Aceptadores finitos no deterministas (NFA) (7.5%)

NUMERO 2

2. Find a dfa that accepts the language defined by the nfa in Figure 2.8.

L= {
$$a^n, aaa: n>0 par$$
 } NUMERO 4

4. In Figure 2.9, find δ^* (q_0 ,1011) and δ^* (q_1 ,01).

$$\{q0, 1011\} = \{q2\}$$

 $\{q1, 01\} = \{\}$
NUMERO 5

5. In Figure 2.10, find δ^* (q_0 , a) and δ^* (q_1 , λ).

Figure 2.10

$$\{q0,a\} = \{q0,q1,q2\}$$

 $\{q1,\} = \{q1,q2,q0\}$
NUMERO 6

6. For the nfa in Figure 2.9, find $\delta^*(q_0, 1010)$ and $\delta^*(q_1, 00)$.

$$\{q0,1010\} = \{q0,q2, \{\}\}$$

 $\{q1,00\} = \{\}$
NUMERO 7

NUMERO 11

NUMERO 12

12. Which of the strings 00, 01001, 10010, 000, 0000 are accepted by the following nfa?

01001

000

NUMERO 14

14. Let *L* be the language accepted by the nfa in Figure 2.8. Find an nfa that accepts $L \cup \{a^5\}$.

Figure 2.8

NUM, ERO 16

16. Find an nfa that accepts $\{a\}^*$ and is such that if in its transition graph a single edge is removed (without any other changes), the resulting automaton accepts $\{a\}$.

NUMERO 21

21. An nfa in which (a) there are no λ -transitions, and (b) for all $q \in Q$ and all $a \in \Sigma$, δ (q,a)contains at most one element, is sometimes called an **incomplete** dfa. This is reasonable since the conditions make it such that there is never any choice of moves.

For $\Sigma = \{a,b\}$, convert the incomplete dfa below into a standard dfa.

