MATH3301 Assignment 1 - Design Theory

See the Course Profile for the due date. This is not the assignment for MATH7331 students.

- (1) (4 marks) For each $m \in \{5, 6, 7, 8\}$, construct a C_m -decomposition of K_{2m+1} .
- (2) (12 marks) Determine congruence conditions on v that are equivalent to the obvious necessary conditions for the existence of a (v, 15, 2)-design, and use theorems from class to investigate existence of (v, 15, 2)-designs for $v \le 140$.
- (3) (10 marks) A subsystem of a Steiner triple system (V, \mathcal{B}) is a Steiner triple system (U, \mathcal{A}) such that $U \subseteq V$ and $\mathcal{A} \subseteq \mathcal{B}$. Construct a Steiner triple system of order 19 with a subsystem of order 7.
- (4) **(6 marks)** Consider Theorem 4.2.8 in the typed notes. Extend this theorem by considering congruence classes of m modulo 60. To do this, you should state and prove a theorem that guarantees existence of transversal designs with block size larger than those given by Theorem 4.2.8 for certain congruence classes of m modulo 60.
- (5) (8 marks) Prove that there exist 6 mutually orthogonal Latin squares of order n for each $n \in \{70, 80, 84, 85, 86\}$.