\mathbf{PST}

Université de A.MIRA de Béjaïa Faculté de Technologie

Départements 2ème Année L_2 : ATE-GP

Durée: 01H30

¥-Examen Final de Probabilités et Statistiques-¥

Exercice 1 (14.00 points):

Une étude réalisée dans 50 hôpitaux a donné les résultats suivants concernant le nombre de personnes contaminées par une maladie infectieuse respiratoire (Covid-19) :

30	30	38	50	64	42	70	60	64	42	74	60	64	64	50	64	42	64	50	42
60	42	64	50	64	50	60	50	38	64	64	70	74	64	64	60	50	74	74	70
64	30	42	74	74	70	64	60	30	50										

Partie A:

- 1. Déterminer : La population, l'individu, le caractère étudié et ses modalités.
- 2. Dresser le tableau statistique de la distribution.
- 3. Déterminer la fonction de répartition (F(x)) et tracer son graphe.
- 4. Calculer la médiane (Me) et la moyenne (\overline{X}) .
- 5. Donner la valeur du mode (M_o) , de Q_1 et de Q_3 .

 $\bf Partie \ B : Un regroupement en classe des données précédentes est donné dans le tableau suivant :$

Classes	[25, 35[[35, 45[[45, 55[[55, 65[[65, 75[
Effectifs	4	8	8	20	10

- 1. Représenter graphiquement cette distribution et calculer le mode.
- 2. Donner la fonction de répartition et tracer son graphe.
- 3. Calculer la médiane, l'intervalle interquartile et l'écart-type (σ) .
- 4. Déterminer la proportion des hôpitaux dont le nombre de personnes contaminées observées est inférieur à $\overline{X} + \sigma$.

Exercice 2 (06.00 points):

Soient A et B deux événements définis à partir d'une même expérience aléatoire tels que $P(A) = \frac{1}{5}$ et $P(A \cup B) = \frac{1}{2}$.

- 1. Supposons que A et B soient incompatibles. Calculer P(B).
- 2. Supposons que A et B soient indépendants. Calculer P(B).
- 3. Supposons que $P(B/A) = \frac{1}{4}$. Calculer P(B).
- 4. Supposons que $P(\overline{A \cap B}) = \frac{1}{3}$. Calculer P(B).
- 5. Calculer P(B) en supposant que la réalisation de l'événement A entraı̂ne la réalisation de l'événement B.

® 2022-2023

Université A.MIRA-Bejaia Faculté de Technologie

Département $2^{i\grave{\mathsf{e}}\mathsf{me}}$ Année $L_2:\mathsf{ATE}\text{-}\mathsf{GP}$

⅓– Corrigé de l'Examen Final de Probabilités et Statistiques-⅓

Exercice 1 (Corrigé de l'Exercice 1):

Partie A:

- 1. Déterminer : La population, l'individu, le caractère étudié et ses modalités.
 - La population : Les hôpitaux. (00.25 pts)
 - L'individu : Hôpital. (00.25 pts)
 - Le caractère étudié : Nombre de personnes contaminées par la Covid-19. (00.25 pts)
 - Modalités: 30, 38, 42, 50, 60, 64, 70, 74. (00.25 pts)
- 2. Dresser le tableau statistique de la distribution.

x_i	n_i	f_i	$F_i \nearrow$	$n_i x_i$
30	4	0.08	0.08	120
38	2	0.04	0.12	76
42	6	0.12	0.24	252
50	8	0.16	0.4	400
60	6	0.12	0.52	360
64	14	0.28	0.8	896
70	4	0.08	0.88	280
74	6	0.12	1	444
Total	50	1	_	2828

(01.00 pts)

® 2022-2023

3. Déterminer la fonction de répartition (F(x)) et tracer son graphe.

$$F(x) = \begin{cases} 0, & \text{si } x < 30, \\ 0.08, & \text{si } 30 \le x < 38, \\ 0.12, & \text{si } 38 \le x < 42, \\ 0.24, & \text{si } 42 \le x < 50, \\ 0.4, & \text{si } 50 \le x < 60, \\ 0.52, & \text{si } 60 \le x < 64, \\ 0.80, & \text{si } 64 \le x < 70, \\ 0.88, & \text{si } 70 \le x < 74, \\ 1, & \text{si } x \ge 74. \end{cases}$$
 (01.00 pts)

- Le Graphe de F(x): Il s'agit d'une fonction croissante en escaliers (Voir ci-dessous la Figure 1). (00.50 pts)
- 4. Calculer la médiane (Me) et la moyenne (\overline{X}) .
 - La médiane : On a, $n = 50 = 2 \times p = 2 \times 25 \Rightarrow p = 25$. Alors, $Me = \frac{x_{25} + x_{26}}{2} = \frac{60 + 60}{2} = 60$. (00.50 pts)
 La moyenne : $\overline{X} = \frac{1}{n} \sum_{i=1}^{i=8} n_i x_i = \frac{2828}{50} = 56.56$. (00.50 pts)

$$\overline{V} = \frac{1}{2} = \frac{1}{2} = 00. \quad (00.00 \text{ pbs})$$

5. Déterminer la valeur du mode (Mo), de Q_1 et de Q_3 .

A partir du tableau Statistique, on peut remarquer facilement que :

- $egin{array}{ll} (00.25 & {
 m pts}) \\ (00.25 & {
 m pts}) \\ (00.25 & {
 m pts}) \end{array}$ $-M_0 = 64.$
- $-Q_1 = 50.$
- $-Q_3 = 64.$

Partie B:

Afin de Justifier nos réponses, on aura besoin de dresser en premier le tableau de la distribution statistique :

Classes	x_i	n_i	f_i	$F_i \nearrow$	$n_i x_i$	$n_i x_i^2$		
[25, 35[30	4	0.08	0.08	120	3600		
[35, 45[40	8	0.16	0.24	320	12 800		
[45, 55[50	8	0.16	0.40	400	20 000	(01.25 p)	$\mathbf{ts})$
[55, 65[60	20	0.4	0.80	1200	72 000		
[65, 75[70	10	0.2	1	700	49 000		
Total	_	50	1	_	2740	157 400		

- 1. Représenter graphiquement la distribution statistique et calculer le Mode.
 - Il s'agit de tracer l'histogramme de la distribution (Voir ci-dessous la Figure 2). (00.50 pts)
 - Calcul du Mode : $M_0 \in [55, 65] = [e_{i-1}, e_i], d$ 'où

$$M_0 = e_{i-1} + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times a_i = 55 + \frac{0.4 - 0.16}{(0.4 - 0.16) + (0.4 - 0.2)} \times 10$$

= $55 + \frac{0.24}{0.44} \times 10 = 60.4545$. (01.00 pts)

2. Donner la fonction de répartition et tracer son graphe.

$$F(x) = \begin{cases} 0, & \text{si } x < 25, \\ \frac{0.08}{10}(x - 25) = 0.008x - 0.2, & \text{si } 25 \le x < 35, \\ 0.08 + \frac{0.16}{10}(x - 35) = 0.016x - 0.48, & \text{si } 35 \le x < 45, \\ 0.24 + \frac{0.16}{10}(x - 45) = 0.016x - 0.48, & \text{si } 45 \le x < 55, \\ 0.40 + \frac{0.40}{10}(x - 55) = 0.04x - 1.8, & \text{si } 55 \le x < 65, \\ 0.80 + \frac{0.20}{10}(x - 65) = 0.02x - 0.5, & \text{si } 65 \le x < 75, \\ 1, & \text{si } x \ge 75. \end{cases}$$

$$(01.25 \text{ pts})$$

- Le Graphe de F(x) correspond au graphe des fréquences cumulées croissantes dans le cas continu (Voir ci-dessous la Figure 3). (00.50 pts)
- 3. Calculer la médiane, l'intervalle interquartile $Q_3 Q_1$ et l'écart-type (σ) . La Médiane : $M_e \in [55, 65] = [e_{i-1}, e_i]$,

$$M_e = e_{i-1} + \frac{F(M_e) - F(e_{i-1})}{f_i} \times a_i = 55 + \frac{0.5 - 0.40}{0.40} \times 10 = 57.5.$$
 (00.50 pts)

 $-Q_1 \in [45, 55] = [e_{i-1}, e_i],$

$$Q_1 = e_{i-1} + \frac{F(Q_1) - F(e_{i-1})}{f_i} \times a_i = 45 + \frac{0.25 - 0.24}{0.16} \times 10 = 45.625.$$
 (00.50 pts)

 $-Q_3 \in [55, 65] = [e_{i-1}, e_i],$

$$Q_3 = e_{i-1} + \frac{F(Q_3) - F(e_{i-1})}{f_i} \times a_i = 55 + \frac{0.75 - 0.4}{0.40} \times 10 = 63.75.$$
 (00.50 pts)

– L'intervalle interquartile :

$$Q_3 - Q_1 = 63.75 - 45.625 = 18.13.$$
 (00.50 pts)

- Calcul de l'écart-type (σ) :

- La Moyenne:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{i=5} n_i x_i = \frac{2740}{50} = 54.80.$$
 (00.50 pts)

- La variance:

$$V(X) = \frac{1}{n} \sum_{i=1}^{i=5} n_i x_i^2 - \overline{X}^2 = \frac{157400}{50} - (54.80)^2 = 144.96.$$
 (00.50 pts)

- Finalement, L'écart-type est :

$$\sigma = \sqrt{V(X)} = \sqrt{144.96} = 12.0399.$$
 (00.25 pts)

4. Déterminer la proportion des hôpitaux dont on a observé que le nombre de personnes contaminées est inférieur à $\overline{X} + \sigma$.

 $\overline{X} + \sigma = 54.80 + 12.0399 = 66.8399 \in [65, 75] = [e_{i-1}, e_i],$ (Voir la réponse à la question 2, avec $x = \overline{X} + \sigma = 66.8399$), d'où

$$F(x) = F(\overline{X} + \sigma) = F(66.8399) = 0.80 + \frac{0.20}{10}(x - 65)$$
$$= 0.80 + \frac{0.20}{10}(66.8399 - 65) = 0.836798.$$
 (01.00 pts)

Ce qui veut dire finalement que la proportion donnée est d'ordre de 83,6798%.

Exercice 2 (Corrigé de l'Exercice 2):

Soient $P(A) = \frac{1}{5}$ et $P(A \cup B) = \frac{1}{2}$.

Par définition, on a l'expression suivante :

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$
 (00.50 pts)

1. Supposons que A et B soient incompatibles. Calculer P(B). A et B incompatibles donc $A \cap B = \emptyset \Rightarrow P(A \cap B) = 0$, d'où

$$P(A \cup B) = P(A) + P(B) \Rightarrow P(B) = \frac{1}{2} - \frac{1}{5} = \frac{3}{10}.$$
 (01.00 pts)

2. Supposons que A et B soient indépendants. Calculer P(B). A et B indépendants : $P(A \cap B) = P(A) \times P(B) = \frac{1}{5}P(B)$, d'où

$$\frac{1}{2} = \frac{1}{5} + P(B) - \frac{1}{5}P(B) \Rightarrow \frac{4}{5}P(B) = \frac{3}{10} \Rightarrow P(B) = \frac{3}{8}.$$
 (01.00 pts)

3. Supposons que $P(B/A)=\frac{1}{4}$. Calculer P(B). $P(B/A)=\frac{1}{4}=\frac{P(A\cap B)}{P(A)}\Rightarrow P(A\cap B)=\frac{1}{4}P(A)=\frac{1}{4}\times\frac{1}{5}=\frac{1}{20}, \text{ d'où}$

$$\frac{1}{2} = \frac{1}{5} + P(B) - \frac{1}{20} \Rightarrow P(B) = \frac{7}{20}.$$
 (01.00 pts)

4. Supposons que $P(\overline{A \cap B}) = \frac{1}{3}$. Calculer P(B). $P(\overline{A \cap B}) = 1 - P(A \cap B) = \frac{1}{3} \Rightarrow P(A \cap B) = 1 - \frac{1}{3} = \frac{2}{3}$, d'où

$$P(B) = P(A \cup B) - P(A) + P(A \cap B) = \frac{1}{2} - \frac{1}{5} + \frac{2}{3} = \frac{29}{30}.$$
 (01.00 pts)

5. Calculer P(B) en supposant que la réalisation de l'événement A entraı̂ne la réalisation de l'événement B.

La réalisation de l'événement A entraı̂ne la réalisation de l'événement B, cela dit que $A\subset B,$ d'où

$$A \subset B \Rightarrow A \cap B = A \Rightarrow P(A \cap B) = P(A) = \frac{1}{5}$$
, d'où

$$\frac{1}{2} = \frac{1}{5} + P(B) - \frac{1}{5} \Rightarrow P(B) = \frac{1}{2}.$$
 (01.50 pts)

Bonne Chance © Mr. Boualem

Partie A:

Fig. 1 : Représentation graphique de la fonction de répartition F(x).

PARTIE B:

Fig. 2: Représentation graphiquement de la distribution statistique.

Fig. 3 : Représentation graphique de la fonction de répartition F(x).