CLAIMS

What is claimed is:

	1	1. An apparatus, comprising:
~ <i>/</i> /0	2	a metal-oxide-semiconductor transistor with a shifted flat band
	3	magnitude;
D	4	a gate electrode coupled to said metal-oxide-semiconductor
	5	transistor and to a positive voltage source; and
	6	a source electrode, a drain electrode, and a substrate electrode
1 <u>7</u> 1	7	coupled to each other and to a negative voltage
	8	source.
		,
11	1	2. The apparatus of claim 1, wherein said metal-oxide-
	2	semiconductor includes a gate area material with a work function less
	3	than – 0.56 volts.

3. The apparatus of claim 2, wherein said gate area material is platinum silicate.

1 4. The apparatus of claim 2, wherein said gate area material is selected from the group consisting of tantalum nitrate, iridium, nickel, and arsenic.

1 5. The apparatus of claim 1, wherein said metal-oxide-2 semiconductor transistor includes a heavily-doped substrate area.

- 1 6. The apparatus of claim 1, wherein said metal-oxide-2 semiconductor transistor is a p-channel device.
- 7. The apparatus of claim 1, wherein said metal-oxide-
- 2 transistor is an n-channel device.
- 1 8. A method, comprising:
- 2 shifting a flat band magnitude in a metal-oxide-semiconductor
- 3 transistor;
- 4 coupling a gate electrode of said metal-oxide-semiconductor
- 5 transistor to a positive voltage source; and
- 6 coupling a source electrode, a drain electrode, and a substrate
- 7 electrode of said metal-oxide-semiconductor
- 8 transistor to a negative voltage source.
- 1 9. The method of claim 8, wherein said shifting includes
- 2 utilizing a gate area with a material whose work function is less than
- 3 0.56 volts.
- 1 10. The method of claim 9, wherein said material is platinum
- 2 silicate.
- 1 11. The method of claim 9, wherein said material is selected
- 2 from the group consisting of tantalum nitrate, iridium, nickel, and
- 3 arsenic.

2	utilizing a substrate which is heavily-doped.
1	13. The method of claim 8, wherein said metal-oxide-
2	semiconductor transistor is a p-channel device.
1	14. The method of claim 8, wherein said metal-oxide-
2	semiconductor transistor is an n-channel device.
Hard Hard	
\bigcap 1	15. An apparatus, comprising:
λ^2	means for shifting a flat band magnitude in a metal-oxide-
$\binom{3}{3}$	semiconductor transistor;
4	means for coupling a gate electrode of said metal-oxide-
5	semiconductor transistor to a positive voltage source;
5 6 7	and
7	means for coupling a source electrode, a drain electrode, and a
8	substrate electrode of said metal-oxide-
9	semiconductor transistor to a negative voltage
10	source.

The method of claim 8, wherein said shifting includes

 $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

1

12.

16. The apparatus of claim 15, wherein said means for shifting includes a gate area with a material whose work function is less than - 0.56 volts.

- The apparatus of ¢laim 16, wherein said material is 17. 1
- 2 platinum silicate.
- The apparatus of claim 16, wherein said material is 1 18.
- selected from the group consisting of tantalum nitrate, iridium, nickel, 2
- 3 and arsenic.
- 1 19. The apparatus of claim 15, wherein said means for shifting
- includes a substrate which is heavily-doped. 2

John Ward, Esq.

John M. 40216.