Matemática Discreta

Ano Lectivo 2014/2015

Folha de exercícios nº7 (Números combinatórios)

1. Mostre que os coeficientes factoriais $(x)_n$ satisfazem a equação de tipo binomial

$$(x+y)_n = \sum_{k=0}^n \binom{n}{k} (x)_k (y)_{n-k},$$

com $(x)_0 = 1$, por convenção.

2. Determine os números binomiais generalizados $\binom{1/2}{3}$ e $\binom{-2}{3}$.

3. Determine todos os números reais x para os quais o número binomial generalizado $\binom{x}{2}$ é 28.

4. (a) Mostre que para $n, r \in \mathbb{N}, \binom{-n}{r} = (-1)^r \binom{n+r-1}{r}.$

(b) Mostre que $(1+x)^{-n} = \sum_{k=0}^{\infty} {n \choose k} x^k$ (sugestão: recorra ao desenvolvimento em série de $(1+x)^{\alpha}$).

5. Indique quais são os números de Fibonacci pares.

6. Considerando uma área reticular de dimensão $2 \times n$ e que dispõe de azulejos de dimensão 1×2 , mostre que existem F_{n+1} maneiras de cobrir a área com os azulejos (onde F_n denota o n-ésimo número de Fibonacci).

7. Recorrendo ao princípio de indução matemática , mostre que para $n,m\in\mathbb{N}$ (considerando $F_0=0$),

(a) $F_{n+m} = F_{n-1}F_m + F_nF_{m+1}$ (aplique indução completa sobre m);

(b) $F_{2n} = F_n(F_{n-1} + F_{n+1});$

(c) $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n = \begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix}.$

8. Mostre que os números de Lucas verificam as igualdades:

(a) $L_0 + L_1 + L_2 + \dots + L_n = L_{n+2} - 1$;

(b) $L_1 + L_3 + L_5 + \dots + L_{2n+1} = L_{2n+2} - 2$.

9. Mostre que o número de ouro Φ pode ser determinado pelas expressões:

1

(a) $\Phi = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}}};$

(b) $\Phi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}}}$