Universidade da Beira Interior Faculdade de Engenharia

© Pedro R. M. Inácio (inacio@di.ubi.pt), 2018/19

Segurança Informática

Guia para Aula Laboratorial 1

Licenciatura em Engenharia Informática Licenciatura em Informática Web Licenciatura em Tecnologias e Sistemas da Informação

Sumário

Introdução ao tema da criptografia de chave simétrica através do desenvolvimento de tarefas dedicadas ao manuseamento das cifras clássicas mais conhecidas. Discussão de diversos conceitos e termos do jargão da criptografia.

Computer Security

Guide for Laboratory Class 1

Degree in Computer Science and Engineering Degree in Web Informatics Degree in Information Technologies and Systems

Summarv

Introduction to the symmetric key criptography subject via the development of tasks dedicated to handling the most popular classical ciphers. Discussion of several concepts and terms related with cryptography.

Pré-requisitos:

Algumas das tarefas propostas a seguir reguerem o uso de software para efetuar cálculos e o acesso a um sistema com compilador de programas escritos em linguagem de programação C. Sugere-se, assim, o uso de uma distribuição comum de Linux, onde todas estas condições estarão provavelmente preenchidas.

A Cifra de César

Caesar Cipher

A cifra original de César (chamada assim por ter sido usada pelo imperador romano Júlio César) usava uma translação fixa de 3 letras para a esquerda do alfabeto. Contudo, de uma forma geral, se considerarmos que as mensagens a cifrar são todas constituidas pelas letras do alfabeto com 26 letras e a cada uma atribuirmos um valor inteiro de 0 a 25, i.e.,

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 ...,

então a cifra de cada letra da mensagem é dada por $E(k, M_i) = M_i + k \mod 26$, enguanto que a decifra é definida por $D(k, M_i) = M_i - k \mod 26$, em que k=1,2,...,26 e M_i representa a letra i da mensagem $M \in \mathcal{M}$. Cifra Universal

A cifra original de César era, portanto, dada por $E(M_i) = M_i - 3 \mod 26$ e a decifra por $E(M_i) =$ $M_i + 3 \mod 26$ (i.e., k = 23). Cifra de César

Tarefa 1 Task 1

Cifre a palavra OLA usando a cifra original de César. Q1.: Qual o resultado?

LIX

Tarefa 2 Task 2

Decifre agora o criptograma seguinte, sabendo que a chave utilizada foi 10:

Criptograma: LOXPSMKOYWKSYB

BENFICAEOMAIOR Texto limpo: _

Tarefa 3 Task 3

Decifre o criptograma seguinte, mas desta feita apenas sabendo que as três letras mais comuns na Língua Portuguesa são o A, o E e o O. Nota: por comodidade, deixaram-se os espaços e as pontuações na frase, cifrando-se apenas as letras do alfabeto indicado antes.

O MAR SALGADO, QUANTO DO TEU MAR SAO LAGRIMAS DE PORTUGAL!

Análise de Frequências

J - 6 vezes H - 2 vezes V - 9 vezes M - 3 vezes N - 4 vezes G - 4 vezes B - 3 vezes Y - 3 vezes L - 1 vez P - 3 vezes I - 1 vez O - 3 vezes

Criptograma:

J HVM NVGBVYJ, LPVIOJ YJ OZP NVG NVJ GVBMDHVN YZ KJMOPBVG!

Q2.: Pa	ra o alf	abeto	espe	cifica	ado e	m cim	a, qua	ın-
tas cha	ves dif	erent	es se	pode	em de	finir?	•	
□ 1.	□ 5.		0.	•		□ 26.	\Box :	32
	□ 0.					a me	,	
Q3.: En	n média	a e mé	esmo	aup i	não s	oubes	se na	da
acerca				•				
fabeto		-						
cisava		•	-	•			•	
□ -1. □	•				•	_		۱۸
□-1. □		J 5. N	Z 12,C). ⊔	13 L	⊿ 2 5.	_ 150	<i>J</i> U.
Na verd	ade. o	aue fe	ez na i	tarefa	antei	rior foi	ataca	r a
cifra de		•						4.:
Ainda d						-		
	•	•	•			•	•	
esforço	•		iden	lilica	1 0 11	loaeio	ue a	la-
que que				004				
✓ Ciphe		•	•	,				
\square Know	n-plain	text a	ttack (KPA)				
☐ Chos	en-plaii	ntext a	attack	(CPA)			
☐ Adap	tive cho	sen-p	olainte	xt atta	ack (C	CPA2)		
☐ Chos	en-ciph	ertext	t attac	k (CC	(A)	,		
☐ Adap				,	,	(CCA2	>)	
☐ Side-			-	iomi u	ilaon ((00)	•/	
	onanine	alla	<i>)</i>					

2 A Cifra de Vigenère

Vigener Cipher

A cifra de Vigenère, assim designada também devido ao seu criador, é um pouco mais segura que a cifra de César. Enquanto que na cifra de César, a chave de cifra é apenas um número que denota a deslocação, na cifra de Vigenère, a chave de cifra é uma palavra ou uma série de caracteres. Para cifrar uma mensagem, repete-se a chave de cifra tantas vezes quanto necessário para se perfazer o tamanho do texto-limpo, e depois somam-se (módulo 26, neste caso), as letras do texto-limpo com a chave para se obter o criptograma. Por exemplo, se a chave de cifra for OLA e o texto-limpo for ESTAAULAEUMASECA, o criptograma obtinha-se da sequinte forma:

ESTAAULAEUMASECA +OLAOLAOLAOLAOLAO =SDTOLUZLEIXAGPCO

Repare que, neste caso e ao contrário do que a contece para a cifra anterior, a mesma letra pode ser cifrada de formas diferentes, se estiver em partes diferentes da mensagem. Por exemplo, a letra E é transformada em S e em P em diferentes partes da mensagem anterior.

Cifre a mensagem TIO MANEL TINHA UMA QUINTA com a chave de cifra AULA.

Criptograma: _	TCZ MAIPL TCYHAOXA QOTNTU		
onprograma:			

Q5.: Quantas chaves de cifra diferentes existem com 4 letras?

000	uo i	
$\Box 4$	$\square\ 25\times24\times23\times22$	$\square 25!$
\square 4!	$\square \ 26 \times 25 \times 24 \times 23$	\square 26!

26x26x26x26 - 1

Q6.: Qual, ou quais, as familias de chaves que transformam a cifra de Vigenère numa cifra de César?

☑ Chaves com letras todas iguais.	Se as letra forem		
<u> </u>	todas iguais		
✓ Chaves com uma só letra.	vamos anda		
☐ Chaves com duas letras apenas.	sempre as		
☐ Chaves com todas as letras diferentes.	mesmas casas		
	para qualque		
	lado - CIFRA DE		

CÉSAR

Tarefa 5 Task 5

Tarefa 4 Task 4

Decifre o criptograma seguinte (ou encontre a chave de cifra), sabendo que a cifra utilizada foi a cifra de Vigenère, a primeira palavra é ISTO e a chave de cifra tem 3 letras:

Criptograma

JUWP G IBELM

Texto-limpo:	ISTO É FÁCIL	

Q7.: Faça novamente um esforço para tentar identificar o modelo de ataque que utilizou para quebrar a cifra desta vez:

\square Cipheri	ext-only attack (COA)
1 Known	plaintant attack (KDA)

✓ Known-plaintext attack (KPA)☐ Chosen-plaintext attack (CPA)

☐ Adaptive chosen-plaintext attack (CPA2)

☐ Chosen-ciphertext attack (CCA)

 \square Adaptive chosen-ciphertext attack (CCA2)

☐ Side-channel attack.

3 Cifra de Substituição

Substitution Cipher

Na cifra de substituição, a chave de cifra é simplesmente a definição de uma tabela de correspondências de cada letra do alfabeto que se está a utilizar para a respetiva cifra dessa letra. Por exemplo, a chave seguinte determina que todos os A do texto-

todos os B em Q, etc.:

```
ABCDEFGHIJKLMNOPQRSTUVWXYZ
SQTUHJIBYKAVLCWEZNRMXGFPDO
```

A operação de decifra consiste em simplesmente olhar para a correspondência no sentido contrário.

Tarefa 6 Task 6

Construa um programa em linguagem C para cifrar e decifrar usando a cifra de substituição. Considere começar com o programa incluído a seguir:

```
#include < stdio . h>
void encrypt(char * in, char * out, char * key
     , int size){
  int i = 0;
  for(i = 0; i < size; i++){
       int iFound = 0;
       int j = 0;
       while ( iFound == 0 )
          if ( in[i] == key[j] )
              iFound = 1;
          else
              j++;
       out[i] = key[26+j];
  }
}
int main(){
  char key[2*26] = \{
      'A' , 'B<sup>ī</sup> , 'C' , 'D' , 'E' , 'F' , 'G' , 'H' , ' I ' , 'J' , 'K
            ,'L','M','N','O','P','Q','R','S','T',
      'U', 'V', 'W', 'X', 'Y', 'Z',
'S', 'Q', 'T', 'U', 'H', 'J', 'I', 'B', 'Y', 'K', 'A', 'V', 'L', 'C', 'W', 'E', 'Z', 'N', 'R', 'M',
           'X', 'G', 'F', 'P', 'D', 'O'
  };
  char plaintext[12] = "OLACOMOESTA";
char ciphertext[12] = "XXXXXXXXXXXX";
char plaintext2[12] = "XXXXXXXXXXXXXX";
   printf("%s\n", plaintext);
  encrypt(plaintext, ciphertext, key,11);
   printf("%s\n", ciphertext);
  decrypt(ciphertext, plaintext2, key,11);
   printf("%s\n", plaintext2);
```

Q8.: Depois de analisar a sua definição, consegue dizer quantas chaves diferentes suporta a cifra de substituição?

$\square 5$	\square 5!	\square 25!	✓ 26!	$\square 2^{80}$	$\square 2^{\log_2 5}$
			061.4		

Um computador moderno consegue efetuar cerca de 2^{26} operações compostas num segundo.

limpo sejam transformados em S no criptograma, e Acha que esse computador consequia testar exaustivamente (i.e., por brute force) todas as chaves possíveis para a cifra analisada em tempo útil?

- ☐ Sim, conseguia mas demorava algumas horas.
- ☐ Sim, conseguia nas calmas. Curte!
- ✓ Não, não conseguia.

Q10.: Tendo em conta o que fez e estudou até esta parte do guia, esta cifra parece-lhe segura?

- ☐ Sim, parece-me ser segura.
- ✓ Em termos de número de chaves, parece-me ser segura, mas em termos de facilidade de ataque, não.

Q11.: Esta cifra é vulnerável a ataques em que se conhece parte do texto-limpo associado a um criptograma ou em que o texto-limpo associado a um criptograma tem propriedades estatísticas notáveis?

- ✓ Sim, é vulnerável em ambas as situações.
- ☐ É vulnerável apenas na primeira situação.
- ☐ É vulnerável apenas na segunda situação.
- □ Não é vulnerável em nenhum dos casos.

A **Enigma**¹ era uma máquina que implementava uma cifra de substituição polialfabética através do encadeamento de 3 rotores (que podiam ser esco-Ihidos de um conjunto de 5). Na sua forma mais simples (sem o chamado dashboard), o número máximo de chaves (combinações) suportadas era de $A_3^5 \times 26^2 \times 26^3 = 712882560$:

- A_3^5 é o número de arranjos possíveis na escolha de 3 em 5 rotores:
- 26² é o número de posições possíveis para os saltos entre os rotores (o rotor do meio podia iterar após o primeiro rotor chegar à letra A, ou à letra B, C, etc.);
- 26^3 é o número de posições iniciais dos rotores (cada rotor podia começar numa de 26 letras).

Esta máquina suportou as comunicações alemãs durante bastante tempo, e motivou também imensa investigação na sua criptanálise. Na altura, a máquina constituía um desafio, porque tentar todas as 712882560 combinações manualmente e para cada mensagem era uma tarefa difícil e morosa, para além de sujeita a erros. Q12.: Quanto tempo

possível ver a enigma a funcionar http://enigmaco.de/enigma/enigma.html e encontrar bastante informação útil em https://plus.maths.org/content/exploringenigma.

demoraria um computador atual a tentar essas	⊕ 0 1		
combinações?	0 0 1		
10,6 segundos	1 1 0		
	Harris debate serve relados a com de serve escara		
Sugestão: experimente fazer um programa que conte até 712882560 e verifique o tempo que demora. Comente isto com o Professor. ~1,16 segundos	Use a tabela para calcular o xor da mensagem a transmitir com a sequência que gerou durante a experiência da moeda. Observe as caracteristicas do resultado guiando-se pelas seguintes questões.		
4 One Time Pad	Q20.: Quantos 0s tem o resultado do xor?		
One Time Pad	Q21.: Quantos 1s tem o resultado do xor?		
A one time pad é conhecida como a cifra simétrica	Q22.: Quantas vezes tem a combinação 00?		
com segurança perfeita, embora tenha outros defeitos.	Q23.: Quantas vezes tem a combinação 11?		
Tarefa 7 Task 7	 Q24.: A sequência resultante parece-lhe ser aleatória? ☑ Sim, de facto parece. ☐ Não, não parece. 		
Pegue numa moeda e atire-a 16 vezes ao ar (faça isso com o devido cuidado e respeito). Por cada lançamento, aponte um 0 ou um 1 num ficheiro de texto conforme saia cara ou coroa.	Q25.: Se enviar a sequência resultante do xor ao(à) seu(ua) colega, este(a) consegue recuperar o texto-limpo da mensagem? De que forma? Atirando também a moeda ao ar, registando os resultados e fazendo o xor ao contrário.		
Q13.: Quantos 0s sairam?			
Q14.: Quantos 1s sairam?	 ☐ Atirando também a moeda ao ar, registando os resultados e fazendo o xor da mesma forma. ☑ É impossível obter o texto-limpo de volta, a não 		
Q15.: Quantas vezes saiu a combinação 00?			
Q16.: Quantas vezes saiu a combinação 01?	ser que também lhe envie a sequência resultante da minha experiência.		
Q17.: Se lhe dissessem o que saiu das 6 primeiras vezes, conseguia adivinhar o que ía sair na sétima? ☑ Não, não ia. ☐ Com uma probabilidade de 1/6, sim, ía.	☐ É impossível obter o texto-limpo de volta, inde- pendentemente das condições.		
Q18.: A sequência que resultou desta experiência vai de encontro ao conceito que tem de aleatoriedade?			
☑ Sim, vai. ☐ Nunca pensei nisso, mas vai. ☐ Não, não vai.			
Tarefa 8 Task 8			
Considere que estava a tentar transmitir uma mensagem em binário a um(a) colega seu(ua). A mensagem era 0000000100000001. Q19.: Esta mensagem			

⊕ (xor ou ou exclusivo):

Analise a tabela seguinte, que define a operação de

sagem parece-lhe aleatória ou fácil de prever?

☐ Aleatória.

✓ Fácil de prever.