# RF Heating and Current Drive

Raspberry Simpson and Muni Zhou

2017

#### RF Heating Group

Raspberry Simpson and Muni Zhou

Introduction
Heating Mechanis

LHCD

Ehst and Karney's Formula for Efficiency Selection for  $n_{\parallel}$  and

Selection for  $\theta$  and  $B_0$ Freidberg's Single

Bootstrap Current

## Overview

## Introduction

Heating Mechanism

## **LHCD**

Ehst and Karney's Formula for Efficiency Selection for  $n_{\parallel}$  and  $\omega$  Selection for  $\theta$  and  $B_0$  Freidberg's Single Particle Approach

**Bootstrap Current** 

Next Steps

#### RF Heating Group

Raspberry Simpson and Muni Zhou

Introduction
Heating Mechanism

#### LHCD

Ehst and Karney's Formula for Efficiency Selection for  $n_{\parallel}$  and

Selection for  $\theta$  and  $B_0$ Freidberg's Single Particle Approach

Bootstrap Current

- according to accessibility analyses, resonance happens near the edge, providing off-axis current drive
- ightharpoonup electron heating mostly, Landau damping (velocity limit? since the *collisionality*  $\sim 1/v_e^3$ )
- ► Rely on asymmetric wave spectrum interacting with electrons on tail of distribution, the gain in electron momentum correspond to a net toroidal current
- Resonance usually happens at  $v_{\parallel} \simeq 3v_{Te}$  (tail of distribution), recall  $\nu_{ei} \simeq 1/v_{\parallel}^3$ , there is less friction trying to restore the distribution function to Maxwellian, less power is required to sustain the current drive(i.e., higher efficiency)

Raspberry Simpson and Muni Zhou

Introduction
Heating Mechanism

LHCE

Formula for Efficiency Selection for n and  $\omega$ 

*B*<sub>0</sub> Freidberg's Single Particle Approach

Bootstrap Current

# Ehst and Karney's Formula for Efficiency

## Deficiencies in different units:

$$\begin{split} \eta_{I} &= \frac{\int\limits_{A}^{J} J_{CD} dA}{\int\limits_{V}^{J} S_{LH} dV} \approx \frac{1}{2\pi R} \left[ \frac{J_{CD}}{S_{LH}} \right]_{\rho_{J}} = \frac{1}{2\pi R} \eta = \frac{1}{2\pi R} \left[ \frac{e}{m_{e} \nu_{0} v_{Te}} \right]_{\rho_{J}} \tilde{\eta} \\ \eta &= \left[ \frac{J_{CD}}{S_{H}} \right]_{\rho_{J}} \\ \tilde{\eta} &= \left[ \frac{J_{CD} / env_{Te}}{S_{H} / m_{e} n \nu_{0} v_{Te}^{2}} \right]_{\rho_{J}} = \left[ \frac{m_{e} \nu_{0} v_{Te}}{e} \right]_{\rho_{J}} \eta \\ v_{Te} &= \left( \frac{2T_{e}}{m_{e}} \right)^{1/2} \\ \nu_{0} &= \frac{\omega_{pe}^{4} \ln \Lambda}{2\pi n \ v_{0}^{3}} \end{split}$$

RF Heating Group

Raspberry Simpson and Muni Zhou

Introduction

I HCD

THCD

Ehst and Karney's Formula for Efficiency Selection for  $n_{\parallel}$  and

Selection for  $\theta$  and  $B_0$ Freidberg's Single

Bootstrap Current

lext Steps

# Ehst and Karney's Formula for Efficiency

$$\tilde{\eta} = CMR\eta_0 \tag{1}$$

$$M = 1$$

$$R = 1 - \frac{\varepsilon^n \rho_J^n (x_r^2 + w^2)^{1/2}}{\varepsilon^n \rho_J^n x_r + w} \qquad n = 0.77 \qquad x_r = 3.5$$

$$C = 1 - \exp(-c^m x_t^{2m})$$
  $m = 1.38$   $c = 0.389$ 

$$\eta_{_{0}} = \frac{K}{w} + D + \frac{4w^{^{2}}}{5 + Z_{_{e\!f\!f}}} \hspace{1cm} K = \frac{3.0}{Z_{_{e\!f\!f}}^{_{0.707}}} \hspace{1cm} D = \frac{3.83}{Z_{_{e\!f\!f}}^{_{0.707}}} \label{eq:eta_0}$$

RF Heating Group

Raspberry Simpson and Muni Zhou

Introduction
Heating Mechanis

HCD

Flet and Karney's

Ehst and Karney's Formula for Efficiency Selection for  $n_{\parallel}$  and  $\omega$ 

Selection for  $\theta$  and  $B_0$ Freidberg's Single

Bootstrap Current

# Selection for $\emph{n}_{\parallel}$ and $\omega$

- Accessibility Constraints
- ▶ Position of current drive layer

RF Heating Group

Raspberry Simpson and Muni Zhou

Introduction
Heating Mechanisi

LHCD

Ehst and Karney's Formula for Efficienc Selection for n and  $\omega$ 

Selection for  $\theta$  and  $B_0$ Freidberg's Single

Bootstrap Curren

Vext Steps

## Accessibility Analysis

Given by cold plasma dispersion relation, Mode conversion condition:

$$\frac{\omega_{pi}}{\omega} = N_{\parallel} Y \pm \sqrt{1 + N_{\parallel}^2 (Y^2 - 1)}$$
 (2)

Where  $Y=rac{\omega^2}{\omega_{ce}\omega ci}$ ,  $N_{\parallel}=rac{ck_z}{\omega}$ .



FIG. 6.4. Accessibility diagram of lower hybrid waves for two different values of  $N_{\parallel}$ . Left: The  $N_{\parallel}$  is too low for accessibility to the lower hybrid layer; however, accessibility to the slow-fast wave mode conversion layer  $(n_e)$  is available for electron Landau absorption

RF Heating Group

Raspberry Simpson and Muni Zhou

Introduction
Heating Mechanism

LHCD

Ehst and Karney's Formula for Efficiency Selection for n and  $\omega$ 

rg's Single Approach

rap Current

teps

Raspberry Simpson and Muni Zhou

• if  $Y^2 > 1$ , which means  $\omega^2 > \omega_{ce}\omega_{ci}$ , there will always be position for slow wave to converse to fast wave.

Introduction

• if  $Y^2 < 1$ (small wave frequency), there will be several cases depends on the parallel wave number. The critical value is the following:

 $N_{\parallel critical}^2 = 1 + \frac{\omega_{pe}^2}{(v)^2} \mid_{Resonance}$ (3) Selection for  $n_{||}$  and

Bootstrap Current

The resonance layer is given by  $\omega^2 = \omega_{IH}^2(x_r)$ 

- if  $N_{\parallel}^2 > N_{\parallel critical}^2$ , the wave can access the lower hybrid layer, as the right diagram shows.
- if  $N_{\parallel}^2 < N_{\parallel critical}^2$ , mode conversion happens, as the left diagram shows.
- if  $N_{\parallel}^2 = N_{\parallel critical}^2$ , two mode conversion positions merge, critical case.

Selection for  $\theta$  and  $B_0$ Freidberg's Single

Bootstrap Current

Next Steps

Collection of Accessibility Constraints

1. No mode conversion before reaching  $\rho_J$ 

$$n_{\parallel}^2 \ge \left( \left( 1 - \frac{1 - \hat{\omega}^2}{\hat{\omega}^2} X \right)^{1/2} + X^{1/2} \right)^2$$
  
where  $X(\rho_J) = \omega_{pe}^2(\rho_J)/\Omega_e^2(\rho_J)$   
 $\hat{\omega}^2(\rho_J) = \omega^2/\Omega_e(\rho_J)\Omega_i(\rho_J)$ 

- 2. No wave resonance bofore reaching  $\rho_J$   $\omega^2 > \omega_{LH}^2(\rho_J)$
- 3. No parametric decay instability before reaching  $\rho_J$   $\omega^2 > 4\omega_{LH}^2(\rho_J)$
- 4. No coupling to  $\alpha$  particles before reaching  $\rho_J$   $\omega^2/k_{\perp}^2(\rho_J) > v_{\alpha}^2$

No mode conversion and no  $\alpha$  particle coupling are the most strict constraints.

#### LHCD

Ehst and Karney's Formula for Efficiency Selection for  $n_{\parallel}$  and

Selection for  $\theta$  and  $B_0$ Freidberg's Single

Bootstrap Current

Vext Steps

Solve the following equations simultaneously to determine  $n_{\parallel}^2$ ,  $\hat{\omega}^2$ , and  $\rho_J$ 

$$n_{\parallel}^{2} = \left( \left( 1 - \frac{1 - \hat{\omega}^{2}}{\hat{\omega}^{2}} X \right)^{1/2} + X^{1/2} \right)^{2} \tag{4}$$

$$\hat{\omega}^2 = \frac{1}{2} \frac{X}{1+X} + \frac{1}{2} \left[ \frac{X^2}{(1+X)^2} + 4\gamma^2 \frac{X^3}{1+X} \right]^{1/2}$$
 (5)

$$(1 + \nu_T)(1 - \rho_J^2)^{\nu_T} n_{\parallel}^2(\rho_J) = \frac{m_e c^2}{2\bar{T}_k} = \frac{28.4}{\bar{T}_k}$$
 (6)

## Results in Parameter Space



Figure:  $n_{\parallel}$  in parameter space

RF Heating Group

Raspberry Simpson and Muni Zhou

Introduction

LHCD

Ehst and Karney's Formula for Efficiency Selection for  $n_{\parallel}$  and

Selection for  $\theta$  and  $B_0$ Freidberg's Single Particle Approach

Bootstrap Current

## Results in Parameter Space



Figure:  $\rho_J$  in parameter space

RF Heating Group

Raspberry Simpsor and Muni Zhou

Introduction
Heating Mechanisi

LHCD

Ehst and Karney's Formula for Efficiency Selection for  $n_{\parallel}$  and

Selection for  $\theta$  and  $B_0$ Freidberg's Single Particle Approach

Bootstrap Current

## Results in Parameter Space



Figure:  $\hat{\omega}^2$  in parameter space

RF Heating Group

Raspberry Simpson and Muni Zhou

Introduction

LHCE

Ehst and Karney's Formula for Efficiency Selection for  $n_{\parallel}$  and

Selection for  $\theta$  and  $B_0$ Freidberg's Single Particle Approach

Bootstrap Current

## Test Cases

| $\bar{T}_k$      | 10.0  | 10.0 | 5.0   | 5.0   |
|------------------|-------|------|-------|-------|
| $n_{20}^{-}$     | 2.5   | 1.0  | 1.0   | 1.0   |
| $B_0$            | 5.0   | 10.0 | 10.0  | 5.0   |
| $n_{\parallel}$  | 2.5   | 1.32 | 1.57  | 1.96  |
| $ ho_J^{"}$      | 0.86  | 0.47 | 0.04  | 0.53  |
| $\hat{\omega}^2$ | 8.08  | 0.53 | 0.71  | 3.29  |
| $\omega(e10)$    | 3.15  | 1.72 | 2.17  | 2.13  |
| $\eta_{CD}$      | 0.168 | 0.71 | 0.59  | 0.31  |
| $\eta_I$         | 0.016 | 0.12 | 0.090 | 0.053 |

## RF Heating Group

Raspberry Simpson and Muni Zhou

Introduction
Heating Mechanis

#### LHCD

Ehst and Karney's Formula for Efficienc Selection for  $n_{\parallel}$  and  $\omega$ 

Selection for θ and B<sub>0</sub> Freidberg's Single Particle Approach

Bootstrap Current

Raspberry Simpson and Muni Zhou

Introduction
Heating Mechanism

#### THCD

Ehst and Karney's Formula for Efficiency Selection for  $n_{\parallel}$  and

Selection for  $\theta$  and  $B_0$ Freidberg's Single

Bootstrap Current

Nevt Stens





Optimize  $\theta$ 







Raspberry Simpson and Muni Zhou

Introduction

Selection for  $\theta$  and  $B_0$ 



# $\bar{T}_k = 17.8, \ n_{20} = 0.86, \ a/R_0 = 0.25, \ \theta = 0$



Optimize  $B_0$ 







Raspberry Simpson and Muni Zhou

Introduction
Heating Mechanism

#### LHCD

Ehst and Karney's Formula for Efficiency Selection for  $n_{\parallel}$  and

Selection for  $\theta$  and  $B_0$ Freidberg's Single

Bootstrap Current

Vext Stens





Optimize  $B_0$ 







Assuming the following poloidal density and temperature profile:

$$n = \overline{n}(1 + \nu_n)(1 - \rho^2)^{\nu_n} \tag{7}$$

$$T = \overline{T}(1 + \nu_T)(1 - \rho^2)^{\nu_T} \tag{8}$$

 $\rho$  is the radial flux label.

Spatial damping coefficient is defined as  $\lambda(x) = 2 \int_{-x}^{x} k_{\perp i} dx$ , where  $k_{\perp i}$  is calculated using cold plasma dispersion relation. Using the normalized density and temperature profile:

$$n_{nor}(\rho) = \frac{n(\rho)}{n_{max}} \tag{9}$$

$$T_{nor}(\rho) = \frac{T(\rho)}{T_{max}} \tag{10}$$

RF Heating Group

Raspberry Simpson and Muni Zhou

Introduction

Freidberg's Single Particle Approach

 $k_{\perp i}$  is written by:

$$k_{\perp i} = \pi^{1/2} \frac{\omega_{ce}}{c} \frac{\hat{\omega}^3}{1 - \hat{\omega}^2} \frac{\xi^3 e^{-\xi^2}}{(1 - n_{per})D}$$
 (11)

$$D = 1 + (1 - \hat{\omega}^4) n_{nor} + (1 - \hat{\omega}^2)^2 n_{nor}^2$$
 (12)

where  $\hat{\omega} = \omega/(\omega_{ce}\omega_{ci})^{1/2}$  and  $\xi = \omega/(k_\parallel v_{Te})$ 

Unlike what has been done in Chap15, here we keep  $\omega_{ce}$  and  $\omega_{ci}$  as spatial functions.

RF Heating Group

Raspberry Simpson and Muni Zhou

Introduction

LHCD

Enst and Karney's Formula for Efficiency Selection for  $n_{\parallel}$  and  $\omega$ 

Selection for  $\theta$  and  $B_0$ Freidberg's Single Particle Approach

Bootstrap Current

particles has already been calculated and for a Maxwellian is given by:

$$S_{L} = \pi^{(1/2)} \epsilon_{0} E_{\parallel}^{2} \left(\frac{\omega_{pe}^{2}}{\omega}\right) \xi^{3} e^{-\lambda - \xi^{2}}$$
 (13)

The current drive can be determined by the momentum balance. The momentum gained by resonant electrons mush be balanced by the momentum lost due to the collisional drag with the ions. The expression of  $J_{CD}$  can be finally written as:

$$J_{CD} = \pi^{1/2} \epsilon_0 E_{\parallel}^2 \left(\frac{\omega_{pe}^2}{\omega}\right) \left(\frac{e}{m_e \nu_0 v_{Te}}\right) e^{-\lambda - \xi^2} G(\xi) \tag{14}$$

$$G(\xi) = \xi^2 \int_0^\infty (u_\perp^2 + \xi^2)^{1/2} (2u_\perp^2 + 2\xi^2 - 3) e^{-u_\perp^2} u_\perp du_\perp$$
 (15)

And  $G(\xi) \approx \xi^5$  is quite a good approximation after testing.

RF Heating Group

Raspberry Simpson and Muni Zhou

Introduction

LHCD

Ehst and Karney's Formula for Efficiency Selection for  $n_{||}$  and  $\omega$ 

Selection for  $\theta$  and  $B_0$ Freidberg's Single Particle Approach

Bootstrap Current

Selection for  $\theta$  and  $B_0$ Freidberg's Single Particle Approach

Bootstrap Current

Next Steps

The current drive efficiency is defined by:

$$\eta_{CD} = \frac{I_{CD}}{P_{CD}} = \frac{\int J_{CD} dA}{2\pi R \int S_L dA}$$
 (16)

Since all above is derived from a 1-D model, there is no way for us to do this integral. However, based on the fact that the peak of  $J_{CD}$  and  $S_L$  overlap well with each other. We assume that

$$\eta_{CD} = \frac{J_{CD}(x_J)}{2\pi R S_L(x_J)} \tag{17}$$

# Results from Single Particle Approach

▶  $\bar{T}_k = 17.8$ ,  $\bar{n}_{20} = 0.86$ ,  $a/R_0 = 0.25$ ,  $\theta = 0$ ,  $B_0 = 10$ ,  $\omega = 1.46 \times 10^{10}$ ,  $n_{||} = 1.27$ 



RF Heating Group

Raspberry Simpson and Muni Zhou

Introduction

וחכם

Ehst and Karney's Formula for Efficiency Selection for  $n_{\parallel}$  and

Selection for  $\theta$  and  $B_0$ Freidberg's Single Particle Approach

Bootstrap Current

# **Comparing Results**

| Methods               | Karney | SingleParticle |
|-----------------------|--------|----------------|
| $\bar{\mathcal{T}}_k$ | 17.8   | 17.8           |
| $n_{20}^{-}$          | 0.86   | 0.86           |
| $B_0$                 | 10.0   | 10.0           |
| $n_{\parallel}$       | 1.27   | 1.27           |
| $\rho_J$              | 0.70   | 0.74           |
| $\omega(e10)$         | 1.46   | 1.46           |
| $\eta_{CD}$           | 0.672  | 0.509          |
| $\eta_I$              | 0.184  | 0.120          |

#### RF Heating Group

Raspberry Simpson and Muni Zhou

Introduction

וחכם

Ehst and Karney's Formula for Efficiency Selection for n<sub>||</sub> and

Selection for  $\theta$  and  $B_0$ Freidberg's Single Particle Approach

Bootstrap Current

# Bootstrap Current

## RF Heating Group

Raspberry Simpson and Muni Zhou

Introduction
Heating Mechanis

THCL

Ehst and Karney's Formula for Efficienc Selection for  $n_{\parallel}$  and  $\omega$ 

Selection for  $\theta$  an  $B_0$ Freidberg's Single Particle Approach

Bootstrap Current

#### **LHCD**

Formula for Efficience Selection for  $n_{\parallel}$  and  $\omega$ 

Selection for  $\theta$  and  $B_0$ Freidberg's Single Particle Approach

Bootstrap Current

- 1. Choose  $n_{\parallel}$ ,  $\omega$  and  $\theta$  as wave parameter and provide working range of  $\bar{T}_k$  and  $\bar{n}$
- 2. Might need to be iterate several times and hopefully it will converge.