Assignment 3 - Part 2

Link to questions - here

Student Details:

- Name : Anjishnu Mukherjee
- Registration Number : B05-511017020 • Class Roll Number : CS Gy-70 • Exam Roll Number : 510517086

• Email: 511017020.anjishnu@students.iiests.ac.in

Project Setup

Mount Google Drive

Mounted at /content/drive/

Load libraries, set seed

Environment Information:

_____ OS: Linux-4.19.112+-x86_64-with-Ubuntu-18.04-bionic Python version: 3.6.9 (default, Jul 17 2020, 12:50:27) [GCC 8.4.0] Numpy version: 1.18.5

Pandas version: 1.0.5 Matplotlib version: 3.2.2 Seaborn version: 0.10.1

Scikitlearn version: 0.22.2.post1

Global Seed: 5 -----

Forest Cover Type dataset Link for Data

Read dataset into Pandas dataframe

Let's visualise the first 5 rows of the dataset.

	Elevation	Aspect	Slope	Horizontal_Distance_To_Hydrology	Vertical_Distance_To_Hydrology	Horizontal_Distance_To_Roadways	Hillshade_9am	Hillshade_Noon
0	2596	51	3	258	0	510	221	232
1	2590	56	2	212	-6	390	220	235
2	2804	139	9	268	65	3180	234	238
3	2785	155	18	242	118	3090	238	238
4	2595	45	2	153	-1	391	220	234

Data information:

Data Dimensions: Rows(Records): 581012 Columns(Features): 55

- Elevation = Height in meters.
- Aspect = Aspect in degrees azimuth. • Slope = Slope in degrees.
- Horizontal_Distance_To_Hydrology = Horizontal distance to nearest surface water features. • Vertical_Distance_To_Hydrology = Vertical distance to nearest surface water features. • Horizontal_Distance_To_Roadways = Horizontal distance to nearest roadway.
- Hillshade_9am = Hill shade index at 9am, summer equinox. Value out of 255. • Hillshade_Noon = Hill shade index at noon, summer equinox. Value out of 255. • Hillshade_3pm = Hill shade index at 3pm, summer equinox. Value out of 255.
- Horizontal_Distance_To_Fire_Point = Horizontal distance to nearest wildfire ignition points.
- Wilderness_Area1 = Rawah Wilderness Area • Wilderness_Area2 = Neota Wilderness Area
- Wilderness_Area3 = Comanche Peak Wilderness Area
- Wilderness_Area4 = Cache la Poudre Wilderness Area • Soil_Type1 to Soil_Type40 = Type of the soil.
- Cover_TypeForest = Cover type, integer value between 1 and 7, with the following key:
- Spruce/Fir 2. Lodgepole Pine
- 3. Ponderosa Pine 4. Cottonwood/Willow
- 5. Aspen 6. Douglas-fir 7. Krummholz

features = data.loc[:,'Elevation':'Horizontal_Distance_To_Fire_Points'] wilderness = data.loc[:,'Wilderness_Area1':'Wilderness_Area4']

Explore features to decide which ones to drop (EDA)

soiltype = data.loc[:,'Soil_Type1':'Soil_Type40']

power by much.

Count plot of Soil types

Correlation map of features

• Also, none of the correlation values are greater than 0.7, so there is no need to drop the other features as they aren't highly correlated.

• Hillshade_3pm has very small negative correlation with Horizontal_Distance_To_Fire_Points . So, if we drop it, it shouldn't affect the model's predicting

Count Plot of Soil Types

• Soil_Type16 • Soil_Type23 • Soil_Type8 • Soil_Type5

- Soil_Type28
- Soil_Type1
- Soil_Type17 • Soil_Type3 • Soil_Type34
- Soil_Type14 • Soil_Type37 • Soil_Type35
- Soil_Type36 • Soil_Type21 • Soil_Type26 • Soil_Type27

• Soil_Type25

• Soil_Type7

• Soil_Type15

Count plot of Wilderness types Count Plot of Wildernes Areas

I will be dropping these to reduce computation, as these won't be too signigificant for the analysis anyway.

140000 120000

213

149

222

148

207

2096

3118

3271

3216

5321

234

205

234

212

214

Feature Selection

x test: (200, 31) y train: (800,) y test: (200,)

11

x train: (800, 31)

Train:Test split

 7 classes 1000 records • 31 features

Train the Linear SVM for the multi-class problem

21

1.1e+02

--- clf1 - LogisticRegression, Liblinear solver, L2 penalty, One Versus Rest ---**Confusion Matrix**

- 100

- 80

0.48

0.40

0.68

0.65

To prevent RAM from being completely filled up, I am choosing 50 rows of data for each of the 3 classes.

30

30

90

37

126

37

200

200

200

43

19

The shapes of the different data: (n_samples,n_features)

Test accuracy:

Logistic Regression in sklearn

52

2696

x train: (120, 2) x test: (30, 2) y train: (120,)

Graph 1 : Training data

Elevation Aspect Slope Horizontal_Distance_To_Hydrology Vertical_Distance_To_Hydrology Horizontal_Distance_To_Roadways Hillshade_9am Hillshade_Noor 2699 347 3 0 2739 323 25 85 51

Multi Class Logistic Regression - 2 features, 3 classes

55 2722 315 24 2919 13 13 67 Data Dimensions: Rows(Records): 150 Columns(Features): 32

2

72

y test: (30,)

The shapes of the different data: (n_samples,n_features)

Elevation

Graph 2: Test data