Precalculus

Polynomial division and factorization of cubics with rational root

Todor Miley

2019

Outline

Polynomial division

Pactoring cubics with rational root

Polynomial division 3/

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Quotient:
$$x^{2} + 3x + 3$$

 $x - 1$ $x^{3} + 2x^{2} + 1$
 $x^{3} - x^{2}$
 $x^{3} - x^{3}$
Remainder: $x^{3} - x^{2}$

(Dividend) = (Quotient) · (Divisor) + (Remainder)

$$(x^3 + 2x^2 + 1) = (x^2 + 3x + 3) \cdot (x - 1) + 4$$

Polynomial division 4

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

Quotient:
$$3x^2 - 5x + 1$$

$$2x - 3 = 6x^3 - 19x^2 + 17x - 3$$

$$- 6x^3 - 9x^2$$

$$- 10x^2 + 17x - 3$$

$$- 2x - 3$$

$$- 2x - 3$$
Remainder: 0

Remainder:

$$(6x^3 - 19x^2 + 17x - 3) = (3x^2 - 5x + 1) \cdot (2x - 3)$$

Polynomial division 4/

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

No easy factorization of quadratic, so use formula:

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$
 We are ready to solve the equation.

$$6x^{3} - 19x^{2} + 17x - 3 = 0$$

$$3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3) = 0$$

$$2x - 3 = 0 \quad \text{or} \quad x = \left(\frac{5 + \sqrt{13}}{6}\right) \quad \text{or} \quad x = \left(\frac{5 - \sqrt{13}}{6}\right)$$

$$x = \frac{3}{2}$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

 $(2x+3)(x+1)(x-2) = 0$
 $x = -\frac{3}{2}$ or $x = -1$ or $x = 2$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$
$$= (2x^{2} + 5x + 3)(x - 2) = (2x^{3} + 5x^{2} + 3x) - (4x^{2} + 10x + 6)$$
$$= 2x^{3} + x^{2} - 7x - 6$$

Check work to make sure we guessed the roots correctly.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

(x - 3)(x² + 2x - 2) = 0

The graph appears to intersect the x axis at:

 $-\sqrt{3}-1,\sqrt{3}-1,3$. What are the two roots besides 3?

Quotient:
$$x^2 + 2x - 2$$

 $x - 3$ $x^3 - x^2 - 8x + 6$
 $x^3 - 3x^2$
 $x^3 - 3x^2$
 $x^2 - 6x - 2x + 6$
 $x^3 - 3x^2$
 $x^2 - 6x - 2x + 6$
 $x^3 - 3x^2$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$

$$(x - 3)(x^{2} + 2x - 2) = 0$$

$$x - 3 = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{(2)^{2} - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1}$$

$$x = 3 \quad x = \frac{-2 \pm \sqrt{12}}{2}$$

$$x = \frac{-2 \pm 2\sqrt{3}}{2} = -1 \pm \sqrt{3}.$$

The graph appears to intersect the x axis at: $-\sqrt{3}-1, \sqrt{3}-1, 3$. What are the two roots besides 3? Final answer:

$$x = 3$$
 or $x = -1 - \sqrt{3}$ or $x = -1 + \sqrt{3}$.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$
$$(x - \frac{1}{2})(2x^2 + 2x + 6) + 0 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Quotient:
$$2x^2 + 2x + 6$$

 $x - \frac{1}{2}$ $2x^3 + x^2 + 5x - 3$
 $2x^3 - x^2$
 $2x^2 + 5x - 3$
 $2x^2 - x$
 $6x - 3$

Remainder:

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$(x - \frac{1}{2})(2x^{2} + 2x + 6) + 0 = 0$$

$$x - \frac{1}{2} = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 2 \cdot 6}}{2 \cdot 2}$$

$$x = \frac{1}{2} \quad x = \frac{-2 \pm \sqrt{-44}}{2 \cdot 2}$$

no real solution

 $2x^3 + x^2 + 5x - 3 = 0$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)?