ADVANCED LEARNING FOR TEXT AND GRAPH DATA [M2, MVA]

Maha ELBAYAD maha.elbayad@student.ecp.fr

Lab 1: Dimensionality Reduction

1 Unsupervised Dimensionality Reduction Techniques

1.1 SVD (Singular Value Decomposition)

We perform singular value decomposition on the image in Figure 1 (rank 480) and then reconstruct it using the k largest singular values ($k \in [10, 20, 50, 100, 200]$). The results are shown below with the reconstruction error values.

Best rank5 approximation

Best rank50 approximation

Best rank200 approximation

Best rank20 approximation

Best rank100 approximation

Original image (Rank 480)

Figure 1: Original image and SVD reconstructions

k	10	20	50	100	200
Error	0.190	0.132	0.132	0.032	0.013

Table 1: Reconstruction errors

To choose the appropriate rank we plot the singular values $\sigma_1 \geq \sigma_2... \geq \sigma_n$ as well as the accumulated energy at each rank i.e $e_k = \frac{\sum_{j=1}^k \sigma_j}{\sum_{j=1}^n \sigma_j}$. We note that starting from k = 100 the restored image is less noisy as the lost information is minimal. To retain 90% of the singular values we may select $k^* = 130$ as the optimal rank.

Figure 2

1.2 Principal Component Analysis (PCA)

We perform PCA on the Wine dataset of size (178, 13)

We scatter the 3 classes in the first plane (U_1, U_2) and they are easily separable, thus we can reduce the data dimension from 13 to 2 efficiently.

2 Supervised Dimensionality Reduction and Classification with Linear Discriminant Analysis

We implement LDA as detailed in the assignement. When applied to the $\it Wine~20$ times we achieve an average accuracy of 98.4%

Average	Deviation	Min	Max
98.441%	1.204%	96.10%	100%