Topological Vector Space

xuascaler

May 23, 2025

1. Local geometry of topological vector space

Let (X, \mathcal{F}) be a topological space.

Remark.

- A base for \mathcal{F} is a subcollection $\mathcal{F}' \subset \mathcal{F}$ s.t. $\forall U \in \mathcal{F}, \exists V \in \mathcal{F}', V \subset U$. A base \mathcal{F}' determines $\mathcal{F} \Leftrightarrow \exists S, \forall U \subset \mathcal{F}, U = \{ \cup e_i \mid i \in S, e_i \in \mathcal{F} \}$.
- A local base of x is a subcollection $\mathcal{F}'_x \subset \mathcal{F}_x$ s.t. $\forall U \subset \mathcal{F}_x, \exists V \in \mathcal{F}'_x$ s.t. $V \subset U$. However, elements in \mathcal{F}_x may be not union of elements in \mathcal{F}'_x .

Example. (X, d) is a metric space.

- $\mathcal{F}' = \{B(x,r) \mid x \in X, r > 0\}$ is a base.
- $\mathcal{F}' = \{B(x,r), |\}$ is a local at x.
- $\mathcal{F}' = \{B(x, \frac{1}{n}) \mid n \in \mathbb{N}\}\$ anohter local base at x, countable elements.

Now let X be topological vector space. Last time we showed that $\forall a \in X, \forall \alpha \neq 0$, the maps

- $T_a: X \to X, x \to x + a$
- $M_a: X \to X, x \to \alpha x$

are both homeomorphism. As a consequence, we see

Corollary. A set $A \subset X$ is open $\Leftrightarrow a+A$ is open, $\forall a \in X \Leftrightarrow \alpha A$ is open, $\forall \alpha \neq 0$

So the topological \mathcal{F} is determined by any local base at 0 whose elements have special gemometric properties for topological vector space.

Definition. X is locally convex if there is a local base whose elements is convex.

Example. Normed Vector Space are locally convex since $\{B(0,r) \mid r > 0\}$ are convex.

Proof. $x, y \in B(0, r) \Leftrightarrow ||x|| < r, ||y|| < r \Leftrightarrow ||\alpha x + (1 - \alpha)y|| \le \alpha ||x|| + (1 - \alpha)||y|| \le r$

Definition. A set $E \subset X$ is absorbing if $\forall x \in X, \exists \delta > 0$ s.t. $\delta x \in E, \forall |\alpha| < \delta. (Obviously \ 0 = 0 * x \in E)$

Property. In a topological vector space, any neighborhood of 0 is absorbing.

Proof. Let U be a neighborhood of 0. $\forall x \in X$, the map $\mathbb{C} \to X : \alpha \to \alpha x$ is continuous. since it is the composition $\mathbb{R} \to \mathbb{R} \times X \to X : \alpha \to (\alpha, x) \to \alpha x$ both of which are continuous.

Remark. The function $F: X \to Y$ is continuous $\Leftrightarrow \forall Y' \subset Y, Y'$ is open set, the preimage of Y' is open set.

So the pre-image of U is an open set in \mathbb{R} , which obviously contains 0. So $\exists \delta$ s.t. $\forall |\alpha| < \delta, \alpha x \in U$.

Corollary. For any neighborhood U of $0, X = \bigcup_{k=1}^{\infty} (kU)$

Proof.
$$\forall x \in X, \exists k, \frac{1}{k} < \delta, \frac{1}{k} x \in U \Rightarrow x \in kU.$$

Definition. A set $E \subset X$ is symmetric if E = -E.

Property. $\forall U, 0 \in U$, one can find a symmetric neighborhood V of 0 s.t. $V+V \subset U$.

Proof. Since 0+0=0, and addition is continuous, for the neigborhood U of 0, one can find neigborhoods U_1, U_2 of 0 s.t. $U_1+U_2 \subset U$. Take $V=U_1 \cap U_2 \cap (-U_1) \cap (-U_2)$. V is symmetric and $0 \in V$. $V \subset U_1, V \subset U_2, V + V \subset U$.

Remark. By iteration, one can find V s.t. $V + V + V + V \subset U$

Definition. A neighborhood of 0 in X in balanced if $\alpha E \subset E$ for all α with $|\alpha| \leq 1$.

Remark.

1. If E is balanced, then E is symmetric. since

$$-E \subset E, -(-E) \subset -E$$

2. If A, B are balanced, so is A + B.

Property. In a Topological vector space, any neighborhood of 0 contains a balanced neighborhood of 0.

Proof. Let U be a neighborhood of 0. By continuity and $0 \cdot 0 = 0$, one can find $\delta > 0$ and neighborhood V_1 of 0 s.t. $\beta V_1 \subset U$ for any β with $|\beta| < \delta$. Let $V = \bigcup_{0 < |\beta| < \delta} \beta V_1$, then

- V is open as union of open sets
- $V \subset U$ since each $\beta V_1 \subset U$.
- V is balanced since $|\alpha| \le 1$, $|\beta| < \delta \Rightarrow |\alpha\beta| < \delta$.

Corollary. Every topological vector space has a balanced local base.

Remark. Simlarly one can prove: any convex neighborhood of 0 contains a balanced convex neighborhood of 0. So any locally convex topological vector space has a balanced convex local base.

A subset $E \subset X$ is bounded if for any neighborhood U of 0 in X, $\exists s > 0$ s.t. $\forall t > s$, we have $E \subset tU$.

Property. E is balanced \Leftrightarrow For any sequence $\{x_n\} \subset E$ and any scalar sequence $\alpha_n \to 0$, one has $\alpha_n x_n \to 0$

Proof.

- \Rightarrow , For any neighborhood U of 0, we have $\exists s > 0, \forall t > s, E \subset tU$, Since $\alpha_n \to 0$, $\exists N, \forall n > N, |\alpha_n| < \frac{1}{t}$, we have $|\alpha_n|E \subset U \Rightarrow |\alpha_n|x_n \in U$. we have $|\alpha_n|x_n \to 0$. $\forall \delta > 0, \exists N, \forall n > N, ||\alpha_n|x_n 0| = |\alpha_n x_n| = |\alpha_n x_n 0| < \delta$. So $\alpha_n x_n \to 0$.
- \Leftarrow , If E is not bounded, then for any neigborhood U of 0, $\forall s > 0$, $\exists t > s$, $E \not\subset tU$. We fix U, now we construct $\{\alpha_n\}, \{x_n\}$. We choose $n \in \mathbb{N}, s = n, \exists t_n > n, \frac{E}{t_n} \not\subset U$, so $\alpha_n = \frac{1}{t_n}, x_n \in E, \frac{x_n}{t_n} \not\in U$. Now we have $\{\alpha_n \to 0, \alpha_n x_n \not\in U \Rightarrow \alpha_n x_n \not\to 0\}$. Contradiction!

So in particular, if X is a metric space, then E is bounded iff $\exists C > 0, E \subset B(0,C)$. Not every topological vector space admit a bounded open set. In fact,

Property. If V is bounded neighborhood of 0, then for any sequence $\alpha_k \to 0$, the collection $\{\alpha_k V \mid k = 1, 2, 3...\}$ is a local base of X.

Proof. We construct a set $W=V\cup -V,\ V\subset W$ and W is bounded and symmetric. For any neigborhood U of $0,\ \exists s>0, \forall t>s, W\subset tU$. Since $\alpha_n\to 0\Rightarrow \exists \alpha_n, \frac{1}{|\alpha_n|}>t$, we have $\exists \alpha_n, |\alpha_n|W\subset U$. W is symmetric, $\alpha_nW\subset U$ $V\subset W\Rightarrow \alpha_nV\subset U$. So α_nV is a local base.

Definition. X is locally bounded if 0 has a bounded neighborhood.

So any locally bounded TVS has a countable local base. According the next theorem, it must be metrizable.