5.1 Linear Transformation

5.1 # 36,38

Linear Transformation

A linear transformation T on a vector space W to a vector space W is a function T: W - DW that preserves Scalar multiplication and vector addition. That is, for all $\vec{L}, \vec{V} \in W$ and $C \in \mathbb{R}$

$$T(cd) = cT(d)$$

 $T(d+d) = Td + Td$

TV is couled the domain of T

Mapping
$$R^3$$
 to a line

 $T(x,y,z) = (x,0,3z)$
 $T(c\vec{u} + d\vec{v}) = T((cx_u,y_u,z_u) + d(x_v,y_v,z_v))$
 $= T((cx_u + dx_v, cy_u + dy_v, (z_u + dz_v)))$
 $= (cx_u + dx_v, 0, 3cx_u + 3dx_v)$
 $= (cx_u, 0, 3cx_u) + (dx_v, 0, 3dy_v)$
 $= c(x_u, 0, 3x_u) + d(x_v, 0, 3y_v)$
 $= T(c\vec{v}) + d(c\vec{v})$

Derivative Operator D:
$$C[a,b] \rightarrow C[a,b]$$

$$D(cf) = CDf$$

$$D(f+g) = Df+Dg$$

Matrix multiplication

Let A be an nxn matrix, x is a column vector, nx? $T(\vec{x}) = A\vec{x}$

The Standard matrix for a linear transformation

$$A = \left[T(\vec{e_1}) \mid T(\vec{e_2}) \mid T(\vec{e_3}) \mid \dots \mid T(\vec{e_n}) \right]$$
under basis vectors $(\vec{e_1}, \vec{e_2}, \vec{e_3}, \dots, \vec{e_n})$

$$e_1 = \left[\vec{e_1} \right], e_2 = \left[\vec{e_1} \right]$$

$$A = \left[T([\vec{e_1}]), T([\vec{e_1}]) \right]$$

Ex: 8 T(x,y) = (x-y, x+y, ax)

$$A = \left[T\left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right), T\left(\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \right) \right] = \left[\begin{bmatrix} 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & +1 \\ 2 & 2 & 0 \end{bmatrix} \right] = \left[\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 0 \end{bmatrix} \right]$$

$$T: \mathbb{R}^{2} \to \mathbb{R}^{3}$$

$$T(\vec{V}) = A\vec{V} \quad A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}, \vec{V} = \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix}$$

$$A\vec{V} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} = \begin{bmatrix} v_{1} + v_{2} \\ v_{1} - v_{2} \\ 2v_{1} + v_{2} \end{bmatrix}$$

$$= v_{1} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + v_{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$T(\vec{u} + \vec{v}) = T(x_{u} + x_{v_{1}} y_{u} + y_{v_{1}} \geq_{u} + z_{v})$$

$$= (x_{u} + x_{v_{1}} y_{u} + y_{v_{1}} o)$$

$$= (x_{u_{1}} y_{u_{1}} o) + (x_{v_{1}} y_{v_{1}} o)$$

$$= T(x_{u_{1}} y_{u_{1}} z_{u}) + T(x_{v_{1}} y_{v_{1}} z_{v})$$

$$= T(\vec{u}) + T(\vec{v})$$

$$A\vec{x} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad A\vec{x} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$A\vec{x} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \qquad A\vec{x} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$