Laboratório de Arquitetura de Computadores

Relatório 01

Rithie Natan Carvalhaes Prado

Prof. Romanelli

Experiência 01

Ligação dos leds com uma chave diretamente

Ligação dos leds através da protoboard

Experiência 02

Experiência 03

Utilização das portas AND, OR e XOR

Ele continua obtendo a resposta de uma das entradas e obtém a saída.
Caso não haja nenhuma das entradas ligadas, ele emite a resposta que está na saída até que ela seja reiniciada.

Meio Somador

Dois meio somadores

Somador de 1 Bit

Veml	A	В	Somal	Vail
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Tabela da Verdade (Somador de 1 bit)

Somador de 4 bits

Explicação do somador de 4 bits: O somador de 4 bits funciona com quatro somadores de 1 bit com uma saída de overflow, 4 saídas de soma e ligação das saídas de "Vai 1".

Perguntas

- 2. Vai haver um descompasso com o clock no somador e poderá não ter o "Vai1" no tempo correto.
- 3. Soma 20 ns e "Vai1" 30 ns.
- 4. Oito somadores de 4 bits.
- 5. $1/(120*8*10^{-9}) = 1/(96*10^{-8}) = 0.01401*100MHz = 1.401Mhz$ (aproximadamente).
- 6. Sim. Tentar antecipar o carry de forma a obter o "Vai1" mais rápido aonde somadores de 4 bits ou menos obtém um resultado de soma menor.