Classification

Jang Miyoung February 9, 2025

Department of Statistics Sungshin Women's University

Outline

1 Logistic Regression

2 Netwon Raphson Method

• The probabilities of y=1 and y=-1 are expressed by $\frac{e^{\beta_0+x\beta}}{1+e^{\beta_0+x\beta}}$ and $\frac{1}{1+e^{\beta_0+x\beta}}$

$$\frac{1}{1+e^{-y(\beta_0+x\beta)}}$$

Logistic Curve

increasing monotonically and convex and concave

$$\begin{split} f'(x) &= \beta \frac{e^{-(\beta_0 + x\beta)}}{(1 + e^{-(\beta_0 + x\beta)})^2} \geq 0 \\ f''(x) &= -\beta^2 \frac{e^{-(\beta_0 + x\beta)}[1 - e^{-(\beta_0 + x\beta)}]}{(1 + e^{-(\beta_0 + x\beta)})^3} \end{split}$$

• We see that f(x) is increasing monotonically and is convex and concave when $x<-\beta_0/\beta$ and $x>-\beta_0/\beta$, they chage at x=0, when $\beta=0$

Outline

1 Logistic Regression

2 Netwon Raphson Method

Netwon Raphson

 \bullet Tangent line is $y-f(x_i)=f'(x_i)(x-x_i)$ the intersection with y = 0

$$x_{i+1} \triangleq x_i - \frac{f(x_i)}{f'(x_i)}$$

• Example $f(x) = x^2 - 1$ and $x_0 = 4$

Newton Raphson Method for two variables