

Unit 12

——Design Sequential Circuits with Flip Flops 张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

利用触发器设计时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配) → 获得状态转移表
- (4) 状态转移表 → 触发器激励表 触发器特征 →
- (5) 卡诺图化简 → ∫ 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关状态

化简110 序列检测器的原始状态表

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
S _o	S ₀ / 0	S ₁ / 0	√
S ₁	S ₀ / 0	S ₂ /0	
S ₂	S ₃ /1	S ₂ / 0	
S ₃	S ₀ / 0	S ₁ /0	[√

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
S ₀	S ₀ / 0	S ₁ / 0	
S ₁	S ₀ / 0	S ₂ /0	
S ₂	S ₀ / 1	S ₂ / 0	

状态分配:

X \	00	01	11	10		
0	0	Х	Х	0		
1	0	Х	X	1		
$J_1 = XY_2^n$						
x/_`	00	01	11	10		
0	0	X	X	X		
1	7	X	Χ	X		

 $J_2 = X$

 $Y_2^nY_1^n$

Y21	ԴY ₁ ո			
	00	01	11	10
0	0	X	$\lceil \rceil$	0
1	0	Х	0	0

$$Z = \overline{X}Y_1^n$$

输入	现	<u></u> 态	次	态		触线		;	输出
X	Y ₂ n	Y_1^n	Y ₂ n+1	Y ₁ n+1	J ₂	K ₂	J ₁	k ₁	Z
0	0	0	0	0	0	X	0	X	0
0	1	0	0	0	X	1	X	1	1
0	1	0	0	1	X	1	0	X	0
1	0	1	0	1	1	X	0	X	0
1	1	1	1	0	X	0	X	0	0
1	1	1	1	0	X	0	1	X	0
0	0	X	Х	X	X	X	X	X	X
1	0	\mathbf{X}	Х	Χ	X	X	X	X	Х

分配方案(1)

$$S_0$$
 — 00

$$S_1 - 10$$

$$S_2$$
—— 11

$J_1 = XY_2^n$

$$K_1 = \overline{X}$$

$$J_2 = X$$

$$K_2 = \overline{X}$$

$$Z = \overline{X}Y_1^n$$

分配方案(2)

$$S_0 - 00$$

$J_1 = X\overline{Y}_2^n$

$$K_1 = 1$$

$$J_2 = X$$

$$K_2 = \overline{X} + \overline{Y}_1^n$$

$$Z = \overline{X} Y_2^n \overline{Y}_1^n$$

状态分配

需要解决两个问题:

①确定需要的触发器数量K

$$2^{K-1} \leq N \leq 2^K$$

N —— 最简状态数量

② 为状态表中的每一个状态分配二进制编码

力图获得一个最小代价的实现方案

简单

电路实现代价与状态分配密切相关

状态分配

一种 经验法

规则

- 1.同一输入下,相同的次态所对应的<mark>现态</mark>应该给予相邻编码
- 2.同一现态在不同输入下所对应的次态应给予相邻编码
- 3.给定输入下,输出完全相同,现态编码应相邻

注意:

- 诺图中更多的 "1"(或"0")
- 初始状态一般可以放在卡诺图的 0号单元格里
- 优先满足规则1和规则2
- 状态编码尽量按照相邻原则给予
- 对于多输出函数,规则3可以适当调高优先级

很难找到-

杰分配方案

个最佳的状

规则1:次态相同,现态编码应相邻

▶ 规则2:同一现态对应的次态应给予相邻编码

现态 次态

$$a \rightarrow (c,d)$$

 $b \rightarrow (c,a)$
 $c \rightarrow (b,d)$
 $d \rightarrow (a,b)$

cd,ca,bd,ab应相邻

- 1.同一输入下,相同的次态所对应的现态应该给予相邻编码。
- 2.同一现态在不同输入下所对应的次态应给予相邻编码
- 3.给定输入下,输出完全相同,现态编码应相邻

	С	b/ <mark>0</mark>	d/0	
	d	a/1	b/1	
➢ 规则3	: 输出	相同,	现态编	码应相邻
现态		输出		
a ,b ,	С	0		

X=0

c/0

c/0

Qn+1/ Z

X=1

d / 0

a/0

(a,b), (a,c) 应相邻, 满足规则1,2,3

——00, b*—*—01

ab,ac,bc应相邻

现态

Qn

а b

\	0	1
0	а	b
1	С	d