2022빅콘테스트 X finda

앱 사용성 데이터를 통한 대출 신청 예측 분석

- 주제 요약 및 관련 이슈
- 분석 목표
- 아이디어 회의

Index

2022빅콘테스트 X finda Team, 우 걱정마세요

02 데이터 이해 및 탐색

- 테이터 이해
- 데이터 탐색

03 데이터 전처리

- user_spec
- loan_result
- log_data
- 최종 데이터 셋

04 모델링

- 모델링 준비
- 모델링 진행

05 모델 비교 및 선정

- 모델 비교
- 최종 모델 선정

06 활용 방안 및 기대 효과

- 활용 방안 및 기대 효과

주제 요약 및 관련 이슈 | 분석 목표 | 아이디어 회의

"대출이 필요한데, 대출시 고려해야 하는 변동요인도 늘고... 대출 도대체 어떻게 받아야 할까요?"

'대출금리 어쩌나'...8월 은행 가계대출 금리 4.76% 경제 인사이트] 가계대출 총량 규제, 절망하는 서민, 우리 집 주택담보대출금리는 고정금리로 바꿔야할까?

DSR 3단계 규제 시행…

7월부터 'DSR 40%' 규제 대상 확대

핀다, 중저신용 고객 4명 중 1명은 9%대 이하 금리로 대출받아

핀다는 여러 대출상품을 한번의 조회만으로 고객에게 가장 현명한 판단을 내리게 도와주는 플랫폼이다. 고신용자를 포함하여 중-저신용자 모두에게 변동요인을 고려한 알맞은 서비스를 제공해주고 있다.

주제 요약 및 관련 이슈 | 분석 목표 | 아이디어 회의

앱 사용성 데이터를 통한 분석을 진행하면서, 고객의 대출신청여부를 예측하고, '핀다'는 기업내 수익예측과 예산의 올바른 분배를 이루고, 더 나아가 새로운 고객유입이라는 파생효과 기대

대출 여부에 영향을 미치는 요인은?

- **01**_ 유저의 기본정보를 담은 스펙데이터
- 고객의 직군(근로형태). 대출신청시 신용점수. 대출목적. 대출희망금액. 기대출수. 개인회생자 여부 등

- 02. 유저의 앱 사용로그 데이터
- 일 코드, 행동일시, 행동명(회원가입,로그인,핀다 앱 실행 ... KCB 신용정보조회) 등

- **03**_ 대출별 금융사별 승인결과 데이터
- 한도조회 일시, 금융사 번호, 상품번호, 승인한도, 승인금리 등

02. 데이터 이해 및 탐색

Q. 주어진 데이터 셋의 구조는?

[분석 Insight] 최종적으로 loan_result의 application_id 기준으로 합쳐 예측 모델을 구축하자.

Q. finda의 대출 현황은?

사용자가 조회한 상품 중 5.5% 정도가 최종적으로 대출 신청했으며. 최종 대출 신청 수가 점점 증가하고 있음을 확인하였다. [분석 Insight] 데이터 불균형 문제가 존재한다고 판단하였다.

Q. 앱 사용자들의 행동 패턴은 ?

로그 데이터 행동 변수들은 개별적인 순서를 가지고 있어. 행동의 순서는 분석에 활용하기 어렵다고 판단하였다. [분석 Insight] 시간으로 세션을 정해 앱 사용자들의 행동을 확인해보자.

Q. finda의 요일/시간별 대출 흐름은?

요일/시간별 대출량 그래프를 보면. <u>평일의 대출량이 더 많았다.</u> 시간별 대출량 그래프를 통해서 주말과 평일의 시간별 대출량의 추이는 비슷한 것을 확인하였다. [분석 Insight] 요일과 시간이 대출에 영향을 줄 것이라 판단하였다.

Q. 은행/상품별 대출 신청률은 ?

은행과 대출 상품이 최종 대출 신청 여부에 많은 영향을 미칠 것이라 예상해 보았다. 대출률이 높은 은행/상품과 낮은 은행/상품의 차이가 눈에 띄게 존재한다. [분석 Insight] 은행/대출 상품들의 대출 신청률을 분석에 활용하자.

Q. 대출량이 많은 Top10 상품은 ?

금리가 낮은 상품의 대출량이 많을 것으로 예상하였으나. 금리가 낮은 Top5 상품이 대출량이 많은 Top5 상품에 없음을 확인하였다. [분석 Insight] 은행사와 상품을 군집화하여 대출량이 많은 상품의 특징을 확인해보자.

Q. 앱에 접속한 OS에 따른 차이는?

	user_id	timestamp	event	mp_os	mp_app_version
11709372	1	2022-05-03 14:52:28	11-11-5-7-11	android	464
10428909	7	2022-05-22 16:39:49	11	android	465
9627339	9	2022-05-21 23:37:58	11-11-11	android	465
9505105	11	2022-03-24 10:53:59	4-11-5-11-6-1-2-8-3-5-5-11-4-11-5-2-8-3-11-5-5	iOS	3.6.1
1447554	12	2022-03-14 01:13:11	4-7-1-2-8-3-3-3-4-7-1-2-8-3-3-4-7-1-2-8-3-3	Android	3.8.0
2012632	879693	2022-05-13 11:29:49	1-2-8-3-4-1-3-4-5-11-1-3-4-1-2-8-1-2-8-1-3-3-3	iOS	3.10.2
14380169	879694	2022-03-31 20:07:23	1-2-8-3-3-3	iOS	3.6.1
6068504	879695	2022-05-27 12:48:32	1-2-8-3	iOS	NaN
7298665	879696	2022-03-14 05:35:34	7-5-11-11-5-11-4-7-2-8-3	Android	3.8.2
8248077	879698	2022-05-24 22:33:24	4-1-2	iOS	NaN

"행동(event)에 임의로 숫자를 부여해 같은 user_id까리 timestamp 순서에 따라 합친 데이터 셋(relog) 활용"

Android, android, iOS, iPadOS 에 따라 대출 신청 여부에 차이가 있는지 살펴 보았지만, 별 다른 차이가 없음을 확인하였다.

[분석 Insight] log_data의 mp_os, mp_app_version 변수는 제외하고 분석을 진행하자.

Q. 앱 행동 패턴에 따른 대출 신청여부 차이는?

[log_data에서 유저 행동 군집화 결과]

* 행동(event)의 총합, 접속일 수, 접속시간, 유저의 첫 행동(one-hot), 유저의 각 행동의 횟수를 이용하여 (총 20개의 컬럼) 군집화

유저의 앱 행동 데이터들로 군집화 한 결과를 보아. 군집 별로 대출 신청 여부에 차이를 나타내는 것을 확인하였다.
[분석 Insight] log_data에서 유저들의 행동 패턴을 분석에 이용하자.

03. 데이터 전처리

[user_spec 변수 당 결측값 개수]

application_id	0
user_id	0
birth_year	8593
gender	8593
insert_time	0
credit_score	81769
yearly_income	1
income_type	0
company_enter_month	92314
employment_type	0
houseown_type	0
desired_amount	0
purpose	0
personal_rehabilitation_yn	417763
personal_rehabilitation_complete_yn	843993
existing_loan_cnt	146290
existing_loan_amt	225046

* loan_result에 가지고 있지 않은 application_id는 제외하고 진행

[log_data의 주요 행동 횟수]

신용 접수가 가장 중요한 변수라고 판단하여. 나머지 변수들의 결측값을 먼저 채운 후 신용접수를 예측하여 결측값을 채우는 방향으로 진행

파생변수 1: LtOI대 (user_spec: reage)

[birth_year]

[age]

respec['age'] = 2023 - respec['birth_year']

[reage]

```
respec.loc[respec['age'] < 20, 'reage'] = 10
respec.loc[(respec['age'] >= 20) & (respec['age'] <30), 'reage'] = 20
respec.loc[(respec['age'] >= 30) & (respec['age'] <40), 'reage'] = 30
respec.loc[(respec['age'] >= 40) & (respec['age'] <50), 'reage'] = 40
respec.loc[(respec['age'] >= 50) & (respec['age'] <60), 'reage'] = 50
respec.loc[(respec['age'] >= 60) & (respec['age'] <70), 'reage'] = 60
respec.loc[respec['age'] >= 70, 'reage'] = 70
```

* 70이상부터는 이상치라 판단하여 70이상은 한 범주로 묶어 주었음

파생변수 2: 근속 연수 (user_spec: career)

[company_enter_month]

[career]

```
respec['career'] = 2023 - respec['company_enter_month']
```

"날짜 형태로 되어 있는 데이터들을 직관적으로 알아보기 쉬운 수치 형태로 변환하기 위해 진행"

[reage]

yearly_income을 기준으로 범위를 나눠 결측값 채움

	reage	yearly_income
0	20.0	2.987041e+07
1	30.0	4.132548e+07
2	40.0	5.027102e+07
3	50.0	5.942931e+07
4	60.0	4.667257e+07
5	70.0	3.630668e+07

*LH이에 따라 연소득이 가장 차이를 크게 보인다고 판단

[gender]

Income_type 별 성별의 비율을 구하여 해당 비율에 맞게 결측값 채움

```
ex)

sample1 = respec[(respec['gender'].notnull()) & (respec['income_type'] == 1)]['gender'].value_counts()

per_0 = sample1[0] / (sample1[1] + sample1[0])
per_0 = (per_0*100).round(0)

# income_type == 1
rnd_num = np.random.uniform(0, 1, 1)

if rnd_num > per_0:
    respec.loc[(respec['gender'].isnull()) & (respec['income_type'] == 1), 'gender'] = 1
else:
    respec.loc[(respec['gender'].isnull()) & (respec['income_type'] == 1), 'gender'] = 0
```

[yearly_income]

결측값 한 개는 무직이라고 판단하여 0으로 채움

[career]

나이대을 기준으로 각 나이대의 평균으로 결측값 채움

[existing_loan_cnt]

기존 데이터에 기대출수가 0인 값이 존재하고 있지 않는 것을 보아 결측값이 기대출수가 0인 유저라 판단하여 0으로 채움

[existing_loan_amt]

1. 기대출수가 0이면 총 금액도 0 2. 나머지는 이상치를 제외한 제1~3사분면에 속한 데이터들의 평균으로 채움

[personal_rehabilitaion_yn]

1. 신용점수 400이하는 1 2. 나머지는 0과 1의 비율만큼 랜덤으로 채움

[personal_rehabilitation_complete_yn]

1. 개인 회생 여부가 이인데 완료 여부도 이인 데이터는 오류라 판단하여 N으로 변경 2. 개인 회생 여부가 이인 유저는 N으로. 1인 유저는 신용점수 600 이상이면 1. 나머지는 이으로 채움

"Credit score 결측값 예측"

XGBoost

- 머신러닝 기법들 중 뛰어난 성능
- 과적합 규제 기능
- 병렬 CPU 환경에서의 학습
- 내장된 교차검증

LightGBM

- 머신러닝 기법들 중 뛰어난 성능
- Leaf wise
- GOSS (Gradient based One Side ampling
- EFB(Exclusive Feature Buning)

Bayesian-Optimization

● 불필요한 하이퍼 파라미터 반복 탐색을 줄여 보다 빠르게 최적 하이퍼 파라미터를 찾을 수 있는 최적화 방법

"Credit score 결측값 예측"

KCB
942~1000
891~941
832~930
768~831
698~767
630~697
530~629
454~529
335~453
0~334

Variance score: 0.979

XGBoost 알고리즘을 Bayesian-optimization을 통해 최적화 한 예측 모델을 사용하여 credit_score의 결측값을 처리한 후. KCB신용접수 기준에 따라 등급으로 대체

파생변수 3: 고객 분류 군집화 (user_spec: spec_clust)

[K-Prototypes]

연속형 속성과 범주형 속성이 혼합된 데이터를 군집분석 할 수 있는 알고리즘.

* K는 그룹화 할 그룹 수

- 1. K개의 부분집합으로 객체 분할
- 2. 각 군집의 중심값 계산
- 3. 군집의 중심값과 가장 가까운 객체를 군집에 재 할당
- 4. 2번으로 돌아가서 객체를 반복적으로 재 할당

* 군집의 중심값은 군집의 연속형 속성의 평균값과 범주형 속성의 최빈값으로 정한다.

다양한 데이터 타입의 고객 변수들로 비슷한 특징을 가진 고객들끼리 묶어 분석에 이용하고자 K-Prototypes 군집분석 진행

파생변수 3: 고객 분류 군집화 (user_spec: spec_clust)

파생변수 5: 은행 별 대출 신청률

(loan_result: bank_apply_rate)

파생변수 6: 대출 상품 별 대출 신청률 (loan_result: product_apply_rate)

	bank_apply_rate	
bank_id		
28	0.001962	
61	0.010598	
46	0.012281	<mark>은행 id</mark> 당 대출 신청(is_applied)를
12	0.014004	얼마나 했는지 알기 위한 변수
55	0.016036	ex) 은행16일 is_applied가 0: 1회, 1: 4회
	8***	-> (0 + 1 + 1 + 1 + 1) / 5 = 0.8
49	0.107746	
60	0.112861	
4	0.199582	
29	0.221203	
16	0.800000	

product_apply_rate

avaduat id

product_id		
211	0.000000	
217	0.001962	
81	0.002831	
40	0.003859	
139	0.004386	
•••		
232	1.000000	
116	1.000000	
76	1.000000	
21	1.000000	
165	1.000000	

상품 id 당 대출 신청(is_applied)를 얼마나 했는지 알기 위한 변수

ex) 상품21의 is_applied가 0: 0회. 1: 2회 -> (1 + 1) / 2 = 1

파생변수 4: 고객 유형과 은행사, 상품의 군집화 (loan_result: cluster2)

[K-Modes]

범주형 데이터를 군집분석 할 수 있는 알고리즘 K는 그룹화 할 그룹 수

- 1. K개의 부분집합으로 객체 분할
- 2. 각 군집의 중심값 계산
- 3. 군집의 중심값과 가장 가까운 객체를 군집에 재 할당
- 4. 2번으로 돌아가서 객체를 반복적으로 재 할당
- * 군집의 중심값은 최빈값으로 정한다.
- * 군집의 중심값과 객체간의 거리는 동일하면
- 0. 동일하지 않으면 1을 주는 방식 사용한다.

범주형 데이터 타입의 변수들로 비슷한 종류의 상품을 묶어 분석에 이용하고자 K-Modes 군집분석 진행

파생변수 4: 고객 유형과 은행사, 상품의 군집화 (loan_result: cluster2)

[loan_result 변수 당 결측값 개수]

application_id	0
loanapply_insert_time	0
bank_id	0
product_id	0
loan_limit	5738
loan_rate	5738
	* test 데이터 제외

[loan_result 파생변수 결측값 개수]

bank_apply_rate	10254
product_apply_rate	12567

파생변수 7: 대출 신청 요일 (loan_result: weekday)

loanapply_time

from datetime import datetime

```
loan_result['loanapply_insert_time'] = pd.to_datetime(loan_result['loanapply_insert_time'])
```

```
loan result['weekday'] = loan result['loanapply insert time'].dt.day name()
```

파생변수 8: 대출 신청 시간대 (loan_result: loanapply_insert_hour)

loanapply_time |


```
from datetime import datetime
loan_result['loanapply_insert_time'] = pd.to_datetime(loan_result['loanapply_insert_time'])
loan_result['loanapply_insert_hour'] = loan_result['loanapply_insert_time'].dt.hour
```

파생변수 9: 앱에서 행동한 횟수 (log_data: action_cnt)

[각 유저가 하루 당 행동한 횟수]

[유저가 했던 행동을 합해서 하나의 변수로 추출]

02. 데이터 전처리

THE RESIDENCE OF THE PROPERTY OF THE PARTY O

user_spec | loan_result | log_data | 최종 데이터 셋

파생변수 10: 앱 접속한 날짜 수 (log_data: use_day_cnt)

user_id_day_cnt
2
1
1
4
14
8
1
1
1
1

유저가 행동(event)을 한 기접. timestamp를 기반으로 생성된 date_cd

-) 각 유저가 앱을 <mark>총 몇 일</mark> 접속했는지 기준으로 유저당 하나이 컬럼으로 추출

III생변수 11: 앱 접속한 총 시간 (log_data: timeout_sum(s))

timeout

0 days 00:00:08
0 days 00:00:00
0 days 00:00:00
0 days 00:00:30
0 days 00:03:20
0 days 00:01:26
0 days 00:00:00
0 days 00:00:00
0 days 00:00:30
0 days 00:00:08

- 1. 유저의 처음 행동에서 다음 행동까지의 세션의 기준을 10분으로 고정
- 2. timestamp의 시간차이를 구하여 접속한 총시간을 추가
- -) 각 유저가 앱을 <mark>총 몇 시간</mark> 접속했는지 기준으로 유저당 하나의 컬럼으로 추출

timeout_sum	timeout_sum(s)	
0 days 00:00:08	8.0	
0 days 00:00:00	0.0	
0 days 00:00:00	0.0 * 초(s) 단위로 변경	

파생변수 12: 앱에서 처음 한 행동 (log_data: first_event)

user_id	first_event	timestamp
1	GetCreditInfo	2022-05-03 14:52:28
7	GetCreditInfo	2022-05-22 16:39:49
9	GetCreditInfo	2022-05-21 23:37:58
11	CompleteIDCertification	2022-03-24 10:56:26
12	CompleteIDCertification	2022-03-14 01:13:46
	100	
879693	CompleteIDCertification	2022-05-13 11:30:06
879694	CompleteIDCertification	2022-03-31 20:07:42
879695	CompleteIDCertification	2022-05-27 12:48:51
879696	CompleteIDCertification	2022-03-14 05:38:16
879698	others	2022-05-24 22:33:24

- 1. 유저가 한 행동중에서 가장 먼저 한 event를 timestamp기준으로 변수 ('first_event')생성
- 2. 주요행동 : 한도조회, 출관리서비스, 신용정보조회 등의 서비스와 관련하여 앱을 이용한 유저들에게 주요행동 first_event컬럼 부여
- 3. 주요행동 이외의 event들은 앱 접속시 행동의 의미가 적다고 생각하여 others로 통일

"loan_result 의 application_id 기준으로 JOIN"

application_id	bank_id	product_id	loan_limit	loan_rat	is_applied	veekday	loanapply_insert_hour	user_id	gender	 desired_amount
1748340	7	191	42000000.0	13.6	NaN	Tuesday	13	430982.0	1.0	 25000000.0
1748340	25	169	24000000.0	17.9	NaN	Tuesday	13	430982.0	1.0	 25000000.0
1748340	2	7	24000000.0	18.5	NaN	Tuesday	13	430982.0	1.0	 25000000.0
1748340	4	268	29000000.0	10.8	NaN	Tuesday	13	430982.0	1.0	 25000000.0
1748340	11	118	5000000.0	16.4	NaN	Tuesday	13	430982.0	1.0	 25000000.0
			7,444							
1969227	2	7	30000000.0	13.6	0.0	Monday	14	109899.0	1.0	 20000000.0
1969227	33	110	9000000.0	14.4	0.0	Monday	14	109899.0	1.0	 20000000.0
1969227	50	142	3000000.0	11.2	0.0	Monday	14	109899.0	1.0	 20000000.0
1969227	22	100	4000000.0	15.3	0.0	Monday	14	109899.0	1.0	 20000000.0
1969227	19	231	9000000.0	15.5	0.0	Monday	14	109899.0	1.0	 20000000.0

- 1. user_id와 application_id가 모두 존재하는 user_spec 데이터 셋을 loan_result와 'application_id'를 기준으로 Join
- 2. 1의 데이터를 application_id를 기준으로 log_data와 Join

: Target인 is_applied 컬럼이 존재하는 laon_result셋은 application_id를 기준으로 데이터가 존재.

"JOIN으로 인해 생긴 log_data 파생변수의 결측값 처리"

* JOIN 했을 때 생기는 약 50만개의 결측값 데이터는 주어진 데이터 셋의 한계라고 볼 수 있음

[변수 당 결측값 개수]

timestamp	488001
event	488001
action_cnt	488001
use_day_cnt	488001
first_event	488001
timeout_sum(s)	488001

[Cluster2]

군집1

군집6

군집2 군집3 군집4 군집5

결측값 처리

결측값이 존재하는 데이터들이 각각 속하는 군집에 해당하는 군집의 각 변수 평균 값(수치형)과 최빈값(범주형) 으로 처리

[&]quot; 앞에서 spec_clust와 bank_id. product_id로 군집화하여 만든 III생변수 'cluster2'를 기반으로 하여 결측값 처리 "

04. 모델링

Q. 불균형 데이터의 문제접은?

모델은 정확도를 높이기 위해 대부분의 데이터를 다수 클래스로 예측하게 됨.

-) 100개의 데이터 중 95개가 대출 신청x, 5개가 대출 신청o 라고 했을 때, 모든 데이터를 대출신청x 라고 예측하게 되면 <mark>정확도는 95 %</mark> 이지만, 이 문제에서 중요한 대출 신청o 는 예측을 잘 못하게 되는 문제 발생

[scale_pos_weight 조절]

- 불균형 데이터를 위한 하이퍼 파라미터
- 불균형 데이터 셋의 균형 유지
- Default = 1

[Random Under Sampling]

- 더 많은 쪽의 데이터를 줄이는 방법 중 한 가지
- 무작위로 정상 데이터의 일부만 선택

*분석 환경의 한계로 인해 데이터 손실이 있지만. 데이터의 개수를 줄여 모델링 시간을 감소시킬 수 있는 비교적 단순한 방법인 Random Under Sampling 방법 채택

두 가지 방법을 중심으로 파라미터를 최적화 하며 모델링 진행

"데이터 분포 log 변환"

22.5 20.0 17.5 15.0 loan au 10.0 loan au 5.0 2.5 [existing_loan_amt]

"분석 기법 정리"

XGBoost

- 머신러닝 기법들 중 뛰어난 성능
- 과적합 규제 기능
- 병렬 CPU 환경에서의 학습
- 내장된 교차검증

LightGBM

- 머신러닝 기법들 중 뛰어난 성능
- Leaf wise
- GOSS

(Gradient based One Side ampling)

EFB

(Exclusive Feature Buning)

Bayesian-Optimization

- 불필요한 하이퍼 파라미터 반복 탐색을 줄여
- 보다 빠르게 최적 하이퍼 파라미터를 찾을 수 있는 최적화 방법

CatBoost

- 다른 GBM에 비해 overfitting이 적음
- 범주형 변수에 대해 특정 인코딩 방식으로 인하여 모델의 정확도와 속도가 높음
- encoding 작업을 하지 않고도 그대로 모델의 input으로 사용 가능

Random Search

● Grid Search에 비해 불필요한 반복 수행 횟수를 줄여. 더 빠르게 최적해를 찾을 수 있는 최적화 방법

〈데이터 전처리: user_spec 부분에 작성한 자료〉

Random Under Sampling Train Set 2022.03~05 Random Search **XGBoost** Valid Set 2022.03~05 **LightGBM Bayesian Optimization** Test Set 2022.06 **CatBoost**

"XGBoost"

[scale_pos_weight 조절]

[Random Under Smapling]

[Feature importance top 15]

"LightGBM"

[scale_pos_weight 조절]

[Random Under Smapling]

[SHAP value top 20]

"Catboost"

[scale_pos_weight 조절]

[Random Under Smapling]

[SHAP value top 20]

05. 모델 비교 및 선정

"F1 score"

	scale_pos_weight 조절	Random Under Sampling
XGBoost	Train: 0.4426 Valid: 0.4115	Train: 0.4012 Valid: 0.3598
LightGBM	Train: 0.4592 Valid: 0.4263	Train: 0.4303 Valid: 0.3630
CatBoost	5 <mark>t!</mark> Train: 0.5458 Valid: 0.4457	Train: 0.4158 Valid: 0.3715

"CatBoost (scale_pos_weight 조절) 로 최종 모델 선정"

06. 활용 방안 및 기대 효과

"고객에게 알맞은 상품제시 및 대출 서비스 수준 향상"

[대출서비스 수준 향상]

- : 위 데이터 분석 과정과 결과를 활용하여, 기존 'finda'의 대출서비스의 질적인 향상을 불러올수 있다.
- · 대출을 제공하는 공급자는 대출을 신청하는 소비자인 니즈를 파악할수 있다.
- · 소비자들을 군집으로 분석하여 새로운 소비자가 들어왔을때, 어떠한 군집에 속하는지 파악하고, 매력적인 상품추천 및 상품조건 제시한다.
- · 이는 더 많은 대출 제공자들을 도모하며, 'finda'를 통한 대출을 제공하는 기업은 정보를 통하여 높은 경쟁력을 제고한다.
- · 더 많은 소비자들에게 보다 나은 서비스를 제공하여. 새로운 고객들을 유입시킴으로써 기업내 수익과 운영에 이로운 효과를 기대한다.

" 고객들의 대출 여부 사전 파악 가능 "

고객들의 대출 여부 사전 파악

: 대출을 신청하기 전에 앱 행동 로그 패턴 혹은 유저들의 스펙 데이터를 통해. 어떤 특성을 가진 군집에 속하는 유저인지를 사전에 파악하여 그에 맞는 마케팅 전략 수립을 가능하게 한다.

: 모델링을 통해 구한 '변수 중요도'를 통해 어떤 변수가 특히 대출 여부에 영향을 크게 미치는지 파악하여. 보다 편하고 <u>직관적인 고객 파악</u>을 가능하게 한다.

-) 중도 이탈을 줄이기 위한 전략

· 대출을 하지 않을 것 같은 특성을 띄는 유저에게는 유저의 이동경로에 대한 분석을 진행 한 후, funnel(앱 이용 단계)별 추가적인 분석을 진행하여 상품가입까지 가장 확률이 높은 경로로 유저을 유도하는 전략을 세우고, 유저 맞춤 마케팅을 실시한다.

-) 고객의 만족도를 높이기 위한 전략

· 대출을 할 것 같은 특성을 띄는 유저에게는 Lock-in 전략을 사용하여, 대출상품 신청이후의 신용도 관리나, 양질의 대출이후 맞춤 서비스를 제공함으로써, 대출상품 이용 이후, 유저의 만족도를 높이고, 이를 통해 일반 유저가 우수 고객이 될 수 있도록 한다.

"고객 대출 예측 분석을 통한 예산안의 효율화"

- · 'finda'는 주로 앱 기반으로 사용되는 플랫폼으로 모바일 광고를 많이 사용하는데, 위의 분석을 바탕으로 <u>광고비용의 효율화</u>.
- · 앱 중도 이탈 사용자나 새로운 고객을 전략적으로 공략하여. 광고를 개편하는 작업을 통해 'finda'내 <u>대출 신청 고객수를 늘림</u>.
 - · '무료 신용보험 서비스'나 '대출 관리 서비스'의 질적인 발전을 통하여 사용자의 <u>대출 위험성을 낮출수 있음.</u>

최근 가계부채의 증가로 인한 민간소비 약화 문제를 완화시키고. 대한민국의 성장 잠재력을 키울수 있는 사회적인 문제의 해결을 도모함 2022빅콘테스트 X finda

감사합니다.

Team. 우 걱정마세요 김혜현 임성수 황성아

(Reference)

- Tianqi Chen, & Carlos Guestrin. (2016). XGBoost: A Scalable Tree Boosting System.
- Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, ..., Tie-Yan Liu. (2017). *LightGBM: A Highly Efficient Gradient Boosting Decision Tree*.
- 김정화. (2018). k-prototypes 군집분석에 관한 고찰.