Stanja i operatori u $\mathcal{H}^{(2)}$

Kvantna računala (SI)

27. listopada 2020.

Prikaz stanja qubita na Blochovoj sferi

Blochova sfera

Potpuno općenito stanje qubita može se izraziti vektorom stanja

$$|\Phi\rangle=\mathrm{e}^{-\mathrm{i}\varphi/2}\cos\frac{\vartheta}{2}\,\left|0\right\rangle+\mathrm{e}^{\mathrm{i}\varphi/2}\sin\frac{\vartheta}{2}\,\left|1\right\rangle$$

gdje su $|0\rangle$ i $|1\rangle$ vektori ortonormirane baze u $\mathcal{H}^{(2)}$, a parametre

$$0 \le \varphi < 2\pi$$
 i $0 \le \vartheta \le \pi$

možemo shvatiti kao koordinate točke na tzv. Blochovoj sferi.

Gornji zapis osigurava normiranost vektora stanja $\langle \Phi | \Phi \rangle = 1$ te uzima u obzir činjenicu da $| \Phi \rangle$ i $e^{i \psi} | \Phi \rangle$ predstavljaju isto stanje.

Prikaz stanja $|\Phi\rangle={\rm e}^{-{\rm i}\varphi/2}\cos\frac{\vartheta}{2}\;|0\rangle+{\rm e}^{{\rm i}\varphi/2}\sin\frac{\vartheta}{2}\;|1\rangle$ na BS:

3D-vektor: $\hat{\mathbf{n}} = \sin \theta \cos \varphi \, \hat{\mathbf{x}} + \sin \theta \sin \varphi \, \hat{\mathbf{y}} + \cos \theta \, \hat{\mathbf{z}}$

3D-vektor $\hat{\mathbf{n}} = \sin \vartheta \cos \varphi \, \hat{\mathbf{x}} + \sin \vartheta \sin \varphi \, \hat{\mathbf{y}} + \cos \vartheta \, \hat{\mathbf{z}}$ pokazuje točku na Blochovoj sferi kojoj odgovara vektor stanja

$$|\Phi\rangle = \mathrm{e}^{-\mathrm{i}\varphi/2}\cos\frac{\vartheta}{2}\;|0\rangle + \mathrm{e}^{\mathrm{i}\varphi/2}\sin\frac{\vartheta}{2}\;|1\rangle\,.$$

3D-vektor $-\hat{\bf n}$ koji dobivamo zamjenom $\vartheta \to \pi - \vartheta$ i $\varphi \to \varphi \pm \pi$ pokazuje suprotnu točku na BS kojoj odgovara vektor stanja

$$\begin{split} |\Phi_{\perp}\rangle &= \mathrm{e}^{-\mathrm{i}(\varphi\pm\pi)/2}\cos\frac{\pi-\vartheta}{2}\;|0\rangle + \mathrm{e}^{\mathrm{i}(\varphi\pm\pi)/2}\sin\frac{\pi-\vartheta}{2}\;|1\rangle \\ &= \mp\mathrm{i}\left(\mathrm{e}^{-\mathrm{i}\varphi/2}\sin\frac{\vartheta}{2}\;|0\rangle - \mathrm{e}^{\mathrm{i}\varphi/2}\cos\frac{\vartheta}{2}\;|1\rangle\right). \end{split}$$

Vektori stanja $|\Phi\rangle$ i $|\Phi_{\perp}\rangle$ zadovoljavaju relacije ortonormiranosti te predstavljaju moguć odabir ortonormirane baze u $\mathcal{H}^{(2)}$.

Stanja qubita prikazana na Blochovoj sferi:

- Bilo koji par suprotnih točaka na Blochovoj sferi predstavlja moguć odabir vektora ortonormirane baze.
- Provjere stanja koja se nalaze na "ekvatoru" Blochove sfere koji je određen odabirom baze (polova) maksimalno su nekompatibilne sa provjerama stanja baze.
- Bilo koji par suprotnih točaka na ekvatoru predstavlja bazu koja je komplementarna s bazom koja određuje ekvator.
- Istovremeno je moguće odabrati tri međusobno komplementarne baze. (To mogu biti, na primjer, parovi točaka u kojima x, y i z-os probadaju Blochovu sferu.)

Primjer: Prikaz stanja polarizacije fotona na BS:

Primjer: Ako stanjima $|0\rangle$ i $|1\rangle$ odgovaraju energije $\hbar\omega_0$ i $\hbar\omega_1$,

$$|\Phi[t]
angle = \mathrm{e}^{-\mathrm{i}\delta t/2}\cosrac{ heta}{2}\left|0
ight
angle + \mathrm{e}^{\mathrm{i}\delta t/2}\sinrac{ heta}{2}\left|1
ight
angle , \qquad \delta = \omega_0 - \omega_1.$$

Paulijeve matrice i prikaz hermitskog operatora

Projektori na vektore stanja $|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$ i $|1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$ koji se nalaze u točkama u kojima z-os probada Blochovu sferu su

$$\ket{0}ra{0} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad \mathsf{i} \qquad \ket{1}ra{1} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Koristeći te projektore sastavljamo hermitski operator

$$\sigma_z = (+1) \ket{0} ra{0} + (-1) \ket{1} ra{1} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Svojstveni vektori tog operatora su $|0\rangle$ (točka Blochove sfere u kojoj ju probada pozitivan krak z-osi) sa svojstvenom vrijednošću 1 te $|1\rangle$ (točka BS u kojoj ju probada negativan krak z-osi) sa svojstvenom vrijednošću -1.

Sličnim postupkom sastavljamo hermitske operatore čija svojstvena stanja odgovaraju parovima točaka na Blochovoj sferi u kojima ju probadaju x odnosno y-os i čije su svojstvene vrijednosti ± 1 . Matrični prikazi tih operatora su

$$\sigma_{\mathsf{x}} = \cdots = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \mathsf{i} \qquad \sigma_{\mathsf{y}} = \cdots = \begin{pmatrix} 0 & -\mathsf{i} \\ \mathsf{i} & 0 \end{pmatrix}.$$

Uobičajene su oznake

$$\sigma_1 = \sigma_x = X, \qquad \sigma_2 = \sigma_y = Y, \qquad \sigma_3 = \sigma_z = Z,$$

a može se pokazati da vrijede relacije

$$\sigma_i^2 = I$$
, $\sigma_1 \sigma_2 = i\sigma_3$, $\sigma_2 \sigma_3 = i\sigma_1$, $\sigma_3 \sigma_1 = i\sigma_2$.

Paulijeve ili σ -matrice

Matrice

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_2 = \begin{pmatrix} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{pmatrix} \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

zovemo Paulijevim ili σ -matricama. One predstavljaju hermitske operatore u $\mathcal{H}^{(2)}$ čiji se svojstveni vektori podudaraju s vektorima triju međusobno komplementarnih baza u $\mathcal{H}^{(2)}$ i čije su svojstvene vrijednosti ± 1 .

Primjer: Vektori $\pm \hat{\mathbf{n}}$ na Blochovoj sferi pokazuju stanja

$$|\Phi\rangle = \begin{pmatrix} \mathrm{e}^{-\mathrm{i}\varphi/2}\cos\frac{\vartheta}{2} \\ \mathrm{e}^{\mathrm{i}\varphi/2}\sin\frac{\vartheta}{2} \end{pmatrix} \qquad \mathrm{i} \qquad |\Phi_{\perp}\rangle = \begin{pmatrix} \mathrm{e}^{-\mathrm{i}\varphi/2}\sin\frac{\vartheta}{2} \\ -\mathrm{e}^{\mathrm{i}\varphi/2}\cos\frac{\vartheta}{2} \end{pmatrix}$$

koja čine ortonormiranu bazu (raniji primjer). Konstruiramo li operator

$$\sigma_{\mathbf{\hat{n}}} = (+1) \ket{\Phi} ra{\Phi} + (-1) \ket{\Phi_{\perp}} ra{\Phi_{\perp}} = \begin{pmatrix} \cos artheta & \mathrm{e}^{-\mathrm{i}arphi} \sin artheta \\ \mathrm{e}^{\mathrm{i}arphi} \sin artheta & -\cos artheta \end{pmatrix},$$

u posebnim slučajevima $\hat{\mathbf{n}} = \hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$ dobivamo Paulijeve matrice:

$$\hat{\mathbf{n}} = \hat{\mathbf{x}}$$
 $(\vartheta = \pi/2, \varphi = 0)$: $\sigma_{\hat{\mathbf{n}}} = \sigma_1$

$$\hat{\mathbf{n}} = \hat{\mathbf{y}}$$
 $(\vartheta = \pi/2, \varphi = \pi/2)$: $\sigma_{\hat{\mathbf{n}}} = \sigma_2$

$$\hat{\mathbf{n}} = \hat{\mathbf{z}}$$
 $(\vartheta = 0)$: $\sigma_{\hat{\mathbf{n}}} = \sigma_3$

Prikaz hermitskog operatora

Matrični prikaz bilo kojeg hermitskog operatora M u $\mathcal{H}^{(2)}$ možemo izraziti kao

$$M = \lambda_0 I + \sum_{i=1}^3 \lambda_i \sigma_i,$$

gdje je I jedinična matrica, σ_1 , σ_2 i σ_3 su Paulijeve matrice, a λ_0 , λ_1 , λ_2 i λ_3 su realni koeficijenti.

Primjer: Operator $\sigma_{\hat{\mathbf{n}}}$ iz prethodnog primjera možemo izraziti kao

$$\sigma_{\hat{\mathbf{n}}} = \sin \vartheta \cos \varphi \ \sigma_1 + \sin \vartheta \sin \varphi \ \sigma_2 + \cos \vartheta \ \sigma_3$$

gdje su σ_1 , σ_2 i σ_3 Paulijeve matrice, a koeficijenti $\lambda_1 = \sin \vartheta \cos \varphi$ itd. se podudaraju s komponentama vektora $\hat{\bf n}$.

Spin 1/2 kao realizacija qubita

Spin je, uz masu i električni naboj, temeljno svojstvo čestice. Po svom karakteru, spin je vektorska veličina nalik kutnoj količini gibanja.

Spin čestice je, poput električnog naboja, kvantiziran. U prirodi postoje čestice sa spinskim kvantnim brojem

$$s=0,\frac{1}{2},1,\frac{3}{2},\ldots,$$

a sama vrijednost spina je $S=\hbar\sqrt{s(s+1)}$, gdje je $\hbar=1.05\times 10^{-34}\,\mathrm{J\,s}$ Planckova konstanta.

Elektron, proton i neutron imaju spinski kvantni broj s = 1/2.

U eksperimentima je moguće mjeriti projekciju spina čestice na odabranu prostornu os (tzv. Stern–Gerlachov eksperiment).

Projekcija spina čestice spinskog kvantnog broja s na odabranu os može poprimiti 2s+1 različitih vrijednosti. Odaberemo li z-os, moguće projekcije spina su

$$S_z = -\hbar s, -\hbar (s-1), \ldots, \hbar (s-1), \hbar s.$$

Kad se radi o čestici spinskog kvantnog broja s=1/2, moguće su samo dvije projekcije spina na z-os,

$$S_z=\pm\frac{\hbar}{2},$$

te kažemo da projekcija spina čestice spinskog kvantnog broja s=1/2 na z-os predstavlja moguću realizaciju qubita.

Projekciju spina čestice spinskog kvantnog broja s=1/2 na x, y i z-os opisujemo hermitskim operatorima

$$S_x = \frac{\hbar}{2}\sigma_1, \qquad S_y = \frac{\hbar}{2}\sigma_2, \qquad S_z = \frac{\hbar}{2}\sigma_3,$$

dok vektor spina takve čestice možemo opisati operatorom

$$\mathbf{S} = \frac{\hbar}{2} \boldsymbol{\sigma},$$
 gdje je $\boldsymbol{\sigma} = \hat{\mathbf{x}} \, \sigma_1 + \hat{\mathbf{y}} \, \sigma_2 + \hat{\mathbf{z}} \, \sigma_3.$

Očekivani vektor spina u sustavu koji se nalazi u stanju $|\Phi\rangle$ je

$$\langle \mathbf{S} \rangle = \langle \Phi | \mathbf{S} | \Phi \rangle = \cdots = \frac{\hbar}{2} \, \hat{\mathbf{n}},$$

gdje je $\hat{\mathbf{n}}$ vektor koji na Blochovoj sferi pokazuje stanje $|\Phi\rangle$.

Kvadrat iznosa spina čestice spinskog kvantnog broja s=1/2 možemo opisati hermitskim operatorom

$$S^{2} = \mathbf{S} \cdot \mathbf{S} = S_{x}^{2} + S_{y}^{2} + S_{z}^{2} = \frac{\hbar^{2}}{4} \left(\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} \right)$$
$$= \frac{\hbar^{2}}{4} (I + I + I)$$
$$= \frac{3\hbar^{2}}{4} I.$$

Uočavamo da je svako stanje qubita (orijentacija spina) svojstveno stanje operatora S^2 uz svojstvenu vrijednost $3\hbar^2/4$.

Iznos spina čestice čiji je spinski kvantni broj s=1/2 prepoznajemo kao $S=\frac{\sqrt{3}}{2}\hbar$ što je upravo $\hbar\sqrt{s(s+1)}$.