Analiza I

Adisa Bolić, abolic@pmf.unsa.ba

Vj. br. 10. Monotoni nizovi. Rekurzivno zadani nizovi. Stolzov teorem.

Monotoni nizovi

- Za niz $\{a_n\}_{n\in\mathbb{N}}$ kažemo da je:
 - a) strogo rastući ako je $a_{n+1} > a_n$, $\forall n \in \mathbb{N}$
 - b) strogo opadajući ako je $a_{n+1} < a_n$, $\forall n \in \mathbb{N}$
 - c) neopadajući ako je $a_{n+1} \geq a_n, \forall n \in \mathbb{N}$
 - d) nerastući ako je $a_{n+1} \leq a_n$, $\forall n \in \mathbb{N}$

Ako niz zadovoljava neki od gore navedenih uslova, onda za njega kažemo da je monoton.

- Ako je niz $\{a_n\}_{n\in\mathbb{N}}$ monoton i ograničen, onda je on kovergentan.
- [1] Dokazati da je niz $x_n=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\ln(n)$ konvergentan.
- Eulerova konstanta $\gamma = \lim_{n \to \infty} (1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \ln(n))$ $\epsilon_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \ln(n) \gamma, \lim_{n \to \infty} \epsilon_n = 0$
- [2] Izračunati sljedeće limese:

 - a) $\lim_{n \to \infty} \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$ b) $\lim_{n \to \infty} \frac{1}{n+3} + \frac{1}{n+4} + \dots + \frac{1}{3n+2}$
- Vrijedi $\forall x \in \mathbb{R}, (1+\frac{1}{x}) > 0: \frac{1}{x+1} \le \ln\left(1+\frac{1}{x}\right) \le \frac{1}{x}$
- [3] Dokazati da je niz $x_n = \left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{4}\right)...\left(1 + \frac{1}{2^n}\right)$, $n \in \mathbb{N}$ konvergentan.
- [4] Dokazati da niz $x_n = \frac{n!}{(2n-1)!!}$, $n \in \mathbb{N}$ konvergira i naći limes ovog niza.
- [5] Niz $\{a_n\}_{n\in\mathbb{N}}$ zadan je sa $a_1=1$, $a_{n+1}=a_n+n+1$ za $n\geq 1$. Izračunati $\lim_{n\to\infty}\frac{a_n+a_{n+1}}{n^2}$.

Stolzov teorem: Neka su $\{x_n\}_{n\in\mathbb{N}}$ i $\{y_n\}_{n\in\mathbb{N}}$ realni nizovi takvi da:

$$\begin{array}{ll} \circ & y_{n+1} > y_n, \forall n \in \mathbb{N} \\ \circ & \lim_{n \to \infty} y_n = +\infty \end{array}$$

$$\circ \lim_{n\to\infty} y_n = +\infty$$

o postoji limes
$$\lim_{n\to\infty} \frac{x_{n+1}-x_n}{y_{n+1}-y_n}$$
.

Tada postoji i
$$\lim_{n \to \infty} \left(\frac{x_n}{y_n}\right)$$
 i vrijedi $\lim_{n \to \infty} \left(\frac{x_n}{y_n}\right) = \lim_{n \to \infty} \frac{x_{n+1} - x_n}{y_{n+1} - y_n}$.

[6] Neka je p proizvoljan prirodan broj. Izračunati

$$\lim_{n\to\infty} \frac{1^p + 2^p + \dots + n^p}{n^{p+1}}$$

Zadaci za samostalan rad

[1] Dokazati da je niz
$$x_n=\Big(1+\frac{1}{1^2+1}\Big)\Big(1+\frac{1}{2^2+1}\Big)...\Big(1+\frac{1}{n^2+1}\Big)$$
, $n\in\mathbb{N}$ konvergentan.

- [2] Dokazati da niz $x_n = \frac{n!}{(2n+1)!!}$, $n \in \mathbb{N}$ konvergira i naći limes ovog niza.
- [3] Dokazati da je niz $\{a_n\}_{n\in\mathbb{N}}$ zadan za $a_1=0$, $a_{n+1}=\sqrt{12+a_n}$ za $n\geq 1$ konvergentan i odrediti mu limes.
- [4] Dokazati da je niz $\{a_n\}_{n\in\mathbb{N}}$ zadan za $a_1=1$, $a_{n+1}=\frac{1}{2}\left(a_n+\frac{3}{a_n}\right)$ za $n\geq 1$ konvergentan i odrediti mu limes.
- [5] Uraditi zadatke od 1613-1619 iz Ušćumlić-Miličićeve zbirke zadataka za utvrđivanje Stolzovog teorema i njegovih posljedica.
- [6] Izračunati $\lim_{n\to\infty} \frac{1\cdot 2+2\cdot 3+\cdots+n\cdot(n+1)}{n^3}$.