Anaphora P-Set

24.954: Pragmatics in Linguistic Theory

Patrick D. Elliott

September 27, 2019

Questions

Compute the CCP of the following sentence, using our dynamic fragment extended to account for anaphora. You can ignore gender.

(1) A¹ son of some² famous actress came and he₁ told us about her₂.

In our system, we have special (syncategorematic) interpretation rules for sentences of the form "P and Q", and sentences of the form "a" ϕ ψ ". This isn't a *necessary* feature of FCS (i.e., we can make things more compositional, if we like) but it did simplify the exposition. Let's remind ourselves of these rules:

- (2) $\mathbf{a}^n \phi \psi \coloneqq [\![\mathbf{a}^n]\!]; [\![\phi]\!]; [\![\psi]\!]$
- (3) $P \text{ and } Q := [\![P]\!]; [\![Q]\!]$

We'll assume the following LF for the sentence we're interested in. Since our interpretation rules are syncategorematic, the syntactic structure doesn't make a large difference, so to simplify, let's assume that both coordinated sentences and quantificational structures are ternary.

(4) 3 and 3 $a^1 \ \textcircled{0} \ t_1 \text{ came} \quad \text{he}_1 \text{ told us about her}_2$ some $a^2 \ t_2 \text{ famous actress} \quad t_1 \text{ son of } t_2$

Let's start by stating the interpretation of each of the daughters of ①:

(5)
$$[some^2] := \lambda c : 2 \notin dom c . \{\langle g'[2 \mapsto x], w \rangle \mid \langle g, w \rangle \in c \land x \in D_e \}$$

(6)
$$[t_2 \text{ famous actress}] = \lambda c : 2 \in \text{dom } c . \{\langle g, w \rangle \in c \mid \text{famous-actress}_w g_2\}$$

(7)
$$[t_1 \text{ son of } t_2] = \lambda c : 1, 2 \in \text{dom } c . \{\langle g, w \rangle \in c \mid g_1 \text{son-ofg}_2 \}$$

Now we can compute the meaning of ① using the special rule for sentences of the form "a" $\phi \psi$ ":

(8) a. $\llbracket \mathbb{O} \rrbracket = \llbracket \operatorname{some}^n \rrbracket ; \llbracket t_2 \text{ famous actress} \rrbracket ; \llbracket t_1 \text{ son of } t_2 \rrbracket$

b.
$$= \lambda c : 1 \in \text{dom } c$$
 . $\left\{ \langle g'[2 \mapsto x], w \rangle \middle| \begin{array}{l} \langle g, w \rangle \in c \\ \wedge \text{ famous-acress } x \end{array} \right\}$

Now let's compute the interpretation of the two remaining daughters of ②:

$$(9) \quad \left[\!\!\left[a^1\right]\!\!\right] \coloneqq \lambda c \, : \, 1 \not\in \mathsf{dom} \, c \, . \, \left\{ \langle g'[1 \mapsto x], w \rangle \, | \, \langle g, w \rangle \in c \land x \in D_{\mathsf{e}} \right\}$$

(10)
$$\llbracket t_1 \text{ came} \rrbracket = \lambda c : 1 \in \text{dom } c . \{ \langle g, w \rangle \in c \mid \text{came } g_1 \}$$

Again, based on our interpretation rule for a sentence with an indefinite, we sequence the three daughters of ②. We get:

(11)
$$\lambda c: 2, 1 \notin \text{dom } c: \left\{ \left\langle g' \begin{bmatrix} 1 \mapsto y \\ 2 \mapsto x \end{bmatrix}, w \right\rangle \middle| \begin{array}{l} \langle g, w \rangle \in c \\ \wedge \text{ famous-actress } x \\ \wedge y \text{ son-of } x \\ \wedge \text{ came } y \end{array} \right\}$$

Now, the interpretation of ③ is easy.

(12)
$$\Im = \llbracket t_1 \text{ told us about } t_2 \rrbracket = \lambda c : 1, 2 \in \text{dom } c . \{\langle g, w \rangle \mid g_1 \text{ told-about } g_2 \}$$

FINALLY, we compute the meaning of ⁽⁴⁾ by sequencing ⁽²⁾ and ⁽³⁾, which we already computed:

(13)
$$\oplus = \lambda c : 2, 1 \notin \text{dom } c . \left\{ \left\langle g' \begin{bmatrix} 1 \mapsto y \\ 2 \mapsto x \end{bmatrix}, w \right\rangle \middle| \begin{cases} \langle g, w \rangle \in c \\ \land \text{ famous-actress } x \\ \land y \text{ son-of } x \\ \land \text{ came } y \\ \land y \text{ told-about } x \end{cases} \right\}$$

Question

In dynamic semantics, we can define a universal quantifier as follows (where p and q are CCPs):

(14) everyⁿ
$$p q := \lambda c : i \notin \text{dom } c$$

$$\left\{ \langle g, w \rangle \in c \mid \left\{ g'_n \mid \langle g', w \rangle \in p \ (\mathbf{a}^n \ c) \land g \le g' \right\} \\ \subseteq \left\{ g''_n \mid \langle g'', w \rangle \in q \ (p \ (\mathbf{a}^n \ c)) \land g \le g'' \right\} \right\}$$

(15) $g \le g'$ iff for each $i \in dom \ g, g_i = g'_i$

Compute the CCPs of the following sentences, step by step:

- (16) Every linguist cried. LF: Every³ [t_3 linguist] [t_3 cried]
- (17) Every⁴ farmer who owns a^7 donkey cares from it₇. LF: Every⁴ [a^7 [t_7 donkey] [t_4 owns t_7]] [t_4 cares for t_7].

Let's start with "Every linguist cried":

(18)
$$[t_3 \text{ linguist}] = \lambda c : 3 \in \text{dom } c . \{\langle w, g \rangle \in c \mid \text{ linguist } g_3 \}$$

(19)
$$[t_3 \operatorname{cried}] = \lambda c : 3 \in \operatorname{dom} c . \{\langle w, g \rangle \in c \mid \operatorname{cried} g_3 \}$$

Now we can simply apply our syncategorematic rule for "every p q":

(20) [every linguist cried]

$$= \lambda c : 3 \notin \text{dom } c$$

$$\left\{ \langle g, w \rangle \in c \;\middle|\; \{g_3' \mid \langle g', w \rangle \in \{\langle g''[3 \mapsto x], w \rangle \mid \langle g'', w \rangle \in c \land \mathsf{linguist} \; x \} \land g \leq g' \} \right\}$$

$$\subseteq \{h_3 \mid \langle h, w \rangle \in \{\langle h'[3 \mapsto x], w \rangle \mid \langle h', w \rangle \in c \land \mathsf{cried} \; x \} \land g \leq h \}$$

Note importantly that this sentence doesn't result in an updated context with an extended domain, capturing the fact that *every*, unlike *some* doesn't license cross-sentential anaphora.