

Multiport Quantum Teleportation Protocols and Their Performance.

Michał Studziński (UG),

joint work with: Michał Horodecki (ICTQT, UG), Marek Mozrzymas (UWr) and Piotr Kopszak (UWr)

QISS HKU Workshop 2020

Quantum Teleportation

Quantum Teleportation: *C.H. Bennett et al. PRL 70, 1895-1899 (1993)*

$$\Phi_2^+ = |\psi_2^+\rangle\langle\psi_2^+|, \quad |\psi_2^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Port-based Teleportation (PBT)

Port-based Teleportation (PBT):

S. Ishizaka, T. Hiroshima, PRL 101, 240501 (2008)

$$\Phi_2^- = |\psi_2^-\rangle\langle\psi_2^-|, \quad |\psi_2^-\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

Deterministic Scheme

- We have N measurements $\{\Pi_i\}_{i=1}^N$.
- The state θ_C is always teleported.
- Performance is described by the *entanglement fidelity* F .

Probabilistic Scheme

- We have $N + 1$ measurements $\{\Pi_i\}_{i=0}^N$.
- Measurement Π_0 corresponds to failure.
- The state θ_C is teleported perfectly.
- Performance is described by the *probability of success* p .

- New architecture for the universal programmable quantum processor
S. Ishizaka, T. Hiroshima, PRA 79, 042306 (2009)
- Efficient attacks for position based cryptography
S. Beigi, R. König, NJP 13, 093036 (2011)
- Fundamental limitations for quantum channels discrimination
S. Pirandola et al. npj Quantum Information 5, 50 (2019)
- Universal simulator of quantum channels
J. Pereira et al. arXiv:1912.10374
- Aspects of reversing unknown quantum transformations
M.T. Quintino et al., PRL 123, 210502 (2019)
Talk by Marco Túlio Quintino today!

Mathematical tools in the qubit ($d = 2$) case

*S. Ishizaka, T. Hiroshima, PRA **79**, 042306 (2009)*

*S. Ishizaka, T. Hiroshima, PRL **101**, 240501 (2008)*

- Correspondence between qubits and spins 1/2

$$|0\rangle, |1\rangle \leftrightarrow |1/2, -1/2\rangle, |1/2, 1/2\rangle$$

- Each qubit is 1/2 spin \rightarrow basis of $SU(2)$
- In the protocol we have $SU(2)^{\otimes N}$ symmetry \rightarrow representation theory, theory of angular momentum
- Main tools here: Clebsch-Gordan coefficients + SDP methods

For $d > 2$ new mathematical tools are needed!

Representation Theory of $S(n)$ in a Nutshell

- Let us take permutation group $S(n)$
- For natural number n we define **partition** $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$

$$\forall i \quad \lambda_i \geq 0, \quad \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_r \quad \sum_{i=1}^r \lambda_i = n$$

- Every sequence can be represented graphically \leftrightarrow **Young diagrams**

- Irreps denoted by Greek letters, multiplicities by m_μ , dimensions by d_μ etc.

Representation Theory of $S(n)$ in a Nutshell

- Let us take permutation group $S(n)$
- For natural number n we define **partition** $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$

$$\forall i \quad \lambda_i \geq 0, \quad \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_r \quad \sum_{i=1}^r \lambda_i = n$$

- Every sequence can be represented graphically \leftrightarrow **Young diagrams**

- Irreps denoted by Greek letters, multiplicities by m_μ , dimensions by d_μ etc.

Representation Theory of $S(n)$ in a Nutshell

- Let us take permutation group $S(n)$
- For natural number n we define **partition** $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$

$$\forall i \quad \lambda_i \geq 0, \quad \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_r \quad \sum_{i=1}^r \lambda_i = n$$

- Every sequence can be represented graphically \leftrightarrow **Young diagrams**

- Irreps denoted by Greek letters, multiplicities by m_μ , dimensions by d_μ etc.

Representation Theory of $S(n)$ in a Nutshell

- Let us take permutation group $S(n)$
- For natural number n we define **partition** $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$

$$\forall i \quad \lambda_i \geq 0, \quad \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_r \quad \sum_{i=1}^r \lambda_i = n$$

- Every sequence can be represented graphically \leftrightarrow **Young diagrams**

- Irreps denoted by Greek letters, multiplicities by m_μ , dimensions by d_μ etc.

Schur-Weyl duality

Let us take $|i_1\rangle \otimes \dots \otimes |i_n\rangle \in (\mathbb{C}^d)^{\otimes n}$.

$$\forall \pi \in S(n) \quad V(\pi)(|i_1\rangle \otimes \dots \otimes |i_n\rangle) = |i_{\pi^{-1}(1)}\rangle \otimes \dots \otimes |i_{\pi^{-1}(n)}\rangle,$$

$$\forall U \in \mathcal{U}(d) \quad U^{\otimes n}(|i_1\rangle \otimes \dots \otimes |i_n\rangle) = U|i_1\rangle \otimes \dots \otimes U|i_n\rangle.$$

$$(\mathbb{C}^d)^{\otimes n} \cong \bigoplus_{\lambda \vdash n} \mathcal{H}_\lambda^{\mathcal{U}} \otimes \mathcal{H}_\lambda^{\mathcal{S}},$$

Walled Brauer Algebras

Walled Brauer Algebras

Figure: See for example: R. Brauer *Annals of Mathematics* 38 4, 857-872 (1937) or A. Cox, M. Visscher, S. Doty, and P. Martin, *Journal of Algebra* 320, 169-212 (2008).

Y. Kimura, S. Ramgoolam, Branes, Anti-Branes and Brauer Algebras in Gauge-Gravity duality, JHEP 0711:078 (2007)

Natural Symmetries in PBT

$$\underbrace{U^* \otimes U \otimes \cdots \otimes U}_{n}^N$$

$n = N + 1,$
 $N - \text{number of ports},$
 $n - N + \text{teleported particle}$

- ➊ Projection onto maximally entangled state
 $|\psi_d^+\rangle = \frac{1}{\sqrt{d}} \sum_k |k\rangle \otimes |k\rangle$
- ➋ The state $|\psi_d^+\rangle$ is $U^* \otimes U$ invariant
- ➌ Measurements on Alice's side have *natural* $U^* \otimes U \otimes \cdots \otimes U$ symmetry + permutational covariance w.r.t. $S(N)/S(N - 1)$

Natural Symmetries in PBT

$$|\psi_d^+\rangle = \frac{1}{\sqrt{d}} \sum_k |k\rangle \otimes |k\rangle$$

- ① Description of the commutant of $U^* \otimes U \otimes \cdots \otimes U$ is needed
- ② Complex conjugation translates into *partial transpose*
- ③ $V(1n)^{t_n} = dP_+ = d|\psi_d^+\rangle\langle\psi_d^+|_{1n} \otimes \mathbf{1} \in \mathcal{A}_d^{t_n}(n)$

Elements describing the performance of PBT belong to $\mathcal{A}_d^{t_n}(n)$.

$$\Pi_i \sim \frac{1}{\sqrt{\rho}} V(1n)^{t_n} \frac{1}{\sqrt{\rho}}, \quad \rho \sim \sum_{i=1}^{n-1} V(in)^{t_n} \quad (1)$$

Definition

For $\mathcal{A}_n(d) = \text{Span}_{\mathbb{C}}\{V(\sigma) : \sigma \in S(n)\}$ we define a new complex algebra

$$\mathcal{A}_d^{t_n}(n) := \text{Span}_{\mathbb{C}}\{V(\sigma)^{t_n} : \sigma \in S(n)\} \subset \text{Hom}((\mathbb{C}^d)^{\otimes n}),$$

where the symbol t_n describes the partial transpose in the last place in the space $\text{Hom}((\mathbb{C}^d)^{\otimes n})$. The elements $V(\sigma)^{t_n} : \sigma \in S(n)$ will be called natural generators of the algebra $\mathcal{A}_d^{t_n}(n)$.

$$V(kn)V(kn) = \mathbf{1} \quad V(kn)^{t_n} V(kn)^{t_n} = dV(kn)^{t_n}$$

Structure of Algebra $\mathcal{A}_d^{t_n}(n)$

$$\mathcal{A}_d^{t_n}(n) = \mathcal{M} \oplus \mathcal{N}, \quad \text{support}(\rho) = \mathcal{M}$$

Performance of PBT

- Deterministic case:

$$F = \frac{1}{d^{N+2}} \sum_{\alpha \vdash N-1} \left(\sum_{\mu=\alpha+\square} \sqrt{d_\mu m_\mu} \right)^2 \sim 1 - \frac{d^2 - 1}{4N}.$$

- Probabilistic case:

$$p = 1 - \frac{d^2 - 1}{N + d^2 - 1}.$$

M. Mozrzymas et al. NJP 20.5, 053006 (2018)

M. Studziński et al. Sci. Rep. 7, 10871 (2017)

M. Christandl et al., arXiv:1809.10751v1

Teleporting more than one particle

We can use standard PBT protocol:

$$d \rightarrow d^k$$

$$F \sim 1 - \frac{d^{2k} - 1}{4N}$$

- ① Measurements on Alice's side have:

invariance: $\underbrace{U^* \otimes \cdots \otimes U^*}_k \otimes U \otimes \cdots \otimes U,$

covariance: $S(N)/S(N - k).$

- ② Extension of $\mathcal{A}_d^{t_n}(n)$ to $\mathcal{A}_d^{t_k}(n)$.

Teleporting more than one particle

- Deterministic case:

$$F = \frac{1}{d^{N+2k}} \sum_{\alpha \vdash N-k} \left(\sum_{\mu \in \alpha} m_{\mu/\alpha} \sqrt{d_\mu m_\mu} \right)^2$$

- Probabilistic case:

$$p \leq \frac{N}{d^2 + N - 1} \frac{N - 1}{d^2 + N - 2} \cdots \frac{N - k + 1}{d^2 + N - k}$$

Teleporting more than one particle

Teleporting more than one particle

- Deterministic case:

$$F = \frac{1}{d^{N+2k}} \sum_{\alpha \vdash N-k} \left(\sum_{\mu \in \alpha} m_{\mu/\alpha} \sqrt{d_\mu m_\mu} \right)^2$$

- Probabilistic case:

$$p \leq \frac{N}{d^2 + N - 1} \frac{N - 1}{d^2 + N - 2} \cdots \frac{N - k + 1}{d^2 + N - k}$$

What we have:

- Novel mathematical tools for quantum information.
- Full description PBT scheme - deterministic and probabilistic.
- Efficient new multipartite teleportation protocols.

What we have to do:

- Try to optimize the resource state in deterministic version.
- Solve the dual SDP problem for probabilistic case.

Thank you!