projetos.md 4/14/2023

Atividades

Aqui você vai encontrar os enunciados de todos os trabalhos apresentados neste semestre.

Uso de listas neutralizadas

Neste trabalho você precisará implementar listas que serão capazes de armazenar um conjunto de dados gerado por diferentes sensores que detectam e registram os eventos em uma área monitorada.

Os sensores foram distribuídos para medir condições ambientais, e.g., temperatura e das massas de ar. Cada sensor portanto registra medições distintas que tem seus atributos.

Sua tarefa consiste em ler todas as medidas, armazenadas em um arquivo, e incluí-las na lista de eventos.

As medidas relacionadas a temperatura têm os seguintes atributos:

```
{ seq :inteiro,
    dia:inteiro,
    hora:inteiro,
    minuto:inteiro,
    minuto:inteiro,
    radiacao_solar:inteiro,
    temperatura:double,
    umidade_relativa: double
}
```

As medidas relacionadas as massas de ar têm os seguintes atributos:

```
{ seq:inteiro,
    dia:inteiro,
    hora:inteiro,
    minuto:inteiro,
    minuto:inteiro,
    welocidade_media:double,
    velocidade_instantanea:double,
    direcao: inteiro
}
```

O que fazer?

Após armazenar os eventos nas suas respectivas listas, seu programa deve manipular os eventos armazenados nas listas, conforme os seguintes comandos:

projetos.md 4/14/2023

- 1. R dia/mes/ano hora:min Remover o evento que ocorreu na data especificada.
- 2. I x y Imprimir os elementos no intervalo \$[x,y]\$
- 3. A x Acessar o elemento \$x\$
- 4. B dia/mes/ano hora:min Buscar um evento que ocorreu na data especificada
- 5. P x y Podar(remover) todos os elementos no intervalo \$[x, y]\$
- 6. F Fim dos comandos

Considerações:

- 1. Os valores de \$x\$ e \$y\$ podem ser negativos, o que deve levar o acesso a acontecer do último para o primeiro elemento;
- 2. A lista de todos os eventos será criada sempre inserindo os novos eventos no final;
- 3. Existem dois momentos de entrada do programa:
 - informe do tipo de sensor (1 temperatura; 2 massas de ar) e nome do arquivo onde estão as informações;
 - o Informe dos Comandos que precisam ser executados;

Veja abaixo os exemplos de como o seu programa será executado:

```
> sensor 1 nome_arquivo_temperatura.txt
> sensor 2 nome_arquivo_massas_de_ar.txt
```

Nomeclaturas

1. O arquivo com o seu programa (solução) deve ter o seguinte nome: sensor.c

Como submeter o seu programa

- 1. Deve ser submetido via colab.
- 2. Somente o arquivo **sensor.c** precisa ser enviado.

Comandos extras.

A seguir você vai ver algumas dicas de como a linguagem C dá suporte a leitura de dados via arquivo e como você pode ler informações passadas via linha de comando.

```
#include "stdio.h"
int main(char *argv[], int argc){
   int tipo = (int)(argv[1]);
   char nome_arquivo = argv[2];

FILE *arq = fopen(nome_arquivo, "r");

fscanf(arq,<mascara>,<lista de variáveis>);
}
```

projetos.md 4/14/2023

Resumo da tarefa

- 1. Instanciar a lista para o tipo de medição informado
- 2. Ler e armazenar todas as informações do arquivo na lista
- 3. Processar todos os comandos Conforme indicado na seção "O que fazer?"