

Propuesta Inicial

LAVADORA DE ECUS

Proyecto Final

Equipo de cátedra

- Ezequiel Blanca
- Jorge Nicolas Franco
- Cristian Leandro Lukaszewicz

- Federico Bellomi
- Nicolas De Lio
- **Elias Joglar**

Universidad Nacional de Lomas de Zamora

Facultad de Ingeniería

Índice

1. Introducción	3
2. Necesidades a explorar	3
3. Descripción de la propuesta	4
Integración con Robot SCARA:	4
4 Alcanco	F

Universidad Nacional de Lomas de Zamora Facultad de Ingeniería

1. Introducción

En el ámbito de la electrónica automotriz, uno de los problemas más frecuentes y críticos es el deterioro de las placas electrónicas (ECU) causado por la presencia de humedad y suciedad. Estos factores pueden provocar desde fallas intermitentes hasta la inutilización completa del sistema, generando importantes consecuencias técnicas y económicas. Actualmente, los métodos de limpieza más utilizados (como el cepillado manual con alcohol isopropílico o el lavado ultrasónico) presentan limitaciones en términos de efectividad, tiempo de ejecución y grado de automatización, lo que evidencia una necesidad concreta de mejora en los procesos de mantenimiento.

2. Necesidades a explorar

La problemática se centra en la complejidad de lograr una correcta limpieza de placas electrónicas automotrices (ECU-Computadora de control de motor). Estas placas, debido mayormente a humedad, provocan fallos en los vehículos inhabilitando su funcionamiento. Lo cierto es que estas fallas si no son reparadas a tiempo suelen provocar una situación irrecuperable (fallo de integrados, corrosión de la pcb, circuitos en corto en la placa). A la hora de comprobar el funcionamiento en este tipo de casos se suele hacer una limpieza previa mediante cepillado y líquidos que no conducen la corriente eléctrica, como por ejemplo alcohol isopropílico. Este tipo de limpieza debe de hacerse manual y requiere mucho tiempo y cuidado del técnico, a su vez la limpieza mediante cepillado solo elimina restos superficiales, es decir no elimina un 100%. Existe otro método de limpieza el cual es mediante lavado ultrasónico, para realizar este método se sumerge la placa en un líquido como puede ser el alcohol antes mencionado y mediante electrólisis se retiran restos más puntuales en la placa. Este método es algo más práctico, pero a su vez menos usado en la industria automotriz, ya que la placa requiere de un prelavado mediante aspersión y cepillado para retirar restos superficiales que el lavado ultrasónico no puede eliminar.

Universidad Nacional de Lomas de Zamora

Facultad de Ingeniería

3. Descripción de la propuesta

Este proyecto presenta el desarrollo de una célula de trabajo totalmente automatizada diseñada para la limpieza y reacondicionamiento de Unidades de Control Electrónico (ECU) y otras placas electrónicas complejas. La solución ataca una necesidad crítica en la industria de la reparación electrónica: la eliminación eficiente y estandarizada de contaminantes como humedad, suciedad y residuos que provocan fallos en los circuitos.

Para esto se utiliza una máquina de limpieza de doble etapa que integra dos tecnologías en una sola unidad compacta.

- 1. Etapa de Aspersión Controlada: Utiliza un chorro presurizado de alcohol isopropílico para la remoción de suciedad superficial de manera efectiva y segura.
- Etapa de Limpieza Ultrasónica: Sumerge la placa en una batea con el mismo solvente, empleando ondas ultrasónicas de alta frecuencia para una limpieza profunda a nivel microscópico, eliminando residuos en áreas de difícil acceso sin causar daño a los componentes.

Integración con Robot SCARA:

Para aumentar la eficiencia y eliminar la intervención humana en el proceso de carga y descarga, la célula incorpora un robot SCARA, este brazo robótico es el encargado de gestionar el flujo de trabajo de manera autónoma:

- Pick & Place: El robot SCARA, equipado con un gripper, tomará las placas electrónicas desde una bandeja o cinta de entrada.
- Vision por cámara: El robot detectara estas placas mediante una cámara alojada en el extremo del brazo, la imagen será analizada mediante inteligencia artificial y luego enviada al robot en forma de posición para que este se dirija.
- Inserción en la Máquina: El robot abrirá la puerta de la lavadora, posicionará la ECU en el sistema de sujeción interno y dará la señal para iniciar el ciclo de limpieza.
- Extracción y Reposicionamiento: Una vez que la máquina finaliza su ciclo de limpieza y secado, el robot retirará la placa limpia y la colocará en una zona de salida o inspección.

Universidad Nacional de Lomas de Zamora

Facultad de Ingeniería

4. Alcance

El proyecto contempla el desarrollo e implementación de un sistema automatizado compuesto por un robot tipo SCARA y una lavadora de ECUs, con el objetivo de optimizar el manejo y la limpieza de placas electrónicas.

1. Robot SCARA:

- •Integración de un sistema de visión artificial con IA para la detección, identificación y localización precisa de la placa electrónica sobre una superficie de trabajo.
- •Determinación autónoma del punto óptimo de sujeción de la placa, considerando su geometría y delicadeza.
- •Manipulación segura y precisa de la placa, con capacidad de traslado y posicionamiento dentro de la lavadora de ECUs.

2. Lavadora de ECUs:

- •Recepción automatizada de la placa electrónica desde el robot SCARA.
- •Ejecución de un ciclo de limpieza compuesto por dos procesos diferenciados:
- •Aspersión controlada, para la eliminación de impurezas superficiales.
- •Limpieza por ultrasonido, para la remoción profunda de residuos sin comprometer la integridad de los componentes electrónicos.
- •Finalización del ciclo con la entrega de la placa limpia en una bandeja o estación designada.

3. Objetivos Específicos del Alcance:

- •Lograr la integración coordinada entre el robot y la lavadora de ECUs, garantizando un flujo de trabajo autónomo.
 - •Minimizar la intervención humana, limitándola a la carga inicial y descarga final de placas.
- •Asegurar que el sistema cumpla con criterios de seguridad, repetibilidad y eficiencia, permitiendo un proceso de limpieza estandarizado y confiable.