

CSCE 590-1: Trusted Al

Lecture 30: Concluding Lecture

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 7^{TH} DEC, 2021

Carolinian Creed: "I will practice personal and academic integrity."

Organization of Lecture 30

- Introduction Segment
 - Announcements
- Main Segment
 - Course Summary
 - Student Comments
- Concluding Segment
 - Ask me anything

Introductory Segment

Announcements

- Everything pending is due now
- Grades to be posted within 2 days
 - Project evaluated
 - A couple of projects are highlighted on course GitHub link

Main Segment

Learning Objectives

Undergraduate students will be able to:

- L1: Explain, execute and create AI-based analytical methods to process data: (a) unstructured data, (b) semi-structured data, (c) structured data
- L2: Explain AI methods in data analysis: (a)
 Learning methods, (b) Reasoning, (c)
 Representation and standardization knowledge
 graphs/ ontology, (d) Preferences, (e) Handling
 Uncertainty
- L3: **Identify trust issues in AI methods**: (a) fairness and bias, (b) harmful language, (c) data privacy
- L4: **Methods and tools to promote trust**: (a) Data sampling and synthetic data, (b) Testing and rating for communication, (c) Algorithmic innovations like differential privacy and explanations

<u>Graduate</u> students will be able to do all of the above, and:

- L5: Evaluate gaps in Trusted AI tools and create new datasets to handle them
- L6: Explain emerging standards, frameworks and laws.
- L7: Explain research findings in open areas and critique their contributions

What We Covered

https://sites.google.com/site/biplavsrivastava/teaching/csce-590-trusted-ai

Undergraduate Student Assessment

Tests	1000 points
 Course Project – report, in-class presentation 	500 points
 Quiz – best of 3 from 4 	300 points
Final Exam	200 points
Total	1000 points

- Project: 40% + 10%: project report (40%) and code, for elevator presentation to class (10%)
 - Data analysis project
 - Dataset must be from given catalog
 - Use analytical methods to present new insights
- •Quiz: 30%
 - •4 based on preceding lectures
- •Exam: 20%
- •Total 100%

Tests	1000 points
 Course Project – report, in- class presentation 	500 points
 Quiz – best of 3 from 4 	200 points
 Papers: summary, in-class presentation 	200 points
Final Exam	100 points
Total	1000 points

Graduate Student Assessment

- Project: 40% + 10%: project report (40%) and code, for elevator presentation to class (10%)
 - Data analysis project OR
 - Dataset must be from given catalog
 - Use analytical methods to present new insights
 - Create or explore new methods (preferred for graduate students) project
 - Problem to be discussed with instructor
 - Example: Analyze sound signals to estimate crowd
- •Quiz: 20%
 - •4 based on preceding lectures
- Paper presentation: 10% + 10%
 - •Research paper reading (10%) and presentation to class (10)% Total 20%
 - Read a paper accepted at a top Data / Al conference: AAAI 2019-2021, IJCAI 2019-2021, NeurIPS 2019-2021, KDD 2019-2021,
 SIGMOD 2019-2021. Make a 1-page summary highlighting the key points, what you liked and what you did not. Try any code given in the paper
 - Present a 1-slide summary to class (10%)

•Exam: 10%

•Total 100%

Student Assessment

A = [900-1000]

B+ = [870-899]

B = [800-869]

C+ = [770-799]

C = [700-769]

D+ = [670-699]

D = [600-669]

F = [0-599]

Tests	1000 points
Course Project	500 points
• Quiz – best of 3 from 4	300 points
• Final Exam	200 points
Total	1000 points

Test	:S	1000 points
•	Course Project	500 points
•	Quiz – best of 3 from 4	200 points
•	Papers	200 points
•	Final Exam	100 points
Tota	al	1000 points

Course Logistics CSCE 590-1: TRUSTED AI 10

Reference Reading

- Machine Learning Testing: Survey, Landscapes and Horizons, Jie M. Zhang*, Mark Harman, Lei Ma, Yang Liu, https://arxiv.org/abs/1906.10742, 2019
- Bias in Data-driven AI Systems An Introductory Survey, Staab et al, https://arxiv.org/abs/2001.09762, 2020
- Fairness Definitions Explained, Sahil Verma and Julia Rubin. 2018. In *Proceedings of the International Workshop on Software Fairness* (*FairWare '18*). Association for Computing Machinery, New York, NY, USA, 1–7. DOI: https://doi.org/10.1145/3194770.3194776

Discussion

- What Worked
 - In-class experience
 - Invited lectures
 - Projects
- What Could Be Improved
 - Have more undergraduate participation
 - Additional data types (e.g., image) and AI methods (e.g., probabilistic reasoning, deep learning)

Courses Offered Till Date

- CSCE 590-1: <u>Trusted Artificial Intelligence</u> (Fall 2021)
- CSCE 590-1: From Data to Decisions with Open Data: A Practical Introduction to AI (Spring 2021)
- CSCE 771: Computer Processing of Natural Language (Fall 2020)

Instructor Information

Research Focus

- Regulation Intelligence
 - Using AI methods (NLP: reasoning, learning, representation) to understand regulations
 - Inform improvement in regulations to help society and AI
- Trusted AI
 - Rating AI from third party perspective
 - Transparent building of consensus among multiple stakeholders/ team members
- Advanced analytical methods demonstrated using chatbots
 - Neuro-symbolic methods
 - Sequential decision making
 - Spatio-temporal sensor data
- Applications
 - Water, Power, Cyberspace, Teaming

Instructor Information

Concluding Segment

Ask Me Anything