Дискретизация по времени и по частоте

Учебно-методическое пособие

по курсу Введение в электронику

Лабораторная работа № 22

Содержание

Вве	едение
1.	Теорема о выборках
2.	Переход из временной области в частотную
3.	Сигнал с N степенями свободы
4.	Непосредственный переход от дискретного сигнала $\ x(k\Delta t), \ k\Delta t \in [0,T),$
	к дискретному спектру $S(jn\Delta\omega), n\Delta\omega \in [-\omega_{rp}, \omega_{rp})$
5.	Непосредственный переход от дискретного спектра $S(jn\Delta\omega)$,
	$n\Delta\omega\in[-\omega_{\sf rp},\omega_{\sf rp}),\;$ к дискретному сигналу $x(k\Delta t),\;k\Delta t\in[0,T)$
6.	Дискретное преобразование Фурье
7.	Физический смысл дискретного преобразования Фурье16
Инс	струкция по работе с MATLAB
Упр	оажнения
	ех22_1. Одиночное гармоническое колебание
	ех22_2 Сумма двух амплитудно-модулированных колебаний
	ех22_3. Одиночный прямоугольный (видео)импульс
	ех22_4. Одиночный радиоимпульс
Прі	иложения
	1. Вывод (2.1)
	2. Вывод (4.2)
	3. Вывод (5.2)
	4. Быстрое преобразование Фурье
Лит	тература

Введение

Когда речь идет о регистрации и обработке данных в физическом эксперименте с применением средств вычислительной техники, необходимо быть готовым к тому, чтобы непрерывный по своей природе сигнал с выхода электрического датчика представлять в виде набора значений этого сигнала в отдельные моменты времени, а для его преобразования в простейшем случае — типа прохождения сигнала через фильтр с известной или заданной частотной характеристикой — использовать имеющееся программное обеспечение для дискретного отображения спектра сигнала.

Исходные соотношения из классического математического анализа:

прямое преобразование Фурье -

$$S(j\omega) = \int_{-\Gamma}^{\Gamma} x(t) e^{-j\omega t} dt, \qquad (0.1)$$

$$e \Phi ypbe -$$

обратное преобразование Фурье –

$$x(t) = \frac{1}{2\pi} \int_{-\Gamma}^{\Gamma} S(j\omega) e^{j\omega t} d\omega.$$
 (0.2)

Эти два соотношения справедливы, если сигнал x(t) абсолютно интегрируем и для него выполнены *условия Дирихле* (на любом конечном интервале времени x(t) не имеет разрывов с уходящими в бесконечность ветвями и число скачков и экстремумов конечно).

Если сигнал x(t) периодический с периодом T , то есть $x(t+m\cdot T)=x(t)$, где m — целое число, и для него выполнены условия Дирихле, то

$$x(t) = \sum_{n=-1}^{1} C_n e^{jn\frac{2\pi}{T}t},$$
 (0.3)

$$C_n = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-jn\frac{2\pi}{T}t} dt.$$
 (0.4)

1. Теорема о выборках

Теорема

Вещественный сигнал x(t) [B], спектр которого $S(j2\pi f)$ [B · c] не содержит частот выше $f_{\text{гр}}$ [Гц], может быть полностью восстановлен по отсчетным значениям (выборкам) сигнала, взятым через промежутки времени, равные $1/(2f_{\text{гр}})$ [c].

Доказательство

Согласно условию теоремы

$$S(j\omega) = \begin{cases} \int\limits_{-\Gamma}^{\Gamma} x(t) \, \mathrm{e}^{-j\omega t} \, dt & \mathrm{при} \ \omega \in [-\omega_{\mathrm{\Gamma}\mathrm{p}}, \ \omega_{\mathrm{\Gamma}\mathrm{p}}), \\ 0 & \mathrm{при} \ \omega < -\omega_{\mathrm{\Gamma}\mathrm{p}} \ \mathrm{u} \ \omega \geq \omega_{\mathrm{\Gamma}\mathrm{p}}; \end{cases}$$

здесь и далее $\omega = 2\pi f$, $\omega_{\sf rp} = 2\pi f_{\sf rp}$. Продолжим $S(j\omega)$ периодически вдоль оси частот ω с периодом $2\omega_{\sf rp}$ и представим периодически продолженный спектр $\hat{S}(j\omega)$ в виде ряда Фурье:

$$\hat{S}(j\omega) = \sum_{k=-\Gamma}^{\Gamma} D_k e^{jk\frac{2\pi}{2\omega_{\text{rp}}}\omega}, \qquad (1.1)$$

где

$$\begin{split} D_k &= \frac{1}{2\omega_{\text{rp}}} \int\limits_{-\omega_{\text{rp}}}^{\omega_{\text{rp}}} \hat{S}(j\omega) \, \mathrm{e}^{-jk\frac{2\pi}{2\omega_{\text{rp}}}\omega} \, d\omega \\ &= \frac{2\pi}{2\omega_{\text{rp}}} \cdot \frac{1}{2\pi} \int\limits_{-\omega_{\text{rp}}}^{\omega_{\text{rp}}} S(j\omega) \, \mathrm{e}^{j\omega(-k\Delta t)} \, d\omega \\ &= \frac{\pi}{\omega_{\text{rp}}} x(-k\Delta t), \, \Delta t = \frac{\pi}{\omega_{\text{rp}}}. \end{split}$$

Подставим (1.1) в (0.2), имея в виду, что в пределах $[-\omega_{\rm rp},\,\omega_{\rm rp})$ справедливо равенство $S(j\omega)=\hat{S}(j\omega)$; получим

$$x(t) = \frac{1}{2\pi} \int_{-\omega_{\text{rp}}}^{\omega_{\text{rp}}} S(j\omega) e^{j\omega t} d\omega$$

$$= \frac{1}{2\pi} \int_{-\omega_{\text{rp}}}^{\omega_{\text{rp}}} \sum_{k=-\Gamma}^{\Gamma} \frac{\pi}{\omega_{\text{rp}}} x(-k\Delta t) e^{+jk\omega\Delta t} e^{j\omega t} d\omega$$

$$= \frac{1}{2\omega_{\text{rp}}} \sum_{k=-\Gamma}^{\Gamma} x(k\Delta t) \int_{-\omega_{\text{rp}}}^{\omega_{\text{rp}}} e^{j\omega(t-k\Delta t)} d\omega$$

$$= \frac{1}{2\omega_{\text{rp}}} \sum_{k=-\Gamma}^{\Gamma} x(k\Delta t) \cdot \left(\frac{1}{j(t-k\Delta t)} e^{j\omega(t-k\Delta t)} \right) \Big|_{-\omega_{\text{rp}}}^{\omega_{\text{rp}}}$$

$$= \sum_{k=-\Gamma}^{\Gamma} x(k\Delta t) \cdot \frac{1}{\omega_{\text{rp}}(t-k\Delta t)} \cdot \frac{e^{j\omega_{\text{rp}}(t-k\Delta t)} - e^{-j\omega_{\text{rp}}(t-k\Delta t)}}{2j}$$

$$= \sum_{k=-\Gamma}^{\Gamma} x(k\Delta t) \frac{\sin \omega_{\text{rp}}(t-k\Delta t)}{\omega_{\text{rp}}(t-k\Delta t)}.$$
(1.2)

Замечания

1) В (1.2) сигнал x(t) представлен в виде суммы взвешенных и сдвинутых во времени функций вида $\frac{\sin\alpha}{\alpha}$; в той точке на оси времени, где одна из этих функций равна 1 (например, при $t=k'\Delta t$), все другие функции (соответствующие $k\neq k'$) равны 0.

- 2) Интерполяционная формула (1.2) позволяет точно восстанавливать значение x(t) в любой момент времени, но для этого нужно знать бесконечное число выборочных значений x(t) на всей оси времени от $-\Gamma$ до $+\Gamma$.
- 3) Условия теоремы выполнены при любом $\Delta t \leq \frac{\pi}{\omega_{\text{гр}}}$; знак < при этом эквивалентен принятию за границу спектра частоты, большей $\omega_{\text{гр}}$.
- 4) На практике ни у какого реального физического сигнала x(t) спектр $S(j\omega)$ не бывает ограниченным. Обычно он имеет «хвосты», уходящие на бесконечность. Чтобы воспользоваться все же интерполяционной формулой (1.2), граничные частоты $-\omega'_{\text{гр}}$ и $\omega'_{\text{гр}}$ назначаются из соображений относительно малой площади под «отбрасываемыми» хвостами. Если теперь брать выборки с интервалом $\Delta t = 1/(2f_{\text{гр}}')$, $f_{\text{гр}}' = \omega_{\text{гр}}'/(2\pi)$, то по формуле (1.2) будет восстановлен сигнал x'(t), спектр которого располагается в интервале $[-\omega_{ extsf{TD}}',\omega_{ extsf{TD}}')$ и равен сумме части спектра $\mathit{S}(\mathit{j}\omega)$ исходного сигнала, приходящейся на указанный интервал частот, с попадающими в этот интервал хвостами *всех* копий $S(j\omega)$, возникающих в результате периодического повторения $S(j\omega)$ вдоль оси частот с периодом $2\omega'_{rn}$. В результате сигнал x'(t)будет совпадать с x(t) в моменты взятия выборок, но будет отличаться от x(t) на интервалах между моментами взятия выборок. Сигнал x'(t) оказывается «более медленным» (изменяющимся более плавно), поскольку в его спектре нет высокочастотных составляющих сигнала x(t), содержащихся в «отбрасываемых хвостах» спектра $S(j\omega)$. Отличие x'(t) от x(t) тем меньше, чем большей выбирается граничная частота ω_{rp}' и чем меньше площадь в отбрасываемых хвостах.
- 5) По историческим причинам теорему о выборках называют также теоремой Котельникова (Владимир Александрович Котельников, 1908–2005) и теоремой Шеннона [Клод Элвуд Шеннон (Claude Elwood Shannon), 1916–2001], а частоту $f_{\sf Гр}$ частотой Найквиста [Гарри Найквист (Harry Nyquist), 1889–1976].

2. Переход из временной области в частотную

Если сигнал x(t) ограничен во времени интервалом [0, T) (то есть равен нулю вне этого интервала; T — длительность сигнала [c]), то его спектр $S(j\omega)$ может быть полностью восстановлен по отсчетным значениям (выборкам), взятым вдоль оси частот ω через равные промежутки длины $\Delta\omega = 2\pi/T$ [рад/с].

Чтобы убедиться в справедливости этого утверждения, достаточно в предыдущем рассуждении *одновременно* осуществить замену переменных согласно следующей таблице [1]:

время <i>t</i> [c]	\rightarrow	частота ω [рад/с]
частота ω [рад/с]	\rightarrow	время <i>t</i> [c]
интервал частот, в пределах которого спектр сигнала не равен нулю, $2\omega_{\rm rp}$ [рад/с]	→	длительность сигнала T [c]
интервал взятия выборок по оси времени $\Delta t = \pi / \omega_{\Gammap} [c]$	→	интервал взятия выборок по оси частот $\Delta \omega = 2\pi/T$ [рад/с]

Тогда в силу известного свойства симметрии преобразования Фурье

$$S(j\omega) = \sum_{n=-\Gamma}^{\Gamma} S(jn\Delta\omega) \frac{\sin\frac{T}{2}(\omega - n\Delta\omega)}{\frac{T}{2}(\omega - n\Delta\omega)}, \ \Delta\omega = 2\pi/T.$$
 (2.1)

Замечания

- Замечания, сделанные в отношении собственно теоремы о выборках в полной мере приложимы и к утверждению, относящемуся к отсчетам вдоль частотной оси.
- 7) Строго говоря, спектр $S(j\omega)$ сигнала x(t) конечной длительности имеет бесконечную протяженность

8) Вывод соотношения (2.1) предполагает периодическое повторение сигнала x(t) вдоль оси времени с периодом, равным длительности сигнала T. Поэтому коэффициенты ряда Фурье, посредством которого представляется это периодическое продолжение, образуют линейчатый спектр, состоящий из гармоник, кратных «основной частоте» $2\pi/T$. Амплитуды гармоник линейчатого спектра с точностью до коэффициента 1/T совпадают со значениями выборок $S(jn\Delta\omega)$ сплошного спектра $S(j\omega)$ «одиночного импульса», каким является исходный сигнал x(t), равный нулю за пределами интервала [0,T).

3. Сигнал с N степенями свободы

Всегда приходится иметь дело с сигналом x(t) конечной длительности T. Если не представляется возможным исследовать спектр $S(j\omega)$ такого сигнала аналитически, то на основании тех или иных соображений ограничиваются конечным интервалом частот $[-\omega_{\rm Tp},\,\omega_{\rm Tp})$, пренебрегая частью спектра, лежащей за пределами этого интервала.

Естественно выбрать интервал Δt , с которым будут браться выборки сигнала x(t) вдоль оси времени, равным $1/(2f_{\sf Fp}) = \pi/\omega_{\sf Fp}$. Тогда полное число временных выборок будет равно

$$N = T / \Delta t = 2T f_{\mathsf{\Gamma}\mathsf{p}}$$
.

Но согласно теореме о выборках вдоль оси частот для описания спектра $S(j\omega)$ сигнала x(t) длительности T достаточно взять выборочные значения спектра $S(j\omega)$, отстоящие одно от другого по оси частот на $\Delta\omega=2\pi/T$. При этом полное число частотных выборок также равно N:

$$\frac{2\omega_{\rm rp}}{\Delta\omega} = \frac{\frac{2\pi}{\Delta t}}{\frac{2\pi}{T}} = \frac{T}{\Delta t} = N \ .$$

Спрашивается: как связаны между собой значения выборок, которые берутся вдоль оси времени и вдоль оси частот?

4. Непосредственный переход от дискретного сигнала $x(k\Delta t),\ k\Delta t\in[0,T),\ \kappa$ дискретному спектру $S(jn\Delta\omega),\ n\Delta\omega\in[-\omega_{\text{гр}},\ \omega_{\text{гр}})$

По условиям задачи

$$x(t) = \sum_{k=0}^{N-1} x(k\Delta t) \frac{\sin \omega_{\text{rp}}(t - k\Delta t)}{\omega_{\text{rp}}(t - k\Delta t)},$$

$$\Delta t = \frac{T}{N} = \frac{1}{2f_{\text{rp}}} = \frac{\pi}{\omega_{\text{rp}}}.$$
(4.1)

Подставим x(t) в (0.1):

$$S(j\omega) = \int_{-\Gamma}^{\Gamma} x(t) e^{-j\omega t} dt$$

$$= \int_{-\Gamma}^{\Gamma} \sum_{k=0}^{N-1} x(k\Delta t) \frac{\sin \omega_{\text{rp}}(t-k\Delta t)}{\omega_{\text{rp}}(t-k\Delta t)} e^{-j\omega t} dt$$

$$= \Delta t \cdot \sum_{k=0}^{N-1} x(k\Delta t) e^{-j\omega k\Delta t}$$
(4.2)

при $\,\omega \in [-\omega_{\text{гр}},\omega_{\text{гр}})\,.\,[$ Вывод (4.2) см. в Приложении 2.]

Для $\omega = n \cdot \Delta \omega$, где

$$\Delta\omega = \frac{2\pi}{T} = \frac{2\pi}{N \cdot \Delta t} = \frac{2\pi}{N \cdot [1/(2f_{\text{Fp}})]} = \frac{2\omega_{\text{Fp}}}{N},$$

$$S(jn\Delta\omega) = \Delta t \cdot \sum_{k=0}^{N-1} x(k\Delta t) e^{-jnk \cdot \Delta\omega \cdot \Delta t}, \ n\Delta\omega \in [-\omega_{\text{Fp}}, \omega_{\text{Fp}}). \tag{4.3}$$

Но

$$\Delta\omega \cdot \Delta t = \frac{2\omega_{\mathsf{rp}}}{N} \cdot \frac{\pi}{\omega_{\mathsf{rp}}} = \frac{2\pi}{N},$$

поэтому

$$S(jn\Delta\omega) = \Delta t \cdot \sum_{k=0}^{N-1} x(k\Delta t) e^{-jnk \cdot \frac{2\pi}{N}}, \ n\Delta\omega \in [-\omega_{\mathsf{rp}}, \omega_{\mathsf{rp}}). \tag{4.4}$$

Периодичность $S(jn\Delta\omega)$ по n c периодом N

Пусть $n = n_0 + m \cdot N$, где m – целое, тогда

$$S(jn\Delta\omega) = \Delta t \sum_{k=0}^{N-1} x(k\Delta t) e^{-jk(n_0 \frac{2\pi}{N} + mN \frac{2\pi}{N})}$$
$$= \Delta t \sum_{k=0}^{N-1} x(k\Delta t) e^{-jkn_0 \frac{2\pi}{N}} \underbrace{e^{-jkm2\pi}}_{=1} = S(jn_0\Delta\omega).$$

Принято под дискретным спектром в рассматриваемом случае понимать

$$S(jn\Delta\omega) = \Delta t \cdot \sum_{k=0}^{N-1} x(k\Delta t) e^{-jnk \cdot \frac{2\pi}{N}}, \ n = 0, 1, ..., N-1,$$
 (4.5)

считая по умолчанию, что величины $S(jn\Delta\omega)$ с индексами $n=\frac{N}{2},\frac{N}{2}+1,...,$

N-1 отображают часть спектра, относящуюся к отрицательным частотам.

5. Непосредственный переход от дискретного спектра

 $S(jn\Delta\omega),\ n\Delta\omega\in[-\omega_{\text{гр}},\ \omega_{\text{гр}}),\ \kappa$ дискретному сигналу $x(k\Delta t),\ k\Delta t\in[0,T)$

По теореме о выборках вдоль оси частот

$$S(j\omega) = \sum_{n=-\frac{N}{2}}^{\frac{N}{2}-1} S(jn\Delta\omega) \frac{\sin\frac{T}{2}(\omega - n\Delta\omega)}{\frac{T}{2}(\omega - n\Delta\omega)},$$
 (5.1)

где $n\Delta\omega \in [-\omega_{\mathsf{\Gamma}\mathsf{p}}, \omega_{\mathsf{\Gamma}\mathsf{p}}),$

$$\Delta \omega = \frac{2\omega_{\mathsf{rp}}}{N} = \frac{4\pi f_{\mathsf{rp}}}{T / \Delta t} = \frac{2\pi}{T} \underbrace{2f_{\mathsf{rp}}\Delta t}_{-1}.$$

Подставим $S(j\omega)$ в (0.2):

$$x(t) = \frac{1}{2\pi} \int_{-\Gamma}^{\Gamma} S(j\omega) e^{j\omega t} d\omega$$

$$= \frac{1}{2\pi} \int_{-\Gamma}^{\Gamma} \sum_{n=-\frac{N}{2}}^{\frac{N}{2}-1} S(jn\Delta\omega) \frac{\sin\frac{T}{2}(\omega - n\Delta\omega)}{\frac{T}{2}(\omega - n\Delta\omega)} e^{j\omega t} d\omega$$

$$= \frac{1}{T} \sum_{n=-\frac{N}{2}}^{\frac{N}{2}-1} S(jn\Delta\omega) e^{jn\Delta\omega t} \text{ при } t \in [-\frac{T}{2}, \frac{T}{2}).$$
(5.2)

[Вывод (5.2) см. в Приложении 3.]

Для
$$t = k \cdot \Delta t$$
, где $\Delta t = \frac{T}{N} = \frac{\pi}{\omega_{\sf rp}} = \frac{1}{2f_{\sf rp}}$,

$$x(k\Delta t) = \frac{1}{T} \sum_{n=-\frac{N}{2}}^{\frac{N}{2}-1} S(jn\Delta\omega) e^{jnk\cdot\Delta\omega\cdot\Delta t} \text{ при } k\Delta t \in [-\frac{T}{2}, \frac{T}{2}).$$
 (5.3)

Но

$$\Delta\omega \cdot \Delta t = \frac{2\omega_{\mathsf{rp}}}{N} \cdot \frac{\pi}{\omega_{\mathsf{rp}}} = \frac{2\pi}{N},$$

поэтому

$$x(k\Delta t) = rac{1}{T} \sum_{n=-rac{N}{2}}^{rac{N}{2}-1} S(jn\Delta\omega) \mathrm{e}^{jnkrac{2\pi}{N}}$$
 при $k\Delta t \in [-rac{T}{2},rac{T}{2})$

или, в силу периодичности $S(jn\Delta\omega)$ по n с периодом N,

$$x(k\Delta t) = \frac{1}{T} \sum_{n=0}^{N-1} S(jn\Delta\omega) e^{jnk\frac{2\pi}{N}}$$
 при $k\Delta t \in [-\frac{T}{2}, \frac{T}{2})$. (5.4)

Поскольку утверждение теоремы о выборках по оси частот опирается на периодическое повторение исходного сигнала x(t), заданного на отрезке [0,T), интервалу времени $t\in [-T/2,0)$ соответствует вторая, более поздняя половина исходного сигнала x(t). Следовательно, условие $k\Delta t\in [-\frac{T}{2},\frac{T}{2})$ в (5.4) эквивалентно перебору точек отсчета по оси времени со значениями k от $-\frac{N}{2}$ до $\frac{N}{2}-1$.

Периодичность $x(k\Delta t)$ по k с периодом N

Пусть $k = k_0 + m \cdot N$, где m – целое, тогда

$$x(k\Delta t) = \frac{1}{T} \sum_{n=0}^{N-1} S(jn\Delta\omega) e^{jn(k_0 \frac{2\pi}{N} + mN \frac{2\pi}{N})}$$
$$= \frac{1}{T} \sum_{n=0}^{N-1} S(jn\Delta\omega) e^{jk_0 n \frac{2\pi}{N}} \underbrace{e^{jnm2\pi}}_{=1} = x(k_0 \Delta t).$$

Таким образом,

$$x(k\Delta t) = \frac{1}{T} \sum_{n=0}^{N-1} S(jn\Delta\omega) e^{jnk\frac{2\pi}{N}}, \ k = 0, 1, ..., N-1.$$
 (5.5)

6. Дискретное преобразование Фурье

Согласно (4.5) и (5.5) для $\left\{S(jn\Delta\omega),\ n=0,\,1,\,...,\,N-1\right\}$ и $\left\{x(k\Delta t),\,k=0,\,1,\,...,\,N-1\right\}$ имеем:

$$S(jn\Delta\omega) = \Delta t \cdot \sum_{k=0}^{N-1} x(k\Delta t) e^{-jnk \cdot \frac{2\pi}{N}}, \ n = 0, 1, ..., N-1,$$
 (6.1)

$$x(k\Delta t) = \frac{1}{T} \sum_{n=0}^{N-1} S(jn\Delta\omega) e^{jnk\frac{2\pi}{N}}, \ k = 0, 1, ..., N-1,$$
 (6.2)

где $\Delta t = \frac{T}{N}$ и $\Delta \omega = \frac{2\omega_{\sf Гр}}{N}$, T — длительность сигнала, а $[-\omega_{\sf Гр}, \omega_{\sf Гр})$ — интервал частот, которым ограничен спектр этого сигнала.

Взаимная однозначность (6.1) и (6.2).

Несовершенство (6.1) и (6.2):

- 1) Знание временных выборок в данном случае позволяет получить лишь приближенное представление о промежуточных значениях непрерывной функции x(t) в точках на оси времени между моментами взятия выборок. Спектр сигнала x'(t), восстанавливаемого по формуле (4.1), является суммой части спектра $S(j\omega)$ исходного сигнала x(t), попадающей в интервал $[-\omega_{\rm TP},\,\omega_{\rm TP})$, с отбрасываемыми хвостами всех копий $S(j\omega)$ при периодическом продолжении $S(j\omega)$ влево и вправо вдоль оси частот с периодом $2\omega_{\rm TD}$.
- 2) На практике бывает трудно удовлетворить требованиям, предъявляемым к сигналу x(t) (абсолютная интегрируемость и выполнение условий Дирихле), чтобы можно было, строго говоря, надеяться получить выборочные значения $S(jn\Delta\omega)$ его спектральной плотности.

Простой пример:

Если x(t) — гармоническое колебание частоты ω , причем на интервале [0,T) укладывается целое число периодов этого колебания, то при периодическом повторении сигнала x(t) с периодом T мы имеем на всей оси времени синусоиду частоты ω , и спектральная плотность такого сигнала состоит

из двух δ -функций на частотах $-\omega$ и ω ; очевидно, что соотношение (6.1) ни при каких обстоятельствах такого результата нам не даст.

3) То, что при дискретизации спектра всегда имеется в виду периодическое повторение сигнала, заданного на интервале [0,T) (см. 2), подталкивает нас к тому, чтобы отказаться от обращения к спектральной плотности $S(j\omega)$ в пользу перехода к линейчатому спектру, компоненты которого были бы амплитудами гармоник соответствующего ряда Фурье.

Поэтому принято вместо выборочных значений $S(jn\Delta\omega)$ (с размерностью [В · с], или, что то же самое, [В/Гц]) использовать отсчеты

$$S_n = \frac{1}{\Delta t} S(jn\Delta\omega)$$

(с размерностью [В]), а временные отсчеты переобозначить:

$$x_k = x(k\Delta t)$$
.

В результате подстановки $S(jn\Delta\omega) = \Delta t \cdot S_n$ равенства (6.1) и (6.2) переходят в прямое дискретное преобразование Фурье (прямое ДПФ)

$$S_n = \sum_{k=0}^{N-1} x_k e^{-jnk \cdot \frac{2\pi}{N}}, \quad n = 0, 1, ..., N-1,$$
 (6.3)

и обратное дискретное преобразование Фурье (обратное ДПФ)

$$x_k = \frac{1}{N} \sum_{n=0}^{N-1} S_n e^{jnk \frac{2\pi}{N}}, \ k = 0, 1, ..., N-1.$$
 (6.4)

В общем случае дискретное преобразование Фурье применяется к произвольным ограниченным числовым наборам $\{x_k, k=0,1,...,N-1\}$ и $\{S_n, n=0,1,...,N-1\}$ любой физической природы.

Отсутствие в формулах (6.3) и (6.4) какого-либо реального временного параметра T или Δt (размерности [c]) означает, что частота дискретизации вдоль оси времени, равная $1/\Delta t$, принята равной 1.

Выражения для S_n и x_k , задаваемые формулами (6.3) и (6.4), не теряют смысла при n и/или k, выходящими за пределы интервала от 0 до N-1, в силу периодичности S_n и x_k по n и k соответственно с периодом N.

7. Физический смысл дискретного преобразования Фурье

Возвращаясь к электрическим сигналам, напомним правило, известное из аналогового описания сигналов и их спектров:

если $x_1(t)$ – одиночный «импульс» произвольного вида длительности T:

$$x_1(t) = \begin{cases} 0 \text{ при } t < -T/2 \\ x(t) \text{ при } -T/2 \le t \le T/2 \\ 0 \text{ при } t > T/2 \end{cases} ,$$

и $S^{\left\{ {{{x_l}}(t)} \right\}}(j\omega)$ – его спектральная плотность,

а $x_2(t)$ — результат неограниченного повторения x(t) влево и вправо вдоль оси времени с периодом T:

$$x_2(t) = \begin{cases} x(t) \text{ при } -T/2 \leq t \leq T/2 \\ x(t \pm n \cdot T) = x(t) \text{ при } -\Gamma & < t < \Gamma & \text{и целом } n \end{cases},$$

и $\ C_n^{\left\{x_2(t)
ight\}} - \ n$ - й коэффициент его ряда Фурье в комплексной форме,

то из сравнения выражений для значения $S^{\{x_1(t)\}}(j\omega)$ в точке $n\frac{2\pi}{T}$ на оси частот и коэффициента $C_n^{\{x_2(t)\}}$ согласно (0.1) и (0.4) соответственно

$$S^{\{x_1(t)\}}(jn\frac{2\pi}{T}) = \int_{-T/2}^{T/2} x(t) e^{-jn\frac{2\pi}{T}t} dt$$

$$C_n^{\{x_2(t)\}} = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-jn\frac{2\pi}{T}t} dt$$

следует, что с точностью до множителя $\frac{1}{T}$ они совпадают:

$$C_n^{\left\{x_2(t)\right\}} = \frac{1}{T} \cdot S^{\left\{x_1(t)\right\}} \left(jn\frac{2\pi}{T}\right).$$

Другими словами, спектр одиночного «импульса» можно рассматривать как огибающую линейчатого спектра периодической последовательности таких «импульсов».

Применительно к дискретному описанию сигнала x(t) конечной длительности T с N степенями свободы согласно (4.5) и (6.3) получим:

$$\frac{1}{T} \cdot S(jn\Delta\omega) = \frac{\Delta t}{T} \cdot \sum_{k=0}^{N-1} x(k\Delta t) e^{-jnk \cdot \frac{2\pi}{N}} = \frac{1}{N} \cdot S_n$$

или, с учетом того, что $\Delta \omega = \frac{2\pi}{T}$,

$$S_n = N \cdot \left\{ \frac{1}{T} \cdot S(jn \frac{2\pi}{T}) \right\}.$$

Следовательно, n-е значение дискретного преобразования Фурье преоставляет собой умноженную на N амплитуду n-й гармоники ряда Фурье для сигнала, являющегося результатом периодического повторения исходного сигнала x(t) вдоль оси времени с периодом T.

Инструкция по работе с MATLAB

Прежде чем приступить к выполнению упражнений, предусмотренных заданием, *создайте* в директории **C:\Students** *свою индивидуальную директорию*, имя которой должно начинаться с номера учебной группы студента и содержать его фамилию латинскими буквами, и *скопируйте* все содержимое папки **References\Lab_22** в свою индивидуальную директорию.

Запустите с рабочего стола MATLAB R2006а. В верхнем меню открывшегося окна MATLAB (это окно носит название Command Window) выберите опцию Desktop и в ней обратитесь к выбору текущей директории Current Directory. Воспользуйтесь кнопками перехода вверх по дереву диска С:, которые находятся справа от верхнего горизонтального окна в Current Directory, и добейтесь того, чтобы в указанном окне возникло обращение к вашей индивидуальной директории: C:\Students\ваша_индивидуальная_директория. Выберите имя одного из упражнений с расширением .m, например, ex22_1.m, и нажмите Enter. (Обратите внимание на то, что в верхнем горизонтальном окне MATLAB теперь будет постоянно удерживаться имя вашей индивидуальной директории.)

В результате выбора вами одного из упражнений слева от окна **MATLAB** возникнет новое большое окно **Editor** –

C:\Students\ваша_индивидуальная_директория\имя_выбранного_упражнения.т.

Теперь вы готовы к работе в **MATLAB**. Если вы впервые обращаетесь к этой системе, то ваши возможные действия могут состоять в том, чтобы скопировать пример обращения из окна **Editor** — ... в окно **MATLAB**, нажать **Enter** и осуществить наблюдение за работой выбранной программы (например, вы можете поочередно просмотреть графики **Figure** созданные ею).

Если вы хотите снова запустить данную программу с новыми значениями входных параметров, то, оставаясь в командном окне **Command Window** (в окне **MATLAB**), скопируйте предыдущее обращение к этой программе в место, указываемое мигающим приглашением продолжить работу (вертикальная черта справа от значка >>), измените значения тех или иных входных параметров в созданной вами копии обращения к данной программе, переместитесь на конец строки и нажмите **Enter**.

Для перехода в режим редактирования (видоизменения) программы выполняемого вами упражнения и одновременного перехода в режим отладки перед очередным запуском выбранной программы согласно указанному в программе правилу (примеру обращения) установите перед последним оператором программы точку останова **Breakpoint**, нажав функциональную клавишу **F12**. В окне **Editor** — ... перед этим оператором возникнет красная точ-

ка. При очередном запуске программы, она выполнится, войдя в режим отладки, и остановится перед выполнением отмеченного оператора (в установленной точке останова **Breakpoint**). В состоянии останова в режиме отладки вы имеете возможность вручную, оставаясь в окне **MATLAB**, узнавать значения любых величин, заданных или вычисленных в вашей программе к моменту останова.

После любых изменений в изучаемой программе необходимо сохранять ее текст обычными средствами (при этом в самой верхней строке окна **Editor** — ... исчезнет знак * после расширения .m в имени данного упражнения; этот значок возникает в качестве предупреждения о необходимости сохранения текста программы при любом ее изменении).

При овладении основными (первоначальными) приемами программмирования в **MATLAB** следует активно пользоваться средствами, предоставляемыми справочной системой **Help**. В частности, выделив любое из слов в программе или в командном окне, можно получить исчерпывающую справку об этой команде или служебном слове, нажав на выделенном слове *правую* кнопку и обратившись к **Help on Selection**.

При наблюдении графиков в окне **Figure** полезно использовать численный вывод координат выбранной точки на любой из выведенных кривых. Для этого среди иконок под верхним горизонтальным меню нужно найти иконку, сопровождаемую подписью **Data Cursor** во всплывающем окне, и нажать на нее. Затем следует подвести мышь к нужному месту на графике и нажать *левую* клавишу. В рамке, возникающей рядом с выделенной точкой, указаны значения абсциссы X: и ординаты Y:. Удерживая левую клавишу мыши нажатой, можно перемещать выделенную точку вместе с ее координатами вдоль выбранной кривой. Если на графике несколько кривых, то каждую из них можно снабдить своим *курсором данных* командой **Create New Datatip** в окне, открывающемся в результате нажатия *правой* клавиши мыши.

Упражнение ex22_1 Одиночное гармоническое колебание

Предполагается, что с данного упражнения начинается знакомство с формой представления в МАТLAB результатов вычислений. Следует обратить внимание на численные значения задаваемых параметров в примере обращения к программе, где частота гармонического колебания $\sin \omega t$ точно равна одному из значений вдоль оси частот, для которых вычисляется прямое БПФ, и поэтому в линейчатом спектре имеется единственная составляющая, абсолютное значение которой равно N/2, а само значение этой составляющей является чисто мнимым (значение действительной части не превосходит 4.5×10^{-13} и представляет собой ошибку вычислений). Если же задать частоту колебаний, не равной целому числу интервалов дискретизации вдоль оси частот, то имеет место «растекание спектра» (из-за наличия разрывов при периодическом повторении данного отрезка сигнала вдоль оси времени), однако при восстановлении сигнала посредством обратного БПФ форма сигнала в точности совпадает с исходной.

В этом и в других упражнениях спектр, как правило, отображается только для положительных частот.

Указания

- 1. Запустите программу ex22_1, выбрав частоту колебаний равной целому числу интервалов дискретизации по оси частот delta_f (f_ целое число). Запишите в рабочей тетради числовые значения ненулевых результатов БПФ. В домашних условиях путем вычисления по формулам (6.3) найдите, какими должны быть эти значения, и сравните результаты расчета с результатами запуска программы ex22_1.
- 2. Замените *синус* в строке 17 на *косинус*, а затем задайте сигнал z в виде *суммы* синусоидальной и косинусоидальной составляющих одной частоты. Для каждого из этих случаев осуществите запуск данной программы и найдите объяснение новым результатам, сравнивая их с тем, что было получено в п. 1.
- 3. Осуществите наблюдение дискретного спектра, когда частота колебания отличается от целого числа интервалов дискретизации по оси частот сначала на 0.1 этого интервала, а затем выбирается точно посередине одного из интервалов delta_f.

	ex22_1.m
1	function ex22_1(N,delta_t,f_)
2	% "Одиночное гармоническое колебание"
3	% N - число выборок во временной области (число степеней свободы,
4	% N должно быть целой степенью 2);
5	% delta_t - интервал, с которым берутся выборки во временной области, [с];
6	% f частота гармонического колебания, выраженная числом интервалов
7	% дискретизации по оси частот (число f не обязательно целое,
8	% оно должно быть в пределах от 0 до N/2-1);
9	% Пример обращения: ex22_1(2^10,1e-6,10);
10	% Т - длительность сигнала [с];
11	% delta_f - интервал между выборками вдоль оси частот [Гц];
12	% f - частота исследуемого гармонического колебания [Гц];
13	T=N*delta_t;
14	delta_f=1/T;
15	f=f_*delta_f;
16	k=0:N-1; tk=delta_t*k;
17	z=sin(2*pi*f*k*delta_t); % z - исследуемое колебание с амплитудой 1 В
18	% Figure 1 - Исходный сигнал как функция времени
19	figure; plot(tk,z); grid on;
20	xlabel('t [s]'); ylabel('z [V]');
21	n=0:N-1; fn=delta_f*n;
22	Z=fft(z); % Z – значения FFT (прямое преобразование) сигнала z
23	ne=fix(5*f_); if ne>N/2 ne=N/2; end % искусственное растягивание оси х
24	% Figure 2 - Модуль значений FFT для n от 0 до ne
25	figure; stem(fn(1:ne),abs(Z(1:ne)),'.'); grid on;
26	xlabel('f [Hz]'); ylabel('abs(fft(z)) [V]');
27	% Figure 3 - Действительная часть значений FFT для n от 0 до ne
28	figure; stem(fn(1:ne),real(Z(1:ne)),'.'); grid on;
29	xlabel('f [Hz]'); ylabel('real(fft(z)) [V]');
30	% Figure 4 - Мнимая часть значений FFT для n от 0 до ne
31	figure; stem(fn(1:ne),imag(Z(1:ne)),'.'); grid on;
32	xlabel('f [Hz]'); ylabel('imag(fft(z)) [V]');
33	z_=ifft(Z); % z результат обратного преобразования Z
34	% Figure 5 - Результат восстановления временной формы сигнала по его FFT
35	figure; plot(tk,z_); grid on;
36	xlabel('t [s]'); ylabel('ifft(Z) [V]');
37	0=0;

Упражнение ех22 2

Сумма двух амплитудно-модулированных колебаний

При обращении к данной программе параметры складываемых АМ-колебаний выбираются так, чтобы их спектры не пересекались и частоты их составляющих (положительные значения) не выходили за пределы интервала $[0,f_{\sf fp})$.

Операторами 54, 55 формируются прямоугольные окна, вырезающие спектры каждого из этих колебаний как в области положительных, так и в области отрицательных частот: функция fliplr(A) осуществляет перестановку элементов массива A в обратном порядке, то есть слева направо; массив $C = [A \ B]$ является результатом объединения массивов A и B путем пристыковывания к элементам массива A справа элементов массива B (операция KOHR).

В результате взятия обратного БПФ для каждого из вырезанных спектров происходит восстановление порознь обоих АМ-колебаний из их смеси («двухканальный приемник»).

Указания

- 1. Запустите программу ex22_2, воспользовавшись предложенными в строках 14, 15 примерами обращения к этой программе или выбрав другие допустимые значения параметров N,...,m2. Примите к сведению результаты наблюдения работы программы ex22_2.
- 2. (Факультативно.) Видоизмените данную программу таким образом, чтобы имелась возможность разделения большего числа амплитудно-модулированных колебаний из их смеси, построив для этого надлежащим образом "прямоугольные окна" w1,w2,... (взамен строк 54, 55), вырезающие нужные части спектра новой смеси u=u1+u2+..., описанной в строках, предшествующих строке, в которой реализуется сложение отдельных АМ-колебаний (в исходной программе ex22_2 это строка 37).

	ex22_2.m
1	function ex22_2(N,delta_t,fc1,ac1,fc2,ac2,AMF1,AMF2,m1,m2)
2	% "Сумма двух амплитудно-модулированных колебаний"
3	% N - число выборок во временной области (число степеней свободы,
4	% N должно быть целой степенью 2);
5	% delta_t - интервал, с которым берутся выборки во временной области, [c];
6	% fc1, fc2 - частоты несущих, выраженные числом интервалов дискретизации
7	% по оси частот (предполагается, что fc2 > fc1);
8	% ас1, ас2 - амплитуды несущих колебаний [В];
9	% AMF1, AMF2 - частоты модулирующих колебаний, выраженные числом
10	% интервалов дискретизации по оси частот (предполагается, что AMF1, AMF2
11	% много меньше fc1, fc2; должны выполняться неравенства:
12	% fc1-AMF1 > 0, fc2+AMF2 < N/2-1, fc2-AMF2 >= fc1+AMF1 + 2);
13	% m1, m2 - коэффициенты (глубина) модуляции;
14	% Пример обращения: ex22_2(2^10,1e-6,20,1,40,1,3,5,0.67,0.67);
15	% Пример обращения: ex22_2(2^10,1e-6,90,1,110,1,5,3,0.67,0.67);
16	% Т - длительность сигнала [с];
17	% delta_f - интервал между выборками вдоль оси частот [Гц];
18	% f01, f02 - частоты несущих [Гц];
19	% F1, F2 - частоты модулирующих колебаний [Гц];
20	T=N*delta_t;
21	delta_f=1/T;
22	f01=fc1*delta_f;
23	F1=AMF1*delta_f;
24	f02=fc2*delta_f;
25	F2=AMF2*delta_f;
26	% у1, у2 - огибающие АМ колебаний;
27	% z1, z2 - несущие 1-го и 2-го колебаний с амплитудой 1 В;
28	% u1, u2 - складываемые АМ колебания;
29	% и - сумма двух АМ колебаний;
30	k=0:N-1; tk=delta_t*k;
31	y1=(1+m1*sin(2*pi*F1*k*delta_t));
32	z1=ac1*sin(2*pi*f01*k*delta_t);
33	u1=y1.*z1;
34	y2=(1+m2*cos(2*pi*F2*k*delta_t));
35	z2=ac2*sin(2*pi*f02*k*delta_t);
36	u2=y2.*z2;
37	u=u1+u2;
38	% Figure 1 - Исходный сигнал как функция времени
39	figure; plot(tk,u); grid on;
40	xlabel('t [s]'); ylabel('u [V]');

	ex22_2.m
41	n=0:N-1; fn=delta_f*n;
42	V=fft(u); % V - значения FFT для суммы двух АМ-колебаний
43	% Figure 2 - Модуль значений FFT для n от 0 до N/2-1
44	figure; stem(fn(1:N/2),abs(V(1:N/2)),'m.'); grid on;
45	xlabel('f [Hz]'); ylabel('abs(fft(u)) [V]');
46	% Figure 3 - Действительная часть значений FFT для n от 0 до N/2-1
47	figure; stem(fn(1:N/2),real(V(1:N/2)),'b.'); grid on;
48	xlabel('f [Hz]'); ylabel('real(fft(u) [V])');
49	% Figure 4 - Мнимая часть значений FFT для n от 0 до N/2-1
50	figure; stem(fn(1:N/2),imag(V(1:N/2)),'g.'); grid on;
51	xlabel('f [Hz]'); ylabel('imag(fft(u) [V])');
52	middle=((fc1+AMF1)+(fc2-AMF2))/2; flrm=floor(middle);
53	% middle - середина между fc1+AMF1 и fc2-AMF2
54	w1=[ones(1,flrm) zeros(1,N/2-flrm)]; w1=[w1 fliplr(w1)];
55	w2=[zeros(1,flrm) ones(1,N/2-flrm)]; w2=[w2 fliplr(w2)];
56	% w1,w2 - "прямоугольные окна", вырезающие части спектра
57	% суммы двух AM колебаний с частотами ниже middle*delta_f и выше
58	% Figure 5 - окна, вырезающие спектры каждого из АМ-колебаний
59	% (правые половины графиков относятся к отрицательным частотам)
60	figure; subplot(2,1,1); plot(fn,w1);
61	grid on; ylim([-0.5 1.5]); xlabel('f [Hz]'); ylabel('w1');
62	subplot(2,1,2); plot(fn,w2);
63	grid on; ylim([-0.5 1.5]); xlabel('f [Hz]'); ylabel('w2');
64	V1=V.*w1; V2=V.*w2;
65	% V1, V2 - вырезанные части спектра V=fft(u);
66	% Figure 6 - Спектры каждого из колебаний порознь
67	% (правые половины графиков относятся к отрицательным частотам)
68	figure; subplot(2,1,1); stem(fn, abs(V1), 'm.');
69	grid on; xlabel('f [Hz]'); ylabel('abs(V1) [V]');
70	subplot(2,1,2); stem(fn, abs(V2), 'm.');
71	grid on; xlabel('f [Hz]'); ylabel('abs(V2) [V]');
72	% v1, v2 - восстанавливаемые слагаемые суммы двух АМ колебаний
73	v1=ifft(V1); v2=ifft(V2);
74	% Figure 7 - АМ-колебание с частотой несущей fc1 как функция времени
75	figure; plot(tk,real(v1),'r'); grid on;
76	xlabel('t [s]'); ylabel('real(ifft(V.*w1)) [V]');
77	% Figure 8 - AM-колебание с частотой несущей fc2 как функция времени
78	figure; plot(tk,real(v2),'g'); grid on;
79	xlabel('t [s]'); ylabel('real(ifft(V.*w2)) [V]');
80	0=0;

Упражнение ex22_3 Одиночный прямоугольный (видео)импульс

Имитируется прохождение прямоугольного импульса через интегрирующую и дифференцирующую цепи. Спектр входного сигнала, который находится с помощью прямого БП Φ , умножается на комплексный коэффициент передачи интегрирующей (дифференцирующей) цепи, и результат умножения подвергается обратному БП Φ .

Комплексный коэффициент передачи каждой из этих цепей вычисляется по известной формуле для тех точек в области положительных частот, для которых оказывается найденным спектр входного сигнала. Об операциях fliplr(A) и $C = [A\ B]$ см. пояснения к упражнению ex22_2; функцией $conj(\cdot)$ в каждой точке берется комплексно-сопряженное (conjugate) число. Указанные действия выполняются операторами в строках 35, 36 для интегрирующей цепи и операторами в строках 55, 56 для дифференцирующей цепи.

Указания

- 1. Воспользуйтесь предлагаемыми в строках 11, 12 примерами обращения к программе ex22_3. В каждом из этих случаев сравните сигналы, изображенные на фиг. 5 и фиг. 9, с сигналами на выходе интегрирующей (дифференцирующей) цепи при аналоговом подходе к решению соответствующей задачи.
 - 2. (Факультативно.) Добавьте в конец программы ex22_3 перед пустым оператором o=o;

```
f0=fn(N/16); nbf=1./(1+i*16*tau*(fn(1:N/2+1)-f0)); nbf_=[nbf(1:N/2) conj(flipIr(nbf(2:N/2+1)))]; figure; plot(n(1:N/2),abs(nbf(1:N/2))); grid on; xlabel('f [Hz]'); ylabel('abs(nbf(1:N/2))); grid on; xlabel('f [Hz]'); ylabel('angle(nbf(1:N/2))); grid on; xlabel('f [Hz]'); ylabel('angle(nbf(1:N/2))) [rad]'); W=nbf_.*U; w=ifft(W); figure; plot(tk,real(w),'r'); grid on; xlabel('t [s]'); ylabel('real(ifft(nbf_.*U)) [V]'); figure; plot(tk,imag(w),'r'); grid on; xlabel('t [s]'); ylabel('imag(ifft(nbf_.*U)) [V]');
```

запомните видоизмененную программу и обратитесь к ней с набором параметров из строки 12. На фиг. 11 и 12 вы увидите амплитудно-частотную и фазовую характеристики узкополосного фильтра (narrow band filter, nbf), а на фиг. 13 «результат прохождения» через него прямоугольного импульса, показанного на фиг. 1. Найдите физическое объяснение характера временной зависимости, изображенной на фиг. 13.

	ex22_3.m
1	function ex22_3(N,delta_t,t0,tp,tau)
2	% "Одиночный прямоугольный (видео) импульс"
3	% N - число выборок во временной области (число степеней свободы,
4	% N должно быть целой степенью 2);
5	% delta_t - интервал, с которым берутся выборки во временной области, [c];
6	% t0 - момент начала импульса, выраженный целым числом delta_t;
7	% tp - длительность импульса, выраженная целым числом delta_t;
8	% значение t0+tp-1 должно быть меньше или равно N;
9	% амплитуда импульса равна 1 В;
10	% tau - постоянная времени интегрирующей (дифференцирующей) цени, [с];
11	% Пример обращения: ex22_3(2^10,1e-6,201,20,1e-5);
12	% Пример обращения: ex22_3(2^10,1e-6,201,400,3e-5);
13	% Т - длительность сигнала [с];
14	% delta_f - интервал между выборками вдоль оси частот [Гц];
15	T=N*delta_t;
16	delta_f=1/T;
17	k=0:N-1; tk=delta_t*k;
18	u1=zeros(1,t0-1);
19	u2=ones(1,tp);
20	u3=zeros(1,N-t0-tp+1);
21	u=[u1 u2 u3];
22	% Figure 1 - Исходный сигнал как функция времени на входе интегрирующей
23	% (дифференцирующей) цепи
24	figure; plot(tk,u,'b'); ylim([-0.2 1.2]); grid on;
25	xlabel('t [s]'); ylabel('u [V]');
26	n=0:N-1; fn=delta_f*n; max_n=min([fix(T/tau) N/2]);
27	U=fft(u);
28	% Figure 2 - Линейчатый спектр исходного сигнала
29	figure; stem(fn(1:N/2),abs(U(1:N/2)),'m.'); grid on;
30	xlabel('f [Hz]'); ylabel('abs(U) [V]');
31	% К - комплексный коэффициент передачи интегрирующей цепи;
32	% int_cir = K(1:N/2) - значения К для положительных частот;
33	% conj(flipIr(K(2:N/2+1))) - значения К для отрицательных частот;
34	% int_cir частотная характеристика интегрирующей цепи в целом
35	K=1./(1+i*2*pi*fn*tau); int_cir=K(1:N/2);
36	int_cir_=[int_cir conj(flipIr(K(2:N/2+1)))];
37	% Figure 3 - Амплитудно-частотная характеристика интегрирующей цепи
38	figure; plot(fn(1:max_n),abs(int_cir(1:max_n))); grid on;
39	xlabel('f [Hz]'); ylabel('abs(int_cir)');
40	% Figure 4 - Фазовая характеристика интегрирующей цепи

	ex22_3.m
41	figure; plot(fn(1:max_n),angle(int_cir(1:max_n))); grid on;
42	xlabel('f [Hz]'); ylabel('angle(int_cir) [rad]');
43	V=int_cir*U;
44	v=ifft(V);
45	% Figure 5 - Действительная часть сигнала на выходе интегрирующей цепи
46	figure; plot(tk,real(v),'r'); grid on;
47	xlabel('t [s]'); ylabel('real(ifft(int cir .*U)) [V]');
48	% Figure 6 - Мнимая часть сигнала на выходе интегрирующей цепи
49	figure; plot(tk,imag(v),'r'); grid on;
50	xlabel('t [s]'); ylabel('imag(ifft(int cir .*U)) [V]');
51	% К - комплексный коэффициент передачи дифференцирующей цепи;
52	% dif_cir = K(1:N/2) - значения К для положительных частот;
53	% conj(flipIr(K(2:N/2+1)) - значения К для отрицательных частот;
54	% dif_cir частотная характеристика дифференцирующей цепи в целом;
55	K=1./(1+1./(i*2*pi*fn*tau)); dif_cir=K(1:N/2);
56	dif_cir_=[dif_cir conj(flipIr(K(2:N/2+1)))];
57	% Figure 7 - Амплитудно-частотная характеристика дифференцирующей цепи
58	figure; plot(fn(1:max_n),abs(dif_cir(1:max_n))); grid on;
59	xlabel('f [Hz]'); ylabel('abs(dif_cir)');
60	% Figure 8 - Фазовая характеристика дифференцирующей цепи
61	figure; plot(fn(1:max_n), [pi/2 angle(dif_cir(2:max_n))]); grid on;
62	xlabel('f [Hz]'); ylabel('angle(dif_cir) [rad]');
63	W=dif_cir*U;
64	w=ifft(W);
65	% Figure 9 - Действительная часть сигнала на выходе дифференцирующей це-
66	figure; plot(tk,real(w),'r'); grid on;
67	xlabel('t [s]'); ylabel('real(ifft(dif cir .*U)) [V]');
68	% Figure 10 - Мнимая часть сигнала на выходе дифференцирующей цепи
69	figure; plot(tk,imag(w),'r'); grid on;
70	xlabel('t [s]'); ylabel('imag(ifft(dif cir .*U)) [V]');
71	0=0;

Упражнение ex22_4 Одиночный радиоимпульс

Данное упражнение позволяет сравнить по ширине спектра два случая: когда огибающая радиоимпульса является прямоугольной и когда во избежание скачков огибающей осуществляется сглаживание радиоимпульса в начале и в конце. Чтобы сравнить между собой эти случаи, следует дважды запустить программу: со значением параметра сглаживания a, равным 0, когда сглаживание отсутствует, и со значением a, отличным от нуля.

В этом упражнении осуществляется косинусоидальное сглаживание (при $a \neq 0$) путем умножения отрезка гармонического колебания на так называемое окно Тьюки. Для этого границы отрезка гармонического колебания раздвигаются по сравнению со случаем отсутствия сглаживания: колебания начинаются в момент времени $t0-a\cdot tp$ и заканчиваются в момент времени $(t0+tp-1)+a\cdot tp$, где t0 — момент начала исходного радиоимпульса с прямоугольной огибающей, а tp — его длительность (t0+tp-1 — момент окончания импульса).

Само окно составляется из трех компонентов: win2, win3 и win4 (операторы 43–45, 47, 49–50). Компонент win2 обеспечивает плавное нарастание амплитуды колебаний в начале по формуле $(1-\cos\phi)/2$, где ϕ изменяется от $-\pi$ до 0 в пределах интервала времени от $t0-a\cdot tp$ до $t0+a\cdot tp$. На протяжении отрезка времени от $t0+a\cdot tp$ до $(t0+tp-1)-a\cdot tp$ значение окна win3 равно 1. Компонент win4 обеспечивает плавное спадание амплитуды колебаний в конце по формуле $(1+\cos\phi)/2$, где ϕ изменяется от 0 до π в пределах интервала времени от $(t0+tp-1)-a\cdot tp$ до $(t0+tp-1)+a\cdot tp$.

Указания

- 1. Обратитесь к программе ex22_4 сначала согласно примеру в строке 15, а затем согласно примеру в строке 16. Ознакомьтесь с тем, насколько более узким становится спектр радиоимпульса в результате сглаживания его формы в начале и в конце.
- 2. (Факультативно.) Попытайтесь преобразовать программу ex22_4 таким образом, чтобы за счет сужения спектров двух радиоимпульсов с различными частотами несущих fc1 и fc2
 оказалось возможным извлечение этих импульсов порознь из их суммы. Сами радиоимпульсы
 могут располагаться на одном и том же отрезке времени или находится на каком-то расстоянии
 один от другого, но их спектры должны почти не пересекаться. Вырезая спектры каждого из
 них подобно тому, как в упражнении ex22_2 производилось разделение двух AM-колебаний путем образования «окон» в частотной области [строки 52–55 в программе ex22_1; в данном случае middle может равняться (fc1+fc2)/2], и применяя к каждой части спектра всей суммы обратное БПФ, получим радиоимпульсы в отдельности, мало отличающиеся от исходных по своей форме.

	ex22_4.m
1	function ex22_4(N,delta_t,t0,tp,A,fc,a,dilation)
2	% "Одиночный радиоимпульс"
3	% N - число выборок во временной области (число степеней свободы,
4	% N должно быть целой степенью 2), N>=2^7;
5	% delta_t - интервал, с которым берутся выборки во временной области, [c];
6	% t0 - момент начала импульса, выраженный целым числом delta_t;
7	% tp - длительность импульса, выраженная целым числом delta_t:
8	% значение t0+tp-1 должно быть меньше или равно N;
9	% А - амплитуда импульса [В];
10	% fc - частота несущей, выраженная числом интервалов дискретизации
11	% по оси частот;
12	% а - параметр косинусоидального сглаживания (t0-a*tp должно быть
13	% больше или равно 1, t0+tp-1+a*tp должно быть меньше или равно N);
14	% dilation - коэффициент растяжения по оси времени (целая степень 2 < N);
15	% Пример обращения: ex22_4(2^10,1e-6,21,20,0.33,256,0.2,16);
16	% Пример обращения: ex22_4(2^10,1e-6,21,20,0.33,256,0.3,16);
17	% Т - длительность сигнала [с]
18	% delta_f - интервал между выборками вдоль оси частот [Гц]
19	% fp - частота заполнения радиоимпульса [Гц]
20	T=N*delta_t;
21	delta_f=1/T;
22	fp=fc*delta_f;
23	k=0:N-1; tk=delta_t*k; t_max=N/dilation;
24	n=0:N-1; fn=delta_f*n;
25	% carrier - несущее колебание для заполнения им видеоимпульса
26	carrier=sin(2*pi*fp*tk);
27	% формирование радиоимпульса и без сглаживания на концах
28	u1=zeros(1,t0-1);
29	u2=A*ones(1,tp);
30	u3=zeros(1,N-t0-tp+1);
31	u=[u1 u2 u3];
32	u=u.*carrier;
33	% Figure 1 - Радиоимпульс как функция времени без сглаживания на концах
34	figure; plot(tk(1:t_max),u(1:t_max),'b'); grid on;
35	xlabel('t [s]'); ylabel('u [V]');
36	U=fft(u);
37	% Figure 2 - Амплитудный спектр радиоимпульса без сглаживания на концах
38	figure; stem(fn(1:N/2),abs(U(1:N/2)),'m.'); grid on;
39	xlabel('f [Hz]'); ylabel('abs(U) [V]');
40	% вычисление граничных точек сглаживающих полупериодов косинусоиды

	ex22_4.m
41	af=floor(a*tp); t0_b=t0-af; t0_a=t0+af; te_b=t0+tp-1-af; te_a=te_b+2*af;
42	% формирование "косинусоидального окна" win
43	win1=zeros(1,t0_b-1);
44	if af~=0
45	dphi=pi/(2*af);
46	kw2=t0_b:t0_a-1;
47	win2=(1-cos((kw2-t0_b)*dphi))/2;
48	end
49	win3=ones(1,te_b-t0_a+1);
50	if af~=0
51	kw4=te_b+1:te_a;
52	win4=(1+cos((kw4-te_b)*dphi))/2;
53	end
54	win5=zeros(1,N-te_a);
55	if af~=0
56	win=[win1 win2 win3 win4 win5];
57	else
58	win=[win1 win3 win5];
59	end
60	% Figure 3 - Временное окно win, обеспечивающее сглаживание радиоимпульса
61	% на концах
62	figure; plot(tk(1:t_max), win(1:t_max), 'k'); ylim([-0.2 1.2]); grid on;
63	xlabel('t [s]'); ylabel('win');
64	% формирование растянутого радиоимпульса с прямоугольной огибающей,
65	% в отношении которого предстоит сглаживание на концах
66	u1=zeros(1,t0_b-1);
67	u2=A*ones(1,tp+2*af);
68	u3=zeros(1,N-te_a);
69	u=[u1 u2 u3];
70	% умножение радиоимпульса с прямоугольной огибающей на "окно"
71	u=u.*win;
72	u=u.*carrier;
73	% Figure 4 - Радиоимпульс со сглаженными концами как функция времени
74	figure; plot(tk(1:t_max),u(1:t_max),'b'); grid on;
75	xlabel('t [s]'); ylabel('u [V]');
76	U=ff(u);
77	% Figure 5 - Амплитудный спектр радиоимпулса со сглаженными концами
78	figure; stem(fn(1:N/2),abs(U(1:N/2)),'m.'); grid on;
79	xlabel('f [Hz]'); ylabel('abs(U) [V]');
80	0=0;

Приложение 1. Вывод (2.1)

Согласно условию теоремы

$$x(t) = \begin{cases} \frac{1}{2\pi} \int_{-\Gamma}^{\Gamma} S(j\omega) e^{j\omega t} d\omega & \text{при } t \in [-\frac{T}{2}, \frac{T}{2}), \\ 0 & \text{при } t < -\frac{T}{2} \text{ и } t \ge \frac{T}{2}. \end{cases}$$
 (П1.1)

Продолжим x(t) периодически вдоль оси времени t с периодом T и представим периодически продолженный сигнал $x^{\wedge}(t)$ в виде ряда Фурье:

$$x^{\wedge}(t) = \sum_{n=-1}^{\uparrow} E_n e^{jn\frac{2\pi}{T}t}$$
,

где

$$E_n = \frac{1}{T} \int_{-T/2}^{T/2} x^{\wedge}(t) e^{-jn\frac{2\pi}{T}t} dt = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-j(n\Delta\omega)t} dt = \frac{1}{T} S(n\Delta\omega).$$

Подставляя (П1.1) в (0.1) и имея в виду, что в пределах [-T/2, T/2) справедливо равенство $x(t) = x^{\wedge}(t)$, получим

$$\begin{split} S(j\omega) &= \int\limits_{-\Gamma}^{\Gamma} x(t) \, \mathrm{e}^{-j\omega t} \, dt = \int\limits_{-T/2}^{T/2} \sum\limits_{n=-\Gamma}^{\Gamma} \frac{1}{T} S(n\Delta\omega) \, \mathrm{e}^{-j(n\Delta\omega)t} \, \mathrm{e}^{-j\omega t} \, dt = \\ &= \frac{1}{T} \sum\limits_{n=-\Gamma}^{\Gamma} S(n\Delta\omega) \int\limits_{-T/2}^{T/2} \mathrm{e}^{-j(\omega-n\Delta\omega)t} \, dt = \\ &= \frac{1}{T} \sum\limits_{n=-\Gamma}^{\Gamma} S(n\Delta\omega) \left(-\frac{1}{j(\omega-n\Delta\omega)} \mathrm{e}^{-j(\omega-n\Delta\omega)t} \right) \bigg|_{-T/2}^{T/2} = \\ &= \sum\limits_{n=-\Gamma}^{\Gamma} S(n\Delta\omega) \left[-\frac{1}{\frac{T}{2}(\omega-n\Delta\omega)} \cdot \frac{\mathrm{e}^{-j(\omega-n\Delta\omega)\frac{T}{2}} - \mathrm{e}^{j(\omega-n\Delta\omega)\frac{T}{2}}}{2j} \right] = \\ &= \sum\limits_{n=-\Gamma}^{\Gamma} S(jn\Delta\omega) \frac{\sin\frac{T}{2}(\omega-n\Delta\omega)}{\frac{T}{2}(\omega-n\Delta\omega)}. \end{split}$$

Приложение 2. Вывод (4.2)

$$S(j\omega) = \int_{-\Gamma}^{\Gamma} x(t) e^{-j\omega t} dt$$

$$= \int_{-\Gamma}^{\Gamma} \sum_{k=0}^{N-1} x(k\Delta t) \frac{\sin \omega_{\mathsf{TP}}(t - k\Delta t)}{\omega_{\mathsf{TP}}(t - k\Delta t)} e^{-j\omega t} dt$$

$$= \sum_{k=0}^{N-1} x(k\Delta t) \int_{-\Gamma}^{\Gamma} \frac{\sin \omega_{\mathsf{TP}}(t - k\Delta t)}{\omega_{\mathsf{TP}}(t - k\Delta t)} e^{-j\omega t} dt$$

$$= \dots$$

$$= \dots$$
(II2.1)

Произведем в I_1 замену переменных: $t - k\Delta t = t^*, \ dt = dt^*, \ t = t^* + k\Delta t.$ Получим

$$I_{1} = \int_{-\Gamma}^{\Gamma} \frac{\sin \omega_{\text{rp}} t^{*}}{\omega_{\text{rp}} t^{*}} e^{-j\omega t^{*}} e^{-j\omega k\Delta t} dt^{*}$$

$$= e^{-j\omega k\Delta t} \int_{-\Gamma}^{\Gamma} \frac{\sin \omega_{\text{rp}} t}{\omega_{\text{rp}} t} e^{-j\omega t} dt.$$
(II2.2)

Чтобы найти I_2 , решим другую задачу. Пусть

$$\tilde{S}(j\omega) = \begin{cases} A \cdot \frac{\pi}{\omega_{\text{rp}}} = A \cdot \Delta t & \text{при} \quad -\omega_{\text{rp}} \leq \omega < \omega_{\text{rp}}, \\ \\ 0 & \text{при} \quad \omega < -\omega_{\text{rp}} & \text{и} \quad \omega \geq \omega_{\text{rp}} \end{cases}$$

(размерность $\tilde{S}(j\omega)$ [B·c]). Тогда

$$\tilde{x}(t) = \frac{1}{2\pi} \int_{-\Gamma}^{\Gamma} \tilde{S}(j\omega) e^{j\omega t} d\omega = \frac{1}{2\pi} A \frac{\pi}{\omega_{\text{rp}}} \int_{-\omega_{\text{rp}}}^{\omega_{\text{rp}}} e^{j\omega t} d\omega =$$

$$= \frac{A}{2\omega_{\text{rp}}} \frac{1}{jt} e^{j\omega t} \Big|_{-\omega_{\text{rp}}}^{\omega_{\text{rp}}} = A \frac{e^{j\omega_{\text{rp}}t} - e^{-j\omega_{\text{rp}}t}}{2j\omega_{\text{rp}}t} = A \frac{\sin \omega_{\text{rp}}t}{\omega_{\text{rp}}t}$$

(размерность $\tilde{x}(t)$ [B]). В силу взаимной однозначности преобразования Фурье

$$I_2 = \begin{cases} \Delta t & \text{при } \omega \in [-\omega_{\text{гр}}, \omega_{\text{гр}}), \\ 0 & \text{вне интервала } [-\omega_{\text{гр}}, \omega_{\text{гр}}) \end{cases}$$
 (П2.3)

(размерность I_2 [c]).

Подставляем (П2.3) в (П2.2):

$$I_1 = \Delta t \cdot \mathrm{e}^{-j\omega k \Delta t}$$
 при $\omega \in [-\omega_{\mathsf{\Gamma}\mathsf{P}}, \omega_{\mathsf{\Gamma}\mathsf{P}})$.

Следовательно, выкладки, прерванные в ($\Pi 2.1$), можно продолжить следующим образом:

$$S(j\omega) = \dots = \Delta t \cdot \sum_{k=0}^{N-1} x(k\Delta t) e^{-j\omega k\Delta t}$$
 при $\omega \in [-\omega_{\mathsf{\Gamma}\mathsf{p}}, \omega_{\mathsf{\Gamma}\mathsf{p}}).$

Приложение 3. Вывод (5.2)

$$x(t) = \frac{1}{2\pi} \int_{-\Gamma}^{\Gamma} S(j\omega) e^{j\omega t} d\omega$$

$$= \frac{1}{2\pi} \int_{-\Gamma}^{\Gamma} \sum_{n=-\frac{N}{2}}^{\frac{N}{2}-1} S(jn\Delta\omega) \frac{\sin\frac{T}{2}(\omega - n\Delta\omega)}{\frac{T}{2}(\omega - n\Delta\omega)} e^{j\omega t} d\omega$$

$$= \sum_{n=-\frac{N}{2}}^{\frac{N}{2}-1} S(jn\Delta\omega) \cdot \frac{1}{2\pi} \int_{-\Gamma}^{\Gamma} \frac{\sin\frac{T}{2}(\omega - n\Delta\omega)}{\frac{T}{2}(\omega - n\Delta\omega)} e^{j\omega t} d\omega$$

$$= \dots$$

$$= \dots$$
(II3.1)

Произведем в I_1' замену переменных: $\omega - n\Delta\omega = \omega^*$, $d\omega = d\omega^*$, $\omega = \omega^* + n\Delta\omega$. Получим

$$I_1' = \frac{1}{2\pi} \int_{-\Gamma}^{\Gamma} \frac{\sin \omega^* \frac{T}{2}}{\omega^* \frac{T}{2}} e^{j\omega^* t} e^{jn\Delta\omega t} d\omega^* = e^{jn\Delta\omega t} \underbrace{\frac{1}{2\pi} \int_{-\Gamma}^{\Gamma} \frac{\sin \omega^* \frac{T}{2}}{\omega^* \frac{T}{2}} e^{j\omega^* t} d\omega^*}_{I_2'}.$$
(П3.2)

Чтобы найти I_2' , решим другую задачу. Пусть

$$\tilde{x}(t) = \begin{cases} A & \text{при } t \in [-\frac{T}{2}, \frac{T}{2}), \\ 0 & \text{при } t < -\frac{T}{2} & \text{и } t \ge \frac{T}{2} \end{cases}$$

(размерность $\tilde{x}(t)$ [B]). Тогда

$$\tilde{S}(j\omega) = \int_{-\Gamma}^{\Gamma} \tilde{x}(t) e^{-j\omega t} dt = A \int_{-T/2}^{T/2} e^{-j\omega t} dt =$$

$$= \frac{A}{-j\omega} e^{-j\omega t} \Big|_{-T/2}^{T/2} = AT \frac{e^{-j\omega \frac{T}{2}} - e^{j\omega \frac{T}{2}}}{2 \cdot (-j\omega \frac{T}{2})} = AT \frac{\sin \omega \frac{T}{2}}{\omega \frac{T}{2}}$$

(размерность $\tilde{S}(j\omega)$ [B · c]). В силу взаимной однозначности преобразования Фурье

$$I_2' = \begin{cases} & \frac{1}{T} \text{ при } t \in [-\frac{T}{2}, \frac{T}{2}), \\ & 0 \text{ вне интервала } [-\frac{T}{2}, \frac{T}{2}) \end{cases}$$
 (ПЗ.3)

(размерность I_2' [C^{-1}]).

Подставляем (ПЗ.3) в (ПЗ.2):

$$I_1' = \frac{1}{T} \mathrm{e}^{-jn\Delta\omega t}$$
 при $t \in [-\frac{T}{2}, \frac{T}{2})$.

Следовательно, выкладки, прерванные в (ПЗ.1), можно продолжить следующим образом:

$$x(t) = \dots = \frac{1}{T} \sum_{n=-\frac{N}{2}}^{\frac{N}{2}-1} S(jn\Delta\omega) e^{jn\Delta\omega t}$$
 при $t \in [-\frac{T}{2}, \frac{T}{2})$.

Приложение 4. Быстрое преобразование Фурье

В настоящее время получили большое распространение специальные алгоритмы расчета N-точечного дискретного преобразования Фурье, позволяющие значительно сократить время, занимаемое этой процедурой на компьютере, по сравнению с вычислениями непосредственно по формулам (6.3) и (6.4). Такого рода вычислительные алгоритмы носят название быстрого преобразования Фурье (БПФ; Fast Fourier Transform, FFT). В частности, в системе MATLAB реализован так называемый принцип «прореживания по времени» («прореживания по частоте»), наиболее эффективный в случае, когда число N равно целой степени 2.

Объясним, в чем заключается этот алгоритм, на примере прямого дискретного преобразования Фурье набора исходных величин $\{x_k,\ k=0,1,...,\ N-1\}$ в результирующие значения $\{X_n,\ n=0,1,...,\ N-1\}$ согласно (6.3):

$$X_n = \sum_{k=0}^{N-1} x_k e^{-jnk \cdot \frac{2\pi}{N}}, \quad n = 0, 1, ..., N-1.$$
 (П4.1)

Предполагая число N равным целой степени 2, разобьем *на первом ша-* ze последовательность x_k на две последовательности: последовательность $\{y_m, m=0, 1, ..., (N/2)-1\}$ чисел x_k с четными номерами и последовательность $\{z_m, m=0, 1, ..., (N/2)-1\}$ чисел x_k с нечетными номерами:

$$y_m = x_{2m}, \quad z_m = x_{2m+1}, \quad m = 0, 1, ..., \frac{N}{2} - 1.$$

Пусть $\left\{Y_n,\ n=0,\,1,\,...,\,(N/2)-1\right\}$ и $\left\{Z_n,\ n=0,\,1,\,...,\,(N/2)-1\right\}$ — прямые (N/2) -точечные ДПФ последовательностей $\left\{y_m\right\}$ и $\left\{z_m\right\}$ соответственно:

$$\begin{cases} Y_n = \sum_{m=0}^{N/2-1} y_m e^{-jmn \cdot \frac{2\pi}{N/2}}, & n = 0, 1, ..., \frac{N}{2} - 1; \\ Z_n = \sum_{m=0}^{N/2-1} z_m e^{-jmn \cdot \frac{2\pi}{N/2}}, & n = 0, 1, ..., \frac{N}{2} - 1. \end{cases}$$
(II4.2)

Введем следующие обозначения:

$$w_0 = e^{-j\frac{2\pi}{N}}$$
 (w_0 – корень N -й степени из 1!), (П4.3)

$$X_n = \sum_{k=0}^{N-1} x_k w_0^{kn} , \qquad (\Pi 4.4)$$

$$Y_n = \sum_{m=0}^{N/2-1} y_m w_0^{2mn} , \qquad (\Pi 4.5)$$

$$Z_n = \sum_{m=0}^{N/2-1} z_m w_0^{2mn} . \tag{\Pi3.6}$$

Подчеркнем еще раз, что величины X_n определены в (П4.4) для n=0,1,...,N-1, а величины Y_n и Z_n определены в (П4.5) и (П4.6) только для $n=0,1,...,\frac{N}{2}-1$, поэтому для выражения X_n через Y_n и Z_n при $n=\frac{N}{2},\frac{N}{2}+1,...,N-1$ нам чуть ниже потребуются дополнительные преобразования:

$$\begin{split} X_n &= \sum_{m=0}^{\frac{N}{2}-1} x_{2m} w_0^{2mn} + \sum_{m=0}^{\frac{N}{2}-1} x_{2m+1} w_0^{(2m+1)n} \\ &= \begin{cases} \frac{N}{2} - 1 & \frac{N}{2} - 1 \\ \sum_{m=0}^{N} y_m w_0^{2mn} + w_0^n \cdot \sum_{m=0}^{N} z_m w_0^{2mn} = \\ &= Y_n + w_0^n \cdot Z_n, \quad n = 0, 1, ..., \frac{N}{2} - 1, \\ \frac{N}{2} - 1 & \frac{N}{2} - 1 \\ \sum_{m=0}^{N} y_m w_0^{2mn} + w_0^n \cdot \sum_{m=0}^{N} z_m w_0^{2mn}, \\ n &= \frac{N}{2}, \frac{N}{2} + 1, ..., N - 1. \end{cases} \end{split}$$

Степени w_0 , фигурирующие в нижней строке соотношения (П4.7), при $n \ge \frac{N}{2}$ можно представить в виде

$$w_0^n = w_0^{n - \frac{N}{2}} \cdot w_0^{\frac{N}{2}} = w_0^{n - \frac{N}{2}} e_0^{-j\pi} = -w_0^{n - \frac{N}{2}}; \tag{\Pi4.8}$$

$$w_0^{2mn} = \left(w_0^n\right)^{2m} = \left(-w_0^{-\frac{N}{2}}\right)^{2m} = w_0^{\left(n - \frac{N}{2}\right)}.$$
 (II4.9)

Подставляя (П4.8) и (П4.9) в нижнюю строку (П4.7), получим

$$X_{n} = \begin{cases} \sum_{m=0}^{\frac{N}{2}-1} y_{m}w_{0}^{2mn} + w_{0}^{n} \cdot \sum_{m=0}^{\frac{N}{2}-1} z_{m}w_{0}^{2mn} = \\ = Y_{n} + w_{0}^{n} \cdot Z_{n}, & n = 0, 1, ..., \frac{N}{2} - 1, \\ \sum_{m=0}^{\frac{N}{2}-1} y_{m}w_{0}^{2mn} \left(n - \frac{N}{2}\right) - w_{0}^{n} \cdot \sum_{m=0}^{\frac{N}{2}-1} z_{m}w_{0}^{2mn} = \\ = Y_{n} - \frac{N}{2} - w_{0}^{n} \cdot \sum_{m=0}^{\frac{N}{2}-1} z_{m}w_{0}^{2mn} = \frac{N}{2}, \frac{N}{2} + 1, ..., N - 1. \end{cases}$$

$$(\Pi 4.10)$$

Рис. П4.1 служит графической иллюстрацией того, что делается *на первом шаге* алгоритма «прореживания по времени» согласно (П4.10): нахождение всей совокупности значений N-точечного ДПФ на этом шаге сводится к выполнению двух (N/2) -точечных ДПФ с входными данными с четными и нечетными номерами и к последующему сложению и вычитанию результатов этих (N/2) -точечных ДПФ. Данные, получаемые на выходе второго из этих ДПФ, умножаются на коэффициент, зависящий от номера n результата последней ДПФ, n=0,1,...,(N/2)-1; на рис. П4.1 значение w равно w_0 . Более точно смысл операции сложения/вычитания, изображенный на рисунке кружком со знаком \pm , объясняется позднее.

Рис. П4.1.

На втором шаге осуществляется подобный переход в каждом из блоков, реализующих (N/2)-точечное ДПФ, к двум ДПФ с вдвое меньшим числом точек с последующим сложением/вычитанием результатов последних ДПФ, для чего каждая из последовательностей $\{y_m\}$ и $\{z_m\}$ разбивается на подпоследовательности чисел с четными и нечетными номерами и в отношении этих подпоследовательностей реализуются (N/4)-точечные ДПФ. На рис. П4.2 показано на примере одного из (N/2)-точечных ДПФ, возникших на предыдущем шаге, что совокупность действий на втором шаге точно совпадает с тем, что делалось ранее, за исключением множителя w, который на втором шаге равен $w_1 = w_0^2$:

$$\begin{split} u_m &= y_{2l}, \ v_m = y_{2l+1} \ (l,m=0,1,...,\frac{N}{4}-1)\,, \\ U_m &= \sum_{l=0}^{(N/4)-1} u_l \, \mathrm{e}^{-jlm \cdot \frac{2\pi}{(N/4)}} = \sum_{l=0}^{(N/4)-1} u_l w_0^{4lm} = \sum_{l=0}^{(N/4)-1} u_l w_1^{2lm}, m=0,1,...,\frac{N}{4}-1, \\ V_m &= \sum_{l=0}^{(N/4)-1} v_l \, \mathrm{e}^{-jlm \cdot \frac{2\pi}{(N/4)}} = \sum_{l=0}^{(N/4)-1} v_l w_0^{4lm} = \sum_{l=0}^{(N/4)-1} v_l w_1^{2lm}, m=0,1,...,\frac{N}{4}-1, \end{split}$$

Рис. П4.2.

$$Y_{m} = \begin{cases} \frac{N}{4} - 1 & \frac{N}{4} - 1 \\ \sum_{l=0}^{N} u_{l} w_{1}^{2lm} + w_{1}^{m} \cdot \sum_{l=0}^{N} v_{l} w_{1}^{2mn} = \\ = U_{m} + w_{1}^{m} \cdot V_{m}, & m = 0, 1, ..., \frac{N}{4} - 1, \\ \sum_{l=0}^{N} u_{l} w_{0}^{2l} \left(m - \frac{N}{4}\right) - w_{1}^{m} \cdot \sum_{l=0}^{N} v_{l} w_{1}^{2l} \left(m - \frac{N}{4}\right) = \\ = U_{m} - \frac{N}{4} - w_{1}^{m} \cdot V_{m} - \frac{N}{4}, & m = \frac{N}{4}, \frac{N}{4} + 1, ..., \frac{N}{2} - 1. \end{cases}$$

$$(\Pi 4.11)$$

Целиком «прореживание по времени» (то есть разбиение на последовательности чисел с четными и нечетными номерами и переход к ДПФ со все меньшим числом точек) при N, равном целой степени 2, выполняется за $\log_2 N$ шагов и заканчивается 2-точечным ДПФ. На каждом шаге совершается N/2 «элементарных действий» с двумя аргументами и двумя результатами; про одно такое «элементарное действие» говорят, что оно реализуется по принципу «бабочки» (рис. $\Pi 4.3$):

Рис. П4.3.

где множитель w^k может равняться, например, $w_0^k = \mathrm{e}^{-jk\frac{2\pi}{N}}$. В частности, на последнем шаге «прореживания по времени» (k=0) осуществляется прямое 2-точечное ДПФ:

$$X_n = \sum_{k=0}^{1} x_k e^{-jkn\pi} = x_0 + e^{-jn\pi} \cdot x_1, \ n = 0, 1,$$

то есть $X_0 = x_0 + x_1$, $X_1 = x_0 - x_1$ [см. (П4.1) при N = 2].

На рис. П4.4 (на предыдущей странице) в качестве иллюстрации изображена полностью работа алгоритма «прореживание по времени» для случая $N=2^5$, где $w=w_0=\exp(-j\cdot 2\pi/2^5)$.

Обратное N-точечное БПФ рассчитывается по аналогичному алгоритму «прореживания по частоте». Обратное 2-точечное ДПФ согласно (6.4) имеет вид

$$\frac{1}{2} \sum_{n=0}^{1} X_n e^{jkn\pi} = \frac{1}{2} (X_0 + e^{jk\pi} \cdot X_1), \ k = 0, 1,$$

то есть

$$\begin{split} &\frac{1}{2}(X_0+X_1)=\frac{1}{2}\big[(x_0+x_1)+(x_0-x_1)\big]=x_0\,,\\ &\frac{1}{2}(X_0-X_1)=\frac{1}{2}\big[(x_0+x_1)-(x_0-x_1)\big]=x_1\,. \end{split}$$

Сравнение ДПФ и БПФ по числу выполняемых арифметических операций

Чтобы вычислить одно значение X_n по формуле (П4.1), нужно выполнить, грубо говоря, 2N арифметических действий (N умножений и N сложений); чтобы найти все N значений $\left\{X_n\right\}$, необходимо произвести $2N^2$ таких операций.

Как было объяснено выше, реализация N-точечного БПФ требует осуществления $\log_2 N$ шагов, на каждом из которых производится N/2 умножений, N/2 сложений и N/2 вычитаний, то есть всего $\frac{3}{2}N\log_2 N$ арифметических операций.

При $N=2^{10}$ требуемое число операций сокращается в

$$\frac{2N^2}{(3/2) \cdot N \log_2 N} \approx \frac{2 \cdot 10^6}{1.5 \cdot 10^4} \approx 100 \text{ pas.}$$

Литература

- 1. *Воронов Е. В.* Начала цифровой обработки сигналов для студентовфизиков с упражнениями в МАТLAB. М.: МФТИ, 2010.