Prepared by: Kiran Jot Singh & Divneet Singh Kapoor

WORKSHEET 2.4

Class: CSE 26(B) Group No.: 05

Group Members Details

S. No.	Name	UID
1.	RAJDEEP JAISWAL	20BCS2761
2.	ADARSH SHARMA	20BCS2762
3.	VISHAL CHOUDHARY	20BCS2848
4.	SOUMYA SHUBHAM NAYAK	20BCS2781

Task:

Develop a human vitals monitoring and alert system using IoT analytics platform.

Requirements:

- PC with Arduino
- Connecting Wires
- Breadboard
- DOIT ESP32 DEVKIT V1
- 10uF Electrolytic Capacitor
- Wire Clipper
- USB Type A to Micro USB Cable
- DC 5V Power Supply
- DC 3.3V Power Supply
- DS18B20

THEORY

The DS18B20 is a 1-wire programmable Temperature sensor from maxim integrated. It is widely used to measure temperature in hard environments like in chemical solutions, mines or soil etc. The constriction of the sensor is rugged and also can be purchased with a waterproof option making the mounting process easy. It can measure a wide range of temperature from -55°C to +125° with a decent accuracy of ± 5 °C.

Circuit Diagram:

Prepared by: Kiran Jot Singh & Divneet Singh Kapoor


```
Code (if any):
  Board: DOIT ESP32 DEVKIT V1
*/
#include <WiFi.h>
#include <IFTTTWebhook.h>
#include <OneWire.h>
#include <DallasTemperature.h>
#define WIFISSID "Joker" // Your WiFi Name
#define PASSWORD "Joker@tenda" // Your WiFi Password
\# define\ CRITICAL\_API\_KEY\ "itp\_xKwcmnWcTvsLARkH9xrSRsixs34g\_ZTPrItqkGT"
#define CRITICAL_EVENT_NAME "critical_temp"
#define LOG_API_KEY "itp_xKwcmnWcTvsLARkH9xrSRsixs34g_ZTPrItqkGT"
#define LOG_EVENT_NAME "temp_log"
#define MAX_TEMP_THRESHOLD 99.5 // F
#define MIN_TEMP_THRESHOLD 97.7 // F
// Data wire
#define ONE WIRE BUS 5
// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature
ICs)
OneWire one_wire(ONE_WIRE_BUS);
// Pass our oneWire reference to Dallas Temperature.
DallasTemperature temp_sensor(&one_wire);
IFTTTWebhook critical_webhook(CRITICAL_API_KEY, CRITICAL_EVENT_NAME);
```

Foundations of Internet of Things Lab 20ECP-154

Prepared by: Kiran Jot Singh & Divneet Singh Kapoor


```
IFTTTWebhook log_webhook(LOG_API_KEY, LOG_EVENT_NAME);
bool last_normal_temp_state = true;
void setup() {
 // Initializing Serial communication.
 Serial.begin(9600);
 Serial.println("Init... T9_Human_Vitals");
 // Start up the library
 temp_sensor.begin();
 // Setup up WiFi and Connecting to an active hotspot.
 Serial.print("\n\nCnonnecting to ");
 Serial.println(WIFISSID);
 WiFi.begin(WIFISSID, PASSWORD);
 while (WiFi.status() != WL_CONNECTED) { // Waiting for successful connection
    delay(500);
    Serial.print(".");
 }
 Serial.print("\nRSSI: ");
 Serial.println(WiFi.RSSI());
 Serial.print("WiFi connected. IP address: ");
 Serial.println(WiFi.localIP());
}
// the loop function runs over and over again forever
void loop() {
```



```
// call sensors.requestTemperatures() to issue a global temperature
 // request to all devices on the bus
 Serial.print("Requesting temperatures...");
 temp_sensor.requestTemperatures(); // Send the command to get temperatures
 Serial.println("Done");
 // After we got the temperatures, we can print them here.
 // We use the function ByIndex, and as an example get the temperature from the first sensor only.
 float temp = temp_sensor.getTempFByIndex(0); // temp in F
 // Check if reading was successful
 if(temp != DEVICE_DISCONNECTED_C)
  Serial.print("Temperature for the device 1 (index 0) is: ");
  Serial.print(temp);
  Serial.println("F");
         bool current_normal_temp_state = (temp <= MAX_TEMP_THRESHOLD) && (temp >=
MIN_TEMP_THRESHOLD);
  if(current_normal_temp_state == false && last_normal_temp_state == true){
   Serial.println("Temp out of normal range.");
   critical_webhook.trigger(String(temp).c_str());
  }
  last_normal_temp_state = current_normal_temp_state;
  log_webhook.trigger(String(temp).c_str());
 }
 else
 {
  Serial.println("Error: Could not read temperature data");
 }
 delay(5000);
}
```

Prepared by: Kiran Jot Singh & Divneet Singh Kapoor

Dashboard Snippet (if any):

Foundations of Internet of Things Lab 20ECP-154

Prepared by: Kiran Jot Singh & Divneet Singh Kapoor

Outcome:

- Establish an interface between embedded IoT system and the physical world through sensors, to read the state of the world, and actuators, to change the state of the world.
- Establish connectivity of IoT modules with cloud for sensor data collection and management.