# Prezentacja 6

24.05.2023r.

### MODEL OLS

Model OLS (Ordinary Least Squares) - jeden z podstawowych modeli regresji w analizie statystycznej. Jest używany do estymacji parametrów i prognozowania wartości zmiennej zależnej na podstawie zmiennych niezależnych.



## ZASTOSOWANIE sm.OLS

```
x_train = PM10_train_War[['Temperature', 'Wind', 'YEAR', 'MONTH']]
x_test = PM10_test_War[['Temperature', 'Wind', 'YEAR', 'MONTH']]
y_train = PM10_train_War[['Value']]
y_test = PM10_test_War[['Value']]
model = sm.OLS(y_train, x_train)
results = model.fit()

y_pred=results.predict(x_test)
```



#### print(results.summary())



| Dep. Variable:      |             | Valu     | e R-squar                              | R-squared (uncentered):        |                   |            | 0.80                     |  |
|---------------------|-------------|----------|----------------------------------------|--------------------------------|-------------------|------------|--------------------------|--|
| Model:              |             | 0LS      |                                        |                                |                   |            | 0.808                    |  |
| Method:             |             | 23:44:30 |                                        | <pre>Prob (F-statistic):</pre> |                   |            | 1469.<br>0.00<br>-6140.8 |  |
| Date:               | Mon         |          |                                        |                                |                   |            |                          |  |
| Time:               |             |          |                                        |                                |                   |            |                          |  |
| No. Observati       | ons:        |          |                                        | AIC:                           |                   | 1.         | 1.229e+04                |  |
| Of Residuals:       |             | 139      | 2 BIC:                                 |                                |                   | 1.         | 231e+04                  |  |
| Df Model:           |             |          | 4                                      |                                |                   |            |                          |  |
| Covariance Ty       | pe:         | nonrobus | t                                      |                                |                   |            |                          |  |
| ========            | coef        | std err  | <br>t                                  | P> t                           | =======<br>[0.025 | 0.975]     |                          |  |
| <br>Temperature     | <br>-0.5217 | 0.064    | <br>-8.194                             | <br>0.000                      | <br>-0.647        | <br>-0.397 |                          |  |
| Wind                |             |          | -6.754                                 |                                | -2.266            | -1.246     |                          |  |
| YEAR                | 0.0261      | 0.001    | 40.613                                 | 0.000                          | 0.025             | 0.027      |                          |  |
| MONTH               | -0.6731     | 0.158    | -4.261                                 | 0.000                          | -0.983            | -0.363     |                          |  |
| =======<br>Omnibus: |             | 346.47   | ====================================== | <br>-Watson:                   |                   | 0.890      |                          |  |
| Prob(Omnibus)       | :           | 0.00     | 0 Jarque-                              | -Bera (JB):                    |                   | 967.681    |                          |  |
| Skew:               |             | 1.27     | 1 Prob(JE                              | 3):                            |                   | 7.43e-211  |                          |  |
| Kurtosis:           |             | 6.18     | 9 Cond. N                              | lo.                            |                   | 994.       |                          |  |

Notes:



$$\sqrt{MSE} = 14.52548$$

|             | Współczynnik: |
|-------------|---------------|
| Wiatr       | -1.5684       |
| Temperatura | -1.0244       |
| Rok         | 0.0225        |
| miesiąc     | -0.4766       |



#### $\sqrt{MSE} = 12.97182$

|             | Współczynnik: |
|-------------|---------------|
| Wiatr       | -2.9518       |
| Temperatura | -0.5011       |
| Rok         | 0.0223        |
| miesiąc     | -0.7300       |





|             | Współczynnik: |
|-------------|---------------|
| Wiatr       | -2.5295       |
| Temperatura | -1.6943       |
| Rok         | 0.0292        |
| miesiąc     | -0.0675       |



#### $\sqrt{MSE} = 22.68565$

|             | Współczynnik: |
|-------------|---------------|
| Wiatr       | -3.3856       |
| Temperatura | -2.0401       |
| Rok         | 0.0380        |
| miesiąc     | -0.7741       |

## DZIAŁANIE LASU LOSOWEGO



## DZIAŁANIE LASU LOSOWEGO



## WYNIKI PREDYKCJI



#### Dane treningowe

Stężenie PM10 w latach 2015-2018.

#### Dane testowe

Stężenie PM10 w roku 2019.

#### **Zmienne** wzięte pod uwagę:

- miasto,
- temperatura,
- wiatr,
- rok,
- miesiąc.



|                                     | (MSE)                                                 | sredniokwadratowego                                    | (MĂE)                                                       | (MAPE)                                                                  | R <sup>2</sup>                                                                    |
|-------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Wzór                                | $oxed{rac{1}{n}\sum_{i}^{n}(y_{i}-\hat{y}_{i})^{2}}$ | $\sqrt{rac{1}{n}\sum_{i}^{n}(y_{i}-\hat{y}_{i})^{2}}$ | $\left rac{1}{n}\sum_{1}^{n}\left y_{i}-\hat{y}_{i} ight $ | $\frac{1}{n} \sum_{i=1}^{n} \left  \frac{y_i - \hat{y}_i}{y_i} \right $ | $\frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$ |
| Wynik dla<br>danych<br>treningowych | 185,25862<br>(0,95263)                                | 13,61093<br>(0,03499)                                  | 9,24818<br>(0,01798)                                        | 0,33483<br>(0,00077)                                                    | 0,71781<br>(0,00145)                                                              |
| Wynik dla                           | 330.25786                                             | 18.17294                                               | 12.81912                                                    | 0.50327                                                                 | 0.36349                                                                           |

Pierwiastek z błędu

18,17294

(0,04580)

Średni błąd

bezwzględny

12,81912

(0,03009)

Średni bezwzględny

błąd procentowy

0,50327

(0,00155)

Współczynnik

determinacji

0,36349

(0,00321)

Błąd

średniokwadratowy

330,25786

(1,66448)

danych

testowych





$$\sqrt{MSE} = 12.83363$$









## WAŻNOŚĆ CECH



## DZIĘKUJEMY ZA UWAGĘ!

PREZENTACJĘ PRZYGOTOWALI:

Paulina Iwach

Julia Mazur

**Ewa Trębacz** 

Małgorzata Kowalczyk

Kamil Kowalski

