Занятие 15. ОДУ первого порядка. Метод изоклин. Уравнения с разделяющимися переменными и однородной правой частью.

9.1. Показать, что при любом действительном значении параметра C выражение

$$y = x \left(C - \ln|x| \right)$$

определяет решения дифференциального уравнения

$$(x-y) dx + x dy = 0.$$

9.9. Составить дифференциальные уравнения семейств парабол

$$y = x^2 + 2ax.$$

$$\forall y' = 2x + 2a; \ a = \frac{y}{2x} - \frac{x}{2}$$
 и $a = \frac{y'}{2} - x$. Имеем:

$$\frac{y}{2x} - \frac{x}{2} = \frac{y'}{2} - x$$
 или $y - x^2 = xy' - 2x^2$ или $y + x^2 = xy'$. \triangleright

9.16. Методом изоклин построить приближенно семейство интегральных кривых уравнения

$$y' = x + y.$$

(Общее решение: $y = Ce^x - x - 1$.)

9.18. Методом изоклин построить приближенно семейство интегральных кривых уравнения

$$y' = -y/x.$$

(Общее решение: y = C/x.)

Уравнения с разделяющимися переменными.

Решить дифференциальные уравнения:

9.22.
$$y' = x/y$$
.
 $\Rightarrow \frac{dy}{dx} = \frac{x}{y}, \ y \ dy = x \ dx, \ \frac{y^2}{2} = \frac{x^2}{2} + C, \ y^2 = x^2 + C. \Rightarrow$
9.27. $y'\sqrt{1-x^2} = 1 + y^2$.

$$\frac{dy}{dx}\sqrt{1-x^2} = 1 + y^2$$

$$\frac{dy}{1+y^2} = \frac{dx}{\sqrt{1-x^2}}$$

$$\operatorname{arctg} y = \arcsin x + C. \triangleright$$

9.30.
$$(1+y^2)x dx + (1+x^2) dy = 0.$$

$$(1+y^2)x dx = -(1+x^2) dy$$

$$\frac{x dx}{1+x^2} = -\frac{dy}{1+y^2}$$

$$\frac{\frac{1}{2}d(1+x^2)}{1+x^2} = -\frac{dy}{1+y^2}$$

$$\frac{1}{2}\ln|1+x^2| = -\arctan y + C. \triangleright$$

9.37. $y' = \cos(x + y)$.

 \triangleleft В этом уравнении необходимо сделать замену u(x) = x + y(x). Тогда u' = 1 + y' и

$$u' - 1 = \cos u;$$

$$\frac{du}{dx} = \cos u + 1$$

$$\frac{du}{\cos u + 1} = dx$$

(Заметим, что $\cos u = -1$ даст решение $u = \pi + 2\pi k$ или $y = -x + \pi + 2\pi k$.)

$$\int \frac{du}{\cos u + 1} = \left| \begin{array}{c} u = 2 \arctan t \\ t = t \operatorname{g} \frac{u}{2} \end{array} \right| = \int \frac{\frac{2 dt}{1 + t^2}}{\frac{1 - t^2}{1 + t^2} + 1} = \int \frac{2 dt}{1 - t^2 + 1 + t^2} = \int dt = t + C = \operatorname{tg} \frac{u}{2} + C;$$

$$\operatorname{tg} \frac{u}{2} = x + C$$

Ответ:

$$\operatorname{tg} \frac{x+y}{2} = x + C$$
 или $x+y = \pi + 2\pi k$. \triangleright

9.39. $y' = (4x + y + 1)^2$. \triangleleft Замена: u(x) = 4x + y + 1, u' = 4 + y'.

$$u' - 4 = u^2$$
; $\frac{du}{dx} = u^2 + 4$; $\frac{du}{u^2 + 4} = dx$; $\frac{1}{2} \arctan \frac{u}{2} = x + C$; $\arctan \frac{4x + y + 1}{2} = 2x + C$.

9.44. Найти частное решение уравнения $(xy^2 + x) dy + (x^2y - y) dx = 0$, удовлетворяющее начальному условию y(1) = 1.

◁

$$x(y^{2} + 1) dy = y(1 - x^{2}) dx$$
$$(y + 1/y) dy = (1/x - x) dx$$
$$\frac{y^{2}}{2} + \ln|y| = \ln|x| - \frac{x^{2}}{2} + C;$$

Подставляем начальные условия:

$$\frac{1}{2} + 0 = 0 - \frac{1}{2} + C;$$
 $C = 1;$ $\frac{y^2}{2} + \ln|y| = \ln|x| - \frac{x^2}{2} + 1.$

Однородные уравнения.

Решить дифференциальные уравнения:

9.48.
$$y' = \frac{y}{x} + \frac{x}{y}$$
.
 $\forall y = x \cdot u(x); \ y' = u(x) + x \cdot u'(x);$

$$u(x) + x \cdot u'(x) = u(x) + \frac{1}{u(x)}$$

$$xu' = \frac{1}{u}; \quad u \, du = \frac{dx}{x}; \quad \frac{u^2}{2} = \ln|x| + C; \quad \frac{y^2}{2x^2} = \ln|x| + C; \quad y^2 = 2x^2 \ln|x| + 2Cx^2. \Rightarrow$$
9.55. $xy' - y = \sqrt{x^2 - y^2}$.

9.55.
$$xy' - y = \sqrt{x^2 - y^2}$$
.
 $\forall y = ux; \ y' = u'x + u;$
 $x(u'x)$

$$x(u'x + u) - ux = \sqrt{x^2 - x^2u^2}$$

 $u'x^2 = |x|\sqrt{1 - u^2}$.

По-хорошему здесь надо рассматривать два случая: x > 0 и x < 0.

$$u'x=\pm\sqrt{1-u^2}.$$
 (Плюс для $x>0$, минус для $x<0$.)
$$\frac{du}{\sqrt{1-u^2}}=\pm\frac{dx}{x}\quad \text{(отдельно рассмотрим случай }u=\pm1)$$

$$\arcsin u=\pm\ln|x|+C$$

$$u=\sin(\pm\ln|x|+C)$$

$$\frac{y}{x}=\sin(\pm\ln|x|+C) \ \Rightarrow \ y=x\sin(\pm\ln|x|+C).$$

Теперь рассмотрим случай $u = \pm 1$, т.е. $y = \pm x$:

$$x \cdot (\pm 1) - (\pm x) = 0 \Rightarrow$$
 равенство удовлетворяется.

Otbet: $y = \pm x$, $y = x \sin(\pm \ln|x| + C)$. \triangleright

9.64. Найти частное решение уравнения $xy' = y \ln \frac{y}{x}$, удовлетворяющее начальному условию y(1) = 1.

$$xu + x^2u' = xu \ln u; \quad xu' = (\ln u - 1)u; \quad \frac{du}{(\ln u - 1)u} = \frac{dx}{x}; \quad \frac{d(\ln u - 1)}{(\ln u - 1)} = \frac{dx}{x}$$

$$\ln |\ln u - 1| = \ln |x| + \ln C; \quad \ln u - 1 = Cx; \quad u = e^{Cx+1}; \quad y = xe^{Cx+1}.$$

$$y(1) = e^{C+1} = 1 \implies C = -1; \quad y = xe^{1-x}. \triangleright$$