Optikai alapmérések

Mérést Végezte: Méhes Máté

Mérés időpontja: 2018.09.28.

Jegyzőkönyv leadása: 2018.10.05.

A mérés célja:

A Snellius-Descartes törvény igazolása, műanyag és levegő határfelület törésmutatójának

meghatározása. A megadott beesési szögekhez tartozó törési szögek lemérése, a kettő közötti

összefüggés megadása. A teljes visszaverődés határszögének megadása. A részleges és az teljes

visszaverődés prizmával való igazolása, a diszperzió jelenségének értelmezése. Gyűjtőlencse

fókusztávolságának megadása a leképzési törvény használatával. Szórólencse virtuális képének

vizsgálata. Diffrakciós jelenség mérése, a fényelhajlás különböző méretű réseken történő elhajlása.

A mérés eszközei:

Optikai korong, forgatható paddal

• Félkör alakú műanyag lencse

• Prizma (60°-os)

Fehér fényforrás (több sugárból álló)

Gyűjtőlencse

Szórólencse

Optikai rés (0.04mm, 0.08mm, 0.16mm)

Dióda lézer (670nm)

A mérések rövid leírása:

1. Geometriai Optika I.:

A lézerfény áthaladását vizsgáljuk a műanyag lencsén. Először a lencse sík oldalára irányítjuk a fényt, ekkora ritkább közegből a sűrűbb közegbe haladást vizsgáljuk. A beesési szöget 0 foktól 10 fokonként változtatva vizsgáljuk a törési szöget. Ezután a lencse domború oldalára irányítjuk a fénysugarat, majd a 10 fokos beesési szögtől kezdjük a mérést, 5 fokonként változtatva azt és vizsgálom a teljes visszaverődés szögét.

60 fokos prizmát rárakjuk az optikai korongra, lemérjük a határszögét és feljegyezzük a soksugaras fényforrás törése közben észlelhető hullámhossz szerinti szétválást.2

2. Geometriai Optika II.:

Felírjuk azokat a pozíciókat, képet és tárgytávolságokat, amikor a gyűjtőlencsénk éles képet ad. A szórólencse virtuális képtávolságát keressük meg. A szórólencse és a kép közé a gyűjtőlencsét oda helyezzük ahol éles képet kapunk a tárgyról, majd a szórólencsét eltávolítva a fényforrás mozgatásával megkeressük azt a pozíciót, ahol ismét éles képet kapunk a tárgyról.

3. Fizikai Optika:

A fény keskeny résen történő áthaladásakor a fény elhajlik. A különböző rések (0,04mm, 0,08mm, 0,16mm) és más szabályos alakú réseken való elhajlást vizsgáljuk, az ernyőn megjelenő interferenciaképről leolvassuk az első és a második minimum helyek távolságát. A minimum helyek, a fényforrás és a kép távolságának, a lézerünk hullámhosszának ismeretében a különböző rések méretei már meghatározhatók.

Mért adatok:

<u>1.</u>

Határszög [°]:	42				
60°-os prizma					
Elford. szöge [°]	60				

Törési szögek vizsgálata

Levegő –> Műanyag				
Beesési szög [°]	Törési szög [°]			
0	0			
10	6			
20	13			
30	19			
40	25			
50	31			
60	35			
70	39			
80	41			

Műanyag –> Levegő						
Beesési szög [°] Törési szög [°]						
0	0					
10	14,5					
15	22					
20	30					
25	38					
30	47					
35	58					
40	79					

Gyűjtőlencse fókusztávolsága

d [cm]	k1 [cm]	t1 [cm]	k2 [cm]	t2 [cm]
100	11,5	88,5	88,0	12,0
90	12,0	78,0	77,5	12,5
80	12,0	68,0	67,3	12,7
70	12,0	58,0	57,0	13,0
60	13,5	46,5	46,0	14,0
50	14,5	35,5	34,6	15,4

Szórólencse képalkotása

	[cm]
Szórólencse helye:	30,0
Fényforrás/tárgy helye:	10,0
Gyűjtőlencse helye:	67,0
Ernyő helye:	100,0
Fényforrás új helye:	21,2

<u>3.</u>

Résen való elhajlás

r [mm]	m1 [cm]	Δm1 [cm]	m2 [cm]	Δm2 [cm]
0,04	3,5	0,05	8,0	0,05
0,08	2,0	0,05	3,7	0,05
0.16	1.0	0.05	2.0	0.05

Ernyőtávolság:			
L [cm] 107			
ΔL [cm]	0,05		

Hullámhossz:			
λ [nm] 670			

A mérések kiértékelése:

1. Geometriai Optika I.

Levegő-műanyag határfelületének törésmutatója

A beesési szög legyen α , a törési szög legyen β . A törési törvény ismeretében grafikusan is ábrázolható a mért törésmutató. X-tengelynek a $\sin(\alpha)$ -t, Y-tengelynek pedig a $\sin(\beta)$ -t választva. Ekkora a beesési szög szinuszának és a törési szög szinuszának a hányadosa meghatározza a törésmutatót: $\sin(\alpha)/\sin(\beta) = n_{2,1}$.

A törésmutató pontosabb megállapításához egy egyenest illesztünk a mért pontokra melynek egyenlete: $\boxed{m}=0.67289664\boxed{m}+-0.0063904128$

α[°]	β[°]	sin(α)	sin(β)	$sin(\alpha)/sin(\beta)$
0	0	0	0	
10	6	0,1736481777	0,1045284633	1,6612525645
20	13		0,2249510543	
30	19			1,5357767434
40	25	0,6427876097	0,4226182617	1,5209650597
50	31	0,7660444431	0,5150380749	1,4873549752
60	35	0,8660254038	0,5735764364	1,5098692152
70	39	0,9396926208	0,629320391	1,4931863549
80	40	0,984807753	0,656059029	1,5010962573

α[°]	β[°]	sin(α)	sin(β)	$sin(\alpha)/sin(\beta)$
0	0	0	0	
10	14,5	0,1736481777	0,2503800041	0,6935385209
15	22	0,2588190451	0,3746065934	0,6909089419
20	30	0,3420201433	0,5	0,6840402867
25	38	0,4226182617	0,6156614753	0,6864458451
30	47	0,5	0,7313537016	0,6836637305
35	58	0,5735764364	0,8480480962	0,6763489464
40	79	0,6427876097	0,9816271834	0,6548184693

Az illesztett egyenes egyenlete: = 1.5071904 + -0.011184565

A teljes visszaverődés határszöge $\sin(\alpha)/1=n_{1,2}$. A képletbe behelyettesítve $\alpha=43,63^{\circ}$, a mért határszög: 50° .

Visszaverődés és törés 60 fokos prizmán

A prizmán áthaladó fehér fény kétszer is megtörik, az eltérő sűrűségű közegek hatására részeire bomlik, hullámhosszúság szerint. A jelenség oka, hogy a fénytörés mértéke a hullámhossztól is függ.

Látható, hogy először a kék fény fog visszaverődni, legvégül a piros. Ezért az előző feladatban kiszámított törésmutatót használhatjuk a teljes visszaverődés határértékének kiszámításához. Az előző számítások alapján a piros lézer α=43,63° beesési szögnél verődik vissza teljesen.

A prizmás esetben ha a második törés $43,63^{\circ}$ beesési szögnél történik akkor az első törőszögnek 60° - $43,63^{\circ}$ = $16,37^{\circ}$ -nek kell lennie. Ebből már könnyen megmondhatjuk a beesési szöget. $\alpha=\arcsin(\sin(16,37^{\circ})*1,55)=25,91^{\circ}$.

2. Geometriai Optika II.

Gyűjtőlencse fókusztávolságának meghatározása

A gyűjtőlencse fókusztávolság méréshez a leképzési törvényt alkalmazzuk. Ennek értelmében a fókusztávolság reciprokára igaz, hogy: 1/f=1/k+1/t.

A gyűjtőlencsének két fókusztávolsága van, az egyikben nagyított, a másikban kicsinyített képet alkot. A mérés során mind a két pozícióban lemértem a tárgy- és a képtávolságot, majd a fényforrás és az ernyő távolságát 10 centinként csökkentve megismételtem a méréseket 100cm-ről indulva egészen 50cm-ig. Az eredményeket két táblázat foglalja össze.

Az első eset, amikor közelebb áll az ernyőhöz:

d [cm]	k1 [cm]	t1 [cm]	1/k1[cm]	1/t1[cm]	f=1/[(1/k1)+(1/t1)]	Nagyítás(k1/t1)
100	11,5	88,5	0,0869565217	0,011299435	10,1775	0,1299435028
90	12,0	78,0	0,0833333333	0,0128205128	10,4	0,1538461538
80	12,0	68,0	0,0833333333	0,0147058824	10,2	0,1764705882
70	12,0	58,0	0,0833333333	0,0172413793	9,9428571429	0,2068965517
60	13,5	46,5	0,0740740741	0,0215053763	10,4625	0,2903225806
50	14,5	35,5	0,0689655172	0,0281690141	10,295	0,4084507042

A második esetben, a fényforráshoz (tárgyhoz) áll közelebb:

d [cm]	k2 [cm]	t/2[cm]	1/k2[cm]	1/t2[cm]	f=1/[(1/k2)+(1/t2)]	Nagyítás(k2/t2)
100	88,0	12,0	0,0113636364	0,0833333333	10,56	7,3333333333
90	77,5	12,5	0,0129032258	0,08	10,7638888889	6,2
80	67,3	12,7	0,014858841	0,0787401575	10,683875	5,2992125984
70	57,0	13,0	0,0175438596	0,0769230769	10,5857142857	4,3846153846
60	46,0	14,0	0,0217391304	0,0714285714	10,7333333333	3,2857142857
50	34,6	15,4	0,0289017341	0,0649350649	10,6568	2,2467532468

Az adatokból jól látszik melyik esetben van kicsinyített, melyikben nagyított kép.

Az összes adatot egy diagramon ábrázolva:

1/k az 1/t függvényében

Az ábráról leolvashatók a tengelymetszetek, amik az fókusztávolság reciprokát adják meg.

Az első táblázathoz tartozó, adatokhoz illesztett egyenes egyenlete f(x)=-1,06*x+0,1. Számításokkal a tengelymetszetek meghatározása. X=0 esetben f(x)=0,1. Az f(x)=0 esetben X=0,094

A második táblázathoz tartozó adatokhoz illesztett egyenes egyenlete f(x)=-0.98*x+0.09. A tengelymetszetek: X=0 f(x)=0.09 és f(x)=0.092.

Szórólencse képalkotása

A szórólencsén keresztül a tárgynak kicsinyített és egyállású képét láttam az ernyőn. A virtuális kép helyét gyűjtőlencse beiktatásával határoztam meg, a virtuális kép helye a fényforrás új helye.

Szórólencse képalkotása

	[cm]
Szórólencse helye:	30,0
Fényforrás/tárgy helye:	10,0
Gyűjtőlencse helye:	67,0
Ernyő helye:	100,0
Fényforrás új helye:	21,2

3. Fizikai Optika:

Diffrakció, résen való elhajlás

A diffrakciós képen a minimumhelyekre a következő összefüggés teljesül: r= $\frac{n*\lambda*D}{y}$

- **n**: a minimum hely (1,2,3,...)
- λ: a fény hullámhossza
- **D**: a rés és az ernyő távolsága
- y: az n-ik minimumhely és a diffrakciós kép középpontjának távolsága
- r: a rés mérete

Y meghatározásához nincs más dolgunk mint a mért adatokból a két minimumhely közötti távolságot elosztani kettővel.

r [mm]	m1 [cm]	m2 [cm]	y1 [cm]	y2 [cm]
0,04	3,5	8,0	1,75	4
0,08	2,0	3,7	1	1,85
0,16	1,0	2,0	0,5	1

A képletet használva számoljuk ki a rések nagyságát és számoljunk relatív hibát.

0,04 mm-es rés				
n	r (mért)	relatív hiba		
1	0,040965714	2,357371337%		
2	0,035845	11,59157484%		
0,08 mm-es rés				
n	r (mért)	relatív hiba		
1	0,07169	11,59157484%		
2	0,077502703	3,222206327%		
0,16 mm-es rés				
n	r (mért)	relatív hiba		
1	0,14338	11,59157484%		
2	0,14338	11,59157484%		

Fordított arányosság áll fenn a rés széllessége és a minimumok távolsága között.

A rés alakját változtatva, a diffrakciós kép is változik. Kör alakú rés esetén a minimumok koncentrikus körökön helyezkednek el.

A mérések hibaforrásai:

- Leolvasási hiba (mindegyik mérésnél felmerülhet)
- Az optikai padon a fokbeosztások csak egész számokkal vannak feltüntetve
- A hosszúságot centiméterig tudjuk pontosan mérni
- A lencsés kísérleteknél a kép élességét szabad szemmel nehéz pontosan meghatározni

Diszkusszió:

- A Snellius-Descartes törvény képletéből adódó törésmutatókat sikerült a hibahatáron belül kimutatni, valamint a prizmán kétszeresen megtörő fény színskálájára magyarázatot találni. A teljes visszaverődés szöge sem tért el nagy mértékben a mért szögtől.
- A gyűjtőlencsés kísérletnél is sikerült kisebb eltéréssel igazolni a leképzési törvény alapján a lencse fókusztávolságát. A szórólencse virtuális képalkotásának helyét egy gyűjtőlencse segítségével meghatároztuk.
- A diffrakciós kísérletekben már kicsit nagyobb eltérés van a rés mérete és a mért adatokból meghatározott rés között, de a relatív hibák viszonylag itt sem nagyok, ezzel sikerült a minimumhelyekre vonatkoztatott képletet igazolni.