

ZJU-UIUC Institute

Zhejiang University / University of Illinois at Urbana-Champaign Institute

ECE 486 Control Systems

Lecture 20: Nyquist Stability Examples; Phase and Gain Margins from Nyquist Plots.

Liangjing Yang
Assistant Professor, ZJU-UIUC Institute
liangjingyang@intl.zju.edu.cn

Schedule check

Frequency Response

Wee k	Торіс	Ref.	
1	Introduction to feedback control	Ch. 1 Sections 1.1, 1.2, 2.1–2.4, 7.2, 9.2.1	
	State-space models of systems; linearization		
2	Linear systems and their dynamic response	Section 3.1, Appendix A Section 3.1, Appendix A Sections 3.1, 3.2, lab manual Sections 3.3, 3.14, lab manual	
	Transient and steady-state dynamic response with arbitrary initial conditions		
3	System modeling diagrams; prototype second-order system		
	Transient response specifications		
4	National Holiday Week	Sections 3.5, 3.6 Section 4.1, lab manual Sections 4.1-4.3, lab manual	
5	Effect of zeros and extra poles; Routh-Hurwitz stability criterion		
	Basic properties and benefits of feedback control		
6	Introduction to Proportional-Integral-Derivative (PID) control		
	Review A		
7	Term Test 1		
	Introduction to Root Locus design method	Ch. 5	
8	Root Locus continued; introduction to dynamic compensation	Ch. 5 Ch. 5	
	Lead and lag dynamic compensation		
9	Introduction to frequency-response design method	Sections 5.1-5.4, 6.1	
	Bode plots for three types of transfer functions	Section 6.1	

		Frequency	Frequency Response	
1	Week	Topic	Ref.	
į	10	Stability from frequency response; gain and phase margins	Section 6.1	
ł		Control design using frequency response	Ch. 6	
	11	Control design using frequency response continued; PI and lag, PID and lead-lag	Ch. 6	
į		Nyquist stability criterion	Ch. 6	
į	12	Gain and phase margins from Nyquist plots	Ch. 6	
ļ		Term Test II (Review B)		
	13	Introduction to state-space design	Ch. 7	
1		Controllability, stability, and pole-zero cancellations; similarity transformation; conversion of controllable systems to Controller Canonical Form	Ch. 7	
į	14	Pole placement by full state feedback	Ch. 7	
ŀ		Observer design for state estimation	Ch. 7	
1111	15	Joint observer and controller design by dynamic output feedback I; separation principle	Ch. 7	
i		Dynamic output feedback II (Review C)	Ch. 7	
į	16	END OF LECTURES		
li li		Finals		
II.				

State-Space

Root Locus

Lecture Overview

- Review: Nyquist stability criterion
- Today's topic: Phase and Gain Margin from Nyquist Plot

Review: Nyquist Plot

Review: Nyquist Plot

Consider an arbitrary strictly proper transfer function H:

$$H(s) = \frac{(s-z_1)\dots(s-z_m)}{(s-p_1)\dots(s-p_n)}, \qquad m < n$$

Nyquist plot: Im $H(j\omega)$ vs. Re $H(j\omega)$ as ω varies from $-\infty$ to ∞

Review: Nyquist Stability Criterion

Goal: count the number of RHP poles (if any) of the closed-loop transfer function

$$\frac{KG(s)}{1+KG(s)}$$

based on frequency-domain characteristics of the plant transfer function G(s)

Review: The Nyquist Theorem

Nyquist Theorem (1928) Assume that G(s) has no poles on the imaginary axis*, and that its Nyquist plot does not pass through the point -1/K. Then

$$N = Z - P$$

#(\circlearrowright of $-1/K$ by Nyquist plot of $G(s)$)
= #(RHP closed-loop poles) $-$ #(RHP open-loop poles)

^{*} Easy to fix: draw an infinitesimally small circular path that goes *around* the pole and stays in RHP

Review: The Nyquist Stability Criterion

Nyquist Stability Criterion. Under the assumptions of the Nyquist theorem, the closed-loop system (at a given gain K) is stable if and only if the Nyquist plot of G(s) encircles the point -1/K P times counterclockwise, where P is the number of unstable (RHP) open-loop poles of G(s).

Review: Apply Nyquist Criterion

Workflow:

Bode M and ϕ -plots \longrightarrow Nyquist plot

Advantages of Nyquist over Routh-Hurwitz

- ▶ can work directly with experimental frequency response data (e.g., if we have the Bode plot based on measurements, but do not know the transfer function)
- less computational, more geometric (came 55 years after Routh)

$$G(s) = \frac{1}{(s+1)(s+2)}$$

(no open-loop RHP poles)

Characteristic equation:

$$(s+1)(s+2) + K = 0$$
 \iff $s^2 + 3s + K + 2 = 0$

From Routh, we already know that the closed-loop system is stable for K>-2.

We will now reproduce this answer using the Nyquist criterion.

Strategy:

- \triangleright Start with the Bode plot of G
- ▶ Use the Bode plot to graph Im $G(j\omega)$ vs. Re $G(j\omega)$ for $0 \le \omega < \infty$
- ▶ This gives only a *portion* of the entire Nyquist plot

(Re
$$G(j\omega)$$
, Im $G(j\omega)$), $-\infty < \omega < \infty$

► Symmetry:

$$G(-j\omega) = \overline{G(j\omega)}$$

— Nyquist plots are always symmetric w.r.t. the real axis!!

Example
$$I = \frac{1}{9^{(n)^{\frac{1}{2}}} \cdot 2^{(n)^{\frac{1}{2}}}}$$

Bode plot:

(no open-loop RHP poles)

Strategy:

- \triangleright Start with the Bode plot of G
- ▶ Use the Bode plot to graph Im $G(j\omega)$ vs. Re $G(j\omega)$ for $0 \le \omega < \infty$
- ▶ This gives only a *portion* of the entire Nyquist plot

(Re
$$G(j\omega)$$
, Im $G(j\omega)$), $-\infty < \omega < \infty$

► Symmetry:

$$G(-j\omega) = \overline{G(j\omega)}$$

— Nyquist plots are always symmetric w.r.t. the real axis!!

10

0.1

$$\#(\circlearrowright \text{ of } -1/K)$$

= $\#(\text{RHP CL poles}) - \underbrace{\#(\text{RHP OL poles})}_{=0}$

 $\Longrightarrow K \in \mathbb{R}$ is stabilizing if and only if

$$\#(\circlearrowright \text{ of } -1/K) = 0$$

- ▶ If K > 0, #(\circlearrowright of -1/K) = 0
- ▶ If 0 < -1/K < 1/2, $\#(\circlearrowright \text{ of } -1/K) > 0 \Longrightarrow$ closed-loop stable for K > -2

$$G(s) = \frac{1}{(s-1)(s^2 + 2s + 3)} = \frac{1}{s^3 + s^2 + s - 3}$$
#(RHP open-loop poles) = 1 at $s = 1$

Routh: the characteristic polynomial is

$$s^3 + s^2 + s + K - 3$$
 — 3rd degree

— stable if and only if K-3>0 and 1>K-3.

Stability range: 3 < K < 4

Let's see how to spot this using the Nyquist criterion ...

$$G(s) = \frac{1}{(s-1)(s^2 + 2s + 3)}$$

(1 open-loop RHP pole)

Bode plot:

Nyquist plot:

$$\omega = 0 \quad M = 1/3, \, \phi = -180^{\circ}$$

$$\omega = 1 \quad M = 1/4, \, \phi = -180^{\circ}$$

$$\omega \to \infty \quad M \to 0, \, \phi \to -270^{\circ}$$

$$G(s) = \frac{1}{(s-1)(s^2 + 2s + 3)}$$

Bode plot:

Nyquist plot:

$$K \in \mathbb{R}$$
 is stabilizing if and only if

$$\#(\circlearrowright \text{ of } -1/K) = -1$$

Which points -1/K are encircled once \circlearrowleft by this Nyquist plot?

#(
$$\circlearrowright$$
 of $-1/K$)
$$= \#(RHP CL poles)$$
 only $-1/3 < -1/K < -1/4$

$$- \#(RHP OL poles)$$
 $\Longrightarrow 3 < K < 4$

Closed-loop stability range for $G(s) = \frac{1}{(s-1)(s^2+2s+3)}$ is 3 < K < 4 (using either Routh or Nyquist).

We can interpret this in terms of phase margin:

So, in this case, stability \iff PM > 0 (typical case).

$$G(s) = \frac{s-1}{(s+2)(s^2-s+1)} = \frac{s-1}{s^3+s^2-s+2}$$

Open-loop poles:

$$s = -2$$
 (LHP)

$$s^2 - s + 1 = 0$$

$$\left(s - \frac{1}{2}\right)^2 + \frac{3}{4} = 0$$

$$s = \frac{1}{2} \pm j\frac{\sqrt{3}}{2}$$
 (RHP)

∴ 2 RHP poles

$$G(s) = \frac{s-1}{(s+2)(s^2-s+1)} = \frac{s-1}{s^3+s^2-s+2}$$

Routh:

char. poly.
$$s^3 + s^2 - s + 2 + K(s - 1)$$

 $s^2 + s^2 + (K - 1)s + 2 - K$ (3rd-order)

— stable if and only if

$$K - 1 > 0$$

 $2 - K > 0$
 $K - 1 > 2 - K$

— stability range is 3/2 < K < 2

$$G(s) = \frac{s-1}{(s+2)(s^2-s+1)}$$

Bode plot (tricky, RHP poles/zeros)

(2 open-loop RHP poles)

$$\phi = 180^{\circ}$$
 when:

- \bullet $\omega = 0$ and $\omega \to 0$

$$\frac{j\omega - 1}{(j\omega - 1)((j\omega)^2 - j\omega + 1)}\Big|_{\omega = 1/\sqrt{2}}$$

$$= \frac{\frac{j}{\sqrt{2}} - 1}{\left(\frac{j}{\sqrt{2}} + 2\right)\left(-\frac{1}{2} - \frac{j}{\sqrt{2}} + 1\right)}$$

$$= \frac{\frac{j}{\sqrt{2}} - 1}{-\frac{3}{2}\left(\frac{j}{\sqrt{2}} - 1\right)} = -\frac{2}{3}$$

(need to guess this, e.g., by mouseclicking in Matlab)

$$G(s) = \frac{s-1}{s^3 + s^2 - s + 2}$$

Bode plot:

(2 open-loop RHP poles)

Nyquist plot:

$$\omega = 0 \quad M = 1/2, \, \phi = 180^{\circ}$$

$$\omega = 1/\sqrt{2} \quad M = 2/3, \, \phi = 180^{\circ}$$

$$\omega \to \infty \quad M \to 0, \, \phi \to 180^{\circ}$$

$$G(s) = \frac{s-1}{s^3 + s^2 - s + 2}$$

Nyquist plot:

#(
$$\circlearrowright$$
 of $-1/K$)
= #(RHP CL poles)
- #(RHP OL poles)

(2 open-loop RHP poles)

 $K \in \mathbb{R}$ is stabilizing if and only if

$$\#(\circlearrowright \text{ of } -1/K) = -2$$

Which points -1/K are encircled twice \circlearrowleft by this Nyquist plot?

only
$$-2/3 < -1/K < -1/2$$

 $\implies \frac{3}{2} < K < 2$

CL stability range for
$$G(s) = \frac{s-1}{s^3 + s^2 - s + 2}$$
: $K \in (3/2, 2)$

We can interpret this in terms of phase margin:

So, in this case, stability \iff PM < 0 (atypical case; Nyquist criterion is the only way to resolve this ambiguity of Bode plots).

Stability Margins

How do we determine stability margins (GM & PM) from the Nyquist plot?

GM & PM are defined relative to a given K, so consider Nyquist plot of KG(s) (we only draw the $\omega > 0$ portion):

How do we spot GM & PM?

- GM = $1/M_{180}$ °
 - if we divide K by $M_{180^{\circ}}$, then the Nyquist plot will pass through (-1,0), giving $M=1, \phi=180^{\circ}$
- $ightharpoonup PM = \varphi$
 - the phase difference from 180° when M=1