CENG 223

Discrete Computational Structures

Fall '2018-2019

Assignment 1

ANSWER SHEET

Question 1

- 1. Determine if the following compound propositions are a **tautology**, a **contradiction** or **neither one of them**. Construct a truth table for each proposition.
 - (a) All of the outputs are T, so this is a tautology.

р	q	r	$p \rightarrow q$	$\neg r$	$p \land \neg r$	$(p \to q) \leftrightarrow (p \land \neg r)$	$\neg (q \wedge r)$	$((p \to q) \leftrightarrow (p \land \neg r)) \to \neg (q \land r)$
F	F	F	Т	Т	F	F	Т	Т
Т	F	F	F	Т	Т	F	Т	Т
F	Т	F	Т	Т	F	F	Т	Т
Т	Т	F	Т	Т	Т	Т	Т	Т
F	F	Τ	Т	F	F	F	Т	T
Т	F	Τ	F	F	F	Т	Т	Т
F	Т	Τ	Т	F	F	F	F	Т
Т	Т	Τ	Т	F	F	F	F	Т

(b) All of the outputs are F, so this is a contradiction.

р	q	$p \rightarrow q$	$p \lor q$	$q \rightarrow \neg p$	$(p \lor q) \land (p \to q)$	$(p \lor q) \land (p \to q) \lor (q \to \neg p)$	$\neg((p \lor q) \land (p \to q) \lor (q \to \neg p))$
F	F	Т	F	Т	F	Τ	F
Т	F	F	Т	Т	F	Т	F
F	Т	Т	Т	Т	Т	Т	F
Т	Т	Т	Т	F	T	Т	F

2. Determine if the following predicate logic arguments are **valid** or **invalid**. Explain why you think the argument is **valid** or **invalid**. You do not need to make a formal proof for these questions. (**Hint:** Using counterexamples might be beneficial.)

(a)
$$\exists x P(x) \land \exists x Q(x) \rightarrow \exists x (P(x) \land Q(x))$$

This argument is **invalid**. To show this, we will use counterexample.

Let our domain be $D = \{1, 2\}$ and P becomes true only with the value 1 and Q becomes true only with the value 2.

In this case d[1/x] satisfies P(x), so $\exists x P(x)$ is true.

Similarly d[2/x] satisfies Q(x), so $\exists x Q(x)$ is also true.

But there is no value in the domain that satisfies both P(x) and Q(x).

So, we can see that $\exists x (P(x) \land Q(x))$ is not true, despite the premises are true.

(b) $\forall x P(x) \to \exists x P(x)$

Let I be an arbitrary interpretation and d an arbitrary variable assignment.

Suppose $\forall x P(x)$ is true in **I**.

Then for all **u** in the domain **D** of **I**, d[u/x] satisfies $\forall x P(x)$.

Then for an arbitrary **u** in the domain **D**, P(u) is true.

If there is a P(u) exists, we can say that $\exists x(P(x))$ is true.

If we can conclude this from any random interpretation, then we can conclude that $\forall x P(x) \rightarrow \exists x P(x)$ is a **valid** argument.

Question 2

Show that $(\neg p \lor p) \to ((p \land \neg q) \to r)$ and $(q \lor r) \lor \neg p$ are logically equivalent.

1.
$$(\neg p \lor p) \to ((p \land \neg q) \to r) \equiv \neg (\neg p \lor p) \lor ((p \land \neg q) \to r)$$
 - Table 7

2.
$$\equiv (p \land \neg p) \lor ((p \land \neg q) \to r)$$
 - De Morgan's Law

3.
$$\equiv F \vee ((p \wedge \neg q) \rightarrow r)$$
 - Negation Laws

4.
$$\equiv (p \land \neg q) \rightarrow r$$
 - Identity Laws

5.
$$\equiv \neg (p \land \neg q) \lor r$$
 - Table 7

6.
$$\equiv (\neg p \lor q) \lor r$$
 - De Morgan's Law

7.
$$\equiv \neg p \lor (q \lor r)$$
 - Associative Laws

8.
$$\equiv (q \lor r) \lor \neg p$$
 - Commutative Laws

Question 3

Let W(x) be "x works in the lab", Older(x, y) be "x is older than y", Phd(x) be "x is a Phd. student", $Has_CS_Degree(x)$ be "x has a CS degree", Knows(x, y) be "x knows y".

Use these predicates to express the following statements using quantifiers \forall and \exists .

For all of the below sentences domains x, y and z are all the people in the world.

Note that, there are more than one correct answers for all of the questions. There can be other alternatives than the provided ones.

- 1. Everybody works in the lab has a CS degree. $\forall x(W(x) \rightarrow Has_CS_Degree(x))$
- 2. All Phd. students working in the lab knows each other.

 Alternative Solution1: $\forall x \forall y (((W(x) \land Phd(x)) \land (W(y) \land Phd(y))) \rightarrow (Knows(x, y) \land Knows(y, x)))$

Alternative Solution2: $\forall x \forall y (((W(x) \land Phd(x)) \land (W(y) \land Phd(y))) \rightarrow (Knows(x,y)))$

3. Cenk is the oldest person working in the lab.

Alternative Solution1: $W(Cenk) \wedge \forall x ((W(x) \wedge x \neq Cenk) \rightarrow Older(Cenk, x))$

Alternative Solution2: $\forall x((W(Cenk) \land W(x) \land x \neq Cenk) \rightarrow Older(Cenk, x))$

Alternative Solution3: $\forall x((W(Cenk) \land W(x)) \rightarrow (x \neq Cenk \leftrightarrow Older(Cenk, x)))$

- 4. Everyone working in the lab is a Phd. student except Selen. $\forall x ((W(x) \land x \neq Selen) \rightarrow Phd(x))$
- 5. Not all the people working in the lab knows everyone working in the lab. **Alternative Solution1:** $\exists x \exists y (W(x) \land W(y) \land (x \neq y) \land \neg Knows(x, y))$ **Alternative Solution2:** $\neg (\forall x \forall y (W(x) \land W(y) \rightarrow Knows(x, y)))$
- 6. There are at most two Phd. students. $\forall x \forall y \forall z ((Phd(x) \land Phd(y) \land Phd(z)) \rightarrow ((x = y) \lor (y = z) \lor (x = z)))$
- 7. There are at least three people older than Gizem. $\exists x \exists y \exists z ((Older(x, Gizem) \land Older(y, Gizem) \land Older(z, Gizem)) \land (x \neq y) \land (y \neq z) \land (x \neq z) \land (x \neq Gizem) \land (y \neq Gizem) \land (z \neq Gizem))$
- 8. There is exactly one person who is doing Phd and working in the lab. $\exists x(W(x) \land Phd(x)) \land \forall x \forall y((W(x) \land Phd(x) \land W(y) \land Phd(y)) \rightarrow x = y)$

Question 4

Prove the following by using only the natural deduction rules for $\vee, \wedge, \rightarrow$, and \neg introduction and elimination.

Any other rules/lemmas used should be proven by natural deduction as well.

$$(p \to r) \lor (q \to r) \vdash (p \land q) \to r$$

1.
$$(p \rightarrow r) \lor (q \rightarrow r)$$
 premise
2. $p \land q$ assumed
3. $p \rightarrow r$ assumed
4. $p \land_{e_1}, 2$
5. $r \rightarrow_{e_1}, 3$
6. $q \rightarrow r$ assumed
7. $q \land_{e_2}, 2$
8. $r \rightarrow_{e_1}, 6, 7$
9. $r \lor e_1, 3-5, 6-8$
10. $(p \land q) \rightarrow r \rightarrow_{i_1}, 2-9$

Question 5

Prove the following by using only the natural deduction rules for $\vee, \wedge, \rightarrow$, and \neg introduction and elimination.

Any other rules/lemmas used should be proven by natural deduction as well.

$$(\neg p \lor \neg q) \vdash (p \land q) \rightarrow r$$

1.	$\neg p \vee \neg q$	р	remise
2.	$p \wedge q$	1	assumed
3.		$\neg p$	assumed
4.		p	$\wedge_{e_1}, 2$
5.		\perp	$\neg_e, 3, 4$
6.		r	\perp_e , 5
7.		$\neg q$	assumed
8.		q	$\wedge_{e_2}, 2$
9.		\perp	$\neg_e, 7, 8$
10.		r	\perp_e , 9
11.	r	Ve	, 1, 3-6, 7-10
12	$n \land a \rightarrow r$		→· 2-11

Question 6

Prove the following by using only the natural deduction rules for $\vee, \wedge, \rightarrow, \neg, \forall$, and \exists introduction and elimination. Any other rules/lemmas used should be proven by natural deduction as well.

$$\forall x (P(x) \rightarrow (Q(x) \rightarrow R(x))), \exists x (P(x)), \forall x (\neg R(x)) \vdash \exists x (\neg Q(x))$$

1. $\forall x (P(x) \to (Q(x) \to R(x)))$ premise $2. \exists x (P(x))$ premise 3. $\forall x(\neg R(x))$ premise $x_0 P(x_0)$ 4. assumed $P(x_0) \to (Q(x_0) \to R(x_0))$ $\forall_{x_e}, 1$ 5. $Q(x_0) \to R(x_0) \qquad \to_e, 5, 4$ 6. 7. $Q(x_0)$ assumed $R(x_0) \longrightarrow_e, 6, 7$ 8. $\neg R(x_0) \qquad \forall_{x_e}, 3$ 9. \perp \neg_e , 8,9 10. $\neg Q(x_0)$ \neg_i , 7-10 11. $\exists x(\neg Q(x))$ $\exists_i, 11$ 12. 13. $\exists x (\neg Q(x))$ $\exists_{x_e}, 2, 4-12$