINGPG
                0.069498
                                         0.125
                            0.554641
                                                    0.9008
 MPRATTNGPG13
                -0.273367
                            0.591322
                                          -0.462
                                                    0.6459
 MPRATINGR.
                -0.443641
                            0.595927
                                          -0.744
                                                    0.4601
 BUDGET
                0.409218
                            0.191454
                                          2.137
                                                    0.0375
 STARPOWR
                0.006427
                            0.013812
                                          0.465
                                                    0.6437
 SEQUEL
                0.337876
                            0.293126
                                          1.153
                                                    0.2545
 ACTION
                            0.305963
                                                   0.0374
                -0.654258
                                          -2.138
 COMEDY
                0.035994
                            0.275897
                                         0.130
                                                    0.8967
 ANTMATED
                -0.826735
                            0.462680
                                          -1.787
                                                   0.0800
 HORROR.
                0.685153
                            0.385951
                                          1.775
                                                   0.0819
 BUZZ
                0.337698
                            0.077204
                                         4.374
                                                   6.19e-05
Residual standard error: 0.7183 on 50 degrees of freedom
Multiple R-squared: 0.5244, Adjusted R-squared: 0.4198
F-statistic: 5.013 on 11 and 50 DF, p-value: 3.26e-05
```


Overview

- The method of least squares
 - LS estimates
 - Analysis of variance
 - Application in R and interpretation of the coefficients
- Inference
 - Additional assumptions and properties of the estimates
 - Tests of significance
 - Prediction

Exploiting the fitted regression model

- Let $x_0 = (1, x_{10}, \dots, x_{p0})^T$ be the vector of predictors for a new observation, and Y_0 the corresponding unknown value of the response variable.
- We assume that our previous model is still valid for this new data, i.e., $Y_0 = \beta^T x_0 + \epsilon_0$ with $\epsilon_0 \sim \mathcal{N}(0, \sigma^2)$, and Y_0 is independent from the other observations.
- What can we say
 - About $f(x_0) = \beta^T x_0$?
 - About Y_0 ?

Estimation of $f(x_0)$

• Point estimation: let $\widehat{f}(x_0) = \widehat{\beta}^T x_0$. It is an unbiased estimate of $f(x_0) = \mathbb{E}(Y_0 \mid x_0) = \beta^T x_0$, as

$$\mathbb{E}(\widehat{\beta}^T x_0) = \mathbb{E}(\widehat{\beta})^T x_0 = \beta^T x_0.$$

• To take into account the uncertainty of this estimation, we often prefer to compute a confidence interval.

Definition

A confidence interval (CI) on $f(x_0)$ at level $1-\alpha$ is a random interval [L,U] that contains the true value of $f(x_0)$ for a proportion $1-\alpha$ of the training data (with fixed x_i 's), i.e.,

$$\mathbb{P}_{\mathbf{Y}}(L \leq f(x_0) \leq U) = 1 - \alpha$$

□ ▶ ◀∰ ▶ ◀불 ▶ ◀불 ▶ ○ 불 · ∽ 약

Confidence interval on $f(x_0)$

• From $\widehat{\beta} \sim \mathcal{N}(\beta, (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2)$, we get

$$\widehat{f}(x_0) = x_0^T \widehat{\beta} \sim \mathcal{N}(f(x_0), x_0^T (\mathbf{X}^T \mathbf{X})^{-1} x_0 \sigma^2)$$

Hence,

$$\frac{\widehat{f}(x_0) - f(x_0)}{\sigma \sqrt{x_0^T (\mathbf{X}^T \mathbf{X})^{-1} x_0}} \sim \mathcal{N}(0, 1).$$

• After replacing σ by $\widehat{\sigma}$, we can show that

$$\frac{\widehat{f}(x_0) - f(x_0)}{\widehat{\sigma} \sqrt{x_0^T (\mathbf{X}^T \mathbf{X})^{-1} x_0}} \sim \mathcal{T}_{n-p-1}$$

Confidence interval on $f(x_0)$ (continued)

Consequently, we have

$$\mathbb{P}\left(-t_{1-\frac{\alpha}{2}} \leq \frac{\widehat{f}(x_0) - f(x_0)}{\widehat{\sigma}\sqrt{x_0^T(\mathbf{X}^T\mathbf{X})^{-1}x_0}} \leq t_{1-\frac{\alpha}{2}}\right) = 1 - \alpha,$$

where $t_{1-\frac{\alpha}{2}}$ is the $1-\frac{\alpha}{2}$ quantile of the Student distribution \mathcal{T}_{n-p} utseus

Confidence interval on $f(x_0)$ (continued)

Equivalently,

$$\mathbb{P}\left(\widehat{f}(x_0) - t_{1-\frac{\alpha}{2}}\widehat{\sigma}\sqrt{x_0^T(\mathbf{X}^T\mathbf{X})^{-1}x_0} \le f(x_0)\right)$$

$$\le \widehat{f}(x_0) + t_{1-\frac{\alpha}{2}}\widehat{\sigma}\sqrt{x_0^T(\mathbf{X}^T\mathbf{X})^{-1}x_0}\right) = 1 - \alpha$$

We thus have the following CI:

$$\widehat{f}(x_0) \pm t_{1-\frac{\alpha}{2}} \widehat{\sigma} \sqrt{x_0^T (\mathbf{X}^T \mathbf{X})^{-1} x_0}$$

• For $1 - \alpha = 0.95$, $t_{1 - \frac{\alpha}{2}} \approx 2$.

Example

北seus *大学中欧工程技术学院

Prediction of Y_0

• We now turn to the problem of predicting the random variable Y_0 .

Definition

A prediction interval (PI) for Y_0 at level $1 - \alpha$ is a random interval [L, U] that contains Y_0 for a proportion $1 - \alpha$ of the training data (with fixed x_i 's), i.e.,

$$\mathbb{P}_{\mathbf{Y},Y_0}(L \leq Y_0 \leq U) = 1 - \alpha$$

Prediction interval

We have

$$Y_0 \sim \mathcal{N}(f(x_0), \sigma^2)$$
 and $\widehat{f}(x_0) \sim \mathcal{N}(f(x_0), x_0^T (\mathbf{X}^T \mathbf{X})^{-1} x_0 \sigma^2)$.

• As Y_0 and $f(x_0)$ are independent,

$$Y_0 - \widehat{f}(x_0) \sim \mathcal{N}\left(0, \sigma^2[1 + x_0^T(\mathbf{X}^T\mathbf{X})^{-1}x_0]\right)$$

Hence.

$$\frac{Y_0 - \widehat{f}(x_0)}{\widehat{\sigma}\sqrt{1 + x_0^T (\mathbf{X}^T \mathbf{X})^{-1} x_0}} \sim \mathcal{T}_{n-p-1}$$

Prediction interval:

$$\widehat{\widehat{f}}(x_0) \pm t_{1-\frac{\alpha}{2}} \widehat{\sigma} \sqrt{1 + x_0^T (\mathbf{X}^T \mathbf{X})^{-1} x_0}$$

Example

Example in R

Geometric interpretation of linear regression

• The vectors $\mathbf{1}, \mathbf{x}_1, \dots \mathbf{x}_p$ span a subspace \mathcal{S} of \mathbb{R}^n , also referred to as the column space of \mathbf{X} . We have $\mathbf{X}\beta = \beta_0 \mathbf{1} + \beta_1 \mathbf{x}_1 + \dots + \beta_p \mathbf{x}_p \in \mathcal{S}$.

- We chose $\widehat{\beta}$ by minimizing the distance between $\mathbf{X}\beta$ and \mathbf{y} . The solution is the orthogonal projection $\widehat{\mathbf{y}}$ of \mathbf{y} onto \mathcal{S} .
- The hat matrix H computes the orthogonal projection, and hence it is also known as a projection matrix.
- The residual vector $\hat{\epsilon} = \mathbf{y} \hat{\mathbf{y}}$ is orthogonal to \mathcal{S} .

Spring 2021

Analysis of variance

- From $\hat{\epsilon} \perp \mathcal{S}$, we have $\hat{\epsilon} \perp \mathbf{1}$.
- Hence.

$$\langle \widehat{\epsilon}, \mathbf{1} \rangle = \sum_{i=1}^{n} \widehat{\epsilon}_i = 0,$$

and
$$\sum_{i=1}^n y_i = \sum_{i=1}^n \widehat{y}_i$$
.

- The projection of y on 1 is $\frac{\langle y, 1 \rangle}{\|1\|^2} 1 = \overline{y} 1$. Similarly for \widehat{y} .
- Applying the Pythagorean theorem in the triangle $(y, \hat{y}, \overline{y}1)$, we get

ML01 - Linear Regression

$$\|\mathbf{y} - \overline{y}\mathbf{1}\|^2 = \|\widehat{\mathbf{y}} - \overline{y}\mathbf{1}\|^2 + \|\mathbf{y} - \widehat{\mathbf{y}}\|^2,$$

which is the analysis of variance equation.

