## Computação Gráfica:

# Aula 7: Superfícies Curvas Bicúbicas

Prof. Dr. rer.nat. Aldo von Wangenheim

- Superfícies bicúbicas paramétricas são uma generalização das curvas cúbicas paramétricas.
  - Para induzir a sua notação matemática vamos nos lembrar primeiramente da forma geral de uma curva paramétrica Q(t) = T.M.G
  - a matriz M é uma constante e pode adquirir diferentes formas, dependendo se temos uma curva de Hermite, Bézier ou Spline. G é o vetor de geometria.
- Se substituirmos o parâmetro **t** por **s**, podemos expressar a fórmula anterior da seguinte forma:

$$Q(s) = S \cdot M \cdot G$$

 Se permitirmos que os pontos definindo G variem ao longo de algum caminho que é parametrizado em t, podemos expressar Q(s) como uma família de curvas parametrizadas por t:

$$Q(s,t) = S \cdot M \cdot G(t) = S \cdot M \cdot \begin{cases} G_1(t) \\ G_2(t) \\ G_3(t) \end{cases}$$
 
$$G_1(t)$$
 
$$G_2(t)$$
 
$$G_3(t)$$
 
$$G_4(t)$$

- Agora, se tomarmos um valor fixo t<sub>1</sub> qualquer de t, a equação Q(s,t<sub>1</sub>) é simplesmente uma curva em 3D porque G(t<sub>1</sub>) é uma constante e Q vai variar apenas ao longo de s.
- Se permitirmos que t tome um valor levemente diferente t<sub>2</sub>, onde o valor de t<sub>1</sub>- t<sub>2</sub> é bastante pequeno , Q(s,t<sub>2</sub>) será uma curva levemente diferente.



- Se repetirmos este processo para valores de t entre 0 e 1, estaremos definindo uma completa família de curvas, cada uma delas arbitrariamente próxima da anterior, dependendo de quanto t variou.
- O conjunto destas curvas define uma superfície curva. Se as matrizes G<sub>i</sub>(t) definirem também curvas cúbicas, estaremos descrevendo uma superfície paramétrica bicúbica, que se comporta como uma família de curvas de Hermite, Bézier ou Spline (dependendo de G(t)) tanto no sentido de s como no de t.

- Se assumimos que as G<sub>i</sub>(t) são cúbicas, cada uma delas representada por sua vez através de
   G<sub>i</sub>(t) = T. M. G<sub>i</sub>, onde G<sub>i</sub> = [g<sub>i1</sub>, g<sub>i2</sub>, g<sub>i3</sub>, g<sub>i4</sub>]<sup>T</sup>
- Aqui, g<sub>i1</sub> é o primeiro elemento do vetor de geometria no sentido t da curva (Hermite, Bézier ou Spline) G<sub>i</sub>(t) e assim por diante.

Se transpusermos a equação  $G_i(t) = T \cdot M \cdot \textbf{G}_i$  usando a regra de identidade  $(A \cdot B \cdot C)^T = C^T \cdot B^T \cdot A^T$ , teremos como resultado:

$$G_i(t) \ = \ \boldsymbol{G_i}^T \cdot \boldsymbol{M}^T \cdot \boldsymbol{T}^T = \begin{bmatrix} \boldsymbol{g}_{i1} & \boldsymbol{g}_{i2} & \boldsymbol{g}_{i3} & \boldsymbol{g}_{i4} \end{bmatrix} \cdot \boldsymbol{M}^T \cdot \boldsymbol{T}^T$$

Prof. Dr. rer.nau

$$Q(s, t) = S \cdot M \cdot \begin{bmatrix} g_{11} & g_{12} & g_{13} & g_{14} \\ g_{21} & g_{22} & g_{23} & g_{24} \\ g_{31} & g_{32} & g_{33} & g_{34} \\ g_{41} & g_{42} & g_{43} & g_{44} \end{bmatrix} \cdot M^{T} \cdot T^{T}$$

Ou, representando de forma mais compacta:

$$Q(s, t) = S \cdot M \cdot G \cdot M^{T} \cdot T^{T}, \quad 0 \le s, t \le 1$$

 Se reescrevermos a eq. anterior de forma separada para cada coordenada x,y e z, teremos a forma geral de uma superfície bicúbica:

$$x(s, t) = S \cdot M \cdot \mathbf{G}_{x} \cdot M^{T} \cdot T^{T}$$

$$y(s, t) = S \cdot M \cdot \mathbf{G}_{y} \cdot M^{T} \cdot T^{T}, \quad 0 \le s, t \le 1$$

$$z(s, t) = S \cdot M \cdot \mathbf{G}_{z} \cdot M^{T} \cdot T^{T}$$

- Superfícies de Hermite podem ser definidas por uma matriz de geometria 4x4 G<sub>H</sub>.
- Relembrando a definição das Curvas de Hermite em 3D:  $x(t) = T \cdot M_H \cdot G_{H_v}$

$$y(t) = T \cdot M_H \cdot G_{H_y}$$
 $z(t) = T \cdot M_H \cdot G_{H_z}$ 

- Onde a Matriz dos Parâmetros (da curva cúbica) é dada por:
   T = [t³ t² t 1].
- A Matriz de Hermite
   é dada por M<sub>H</sub>
- A Matriz de Geometria
   pelos coeficientes G<sub>H</sub>



$$\mathsf{G}_\mathsf{H} = egin{bmatrix} \mathsf{F}_1 \ \mathsf{P}_4 \ \mathsf{R}_1 \ \mathsf{R}_4 \end{bmatrix}$$

- Se tomarmos cada uma das eqs. anteriores e substituirmos t por s, para obter x(s) = S . M<sub>H</sub> . G<sub>Hx</sub>, teremos expresso uma curva de Hermite em termos de s.
- Se agora supusermos que G<sub>Hx</sub> não é constante, mas sim que varia em função de t, podemos reescrever x(s) como segue:

$$x(s,t) = S \cdot M_{H} \cdot G_{H_{X}}(t) = S \cdot M_{H} \cdot \begin{vmatrix} P_{4}(t) \\ P_{4}(t) \\ R_{1}(t) \end{vmatrix}$$

- As funções P<sub>1x</sub>(t) e P<sub>4x</sub>(t) definem as componentes
   em x dos pontos iniciais e finais para a curva no parâmetro s.
- $R_{1x}(t)$  e  $R_{4x}(t)$  são vetores tangentes nestes pontos.

### The Cyclops Project German-Brazilian Cooperation Programme on IT CNPq GMD DLR

#### Disciplina Computação Gráfica

Curso de Ciência da Camputação INE/CTC/UFSC





- Exemplo: Superfície de Hermite
  - definida por duas "bordas" dadas por P<sub>1</sub>(t) e P<sub>4</sub>(t) e
  - um conjunto de cúbicas  $\mathbf{s}$  que são definidas nos pontos  $\mathbf{t} = 0.0, 0.2, 0.4, 0.6, 0.8$  e 1.0.
  - "retalho" de superfície é basicamente uma interpolação entre Q(s, 0) e Q(s, 1) com passo 0.2 definido em t.

 Para podermos definir melhor como funciona uma superfície bicúbica, representemos P<sub>1</sub>(t), P<sub>4</sub>(t), R<sub>1</sub>(t) e R<sub>4</sub>(t) na forma de Hermite como:

$$\begin{split} P_{1_{\chi}}(t) &= T \cdot M_{H} \cdot \begin{bmatrix} \mathbf{g}_{11} \\ \mathbf{g}_{12} \\ \mathbf{g}_{13} \\ \mathbf{g}_{14} \end{bmatrix}_{\mathbf{x}} P_{4_{\chi}}(t) &= T \cdot M_{H} \cdot \begin{bmatrix} \mathbf{g}_{21} \\ \mathbf{g}_{22} \\ \mathbf{g}_{23} \\ \mathbf{g}_{24} \end{bmatrix}_{\mathbf{x}} \\ R_{1_{\chi}}(t) &= T \cdot M_{H} \cdot \begin{bmatrix} \mathbf{g}_{31} \\ \mathbf{g}_{32} \\ \mathbf{g}_{33} \\ \mathbf{g}_{34} \end{bmatrix}_{\mathbf{x}} R_{4_{\chi}}(t) &= T \cdot M_{H} \cdot \begin{bmatrix} \mathbf{g}_{41} \\ \mathbf{g}_{42} \\ \mathbf{g}_{43} \\ \mathbf{g}_{44} \end{bmatrix}_{\mathbf{x}} \end{split}$$

Prof. Dr. rer.nat. Aldo v. Wangenheim - Departamento de Informatica e Estatistica - INE/CTC/UFSC

• E estas quatro cúbicas podem por sua vez ser reescritas como uma única equação para cada coordenada x, y e z:

$$\left[P_{1_x}(t) P_{4_x}(t) R_{1_x}(t) R_{4_x}(t)\right] = T \cdot M_H \cdot G_{H_x}^T$$

• onde:



 A transposição de ambos os lados da eq. anterior resulta em:

$$\begin{bmatrix} P_{1_x}(t) \\ P_{4_x}(t) \\ R_{1_x}(t) \\ R_{4_x}(t) \end{bmatrix} = \begin{bmatrix} g_{11} & g_{12} & g_{13} & g_{14} \\ g_{21} & g_{22} & g_{23} & g_{24} \\ g_{31} & g_{32} & g_{33} & g_{34} \\ g_{41} & g_{42} & g_{43} & g_{44} \end{bmatrix}_{\mathbf{x}}$$

$$\cdot M_{H}^{T} \cdot T^{T} = G_{H_{x}} \cdot M_{H}^{T} \cdot T^{T}$$

• Substituindo na eq. paramétrica temos:

$$x(s, t) = S \cdot M_{H} \cdot G_{H_{x}} \cdot M^{T}_{H} \cdot T^{T}$$

$$y(s, t) = S \cdot M_{H} \cdot G_{H_{y}} \cdot M^{T}_{H} \cdot T^{T}$$

$$z(s, t) = S \cdot M_{H} \cdot G_{H_{z}} \cdot M^{T}_{H} \cdot T^{T}$$

- Assim, vemos que podemos definir um ponto qualquer sobre uma superfície de Hermite em função de uma matriz de geometria e duas matrizes de parâmetros S e T, representando t³, t², t, s³, s² e s.
- As três matrizes 4x4 (para x, y e z) têm o mesmo papel numa superfície de Hermite que tinha a Matriz G<sub>H</sub> para curvas.

Os 16 elementos de G<sub>Hx</sub> entendem-se:

- a) O elemento  $g_{11x}$  é x(0,0) porque é o ponto inicial  $P_{1x}(t)$ , que por sua vez é o ponto inicial para x(s,0). Da mesma forma,  $g_{12x}$  é x(0,1) pois é o ponto final de  $P_{1x}(t)$ , que por sua vez é o ponto inicial de x(s,1).
- b)  $g_{13x}$  é  $\delta x/\delta t(0,0)$  porque é o vetor tangente inicial para  $P_{1x}(t)$  e  $g_{33x}$  é  $\delta^2 x/\delta s\delta t(0,0)$  porque é o vetor tangente inicial de  $R_{1x}(t)$ , que por sua vez é a curvatura inicial de x(s,0).

X(0, 0)

#### 7.2. Superfícies Bicúbicas de Hermite

• Usando estas interpretações podemos reescrever G<sub>Hx</sub> da seguinte forma:

X(0, 1)

$$\mathbf{G}_{\mathsf{H}_{\mathsf{X}}} = \begin{bmatrix} \mathsf{x}(1,0) & \mathsf{x}(1,1) & \frac{\partial}{\partial \mathsf{t}} \mathsf{x}(1,0) & \frac{\partial}{\partial \mathsf{t}} \mathsf{x}(1,1) \\ \frac{\partial}{\partial \mathsf{s}} \mathsf{x}(0,0) & \frac{\partial}{\partial \mathsf{s}} \mathsf{x}(0,1) & \frac{\partial^{2}}{\partial \mathsf{s} \partial \mathsf{t}} \mathsf{x}(0,0) & \frac{\partial^{2}}{\partial \mathsf{s} \partial \mathsf{t}} \mathsf{x}(0,1) \\ \frac{\partial}{\partial \mathsf{s}} \mathsf{x}(1,0) & \frac{\partial}{\partial \mathsf{s}} \mathsf{x}(1,1) & \frac{\partial^{2}}{\partial \mathsf{s} \partial \mathsf{t}} \mathsf{x}(1,0) & \frac{\partial^{2}}{\partial \mathsf{s} \partial \mathsf{t}} \mathsf{x}(1,1) \end{bmatrix}$$

Prof. Dr. rer.nat. Aldo v. Wangenheim - Departamento de Informatica e Estatistica - INE/CTC/UFSC

- A porção 2x2 no canto inferior direito contém as derivadas parciais simultâneamente a s e t. São chamadas de twist (virada) porque quanto maiores, maior será a "orelha de burro" no canto da superfície.
- As áreas 2x2 superior direita e inferior esquerda contém os vetores tangentes ao longo de cada direção paramétrica (s e t respectivamente).
- A porção 2x2 superior esquerda contém as coordenadas x dos quatro cantos da superfície.



Prof. Dr. rer.nat. Aldo v. Wangenheim - Departamento de Informática e Estatística - INE/CTC/UFSC

#### 7.3. Superfícies Bicúbicas de Bézier

 Superfícies Bicúbicas de Bézier podem ser formuladas derivando-se-as exatamente da mesma maneira que as superfícies de Hermite. Obtemos:

$$x(s, t) = S \cdot M_{B} \cdot G_{B_{X}} \cdot M^{T}_{B} \cdot T^{T}$$

$$y(s, t) = S \cdot M_{B} \cdot G_{B_{Y}} \cdot M^{T}_{B} \cdot T^{T}$$

$$z(s, t) = S \cdot M_{B} \cdot G_{B_{T}} \cdot M^{T}_{B} \cdot T^{T}$$

#### 7.3. Superfícies Bicúbicas de Bézier

- Uma matriz de geometria de Bézier consiste de 16 pontos de controle.
- Interessantes para aplicações de engenharia:
  - Definidas somente por pontos (descrição intuitiva)
  - Passam através de alguns de seus pontos de controle: controle exato de seus limites.
  - Superfície de Bézier passa pelos quatro pontos de controle extremos: P<sub>11</sub>, P<sub>14</sub>, P<sub>41</sub> e P<sub>44</sub>.



Prof. Dr. rer.nat. Aldo v. Wangenheim - Departamento de Informática e Estatística - INE/CTC/UFSC

#### 7.3. Superfícies Bicúbicas de Bézier

- Continuidade Co e Go: quatro pontos de controle comuns ao longo da borda iguais.
- Continuidade G¹: os dois conjuntos de quatro pontos de controle em cada lado da borda são colineares com os pontos da borda.
  - Na figura temos ( $P_{13}$ ,  $P_{14}$ ,  $P_{15}$ ), ( $P_{23}$ ,  $P_{24}$ ,  $P_{25}$ ), ( $P_{33}$ ,  $P_{34}$ ,  $P_{35}$ ) e ( $P_{43}$ ,  $P_{44}$ ,  $P_{45}$ ) como conjuntos de pontos, cada qual sobre uma reta.

Curso de Ciência da Camputação INE/CTC/UFSC





 $P_{46}$ 

#### 7.4. Superfícies B-Spline Bicúbicas

$$x(s, t) = S \cdot M_{BS} \cdot G_{BS_{x}} \cdot M^{T}_{BS} \cdot T^{T}$$

$$y(s, t) = S \cdot M_{BS} \cdot G_{BS_{y}} \cdot M^{T}_{BS} \cdot T^{T}$$

$$z(s, t) = S \cdot M_{BS} \cdot G_{BS_{z}} \cdot M^{T}_{BS} \cdot T^{T}$$

#### 7.4. Superfícies B-Spline Bicúbicas

- As B-Splines são extremamente práticas no que diz respeito à continuidade: Em função de sua definição, a continuidade C<sup>2</sup> é garantida ao longo de qualquer número de B-Splines bicúbicas contíguas.
- Nenhum tipo de arranjo especial é necessário, a não ser o cuidado de não duplicar pontos de controle, o que provoca descontinuidades e "dobras".

#### 7.5. Desenhando Superfícies Bicúbicas

- Mesmas duas filosofias básicas das curvas para a plotagem de superfícies bicúbicas:
  - a) Cálculo iterativo (blending functions) ou
  - b) Subdivisão progressiva.
- Cálculo iterativo:
  - começa em qualquer lugar da superfície (útil em superfícies parcialmente clipadas) e
  - algoritmo incremental extremamente rápido que somente utiliza somas: forward differences

#### 7.5. Desenhando Superfícies Bicúbicas

- Plotagem através de um dos dois algoritmos iterativos:
  - basta fixar um dos parâmetros (s ou t) e variar o outro de 0 a 1,
  - plota-se uma curva de cada vez.
  - Pode-se definir um passo fixo em s e depois em t e plotar as várias curvas formando um grid.







Prof. Dr. rer.nat. Aldo v. Wangenheim - Departamento de Informática e Estatística - INE/CTC/UFSC

#### 7.6. Trabalho: Desenhando Superfícies Bicúbicas

- Implemente o desenho em 3D de superfícies bicúbicas de Bézier e Spline.
- Para tanto:
  - Extenda o seu sistema para representar superfícies 3D através de suas matrizes de geometria.
  - Cada superfície pode ser representada por uma lista de matrizes, cada matriz representando um "retalho".
  - Crie uma tela de entrada de dados bonitinha onde você pode entrar com conjuntos de pontos de controle, 16 a 16.
  - Como tudo até agora, o clipping é em 2D.