

空间距离关系

空间距离关系的含义

- 空间距离概念是依赖于周围环境的,但是,我们往往将所有的距离信息减少到一种绝对的度量尺度。
- Frank(1992年)明确描述了地理空间中关于 距离(近、远)和主方向(东、南、西、北) 的定性推理的一种方法。
- 定义一种定性的空间距离关系需要三个元素: 源目标PO(Primary Object)、参考目标RO(Reference Object)、以及参考框架FR(Frame of Reference)。

不同粒度的空间距离

空间距离可以从不同空间粒度上进行定义,第一个粒度等级是:近(Close)和远(Far)。这两种关系将平面分为两个区域,这两个区域都是以参考目标为中心,并且外部区域是无限的。依据其它空间粒度等级,可以得到不同的空间距离关系体系。例如,可以将距离分为三个等级:近(Close)、适中(Medium)、远(Far);分为四个等级:很近(Very close)、近(Close)、远(Far)、很远;分为五个等级很近(Very close)、近(Close)、相当(Commensurate)、远(Far)、很远。这些关系的名称是任意的,这些关系可以通过圆形区域将平面进行分割

任意粒度的空间距离定义

理论上,在一个给定的粒度等级下,可以根据很多有序的距离 $Q=\{q_0, q_1, \dots, q_n\}$ 来分割一个参考目标周围的空间。其中 q_0 离参考目标最近,而 q_n 离参考目标最远(可以到无穷远)。

空间距离关系定性推理的含义

假设参考目标A和源目标B之间的距离为 $d_{AB} = d(A, B)$,且B和C之间的距离为 $d_{BC} = d(B, C)$,则可以从这两个距离推理得到A和C之间的距离 d_{AC} 。

为了描述这些假设,先区分 δ_i 和 Δ_i 的含义(Delta(大写 Δ ,小写 δ)),前者是"第i个距离范围",后者是"从原点到 δ_i 并且包含距离范围 δ_i 的距离范围"(图5-2)。距离符号 q_i 表示距原点的所有距离,并且落入范围 Δ_i 。(*请注意:范围逐渐变大*)

空间距离关系中的约束条件

Hernandez D.等(1995年)提出的约束条件如下:

• 单调性: $\delta_0 \leq \delta_1 \leq \delta_2 \leq \cdots \leq \delta_n$

•范围限制: $\delta_i \geq \Delta_{i-1}, \forall i > 0$

•吸收律: $\delta_i \pm \delta_j \cong \delta_j$

(如果距离范围_i远大于它前面的 δ_i ($\delta_i >> \delta_i$))

空间距离关系推理

如果*AB*的方向与*BC*的方向相同(图5-3),其推理相当于两个"正数"相加,所以距离的<u>下界(LB)</u>不能小于这两个距离中较大的那一个。

$$LB(d_{AC}) = d_{AB} \oplus d_{BC} = \max(d_{AB}, d_{BC})$$

空间距离关系推理

假设有序的距离关系为 $Q=\{q_0, q_1, ..., q_n\}$,如果没有结构上的限制,这种组合的<u>上界(UB)</u>就是 q_n 。如果<mark>距离范围是单调递增的</mark>,我们可以得到:

$$UB(d_{AC}) = ord^{-1}(ord(d_{AB}) + ord(d_{BC}))$$

其中,函数ord()定义了距离的顺序,

ord $(Q) \to \{1, ..., n+1\},\$

ord $(q_i) = i + 1$, ord $(i) = q_{i-1}$,

若i>n,则 $ord^{-1}(i)=q_n$ 。

下面是一个例子(说明如何计算上界,见表5-1的第一项)

$$UB(d_{AC}) = ord^{-1}(ord(q_0) + ord(q_0)) = ord^{-1}(1+1) = ord^{-1}(2) = q_{2-1} = q_1$$

表5-1考虑了五种可能的距离情况,该组合表强调单调性,并且,距离的方向相同。

表 5-1·相同方向的空间距离关系推理组合表(考虑第1个约束)↓

⊕ ₽	q0 $arphi$	q_{1}	<i>q</i> -2 <i>⇔</i>	<i>q</i> -3₽	<i>q</i> -4₽
<i>q</i> -0₽	<i>q</i> 0,⁻ <i>q</i> 1₽	q_1 , q_2	q·2, ·q·3₽	q-3, -q-4+	<i>q</i> ·4₽
<i>q</i> ·1₽	q1,-q2₽	<i>q</i> 1, - <i>q</i> 2, - <i>q</i> 3+	q-2,-q-3,-q-4+	<i>q</i> ⋅3,- <i>q</i> ⋅4≠	<i>q</i> -4₽
<i>q</i> -2 <i>₽</i>	<i>q</i> 2,⁻ <i>q</i> 3₽	q2, q3, q40	q.2, q.3, q.40	q-3,-q-4+	<i>q</i> ·4₽
q -3₽	<i>q</i> 3,⁻ <i>q</i> 4₽	<i>q</i> 3,⁻ <i>q</i> 4₽	q-3,-q-4+	q-3,-q-4+	<i>q</i> ·4₽
<i>q</i> 4₽	$q_{4^{\wp}}$	<i>q</i> ·4€	<i>q</i> -4€	<i>q</i> -4€	<i>q</i> ·4€

若考虑第2)个约束条件,则两个距离关系组合中的上界为:

$$UB(d_{AC}) = succ(\max(d_{AB}, d_{BC}))$$

其中,函数succ()表示距离关系表中的一个后继元素,若i<n,则 $succ(q_i) = q_{i+1}$,且 $\underline{succ(q_n) = q_n}$ 。因此,表5-1就变成了表5-2。(请见中间部分的变化)

表 5- 2·	相同方向的	的空间距离去	关系推理组合表	(考虑第2个约束)↓
----------------	-------------------------	--------	---------	------------

⊕ ₽	q0 $arphi$	q_{1}	<i>q</i> -2₽	<i>q</i> -3₽	<i>q</i> ·4₽	ته
<i>q</i> -0₽	<i>q</i> 0,⁻ <i>q</i> 1₽	q_1, q_2	q·2,·q·3₽	q-3,-q-4+	<i>q</i> ·4₽	ą,
<i>q</i> ·1 <i>↔</i>	q_{1} , q_{2}	q_{1} , q_{2}	q·2,·q·3₽	q-3,-q-4+	<i>q</i> -4₽	þ
<i>q</i> -2₽	<i>q</i> 2,⁻ <i>q</i> 3₽	<i>q</i> 2,⁻ <i>q</i> 3₽	q.2, q.30	q-3,-q-4+	<i>q</i> ·4₽	Þ
<i>q</i> -3₽	<i>q</i> 3,⁻ <i>q</i> 4₽	<i>q</i> 3,⁻ <i>q</i> 4₽	q-3,-q-4+	q-3,-q-4+	<i>q</i> ·4₽	ę,
<i>q</i> 4₽	q 4 \circ	q .4₽	<i>q</i> .4₽	<i>q</i> -4₽	<i>q</i> .4₽	Ç

若<u>考虑吸收律(第3个约束条件)</u>可以进一步简化距离关系组合的<u>上界</u>,

第3个约束条件允许忽略更小的距离,

例如当两个距离的差别p=2时可以忽略(其中一个距离范围)

,那么可以得到表5-3,<u>上界的计算方法如下</u>:

$$|ord(d_{AB}) - ord(d_{BC})| \ge p \Longrightarrow UB(d_{AC}) = \max(d_{AB}, d_{BC})$$

表:	5-3··相同方向的	的空间距离关系	系推理组合表	(考虑第3个约束)。	له

⊕ ₽	<i>q</i> 0₽	q_{1}	<i>q</i> ·2 <i>⇔</i>	<i>q</i> -3 <i>⇔</i>	<i>q</i> -4₽	ę,
q -04	<i>q</i> 0, · <i>q</i> 1 <i>↔</i>	q_1, q_2	$q\cdot_{2}$	q -3₽	<i>q</i> -4₽	ø
q -1 φ	q_1, q_2	q_1, q_2	q·2,·q·3₽	<i>q</i> -3₽	<i>q</i> .4₽	ç
q -2₽	$q_{2^{arphi}}$	$q_2, q_3 \varphi$	q 2, q 30	q.3, q.40	<i>q</i> .4₽	ø
<i>q</i> ⋅3₽	<i>q</i> 3€	<i>q</i> 3€	q-3,-q-4+	q·3,·q·4+	<i>q</i> -4↔	ę,
q 4 \circ	$q_{4^{\wp}}$	<i>q</i> ·4₽	<i>q</i> ·4₽	<i>q</i> .4₽	<i>q</i> .4₽	þ

在两个距离<u>方向相反</u>的情况下(图5-4),距离组合的<u>上界是两个距离中较大的一个</u>,因为这个组合对应的是两个"正数"之间的差,计算方法如下:

$$UB(d_{AC}) = d_{AB}\Theta d_{BC} = \max(d_{AB}, d_{BC})$$

如果没有约束限制,下界就是 $LB(d_{AC}) = q_0$ 。然而运用与"相同方向"类似的策略,我们可以逐步限制这种下界。如果考虑第一个约束条件,<u>下界就变为</u>:

$$LB(d_{AC}) = ord^{-1}(|ord(d_{AB}) - ord(d_{BC})|)$$

当一个距离系统中有五种距离时,其组合推理表如表5-4所示。

表 5-4 相反方向的空间距离组合推理表(考虑第1个约	(東	L.
-----------------------------	----	----

Θ .	q 0₽	q_{1}	q_{2}	<i>q</i> ₃ .	<i>q</i> 4₽	٥
q 0₽	q 0₽	<i>q</i> 0,- <i>q</i> 1₽	q1,-q2↔	<i>q</i> 2, <i>q</i> 3₽	<i>q</i> 3,⁻ <i>q</i> 4₽	ت
<i>q</i> 1€	q0, q1	<i>q</i> 0,- <i>q</i> 1€	q0,-q1,-q2+	q_{1} , q_{2} , q_{3}	<i>q</i> 2, <i>q</i> 3, <i>q</i> 4 <i>\vi</i>	t)
<i>q</i> 2€	q1,⁻q2₽	q0,-q1,-q2+	q0,-q1,-q2+	q0,-q1,-q2,q3+	q1, -q2,q3,q4+2	٠
<i>q</i> 3€	<i>q</i> 2,⁻ <i>q</i> 3₽	q1,-q2,-q3+	q0,-q1,-q2,q3+2	q0,-q1,-q2,q3¢	q0, ·q1, ·q2,q3,q4₽	٦
<i>q</i> 4€	q3,-q4+	q2,-q3,-q4+	q1, q2,q3,q40	q0, -q1, -q2,q3,q4+2	q0, ·q1, ·q2,q3,q4₽	٥

若考虑第2个约束条件,那么在给定的距离差p为2的情况下,下界的值为:

$$|ord(d_{AB}) - ord(d_{BC})| \ge 2 \Rightarrow LB(d_{AC}) = pred(\max(d_{AB}, d_{BC}))$$

其中,函数pred()表示距离关系列表中某个元素的前一个元素,若i>0,则 $pred(q_i)=q_{i-1}$,但是, $pred(q_0)=q_0$ 。其组合推理表如表5-5所示。

Θ 🕫	q0 $arphi$	q_{1}	q_{2arphi}	q34 ²	q 4₽	₽
q0 $arphi$	q 0₽	q0,-q1₽	<i>q</i> 1,- <i>q</i> 2↔	<i>q</i> 2,⁻ <i>q</i> 3₽	<i>q</i> 3,⁻ <i>q</i> 4₽	نه
q 1 \wp	q0,-q1₽	<i>q</i> 0,⁻ <i>q</i> 1₽	q_0 , q_1 , q_2	<i>q</i> 2, <i>q</i> 3₽	q3,q4÷	¢
q_{2}	q_{1} , q_{2}	q_0 , q_1 , q_2	q_0 , q_1 , q_2	q0, q1, q2,q3¢	q3,q4÷	ته
<i>q</i> 34 ³	<i>q</i> 2,⁻ <i>q</i> 3₽	<i>q</i> 2,⁻ <i>q</i> 3₽	q0,-q1,-q2,q3+	q0, q1, q2,q3¢	q0, q1, q2,q3,q4+	47
<i>q</i> 4₽	<i>q</i> 3,⁻ <i>q</i> 4₽	<i>q</i> 3,⁻ <i>q</i> 4₽	<i>q</i> 3, <i>q</i> 4 <i>\varphi</i>	q0, q1, q2,q3,q4+	q0, q1, q2,q3,q4+	ته

若使用约束条件3),下界值为:

$$|ord(d_{AB}) - ord(d_{BC})| \ge p \Rightarrow LB(d_{AC}) = \max(d_{AB}, d_{BC})$$

当p=2时,其组合推理表如表5-6所示。

表 5-6… 相	1反方向	1的空间罩	离组合推理表	(考虑第3	个约束) ↓
----------	------	-------	--------	-------	--------

Θ 🕫	q0 $arphi$	q_{1} φ	q_{2arphi}	<i>q</i> 34 ³	q 4₽	Ç
q0 $arphi$	q 04 $^{\circ}$	<i>q</i> 0,- <i>q</i> 1€	$q_{2\phi}$	q_{3arphi}	q 4 \circ	٦
q 1 \circ	<i>q</i> 0,- <i>q</i> 1€	<i>q</i> 0,- <i>q</i> 1↔	q_{0} , q_{1} , q_{2}	$q_{3^{arphi}}$	q 4 $^{\circ}$	٠
q_{2}	$q_{2^{arphi}}$	q0,⁻q1,⁻q2₽	q0,-q1,-q2₽	q0,-q1,-q2,q3+2	<i>q</i> 4₽	¢,
q 3₽	$q_{3^{e^{3}}}$	<i>q</i> 3€	q0,⁻q1,⁻q2,q3¢	q0,-q1,-q2,q3+	q0, q1, q2,q3,q4¢	Þ
q 4 \circ	q 4 $^{\circ}$	q 4 $^\circ$	q4 $arphi$	<i>q</i> 0, - <i>q</i> 1, - <i>q</i> 2, <i>q</i> 3, <i>q</i> 4+2	q0, q1, q2,q3,q4°	¢)

顾及空间距离的空间关系定性描述

顾及空间距离关系的空间方向关系

如图5-5所示,每个方向区域(片)都可以依据距离关系再进 行划分。

这里,以图5-5(c)的方向片为例来说明空间方向关系的描述方法。若只考虑空间方向,那么可以用一个3×3的矩阵来描述空间方向关系。当把方向片按照距离等级分区时,则不同距离等级的方向片应当单独用一个3×3的矩阵来描述。

图 5-5·考虑距离关系的方向片的划分。

顾及空间距离的空间关系定性描述

图5-6 (a) 可以表示为(从外到内): $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

图5-6 (b) 可以表示为(从外到内): $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

当然,这些矩阵的元素还可以<u>用源目标在不同距离等级的方向片</u> 上的比例来描述,而不只是表示"有"和"无"。

顾及空间距离的空间关系定性描述

如图5-7(a)所示,当两个目标相离时,源目标与参考目标之间的距离不同,它们之间的影响也会不同,图中把距离分为两个层次(远、近)。

同样道理,当两个空间目标相交或相包含时,距离关系也同样起到非常重要的作用,例如,图5-7(b)用相交部分的边界之间的距离说明了相交的程度;图5-7(c)说明了在同样的包含关系条件下,被包含的目标与包含它的空间目标的边界会有不同的距离。

在"相离关系"的描述中,距离可以发挥很好的作用,最明显的例子是Voronoi图、等距离线或中心线等。

