1. (2 points) Determine whether the following statement is **true** (i.e., always true) or **false** (i.e., sometimes not true):

Every orthogonal collection of seven nonzero vectors in \mathbf{R}^{13} is linearly independent.

2. (3 points) Suppose \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are unit vectors in \mathbf{R}^{691} , with

$$\mathbf{v}_1 \cdot \mathbf{v}_2 = 0, \quad \mathbf{v}_1 \cdot \mathbf{v}_3 = \frac{5}{13}, \quad \mathbf{v}_2 \cdot \mathbf{v}_3 = -\frac{12}{13}.$$

It is a fact that when we apply the Gram-Schmidt process to \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , we obtain the vectors \mathbf{w}_1 , \mathbf{w}_2 , \mathbf{w}_3 in sequence, where \mathbf{w}_1 and \mathbf{w}_2 are nonzero and $\mathbf{w}_3 = \mathbf{0}$.

Given this information, which of the following is a valid linear dependence relation among the \mathbf{v}_i 's ?

(i) $5\mathbf{v}_1 + 12\mathbf{v}_2 - 13\mathbf{v}_3 = \mathbf{0}$

(ii) $5\mathbf{v}_1 - 12\mathbf{v}_2 + 13\mathbf{v}_3 = \mathbf{0}$

(iii) $5\mathbf{v}_1 + 12\mathbf{v}_2 + 13\mathbf{v}_3 = \mathbf{0}$

- (iv) $5\mathbf{v}_1 12\mathbf{v}_2 13\mathbf{v}_3 = \mathbf{0}$
- 3. (3 points) Suppose the four 51-vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ are all nonzero, and that

$$2\mathbf{v}_1 + 4\mathbf{v}_3 + 2\mathbf{v}_4 = \mathbf{0}.$$

Which of the following are possible numbers of nonzero vectors that lie in an orthogonal basis for $\operatorname{span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$, obtained via the Gram-Schmidt process?

[Select all options that are possible with the information given.]

- (i) zero
- (ii) one
- (iii) two
- (iv) three
- (v) four

4. (3 points) Consider the following 3×3 matrix:

$$\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{3} & a \\ -1/\sqrt{2} & 1/\sqrt{3} & b \\ 0 & -1/\sqrt{3} & c \end{bmatrix}$$

where $a, b, c \in \mathbf{R}$. How many 3×3 orthogonal matrices exist that have the above form?

(i) none

(ii) one

(iii) two

(iv) more than two, but finitely many

- (v) infinitely many
- 5. (4 points) Suppose that $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{R}^{2021}$ are linearly independent. Which of the following sets are linearly independent?
 - (a) $\{\mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v}\}$
 - (b) $\{\mathbf{u} + \mathbf{v} + \mathbf{w}, \mathbf{u} \mathbf{v} 2\mathbf{w}, \mathbf{u} + 3\mathbf{v} + 4\mathbf{w}\}\$
 - (c) $\{\mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{w}, \mathbf{v} + \mathbf{w}\}$
 - (d) $\{u + v + w, u v w, u + v w, u v + w\}.$

6. (4 points) Let

$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1 \\ -4 \\ -5 \\ 0 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 2 \\ -6 \\ -6 \\ 6 \end{bmatrix}, \ \mathbf{v}_4 = \begin{bmatrix} 0 \\ -3 \\ -6 \\ -9 \end{bmatrix}$$

and $V = \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$. What is the dimension of V?

Hint: You can use the Gram-Schmidt process.

- (a) 0
- (b) 1
- (c) 2
- (d) 3

(e) 4

7. (2 points) True or False:

If the Gram-Schmidt process is applied to

$$\mathbf{v}_1 = \begin{bmatrix} 2\\0\\0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 3\\5\\0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 7\\11\\13 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 17\\19\\23 \end{bmatrix}$$

to yield $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4\}$ sequentially, then $\mathbf{w}_4 = \mathbf{0}$.

Hint: Do not use brute force to actually carry out the Gram-Schmidt process.

8. (3 points) Let A and B be two invertible 3×3 matrices, and P be the matrix for projection onto a plane in \mathbb{R}^3 through the origin. Which of the following matrices must always be invertible?

(a)
$$A + B$$
.

(b)
$$AB^{\top}$$
.

9. (2 points) True or False:

If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a linearly independent set in \mathbf{R}^n , then $\{\mathbf{u} + \mathbf{v}, \mathbf{u} - \mathbf{v}, \mathbf{u} + \mathbf{v} + \mathbf{w}\}$ is also a linearly independent set in \mathbf{R}^n .

10. (4 points) If we apply the Gram-Schmidt process to the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 3 \\ 0 \\ 0 \\ 3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 4 \\ -1 \\ 1 \\ 3 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 6 \\ 2 \\ 1 \\ -2 \end{bmatrix},$$

Which of the following expressions is used to compute \mathbf{w}_4 ? Note that $\mathbf{v}_3 = \mathbf{v}_1 + \mathbf{v}_2$.

(a)
$$\begin{bmatrix} 6 \\ 2 \\ 1 \\ -2 \end{bmatrix} - \frac{5}{3} \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} - \frac{12}{18} \begin{bmatrix} 3 \\ 0 \\ 0 \\ 3 \end{bmatrix} - \frac{17}{27} \begin{bmatrix} 4 \\ -1 \\ 1 \\ 3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 6 \\ 2 \\ 1 \\ -2 \end{bmatrix} - \frac{5}{3} \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} - \frac{7}{15} \begin{bmatrix} 2 \\ 1 \\ -1 \\ 3 \end{bmatrix}$$

(c)
$$\frac{5}{3} \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + \frac{12}{18} \begin{bmatrix} 3 \\ 0 \\ 0 \\ 3 \end{bmatrix} + \frac{17}{27} \begin{bmatrix} 4 \\ -1 \\ 1 \\ 3 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 6 \\ 2 \\ 1 \\ -2 \end{bmatrix} - \frac{5}{3} \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} - \frac{7}{15} \begin{bmatrix} 2 \\ 1 \\ -1 \\ 3 \end{bmatrix} - \frac{17}{27} \begin{bmatrix} 4 \\ -1 \\ 1 \\ 3 \end{bmatrix}$$

11. (3 points) Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5\}$ be a set of *n*-vectors. Suppose that the Gram-Schmidt process applies to this list yields, in order, the vectors $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5\}$ where

$$\mathbf{w}_3 = \mathbf{w}_4 = \mathbf{0}$$

and $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_5$ are all non-zero. Then a basis for $V = \operatorname{span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5)$ is given by: Select all that apply.

- (a) $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5\}$
- (b) $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5\}$
- (c) $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{w}_5\}$
- (d) $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_5\}$
- (e) $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_5\}$
- 12. (2 points) Let $A: \mathbf{R}^{51} \to \mathbf{R}^{51}$ be a linear transformation. Suppose that the null space of A is a plane. Fix $\mathbf{b} \in \mathbf{R}^{51}$. What could the set $\{\mathbf{x} : A\mathbf{x} = \mathbf{b}\}$ be?
 - (a) the empty set: there are no solutions

(b) a line

(c) a plane

(d) all of \mathbf{R}^{51}

- (e) none of the other choices.
- 13. (3 points) Suppose that A is an **invertible** 3×3 matrix such that

$$A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \qquad A \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}.$$

What is the solution to $A\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$?

Note that $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$ and $\begin{bmatrix} 2\\1\\3 \end{bmatrix}$ are orthogonal to each other.

- (a) $\begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix}$ (b) $\begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix}$ (c) $\begin{bmatrix} -1 \\ 0 \\ -4 \end{bmatrix}$ (d) $\begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$ (e) There is not enough information to determine this.
- 14. (2 points) True or False:

If two $m \times n$ matrices A and B have the same column space and same null space, i.e.

$$C(A)=C(B),\ N(A)=N(B),$$

then A = B always.

15. (2 points) Consider the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 2 \\ -1 & 3 \end{bmatrix}.$$

Suppose that we append two columns to the right of second column of the matrix A, obtaining a 3×4 matrix A'. Which of the following are the possible value(s) for the dimension of N(A')?

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) 4

16. (3 points) Let M be a 5×4 matrix and $\mathbf{b} \in \mathbf{R}^5$ a vector. Assume that there is at least one solution $\mathbf{x} \in \mathbf{R}^4$ to the equation $M\mathbf{x} = \mathbf{b}$.

If A is an invertible 5×5 matrix, does $M\mathbf{y} = A\mathbf{b}$ have a solution $\mathbf{y} \in \mathbf{R}^4$?

- (a) Yes: No matter what A is, there is some $\mathbf{y} \in \mathbf{R}^4$ so that $M\mathbf{y} = A\mathbf{b}$.
- (b) Maybe: Depending on what A is, there may or may not be some $\mathbf{y} \in \mathbf{R}^4$ so that $M\mathbf{y} = A\mathbf{b}$.
- (c) No: No matter what A is, there is no $\mathbf{y} \in \mathbf{R}^4$ so that $M\mathbf{y} = A\mathbf{b}$.

17. (3 points) Suppose that A is an **invertible** 3×3 matrix such that

$$A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \qquad A \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}.$$

What is the solution to $A\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$?

Note that $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$ and $\begin{bmatrix} 2\\1\\3 \end{bmatrix}$ are orthogonal to each other.

- (a) $\begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix}$ (b) $\begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix}$ (c) $\begin{bmatrix} -1 \\ 0 \\ -4 \end{bmatrix}$ (d) $\begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$ (e) There is not enough information to determine this. mation to determine this.

18. (3 points) Let A be an $m \times n$ matrix where m > n. Let B be the $m \times (m+n)$ matrix as follows:

$$B = \begin{bmatrix} A & I_m \end{bmatrix},$$

where the $m \times m$ identity matrix I_m is appended to the right of A. Which of the following statements are true? Select all that apply.

- (a) N(A) = N(B).
- (b) N(B) is *n*-dimensional.
- (c) $N(B) = \{0\}.$
- (d) C(A) = C(B).

19. (3 points) Suppose A is a 3×3 matrix, and that $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a linearly independent collection of vectors in \mathbf{R}^3 for which

- **u**, **v** lie in the null space of A; and
- \mathbf{w} lies in the column space of A.

Which of the following systems of equations must have at least one solution? Select all that apply.

(i)
$$Ax = 0$$

(ii)
$$A\mathbf{x} = 2\mathbf{u} + 3\mathbf{v}$$

(iii)
$$A\mathbf{x} = 3\mathbf{w}$$

(iv)
$$A\mathbf{x} = \mathbf{u} + 3\mathbf{v} + 2\mathbf{w}$$

20. (3 points) Suppose that A is a 3×3 matrix such that:

$$A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \qquad A \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \qquad A \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

What statement describes the set of solutions to $A\mathbf{x} = \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix}$?

Note that $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$ and $\begin{bmatrix} 2\\1\\3 \end{bmatrix}$ are orthogonal to each other.

- (i) There is not enough information to choose a single answer here.
- (ii) There are no solutions (i.e., empty set).
- (iii) There is a unique solution (i.e., set consisting of exactly one point in \mathbb{R}^3)
- (iv) There are infinitely many solutions, and graphically the solution set forms a line in \mathbb{R}^3 .
- (v) There are infinitely many solutions, and graphically the solution set forms a plane in \mathbb{R}^3 .