# Introduction to Python

Elements of Applied Data Security M

Lorenzo Capelli <u>l.capelli@unibo.it</u>

#### Outline

- Lab's objectives and modalities
- Conda and Visual Studio
- Python: what and why
- Hands on

### Objectives

- 1. <u>Hands-on approach to learn methods and algorithms</u> explained in the theory lessons
  - Focus on concepts and working principles
  - Minor concerns on implementation details
- 2. Get experienced with Python programming language
  - Start with the basics (assuming you have C/C++ background)

#### Exam

The exam is split into **lab** and **theory** parts.

- Lab and Theory are independent exams.
  - They can be taken in either order.
  - Both exams have no expiration date.
  - Both can be taken the same date as well as in different dates.
- The course grade is the average between lab and theory grades.
- Exam dates (exact dates to be defined):
  - 1. Week 9-13 June 2025
  - 2. Week 30 June 4 July 2025
  - 3. Week 21-25 July 2025
  - 4. Week 1-5 September 2025

#### Lab Exam

#### **Assignments** – for attending students

- 1. On a bi-weekly basis, the student submits an assignment that will be graded out of 30.
- 2. The average over the 4/5 assignments is the starting grade at the exam.

#### **Project** – for non-attending students

- 1. Propose or ask for a project.
- 2. Submit the project that will be graded out of 30 and will be the <u>starting</u> grade at the exam.

#### In both cases — **exam** (optional)

- A student can choose not to take the exam, and the final grade is the starting grade <u>limited to 24</u>.
- The exam consists of a discussion of the submitted assignments/project whose purpose is:
  - to assess whether the student is the author and <u>confirm</u> the starting grade.
  - to assess if the student can address some of the weaknesses in the assignments/project and possibly increase the starting grade.
- <u>If the student fails</u>, the student must present a <u>new project</u>.

#### How it works

#### 1. Python Tutorial

- Soft start with Python
- Homework (no mark)

#### 2. Assignments

- You can work in groups (max 3 students)
- Submission:
  - notebook (report + code) uploaded on <u>Virtuale</u>.
  - deadline on Tuesday at 12pm of the second week
- Mark for each assignment from 0 to 30.

### **Assignment Scoring System**

- Functionality of the code: max 20 points
- Code quality and readability: max 5 points
- Report (structure/content): max 5 points

• All the assignments must follow the attached template, if provided. Such templates are meant to guide the student throughout the initial assignments.

## **Assignment Upload**

- Assignments must be uploaded on Virtuale before the deadline.
- Projects submitted by other means or after the deadline will not be reviewed and evaluated.
- The use of Jupyter Notebooks is mandatory so that both code and report are within the same file.
- Additional «.py» files are also accepted.
  - Example: «main.ipynb» + «module.py» (optional)

## Final project

- If the final average grade of all assignments falls below 18, then the student must submit a project to gain access to the lab exam.
- Details of the final project will be given in May.
   If you want to start working earlier, please contact us.
- The project can be submitted at any time. However, please note that the project evaluation takes 1 week, and it usually takes a few revision rounds to get a grade >18.
- The project is individual.

## Any questions?

## Workspace Setup

#### Two available options:

- Work on your personal computer
- Work on a machine in LAB2
  - Get remote access to the machine by installing a Microsoft RDP client on your computer

#### LabXRemote

- remo.ing.unibo.it
- Student -> Welcome
- Choose available Lab -> Lab0
  - An autoconfig file will be generated (works for both Windows and MacOS)
  - Double-click on the file to run it
- To login
  - Use your lab credentials: LABS/username
  - Or create an account here: https://remo.ing.unibo.it/app/student/infoy



- an open-source package and environment management system
  - installs, runs and updates packages and their dependencies
  - creates, saves, loads and switches between environments on your local computer
- runs on Windows, macOS and Linux
- can handle any language:
  - Python, R, Ruby, Lua, Scala, Java, JavaScript, C/C++, FORTRAN, and more

Here a post from conda-docs: Getting Started with Conda

### Installing Conda

 Download the latest version of miniconda3 from here <a href="https://docs.conda.io/en/latest/miniconda.html">https://docs.conda.io/en/latest/miniconda.html</a>

Install it by following the instructions in here
 <a href="https://conda.io/projects/conda/en/latest/user-guide/install/index.html">https://conda.io/projects/conda/en/latest/user-guide/install/index.html</a>
 where you can find a step by step guide for any platform: Windows,
 Linux or macOS.

### Opening conda

- On either Windows or macOS, find the **Anaconda Prompt** in the list of your programs and open it.
- On Linux, open a **Terminal** and run the following command:

\$ conda activate base

After that, we are in conda and (hopefully) there will be no difference between any platform.

#### Create and activate and environment

 Once you open anaconda prompt you activate the environment with the following command:

\$ conda create -n envname

• Once created, you have to activate it:

\$ conda activate envname

#### Installing Python libraries

 Once activated the environment, we can install some packages with the following commands:

```
$ conda install ipympl
$ conda install scipy
$ conda install matplotlib
$ conda install pycryptodomex
```

## Python and JupyterNotebook in VSCode



## Python and JupyterNotebook in VSCode



## Python and JupyterNotebook in VSCode



## Start working in VSCode

- Download the first folder assignement on Vitrtuale
- Search for it in VSCode



#### Activate the environment

- Ctrl+Shift+P
- Choose Python: Select Interpreter
- Then select the environment you created in conda





## Otherwise use Google Colab

## READY TO CODE





Python is an Interpreted and Object-Oriented Programming Language.

#### **WHY** Python?

- Simple syntax
- Very flexible
- Highly extensible
- Cross-platform
- Open-source with a huge community

Google says: Python where we can, C++ where we must

### Popularity

 According to StackOverflow's <u>survey</u> and <u>trends</u>, Python among all programming languages is the:

- 1<sup>st</sup> most questioned
- **3**<sup>rd</sup> most popular behind JavaScript, HTML/CSS
- 1<sup>st</sup> most wanted developers who do not yet use it say they want to learn it



### **Applications**

- Scientific and Numeric (especially Data Science & Machine Learning)
- Web and Internet Development
- Education
- Desktop GUIs
- Software Development
- Business Applications

Basically anything, like English for spoken languages

#### Homework

 No mark will be given, the goal is to get experienced with what has been explained in this class

- Read the text file wikipedia\_cybersecurity.txt
- Build a function that given a certain letter of the English alphabet, returns its
  occurrence in the text
- Build a function that given a text, returns the English letters distribution (frequency) contained in a suitable data structure
- Visualize the letters distribution by means of the most appropriate plot
- Save the data structure as a .pkl ("pickle") file