

Agenda

- 1. Motivation
- 2. Recherche
- 3. Datengrundlage
- 4. Funktionsweise Chatbot
- 5. NLP Pipeline
- 6. Fazit und Ausblick

Motivation

- Fußball = Volkssportart
- FIFA WM

Datengrundlage

Daten für Antwort

- API
- Kosten
- Datengrundlage schlecht
- Keine API für den Anwendungsfall
- Kaggle Dataset

Trainingsdaten

	query	category
0	Which team became 6th place in 2006?	PlacementTeam
1	Which team was world champion in the year 2010?	PlacementTeam
2	Who won in 1990?	PlacementTeam
3	Who was the winner in 1934?	PlacementTeam
4	Who became the world champion in 1938?	PlacementTeam
66	Who won the world cup in 1974?	firstPlace
67	Who was world-champion in 1950?	firstPlace
68	Who got the first place of the world cup in 2002?	firstPlace
69	Who was the winner of the world-championship i	firstPlace
70	Who was the champion of the worldcup in 2010?	firstPlace

Funktionsweise

- Chatbot in JavaScript
 - → Frage weiterleiten (JSON)
- Flask-App triggert NLP-Pipeline
 - → Abfragen aus CSV-Files
- Antwort als JSON-File,
 Darstellung im Frontend
- Error-Handling

NLP Pipeline

Pre-Processing

Vectorization

Pre-Processing Beispiel

"Who was the winner of the World Cup in 1974?"

- 1 input_data = ['"Who was the winner of the World Cup in 1974?']
- 2 # cleaning the input data
- 3 cleanup = cleanup_text(input_data, logging=True)
- 4 cleanup[0]
- ✓ 0.2s

'winner world cup 1974'

Vectorization & Intent Detection

- grundlegende Funktionsweise
- Umsetzung
 - Word2Vec
 - tf-idf
 - Support Vector Classifier

1. "Who was the winner of the World Cup in 1974?"

```
intent_categories = list(Encoder.classes_)
      intent_categories
    0.5s
['PlacementTeam',
'TeamPlacement',
'YearHost',
'firstPlace',
'year(avg)Goals',
'yearGoals',
'yearMatches']
```

2.

3.

4.

```
y = grid.predict([cleanup_vec[0]])
      print(y,intent_categories[int(y)] )
    0.3s
[3] firstPlace
```

Named Entity Recognition

SpaCy

Entities: GPE, Date, Ordinal

Numerizer

Generierung von Antworten

Hands On

Fazit

- Antworten auf verschiedene Fragevarianten
- Erkennen allgemeiner und Sportfragen-Intents

Anzahl Trainingsdaten: 90

Anzahl Testdaten: 20

Accuracy: 80%

Ausblick

- Modellgenauigkeit
- Training weiterer Modelle
- Nachfragen an User
- API Anbindung
- Speech-to-Text
- Mobile Application

Quellen -

Intentanalyse

Liu, Bing, and Ian Lane. "Attention-based recurrent neural network models for joint intent detection and slot filling." arXiv preprint arXiv:1609.01454 (2016).

https://www.atlantis-press.com/journals/hcis/125963694

Cahn, Jack. "CHATBOT: Architecture, design, & development." University of Pennsylvania School of Engineering and Applied Science Department of Computer and Information Science (2017).

https://www.kaggle.com/code/taranjeet03/intent-detection-svc-using-word2vec/notebook#)

Spacy

Numerizer: https://github.com/jaidevd/numerizer

https://spacy.io/usage/linguistic-features

Datengrundlage

https://www.kaggle.com/datasets/iamsouravbanerjee/fifa-football-world-cup-dataset?select=FIFA+-+2022.csv

Websiteentwicklung

https://github.com/patrickloeber/chatbot-deployment

Bilder

https://wallpapersden.com/2022-fifa-world-cup-hd-wallpaper/