# Программирование микроконтроллеров STM32

*I*<sup>2</sup>*C* - Inter-Integrated Circuit

### Введение

- Полудуплексный канал связи
- Две двунаправленные линии связи (SDA и SCL)
- Используется для соединения низкоскоростных периферийных модулей (в материнских платах, в мобильных телефонах)



#### Введение

- Две двунаправленные линии, подтянутые к питанию через резистор
- Такты генерирует мастер, ведомый лишь подтверждает прием байта
- Два возможных варианта адресации: 7 бит на адрес и 10 бит на адрес
- Возможные скорости: 100 КГц (Standard mode), 400 КГц (Fast mode), 1
   МГц (Fast mode plus)



# Алгоритм коммуникации (запись)



| _   |     |     |     |     |
|-----|-----|-----|-----|-----|
| - 1 | tra | ins | mis | SIO |

| <br>      |
|-----------|
| reception |



# Алгоритм коммуникации (чтение)



legend:
transmission
reception
SCL stretch

#### **I2С в STM32**

- Поддержка Standard mode, Fast mode, Fast mode plus
- Поддержка 7-ми и 10-и битовой адресации
- Поддержка входных фильтров
- Поддержка работы с DMA
- Поддержка SMBus (последовательный протокол обмена данными для устройств питания компанией Intel)



## I2С в STM32

#### I2С тайминги





**SDADEL (I2C\_TIMINGR)** 

**SCLDEL (I2C\_TIMINGR)** 

#### I2С тайминги



**SCLL** - длительность тактирующего сигнала в состоянии '0' ( $t_{SCLL}$  = (SCLL+1) x  $t_{PRESC}$ )

**SCLH** - длительность тактирующего сигнала в состоянии '1'  $(t_{SCLH} = (SCLH+1) \times t_{PRESC})$ 

| Parameter –                     | Standard-mode (Sm)     |                       | Fast-mode (Fm)          | Fast-mode Plus (Fm+)   |  |
|---------------------------------|------------------------|-----------------------|-------------------------|------------------------|--|
|                                 | 10 kHz                 | 100 kHz               | 400 kHz                 | 1000 kHz               |  |
| PRESC                           | 0xB                    | 0xB                   | 5                       | 5                      |  |
| SCLL                            | 0xC7                   | 0x13                  | 0x9                     | 0x3                    |  |
| t <sub>SCLL</sub>               | 200 x 250 ns = 50 μs   | 20 x 250 ns = 5.0 μs  | 10 x 125 ns = 1250 ns   | 4 x 125 ns = 500 ns    |  |
| SCLH                            | 0xC3                   | 0xF                   | 0x3                     | 0x1                    |  |
| t <sub>SCLH</sub>               | 196 x 250 ns = 49 μs   | 16 x 250 ns = 4.0 μs  | 4 x 125 ns = 500 ns     | 2 x 125 ns = 250 ns    |  |
| t <sub>SCL</sub> <sup>(1)</sup> | ~100 µs <sup>(2)</sup> | ~10 µs <sup>(2)</sup> | ~2500 ns <sup>(3)</sup> | ~875 ns <sup>(4)</sup> |  |
| SDADEL                          | 0x2                    | 0x2                   | 0x3                     | 0x0                    |  |
| t <sub>SDADEL</sub>             | 2 x 250 ns = 500 ns    | 2 x 250 ns = 500 ns   | 3 x 125 ns = 375 ns     | 0 ns                   |  |
| SCLDEL                          | 0x4                    | 0x4                   | 0x3                     | 0x1                    |  |
| t <sub>SCLDEL</sub>             | 5 x 250 ns = 1250 ns   | 5 x 250 ns = 1250 ns  | 4 x 125 ns = 500 ns     | 2 x 125 ns = 250 ns    |  |

## I2C инициализация

- Инициализация портов
- LL\_RCC\_SetI2CClockSource
- LL\_APB1\_GRP1\_EnableClock
- LL\_I2C\_{Dis, E}nableAnalogFilter [CR1]
- LL\_I2C\_SetDigitalFilter [CR1] от 0 до 15
- *LL\_I2C\_SetTiming* [TIMINGR]
- LL\_I2C\_SetMasterAddressingMode [CR2]
- LL\_I2C\_SetMode [CR1]
- LL\_I2C\_Enable [CR1]

## I2C передача данных (мастер)

- LL I2C HandleTransfer
  - SlaveAddr
  - LL\_I2C\_ADDRSLAVE\_{7,10}BIT
  - TransferSize
  - EndMode (LL\_I2C\_MODE\_AUTOEND)
  - Request (LL\_I2C\_GENERATE\_START\_WRITE)
- LL\_I2C\_IsActiveFlag\_TXIS
- LL I2C TransmitData8
- ...
- LL\_I2C\_IsActiveFlag\_TC

# I2C примеры

SCL -> GPIOB6 SDA -> GPIOB7

Alternate function 1





# Репозиторий

https://github.com/edosedgar/stm32f0\_ARM