Frist for innlevering: tirsdag 24. februar, kl 17.00

ØVING 4

Oppgåve 1 Vibrerande to-partikkel-system

Som diskutert på side 110 i boka til Hemmer, er det eit viktig poeng — både i klassisk mekanikk og i kvantemekanikk — at eit **to-partikkel problem** essensielt kan reduserast til eit ein-partikkel problem. Dette er relevant både for *bundne* to-partikkel system (som t.d. H-atomet) og for *ubundne* system, slik vi har i spreiingsprosessar.

Dette kan vi illustrere ved eit eindimensjonalt system, der to partiklar med massar m_1 og m_2 er forbundne med ei masslaus fjær med fjærkonstant k. Ved likevekt (med avspent fjær, og null krefter) er **relativ-koordinaten** mellom dei to partiklene, $x = x_1 - x_2$, lik l.

Elles er kreftene på m_1 og m_2 heile tida motsett retta og proporsjonale med utslaget frå likevektsavstanden, $x_1 - x_2 - l = x - l$:

$$F_1 = -F_2 = -k(x_1 - x_2 - l) \equiv -k(x - l).$$

Sidan desse kreftene berre avheng av relativ-koordinaten x, må dette og gjelde for den potensielle energien. Desse kreftene kan ein finne frå potensialet $V = \frac{1}{2}k(x-l)^2$, vha

$$F_i = -\frac{\partial V}{\partial x_i} = -\frac{\partial V}{\partial x} \frac{\partial x}{\partial x_i}, \qquad i = 1, 2.$$

[Vi tenker oss altså at all bevegelse skjer i x-retninga, dvs vi ser bort frå at systemet kan rotere om tyngdepunktet for to-partikkelsystemet.]

a) **Klassisk tilnærming**: Om vi fyrst tenker oss at vi held m_2 fast i origo, slik at $x_2 = 0$, er ifølgje Newtons 2. lov

$$\frac{F_1}{m_1} = \frac{-k(x-l)}{m_1} = \frac{d^2x}{dt^2} = \frac{d^2(x-l)}{dt^2}, \qquad (x_2 = 0, \ x = x_1).$$

Sett inn prøveløysinga $x - l = A\cos(\omega_1 t + \alpha)$ i differensiallikninga med strek under, og vis at den klassiske vinkelfrekvensen er

$$\omega_1 = \sqrt{\frac{k}{m_1}}.$$

Dersom vi held m_1 fast, får vi tilsvarande svingningar med vinkelfrekvens $\omega_2 = \sqrt{k/m_2}$.

Og nå kjem poenget: Let vi både m_1 og m_2 svinge fritt (som to atom i eit toatomig molekyl), skal du vise at relativ-avstanden svingar med vinkelfrekvens ω som er større enn

både ω_1 og ω_2 : Vis fyrst at den andrederiverte av utsvinget x-l er lik $-(x-l)k/\mu$, der μ er den såkalla **reduserte massen**, definert ved $1/\mu = 1/m_1 + 1/m_2$:

$$\frac{d^2}{dt^2}(x-l) = \dots = -\frac{k}{\mu}(x-l), \quad \text{der} \quad \frac{1}{\mu} \equiv \frac{1}{m_1} + \frac{1}{m_2} \quad \left(\Longrightarrow \quad \mu = \frac{m_1 m_2}{m_1 + m_2} \right).$$

Hint: Bruk $d^2x_i/dt^2 = F_i/m_i$, (i = 1, 2).

Sett deretter inn funksjonen $x - l = A\cos(\omega t + \alpha)$ i differensiallikninga ovanfor, og vis at vinkelfrekvensen ω er større enn ω_1 og ω_2 .

Korleis bevegar *tyngdepunktet* for to-partikkel systemet seg når det ikkje verkar ytre krefter? [Jf Newtons 1. lov.]

b) **Kvantemekanisk tilnærming**. Med utgangspunkt i energioperatoren $\hat{H} = \hat{K}_1 + \hat{K}_2 + V(x)$ for dei to partiklane kan ein vise at *relativbevegelsen* for dei to partiklane er gjeven ved den tidsuavhengige Schrödingerlikninga

$$\left[-\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial x^2} + \frac{1}{2}k(x-l)^2 \right] \psi(x) = E\psi(x),$$

der μ er den reduserte massen og x er relativkoordinaten. Kva blir energinivåa? Kva er energieigenfunksjonen for grunntilstanden som funksjon av relativkoordinaten x? [Hint: Svara finn du utan å rekne, ved å samanlikne med standardutgåva av ein harmonisk oscillator, som er ein partikkel med masse m som bevegar seg i potensialet $V(q) = \frac{1}{2}kq^2 \equiv \frac{1}{2}m\omega^2q^2$. Den tidsuavhengige Schrödingerlikninga for dette systemet er

$$\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial q^2} + \frac{1}{2}kq^2 \right] \psi(q) \equiv \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial q^2} + \frac{1}{2}m\omega^2 q^2 \right] \psi(q) = E\psi(q),$$

med energieigenverdiane

$$E_n = \hbar \sqrt{\frac{k}{m}} \left(n + \frac{1}{2} \right) \equiv \hbar \omega \left(n + \frac{1}{2} \right), \qquad n = 0, 1, 2, \cdots.$$

Energieigenfunksjonen for grunntilstanden er

$$\psi_0(q) = C_0 e^{-m\omega q^2/2\hbar}, \qquad C_0 = (m\omega/\pi\hbar)^{1/4}.$$

c) Vis at Hamilton-operatoren $\hat{H}=\hat{K}_1+\hat{K}_2+V(x)$ (der $\hat{K}_1=\hat{p}_1^2/2m_1$ osb) kan skrivast som

$$\hat{H} = \frac{\hat{P}^2}{2M} + \frac{\hat{p}^2}{2\mu} + V(x)$$
 med $\hat{P} = \frac{\hbar}{i} \frac{\partial}{\partial X}$ og $\hat{p} = \frac{\hbar}{i} \frac{\partial}{\partial x}$,

der

$$x = x_1 - x_2$$
 og $X = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} \equiv \frac{m_1}{M} x_1 + \frac{m_2}{M} x_2$

er relativkoordinaten og tyngdepunktskoordinaten. [Hint: Ved hjelp av kjerneregelen har vi

$$\frac{\partial}{\partial x_1} = \frac{\partial}{\partial X} \frac{\partial X}{\partial x_1} + \frac{\partial}{\partial x} \frac{\partial x}{\partial x_1} = \frac{m_1}{M} \frac{\partial}{\partial X} + \frac{\partial}{\partial x} \qquad \text{og} \qquad \frac{\partial}{\partial x_2} = \frac{m_2}{M} \frac{\partial}{\partial X} - \frac{\partial}{\partial x}.$$

Frå desse uttrykka kan du finne \hat{p}_1 og \hat{p}_2 uttrykt ved \hat{P} og \hat{p}_1 .] Kva fysisk observabel svarer operatoren \hat{P} til? [Hint: Vis at $\hat{p}_1 + \hat{p}_2 = \hat{P}$]. d) Då \hat{H} kommuterer med operatoren \hat{P} , kan vi finne energieigenfunksjonar som og er eigenfunksjonar til \hat{P} , med eigenverdi P. Desse eigenfunksjonane vil generelt avhenge både av relativ-koordinaten $x = x_1 - x_2$ og av tyngdepunktskoordinaten X. Vi skal nå beskrive dette systemet frå tyngdepunkts-systemet, der den totale impulsen P til dei to partiklane pr definisjon er lik null. Forklar (vha eigenverdilikninga $\hat{P}\psi = P\psi$) kvifor energieigenfunksjonen blir uavhengig av tyngepunktskoordinaten X, og sammenlikn energieigenverdilikninga med likninga i b).

Oppgåve 2 Vibrasjonsfriheitsgraden for toatomig molekyl

Når eit oksygenmolekyl O_2 er i grunntilstanden, er avstanden mellom dei to kjernene nokså nær ein viss likevektsavstand (omlag ein Ångstrøm).

Denne likevektsavstanden svarer til eit energiminimum for dette systemet. Prøver vi å dytte dei to kjernene (og dermed elektronskyene) nærmere kvarandre, eller å trekkje dei frå kvarandre, kostar dette energi, og molekylet motsett seg endringa med ei kraft som er tilnærma proporsjonal med utslaget frå likevektsavstanden. M.a.o: Vi har (for små utsving) ein tilnærma harmonisk oscillator. (Jf Tillegg 3, side 25–26.)

- a) Eksperimentelt viser det seg at den (tilnærmet ekvidistante) avstanden mellom energinivåa for denne oscillatoren er $\hbar\omega\approx 0.20$ eV. Med oksygenmassen m finn vi frå førre oppgåva at fjærkonstanten for dette systemet er $k=\frac{1}{2}m\omega^2$. Gjer eit numerisk overslag over denne fjærkonstanten, og vis at fjæra er ganske kraftig. Fjærkonstant er omlag 10^3 N/m. [Massen til et oksygenatom er ca 16 ganger protonmassen, som er $m_p\approx 1.67\cdot 10^{-27}$ kg.]
- b) Eit ja/nei-spørsmål: Kan avstanden mellom dei to kjernene vere skarpt definert? Som mål for kor store typiske utslag for denne oscillatoren er, kan vi ta lengda $\sqrt{\hbar/m\omega}$ (som er $\sqrt{2}$ ganger usikkerheiten Δx). Sett inn talverdiar og vis at utslaaga for kjernene er små samanlikna med atomradier (eller med avstandane mellom kjernene i eit molekyl), som typisk er 10^{-10} m.
- c) Tenk deg at vi har ein makroskopisk oscillator med same fjærkonstant, dvs eit potensial $V(x) = \frac{1}{2}kx^2$, og en makroskopisk partikkel med masse M=1 kg. Vis at forholdet mellom energibeløpet $\hbar\omega'$ for denne oscillatoren og beløpet $\hbar\omega$ for oscillatoren ovanfor er ca 10^{-13} . Rekn ut lengda $\sqrt{\hbar/M\omega'}$, som gjev skalaen for utslaget av den tunge massen (i grunntilstanden), og vis at denne lengda er ca ein faktor 10^{-7} mindre enn $\sqrt{\hbar/m\omega}$ for den lette massen.
- d) Den tunge massen oscillerer nå med eit utslag på $x_{max}=10$ cm. Samanlikn energien $E=\frac{1}{2}k(x_{max})^2$ for ein slik svingetilstand med energibeløpet $\hbar\omega'$ for denne oscillatoren, og finn ut kor store kvantetal n' dette svarer til. [Hint: Hugs at $E'_n=\hbar\omega'(n'+\frac{1}{2})$.]

Oppgåve 3 Ikkje-stasjonær tilstand for partikkel i boks

Ein partikkel med masse m er i ein uendeleg djup eindimensjonal potensialbrønn (boks) med vidde L:

$$V(x) = \begin{cases} 0 & \text{for } 0 < x < L, \\ \infty & \text{elles.} \end{cases}$$

Ved t=0 preparerer vi dette systemet i ein tilstand slk at bølgefunksjonen er

$$\Psi(x,0) \ = \ \sqrt{\frac{16}{5L}} \, \left(\sin \frac{\pi x}{L} \right)^3.$$

Figuren viser $\sqrt{L}\Psi(x,0)$ og $L|\Psi(x,0)|^2$ som funksjonar av x/L.

- a) Rekn ut frå diagrammet ovanfor forventningsverdien $\langle x \rangle_0$ til partikkelens posisjon ved t=0. Kva kurve i diagrammet er relevant når du på øyemål skal estimere kor stor usikkerheiten $(\Delta x)_0$ i posisjonen er ved t=0. Kva er ditt estimat?
- b) Då det ortonormerte energiegenfunksjonssettet for boksen,

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin k_n x, \qquad k_n = \frac{n\pi}{L}, \qquad E_n = \frac{\hbar^2 k_n^2}{2m}, \qquad n = 1, 2, \dots,$$

utgjer eit fullstendig sett (dvs dannar ein basis), kan ein utvikle initialtilstanden i dette settet. Bruk formelen $4\sin^3 y = 3\sin y - \sin 3y$ til å finne koeffisientane c_n i utviklingsformelen

$$\Psi(x,0) = \sum_{n=1}^{\infty} c_n \psi_n(x).$$

c) Vis at initialtilstanden $\Psi(x,0)$ er normert. [Hint: Normeringsintegralet kan skrivast som

$$\int_0^L \left(\sum_k c_k \psi_k\right)^* \left(\sum_n c_n \psi_n\right) dx = \sum_{k,n} c_k^* c_n \int_0^L \psi_k^* \psi_n dx.$$

d) Etter prepareringa (for t > 0) er bølgjefunksjonen

$$\Psi(x,t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-iE_n t/\hbar},$$

der c_n er koeffisientane som ein skulle finne ovanfor. Ein gjer ei måling av energien E til partikkelen ved t=0 (umiddelbart etter prepareringa). (i) Kva er dei moglege måleresultata,

og kva er dei tilhøyrande sannsynlegheitene?

- (ii) Rekn ut forventningsverdien $\langle E \rangle_0$ av energien ved t = 0 (uttrykt ved grunntilstands-energien E_1).
- (iii) Kva blir bølgjefunksjonen for systemet etter ei slik måling?
- (iv) Kva blir svara på (i) og (ii) dersom ein gjer målinga ved tida t (dvs ei stund etter prepareringa)?

Etter overslaget av usikkerheiten $(\Delta x)_0$ i a), kan det vere interessant å undersøke $(\Delta p_x)_0$. Vis fyrst at $\langle p_x \rangle_0 = 0$. Finn deretter $\langle p_x^2 \rangle_0$ (t.d vha resultatet for $\langle E \rangle_0$), og sett inn usikkerheiten $(\Delta p_x)_0$ (og overslaget over $(\Delta x)_0$) i usikkerheitsproduktet $(\Delta x)_0(\Delta p_x)_0$.

Oppgåve 4 Diracs δ -funksjon

a) I uttrykka nedanfor er $\delta(x)$ Diracs δ -funksjon. Rekn ut:

$$\int_{-\infty}^{\infty} \delta(x)f(x)dx = ;$$

$$\int_{-\infty}^{\infty} \delta(x-c)g(x)dx = ;$$

$$\int_{-\infty}^{\infty} \delta(x)(Ax+B)dx = ;$$

$$\int_{-\infty}^{\infty} [\delta(x-a)+\delta(x-b)]f(x)dx = ;$$

$$\int_{-\infty}^{4} [\delta(x-1)+\delta(x+3)]g(x)dx = ;$$

$$\int_{-\infty}^{\infty} \delta(2x)f(x)dx = ;$$

$$\int_{-\infty}^{\infty} \delta(3x-6)f(x)dx = ;$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ixa}dx = ;$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ixa}dx = ;$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ixa}da = ;$$

$$\ln \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ixa}da = ;$$

$$\ln \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{if_1f_2}df_1 = ;$$

$$\int_{-\infty}^{\infty} \delta(x-x')\delta(x-x'')dx = .$$

(Les f_1 og f_2 som "faktor 1" og "faktor 2".)

b) Ved å teikne eit diagram vil du sjå at funksjonen

$$f(x) = \begin{cases} \text{const} & \text{for } x < 0, \\ \text{const} + x & \text{for } x > 0 \end{cases}$$

har ein "knekk" for x = 0. Den deriverte av denne funksjonen er åpenbart **sprangfunksjonen**,

$$\frac{df}{dx} = \Theta(x) = \begin{cases} 0 & \text{for } x < 0, \\ 1 & \text{for } x > 0. \end{cases}$$

Overtyd deg om at den 2.-deriverte av funksjonen f(x), dvs den 1.-deriverte av sprangfunksjonen, er δ -funksjonen:

$$\boxed{\frac{d^2f}{dx^2} = \frac{d\Theta}{dx} = \delta(x).}$$

Hint: Bruk relasjonen

$$\int_{-\Delta}^{\Delta} \frac{d\Theta(x)}{dx} dx = \Theta(\Delta) - \Theta(-\Delta) \qquad \text{(for } \Delta > 0),$$

eller sjå på relasjonen

i grensa $\epsilon \to 0$.