TP série N°3: allocation de fréquences d'un réseau mobile

Christoph Samuel – Jankowiak Matthias

I-Position du problème:

- 1- L'objectif de ce TP est celui de **l'allocation de fréquences d'un réseau mobile.** En effet, dans le cadre d'un projet de déploiement de réseau mobile, une agence d'opérateurs régionaux ont installé plusieurs transmetteurs pour couvrir l'intégralité d'un territoire sur une zone ciblée, en effet, les **transmetteurs sont répartis** géographiquement en fonction de la densité urbaine et de l'activité économique. Le **problème réel posé** est que sur le plan technique, deux **transmetteurs trop «proches»** géographiquement risquent d'engendrer un phénomène **d'interférence** sauf à les faire opérer sur des fréquences «éloignées» (fréquences compatibles). Ainsi, une estimation préalable de l'investissement à réaliser est un facteur déterminant dans la **prise de décision des opérateurs.**
- 2- Le problème est de déterminer le **nombre minimum de fréquences** suffisamment éloignées que l'agence doit allouer aux opérateurs afin de garantir le fonctionnement, sans interférence, du réseau mobile. En effet, une allocation de fréquence **minimale** de déploiement est **primordiale** pour la rentabilité du projet. Le problème posé peut donc se ramener à un **problème de recherche de coloration** au sein **d'un graphe non orienté** représentatif du réseau mobile à équiper. La recherche du nombre minimum de fréquences compatibles se ramène donc au calcul du **nombre minimum de couleurs nécessaires** : c'est le **nombre chromatique** du graphe.

Le tableau de répartition géographique des transmetteurs installés est représenté ci-dessous, le tableau indique, pour **chaque transmetteur**, l'ensemble des transmetteurs avec lesquels il y a **risque d'interférence**.

Le transmetteur	A	В	C	D	E	F	G	Н	I	J	K	L	M	N	O	P	Q	R	S	T
	D	C	В	A	A	E	В	A	G	N	A	Н	В	J	E	K	F	C	В	C
est «proche» des	E	G	R	\mathbf{M}	F	G	E	L	\mathbf{K}	O	I	O	D	T	J	T	Η	K	D	F
transmetteurs	Η	M	T	S	G	Q	F	Q	S		P				L				I	N
	K	S			0	Τ	Ι				R									P

3- Le problème réel dans le cadre de la théorie des graphes consiste à **colorer les nœuds représentant les fréquences utilisables** et donc à déterminer le nombre chromatique de celui-ci. Cependant, le problème de calcul du nombre chromatique d'un graphe est **NP-complet,** l'ingénieur se contentera alors d'un **algorithme polynomial** qui fournit une **solution approchée.** Nous avons choisi dans le cadre du TP, de nous appuyer sur l'algorithme de **Welsh-Powell** qui permet d'obtenir une coloration de sommets d'un graphe en utilisant un nombre k «pas trop grand» de couleurs.

II-Réalisation:

1- Une façon de résoudre ce problème est de **modéliser le réseau mobile** à l'aide d'un **graphe non orienté G = (S,A) définit tel que** chaque sommet S appartenant à S de G représente un nœud et part conséquent une **fréquence de transmetteur** et chaque arête A appartenant à A de G formalise la **relation d'incompatibilité** entre deux fréquences de transmetteur. Nous pouvons par exemple observer les différents cas en partant du graphe vide suivant:

Le transmetteur	J
est «proche» des	N
transmetteurs	0

Le transmetteur	Т
est «proche» des	C F
transmetteurs	N
	P

Le transmetteur	A	В	C	D	E	F	G	Η	Ι	J	K	L	\mathbf{M}	N	O	P	Q	R	S	T
	D	C	В	A	A	E	В	A	G	N	A	Η	В	J	E	K	F	C	В	C
est «proche» des	E	G	R	M	F	$\sf G$	E	L	K	O	I	O	D	T	J	T	Η	K	D	F
transmetteurs	Η	M	T	S	G	Q	F	Q	S		P				L				I	N
	K	S			O	T	I				R									P

Mis bout à bout, si on réunit chaque transmetteurs et leur **relations d'incompatibilités,** on retrouve le tableau ci -dessus présenté dans le positionnement du problème, mais on obtient également le graphe **modèle d'incompatibilité des fréquences** suivantes:

modèle d'incompatibilité des fréquences du graphe

2- Ici, le problème consiste à **minimiser le nombre de fréquences à allouer** tout en garantissant leur **compatibilité** vers la disposition géographique des transmetteurs. La recherche du nombre minimum de fréquences compatibles peut être formulable en **termes d'un problème de coloration de graphes.** En effet, sur le modèle de graphe précédent, cela consiste a colorer les nœuds représentant les **fréquences** utilisables.

Les nœuds représentant les fréquences incompatibles sont reliés par une arête comme vu précédemment, ils doivent donc porter des **couleurs différentes**. La recherche du nombre minimum de fréquences compatibles se ramène donc au calcul du nombre minimum de couleurs nécessaires : c'est le **nombre chromatique** du graphe.

3- Nous souhaitons donc proposer une solution à ce problème, or, il est connu que le problème de **calcul du nombre chromatique** d'un graphe **est NP-complet** : il n'existe pas encore d'algorithme polynomial pour le résoudre. Seule une **solution approchée** peut être fournie.

A défaut d'un algorithme polynomial exact, l'informaticien se contentera d'un **algorithme polynomial** qui fournit une solution approchée. Par exemple l'algorithme de **Welsh-Powell** permet d'obtenir une **coloration de sommets d'un graphe** en utilisant un nombre k **«pas trop grand»** de couleurs sans, pour autant, assurer que **k soit minimum,** c'est à dire que k = y(G)

 $k = \gamma(G)$, avec $\gamma(G)$ désignant le **nombre chromatique** du graphe G.

L'algorithme de Welsh-Powell possède une **complexité en O(n + m)** avec n le nombre de sommet et m le nombre d'arête du graphe G. Cette complexité provient du fait qu'on réalise **dans un premier temps un tri** (des sommets par degré décroissant) suivi de la **coloration de chaque sommet.** Il convient alors d'appliquer la procédure de Welsh-Powell, la mise en œuvre de cet algorithme se déroule en **trois étapes:**

<u>Étape 1:</u> Trier les sommets du graphe dans **l'ordre décroissant de leur degré** pour ensuite attribuer à chacun des **sommets son numéro** d'ordre dans la liste triée.

<u>Étape 2:</u> En parcourant la liste des sommets dans **l'ordre de tri,** on attribue une couleur **non encore utilisée** au premier sommet **non encore coloré** ainsi qu'a chaque sommet **non encore coloré et non adjacent** à un sommet de cette couleur.

<u>Étape 3:</u> S'il reste encore des sommets non colorés revenir à l'étape 2, sinon, la **coloration des sommets** est terminée

Déroulons alors l'algorithme de **Welsh-Powell** pour résoudre notre problème, pour cela on reprend notre graphe **modèle d'incompatibilité des fréquences** proposé en 1°: au départ nous avons le graphe G qui n'est pas coloré, après le lancement de notre algorithme, le terminal nous affiche le résultat ainsi la **trace suivante**:

<u>Étape 1:</u> On commence par **trier les nœuds** dans **l'ordre de leur degré décroissant,** pour obtenir le tableau suivant:

<u>Étape 2:</u> On attribut la couleur <u>bleu</u> au nœud A et a tout les nœuds **non adjacents** à A **et non déjà colorés** selon l'ordre déterminé lors de l'étape 1.

S	d°(S)	S	d°(S)
A	4	I	3
В	4	0	3
E	4	S	3
F	4	J	2
G	4	L	2
K	4	M	2
T	4	N	2
С	3	P	2
D	3	Q	2
Н	3	R	2

Figure 1: graphe nœud bleu

Stable bleue = $\{A,B,F,I,N,O,P,R\}$

<u>Étape 2:</u> On attribut la couleur verte au nœud E et a tout les nœuds **non adjacents** à E **et non déjà colorés** selon l'ordre déterminé lors de l'étape 1.

S	d°(S)	S	d°(S)
A	4	I	3
В	4	0	3
E	4	S	3
F	4	J	2
G	4	L	2
K	4	M	2
T	4	N	2
С	3	P	2
D	3	Q	2
H	3	R	2

Stable verte = {D,E,H,J,K,T}

Figure 2: graphe nœud bleu vert

<u>Étape 2:</u> On attribut la couleur <mark>rouge</mark> au nœud G et a tout les nœuds **non adjacents** à G **et non déjà colorés** selon l'ordre déterminé lors de l'étape 1.

S	d°(S)	S	d°(S)
A	4	I	3
В	4	O	3
E	4	S	3
F	4	J	2
G	4	L	2
K	4	M	2
T	4	N	2
C	3	P	2
D	3	Q	2
H	3	R	2

Stable rouge = $\{C,G,L,M,Q,S\}$

Figure 3: graphe nœud bleu vert rouge

<u>Étape 3:</u> Tout les nœuds sont colorés, l'algorithme s'arrête, la procédure se termine et propose de **colorer le graphe avec 3 couleurs** seulement : nous obtenons donc $\mathbf{k} = \mathbf{3}$ où \mathbf{k} est une approximation de $\gamma(G) = \mathbf{k}$: résultat de l'algorithme de Welsh-Powell ($\gamma(G) = 3$).

Le code en **C++** ci-après détaille le fonctionnement de l'algorithme de **Welsh-Powell** dans l'étude de cas précédente. L'ensemble du fichier (tp3.cpp) est fournit de **commentaires** afin de comprendre le fonctionnement de celui-ci, en premier lieu les définitions nécessaire à la création du graphe, la **matrice du graphe** étudié ainsi que l'algorithme de Welsh-Powell affichant les résultat dans le terminal lors de la compilation du fichier. Pour **diversifier notre manière de coder** nous avons décider de partir d'une matrice et non d'utiliser la librairie BoostGraph.

```
#include <algorithm>
bool stop = false;
// Différentes couleur possible pour notre graphe.
const int couleurs[x] = {0,1,2,3,5};
   int edges[x];
   int couleurs[x];
// Initialisation des différents degrés et sommets.   
char vertex\_names[x] = \{'A','B','C','D','E','F','G','H','I','J','K','L','M','N','0','P','Q','R','S','T'\};
int degre[x];
```

Initialisation du graphe à l'aide de la matrice

```
void Welsh_Powell(Graf g)
           int edge = 0;
           int max = \theta:
           boucle++:
                    for(int j=0; j<x; j++)
if(g.adj[i][j])
                              degre[i]++;
           for (int w=0; w<x; w++)
                     g.edges[w] = degre[w];
                     if (edge < g.edges[w])
                          edge = g.edges[w];
79
80
           g.couleurs[max] = couleurs[boucle];
cout << "\nChangement de couleur:\nLe sommet " << g.vertex_id[max] << " est de couleur " << g.couleurs[max]</pre>
                if(!g.adj[max][e] && max!=e && !g.coloration[e])
                     for (int t=0: t<x :t++)
                          // Création du booleen stop qui sort de la boucle si les régles ne sont pas respectés.
if(g.adj[e][t] && g.couleurs[t]==g.couleurs[max]) stop = true;
if(t == x-1 && !stop)
                               cout << "Le sommet " << g.vertex_id[e] << " est de couleur " << g.couleurs[e] << endl;</pre>
                               stop = false;
            if(all_of(begin(g.coloration), end(g.coloration), [](bool i) { return i; }))
                cout << "\nLe graphe G est totalement coloré\n" << endl;</pre>
           else Welsh Powell(g);
```

Algorithme de Welsh-Powell

```
// Fonction d'application.
int main()
{

// Création du graphe.
Graf g;

// Initiation des couleurs du graphe.
for(int y=0; y<x; y++)
{

g.couleurs[y] = 10;
g.coloration[y] = false;
}

// Initiation de g avec une copie des valeurs d'une source vers destination.
memcpy(&g.adj, &graf, sizeof(g.adj));
memcpy(&g.vertex_id, &vertex_names, sizeof(g.vertex_id));

// On lance la procédure de Welsh_Powell.
Welsh_Powell(g);
return 0;

// Or lance la procédure de Welsh_Powell.
// Or lance la procédure de Welsh_Powell.</pre>
```

Fonction d'application.

Une fois l'algorithme lancé nous obtenons l'affichage suivant dans notre commande de terminal, on remarque affectivement les même résultats que précédemment, la procédure se termine et propose de **colorer le graphe avec 3 couleurs** seulement.

```
schristophascinfedS4 ~/Bureau/stockage/TP3 - CHRISTOPH Samuel - JANKOWIAK Matthlas
g++ -o tp3.o tp3.Cpp
schristophascinfedS4 ~/Bureau/stockage/TP3 - CHRISTOPH Samuel - JANKOWIAK Matthlas
./tp3.o

Changement de couleur:
Le sommet A est de couleur 1
Le sommet B est de couleur 1
Le sommet F est de couleur 1
Le sommet I est de couleur 1
Le sommet O est de couleur 1
Le sommet N est de couleur 1
Le sommet P est de couleur 1
Le sommet R est de couleur 1
Le sommet R est de couleur 2
Le sommet E est de couleur 2
Le sommet E est de couleur 2
Le sommet E est de couleur 2
Le sommet D est de couleur 3
Le sommet C est de couleur 3
Le sommet C est de couleur 3
Le sommet C est de couleur 3
Le sommet M est de couleur 3
Le sommet Q est totalement coloré
```

Résultats terminal

L'algorithme de **Welsh-Powell** permet d'avoir une coloration des sommets cohérente. Cependant, la coloration proposée n'est **pas toujours optimale.** À la fin de l'algorithme, on obtient une **approximation du nombre chromatique,** mais rien ne prouve que la valeur soit la plus petite possible. Il est donc **important d'encadrer** le nombre de couleurs trouvé avec l'algorithme de Welsh-Powell afin de savoir à quel point notre **approximation du nombre chromatique k est fiable et optimal.**

 $\omega(G)$ = plus grande clique du graphe = {E,F,G}

On peut alors vérifier si k respecte les encadrements de y(G):

$$n = 20 \text{ (nombre de nœuds),}$$

$$\alpha(G) = 8 \text{ (taille du plus grand stable (stable bleu)),}$$

$$\rightarrow n + 1 - \alpha(G) = 13$$

$$r = 4 \text{ (degré maximal),}$$

$$\omega(G) = 3 \text{ (taille de la plus grande clique),}$$

$$\rightarrow r + 1 = 5$$

$$\underline{k \text{ vérifie bien tous les encadrements de } \gamma(G):$$

$$\omega(G) \leqslant k \leqslant r + 1$$

$$\rightarrow 3 \leqslant k \leqslant 5$$

on retient alors l'encadrement le plus minime
$$\rightarrow 3 \le k \le 5$$

 $\omega(G) \le k \le n + 1 - \alpha(G)$ $\rightarrow 3 \le k \le 13$

4- Avec les valeurs obtenues, nous pouvons donc donner une **interprétation du résultat:** chaque couleur modélise **une fréquence différente**, la fréquence alloué doit être différentes selon la couleur, confirmé par le terminal dans notre cas **trois fréquences** différentes sont donc nécessaires pour couvrir sans, a priori, de **risque d'interférences**, l'intégralité du territoire souhaité avec l'ensemble des 20 transmetteurs, cette **solution n'est pas unique**. En pratique, le développeur d'application pourrait équilibrer les charges entre les 3 fréquences en appliquant, au résultat obtenu, un algorithme de **programmation dynamique** mais cela n'est pas si simple.

III-Bilan/Conclusion:

- 1- Nous avons appris grâce à ce TP que l'application des modèles et **problèmes réels** peuvent être formulés en termes de **problème de coloration de la théorie des graphes**. Dans notre cas, c'est un problème NP-complet, à défaut d'utiliser un algorithme polynomial exact, nous nous sommes contenté d'un algorithme polynomial qui fournit une solution approchée, celui de **Welsh-Powell**, qui par ailleurs nous a permis de mieux comprendre la coloration d'un graphe a travers l'exemple d'un problème réel. Il en devient donc simple de résoudre de tels problèmes, à l'aide du **modèle de graphe** correspondant et des outils à dispositions.
- 2- Nous retenons également que la plus part **problèmes réels**, concernant le déploiement d'un réseau mobile dans le souci d'une **d'allocation de fréquences nécessaires** pour couvrir l'intégralité d'un territoire ou zone ciblée, sont facilement traduisibles en **problème de la théorie des graphes** et que nous pourrions être confrontés à ce **type de problématique** dans le futur si nous sommes amenés, par exemple à travailler dans le **domaine de la télécommunication**.