

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»	

Отчет по лабораторной работе №1 по курсу «Функциональное и логическое программирование»

Ответы на вопросы

1. Элементы языка.

Элементами языка являются атомы и точечные пары.

Атомы представляю из себя:

- 1. Символы синтаксически представляется как набор букв и цифр, начинающийся с буквы.
- 2. Специальные символы {T, Nil}.
- 3. Самоопределимые атомы натуральные, дробные и вещественные числа, а также строки, заключенные в двойные апострофы.

Атомы обычно выглядит как последовательность букв или цифр.

Примеры атомов:

```
1 B
2 CAT
3 123
4 2/3
5 "abc"
```

Специальные символы:

- 1. **Т** Константа. обозначает логическое значение "истина". Истинным значением является все, что отличное от Nil.
- 2. **Nil** "ложь". Также обозначает пустой список. Записи nil и () эквивалентны. Являются синтаксисом пустого списка

Точечная пара - (А . В). Строится с помощью бинарных узлов.

```
1 Точечная пара ::= (<aтом>.<aтом>) |
2 (<aтом>.<точечная пара>) |
3 (<точечная пара>.<aтом>) |
4 (<точечная пара>.<точечная пара>)
```

Пример точечной пары:

```
1 (A . (B . (C . (D . Nil))))
```

Облегченная форма записи:

(A B C D)

S-выражение ::= <aтом> | <точечная пара>

Список является частым случаем S-выражения.

Список - динамическая структура данных, которая может быть пустой или непустой. Если она не пустая, то состоит из двух элементов:

- 1. Головы S выражение.
- 2. Хвоста список.

Список представляет из себя заключенную в скобки последовательность из атомов, разделенных пробелами, или списков. Любой список является программой - его нужно вычислять.

2. Синтаксис.

Lisp является регистронезависимым языком. Lisp использует префиксную нотацию.

Универсальным разделителем, между атомами, является пробел. В начальных версиях была предложена запятая, но она не прижилась.

Наличие скобок является признаком структуры - списка или точечной пары.

Любая структура заключается в круглые скобки.

- (А . В) точечная пара.
- (А) список из одного элемента.
- () или Nil пустой список.

Одноуровневый список:

(ABCD)

Структурированный список:

(A (B C) (D E))

3. Как воспринимается символ апостроф

Символ апостроф - синоним quote.

quote - блокирует вычисление своего аргумента. В качестве своего значения выдаёт сам аргумент, не вычисляя его. Перед константами - числами и атомами T, Nil можно не ставить апостроф.

Пример использования quote:

```
(\text{quote } (\text{car } (\text{A B C}))) \implies (\text{car } (\text{A B C}))
```

Вычисление начинается с внешней функции quote, которая возвращает аргумент в неизмененном виде.

4. Что такое рекурсия и примеры из lisp

Рекурсия - это ссылка на описываемый объект в процессе его описания.

Примером рекурсии в lisp служит S-выражение, которое может быть атомом, либо заключенная в скобки пара состоящая из S-выражений (разделенных точкой).

5. Базис Lisp

Базис Lisp

- атомы и структуры (представляющиеся бинарными узлами);
- базовые (несколько) функций и функционалов: встроенные примитивные функции (atom, eq, cons, car, cdr); специальные функции и функционалы (quote, cond, lambda, eval, apply, funcall).

6. Функция

Функцией называется правило, по которому каждому значению одного или нескольких аргументов ставится в соответствие конкретное значение результата.

Функция в Лиспе есть однозначное отображение множества исходных данных на множество её значений. У функции может быть произвольно много аргументов, от нуля до любого конечного числа, но обязательно должно быть хотя бы одно значение

7. Классификация функций

Классификация базисных функций:

- селекторы (car cdr)
- конструкторы (cons list)
- предикаты
 - atom
 - сопяр (проверяет, состоит ли структура из списковых ячеек)
 - listp (является ли структура списком)

- null (пустой список или нет)
- numberp (числовое значение или нет)
- oddp (проверяет на нечетность)
- evenp (проверяет на четность)
- eq (2 аргумента) (сравнение указателей) (применима только к символьным атомам)(не может сравнивать списки)
- eql (делает все что и eq + сравнивает числа одного и того же «типа» (формы представления))

8. CAR и CDR

Список в языке Lisp представлен одним бинарным узлом, который хранит два указателя (на голову и хвост).

CAR и CDR являются базовыми функциями доступа к данным.

CAR принимает точечную пару или пустой список в качестве аргумента и возвращает первый элемент или nil, соответственно.

CDR принимает точечную пару или пустой список и возвращает список состоящий из всех элементов, кроме первого. Если в списке меньше двух элементов, то возвращается Nil.

9. LIST и CONS LIST и CONS являются функциями создания списков (cons – базовая, list – нет). Функция cons (принимает только два аргумента) создает списочную ячейку и устанавливает два указателя на аргументы.

Функция list принимает переменное число аргументов и возвращает список, элементы которого – переданные в функцию аргументы.

Например список '(open close halph) из задания 1 можно представить как: (cons 'open (cons 'close (cons 'halph nil))) или (list 'open 'close 'halph).