

Machine Learning in Medical Image Analysis

Prof. dr. sc. Irena Galić irena.galic@ferit.hr

Outline

- Introduction
- Medical imaging
- Medical image analysis with DL
- Applications of deep learning in medical image analysis
- Challenges, limitations, and opportunities
- Examples of our research
- Conclusion

Medical imaging

What is medical imaging?

Various technologies for creating images of the human body for diagnostic or therapeutic purposes.

Importance of medical imaging

- Enables physicians to visualize internal body structures and functions in a non-invasive way
- Assists in early detection, diagnosis, and treatment of various diseases and conditions

Medical imaging

Common medical imaging techniques in clinical settings:

- Computed Tomography (CT)
- Magnetic Resonance Imaging (MRI)
- Positron Emission Tomography (PET)
- X-ray Imaging

Ultrasound Imaging

MEDITRAIN

Medical image analysis with DL

Deep neural networks with multiple layers

- Input layer
- Multiple hidden layers
- Output layer
- Learning hierarchical data representations

Input Output neurons Hidden neurons Output neurons

Medical image analysis with DL

Deep learning architectures

- Convolutional Neural Networks (CNNs)
- Recurrent Neural Networks (RNNs)
- Generative Neural Networks (GANs)
- Vision Transformers (ViTs)
- Reinforcement Learning (RL)
- Diffusion Models (DMs)

GANS

Convolutional Neural Networks

Filter layers define local features and form abstract representations in images

- Early layers detect low-level features such as edges and corners
- Later layers identify high-level features such as shapes and textures

Reccurent Neural Networks

Suitable for processing sequential data such as time series or sequences

 Previous inputs influence the current output, making them ideal for temporal dependencies

Generative Adversarial Neural Networks

Consist of two networks

Generator: creates new samples similar to real data

Discriminator: distinguishes real samples from generated ones

Vision Transformers

Deep learning architecture adapted for visual data

Processes image patches instead of entire image

Self-attention mechanisms instead of convolutions

for learning spatial relationships

Deep learning architecture adapted for visual data

- Agent learns by interacting with the environment
- Receives rewards or penalties based on actions
- Learns optimal strategies through trial and error

Deep learning architecture adapted for visual data

- Based on gradual noise addition and denoising process
- Capable of generating high-quality synthetic images
- Often outperform GANs in image realism and diversity

Common tasks in medical image analysis:

- Image classification
- Object localization and detection
- Image segmentation
- Image generation
- Image registration

Image classification

Example: Lung nodule classification

Image 9. Categories of lung nodules on CT scan: benign, primary malignant, and metastatic malignant (from left to right).

Object localization and detection

Example: Breast lesion detection

Image 10. Categories of breast lesions on mammography: benign, primary malignant, and metastatic malignant (from left to right).

Image segmentation

Example: Heart and heart chamber segmentation

Image 11. Categories of breast lesions on mammography: benign, primary malignant, and metastatic malignant (from left to right).

Image generation

Example: Synthetic generation of CT images

Image 12. Categories of breast lesions on mammography: benign, primary malignant, and metastatic malignant (from left to right).

Image registration

Example: Brain image registration

Image 13. An example of image registration using CNNs.

Current challenges in the field of research

- Insufficient model interpretability
- Complex architectures
- Lack of transparency
- Lack of human-understandable data
- Difficulty in capturing causality

Challenges, Limitations and Opportunities

Future research directions

- Development of explainable artificial intelligence (XAI) methods
- Model visualization
- Rule extraction
- Attention mechanisms
- Causal analysis
- Interpretable model architectures
- Explainable feature representations

Medical Image Interpretation Methods for a Detailed Heart Health Analysis (IMAGINE HEART)

Installation Research project by Croatia Science Foundation

Duration: 1. 3. 2018. – 28. 2. 2023.

Value: 151 703.98 EUR

Project team:

- prof. dr. sc. Irena Galić
- doc. dr. sc. Hrvoje Leventić
- doc. dr. sc. Krešimir Romić
- dr. sc. Marija Habijan
- Marin Benčević, mag. ing. comp.
- doc. dr. sc. Dario Mužević
- Filip Novoselnik, mag. ing. comp.
- izv. prof. dr. sc. Zdravko Krpić
- doc. dr. sc. Tomislav Galba

imagineheart-online.github.io

Why cardiovascular system analysis?

The main cause of death

> 3.9M per year in Europe > 1.8 in EU 47% in Europi 37% in EU 45% in Croatia

Analysis based on gender in Croatia:

> 50.1 % woman

> 39.7 % man

Source: European Cardiovascular Disease Statistics 2017

IMAGINEHEART

Causes of death for men

Causes of death for women

~49M people in the EU suffer from cardiovascular diseases ~€210 million spent annually (EU)

IMAGINEHEART

Results:

MEDITRAIN

Medicinska edukacija i planiranje uz pomoć produžene stvarnosti

ANALIZA MEDICINSKIH SLIKA I SIMULACIJA EDUKATIVNIH MEDICINSKIH SADRŽAJA

URASLA POSTELJICA U TRUDNOĆI

povećati iskustvo liječnika u zahvatima kod trudnica s uraslom posteljicom

NEUROKIRURŠKI ZAHVATI

povećati lakoću izvedbe i kvalitetu cerebrovaskularnih zahvata

MEDITRAIN

- Research project founded by Croatia Science Foundation
- **Duration:** 16. 12. 2024. 15. 12. 2027.
- Value: 197 800.00 EUR

FERIT

- prof.dr.sc. Irena Galić
- doc. dr.sc. Hrvoje Leventić
- doc. dr.sc. Krešimir Romić
- doc. dr. sc. Ivana Hartmann Tolić
- dr. sc. Marija Habijan
- dr. sc. Marin Benčević
- Robert Šojo, mag. ing. comp.

Klinički Bolnički Centar Osijek

- izv. prof. dr. sc. Dario Mužević, dr. med.
- dr.sc. Vjekoslav Kopačin, dr. med.
- Maja Košuta Petrović, dr. med.

UGent, Faculty of Engineering and Architecture

- prof. dr. ir. Aleksandra Pižurica
- dr.sc. Danilo Babin

Physician Education

Ultrasound examination simulations for early detection of placenta accreta

Neurosurgical Navigation

XR simulations to improve cerebrovascular procedure performance

Synthetic Data Generation

Generating medical images for education and diagnostics

Problems with traditional training methods

- Lack of realistic scenarios for practice
- Limited access to rare clinical cases
- High cost of commercial simulation systems
- Poor adaptability of existing VR systems
- Need for innovative and affordable solutions

Key takeaway

Deep learning for medical image analysis

- Improves the accuracy and efficiency of diagnosis
- Enables effective identification of various medical conditions
- Enhances medical staff education supports personalized healthcare

These technologies are not just the future — they are a necessity.

Machine Learning in Medical Image Analysis

Prof. dr. sc. Irena Galić irena.galic@ferit.hr

