Protocol layers and service models Internet and security

CE 352, Computer Networks
Salem Al-Agtash

Lecture 3

Slides are adapted from Computer Networking: A Top Down Approach, 7th Edition © J.F Kurose and K.W. Ross

Recap (Packet delay and volume)

Recap (Transmission/ propagation Delay)

- Transmission Delay: This time required to push (that is, transmit) all of the packet's bits into the link
 - = L (packet size)/R (bandwidth) --> 100 bytes * (8 bits/1 byte)// 1 Mbps --> 800 bits/ 1 x 10⁶ bits/second = 8x10⁻⁴ seconds --> 0.8 ms
- Propagation Delay: The time required to propagate from the beginning to the end of the link, bits travel at the speed of light
 - = distance / speed of light --> 300 km/3x10⁸m/second --> $3x10^{5}/3x10^{8}$ m/s = $1x10^{-3}$ s --> 1 ms

Recap (Throughput: Internet scenario)

per-connection end-end throughput:

min(R_c, R_s, R/10)

in practice:

• R_c or R_s is often bottleneck

10 connections (fairly) share backbone bottleneck link *R* bits/sec

Topics of today

- The Internet layers and protocol stack
- TCP/IP hybrid model vs OSI reference model
- Layers, services, encapsulation
- Port number (16 bits), IP address (IPv4: 32 or IPv6: 128 bits), and MAC address (48 bits)
- The Internet structure
- The Internet history
- Security concerns

Protocol "Layers" - details

Web Browser (HTTP) Email (SMTP, IMAP, POP3) File Transfer (FTP, TFTP) Remote Login (Telnet) Name Resolution (DNS)

Transmission Control Protocol (TCP) **User Datagram Protocol (UDP)**

> Internet Protocol IP ARP, ICMP

Ethernet, Wifi, Token Ring **FDDI WAN Protocols**

Copper Twisted Pair Fiber Optic Radio

Port: 16

IPv4: 32 IPv6: 128

MAC: 48

Protocol "layers"

Networks are complex, with many "pieces":

- Applications
- Hosts
- Protocols
- Switches and routers
- Links of various types

Protocol "layers"

Transport

Application

Transport

Network

Data Link

Physical

Networks are complex, with many "pieces":

- Applications
- Hosts
- Protocols
- Switches and routers
- Links of various types

Email (SMTP, IMAP, POP3)
Web Browser (HTTP)
File Transfer (FTP, TFTP)
Remote Login (Telnet)
Name Resolution (DNS)

Transmission Control Protocol (TCP)

User Datagram Protocol (UDP)

Internet Protocol IP ICMP

Ethernet, ARP
Token Ring
FDDI
WAN Protocols

Copper Twisted Pair Fiber Optic Radio Applications ...built on...

Reliable (or unreliable) transport

Best-effort global packet delivery

...built on...

Best-effort local packet delivery

...built on...

Physical transfer of bits

Observations

Each layer:

- Depends on layer below
- Supports layer above
- Independent of others

Multiple versions in layer

- Interfaces differ somewhat
- Components pick which lower-level protocol to use

Layering is crucial to Internet's success

- Reuse
- Hides underlying details
- Innovation at each level can proceed in parallel
- Pursued by very different communities

Layers are simple if only on a single machine

 Just stack of modules interacting with those above/below

Need to implement layers across machines

- Host devices (computers, ..) (? layers)
- Routers (? layers), switches (? layers)

Observations

Each layer:

- Depends on layer below
- Supports layer above
- Independent of others

Multiple versions in layer

- Interfaces differ somewhat
- Components pick which lower-level protocol to use

Layering is crucial to Internet's success

- Reuse
- Hides underlying details
- Innovation at each level can proceed in parallel
- Pursued by very different communities

Layers are simple if only on a single machine

 Just stack of modules interacting with those above/below

Need to implement layers across machines

- Hosts (all layers)
- Routers (3 layers), switches (2 layers)

Internet protocol stack

```
application: protocols to support
  network applications
transport: protocols for process-
  process data transfer
network: routing of datagrams from
  source to destination
link: data transfer between
  neighboring network elements
physical: bits "on the wire on the air"
```

application transport network link physical

Internet protocol stack

```
application: supporting network applications
```

FTP, SMTP, HTTP

transport: process-process data transfer

TCP, UDP

network: routing of datagrams from source to destination

IP, routing protocols

link: data transfer between neighboring network elements

Ethernet, 802.11 (WiFi)

physical: bits "on the wire on the air"

application

transport

network

link

physical

OSI reference model

presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions

session: synchronization, checkpointing, recovery of data exchange

application

presentation

session

transport

network

link

physical

Network diagram

application transport destination

Page 17 CE 352: Computer Networks

IP addresses

Port, IP, and MAC addresses

Internet structure

hosts connect to Internet via access Internet Service Providers (ISPs) access ISPs interconnected so that *any* two hosts (anywhere!) can send packets to each other resulting network of networks is very complex evolution driven by economics, national policies

CE 352: Computer Networks

Page 27

at center: small # of well-connected large networks

- "tier-1" commercial ISPs (e.g. Sprint, AT&T), national & international coverage
- content provider network (e.g., Google): private network that connects it data centers to Internet, often bypassing tier-1, regional ISPs

Tier – 1 ISP: e.g. Sprint

World Submarine Cable Map

https://www.submarinecablemap.com
https://www.internetexchangemap.com
https://www.amlight.net/?p=119#

1961-1972: Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packet-switching
- 1964: Baran packet-switching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

1972:

- ARPAnet public demo
- NCP (Network Control Protocol) first host-host protocol
- first e-mail program

1972-1980: Internetworking, new and proprietary nets

1970: ALOHAnet satellite network in Hawaii

1974: Cerf and Kahn - architecture for interconnecting networks

1976: Ethernet at Xerox PARC

late70's: proprietary architectures: DECnet, SNA, XNA

late 70's: switching fixed length packets (ATM precursor)

1979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- autonomy no internal changes required to interconnect networks
- best effort service model
- decentralized control

define today's Internet architecture

1980-2000: new protocols, a proliferation of networks, the web

- 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for nameto-IP-address translation
- 1985: ftp protocol defined
- 1988: TCP congestion control
- early 1990's: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)

early 1990s: Web

- hypertext [Bush 1945, Nelson 1960's]
- HTML, HTTP: Berners-Lee
- 1994: Mosaic, later Netscape
- late 1990's: commercialization of the Web

late 1990's – 2000's:

- instant messaging, P2P file sharing
- network security to forefront
- ~ 50 million host, 100 million+ users
- backbone links running at Gbps

2005-present

~5B devices attached to Internet (2016)

- smartphones and tablets
- aggressive deployment of broadband access
- increasing ubiquity of high-speed wireless access
- emergence of online social networks:
 - Facebook
- service providers (Google, Microsoft) create their own networks
 - bypass Internet, providing "instantaneous" access to search, video content, email, etc.

e-commerce, universities, enterprises running their services in "cloud" (e.g., Amazon)

Big concern: security

field of network security:

- possible to attack computer networks
- how to design architectures that are immune to attacks

Internet not originally designed with (much) security in mind

 original vision: "a group of mutually trusting users attached to a transparent network" ©

We now need to think about:

- how bad guys can attack computer networks
- how we can defend networks against attacks
- how to design architectures that are immune to attacks

Packet interception, Fake identity, DOS

packet "sniffing": broadcast media (shared Ethernet, wireless) Network interface reads/records all packets (e.g., including passwords!) passing by

IP spoofing: injection of packet with false source address

Denial of Service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic

Lines of defense:

- authentication: proving you are who you say you are
 - cellular networks provides hardware identity via SIM card; no such hardware assist in traditional Internet
- confidentiality: via encryption
- integrity checks: digital signatures prevent/detect tampering
- access restrictions: password-protected VPNs
- firewalls: specialized "middleboxes" in access and core networks:
 - off-by-default: filter incoming packets to restrict senders, receivers, applications
 - detecting/reacting to DOS attacks

Summary

Today:

- Protocol layers
- Internet protocol stack: TCP/IP and OSI service models
- Network diagram, IP addresses, Port addresses
- The Internet structure and history
- Security, a big concern

Camino discussion:

- Reflection
- Exit ticket

Next time:

- read 2.1 and 2.2 of K&R (Application layer, the Web)
- follow on Camino! material and announcements

Any questions?