Sequências de Röntgen

Por XII Maratona de Programação IME-USP, 2008 Drazil

Timelimit: 1

Wilhelm Conrad Röntgen foi um físico alemão que viveu no final do século XIX e início do século XX. Suas experiências em radiação eletromagnéticas renderam a ele o primeiro prêmio Nobel em Física, outorgado em 1901. Sua principal descoberta foi a existência do "raio X" e seu uso em aplicações médicas. Em 22 de dezembro de 1895, Röntgen fez um raio X da mão de sua esposa (com um anel em um dos dedos). A descoberta do raio X causou grande alvoroço na época e já em 1896 jornais europeus noticiavam a invenção e as grandes possibilidades de enxergar por dentro dos corpos sem a necessidade de cortá-los. A morte de Röntgen, causada por um certo tipo de câncer, é atribuída às radiações constantes a que esteve exposto durante suas pesquisas científicas.

Röntgen começou a desconfiar da existência de radiações invisíveis quando, nas suas pesquisas, era capaz de medir alterações consideráveis na fluorescência dos objetos quando colocados num tubo de Lenard que era submetido a uma corrente elétrica. Os estudos de Röntgen foram tão precisos que ele pôde inclusive gerar a seqüência que era observada no tubo de Lenard em cada instante de tempo. A fluorescência observada dependia da intensidade da corrente (X) e do tempo em que o tubo era submetido à corrente (Y). Röntgen percebeu que dada a primeira seqüência, a próxima podia ser obtida descrevendo os números da seqüência anterior. Por exemplo: se a primeira seqüência for 2 então a próxima é 12 (ou seja, a seqüência anterior é formada por "um 2"), a seguinte 1112 (ou seja, a seqüência anterior é formada por um 1 e um 2), 3112 (ou seja, a seqüência anterior é formada por três 1 e um 2), e assim por diante.

Além de um cientista brilhante, Röntgen era extremamente organizado. Ele guardava todos os registros de seus experimentos. Infelizmente, com o tempo algumas seqüências foram danificadas e outras perdidas. Sua tarefa é dada uma seqüência, determinar as próximas K seqüências do experimento.

Entrada

A entrada é composta por diversas instâncias. A primeira linha da entrada contém um inteiro **T** indicando o número de instâncias.

Cada instância é composta por uma linha contendo a primeira seqüência do experimento, formada por não mais de 1000 caracteres de 0 a 9, e o número \mathbf{K} de seqüências que desejamos gerar (1 $\leq \mathbf{K} \leq$ 50), respectivamente.

Saída

Para cada instância, imprima a seqüência dada na entrada seguida de **K** linhas contendo as seqüências na ordem que foram geradas. As seqüências geradas não terão mais do que 2000000 caracteres.

Após cada instância imprima uma linha em branco.

Exemplo de Entrada	Exemplo de Saída
3	2
2 5	12
99 3	1112
000123 3	3112
	132112
	1113122112

Exemplo de Entrada	Exemplo de Saída
	99
	29
	1219
	11121119
	000123
	30111213
	131031121113
	111311101321123113

XII Maratona de Programação IME-USP, 2008