Álgebra de Boole Formas Canônicas

GEN 253 - Circuitos Digitais

Prof. Luciano L. Caimi lcaimi@uffs.edu.br

 Chama-se forma canônica de uma expressão booleana a todo o produto ou soma nos quais aparecem todas as variáveis de entrada em cada um dos termos que constituem a expressão em forma direta ou complementada

Exemplos:

- S1 = (A.'B.C) + (A.'B.'C) + ('A.B.'C) + ('A.'B.C)
 Forma canônica disjuntiva (soma de produtos) mintermos
- S2 = (A+B+'C) . (A+'B+C) . ('A+'B+C)
 Forma canônica conjuntiva (produto de somas) maxtermos

Obtenção da expressão lógica a partir da Tabela Verdade

Α	В	С	S1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Síntese com Soma de Produtos (SOP)

$$S1 = A.B.C$$

A própria função lógica AND

Obtenção da expressão lógica a partir da Tabela Verdade

Α	В	С	S2
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Síntese com Soma de Produtos (SOP)

Se o '1' estiver em outro lugar?

Como fazemos a porta AND ter saída igual a 1?

Garantindo que todas as entradas sejam 1, ou seja, negando as entradas cujo valor é 0

S2 = 'A.B.'C

Obtenção da expressão lógica a partir da Tabela Verdade

Α	В	С	S
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Síntese com Soma de Produtos (SOP)

Se o tiver vários '1'?

Na tabela verdade temos duas situações em que a saída é 1

$$S = ('A.B.'C) + (A.B.C)$$

Síntese com Soma de Produtos

- Cada '1' da tabela verdade é representado por um produto lógico (E) no qual todas as variáveis de entrada estão presentes (forma canônica). Cada produto constitui um mintermo (ou minitermo)
- Cada mintermo é único, pois representa uma e somente uma posição da tabela verdade que vale 1
- A tabela verdade é representada por uma soma lógica (OU) dos seus mintermos (produto) - Soma de Produtos

Minitermos

		i		
A	В	С	minitermo	número
0	0	0	'A.'B.'C	m0
0	0	1	'A.'B.C	m1
0	1	0	'A.B.'C	m2
0	1	1	'A.B.C	m3
1	0	0	A.'B.'C	m4
1	0	1	A.'B.C	m5
1	1	0	A.B.'C	m6
1	1	1	A.B.C	m7

- Cada mintermo é único, pois representa uma e somente uma posição da tabela verdade cuja saída vale 1
- Uma expressão pode ser representada pela soma dos minitermos

Exemplo:

$$S(A,B,C) = sum(m2, m4, m6, m7)$$

$$S(A,B,C) = ('A.B.'C)+(A.'B.'C)+(A.B.'C)+(A.B.C)$$

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Exemplo

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Síntese com Soma de Produtos (SOP)

- 1) Obter a expressão usando SOP
- 2) Apresente o circuito

$$F = \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C}$$

$$F(A,B,C) = sum(m2, m3, m5, m6)$$

Exemplo

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Síntese com Soma de Produtos (SOP)

- 1) Obter a expressão usando SOP
- 2) Apresente o circuito

$$F = \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C}$$

Obtenção da expressão lógica a partir da Tabela Verdade

Α	В	С	S1
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Síntese com Produto de Somas (POS)

$$S1 = A+B+C$$

A própria função lógica OR

Obtenção da expressão lógica a partir da Tabela Verdade

Α	В	С	S2
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Síntese com Produto de Somas (POS)

Se o '0' estiver em outro lugar?

Como fazemos a porta OR ter saída igual a 0?

Garantindo que todas as entradas sejam 0, ou seja, negando as entradas cujo valor é 1

$$S2 = A+'B+'C$$

Obtenção da expressão lógica a partir da Tabela Verdade

Α	В	С	S
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Síntese com Produto de Somas (POS)

Se o tiver vários '1'?

Na tabela verdade temos duas situações em que a saída é 1

$$S = (A+'B+'C) \cdot (A+B+C)$$

Síntese com Produto de Somas (POS)

- Cada '0' da tabela verdade é representado por uma soma lógica (OR) no qual todas as variáveis de entrada estão presentes (forma canônica). Cada soma constitui um maxtermo (ou maxitermo)
- Cada maxtermo é único, pois representa uma e somente uma posição da tabela verdade que vale 0
- A tabela verdade é representada por um produto lógico (AND) dos seus maxtermos (somas) - Produto de Somas

Maxitermos

Α	В	С	maxitermo	número
0	0	0	A+B+C	МО
0	0	1	A+B+'C	M1
0	1	0	A+'B+C	M2
0	1	1	A+'B+'C	М3
1	0	0	'A+B+C	M4
1	0	1	'A+B+'C	M5
1	1	0	'A+'B+C	М6
1	1	1	'A+'B+'C	М7

- Cada maxitermo é único, pois representa uma e somente uma posição da tabela verdade cuja saída vale 0
- Uma expressão pode ser representada pelo produto dos maxitermos

Exemplo:

$$S(A,B,C) = prod(M2, M5, M6)$$

$$S(A,B,C) = (A+'B+C).('A+B+'C).('A+'B+C)$$

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Exemplo

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Síntese com Produto de Somas (POS)

- 1) Obter a expressão usando POS
- 2) Apresente o circuito

$$\mathsf{F} = (\mathsf{A} + \mathsf{B} + \mathsf{C} \) \cdot (\mathsf{A} + \mathsf{B} + \mathsf{C}) \cdot (\mathsf{\overline{A}} + \mathsf{B} + \mathsf{C}) \cdot (\mathsf{\overline{A}} + \mathsf{\overline{B}} + \mathsf{\overline{C}})$$

$$F(A,B,C) = prod(M0, M1, M4, M7)$$

Exemplo

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Síntese com Produto de Somas (POS)

- 1) Obter a expressão usando SOP
- 2) Apresente o circuito

$$F = (A+B+C) \cdot (A+B+C) \cdot (\overline{A}+B+C) \cdot (\overline{A}+\overline{B}+\overline{C})$$

