Planck-Bound Unified Framework (PBUF) — Mathematical Supplement (v9.0)

Derivation of σμν, conservation proof, and stability analysis

Compiled: 2025-10-20

Notation & Conventions

Signature (-,+,+,+). Einstein tensor $G\mu\nu = R\mu\nu - \frac{1}{2}g\mu\nu$ R. $\sigma\mu\nu$ is defined so that $G\mu\nu + \sigma\mu\nu = 8\pi G$ $T\mu\nu$.

Effective Action & Definition of σμν

 $S = \int \!\! \sqrt{-g} \left[\ R/(16\pi G) + L_elastic(g; \ invariants) + L_m \ \right]. \ \sigma\mu\nu \equiv -2/\sqrt{-g} \ \delta(\sqrt{-g} \ L_elastic)/\delta g^{\ast}\{\mu\nu\}. \ Field eqs: G\mu\nu + \sigma\mu\nu = 8\pi G \ T\mu\nu.$

Bounded f(R) Realization

Let L_elastic = $(f(R) - R)/(16\pi G)$. Then $\sigma\mu\nu = (f_R-1)G\mu\nu + \frac{1}{2}g\mu\nu(f_R f_R) + \nabla\mu\nabla\nu f_R - g\mu\nu$ **f**_R. Choose f_R>0 and f_RR>0 with a smooth saturation to enforce the Planck Bound.

Covariant Conservation

Diffeomorphism invariance and Bianchi identity imply $\nabla \cdot G = 0$. With minimal coupling, $\nabla \cdot T = 0$, therefore $\nabla \cdot \sigma = 0$.

FLRW Effective Fluid

On FLRW, define $\rho \sigma = -\sigma^0 0/(8\pi G)$, $\rho \sigma = (\sigma^i i)/(24\pi G)$. Conservation gives $\rho \blacksquare \sigma + 3H(\rho \sigma + \rho \sigma) = 0$.

Linear Perturbations — Stability

Scalar sector: $S^{(2)} = \frac{1}{2} \int a^3 [Q_S - c_S^2 (k^2/a^2) x^2]$. Require $Q_S>0$, $c_S^2>0$. Sufficient conditions in bounded f(R): $f_S>0$, $f_S=0$.

Tensor Sector & GW

Tensor modes satisfy $h'' + (3H+v) h \blacksquare + c_T^2 k^2/a^2 h = 0$ with $c_T^2 = 1$ for curvature-only elastic sectors; GW170817-safe.

Hamiltonian Positivity

Legendre map to scalar–tensor with ϕ =f_R gives ω _BD>0 and bounded potential V(ϕ); avoids Ostrogradsky instabilities.

Summary

 $\sigma\mu\nu$ is covariantly conserved; background closes as an effective fluid; perturbations are ghost/gradient stable and c_T=1. Mathematical well-posedness supports the v9.0 empirical calibration.