问题 1

中山大学 计算机学院

学生姓名: 武自厚 学生学号: 20336014 2022 春季学期 指导老师: 韦宝典 & 杜育松

信息安全数学基础 @A104

Chap.5 原根与指标

问题 1

计算 2,5,10 模 13 的指数.

回答

经计算:

$$2^{12} \equiv 3^3 \equiv 10^6 \equiv 1 \pmod{13}$$

 $\operatorname{ord}_{13} 2 = 12, \quad \operatorname{ord}_{13} 3 = 3, \quad \operatorname{ord}_{13} 10 = 6$

问题 2

求模 47 的原根数量.

回答

已知 47 为奇素数, 所以模 47 的原根存在, 原根数量为:

$$\varphi(47-1) = \varphi(46) = \varphi(2) \cdot \varphi(23) = 1 \cdot 22 = 22$$

问题 3

设 $m = a^n - 1$, 其中 a 与 n 是正整数. 证明: $\operatorname{ord}_m a = n$, 从而得到 $n \mid \varphi(m)$.

回答

容易得到 $a \neq 1$, 且

$$a^n=m+1\equiv 1\pmod m$$

由题设知 a>1, 则 $\forall k (1 \leq k < n): 1 < a^k < m+1$. 因此 n 是满足 $a^n \equiv 1 \pmod m$ 的最小整数, 即 $\operatorname{ord}_m a = n$.

又由 Euler 公式得到 $a^{\varphi(m)} \equiv 1 \pmod{m}$. 所以可以得到 $\operatorname{ord}_m a\varphi(m)$ 即 $n \mid \varphi(m)$

问题 4

求模 1672 的原根.

回答

已知 167 是素数, 所以 167² 存在原根. 先找 167 的原根 g. 167 $-1 = 166 = 2 \cdot 83$.

已知 g 满足 $g^{\frac{p-1}{q_i}}\not\equiv 1\pmod{167}$, 其中 $q_i=2,83$. 经过检验, g=6. 所以 $g_1=g=6$ 或 $g_2=g+p=173$ 是模 167 的原根. 计算验证:

$$g_1^{167-1} \equiv 1 + 114 \cdot 167, \quad g_2^{167-1} \equiv 1 + 86 \cdot 167 \pmod{167^2}$$

因此 $g_1 = 6, g_2 = 173$ 都是模 167^2 的原根.

问题 5

求解同余方程 $x^{22} \equiv 5 \pmod{41}$.

回答

已知模 41 的一个原根是 6, 且 $\gcd(22, \varphi(41)) = 2$, 可以得知这个方程解数为 2. 又 $\operatorname{ind}_6 5 \equiv 22 \pmod{41}$.

可以得出原方程等价于 $22 \operatorname{ind}_6 x = \operatorname{ind}_6 5 \pmod{40}$. 解得 $\operatorname{ind}_6 x \equiv 1, 21 \pmod{40}$.

因此 $x \equiv 6,35 \pmod{41}$.