Bachelor of Science Semester:-5 Group theory

Group Theory

Groupoid or Binary Algebra Definition

- > A non-empty set G equipped with one binary operation is called groupoid
 - > i.e. G is a Groupoid is closed for *.

It is denoted by (G,*).

For Example :- (N,+), (Z, -), (Q, x) etc.

Note: - Groupoid is also called Quasi Group.

Semi Group :- Definition

➤ An Algebraic Structure (G, *) is called a semi Group if the binary operation * satisfy associative Property

i.e. :- [G] $(a * b) * c = a * (b * c), \forall a \in G$

Ex.1

The algebraic structures (N,+), (Z,+), (Z,x), (Q,x) are semi groups but the structure (Z,-) is not so because subtraction, (-) is associative.

Ex. 2

The structures (p(s), u) and (P(s), \cap) where P(s) is the power set of a set S are Semi Groups as both the Operations Union (U) an intersection (\cap) are associative.

Monoid: Definition

A Semi Group is called monoid if there exist an identity element 'e' in G such that [G2] e * a = a * e = a, $\forall a \in G$

Ex.1

The Semi Group (N, x) is Monoid because 1 is the identity for the multiplication. But the Semi Group (N, +) is not because 0 is the identity for addition is not in N.

Ex. 2

The Semi Group (P(s), u) and (P(s), \cap) are monoid because Φ and S are the identity respectively for union (u) and (\cap) in P(s).

Group: Definition

An algebraic structure of set G and a binary operation * defined in G i.e. (G, *) is called a group if * satisfies the following postulate:

[G1] Closure:

$$a \in G, b \in G \Rightarrow a * b \in G, \forall a, b \in G$$

[G2] Associativity:

• The composition * is associative in G i.e. $(a*b)*c = a*(b*c), \forall a,b,c \in G$

[G3] Existence of Identity:

• There exist an identity element e in G such that $e*a=a*e=a, \forall a\in G$

[G4] Existence of Inverse:

- Each element of G is invertible, i.e., for every $a \in G$, there exist a^{-1} in G such that $a*a^{-1}=a^{-1}*a=e$ (Identity)
- Thus group (G, *) is a monoid in which each of its element is ...

Abelian group or Commutative group: Definition

A group (G_{i*}) is said to be abelian or commutative if * is commutative also. A group (G_{i*}) is an abelian group, if

[G4] Commutativity:

$$a * b = b * a$$
, $\forall a, b \in G$

G1. Associativity

G2. Existence of Identity

G3. Existence of Inverse

G4. Commutativity

Finite and Infinite groups:

> A group (G, *) is said to be finite if its underlying set G is finite set and a group which is not finite is called an infinite group.

Order of a Group : Definition

- > The number of elements in a finite group is called the order of the group.
- > It is denoted by O(G).
- \triangleright If (G,*) is in infinite group, then it is said to be of infinite order.

Example - 1

Show that the set of integers forms an abelian group under addition.

Solution:

Let
$$G = \{0 + 1 + 2 + 3 \dots \}$$

G_1 :Closure:

let $a, b \in G \Rightarrow a + b \in G$

Closure law is satisfied.

G_2 : Associative:

let $a, b, c \in G$,

$$a + (b+c) = (a+b) + c$$

Associative law is satisfied.

G_3 : Identity: let $a \in G$ and 0 be the identity

$$a + 0 = 0 + a = a$$

G4: Inverse:

-a is the inverse of a

$$a + (-a) = -a + a = 0$$

G_5 : Commutative:

let $a, b \in G$

$$a + b = b + a$$

(G'+) is an abelian group under addition.

Example – 2

G is the set of rationals except -1. Binary operation * is defined by a*b=a+b+ab. Show that it is a group.

Solution:

G₁:Let
$$a,b \in G \Rightarrow a*b = a+b+ab \in G$$

Closure is satisfied.
G₂:Let $a,b,c \in G$

$$a*(b*c) = (a*b)*c$$
L.H.S.: $b*c = b+c+bc = x$

$$a*x = a+x+ax$$

$$= a+b+c+bc+a(b+c+bc)$$

$$= a+b+c+ab+bc+ca+abc$$

