Πηγές Μαγνητικών Πεδίων

Κινούμενα φορτία ή ρεύματα αποτελούν πηγές του μαγνητισμού Απουσία ρεύματος όλες οι πυξίδες είναι ευθυγραμμισμένες προς την ίδια κατεύθυνση

Όταν ο αγωγός διαρρέεται από ρεύμα τότε οι πυξίδες μετατοπίζονται ώστε να αποκτήσουν την εφαπτομενική διεύθυνση της κυκλικής διαδρομής

Χωρίζουμε την κυκλική διαδρομή ακτίνας r, σε μικρά τμήματα διανυσματικά τμήματα $d\vec{s}=\Delta s\vec{\phi}$ που έχουν την εφαπτομενική κατεύθυνση και έχουν μέτρο Δs

Στο όριο $\Delta \vec{s} \rightarrow \vec{0}$ θα πάρουμε ότι:

$$\oint \vec{B} \cdot d\vec{s} = B \oint ds = \left(\frac{\mu_0 I}{2\pi r}\right) (2\pi r) = \mu_0 I$$

Το προηγούμενο αποτέλεσμα προκύπτει θεωρώντας μια κλειστή διαδρομή (Amperian βρόχος) που ακολουθεί μια συγκεκριμένη μαγνητική δυναμική γραμμή.

Θεωρούμε έναν λίγο πιο περίπλοκο Amperian βρόχο ο οποίος περιέχει δύο μαγνητικές δυναμικές γραμμές και το ρεύμα *I*.

Το επικαμπύλιο ολοκλήρωμα του μαγνητικού πεδίου στην καμπύλη αbcda γράφεται ως:

$$\oint_{abcda} \vec{B} \cdot d\vec{s} = \int_{ab} \vec{B} \cdot d\vec{s} + \int_{bc} \vec{B} \cdot d\vec{s} + \int_{cd} \vec{B} \cdot d\vec{s} + \int_{da} \vec{B} \cdot d\vec{s} \Rightarrow$$

$$\oint_{abcda} \vec{B} \cdot d\vec{s} = 0 + B_2(r_2\theta) + 0 + B_1 \left[r_1(2\pi - \theta) \right]$$

με το μήκος του τόξου $bc=r_2\theta$, ενώ το μήκος του τόξου $da=r_12\pi(\pi-\theta)$

Το πρώτο και 3° ολοκλήρωμα μηδενίζονται γιατί το μαγνητικό πεδίο είναι κάθετο στις διαδρομές ολοκλήρωσης.

Με το μαγνητικό πεδίο $B_1=\mu_0I/2\pi r_1$ και $B_2=\mu_0I/2\pi r_2$ η προηγούμενη σχέση δίνει:

$$\oint_{abcda} \vec{B} \cdot d\vec{s} = \frac{\mu_0 I}{2\pi r_2} (r_2 \theta) + \frac{\mu_0 I}{2\pi r_1} [r_1 (2\pi - \theta)] = \frac{\mu_0 I}{2\pi} + \frac{\mu_0 I}{2\pi r_1} (2\pi - \theta) = \mu_0 I$$

ίδιο αποτέλεσμα όπως πριν που η κλειστή διαδρομή ήταν σε μια δυναμική γραμμή

Είδαμε ότι το μαγνητικό πεδίο από έναν ευθύγραμμο αγωγό που διαρρέεται από ρεύμα κατά μήκος του z-άξονα μπορεί να γραφεί σε κυλινδρικές συντεταγμένες (*r*, *φ*, *z*) με τη μορφή:

$$\vec{B} = \frac{\mu_0 I}{2\pi r} \hat{\varphi}$$

Το τυχαίο στοιχειώδες μήκος τμήματα σε κυλινδρικές συντεταγμένες γράφεται ως:

$$d\vec{s} = dr\hat{r} + rd\varphi\hat{\varphi} + dz\hat{z}$$

Επομένως το επικαμπύλιο ολοκλήρωμα $\oint_C \vec{B} \cdot d\vec{s}$ μπορεί να γραφεί ως:

$$\oint_C \vec{B} \cdot d\vec{s} = \oint_C \frac{\mu_0 I}{2\pi r} \hat{\varphi} \cdot (dr \hat{r} + r d\varphi \hat{\varphi} + dz \hat{z}) = \oint_C \frac{\mu_0 I}{2\pi r} r d\varphi \Rightarrow \oint_C \vec{B} \cdot d\vec{s} = \frac{\mu_0 I}{2\pi} \int_0^{2\pi} d\varphi = \mu_0 I$$

Το επικαμπύλιο ολοκλήρωμα $\oint\limits_C \vec{B} \cdot d\vec{s}$ κατά μήκος ενός τυχαίου βρόχου Ampere είναι ανάλογο του ρεύματος που περικλείεται από τον βρόχο

Γενικεύοντας το προηγούμενο για ένα τυχαίο κλειστό βρόχο τυχαίου σχήματος που περιλαμβάνει τυχαίο αριθμό μαγνητικών δυναμικών γραμμών αποτελεί

τον νόμο του Ampere:

Nόμος του Ampere:
$$\oint_C \vec{B} \cdot d\vec{s} = \mu_0 I_{encl.}$$

Ο νόμος του Ampere στον μαγνητισμό είναι ανάλογος του νόμου του Gauss στην ηλεκτροστατική

Για να τους χρησιμοποιήσουμε, το σύστημα θα πρέπει να εμπεριέχει κάποια συμμετρία.

- Αγωγός άπειρου μήκους εμπεριέχει κυλινδρική συμμετρία και μπορούμε να εφαρμόσουμε εύκολα το νόμο του Ampere
- Για πεπερασμένου μήκους αγωγό πρέπει να χρησιμοποιηθεί ο νόμος Biot-Savart

Ο νόμος του Ampere ισχύει αν και εφόσον τα περιεχόμενα ρεύματα είναι συνεχή και σταθερά. Θα πρέπει δηλαδή τα ρεύματα να μην αλλάζουν με τον χρόνο και ότι δεν υπάρχει κάπου συσσώρευση φορτίων.

$$\vec{B} = \frac{\mu_0 I}{4\pi} \int \frac{d\vec{s} \times \hat{r}}{r^2}$$

ightharpoonup Nόμος Biot-Savart $\vec{B} = \frac{\mu_0 I}{4\pi} \int \frac{d\vec{s} \times \hat{r}}{r^2}$ Τυχαία πηγή ρεύματος π.ν. πεπερασμένου μά π.χ. πεπερασμένου μήκους αγωγός

$$\oint_C \vec{B} \cdot d\vec{s} = \mu_0 I_{encl.}$$

 $\oint\limits_{C} \vec{B} \cdot d\vec{s} = \mu_0 I_{encl.}$ Πηγή ρεύματος εμπεριέχει συμμετρία π.χ. άπειρου μήκους αγωγός

Ο νόμος του Ampere είναι εφαρμόσιμος στις ακόλουθες περιπτώσεις:

- ✓ Απείρου μήκους αγωγοί που διαρρέονται από σταθερά ρεύματα
- Επίπεδος αγωγός απείρων διαστάσεων πάχους b με πυκνότητα ρεύματος J
- ✓ Απείρου μήκους σωληνοειδές
- ✓ Τοροειδές

 $B \propto 1/r$

Πεδίο στο εσωτερικό και εξωτερικό ρευματοφόρου αγωγού

Θεωρούμε έναν μακρύ ευθύγραμμο αγωγό ακτίνας R που διαρρέεται από ρεύμα I, ομοιόμορφης πυκνότητας ρεύματος. Θα υπολογίσουμε το μαγνητικό πεδίο σε οποιοδήποτε σημείο του χώρου

βρόχος Ampere

(α) Στο εξωτερικό του αγωγού - r > R:

Ο βρόχος Ampere περικλείει πλήρως το ρεύμα που διαρρέει τον αγωγό : $I_{encl.} = I$ και από τον νόμο του Ampere: $\oint \vec{B} \cdot d\vec{s} = B \oint ds = B \oint r d\varphi = B2\pi r = \mu_0 I_{encl.}$

Επομένως:
$$B = \frac{\mu_0 I}{2\pi r}$$

(β) Στο εσωτερικό του αγωγού - r < R:

Το ποσό του ρεύματος που περικλείεται στον βρόχο Ampere (μικρός κύκλος στο σχήμα) είναι ανάλογο της επιφάνειας που περικλείεται από τον κύκλο:

$$I_{encl.} = \frac{\pi r^2 I}{\pi R^2} \Rightarrow I_{encl.} = \frac{r^2}{R^2} I$$
 και εφαρμόζουμε το νόμο του Ampere R

$$\oint \vec{B} \cdot d\vec{s} = B \oint r d\varphi = B2\pi r = \mu_0 I_{encl.} = \frac{\mu_0 r^2}{R^2} I \Rightarrow B2\pi r = \frac{\mu_0 r^2}{R^2} I \Rightarrow B = \frac{\mu_0 r}{2\pi R^2} I$$

Μαγνητικό πεδίο επίπεδου αγωγού απείρων διαστάσεων

Θεωρούμε έναν απείρων διαστάσεων επίπεδο αγωγό πάχους b που βρίσκεται στο x-y επίπεδο και έχει ομοιόμορφη πυκνότητα ρεύματος $\vec{J}=J_0\hat{\imath}$. Θα υπολογίσουμε το μαγνητικό πεδίο σε οποιοδήποτε σημείο του χώρου

Μπορούμε να θεωρήσουμε το επίπεδο ρευματοφόρο φύλλο ως μια συλλογή από πολλούς ευθύγραμμους απείρου μήκους αγωγούς που διαρρέονται από ρεύμα / στην x-διεύθυνση.

Παρατηρούμε ότι μαγνητικό πεδίο σε ένα σημείο *P* πάνω από το επίπεδο του αγωγού (z>0) έχει φορά προς τη -y-διεύθυνση.

Η συνεισφορά όλων των ρευματοφόρων αγωγών στη z-διεύθυνση αναιρείται δίνοντας συνιστώσα πεδίου B_z = 0

Με τον ίδιο τρόπο μπορούμε να δείξουμε ότι το μαγνητικό πεδίο σε ένα σημείο *P'* κάνω από το επίπεδο του αγωγού (z<0) έχει φορά προς τη +y-διεύθυνση.

Μαγνητικό πεδίο επίπεδου αγωγού απείρων διαστάσεων

Μπορούμε να εφαρμόσουμε τώρα τον νόμο του Ampere: †

Θεωρούμε τους βρόχους Ampere του σχήματος:

Για το πεδίο στο εξωτερικό του αγωγού, ολοκληρώνουμε κατά μήκος του βρόχου C₁:

Το ρεύμα που περικλείεται στον βρόχο είναι:

$$I_{encl.} = \iint \vec{J} \cdot d\vec{A} = J_0(2|z|l)$$

Εφαρμόζοντας τον νόμο του Ampere: $\oint \vec{B} \cdot d\vec{s} = B2l = \mu_0 I_{encl.} \Rightarrow B = \mu_0 J_0(|z|)$

Στην περίπτωση πολύ λεπτού φύλλου $b \to 0$ και τότε η πυκνότητα ρεύματος γίνεται ρεύμα επιφάνειας: $\vec{K} = K\hat{\imath}$, $\vec{B} = \begin{cases} -\frac{\mu_0 K}{2}\hat{\jmath} \ z > 0 \\ +\frac{\mu_0 K}{2}\hat{\jmath} \ z < 0 \end{cases}$ όπου $K = J_0 b$ (K σε μονάδες ρεύματος/μήκος). Οπότε:

$$\vec{B} = \begin{cases} -\frac{\mu_0 K}{2} \hat{j} & z > 0 \\ +\frac{\mu_0 K}{2} \hat{j} & z < 0 \end{cases}$$

12° Quiz

> Γράψτε σε μια σελίδα το όνομά σας και τον αριθμό ταυτότητάς σας

Έτοιμοι

Πηγές Μαγνητικών Πεδίων

Μαγνητικό πεδίο σωληνοειδούς

Θεωρούμε ένα σωληνοειδές το οποίο διαρρέεται από σταθερό ρεύμα *I*. Το σωληνοειδές έχει *N* σπείρες. Θεωρούμε ότι οι σπείρες έχουν ακτίνα πολύ μικρότερη από το μήκος του σωληνοειδούς και ότι είναι σφικτά και ομοιόμορφα τυλιγμένες ώστε το μαγνητικό πεδίο στο εσωτερικό του σωληνοειδούς να είναι ομοιόμορφο

Χρησιμοποιώντας τον νόμο του Ampere για να υπολογίσουμε την ένταση του πεδίου στο εσωτερικού ενός ιδανικού σωληνοειδούς.

Θεωρούμε μια διατομή του σωληνοειδούς κατά μήκος του άξονά

Θεωρούμε ένα ορθογώνιο βρόχο μήκους πλευρών *l* και *w* αντίστοιχα και κινούμαστε στο βρόχο αντίθετα της φοράς των δεικτών του ρολογιού:

Τα επικαμπύλια ολοκληρώματα θα είναι:

$$\oint_C \vec{B} \cdot d\vec{s} = \iint_1 \vec{B} \cdot d\vec{s} + \iint_2 \vec{B} \cdot d\vec{s} + \iint_3 \vec{B} \cdot d\vec{s} + \iint_4 \vec{B} \cdot d\vec{s} = Bl$$

Το συνολικό ρεύμα που περικλείεται από τον βρόχο Ampere είναι: $I_{encl.} = NI$

Μαγνητικό πεδίο σωληνοειδούς

Εφαρμόζοντας τον νόμο του Ampere θα πάρουμε: $\oint\limits_{s} \vec{B} \cdot d\vec{s} = \mu_0 I_{encl.} \Rightarrow Bl = \mu_0 NI$

Το πεδίο στο εσωτερικό ενός ιδανικού σωληνοειδούς είναι: $B = \frac{\mu_0 NI}{l} = \mu_0 nI \quad n = \frac{N}{l}$

$$\dot{\omega}$$

 $\dot{\omega}$ ς είναι: $B = \frac{\mu_0 NI}{l} = \mu_0 nI$

Τι θα συμβεί ωστόσο αν το σωληνοειδές είναι πεπερασμένου μήκους?

Προσεγγίζουμε την περίπτωση θεωρώντας έναν μεγάλο αριθμό κυκλικών βρόχων ο ένας πάνω στον άλλο σε μια στήλη βρόχων.

Υπολογίσαμε το μαγνητικό πεδίο που δημιουργεί ρευματοφόρος $B_z = \frac{\mu_0 I R^2}{(2[R^2 + z^2]^{3/2})}$ *z* από το κέντρο του:

Μαγνητικό πεδίο σωληνοειδούς περασμένου μήκους

Η συνεισφορά αυτής της ποσότητας σπειρών στο μαγνητικό πεδίο στο σημείο P θα είναι: $u_{\alpha}R^{2}(nIdz')$

 $dB_z = \frac{\mu_0 R^2 (nIdz')}{(2[R^2 + (z - z')^2]^{3/2})}$

Ολοκληρώνουμε ως προς το μήκος του σωληνοειδούς:

$$B_z = \frac{\mu_0 n I R^2}{2} \int\limits_{-l/2}^{l/2} \frac{dz'}{\left[R^2 + (z-z')^2\right]^{\frac{3}{2}}} = \frac{\mu_0 n I R^2}{2} \frac{z'-z}{R^2 \sqrt{R^2 + (z-z')^2}} \bigg|_{-l/2}^{l/2}$$

$$\Rightarrow B_z = \frac{\mu_0 nI}{2} \left[\frac{l/2 - z}{\sqrt{R^2 + (z - l/2)^2}} + \frac{l/2 + z}{\sqrt{R^2 + (z + l/2)^2}} \right]$$

βρόχος ampere

Μαγνητικό πεδίο τοροειδούς

Το τοροειδές είναι ένα λεπτό σωληνοειδές το οποίου τα δύο άκρα συμπίπτουν, οπότε το σωληνοειδές έχει το σχήμα ενός doughnut

Θεωρούμε ότι έχουμε ένα τοροειδές αποτελούμενο από Ν σπείρες και θα βρούμε το μαγνητικό πεδίο σε τυχαίο σημείο στο χώρο.

Από το σχήμα του τοροειδούς, καταλαβαίνουμε ότι το μαγνητικό πεδίο είναι πλήρως εγκλωβισμένο στο εσωτερικό του τοροειδούς και η διεύθυνσή του είναι αζιμουθιακή και με φορά (βάση της φοράς του ρεύματος στο σχήμα), σύμφωνα με αυτή των δεικτών του ρολογιού

Εφαρμόζουμε τον νόμο του Ampere, οπότε θα πάρουμε:

$$\oint_C \vec{B} \cdot d\vec{s} = \oint_C B ds = B \oint_C ds = B(2\pi r) = \mu_0 NI \Rightarrow B = \frac{\mu_0 NI}{2\pi r}$$

όπου r είναι η απόσταση από το κέντρο του τοροειδούς.

Αντίθετα με το μαγνητικό πεδίο στο εσωτερικού ενός ιδανικού σωληνοειδούς το οποίο είναι ομοιόμορφο, το μαγνητικό πεδίο στο εσωτερικό ενός τοροειδούς
 δεν είναι ομοιογενές και ελαττώνεται με την απόσταση από το κέντρο του

Μαγνητικό πεδίο πηνίων Helmholtz- ομόρροπα ρεύματα

Θεωρήστε δύο πηνία το καθένα με N σπείρες ακτίνας R κάθετα στον άξονα συμμετρίας και με τα κέντρα τους στις θέσεις z=-l/2 και z=+l/2.

Θεωρήστε ότι τα πηνία διαρρέονται από σταθερό ρεύμα ίδιας φοράς.

Θα βρούμε το μαγνητικό πεδίο σε ένα σημείο στον άξονα του συστήματος και σε απόσταση z από το κέντρο του ενός πηνίου

Εφαρμόζουμε την αρχή της επαλληλίας στο σημείο P(z,0) που βρίσκεται σε απόσταση z-l/2 και z+l/2 από το κέντρο των δύο πηνίων:

$$B_z = B_{top} + B_{bottom}$$

$$B_z = \frac{\mu_0 N I R^2}{2} \left[\frac{1}{[R^2 + (z - l/2)^2]^{3/2}} + \frac{1}{[R^2 + (z + l/2)^2]^{3/2}} \right]$$

Το γράφημα του B_z/B_0 όπου $B_0=\mu_0NI/[R(5/4)^{3/2}]$ όταν z=0 και l=R, συναρτήσει του z/R

Μαγνητικό πεδίο πηνίων Helmholtz

Εξετάζουμε περισσότερα τα χαρακτηριστικά των πηνίων Helmholtz, έχουμε:

Παραγώγιση της σχέσης του B_z ως προς z, δίνει:

$$B'_{z} = \frac{dB_{z}}{dz} = \frac{\mu_{0}NIR^{2}}{2} \left[-\frac{3(z - l/2)}{[R^{2} + (z - l/2)^{2}]^{5/2}} - \frac{3(z + l/2)}{[R^{2} + (z + l/2)^{2}]^{5/2}} \right]$$

Στο σημείο z=0 η παράγωγος μηδενίζεται, $\frac{dB_z}{dz}=0$ και θα υπάρχει ακρότατο στο B_z :

Η 2^{η} παράγωγος του B_z ως προς z δίνει:

$$B_{z}^{"} = \frac{d^{2}B_{z}}{dz^{2}} = \frac{\mu_{0}NIR^{2}}{2} \left[-\frac{3}{[R^{2} + (z - l/2)^{2}]^{5/2}} + \frac{15(z - l/2)^{2}}{[R^{2} + (z - l/2)^{2}]^{7/2}} - \frac{3}{[R^{2} + (z + l/2)^{2}]^{5/2}} + \frac{15(z + l/2)^{2}}{[R^{2} + (z + l/2)^{2}]^{7/2}} \right]$$

Στο σημείο z=0 η 2η παράγωγος παίρνει τιμή:

$$B_{z}''(z=0) = \frac{d^{2}B_{z}}{dz^{2}} \bigg|_{z=0} = \frac{\mu_{0}NIR^{2}}{2} \left[-\frac{6}{[R^{2} + (l/2)^{2}]^{5/2}} + \frac{15l^{2}}{2[R^{2} + (l/2)^{2}]^{7/2}} \right] \Rightarrow$$

$$B_{z}''(z=0) = -\frac{\mu_{0}NIR^{2}}{2} \left[\frac{6(R^{2} - l^{2})}{[R^{2} + (l/2)^{2}]^{7/2}} \right]$$

Μαγνητικό πεδίο πηνίων Helmholtz

Βλέπουμε ότι στο σημείο z=0, η 2^{η} παράγωγος: $B_z^{\prime\prime}(0) = -\frac{\mu_0 N I R^2}{2} \left[\frac{6(R^2-l^2)}{[R^2+(l/2)^2]^{7/2}} \right]$ μηδενίζεται όταν: R=l

δηλαδή όταν η απόσταση μεταξύ των πηνίων είναι ίση με την ακτίνα των πηνίων

ightharpoonup Η συνθήκη R=l για δύο πηνία είναι γνωστή ως πηνία Helmholtz

Για μικρές τιμές του z μπορούμε να πάρουμε το ανάπτυγμα Taylor ως προς z = 0:

$$B_z(z) = B_z(0) + zB_z'(0) + \frac{1}{2!}z^2B_z''(0) + \frac{1}{3!}z^3B_z'''(0) + \cdots$$

Το γεγονός ότι οι πρώτες δύο παράγωγοι του B_z μηδενίζονται για z=0 υποδηλώνει ότι το μαγνητικό πεδίο είναι αρκετά ομογενές για μικρές τιμές του z. Θα μπορούσαμε να εξετάσουμε και την 3^n παράγωγο του B_z ότι μηδενίζεται στο z=0.

Είχαμε υπολογίσει τη δύναμη που αναπτύσσεται σε ένα μαγνητικό δίπολο, $\vec{\mu}$, μέσα σε μαγνητικό πεδίο \vec{B} και είχαμε δει ότι είναι: $\vec{F}_B = \vec{\nabla} (\vec{\mu} \cdot \vec{B})$

Αν θέσουμε το δίπολο στο μαγνητικό πεδίο στο z=0 ώστε $\vec{\mu}=\mu_z\hat{k}$, τότε η μαγνητική δύναμη που θα ασκείται στο δίπολο θα είναι:

$$\vec{F}_B = \vec{\nabla}(\vec{\mu} \cdot \vec{B}) = \vec{\nabla}(\mu_z B_z) \Rightarrow \vec{F}_B = \mu_z \frac{dB_z}{dz} \hat{k}$$

και αναμένεται να είναι πολύ μικρή εφόσον το πεδίο είναι ομοιόμορφο

0.5

Μαγνητικό πεδίο πηνίων Helmholtz – αντίθετα ρεύματα

Θεωρήστε στην περίπτωση αυτή που τα δύο πηνία διαρρέονται από ρεύματα αντίθετης φοράς.

Εφαρμόζουμε και πάλι την αρχή της επαλληλίας για την συνεισφορά των δύο πηνίων στο μαγνητικό πεδίο σε ένα σημείο P(z,0):

$$B_z = B_{1z} + B_{2z} = \frac{\mu_0 N I R^2}{2} \left[\frac{1}{[R^2 + (z - l/2)^2]^{3/2}} + \frac{1}{[R^2 + (z + l/2)^2]^{3/2}} \right]$$

Το γράφημα B_z/B_0 με $B_0=\mu_0NI/2R$ και l=R

Παραγώγιση του B_z ως προς z δίνει:

$$B'_{z} = \frac{dB_{z}}{dz} = \frac{\mu_{0}NIR^{2}}{2} \left[-\frac{3(z - l/2)}{[R^{2} + (z - l/2)^{2}]^{5/2}} + \frac{3(z + l/2)}{[R^{2} + (z + l/2)^{2}]^{5/2}} \right]^{-1}$$

Στο ενδιάμεσο σημείο, z = 0, θα έχουμε ότι:

$$B_Z'(0) = \frac{dB_Z}{dz} \bigg|_{z=0} = \frac{\mu_0 N I R^2}{2} \frac{3l}{[R^2 + (l/2)^2]^{5/2}} \neq 0$$

Μαγνητικό πεδίο πηνίων Helmholtz – αντίθετα ρεύματα

Η 1η παράγωγος είναι διαφορετική από 0: $B_z'(0) = \frac{\mu_0 N I R^2}{2} \frac{3l}{[R^2 + (l/2)^2]^{5/2}} \neq 0$

Η συνισταμένη δύναμη που αναπτύσσεται σε ένα μαγνητικό δίπολο, $\vec{\mu} = \mu_z \hat{k}$, που εισέρχεται στο σημείο z = 0, θα είναι:

$$\vec{F}_B = \vec{\nabla} (\vec{\mu} \cdot \vec{B}) = \vec{\nabla} (\mu_z B_z) \Rightarrow \vec{F}_B = \mu_z \frac{dB_z(0)}{dz} \hat{k} \Rightarrow \vec{F}_B = \mu_z \frac{\mu_0 N I R^2}{2} \frac{3l}{[R^2 + (l/2)^2]^{5/2}} \hat{k}$$

Για
$$R = l$$
 θα πάρουμε: $\vec{F}_B = \frac{3\mu_z \mu_0 NI}{2R^2 [5/4]^{5/2}} \hat{k}$