• This session focuses on multiple hypothesis testing.

- This session focuses on multiple hypothesis testing.
- A single null hypothesis might look like H_0 : the expected blood pressures of mice in the control and treatment groups are the same.

- This session focuses on multiple hypothesis testing.
- A single null hypothesis might look like H_0 : the expected blood pressures of mice in the control and treatment groups are the same.
- We will now consider testing m null hypotheses, H_{01}, \ldots, H_{0m} , where e.g. H_{0j} : the expected values of the j^{th} biomarker among mice in the control and treatment groups are equal.

- This session focuses on multiple hypothesis testing.
- A single null hypothesis might look like H_0 : the expected blood pressures of mice in the control and treatment groups are the same.
- We will now consider testing m null hypotheses, H_{01}, \ldots, H_{0m} , where e.g. H_{0j} : the expected values of the j^{th} biomarker among mice in the control and treatment groups are equal.
- In this setting, we need to be careful to avoid incorrectly rejecting too many null hypotheses, i.e. having too many false positives.

Multiple Testing

• Now suppose that we wish to test m null hypotheses, H_{01}, \ldots, H_{0m} .

Multiple Testing

- Now suppose that we wish to test m null hypotheses, H_{01}, \ldots, H_{0m} .
- Can we simply reject all null hypotheses for which the corresponding p-value falls below (say) 0.01?

Multiple Testing

- Now suppose that we wish to test m null hypotheses, H_{01}, \ldots, H_{0m} .
- Can we simply reject all null hypotheses for which the corresponding p-value falls below (say) 0.01?
- If we reject all null hypotheses for which the *p*-value falls below 0.01, then how many Type I errors will we make?

• Suppose that we flip a fair coin ten times, and we wish to test H_0 : the coin is fair.

- Suppose that we flip a fair coin ten times, and we wish to test H_0 : the coin is fair.
 - We'll probably get approximately the same number of heads and tails.
 - The p-value probably won't be small. We do not reject H_0 .

- Suppose that we flip a fair coin ten times, and we wish to test H_0 : the coin is fair.
 - We'll probably get approximately the same number of heads and tails.
 - The p-value probably won't be small. We do not reject H_0 .
- But what if we flip 1,024 fair coins ten times each?

- Suppose that we flip a fair coin ten times, and we wish to test H_0 : the coin is fair.
 - We'll probably get approximately the same number of heads and tails.
 - The p-value probably won't be small. We do not reject H_0 .
- But what if we flip 1,024 fair coins ten times each?
 - We'd expect one coin (on average) to come up all tails.

- Suppose that we flip a fair coin ten times, and we wish to test H_0 : the coin is fair.
 - We'll probably get approximately the same number of heads and tails.
 - The p-value probably won't be small. We do not reject H_0 .
- But what if we flip 1,024 fair coins ten times each?
 - We'd expect one coin (on average) to come up all tails.
 - The p-value for the null hypothesis that this particular coin is fair is less than 0.002!
 - So we would conclude it is not fair, i.e. we reject H_0 , even though it's a fair coin.

- Suppose that we flip a fair coin ten times, and we wish to test H_0 : the coin is fair.
 - We'll probably get approximately the same number of heads and tails.
 - The p-value probably won't be small. We do not reject H_0 .
- But what if we flip 1,024 fair coins ten times each?
 - We'd expect one coin (on average) to come up all tails.
 - The p-value for the null hypothesis that this particular coin is fair is less than 0.002!
 - So we would conclude it is not fair, i.e. we reject H_0 , even though it's a fair coin.
- If we test a lot of hypotheses, we are almost certain to get one very small p-value by chance!

Multiple Testing: Even XKCD Weighs In

https://xkcd.com/882/

• Suppose we test H_{01}, \ldots, H_{0m} , all of which are true, and reject any null hypothesis with a p-value below 0.01.

- Suppose we test H_{01}, \ldots, H_{0m} , all of which are true, and reject any null hypothesis with a p-value below 0.01.
- Then we expect to falsely reject approximately $0.01 \times m$ null hypotheses.

- Suppose we test H_{01}, \ldots, H_{0m} , all of which are true, and reject any null hypothesis with a p-value below 0.01.
- Then we expect to falsely reject approximately $0.01 \times m$ null hypotheses.
- If m = 10,000, then we expect to falsely reject 100 null hypotheses by chance!

- Suppose we test H_{01}, \ldots, H_{0m} , all of which are true, and reject any null hypothesis with a p-value below 0.01.
- Then we expect to falsely reject approximately $0.01 \times m$ null hypotheses.
- If m = 10,000, then we expect to falsely reject 100 null hypotheses by chance!
- That's a lot of Type I errors, i.e. false positives!

The Family-Wise Error Rate

• The family-wise error rate (FWER) is the probability of making at least one Type I error when conducting m hypothesis tests.

The Family-Wise Error Rate

- The family-wise error rate (FWER) is the probability of making at least one Type I error when conducting m hypothesis tests.
- FWER = $Pr(V \ge 1)$

	H_0 is True	H_0 is False	Total
Reject H_0	V	S	R
Do Not Reject H_0	U	W	m-R
Total	m_0	$m-m_0$	m

Challenges in Controlling the Family-Wise Error Rate

FWER =
$$1 - \Pr(\text{do not falsely reject any null hypotheses})$$

= $1 - \Pr(\bigcap_{j=1}^{m} \{\text{do not falsely reject } H_{0j}\}).$

Challenges in Controlling the Family-Wise Error Rate

FWER = 1 - Pr(do not falsely reject any null hypotheses)
= 1 - Pr
$$\left(\bigcap_{j=1}^{m} \{\text{do not falsely reject } H_{0j}\}\right)$$
.

If the tests are independent and all H_{0j} are true then

FWER =
$$1 - \prod_{j=1}^{m} (1 - \alpha) = 1 - (1 - \alpha)^{m}$$
.

Challenges in Controlling the Family-Wise Error Rate

FWER =
$$1 - \Pr(\text{do not falsely reject any null hypotheses})$$

= $1 - \Pr(\bigcap_{j=1}^{m} \{\text{do not falsely reject } H_{0j}\}).$

If the tests are independent and all H_{0j} are true then

FWER =
$$1 - \prod_{i=1}^{m} (1 - \alpha) = 1 - (1 - \alpha)^{m}$$
.

The Bonferroni Correction

$$\begin{aligned} \text{FWER} &= \Pr(\text{falsely reject at least one null hypothesis}) \\ &= \Pr(\cup_{j=1}^m A_j) \\ &\leq \sum_{j=1}^m \Pr(A_j) \end{aligned}$$

where A_j is the event that we falsely reject the jth null hypothesis.

The Bonferroni Correction

$$\begin{aligned} \text{FWER} &= \Pr(\text{falsely reject at least one null hypothesis}) \\ &= \Pr(\cup_{j=1}^m A_j) \\ &\leq \sum_{i=1}^m \Pr(A_j) \end{aligned}$$

where A_j is the event that we falsely reject the jth null hypothesis.

• If we only reject hypotheses when the p-value is less than α/m , then

$$FWER \le \sum_{j=1}^{m} \Pr(A_j) \le \sum_{j=1}^{m} \frac{\alpha}{m} = m \times \frac{\alpha}{m} = \alpha,$$

because $\Pr(A_i) \leq \alpha/m$.

• This is the *Bonferroni Correction*: to control FWER at level α , reject any null hypothesis with p-value below α/m .

Fund Manager Data

Manager	Mean, \bar{x}	s	t-statistic	<i>p</i> -value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

Fund Manager Data

Manager	Mean, \bar{x}	s	t-statistic	<i>p</i> -value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

- H_{0j} : the jth manager's expected excess return equals zero.
- If we reject H_{0j} if the p-value is less than $\alpha = 0.05$, then we will conclude that the *first* and *third* managers have significantly non-zero excess returns.

Fund Manager Data

Manager	Mean, \bar{x}	s	t-statistic	<i>p</i> -value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

- H_{0j} : the jth manager's expected excess return equals zero.
- If we reject H_{0j} if the p-value is less than $\alpha = 0.05$, then we will conclude that the *first* and *third* managers have significantly non-zero excess returns.
- However, we have tested multiple hypotheses, so the FWER is *greater* than 0.05.

Fund Manager Data with Bonferroni Correction

Manager	Mean, \bar{x}	s	t-statistic	p-value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

• Using a Bonferroni correction, we reject for p-values less than $\alpha/m = 0.05/5 = 0.01$.

Fund Manager Data with Bonferroni Correction

Manager	Mean, \bar{x}	s	t-statistic	<i>p</i> -value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

- Using a Bonferroni correction, we reject for p-values less than $\alpha/m = 0.05/5 = 0.01$.
- Consequently, we will reject the null hypothesis only for the *first* manager.

Fund Manager Data with Bonferroni Correction

Manager	Mean, \bar{x}	s	t-statistic	<i>p</i> -value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

- Using a Bonferroni correction, we reject for p-values less than $\alpha/m = 0.05/5 = 0.01$.
- Consequently, we will reject the null hypothesis only for the *first* manager.
- Now the FWER is at most 0.05.

1. Compute p-values, p_1, \ldots, p_m , for the m null hypotheses H_{01}, \ldots, H_{0m} .

- 1. Compute p-values, p_1, \ldots, p_m , for the m null hypotheses H_{01}, \ldots, H_{0m} .
- 2. Order the *m p*-values so that $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(m)}$.

- 1. Compute p-values, p_1, \ldots, p_m , for the m null hypotheses H_{01}, \ldots, H_{0m} .
- 2. Order the *m* p-values so that $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(m)}$.
- 3. Define

$$L = \min \left\{ j : p_{(j)} > \frac{\alpha}{m+1-j} \right\}.$$

- 1. Compute p-values, p_1, \ldots, p_m , for the m null hypotheses H_{01}, \ldots, H_{0m} .
- 2. Order the *m* p-values so that $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(m)}$.
- 3. Define

$$L = \min \left\{ j : p_{(j)} > \frac{\alpha}{m+1-j} \right\}.$$

4. Reject all null hypotheses H_{0j} for which $p_j < p_{(L)}$.

- 1. Compute p-values, p_1, \ldots, p_m , for the m null hypotheses H_{01}, \ldots, H_{0m} .
- 2. Order the *m p*-values so that $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(m)}$.
- 3. Define

$$L = \min \left\{ j : p_{(j)} > \frac{\alpha}{m+1-j} \right\}.$$

- 4. Reject all null hypotheses H_{0j} for which $p_j < p_{(L)}$.
- Holm's method controls the FWER at level α .

Holm's Method on the Fund Manager Data

Manager	Mean, \bar{x}	s	t-statistic	<i>p</i> -value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

• The ordered *p*-values are $p_{(1)}=0.006, p_{(2)}=0.012,$ $p_{(3)}=0.601, p_{(4)}=0.756$ and $p_{(5)}=0.918.$

Holm's Method on the Fund Manager Data

Manager	Mean, \bar{x}	s	t-statistic	<i>p</i> -value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

- The ordered p-values are $p_{(1)} = 0.006, p_{(2)} = 0.012,$ $p_{(3)} = 0.601, p_{(4)} = 0.756$ and $p_{(5)} = 0.918.$
- The Holm procedure rejects the first two null hypotheses, because
 - $p_{(1)} = 0.006 < 0.05/(5+1-1) = 0.0100$
 - $p_{(2)} = 0.012 < 0.05/(5+1-2) = 0.0125$,
 - $p_{(3)} = 0.601 > 0.05/(5+1-3) = 0.0167.$

Holm's Method on the Fund Manager Data

Manager	Mean, \bar{x}	s	t-statistic	<i>p</i> -value
One	3.0	7.4	2.86	0.006
Two	-0.1	6.9	-0.10	0.918
Three	2.8	7.5	2.62	0.012
Four	0.5	6.7	0.53	0.601
Five	0.3	6.8	0.31	0.756

- The ordered p-values are $p_{(1)} = 0.006, p_{(2)} = 0.012,$ $p_{(3)} = 0.601, p_{(4)} = 0.756$ and $p_{(5)} = 0.918.$
- The Holm procedure rejects the first two null hypotheses, because
 - $p_{(1)} = 0.006 < 0.05/(5+1-1) = 0.0100$
 - $p_{(2)} = 0.012 < 0.05/(5+1-2) = 0.0125$,
 - $p_{(3)} = 0.601 > 0.05/(5+1-3) = 0.0167$.
- Holm rejects H_0 for the first and third managers, but Bonferroni only rejects H_0 for the first manager.

A Comparison with m = 10 p-values

- Aim to control FWER at 0.05.
- p-values below the black horizontal line are rejected by Bonferroni.
- p-values below the blue line are rejected by Holm.
- Holm and Bonferroni make the same conclusion on the black points, but only Holm rejects for the red point.

A More Extreme Example

- Now five hypotheses are rejected by Holm but not by Bonferroni
- even though both control FWER at 0.05.

Holm or Bonferroni?

- Bonferroni is simple ... reject any null hypothesis with a p-value below α/m .
- Holm is slightly more complicated, but it will lead to more rejections while controlling FWER!!
- So, Holm is a better choice!