Algebra II Theorems

By Shun (@shun4midx)

Statements

Notice: I have briefly mentioned this in my README.md document, but by "Theorems", I refer to not just Theorems, but also Lemmas, Propositions, Corollaries and other things of the sort.

2-19-25 (Week 1): Rings and Modules (Quotient)

Fact 1.1. For the relationship between I and R/I,

- (1) I is $\max \Leftrightarrow R/I$ is a field
- (2) I is **prime** $\Leftrightarrow R/I$ is an **integral domain**

Fact 1.2. $\mathcal{N}_R \in {}_R\mathcal{M}$, i.e. it is an ideal, and R/\mathcal{N}_R is reduced

Proposition 1.1.
$$\mathcal{N}_R = \cap_{P \in \operatorname{Spec} R} P$$

Corollary 1.1.
$$\sqrt{I} = \bigcap_{\operatorname{Spec} R \ni P \supseteq I} P$$

Example 1.1. Usually
$$\sqrt{I^n} \neq I$$
, but if $P' \in \operatorname{Spec} R$, then $\sqrt{(P')^n} = P'$

Fact 1.3. The following are true about primary ideals

- (1) Q is **primary** $\Leftrightarrow R/Q \neq 0$ and the **zero-divisors** in R/Q are **nilpotent**
- (2) If Q is **primary**, then \sqrt{Q} is the **smallest prime ideal** containing Q

Example 1.2.
$$\sqrt{I} \in \operatorname{Spec} R \neq I$$
 is **primary** (*Key example*)

Statements and Proof Outlines

Notice: I would give enough detail but not write my proofs formally here. They are proof **outlines** so it is easier to recall **for me**, not actual proofs nor in complete English. It may look messy to you, that's understandable. I have a certain chronic eye condition and am dyslexic, so I need such "messiness" to understand what I write. When I can't color-code stuff like in my notes, this is the best alternative.

2-19-25 (Week 1): Rings and Modules (Quotient)

Fact 1.1. For the relationship between I and R/I,

- (1) I is $\max \Leftrightarrow R/I$ is a field
- (2) I is prime $\Leftrightarrow R/I$ is an integral domain

Proof.

- (1) " \Rightarrow ": $\forall \ \overline{0} \neq \overline{x} \in R/I, \ x \notin I \Rightarrow \langle x \rangle + I \supseteq I \Rightarrow \langle x \rangle + I = R$. In particular, $1 \in R \Rightarrow \exists \ a \in I$, s.t. $yx + a = 1 \Rightarrow \overline{yx} = \overline{1} \Rightarrow \overline{y} = \overline{x}^{-1}$ " \Leftarrow ": Let $I \subsetneq J$, pick x in $J \setminus I$, $\overline{x} \neq \overline{0}$ in R/I. Let $\overline{y} \in R/I$, st. $\overline{yx} = \overline{1} \Rightarrow yx + a = 1, \ a \in J$. In particular, $1 \in J \Rightarrow \forall \ r \in R, 1(r) = r \in J : R = J$, and hence is **max**
- (2) " \Rightarrow ": $\overline{xy} = \overline{0}$ and $\overline{x} \neq \overline{0} \Rightarrow xy \in I$ and $x \notin I \Rightarrow y \in I \Rightarrow \overline{y} = \overline{0}$, by def, OK " \Leftarrow ": $xy \in I$ and $x \notin I \Rightarrow \overline{xy} = \overline{0}$ and $\overline{x} \neq \overline{0} \Rightarrow \overline{y} = \overline{0} \Rightarrow y \in I$, by def, OK

Fact 1.2. $\mathcal{N}_R \in {}_R\mathcal{M}$, i.e. it is an **ideal**, and R/\mathcal{N}_R is **reduced**

Proof. $a,b \in \mathcal{N}_R$, say $a^n = 0$, $b^m = 0$ and $r \in R \Rightarrow \underline{(ra)^n} = r^n a^n = 0 \Rightarrow \underline{ra \in \mathcal{N}_R}$ and $\underline{(a+b)^{n+m}} = \sum_{i=0}^{n+m} \binom{n+m}{i} \ a^i \ b^{m+n-i} = 0 \Rightarrow \underline{a+b \in \mathcal{N}_R}$. For **reduced**, of course, quotient \mathcal{N}_R means no more non-zero nilpotent

Proposition 1.1. $\mathcal{N}_R = \cap_{P \in \operatorname{Spec} R} P$

Proof.

- " \subseteq ": For $a \in \mathcal{N}_R$, say $\underline{a^n = 0 \in P} \ \forall P \in \operatorname{Spec} R$. By def of $P, a \in P \ \forall P \Rightarrow a \in \operatorname{RHS}$
- "\(\to\$": Use contraposition and Zorn's Lemma. Let $a \notin \mathcal{N}_R$, $S = \{_R \mathcal{M} \ni I \subseteq R \mid \underline{a^n \notin I} \ \forall n \in \mathbb{N} \}$. Note $S \neq \emptyset$ since $\{0\} \in S \ (a \notin \mathcal{N}_R \Rightarrow a^k \neq 0 \ \forall k \in \mathbb{N})$

Define **partial order** " \leq " in S as " $I \leq J \Leftrightarrow I \subseteq J$ ". Let $\{I_i \mid i \in \Lambda\}$ be a **chain** in S. Then, ${}_R\mathcal{M} \ni I := \bigcup_{i \in \Lambda} I_i$ is a **least upper bound** of $\{I_i \mid i \in \Lambda\}$. (Module because $a, b \in I \Rightarrow a \in I_i$, $b \in I_j \Rightarrow I_i \subseteq I_j$ or $I_j \subseteq I_i \Rightarrow a + b \subseteq I_i$ or $I_j \subseteq I$). By **Zorn's Lemma**, \exists a **max element** Q in S

Corollary 1.1. $\sqrt{I} = \bigcap_{\operatorname{Spec} R \ni P \supset I} P$

Proof. Let
$$\phi: R \longrightarrow R/I$$
. Then, $\sqrt{I} = \phi^{-1}(\mathcal{N}_{R/I}) = \phi^{-1}(\bigcap_{\overline{P} \in \operatorname{Spec} R/I} \overline{P}) = \bigcap_{\operatorname{Spec} R \ni P \supseteq I} P$, $\overline{P} = P/I$ $r \longmapsto \overline{r}$

Example 1.1. Usually $\sqrt{I^n} \neq I$, but if $P' \in \operatorname{Spec} R$, then $\sqrt{(P')^n} = P'$

Proof. "
$$\subseteq$$
": By Prop 1.1, $\boxed{\sqrt{(P')^n} = \cap_{P\subseteq (P')^n}P} \subseteq P'$ " \supseteq ": $\forall \ x \in P', \ \underline{x^n \in (P')^n} \Rightarrow x \in \sqrt{(P')^n}$

Fact 1.3. The following are true about primary ideals

- (1) Q is **primary** $\Leftrightarrow R/Q \neq 0$ and the **zero-divisors** in R/Q are **nilpotent**
- (2) If Q is **primary**, then \sqrt{Q} is the **smallest prime ideal** containing Q

Proof.

(1) "\(\Rightarrow\)":
$$\overline{xy} = \overline{0}, \ \overline{x} \neq 0 \Rightarrow xy \in Q, \ x \notin Q \Rightarrow y^n \in Q \Rightarrow \boxed{(\overline{y})^n = \overline{0}}$$
"\(\infty\)": $\underline{xy} \in Q, \ x \notin Q \Rightarrow \overline{xy} = \overline{0}, \ \overline{x} \neq \overline{0} \text{ in } R/Q \Rightarrow (\overline{y})^n = \overline{0} \text{ for some } n \in \mathbb{N} \Rightarrow \boxed{y^n \in Q}$

(2) " $\sqrt{Q} \in \operatorname{Spec} R$ ": We know $\underline{xy} \in \sqrt{Q} \Rightarrow (xy)^n = \underline{x^n y^n} \in \underline{Q}$. $\underline{x} \notin \sqrt{Q} \Rightarrow x^m \notin Q \forall m \Rightarrow \underline{x^n \notin Q}$. By def, $\underline{(y^n)^l} \in \underline{Q} \Rightarrow y \in \sqrt{\overline{Q}}$

"Smallest": By Prop 1.1,
$$\sqrt{Q} = \bigcap_{P \supset Q} P \Rightarrow \sqrt{Q} \subset P$$
, so $\forall P \in \operatorname{Spec} R, \ P \supseteq Q$

Example 1.2. $\sqrt{I} \in \operatorname{Spec} R \neq I$ is primary

Proof. For $R = \mathbb{R}[x,y]$, we need $xy \in I$ and $x \notin I \Rightarrow y^n \in I$, so $I = \langle x^2, xy \rangle$ is **not primary**. Notice, $I = \langle x \rangle \cap \langle x^2, xy, y^2 \rangle = \langle x \rangle \cap \langle x, y \rangle^2$.

Now, $R/\langle x \rangle = \mathbb{R}[x,y]/\langle x \rangle \cong \mathbb{R}[y]$, which is **not a field** $\therefore \underline{\langle x \rangle}$ is **not a maximal ideal**. $R/\langle x,y \rangle \cong \mathbb{R}$, which is a field $\Rightarrow \langle x,y \rangle$ is a **max ideal**

Now, we know
$$\sqrt{I} = \sqrt{\langle x \rangle} \cap \sqrt{\langle x, y \rangle^2} = \langle x \rangle \cap \langle x, y \rangle = \boxed{\langle x \rangle}$$
, which is **primary**