**PART - 2** 

Solution:

#### **Bands of blue**

Dataset:



Let g be the step activation function, which we will use as the default activation function for all the neurons. Formally, it is defined as

$$g(x;T) = \begin{cases} 1 & \text{If } x \ge T \\ 0 & \text{Otherwise} \end{cases}$$

Then the optimal neural network for the dataset specified above looks as follows:



Hidden Layer 1: Geometrically, these neurons are determining whether the combinations of points (x1 and x2) are lies below or above the given lines which in the part of shaded region.

Hidden Layer 2: Checks if the point (x1, x2) lies in two specific shades of region between the lines.

Output layer: This is just the OR of the two cases from hidden layer 2. That is, it gets activated only when the point lies in the shaded region.

### 1st Hidden Layer (4 Neurons)

| Neurons | Neuro<br>n | Weights  | Threshold      | Computation       | Purpose                     |
|---------|------------|----------|----------------|-------------------|-----------------------------|
| 1       | g(-1)      | [-1, -1] | -1             | $g(-x_1-x_2,-1)$  | Checks if $x_1 + x_2 \le 1$ |
|         |            |          | <u>-</u>       |                   |                             |
| 2       | g(4)       | [1, 1]   | 4              | $g(x_1 + x_2, 4)$ | Checks if $x_1 + x_2 \ge 4$ |
| 3       | g(-6)      | [-1, -1] | <del>-</del> 6 | $g(-x_1-x_2,-6)$  | Checks if $x_1 + x_2 \le 6$ |
| 4       | g(9)       | [1, 1]   | 9              | $g(x_1 + x_2, 9)$ | Checks if $x_1 + x_2 \ge 9$ |

# 2nd Hidden Layer (2 Neurons)

| Neurons | Neuro | Inputs                      | Weights | Threshold | Purpose                                         |
|---------|-------|-----------------------------|---------|-----------|-------------------------------------------------|
|         | n     |                             |         |           |                                                 |
| 1       | g(1)  | Outputs of $g(-1)$ , $g(9)$ | [1, 1]  | 1         | Activates if either $g(-1)$ or $g(9)$ is 1      |
| 2       | g(2)  | Outputs of $g(4)$ , $g(-6)$ | [1, 1]  | 2         | Activates only if both $g(4)$ and $g(-6)$ are 1 |

# **Output Layer**

| Neuron | Inputs                     | Weights | Threshold | Purpose                                            |
|--------|----------------------------|---------|-----------|----------------------------------------------------|
| Output | Outputs of $g(1)$ , $g(2)$ | [1, 1]  | 1         | Activates if at least one of $g(1)$ or $g(2)$ is 1 |

#### **Catch the star**

Dataset:



Let g be the step activation function, which we will use as the default activation function for all the neurons. Formally, it is defined as

$$g(x;T) = \begin{cases} 1 & \text{If } x \ge T \\ 0 & \text{Otherwise} \end{cases}$$

Then the optimal neural network for the dataset specified above looks as follows:



Hidden Layer 1: Geometrically, these neurons are determining whether the combinations of points (x1 and x2) are lies below or above the given lines which in the part of shaded region.

Hidden Layer 2: Checks if the point (x1, x2) lies in two specific shades of region between the lines.

Output layer: This is just the OR of the three cases from hidden layer 2. That is, it gets activated only when the point lies in the shaded region.

### 1st Hidden Layer (5 Neurons)

| Neurons | Neuron | Weights   | Threshold | Computation           | Purpose                          |
|---------|--------|-----------|-----------|-----------------------|----------------------------------|
| 1       | g(-80) | [-10, -4] | -80       | $g(-10x_1-4x_2,-80)$  | Checks if $10x_1 + 4x_2 \le 80$  |
| 2       | g(20)  | [10, -4]  | 20        | $g(10x_1 - 4x_2, 20)$ | Checks if $10x_1 - 4x_2 \ge 20$  |
| 3       | g(80)  | [7, 10]   | 80        | $g(7x_1 + 10x_2, 80)$ | Checks if $7x_1 + 10x_2 \ge 80$  |
| 4       | g(10)  | [-7, 10]  | 10        | $g(-7x_1+10x_2,10)$   | Checks if $-7x_1 + 10x_2 \ge 10$ |
| 5       | g(-6)  | [0, -1]   | -6        | $g(-x_2, -6)$         | Checks if $x_2 \le 6$            |

# 2nd Hidden Layer (3 Neurons)

| Neurons | Neuron | Inputs                                           | Weights   | Threshold | Purpose                                                |
|---------|--------|--------------------------------------------------|-----------|-----------|--------------------------------------------------------|
|         |        |                                                  |           |           |                                                        |
| 1       | g(3)   | Outputs of <i>g(-80), g(20), g(80)</i>           | [1, 1, 1] | 3         | Activates if all of $g(-80)$ , $g(20)$ , $g(80)$ are 1 |
| 2       | g(3)   | Outputs of <i>g(-80),</i><br><i>g(80), g(-6)</i> | [1, 1, 1] | 3         | Activates if all of $g(-80)$ , $g(80)$ , $g(-6)$ are 1 |
| 3       | g(3)   | Outputs of <i>g(20), g(10), g(-6)</i>            | [1, 1, 1] | 3         | Activates if all of $g(20)$ , $g(10)$ , $g(-6)$ are 1  |

### **Output Layer**

| Neuron | Inputs                                | Weights   | Threshold | Purpose                                                      |
|--------|---------------------------------------|-----------|-----------|--------------------------------------------------------------|
| Output | Outputs of $g(3)$ , $g(3)$ and $g(3)$ | [1, 1, 1] | 1         | Activates if at least one of $g(3)$ or $g(3)$ or $g(3)$ is 1 |