Radon's Theorem

Theorem (Radon's Theorem (1921))

Let S be a set of at least n+2 points in \mathbb{R}^n . Then, there exists a partition of S, i.e., sets S_1 and S_2 such that $S_1 \cap S_2 = \emptyset$, $S_1 \cup S_2 = S$, that satisfies $\operatorname{conv}(S_1) \cap \operatorname{conv}(S_2) \neq \emptyset$.

Proof. In class

Helly's Theorem

Theorem (Helly's Theorem (1923))

Let $S_1, ..., S_m$ be a finite collection of convex sets in \mathbb{R}^n , with $m \ge n+1$. If the intersection of every n+1 of these sets is nonempty, then the whole collection has a nonempty intersection; that is, $\bigcap_{i=1}^m S_i \ne \emptyset$.

Proof.

- Proof by induction.
- Base case: m=n+1, the claim is trivially true.
- **Induction step:** Assume that the statement is true for m = n + 1, ..., s we will prove that it is true for s + 1.
 - By the induction hypothesis every subfamily of $S_1, ..., S_{s+1}$ with cardinality s has a nonempty intersection.
 - Let $\mathbf{x}_i \in \bigcap_{j \in \{1,\dots,i-1,i+1,\dots,m\}} S_j$, we have s+1 such points. Let $X = \{\mathbf{x}_1,\dots,\mathbf{x}_{s+1}\}$
 - Since $s+1 \ge n+2$, by Radon's Theorem there is a partition of X to X_1 and X_2 such that $\mathbf{y} \in \text{conv}(X_1) \cap \text{conv}(X_2) \ne \emptyset$.
 - W.I.o.g. let $x_j \in X_1$. Then $X_2 \subseteq S_j$. Since S_j is convex $\mathbf{y} \in \text{conv}(X_2) \subseteq S_j$.
 - Therefore, $\mathbf{y} \in S_j$ for all j, and $\bigcap_{j=1}^m S_j \neq \emptyset$.

Application of Helly's Theorem

Assume that we have m equally spaced vertical segments in a \mathbb{R}^2 . How can we verify that we can run a line through all of them?

