Grupo ARCOS

uc3m Universidad Carlos III de Madrid

Tema 2 (I) Representación de la información

Estructura de Computadores Grado en Ingeniería Informática

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- Alfanuméricas
 - Caracteres
 - 2. Cadenas de caracteres
- 2. Numéricas
 - Naturales y enteras
 - 2. Coma fija
 - 3. Coma flotante (estándar IEEE 754)

Introducción: computador

Un computador es una máquina destinada a procesar datos.

Se aplican unas instrucciones y se obtiene unos resultados

Introducción: computador

Un computador es una máquina destinada a procesar datos.

- Se aplican unas instrucciones y se obtiene unos resultados
- Los datos/información pueden ser de distintos tipo

Introducción: computador

Un computador es una máquina destinada a procesar datos.

- Se aplican unas instrucciones y se obtiene unos resultados
- Los datos/información pueden ser de distintos tipo
- Un computador solo usa una representación: binario.

Introducción: representación de la información

El uso de una representación permite transformar los distintos tipos de información en binario (y viceversa)

Introducción: características de la información

- Un computador maneja un conjunto finito de valores
 - Tipo binario (dos estados)
 - Finito (representación acotada)
 - N° de bits de palabra del computador
 o bit (1), nibble (4), byte (8), half w., double w., ...
 - ▶ Con n bits se pueden codificar 2ⁿ valores distintos

- Hay algunos tipos de información que son infinitos
 - Imposible representar todos los valores de los números naturales, reales, etc.

La representación elegida tiene limitaciones

Ejemplo 1: la calculadora de Google con 15 dígitos...

http://www.20minutos.es/noticia/415383/0/google/restar/error/

Ejemplo 2: la profundidad de color...

l bit	2 colores
4 bits	16 colores
8 bits	256 colores

http://platea.pntic.mec.es/~lgonzale/tic/imagen/conceptos.html

Ejemplo 2: la profundidad de color...

l bit	2 colores
4 bits	16 colores
8 bits	256 colores

http://platea.pntic.mec.es/~lgonzale/tic/imagen/conceptos.html

Ejemplo 2: la profundidad de color...

I bit	2 colores			
4 bits	16 colores			
8 bits	256 colores			

http://platea.pntic.mec.es/~lgonzale/tic/imagen/conceptos.html

Necesitaremos...

Conocer posibles representaciones:

Necesitaremos...

Conocer posibles representaciones:

- Conocer las características de las mismas:
 - Limitaciones

Necesitaremos...

Conocer posibles representaciones:

- Conocer las características de las mismas:
 - Limitaciones

Conocer cómo operar con la representación:

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- Alfanuméricas
 - Caracteres
 - 2. Cadenas de caracteres
- 2. Numéricas
 - Naturales y enteras
 - 2. Coma fija
 - 3. Coma flotante (estándar IEEE 754)

- Un número se define por una cadena de dígitos, estando afectado cada uno de ellos por un factor de escala que depende de la posición que ocupa en la cadena.
- Dada una base de numeración b, un número X se define como la cadena de dígitos:

$$X = (... x_2 x_1 x_0, x_{-1} x_{-2} ...)_b$$
 Con $0 \le x_i < b$ con una lista de pesos asociados:

$$P = (... b^2 b^1 b^0 b^{-1} b^{-2} ...)_b$$

Su valor es:

$$V(X) = \sum_{i=-\infty}^{+\infty} b^{i} \cdot x_{i} = \cdots b^{2} \cdot x_{2} + b^{1} \cdot x_{1} + b^{0} \cdot x_{0} + b^{-1} \cdot x_{-1} + b^{-2} \cdot x_{-2} \cdots$$

Decimal

$$X = 9 7 3 I$$

... $10^3 10^2 10^1 10^0$

Binario

$$X = 0 \ 1 \ 0 \ 1$$
... $2^3 \ 2^2 \ 2^1 \ 2^0$

Hexadecimal

$$X = I F A 8$$

... $I6^3 I6^2 I6^1 I6^0$

Decimal

$$X = 9 7 3 I$$

... $10^3 10^2 10^1 10^0$

Binario

$$X = 0 \ I \ 0 \ I$$
... $2^3 \ 2^2 \ 2^1 \ 2^0$

Hexadecimal

$$X = I F A 8$$

... $16^3 16^2 16^1 16^0$

Paso de binario a hexadecimal:

- Agrupar de 4 en 4 bits, de derecha a izquierda
- Cada 4 bits es el valor del dígito hexadecimal

Decimal

$$X = 9 7 3 I$$
... $10^3 10^2 10^1 10^0$

Binario

$$X = 0 \ I \ 0 \ I$$
... $2^3 \ 2^2 \ 2^1 \ 2^0$

Hexadecimal

$$X = I F A 8$$

... $I6^3 I6^2 I6^1 I6^0$

Ejercicio

Representar 342 en binario:

256	128	64	32	16	8	4	2	
?	?	?	?	?	?	?	?	?

Ejercicio (solución)

Representar 342 en binario:

▶ Con 3 dígitos binarios, se pueden representar 8 símbolos:

22

¿Cuántos valores se pueden representar con n bits?

> ¿Cuántos bits se necesitan para representar m 'valores'?

Con n bits, si el valor mínimo representable corresponde al número 0, ¿Cuál es el máximo valor numérico representable?

- > ¿Cuántos valores se pueden representar con n bits?
 - 2n
 - Ej.: con 4 bits se pueden representar 16 valores
- Les la Cuántos bits se necesitan para representar m'valores'?
 - ► $\lceil \text{Log2(n)} \rceil$ (Log₂(n) por exceso)
 - Ej.: para representar 35 valores se necesitan 6 bits
- Con n bits, si el valor mínimo representable corresponde al número 0, ¿Cuál es el máximo valor numérico representable?
 - ▶ 2ⁿ-1

Ejercicio

▶ Calcular el valor de (23 unos):

Ejercicio (solución)

▶ Calcular el valor de (23 unos):

$$X = 2^{23} - 1$$

Truco:

$$10000000000000000000_2 = 2^{23}$$

$$X = 2^{23} - 1$$

Ejemplo: operaciones

Sumar en binario:

Ejemplo: operaciones

Sumar en binario:

Restar en binario:

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- I. Alfanuméricas
 - Caracteres
 - 2. Cadenas de caracteres
- 2. Numéricas
 - Naturales y enteras
 - 2. Coma fija

29

3. Coma flotante (estándar IEEE 754)

Representación alfanumérica

- Cada carácter se codifica con un byte.
- Para n bits $\Rightarrow 2^n$ caracteres representables:

# bits	# caracteres	Incluye	Ejemplo
6	64	 26 letras: az 10 números: 09 Puntuación: .,;: Especiales: + - [BCDIC
7	128	 añade mayúsculas y caracteres de control 	ASCII
8	256	 añade letras acentuadas, ñ, caracteres semigráficos 	EBCDIC ASCII extendido
16	34.168	Añade distintos idiomas (chino, árabe,)	UNICODE

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	<u>(i)</u>	096	
001	\odot	SOH	033	1	065	A	097	α
002	•	STX	034	**	066	В	098	b
003	♥	ETX	035	#	067	C	099	С
004	•	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	e
006	A	ACK	038	&	070	F	102	f
007	(beep)	BEL	039	r	071	G	103	g
008		BS	040	(072	H	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	*	074	J	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	,	076	L	108	1
013	(carriage return)	CR	045	-	077	M	109	m
014	.	SO	046		078	N	110	n
015	Ď.	SI	047	/	079	0	111	0
016		DLE	048	0	080	P	112	p
017		DC1	049	1	081	Q	113	q
018	1	DC2	050	2	082	R	114	r
019	!!	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	§	NAK	053	5	085	U	117	u
022	energy	SYN	054	6	086	V	118	v
023	<u></u>	ETB	055	7	087	W	119	w
024	1	CAN	056	8	088	X	120	x
025	į.	EM	057	9	089	Y	121	У
026		SUB	058	:	090	Z	122	z
027		ESC	059	;	091	[123	{
028	(cursor right)	FS	060	<	092	\	124	
029	(cursor left)	GS	061	= '	093]	125	}
030	(cursor up)	RS	062	>	094	^	126	· ~-
031	(cursor down)	US	063	?	095		127	

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc.

caracteres de control

ASCII		Control	ASCII		ASCII		ASCII	
value	Character	character	value	Character	value	Character	value	Character
000	(null)	NUL	032	(space)	064	@	096	
001	\odot	SOH	033		065	A	097	α
002	•	STX	034	**	066	В	098	b
003	♥	ETX	035	#	067	C	099	C
004	•	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	е
006	A	ACK	038	&r	070	F	102	f
007	(beep)	BEL	039	*	071	G	103	g
800		BS	040	(072	H	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	•	074	I	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	,	076	L	108	1
013	(carriage return)	CR	045		077	M	109	m
014	្រា	SO	046		078	N	110	n
015	☼	SI	047	/	079	0	111	0
016	in-	DLE	048	0	080	P	112	p
017		DCl	049	1	081	Q	113	q
018	\$	DC2	050	2	082	R	114	r
019	!i	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	§	NAK	053	5	085	U	117	u
022	aires	SYN	054	6	086	V	118	v
023	<u>↓</u>	ETB	055	7	087	W	119	w
024	<u>†</u>	CAN	056	8	088	X	120	x
025	į	EM	057	9	089	Y	121	У
026	·	SUB	058	:	090	Z	122	z
027		ESC	059	;	091	[123	{
028	(cursor right)	FS	060	<	092		124	į
029	(cursor left)	GS	061	= '	093	1	125	}
030	(cursor up)	RS	062	>	094	\wedge	126	<u></u>
031	(cursor down)	US	063	?	095		127	

< 32

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc.

distancia mayúsculas-minúsculas

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	(0)	096	
001	O	SOH	033		065	A	097	α
002	•	STX	034	**	066	В	098	b
003	♥	ETX	035	#	067	C	099	C
004	•	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	e
006	A	ACK	038	&r	070	F	102	f
007	(beep)	BEL	039	*	071	G	103	g
800	10	BS	040	(072	H	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	•	074	J	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	,	076	L	108	1
013	(carriage return)	CR	045	-	077	M	109	m
014	. 73	SO	046		078	N	110	n
015	☼	SI	047	/	079	0	111	0
016	-	DLE	048	0	080	P	112	p
017		DC1	049	1	081	Q	113	q
018	\$	DC2	050	2	082	R	114	r
019	!!	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	§	NAK	053	5	085	U	117	u
022	eaces	SYN	054	6	086	V	118	v
023	<u></u>	ETB	055	7	087	W	119	w
024	<u>†</u>	CAN	056	8	088	X	120	х
025	j	EM	057	9	089	Y	121	У
026		SUB	058	:	090	Z	122	z
027		ESC	059	;	091	[123	{
028	(cursor right)	FS	060	<	092		124	1
029	(cursor left)	GS	061	= '	093]	125	}
030	(cursor up)	RS	062	>	094	\wedge	126	~
031	(cursor down)	US	063	?	095	MARKA .	127	

97-65=32

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc

conversión de un número a carácter

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	(0)	096	
001	O	SOH	033	1	065	A	097	α
002	9	STX	034	n	066	В	098	ь
003	♥	ETX	035	#	067	C	099	С
004	*	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	е
006	A	ACK	038	&	070	F	102	f
007	(beep)	BEL	039	t	071	G	103	g
008		BS	040	(072	H	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	*	074	J	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	,	076	L	108	1
013	(carriage return)	CR	045	_	077	M	109	m
014	ji –	SO	046		078	N	110	n
015	☼	SI	047	1	079	0	111	О
016	-	DLE	048	0	080	P	112	р
017	-400	DC1	049	1	081	Q	113	q
018	\$	DC2	050	2	082	R	114	r
019	!!	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	§	NAK	053	5	085	U	117	u
022	MAKES	SYN	054	6	086	V	118	v
023	<u></u>	ETB	055	7	087	W	119	w
024	<u>†</u>	CAN	056	8	088	X	120	x
025	į.	EM	057	9	089	Y	121	У
026		SUB	058	:	090	Z	122	z
027		ESC	059	;	091	[123	{
028	(cursor right)	FS	060	<	092		124	1
029	(cursor left)	GS	061	=	093]	125	}
030	(cursor up)	RS	062	>	094	^	126	rhui
031	(cursor down)	US	063	?	095	anana .	127	

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc

Curiosidad: Visualización 'gráfica' con caracteres

http://www.typorganism.com/asciiomatic/

Cadenas de caracteres

Cadenas de longitud fija:

2. Cadenas de longitud variable con separador:

3. Cadenas de longitud variable con longitud en cabecera:

Contenidos

Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- Alfanuméricas
 - Caracteres
 - 2. Cadenas de caracteres

2. Numéricas

- Naturales y enteras
- 2. Coma fija
- 3. Coma flotante (estándar IEEE 754)

Representación numérica

- Clasificación de números reales:
 - Naturales: 0, 1, 2, 3, ...
 - Enteros: ... -3, -2, -1, 0, 1, 2, 3,
 - Racionales: fracciones (5/2 = 2,5)
 - Irracionales: $2^{1/2}$, π , e, ...
- Conjuntos infinitos y espacio de representación finito:
 - Imposible representar todos
- Características de la representación usada:
 - Elemento representado: Natural, entero, ...
 - Rango de representación: Intervalo entre el menor y mayor nº representable
 - Resolución de representación:
 Diferencia entre un n° representable y el siguiente.
 Representa el máximo error cometido. Puede ser cte. o variable.

Sistemas de representación binarios más usados

- A. Coma fija sin signo o binario puro naturales
- B. Signo magnitud
- c. Complemento a uno (Ca I)
 - enteros
- D. Complemento a dos (Ca 2)
- E. Exceso 2ⁿ⁻¹-1
- F. Coma flotante: Estándar IEEE 754 reales

Coma fija sin signo o binario puro [naturales]

Sistema posicional con base 2 y sin parte fraccionaria.

$$V(X) = \sum_{i=0}^{n-1} 2^i \cdot X_i$$

40

- Rango de representación: [0, 2ⁿ 1]
- Resolución: I unidad

Ejemplo comparativo (3 bits)

Decimal	Binario Puro		
+7	111		
+6	110		
+5	101		
+4	100		
+3	011		
+2	010		
+1	001		
+0	000		
-0	N.D.		
-1	N.D.		
-2	N.D.		
-3	N.D.		
-4	N.D.		
-5	N.D.		
-6	N.D.		
-7	N.D.		

Coma fija con signo o signo magnitud [enteros]

• Se reserva un bit (S) para el signo $(0 \Rightarrow +; I \Rightarrow -)$

Si
$$x_{n-1} = 0$$
 $V(X) = \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$ $\Rightarrow V(X) = (1 - 2 \cdot x_{n-1}) \cdot \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$ Si $x_{n-1} = 1$ $V(X) = -\sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$

- Rango de representación: [-2ⁿ⁻¹ +1, 2ⁿ⁻¹ -1]
- Resolución: I unidad
- Ambigüedad del 0

Ejemplo comparativo (3 bits)

Decimal	Binario Puro	Signo magnitud	
+7	111	N.D.	
+6	110	N.D.	
+5	101	N.D.	
+4	100	N.D.	
+3	011	011	
+2	010	010	
+1	001	001	
+0	000	000	
-0	N.D.	100	
- I	N.D.	101	
-2	N.D.	110	
-3	N.D.	111	
-4	N.D.	N.D.	
-5	N.D.	N.D.	
-6	N.D.	N.D.	
-7	N.D.	N.D.	

¿Se puede representar 745₁₀ en signo magnitude con 10 bits?

Ejemplo (solución)

- ¿Se puede representar 745₁₀ en signo magnitude con 10 bits?
- Con 10 bits el rango en signo magnitude es: $[-2^9+1,...,-0,+0,....2^9-1] \Rightarrow [-511,511]$ y por tanto, **no podemos representar** 745

Complemento a uno (a la base menos uno) [enteros] (1/3)

Número positivo: se representa en binario puro con n-1 bits

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot x_{i} = \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$$

- Rango de representación (+): [0, 2ⁿ⁻¹ -1]
- Resolución: Lunidad

Complemento a uno (a la base menos uno) [enteros] (2/3)

Número negativo:

- Se complementa a la base menos uno
- ▶ El número X < 0 se representa como $2^n X 1$ con n bits

$$V(X) = -2^{n} + \sum_{i=0}^{n-1} 2^{i} \cdot y_{i} + 1$$

- Rango de representación (-): [-(2ⁿ⁻¹-1), -0]
- Resolución: I unidad

Complemento a uno (a la base menos uno) [enteros] (3/3)

- Ejemplo: Para n=4 \Rightarrow el valor +3₁₀ = 00 l l₂
- ▶ Ejemplo: Para n=4 \Rightarrow el valor -3₁₀ = 1100₂
 - → I (bit signo y también parte de magnitud)
 - C a $I(3) \Rightarrow 2^4 00II_2 I = 2^4 3 I = I2 \Rightarrow II00_2$
 - Rango de representación: [-2ⁿ⁻¹+1,2ⁿ⁻¹-1]
 - Resolución: I unidad
 - El 0 tiene doble representación (+0 y -0)
 - Rango simétrico

Complemento a uno

Los números positivos tienen un 0 en el bit más signficativo

Los números negativos tienen un I en el bit más significativo

Ejemplo comparativo (3 bits)

Decimal	Binario Puro	Signo magnitud	Complemento a uno
+7	111	N.D.	N.D.
+6	110	N.D.	N.D.
+5	101	N.D.	N.D.
+4	100	N.D.	N.D.
+3	011	011	011
+2	010	010	010
+1	001	001	001
+0	000	000	000
-0	N.D.	100	111
- I	N.D.	101	110
-2	N.D.	110	101
-3	N.D.	111	100
-4	N.D.	N.D.	N.D.
-5	N.D.	N.D.	N.D.
-6	N.D.	N.D.	N.D.
-7	N.D.	N.D.	N.D.

Para n = 5 bits y usando complemento a uno:

¿Cómo se representa X = 5?

 \triangleright ¿Cómo se representa X = -5?

- ¿Cuál es el valor de 11000 en complemento a 1?

Ejemplo (solución)

Para n = 5 bits y usando complemento a uno:

- ¿Cómo se representa X = 5?
 - Como es positivo, en binario puro
 - ▶ 00101
- \rightarrow ¿Cómo se representa X = -5?
 - Como es negativo, se complementa el valor 5 (00101)
 - **II010**
- ¿Cuál es el valor de 00 | 1 | en complemento a | ?
 - Como es positivo, su valor es directamente 7
- ¿Cuál es el valor de 11000 en complemento a 1?
 - Como es negativo, se complementa y se obtiene 00111 (7)
 - ▶ El valor es -7

Complemento a dos (complemento a la base) [enteros] (1/3)

Número positivo: se representa en binario puro con n-1 bits

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot x_{i} = \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$$

- Rango de representación (+): [0, 2ⁿ⁻¹ -1]
- Resolución: Lunidad

Complemento a dos (complemento a la base) [enteros] (2/3)

Número negativo:

- Se complementa a la base
- ▶ El número X < 0 se representa como $2^n X$ con n bits

$$V(X) = -2^{n} + \sum_{i=0}^{n-1} 2^{i} \cdot y_{i}$$

- Rango de representación (-): [-2ⁿ⁻¹, -1]
- Resolución: I unidad

Complemento a dos (complemento a la base) [enteros] (3/3)

Truco:
$$C \ a \ 2 \ (X) = X$$

 $C \ a \ 2 \ (-X) = C \ a \ I \ (X) + I$

- ► Ejemplo: Para $n=4 \Rightarrow +3 = 0011_2$
- ▶ Ejemplo: Para $n=4 \Rightarrow -3 = 1101_2$
 - ► $I \Rightarrow$ (bit signo y también parte de magnitud)
 - Ca2(3) = Ca2(0011₂) = 2^4 3 = $13 \Rightarrow 1101_2$
 - Rango de representación: [-2ⁿ⁻¹, 2ⁿ⁻¹-1]
 - Resolución: Lunidad
 - El 0 tiene una única representación (No ∃ -0)
 - Rango asimétrico

Ejemplo comparativo (3 bits)

Decimal	Binario Puro	Signo magnitud	Complemento a uno	Complemento a dos
+7	111	N.D.	N.D.	N.D.
+6	110	N.D.	N.D.	N.D.
+5	101	N.D.	N.D.	N.D.
+4	100	N.D.	N.D.	N.D.
+3	011	011	011	011
+2	010	010	010	010
+1	001	001	001	001
+0	000	000	000	000
-0	N.D.	100	111	N.D.
-1	N.D.	101	110	Ш
-2	N.D.	110	101	110
-3	N.D.	111	100	101
-4	N.D.	N.D.	N.D.	100
-5	N.D.	N.D.	N.D.	N.D.
-6	N.D.	N.D.	N.D.	N.D.
-7	N.D.	N.D.	N.D.	N.D.

Complemento a dos

2^{N-I} no negativos2^{N-I} negativosI cero

Representación en Exceso 2ⁿ⁻¹-1 [enteros]

- ▶ El valor X con n bits se reprsenta como X + 2ⁿ⁻¹-I
- Se denomina sesgo a la cantidad 2ⁿ⁻¹-1

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot x_{i} - (2^{n-1} - 1)$$

- Rango de representación: [-(2ⁿ⁻¹-1), 2ⁿ⁻¹]
- Resolución: Lunidad
- No existe ambigüedad con el 0

Ejemplo comparativo (3 bits)

Decimal	Binario Puro	Signo magnitud	Complemento a uno	Complemento a dos	Exceso 3
+7	111	N.D.	N.D.	N.D.	N.D.
+6	110	N.D.	N.D.	N.D.	N.D.
+5	101	N.D.	N.D.	N.D.	N.D.
+4	100	N.D.	N.D.	N.D.	Ш
+3	011	011	011	011	110
+2	010	010	010	010	101
+1	001	001	001	001	100
+0	000	000	000	000	011
-0	N.D.	100	111	N.D.	N.D.
-1	N.D.	101	110	Ш	010
-2	N.D.	110	101	110	001
-3	N.D.	111	100	101	000
-4	N.D.	N.D.	N.D.	100	N.D.
-5	N.D.	N.D.	N.D.	N.D.	N.D.
-6	N.D.	N.D.	N.D.	N.D.	N.D.
-7	N.D.	N.D.	N.D.	N.D.	N.D.

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- Alfanuméricas
 - Caracteres
 - 2. Cadenas de caracteres
- 2. Numéricas
 - Naturales y enteras
 - Operaciones aritméticas
 - 2. Coma fija
 - 3. Coma flotante (estándar IEEE 754)

Comparación de aritmética en BP, C1 y C2

	Binario puro	Complemento a I	Complemento a 2
Suma	10110 01100 100010	igual que B.P.	igual que B.P.
Resta	10110 01100 01010	sumar y si hay Cn-I entonces sumar Cn-I al total	sumar y si hay Cn-I entonces descartarlo

En hardware, es más fácil operar con complemento

Comparación de aritmética en BP, C1 y C2 por qué sumar el acarreo en Ca1

Corrección de resultado sumando el acarreo...

Comparación de aritmética en BP, C1 y C2 por qué descartar el acarreo en Ca2

Corrección de resultado descartando el acarreo...

Comparación de aritmética en BP, C1 y C2

	Binario puro	Complemento a I	Complemento a 2
Detectar	El resultado necesita I bit más	Suma de + + es –, Suma de – – es +	Suma de + + es –, Suma de – – es +
desbordamiento	Hay Cn	Cn <> Cn-I	Cn <> Cn-I
Extensión de signo	00 10110	11*(10110 00*(00110	11*10110 00*00110
•••	•••	•••	•••

Grupo ARCOS

uc3m Universidad Carlos III de Madrid

Tema 2 (I) Representación de la información

Estructura de Computadores Grado en Ingeniería Informática

Ejercicio

Indique la representación de los siguientes números, razonando brevemente su respuesta:

- 1. -32 en complemento a uno con 6 bits
- 2. -32 en complemento a dos con 6 bits
- 3. -10 en signo magnitud con 5 bits
- 4. +14 en complemento a dos con 5 bits

Ejercicio (solución)

- Con 6 bits **no es representable** en CI: $[-2^{6-1}+1,...,-0,+0,....2^{6-1}-1]$
- 2. C| + | -> |00000|
- 3. Signo=1, magnitud=1010 -> 11010
- 4. Positivo -> CI=C2=SM -> 01110

Aritmética en complemento a uno

- Sumas y restas se realizan de igual forma
- ▶ Para n = 5 bits
- ▶ Sea X = 5
 - ► En complemento a uno = 00101
- \triangleright Sea Y = 7
 - ► En complemento a uno = 00111
- X + Y? X = 00101 Y = 00111+ X+Y = 01100
- ▶ El valor de 01100 en complemento a uno es 12

Aritmética en complemento a uno

- \triangleright Para n = 5 bits
- \rightarrow Sea X = -5
 - ▶ En complemento a uno = complemento de 00101:11010
- \rightarrow Sea Y = -7
 - ▶ En complemento a uno = complemento de 00111:11000
- ¿X + Y?

$$-X = 11010$$

$$-Y = \underline{11000+}$$

-(X+Y) = 110010 Se produce un acarreo, se suma y se desprecia

 El valor de 10011 en complemento a uno es el valor negativo de su complemento -01100 = - 12

Aritmética en complemento a dos

- Sumas y restas se realizan de igual forma
- ▶ Para n = 5 bits
- ▶ Sea X = 5
 - ▶ En complemento a dos= 00101
- \triangleright Sea Y = 7
 - ► En complemento a dos = 00111
- X + Y? X = 00101 Y = 00111+ X+Y = 01100
- ▶ El valor de 01100 en complemento a dos es 12

Aritmética en complemento a dos

- Para n = 5 bits
- \rightarrow Sea X = -5
 - ▶ En complemento a dos= complemento de 00101:11010 + 1 = 11011
- \triangleright Sea Y = -7
 - ▶ En complemento a dos = complemento de 00111:11000 +1 = 11001
- - -Y = 11001+
 - -(X+Y) = 10100

Se produce un acarreo: se desprecia

▶ El valor es 10100. Su valor en complemento a dos = el valor negativo de su complemento a dos = complemento a uno: 01011 + 1 = 01100 = >- 12

Aritmética en complemento a dos

- ▶ Para n = 5 bits
- ▶ Sea X = 8
 - ▶ En complemento a dos= 01000
- \triangleright Sea Y = 9
 - ► En complemento a dos = 01001
- X + Y? X = 01000 Y = 01001 + 0001
- ▶ Se obtiene un negativo ⇒ desbordamiento

Aritmética en complemento a dos

- \triangleright Para n = 5 bits
- \rightarrow Sea X = -8
 - ▶ En complemento a dos= complemento de 01000: 10111 + 1 = 11000
- \triangleright Sea Y = -9
 - ▶ En complemento a dos = complemento de 01001:10110 +1 = 10111
- ¿X + Y?

$$-X = 11000$$

 $-Y = 10111+$

▶ El valor 01111, como es positivo ⇒ desbordamiento

Extensión de signo en complemento a dos

¿Cómo pasar de n bits a m bits, siendo n < m?</p>

Ejemplo:

- n = 4, m = 8
- Si X = 0110 con 4 bits \Rightarrow X = 00000110 con 8 bits
- Si X = 1011 con 4 bits \Rightarrow X = 11111011 con 8 bits

Ejercicio

- Usando 5 bits para representarlo, haga las siguientes sumas en complemento a uno:
 - a) 4 + 12
 - b) 4-12
 - c) -4-12

Ejercicio (Solución)

- Usando 5 bits en complemento a uno:
 - a) 4 + 12

00100

01100

 $10000 \Rightarrow$ se obtiene un negativo \Rightarrow -15 \Rightarrow overflow

Ejercicio (Solución)

- Usando 5 bits en complemento a uno:
 - b) 4 12

00100

10111 ⇒ -8

Ejercicio (Solución)

- Usando 5 bits en complemento a uno:
 - c) -4 12

```
10011
```

 $101110 \Rightarrow$ negativo con 6 bits \Rightarrow overflow

Complemento a dos para 32 bits

```
0000 \dots 0000 \ 0000 \ 0000 \ 0000_{dos} =
0000 \dots 0000 \ 0000 \ 0001_{dos} =
                                                  1_{(10)}
0000 \dots 0000 \ 0000 \ 0010_{dos} =
                                                  2_{(10)}
0111 \dots 1111 \quad 1111 \quad 1111 \quad 1101_{dos} = 2,147,483,645_{(10)}
0111 \dots 1111 \quad 1111 \quad 1111 \quad 1110_{\text{dos}} = 2,147,483,646_{(10)}
0111 \dots 1111 \quad 1111 \quad 1111 \quad 1111_{\text{dos}} = 2,147,483,647_{(10)}
1000 \dots 0000 \ 0000 \ 0000 \ 0000_{\text{dos}} = -2,147,483,648_{(10)}
1000 \dots 0000 \ 0000 \ 0001_{dos} = -2,147,483,647_{(10)}
1000 \dots 0000 \ 0000 \ 0000 \ 0010_{dos} = -2,147,483,646_{(10)}
1111 ... 1111 1111 1111 1101_{dos} = -3_{(10)}
1111 ... 1111 1111 1111 1110_{\text{dos}} = -2_{(10)}
1111 ... 1111 1111 1111 1111_{\text{dos}} = -1_{(10)}
```