数据库系统概论

An Introduction to Database System

第二章 关系数据库

中国人民大学信息学院

关系代数

(专门的集合运算)

学生-课程数据库

学生关系Student、课程关系Course和选修关系SC

Student

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
201215121	李勇	男	20	CS
201215122	刘晨	女	19	CS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS NERS I THE

学生-课程数据库

Course

课程号	课程名	先行课	学分
Cno	Cname	Cpno	Ccredit
1	数据库	5	4
2	数学		2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	(C) 7	4
6	数据处理		2
7	PASCAL语言	6	4

(b)

学生-课程数据库

SC

学号	课程号	成绩
Sno	Cno	Grade
201215121		92
201215121	2	85
201215121	3	88
201215122	2	90
201215122		80

专门的关系运算

- 1. 选择
- 2. 投影
- 3. 连接
- 4. 除运算

1. 选择(Selection)

- ❖ 选择又称为限制(Restriction)
- ❖选择运算符的含义
 - 在关系R中选择满足给定条件的诸元组 $\sigma_F(R) = \{t | t \in R \land F(t) = '真'\}$
 - ■F: 选择条件,是一个逻辑表达式,取值为"真"或"假"
 - ●基本形式为: X₁θ Y₁
 - θ表示比较运算符,它可以是>,≥,<,≤,=或<>

选择(续)

❖选择运算是从关系R中选取使逻辑表达式F为真的 元组,是从行的角度进行的运算

选择(续)

[例2.4] 查询信息系(IS系)全体学生。 $\sigma_{Sdept = 'IS'}$ (Student)

结果:

Sno	Sname	Ssex	Sage	Sdept
201215125	张立	男	19	IS

选择(续)

[例2.5] 查询年龄小于20岁的学生。

 $\sigma_{\text{Sage} < 20}$ (Student)

结果:

Sno	Sname	Ssex	Sage	Sdept
201215122	刘晨	女员	19	IS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS JAY

2. 投影(Projection)

■ 从R中选择出若干属性列组成新的关系

$$\pi_A(R) = \{ t[A] \mid t \in R \}, A: R$$
中的属性列

■投影操作主要是从列的角度进行运算

■投影之后不仅取消了原关系中的某些列,而且还可能 取消某些元组(避免重复行)

投影 (续)

❖[例2.6] 查询学生的姓名和所在系。

即求Student关系上学生姓名和所在系两个属性上的投影

π_{Sname,Sdept}(Student)

结果:

Sname	Sdept
李勇	CS
刘晨	CS
王敏	MA
张立。	IS

投影(续)

[例2.7] 查询学生关系Student中都有哪些系。 π_{Sdept}(Student)

结果:

Sdept	
CS	
IS	
MA	3

3. 连接(Join)

- **❖** 连接也称为θ连接
- ❖ 连接运算的含义

从两个关系的笛卡尔积中选取属性间满足一定条件的元组

$$R \bowtie_{A \theta B} S = \{ \widehat{t_r t_s} | t_r \in R \land t_s \in S \land t_r[A] \theta t_s[B] \}$$

- A和B: 分别为R和S上度数相等且可比的属性组
- θ: 比较运算符
- 连接运算从R和S的广义笛卡尔积R×S中选取R关系在A属性组上的值与S关系在B属性组上的值满足比较关系的元组

- ❖两类常用连接运算
 - 等值连接 (equijoin)
 - θ为"="的连接运算称为等值连接
 - 从关系*R*与*S*的广义笛卡尔积中选取*A、B*属性值相等的那些元组,即等值连接为:

$$R \searrow S = \{ \widehat{t_r t_s} \mid t_r \in R \land t_s \in S \land t_r[A] = t_s[B] \}$$

- ■自然连接(Natural join)
 - ●自然连接是一种特殊的等值连接
 - > 两个关系中进行比较的分量必须是相同的属性组
 - 产在结果中把重复的属性列去掉
 - ●自然连接的含义

R和S具有相同的属性组B

$$R \bowtie S = \{ \widehat{t_r t_s} [U-B] \mid t_r \in R \land t_s \in S \land t_r[B] = t_s[B] \}$$

❖一般的连接操作是从行的角度进行运算。

自然连接还需要取消重复列,所以是同时从行和列的角度进行运算。

❖[例2.8]关系*R*和关系*S*如下所示:

R

Α	В	С
a1	b1	5
a1	b2	6
a2	b 3	8
a2	b4	12

S

В	E
b1	3
b2	7
b3	10
b3	2
b 5	2

一般连接 R $_{C < E}$ S的结果如下:

R			S			$R \bowtie S$ $C \leq E$				
A	В	C	В	E		A	R.B	С	S.B	E
a_1	b_1	5	b_1	3		a_1	b_1	5	b_2	7
a_1	b_2	6	<i>b</i> ,	→ 7		a_1	b_1	5	b_3	10
a_2	b_3	8		10		a_1	b_2	6	b_2	7
a_2	b_4	12		2		a_1	b_2	6	b_3	10
			h.	2	3	a_2	b_3	8	b_3	10
			<i>D</i> ₅						1181 7	77 1211

等值连接 $R_{R,B=S,B}$ S 的结果如下:

Α	R.B	С	S.B	E
a1	b1	5	b1	3
a1	b2	6	b2	7
a2	b3	8	b 3	10
a2	b3	8	b 3	2

自然连接 $R \bowtie S$ 的结果如下:

Α	В	С	E
a1	b1	5	3
a1	b2	6	7
a2	b3	8	10
a2	b3	8	2

- ❖悬浮元组(Dangling tuple)
 - ■两个关系*R*和 *S*在做自然连接时,关系 *R*中某些元组有可能在 *S*中不存在公共属性上值相等的元组,从而造成 *R*中这些元组在操作时被舍弃了,这些被舍弃的元组称为悬浮元组。

- ❖外连接(Outer Join)
 - ■如果把悬浮元组也保存在结果关系中,而在其他属性上填空值(Null),就叫做外连接
 - 左外连接(LEFT OUTER JOIN或LEFT JOIN)
 - 只保留左边关系R中的悬浮元组
 - ■右外连接(RIGHT OUTER JOIN或RIGHT JOIN)
 - 只保留右边关系S中的悬浮元组

下图是例2.8中关系*R*和关系*S*的外连接

Α	В	С	E
a1	b1	5	3
a1	b2	6	7
a2	b3	8	10
a2	b3	8	2
a2	b4	12	NULL
NULL	b 5	NULL	2

图(b)是例2.8中关系R和关系S的左外连接,图(c)是右外连接

Α	В	С	E	Α	В	
a1	b1	5	3	a1	b1	
a1	b2	6	7	a1	b2	
a2	b 3	8	10	a2	b 3	
a2	b3	8	2	a2	b3	
a2	b4	12	NULL	NULL	b 5	
	图(b)					

图(c)

6

8

NULL

10

4. 除运算(Division)

给定关系R (X, Y)和S (Y, Z),其中X, Y, Z为属性组。

R中的Y与S中的Y出自相同的域集。

R与S的除运算得到一个新的关系P(X), P是R中满足下列条件的元组在 X属性列上的投影:

元组在X上分量值x的象集 Y_x 包含S在Y上投影的集合,记作:

$$R \div S = \{t_r[X] | t_r \in R \land \pi_Y(S) \subseteq Y_X\}$$

$$Y_x$$
: x 在 R 中的象集, $x = t_r[X]$

❖除操作是同时从行和列角度进行运算

[例2.9]设关系R、S分别为下图的(a)和(b),

R÷S 的结果为图(c)

R

Α	В	С
a1	b 1	c2
a2	b3	с7
a3	b4	с6
a1	b2	с3
a4	b6	с6
a2	b2	с3
a1	b2	c1

S		
В	С	D
b 1	c2	d1
b2	c1	d1
b2	с3	d2

A a1

[例2.9]设关系R、S分别为下图的(a)和(b),

R÷S 的结果为图(c)

R

Α	В	С
a1	b1	c2
a1	b2	C 1
a1	b2	C 3
a2	b3	C7
a2	b2	C 3
a3	b4	C6
a4	b6	c6

S		
В	С	D
b 1	c2	d1
b2	c1	d1
b2	с3	d2

A a1

- ❖ 在关系R中,A可以取四个值{a1, a2, a3, a4} a_1 的象集为 {(b_1 , c_2), (b_2 , c_3), (b_2 , c_1)} a_2 的象集为 $\{(b_3, c_7), (b_2, c_3)\}$ a₃的象集为 {(b₄, c₆)} a₄的象集为 {(b₆, c₆)} **❖** S在(B, C)上的投影为
 - {(b1, c2), (b2, c1), (b2, c3)}
- 只有 a_1 的象集包含了S在(B, C)属性组上的投影所以 $R \div S = \{a_1\}$

An Introduction to Database System