Name: Varsha Deshpande

# I. Analysis Tasks

Question 1: Which store has maximum sales?

#### R Code :

```
library("readxl")
work_dir <- "C:/Users/vdvde/Downloads"
setwd(work_dir)

getwd()

walmart_data = read.csv('Walmart_Store_sales.csv')
View(walmart_data)

library('dplyr')
store_sales = aggregate(Weekly_Sales~Store,walmart_data,FUN=sum)
View(store_sales)

numeric_data = c(store_sales$Weekly_Sales)
max_sales = max(numeric_data,na.rm = TRUE)
store_with_max = filter(store_sales,Weekly_Sales == max_sales)
paste("Store with maximum sales is: ",store_with_max$Store ,"with sales of
:",store_with_max$Weekly_Sales)
```

# Screenshots with output :

# walmart\_data:



Store\_sales (filtered data with store wise total sales):



## Maximum store calculation output:

```
> numeric_data = as.numeric(store_sales$weekly_Sales)
> max_sales = max(numeric_data,na.rm = TRUE)
> store_with_max = filter(store_sales,Weekly_Sales == max_sales)
> paste("Store with maximum sales is: ",store_with_max$store ,"with sales of :",store_with_max$weekly_Sales)
[1] "Store with maximum sales is: 20 with sales of : 301397792.46"
```

## Insights:

Method used was to calculate the aggregate of sales over each store and then use max () function to calculate the maximum sales store. Store 20 has the maximum sales in the walmart data set for the given period.

Question 2: Which store has maximum standard deviation i.e., the sales vary a lot. Also, find out the coefficient of mean to standard deviation?

## R Code:

```
sd_vector = c()
mean_vector = c()
library('dplyr')
for( i in seq(1,45,by=1)){
    storewise_sales = filter(walmart_data,as.numeric(Store) == i)
    mean_vector <- append(mean_vector, mean(storewise_sales$Weekly_Sales))
    sd_vector <- append(sd_vector,sd(storewise_sales$Weekly_Sales))
}
#Calculate Coff of variances
max_variance = max(sd_vector)
calc_table = data.frame(Store=seq(1:45),sd_vector,mean_vector)</pre>
```

```
View(calc_table)

calc_table$Store = unique(walmart_data$Store)

calc_table$cov = calc_table$sd_vector/ calc_table$mean_vector

View(calc_table)

store_with_max_variance = select(filter(calc_table, calc_table$sd_vector == max_variance),Store)

paste("Store with maximum Variance is:", store_with_max_variance)
```

# • Screenshots with output :

## Store-wise mean and standard deviation and coefficient of variance vectors:

| RegressionAssignment.R × ProjectVarsha.R × calc_table × |                    |           |             |                  |  |  |  |  |  |
|---------------------------------------------------------|--------------------|-----------|-------------|------------------|--|--|--|--|--|
| □□   🖅 Filter                                           |                    |           |             |                  |  |  |  |  |  |
| •                                                       | Store <sup>‡</sup> | sd_vector | mean_vector | cov <sup>‡</sup> |  |  |  |  |  |
| 1                                                       | 1                  | 155980.77 | 1555264.4   | 0.10029212       |  |  |  |  |  |
| 2                                                       | 2                  | 237683.69 | 1925751.3   | 0.12342388       |  |  |  |  |  |
| 3                                                       | 3                  | 46319.63  | 402704.4    | 0.11502141       |  |  |  |  |  |
| 4                                                       | 4                  | 266201.44 | 2094713.0   | 0.12708254       |  |  |  |  |  |
| 5                                                       | 5                  | 37737.97  | 318011.8    | 0.11866844       |  |  |  |  |  |
| 6                                                       | 6                  | 212525.86 | 1564728.2   | 0.13582286       |  |  |  |  |  |
| 7                                                       | 7                  | 112585.47 | 570617.3    | 0.19730469       |  |  |  |  |  |
| 8                                                       | 8                  | 106280.83 | 908749.5    | 0.11695283       |  |  |  |  |  |
| 9                                                       | 9                  | 69028.67  | 543980.6    | 0.12689547       |  |  |  |  |  |
| 10                                                      | 10                 | 302262.06 | 1899424.6   | 0.15913349       |  |  |  |  |  |
| 11                                                      | 11                 | 165833.89 | 1356383.1   | 0.12226183       |  |  |  |  |  |

# Filtering the store with maximum variance and displaying:

```
> store_with_max_variance = select(filter(calc_table, calc_table$sd_vector == max_varia
nce),Store)
> paste("Store with maximum variance is:", store_with_max_variance)
[1] "Store with maximum variance is: 14"
```

\_\_\_\_\_\_

## Question 3: Which store has maximum quarterly growth?

## R Code:

```
library(lubridate)
walmart_data$DateOfSales = as.Date(walmart_data$Date,format="%d-%m-%Y")
#Quarter of the Date
walmart_data$Quarter = quarter(walmart_data$DateOfSales)
View(walmart_data)
#Year Of the Date
walmart_data$Year = year(walmart_data$DateOfSales)
```

```
View(walmart_data)
#Year Quarter Column -> eg. 2012-Q2
walmart_data= transform(walmart_data, YearQuarter = paste(Year,"-Q",Quarter))
#Filtering Quarter 3 - 2012 Data
sales quarterthree = filter(walmart data, YearQuarter == "2012 -Q 3")
View(sales_quarterthree)
#Filtering Quarter 2 - 2012 Data
sales_quartertwo = filter(walmart_data, YearQuarter == "2012 -Q 2")
View(sales_quartertwo)
#Storewise Quarter 3 - 2012 Data
Storewise_Quarter3Data<-aggregate(Weekly_Sales~Store,sales_quarterthree,FUN=sum)
#Storewise Quarter 2- 2012 Data
Storewise_Quarter2Data<- aggregate(Weekly_Sales~Store,sales_quartertwo,FUN=sum)
#Accumalating Data calculated
accumalated data <- data.frame(Store = Storewise Quarter3Data$Store,
      Quarter3Sales=Storewise_Quarter3Data$Weekly_Sales,
       Quarter2Sales = Storewise Quarter2Data$Weekly Sales)
View(accumalated data)
#Calculating growth rate and checking max growth rate store
accumalated_data <- transform(accumalated_data, GrowthRate =
((Quarter3Sales-Quarter2Sales)/Quarter2Sales) *100)
paste("The store which has highest growth rate for Q3/2012 is
Store:",which(accumalated_data$GrowthRate == max(accumalated_data$GrowthRate)))
```

## Screenshots with output:

## Adding quarter, year quarter and year column

|                          |                      |                   | •           |
|--------------------------|----------------------|-------------------|-------------|
| DateOfSales <sup>‡</sup> | Quarter <sup>‡</sup> | Year <sup>‡</sup> | YearQuarter |
| 2010-02-05               | 1                    | 2010              | 2010 -Q 1   |
| 2010-02-12               | 1                    | 2010              | 2010 -Q 1   |
| 2010-02-19               | 1                    | 2010              | 2010 -Q 1   |
| 2010-02-26               | 1                    | 2010              | 2010 -Q 1   |
| 2010-03-05               | 1                    | 2010              | 2010 -Q 1   |
| 2010-03-12               | 1                    | 2010              | 2010 -Q 1   |
| 2010-03-19               | 1                    | 2010              | 2010 -Q 1   |
| 2010-03-26               | 1                    | 2010              | 2010 -Q 1   |
| 2010-04-02               | 2                    | 2010              | 2010 -Q 2   |
| 2010-04-09               | 2                    | 2010              | 2010 -Q 2   |
|                          |                      |                   |             |

## Filtering quarter 3 Data:

| sales_quarterthree × walmart_data × |            |                  |                           |                          |                      |                   |             |  |  |  |  |
|-------------------------------------|------------|------------------|---------------------------|--------------------------|----------------------|-------------------|-------------|--|--|--|--|
| Q                                   |            |                  |                           |                          |                      |                   |             |  |  |  |  |
| -                                   | Fuel_Price | CPI <sup>‡</sup> | Unemployment <sup>‡</sup> | DateOfSales <sup>‡</sup> | Quarter <sup>‡</sup> | Year <sup>‡</sup> | YearQuarter |  |  |  |  |
|                                     | 3.227      | 221.8838         | 6.908                     | 2012-07-06               | 3                    | 2012              | 2012 -Q 3   |  |  |  |  |
|                                     | 3.256      | 221.9242         | 6.908                     | 2012-07-13               | 3                    | 2012              | 2012 -Q 3   |  |  |  |  |
|                                     | 3.311      | 221.9327         | 6.908                     | 2012-07-20               | 3                    | 2012              | 2012 -Q 3   |  |  |  |  |
|                                     | 3,407      | 221.9413         | 6.908                     | 2012-07-27               | 3                    | 2012              | 2012 -Q 3   |  |  |  |  |
|                                     | 3.417      | 221.9499         | 6.908                     | 2012-08-03               | 3                    | 2012              | 2012 -Q 3   |  |  |  |  |
|                                     | 3,494      | 221.9584         | 6.908                     | 2012-08-10               | 3                    | 2012              | 2012 -Q 3   |  |  |  |  |
|                                     | 3.571      | 222.0384         | 6.908                     | 2012-08-17               | 3                    | 2012              | 2012 -Q 3   |  |  |  |  |
|                                     | 3.620      | 222.1719         | 6.908                     | 2012-08-24               | 3                    | 2012              | 2012 -Q 3   |  |  |  |  |
|                                     |            |                  |                           |                          |                      |                   |             |  |  |  |  |

# Filtering quarter 2 data:

|   | sales_quartert | wo ×             | sales_quarterthree ×      | walmart_data ×           |                      | =                 |             |  |  |  |  |
|---|----------------|------------------|---------------------------|--------------------------|----------------------|-------------------|-------------|--|--|--|--|
|   | Q              |                  |                           |                          |                      |                   |             |  |  |  |  |
| ÷ | Fuel_Price     | CPI <sup>‡</sup> | Unemployment <sup>‡</sup> | DateOfSales <sup>‡</sup> | Quarter <sup>‡</sup> | Year <sup>‡</sup> | YearQuarter |  |  |  |  |
| 3 | 3.891          | 221.4356         | 7.143                     | 2012-04-06               | 2                    | 2012              | 2012 -Q 2   |  |  |  |  |
| 7 | 3.891          | 221.5102         | 7.143                     | 2012-04-13               | 2                    | 2012              | 2012 -Q 2   |  |  |  |  |
| 5 | 3.877          | 221.5641         | 7.143                     | 2012-04-20               | 2                    | 2012              | 2012 -Q 2   |  |  |  |  |
| 3 | 3.814          | 221.6179         | 7.143                     | 2012-04-27               | 2                    | 2012              | 2012 -Q 2   |  |  |  |  |
| 5 | 3.749          | 221.6718         | 7.143                     | 2012-05-04               | 2                    | 2012              | 2012 -Q 2   |  |  |  |  |
| 7 | 3.688          | 221.7257         | 7.143                     | 2012-05-11               | 2                    | 2012              | 2012 -Q 2   |  |  |  |  |
| 3 | 3.630          | 221.7427         | 7.143                     | 2012-05-18               | 2                    | 2012              | 2012 -Q 2   |  |  |  |  |
| 2 | 3.561          | 221.7449         | 7.143                     | 2012-05-25               | 2                    | 2012              | 2012 -Q 2   |  |  |  |  |
| 5 | 3,501          | 221.7472         | 7.143                     | 2012-06-01               | 2                    | 2012              | 2012 -Q 2   |  |  |  |  |

# Aggregating storewise and Calculating growth rate and taking max:

| * | Store <sup>‡</sup> | Quarter3Sales <sup>‡</sup> | Quarter2Sales <sup>‡</sup> | GrowthRate $^{\scriptsize \scriptsize $ |
|---|--------------------|----------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | 1                  | 20253948                   | 20978760                   | -3.4549818                                                                                                                                                                                                                                          |
| 2 | 2                  | 24303355                   | 25083605                   | -3.1105976                                                                                                                                                                                                                                          |
| 3 | 3                  | 5298005                    | 5620316                    | -5.7347486                                                                                                                                                                                                                                          |
| 4 | 4                  | 27796792                   | 28454364                   | -2.3109679                                                                                                                                                                                                                                          |
| 5 | 5                  | 4163791                    | 4466364                    | -6.7744752                                                                                                                                                                                                                                          |
| 6 | 6                  | 20167312                   | 20833910                   | -3.1995803                                                                                                                                                                                                                                          |
| 7 | 7                  | 8262787                    | 7290859                    | 13,3307760                                                                                                                                                                                                                                          |
| 8 | 8                  | 11748953                   | 11919631                   | -1.4319088                                                                                                                                                                                                                                          |

# Insights:

Filtering out Quarter Data and Storewise aggregate gives insight that most of the stores have negative growth rate except for the Store number 7. The sales have grown for Store 7 from Q2 to Q3 by 13%.

# Question 4: Some holidays have a negative impact on sales. Find out holidays which have higher sales than the mean sales in non-holiday season for all stores together

## R Code:

FUN=mean)

```
#Filter non holiday Store sales
no_holiday_sales = filter(walmart_data, as.numeric(Holiday_Flag) == 0)
View(no holiday sales)
#Mean per store for non holiday sales
no holiday sales mean = aggregate(Weekly Sales~Store,no holiday sales,
FUN=mean)
View(no holiday sales mean)
#Overall mean for all stores together for non holiday sales
overall non holiday mean =
mean(no holiday sales mean$Weekly Sales,na.rm=TRUE)
paste("Overall mean for non holiday sales : ",overall_non_holiday_mean)
#Filter holiday Store sales
holiday_sales = filter(walmart_data, as.numeric(Holiday_Flag) == 1)
View(holiday_sales)
#Mean of sales per every date on holidays
holiday_sales_per_date = aggregate(Weekly_Sales~DateOfSales, holiday_sales,
```

View(holiday sales per date)

#Generated a column for checking if mean sales per holiday is greater or less than mean #sales calculated for non holiday sales above (overall\_non\_holiday\_mean)

holiday\_sales\_per\_date = transform(holiday\_sales\_per\_date, ProfitableOrNot = ifelse(holiday\_sales\_per\_date\$Weekly\_Sales > overall\_non\_holiday\_mean,"Yes","No"))

#Collect the holidays with more sales than mean non holiday sales profitable\_dates = filter(holiday\_sales\_per\_date,holiday\_sales\_per\_date\$ProfitableOrNot == "Yes")

print("Holidays with Sales more than mean sales on non holidays are: ")
c(profitable\_dates\$DateOfSales)

# Screenshots with output:

# Filter out non holiday sales

| K [      | holiday_s          | ales_per_date     | × holiday_sa | les × no_holi             | day_sales_mean ×         | no_holiday | _sales ×         | accumala >>> [            |  |  |  |
|----------|--------------------|-------------------|--------------|---------------------------|--------------------------|------------|------------------|---------------------------|--|--|--|
| <b>\</b> | ↓□   ▼ Filter      |                   |              |                           |                          |            |                  |                           |  |  |  |
| •        | Store <sup>‡</sup> | Date <sup>‡</sup> | Weekly_Sales | Holiday_Flag <sup>‡</sup> | Temperature <sup>‡</sup> | Fuel_Price | CPI <sup>‡</sup> | Unemployment <sup>‡</sup> |  |  |  |
| 1        | 1                  | 05-02-2010        | 1643691      | 0                         | 42.31                    | 2,572      | 211.0964         | 8.106                     |  |  |  |
| 2        | 1                  | 19-02-2010        | 1611968      | 0                         | 39.93                    | 2,514      | 211.2891         | 8.106                     |  |  |  |
| 3        | 1                  | 26-02-2010        | 1409728      | 0                         | 46.63                    | 2,561      | 211.3196         | 8.106                     |  |  |  |
| 4        | 1                  | 05-03-2010        | 1554807      | 0                         | 46.50                    | 2.625      | 211.3501         | 8.106                     |  |  |  |
| 5        | 1                  | 12-03-2010        | 1439542      | 0                         | 57.79                    | 2.667      | 211.3806         | 8.106                     |  |  |  |
| 6        | 1                  | 19-03-2010        | 1472516      | 0                         | 54.58                    | 2.720      | 211.2156         | 8.106                     |  |  |  |
| 7        | 1                  | 26-03-2010        | 1404430      | 0                         | 51.45                    | 2.732      | 211.0180         | 8.106                     |  |  |  |
| 8        | 1                  | 02-04-2010        | 1594968      | 0                         | 62.27                    | 2.719      | 210.8204         | 7.808                     |  |  |  |
| 9        | 1                  | 09-04-2010        | 1545419      | 0                         | 65.86                    | 2.770      | 210.6229         | 7.808                     |  |  |  |
| 10       | 1                  | 16-04-2010        | 1466058      | 0                         | 66.32                    | 2,808      | 210.4887         | 7.808                     |  |  |  |

# Aggregate non holiday sales storewise



## Overall mean calculation:

> overall\_non\_holiday\_mean = mean(no\_holiday\_sales\_mean\$weekly\_Sales,na.rm=TRUE
> paste("Overall mean for non holiday sales : ",overall\_non\_holiday\_mean)
[1] "Overall mean for non holiday sales : 1041256.38020886"

# Filter Holiday Sales:

| <b>@</b> ] | ProjectVarsha.R* × holiday_sales × no_holiday_sales × accumalated_data × sales_quart |                   |              |                           |                          |                         |                  |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------|-------------------|--------------|---------------------------|--------------------------|-------------------------|------------------|--|--|--|--|--|
| <b>(</b>   | ↓□ ▼ Filter                                                                          |                   |              |                           |                          |                         |                  |  |  |  |  |  |
| •          | Store <sup>‡</sup>                                                                   | Date <sup>‡</sup> | Weekly_Sales | Holiday_Flag <sup>‡</sup> | Temperature <sup>‡</sup> | Fuel_Price <sup>‡</sup> | CPI <sup>‡</sup> |  |  |  |  |  |
| 1          | 1                                                                                    | 12-02-2010        | 1641957.4    | 1                         | 38.51                    | 2.548                   | 211.2422         |  |  |  |  |  |
| 2          | 1                                                                                    | 10-09-2010        | 1507460.7    | 1                         | 78.69                    | 2,565                   | 211.4952         |  |  |  |  |  |
| 3          | 1                                                                                    | 26-11-2010        | 1955624.1    | 1                         | 64.52                    | 2.735                   | 211.7484         |  |  |  |  |  |
| 4          | 1                                                                                    | 31-12-2010        | 1367320.0    | 1                         | 48.43                    | 2,943                   | 211.4049         |  |  |  |  |  |
| 5          | 1                                                                                    | 11-02-2011        | 1649614.9    | 1                         | 36.39                    | 3.022                   | 212.9367         |  |  |  |  |  |
| 6          | 1                                                                                    | 09-09-2011        | 1540471.2    | 1                         | 76.00                    | 3.546                   | 215.8611         |  |  |  |  |  |
| 7          | 1                                                                                    | 25-11-2011        | 2033320.7    | 1                         | 60.14                    | 3.236                   | 218.4676         |  |  |  |  |  |
| 8          | 1                                                                                    | 30-12-2011        | 1497462.7    | 1                         | 44.55                    | 3.129                   | 219.5360         |  |  |  |  |  |
| 9          | 1                                                                                    | 10-02-2012        | 1802477.4    | 1                         | 48.02                    | 3.409                   | 220.2652         |  |  |  |  |  |
| 10         | 1                                                                                    | 07-09-2012        | 1661767.3    | 1                         | 83.96                    | 3.730                   | 222.4390         |  |  |  |  |  |

# Aggregate holiday sales by date:



Compare with Non holiday sales mean and check if holiday is profitable or not:

| Proje            | ProjectVarsha.R × holiday_sales_per_date × holiday_sales |              |                              |  |  |  |  |  |  |
|------------------|----------------------------------------------------------|--------------|------------------------------|--|--|--|--|--|--|
| ↓   ☐   ▼ Filter |                                                          |              |                              |  |  |  |  |  |  |
| *                | DateOfSales <sup>‡</sup>                                 | Weekly_Sales | ProfitableOrNot <sup>‡</sup> |  |  |  |  |  |  |
| 1                | 2010-02-12                                               | 1074148.4    | Yes                          |  |  |  |  |  |  |
| 2                | 2010-09-10                                               | 1014097.7    | No                           |  |  |  |  |  |  |
| 3                | 2010-11-26                                               | 1462689.0    | Yes                          |  |  |  |  |  |  |
| 4                | 2010-12-31                                               | 898500.4     | No                           |  |  |  |  |  |  |
| 5                | 2011-02-11                                               | 1051915.4    | Yes                          |  |  |  |  |  |  |
| 6                | 2011-09-09                                               | 1039182.8    | No                           |  |  |  |  |  |  |
| 7                | 2011-11-25                                               | 1479857.9    | Yes                          |  |  |  |  |  |  |
| 8                | 2011-12-30                                               | 1023165.8    | No                           |  |  |  |  |  |  |
| 9                | 2012-02-10                                               | 1111320.2    | Yes                          |  |  |  |  |  |  |
| 10               | 2012-09-07                                               | 1074001.3    | Yes                          |  |  |  |  |  |  |

## Profitable holidays displayed:

```
[1] "Holidays with Sales more than mean sales on non holidays are: "
> c(profitable_dates$DateOfSales)
[1] "2010-02-12" "2010-11-26" "2011-02-11" "2011-11-25" "2012-02-10" "2012-09-07"
```

## Insights:

The holidays of: SuperBowl, Thanksgiving have more than average non holiday sales for years 2010,2011. However in year 2012, the sales for Labour Day sales were more than average sales of non holiday sales. People visit the store often or more on these holidays.

# Question 5: Provide a monthly and semester view of sales in units and give insights

# R Code:

```
#Calculating Semester
library("lubridate")
walmart_data$Semester = semester(walmart_data$DateOfSales)
View(walmart_data)

#Year Of the Date
walmart_data$Year = year(walmart_data$DateOfSales)

#Appending calculated Year column with Semester
walmart_data$SemesterYear = paste(walmart_data$Year,"-","S",walmart_data$Semester)
View(walmart_data)

#Aggregating data based on Semester+Year
Semester_wise_group = aggregate(Weekly_Sales~SemesterYear, walmart_data,FUN=sum)
View(Semester_wise_group)

#Plotting Semester+Year Daat
```

```
plot(x = as.factor(Semester_wise_group$SemesterYear),y = Semester_wise_group$Weekly_Sales,
  xlab = "Semester",
  ylab = "Weekly Sales",
  main = ""
)
#Calculating Month of the Sales
walmart_data$Month = month(walmart_data$DateOfSales)
View(walmart data)
#Aggregating per Month and Year
month wise group = aggregate(Weekly Sales~Month+Year, walmart data,FUN=sum)
View(month wise group)
month_wise_group$MonthYear = paste(month_wise_group$Year,"-","M",month_wise_group$Month)
View(month wise group)
#Plotting Data Month Wise per year
#2010 Month Data Plot
month data 2010 = filter(month wise group, month wise group$Year == 2010)
plot(x = as.factor(month_data_2010$MonthYear),y = month_data_2010$Weekly_Sales,
  xlab = "Month",
  ylab = "Weekly Sales",
  main = ""
)
#2011 Month Data Plot
month data 2011 = filter(month wise group, month wise group$Year == 2011)
plot(x = as.factor(month_data_2011$MonthYear),y = month_data_2011$Weekly_Sales,
  xlab = "Month",
  ylab = "Weekly Sales",
  main = ""
)
#2012 Month Data Plot
month_data_2012 = filter(month_wise_group, month_wise_group$Year == 2012)
plot(x = as.factor(month_data_2012$MonthYear),y = month_data_2012$Weekly_Sales,
  xlab = "Month",
  ylab = "Weekly Sales",
  main = ""
)
```

## Screenshots with output:

Semester wise sales plot:



# **Each Year Monthly plot:**

# 1. 2010



2. 2011



# 3. 2012



# Semester wise aggregate:

| _ | SemesterYear <sup>‡</sup> | Weekly_Sales <sup>‡</sup> |
|---|---------------------------|---------------------------|
| 1 | 2010 - S 1                | 982622260                 |
| 2 | 2010 - S 2                | 1306263860                |
| 3 | 2011 - S 1                | 1127339797                |
| 4 | 2011 - S 2                | 1320860210                |
| 5 | 2012 - S 1                | 1210765416                |
| 6 | 2012 - S 2                | 789367443                 |

## Month wise aggregate

| $\Leftrightarrow$ | ♦ Ø Filter         |                   |              |                        |  |  |  |  |  |  |
|-------------------|--------------------|-------------------|--------------|------------------------|--|--|--|--|--|--|
| *                 | Month <sup>‡</sup> | Year <sup>‡</sup> | Weekly_Sales | MonthYear <sup>‡</sup> |  |  |  |  |  |  |
| 1                 | 2                  | 2010              | 190332983    | 2010 - M 2             |  |  |  |  |  |  |
| 2                 | 3                  | 2010              | 181919803    | 2010 - M 3             |  |  |  |  |  |  |
| 3                 | 4                  | 2010              | 231412368    | 2010 - M 4             |  |  |  |  |  |  |
| 4                 | 5                  | 2010              | 186710934    | 2010 - M 5             |  |  |  |  |  |  |
| 5                 | 6                  | 2010              | 192246172    | 2010 - M 6             |  |  |  |  |  |  |
| 6                 | 7                  | 2010              | 232580126    | 2010 - M 7             |  |  |  |  |  |  |
| 7                 | 8                  | 2010              | 187640111    | 2010 - M 8             |  |  |  |  |  |  |
| 8                 | 9                  | 2010              | 177267896    | 2010 - M 9             |  |  |  |  |  |  |
| 9                 | 10                 | 2010              | 217161824    | 2010 - M 10            |  |  |  |  |  |  |
| 10                | 11                 | 2010              | 202853370    | 2010 - M 11            |  |  |  |  |  |  |
| 11                | 12                 | 2010              | 288760533    | 2010 - M 12            |  |  |  |  |  |  |

## • Insights:

## Semester-wise:

2011, Semester 2 has the maximum sales among the three years - 2010,2011,2012 The sales have dropped considerably in semester 2 of 2012.

The Semester 1 sales for all three years show an increasing growth.

Semester 2 sales grew for the first two years by a small margin but dropped considerably in 2012.

## Monthly for Year 2010:

December month has maximum sales in the Year 2010 as compared to the other months in the year.

The graph does not show any linear relation between months sales.

## Monthly for Year 2011:

December month has the highest sales in the Year 2011 as compared to other months.

The graph does not show any linear relation between months sales.

## Monthly for Year 2012:

Months March, June and August have the highest or more sales in 2012 compared to other months.

## **II. Statistics Tasks:**

## Question 1:

For Store 1 – Build prediction models to forecast demand

- Linear Regression Utilize variables like date and restructure dates as 1 for 5 Feb 2010 (starting from the earliest date in order). Hypothesize if CPI, unemployment, and fuel price have any impact on sales.
- Change dates into days by creating new variable.

# R Code:

```
library("readxl")
work_dir <- "C:/Users/vdvde/Downloads"
setwd(work dir)
getwd()
walmart data regression = read.csv('Walmart Store sales.csv')
View(walmart data regression)
library(lubridate)
walmart data regression$DateOfSales = as.Date(walmart data regression$Date,format="%d-%m-%Y")
#Filter Store 1 data
library("dplyr")
walmart data Store1 = filter(walmart data regression,as.numeric(Store) == 1)
View(walmart data Store1)
#Transforming Dates to ordered numbers
walmart data Store1$orderedDates = seq(1:length(unique(walmart data Store1$DateOfSales)))
#Capturing the data set relevant for regression by removing insignificant variables - Store, Date, DateOfSales
=> Date is considered as numbered series instead
walmart_data_Store1_with_dates = subset(walmart_data_Store1, select = - c(Store,Date,DateOfSales))
#Hypothesis for CPI
#H0: CPI has no impact on Weekly Sales of Store 1
#Ha: CPI has considerable impact on Weekly Sales of Store 1
#Hypothesis for Fuel Price
#H0: Fuel Price has no impact on Weekly Sales of Store 1
#Ha: Fuel Price has considerable impact on Weekly Sales of Store 1
#Hypothesis for Unemployment
#H0: Unemployment has no impact on Weekly Sales of Store 1
#Ha: Unemployment has considerable impact on Weekly Sales of Store 1
#Performing linear regression on all relevant Data Set
model = Im(Weekly Sales~., walmart data Store1 with dates)
summary(model)
```

```
###Conclusion: Only Temperature is a significant for 0.05 i.e pvalue of only Temperature <0.05
#Hence considering 0.1 cutoff
##Temperature and Holiday Flag are significant for cutoff 0.1
#H0 is true for all other variables, CPI, Unemployment, Fuel Price
#Hypothesis for 0.1 cutoff - temperature
#H0: Temperature has no impact on Weekly Sales of Store 1
#Ha: Temperature has considerable impact on Weekly Sales of Store 1
#Hypothesis for 0.1 cutoff - holiday flag
#H0: Holiday flag has no impact on Weekly Sales of Store 1
#Ha: Holiday flag has considerable impact on Weekly Sales of Store 1
model = Im(Weekly Sales~Holiday Flag+Temperature, walmart data Store1 with dates)
summary(model)
#Conclusion: As per p-value
#Ha is true for Temperature and for Holiday flag with 0.1 cutoff
#Predicting values with the two significant variables
walmart_data_Store1_with_dates$predicted_val = predict(model,walmart_data_Store1_with_dates)
summary(walmart_data_Store1_with_dates$predicted_val)
walmart data Store1 with dates$difference =
mart data Store1 with dates$Weekly Sales)
View(walmart_data_Store1_with_dates)
paste("Error Rate of the model ->", mean(walmart data Store1 with dates$difference) * 100, "%")
paste("Accuracy Rate of the model ->",(1- mean(walmart_data_Store1_with_dates$difference)) * 100 , "%")
#Week Days extraction code
walmart data$Days = weekdays(walmart data$DateOfSales)
View(walmart data)
```

## Screenshots with output:

## Filtered Store 1 Data:



## **Transformed Date Column in Data:**

| DateOfSales <sup>‡</sup> | orderedDates <sup>‡</sup> |
|--------------------------|---------------------------|
| 2010-02-05               | 1                         |
| 2010-02-12               | 2                         |
| 2010-02-19               | 3                         |
| 2010-02-26               | 4                         |
| 2010-03-05               | 5                         |
| 2010-03-12               | 6                         |
| 2010-03-19               | 7                         |
| 2010-03-26               | 8                         |
| 2010-04-02               | 9                         |
| 2010-04-09               | 10                        |
| 2010 04 16               | 11                        |

## Filtered Data relevant for regression model:

| Weekly_Sales | Holiday_Flag <sup>‡</sup> | Temperature <sup>‡</sup> | Fuel_Price | CPI <sup>‡</sup> | Unemployment <sup>‡</sup> | ${\bf orderedDates}  ^{\scriptsize \scriptsize \scriptsize$ |
|--------------|---------------------------|--------------------------|------------|------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1643691      | 0                         | 42.31                    | 2,572      | 211.0964         | 8.106                     | 1                                                                                                                                                                                                                                                           |
| 1641957      | 1                         | 38.51                    | 2,548      | 211.2422         | 8.106                     | 2                                                                                                                                                                                                                                                           |
| 1611968      | 0                         | 39.93                    | 2,514      | 211.2891         | 8.106                     | 3                                                                                                                                                                                                                                                           |
| 1409728      | 0                         | 46.63                    | 2,561      | 211.3196         | 8.106                     | 4                                                                                                                                                                                                                                                           |
| 1554807      | 0                         | 46.50                    | 2,625      | 211.3501         | 8.106                     | 5                                                                                                                                                                                                                                                           |
| 1439542      | 0                         | 57.79                    | 2,667      | 211.3806         | 8.106                     | 6                                                                                                                                                                                                                                                           |
| 1472516      | 0                         | 54.58                    | 2.720      | 211.2156         | 8.106                     | 7                                                                                                                                                                                                                                                           |
| 1404430      | 0                         | 51.45                    | 2.732      | 211.0180         | 8.106                     | 8                                                                                                                                                                                                                                                           |
| 1594968      | 0                         | 62.27                    | 2.719      | 210.8204         | 7.808                     | 9                                                                                                                                                                                                                                                           |
| 1545419      | 0                         | 65.86                    | 2.770      | 210.6229         | 7.808                     | 10                                                                                                                                                                                                                                                          |
| 1466058      | 0                         | 66.32                    | 2.808      | 210.4887         | 7.808                     | 11                                                                                                                                                                                                                                                          |

g 1 to 12 of 143 entries, 7 total columns

## Model Summary (Considering all above variables):

```
> model = lm(Weekly_Sales~.,walmart_data_Store1_with_dates)
> summary(model)
lm(formula = Weekly_Sales ~ ., data = walmart_data_Store1_with_dates)
Residuals:
Min 1Q Median 3Q Max
-304675 -79201 -18223 56433 849204
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept) -1946579.6 2996221.4 -0.650 0.5170
Holiday_Flag 88070.3 49947.1 1.763 0.0801 .
Temperature -2182.4 931.9 -2.342 0.0206 *
Temperature -2182.4 931.9 -2.342 0.0206
Fuel_Price -27298.0 49791.0 -0.548 0.5844
CPI
                 14332.6 13439.1 1.066 0.2881
Unemployment 81043.9 59083.3 1.372 0.1724 orderedDates 278.7 1404.8 0.198 0.8430
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 147000 on 136 degrees of freedom
Multiple R-squared: 0.1497, Adjusted R-squared: 0.1122
F-statistic: 3.991 on 6 and 136 DF, p-value: 0.001035
```

## Only temperature significant for cut off of 0.05 (pvalue of temperature<0.05 -> 0.02)

Hence considering 0.1 cutoff and selecting relevant variables ->  $Holiday_flag(0.08 < 0.1)$  and Temperature (0.02 < 0.05)

## Model with above filtered variables:

## Predicted values for the weekly sales with above model:

| predicted_val |
|---------------|
| 1603029       |
| 1706394       |
| 1608013       |
| 1593983       |
| 1594256       |
| 1570615       |
| 1577336       |
| 1583890       |
| 1561233       |
| 1553716       |
|               |

Difference between predicted and original values:

| predicted_val | difference <sup>‡</sup> |
|---------------|-------------------------|
| 1603029       | 0.0247379094            |
| 1706394       | 0.0392437449            |
| 1608013       | 0.0024535610            |
| 1593983       | 0.1307031369            |
| 1594256       | 0.0253722516            |
| 1570615       | 0.0910518643            |
| 1577336       | 0.0711845931            |
| 1583890       | 0.1277817269            |
| 1561233       | 0.0211507638            |
| 1553716       | 0.0053691258            |

## **Error and Accuracy Rate of the model:**

```
> paste("Error Rate of the model ->", mean(walmart_data_Store1_with_dates$difference) *
100 , "%")
[1] "Error Rate of the model -> 6.43344240866695 %"
> paste("Accuracy Rate of the model ->",(1- mean(walmart_data_Store1_with_dates$difference)) * 100 , "%")
[1] "Accuracy Rate of the model -> 93.5665575913331 %"
```

# Week Days of Date:

| DateOfSales $^{\scriptsize \scriptsize 0}$ | Days <sup>‡</sup> |
|--------------------------------------------|-------------------|
| 2010-02-05                                 | Friday            |
| 2010-02-12                                 | Friday            |
| 2010-02-19                                 | Friday            |
| 2010-02-26                                 | Friday            |
| 2010-03-05                                 | Friday            |
| 2010-03-12                                 | Friday            |
| 2010-03-19                                 | Friday            |
| 2010-03-26                                 | Friday            |
| 2010-04-02                                 | Friday            |
| 2010-04-09                                 | Friday            |
|                                            |                   |

#### Insights:

Accuracy rate of the model used is 93%. I.e 93% of the predicted results are similar to the original results.

# Accuracy Graph for first 6 rows (for demo):

# Predicted vs. Actual Values



Abline to fit a line passing through the data. (Sample intercept)

# Plot of predicted values of Weekly Sales for each year.

```
plot(x = as.factor(walmart_data_Store1_with_dates$Year),y =
walmart_data_Store1_with_dates$predicted_val,
    xlab = "Year",
    ylab = "Weekly Sales",
    main = ""
)
```



The overall sales of 2010 and 2011 show similar statistic and graph the mid sales being in range of 1550000.