Sequential and reinforcement learning for demand side management

Paris Women in Machine Learning & Data Science @Criteo

Introduction

Demand side management

Electricity is hard to store \rightarrow production - demand balance must be strictly maintained

Current solution: forecast demand and adapt production accordingly

- Renewable energies development
- → production harder to adjust
- New (smart) meters → access to data and instantaneous communication

Prospective solutions: manage demand

- → Send incentive signals (prices)
- → Control flexible devices

Demand side management with incentive signals

The environment (consumer behavior) is discovered through interactions (incentive signal choices) \rightarrow Reinforcement learning

How to develop automatic solutions to chose incentive signals dynamically?

Exploration: Learn consumer behavior

Exploitation: Optimize signal sending

« Smart Meter Energy Consumption Data in London Households »

Stochastic multi-armed bandits

Stochastic multi-armed bandits

In a multi-armed bandit problem, a gambler facing a row of K slot machines (also called one-armed bandits) has to decide which machines to play to maximize her reward

Exploration: Test many arms Exploitation: Play the « best » arm

Exploration - Exploitation trade-off

Stochastic multi-armed bandit

Each arm k is defined by an unknown probability distribution u_k

For
$$t = 1, ..., T$$

- Pick an arm $I_t \in \{1, ..., K\}$
- Receive a random reward Y_t with $Y_t | I_t = k \sim \nu_k$

Maximize the cumulative reward ⇔ Minimize the regret, i.e., the difference, in expectation, between the cumulative reward of the best strategy and that of ours:

$$R_T = T \max_{k=1,...,K} \mu_k - \mathbb{E}\left[\sum_{t=1}^T \mu_{I_t}\right], \text{ with } \mu_k = \mathbb{E}\left[\nu_k\right]$$

A good bandit algorithm has a sub-linear regret: $\frac{R_T}{T} \rightarrow 0$

Upper Confidence Bound algorithm¹

Initialization: pick each arm once

For
$$t = K + 1, ..., T$$
:

- Estimate the expected reward of each arm k with $\hat{\mu}_{k,t-1}$ (empirical mean of past rewards)
- Build some confidence intervals around these estimations: $\mu_k \in \left[\hat{\mu}_{k,t-1} \alpha_{k,t}, \hat{\mu}_{k,t-1} + \alpha_{k,t}\right]$ with high probability
- Be optimistic and act as if the best possible probable reward was the true reward and choose the next arm accordingly

$$I_t = \arg\max_{k} \left\{ \hat{\mu}_{k,t-1} + \alpha_{k,t} \right\}$$

[1] Finite-time analysis of the multiarmed bandit problem, Peter Auer, Nicolo Cesa-Bianchi, Paul Fischer, Machine learning, 2002

UCB regret bound

The empirical means based on past rewards are:

$$\hat{\mu}_{k,t-1} = \frac{1}{N_{k,t-1}} \sum_{s=1}^{t-1} Y_s \mathbf{1}_{\{I_s=k\}} \quad \text{with} \quad N_{k,t-1} = \sum_{s=1}^{t-1} \mathbf{1}_{\{I_s=k\}}$$

With Hoeffding-Azuma Inequality, we get

$$\mathbb{P}\left(\mu_{k} \in \left[\hat{\mu}_{k,t-1} - \alpha_{k,t}, \hat{\mu}_{k,t-1} + \alpha_{k,t}\right]\right) \geq 1 - t^{-3} \text{ with } \alpha_{k,t} = \sqrt{\frac{2\log t}{N_{k,t-1}}}$$

And be optimistic ensures that

$$R_T \lesssim \sqrt{TK \log T}$$

Modeling demand side management

Demand side management with incentive signals

For t = 1, ..., T

- ullet Observe a context x_t and a target c_t
- Choose price levels p_t
- Observe the resulting electricity demand

$$Y_t = f(x_t, p_t) + \text{noise}(p_t)$$

and suffer the loss $\ell(Y_t, c_t)$

Assumptions:

- Homogenous population, K tariffs, $p_t \in \Delta_K$
- $f(x_t, p_t) = \phi(x_t, p_t)^T \theta$ with ϕ a known mapping function and θ an unknown vector to estimate
- noise $(p_t) = p_t^{\mathrm{T}} \varepsilon_t$ with $\mathbb{V}[\varepsilon_t] = \Sigma$
- $\bullet \, \mathscr{E}(Y_t, c_t) = (Y_t c_t)^2$

Bandit algorithm for target tracking

Under these assumptions:
$$\mathbb{E}\left[\left.\left(Y_t-c_t\right)^2\,\middle|\, \mathrm{past}, x_t, p_t\,\right] = \left(\phi(x_t, p_t)^\mathrm{T}\theta - c_t\right)^2 + p_t^\mathrm{T}\Sigma p_t$$

 $^{\square}$ Estimate parameters θ and Σ to estimate losses and reach a bias-variance trade-off

Optimistic algorithm:

For
$$t = 1, ..., \tau$$

ullet Select price levels deterministically to estimate Σ offline with $\hat{\Sigma}_{ au}$

For
$$t = \tau + 1, ..., T$$

- ullet Estimate heta based on past observation with $\hat{ heta}_{t-1}$ thanks to a Ridge regression
- Estimate future expected loss for each price level p: $\hat{\ell}_{p,t} = \left(\phi(x_t, p)^T \hat{\theta}_{t-1} c_t\right)^2 + p^T \hat{\Sigma}_{\tau} p$
- Get confidence bound on these estimations: $|\hat{\ell}_{p,t} \ell_p| \le \alpha_{p,t}$
- Select price levels optimistically:

$$p_t \in \arg\min_{p} \left\{ \hat{\mathcal{E}}_{p,t} - \alpha_{p,t} \right\}$$

Regret bound²

$$R_{T} = \mathbb{E}\left[\sum_{t=1}^{T} (Y_{t} - c_{t})^{2} - \min_{p} (Y(p) - c_{t})^{2}\right] = \sum_{t=1}^{T} (\phi(x_{t}, p_{t})^{T}\theta - c_{t})^{2} + p_{t}^{T}\Sigma p_{t} - \sum_{t=1}^{T} \min_{p} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} \min_{p} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} \min_{p} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} \min_{p} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} \min_{p} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} \min_{p} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} \min_{p} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} \min_{p} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} \min_{p} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} \min_{p} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^{2} + p^{T}\Sigma p_{t} - \sum_{t=1}^{T} (\phi(x_{t}, p)^{T}\theta - c_{t})^$$

Theorem

For proper choices of confidence levels $\alpha_{p,t}$ and number of exploration rounds τ , with high

probability $R_T \leq \mathcal{O}(T^{2/3})$ If Σ is known, $R_T \leq \mathcal{O}(\sqrt{T} \ln T)$

Elements of proof

- ullet Deviation inequalities on $\hat{ heta}_{t}^{3}$ and on $\hat{\Sigma}_{ au}$
- Inspired from LinUCB regret bound analysis⁴
- [2] Target Tracking for Contextual Bandits : Application to Demand Side Management, Margaux Brégère, Pierre Gaillard, Yannig Goude and Gilles Stoltz, ICML, 2019
- [3] Laplace's method on supermartingales: Improved algorithms for linear stochastic bandits, Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári, NeuRIPS, 2011
- [4] Contextual bandits with linear payoff functions, Wei Chu, Li Lihong, Lev Reyzin, and Robert Schapire., JMLR 2011

Application

Extension: personalized demand side management

Others approaches and prospects

Control of flexible devices⁴

At each round t = 1, ..., T

- ullet Observe a target c_t
- Send to all thermostatically controlled loads a probability of switching on $p_t \in [0,1]$
- Observe the demand

N water-heaters to be controlled without compromising service quality

Assumptions:

- N water-heaters with same characteristics
- ullet Demand of water-heater i is zero if OFF and constant if ON
- State $x_{i,t} = (\text{Temperature}_t, \text{ON/OFF}_t)$ of water-heater i follows an unknown Markov Decision Process (MDP)
- It is possible to control demand if the MDP is known

[4] (Online) Convex Optimization for Demand-Side Management: Application to Thermostatically Controlled Loads, Bianca Marin Moreno, Margaux Brégère, Pierre Gaillard and Nadia Oudjane, 2024

Hyper-parameter optimization⁵

Train a neural network is expensive and time-consuming

Aim: for a set of hyper-parameters Λ (number of neurons, activation functions etc.) and a budget T, find the best neural network:

$$\arg\min_{\lambda\in\Lambda}\mathscr{C}\left(f_{\lambda}(\mathscr{D}_{\mathrm{TEST}})\right)$$

At each round t = 1, ..., T

- Choose hyper-parameters $\lambda_t \in \Lambda$
- ullet Train network f_{λ_t} on ${\mathscr D}_{\scriptscriptstyle \mathrm{TRAIN}}$
- Observe the forecast error $\mathscr{C}_t = \mathscr{C} \Big(f_{\lambda_t} \big(\mathscr{D}_{\text{VALID}} \big) \Big)$

Output (best arm identification): $\underset{f_{\lambda_t}}{\arg\min}\,\mathscr{C}\Big(f_{\lambda_t}\big(\mathscr{D}_{\text{VALID}}\big)\Big)$

[5] A bandit approach with evolutionary operators for model selection : Application to neural architecture optimization for image classification, Margaux Brégère and Julie Keisler, 2024

That's all folks!

Questions

