- I. Equivalent way of describing k-promotion. Let $D_1 : \operatorname{Inc}^{[q]}(\lambda) \to \operatorname{Inc}^{[q]}(\lambda)$ be the map from increasing tableaux labeled with 1, ..., q to increasing tableaux labeled with 1, ..., q, \bullet that replaces all 1s with \bullet s. Let Sw_n be the operator that finds all short ribbons containing \bullet and n, leaves trivial ribbons unchanged, and switches n and \bullet in nontrivial ribbons. Let Sw be the operator that finds all instances of \bullet , determines the minimum integer $k \leq q$ such that k labels a box directly right or below an instance of \bullet , and applies Sw_k . Let SW be the operator that applies Sw until all \bullet s have no boxes directly below or the right. Let Σ be the operator that cyclically permutes the labels: $q \to q 1 \to ... \to 1 \to q$.
 - In [1], k-promotion is described as $\Sigma \circ \operatorname{Sw}_q \circ ... \circ \operatorname{Sw}_1 \circ \operatorname{D}_1$. We claim that this is equivalent to $\Sigma \circ \operatorname{SW} \circ \operatorname{D}_1$. COMPLETE
- II. k-promotion commutes with FC. We can write $T \in \operatorname{Inc}^{[q] \cup \bullet}(\lambda) \to \operatorname{Inc}^{[q] \cup \bullet}(\lambda)$ as a set of pairs $\{(n,(i,j)): (i,j) \in \lambda\}$ with the appropriate order constraints on n. Let $Q(i) = n_i$, where n_i is the i^{th} element in T, ordered lowest to highest. Define $FC((n,(i,j)) = (Q^{-1}(n),(i,j))$, so that $FC(T) = \{(Q^{-1}(n),(i,j))\}$.