Equivalence of propositions

Definition: Two abstract propositions P and Q are equivalent, notation $P \stackrel{\text{\tiny M}}{=} Q$, iff they induce the same truth-function

on any sequence containing their common variables

Property: The relation $\stackrel{\text{\tiny M}}{=}$ is an equivalence on the set of all abstract propositions.

b	c	$\neg b$	$\neg c$	$b \wedge \neg b$	$c \wedge \neg c$
0	0				
0	_				
I	0				
I	ı				

b	c	$\neg b$	$\neg c$	$b \wedge \neg b$	$c \wedge \neg c$
0	0	_			
0	_	_			
I	0	0			
I	ı	0			

b	c	$\neg b$	$\neg c$	$b \wedge \neg b$	$c \wedge \neg c$
0	0	_	-		
0	_	-	0		
I	0	0	I		
	Ι	0	0		

b	c	$\neg b$	$\neg c$	$b \wedge \neg b$	$c \wedge \neg c$
0	0	_		0	
0	_	_	0	0	
I	0	0		0	
ı	I	0	0	0	

b	c	$\neg b$	$\neg c$	$b \wedge \neg b$	$c \wedge \neg c$
0	0	_	_	0	0
0	_		0	0	0
I	0	0	_	0	0
	Ι	0	0	0	0

Are the following equivalent? $b \wedge \neg b$ and $c \wedge \neg c$

b	c	$\neg b$	$\neg c$	$b \wedge \neg b$	$c \wedge \neg c$
0	0	_		0	0
0	_	_	0	0	0
I	0	0	I	0	0
I	ı	0	0	0	0

Their truth values are the same, so they are equivalent

$$b \wedge \neg b \stackrel{val}{=} c \wedge \neg c$$

Tautologies and contradictions

Def. An abstract proposition P is a tautology iff its truth-function is constant 1.

all tautologies are equivalent

Def. An abstract proposition P is a contradiction iff its truth-function is constant 0.

but not all contingencies!

all contradictions are equivalent

Def. An abstract proposition P is a contingency iff it is neither a tautology nor a contradiction.

Abstract propositions

Definition

```
Basis (Case I) T and F are abstract propositions.
```

Basis (Case 2) Propositional variables are abstract propositions.

```
Step (Case I) If P is an abstract proposition, then so is (\neg P).
```

Step (Case 2) If P and Q are abstract propositions, then so are $(P \land Q)$, $(P \lor Q)$, $(P \Rightarrow Q)$, and $(P \Leftrightarrow Q)$.

a recursive/inductive definition

Propositional Logic Standard Equivalences

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$P \Rightarrow Q \stackrel{val}{\neq} Q \Rightarrow P$$

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$
0	$\mid 1 \mid$	1	0

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$$
$$(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$$

$$(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$$

 $(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$$
$$(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$$
$$(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$$

$$(P \Rightarrow Q) \Rightarrow R \stackrel{val}{\neq} P \Rightarrow (Q \Rightarrow R)$$

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$$
$$(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$$
$$(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$$

$$(P \Rightarrow Q) \Rightarrow R \stackrel{val}{\neq} P \Rightarrow (Q \Rightarrow R)$$

P	Q	R	$(P \Rightarrow Q) \Rightarrow R$	$P \Rightarrow (Q \Rightarrow R)$

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$$
$$(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$$
$$(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$$

$$(P \Rightarrow Q) \Rightarrow R \stackrel{val}{\neq} P \Rightarrow (Q \Rightarrow R)$$

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$$
$$(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$$
$$(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$$

$$(P \Rightarrow Q) \Rightarrow R \stackrel{val}{\neq} P \Rightarrow (Q \Rightarrow R)$$

Idempotence and Double Negation

Idempotence

$$P \wedge P \stackrel{val}{=} P$$
$$P \vee P \stackrel{val}{=} P$$

$$P \Rightarrow P \stackrel{val}{\neq} P$$

$$P \Leftrightarrow P \stackrel{val}{\neq} P$$

Idempotence and Double Negation

Idempotence

$$P \wedge P \stackrel{val}{=} P$$

$$P \vee P \stackrel{val}{=} P$$

$$P \Rightarrow P \stackrel{val}{\neq} P$$
$$P \Leftrightarrow P \stackrel{val}{\neq} P$$

Double negation

$$\neg \neg P \stackrel{val}{=} P$$

Inversion

$$\neg T \stackrel{val}{=} F$$
$$\neg F \stackrel{val}{=} T$$

Inversion

$$\neg T \stackrel{val}{=} F$$
$$\neg F \stackrel{val}{=} T$$

Negation

$$\neg P \stackrel{val}{=} P \Rightarrow F$$

Inversion

$$\neg T \stackrel{val}{=} F$$
$$\neg F \stackrel{val}{=} T$$

Negation

$$\neg P \stackrel{val}{=} P \Rightarrow F$$

Contradiction

$$P \wedge \neg P \stackrel{val}{=} F$$

Inversion

$$\neg T \stackrel{val}{=} F$$
$$\neg F \stackrel{val}{=} T$$

Negation

$$\neg P \stackrel{val}{=} P \Rightarrow F$$

Contradiction

$$P \wedge \neg P \stackrel{val}{=} F$$

Excluded Middle

$$P \vee \neg P \stackrel{val}{=} T$$

Inversion

$$\neg T \stackrel{val}{=} F$$
$$\neg F \stackrel{val}{=} T$$

Negation

$$\neg P \stackrel{val}{=} P \Rightarrow F$$

Contradiction

$$P \wedge \neg P \stackrel{val}{=} F$$

Excluded Middle

$$P \vee \neg P \stackrel{val}{=} T$$

T/F - elimination

$$P \wedge T \stackrel{val}{=}$$

$$P \wedge F \stackrel{val}{=}$$

$$P \vee T \stackrel{val}{=}$$

$$P \vee F \stackrel{val}{=}$$

Inversion

$$\neg T \stackrel{val}{=} F$$
$$\neg F \stackrel{val}{=} T$$

Negation

$$\neg P \stackrel{val}{=} P \Rightarrow F$$

Contradiction

$$P \wedge \neg P \stackrel{val}{=} F$$

Excluded Middle

$$P \vee \neg P \stackrel{val}{=} T$$

T/F - elimination

$$P \wedge T \stackrel{val}{=} P$$

$$P \wedge F \stackrel{val}{=} F$$

$$P \vee T \stackrel{val}{=} T$$

$$P \vee F \stackrel{val}{=} P$$

Distributivity, De Morgan

Distributivity

$$P \wedge (Q \vee R) \stackrel{val}{=} (P \wedge Q) \vee (P \wedge R)$$

 $P \vee (Q \wedge R) \stackrel{val}{=} (P \vee Q) \wedge (P \vee R)$

$$P \lor (Q \land R) \stackrel{val}{=} (P \lor Q) \land (P \lor R)$$

Distributivity, De Morgan

Distributivity

$$P \wedge (Q \vee R) \stackrel{val}{=} (P \wedge Q) \vee (P \wedge R)$$

$$P \vee (Q \wedge R) \stackrel{val}{=} (P \vee Q) \wedge (P \vee R)$$

De Morgan

$$\begin{cases}
\neg (P \land Q) \stackrel{val}{=} \neg P \lor \neg Q \\
\neg (P \lor Q) \stackrel{val}{=} \neg P \land \neg Q
\end{cases}$$

$$\neg (P \lor Q) \stackrel{val}{=} \neg P \land \neg Q$$

Implication and Contraposition

Implication

$$P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q$$
$$P \lor Q \stackrel{val}{=} \neg P \Rightarrow Q$$

Implication and Contraposition

Implication

$$P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q$$
$$P \lor Q \stackrel{val}{=} \neg P \Rightarrow Q$$

Contraposition

$$P \Rightarrow Q \stackrel{val}{=} \neg Q \Rightarrow \neg P$$

Implication and Contraposition

Implication

$$P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q$$
$$P \lor Q \stackrel{val}{=} \neg P \Rightarrow Q$$

Contraposition

$$P \Rightarrow Q \stackrel{val}{=} \neg Q \Rightarrow \neg P$$

$$P \Rightarrow Q \neq \neg P \Rightarrow \neg Q$$

$$\land$$

$$common$$

$$mistake!$$

Bi-implication and Self-equivalence

Bi-implication

$$P \Leftrightarrow Q \stackrel{val}{=} (P \Rightarrow Q) \land (Q \Rightarrow P)$$

Bi-implication and Self-equivalence

Bi-implication

$$P \Leftrightarrow Q \stackrel{val}{=} (P \Rightarrow Q) \land (Q \Rightarrow P)$$

Self-equivalence

$$P \Leftrightarrow P \stackrel{val}{=}$$

Bi-implication and Self-equivalence

Bi-implication

$$P \Leftrightarrow Q \stackrel{val}{=} (P \Rightarrow Q) \land (Q \Rightarrow P)$$

Self-equivalence

$$P \Leftrightarrow P \stackrel{val}{=} T$$

Calculating with equivalent propositions (the use of standard equivalences)

Recall...

Definition: Two abstract propositions P and Q are equivalent, notation $P \stackrel{\text{\tiny d}}{=} Q$, iff they induce the same truth-function

on any sequence containing their common variables

Property: The relation $\stackrel{\text{\tiny M}}{=}$ is an equivalence on the set of all abstract propositions.

Substitution

meta rule

Simple

$$\phi \stackrel{val}{=} \psi$$

$$\phi[\xi/P] \stackrel{val}{=} \psi[\xi/P]$$

Sequential

$$\phi \stackrel{val}{=} \psi$$

$$\phi[\xi/P][\eta/Q] \stackrel{val}{=} \psi[\xi/P][\eta/Q]$$

Simultaneous

$$\phi \stackrel{val}{=} \psi$$

EVERY occurrence of P is substituted!

$$\phi[\xi/P, \eta/Q] \stackrel{val}{=} \psi[\xi/P, \eta/Q]$$

The rule of Leibnitz

Leibnitz

$$\phi \stackrel{val}{=} \psi$$

$$C[\phi] \stackrel{val}{=} C[\psi]$$

formula that has ϕ as a sub formula

meta rule

single occurrence is replaced!