制造业自动化

一种实用的变占空比PWM信号Simulink实现方法

An useful method to realize variable duty cycle PWM signal in simulink

徐 哲,魏民祥

XU Zhe, WEI Min-xiang

(南京航空航天大学能源与动力学院,南京210016)

摘要:为解决在控制系统仿真设计中遇到的变占空比PWM信号生成问题,采用锯齿波与调制信号比较的方法,在Simulink中设计了变占空比PWM信号生成模块。模块中加入了数据类型转换模型,实现了与连续模块的直接连接。模块采用子系统封装的形式,可以对PWM信号周期进行调整。利用所设计的模块,分别以随机信号和正弦信号作为输入,获得了相应的PWM信号。通过实际应用表明,所设计的可调占空比PWM信号模块性能可靠、使用方便,可以通用于Simulink中。

关键词:控制系统仿真;变占空比; PWM; Simulink; 数据类型转换

中图分类号:TN914 文献标识码:A 文章编号:1009-0134(2013)06(下)-0033-03

Doi:10.3969/j.issn.1009-0134.2013.06(下).11

0 引言

PWM控制技术由于具有抗干扰性强等优点在机械控制中获得广泛的应用。PWM控制的基本原理主要是依据采样控制理论中的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。根据该结论,在具有惯性环节的系统中,可以使用PWM信号替代其他信号做为系统的输入[1]。

为了提高控制设计的效率,通常首先采用 matlab/simulink软件对所要控制的对象进行仿真 分析^[2]。采用PWM信号控制的系统,也需要在 控制软件中生成相应的PWM仿真波形。但是在 Simulink中仅仅有PWM信号发生器,其只能生成 固定占空比的PWM信号。在实际应用中, PWM 信号一般是变占空比的,因此在系统仿真过程中会遇到变占空比PWM信号生成问题。对该问题的 求解,还未见有专门的文章进行介绍,本文采用 硬件调制方法的原理,在Simulink中实现该信号的 生成。

1 变占空比PWM信号实现原理

PWM控制技术可以通过多种方式实现,其中 硬件调制法适合在Simulink中建立可调占空比的 PWM模块。硬件调制法原理是把希望的波形作为调制信号,把接受调制的信号作为载波。为了实现周期明显的PWM信号,载波选用锯齿波。在生成PWM信号时,将调制信号与载波的大小进行比较,当载波信号值小于调制信号值时,其结果为1,当载波信号值大于调制信号值时,比较结果为零^[1]。其原理如图1所示。

图1 PWM信号生成原理

2 变占空比PWM信号的Simulink实现

2.1 系统基本组成

根据可调占空比PWM信号的生成原理,需要仿真软件提供载波信号。该载波信号采用锯齿波实现,该信号在周期内线性增大,周期结束时,值复位为零。在锯齿波的设置中,需要将幅值范围设置为[0,1]。锯齿波生成采用的模块如图2所示。

生成变占空比PWM信号,还需要输入需要调制的信号。该信号是所设计的变占空比PWM模块的输入信号,一般由控制系统提供。作为系统的

收稿日期:2012-11-22

作者简介:徐哲(1983-),男,山东泰安人,博士研究生,研究方向为汽车主动安全控制。

第35卷 第6期 2013-06(下) 【33】

制造业自动化

另外一个比较信号输入,调制信号属于变化范围 在(0,1)之间的任意类型的信号。

信号大小的比较采用布尔运算模块,模型搭 建好后的结构如图2所示。

图2 变占空比PWM信号的Simulink实现

2.2 设置中需要注意的事项

在建立好如图2所示的模型后,进行运行,发 现系统结果误差较大。经过反复调试运行发现, 所生成的锯齿波不规则。进一步分析发现原因 是, Matlab做为数值计算软件, 其计算精度取决于 采样频率。在锯齿波产生过程中,系统由于没有 微积分运算,会自动设置为Variable Step Discrete 计算方法,其默认步长为0.2秒。当采样频率较低 时,锯齿波的生成会产生较大的误差,通过比较 得到的PWM信号占空比精度会降低。为了提高精 度,需要在system configuration中设置计算的最大 步长,本例中设置为0.001。锯齿波在不同采样精 度下的波形对比如图3所示。

图3 锯齿波在不同采样精度情况下的对比

从图3中可以明显看出,在采样频率较低时, 会生数据失真的问题。

在system configuration中设置步长可以解决精 度的问题,但是每次将该模块应用到新的模型中 时,均需要设置该参数。为了提高通用性,需要 采用其它方式来确定信号输入的采样频率。逻辑 计算模块中,包含有采样时间长度参数,默认状 态下sample time值为-1,代表该模块的采样时间 取决于前面模块的输出。如果在此设置为期望的 步长,则可以获得期望的精度。为此,将该值设 置为0.001,如此就可以确保采样时间精度保持在 0.001的水平,载波信号就不容易发生失真。

2.3 数据类型转换

在程序编制中,数据类型是需要考虑的一个 重要方面。上述模型实现了生成变占空比PWM信

号的目的,但该结果一般无法直接用做控制系统 的输入。其原因是由于模块中采用了布尔运算, 计算结果是boolean型数据, 而控制系统模型一般 采用double型数据。当将不同数据类型的模块连接 时,会出现无法计算的情形,运行时的状态显示 如图4所示。

图4 数据类型标示图

从图4中可以看到比较模块的输出数据为 boolean型,但是参考输入为double型,显然不能 进行运算。为了解决这个问题,需要使用Simulink 中的数据类型转换模块,该模块可以实现将布尔 型数据转换为double型数据的功能。在Simulink中 添加该模块后,结果如图5所示。

图5 添加数据类型图

添加Data Type Conversion模块时,设置该模 块的参数output data type为double。通过实际运行 证明,该系统生成的PWM信号可以实现直接与控 制系统连接。

3 模型封装

子模型的封装是Simulink的一项重要功能,其 目的是将一组相关的模块包含到一个模块中,用以 简化系统。在封装子系统时,可以将需要经常设置 的参数定义为变量, 封装好子系统后, 在封装子系 统的参数设置对话框中进行统一设置[3]。这样就大 大减轻了参数的设置的难度,而且不容易出错。

根据实际应用情况,本封装中需要经常调节的 变量是PWM信号的周期。PWM信号的周期取决于 载波信号,因此在锯齿波生成模块中进行设置。定 义PWM信号的周期为period变量,则在锯齿波模块 中需要设置的是时间,该值设置为[0,period]。锯齿 波的幅值大小也影生成的PWM信号的正确与否, 根据实际需求,该值设置为[0.1]。

在封装子系统时,在封装对话框中添加变量 period,变量的提醒名称定义为PWM period。为了

【34】 第35卷 第6期 2013-06(下)

制造业自动化

能够在使用该子模型时,能够有所了解,可以封装子系统时,在封装对话框的document中添加说明。封装好的模块对话框如图6所示。

图6 编辑出的变占空比PWM模块对话框

经过上述处理,就可以得到一个既可以与控制系统直接连接,也可以方便设置PWM周期的变占空比PWM模块。

4 结果与讨论

根据前述步骤,可以得到变占空比的PWM信号模块。本部分使用上述建立的模块进行仿真应用,所建立的仿真系统如图7所示。模型中包含有PWM生成模块,该模块的输入是所期望的占空比信号。系统生成PWM信号作为输入进入一阶惯性系统,对比系统在PWM信号和常规未经调制信号输入下的响应。为了检验该模块的性能,设置采用随机信号和正弦信号作为输入,输入的范围确保在0到1之间。

图7 PWM变占空比模块

采用随机信号输入,产生PWM信号,结果如图8所示。

图8 随机信号输入下的PWM信号

图8中的虚线代表被调制的随机占空比输入, 实线是生成的变占空比PWM信号。可见生成的 PWM占空比与输入占空比数值相同。

采用正弦信号作为输入,产生的SPWM波形如图9所示。

图9 采用变PWM模块产生的SPWM波形

图9中虚线是正弦的PWM占空比信号,实线是生成的PWM信号。从图上可以看出,在相应的时间点,PWM信号的占空比等于其调制信号的值。

图10 随机输入下的响应对比

图11 正弦输入下的响应对比

从图10和图11可以看出,惯性系统对未调节的原始信号和经过调节的PWM信号的输入响应大体相同,完全符合采样控制理论中,冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同的结论。通过实际系统应用,证明了该变占空比PWM模块的可行性。

5 结论

采用锯齿波与调制信号比较的方法能够得到 变占空比PWM信号,文中根据该原理搭建的变占 空比PWM信号模块,经过合理的设置,可以实现 任意输入下的PWM信号的生成以及与控制系统之 间的直接连接。根据实际使用表明,该模块可以 方便可靠地应用于控制系统仿真。

参考文献:

- [1] 李旭,谢运祥.PWM技术实现方法综述[J].电源技术应用, 2005, 8(2)
- [2] Mathworks Ltd. Matlab User 's Guide. MATLAB HELP.
- [3] 黄永安,马路等.MATLAB 7.0/Simulink6.0建模仿真开发与高级工程应用[D].清华大学出版社,2005.

第35卷 第6期 2013-06(下) 【35】