The mapping cylinder is formed by taking a map $f: X \to Y$ and forming

$$M_f = (X \times I \bigcup Y) / \sim$$

where $(x,1) \sim y$ if and only if f(x) = y. A deformation retraction of M_f to Y is given as follows:

$$F(x,s) = \begin{cases} (x,(1-s)t + s \cdot 1) & z = (x,t) \in X \times I \\ y & z = y \in Y \end{cases}$$

Here the ·1 is written for emphasis: Note that a linear homotopy of I to $\{1\}$ is given by $G(t,s)=(1-s)t+s\cdot 1$. This way G(t,0)=t and G(t,1)=1. This is exactly what is happening in the second coordinate on X with respect to F (thank you Weitao for pointing this out).

A nice example which I failed to write down today in class today, due to time constraints is as follows:

Example 0.1. Consider the relation $y^2 = x^2(x+1)$. The points satisfying this is \mathbb{R}^2 look as follows:

Let $t \in \mathbb{R}$ be a parameter of the curve, so that $f : \mathbb{R} \to \mathbb{R}^2$ has an image looking like the graph above.

Consider the mapping cone M_f . Note that at the 'top' $(t = 0 \text{ in } X \times I)$ you will have a copy of \mathbb{R} , and at the 'bottom' (t = 1) you will have this graph in the space.

Try to envision the resulting space M_f .