

Centro Federal de Educação Tecnológica de Minas Gerais

Departamento de Computação Curso de graduação em Engenharia da Computação Laboratório de Arquitetura e Organização de Computadores II Profa. Daniela Cristina Cascini Kupsch (cascini@decom.cefetmg.br) / Profa. Poliana Aparecida Corrêa de Oliveira (polianacorrea@decom.cefetmg.br)

Prática I – Valor 20 pontos

Data de Entrega: Partes I e II: 23/03/2018 Data de Entrega Parte III: 06/04/2018

Objetivo: Esta prática tem a finalidade de exercitar os conceitos relacionados à hierarquia de memória e relembrar como se utiliza a placa FPGA.

Parte I (4 pontos): Implementação de uma memória RAM utilizando a biblioteca LPM. A leitura e escrita devem ser realizadas utilizando o *display* de 7-segmentos.

Parte II (4 pontos): Inicialização da memória utilizando um arquivo (MIF - memory initialization file (MIF)). A leitura e escrita devem ser realizadas utilizando o display de 7-segmentos.

Parte III (12 pontos): Implemente uma hierarquia de memória organizada em uma cache L1 e uma memória principal (atualização da memória utilizando *Write-Back*). A cache L1 é totalmenta associativa e a memória principal é diretamente mapeada. O aluno deve mostrar o que ocorre em casos de acerto e falha de leitura/escrita na cache e situações que modificam os bits "Dirty", "LRU" e "Válido". A memória e a cache devem ser inicializadas da seguinte forma, utilizando o arquivo (MIF):

Cache de dados (valores em decimal)

Válido?	Dirty?	LRU*	Tag	Valor
1	0	0	100	5
1	0	1	102	1
0	0	3	105	5
1	0	2	101	3

^{*}LRU: 3 mais antigo, 0 mais recente

Memória (valores em decimal)

Endereço	Valor
100	5
101	3

102	1
103	0
104	1
105	5
106	3
107	4
108	9

Submissão

Crie um pacote contendo TODOS os códigos fontes, formas de onda, e o relatório do projeto. Cada dupla deverá submeter um pacote no Moodle. O nome do arquivo deve ser: nomealuno1_nomealuno2_pratica1.zip

O relatório deverá incluir os seguintes componentes:

- 1. Para cada parte, as formas de onda com uma explicação e indicações na figura que mostre o correto funcionamento.
- 2. Para a parte II e III, arquivo .mif.
- 3. O **projeto** do seu sistema para a **Parte III**, incluíndo detalhes necessários dos módulos criados. Faça uma figura mostrando os blocos básicos e interconexões.

Apresentação em sala

Para cada parte, cada dupla deverá apresentar o funcionamento na placa com as seguintes funcionalidades:

Parte I e Parte II: Leitura e escrita em posições distintas da memória.

Parte III: (a) Leitura/escrita com acerto, (b) Leitura/escrita com falha, (c) atualização da cache com dados vindos da memória principal, (e) atualização dos bits "válido", "dirty" e "LRU", (f) funcionamento do *write-back*.

Avaliação

Parte I: Qualidade do código (0,5 pt); Simulações com explicações no relatório (1,5 pt); Apresentação na Placa (1,5 pt)

Parte II: Qualidade do código (0,5 pt); Simulações com explicações no relatório (1,5 pt); Apresentação na Placa (1,5 pt)

Parte III: Qualidade do código (3,0 pts); Simulações com explicações no relatório (3,5 pts); Apresentação na Placa (3,5 pts)

Relatório: Qualidade do texto, descrição do projeto e figura (3,0 pts)