GENETIC ALGORITHMS

- The slides follow closely the text and examples from :
- Z. Michalewicz "Genetic Algorithms +
 Data Structures = Evolution Programs",
 Springer Verlag
- M. Mitchell "An Introduction to Genetic Algorithms", MIT Press

A NON-CLASSICAL APPROACH

- Self-adaptation: optimisation as discovery (rather than invention)
- Less approximations
- More than one good solution
- Processing directly computer representations of solutions (not those of intermediary mathematical objects)
- Turning the combinatorial explosion to the user's benefit
- Meta-optimisation (of the algorithm)

WHAT ARE WE DEALING WITH?

- "General-purpose" search methods
- Probabilistic algorithms
- Inspired from natural evolution
- Soft-computing paradigm
- Useful in
 - optimisation
 - machine learning
 - design of complex systems

LESS APROXIMATION

```
Classical -hard computing

Understand the problem

Set up a model (*)

Devise theoretical results

Design an algorithm (*)

Code it, run the program

→ solution (*)
```

```
Evolutionary -soft computing

Understand the problem

Set up a model (*)
representation/function

Design the EA

Code, run experiments
→ solutions (o)
```

OPTIMISATION

- Discrete or continuous variables
- Dynamic (moving) optimum
- Multicriterial
- Procedural view:
 - Step by step improvement
 - "Needle in the haystack"
- Criteria: accuracy and precision

STRATEGIES IN PROBLEM SOLVING (1)

- Deterministic approach
 - Exact determinist algorithms: exact solutions
 - Complexity hierarchy for <u>problems</u>
 - Knapsack, TSP, MaxClique each NP-complete
 - **Heuristics**: approximate solutions
 - Time complexity vs. precision for <u>problems</u>
 - Knapsack polynomial for any precision
 - TSP polynomial down to 50% precision
 - MaxClique still exponential for any precision!

STRATEGIES IN PROBLEM SOLVING (2)

PROBABILISTIC APPROACH

- Probabilistic algorithms
 - approximate solutions
 - Monte Carlo, Las Vegas, ...
 - Evolutionary Algorithms, Hillclimbing, Simulated Annealing, Tabu Search...
 - Time complexity vs. precision in a statistical setting
 - Genetic Algorithms have a polynomial scheme;
 - some Evolutionary Strategies have probability 1 to find the exact solution

- ..

DESIGN OF COMPLEX SYSTEMS

- **Top-down** approach the procedure:
 - 1. Design the general view of the system, with successive levels;
 - 2. While there are unvisited levels do
 - Descend one level and design that level.
- **Bottom-up** approach alternatives:
 - 1. Analytic / synthetic procedure:
 - design one component at a time
 - join the components together (level by level)
 - 2. "Evolutionary" procedure:
 - Design a frame for evolution
 - Design very basic features / components
 - Let the components evoluate (the system evolves itself)
- Examples: ANN, sorting networks etc.

COMPUTING (1)

HARD COMPUTING

- Rigid, "static" models: no adaptation, or adaptation driven from outside
- The model for a problem is completely described beforehand, not to be changed as solving goes on
- Calculus, Numerical Analysis (Newton method), ...

COMPUTING (2)

SOFT COMPUTING

- Self-adapting models
- Only the frame for autoadaptation is specified
- Properties of the **instance** of the problem fully exploited
- Probabilistic modelling and reasoning
 - Evolutionary Computing
 - Artificial neural networks
 - Fuzzy sets

LOCAL SEARCH (MAXIMIZATION): ITERATED HILLCLIMBING

```
begin t \leftarrow 0;
repeat
      local←FALSE;
      select a candidate solution (bitstring) \mathbf{v}_{\mathbf{c}} at random; evaluate \mathbf{v}_{\mathbf{c}};
      repeat generate the length strings Hamming-neighbors of v<sub>c</sub> {or
         select some among them};
      select \mathbf{v_n}, the one among these which gives the largest value for
         the objective function f;
      if f(\mathbf{v_c}) < f(\mathbf{v_n}) then \mathbf{v_c} \leftarrow \mathbf{v_n} else local \leftarrow TRUE
      until local:
      t\leftarrow t+1;
until t=Max end.
```

LOCAL SEARCH (MAXIMIZATION): SIMULATED ANNEALING

begin

```
t \leftarrow 0; initialize temperature T;
       select a current candidate solution (bitstring) v<sub>c</sub> at random;
       evaluate v<sub>c</sub>;
       repeat
              repeat select at random one of the length strings Hamming-
                 neighbors of \mathbf{v_{c}}:
              if f(\mathbf{v}_c) < f(\mathbf{v}_n) then \mathbf{v}_c \leftarrow \mathbf{v}_n else
              if random [0,1) < exp((f(\mathbf{v_n}) - f(\mathbf{v_c}))/T)then \mathbf{v_c} \leftarrow \mathbf{v_n}
              until (termination condition);
              T \leftarrow g(T,t); t \leftarrow t+1 \quad \{g(T,t) < T, \forall t\}
       until (halting-criterion)
end.
```

EVOLUTIONISM

- Darwin (approx. 1850) natural selection
 - "the Jenkins nightmare": if combination is like mixing fluids, then ... homogenous population – no selection / improvement.
- Mendel (1865): Genetics discrete, not continuous
- de Vries, Correns, von Tschermak (1900) "rediscover" and spread Genetics
- T. Morgan chromosomes as sequences of genes
- Cetverikov, others (1920) join natural selection and genetics: **evolution**.

GLOSSARY (1)

- Chromosome (individual) a sequence of genes (...)
- Gene atomic information in a chromosome
- Locus position of a gene
- Allele all posible values for a locus
- Mutation elementary random change of a gene
- Crossover (recombination) exchange of genetic information between *parents*
- Fitness function actual function to optimise; environment

GLOSSARY (2)

- Population set of candidate solutions
- Generation one iteration of the evolutionary process
- Parent chromosome which "creates" offspring via a genetic operator
- Descendant (offspring) chromosome obtained after applying a genetic operator to one or more parents
- Selection (random) process of choosing parents and / or survivors
- Genotype representation at the individual level
- Phenotype (theoretical) object represented through genotype
- Solution given by a GA best candidate in the last generation

EVOLUTIONARY COMPUTING

- Evolution Strategies
- Evolutionary Programming
- Genetic Algorithms
 - -Genetic Programming

EARLY IDEAS

- Evolution-inspired algorithms for optimisation: Box (1957), Friedman (1959), Bledsoe (1961), Bremermann (1962), Red e.a. (1967). No follow-up in their respective lines.
- Computer simulations of evolution for controlled experiments: Baricellli (1957-1962), Fraser (1957), Martin e.a. (1960).

THE FIRST TWO MAJOR DIRECTIONS

EVOLUTION STRATEGIES

- A method to optimise real-valued parameters
- Random mutation and selection of the fittest
- Ingo Rechenberg (1965,1973); Schwefel (1975,1977)

EVOLUTIONARY PROGRAMMING

- Fogel, Owens, Walsh (1966)
- Random mutations on the state-transition diagrams of finite state machines; selection of the fittest

A BREAKTHROUGH: GAs

- John Holland 60's and 70's.
- Goal: not solving specific problems, but rather study adaptation
- "Adaptation in Natural and Artificial Systems" (1975)
- Abstraction of biological evolution
- Theoretical study (schema theorem).

NEW IDEAS

- Messy Genetic Algorithms (Goldberg)
- Genetic Programming (Koza)
- Co-evolution (Hillis)
- Memetic / cultural algorithms
- Micro-economic algorithms
- Statistical study of "fitness" between representation and fitness function, operators, etc.

EVOLUTIONARY COMPUTING - SHARED FEATURES

- maintain a <u>population</u> of representations of <u>candidate solutions</u>
- which are improved over successive generations
- by means of <u>mutation(, crossover,...)</u>
- and selection based on individual merit
- assigned to individuals through <u>evaluation</u> against <u>fitness function</u> ("environment")

DATA STRUCTURES

- Genetic Algorithms
 - standard: bitstring representations (integers, real numbers, permutations etc.);
 - others: bidimensional string structures (graphs, matrices etc.); neighborhood-based ("island");
 "geographically"-distributed etc.
 - GP: trees (programs)
- Evolution Strategies: floating point representations (real numbers)
- Evolution Algorithms: finite state machines

THEORETICAL MODELS

- Schema model (Holland)
 - Scheme;
 - Building-blocks hypothesis
 - Implicit parallelism
- Markov-chain models (→linked processes)
- Vose models (statistical mechanics)
- Bayesian models (Muehlenbein, ...)

THE ELEMENTS OF A GENETIC ALGORITHM

- A population of *pop_size* individuals chromosomes
 - An initialisation procedure
- A representation (genotype) of candidate solutions (phenotype)
- An evaluation (fitness) function
- A selection scheme
- Genetic operators (mutation, crossover, ...)
- Parameters (size, rates, scalability, halting condition, ...)

META-OPTIMISATION

- Design of a GA for a given problem:
 - choose a representation (out of a few possible);
 - choose a fitness function (various models; scalable);
 - choose a selection scheme (around 10 possible);
 - choose operators (or invent them);
 - set the parameter values (tens/hundreds).
- A moderate evaluation: 5*10*10*10*100≈500.000: hundreds of thousands of GAs for a given problem.
- Most of them probably perform poorly, but few of them usually outperform other kinds of algorithms
- Finding the "good" GA for a problem is an optimisation problem in itself

GENERAL SCHEME OF A GA

begin

- t**←**0
- Initialise P(t)
- Evaluate P(t)
- While not (halting condition) do begin
 - t←t+1
 - Select P(t) from P(t-1)
 - Apply operators to P(t)
 - Evaluate P(t)
- end

end

Except possibly for the Evaluation step, the scheme is polynomial! This scheme is valid for (most) evolutionary algorithms.

THREE SAMPLE GAS

- 1. Numerical optimisation
 - Representing numbers
 - The fitness function is the studied function
- 2. Combinatorial optimisation
 - Representing graphs / permutations
 - The objective function becomes fitness
- 3. Machine learning
 - Representing strategies
 - Optimisation is the overall gain.

A SIMPLE NUMERICAL EXAMPLE (1)

- Find up to 6 digits $x_0 \in [-1; +2]$ to maximize $f(x) = x\sin(10\pi x) + 1$.
- Representation.

[-1; +2] to be divided into $3 \cdot 10^6$ equal subintervals. 22 bits are required:

$$2097152 = 2^{21} < 3 \cdot 10^6 < 2^{22} = 4194304$$

• Decoding.

$$(b_{21}b_{20}...b_0) \rightarrow \sum b_i \cdot 2^i = x' \rightarrow x = -1 + x' \cdot (3/(2^{22} - 1))$$

A SIMPLE NUMERICAL EXAMPLE (2)

- $v_1 = (10001011101101101000111) \rightarrow x_1 = +0.637197$
- $v_2 = (0000001110000000010000) \rightarrow x_2 = -0.958973$
- $v_3 = (1110000000011111111000101) \rightarrow x_3 = +1.627888$
- **Evaluation**. $eval(v_1) = f(x_1) = 1.586245$; $eval(v_2) = f(x_2) = 0.078878$; $eval(v_3) = f(x_3) = 2.250650$
- **Mutation**. Possible improvement with no arithmetic calculation!
- $v'_3 = (1110000000 \underline{1}11111111000101) \rightarrow$
- $x'_3 = +1.630818 \rightarrow \text{eval}(v_3') = f(x_3') = 2.343555 > f(x_3) = \text{eval}(v_3) !$

A SIMPLE NUMERICAL EXAMPLE (3)

- Crossover.
- Suppose v_2 , v_3 were selected as parents.
- $v_2 = (00000 \mid 0111000000010000)$
- $v_3 = (11100 \mid 000001111111000101)$
- Offspring:
- $v'_2 = (00000|000001111111000101) \rightarrow x'_2 = -0.99811$
- $v'_3 = (11100|01110000000010000) \rightarrow x'_3 = +1.66602$
- $eval(v'_2) = f(x'_2) = 0.940865 > eval(v_2)$
- $eval(v_3) = f(x_3) = 2.459245 > eval(v_3) > eval(v_2)$

A SIMPLE NUMERICAL EXAMPLE (4)

• (Main) parameters.

•
$$pop_size = 50$$
; $p_c = 0.25$; $p_m = 0.01$.

- Experiments.
- Solution after 150 generations:
- $v_{max} = (1111001101000100000101)$
- $x_{max} = 1.850773$; $eval(v_{max}) = f(x_{max}) = 2.850227$
- Evolution of $f(x_{max so far})$ over generations:

1	10	40	100
1.441942	2.250363	2.345087	2.849246

A COMBINATORIAL EXAMPLE

- Travelling Salesperson Problem. Given the cost of travelling between every two cities, find the least expensive itinerary which passes exactly once through each city and returns to the starting one.
- An evolutionary approach.
 - Representation: integer vector for permutations.
 - Evaluation: sum of costs of successive edges in the tour.
 - Mutation: switch two genes.
 - Crossover (OX): choose a subsequence from a parent,
 for the rest preserve the relative order from the other one
 - P: (1 2 3 4 5 6 7 8 9 10 11 12) (7 3 1 11 4 12 5 2 10 9 6 8)
 - O: (3 1 11 4 5 6 7 12 2 10 9 8) (1 2 3 11 4 12 5 6 7 8 9 10)

ITERATED PRISONER'S DILEMMA (1)

• Gain table (one iteration):

Player1	Player2	Points1	Points2
Defect	Defect	1	1
Defect	Cooperate	5	0
Cooperate	Defect	0	5
Cooperate	Cooperate	3	3

Maximize the number of points

= 5 - # years_ in_prison.

- Always defect? Overall in many iterations, worse than "always cooperate".
- Example: arms race.

ITERATED PRISONER'S DILEMMA (2)

- Axelrod (1987).
- Deterministic strategies, based on previous three moves: $4^3 = 64$ different histories.
- Strategy: what move to make against each possible history: 64 bits (instead of "C/D").
- 6 extra bits for the history of the actual iterated game.
- 70 bits represent a strategy and a chromosome: 2⁷⁰ strategies!

ITERATED PRISONER'S DILEMMA (3)

- Random initialisation of the population;
- One generation:
 - Evaluate each player (chromosome) against other players on the actual games;
 - Select chromosomes for applying operators
 (average score → breed once;
 one SD above average → breed twice;
 one SD below average → no breeding);
 - Mutation and crossover applied (random pairs).

ITERATED PRISONER'S DILEMMA (4)

- TIT FOR TAT won two tournaments.
 - cooperate;
 - while (not halt) do what the oponent did in the previous step.
- Experiments first round: *fixed environment*.
 - $pop_size = 20; max_gen = 50; no_runs = 40;$
 - evaluation of each chromosome: average of iterated games against 8 best human strategies;
 - results: ≈ TIT FOR TAT or better in the static *fitnesslandscape* the 8 strategies)!
 - TIT FOR TAT is general; GA solutions were adapted to the specific environment.
 - browsing only 20*50=1000 strategies out of the 2⁷⁰!

ITERATED PRISONER'S DILEMMA (5)

- Experiments second round: *changing environment*.
 - each individual evaluated against all 20;
 - environment changes as individuals evoluate;
 - fitness: average score of the individual;
 - early generations: uncooperative strategies;
 - after 10-20 geenrations: more and more cooperation in the TIT FOR TAT manner: reciprocation!
- Further ideas:
 - no crossover (Axelrod 1987);
 - expandable memory (Lindgren 1992).

HOW DO GENETIC ALGORITHMS WORK?

- Implementation and use of a Genetic Algorithm
 - 1. Define its elements
 - Representation
 - Fitness function
 - Selection mechanism
 - Genetic operators
 - Parameters
 - 2. Design the experiment (includes optimising the GA)
 - Stand-alone
 - Comparison to non-GA algorithms
 - 3. Actually perform the experiment
 - 4. Interpret the results

WHAT ABOUT THE PROBLEM?

- 1. State the problem as optimisation of a real function (clustering?)
- 2. A step-by-step solution improvement strategy possible
 - Otherwise, create a frame for this (e.g., #_of_minterms)
- 3. Uni-criterial optimisation. Otherwise:
 - build one global criterion (linear timetable –/ non-linear) or
 - work in a Pareto setting
- 4. Optimisation as maximisation
 - Otherwise, use **-f** instead of **f**
- 5. Optimisation of positive functions
 - Otherwise, translate the function by a constant
- 6. Restrictions:
 - Encoded; penalties; repair.

SATISIFIABILITY PROBLEM

- Straightforward to encode solutions (a string of k bits is a truth assignment for k variables)
- Straightforward evaluation (the truth value of the resulting expression)
- But with only two possible values of the fitness function, impossible to "learn" / improve step by step.
- Fitness: number of terms which are evaluated as "true" step-by-step improvement possible.

A GA FRAME FOR NUMERICAL OPTIMISATION

- f: $\mathbb{R}^k \rightarrow \mathbb{R}$, with restrictions $x_i \in [a_i; b_i]$, f > 0.
- Optimisation using d=6 decimal positions.
- D_i is to be cut into $(b_i a_i) \cdot 10^6 \le 2^{m_i} 1._{(m_i \text{ minimal})}$
- Each x_i would then be represented by a substring of m_i bits.
- Decoding: $x_i = a_i + decimal(d_{m_i-1}...d_1d_0) \cdot \frac{b_i a_i}{2^{m_i} 1}$
- A candidate solution is represented by a bitstring of length $m = \sum_{i=1}^k m_i.$

ELEMENTS OF A GA FOR NUMERICAL OPTIMISATION (1)

• Initialization:

- population v_1 , v_2 , ..., v_{pop_size} .
- random bitwise or
- heuristic (initiate with some found solutions).

• Evaluation:

- decode the bitstring \mathbf{v} into a vector \mathbf{x} of numbers
- calculate eval(v)=f(x).
- **Halting condition**: a maximum number of generations (iterations) may be enforced.

ELEMENTS OF A NUMERICAL OPTIMISATION GA: SELECTION FOR SURVIVAL (1)

- Probability distribution based on fitness values
- Best known procedure is "roulette wheel":
 - Slots proportional to fitness.
 - Calculate (steps 1., 3., 4., for i=1..pop_size)
 - 1. Individual fitnesses: $eval(v_i)$
 - 2. Total fitness: $F = \sum_{i=1}^{pop_size} eval(v_i)$
 - 3. Individual selection probabilities: $p_i = eval(v_i) / F$
 - 4. Cumulative selection probabilities: $\mathbf{q}_i = \sum_{j=1}^{i} \mathbf{p}_j$ $\mathbf{q}_0 = 0$.

ELEMENTS OF A NUMERICAL OPTIMISATION GA: SELECTION FOR SURVIVAL (2)

- Idea: create an intermediate population
 - Spin the roulette wheel pop_size times. Each time:
 - select **for survival** one chromosome from the current population
 - put it into the intermediate population.
- Implementation:
 - generate a random (float) number r in [0, 1];
 - **if** $(q_{i-1} < r \le q_i)$ **then** select \mathbf{v}_i .
- In principle, best chromosomes get more and more copies; average stay even; worst die off.

OPERATORS FOR A NUMERICAL OPTIMISATION GA: **CROSSOVER** (1)

- p_c the probability of crossover gives the expected number of chromosomes which undergo crossover: p_c·pop_size.
- Selection for crossover (→parents).
 - −In the intermediate population

```
for (each chromosome) do

generate a random (float) number r in [0, 1];

if r < p_c then select the current chromosome.

mate the parents randomly.
```

OPERATORS FOR A NUMERICAL OPTIMISATION GA: CROSSOVER (2)

- for (each paired parents) do
 - generate a random number $pos \in \{1,...,m-1\}$
 - replace the two parents by their offspring.

P1 =
$$(a_1 \ a_2 \dots a_{pos} \ a_{pos+1} \dots a_m)$$

P2 = $(b_1 \ b_2 \dots b_{pos} \ b_{pos+1} \dots b_m)$
O1 = $(a_1 \ a_2 \dots a_{pos} \ b_{pos+1} \dots b_m)$
O2 = $(b_1 \ b_2 \dots b_{pos} \ a_{pos+1} \dots a_m)$

• Uniform distribution?

OPERATORS FOR A NUMERICAL OPTIMISATION GA: MUTATION

- p_m probability of mutation gives the *expected* number of mutated bits: $p_m \cdot m \cdot pop_size$
- Each bit in the population has the same chance to undergo mutation.

for (each chromosome after crossover) do for (each bit within the chromosome) do generate a random number r in [0, 1]; if $(r < p_m)$ then mutate the current bit.

A DETAILED EXAMPLE (Michalewicz)

max f

 $\mathbf{f}(\mathbf{x}_1, \mathbf{x}_2) = 21.5 + \mathbf{x}_1 \cdot \sin(4\pi \mathbf{x}_1) + \mathbf{x}_2 \cdot \sin(20\pi \mathbf{x}_2),$ with restrictions: $-3.0 \le \mathbf{x}_1 \le 12.1, 4.1 \le \mathbf{x}_2 \le 5.8,$ with 4 decimal places for each variable.

• Representation:

- $-2^{17} < 151000 < 2^{18};$ $2^{14} < 17000 < 2^{15}$: 33 bits.
- $-\mathbf{v} = (010001001011010000.1111110010100010)$
- $-010001001011010000 \rightarrow 1.0524$
- $-111110010100010 \rightarrow 5.7553$
- eval(v) = $\mathbf{f}(1.0524, 5.7553) = 20.2526$.
- Set: $pop_size = 20$; $p_c = 0.25$; $p_m = 0.01$.

FIRST GENERATION (1)

- Random initialisation

 Evaluation (best_so_far: v₁₅; worst: v₂)
- $F = \sum eval(v_i) = 387.7768$
- Field of probabilities (p_i, i=1..*pop_size*).
- Cumulative probabilities (q_i, i=0..pop_size).
- Spinning the roulette wheel *pop_size* times.
- New population (same generation).

FIRST GENERATION - CROSSOVER

- Selection for crossover.
 - Some chromosomes selected (p_c·pop_size ?).
 - *If* (odd number) *then* randomly *decide* {drop / add}.
 - Randomly couple together selected parents.
- Example one pair. Generate $pos \in \{1..32\}$. pos = 9.

```
v_2'= (100011000.10110100111110000011110010)

v_{11}'= (1110111101.1011110000100011111011110)
```

 v_2 ''= (100011000. 1011100001000111111011110) v_{11} ''=(111011101. 1011010011111000001110010)

FIRST GENERATION - MUTATION

Selection for mutation.

- 660 times generate a random number in [0;1]
- Distribution? (uniform / targeted)
- Expected number of mutated bits: p_m·m·pop_size=6.6

r	Bit position (population)	Chromos. number	Bit position (chromos.)
0.000213	112	4	13
0.009945	349	11	19
0.008809	418	13	22
0.005425	429	13	33
0.002836	602	19	8

A DETAILED EXAMPLE - CONCLUSIONS

- Best chromosome in the final, 1000^{th} generation: v_{11} =(1101011000000100100110001110000) eval (v_{11}) = f (9.6236, 4.4278) = 35.4779.
- 396th generation: **eval** ($best_so_far$) = 38.8275!
- Store *best_so_far* as the current solution given by the GA (not *best_of_generation*).
- Reason: stochastic errors of sampling (pseudorandom numbers, finite populations, finite number of generations).

THE NEED FOR THEORETICAL MODELS

- What laws describe the macroscopic behaviour of Genetic Algorithms?
- How do low-level operators (selection, crossover, mutation) result in the macroscopic behaviour of Genetic Algorithms?
- What makes a problem suited for GAs?
- What makes a problem unsuited for GAs?
- Which performance criteria are relevant?
- See "Foundations of Genetic Algorithms" series (started in 1991).

EXISTING THEORETICAL MODELS

• Schema Theorem:

- "The two-armed bandit problem" (Holland 1975);
- "Royal Roads" (Forrest, Holland, Mitchell, 1992)
- Exact mathematical models of simple GAs (Vose 1991, Goldberg 1987, Davis 1991, Horn 1993, Whitley 1993)
- Statistical-Mechanics approaches (Prügel-Bennett 1994)

THE **SCHEMA** APPROACH

- "Schema" ("schemata") is a formalization of the informal notion of "building blocks".
- A schema is a set of bitstrings (hyperplane) which is described by a template made up of ones, zeroes and asterisks (wild cards).
- Example: **m**=10.
 - $-H_1=\{(0011000111), (0011000110)\}; S_1=(001100011*)$
 - $H_2 = \{(0011000111), (0001000111), (0011001111), (0001001111)\}; S_2 = (00*100*111)$

SCHEMAS

- A schema with a wildcards describes a hyperplane containing 2^a strings.
- A string of length m is matched by (is represented, is an **instance** of) 2^m schemata.
 - m=2. **01** is an instance of: **01**, **0***, ***1**, ******.
- For all the 2^m strings of length m there exist exactly 3^m schemata.
- Between 2^m and $pop_size \cdot 2^m$ of them may be represented in one generation.
- When is the union / difference of two schemas a schema?

CHARACTERISTICS OF SCHEMATA (1)

1. Defined bits of a given schema S: all non-wildcard positions of S.

2. Order of a schema S, o(S):

number of defined bits in S

- how specific is S?
- $o(S_2) = 8$.

3. Defining length of a schema S, $\delta(S)$:

distance between its outermost defined bits.

- how compact is the information in the schema?
- $\delta(S_2) = 10 1 = 9$.
- if S has only one defined bit, then $\delta(S)=0$.

CHARACTERISTICS OF SCHEMATA (2)

4. Average ("static") fitness of a schema S in a Genetic Algorithm: the arithmetic mean of the evaluations of all instances str_i of S:

$$eval(S) = (1/2^r) \cdot \sum_{i} eval(str_i)$$

- r the number of wildcards in S.
- 5. Average fitness of a schema S in generation *n* of a specific Genetic Algorithm:

$$eval(S,n) = (1/k) \cdot \sum_{j} eval(str_{j})$$

• k – the number of instances of S in the population P(n).

EVALUATION OF SCHEMA

- Schemas **are not** explicitly represented / evaluated by the GA.
- Estimates of schema average fitnesses **are not** calculated / stored by the GA.
- However, the number of instances of given schemas in successive generations increases or decreases, as if they were! (is this a genotype for the phenotype "estimate"?)
 - With random initialization, in the first generation, on the average, half of the population will be instances of the schema S=(1*...*) and the rest - instances of the schema T=(0*...*). All evaluations of chromosomes can be considered as estimating **eval**(S) and **eval**(T).

SCHEMA DYNAMICS

- Notation: " $x \in H$ " for "x is an instance of H"
- Let **H** be a schema with
 - $-\eta(H,t)$ instances in generation t;
 - eval(\mathbf{H} , \mathbf{t}) the observed average fitness.

$$E(\eta(H,t+1)) = ?$$

(what is the *expected number* of instances of **H** in generation **t**+1, under the following assumptions:

- "roulette wheel" selection procedure
- one-point crossover
- standard mutation).

THE EFFECT OF SELECTION

• One chromosome x will have in the next generation an expected framber of f(x) / offspring. $\bar{f}(t)$ - $f(x) = \mathbf{eval}(x)$; - average fitness in gen. \mathbf{t} E($\eta(\mathbf{H}, \mathbf{t} + 1)$) = $\sum_{x \in \mathbf{H}} \frac{\operatorname{eval}(x)}{f(t)} = \frac{\eta(\mathbf{H}, \mathbf{t})}{\operatorname{eval}(\mathbf{H}, \mathbf{t})} \cdot \frac{\operatorname{eval}(\mathbf{H}, \mathbf{t})}{f(t)}$, since $\operatorname{eval}(\mathbf{H}, \mathbf{t}) = \frac{\sum_{x \in \mathbf{H}} f(x)}{\eta(\mathbf{H}, \mathbf{t})}$.

• The GA does not calculate explicitly **eval**(**H**,**t**), but this quantity decides the number of instances of **H** in subsequent generations.

THE EFFECT OF CROSSOVER

- Effect: destroy or create instances of **H**.
- Consider the disruptive effect only \rightarrow lower bound for $\mathbf{E}(\eta(\mathbf{H},t+1))$.
- Suppose an instance of **H** is a parent.
- The lower bound for the probability $S_c(\mathbf{H})$ that \mathbf{H} will survive after crossover:

$$S_c(\mathbf{H}) \ge 1 - p_c \cdot (\delta(\mathbf{H})/(m-1))$$

• The probability of survival under crossover is higher for more compact ("shorter") schemas.

THE EFFECT OF MUTATION

- Again, consider the destructive effect only.
- The probability of survival under mutation:

$$\mathbf{S}_{\mathbf{m}}(\mathbf{H}) = (1 - \mathbf{p}_{\mathbf{m}})^{\mathrm{o}(\mathbf{H})}$$

(the probability that no defined bits will be mutated).

• The probability of survival under mutation is higher for lower-order schemas.

SCHEMA THEOREM

$$\begin{split} E(\eta(H \quad , t+1)) \geq & \frac{eval(H,t)}{\overline{f}(t)} \cdot \eta(H,t) \cdot (1-p_c \cdot \frac{\delta(H)}{m-1}) \cdot (1-p_m)^{o(H)} \\ \bullet \quad \text{Describes the minimal growth of a schema from} \end{split}$$

- one generation to the next.
- One way to intepret it:
 - "Short,
 - low-order,
 - constantly above average schemas
 - receive exponentially increasing numbers of instances in successive generations of a GA"
 - (because the factor of growth is eval(H,t)/f(t)).

OPERATORS AS "BUILDERS"

- The Schema Theorem gives a lower bound because it neglects the "creativity" of operators.
- It is however believed that **crossover** is a major source of GA power.
 - recombines instances of good schemas to create instances of (oftenly enough) at least that good schemas
- "Building Block Hypothesis": the *supposition* that this is how GAs work.
- **Mutation** provides *diversity* even when the population tends to converge
 - if in the population a bit becomes definitely 0, then only the mutation gives a chance to still try 1.

IMPLICIT PARALLELISM

- In one generation, a Genetic Algorithm:
 - estimates the average fitnesses of all schemas which have instances in that generation;
 - increases / decreases the representation of these schemas in the next generation accordingly.
- Implicit evaluation of a large number of schemas using only *pop_size* chromosomes.
- This is **implicit parallelism** (Holland 1975).
- Different from *inherent parallelism* (GAs lend themselves to parallel implementations).

SELECTION IN ACTION

- Selection **biases** the sampling procedure towards instances of schemas whose average fitness is estimated to be above average.
- The estimation is more and more accurate, as the "age" of the population increases.
- There are however counterexamples ("deceiving problems").

ADAPTATION REVISITED

• Holland: an adaptive system should **identify, test** and **incorporate** structural properties which are likely to give better performance in some environment.

• Exploration vs. Exploitation:

- search for new, useful adaptations vs.
- use and propagation of adaptations.
- Neglecting one of them may lead to:
 - overadaptation (inflexibility to novelty) "stuck"
 - underadaptation (few/no gained properties).
- GA should have a proper balance between them.

THE TWO-ARMED BANDIT PROBLEM

- A model in statistical decision theory, adaptive control (Bellman 1961).
- Holland (1975) used it to study how the Genetic Algorithm allocates samples to schemas.
- A gambler has N coins to play a two-armed slot machine. The goal is to maximize the N-times payoff.
 - the two arms are labeled A_1 and A_2 ;
 - their mean payoffs per trial are μ_1 and μ_2 ;
 - which are stable over the experiment (stationary, independent processes);
 - the variances are σ_1 and σ_2 respectively;
 - all μ_1 , μ_2 , σ_1 , σ_2 are unknown to the player;
 - she can only estimate them by playing coins in each arm.

TWO-ARMED BANDIT USEFUL

- How should coins be allocated to each arm, given:
 - the observed payoffs
 - the respective estimates of the average payoffs μ_1 , μ_2
 - the estimates of their respective variances σ_1 , σ_2 ?
- Resource allocation under uncertainty.
- Not for **guessing** the better arm, but rather for **maximizing** the payoff (on-line!)
- It is a combined goal, which could be losely described as: "find the solution using a minimum of resources".
- Holland: 3^{m} schemas $\rightarrow 3^{m}$ arms. Strategy: allocate exponentially more trials to the "better" arms.
- Maximization of on-line performance of GAs.

A SOLUTION TO THE TWO- ARMED BANDIT PROBLEM

- Assume $\mu_1 \ge \mu_2$:
 - $-A_1$ has higher average payoff than A_2 .
- After N trials, let:
 - $-A_{H}(N, N-n)$ be the arm with **observed** higher payoff;
 - $-A_L(N, n)$ be the arm with **observed** lower payoff;
 - n be the number of trials allocated to $A_{I}(N, n)$;
 - N-n the number of trials allocated to $A_H(N, N-n)$.
- Find n* to maximize expected profits over N trials.
- Ideally: $N \cdot \mu_1$ (all trials allocated to the true best).
- A "loss" is a trial allocated to the true worse arm.

SOURCES OF PROFIT LOSS 1. $A_L(N, n) = A_1$

- Over the N-n trials given to $A_H(N, N-n)$, the gambler lost expected profits of $(N-n)\cdot(\mu_1 \mu_2)$.
 - $A_H(N, n)$ may change over time, but this is irrelevant
- 2. $A_L(N, n) = A_2$
 - The loss in expected profits comes now from the n trials given to $A_L(N, n)$; it is exactly $n \cdot (\mu_1 \mu_2)$
- 3. Let q be the probability of case 1.: $q = Prob(A_1(N, n) = A_1)$

ANALYSIS OF RESOURCE ALLOCATION FOR 2AB (1)

• Let L(N-n,n) be the losses over N trials:

$$L(N-n,n) = q \cdot (N-n) \cdot (\mu_1 - \mu_2) + (1-q) \cdot n \cdot (\mu_1 - \mu_2)$$

• Find n* which minimizes L(N-n,n).

$$\frac{dL}{dn} = (\mu_1 - \mu_2) \cdot (1 - 2q + (N - 2n)) \frac{dq}{dn} = 0$$

But
$$q = Prob(\frac{S_2^{N-n}}{N-n} > \frac{S_1^n}{n}) = Prob(\frac{S_1^n}{n} - \frac{S_2^{N-n}}{N-n} < 0),$$

where the two S's are the sums of the payoffs of all allocated trials to A_1 , respectively A_2 .

ANALYSIS OF RESOURCE ALLOCATION FOR 2AB (2)

- The two S's are actually random variables and so is there difference.
- What is (an approximation of) the area given by the part of the distribution which is less than zero?
 - Holland: the central limit theorem (normality);
 - later on, Frantz: the theory of large deviations!
- Frantz: the optimal allocation, n^* , of trials to the worse arm A_2 is approximated by $(c_i$ are constants): $n^* \approx c_1 \cdot \ln(\frac{c_2 \cdot N^2}{\ln(c_2 \cdot N^2)})$

ANALYSIS OF RESOURCE ALLOCATION FOR 2AB (3)

• We get:

$$N-n^* \approx e^{n^*/2c_1} \cdot \sqrt{\frac{\ln(c_3 N^2)}{c_2}} - n^*$$

- As n^* increases: $N n^* \approx e^{cn^*}$
- The optimal allocation of trials to the observed better arm, N-n*, should increase exponentially with the number of trials allocated to the observed worse arm.

INTERPRETATION OF THE SOLUTION

- 2AB illustrates perfectly the "exploration" vs. "exploitation" problem faced by any adaptive system.
- GA: there are 3^m rather than 2 arms.
- The schema theorem states that, under its assumptions, the **GA embodies a version** of the optimal 2AB strategy above:
- The population increases exponentially w.r.t. the trials allocated to worse observed schemas.

THE GENETIC ALGORITHM VS. THE OPTIMAL 2AB STRATEGY

• Grefenstette e.a. discuss the fitness function:

$$f(x) = \begin{cases} 2 \text{ if } x \in 111^*...^* \\ 1 \text{ if } x \in 0^{***}...^* \\ 0 \text{ otherwise} \end{cases}$$

- $f(x) = \begin{cases} 1 \text{ if } x \in 0^{***}...^* \\ 0 \text{ otherwise} \end{cases}$ eval(1*...*) = \frac{1}{2} (3 \text{ instances out of 4 give 0, one } \frac{1}{2} (3 \text{ instances out of 4 give gives 2)
- **eval**(0*...*) = 1
- $eval(1^*...^*, n) \rightarrow eval(111^*...^*, n) \approx 2$ after some generations
- Instances of 111*...* also instances of 1*...* will be strongly selected, much more often than instances of 0*...*
- High variance of **eval**(1*...*) ("2" vs. "0")!

GA VS. 2AB: THE DIFFERENCE

- 2AB: the two random variables describing each arm are **independent**.
- GA: different "arms" (schemas) interact
 - the observed payoff of schema 1*...* is strongly influenced by the observed payoff of 111*...*
 - additional instances of 1*...* bring no additional information about the payoff of 1*...*, since they are likely to be all instances of 111*...*
- The GA does not sample schemas independently for estimating their true payoffs.

HOW CLOSE IS THE GA TO THE 2AB?

- Actually, the GA is not playing a 3^m-armed bandit with all schemas competing as arms.
- The GA plays a 2^k-armed bandit for each schema of order k (Holland).
- The GA allocates exponentially more samples to the best observed sub-schema of a schema than to the next best, etc.
- The GA's "strategy" will be (nearly) optimal if the fitnesses of schemas in the population are reasonably uniform distributed (Grefenstette example above for d*...*).

GA: THE EVOLUTION OF 2^K-ARMED BANDIT

• k (from "2^k—armed bandit") is largely believed to increase as the GA proceeds towards more aged generations:

from low-order schemas to higher and higher-order schemas.

- However, at each generation selection introduces new biases in the way schemas are sampled (see Grefenstette example).
- This is why the *static average fitnesses* of schemas are not necessarily correlated with their *observed* average fitness.

ON-LINE PERFORMANCE

- 2AB strategy is fit for **adaptation**, or equivalently, for **on-line performance**.
- E.g.: real-time control problems.
 - automatic control of machineries
 - learning to navigate in an unknown environment
 - predicting financial markets
- To **optimise** (find the best solution) vs. to **satisfice** (find a good enough solution).
 - approximated solution, but found very quickly.
 - Satisficing means maximizing, for a given amount of time (samples), the amount of information about the sub-spaces likely to provide good solutions if sampled in the future: GA.
 - Optimising may need GA (≈global) + Hill climber (≈local).

DECEIVING A GENETIC ALGORITHM

• Bethke (1980): if low-order schemata contain misleading information about higher-order schemata, then the GA will hardly find the optimum.

• Example:

- call the schema with highest static fitness in a hyperplan "a winner";
- suppose schemas with all defined bits '1' are winners, except for 11...1;
- let 00...0 be a winner (hence, an optimum);
- this is a "fully deceptive" (Goldberg, 1987) function:
 lower-order schemata give misleading information as to where the optimum is likely to be found.

DECEIVING A GENETIC ALGORITHM

- There are *degrees of deception* (some schemas give correct information, others don't).
- Bethke used "Walsh transforms" (analogous to Fourier transforms) to design such functions
- Is deception **that** important?
 - no, if GAs are satisficers rather than optimisers;
 - no, if you look for alternative representations (which one is best for a GA to solve a problem?)
- Grefenstette gives examples of deceptive functions which are either easy or difficult for GA to optimise!
 - so, deception is not clearly important!
- There is a need to take into consideration other, more dynamic features of GAs. E.g., biases from selection!

SCHEMA APPROACH: DRAWBACKS

- Explains how convergence happens, if it happens.
- How does a non-represented schema appear in a future generation?
- Which new schemas are more likely to be discovered?
- How is the estimate of the average fitness built from the average fitness in one (successive) generation(s)?
- What about situations where the observed fitness of a schema and its actual fitness *are not correlated*?
- What about the speed of convergence?
- Schemas are fit for the likely building blocks of *one-point crossover*. Other structures deal better with other operators.
- One-step process only; unreallistic assumptions for longer-time predictions.

ROYAL ROAD FUNCTIONS

- Stephanie Forrest, John Holland, Melanie
 Mitchell 1992→
- Schema Theorem: positive effects of selection, negative aspects of operators.
- RRF illustrate the *constructive* power of crossover.
- Schema Theorem: suggested Building Blocks
 - short, low order, highly-fit schemata;
 - allow for the presence of intermediate "stepping stones"
 - intermediate order, higher fitness schemas
 - obtained from lower-order schemas
 - which can be combined in even higher-fitness schemas.

ROYAL ROAD R₁

- A function with all those properties.
- R_1 is built from a list of schemas s_i .
- Each schema is given with a coefficient c_i.

$$\mathbf{R}_{1}(\mathbf{x}) = \sum_{i} \mathbf{c}_{i} \cdot \mathbf{\delta}_{i}(\mathbf{x}),$$

• where $\delta_i(x) = if(x \in s_i)$ then 1 else 0.

R₁ has a building-block structure;

the building-block hypothesis should lay out a "royal road"

for the GA to reach the optimal string.

STRUCTURE FOR A ROYAL ROAD FUNCTION

```
s_7 = *******************************, c_7 = 8
• In this case, c_i = order(s_i).
```

A GENETIC ALGORITHM FOR R₁

- A standard GA with the following specific settings:
- $pop_size = 128$; random initialization; $p_c=0.7$; $p_m=0.005$.
- σ -selection (σ the standard deviation of fitnesses in the population).
 - expected number of offspring per individual:

$$1 + (f(x_i) - F/pop_size) / \sigma$$

- topping at 1.5 (most often: 0, 1, 2), which
 - slows down the convergence by
 - preventing premature convergence
 - for R₁, some individuals are much better fitted than most individuals.
- The GA has been compared with 3 hill climbers.

PREMATURE CONVERGENCE

- The population converged
 - most chromosomes are copies of one genotype
- but not to a representation of an optimal solution
 - rather, to a local optimum
- It's not necessarily "in too few generations"
- it's "to a wrong target"

HILL CLIMBERS (1)

- Steepest ascent hill climbing (SAHC).
 - 1. choose a string at random (*current_hilltop*);
 - 2. generate all its neighbours at Hamming distance 1;
 - 3. first fitness-improving neighbour becomes new *current_hilltop* (ties decided at random);
 - 4. if (no fitness increase) then {save *current_hilltop*; go to 1} else go to 2;
 - 5. when *max_no_of_function_evaluations* is reached, return highest hilltop found.

HILL CLIMBERS (2)

- Next-ascent hill climbing (NAHC). m loci modulo m.
 - 1. choose a string at random (*current_hilltop*); set j=1;
 - 2. generate at most m neighbours at Hamming distance 1, starting from locus j;
 - 3. if (a fitness increase happens at locus k) then {set the new *current_hilltop*; j=(k+1)%m; go to 2;}
 - 4. save *current_hilltop* and go to 1;
 - 5. when *max_no_of_function_evaluations* is reached, return highest hilltop found.

HILL CLIMBERS (3)

- Random mutation hill climbing (RMHC).
 - choose a string at random (current_hilltop);
 - 2. choose a locus at random to flip;
 - 3. if (fitness at least that good) then set the new *current_hilltop*;
 - 4. go to step 2 until *max_no_of_function* _*evaluations* is reached;
 - 5. return *current_hilltop*.

EXPERIMENTAL RESULTS

- 200 runs of each algorithm, each time with a different random-number seed. Max_no_evaluations = 256,000.
- An algorithm was allowed to run until optimum was found; the number of function evaluations was recorded.

Number of evaluations over 200 runs	GA (σ/sqrt(200))	SAHC	NAHC	RMHC (\sigma/sqrt(200))
Mean	61,334 (2,304)	⊥ >256,00 0	⊥ >256,00 0	6,179 (186)
Median	54208	⊥ >256,00 0	⊥ >256,00 0	5,775

THE PROBLEM

• A landscape designed to provide "royal roads" for the GA to converge actually leads to a better performance of a random procedure!

• Under what conditions would a GA outperform other search algorithms (hill climbers)?

ANALYSIS OF RMHC (1)

- Feller 1968 "An Introduction to Probability Theory and Its Applications"
- Suppose the Royal Road function uses N adjacent blocks of K ones (for R_1 : K = 8, N = 8).
- E(K,N) the expected number of function evaluations before RMHC finds the optimum.
- The time needed to find a second block is larger than the time needed to find the first block (mutations wasted to flip bits inside the first block).
- Non-wasted mutations: $(K \cdot N K) / K \cdot N$ (outside the first block).
- Useful mutations p% of the time \rightarrow 100/p times as long to reach the same performance as if no wasted mutations.

ANALYSIS OF RMHC (2)

• $E(K,2) = E(K,1) + E(K,1) \cdot (K \cdot N / (K \cdot N - K))$

$$= E(K,1) \cdot N / (N-1)$$

- $E(K,3) = E(K,2) \cdot N / (N-2)$
- $E(K,N) = E(K,N-1) \cdot N / (N-(N-1))$
- $E(K,N) = E(K,1) \cdot N \cdot (1+1/2+1/3+...+1/N)$ (actually, worse than that: E(K,N) depends on worst-time block, not necessarily the first one).
- $E(K,N) \approx E(K,1) \cdot N \cdot (\ln N + \gamma)$ γ is Euler's constant.

ANALYSIS OF RMHC (3)

- E(K,1) can be studied via a Markov chain analysis (mutation by mutation).
- Result: $E(K,1) \rightarrow 2^K$ (decreasing) as $K \rightarrow \infty$.
- E(8,1) = 301.2
- Overall: $E(K,N) \approx 2^K \cdot N \cdot (\ln N + \gamma)$
- E(8,8) = 6,549
- Experimental result over 200 runs: 6,179

THE GA: HITCHHICKING

- One reason for the bad performance of the GA compared to RMHC: hitchhiking.
- Once an instance of a good schema is found, zeros in other positions than the discovered block(s) – defined positions of the schema – spread in the population at high fitnesses.
- Ones in wild-card positions become more difficult to find, especially those close to the defined positions of the schema (crossover disruption of "hitchhikers" is less likely 104 there).

EFFECTS OF HITCHHICKING (1)

- "Spurious correlation" (Belew 1992, Whitley 1991, Schaffer 1991).
- The implicit parallelism of the GA is limited by restricting, at certain loci, the number of schemas sampled: **non-independent sampling**.
- The effectiveness of crossover is limited by early convergence to **wrong**, but highly fitted schemas.
- The effect exists in real population genetics (and not only there)!

EFFECTS OF HITCHHICKING (2)

- A good schema S not present in the first generation will be disfavored in subsequent generations by:
 - neighbor schemas already present in the population
 - mostly if both neighboring blocks are already found
 - in different schemas or
 - in one schema
- Overlapping should be defined in terms of "aura" rather than "position".

AN IDEALIZED GENETIC ALGORITHM

- There is no independent sampling in either GA ("biased sampling" Grefenstette) or RMHC:
 - GA: samples in the s_3 hyperplan were not independent of those in the s_2 or s_4 hyperplans;
 - RMHC: each string differed from the previous one only in one bit.
- Nevertheless, the RMHC explores the search space in a systematic, bit-by-bit manner, never loosing something already found.

STATIC BUILDING BLOCK HYPOTHESIS

If, in the GA

- there could be an independent sampling in each hyperplan and
- the best schema in each hyperplan were selected

then crossover should quickly combine the best schemas in different hyperplans into one string.

• How would an idealized GA, working according to the SBBH, look like (Mitchell, Holland, Forrest, 1994)?

AN IDEALIZED GENETIC ALGORITHM

- IGA does not have a population one string at a time
- Input: desired schemas (idealized...).

```
repeat {generate strings at random}until (the generated string contains at least one desired schema);
```

store that string;

While (not halting condition) do {

generate strings at random (uniform probability);

whenever a string containing one or more *yet-undiscovered schemas* is found, **crossover** it with the stored string;

replace the stored string by the offspring containing all desired schemas discovered so far;

FEATURES OF IDA

- Strings are chosen completely independently, so schemas (hyperplans) are sampled independently
- Selection is deterministic and driven by the memory of desired / found schemas.
- Crossover is used.
- Actually, desired schemas are not known beforehand.
- However, IDA gives a **lower bound** on the time (number of function evaluations) needed by any GA to find the optimal string for R_1 .

ANALYSIS OF IDA (1)

- Again, N blocks of K ones each.
- N=1 : one desired schema, H.
- p: the probability of finding an instance of H at random. $p = 1/2^K$.
- q = 1 p.
- $p_1(t)$: the probability to find H before time t.
- $p_1(t) = 1 q^t$
- $p_N(t) = (1 q^t)^N$ (all N schemas found by time t)

ANALYSIS OF IDA (2)

- $p_N(t)$ is the probability to find all N schemas at time t at the latest.
- We are interested in the **expected time** to find all N schemas, E_N .
- Let $P_N(t)$ be the probability to find them all at time N.

•
$$P_{N}(t) = P_{N}(t) - P_{N}(t-1) = (1 - q^{t})^{N} - (1 - q^{t-1})^{N}$$

$$E_{N}^{N} = \sum_{t=1}^{\infty} t \cdot P_{N}(t) = \sum_{t=1}^{\infty} t \cdot ((1-q^{t})^{N} - (1-q^{t-1})^{N})$$

ANALYSIS OF IDA (3)

$$((1-q^t)^N - (1-q^{t-1})^N) =$$
1) $t^{\frac{1}{2}} = C^2 (1/(2^2-1)) \cdot 2^{t} \cdot 1 + (-1)^{N-1} \cdot C^N (1/(2^N-1)) \cdot 2^{t} \cdot 1 + (-1)^{N-1} \cdot 1$

$$= [C_N^1(1/q-1)q^t] - [C_N^2(1/q^2-1)q^{2t}] + \dots + (-1)^{N-1}[C_N^N(1/q^N-1)q^{Nt}]$$

• In order to sum $(1..\infty)$ such expressions multiplied by t, we can consider the infinite sum of first terms, the infinite sum of second terms etc.:

$$C_N^1(1/q-1)\sum_{t=1}^\infty t \cdot q^t = C_N^1(1/q-1) \cdot q(q+2q^2+3q^3+\ldots) =$$

$$C_N^1(1/q-1) \cdot q \cdot \frac{d}{dq}(q+q^2+...) = C_N^1(1/q-1) \cdot q \cdot \frac{d}{dq}(\frac{q}{1-q}) = C_N^1 \frac{1}{1-q}$$

• The sum over the nth term is $C_N^n \frac{1}{1-q^n}$.

ANALYSIS OF IDA (4)

• Substituting 1-p for q and assuming that K is large enough to give $q^n = (1-p)^n \approx 1 - n \cdot p$, we get:

we get:

$$E_{n} \approx \frac{1}{p} \cdot \left(\frac{C_{N}^{1}}{1} - \frac{C_{N}^{2}}{2} + \frac{C_{N}^{3}}{3} - \dots + (-1)^{n-1} \frac{C_{N}^{N}}{N}\right)$$

- For N=8, K=8, we obtain $E_N \approx 696$
- The experiments of Mitchell e.a. gave exactly this value over 200 runs of the IDA (σ =19.7).

ANALYSIS OF IDA VS. RMHC

• Binomial theorem + integration of $(1+x)^N$ give :

$$\sum_{n=1}^{N} C_{N}^{n} \cdot \frac{x^{n}}{n} = \sum_{n=1}^{N} \frac{1}{n} \cdot ((1+x)^{n-1} - 1)$$

• This leads to:

$$E_{N} \approx -\frac{1}{p} \sum_{n=1}^{N} C_{N}^{n} \cdot \frac{(-1)^{n}}{n} = \frac{1}{p} \sum_{n=1}^{N} \frac{1}{n} \approx \frac{1}{p} \cdot (\ln N + \gamma)$$

- Hence, for the GA: $E_N = O(2^K \cdot ln(N))$
- For RMHC : $E(K,N) = O(2^K \cdot N \cdot ln$ (N))

WHAT MAKES IDA N TIMES FASTER THAN RMHC?

• Implicit parallelism:

- IDA perfectly implements it: new samples are given independently to each schema region;
- RMHC: each new string gives a new sample to only one schema region.

• Independent sampling:

- allows multiple schemas to be found in a new string
- avoids wasted samples (mutations of correct bits).
- For IDA, the same comparison is valid against any HC method based on flipping single or few bits.

HOW MUCH OF IDA CAN BE BUILT IN AN ACTUAL GA?

1. Independent sampling:

- 1. the population size has to be large enough;
- 2. mutation rate sufficiently large
- 3. selection pressure lowered (the <u>relative fitness</u> of non-overlapping desirable schemas has to be small enough)

2. Storing desired schemas

1. however, selection pressure high enough for desirable schemas to *survive*

3. Instantaneous crossover

1. <u>crossover rate</u> has to be high enough to allow for *quick* recombination of two desired schemas

4. Speedup over RMHC

- 1. the <u>length of strings</u> has to be large enough to have a significant factor N.
- How to balance non-compatible features (1.2 vs.2., 1.3 vs. 2.1)?

IMPLEMENTATION OF GENETIC ALGORITHMS

- Huge number of choices.
- Little theoretical guidance as to which ones are better in specific cases.
- Bitstring representation, fitness proportionate selection, simple operators may not be (and are not!) **the** choice in every particular case.
- There are as many GAs as there are GA projects

WHEN SHOULD A GA BE USED?

- Many successes, but there are failures too.
- A comparatively good GA is likely to exist if:
 - 1. the search space is large (otherwise: exhaustive search);
 - 2. the function to optimise is
 - "non-standard" and / or noisy (otherwise:
 a one-candidate-at-a-time approach for example,
 Hillclimbing)
 - multi-modal (otherwise: gradient-ascent)
 - less understood (otherwise: heuristics see the TSP)
 - 3. a sufficiently good solution, not necessary the global optimum, is required (otherwise: exact algorithms).

120

DATA STRUCTURES (1) BINARY ENCODINGS

- The representation of candidate solutions is believed to be **the** central factor of success / failure of a GA.
- Widespread option: fixed length, fixed order bitstrings.
- Advantages:
 - more schemas for the same amount of information
 - better developed theory and parameter-setting techniques (e.g., operator rates).
- Disadvantages: unnatural, uneasy to use for many problems (e.g.: evolving rules; optimising weights for artificial neural networks).

DATA STRUCTURES (2)

- Diploid encodings (recessive genes).
- *Many-character* and *real-valued* encodings are more natural and easy to handle. For some problems, better performance with larger encoding alphabets.
- *Tree encodings* led to Genetic Programming (Koza). The search space is open-ended: any size.
- Multi-dimensional encodings (clustering).
- *Non-homogenous* encodings (e.g., instructions to build a solution timetable).
- Sometimes, decodings performed with problem-specific heuristics (clustering).
- Davis (1991): choose the natural encoding, then devise the GA!

122

EVOLUTION OF ENCODING

- If less understood problems are fitted for using GAs, how could one know the "natural" encoding ahead of time?
- The linkage problem: which are the important loci for useful schemata? (in order to prevent them from being disrupted by crossover)
- Why not adapting the encoding itself?

ENCODING-ADAPTING TECHNIQUES

- Adaptation via **length evolution** (with variable length chromosomes)
- Inversion (representation-adapting operator)
- Identifying crossover "hot spots" (where to cut for best-fitted offspring?)
- Messy Genetic Algorithms (incomplete / contradictory representations).

ANOTHER VIEW ON

ADAPTING THE ENCODING (1)

- **Deception**: GA misled by short, low-order schemata.
 - good schemas (observed fitness, order, defining length) which are however bad from the viewpoint of static fitness.
- Important for understanding the way GAs work
- Not that important at the hands-on level
 - all known examples have been designed on purpose
 - starting from a "royal road" for deception to occur
 - and NOT from mathematical objects which are actual candidate solutions for a given problem
 - and for which there always exist <u>alternative</u>
 <u>representations</u> (better than the deceptive one).

ANOTHER VIEW ON ADAPTING THE ENCODING (2)

- Approaches to deception:
 - Alternative representations
 - only artificial examples lack alternative representations.
 - Inversion
 - an operator focused against certain deceptive situations.
 - Messy Genetic Algorithms
 - a Genetic Algorithm with a different approach for representation and a modified procedural scheme.

INVERSION (1)

- Holland (1975).
- An operator to handle the linkage problem in fixed-length strings.
- It is a reordering operator inspired from real genetics.
- The interpretation of an allele does not depend on its position.

INVERSION (2)

- Acts for order similar to mutation for bits
- $(00011010001) \rightarrow$ ((1,0)(2,0)(3,0)(4,1)(5,1)(6,0)(7,1)(8,0)(9,0)(10,0)(11,1))
- If *inversion points* are randomly generated to be after loci 3 and 7, then after inversion the chromosome becomes:

```
((1,0)(2,0)(3,0)|(7,1)(6,0)(5,1)(4,1)|(8,0)(9,0)(10,0)(11,1))
```

• Schemas like (10*************01) can be preserved after crossover, if successful inversion finds the building block (1,1) (2,0) (13,1) (12,0) (11,*)...(3,*))

INVERSION (3)

- Main drawback: crossing over two parents may result in meaningless offspring.
- This is because permutations are involved.
- Solution: master/slave approach.
 - one parent is chosen to be the master;
 - the other one is temporarily reordered to the same permutation as the master.
- Few good results, no proof (either by systematic experiments or by theoretical results) that inversion is beneficial.

CO-EVOLVING CROSSOVER "HOT SPOTS"

- Schaffer, Morishima: a dual approach to inversion.
- Find places where crossover is allowed to occur.
- In each chromosome the croosover points are marked (say, with "!"):

- Mutation may change 0's and 1's, but also it may erase a "!" or insert a new "!".
- Evaluation does not take into consideration the !'s.

MESSY GENETIC ALGORITHMS

- Goldberg, Deb 1989.
- Human genome: did not start with strings of length 5.9*10⁹, but rather from simple forms.

• Representation:

- bits tagged with locus
- underspecification (schemata);
- overspecification (diploidy);
- $-\{(1,0),(2,0),(4,1),(4,0)\} \rightarrow 00*1$
- $-\{(3,1),(3,0),(3,1),(4,0),(4,1),(3,1)\} \rightarrow **10$

THE MESSY GENETIC ALGORITHM (2)

• Evaluation:

- overspecified genes: left to right;
- underspecified genes:
 - estimation of static fitness (randomly generated chromosomes representing the scheme);
 - template: local optimum found before running the GA

Phases:

- primordial phase (exploration);
- juxtapositional phase (exploitation).

THE MESSY GENETIC ALGORITHM (3)

• Primordial phase:

- − guess k − the shortest useful schemas order;
- enumerate all these schemas.
- for k=3, m=8, this enumeration is: $\{(1,0),(2,0),(3,0)\}; \{(1,0),(2,0),(3,1)\}; \dots \{(1,1),(2,1),(3,1)\}; \{(1,0),(2,0),(4,0)\}; \{(1,0),(2,0),(4,1)\}; \dots \{(6,1),(7,1),(8,1)\}.$
- apply selection:
 - copies in proportion to fitness;
 - delete half of the population at regular intervals.

THE MESSY GENETIC ALGORITHM

(4)

- Juxtapositional phase:
 - fixed population size;
 - selection continues;
 - two operators:
 - **cut** : one messy chromosome is cut to give birth to two messy chromosomes
 - **splice**: two messy chromosomes are spliced into one.
- Test function: m=30; eval(chr) = $\sum eval(b_{3i+1}b_{3i+2}b_{3(i+1)})$
- $000 \rightarrow 28$; $001 \rightarrow 26$; $010 \rightarrow 22$; $011 \rightarrow 0$; $100 \rightarrow 14$; $101 \rightarrow 0$; $110 \rightarrow 0$; $111 \rightarrow 30$.

THE MESSY GENETIC ALGORITHM (5)

• Problems:

- k must be guessed no a priori knowledge;
- combinatorial explosion: the number of schemas to be generated is $2^k C_m^{\ k}$.
- population size grows exponentially with k (is k always small?)
- "probabilistically complete intitialization": initial chromosomes of length between k and m (implicit parallelism helps).

SAMPLING MECHANISM

- 1. Fitness-proportionate with "roulette wheel"
- 2. Stochastic Universal Sampling
- 3. Sigma Scaling
- 4. Elitism
- 5. Boltzmann Selection
- 6. Rank-based selection
- 7. Tournament Selection
- 8. Steady-State selection

SOCHASTIC UNIVERSAL SAMPLING (1)

- "Roulette Wheel" selection does not actually result in the expected number of copies
 - relatively small populations
 - there is a non-zero probability to have all offspring alocated to the worse individual!
- Baker (1987): spin the roulette only once, not *pop_size* times, but with *pop_size* equally spaced pointers on it.

STOCHASTIC UNIVERSAL SAMPLING (2)

```
ptr = Rand();
for (sum = i = 0; i < pop_size; i++)
    for (sum += Expected_Value(i,t); sum > ptr;
    ptr++)
        Select(i);
```

• Each individual i is guaranteed to be selected, at generation t: at least \[\text{Expected_Value(i,t)} \] times and at most \[\text{Expected_Value(i,t)} \] times.

SIGMA SELECTION

- The rate of evolution depends on the variance of fitnesses in the population. Can it be smoothed?
 - too large variances lead to premature convergence
 - small variances lead to a nearly random algorithm
- Forrest (1985): making variance less influential.
- $E_V(i,t) = if(\sigma(t) \neq 0)$ then $(1+(f(i)-f_med(t))/2\sigma(t))$ else 1.0
- Expected_Value(i,t) =

 if (E_V(i,t)>=0) then E_V(i,t) else const1
 (e.g., const1 = 0.1).

ELITISM

- Ken DeJong (1975).
- A possible addition to any selection mechanism.
- Retain some number k of the best individuals at each generation.
- k is a parameter of the algorithm.
- Often, it significantly improves the GA performance.

BOLTZMANN SELECTION

- Unlike what happens under Sigma scaling, one does not need a constant selection pressure over the run of a GA.
- Rather, different rates are needed at different moments.
- Boltzmann selection: a continuously varying **temperature T** controls the selection pressure.
- Starting temperature **high** \rightarrow selection pressure **low**.
- Subsequently temperature lowers \rightarrow selection pressure increases
- <u>Typical implementation</u>: each individual is assigned an expected value: $\mathbf{Exp_Val}(\mathbf{i,t}) = \mathbf{e^{f(i)/T}} / (\mathbf{e^{f(i)/T}})_t$,
 - where $\langle \cdot \rangle_t$ means "average over generation t".
- As T decreases, differences in Exp_Val increase (experimental exercise).

RANK SELECTION

- Purpose: to prevent premature convergence.
- Baker (1985):
 - individuals ranked according to fitness
 - expected values depend on rank, not on fitnesses
- No fitness-scaling is necessary.
- Rank selection decreases the selection
 pressure if the fitness variance is high; the opposite happens if the fitness variance is low.

RANK SELECTION: LINEAR RANKING

Rank individuals (increasing order of fitness):

Choose the expected value $Max \ge 0$ for rank pop_size ;

Set Min = 2 - Max (expected value for rank 1);

Set:
$$Exp_Val(i,t) =$$

$$=Min + (Max-Min)(rank(i,t)-1)/(pop_size-1)$$

• Exercise: given the restriction that, for fixed t, $\Sigma \text{Exp_Val}(i,t)=N$, prove that $1 \le Max \le 2$ and that Min has to be equal to 2-Max.

RANK SELECTION: A ROULETTE WHEEL

choose q;

for each rank i, set the probability to select chromosome i prob $(i)=q(1-q)^{i-1}$.

- $i=1 \rightarrow$ best chromosome.
- Example. $pop_size=50$, q=0.04: prob(1)=0.04; prob(2)=0.0384; prob(3)=0.036864; etc. $\sum_{i=1}^{pop_size} prob(i) = \sum_{i=1}^{pop_size} q \cdot (1-q)^i \approx 1.$

TOURNAMENT SELECTION

Similar to rank selection in terms of selection pressure.

Two individuals are chosen at random from the population;

A random number $r \in [0;1]$ is generated;

if (r < k) then (the fitter of the two individuals is selected) else (the less fit is selected);

The two are returned to the sampled population

- k is a parameter (e.g., k=0.9).
- Deb and Goldberg analysed this selection mechanism (1991)

STEADY STATE SELECTION

- Generational GAs: new generation consists only of offspring.
- No, few or more parents may survive unchanged.
- Generational gap: the fraction of new individuals in the new generation (DeJong).
- Steady state selection: only a few individuals are replaced in each generation.
- Several of the least fit individuals are replaced by offspring of the fittest ones.
- Useful in evolving rule-based systems (classifier systems Holland 1986)
- Analysed by DeJong and Sarma (1993).

SELECTION MECHANISMS – A BRIEF COMPARISON

- Fitness proportionate selection mechanism is used traditionally (as Holland's original proposal and because of its use in the schema theorem).
- Alternative selection mechanisms have been shown to improve convergence in many cases.
- Fitness-proportionate methods require two passes through each generation (one for mean fitness, one for expected values);
- Rank selection requires sorting the population time consuming.
- Tournament selection is computationally more efficient and amenable to parallelisation.

SELECTION MECHANISM: IDEAS FOR TAXONOMY

- Dynamics of the field of probabilities:
 - dynamic selections (expected value of any chromosome varies over generations: classical);
 - *static selections* (fixed expected values: ranking).
- Survival probabilities:
 - extinctive survival probabilities may be zero
 - left-extinctive best chromosomes $\leftarrow 0$;
 - right-extinctive worst chromosomes $\leftarrow 0$.
 - non-extinctive all survival probabilities non-zero.
- Elitist / non-elitist

THE ISLAND MODEL

- The population is made of *subsets of chromosomes*.
- These subsets evoluate separately (selection and operators applied only inside each subset of the population).
- At times, subsets exchange chromosomes with a certain probability.
- Advantage: more evolution histories in one run.