第五次作业答案

TA_滕子涵 2023-11-05

题 4.2

如图是一个多功能函数发生电路。试写出 $S_3S_2S_1S_0$ 为 0000~1111 十六种不同状态时输出Y的逻辑函数式。

解: 先根据电路图写出统一的逻辑式:

 $Y = (ABS_0)'(A'BS_1)'(AB'S_2)'(A'B'S_3)'$

这样通过对 S 的赋值可以实现 OD 门的开启和关断。当 $S_3S_2S_1S_0$ 取不同值时,直接带入逻辑式进行化简,得到下面结果:

S_3	S_2	S_1	S_{o}	Y
0	0	0	0	1
0	0	0	1	A'+B'
0	0	1	0	A+B'
0	0	1	1	B'
0	1	0	0	A'+B
0	1	0	1	A'
0	1	1	0	AB+A'B'
0	1	1	1	$A' \cdot B'$
1	0	0	0	A+B
1	0	0	1	AB'+A'B
1	0	1	0	A
1	0	1	1	AB'
1	1	0	0	В
1	1	0	1	A'B
1	1	1	0	AB
1	1	1	1	0

注意:

- 1、OD 门并不能真正地输出高电平 1, 电路输出高电平时, OD 门输出高阻态, 可视为断路, 配合上拉电阻输出高电平。这种输出还有一个专门的名字: 开漏输出。
- 2、"线与"只有在使用开漏输出的时候可以使用,这和 OD 门输出的高阻态有关,当几个开漏输出的信号接在一起时,只有 OD 门全部输出为高阻态,电路才能输出为 1,否则输出为 0,表现出"与门"的特性。同理传输门在关断时输出高阻态,因此可以将两个传输门的输出相连接。当两个信号有可能冲突时不能把它们相连接,否则会出现"多驱动"现象,这在数字电路设计中是不允许的。
- 3、列真值表一个比较好的习惯是从 0-15 顺序列表。
- 4、无特殊说明结果一律化成最简与或式。

题 4.3

分析图中电路的逻辑功能,写出 Y1、Y2 的逻辑函数式,列出真值表,指出电路完成什么逻辑功能。

解: 这类题目很常见,不难但可以出的很复杂(去年的题复杂的多),首先要清楚门电路的图示,尤其是异或同或、三态、OD、以及各种非门(易忽视小圆圈)。

做题时如果从左向右写逻辑式,建议像上图标注好每一级的逻辑式;如果从右向左写,可以比较清晰地了解逻辑式的结构,对于复杂的题目很有帮助,例如 Y_1 :

$$Y_1 = () + () = () + () \cdot (() + () + ())'$$

再将一级门电路的逻辑式填入括号中,得到 $Y_1 = ABC + (A+B+C)(AB+AC+BC)'$, Y_2 可以直接写出 $Y_2 = AB + AC + BC$.

题 4.4

下面是对十进制数 9 求补的集成电路 CC14561 的逻辑图,写出当 COMP=1、Z=0 和 COMP=0、Z=0 时,Y1、Y1、Y2 的逻辑式,列出真值表。

解:多输出电路看似复杂实则不然,只需关注相应某一部分电路即可。

1、COMP=1, 传输门 1、3、5 导通, 2、4、6 关闭, Z=0, Y 输出的结果即为与非门接入的信号, 因此

$$Y_1 = A_1'$$

$$Y_2 = A_2$$

分析 Y_3 时,需要清楚 TG_7 、 TG_8 部分电路的逻辑,从控制信号分析, $A_3=1$,传输门 7 导通 8 关闭,输出 A_2' ; $A_3=0$,传输门 8 导通 7 关闭,输出 A_2 ,故 $Y_3=A_2A_3'+A_2'A_3$

$$Y_4 = (A_2 + A_3 + A_4)' = A_2' A_3' A_4'$$

2、COMP=0, 传输门 2、4、6 导通, 1、3、5 关闭, Z=0, Y 输出的结果即为与非门接入的信号, 因此

 $Y_1 = A_1$ $Y_2 = A_2$ $Y_3 = A_3$ $Y_4 = A_4$

题 4.6

有一水箱由大、小两台水泵 M_L 和 M_S 供水,如图 P4.6 所示。水箱中设置了 3 个水位检测元件 A、B、C。水面低于检测元件时,检测元件给出高电平;水面高于检测元件时,检测元件给出低电平。现要求当水位超过 C 点时水泵停止工作;水位低于 C 点而高于 B 点时 Ms 单独工作;水位低于 B 点而高于 A 点时 M1 单独工作;水位低于 A 点时 M1 和 Ms 同时工作。试用门电路设计一个控制两台水泵的逻辑电路,要求电路尽量简单。

解: 以 M_L 、 M_S 分别代表大、小两个水泵,为 1 时表示工作,为 0 时表示停止。由于不可能出现水位高于 C 而低于 B 或 A,也不会出现水位高于 B 而低于 A,所 以 ABC 的取值不可能出现 010、100、101、110,应视作约束项处理,于是列出真值表如下:

A	В	С	M_{s}	$M_{\scriptscriptstyle m L}$
0		0	0	0
0	0	1	1	0
0	1	0	×	×
0	1	1	0	1
1	0	0	×	×
1	0	1	×	×
1	1	0	×	×
1	1	1	1	1

由真值表作卡诺图化简,如下

得到

$$\begin{cases}
M_S = A + B'C \\
M_L = B
\end{cases}$$

由逻辑式画出电路图如下:

注意:

- 1、本题要求电路尽量简单,故需要考虑无关项,否则电路逻辑正确但不符合题意。
- 2、一般来说,一个完整的组合逻辑答题步骤应包含真值表、卡诺图、逻辑式、电路图四部分。

题 4.9

某医院有一、二、三、四号病室 4间,每室设有呼叫按钮,同时在护士值班室内对应地装有一号、二号、三号、四号 4个指示灯。

要求当一号病室的按钮按下时,无论其他病室的按钮是否按下,只有一号灯亮。当一号病室的按钮没有按下而二号病室的按钮按下时,无论三、四号病室的按钮是否按下,只有二号灯亮。 当一、二号病室的按钮都未按下而三号病室的按钮按下时,无论四号病室的按钮是否按下,只有三号灯亮。只有在一、二、三号病室的按钮均未按下而按下四号病室的按钮时,四号灯才亮。试用优先编码器 74HC148 和门电路设计满足上述控制要求的逻辑电路,给出控制四个指示灯状态的高、低电平信号。

解:根据题目描述不难发现本题需要使用优先编码逻辑,以 A_1,A_2,A_3,A_4 分别表示示一、二、三、四号病室按下按钮时给出的信号,以 Y_2',Y_1',Y_0' 表示 74HC148 对应的输出编码,以 Z_1,Z_2,Z_3,Z_4 分别表示一、二、三、四

号灯的点亮信号,于是可列真值表如下:

A_1'	A_2'	A_3'	A_4'	Y_2'	Y_1'	Y_0'	Z_{i}	Z_2	Z_3	Z_4
0	×	. ×	×	1	0	0	1	0	0	0
1	0	×	×	1	0	1	0	1	0	0
1	1	0	×	1	1	0	0	0	1	0
1	1	1	0	1	1	1	0	0	0	1

可以直接写出

$$Z_1 = Y_2'Y_1Y_0$$

$$Z_2 = Y_2'Y_1Y_0'$$

$$Z_3 = Y_2'Y_1'Y_0$$

$$Z_4 = Y_2'Y_1'Y_0'$$

由此画出电路图

Tips:

- 1、电路设计题画法不唯一,注意到Y2′始终为1,故可以只使用Y1和Y0来完成电路逻辑。
- 2、考试时会给出电路模块各个引脚的作用,不用记住。

题 4.11

画出用两片 4线-16线译码器 74LS154组成 5线-32线译码器的接线图。

解: 输入信号 $A_4A_3A_2A_1A_0$,当 A_4 为 0 时,使用第一块 74LS154 输出 0-15,当 A_4 为 1 时,使用第二块 74LS154 输出 16-31。因此只需要通过 A_4 来使能相应的译码器即可。电路图如下:

题 4.12

试画出用 3 线-8 线译码器 74HC138 和门电路产生如下多输出逻辑函数的逻辑图。

$$\begin{cases} Y_1 = AC \\ Y_2 = A'B'C + AB'C' + AC \\ Y_3 = B'C' + ABC' \end{cases}$$

解:译码器的所有输出端对应着所有最小项,由于任意逻辑式可化成最小项之和的形式,所以采用译码器和 门电路理论上可以方便地实现所有逻辑。

把给定函数化成 $m_0'\sim m_7'$ 的形式,得到

$$\begin{cases} Y_{1}(A,B,C) = AC = AB'C + ABC = m_{5} + m_{7} = (m'_{5}m'_{7})' = (Y'_{5}Y'_{7})' \\ Y_{2}(A,B,C) = A'B'C + AB'C' + BC = A'B'C + A'BC + AB'C' + ABC \\ = m_{1} + m_{3} + m_{4} + m_{7} = (m'_{1}m'_{3}m'_{4}m'_{7})' = (Y'_{1}Y'_{3}Y'_{4}Y'_{7})' \\ Y_{3}(A,B,C) = B'C' + ABC' = A'B'C' + AB'C' + ABC' \\ = m_{0} + m_{4} + m_{6} = (m'_{0}m'_{4}m'_{6})' = (Y'_{0}Y'_{4}Y'_{6})' \end{cases}$$

根据上式即可画出电路

题 4.15

试用两片双 4 选 1 数据选择器 74HC153 和 3 线-8 线译码器 74HC138 接成 16 选 1 的数据选择器。

解: 两片双 4 选 1 数据选择器可以看做四片 4 选 1 数据选择器,设选择信号为 $A_3A_2A_1A_0$,则可以用高位 A_3A_2 选择使用四个数据选择器中的一个,再用低位 A_1A_0 选择具体哪一个数据。鉴于这四个 4 选 1 数据选择器都有一个使能信号,故需要借助 74HC153 将 A_3A_2 译码,具体电路实现如下:

补充题:

1、用与非门设计一个编码转换器, 把 4 比特的格雷码转换成二进制码。

解: 首先明确,是格雷码 $G_3G_2G_1G_0$ \rightarrow 二进制码 $B_3B_2B_1B_0$,作真值表如下

791- 11/2/1/	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3-2-1-0	C 11 1-3-2	2-1-0/ 11/1			
G_3	G_2	G_1	G_0	B_3	B_2	B_1	B_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	1	0	0	1	0
0	0	1	0	0	0	1	1
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	1
0	1	0	1	0	1	1	0
0	1	0	0	0	1	1	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	1	1	0	1	0
1	1	1	0	1	0	1	1
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	1
1	0	0	1	1	1	1	0
1	0	0	0	1	1	1	1

由此画出卡诺图并写出逻辑式

G_3G_2	00	01	11	10
00				
01	1	1	1	1
11				
10	1	1	1	1

$$B_2 = G_3 G_2' + G_3' G_2 = G_3 \oplus G_2$$

$$B_0 = G_3 \oplus G_2 \oplus G_1 \oplus G_0$$

题目要求使用与非门,但很显然使用异或门更合适,我们可以先用与非门搭一个异或门:

A'B + AB' = ((A'B)'(AB')')'

如图所示

再用异或门搭建电路

- 2、十进制优先编码器 74HC147 的输入和输出均为<u>低电平有效</u>,根据下列输入组合,确定对应的输出信号 DCBA(D 为最高位)
 - (a) $(0,1,\cdots,9)=(1,0,0,0,0,0,1,1,1,1)$
 - (b) $(0,1,\dots,9)=(1,0,0,1,0,0,1,1,1,0)$

解: 74HC147 功能表如下

输人									输	輸出		
I_1'	I_2'	I_3'	I_4'	I_5'	I_6'	I_7'	I_8' -	I_9'	Y_3'	Y_2'	Y_1'	Y_0'
1	1	1	1	1	1	1	1	1	1	1	1	1
×	\times	×	×	×	×	×	×	0	0	1	1	.0
×	×	×	×	×	×	×	0	1	0	1	1	1
×	×	×	×	×	×	0	1	1	1	0	0	0
×	×	\times	×	×	0	1	1	1	1	0	0	1
×	×	×	×	0	1	1	1	1	1	0	1	0
×	×	×	0	1	1	1	1	1	1	0	1	1
×	\times	0	1	1	1	1	1	1	1	1	0	0
×	0	1	1	1	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	1	0

由此可得,输出信号分别为1010和0110(有同学取了反,这里不需要)。