Assignment-16

Pooja H AI20MTECH14003

Abstract—In this document, we solve for rank, basis and dimension of the column space of a matrix.

Download all latex-tikz codes from

https://github.com/poojah15/ EE5609_AI20MTECH14003/tree/ master/Assignment 16

1 Problem Statement

Let **A** be a 4×4 matrix. Suppose that the null space $N(\mathbf{A})$ of **A** is

$$\{(x, y, z, w) \in \mathbf{R}^4 : x + y + z = 0, x + y + w = 0\}$$
(1.0.1)

Then which one of the following is correct

- 1) $\dim(\operatorname{column space}(\mathbf{A})) = 1$
- 2) $\dim(\operatorname{column space}(\mathbf{A})) = 2$
- 3) $rank(\mathbf{A}) = 1$
- 4) $S = \{(1, 1, 1, 0), (1, 1, 0, 1)\}$ is a basis of N(A)

2 Solution

The nullspace is given by

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 (2.0.1)

Row reducing the above matrix we get,

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - R_1} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
(2.0.2)

$$\xrightarrow{R_1 \leftarrow R_1 - R_2} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 (2.0.3)

$\dim(\mathbf{C}(\mathbf{A})) = 1$	False . Because the number of pivot variables are 2 as obtained in (2.0.3)
$\dim(C(\mathbf{A})) = 2$	True . Since the number of pivot variables are 2, the rank of A is 2. $\therefore dim(C(\mathbf{A})) = 2 [\because dim(C(\mathbf{A})) = rank(\mathbf{A})]$
$rank(\mathbf{A}) = 1$	False . Because the rank(\mathbf{A}) = 2, as the number of pivot variables are 2
$S = \{(1, 1, 1, 0), (1, 1, 0, 1)\}$ is a basis of $N(A)$	False. Let, $\mathbf{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$ Consider, $\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 0 \\ 0 \\ 0 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ Similarly, $\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ Hence, the given vectors do not form the basis.