Computational learning and discovery

CSI 873 / MATH 689

Instructor: I. Griva

Wednesday 7:20 - 10 pm

Learning Real Valued Functions Maximum Likelihood Hypothesis

Consider any real-valued target function fTraining examples $\langle x_i, d_i \rangle$, where d_i is noisy training value

- $\bullet d_i = f(x_i) + e_i$
- e_i is random variable (noise) drawn independently for each x_i according to some Gaussian distribution with mean=0

Then the maximum likelihood hypothesis h_{ML} is the one that minimizes the sum of squared errors:

$$h_{ML} = \arg\min_{h \in H} \sum_{i=1}^{m} (d_i - h(x_i))^2$$

Normal Distribution

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

The probability that X will fall into the interval (a, b) is given by

$$\int_a^b p(x)dx$$

• Expected, or mean value of X, E[X], is

$$E[X] = \mu$$

 \bullet Variance of X is

$$Var(X) = \sigma^2$$

• Standard deviation of X, σ_X , is

$$\sigma_X = \sigma$$

Learning Real Valued Functions Maximum Likelihood Hypothesis

$$h_{ML} = \underset{h \in H}{\operatorname{argmax}} p(D|h)$$

$$= \underset{h \in H}{\operatorname{argmax}} \prod_{i=1}^{m} p(d_i|h)$$

$$= \underset{h \in H}{\operatorname{argmax}} \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{d_i - h(x_i)}{\sigma})^2}$$

Maximize natural log of this instead...

$$h_{ML} = \underset{h \in H}{\operatorname{argmax}} \sum_{i=1}^{m} \ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2} \left(\frac{d_i - h(x_i)}{\sigma} \right)^2$$

$$= \underset{h \in H}{\operatorname{argmax}} \sum_{i=1}^{m} -\frac{1}{2} \left(\frac{d_i - h(x_i)}{\sigma} \right)^2$$

$$= \underset{h \in H}{\operatorname{argmax}} \sum_{i=1}^{m} - \left(d_i - h(x_i) \right)^2$$

$$= \underset{h \in H}{\operatorname{argmin}} \sum_{i=1}^{m} \left(d_i - h(x_i) \right)^2$$

Learning to predict probabilities

Consider predicting survival probability from patient data

Training examples $\langle x_i, d_i \rangle$, where d_i is 1 or 0

Want to train neural network to output a probability given x_i (not a 0 or 1)

In this case can show

$$h_{ML} = \underset{h \in H}{\operatorname{argmax}} \sum_{i=1}^{m} d_i \ln h(x_i) + (1 - d_i) \ln(1 - h(x_i))$$

Weight update rule for a sigmoid unit:

$$w_{jk} \leftarrow w_{jk} + \Delta w_{jk}$$

where

$$\Delta w_{jk} = \eta \sum_{i=1}^{m} (d_i - h(x_i)) x_{ijk}$$

Minimum description length principle

$$h_{MAP} = \arg \max_{h \in H} P(D|h)P(h)$$

$$= \arg \max_{h \in H} \log_2 P(D|h) + \log_2 P(h)$$

$$= \arg \min_{h \in H} - \log_2 P(D|h) - \log_2 P(h)$$

Interesting fact from information theory:

The optimal (shortest expected coding length) code for an event with probability p is $-\log_2 p$ bits.

So interpret (1):

- $\bullet \log_2 P(h)$ is length of h under optimal code
- $-\log_2 P(D|h)$ is length of D given h under optimal code
- \rightarrow prefer the hypothesis that minimizes length(h) + length(misclassifications)

Minimum description length principle

Occam's razor: prefer the shortest hypothesis

MDL: prefer the hypothesis h that minimizes

$$h_{MDL} = \underset{h \in H}{\operatorname{argmin}} L_{C_1}(h) + L_{C_2}(D|h)$$

where $L_C(x)$ is the description length of x under encoding C

Minimum description length principle

Example: H = decision trees, D = training data labels

- $L_{C_1}(h)$ is # bits to describe tree h
- $L_{C_2}(D|h)$ is # bits to describe D given h
 - Note $L_{C_2}(D|h) = 0$ if examples classified perfectly by h. Need only describe exceptions
- Hence h_{MDL} trades off tree size for training errors

MDL trades off hypothesis complexity for the number of errors committed by the hypothesis!!!

Bayes Optimal Classifier

So far we've sought the most probable hypothesis given the data D (i.e., h_{MAP})

Given new instance x, what is its most probable classification?

• $h_{MAP}(x)$ is not the most probable classification!

Consider:

• Three possible hypotheses:

$$P(h_1|D) = .4, P(h_2|D) = .3, P(h_3|D) = .3$$

• Given new instance x,

$$h_1(x) = +, h_2(x) = -, h_3(x) = -$$

• What's most probable classification of x?

Bayes Optimal Classifier

$$\arg\max_{v_j \in V} \sum_{h_i \in H} P(v_j|h_i) P(h_i|D)$$

Example:

$$P(h_1|D) = .4, \ P(-|h_1) = 0, \ P(+|h_1) = 1$$

 $P(h_2|D) = .3, \ P(-|h_2) = 1, \ P(+|h_2) = 0$
 $P(h_3|D) = .3, \ P(-|h_3) = 1, \ P(+|h_3) = 0$

therefore

$$\sum_{h_i \in H} P(+|h_i)P(h_i|D) = .4$$

$$\sum_{h_i \in H} P(-|h_i)P(h_i|D) = .6$$

and

$$\arg\max_{v_j \in V} \sum_{h_i \in H} P(v_j|h_i) P(h_i|D) = -$$

Gibbs Algorithm

Bayes optimal classifier provides best result, but can be expensive if many hypotheses. Gibbs algorithm:

- 1. Choose one hypothesis at random, according to P(h|D)
- 2. Use this to classify new instance

Surprising fact: Assume target concepts are drawn at random from H

$$E[error_{Gibbs}] \le 2E[error_{BayesOptimal}]$$

Suppose correct, uniform prior distribution over H, then

- Pick any hypothesis from VS, with uniform probability
- Its expected error no worse than twice Bayes optimal

Along with decision trees, neural networks, neare nbr, one of the most practical learning methods.

When to use

- Moderate or large training set available
- Attributes that describe instances are conditionally independent given classification

Successful applications:

- Diagnosis
- Classifying text documents

Assume target function $f: X \to V$, where each instance x described by attributes $\langle a_1, a_2 \dots a_n \rangle$. Most probable value of f(x) is:

$$v_{MAP} = \underset{v_{j} \in V}{\operatorname{argmax}} P(v_{j}|a_{1}, a_{2} \dots a_{n})$$

$$v_{MAP} = \underset{v_{j} \in V}{\operatorname{argmax}} \frac{P(a_{1}, a_{2} \dots a_{n}|v_{j})P(v_{j})}{P(a_{1}, a_{2} \dots a_{n})}$$

$$= \underset{v_{j} \in V}{\operatorname{argmax}} P(a_{1}, a_{2} \dots a_{n}|v_{j})P(v_{j})$$

Naive Bayes assumption:

$$P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$$

which gives

Naive Bayes classifier:
$$v_{NB} = \underset{v_j \in V}{\operatorname{argmax}} P(v_j) \prod_i P(a_i|v_j)$$

Naive_Bayes_Learn(examples)

For each target value v_j

$$\hat{P}(v_j) \leftarrow \text{estimate } P(v_j)$$

For each attribute value a_i of each attribute a

$$\hat{P}(a_i|v_j) \leftarrow \text{estimate } P(a_i|v_j)$$

Classify_New_Instance(x)

$$v_{NB} = \operatorname*{argmax}_{v_j \in V} \hat{P}(v_j) \prod_{a_i \in x} \hat{P}(a_i | v_j)$$

Play Tennis

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
DI	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
DII	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

 $P(y) \ P(sun|y) \ P(cool|y) \ P(high|y) \ P(strong|y) = .005$ $P(n) \ P(sun|n) \ P(cool|n) \ P(high|n) \ P(strong|n) = .021$

$$\rightarrow v_{NB} = n$$

1. Conditional independence assumption is often violated

$$P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$$

• ...but it works surprisingly well anyway. Note don't need estimated posteriors $\hat{P}(v_j|x)$ to be correct; need only that

$$\underset{v_j \in V}{\operatorname{argmax}} \, \hat{P}(v_j) \prod_i \hat{P}(a_i | v_j) = \underset{v_j \in V}{\operatorname{argmax}} \, P(v_j) P(a_1 \dots, a_n | v_j)$$

2. what if none of the training instances with target value v_i have attribute value a_i ? Then

$$\hat{P}(a_i|v_j) = 0$$
, and...
 $\hat{P}(v_j) \prod_i \hat{P}(a_i|v_j) = 0$

Typical solution is Bayesian estimate for $\hat{P}(a_i|v_i)$

$$\hat{P}(a_i|v_j) \leftarrow \frac{n_c + mp}{n + m}$$

where

- n is number of training examples for which $v = v_j$,
- n_c number of examples for which $v = v_j$ and $a = a_i$
- p is prior estimate for $\hat{P}(a_i|v_j)$
- m is weight given to prior (i.e. number of "virtual" examples)

Learning to classify text

Why?

- Learn which news articles are of interest
- Learn to classify web pages by topic

Naive Bayes is among most effective algorithms

What attributes shall we use to represent text documents??

Learning to classify text

Target concept $Interesting?: Document \rightarrow \{+, -\}$

- 1. Represent each document by vector of words
 - one attribute per word position in document
- 2. Learning: Use training examples to estimate
 - $\bullet P(+)$
 - $\bullet P(-)$
 - $\bullet P(doc|+)$
 - $\bullet P(doc|-)$

Naive Bayes conditional independence assumption

$$P(doc|v_j) = \prod_{i=1}^{length(doc)} P(a_i = w_k|v_j)$$

where $P(a_i = w_k | v_j)$ is probability that word in position i is w_k , given v_j

one more assumption:

$$P(a_i = w_k | v_j) = P(a_m = w_k | v_j), \forall i, m$$

$$P(w_k|v_j) \leftarrow \frac{n_k+1}{n+|Vocabulary|}$$

Learning to classify text: results

Given 1000 training documents from each group Learn to classify new documents according to which newsgroup it came from

comp.graphics
comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.x

misc.forsale
rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.hockey

alt.atheism
soc.religion.christian
talk.religion.misc
talk.politics.mideast
talk.politics.misc
talk.politics.misc

 $egin{array}{c} ext{sci.space} \\ ext{sci.crypt} \\ ext{sci.electronics} \\ ext{sci.med} \end{array}$

Naive Bayes: 89% classification accuracy