Probeklausur

Hinweise zur Klausur:

- Klausurtermin: 24.02. 2012 um 9 Uhr (Einlass) in RUD26 0'110 und 0'115.
- Teilnahme nur mit Übungsschein.
- Die Bearbeitungszeit wird 120 Minuten betragen.
- Bitte bringen Sie Ihren Studenten- und einen Lichtbildausweis (Personalausweis, Reisepass oder Führerschein) mit.

Hinweis zur Probeklausur:

• Für die Probeklausur sollten Sie von einer Bearbeitungszeit von 200 Minuten ausgehen (d. h. 1 Punkt entspricht 1 Minute).

Aufgabe 1 Betrachten Sie die NFAs N_1 und N_2 .

30 Punkte

(a) Welche der Wörter ε , bb, aba und bab gehören jeweils N_1 : zu $L(N_1)$ bzw. zu $L(N_2)$?

(b) Transformieren Sie N_1 mit dem Verfahren aus der Vorlesung in eine äquivalente reguläre Grammatik G. N_2 :

(c) Konstruieren Sie den Kreuzprodukt-NFA N mit $L(N) = L(N_1) \cap L(N_2)$.

- (d) Wandeln Sie N mit der Potenzmengenkonstruktion in einen DFA M um.
- (e) Minimieren Sie M mit dem Verfahren aus der Vorlesung.

Aufgabe 2 15 Punkte

Für zwei Sprachen $A,B\subseteq \Sigma^*$ sei

$$embed(A,B) = \{uvw \in \Sigma^* \mid v \in A \land uw \in B\}.$$

Zeigen Sie:

- (a) Wenn B kontextfrei ist, so ist auch $embed(\{\#\}, B)$ kontextfrei.
- (b) Wenn A und B kontextfrei sind, so ist auch embed(A,B) kontextfrei.

Aufgabe 3 25 Punkte

Gegeben ist die Grammatik $G = (\{S\}, \{1, +, \cdot, (,)\}, P, S)$ mit den Produktionen $P: S \to (S+S), S \to S \cdot S, S \to 1.$

- (a) Geben Sie einen PDA für die Sprache L=L(G) an.
- (b) Überführen Sie G in Chomsky-Normalform und prüfen Sie mit dem CYK-Algorithmus, ob das Wort $(1+1)\cdot 1$ zu L gehört.

Aufgabe 4 Sei $\Sigma = \{a, b, c, d\}$.

15 Punkte

Betrachten Sie die Sprache $L = \{x \in \Sigma^* \mid \#_a(x) = \#_b(x) \land \#_c(x) = \#_d(x)\}$. Zeigen Sie mit dem Pumping-Lemma, dass L nicht kontextfrei ist.

Aufgabe 5 Stimmen folgende Aussagen? Begründen Sie.

35 Punkte

- (a) Die Sprache $L = \{x \in \{a, b\}^* \mid ax = xa\}$ ist regulär.
- (b) Für jede Äquivalenzrelation E gilt $E \circ \bar{E} = \bar{E}$.
- (c) Jede Sprache $L \in RE$ mit $L < \overline{L}$ ist entscheidbar.
- (d) Jede Sprache $L \subseteq \{0,1\}^*$ mit $\bar{L} \leq L$ ist entscheidbar.
- (e) Aus $A \leq^p \text{SAT}$ und $A \in \text{NP}$ folgt A ist NP-vollständig.
- (f) Aus $A \leq^p \text{SAT}$ und $\text{SAT} \leq^p A$ folgt A ist NP-vollständig.
- (g) Für jeden Graphen G gilt $\chi(G) \leq \omega(G)$.

Aufgabe 6 35 Punkte

Bestimmen Sie, welche der folgenden Sprachen entscheidbar, semi-entscheidbar, oder nicht semi-entscheidbar sind. Begründen Sie.

- (a) $L_1 = \{ w \in \{0,1\}^* \mid \exists x \in \{0,1\}^* : M_w(x) = x \},$
- (b) $L_2 = \{ w \in \{0,1\}^* \mid \exists x \in \{0,1\}^* : M_w(x) \neq x \},$
- (c) $L_3 = \{w \in \{0,1\}^* \mid M_w(w) \text{ besucht kein Bandfeld mehrmals}\}.$
- (d) $L_4 = \{ w \in \{0,1\}^* \mid M_w(w) \neq w \},$
- (e) $L_5 = \{ w \in \{0,1\}^* \mid \forall x \in \{0,1\}^* : M_w(w) = x \},$
- (f) $L_6 = \{ w \in \{0,1\}^* \mid \exists v \in \{0,1\}^* : L(M_v) \subsetneq L(M_w) \},$
- (g) $L_7 = \{w \in \{0,1\}^* \mid www \in L(M_w)\}.$

Aufgabe 7 Zeigen Sie:

 $20\ Punkte$

- (a) HamPath \leq^p HamCycle,
- (b) DIHAMPATH \leq^p HAMPATH.

Aufgabe 8 Betrachten Sie nebenstehenden Graphen G.

25 Punkte

Bestimmen Sie folgende Parameter. Begründen Sie.

- (a) $\alpha(G) = \max \{ ||S|| \mid S \text{ ist stabil in } G \},$
- (b) $\chi(G) = \min \{k \ge 1 \mid G \text{ ist } k\text{-färbbar}\},$
- (c) $\mu(G) = \max \{ ||M|| \mid M \text{ ist ein Matching in } G \},$
- (d) $\omega(G) = \max \{ ||C|| \mid C \text{ ist eine Clique in } G \},$
- (e) $\beta(G) = \min \{ ||U|| \mid U \text{ ist eine Kantenüberdeckung in } G \}.$

k l m um eine Eulerlinie,

Wie viele Kanten müssen zu G mindestens hinzugefügt werden, um eine Eulerlinie, Eulertour, einen Hamiltonpfad oder Hamiltonkreis zu erhalten? Begründen Sie.