ELECTROMAGNETISMO

Estudio de los fenómenos eléctricos y magnéticos causados por cargas eléctricas en reposo o movimiento.

Descripción de las leyes que gobiernan los fenómenos Eléctricos y Magnéticos.

ELECTRICIDAD (Cargas eléctricas)

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA. VICERRECTORADO ACADEMICO. DECANATO DE DOCEN

DEPARTAMENTO DE MATEMATICA Y FISICA - NUCLEO DE FISICA.

Cargas eléctricas

ELECTROMAGNETISMO

ELECTRICIDAD

MAGNETISMO

Fenómenos Magnéticos

Fenómenos Eléctricos

Imanes

Galvanómetro

Cargas eléctricas

Capacitancia (Condensadores)

Corriente y Resistencia

El electromagnetismo:

- Estudia los Fenómenos Eléctricos y Magnéticos que producen las cargas eléctricas (en reposo y movimiento) y los imanes a su alrededor.
- Es descrito a través de propiedades que son explicadas en expresiones matemáticas (ecuaciones diferenciales vectoriales) que relacionan el campo eléctrico y magnético (ecuaciones de maxwell)

Corriente y Resistencia

Imanes

HISTORIA DEL ELECTROMAGNETISMO

James Clerk Maxwell (1831-1879)

Estableció la relación de los fenómenos eléctricos y magnéticos a través de ecuaciones diferenciales vectoriales (Ecuaciones de Maxwell)

$$\mathbf{\nabla} \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\mathbf{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\mathbf{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\mathbf{\nabla} \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

ELECTROSTATICA (CARGA Y MATERIA)

Estudio del fenómeno que producen las cargas eléctricas en reposo.

La carga del protón y el electrón es Igual en magnitud:

$$q_e = 1,602176x10^{-19} C$$

Toda la materia conocida esta constituida por partículas elementales que al unirse forman átomos.

Estas partículas elementales son tres:

Protón, electrón y Neutrón.

Proton: Positive charge

Mass =
$$1.673 \times 10^{-27} \,\mathrm{kg}$$

Neutron: No charge

Mass =
$$1.675 \times 10^{-27} \,\mathrm{kg}$$

Electron: Negative charge

Mass =
$$9.109 \times 10^{-31} \,\mathrm{kg}$$

Las Cargas eléctricas son partículas que acumulan electricidad en un cuerpo.

CARGA Y MATERIA

- Todo cuerpo u objeto que encontramos a nuestro alrededor está localizado en el espacio tiempo y está estructurado de **Masa.**
- Todo cuerpo que posee Masa, posee energía.
- La Masa es la cantidad de Materia que poseen los cuerpos.
- La materia está formada por átomos.
- Hoy en día se sabe que cada átomo es la porción mas pequeña de un elemento y que está formado por 3 partículas que son: electrones, protones y Neutrones.
- Todo cuerpo posee otras propiedades como Volumen, densidad, temperatura, energía cinética, energía potencial gravitatoria, momento dipolar eléctrico, etc.
- Los **átomos** según Demócrito (400 A.C.) filosofo griego estaban constituidos por **partículas indivisibles** con la propiedad de ser eternos e inmutables (PUNTO DE VISTA FILOSÓFICO).

PROPIEDADES ELÉCTRICAS DE LOS MATERIALES

- CONDUCTORES: materiales en los cuales algunos electrones se pueden mover libremente a través del material.
- Carga extra se distribuye sobre toda la superficie.
- Ejemplo: cobre, aluminio, plata, oro, hierro, entre otros.

PROPIEDADES ELÉCTRICAS DE LOS MATERIALES

- AISLANTES: materiales en los cuales los electrones no se pueden mover libremente a través del material.
- Ejemplo: vidrio, hule y madera

SEMICONDUCTORES: propiedades eléctricas entre conductores y aislantes.

Estas propiedades cambian drásticamente por adición controlada de átomos, Ejemplo: silicio y germanio

PROPIEDADES DE LAS CARGAS ELECTRICAS.

PRINCIPIO DE DUALIDAD DE LA CARGA

- Existe dos tipos de cargas: cargas positivas y cargas negativas.
- Este principio permite explicar la neutralidad de los cuerpos en condiciones normales debido a la existencia de los dos tipos de cargas mencionadas.
- El cuerpo es eléctricamente neutro, ya que la carga total o neta es igual a cero, es decir, debe poseer igual cantidad de protones y de electrones.

PRINCIPIO DE CONSERVACION DE LA CARGA.

- En un sistema aislado la carga se conserva, es decir, la suma de las cargas positivas y negativas no varia.
- La carga eléctrica ni se crea, ni se destruye, solamente se transfiere de un cuerpo a otro, es decir, es constante.

$$Q_A + Q_B = q_A + q_B$$

PROPIEDADES DE LAS CARGAS ELECTRICAS.

PRINCIPIO DE INVARIANZA RELATIVISTICA DE LA CARGA.

- La carga eléctrica no depende del estado de movimiento ni de la velocidad del observador.
- Todos los observadores sin importar como se mueven podrán siempre medir la misma cantidad de cargas.

PRINCIPIO DE CUANTIZACION DE LA CARGA.

 Cualquier cantidad de carga "Q" que exista en el universo puede escribirse como un múltiplo entero de la carga elemental, es decir

$$Q = N.e$$
; donde

e = carga elemental =
$$1.6x10^{-19}$$
 coulomb
N = numero entero

• Una carga cualquiera es igual a N veces la carga elemental (1.6x10⁻¹⁹ coulomb); no es un fluido continuo, sino que se consigue como en forma de paquetes.

CARGA ELECTRICA

UN CUERPO ESTÁ CARGADO ELÉCTRICAMENTE CUANDO:

Cargas iguales

defecto de electrones

Cuerpo cargado positivo

se repelen

exceso de electrones

Cuerpo cargado negativo

Cargas opuestas se atraen

Cuerpo cargado neutro es porque: cargas negativas = cargas positivas

LOS CUERPOS SE ELECTRIZAN AL GANAR O PERDER ELECTRONES

FORMAS DE CARGAR LOS CUERPOS

Se ganan, se pierden o se reordenan las cargas eléctricas

Electrización por frotamiento

- Al frotar un cuerpo neutro con otro, una parte de los electrones de la superficie se transfiere al otro cuerpo.
- Ambos cuerpos quedan electrizados con cargas de diferente signos.
- La transferencia de electrones se produce entre materiales distinto.
- La **electrización por frotamiento** permitió, a través de unas cuantas experiencias fundamentales y de una interpretación de las mismas cada vez más completa, sentar las bases de lo que se entiende por electrostática.
- Si una barra de ámbar (de caucho o de plástico) se frota con un paño de lana, se electriza. Lo mismo sucede si una varilla de vidrio se frota con un paño de seda.
- Aun cuando ambas varillas pueden atraer objetos ligeros, como hilos o trocitos de papel, la propiedad eléctrica adquirida por frotamiento no es equivalente en ambos casos.
- Así, puede observarse que dos barras de ámbar electrizadas se repelen entre sí, y lo mismo sucede en el caso de que ambas sean de vidrio. Sin embargo, la barra de ámbar es capaz de atraer a la de vidrio y viceversa.

Cuando los dos cuerpos se frotan, aparecen cargas tanto + como – en igual magnitud.

FORMAS DE CARGAR LOS CUERPOS

Se ganan, se pierden o se reordenan las cargas eléctricas

Electrización por contacto

- Se produce cuando dos conductores se tocan, uno cargado y el otro neutro.
- Es consecuencia del flujo de cargas eléctricas de un cuerpo a otro.
- Las cargas eléctricas se distribuyen entre los dos cuerpos o conductores, y de esta manera los dos quedan cargados con el mismo tipo de carga.
- Se puede transferir electrones de un material a otro por simple contacto.
- Cuando ponemos una barra cargada en contacto con un objeto neutro se transfiere una parte de la carga a éste. Este método de carga se conoce simplemente como carga por contacto.
- Si el objeto es buen conductor la carga se distribuye en toda su superficie porque las cargas iguales se repelen entre sí.
- Si se trata de un mal conductor puede ser necesario tocar con la barra varias partes del objeto para obtener una distribución de carga más o menos uniforme.

FORMAS DE CARGAR LOS CUERPOS

©2004 Thomson - Brooks/Cok

Electrización por Inducción.

- No se requiere de contacto entre el inductor y el objeto a cargar.
- Comenzamos con una esfera eléctricamente neutra.
- La esfera tiene el mismo número de cargas positivas y negativas
- Al colocar una barra cargada en la proximidad de la esfera se provoca una redistribución de carga en la esfera metálica (conductora)
- Ahora la esfera es llevada a tierra y algunos electrones pueden dejar la esfera a través del alambre de la tierra.
- Si la tierra es ahora retirada, existirán más cargas positivas que negativas en la esfera.
- Una carga positiva ha sido inducida en la esfera.

Ejemplo: Durante las tormentas eléctricas se llevan a cabo procesos de carga por inducción. La parte inferior de las nubes, de carga negativa, induce una carga positiva en la superficie terrestre.

Se ganan, se pierden o se reordenan las cargas eléctricas

EN RESUMEN

Las cargas eléctricas residen en los átomos, que son las partículas fundamentales de toda materia existente conocida hasta hoy, y se comportan eléctricamente de acuerdo a las siguientes propiedades:

- En un sistema cerrado la carga eléctrica total es constante (Ley de conservación de la carga eléctrica)
- Existen cargas eléctricas de dos signos, positivas y negativas (nombre que reciben por convenio internacional)
- La carga eléctrica esta cuantizada, es decir solo existe en múltiplos enteros de la carga de un electrón (positivas o negativas)
- Las cargas eléctricas de signos contrarios se atraen y las de igual signo se repelen.
- La carga no se crea ni se destruye solo se transfiere: frotamiento, contacto e inducción.
- **Nota**: La unidad de carga en el System International (SI) de medida es el Coulomb 1[C], por lo que, la carga eléctrica de un electrón es -1.6 10⁻¹⁹ [C].

