MÉTODOS MATEMÁTICOS DE LA INFORMÁTICA

3. Funciones Continuas

- 3.1. Halla el dominio de las siguientes funciones:
 - a) $f(x) = \sqrt{1 x^2}$ b) $f(x) = \sqrt{|x + 5| |x 7|}$ c) $f(x) = \sqrt{\sin x \cos x}$.
- 3.2. Calcula los siguientes límites: a) $\lim_{x\to 0} \frac{e^{1/x}}{1+e^{1/x}}$ b) $\lim_{x\to 0} \frac{1-\sqrt{1-x^2}}{x^2}$ c) $\lim_{x\to 1} \frac{\sin(2x-2)}{x^3-1}$ d) $\lim_{x\to 2} e^{\frac{1}{x-2}}$ e) $\lim_{x\to 2} e^{\frac{1}{1-x-2}}$.
- 3.3. a) Demuestra que lím $\sum_{x\to\infty} \frac{a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0}{b_mx^m+\ldots+b_1x+b_0}\in\mathbb{R}, b_m\neq 0, \text{ si y solo si } m\geq n.$ ¿Cuánto vale este límite?
- 3.4. En los siguientes cuatro apartados, algunas afirmaciones son verdaderas. Otras son falsas. Justifica cómo es cada una:
- 1) Para toda función continua $f: \mathbb{R} \to \mathbb{R}$ tal que su gráfica admite como asíntota a la recta de ecuación y = x - 1, se tiene que:
- A) $\lim_{x\to\infty} f(x) = \infty$. B) $\lim_{x\to-\infty} f(x) = -\infty$. C) $\lim_{x\to\infty} (f(x) x) = 0$.
- D) Existe $a \in [0, \infty)$ tal que para todo $x \in [a, \infty)$, se verifica que $f(x) \geq 5$.
- E) Existe $b \in [0, \infty)$ tal que para todo $x \in [b, \infty)$, se verifica que $f(x) \le 5$.
 - 2) Sea la función $f(x) = |x| + 1 + \frac{\lg |x|}{x^2}$ y sea l su gráfica. Entonces:
- A) $\lim_{x\to 0} f(x) = \infty$ B) para todo x>0, se tiene que f(x)>0.
- C) l admite el eje OY como eje de simetría.
- D) l admite a la recta y = x + 1 como asíntota.
- E) l admite a la recta y = x 1 como asíntota.
 - 3) Sea la función $f(x) = \frac{1}{x-1} \sqrt{x}$.
- A) La restrición de f al intervalo [0,1) es una biyección de [0,1) sobre $[-1,\infty)$.
- B) La restriccióm de f al intervalo $[1,\infty)$ admite una función inversa $f^{-1}:\mathbb{R}\to[-1,\infty)$.
- C) La ecuación $1 + \frac{1}{\sqrt{x}} = x$ tiene una única solución.
- D) Para todo a < 0, la ecuación f(x) = a admite dos soluciones diferentes.
 - 4) Existen al menos dos funciones f y g definidas sobre \mathbb{R} tales que:
- A) $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to \infty} g(x) = \infty$ y $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$. B) $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to \infty} g(x) = \infty$ y $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 3$.
- C) $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to \infty} g(x) = \infty$ y no existe $\lim_{x \to \infty} \frac{f(x)}{g(x)}$, ni es $+\infty$.
- $\mathrm{D)}\, \lim_{x\to\infty} f(x) = 0, \lim_{x\to\infty} g(x) = 0 \quad \mathrm{y} \quad \lim_{x\to\infty} \frac{f(x)}{g(x)} = \infty.$
- E) $\lim_{x \to \infty} f(x) = 0$, $\lim_{x \to \infty} g(x) = 0$ y no existe $\lim_{x \to \infty} \frac{f(x)}{g(x)}$ ni es $\pm \infty$.

- 3.5. Sea $f(x) = |x| + |x 1| |2x 1| \cos x \in \mathbb{R}$. Se pide:
 - a) Analizar la continuidad de f. Represéntala gráficamente.
 - b) Determina f([0,1]).
 - c) Determina $f^{-1}([1/2, 1])$.
- 3.6. Demuestra que el polinomio $p(x) = x^4 4x^3 2x^2 + 12x 6$ tiene cuatro raíces reales.
- 3.7. a) Prueba que la ecuación $x^{15} + \frac{x^4 17x + 13}{(x^2 1)^2} = 0$ tiene al menos una solución. b) Si $\alpha < \beta$, prueba que la ecuación $\frac{x^2 + 1}{x \alpha} + \frac{x^6 + 1}{x \beta} = 0$ tiene al menos una solución en el
- intervalo (α, β) .
- c) Prueba que la ecuación $x^3 37x^2 8 = 0$ tiene una raíz mayor que 37. Aproxima dicha raiz con un error menor que 10^{-6} .
- 3.8. Sea d una dirección en el plano y T un triángulo. Prueba que existe una recta con dirección d de modo que divide al triángulo en dos partes de áreas iguales.
- 3.9. Un coche recorre 100 kilómetros en 50 minutos sin detenerse. Demuestra que hubo un minuto en el cual recorrió 2 kilómetros.
- 3.10. Sean $x_1, x_2, x_3, ..., x_n$, números reales distintos. Encuentra una función polinómica f de grado n-1 de modo que $f(x_i) = a_i$, donde $a_1, a_2, ..., a_n$ son números dados y i = 1, 2,n. Encuentra un polinomio de grado 3, P, tal que P(1) = 3, P(0) = 7, P(1/2) = 2 y P(1/3) = 11/4.
- 3.11. Sea $f:(a,b)\to\mathbb{R}$ monótona creciente. Para $c\in(a,b)$, prueba que: $\lim_{x \to c^{-}} f(x) = \sup\{f(x) : x < c\} \le \inf\{f(x) : x > c\} = \lim_{x \to c^{+}} f(x)$ ¿Qué ocurre si f es monótona decreciente?
- 3.12. Construye $f: \mathbb{R} \to \mathbb{R}$ continua que verifique:

 $0 \le f(x) \le 1$ para todo $x \in \mathbb{R}$, f(x) = 0 si $|x| \ge 2$ y f(x) = 1 si |x| < 1.

- 3.13. Prueba que si $f: \mathbb{R} \to \mathbb{R}$ es continua, inyectiva y $f(a) \leq f(b)$ para un par $a, b \in \mathbb{R}$ y a < b, entonces f([a,b]) = [f(a), f(b)]. ¿Qué sucede si $f(b) \le f(a)$?
- 3.14. Para cada una de las funciones siguientes di cuales están acotadas superior o inferiormente y cuales tienen máximo y/o mínimo.

a)
$$f(x) = \frac{1}{1+x^2}$$
, en $[0,5]$ b) $g(x) = \frac{3}{2+x}$, en $[-3,2]$ c) $h(x) = x + |x|$, en $[-2,2]$ d) $l(x) = \frac{1}{1+|x|}$, en \mathbb{R} .

- 3.15. Demuestra que $f(x) = x^2$ no es uniformemente continua en \mathbb{R} .