Underwriters Laboratories Inc.

www.ulk.co.kr

Project No.: 12CA42753

File No.: TC9191

Report No.: 12CA42753-1-FCC

Date: September 5, 2012

Model No.: SPP-R400

FCC ID.: U5MSPP-R400

FCC Test Report

in accordance with FCC Part 15 Subpart C Section 15.247

for

Mobile Printer

BIXOLON CO.,LTD.

7th~8th FL, Miraeasset Venture Tower, 685, Sampyeong-dong, Bundang-gu, Seongnam-si, Korea

Copyright © 2005 Underwriters Laboratories Inc.

Underwriters Laboratories Inc. authorizes the above-named company to reproduce this Report provided it is reproduced in its entirety.

Only those products bearing the UL Mark should be considered as being covered by UL.

UL Korea, Ltd 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea

Tel: +82.2.2009.9000, Fax:+82.2.2009.9405

An organization dedicated to public safety and committed to quality service for over 100 years

Project Number: 12CA42753 File Number: MC17075 Page: 2 of 53

Model Number: SPP-R400

Summary of Test Results:

The following tests were performed on a sample submitted for evaluation of compliance with FCC Part 15 Subpart C Section 15.247

I				
No	Reference Clause No.	FCC Part15 Subpart C Conformance Requirements	Verdict	Remark
1	15.205(a) 15.209 15.247(d)	Transmitter radiated spurious emissions and Conducted spurious emission	Complied	
2	15.247(a)(1)	20dB Bandwidth	-	Note 1
3	15.247(b)(1)	Maximum peak output power	Complied	
4	15.247(a)(1)	Frequency Separation	Complied	
5	15.247(a)(1)(iii)	Number of Hopping Channels	Complied	
6	15.247(a)(1)(iii)	Average Time of Occupancy	Complied	
7	15.207	Transmitter AC power line conducted emission	Complied	

Note 1: No Compliance limit. Just Reporting purpose.

Conclusion:

The tests listed in the Summary of Testing section of this report have been performed and the results recorded by UL Korea Ltd. in accordance with the procedures stated in each test requirement and specification. The test list was determined by the Applicant as being applicable to the Equipment Under Test. As a result, the subject product has been verified to comply or not comply as noted in the Summary of Testing with each test specification. The test results relate only to the items tested.

Tested by

Kyung Duk Ko, WiSE Project Engineer UL Verification Services- 3014ASEO

UL Korea Ltd.

September 5, 2012

Reviewed by

Jeawoon, Choi, WiSE Engineering Leader UL Verification Services- 3014ASEO

UL Korea Ltd.

September 5, 2012

Project Number: 12CA42753 File Number: MC17075 Page: 3 of 53

Model Number: SPP-R400

Test Report Details

Witnessed By: UL Korea Ltd.

33rd FL. GFC Center, 737 Yeoksam-dong, Gangnam-gu, Seoul, 135-984, Korea

Test Site: ONETECH Corp.

301-14 Daessangryeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do,

464-862 Korea

Applicant: BIXOLON CO.,LTD.

7th~8th FL, Miraeasset Venture Tower, 685, Sampyeong-dong,

Bundang-gu, Seongnam-si, Korea

Applicant Contact:

Title:

QM Manager

Phone:
+82 31 218 5582

E-mail:
hs@bixolon.com

Product Type: Mobile Printer
Model Number: SPP-R400

Trademark BIXOLON®

Sample Serial Number: N/A

Test standards: FCC Part 15 Subpart C Section 15.247

Operation within the bands 902–928 MHz, 2400–2483.5 MHz,

and 5725-5850 MHz

Sample Serial Number: August 13, 2012
Sample Receive Date: August 13, 2012
Testing Date: August 31, 2012

Overall Results: Pass

UL Korea Ltd. reports apply only to the specific test samples and test results submitted for UL's review. All samples tested were in good operating condition throughout the entire test program. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. UL Korea Ltd. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from UL Korea Ltd. issued reports. This report shall not be used to claim, constitute or imply product certification, approval, or any agency of the National Authorities. This report may contain test results that are not covered by the NVLAP or KOLAS accreditation.

Project Number: 12CA42753 File Number: MC17075 Page: 4 of 53

Model Number: SPP-R400

Report Directory

1. (GENERAL PRODUCT INFORMATION	5
1.1.	EQUIPMENT DESCRIPTION	5
1.2.	DETAILS OF TEST EQUIPMENT (EUT)	
1.3.	EQUIPMENT CONFIGURATION	
1.4.	TECHNICAL DATA	
1.5.	ANTENNA INFORMATION	
1.6.	EQUIPMENT TYPE:	
1.7. 1.8.	TECHNICAL DESCRIPTIONS AND DOCUMENTS	
1.8.	MAXIMUM OUTPUT POWER (BASELINE MEASUREMENT)	
	TEST SPECIFICATION	
3. 7.	TEST CONDITIONS	8
3.1.	EQUIPMENT USED DURING TEST	8
3.2.	INPUT/OUTPUT PORTS	8
3.3.	POWER INTERFACE	8
3.4.	OPERATING FREQUENCIES	
3.5.	OPERATION MODES	
3.6.	ENVIRONMENT CONDITIONS	
3.7.	TEST CONFIGURATIONS	
3.8.	LIST OF TEST EQUIPMENT	
4.	OVERVIEW OF TECHNICAL REQUIREMENTS	12
5. 7	TEST RESULTS	13
5.1.	20 dB Bandwidth	13
5.2.	MAXIMUM PEAK OUTPUT POWER	
5.3.	CARRIER FREQUENCY SEPARATION	
5.4.	NUMBER OF HOPPING CHANNELS	26
5.5.	AVERAGE TIME OF OCCUPANCY	30
5.6.	CONDUCTED SPURIOUS EMISSION MEASUREMENT	
5.7.	RADIATED SPURIOUS EMISSIONS MEASUREMENT	
5.8.	TRANSMITTER AC POWER LINE CONDUCTED EMISSION	
5.9.	Antenna Requirement	52
A PPF	ENDIX A ACCREDITATIONS AND AUTHORIZATIONS	53

Project Number: 12CA42753 File Number: MC17075 Page: 5 of 53

Model Number: SPP-R400

1. General Product Information

1.1. Equipment Description

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

1.2. Details of Test Equipment (EUT)

Equipment Type : Mobile Printer
 Model No. : SPP-R400
 Trade name : BIXOLON
 Type of test Equipment : Portable type

• Operating characteristic : Short range wireless device operating in the 2400 – 2483.5 ISM frequency band

• Factory : EVERINT Co., Ltd.

129, Chungjusandan 13(sipsam)-ro, Chungju-si,

Chungcheongbuk-do, Korea

1.3. Equipment Configuration

The EUT is consisted of the following component provided by the applicant.

Use*	Product Type	Factory	Model	Comments	
EUT	Mobile Printer	EVERINT Co., Ltd.	SPP-R400	-	
Note: Use = EUT - Equipment Under Test, AE - Auxiliary/Associated Equipment. SIM - Simulator (Not Subjected to Test)					

1.4. Technical Data

Item	Type of Mobile Printer
Frequency Ranges	2400 – 2483.5 MHz
Output power	Max. 4.0 dBm e.i.r.p , Typical : 1.0 dBm
Kind of modulation (s)	1Mbps(GFSK) , 2Mbps(π/4-DQPSK) , 3Mbps(8DPSK)
Emission Designator	F1D, G1D
Hopping Channel	79 channel, 1600 hops/sec
Antenna Gain	-0.22 dBi
Antenna information	Integral antenna (Chip Antenna)
Working temperature	-20 ~ 70 °C
Supply Voltage	DC 7.4 V

Note;

1. All the technical data described above were provided by the manufacturer.

Project Number: 12CA42753 File Number: MC17075 Page: 6 of 53

Model Number: SPP-R400

1.5. Antenna Information

Antenna Model Name : KNC-1

Antenna Type : Chip Antenna

Manufacturer : Nice Korea Components Co., Ltd

Transmit Gain dBi : Max. -0.22 dBi Azimuth Beam Pattern : Linear vertical

1.6. Equipment Type:

☐ Radio and ancillary equipment for fixed or semi-fixed use☐ Radio and ancillary equipment for vehicular mounted use☐ Radio and ancillary equipment for portable or handheld use						
∑ Stand alone ☐ Host connected	☐ Host connected					
Self contained single unit	Module with associated connection or interface					

1.7. Technical descriptions and documents

The following documents was provided by the manufacturer.

No.	Document Title and Description
1	User Manual
2	APPROVAL SHEET / NKC-1

1.8. Description of additional model name

Model name	Model name Designation	Description of design
SPP-R400	Basic model	-

1.9. Maximum Output Power (Baseline Measurement)

Modulation Type		Data		Peak Power(dBm)	
Modulation Type	Rate		2402 MHz	2441 MHz	2480 MHz
GFSK	1	Mbps	-8.57	-7.50	-7.19
π/4-DQPSK	2	Mbps	-9.29	-8.79	-8.83
8DPSK	3	Mbps	-8.10	-7.49	-7.58

Project Number: 12CA42753 File Number: MC17075 Page: 7 of 53

Model Number: SPP-R400

2. Test Specification

The following test specifications and standards have been applied and used for testing.

- 1) FCC Part 15 Subpart C Section 15.247 : Operation within the bands 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz
- ANSI C63.4:2009: American National Standard for Methods of Measurement of Radio- Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
- 3) ANSI C63.10:2009: American National Standard for Testing Unlicensed Wireless Devices
- 4) FCC Public Notice DA 00-705-2003

Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

Project Number: 12CA42753 File Number: MC17075 Page: 8 of 53

Model Number: SPP-R400

3. Test Conditions

3.1. Equipment Used During Test

Use*	Product Type Manufacturer Mode		Model	Comments
EUT	Mobile Printer	EVERINT Co., Ltd.	SPP-R400	-
AE	Note PC	LG	R510	-

Note: Use = EUT - Equipment Under Test, AE - Auxiliary/Associated Equipment. SIM - Simulator (Not Subjected to Test)

3.2. Input / Output Ports

No	Port Name	Type*	Cable Max. >3m (Y/N)	Cable Shielded (Y/N)	Comments
1	Power Input	DC	N	N	Connected to DC Power supply
2	Radio Antenna	I/O	N	Y	-

Note:

*AC = AC Power Port DC = DC Power Port N/E = Non-Electrical

I/O = Signal Input or Output Port (Not Involved in Process Control)

TP = Telecommunication Ports

3.3. Power Interface

Mode #	Voltage (V)	Current (A)	Power (W)	Frequency (DC/AC-Hz)	Phases (#)	Comments
Rated	7.40 V	-	-	DC	-	Normal operating voltage
Rated	Input: 100~250 Vac Output: 8.4 Vdc	Input: 0.5 Output: 0.8	-	50/60 Hz		Rated of AC to DC Adapter
1	7.40 Vdc	-	-	DC	-	Normal operating voltage
2	120 Vac	-	-	60 Hz	-	-

Project Number: 12CA42753 File Number: MC17075 Page: 9 of 53

Model Number: SPP-R400

3.4. Operating Frequencies

Mode #	Frequency tested
1	- Low: 2402 MHz / CH = 1 - Mid: 2441 MHz / CH = 39 - Top: 2480 MHz / CH= 78

3.5. Operation Modes

Mode #	Description
1	Carrier on mode: Signal from the RF module was generated continuously for the representative channels (Low, Mid, High) by the test program incorporated

Note:

- 1. The measurements of the spurious emissions for transmitter on stand-by mode were performed as the receiver spurious emissions.
- 2. The worst-case condition is determined by the baseline measurement of RF output power out of various modulations and data rates. Therefore all applicable requirements were tested to the two type of higher output power modulation (GFSK and 8DPSK)

3.6. Environment Conditions

Parameters	Normal condition
Temperature	+ 15°C ~ +35°C
Humidity	20% ~ 75%
Supply voltage	7.40 Vdc (Rated nominal voltage)

Note;

- The extreme condition is applied to the boundary limits of the declared operational environmental condition by the manufacturer.
- The operating condition for humidity requirement has not been declared in the manufacturer's specification.
- Test has been carried out for three frequencies specified above under the normal condition and for the extreme condition, minimum and maximum frequencies has been tested.

Project Number: 12CA42753 File Number: MC17075 Page: 10 of 53

Model Number: SPP-R400

3.7. Test Configurations

Project Number: 12CA42753 File Number: MC17075 Page: 11 of 53

Model Number: SPP-R400

3.8. List of Test Equipment

No	Description	Manufacturer	Model	Identifier	Cal. Due
1	Signal Analyzer	Rohde & Schwarz	FSV30	101372	2013.05.31
8	Test Receiver	Rohde & Schwarz	ESCI	101012	2013.02.06
9	Test Receiver	Rohde & Schwarz	ESU	100261	2012.09.27
10	AMPLIFIER	Sonoma Instrument	310N	312544	2012.10.12
11	AMPLIFIER	Sonoma Instrument	310N	312545	2012.10.12
12	TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-419	2014.05.27
13	TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-420	2014.05.27
14	CONTROLLER	Innco Systems GmbH	CO2000	619/27030611/L	N/A
15	Turn Table	Innco Systems GmbH	DT3000	930611	N/A
16	Antenna Master	Innco Systems GmbH	MA4000-EP	MA4000/332	N/A
17	Antenna Master	Innco Systems GmbH	MA4000-EP	MA4000/335	N/A
18	Horn Antenna	Schwarzbeck	BBHA9120D	BBHA9120D295	2013.08.23
19	Horn Antenna	Schwarzbeck	BBHA9120D	BBHA9120D294	2013.08.23
20	Signal Conditioning Unit	Rohde & Schwarz	SCU 18	10041	2012.12.15
22	DC Power Supply	Digital Electronics	DRP-305DN	4030191	2013.09.13
	Test Receiver	Rohde & Schwarz	ESCI	101012	2013.02.06
	AMN	Schwarzbeck	NSLK 8128	8128-216	2013.06.11
	AMN	EMCO	3825/2	9109-1869	2013.05.30

Project Number: 12CA42753 File Number: MC17075 Page: 12 of 53

Model Number: SPP-R400

4. Overview of Technical requirements

The following essential requirements and test specifications are relevant to the presumption of conformity FCC Part 15 Subpart C Section 15.247			
Reference Clause No.	Essential technical requirements	Test method	Reported
15.205(a) 15.209 15.247(d)	Transmitter radiated spurious emissions and Conducted spurious emission	ANSI C63.4-2009 DA 00-705-2003	[X]
15.247(a)(1)	20dB Bandwidth	ANSI C63.10-2009 DA 00-705-2003	[X]
15.247(b)(1)	Maximum peak output power	ANSI C63.10-2009 DA 00-705-2003	[X]
15.247(a)(1)	Carrier Frequency Separation	ANSI C63.10-2009 DA 00-705-2003	[X]
15.247(a)(1)(iii)	Number of Hopping Channels	ANSI C63.10-2009 DA 00-705-2003	[X]
15.247(a)(1)(iii)	Average Time of Occupancy	ANSI C63.10-2009 DA 00-705-2003	[X]
15.207	Transmitter AC power line conducted emission	ANSI C63.4-2009 DA 00-705-2003	[X]

Project Number: 12CA42753 File Number: MC17075 Page: 13 of 53

Model Number: SPP-R400

5. Test Results

5.1. 20 dB Bandwidth

	TEST: 20 dB Bandwidth				
Method	20 dB Bandwidth from	20 dB Bandwidth from the EUT were measured according to the procedure of DA 00-705-2003			
	The transmitter output is connected to the Spectrum analyzer. 20 dB Bandwidth from the EUT was measured under the below setting condition.				
	 Set the video bandy Detector = Peak. Trace mode = max Sweep = auto coupl Measure the maxim the two outermost 	 Set resolution bandwidth (RBW) ≥ 1 % of 20 dB Bandwidth. Set the video bandwidth (VBW) ≥ RBW. Detector = Peak. Trace mode = max hold. Sweep = auto couple. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission. 			
Reference Clause		Part15 Subpart C Section 15.247 (a)(1)			
Parameters reco	rded during the test	Laboratory Ambient Temperature	22 ℃		
		Relative Humidity	36 %		
		Frequency range	Measurement Point		
Fully configured sample scanned over the following frequency range		2402 MHz - 2480 MHz	Antenna port		

Configuration Settings

Power Interface Mode # (See Section 3.3)	EUT Operation Mode # (See Section 3.5)	Test Configurations Mode # (See Section 3.7)			
Rated	1	2			
Supplementary information: None					

Limits

 $\S15.247(a)(1)$: No limit apply.

Project Number: 12CA42753 File Number: MC17075 Page: 14 of 53

Model Number: SPP-R400

5.1.1. Measurement Results

Table 1. Data Table of 20 dB Bandwidth

Operating Mode	Data Rate (Mbps)	Channel	Channel Frequency (MHz)	20 dB Bandwidth (kHz)	Minimum Limit (MHz)
		Low	2402	933.40	
GFSK	1	Middle	2441	933.40	
		High	2480	940.70	N/A
		Low	2402	1 273.50	IN/A
8DPSK	2	Middle	2441	1 273.50	
		High	2480	1 259.00	

Project Number: 12CA42753 File Number: MC17075 Page: 15 of 53

Model Number: SPP-R400

Figure 1. Plots of 20 dB Bandwidth

GFSK Low

Middle

Project Number: 12CA42753 File Number: MC17075 Page: 16 of 53

Model Number: SPP-R400

High

8DPSK Low

Project Number: 12CA42753 File Number: MC17075 Page: 17 of 53

Model Number: SPP-R400

Middle

High

Project Number: 12CA42753 File Number: MC17075 Page: 18 of 53

Model Number: SPP-R400

5.2. Maximum Peak Output Power

	TEST: Maximum Peak Output Power				
Method	Maximum Peak Output Power from the EUT were measured according to the procedure of DA 00-705-2003				
	2. Span = approximate 3. RBW > the 20 dB to 4. VBW ≥ RBW. 5. Detector = peak. 6. Sweep time = auto 7. Trace mode = max 8. Allow trace to fully 9. Use the marker-to-p	eak. = auto couple. = max hold.			
Reference Claus	se	Part15 Subpart C Section 15.247 (b)(1)			
Parameters reco	rded during the test	Laboratory Ambient Temperature	22 °C		
		Relative Humidity	36 %		
		Frequency range	Measurement Point		
Fully configured sample scanned over the following frequency range		2402 MHz - 2480 MHz	Antenna port		

Configuration Settings

Power Interface Mode # (See Section 3.3)	EUT Operation Mode # (See Section 3.5)	Test Configurations Mode # (See Section 3.7)		
1	1	2		
Supplementary information: None				

Limits

The maximum peak output power of the intentional radiator shall not exceed the following : $\frac{1}{2}$

§15.247(b)(1), For frequency hopping systems operating in the 2 400 - 2483.5 MHz employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725 - 5805 MHz band: 1 Watt.

According to §15.247(b)(4), the conducted output power limit specified in paragraph(b) of this section is based on the use of antenna with directional gains that do not exceed 6 dBi. Except as shown in paragraph(c) of this section, if transmitting antenna of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraph (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Project Number: 12CA42753 File Number: MC17075 Page: 19 of 53

Model Number: SPP-R400

Measurement Results

Table 2. Data Table of Maximum Peak Output Power

Operating Mode	Data Rate (Mbps)	Channel	Channel Frequency (MHz)	Peak Power Result (dBm)	Limit (dBm)
		Low	2402	-8.57	
GFSK	1	Middle	2441	-7.50	
		High	2480	-7.19	30.00
		Low	2402	-8.10	30.00
8DPSK	3	Middle	2441	-7.49	
		High	2480	-7.58	

Project Number: 12CA42753 File Number: MC17075 Page: 20 of 53

Model Number: SPP-R400

Figure 2. Plots of Maximum Peak Power

GFSK Low

Middle

Project Number: 12CA42753 File Number: MC17075 Page: 21 of 53

Model Number: SPP-R400

High

8DPSK Low

Project Number: 12CA42753 File Number: MC17075 Page: 22 of 53

Model Number: SPP-R400

Middle

High

Project Number: 12CA42753 File Number: MC17075 Page: 23 of 53

Model Number: SPP-R400

5.3. Carrier Frequency Separation

	TEST: Carrier Frequency Separation				
Method	Carrier Frequency Sep 2003	Carrier Frequency Separation from the EUT were measured according to the procedure of DA 00-705-2003			
	 Use the following s Span = wide enough RBW ≥ 1 % of Spanness VBW ≥ RBW. Detector = peak. Sweep time = autor Trace mode = max Allow trace to fully 	 5. Detector = peak. 6. Sweep time = auto couple. 7. Trace mode = max hold. 8. Allow trace to fully stabilize. 9. Use the marker-delta function to determine the separation between the peaks of the adjacent 			
Reference C	lause	Part15 Subpart C Section 15.247 (a)(1)			
Parameters r	recorded during the test	Laboratory Ambient Temperature	22 °C		
		Relative Humidity	36 %		
		Frequency range	Measurement Point		
Fully configured sample scanned over the following frequency range		2402 MHz - 2480 MHz	Antenna port		

Configuration Settings

Power Interface Mode # (See Section 3.3)	EUT Operation Mode # (See Section 3.5)	Test Configurations Mode # (See Section 3.7)			
1	1	2			
Supplementary information: None					

Limits

\$15.247(a)(1) Frequency hopping system operating in 2400-2483.5 Mb. Band may have hopping channel carrier frequencies that are separated by 25 kb or two-third of 20 dB bandwidth of the hopping channel, whichever is is greater, provided the systems operate with an output power no greater than 125 mW.

Project Number: 12CA42753 File Number: MC17075 Page: 24 of 53

Model Number: SPP-R400

Measurement Results

Table 3. Data Table of Carrier Frequency Separation

Operating Mode	Data Rate (Mbps)	Mark #1 (MHz)	Adjacent Hopping Channel Separation (kHz)	Two-third of 20 dB Bandwidth (kHz)	Minimum Separation (kHz)
GFSK	1	2439.806	998.6	622.3	25
8DPSK	3	2439.806	991.3	849.0	23

Project Number: 12CA42753 File Number: MC17075 Page: 25 of 53

Model Number: SPP-R400

Figure 3. Plots of Carrier Frequency Separation

GFSK

8DPSK

Project Number: 12CA42753 File Number: MC17075 Page: 26 of 53

Model Number: SPP-R400

5.4. Number of Hopping Channels

	TEST: Number of Hopping Channels					
Method	Number of Hopping (705-2003	Number of Hopping Channels from the EUT were measured according to the procedure of DA 00-705-2003				
	The EUT must have it	s hopping function enabled.				
	1. Use the following s	pectrum analyzer settings:				
	2. Span = the frequency	band of operation				
	3. RBW $\geq 1 \%$ of Spa	ın				
	4. VBW ≥ RBW.					
	5. Detector = peak.					
	6. Sweep time = auto	6. Sweep time = auto couple.				
	7. Trace $mode = max$	hold.				
	8. Allow trace to fully	stabilize.				
	9. It may prove necess	sary to break the span up to sections, in	order to clearly show all of the hopping			
	frequencies. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s)					
Reference Clau	Reference Clause Part15 Subpart C Section 15.247 (a)(1)(iii)					
Parameters reco	orded during the test	Laboratory Ambient Temperature	22 °C			
Relative Humidity 36			36 %			
	Frequency range Measurement Point					
	ed sample scanned over requency range	2402 MHz - 2480 MHz	Antenna port			

Configuration Settings

Power Interface Mode # (See Section 3.3)	EUT Operation Mode # (See Section 3.5)	Test Configurations Mode # (See Section 3.7)			
1	1	2			
Supplementary information: None					

Limits

§15.247(a)(1)(iii): Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

\$15.247(b)(1), For frequency hopping systems operating in the $2\,400-2\,483.5\,\text{Mz}$ employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the $5\,725-5\,805\,\text{Mz}$ band: 1 Watt.

Project Number: 12CA42753 File Number: MC17075 Page: 27 of 53

Model Number: SPP-R400

Measurement Results

Table 4. Data Table of Number of Hopping Channels

Operating Mode	Data Rate (Mbps)	Measurement Result	Limit
GFSK	1	79	> 75
8DPSK	2	79	≥ /3

Project Number: 12CA42753 File Number: MC17075 Page: 28 of 53

Model Number: SPP-R400

Figure 4. Plots of Number of Hopping Channels

GFSK

Project Number: 12CA42753 File Number: MC17075 Page: 29 of 53

Model Number: SPP-R400

8DPSK

Project Number: 12CA42753 File Number: MC17075 Page: 30 of 53

Model Number: SPP-R400

5.5. Average Time of Occupancy

	TEST: Average Time of Occupancy
Method	Average Time of Occupancy from the EUT were measured according to the procedure of DA 00-705-
	2003
	The EUT must have its hopping function enabled.
	1. Use the following spectrum analyzer settings:
	2. Span = zero span, centered on a hopping channel
	3. RBW = 1 MHz
	$4. \text{ VBW} \ge \text{RBW}.$
	5. Detector = peak.
	6. Sweep time = as necessary to capture the entire dwell time per hopping channel.
	7. Trace mode = max hold.
	8. Allow trace to fully stabilize.
	9. If possible, use the marker-delta function to determine the dwell time. If this value varies with
	different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each
	variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s). An
	oscilloscope may be used instead of a spectrum analyzer.

Reference Clause	Part15 Subpart C Section 15.247 (a)(1)(iii)		
Parameters recorded during the test	Laboratory Ambient Temperature	22 ℃	
	Relative Humidity	36 %	
	Frequency range	Measurement Point	
Fully configured sample scanned over the following frequency range	2441 MHz	Antenna port	

Configuration Settings

Power Interface Mode # (See Section 3.3)	EUT Operation Mode # (See Section 3.5)	Test Configurations Mode # (See Section 3.7)			
1	1	2			
Supplementary information: None					

Limits

§15.247(a)(1) (iii): For Frequency hopping systems in the 2400–2483.5 MHz band, the average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Project Number: 12CA42753 File Number: MC17075 Page: 31 of 53

Model Number: SPP-R400

Measurement Results

Table 5. Data Table of Time of Occupancy

Operating Mode	Data Rate (Mbps)	Packet Type	Burst on Time (ms/hop)	Hops per second (hop/s)	Period (s)	Dwell Time (ms)	Limit (ms)
		DH1	0.413	10.13	31.6	132.20	
GFSK	1	DH3	1.652	5.06	31.6	264.16	
		DH5	2.913	3.38	31.6	311.13	400
		DH1	0.428	10.13	31.6	137.01	400
8DPSK	3	DH3	1.674	5.06	31.6	267.67	
		DH5	2.928	3.38	31.6	312.73	

Dwell time calculation

- Dwell time = Pulse time * Hops per second within channel * Period time
- Hops per second within channel = 1600 hops/slot/no of channels
- DH1 = 1600/2/79(10.13), DH3 = 1600/4/79(5.06), DH5 = 1600/6/79(3.38)
- Period time = 0.4 sec * 79 channel = 31.6 sec

Project Number: 12CA42753 File Number: MC17075 Page: 32 of 53

Model Number: SPP-R400

Figure 5. Plots of Average Time of Occupancy

GFSK DH1

Project Number: 12CA42753 File Number: MC17075 Page: 33 of 53

Model Number: SPP-R400

Project Number: 12CA42753 File Number: MC17075 Page: 34 of 53

Model Number: SPP-R400

8DPSK DH1

Project Number: 12CA42753 File Number: MC17075 Page: 35 of 53

Model Number: SPP-R400

Project Number: 12CA42753 File Number: MC17075 Page: 36 of 53

Model Number: SPP-R400

5.6. Conducted spurious emission Measurement

	TEST: Conducted spurious emission measurement					
Method	Conducted spurious e 2003	nission from the EUT were measured according to the procedure of DA 00-705-				
	 Set the RBW = 100 Set the span to 5-30 Detector = peak. Sweep time = auto Trace mode = max Use the peak marked within the fundamental Measurement Procedure	 5. Sweep time = auto couple. 6. Trace mode = max hold. 8. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. Measurement Procedure - Unwanted Emissions 1. Set RBW, VBW, detector as same with above 				
Reference C	Clause	Part15 Subpart C Section 15.247 (d)				
Parameters 1	recorded during the test	Laboratory Ambient Temperature	22 °C			
		Relative Humidity	36 %			
	Frequency range Measurement Point					
	gured sample scanned over g frequency range	30 MHz – 26.5 GHz	Antenna port			

Configuration Settings

Test Item	Power Interface Mode # (See Section 3.3)	EUT Operation Mode # (See Section 3.5)	Test Configurations Mode # (See Section 3.7)			
Conducted Spurious emission	1	1	2			
Supplementary information: None						

Limits

According to \$15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. Attenuation below the general limits specified in section \$15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section \$15.205(a), must also comply the radiated emission limits specified in section \$15.209(a) (see section \$15.205(c))

Project Number: 12CA42753 File Number: MC17075 Page: 37 of 53

Model Number: SPP-R400

Measurement Results

Figure 6. Plots of Band-Edge and Restricted / Non-Restricted frequency bands

GFSK Low

Project Number: 12CA42753 File Number: MC17075 Page: 38 of 53

Model Number: SPP-R400

Middle

Project Number: 12CA42753 File Number: MC17075 Page: 39 of 53

Model Number: SPP-R400

High

Project Number: 12CA42753 File Number: MC17075 Page: 40 of 53

Model Number: SPP-R400

Bandedge at Hopping

Project Number: 12CA42753 File Number: MC17075 Page: 41 of 53

Model Number: SPP-R400

8DPSK Low

Project Number: 12CA42753 File Number: MC17075 Page: 42 of 53

Model Number: SPP-R400

Middle

Project Number: 12CA42753 File Number: MC17075 Page: 43 of 53

Model Number: SPP-R400

High

Project Number: 12CA42753 File Number: MC17075 Page: 44 of 53

Model Number: SPP-R400

Bandedge at Hopping

Project Number: 12CA42753 File Number: MC17075 Page: 45 of 53

Model Number: SPP-R400

5.7. Radiated Spurious Emissions Measurement

	TEST	: Radiated spurious emissions measure	ement			
Method	 The EUT was placed test site. The table was varied from 1 to with both horizontal orthogonal orientation For measurement be quasi-peak detection For measurement abar for peak measurement For 2.4GHz transmit High channels. 	5. For 5 GHz transmitter measurement, the spectrum from 30 MHz to 40GHz is investigated for Low, Mid and				
Reference Clau	use	Part15 Subpart C Section 15.247 (d)				
Parameters rec	orded during the test	Laboratory Ambient Temperature	22 °C			
		Relative Humidity	36 %			
		Frequency range	Measurement Point			
Fully configured sample scanned over the following frequency range		30 MHz – 40 GHz	3 meter chamber			

Configuration Settings

Test Item	Power Interface Mode # (See Section 3.3)	EUT Operation Mode # (See Section 3.5)	Test Configurations Mode # (See Section 3.7)					
Radiated Spurious emission	2	1	1					
Supplementary information: None								

Limits

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.209(a) (see section §15.205(c))

According to § 15.209(a), the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Distance (meters)	Field Strength (dBuV/m)	Field Strength (uV/m)
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Project Number: 12CA42753 File Number: MC17075 Page: 46 of 53

Model Number: SPP-R400

5.7.1. Radiated Spurious Emissions Below 1 GHz

Measurement method : Radiated Conducted

Mode of operation: Continuous Wave

Power setting: Max. Power condition declared by the manufacturer

Worst case configuration:

Figure 7. Test data for Radiated emission Below 1 GHz

Supplementary information:

- The frequency spectrum from 30 MHz to 1 000 MHz was investigated. Emission levels of 30 dB below than the limit is not reported.
- The worst case is x-axis and reported.
- Actual = Reading + AF + AMP + CL (AF: Antenna factor, AMP: Amp gain, CL: Cable loss)
- Margin = Limit (dBuV/m) Actual (dBuV/m)

Project Number: 12CA42753 File Number: MC17075 Page: 47 of 53

Model Number: SPP-R400

5.7.2. Radiated Spurious Emissions Above 1 GHz – 2.4 GHz band

Mode of operation : 2.4 GHz band Continuous Wave

Power setting: Max. Power condition declared by the manufacturer

Table 6. GFSK Low Channel

Rad	iated emission	ıs	Ant	Co	orrection fact	cors		Total	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
*2390.00	43.44	Peak	Н	N/A	27.05	46.23	74.00	30.52	43.48
*2390.00	44.83	Peak	V	N/A	27.05	46.23	74.00	31.91	42.09
4804.00	54.32	Peak	Н	N/A	31.07	46.90	74.00	46.69	27.31
4804.00	56.59	Peak	V	N/A	31.07	46.90	74.00	48.96	25.04
*2390.00	34.21	Average	Н	N/A	27.05	46.23	54.00	21.29	32.71
*2390.00	34.83	Average	V	N/A	27.05	46.23	54.00	21.91	32.09
4804.00	48.01	Average	Н	N/A	31.07	46.90	54.00	40.38	13.62
4804.00	50.68	Average	V	N/A	31.07	46.90	54.00	43.05	10.95

Table 7. GFSK Mid Channel

Rad	iated emission	1S	Ant	Co	orrection fact	cors		Tot	al
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
4882.00	53.46	Peak	Н	N/A	31.19	46.92	74.00	45.97	28.03
4882.00	57.13	Peak	V	N/A	31.19	46.92	74.00	49.64	24.36
4882.00	47.65	Average	Н	N/A	31.19	46.92	54.00	40.16	13.84
4882.00	51.54	Average	V	N/A	31.19	46.92	54.00	44.05	9.95

Table 8. GFSK High Channel

Rad	iated emission	ıs	Ant	Co	orrection fact	tors		Tot	al
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
*2483.50	52.64	Peak	Н	N/A	27.31	46.27	74.00	40.02	33.98
*2483.50	44.72	Peak	V	N/A	27.31	46.27	74.00	32.10	27.98
4960.00	52.34	Peak	Н	N/A	31.32	46.95	74.00	45.01	28.99
4960.00	55.95	Peak	V	N/A	31.32	46.95	74.00	48.62	25.38
*2483.50	47.14	Average	Н	N/A	27.31	46.27	54.00	34.52	19.48
*2483.50	38.64	Average	V	N/A	27.31	46.27	54.00	26.02	41.90
4960.00	46.13	Average	Н	N/A	31.32	46.95	54.00	38.80	15.20
4960.00	50.84	Average	V	N/A	31.32	46.95	54.00	43.51	10.49

Project Number: 12CA42753 File Number: MC17075 Page: 48 of 53

Model Number: SPP-R400

Table 9. 8DPSK Low Channel

Rad	iated emission	ıs	Ant	Co	orrection fact	tors		Total	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
*2390.00	43.77	Peak	Н	N/A	27.05	46.23	74.00	30.85	43.15
*2390.00	45.31	Peak	V	N/A	27.05	46.23	74.00	32.39	41.61
4804.00	54.12	Peak	Н	N/A	31.07	46.90	74.00	46.49	27.51
4804.00	55.46	Peak	V	N/A	31.07	46.90	74.00	47.83	26.17
*2390.00	34.07	Average	Н	N/A	27.05	46.23	54.00	21.15	32.85
*2390.00	35.00	Average	V	N/A	27.05	46.23	54.00	22.08	31.92
4804.00	47.76	Average	Н	N/A	31.07	46.90	54.00	40.13	13.87
4804.00	50.13	Average	V	N/A	31.07	46.90	54.00	42.50	11.50

Table 10. 8DPSK Middle Channel

Rad	iated emissior	ıs	Ant	Co	orrection fact	tors		Tot	al
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
4882.00	53.37	Peak	Н	N/A	31.19	46.92	74.00	45.88	28.12
4882.00	56.26	Peak	V	N/A	31.19	46.92	74.00	48.77	25.23
4882.00	46.68	Average	Н	N/A	31.19	46.92	54.00	39.19	14.81
4882.00	50.86	Average	V	N/A	31.19	46.92	54.00	43.37	10.63

Table 11. 8DPSK High Channel

Rad	iated emission	ıs	Ant	Co	orrection fact	tors	Total		al
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
*2483.50	52.07	Peak	Н	N/A	27.31	46.27	74.00	39.45	34.55
*2483.50	45.47	Peak	V	N/A	27.31	46.27	74.00	32.85	41.15
4960.00	51.74	Peak	Н	N/A	31.32	46.95	74.00	44.41	29.59
4960.00	55.23	Peak	V	N/A	31.32	46.95	74.00	47.90	26.10
*2483.50	47.62	Average	Н	N/A	27.31	46.27	54.00	35.00	19.00
*2483.50	38.39	Average	V	N/A	27.31	46.27	54.00	25.77	28.23
4960.00	45.64	Average	Н	N/A	31.32	46.95	54.00	38.31	15.69
4960.00	50.32	Average	V	N/A	31.32	46.95	54.00	42.99	11.01

Supplementary information:

- The frequency spectrum from 1 GHz to 26.5 GHz was investigated. Emission levels of 30 dB below than the limit is not reported.
 - "*" means the restricted band.
- The worst case is x-axis and reported.
- Actual = Reading + AF + CL (AF : Antenna factor, CL : Cable loss)
- Distance factor = 20log(Measurement distance / The measured distance)
- Margin = Limit (dBuV/m) Actual (dBuV/m)

Project Number: 12CA42753 File Number: MC17075 Page: 49 of 53

Model Number: SPP-R400

5.8. Transmitter AC Power Line Conducted Emission

	TEST: Transmitter AC Power Line Conducted Emission							
Method	AC line conducted emissi 2003.	AC line conducted emissions from the EUT were measured according to the dictates of ANSI C63.4-2003.						
	 The test procedure is performed in a 5.05m × 4.0m× 3.0m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m(W)× 1.5 m(L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. The excess power cable between the EUT and the LISN was bundled. All connecting cables of EUT were moved to find the maximum emission. 							
Basic Stand	ard	FCC Part 15 Subpart C 15.207(a)						
Parameters	recorded during the test	Laboratory Ambient Temperature	22°C					
		Relative Humidity	46%					
-		Frequency range on each side of line	Measurement Point					
Fully configured sample scanned over the following frequency range		150 kHz to 30 MHz	A.C. Input port of A.C. to D.C. adapter.					

Configuration Settings

Power Interface Mode # (See Section 3.3)	EUT Operation Mode # (See Section 3.5)	Test Configurations Mode # (See Section 3.7)
2	1	1
Supplementary information: None		

Limits

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Eraguanay of Emission (Mlr)	Conducted limit (dB μV)				
Frequency of Emission (地)	Quasi-peak	Average			
0.15 - 0.5	66 - 56*	56 - 46*			
0.5 - 5	56	46			
5 – 30	60	50			

^{*} Decreases with the logarithm of the frequency.

Project Number: File Number: MC17075 12CA42753 Page: 50 of 53

Model Number: SPP-R400

5.8.1. **Transmitter AC Power Line Conducted Emission**

Measurement method :
Radiated

Mode of operation : Continuous Wave

Power setting: Max. Power condition declared by the manufacturer

e 12.	Test data fo	or conducted emi	ission				
T LI	NE						
NO	FREQ	READING (PK)	C.F	RESULT	LIMIT OP AV	MARGIN PHASE OP AV	
	[MHz]	[dBuV]	[dB]	[dBuV]	[dBuV] [dBuV]	[dB]	[dB]
1	0.19900	42.9	10.0	52.9	63.7 53.7	10.8	0.8 N (PK)
2	0.29400	33.1	10.0	43.1	60.4 50.4	17.3	7.3 N (PK)
3	0.49300	28.7	10.1	38.8	56.1 46.1	17.3	7.3 N (PK)
4	2.06800	28.1	10.3	38.4	56.0 46.0	17.6	7.6 N (PK)
5	7.90500	24.1	10.5	34.6	60.0 50.0	25.4	15.4 N (PK)
6	22.53000	20.4	11.5	31.9	60.0 50.0	28.1	18.1 N (PK)
7	0.19900	29.4	10.0	39.4	63.7 53.7	24.3	14.3 N (AV)
8	0.29400	26.3	10.0	36.3	60.4 50.4	24.1	14.1 N (AV)
9	0.49300	25.1	10.1	35.2	56.1 46.1	20.9	10.9 N (AV)
10	2.06800	11.3	10.3	21.6	56.0 46.0	34.4	24.4 N (AV)
11	7.90500	15.0	10.5	25.5	60.0 50.0	34.5	24.5 N (AV)
12	22.53000	12.7	11.5	24.2	60.0 50.0	35.8	25.8 N (AV)
TUR	AL LINE						
NO	FREQ	READING (PK)	C.F	RESULT	LIMIT QP AV	MAR(QP	GIN PHASE AV
	[MHz]	[dBuV]	[dB]	[dBuV]	[dBuV] [dBuV]	[dB]	[dB]
1	0.19700	40.8	10.0	50.8	63.7 53.7	12.9	2.9 N (PK)

NO	FREQ	READING (PK)	C.F	RESULT	LI	TIN	MARG	GIN PHASE
					QP	AV	QP	AV
	[MHz]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]
1	0.19700	40.8	10.0	50.8	63.7	53.7	12.9	2.9 N (PK)
2	0.39300	30.9	10.1	41.0	58.0	48.0	17.0	7.0 N (PK)
3	2.10000	24.4	10.3	34.7	56.0	46.0	21.3	11.3 N (PK)
4	8.04500	21.1	10.5	31.6	60.0	50.0	28.4	18.4 N (PK)
5	18.44000	16.9	11.1	28.0	60.0	50.0	32.0	22.0 N (PK)
6	22.52000	17.7	11.5	29.2	60.0	50.0	30.8	20.8 N (PK)
7	0.19700	31.0	10.0	41.0	63.7	53.7	22.7	12.7 N (AV)
8	0.39300	28.4	10.1	38.5	58.0	48.0	19.5	9.5 N (AV)
9	2.10000	6.8	10.3	17.1	56.0	46.0	38.9	28.9 N (AV)
10	8.04500	17.5	10.5	28.0	60.0	50.0	32.0	22.0 N (AV)
11	18.44000	9.9	11.1	21.0	60.0	50.0	39.0	29.0 N (AV)
12	22.52000	8.1	11.5	19.6	60.0	50.0	40.4	30.4 N (AV)

Project Number: 12CA42753 File Number: MC17075 Page: 51 of 53

Model Number: SPP-R400

Figure 8. Graphical representation of Conducted Emission

Project Number: 12CA42753 File Number: MC17075 Page: 52 of 53

Model Number: SPP-R400

5.9. Antenna Requirement

5.9.1. Standard Applicable

For intentional device, according to FCC Part 15 Subpart C Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC Part 15 Subpart C Section 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in Db that the gain of the antenna exceeds 6 dBi.

5.9.2. Antenna Connected Construction

The antenna used of this product is Metal Stamping Antenna Assembly and peak max gain of each antennas as below . :

Band	Antenna Gain (dBi)
2402 – 2480 MHz	-0.22

Project Number: 12CA42753 File Number: MC17075 Page: 53 of 53

Model Number: SPP-R400

APPENDIX A. Accreditations and Authorizations

ONETECH Corp. has been accredited / filed / authorized by the agencies listed in the following table;

			3	
Certificate	Nation	Agency	Code	Mark
Accreditation	Korea	KOLAS	No. 85	ISO/IEC 17025
	USA	FCC	KR0013	Test Facility list & NSA Data
Site Filing	Japan	VCCI	C-940 R-906 T-1842	Test Facility list & NSA Data
Certification	Korea	KC	KR0013	Test Facility list & NSA Data

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competent of calibration and testing laboratory".