Análise de sobrevivência e confiabilidade

Modelos paramétrica

Prof. Paulo Cerqueira Jr Programa de Pós-Graduação em Matemática e Estatística - PPGME Instituto de Ciências Exatas e Naturais - ICEN

https://github.com/paulocerqueirajr

1

Introdução

Introdução

- Agora iremos estudar modelo de probabilidade para dados de sobrevivência.
- Dessa forma, faremos suposições de distribuições de probabilidade para os tempos de falha ou evento.
- Estas distribuições são bastante utilizadas, principalmente para produtos industriais, por se mostrarem adequadas para descrever estes tempos de vida.
- Os modelos paramétricos vêm sendo utilizados com mais frequência na área industrial do que na médica.
- A principal razão deste fato é que os estudos envolvendo componentes e equipamentos industriais podem ser planejados e consequentemente as fontes de perturbação (heterogeneidade) podem ser controladas.
- Nestas condições a busca por um modelo paramétrico adequado fica facilitada e a análise estatística dos dados fica mais precisa.

As distribuições de probabilidade:

- Exponencial
- Weibull
- Lognormal
- Gamma
- Algumas distribuições mais sofisticadas:
 - Gama Generalizada
 - Exponencial por partes;
 - Distribuições gama-g;
 - Estáveis positivas.

Distribuição exponencial

Exponencial

Distribuições para o tempo de sobrevivência Exponencial

Lognormal

- O modelo log-normal é, juntamente com o Weibull, um modelo importante em análise de sobrevivência.
- Este modelo apresenta taxas de falhas não monótonas.

Função densidade:

$$f(t) = rac{1}{\sqrt{2\pi}t\sigma} \expiggl\{ -rac{1}{2\sigma^2} (\log(t) - \mu)^2 iggr\}, \quad t \geq 0.$$

Função de sobrevivência:

$$S(t) = \Phi \left\{ rac{-\log(t) + \mu}{\sigma}
ight\}, \quad t \geq 0.$$

Função taxa de falha:

$$h(t) = rac{f(t)}{S(t)}$$

15

Lognormal

Lognormal

- ullet Se T tem distribuição log-normal, então $Y=\log T$ tem distribuição normal ou Gaussiana.
- Observe que o modelo log-normal é definido em termos dos parâmetros da distribuição geradora normal. Ou seja,
 - ullet (parâmetro de escala da log-normal) é o parâmetro de locação da distribuição normal.
 - ullet σ (parâmetro de forma da log-normal) é o parâmetro de escala da distribuição normal.

Gama

- O gama é outro modelo importante em análise de sobrevivência.
- Mostramos a seguir as formas de f(t), S(t) e h(t) para o modelo gama.

Função densidade:

$$f(t) = rac{1}{\Gamma(k)lpha^k} t^{k-1} \expiggl\{-rac{t}{lpha}iggr\}, \quad t>0.$$

Função de sobrevivência:

$$S(t) = \int_t^\infty rac{1}{\Gamma(k)lpha^k} t^{k-1} \expiggl\{-rac{t}{lpha}iggr\}, \quad t>0.$$

Função taxa de falha:

$$h(t)=rac{f(t)}{S(t)}, \quad t>0.$$

Gama generalizado

• O modelo gama generalizado tem um parâmetro de escala e dois de forma.

Função densidade:

$$f(t) = rac{\gamma}{\Gamma(k)lpha^{\gamma k}} t^{\gamma k-1} \expiggl\{-iggl(rac{t}{lpha}iggr)^2iggr\}, \quad t>0.$$

- Os principais modelos em análise de sobrevivência são casos particulares da gama generalizada:
 - lacksquare para k=1 e $\gamma=1$ tem-se $T\sim Exp(lpha)$.
 - lacksquare para k=1 tem-se $T\sim Weibull(\gamma, lpha)$.
 - lacksquare para $\gamma=1$ tem-se $T\sim Gama(k,lpha).$
 - lacksquare para $k o\infty$ tem-se $T\sim log-normal.$

Gama generalizado

- O modelo gama generalizado é complexo mas útil na seleção de modelos.
- Os parâmetros, ou uma função deles, não tem interpretação.
- Difícil de ajustar computacionalmente. É comum obtermos falta de convergência.
- O R ajusta o modelo gama generalizado no pacote flexsurv.

Loglogística

- A distribuição log-logística fornece mais um ajuste paramétrico em análise de sobrevivência.
- A mesma tem várias forma de acordo com o parâmetro de forma beta β .
- Permitindo várias formas da função de taxa de falha.

A função de sobrevivência é dada por

$$S(t) = 1 - F(t) = [1 + (t/\alpha)^{\beta}]^{-1},$$

A função taxa de falha

$$h(t) = rac{f(t)}{S(t)} = rac{(eta/lpha)(t/lpha)^{eta-1}}{1+(t/lpha)^eta}.$$

Distribuições para o tempo de sobrevivência Loglogística

Exponencial por partes (EP)

- Segundo Ibrahim (2001), o EP é um dos modelos mais populares na modelagem semiparamétrica de dados de sobrevivência.
- Apesar de ser paramétrico em um senso estrito, não impõe restrições quanto a forma da função taxa de falha, diferentemente de outros modelos paramétricos como: exponencial, Weibull e lognormal, entre outros.
- EP é construído com base em uma aproximação da função taxa de falha por segmentos de retas, cujos comprimentos são determinados por uma grade de tempos τ que divide o eixo dos tempos em um número finito de intervalos.
- Matematicamente, a grade de tempos é definida como $au=\{s_0,s_1,\ldots,s_b\}$, em que $0=s_0< s_1<\ldots< s_b=\infty$, que induz intervalos da forma $I_j=(s_{j-1},s_j]$, para $j=1,2,\ldots,b$.

Distribuições para o tempo de sobrevivência Exponencial por partes (EP)

A função risco é definida da seguinte forma:

$$h(t|\lambda, au)=\lambda_j, \ \ ext{se} \ \ t\ \in I_j, \lambda_j>0 \quad \ j=1,\dots,b,$$

em que
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_b)^{ op}$$
 .

• A função taxa de falha acumulada e a função de sobrevivência são dadas por

$$H(t|\lambda, au) = \lambda_j(t-s_{j-1}) + \sum_{g=1}^{j-1} \lambda_g(s_g-s_{g-1}) ~~ ext{e}~~ S(t|\lambda, au) = \expigg\{ -\lambda_j(t-s_{j-1}) + \sum_{g=1}^{j-1} \lambda_g(s_g-s_{g-1}) igg\}$$

Distribuições para o tempo de sobrevivência Exponencial por partes (EP)

$$au = \{0, 2, 4, 5, \inf\}$$

Introdução

- Se corretamente especificado, os modelos paramétricos são bastante eficientes.
- Inferência para as quantidades desconhecidas dos modelos é baseada na função de verossimilhança e suas propriedades assintóticas.
- Cuidado na incorporação de censuras na função de verossimilhança.
- Má especificação de um modelo paramétrico acarreta em vício na estimação das quantidades de interesse.
- Técnicas de adequação, via resíduos, são fundamentais para verificar a adequação dos modelos paramétricos.

- Sejam,
 - T_i : tempo de falha do i—ésimo indivíduo com $f(\cdot)$ e $S(\cdot)$.
 - C_i : tempo de censura do i—ésimo indivíduo com $g(\cdot)$ e $G(\cdot)$.
- O tempo observado e a variável indicadora de falha,

$$y_i = \min(T_i, C_i), \delta_i = \left\{egin{array}{ll} 1 &, \ T_i < C_i & ext{tempo de falha}, \ 0 &, \ T_i > C_i & ext{tempo de censura.} \end{array}
ight.$$

ullet Supondo que o mecanismo de censura é não informativo, ou seja, T e C são independentes.

A construção da função de verossimilhança segue os seguintes passos:

O i-ésimo indivíduo é uma censura:

$$P(y_i=t,\delta_i=0)=P(C_i=t,T_i>C_i)=P(C_i=t,T_i>t)\stackrel{\mathrm{ind}}{=} g(t)S(t)$$

• O i-ésimo indivíduo é um evento:

$$P(y_i=t,\delta_i=1)=P(T_i=t,T_i< C_i)=P(T_i=t,C_i>t)\stackrel{\mathrm{ind}}{=} f(t)G(t)$$

Dessa forma a função de verossimilhança é dada por

$$L(heta,
u) = \prod_{i=1}^n \left[f(y_i \mid heta) G(y_i \mid
u)
ight]^{\delta_i} imes \left[g(y_i \mid
u) S(y_i \mid heta)
ight]^{1-\delta_i},$$

heta e u são os vetores de parâmetros da distribuição dos tempos de evento e censura, respectivamente.

Usando a suposição de censura não-informativa,

$$egin{array}{lll} L(heta,
u) &=& \prod_{i=1}^n \left[f(y_i\mid heta)G(y_i\mid
u)
ight]^{\delta_i} imes \left[g(y_i\mid
u)S(y_i\mid heta)
ight]^{1-\delta_i}, \ &=& \prod_{i=1}^n f(y_i\mid heta)^{\delta_i}S(y_i\mid heta)^{1-\delta_i} imes \prod_{i=1}^n g(y_i\mid
u)^{1-\delta_i}G(y_i\mid
u)^{\delta_i}, \ &=& L(heta)L(
u). \end{array}$$

Como o interesse principal consiste em estimar a distribuição dos tempos de evento, temos

$$egin{array}{lll} L(heta,
u) & \propto & \prod_{i=1}^n f(y_i \mid heta)^{\delta_i} S(y_i \mid heta)^{1-\delta_i} \ & = & \prod_{i=1}^n h(y_i \mid heta)^{\delta_i} S(y_i \mid heta). & ext{usando as relações!!} \end{array}$$

Método da máxima verossimilhança

O vetor Escore é dado por,

$$U(heta) \quad = \quad rac{\partial \log L(heta)}{\partial heta}.$$

O Estimador de Máxima Verossimilhança (EMV) é a solução do seguinte sistema de equações:

$$U(\hat{\theta}) = \mathbf{0}.$$

Métodos numéricos serão utilizados quando não houver solução analítica para este sistema de equações. (Ex: Newton Raphson, etc...)

Estimação dos parâmetros Método de Newton Raphson

O método segue o seguinte passo de iteração:

$$\hat{ heta}^{k+1} = \hat{ heta}^k + \mathcal{I}(\hat{ heta}^k)^{-1} U(\hat{ heta}^k)$$

em que U é o vetor escore de primeiras derivadas e $\mathcal I$ é a matriz de informação observada.

Usualmente o sistema é inicializado com $\theta^0=1$.

Estimação dos parâmetros Propriedades do EMV

- O EMV tem, assintoticamente, distribuição normal;
- O EMV é consistente;
- A estatística da Razão de Verossimilhança (RV)

$$-2\log(L(heta)=L(\hat{ heta})),$$

tem, assintoticamente, uma distribuição qui-quadrado com gl igual a dimensão de heta.

• Invariância: Se $\hat{\theta}$ é o EMV de θ , então $g(\hat{\theta})$ é o EMV de $g(\theta)$.

Quantidades importantes

Vetor Escore:

$$U(heta) = rac{\partial \log L(heta)}{\partial heta} = rac{\partial \ell(heta)}{\partial heta}.$$

• Matriz de informação de Fisher:

$$\mathcal{I}(heta) = E\left[-rac{\partial^2 \log L(heta)}{\partial heta^2}
ight] = E\left[-rac{\partial^2 \ell(heta)}{\partial heta^2}
ight].$$

Matriz de informação observada:

$$|\mathcal{I}(heta)|_{ heta=\hat{ heta}} = -rac{\partial^2 \log L(heta)}{\partial heta^2}|_{ heta=\hat{ heta}} = -rac{\partial^2 \ell(heta)}{\partial heta^2}|_{ heta=\hat{ heta}}.$$

Resultados importantes

Propriedade Importante:

$$E(U(\theta)) = 0$$

$$Var(\hat{ heta}) pprox \mathcal{I}(heta)^{-1}$$

e

$$Var(U(heta)pprox \mathcal{I}(heta)$$

- ullet Para $\mathcal{I}(heta)$ ser obtida é necessário especificar uma distribuição para os tempos de censura.
- Isso não é razoável em análise de sobrevivência. No entanto, $\mathcal{I}(\theta)$ é bem estimada por usando o EMV.

$$\hat{Var}(\hat{ heta}) pprox \mathcal{I}(\hat{ heta})^{-1}$$

Estatísticas relacionadas ao EMV

• Estatística de Wald na forma quadrática:

$$W = (\hat{ heta} - heta)^t \mathcal{I}(heta)(\hat{ heta} - heta)$$

tem, para amostra grande, uma distribuição qui-quadrado com gl igual a dimensão de heta.

• Razão de verossimilhança (RV):

$$-2\log(L(heta)/L(\hat{ heta})) = 2(\ell(\hat{ heta}) - \ell(heta)).$$

• Estatística Escore S (Estatística de Rao):

$$U(\theta)^t \mathcal{I}(\theta)^{-1} U(\theta),$$

para amostra grande, ambas estatísticas tem uma distribuição qui-quadrado com gl igual a dimensão de heta.

Modelo Exponencial

No caso do modelo exponencial, temos que a função de verossimilhança é dada por

$$egin{array}{lll} L(lpha) &=& \prod_{i=1}^n \left[lpha \exp\{-lpha y_i\}
ight]^{\delta_i} \left[\exp\{-lpha y_i\}
ight]^{1-\delta_i} \ &=& \prod_{i=1}^n lpha^{\delta_i} \left[\exp\{-lpha y_i\}
ight] \end{array}$$

A função de log-verossimilhança e Escore:

$$\ell(lpha) = \log(lpha) \sum_{i=1}^n \delta_i - lpha \sum_{i=1}^n y_i \;\; o \;\; rac{\partial \log L(lpha)}{\partial lpha} = rac{1}{lpha} \sum_{i=1}^n \delta_i - \sum_{i=1}^n y_i.$$

Modelo Exponencial

Dessa forma, igualando a zero

$$\hat{lpha} = rac{\sum\limits_{i=1}^n \delta_i}{\sum\limits_{i=1}^n y_i} = rac{ ext{Total de eventos}}{\sum\limits_{i=1}^n y_i} = rac{1}{\sum\limits_{i=1}^n y_i}.$$

O termo $\sum_{i=1}^n y_i$ é denominado tempo total sob teste.

Observe que se todas as observações fossem não-censuradas, $\hat{lpha}=rac{1}{ar{y}}$, em que $ar{y}$ é a média amostral.

Modelo Weibull

No caso da distribuição de Weibull, temos que a função de verossimilhança é dada por

$$egin{array}{lll} L(lpha,\gamma) &=& \prod_{i=1}^n \left[lpha\gamma y_i^{\gamma-1} \exp\{-(lpha y_i)^\gamma\}
ight]^{\delta_i} [\exp\{-(lpha y_i)^\gamma\}]^{1-\delta_i} \ &=& \prod_{i=1}^n \left[lpha\gamma y_i^{\gamma-1}
ight]^{\delta_i} \exp\{-(lpha y_i)^\gamma\}. \end{array}$$

A função de log-verossimilhança:

$$\ell(lpha) = \log(lpha) \sum_{i=1}^n \delta_i + \log(\gamma) \sum_{i=1}^n \delta_i + (\gamma-1) \sum_{i=1}^n \log(y_i) - (lpha y_i)^\gamma.$$

Modelo Weibull

O vetor escore é dado por

$$U(heta) = rac{\partial \log L(heta)}{\partial heta} = rac{\partial \ell(heta)}{\partial heta}.$$

em que $\theta = \{\alpha, \gamma\}$.

Para a obtenção do EMV, usa-se métodos numéricos pois não há solução analítica para este sistema de equações.

Exemplo

- Dados provenientes da UFPR.
- 20 pacientes com câncer de bexiga submetidos a um procedimento cirúrgico a laser.
- Resposta: tempo da cirurgia até a reincidência da doença (meses).
- Objetivo: mediano de vida destes pacientes.
- Dados (em meses): 17 falhas e 3 censuras.

Exemplo

```
1 require(survival)
2 #require(survminer)
3
4 tempos<-c(3,5,6,7,8,9,10,10,12,15,15,18,19,
5 cens<-c(1,1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1)
6 dados <- data.frame(tempos, cens)
7 ekm <- survfit(Surv(tempos, cens)~1)
8 ekm

Call: survfit(formula = Surv(tempos, cens) ~ 1)

n events median 0.95LCL 0.95UCL
[1,] 20 17 18 10 28</pre>
```

1 summary(ekm)						
Call:	<pre>survfit(formula = Surv(tempos, cens) ~ 1)</pre>)
	n.risk 95% CI	n.event	survival	std.err	lower 95% CI	
3 1.000	20	1	0.9500	0.0487	0.85913	
5	19	1	0.9000	0.0671	0.77767	
1.000	18	1	0.8500	0.0798	0.70707	
1.000 7 0.996	17	1	0.8000	0.0894	0.64257	

Estimação dos parâmetros Exemplo

Estimador de Kaplan-Meier

```
1 plot(ekm, xlab="Tempo",
2 ylab="S(t) estimada", mark.time=TRUE)
```


Estimação dos parâmetros Exemplo

Ajuste pelo modelo Exponencial usando a função survreg.

```
1 ajust1<-survreg(Surv(tempos, cens)~1, dist='exponential')</pre>
          2 summary(ajust1)
Call:
survreg(formula = Surv(tempos, cens) ~ 1, dist = "exponential")
            Value Std. Error
(Intercept) 3.016 0.243 12.4 <2e-16
Scale fixed at 1
Exponential distribution
Loglik (model) = -68.3 Loglik (intercept only) = -68.3
Number of Newton-Raphson Iterations: 4
n = 20
          1 (alpha<-exp(ajust1$coefficients[1]))</pre>
(Intercept)
   20.41176
```

Estimação dos parâmetros Exemplo

Ajuste pelo modelo Weibull usando a função \survreg.

Estimação dos parâmetros Exemplo

Ajuste pelo modelo Weibull usando a função survreg.

```
1 ajust3<-survreg(Surv(tempos, cens)~1,</pre>
                            dist='lognormal')
         3 summary(ajust3)
Call:
survreg(formula = Surv(tempos, cens) ~ 1, dist =
"lognormal")
            Value Std. Error
(Intercept) 2.717 0.176 15.42 <2e-16
Log(scale) -0.268
                       0.174 - 1.54
                                    0.12
Scale= 0.765
Log Normal distribution
```

Loglik (model) = -65.7 Loglik (intercept only) = -65.7

```
1 mu<-ajust3$coefficients[1]</pre>
2 sigma<-ajust3$scale</pre>
3 cbind(mu, sigma)
                 sigma
         mu
```

(Intercept) 2.717176 0.7648167

Exemplo

Função de sobrevivência.

$$S_E(t) = \exp\{-0.05t\}$$
 $S_W(t) = \exp\{-0.05t^{0.65}\}$ $S_{LN}(t) = \Phi\left[-(\log(t) - 2.72)/0.76
ight]$