Chapter 4

- 4.1 Normal approximation (Laplace's method)
- 4.2 Large-sample theory
- 4.3 Counter examples
 - includes examples of difficult posteriors for MCMC, too
- 4.4 Frequency evaluation*
- 4.5 Other statistical methods*

- Often posterior converges to normal distribution when $n \to \infty$
- If posterior is unimodal and close to symmetric
 - we can approximate $p(\theta|y)$ with normal distribution

$$p(\theta|y) pprox rac{1}{\sqrt{2\pi}\sigma_{ heta}} \exp\left(-rac{1}{2\sigma_{ heta}^2}(heta-\hat{ heta})^2
ight)$$

- Often posterior converges to normal distribution when $n \to \infty$
- If posterior is unimodal and close to symmetric
 - we can approximate $p(\theta|y)$ with normal distribution

$$p(\theta|y) pprox rac{1}{\sqrt{2\pi}\sigma_{ heta}} \exp\left(-rac{1}{2\sigma_{ heta}^2}(heta-\hat{ heta})^2
ight)$$

 Laplace used this (before Gauss) to approximate the posterior of binomial model to infer ratio of girls and boys born

- Often posterior converges to normal distribution when $n \to \infty$
- If posterior is unimodal and close to symmetric
 - we can approximate $p(\theta|y)$ with normal distribution

$$p(\theta|y) pprox rac{1}{\sqrt{2\pi}\sigma_{ heta}} \exp\left(-rac{1}{2\sigma_{ heta}^2}(heta-\hat{ heta})^2
ight)$$

- Laplace used this (before Gauss) to approximate the posterior of binomial model to infer ratio of girls and boys born
- A most strict proof by LeCam in 1950's

- Often posterior converges to normal distribution when
 - $n \to \infty$
- If posterior is unimodal and close to symmetric
 - we can approximate $p(\theta|y)$ with normal distribution

$$p(\theta|y) pprox rac{1}{\sqrt{2\pi}\sigma_{ heta}} \exp\left(-rac{1}{2\sigma_{ heta}^2}(heta-\hat{ heta})^2
ight)$$

• We can approximate $p(\theta|y)$ with normal distribution

$$p(\theta|y) \approx \frac{1}{\sqrt{2\pi}\sigma_{\theta}} \exp\left(-\frac{1}{2\sigma_{\theta}^2}(\theta-\hat{\theta})^2\right)$$

• i.e. log posterior $\log p(\theta|y)$ can be approximated with a quadratic function

$$\log p(\theta|y) \approx \alpha(\theta - \hat{\theta})^2 + C$$

• We can approximate $p(\theta|y)$ with normal distribution

$$p(\theta|y) pprox rac{1}{\sqrt{2\pi}\sigma_{ heta}} \exp\left(-rac{1}{2\sigma_{ heta}^2}(heta-\hat{ heta})^2
ight)$$

• i.e. log posterior $\log p(\theta|y)$ can be approximated with a quadratic function

$$\log p(\theta|y) \approx \alpha(\theta - \hat{\theta})^2 + C$$

• Univariate Taylor series expansion around $\theta = \hat{\theta}$

$$f(\theta) = f(\hat{\theta}) + f'(\hat{\theta})(\theta - \hat{\theta}) + \frac{f''(\hat{\theta})}{2!}(\theta - \hat{\theta})^2 + \frac{f^{(3)}(\hat{\theta})}{3!}(\theta - \hat{\theta})^3 + \dots$$

• We can approximate $p(\theta|y)$ with normal distribution

$$p(\theta|y) pprox rac{1}{\sqrt{2\pi}\sigma_{ heta}} \exp\left(-rac{1}{2\sigma_{ heta}^2}(heta-\hat{ heta})^2
ight)$$

• i.e. log posterior $\log p(\theta|y)$ can be approximated with a quadratic function

$$\log p(\theta|y) \approx \alpha(\theta - \hat{\theta})^2 + C$$

• Univariate Taylor series expansion around $heta=\hat{ heta}$

$$f(\theta) = f(\hat{\theta}) + f'(\hat{\theta})(\theta - \hat{\theta}) + \frac{f''(\hat{\theta})}{2!}(\theta - \hat{\theta})^2 + \frac{f^{(3)}(\hat{\theta})}{3!}(\theta - \hat{\theta})^3 + \dots$$

• if $\hat{\theta}$ is at mode, then $f'(\hat{\theta}) = 0$

• We can approximate $p(\theta|y)$ with normal distribution

$$p(\theta|y) pprox rac{1}{\sqrt{2\pi}\sigma_{ heta}} \exp\left(-rac{1}{2\sigma_{ heta}^2}(heta-\hat{ heta})^2
ight)$$

• i.e. log posterior $\log p(\theta|y)$ can be approximated with a quadratic function

$$\log p(\theta|y) \approx \alpha(\theta - \hat{\theta})^2 + C$$

• Univariate Taylor series expansion around $heta=\hat{ heta}$

$$f(\theta) = f(\hat{\theta}) + f'(\hat{\theta})(\theta - \hat{\theta}) + \frac{f''(\hat{\theta})}{2!}(\theta - \hat{\theta})^2 + \frac{f^{(3)}(\hat{\theta})}{3!}(\theta - \hat{\theta})^3 + \dots$$

- if $\hat{\theta}$ is at mode, then $f'(\hat{\theta}) = 0$
- often when $n \to \infty$, $\frac{f^{(3)}(\hat{\theta})}{3!}(\theta \hat{\theta})^3 + \dots$ is small

Multivariate Taylor series

Multivariate series expansion

$$f(\theta) = f(\hat{\theta}) + \frac{df(\theta')}{d\theta'} \Big|_{\theta' = \hat{\theta}} (\theta - \hat{\theta}) + \frac{1}{2!} (\theta - \hat{\theta})^{T} \frac{d^{2}f(\theta')}{d\theta'^{2}} \Big|_{\theta' = \hat{\theta}} (\theta - \hat{\theta}) + \dots$$

• Taylor series expansion of the log posterior around the posterior mode $\hat{\theta}$

$$\log p(\theta|y) = \log p(\hat{\theta}|y) + \frac{1}{2} (\theta - \hat{\theta})^T \left[\frac{d^2}{d\theta^2} \log p(\theta'|y) \right]_{\theta' = \hat{\theta}} (\theta - \hat{\theta}) + \dots$$

• Taylor series expansion of the log posterior around the posterior mode $\hat{\theta}$

$$\log p(\theta|y) = \log p(\hat{\theta}|y) + \frac{1}{2} (\theta - \hat{\theta})^T \left[\frac{d^2}{d\theta^2} \log p(\theta'|y) \right]_{\theta' = \hat{\theta}} (\theta - \hat{\theta}) + \dots$$

• Multivariate normal $\propto |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(\theta-\hat{\theta}^T)\Sigma^{-1}(\theta-\hat{\theta})\right)$

• Multivariate normal $\propto |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(\theta-\hat{\theta}^T)\Sigma^{-1}(\theta-\hat{\theta})\right)$

• Multivariate normal $\propto |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(\theta-\hat{\theta}^T)\Sigma^{-1}(\theta-\hat{\theta})\right)$

• Taylor series expansion of the log posterior around the posterior mode $\hat{\theta}$

$$\log p(\theta|y) = \log p(\hat{\theta}|y) + \frac{1}{2}(\theta - \hat{\theta})^T \left[\frac{d^2}{d\theta^2} \log p(\theta'|y) \right]_{\theta' = \hat{\theta}} (\theta - \hat{\theta}) + \dots$$

- Multivariate normal $\propto |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(\theta-\hat{\theta}^T)\Sigma^{-1}(\theta-\hat{\theta})\right)$
- Normal approximation

$$p(\theta|y) \approx N(\hat{\theta}, [I(\hat{\theta})]^{-1})$$

where $I(\theta)$ is called *observed information*

$$I(\theta) = -\frac{d^2}{d\theta^2} \log p(\theta|y)$$

• $I(\theta)$ is called *observed information*

$$I(\theta) = -\frac{d^2}{d\theta^2} \log p(\theta|y)$$

- $I(\hat{\theta})$ is the second derivatives at the mode and thus describes the curvature at the mode
- if the mode is inside the parameter space, $I(\hat{\theta})$ is positive
- if θ is a vector, then $I(\theta)$ is a matrix

 BDA3 Ch 4 has an example where it is easy to compute first and second derivatives and there is easy analytic solution to find where the first derivatives are zero

- Normal distribution, unknown mean and variance
 - uniform prior $(\mu, \log \sigma)$
 - normal approximation for the posterior of $(\mu, \log \sigma)$

$$\log p(\mu, \log \sigma | y) = \operatorname{constant} - n \log \sigma - \frac{1}{2\sigma^2} [(n-1)s^2 + n(\bar{y} - \mu)^2]$$

- Normal distribution, unknown mean and variance
 - uniform prior $(\mu, \log \sigma)$
 - normal approximation for the posterior of $(\mu, \log \sigma)$

$$\log p(\mu, \log \sigma | y) = \operatorname{constant} - n \log \sigma - \frac{1}{2\sigma^2} [(n-1)s^2 + n(\bar{y} - \mu)^2]$$

first derivatives

$$\frac{d}{d\mu}\log p(\mu,\log\sigma|y) = \frac{n(\bar{y}-\mu)}{\sigma^2},$$

- Normal distribution, unknown mean and variance
 - uniform prior $(\mu, \log \sigma)$
 - normal approximation for the posterior of $(\mu, \log \sigma)$

$$\log p(\mu, \log \sigma | y) = \operatorname{constant} - n \log \sigma - \frac{1}{2\sigma^2} [(n-1)s^2 + n(\bar{y} - \mu)^2]$$

first derivatives

$$\begin{split} \frac{d}{d\mu}\log p(\mu,\log\sigma|y) &= \frac{n(\bar{y}-\mu)}{\sigma^2}, \\ \frac{d}{d(\log\sigma)}\log p(\mu,\log\sigma|y) &= -n + \frac{(n-1)s^2 + n(\bar{y}-\mu)^2}{\sigma^2}, \end{split}$$

- Normal distribution, unknown mean and variance
 - uniform prior $(\mu, \log \sigma)$
 - normal approximation for the posterior of $(\mu, \log \sigma)$

$$\log p(\mu, \log \sigma | y) = \operatorname{constant} - n \log \sigma - \frac{1}{2\sigma^2} [(n-1)s^2 + n(\bar{y} - \mu)^2]$$

first derivatives

$$\begin{split} \frac{d}{d\mu}\log p(\mu,\log\sigma|y) &=& \frac{n(\bar{y}-\mu)}{\sigma^2},\\ \frac{d}{d(\log\sigma)}\log p(\mu,\log\sigma|y) &=& -n+\frac{(n-1)s^2+n(\bar{y}-\mu)^2}{\sigma^2}, \end{split}$$

from which it is easy to compute the mode

$$(\hat{\mu}, \log \hat{\sigma}) = \left(\bar{y}, \frac{1}{2} \log \left(\frac{n-1}{n} s^2\right)\right)$$

 Normal distribution, unknown mean and variance first derivatives

$$\frac{d}{d\mu}\log p(\mu,\log\sigma|y) = \frac{n(\bar{y}-\mu)}{\sigma^2},$$

$$\frac{d}{d(\log\sigma)}\log p(\mu,\log\sigma|y) = -n + \frac{(n-1)s^2 + n(\bar{y}-\mu)^2}{\sigma^2}$$

 Normal distribution, unknown mean and variance first derivatives

$$\frac{d}{d\mu}\log p(\mu,\log\sigma|y) = \frac{n(\bar{y}-\mu)}{\sigma^2},$$

$$\frac{d}{d(\log\sigma)}\log p(\mu,\log\sigma|y) = -n + \frac{(n-1)s^2 + n(\bar{y}-\mu)^2}{\sigma^2}$$

second derivatives

$$\frac{d^2}{d\mu^2}\log p(\mu,\log\sigma|y) = -\frac{n}{\sigma^2},$$

Normal distribution, unknown mean and variance first derivatives

$$\frac{d}{d\mu}\log p(\mu,\log\sigma|y) = \frac{n(\bar{y}-\mu)}{\sigma^2},$$

$$\frac{d}{d(\log\sigma)}\log p(\mu,\log\sigma|y) = -n + \frac{(n-1)s^2 + n(\bar{y}-\mu)^2}{\sigma^2}$$

second derivatives

$$\frac{d^2}{d\mu^2}\log p(\mu,\log \sigma|y) = -\frac{n}{\sigma^2},$$

$$\frac{d^2}{d\mu d(\log \sigma)}\log p(\mu,\log \sigma|y) = -2n\frac{\bar{y}-\mu}{\sigma^2},$$

 Normal distribution, unknown mean and variance first derivatives

$$\frac{d}{d\mu}\log p(\mu,\log\sigma|y) = \frac{n(\bar{y}-\mu)}{\sigma^2},$$

$$\frac{d}{d(\log\sigma)}\log p(\mu,\log\sigma|y) = -n + \frac{(n-1)s^2 + n(\bar{y}-\mu)^2}{\sigma^2}$$

second derivatives

$$\begin{split} \frac{d^2}{d\mu^2}\log p(\mu,\log\sigma|y) &=& -\frac{n}{\sigma^2},\\ \frac{d^2}{d\mu d(\log\sigma)}\log p(\mu,\log\sigma|y) &=& -2n\frac{\bar{y}-\mu}{\sigma^2},\\ \frac{d^2}{d(\log\sigma)^2}\log p(\mu,\log\sigma|y) &=& -\frac{2}{\sigma^2}((n-1)s^2+n(\bar{y}-\mu)^2) \end{split}$$

Normal distribution, unknown mean and variance second derivatives

$$\begin{split} \frac{d^2}{d\mu^2}\log p(\mu,\log\sigma|y) &= -\frac{n}{\sigma^2}, \\ \frac{d^2}{d\mu(\log\sigma)}\log p(\mu,\log\sigma|y) &= -2n\frac{\bar{y}-\mu}{\sigma^2}, \\ \frac{d^2}{d(\log\sigma)^2}\log p(\mu,\log\sigma|y) &= -\frac{2}{\sigma^2}((n-1)s^2+n(\bar{y}-\mu)^2) \end{split}$$

matrix of the second derivatives at $(\hat{\mu}, \log \hat{\sigma})$

$$\begin{pmatrix} -n/\hat{\sigma}^2 & 0 \\ 0 & -2n \end{pmatrix}$$

 Normal distribution, unknown mean and variance posterior mode

$$(\hat{\mu}, \log \hat{\sigma}) = \left(\bar{y}, \frac{1}{2} \log \left(\frac{n-1}{n} s^2\right)\right)$$

matrix of the second derivatives at $(\hat{\mu}, \log \hat{\sigma})$

$$\begin{pmatrix} -n/\hat{\sigma}^2 & 0 \\ 0 & -2n \end{pmatrix}$$

normal approximation

$$p(\mu, \log \sigma | y) \approx N\left(\begin{pmatrix} \mu \\ \log \sigma \end{pmatrix} \middle| \begin{pmatrix} \bar{y} \\ \log \hat{\sigma} \end{pmatrix}, \begin{pmatrix} \hat{\sigma}^2/n & 0 \\ 0 & 1/(2n) \end{pmatrix}\right)$$

- Normal approximation can be computed numerically
 - iterative optimization to find a mode (maye use gradients)
 - autodiff or finite-difference for gradients and Hessian

- Normal approximation can be computed numerically
 - iterative optimization to find a mode (maye use gradients)
 - autodiff or finite-difference for gradients and Hessian
 - e.g. in R, demo4_1.R:

```
bioassayfun <- function(w, df) { z \leftarrow w[1] + w[2]*df$x \\ -sum(df$y*(z) - df$n*log1p(exp(z))) }  theta0 <- c(0,0) optimres <- optim(w0, bioassayfun, gr=NULL, df1, hessian=T) thetahat <- optimres$par$ Sigma <- solve(optimres$hessian)
```

- Normal approximation can be computed numerically
 - iterative optimization to find a mode (maye use gradients)
 - autodiff or finite-difference for gradients and Hessian
- RStanARM has an option algorithm='optimizing'

- Normal approximation can be computed numerically
 - iterative optimization to find a mode (maye use gradients)
 - autodiff or finite-difference for gradients and Hessian
- RStanARM has an option algorithm='optimizing'
 - uses L-BFGS quasi-Newton optimization algorithm for finding the mode
 - uses autodiff for gradients
 - uses finite differences of gradients to compute Hessian

- Normal approximation can be computed numerically
 - iterative optimization to find a mode (maye use gradients)
 - autodiff or finite-difference for gradients and Hessian
- RStanARM has an option algorithm='optimizing'
 - uses L-BFGS quasi-Newton optimization algorithm for finding the mode
 - uses autodiff for gradients
 - uses finite differences of gradients to compute Hessian
 - second order autodiff coming to Stan

 Optimization and computation of Hessian requires usually much less density evaluations than MCMC

- Optimization and computation of Hessian requires usually much less density evaluations than MCMC
- In some cases accuracy is sufficient

- Optimization and computation of Hessian requires usually much less density evaluations than MCMC
- In some cases accuracy is sufficient
- In some cases accuracy for a conditional distribution is sufficient (Ch 13)
 - e.g. Gaussian latent variable models, such as Gaussian processes (Ch 21)
 - CS-E4070 Special Course in Machine Learning and Data Science: Gaussian processes - theory and applications

- Optimization and computation of Hessian requires usually much less density evaluations than MCMC
- In some cases accuracy is sufficient
- In some cases accuracy for a conditional distribution is sufficient (Ch 13)
 - e.g. Gaussian latent variable models, such as Gaussian processes (Ch 21)
 - CS-E4070 Special Course in Machine Learning and Data Science: Gaussian processes - theory and applications
- Accuracy can be improved by importance sampling (Ch 10)

Normal approximation is discussed more in BDA3 Ch 4

Normal approximation is discussed more in BDA3 Ch 4 But the normal approximation is not that good here: Grid $sd(LD50) \approx 0.1$, Normal $sd(LD50) \approx .75!$

Grid sd(LD50) \approx 0.1, SIR sd(LD50) \approx 0.1

Normal approximation

- Accuracy can be improved by importance sampling
- Pareto-k diagnostic of importance sampling weights can be used for diagnostic
 - in Bioassay example k = 0.57, which is ok

• Higher order derivatives at the mode can be used

- Higher order derivatives at the mode can be used
- Split-normal and split-t by Geweke use additional scaling along different principal axes

- Higher order derivatives at the mode can be used
- Split-normal and split-t by Geweke use additional scaling along different principal axes
- Other distributions can be used

- Higher order derivatives at the mode can be used
- Split-normal and split-t by Geweke use additional scaling along different principal axes
- Other distributions can be used
- Instead of mode and Hessian at mode, e.g.
 - variational inference (Ch 13)
 - CS-E4820 Machine Learning: Advanced Probabilistic Methods
 - Stan has an experimental ADVI algorithm
 - expectation propagation (Ch 13)
 - speed of these is usually between optimization and MCMC

Distributional approximations

Exact, Normal at mode, Normal with variational inference

Distributional approximations

Exact, Normal at mode, Normal with variational inference

Grid sd(LD50) \approx 0.090, Normal sd(LD50) \approx .75, Normal + SIR sd(LD50) \approx 0.096 (Pareto-k = 0.57)

Distributional approximations

Exact, Normal at mode, Normal with variational inference

Grid sd(LD50) \approx 0.090, Normal sd(LD50) \approx .75, Normal + SIR sd(LD50) \approx 0.096 (Pareto-k = 0.57) VI sd(LD50) \approx 0.13, VI + SIR sd(LD50) \approx 0.095 (Pareto-k = 0.17)

- Asymptotic normality
 - as n the number of observations y_i increases the posterior converges to normal distribution

- Asymptotic normality
 - as n the number of observations y_i increases the posterior converges to normal distribution
 - can be shown by showing that
 - eventually likelihood dominates the prior
 - the higher order terms in Taylor series increase slower than the second order term

- Asymptotic normality
 - as n the number of observations y_i increases the posterior converges to normal distribution
 - can be shown by showing that
 - eventually likelihood dominates the prior
 - the higher order terms in Taylor series increase slower than the second order term
 - see counter examples

- Assume "true" underlying data distribution f(y)
 - observations y_1, \ldots, y_n are independent samples from the joint distribution f(y)
 - "true" data distribution f(y) is not always well defined
 - in the following we proceed as if there were true underlying data distribution
 - for the theory the exact form of f(y) is not important as long at it has certain regularity conditions

- Consistency
 - if true distribution is included in the parametric family, so that $f(y) = p(y|\theta_0)$ for some θ_0 , then posterior converges to a point θ_0 , when $n \to \infty$

- Consistency
 - if true distribution is included in the parametric family, so that $f(y) = p(y|\theta_0)$ for some θ_0 , then posterior converges to a point θ_0 , when $n \to \infty$
 - a point doesn't have uncertainty

Consistency

- if true distribution is included in the parametric family, so that $f(y) = p(y|\theta_0)$ for some θ_0 , then posterior converges to a point θ_0 , when $n \to \infty$
- a point doesn't have uncertainty
- same result as for maximum likelihood estimate

- Consistency
 - if true distribution is included in the parametric family, so that $f(y) = p(y|\theta_0)$ for some θ_0 , then posterior converges to a point θ_0 , when $n \to \infty$
 - a point doesn't have uncertainty
 - same result as for maximum likelihood estimate
- If true distribution is not included in the parametric family, then there is no true θ_0
 - true θ_0 is replaced with θ_0 which minimizes the Kullback-Leibler divergence from f(y)

$$H(\theta_0) = \int f(y_i) \log \left(\frac{f(y_i)}{\rho(y_i|\theta_0)} \right) dy_i$$

- Consistency
 - if true distribution is included in the parametric family, so that $f(y) = p(y|\theta_0)$ for some θ_0 , then posterior converges to a point θ_0 , when $n \to \infty$
 - a point doesn't have uncertainty
 - same result as for maximum likelihood estimate
- If true distribution is not included in the parametric family, then there is no true θ_0
 - true θ_0 is replaced with θ_0 which minimizes the Kullback-Leibler divergence from f(y)

$$H(\theta_0) = \int f(y_i) \log \left(\frac{f(y_i)}{p(y_i|\theta_0)} \right) dy_i$$

• this point doesn't have uncertainty, but it's a wrong point!

- Consistency
 - if true distribution is included in the parametric family, so that $f(y) = p(y|\theta_0)$ for some θ_0 , then posterior converges to a point θ_0 , when $n \to \infty$
 - a point doesn't have uncertainty
 - same result as for maximum likelihood estimate
- If true distribution is not included in the parametric family, then there is no true θ_0
 - true θ_0 is replaced with θ_0 which minimizes the Kullback-Leibler divergence from f(y)

$$H(\theta_0) = \int f(y_i) \log \left(\frac{f(y_i)}{\rho(y_i|\theta_0)} \right) dy_i$$

- this point doesn't have uncertainty, but it's a wrong point!
- same result as for maximum likelihood estimate

- Under- and non-identifiability
 - a model is under-identifiable, if the model has parameters or parameter combinations for which there is no information in the data
 - then there is no single point θ_0 where posterior would converge

- Under- and non-identifiability
 - a model is under-identifiable, if the model has parameters or parameter combinations for which there is no information in the data
 - then there is no single point θ_0 where posterior would converge
 - e.g. if the model is

$$y \sim N(a+b+cx,\sigma)$$

- Under- and non-identifiability
 - a model is under-identifiable, if the model has parameters or parameter combinations for which there is no information in the data
 - then there is no single point θ_0 where posterior would converge
 - e.g. if the model is

$$y \sim N(a+b+cx,\sigma)$$

 posterior would converge to a line with prior determining the density along the line

- Under- and non-identifiability
 - a model is under-identifiable, if the model has parameters or parameter combinations for which there is no information in the data
 - then there is no single point θ_0 where posterior would converge
 - e.g. if the model is

$$y \sim N(a+b+cx,\sigma)$$

- posterior would converge to a line with prior determining the density along the line
- e.g. if we never observe u and v at the same time and the model is

$$\begin{pmatrix} u \\ v \end{pmatrix} \sim \mathsf{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)$$

then correlation ρ is non-identifiable

- Under- and non-identifiability
 - a model is under-identifiable, if the model has parameters or parameter combinations for which there is no information in the data
 - then there is no single point θ_0 where posterior would converge
 - e.g. if the model is

$$y \sim N(a+b+cx,\sigma)$$

- posterior would converge to a line with prior determining the density along the line
- e.g. if we never observe u and v at the same time and the model is

$$\begin{pmatrix} u \\ v \end{pmatrix} \sim \mathsf{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)$$

then correlation ρ is non-identifiable

 e.g. u and v could be length and weight of a student; if only one of them is measured for each student, then ρ is non-identifiable

- Under- and non-identifiability
 - a model is under-identifiable, if the model has parameters or parameter combinations for which there is no information in the data
 - then there is no single point θ_0 where posterior would converge
 - e.g. if the model is

$$y \sim N(a+b+cx,\sigma)$$

- posterior would converge to a line with prior determining the density along the line
- e.g. if we never observe u and v at the same time and the model is

$$\begin{pmatrix} u \\ v \end{pmatrix} \sim \mathsf{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)$$

then correlation ρ is non-identifiable

- e.g. u and v could be length and weight of a student; if only one of them is measured for each student, then ρ is non-identifiable
- Problem also for other inference methods like MCMC

- If the number of parameter increases as the number of observation increases
 - in some models number of parameters depends on the number of observations
 - e.g. time series models $y_i \sim N(\theta_i, \sigma^2)$ and θ_i has prior in time
 - posterior of θ_i does not converge to a point, if additional observations do not bring enough information

- Aliasing (FI: valetoisto)
 - special case of under-identifiability where likelihood repeats in separate points
 - . e.g. mixture of normals

$$p(y_i|\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \lambda) = \lambda N(\mu_1, \sigma_1^2) + (1 - \lambda) N(\mu_2, \sigma_2^2)$$

- Aliasing (FI: valetoisto)
 - special case of under-identifiability where likelihood repeats in separate points
 - e.g. mixture of normals

$$p(y_i|\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \lambda) = \lambda N(\mu_1, \sigma_1^2) + (1 - \lambda) N(\mu_2, \sigma_2^2)$$

if (μ_1, μ_2) are switched, (σ_1^2, σ_2^2) are switched and replace λ with $(1 - \lambda)$, model is equivalent; posterior would usually have two modes which are mirror images of each other and the posterior does not converge to a single point

- Aliasing (FI: valetoisto)
 - special case of under-identifiability where likelihood repeats in separate points
 - e.g. mixture of normals

$$p(y_i|\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \lambda) = \lambda N(\mu_1, \sigma_1^2) + (1 - \lambda) N(\mu_2, \sigma_2^2)$$

if (μ_1, μ_2) are switched, (σ_1^2, σ_2^2) are switched and replace λ with $(1 - \lambda)$, model is equivalent; posterior would usually have two modes which are mirror images of each other and the posterior does not converge to a single point

 For MCMC makes the convergence diagnostics more difficult, as it is difficult to identify aliasing from other multimodality

- Unbounded (FI: rajoittamaton) likelihood
 - if likelihood is unbounded it is possible that there is no mode in the posterior

- Unbounded (FI: rajoittamaton) likelihood
 - if likelihood is unbounded it is possible that there is no mode in the posterior
 - e.g. previous normal mixture model; assume λ to be known (and not 0 or 1); if we set $\mu_1 = y_i$ for any i and $\sigma_1^2 \to 0$, then likelihood $\to \infty$

- Unbounded (FI: rajoittamaton) likelihood
 - if likelihood is unbounded it is possible that there is no mode in the posterior
 - e.g. previous normal mixture model; assume λ to be known (and not 0 or 1); if we set $\mu_1 = y_i$ for any i and $\sigma_1^2 \to 0$, then likelihood $\to \infty$
 - if prior for σ_1^2 does not go to zero when $\sigma_1^2 \to 0$, then the posterior is unbounded

- Unbounded (FI: rajoittamaton) likelihood
 - if likelihood is unbounded it is possible that there is no mode in the posterior
 - e.g. previous normal mixture model; assume λ to be known (and not 0 or 1); if we set $\mu_1 = y_i$ for any i and $\sigma_1^2 \to 0$, then likelihood $\to \infty$
 - if prior for σ_1^2 does not go to zero when $\sigma_1^2 \to 0$, then the posterior is unbounded
 - when $n \to \infty$ the number of likelihood modes increases

- Unbounded (FI: rajoittamaton) likelihood
 - if likelihood is unbounded it is possible that there is no mode in the posterior
 - e.g. previous normal mixture model; assume λ to be known (and not 0 or 1); if we set $\mu_1 = y_i$ for any i and $\sigma_1^2 \to 0$, then likelihood $\to \infty$
 - if prior for σ_1^2 does not go to zero when $\sigma_1^2 \to 0$, then the posterior is unbounded
 - when $n \to \infty$ the number of likelihood modes increases
- Problem for any inference method including MCMC
 - can be avoided with good priors

- Unbounded (FI: rajoittamaton) likelihood
 - if likelihood is unbounded it is possible that there is no mode in the posterior
 - e.g. previous normal mixture model; assume λ to be known (and not 0 or 1); if we set $\mu_1 = y_i$ for any i and $\sigma_1^2 \to 0$, then likelihood $\to \infty$
 - if prior for σ_1^2 does not go to zero when $\sigma_1^2 \to 0$, then the posterior is unbounded
 - when $n \to \infty$ the number of likelihood modes increases
- Problem for any inference method including MCMC
 - can be avoided with good priors
 - note that a prior close to a prior allowing unbounded posterior may produce almost unbounded posterior

- Improper posterior
 - asymptotic results assume that probability sums to 1
 - e.g. Binomial model, with Beta(0,0) prior and observation y = n
 - posterior $p(\theta|n,0) = \theta^{n-1}(1-\theta)^{-1}$
 - when $\theta \to 1$, then $p(\theta|n,0) \to \infty$

- Improper posterior
 - asymptotic results assume that probability sums to 1
 - e.g. Binomial model, with Beta(0,0) prior and observation
 y = n
 - posterior $p(\theta|n,0) = \theta^{n-1}(1-\theta)^{-1}$
 - when $\theta \to 1$, then $p(\theta|n,0) \to \infty$
- Problem for any inference method including MCMC
 - can be avoided with proper priors

- Improper posterior
 - asymptotic results assume that probability sums to 1
 - e.g. Binomial model, with Beta(0,0) prior and observation
 y = n
 - posterior $p(\theta|n,0) = \theta^{n-1}(1-\theta)^{-1}$
 - when $\theta \to 1$, then $p(\theta|n,0) \to \infty$
- Problem for any inference method including MCMC
 - can be avoided with proper priors
 - note that prior close to a improper prior may produce almost improper posterior

- Prior distribution does not include the convergence point
 - if in discrete case $p(\theta_0) = 0$ or in continuous case $p(\theta) = 0$ in the neighborhood of θ_0 , then the convergence results based on the dominance of the likelihood do not hold

- Prior distribution does not include the convergence point
 - if in discrete case $p(\theta_0) = 0$ or in continuous case $p(\theta) = 0$ in the neighborhood of θ_0 , then the convergence results based on the dominance of the likelihood do not hold
- Should have a positive prior probability/density where needed

- Convergence point at the edge of the parameter space
 - if θ_0 is on the edge of the parameter space, Taylor series expansion has to be truncated, and normal approximation does not necessarily hold

- Convergence point at the edge of the parameter space
 - if θ_0 is on the edge of the parameter space, Taylor series expansion has to be truncated, and normal approximation does not necessarily hold
 - e.g. $y_i \sim N(\theta, 1)$ with a restriction $\theta \ge 0$ and assume that $\theta_0 = 0$
 - posterior of θ is left truncated normal distribution with $\mu = \bar{y}$
 - in the limit $n \to \infty$ posterior is half normal distribution
- Can be easy or difficult for MCMC

- Tails of the distribution
 - normal approximation may be accurate for the most of the posterior mass, but still be inaccurate for the tails
 - e.g. parameter which is constrained to be positive; given a finite n, normal approximation assumes non-zero probability for negative values

- Bayesian theory has epistemic and aleatory probabilities
- Frequency evaluations focus on frequency properties given aleatoric repetition of an observation and modeling

- Bayesian theory has epistemic and aleatory probabilities
- Frequency evaluations focus on frequency properties given aleatoric repetition of an observation and modeling
 - Consistency

- Bayesian theory has epistemic and aleatory probabilities
- Frequency evaluations focus on frequency properties given aleatoric repetition of an observation and modeling
 - Consistency
 - Asymptotic unbiasedness
 - not that important in Bayesian inference

- Bayesian theory has epistemic and aleatory probabilities
- Frequency evaluations focus on frequency properties given aleatoric repetition of an observation and modeling
 - Consistency
 - Asymptotic unbiasedness
 - not that important in Bayesian inference
 - Asymptotic efficiency
 - no other point estimate with smalle squared error

- Bayesian theory has epistemic and aleatory probabilities
- Frequency evaluations focus on frequency properties given aleatoric repetition of an observation and modeling
 - Consistency
 - Asymptotic unbiasedness
 - not that important in Bayesian inference
 - Asymptotic efficiency
 - no other point estimate with smalle squared error
 - Calibration
 - α %-posterior interval has the true value in α % cases
 - α %-predictive interval has the true future values in α % cases