Quadratures

Marcin Kuta

Quadratures

Quadrature	Nodes
Newton-Cotes	Equispaced nodes
Clenshaw-Curtis	Chebyshev nodes
Gauss	Legendre nodes

Quadratures

$$M(f) = (b-a)f(\frac{a+b}{2}) \tag{1}$$

$$T(f) = \frac{b-a}{2}(f(a)+f(b)) \tag{2}$$

$$S(f) = \frac{b-a}{6}(f(a) + 4f(\frac{a+b}{2}) + f(b)) \tag{3}$$

Error bounds

Quadrature	Error
Midpoint rule	$\frac{1}{24}f''(\eta)h^3$
Trapezoid rule	$\frac{1}{12}f''(\eta)h^3$
Simpson 1/3 (parabolic)	$\frac{1}{90}f^{(4)}(\eta)h^5$
Simpson 3/8 (cubic)	$\frac{3}{80}f^{(4)}(\eta)h^5$

Scaling

$$[\alpha, \beta] \rightarrow [a, b]$$

Node scaling:

$$\frac{(b-a)x + a\beta - b\alpha}{\beta - \alpha} \tag{4}$$

Weight scaling:

$$\frac{b-a}{\beta-\alpha}w\tag{5}$$

Empirical order of convergence

$$E(h) \approx Ch^p$$
 (6)

$$\log E(h) \approx \log(C) + p\log(h) \tag{7}$$

$$p \approx \frac{\log(\frac{E(h_2)}{E(h_1)})}{\log(\frac{h_2}{h_1})} \tag{8}$$

References

- [1] Włodzimierz Funika, Całkowanie numeryczne, http://home.agh.edu.pl/~funika/mownit/lab4/ calkowanie.pdf
- [2] Michael T. Heath, Scientific Computing. An Introductory Survey, 2nd Edition, Chapter 8: Numerical Integration and Differentation 2002