CS535 Design and Analysis of Algorithms - Assignment 6

Batkhishig Dulamsurankhor - A20543498

November 23, 2024

1. To reduce it to bipartite matching problem, we need two sets of vertices such that there is no edge within the sets. We can form such a graph by creating two disjoint sets S_1 and S_2 where these two sets are basically two copies of the original set S. Then for each edge between $A \in S$ and $B \in S$ in the original graph, we can add edges between S_1 and S_2 for copies of $A_1 \in S_1$ and $B_2 \in S_2$.

Our goal is to find a subgraph where every edge has exactly one indegree and outdegree edges. This means we need to find a perfect match. We can use Hopcroft-Karp algorithm to find maximum matching in the graph. If the maximum matching is equal to the number of vertices in S, we have the perfect matching. Otherwise, it is impossible to find a subgraph where every edge has exactly one indegree and outdegree edges.

```
function BFS():
     queue <- new queue
     for s1 in S1:
          if pairS1[s1] = null:
                dist[s1] = 0
                queue . add(s1)
     dist [null]=inf
     while !queue.empty:
          s1=queue.poll()
          if dist[s1]<dist[null]:
                for s2 in adj[s1]:
                     if \operatorname{dist} [\operatorname{pairS2} [\operatorname{s2}]] = \inf:
                           dist[pairS2[s2]] = dist[s1]+1
                           queue.add(pair_S2[s2])
     return dist[null]!=inf
function DFS(s2):
     if s2!=null:
          for s2 in S2:
                if \operatorname{dist}[\operatorname{pair}[\operatorname{s2}]] = \operatorname{dist}[\operatorname{s1}] + 1:
                     if (DFS(s2)) = true:
                           pairS2[s2]=s1
                           pairS1[s1]=s2
                           return true
          dist[s1] = inf
          return false
     return true
// start here, G(V,E)
S1 \leftarrow copy of V
S2 \leftarrow copy of V
PairS1 <- empty map
PairS2 <- empty map
```

Example:

Figure 1: We have above graph. Edges: $(1) \rightarrow (2,3,4), (2) \rightarrow (4), (3) \rightarrow (2), (4) \rightarrow (1,3)$

Figure 2: We make two copies of S for S1 and S2, add edges from S1 to S2 according to the edges in the graph and create a bipartite graph.

Figure 3: The result after the first iteration. We run BFS for the first time and have total of 3 matched pairs.

Figure 4: We build augmenting path for the unmatched vertices in S1, in this case we have only vertex (3).

Figure 5: Using the augmenting paths obtained from the previous step, we can run the next iteration and update the mathes.

Figure 6: The resulting subset where every edge has exactly one indegree and outdegree edges.

The time complexity of making a copy of the original subset is O(V)+O(V). The time complexity for bfs

and dfs is O(E) because in these searches, each edge is considered only once. The number iterations the algorithm has to run is $O(\sqrt(V))$ because each iteration increases the length of the shortest augmenting path by at least one [1]. So, Hopcroft-Karp algorithm runs $O(\sqrt(V)E)$. Reconstructing the original graph using the selected pairs takes O(V). So, the total time complexity of the algorithm is O(V) + O(V) + O(V) + O(V) = O(V) = O(V).

- 2. (a) Let's say vertex u is in a maximum matching M^* but not in a matching M. If we find a symmetric difference between them: $M\Delta M^*$, the set contains edges that are only in M or M^* but not in both. These alternating edges form paths and cycles.
 - We know that $u \in M^*$ so u must be an endpoint in a path, P, in the symmetric difference set. If the other end of the path P is a matched edge, it must be an alternating path. If it's a unmatched vertex, it must be an augmenting path since both u and the other end are unmatched. Therefore, if u is unmatched but in M^* , it must be either in alternating or augmenting path. This is essentially how matching algorithms work by iteratively find augmenting paths and maximize matching.
 - (b) The algorithm uses bfs and starts from all unmatched vertices from the left side of the bipartite graph. It tries to find unmatched edges by finding augmenting path (both ends are unmatched) using dfs. If it finds such a path, it augments the path to the current match by flipping the edges in the path. Then we have a new path. The algorithm keeps on going until there is no such a path left.

```
function BFS():
     queue <- new queue
     for s1 in S1:
           if pairS1[s1] = null:
                dist[s1] = 0
                queue.add(s1)
     dist [null]=inf
     while !queue.empty:
           s1=queue.poll()
           if dist[s1]<dist[null]:
                for s2 in adj[s1]:
                      if \operatorname{dist} [\operatorname{pairS2} [\operatorname{s2}]] = \inf:
                           \operatorname{dist} [\operatorname{pairS2} [\operatorname{s2}]] = \operatorname{dist} [\operatorname{s1}] + 1
                           queue.add(pair_S2[s2])
     return dist[null]!=inf
function DFS(s2):
     if s2!=null:
           for s2 in S2:
                if dist[pair[s2]] = dist[s1] + 1:
                      if (DFS(s2)) = true:
                           pairS2[s2]=s1
                           pairS1[s1]=s2
                           return true
           dist[s1] = inf
           return false
     return true
// start here, G(V,E)
S1 \leftarrow copy of V
S2 \leftarrow copy of V
PairS1 <- empty map
PairS2 <- empty map
m < -0
```

```
\begin{array}{ll} \mbox{while BFS()} & = \mbox{true:} \\ \mbox{for s1 in S1:} \\ \mbox{if pairS1[s1]} & = \mbox{null:} \\ \mbox{if DFS(s1)} & = \mbox{true:} \\ \mbox{m} & + \!\!\!= 1 \end{array}
```

The time complexity for bfs and dfs is O(E) because in these searches, each edge is considered only once. The number iterations the algorithm has to run is $O(\sqrt(V))$ because each iteration increases the length of the shortest augmenting path by at least one [1]. In this worst case, the total time complexity is $O(\sqrt(V)E)$.

References

[1] Hopcroft-Karp algorithm, Wikipedia, https://en.wikipedia.org/wiki/Hopcroft%E2%80%93Karp_algorithm#Analysis