National Tsing Hua University Fall 2023 11210IPT 553000 Deep Learning in Biomedical Optical Imaging Report

GAO WEL LUN¹

¹1 Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan

Student ID:110066511

1. 介紹

深度學習是屬於機器學習的一種,它透過模擬人腦的神經網路結構來解決複雜的 任務和問題。 深度學習的基本原理是透過多層次的神經網路學習輸入資料的表示,從 而能夠對未見過的資料進行準確的預測或分類,並在各種領域取得了顯著的幫助,包 括影像和語音辨識、自然語言處理、醫療診斷等。

本篇將使用深度學習,透過對癌組織的組織學影像進行分類來深入研究醫學影像分析領域。在資料集中的每個樣本為 150x150 像素的 RGB 影像,代表癌症組織學中常見的六種不同組織紋理之一,而本篇將使用深度學習中的其中一項技術遷移學習 (Transfer learing),使用 ResNet18和 ResNet50 兩個預先訓練好的模型來對每個圖形進行分類,並對其模型效能和分類表現進行評估。

2. 遷移學習(Transfer learing)

遷移學習是一種深度學習的技術,當遇到與任務直接相關性的資料不多,或是與任務不直接相關的資料卻不少的情況,通過一個來源任務中學習到的知識,來改善下一個有相關性任務或新目標領域的性能。遷移學習的基本目的是,已經學到的知識可以被運用到新的任務上,而無需從頭開始重新學習。以下幾個為遷移學習改進模型性能的應用:

- 1. **特徵提取:**使用預先在大規模數據上訓練好的模型,將其作為特徵提取器。這 表示模型的前幾層被當作通用特徵提取器,這些通用特徵可以在新任務上派上 用場。
- 2. 微調(Fine-tuning):通過微調來調整模型以適應新任務。這意味著可以在新任務的數據上繼續訓練模型,但不是從隨機初始化開始,而是使用預先訓練模型的權重進行初始化。
- 3. 應用場景:
 - 數據不足情況:在目標任務上的標記數據相對有限時,能夠利用在源任務上學到的通用特徵。
 - 不同任務之間的相似性:當源任務和目標任務之間有一定相似性時, 遷移學習可以將源任務上的知識轉移到目標任務上,從而提高模型性 能。
 - 加速訓練:通過使用預訓練模型,可以加速新任務上的模型訓練,因為模型已經具有了通用的知識。

3. 訓練模型 ResNet18和 ResNet50介紹

本篇使用的預先訓練模型分別是 ResNet18 和 ResNet50 ,這個兩個模型皆屬於 CNN(Convolution Neural Networks)神經網路架構,在圖像處理、視覺領域中擔任重要的模型。ResNet18和 ResNet50在 ResNet 系列中為兩個不同深度的模型,它們之間的差別在於深度和參數量。 從模型結構和性能討論,ResNet18 是屬於輕量級的深度捲積神經網路,如字面上所示它擁有 16層捲積層和 2層全連接層,總共 18層,使用深度殘差塊(Deep Residual Blocks),並引入 skip connections,不僅增強了特徵的捕捉能力,還有助於解決梯度消失的問題,因此就性能方面有相當高的準確度。而 ResNet50 為 ResNet18 的加強版,屬於較深層次的深度捲積神經網路,如字面上所示它擁有 48 層捲積層和 2層全連接層,總共 50 層,由於模型的深度增加,參數量明顯的增多。而模型結構內部與 ResNet18 相似,但不同的是它內部殘差塊使用瓶頸結構,包含三個個卷基層,分別是 1×1、3×3、1×1,這種結構透過使用 1×1 的捲積核進行降維和升維,可顯著減少參數數量,提高網路的運算效率,並透過 3×3 的捲積核負責學習目標圖像特徵,使深度神經網路能夠學習到更複雜的特徵表示。性能上相比,ResNet18 屬於輕量級的結構模型,適用於計算資源有限的圖像任務分類。而 ResNet50 則屬於更深、更複雜的結構模型,適用於計算資源有限的圖像任務分類。而 ResNet50 則屬於更深、更複雜的結構模型,可以更好的捕捉圖像的複雜特徵,相較於 ResNet18 有更好的效能。

本篇將使用 ResNet18和 ResNet50 這兩個預先訓練好的模型,進行組織學影像的分類,探討這兩個模型的效能差異,其載入訓練模型如 Fig.1

Fig. 1. 預先訓練的模型程式碼,分別是(左) ResNet18 和(右) ResNet50。組織學影像要對六種不同組織紋理進行分類,須將全連接的輸出特徵數量改成 6。

4. 訓練結果與性能比較

本篇使用了 ResNet18和 ResNet50 兩個預先訓練模型,並分別用 ConvNet 作為固定 特徵提取器和無部分進行訓練,來比對之間的差異,這邊將分成兩個部分進行解 釋。

4.1 微調 ConvNet

使用的載入訓練模型如 Fig.1,微調調整全連接的輸出特徵數量改成 6,使得該模型 能更好適應本次的組織學分類任務。

ResNet50 是屬於深度捲積神經網路,主要是強化特徵的捕捉能力,它和 RESENT18 一樣是由多層捲積層組成,然而不同它擁有 48 層捲積層和 2 層全連接層,總共 50 層,由於更深的網路結構,ResNet 50 具有更多的參數,這意味著它可以提供 更強大的特徵表示能力。 這對於大規模影像分類和其他複雜任務非常有用。然而在本 次的二元分類任務中,ResNet 50 由於較深的神經網路結構,訓練花費時間為 ResNet 18 兩至三倍,其訓練和驗證精準度和損失的結果,ResNet 18 模型較好一 些。而在新數據的測試中,ResNet 50 和 ResNet 18 的精準度達到 91%,如 Table1 所示。

Fig. 2. 沒有固定特徵撷取器的訓練驗證精準度和損失結果。分別是(上) ResNet18 和(下) ResNet50 模型訓練結果。

4.2 ConvNet 作為固定特徵提取器

透過凍結預先訓練模型除了最後一層外的所有層,將所選模型轉為固定特徵提取器,也就是利用 requires_grad 設定 False,以防止它們在訓練期間更新,這將凍結所有圖層。,其訓練結果如 Fig. 3 所示。在訓練時間上,和原先未凍結塗層的訓練時間相比,兩者的訓練時間有大幅度的減少,所短至原先的一半。由於凍結圖層可以在訓練期間不需要更新這些圖層的權重,因此能大幅減少前向傳播和反向傳播的計算容量,減少參數的更新變動,在模型的訓練速度上更快。

在訓練和驗證精準度和損失的結果方面,兩者的訓練和驗證精準度有所提升,訓練和驗證精準度之間差距縮小,減少了過度擬合,損失方面有所降低,由於凍結了圖層,使模型保留了在大規模資料上學到的通用特徵,並維持模型的一般性,因此在性能方面所提升,三者在新數據的測試中,精準度都達到86%以上,如 Table1 所示。

Fig. 3. 固定特徵撷取器的訓練驗證精準度和損失結果。分別是(上) ResNet18 和(下) ResNet50 模型訓練結果。

Table 1. ResNet18 和 ResNet50 在有無固定特徵擷取器模型訓練過後,在新數據中測試後的精準度結果。

	ResNet18	ResNet50
No fix	92%	91%
Fix	86%	88.3%

4.3 微調 ConvNet 和 ConvNet 作為固定特徵提取器比較

4.1 微調 ConvNet 模型沒有凍結圖層,根據所給予的訓練數據,權重和參數的部分進行大幅度的更新,因此在訓練所消耗的時間相較更長,模型將被訓練成適用於組織學分類任務類型。4.2 ConvNet 作為固定特徵提取器模型則將圖層凍結,意味著模型保留了在大規模資料上學到的通用特徵,大幅減少前向傳播和反向傳播的計算開銷,因此在訓練期間不需要更新這些圖層的權重,訓練所消耗的時間相較更短,因此該模型適用於大數據圖形分類類型。在性能方面上,4.2 模型保留了在大規模資料上學到的通用特徵,有助於提升 模型的泛化性和維持模型的一般性,因在訓練和驗證的精準度和損失比較,如 Fig. 2 和 Fig. 3 所示,有凍結圖層的訓練和驗證之間的變異數相對減小一點,減少了過度擬合的跡象。然而在測試新數據時,精準度相比於 4.1 模型較為低下。可能意味著任務類型與預訓練模型的底層特徵較不相關時,凍結圖層可能不是最佳策略。在這種情況下,可能需要微調一些圖層,以適應特定任務的需求。

5. 結論

總結來說,ResNet-50 適用於需要更高準確性和更強大特徵提取能力的 任務,但它也需要更多的運算資源。 ResNet-18 更適合資源受限的環境,其中運算資源 有限,但效能仍可滿足。 選擇哪個模型應根據個人的任務需求和可用資源來決定。

凍結圖層與否依據任務和可用的資料來決定。而本次的分類任務與預訓練模型的底層特徵有些微的布相關性,因此在凍結圖層的測試結果比沒凍結圖層的精準度低下。