

Prof. Dr. Sebastian Wild

Outline

9 Random tricks

- 9.1 Hashing
- 9.2 Perfect Hashing
- 9.3 Primality Testing
- 9.4 Schöning's Satisfiability
- 9.5 Karger's Cuts

Uses of Randomness

- Since it is likely that BPP = P, we focus on the more fine-grained benefits of randomization:
 - simpler algorithms (with same performance)
 - improving performance (but not jumping from exponential to polytime)
 - improved robustness
- ► Here: Collection of examples illustrating different techniques
 - fingerprinting / hashing
 - exploiting abundance of witnesses
 - random sampling

9.1 Hashing

Fingerprinting / Hashing

- ▶ Often have elements from huge universe U = [0..u) of possible values, but only deal with few actual items $x_1, ..., x_n$ at one time. Think: $n \ll u$
- ► Fingerprinting can help to be more efficient in this case
 - fingerprints from [0..m)
 - m ≪ u
 - ► Hash Function $h: U \rightarrow [0..m)$

Fingerprinting / Hashing

- ▶ Often have elements from huge universe U = [0..u) of possible values, but only deal with few actual items $x_1, ..., x_n$ at one time. Think: $n \ll u$
- ► Fingerprinting can help to be more efficient in this case
 - ightharpoonup fingerprints from [0..m)
 - m ≪ u
 - ► *Hash Function* $h: U \rightarrow [0..m)$
- ► Classic Example: hash tables and Bloom filters

Uniform – Universal – Perfect

Randomness is essential for hashing to make any sense! Three very different

1. *uniform hashing assumption*: (optimistic, often roughly right in practice!) How good is hashing if input is "as nicely random" as possible?

Uniform - Universal - Perfect

Randomness is essential for hashing to make any sense! Three very different

- 1. *uniform hashing assumption*: (optimistic, often roughly right in practice!) How good is hashing if input is "as nicely random" as possible?
- 2. Since fixed h is prone to "algorithmic complexity attacks" (worst case inputs)
 - \rightarrow *universal hashing*: pick h at random from class H of suitable functions

universal class of hash functions

Uniform - Universal - Perfect

Randomness is essential for hashing to make any sense! Three very different

- **1.** *uniform hashing assumption*: (optimistic, often roughly right in practice!) How good is hashing if input is "as nicely random" as possible?
- 2. Since fixed h is prone to "algorithmic complexity attacks" (worst case inputs)
 - \rightarrow *universal hashing*: pick h at random from class H of suitable functions

universal class of hash functions

- **3.** For given keys, can construct collision-free hash function
 - → perfect hashing

Uniform Hashing – Balls into Bins

Theorem 9.1

If we throw n balls into n bins, then the *fullest bin* has $O(\log n / \log \log n)$ balls w.h.p.

4

Universal Hashing – Efficient Randomized Hashing

Definition 9.2 (Universal Family)

Let \mathcal{H} be a set of hash functions from U to R with |R| = m and $|U| \ge m$. Assume $h \in \mathcal{H}$ is chosen uniformly at random.

Then \mathcal{H} is called a *universal* if

$$\forall x_1, x_2 \in U : x_1 \neq x_2 \rightarrow \mathbb{P}[h(x_1) = h(x_2)] \leq \frac{1}{m}.$$

H is called *strongly universal* or *pairwise independent* if

$$\forall x_1, x_2 \in U, y_1, y_2 \in R : x_1 \neq x_2 \rightarrow \mathbb{P}[h(x_1) = y_1 \land h(x_2) = y_2] \leq \frac{1}{m^2}.$$

How good is universal hashing?

9.2 Perfect Hashing

Perfect Hashing: Random Sampling

9.3 Primality Testing

Abundance of Witnesses: Primality Testing

Theorem 9.3 (Fermat's Little Theorem)

For p a prime and $a \in [1..p - 1]$ holds

$$a^{p-1} \equiv 1 \pmod{p}$$

Theorem 9.4 (Euler's Criterion)

Let p > 2 an odd number.

$$p \text{ prime } \iff \forall a \in \mathbb{Z}_p \setminus \{0\} : a^{\frac{p-1}{2}} \mod p \in \{1, p-1\}$$

Theorem 9.5 (Number of Witnesses)

For every odd $n \in \mathbb{N}$, (n-1)/2 odd, we have:

- **1.** If *n* is prime then $a^{(n-1)/2} \mod n \in \{1, n-1\}$, for all $a \in \{1, \dots, n-1\}$.
- **2.** If *n* is not prime then $a^{(n-1)/2} \mod n \notin \{1, n-1\}$ for *at least half* of the elements in $\{1, \ldots, n-1\}$.

Simple Solovay-Strassen Primality Test

Input: an odd number n with (n-1)/2 odd.

- **1.** Choose a random $a \in \{1, 2, ..., n 1\}$.
- **2.** Compute $A := a^{(n-1)/2} \mod n$.
- 3. If $A \in \{1, n-1\}$ then output "n probably prime" (reject);
- **4.** otherwise output "*n* not prime" (accept).

Theorem 9.6 (Correctness)

The simple Solovay-Strassen algorithm is a polynomial OSE-MC algorithm to detect composite numbers n with $n \mod 4 = 3$.

Corollary 9.7

For positive integers n with $n \mod 4 = 3$ the simple Solovay-Strassen algorithm provides a polynomial TSE-MC algorithm to detect prime numbers.

Sampling Primes

RandomPrime(ℓ , k) Input: ℓ , $k \in \mathbb{N}$, $\ell \geq 3$.

- **1.** Set X := "not found yet"; I := 0;
- **2.** while X = "not found yet" and $I < 2\ell^2$ do
 - generate random bit string $a_1, a_2, \ldots, a_{\ell-2}$ and
 - compute $n := 2^{\ell-1} + \sum_{i=1}^{\ell-2} a_i \cdot 2^i + 1$

// This way n becomes a random, odd number of length ℓ

- ► Realize *k* independent runs of Solovay-Strassen-algorithm on *n*;
- if at least one output says "n ∉ PRIMES" then I := I + 1 else X := "PN found"; output n;
- 3. if $I = 2 \cdot \ell^2$ then output "no PN found".

Theorem 9.8 (Correctness of RandomPrime)

Algorithm RandomPrime(l, l) is a polynomial (in l) TSE-MC algorithm to generate random prime numbers of length l.

9.4 Schöning's Satisfiability

→ Focus on practical benefits of randomization

Randomized approaches can be grouped into categories:

- Coping with adversarial inputs
 Randomized Quicksort, randomized BSTs, Treaps, skip lists
- 2. Abundance of Witnesses Solovay-Strassen primality test
- **3.** Fingerprinting universal hashing
- Random Sampling Perfect hashing, Schöning's 3SAT algorithm, Karger's Min-Cut algorithm
- LP Relaxation & Randomized Rounding Set-Cover Approximation (next chapter)

Warmup: A randomized 2SAT algorithm

```
procedure localSearch2SAT(\phi, confidence):

k = \text{number of variables of } \phi

Choose assignment \alpha \in \{0, 1\}^k uniformly at random.

for j = 1, \ldots, confidence \cdot 2k^2

if \alpha fulfills \phi return "\phi satisfiable"

Arbitrarily choose a clause C = \ell_1 \lor \ell_2 that is not satisfied under \alpha.

Choose \ell from \{\ell_1, \ell_2\} uniformly at random.

\alpha = \text{assignment obtained by negating } \ell.

return "\phi probably not satisfiable"
```

Theorem 9.9 (localSearch2SAT is OSE-MC for 2SAT)

Let ϕ be a 2SAT formula.

- 1. If ϕ is unsatisfiable, localSearch2SAT always returns "probably not satisfiable".
- 2. If ϕ is satisfiable, localSearch2SAT returns "satisfiable" with probability at least $1-2^{-confidence}$.

Schöning's Randomized 3SAT Algorithm

```
procedure Schöning3SAT(\phi, confidence):

k = \text{number of variables in } \phi

for i = 1, \ldots, confidence \cdot 24 \left\lceil \sqrt{k} \left( \frac{4}{3} \right)^k \right\rceil do

Choose assignment \alpha \in \{0, 1\}^k uniformly at random.

for j = 1, \ldots, 3k do

if \alpha fulfills \phi return "\phi satisfiable"

Arbitrarily choose a clause C = \ell_1 \vee \ell_2 \vee \ell_3 that is not satisfied under \alpha.

Choose \ell from \{\ell_1, \ell_2, \ell_3\} uniformly at random.

\alpha = \text{assignment obtained by negating } \ell.

return "\phi probably not satisfiable"
```

Theorem 9.10 (Schöning3SAT is OSE-MC for 2SAT)

Let ϕ be a 3SAT formula with n clauses over k variables.

- **1.** If ϕ is unsatisfiable, Schöning3SAT always returns "probably not satisfiable".
- **2.** If ϕ is satisfiable, Schöning3SAT returns "satisfiable" with probability $\geq 1 2^{-confidence}$.
- **3.** Schöning3SAT runs in time $O\left(confidence \cdot k^{3/2} \left(\frac{4}{3}\right)^k n\right)$.

9.5 Karger's Cuts

Smart probability amplification: Karger's Min-Cut

Definition 9.11 (Min-Cut)

Given: A (multi)graph G = (V, E, c), where $c : E \to \mathbb{N}$ is the multiplicity of an edge **Feasible Solutions:** cuts of G, i. e., $M(G) = \{(V_1, V_2) : V_1 \cup V_2 = V \land V_1 \cap V_2 = \emptyset\}$, **Goal:** Minimize

Costs:
$$\sum_{e \in C(V_1, V_2)} c(e)$$
, where $C(V_1, V_2) = \{\{u, v\} \in E : u \in V_1 \land v \in V_2\}$.

Random Contraction

```
1 procedure contractionMinCut(G = (V, E, c))
2 Set label(v) := \{v\} for every vertex v \in V.
3 while G has more than 2 vertices
4 Choose random edge e = \{x, y\} \in E.
5 G := \text{Contract}(G, e).
6 Set label(z) := label(x) \cup label(y) for z the vertex resulting from x and y.
7 Let G = (\{u, v\}, E', c'); return (label(u), label(v)) with cost c'(\{u, v\}).
```

Theorem 9.12 (contractionMinCut correct with some probability)

contractionMinCut is a polytime randomized algorithm that finds a minimal cut for a given multigraph G with n vertices with probability $\geq 2/(n(n-1))$.

Lemma 9.13 (Threshold for contractionMinCut)

Let $l: \mathbb{N} \to \mathbb{N}$ a monotonic, increasing function with $1 \le l(n) \le n$. If we stop contractionMinCut whenever G only has l(n) vertices and determine for the resulting graph G/F deterministically a minimal cut, then we need time in

$$O(n^2 + l(n)^3)$$

and we find a minimal cut for *G* with probability at least

$$\frac{\binom{l(n)}{2}}{\binom{n}{2}}$$

Karger's Min-Cut Improved

```
1 procedure KargerSteinMinCut(G(V, E, c))
2 n = |V|
3 if n \ge 6
4 compute minimal cut deterministically
5 else
6 h = \left\lceil 1 + \frac{n}{\sqrt{2}} \right\rceil
7 G/F_1 = \text{Contract random edges in } G \text{ until } h \text{ nodes left}
8 (C_1, cost_1) = \text{KargerSteinMinCut}(G/F_1)
9 G/F_2 = \text{Contract random edges in } G \text{ until } h \text{ nodes left}
10 (C_2, cost_2) = \text{KargerSteinMinCut}(G/F_2)
11 if cost_1 < cost_2 \text{ return } (C_1, cost_1) \text{ else } C_2, cost_2)
```

Theorem 9.14 (KargerSteinMinCut beats deterministic min-cut)

KargerSteinMinCut runs in time $O(n^2 \cdot \log(n))$ and finds a minimal cut with probability $\Omega(\frac{1}{\log(n)})$.

4