1 Полугруппы и моноиды. Идемпотенты, сократимые и обратимые элементы.

Определение 1.1 (Полугруппа). Полугруппа - многообразие заданное множеством

$$(x*y)*z = x*(y*z)$$

Пример 1.2 (Примеры полугрупп).

Теорема 1.3. Значение терма не зависит от расстановки скобок (*Acco-*циативный закон)

$$t = t_1 * t_2 = (a_1 a_2 ... a_m)(a_{m+1} ... a_n) = a_1 a_2 ... a_n$$

Доказательство. Индукция по длине t

Базис: n=1, нет скобок

Шаг: для n-1 верно, тогда

1. m = n - 1

$$t = t_1 * a_n = (a_1 a_2 ... a_m) * a_n = a_1 a_2 ... a_n$$

2. $1 \le m \le n - 1$

$$t = t_1 * t_2 = (a_1 a_2 ... a_m)(a_{m+1} ... a_n) = (a_1 a_2 ... a_m)(a_{m+1} ... a_{n-1})a_n$$

Так как длина $(a_1a_2...a_m)(a_{m+1}...a_{n-1})$ равна n-1 то выполняется индукционное предположение и

$$(a_1 a_2 ... a_m)(a_{m+1} ... a_{n-1}) = (a_1 a_2 ... a_{n-1})$$

соотвественно

$$(a_1a_2...a_m)(a_{m+1}...a_{n-1})a_n = (a_1a_2...a_{n-1})a_n = a_1a_2...a_n$$

по-моему он не так доказывал

Определение 1.4 (Нейтральный элемент). e_l называется нейтральным слева в полугруппе, если $e_l*a=a$ для всех a, e_r называется нейтральным справа в полугруппе, если $a*e_r=a$ для всех a, e нейтральный слева и справа

Пример 1.5 (Примеры нейтрального элемента). $(\omega, +)$ - 0, (ω, \cdot) - 1, (ω, max) - 0, (ω, min) - nem нейтрального

Теорема 1.6. Если существуют нейтральный слева и нейтральный справа то они равны

Доказательство.

$$e_l = e_l * e_r = e_r$$

П

Следствие 1.7. *Если* нейтральный элемент существует, то он единственный.

Определение 1.8 (Моноид). Моноид - полугруппа с нейтральным элементом ИЛИ

Моноид - это элементы многообразия, которые определяются равенствами

$$\begin{cases} x * (y * z) = (x * y) * z \\ x * e = x \\ e * x = x \end{cases}$$

Пример 1.9 (Примеры моноидов). $(\omega, +, 0), (\omega, \cdot, 1), (\omega, max, 0)$

 A^A - множество одноместных функций из A в A $h=f\circ g$, если h(a)=g(f(a)) для любого $a\in A$ Доказать что (A^A,\circ) - моноид

Доказательство. e(a) = a для всех a, тогда

$$\left. \begin{array}{ll} (e \circ f)(a) & = f(e(a)) = f(a) \\ (f \circ e)(a) & = e(f(a)) = f(a) \end{array} \right\} e \circ f = f \circ e = f$$

e - нейтральный элемент

$$((f \circ g)h)(a) = h(f \circ g)(a) = h(g(f(a)))$$

$$(f(g \circ h))(a) = (g \circ h)(f(a)) = h(g(f(a)))$$

$$((f \circ g)h)(a) = (f(g \circ h))(a)$$

Выполняется ассоциативность, соответственно (A^A, \circ, e) - моноид

Определение 1.10 (Идемпотент). Идемпотент - элемент моноида a, такой что $a^2=a$

Пример 1.11 (Примеры идемпотентов). $(\omega; +)$ - 0

Определение 1.12 (Обратный элемент). b_l - левый обратный для элемента a, если $b_l*a=e$,

 b_r - правый обратный для элемента a, если $a*b_l=e$,

b - обратный для элемента a, если b*a=a*b=e

Определение 1.13 (Обратимый элемент). Элемент, для которого существует обратный

Пример 1.14. Пример чего-то: Доказать что множество функций этого вида замкнуты относительно композиции:

$$f(x) = \begin{cases} ax & npu \ x < b \\ ab & npu \ x \ge b \end{cases}$$

Доказательство.

Пример 1.15 (Пример изоморфизма). Доказать

$$(P(A \cup B); \cup, \cap) \cong (P(A); \cup, \cap) \times (P(B); \cup, \cap)$$

где P(A) - множество всех подмножеств множества A

Доказательство. Надо доказать

$$h(x_1 \cup x_2) = h(x_1) \cup h(x_2)$$
$$h(x_1 \cap x_2) = h(x_1) \cap h(x_2)$$

и h - биекция

По сути функция h должна выдавать пару, первая часть которой состоит из элементов A, вторая из B

Пример 1.16 (Пример полугруппы). Является ли $(\omega, HOД())$ полугруппой

Доказательство. Предположим что является, надо доказать

$$HOД(HOД(x, y), z) = HOД(x, HOД(y, z))$$

1. \Rightarrow Пусть d:d| НОД(x,y),d|zНадо доказать d| НОД(y,z),d|x

$$d \mid \text{HOД}(x, y) \Rightarrow d \mid x$$

 $d \mid \text{HOД}(x, y) \Rightarrow d \mid y$
 $d \mid x, d \mid y \Rightarrow d \mid \text{HОД}(y, z)$

2. ⇐ также

Пример 1.17 (Построение моноидов). *Построить все моноиды из двух* элементов $\{e,x\}$

$$A_1 = (\{e, x\}; *_1), A_2 = (\{e, x\}; *_2)$$

Таблица умножения (*1)

	e	x
e	e	x
x	x	e

Таблица умножения (*2)

	e	x
e	e	x
x	x	x

Доказать их ассоциативность: a*(b*c) = (a*b)*c

1. a = e

$$e * (b * c) = b * c = (e * b) * c$$

- 2. $b = e \ make e$
- 3. c = e makee
- 4. a = b = c = x

$$x * (x * x) = x * e = e * x = (x * x) * x$$

Все остальные моноиды или изомор ϕ ны или тривиальны

Теорема 1.18. Если в конечном моноиде каждый элемент имеет левый обратный, то существует правый обратный

Доказательство. Предположим обратное: Если в конечном моноиде каждый элемент имеет левый обратный, то хотя бы для одного не существует правый обратный: $ab_r \neq e$ для всех b_r

Определение 1.19 (Сократимый элемент). Сократимый слева (справа) - такой элемент моноида, что из $ax = ay \ (xa = ya)$ следует x = y

Пример 1.20 (Пример сократимого элемента). ($\mathbb{Z}, +, 0$), $x + a = y + a \Rightarrow x = y$

Теорема 1.21. Неединичные идемпотенты несократимы

Доказательство. $a\cdot a=a=e\cdot a$ но $a\neq e$, соответственно a несократим справа, $a\cdot a=a=a\cdot e$ но $a\neq e$, соответственно a несократим слева a несократим

Теорема 1.22. Все обратимые слева(справа) элементы сократимы слева(справа)

Доказательство. Пусть a - обратимый слева, тогда $ax = ay \Rightarrow b_l ax = b_l ay \Rightarrow ex = ey \Rightarrow x = y$, следовательно a - сократимый слева

Пример 1.23 (Пример обратимого элемента). ($\mathbb{Z}^+,\cdot,1$), обратимый только 1, сократимы все. (Какой к половым органам это пример?)