Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей Кафедра информатики Дисциплина: Модели данных и системы управления базами данных

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовой работе на тему

ПРОГРАММНОЕ СРЕДСТВО ДЛЯ ОРГАНИЗАЦИИ РАБОТЫ МЕДИЦИНСКОГО ЦЕНТРА

БГУИР КП 1-40 04 01 011 ПЗ

Студент Д. А. Демидова

Руководитель А. В. Давыдчик

СОДЕРЖАНИЕ

Введение	4
1 Архитектура вычислительной системы	5
1.1 Структура и архитектура вычислительной системы	5
1.2 История, версии и достоинства	7
1.3 Обоснование выбора вычислительной системы	9
2 Платформа программного обеспечения	11
2.1 Выбор операционной системы	11
2.2 Выбор платформы для написания программы	12
3 Теоретическое обоснование разработки программного продукта	13
3.1 Обоснование необходимости разработки	13
3.2 Технологии программирования, используемые для поставленных задач	
4 Проектирование функциональных возможностей программы	14
4.1 Подключение к базе данных	14
4.2 Регистрация и авторизация пользователей	14
4.3 Управление пользователями	14
4.4 Взаимодействие с сущностями приложения	14
4.5 Общее описание системы	14
4.6 Руководство пользователя	14
5 Проектирование разрабатываемой базы данных програм обеспечения	
5.1 Разработка информационной модели	
5.2 ER-диаграмма базы данных	
5.3 Оптимизация структуры разработанной базы данных	
5.4 Описание базы данных	
Заключение	
Список литературных источников	
Приложение А (обязательное) Листинг программного кода	

Приложение Б (обязательное) Конечная схема базы данных	19
Приложение В (обязательное) Ведомость курсового проекта	20

ВВЕДЕНИЕ

Современные медицинские учреждения ежедневно сталкиваются с необходимостью обработки большого объема данных, включая персональные данные пациентов, истории болезни, расписания врачей и другую информацию. Применение базы данных для хранения этих данных централизовать управление И организовать эффективное взаимодействие между сотрудниками медицинского центра. Правильно спроектированная система также позволяет соблюдать требования безопасности и конфиденциальности, которые являются важными аспектами работы с персональной информацией в медицинской сфере.

Целью данной курсовой работы является создание программного средства для организации работы медицинского центра, которое будет включать базу данных для хранения и управления информацией о пациентах, сотрудниках, услугах и медицинских записях. Создаваемое программное средство должно облегчить администрирование и ускорить доступ к медицинской информации, что особенно важно для обеспечения качественного и оперативного обслуживания пациентов.

Исходя из цели проекта был составлен следующий перечень задач:

- 1 Определить и обосновать перечень информационных сущностей для выбранной предметной области.
- 2 Разработать структуру базы данных, которая охватывает все необходимые аспекты работы медицинского центра, такие как управление пациентами, персоналом и медицинскими услугами.
 - 3 Реализовать механизм взаимодействия с сущностями приложения.
 - 4 Создать приложение, использующее разработанную базу данных.
- 5 Создать графический интерфейс для взаимодействия с приложением, использующим разработанную базу данных.
- В ходе разработки программного средства будут использованы принципы проектирования и современные технологии для создания надежной и безопасной базы данных, которая станет важным инструментом для работы медицинского центра. В конечном итоге данная система должна упростить рабочие процессы и минимизировать ошибки, связанные с человеческим фактором, что будет способствовать повышению качества обслуживания пациентов.

1 АРХИТЕКТУРА ВЫЧИСЛИТЕЛЬНОЙ СИСТЕМЫ

1.1 Структура и архитектура вычислительной системы

PostgreSQL — это объектно-реляционная система управления базами данных (ORDBMS), наиболее развитая из открытых СУБД в мире. Имеет открытый исходный код и является альтернативой коммерческим базам данных. С помощью PostgreSQL можно создавать, хранить базы данных и работать с данными с помощью запросов на языке SQL.

Одной из наиболее сильных сторон СУБД PostgreSQL является архитектура. Как и в случаях со многими коммерческими СУБД, PostgreSQL можно применять в среде клиент-сервер — это предоставляет множество преимуществ и пользователям, и разработчикам.

В основе PostgreSQL – серверный процесс базы данных, выполняемый на одном сервере. Доступ из приложений к данным базы PostgreSQL производится с помощью специального процесса базы данных. То есть клиентские программы не могут получать самостоятельный доступ к данным даже в том случае, если они функционируют на том же ПК, на котором осуществляется серверный процесс. пользователям, и разработчикам.

В основе PostgreSQL – серверный процесс базы данных, выполняемый на одном сервере. Доступ из приложений к данным базы PostgreSQL производится с помощью специального процесса базы данных. То есть клиентские программы не могут получать самостоятельный доступ к данным даже в том случае, если они функционируют на том же ПК, на котором осуществляется серверный процесс. [https://otus.ru/nest/post/1584/]

Типичная модель распределенного приложения СУБД PostgreSQL (рисунок 1.1):

Рисунок 1.1 – Схема СУБД PostgreSQL

СУБД PostgreSQL ориентирована на протокол TCP/IP (локальная сеть либо Интернет), при этом каждый клиент соединён с главным серверным процессом БД (на рисунке 1.1 этот процесс обозначен Postmaster). Именно Postmaster создает новый серверный процесс специально в целях обслуживания запросов на доступ к данным определенного клиента. [https://habr.com/ru/companies/otus/articles/706346/]

Сервер PostgreSQL может обрабатывать несколько одновременных подключений от клиентов. Для этого он запускает новый процесс для каждого соединения. С этого момента клиент и новый серверный процесс обмениваются данными без вмешательства исходного процесса postgres. Таким образом, процесс сервера-супервизора всегда работает, ожидая клиентских подключений, в то время как клиентские и связанные серверные процессы приходят и уходят. [https://otus.ru/nest/post/1584/]

Данные, которыми управляет PostgreSQL, хранятся в базах данных. Один экземпляр PostgreSQL одновременно работает с несколькими базами, которые вместе называются кластером баз данных.

Каталог, в котором размещаются все файлы, относящиеся к кластеру, обычно называют словом PGDATA, по имени переменной окружения, указывающей на этот каталог.

При инициализации в PGDATA создаются три одинаковые базы данных (рисунок 1.2):

1 template0 используется, например, для восстановления из логической резервной копии или для создания базы в другой кодировке и никогда не должна меняться;

2 template1 служит шаблоном для всех остальных баз данных, которые может создать пользователь в этом кластере;

3 postgres представляет собой обычную базу данных, которую можно использовать по своему усмотрению.

Рисунок 1.2 – Кластер PostgreSQL

Метаинформация обо всех объектах кластера (таких как таблицы, индексы, типы данных или функции) хранится в таблицах, относящихся к системному каталогу. В каждой базе данных имеется собственный набор таблиц (и представлений), описывающих объекты этой конкретной базы. Существует также несколько таблиц системного каталога, общих для всего кластера, которые не принадлежат какой-либо определенной базе данных и доступны в любой из них. [книга postgresql изнутри]

1.2 История, версии и достоинства

Ранние версии системы были основаны на старой программе POSTGRES University, созданной университетом Беркли: так появилось название PostgreSQL. И сейчас СУБД иногда называют «Постгрес». Существуют сокращения PSQL и PgSQL – они тоже обозначают PostgreSQL.

По состоянию на июнь 2024 года PostgreSQL занимает четвертое место в общемировом рейтинге популярных СУБД (рисунок 1.1).

https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-management-systems/

Рисунок 1.1 – Рейтинг популярности СУБД в июне 2024 года

- У СУБД PostgreSQL много преимуществ, которые продолжают повышать ее популярность:
- 1 Любой специалист может бесплатно скачать, установить СУБД и сразу начать работу с базами данных.
- 2 PostgreSQL подходит для работы в любой операционной системе: Linux, macOS, Windows. Пользователь получает систему «из коробки» чтобы установить и использовать программу, не нужны дополнительные инструменты.
- 3 PostgreSQL поддерживает много разных типов и структур данных, в том числе сетевые адреса, данные в текстовом формате JSON и геометрические данные для координат геопозиций. Все эти форматы можно хранить и обрабатывать в СУБД. Также при работе с PostgreSQL можно создавать собственные типы данных, их называют пользовательскими.

4 Размер базы данных в PostgreSQL не ограничен и зависит от того, сколько свободной памяти есть в месте хранения: на сервере, локальном компьютере или в облаке.

5 PostgreSQL реализует принципы ACID. Это четыре требования для надежной работы систем, которые обрабатывают данные в режиме реального времени. Если все требования выполняются, данные не будут теряться из-за технических ошибок или сбоев в работе оборудования.

6 PostgreSQL поддерживает все современные функции баз данных: оконные функции, вложенные транзакции, триггеры.

7 Хотя большинство операций в PostgreSQL и используют классический стандарт языка SQL, помимо него поддерживается и свой отдельный диалект, позволяющий еще комфортнее писать запросы.

8 Поддерживается репликация «из коробки». Репликация — это сохранение копии базы данных. Копия может находиться на другом сервере.

9 PostgreSQL позволяет быстро без потерь перенести данные из другой СУБД. [https://practicum.yandex.ru/blog/chto-takoe-subd-postgresql/]

10 Возможность одновременного доступа к базе с нескольких устройств. В СУБД реализована клиент-серверная архитектура, когда база данных хранится на сервере, а доступ к ней осуществляется с клиентских компьютеров. Для ситуаций, когда несколько человек одновременно модифицируют базу используется технология MVCC – Multiversion Concurrency Control, многоверсионное управление параллельным доступом.

Благодаря перечисленным выше преимуществам иногда PostgreSQL называют бесплатным аналогом Oracle Database. Обе системы адаптированы под большие проекты и высокую нагрузку. Но есть разница: они по-разному хранят данные, предоставляют разные инструменты и различаются возможностями. Важная особенность PostgreSQL в том, что эта система – feature-rich: так называют проекты с широким функционалом. [https://blog.skillfactory.ru/glossary/postgresql/]

1.3 Обоснование выбора вычислительной системы

PostgreSQL выбрана для разработки приложения для медицинского центра, поскольку она сочетает в себе мощные функциональные возможности, надежность и высокую популярность среди реляционных СУБД. К июню 2024 года PostgreSQL занимает четвертое место в мировом рейтинге популярных СУБД, что подтверждает ее востребованность в сфере информационных технологий.

Одно из ключевых преимуществ PostgreSQL – это свободная лицензия, которая позволяет загружать и использовать систему без затрат. Она поддерживается на всех популярных операционных системах, включая Linux, macOS и Windows, что делает ее доступной для самых разных приложений и сред. Система предоставляет «из коробки» все необходимые инструменты, позволяя сразу приступить к работе с базами данных, не требуя дополнительных программ или надстроек.

PostgreSQL выделяется поддержкой различных типов и структур данных, что особенно важно для приложений, которые обрабатывают сложные данные. В дополнение к стандартным типам данных она позволяет работать с JSON, геометрическими данными и сетевыми адресами. В данном проекте это облегчает хранение медицинской информации и расширяет возможности ее обработки.

Другой важный аспект — масштабируемость PostgreSQL. Размер базы данных ограничен лишь объемом доступной памяти на сервере или в облаке, что позволяет хранить большие объемы медицинских данных и обеспечивает длительное использование системы без необходимости миграции.

Надежность системы обусловлена ее соответствием стандартам ACID, что важно для приложений, которые требуют целостности и безопасности данных. Медицинские данные должны быть защищены от потерь и технических сбоев, и PostgreSQL предлагает стабильную платформу для их обработки и хранения.

Также **PostgreSQL** реализует многоверсионное управление параллельным доступом (MVCC), что позволяет нескольким пользователям одновременно работать с базой данных без блокировки доступа. Это ключевое преимущество ДЛЯ медицинского центра, где несколько сотрудников могут одновременно обращаться к базе для записи, просмотра и обновления данных пациентов.

Таким образом, PostgreSQL была выбрана для этого проекта благодаря ее широким функциональным возможностям, высокой надежности, поддержке разнообразных типов данных и оптимальной масштабируемости. Это делает PostgreSQL идеальной СУБД для медицинского центра, нуждающегося в эффективной и надежной системе управления данными.

2 ПЛАТФОРМА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

2.1 Выбор операционной системы

Linux — оптимальный выбор для приложения медицинского центра, поскольку данная операционная система обеспечивает надежную, безопасную и гибкую платформу для серверных решений, особенно тех, которые требуют высокой производительности и стабильности.

Linux известен своей высокой стабильностью, особенно на серверных платформах. В медицинском центре работа с данными пациентов и организация процесса требует круглосуточной доступности и минимального времени простоя. Linux стабильно работает даже при значительных нагрузках, что делает его идеальным для приложений с высоким объемом запросов и большим количеством данных.

Медицинские данные требуют особого уровня защиты, так как они содержат персональные данные и конфиденциальную информацию. Сильная встроенная система прав доступа (основанная на ролях) и возможность регулярных обновлений безопасности делают Linux безопасной ОС для хранения и управления конфиденциальными данными.

Также Linux позволяет оптимально использовать память особенно процессорные мощности, что важно ДЛЯ приложений, обрабатывающих большое количество запросов и данных, как это требуется в медицинском центре. Благодаря тому, что Linux занимает минимум системных ресурсов, оставляя больше мощности для самого приложения и базы данных PostgreSQL, приложение будет работать быстрее и устойчивее.

Поскольку Linux является системой с открытым исходным кодом, она предоставляет экономически выгодное решение для медицинского центра. Установка и использование Linux не требуют затрат на лицензии, что снижает затраты на внедрение и эксплуатацию.

Кроме того, Linux предлагает множество инструментов для автоматизации задач: скрипты на Bash, планировщики задач (например, cron) и возможности контейнеризации (например, Docker). Эти инструменты можно использовать для регулярного резервного копирования базы данных, обновлений системы и настройки мониторинга. Возможность автоматизации поможет медицинскому центру обеспечить бесперебойную работу и уменьшить затраты на обслуживание системы.

Благодаря этим преимуществам, Linux является надежной и эффективной платформой для приложений медицинского центра, требующих высокой безопасности, производительности и стабильности.

Таким образом, в качестве операционной системы для проведения сравнения используется Linux (дистрибутив Ubuntu).

2.2 Выбор платформы для написания программы

В качестве языка программирования для написания программы используется Python. Python имеет несколько преимуществ для разработки приложения медицинского центра:

1 Python отличается простой и понятной синтаксической структурой, что сокращает время на написание и поддержку кода. Это позволяет разработчику быстрее перейти от идеи к работающему продукту, а также легко поддерживать и обновлять приложение.

2 Python предлагает широкий выбор библиотек и фреймворков для разработки серверных приложений, таких как Django и FastAPI. Эти фреймворки упрощают настройку и структуру серверной части, обеспечивая готовые решения для обработки запросов, аутентификации и работы с базами данных. Например, Django ORM позволяет упростить взаимодействие с PostgreSQL, делая его интуитивно понятным и надежным.

3 Python имеет обширные возможности для работы с базами данных. Библиотеки, такие как psycopg2 и SQLAlchemy, облегчают взаимодействие с PostgreSQL, позволяя выполнять как простые, так и сложные запросы к базе данных. Эти библиотеки предоставляют как интерфейс ORM, так и позволяют отправлять базы чистые запросы через так называемый «raw SQL».

В качестве платформы для разработки был выбран PyCharm. Главная причина этому то, что PyCharm является одной из наиболее популярных и мощных IDE для разработки на Python, предоставляя разработчикам множество инструментов и удобств для повышения производительности и качества кода, и в том числе для удобной интеграции с базой данных и отслеживания ее состояния.

З ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ РАЗРАБОТКИ ПРОГРАММНОГО ПРОДУКТА

3.1 Обоснование необходимости разработки

To be continued Таким образом,

3.2 Технологии программирования, используемые для решения поставленных задач

To be continued

Для решения задач курсового проекта используются следующие технологии программирования:

Таким образом, используемые технологии программирования позволяют выполнить цели данного курсового проекта.

4 ПРОЕКТИРОВАНИЕ ФУНКЦИОНАЛЬНЫХ ВОЗМОЖНОСТЕЙ ПРОГРАММЫ

4.1 Подключение к базе данных

To be continued

4.2 Регистрация и авторизация пользователей

To be continued

4.3 Управление пользователями

To be continued

4.4 Взаимодействие с сущностями приложения

To be continued

4.5 Общее описание системы

To be continued

4.6 Руководство пользователя

To be continued

5 ПРОЕКТИРОВАНИЕ РАЗРАБАТЫВАЕМОЙ БАЗЫ ДАННЫХ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

To be continued Таким образом,

5.1 Разработка информационной модели

To be continued

5.2 ER-диаграмма базы данных

To be continued

5.3 Оптимизация структуры разработанной базы данных

To be continued

5.4 Описание базы данных

To be continued

ЗАКЛЮЧЕНИЕ

В рамках данного курсового проекта \dots Таким образом, \dots

СПИСОК ЛИТЕРАТУРНЫХ ИСТОЧНИКОВ

- [1] Архитектура Zen: сколько поколений продержится главная технология AMD [Электронный ресурс]. Режим доступа: https://club.dns-shop.ru/blog/t-100-protsessoryi/61416-arhitektura-zen-skolko-pokolenii-proderjitsya-glavnaya-tehnologi/ Дата доступа: 01.10.2023.
- [2] Поколения процессоров AMD Ryzen [Электронный ресурс]. Режим доступа: https://te4h.ru/pokoleniya-protsessorov-amd-ryzen Дата доступа: 01.10.2023.

приложение А

(обязательное) Листинг программного кода

To be continued

приложение Б

(обязательное) Конечная схема базы данных

приложение в

(обязательное) Ведомость курсового проекта