Journal Club

Adithya Nair

August 14, 2024

Contents

Ι	Rea	al Analysis	2
1 Natural		cural Numbers	4
	1.1	Peano Axioms	4
		Recursive Definitions	
		Addition	
		Order	
	1.5	Special Forms Of Induction	12
	1.6	Multiplication	13
	1.7	Exercise	13

Part I Real Analysis

TEXTBOOK: Analysis 1 by Terence Tao

Chapter 1

Natural Numbers

Numbers were built to count. A system for counting was made, and that system is the number system.

Definition 1.0.1

A natural number is an element of the set \mathbb{N} of the set

$$\mathbb{N} = \{0, 1, 2, 3 \cdots\}$$

is obtained from 0 and counting forward indefinitely.

1.1 Peano Axioms

We start with axioms to help clarify this.

- Axiom $1:0\in\mathbb{N}$
- Axiom 2: If $n \in \mathbb{N}$, then $n + + \in \mathbb{N}$
- Axiom 3: 0 is not an increment of any other natural number $n \in \mathbb{N}$
- Axiom 4: If $n \neq m$, $n + + \neq m + +$
- Axiom 5: (Principle Of Mathematical Induction) Let P(n) be any property pertaining to a natural number n. Suppose that P(0) is true, and suppose that whenever P(n) is true, P(n++) is also true. Then P(n) is true for every natural number.

We then make an assumption: That the set \mathbb{N} which satisfies these five axioms is called the set of natural numbers. With these 5 axioms, we can construct sequences

1.2 Recursive Definitions

Proposition 1.2.1 (Recursive Definitions). Suppose for each natural number n, we have some function $f_n : \mathbb{N} \to \mathbb{N}$ from the natural numbers to the natural numbers. Then we can assign a unique natural number a_n to each natural number n, such that $a_0 = c$ and $a_{n++} = f_n(a_n)$ for each natural number n.

1.3 Addition

Definition 1.3.1: Addition Of Natural Numbers

Let n be a natural number. $(n \in N)$. To add zero to m, we define 0 + m := m Now suppose inductively that we have defined how to add n to m. Then we can add n++ to m by defining(n++) + m := (n+m)++

Lemma 1.3.1. For any natural number n + 0 = n

Proof. We use induction,

The base case, n = 0,

$$n = 0, 0 + 0 = 0$$

$$n + 0 = n$$

$$(n + +) + 0 = (n + 0) + + = (n + +)$$

Suppose inductively, that n + 0 = n,

For n = n + +,

$$(n++)+0=(n+0)++$$
 We know that $n+0=n$
$$(n++)+0=(n++)$$

Lemma 1.3.2. For any natural numbers n and m,

$$n + (m + +) = (n + m) + +$$

Proof. Inducting on n while keeping m fixed,

$$n = 0,$$

$$0 + (m + +) = (0 + m) + +$$

$$0 + (m + +) = (m + +)$$

This we know is true from the definition of addition (0 + m := m)

Suppose inductively, that n + (m + +) = (n + m) + + is true. For n = (n + +),

$$(n++)+(m++)=((n++)+m)++$$
 From the definition of addition
$$=(n+(m++))++$$

$$=((n+m)++))++$$

Putting m = 0, we get n + 1 = n + +

Proposition 1.3.1 (Addition is commutative). For any natural numbers n and m, n+m=m+n

Proof. We induct over n, For the base case, n = 0,

We must show that m + 0 = 0 + m From the definition of addition, we have

$$0 + m = m$$

As shown earlier, we have

$$m + 0 = m$$

This is clearly true for n = 0.

Now suppose inductively that m + n = n + m

For n = n + +, we must show that m + (n + +) = (n + +) + m

We know from the definition of addition that,

$$(n++)+m := (m+n)++$$

And we proved earlier that,

$$m + (n + +) = (m + n) + +$$

Therefore,

$$m + (n + +) = (n + +) + m$$

Proposition 1.3.2 (Addition is associative). For any natural numbers, a, b and c, we have (a+b)+c=a+(b+c)

Proof. We take (a+b) + n = a + (b+n)

Inducting over n,

For n=0,

We have in the LHS,

$$= (a+b) + 0$$
 Since $n + 0 = n$
= $a + b$

On the RHS,

$$= a + (b+0)$$

$$= a+b$$
Since $n+0=n$

Suppose inductively that (a + b) + n = a + (b + n),

For n = n + +, We have to show that (a + b) + (n + +) = a + (b + (n + +))

On the LHS we have,

$$= (a + b) + (n + +)$$

$$= (a + b + n) + +$$
 (From the lemma $m + (n + +) = (m + n) + +$)

On the RHS we have,

$$= a + (b + (n + +))$$

$$= a + (b + n) + +$$

$$= (a + b + n) + +$$
(From the lemma $m + (n + +) = (m + n) + +$)

LHS = RHS

Proposition 1.3.3 (Cancellation Law). Let a, b, c be natural numbers such that a + b = a + c. Then we have b = c.

Proof. We have,

$$n+b=n+c$$

Inducting over n, For the base case, n = 0

$$0 + b = 0 + c$$
$$b = c$$

Suppose inductively that n + b = n + c For n = n + +,

$$(n++) + b = (n++) + c$$

On the LHS

$$= (n++)+b$$
$$= (n+b)++$$

On the RHS

$$= (n++)+c$$
$$= (n+c)++$$

We know from the inductive hypothesis that,

If
$$n + b = n + c$$
, then $b = c$

Thus we have,

$$b + + = c + +$$

Definition 1.3.2: Positive natural number

All numbers where,

$$n \neq 0, n \in \mathbb{N}$$

Proposition 1.3.4. If a is a positive natural number and b is a natural number, then a+b is positive.

Proof. Inducting over b,

For
$$b = 0$$
,

$$a+0=a$$

This proves the base case, since we know a is positive.

Now, suppose inductively, that (a + b) is positive.

For
$$(a + (n + +))$$
,

$$a + (n + +) = (a + n) + +$$

We know from Axiom 3 that $n++\neq 0$. Thus we close the inductive loop.

Lemma 1.3.3. For every a, there exists a unique b such that b + + = a

Proof. Proof by contradiction, Suppose that there are two different increments, m + +, n + + that equal to a,

We have,

$$m++=a$$

$$n++=a$$

Then we can say,

$$m + + = n + +$$

$$m + 1 = n + 1$$

$$m = n$$

(By Cancellation Law)

But we said that m and n are different numbers which increment to a.

Therefore, we can conclude that there is only one number b which increments to a

1.4 Order

Definition 1.4.1: Order

Let n and m be natural numbers we say that n is greater than or equal to m, and write $n \ge m$ iff we have n = m + a for some natural number a. We say that n > m when $n \ge m$ and $n \ne m$

Proposition 1.4.1 (Basic properties of order for natural numbers). Let a, b, c be natural numbers then

- 1. (Order is reflexive) $a \ge a$
- 2. (Order is transitive) If $a \ge b$ and $b \ge c$, then $a \ge c$
- 3. (Order is antisymmetric) If $a \ge b$ and $b \ge a$ then a = b
- 4. (Addition preserves order) $a \ge b$ if and only if $a + c \ge b + c$
- 5. a < b if and only if $a + + \leq b$

6. a < b if and only if b = a + d for some positive number d.

Proof. 1. Proving order is reflexive, $a \ge a$

We know that,

$$a = a + 0$$

From the definition of order, We can write that $a \geq b$ when a = b + d where $d \in \mathbb{N}$. Thus $a \geq a$.

2. Proving order is transitive, $a \ge b$ and $b \ge c$ then $a \ge c$ We write,

$$a = b + d$$
$$b = c + e$$

$$a = c + e + d$$

We can say that since $(e+d) \in \mathbb{N}$ We define f := (e+d) Where $f \in \mathbb{N}$

$$a = c + (f)$$

Thus we can say,

If
$$a \ge b, b \ge c$$
 then $a \ge c$

3. Proving order is antisymmetric, If $a \ge b$ and $b \ge a$ then a = b We can say,

$$a=b+d$$

$$b = a + e$$

Where $d, e \in \mathbb{N}$

$$a = (a+e) + d$$

$$b = (b+d) + e$$

Then we can write,

$$a = a + (e + d)$$

$$b = b + (d + e)$$

Then we can say that (e+d) and (d+e) are 0.

We know that if a + b = 0 then a, b = 0

Thus d and e are 0.

$$a = b + d$$
$$a = b$$

4. Proving a < b if and only if b = a + d for some positive number d If b = a + d where d is a positive natural number, $d \neq 0$

Which means that $b \neq a + 0$ or $b \neq a$

This means that b is strictly greater than a

If a < b then $a \ge b$ and $a \ne b$

So if $a \geq b$ Then,

$$a = b + d$$

But,

$$a \neq b$$
$$a \neq b + 0$$
$$d \neq 0$$

Thus d cannot be 0. d can only be a positive natural number.

5. Proving addition preserves order, $a \ge b$ if and only if $a+c \ge b+c$ Proving $a \ge b$ if $a+c \ge b+C$ Where $d \in \mathbb{N}$

$$a+c = b+c+d$$

$$a+c = (b+d)+c$$

$$a = (b+d)$$

$$a \ge b$$

By definition

By cancellation law

Proving $a + c \ge b + c$ if $a \ge b$

We know,

$$a = b + d$$

Where $d \in \mathbb{N}$

We write a+c using what we know from above,

$$a+c = b+d+c$$

$$a+c = b+c+d$$

$$(a+c) = (b+c)+d$$

$$a+c \ge b+c$$

6. Proving a < b if and only if $a + + \le b$ Proving a < b if $a + + \le b$ We can write,

$$a++=b+d \qquad \qquad \text{Where } d \in \mathbb{N}$$

$$a+++d=b$$

$$a+(d++)=b$$

Since from Axiom 3, we know that 0 is not an increment of any natural number, $(d + + \neq 0)$ Therefore,

a < b

Proposition 1.4.2 (Trichotomy of order for natural numbers). Let a and b be natural numbers. Then exactly one of the following statements is true: a < b, a = bora > b

Proof. First we show that no more than one of the statements is true. If a < b then $a \neq b$ by definition. If a > b then $a \neq b$ by definition. If a > b and a < b then a = b, which we proved earlier.

Now to show that exactly one of these statements are true. We induct on a,

When a = 0, We know that,

$$b = 0 + b(\forall b \in \mathbb{N})$$

$$b \ge 0$$

Suppose inductively that exactly one of the above statements are true for a and b. For a++, We take each statement. First for a > b

$$a>b$$

$$a=b+d$$

$$(a++)=(b+d)++$$

$$(a++)=b+d++$$

$$(a++)>b$$
 If $d\in\mathbb{N}$ then $d++\in\mathbb{N}$

For a = b

$$a = b$$

$$(a + +) = (b) + +$$

$$(a + +) = b + 1$$

$$a > b$$

For a < b

$$a < b$$

$$a + d = b$$

$$(a + d) + + = b + +$$

$$(a + +) + d = b + +$$

$$(a + +) + d = b + 1$$

We have two cases, If d = 1, Then by cancellation law

$$a++=b$$

If $d \neq 1$ Then

$$a + + < b$$

But never both, which concludes the inductive loop.

1.5 Special Forms Of Induction

1. Strong Induction

Theorem 1.5.1. Let m_0 be a natural number, and let P(m) be a property pertaining to an arbitrary natural number m. Suppose that for each $m \ge m_0$, we have the following implication: if P(m') is true for all natural numbers $m_0 \le m' < m$, then P(m) is also true. (In particular this means that $P(m_0)$ is true, since in this case the hypothesis is vacuous.) Then we can conclude that P(m) is true for all natural numbers $m \ge m_0$.

Proof. For a property Q(n), which is the property that P(m') is true for $m_0 \le m' < n$, then P(n) is true.

For Q(0), 0 is either lesser than or equal to m_0 .

When 0 is lesser than m_0 ,

This is vacuously true.

When
$$0 = m_0$$
,

- 2. Backward Induction
- 3. Induction Starting From The Base Case n Let n be a natural number, and let P(m) be a property pertaining to the natural numbers such that whenever P(m) is true, P(m++) is true. Show that if P(n) is true, then P(m) is true for all m n. (This principle is sometimes referred to as the principle of induction starting from the base case n.)

Proof. Take a property P(n), $m \ge n$ Inducting over n,

1.6 Multiplication

Definition 1.6.1

Let m be a natural number. To multiply zero to m, we define $0 \times m := 0$. Now suppose inductively that we have defined how to multiply n to m. Then we can multiply n + m to m by defining $(n + m) \times m := (n \times m) + m$

Lemma 1.6.1. Prove that multiplication is commutative

1.7 Exercise

- 1. Prove the identity $(a+b)^2 = a^2 + 2ab + b^2$
- 2. (Euclid's division lemma)
- 3. Backward Induction $m \in \mathbb{N}$, P(m), $P(m++) \Rightarrow P(m)$, Suppose P(n) is true, then $P(m) \forall m \leq n$ For the base case, n = 0, $P(0) \Rightarrow P(0)$, soit'strue.

For the inductive step, supposing Q(n) is true,

- 4. Strong induction
- 5. Distributive Law
- 6. Multiplication
 - (a) Cancellation Law
 - (b) Associativity
 - (c) If a<b, and c is positive then ac<bc