Approximation of kernel density estimator

Given a data set $\{x_i\}_{i=1}^n$, the purpose of the approximation is to compute

$$f(x) = \frac{1}{nh\sqrt{2\pi}} \sum_{i=1}^{n} \exp\left(-\frac{(x-x_i)^2}{2h^2}\right)$$

fast. To do this, we want to bin the data into bins

$$\mathcal{A}_j = \{x_i\}_{i=1}^n \cap \left[\min_{i=1,\dots,n} x_i, \ j \cdot \alpha h + \min_{i=1,\dots,n} x_i\right]$$

where $j=1,\ldots,J$ so that $\bigcup_{j=1}^{J} A_j$ cover the range of the data. The bin width is αh , where $\alpha < (\sqrt{2}-1)/2$. For each bin \mathcal{A} we replace

$$f_{\mathcal{A}}(x) = \frac{1}{nh\sqrt{2\pi}} \sum_{x_i \in \mathcal{A}} \exp\left(-\frac{(x - x_i)^2}{2h^2}\right)$$

with

$$\tilde{f}_{\mathcal{A}}(x) = \frac{|\mathcal{A}|}{nh\sqrt{2\pi}} \exp\left(-\frac{(x-x_{\mathcal{A}})^2}{2h^2}\right)$$

where $\mathcal{A}=\{x_i\}_{i=1}^n\cap [x_0,x_0+\alpha h]$ with $\alpha<1$ and $x_{\mathcal{A}}$ is the mean of \mathcal{A} . Below we will show that the maximal error times h is bounded by $\alpha^2/(2\sqrt{2\pi})$.

Without loss of generality we assume that $x_A = 0$ (otherwise replace each x_i with $x_i - x_A$). Let

$$g(x,y) = \exp\left(-\frac{(x-y)^2}{2h^2}\right).$$

Then

$$\frac{dg}{dy}(x,y) = \frac{1}{h^2}(x-y) \exp\left(-\frac{(x-y)^2}{2h^2}\right)$$

and

$$\frac{d^2g}{dy^2} = \frac{1}{h^4} \left((x - y)^2 - h^2 \right) \exp\left(-\frac{(x - y)^2}{2h^2} \right).$$

Using a MacLaurin expansion this gives that

$$g(x, x_i) = \exp\left(-\frac{x^2}{2h^2}\right) + \frac{x_i x}{h^2} \exp\left(-\frac{x^2}{2h^2}\right) + \frac{x_i^2}{2h^4} \left((x - \xi_i)^2 - h^2\right) \exp\left(-\frac{(x - \xi_i)^2}{2h^2}\right)$$

for some ξ_i such that $|\xi_i| < |x_i|$ and $sign(\xi_i) = sign(x_i)$. Thus

$$\begin{split} nh\sqrt{2\pi}|(f_{\mathcal{A}}(x) - \tilde{f}_{\mathcal{A}}(x))| &= |\sum_{x_{i} \in \mathcal{A}} g(x, x_{i}) - |\mathcal{A}| \exp\left(-\frac{x^{2}}{2h^{2}}\right)| \\ &= |\sum_{i: \ x_{i} \in \mathcal{A}} \frac{x_{i}^{2}}{2h^{4}} \left((x - \xi_{i})^{2} - h^{2}\right) \exp\left(-\frac{(x - \xi_{i})^{2}}{2h^{2}}\right)| \\ &\leq \sum_{i: \ x_{i} \in \mathcal{A}} \frac{x_{i}^{2}}{2h^{4}} \max((x - \xi_{i})^{2} - h^{2}, h^{2}) \exp\left(-\frac{(x - \xi_{i})^{2}}{2h^{2}}\right) \end{split}$$

Note that $x_A = 0$ implies that $0 \in [x_0, x_0 + \alpha h]$, which implies that $|x_i| < \alpha h$ for $x_i \in A$, and thus $|\xi_i| < \alpha h$.

We now have two cases to consider: 1) $\max((x-\xi_i)^2-h^2,h^2)=h^2$, and 2) $\max((x-\xi_i)^2-h^2,h^2)=(x-\xi_i)^2-h^2$. We will show that in both cases, $nh\sqrt{2\pi}|f_{\mathcal{A}}(x)-\tilde{f}_{\mathcal{A}}(x)|$ is bounded by $|\mathcal{A}|\alpha^2/2$, as long as $\alpha<(\sqrt{2}-1)/2\approx0.2$.

Case 1): If $\max((x - \xi_i)^2 - h^2, h^2) = h^2$ we get

$$nh\sqrt{2\pi}|f_{\mathcal{A}}(x)-\tilde{f}_{\mathcal{A}}(x)| \leq \sum_{x_i\in\mathcal{A}}\frac{x_i^2}{2h^2} \leq |\mathcal{A}|\frac{\alpha^2}{2}.$$

Case 2): Now we assume that $\max((x-\xi_i)^2-h^2,h^2)=(x-\xi_i)^2-h^2$. This means that

$$\begin{split} \sum_{i: \ x_i \in \mathcal{A}} \frac{x_i^2}{2h^4} \max(((x - \xi_i)^2 - h^2), h^2) \exp\left(-\frac{(x - \xi_i)^2}{2h^2}\right) \\ &\leq \sum_{i: \ x_i \in \mathcal{A}} \frac{x_i^2}{2h^4} ((x - \xi_i)^2 - h^2) \exp\left(-\frac{(x - \xi_i)^2}{2h^2}\right) \\ &\leq \sum_{i: \ x_i \in \mathcal{A}} \frac{x_i^2}{2h^4} ((|x| + \alpha h)^2 - h^2) \exp\left(-\frac{(|x| - \alpha h)^2}{2h^2}\right) \\ &= |\mathcal{A}| \frac{\alpha^2}{2} ((|x|/h + \alpha)^2 - 1) \exp\left(-\frac{(|x|/h - \alpha)^2}{2}\right). \end{split}$$

That $\max((x-\xi_i)^2-h^2,h^2)=(x-\xi_i)^2-h^2$ can only occur if $|x|\geq (\sqrt{2}-\alpha)h$. If we further assume that $\alpha<(\sqrt{2}-1)/2$ we also have that $|x|/h-\alpha\geq 1$.

Let $q(y)=((y+\alpha)^2-1)\exp(-(y-\alpha)^2/2)$. If we can show that $q(y)\leq 1$ when $y\geq \sqrt{2}-\alpha$ and $\alpha<(\sqrt{2}-1)/2$ we are done. First note that under these conditions we also have that $y-\alpha>1$.

Now

$$q'(y) = (2(y+\alpha) - (y-\alpha)((y+\alpha)^2 - 1)) \exp(-\frac{(y-\alpha)^2}{2}).$$

Let
$$r(w) = 2(w + 2\alpha) - w((w + 2\alpha)^2 - 1)$$
 so that
$$q'(y) = r(y - \alpha) \exp(-(y - \alpha)^2/2).$$

Clearly

$$q'(y) < 0 \Leftrightarrow r(y - \alpha) < 0.$$

Furthermore.

$$r'(w) = -3w^2 - 8\alpha w + (3 - 4\alpha^2) = -3(w + 4\alpha/3)^2 + 3 + 4\alpha^2/3$$

so r'(w) < 0 if $w + 4\alpha/3 > \sqrt{1 + 4\alpha^2/9}$. Thus $r'(y - \alpha) < 0$ if $y + \alpha/3 > \sqrt{1 + 4\alpha^2/9}$, which holds as long as $y - \alpha > 1$ since then

$$y + \alpha/3 > 1 + 4\alpha/3 > 1 + 2\alpha/3 > \sqrt{1 + 4\alpha^2/9}$$

where the last inequality comes from the triangle inequality.

This means that in the range of interest, $r(y - \alpha)$ is strictly decreasing, which means that $q'(y) > 0 \Leftrightarrow y < y_0$ for some y_0 and the maximum of q(y) is attained at $q(y_0)$. Furthermore,

$$r(y - \alpha) = 2(y + \alpha) - (y - \alpha)((y + \alpha)^{2} - 1) \le 2(y + \alpha) - ((y + \alpha)^{2} - 1)$$
$$= -((y + \alpha)^{2} - 2(y + \alpha) + 1) + 2 = -(y + \alpha - 1)^{2} + 2$$

is less than zero when $y>\sqrt{2}+1-\alpha$, so $y_0\leq \sqrt{2}+1-\alpha$. Letting $y=t+\sqrt{2}-\alpha$ it is sufficient to show that $q(t+\sqrt{2}-\alpha)$ is bounded by 1 for $t\in [0,t_0]$ with $t_0=y_0-\sqrt{2}-\alpha\leq 1$.

We have that for $t \in [0, t_0]$ and $\alpha < (\sqrt{2} - 1)/2$

$$q'(t+\sqrt{2}-\alpha) \le [2(t+\sqrt{2})-(t+\sqrt{2}-2\alpha)((t+\sqrt{2})^2-1)]\exp(-1/2)$$

$$< [2(t+\sqrt{2})-(t+1)((t+\sqrt{2})^2-1)]\exp(-1/2)$$

$$= [-t^3-(1+2\sqrt{2})t^2-(2\sqrt{2}-1)t+(2\sqrt{2}-1)]\exp(-1/2)$$

so

$$\begin{split} q(t_0 + \sqrt{2} - \alpha) &= q(\sqrt{2} - \alpha) + \int_0^{t_0} q'(s + \sqrt{2} - \alpha) \, ds \\ &\leq \exp(-\frac{1}{2}) \left[1 + \int_0^{t_0} (-s^3 - (1 + 2\sqrt{2})s^2 - (2\sqrt{2} - 1)s + (2\sqrt{2} - 1)) \, ds \right] \\ &= \exp(-\frac{1}{2}) \left[1 - \frac{1}{4}t_0^4 - \frac{1 + 2\sqrt{2}}{3}t_0^3 - \frac{2\sqrt{2} - 1}{2}t_0^2 + (2\sqrt{2} - 1)t_0 \right], \end{split}$$

which is easily numerically verified to be less than 1 for $0 \le t_0 \le 1$.

We have now shown that in both cases above

$$nh\sqrt{2\pi}|f_A(x) - \tilde{f}_A(x)| < |\mathcal{A}|\alpha^2/2$$

thus

$$h|f(x) - \sum_{\mathcal{A}_j} \tilde{f}_{\mathcal{A}_j}(x)| \leq \frac{\alpha^2}{2\sqrt{2\pi}},$$

where

$$\mathcal{A}_j = \{x_i\}_{i=1}^n \cap \left[\min_{i=1,\dots,n} x_i, \ j \cdot \alpha h + \min_{i=1,\dots,n} x_i\right]$$

and $j=1,\ldots,J$ so that $\bigcup_{j=1}^J \mathcal{A}_j$ cover the range of $\{x_i\}_{i=1}^n.$