MATH 307

Chapter 6

Section 6.2: Homogeneous Systems With Constant Coefficients The Diagonalizable Case

Contents

Real Eigenvalues	2
Imaginary Eigenvalues	4
Complex Exponential Function	4
Finding solutions with complex numbers	

Created by: Pierre-Olivier Parisé Summer 2022

REAL EIGENVALUES

EXAMPLE 1. Determine the general solution to

$$Y' = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} Y.$$

<u>Fact</u>: Suppose A and B are $n \times n$ matrices with $B = P^{-1}AP$ for some invertible $n \times n$ matrix P. Then

- If Z is a solution to Y' = BY, then PZ is a solution to Y' = AY.
- If $Z_1, Z_2, ..., Z_n$ is a fundamental set of solutions of Y' = BY, then $PZ_1, PZ_2, ..., PZ_n$ is a fundamental set of solutions to Y' = AY.

EXAMPLE 2. Solve the initial value problem

$$Y' = \begin{bmatrix} 2 & -3 & -3 \\ 2 & -2 & -2 \\ -2 & 1 & 1 \end{bmatrix} Y, \quad Y(0) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

IMAGINARY EIGENVALUES

Complex Exponential Function

For a complex number z = a + ib, we define

$$e^z = e^{a+ib} = e^a \cos(b) + ie^a \sin(b).$$

The solution to the differential equation y' = (a + ib)y is

$$y(x) = e^{(a+ib)x}.$$

Finding solutions with complex numbers

EXAMPLE 3. Find the general solution to

$$Y' = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} Y.$$

Fact: If U(x) + iV(x) is a solution to Y' = AY, then U(x) and V(x) are solutions to Y' = AY.

EXAMPLE 4. Find the general solution to

$$Y' = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} Y.$$