TALLER 4

Elaborar en Python la regresión múltiple para el ejercicio propuesto en clase.

VAR RESPUESTA			
cantidad vendida	price	advertiseing	
8500	\$2.00	2800	
4700	\$5.00	200	
5800	\$3.00	400	
7400	\$2.00	500	
6200	\$5.00	3200	
7300	\$3.00	1800	
5600	\$4.00	900	

Solución

Creamos nuestro código para agregar los datos en 3 columnas y hacer la regresión multivariada.

```
import pandas as pd
import numpy as np
import sklearn.linear_model as LinearRegression
import matplotlib.pyplot as plt
from sklearn import datasets, linear_model
import statsmodels.api as sm
import statsmodels.stats.diagnostic as smd

Q = np.array([8500,4700,5800,7400,6200,7300,5600])
P = np.array([2,5,3,2,5,3,4])
A = np.array([2800,200,400,500,3200,1800,900])

X_multiple = pd.DataFrame({"P":P,"A": A})

print(X_multiple.describe())

y_multiple = Q
```

```
from sklearn.model selection import train test split
#Separo los datos de "train" en entrenamiento y prueba para probar
los algoritmos
X train, X test, y train, y test = train test split(X multiple,
y multiple, test size=0.2)
#Defino el algoritmo a utilizar
lr multiple = linear model.LinearRegression()
#Entreno el modelo
lr multiple.fit(X train, y train)
#Realizo una predicción
Y pred multiple = lr multiple.predict(X test)
print('DATOS DEL MODELO REGRESIÓN LINEAL MULTIPLE')
print()
print('Valor de las pendientes o coeficientes "a":')
print(lr multiple.coef )
print('Valor de la intersección o coeficiente "b":')
print(lr multiple.intercept )
print('Precisión del modelo:')
print(lr multiple.score(X train, y train))
X train = sm.add constant(X train, prepend=True)
modelo = sm.OLS(endog=y train, exog=X train,)
modelo = modelo.fit()
print(modelo.summary())
```

Resultados

```
Ρ
                        Α
count 7.000000 7.000000
mean 3.428571 1400.000000
     1.272418 1215.181742
std
     2.000000 200.000000
min
25%
   2.500000 450.000000
50%
   3.000000 900.000000
75%
   4.500000 2300.000000
     5.000000 3200.000000
max
DATOS DEL MODELO REGRESIÓN LINEAL MULTIPLE
```

Dep. Variable Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance T	ions:	QuantySold OLS Least Squares Sat, 05 Dec 2020 07:12:49 7 4 2 nonrobust	Adj. R-F-stati Prob (F Log-Lik AIC: BIC:	-squared: istic:	e):	0.962 0.943 50.27 0.00146 -48.142 102.3 102.1
========	coe	std err	======= t	P> t	[0.025	0.975]
-	-835.722	386.912 4 99.653 2 0.104	-8.386	0.001	-1112.404	
Omnibus: Prob(Omnibus Skew: Kurtosis:):	nan nan -0.771 2.585	Jarque- Prob(JE	•		3.358 0.744 0.689 6.07e+03

Acá tenemos la regresión y sus datos como en el Excel.