Laborator 7 - solutii

MLE

Aflati \mathbf{MLE} ai urmatorilor parametri pentru urmatoarele densitati de probabilitate si sampleuri de dimensiune n.

- 1. $f_X(x;\theta) = \theta \cdot x^{\theta-1}, 0 < x < 1, \theta > 0.$
- 2. $f_X(x;\theta) = (\theta+1)x^{-\theta-2}, 1 < x, \theta > 0.$
- 3. $f_X(x;\theta) = \theta^2 \cdot x \cdot e^{-\theta \cdot x}, 0 < x, \theta > 0.$
- 4. $f_X(x;\theta) = 2 \cdot \theta^2 \cdot x^{-3}, \theta < x, \theta > 0$.
- 5. $f_X(x;\theta) = \frac{\theta}{2} \cdot e^{-\theta \cdot |x|}, -\infty < x < \infty, \theta > 0.$
- 6. $f_X(x; \theta_1, \theta_2) = \frac{1}{\theta_2 \theta_1}, \theta_1 \le x \le \theta_2.$
- 7. $f_X(x; \theta_1, \theta_2) = \theta_1 \cdot \theta_2^{\theta_1} \cdot x^{-\theta_1 1}, \theta_2 \le x, \theta_1, \theta_2 > 0.$

Solutie:

1. Presupunem ca am extras un set de date din distributia data, $x_1, \ldots x_n \in (0,1)$ cu n suficient de mare. Astfel, pentru un θ necunoscut, probabilitatea tinand cont de forma distributiei date sa extragem datele respective este $\mathbb{P}(x_1, \ldots x_n | \theta)$ pe care o notam cu $p(x_1, \ldots x_n; \theta)$. Stiind ca datele au fost extrase aleator, deci independent una de cealalta, avem ca $p(x_1, \ldots x_n; \theta) = p(x_1; \theta) \cdots p(x_n; \theta)$. Ne dorim sa determinam θ asa incat aceasta probabilitate sa fie maxima asa ca vom vedea $p(x_1, \ldots x_n; \theta)$ ca functie de θ .

Pentru ca $p(X = x; \theta)$ poate fi considerat ca $p(X \in (x - \epsilon, x + \epsilon)) = \int_{x-\epsilon}^{x+\epsilon} f_X(x; \theta) dx$ unde ϵ foarte mic (vezi curs), avem ca $p(x; \theta) = f_X(x; \theta) dx$. Astfel, $p(x_1, \dots, x_n; \theta) = f_X(x_1; \theta) dx_1 \dots f_X(x_n; \theta) dx_n$. Factorul $dx_1 \dots dx_n$ nu are relevanta in aflarea valorii pentru care se atinge maximul lui $p(x_1, \dots, x_n; \theta)$, deci ne intereseaza sa studiem functia $p: (0, \infty) \to [0, 1], p(\theta) = f_X(x_1; \theta) \dots f_X(x_n; \theta) = \theta \cdot x_1^{\theta-1} \dots \theta \cdot x_n^{\theta-1} = \theta^n \cdot (x_1 \dots x_n)^{\theta-1}$. Datorita formei, preferam sa aplicam logaritm acestei functii, deci vom studia functia $L: (0, \infty) \to (-\infty, 0), L(\theta) = n \cdot ln(\theta) + (\theta - 1) \cdot ln(x_1 \dots x_n)$.

Pentru ca dorim sa aflam maximele locale ale functiei, determinam θ asa incat $L'(\theta) = 0, L''(\theta) < 0.$

 $L'(\theta) = n/\theta + \ln(x_1 \cdots x_n) = 0$. Aceasta ecuatie are o solutie unica, $\theta = -\frac{n}{\ln(x_1) + \dots + \ln(x_n)}$. $L''(\theta) = -n/\theta^2 < 0, \forall \theta > 0$.

Deci, MLE pentru distributia data si datele extrase este $\theta = -\frac{n}{\ln(x_1) + \dots + \ln(x_n)}$. Valoarea este valida, pentru ca $x_1, \dots x_n \in (0, 1)$, deci $\ln(x_1), \dots, \ln(x_n) < 0$, deci $\theta > 0$.

Laborator 7 - solutii

2. Presupunem ca am extras un set de date din distributia data, $x_1, \ldots x_n > 1$ cu n suficient de mare. Vrem sa gasim θ pentru care $p(x_1, \dots x_n; \theta)$ este maxim. Notam cu p: $(0,\infty) \to [0,1], p(\theta) = f_X(x_1;\theta) \cdots f_X(x_n;\theta) = (\theta+1)^n \cdot (x_1 \cdots x_n)^{-\theta-2}$. Logaritmam, deci vom studia functia $L:(0,\infty)\to(-\infty,0), L(\theta)=n\cdot ln(\theta+1)+(-\theta-2)ln(x_1\cdots x_n).$ $L'(\theta) = n/(\theta+1) - \ln(x_1 \cdot \dots \cdot x_n) = 0$. Aceasta ecuatie are o solutie unica, $\theta = 0$ $\frac{n}{\ln(x_1) + \dots + \ln(x_n)} - 1.$

 $L''(\theta) = -n/(\theta + 1)^2 < 0, \forall \theta > 0.$

In concluzie, MLE pentru distributia data si datele extrase este $\theta = \frac{n}{\ln(x_1) + \dots + \ln(x_n)} - 1$. Acest estimator are sens data datele pe care le avem la dispozitie indeplinesc $ln(x_1)$ + $\cdots + ln(x_n) > n$. Astfel, atunci cand le selectam, avem in vedere ca $x_i > e$.

- 3. Presupunem ca am extras un set de date din distributia data, $x_1, \ldots x_n > 0$ cu n suficient de mare. Notam cu $p:(0,\infty)\to [0,1], p(\theta)=f_X(x_1;\theta)\cdot\cdots\cdot f_X(x_n;\theta)=$ $\theta^{2n} \cdot x_1 \cdot \dots \cdot x_n \cdot e^{-\theta \cdot (x_1 + \dots + x_n)}$. Logaritmam, deci vom studia functia $L: (0, \infty) \to 0$ $(-\infty, 0), L(\theta) = 2n \cdot ln(\theta) + ln(x_1) + \dots + ln(x_n) - \theta \cdot (x_1 + \dots + x_n).$ $L'(\theta) = 1$ $2n/\theta - (x_1 + \dots + x_n) = 0$. Ecuatia are solutie unica $\theta = \frac{2n}{x_1 + \dots + x_n}$. $L'' = -2n/\theta^2 < 0, \forall \theta > 0$. In concluzie, MLE pentru distributia data si datele extrase este $\theta = \frac{2n}{x_1 + \dots + x_n} > 0$.
- 4. Presupunem ca am extras un set de date din distributia data, $x_1, \ldots x_n \geq \theta$ cu n suficient de mare. Notam cu $p:(0,\infty)\to [0,1], p(\theta)=f_X(x_1;\theta)\cdot \cdots \cdot f_X(x_n;\theta)=2^n\cdot$ $\theta^{2n} \cdot (x_1 \cdot \dots \cdot x_n)^{-3}$. Logaritmam, deci vom studia functia $L: (0, \infty) \to (-\infty, 0), L(\theta) =$ $n \cdot ln(2) + 2n \cdot ln(\theta) - 3 \cdot (ln(x_1) + \cdots + ln(x_n)).$

 $L'(\theta) = 2n/\theta > 0, \forall \theta > 0$. Astfel, aceasta valoare nu poate fi egalata cu 0. Putem aborda aceasta situatie astfel:

- (a) Consideram ca $L'(\theta)$ trebuie sa ia valoarea minima pentru $\theta \leq x_1, \ldots x_n$, ceea ce inseamna ca cea mai apropiata de 0 valoare pentru $L'(\theta)$ are loc pentru $\theta =$ $\min\{x_1,\ldots x_n\}$, deoarece este cea mai mare valoare pe care θ o poate lua. In plus, $L''(\theta) = -2n/\theta^2 < 0, \forall \theta > 0, \det \theta = \min\{x_1, \dots x_n\}$ este MLE pentru distributia data si datele extrase.
- (b) Noi trebuie, in realitate, sa gasim θ pentru care $L(\theta)$ ia valoarea maxima. Observam ca functia $L(\cdot)$ este strict crescatoare (se oberva si din faptul ca derivata este strict pozitiva), deci punctul in care $L(\cdot)$ isi atinge maximul este cand θ ia valoarea maxima admisa. Stim ca $\theta \leq x_1, \dots x_n$ deci $\theta = \min\{x_1, \dots x_n\}$ este MLE pentru distributia data si datele extrase.
- 5. Presupunem ca am extras un set de date din distributia data, $x_1, \ldots x_n$ cu n suficient de mare. Notam cu $p:(0,\infty)\to [0,1], p(\theta)=f_X(x_1;\theta)\cdot\cdots\cdot f_X(x_n;\theta)=\left(\frac{\theta}{2}\right)^n\cdot$ $e^{-\theta \cdot (|x_1| + \cdots + |x_n|)}$. Logaritmam, deci vom studia functia $L: (0, \infty) \to (-\infty, 0), L(\theta) =$ $n(ln(\theta) - ln(2)) - \theta \cdot (|x_1| + \cdots + |x_n|).$

Laborator 7 - solutii

$$L'(\theta) = n/\theta - (|x_1| + \dots + |x_n|) = 0$$
. Ecuatia are solutie unica $\theta = \frac{n}{|x_1| + \dots + |x_n|}$. $L''(\theta) = -n/\theta^2 < 0$.

In concluzie, MLE pentru distributia data si datele extrase este $\theta = \frac{n}{|x_1| + \dots + |x_n|} > 0$.

6. Presupunem ca am extras un set de date din distributia data, $\theta_1 \leq x_1, \dots x_n \leq \theta_2$ cu n suficient de mare. Notam cu $p: \mathbb{R} \times \mathbb{R} \to [0,1], p(\theta_1,\theta_2) = f_X(x_1;\theta_1,\theta_2) \cdot \dots \cdot f_X(x_n;\theta_1,\theta_2) = \left(\frac{1}{\theta_2-\theta_1}\right)^n$.

In acest caz, nu mai este nevoie sa logaritmam, intrucat functia $p(\theta_1, \theta_2)$ is atinge maximul atunci cand $\frac{1}{\theta_2 - \theta_1}$ isi atinge maximul, deci cand $\theta_2 - \theta_1$ are valoarea minima posibila. In concluzie, MLE pentru distributia data sunt $\theta_1 = \min\{x_1, \dots, x_n\}, \theta_2 = \max\{x_1, \dots, x_n\}$.

7. Presupunem ca am extras un set de date din distributia data, $\theta_2 \leq x_1, \dots x_n$ cu n suficient de mare. Notam cu $p: \mathbb{R} \times \mathbb{R} \to [0,1], p(\theta_1,\theta_2) = f_X(x_1;\theta_1,\theta_2) \cdot \dots \cdot f_X(x_n;\theta_1,\theta_2) = \theta_1^n \cdot \theta_2^{\theta_1 \cdot n} \cdot (x_1 \cdot \dots x_n)^{-\theta_1-1}$. Logaritmam, deci vom studia functia $L: \mathbb{R} \times \mathbb{R} \to (-\infty,0), L(\theta_1,\theta_2) = n \cdot ln(\theta_1) + n\theta_1 \cdot ln(\theta_2) - (\theta_1+1) \cdot (ln(x_1) + \dots + ln(x_n))$. Vom folosi derivate partiale pentru a gasi maximul functiei.

 $\frac{\partial L}{\partial \theta_1} = n/\theta_1 + n \cdot ln(\theta_2) - (ln(x_1) + \dots + ln(x_n)) = 0. \text{ Ecuatia are solutie unica } \theta_1 = \frac{n}{(ln(x_1) + \dots + ln(x_n)) - n \cdot ln(\theta_2)} \text{ care este pozitiv datorita } x_1, \dots x_n \ge \theta_2. \text{ De asemenea, } \frac{\partial^2 L}{\partial \theta_1^2} = -n/\theta_1^2 < 0, \forall \theta_2 > 0.$

 $\frac{\partial L}{\partial \theta_2} = n\theta_1/\theta_2$. Aceasta derivata nu poate fi egala cu 0, insa cea mai apropiata de 0 valoare are loc cand θ_2 este maxim, adica $\theta_2 = \min\{x_1, \dots, x_n\}$. De asemenea, $\frac{\partial^2 L}{\partial \theta_2^2} = -n\theta_1/\theta_2^2 < 0, \forall \theta_2 > 0$.

In concluzie, MLE pentru distributia data si datele extrase sunt $\theta_1 = \frac{n}{(ln(x_1) + \dots + ln(x_n)) - n \cdot ln(\min\{x_1, \dots, x_n\})}$ si $\theta_2 = \min\{x_1, \dots, x_n\}$.