Oznamy

- Dnes posledná prednáška, po prednáške cvičenia pre biológov
- Budúci štvrtok 19.12.:
 - posledné cvičenia pre informatikov
 - nepovinné prezentácie journal clubu v čase prednášky (chceme?)
- Termíny na konci semestra
 - DÚ3 streda 18.12., správy zo journal clubu piatok 20.12.

Skúška pre informatikov (BIN, INF, DAV, AIN)

- Treba získať aspoň polovicu bodov
- Na stránke sú ukážky jednoduchých príkladov, cca 50% bodov
 - v prípade záujmu pred skúškou konzultačné hodiny (kedy?)
- Zvyšné príklady budú prekvapením, v minulosti sa vyskytli:
 - Krátke príklady na pochopenie základných pojmov
 - Navrhnite/modifikujte algoritmus alebo model
- Povolené pomôcky:
 - písacie potreby, ťahák 2 listy A4, jednoduchá kalkulačka
- Termín 14.1.2025, 9:00

Hláste prípadné závažné konflikty,

Dátumy opravných termínov dohodneme s tými,

ktorých sa budú týkať

Polymorfizmus a populačná genetika

Tomáš Vinař a Broňa Brejová 12.12.2024

Populačná genetika

- Rôzne jedince toho istého druhu nemajú identický genóm
- Tieto rozdiely vplývajú na fenotyp (výzor, správanie, choroby, . . .)
- Genómy viacerých jedincov môžeme sekvenovať a porovnávať s referenčnou verziou

Možné aplikácie populačnej genetiky:

- Úloha jednotlivých genetických rozdielov
- História a charakter populácie (podpopulácie, migrácia, historická veľkosť populácie)

SNPy (Single Nucleotide Polymorphisms)

- SNP: jednobázová variabilita medzi jedincami (>1% jedincov)
- Obvykle iba dve formy: väčšinová a menšinová alela
- Aj malá zmena v DNA môže spôsobiť veľké fenotypické zmeny

Systematické mapovanie SNPov:

Projekt 1000 ľudských genómov 2008-2015 ${\rm identifik\acute{a}cia} > 95\% \; {\rm SNPov} \; {\rm s} \; {\rm aspoň} \; 1\% \; {\rm frekvenciou} \; {\rm men \'sinovej} \; {\rm alely} \; {\rm pomocou} \; {\rm NGS} \; {\rm sekvenovania}$

UK Biobank:

500 000 genómov (Nov.2023) plus rozsiahle medicínske dáta o účastníkoch

Plus mnoho ďalších veľkých projektov

Mapovanie asociácií (Trait/Disease Association Mapping)

- Znaky (a choroby) vznikajú kombináciou genetických a environmentálnych vplyvov
- Cieľ: Identifikovať genetické vplyvy
 - Aký je risk choroby s dedičným faktorom u danej osoby?
 - Ako fungujú choroby (na základe génov, ktorých mutácie ich spôsobujú)?
 - Vývoj nových liekov, ich správne cielenie (farmakogenomika)

Napr. mutácie v génoch rodiny cytochrómu P450 majú vplyv na odbúravanie liekov v pečeni, ovplyvňujú veľkosť potrebnej dávky

Diploidné genómy

- Človek má diploidný genóm:
 má v bunkách po dva chromozómy 1...22
 plus pohlavné chromozómy X,X alebo X,Y
- Jeden chromozóm z páru od matky, jeden od otca
- Pre daný SNP s alelami (formami) a, A
 môže byť homozygot (aa alebo AA),
 alebo heterozygot (aA)
- Ak nejaká choroba zapríčinená alelou a, tak sa môže prejaviť iba pri homozygotoch aa, alebo aj pri heterozygotoch aA, alebo môže byť pri aa silnejšia ako pri aA

Diploidné genómy

- Človek má diploidný genóm:
 má v bunkách po dva chromozómy 1...22
 plus pohlavné chromozómy X,X alebo X,Y
- Jeden chromozóm z páru od matky, jeden od otca
- Pre daný SNP s alelami (formami) a, A
 môže byť homozygot (aa alebo AA),
 alebo heterozygot (aA)
- Haplotyp: kombinácia aliel rôznych SNPov na tom istom chromozóme (zdedená od jedného rodiča)
 Diploidný jedinec má teda dva haplotypy

```
chr1 od matky: ...A...T...G... ...
chr1 od otca: ...T...C...A... ...
```

Testovanie asociácie jedného SNPu Kontingenčná tabuľka - počet haplotypov

Veľkosť psa vs. alela na pozícii chr15:44,228,468

	pôvodná alela	odvodená alela	spolu
$\begin{array}{c} \text{mal\'y pes} \\ (< 9 \text{ kg}) \end{array}$	14	535	549
veľký pes ($>31~{ m kg}$)	339	38	377
spolu	353	573	926

[Sutter a kol. 2007]

Štatisticky testujeme či sú riadky a stĺpce nezávislé (nulová hypotéza).

Ak **vylúčime nulovú hypotézu**, našli sme asociáciu, nemusí však ísť o príčinu Ak ju nevylúčime, nepreukázali sme súvis SNPu s veľkosťou (môže ale existovať, možno treba viac dát)

Testovanie nezávislosti v kontingenčnej tabuľke

	pôvodná alela	odvodená alela	spolu
malý pes	14	535	549
veľký pes	339	38	377
spolu	353	573	926

Fisherov test: (Fisher's exact test) presný výsledok z hypergeometrického rozdelenia

Chí-kvadrát (χ^2) test: obľúbený približný test, vhodný ak máme vysoké počty

Na testovanie genetických asociácií sa používajú aj zložitejšie štatistické modely (napr. diploidný genóm, príbuzenské vzťahy, . . .)

Testovanie nezávislosti v kontingenčnej tabuľke χ^2 testom

	alela A	alela \boldsymbol{a}	spolu
malý pes (m)	14	535	549
veľký pes (v)	339	38	377
spolu	353	573	926

V nulovej hypotéze (nezávislosť riadkov a stĺpcov) máme:

$$Pr(A) = 353/926 = 0.381, Pr(a) = 0.619$$

$$Pr(m) = 549/926 = 0.593, Pr(v) = 0.407$$

$$Pr(A, m) = Pr(A) Pr(m) = 0.226$$

$$Pr(a, m) = Pr(a) Pr(m) = 0.367$$

$$Pr(A, v) = Pr(A) Pr(v) = 0.155$$

$$Pr(a, v) = Pr(a) Pr(v) = 0.252$$

Podľa nulovej hypotézy by sme teda čakali, že 926 haplotypov bude v tabuľke rozdelených v pomeroch 0.226:0.367:0.155:0.252

Testovanie nezávislosti v kontingenčnej tabuľ ke χ^2 testom

Skutočná tabuľka

 $O_{i,j}$ (observed):

	A	a	spolu
malý	14	535	549
veľký	339	38	377
spolu	353	573	926

Očakávané podľa nulovej hypotézy $E_{i,j}$ (expected):

	A	a	spolu
malý	209.3	339.8	549
veľký	143.5	233.4	377
spolu	353	573	926

Spočítame veličinu
$$\chi^2 = \sum_{i \in \{m,v\}} \sum_{j \in \{A,a\}} \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}}$$

$$\chi^2 = (14 - 209.3)^2 / 209.3 + (535 - 339.8)^2 / 339.8 + (339 - 143.5)^2 / 143.5 + (38 - 233.4)^2 / 233.4 = 724.3$$

 χ^2 je určitá miera rozdielnosti tabuliek O a E.

Platí, že $\chi^2 \geq 0$ a χ^2 je nula, iba ak sa tabuľky úplne zhodujú.

Testovanie nezávislosti v kontingenčnej tabuľ ke χ^2 testom

 $O_{i,j}$ (observed):

 $E_{i,j}$ (expected):

	A	a	spolu
malý	14	535	549
veľký	339	38	377
spolu	353	573	926

Spočítame veličinu $\chi^2 = \sum_{i \in \{m,v\}} \sum_{j \in \{A,a\}} \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}} = 724.3$

Ak platí nulová hypotéza, χ^2 je približne z rozdelenia $\chi^2(1)$,

t.j. chí kvadrát s jedným stupňom voľnosti.

1 stupeň: ak poznáme E a 1 políčko z O, zvyšok O vieme dopočítať.

Šanca, že pri nulovej hypotéze nám náhodne vyjde $\chi^2 \geq 724.3$ je $1.6 \cdot 10^{-159}$

(P-hodnota)

Na odmietnutie nulovej hypotézy často používame prah P < 0.05, t.j. $\chi^2 > 3.841$

Závislosť medzi dvoma rôznymi SNPmi

Uvažujme SNP s alelami p/P a ďalší SNP s alelami q/Q. Nameriame počty haplotypov $pq,\,PQ,\,pQ,\,Pq$

Príklad: 2000 haplotypov (1000 jedincov)

Stĺpce a riadky teda nie sú nezávislé, medzi SNPmi je závislosť

Príklad 2: Podobné pomery počtov, ale iba 30 haloptypov:

Nulovú hypotézu nevylúčime pre prah P<0.05 ($\chi^2>3.841$) Ale pozor, pre takéto malé hodnoty χ^2 nepresný

Ako vzniká závislosť medzi dvoma rôznymi SNPmi

Na rozdielnych chromozómoch:

- Pravdepodobnosti výskytu jednotlivých alel sú nezávislé
- $\Pr(pq) = \Pr(p) \Pr(q)$, $\Pr(PQ) = \Pr(P) \Pr(Q)$, atd'
- väzbová rovnováha, linkage equilibrium (LE)

Blízko seba na tom istom chromozóme:

- Málokedy mutácia na to istom mieste 2x, zriedkavá rekombinácia
- Kombinácie nie sú úplne náhodné
- Korelácie medzi SNPmi
 - ⇒ väzbová nerovnováha, linkage disequilibrium (LD)

Rekombinácia

Synapsis: Pairing of homologous chromosomes

Cca 1-3 **rekombinácie** v 1 ľudskom chromozóme počas meiózy (tvorba pohlavných buniek)

Rekombinácia znižuje LD

Ak predpokladáme rovnomernú rekombináciu:

- Čím vzdialenejšie SNPy, tým nižšie LD
- Čím staršie SNPy, tým nižšie LD
- Ďalšie aspekty: štruktúra populácie, prirodzený výber, rekombinačné hotspoty

Väzbová nerovnováha (LD) v ľudskom genóme

Región ENm014 (500kB, chr 7), 90 ľudí Utah, project HapMap

Späť k psom: Hľadanie asociácií v celom genóme (Genome-Wide Association Study, GWAS)

- V prípade štúdie veľkosti psov: GWAS identifikoval 84 kB región
- Pozíciu ďalej treba spresniť ďalšími experimentami
- Veľké LD bloky ⇒ veľké výsledné regióny

Základný model populačnej genetiky: Wrightov-Fisherov model

Gen.	•	•
0	10	10
1	12	8
2	11	9
3	14	6
4	14	6
5	10	10
6	14	6
7	10	10
8	9	11
9	9	11
10	11	9
11	14	6
12	16	4

Životný cyklus SNPov vo Wrightovom-Fisherovom modeli

- ullet Populácia N jedincov (stabilná veľkosť)
- Jedinec = jedna alela (A or a)
- Nová generácia vzniká "skopírovaním" náhodného rodiča (random mating), bez vplyvu prirodzeného výberu
- X_t : počet jedincov s alelou a v generácii t
- ullet Markovovský reťazec so stavmi $X_t \in \{0,1,\ldots,N\}$

$$\Pr(X_t = j \mid X_{t-1} = i) = \left(\frac{i}{N}\right)^j \left(\frac{N-i}{N}\right)^{N-j} \binom{N}{j}$$

(Pravdepodobnosť, že v generácii t máme j kópií alely a, ak v generácii t-1 ich bolo i)

ullet Stavy 0 and N sú **pohlcujúce**

Náhodný genetický drift

 $N=200, X_0=10, {
m 500}$ generácií 1.0 -0.8 -Frekvencia novej alely 0.6 Fixacia novej alely SNP (polymorfizmus) Strata novej alely 0.2 -200 100 300 400 500

Generacia

Zložitejšie modely populácie

- Mutácie zavádzajú do populácie nové alely, ktoré po čase náhodným genetickým driftom zaniknú, alebo ovládnu populáciu (fixation).
- Rýchlosť procesu je ovplyvnená efektami ako štruktúra populácie alebo prirodzený výber
- → Zložitejšie pravdepodobnostné modely

Analýza histórie populácie na základe pravdepodobnostných modelov

Typické parametre pravdepodobnostného modelu:

- efektívna veľkosť populácie
- frekvencia rekombinácie a mutácie

Parametre ovplyvňujú pozorované dáta:

- Frekvencie menšinovej alely SNPov
- Heterozygotnosť u diploidných jedincov
- Počet a veľkosť LD blokov

Použitie:

Snažíme sa nájsť parametre modelu, ktoré najlepšie vysvetľujú pozorované dáta u osekvenovaných jedincov.

História ľudskej populácie z genómu jedinca (Li, Durbin 2011)

- Parametre modelu: história vývoja efektívnej veľkosti ľudskej populácie v čase
- Použité dáta: Pozície heterozygotných SNPov v rámci genómu
 Z ich premenlivej hustoty určí rozdelenie časov ku najbližšiemu spoločnému predkovi (TMRCA)

Čas k najbližšiemu spoločnému predkovi a počet mutácií

bez sobášov medzi blízkymi príbuznými

bratranec a sesternica majú dieťa

dávny spoločný predok, veľa mutácií

nedávny spoločný predok, málo mutácií

Čas k najbližšiemu spoločnému predkovi a veľkosť populácie

Ak v čase t žilo málo ľudí

- predkovia sa budú viac "opakovať"
- čas t sa častejšie vyskytne ako TMRCA

Z lokálnej hustoty mutácií odhademe TMRCA Z rozdelenia TMRCA odhadneme veľkosti populácie

Príklad: História ľudskej populácie z genómu jedinca

Úloha: Nájdi históriu vývoja efektívnej veľkosti ľudskej populácie, ktorá najlepšie vysvetľuje pozorované dáta

Štruktúra populácie

- Doteraz sme predpokladali, že nová generácia vzniká náhodným párovaním (random mating)
- Väčšina organizmov sa vyvíja v subpopuláciách, s obmedzeným prenosom genetického materiálu medzi subpopuláciami
- Frekvencie toho istého SNPu v dvoch subpopuláciách môžu byť značne odlišné
- *"falošné" korelácie medzi SNPami (napr. aj medzi chromozómami), ak
 pracujeme s viacerými subpopuláciami naraz
- ◆ chybné výsledky pri LD a GWAS

Príklad: frekvencie alel jedného konkrétneho SNPu u ľudí v rôznych častiach sveta

zdroj: genome.ucsc.edu

Štruktúra populácie psov

Boyko et al. PNAS 2009; software STRUCTURE Pritchard et al. Genetics 2000

- ullet Program STRUCTURE rozdelí populáciu na K subpopulácií (farby)
- Každý stĺpec je jedinec z populácie
- ullet Pomer farieb zodpovedá pomeru SNPov z každej z K populácií

Ako funguje STRUCTURE?

- ullet Vstup: Vzorka haplotypov X, ktorú chceme rozdeliť do K subpopulácií
- Definujeme stochastický model s nasledujúcimi premennými:
 - $P_{i,j}$ frekvencia SNPu j v subpopulácii i
 - $-\ Q_i$ aká časť SNPov v haplotype i patrí ku ktorej subpopulácii
 - $Z_{i,j}$ priradenie subpopulácie SNPu j v haplotype i
- ullet Model definuje $\Pr[X \,|\, P,Q,Z]$ a apriórne rozdelenie pre P,Q
- ullet Výstup: $E[Q \,|\, X]$

Algoritmus Markov Chain Monte Carlo (MCMC)

- Premenné:
 - $P_{i,j}$ frekvencia SNPu j v populácii i
 - $Z_{i,j}$ priradenie subpopulácie SNPu j v haplotype i
 - $-Q_i$ aká časť SNPov v haplotype i patrí ku ktorej populácii
- ullet Začni s hodnotami $P^{(0)}, Z^{(0)}, Q^{(0)}$. V každej ďalšej iterácii získame novú náhodnú vzorku:
 - Vyber náhodnú vzorku $P^{(i)}, Q^{(i)}$ z distribúcie $\Pr(P, Q \,|\, X, Z^{(i-1)})$
 - Vyber náhodnú vzorku $Z^{(i)}$ z distribúcie $\Pr(Z\,|\,X,P^{(i)},Q^{(i)})$
- Pre vhodné m, c, priemer postupnosti

$$Q^{(m)}, Q^{(m+c)}, Q^{(m+2c)}, \dots$$

konverguje k hodnote $E[Q \mid X]$

Zhrnutie

- SNPy (single nucleotide polymorphizms) priebežne vznikajú a zanikajú v populáciách
- Ich frekvencia ovplyvnená navyše prirodzeným výberom
- Bez rekombinácie korelácia medzi SNPmi na tom istom chromozóme (linkage disequilibrium)
- Rekombinácie vytvárajú v genóme LD bloky
- Prítomnosť LD blokov vplýva na výsledky mapovania asociácií znakov (genome-wide association mapping)
- Pravdepodobnostné modely veľkosti LD blokov, frekvencií alel, heterozygocity a pod. nám môžu veľa prezradiť o histórii populácie
- Pri analýzach treba brať do úvahy štruktúru populácie, ktorú možno odhadnúť pomocou výpočtových metód

Ďalšie typy polymorfizmov

- Krátke indely
- Mikrosatelity a minisatelity (jednoduché krátke opakujúce sa sekvencie)
 13 lokusov ako štandarný "odtlačok" pre porovnávanie DNA vzoriek na súdoch v USA

- Transpozóny (Alu, LINE, SINE)
 Alu má cca milión kópií, cca 1 nová kópia na 20 novorodencov
- Veľké úseky s variabilnou multiplicitou (Large scale copy number variations)