

FlockLab 2: Multi-Modal Testing and Validation for Wireless IoT

<u>Roman Trüb</u>, Reto Da Forno, Lukas Sigrist, Lorin Mühlebach, Andreas Biri, Jan Beutel, Lothar Thiele

Computer Engineering and Networks Laboratory ETH Zurich, Switzerland

Today's Requirements for Testbeds

- Power tracing with high-dynamic range to support
 - sub-microampere low-power sleep currents
 - high-power TX operations
- On-chip debugging hardware support
- Global time-synchronization with support for
 - sub-microsecond accuracy
 - large distance between testbed nodes

atellite by Guillermo Vera from the Noun Projec (aspberry Pi B+ by fredley from the Noun Project

FlockLab 2 Testbed

Make use of debug infrastructure built-in into modern MCUs

Accurate and high-dynamic range power tracing based on the RocketLogger

Precise **time synchronization** based on **GNSS & PTP** without disturbing the measurements

Single-board computer with **performance reserves**

Observer Architecture

Connection to Server

4 Target Slots

2x12 header connector

- Voltage: 1.1 − 3.6 V
- Current: <500 mA
- Serial (UART)
- GPIO pins
- On-chip debugging

Trüb et al.

Native Hardware Assisted Debugging

Time Synchronization

- Global Navigation Satellite System (GNSS)
- Precision Time
 Protocol (PTP)

Programmable Real-Time Units (PRUs)

- Collecting power measurements
- Logic tracing

Testbed-Wide Tracing

Remote access to native ARM hardware debugging

Interaction-free tracing of power, serial, and logic

Power Measurement

- High-dynamic range is required
 - Sub μA sleep current of modern MCUs
 - 100s mA for long-range radio in TX mode
- RocketLogger¹ is integrated
 - Low current range (0 − 2 mA): feedback ammeter
 - High current range (2 500 mA): shunt ammeter

Maximum sampling rate:	64 kHz
Maximum current measurement accuracy:	60 nA

¹ Sigrist et al.; RocketLogger: Mobile Power Logger for Prototyping IoT Devices; SenSys '16. https://rocketlogger.ethz.ch/

Testbed-Wide Event Tracing

Max burst event rate (<2000 edges):	10 MHz
Max continuous event rate:	900 kHz
Time deviation between any 2 observers (GNSS):	<0.25 μs (20 clock cycles @80 MHz)

Supported Sensor Nodes

Target Name	Microcontroller	Architecture	Radio
Tmote Sky / TelosB	MSP430F1611	MSP430	CC2420, 802.15.4, 2.4 GHz
DPP2 CC430	CC430F5147	MSP430	CC430 SoC, CC1101- based, 868 MHz
DPP2 LoRa	STM32L433	ARM Cortex-M4	SX1262, LoRa/FSK, 868 MHz
nRF52840 Dongle	nRF52840	ARM Cortex-M4	nRF52 SoC, 802.15.4/BLE, 2.4 GHz

Wide Range of Link Distances: 4 m − 2 km

12 indoor nodes(office building)

3 rooftop nodes

Interface & Usage

- 1. Preparation of *xml file* with
 - Testbed configuration
 - Settings for tracing and actuation services
 - Binary image of sensor node software
- 2. Upload xml via web-interface or API
- 3. Test is executed
 - Connection to debug probes
 - Connection to serial port
- 4. Download of test results for analysis and visualization

```
<testConf xmlns="http://www.flocklab.ethz.ch">
   <generalConf>
       <name>FlockLab XML template
       <schedule><duration>60</duration></schedule>
   </generalConf>
   <targetConf>
       <obsIds>2 4 6 7 9</obsIds>
       <voltage>3.3</voltage>
       <embeddedImageId>Image_1</embeddedImageId>
   </targetConf>
   <serialConf>
       <obsIds>2 4 6 7 9</obsIds>
       <baudrate>115200
   </serialConf>
   <powerProfilingConf>
       <obsIds>2 4</obsIds>
       <samplingRate>1000</samplingRate>
   </powerProfilingConf>
</testConf>
```

Extracting Internal State While Running Synchronous Transmission Protocol

Optimizing Low-Power Behavior

Dynamically switching to low-power sleep-mode

Conclusions & Future Work

FlockLab 2 combines

- native hardware debug and trace support
- accurate high-dynamic power measurements
- accurate time synchronization based on GNSS or PTP

Future Work

- Facilitate use of network-wide on-chip debugging
- Extend testbed to 30+ nodes

** FlockLab 2

Public Testbed

→ Getting started:

https://flocklab.ethz.ch

Open-Source

- → Server Software
- → Observer Software
- → Hardware Design

https://flocklab.ethz.ch

