Proof Workshop #1

Kailey Cozart

Claim: If a triangle XYZ is inscribed in a semicircle (see figure), then it is a right triangle.

Proof: If triangle ΔXYZ is inscribed in a semicircle, where \overline{XZ} is the diameter of the triangle, then \overline{XO} , \overline{OZ} are both the radius of the semicircle. If Y is a point on the semicircle, then a line drawn between \overline{OY} would be the length of the radius of the semicircle.

Therefore, \overline{OY} , \overline{OZ} are equal because they are both the radius of the semicircle. If \overline{OY} , \overline{OZ} are equal, then ΔOYZ is an isosceles triangle where angles OYZ and YZO are equal.

Likewise, \overline{OX} , \overline{OY} are equal because they are both the radius of the semicircle. If \overline{OX} , \overline{OY} are equal, then ΔOYX is an isosceles triangle where angles OYX and OXY are equal.

Figure 1

So, we end up with a triangle where a represents the equivalent angles OYZ and YZO, b represents the equivalent angles OYX and OXY, and where c and d represent the other unknown angles. See Figure 1 for illustration. Now, we know that the sum of all angles in a triangle is always equal to 180 degrees. Because of this, we can look at the main triangle and see that a + b + (b + a) = 180. This equation can be reduced to 2a + 2b = 180, which can then be reduced to a + b = 90.

In other words, no matter how a triangle is inscribed in the semicircle, a+b will always equal 90. Thus, a triangle inscribed in a semicircle, so that the diameter is one side of the triangle, will always have a right angle XYZ.