(12)

EP 0 847 992 A1

EUROPEAN PATENT APPLICATION

(43) Date of publication: 17.06.1998 Bulletin 1998/25

(21) Application number: 97307679.7

(22) Date of filing: 30.09.1997

(51) Int CI.6: C07D 213/30, C07D 213/40, C07D 213/75, C07D 213/74, C07D 213/50, C07D 213/364, C07D 213/81, C07D 213/64,

> C07D 213/56, A61K 31/44, C07C 233/76, C07C 233/77,

C07D 241/24

(84) Designated Contracting States:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL FT SE
Designated Extension States:

AL LT LV RO SI

 (30) Priority: 30.09.1996 JP 258863/96
 (71) Applicant: MITSUI CHEMICALS, INC. Tokyo (JP)

(72) Inventors:

- Suzuki, Tsuneji
 - Mobara-shi, Chiba (JP)
- Ando, Tomoyuki Mobara-shi, Chiba (JP)
- Tsuchiya, Katsutoshi Mobara-shi, Chiba (JP)

- Nakanishi, Osamu
 Pasadena, California 91101 (US)
- Salto, Akiko
 Mobara-shi, Chiba (JP)

(11)

- Yamashita, Takashi Mobara-shi, Chiba (JP)
- Shiraishi, Yoshinori
 Totsuka-ku, Yokohama-shi, Kanagawa (JP)
- Tanaka, Elshi
 Mobara-shi, Chiba (JP)

(74) Representative: Stuart, lan Alexander et al MEWBURN ELLIS York House 23 Kingeway London Wc2B 6HP (GB)

(54) Benzamide derivatives, useful as cell differentiation inducers

(57) The novel benzamide derivative represented by formula (1) and the novel anilide derivative represented by formula (13) of this invention has differentiation-inducing effect, and are, therefore, useful a therapeutic or improving agent for malignant tumors, autoimmune diseases, dermatologic diseases and parasitism. In particular, they are highly effective as an anticancer drug, specifically to a hematologic malignancy and a solid carcinoma.

Printed by Jouve, 75001 PARIS (FR)

(Cont. next page)

Description

This invention relates to a differentiation-inducing agent. In particular, this invention relates to the use of a novel benzamide derivative or anilide derivative for an anticancer drug or other drugs based on its differentiation-inducing catality.

Cancers have now become a top cause of death, exceeding heart and cerebrovascular diseases, and so many studies have been conducted with enormous expense and time to overcome cancers. They have not been, however, overcome in spike of a variety of investigations for therapy such as a surgical operation, a radiation therapy and thermotherapy. Among those therapies, chemotherapy is one of the main area for cancer treatment. To date, however, no astistactory drugs have been discovered, and thus an anticancer drug with reduced toxicity and high therapeutic effect has been desired. Many of the conventional anticancer drugs show their effect by affecting mainty DNA to express their cytotoxicity and then injuring carcinorne cells. However, since they do not have sufficient selectivity between carcinomes also and normal cells, adverse reactions expressed in normal cells have limited their use in therapy.

Meanwhile, differentiation-inducing agents among anticancer drugs are intended to induce differentiation of carcinoma cells for controlling their infinite proliferation, rather than directly kill the cells.

The agents may, therefore, be inferior to the antienneer drugs directly killing carcinoma cells, with regard to involution of a carcinoma, but may be expected to have reduced toxicity and different selectivity. In dart, it is well know that retinoic acid, a differentiation-inducing agent, may be used for treatment of acute promyelogenous leukemia to exhibit a higher effect [Huanget al., Blood, 72, 867-572(1988); Castalgn et al., Blood, 72, 1704-1709 (1990); Warrell et al., New Engl. J.Med. 324, 1985-1993(1991) sie.]. In addition, vitamin D derivatives exhibit differentiation-inducing effect, and thus their application for anticancer drugs have been investigated [e.g., Olsson et al, Cancer Res. 43, 5862-5867(1983) ecl.].

As the results of these investigations, there have been reported applications-for anticancer drugs, of a variety of differentiation-inducing agents such as vitamin D derivatives (LPA-6.196292), locopherol (JP-A6-256181), quinone derivatives (JP-A8-250555), noncyclic polysoprenoids (JP-A8-316302), benzole acid derivatives (JP-A8-25655) and glycolipids (JP-A7-256100). There have been no agent having sufficient value of effect for cancer treatment in spite of the investigations, and thus there has been greatly desired a highly safe agent factive to a variety of cancers.

Preferred embodiments of this invention may provide compounds which exhibit differentiation-inducing effects and are useful as pharmaceutical agents such as therapeutic or improving agents for malignant tumors, autoimmune diseases, dermatologic diseases and parasitism.

We have intensely researched and have found that a novel benzamide derivative and a novel anilide derivative having differentiation-inducing effect show antitumor effect.

This invention provides a compound represented by formula (1) or a pharmaceutically acceptable salt thereof:

wherein A is a phenyl or heterocyclic group, optionally substituted with 1 to 4 substituents selected from the group consisting of a hatogen atom, a hydroxyl group, an amino group, a nitro group, a cyano group, an alklyl group having 1 to 4 carbons, an alkxyl group having 1 to 4 carbons, an aminoskyl group having 1 to 4 carbons, an alkylamino group having 1 to 4 carbons, an acyl group having 1 to 4 carbons, an acylamino group having 1 to 4 carbons, an alkylamino group having 1 to 4 carbons, a perflucroalkyl group having 1 to 4 carbons, a perflucroalkyloxyl group having 1 to 4 carbons, an acylamino group from the properties of the

X is a bond or a moiety having a structure selected from those illustrated in formula (2)

wherein e is an integer of 1 to 4; g and m are independently an integer of 0 to 4; R^4 is hydrogen or an optionally substituted alkyl group having 1 to 4 carbons, or the acyl group represented by formula (3)

wherein R⁶ is an optionally substituted alkyl group having 1 to 4 carbone, a perfluorcelkyl group having 1 to 4 carbons, a phenyl group or a heterocyclic group; R⁶ is hydrogen or an optionally substituted alkyl group having 1 to 4 carbons.

n is an integer of 0 to 4, provided that when X is a bond, n is not zero;

5

15

20

25

30

45

55

Q is a moiety having a structure selected from those illustrated in formula (4)

wherein R² and R³ are independently hydrogen or an optionally substituted alkyl having 1 to 4 carbons; R¹ and R² are independently a hydrogen atom, a halogen atom, a hydroxyl group, amino group, an alkyl group having 1 to 4 carbons, an alkky group having 1 to 4 carbons, an arminoalkyl group having 1 to 4 carbons, an alkylamino group having 1 to 4 carbons, an acylamino group having 1 to 4 carbons, an argivarino group having 1 to 4 carbons, an application of the property of the dearbons, and application of the property of the dearbons, and application of the dearbons, and application of the dearbons, are application of the dearbons, and application of the dearbons, and application of the dearbons, are application of the dearbons, and application of the dearbons are dearbons are dearbons, and application of the dearbons are dearbons are dearbons, and application of the dearbons are dearbons are dearbons.

This invention also provides an anilide having the structure represented by formula (13)

wherein A and R3 are as defined above; B is an optionally substituted phenyl or heterocyclic group; Y is a moiety having -Co-, -CS-, -SO- or -SO₂- which is linear, cyclic or their combination and links A and B; and in which the distances

between the centroid of ring B (W1), the centroidol ringA (W2) and an oxygen or sulfur atom as a hydrogen bond acceptor in the moiety Y (W3) can be as follows; W1-W2=6.0 to 11.0 Å, W1-W3=3.0 to 8.0 Å, and W2-W3=3.0 to 8.0 Å, preferably W1-W2=7.0 to 9.5 Å; W1-W3 is 3.0 to 5.0 Å; and W2-W3 is 5.0-8.0 Å; or a pharmaceutically acceptable salt thereof.

Preferred benzamide derivatives and anilide derivatives of this invention have differentiation-inducing effect and are useful as a drug such as a therapeutic or improving agent for malignant tumors, autoimmune diseases, dermatologic diseases and parasitism. In particular, they are highly effective as a carcinostatic agent, specifically to a hematologic malignancy and a solid carcinoma.

10 BRIEF DESCRIPTION OF THE DRAWINGS

20

25

50

55

Figure 1 shows a change of the volume of the tumor when the compound of Example 48 was administered against the tumor cell HT-29.

Figure 2 shows a change of the volume of the tumor when the compound of Example 48 was administered against the tumor cell KB-3-1.

DETAILED DESCRIPTION OF THE INVENTION AND PREFERRED EMBODIMENTS

In the above formula (1), n may be zero or an integer of 1 to 4.

Q in the above formula (1) may be any structure illustrated in formula (5);

wherein R7 and R8 are as defined above.

X in the above formula (1) may be a moiety having the structure represented by formula (6);

wherein e is as defined above.

X in the above formula (1) may be also a moiety having any structure illustrated in formula (7);

$$-(CH_2)g-O-(CH_2)e-$$
, $-(CH_2)g-S-(CH_2)e-$, (7)

R4
 $-(CH_2)g-N-(CH_2)e-$

wherein e, g and R4 are as defined above.

X in the above formula (1) may be also a moiety having any structure illustrated in formula (8);

wherein g, m and R5 are as defined above.

The anilide represented by formula (13) may be one wherein A is an optionally substituted heterocycle; B is an

optionally substituted phenyl; and R3 is an amino group.

5

40

The anilide may be also one wherein Y has -CO- and is linear, cyclic or their combination.

As used herein, "1 to 4 carbons" means a carbon number per a single substituent; for example, for dialkyl substitution it means 2 to 8 carbons.

A heterocycle in the compound represented by formula (1) or (13) may be a monocyclic heterocycle having 5 or 6 members containing 1 to 4 nitrogen, oxygen or sulfur atoms or a bicyclic-fused heterocycle. The monocyclic heterocycle includes pyridine, pyrazine, pyrimidine, pyridazine, thiophene, furan, pyrrole, pyrazole, isoxazole, isothiazole, imidazole, oxazole, thiazole, piperidine, piperazine, pyrrolidine, quinuclidine, tetrahydrofuran, morpholine, thiomorpholine and the like. The bicyclic fused heterocycle includes quinoline; isoquinoline; naphthyridine; fused pyridines such as furopyridine, thienopyridine, pyrrolopyridine, oxazolopyridine, imidazolopyridine and thiazolopyridine; benzofuran; benzothiophene; benzimidazole and the like.

A halogen may be fluorine, chlorine, bromine or iodine.

An alkyl having 1 to 4 carbons includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl. An alkoxy having 1 to 4 carbons includes methoxy, ethoxy, n-propoxy, isopropoxy, allyloxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy and the like.

An aminoalkyl having 1 to 4 carbons includes aminomethyl, 1-aminoethyl, 2-aminopropyl and the like.

An alkylamino having 1 to 4 carbons includes N-methylamino, N,N-dimethylamino, N,N-diethylamino, N-methyl-N-ethylamino, N,N-diisopropylamino and the like.

An acyl having 1 to 4 carbons includes acetyl, propancyl, butancyl and like.

An acylamino having 1 to 4 carbons includes acetylamino, propanoylamino, butanoylamino and the like.

An alkylthic having 1 to 4 carbons includes methylthic, ethylthic, propylthic and the like.

A perfluoroalkyl having 1 to 4 carbons includes trifluoromethyl, pentafluoroethyl and the like.

A perfluorcalkyloxy having 1 to 4 carbons includes trifluoromethoxy, pentafluorcethoxy and the like.

An alkoxycarbonyl having 1 to 4 carbons includes methoxycarbonyl and ethoxycarbonyl.

An optionally substituted alkyl having 1 to 4 carbons includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl and these having 1 to 4 substituents selected from the group consisting of a halogen, hydroxyl, amino, nitro, cyano, phenyl and a heterocycle.

As described below, important elements in the compound represented by formula (13) are (a) presence of ring A, ring B and oxygen or sulfur atom as a hydrogen bond acceptor, and (b) the distances between them determined by their steric configurations. There may be, therefore, no limitation as long as the structure of Y has a hydrogen bond acceptor and rings A and B have required steric configurations. Specifically, the structure of Y which has -CO-, -CS-, -SO- or -SO₂- and links A and B and which is linear, cyclic or their combination, means either (a) one consisting of carbon and/or hetero atoms linking A and B, whose linear or branched molety has -CO-, -CS-, -SO- or -SO2-; (b) one linking A and B, whose cyclic moiety has -CO-, -CS-, -SO- or -SO₂-; and (c) one linking A and B wherein a combination of cyclic and linear moieties form a structural unit having -CO-, -CS-, -SO- or -SO2-.

A basic cyclic structure includes cyclic moieties having 4 to 7 members containing carbons and/or hetero atoms or their fused cycles. For example it may be cyclobutane, cyclopentane, cyclohexane, cyclohexane oxane, oxepane, pyrrolidine, imidazolidine, pyrazolidine, piperidine, piperazine, indoline, isoindoline, thiolane, thiazolidine and oxazolidine rings, which may contain unsaturated bonds, hydrogen bond acceptors and/or substituents.

Structural analyses considering degree of conformational freedom of the compound represented by formula (13) have indicated that atomic groups possibly involved in an biomolecule-drug interaction such as a hydrophobic interaction and hydrogen bond may have a particular spatial configuration in a compound showing high differentiationinducing effect.

Specifically, we formed a three-dimensional structure of a high activity compound using a molecular modeling software, SYBYL 6.3, and analyzed conformations for all rotatable bonds to determine the most stable structure, wherein their energy levels were evaluated by using Tripos force field after allocating chargeoneachatomaccordingto-Gastelger-Huckelmethod. Then, starting with the most stable structure, we have performed a superimposition taking its conformation into consideration using DISCO/SYBYL and then have found that a particular spatial configuration is necessary for expression of high differentiation-inducing effect.

In the above analyses, other commercially available program packages such as CATALYST (MSI), Cerius 2/QSAR+ (MSI) and SYBYL/DISCO(Tripos) may be used, and the information on distance obtained in this invention is not limited to that from a particular calculation program.

The ring centroid used in definition of the spatial configuration may be defined as an average of X, Y and Z axes of the ring-forming atoms. When a ring structure to be calculated is fused-polycyclic, the centroid of either the overall fused ring or of a partial ring may be used as that for defining the space.

"Possibility of formation of a configuration" means that a conformer filling the spatial configuration is within 15 kcal/ mol, preferably 8 kcal/mol from the energetically most stable structure.

Specific calculation can be performed as described in the instructions for Sybyl (M.Clark) or J.Comput.Chem. 10,

982(1989).

20

30

A pharmaceutically acceptable salt of the compound of this invention includes salts with an inorganic acid such as hydrochloric acid, hydrobromic acid, sulfuric acid and phosphoric acid, and with an organic acid such as acetic acid, lactic acid, tartaric acid, malic acid, succinic acid, fumaric acid, maleic acid, citric acid, benzoic acid, trifluroacetic acid, p-toluenesulfonic acid and methanesulfonic acid. Such a salt includes N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide hydrochloride, N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl] benzamidehydrobromide, N-(2-aminophenyl)-4-(N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide sulfate, N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide phosphate, N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide acetate, N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide lactate, N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide tartrate, N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide malate, N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide succinate, N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide fumarate, N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl] benzamide maleate, N-(2-aminophenyl)-4-(N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide citrate, N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide trifluoroacetate, N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide p-toluenesulfonate and N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide methanesulfonate.

As used herein, a "drug" includes a therapeutic and/or improving agent to, for example, an autoimmune disease, dermatologic disease or parasitism, in addition to a anticancer drug.

When having asymmetric carbon or carbons, the compound represented by formula (1) or (13) may be obtained as an individual stereoisormer or a mixture of stereoisormers including a racemic modification. This invention encompasses the above-specified different forms, which may be also used as an active ingredient.

Representative compounds of this invention represented by formula (1) or (13) are specifically shown in Tables 1 to 4, but this invention is not intended to be limited to these.

Table 1 (1)

A-X-Q	-(CH ₂)n	* R1	X	R3 2 3 R2
Α	×	Q	n	R1

Compound 1	No. A	×	Q (ii)	n	R1	R2	R3
1	\bigcirc	Direct bond	-ç- ^H -	i	н	н	NH ₂
2	<u>_</u>	—CH₂—	-g-H-	0	н	н	NH2
3	<u></u>	-(CH ₂) ₂ -	_c-N-	0	н .	н	NH ₂
4	<u></u>	-(CH ₂) ₃ -	c-ñ-	0	н	н	NH ₂
5	\bigcirc	-(CH ₂) ₄ -	_ç- ^н -	0	н	н	NH ₂
6		-CH ₂ -	-g-H-	1	. н	н	NH ₂
7	\bigcirc	-(CH ₂) ₂ -	-c-H-	1	н	_: H	NH ₂
8	\bigcirc	CH ₂	-H-c-	0	н	н	NH ₂
9	\bigcirc	-(CH ₂) ₂ -	-H-C-	0	н	н	NH ₂
1 0		Direct bond	_c_ñ-	1	н	н	NH ₂

Table 1 (2)

	A-X-0	Q-(CH ₂)n		Ra 1. J	3		
		3			73 R2		
Compo	und No. A	×	Q	n	R1	R2	R3
11	\bigcirc	-CH ₂ -	-o-c-H-	1	н	н	NH ₂
1 2	\bigcirc	Direct bond	-0-G-H-	1	H	н	NH ₂
1 3	F-(Direct bond	-6-H-	1	н	н	NH ₂
1 4	CI CI	Direct bond	-g-H-	1	Н	н	NH ₂
1 5	CI-	-CH ₂ -	_ë- _N -	0	н	н	NH ₂
1 6	Br—	Direct bond	-K-2-	1	н	н	NH ₂
1 7	но-{	Direct bond	-ç-H-	1	Н	Н	NH ₂
1 8	NO ₂	Direct bond	-с-н-	1	н	н	NH ₂
1 9	NO ₂	-CH ₂ -	-c-ñ-	o	н	н	NH ₂
2 0	N ₂ O	Direct bond	-H-g-H-	1	н	н	NH ₂

Table 1 (3)

Compound	No. A	×	Q	n	R1	R2	R3
2 1	O ₂ N-	-CH₂-	-g-H-	0	н	н	NH ₂
2 2	NH ₂	-CH ₂ -	-E-H-	0	н	н	NH ₂
2 3	H ₂ N	-CH ₂ -	-c-H-	1	н	н	NH ₂
2 4	H ₂ N	Direct bond	-H-c-H-	1	н	н	NH ₂
2 5	H ₂ N	Direct bond	-H-C-H-	1	Н	н	NH ₂
2 6	H ₂ N-	-CH ₂ -	-8-H-	0	,H	н	NH ₂
2 7	NC-	Direct bond	-c-H-	1	н	Ĥ°	NH ₂
2 8	н,с-	Direct bond	-c-H-	1	н	н	NH ₂
2 9	C ₂ H ₅	Direct bond	_ç- ^ਮ -	1	н	н	NH ₂
3 0	H ₃ CO	Direct bond	-g-H-	1	н	н.	NH ₂

Table 1 (4)

	£	\-X-Q-((CH ₂)n		#	R3		
				Ö	، الر	*		
Compound	No.	Α	X	Q	n	R1	R2	R3
3 1	њсо-√	<u></u>	Direct bond	-ë-n-	1	н	н	NH ₂
3 2	н₃со⊸	\bigcirc	-CH ₂ -	-g-H-	0	н	н	NH ₂
3 3	н₃со. н₃со—(н₃со′		Direct bond	-c-N-	1	н	н	NH ₂
3 4	н₃со-(н₃со-(<u></u>	-CH _z -	-o-c-n-	1	н	н	NH ₂
3 5	н₃сни	\bigcirc	Direct bond	–ç-¼-	1	н	н	NH ₂
3 6	(H ₃ C) ₂ N	<u>_</u>	Direct bond	-ç-H-	1	н	н	NH ₂
3 7	H ₂ N—	\triangleright	Direct bond	-H-C-H-	1	Н	H	NH ₂
3 8	н₃сни	<u></u>	-CH2-	-o-c-N-	1	н	н	NH ₂
3 9	н³с-Қ ни−	○ -	-CH ₂ -	-o-c-H-	1	н	н	NH ₂
4 0	н,с	_	Direct bond	-ç-H-	1	н	н	NH ₂

Table 1 (5)

						•			
mpound	No.	Α	х	Q	n	R1	R2	R3	
			Direct bond						
4 2	F₃C⊸	<u></u>	Direct bond	-g-H-	1	н	н	NH ₂	
4 3	F₃C⟨	<u>_</u> -	-CH ₂ -	-c-h-	0	н	н	NH ₂	
4 4	F₃CO(<u></u>	Direct bond	_c- _N -	1	н	н	NH ₂	
4 5	но₂с⊸	<u>_</u>	Direct bond	-ë- _N -	1	н	н	NH ₂	
46	н₃со₂с—⟨	\bigcirc	Direct bond	-ç-Ñ-	1	н	н	,NH ₂	
47	n_n	<u> </u>	—СH ₂ -	-o-g-H-	1	н	н	NH ₂	
4 8	- (<u> </u>	—0~CH₂—	-c-H-	1	н	н	NH ₂	
4.9	٠,	<u> </u>	—s-cH₂=	-g-H-	1	н	н	NH ₂	
5 0	•	<u> </u>	-N-CH2-	-ç-ñ-	1	н	н	NH ₂	

Table 1 (6)

		A-X-Q-(C	H ₂)n	R1	R3 -2) ³ R2		
	Compound	No. A	x	Q	n	R1	R2	R3
	5 1	NH ₂	-CH ₂ -	-o-C-N-	1	н	н	NH ₂
	5 2	H ₂ N	-CH ₂ -	-o-ë- _H -	1	н	н	NH ₂
٠	5 3	(H ₃ C) ₂ N-	—СH ₂ —		0	н	н	NH ₂
	5 4	0 ₂ N-	-о-сн₂-	-ç-Ñ-	0	н	н	NH ₂
	5 5	H ₂ N-	-o-cH₂-	-ç- ^{N-}	0	н	н	NH ₂
	5 6	H ₂ N	—о-сн₂-	-ë- _H -	1	н	н	NH ₂ .
	5 7	H ₂ N		-ë-H-	1	н	5-F	NH ₂
	5 8	H ₂ N	-CH ₂ -O-CH ₂ -		0 .	н	н	-NH ₂
	5 9	\bigcirc	-N-CH₂-	-ë- _H -	1	н	н	NH ₂
	6 0	\bigcirc	-N-CH3-	_ë_ _N _	1	н	н	NH ₂

Table 1 (7)

15

20

	A-X-	Q-(CH ₂)n \		, H,	R3			
			2 1			3 -R2 4		
Compound N	o. A	×	Q	n	R1	R2	R3	
6 1	<u></u>	-o-cH ₂ -	-c-H-	1	н	н	NH ₂	
6 2	<u>~</u>	-O-(CH ₂) ₂ -	_ë- _ħ -	1	н	н	NH ₂	
6 3	<u></u>	-й-сн³-	-E-N-	1	н	н	NH ₂	
6 4	<u></u>	-s-сн₂-	-g-H-	1	н	н	NH ₂	
65	<u></u>	-о-сн₂-	-ç-H-	0	н	н	NH ₂	
6 6	<u></u> _	-0-(CH ₂) ₂ -	-8-H-	0	н *	н	NH ₂	-
6 7	<u></u>	-0-(CH ₂) ₂ -	-o-c-n-	0	н	н	NH ₂	
6 8	<u></u>	-сн ₂	-ë- <u>N</u> -	0	н	н	NH ₂	
6 9	<u></u>	—(CH ₂) ₂ —	-ç-H-	0	н	н	NH ₂	
7.0	<u></u>	—(CH ₂) ₂ —	0 	0	н	н	NH ₂	

Table 1 (8)

		A-X-0	2-(CH ₂)n	\$ R1	\ \ !	R3) ³ R2	
	Compound No.	A	×	a	n	R1	1 R2	R3
	7 1	<u></u>	Direct bond	-2-2-	1	н	н	NH ₂
	7 2	 	Direct bond	_g_N_	2	н	н	NH ₂
	7 3	<u></u>	Direct bond	-ë- _N -	3	н	н	NH ₂
	74	<u></u>	-сн₂-	-ç-ñ-	1	н	н	NH ₂
	7 5	~	—(CH ₂) ₂ —	C-N-	1	н	н	NH ₂
	7 6	<u></u>	—(CH ₂) ₃ —	-ç- ^H -	1	н	н	NH ₂
	7 7	<u></u>	_СН₂—	-6-H-	2	н	н	NH ₂
	7 8	<u>_</u>	-CH ₂ -	-H-g	1	н	н	NH ₂
,	7 9	<u></u>	Direct bond	-N-C-	2	н	н	NH ₂
5	8 0	\sim	—сн ₂ —	-H-g-	2	н	н	NH ₂

Table 1 (9)

	A-X-C	-(CH ₂)n		_H	R3		
			² Ĭ	,[<i>\\</i>	R2	
Compound No.	Α	X	Q	n	R1	R2	R3
8 1	<u></u>	Direct bond	-o-c-ñ-	1	н	н	NH ₂
8 2	<u></u>	-CH ₂ -	-o-c-H-	1	н	н	NH ₂
8 3	<u>~</u> }–	(CH ₂) ₂	-o-ë-N-	1	н	н	NH ₂
8 4	<u>~</u> >	(CH ₂) ₃	-o-c-H-	1	н	н	NH ₂
85.	<u></u>	- CH ₂	-H-g-o-	1	н	н	NH ₂
8 6	<u>~</u> >	CH ₂	-o-c-H-	1	н	н	NH ₂
8 7	<u></u>	Direct bond	-H-g-H-	1	н	н	NH ₂
8 8	<u>~</u> }	-CH ₂ -	-H-g-H-	1	н	н	NH ₂
8 9	<u>~</u> }-	(CH ₂) ₂	-H-c-H-	1	н	Н	NH ₂
9 0	<u></u>	CH ₂	-H-g-H-	1	н	Н	NH ₂

Table 1 (10)

	A-X-	·Q-(CH ₂)n]i·'	R3	R2	
Compound N	^{√o.} A	×	Q	n	R1	R2	R3
9 1	<u></u>	O-CH₂-	-C-N- (CH ₂) ₃	1	н	н	NH ₂
9 2	<u></u>	-0-CH ₂ -		1	н	н	NH ₂
9 3	<u>~</u> }-	-0-CH ₂ -	_8-H-	1	н	н	ОН
9 4	<u></u>	O II —NH~C-CH₂—	-c-H-	0	н	н	NH ₂
9 5	<u></u>	-NH-C-	-ç- ^H -	1	н	н	NH ₂
9 6	<u>~</u> >	-N-CH2-	-g-H-	1	н	н	NH ₂
-97	~	Ö-N-CH₂-		0	н	н	NH ₂
98	<u>~</u> }	О С-СН ₂	-ç-H-	. 1	н	н	NH ₂
9 9	<u></u>	O (CH ₂) ₂ -	_c- ₂ -	0	н	н	NH ₂
100	<u>~</u> }–	O —Ö-(CH₂)₂-	ċ- _N -	1	н	н	NH ₂

Table 1 (11)

		,1	<u>√^</u> ,_c∕	اً بِ	3 2		
			2		→ R2		
Compound	No. A	×	Q	n	R1	R2	R3
101	$\bigcirc\!$	-CH2-O-CH2-	-ch-	0	н	н	NH ₂
102	<u></u>	-CH ₂ -O-CH ₂ -		0	3-CH ₃	н	NH ₂
103	<u>~</u> >	-CH ₂ -O-CH ₂ -		0	н	н	NH ₂
104	<u>~</u> >	-cH₂-N-c-	-ç-й-	0	н	н	NH ₂
1 0 5	<u>~</u>	—сн₂-n-сн₂-		o	н	н	NH ₂
106	<u></u>	-cH ₂ -N-cH ₂ -		0	Н	н	NH ₂
1 0 7	~	-CH ₂ -N-CH ₂ -	E-N-	1	н	н	NH ₂
1 0 8.	<u>~</u>	-CH ₂ -N-CH ₂ - CH ₃		0	н	н	NH ₂
1 0 9	<u>~</u> }	-CH2-	-0-C-N-	1	н	н	NH ₂
1 1 0	~	-сн ₂ -	-o-g-H-	1	н	5-F	NH ₂

Table 1 (12)

	A-X-C	0-(CH ₂)n <	5 R1		R3		
			U /L 1	H.]2		
			,	\mathcal{I}	7,	32	
			٥	٠,	₽ ^^		
Compound No.	Α	×	Q	n	R1	R2	R3
1 1 1	<u>~</u> >	-сн ₂ -	-o-c-H-	1	н	н	ОН
1 1 2	<u>~</u> >	-сн ₂ -	-H-g-H-	1	н	5-F	NH ₂
1 1 3	<u>~</u> >	-сн₂-	-o-c-N-	1	н	4-CI	NH ₂
114	<u></u>	-сн ₂ -	-H-c-H-	1	н.	н	ОН
115	· (CH₂	-0-C-N-	1	н	н	ОН
1 1 6	<u>~</u> —	CH ₂	-o-E-N-	1	н	4-0H	ОН
117	- 	-сн₂-	—c—N—	1	н	н	он
118	<u></u>	-CH2-	-o-c-H-	t	н	5-CH ₃	он
119	$\bigcirc\!$	—сн ₂ —	-o-c-H-	1	н	5-OCH ₃	ОН
1 2 0	<u></u>	-сн ₂	-0-C-N	1	н	н	NH ₂
			· n/				

Table 1 (13)

				5			
Compound N	łо. Д	×	Q	n	R1	R2	R3
1 2 1	~	CH ₂	-0-C-N-	1	н	5-OCH ₃	NH ₂
1 2 2	<u>~</u> _	-(CH ₂) ₃ -	-6-H-	0	н	5-F	NH ₂
1 2 3	<u>~</u>	-(CH ₂) ₂ -	-G-H-	o	3-CI	н	NH ₂
124	<u>~</u>	-(CH ₂) ₂ -	-o-c-H-	0	н	н	NH ₂
1 2 5		-(CH ₂) ₂ -	-E-H-	1	н	н	он
1 2 6	<u>~</u> >	-c-	-H-g-H-	1	н	н	NH ₂
1 2 7	$\widehat{\hspace{-1em}\backslash\hspace{-1em}}$	-c-	-c-H-	1	н	н	NH ₂
1 2 8	$\bigcirc\!$	-O-CH ₂ -	—с-н- П	1	2-CI	н	NH ₂
1 2 9	$\widehat{\hspace{-1em}\bigcirc\hspace{-1em}}-$	-0-CH ₂ -	E-H-	1	н	5-F	NH ₂
130		-о-сн,-			н	5-OCH _o	NHa

Table 1 (14)

	A-X-Q-I	(CH ₂)n	R1	اً ال'	R2	2	
		.,	•	ہ ک n	R1	R2	R3
Compound No	o. A	X		<u></u>		nz	
1 3 1	NH ₂	-CH2-	-o-c-H-	1	μ	н	NH ₂
1 3 2	NH ₂	—о-сн₂—	-g-H-	1	н	н	NH ₂
		-CH ₂ -O-CH ₂ -					NH ₂
1 3 4	N(CH ₃) ₂	_CH ₂ _	-o-c-h-	1	, H	н	NH ₂
		—о-сн₂-				н	NH ₂
1 3 6	N(CH ₃) ₂	-CH ₂ -O-CH ₂ -	—ё-ы-	1	н	н	NH ₂
		_сн ₂ _				н	NH ₂
1 3 8	N- OCH ³	o-сн ₂	_c-n-	1	н	н	NH ₂
1 3 9	осн,	CH ₂ -O-CH ₂				н	NH ₂
140	осн,	CH ₂	-o-ë- <u>h</u> -	1	н	5-F	NH ₂

Table 1 (15)

20

	A-X-Q-(0	CH ₂)n	R1		RЗ			
		3 1	l e N	Ĭ,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3 -R2 4		
Compound	No. A	×	Q	n	R1	R2	R3	
141	N-CH,	Direct bond	-ç-H-	1	н	н	NH ₂	
1 4 2	NZ _{CH3}	CH ₂	-o-ë-n-	1	н	н	NH ₂	
1 4 3	н₃с-√	Direct bond	-c-h-	1	н	н	NH ₂	
144	н₃с-{}	—СН ₂ —	-o-g-H-	1	н	н	NH ₂	
1 4 5	·· CH ₃	CH ₂	-o-c-H-	1	н	н	NH ₂	
1 4 6	CH ₃	CH ₂	-H-c-H-	1	н	н	NH ₂	
1 4 7	H ₃ C	-CH ₂ -	-o-c-H-	1	н	н	NH ₂	
148	H ₃ C	—сн ₂ —	-N-C-0-	1	н	н	NH ₂	
1 4 9	H ₃ C	—СH ₂ —	- N-c-H-	1	н	н	NH ₂	
150	н3с	-(CH ₂) ₂ -	-ç-H-	1	н	н	NH ₂	

Table 1 (16)

	A-X-	-Q-(CH ₂)n	R1	, N	R3		
			2			3 -R2 4	
Compound	No. A	×	Q	n	R1	R2	R3
151	H ₃ C	-(CH ₂) ₂ -	-c-ñ-	1	н	н	NH ₂
1 5 2	H³C	(CH ₂) ₂	-H-g-	0	н	н	NH ₂
153	H ₃ C	—СH ₂ —	-H-g-	2	н	н	NH ₂
154	N-Z _{CI}	Direct bond		1	н	н	NH ₂
1 5 5		-сн ₂ -	-o-c-N-	1	н	н	NH ₂
156	cı—	Direct bond	-c-H-	1	н	н	NH ₂
157	ci—N—	CH ₂	-o-c-H-	1	н	н	NH ₂
158	CI N	−о-сн₂−	-c-H-	1	н	н	NH ₂
159	CI N	-0-CH ₂ -	-o-c-N-	1	н	н	NH ₂
1 6 0	Br	—СH ₂ —	-o-g-H-	1	н	н	NH ₂

5 R1

Table 1 (17)

	A-X-Q-(CH ₂	2)n			3 2 3 R2	!	
Compound No.	Α	X	Q	n	R1	R2	F
161	H ₃ CO	—СH ₂ —	-o-c-h-	1	н	н	N
162	H,CO	-CH ₂ -	-H-c-o-	1	н	н	N
163	H ₃ CO	CH₂	-N-c-H-	1	н	н	N
164	H ₃ CO	—(CH ₂) ₂ —	-ç- ^H -	1	н	н	N
165	H ₃ CO	—(CH ₂) ₂ —	-c-H-	1	н	н	N
166	H ₃ CO	—(CH ₂) ₂ —	-H-g-	0	н	н	N
167	H ₂ CO	—CH ₂ —	-H-c-	2	н	H	1
168	C2H2O	CH ₂	-o-c-H-	1	н	н	١
169	H ₃ CS	—сн ₂ —	-o-c-N-	1	н	н	ı
170	H ₂ N	CH ₂	-o-c-N-	1	н	н	,

Table 1 (18)

	A-X-Q-	(CH ₂)n	5 R1	_H	R3		
			2	6		R2	
Compound No.	Α .	x	Q	n	R1	R2	R3
171		—СН₂—	-o-c-H-	1	н	н	NH2
172	((CH ₂) ₂	-o-c-H-	1	н	н .	NH ₂
173	~	Direct bond	- E-H-	1	н	н	NH ₂
			_g_H_				
			-g-H-				
			g-r-				
177	H ₃ C N	CH ₂	-c-H-	0	н	н	NH ₂
178	H ₃ C	Direct bond	_c_H_	1	н,	н	NH ₂
1 7 9	H ₃ CN	CH ₂	-o-c-N-	1	н	н	NH2
			_				

Table 1 (19)

	A-X-Q-(CH	H ₂)n 4	P1	, \	33	12		
Compound No	. A	×	ä Q	n	R1	R2	R3	_
181	~	—СH ₂ —	-o-g-M-	1	н	н	NH ₂	
182	~ <u></u>	-(CH ₂) ₂ -	-o-g-H-	1	н	н	NH ₂	
183	~	Direct bond	-ç-H-	1	н	н	NH ₂	
184	~	_сн ₂ _	-g-ñ-	0	н	н	NH ₂	
185	~	_сн ₂ _	-N-G-	0	н	н	NH ₂	
186	r	CH ₂	-H-g-o-	1	н	H	NH ₂	
187	H ₃ C	—сн ₂ —	-c-H-	0	н	н	NH ₂	-
188	N .	Direct bond	-c-h-	1 .	н	н	NH ₂	
189	H ₃ C	CH ₂	-o-ç-й-	1	н	н	NH ₂	
190		—СH₂—	-o-g-ñ-	1	н	н.	NH2	

Table 1 (20)

	A-X-Q-(CH ₂)n			3 2 3 R2	2	
Compound No.	A	х	Q	n	R1	R2	R3
191	~~~	Direct bond	-c-H	1	н	н	NH ₂
192	~ <u>~</u> ~	-CH ₂	-o-ç-H-	1	н	н	NH ₂
193	~	-CH ₂ -O-CH ₂ -	-g-H-	1	н	н	NH ₂
194	~	-CH ₂ -O-CH ₂ -	-g- ^H -	0	н	н	NH ₂
195 "	€ N	Direct bond	-ç-N-	1	н	н	NH ₂
196	₹	CH ₂	-o-c-n-	1	н	н	NH ₂
197	⟨	Direct bond	- <u>c</u> -H-	1	н	н	NH ₂
198	N-N	CH ₂	-o-ë-N-	1	н	н	NH ₂
1 9 9	⟨	-CH2-O-CH2-	-g-H-	1	н	н	NH ₂
200	⟨	-сн ₂ -о-сн ₂	-ç-H-	0	н	H	NH ₂

Table 1 (21)

	,,,, <u>a</u> (e			R3) R2		
Compound No.	A	х	Q	n	R1	R2	R3
201	()-	Direct bond	-ç-H-	1	н	н	NH ₂
202	()-	—СH₂—	-o-g-H-	1	н	н	NH ₂
203	5	(CH ₂) ₂	-o-g-H-	1	н	н	NH ₂
204		CH ₂ 0-CH ₂	-c-k-	0	н	н	NH ₂
205		Direct bond	-E-N-	1	н	н	NH ₂
206	(<u>}</u> -	CH ₂	-o-g-H-	1	н	H	NH ₂
207	()-	-CH ₂ -O-CH ₂ -	 	1	н	н	NH ₂ .
2 0 8		CH ₂ 0-CH ₂	-6-K-	0	н	н	NH ₂
209	C)	Direct bond	-c-H-	1	н	н	NH ₂
210	€, CH3	Direct bond	-c-N-	1	н	н	NH ₂

Table 1 (22)

A-X-Q-(CH ₂)	n * 5	R1	H3 2	} 3 R2	
Α	×	Q	n	R1	R2
	cH₂	-0-C-N-	1	н	н

Compound No.	Α	x	Q	n	R1	R2	R3
211		—сн₂—	-0-C-X-	1	н	н	NH ₂
2 1 2	N-0-	Direct bond	_B_H_	1	н	н	NH ₂
2 1 3	H ₃ C N-S	Direct bond	-c-ñ-	1	н	н	NH ₂
2 1 4	N NH	Direct bond	-c-H-	1	н	н	NH ₂
215 "	n_n-	(CH ₂) ₃	-H-g-o-	1	н	н	NH ₂
2 1 6	N_S	-сн ₂ -	-o-g-H-	1	н	н	NH ₂
2 1 7	N S	—(CH ₂) ₂ —	-o-c-H-	1	н	н	NH ₂
2 1 8	N CH3	CH ₂	-o-c-H-	1	н	н	NH ₂
2 1 9	H ₂ N - 0 T	CH ₂	-o-ë-H-	1	н	н	NH ₂
220	HN LT	—CH ₂ —	_6 - 8-	1	н	н	NH ₂

Table 1 (23)

	A-X-Q-(CH ₂)n						
Compou	nd No. A	x	Q	n	R1	R2	R3
2 2	1 5>	CH ₂	-o-c-n-	1	н	н	NH ₂
2 2	2 💭	-CH ₂ -O-CH ₂ -	-c-k-	1	Н	н	NH ₂
2 2	3 ♣>	-CH ₂ -O-CH ₂ -	-8-8-	1	н	н	NH ₂
2 2 4	4	Direct bond	-o-c-Ñ-	1	н	н	NH ₂
2 2	5 N	—СH ₂ —	-0-C-H-	1	н	н	NH ₂
2 2 0	6 (N)—	CH ₂ O-CH ₂ -	-g-K-	1	н	н	NH ₂
2 2	7 H₃C-N_N-	-(CH ₂) ₂ -	-o-c-N-	1	н	н	NH ₂
2 2	8 💬	Direct bond	-o-c-N-	1	н	н	NH ₂
22	9 /	_СH ₂ _	-o-c-N-	1	н	н	NH ₂
23	·	-CH2-O-CH2-	_ll_ _N _	1	н	н	NH ₂

Table 1 (24)

	A-X-Q-(CH	(2)n 5 R	H H	R3	1 ³ R2	•	
Compound No.	Α	х	Q	n	R1	R2	R3
2 3 1		Direct bond	-c-H-	1	н	н	NH ₂
232		Direct bond	-c-H-	1	н	н	NH ₂
2 3 3	();>	Direct bond	-ç-H-	1	н	н	NH ₂
2 3 4		Direct bond	_c_H-	1	н	н	NH ₂
235		Direct bond	-c-H-	1	н	н	NH ₂
236	N S	Direct bond	-g-H-	1	н	н	NH ₂
237		Direct bond	-c-x-	1	н	н	NH ₂
238	12N CJ	Direct bond	-c-H-	1	н	н	NH ₂
2 3 9	H ₂ N CS	Direct bond	-c-H-	1	н	. н	NH ₂
240	H ₂ N	Direct bond	N	1	н	н	NH ₂

Table 2 (1

Table 2 (1)			
Compound No.	Structural formula		
1	O No		
2	H ₂ N NH ₂		
3			
4	Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-C		
5	NH ₂		

Toble 2 (2

Table 2 (2)	
Compound No.	Structural formula
6	
7	CN CO
8	NH ₂
9	Children Mr.2
1 0	N N N N N N N N N N N N N N N N N N N

Table 2 (3

Table 2 (3)	
Compound No.	Structural formula
1 1	
1 2	N NH2
1 3	N NH2
1 4	N-O-CN H NH2
1 5	0211-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

Table 2 (4

10

Table 2 (4)			
Compound No.	Structural formula		
1 6	NH2		
1 7			
1 8			
1 9	H ₂ c ⁰ C _N		
20	N N N N N N N N N N N N N N N N N N N		

Table 2 (1)

Γable 3 (1)	
Compound No.	Structural formula
1	I H ₂ N
2	
3	
	N N N N N N N N N N N N N N N N N N N
5	N O O H O O O O O O O O O O O O O O O O

m 11 0 (0)

rable 3 (2)	
Compound No.	Structural formula
6	
7	N N N N N N N N N N N N N N N N N N N
8	O N S O N S
9	O O N S O N N N N N N N N N N N N N N N
1 0	N S N N N N N N N N N N N N N N N N N N

Table 3 (3)

10

Table 3 (3)	
Compound No.	Structural formula
1 1	N S H NH2
1 2	N S N NH2
1 3	
	NO OF THE SHE
15.	S H NH2
1 6	O S H NHz

Table 4 (1)

15

Compound No.	Structural formula
1	CH ₃
2	CH ₃ NH ₂
3	CH ₃ H NH ₂
4	CH, O
5	O CH ₃

Table 4 (2)

15

35

Table 4 (2)	
Compound No.	Structural formula
6	CN O CH ₃
7	CH ₃ CH ₃ NH ₂
8	N H H H NH2
9	CH, O
10	

Table 4 (3)

25

Table 4 (3)		
Compound No.	Structural formula	
1 1	CH ₃ H NH ₂	
1 2	H CH,	
1 3	CH ₂ H NH ₂	
1 4	CH ₃	

The compound of this invention may be prepared as described below.

(a) A compound represented by formula (14);

(14)

wherein A and X are as defined above; R9 is -C(=G)OH (G is an oxygen or sulfur atom) or -NH₂; is condensed with a compound represented by formula (15);

wherein R¹, R² and n are as defined above; R¹0 is -NH₂ when R²0 is -C(=G)OH (G is as defined above) and -C (=G)OH (G is as defined above) when R²0 is -NH₂; R¹¹ is an amine group protected with a protective group used in a common peptide-forming reaction, e, a ter-butoxycarbony or a hydroxyl group protected with a protecting group commonly used in a peptide-forming reaction, including benzyl.

(b) A compound represented by formula (16)

5

10

15

20

25

30

40

45

50

55

wherein A and X are as defined above; and R12 is -OH or -NH₂; is condensed with a compound represented by formula (17);

wherein R1, R2, R11 and n are as defined above; R13 is -OH or -NH $_2$; using an eigent such as N,N-carbonyidiimidazole, N,N-thiocarbonyidiimidazole, phosgene or thiophosgene, to give a compount represented by formula (R1)

wherein A, X, Q, n, R1, R2 and R11 are as defined above, whose protecting group is then removed to give the compound of this invention.

(c) A compound represented by formula (14) is condensed with a compound represented by formula (19);

wherein $\mathsf{R}^1,\mathsf{R}^{10}$ and n are as defined above; R^{14} is a methyl, ethyl or tert-butyl group. (d) A compound represented by formula (16) is condensed with a compound represented by formula (20);

10

15

20

25

30

4O

55

wherein R1, R13, R14 and n are as defined above; using an agent such as N,N'-carbonyldiimidazole, N,N'-thiocarbonyldiimidazole, phosgene or thiophosgene to give a compound represented by formula (21);

wherein A, X, Q, n, R¹ and R¹⁴ are as defined above; which is then hydrolyzed to give a compound represented by formula (22);

wherein A, X, Q, n and R^1 are as defined above. The product is condensed with a compound represented by formula (23);

wherein R² and R¹¹ are as defined above; to give a compound represented by formula (18) whose protecting group is then removed to give the compound of this invention.

(e) A compound represented with formula (22) is condensed with a compound represented by formula (24);

wherein R2 and R3 are as defined above; to give the compound of this invention.

Preparation procedures for typical intermediates are shown below.

10

15

20

30

45

A compound represented by formula (15) may be prepared by introducing an appropriate protecting group to a benzoic acid derivative represented by formula (25);

wherein R1, R10 and n are as defined above; condensing the product with a compound represented by formula (23), and removing the protecting group of the condensation product.

A compound represented by formula (17) may be prepared by introducing an appropriate protecting group to a benzoic acid derivative represented by formula (26);

wherein R1, R13 and n are as defined above; condensing the product with a compound represented by formula (23), and removing the protecting group of the condensation product.

A compound represented by formula (23) may be prepared by introducing a protecting group to a compound represented by formula (24).

Next, reactions used for preparation of the compound of this invention will be described.

The condensation reaction in (a) may be an amide-bond forming reaction for a usual peptide using, for example, an activated ester, a mixed acid anhydride or an acid halide. For example, a cathoxylic acid, i.e., a compound represented by formula (14) wherein R¹ is -C(=G)OH (G is es defined above) or a compound represented by formula (15) wherein R¹ is -C(=G)OH (G is as defined above), may be condensed with a phenol derivative such as 2.4,5-trichlorophenol, pentachicrophenol and 4-nitrophenol, or an N-hydroxy compound such as N-hydroxysuccinimide and hydroxybrazotriazote; in the presence of dicyclohexylcarbodiimide, to be converted into an activated ester, which is then condensed with an amine represented by formula (14) wherein R⁹ is -NH₂ or by formula (15) wherein R¹⁰ is -NH₂, to give the desired product.

Alternatively, a carboxylic acid represented by formula (14) wherein R⁰ is -C(-G)OH (36 is a defined above) or by formula (15) wherein R¹⁰ is -C(-G)OH (36 is as defined above), may be reacted with, for example, oxalyl chloride, which or phosphorus oxychioride to be converted into en sold chloride, which is then condensed with an amine represented by formula (14) wherein R⁰ is -NH₂ or by formula (15) wherein R¹⁰ is -NH₂, to give the desired product.

Furthermore, a carboxylic acid represented by formula (14) wherein R⁰ is -C(=C)DH (G is as defined above) or by formula (15) wherein R¹⁰ is -C(=C)DH (G is as defined above), may be reacted with, for example, isobully florearbonate or methanesulony included to be converted into a mixed acid antiydride, which is then condensed with an amine represented by formula (14) wherein R⁰ is -NH₂ or by formula (15) wherein R¹⁰ is -NH₂, to give the desired product.

The above condensation reaction may be conducted solely using a peptide condensing agent such as dicyclohexylcarbodimide, N,N'-arbonyldimidazole, diphenyl phosphoric azide, disthylphosphorylcyanide, 2-chloro-1,3-dimeth-

ysmouzzonomum crisure, suc.

The reaction may be usually conducted at -20 to +50 °C for 0.5 to 48 hours. Solvents which may be used include aromatic hydrocarbons such as benzene, foluene end the like; others such es tetrahydroturan, dioxane, dielhyl either and the like; halogenated hydrocarbons such as dichloromethene, chloroform and the like, NN-dimethyllormemide; alcohols such as methanol, ethanol and the like; and a mixture thereof. If necessary, an organic base such as triethyl-amine and povrifine may be added.

The condensation reaction in (b) may be conducted by activating a compound represented by either formula (16) or (17) with, for example, phospens, hipphospens, N.N'-carbonydilmidezole, N.N'-hipcarbonydilmidazole or the like and then reacting the activated product with the other compound. The reaction may be usually conducted at -20 to +50 °C for 0.5 to 48 hours. Solvents which may be used include aromatic hydrocarbons such as benzero, lobuse and he like, eithers such as teatractic closure and refine tile, either and refine the control of th

The condensation reaction in (c) may be conducted as the condensation in (a).

10

20

The condensation reaction in (d) may be conducted as the condensation in (b).

The protecting group of the compound represented by formula (17) may be removed under the conditions used in a common peptide-forming reaction. For example, when R1¹ in formula (18) is the emino group protected with terfuboxycarbony), it may be deprotected by treatment with an acid such as hydrochloric sold, trifluoreaceutic acid or the like.

A salt of a compound represented by formula (1) or (13) may be formed during preparation of the compound, but is usually formed by treating the compound with a pharmaceutically acceptable said. Such an acid includes inorganic acids such as hydrochoinc seid, hydrochornic seid, buffurb said, british said, hybroshoric seid and the like, and organic saids used as seetic acid, tartaric acid, timaric acid, maleic acid, citric acid, benzoic acid, trifluroacetic acid, p-toluenesultonic acid and the like. These salts may be also used as an active ingredient in this invention, as the free base, the compound represented by formula (1) or (13).

A compound represented by formula (1) or (13) may be purilled or isolated by a usual separation method such as extraction, recrystallization, column chromatography and the like.

The novel benzamide or anilide derivative of this invention has differentiation-inducing effect and thus is useful as a herepeutic end/or improving egent to e variety of diseases such as malignant tumors, autoimmune diseases, dermatolopic diseases and paraeltism.

As used herein, a "mallgnant tumor" includes hematologic mailignancy such as acute leukemia, mailgnant hymphoma, multiple myeloma and macroglobulinemio as well as solid tumors such as coto ceance, cerebrat tumor, head neck tumor, breast carcinoma, pulmonary cenace, asophaguel cancer, gastric cancer, hepatic cancer, galbladder cancer, breast cancer, pancreatic cancer, nesidioblastoma, renal cell carcinoma, adrenocortical cancer, uninary bladder carcinoma, postatic cancer, scissicular tumor, ovarian carcinoma, territor cancer, chorionic carcinoma, thyroid cancer, malignant carcinolat pumor, skin cancer, malignant melanoma, osteogenic sarcoma, soft tissue sarcoma, neuroblastioma. Wilms tumor and retinoblastoma.

An autoimmune disease includes rheumatism, diabetes, systemic lupus erythematodes, human autoimmune lymphocytotic lymphadenopathy, immunoblastic lymphadenopathy, Crohn disease and ulcerative colitis.

A dermatologic disease includes psoriasis, acne, eczema and atopic dermatitis.

Parasitism includes diseases such as malaria caused through vermination.

Indications for the compound of this invention are not limited to these specific examples.

The active ingredient of this invention useful as a drug may be used in the form of a general pharmaceutical composition. The pharmaceutical composition may be prepared with generally used diluents or excipients such as filler, extender, binder, mosteruizing agent, disintegrator, surfactant and lubricant. The pharmaceutical composition may have a variety of dosage forms depending on its therap eutic purpose, typically tablet, pill, powder, solution, suspension) and supposition of providers and provide

For preparing tableta, variety of carriers well-known in the art may be used. Such a carrier includes excipients For preparing tableta, and pulsace, statch, eclairum carbonate, kaciline, crystalline cellulose and silicit eacit; bindres such as excited active and prepared to the control of t

In forming pills, a variety of carriers well-known in the art may be used. Such a carrier includes excipients such as revisaline cellulose, lactose, starch, hydrogenated vegetable oil, kaoline and talc; binders such as powdered racacia, powdered tragacanth gum and gelatin; dientegrators such as calcium carmelose and agar.

Capsule may be prepared by blending -an active ingredient with a variety of the above carriers as usual and filling the resulting blend into, for example, a hard or soft gelatin capsule or the like.

For preparing injection, solution, amulsion and susponation are sterilized and preferably isotonic with blood. It may be prepared using diluents commonly used in the art, for example, water, ethanol, macrogol, propylene glycol, ethoxylated isosteanyl alcohol, polyoxylosoteanyl alcohol and polyoxyethylene sorbitan fatty acid esters. The pharmaceutical preparation may contain sodium chloride necessary to prepare an isotonic solution, glucose or glycerin, as well as usual solubilizes, buffers and soothing agents.

Suppository may be formed using a variety of well-known carriers; for example, semi-synthetic glyceride, cocoa butter, higher alcohols, higher alcohol esters and polyethylene glycol.

Furthermore, the pharmaceutical composition may contain coloring agents, preservatives, perfumes, flavors, sweeteners and/or other drugs.

The amount of the active ingredient in the pharmacoutical composition of this invention may be, as appropriate, selected from a wide range with no limitations, and is generally about 1 to 70 % by weight in the composition, preferably about 5 to 50 % by weight.

An administration route of the pharmaceurical composition is not limited, and selected depending on patient's age, easy entity of cleases and other conditions. For example, tablet, pill, solution, suspension, emulsion, granule and capsule may be orally administered, injection may be intravenously administered solely or in combination with a common infusion fluid such as glucose, arriino acids and the like, or if necessary, intramuscularly, subcutaneously or intrapertionally as a sole preparation. Suppository may be intrarectally administered.

ap, sea of the pharmaceutical preparation of this invention may be selected, depending on their dosage form, patient's ape, sea of the eventy of disease, and other conditions, as appropriate, but the amount of the active ingredient may be generally about 0.001 to 100 mg/kg a day. It is recommended that a unit dosage form may contain about 0.001 to 1000 mg of the active ingredient.

The compound represented by formula (1) or (13) of this invention or a salt thereof exhibits no or a mail toxicity which is acceptable as the anticancer agent at the dose showing pharmacological effects.

Examples

55

This invention will be specifically illustrated with, but is not limited to, the following examples, where the numbers in parentheses indicate those of the compounds shown in the above detailed description. Example 1

Preparation of N-(2-arminophenyl)-4-(N-benzoylaminomethyl)benzamide hydrochloride (Table 1: hydrochloride of Compound 1):

(1-1) To a suspension of 21.16 g of 4-aminomethylbenzoic acid(140 mmol) in 450 mL of dichloromethane was added 42 mL of triethylamine (300 mmol). Under ice-cooling, 60.4 g of triflucoacetic anhydride (287 mmol) in 50 mL of dichloromethane were added dropwise, maintaining the inner temperature at 3 to 8 °C, and then the mixture

was stirred four 3 hours. The reaction mixture was poured into a saturated aqueous sodium bicarbonate solution, and was acidified with 10 % hydrochloric acid. The gld precipitate was collected by filtration and dried to give 30.4g of 4/N-Inflitrocacelylaminoral enthyl)bonzoic acid (Plott. 87.8 %) as an opalescent solid.

¹H NMR (270 MHz, DMSO-d₆) δ ppm: 4.47(2H, d, J=5.8 Hz), 7.39(2H, d, J=8.1 Hz), 7.93(2H, d, J=8.1 Hz), 10.08 (1H, L, J=5.8 Hz), 12.95(1H, br.s.)

(17), 1,2-5 (12), 1,2-5 (13), 1,2-5 (14), 1,2-5 (15),

¹HNMR (270 MHz, CDCl₃) δ ppm: 1.51(9H, s), 3.75(2H, s), 6.26(1H, s), 6.77(1H, d, J=8.1 Hz), 6.79(1H, dd, J=7.3, 8.1 Hz), 7.00(1H, dd, J=7.3, 8.1 Hz), 7.27(1H, d, J=8.1 Hz)

15

20

30

35

(1-3) To a suspension of 30 g of the compound from the process (1-1) (121 mmol) in 200 mL of dichloromethane were slowly added dropwise 21 g of oxally chloride (165 mmol) with intermittently adding DMF (0.1 mL per 2 mL addition, maintaining the inner temperature within 10 to 15 °C by ise-cooling. After completion of the addition, the instruce was alread until bubble generation cessed, and then at 40 °C for an additional hour. After evaporation, excess oxally chloride was azeotropically removed with toluene, and then the residue was redissolved in 100 mL of dichlorotenham. The prepared acid chloride oxicultion was added dropwise to a solution of 22.88 g of the compound from the process (1-2) (110 mmol) in 100 mL of dichlorotenham and 200 mL of pyridine, maintaining the inner temperature within 7 to 9 °C by the cooling.

After addition, the mixture was warmed to room temperature, and was left overnight. After adding saturated addium bicarbonate at, to the reaction mixture, the resulting mixture was extracted with chloroform, and the organic layer was washed with saturated bring, dried and evaporated. To the residue was added methanol-discopropyl either, and the precipitated solid was collected by filtration and dried to give 28: 1 g of Nt/2-(N-tert-butoxycerbonyl)aminophenyl]-4-(N-trifluoracedylaminomethylyber-zmide (Yfeld: 58 %) as a light yellow solid.

1H NMR (270 MHz, DMSO-d₆) δ ppm: 1.44(9H, s), 4.48(2H, d, J=5.9 Hz), 7.12-7.23(2H, m), 7.44(2H, d, J=8.1 Hz), 7.54(2H, d, J=8.1 Hz), 7.94(2H, d, J=8.1 Hz), 8.68(1H, br.s), 9.83(1H, s), 10.10(1H, br.t, J=5.9 Hz)

(1-4) To a suspension of 13.12 g of the compound from the process (1-3) (30 mmol) in 120 mL of methanol and 180 mL of water were actived 4.70 g of potassium carbonate (24.0 mmol), and the moture was heated with stirring at 70 °C for 4 hours. It was extracted with chloroform, and the organic layer was washed with saturated brine, dried, evaporated and dried to give 10.3 g of 4-aminomethyl-N-[2-(N-tert-butoxycarbonyr)aminophenyr]benzemide (Yidei: quantitative) as a light yellow amorphous solid.

¹H NMR (270 MHz, DMSO-d₆) δ ppm: 3.80(2H, s), 7.13-7.23(2H, m), 7.48-7.58(4H, m), 7.90(2H, d, J=8.1 Hz), 8.69(1H, br.s), 9.77(1H, br.s)

(1-5) To a solution of 0.11 g of the compound from the process (1-4) (0.44 mmol) in 5 mL of pyridine was added 0.08 g of benzoyl chloride (0.53 mmol), and the mixture was gradually warmed to room temperature and then stirred for 8 hours. Saturated accidum bicarbonate aq. was added, and then the mixture was cyrtacted with eithyl acetate. The organic layer was washed with saturated brine, dried and evaporated. The residue was washed with disopropyl either, and the solid obtained was dried to give 0.14 g of N12-(N-iert-butoxycarbonyl)aminophenyl]-4-(N-benzy)aminomethyllybenzamide (Yiekt 7.1.4 %) as a white solid.

¹H NMR (270 MHz, DMSO-d₆) 8 ppm: 1.44(9H, s), 4.56(2H, d, J=5.9 Hz), 7.11-7.22(2H, m), 7.46-7.56(7H, m), 7.90-7.94(4H,m), 8.67(1H, s), 9.15(1H, t, J=5.9Hz), 9.81(1H, s)

(1-6) To a solution of 0.10 g of the compound from the process (1-5) (0.224 mmol) in 5 mL of dicxane and 1 mL of methanol was added 5 mL of 4N hytorchioric acid-dioxane, and the mixture was stirred at room temperature for 7 hours. To the residue after evaporation was added discopropyl ether, and the formed solid was collected by filtration and dried to give 0.08 g of N-(2-aminophenyl)-4-(N-benzoylaminomethyl)benzamide hydrochloride (Yield: 93 %) as a light brown solid.

mp: 206-209 °C 1H NMH (270 MHz, DMSO-d₆) δ ppm: 4.57(2H, d, J=5.8 Hz), 7.27-7.38(4H, m), 7.47-7.59(5H, m), 7.92(1H, d, J=6.1 Hz), 8.05(1H, d, J=6.1 Hz), 9.19(1H, t, J=5.8 Hz), 10.38(1H, b.s.)

IR(KBr, cm-1): 3286, 3003(br.), 1630, 1551, 1492, 1306, 1250, 749, 695.

As described in Example 1, the compounds of Examples 2 to 44 were prepared, each of whose melting point (mp), 'IH NMR data and/or IR data are described below.

Example 2

s

15

20

30

45

55

N-(2-aminophenyl)-4-[N-(2-chlorobenzoyl)aminomethyl]benzamide (Table 1: Compound 14)

mp: 201-204 °C(dec.).

1H NMR (270MHz, DMSO-d₆) δ ppm: 4.52(2H, I, J=5.9 Hz), 4.89(2H, br.s), 6.60(1H, ddd, J=1.5, 7.3, 8.1 Hz), 6.78 (1H, dd, J=1.5, 1Hz), 6.76(1H, br.d., J=5.1 Hz), 9.7(1H, ddd, J=1.5, 7.3, 8.1 Hz), 7.17(1H, d, J=8.1 Hz), 7.38-7.54(6H,m), 7.97(2H, d, J=6.1 Hz), 9.06(1H, br.I., J=5.9 Hz), 9.63(1H, br.s) IR (KBr) cm¹¹. 3268, 1649, 1456, 1304, 748

Example 3

N-(2-aminophenyl)-4-IN-(2-nitrobenzoyl)aminomethyl|benzamide|hydrochloride|Table 1: hydrochloride of Compound 18)

mp: 210-212 °C(dec.)

"H NMR(270MHz, DMSO-d_e) ppm: 4.55(2H, 1, J=5.9Hz), 7.20.7.40(3H, m), 7.50.7.60(1H, m), 7.59(2H, d, J=8.1 Hz), 7.60-7.70(2H, m), 7.89(1H, dd, J=5.8.1, 8.1Hz), 8.00-8.10(3H, m), 9.34(1H, 1, J=5.9 Hz), 10.43(1H, br.s) [H(KB);m]** (1988) 2500-3000(br.), 1648, 1534, 1481, 1382, 1314, 754, 701

Example 4

N-(2-aminophenyl)-4-[N-(4-methylbenzoyl)aminomethyl]benzamide hydrochloride (Table 1: hydrochloride of Compound 28)

mp:(amorphous).

'HNMF(270MHz, DMSO-d_e) ppm: 2.37(3H, s), 4.56(2H, d, J=5.0 Hz), 7.20-7.30(6H, m), 7.47(4H, d, J=8.8 Hz), 7.82(2H, d,J=8.8 Hz), 6.03(2H, d,J=8.8 Hz), 9.09(H, t, J=5.4), 7.20(2H, d,J=8.6 Hz), 7.20(2

Example 5

N-(2-aminophenyl)-4-[N-(3-methoxybenzoyl)aminomethyl]benzamide (Table 1: Compound 30)

mp: 182-185 °C

14 NMR(270MHz, DMSO-d_e) δ ppm: 3.81(3H, s), 4.54(2H,d, J=5.9Hz), 4.88(2H, brs), 6.60(1H, dd, J=6.6, 7.3 Hz), δ .76(1H, d, J=7.3Hz), δ .77(1H, dd, J=7.3Hz), 7.11(1H, dd, J=1.5, 8.1 Hz), 7.16(1H, d, J=7.3 Hz), 7.35-7.51 (5H, m), 7.94(2H, d, J=8.1 Hz), 9.12(1H, brt, J=5.9 Hz), 9.63(1H, brs) H2(KBr)cm², 3901, 1637, 1524, 1489, 1457, 1314, 1248, 752

Example 6

N-(2-aminophenyl)-4-[N-(4-methoxybenzoyl)aminomethyl]benzamide (Table 1: Compound 31)

mp: 149-151 °C

Example 7

N-(2-aminophenyl)-4-[N-(3,4,5-trimethoxybenzoyl)aminomethyl]benzamid-e(Table 1: Compound 33)

mp: 208-210 °C(dec.)

1H NMR(270MHz, DMSO-d₆) 8 ppm: 3.71(3H, s), 3.83(6H, s), 4.55(2H, d, J=5.9 Hz), 4.88(2H, br.s), 6.80(1H, dd, J=7.3, B.1 Hz), 6.78(1H, d, J=8.1 Hz), 5.7(1H, dz, J=8.1 Hz), 7.26(2H, s), 7.44(2H, d, J=8.1 Hz), 7.25(2H, d, J=8.8 Hz), 9.07(1H, 1, J=5.9 Hz), 9.87(1H, br.s)

IR(KBr)cm⁻¹: 3267, 1635, 1582, 1457, 1237, 1132, 755

Example 8

5 N-(2-aminophenyl)-4-[N-(4-(N,N-dimethyl)aminobenzoyl]aminomethyl]benzamide (Table 1: Compound 36)

mp: 216-219 °C(dec.)

¹H MMR(270MHz, DMSO-d₆) 5 ppm: 2.98(6H, s), 4.51(2H, d, J=5.9 Hz), 4.88(2H, br.s), 6.60(1H, dd, J=8.1, 8.1 Hz), 6.71(2H, d, J=8.1 Hz), 6.7(1H, dd, J=7.3, 8.1 Hz), 7.16(1H, d, J=7.3 Hz), 7.41(2H, d, J=8.1 Hz), 7.78(2H, d, J=8.1 Hz), 8.77(1H, t, J=5.9 Hz), 9.83(1H, br.s).

[BK(K9)cm⁻¹ 3301, 1632, 1519, 1457, 1298, 754

Example 9

N-(2-aminophenyl)-4-[N-(4-trifluoromethylbenzoyl)aminomethyl]benzamide (Table 1: Compound 42)

mp: 243-246 °C

1H NMR(270MHz, DMSO-d₆) 6 ppm: 4.58(2H, d, J=5 9 Hz), 4.88(2H,br.s), 6.59(1H,dd, J=6.6, 7.3Hz), 6.77(1H, d, J=8.1 Hz), 6.94(H), dd, J=5.9, 6.6 Hz), 7.16(1H, d, J=6.1 Hz), 7.45(2H, d, J=6.1 Hz), 7.88(2H, d, J=6.8 Hz), 7.95 (2H, d, J=6.1 Hz), 8.11(2H, d, J=6.1 Hz), 8.11(2H, d, J=6.1 Hz), 9.64(1H, b.c.) IR(KB)(pm*): 3301, 1640, 1529, 1429, 1334, 1162, 1120, 1070, 856, 750

Example 10

20

25 N-(2-aminophenyl)-4-[N-(4-carboxybenzoyl)aminomethyl]benzamide hydrochloride (Table 1; hydrochloride of Compound 45)

mp: (amorphous).

1+i NMR(270M+iz, DMSO-d₆) 8 ppm: 4.58(2H, d, J=5.9 Hz), 7.29-7.37(3H, m), 7.49(3H, d, J=6.1 Hz), 8.02-8.06 (6H, m), 9.36(1H, t, J=5.9 Hz), 10.4(1H, b.s) (1H, b.s) (

Example 11

35 N-(2-aminophenyl)-4-[N-(4-methoxycarboxybenzoyl)aminomethyl]benzamide (Table 1: Compound 46)

mp: 204-209 °C(dec.)

11+ NMR[270M+Iz, DMSO-4₃) 5 ppm 3.89(3H, s), 4.57(2H, d, J=5.9Hz), 4.88(2H, br.s), 6.60(1H, dd, J=6.6, 7.3 Hz), 6.78(2H, d, J=7.3 Hz), 6.97(H, dd, J=1.5, 6.6, 7.3 Hz), 7.16(H, d, J=7.3 Hz), 7.48(2H, d, J=6.1 Hz), 7.95 (2H, d, J=6.1 Hz), 8.03(2H, d, J=8.8 Hz), 8.07(2H, d, J=8. Hz), 9.35(1H, t, J=5.9 Hz), 9.64(1H, br.s) (3HKBhcm², 2637(bz), 1721, 1634, 1281, 1113, 7.50, 7.03

Example 12

45 N-(2-aminophenyl)-4-(N picolinoylaminomethyl)benzamide (Table 1: Compound 173)

mp: 173-178 °C(dec.)

14 NMR(270MHz, DMSO-d₂) 5 ppm. 6.57(2H, d, J=6.6 Hz), 4.88(2H,br.s), 6.59(1H, dd, J=7.3, 8.1Hz), 6.77(1H, d, J=8.1 Hz), 5.86(1H, dd, J=7.3, 8.1 Hz), 7.607-65(1H, m), 7.93(2H, d, J=8.1 Hz), 7.908-08(2H, m), 8.67(1H, d, J=4.4 Hz), 9.45(1H, t, J=6.6 Hz), 9.61(1H, br.s)

Example 13

N-(2-aminophenyl)-4-[N-(6-methylpicolinoyl)aminomethyl]benzamide (Table 1: Compound 178)

mp: 172-173 °C

1H NMR(270MHz, DMSO-d₆) δ ppm: 2.51(3H, s), 4.57(2H,d, J=6.6Hz), 5.0(2H, br.s), 6.61(1H, dd, J=7.3, 8.1 Hz),

6.79(1H, d, J=7.3 Hz), 6.98(1H, dd, J=7.3, 8.1 Hz), 7.17(1H, d, J=7.3 Hz), 7.44(2H, d, J=8.1 Hz), 7.43-7.49(1H, m), 7.84-7.90(2H, m), 7.94(2H, d, J=8.1 Hz), 9.27(1H, 1, J=5 Hz), 9.64(1H, br.s)

5 Example 14

10

15

20

N-(2-aminophenyl)-4-(N-nicotinoylaminomethyl)benzamide (Table 1; Compound 71)

mp: 193-196 °C

"H NMFI(270MHz, DMSO-d_e) 5 ppm: 4.58(2H, d), 4.88(2H, br.e), 6.60(1H, t), 6.78(1H, d), 6.97(1H, t), 7.16(1H, d), 7.46(1H, d), 7.55(1H, dd), 7.55(2H, dd), 7.55(2H, dd), 7.55(2H, dd), 7.55(2H, dd), 7.55(2H, dd), 8.72(1H, dd), 8.72(1H, br.e), 8.82(1H, br.

Example 15

N-(2-aminophenyl)-4-[N-(2-methylnicotinoyl)aminomethyl]benzamide (Table 1: Compound 141)

mp: 191-194 °C(dec.)

inji, 1911-39 (1964.) H NIMI(270MHz, DMSO-d₀) 8 ppm: 2.53(3H, s), 4.53(2H, d, J=5.9Hz), 4.68(2H, br.s), 6.60(1H, dd, J=6.6, 8.1 Hz), 6.78(1H, d, J=7.3 Hz), 6.97(1H, dd, J=7.3, 8.1 Hz), 7.17(1H, d, J=7.3 Hz), 7.29(1H, dd, J=5.1 B, 1 Hz), 7.47(2H, d, J=8.1 Hz), 7.77(1H, dd, J=1.5, 8.1 Hz), 7.97(2H, d, J=8.1 Hz), 8.51(1H, dd, J=1.5, 5.1 Hz), 9.06(1H, 1, J=5.9 Hz), 9.64(1H, e) HR(KB)cm²¹: 3261, 1642, 1523, 1310, 753

25 Example 16

N-(2-aminophenyl)-4-[N-(6-methylnicotinoyl)aminomethyl]benzamide (Table 1: Compound 143)

mp: 186-190 °C(dec.)

1H NMR(270 MHz, DMSO-d₆) 5 ppm. 2.36(3H, s), 4.56(2H, d, J=5.9 Hz), 4.86(2H, s), 6.60(1H, dd, J=7.4, 7.8 Hz), 6.78(1H, d, J=7.8 Hz), 6.97(1H, dd, J=6.9, 6.9 Hz), 7.16(1H, d, J=7.4 Hz), 7.37(1H, d, J=8.9 Hz), 7.45(2H, d, J=8.3 Hz), 7.35(2H, d, J=8.3 Hz), 8.62(1H, br.s) 1.86(1H, s), 9.24(1H, t, J=5.9 Hz), 9.63(1H, br.s) 1.81(KBR0m⁻¹) 3302, 1636, 1602, 1523, 1499, 1457, 1313, 751

35 Example 17

40

N-(2-aminophenyl)-4-[N-(2-chloronicotinoyl)aminomethyl]benzamide (Table 1: Compound 154)

mp: 176-178 °C(dec.)

nn, 170-78 (dex), 171-78 (dex)

5 Example 18

N-(2-aminophenyl)-4-[N-(6-chloronicotinoyl)aminomethyl]benzamide (Table 1: Compound 156)

mp: 205-208 °C(dec.)

1H NMR(270 MHz, DMSO-d₆) 6 ppm: 5.57(2H, d, J=5.9 Hz), 6.80(1H, dd, J=7.3, 7.3 Hz), 6.78(1H, d, J=8.1 Hz), 6.96(1H, dd, J=7.8, 8.1 Hz), 7.16(1H, d, J=8.1 Hz), 7.45(2H, d, J=8.1 Hz), 7.66(1H, d, J=8.8 Hz), 7.95(2H, d, J=8.1 Hz), 8.27-8.22(1H, m), 8.90(1H, d, J=2.1 Hz), 9.38(1H, t, J=5.9 Hz), 9.63(1H, s) Hz), 7.95(2H, d, J=8.1 Hz), 7.95(2H, d

Example 19

5

10

15

20

30

N-(2-aminophenyl)-4-(N-isonicotinoylaminomethyl)benzamide (Table 1: Compound 183)

mp: 234-237 °C(dec.)

¹H NMR(270 MHz, DMSO-d_e) δ ppm: 4.57(2H, t, J=5.9 Hz), 4.89(2H, br.s), 6.59(1H, dd, J=6.6, 7.3Hz), 6.76(1H, d, J=8.1 Hz), 6.59(1H, dd, J=7.3, 7.3 Hz), 7.16(1H, d, J=7.3 Hz), 7.45(2H, d, J=8.1 Hz), 7.81(2H, d, J=1.5, 4.4 Hz), 7.55(2H, d, J=8.1 Hz), 8.75(2H, d, J=6.8 Hz), 9.41(1H, t, J=5.9 Hz), 9.62(1H, br.s) (HKGP)cm¹¹, 2398, 1648, 1550, 1525, 1457, 1304, 843, 760, 695

Example 20

N-(2-aminophenyl)-4-[N-(pyrazin-2-yl)carbonylaminomethyl]benzamide (Table 1: Compound 191)

mp: 207 °C(dec.)

 $\begin{array}{l} \text{H NMR}(270 \text{ MHz}, DMSO-d_{0}) \, \delta \, \text{ppm}. \, 4.58(2\text{H}, \, d, \, J=5.9 \, \text{Hz}), \, 4.88(2\text{H}, \text{br.s}), \, 6.59(1\text{H}, \text{dd}, \, J=7.3, \, 7.3\text{Hz}), \, 6.77(1\text{H}, \, d, \, J=8.1 \, \text{Hz}), \, 6.44(1\text{H}, \, \text{ddd}, \, J=1.5, \, 7.3, \, 8.1 \, \text{Hz}), \, 7.15(1\text{H}, \, d, \, J=7.3 \, \text{Hz}), \, 7.45(2\text{H}, \, d, \, J=8.1 \, \text{Hz}), \, 7.93(2\text{H}, \, d, \, J=8.1 \, \text{Hz}), \, 8.79(1\text{H}, \, d, \, J=2.1 \, \text{Hz}), \, 9.21(1\text{H}, \, s), \, 9.55-9.61(2\text{H}, \, m), \, 9.21(1\text{H}, \, s), \, 9.55-9.61(2\text{H}, \, s), \, 9.21(1\text{H}, \, s),$

Example 21

N-(2-aminophenyl)-4-[N-(thiophen-2-yl)carbonylaminomethyl]benzamide (Table 1: Compound 201)

mp: 202-205 °C(dec.)

1H NMR(270 MHz, $DMSO-d_0$) δ ppm: 4.52(2H, t, J=5.9 Hz), 4.88(2H, b.s.), 6.60(1H, dd,J=6.6.7.3Hz), 6.76(1H, d, J=1.1), 6.97(1H, d, J=7.3, B.1 Hz), 7.15-7.16(2H, m), 7.43(2H, d, J=8.1 Hz), 7.78(1H, d, J=4.4), 7.82(1H, d, J=3.7 Hz), 7.95(2H, d, J=8.1 Hz), 9.12(1H, bt.t, J=5.9 Hz), 9.82(1H, bt.s) 1H(KB)pm: 3305, 1833, 1523, 1455, 1297, 750, 716

Example 22

N-(2-aminophenyl)-4-[N-(furan-2-yl)carbonylaminomethyl]benzamide (Table 1; Compound 205)

mp: 197 °C(dec.)

1H NMR(270MHz. DMSO-d_e) 5 ppm: 4.59(2H, d, J=6.6 Hz), 4.86(2H,br.s), 6.59(1H,dd, J=6.6, 6.6Hz), 6.63(1H,dd, J=15, 3.6 Hz), 6.78(1H, d, J=5.1 Hz), 6.78(1H, d, J=5.1 Hz), 7.41(2H, d, J=5.1 Hz), 7.84(1H, s), 7.94(2H, d, J=5.1 Hz), 9.00(1H, br., J=5.9 Hz), 9.62(1H, s)
[F](KB)pm*: 3245, 1651, 1573, 1545, 1323, 1241, 745

Example 23

N-(2-aminophenyl)-4-[N-(pyrrol-2-yl)carbonylaminomethyl]benzamide (Table 1: Compound 209)

mp: 216-220 °C(dec.)

1H NMR(270MHz, DMSO-d₆) δ ppm; 4.50(2H, d, J=5.9 Hz), 4.88(2H,br.s), 6.10(1H,dd, J=2.1, 5.9Hz), 6.59(1H, dd, J=7.3, 7.3 Hz), 6.77(1H, dd, J=1.5, 2.1 Hz), 6.84-6.88(2H, m), 6.97(1H, ddd, J=1.5, 7.3, 8.1 Hz), 7.16(1H, d, J=7.3 Hz), 7.41(2H, d, J=8.1 Hz), 7.94(2H, d, J=8.1 Hz), 8.62(1H, br.t, J=5.9 Hz), 9.62(1H, br.s) [FI(KBr)cm*: 3275, 1655, 1584, 1534, 1458, 1316, 747

Example 24

55

N-(2-aminophenyl)-4-[N-(N'-methyl-1H-pyrrol-2-yl)carbonylaminomethyl]benzamide (Table 1: Compound 210)

mp: 177-179 °C(dec.)

14 NMRI(270 MHz, DMSO-d_e) δ ppm: 3.84(3H, s), 4.46(2H, d, J=5.9 Hz), 4.86(2H, br.s), 6.03(1H, dd, J=2.1, 4.4 Hz), 6.59(1H, dd, J=8.1 Hz), 6.77(1H, d, J=8.1 Hz), 6.84-6.97(2H, m), 7.16(1H, d, J=7.3 Hz), 7.41(2H, d, J=8.1 Hz), 7.93(2H, d, J=8.1 Hz), 7

IR(KBr)cm-1; 3325(br.), 1630, 1551, 1520, 1507, 1324, 1265, 1154, 740

Example 25

5 N-(2-aminophenyl)-4-[N-(isoxazol-5-yl)carbonylaminomethyl]benzamide (Table 1: Compound 212)

mp: 183-185 °C(dec.)

nn. 163-163 Cloud. H.N.MR(270 MHz. DNSO-d₆) 8 ppm: 4.53(2H, d, J=6.6 Hz), 4.89(2H, br.s), 6.60(1H, dd, 5=7.3, 7.3Hz), 6.78(1H, d, J=7.3Hz), 6.87(1H, dd, J=7.3, 8.1 Hz), 7.12(1H, d, J=2.1 Hz), 7.16(1H, d, J=8.1 Hz), 7.44(2H, d, J=8.1 Hz), 7.95 (2H, d, J=8.1 Hz), 8.76(1H, d, J=1.5 Hz), 9.61(1H, t, J=5.9 Hz), 9.64(1H, br.s) IR(KB)cm¹¹, 3278(br.), 1638, 1576, 1522, 1456, 1220, 749

Example 26

N-(2-aminophenyl)-4-(N-(3-methylisothiazol-5-yl)carbonylaminomethyl]benzamide (Table 1: Compound 213)

mp: 168-169 °C.

"H NMR(270 MHz, DMSO-d₆) δ ppm: 2.47(3H, s), 4.54(2H, d, J=5.9Hz), 4.89(2H, br.s), 6.60(1H,dd, J=7.3, 7.3Hz), 6.78(1H, d, J=7.3 Hz), 6.97(1H, dd, J=10, 7.3, 8.1 Hz), 7.17(1H, d, J=7.3 Hz), 7.44(2H, d, J=8.1 Hz), 7.73(1H, s), 7.96(2H, d, J=8.1 Hz), 9.44(1H, t, J=5.9 Hz), 9.64(1H, br.s) IR(K67)cm*: 3310, 1637, 1503, 1294, 751

Example 27

25 N-(2-aminophenyl)-4-[N-(imidazol-4-yl)carbonylaminomethyl)benzamide (Table 1: Compound 214)

mp: (amorphous).

11 hMR(270 MHz, DMSO-d₆) δ ppm: 4.49(2H, d, J=6.4 Hz), 4.87(2H, br.s), 6.59(1H, dd, J=6.9, 6.9Hz), 6.77(1H, d, J=6.9 Hz), 6.9(1H, dd, J=7.4, 7.4 Hz), 7.16(1H, d, J=6.9 Hz), 7.41(2H, d, J=6.9 Hz), 7.64(1H, br.s), 7.73(1H, br.s), 7.92(2H, d, J=6.9 Hz), 8.56(1H, br.t, J=6.4 Hz), 9.61(1H, s), 12.5(1H, br.s)

HR(KB)qm*1 3278(br.), 1636, 1576, 1522, 1456, 1220,749

Example 28

35 N-(2-aminophenyl)-4-[N-(3-aminophenyl)acetylaminomethyl]benzamide (Table 1: Compound 23)

mp: 171-176 °C

Example 29

N-(2-aminophenyl)-4-[N-(pyridin-3-yl)acetylaminomethyl]benzamide (Table 1: Compound 74)

mp: 127 °C

TH NMR(270 MHz, DMSO-d₆) δ ppm: 3,84(2H, s), 4.40(2H, d, J=5.8 Hz), 7.15-7.29(3H, m), 7.37(1H, d, J=6.6 Hz), 7.43(2H, d, J=8.8 Hz), 7.96(1H, m), 7.98(2H, d, J=8.8 Hz), 8.40(1H, d, J=8.8 Hz), 8.79-8.87(3H, m), 10.20(1H, s)

50 Example 30

55

N-(2-aminophenyl)-4-[N-[3-(pyridin-3yl)propionyl]aminomethyl]benzamide (Table 1: Compound 75)

mp: 183-186 °C

1+ NMR(270 MHz, DMSO-d_a) δ ppm: 2.51(2H, t, J=7.3 Hz), 2.88(2H, d, J=7.3 Hz), 4.31(2H, d, J=5.9 Hz), 4.89 (2H, br.s), 6.80(1H, dd, J=7.3, 8.1 Hz), 6.78(1H, d, J=8.1 Hz), 6.97(1H, ddd, J=1.5, 7.3, 8.1 Hz), 7.16(1H, d, J=8.1 Hz), 7.23(2H, d, J=8.8 Hz), 7.28-7.33(1H, m), 7.63(1H, d, J=8.1 Hz), 7.89(2H, d, J=8.1 Hz), 8.41-8.45(3H, m), 9.62 (1H, br.s)

IR(KBr)cm⁻¹: 3407, 3313, 1640, 1552, 1522, 1456, 1309, 746, 717

Example 31

N-(2-aminophenyl)-4-[N-[4-(pyrldin-3-yl)-1,4-dioxobutyl]aminomethyl]benzamide (Table 1: Compound 100)

mp: 145-147 °C(dec.)

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 2.37-2.50(2H, m), 2.62-2.68(2H, m), 4.13(2H, s). 4.86(2H, s), 6.56-6.61(1H, m), 6.76-6.79(1H, m), 6.94-6.99(1H, m), 7.10-7.39(4H, m), 7.43-7.46(1H, m), 7.78(2H, d, J=8.1 Hz), 8.60-8.64(1H, m), 9,58(1H, s)

IR(KBr)cm⁻¹:3348, 1691, 1655, 1534, 1508, 1458, 1395, 1315, 1083, 746

Example 32

10

30

N-(2-aminophenyl)-4-[N-(5-chloropyridin-3-yl)oxyacetylaminomethyl]benzamide (Table 1: Compound 158)

mp: 199-201 °C.

 $^{1}\text{H NMR}(270 \text{ MHz}, \text{DMSO-d}_{6}) \ \delta \ \text{ppm}: \ 4.43(2\text{H}, \ \text{d}, \ \text{J=}6.6 \ \text{Hz}), \ 4.75(2\text{H}, \ \text{s}), \ 4.87(2\text{H}, \ \text{br. s}), \ 6.60(1\text{H}, \ \text{dd}, \ \text{J=}7.3, \ 8.1)$ Hz), 6.78(1H, d, J=8.1 Hz), 6.97(1H, dd, J=7.3, 8.1 Hz), 7.16(1H, d, J=8.1 Hz), 7.37(2H, d, J=8.1 Hz), 7.59(1H, d, J=2.2 Hz), 7.93(2H, d, J=8.1 Hz), 8.25(1H, d, J=1.5 Hz), 8.81(1H, t, J=6.6 Hz), 9.64(1H, s) IR(KBr)cm⁻¹:3288, 3058, 1675, 1633, 1523, 1457, 1314, 912, 755

Example 33

N-(2-amino-5-methoxyphenyl)-4-[N-(pyridin-3-yi)oxyacetylaminomethyl]benzamide (Table 1: Compound 175)

mp: 141-144 °C

 $^{1}\text{H NMR}(270~\text{MHz},~\text{DMSO-d}_{6})~\delta~\text{ppm}:~3.66(3\text{H},~\text{s}),~4.43(2\text{H},~\text{d},~\text{J}=5.9~\text{Hz}),~4.49(2\text{H},~\text{br.s}),~4.68(2\text{H},~\text{s}),~6.62(1\text{H},~\text{dd},~\text{dd})$ J=2.9, 8.8 Hz), 6.75(1H, d, J=8.8 Hz), 6.91(1H, d, J=2.2 Hz), 7.37(4H, m), 7.92(2H, d, J=8.8 Hz), 8.21(1H, dd, J=1.5, 4.4 Hz), 8.35(1H, d, J=2.7 Hz), 8.81(1H, s), 9.65(1H, s)

Example 34

N-(2-aminophenyl)-4-[N-[3-(pyridin-3-yl)-1,3-dioxopropyl]aminomethyl]benzamide (Table 1: Compound 98)

mp: 204-206 °C

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 4.08(4/3H, s), 4.39(4/3H, d, J=5.9Hz), 4.49(2/3H, d, J=5.9Hz), 4.90(2H, br. s), 5.93(1/3H, s), 6.60(1H, t, J=7.3 Hz), 6.78(1H, d, J=8.1 Hz), 6.97(1H, t, J=7.3 Hz), 7.16(1H, d, J=7.3 Hz), 7.3-7.7 (3H, m), 7.8-8.4(3H, m), 8.6-9.2(3H, m), 9.64(1H, s), 14.74(1/3H, s). (2:1 equilibrium mixture) IR(KBr)cm⁻¹: 3282, 1690, 1645, 1527, 1421, 1314, 1217, 1028, 994, 911, 753, 701

Example 35

N-(2-aminophenyl)-4-[N-[N-(pyridin-3-yl)aminoacetyl]aminomethyl]benzamide (Table 1; Compound 96)

mp: (amorphous)

1H NMR(270 MHz, DMSO-d₆) δ ppm: 3.77(2H, d, J=6.6 Hz), 4.37(2H, d, J=5.9 Hz), 4.87(2H, br.s), 6.27(1H, t, J=5.9 Hz), 6.60(1H, dd, J=7.3, 7.3Hz), 6.78(1H, d, 7.3 Hz), 6.87(1H, d, J=8.1 Hz), 6.96(1H, dd, J=7.3, 8.1 Hz), $7.09(1 \text{H, d, J} = 4.4 \text{ Hz}), \ 7.12(1 \text{H, d, J} = 4.4 \text{ Hz}), \ 7.16(1 \text{H, d, J} = 8.1 \text{ Hz}), \ 7.33(2 \text{H, d, J} = 8.8 \text{ Hz}), \ 7.81(1 \text{H, d, J} = 4.4 \text{ Hz}), \ 7.81(1 \text{H, d,$ 7.91(2H, d, J=7.3 Hz), 7.99(1H, d, J=2.9 Hz), 8.59(1H, br.t, J=5.1 Hz), 9.63(1H, br.s) IR(KBr)cm-1: 3350, 1658, 1525, 1502, 1314, 750

Example 36

N-(2-aminophenyl)-4-[N-(2-aminothiazol-4-yl)acetylaminomethyl]benzamide (Table 1; Compound 220)

mp: (amorphous).

 1 H NMR(270 MHz, DMSO-d₆) δ ppm: 3.34(2H, s), 4.35(2H, d, J=5.9Hz), 4.87(2H, s), 6.25(1H, s), 6.59(1H, dd, J=5.9Hz), 4.87(2H, s), 6.25(1H, s), 6.25(1H, dd, J=5.9Hz), 6.25(1H, d

J=7.3, 7.3 Hz), 6.78(1H, d, J=7.3 Hz), 6.87(2H, s), 6.96(1H, dd, J=7.3, 7.3 Hz), 7.16(1H, d, J=7.3 Hz), 7.37(2H, d, J=8.1 Hz), 7.93(2H, d, J=8.1 Hz), 8.44(1H, t, J=5.9 Hz), 9.62(1H, s)

Example 37

N-(2-aminophenyl)-4-N-(quinolin-6-yl)carbonylaminomethyl|benzamide (Table 1: Compound 231)

mp: 209-210 °C.

1H NMR(270 MHz, DMSO-d₆) δ ppm: 4.62(2H, d, J=5.9 Hz), 4.88(2H, s), 6.60(1H, t, J=7.7 Hz), 6.78(1H, d, J=7.3 Hz), 6.95(1H, d, J=7.3 Hz), 7.17(1H, d, J=7.3 Hz), 7.49(2H, d, J=8.8 Hz), 7.62(1H, dd, J=4.4, 8.1 Hz), 7.96(2H, d, J=8.8 Hz), 8.10(1H, d, J=8.8 Hz), 8.23(1H, dd, J=2.2, 8.8 Hz), 8.38(1H, m), 8.49(1H, d, J=8.1 Hz), 8.58(1H, s), 8.99(1H, s), 9.64(1H, s)

IR(KBr)cm⁻¹:3301, 1640, 1614, 1545, 1496, 1312, 910, 853, 745

Example 38

N-(2-aminophenyl)-4-[N-(turo[3,2-b]pyridin-2-yl)carbonylaminomethyl]benzamide (Table 1: Compound 233)

mp: 191 °C(dec.)

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 4.58(2H, d, J=5.9 Hz), 4.88(2H, s), 6.57-6.62(1H, m), 6.76-6.79(1H, m), 6.93-6.99(1H, m), 7.15-7.25(1H, m), 7.45-7.52(3H, m), 7.74(1H, s), 7.95(2H, d, J=8.1 Hz), 8.13(1H, d, J=8.8 Hz), 8.63(1H, d, J=3.7 Hz), 9.54(1H, t, J=5.9 Hz), 9.64(1H, s) IR(KBr)cm1: 3406, 1662, 1529, 1507, 1420, 1313, 1209, 1139, 1170, 1139, 924, 741

Example 39

20

N-(2-aminophenyl)-4-[N-(furo[2,3-c]pyridin-2-yl]carbonylaminomethyl]benzamide (Table 1: Compound 234)

mp: 210 °C(dec.)

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 4.68(2H, J=6.6Hz), 4.87(2H, s), 6.57-6.62(1H, m), 6.76-6.79(1H, m), 6.93-6.99(1H, m), 7.14-7.17(1H, m), 7.47(2H, d, J=8.1 Hz), 7.66(1H, s), 7.82(1H, d, J=4.4 Hz), 7.96(2H, d, J=8.1 Hz), 8.48(1H, d, J=5.1 Hz), 9.06(1H, s), 9.60-9.64(2H, m) IR(KBr)cm⁻¹: 3320, 1653, 1632, 1598, 1457, 1424, 1308, 1187, 1033, 853, 749

Example 40

N-(2-hydroxyphenyl)-4-[N-(3-(pyridin-3-yl)propionyl]aminomethyl]benzamide (Table 1: Compound 125)

mp: (amorphous)

1H NMR(270 MHz. CD₃OD) δ ppm: 2.61(2H, t, J=7.3 Hz), 3.00(2H, t, J=7.3 Hz), 4.39(2H, s), 7.04(1H, ddd, J=1.5, 8.1, 8.1 Hz), 7.25(2H, d, J=8.1 Hz), 7.33(1H, dd, J=5.1, 8.1 Hz), 7.69(1H, d, J=8.1 Hz), 7.86(2H, d, J=8.1 Hz), 7.86 (1H, d, J=8.1 Hz), 8.41(2H, br.s) IR(neat)cm⁻¹: 3276, 1645, 1614, 1536, 1509, 1435, 1415, 1385, 1333, 1280, 1247, 1091, 737

Example 41

40

55

N-(2-hydroxyphenyl)-4-[N-(pyridin-3-yl)oxyacetylaminomethyl]benzamide (Table 1: Compound 93)

mp: (amorphous)

1H NMR(270 MHz, DMSO-d₆): 4.43(2H, d, J=6.6 Hz), 4.69(2H, s), 6.83(1H, t, J=6.6 Hz), 6.91(1H, d, J=8.1 Hz), 7.68(1H, d, J=6.6 Hz), 7.82(2H, d, J=8.1 Hz), 8.21(1H, d, J=4.4 Hz), 8.35(1H, d, J=2.2 Hz), 8.81(1H, t, J=6.6 Hz). 9.48(1H, s), 9.75(1H, s)

IR(KBr)cm⁻¹: 3399, 1664, 1535, 1236, 1064

Example 42

N-(2-hydroxyphenyl)-4-[N-(pyridin-3-yl)acetylaminomethyl]benzamide (Table 1: Compound 117)

mp: 201-202 °C

TH NMR[270 MHz, DMSO-d₄) 8 ppm: 3.58(2H, s), 4.37(2H, d, J=5.9 Hz), 8.83(1H, ddd, J=1.5, 8.1, 8.1 Hz), 6.92 (1H, brd, J=8.1 Hz), 7.03(1H, ddd, J=1.5, 8.1, 8.1 Hz), 7.37(4H, dd, J=3.7, 8.1 Hz), 7.37(2H, d, J=8.1 Hz), 7.70 (2H, d, J=6.1 Hz), 7.91(2H, d, J=5.1 Hz), 8.45(1H, br.d, J=3.7 Hz), 8.49(1H, 8), 8.73(1H, t, J=5.9 Hz), 9.47(1H, 8),

IR(KBr)cm⁻¹: 3272, 3067, 1661, 1647, 1598, 1536, 1455, 1334, 1288, 1194, 1024, 742

Example 43

10

20

N-(2-aminophenyl)-4-[N-(pyridin-3-yl)oxyacetyl-N-[3-(pyridin-3-yl)propyl]aminomethyl]benzamide (Table 1:

5 Compound 91)

mp: (amorphous)

TH NMR[270 MHz, DMSO-d_c) δ ppm: 1.77-1.93(2H, m), 2.50-2.63(2H, m), 3.16-3.30(2H, m), 4.63(1.2H, s), 4.71 (0.6H, s), 4.89(1.2H, s), 4.95(0.6H, s), 5.05(2H, s), 5.57-6.63(1H, m), 6.77-6.79(1H, m), 6.94-7.00(1H, m), 7.17-4.2(5H, m), 7.58-7.64(1H, m), 7.92-8.02(2H, m), 8.15-8.43(5H, m), 9.65(0.6H, s), 9.69(0.4H, s)(a mixture of rotational isomers)

Example 44

N-(2-aminophenyl)-4-[N-methyl-N-(pyridin-3-yl)oxyacetyl]aminomethylbenzamide (Table 1: Compound 92)

mp: 117-120 °C

TH NMR[270 MHz, DMSO-d₆) 5 ppm: 284 and 2.99(total 3H, s), 4.60 and 4.69(total 2H, s), 4.90(2H, bx.s), 4.99 and 5.00(total 2H, s), 6.60(1H, dd, J=7.3, 8.1 Hz), 6.76(1H, d, J=8.1 Hz), 6.97(1H, dd, J=7.3, 7.3 Hz), 7.15(1H, d, J=7.3 Hz), 7.95 and 8.07(total 2H, d, J=8.1 Hz), 8.77(1H, d, J=4.4 Hz), 8.31(1H, d, J=2.9 Hz), 9.65 and 9.68(total 1H, br.s) (a mixture of rotational isomers) [HK(KS)cm^{-3.29}98, 1665, 1501, 1425, 1301, 1276, 1525, 1076, 799, 746, 703

Example 45

Preparation of N-(2-aminophenyl)-4-[N-(pyridin-3-yl)oxamoylaminomethyl]benzamide (Table 1: Compound 95)

(45-1) Ethyl N-(pyridin-3-yl)oxamate (388 mg, 2mmol) and 638 mg of the compound from the process(1-4)(2 mmol) were dissolved in ethanol, and the mixture was heated with stirring at 40 to 50 °C for 2.5 hours. The precipitated crystals were collected by filtration and weahed with 2 mL of ethanol and 3 mL of diethyl ether. The crystals were dried to give 724 mg of N-[2-(N-tert-butoxycarbonyl)aminophenyl]-4-[N-(pyridin-3-yr)loxamoylaminomethyl]benzamide (Yield: 74 %).

THNMR(270 MHz, DMSO-d₆) δ ppm: 1.44(9H, s), 4.49(2H, d, J=5.9 Hz), 7.10-7.30(2H, m), 7.35-7.57(5H, m), 7.93 (2H, d, J=5.1 Hz), 8.21(1H, br.d, J=5.1 Hz), 8.35(1H, dd, J=1.5, 5.1 Hz), 8.68(1H, br.s), 9.00(1H, d, J=2.9 Hz), 9.70

(1H, t, J=5.9 Hz), 9.82(1H, s), 10.98(1H, br.s)

(45-2) To a suspension of 720 mg of the compound from the process (45-1) in 8 mL of methanol was added 8 mL of 4N hydrochloric acid-dioxane solution. After stirring for 3 hours, the mixture was poured into a diluted sodium hydroxide aq. to be basfiled, and the precipitated crystals were collected by filtration. The crystals were recrystallized from THF/methanol = 1:1, to give 280 mg of the desired product.

mp: 254-258 °C(dec.)

1H NMR(270 MHz, DMSO-d₀) δ ppm: 4.67(2H, d, J=5.9 Hz), 4.89(2H, br.s), 8.59(1H, dd, J=7.3 Hz), 6.77(1H, d, J=5.1 Hz), 6.97(1H, dd, J=6.6 Fz), 7.16(1H, d, J=6.1 Hz), 7.39-7.44(1H, m), 7.43(2H, d, J=6.1 Hz), 7.95(2H, d, J=6.1 Hz), 8.18-8.24(1H, m), 8.34(1H, dd, J=1.5, 4.4 Hz), 9.00(1H, d, J=2.1 Hz), 9.63(1H, s), 9.69(1H, br.t, J=6.6 Hz), 10.97(1H, br.s)

IR(KBr.cm-1):3312, 3270, 1663, 1636, 1521, 1312, 1296, 1019

Example 46

5

10

15

20

20

30

Preparation of N-(2-aminophenyl)-4-[N-(pyridin-3-yl)oxyacetylaminomethyl]benzamide (Table 1: Compound 61)

(46-1) To a suspension of 0.22 g of sodium hydride (60 % oil dispersion, 5.5 mmol) in ZmL of DMF was added drowine a solution of 0.48 g of 3-hydroxypridine (5 0mmol) in ZmL of DMF at room temperature, and the mixture was stirred for an hour. The resulting brown solution was ice-cooled, 0.8 mL of tert-buly bromoscetate (5.5 mmol) was added, and the mixture was stirred under ice-cooling for an hour followed by stirring at room temperature for 2 hours. After addition of water, the mixture was extracted with eithyl acotate. En the organic layer was washed with saturated brine, dried and evaporated. The residue was purified by column chromoscopraphy on silica gel (cluent: chloroform: ethyl acotate = En;), to give 0.34 g of tent-buly 3-portyloxypricate (Yield: 32.5 %) as a clear oil.

1H NMR (270 MHz, CDCl₃) δ ppm: 1.49(9H, s), 4.56(2H, s), 7.18-7.24(2H, m), 8.26(1H, dd, J=1.5, 3.6 Hz), 8.32 (1H, d, J=2.9 Hz)

(46-2) To a solution of 0.14 g of the compound from the process (46-1) (0.67 mmol) in 2 mL of dichloromethane was added 2 mL of trifluoroacetic acid, and the solution was stirred at room temperature for 3 hours. After evaporation, discopropyl ether was added, and the precipitated solid was collected by filtration and dried to give 0.15 g of 3-pyrightoyacetic acid trifluoroacetate (Yeldd: 9.8 %) as a light yellow solid.

1H NMR(270 MHz, DMSO-d_e) ppm: 4.86(2H, s), 7.57(1H, dd, J=4.4, 8.1 Hz), 7.67(1H, ddd, J=1.5, 1.5, 8.8 Hz), 8 31(1H, d, J=5.1 Hz), 8.46(1H, d, J=2.1 Hz), 13.00(1H, br.s)

(46-3) To a suspension of 100 mg of the compound from the process (46-2) (0.37 mmol) and 255 mg of the compound from Example 1, the process (1-4) (0.75 mmol) in 5 mL of dichloromethane was added 0.14 mL of trieflyismine (1.0 mmol), and the mbture was coded with ice. Under ice-ocoling, to the mixture was added a solution of 140 mg of 2-chloro-1,3-dimethylimidazolinium chloride (0.83 mmol) in 6 mL of dichloromethane, and the mixture was warmed to room temperature with stirring for 7 hours, and left at room temperature overmight. After adding water and saturated brine, the mixture was varietied with chloroform.

The organic layer was washed with saturated brine, dried and eveporated. The residue was purified by column chandography on sielas gel (eluent: stryl aceiste.methanol = 10.1) to give 0.37 g of N42-(N-tent-butoxycarbonyl) aminophenyl|-4-[N-(pyridin-2-)/yoxycaelylaminomethyl/penzamide (YeleX quantitative) as a clear oil.

1H NMR(270MHz, CDCl₃) 8 ppm: 1.52(9H, 5), 4.62(2H, s), 4.63(2H, d, J=7.3 Hz), 6.76(1H, br.s), 6.90-7 00(1H, br.s), 7.15-7.35(5H, m), 7.40(2H, d, J=8.1 Hz), 7.82(1H, d, J=8.1 Hz), 7.95(2H, d, J=8.1 Hz), 8.32(1H, dd, J=2.1, 44 Hz), 8.37(1H, d, J=2.8 Hz), 9.20(1H, br.s)

(46-4) To a solution of 175 mg of the compound from the process (46-3) (0.37 mmol) in ZmL of dioxane and 2mL of methanol was added 2 mL of 4N hydrochloric acid-dioxane, and the mixture was stirred at room temperature for 2 hours. After adding saturated sodium bicachonate aq., the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brins, dried and evaporated. To the residue was added methanol and dilsopropyl ether, and the precipitated solid was collected by filtration and dried to give 90 mg of N-(2-aminophenyl)-4[N-(pyridin-3-yl)ovyacetylaminomethyl[benzamide (Yield: 64.6 %) as an opalescent solid.

H.N.MR(270 MHz, DMSO-d₆) 8 ppm: 4.42(2H, d, J=5,9 Hz), 4.69(2H, s), 4.89(2H, br.s), 6.59(1H, dd, J=7,3,8.1 Hz), 6.76(1H, d, J=8,1 Hz), 6.97(1H, dd, J=6,8,7.3 Hz), 7.16(1H, d, J=7,3 Hz), 7.39-7.39(4H, m), 7.92(2H, d, J=8.1 Hz), 8.21(1H, dd, J=1,5,4 4 Hz), 8.35(1H, d, J=2,9 Hz), 8.80(1H, br.s, J=5,9 Hz), 9.63(1H, br.s) 18(KB)cm¹⁻¹, 3007, 1672, 1631, 1523, 1456, 1429, 1259, 1231, 803, 756

Example 47

Preparation of N-(2-aminophenyl)-4-[N-[2-(pyridin-3-yl)oxy]propionylaminomethyl]benzamide (Table 4: Compound 3)

(47-1) To a suspension of 1.20 g of sodium hydride (60 % oil dispersion; 30.0 mmol) in 10 mL of dry DMF at acom temperature were added dropwise 2.65 g of 3-hydroxypyrdine (30 mmol) in 10 mL of dry DMF, maintaining the temperature blow 40 °C, and the mixture was stirred at room temperature for 90 min. Under ice cooling, 6.28 g of Lerf-buly! 2-bromopropionate (30 mmol) in 10 mL. of dry DMF were slowly acceded dropwise, maintaining the inner temperature within 5 to 10 °C, and then the mixture was examed to room temperature with stirring for 4 hours. After neutralizing with saturated socium bicarbonate eq., the mixture was extracted with ethyl acetate. The organic layer was weakned with water and then saturated brine, dried and evaporated. The residue was purified by column chromatography on sities gel (eluent: n-hexane-ethyl acetate = 2:1) to give 4.15 g of terf-bulyl 2-(pyridin-3-yi) oxyrooionate (gridt 62 %) as a brown oil.

¹H NMR(270 MHz, CDCl₃) δ ppm: 1.44(9H, s), 1.61(3H, d, J=7.3 Hz), 4.66(1H, q, J=7.3 Hz), 7.13-7.23(2H, m), 8.24(1H, dd, J=1.5, 4.4 Hz), 8.29(1H, d, J=2.1 Hz)

(47-2) To a solution of 1.65 g of the compound from the process (47-1) (7.4 mmol) in 9 mt. of dichloromethane was added 9 mt. of trillucroacetic acid, maintaining that emperature below 30 °C, and then the mixture was stirred at room temperature for 8 hours. After evaporation, discopropyl either was added and the precipitated solid was collected by filtration and dried to give 1.86 g of 2-(pyridin-3-yt)oxypropionic acid triflucroacetate (Yield 43.5 %) as a light brown solid.

TH NMR(270 MHz, DMSO-d₆) 8 ppm: 1.53(3H, d, J=6.6 Hz), 5.12(1H, q, J=6.6 Hz), 7.60-7.75(2H, m), 8.35(1H, d, J=5.1 Hz), 8.47(1H, s), 12.9(1H, br.s)

(47-3) To a suspension of 0.98 g of the compound from the process (47-2) (3.5 mmol) and 1.02 g of the compound from Example 1, the process (1-4) (3.0 mmol) in 20 mL of dichloromethane was added 1.3 mL of triethylamine (0.0 mmol) and then the mixture was ice-cooled. Under ice-cooling, 0.59 g of 2-chloro-1,9-dimethylimidiazoidinium chloride (3.5 mmol) in 5 mL of dichloromethane was added dropwise, and the mixture was stirred for additional 2 hours. The mixture was neutralized with saturated sodium bicarbonate act, and then extracted with chloroform. The organic layer was washed with saturated brine, dried and evaporated. The residue was purified by column chromatography on silica gel (eluent: ethyl acetate/methanol = 10.11 to [30 to 1.64 g of N42(-N1-en-budoxycarbony)/almino/pheny)/4-liN-12(-pyrdin-3-y)/oxypropiony)/amino/pheny/4-liN-12(-pyrdin-3-y)/oxypropiony/jamino/methyl/penzamide as a mixture with 1,3-dimethyl-2-im-

"H NMF(270 MHz, CDCl₃) δ ppm: 1.51(9H, s), 1.64(3H, d, J=7.3 Hz), 4.54(2H, m), 4.78(H, q, J=6.6 Hz), 6.87(2H, br.s), 7.19-7.30(6H, m), 7.81(1H, d, J=7.3 Hz), 7.90(2H, d, J=6.1 Hz), 8.29(1H, dd, J=1.5, 4.4 Hz), 8.33(1H, d, J=2.1 Hz), 8.29(2H, br.s)

(47-4) The compound from the process (47-3) (f. 64 g) was dissolved in 10 mL of dioxane and 4 mL of mothanol. To the solution was added 10 mL of 4N hydrochloric acid-dioxane solution at room temperature, and the mixture was stirred for 2 hours. The mixture was neutralized with saturated sodium bicarbonate aq. and extracted with attributed and single process of the state of the

mp: 171-173 °C(doc.)

1 NNR(270 MHz, DMSO-d₂) δ ppm: 1.51(3H, d, J=6.6 Hz), 4.36(2H, d, J=5.9 Hz), 4.89(2H, br.s), 4.90(1H, t, J=6.6 Hz), 6.60(1H, dd, J=6.6, 7.3 Hz), 7.15(1H, d, J=7.3 Hz), 6.61(1H, dd, J=6.6, 7.3 Hz), 7.15(1H, d, J=7.3 Hz), 7.27(2H, d, J=8.1 Hz), 7.337-37(2H, m), 7.89(2H, d, J=8.1 Hz), 8.21(1H, dd, J=2.9, 2.9 Hz), 8.32(1H, d, J=1.5 Hz), 8.82(1H, L, L=5.9 Hz), 8.63(1H, br.s)

Example 48

10

15

20

25

40

45

50

Preparation of N-(2-aminophenyl)-4-[N-(pyridin-3-yi)methoxycarbonylaminomethyl]benzamide (Table 1: Compound 82)

(48-1) To a solution of 384 mg of 3-pyridinemethanol (3.52 mmol) in 5 mL of dry THF were added 523 mg of NNcarbonyldimidazole (3.22 mmol) at room temperature. After stirring for an hour, to the mixture was added 1.0 g of the compound from Example 1, the process (1-d) (2.93 mmol) in 6 mL of dry THF.

After being left at room temperature overnight, to the mixture was added 100 m.l. of chloroform, and the mixture washed with water (3 x 20 m.l.) and then saturated brine, and dried over enhydrous magnesium sutlate. After evaporating the solvent under reduced pressure, the residue was purified by column chromatography on silica get

chloroform:methanol = 30:1) to give 1.27 g of N-[2-(N-tert-butoxycarbonyl)aminophenyl]-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide (Yield: quantitative) as an amorphous solid.

1HNMR (270 MHz, CDCl₃) δ ppm:1.51(9H,s), 4.45(2H, d, J=5.9 Hz), 5.16(1H, s), 7.10-7.50(7H, m), 7.70(1H, d, J=8.1 Hz), 7.80(1H, d, J=7.3 Hz), 7.93(1H, d, J=8.1 Hz), 8.57(1H, d, J=4.4 Hz), 8.63(1H, s), 9.17(1H, s).

(48-2) The compound from the process (48-1)(1.2 g, 2.9 mmol) was dissolved in 10 mL of methanol. To the solution was added 20 mL of 4N-hydrochloric acid-dioxane. The mixture was stirred at room temperature for 1.5 hours, and then poured into diluted sodium hydroxide are, and extracted with chloroform (3 x 60 mL). The combined organic layer was washed twice with saturated brine, dried over anhydrous magnesium sulfate and concentrated to give 0.88 g of crystals, which were then recrystallized from 16 mL of ethanol, to give 668 mg of N-(2-aminophenyl)-4-(N-typridin-3-yf)methoxycarbonylaminomethyl)benzamide (Yildi: 73 %).

mp: 159-160 °C 1H NMR(270 MHz, DMSO-d₆) δ ppm: 4.28(2H, d, J=5.9 Hz), 4.86(2H, s), 5.10(2H, s), 6.60(1H, t, J=7.3 Hz), 6.78

(1H, d, J=7 Hz), 6.97(1H, t, J=7 Hz), 7.17(1H, d, J=8 Hz), 7.30-7.50(3H, m), 7.78(1H, d, J=8 Hz), 7.93(2H, d, J=8 Hz), 8.53(1H, d, J=3.7 Hz), 8.59(1H, s), 9.61(1H, s).

IR(KBr)cm⁻¹: 3295, 1648, 1541, 1508, 1457, 1309, 1183, 742

As described in Example 48, the compounds of Examples 49 to 87 were prepared, each of whose melting point 5 (mp), ¹H NMR data and/or IR data are shown below.

Example 49

N-(2-aminophenyl)-4-[N-(benzyloxycarbonyl)aminomethyl]benzamide (Table 1; Compound 11)

mp: 174-178 °C

1H NMR(270 MHz, DMSO-d₆) δ ppm: 4.28(2H, d, J=5.9 Hz), 4.89(2H, br.s), 5.06(2H, s), 6.59(1H, dd, J=7.3, 8.1 Hz), 6.78(1H, d, J=8.1 Hz), 6.97(1H, dd, J=7.3, 8.1 Hz), 7.16(1H, d, J=7.3 Hz), 7.30-7.40(6H, m), 7.93(3H, m), 0.63/1H e)

IB(KBr)cm-1, 3332, 1687, 1652, 1536, 1456, 1279, 747

Example 50

15

30

N-(2-aminophenyl)-4-[N-(4-{imidazol-1-yl)benzyl})oxycarbonylaminomethyl]benzamide (Table 1: Compound 47) 20

mp: 195-198 °C

1H NMR(270 MHz, DMSO-d_e) δ ppm: 4.29(2H, d, J=6.6 Hz), 4.88(2H, s), 5.10(2H, s), 6.60-6.63(1H, m), 6.78(1H, d, J=8.1 Hz), 6.97(1H, t, J=7.3 Hz), 7.11(1H, s), 7.16(1H, d, J=7.3 Hz), 7.37(2H, d, J=8.1 Hz), 7.49(2H, d, J=8.8 Hz), 7.66(2H, d, J=8.1 Hz), 7.74(1H, s), 7.92-7.96(3H, m), 8.25(1H, s), 9.62(1H, s)

Example 51

N-(2-aminophenyl)-4-[N-(pyridin-2-yl)methoxycarbonylaminomethyl|benzamide (Table 1: Compound 171)

mp: 166-167 °C

1H NMR(270 MHz, DMSO-d₆) δ ppm: 4.30(2H, d, J=5.9 Hz), 4.88(2H, br.s), 5.12(2H, s), 6.60(1H, dd, J=7.3, 8.1 Hz), 6.78(1H, d, J=8.1 Hz), 6.97(1H, ddd, J=1.5, 7.3, 8.1 Hz), 7.16(1H, d, J=7.3 Hz), 7.33(1H, dd, J=3.7, 7.3 Hz), 7.40(3H, d, J=8.1 Hz), 7.83(1H, ddd, J=1.5, 7.3, 8.1 Hz), 7.94(2H, d, J=8.1 Hz), 8.03(1H, t, J=5.9 Hz), 8.55(1H, d, J=5.1 Hz), 9.62(1H, br.s)

IR(KBr)cm-1: 3334, 1694, 1632, 1580, 1276, 755

Example 52

N-(2-aminophenyl)-4-[N-[2-(pyridin-2-yl)ethoxycarbonyl]aminomethyl]benzamide (Table 1: Compound 172)

mp: 146-148 °C

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 3.04(2H, t, J=6.6 Hz), 4.23(2H, d, J=5.9 Hz), 4.36(2H, t, J=6.6 Hz), 4.88(2H, br.s), 6.60(1H, dd, J=7.3, 8.1 Hz), 6.78(1H, d, J=8.1Hz), 6.97(1H, dd, J=7.3, 8.1 Hz), 7.15-7.30(3H, m), 7.34(2H, d, J=8.1 Hz), 7.69 -7.77(2H, m), 7.92(2H, d, J=7.3 Hz), 8.50(1H, d, J=4.4 Hz), 9.62(1H, br.s) IR(KBr)cm-1: 3330, 1690, 1633, 1594, 1524, 1277, 760

Example 53

55

N-(2-aminophenyl)-4-[N-(6-methylpyridin-2-yl)methoxycarbonylaminomethyl]benzamide (Table 1: Compound 179)

¹H NMR(270 MHz, DMSO-d_e) δ ppm: 2.47(3H, s), 4.30(2H, d, J=5.9 Hz), 5.07(4H, s), 6.63(1H, t, J=8.1 Hz), 6.80 (1H, d, J= 7.34), 6.98(1H, t, J=8.IHz), 7.18(3H, d, J=7.3 Hz), 7.40(2H, d, J=8.1 Hz), 7.71(1H, t, J=8.1 Hz), 7.94 (2H, d, J=8.1 Hz), 8.03(1H, t, J=5.9 Hz), 9.66(1H, s)

IR(KBr)cm-1: 3335, 1693, 1634, 1259

Example 54

5

15

20

30

N-(2-aminophenyl)-4-[N-[2-(pyridin-3-yl)ethoxycarbonyl]aminomethyl]benzamide (Table 1: Compound 83)

mp: 120-125 °C

TH NMR(270 MHz, DMSO-d_e) δ ppm: 2.91(2H, t, J=6.6 Hz), 4.22(4H, t, J=6.6 Hz), 4.89(2H, s), 6.55-6.63(1H, m), 6.78(1H, dd, J=8.1, 1.5 Hz), 6.97(1H, t, J=6.6 Hz), 7.37(1H, t, J=6.6 Hz), 7.39(3H, d, J=8.1 Hz), 7.69(1H, d, J=8.1 Hz), 7.79(1H, t, J=6.6 Hz), 7.93(2H, d, J=8.1 Hz), 7.69(1H, d, J=8.1 H

Example 55

N-(2-aminophenyl)-4-[N-[3-(pyridin-3-yl)propyloxycarbonyl]aminomethyl]benzamide (Table 1; Compound 84)

mp: 121-124 °C

1H NMR(270 MHz, DMSO- d_0) δ ppm: 1.83-1.94(2H, m), 2.67(2H, 1, J=7.3 Hz), 3.98(2H, 1, J=6.6 Hz), 4.26(2H, d, J=5.9 Hz), 4.89(2H, br.s), 6.60(1H, dd, J=5.1 Hz), 6.78(1H, d, J=7.3 Hz), 6.97(1H, ddd, J=1.5, 7.3, 8.1 Hz), 7.16(1H, d, J=8.1 Hz), 7.29-7.33(1H, m), 7.37(1H, d, J=8.1 Hz), 7.64(1H, d, J=8.1 Hz), 7.81(1H, dd, J=5.9, 6.6 Hz), 7.94(2H,d, J=8.1 Hz), 7.84(2H,m), 8.603 44(2H,m), 9.63(1H, br.s)

IR(KBr)cm⁻¹: 3348, 1696, 1635, 1523, 1458, 1302, 1272, 1141, 1019, 754, 713

Example 56

N-(2-aminophenyl)-4-[N-(2-methylpyridin-3-yl)methoxycarbonylaminomethyl]benzamide (Table 1: Compound 142)

mp: 164-165 °C

 $\begin{array}{l} 1\text{H NMR}(270\,\text{MHz}, DMSO-G_0) \, \delta \, \text{ppm:} \, 2.49(3\text{H}, s), \, 4.28(2\text{H}, d, \bot=6.6\text{Hz}), \, 4.89(2\text{H}, s), \, 5.10(2\text{H}, s), \, 6.60(1\text{H}, t, J=6.6\text{Hz}), \, 6.78(1\text{H}, d, J=8.1\text{Hz}), \, 6.90(1\text{H}, t, J=7.3\text{Hz}), \, 7.17(1\text{H}, d, J=7.3\text{Hz}), \, 7.217, \, 28(1\text{H}, m), \, 7.37(2\text{H}, d, J=8.1\text{Hz}), \, 7.88(1\text{H}, d, J=6.6\text{Hz}), \, 7.92-8.00(3\text{H}, m), \, 8.39(1\text{H}, d, J=4.4\text{Hz}), \, 9.62(1\text{H}, s), \, 8.332, \, 17(19, 1630, 1260), \, 1800, \,$

Example 57

N-(2-aminophenyl)-4-[N-(6-methylpyridin-3-yl)methoxycarbonylaminomethyl]benzamide (Table 1; Compound 144)

mn: 164-165 °C

1H NMR(270 MHz, DMSO-d₆) 5 ppm: 2.46(3H, e), 4.27(2H, d, J=6.8Hz), 4.88(2H, e), 5.05(2H, e), 6.59(1H, dt, J=1.5, B.1Hz), 6.78(1H, dd, J=1.5, B.1Hz), 6.78(1H, dd, J=1.5, T.3 Hz), 7.73(Hz), 7.72(H, d, J=7.3 Hz), 7.26(1H, d, J=0.1 Hz), 7.36(2H, d, J=0.1 Hz), 7.87(2H, d, J=0.1 Hz), 7.87(2H, d, J=0.1 Hz), 8.45(1H, d, J=1.5 Hz), 9.62(1H, e) IR(KB)cm²: 3293, 1701, 1632, 1260

Example 58

N-(2-aminophenyl)-4-[N-(2-chloropyridin-3-yl)methoxycarbonylaminomethyl]benzamide (Table 1: Compound 155)

mp: (amorphous)

1H MMR(270 MHz, DMSO-d₆) δ ppm: 4.30(2H, d, J=5.9 Hz), 5.00(2H, s), 5.13(2H, s), 6.61(1H, 1, J=7.3 Hz), 6.79 (1H, dd, J=1.5, 8.1 Hz), 6.99(1H, dt, J=1.5, 7.3 Hz), 7.17(1H, d, J=6.8 Hz), 7.39(2H, d, J=8.8 Hz), 7.47-7.52(1H, m), 7.91-7.56(9H, m), 8.09(1H, 1, J=5.9 Hz), 8.40(1H, dd, J=4.4, 1.5 Hz), 8.40(1H, d)

IR(KBr)cm⁻¹: 3340, 1702, 1632, 1273

Example 59

55

N-(2-aminophenyl)-4-[N-(6-chloropyridin-3-yl)methoxycarbonylaminomethyl]benzamide (Table 1: Compound 157)

mp: 180-185 °C

1H NMR(270 MHz, DMSO-d₆) δ ppm: 4.24(2H, d, J=5.9 Hz), 4.89(2H, b.s.), 5.10(2H, s), 6.60(1H, t, J=7.3 Hz), 6.78(1H, d, J=8.1 Hz), 6.97(1H, dt, J=1.5, 8.1 Hz), 7.16(1H, d, J=6.6 Hz), 7.37(2H, d, J=8.1 Hz), 7.56(1H, d, J=8.1 H

Hz), 7.85-8.02(4H, m), 8.44(1H, d, J=2.2 Hz), 9.62(1H, s) IR(KBr)cm⁻¹: 3346, 3282, 1696, 1533, 1271

Example 60

N-(2-aminophenyl)-4-[N-(pyridin-4-yl)methoxycarbonylaminomethyl]benzamide (Table 1: Compound 181)

mp: 180-183 °C

1H NMR(270 MHz, DMSO-d₆) δ ppm: 4.30(2H, d, J=6.6 Hz), 4.89(2H, s), 5.12(2H, s), 6.60(1H, dd, J=7.3, 7.3 Hz). 6.78(1H, dd, J=1.5, 7.3 Hz), 6.97(1H, ddd, J=1.5, 7.3, 8.1 Hz), 7.16(1H, d, J=7.3 Hz), 7.34(2H, d, J=5.9 Hz), 7.39 (2H, d, J=8.1 Hz), 7.94(2H, d, J=8.1 Hz), 8.09(1H, t, J=5.9 Hz), 8.57(1H, d), 9.64(1H, br.s) IR(KBr)cm-1: 3394, 3290, 1711, 1645, 1624, 1535, 1504, 1321, 1251, 1138, 1049, 763

Example 61

16

20

25

20

N-(2-aminophenyl)-4-[N-[2-(thiophen-3-yl)ethoxycarbonyl]aminomethyl]benzamide (Table 1: Compound 203)

mp: (amorphous)

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 2.90(2H, t, J=7.3 Hz), 4.17-4.26(4H, m), 4.89(2H, s), 6.60(1H, t, J=8.1 Hz). 6.78(1H, d, J=6.6 Hz), 6.97(1H, I, J=7.3 Hz), 7.06(1H, d, J=5.1 Hz), 7.17(1H, d, J=7.3 Hz), 7.26(1H, s), 7.36(2H, d, J=8.1Hz), 7.47(1H, I, J=2.2 Hz), 7.81(1H, I, J=5.9 Hz), 7.93(2H, d, J=8.1 Hz), 9.63(1H, s). IR(KBr)cm⁻¹: 3314, 1716, 1638, 1252

Example 62

N-(2-aminophenyl)-4-[N-(3-phenyloxazol-5-yl)methoxycarbonylaminomethyl]benzamide (Table 1: Compound 211)

mp: 192-195 °C

1H NMR(270 MHz, DMSO-d₆) δ ppm: 4.30(2H, d, J=5.9 Hz), 4.89(2H, s), 5.25(2H, s), 6.60(1H, t, J=6.6 Hz), 6.68 (1H, d, J=8.1 Hz), 6.94(1H, 1, J=7.3 Hz), 7.09(1H, s), 7.16(1H, d, J=7.3Hz), 7.39(2H, d, J=8.1Hz), 7.51(4H, d, J=2.2 Hz), 7.87-7.96(5H, m), 8.12(1H, t, J=5.9 Hz), 9.63(1H, s) IR(KBr)cm-1: 3292, 1718, 1630, 1262

Example 63

N-(2-aminophenyl)-4-[N-(thiazol-5-yl)methoxycarbonylaminomethyl]benzamide (Table 1: Compound 216)

mp: 168-175 °C

1H NMR(270 MHz, DMSO-d₆) δppm: 4.28(2H, d, J=5.9 Hz), 4.91(2H, br.s), 5.30(2H, s), 6.60(1H, dd, J=7.3, 7.3 Hz), 6.78(1H, d, J=8.1 Hz), 6.97(1H, dd, J=7.3, 8.1 Hz), 7.16(1H, d, J=7.3 Hz), 7.36(2H, d, J=8.1 Hz), 7.91-8.00 (4H, m), 9.09(1H, s), 9.63(1H, s) IR(KBr)cm⁻¹: 3346(br.), 1697, 1636, 1525, 1456, 1271, 873, 753

Example 64

N-(2-aminophenyl)-4-[N-[2-(4-methylthiazol-5-yl)ethoxycarbonyl]aminomethyl]benzamide (Table 1: Compound 217)

mp: 130-133 °C 1H NMR(270 MHz, DMSO-d₆) δ ppm: 2.32(3H, s), 3.07(2H, t, J=5.9 Hz), 4.15(2H, t, J=5.9 Hz), 4.25(2H, d, J=6.6 Hz), 4.89(2H, s), 6.60(1H, t, J=5.9Hz), 6.78(1H, dd, J=7.3, 1.5 Hz), 6.97(1H, dt, J=1.5, 7.3 Hz), 7.16(1H, d, J=8.1 Hz), 7.35(2H, d, J=8.1 Hz), 7.83(1H, t, J=5.9 Hz), 7.94(2H, d, J=8.1 Hz), 8.85(1H, s), 9.62(1H, s) IR(KBr)cm⁻¹: 3350, 1691, 1635, 1270

Example 65

N-(2-aminophenyl)-4-[N-(1-methylpiperidin-3-yl)methoxycarbonylaminomethyl]benzamide (Table 1: Compound 225)

mp: 130-135 °C

 $\begin{array}{l} \text{1H NMR}(270 \text{ MHz}, DMSO-d_{0}) \delta \text{ ppm}: 1.49-1.78(3\text{H}, \text{m}), 1.83-2.01(3\text{H}, \text{m}), 2.30(3\text{H}, \text{s}), 2.85(2\text{H}, \text{d}), 3.74-3.94(2\text{H}, \text{m}), 4.25(2\text{H}, \text{d}, J=5.8 \text{Hz}), 6.55-6.82(3\text{H}, \text{m}), 6.76(1\text{H}, \text{d}, J=8.1 \text{Hz}), 6.97(1\text{H}, \text{d}, J=6.1 \text{Hz}), 7.73(2\text{H}, \text{d}, J=8.1 \text{Hz}), 7.73(2\text{H}, J=8.1 \text{Hz}), 7.73(2\text{Hz}), 7.73(2\text{Hz}), 7.73(2\text{Hz}), 7.73(2\text{Hz}), 7.73(2\text{Hz}), 7.73(2\text{Hz}), 7.73(2\text{Hz}), 7.73(2\text{Hz}), 7.73(2\text{Hz}), 7.73(2\text{Hz$

Example 66

5

10

15

20

30

50

55

N-(2-aminophenyl)-4-[N-(4-methylpiperazin-1-yl)methoxycarbonylaminomethyl]benzamide (Table 1; Compound 227)

mp: (amorphous)

1H NMR(270 MHz, DMSO- d_0) δ ppm: 1.73(2H, I, J=6.6 Hz), 2.36-2.63(13H, m), 4.00(2H, I, J=6.6 Hz), 4.30(2H, d, J=5.9 Hz), 6.55-6.63(4H, m), 6.78(1H, d, J=6.6 Hz), 6.97(1H, I, J=7.3 Hz), 7.16(1H, d, J=7.3 Hz), 7.97(2H, d, J=8.7 Hz), 7.73(1H, I, J=5.9 Hz), 7.94(2H, d, J=8.0 Hz), 9.66(1H, s) 1RIKB0(m)* 3341, 2706, 1701, 1262

Example 67

N-(2-aminophenyl)-4-[N-(tetrahydrofuran-3-yl)methoxycarbonylaminomethyl]benzamide (Table 1: Compound 221)

mp; (amorphous)

11, MMP(270 MHz, DMSO-d₆) δ pmr: 1.50-1 60(1H, m), 1.88-2.00(1H, m), 2.44-2.54(1H, m), 3.41-3.47(1H, m), 3.58-3.77(3H, m), 3.65-4.04(2H, m), 4.25(2H, d, J=5.9 Hz), 4.89(2H, d), 6.60(1H, dd, J=7.3, 7.3 Hz), 6.79(1H, d, J=8.1 Hz), 8.67(1H, dd, J=7.3, 8.1 Hz), 7.77(1H, d, J=8.1 Hz), 7.37(2H, d, J=8.1 Hz), 7.81(1H, I, J=5.9 Hz), 7.94 (2H, d, J=8.1 Hz), 9.62(1H, brs)

IR(KBr)cm⁻¹: 3349, 1695, 1635, 1523, 1457, 1259, 754

Example 68

N-(2-aminophenyl)-4-[N-(phenoxycarbonyl)aminomethyl]benzamide (Table 1: Compound 12)

mp: 174-175 °C

"H NMR(270 MHz, DMSO-d₆) 8 ppm: 4.38(2H, d, J=5.9 Hz), 4.90(2H,br.s), 6.80(1H,dd, J=7.3, 7.3Hz), 6.77(1H,dd, J=7.3, 7.3Hz), 6.97(1H,dd, J=7.3, 7.3Hz), 7.05-7.24(4H,m), 7.39-7.46(4H,m), 7.97(2H,d, J=8.1 Hz), 6.47(1H,t,J=5.9 Hz), 9.65(1H,tors)

IR(KBr)cm-1: 3443, 3362, 3313, 1732, 1706, 1636, 1527, 1493, 1458, 1305, 1217, 748

Example 69

N-(2-aminophenyl)-4-[N-(pyridin-3-yl)oxycarbonylaminomethyl]benzamide (Table 1: Compound 81)

mp: 209 °C(dec.)

11 HMR[270 MHz, DMSO-d_e] δ ppm: 4.38(2H, d, J=6.6 Hz), 4.90(2H, br.s), 6.55-6.63(1H, m), 6.78(1H, d, J=0.1 Hz), 7.00(1H, dd, J=7.3, 7.3 Hz), 7.17(H, d, J=8.8 Hz), 7.37-7.47(3H, m), 7.64(1H, d, J=8.8 Hz), 7.97(2H, d, J=8.1 Hz), 8.43(2H, d, J=8.1 Hz),

Example 70

N-(2-amino-5-fluorophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide (Table 1; Compound 110)

mp: 160-162 °C

1+1 NMR(270 MHz, DMSO-d₀) 8 ppm: 4.28(2H, d, J=6.6 Hz), 4.81(2H, s), 5.10(2H, s), 6.70-6.90(2H, m), 7.10-8.00 (9H, m), 8.53(1H, d, J=3.6 Hz), 8.59(1H, s), 8.51(1H, s) (1.84(1H), 8.55(1H), 1.84(1H), 1.84(

Example 71

N-(2-aminophenyl)-4-[N-(2-aminophenyl)methoxycarbonylaminomethyl]benzamide (Table 1: Compound 51)

mp: 149-151 °C(dec.)

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 4.28(2H, d, J=5.9 Hz), 4.88(2H, s), 4.96(2H, s), 5.06(2H, s), 6.53(1H, dd, J=7.3, 7.3 Hz), 6.56-6.67(2H, m), 6.78(1H, dd, J=1.5, 8.1 Hz), 6.93-7.12(3H, m), 7.16 (1H, d, J=6.6 Hz), 7.38(2H, d, J=8.1 Hz), 7.86(1H, t-like, J=5.9 Hz), 7.93(2H, d, J=8.1 Hz), 9.61(1H, s) IR(KBr)cm-1:3336, 1685, 1632, 1527, 1276, 748

Example 72

N-(2-aminophenyl)-4-[N-(quinuclidin-3-yl)oxycarbonylaminomethyl]benzamide (Table 1; Compound 228)

mp: (amorphous)

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 1.30-1.90(4H, m), 1.90(1H, br.s), 2.45-2.80(6H, m), 3.04-3.13(1H, m), 4.15 (2H, d, J=5.9 Hz), 4.55-4.60(1H, m), 4.88(2H, br.s), 6.60(1H, ddd, J=1.5, 7.3, 7.3 Hz), 6.78(1H, d, J=8.1 Hz), 6.97 (1H, ddd, J=1.5, 7.3, 7.3 Hz), 7.17(1H, d, J=6.6 Hz), 7.37(2H, d, J=8.1 Hz), 7.78(1H, t, J=5.9 Hz), 7.94(1H, d, J=7.3 Hz), 9.62(1H, s)

IR(KBr)cm⁻¹:3328, 2942, 1700, 1648, 1504, 1259, 749

Example 73

20

25

4O

N-(2-aminophenyl)-4-[N-(3-aminophenyl)methoxycarbonylaminomethyl]benzamide (Table 1; Compound 52)

mp: 149-153 °C(dec.)

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 4.27(2H, d, J=5.9 Hz), 4.88 and 4.89(total 4H, each br.s), 5.08(2H, s), 6.47-6.63(3H, m), 6.78(1H, d, J=8.1 Hz), 6.94-7.02(2H, m), 7.15(1H, dd, J=7.3, 8.8 Hz), 7.37(2H, d, J=8.1 Hz), 7.84(1H, 1, J=5.9 Hz), 7.93(2H, d, J=8.8 Hz), 9.61(1H, br.s)

IR.(KBr)cm⁻¹:3367, 1682, 1632, 1523, 1457, 1261, 754

Example 74

N-(2-aminophenyl)-4-[N-(1-methylimidazol-5-yl)methoxycarbonylaminomethyl]benzamide (Table 1; Compound 218)

mp: 162-165 °C(dec.)

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 3.62(3H, s), 4.27(2H, d, J=5.9 Hz), 4.91(2H, br.s), 5.05(2H, s), 6.60(1H, dd, J=7.3, 7.3 Hz), 6.78(1H, d, J=8.1 Hz), 6.95-7.00(2H, m), 7.16(1H, d, J=7.3 Hz), 7.36(2H, d, J=8.1 Hz), 7.63(1H, s), 7.87-7.95(3H, m), 9.64(1H,br.s)

IR(KBr)cm⁻¹:3293, 1688, 1651, 1534, 1506, 1259, 1121, 1043, 748

Example 75

N-(2-amino-4-chlorophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide (Table 1: Compound 113)

mp: 167-170 °C

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 4.28(2H, d, J=5.9 Hz), 5.10(2H, s), 5.21(2H, s), 6.72(1H, dd, J=2.2, 8.1 Hz), 6.81(1H, d, J=2.2 Hz), 7.16(1H, d, J=8.1 Hz), 7.37(2H, d, J=8.1 Hz), 7.78(1H, d, J=8.1 Hz), 7.92(2H, d, J=8.1Hz), 8.53(1H,d, J=4.4Hz), 8.59(1H, s), 9.60(1H, s)

IR(KBr)cm⁻¹: 3347, 3062, 2931, 1653, 1576, 1505, 1456, 1428, 1301, 1232, 1114, 1070, 1019

Example 76

N-(2-aminophenyl)-4-[N-(5-methoxypyridin-3-yl)methoxycarbonylaminomethyl]benzamide (Table 1: Compound 161)

mp: 169-170 °C

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 3.83(3H, s), 4.29(2H, d, J=6.6 Hz), 4.87(2H, s), 5.09(2H, s), 6.57-6.62(1H, m), 6.76-6.79(1H, m), 6.94-6.99(1H, m), 7.14-7.18(1H, m), 7.36-7.39(3H, m), 7.91-7.99(3H, m), 8.19-8.30(2H, m),

9.63(1H, s) IR(KBr)cm⁻¹:3330, 1694, 1633, 1524, 1457, 1298, 1269, 1045, 760

Example 77

6

15

20

35

N-(2-aminophenyl)-4-[N-(pyrazin-2-yl)methoxycarbonylaminomethyl]benzamide (Table 1; Compound 192)

mp: 182 °C

11 NIME(270 MHz, DIMSO-de) δ ppm: 4.30(2H, d, J=6.6 Hz), 4.88(2H, br.s), 5.20(2H, e), 6.60(1H, dd, J=7.3, 8.1 Hz), 6.78(1H, d, J=8.1 Hz), 6.97(1H, dd, J=6.6, 8.1Hz), 7.16(1H, d, J=7.3 Hz), 7.39(2H, d, J=8.8 Hz), 7.94(2H, d, J=8.8 Hz), 8.08(1H, Hike, J=6.6 Hz), 8.81(1H, s), 8.65(1H, s), 8.68(1H, s), 9.63(1H, s) 1.81(Hz), 9.82(Hz), 9.

Example 78

N-(2-amino-5-methoxyphenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide (Table 1; Compound 121)

mp: 141-143 °C

1H MMF((270 MHz, DMSO-d₆) 5 ppm: 3.66(3H, s), 4.29(2H, d, J=5.9 Hz), 4.51(2H, br.s), 5.10(2H, s), 6.63(1H, dd, J=2.9, 8.8 Hz), 6.74(1H, d, J=8.8 Hz), 6.91(1H, d, J=2.2 Hz), 7.32(2H, d, J=8.8 Hz), 7.41(1H, s), 7.79(1H, d, J=8.1 Hz), 7.02(2H, d, J=8.1 Hz), 7.92(1H, d, J=5.9 Hz), 5.80(1H, s), 9.65(1H, s)

Example 79

N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methyl-N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide (Table 1: Compound 109)

mp: (amorphous)

TH NMR(270 MHz, DMSO-d₆) 8 ppm; 4, 50(2H, s), 4, 56(2H, s), 4, 87(2H, s), 5, 21(2H, s), 6, 60(1H, t, J=7, THz), 6, 78 (1H, d, J=7, 3Hz), 8, 97(1H, d, J=7, 3Hz), 7, 20-7, 50(4H, m), 7, 60-8, 00(4H, m), 8, 40-8, 80 (4H, m), 8, 56(1H, s)

IR(KBr)cm⁻¹: 3268, 1700, 1504, 1246, 1120, 940, 714

Example 80

N-(2-aminophenyl)-4-[N-[3-(pyridin-3-yl)propyl]-N-(pyridin-3-yl)melhoxycarbonyl aminomethyl]benzamide (Table 1: Compound 120)

mp: (amorphous)

1HNMRI(270MHz, DMSO-d₆) δ ppm: 1.75-1.90(2H, m), 2.48-2.62(2H, m), 3.20-3.36(2H, m), 4.55(2H, s), 4.89(2H, s), 5.16(2H, s), 6.57-6.63(1H, m), 6.76-6.80 (1H, m), 6.94-6.99(1H, m), 7.14-7.17(1H, m), 7.32-7.74(6H, m), 7.94 (2H, d, J.8.1142), 8.30-8.65(4H, m), 9.54(1H, m), 9.74(1H, m), 9.7

Example 81

 $\underline{N-(2-hydroxyphenyl)-4-[N-(pyridin-3-yl)methyl-N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide (Table 1: Compound 115)$

mp: (amorphous)

1H NMR(270 MHz, DMSO-d₀) 8 ppm: 4.52(2H, s), 4.57(2H,s), 5.20(2H, s), 6.84(1H, 1, J=6.6 Hz), 6.93(1H, d, J=6.6 Hz), 7.03(1H, d, J=7.3 Hz), 7.97(4H,m), 7.68(2H, dd, J=1.5, 8.1Hz), 7.92(2H,br.s), 8.53(4H, m), 9.49(1H, s), 9.77 (1H, br.s)

IR(KBr)cm⁻¹: 3035, 1698, 1243, 1118, 754, 640

Example 82

5

10

15

20

30

N-(2-hydroxyphenyl)-4-[N-(pyridin-3-yl) methoxycarbonylaminomethyl]benzamide (Table 1: Compound 111)

mp: 162-164 °C

1H NMR(270 MHz, DMSO-d₆) 8 ppm: 4.29(1H, d, J=5.9 Hz), 5.10(2H, s), 6.83(1H, t, J=8.1 Hz), 6.92(1H, d, J=8.6 Hz), 7.07(1H, t, J=6.6 Hz), 7.39(2H, d, J=8.1 Hz), 7.80(1H, d, J=5.1 Hz), 7.68(2H, d, J=8.1 Hz), 7.60(1H, d, J=5.1 Hz), 7.80(2H, d, J=8.1 Hz), 7.90(1H, t, J=5.9 Hz), 8.54(1H, d, J=4.4 Hz), 8.60(1H, s), 9.49(1H, s), 9.76(1H, br.s) RR(KB)cm** 3333, 3259, 1694, 1694, 1529, 1267, 720

Example 83

N-(2,4-dihydroxyphenyl)-4-[N-(pyridin-3-yl) methoxycarbonylaminomethyl]benzamide (Table 1: Compound 116)

mp: (amorphous)

Example 84

N-(2-hydroxy-5-methylphenyl)-4-[N-(pyridin-3-yl) methoxycarbonylaminomethyl]benzamide (Table 1: Compound 118)

mp: 155-155.5 °C

14 NMR(270 MHz, DMSO-d₆) δ ppm: 2.22(3H, s), 4.29(2H, d, J=5.8Hz), 5.11(2H, s), 6.82(2H,m), 7.39(2H, d, J=8.8 Hz), 7.42(2H, m), 7.51(1H, s), 7.79(1H, d, J=8.1 Hz), 7.92(1H, d, J=8.1 Hz), 7.98(1H, I, J=5.9 Hz), 8.54(1H, d, J=4.4 Hz), 8.60(1H, s), 9.48(2H, d, J=8.1 Hz)

Example 85

N-(2-hydroxy-5-methoxyphenyl)-4-[N-(pyridin-3-yl) methoxycarbonylaminomethyl]benzamide (Table 1: Compound 119)

mp: 175-176 °C

H: NMR[270 MHz, DMSO-d₆) 8 ppm: 3.69(3H, s), 4.29(2H, d, J=5.9 Hz), 5.10(2H, s), 6.63(1H, dd, J=2.9, 8.7 Hz), 6.84(1H, d, J=8.1 Hz), 7.41(4H, m), 7.79(1H, d, J=6.1 Hz), 7.91(1H, d, J=8.1 Hz), 7.99(1H, t, J=5.9 Hz), 8.54(1H, d, J=5.1 Hz), 8.60(1H, s), 9.31(1H, s), 9.45(1H, s)

d, J=5.1 Hz), 8.60(1H, s), 9.31(1H, s), 9.45(1H, s)

HIK(Rsipam: 3.935, 1687, 1573, 1282, 1039, 888

Example 86

N-(2-aminophenyl)-4-[N-[2-(pyridin-3-yl)ethoxycarbonyl]amino]benzamide (Table 1: Compound 124)

mp: (amorphous)

"H NMR[270 MHz, DMSO-d₆] δ ppm: 3.00(2H, t, J=6.8 Hz), 4.37(2H, t, J=6.6 Hz), 4.97(2H, br.s), 6.60(1H, t, J=7.3 Hz), 6.97(1H, t, J=7.3 Hz), 7.36(1H, dd, J=4.4, 8.1 Hz), 7.56(2H, d, J=8.8 Hz), 7.92(2H, d,

Example 87

N-(2-aminophenyl)-5-[(pyridin-3-yl)methoxycarbonyl]aminobenzofuran-2-carboxyamide (Table 3: Compound 2)

mp: 173-174 °C

1H NMR(270 MHz, DMSO-d_g) δ ppm: 5.22(2H, s), 6.60(1H, dd, J=8.1, 8 Hz), 6.79(1H, dd, J=1.5, 8.1Hz), 7.00(1H, dd, J=8.1, 8 Hz), 7.20(1H, dd, J=1.5, 8.1 Hz), 7.44(1H, m), 7.48(1H, dd, J=1.5, 8.8 Hz), 7.61(1H, d, J=8.8 Hz).

7.67(1H, s), 7.88(1H, dd, J=1.5, 8 Hz), 7.96(1H, d, J=1.5 Hz), 8.56(1H, dd, J=1.5, 4.8 Hz), 8.68(1H, d, J=1.5 Hz), 9.83(1H, s), 9.91(1H, s)
9.83(1H, s), 9.91(1H, s)
9.83(1H, s), 9.91(1H, s)

5 Example 88

20

25

45

55

Preparation of N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methoxythjocarbonylaminomethyl]benzamide (Table 1: Compound 86)

(88-1) To a solution of 20 mg of 3-pyridinemethanol (0.18 mmol) in 5 mL of dry THF were added 30 mg of NN-thiocarbonyldiimidazole (0.16 mmol) at room temperature. After stirring overnight, to the mixture were added 50 mg of the compound from Example 1, the process (1-4) (0.14 mmol).

After leaving at room temperature overnight, to the solution was added 100 mL of otherotom, and the solution was washed with water (3 x 20 mL) and then saturated brine, and dined over arhydrous magnesium sultest devaporation, he residue was purified by column chromatography on sitias gelquent, chloroform:methand = 30.1) to give 70 mg of N-[2-(N-eir-butoxycarbonyl)aminophenyl|-4-[N-(pyridin-3-yl)methoxythiocarbonylaminomethyl]benzamide (Yields 8-%) as amorphous.

 $^{1} H \ NMR(270 \ MHz, DMSO-d_{6}) \ \delta \ ppm: \ 1.45(9H, s), \ 4.73(2H, d, J=5.9 \ Hz), \ 5.52(2H, s), \ 6.73-7.33(3H, m), \ 7.35-7.43(2H, m), \ 7.58-7.95(5H, m), \ 8.14-8.65(3H, m), \ 9.80(1H, s), \ 9.91(1H, t)$

(88-2) To a solution of 50 mg of the compound from the process (88-1) (0.10 mmol) in 3 mL of methanol was added 3 mL of 4M hydrochloric acid-dioxane, and the mixture was stirred at room temperature for 1.5 hours. The mixture was poured into distured sodium hydrockied as, to neutralize the residual hydrochloric acid, and then was extracted with chloroform (3 x 10 mL). The organic layer was washed twice with saturated brine, dired over anhydrous magnesium sulfate and concentrated to give 34 mg of N+(2-aminophenyt)+4(N+(printin-3y)-finathoxyniccations).

nylaminomethyl]benzamide (Yield: 87 %). mp: 154-156 °C(dec.)

THIN MICRO MEZ, DMSO-d₆) 6 ppm: 4.73(2H, d, J=5.9 Hz), 4.88(2H, s), 5.52(2H, s), 6.80(1H, 1, J=7.3 Hz), 6.77 (1H, d, J=8.1 Hz), 7.16(1H, d, J=7.3 Hz), 7.29-7.41(9H, m), 7.89-7.95(9H, m), 8.50(1H, s), 9.82(1H, s), 9.30(1H, s), 9.30(1H, s)

IR(KBr)cm⁻¹:3204, 3035, 1631, 1523, 1456, 1289, 1191, 920, 753

Example 89

Preparation of N-(2-aminophenyl)-4-[N'-(pyridin-3-ylmethyl)ureldomethyl]benzamide (Table 1: Compound 88)

(69-1) To a solution of 0.28 g of 3-picolylamine (2.6 mmol) in 10 mL of THF was added 0.42 g of N,N*-carbonyldimidazole (2.4 mmol) at room temperature, and the mixture was stirred for an hour. To the solution was added 0.55 g of the compound from Example 1, the process (1-4) (1.8 mmol) at room temperature, and the solution was stirred for 3 hours and then left overnight.

After diluting with water, the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried and evaporated. The residue was purified by column chromatography on silica gel (eluent: ethyl acetate: methanol = 10:1) to give 0.77 g of N-[2-(N-tert-butoxycarbonyl)amino]phenyl-4-[N'(pyridin:3-ylmethyl)ureidomethyl) benzamide (Yeldt. 90 %) as a white amorphous solid.

1H NMFI(270MHz, CDCl₉) δ ppm: 1.46(9H, s), 4.20(2H, d, J=5.1 Hz), 4.28(2H, d, J=4.3 Hz),6.10-6.30(2H, m), 7.00-7.26(4H, m), 7.39(H, d, J=7.3 Hz), 7.49-7.54(2H, m), 7.59-7.64(3H, m), 7.75(1H, s), 8.28(1H, bt.s), 8.39(1H, d, J=5.1 Hz), 9.65 (1H, bt.s)

(89-2) To a solution of 0.63 g of the compound from the process (89-1)(1.32 mmol) in 4 mL of dioxane and 2 mL of methanol was added 4 mL of 4N hydrochloride-dioxane, and the mixture was stirred at room temperature for 2 hours. After adding saturated sodium bicarbonate aq., the mixture was extracted with ethyl acetate-methyl ethyl ketone. The organic layer was washed with saturated brine, dried and evaporated. The residue was washed with disopropyl ether to give 0.37 g of N-(2-aminophenyl)-4-[N¹-(pyridin-3-ylmethyl)ureidomethyl]benzamide (Yield: 74, 7%) as a brown solid.

mp: 167-175 °C °1H NMR(270 MHz, DMSO-d₆) δ ppm: 4 27(2H, d, J=5.9 Hz), 4.31(2H, d, J=5.9Hz), 4.89(2H, br.s), 6.57-6.63(3H, NMR), δ

1H NMR(270 MHz, DMSO-d₆) a ppm. 4.27(zH, d, J=5.9 TG, J, -3.1(zH, d, J=5.14z), r.0.3(zH, d, J=8.1 Hz), f.97(1H, d, J=7.3, 8.1 Hz), 7.17(1H, d, J=7.3 Hz), 7.22-7.38(3H, m), 7.66(1H, d, J=8.1 Hz), 7.93(2H, d, J=8.1 Hz), 8.44(1H, d, J=5.1 Hz), 8.49(1H, d, J=2.1 Hz), 9.63(1H, br.s)

IR(KBr)cm⁻¹: 3344, 3241, 1645, 1560, 1527, 1505, 1283, 751, 708

As described in Example 89, the compounds of Examples 90 to 95 were prepared, each of whose melting point (mp), ¹H NMR data and/or IR data are shown below.

Example 90

N-(2-aminophenyl)-4-[N'-(3-aminophenyl)ureidomethyl]benzamide (Table 1: Compound 24)

mp: 206-208 °C(dec.)

1H NMR(270 MHz, DMSO-d_e) δ ppm: 4.35(2H, d,J=5.9 Hz), 4.93(4H, br.s), 6.13(1H, d, J=7.3 Hz), 6.51-6.62(3H, m), 6.746.98(3H, m), 7.127.18(1H, m), 7.41(2H,d, J=8.1 Hz), 7.94(2H, d, J=8.1 Hz), 8.28(1H, s), 9.61(1H, s), 18((Kg)tm⁻¹.356, 3269, 1640, 1555, 1495, 1458, 1308, 1236, 753

15 Example 91

20

25

N-(2-aminophenyl)-4-[N'-(pyridin-3-yl)ureidomethyl]benzamide (Table 1: Compound 87)

mp: 187-190 °C

'H NMR(270 MH. DMSO d.) & ppm: 4.39(2H, d.) J=5.9 H.2), 4.89(2H, br.), 6.59(1H, d., J=7.3, 7.3H.2), 6.77(1H, d., J=6.6 H.2), 6.88(1H, 1, J=5.9 H.2), 6.97(1H, d.d., J=1.5, 6.6, 7.3 H.2), 7.16(1H, d., J=8.1 H.2), 7.26(1H, d., J=4.4, 8.1 H.2), 7.42(2H, d., J=8.8 H.2), 7.95(2H, d., J=8.1 H.2), 7.95(2H, d., J=8.1 H.2), 7.89(1H, m), 8.12(1H, dd., J=1.5, 4.4 H.2), 8.56(1H, d., J=3.0 H.2), 8.56(1H, d.

Example 92

N-(2-aminophenyl)-4-[N'-(3-aminophenyl)thioureidomethyl]benzamide (Table 1: Compound 25)

mp: 123 °C(dec.)

"H NMR(270 MHz, DMSO-d_e) δ ppm: 4.80(2H, d, J=5.1 Hz), 4.87(2H, s), 5.12(2H, s), 6.36(1H, dd, J=1.5, 8.1 Hz), 6.49-6.63(3H, m), 6.7(1H, d, J=6. Hz), 6.94-7.00(2H, m), 7.17(1H, d, J=8.1 Hz), 7.42(2H, d, J=8.1 Hz), 7.92-8.01 (3H, m), 9.46(1H, s), 9.61(1H, 3)

IR(KBr)cm-1: 3335, 1616, 1528, 1503, 1456, 1311, 864, 751

Example 93

N-(2-aminophenyl)-4-[N'-(3-nitrophenyl)thioureidomethyl]benzamide (Table 1: Compound 20)

mp: 160 °C(dec.)

mp: 100 °C(006.) H NMR(270 MHz, DMSO-d₆) δ ppm: 4.87(2H, d, J=5.1 Hz), 7.27-7.33(3H, m), 7.46-7.63(5H, m), 7.89-7.95(2H, m), 8.05(2H, d, J=8.1 Hz), 8.70(1H, s), 8.84(1H, t, J=8.9 Hz), 10.37 (1H, s)

Example 94

N-(2-amino-5-fluorophenyl)-4-[N'-(pyridin-3-yl)methylureidomethyl]benzamide (Table 1: Compound 112)

mp: (amorphous)

1H NMR(270 MHz, DMSO-d_e) 8 ppm: 4.77(4H, d, J=5.1 Hz), 4.85(2H, s), 6.81(2H, m), 7.16(1H, dd, J=2.9, 10.3 Hz), 7.39(1H, dd, J=5.1, 8.1 Hz), 7.83(2H, d, J=8.1 Hz), 7.81(1H, d, J=8.1 Hz), 7.93(2H, d, J=8.1 Hz), 8.51(1H, dd, J=5.5, 1.Hz), 8.62(1H, d, J=1.5 Hz), 9.66(1H, d), 9.66

Example 95

N-(2-hydroxyphenyl)-4-[N'-(pyridin-3-yl)methylureidomethyl]benzamide (Table 1; Compound 114)

mp: (amorphous)

1H NMR(270 MHz, DMSO-d₀) δ ppm: 4 43(2H, d, J=6.6 Hz), 4.69(2H, s), 6.83(1H, t, J=6.6 Hz), 6.91(1H, d, J=8.1 Hz), 7.68(1H, d, J=6.6 Hz), 7.82(2H, d, J=8.1 Hz), 8.21(1H, d, J=4.4 Hz), 8.35(1H, d, J=2.2 Hz), 8.81(1H, t, J=6.6 Hz), 9.48(1H, s), 9.75(1H, s)

IR(KBr)cm⁻¹: 3399, 1664, 1535, 1236, 1064

Example 96

5

15

20

30

55

Preparation of N-(2-arninophenyl)-4-[2-[N-(pyridin-3-yl)acetylamino]ethyl|benzamide (Table 1; Compound 77)

(96-1) To a suspension of 3.40 g of terephthalaidehydic acid (22.6 mmol) in 25 mL of toluene was added 4 mL of the control process of the mature was bested with stirring at 80 ° C 10° 2 hours. After cooling and evaporation, the residue was dissolved in 50 mL of THF to give a solution of the acid chloride. To a solution of 4.16 g of the compound from Example 1, the process (1-2) (20.0 mmol) in 10 mL of THF was added 6 mL of triethylamine (42.8 mmol) and then the above solution of the acid chloride was added dropwise under (ac-cooling over 30 min.)

After stirring for 5 hours, to the mixture was added saturated sodium bicarbonate aq., and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried and evaporated. The residue was purified by column chromatography on silica get (gradient elution with chloroform to chloroformathyl acetate = 10:1) to give 3.42 g of N-2(-N-tert-butoxycarbonylparninophenyl-4-formylbenzamide (Yield: 50.2 %) as a light brown solid.

1H NMF((270MHz, CDCl₀) 8 ppm: 1.52(9H, s), 6.77(1H, br.s), 7.16-7.16(2H, m), 7.23-7.26(1H, m), 7.88(1H, d, J=8, Hz), 7.96(2H, d, J=8, Hz), 8.73(2H, d, J=8, Hz), 8.73(H, br.s), 10.11(1H, br.s) IR(KB)pm⁻¹, 3265, 3251, 1707, 1698, 1699, 1603, 1165

(96-2) A suspension of 3.0 g of the compound from the process (96-1) (8.92 mmol) and 4.5 g of ethoxycarbonylmethyl triphenylphosphine (12.9 mmol) in 10 mL of toluene was stirred in a stream of introgen at 80 °C (or 5.5 hours. After cooling, the mixture was diluted with ethyl acetate; weshed with saturated socium bicarbonate, water and saturated brine; dried; and evaporated. The residue was purified by column chromatography on silica gel (eluent: chloroform-ethyl acetate = 20.71 to give 3.3 g of ethyl 41-N/2(-N-ert-butoxycarbonyl)aminophenyljaminocarbonyljcinnane (Yidd: 91.1 %) as a yeliow amorphous solid.

1H NMR(270 MHz, CDCl₃) 8 ppm: 1.35(9H, t, J=7.3 Hz), 1.52(9H, s), 4.28(2H, q, J=7.3 Hz), 6.52(1H, d, J=15.1 Hz), 6.90(1H, br.s), 7.16-7.25(9H, m), 7.61(2H, d, J=8.1 Hz), 7.71(1H, d, J=15.1 Hz), 7.82(1H, d, 7.3 Hz), 7.98(2H, d, J=8.1 Hz), 2.34 (1H, br.s)

(96-5) To a solution of 2.50 g of the compound from the process (96-2) (6.09 mmol) in 30 mL of THF and 40 mL of methanol was added 10 % PctC (wet, 0.5 g) in a stream of hitrogen, and then stirred in a stream of hydrogen for 30 min. After filling with hitrogen, the mixture was filtered to enrow the catalyst, and the filtrate was evaporated. To the residue was added dilisopropyl ether, and the precipitated solid was collected by filtration and dried to give 2.23. g of N-[2-(N-tert-butoxycarbonyi)aminophenyi]-4-(2-ethoxycarbonylethy)benzamide (Yield: 88.6 %) as a white solid.

H NMR(270 MHz, CDCl₃) δ ppm: 1.25(3H, 1, J=7.3 Hz), 1.52(9H, s), 2.65(2H, 1, J=7.3 Hz), 3.02(2H, 1, J=7.3 Hz), 4.13(2H, d, J=7.3 Hz), 5.07(1H, br.s), 7.167-33(5H, m), 7.76(1H, d, J=6.1 Hz), 7.89(2H, d, J=8.8 Hz), 9.06(H, br.s) (66-4) To a superparison of 2.21 g of the compound from the process (96-3) (5.36 mmol) in 10 mL of methanol and 15 mL of water was added 0.37 g of lithium hydroxide monohydrate (6.82 mmol), and the mixture was stirred at 40 °C for 3 hours. After cooling, to the mixture was added 10 % hydrocholice acid and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried and evaporated. To the residue was added discoproyal ether, and the precipitaled solid was filtered and dried to give 1.87 g of N-[2-(N-ter-butoxycar-boyy)]aminophenyi]-4-[2-carboxyethyl)benzamide (Yeld: 9.08 %) as a white solid.

1H NMR(270 MHz, DMSO-d₆) δ ppm: 1.45(9H, s), 2.59(2H, t, J=7.3 Hz), 2.91(2H, t, J=7.3 Hz), 7.13-7.20(2H, m), 7.40(2H, d, J=8.1 Hz), 7.54(2H, dd, J=7.3, 2.1 Hz), 7.88(2H, d, J=8.1 Hz), 8.66(1H, br.s), 9.79(1H, br.s)

(96.5) To a suspension of 0.12 g of the compound from the process (96.4) (0.3 mmol) in 5 mL of benzene were added 0.1 mL of triethylamine (0.7 mmol) and 0.3 g of molecular eleves 4A, and the mixture was stirred in a stream of nitrogen for 0.5 hours. To the mixture was added 0.15 m L of diphenylphosphory lazide (0.7 mmol), and the mixture was refluxed with heating for 2 hours. After cooling, to the mixture was added 0.4 mL of benzyl alcohol (3.8 mmol), and the mixture was refluxed with heating for its additional 2.5 hours. After diluting with ethyl acetate, the reaction mixture was washed with water and saturated brine.

The organic layer was dried and evaporated. The residue was purified by column chromatography on silica gel (eluent: chloroformethyl acetate = 4.1) to give 129 mg of N+[2-(N-tert-butoxycarbonyl)aminophernyl]-4-[2-(N-benzy-toxycarbonylaminophthyllpenzamide (Yfeld: 88 %) as a clear of the property of th

¹H NMR(270MHz, CDCl₃) δ ppm: 1.51(9H, s), 2.89(2H, t, J=7.3 Hz), 3.45-3.54(2H, m), 4.80(1H, m), 5.10(2H, s), 6.76(1H, br.s), 7.20-7.38(10H, m), 7.79(1H, d, J=8.8 Hz), 7.89(2H, d, J=8.1 Hz), 9.10(1H, br.s)

(96-6) To a solution of 129 mg of the compound from the process (96-5) (0.26 mmol) in 10 mL of methanol was added 10 % Pd/C (wet, 0.05 g) in a stream of nitrogen, and then stirred in a hydrogen stream for 2 hours. After removing the catalyst, the filtrate was evaporated and dried. The residue was dissolved in 5mL of dichloromethane. To the solution were added 0.18 g of 3-pyridineacetic acid hydrochloride (1.04 mmol) and then 0.28 g of triethylamine (2.0 mmol), and the mixture was ice-cooled. Under ice-cooling, to the mixture was added 0.17 g of 2-chloro-1,3-dimethylimidazolinium chloride (1.0 mmol), and the mixture was stirred for 2 hours. To the mixture was added saturated sodium bicarbonate aq., and the mixture was extracted with chloroform. The organic layer was washed with saturated brine, dried and evaporated. The residue was purified by column chromatography on silica gel (eluent: ethyl acetate:methanol = 10:1) to give 50 mg of N-[2-(N-tert-butoxycarbonyl)aminophenyl]-4-[2-[N-(pyridin-3-yl)acetylaminojethyljbenzamide (Yield: 40 %) as a colorless oil.

1H NMR (270 MHz, CDCl₃) δ ppm: 1.48(9H, s), 2.80(2H, t, J=6.6 Hz), 3.42(2H, m), 3.52(2H, s), 6.33(1H, t-like, J=5.9 Hz), 7.09(2H, d, J=8.1 Hz), 7.14-7.20(2H, m), 7.24(1H, dd, J=4.4, 7.3Hz), 7.41(1H, dd, J=3.7, 5.9 Hz), 7.50 (1H, s), 7.58(1H, dd, J=1.5, 5.9 Hz), 7.69(1H, dd, J=3.7, 5.9Hz), 7.75(2H, d, J=8.1 Hz), 8.22(1H, d, J=2.1 Hz), 8.44

(1H, dd, J=1.5, 4.4 Hz), 9.49(1H, br.s) (96-7) To a solution of 50 mg of the compound from the process (96-6) (0.10 mmol) in 2 mL of dioxane and 1 mL of methanol was added 2 mL of 4N hydrochloric acid-dioxane, and the mixture was stirred at room temperature for 2.5 hours. To the mixture was added saturated sodium bicarbonate, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried and evaporated. The residue was dried to give 22 mg of N-(2-aminophenyl)-4-[2-[N-(pyridin-3-yl)acetylamino]ethyl]benzamide (Yield: 59 %) as an amorphous solid

mp: (amorphous) ¹H NMR(270 MHz, DMSO-d_s) δ ppm: 2.70-2.90(4H, m), 3.42(2H, s), 4.89(2H, br.s), 6.60(1H, dd, J=7.3, 7.3 Hz), 6.78(1H, d, J=7.3 Hz), 6.97(1H, dd, J=7.3, 7.3 Hz), 7. 16(1H, d, J=7.3 Hz), 7.29-7.32(3H, m), 7.59(1H, d, J=8.1 Hz), 7,89(1H, d, J=8.1 Hz), 8.22(1H, t-like), 8.41-8.43(2H, m), 9.62(1H, br.s)

Example 97

5

15

20

25

35

45

Preparation of N-(2-aminophenyl)-4-[2-[N-(3-picolyl)aminocarbonyl]ethyl]benzamide (Table 1: Compound 80)

(97-1) To a suspension of 0.58 g of the compound from Example 96, the process (96-4) (1.5 mmol) in 5 mL of dichloromethane were added 0.22 g of 3-picolylamine (2.0 mmol) and 0.56 mL of triethylamine (4.0 mmol). Under icecooling, to the mixture was added 0.39 g of 2-chloro-1,3-dimethylimidazolinium chloride (2.0 mmol) in 5 mL of dichloromethane, and the mixture was stirred for 1.5 hours. To the mixture was added saturated sodium bicarbonate aq., and the mixture was extracted with chloroform.

The organic layer was washed with water and saturated brine, dried and evaporated. The residue was purified by column chromatography on silica gel (eluent: chloroform:methanol:NH3 aq. = 100:10:1) to give 0.71 g of N-[2-(N-tertbutoxycarbonyl)aminophenyl]-4-[2-[N-(3-picolyl)aminocarbonyl]ethyl]benzamide (Yield: 94 %) as a light brown oil.

¹H NMR(270MHz, CDCl₃) δ ppm: 1.45(9H, s), 2.42(2H, t, J=7.3 Hz), 2.98(2H, t, J=7.3 Hz), 4.32(2H, d, J=6.6 Hz), 6.44(1H, t, J=6.6 Hz), 7.14-7.27(5H, m), 7.48-7.57(3H, m), 7.63-7.68(3H, m), 7.90(1H, d, J=2.1 Hz), 8.43(1H, dd, J=1,4, 4,4 Hz), 9.86(1H, br.s)

(97-2) To a solution of 0.70 g of the compound from the process (97-1) (1.47 mmol) in 5 mL of dioxane was added 5 mL of 4N hydrochloride-dioxane and then 2 mL of methanol, and the mixture was stirred at room temperature for 2 hours. To the mixture was added saturated sodium bicarbonate aq., and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried and evaporated. To the residue was added discorpopyl ether, and the precipitated solid was collected by filtration and dried to give 0.42 g of N-(2-aminophenyl)-4-[2-[N-(3-picolyl)aminocarbonyl]ethyl]benzamide (Yield: 76.3 %) as an opalescent solid.

mo: 168-170 °C ¹H NMR(270 MHz, DMSO-d_g) δ ppm: 2.47-2.53(2H, m), 2.93(2H, t, J=7.3 Hz), 4.27(2H, d, J=5.9 Hz), 4.90(2H, br. s), 6.60(1H, dd, J=7.3, 7.3 Hz), 6.78(1H, d, J=8.1 Hz), 6.97(1H, dd, J=6.6, 7.3 Hz), 7.16(1H, d, J=6.6 Hz), 7.28-7.35 (1H, m), 7.33(2H, d, J=8.1 Hz), 7.49(1H, dd, J=2.1, 5.9 Hz), 7.89(2H, d, J=8.1 Hz), 8.39-8.44(3H, m), 9.62(1H, br.s) IR(KBr)cm1: 3313, 1641, 1523, 1457, 1300, 748, 713

Example 98

5

20

25

30

40

50

Preparation of N-(2-aminophenyl)-4-((pyridin-3-yl)methylaminocarbonyloxymethyl]benzamide (Table 1: Compound 85)

(98-1) To a solution of 1.99 g of methyl 4-hydroxymethylbenzoste (12.0 mmol) in 20 mL of THF were added 1.78 g of N,N-carbonyldimidazole (11.0 mmol) at room temperature, and the solution was stirred for an hour. To the solution were added 1.08 g of 3-picolylamine (10.0 mmol) at room temperature, and the mixture was stirred for 3.5 hours and left overnight. Water was added to the solution, and the mixture was extracted with othyl acetale.

The organic layer was washed with saturated brine, dried and evaporated. The residue was purified by column chromatography on sitica get (eluent: stryl acetate) to give 2.76 g of N-(4-methoxycarbony)benzyloxycarbonyi-3-pic-olylamine (1961: 51.9 %) as a write waxy ecity.

¹H NMR(270MHz, CDCl₃) δ ppm: 3.91(3H, s), 4.40(2H, d, J=5.9Hz), 5.18(2H, s), 5.50(1H, br.s), 7.24-7.28(1H, m), 7.40(2H, d, J=8.1 Hz), 7.65(1H, d, J=7.3 Hz), 8.02(2H, d, J=8.8 Hz), 8.50-8.53(2H, m)

(98-2) To a suspension of 2.40 g of the compound from the process (98-1) (8.0 mmol) in 10 m. L of methanol and 20 ml. of water was added 0.42 g of lithium hydraxids unonchydrate (10.0 mmol), and the mixture was stirred at room temperature for 5 hours. To the reaction mixture was added 10 % hydrochloric acid to acidified to pH 2 to 4, and the precipitated solid was collected by filtration and dried to give 1.83 g of N-(4-carboxy)benzyloxycarbonyl-3-picolylamine (79.9 %) as a white solid.

 $\begin{array}{l} ^{1}H\ NMR(270\ MHz,\ DMSO-d_{e})\ \delta\ ppm;\ 4.24(2H,\ d,\ J=5.9\ Hz),\ 5.13(2H,\ s),\ 7.39-7.38\ (1H,\ m),\ 7.46(2H,\ d,\ J=8.1\ Hz),\ 7.94(2H,\ d,\ J=8.1\ Hz),\ 7.95-8.01(1H,\ m),\ 8.46(1H,\ d,\ J=5.1\ Hz),\ 8.49(1H,\ d,\ J=1.5\ Hz),\ 13.0(1H,\ b),\ s) \end{array}$

HZ), 7,94(c.f. d., 35.5). IAJ, 7,934(c.f. d., 35

To the mixture was added saturated sodium bicarbonate, and the mixture was extracted with chioroform. The organic layer was washed with saturated brine, dried and evaporated. Toluene was added to the residue to execetop-

THNMR (270 MHz, CDCl₃) 8 ppm: 1.51(9H, s), 4.40(2H, d, J=5.9 Hz), 5.19(2H, s), 5.56(1H, m), 7.07(1H, br.s), 7.147-31(4H, m), 7.43(2H, d, J=6.1 Hz), 7.65(1H, d, J=6.1 Hz), 7.76(1H, d, J=7.3 Hz), 7.95(2H, d, J=6.1 Hz), 8.52 (2H, d, J=4.1 Hz), 9.32(1H,br.s)

(98.4) To a solution of 1.00 g of the compound from the process (98.3) (2.10 mmol) in 10 mL of dioxane and 2 mL of methanol was added 9 mL of 4th Ayliorchioric acid-dioxane at room temperature, and the mixture was stirred for 2 hours. To the mixture was added saturated sodium bicarbonate and the mixture was extracted with ethyl acetate-methyl ethyl ketone (11). The organic layer was washed with saturated brine, dried and evaporated. To the residue was added methanol-diisopropyl ether, and the precipitated solid was collected by filtration and dried to give 0.79 g of N-(2-aminophenyl)-4-((pyridin-3-yl))methylaminocarbonyloxymethyl[benzamide (Yield: quantitative) as a white solid.

mp: 139-141 °C
'H NMR(270 MHz, DMSO-d_e) δ ppm: 4.25(2H, d, J=5.9 Hz), 4.90(2H, s), 5.13(2H, s), 6.60(1H, dd, J=6.6, 7.3 Hz), 6.73(1H, d, J=7.3 Hz), 7.36(1H, dd, J=4.4, 8.1 Hz), 7.47(2H, d, J=7.3 Hz), 7.57(1H, d, J=8.1 Hz), 7.47(2H, d, J=8.1 Hz), 7.67(1H, d, J=8.1 Hz), 7.47(2H, d, J=7.3 Hz), 7.96(1H, m), 8.46(1H, dd, J=1.5, 5.1 Hz), 8.49(1H, dd, J=1.5, 5.1 Hz), 7.47(2H, d, J=7.4 Hz), 9.56(1H, brd, J=7.4 Hz), 9.5

IR(KBr)cm⁻¹: 3326(br.), 1694, 1637, 1526, 1458, 1147, 750, 712

Example 99

Preparation of N-(2-aminophenyll-4-[3-(imidazol-1-yl)propylaminocarbonyloxymethyl]benzamide (Table 1: Compound 215)

The title compound was prepared as described in Example 98.

mp: (amorphous)

1H NMR(270 MHz, DMSO-d₆) δ ppm: 1.80-1.89(2H, m), 2.94-3.02(2H, m), 3.98(2H, I, J=7.3 Hz), 4.88(2H, s), 5.11 (2H, s), 6.55-6.63(1H, m), 6.76-6.97(3H, m), 7.10-7.18(2H, m), 7.43-7.48(3H, m), 7.61(1H, s), 7.98(2H, d, J=8.1 Hz), 9.66(1H, s)

Example 100

5

10

20

95

30

55

Preparation of N-(2-aminophenyl)-4-(phenylacetylamino)benzamide (Table 1: Compound 2)

(100-1) To a solution of 16.6 g of the compound from Example 1, the process (1-2) (80 mmol) in 120 mL of dichloromethane was added 16.8 mL of triathylamine (120 mmol) and then, was slowly added a solution of 16.0 g of 4-ni-trobenzoyl chlorida (86.4 mmol) in 40 mL of dichloromethane, and the solution was etimed for 7 hours. To the solution was added saturated sodium bicarbonate as, and the mixture was extracted with chloroform.

The organic layer was washed with 1 N hydrochloric acid, saturated sodium bicarbonate and saturated brine; dried; and evaporated. The residue was washed with discorpoyl either to give 28.0 g of N-[2-(N-tent-butoxycarbonylamino) phenyl[4--nithoenzamide (Neith-98 %) as a light yellow solid.

1H NMR(270 MHz, CDCl₃) δ ppm: 1.53(9H, s), 7.17-7.29(4H, m), 7.85(1H, br.d, J=7.3 Hz). 8.17(2H, d, J=8.8 Hz), 8.32(2H, d, J=8.8 Hz), 9.88(1H, br.s)

(100.2) To a solution of 24.0 g of the compound from the process (100-1) (67.2 mmol) in 80 mL of THF and 80 mL of methanol was added 2.4 g of 10 % PdIC (wet) in a stream of nitrogen, and the mixture was stirred in a stream of hydrogen for 1.5 hours. After cease of absorption of hydrogen, the catalyst was removed by filtration and the filtrate was evaporated. To the residue were added diisopropyl either and ethyl acetate, and the precipitated solid was collected by filtration and dried to give 18.96 g of N42-(N-tert-butoxycarbonylamino)phenyl]-4-aminobenzamide (Yfetic 366 %) as a white solid.

TH MMR(270 MHz, DMSO-d_g) δ ppm: 1.46(9H, s), 5.84(2H, s), 6.61(2H, d, J=6.8 Hz), 7.10-7.18(2H, m), 7.46-7.55 (2H, m), 7.68(2H, d, J=8.8 Hz), 8.67(1H, s), 9.49(1H, s)

(100-3) To a solution of 1.6 g of the compound from the process (100-2) (4.88 mmol) in 15 mL of dichloromethane were added 0.8 mL of pyridine (9.9 mmol) and 0.96 mL of phenylecelyl chloride (7.26 mmol), and the solution was stirred for one day. After completion of the reaction, water was added and the precipitated crystak were collected by filtration to give 1 66 g of N-[2-(N-tert-butoxycarbonylamino)phenyl]-4-(phenylacetylamino)benzamide (Yield:

(100-4) To a solution of 1 g of the compound from the process (100-3) (2.24 mmol) in 25 mL of acatonities was added 0.86 mL of lockrimethylsilane (6.18 mmol) at room temperature, and the solution was stirred for 3 hours. After completion of the reaction, the solution was concentrated. The residue was recrystalized from methanol to give 0.29 g of N-(2-aminophenyl)-4-(phenylacetylamino)benzamide (Ylek: 38 %) as white crystalis. mor 232-237 to 2014.

1+1 NMFl(270 MHz, DMSO-d_g) δ ppm: 3.69(2H, s), 4.90(2H, s), 6.60(1H, 1, J=7.3 Hz), 6.77(1H, d, J=7.3 Hz), 6.96 (1H, 1, J=7.3 Hz), 7.15(1H, d, J=7.4 Hz), 7.22-7.35(6H, m), 7.72(2H, d, J=6.8 Hz), 7.95(2H, d, J=6.8 Hz), 9.57(1H, s), 10.43(1H, s)

IB(KBr)cm⁻¹: 2937, 2764, 1660, 1598, 1506, 1459

As described in Example 100, the compounds of Examples 101 to 128 were prepared, each of whose melting point (mp), "H NMR data and/or IR data are shown below.

Example 101

N-(2-aminophenyl)-4-[(4-phenylbutanoyl)amino|benzamide (Table 1: Compound 4)

mp: (amorphous)
14 NMR[270 MHz, DMSO-d₀) δ ppm: 1,91(2H, hep, J=7.3 Hz), 2.37(2H, I, J=7.3 Hz), 2.64(2H, I, J=7.3 Hz), 5.0
(2H, In.s), 6.61(1H, I, 7.0 Hz), 6.79(1H, dd, J=1.5, E, 1Hz), 6.97(1H, I, J=7.0Hz), 7.10-7.40(EH,m), 7.71(2H, d, J=6.8
14.7. 7.49(2H, d, J=8.8 Hz), 9.57(1H, s), 10.15(1H, s)

IR(KBr)cm⁻¹; 3344, 1687, 1603, 1542, 1460, 1315, 1033, 842, 737

Example 102

N-(2-aminophenyl)-4-[(4-chlorophenylacetyl)amino|benzamide (Table 1: Compound 15)

mp: (amorphous)

 $^{1}\text{H NMR}(270\,\text{MHz},\,\text{DMSO-d}_{6})\,\delta\,\text{ppm};\,3.72(2\text{H},\,\text{s}),\,7.29-7.43(8\text{H},\,\text{m}),\,7.77(2\text{H},\,\text{d},\,\text{J=8.8\,Hz}),\,8.00(2\text{H},\,\text{d},\,\text{J=8.8\,Hz}),$ 10.29(1H, s), 10.52(1H, s)

IR(KBr)cm⁻¹: 3300, 2868, 1664, 1638, 1520

Example 103

15

25

30

N-(2-aminophenyl)-4-[(2-nitrophenylacetyl)amino|benzamide hydrochloride (Table 1; hydrochloride of Compound 19)

mp: (amorphous)

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 4.20(2H, s), 7.20-7.30(3H, m), 7.40-7.45(1H, m), 7.60(2H, d), 7.71-7.77(3H, m), 8.02-8.10(4H, m), 10.27(1H, br.s), 10.64(1H, br.s) IR(KBr)cm⁻¹: 3263, 1676, 1647, 1518, 1184, 759

Example 104

N-(2-aminophenyl)-4-[(4-nitrophenylacetyl)amino]benzamide (Table 1; Compound 21)

mp: 222-226 °C

 1 H NMR(270 MHz, DMSO-d₆) δ ppm: 3.90(2H, s), 4.96(2H, br.s), 6.60(1H, dt, J=1.5, 6.6 Hz), 6.78(1H, dd, J=1.5, december 2.5), 6.78(1H, dd, J=1.5), 6.6Hz), 6.97(1H, dt, J=1.5, 6.6Hz), 7.15(1H, dd, J=1.5, 6.6 Hz), 7.63(2H, d, J=8.8 Hz), 7.71(2H, d, J=8.8 Hz), 7.95 (2H, d, J=8.8 Hz), 8.22(2H, d, J=8.8 Hz), 9.59(1H, s), 10.54(1H, s). IR(KBr)cm-1: 3395, 3334, 1671, 1630, 1519, 1346

Example 105

N-(2-aminophenyl)-4-[(2-aminophenylacetyl)amino|benzamide (Table 1: Compound 22)

mp: 177-182 °C(dec.)

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 3.54(2H, s), 4.88(2H, br.s), 5.09(2H, br.s), 6.55(1H, dd, J=6.6, 7.3 Hz), 6.59 (1H, dd, J=7.3, 7.3 Hz), 6.68(1H, d, J=7.3 Hz), 6.78(1H, d, J=7.3 Hz), 6.96(2H, dd, J=7.3, 7.3 Hz), 7.06(1H, d, J=6.6 Hz), 7.15(1H, d, J=7.3 Hz), 7.71(2H, d, J=8.8 Hz), 7.95(2H, d, J=8.8 Hz), 9.57(1H, br.s), 10.39(1H, br.s) IR(KBr)cm⁻¹: 3374, 3256(br.), 1683, 1597, 1503, 1317, 1262, 1180, 1153, 747

Example 106

N-(2-aminophenyl)-4-[(4-aminophenylacetyl)amino|benzamide (Table 1: Compound 26)

mp; 219-226 °C(dec.)

1H NMR(270 MHz, DMSO-d₆) δ ppm: 3.46(2H, s), 4.93(4H, br.s), 6.52(2H,d, J=8.1Hz), 6.59(1H, dt, J=1.5, 7.3 Hz), 6.77(1H, dd, J=1.4, 7.3 Hz), 6.97(1H, dt, J=1.4, 7.3 Hz), 6.99(2H, d, J=8.1 Hz), 7.15(1H, dd, J=1.5, 7.3 Hz), 7.70 (2H, d, J=8.8 Hz), 7.93(2H, d, J=8.8 Hz) IR(KBr)cm⁻¹: 3278, 3032, 1675, 1628, 1516

Example 107

50

N-(2-aminophenyl)-4-[(4-methoxyphenylacetyl)amino|benzamide (Table 1: Compound 32)

mp: (amouphous)

 $^{1}\text{H NMR}(270~\text{MHz},~\text{DMSO-d}_{6})~\delta~\text{ppm};~3.62(2\text{H},~\text{s}),~3.74(3\text{H},~\text{s}),~6.90(2\text{H},~\text{d},~\text{J}=8.8~\text{Hz}),~7.26(2\text{H},~\text{d},~\text{J}=8.8~\text{Hz}),~7.30(2\text{H},~\text{d},~\text{J}=8.8~\text{Hz}),~7.26(2\text{H},~\text{d},~\text{J}=8.8~\text{Hz}),~7.30(2\text{H},~\text{d},~\text{J}=8.8~\text{Hz}),~7.26(2\text{H},~\text{d},~\text{J}=8.8~\text{Hz}),~7.30(2\text{H},~\text{d},~\text{J}=8.8~\text{Hz}),~7.26(2\text{H},~\text{d},~\text{J}=8.8~\text{Hz}),~7.30(2\text{H},~\text{J}=8.8~\text{Hz}),~7.30(2\text{H},~\text{J}=8.8~\text{Hz}),~7.30(2\text{H},~\text{J}=8.8~\text{Hz}),~7.30(2\text{H},~\text{J}=8.8~\text{Hz}),~7.30(2\text{H},~\text{J}=8.8~\text{Hz}),~7.30(2\text{H},~\text{J}=8.8~\text{Hz}$ (3H, m), 7.39(1H, m), 7.77(2H, d, J=8.8 Hz), 7.99(2H, d, J=8.8 Hz), 10.26(1H, s), 10.44(1H, s) IR(KBr)cm⁻¹: 3300, 2759, 1670, 1638, 1514, 1250

Example 108

N-(2-aminophenyl)-4-[(4-(N,N-dimethylamino)phenylacetyl]amino|benzamide (Table 1: Compound 53)

mp: 140 °C

1H NMR(270 MHz, DMSO-d₆) δ ppm: 3.04(6H, s), 3.67(2H, s), 7.16(2H, d, J=8.0 Hz), 7.29-7.40(6H, m), 7.76(2H, d, J=8.8 Hz), 7.99(2H, d, J=8.8 Hz), 7.09(2H, d, J=8.8 Hz), 7.29(2H, 6.4), 10.29(1H, s), 10.47(1H, s) [13.47(1H, s)] [

Example 109

N-(2-aminophenyl)-4-[(4-trifluoromethylphenylacetyl)amino]benzamide (Table 1: Compound 43)

mp: (amorphous)

"H NMR(270 MHz, DMSO-d₀) 5 ppm: 3.84(2H, s), 6.89(1H, 1, J=7.4 Hz), 7.00(1H, d, J=7.4 Hz), 7.11(1H, 1, J=7.4 Hz), 7.25(1H, d, J=7.4 Hz), 7.57(2H, d, J=8.8 Hz), 7.73(2H, d, J=8.8 Hz)

IR(KBr)cm-1: 3260, 1664, 1605, 1521, 1327, 1119

20 Example 110

15

25

N-(2-aminophenyl)-4-[(pyridin-2-yl)acetylamino]benzamide dihydrochloride(Table 1: hydrochloride of Compound 174)

mp: (amorphous)

¹H NNR(270 MHz, DMSO-d_e) δ ppm: 4.60(2H, e), 7.30-7.46(3H, m), 7.56(1H, d, J=7.4 Hz), 7.79(2H, d, J=8.8 Hz), 7.95(1H, 1, J=6.6 Hz), 8.01(1H, d, J=7.4 Hz), 8.11(2H, d, J=8.8 Hz), 8.49(1H, 1, J=7.4 Hz), 8.67(1H, d, J=5.1 Hz), 10.46(1H, a)

Example 111

N-(2-aminophenyl)-4-[(pyridin-3-yl)acetylamino]benzamide dihydrochloride(Table 1: hydrochloride of Compound 68)

mp: 182-189 °C(dec.)

1H NMF(270 MHz, DMSO-d₆) δ ppm: 4.12(2H, s), 7.29-7.59(4H, m), 7.80(2H, d, J=8.8 Hz), 8.05(1H, m), 8.11(2H, d, J=8.8 Hz), 8.57(1H, d, J=8.1 Hz), 8.85(1H, d, J=5.2 Hz), 8.95(1H, s), 10.25(1H, s), 10.48(1H, s)

Example 112

N-(2-aminophenyl)-4-[[3-(pyridin-3-yl)propanoyl]amino]benzamide (Table 1: Compound 69)

mp: 184-186 °C

1H NMR(270 MHz, DMSO-d₀) δ ppm: 280(2H, 1, l=7.3 Hz), 3.08(2H, 1, l=7.3 Hz), 6.97(1H, 1, l=6.0 Hz), 6.99(1H, dd, J=1.4, 8.0 Hz), 7.1(1H, dt, J=1.4, 8.0 Hz), 7.2(2H, d, J=8.8 Hz), 7.77(1H, dd, J=5.8, 8.0 Hz), 7.97(2H, d, J=8.8 Hz), 7.77(1H, dd, J=5.8, 8.0 Hz), 7.97(4H, d, J=8.4), 10.25(1H, d), 10.25(1H, d)

Example 113

N-(2-aminophenyl)-2-chloro-4-[3-(pyridin-3-yl)propanoylamino]benzamide (Table 1: Compound 123)

mp: (amorphous)

1H NMR(270 MHz, DMSO-d₀) 8ppm: 2.70(2H, I, J=8.1 Hz), 2.96(2H, I, J=7.3 Hz), 4.74(2H, br.s), 6.60(1H, I, J=6.6 Hz), 6.79(1H, d, J=6.6 Hz), 6.79(1H, dd, J=1.5, 7.3 Hz), 7.29(1H, dd, J=5.1, 7.3 Hz), 7.29(1H, dd, J=5.1, 7.3 Hz), 7.86(2H, d, J=8.8 Hz), 8.8 Hz), 8.8 Hz), 8.8 Hz(H, d, J=2.2 Hz), 9.37(1H, s), 10.00(1H, s) IRIK(Br)cm¹¹; 3273, 1675, 1519, 1315, 1181, 582, 747

Example 114

N-(2-aminophenyl)-4-[(N-(pyridin-3-yt))methyl-N-trifluoroacetylamino]acetylamino]benzamide (Table 1; Compound 107)

mp: 145 °C(dec.)

¹H NMR[270 MHz, DMSO-d₆) 8 ppm. 4.18 and 4.2(dolal 2H, j. 4, 73 and 4.3(dolal 2H, 6), 4.47(2H, br.s), 6.60(1H, dd, J=7.3, 6.1 Hz), 6.78(1H, d, J=8.1 Hz), 6.96(1H, dd, J=7.3, 7.3 Hz), 7.16(1H, d, J=8.1 Hz), 7.357-4.6(1H, m), 7.66(2H, d, J=5.9 Hz), 7.70-7.60(1H, m), 7.90-8.00(2H, m), 8.51-8.56(1H, m), 8.56(1H, br.s), 9.50(1H, br.s), 10.38 and 10.45(dolal 1H, br.s)

Example 115

10

20

N-(2-aminophenyl)-4-[[N-(pyridin-3-yl)methylamino]acetylamino]benzamide (Table 1: Compound 105)

np: 160 °C(dec.)

THIN MRI(270 MHz, DMSO-d₆) 8 ppm: 3.30(2H, s), 3.79(2H, s), 4.89(2H, s), 6.80(1H, dd, J=7.3, 7.3 Hz), 6.76(1H, d, J=8, Hz), 6.97(1H, dd, J=7.3, 8.1 Hz), 7.16(1H, d, J=8, Hz), 7.74(2H, d, J=8, Hz), 7.80(1H, d, J=7.3 Hz), 7.95(2H, d, J=8, Hz), 8.6(1H, d, J=3.7 Hz), 8.57(1H, s), 9.57(1H, s), 10.08(1H, br.s) HR(KBr)cm¹¹; 2296, 1693, 1637, 1602, 1544, 1454, 1262, 848, 762

Example 116

N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methyloxamoylamino|benzamide (Table 1: Compound 104)

mp: (amorphous)

 $\begin{array}{l} 1\text{H NMR(270 MHz, DMSO-d_{0}) 5 ppm: 4.49(2\text{H, d, } J=6.6 \text{ Hz}), 4.90(2\text{H,br.s}), 6.60(1\text{H, dd, } 5=6.6, 7.3\text{Hz}), 6.76(1\text{H, d, } J=7.3 \text{ Hz}), 6.97(1\text{H, dd, } J=1.5, 6.6, 7.3 \text{ Hz}), 7.3 \text{ Hz}), 7.37(1\text{H, dd, } J=4.4, 8.1 \text{ Hz}), 7.73(1\text{H, dd, } J=8.1 \text{ Hz}), 7.96(4\text{H, AABB}, J=9.4 \text{ Hz}), 8.47(1\text{H, dd, } J=1.5, 5.1 \text{ Hz}), 8.56(1\text{H, d, } J=1.5 \text{ Hz}), 9.59(1\text{H, s}), 9.67(1\text{H, 1, } J=6.6 \text{ Hz}), 10.32(1\text{H, br.s}) \end{array}$

IR(KBr)cm-1: 3299, 1644, 1518, 1320, 1119, 748

Example 117

N-(2-aminophenyl)-4-[[N-(pyridin-3-yl)methyl-N-nicotinoylamino]acetylamino]benzamide (Table 1: Compound 106)

mp: (amorphous)

1H NMR(270MHz, DMSO-d₆) δ ppm: 4.11(major 2H, s), 4.26(minor 2H, s), 4.75(major 2H, s), 4.65(minor 2H, s), 4.88(total 2H, br.s), 6.60(total 1H, dd, J=7.3, 8.1 Hz), 6.78(total 1H, d, J=7.3 Hz), 6.97(total H, dd, J=7.3, 8.1 Hz), 7.15(total 1H, d, J=8.1 Hz), 7.41-7.95(total 8H, m), 8.69.8.70(total 2H, m), 9.59(total 1H, s), 10.22(major 1H, br.s), 10.37(minor 1H, br.s)

IR(KBr)cm⁻¹: 3269, 1701, 1637, 1603, 1534, 1506, 1312, 1254, 752

Example 118

N-(2-aminophenyl)-4-[[4-(pyridin-3-yl)butanoyl]amino]benzamide (Table 1: Compound 70)

mp: 165-167 °C(dec.)

1H NMR(270 MHz, DMSO-d₈) 8 ppm: 1.88-1.99(2H, m), 2.68(2H, t, J=7.3 Hz), 2.99(2H, t, J=7.3 Hz), 6.78-6.81 (1H, m), 6.94-6.99(1H, m), 7.15-7.18(1H, m), 7.34-7.39(1H, m), 7.69-7.72(3H, m), 7.94(2H, d, J=8.8 Hz), 8.43-8.48 (2H, m)

IR(KBr)cm⁻¹: 3291, 1660, 1626, 1308, 1261, 1182, 1027, 825, 747

Example 119

N-(2-aminophenyl)-4-[[N-(pyridin-3-yl)methyl-N-methylamino]acetylamino]benzamide (Table 1: Compound 108)

mp: 154-155 °C

 $\begin{array}{l} ^{1}H\ NMR(270\ MHz,\ DMSO-d_{9})\ \delta\ ppm;\ 2.28(3H,\ s),\ 3.27(2H,\ s),\ 3.71(2H,\ s),\ 4.88(2H,\ br.s),\ 6.60(1H,\ dd.\ J=6.6,\ 7.3Hz),\ 6.78(1H,\ d,\ J=6.1Hz),\ 7.39(1H,\ dd.\ J=2.9,\ 6.1\ Hz),\ 7.77(2H,\ d,\ J=6.1Hz),\ 7.75-7.86(1H,\ m),\ 7.95(2H,\ d,\ J=6.8Hz),\ 8.47(1H,\ d,\ J=1.5Hz),\ 8.49(1H,\ s),\ 9.56(1H,\ s),\ 10.62(1H,\ br.s),\ 7.75(1H,\ br.s),\ 7.75$

Example 120

5

10

15

20

25

30

45

50

N-(2-aminophenyl)-4-[N-(pyridin-3-yl)oxyacetylamino]benzamide (Table 1; Compound 65)

mp: 175-179 °C

TH NMF(270 MHz, DMSC-d₀) δ ppm: 4.86(2H, s), 4.90(2H, br.s), 6.80(1H, d, J=7.3, 7.3 Hz), 6.76(1H, d, J=7.3+2), 7.97(H, dd, J=6, 7.3 Hz), 7.97(H, d, J=6, 7.3 Hz), 7.97(H, d, J=6, 1.4), 8.22(H, d

IR(KBr)cm-1: 3321, 1655, 1530, 1276, 1231, 1068, 757

Example 121

N-(2-aminophenyl)-4-[4-(pyridin-3-yl)-1,4-dioxobutylamino|benzamide (Table 1: Compound 99)

mp: 190-194 °C

H NMR(270 MHz, DMSO- d_0) 5 ppm: 2.08(2H, t, J=6.4 Hz), 3.41(2H, t, J=6.4 Hz), 4.86(2H, s), 6.59(1H, t, J=5.6 Hz), 6.76(1H, d, J=7.9 Hz), 6.96(1H, t, J=7.4 Hz), 7.15(1H, d, J=7 Hz), 7.58(1H, dd, J=4.9, 7.94)z), 7.70(2H, d, J=6.9 Hz), 8.35(1H, d, J=7.91z), 9.35(1H, s), 9.56(1H, s), 10.32(1H, s), 18(KB)cm¹¹, 3317, 1691, 1682, 1601, 1522, 1312, 982, 847, 784, 701

Example 122

N-(2-aminophenyl)-4-[3-[N-(pyridin-3-yl)amino]-1,3-dioxopropylamino]benzamide (Table 1: Compound 94)

mp: 196 °C(dec.)

Example 123

N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methoxyacetylamino]-3-methylbenzamide (Table 1: Compound 102)

mp: 178-181 °C(dec.)

1H NMR(270 MHz, DMSO-d₈) 5 ppm: 2.28(3H, s), 4.22(2H, s), 4.71(2H, s), 4.89(2H, br.s), 6.60(1H, dd, J=7.3, 7.3Hz), 6.78(1H, d, J=8.1Hz), 6.97(1H, dd, J=7.3, 8.1 Hz), 7.16(1H, d, J=7.3 Hz), 7.43(1H, dd, J=4.4, 8.1 Hz), 7.71 (1H, d, J=8.1 Hz), 7.797.89(3H, m), 8.54(1H, dd, J=1.5, 4.4Hz), 8.66(1H, d, J=1.5Hz), 9.36(1H, br.s), 9.60(1H, br.s), 1R(KBr)cm³, 3394, 3269, 1863, 1630, 1593, 1521, 1460, 1131, 750, 716

Example 124

N-(2-aminophenyl)-4-[N-(thiophen-3-yl)methoxyacetylamino]benzamide (Table 1: Compound 204)

mp: 186-189 °C

1H NMR(270 MHz, DMSO-d₆) 5 ppm: 4.11(2H, s), 4.63(2H, s), 4.69(2H, br.s), 6.60(1H, dd, J=7.3, 7.9Hz), 6.78(1H, dJ, J=8.1Hz), 6.97(1H, dJ, J=7.3, 7.3 Hz), 7.12-7.19(2H, m), 7.53-7.57(2H, m), 7.78(2H, d), J=8.8 Hz), 7.95(2H, d), J=8.8 Hz), J=8.8 Hz),

IR(KBr)cm-1, 3341, 3248, 1694, 1631, 1611, 1506, 1314, 1126

Example 125

N-(2-aminophenyl)-4-[N-methyl-N-(pyridin-3-yl)methoxyacetylamino]benzamide (Table 1: Compound 103)

mp: 180-183 °C(dec.)

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 3.24(3H, s), 4.08(2H, br.s), 4.50(2H, s), 4.94(2H, br.s), 6.60(1H, dd, J=7.3, 7.3 Hz), 6.79(1H, d, J=8.1 Hz), 6.98(1H, dd, J=7.3, 8.1Hz), 8.03(1H, d, J=8.1 Hz), 8.48-8.50(2H, m), 9.72(1H, br.s) IR(KBr)cm⁻¹: 3395, 3283, 1683, 1639, 1604, 1506, 1459, 1307, 1124

Example 126

N-(2-aminophenyl)-4-[N-(pyridin-2-yl)methoxyacetylamino|benzamide (Table 1: Compound 176)

mp: 171-173 °C

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 4.26(2H, s), 4.74(2H, s), 4.89(2H, br.s), 6.60(1H, dd, J=6.6,8.1 Hz), 6.78 (1H, d, J=7.3 Hz), 6.97(1H, ddd, J=1.5, 7.3, 8.1 Hz), 7.16(1H, d, J=7.3 Hz), 7.35(1H, dd, J=5.1, 6.6 Hz), 7.80(2H, d, J=8.1 Hz), 7.80-7.89(1H, m), 7.97(2H, d, J=8.1 Hz), 8.59(1H, d, J=4.4 Hz), 9.59(1H, br.s), 10.30(1H, br.s) IR(KBr)cm⁻¹: 3391, 3258, 1678, 1629, 1593, 1517, 1128, 767, 742

Example 127

25

An

55

N-(2-aminophenyl)-4-[N-(N-nicotinoylamino)acetylamino]benzamide (Table 1: Compound 97)

mp: 218-220 °C(dec.)

 $^{1}\text{H NMR}(270~\text{MHz},~\text{DMSO-d}_{\text{g}})~\delta~\text{ppm};~4.13(2\text{H},~\text{d},~\text{J=}5.9~\text{Hz}),~4.89(2\text{H},~\text{s}),~6.59(1\text{H},~\text{dd},~\text{J=}7.3,~7.3~\text{Hz}),~6.77(1\text{H},~\text{dd},~\text{J=}7.3,~\text{Hz}),~6.77(1\text{H},~\text{dd},~\text{Hz}),~6.77(1\text{H},~\text{dd},~\text{Hz}),~6.77(1\text{H},~\text{dd},~\text{Hz}),~6.77(1\text{H},~\text{dd},~\text{Hz}),~6.77(1\text{H},~\text{dd},~\text{Hz}),~6.77(1\text{H},~\text{dd},~\text{H$ J=8.1 Hz), 6.96(1H, dd, J=7.3, 8.1 Hz), 7.15(1H, d, J=7.3 Hz), 7.55(1H, dd, J=5.1, 8.1 Hz), 7.73(2H, d, J=8.8 Hz), 7.96(2H, d, J=8.8 Hz), 8.25(1H, d, J=8.1 Hz), 8.74(1H, d, J=5.1 Hz), 9.07(1H, d, J=1.5 Hz), 9.13(1H, 1-like, J=5.9 Hz), 9.58(1H, s), 10.36(1H, s)

Example 128

N-(2-aminophenyl)-5-[3-(pyridin-3-yl)propionamide]benzoturan-2-carboxyamide (Table 3: Compound 1)

mp: 267-272 °C

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 2.51(2H, t, J=7.3 Hz), 2.97(2H, t, J=7.3 Hz), 6.61(1H, dd, J=8.1, 8.8 Hz), 6.80(1H, dd, J=1.5, 8.1Hz), 6.99(1H, dd, J=8.1, 8.8 Hz), 7.20(1H, dd, J=1.5, 8.1 Hz), 7.32(1H, dd, J=5.2, 8.1 Hz), 7.49(1H, dd, J=1.5, 8.8 Hz), 7.61(1H, d, J=8.8 Hz), 7.67(1H, s), 7.70(1H, m), 8.15(1H, d, J=1.5 Hz), 8.40 (1H, dd, J=1.5, 5.2 Hz), 8.51(1H, d, J=1.5 Hz), 9.84(1H, s), 10.1(1H, s) IR(KBr)cm⁻¹: 3333, 3272, 1666, 1583, 1561, 1458, 1314, 1247, 1143, 807, 746, 713

Example 129

Preparation of N-(2-aminophenyl)-4-[N-[2-(pyridin-3-yl))oxypropionyl]amino|benzamide (Table 4; Compound 2)

(129-1) In 10 mL of dichloromethane were dissolved 0.34 g of the compound from Example 47, the process (47-2) (1.2 mmol) and 0.34 g of the compound from Example 100, the process (100-2) (1.0 mmol), and then 0.5 mL of triethylamine (3.6 mmol). Under ice-cooling, to the solution was added 0.21 g of 2-chloro-1,3-dimethylimidazolidinium chloride (1.24 mmol) in 5 mL of dichloromethane, and the solution was stirred under Ice-cooling for 2 hours. After neutralizing with saturated sodium bicarbonate aq., the mixture was diluted with water and extracted with chloroform. The organic layer was washed with saturated brine, dried and evaporated. The residue was purified by column chromatography on silica gel (eluent: ethyl acetate:methanol = 10:1) to give 0.68 g of N-[2-(N-tert-butoxycarbonylamino) phenyl]-4-[N-[2-(pyridin-3-yl)oxypropionyl]emino]benzamide as a mixture with 1,3-dimethyl-2-imidazolinone.

¹HNMR(270MHz, CDCl₃) δ ppm: 1.52(911, s), 1.70(3H, d, J=6.6 Hz), 4.84(1H, q, J=6.6 Hz), 6.89(1H, br.s), 7.12-7.31(6H, m), 7.68(2H, d, J=8.8 Hz), 7.79(1H, d, J=8.1 Hz), 7.96(2H, d, J=8.8 Hz), 8.34(1H, d, J=2.9, 2.9 Hz), 8.43(1H, d, J=1.5 Hz), 9.25(1H, br.s)

(129-2) To a solution of 0.68 g of the compound from the process (129-1) in 5 mL of dichloromethane was added 10 mL of 15 %(volvol) trifluoroacetic acid/dichloromethane, and the solution was stirred at room temperature for

4.5 hours. After neutralizing the solution with saturated sodium bicarbonate aq., dichloromethane was removed by evaporation. The solution was extracted with ethyl acetate. The organic layer was washed with saturated brine, diried and evaporated. To the residue were acted methanol and discopcycl ether, and the precipitated solid was collected by fittration and dried to give 0.22 g of N+(2-aminophenyl)-4-[N-[2-(pyridin-3-y)]oxypropicnyl]amino[ben-zamide (Yield: 58 % for the 2 steps) as an opalescent solid.

mp: 193-198 °C
H1 NMR/270 MHz, DMSO-d₀) 8 ppm: 1.60(3H, d, J=6.6 Hz), 4.88(2H, br.s), 5.04(1H, q, J=6.6 Hz), 6.60(1H, dd, J=6.6, 7.3Hz), 6.78(1H, d, J=7.3Hz), 7.327-39(2H, m), 7.75 (2H, d, J=7.3Hz), 7.327-39(2H, m), 7.75 (2H, d, J=8.1Hz), 6.97(1H, dd, J=1.7, 3.7Hz), 8.36(1H, d., J=1.1Hz), 8.20(1H, dd, J=1.7, 3.7Hz), 8.36(1H, d., J=1.1Hz), 8.20(1H, dd, J=1.7, 3.7Hz), 8.36(1H, d., J=1.1Hz), 8.20(1H, dd, J=1.1Hz), 8.20(1Hz), 8.20

(1H, br.s)

Example 130

10

20

25

30

45

50

Preparation of N-(2-aminophenyl)-4-[(pyridin-3-yl)methoxyacetylamino]benzamide (Table 1: Compound 101)

(130-1) To a suspension of 4, 4g of sodium hydride (60 % oil dispension; 110 mmol) in 300 mL of THF were added dropwise 10.91 g of 2-pyriolimentshand (100 mmol) in 20 mL of THF at room temperature, and the mixture was stirred at room temperature for 2 hours. The resulting white suspension was ioe-cooled, and 19.51 g of tert-buyl bromoscetate (100 mmol) in 20 mL of THF was added dropwise, maintaining the inner temperature within 10 to 12°C. The suspension was warmed to room temperature with stirring for 3 hours, and then left overright. After adding water and saturated sodium bicarbonate aq., the mixture was extracted with ethyl acetate. The organic layer was washed with saturated sodium bicarbonate aq., the mixture was extracted with ethyl acetate. The organic layer was washed with saturated with new part of the properties of the common chromotography on silica get (gradient elitoria with n-hazane-cithyl acetate = 1:1 to ethyl acetate) to give 7.56 g of tent-butyl (gyridin-2-yt)methoxyacetate (33.8 %) as a light brown oil:

 $^{1}\text{H NMR}(270\text{MHz, CDCI}_{3}) \ \delta \ \text{ppm: } 1.49(9\text{H,s}), \ 4.03(2\text{H, s}), \ 4.64(2\text{H, s}), \ 7.30(1\text{H, dd, J=}4.9, \ 7.3 \ \text{Hz}), \ 7.76(1\text{H, d, d, d})$

J=7.3 Hz), 8.56(1H, d, J=4.9 Hz), 8.60(1H, s)

(190-2) Under ice-cooling, 12 mL of tritiuoroscatic acid was actical to 3.5 g of the compound from the process (190-1) (15.7 mmol), and the solution was stirred at room temperature for 6 hours. Part of tritiuoroscatic acid was removed by evaporation to give a mixture of (pyridin-5-ly)methoxyacetic acid and tritiuoroscatic acid (5.5 g). The mixture was dissolved in 70 mL of dichloromethane. For the solution was added 25 mL of pyridine and then, was solwy added dropwise under ice-cooling; a 237 g of 2-chioro-1,3-dimethylmidezolinium chloride (14.0 mmol) in 20 mL of dichloromethane over 30 min, and the solution was stirred under ice-cooling in caditional 5 flouris. To the solution was added 25 mL of pyridine and then, was collision was extracted with chloroform. The organic layer was washed with saturated brine, dried and evaporated. The residue was purified by column chromatography on silica get (gradient elution with shyl sociate to eithyl acetates: methanol = 10:11 to give 4.78 g of N+2(-Nert-butoxycarbonyl)sminophenyll-4-(Neyridin-3-yl)methoxyacetylaminobpenzemide (field: 6.28 y) as a 11 (molar ration) mixture with DMI (1,3-dimethyl-2-imidazolinon).

1H MMR(270MHz, CDCl₃) 8 ppm: 1.51(9H,s), 4.15(2H, s), 4.70(2H, s), 6.92(1H, br.s), 7.15-7.29(3H, m), 7.37(1H, dd, J=7.3, 5.1 Hz), 7.67(2H, d, J=8.8 Hz), 7.71-7.79(2H, m), 7.96(2H, d, J=8.8 Hz), 8.41(1H, s), 8.62-8.66(2H, m),

9.23(1H, br.s)

(190-3) To a solution of 2.39 of the compound from the process (190-2) (4.0 mmol) in 28 mL of dichloromethane was added 55 mL of 15 %(volvo) influoroacetic aciddichloromethane, and the solution was stirred at room temperature for 7 hours. The solution was stirred at contemporature for 7 hours. The solution was stirred at contemporature and extracted with a 21 mature of eithy a cetate-methy eithy katoria, a 21 mature of eithy a cetate-methy and extracted with a 21 mature of eithy a cetate-methy eithy katoria, a 221 mature of eithy a cetate-methy, and eithy a cetate-methy eithy activate method organic layer was washed with saturated brine and dried over arrhydrous sodium sultate. After removing the dehydrating reagent by filtering, the filtrate was concentrated. To the resolute thus obtained were added methenol and disportpyl ethor, and the precipitated solid was collected by filtration and dried to give 1.29 of N+(2-aminophenyi)-4-(N-(syridin-3-y)methoxyacylapiamiophenyamide (Yeldet 55 e%) as a dark brown solid.

1H NMR(270 MHz, DMSO-d₀) δ ppm: 4.19(2H, s), 4.68(2H, s), 4.90(2H, br.s), 6.60(1H, ddd, J=1.5, 7.3, 8.1 Hz), 6.78(1H, dd, J=1.5, 8.1 Hz), 6.97(1H, dd, J=7.3, 7.3 Hz), 7.15(1H, d, J=7.3 Hz), 7.42(1H, dd, J=4.4, 8.1 Hz), 7.77 (2H, d, J=8.8 Hz), 7.85(1H, d, J=7.3 Hz), 7.96(2H, d, J=8.8 Hz), 7.85(1H, d), J=7.3 Hz), 7.96(2H, d, J=8.8 Hz), 8.54(1H, dd, J=1.5, 5.1 Hz), 8.63(1H, s), 9.58(1H, s), 10.09(1H, s)

IR(KBr)cm-1: 3403, 3341, 3250, 1694, 1630, 1610, 1506, 1314, 1259, 1118, 764

Example 131

5

15

20

35

40

Preparation of N-(2-aminophenyl)-4-[N-[2-(pyridin-3-yl)methoxypropionyl]amino]benzamide (Table 4: Compound 1)

(131-1) To a suspension of 1.24 g of sodium hydride (60 % oil dispension; 31 mmol) in 90 mt. of THF were added dropwise 3.27 g of 3-pyridinmentanel (30 mmol) in 10 mt. of dry THF at room temperature over 5 min. The resulting white suspension was stirred at room temperature for an hour, to which was then added dropwise 6.27 g of tert-butyl 2-homospropionate (30 mmol) in 10 mt. of dry THF at room temperature over 5 min. The mixture was stirred at room temperature over 5 min. The mixture was stirred at room temperature over 5 min. The mixture was stirred at room temperature for 11.5 hours. After adding water, the mixture was extracted with ethyl acotate. The organic layer was washed with saturated brine, direid and evaporated. The residue was purified by column chromatography on ellicity and the property of the control of the column of the column

¹H NMR(270 MHz, CDCl₃) δ ppm: 1.42(3H, d, J=7.3 Hz), 1.50(9H, s), 3.96(1H, q, J=6.6 Hz), 4.47, 4.69(2H, ABq, J=11.0 Hz), 7.29(1H, dd, J=5.1, 8.1 Hz), 7.75(1H, d, J=8.1 Hz), 8.5(1H, d, J=4.4 Hz), 8.60(1H, s)

(31-2) To a solution of 1.09 g of the compound from the process (131-1) (4.59 mmd) in 5 mL of dichloromethane was added 8 mL of triullor-scaetic acid, and the solution was stirred at room temperature for 9.5 hours. After evaporation, 10 the residue was added dropwise 0.20 and 0.20 mL of dichloromethane and 3 mL of pyridine. Under ice-cooling, to the solution was added dropwise 0.20 and 0.20 mL of 0.20 mL

TH NMR(270MHz, CDCl₉) δ ppm: 1.51(9H, s), 1.54(9H, d, J=6.6 Hz), 4.13(1H, q, J=6.6 Hz), 4.65, 4.71(2H, ABq, J=11.7 Hz), 7.12-7.18(2H, m), 7.29-7.37(3H, m), 7.65(2H, d, J=8.1 Hz), 7.73(2H, br.d, J=5.9 Hz), 7.96(2H, d, J=8.8 Hz), 8.59-8.64(9H, m), 9.39(1H, br.s)

(131-3) To a solution of 1.19 of the compound from the process (131-2) (1.8 mmol) in 10 mt. of dichloromethane was added 20 mt. of 15 % (vol/vol) trifluoroscetic acid in dichloromethane, and the solution was stirred at room temperature for 4.5 hours. The solution was poured into saturated sodium bicarbonate, and dichloromethane was removed by evaporation. The resulting squeeus layer was extracted with ethyl acetale. The organic layer was washed with saturated brine, diried and evaporated. To the residue were added methanol and discoproyl ethner, and the procipitated solid was collected by filtration and dried to give SSS mg of N-(2-aminophenyl)-4-[N-[2-(pyridin-3-y)methoxyproponyl]amino[blorazmide as a light brown solid.

mp. 144-149 C. Har., DMSO-d₆) δ ppm: 1.40(3H, d, J=6.6 Hz), 4.14(1H, q, J=6.6 Hz), 4.56 and 4.65(2H, ABq, J=11.8 Hz), 4.89(2H, bc. s), 6.60(1H, dd, 5=7.3, 7.34z), 6.78(1H, d, J=8.1 Hz), 6.97(1H, dd, J=6.6, 7.3 Hz), 7.16(1H, d, J=7.3 Hz), 7.40(1H, dd, J=6.6, 7.3 Hz), 7.40(1H, dd, J=1.5, 5.1 Hz), 8.61(1H, d, J=2.1 Hz), 9.60(1H, s), 10.15(1H, s)

Example 132

Preparation of N-(2-aminophenyl)-4-(N-benzylamino)carbonylbenzamide (Table 1: Compound 8)

(132-1) To a suspension of 13.0 g of monomethyl terephthalate (72.2 mmol) in 100 mL of toluene was added dropwise 10 mL of thionyl chloride at room temperature. After stirring at 80 °C for 3 hours, the solvent and an excess amount of thionyl chloride were removed by evaporation. The residue was suspended in 100 mL of dioxane, and 9.98 g of 2-nitroanline (72.2 mmol) were added to the suspension, followed by refluxing with heating for 4 hours.

After cooling and evaporation, the residue was washed with methanol to give 20.3 g of N-(2-nitrophenyl)-4-methoxycarbonylbenzamide (Yield: 93.7 %) as a yellow solid.

1H NMR(270 MHz, DMSO-d₈) 5 ppm: 3.91(3H, s), 7.43-7.49(1H, m), 7.76-7.78(2H, m), 8.03(1H, d, J=8.1 Hz), 8.08 (2H, d, J=8.8 Hz), 8.14(2H, d, J=8.8 Hz), 10.94(1H, s)

(132-2) To a solution of 4.24 g of the compound from the process (132-1) in 50 mL of THF and 50 mL of methanol was added 0.4 g of 10 % Pd/C in a stream of nitrogen, and the mixture was stirred in a stream of hydrogen for 1.5

nyl]-4-methoxycarbonylbenzamide (Yield: 95.7 %) as a light brown solid.
1H NMR(270 MHz, DMSO-d₆) δ ppm: 1.44(9H, s), 3.9(3H, s), 7.12-7.24(2H, m), 7.55-7.58(2H, m), 8.09(2H, d, J.8.9 Hz), 8.10(2H, d, J.8.9 Hz), 8.7(1H, S), 10.00(1H, s)

(132-4) A suspension of 3.00 g of the compound from the process (132-3) (8.10 mmol) in 50 mL of methanol and 25 mL of 0.5N lithium hydroxide aq, was heated with stirring at 40 °C for 5 hours. After removing methanol by evaporation, to the residue was added 1N hydrochloric acid, and the mixture was extracted with eithyl acetatle. The organic layer was washed with a small amount of water and saturated brine, dried and evaporated. The residue was washed with methanol to give 2.24 g of terephthatic mono-2-(N-tert-butoxycarbonyl)aminoanlide (Yield: 77.6 %) as a light brown solid.

¹H NMR(270 MHz, DMSO-d₆) δppm: 1.45(9H, s), 7.12-7.21(2H, m), 7.53-7.58(2H, m), 8.06(2H, d, J=8.8 Hz), 8.10 (2H, d, J=8.8 Hz), 8.71(1H, s), 9.97(1H, s)

(245, 0, 145, 6.7 (i.f., 9), 3.97 (i.f., 9) and 123-55 (i.f., 9) and 123-55 (i.f., 9) and 124-56 (i.f., 9) and 124

The combined organic layer was washed with saturated brine, dired and evaporated. The residue was purified by column chomatography on slicing agl (eluent chloroformmethannel = 10.1). The solid obtained was washed with diethyl, ether to give 279 mg of N-(2-tert-butoxycarbonylaminophenyl)-4-(N-benzylamino)carbonylbenzamide (Yield: 62.6 %) as a white solf.

 1 H NMR(270 MHz, DMSO-d₈) δ ppm: 1.45(9H, s), 4.52(2H, d, J=5.8 Hz), 7.13-7.28 (4H, m), 7.34-7.35(3H, m), 7.56(2H, d, J=8.1 Hz), 8.05(4H, s), 8.71(1H, br.s), 9.23(1H, t), 9.94(1H, s)

(192-6) To 151 mg of the compound from the process (192-5) (0,339 mmol) was added 5 mL of AN hydrochloric acid-dioxane at room imperature, and the mixture was stirred for 4 hours. After responsion, he mixture was partitioned between shyl acetate and saturated sodium bicarbonate aq. After removing the precipitate, the aqueous layer was extracted with ethyl acetate. The combined organic layer was washed with saturated brine, dried and evaporated. To the residure was added eitherly either, and the precipitate was collected by filtration and dried to give 78 mg of N+(2-aminophenyl)-4-(N-benzylsmino)carbonylbenzamide (Yield: 67 %) as a white solid: mg: 239-241 **C(dec.)

¹H NMR(270 MHz, DMSO-d₀) δ ppm: 4.51(2H, s), 4.93(2H, br.d), 6.60(1H, dd, J=7.3, 7.3 Hz), 6.78(1H, d, J=8.1 Hz), 6.95(1H, dd, J=7.3, 2, 8.3 Hz), 7.18(1H, d), 7.23-7.35(9H, m), 8.01(2H, d, J=8.8 Hz), 8.07(2H, d, J=8.8 Hz), 8.

As described in Example 132, the compound of Example 133 was prepared, whose melting point (mp), ¹H NMR data and IR data are shown below.

Example 133

45

55

5

10

15

20

N-(2-aminophenyl)-4-[N-(2-phenylethyl)amino]carbonylbenzamide (Table 1: Compound 9)

mp: 237-240 °C(dec.)

1H NMR(270 MHz, DMSO-d_g) δ ppm: 2.87(2H, t, J=7.3 Hz), 3.51(2H, dt, J=5.9, 7.3Hz), 4.94(2H,br.s), 6.60(1H, dt, J=7.3, 7.3 Hz), 6.76(1H, dt, J=7.3 Hz), 6.76(1H, dt, J=7.3 Hz), 7.15-7.34(6H, m), 7.93(2H, dt, J=8.1 Hz), 8.04(2H, dt, J=8.1 Hz), 8.73(1H, t, J=5.1 Hz), 9.76(1H, br.s) IR(Kβ)cm¹¹, 3396, 3320, 1628, 1621, 1539, 1458, 1313, 699

Example 134

5

10

15

20

25

45

55

Preparation of N-(2-aminophenyl)-4-[N-(4-nitrophenoxyacetyl)amino]benzamide (Table 1: Compound 54)

(134-1) To a solution of 3 g of the compound from Example 100, the process (100-2) (9.2 mmol) and 2.16 g of 4-nitropheroxyacetic acid (11.0 mmol) in 7 mL of DMF were added 2.82 g of dicyclohexylcarbodiimide (13.8 mmol) in 5 mL of DMF and a catalytic amount of NN-dimethylaminopyridine, and the mixture was stirred for one day. After completion of the reaction, ethyl acetate was added to the mixture, insolubles were filtered off through cellie, and the solvent was removed by exporation.

The residue was recrystallized from chloroform to give 2.34 g of N-[2-(tert-butoxycarbonylamino)phenyl]-4-[(4-ni-trophenoxyacetyl)amino|benzamide (Yield: 50 %).

1H NMR(270 MHz, DMSO-d_e) δ ppm: 1.45(9H, s), 4.97(2H, s), 7.12-7.26(3H, m), 7.29(2H, d, J=8.8 Hz), 7.53(1H, d, J=2, 7.3 Hz), 7.79(2H, d, J=8.8 Hz), 7.95(2H, d, J=8.8 Hz), 8.25(2H, d, J=8.8 Hz), 8.71(1H, s), 9.79(1H, s), 10.52(1H, s)

(134.2) To a solution of 0.7 g of the compound from the process (134-1) (1.38 mmol) in 10 mL of acetonitrile was added 1.26 mL of icodotimethylsilane (8.85 mmol) at room temperature, and the solution was stirred for 2 hours. After completion of the reaction, the solution was concentrated. Eithyl acetate was added to the residue, the solution was stirred for 20 min, and the precipitated crystals were collected by filtration. The crystals were dissolved in methyl ethyl ketone. The solution was washed with saturated sodium thiosultate aq, and saturated brine in sequence, dinced over anhydrous magnesium suitate, and evaporated. The residue was washed with ethyl acetate to give 0.22 g of N-(2-aminophenyl)-4-[N-(4-nitrophenoxyacetyl)amino|benzamide (Yield: 39 %) as white crystals.

1H NMR(270 MHz, DMSO-d_e) δ ppm: 4.97(2H, s), 6.88(1H, t, J=7.3 Hz), 6.99(1H, d, J=7.3 Hz), 7.11(1H, t, J=7.3 Hz), 7.23(2H, d, J=8.8Hz), 7.24(1H,m), 7.77(2H, d, J=8.8 Hz), 8.00(2H, d, J=8.8 Hz), 8.25(2H, d, J=8.8 Hz), 9.89(1H, s), 10.5(2(1H, s))

IR(KBr)cm-1: 3382, 3109, 1650, 1591, 1508, 1341

Example 135

Preparation of N-(2-aminophenyl)-4-[(4-aminophenoxyacetyl)amino|benzamide (Table 1: Compound 55)

To a solution of 1.41 g of the compound from Example 134, the process (134-1) (2.78 mmol) in 15 mt. of methanol and 50 mt. of 11 mt. of methanol and 150 mt. of 11 mt. of 12 mt. of 13 mt.

The product was dissolved in 15 mL of acetonitrile. To the solution was added 0.74 mL of lodotrimethylsilane (5.20 mmol), and the mixture was attred at room temperature for 3 hours. After completion of the reaction, the mixture was everyorated. The residue was washed with methyl ethyl ketone to give 0.86 g of N-(2-aminophenyl)-4-[(4-aminophenyxyaetlyllamino|benzamide (Yilot: 83 %).

mp: (amorphous)

1H NMR(270 MHz, DMSO-d_e) δ ppm: 4.82(2H, s), 7.13(2H, d, J≡B.8 Hz), 7.30-7.48 (6H, m), 7.82(2H, d, J≡B.8 Hz), 8.03(2H, d, J≡B.8 Hz), 10.34(1H, s), 10.46(1H, s)
HK/KB/Her™: 2873, 2890, 1680, 1602, 1605, 1243

IN(KBI)CIII . 2873, 2030, 1000, 1002, 1000, 12 1

Example 136

Preparation of N-(2-aminophenyl)-4-(5-phenoxymethyl-1,3-oxazolin-2-on-3-yl)benzamide (Table 2: Compound 1)

(135-1) To 0.7 g of tart-buryl 4-(N-benzyloxycarbonylamino)benzcate (2.14 mmol) in 10 mL of THF a1-78 °C was added dropwise 1.33 mL of n-butyl thium (2.25 mmol) over 5 min. The mixture was stirred at the same temperature (or 1.5 hours. To the mixture was then added 0.31 mL of phenylytyclical (2.29 mmol), and the reaction mixture was then stirred at the same temperature for an hour and left overnight at room temperature. After adding saturated ammonium chioride aq., the mixture was extracted twice with ethyl aceiste. The organic layer was dried over anhydrous magnesium sulfate and evaporated. The residue was recrystallized from dishlyl ether to give 0.31 g of NI-4-(tert-buokycarbonylphenyl-5-phenoxymethyl-1.3-oxazcolir-2-one (Yidd: 99 %).

 1 H NMR(270 MHz, DMSO-dg) 5 ppm: 1.53(9H, s), 3.97(1H, dd, J=6.0, 8.8 Hz), 4.23-4.34(3H, m), 5.11(1H, m), 6.94-7.-00(3H,m), 7.31(2H,m), 7.71(2H, d, J=8.8Hz), 7.93(2H, d, J=8.8 Hz)

(136-2) To a solution of 0.26 g of the compound from the process (136-1) (0.704 mmol) in 4 mL of acetonitrile was added 0.15 mL of trimethylsily todide (1.05 mmol), and the solution was stirred at room temperature for 2 hours. After completion of the reaction, the solution was concentrated. The concentrate was triturated with ethyl acetatemethyl ethyl ketone to give 0.2 g of N-(4-carboxyphenyl)-5-phenoxymethyl-1,3-oxazolin-2-one (Yield: 91 %).

methyl ethyl ketone to give 0.2 g of N-(4-carboxypneny)1-5-pnenoxymetry1-1,3-bxazcum1-2-one (1eld. 9 1 75). 1H NMR(270 MHz, DMSO-d₆) δ ppm: 3.98(1H, dd. μ=6.6, 9.6 Hz), 4.24–3.43(4H, m), 5.10(1H, m), 6.94-6.99(3H, m), 7.30(2H, d, μ=8.1 Hz), 7.78(2H, d, μ=8.8 Hz), 12.85(1H, s)

In 36.3) To a solution of 0.15 got it the compound from the process (19-52) 0.479 mmo) in 7 mL of dichloromethane were added as easily a smooth of DMF and 0.17 mL of oxight jointoined (1.40 mmo), and the solution was stirred in 20 mL of 20 mL of

TH NMR(270 MHz, DMSO- G_0) δ ppm: 1.52(9H, s), 4.11(1H, dd, J=5.9, 6.6 Hz), 4.21-4.27(9H, m), 5.01(1H, m), 6.84(1H, br.s), 6.91(2H, d, J=8.8 Hz), 7.01(1H, t, J=7.4 Hz), 7.12-7.34(5H, m), 7.68(2H, d, J=8.8 Hz)

(135-4) To a solution of 0.22 g of the compound from the process (136-3) (0.437 mmol) in 4 mL of acetonitrile was added 0.1 mL of trimethylishly loided (0.708 mmol) at room temperature, and the solution was stirred for 2 hours. After adding saturated acquire misosultate act, the moture was extracted twice with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate and eveporated. The residue was recrystallized from methanol to give 0.13 g of N-(2-aminopheryl)-4-(5-phenoxymethyl-1,3-oxazolin-2-on-3yl)benzamide (Yield: 74 %) as white crystals.

mp: 165-170 °C(dec.)

1H NMR(270 MHz, DMSO- d_0) δ ppm: 4.01(1H, dd, J=6.6, 9.6 Hz), 4.28-4.34(3H, m), 5.12(1H, m), 5.23(2H, br.s), 6.64(1H, t, J=7.4 Hz), 6.81(1H, d, J=8.1 Hz), 6.95-7.00(3H, m), 7.18(1H, d, J=6.6 Hz), 7.31(2H, t, J=8.1 Hz), 7.72 (-2H, d, J=8.8 Hz), 9.89(1H, s) RIK(Br)cm⁻¹. 3939, 1740, 1810, 1810, 1828, 1829, 1840,

As described in Example 136, the compounds of Examples 137 to 143 were prepared, each of whose melting point (mp), ¹H NMR data and/or IR data are shown below.

Example 137

5

10

15

20

25

30

55

N-(2-aminophenyl)-4-[5-(4-nitrophenoxy)methyl-1,3-oxazolin-2-on-3-yl-yl]benzamide (Table 2: Compound 2)

mp: 162-164 °C

1H NMR(270 MHz, DMSO-d₀) δ ppm: 3.97(1H, dd, J=6.6, 9.5 Hz), 4.10(1H, dd, J=5.1, 11.0 Hz), 4.17(1H, dd, J=3.7, 11.0 Hz), 4.27(1H, I, J=8.8 Hz), 6.53-6.80(6H, m), 6.97(1H, I, J=8.1 Hz), 7.16(1H, d, J=6.6 Hz), 7.72(2H, d, J=8.8 Hz), 8.04(2H, d, J=8.8 Hz), 9.65(1H, s)

IR(KBr)cm-1: 3356, 2365, 1741, 1609, 1510, 1247

Example 138

N-(2-aminophenyt)-4-(5-benzyloxymethyl-1,3-oxazolin-2-on-3-yl)benzamide hydrochloride (Table 2: hydrochloride of Compound 3)

mp: 181-183 °C

1H NMR(270 MHz, DMSO-d_e) 8 ppm: 3.69(1H, dd, J=5.2, 11.0 Hz), 3.76(1H, dd, J=3.7, 11.0 Hz), 3.91(1H, dd, J=5.9, 88 Hz), 4.59(2H, s), 4.93(1H, m), 7.26-7.41(8H, m), 7.751(1H, m), 7.74(2H, d, J=8.8 Hz), 8.15(2H, d, J=8.8 Hz), 10.42(1H, d), 10.42(1H, d),

Example 139

N-(2-aminophenyl)-4-[5-(pyridin-3-yl)oxymethyl-1,3-oxazolin-2-on-3-yl|benzamide (Table 2: Compound 4)

mp: 199-201 °C

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 4.01(1H, dd, J=6.6, 8.8 Hz), 4.28-4.46(3H, m), 4.96(2H, br.s), 5.14(1H, m), 6.61(1H, t, J=7.4 Hz), 6.79(1H, d, J=7.4 Hz) 6.98(1H, t, J=7.4 Hz), 7.16(1H, d, J=7.4 Hz), 7.36(1H, dd, J=4.4, 8.1 Hz), 7.44(1H, dd, J=1.5, 8.1 Hz)

IR(KBr)cm⁻¹: 2815, 2631, 2365, 1752, 1610, 1520, 1225

Example 140

10

20

30

N-(2-aminophenyl)-4-[5-(pyridin-3-yl)methyloxymethyl-1,3-oxazolin-2-on-3-yl]benzamide (Table 2: Compound 5)

mp: 160-164 °C(dec.) 15

¹HNMR(270MHz,DMSO-d₆) δ ppm: 3.73(1H, dd, J=5.2, 11.7 Hz), 3.79(1H, dd, J=2.9, 11.7 Hz), 3.91(1H, dd, J=5.9, 8.8 Hz), 4.21(1H, t, J=8.8 Hz), 4.62(2H, s), 4.91(3H, br.s), 6.60(1H, t, J=7.4 Hz), 6.78(1H, d, J=7.4 Hz), 6.98(1H, t, J=7.4 Hz), 7.16(1H, d, J=7.4 Hz), 7.38(1H, dd, J=4.4, 7.4 Hz), 7.69(2H, d, J=8.8 Hz), 7.71(1H, m), 8.03(2H, d, J=8.8 Hz), 8.51(1H, dd, J=1.5, 4.4 Hz), 8.54(1H, d, J=1.5 Hz), 9.65(1H, s)

IR(KBr)cm⁻¹: 3368, 1742, 1648, 1608, 1492, 1226

Example 141

N-(2-aminophenyl)-4-[5-(3-nitrophenoxy)methyl-1,3-oxazolin-2-on-3-yl]benzamide (Table 2: Compound 6)

mp: 230 °C(dec.)

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 4.04(1H, t, J=8.8 Hz), 4.32(1H, t, J=8.8 Hz), 4.41-4.53(2H, m), 4.91(2H, s), 5.15(1H, m), 6.61(1H, t, J=7.4 Hz), 6.79(1H, d, J=7.4 Hz), 6.98(1H, t, J=7.4 Hz), 7.16(1H, d, J=7.4 Hz), 7.46(1H, dd, J=1.5, 8.1 Hz), 7.61(1H, t, J=8.1 Hz), 7.71-7.79(3H, m), 7.87(1H, d, J=8.1 Hz), 8.06(2H, d, J=8.8 Hz), 9.66(1H, s) IR(KBr)cm-1: 3363, 3095, 2365, 1741, 1608, 1529

Example 142

N-(2-aminophenyl)-4-[5-(pyridin-2-yl)methyloxymethyl-1,3-oxazolin-2-on-3-yl]benzamide (Table 2; Compound 7)

mp: 172-174 °C

¹H NMR(270 MHz, DMSO-d₆) δ ppm: 3.79(1H, dd, J=5.2, 11.0 Hz), 3.85(1H, dd, J=2.9, 11.0 Hz), 3.95(1H, dd, J=6.6, 9.6 Hz), 4.23(1H, t, J=9.6 Hz), 4.67(2H, s), 4.90(2H, s), 4.95(1H,m), 6.60(IH, t, J=7.4Hz), 6.78(1H, d, J=7.4 Hz), 6.97(1H, t, J=7.4 Hz), 7.16(1H, d, J=7.4 Hz), 7.29(1H, dd, J=5.2, 6.6 Hz), 7.40(1H, d, J=6.6 Hz), 7.70(2H, d, J=8.8 Hz), 7.78(1H, dt, J=2.2, 7.4 Hz), 8.03(2H, d, J=8.8 Hz), 8.51(1H, d, J=4.4 Hz), 9.64(1H, s) IR(KBr)cm⁻¹: 3369, 1743, 1651, 1608, 1492, 1283

Example 143

N-(2-aminophenyl)-4-[5-(pyridin-2-yl)oxymethyl-1,3-oxazolin-2-on-3-yl]benzamide (Table 2: Compound 8)

mp: (amorphous) ¹HNMR(270MHz, DMSO-d₈) δ ppm: 3.96(1H, dd, J=5.9, 9.6 Hz), 4.21-4.40(3H, m), 4.90(2H, s), 5.03(1H, m), 6.28 (1H, t, J=6.6 Hz), 6.43(1H, d, J=9.6 Hz), 6.60(1H, t, J=6.6 Hz), 6.78(1H, d, J=6.6 Hz), 6.97(1H, t, J=7.4 Hz), 7.15 (1H, d, J=6.6 Hz), 7.46(1H, dt, J=7.4, 1.5 Hz), 7.67(2H, d, J=8.8 Hz), 7.69(1H, m), 8.03(2H, d, J=8.8 Hz), 9.64(1H, s)

Example 144

N-(2-aminophenyl)-4-[N-[3-[(pyridin-3-yl)methylamino]cyclobuten-1,2-dion-4-yl]aminomethyl]benzamide (Table 2: Compound 9)

(144-1) To a solution of 0.073 g of 3,4-di-n-butoxy-3-cyclobuten-1,2-dione (0.323 mmol) in 2 mL of THF was added 0.1 g of the compound from Example 1, the process (1-4) (0.293 mmol), and the solution was stirred for 4 hours.

After adding 0.033 mL of 3-aminomethylpyridine (0.327 mmol), the solution was reacted for a day. After completion of the reaction, water was added to the solution, and the mixture was extracted twice with methyl eithyl ketone. The organic layer was died over anhydrous magnesium sulfate and evaporated. The residue was triturated with methanol to give 0.12 g of N-12-(N-tert-butoxycarbonylamino)phenylj-4;N-13-([pyridin-3-yi])methylamino]cy-clobulen-1,2-din-4-yi]aminomethyl[benzamide (Yelki: 7.8 %).

J=8.1 Hz), 8.50(1H, m), 8.55(1H, d, J=1.5 Hz), 8.67(1H, s), 9.82(1H, s)

(144-2) To a solution of 0.1 g of the compound from the process (144-1) (0.19 mmb) in 4 mL of dicxane and 1 mL of methanol was added 4 mL of 4M hydrochloric acid dioxane, and the mixture was reacted for 2 hours. After completion of the reaction, the mixture was concentrated and neutralized with saturated codium bicerbonate aq. Methyl eithyl katone was added to the mixture, and the precipitated crystate were collected by filtration to give 0.04 g of N-(2-aminopheny)4-(H)-(3-(g)-yridin-3-yl)methylaminophylaminophyl-yl-din-yl)genzamide

(Yield: 49 %).

mp: 290 °C *I+ NMH(270 MHz, DMSO-d₀) δ ppm: 4.76(2H, s), 4.79(2H, s), 4.90(2H, s), 6.60(1H, t, J=7.4Hz), 6.78(1H, d, J=7.4 Hz), 6.97(1H, t, J=7.4 Hz), 7.16(1H, d, J=7.4 Hz), 7.39(1H, m), 7.49(2H, d, J=8.1 Hz), 7.79(1H, d, J=8.1 Hz), 7.97 (2H, d, J=8.1 Hz), 7.99(1H, b.n.5), 6.5(1H, d, J=6.1 Hz), 6.55(1H, s), 9.64(H+1), s), 9.64(H+1)

Example 145

10

15

25

N-(2-aminophenyl)-4-[3-(pyridin-3-yl)methyllmidazolin-2-on-1-yl]methylbenzamide (Table 2: Compound 10)

(145-1) Potassium carbonate (7.88 g; 57 mmol) was added to a solution of 4.92 g of ethylene uras (57 mmol), 5.73 g of methyl-4-bromomethylbenzoate (25 mmol) and 1.85 g of tetra-n-bulylammonium lodide (5.0 mmol) in 30 mL, of DMF, and the mixture was heated with stirring at 80 °C to 5 hours. After cooling, the solid was collected by filtration and washed with ethyl acetate. The littrate was concentrated. The residue was purified by column chromatography on silics gel (eluent; ethyl acetate.methanol = 10.1). To the light yellow oil obtained was added discopply ether, and the precipitated solid was collected by filtration and dried to give 3.36 g of N-(4-methoxycarbonoyl ether, and the precipitated solid was collected by filtration and dried to give 3.36 g of N-(4-methoxycarbonoyl ether).

nylphenylmethyl)imidazolin-2-one (Yield: 57.4 %) as a light brown solid.

1H NMF(270 MHz, CDCl₃) δ ppm: 3.28-3.35(2H, m), 3.41-3.47(2H, m), 3.92(3H, s), 4.42(2H, s), 4.61(1H, br.s).

7.35(2H, d, J=8.1 Hz), 8.01(2H, d, J=8.1 Hz)

(145-2) Saturated sodium bicarbonate ag, was added to 2.05 g of 3-chloromethylpyridine hydrochloride (12.5 mmol), and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried and evaporated. The residual solvent was azerotropically removed from the residue with follows. To the residue was added 5 m. of DMF and then 0.75 g of latera-bulylarmonium incided (1.0 mmol) to prepare a solution of a benzyl halide in DMF. To a suspension of 0.90 g of sodium hydride (60 % oil dispersion) (7.5 mmol) in 5 mL of DMF was slowly added dropwise a solution of a 1.7 g of the compound from the process (145-1) (50 mmol) in 0 DMF and the solution was stirred at one imperature for 30 min. After adding the above solution of the benzyl halide, the resulting solution was heated with stirring at 80°C for 7 hours, and then left at room temperature voxinglist. After removing DMF in the residue was partitioned between eithyl acetale and water. The auguscus layer was extracted with ethyl acetate-methyl ethyl ketone (2:1). The combined organic layer was washed with saturated brine, dried and evaporated. The residue was purified by column chromatography on silica gel (eleum): ethyl acetate-methyl ethyl ketone (2:1). The combined organic layer was washed with saturated brine, dried and evaporated. The residue was purified by column chromatography on silica gel (eleum): ethyl acetate-methyl ethyl ketone (2:1). The combined organic layer was washed with saturated brine, dried and evaporated. The residue was purified by column chromatography on silica gel (eleum): ethyl eleum; ethyl acetate-methyl ethyl ketone (2:1). The combined organic layer was washed with saturated brine, dried and evaporated. The residue was purified by column chromatography on silica gel (eleum): ethyl eleum; ethyl acetate enthance and exporated. The residue was purified by column chromatography on silica gel (eleum): ethyl eleum; ethyl eleum; ethyl eleum; ethyl eleum; ethyl eleum; ethyl eleum; ethyl eleum ethyl eleum; ethyl eleu

2-one (Yield: 72.3 %) as a brown oil.

1H NMH(270MHz, CDCl₃) δ ppm: 3.20(4H,6), 3.92(3H, s), 4.44(2H, S), 4.46(2H, S), 7.27-7.36(3H, m), 7.64-7.69

(1H, m), 8.01(2H, d, J=8.1 Hz), 8.53-8.56(2H, m)

(145-3) To a solution of 0.55 g of the compound from the process (145-2) (1.7 mmol) in 8 mL of methanol and 8 mL of water ware added 110 mg of lithium hydroxide monohydrate (1.7 mmol) at room temperature, and the solution was heated with stirring at 50 °C for 1.5 hours. Additional lithium hydroxide monohydrate (0.05 g; 1.2 mnol) was added, and the solution was stirred at 50 °C for additional 1.5 hours. The solution was addited to pl 3 with 10 % hydrochloric acid. Saturated brine was added, and the mixture was extracted twice with eithyl acetate one with eithyl acetate-methyl eithyl ketone (1:1). The organic layer was dried over anhydrous sodium sulfate and evaporated. The residue was dried to give 0.32 g of 4-(3-(pyridin-3-y))methyl/midazolin-2-on-1-y||methylbenzoic acid (Ysield, 6 19 & as a brown 5 % as a a brown 5 % as a a brown 5 % as a brown 5 ms.

(1800.01 /s) as a solution.

1H NMR(270 MHz, DMSO-d₆) δ ppm: 3.17(2H, s), 3.20(2H, s), 4.36(2H, s), 4.38(2H, s), 7.35-7.42(3H,m), 7.68 (1H, dd, J=6.6 Hz), 7.92(2H, d, J=8.1 Hz), 8.51(2H, m)

(145-4) To a solution of 0.31 g of the compound from the process (145-3) (1.0 mmol) in 12 mL of dichloromethane

was added dropwise 0.3 mt. of oxally chioride (3.5 mmol) at room temperature, and the solution was stirred at room temperature to 1.20 min and then at 40 °C for 1.5 hours. After evaporation, the residual solvent was azeo-repeating the review of with following, and the residue was suspended in 10 mt. of dichloromethane. To the suspension of the recommendation was added dropwise 0.2 1 g of the compound from Example 1, the process (1.2 (1.0 mmol) in 2 mt. of dichloromethane and 2 mt. of pyridine. The mixture was warmed with stirring to room temperature and left at room temperature overwight. After adding staturated socium bicerbonate art, the mixture was extracted with chloroform. The organic layer was washed with saturated brine, dried and evaporated. The residue was purified by column chromatography on silica gel (elucite cithy) acetetarenthanol = 20:11 jo give 0.10 g of N-(24ert-butoc-yearbonylaminophenyl)-4{3-(pyridin-3-yimethyl)imidazolin-2-on-1-yi]methylbenzamide (Yield: 20 %) as a brown reliable of the control of the cont

он. HNMR(270MHz, CDCl₃) 8 ppm: 1.52(9H, s), 3.20(4H, s), 4.45(2H, s), 4.48(2H, s), 6.75(1H, br.s), 7.15-7.40(5H, m), 7.65-7.70(2H, m), 7.83(1H, d, J=7.3 Hz), 7.94(2H, d, J=8.1 Hz), 8.50-8.60(3H, br.m)

(145-5) To a solution of 100 mg of the compound from the process (145-4) (0.20 mmol) in 2 mL of dioxane was added 2 mL of 4N hydrochloric acid-dioxane and then 0.5 mL of methanol to make the mixture homogenous. After stirring for 2 hours, the solution was neutralized with saturated solum bleathonate and extracted with shipty acetals. The organic layer was washed with saturated brine, dried and evaporated. The residue was dried under reduced pressure to give 47 mg of N-[2-aminophenyl)-4-[3-(pyridin-3-yt)methylimixazolin-2-on-1-yt]methylbenzamide (Yield: 58 %) as a brown oil.

mp: (amorphous)
14 MMR(270 MHz, DMSO-d₈) δ ppm: 3.20(4H, s), 4.37(2H, s), 4.39(2H, s), 4.87(2H, br.s), 6.60(1H, dd, J=7.3, 7.3Hz), 6.78(1H, d, J=8.1Hz), 6.57(1H,dd, J=6.6, 7.3Hz), 7.16(1H, d, J=7.3Hz), 7.357.41(3H,m), 7.68(1H, d, J=8.1Hz), 7.96.00(2H,m), 8.02(1H, br.s) 8.02(1H, br.s)

Example 146

5

15

20

25

40

45

55

Preparation of N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide 0.5 fumarate (Table 1; fumarate of Compound 82)

To 10 mL of methanol were added 310 mg of the compound from Example 48, and the mixture was heated to dissolve the solid. To the solution was added 96 mg of fumaric acid in methanol, and the solution was cooled. The pre

mp: 166-167 °C

1H NMR(270 MHz, DMSO-d_e) δ ppm: 4.28(2H, d, J=6.6 Hz), 5.10(2H, s), 6.60(1H, t, J=8.0 Hz), 6.63(1H, s), 6.78 (1H, d, J=8.0 Hz), 6.907-50(5H, m), 7.70-8.00(4H, m), 8.53(1H, d) = 3.9 Hz), 8.60(1H, s), 9.63(1H, s) (1H, s), 9.63(1H, s) (1HKSIDnm*) = 332, 1715, 1665, 1505, 1283, 1136, 1044, 983, 760, 712

Elementary analysis for C21H20N4O3+1/2C4H4O4			
	С	Н	N
Calculated	63.59	5.10	12.90
Observed	63.56	5.22	12.97

As described in Example 146, the compounds of Examples 147 to 149 are prepared, each of whose meiting point (mp), 1H NMR data, IR data and/or elementary analysis data are shown below.

Example 147

N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethy/lbenzamide maleate (Table 1; maleate of Compound 82)

mp: 123-124 °C

1H NMF(270 MHz, DMSO-d₆) 5 ppm: 4.28(2H, d, J=6.8 Hz), 5.11(2H, s), 6.24(2H, s), 6.66(1H, t, J=8.0 Hz), 6.83 (HI, d, J=8.0 Hz), 6.99-80(9H, m), 8.56(1H, d, J=3.6 Hz), 8.62(1H, s), 9.89(1H, s)

Elementary analysis for C ₂₁ H ₂₀ N ₄ O ₃ +C ₄ H ₄ O ₄ +0.3 H ₂ O			
	С	н	N
Calculated	60.31	4.98	11.25
Observed	60.52	5.12	11.03

Example 148

5

20

 $\underbrace{N-(2-aminophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide hydrochloride (Table 1; hydrochloride of Compound 82) }$

mp: 140(dec) °C

"H NMR(270 MHz, DMSO-d₆) δ ppm: 4.31(2H, d, J=5.8 Hz), 5.24(2H, s), 7.10-7.60(6H, m), 7.90-8.50(5H, m), 8.70-8.90(2H, m), 10.46(1H, s) 1.14(KB)m": 553, 1715, 1628, 1556, 1486, 1254, 1049, 778, 687

Example 149

Example 14

N-(2-aminophenyl)-4-[N-(pyridin-3-yl)oxyacetylaminomethylibenzamide 0.7 fumarate (Table 1: fumarate of Compound 61)

As described in Example 146, the title compound was prepared from the compound of Example 46.

mp: 154-155 °C

1H NMR(270 MHz, DMSO-d_e) δ ppm: 4.42(2H, d, J=5.9 Hz), 4.69(2H, a), 6.60(1H, I, J=8.0 Hz), 6.63(0.7H, a), 6.78 (1H, d, J=8.0 Hz), 6.90-7.50(6H, m), 7.93(2H, d, J=8.0 Hz), 8.20-8.40(2H, m), 8.82(1H, br.s), 9.63(1H, s) [R(KB)pm*: 3244, 1709, 1631, 1521, 1457, 1428, 1260, 1064, 806, 698

Comparative Example 1

N-3-aminophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide

As described in Example 48, the title compound was prepared.

mp: 156 °C

1H NMR(270 MHz, DMSC-d_g) δ ppm: 4.27(2H, d, .l=6.6 Hz), 5.06(2H, s), 5.10(2H, s), 6.20-6.40(1H, m), 6.80-7.10 (3H, m), 7.30-7.50(3H, m), 7.70-8.00(4H, m), 8.59(1H, d), .l=3.8 Hz), 8.59(1H, s), 9.88(1H, s) [R(KB)cm⁻¹, 237, 2318, 1708, 1639, 1536, 1279, 1147, 1050, 859, 788

Comparative Example 2

N-(4-aminophenyl)-4-[N-(pyridin-3-yl)methoxycarbonylaminomethyl]benzamide

As described in Example 48, the title compound was prepared.

mp: 204-205 °C

1+ NMR(270 MHz, DMSO-d₆) δ ppm: 4.27(2H, d, J=6.6 Hz), 4.91(2H, s), 5.10(2H, s), 6.52(2H, d, J=8.8 Hz), 7.30-7.50(5H, m), 7.70-8.00(4H, m), 8.50-8.60(2H, m), 9.80(1H, s)

IR(KBr)cm-1: 3336, 3224, 1706, 1638, 1530, 1279, 1145, 1050, 1005, 827

Pharmacological test example 1

Test for induction of differentiation in A2780 cells

Increase of alkaline phosphatase (ALP) activity is known as an indicator for differentiation of human colon cancer cells. For example, it is known that sodium butylate may increase ALP activity (Young et al., Cancer Res., 45, 2976 (1985); Morita et al., Cancer Res., 42, 4540(1982)). Thus, differentiation inducing action was evaluated using ALP activity as an indicator.

Experimental procedure

To each well of a 96-well plate was placed 0.1 mL of A2780 cells (15.000 cells/well) and the next day was added 0.1 mL of a sequential dilute of test solution with the medium. After incubation for 3 days, the cells on the plate were washed twice with a TBS buffer (20 mM Tris, 137 mM NatCl, pH 7.6). Then, to each well was added 0.05 mL of 0.6 mg/mL p-nitrophenylphosphate (9.6 % dierhanolamine, 0.5 mM MgClc, (pH 3.6)) solution, and the plate was incubated at room temperature for 30 mn. The reaction was quenched with 0.0 sm L/well of 3N sodium hydroxide aq. For each well, an absorbance at 405 mr was measured to determine the minimum concentration of the drug inducing increase of ALP activity (ALPmin).

Results

25

The -results are shown in Table 5.

Table 5: Differentiation-inducing action to A2780 cells

	Test Compound	ALPmin (μM)
	Example 1	1
	Example 2	3
	Example 3	3
	Example 4	1
0	Example 5	ī
•	Example 6	i
	Example 7	i
	Example 8	i
	Example 9	i
5	Example 10	3
	Example 11	i
	Example 13	i
	Example 15	3
	Example 16	3
o	Example 17	3
		3
	Example 18 Example 23	i
	Example 24	$-\frac{1}{1}$
5	Example 25	3
-	Example 26	i
	Example 27	10
	Example 28	10
	Example 29	10
0	Example 30	0.1
	Example 31	10
	Example 32	3
	Example 33	0.3
	Example 34	0.1
15	Example 35	0.3
	Example 36	10
	Example 37	1
	Example 38	3
10	Example 39	0.1
	Example 40	10
	Example 41	0.3
	Example 41	10
	Example 42	3
15	Example 43	0.01
	Example 44	0.01
		0.003
		0.1
		1
50		1
	Example 50	1

Table 5 (continued)

Test	ALPmin (µM)
Compound	
Example 51	1
Example 52	1
Example 53	3
Example 54	1
Example 55	1
Example 56	3
Example 57	3
Example 58	3
Example 59	3
Example 60	3
Example 63	3
Example 64	3
Example 65	3
Example 66	3
Example 67	3
Example 68	3
Example 70	0.1
Example 71	10
Example 72	10
Example 73	3
Example 74	10
Example 76	1
Example 77	3
Example 79	0.1
Example 80	0.1
Example 81	10
Example 82	1
Example 85	3
Example 86	0.3
Example 87	0.1
Example 88	0.1
Example 89	0.3
Example 90	3
Example 91	0.1
Example 92	3
Example 93	3
Example 94	3
Example 95	3
Example 96	10
Example 97	0.1
Example 98	0.1
Example 99	3
Example 100	1

Table 5 (continued)

Test	ALPmin (μM)	
Compound	3	
Example	3	
101		
Example	3	
102		
Example	1	
103		
Example	1	
104		
Example	1	
105	ì	
Example	1	
106	- 1	
Example	1	
107		
Example	3	
108		
Example	1	
109		
Example	3	
110		
Example	3	
111	1	
Example	0.1	
112	*	
Example	0.3	
113	1	
Example	3	
114	- 1	
Example	0.01	
Example	0.01	
115	0.01	
Example	0.01	
116		
Example	3	
119		
Example	0.3	
120		
Example	3	
121		
Example	0.03	
122		
Example	3	
123	1	
Example	3	
124		
Example	0.1	
Pydmbie	1 0.1	
125	3	
Example	,	
126		
Example	0.3	
127		

20

35

Example	0.1
128	
Example	1
129	
Example	0.03
130	
Example	0.3
131	
Example	10
132	1
Example	3
133	
Example	3
134	1
Example	3
135	1
Example	1
136	1 1
	1
Example	1 *
137	
Example	1
138	0.3
Example	0.3
139	
Example	0.3
140)
Example	1
141	
Example	0.1
142	
Example	3
143	
Example	3
145	1
Comp.Ex.1	>100
Comp.Ex.2	>100
COMP.BATE	

Pharmacological test example 2

Antitumor test procedure

Murine myeloid teukemia cells WEHI-3 (1 to 3 x 10⁶ cells) were intraperitoneally inoculated to a Bath/C mouse, and administration of a test compound was initiated on the next day. The day was Day 1 and subsequently the drug was crally administered once a day in Day 1 to 4 and in Day 7 to 11. Survival days after inoculation were observed, which were used to calculate the ratio of the survival days for the test compound group to those for the control group (T/C, %). The ratio was used to ovaluate a life prolongation effect.

Results

10

15

20

25

30

35

The results are shown in Table 6

Table 6:

Antitumor a	action to WEHI-3 c	ells
Test compound	Dose(µmol/kg)	T/C(%)
Example 45	16	138
Example 46	32	141
Example 48	130	190
Example 130	130	189

Pharmacological test example 3

Antitumor action test

10

25

30

Experimental procedure

To a nude mouse was inoculated tumor cells subcutaneously subcultured in a nude mouse (HT-29, KB-3-1). When the volume became about 20 to 100 mm² and take was confirmed, administration of a drug was initiated. This day was Day 1, and subsequently the drug was orally administered in Day 1 to 5, in Day 8 to 12, Day 15 to 19 and in Day 22 to 26. The volume of the tumor was determined from the following equation:

(Volume of a tumor) = 1/2 × (major axis) × (minor axis)²

Results

The results for the compound of Example 48 (dose: 66 μmol/kg) against HT-29 are shown in Figure 1. The results for the compound of Example 48 (dose: 66 μmol/kg) against KB-3-1 are shown in Figure 2.

Calculation Example

Model construction of superposition using high activity compounds

Three dimensional structure was superimposed using the compounds of Examples 45, 46 and 48 which exhibit a high differentiation-inducing activity, to extract information on spatial configurations of atomic groups necessary for expression of their activity.

For this purpose, any of commercially available program packages, e.g., CATALYST(MSI), Cerius2/QSAR+(MSI) and SYBYL/DISCO(Tripos), may be used to perform a similar level of analysis. Here, SYBYL/DISCO(Tripos) was used for construction of a superimposed structure and analyses.

For the compound of Example 48, a three-dimensional structure was generated using the sketch function of SYBVL, a point charge year allocated on each atom by Gasteleger-Huckel method, and the structure was coprimized using Tipos force field. A dummy atom was placed at sites possibly interacting with a biomolecule in order to determine the sites where such an interaction may occur and which may be important for an interaction between a drug and a biomolecule, e.g., a hydrophobic-interaction site (e.g., an acromatic ring and an aliphatic side chain) and a hydrogen-bonding site (e.g., a carbon) drugen, hydrogen and amino). The interactions were categorized in order to identify the types of dummy atom was allocated in each of the interaction, the properties of the composition of the composition of the composition of the carbon of the composition of the composi

Using the compound of Example 48 as a template, for each of its conformations a superimposed structure was constructed so that the dummy atoms showing the same type of interaction were superimposed for both conformations of Examples 45 and 46.

For the superimposed structures, the optimal superimposed structure was selected according to the analysis results of the three dimensional QSAR using the number of the dummy atoms used in the superimposition (the number

of common interactions), the degree of steric superimposition (volume of superimposition) and the activity values.

It was found that in the superimposed structure obtained, the centroid of ring B (W1), the centroid of ring A (W2) and yldrogen bond acceptor (e.g., carbonyl oxygen/W3) in formula (J3) are positioned in a manner that there are the following relationships between them; W1-W2 = 8.34 Å, W1-W3 = 3.80 Å and W2-W3 = 5.56 Å.

Calculation Example 1: the Compound of Example 130

Appropriate 7 atoms were selected from the possible interaction sites and the constituent atoms of the behavioral to the compound of Example 130, and optimization was performed by applying restrained potentials to the compound of Example 130, using the compounds of Examples 45, 48 and 48 used in the above superimposition as target structures. Then, optimization was performed without restrained potential to obtain an active conformation of the compound of Example 130. For this active conformation the centroid of the benzena ring in the benzamine (W1), the centroid of the benzena ring in the benzamine (W1), the centroid of the pyridine ring (W2) and the carbonyl carbon (W3) were determined to extract the parameters on its spatial configuration.

All conformations were generated for the retatable bonds, and for each of the conformations, an energy level was calculated to determine the most stable structure. The energy level of the most stable structure was calculated to determine the difference from the active conformation. As a result, it was found that the structure obtained may have a configuration in which W1-W2 = 8.43 Å, W1-W3 = 3.82 Å and W2-W3 = 5.88 Å (energy difference from the most stable structure = 2.86 kcalmon).

With analysis using the dummy atoms obtained in the construction of the above superimposed structure model, the same results were obtained.

Results

10

20

25

The results of the calculation are shown in Table 7.

Toble 7

lable 7.				
Calculation results of the parameters on the spatial configurations				
Compound	W1-W2(Å)	W1-W3(Å)	W2-W3(Å)	
Example 39	8.20	3.95	5.49	
Example 45	8.54	3.85	5.55	
Example 46	7.42	3.97	5.93	
Example 47	8.52	3.88	5.96	
Example 48	8.43	3.94	5.51	
Example 79	7.09	5.20	5.48	
Example 80	8.59	4.37	5.51	
Example 87	6.80	3.80	3.63	
Example 88	8.67	3.50	6.22	
Example 124	8.29	3.75	6.42	
Example 128	8.64	3.76	5.90	
Example 130	8.43	3.82	5.88	
Example 131	8.59	4.88	5.47	
Example 136	7.59	3.94	7.27	
Example 137	7.58	3.94	7.27	
Example 138	9.07	3.94	7.47	
Example 139	7.64	3.94	7.29	
Example 140	9.11	3.94	7.50	
Example 141	7.60	3.94	7.28	

Table 7: (continued)

Calculation results of the parameters on the spatial configurations			
Compound	W1-W2(Å)	W1-W3(Å)	W2-W3(Å)
Example 142	9.02	3.94	7.44
Example 143	7.62	3.94	7.29
Example 145	8.48	4.40	5.69

Claims

5

10

15

20

25

30

45

A compound represented by formula (1):

[wherein A is an optionally substituted a phanyl or heterocyclic group which has 1 to 4 substituents selected the group consisting of a halogen atom, a hydroxyl group, an amino group, a nitro group, a cyano group, an ally group having 1 to 4 carbons, an alkeyl group having 1 to 4 carbons, an alkylamino group having 1 to 4 carbons, and alkylamino group having 1 to 4 carbons, and alkylamino group having 1 to 4 carbons, and perfluoralkyloxy group having 1 to 4 carbons, a perfluoralkyloxy group having 1 to 4 carbons, a perfluoralkyloxy group having 1 to 4 carbons, a phenyl group and a heterocyclic group;

X is a bond or a moiety having a structure selected from those illustrated in formula (2):

wherein e is an integer of 1 to 4; g and m are independently an integer of 0 to 4; Rf is a hydrogen atom or an optionally substituted alkyl group having 1 to 4 carbons, or the acyl group represented by formula (3)

wherein R⁶ is an optionally substituted alkyl group having 1 to 4 carbons, a perfluoroalkyl group having 1 to 4 carbons, a phenyl group or a heterocyclic group; R⁶ is a hydrogen atom or an optionally substituted alkyl group having 1 to 4 carbons,

n is an integer of 0 to 4, provided that when X is a bond, n is not zero;

Q is a molety having a structure selected from those illustrated in formula (4)

wherein R⁷ and R⁸ are independently a hydrogen atom or an optionally substituted alkyl group having 1 to 4 carbons:

F1 and F2 are independently a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, an ally group having 1 to 4 carbons, an alkoxy group having 1 to 4 carbons, an aminosally group having 1 to 4 carbons, an an ally ally group having 1 to 4 carbons, an acyl group having 1 to 4 carbons, and laything oroup having 1 to 4 carbons, a carboxyl group or an alkoxycarboxyl group having 1 to 4 carbons, a carboxyl group or an alkoxycarboxyl group having 1 to 4 carbons, a carboxyl group or an alkoxycarboxyl group having 1 to 4 carbons.

R3 is a hydroxyl or amino group.] or a pharmaceutically acceptable salt thereof.

- 2. A benzamide derivative or a pharmaceutically acceptable salt thereof as claimed in Claim 1, wherein n is an integer of 1 to 4.
- A benzamide derivative or a pharmaceutically acceptable salt thereof as claimed in Claim 1 or 2, wherein Q is selected from the structures illustrated in formula (5):

wherein R7 and R8 are as defined above.

10

15

25

30

35

50

56

- A benzamide derivative or a pharmaceutically acceptable salt thereof as claimed in Claim 1, 2 or 3, wherein A is an optionally substituted hetero ring.
 - A benzamide derivative or a pharmaceutically acceptable salt thereof as claimed in Claim 4, wherein A is an optionally substituted pyridyl group.
- A benzamide derivative or a pharmaceutically acceptable salt thereof as claimed in any preceding Claim wherein X is a direct bond.
 - A benzamide derivative or a pharmaceutically acceptable salt thereof as claimed in any preceding Claim, wherein R¹ and R² are a hydrogen atom.
 - A benzamide derivative or a pharmacoutically acceptable salt thereof as claimed in any of Claims 1-5 or 7 wherein X is the structure represented by formula (6):

[wherein e is as defined above.]

A benzamide derivative or a pharmaceutically acceptable salt thereol as claimed in any of Claims 1-5 or 7 wherein
X is selected from the structures illustrated in formula (7):

$$-(CH_2)g-O-(CH_2)e-$$
, $-(CH_2)g-S-(CH_2)e-$, (7)

R4

 $-(CH_2)g-N-(CH_2)e-$

10 [wherein e, g and R4 are as defined above.]

5

20

25

30

45

55

A benzamide derivative or a pharmaceutically acceptable salt thereof as claimed in any of Claims 1-5 or 7 wherein
X is selected from the structures illustrated in formula (8):

[wherein g, m and R5 are as defined above.]

- 11. A benzamide derivative or a pharmaceutically acceptable salt thereof as claimed in any preceding Claim, wherein n is 1; and R² are a hydrogen atom.
- A benzamide derivative or a pharmaceutically acceptable salt thereof as claimed in any of Claims 1, or 3-10 wherein n is zero.
- 13. A benzamide derivative or a pharmaceutically acceptable salt thereof as claimed in any preceding Claim, wherein R³ is an amino group.
- A benzamide derivative or a pharmaceutically acceptable salt thereof as claimed in Claim 1 represented by formula (9)

 15. A benzamide derivative or a pharmaceutically acceptable salt thereof as claimed in Claim 1 represented by formula (10).

 A benzamide derivative or a pharmaceutically acceptable salt thereof as claimed in Claim 1 represented by formula (11).

 A benzamide derivative or a pharmaceutically acceptable salt thereof as claimed in Claim 1 represented by formula (12).

18. An anilide having the structure represented by formula (13):

15

30

35

55

[wherein A and B are independently an optionally authetituded phonyl or heterocyclic group which has 1 to 4 substituents selected from the group consisting of a halogen atom, a hydroxyl group, an amino group, a nitro group, a cyano group, an allyl group having 1 to 4 carbons, an alkyon group having 1 to 4 carbons, an alkylamino group having 1 to 4 carbons, an alkylamino group having 1 to 4 carbons, an alkylamino group having 1 to 4 carbons, a perfluorably group having 1 to 4 carbons, an alkylamino group having 1 to 4 carbons, a perfluorablyloxy group having 1 to 4 carbons, a perfluorablyloxy group having 1 to 4 carbons, a phently group having 1 to 4 carbons, a phently group having 1 to 4 carbons, a phently group and a heterocyclic group;

Y is a moiety having -CO-, -CS-, -SO- or -SO₂- which is linear, cyclic or their combination and links A and B; R³ is a hydroxy or amino group;

the distances between the centroid of ring B (W1), the centroid of ring A (W2) and oxygen or sulfur atom as , a thorqueen bond acceptor in the moiety Y (W3) are as follows; W1-W2=6.0 to 11.0 Å, W1-W3=3.0 to 8.0 Å, and W2-W3=3.0 to 8.0 Å]

or a pharmaceutically acceptable salt thereof.

5

15

20

25

55

- 19. An anilide derivative or a pharmaceutically acceptable salt thereof as claimed in Claim 18, wherein A is an optionally substituted heterocycle, RP is an amino group; and Y is a moiety having -CO- which is linear, cyclic or their combination and links A and B.
 - 20. An anilide derivative or a pharmaceutically acceptable salt thereof as claimed in Claim 18 or 19, wherein B is an optionally substituted phenyl; W1-W2 is 7.0 to 9.5 Å; W1-W3 is 3.0 to 5.0 Å, and W2-W3 is 5.0 to 8.0 Å.
 - 21. An anticancer drug comprising one or more compounds as claimed in any of Claims 1 to 20 as active ingredients.
 - A pharmaceutical composition comprising one or more compounds as claimed in any of Claims 1 to 20 as active
 ingredients.
 - Use of a compound according to any of Claims 1-20 the manufacture of a compound for use in the treatment of cancer.

European Patent

EUROPEAN SEARCH REPORT

Application Number EP 97 30 7679

	DOCUMENTS CONSIDE			
Category	Citation of document with ind of relevant passa;	ication, where appropriate, ges	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL6)
x	CHEMICAL ABSTRACTS, 20 December 1965 Columbus, Ohio, US; abstract no. 18311g, B.S. PORTNAYA ET AL. VII. Photographic prosubstituted phenols series." XPO02051609 CAS RN 3743-71-3 * abstract *	vol. 63, no. 13, : "Azomethine dyes. operties of some of the benzene RIKLADNOI FOTOGRAFII I	1	COTD213/30 COTD213/40 COTD213/45 COTD213/75 COTD213/75 COTD213/75 COTD213/75 COTD213/76 COTD213/76 COTD213/76 COTD213/76 COTD213/75 COTD233/76 COTD233/76 COTD233/77 COTD241/24
x	CHEMICAL ABSTRACTS, 20 December 1993 Columbus, Ohio, US; abstract no. 270986; J. NOMAKOWSKI: Met novel N-phenylcarbai difurylethane and difuryldichloroethy page 978; XP002051610 * CAS RN 151068-50-* abstract * \$ PL 157 443 B (UNI KOPERNIKA)	n. thod for preparation of moyl derivatives of lene." 7 *	18	TECHNICAL FIELDS SEARCHED (Int.CLs) CO7D CO7C A61K
	The present search report has	been drawn up for ell claims Date of completion of the season		Exerten
	THE HAGUE	9 January 1998	Bo	sma, P
A.	THE HAGUE CATEGORY OF CITED DOCUMENTS satisficially relevant if taken alone satisficially relevant if combined with ano socument of the same category schedological background on-written disclosure intermediate document	T : theory or princi E : corrier petent c after the filing of D : document cite L : document cite	ple underlying the locument, but put tare d in the application of tor other reason	te invention blished on, or

European Pater

EUROPEAN SEARCH REPORT

Application Number EP 97 30 7679

ategory	Citation of document with inc	RED TO BE RELEVANT feation, where appropriate.	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL6)
X	V. V. MITIN ET AL.: ortho-O-aminoacy1, N- TETRAHEDRON LETTERS, no. 12, 1979, 0XF0R pages 1081-1084, XPC * CAS RN 71642-04-1 * table 1 *	"Rearrangement of acylaminophenol." D 6B, 02051608	18	
X	EP 0 490 667 A (NIPF * example 147 *	ON MINING CO)	18	
A	WO 96 21648 A (SAM) LTD ;CHO EUI HWAN () * the whole document	TTT TO THE TOTAL CO (R); CHUNG SUN GAN (KR) L *	1-23	
				TECHNICAL FIELDS SEARCHED (Int. Cl.6)
	-X-			
				* ₂
	The present search report has			
	Place of search THE HAGUE	Data of completion of the search 9 January 1998	Во	sma, P
X PA V PA A M	CATEGORY OF CITED DOCUMENTS stricularly relevant if teken alone articularly relevant of combined with ano- pourment of the same category chnological background on-written disclosura termediate document	T: theory or princip E: earlier patient de after the Sting d ther D: document cited L: document cited	ocument, but pui nte I in the applicatio for other reason	blished on, or on is