

Ayudantía 2

Problema 1

Considere las siguientes sucesiones:

$$\left\{a_n = \frac{2n}{3n+1}\right\}_{n=1}^{\infty} \quad \left\{b_n = \frac{2}{n^2-1}\right\}_{n=1}^{\infty}$$

- (a) ¿Las sucesiones mostradas convergen o divergen?
- (b) ¿Sus series asociadas son convergentes o divergentes?

Problema 2

Determine la convergencia o divergencia de las sucesiones cuyo término general esta dado por:

(a)
$$a_n = \frac{(\ln n)^2}{n}$$

(b)
$$b_n = \int_1^2 (\ln x)^n dx$$

(c) Ejercicio propuesto :
$$c_n = \frac{2^n \sin(2n^2+8)}{3^n+5^n}$$

Problema 3

Determine si las siguientes series convergen o divergen. En caso de convergencia, determine la suma.

a)
$$\sum_{n=1}^{\infty} \frac{1+3^n}{5^n}$$

b)
$$\sum_{n=1}^{\infty} \frac{1}{1 + (\frac{2}{3})^n}$$

c) Ejercicio propuesto :
$$\sum\limits_{n=1}^{\infty} ln\left(\frac{n}{n+1}\right)$$

d) Ejercicio propuesto :
$$\sum_{n=0}^{\infty} \left(\frac{\pi}{3}\right)^n$$

Problema 4*

Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales. Si $(a_n)_{n\in\mathbb{N}}$ es acotada superiormente, definimos su supremo como el menor número $M\in\mathbb{R}$ tal que $a_n\leq M$, para todo $n\in\mathbb{N}$ (este siempre existe: busque en internet el axioma del supremo). Análogamente, si $(a_n)_{n\in\mathbb{N}}$ es acotada inferiormente, podemos definir su *ínfimo* como el mayor número $Q\in\mathbb{R}$ tal que $a_n\geq Q$ para todo $n\in\mathbb{N}$. Denotamos el ínfimo y supremo de a_n por

$$\sup_{n\in\mathbb{N}} a_n \quad \mathbf{y} \quad \inf_{n\in\mathbb{N}} a_n \;,$$

respectivamente. Suponga que $(a_n)_{n\in\mathbb{N}}$ y $(b_n)_{n\in\mathbb{N}}$ son sucesiones acotadas y demuestre las siguientes propiedades:

- a) $\sup_{n \in \mathbb{N}} (-a_n) = -\inf_{n \in \mathbb{N}} a_n$.
- b) $\sup_{n\in\mathbb{N}} (a_n + b_n) \le \sup_{n\in\mathbb{N}} a_n + \sup_{m\in\mathbb{N}} b_m$.
- c) Encuentre un ejemplo donde la desiguldad anterior es estricta.

Comentario: Puede valer la pena mencionar que, por convención, el supremo de una sucesión no-acotada por arriba se define como $+\infty$, y el ínfimo de una sucesión no-acotada por debajo se define como $-\infty$.

Problema 5*

Dada una sucesión $(a_n)_{n\in\mathbb{N}}$, definimos su límite superior como

$$\limsup_{n \to \infty} a_n := \lim_{n \to \infty} \sup_{m > n} a_m .$$

Podemos definir también su límite inferior de forma análoga:

$$\liminf_{n\to\infty} a_n := \lim_{n\to\infty} \inf_{m\geq n} a_m .$$

- a) Demuestre que el límite superior de una secuencia acotada siempre existe y es finito.
- b) Deduzca que el límite inferior de una secuencia acotada siempre existe y es finito.
- c) Muestre que si $(a_n)_{n\in\mathbb{N}}$ es una secuencia acotada, entonces $\liminf_{n\to\infty} a_n \leq \limsup_{n\to\infty} a_n$.
- d) Muestre que si el límite superior y el límite inferior de una secuencia acotada $(a_n)_{n\in\mathbb{N}}$ coinciden, entonces el límite existe y

$$\liminf_{n \to \infty} a_n = \lim_{n \to \infty} a_n = \limsup_{n \to \infty} a_n.$$

Problemas propuestos

Problema 6

Sea $(a_n)_{n\in\mathbb{N}}$ una secuencia convergente. Muestre que la secuencia $(b_n)_{n\in\mathbb{N}}$,

$$b_n := \frac{1}{n} \sum_{m=1}^n a_m$$

es convergente, y

$$\lim_{n\to\infty}b_n = \lim_{n\to\infty}a_n.$$

Problema 7

Si la n-ésima suma parcial de una serie $\sum_{n=1}^{\infty} a_n$ es $S_n = \frac{n-1}{n+1}$, determine una fórmula para a_n y encuentre el valor de la serie $\sum_{n=1}^{\infty} a_n$.

Problema 8

Considere la sucesión $\{a_n\}$ dada por

$$a_1 = \sqrt{2}, \quad a_{n+1} = \sqrt{2 + a_n}, \quad n \ge 1$$

- (a) Demuestre por inducción que la serie $\{a_n\}$ es creciente.
- (b) Suponga que $a_n \leq 3$ para todo $n \in \mathbb{N}$. Pruebe que $\{a_n\}$ es convergente y calcule $\lim_{n \to \infty} a_n$.