



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                                        |                    |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|--------------------|--|--|--|--|
| (51) International Patent Classification <sup>6</sup> :                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1                                                         | (11) International Publication Number: | <b>WO 99/21837</b> |  |  |  |  |
| C07D 221/02, 471/02, 491/02, 498/02,<br>211/70, 211/72, 211/82, 211/84, 213/62,<br>213/54, 213/44, 237/26, 237/28, 487/00,<br>401/00, 403/00, 239/02, 241/36, 471/00,<br>241/02, 257/00, 249/12, 231/10, 209/48,<br>209/38, C07C 211/00, 215/00, A01N<br>43/36, 43/38, 43/40, 43/42, 43/54, 43/58,<br>43/60, 43/64, 43/653 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (43) International Publication Date: 6 May 1999 (06.05.99) |                                        |                    |  |  |  |  |
| (21) International Application Number:                                                                                                                                                                                                                                                                                     | PCT/US98/17197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                        |                    |  |  |  |  |
| (22) International Filing Date:                                                                                                                                                                                                                                                                                            | 21 August 1998 (21.08.98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                        |                    |  |  |  |  |
| (30) Priority Data:                                                                                                                                                                                                                                                                                                        | 08/958,313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27 October 1997 (27.10.97)                                 | US                                     |                    |  |  |  |  |
| (63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application                                                                                                                                                                                                                                    | US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 08/958,313 (CIP)                                           |                                        |                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                            | Filed on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27 October 1997 (27.10.97)                                 |                                        |                    |  |  |  |  |
| (71) Applicant (for all designated States except US):                                                                                                                                                                                                                                                                      | ISK AMERICAS INCORPORATED [US/US]; 7474 Auburn Road, P.O.Box 759, Concord, OH 44077-0759 (US).                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                        |                    |  |  |  |  |
| (72) Inventors; and                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                                        |                    |  |  |  |  |
| (75) Inventors/Applicants (for US only):                                                                                                                                                                                                                                                                                   | GUPTA, Sandeep [IN/US]; 8050 Carriage Hills Drive, Concord, OH 44060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                        |                    |  |  |  |  |
| (81) Designated States:                                                                                                                                                                                                                                                                                                    | AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). |                                                            |                                        |                    |  |  |  |  |
| <b>Published</b>                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                                        |                    |  |  |  |  |
| With international search report.<br>Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                                        |                    |  |  |  |  |

(54) Title: SUBSTITUTED BENZENE COMPOUNDS, PROCESS FOR THEIR PREPARATION, AND HERBICIDAL AND DEFOLIANT COMPOSITIONS CONTAINING THEM



(I)

**(57) Abstract**

Novel herbicidal and defoliant substituted aniline derived compounds represented by general structure (I) are described. W, X, Y, Z, and Q are as defined in the disclosure. Also described are the processes for the manufacture of these compounds and agriculturally suitable compositions containing these as active ingredients which are useful as herbicides for general or selective pre-emergent or post-emergent control of undesired plant species and defoliants at very low concentrations of these biologically active compounds.

**FOR THE PURPOSES OF INFORMATION ONLY**

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|           |                          |           |                                       |           |                                           |           |                          |
|-----------|--------------------------|-----------|---------------------------------------|-----------|-------------------------------------------|-----------|--------------------------|
| <b>AL</b> | Albania                  | <b>ES</b> | Spain                                 | <b>LS</b> | Lesotho                                   | <b>SI</b> | Slovenia                 |
| <b>AM</b> | Armenia                  | <b>FI</b> | Finland                               | <b>LT</b> | Lithuania                                 | <b>SK</b> | Slovakia                 |
| <b>AT</b> | Austria                  | <b>FR</b> | France                                | <b>LU</b> | Luxembourg                                | <b>SN</b> | Senegal                  |
| <b>AU</b> | Australia                | <b>GA</b> | Gabon                                 | <b>LV</b> | Latvia                                    | <b>SZ</b> | Swaziland                |
| <b>AZ</b> | Azerbaijan               | <b>GB</b> | United Kingdom                        | <b>MC</b> | Monaco                                    | <b>TD</b> | Chad                     |
| <b>BA</b> | Bosnia and Herzegovina   | <b>GE</b> | Georgia                               | <b>MD</b> | Republic of Moldova                       | <b>TG</b> | Togo                     |
| <b>BB</b> | Barbados                 | <b>GH</b> | Ghana                                 | <b>MG</b> | Madagascar                                | <b>TJ</b> | Tajikistan               |
| <b>BE</b> | Belgium                  | <b>GN</b> | Guinea                                | <b>MK</b> | The former Yugoslav Republic of Macedonia | <b>TM</b> | Turkmenistan             |
| <b>BF</b> | Burkina Faso             | <b>GR</b> | Greece                                | <b>ML</b> | Mali                                      | <b>TR</b> | Turkey                   |
| <b>BG</b> | Bulgaria                 | <b>HU</b> | Hungary                               | <b>MN</b> | Mongolia                                  | <b>TT</b> | Trinidad and Tobago      |
| <b>BJ</b> | Benin                    | <b>IE</b> | Ireland                               | <b>MR</b> | Mauritania                                | <b>UA</b> | Ukraine                  |
| <b>BR</b> | Brazil                   | <b>IL</b> | Israel                                | <b>MW</b> | Malawi                                    | <b>UG</b> | Uganda                   |
| <b>BY</b> | Belarus                  | <b>IS</b> | Iceland                               | <b>MX</b> | Mexico                                    | <b>US</b> | United States of America |
| <b>CA</b> | Canada                   | <b>IT</b> | Italy                                 | <b>NE</b> | Niger                                     | <b>UZ</b> | Uzbekistan               |
| <b>CF</b> | Central African Republic | <b>JP</b> | Japan                                 | <b>NL</b> | Netherlands                               | <b>VN</b> | Viet Nam                 |
| <b>CG</b> | Congo                    | <b>KE</b> | Kenya                                 | <b>NO</b> | Norway                                    | <b>YU</b> | Yugoslavia               |
| <b>CH</b> | Switzerland              | <b>KG</b> | Kyrgyzstan                            | <b>NZ</b> | New Zealand                               | <b>ZW</b> | Zimbabwe                 |
| <b>CI</b> | Côte d'Ivoire            | <b>KP</b> | Democratic People's Republic of Korea | <b>PL</b> | Poland                                    |           |                          |
| <b>CM</b> | Cameroon                 | <b>KR</b> | Republic of Korea                     | <b>PT</b> | Portugal                                  |           |                          |
| <b>CN</b> | China                    | <b>KZ</b> | Kazakhstan                            | <b>RO</b> | Romania                                   |           |                          |
| <b>CU</b> | Cuba                     | <b>LC</b> | Saint Lucia                           | <b>RU</b> | Russian Federation                        |           |                          |
| <b>CZ</b> | Czech Republic           | <b>LI</b> | Liechtenstein                         | <b>SD</b> | Sudan                                     |           |                          |
| <b>DE</b> | Germany                  | <b>LK</b> | Sri Lanka                             | <b>SE</b> | Sweden                                    |           |                          |
| <b>DK</b> | Denmark                  | <b>LR</b> | Liberia                               | <b>SG</b> | Singapore                                 |           |                          |
| <b>EE</b> | Estonia                  |           |                                       |           |                                           |           |                          |

## SUBSTITUTED BENZENE COMPOUNDS, PROCESS FOR THEIR PREPARATION, AND HERBICIDAL AND DEFOLIANT COMPOSITIONS CONTAINING THEM

5 The present invention relates to substituted benzene compounds, process for their preparation, and herbicidal and defoliant compositions containing them.

### BACKGROUND OF THE INVENTION

Use of uracils as herbicides has previously been reported. For example, US patents 4859229 and 4746352 describe 3-phenyl uracil derivatives as herbicides. However the phenyl ring in the described compounds carry only four substituents. US patent 4927451 describes herbicidal compounds carrying five substituents on the phenyl ring with a dihydrouracil ring. EP patent 0705829 describes uracil herbicides carrying pentasubstituted phenyl ring with a carbon linked substituent at position 2 of the phenyl ring. US patents 5346881, 5441925, 5169431, 5476834, 5602077, and WO patents 97/08170, 08171, 12886 and 42188 describe uracil herbicides carrying a fused pentasubstituted phenyl ring where the 2 position of the phenyl ring is substituted either with a carbon, oxygen or nitrogen. US patents 5116404 and JP patent 05025144 describe uracil compounds with a 3-phenyl group which may be pentasubstituted but none of these patents appears to make obvious the compounds of the present invention which carry a nitrogen linked substituent at position 2 of the phenyl ring alongwith substituents at positions 3, 4, and 6 and there appears to be no indication as to the criticality of the substitution pattern of the phenyl moiety in order to introduce the high herbicidal activity in combination with selectivity towards crops. Similarly use of pyrazole, tetrahydropthalimide, triazolinone, tetrazolinone, and triazolidine derivatives as herbicides has been described before such as US patents 5281571, 4881967, 5084085, WO patent 85/01939, and Japanese patent 1-121290 respectively. Pyridazinones, pyridyls, bicyclic hydantoins, phthalimides, pyrimidinones, pyrazinones, and pyridinones have also been described as herbicides such as WO patents 97/07104, 95/02580, 95/23509, EP patent 0786453, WO patents 97/06150, 97/11060, and 97/28127. However, despite the broad coverage of these patents, the general structure of the present invention has not been described.

### 30 SUMMARY OF THE INVENTION

This invention delineates a method for the control of undesired vegetation in a plantation crop by the application to the locus of the crop an effective amount of a compound described herein. The herbicidal and defoliant compounds of the present invention are described by the following general formula I or its salts:



I

wherein X is hydrogen, halogen, nitro, amino, NHR, N(R)<sub>2</sub>, amide, thioamide, cyano, alkylcarbonyl, alkoxy carbonyl, alkylsulfonamide, unsubstituted or substituted alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxy carbonyl alkoxy, benzyloxy, aryloxy, or heteroaryloxy;

5 Y is hydrogen, halogen, or nitro;

W is hydrogen, OR, SR, NHR, N(R)<sub>2</sub>, CH<sub>2</sub>R, CH(R)<sub>2</sub>, or C(R)<sub>3</sub>, halogen, nitro, or cyano, where multiple R groups represent any possible combination of substituents described by R; R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, alkoxy, cycloalkyloxy, aryloxy, 10 heteroaryloxy, alkylsulfonyl, benzyl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxy carbonyl, aryloxycarbonyl, or heteroaryloxycarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, carboxyl, alkyl, haloalkyl, alkylsilyl, alkylcarbonyl, haloalkylcarbonyl, alkoxy, alkoxy carbonyl, haloalkoxy, 15 haloalkoxycarbonyl, alkylsulfonyl, haloalkylsulfonyl, aryl, heteroaryl, or cycloalkyl;

Q is a heterocycle, examples of which are as follows:





wherein R<sub>1</sub> is hydrogen, alkyl, haloalkyl, alkenyl, alkynyl, amino, alkoxyalkyl, acetyl, alkoxycarbonylamino, alkylcarbonylamino, or alkoxycarbonyl;

R<sub>2</sub> is alkyl or haloalkyl;

R<sub>1</sub> and R<sub>2</sub> could combine to form a five- or six-membered heterocyclic ring;

R<sub>3</sub> is hydrogen, halogen, nitro, amino, alkylamino, haloalkylamino, cyano, or amide;

R<sub>8</sub> and R<sub>9</sub> are independently oxygen, sulfur, or imino group;

Q6, Q7, and Q10 may optionally be unsaturated containing one or two double bonds in

the 6-membered ring;

Z is amino, hydroxyl, thiol, formyl, carboxyl, cyano, alkylcarbonyl, arylcarbonyl, azido, or one of the following:



wherein R<sub>4</sub> is alkyl, alkenyl, alkynyl, amino, cycloalkyl, heterocycloalkyl, alkylsulfonyl, arylsulfonyl, benzyl, aryl, heteroaryl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, alkylthiocarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, arylthio-carbonyl, aryl-thiocarbonyl, heteroaryloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, alkoxycarbonylcarbonyl or arylcarbonylcarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxycarbonyl, alkylthio, alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio,

heteroaryl, heteroaryloxycarbonyl or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxycarbonyl, cycloalkyl, aryl, or heterocycloalkyl; and R<sub>5</sub> is hydrogen or any one of the groups represented by R<sub>4</sub>; or R<sub>4</sub> and R<sub>5</sub> could combine to form a 4-8 membered heterocyclic ring;



wherein R<sub>6</sub> represents alkyl, haloalkyl, dialkylamino, unsubstituted or substituted aryl and heteroaryl; and R<sub>7</sub> represents hydrogen, halogen or any of the groups represented by R<sub>6</sub>;

-OR<sub>4</sub>,

$$-\text{SR}_{A_1}$$

$$-\text{CH}_2\text{R}_{10},$$

$$-\text{CH}(\text{R}_{10})_2,$$

-C(R<sub>10</sub>)<sub>3</sub>, or

$$-\text{CH}=\text{CHR}_{10}$$

wherein R<sub>10</sub> is carboxyl, alkyl, alkenyl, alkynyl, amino, cycloalkyl, heterocycloalkyl, alkylsulfonyl, arylsulfonyl, benzyl, aryl, heteroaryl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxy carbonyl, alkylthiocarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, arylthio-carbonyl, aryl-thiocarbonyl, heteroaryloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, alkoxy carbonylcarbonyl or arylcarbonylcarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxy carbonyl, alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxy carbonyl, cycloalkyl, aryl, or heterocycloalkyl; provided that (1) Z is not alkyl, alkoxy, haloalkyl, haloalkoxy, alkylthio, haloalkylthio, alkenyl, haloalkenyl, amino, monoalkylamino, dialkylamino, alkoxyalkoxy or cyano, when Q is Q1 and R<sub>2</sub> is haloalkyl,

(2) Z is not amino when Q is Q3, and

- (3) Z is not hydroxyl, alkoxy, alkenyloxy, alkynyloxy, haloalkoxy, haloalkenyloxy, or -NR<sub>4</sub>R<sub>5</sub>, wherein R<sub>4</sub> is alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, alkylsulfonyl, alkylcarbonyl, alkoxy carbonyl, or cycloalkylalkyl, and R<sub>5</sub> is alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, alkylcarbonyl, alkoxy carbonyl, or cycloalkylalkyl, when Q is Q14 or Q15.

## DETAILED DESCRIPTION OF THE INVENTION

In the above definitions, the term alkyl used either alone or in compound words such as haloalkyl indicates either straight chain or branched alkyls containing 1-8 carbon atoms. Alkenyl and alkynyl include straight chain or branched alkenes and alkynes respectively containing 2-8 carbon atoms. The term halogen either alone or in the compound words such as haloalkyl indicates fluorine, chlorine, bromine, or iodine. Further a haloalkyl is represented by an alkyl partially or fully substituted with halogen atoms which may be same or different. A cycloalkyl group implies a saturated or unsaturated carbocycle containing 3-8 carbon atoms. A heterocycloalkyl group is a cycloalkyl group carrying 1-4 heteroatoms which are represented by oxygen, nitrogen, or sulfur atoms. An aryl group signifies an aromatic carbocycle containing 4-10 carbon atoms, and may be phenyl or naphthyl. A heteroaryl group is an aromatic ring containing 1-4 heteroatoms which are represented by oxygen, nitrogen, or sulfur atoms, and may for example be furanyl, pyridyl, thienyl, pyrimidinyl, benzofuranyl, quinolyl, benzothienyl or quinoxalyl.

The compound of the formula I may form a salt with an acidic substance or a basic substance. The salt with an acidic substance may be an inorganic acid salt such as a hydrochloride, a hydrobromide, a phosphate, a sulfate or a nitrate. The salt with a basic substance may be a salt of an inorganic or organic base such as a sodium salt, a potassium salt, a calcium salt, a quarternary ammonium salt such as ammonium salt or a dimethylamine salt.

The compound of the formula I may exist as geometrical or optical isomers and the present invention includes all of these isomeric forms.

Preferred compounds for the reasons of ease of synthesis or greater herbicidal efficacy are represented by the formula I wherein

- (1) Z is -NR<sub>4</sub>R<sub>5</sub> or -CH<sub>2</sub>R<sub>10</sub>,
- (2) X is halogen or cyano; Y is halogen; W is -OR; and R is alkyl, alkenyl, or alkynyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, or carboxyl, or

(3) Q is Q1 or Q6; R<sub>1</sub> is alkyl, amino or haloalkyl; R<sub>2</sub> is haloalkyl; R<sub>3</sub> is hydrogen; and R<sub>8</sub> and R<sub>9</sub> are independently oxygen, sulfur, or imino group,

Still more preferred compounds for the reasons of greater herbicidal efficacy are represented by formula I wherein

5 X is halogen; Y is fluorine; W is OR; R is alkyl, alkenyl, or alkynyl, where any of these groups may be unsubstituted or substituted with halogen or cyano; Q is Q1 or Q6; R<sub>1</sub> is alkyl, amino, or haloalkyl; R<sub>2</sub> is haloalkyl; R<sub>3</sub> is hydrogen; and R<sub>8</sub> and R<sub>9</sub> are independently oxygen, sulfur, or imino group; Z is -NR<sub>4</sub>R<sub>5</sub>; R<sub>4</sub> is alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxy carbonyl, alkylthiocarbonyl, 10 cycloalkyloxycarbonyl, aryloxycarbonyl, arylthio-carbonyl, aryl-thiocarbonyl, heteroaryloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylamino carbonyl, alkoxy carbonyl carbonyl, arylcarbonyl carbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, 15 alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, aryloxycarbonyl, alkylthio, alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl, or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, 20 alkoxy carbonyl, cycloalkyl, aryl, or heterocycloalkyl; and R<sub>5</sub> is hydrogen; or Z is -CH<sub>2</sub>R<sub>10</sub>; R<sub>10</sub> is carboxyl, alkyl, alkenyl, or alkynyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, aryloxycarbonyl, alkylthio, 25 alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl, or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxy carbonyl, cycloalkyl, aryl, or heterocycloalkyl.

30 Certain intermediates of the present invention are novel. These are 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione, 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-amino-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione and represented by the following formulae (III-V):



wherein X, Y, W and Q are the same as defined above; and M is nitro.



wherein X' and Y' are halogens; and R is the same as defined above.

5         The compounds described by the formula I can be prepared by the procedures as described herein. In general, the compounds described in this invention can be prepared by one of the two routes depending on whether the heterocyclic ring (e.g. uracil ring) is formed prior to or after the nitration at the 2 position of the phenyl ring in the final product.

As depicted in Scheme 1, the starting materials for these preparations are the compounds represented by the formula VIc. These compounds can be prepared starting from the nitro compound VIa via the amine VIb by the procedures described in literature, for example US patent 4859229 (1989). Nitration of VIc is typically carried out by its slow addition to a mixture of sulfuric acid and nitric acid in a ratio of 9:1. Typically 3-4 ml of the nitration mixture is used for 2-3 mmol of VI and the addition is carried out between 0 to -30°C followed by stirring at ambient temperature for 0.5-2 hr. Product (VII) is separated by addition of the solution to ice water and filtration of the precipitate. The product can also be extracted from aqueous layer into organic solvents such as ether or ethyl acetate and purified by crystallization or column chromatography. Alkylation of VII to VIII can be accomplished by treatment of VII with alkyl halide, haloalkyl halide, especially the respective chloride, bromide, or sulfate in the presence of a base such as potassium carbonate or sodium hydride in an inert solvent such as acetone, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, methyl ethyl ketone, or acetonitrile at a temperature range of 0 to 130°C. VIII can be reduced to the amine (IX) under typical reduction conditions such as treatment with iron in acetic acid or ethanolic hydrochloric acid; or by hydrogenation using palladium on carbon or platinum oxide as catalyst. The product IX is purified by typical purification procedures of recrystallization or column chromatography.

The amine (IX) can be derivatized to yield a variety of products generally represented by the formula X. For example amides can be prepared by treatment of IX with alkyl or aryl acid

halides, typically chlorides, or anhydrides in the presence of base in an inert solvent. Typically organic bases such as triethylamine, diisopropylethylamine, or pyridine can be used in inert solvents such as tetrahydrofuran, acetonitrile, or dioxane at a temperature range of ambient to reflux temperature for 2-24 hr. Pyridine can be used alone as solvent and base. Acylation catalysts such as dimethylaminopyridine (DMAP) can be added to facilitate the reaction. Typical work-up procedure includes removal of solvent followed by partitioning of the product between aqueous and organic solvents such as ether, ethyl acetate or methylene chloride. Depending upon the reactivity of the acid halide, the product typically consists of a monoamide, diamide, or a mixture of the two. These can be purified/resolved typically by column chromatography.

5 Mono or dialkyl (amino) derivatives of IX can be prepared by its treatment with alkyl or haloalkyl halides in the presence of base such as potassium or sodium carbonate, or sodium hydride in an inert solvent such as tetrahydrofuran or dimethylformamide at a temperature of ambient to 120°C for 2-24 hr. Mono or dicarbamoyl derivatives of IX can be prepared by its treatment with alkylhaloformates such as methyl or ethylchloroformate in the presence of base

10 such as potassium or sodium carbonate in an inert solvent such as tetrahydrofuran or dimethylformamide at a temperature of ambient to 120°C for 2-24 hr. Mono or di urea derivatives of IX can be prepared by its treatment with an alkyl or aryl isocyanate, for example methyl or ethyl isocyanate, in the presence of a base such as triethylamine in an inert solvent such as toluene or tetrahydrofuran. Alternatively, IX is first converted into its isocyanate

15 derivative by treatment with phosgene or triphosgene in toluene or tetrahydrofuran at reflux temperature for 2-6 hr. This isocyanate can, in turn, be treated with an alkyl or aryl amine such as methyl or ethyl amine in the presence of a base such as triethylamine in an inert solvent such as toluene or tetrahydrofuran at a temperature range of ambient to 130°C for 2-12 hr to furnish the corresponding urea. IX can be treated with an alkyl dihalide such as 1,4-diiodobutane in an

20 inert solvent such as toluene or acetonitrile at reflux temperature in the presence of a base such as potassium or sodium carbonate to furnish the corresponding cyclized product such as a pyrrolidine derivative. IX can be treated with an aromatic or aliphatic aldehyde or ketone or its diethyl or dimethyl acetal derivative in an inert solvent such as toluene or methylene chloride to furnish the corresponding imino derivative. Alternatively, a monoacetyl derivative of IX can be

25 treated with a dehydrochlorinating agent such as phosphorus pentachloride to furnish the corresponding iminochloride.

SCHEME 1

(a) catalytic reduction; (b) 1) triphosgene, 2) NaH, ethyl 3-amino-4,4,4-trifluorocrotonate;  
 (c)  $\text{H}_2\text{SO}_4\text{-HNO}_3$ ; (d) dimethyl sulfate, base ( $\text{R}_1=\text{CH}_3$ ); (e) Fe-AcOH; (f)  $(\text{CF}_3\text{CO})_2\text{O}$ , (e.g.  
 $\text{Z}=\text{NHCOCF}_3$ )

5

The starting uracil derivative represented by formula XI in Scheme 2 can be prepared according to the procedure as described before. The compound XI is nitrated with concentrated nitric acid at  $0^\circ\text{C}$  to ambient temperature for 15 ~ 30 minutes. Product (XII) is obtained by addition of the product mixture to ice-water followed by filtration.

SCHEME 2

The starting uracil derivative represented by formula XIII in Scheme 3 can be prepared according to the procedure as previously described. Compound XIII can be nitrated with nitric acid at 0°C for 15 ~ 30 minutes. Product (XIV) is obtained by addition of ice followed by filtration.

**SCHEME 3**



The desired starting tetrazole derivatives represented by formula XV in Scheme 4 can be prepared according to the literature procedure of WO 85/01939. These compounds can be nitrated with nitric acid at ambient temperature or at 0°C for 15 ~ 30 minutes. Product (XVI) is isolated by addition of ice followed by extraction into an organic solvent such as ether or ethyl acetate and purified. XVII can be prepared by the reduction of XVI typically by catalytic hydrogenation in presence of catalysts such as palladium on carbon or by treatment with iron in acetic acid or in ethanolic hydrochloric acid. XVIII can be prepared by reacting XVII with a halide in presence of a base at 50 to 120°C for 1 ~ 5 hours. Further modification of XVIII to XIX is carried out according to the general procedures described for the preparation of X from IX (Scheme I).

#### SCHEME 4



(a)  $\text{HNO}_3$ ; (b) Fe-AcOH; (c) R-X,  $\text{K}_2\text{CO}_3$ ; (d)  $(\text{CF}_3\text{CO})_2\text{O}$ , (e.g. Z=NHCOCF<sub>3</sub>)

The starting triazolinone derivative represented by formula XX in Scheme 5 can be prepared according to the literature procedure of US patent 4980480 (1990). The compound XX is nitrated with concentrated nitric acid at -15 to 0°C for 0.5-2 hr. Product (XXI) is obtained by addition of the product mixture to ice-water followed by filtration.

SCHEME 5



The desired starting pyrazole derivatives represented by formula XXII in Scheme 6 can be prepared according to the literature procedure of US patent 5281571 (1994). These compounds can be nitrated in sulfuric acid-nitric acid mixture (9:1) with a ratio of 3-4 ml of the 10 nitrating solution to 3-4 mmol of XXII. The addition is carried out between -15 to -30°C followed by stirring at ambient temperature for 1-2 hr. Product (XXIII) is isolated by addition of water followed by extraction into an organic solvent such as ether or ethyl acetate and purified. XXIV can be prepared by the reduction of XXIII typically by catalytic hydrogenation in presence of catalysts such as palladium on carbon or by treatment with iron in acetic acid or in ethanolic 15 hydrochloric acid. Further modification of XXIV to XXV is carried out according to the general procedures described for the preparation of X from IX (Scheme I).

SCHEME 6



(a)  $\text{H}_2\text{SO}_4\text{-HNO}_3$ ; (b) catalytic reduction; (c)  $(\text{CF}_3\text{CO})_2\text{O}$ , (e.g. Z=NHCOCF<sub>3</sub>)

The desired starting tetrahydropthalimide derivative represented by formula XXVI in Scheme 7 can be prepared according to the literature procedure of US patent 4484941 (1984). The compound can be nitrated with nitric acid at 0°C to ambient temperature for half hour. The product (XXVII) is isolated by addition of ice followed by extraction into an organic solvent such as ether, ethyl acetate, or methylene chloride and purified. XXVIII can be prepared by the reduction of XXVII typically by catalytic hydrogenation in presence of catalysts such as palladium on carbon or by treatment with iron in acetic acid or in ethanolic hydrochloric acid. XXIX can be prepared by reacting XXVIII with (substituted)alkyl halide in the presence of a base such as potassium carbonate. Further modification of XXIX to XXX is carried out according to the general procedures described for the preparation of X from IX (Scheme I).

SCHEME 7



(a)  $\text{HNO}_3$ ; (b) Fe-AcOH; (c) R-X,  $\text{K}_2\text{CO}_3$ ; (d)  $(\text{CF}_3\text{CO})_2\text{O}$ , (e.g. Z=NHCOCF<sub>3</sub>)

Scheme 8 describes the preparation of intermediates represented by the formulae XXXII and IV. The starting materials (amino phenols and alkyl derivatives represented by the formula VIb) are prepared according to the procedure as described in literature such as US patent 4670046 (1987) which upon treatment with phthalic anhydride in acetic acid can afford phthalimide derivative (XXXI). Nitration of XXXI can be carried out by its addition to a mixture of sulfuric acid and nitric acid (9:1) at -15 to -30°C followed by addition of water and extraction of the product (XXXII) in organic solvents such as ethyl acetate or ether. XXXII can be reduced to the corresponding amine (XXXIII) by conventional methods such as treatment with iron in acetic acid or ethanolic hydrochloric acid or by catalytic hydrogenation in the presence of palladium on carbon. Amino group of XXXIII can be derivatized as described

before in Scheme 1 to furnish XXXIV which in turn can be deprotected to furnish XXXV. Removal of the protecting phthalimido group can be accomplished by several methods such as treatment with hydrazine in a polar solvent such as dimethylsulfoxide or by treatment with an organic amine such as methyl amine in ethanol. XXXV can then be derivatized to the desired compound (X) according to the known procedures as described before in Scheme 1.

5 Alternatively, XXXII can first be subjected to deprotection to afford the amine IV which can be modified to introduce the heterocyclic ring such as the uracil ring (U in XXXVI) according to the known procedures. Nitro group in XXXVI can then be reduced to afford the amine which can then be derivatized as described previously to afford X.

SCHEME 8



10

(a) AcOH, phthalic anhydride; (b)  $\text{H}_2\text{SO}_4\text{-HNO}_3$ ; (c) Fe-AcOH; (d) dimethyl sulfate, base, [e.g.  $\text{Z}=\text{N}(\text{CH}_3)_2$ ]; (e) DMSO-hydrazine; (f) 1) triphosgene, 2)  $\text{NaH}$ , ethyl 3-amino-4,4,4-trifluorocrotonate, 3)  $\text{CH}_3\text{I}$  ( $\text{R}_1=\text{CH}_3$ ,  $\text{R}_2=\text{CF}_3$ ); (g) 1) triphosgene, 2)  $\text{NaH}$ , ethyl 3-amino-4,4,4-

trifluorocrotonate, 3)  $\text{CH}_3\text{I}$  ( $\text{R}_1=\text{CH}_3$ ,  $\text{R}_2=\text{CF}_3$ ; U=uracil ring as in XIV); (h) 1)  $\text{Fe}-\text{AcOH}$ , 2)  $(\text{CF}_3\text{CO})_2\text{O}$ , (e.g. Z=NHCOCF<sub>3</sub>)

Scheme 9 delineates a process for the preparation of the intermediates represented by the formula V.

Starting materials represented by the formula XXXIX are prepared by the nitration of XXXVII which gives XXXVIII which can be reduced to XXXIX according to the literature procedure of Japanese patent 01186849 (1989). The amino group in XXXIX is protected by forming amide or carbamate XL and the latter is nitrated to give XLI. Deprotection of XLI leads to the ortho-nitro aniline V. V can be converted into the desired compounds represented by XLV according to the procedures as shown in the scheme.

SCHEME 9



(a)  $\text{H}_2\text{SO}_4-\text{HNO}_3$ ; (b)  $\text{Fe}-\text{AcOH}$ ; (c) pyridine-ClCOOEt (e.g. J=NHCOCOEt); (d)  $\text{H}_2\text{SO}_4-\text{HNO}_3$ ; (e) HBr-AcOH; (f) 1) triphosgene, 2) NaH, ethyl 3-amino-4,4,4-trifluorocrotonate, 3)  $\text{CH}_3\text{I}$  (Q=uracil ring as in X,  $\text{R}_1=\text{CH}_3$ ,  $\text{R}_2=\text{CF}_3$ ); (g) ROH, base (e.g. T=O, R= $\text{CH}_3$ ); (h)  $\text{Fe}-\text{AcOH}$ ; (i)  $(\text{CF}_3\text{CO})_2\text{O}$ , (e.g. Z=NHCOCF<sub>3</sub>)

15

Scheme 10 describes the preparation of intermediate represented by the formulae XLVIII. The starting material (XLVI) can be prepared according to the method described in patents, such as US patent 5154755 (1992). XLVI reacts with ethyl chloroformate at basic condition to give

the carbamate XLVII. The latter is nitrated with a mixture of nitric acid and sulfuric acid to give the intermediate XLVIII which can be N-alkylated with an alkylhalide in the presence of base to furnish XLIX.

SCHEME 10



5 (a) ClCOOEt-K<sub>2</sub>CO<sub>3</sub>; (b) H<sub>2</sub>SO<sub>4</sub>-HNO<sub>3</sub>; (c) CH<sub>3</sub>I-K<sub>2</sub>CO<sub>3</sub>

Scheme 11 describes an alternative procedure for the preparation of compounds represented by the formula LVII with varying R groups. Reduction of L to LI is carried out using conventional procedures such as catalytic reduction or iron-acetic acid mixture. The aniline LI is reacted with phenyl chloroformate to afford a carbamate represented by the formula LII which is nitrated with an inorganic salt such as ammonium or potassium nitrate in an acid anhydride such as acetic anhydride according to published procedure such as described in WO 97/42188. Resultant nitro derivative LIII is cyclized to furnish the uracil derivative LIV upon reaction with an appropriately substituted amino crotonate in the presence of an inorganic or organic base exemplified by 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). LIV is N-derivatized to afford LV followed by reduction to aniline LVI according to conventional procedures as described before. LVI is then derivatized to afford the final compounds represented by the formula LVII according to the procedures as described before.

SCHEME 11

(a) catalytic reduction; (b)  $\text{ClCO}_2\text{C}_6\text{H}_5$ ; (c)  $\text{Ac}_2\text{O}-\text{NH}_4\text{NO}_3$ ; (d) ethyl 3-amino-4,4,4-trifluorocrotonate, DBU, DMF; (e)  $\text{CH}_3\text{I}$ ; (f) Fe-AcOH (g)  $(\text{CF}_3\text{CO})_2\text{O}$ , (e.g. Z= $\text{NHCOCF}_3$ )

5 Scheme 12 describes a process for the preparation of compounds represented by the formula LXII which are trisubstituted phenyl derivatives. Ortho-nitroaniline derivatives represented by the formula LVIII are the starting materials which are converted to ortho-nitro uracil derivatives (LX) according to previously described procedures, e.g. via the NH uracil derivative (LIX). Nitro groups is then converted to an amino group (LXI) via conventional reduction

procedures such as catalytic or iron-acetic acid reduction followed by derivatization to furnish LXII.

SCHEME 12



5 (a) NaH, ethyl 3-amino-4,4-trifluorocrotonate; (b) CH<sub>3</sub>I; (c) Fe-AcOH; (d) (CF<sub>3</sub>CO)<sub>2</sub>O, (e.g.  
Z=NHCOCF<sub>3</sub>)

Scheme 13 describes a procedure for the preparation of trisubstituted phenyl derivatives represented by the formula LXVI. Direct nitration of LXIII, where X and Q (a heterocycle) are as previously defined, using nitration reagents such as nitric acid or a mixture of sulfuric acid-  
10 nitric acid leads to ortho-nitro compounds represented by the formula LXIV which are reduced to the corresponding aniline derivatives (LXV) by reduction procedures such as catalytic reduction or iron-acetic acid. Aniline (LXV) is then derivatized to furnish LXVI.

SCHEME 13

(a) AcOH-NH<sub>4</sub>NO<sub>3</sub>; (b) Fe-AcOH; (c) (CF<sub>3</sub>CO)<sub>2</sub>O, (e.g. Z=NHCOCF<sub>3</sub>)

Scheme 14 delineates a procedure for the preparation of tetrasubstituted phenyl derivatives represented by the formula LXXIV. The process is akin to one described in scheme 11 for the preparation of pentasubstituted phenyl derivatives (LVII). The nitro intermediates (LXVII) are reduced to the anilines (LXVIII) via conventional procedures followed by derivatization to the phenyl carbamate (LXIX) by reaction with a phenylhaloformate. Nitration to LXX (inorganic nitrate-acid anhydride) is followed by the uracil ring formation (appropriately substituted crotonate-DBU) (LXXI) and N-derivatization to furnish LXXII. Reduction to the aniline (LXXIII) is carried out by procedures such as catalytic reduction or iron-acetic acid followed by derivatization to furnish LXXIV.

SCHEME 14

(a) catalytic reduction; (b)  $\text{ClCO}_2\text{C}_6\text{H}_5$ ; (c)  $\text{Ac}_2\text{O-NH}_4\text{NO}_3$ ; (d) ethyl 3-amino-4,4,4-trifluorocrotonate, DBU, DMF; (e)  $\text{CH}_3\text{I}$ ; (f) Fe-AcOH (g)  $(\text{CF}_3\text{CO})_2\text{O}$ , (e.g.  $\text{Z}=\text{NHCOCF}_3$ )

5 Scheme 15 describes various procedures for the derivatization of the amino group in LXXV via diazonium salts represented by LXXVI. The diazonium salts are prepared by treatment of the aniline with an inorganic nitrite solution such as sodium or potassium nitrite in an acid such as sulfuric or hydrochloric acid or by treatment of the aniline with an organic nitrite such as *t*-butyl nitrite in an organic solvent such as acetonitrile. Reaction is carried out between 10- -15°C which results in a stable solution of the diazonium salt which is reduced to the

corresponding hydrazine derivative represented by the formula LXXVII by reducing agents exemplified by stannic chloride. Hydrazine derivatives are then derivatized to a variety of compounds represented by the formula (LXXXVI) via conventional reactions such as acylation, alkylation, Schiff base formation, etc. The diazonium group in LXXVI is replaced by a hydroxyl 5 to furnish the corresponding phenol (LXXVIII) by its treatment with an aqueous solution of cuprous oxide in presence of cupric nitrate or cupric sulfate at ambient temperature. LXXVIII is then derivatized to furnish LXXXVI via conventional reactions such as acylation, alkylation, etc. Treatment of the diazonium salts (LXXVI) with disulfides (RSSR) leads to the formation of corresponding thioethers represented by the formula LXXIX which can be further modified 10 according to conventional procedures leading to sulfur analogs represented by the formula LXXXVI. LXXVI can be treated with inorganic cyanides leading to the formation of cyano derivatives (LXXXI) which can be oxidized via conventional routes to furnish carboxylic acids (LXXXV) which can then be derivatized leading to LXXXVI. The diazonium group can also be replaced with an azido group furnishing LXXX. LXXVI can be treated with inorganic iodides to 15 afford the iodo compounds (LXXXII) which can be converted to the corresponding aldehydes (LXXXIII) (which are also directly obtainable from LXXVI via conventional procedures). LXXXIII can be reduced to furnish corresponding benzyl alcohols (LXXXIV) which can be derivatized to LXXXVI.

### SCHEME 15



(a)  $\text{H}_2\text{SO}_4$ - $\text{NaNO}_2$ , A=anion; (b)  $\text{SnCl}_2$ ; (c)  $(\text{CF}_3\text{CO})_2\text{O}$ , (e.g. Z= $\text{NHCOCF}_3$ ); (d)  $\text{Cu}_2\text{O}$ ; (e)  $\text{C}_6\text{H}_5\text{CH}_2\text{Cl}$  (e.g. Z= $\text{OCH}_2\text{C}_6\text{H}_5$ ); (f) ethyl acrylate- $\text{CuCl}_2$  (e.g. Z= $\text{CH}_2\text{CHClCOOC}_2\text{H}_5$ ); (g) RSSR; (h) MCPBA (e.g. Z= $\text{SO}_2\text{R}$ ); (i)  $\text{NaCN}$ ; (j)  $\text{H}_2\text{SO}_4$ ; (k)  $\text{RNH}_2$  (e.g. Z= $\text{CONHR}$ ); (l) Oxime,  $\text{CuSO}_4$ - $\text{Na}_2\text{SO}_3$ ; (m)  $\text{KMnO}_4$ ; (n)  $\text{KI}$ ; (o) CO, Pd(II)acetate.triphenylphosphine; (p)  $\text{NaBH}_4$ ; (q) e.g.  $\text{RNCO}$  (Z= $\text{CH}_2\text{OCONHR}$ ); (r)  $\text{NaN}_3$

Scheme 16 describes an alternative procedure for the formation of amides (XC).

10 Reaction of the ortho-amino phenol LXXXVII with an aliphatic or aromatic acyl halide in an organic solvent such as 1,4-dioxane or tetrahydrofuran in the absence or presence of an inorganic

or organic base such as potassium carbonate, sodium carbonate, or triethylamine, regioselectively leads to the formation of corresponding amide represented by the formula LXXXIX. LXXXIX can also be produced by the hydrolysis of a corresponding alkyl ether such as methyl ether (LXXXVIII) by treatment with strong Lewis acids such as boron tribromide or boron tribromide-dimethyl sulfide complex. Phenol group in LXXXIX is then derivatized by treatment with a halide in the presence of base such as sodium carbonate or potassium carbonate in an organic solvent such as acetone, methyl-ethyl ketone, dimethylsulfoxide, or tetrahydrofuran at ambient 5 to reflux temperatures.

SCHEME 16



- 10 (a) Acyl halide; (b)  $\text{BBr}_3 \cdot \text{Me}_2\text{S}$ ; (c)  $\text{R}_1\text{X}$ , base, (e.g.  $\text{R} = 2\text{-naphthyl}$ ,  $\text{R}_1 = \text{CHF}_2$ )

Scheme 17 describes a procedure for the preparation of pyridazinone derivatives represented by the formula XCIV and XCIV. Desired starting pyridazinone derivatives represented by formula XCII and XCIV can be prepared according to the literature procedure of 15 WO 97/07104. These compounds can be nitrated with nitric acid or a mixture of nitric acid and sulfuric acid at ambient temperature or at  $0^\circ\text{C}$  for 15 ~ 30 minutes. The products XCII and XCIV are isolated by addition of ice followed by filtration. XCIII and XCVI can be prepared by the reduction with iron in acetic acid or in ethanolic hydrochloric acid. Methylation of XCIII can be carried out by reacting XCIII with methyl iodide in presence of a base at 50 to  $120^\circ\text{C}$  for 1 ~ 5 hours. Further modification of XCVI to XCIV is carried out by treatment of the aniline with an organic nitrite (such as *t*-butyl nitrite) in an organic solvent (such as acetonitrile) and alkyl

acrylate in the presence of copper(II) chloride. Modification of XCVI to XCVII is carried out by treatment of the aniline with an alkyl or aryl acid halide at 50 to 120°C for 1 ~ 5 hours.

SCHEME 17



(a)  $\text{HNO}_3$ ; (b)  $\text{Fe-AcOH}$ ; (c)  $\text{CH}_3\text{I}$ , base; (d)  $\text{H}_2\text{SO}_4-\text{HNO}_3$ ; (e)  $\text{R}_2\text{X}$ , base; (f)  $t\text{-BuONO-ethyl acrylate-CuCl}_2$

5

## EXAMPLE 1

Preparation of 3-(4-chloro-6-fluoro-3-methoxy-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-1)

10

3-(4-Chloro-6-fluoro-3-methoxyphenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (10.0 g, 29.5 mmol) was slowly added to a stirred mixture of con. sulfuric acid (36 ml) and con. nitric acid (4 ml) with stirring at -15°C. The solution was then slowly warmed to room temperature and allowed to stir for 2 hr. Addition of the solution to ice-water resulted in a light yellow precipitate which was separated by filtration to afford the title compound (9.1 g). NMR data for the compound are listed in Table XVIII.

15

## EXAMPLE 2

Preparation of 3-(4-chloro-6-fluoro-3-methoxy-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-5)

3-(4-Chloro-6-fluoro-3-methoxy-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (9 g, 23.5 mmol) was dissolved in dimethylformamide (90 ml) and to this were added potassium carbonate (3.9 g, 28.2 mmol) and dimethylsulfate (10.2 g, 47 mmol) with stirring. The solution was stirred at ambient temperature for 12 hr and water was added. Product was extracted in ethyl acetate and the organic layer was washed with water and dried over anhydrous sodium sulfate. Removal of the solvent afforded a crude product which was purified by column chromatography on silica gel. Elution of the column with methylene chloride afforded the title compound (7.8 g).

## EXAMPLE 3

Preparation of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-4)

3-(4-Chloro-6-fluoro-3-methoxy-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (7.5 g, 18.9 mmol) was dissolved in acetic acid (75 ml) and 4.2 g (75.6 mmol) of iron powder was added. The solution was stirred at ambient temperature under nitrogen atmosphere for 6 hr and water was added. Extraction was carried out with ethyl acetate. Organic layer was washed with water, brine, and dried with anhydrous sodium sulfate followed by evaporation to afford the title compound (6.8 g).

## EXAMPLE 4

Preparation of 3-[4-chloro-2-(2,4-difluorobenzoyl)amino-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-42)

3-(2-Amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (2.0 g, 5.4 mmol) and triethylamine (0.66 g, 6.5 mmol) were dissolved in anhydrous tetrahydrofuran (30 ml) and stirred under ice cooling. To this solution was slowly added 2,4-difluorobenzoyl chloride (0.96 g, 5.4 mmol) and solution refluxed for 2 hr. Another batch of 2,4-difluorobenzoyl chloride (0.19 g, 1.1 mmol) was added and solution refluxed for 2 hr. Solvent was removed *in vacuo* and the product purified by column chromatography on silica gel using hexane-ethyl acetate (3:1) as the eluent to afford the title compound (2.2 g).

## EXAMPLE 5

Preparation of 3-(4-chloro-2-diacetylamino-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-2)

A mixture of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.5 g, 1.4 mmol), triethylamine (0.53 g, 5.6 mmol), acetic anhydride (0.57 g, 5.6 mmol), and anhydrous toluene (10 ml) was refluxed for 12 hr. Solvent was removed *in vacuo* and the product purified by chromatography on silica gel.

5 Column was eluted with hexane-ethyl acetate (7:3) to furnish the title compound (0.34 g).

#### EXAMPLE 6

Preparation of 3-(4-chloro-2-dimethylamino-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-11)

To a solution of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.6 g, 1.6 mmol) in toluene (10 ml) was added potassium carbonate (0.27 g, 1.92 mmol) followed by dimethylsulfate (0.69 g, 3.2 mmol). The solution was refluxed for 2 hr and solvent was removed *in vacuo*. Residue was chromatographed on silica gel and product eluted with methylene chloride to afford the title compound (0.12 g).

#### EXAMPLE 7

15 Preparation of 3-(4-chloro-6-fluoro-3-methoxy-2-methoxycarbonylaminophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 4-1)

A solution of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1.25 g) and triethylamine (1 ml) in ethyl acetate (20 ml) was added to a solution of triphosgene (1.0 g) in ethyl acetate (15 ml) stirred under nitrogen. The mixture was heated at reflux for 2 hr, cooled, filtered and the filtrate evaporated under reduced pressure to give a buff colored solid (1.4 g). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) 3.58 (3H, s), 4.00 (3H, s), 6.38 (1H, s), 7.12 (1H, d, J=8.8 Hz) ppm.

The above isocyanate (0.5 g) dissolved in N,N-dimethylformamide (10 ml) was treated with dry methanol (2 ml) and stirred at room temperature for two days. Water and ethyl acetate were added and the solution separated. The organic phase was dried over sodium sulfate, evaporated, and chromatographed on silica gel eluting with ethyl acetate-hexane (1:3) to give the title compound as a white solid (0.17 g).

#### EXAMPLE 8

30 Preparation of 3-[2-bis(methylaminocarbonyl)amino-4-chloro-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 3-1)

To a solution of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.5 g, 1.4 mmol) and triethylamine (0.17 g, 1.7 mmol) in anhydrous toluene (10 ml) was added methyl isocyanate (0.1 g, 1.7 mmol) with

stirring. The solution was refluxed for 2 hr and solvent removed. Residue was chromatographed on silica gel in methylene chloride-methanol (99:1) to furnish the title compound (0.56 g).

#### EXAMPLE 9

Preparation of 3-[4-chloro-2-(dimethylaminomethynyl)imino-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-31)

A mixture of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.5 g, 1.4 mmol) and dimethylformamide dimethylacetal (0.8 g, 7 mmol) was refluxed for 4 hr under a blanket of nitrogen. Excess reagent was removed *in vacuo* and product extracted with ether. Solvent was removed to afford a residue which was chromatographed on silica gel. Elution of the column with hexane-ethyl acetate (6:4) afforded the title compound (0.22 g).

#### EXAMPLE 10

Preparation of 3-(2-amino-4-chloro-6-fluoro-3-hydroxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-16)

3-(2-Amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1.1 g, 2.7 mmol) was dissolved in 50 ml of anhydrous 1,2-dichloroethane and 3.4 g (10.8 mmol) of borontribromide-dimethylsulfide complex was added to the solution.. The solution was refluxed for 16 hr and methylene chloride (100 ml) was added. Washing with water followed by drying (anhydrous sodium sulfate) and removal of the solvent afforded a residue which was triturated with ether to afford the title compound (0.6 g).

#### EXAMPLE 11

Preparation of 3-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-2)

3-(4-chloro-2-fluoro-5-hydroxyphenyl)-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione (2.5 g) was added to an ice cooled con. nitric acid (50 ml). After stirring for 1 hr, the reaction mixture was poured into ice-cold water. The yellow crystals were collected by filtration to afford the title compound (0.9 g). The filtrate was extracted by ethyl acetate (200 ml) and washed with brine. The organic phase was dried over anhydrous sodium sulfate. After removal of the solvent, 0.6 g of title compound was obtained as yellow crystal.

#### EXAMPLE 12

Preparation of 3-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-17)

3-(4-Chloro-2-fluoro-5-hydroxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1.06 g) was added to ice-cold con. nitric acid (10 ml). After stirring for 30 min, crushed ice was added. The yellow crystals were collected by filtration to afford the title compound (1.2 g).

5 EXAMPLE 13

Preparation of 1-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenyl)-4-(3-fluoropropyl)-1,4-dihydro-5-oxo-5H-tetrazole (Compound no. 5-4)

10 1-(4-Chloro-2-fluoro-5-hydroxyphenyl)-4-(3-fluoropropyl)-tetrazolinone (2.91 g) was gradually added into an ice-cooled nitric acid (20 ml) and stirred for 30 minutes. Crushed ice was added followed by extraction with ethyl acetate. The ethyl acetate extract was washed with water, dried over sodium sulfate, concentrated, and filtered through a silica gel SPE column (2 g) to give the title compound as a yellow solid (3.4 g).

EXAMPLE 14

15 Preparation of 1-(2-amino-4-chloro-6-fluoro-3-hydroxyphenyl)-4-(3-fluoroproyl)-1,4-dihydro-5-oxo-5H-tetrazole (Compound no. 5-5)

Iron powder (2.3 g) was added to a solution of 1-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenyl)-4-(3-fluoropropyl)-1,4-dihydro-5-oxo-5H-tetrazole (3.4 g) in acetic acid (50 ml) and stirred at room temperature over night. The reaction mixture was filtered through a celite bed. The filtrate was concentrated under reduced pressure and purified by a silica gel column, eluted with hexane-ethyl acetate (2:1) to give yellow crystals (2.75 g).

20 EXAMPLE 15

Preparation of 1-(2-amino-4-chloro-6-fluoro-3-propargyloxyphenyl)-4-(3-fluoroproyl)-1,4-dihydro-5-oxo-5H-tetrazole (Compound no. 5-17)

25 The mixture of 1-(2-amino-4-chloro-6-fluoro-3-hydroxyphenyl)-4-(3-fluoropropyl)-tetrazolinone (0.28 g), propargyl bromide (0.13 g), and potassium carbonate (0.14 g) in acetonitrile (5 ml) was heated under reflux for 0.5 hour. The solvent and excess reagent were removed under reduced pressure. The residue was purified by a silica gel column, eluted with ethyl acetate to give the desired product (0.33 g).

EXAMPLE 16

30 Preparation of 1-(2-amino-4-chloro-6-fluoro-3-isopropylxyloxyphenyl)-4-(3-fluoropropyl)-1,4-dihydro-5-oxo-5H-tetrazole (Compound no. 5-18)

The mixture of 1-(2-amino-4-chloro-6-fluoro-3-hydroxyphenyl)-4-(3-fluoropropyl)-1,4-dihydro-5-oxo-5H-tetrazole (0.30 g), isopropyl iodide (1.2 ml), and potassium carbonate (0.14 g)

in acetonitrile (5 ml) was heated under reflux for 2 hours. The reaction mixture was evaporated and purified by a silica gel column, eluted with hexane-ethyl acetate (2:1) to give the desired product (0.29 g).

#### EXAMPLE 17

5 Preparation of 1-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenyl)-4-difluoromethyl-3-methyl-1,2,4-triazolinone (Compound no. 6-1)

10 1-(4-Chloro-2-fluoro-5-hydroxyphenyl)-4-difluoromethyl-3-methyl-1,2,4-triazolinone (0.21 g) was added to con. nitric acid (1.5 ml) at ambient temperature. The solution was vigorously stirred at ambient temperature for 15 min. Reaction mixture was poured into ice-cold water and yellow precipitate was collected by filtration to afford the title compound (0.17 g) as a 1:1 mixture with oxidative compound.

#### EXAMPLE 18

15 Preparation of 1-(2-amino-4-chloro-6-fluoro-3-hydroxyphenyl)-4-difluoromethyl-3-methyl-1,2,4-triazolinone (Compound no. 6-2)

20 To a stirred solution of 1-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenol)-4-difluoromethyl-3-methyl-1,2,4-triazolinone (0.15 g) in a mixed solvent of con. hydrochloric acid (5 ml) and methanol (5 ml) was added 0.3 g of iron powder at ambient temperature. The resulting mixture was refluxed for 1 hr and the solution was concentrated under reduced pressure. The residue was extracted with ethyl acetate (200 ml) and the organic phase was washed with brine and dried over anhydrous sodium sulfate. Solvent was removed under reduced pressure to give title compound as a brown oil.

#### EXAMPLE 19

25 Preparation of 4-chloro-3-(4-chloro-6-fluoro-3-methoxy-2-nitrophenyl)-1-methyl-5-trifluoromethyl-1H-pyrazole (Compound no. 7-1)

30 4-Chloro-3-(4-chloro-2-fluoro-5-methoxyphenyl)-1-methyl-5-trifluoromethyl-1H-pyrazole (1.2 g, 3.5 mmol) was slurried with 4 ml of con. sulfuric acid and was slowly added to a stirred 4 ml mixture of con. sulfuric acid-con. nitric acid (9:1) at -15°C. Solution was allowed to stir at ambient temperature for 2 hr and then added to ice water. Extraction with ethyl acetate and removal of the solvent afforded a crude product which was chromatographed on silica gel. Elution of the column with hexane-methylene chloride (4:6) furnished the title compound (0.72 g).

#### EXAMPLE 20

Preparation of 4-chloro-3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-5-trifluoromethyl-1H-pyrazole (Compound no. 7-2)

4-Chloro-3-(4-chloro-6-fluoro-3-methoxy-2-nitrophenyl)-1-methyl-5-trifluoromethyl-1H-pyrazole (0.48 g, 1.24 mmol) was dissolved in toluene (8 ml) and 0.05 g of 10% palladium on carbon was added. The solution was vigorously stirred under hydrogen atmosphere for 4 hr at ambient temperature and the catalyst was removed by filtration. Removal of the solvent afforded a residue which was chromatographed on silica gel. Elution of the column with hexane-methylene chloride (3:7) furnished the title compound (0.38 g).

#### EXAMPLE 21

Preparation of 6-chloro-4-fluoro-2-nitro-3-(tetrahydropthalimido)phenol (Compound no. 8-1)

2-Chloro-4-fluoro-5-(tetrahydropthalimido)phenol (5.0 g) was added into nitric acid (50 ml) at 0°C, warmed up to room temperature in 30 minutes. Crushed ice was added and the solution extracted with methylene chloride. The organic phase was washed with water, dried over anhydrous sodium sulfate, and purified by a silica gel column, eluted with methylene chloride-ethyl acetate (19:1) to give 3.67 g of the desired product.

#### EXAMPLE 22

Preparation of 2-amino-6-chloro-4-fluoro-3-(tetrahydropthalimido)phenol (Compound no. 8-2)

Iron powder (2.48 g) was added into a solution of 6-chloro-4-fluoro-2-nitro-3-(tetrahydropthalimido)phenol (3.67 g) in acetic acid (60 ml) and stirred at room temperature for two hours. The reaction mixture was diluted with ethyl acetate, washed with water, dried over anhydrous sodium sulfate, evaporated to give 3.6 g of the title compound.

#### EXAMPLE 23

Preparation of N-(2-amino-4-chloro-6-fluoro-3-propargyloxyphenyl)tetrahydropthalimide (Compound no. 8-3)

A mixture of 2-amino-6-chloro-4-fluoro-3-(tetrahydropthalimido)phenol (0.31 g), propargyl bromide (0.2 ml), potassium carbonate (0.14 g), and acetonitrile (5 ml) was heated under reflux for 0.5 hr. The solvent and excess reagent were removed under reduced pressure. The residue was purified by a silica gel column, eluted with ethyl acetate to give the title product (0.2 g).

#### EXAMPLE 24

Preparation of N-(2-amino-4-chloro-6-fluoro-3-

isopropoxyphenyl)tetrahydraphthalimide (Compound no. 8-4)

A mixture of 2-amino-6-chloro-4-fluoro-3-(tetrahydraphthalimido)phenol (0.31 g),

isopropyl iodide (1.2 ml), potassium carbonate (0.14 g), and acetonitrile (5 ml) was heated under reflux for 2 hr. The solvent and excess reagent were removed under reduced pressure. The residue was purified by a silica gel column, eluted with ethyl acetate to give the title product (0.21 g).

EXAMPLE 25

Preparation of N-(2-amino-4-chloro-3-cyclopentyloxy-6-

fluorophenyl)tetrahydraphthalimide (Compound no. 8-5)

A mixture of 2-amino-6-chloro-4-fluoro-3-(tetrahydraphthalimido)phenol (0.31 g),

cyclopentyl bromide (1.3 ml), potassium carbonate (0.14 g), and acetonitrile (5 ml) was heated under reflux for 2 hr. The solvent and excess reagent were removed under reduced pressure. The residue was purified by a silica gel column, eluted with ethyl acetate to give the title product

(0.17 g).

EXAMPLE 26

Preparation of 2-chloro-4-fluoro-5-(phthalimido)methoxybenzene

4-Chloro-2-fluoro-5-methoxyaniline (10.0 g, 57 mmol) and phthalic anhydride (8.5 g, 57

mmol mmol) were dissolved in glacial acetic acid (200 ml) and the solution refluxed for 2 hr.

Water was added and the resultant precipitate was separated by filtration. The residue was washed with water and dried to afford the title compound (16.7 g); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) 3.89 (3H, s), 6.9 (1H, d, J=6.3 Hz), 7.33 (1H, d, J=9.0 Hz), 7.82 (2H, m), 7.97 (2H, m) ppm.

EXAMPLE 27

Preparation of 6-chloro-4-fluoro-2-nitro-3-(phthalimido)methoxybenzene

2-Chloro-4-fluoro-5-(phthalimido)methoxybenzene (5.0 g, 16.4 mmol) was slowly added

to a stirred mixture of con. sulfuric acid-con. nitric acid (10:1, 20 ml) at -20°C. Solution was then warmed to ambient temperature and allowed to stir for 1 hr. Addition to ice-water resulted in a light yellow precipitate which was separated by filtration. Column chromatography on silica gel in hexane-methylene chloride (3:7) furnished the title compound (3.2 g); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) 4.06 (3H, s), 7.54 (1H, d, J=8.5 Hz), 7.84 (2H, m), 7.97 (2H, m) ppm.

EXAMPLE 28

Preparation of 3-chloro-5-fluoro-2-methoxy-6-(phthalimido)aniline

6-Chloro-4-fluoro-2-nitro-3-(phthalimido)methoxybenzene (0.5 g, 1.4 mmol) was dissolved in glacial acetic acid (5 ml) and reduced iron (0.32 g, 5.6 mmol) was added. The solution was stirred at ambient temperature under a stream of nitrogen for 12 hr. Water was added and the product extracted with ethyl acetate followed by washings with water, brine, and drying (anhydrous sodium sulfate). Removal of the solvent afforded the title compound (0.4 g);  
5  $^1\text{H}$  NMR ( $\text{CDCl}_3$ , 300 MHz) 3.87 (3H, s), 4.21 (2H, br s), 6.65 (1H, d,  $J=9.4$  Hz), 7.81 (2H, m), 7.95 (2H, m) ppm.

#### EXAMPLE 29

Preparation of 4-chloro-6-fluoro-3-methoxy-2-nitroaniline  
10 3-Chloro-5-fluoro-2-methoxy-6-(phthalimido)aniline (0.6 g, 1.7 mmol) was dissolved in dimethylsulfoxide (3 ml) and anhydrous hydrazine (0.22 g, 6.8 mmol) was added. The solution was stirred at ambient temperature for 12 hr under a stream of nitrogen. Water was added and the product extracted with ether. The organic layer was washed with water, dried (anhydrous sodium sulfate), and evaporated to furnish the title compound (0.22 g).  $^1\text{H}$  NMR ( $\text{CDCl}_3$ , 300 MHz) 3.98 (3H, s), 5.09 (2H, br s), 7.2 (1H, d,  $J=10.5$  Hz) ppm.  
15

#### EXAMPLE 30

Preparation of 4-chloro-6-fluoro-3-methoxy-2-nitrophenyl isocyanate  
4-Chloro-6-fluoro-3-methoxy-2-nitroaniline (0.5 g, 2.27 mmol) was dissolved in anhydrous toluene (30 ml) and triethylamine (0.46 g, 4.54 mmol) was added. This solution was slowly added to a stirred solution of triphosgene (0.67 g, 2.27 mmol) in toluene (30 ml) and the solution refluxed for 2 hr. The solution was cooled and filtered. Clear filtrate was evaporated *in vacuo* to afford the title compound.  $^1\text{H}$  NMR ( $\text{CDCl}_3$ , 300 MHz) 3.96 (3H, s), 7.38 (1H, d,  $J=8.8$  Hz) ppm.

#### EXAMPLE 31

25 Preparation of 3-[4-chloro-6-fluoro-3-methoxy-2-nitrophenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-5) from 4-chloro-6-fluoro-3-methoxy-2-nitrophenyl isocyanate

Sodium hydride (0.06 g, 2.27 mmol) was suspended in 10 ml anhydrous dimethylformamide and to this was slowly added a solution of ethyl-3-amino-4,4,4-trifluorocrotonate (0.42 g, 2.27 mmol) in anhydrous toluene (10 ml). The solution was stirred for 30 15 min. until the evolution of hydrogen gas ceased. The solution was cooled to -30°C and a solution of 4-chloro-6-fluoro-3-methoxy-2-nitrophenyl isocyanate (2.27 mmol) in anhydrous toluene (10 ml) was slowly added with stirring. The solution was then allowed to warm to room

temperature and methyl iodide (1.31 g, 9.1 mmol) was added. After stirring for 4 hr at ambient temperature, water was added and product extracted with ethyl acetate. Column chromatography on silica gel in hexane:methylene chloride (4:6) afforded the title compound (0.13 g).

#### EXAMPLE 32

##### Preparation of 2-chloro-4-fluoro-5-(phthalimido)phenol

5-Amino-2-chloro-4-fluorophenol (3.0 g, 18.6 mmol) and phthalic anhydride (3.3 g, 22.3 mmol) were dissolved in glacial acetic acid (60 ml) and the solution refluxed for 2 hr. Water was added and the resultant precipitate was separated by filtration. The residue was washed with water and dried to afford the title compound (5.04 g); <sup>1</sup>H NMR (CDCl<sub>3</sub>+CD<sub>3</sub>OD, 300 MHz) 3.68 (1H, s), 6.93 (1H, d, J=6.6 Hz), 7.27 (1H, d, J=9.1 Hz), 7.84 (2H, dd, J=3.0, 5.5 Hz), 7.97 (2H, dd, J=3.0, 5.5 Hz) ppm.

#### EXAMPLE 33

##### Preparation of 6-chloro-4-fluoro-2-nitro-3-(phthalimido)phenol

2-Chloro-4-fluoro-5-(phthalimido)phenol (5.0 g, 17.1 mmol) was slowly added with stirring to con. nitric acid (50 ml) at -10°C. Solution was then warmed to ambient temperature and allowed to stir for 0.5 hr. Addition to ice-water resulted in a light yellow precipitate which was separated by filtration to afford the title compound (5.5 g); <sup>1</sup>H NMR (CDCl<sub>3</sub>+CD<sub>3</sub>OD, 300 MHz) 4.36 (1H, br s), 7.61 (1H, d, J=8.6 Hz), 7.88 (2H, dd, J=3.0, 5.5 Hz), 7.99 (2H, dd, J=3.0, 5.5 Hz) ppm.

#### EXAMPLE 34

##### Preparation of 4-chloro-2,5-difluoronitrobenzene (XXXVIII)

1-Chloro-2,5-difluorobenzene (31.7 g, 0.21 mol) was dissolved in sulfuric acid (110 ml) at -40°C, then a solution of sulfuric acid (20 ml) and nitric acid (30 ml) was added dropwise. The mixture was stirred for 1 hr while temperature slowly raised to 20°C. The product was forced to crystallize by mixing the reaction mixture with ice-water (500 ml), the yellow crystals were filtered, washed with cold water and dried in fume hood overnight. (38.0 g). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) 7.46 (1H, dd, J=9.8, 9.9 Hz), 7.96 (1H, dd, J=7.9, 7.9 Hz) ppm.

#### EXAMPLE 35

##### Preparation of 4-chloro-2,5-difluoroaniline (XXXIX)

30 1-Chloro-2,5-difluoro-4-nitrobenzene (XXXVIII) (17.5 g) was dissolved in acetic acid (150 ml) in a 1L 3-neck round bottom flask equipped with cooling condenser. To it iron powder (35.0 g) was added slowly while the solution was stirred by an overhead stirrer. The reaction was exothermic which occurred in less than 30 min and generated much heat that was absorbed by a

cooling bath. After that, ethyl acetate (300 ml) was added and the mixture filtered. The solution was washed with water and dried over sodium sulfate. The product was purified by column chromatography (silica gel, hexane:ethyl acetate, 4:1) (14.3 g).  $^1\text{H}$  NMR ( $\text{CDCl}_3$ , 300 MHz) 3.89 (2H, br), 6.56 (1H, m), 7.02 (1H, m) ppm.

5

#### EXAMPLE 36

10

##### Preparation of ethyl 4-chloro-2,5-difluorophenylcarbamate (XL)

4-Chloro-2,5-difluoroaniline (XXXIX) (2.1 g, 12.8 mmol) was mixed with pyridine (20 ml) at 0°C, to it was dropwise added ethyl chloroformate (1.5 g, 13.8 mmol). After stirring for 2.5 hr while temperature slowly raised to room temperature, pyridine was evaporated and the residue crystallized in ice-water (100 ml). The crystals were filtered, washed with water and dried in fume hood overnight (2.7 g).  $^1\text{H}$  NMR ( $\text{CDCl}_3$ , 300 MHz) 1.33 (3H, t,  $J=7.1$  Hz), 4.23 (2H, q,  $J=7.1$  Hz), 6.89 (1H, br), 7.12 (1H, dd,  $J=6.5, 6.5$  Hz), 8.05 (1H, dd,  $J=7.8, 9.6$  Hz) ppm.

#### EXAMPLE 37

15

##### Preparation of ethyl 4-chloro-3,6-difluoro-2-nitrophenylcarbamate (XLI)

Ethyl 4-chloro-2,5-difluorophenylcarbamate (XL) (2.4 g, 10.2 mmol) was added to a mixture of sulfuric acid (12.5 ml) and nitric acid (0.8 ml) at -30°C. After stirring for 1.5 hr (-30°C to r.t.), it was poured into ice water (50 ml) and yellow crystals formed immediately which were filtered, washed with water and dried in fume hood overnight (2.8 g).  $^1\text{H}$  NMR ( $\text{CDCl}_3$ , 300 MHz) 1.30 (3H, t,  $J=7.1$  Hz), 4.22 (2H, q,  $J=7.1$  Hz), 6.97 (1H, br), 7.45 (1H, dd,  $J=6.3, 6.3$  Hz) ppm.

20

#### EXAMPLE 38

##### Preparation of 4-chloro-3,6-difluoro-2-nitroaniline (V)

Ethyl 4-chloro-3,6-difluoro-2-nitrophenylcarbamate (XLI) (0.9 g, 3.2 mmol) was mixed with acetic acid (30 ml) and hydrobromic acid (48%, 25 ml), the mixture was stirred at 150°C for

25

4 hr and then the volume reduced to half by evaporation. Ethyl acetate (50 ml) was added and the solution was washed with water (15 ml x 3) and dried over sodium sulfate. The product was purified by column chromatography (silica gel, hexane) (0.56 g).  $^1\text{H}$  NMR ( $\text{CDCl}_3$ , 300 MHz) 5.73 (2H, br), 7.24 (1H, dd,  $J=6.1, 6.1$  Hz) ppm.

30

#### EXAMPLE 39

Preparation of 3-(4-chloro-5-ethoxycarbonylamino-2-fluorophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (XLVII)

Ethyl chloroformate (2.58 g) was dropwise added into a solution of 3-(5-amino-4-chloro-2-fluorophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (XLVI) in pyridine (25 ml) at 0°C, and stirred at room temperature for one hr. The reaction mixture was diluted with ethyl acetate, washed with 1N hydrochloric acid followed by water, and dried over sodium sulfate.

5 After concentration, the crystals (5.46 g) were collected by filtration. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) 1.31 (3H, t, J=7.1 Hz), 4.22 (2H, q, J=7.1 Hz), 6.20 (1H, s), 7.14 (1H, br), 7.29 (1H, d, J=8.8 Hz), 7.36 (1H, d, J=6.0 Hz), 8.26 (1H, bd, J=6.4 Hz) ppm.

#### EXAMPLE 40

Preparation of 3-(4-chloro-3-ethoxycarbonylamino-6-fluoro-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-33)

10 3-(4-Chloro-5-ethoxycarbonylamino-2-fluorophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (XLVII) (1.0 g) was stirred with sulfuric acid (2 ml) at 0°C, then a mixture of nitric acid (1 ml) and sulfuric acid (1 ml) was dropwise added. After stirring at room temperature for 3 hr, it was poured into ice water (50 ml) and yellow crystals formed

15 immediately which was filtered, washed with water and dried in fume hood overnight (0.5 g).

#### EXAMPLE 41

Preparation of 3-(4-chloro-3-ethoxycarbonylamino-6-fluoro-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-34)

15 3-(4-chloro-3-ethoxycarbonylamino-6-fluoro-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.96 g) was stirred with dimethyl sulfate (0.72 ml) and potassium carbonate (0.33 g) in N,N-dimethylformamide (10 ml) at room temperature overnight. The reaction mixture was diluted with ethyl acetate, washed with water, dried over sodium sulfate, evaporated to give the title compound (1.1 g, oil).

#### EXAMPLE 42

25 Preparation of 3-[4-chloro-6-fluoro3-methyl-2-(2-naphthoyl)aminophenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-122)

Preparation of 4-chloro-2-fluoro-5-methyl-N-phenoxy carbonylaniline

4-Chloro-2-fluoro-5-methylaniline (5 g, 31.4 mmol) was dissolved in tetrahydrofuran (100 ml) and potassium carbonate (6.0 g, 37.7 mmol) and phenyl chloroformate (5.9 g, 37.7 mmol) were added. Solution was refluxed for 3 hr and the solvent was removed under reduced pressure. Product was purified by column chromatography on silica gel (eluent, methylene chloride:hexane, 6:4; 7.15 g).

30 Preparation of 4-chloro-2-fluoro-5-methyl-6-nitro-N-phenoxy carbonylaniline

4-Chloro-2-fluoro-5-methyl-N-phenoxy carbonyl aniline (7.1 g, 25.4 mmol) was dissolved in chloroform (68 ml) and trifluoroacetic anhydride (13.5 ml) and ammonium nitrate (2.4 g, 30.5 mmol) were slowly added with stirring at ambient temperature. The stirring was continued for 18 hr when a second batch of ammonium nitrate (0.4 g, 5 mmol) was added and stirring continued for 8 hr. Water was added and solution was neutralized by slow addition of sodium bicarbonate solution followed by extraction with chloroform. Organic layer was dried and evaporated under reduced pressure to afford an oily product (8.5 g) which was used for the next step without purification.

Preparation of 3-(4-chloro-6-fluoro-3-methyl-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 10 3H)-pyrimidinedione

Ethyl 3-amino-4,4,4-trifluorocrotonate (6.1 g, 33.1 mmol) was dissolved in dimethylformamide (47 ml) and stirred at -10 °C. To this solution was slowly added 1,8-diazabicyclo[5.4.0]undec-7-ene (6.3 g, 41.4 mmol) and solution stirred for 0.5 hr. To this solution was slowly added a solution of 4-chloro-2-fluoro-5-methyl-6-nitro-N-phenoxycarbonyl aniline (8.5 g) in dimethylformamide (25 ml) followed by stirring at ambient temperature for 14 hr. Solution was then heated to 80 °C and stirred at this temperature for 4 hr. Water was added and pH adjusted to 4 by addition of dilute hydrochloric acid. Product was extracted with ethyl acetate followed by evaporation of the solvent to afford the crude product (10.1 g) which was subjected to N-methylation as follows.

Preparation of 3-(4-chloro-6-fluoro-3-methyl-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

3-(4-Chloro-6-fluoro-3-methyl-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (10.1 g) was dissolved in dimethylformamide (100 ml) and potassium carbonate (5.7 g, 41.3 mmol) and dimethylsulfate (11.9 g, 55.1 mmol) were added. Solution was stirred at ambient temperature for 14 hr, water was added and product extracted with ethyl acetate. The title compound was separated by column chromatography on silica gel (eluent, hexane-ethyl acetate, 9:1; 8.5 g).

Preparation of 3-(2-amino-4-chloro-6-fluoro-3-methylphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

3-(4-Chloro-6-fluoro-3-methyl-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (2.0 g, 5.2 mmol) was dissolved in acetic acid (20 ml) and iron powder (1.2 g, 21.5 mmol) was added. Solution was stirred at ambient temperature for 14 hr. Water was added and product extracted with ethyl acetate followed by evaporation under reduced pressure. Title

compound was separated by column chromatography on silica gel (eluent, hexane-ethyl acetate, 7:3; 1.5 g).

Preparation of 3-[4-chloro-6-fluoro3-methyl-2-(2-naphthoyl)aminophenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

3-(2-Amino-4-chloro-6-fluoro-3-methylphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.5 g, 1.4 mmol) was dissolved in 1,4-dioxane (20 ml) and triethyl amine (0.29 g, 2.9 mmol) and 2-naphthoyl chloride (0.41 g, 2.2 mmol) were added. Solution was heated under reflux for 4 hr and solvent removed under reduced pressure. Product was subjected to column chromatography on silica gel and the title compound was eluted with hexane-ethyl acetate (8:2; 0.3 g).

#### EXAMPLE 43

Preparation of N-[4-chloro-6-fluoro3-methoxy-2-(2-naphthoyl)aminophenyl]phthalimide  
(Compound no. 13-3)

3-Chloro-5-fluoro-2-methoxy-6-(phthalimido)aniline (0.32 g, 1 mmol), 2-naphthoyl chloride (0.23 g, 1.2 mmol), and triethyl amine (0.12 g, 1.2 mmol) were dissolved in tetrahydrofuran (20 ml) and solution refluxed for 3 hr. Solvent was then removed under reduced pressure and the residue subjected to column chromatography on silica gel. Title compound was eluted with hexane-ethyl acetate (7:3; 0.12 g).

#### EXAMPLE 44

Preparation of 3-(2-amino-4-chloro-3-difluoromethoxy-6-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-38)  
3-(2-Amino-4-chloro-6-fluoro-3-hydroxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1.41 g, 4.0 mmol) and potassium carbonate (0.69 g, 5.0 mmol) were suspended in dimethylformamide (50 ml) and stirred at 90 °C. Chlorodifluoromethane was bubbled through the solution for 4 hr and water was added. Product was extracted with ethyl acetate and subjected to column chromatography (silica gel; eluent, methylene chloride-methanol, 99.5:0.5) to furnish the title compound (0.78 g).

#### EXAMPLE 45

Preparation of 3-[4-chloro-6-fluoro-3-methyl-2-(phenoxy carbonylamino)phenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 4-52)  
3-(4-Chloro-6-fluoro-2-isocyanato-3-methylphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

3-(2-Amino-4-chloro-6-fluoro-3-methylphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1.0 g, 2.9 mmol) and triethylamine (0.58 g, 5.7 mmol) were dissolved in ethyl acetate (15 ml) and the solution was slowly added to a solution of triphosgene (0.85 g, 2.9 mmol) in ethyl acetate (15 ml). Solution was heated under reflux for 2 hr and filtered. Solvent was evaporated to afford the title compound as a residue which was used for the next step.

5                   3-(4-Chloro-6-fluoro-3-methyl-2-phenoxy carbonylaminophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

3-(4-Chloro-6-fluoro-2-isocyanato-3-methylphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1.4 mmol) and triethylamine (0.14 g, 1.4 mmol) were dissolved in toluene (10 ml) and the solution was treated with phenol (0.13 g, 1.4 mmol). Solution was stirred for 0.3 hr at ambient temperature and water was added. Product was extracted with ethyl acetate. Removal of the solvent followed by column chromatography on silica gel (eluent, methylene chloride) afforded the title compound (0.3 g).

EXAMPLE 46

15                 Preparation of 3-[4-chloro-6-fluoro-3-hydroxy-2-(2-naphthoylamino)phenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-114)

3-(2-Amino-4-chloro-6-fluoro-3-hydroxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.50 g, 1.4 mmol) and 2-naphthoyl chloride (0.27 g, 1.4 mmol) were dissolved in 1,4-dioxane (10 ml) and the solution heated under reflux for 4 hr. Solvent was evaporated under reduced pressure and the product purified by column chromatography on silica gel (eluent, hexane-ethyl acetate, 8:2) to furnish the title compound (0.60 g).

EXAMPLE 47

Preparation of 3-[4-chloro-3-difluoromethoxy-6-fluoro-2-(2-naphthoylamino)phenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-115)

25                 3-[4-Chloro-6-fluoro-3-hydroxy-2-(2-naphthoylamino)phenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.51 g, 1.0 mmol) dissolved in dimethylformamide (5 ml) was slowly added to a stirred suspension of sodium hydride (0.03 g, 1.3 mmol) in dimethylformamide (5 ml) at -10 °C. Chlorodifluoromethane was bubbled through the solution for 0.5 hr with stirring at -10 °C followed by addition of water. Product was extracted with ethyl acetate and solvent evaporated under reduced pressure. Residue was subjected to column chromatography on silica gel (eluent, hexane-ether, 25:75) to furnish the title compound (0.03 g).

EXAMPLE 48

Preparation of 3-[4-chloro-2-(2-naphthoylamino)phenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-131)

To a solution of triphosgene in anhydrous ethyl acetate (150 ml) was added dropwise a solution of 4-chloro-2-nitroaniline (10 g) and triethylamine (12 g) in anhydrous ethyl acetate (50 ml) at 0°C under nitrogen atmosphere. After addition, the resulting mixture was heated at reflux temperature for 1 hr, then allowed to cool to ambient temperature. The precipitate was removed by filtration through Celite and the filtrate was concentrated to give title compound as an brown solid.

To a suspension of sodium hydride ( 60 % dispersion in oil, 2.5 g) in anhydrous N,N-dimethylformamide (100 ml) was added dropwise a solution of ethyl-3-amino-4,4,4-trifluorocrotonate in toluene (50 ml)at 0°C under nitrogen atmosphere. After addition, the mixture was stirred for 20 min at same temperature, then cooled to -30°C. A solution of (4-chloro-2-nitrophenyl)isocyanate in toluene (50 ml) was added dropwise. After stirring for 20 min, the cold bath was removed and the resulting mixture was stirred overnight at ambient temperature. The reaction mixture was partitioned between ethyl acetate and 1N-hydrochloric acid. The organic phase was washed with brine (x2) and dried over anhydrous sodium sulfate. The solvent was removed in vacuo and the residue was purified by column chromatography on silica gel eluted with ethyl acetate and hexane (1:1) to afford 3-(4-chloro-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (10.2 g).as a yellow solid.

Preparation of 3-(4-chloro-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

A mixture of 3-(4-chloro-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (3 g), dimethyl sulfate (1.7 g) and potassium carbonate (1.85 g) in N,N-dimethylformamide (100 ml) was stirred at 55°C overnight. The resulting mixture was allowed to cool to ambient temperature and filtered through Celite to remove unsoluble precipitate. The filtrate was diluted with a mixed solvent of ethyl acetate and hexane (1:1, 200 ml), washed with brine (x2) and dried over anhydrous sodium sulfate. After removal of the solvent, the residue was solidified. The yellow solid was recrystallized from ethyl acetate and hexane to give desired compound ( 2.3 g).

Preparation of 3-(2-amino-4-chlorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

To a stirred suspension of 3-(4-chloro-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1 g) in methanol (20 ml) and conc. hydrochloric acid (10 ml) was added iron (powdered, 0.48 g) unded vigorous stirring. After addition, the mixture was heated at reflux

temperature for 1 hr. The oil bath was removed and the solution was allowed to cool to ambient temperature. Ethyl acetate (200 ml) was added, washed with brine (x2) and dried over anhydrous sodium sulfate. After removal of the solvent, the residue was purified by column chromatography on silica gel using ethyl acetate-hexane (1:3) as the eluent to give the title compound.

5 Preparation of 3-[4-chloro-2-(2-naphthoylamino)phenyl]-1-methyl-6-trifluoromethyl-  
2,4(1H, 3H)-pyrimidinedione (Compound no. 2-131)

A solution of 3-(2-amino-4-chlorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-  
10 pyrimidinedione (0.4 g), 2-naphthoyl chloride (0.29 g) and triethyl amine (0.19 g) in anhydrous  
tetrahydro furan (30 ml) was heated at reflux temperature overnight under nitrogen atmosphere.  
The reaction mixture was diluted with ethyl acetate (200 ml), washed with brine (x2) and dried  
over anhydrous sodium sulfate. The solvent was removed unded reduced pressure and the residue  
was purified by column chromatography on silica gel using ethyl acetate and hexane (1:3) as the  
eluent give a pale yellow solid. The solid was recrystallized from ethyl acetate-hexane to give the  
15 title compound as a white crystal (0.42 g).

EXAMPLE 49

Preparation of 3-[4-chloro-6-fluoro-2-(2-naphthoylamino)phenyl]-1-methyl-6-  
trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-145)

A mixture of (2-amino-4-chloro-6-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H,  
20 3H)-pyrimidinedione (0.25 g), triethylamine (0.15 g) and 2-naphthoyl chloride (0.21 g) in  
anhydrous tetrahydrofuran (30 ml) was heated at refluxtemperature overnight under nitrogen  
atmosphere. The mixture was poured into water and extracted with ethyl acetate. The organic  
layer was washed with brine and dried over anhydrous sodium acetate. The solvent was removed  
in vecuo and the residue was purified by column chromatography on silica gel using ethyl  
acetate- hexane (1:4) as the eluent to give the title compound as an white solid (0.26 g).  
25

EXAMPLE 50

Preparation of N-[4-chloro-2-(2-naphthoylamino)phenyl]phthalimide (Compound no. 13-  
5)

A reaction solution of N-(2-amino-4-chlorophenyl) phthalimide (0.5 g), triethylamine  
30 (0.28 g) and 2-naphthoyl chloride (0.35 g) in anhydrous tetrahydrofuran (50 ml) was heated at  
reflux temperature for 6 hr under nitrogen atmosphere. The resulting mixture was poured into  
water and extracted with ethyl acetate. The organic layer was washed with brine (x2) and dried  
over anhydrous sodium sulfate. The solvent was removed and the residue was purified by

column chromatography on silica gel using ethyl acetate-hexane (1:5) to give the title compound (0.35 g) as a yellow solid.

#### EXAMPLE 51

Preparation of 3-(2-benzylthioacetylamino-4-chloro-6-fluoro-3-methoxyphenyl)-1-

5 methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-165)

A solution of benzylmercaptan (51.0 mg) in tetrahydrofuran (1.0 ml) was slowly added to a suspension of sodium hydride (16.4 mg) in tetrahydrofuran stirred under nitrogen at 0°C. The solution warmed to room temperature over 20 minutes and tetrabutylammonium bromide (11 mg) was added. The suspension was cooled to -78°C and a solution of 3-(2-chloroacetylamino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (150 mg) added. After stirring for a further 30 minutes the mixture was allowed to warm to room temperature overnight. Water and ethyl acetate were added and the solution separated and the organic phase was washed with water, brine and dried over sodium sulfate. The solution was concentrated and chromatographed on silica gel eluting with methylene chloride : ethyl acetate, 10 : 1, to give a white solid (137 mg).

#### EXAMPLE 52

Preparation of 3-(2-aminocarbonylamino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 3-26)

A solution of the isocyanate (1 mM) in dioxane (20 ml), stirred at 0°C, was treated with a 20 solution of 0.5 M ammonia in dioxane (3 mM) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (3 drops). The solution was allowed to warm to room temperature and stirred overnight. Chromatography on silica gel eluting with ethyl acetate gave the product as a yellow solid (271 mg).

#### EXAMPLE 53

25 Preparation of 3-(4-chloro-6-fluoro-3-methoxy-2-thiomethylphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 17-1)

A solution of t-butyl nitrile (73 mg) in methylene chloride (1 ml) was added to a stirred, ice cold solution of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (200 mg) and methyl disulfide (102 mg) in dry methylene chloride (4 ml). It was stirred at 0°C for 1.5 h and allowed to warm to room temperature overnight. 1 N Hydrochloric acid was added and the mixture extracted with ethyl acetate, washed with water, brine and dried over sodium sulfate. The solution was concentrated under reduced pressure and

the residue chromatographed on silica gel eluting with ethyl acetate : hexane, 5 : 1 gave the product as a yellow powder (189 mg).

#### EXAMPLE 54

Preparation of 2-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-2)

Nitric acid (70%, 12 ml) was added to the ice-cooled 2-(4-chloro-2-fluoro-5-hydroxyphenyl)-5-trifluoromethylpyridazin-3-one (1.25 g) and stirred at room temperature for 30 minutes. Crushed ice was added. The precipitate was collected by filtration and washed with water to give 1.20 g of the desired product, m.p. 146-8°C.

#### EXAMPLE 55

Preparation of 2-(2-amino-4-chloro-6-fluoro-3-hydroxyphenyl)-5-trifluoromethylpyridazin-3-one.(Compound no. 11-3)

To a stirred solution of 2-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenyl)-5-trifluoromethylpyridazin-3-one (0.601 g) in acetic acid (6 ml) was added 0.38 g of iron powder at ambient temperature and stirred for 4 hours. The reaction mixture was partitioned between ethyl acetate and water. The organic phase was dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel column chromatography, eluted with hexane - ethyl acetate (2 : 1) to give 0.515 g of the title compound.

#### EXAMPLE 56

Preparation of 2-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-4) (BY715) and 2-(4-chloro-6-fluoro-3-methoxy-2-methylaminophenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-5)  
2-(2-Amino-4-chloro-6-fluoro-3-methoxyphenyl)-5-trifluoromethylpyridazin-3-one (0.515 g), methyl iodide (0.248 g), and potassium carbonate (0.219 g) were mixed in acetonitrile (10 ml) and heated at reflux for 2 hours. The reaction mixture was partitioned between ethyl acetate and water. The organic phase was dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel column chromatography, eluted with hexane - ethyl acetate (4 : 1) to give 0.40 g of 2-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-4), m.p. 156-7°C and 2-(4-chloro-6-fluoro-3-methoxy-2-methylaminophenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-5)(7 mg).

#### EXAMPLE 57

Preparation of 2-(4-chloro-6-fluoro-3-methoxy-2-naphthoylamidophenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-6)

2-(2-Amino-4-chloro-6-fluoro-3-methoxyphenyl)-5-trifluoromethylpyridazin-3-one

(0.153 g) and 2-naphthoyl chloride (0.097 g) were mixed in dioxane (10 ml) and heated at reflux for 5 hours. The reaction mixture was partitioned between ethyl acetate and water. The organic phase was dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel column chromatography, eluted with hexane - ethyl acetate (4 : 1) to give 0.198 g of the title compound, m.p. 190-2°C.

EXAMPLE 58

Preparation of 2-(2,4-dichloro-6-fluoro-3-methoxyphenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-7) and 2-[4-chloro-2-(2-chloro-2-ethoxycarbonylethyl)-6-fluoro-3-methoxyphenyl]-5-trifluoromethylpyridazin-3-one (Compound no. 11-8)

Copper(II) chloride (0.119 g), *t*-butyl nitrite (0.115 g), and ethyl acrylate (3 ml) were placed in a flask, and cooled with a dry ice-acetone bath at -65°C. To this mixture 2-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-5-trifluoromethylpyridazin-3-one (0.25 g) in acetonitrile (4 ml) was added and stirred. The reaction mixture was gradually warmed up to room temperature over night. The reaction mixture was partitioned between ethyl acetate and water. The organic phase was dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel column chromatography, eluted with hexane - ethyl acetate (9:1) to give 0.077 g of 2-(2,4-dichloro-6-fluoro-3-methoxyphenyl)-5-trifluoromethylpyridazin-3-one and 0.033 g of 2-[4-chloro-2-(2-chloro-2-ethoxycarbonylethyl)-6-fluoro-3-methoxyphenyl]-5-trifluoromethylpyridazin-3-one.

EXAMPLE 59

Preparation of 2-(4-chloro-6-fluoro-3-hydroxy-2-naphthoylamidophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-194)

Boron tribromide-emthyl sulfide complex (5.15 g) was added to a solution of 2-(4-chloro-6-fluoro-3-methoxy-2-naphthoylamidophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione in 1,2-dichloroethane (150 ml) and heated at reflux for 1 hour. The reaction mixture was partitioned between methylene chloride and water. The organic phase was dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel column chromatography, eluted with hexane - ethyl acetate (4:1 and 2:1) to give the title compound (4.127 g), m.p. 150-2°C.

EXAMPLE 60

Preparation of 2-(4-chloro-3-ethoxy-6-fluoro-2-naphthoylamidophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-196)

2-(4-Chloro-6-fluoro-3-hydroxy-2-naphthoylamidophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.203 g), ethyl iodide (75 mg) and potassium carbonate (55 mg) were stirred in methylethyl ketone (9 ml) and dimethyl sulfoxide (1 ml) at room temperature over night. The reaction mixture was filtered and evaporated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with hexane - ethyl acetate (4:1) to give the title compound (0.16 g).

#### EXAMPLE 61

Preparation of 3-[4-chloro-2-diazanyl-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 15-1)

3-(2-Amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.9 g, 2.4 mmol) was dissolved in conc. hydrochloric acid (5ml) and the mixture cooled to -15°C, a solution of NaNO<sub>2</sub> (0.2 g in 2 ml of H<sub>2</sub>O) was added slowly. After 15 stirred for 20 min, a solution of SnCl<sub>2</sub>·2H<sub>2</sub>O (1.5 g in 4 ml of conc. hydrochloric acid) was added and the reaction continued at -15°C for 30 min, then at room temperature for 30 min. The aqueous mixture was extracted with ethyl acetate (5 ml x 3) and the organic phase washed with brine and dried over Na<sub>2</sub>SO<sub>4</sub>. Column chromatography was used to purify the product (silica gel, hexane/ethyl acetate = 6/4). Yield: 0.5 g, 1.3 mmol.

#### EXAMPLE 62

Preparation of 3-[4-chloro-2-(2-cyclopropanecarbonyldiazanyl)-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 15-2)

3-[4-chloro-2-diazanyl-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.15 g, 0.4 mmol) was dissolved in dioxane (10 ml) and added with cyclopropanecarbonyl chloride (0.04 g, 0.4 mmol) and triethylamine (0.04 g, 0.4 mmol). After 25 stirred for 1 hr, the mixture was poured into water (15 ml) and extracted with ethyl acetate (10 ml x 3). Organic phase was washed with brine and dried over Na<sub>2</sub>SO<sub>4</sub>. Final purification involved column chromatography (silica gel, ether). Yield: 0.15 g, 0.34 mmol.

#### EXAMPLE 63

Preparation of 3-{4-chloro-2-[2, 2-(cyclopropylmethylene)diazanyl]-6-fluoro-3-methoxyphenyl}-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 15-

11)

3-[4-chloro-2-diazanyl-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.12 g, 0.31 mmol) was added to a methanol (10 ml) solution of cyclopropanecarboxaldehyde (0.024 g, 0.34 mmol) and the mixture was stirred for 3 hr. After evaporation of solvent, the residue was purified by column chromatography (silica gel, hexane/ether = 3/2). Yield: 0.13 g, 0.31 mmol.

#### EXAMPLE 64

Preparation of 3-(4-chloro-6-fluoro-2-hydroxy-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 16-6)

An acetonitrile (10 ml) solution of copper (II) sulfate (0.52 g, 3.26 mmol), copper (I) oxide (0.47 g, 3.26 mmol) and copper (II) nitrate hemipentahydrate (0.76 g, 3.26 mmol) was stirred at -30°C, and added with tert-butyl nitrite (0.41 g, 3.97 mmol) and then an acetonitrile (3 ml) solution of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.94 g, 2.56 mmol). After stirred for 16 hr (-30°C to room temperature), the mixture was poured into cold 5% hydrochloric acid (30 ml) and then extracted with ethyl acetate (20 ml x 3). The organic phase was washed with brine and dried over Na<sub>2</sub>SO<sub>4</sub>. Preparative TLC was used for purification (silica gel plates, 2000 microns, ether). Yield: 0.16 g, 0.44 mmol.

#### EXAMPLE 65

Preparation of 3-[4-chloro-6-fluoro-3-methoxy-2-(2-naphthoyloxy)phenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 16-7)

3-(4-chloro-6-fluoro-2-hydroxy-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.10 g, 0.27 mmol) was dissolved in dioxane (10 ml) and the solution added with 2-naphthoyl chloride (0.062 g, 0.33 mmol), triethylamine (0.033 g, 0.33 mmol). After stirred for 2 hr, solvent was evaporated and the residue purified by column chromatography (silica gel, hexane/ether = 4/1). Yield: 0.12 g, 0.23 mmol.

#### EXAMPLE 66

Preparation of 3-{4-chloro-2-[2-chloro-2-(ethoxycarbonyl)ethyl]-6-fluoro-3-methoxyphenyl}-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compounds no. 14-4 and 14-5)

A solution of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.94 g, 2.56 mmol) in acetonitrile (3 ml) was slowly added to an acetonitrile (9 ml) solution of ethyl acrylate (6 ml), tert-butyl nitrite (0.41 g, 3.97 mmol), and copper (II) chloride (0.42 g, 3.12 mmol) at -20°C. After stirred for 16 hr (-20°C

to room temperature), the mixture was poured into cold 5% hydrochloric acid (30 ml) and extracted with ethyl acetate (20 ml x 3), the organic phase was washed with cold 5% NaHCO<sub>3</sub> and brine, dried over Na<sub>2</sub>SO<sub>4</sub>. Column chromatography was used for purification (silica gel, hexane/ether = 9/1) which also isolated two isomers. Yield: isomer-1 (eluted earlier), 0.23 g, 0.47 mmol; isomer-2 (eluted later), 0.14 g, 0.29 mmol.

Using the procedures as described in Schemes 1-17 and Examples 1-66, the compounds of this invention can be readily prepared. Tables I-XVII list structures for few representative compounds of this invention.

TABLE I

5



| No.  | X  | Y | W                                        | R <sub>1</sub>                | R <sub>2</sub>   | R <sub>3</sub>  | R <sub>4</sub>                        | R <sub>5</sub>  | R <sub>8</sub> | R <sub>9</sub> |
|------|----|---|------------------------------------------|-------------------------------|------------------|-----------------|---------------------------------------|-----------------|----------------|----------------|
| 1-1  | Cl | F | OCH <sub>3</sub>                         | H                             | CF <sub>3</sub>  | H               | O                                     | O               | O              | O              |
| 1-2  | Cl | F | OH                                       | H                             | CF <sub>3</sub>  | H               | O                                     | O               | O              | O              |
| 1-3  | Cl | F | OCH <sub>3</sub>                         | H                             | CF <sub>3</sub>  | H               | H                                     | H               | O              | O              |
| 1-4  | Cl | F | OCH <sub>3</sub>                         | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | H                                     | H               | O              | O              |
| 1-5  | Cl | F | OCH <sub>3</sub>                         | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | H                                     | O               | O              | O              |
| 1-6  | Br | F | OH                                       | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | O                                     | H               | O              | O              |
| 1-7  | Br | F | OCH <sub>3</sub>                         | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | H                                     | H               | H              | O              |
| 1-8  | Br | F | OH                                       | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | H                                     | H               | H              | O              |
| 1-9  | Cl | F | OCH <sub>3</sub>                         | CH <sub>3</sub>               | CF <sub>3</sub>  | NO <sub>2</sub> | O                                     | H               | O              | O              |
| 1-10 | Cl | F | OCH <sub>3</sub>                         | CH <sub>3</sub>               | CF <sub>3</sub>  | NH <sub>2</sub> | H                                     | H               | O              | O              |
| 1-11 | Cl | F | OCH <sub>3</sub>                         | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | CH <sub>3</sub>                       | CH <sub>3</sub> | O              | O              |
| 1-12 | Cl | F | OCH <sub>3</sub>                         | NH <sub>2</sub>               | CF <sub>3</sub>  | H               | O                                     | H               | O              | O              |
| 1-13 | Cl | F | OCH <sub>3</sub>                         | NH <sub>2</sub>               | CF <sub>3</sub>  | H               | H                                     | H               | O              | O              |
| 1-14 | Cl | F | OCH <sub>3</sub>                         | C <sub>2</sub> H <sub>5</sub> | CF <sub>3</sub>  | H               | H                                     | H               | H              | O              |
| 1-15 | Cl | F | OCH <sub>3</sub>                         | C <sub>2</sub> H <sub>5</sub> | CF <sub>3</sub>  | H               | H                                     | H               | H              | O              |
| 1-16 | Cl | F | OH                                       | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | H                                     | H               | H              | O              |
| 1-17 | Cl | F | OH                                       | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | O                                     | H               | O              | O              |
| 1-18 | Cl | F | OCH <sub>2</sub> CN                      | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | H                                     | H               | H              | O              |
| 1-19 | Cl | F | propargyloxy                             | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | H                                     | H               | H              | O              |
| 1-20 | Cl | F | OCH <sub>2</sub> CH=CHCOOCH <sub>3</sub> | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | H                                     | H               | H              | O              |
| 1-21 | Cl | F | cyclopentyloxy                           | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | H                                     | H               | H              | O              |
| 1-22 | Cl | F | benzyloxy                                | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | H                                     | H               | H              | O              |
| 1-23 | Cl | F | 3-nitro-2-pyridyloxy                     | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | H                                     | H               | H              | O              |
| 1-24 | Cl | F | OCH <sub>3</sub>                         | CH <sub>3</sub>               | CHF <sub>2</sub> | H               | H                                     | H               | H              | O              |
| 1-25 | Cl | F | OCH <sub>3</sub>                         | CH <sub>3</sub>               | CF <sub>3</sub>  | Cl              | H                                     | H               | H              | S              |
| 1-26 | Cl | F | OCH <sub>3</sub>                         | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | H                                     | H               | H              | O              |
| 1-27 | Cl | F | OCH <sub>3</sub>                         | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | H                                     | H               | H              | S              |
| 1-28 | CN | F | OCH <sub>3</sub>                         | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | H                                     | H               | H              | O              |
| 1-29 | Cl | H | OCH <sub>3</sub>                         | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | H                                     | H               | H              | O              |
| 1-30 | Cl | F | OCH <sub>3</sub>                         | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | =C(CCl <sub>3</sub> )Cl               | O               | O              | O              |
| 1-31 | Cl | F | OCH <sub>3</sub>                         | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | =C(H)N(CH <sub>3</sub> ) <sub>2</sub> | O               | O              | O              |
| 1-32 | Cl | F | OCH <sub>3</sub>                         | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | --(CH <sub>2</sub> ) <sub>4</sub> --  | O               | O              | O              |
| 1-33 | Cl | F | NHCOCOCH <sub>2</sub> CH <sub>3</sub>    | H                             | CF <sub>3</sub>  | H               | O                                     | O               | O              | O              |
| 1-34 | Cl | F | NHCOCOCH <sub>2</sub> CH <sub>3</sub>    | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | O                                     | O               | O              | O              |
| 1-35 | Cl | F | CH <sub>3</sub>                          | H                             | CF <sub>3</sub>  | H               | O                                     | O               | O              | O              |
| 1-36 | Cl | F | CH <sub>3</sub>                          | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | O                                     | O               | O              | O              |
| 1-37 | Cl | F | CH <sub>3</sub>                          | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | H                                     | H               | O              | O              |
| 1-38 | Cl | F | OCHF <sub>2</sub>                        | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | H                                     | H               | O              | O              |
| 1-39 | Cl | F | OCH <sub>2</sub> -2-naphthyl             | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | H                                     | H               | O              | O              |
| 1-40 | Cl | F | OCH <sub>3</sub>                         | CH <sub>3</sub>               | CF <sub>3</sub>  | H               | -N-N-                                 | O               | O              | O              |

|      |                                                             |                 |                                                             |                 |                 |                 |                                   |                          |   |   |   |   |
|------|-------------------------------------------------------------|-----------------|-------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------------------------|--------------------------|---|---|---|---|
| 1-41 | H                                                           | H               | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H               | H                                 | H                        | H | O | O | O |
| 1-42 | H                                                           | H               | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H               | O                                 | O                        | O | O | O | O |
| 1-43 | CN                                                          | H               | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H               | H                                 | H                        | H | O | O | O |
| 1-44 | CN                                                          | H               | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H               | H                                 | O                        | O | O | O | O |
| 1-45 | Cl                                                          | Cl              | OH                                                          | CH <sub>3</sub> | CF <sub>3</sub> | H               | O                                 | O                        | O | O | O | O |
| 1-46 | OCH <sub>3</sub>                                            | F               | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H               | O                                 | O                        | O | O | O | O |
| 1-47 | Cl                                                          | Cl              | OCH <sub>3</sub>                                            | CH <sub>3</sub> | CF <sub>3</sub> | H               | H                                 | H                        | H | O | O | O |
| 1-48 | OCH(CH <sub>3</sub> )C<br>OOCH <sub>2</sub> CH <sub>3</sub> | H               | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H               | H                                 | H                        | H | O | O | O |
| 1-49 | OCH(CH <sub>3</sub> )C<br>OOCH <sub>2</sub> CH <sub>3</sub> | H               | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H               | O                                 | O                        | O | O | O | O |
| 1-50 | OCHF <sub>2</sub>                                           | F               | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H               | O                                 | O                        | H | O | O | O |
| 1-51 | OCHF <sub>2</sub>                                           | F               | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H               | H                                 | O                        | O | O | O | O |
| 1-52 | CF <sub>3</sub>                                             | H               | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H               | O                                 | CH(Me)CO <sub>2</sub> Et | H | O | O | O |
| 1-53 | OCHF <sub>2</sub>                                           | F               | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H               | CH(Me)CO <sub>2</sub> Et          | H                        | H | O | O | O |
| 1-54 | Cl                                                          | F               | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H               | CH(Me)CO <sub>2</sub> Et          | H                        | H | O | O | O |
| 1-55 | Cl                                                          | F               | OCH <sub>3</sub>                                            | CH <sub>3</sub> | CF <sub>3</sub> | H               | H                                 | H                        | H | O | O | O |
| 1-56 | Cl                                                          | F               | OH                                                          | NH <sub>2</sub> | CF <sub>3</sub> | H               | H                                 | H                        | H | O | O | O |
| 1-57 | Cl                                                          | F               | OCH <sub>2</sub> CN                                         | NH <sub>2</sub> | CF <sub>3</sub> | H               | H                                 | H                        | H | O | O | O |
| 1-58 | Cl                                                          | F               | OCH <sub>2</sub> COOCH <sub>3</sub>                         | NH <sub>2</sub> | CF <sub>3</sub> | H               | H                                 | H                        | H | O | O | O |
| 1-59 | Cl                                                          | F               | OCH <sub>2</sub> COOCH <sub>2</sub> CH <sub>3</sub>         | CH <sub>3</sub> | CF <sub>3</sub> | H               | H                                 | H                        | H | O | O | O |
| 1-60 | Cl                                                          | F               | OCH(CH <sub>3</sub> )<br>COOCH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | H               | H                                 | H                        | H | O | O | O |
| 1-61 | Cl                                                          | F               | OCH <sub>2</sub> CH <sub>3</sub>                            | CH <sub>3</sub> | CF <sub>3</sub> | H               | H                                 | H                        | H | O | O | O |
| 1-62 | Cl                                                          | F               | OCH <sub>2</sub> CH <sub>3</sub>                            | CH <sub>3</sub> | CF <sub>3</sub> | H               | CH <sub>3</sub> CH <sub>3</sub>   | H                        | H | O | O | O |
| 1-63 | Cl                                                          | F               | OCH(CH <sub>3</sub> ) <sub>2</sub>                          | CH <sub>3</sub> | CF <sub>3</sub> | H               | H                                 | H                        | H | O | O | O |
| 1-64 | Cl                                                          | F               | OCH(CH <sub>3</sub> ) <sub>2</sub>                          | CH <sub>3</sub> | CF <sub>3</sub> | H               | CH(CH <sub>3</sub> ) <sub>2</sub> | H                        | H | O | O | O |
| 1-65 | Cl                                                          | H               | H                                                           | H               | CF <sub>3</sub> | NO <sub>2</sub> | O                                 | O                        | O | O | O | O |
| 1-66 | Cl                                                          | H               | OH                                                          | CH <sub>3</sub> | CF <sub>3</sub> | H               | O                                 | O                        | O | O | O | O |
| 1-67 | Cl                                                          | NO <sub>2</sub> | OH                                                          | CH <sub>3</sub> | CF <sub>3</sub> | H               | O                                 | O                        | O | O | O | O |
| 1-68 | OCF <sub>3</sub>                                            | H               | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H               | O                                 | O                        | O | O | O | O |
| 1-69 | Cl                                                          | NO <sub>2</sub> | OCH <sub>3</sub>                                            | H               | CF <sub>3</sub> | H               | O                                 | O                        | O | O | O | O |
| 1-70 | Cl                                                          | F               | F                                                           | H               | CF <sub>3</sub> | H               | O                                 | O                        | O | O | O | O |
| 1-71 | Cl                                                          | H               | OH                                                          | CH <sub>3</sub> | CF <sub>3</sub> | H               | H                                 | H                        | H | O | O | O |
| 1-72 | Cl                                                          | H               | OCH <sub>3</sub>                                            | CH <sub>3</sub> | CF <sub>3</sub> | H               | H                                 | H                        | H | O | O | O |
| 1-73 | OCF <sub>3</sub>                                            | H               | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H               | H                                 | H                        | H | O | O | O |

TABLE II



| No.  | X  | Y | W                                                         | R <sub>1</sub>  | R <sub>2</sub>  | R <sub>3</sub>          | R <sub>4</sub>                                       | R <sub>5</sub>                               | R <sub>8</sub> | R <sub>9</sub> |
|------|----|---|-----------------------------------------------------------|-----------------|-----------------|-------------------------|------------------------------------------------------|----------------------------------------------|----------------|----------------|
| 2-1  | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | COCH <sub>3</sub>                                    | H                                            | O              | O              |
| 2-2  | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | COCH <sub>3</sub>                                    | COCH <sub>3</sub>                            | O              | O              |
| 2-3  | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | CO-t-C <sub>4</sub> H <sub>9</sub>                   | H                                            | O              | O              |
| 2-4  | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | acryloyl                                             | acryloyl                                     | O              | O              |
| 2-5  | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | methacryloyl                                         | H                                            | O              | O              |
| 2-6  | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | methacryloyl                                         | methacryloyl                                 | O              | O              |
| 2-7  | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 3,3-dimethylacryloyl                                 | H                                            | O              | O              |
| 2-8  | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 3,3-dimethylacryloyl                                 | 3,3-dimethylacryloyl                         | O              | O              |
| 2-9  | Cl | F | OCH <sub>3</sub>                                          | H               | CF <sub>3</sub> | H                       | COCF <sub>3</sub>                                    | H                                            | O              | O              |
| 2-10 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | COCF <sub>3</sub>                                    | H                                            | O              | O              |
| 2-11 | Cl | F | OCH <sub>2</sub> CN                                       | CH <sub>3</sub> | CF <sub>3</sub> | H                       | COCF <sub>3</sub>                                    | H                                            | O              | O              |
| 2-12 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | NHCO<br>CF <sub>3</sub> | COCF <sub>3</sub>                                    | H                                            | O              | O              |
| 2-13 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | COCH <sub>2</sub> Cl                                 | H                                            | O              | O              |
| 2-14 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | COCH <sub>2</sub> CN                                 | H                                            | O              | O              |
| 2-15 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | COCOOCH <sub>3</sub>                                 | H                                            | O              | O              |
| 2-16 | Cl | F | OCOCH <sub>2</sub> CO<br>OCH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | H                       | COCH <sub>2</sub> COOCH <sub>2</sub> CH <sub>3</sub> | H                                            | O              | O              |
| 2-17 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | c-C <sub>3</sub> H <sub>5</sub> -carbonyl            | H                                            | O              | O              |
| 2-18 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | c-C <sub>3</sub> H <sub>5</sub> -carbonyl            | c-C <sub>3</sub> H <sub>5</sub> -carbonyl    | O              | O              |
| 2-19 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | cyclohexanoyl                                        | H                                            | O              | O              |
| 2-20 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | cyclohexanoyl                                        | cyclohexanoyl                                | O              | O              |
| 2-21 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | SO <sub>2</sub> CH <sub>3</sub>                      | SO <sub>2</sub> CH <sub>3</sub>              | O              | O              |
|      | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | SO <sub>2</sub> CH <sub>3</sub>                      | H                                            | O              | O              |
| 2-22 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | benzoyl                                              | H                                            | O              | O              |
| 2-23 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 3-CH <sub>3</sub> -benzoyl                           | H                                            | O              | O              |
| 2-24 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 4-CH <sub>3</sub> -benzoyl                           | H                                            | O              | O              |
| 2-25 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 4-CH <sub>3</sub> -benzoyl                           | 4-CH <sub>3</sub> -benzoyl                   | O              | O              |
| 2-26 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 4-CH <sub>3</sub> -benzenesulfonyl                   | H                                            | O              | O              |
| 2-27 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 4-C <sub>2</sub> H <sub>5</sub> -benzoyl             | H                                            | O              | O              |
| 2-28 | Cl | F | OCH <sub>2</sub> CN                                       | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 4-C <sub>2</sub> H <sub>5</sub> -benzoyl             | H                                            | O              | O              |
| 2-29 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 4-n-C <sub>3</sub> H <sub>7</sub> -benzoyl           | 4-n-C <sub>3</sub> H <sub>7</sub> -benzoyl   | O              | O              |
| 2-30 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 4-t-C <sub>4</sub> H <sub>9</sub> -benzoyl           | H                                            | O              | O              |
| 2-31 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 4-vinylbenzoyl                                       | H                                            | O              | O              |
| 2-32 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 3,4-(CH <sub>3</sub> ) <sub>2</sub> -benzoyl         | H                                            | O              | O              |
| 2-33 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 4-CF <sub>3</sub> -benzoyl                           | H                                            | O              | O              |
| 2-34 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 4-CF <sub>3</sub> -benzoyl                           | 4-CF <sub>3</sub> -benzoyl                   | O              | O              |
| 2-35 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 3,5-(CF <sub>3</sub> ) <sub>2</sub> -benzoyl         | 3,5-(CF <sub>3</sub> ) <sub>2</sub> -benzoyl | O              | O              |
| 2-36 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 4-CH <sub>2</sub> Cl-benzoyl                         | H                                            | O              | O              |
| 2-37 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 4-C <sub>6</sub> H <sub>5</sub> -benzoyl             | H                                            | O              | O              |
| 2-38 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 4-C <sub>6</sub> H <sub>5</sub> -benzoyl             | 4-C <sub>6</sub> H <sub>5</sub> -benzoyl     | O              | O              |
| 2-39 | Cl | F | OCH <sub>3</sub>                                          | CH <sub>3</sub> | CF <sub>3</sub> | H                       | 2-F-benzoyl                                          | H                                            | O              | O              |

|      |    |   |                     |                 |                 |   |                                                                  |                                             |     |
|------|----|---|---------------------|-----------------|-----------------|---|------------------------------------------------------------------|---------------------------------------------|-----|
| 2-40 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-F-benzoyl                                                      | H                                           | O O |
| 2-41 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2,3-F <sub>2</sub> -benzoyl                                      | H                                           | O O |
| 2-42 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2,4-F <sub>2</sub> -benzoyl                                      | H                                           | O O |
| 2-43 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2,4-F <sub>2</sub> -benzoyl                                      | 2,4-F <sub>2</sub> -benzoyl                 | O O |
| 2-44 | Cl | F | OCH <sub>3</sub>    | NH <sub>2</sub> | CF <sub>3</sub> | H | 2,4-F <sub>2</sub> -benzoyl                                      | H                                           | O O |
| 2-45 | Cl | F | OCH <sub>2</sub> CN | CH <sub>3</sub> | CF <sub>3</sub> | H | 2,4-F <sub>2</sub> -benzoyl                                      | 2,4-F <sub>2</sub> -benzoyl                 | O O |
| 2-46 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2,4-F <sub>2</sub> -thiobenzoyl                                  | H                                           | O S |
| 2-47 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2,6-F <sub>2</sub> -benzoyl                                      | H                                           | O O |
| 2-48 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 3,4-F <sub>2</sub> -benzoyl                                      | H                                           | O O |
| 2-49 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 3,4-F <sub>2</sub> -benzoyl                                      | 3,4-F <sub>2</sub> -benzoyl                 | O O |
| 2-50 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 3,5-F <sub>2</sub> -benzoyl                                      | H                                           | O O |
| 2-51 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 3,5-F <sub>2</sub> -benzoyl                                      | 3,5-F <sub>2</sub> -benzoyl                 | O O |
| 2-52 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2,3,4,5,6-F <sub>5</sub> -benzoyl                                | H                                           | O O |
| 2-53 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-Cl-benzoyl                                                     | H                                           | O O |
| 2-54 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 3-Cl-benzoyl                                                     | H                                           | O O |
| 2-55 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 3-Cl-benzoyl                                                     | 3-Cl-benzoyl                                | O O |
| 2-56 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-Cl-benzoyl                                                     | H                                           | O O |
| 2-57 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-Cl-benzoyl                                                     | 4-Cl-benzoyl                                | O O |
| 2-58 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2,4-Cl <sub>2</sub> -benzoyl                                     | H                                           | O O |
| 2-59 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 3,4-Cl <sub>2</sub> -benzoyl                                     | H                                           | O O |
| 2-60 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 3-Br-benzoyl                                                     | 3-Br-benzoyl                                | O O |
| 2-61 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-Br-benzoyl                                                     | H                                           | O O |
| 2-62 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-Br-benzoyl                                                     | 4-Br-benzoyl                                | O O |
| 2-63 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-OCH <sub>3</sub> -benzoyl                                      | H                                           | O O |
| 2-64 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-(OC <sub>2</sub> H <sub>5</sub> )-benzoyl                      | H                                           | O O |
| 2-65 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-(OC <sub>2</sub> H <sub>5</sub> )-benzoyl                      | 4-(OC <sub>2</sub> H <sub>5</sub> )-benzoyl | O O |
| 2-66 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-I-benzoyl                                                      | H                                           | O O |
| 2-67 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-CN-benzoyl                                                     | H                                           | O O |
| 2-68 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-N(CH <sub>3</sub> ) <sub>2</sub> -benzoyl                      | H                                           | O O |
| 2-69 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-NO <sub>2</sub> -benzoyl                                       | 4-NO <sub>2</sub> -benzoyl                  | O O |
| 2-70 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 3,5-(NO <sub>2</sub> ) <sub>2</sub> -benzoyl                     | H                                           | O O |
| 2-71 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-OCF <sub>3</sub> -benzoyl                                      | 4-OCF <sub>3</sub> -benzoyl                 | O O |
| 2-72 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-OCF <sub>3</sub> -benzoyl                                      | H                                           | O O |
| 2-73 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | piperonyloyl                                                     | H                                           | O O |
| 2-74 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 1-naphthoyl                                                      | H                                           | O O |
| 2-75 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                                                      | H                                           | O O |
| 2-76 | Cl | F | OCH <sub>3</sub>    | H               | CF <sub>3</sub> | H | 2-naphthoyl                                                      | H                                           | O O |
| 2-77 | Cl | F | OCH <sub>3</sub>    | NH <sub>2</sub> | CF <sub>3</sub> | H | 2-naphthoyl                                                      | H                                           | O O |
| 2-78 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | cinnamoyl                                                        | H                                           | O O |
| 2-79 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2,4-F <sub>2</sub> -cinnamoyl                                    | H                                           | O O |
| 2-80 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-methylcinnamoyl                                                | H                                           | O O |
| 2-81 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | α-methylcinnamoyl                                                | H                                           | O O |
| 2-82 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-chlorocinnamoyl                                                | H                                           | O O |
| 2-83 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-chlorocinnamoyl                                                | 2-chlorocinnamoyl                           | O O |
| 2-84 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-chlorocinnamoyl                                                | H                                           | O O |
| 2-85 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-methoxycinna-moyl                                              | H                                           | O O |
| 2-86 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 3-phenylpropionyl                                                | H                                           | O O |
| 2-87 | Cl | F | OCH <sub>2</sub> CN | CH <sub>3</sub> | CF <sub>3</sub> | H | 3-phenylpropionyl                                                | H                                           | O O |
| 2-88 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-phenylbutyryl                                                  | H                                           | O O |
| 2-89 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | COCH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | H                                           | O O |
| 2-90 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-furoyl                                                         | H                                           | O O |
| 2-91 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 3-CH <sub>3</sub> -2-furoyl                                      | H                                           | O O |

|       |    |   |                   |                 |                  |    |                                                       |                                                  |   |   |
|-------|----|---|-------------------|-----------------|------------------|----|-------------------------------------------------------|--------------------------------------------------|---|---|
| 2-92  | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | furylacracyloyl                                       | H                                                | O | O |
| 2-93  | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | COCH <sub>2</sub> (2-thiophene)                       | H                                                | O | O |
| 2-94  | Cl | F | OH                | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 3-CH <sub>3</sub> -2-thiophenoyl                      | H                                                | O | O |
| 2-95  | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 5-CH <sub>3</sub> -2-thiophenoyl                      | H                                                | O | O |
| 2-96  | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 5-CH <sub>3</sub> -2-thiophenoyl                      | 5-CH <sub>3</sub> -2-thiophenyl                  | O | O |
| 2-97  | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | thiophene-2-carbonyl                                  | thiophene-2-carbonyl                             | O | O |
| 2-98  | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 3-pyridoyl                                            | H                                                | O | O |
| 2-99  | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 4-pyridoyl                                            | H                                                | O | O |
| 2-100 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2-Cl-5-pyridoyl                                       | 2-Cl-5-pyridoyl                                  | O | O |
| 2-101 | Cl | F | OH                | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 3-NO <sub>2</sub> -2-pyridoyl                         | H                                                | O | O |
| 2-102 | Cl | F | OH                | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2-pyrimidoyl                                          | H                                                | O | O |
| 2-103 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | benzothiophene-2-carbonyl                             | H                                                | O | O |
| 2-104 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2-quinoyl                                             | H                                                | O | O |
| 2-105 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2-quinoxaloyl                                         | H                                                | O | O |
| 2-106 | Br | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2,4-F <sub>2</sub> -benzoyl                           | H                                                | O | O |
| 2-107 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CHF <sub>2</sub> | H  | 2,4-F <sub>2</sub> -benzoyl                           | H                                                | O | O |
| 2-108 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | Cl | 2,4-F <sub>2</sub> -benzoyl                           | H                                                | O | O |
| 2-109 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2,4-F <sub>2</sub> -benzoyl                           | H                                                | S | O |
| 2-110 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2,4-F <sub>2</sub> -benzoyl                           | H                                                | O | S |
| 2-111 | CN | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2,4-F <sub>2</sub> -benzoyl                           | H                                                | O | O |
| 2-112 | Cl | H | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2,4-F <sub>2</sub> -benzoyl                           | H                                                | O | O |
| 2-113 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 3-(2-thienyl)acryloyl                                 | H                                                | O | O |
| 2-114 | Cl | F | OH                | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2-naphthoyl                                           | H                                                | O | O |
| 2-115 | Cl | F | OCHF <sub>2</sub> | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2-naphthoyl                                           | H                                                | O | O |
| 2-116 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | COCH <sub>2</sub> OCOCH <sub>3</sub>                  | COCH <sub>2</sub> OCOCH <sub>3</sub>             | O | O |
| 2-117 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | COCH <sub>2</sub> OCOCH <sub>3</sub>                  | H                                                | O | O |
| 2-118 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | COOCOOCH <sub>2</sub> CH <sub>3</sub>                 | H                                                | O | O |
| 2-119 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | COCH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub>      | H                                                | O | O |
| 2-120 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | COCH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub>      | COCH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> | O | O |
| 2-121 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | COOCOC <sub>6</sub> H <sub>5</sub>                    | H                                                | O | O |
| 2-122 | Cl | F | CH <sub>3</sub>   | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2-naphthoyl                                           | H                                                | O | O |
| 2-123 | Cl | F | CH <sub>3</sub>   | CH <sub>3</sub> | CF <sub>3</sub>  | H  | cinnamoyl                                             | H                                                | O | O |
| 2-124 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | CO-2,6-dimethylphenyl                                 | H                                                | O | O |
| 2-125 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2-F-cinnamoyl                                         | H                                                | O | O |
| 2-126 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2-nitro-cinnamoyl                                     | H                                                | O | O |
| 2-127 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2-methoxy-cinnamoyl                                   | H                                                | O | O |
| 2-128 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2,6-dichloro-cinnamoyl                                | H                                                | O | O |
| 2-129 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | COCH <sub>2</sub> CH <sub>2</sub> -2-methylphenyl     | H                                                | O | O |
| 2-130 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | COCH <sub>2</sub> CH <sub>2</sub> -2,5-dimethylphenyl | H                                                | O | O |
| 2-131 | Cl | H | H                 | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2-naphthoyl                                           | H                                                | O | O |
| 2-132 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | COCH <sub>2</sub> CH <sub>2</sub> -2,5-dimethylphenyl | H                                                | O | O |
| 2-133 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | COCH <sub>2</sub> O-4-F-phenyl                        | H                                                | O | O |
| 2-134 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 3-chlorocinnamoyl                                     | H                                                | O | O |
| 2-135 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | COCH <sub>2</sub> O-4-Cl-phenyl                       | H                                                | O | O |
| 2-136 | Cl | F | OCH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub>  | H  | $\alpha$ -cyano-cinnamoyl                             | H                                                | O | O |
| 2-137 | Cl | H | H                 | CH <sub>3</sub> | CF <sub>3</sub>  | H  | cinnamoyl                                             | H                                                | O | O |
| 2-138 | CN | H | H                 | CH <sub>3</sub> | CF <sub>3</sub>  | H  | O                                                     | O                                                | O | O |
| 2-139 | H  | H | H                 | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2-naphthoyl                                           | 2-naphthoyl                                      | O | O |
| 2-140 | CN | H | H                 | CH <sub>3</sub> | CF <sub>3</sub>  | H  | 2-naphthoyl                                           | H                                                | O | O |

|       |                                                                 |    |                     |                 |                 |   |                                       |                         |   |   |
|-------|-----------------------------------------------------------------|----|---------------------|-----------------|-----------------|---|---------------------------------------|-------------------------|---|---|
| 2-141 | CN                                                              | H  | H                   | CH <sub>3</sub> | CF <sub>3</sub> | H | cinnamoyl                             | H                       | O | O |
| 2-142 | H                                                               | H  | H                   | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                           | H                       | O | O |
| 2-143 | OCH <sub>3</sub>                                                | H  | H                   | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                           | H                       | O | O |
| 2-144 | Cl                                                              | Cl | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                           | H                       | O | O |
| 2-145 | Cl                                                              | F  | H                   | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                           | H                       | O | O |
| 2-146 | OCH(CH <sub>3</sub> )<br>COOCH <sub>2</sub> C<br>H <sub>3</sub> | H  | H                   | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                           | H                       | O | O |
| 2-147 | Cl                                                              | F  | H                   | CH <sub>3</sub> | CF <sub>3</sub> | H | cyclopropyl                           | H                       | O | O |
| 2-148 | OCHF <sub>2</sub>                                               | F  | H                   | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                           | H                       | O | O |
| 2-149 | CF <sub>3</sub>                                                 | H  | H                   | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                           | H                       | O | O |
| 2-150 | Cl                                                              | F  | OH                  | CH <sub>3</sub> | CF <sub>3</sub> | H | phenylacetyl                          | H                       | O | O |
| 2-151 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | phenylacetyl                          | H                       | O | O |
| 2-152 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 3-methoxy-<br>2-naphthoyl             | H                       | O | O |
| 2-153 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 1-methoxy-<br>2-naphthoyl             | H                       | O | O |
| 2-154 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2,4-dichloro-<br>phenoxyacetyl        | H                       | O | O |
| 2-155 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 3-methyl-2-naphthoyl                  | H                       | O | O |
| 2-156 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 6-methyl-2-naphthoyl                  | H                       | O | O |
| 2-157 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 3-chloro-2-naphthoyl                  | H                       | O | O |
| 2-158 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 5-bromo-2-naphthoyl                   | H                       | O | O |
| 2-159 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-bromo-2-naphthoyl                   | H                       | O | O |
| 2-160 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-bromo-2-naphthoyl                   | 4-bromo-2-<br>naphthoyl | O | O |
| 2-161 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 8-fluoro-2-naphthoyl                  | H                       | O | O |
| 2-162 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 5-chloro-2-naphthoyl                  | H                       | O | O |
| 2-163 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 5-cyano-2-naphthoyl                   | H                       | O | O |
| 2-164 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | chloroacetyl                          | H                       | O | O |
| 2-165 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | benzylthioacetyl                      | H                       | O | O |
| 2-166 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | bromoacetyl                           | H                       | O | O |
| 2-167 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | phenylthioacetyl                      | H                       | O | O |
| 2-168 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | methylthioacetyl                      | H                       | O | O |
| 2-169 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthylthio-acetyl                 | H                       | O | O |
| 2-170 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | ethoxycarbonyl-<br>methylthioacetyl   | H                       | O | O |
| 2-171 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | ethoxycarbonyl-ethyl-2-<br>thioacetyl | H                       | O | O |
| 2-172 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | ethylthioacetyl                       | H                       | O | O |
| 2-173 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | i-propylthioacetyl                    | H                       | O | O |
| 2-174 | Cl                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | propylthioacetyl                      | H                       | O | O |
| 2-175 | Br                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-cinnamoyl                           | H                       | O | O |
| 2-176 | Br                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-cinnamoyl                           | 2-cinnamoyl             | O | O |
| 2-177 | Br                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-cinnamoyl                           | H                       | O | O |
| 2-178 | Br                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-cinnamoyl                           | 2-cinnamoyl             | O | O |
| 2-179 | CN                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-cinnamoyl                           | H                       | O | O |
| 2-180 | CN                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                           | H                       | O | O |
| 2-181 | CN                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                           | H                       | O | O |
| 2-182 | Br                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-vinylbenzoyl                        | H                       | O | O |
| 2-183 | Br                                                              | F  | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub> | H | 4-vinylbenzoyl                        | 4-vinylbenzoyl          | O | O |
| 2-184 | Cl                                                              | F  | OCH <sub>3</sub>    | NH <sub>2</sub> | CF <sub>3</sub> | H | 2-naphthoyl                           | H                       | O | O |
| 2-185 | Cl                                                              | F  | OCH <sub>3</sub>    | NH <sub>2</sub> | CF <sub>3</sub> | H | 2-cinnamoyl                           | H                       | O | O |
| 2-186 | Cl                                                              | F  | OCH <sub>3</sub>    | NH <sub>2</sub> | CF <sub>3</sub> | H | 2-cinnamoyl                           | 2-cinnamoyl             | O | O |
| 2-187 | Cl                                                              | F  | OCH <sub>3</sub>    | NH <sub>2</sub> | CF <sub>3</sub> | H | benzyloxyacetyl                       | H                       | O | O |
| 2-188 | Cl                                                              | F  | OCH <sub>2</sub> CN | NH <sub>2</sub> | CF <sub>3</sub> | H | 2-naphthoyl                           | H                       | O | O |

|       |                                   |   |                                                             |                 |                 |   |                                           |   |   |   |
|-------|-----------------------------------|---|-------------------------------------------------------------|-----------------|-----------------|---|-------------------------------------------|---|---|---|
| 2-189 | Cl                                | F | OCH <sub>2</sub> COOC<br>H <sub>2</sub> CH <sub>3</sub>     | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                               | H | O | O |
| 2-190 | Cl                                | F | OCH <sub>2</sub> COOC<br>H <sub>2</sub> CH <sub>3</sub>     | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-cinnamoyl                               | H | O | O |
| 2-191 | Cl                                | F | OCH(CH <sub>3</sub> )C<br>OOCH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                               | H | O | O |
| 2-192 | Cl                                | F | OH                                                          | NH <sub>2</sub> | CF <sub>3</sub> | H | 2-naphthoyl                               | H | O | O |
| 2-193 | 4-CF <sub>3</sub> -<br>pyridyloxy | H | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                               | H | O | O |
| 2-194 | Cl                                | F | OH                                                          | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                               | H | O | O |
| 2-195 | Cl                                | F | OCH <sub>2</sub> C≡CH                                       | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                               | H | O | O |
| 2-196 | Cl                                | F | OCH <sub>2</sub> CH <sub>3</sub>                            | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                               | H | O | O |
| 2-197 | Cl                                | F | OCH(CH <sub>3</sub> ) <sub>2</sub>                          | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                               | H | O | O |
| 2-198 | Cl                                | F | OCH <sub>3</sub>                                            | CH <sub>3</sub> | CF <sub>3</sub> | H | Hexanoyl                                  | H | O | O |
| 2-199 | Cl                                | F | 3-NO <sub>2</sub> -<br>pyridyloxy                           | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                               | H | O | O |
| 2-200 | Cl                                | F | OCH <sub>2</sub> CN                                         | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                               | H | O | O |
| 2-201 | CH <sub>3</sub>                   | H | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                               | H | O | O |
| 2-202 | Cl                                | H | OCH <sub>3</sub>                                            | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                               | H | O | O |
| 2-203 | OCF <sub>3</sub>                  | H | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                               | H | O | O |
| 2-204 | Cl                                | H | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H | c-C <sub>3</sub> H <sub>5</sub> -carbonyl | H | O | O |
| 2-205 | H <sub>2</sub> NC(S)              | H | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                               | H | O | O |
| 2-206 | Cl                                | F | OCH <sub>3</sub>                                            | CH <sub>3</sub> | CF <sub>3</sub> | H | c-C <sub>3</sub> H <sub>5</sub> -carbonyl | H | O | O |
| 2-207 | COOCH <sub>3</sub>                | H | H                                                           | CH <sub>3</sub> | CF <sub>3</sub> | H | 2-naphthoyl                               | H | O | O |

TABLE III



| No.  | X  | Y | R                  | R <sub>1</sub>  | R <sub>2</sub>   | R <sub>3</sub> | R <sub>4</sub>                                                                    | R <sub>5</sub>      | R <sub>8</sub> | R <sub>9</sub> |
|------|----|---|--------------------|-----------------|------------------|----------------|-----------------------------------------------------------------------------------|---------------------|----------------|----------------|
| 3-1  | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CONHCH <sub>3</sub>                                                               | CONHCH <sub>3</sub> | O              | O              |
| 3-2  | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CONHCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                               | H                   | O              | O              |
| 3-3  | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CON[CH(CH <sub>3</sub> ) <sub>2</sub> ]                                           | H                   | O              | O              |
| 3-4  | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CONHC <sub>6</sub> H <sub>5</sub>                                                 | H                   | O              | O              |
| 3-5  | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CON(CH <sub>3</sub> )C <sub>6</sub> H <sub>5</sub>                                | H                   | O              | O              |
| 3-6  | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CONHCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                 | H                   | O              | O              |
| 3-7  | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CONHCH(CH <sub>3</sub> )-C <sub>6</sub> H <sub>5</sub>                            | H                   | O              | O              |
| 3-8  | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CON(CH <sub>3</sub> )CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                | H                   | O              | O              |
| 3-9  | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CONHCH <sub>2</sub> -4-CH <sub>3</sub> -phenyl                                    | H                   | O              | O              |
| 3-10 | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CONHCH <sub>2</sub> -2,4-F <sub>2</sub> -phenyl                                   | H                   | O              | O              |
| 3-11 | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CONHCH <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                 | H                   | O              | O              |
| 3-12 | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CONHCH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | H                   | O              | O              |
| 3-13 | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CONH-2-naphthoyl                                                                  | H                   | O              | O              |
| 3-14 | Cl | F | CH <sub>2</sub> CN | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CONHCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                 | H                   | O              | O              |
| 3-15 | Cl | F | CH <sub>3</sub>    | H               | CF <sub>3</sub>  | H              | CONHCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                 | H                   | O              | O              |
| 3-16 | Cl | F | CH <sub>3</sub>    | NH <sub>2</sub> | CF <sub>3</sub>  | H              | CONHCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                 | H                   | O              | O              |
| 3-17 | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CHF <sub>2</sub> | H              | CONHCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                 | H                   | O              | O              |
| 3-18 | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | Cl             | CONHCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                 | H                   | O              | O              |
| 3-19 | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CONHCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                 | H                   | S              | O              |
| 3-20 | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CONHCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                 | H                   | O              | S              |
| 3-21 | CN | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CONHCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                 | H                   | O              | O              |
| 3-22 | Cl | H | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CONHCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                 | H                   | O              | O              |
| 3-23 | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CON(C <sub>6</sub> H <sub>5</sub> )CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>  | H                   | O              | O              |
| 3-24 | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CONHCH(C <sub>6</sub> H <sub>5</sub> )C <sub>6</sub> H <sub>5</sub>               | H                   | O              | O              |
| 3-26 | Cl | F | CH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | CONH <sub>2</sub>                                                                 | H                   | O              | O              |

TABLE IV



| No.  | X  | Y | W                   | R <sub>1</sub>  | R <sub>2</sub>   | R <sub>3</sub> | R <sub>4</sub>                                                    | R <sub>5</sub>     | R <sub>8</sub> | R <sub>9</sub> |
|------|----|---|---------------------|-----------------|------------------|----------------|-------------------------------------------------------------------|--------------------|----------------|----------------|
| 4-1  | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>3</sub>                                                | H                  | O              | O              |
| 4-2  | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>3</sub>                                                | COOCH <sub>3</sub> | O              | O              |
| 4-3  | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COO-phenyl                                                        | H                  | O              | O              |
| 4-4  | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COO-[2,4-(CH <sub>3</sub> ) <sub>2</sub> ]-phenyl                 | H                  | O              | O              |
| 4-5  | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -phenyl                                        | H                  | O              | O              |
| 4-6  | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -(2-F)-phenyl                                  | H                  | O              | O              |
| 4-7  | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -(4-F)-phenyl                                  | H                  | O              | O              |
| 4-8  | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -(2-CF <sub>3</sub> )-phenyl                   | H                  | O              | O              |
| 4-9  | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -(4-CF <sub>3</sub> )-phenyl                   | H                  | O              | O              |
| 4-10 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COO-2-naphthyl                                                    | H                  | O              | O              |
| 4-11 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COO-cyclohexyl                                                    | H                  | O              | O              |
| 4-12 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -cyclohexyl                                    | H                  | O              | O              |
| 4-13 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | C(O)-S-phenyl                                                     | H                  | O              | O              |
| 4-14 | Cl | F | OCH <sub>2</sub> CN | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COO-phenyl                                                        | H                  | O              | O              |
| 4-15 | Cl | F | OCH <sub>3</sub>    | H               | CF <sub>3</sub>  | H              | COO-phenyl                                                        | H                  | O              | O              |
| 4-16 | Cl | F | OCH <sub>3</sub>    | NH <sub>2</sub> | CF <sub>3</sub>  | H              | COO-phenyl                                                        | H                  | O              | O              |
| 4-17 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CHF <sub>2</sub> | H              | COO-phenyl                                                        | H                  | O              | O              |
| 4-18 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | Cl             | COO-phenyl                                                        | H                  | O              | O              |
| 4-19 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COO-phenyl                                                        | H                  | S              | O              |
| 4-20 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COO-phenyl                                                        | H                  | O              | S              |
| 4-21 | CN | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COO-phenyl                                                        | H                  | O              | O              |
| 4-22 | Cl | H | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COO-phenyl                                                        | H                  | O              | O              |
| 4-23 | Cl | F | OCH <sub>2</sub> CN | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -phenyl                                        | H                  | O              | O              |
| 4-24 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -(2,6-di-Cl)-phenyl                            | H                  | O              | O              |
| 4-25 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COO-[2,4,6-(CH <sub>3</sub> ) <sub>3</sub> ]-phenyl               | H                  | O              | O              |
| 4-26 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -[3,4-(CH <sub>3</sub> ) <sub>2</sub> -phenyl] | H                  | O              | O              |
| 4-27 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COO-(2-t-butyl)-phenyl                                            | H                  | O              | O              |
| 4-28 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -2-naphthyl                                    | H                  | O              | O              |
| 4-29 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -(2,6-di-F)-phenyl                             | H                  | O              | O              |
| 4-30 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -(3,4-di-F)-phenyl                             | H                  | O              | O              |
| 4-31 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -(4-ethyl)-phenyl                              | H                  | O              | O              |
| 4-32 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -(3,4-di-Cl)-phenyl                            | H                  | O              | O              |
| 4-33 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -(2-CF <sub>3</sub> )-phenyl                   | H                  | O              | O              |
| 4-34 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -(2-NO <sub>2</sub> )-phenyl                   | H                  | O              | O              |
| 4-35 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -(2-OCH <sub>3</sub> )-phenyl                  | H                  | O              | O              |
| 4-36 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -2-pyridyl                                     | H                  | O              | O              |
| 4-37 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -[3,5-(CH <sub>3</sub> ) <sub>2</sub> ]-phenyl | H                  | O              | O              |
| 4-38 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -[2,5-(CH <sub>3</sub> ) <sub>2</sub> ]-phenyl | H                  | O              | O              |
| 4-39 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -(2,5-di-F)-phenyl                             | H                  | O              | O              |
| 4-40 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -(4-OCH <sub>3</sub> )-phenyl                  | H                  | O              | O              |
| 4-41 | Cl | F | OCH <sub>3</sub>    | CH <sub>3</sub> | CF <sub>3</sub>  | H              | COOCH <sub>2</sub> -(3,4-OCH <sub>2</sub> O)-phenyl               | H                  | O              | O              |

|      |    |   |                  |                 |                 |   |                                                                 |   |   |   |
|------|----|---|------------------|-----------------|-----------------|---|-----------------------------------------------------------------|---|---|---|
| 4-42 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -(4-i-C <sub>3</sub> H <sub>7</sub> )-phenyl | H | O | O |
| 4-43 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -(4-CF <sub>3</sub> )-phenyl                 | H | O | O |
| 4-44 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -(3-F)-phenyl                                | H | O | O |
| 4-45 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -(4-OCF <sub>3</sub> )-phenyl                | H | O | O |
| 4-46 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -(c-C <sub>3</sub> H <sub>5</sub> )-phenyl   | H | O | O |
| 4-47 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -(CH <sub>3</sub> )-phenyl                   | H | O | O |
| 4-48 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -(2,3,4,5,6-penta-F)-phenyl                  | H | O | O |
| 4-49 | Cl | H | H                | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -(2-F)-phenyl                                | H | O | O |
| 4-50 | Cl | H | H                | CH <sub>3</sub> | CF <sub>3</sub> | H | COO-phenyl                                                      | H | O | O |
| 4-51 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -(2-F)-phenyl                                | H | O | O |
| 4-52 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COO-phenyl                                                      | H | O | O |
| 4-53 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COO-3,4-dimethylphenyl                                          | H | O | O |
| 4-54 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -2-Cl-phenyl                                 | H | O | O |
| 4-55 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COO-2,6-dimethylphenyl                                          | H | O | O |
| 4-56 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -2-methylphenyl                              | H | O | O |
| 4-57 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> CH <sub>2</sub> -phenyl                      | H | O | O |
| 4-58 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -2-methoxyphenyl                             | H | O | O |
| 4-59 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COO-2,6-dimethoxyphenyl                                         | H | O | O |
| 4-60 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -4-methylphenyl                              | H | O | O |
| 4-61 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -4-Cl-phenyl                                 | H | O | O |
| 4-62 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -2,4-dichlorophenyl                          | H | O | O |
| 4-63 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -3,4-dimethoxyphenyl                         | H | O | O |
| 4-64 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -4-nitrophenyl                               | H | O | O |
| 4-65 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -3-methoxyphenyl                             | H | O | O |
| 4-66 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COSCH <sub>2</sub> -phenyl                                      | H | O | O |
| 4-67 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -3-nitrophenyl                               | H | O | O |
| 4-68 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -3-methylphenyl                              | H | O | O |
| 4-69 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -2,4,6-trimethylphenyl                       | H | O | O |
| 4-70 | Cl | F | CH <sub>3</sub>  | CH <sub>3</sub> | CF <sub>3</sub> | H | COOCH <sub>2</sub> -2-furanyl                                   | H | O | O |

TABLE V



| No.  | X  | Y  | R                                 | R <sub>1</sub>                    | R <sub>4</sub>                           | R <sub>5</sub>  |
|------|----|----|-----------------------------------|-----------------------------------|------------------------------------------|-----------------|
| 5-1  | Cl | F  | CH <sub>3</sub>                   | H                                 | O                                        | O               |
| 5-2  | Cl | F  | H                                 | H                                 | O                                        | O               |
| 5-3  | Cl | F  | CH <sub>3</sub>                   | (CH <sub>2</sub> ) <sub>3</sub> F | H                                        | H               |
| 5-4  | Cl | F  | H                                 | (CH <sub>2</sub> ) <sub>3</sub> F | O                                        | O               |
| 5-5  | Cl | F  | H                                 | (CH <sub>2</sub> ) <sub>2</sub> F | H                                        | H               |
| 5-6  | Cl | Cl | CH <sub>3</sub>                   | H                                 | O                                        | O               |
| 5-7  | Cl | Cl | CH <sub>3</sub>                   | (CH <sub>2</sub> ) <sub>3</sub> F | O                                        | O               |
| 5-8  | Cl | Cl | H                                 | (CH <sub>2</sub> ) <sub>3</sub> F | O                                        | H               |
| 5-9  | Cl | Cl | H                                 | (CH <sub>2</sub> ) <sub>2</sub> F | H                                        | H               |
| 5-10 | Cl | F  | CH <sub>3</sub>                   | (CH <sub>2</sub> ) <sub>2</sub> F | COCH <sub>3</sub>                        | H               |
| 5-11 | Cl | F  | CH <sub>3</sub>                   | (CH <sub>2</sub> ) <sub>2</sub> F | benzoyl                                  | H               |
| 5-12 | Cl | F  | CH <sub>3</sub>                   | (CH <sub>2</sub> ) <sub>2</sub> F | CH <sub>3</sub>                          | CH <sub>3</sub> |
| 5-13 | Cl | F  | CH <sub>3</sub>                   | (CH <sub>2</sub> ) <sub>2</sub> F | COOCH <sub>3</sub>                       | H               |
| 5-14 | Cl | F  | CH <sub>3</sub>                   | (CH <sub>2</sub> ) <sub>2</sub> F | CONHCH <sub>3</sub>                      | H               |
| 5-15 | Cl | Cl | CH <sub>2</sub> C≡CH              | (CH <sub>2</sub> ) <sub>2</sub> F | H                                        | H               |
| 5-16 | Cl | Cl | CH(CH <sub>3</sub> ) <sub>2</sub> | (CH <sub>2</sub> ) <sub>2</sub> F | H                                        | H               |
| 5-17 | Cl | F  | CH <sub>2</sub> C≡CH              | (CH <sub>2</sub> ) <sub>2</sub> F | H                                        | H               |
| 5-18 | Cl | F  | CH(CH <sub>3</sub> ) <sub>2</sub> | (CH <sub>2</sub> ) <sub>2</sub> F | H                                        | H               |
| 5-19 | CN | F  | CH <sub>3</sub>                   | (CH <sub>2</sub> ) <sub>2</sub> F | benzoyl                                  | H               |
| 5-20 | Cl | H  | CH <sub>3</sub>                   | (CH <sub>2</sub> ) <sub>2</sub> F | benzoyl                                  | H               |
| 5-21 | Cl | F  | CH <sub>3</sub>                   | (CH <sub>2</sub> ) <sub>2</sub> F | 2,4-F <sub>2</sub> -benzoyl              | H               |
| 5-22 | Cl | F  | CH <sub>3</sub>                   | (CH <sub>2</sub> ) <sub>2</sub> F | 4-C <sub>2</sub> H <sub>5</sub> -benzoyl | H               |
| 5-23 | Cl | F  | CH <sub>3</sub>                   | (CH <sub>2</sub> ) <sub>2</sub> F | 3-phenyl-propionyl                       | H               |
| 5-24 | Cl | F  | CH <sub>2</sub> CN                | (CH <sub>2</sub> ) <sub>2</sub> F | 2,4-F <sub>2</sub> -benzoyl              | H               |
| 5-25 | Cl | F  | CH <sub>2</sub> CN                | (CH <sub>2</sub> ) <sub>2</sub> F | 2-naphthoyl                              | H               |
| 5-26 | Cl | F  | CH <sub>3</sub>                   | (CH <sub>2</sub> ) <sub>2</sub> F | 2-naphthoyl                              | H               |
| 5-27 | Cl | F  | CH <sub>3</sub>                   | (CH <sub>2</sub> ) <sub>2</sub> F | 2-naphthoyl                              | 2-naphthoyl     |
| 5-28 | Cl | F  | CH <sub>3</sub>                   | (CH <sub>2</sub> ) <sub>2</sub> F | benzyloxyacetyl                          | H               |

TABLE VI



| No.  | X  | Y  | W                                   | R <sub>1</sub>   | R <sub>2</sub>                  | R <sub>4</sub>              | R <sub>5</sub>  |
|------|----|----|-------------------------------------|------------------|---------------------------------|-----------------------------|-----------------|
| 6-1  | Cl | F  | OH                                  | CHF <sub>2</sub> | CH <sub>3</sub>                 | O                           | O               |
| 6-2  | Cl | F  | OH                                  | CHF <sub>2</sub> | CH <sub>3</sub>                 | H                           | H               |
| 6-3  | Cl | F  | OCH <sub>3</sub>                    | CHF <sub>2</sub> | CH <sub>3</sub>                 | H                           | H               |
| 6-4  | Cl | F  | OCH <sub>3</sub>                    | CHF <sub>2</sub> | CH <sub>3</sub>                 | COCH <sub>3</sub>           | H               |
| 6-5  | Cl | F  | OCH <sub>3</sub>                    | CHF <sub>2</sub> | CH <sub>3</sub>                 | benzoyl                     | H               |
| 6-6  | Cl | Cl | OCH <sub>3</sub>                    | CHF <sub>2</sub> | CH <sub>3</sub>                 | CH <sub>3</sub>             | CH <sub>3</sub> |
| 6-7  | Cl | Cl | OCH <sub>3</sub>                    | CHF <sub>2</sub> | CH <sub>3</sub>                 | COOCH <sub>3</sub>          | H               |
| 6-8  | Cl | F  | OCH <sub>3</sub>                    | CH <sub>3</sub>  | CH <sub>3</sub>                 | benzoyl                     | H               |
| 6-9  | Cl | F  | OCH <sub>3</sub>                    | CHF <sub>2</sub> | CH <sub>2</sub> CH <sub>3</sub> | benzoyl                     | H               |
| 6-10 | Cl | Cl | OCH <sub>3</sub>                    | CHF <sub>2</sub> | CH <sub>3</sub>                 | CONHCH <sub>3</sub>         | H               |
| 6-11 | CN | F  | OCH <sub>3</sub>                    | CHF <sub>2</sub> | CH <sub>3</sub>                 | benzoyl                     | H               |
| 6-12 | Cl | H  | OCH <sub>3</sub>                    | CHF <sub>2</sub> | CH <sub>3</sub>                 | benzoyl                     | H               |
| 6-13 | Cl | Cl | H                                   | CHF <sub>2</sub> | CH <sub>3</sub>                 | 2,4-difluoro-benzoyl        | H               |
| 6-14 | Cl | F  | OCH <sub>3</sub>                    | CHF <sub>2</sub> | CH <sub>3</sub>                 | 2,4-difluoro-benzoyl        | H               |
| 6-15 | Cl | F  | OCH <sub>3</sub>                    | CHF <sub>2</sub> | CH <sub>3</sub>                 | 2-naphthoyl                 | H               |
| 6-16 | Cl | Cl | H                                   | CHF <sub>2</sub> | CH <sub>3</sub>                 | 2-naphthoyl                 | H               |
| 6-17 | Cl | Cl | OCH <sub>3</sub>                    | CHF <sub>2</sub> | CH <sub>3</sub>                 | 2-naphthoyl                 | H               |
| 6-18 | Cl | Cl | HNC(O)C <sub>2</sub> H <sub>5</sub> | CHF <sub>2</sub> | CH <sub>3</sub>                 | O                           | O               |
| 6-19 | Cl | Cl | HNC(O)C <sub>2</sub> H <sub>5</sub> | CHF <sub>2</sub> | CH <sub>3</sub>                 | H                           | H               |
| 6-20 | Cl | Cl | NH <sub>2</sub>                     | CHF <sub>2</sub> | CH <sub>3</sub>                 | H                           | H               |
| 6-21 | Cl | F  | H                                   | CHF <sub>2</sub> | CH <sub>3</sub>                 | O                           | O               |
| 6-22 | Cl | F  | H                                   | CHF <sub>2</sub> | CH <sub>3</sub>                 | H                           | H               |
| 6-23 | Cl | F  | H                                   | CHF <sub>2</sub> | CH <sub>3</sub>                 | 2,4-F <sub>2</sub> -benzoyl | H               |
| 6-24 | Cl | F  | H                                   | CHF <sub>2</sub> | CH <sub>3</sub>                 | 2-naphthoyl                 | H               |

TABLE VII



| No.  | X  | Y  | R               | R <sub>1</sub>                  | R <sub>2</sub>    | R <sub>3</sub> | R <sub>4</sub>      | R <sub>5</sub>  |
|------|----|----|-----------------|---------------------------------|-------------------|----------------|---------------------|-----------------|
| 7-1  | Cl | F  | CH <sub>3</sub> | CH <sub>3</sub>                 | CF <sub>3</sub>   | Cl             | O                   | O               |
| 7-2  | Cl | F  | CH <sub>3</sub> | CH <sub>3</sub>                 | CF <sub>3</sub>   | Cl             | H                   | H               |
| 7-3  | Cl | F  | H               | CH <sub>3</sub>                 | CF <sub>3</sub>   | Cl             | H                   | H               |
| 7-4  | Cl | F  | CH <sub>3</sub> | CH <sub>3</sub>                 | CF <sub>3</sub>   | Cl             | COCH <sub>3</sub>   | H               |
| 7-5  | Cl | F  | CH <sub>3</sub> | CH <sub>3</sub>                 | CF <sub>3</sub>   | Cl             | benzoyl             | H               |
| 7-6  | Cl | Cl | CH <sub>3</sub> | CH <sub>3</sub>                 | CF <sub>3</sub>   | Cl             | CH <sub>3</sub>     | CH <sub>3</sub> |
| 7-7  | Cl | Cl | CH <sub>3</sub> | CH <sub>3</sub>                 | CF <sub>3</sub>   | Cl             | COOCH <sub>3</sub>  | H               |
| 7-8  | Cl | Cl | CH <sub>3</sub> | CH <sub>3</sub>                 | CF <sub>3</sub>   | Cl             | CONHCH <sub>3</sub> | H               |
| 7-9  | CN | F  | CH <sub>3</sub> | CH <sub>3</sub>                 | CF <sub>3</sub>   | Cl             | benzoyl             | H               |
| 7-10 | Cl | H  | CH <sub>3</sub> | CH <sub>3</sub>                 | CF <sub>3</sub>   | Cl             | benzoyl             | H               |
| 7-11 | Cl | F  | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | CF <sub>3</sub>   | Cl             | benzoyl             | H               |
| 7-12 | Cl | F  | CH <sub>3</sub> | CH <sub>3</sub>                 | OCHF <sub>2</sub> | Cl             | benzoyl             | H               |
| 7-13 | Cl | F  | CH <sub>3</sub> | CH <sub>3</sub>                 | CF <sub>3</sub>   | Br             | benzoyl             | H               |
| 7-14 | Cl | F  | CH <sub>3</sub> | CH <sub>3</sub>                 | CF <sub>3</sub>   | Cl             | 2-naphthoyl         | H               |
| 7-15 | Cl | F  | CH <sub>3</sub> | CH <sub>3</sub>                 | CF <sub>3</sub>   | Cl             | cinnamoyl           | H               |

TABLE VIII



| No.  | X               | Y               | W                                  | R <sub>4</sub>                           | R <sub>5</sub>  |
|------|-----------------|-----------------|------------------------------------|------------------------------------------|-----------------|
| 8-1  | Cl              | F               | OH                                 | O                                        | O               |
| 8-2  | Cl              | F               | OH                                 | H                                        | H               |
| 8-3  | Cl              | F               | OCH <sub>2</sub> C≡CH              | H                                        | H               |
| 8-4  | Cl              | F               | OCH(CH <sub>3</sub> ) <sub>2</sub> | H                                        | H               |
| 8-5  | Cl              | F               | O-c-pentyl                         | H                                        | H               |
| 8-6  | Cl              | F               | OCH <sub>3</sub>                   | O                                        | O               |
| 8-7  | Cl              | F               | OCH <sub>3</sub>                   | H                                        | H               |
| 8-8  | Cl              | F               | OCH <sub>3</sub>                   | 2,4-F <sub>2</sub> -benzoyl              | H               |
| 8-9  | Cl              | F               | OCH <sub>3</sub>                   | 2-naphthoyl                              | H               |
| 8-10 | Cl              | F               | OCH <sub>3</sub>                   | 4-C <sub>2</sub> H <sub>5</sub> -benzoyl | H               |
| 8-11 | Cl              | F               | OCH <sub>3</sub>                   | 3-phenyl-propionyl                       | H               |
| 8-12 | CN              | F               | OCH <sub>3</sub>                   | 2,4-F <sub>2</sub> -benzoyl              | H               |
| 8-13 | Cl              | F               | OCH <sub>2</sub> C≡CH              | 2,4-F <sub>2</sub> -benzoyl              | H               |
| 8-14 | Cl              | F               | OCH <sub>2</sub> C≡CH              | 2-naphthoyl                              | H               |
| 8-15 | Cl              | F               | OCH <sub>2</sub> C≡CH              | 4-C <sub>2</sub> H <sub>5</sub> -benzoyl | H               |
| 8-16 | Cl              | F               | OCH <sub>2</sub> C≡CH              | 3-phenyl-propionyl                       | H               |
| 8-17 | CN              | F               | OCH <sub>2</sub> C≡CH              | 2,4-F <sub>2</sub> -benzoyl              | H               |
| 8-18 | Cl              | F               | OCH(CH <sub>3</sub> ) <sub>2</sub> | 2,4-F <sub>2</sub> -benzoyl              | H               |
| 8-19 | Cl              | F               | OCH(CH <sub>3</sub> ) <sub>2</sub> | 2-naphthoyl                              | H               |
| 8-20 | Cl              | F               | OCH(CH <sub>3</sub> ) <sub>2</sub> | 4-C <sub>2</sub> H <sub>5</sub> -benzoyl | H               |
| 8-21 | Cl              | F               | OCH(CH <sub>3</sub> ) <sub>2</sub> | 3-phenyl-propionyl                       | H               |
| 8-22 | CN              | F               | OCH(CH <sub>3</sub> ) <sub>2</sub> | 2,4-F <sub>2</sub> -benzoyl              | H               |
| 8-23 | Cl              | F               | OCH <sub>3</sub>                   | COCH <sub>3</sub>                        | H               |
| 8-24 | Cl              | F               | OCH <sub>3</sub>                   | benzoyl                                  | H               |
| 8-25 | Cl              | F               | OCH <sub>3</sub>                   | CH <sub>3</sub>                          | CH <sub>3</sub> |
| 8-26 | Cl              | F               | OCH <sub>3</sub>                   | COOCH <sub>3</sub>                       | H               |
| 8-27 | Cl              | F               | OCH <sub>3</sub>                   | CONHCH <sub>3</sub>                      | H               |
| 8-28 | CN              | F               | OCH <sub>3</sub>                   | benzoyl                                  | H               |
| 8-29 | Cl              | H               | OCH <sub>3</sub>                   | benzoyl                                  | H               |
| 8-30 | Cl              | F               | OCH <sub>3</sub>                   | 4-vinyl-benzoyl                          | H               |
| 8-31 | Cl              | F               | OCH <sub>3</sub>                   | cinnamoyl                                | H               |
| 8-32 | Cl              | NO <sub>2</sub> | H                                  | O                                        | O               |
| 8-33 | Cl              | H               | H                                  | O                                        | O               |
| 8-34 | NO <sub>2</sub> | H               | H                                  | O                                        | O               |
| 8-35 | Cl              | H               | H                                  | H                                        | H               |
| 8-36 | Cl              | H               | H                                  | 2-naphthoyl                              | H               |

TABLE IX



| No.  | X  | Y | W                | R <sub>4</sub>              | R <sub>5</sub>  | R <sub>8</sub> | R <sub>9</sub> |
|------|----|---|------------------|-----------------------------|-----------------|----------------|----------------|
| 9-1  | Cl | F | OH               | O                           | O               | O              | O              |
| 9-2  | Cl | F | OH               | H                           | H               | O              | O              |
| 9-3  | Cl | F | OCH <sub>3</sub> | O                           | O               | O              | O              |
| 9-4  | Cl | F | OCH <sub>3</sub> | H                           | H               | O              | O              |
| 9-5  | Cl | F | OCH <sub>3</sub> | COCH <sub>3</sub>           | H               | O              | O              |
| 9-6  | Cl | F | OCH <sub>3</sub> | benzoyl                     | H               | O              | O              |
| 9-7  | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub>             | CH <sub>3</sub> | O              | O              |
| 9-8  | Cl | F | OCH <sub>3</sub> | COOCH <sub>3</sub>          | H               | O              | O              |
| 9-9  | Cl | F | OCH <sub>3</sub> | CONHCH <sub>3</sub>         | H               | O              | O              |
| 9-10 | CN | F | OCH <sub>3</sub> | benzoyl                     | H               | O              | O              |
| 9-11 | Cl | H | OCH <sub>3</sub> | benzoyl                     | H               | O              | O              |
| 9-12 | Cl | H | H                | O                           | O               | O              | S              |
| 9-13 | Cl | H | H                | H                           | H               | O              | S              |
| 9-14 | Cl | H | H                | 2-naphthoyl                 | H               | O              | S              |
| 9-15 | Cl | F | OCH <sub>3</sub> | 2-naphthoyl                 | H               | O              | O              |
| 9-16 | Cl | F | OCH <sub>3</sub> | 2,4-F <sub>2</sub> -benzoyl | H               | O              | O              |
| 9-17 | Cl | H | H                | O                           | O               | O              | O              |
| 9-18 | Cl | H | H                | H                           | H               | O              | O              |
| 9-19 | Cl | H | H                | 2-naphthoyl                 | H               | O              | O              |

TABLE X



| No.   | X  | Y | R               | R <sub>5</sub>      | R <sub>4</sub>  |
|-------|----|---|-----------------|---------------------|-----------------|
| 10-1  | Cl | F | H               | O                   | O               |
| 10-2  | Cl | F | H               | H                   | H               |
| 10-3  | Cl | F | CH <sub>3</sub> | O                   | O               |
| 10-4  | Cl | F | CH <sub>3</sub> | H                   | H               |
| 10-5  | Cl | F | CH <sub>3</sub> | COCH <sub>3</sub>   | H               |
| 10-6  | Cl | F | CH <sub>3</sub> | benzoyl             | H               |
| 10-7  | Cl | F | CH <sub>3</sub> | CH <sub>3</sub>     | CH <sub>3</sub> |
| 10-8  | Cl | F | CH <sub>3</sub> | COOCH <sub>3</sub>  | H               |
| 10-9  | Cl | F | CH <sub>3</sub> | CONHCH <sub>3</sub> | H               |
| 10-10 | CN | F | CH <sub>3</sub> | benzoyl             | H               |
| 10-11 | Cl | H | CH <sub>3</sub> | benzoyl             | H               |

5

TABLE XI



| No.   | X  | Y | W                | R <sub>1</sub>  | R <sub>2</sub>  | Z                                                      |
|-------|----|---|------------------|-----------------|-----------------|--------------------------------------------------------|
| 11-1  | Cl | F | OCH <sub>3</sub> | H               | CF <sub>3</sub> | NO <sub>2</sub>                                        |
| 11-2  | Cl | F | OH               | H               | CF <sub>3</sub> | NO <sub>2</sub>                                        |
| 11-3  | Cl | F | OH               | H               | CF <sub>3</sub> | NH <sub>2</sub>                                        |
| 11-4  | Cl | F | OCH <sub>3</sub> | H               | CF <sub>3</sub> | NH <sub>2</sub>                                        |
| 11-5  | Cl | F | OCH <sub>3</sub> | H               | CF <sub>3</sub> | NHCH <sub>3</sub>                                      |
| 11-6  | Cl | F | OCH <sub>3</sub> | H               | CF <sub>3</sub> | NH-2-naphthoyl                                         |
| 11-7  | Cl | F | OCH <sub>3</sub> | H               | CF <sub>3</sub> | Cl                                                     |
| 11-8  | Cl | F | OCH <sub>3</sub> | H               | CF <sub>3</sub> | CH <sub>2</sub> CHClCOOCH <sub>2</sub> CH <sub>3</sub> |
| 11-9  | Cl | F | OH               | CH <sub>3</sub> | CF <sub>3</sub> | NO <sub>2</sub>                                        |
| 11-10 | Cl | F | OH               | CH <sub>3</sub> | CF <sub>3</sub> | NH <sub>2</sub>                                        |
| 11-11 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | NH <sub>2</sub>                                        |
| 11-12 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | NHCH <sub>3</sub>                                      |
| 11-13 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | NH-2-naphthoyl                                         |
| 11-14 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | NO <sub>2</sub>                                        |
| 11-15 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | NHCOCH <sub>3</sub>                                    |
| 11-16 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | NH-benzoyl                                             |
| 11-17 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | N-(CH <sub>3</sub> ) <sub>2</sub>                      |
| 11-18 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | NHCOO-phenyl                                           |
| 11-19 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | NHCONHCH <sub>3</sub>                                  |
| 11-20 | CN | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | 2-naphthoyl -NH                                        |
| 11-21 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | 2-naphthoyl -NH                                        |
| 11-22 | Cl | H | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | 2-naphthoyl -NH                                        |
| 11-23 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | Cl                                                     |
| 11-24 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | CH <sub>2</sub> CHClCOOCH <sub>2</sub> CH <sub>3</sub> |

TABLE XII



| No.   | X  | Y | W                | R <sub>4</sub>      | R <sub>5</sub>  | R <sub>8</sub> | R <sub>9</sub> |
|-------|----|---|------------------|---------------------|-----------------|----------------|----------------|
| 12-1  | Cl | F | OH               | O                   | O               | S              | O              |
| 12-2  | Cl | F | OH               | H                   | H               | S              | O              |
| 12-3  | Cl | F | OH               | H                   | H               | S              | O              |
| 12-4  | Cl | F | OCH <sub>3</sub> | H                   | H               | S              | O              |
| 12-5  | Cl | F | OCH <sub>3</sub> | 2-naphthoyl         | H               | S              | O              |
| 12-6  | Cl | H | H                | O                   | H               | O              | O              |
| 12-7  | Cl | H | H                | H                   | H               | O              | O              |
| 12-8  | Cl | H | H                | 2-naphthoyl         | H               | O              | O              |
| 12-9  | Cl | F | OCH <sub>3</sub> | COCH <sub>3</sub>   | H               | S              | O              |
| 12-10 | Cl | F | OCH <sub>3</sub> | benzoyl             | H               | S              | O              |
| 12-11 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub>     | CH <sub>3</sub> | S              | O              |
| 12-12 | Cl | F | OCH <sub>3</sub> | COO-phenyl          | H               | S              | O              |
| 12-13 | Cl | F | OCH <sub>3</sub> | CONHCH <sub>3</sub> | H               | S              | O              |
| 12-14 | CN | F | OCH <sub>3</sub> | 2-naphthoyl         | H               | S              | O              |
| 12-15 | Cl | H | OCH <sub>3</sub> | 2-naphthoyl         | H               | S              | O              |

5

TABLE XIII



| No.   | X  | Y | W                | R <sub>4</sub>      | R <sub>5</sub>  |
|-------|----|---|------------------|---------------------|-----------------|
| 13-1  | Cl | F | OH               | O                   | O               |
| 13-2  | Cl | F | OH               | H                   | H               |
| 13-3  | Cl | F | OCH <sub>3</sub> | 2-naphthoyl         | H               |
| 13-4  | Cl | F | OCH <sub>3</sub> | 2,4-difluorobenzoyl | H               |
| 13-5  | Cl | H | H                | 2-naphthoyl         | H               |
| 13-6  | Cl | F | OCH <sub>3</sub> | COCH <sub>3</sub>   | H               |
| 13-7  | Cl | F | OCH <sub>3</sub> | benzoyl             | H               |
| 13-8  | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub>     | CH <sub>3</sub> |
| 13-9  | Cl | F | OCH <sub>3</sub> | COO-phenyl          | H               |
| 13-10 | Cl | F | OCH <sub>3</sub> | CONHCH <sub>3</sub> | H               |
| 13-11 | CN | F | OCH <sub>3</sub> | 2-naphthoyl         | H               |
| 13-12 | Cl | H | OCH <sub>3</sub> | 2-naphthoyl         | H               |

TABLE XIV



| No.   | X  | Y | W                | Q  | R <sub>1</sub>  | R <sub>2</sub>  | R <sub>3</sub> | Z                                                                                                                 | R <sub>8</sub> | R <sub>9</sub> |
|-------|----|---|------------------|----|-----------------|-----------------|----------------|-------------------------------------------------------------------------------------------------------------------|----------------|----------------|
| 14-1  | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                   | O              | O              |
| 14-2  | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH=CHCO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                                              | O              | O              |
| 14-3  | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> CH <sub>3</sub>                                                               | O              | O              |
| 14-4  | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> C <sub>2</sub> H <sub>5</sub><br>(isomer-1)                                   | O              | O              |
| 14-5  | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> C <sub>2</sub> H <sub>5</sub><br>(isomer-2)                                   | O              | O              |
| 14-6  | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> -n-C <sub>3</sub> H <sub>7</sub><br>(isomer-1)                                | O              | O              |
| 14-7  | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> -n-C <sub>3</sub> H <sub>7</sub><br>(isomer-2)                                | O              | O              |
| 14-8  | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> -n-C <sub>4</sub> H <sub>9</sub><br>(isomer-1)                                | O              | O              |
| 14-9  | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> -n-C <sub>4</sub> H <sub>9</sub><br>(isomer-2)                                | O              | O              |
| 14-10 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> -n-C <sub>5</sub> H <sub>11</sub><br>(isomer-1)                               | O              | O              |
| 14-11 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> -n-C <sub>5</sub> H <sub>11</sub><br>(isomer-2)                               | O              | O              |
| 14-12 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> -n-C <sub>6</sub> H <sub>13</sub><br>(isomer-1)                               | O              | O              |
| 14-13 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> -n-C <sub>6</sub> H <sub>13</sub><br>(isomer-2)                               | O              | O              |
| 14-14 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> -i-C <sub>4</sub> H <sub>9</sub><br>(isomer-1)                                | O              | O              |
| 14-15 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> -i-C <sub>4</sub> H <sub>9</sub><br>(isomer-2)                                | O              | O              |
| 14-16 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> -i-C <sub>5</sub> H <sub>11</sub><br>(isomer-1)                               | O              | O              |
| 14-17 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> -i-C <sub>5</sub> H <sub>11</sub><br>(isomer-2)                               | O              | O              |
| 14-18 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> -t-C <sub>4</sub> H <sub>9</sub>                                              | O              | O              |
| 14-19 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> -CH <sub>2</sub> C≡CH<br>(isomer-1)                                           | O              | O              |
| 14-20 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> -CH <sub>2</sub> C≡CH<br>(isomer-2)                                           | O              | O              |
| 14-21 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> CH <sub>2</sub> CF <sub>3</sub>                                               | O              | O              |
| 14-22 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> -CH <sub>2</sub> CF <sub>2</sub> CHF <sub>2</sub>                             | O              | O              |
| 14-23 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> CH <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>3</sub><br>(isomer-1) | O              | O              |
| 14-24 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> CH <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>3</sub><br>(isomer-2) | O              | O              |
| 14-25 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>                              | O              | O              |
| 14-26 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub>                | O              | O              |
| 14-27 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OPh<br>(isomer-1)                             | O              | O              |
| 14-28 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OPh<br>(isomer-2)                             | O              | O              |
| 14-29 | Cl | F | OCH <sub>3</sub> | Q1 | CH <sub>3</sub> | CF <sub>3</sub> | H              | CH <sub>2</sub> CHClCO <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> CN                                           | O              | O              |

|       |                    |   |                                    |    |                  |                 |    |                                                                                                                    |   |   |
|-------|--------------------|---|------------------------------------|----|------------------|-----------------|----|--------------------------------------------------------------------------------------------------------------------|---|---|
| 14-30 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> CHClCO <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> BrCH <sub>2</sub> B<br>r (isomer-1)            | O | O |
| 14-31 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> CHClCO <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> BrCH <sub>2</sub> B<br>r (isomer-2)            | O | O |
| 14-32 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> CHBrCO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> (isomer-1)                                       | O | O |
| 14-33 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> CHBrCO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> (isomer-2)                                       | O | O |
| 14-34 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> C(CH <sub>3</sub> )CICO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                                 | O | O |
| 14-35 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> C(CH <sub>3</sub> )CICO <sub>2</sub> -n-C <sub>3</sub> H <sub>7</sub>                              | O | O |
| 14-36 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> C(CH <sub>3</sub> )CICO <sub>2</sub> -n-C <sub>4</sub> H <sub>9</sub>                              | O | O |
| 14-37 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> C(CH <sub>3</sub> )CICO <sub>2</sub> -n-C <sub>5</sub> H <sub>11</sub>                             | O | O |
| 14-38 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> C(CH <sub>3</sub> )CICO <sub>2</sub> -n-C <sub>6</sub> H <sub>13</sub>                             | O | O |
| 14-39 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> C(CH <sub>3</sub> )CICO <sub>2</sub> -i-C <sub>3</sub> H <sub>7</sub>                              | O | O |
| 14-40 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> C(CH <sub>3</sub> )CICO <sub>2</sub> -i-C <sub>4</sub> H <sub>9</sub>                              | O | O |
| 14-41 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> C(CH <sub>3</sub> )CICO <sub>2</sub> -CH <sub>2</sub> Ph                                           | O | O |
| 14-42 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> C(CH <sub>3</sub> )CICO <sub>2</sub> -CH=CH <sub>2</sub>                                           | O | O |
| 14-43 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> C(CH <sub>3</sub> )CICO <sub>2</sub> -<br>CH <sub>2</sub> CH=CH <sub>2</sub>                       | O | O |
| 14-44 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> C(CH <sub>3</sub> )CICO <sub>2</sub> -CH <sub>2</sub> C≡CH                                         | O | O |
| 14-45 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> C(CH <sub>3</sub> )CICO <sub>2</sub> -<br>CH <sub>2</sub> CF <sub>2</sub> CHF <sub>2</sub>         | O | O |
| 14-46 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> C(CH <sub>3</sub> )CICO <sub>2</sub> -CH(CF <sub>3</sub> ) <sub>2</sub>                            | O | O |
| 14-47 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> C(CH <sub>3</sub> )CICO <sub>2</sub> -<br>CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>         | O | O |
| 14-48 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> C(CH <sub>3</sub> )CICO <sub>2</sub> -<br>CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>         | O | O |
| 14-49 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> C(CH <sub>3</sub> )CICO <sub>2</sub> -<br>tetrahydrofuryl                                          | O | O |
| 14-50 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> C(CH <sub>2</sub> CO <sub>2</sub> CH <sub>3</sub> )CICO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | O | O |
| 14-51 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> C(CN)CICO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                                               | O | O |
| 14-52 | Cl                 | F | H                                  | Q5 | CHF <sub>2</sub> | CH <sub>3</sub> | -  | CH <sub>2</sub> CHClCO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                                                  | - | - |
| 14-53 | Cl                 | F | OCH <sub>3</sub>                   | Q6 | -                | -               | -  | CH <sub>2</sub> CHClCO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                                                  | O | O |
| 14-54 | Cl                 | F | CH <sub>3</sub>                    | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> CCICOOCH <sub>2</sub> CH <sub>3</sub>                                                              | O | O |
| 14-55 | Cl                 | F | CH <sub>3</sub>                    | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> CCICOOCH <sub>2</sub> CH <sub>3</sub>                                                              | O | O |
| 14-56 | Cl                 | F | OCH <sub>3</sub>                   | Q3 | CH <sub>3</sub>  | CF <sub>3</sub> | Cl | CH <sub>2</sub> CCICOOCH <sub>2</sub> CH <sub>3</sub>                                                              | - | - |
| 14-57 | Cl                 | H | H                                  | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CO-phenyl                                                                                                          | O | O |
| 14-58 | Cl                 | H | H                                  | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | (cis)CHCH-2-naphthyl                                                                                               | O | O |
| 14-59 | Cl                 | H | H                                  | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | (trans)CHCH-2-naphthyl                                                                                             | O | O |
| 14-60 | Cl                 | F | H                                  | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> (Cl)CHCOOCH <sub>2</sub> CH <sub>3</sub>                                                           | O | O |
| 14-61 | -Cl                | F | OCH <sub>3</sub>                   | Q5 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> (Cl)CHCOOCH <sub>2</sub> CH <sub>3</sub>                                                           | O | O |
| 14-62 | Cl                 | F | OCH <sub>2</sub> CH <sub>3</sub>   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | Cl                                                                                                                 | O | O |
| 14-63 | Cl                 | F | OCH <sub>2</sub> CH <sub>3</sub>   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> CHClCOOCH <sub>2</sub> CH <sub>3</sub>                                                             | O | O |
| 14-64 | Cl                 | F | OCH <sub>2</sub> CH <sub>3</sub>   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> CHClCOOCH <sub>2</sub> CH <sub>3</sub>                                                             | O | O |
| 14-65 | Cl                 | F | OCH <sub>2</sub> CH <sub>3</sub>   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> CHClCOOCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                             | O | O |
| 14-66 | Cl                 | F | OCH <sub>2</sub> CH <sub>3</sub>   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> CHClCOOCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                             | O | O |
| 14-67 | Cl                 | F | OCH(CH <sub>3</sub> ) <sub>2</sub> | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | Cl                                                                                                                 | O | O |
| 14-68 | Cl                 | F | OCH(CH <sub>3</sub> ) <sub>2</sub> | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> CHClCOOCH <sub>2</sub> CH <sub>3</sub>                                                             | O | O |
| 14-69 | Cl                 | F | OCH(CH <sub>3</sub> ) <sub>2</sub> | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> CHClCOOCH <sub>2</sub> CH <sub>3</sub>                                                             | O | O |
| 14-70 | CH <sub>3</sub>    | H | H                                  | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> CHClCOOCH <sub>2</sub> CH <sub>3</sub>                                                             | O | O |
| 14-71 | COOCH <sub>3</sub> | H | H                                  | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> CHClCOOCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                             | O | O |
| 14-72 | Cl                 | F | OCH <sub>3</sub>                   | Q8 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> CHClCOOCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                             | O | O |
| 14-73 | Cl                 | F | OCH <sub>3</sub>                   | Q1 | CH <sub>3</sub>  | CF <sub>3</sub> | H  | CH <sub>2</sub> CHClCOOH                                                                                           | O | O |
| 14-74 | Cl                 | F | OCH <sub>3</sub>                   | Q9 | H                | CF <sub>3</sub> | Cl | NO <sub>2</sub>                                                                                                    | - | - |
| 14-75 | Cl                 | F | OCH <sub>3</sub>                   | Q9 | H                | CF <sub>3</sub> | Cl | NH <sub>2</sub>                                                                                                    | - | - |
| 14-76 | Cl                 | F | OCH <sub>3</sub>                   | Q9 | H                | CF <sub>3</sub> | Cl | NH-2-naphthoyl                                                                                                     | - | - |
| 14-77 | Cl                 | F | OCH <sub>3</sub>                   | Q9 | H                | CF <sub>3</sub> | Cl | CH <sub>2</sub> CHClCOOCH <sub>2</sub> CH <sub>3</sub>                                                             | - | - |

TABLE XV



| No.   | X  | Y | W                | R <sub>1</sub>  | R <sub>2</sub>  | R <sub>4</sub>                                                                       | R <sub>5</sub> | R <sub>8</sub> | R <sub>9</sub> |
|-------|----|---|------------------|-----------------|-----------------|--------------------------------------------------------------------------------------|----------------|----------------|----------------|
| 15-1  | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | NH <sub>2</sub>                                                                      | H              | O              | O              |
| 15-2  | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | c-C <sub>3</sub> H <sub>5</sub> -carbonyl-NH-<br>benzoyl-NH-                         | H              | O              | O              |
| 15-3  | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> |                                                                                      | H              | O              | O              |
| 15-4  | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | 2,4-F <sub>2</sub> -benzoyl-NH-                                                      | H              | O              | O              |
| 15-5  | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | 2-naphthoyl-NH-                                                                      | H              | O              | O              |
| 15-6  | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | ethoxycarbonyl-NH-                                                                   | H              | O              | O              |
| 15-7  | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | phenoxy carbonyl-NH-                                                                 | H              | O              | O              |
| 15-8  | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | 2,4-F <sub>2</sub> -PhNHC(O)-NH-                                                     | H              | O              | O              |
| 15-9  | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | H <sub>5</sub> C <sub>2</sub> OC(O)N(CH <sub>3</sub> )C(O)-NH-                       | H              | O              | O              |
| 15-10 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | H <sub>2</sub> C=CHCH=N-                                                             | H              | O              | O              |
| 15-11 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | c-C <sub>3</sub> H <sub>5</sub> -CH=N-                                               | H              | O              | O              |
| 15-12 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | H <sub>3</sub> CC(CH <sub>3</sub> )=N-                                               | H              | O              | O              |
| 15-13 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | H <sub>3</sub> COCH <sub>2</sub> C(CH <sub>3</sub> )=N-                              | H              | O              | O              |
| 15-14 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | H <sub>3</sub> CS CH <sub>2</sub> CH <sub>2</sub> CH=N-                              | H              | O              | O              |
| 15-15 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | PhCH <sub>2</sub> CH=N-                                                              | H              | O              | O              |
| 15-16 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | H <sub>5</sub> C <sub>2</sub> OC(O)CH <sub>2</sub> C(CH <sub>3</sub> )=N-            | H              | O              | O              |
| 15-17 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | PhCH(CH <sub>3</sub> )CH=N-                                                          | H              | O              | O              |
| 15-18 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> |  | H              | O              | O              |
| 15-19 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> |  | H              | O              | O              |
| 15-20 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | 2,4-F <sub>2</sub> -PhCH=N-                                                          | H              | O              | O              |
| 15-21 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | F <sub>3</sub> CC(CF <sub>3</sub> )=N-                                               | H              | O              | O              |
| 15-22 | Cl | F | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | 2-naphthyl-CH=N-                                                                     | H              | O              | O              |

TABLE XVI



| No.   | X  | Y  | W                | R <sub>1</sub>  | R <sub>2</sub>  | R <sub>4</sub>              | R <sub>8</sub> | R <sub>9</sub> |
|-------|----|----|------------------|-----------------|-----------------|-----------------------------|----------------|----------------|
| 16-1  | Cl | Cl | H                | CH <sub>3</sub> | CF <sub>3</sub> | H                           | O              | O              |
| 16-2  | Cl | Cl | H                | CH <sub>3</sub> | CF <sub>3</sub> | CH <sub>3</sub>             | O              | O              |
| 16-3  | Cl | Cl | H                | CH <sub>3</sub> | CF <sub>3</sub> | 2,4-F <sub>2</sub> -benzyl  | O              | O              |
| 16-4  | Cl | Cl | H                | CH <sub>3</sub> | CF <sub>3</sub> | 2,4-F <sub>2</sub> -benzoyl | O              | O              |
| 16-5  | Cl | Cl | H                | CH <sub>3</sub> | CF <sub>3</sub> | 2-naphthoyl                 | O              | O              |
| 16-6  | Cl | F  | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | H                           | O              | O              |
| 16-7  | Cl | F  | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | 2-naphthoyl                 | O              | O              |
| 16-8  | Cl | F  | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | CH <sub>2</sub> -2-naphthyl | O              | O              |
| 16-9  | Cl | F  | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | 2-naphthoyl                 | O              | S              |
| 16-10 | Cl | F  | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | 2-naphthoyl                 | S              | O              |
| 16-11 | CN | F  | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | 2-naphthoyl                 | O              | O              |
| 16-12 | Cl | H  | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | 2-naphthoyl                 | O              | O              |
| 16-13 | Cl | F  | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | CONH-phenyl                 | O              | O              |
| 16-14 | Cl | F  | OCH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | CONHCH <sub>3</sub>         | O              | O              |

5

TABLE XVII



| No.   | X  | Y | W                                | R <sub>1</sub>  | R <sub>2</sub>  | R <sub>4</sub> | R <sub>8</sub> | R <sub>9</sub> |
|-------|----|---|----------------------------------|-----------------|-----------------|----------------|----------------|----------------|
| 17-1  | Cl | F | OCH <sub>3</sub>                 | CH <sub>3</sub> | CF <sub>3</sub> | methyl         | O              | O              |
| 17-2  | Cl | F | OCH <sub>3</sub>                 | CH <sub>3</sub> | CF <sub>3</sub> | isopropyl      | O              | O              |
| 17-3  | Cl | F | OCH <sub>3</sub>                 | CH <sub>3</sub> | CF <sub>3</sub> | benzyl         | O              | O              |
| 17-4  | Cl | F | OCH <sub>3</sub>                 | CH <sub>3</sub> | CF <sub>3</sub> | 2-naphthyl     | O              | O              |
| 17-5  | Cl | F | OCH <sub>3</sub>                 | CH <sub>3</sub> | CF <sub>3</sub> | 2-hydroxyethyl | O              | O              |
| 17-6  | Cl | F | OCH <sub>3</sub>                 | CH <sub>3</sub> | CF <sub>3</sub> | benzyl         | O              | S              |
| 17-7  | Cl | F | OCH <sub>3</sub>                 | CH <sub>3</sub> | CF <sub>3</sub> | benzyl         | S              | O              |
| 17-8  | CN | F | OCH <sub>3</sub>                 | CH <sub>3</sub> | CF <sub>3</sub> | benzyl         | O              | O              |
| 17-9  | Cl | H | OCH <sub>3</sub>                 | CH <sub>3</sub> | CF <sub>3</sub> | benzyl         | O              | O              |
| 17-10 | Cl | F | OCH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CF <sub>3</sub> | benzyl         | O              | O              |

Table XVIII lists some of the characterization data for a few representative compounds of this invention.

TABLE XVIII

<sup>1</sup>H NMR data

| No.  | NMR (CDCl <sub>3</sub> , 300 MHz) ppm                                                                                                                                |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-1  | (CDCl <sub>3</sub> +CD <sub>3</sub> OD) 4.04 (3H, s), 6.19 (1H, s), 7.57 (1H, d, J=8.6 Hz)                                                                           |
| 1-2  | (DMSO-d <sub>6</sub> ), 3.30 (2H, br s), 6.54 (1H, s), 8.12 (1H, d, J=9.2Hz)                                                                                         |
| 1-3  | (CDCl <sub>3</sub> +CD <sub>3</sub> OD) 3.85 (3H, s), 6.2 (1H, s), 6.58 (1H, d, J=9.4 Hz)                                                                            |
| 1-4  | 3.57 (3H, br q, J=1.2 Hz), 3.86 (3H, s), 4.04 (2H, br s), 6.37 (1H, s), 6.66 (1H, d, J=9.4 Hz)                                                                       |
| 1-5  | 3.55 (3H, br q, J=1.1 Hz), 4.04 (3H, s), 6.33 (1H, s), 7.51 (1H, d, J=8.6 Hz)                                                                                        |
| 1-6  | 3.57 (3H, q, J=1.1 Hz), 6.38 (1H, s), 7.85 (1H, d, J=8.0 Hz), 10.57 (1H, br)                                                                                         |
| 1-7  | 3.52 (3H, q, J=0.7 Hz), 3.82 (3H, s), 4.13 (2H, br), 6.32 (1H, s), 6.79 (1H, d, J=9.1 Hz)                                                                            |
| 1-8  | 3.48 (3H, s), 4.90 (3H, br), 6.30 (1H, s), 6.69 (1H, d, J=9.0 Hz)                                                                                                    |
| 1-9  | (Acetone-d <sub>6</sub> ) 3.68 (3H, br q, J=1.4 Hz), 4.05 (3H, s), 8.03 (1H, d, J=9.1 Hz)                                                                            |
| 1-10 | 3.52 (3H, br s), 3.86 (3H, s), 4.05 (2H, br s), 4.63 (2H, br s), 6.66 (1H, d, J=9.7 Hz)                                                                              |
| 1-11 | 2.74 (6H, s), 3.57 (3H, br s), 3.84 (3H, s), 6.35 (1H, s), 7.01 (1H, d, J=8.8 Hz)                                                                                    |
| 1-12 | 4.05 (3H, s), 4.61 (2H, s), 6.24 (1H, s), 7.52 (1H, d, J=8.6 Hz)                                                                                                     |
| 1-13 | 3.78 (3H, s), 5.24 (2H, s), 5.41 (2H, br s), 6.21 (1H, s), 6.56 (1H, d, J=9.5 Hz)                                                                                    |
| 1-14 | 1.43 (3H, m), 4.06 (3H, s), 4.31 (2H, m), 6.32 (1H, s), 7.56 (1H, m)                                                                                                 |
| 1-15 | 1.15 (3H, m), 3.85 (3H, s), 3.35 (2H, m), 6.48 (1H, s), 6.55 (1H, m)                                                                                                 |
| 1-16 | (CDCl <sub>3</sub> +CD <sub>3</sub> OD) 3.55 (3H, br q, J=1.1 Hz), 6.36 (1H, s), 6.61 (1H, d, J=9.2)                                                                 |
| 1-17 | 3.57 (3H, d, J=1.2 Hz), 6.38 (1H, s), 7.67 (1H, d, J=8.3 Hz), 10.47 (1H, br s)                                                                                       |
| 1-18 | 3.51 (3H, br q, J=0.9 Hz), 4.94 (2H, s), 5.66 (2H, br s), 6.39 (1H, s), 6.65 (1H d, J=9.4 Hz)                                                                        |
| 1-19 | 2.58 (1H, m), 3.55 (3H, br q, J=1.3 Hz), 4.17 (2H, br s), 4.7 (2H, d, J=2.4 Hz), 6.35 (1H, s), 6.65 (1H, d, J=9.3 Hz)                                                |
| 1-20 | 3.57 (3H, d, J=0.8Hz), 3.78 (3H, s), 4.02 (2H, br s), 4.65 (2H, dd, J=4.4, 1.9Hz), 6.28 (1H, dt, J=15.7, 1.9Hz), 6.65 (1H, d, J=9.3Hz), 7.01 (1H, dt, J=15.7, 4.4Hz) |
| 1-21 | 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.65 (1H, d, J=9.6 Hz)                                                                     |
| 1-22 | 3.54 (3H, br q, J=1.1 Hz), 3.94 (2H, br s), 5.0 (2H, s), 6.34 (1H, s), 6.69 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)                                                       |
| 1-23 | 3.58 (3H, br q, J=1.2 Hz), 4.15 (2H, br s), 6.38 (1H, s), 6.78 (1H, d, J=9.2 Hz), 7.22 (1H, m), 8.36 (2H, m)                                                         |
| 1-30 | 3.52 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.22 (1H, d, J=8.8 Hz)                                                                                        |
| 1-31 | 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.64 (3H, s), 6.30 (1H, s), 6.86 (1H, d, J=8.9 Hz), 7.68 (1H, s)                                                            |
| 1-32 | 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.86 (1H, d, J=8.9 Hz)                                                                      |
| 1-33 | 1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz)                                                                                 |
| 1-34 | 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.35 (1H, s), 7.70 (1H, d, J=8.5 Hz)                                                                   |
| 1-36 | 2.40 (3H, d, J=1.1 Hz), 3.54 (3H, d, J=1.3 Hz), 6.33 (1H, s), 7.51 (1H, d, J=8.5 Hz)                                                                                 |
| 1-37 | 2.23 (3H, d, J=0.9 Hz), 3.57 (3H, d, J=1.1 Hz), 6.38 (1H, s), 6.74 (1H, d, J=9.4 Hz)                                                                                 |

|      |                                                                                                                                                                                                                                                                           |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-38 | 3.57 (3H, d, J=1.1 Hz), 4.17 (2H, br s), 6.37 (1H, s), 6.50 (1H, t, J=74.0 Hz), 6.72 (1H, d, J=9.1 Hz)                                                                                                                                                                    |
| 1-40 | 3.56 (3H, d, J=1.1 Hz), 3.96 (3H, s), 6.36 (1H, s), 7.07 (1H, d, J=8.7 Hz)                                                                                                                                                                                                |
| 1-41 | 3.54 (3H, d, J=1.1Hz), 6.38 (1H, s), 6.89 (2H, m), 7.00(1H, dd J=7.9, 1.5Hz), 7.26 (1H, td, J=7.7, 1.5Hz), 7.85 (2H, br s)                                                                                                                                                |
| 1-42 | 3.55 (3H, d, J=1.2Hz), 6.38 (1H, s), 7.38 (1H, dd, J=7.9, 1.4Hz), 7.66 (1H, td, J=7.9, 1.4Hz), 7.79 (1H, td, J=7.9, 1.4Hz), 8.27 (1H, dd, J=7.9, 1.4Hz)                                                                                                                   |
| 1-43 | 3.56 (3H, d, J=1.1Hz), 6.39 (1H, s), 7.58 (1H, d, J=8.2Hz), 8.05 (1H, dd, J=8.2, 1.8Hz), 8.54(1H, d, J=1.8Hz)                                                                                                                                                             |
| 1-44 | 3.57 (3H, d, J=1.1Hz), 6.39 (1H, s), 7.13 (3H, m)                                                                                                                                                                                                                         |
| 1-45 | 3.58 (3H, d, J=1.2Hz), 6.38 (1H, s), 7.87 (1H, s), 10.61 (1H, br s)                                                                                                                                                                                                       |
| 1-46 | 3.55 (3H, d, J=1.2Hz), 3.93 (3H, s), 6.37 (1H, s), 7.27 (2H, m), 7.77 (1H, dd, J=2.1, 1.0Hz)                                                                                                                                                                              |
| 1-47 | 3.50 (3H, d, J=0.9Hz), 3.81 (3H, s), 3.96 (2H, s), 6.31 (1H, s), 6.88 (1H, s)                                                                                                                                                                                             |
| 1-48 | 1.27 (3H, t, J=7.1Hz), 1.58 (3H, d, J=6.8Hz), 3.55 (3H, d, J=1.1Hz), 3.64 (2H, br s), 4.22 (2H, m), 4.70 (1H, q, J=6.8Hz), 6.36 (1H, s), 6.38 (2H, m), 6.88 (1H, d, J=9.2Hz)                                                                                              |
| 1-49 | 1.29 (3H, t, J=7.1Hz), 1.68 (3H, d, J=6.8Hz), 3.54 (3H, d, J=1.0Hz), 4.26 (2H, m), 4.82 (1H, q, J=6.8Hz), 6.36 (1H, s), 7.25 (2H, m), 7.74 (1H, m)                                                                                                                        |
| 1-50 | 3.57 (3H, q, J=1.2Hz), 6.38 (1H, s), 6.65 (1H, t, J=71.1Hz), 7.37 (1H, dd, J=9.3, 2.7Hz), 7.85 (1H, dd, J=2.7, 2.5Hz)                                                                                                                                                     |
| 1-51 | 3.49 (3H, d, J=1.0Hz), 6.30 (3H, m), 6.42 (1H, t, J=73.2Hz), 7.8 (2H, br s)                                                                                                                                                                                               |
| 1-52 | 3.57 (3H, d, J=1.2Hz), 6.40 (1H, s), 7.57 (1H, d, J=8.2Hz), 8.04 (1H, dd, J=8.2, 1.6Hz), 8.53 (1H, m)                                                                                                                                                                     |
| 1-53 | 1.27 (1.5H, t, J=7.1Hz), 1.28 (1.5H, t, J=7.1Hz), 1.44 (1.5H, d, J=6.9Hz), 1.45 (1.5H, d, J=6.9Hz), 3.58 (3H, s), 4.08 (1H, m), 4.20 (2H, q, J=7.1Hz), 4.39 (0.5H, d, J=7.2Hz), 4.43 (0.5H, d, J=7.2Hz), 6.26 (1H, m), 6.39 (2H, m), 6.50 (1H, t, J=73.3Hz)               |
| 1-54 | 1.27 (1.5H, t, J=7.1Hz), 1.28 (1.5H, t, J=7.1Hz), 1.44 (1.5H, d, J=6.9Hz), 1.46 (1.5H, d, J=6.9Hz), 3.57 (3H, m), 4.11 (1H, m), 4.22 (2H, m), 4.35 (0.5H, d, J=7.4Hz), 4.43 (0.5H, d, J=7.1Hz), 6.36 (0.5H, s), 6.38 (0.5H, s), 6.49 (1H, m), 6.62 (1H, dd, J=9.1, 2.0Hz) |
| 1-55 | 1.22 (1.5H, t, J=7.1Hz), 1.23 (1.5H, t, J=7.1Hz), 1.36 (1.5H, d, J=6.9Hz), 1.38 (1.5H, d, J=6.9Hz), 3.55 (3H, m), 3.82 (1.5H, s), 3.86 (1.5H, s), 4.0-4.4 (4H, m), 6.36 (1H, s), 6.76 (0.5H, d, J=9.1Hz), 6.79 (0.5H, d, J=9.1Hz)                                         |
| 1-56 | 4.73 (2H, br s), 5.50 (3H, br), 6.16 (1H, s), 6.53 (1H, d, J=9.3 Hz)                                                                                                                                                                                                      |
| 1-57 | 4.42 (2H, br s), 4.70 (2H, br s), 4.72 (2H, s), 6.16 (1H, s), 6.60 (1H, d, J=9.1 Hz)                                                                                                                                                                                      |
| 1-58 | 3.77 (3H, s), 4.64 (2H, br s), 4.87 (2H, s), 5.28 (2H, br s), 6.17 (1H, s), 6.52 (1H, d, J=9.2 Hz)                                                                                                                                                                        |
| 1-59 | 1.29 (3H, t, J=7.1 Hz), 3.55 (3H, q, J=1.0 Hz), 4.23 (2H, q, J=7.1 Hz), 4.64 (2H, s), 4.82 (2H, br s), 6.35 (1H, s), 6.60 (1H, d, J=9.2 Hz)                                                                                                                               |
| 1-60 | 1.27 (3H, t, J=7.1 Hz), 1.659(1.5H, d, J=7.0 Hz), 1.666(1.5H, d, J=7.0 Hz), 3.55 (3H, s), 4.20 (2H, q, J=7.1 Hz), 4.73 (1H, m), 6.346(0.5H, s), 6.355(0.5H, s), 6.61 (1H, d, J=9.3 Hz)                                                                                    |
| 1-61 | 1.41 (3H, t, J=7.0 Hz), 3.52 (3H, q, J=1.0 Hz), 4.04 (2H, q, J=7.0 Hz), 4.10 (2H, br s), 6.32 (1H, s), 6.62 (1H, d, J=9.5 Hz)                                                                                                                                             |
| 1-62 | 1.16 (3H, t, J=7.1 Hz), 1.42 (3H, t, J=7.1 Hz), 2.99 (2H, q J=7.1 Hz), 3.57 (3H, q, J=1.1 Hz), 4.03 (2H, q, J=7.1 Hz), 4.14 (1H, br s), 6.35 (1H, s), 6.63 (1H, d, J=9.4 Hz)                                                                                              |

|      |                                                                                                                                                                    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-63 | 1.35 (6H, d, J=6.2 Hz), 3.55 (3H, q, J=1.2 Hz), 3.95 (2H, br s), 4.50 (1H, q, J= 6.2 Hz), 6.34 (1H, s), 6.66 (1H, d, J=9.4 Hz)                                     |
| 1-64 | 1.06 (3H, t, J=6.3 Hz), 1.37 (6H, d, J=6.2 Hz), 3.57 (3H, q, J=1.2 Hz), 3.83 (2H, br s), 4.52 (1H, q, J= 6.2 Hz), 6.35 (1H, s), 6.70 (1H, d, J=9.3 Hz)             |
| 1-65 | 7.62(1H, d, J=8.5Hz), 8.37(1H, 2d, J=2.6Hz, 8.4Hz), 8.83(1H, d, J=2.6Hz)                                                                                           |
| 1-66 | 3.56(3H, s), 6.37(1H, s), 6.86(1H, d, J=8.4Hz), 7.77(1H, d, J=8.4Hz), 10.75(1H, broad)                                                                             |
| 1-67 | 3.56(3H, s), 6.37(1H, s), 8.55(1H, s)                                                                                                                              |
| 1-68 | 3.56(3H, s), 6.39(1H, s), 7.45(1H, d, J=8.7Hz), 7.64(1H, 2d, J=1.7Hz, 8.7Hz), 8.13(1H, d, J=1.7Hz)                                                                 |
| 1-69 | 4.15(3H, s), 6.14(1H, s), 8.51(1H, s), 12.8(1H, broad)                                                                                                             |
| 1-70 | 6.26(1H, s), 7.62(1H, 2d, J=6.1Hz, 8.3Hz), 8.3(1H, broad)                                                                                                          |
| 1-71 | 3.56(3H, s), 4.8(3H, broad), 6.38(1H, s), 6.59(1H, d, J=8.7Hz), 6.85(1H, d, J=8.7Hz)                                                                               |
| 1-72 | 3.56(3H, s), 3.89(3H, s), 6.37(1H, s), 6.75(1H, d, J=8.7Hz), 6.87(1H, d, J=8.7Hz)                                                                                  |
| 1-73 | 3.55(3H, s), 3.75(2H, s), 6.36(1H, s), 6.73(2H, m), 7.01(1H, 2d, J=2.4Hz, 6.9Hz)                                                                                   |
| 2-1  | 2.04 (3H, s), 3.57 (3H, br q, J=1.1 Hz), 3.86 (3H, s), 6.30 (1H, s), 7.22 (1H, d, J=9.6 Hz)                                                                        |
| 2-2  | 2.29 (3H, s), 2.33 (3H, s), 3.53 (3H, br s), 3.78 (3H, s), 6.3 (1H, s), 7.42 (1H, d, J=8.8 Hz)                                                                     |
| 2-3  | 1.14 (9H, s), 3.56 (3H, s), 3.82 (3H, s), 6.29 (1H, s), 7.19 (1H, d, J=9.0 Hz), 7.61 (1H, br s)                                                                    |
| 2-4  | 3.49 (3H, br q, J=1.0 Hz), 3.75 (3H, s), 5.70-5.79 (2H, m), 6.26 (1H, s), 6.40-6.55 (4H, m), 7.42 (1H, d, J=8.7 Hz)                                                |
| 2-5  | 1.95 (3H, s), 3.55 (3H, br s), 3.84 (3H, s), 5.45 (1H, s), 5.70 (1H, s), 6.27 (1H, s), 7.20 (1H, d, J=9.0 Hz), 7.62 (1H, br s)                                     |
| 2-6  | 1.90 (3H, s), 1.91 (3H, s), 3.49 (3H, br s), 3.79 (3H, s), 5.46 (2H, s), 5.64 (1H, s), 5.66 (1H, s), 6.27 (1H, s), 7.30 (1H, d, J=8.8 Hz)                          |
| 2-7  | 1.86 (3H, s), 2.05 (3H, s), 3.56 (3H, br s), 3.82 (3H, s), 5.66 (1H, br s), 6.27 (1H, s), 7.17 (1H, d, J=9.0 Hz), 7.23 (1H, br s)                                  |
| 2-8  | 1.85 (6H, m), 2.12 (6H, m), 3.47 (3H, br q, J=1.0 Hz), 3.77 (3H, s), 5.91 (1H, m), 5.98 (1H, m), 6.25 (1H, s), 7.34 (1H, d, J=8.7 Hz)                              |
| 2-9  | (CDCl <sub>3</sub> +CD <sub>3</sub> OD) 3.86 (3H, s), 6.16 (1H, s), 7.37 (1H, d, J=8.9 Hz)                                                                         |
| 2-10 | 3.54 (3H, br s), 3.86 (3H, s), 6.31 (1H, s), 7.32 (1H, d, J=9.0 Hz)                                                                                                |
| 2-11 | (CDCl <sub>3</sub> +CD <sub>3</sub> OD) 3.55 (3H, br s), 4.87 (2H, s), 6.35 (1H, s), 7.44 (1H, d, J=8.7 Hz)                                                        |
| 2-12 | (CDCl <sub>3</sub> +CD <sub>3</sub> OD) 3.59 (3H, br s), 3.87 (3H, s), 7.37 (1H, d, J=8.8 Hz)                                                                      |
| 2-13 | 3.56 (3H, br q, J=1.1 Hz), 3.89 (3H, s), 4.08 (2H, s), 6.3 (1H, s), 7.25 (1H, d, J=9 Hz)                                                                           |
| 2-14 | 3.52 (3H, br q, J=1.1 Hz), 3.74 (2H, m), 3.85 (3H, s), 6.39 (1H, s), 7.53 (1H, d, J=9.3 Hz), 9.03 (1H, m)                                                          |
| 2-15 | 3.56 (3H, s), 3.91 (3H, s), 3.95 (3H, s), 6.29 (1H, s), 7.24 (1H, d, J=9.0 Hz), 9.00 (1H, s)                                                                       |
| 2-16 | 1.27 (3H, t, J=7.1 Hz), 1.28 (3H, t, J=7.1 Hz), 3.42 (2H, s), 3.57 (3H, br s), 4.04 (2H, s), 4.10-4.30 (4H, m), 6.40 (1H, s), 7.33 (1H, d, J=9.8 Hz), 8.07 (1H, s) |
| 2-17 | 0.95 (2H, m), 1.10 (2H, m), 1.50 (1H, m), 3.55 (3H, s), 6.37 (1H, s), 7.22 (1H, d, J=9.0Hz), 7.92 (1H, br s), 8.41 (1H, br, s)                                     |
| 2-18 | 0.70-1.20 (8H, m), 1.96 (1H, m), 2.15 (1H, m), 3.54 (3H, br s), 3.75 (3H, s), 6.35 (1H s), 7.38 (1H, d, J=8.6 Hz)                                                  |
| 2-19 | 1.40 (5H, m), 1.70 (5H, m), 2.25 (1H, m), 3.32 (3H, s), 3.82 (3H, s), 6.34 (1H, s), 7.17 (1H, d, J=9.0 Hz), 7.68 (3H, s)                                           |

|      |                                                                                                                                                                                                       |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2-20 | 1.20 (10H, m), 1.70 (10H, m), 2.50 (2H, m), 3.50 (3H, s), 3.68 (3H, s), 6.31 (1H, s), 7.36 (1H, m)                                                                                                    |
| 2-21 | 3.37 (3H, s), 3.44 (3H, s), 3.55 (3H, br s), 4.18 (3H, s), 6.33 (1H, s), 7.43 (1H, d, J=8.8 Hz)                                                                                                       |
|      | 3.2 (3H, s), 3.55 (3H, s), 3.96 (3H, s), 6.35 (1H, s), 6.48 (1H, br s), 7.29 (1H, d, J=8.8 Hz)                                                                                                        |
| 2-22 | 3.52 (3H, br s), 3.64 (3H, s), 6.29 (1H, s), 6.85 (1H, d, J=9.1 Hz), 7.4 (5H, m), 7.68 (1H, s)                                                                                                        |
| 2-23 | 2.39 (3H, s), 3.52 (3H, s), 3.82 (3H, s), 6.23 (1H, s), 7.20 (1H, d, J=9.0 Hz), 7.32 (2H, m), 7.53 (2H, m), 8.02 (1H, s)                                                                              |
| 2-24 | 2.42 (3H, s), 3.53 (3H, s), 3.82 (3H, s), 6.22 (1H, s), 7.20 (1H, d, J=9.0 Hz), 7.26 (2H, d, J=7.8 Hz), 7.67 (2H, d, J=7.8 Hz), 7.91 (1H, s)                                                          |
| 2-25 | 2.32 (3Hx2, s), 3.28 (3H, s), 3.82 (3H, s), 6.02 (1H, s), 7.10 (4H, d, J=7.9 Hz), 7.26 (1H, d, J=9.0 Hz), 7.73 (4H, m)                                                                                |
| 2-26 | 2.40 (3H, s), 3.44 (3H, s), 3.54 (3H, d, J=1.1Hz), 6.29 (1H, s), 6.55 (1H, br s), 7.18 (1H, d, J=8.9 Hz), 7.25 (2H, d, J=8.3 Hz), 7.68 (2H, d, J=8.3 Hz)                                              |
| 2-27 | 1.26 (3H, t, J=7.7 Hz), 2.71 (2H, q, J=7.7 Hz), 3.54 (3H, s), 3.83 (3H, s), 6.23 (1H, s), 7.21 (1H, d, J=9.0 Hz), 7.29 (2H, d, J=8.2 Hz), 7.70 (2H, d, J=8.2 Hz), 7.86 (1H, br s)                     |
| 2-28 | 1.26 (3H, t, J=7.6 Hz), 2.71 (2H, q, J=7.6 Hz), 3.51 (3H, br s), 4.78 (2H, s), 6.25 (1H, s), 7.28 (3H, m), 7.73 (2H, m), 7.84 (1H, br s)                                                              |
| 2-29 | 0.95 (6H, t, J=7.2 Hz), 1.66 (4H, m), 2.64 (4H, m), 3.53 (3H, br s), 3.83 (3H, s), 6.23 (1H, s), 7.21 (1H, d, J=9.3 Hz), 7.27 (4H, m), 7.70 (2H, m), 8.00 (2H, m)                                     |
| 2-30 | 1.35 (9H, s), 3.55 (3H, s), 3.83 (3H, s), 6.23 (1H, s), 7.20 (1H, m), 7.49 (2H, d, J=8.6 Hz), 7.73 (2H, d, J=8.6 Hz), 7.88 (1H, br s)                                                                 |
| 2-31 | 3.54 (3H, s), 3.83 (3H, s), 5.40 (1H, d, J=10.9 Hz), 5.87 (1H, d, J=17.6 Hz), 6.78 (1H, dd, J=17.6, 10.9 Hz), 7.22 (1H, d, J=9.0 Hz), 7.49 (2H, d, J=8.2 Hz), 7.75 (1H, d, J=8.2 Hz), 8.01 (1H, br s) |
| 2-32 | 2.31 (3H, s), 2.32(3H, s), 3.54 (3H, d, J=1.0 Hz), 3.82 (3H, s), 6.23(1H, s), 7.19(1H, d, J=9.1 Hz), 7.22 (1H, d, J=7.8 Hz), 7.50 (1H, dd, J=7.8, 1.7 Hz), 7.56 (1H, br s), 7.86(1H, br s)            |
| 2-33 | 3.62 (3H, s), 3.84 (3H, s), 6.25 (1H, s), 7.25 (1H, d, J=8.9 Hz), 7.75 (2H, d, J=8.3 Hz), 7.89 (2H, d, J=8.3 Hz), 7.92 (1H, br s)                                                                     |
| 2-34 | 3.54 (3H, br s), 3.84 (3H, s), 6.26 (1H, s), 7.30 (1H, d, J=9.3 Hz), 7.72 (4H, m), 7.94 (2H, m), 8.17 (2H, m)                                                                                         |
| 2-36 | 3.56 (3H, d, J=1.1 Hz), 3.85 (3H, s), 4.64 (2H, s), 6.25 (1H, s), 7.24 (1H, d, J=9.0 Hz), 7.52 (2H, d, J=8.3 Hz), 7.79 (2H, d, J=8.3 Hz), 7.91 (1H, br s)                                             |
| 2-37 | 3.53 (3H, s), 3.83 (3H, s), 6.25 (1H, s), 7.20 (1H, d, J=9.0 Hz), 7.45 (3H, m), 7.63 (4H, m), 7.84 (2H, d, J=8.2 Hz), 8.13 (1H, s)                                                                    |
| 2-38 | 3.32 (3H, s), 3.86 (3H, s), 6.08 (1H, s), 7.52 (15H, m), 7.95 (4H, m)                                                                                                                                 |
| 2-39 | 3.56 (3H, br s), 3.89 (3H, s), 6.27 (1H, s), 7.15-7.3 (2H, m), 7.24 (1H, d, J=9.1 Hz), 7.54 (1H, m), 7.92 (1H, m), 8.43 (1H, br d, J=13.8 Hz)                                                         |
| 2-40 | 3.53 (3H, br s), 3.83 (3H, s), 6.23 (1H, s), 7.12 (2H, m), 7.22 (1H, d, J=9.1 Hz), 7.79 (2H, m), 7.97 (1H, br s)                                                                                      |
| 2-41 | 3.57 (3H, br q, J=1.1 Hz), 3.9 (3H, s), 6.29 (1H, s), 7.2 (1H, m), 7.26 (1H, d, J=9.1 Hz), 7.36 (1H, m), 7.63 (1H, m), 8.29 (1H, d, J=11.1 Hz)                                                        |
| 2-42 | 3.56 (3H, br s), 3.89 (3H, s), 6.27 (1H, s), 6.97 (2H, m), 7.25 (1H, d, J=9 Hz), 7.97 (1H, m), 8.37 (1H, br d, J=13.3 Hz)                                                                             |

|      |                                                                                                                                                                                |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2-43 | 3.44 (3H, br s), 3.96 (3H, s), 6.24 (1H, s), 6.64 (2H, m), 6.86 (2H, m), 7.35 (1H, d, J=8.8 Hz), 7.78 (2H, m)                                                                  |
| 2-44 | 3.88 (3H, s), 6.26 (1H, s), 6.98 (2H, m), 7.23 (1H, d, J=9 Hz), 7.96 (1H, m), 8.46 (1H, m)                                                                                     |
| 2-45 | 3.43 (3H, br q, J=1.3 Hz), 5.1 (2H, s), 6.36 (1H, s), 6.9-7.15 (4H, m), 7.77 (1H, d, J=9.1 Hz), 7.7-7.9 (2H, m)                                                                |
| 2-46 | 3.52 (3H, s), 3.91 (3H, s), 6.75-7.05 (2H, m), 6.95 (1H, s), 7.39 (1H, d, J=8.9 Hz), 8.03 (1H, m), 8.56 (1H, m)                                                                |
| 2-47 | 3.55 (3H, br s), 3.91 (3H, s), 6.32 (1H, s), 6.93 (2H, m), 7.25 (1H, d, J=8.9 Hz), 7.39 (1H, m), 8.03 (1H, br s)                                                               |
| 2-48 | 3.55 (3H, br q, J=1.0 Hz), 3.83 (3H, s), 6.26 (1H, s), 7.24 (1H, d, J=9.1 Hz), 7.25 (1H, m), 7.54 (1H, m), 7.65 (1H, m), 8.05 (1H, br s)                                       |
| 2-49 | 3.39 (3H, br s), 3.77 (3H, s), 6.1 (1H, s), 7.10-7.40 (2H, m), 7.34 (1H, d, J=8.8 Hz), 7.60-8.00 (4H, m)                                                                       |
| 2-50 | 3.54 (3H, br s), 3.81 (3H, s), 6.26 (1H, s), 7.01 (1H, m), 7.25 (1H, d, J=9.3 Hz), 7.31 (2H, m), 8.28 (1H, s)                                                                  |
| 2-51 | 3.43 (3H, br s), 3.79 (3H, s), 6.15 (1H, s), 6.95-7.75 (7H, m)                                                                                                                 |
| 2-53 | 3.56 (3H, d, J=1.2 Hz), 3.91 (3H, s), 6.32 (1H, s), 7.26 (1H, d, J=9.0 Hz), 7.35 (1H, ddd, J=8.6, 6.1, 2.5 Hz), 7.42 (2H, m), 7.52 (1H, dd, J=7.4, 1.2 Hz), 7.83 (1H, br s)    |
| 2-54 | 3.53 (3H, s), 3.82 (3H, s), 6.26 (1H, s), 7.22 (1H, d, J=9.0 Hz), 7.39 (1H, dd, J=7.8, 7.9 Hz), 7.53 (1H, m), 7.62 (1H, m), 7.77 (1H, m), 8.06 (1H, br s)                      |
| 2-55 | 3.36 (3H, s), 3.81 (3H, s), 6.11 (1H, s), 7.30 (3H, m), 7.43 (2H, m), 7.76 (4H, m)                                                                                             |
| 2-56 | 3.53 (3H, s), 3.83 (3H, s), 6.23 (1H, s), 7.23 (1H, d, J=9.0 Hz), 7.44 (2H, d, J=8.7 Hz), 7.72 (2H, d, J=8.7 Hz), 7.92 (1H, s)                                                 |
| 2-57 | 3.32 (3H, s), 3.78 (3H, s), 6.06 (1H, s), 7.34 (5H, m), 7.80 (4H, m)                                                                                                           |
| 2-58 | 3.56 (3H, d, J=1.0 Hz), 3.89 (3H, s), 6.32 (1H, s), 7.27 (1H, d, J=9.0 Hz), 7.31 (1H, dd, J=8.1, 1.9 Hz), 7.47 (2H, m), 7.92 (1H, br s)                                        |
| 2-59 | 3.55 (3H, d, J=1.1 Hz), 3.84 (3H, s), 6.25 (1H, s), 7.25 (1H, d, J=9.1 Hz), 7.54 (1H, d, J=8.3 Hz), 7.60 (1H, dd, J=8.3, 2.0 Hz), 7.88 (1H, br s), 7.89 (1H, d, J=2.0 Hz)      |
| 2-60 | 3.54 (3H, br s), 3.83 (3H, s), 6.26 (1H, s), 7.24 (1H, d, J=9.0 Hz), 7.34 (2H, m), 7.65-7.75 (2H, m), 7.92-8.25 (4H, m)                                                        |
| 2-61 | 3.53 (3H, s), 3.82 (3H, s), 6.23 (1H, s), 7.22 (1H, d, J=9.0 Hz), 7.61 (4H, m), 7.95 (1H, s)                                                                                   |
| 2-62 | 3.33 (3H, s), 3.80 (3H, s), 6.06 (1H, s), 7.31 (1H, d, J=9.0 Hz), 7.51 (4H, m), 7.73 (4H, m)                                                                                   |
| 2-63 | 3.54 (3H, d, J=1.1 Hz), 3.83 (3H, s), 3.87 (3H, s), 6.22 (1H, s), 6.95 (2H, d, J=8.8 Hz), 7.21 (1H, d, J=9.1 Hz), 7.75 (2H, d, J=8.8 Hz), 7.78 (1H, br. s)                     |
| 2-64 | 1.44 (3H, t, J=7.0 Hz), 3.52 (3H, s), 3.82 (3H, s), 4.06 (2H, q, J=7.0 Hz), 6.22 (1H, s), 6.90 (2H, d, J=9.0 Hz), 7.20 (1H, d, J=9.0 Hz), 7.73 (2H, d, J=9.0 Hz), 7.91 (1H, s) |
| 2-66 | 3.55 (3H, d, J=1.0 Hz), 3.84 (3H, s), 6.25 (1H, s), 7.25 (1H, d, J=9.1 Hz), 7.51 (2H, d, J=8.6 Hz), 7.85 (2H, d, J=8.6 Hz), 7.88 (1H, br s)                                    |
| 2-67 | 3.85 (3H, s), 6.22 (1H, s), 7.25 (1H, d, J=9.9 Hz), 7.76 (2H, d, J=8.4 Hz), 7.85 (2H, d, J=8.4 Hz), 7.96 (1H, br s)                                                            |
| 2-69 | 3.40 (3H, br s), 3.79 (3H, s), 6.12 (1H, s), 7.36 (1H, d, J=8.7 Hz), 8.06 (4H, m), 8.25 (4H, m)                                                                                |
| 2-70 | 3.50 (3H, br s), 3.87 (3H, s), 6.32 (1H, s), 7.51 (1H, d, J=8.8 Hz), 9.07 (2H, m), 9.12 (1H, m), 9.91 (1H, br s)                                                               |
| 2-71 | 3.33 (3H, s), 3.77 (3H, s), 7.20 (4H, m), 7.31 (1H, d, J=8.8 Hz), 7.92 (4H, m)                                                                                                 |

|      |                                                                                                                                                                                                                                                                 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2-72 | 3.54 (3H, s), 3.83 (3H, s), 6.24 (1H, s), 7.25 (3H, m), 7.82 (2H, m), 8.02 (1H, s)                                                                                                                                                                              |
| 2-73 | 3.54 (3H, br s), 3.83 (3H, s), 6.05 (2H, s), 6.23 (1H, s), 6.85 (1H, d, J=7.8 Hz), 7.21 (1H, d, J=8.8 Hz), 7.25-7.34 (2H, m), 7.80 (1H, br s)                                                                                                                   |
| 2-74 | 3.52 (3H, s), 3.84 (3H, s), 6.25 (1H, s), 7.24 (1H, d, J=9.0 Hz), 7.50 (4H, m), 7.90 (3H, m), 8.20 (1H, br s)                                                                                                                                                   |
| 2-75 | 3.64 (3H, s), 3.85 (3H, s), 6.24 (1H, s), 7.24 (1H, d, J=9.0 Hz), 7.80 (7H, m), 8.32 (1H, s)                                                                                                                                                                    |
| 2-76 | 3.87 (3H, s), 6.1 (1H, s), 7.31 (1H, d, J=9.0 Hz), 7.60 (2H, m), 7.80-8.05 (5H, m), 8.38 (1H, s)                                                                                                                                                                |
| 2-77 | 3.83 (3H, s), 4.69 (2H, s), 6.21 (1H, s), 7.35 (1H, d, J=8.9 Hz), 7.50-7.60 (3H, m), 7.80-7.85 (4H, m), 8.07 (1H, s)                                                                                                                                            |
| 2-78 | 3.56 (3H, s), 3.86 (3H, s), 6.28 (1H, s), 6.49 (1H, d, J=15.6 Hz), 7.21 (1H, d, J=9.0 Hz), 7.39 (4H, m), 7.50 (2H, m), 7.63 (1H, d, J=15.6 Hz)                                                                                                                  |
| 2-79 | 3.57 (3H, s), 3.86 (3H, s), 6.28 (1H, s), 6.54 (1H, d, J=15.7 Hz), 6.84-6.94 (3H, m), 7.22 (1H, d, J=9.0 Hz), 7.36 (1H, br s), 7.48 (1H, q, J=7.7 Hz), 7.67 (1H, d, J=15.7 Hz)                                                                                  |
| 2-80 | 2.41 (3H, s), 3.57 (3H, s), 3.86 (3H, s), 6.29 (1H, s), 6.40 (1H, d, J=15.4 Hz), 7.19-7.32 (4H, m), 7.33 (1H, br s), 7.53 (1H, d, J=7.2 Hz), 7.93 (1H, d, J=15.4 Hz)                                                                                            |
| 2-81 | 2.12 (3H, d, J=1.3 Hz), 3.57 (3H, d, J=0.9 Hz), 3.88 (3H, s), 6.29 (1H, s), 7.20 (1H, d, J=9.1 Hz), 7.36 (5H, m), 7.66 (1H, br s)                                                                                                                               |
| 2-82 | 3.57 (3H, br s), 3.85 (3H, s), 6.29 (1H, s), 6.48 (1H, d, J=15.6 Hz), 7.16 (1H, d, J=9.0 Hz), 7.28 (2H, m), 7.40 (1H, dd, J=7.9, 1.6 Hz), 7.53 (1H, dd, J=7.4, 1.6 Hz), 7.67 (1H, br s), 7.98 (1H, d, J=15.6 Hz)                                                |
| 2-83 | 3.46 (3H, br s), 3.83 (3H, s), 6.24 (1H, s), 6.80 (1H, d, J=15.5 Hz), 6.91 (1H, d, J=15.5 Hz), 7.30 (4H, m), 7.39 (2H, m), 7.45 (1H, d, J=8.8 Hz), 7.56 (1H, dd, J=7.6, 1.8 Hz), 7.59 (1H, dd, J=7.6, 1.8 Hz), 8.18 (1H, d, J=15.5 Hz), 8.20 (1H, d, J=15.5 Hz) |
| 2-84 | 3.56 (3H, br s), 3.84 (3H, s), 6.29 (1H, s), 6.45 (1H, d, J=15.6 Hz), 7.18 (1H, d, J=9.0 Hz), 7.54 (2H, d, J=8.6 Hz), 7.40 (2H, d, J=8.6 Hz), 7.55 (1H, d, J=15.6 Hz), 7.59 (1H, br s)                                                                          |
| 2-85 | 3.56 (3H, br s), 3.84 (3H, s), 3.85 (3H, s), 6.28 (1H, s), 6.35 (1H, d, J=15.5 Hz), 6.89 (2H, d, J=8.7 Hz), 7.19 (1H, d, J=9.0 Hz), 7.35 (1H, br s), 7.45 (2H, d, J=8.7 Hz), 7.58 (1H, d, J=15.5 Hz)                                                            |
| 2-86 | 2.60 (2H, q, J=7.7 Hz), 2.91 (2H, t, J=7.7 Hz), 3.56 (3H, s), 3.69 (3H, s), 6.26 (1H, s), 7.1-7.3 (6H, m)                                                                                                                                                       |
| 2-87 | 2.66 (2H, m), 2.92 (2H, m), 3.55 (3H, s), 4.52 (2H, s), 6.28 (1H, s), 7.1-7.4 (6H, m)                                                                                                                                                                           |
| 2-88 | 1.90 (2H, tt, J=7.5, 7.4 Hz), 2.29 (2H, d, J=7.4 Hz), 2.61 (2H, t, J=7.5 Hz), 3.52 (3H, d, J=0.7 Hz), 3.84 (3H, s), 6.28 (1H, s), 7.13-7.32 (7H, m)                                                                                                             |
| 2-89 | 3.54 (3H, s), 3.82 (3H, s), 4.02 (2H, s), 4.55 (2H, s), 6.15 (1H, s), 7.16 (1H, d, J=9.0 Hz), 7.4 (5H, m), 8.55 (1H, s)                                                                                                                                         |
| 2-90 | 3.56 (3H, d, J=1.1 Hz), 3.87 (3H, s), 6.26 (1H, s), 6.55 (1H, dd, J=3.6, 1.8 Hz), 7.17 (1H, dd, J=3.6, 0.5 Hz), 7.22 (1H, d, J=9.1 Hz), 7.54 (1H, dd, J=1.8, 0.5 Hz), 8.18 (1H, br s)                                                                           |
| 2-91 | 2.25 (3H, s), 3.46 (3H, s), 3.81 (3H, s), 6.25 (1H, s), 6.39 (1H, s), 7.18 (1H, d, J=9.0 Hz), 7.39 (1H, s), 8.30 (1H, s)                                                                                                                                        |

|       |                                                                                                                                                                                                                                        |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2-92  | 3.56 (3H, d, J=0.8 Hz), 3.85 (3H, s), 6.28 (1H, s), 6.39 (1H, d, J=15.2 Hz), 6.48 (1H, dd, J=3.4, 1.8 Hz), 6.60 (1H, d, J=3.4 Hz), 7.19 (1H, d, J=9.0 Hz), 7.34 (1H, br s), 7.40 (1H, d, J=15.2 Hz), 7.48 (1H, d, J=1.8 Hz)            |
| 2-93  | 3.45 (3H, s), 3.66 (3H, s), 3.80 (2H, s), 6.16 (1H, s), 7.00 (4H, m), 7.55 (1H, br s)                                                                                                                                                  |
| 2-94  | 2.46 (3H, s), 3.56 (3H, s), 3.88 (3H, s), 6.26 (1H, s), 6.94 (1H, m), 7.20 (1H, d, J=9.0 Hz), 7.36 (1H, m), 7.65 (1H, s)                                                                                                               |
| 2-95  | 2.45 (3H, s), 3.47 (3H, s), 3.78 (3H, s), 6.17 (1H, s), 6.70 (1H, m), 7.13 (1H, d, J=9.0 Hz), 7.32 (1H, m), 7.63 (1H, s)                                                                                                               |
| 2-96  | 2.41 (6H, s), 3.26 (3H, s), 3.78 (3H, s), 5.97 (1H, s), 6.59 (2H, m), 7.24 (1H, d, J=9.0 Hz), 7.39 (2H, m)                                                                                                                             |
| 2-97  | 3.31 (3H, s), 3.84 (3H, s), 6.03 (1H, s), 7.05 (2H, m), 7.40 (2H, m), 7.70 (3H, m)                                                                                                                                                     |
| 2-98  | 3.54 (3H, s), 3.84 (3H, s), 6.25 (1H, s), 7.25 (1H, d, J=9.7 Hz), 7.41 (1H, dd, J=7.7, 4.8 Hz), 8.01 (1H, d, J=7.7 Hz), 8.32 (1H, br s), 8.78 (1H, br s), 9.01 (1H, br s)                                                              |
| 2-100 | 3.42 (3H, q, J=1.0 Hz), 3.79 (3H, s), 6.12 (1H, s), 7.35 (1H, d, J=8.6 Hz), 7.56 (1H, d, J=8.0 Hz), 7.39 (1H, d, J=8.0 Hz), 8.15 (1H, dd, J=8.0, 2.2 Hz), 8.16 (1H, dd, J=8.0, 2.2 Hz), 8.77 (1H, d, J=2.2 Hz), 8.91 (1H, d, J=2.2 Hz) |
| 2-101 | 3.59 (3H, br q, J=1.2 Hz), 6.36 (1H, s), 6.99 (1H, dd, J=4.9, 8.3 Hz), 7.27 (1H, d, J=8.7 Hz), 8.44 (1H, dd, J=1.7, 4.8 Hz), 8.6 (1H, dd, J=1.7, 8.3 Hz), 9.79 (1H, br s)                                                              |
| 2-102 | (CDCl <sub>3</sub> +CD <sub>3</sub> OD) 3.54 (3H, br s), 6.33 (1H, s), 6.82 (1H, t, J=5.0 Hz), 7.2 (1H, d, J=8.8 Hz), 8.38 (2H, d, J=5.0 Hz)                                                                                           |
| 2-103 | 3.55 (3H, q, J=1.0 Hz), 3.89 (3H, s), 6.26 (1H, s), 7.22 (1H, d, J=9.1 Hz), 7.45 (3H, m), 7.83 (3H, m), 7.99 (1H, br s)                                                                                                                |
| 2-104 | 3.58 (3H, s), 3.92 (3H, s), 6.26 (1H, s), 7.20 (1H, d, J=9.0 Hz), 7.65 (1H, m), 7.85 (2H, m), 8.17 (2H, m), 8.33 (1H, m), 10.05 (1H, s)                                                                                                |
| 2-105 | 3.60 (3H, br s), 3.92 (3H, s), 6.27 (1H, s), 7.27 (1H, d, J=9.0 Hz), 7.93 (2H, m), 8.20 (2H, m), 9.60 (1H, s), 10.12 (1H, s)                                                                                                           |
| 2-106 | 3.56 (3H, q, J=0.7 Hz), 3.86 (3H, s), 6.27 (1H, s), 6.95 (2H, m), 7.41 (1H, d, J=8.7 Hz), 7.95 (1H, m)                                                                                                                                 |
| 2-113 | 3.56 (3H, q, J=1.0 Hz), 3.86 (3H, s), 6.26 (1H, d, J=15.2 Hz), 6.28 (1H, s), 7.05 (1H, dd, J=5.0, 3.6 Hz), 7.20 (1H, d, J=9.0 Hz), 7.25 (1H, d, J=3.6 Hz), 7.27 (1H, br s), 7.38 (1H, d, J=5.0 Hz), 7.75 (1H, d, J=15.2 Hz)            |
| 2-114 | 3.56 (3H, d, J=0.9 Hz), 6.40 (1H, s), 7.28 (1H, d, J=9.21 Hz), 7.50-7.65 (2H, m), 7.70-7.80 (1H, m), 7.80-8.0 (3H, m), 8.35 (1H, m), 8.63 (1H, br s)                                                                                   |
| 2-115 | 3.54 (3H, d, J=0.9 Hz), 6.24 (1H, s), 6.51 (1H, t, J=73.1 Hz), 7.32 (1H, d, J=8.8 Hz), 7.50-7.65 (2H, m), 7.70-7.82 (1H, m), 7.85-7.95 (3H, m), 8.07 (1H, br s), 8.29 (1H, br s)                                                       |
| 2-116 | 2.09 (3H, s), 2.14 (3H, s), 3.50 (3H, d, J=1.0 Hz), 3.79 (3H, s), 4.8-5.0 (4H, m), 6.29 (1H, s), 7.47 (1H, d, J=8.9 Hz)                                                                                                                |
| 2-117 | 2.18 (3H, s), 3.56 (3H, d, J=1.1 Hz), 3.86 (3H, s), 4.58 (2H, s), 6.30 (1H, s), 7.24 (1H, d, J=9.0 Hz)                                                                                                                                 |
| 2-118 | 1.40 (3H, t, J=7.1 Hz), 3.56 (3H, d, J=1.0 Hz), 3.91 (3H, s), 4.39 (2H, q, J=7.1 Hz), 6.29 (1H, s), 7.25 (1H, d, J=9.1 Hz), 9.01 (1H, br s)                                                                                            |
| 2-119 | 3.54 (3H, s), 3.72 (3H, s), 4.56 (2H, s), 6.24 (1H, s), 6.85-7.40 (6H, m), 8.50 (1H, br s)                                                                                                                                             |
| 2-120 | 3.45 (3H, s), 3.85 (3H, s), 4.8-5.15 (4H, m), 6.27 (1H, s), 6.8-7.0 (6H, m), 7.20-7.30 (4H, m), 7.48 (1H, d, J=8.7 Hz)                                                                                                                 |
| 2-121 | 3.59 (3H, s), 3.93 (3H, s), 6.35 (1H, s), 7.26 (1H, d, J=9.0 Hz), 7.40-7.70 (3H, m), 8.20 (2H, m), 8.97 (1H, br s)                                                                                                                     |

|       |                                                                                                                                                                                                                 |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2-122 | 2.33 (3H, s), 3.49 (3H, d, J=0.9 Hz), 6.24 (1H, s), 7.34 (1H, d, J=9.1 Hz), 7.50-7.62 (2H, m), 7.75-7.95 (5H, m), 8.31 (1H, br s)                                                                               |
| 2-123 | 2.28 (3H, s), 3.54 (3H, s), 6.29 (1H, s), 6.59 (1H, d, J=15.5 Hz), 7.20-7.50 (6H, m), 7.63 (1H, d, J=15.5 Hz)                                                                                                   |
| 2-124 | 2.29(6H, s), 3.56(3H, s), 3.93(3H, s), 6.32(1H, s), 7.05(2H, m), 7.20(2H, m), 7.47(1H, br s)                                                                                                                    |
| 2-125 | 3.57 (3H, s), 3.87 (3H, s), 6.29 (1H, s), 6.62 (1H, d, J=15.7Hz), 7.1-7.5 (5H, m), 7.72 (1H, d, J=15.7Hz)                                                                                                       |
| 2-126 | 3.52 (3H, s), 3.80 (3H, s), 6.24 (1H, s), 6.32 (1H, d, J=15.6Hz), 7.11 (1H, br d, J=8.8Hz), 7.4-7.6 (4H, m), 7.95 (2H, m)                                                                                       |
| 2-127 | 3.56 (3H, s), 3.86 (3H, s), 3.89 (3H, s), 6.28 (1H, s), 6.64 (1H, d, J=15.7Hz), 6.95 (2H, m), 7.19 (1H, d, J=9.0Hz), 7.35 (2H, m), 7.46 (1H, dd, J=7.6, 1.4Hz), 7.88 (1H, d, J=15.7Hz)                          |
| 2-128 | 3.59 (3H, s), 3.88 (3H, s), 6.31 (1H, s), 6.65 (1H, d, J=15.9Hz), 7.20 (2H, m), 7.35 (2H, d, J=8.1Hz), 7.37 (1H, br s), 7.72 (1H, d, J=15.9Hz)                                                                  |
| 2-129 | 2.28 (3H, s), 2.53 (2H, t, J=7.3Hz), 2.88 (2H, t, J=7.3Hz), 3.56 (3H, s), 3.73 (3H, s), 6.26 (1H, s), 7.11 (5H, m), 7.35 (1H, br s)                                                                             |
| 2-130 | 2.33 (3H, s), 2.36 (3H, s), 3.57 (3H, s), 3.86 (3H, s), 6.29 (1H, s), 6.40 (1H, d, J=15.4Hz), 7.09 (2H, br s), 7.20 (1H, d, J=9.0Hz), 7.33 (1H, br s), 7.35 (1H, s), 7.90 (1H, d, J=15.4Hz)                     |
| 2-131 | 3.54 (3H, d, J=1.0Hz), 6.37 (1H, s), 7.21 (1H, d, J=8.6Hz), 7.33 (1H, dd, J=8.6, 2.1Hz), 7.60 (2H, m), 7.77 (1H, dd, J=8.6, 1.8Hz), 7.88 (3H, m), 7.98 (1H, br s), 8.01 (1H, d, J=2.1Hz), 8.26 (1H, d, J=1.3Hz) |
| 2-132 | 2.21 (3H, s), 2.27 (3H, s), 2.48 (2H, t, J=7.8Hz), 2.81 (2H, t, J=7.8Hz), 3.57 (3H, s), 3.73 (3H, s), 6.27 (1H, s), 6.92 (2H, m), 7.02 (1H, d, J=7.6Hz), 7.12 (1H, br d, J=8.6Hz), 7.51 (1H, br s)              |
| 2-133 | 3.55 (3H, d, J=1.0Hz), 3.76 (3H, s), 4.52 (2H, s), 6.26 (1H, s), 6.88 (2H, dd, J=9.1, 2.4Hz), 7.02 (2H, dd, J=9.1, 8.1Hz), 7.20 (1H, d, J=9.0Hz), 8.48 (1H, br s)                                               |
| 2-134 | 3.57 (3H, s), 3.86 (3H, s), 6.28 (1H, s), 6.50 (1H, d, J=15.5Hz), 7.23 (1H, d, J=9.0Hz), 7.35 (4H, m), 7.50 (1H, br s), 7.58 (1H, d, J=15.5Hz)                                                                  |
| 2-135 | 3.55 (3H, d, J=1.0Hz), 3.76 (3H, s), 4.52 (2H, s), 6.26 (1H, s), 6.87 (2H, d, J=9.0Hz), 7.20 (1H, d, J=9.0Hz), 7.29 (2H, d, J=9.0Hz), 8.45 (1H, br s)                                                           |
| 2-136 | 3.58 (3H, d, J=1.0Hz), 3.93 (3H, s), 6.33 (1H, s), 7.26 (1H, d, J=9.1Hz), 7.54 (3H, m), 7.95 (2H, d, J=8.3Hz), 8.14 (1H, s), 8.28 (1H, s)                                                                       |
| 2-137 | 3.55 (3H, s), 6.37 (1H, s), 6.40 (1H, d, J=15.5Hz), 7.16 (1H, d, J=8.6Hz), 7.19 (1H, br s), 7.29 (1H, dd, J=8.5, 1.9Hz), 7.38 (3H, m), 7.48 (2H, m), 7.70 (1H, d, J=15.5Hz), 7.99 (1H, br s)                    |
| 2-138 | 3.19 (3H, s), 5.98 (1H, s), 7.17 (1H, dd, J=8.0, 1.2Hz), 7.2-7.6 (7H, m), 7.7-7.9 (6H, m), 7.93 (2H, dd, J=8.6, 1.7Hz), 8.53(2H, br s)                                                                          |
| 2-140 | 3.56 (3H, d, J=1.0Hz), 6.40 (1H, s), 7.42 (1H, d, J=8.3Hz), 7.60 (3H, m), 7.78 (1H, dd, J=8.6, 1.8Hz), 7.92 (3H, m), 8.01 (1H, br s), 8.29 (1H, br s), 8.38 (1H, d, J=1.6Hz)                                    |
| 2-141 | 3.59 (3H, s), 6.41 (1H, s), 6.42 (1H, d, J=15.5Hz), 7.16 (1H, br s), 7.38 (4H, m), 7.52 (2H, m), 7.59 (1H, dd, J=8.2, 1.7Hz), 7.75 (1H, d, J=15.5Hz), 8.40 (1H, br s)                                           |
| 2-142 | 3.47 (3H, s), 6.29 (1H, s), 7.1-7.9 (11H, m), 8.21 (1H, s)                                                                                                                                                      |
| 2-143 | 3.55 (3H, d, J=1.0Hz), 3.87 (3H, s), 6.38 (1H, s), 6.89 (1H, dd, J=8.9, 2.9Hz), 7.18 (1H, d, J=8.9Hz), 7.58 (3H, m), 7.79 (1H, dd, J=8.6, 1.7Hz), 7.90 (4H, m), 8.29 (1H, br s)                                 |

|       |                                                                                                                                                                                                                                              |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2-144 | 3.54 (3H, d, J=1.0Hz), 3.87 (3H, s), 6.25 (1H, s), 7.60 (3H, m), 7.8-8.0 (5H, m), 8.30 (1H, br s)                                                                                                                                            |
| 2-145 | 3.57 (3H, d, J=1.0Hz), 6.38 (1H, s), 7.12 (1H, dd, J=9.3, 2.2Hz), 7.59 (2H, m), 7.78 (1H, dd, J=8.6, 1.8Hz), 7.8-8.0 (5H, m), 8.28 (1H, br s)                                                                                                |
| 2-146 | 1.27 (1.5H, t, J=7.1Hz), 1.27 (1.5H, t, J=7.1Hz), 1.62 (3H, d, J=6.7Hz), 3.53(3H, s), 4.23 (2H, m), 4.79 (1H, m), 6.35 (1H, s), 6.85 (1H, m), 7.15 (1H, d, J=9.0Hz), 7.5-7.6 (3H, m), 7.77(1H, dd, J=8.6, 1.6Hz), 7.89 (4H, m), 8.26 (1H, s) |
| 2-147 | 0.84 (2H, m), 1.03 (2H, m), 1.50 (1H, m), 3.58 (3H, d, J=1.0Hz), 6.36 (1H, s), 7.05 (1H, d, J=7.8Hz), 7.35 (1H, br s), 7.88 (1H, br s)                                                                                                       |
| 2-148 | 3.57 (3H, d, J=1.0Hz), 6.39 (1H, s), 6.61 (1H, t, J=72.7Hz), 6.88 (1H, dd, J=10.2, 2.6Hz), 7.59 (2H, m), 7.76 (2H, m), 7.90 (3H, m), 8.05 (1h, br s), 8.27 (1H, s)                                                                           |
| 2-149 | 3.56 (3H, d, J=1.0Hz), 6.38 (1H, s), 7.43 (1H, d, J=8.4Hz), 7.6 (3H, m), 7.78 (1H, dd, J=8.6, 1.8Hz), 7.90 (3H, m), 8.09 (1H, br s), 8.28 (2H, s)                                                                                            |
| 2-150 | 3.41 (3H, d, J=1.1Hz), 3.71 (1H, s), 3.80 (2H, s), 6.11 (1H, s), 7.1-7.4 (6H, m), 8.88 (1H, s)                                                                                                                                               |
| 2-151 | 3.50 (3H, d, J=1.0Hz), 3.58 (3H, s), 3.62 (2H, s), 6.15 (1H, s), 7.14 (1H, d, J=9.1Hz), 7.2-7.4 (6H, m)                                                                                                                                      |
| 2-152 | 3.58 (3H, s), 3.90 (3H, s), 4.14 (3H, s), 6.25 (1H, s), 7.21 (1H, d, J= 9.0 Hz), 7.26 (1H, s), 7.44 (1H, m), 7.55 (1H, m), 7.76 (1H, m), 7.85 (1H, m), 8.58 (1H, s), 10.10 (1H, s)                                                           |
| 2-153 | 3.57 (3H, s), 3.91 (3H, s), 4.10 (3H, s), 6.22 (1H, s), 7.22 (1H, d, J= 9.0 Hz), 7.23 (1H, s), 7.64 (2H, m), 7.91 (1H, m), 7.99 (1H, d, J= 8.7 Hz), 8.22 (1H, m), 10.20 (1H, s)                                                              |
| 2-154 | 3.56 (3H, s), 3.87 (3H, s), 4.55 (2H, s), 6.27 (1H, s), 6.82 (1H, d, J= 8.8 Hz), 7.21 (2H, m), 7.44 (1H, s), 8.72 (1H, s)                                                                                                                    |
| 2-155 | 2.52 (3H, s), 3.56 (3H, s), 3.90 (3H, s), 6.31 (1H, s), 7.20 (1H, d, J= 9.0 Hz), 7.55 (2H, m), 7.81 (4H, m), 10.15 (1H, s)                                                                                                                   |
| 2-156 | 2.55 (3H, s), 3.52 (3H, s), 3.83 (3H, s), 6.22 (1H, s), 7.20 (1H, d, J= 9.0 Hz), 7.41 (1H, m), 7.66 (1H, s), 7.79 (3H, m), 8.15 (1H, s), 8.26 (1H, s)                                                                                        |
| 2-157 | 3.58 (3H, s), 3.94 (3H, s), 6.35 (1H, s), 7.25 (1H, d, J= 9.0 Hz), 7.61 (2H, m), 7.78 (2H, s), 7.92 (2H, m), 8.04 (1H, s)                                                                                                                    |
| 2-158 | 3.55 (3H, s), 3.84 (3H, s), 6.24 (1H, s), 7.22 (1H, d, J= 9.0 Hz), 7.42 (1H, m), 7.90 (3H, m), 8.14 (1H, s), 8.32 (2H, m)                                                                                                                    |
| 2-159 | 3.56 (3H, s), 3.96 (3H, s), 6.35 (1H, s), 7.13 (1H, d, J= 9.0 Hz), 7.70 (6H, m), 8.15 (1H, s)                                                                                                                                                |
| 2-160 | 3.55 (3H, s), 3.86 (3H, s), 6.24 (1H, s), 7.22 (1H, d, J= 9.0 Hz), 7.74 (4H, m), 7.92 (4H, m), 8.10 (4H, m)                                                                                                                                  |
| 2-161 | 3.55 (3H, s), 3.86 (3H, s), 6.25 (1H, s), 7.23 (2H, m), 7.57 (1H, m), 7.72 (1H, m), 7.91 (2H, m), 8.18 (1H, s)                                                                                                                               |
| 2-162 | 3.55 (3H, s), 3.85 (3H, s), 6.24 (1H, s), 7.23 (1H, d, J= 9.0 Hz), 7.49 (1H, m), 7.69 (1H, m), 7.90 (3H, m), 8.13 (1H,sm), 8.34 (2H, m)                                                                                                      |
| 2-163 | 3.56 (3H, s), 3.86 (3H, s), 6.25 (1H, s), 7.25 (1H, d, J= 9.0 Hz), 7.66 (1H, m), 8.05 (3H, m), 8.19 (1H, m), 8.32 (1H, d, J= 8.7Hz), 8.39 (1H, s)                                                                                            |
| 2-164 | 3.35 (3H, s), 3.89 (3H, s), 4.10 (2H, s), 6.37 (1H, s), 7.25 (1H, d, J= 9.0 Hz), 8.33 (1H, s)                                                                                                                                                |
| 2-165 | 3.10 (2H, s), 3.57 (3H, s), 3.90 (2H, s), 4.11 (3H, s), 6.30 (1H, s), 7.20 (1H, d, J= 9.0 Hz), 7.27 (5H, s), 8.65 (1H, s)                                                                                                                    |
| 2-166 | 3.57 (3H, s), 3.90 (5H, s), 4.10 (2H, s), 6.37 (1H, s), 7.25 (1H, d, J= 9.0 Hz), 8.15 (1H, s)                                                                                                                                                |

|       |                                                                                                                                                                                                                                                           |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2-167 | 3.50 (3H, s), 3.55 (3H, s), 3.69 (2H, s), 6.16 (1H, s), 7.18 (1H, d, J= 9.0 Hz), 7.28 (5H, m), 8.33 (1H, s)                                                                                                                                               |
| 2-168 | 2.14 (3H, s), 3.20 (2H, s), 3.56 (3H, s), 3.88 (3H, s), 6.29 (1H, s), 7.20 (1H, d, J= 9.0 Hz), 8.67 (1H, s)                                                                                                                                               |
| 2-169 | 3.36 (3H, s), 3.52 (3H, s), 3.79 (2H, m), 5.96 (1H, s), 7.17 (1H, d, J= 9.0 Hz), 7.49 (3H, m), 7.75 (3H, m), 8.75 (1H, m)                                                                                                                                 |
| 2-170 | 1.28 (3H, t, J= 7.1 Hz), 3.32 (2H, s), 3.36 (2H, s), 3.55 (3H, s), 3.88 (3H, s), 4.18 (2H, q, J= 7.1 Hz), 6.30 (1H, s), 7.21 (1H, d, J= 9.0 Hz), 8.33 (1H, s)                                                                                             |
| 2-171 | 1.26 (3H, t, J= 7.1 Hz), 2.62 (2H, m), 2.85 (2H, m), 3.26 (2H, s), 3.56 (3H, s), 3.88 (3H, s), 4.15 (2H, q, J= 7.1 Hz), 6.35 (1H, s), 7.21 (1H, d, J= 9.0 Hz), 8.66 (1H, s)                                                                               |
| 2-172 | 1.27 (3H, t, J= 7.4 Hz), 2.60 (2H, m), 3.27 (2H, s), 3.56 (3H, s), 3.88 (3H, s), 6.28 (1H, s), 7.20 (1H, d, J= 9.0 Hz), 8.73 (1H, s)                                                                                                                      |
| 2-173 | 1.28 (6H, m), 2.97 (1H, m), 3.29 (2H, s), 3.57 (3H, s), 3.87 (3H, s), 6.28 (1H, s), 7.20 (1H, d, J= 9.0 Hz), 8.79 (1H, s)                                                                                                                                 |
| 2-174 | 0.99 (3H, m), 1.60 (2H, m), 2.53 (2H, m), 3.25 (2H, s), 3.57 (3H, s), 3.90 (3H, s), 6.28 (1H, s), 7.20 (1H, d, J= 9.0 Hz), 8.80 (1H, s)                                                                                                                   |
| 2-175 | 3.53 (3H, q, J= 3.9 Hz), 3.79 (3H, s), 6.30 (1H, s), 6.90 (1H, d, J= 15.7 Hz), 7.36 (3H, m), 7.53 (4H, m), 9.84 (1H, s)                                                                                                                                   |
| 2-176 | 3.41 (3H, s), 3.79 (3H, s), 6.23 (1H, s), 7.58 (1H, d, J= 8.5 Hz), 6.84 (1H, d, J= 15.6 Hz), 6.90 (1H, d, J= 15.6 Hz), 7.35 (6H, m), 7.50 (4H, m), 7.79 (1H, d, J= 15.6 Hz), 7.82 (1H, d, J= 15.6 Hz)                                                     |
| 2-177 | 3.50 (3H, s), 3.79 (3H, s), 6.23 (1H, s), 7.30 (1H, d, J= 8.7 Hz), 7.56 (2H, m), 7.85 (4H, m), 8.31 (1H, s), 8.40 (1H, s)                                                                                                                                 |
| 2-178 | 3.21 (3H, s), 3.88 (3H, s), 6.04 (1H, s), 7.59 (5H, m), 7.87 (8H, m), 8.50 (1H, s), 8.57 (1H, s)                                                                                                                                                          |
| 2-179 | 3.57 (3H, s), 4.03 (3H, s), 6.29 (1H, s), 6.52 (1H, d, J= 15.6 Hz), 7.28 (1H, d, J= 8.4 Hz), 7.38 (3H, m), 7.47 (2H, m), 7.62 (1H, d, J= 15.6 Hz), 7.80 (1H, s)                                                                                           |
| 2-180 | 3.50 (3H, s), 4.00 (3H, s), 6.22 (1H, s), 7.27 (1H, d, J= 8.5 Hz), 7.59 (2H, m), 7.87 (4H, m), 8.32 (1H, s), 8.38 (1H, s)                                                                                                                                 |
| 2-181 | 3.52 (3H, s), 3.80 (3H, s), 6.23 (1H, s), 7.17 (1H, d, J= 9.1 Hz), 7.58 (2H, m), 7.87 (4H, m), 8.26 (1H, d, J= 55.6 Hz), 8.31 (1H, s)                                                                                                                     |
| 2-182 | 3.53 (3H, q, J= 0.8 Hz), 3.80 (3H, s), 5.41 (1H, d, J= 10.9 Hz), 5.87 (1H, d, J= 17.6 Hz), 6.23 (1H, s), 6.75 (1H, dd, J= 17.6, 10.9 Hz), 7.37 (1H, d, J= 8.8 Hz), 7.47 (2H, d, J= 8.3 Hz), 7.73 (2H, d, J= 8.3 Hz), 8.00 (1H, s)                         |
| 2-183 | 3.28 (3H, s), 3.80 (3H, s), 5.34 (1H, d, J= 11.0 Hz), 5.35 (1H, d, J= 11.0 Hz), 5.80 (1H, d, J= 17.6 Hz), 5.81 (1H, d, J= 17.6 Hz), 6.03 (1H, s), 6.67 (1H, dd, J= 17.6, 11.0 Hz), 7.35 (2H, d, J= 8.0), 7.53 (4H, d, J= 8.4 Hz), 8.11 (4H, d, J= 8.4 Hz) |
| 2-184 | 3.82 (3H, s), 4.75 (2H, s), 6.07 (1H, s), 7.16 (1H, d, J= 9.1 Hz), 7.57 (2H, m), 7.76 (1H, m), 7.87 (3H, s), 8.25 (1H, m), 8.27 (1H, s)                                                                                                                   |
| 2-185 | 3.39 (2H, s), 3.78 (3H, s), 6.26 (1H, s), 7.3 - 7.6 (7H, m), 9.89 (1H, s)                                                                                                                                                                                 |
| 2-186 | 3.80 (3H, s), 4.58 (2H, s), 6.14 (1H, s), 6.81 (1H, d, J= 15.5 Hz), 6.93 (1H, d, J= 15.5 Hz), 7.3 - 7.6 (10H, m), 7.77 (1H, d, J= 15.5 Hz), 7.82 (1H, d, J= 15.5 Hz)                                                                                      |
| 2-187 | 3.78 (3H, s), 3.78 (2H, s), 4.58 (2H, s), 4.70 (2H, s), 6.07 (1H, s), 7.14 (1H, d, J= 9.1 Hz), 7.35 (5H, m), 8.58 (1H, s)                                                                                                                                 |
| 2-188 | 4.67 (2H, s), 4.76 (2H, d, J= 5.3 Hz), 6.10 (1H, s), 7.26 (1H, d, J= 8.8 Hz), 7.57 (2H, m), 7.77 (1H, m), 7.87 (3H, s), 8.19 (1H, m), 8.30 (1H, s)                                                                                                        |
| 2-189 | 1.28 (3H, t, J= 7.1 Hz), 3.55 (3H, s), 4.26 (2H, q, J= 7.1 Hz), 4.82 (2H, s), 6.22 (1H, s), 7.21 (1H, d, J= 8.8 Hz), 7.57 (2H, m), 7.94 (4H, m), 8.52 (1H, s), 10.46 (1H, s)                                                                              |

|       |                                                                                                                                                                                                                                                                                                  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2-190 | 1.30 (3H, t, J=7.1 Hz), 3.58 (3H, s), 4.31 (2H, q, J=7.1 Hz), 4.78 (2H, s), 6.27 (1H, s), 6.67 (1H, d, J= 15.7 Hz), 7.15 (1H, d, J=8.9 Hz), 7.38 (3H, m), 7.95 (2H, m), 7.62 (1H, d, J= 15.7 Hz)                                                                                                 |
| 2-191 | 1.27 (3H, t, J=7.1 Hz), 1.29 (3H, t, J=7.1 Hz), 1.69 (3H, d, J=7.0 Hz), 1.70 (3H, d, J=7.0 Hz), 3.56 (3H, s), 3.63 (3H, s), 4.25 (4H, m), 4.95 (2H, m), 6.12 (1H, s), 6.41 (1H, s), 7.19 (2H, d, J=8.9 Hz), 7.56 (4H, m), 7.95 (8H, m), 8.54 (1H, s), 8.69 (1H, s), 10.41 (1H, s), 10.65 (1H, s) |
| 2-192 | 4.95 (2H, s), 6.23 (1H, s), 7.25 (1H, d, J=10.0 Hz), 7.59 (2H, m), 7.87 (4H, s), 8.27 (1H, m), 9.28 (1H, s)                                                                                                                                                                                      |
| 2-193 | 3.56 (3H, q, J=0.5 Hz), 6.40 (1H, s), 7.16 (1H, dd, J=8.7, 2.6 Hz), 7.34 (1H, d, J=8.7 Hz), 7.5 - 7.7 (3H, m), 7.7 - 8.0 (6H, m), 8.10 (1H, dd, J=8.6, 1.6 Hz), 8.18 (1H, br d), 8.27 (1H, br s)                                                                                                 |
| 2-194 | 3.53 (3H, q, J=0.8 Hz), 6.36 (1H, s), 7.25 (1H, d, J=9.1 Hz), 7.60 (2H, m), 7.76 (1H, dd, J=8.7, 1.8 Hz), 7.90 (3H, m), 8.21 (1H, s), 8.33 (1H, d, J=1.5 Hz)                                                                                                                                     |
| 2-195 | 2.45 (1H, d, J=2.4 Hz), 3.55 (3H, q, J=0.8 Hz), 4.77 (2H, dd, J=6.1, 2.4 Hz), 6.23 (1H, s), 7.23 (1H, d, J= 9.0 Hz), 7.59 (2H, m), 7.90 (4H, m), 8.32 (1H, d, J= 0.7 Hz), 8.36 (1H, s)                                                                                                           |
| 2-196 | 1.28 (3H, t, J=7.1 Hz), 3.51 (3H, q, J=0.5 Hz), 4.05 (2H, q, J=7.1 Hz), 6.25 (1H, s), 7.57 (2H, m), 7.88 (4H, m), 8.31 (1H, s), 8.38 (1H, s)                                                                                                                                                     |
| 2-197 | 1.20 (3H, t, J=6.2 Hz), 1.29 (3H, t, J=6.2 Hz), 3.54 (3H, q, J=0.6 Hz), 4.43 (1H, q, J=6.2 Hz), 6.23 (1H, s), 7.59 (2H, m), 7.80 (1H, m), 7.90 (3H, s), 8.20 (1H, s), 8.30 (1H, s)                                                                                                               |
| 2-198 | 0.89 (3H, t), 1.25 (4H, m), 1.53 (2H, m), 2.23 (2H, m), 3.56 (3H, q, J= 0.9 Hz), 3.83 (3H, s), 6.30 (1H, s), 7.20 (1H, d, J= 9.0 Hz), 7.58 (1H, br s)                                                                                                                                            |
| 2-199 | 3.54 (3H, q, J=0.7 Hz), 6.29 (1H, s), 6.73 (1H, dd, J=8.3, 4.5 Hz), 7.43 (1H, d, J= 9.9 Hz), 7.57 (2H, m), 7.86 (5H, m), 8.21 (1H, dd, J=8.3, 1.7 Hz), 8.37 (1H, dd, J= 4.5, 1.7 Hz), 8.45 (1H, br s)                                                                                            |
| 2-200 | 3.52 (3H, q, J=1.0 Hz), 4.82 (2H, d, J= 1.5 Hz), 6.26 (1H, s), 7.31 (1H, d, J= 8.8 Hz), 7.59 (2H, m), 7.93 (5H, m), 8.35 (1H, d, J=1.1 Hz)                                                                                                                                                       |
| 2-201 | 2.43 (3H, s), 3.54 (3H, q, J=0.9 Hz), 6.36 (1H, s), 7.18 (2H, m), 7.59 (2H, m), 7.8 (6H, m), 8.28 (1H, s)                                                                                                                                                                                        |
| 2-202 | 3.51 (3H, s), 3.87 (3H, s), 6.24 (1H, s), 7.12 (1H, d, J=8.8Hz), 7.42 (1H, d, J=8.8Hz), 7.59 (2H, m), 7.81 (1H, m), 7.91 (3H, m), 8.06 (1H, s), 8.31 (1H, s)                                                                                                                                     |
| 2-203 | 3.53 (3H, s), 6.34 (1H, s), 7.17 (1H, m), 7.26 (1H, m), 7.57 (2H, m), 7.73 (1H, 2d, J=1.6Hz, 8.6Hz), 7.88 (4H, m), 8.18 (1H, s), 8.23 (1H, s)                                                                                                                                                    |
| 2-204 | 0.78 (2H, m), 0.97 (2H, m), 1.4 (1H, m), 3.55 (3H, s), 6.34 (1H, s), 7.12 (1H, m), 7.24 (1H, m), 7.43 (1H, m), 7.85 (1H, broad)                                                                                                                                                                  |
| 2-205 | 3.36 (3H, s), 6.22 (1H, s), 7.24 (1H, d, J=8.4Hz), 7.41 (2H, m), 7.65 (4H, m), 7.86 (1H, 2d, J=2.0Hz, 8.4Hz), 8.0-8.2 (4H, m), 8.55 (1H, s)                                                                                                                                                      |
| 2-206 | 0.76-0.93 (4H, m), 1.50 (1H, m), 3.55 (3H, s), 3.85 (3H, s), 6.31 (1H, s), 7.19 (1H, d, J=8.9Hz), 7.6 (1H, broad)                                                                                                                                                                                |
| 2-207 | 3.44 (3H, s), 3.82 (3H, s), 6.24 (1H, s), 7.32 (1H, d, J=8.3 Hz), 7.48 (2H, m), 7.6-7.8 (5H, m), 8.10 (1H, s), 8.23 (1H, s), 8.78 (1H, s)                                                                                                                                                        |
| 3-1   | 2.74 (3H, d, J=4.7 Hz), 2.76 (3H, d, J=4.7 Hz), 3.53 (3H, br q, J=1.3 Hz), 3.83 (3H, s), 6.3 (1H, s), 6.66 (1H, m), 7.35 (1H, m), 7.39 (1H, d, J=8.8 Hz)                                                                                                                                         |
| 3-2   | 0.76 (3H, t, J=7.4 Hz), 1.28 (2H, m), 2.96 (2H, m), 3.57 (3H, s), 3.84 (3H, s), 5.22 (1H, m), 6.33 (1H, s), 6.70 (1H, s), 7.14 (1H, d, J=9.0 Hz)                                                                                                                                                 |

|      |                                                                                                                                                                                          |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3-3  | 1.22 (12H, m), 3.54 (3H, br s), 3.83 (3H, s), 3.86 (2H, m), 6.25 (1H, s), 6.45 (1H, s), 7.04 (1H, d, J=9.1 Hz)                                                                           |
| 3-4  | 3.52 (3H, s), 3.76 (3H, s), 6.30 (1H, s), 6.90-7.25 (6H, m), 7.37 (1H, s), 7.61 (1, s)                                                                                                   |
| 3-6  | 3.46 (3H, s), 3.77 (3H, s), 4.19 (2H, m), 5.75 (1H, m), 6.19 (1H, s), 6.90-7.30 (7H, m)                                                                                                  |
| 3-7  | (rotameric mixture) 1.16 (3H, d, J=6.8 Hz), 1.23 (3H, d, J=6.8 Hz), 3.47 (3H, s), 3.53 (3H, s), 3.77 (6H, s), 4.72 (2H, m), 5.72 (2H, m), 6.11 (1H, s), 6.33 (1H, s), 6.95-7.35 (14H, m) |
| 3-8  | 2.99 (3H, s), 3.55 (3H, s), 3.63 (3H, s), 4.38 (1H, d, J=16.2 Hz), 4.58 (1H, d, J=16.2 Hz), 6.27 (1H, s), 6.58 (1H, s), 7.12 (1H, d, J=9.1 Hz), 7.19 (2H, m), 7.33 (3H, m)               |
| 3-9  | 2.31 (3H, s), 3.47 (3H, s), 3.79 (3H, s), 4.17 (2H, m), 5.58 (1H, m), 6.18 (1H, s), 6.74 (1H, s), 6.90-7.15 (5H, m)                                                                      |
| 3-10 | (CDCl <sub>3</sub> +CD <sub>3</sub> OD) 3.52 (3H, br s), 3.82 (3H, s), 4.29 (2H, m), 6.23 (1H, s), 6.50 (1H, m), 6.70-6.85 (2H, m), 7.14 (1H, d, J=9.0 Hz), 7.22 (1H, m)                 |
| 3-11 | 2.57 (2H, m), 3.21 (2H, m), 3.54 (3H, s), 3.74 (3H, s), 5.51 (1H, m), 6.27 (1H, s), 7.00-7.30 (7H, m)                                                                                    |
| 3-12 | (CDCl <sub>3</sub> +CD <sub>3</sub> OD) 1.72 (2H, m), 2.58 (2H, m), 3.11 (2H, m), 3.53 (3H, s), 3.85 (3H, s), 5.78 (1H, m), 6.28 (1H, s), 7.05-7.35 (7H, m)                              |
| 3-13 | 3.55 (3H, s), 3.81 (3H, s), 6.35 (1H, s), 7.08 (1H, m), 7.1 (1H, d, J=9.0 Hz), 7.25-7.45 (3H, m), 7.55-7.80 (5H, m)                                                                      |
| 3-23 | 3.59 (3H, s), 3.64 (3H, s), 4.62 (1H, d, J=14.8 Hz), 4.98 (1H, d, J=14.8 Hz), 6.33 (1H, s), 6.47 (1H, s), 6.95-7.50 (11H, m)                                                             |
| 3-24 | 3.40 (3H, s), 3.78 (3H, s), 5.88 (1H, m), 5.98 (1H, m), 6.12 (1H, s), 7.00-7.30 (12H, m)                                                                                                 |
| 3-26 | 3.56 (3H, s), 3.89 (3H, s), 4.86 (2H, s), 6.50 (1H, s), 6.33 (1H, s), 7.25 (1H, d, J=9.0 Hz)                                                                                             |
| 4-1  | 3.54 (3H, s), 3.64 (3H, s), 3.84 (3H, s), 6.24 (1H, s), 7.25 (1H, s)                                                                                                                     |
| 4-2  | 2.87 (3H, s), 2.96 (3H, s), 3.53 (3H, s), 3.63 (3H, s), 6.3 (1H, s), 6.85 (1H, d, J=8.9 Hz)                                                                                              |
| 4-3  | 3.51 (3H, d, J=1.0 Hz), 3.95 (3H, s), 6.35 (1H, s), 6.81 (1H, br s), 7.03 (2H, m), 7.22 (1H, d, J=9.0 Hz), 7.23 (1H, m), 7.34 (2H, m)                                                    |
| 4-4  | 2.22 (6H, s), 3.50 (3H, d, J=0.5 Hz), 3.94 (3H, s), 6.35 (1H, s), 6.72 (1H, dd, J=8.2, 2.5 Hz), 6.77 (1H, d, J=2.5 Hz), 6.84 (1H, br s), 7.07 (1H, d, J=8.2 Hz), 7.20 (1H, d, J=9.0 Hz)  |
| 4-5  | 3.49 (3H, d, J=1.0 Hz), 3.83 (3H, s), 5.05 (1H, d, J=12.3 Hz), 5.12 (1H, d, J=12.3 Hz), 6.20 (1H, s), 6.68 (br s), 7.15 (1H, d, J=9.0 Hz), 7.26-7.37 (5H, m)                             |
| 4-7  | 3.50 (3H, br s), 3.82 (3H, s), 5.01 (1H, d, J=12.2 Hz), 5.07 (1H, d, J=12.2 Hz), 6.20 (1H, s), 6.69 (1H, br s), 7.02 (2H, m), 7.17 (1H, d, J=9.0 Hz), 7.28 (2H, m)                       |
| 4-10 | 3.48 (3H, br s), 3.99 (3H, s), 6.37 (1H, s), 6.98 (1H, br s), 7.14 (1H, dd, J=8.9, 2.3 Hz), 7.24 (1H, d, J=9.0 Hz), 7.43-7.51 (3H, m), 7.37 (7.84(3H, m)                                 |
| 4-11 | 1.20-1.85 (10H, m), 3.56 (3H, br s), 3.86 (3H, s), 4.57 (1H, m), 6.32 (1H, s), 6.53 (1H, s), 7.17 (1H, d, J=9.0 Hz)                                                                      |
| 4-13 | 3.54 (3H, d, J=1.1 Hz), 3.78 (3H, s), 6.33 (1H, s), 7.15 (1H, br s), 7.17(1H, d, J=9.0 Hz), 7.43-7.52 (5H, m)                                                                            |
| 4-23 | 3.50 (3H, s), 4.75 (2H, m), 5.13 (2H, m), 6.24 (1H, s), 6.54 (1H, s), 7.25 (1H, d, J=8.7 Hz), 7.35 (5H, m)                                                                               |
| 4-24 | 3.57 (3H, s), 3.86 (3H, s), 5.37 (2H, m), 6.30 (1H, s), 6.70 (1H, s), 7.16 (1H, d, J=9.0 Hz), 7.20-7.40 (3H, m)                                                                          |

|      |                                                                                                                                                                                                   |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4-25 | 2.06 (6H, s), 2.25 (3H, s), 3.52 (3H, s), 3.94 (3H, s), 6.32 (1H, s), 6.83 (2H, s), 7.09 (1H, br s), 7.20 (1H, d, J=9.0 Hz)                                                                       |
| 4-26 | 2.25 (6H, s), 3.51 (3H, s), 3.83 (3H, s), 5.01 (2H, m), 6.21 (1H, s), 6.65 (1H, br s), 7.00-7.20 (4H, m)                                                                                          |
| 4-27 | 1.30 (9H, s), 3.50 (3H, s), 3.96 (3H, s), 6.32 (1H, s), 6.84 (1H, m), 7.10-7.40 (5H, m)                                                                                                           |
| 4-28 | 3.43 (3H, s), 3.82 (3H, s), 5.25 (2H, m), 6.12 (1H, s), 6.73 (1H, br s), 7.16 (1H, d, J=9.0 Hz), 7.30-7.55 (3H, m), 7.70-7.85 (4H, m)                                                             |
| 4-29 | 3.57 (3H, s), 3.85 (3H, s), 5.17 (1H, d, J=11.9 Hz), 5.27 (1H, d, J=11.9 Hz), 6.28 (1H, s), 6.64 (1H, br s), 6.92 (2H, m), 7.17 (1H, d, J=9.0 Hz), 7.34 (1H, m)                                   |
| 4-30 | 3.49 (3H, s), 3.84 (3H, s), 4.99 (1H, d, J=12.6 Hz), 5.06 (1H, d, J=12.6 Hz), 6.23 (1H, s), 6.64 (1H, br s), 7.00-7.25 (4H, m)                                                                    |
| 4-31 | 1.23 (3H, t, J=7.6 Hz), 2.64 (2H, q, J=7.6 Hz), 3.50 (3H, d, J=0.9 Hz), 3.83 (3H, s), 5.02 (1H, d, J=12.1 Hz), 5.08 (1H, d, J=12.1 Hz), 6.22 (1H, s), 6.67 (1H, br s), 7.10-7.30 (5H, m)          |
| 4-32 | 3.52 (3H, s), 3.85 (3H, s), 5.03 (2H, m), 6.24 (1H, s), 6.64 (1H, br s), 7.10-7.21 (2H, m), 7.38-7.44 (2H, m)                                                                                     |
| 4-33 | 3.52 (3H, d, J=0.8 Hz), 3.86 (3H, s), 5.22 (1H, d, J=13.2 Hz), 5.31 (1H, d, J=13.2 Hz), 6.22 (1H, s), 6.71 (1H, br s), 7.18 (1H, d, J=9.0 Hz), 7.40-7.60 (3H, m), 7.68 (1H, m)                    |
| 4-34 | 3.54 (3H, s), 3.88 (3H, s), 5.49 (2H, s), 6.28 (1H, s), 7.24 (1H, d, J=9.0 Hz), 7.45-7.70 (3H, m), 8.09 (1H, m)                                                                                   |
| 4-35 | 3.53 (3H, s), 3.83 (3H, s), 3.84 (3H, s), 5.12 (1H, d, J=12.5 Hz), 5.18 (1H, d, J=12.5 Hz), 6.24 (1H, s), 6.72 (1H, br s), 6.80-6.95 (2H, m), 7.15 (1H, d, J=9.0 Hz), 7.20-7.40 (2H, m)           |
| 4-36 | 3.51 (3H, d, J=1.0 Hz), 3.87 (3H, s), 5.17 (1H, d, J=13.5 Hz), 5.24 (1H, d, J=13.5 Hz), 6.24 (1H, s), 6.89 (1H, br s), 7.18 (1H, d, J=9.0 Hz), 7.20-7.29 (2H, m), 7.68 (1H, m), 8.58 (1H, m)      |
| 4-37 | 2.31 (6H, s), 3.52 (3H, s), 3.84 (3H, s), 5.01 (2H, m), 6.23 (1H, s), 6.65 (1H, br s), 6.92 (2H, br s), 6.96 (1H, br s), 7.16 (1H, d, J=9.0 Hz)                                                   |
| 4-38 | 2.25 (3H, s), 2.31 (3H, s), 3.53 (3H, d, J=0.9 Hz), 3.84 (3H, s), 5.04 (1H, d, J=12.2 Hz), 5.09 (1H, d, J=12.2 Hz), 6.25 (1H, s), 6.65 (1H, br s), 7.08 (3H, m), 7.16 (1H, d, J=9.0 Hz)           |
| 4-39 | 3.53 (3H, br s), 3.86 (3H, s), 5.14 (2H, m), 6.27 (1H, s), 6.70 (1H, br s), 6.90-7.10 (3H, m), 7.19 (1H, d, J=9.0 Hz)                                                                             |
| 4-40 | 3.51 (3H, d, J=0.9 Hz), 3.81 (3H, s), 3.82 (3H, s), 4.98 (1H, d, J=12.0 Hz), 5.05 (1H, d, J=12.0 Hz), 6.22 (1H, s), 6.63 (1H, br s), 6.87 (2H, m), 7.16 (1H, d, J=9.0 Hz), 7.25 (2H, m)           |
| 4-41 | 3.53 (3H, d, J=0.9 Hz), 3.83 (3H, s), 4.95 (1H, d, J=12.1 Hz), 5.01 (1H, d, J=12.1 Hz), 5.96 (2H, s), 6.25 (1H, s), 6.63 (1H, br s), 6.78 (3H, m), 7.17 (1H, d, J=9.0 Hz)                         |
| 4-42 | 1.24 (6H, d, J=6.9 Hz), 2.91 (1H, m), 3.50 (3H, d, J=0.9 Hz), 3.82 (3H, s), 5.02 (1H, d, J=12.1 Hz), 5.08 (1H, d, J=12.1 Hz), 6.23 (1H, s), 6.70 (1H, br s), 7.15 (1H, d, J=9.0 Hz), 7.22 (4H, m) |
| 4-43 | 3.48 (3H, d, J=1.0 Hz), 3.85 (3H, s), 5.10 (1H, d, J=13.0 Hz), 5.18 (1H, d, J=13.0 Hz), 6.18 (1H, s), 6.72 (1H, br s), 7.18 (1H, d, J=9.0 Hz), 7.41 (2H, m), 7.60 (2H, m)                         |
| 4-44 | 3.50 (3H, d, J=1.0 Hz), 3.85 (3H, s), 5.05 (1H, d, J=12.8 Hz), 5.12 (1H, d, J=12.8 Hz), 6.22 (1H, s), 6.68 (1H, br s), 6.95-7.10 (3H, m), 7.18 (1H, d, J=9.0 Hz), 7.30 (1H, m)                    |
| 4-45 | 3.49 (3H, d, J=0.9 Hz), 3.82 (3H, s), 5.05 (1H, d, J=12.6 Hz), 5.11 (1H, d, J=12.6 Hz), 6.21 (1H, s), 6.79 (1H, br s), 7.10-7.20 (3H, m), 7.31-7.36 (2H, m)                                       |

|      |                                                                                                                                                                                                          |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4-46 | 0.89 (4H, br s), 3.54 (3H, d, J=1.0 Hz), 3.75 (3H, s), 4.15 (2H, m), 6.28 (1H, s), 6.56 (1H, br s), 7.15 (1H, d, J=9.0 Hz), 7.26 (5H, m)                                                                 |
| 4-47 | 1.50 (3H, d, J=6.6 Hz), 3.48 (3H, s), 3.84 (3H, s), 5.69 (1H, q, J=6.6 Hz), 5.97 (1H, s), 6.73 (1H, br s), 7.14 (1H, d, J=9.0 Hz), 7.20-7.40 (5H, m)                                                     |
| 4-48 | 3.57 (3H, d, J=0.9 Hz), 3.86 (3H, s), 5.19 (1H, d, J=12.3 Hz), 5.25 (1H, d, J=12.3 Hz), 6.31 (1H, s), 6.61 (1H, br s), 7.20 (1H, d, J=9.0 Hz)                                                            |
| 4-49 | 3.52 (3H, d, J=0.9 Hz), 5.22 (2H, s), 6.33 (1H, s), 6.53 (1H, br s), 7.00-7.45 (7H, m)                                                                                                                   |
| 4-50 | 3.54 (3H, s), 6.36 (1H, s), 6.84 (1H, br s), 7.05-7.45 (8H, m)                                                                                                                                           |
| 4-51 | 2.20 (3H, s), 3.45 (3H, d, J=0.8 Hz), 5.10 (2H, m), 6.22 (1H, s), 6.90-7.10 (2H, m), 7.15-7.27 (3H, m)                                                                                                   |
| 4-52 | 2.42 (3H, s), 3.52 (3H, s), 6.37 (1H, s), 7.00-7.40 (6H, m)                                                                                                                                              |
| 4-53 | 2.21(6H, s), 3.50 (3H, br d J=0.5Hz), 3.94 (3H, s), 6.35(1H, s), 6.73 (2H, m), 6.84 (1H, br s), 7.07(1H, d, J=8.1Hz), 7.20 (1H, d, J=9.0Hz)                                                              |
| 4-54 | 3.53 (3H, br d, J=1.1Hz), 3.85 (3H, s), 5.16 (1H, d, J=12.9Hz), 5.25 (1H, d, J=12.9Hz), 6.24(1H, s), 6.71 (1H, br s), 7.18(1H, d, J=9.0Hz), 7.2-7.4 (4H, m)                                              |
| 4-55 | 2.11 (6H, s), 3.52 (3H, s), 3.95 (3H, s), 6.33(1H, s), 7.03(3H, br s), 7.08(1H, br s), 7.22(1H, d, J=9.0Hz)                                                                                              |
| 4-56 | 3.51(3H, br d, J=1.1Hz), 3.83(3H, s), 5.07(1H, d, J=12.3Hz), 5.14(1H, d, J=12.3Hz), 6.23(1H, s), 6.68(1H, br s), 7.1-7.3 (4H, m)                                                                         |
| 4-57 | 2.88(2H, t, J=6.5Hz), 3.55(3H, s), 3.77(3H, s), 4.25(2H, t, J=6.5Hz), 6.29(1H, s), 6.52(1H, br s), 7.1-7.4(6H, m)                                                                                        |
| 4-58 | 3.52(3H, br d, J=1.0Hz), 3.83(3H, s), 3.84(3H, s), 5.12(1H, d, J=12.5Hz), 5.17(1H, d, J=12.5Hz), 6.24(1H, s), 6.71(1H, br s), 6.90(2H, m), 7.15(1H, d, J=9.0Hz), 7.2-7.3(2H, m)                          |
| 4-59 | 3.50 (3H, s), 3.74 (6H, s), 6.32 (1H, s), 6.56 (2H, d, J=8.5Hz), 7.11 (1H, t, J=8.5Hz), 7.14 (1H, br s), 7.18 (1H, d, J=9.0Hz)                                                                           |
| 4-60 | 2.34 (3H, s), 3.50 (3H, br d, J=1.1Hz), 3.83 (3H, s), 5.00 (1H, d, J=12.1Hz), 5.07 (1H, d, J=12.1Hz), 6.20 (1H, s), 6.64 (1H, br s), 7.1-7.2 (5H, m)                                                     |
| 4-61 | 3.50 (3H, br d, J=1.0Hz), 3.83 (3H, s), 5.01 (1H, d, J=12.5Hz), 5.07 (1H, d, J=12.5Hz), 6.20 (1H, s), 6.66 (1H, br s), 7.17 (1H, d, J=9.0Hz), 7.2-7.3 (4H, m)                                            |
| 4-62 | 3.53 (3H, br d, J=1.0Hz), 3.85 (3H, s), 5.12 (1H, d, J=13.0Hz), 5.20 (1H, d, J=13.0Hz), 6.25 (1H, s), 6.67 (1H, br s), 7.19 (1H, d, J=9.0Hz), 7.2-7.3 (2H, m), 7.41 (1H, d, J=1.9Hz)                     |
| 4-63 | 3.51 (3H, br d, J=1.0Hz), 3.83 (3H, s), 3.88 (3H, s), 3.89 (3H, s), 4.99 (1H, d, J=12.0Hz), 5.04 (1H, d, J=12.0Hz), 6.20 (1H, s), 6.59 (1H, br s), 6.8-6.9 (3H, m), 7.16 (1H, d, J=9.0Hz)                |
| 4-64 | 3.51 (3H, br d, J=0.9Hz), 3.86 (3H, s), 5.15 (1H, d, J=13.5Hz), 5.21 (1H, d, J=13.5Hz), 6.21 (1H, s), 6.68 (1H, br s), 7.21 (1H, d, J=9.0Hz), 7.46 (2H, d, J=8.7Hz), 8.21 (2H, d, J=8.7Hz)               |
| 4-65 | 3.50 (3H, br d, J=1.0Hz), 3.81 (3H, s), 3.85 (3H, s), 5.02 (1H, d, J=12.5Hz), 5.10 (1H, 12.5Hz), 6.21 (1H, s), 6.67 (1H, br s), 6.8-6.9 (3H, m), 7.17 (1H, d, J=9.0Hz), 7.25(1H, t, J=7.7Hz)             |
| 4-66 | 3.53 (3H, br d, J=0.9Hz), 3.82 (3H, s), 4.11 (2H, s), 6.29 (1H, s), 7.04 (1H, br s), 7.20 (1H, d, J=9.0Hz), 7.25 (5H, m)                                                                                 |
| 4-67 | 3.52 (3H, br d, J=1.0Hz), 3.86 (3H, s), 5.17 (1H, d, J=13.2Hz), 5.21 (1H, d, J=13.2Hz), 6.24 (1H, s), 6.65 (1H, br s), 7.20 (1H, d, J=9.0Hz), 7.53 (1H, t, J=8.0Hz), 7.63 (1H, d, J=8.0Hz), 8.18 (2H, m) |

|      |                                                                                                                                                                                                    |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4-68 | 2.35 (3H, s), 3.50 (3H, br d, J=1.0Hz), 3.83 (3H, s), 5.02 (1H, d, J=12.2Hz), 5.10 (1H, d, J=12.2Hz), 6.22 (1H, s), 6.65 (1H, br s), 7.1-7.3 (5H, m)                                               |
| 4-69 | 2.27 (3H, s), 2.30 (6H, s), 3.54 (3H, br d, J=1.1Hz), 3.83(3H, s), 5.10 (1H, d, J=11.8Hz), 5.16 (1H, d, J=11.8Hz), 6.25 (1H, s), 6.63 (1H, br s), 6.87 (2H, s), 7.13 (1H, d, J=9.0Hz)              |
| 4-70 | 3.55 (3H, br d, J=1.1Hz), 3.83 (3H, s), 4.99 (1H, d, J=13.1Hz), 5.08 (1H, d, J=13.1Hz), 6.27 (1H, s), 6.35 (2H, m), 6.63 (1H, br s), 7.17 (1H, d, J=9.0Hz), 7.41 (1H, m)                           |
| 5-1  | 2.05 (1H, br s), 4.05 (3H, s), 7.66 (1H, d, J=8.8 Hz)                                                                                                                                              |
| 5-2  | 4.36 (2H, br s), 7.61 (1H, d, J=8.7 Hz)                                                                                                                                                            |
| 5-3  | 2.30 (2H, dt, J=27.2, 5.6 Hz), 3.85 (3H, s), 4.22 (2H, t, J=6.8 Hz), 4.42 (2H, br s), 4.60 (2H, dt, J=46.9, 5.6 Hz), 6.65 (1H, d, J=9.5 Hz)                                                        |
| 5-4  | 2.24 (2H, dt, J=26.7, 5.7 Hz), 4.19 (2H, t, J=6.9 Hz), 4.61 (2H, dt, J=47.0, 5.7 Hz), 7.86 (1H, d, J=9.0 Hz)                                                                                       |
| 5-5  | 2.30 (2H, dt, J=26.4, 5.7 Hz), 4.17 (2H, t, J=6.8 Hz), 4.55 (2H, dt, J=47.0, 5.7 Hz), 4.88 (2H, br s), 6.55 (1H, d, J=9.6 Hz), 8.07 (1H, br)                                                       |
| 5-6  | 4.06 (3H, s), 7.87 (1H, s)                                                                                                                                                                         |
| 5-7  | 2.13 (2H, m), 3.06 (3H, s), 3.93 (2H, t, J=4.8 Hz), 4.60 (2H, br d, J=47.0 Hz), 7.53 (1H, s)                                                                                                       |
| 5-8  | 2.30 (2H, dt, J=26.4, 5.6 Hz), 4.24(2H, t, J=6.7 Hz), 4.58(2H, dt, J=46.8, 5.6 Hz), 7.87 (1H, s), 9.62 (1H, s)                                                                                     |
| 5-9  | 2.06 (1H, s), 2.30 (2H, dtt, J=27.7, 6.8, 5.4 Hz), 4.24(2H, t, J=6.8 Hz), 4.60(2H, dt, J=46.9, 5.4 Hz), 5.90 (2H, s), 6.77 (1H, s)                                                                 |
| 5-15 | 2.30 (2H, dtt, J=26.0, 6.1, 5.5 Hz), 2.62 (1H, d, J=2.4 Hz), 4.21(2H, t, J=6.8 Hz), 4.48 (2H, s), 4.60(2H, dt, J=46.9, 5.5 Hz), 4.73 (2H, d, J=2.4 Hz), 6.92 (1H, s)                               |
| 5-16 | 1.35 (6H, d, J=6.2 Hz), 2.29 (2H, dtt, J=27.7, 5.9, 5.5 Hz), 4.21(2H, t, J=6.8 Hz), 4.29 (2H, br s), 4.53 (1H, q, J=6.2 Hz), 4.59 (2H, dt, J=46.9, 5.5 Hz), 6.92 (1H, s)                           |
| 5-17 | 2.30 (2H, dt, J= 26.4, 5.7 Hz), 2.75 (1H, t, J= 2.5 Hz), 4.19 (2H, t, J= 6.8 Hz), 4.61 (2H, dt, J= 47.0, 5.7 Hz), 4.72 (2H, d, J= 2.5 Hz), 5.02 (2H, br s), 6.61 (1H, d, J= 9.4 Hz)                |
| 5-18 | 1.35 (6H, d, J=6.0 Hz), 2.30 (2H, dtt, J= 26.9, 6.8, 5.4 Hz), 4.21(2H, t, J=6.8 Hz), 4.37 (2H, br s), 4.52 (1H, penta, J=6.0 Hz), 4.59 (2H, dt, J=46.5, 5.4 Hz), 6.65 (1H, d, J=9.6 Hz)            |
| 5-26 | 2.08 (2H, m), 3.84 (3H, s), 4.09 (2H, t, J=6.7 Hz), 4.31 (2H, dt, J= 46.9, 5.6 Hz), 7.26 (1H, d, J= 9.1 Hz), 7.55 (2H, m), 7.89 (4H, m), 8.40 (1H, s), 8.53 (1H, br s)                             |
| 5-27 | 1.67 (2H, dt, J=26.5, 5.8 Hz), 3.86 (3H, s), 3.89 (2H, s), 3.97(2H, dt, J=42.4, 5.6 Hz), 7.27 (1H, d, J= 8.7 Hz), 7.52 (4H, m), 7.78 (4H, m), 7.88 (4H, m), 8.54 (2H, s)                           |
| 5-28 | 2.22 (2H, dt, J= 26.2, 5.8 Hz), 3.81 (3H, s), 4.01 (2H, s), 4.13 (2H, d, J= 6.8 Hz), 4.52(2H, dt, J=46.9, 5.6 Hz), 4.64 (2H, s), 7.23 (1H, d, J= 9.1 Hz), 7.36 (5H, m), 8.67 (1H, br s)            |
| 6-1  | 2.48 (3H, s), 7.03 (1H, t, J=57.9 Hz), 7.65 (1H, d, J=8.6 Hz), 9.88 (1H, s)                                                                                                                        |
| 6-2  | 2.48 (3H, s), 4.25 (2H, br s), 5.70 (1H, br s), 6.59(1H, d, J=9.4 Hz), 7.07 (1H, t, J=58.0 Hz)                                                                                                     |
| 6-13 | 2.53 (3H, s), 6.89 (1H, ddd, J=12.5, 8.3, 2.4Hz), 7.05 (1H, m), 7.10 (1H, t, J=58.0Hz), 7.33 (1H, d, J=2.2Hz), 8.21 (1H, ddd, J=9.1, 9.1, 6.5Hz), 8.57 (1H, d, J=2.2Hz), 8.72 (1H, br d, J=16.5Hz) |

|      |                                                                                                                                                                                           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6-14 | 2.37 (3H, s), 3.88 (3H, s), 6.94 (1H, ddd, J=10.9, 8.3, 2.3Hz), 6.99 (1H, m), 7.05 (1H, t, J=58.0Hz), 7.26 (1H, d, J=9.1Hz), 8.04 (1H, ddd, J=8.8, 8.8, 6.5Hz), 8.48 (1H, br d, J=13.4Hz) |
| 6-15 | 2.31 (3H, s), 3.88 (3H, s), 7.03 (1H, t, J=58.0Hz), 7.25 (1H, d, J=9.4Hz), 7.60 (2H, m), 7.8-8.0 (4H, m), 8.25 (1H, s), 8.40 (1H, s)                                                      |
| 6-16 | 2.54 (3H, s), 7.12 (1H, d, J=58.0Hz), 7.35 (1H, d, J=2.3Hz), 7.61 (2H, m), 7.83 (1H, dd, J=8.5, 1.8Hz), 7.90 (3H, m), 8.29 (1H, s), 8.48 (1H, d, J=2.3Hz), 8.64 (1H, br s)                |
| 6-17 | 2.29 (3H, s), 3.89 (3H, s), 7.03 (1H, t, J=58.0Hz), 7.53 (1H, s), 7.60 (2H, m), 7.92 (4H, m), 8.07 (1H, br s), 8.37 (1H, br s)                                                            |
| 6-18 | 1.29(3H, t, J=7.1Hz), 2.45(3H, s), 4.3(2H, q, J=7.1Hz), 6.7(1H, broad), 7.03(1H, t, J=58.0Hz), 7.83(1H, s)                                                                                |
| 6-19 | 1.27(3H, t, J=7.0Hz), 2.48(3H, s), 4.18(2H, q, J=7.0Hz), 4.51(2H, s), 6.67(1H, s), 6.91(1H, s), 7.08(1H, t, J=58.0Hz)                                                                     |
| 6-20 | 2.38(3H, s), 4.77(4H, s), 7.16(1H, t, J=57.7Hz), 7.17(1H, s)                                                                                                                              |
| 6-21 | 2.47(3H, s), 7.04(1H, t, J=7.2Hz), 7.59(1H, 2d, J=2.3Hz, 8.6Hz), 7.91(1H, t, J=2.1Hz)                                                                                                     |
| 6-22 | 2.47(3H, s), 3.65(2H, s), 6.75(1H, 2d, J=2.2Hz, 9.4Hz), 7.07(1H, t, J=57.9Hz), 7.20(1H, t, J=1.8Hz)                                                                                       |
| 6-23 | 2.52(3H, s), 6.9-7.1(3H, m), 7.10(1H, t, J=57.9Hz), 7.14(1H, 2d), 8.06(1H, m), 9.76(1H, s)                                                                                                |
| 6-24 | 2.51(3H, s), 6.93(1H, 2d, J=2.2Hz, 8.9Hz), 7.12(1H, t, J=58.0Hz), 7.12(1H, s), 7.61(2H, m), 7.9-8.0(3H, m), 8.07(1H, 2d, J=1.7Hz), 8.68(1H, s), 9.74(1H, s)                               |
| 7-1  | 4.01 (3H, s), 4.03 (3H, br q, J=1.0 Hz), 7.43 (1H, d, J=8.4 Hz)                                                                                                                           |
| 7-2  | 3.84 (3H, s), 4.06 (3H, s), 4.57 (2H, s), 6.57 (1H, d, J=9.3 Hz)                                                                                                                          |
| 7-3  | 4.07 (3H, br d, J=0.9 Hz), 6.61 (1H, d, J=9.2 Hz)                                                                                                                                         |
| 7-14 | 3.87 (3H, s), 3.91 (3H, s), 7.23 (1H, d, J=8.9 Hz), 7.60 (2H, m), 7.80-7.96 (4H, m), 8.13 (1H, br s), 8.32 (1H, br s)                                                                     |
| 7-15 | 3.86 (3H, s), 3.97 (3H, s), 6.45 (1H, d, J=15.6 Hz), 7.20 (1H, d, J=8.9 Hz), 7.30-7.52 (6H, m), 7.60 (1H, d, J=15.6 Hz)                                                                   |
| 8-1  | 1.84 (4H, m), 2.44 (4H, m), 7.62 (1H, d, J=8.5 Hz), 9.88 (1H, br)                                                                                                                         |
| 8-2  | 1.79 (4H, m), 2.41 (4H, m), 5.53 (3H, br), 6.53 (1H, d, J=9.1 Hz)                                                                                                                         |
| 8-3  | 1.81 (4H, m), 2.43 (4H, m), 2.58 (1H, t, J=2.4 Hz), 4.24 (2H, br s), 4.69 (2H, t, J=2.4 Hz), 6.60 (1H, d, J=9.2 Hz)                                                                       |
| 8-4  | 1.35 (6H, d, J= 6.2 Hz), 1.82 (4H, m), 2.43 (4H, m), 4.11 (2H, br s), 4.48 (1H, q, J=6.2 Hz), 6.60 (1H, d, J=9.4 Hz)                                                                      |
| 8-5  | 1.77 (4H, m), 1.82 (4H, m), 2.43 (4H, m), 2.34 (4H, m), 4.04 (2H, br s), 4.79 (1H, m), 6.61 (1H, d, J=9.4 Hz)                                                                             |
| 8-6  | 1.82 (4H, m), 2.42 (4H, m), 4.03 (3H, s), 7.48 (1H, d, J=8.6 Hz)                                                                                                                          |
| 8-7  | 1.80 (4H, m), 2.08 (2H, br s), 2.41 (4H, m), 3.83 (3H, s), 6.60 (1H, d, J=9.4 Hz)                                                                                                         |
| 8-8  | 1.78 (4H, m), 2.38 (4H, m), 3.86 (3H, s), 6.96 (2H, m), 7.25 (1H, d, J= 9.0 Hz), 8.01 (1H, m), 8.19 (1H, d, J=12.6 Hz)                                                                    |
| 8-9  | 1.68 (4H, m), 2.32 (4H, m), 3.82 (3H, s), 7.22 (1H, d, J=9.1 Hz), 7.59 (2H, m), 7.91 (5H, m), 8.34 (1H, s)                                                                                |
| 8-13 | 1.76 (4H, m), 2.34 (4H, m), 2.37 (1H, t, J=2.4 Hz), 4.77 (2H, t, J=2.4 Hz), 6.95(2H, m), 7.27 (1H, d, J=8.9 Hz), 8.04 (1H, m), 8.38 (1H, br d, J=12.5 Hz)                                 |
| 8-18 | 1.28 (6H, d, J= 6.2 Hz), 1.76 (4H, m), 2.32 (4H, m), 4.45 (1H, q, J=6.2 Hz), 6.95 (2H, m), 7.24 (1H, d, J=9.0 Hz), 8.00 (1H, m), 8.31 (1H, br d, J=12.7 Hz)                               |

|       |                                                                                                                                                                                                                     |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8-30  | 1.71 (4H, m), 2.33 (4H, m), 3.80 (3H, s), 5.39 (1H, d, J=10.9 Hz), 5.86 (1H, d, J= 17.6 Hz), 6.75 (1H, dd, J= 17.6, 10.9 Hz), 7.21 (1H, d, J= 9.0 Hz), 7.47 (2H, d, J=8.2 Hz), 7.77 (2H, d, J=8.2 Hz), 7.85 (1H, s) |
| 8-31  | 1.76 (4H, m), 2.38 (4H, m), 3.82 (3H, s), 6.52 (1H, d, J=15.6 Hz), 7.19 (1H, d, J= 9.0 Hz), 7.37 (3H, m), 7.47 (3H, m), 7.65 (1H, d, J=15.6 Hz)                                                                     |
| 8-32  | 1.85 (4H, m), 2.45 (4H, m), 8.31 (2H, s)                                                                                                                                                                            |
| 8-33  | 1.81 (4H, m), 2.43 (4H, m), 7.37 (1H, d, J=8.5Hz), 7.69 (1H, 2d, J=2.3Hz, 8.5Hz), 8.10 (1H, d, J=2.3Hz)                                                                                                             |
| 8-34  | 1.86 (4H, m), 2.46 (4H, m), 7.72 (1H, d, J=8.8Hz), 8.56 (1H, 2d, J=2.6Hz, 8.8Hz), 8.92 (1H, d, J=2.6Hz)                                                                                                             |
| 8-35  | 1.80 (4H, m), 2.40 (4H, m), 3.83 (2H, s), 6.79 (2H, m), 6.91 (1H, d, J=8.3Hz).                                                                                                                                      |
| 8-36  | 1.78 (4H, m), 2.40 (4H, m), 7.15-7.30 (2H, m), 7.6 (2H, m), 7.9 (4H, m), 8.14 (1H, d, J=2.2Hz), 8.34 (1H, s), 8.59 (1H, s)                                                                                          |
| 9-1   | 1.91 (4H, m), 3.67 (4H, m), 7.65 (1H, d, J=8.3Hz)                                                                                                                                                                   |
| 9-3   | 1.87 (4H, m), 3.62 (4H, m), 4.03 (3H, s), 7.53 (1H, d, J=8.5Hz)                                                                                                                                                     |
| 9-4   | 1.88 (4H, m), 3.65 (4H, m), 3.85 (3H, s), 4.28 (2H, s), 6.64 (1H, d, J=9.5Hz)                                                                                                                                       |
| 9-12  | 2.01 (4H, m), 3.73 (2H, m), 3.92 (1H, m), 4.15 (1H, m), 7.53 (1H, d, J=8.5Hz), 7.76 (1H, J=8.5, 2.4Hz), 8.21 (1H, d, J=2.4Hz)                                                                                       |
| 9-13  | 1.90 (4H, m), 3.69 (2H, m), 3.95 (2H, m), 4.85 (2H, br s), 6.79 (2H, m), 7.00 (1H, d, J=8.3Hz)                                                                                                                      |
| 9-14  | 1.94 (4H, m), 3.69 (2H, m), 4.03 (2H, m), 7.27 (2H, m), 7.59 (2H, m), 7.94 (4H, m), 8.19 (1H, d, J=2.0Hz), 8.47 (1H, s), 9.11 (1H, br s)                                                                            |
| 9-15  | 1.70 (4H, m), 3.50 (4H, m), 3.83 (3H, s), 7.23 (1H, d, J=9.0Hz), 7.59 (2H, m), 7.92 (4H, m), 8.34 (1H, s), 8.43 (1H, s)                                                                                             |
| 9-16  | 1.82 (4H, m), 3.58 (4H, m), 3.87 (3H, s), 6.9-7.1 (2H, m), 7.27 (1H, d, J=9.0Hz), 8.07 (1H, m), 8.49 (1H, d, J=13.1Hz)                                                                                              |
| 9-17  | 1.89 (4H, m), 3.65 (4H, m), 7.53 (1H, d, J=8.6Hz), 7.72 (1H, 2d, J=2.3Hz, 8.5Hz), 8.13 (1H, d, J=2.3Hz)                                                                                                             |
| 9-18  | 1.85 (4H, m), 3.63 (4H, m), 4.03 (2H, s), 6.82 (2H, m), 7.09 (1H, 2d, J=0.6Hz, 8.0Hz)                                                                                                                               |
| 9-19  | 1.80 (4H, m), 3.60 (4H, m), 7.22 (1H, 2d, J=2.3Hz, 8.7Hz), 7.35 (1H, d, J=8.7Hz), 7.56 (2H, m), 7.89 (4H, m), 8.08 (1H, d, J=2.3Hz), 8.43 (1H, s), 9.41 (1H, s)                                                     |
| 11-1  | 4.05 (3H, s), 7.30 (1H, m), 7.53 (1H, d, J=8.7Hz), 8.01 (1H, d, J=2.1Hz)                                                                                                                                            |
| 11-2  | 7.33 (1H, m), 7.70 (1H, d, J=8.4 Hz), 8.06 (1H, d, J=2.1 Hz), 10.29 (1H, s)                                                                                                                                         |
| 11-3  | 6.53 (1H, d, J=9.5 Hz), 6.53 (3H, br), 7.40 (1H, s), 8.17 (1H, s)                                                                                                                                                   |
| 11-4  | 3.86 (3H, s), 4.33 (2H, br s), 6.65 (1H, d, J=9.5 Hz), 7.34 (1H, dq, J=2.2, 1.0 Hz), 8.10 (1H, d, J=2.2 Hz)                                                                                                         |
| 11-5  | 3.31 (3H, s), 3.79 (3H, s), 4.33 (2H, br s), 7.21 (1H, d, J=1.1 Hz), 7.49 (1H, d, J=8.8 Hz), 7.95 (1H, d, J=2.2 Hz)                                                                                                 |
| 11-6  | 3.86 (3H, s), 7.26 (1H, d, J=9.2 Hz), 7.27 (1H, dq, J=2.2, 1.1 Hz), 7.56 (2H, m), 7.88(4H, m), 7.97 (1H, d, J=2.2 Hz), 8.38 (1H, s), 8.79 (1H, s)                                                                   |
| 11-7  | 3.93 (3H, s), 7.30 (1H, d, J=8.7 Hz), 7.35 (1H, dq, J=2.2, 1.1 Hz), 8.08 (1H, d, J=2.2 Hz)                                                                                                                          |
| 11-8  | 1.20, 1.23 (3H, t, J=7.1 Hz), 3.20 (2H, m), 3.94 (3H, s), 4.16 (2H, q, J=7.1 Hz), 4.52 (1H, m), 7.32 (2H, m), 8.08 (1H, m)                                                                                          |
| 11-9  | 2.43 (3H, q, J=2.1 Hz), 7.67 (1H, d, J=8.5 Hz), 8.01 (1H, s), 10.2 (1H, br)                                                                                                                                         |
| 11-10 | 2.46 (3H, q, J=1.8 Hz), 2.63 (3H, br), 6.60 (1H, d, J=9.4 Hz), 8.08 (1H, s)                                                                                                                                         |
| 11-11 | 2.45 (3H, q, J=1.9 Hz), 3.87 (3H, s), 6.66 (1H, d, J=9.6 Hz), 8.06 (1H, s)                                                                                                                                          |
| 11-12 | 2.44 (3H, q, J=1.9 Hz), 2.58 (3H, s), 3.84 (3H, s), 6.60 (1H, d, J=9.4 Hz), 8.03 (1H, s)                                                                                                                            |

|       |                                                                                                                                                                                      |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11-13 | 2.38 (3H, q, J=1.8 Hz), 3.88 (3H, s), 7.26 (1H, d, J=9.3 Hz), 7.59 (2H, m), 7.80 (1H, m), 7.91 (4H, m), 8.11 (1H, s), 8.30 (1H, s)                                                   |
| 12-1  | 1.64 (3H, m), 1.91 (1H, m), 2.10 (1H, m), 2.35 (1H, m), 3.16 (1H, m), 4.17 (1H, m), 4.82 (1H, m), 7.66 (1H, d, J=8.2Hz), 10.4 (1H, broad)                                            |
| 12-2  | 1.61 (3H, m), 1.91 (1H, m), 2.10 (1H, m), 2.38 (1H, m), 3.13 (1H, m), 4.11 (1H, m), 4.14 (2H, s), 4.87 (1H, m), 5.49 (1H, s), 6.64 (1H, d, J=9.0Hz)                                  |
| 12-3  | 1.61 (3H, m), 1.90 (1H, m), 2.08 (1H, m), 2.35 (1H, m), 3.10 (1H, m), 4.07 (1H, m), 4.2 (2H, broad), 4.88 (1H, m), 5.5 (1H, broad), 6.63 (1H, d, J=9.0Hz)                            |
| 12-4  | 1.60 (3H, m), 1.89 (1H, m), 2.09 (1H, m), 2.34 (1H, m), 3.09 (1H, m), 3.85 (3H, s), 4.11 (1H, m), 4.3 (2H, broad), 4.87 (1H, m), 6.63 (1H, d, J=9.3Hz)                               |
| 12-5  | 1.4-1.7 (3H, m), 1.7-2.4 (3H, m), 2.95 (1H, m), 3.85 (3H, s), 3.97 (1H, m), 4.71 (1H, m), 7.26 (1H, m), 7.60 (2H, m), 7.93 (4H, m), 8.15 (1H, s), 8.44 (1H, s)                       |
| 12-6  | 1.54 (3H, m), 1.78 (1H, m), 2.07 (1H, m), 2.27 (1H, m), 2.95 (1H, m), 4.01 (1H, m), 4.22 (1H, m), 7.44 (1H, d, J=8.5Hz), 7.69 (1H, 2d, J=2.3Hz, 8.5Hz), 8.11 (1H, d, J=2.3Hz)        |
| 12-7  | 1.50 (3H, m), 1.78 (1H, m), 2.05 (1H, m), 2.28 (1H, m), 2.89 (1H, m), 3.90 (1H, m), 3.95 (2H, s), 4.15 (1H, m), 6.81 (2H, m), 6.99 (1H, d, J=7.9Hz)                                  |
| 12-8  | 1.41 (3H, m), 1.68 (1H, m), 1.93 (1H, m), 2.24 (1H, m), 2.83 (1H, m), 3.88 (1H, m), 4.11 (1H, m), 7.23 (2H, m), 7.54 (2H, m), 7.87 (4H, m), 7.97 (1H, s), 8.38 (1H, s), 9.11 (1H, s) |
| 13-1  | 4.36 (1H, br s), 7.61 (1H, d, J=8.6 Hz), 7.88 (2H, m), 7.99 (2H, m)                                                                                                                  |
| 13-2  | 5.42 (1H, br s), 6.58 (1H, d, J=9.4 Hz), 7.95 (4H, m)                                                                                                                                |
| 13-3  | 3.86 (3H, s), 7.28 (1H, d, J=9.0 Hz), 7.50-7.95 (10H, m), 8.03 (1H, br s), 8.28 (1H, br s)                                                                                           |
| 13-4  | 3.89 (3H, s), 6.89 (2H, m), 7.30 (1H, d, J=9.0 Hz), 7.70-7.95 (5H, m), 8.34 (1H, m)                                                                                                  |
| 13-5  | 7.33 (2H, m), 7.56 (2H, m), 7.7-8.0 (8H, m), 8.19 (1H, d, J=1.4Hz), 8.32 (1H, s), 8.56 (1H, br s)                                                                                    |
| 14-1  | 1.23 (3H, t, J=7.1Hz), 2.51 (2H, m), 2.75 (2H, m), 3.55 (3H, s), 3.90 (3H, s), 4.10 (2H, q, J=7.1Hz), 6.36 (1H, s), 7.20 (1H, d, J=8.9Hz)                                            |
| 14-2  | 1.30 (3H, t, J=7.1Hz), 3.56 (3H, s), 3.82 (3H, s), 4.23 (2H, q, J=7.1Hz), 6.36 (1H, s), 6.60 (1H, d, J=16.2Hz), 7.31 (1H, d, J=8.6Hz), 7.36 (1H, d, J=16.2Hz)                        |
| 14-3  | 3.01 (1H, m), 3.25 (1H, m), 3.57 (3H, s), 3.70, 3.73 (3H, 2s), 3.93, 3.94 (3H, 2s), 4.55 (1H, m), 6.36, 6.37 (1H, 2s), 7.26 (1H, d, J=8.8Hz)                                         |
| 14-4  | 1.23 (3H, t, J=7.1Hz), 3.03 (1H, m), 3.22 (1H, m), 3.55 (3H, s), 3.94 (3H, s), 4.14 (2H, m), 4.51 (1H, m), 6.37 (1H, s), 7.26 (1H, d, J=8.8Hz)                                       |
| 14-5  | 1.24 (3H, t, J=7.1Hz), 2.95 (1H, m), 3.31 (1H, m), 3.56 (3H, s), 3.93 (3H, s), 4.16 (2H, m), 4.54 (1H, m), 6.35 (1H, s), 7.26 (1H, d, J=8.8Hz)                                       |
| 14-6  | 0.89 (3H, t, J=7.4Hz), 1.61 (2H, m), 3.02 (1H, m), 3.23 (1H, m), 3.56 (3H, s), 3.94 (3H, s), 4.07 (2H, m), 4.53 (1H, m), 6.37 (1H, s), 7.25 (1H, d, J=8.8Hz)                         |
| 14-7  | 0.90 (3H, t, J=7.4Hz), 1.62 (2H, m), 2.96 (1H, m), 3.31 (1H, m), 3.56 (1H, s), 3.94 (3H, s), 4.08 (2H, m), 4.56 (1H, m), 6.36 (1H, s), 7.25 (1H, d, J=8.9Hz)                         |
| 14-8  | 0.90 (3H, t, J=7.3Hz), 1.33 (2H, m), 1.58 (2H, m), 3.03 (1H, m), 3.22 (1H, m), 3.55 (3H, s), 3.94 (3H, s), 4.08 (2H, m), 4.52 (1H, m), 6.37 (1H, s), 7.26 (1H, d, J=8.8Hz)           |
| 14-9  | 0.91 (3H, t, J=7.3Hz), 1.33 (2H, m), 1.59 (2H, m), 2.98 (1H, m), 3.32 (1H, m), 3.56 (3H, s), 3.93 (3H, s), 4.11 (2H, m), 4.56 (1H, m), 6.35 (1H, s), 7.25 (1H, d, J=8.8Hz)           |
| 14-10 | 0.88 (3H, t, J=6.7Hz), 1.27 (4H, m), 1.60 (2H, m), 3.02 (1H, m), 3.22 (1H, m), 3.56 (3H, s), 3.94 (3H, s), 4.09 (2H, m), 4.52 (1H, m), 6.37 (1H, s), 7.25 (1H, d, J=8.9Hz)           |

|       |                                                                                                                                                                            |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14-11 | 0.89 (3H, t, J=6.7Hz), 1.31 (4H, m), 1.61 (2H, m), 2.96 (1H, m), 3.30 (1H, m), 3.56 (3H, s), 3.93 (3H, s), 4.10 (2H, m), 4.56 (1H, m), 6.35 (1H, s), 7.26 (1H, d, J=8.9Hz) |
| 14-12 | 0.87 (3H, t, J=6.4Hz), 1.27 (6H, m), 1.59 (2H, m), 3.03 (1H, m), 3.22 (1H, m), 3.56 (3H, s), 3.94 (1H, s), 4.08 (2H, m), 4.52 (1H, m), 6.37 (1H, s), 7.25 (1H, d, J=8.8Hz) |
| 14-13 | 0.88 (3H, t, J=6.9Hz), 1.28 (6H, m), 1.59 (2H, m), 2.96 (1H, m), 3.32 (1H, m), 3.56 (3H, s), 3.94 (3H, s), 4.10 (2H, m), 4.56 (1H, m), 6.35 (1H, s), 7.26 (1H, d, J=8.8Hz) |
| 14-14 | 0.88 (6H, m), 1.90 (1H, m), 3.02 (1H, m), 3.23 (1H, m), 3.56 (3H, s), 3.87 (2H, m), 3.94 (3H, s), 4.54 (1H, m), 6.37 (1H, s), 7.25 (1H, d, J=8.9Hz)                        |
| 14-15 | 0.89 (6H, m), 1.91 (1H, m), 2.96 (1H, m), 3.32 (1H, m), 3.56 (3H, s), 3.89 (2H, m), 3.94 (3H, s), 4.58 (1H, m), 6.35 (1H, s), 7.26 (1H, d, J=8.9Hz)                        |
| 14-16 | 0.89 (6H, m), 1.50 (2H, m), 1.60 (1H, m), 3.02 (1H, m), 3.21 (1H, m), 3.56 (3H, s), 3.94 (3H, s), 4.13 (2H, m), 4.52 (1H, m), 6.37 (1H, s), 7.25 (1H, d, J=8.9Hz)          |
| 14-17 | 0.88 (6H, m), 1.49 (2H, m), 1.62 (1H, m), 2.96 (1H, m), 3.30 (1H, m), 3.56 (3H, s), 3.93 (3H, s), 4.14 (2H, m), 4.56 (1H, m), 6.35 (1H, s), 7.25 (1H, d, J=8.9Hz)          |
| 14-18 | 1.44, 1.46 (9H, 2s), 2.90 (1H, m), 3.31 (1H, m), 3.56 (3H, s), 3.92, 3.93 (3H, 2s), 4.42 (1H, m), 6.34, 6.37 (1H, 2s), 7.26 (1H, d, J=9.0Hz).                              |
| 14-19 | 2.51 (1H, m), 3.05 (1H, m), 3.20 (1H, m), 3.56 (3H, s), 3.94 (3H, s), 4.59 (1H, m), 4.68 (2H, m), 6.37 (1H, s), 7.26 (1H, d, J=8.9Hz)                                      |
| 14-20 | 2.51 (1H, m), 2.99 (1H, m), 3.29 (1H, m), 3.56 (3H, s), 3.94 (3H, s), 4.61 (1H, m), 4.70 (2H, m), 6.36 (1H, s), 7.26 (1H, d, J=8.9Hz)                                      |
| 14-21 | 3.0-3.3 (2H, m), 3.56 (3H, s), 3.93, 3.94 (3H, 2s), 4.3-4.6 (2H, m), 4.69 (1H, m), 6.35, 6.37 (1H, 2s), 7.28 (1H, d, J=8.8Hz)                                              |
| 14-22 | 3.06 (1H, m), 3.24 (1H, m), 3.56 (3H, s), 3.93, 3.94 (3H, 2s), 4.4-4.6 (2H, m), 5.86 (1H, m), 6.36, 6.37 (1H, 2s), 7.28 (1H, d, J=8.8Hz)                                   |
| 14-23 | 3.04-3.21 (2H, m), 3.56 (3H, s), 4.47, 4.65 (2H, 2m), 4.69 (1H, m), 6.37 (1H, s), 7.28 (1H, d, J=8.7Hz)                                                                    |
| 14-24 | 3.02 (1H, m), 3.24 (1H, m), 3.56 (3H, s), 3.93 (3H, s), 4.61 (2H, m), 4.70 (1H, m), 6.35 (1H, s), 7.28 (1H, d, J=8.7Hz)                                                    |
| 14-25 | 2.98 (1H, m), 3.30 (1H, m), 3.34 (3H, s), 3.53 (2H, m), 3.56 (3H, s), 3.94 (3H, s), 4.25 (2H, m), 4.62 (1H, m), 6.35 (1H, s), 7.26 (1H, d, J=8.9Hz)                        |
| 14-26 | 1.18 (3H, m), 3.05 (1H, m), 3.27 (1H, m), 3.4-3.6 (4H, m), 3.56 (3H, s), 3.93, 3.94 (3H, 2s), 4.29 (2H, m), 4.61 (1H, m), 6.35, 6.37 (1H, 2s), 7.26 (1H, d, J=8.8Hz)       |
| 14-27 | 3.04 (1H, m), 3.21 (1H, m), 3.54 (3H, s), 3.91 (3H, s), 4.10 (2H, m), 4.45 (2H, m), 4.61 (1H, m), 6.35 (1H, s), 6.92 (3H, m), 7.27 (3H, m)                                 |
| 14-28 | 2.99 (1H, m), 3.30 (1H, m), 3.55 (3H, s), 3.90 (3H, s), 4.12 (2H, m), 4.46 (2H, m), 4.64 (1H, m), 6.34(1H, s), 6.93 (3H, m), 7.26 (3H, m)                                  |
| 14-29 | 2.66 (2H, m), 3.07 (1H, m), 3.21 (1H, m), 3.56 (3H, s), 3.95 (3H, s), 4.30 (2H, m), 4.63 (1H, m), 6.35, 6.38 (1H, 2s), 7.28 (1H, d, J=8.9Hz)                               |
| 14-30 | 3.08 (1H, m), 3.22 (1H, m), 3.56 (3H, s), 3.70 (2H, m), 3.95 (3H, s), 4.30 (1H, m), 4.51 (2H, m), 4.65 (1H, m), 6.38 (1H, s), 7.27 (1H, d, J=8.7Hz).                       |
| 14-31 | 3.02 (1H, m), 3.42 (1H, m), 3.57 (3H, s), 3.72 (2H, m), 3.95 (3H, s), 4.29 (1H, m), 4.52 (2H, m), 4.66 (1H, m), 6.36 (1H, s), 7.27 (1H, d, J=8.8Hz)                        |
| 14-32 | 1.22 (3H, t, J=7.1Hz), 3.13 (1H, m), 3.31 (1H, m), 3.55 (3H, s), 3.95 (3H, s), 4.13 (2H, m), 4.46 (1H, m), 6.38 (1H, s), 7.25 (1H, d, J=8.9Hz).                            |
| 14-33 | 1.23 (3H, t, J=7.1Hz), 3.08 (1H, m), 3.41 (1H, m), 3.57 (3H, s), 3.93 (3H, s), 4.12 (2H, m), 4.49 (1H, m), 6.36 (1H, s), 7.25 (1H, d, J=8.9Hz)                             |
| 14-34 | 1.27 (3H, m), 1.61, 1.64 (3H, 2s), 3.20 (1H, m), 3.54 (3H, s), 3.61 (1H, m), 3.84 (3H, s), 4.18 (2H, m), 6.32, 6.37 (1H, 2s), 7.27 (1H, 2d)                                |

|       |                                                                                                                                                                                         |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14-35 | 0.94 (3H, m), 1.62, 1.65 (3H, 2s), 1.67 (2H, m), 3.21 (1H, m), 3.54 (3H, s), 3.62 (1H, m), 3.84 (3H, s), 4.09 (2H, m), 6.33, 6.37 (1H, 2s), 7.27 (1H, 2d, J=8.8Hz, 8.8Hz)               |
| 14-36 | 0.94 (3H, m), 1.41 (2H, m), 1.61, 1.65 (3H, 2s), 1.63 (2H, m), 3.21 (1H, m), 3.54 (3H, s), 3.60 (1H, m), 3.84 (3H, s), 4.12 (2H, m), 6.32, 6.37 (1H, 2s), 7.27 (1H, 2d, J=8.8Hz, 8.9Hz) |
| 14-37 | 0.90 (3H, m), 1.33 (4H, m), 1.61, 1.64 (3H, 2s), 1.65 (2H, m), 3.20 (1H, m), 3.54 (3H, s), 3.59 (1H, m), 3.84 (3H, s), 4.12 (2H, m), 6.32, 6.37 (1H, 2s), 7.27 (1H, 2d, J=8.9Hz, 8.7Hz) |
| 14-38 | 0.89 (3H, m), 1.30 (6H, m), 1.61, 1.64 (3H, 2s), 1.65 (2H, m), 3.20 (1H, m), 3.54 (3H, s), 3.59 (1H, m), 3.84 (3H, s), 4.11 (2H, m), 6.32, 6.36 (1H, 2s), 7.27 (1H, 2d, J=8.8Hz, 8.8Hz) |
| 14-39 | 1.26 (6H, m), 1.59, 1.62 (3H, 2s), 3.20 (1H, m), 3.54 (3H, s), 3.63 (1H, m), 3.85 (3H, s), 4.98 (1H, m), 6.32, 6.37 (1H, 2s), 7.27 (1H, 2d, J=8.8Hz, 8.8Hz)                             |
| 14-40 | 0.94 (6H, m), 1.62, 1.65 (3H, 2s), 1.96 (1H, m), 3.21 (1H, m), 3.54 (3H, s), 3.62 (1H, m), 3.84 (3H, s), 3.92 (2H, m), 6.32, 6.37 (1H, 2s), 7.27 (1H, 2d, J=8.8Hz, 8.8Hz)               |
| 14-41 | 1.63, 1.66 (3H, 2s), 3.22 (1H, m), 3.53 (3H, s), 3.63 (1H, m), 3.79 (3H, s), 5.16 (2H, m), 6.29, 6.36 (1H, 2s), 7.25 (1H, 2d, J=8.8Hz, 8.8Hz), 7.35 (5H, m).                            |
| 14-42 | 1.64, 1.67 (3H, 2s), 3.23 (1H, m), 3.52, 3.55 (3H, 2s), 3.66 (1H, m), 3.84 (3H, s), 4.71 (1H, m), 5.00 (1H, m), 6.33, 6.37 (1H, 2s), 7.18 (1H, m), 7.27 (1H, 2d, J=8.8Hz, 8.8Hz)        |
| 14-43 | 1.63, 1.66 (3H, 2s), 3.21 (1H, m), 3.54 (3H, s), 3.62 (1H, m), 3.84 (3H, s), 4.63 (2H, m), 5.31 (2H, m), 5.89 (1H, m), 6.33, 6.37 (1H, 2s), 7.27 (1H, 2d, J=8.9Hz, 8.7Hz)               |
| 14-44 | 1.63 (3H, m), 2.52 (1H, m), 3.18 (1H, m), 3.56 (3H, s), 3.60 (1H, m), 3.84 (3H, s), 4.74 (2H, m), 6.34, 6.37 (1H, 2s), 7.26, 7.27 (1H, 2d, J=8.7Hz, 8.8Hz)                              |
| 14-45 | 1.65, 1.68 (3H, 2s), 3.19 (1H, m), 3.51 (1H, m), 3.55 (3H, s), 3.83 (3H, s), 4.49 (2H, m), 5.86 (1H, m), 6.34, 6.37 (1H, 2s), 7.28 (1H, 2d, J=8.8Hz, 8.8Hz)                             |
| 14-46 | 1.67, 1.68 (3H, 2s), 3.18 (1H, m), 3.53, 3.55 (3H, 2s), 3.66 (1H, m), 3.82, 3.83 (3H, 2s), 5.73 (1H, m), 6.35, 6.37 (1H, 2s), 7.31 (1H, 2d, J=8.9Hz, 8.8Hz)                             |
| 14-47 | 1.63, 1.65 (3H, 2s), 3.20 (1H, m), 3.36, 3.37 (3H, 2s), 3.55 (3H, s), 3.63 (3H, m), 3.84 (3H, s), 4.29 (2H, m), 6.33, 6.36 (1H, 2s), 7.27 (1H, 2d, J=8.8Hz, 8.8Hz).                     |
| 14-48 | 1.62, 1.64 (3H, 2s), 2.16 (3H, t, J=2.4Hz), 2.73 (2H, m), 3.20 (1H, m), 3.55 (3H, s), 3.59 (1H, m), 3.84 (3H, s), 4.30 (2H, m), 6.33, 6.36 (1H, 2s), 7.27 (1H, 2d, J=8.8Hz, 8.8Hz)      |
| 14-49 | 1.63, 1.65 (3H, 2s), 1.8-2.1 (4H, m), 3.20 (1H, m), 3.54 (3H, s), 3.61 (1H, m), 3.81 (2H, m), 3.84 (3H, s), 4.13 (3H, m), 6.33, 6.36 (1H, s), 7.27 (1H, 2d, J=8.7Hz, 8.9Hz)             |
| 14-50 | 3.05 (2H, m), 3.29 (1H, m), 3.52, 3.57 (3H, 2s), 3.59 (1H, m), 3.68 (3H, s), 3.76 (3H, s), 3.79, 3.80 (3H, 2s), 6.32, 6.35 (1H, 2s), 7.29 (1H, 2d, J=8.9Hz, 8.8Hz)                      |
| 14-51 | 1.31, 1.35 (3H, 2t, J=7.2Hz, 7.1Hz), 3.50 (1H, m), 3.55, 3.57 (3H, 2s), 3.68 (1H, m), 3.92, 3.94 (3H, 2s), 4.31 (2H, m), 6.35, 6.38 (1H, 2s), 7.34 (1H, 2d, J=8.9Hz, 8.9Hz)             |
| 14-52 | 1.26 (3H, t, J=7.1Hz), 2.48 (3H, s), 3.07 (1H, m), 3.38 (1H, m), 4.21 (2H, q, J=7.1Hz), 4.51 (1H, m), 7.07 (1H, t, J=58.0Hz), 7.23 (2H, m)                                              |
| 14-53 | 1.24 (3H, t, J=7.1Hz), 1.90 (4H, m), 3.15 (1H, m), 3.43 (1H, m), 3.65 (4H, m), 3.92 (3H, s), 4.18 (2H, m), 4.48 (1H, m), 7.26 (1H, d, J=10.5Hz)                                         |
| 14-54 | 1.16 (3H, t, J=7.2 Hz), 2.36 (3H, s), 3.04 (1H, m), 3.26 (1H, m), 3.48 (3H, s), 4.00-4.25 (3H, m), 6.30 (1H, s), 7.20 (1H, d, J=8.8 Hz)                                                 |
| 14-55 | 1.18 (3H, t, J=7.2 Hz), 2.37 (3H, s), 3.03 (1H, m), 3.31 (1H, m), 3.50 (3H, s), 4.00-4.25 (3H, m), 6.28 (1H, s), 7.20 (1H, d, J=8.7 Hz)                                                 |

|       |                                                                                                                                                                                                                                                                                |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14-56 | 1.21 (3H, t, J=7.2 Hz), 3.10-3.45 (2H, m), 3.90 (3H, s), 4.07 (3H, br d, J=0.9 Hz), 4.16 (2H, q, J=7.2 Hz), 4.54 (1H, br t, J=7.3 Hz), 7.20 (1H, d, J=8.6 Hz)                                                                                                                  |
| 14-57 | 3.45 (3H, d, J=1.1Hz), 6.21 (1H, s), 7.30 (1H, d, J=8.4Hz), 7.46 (2H, t, J=7.5Hz), 7.5-7.8 (5H, m)                                                                                                                                                                             |
| 14-58 | 3.31 (3H, d, J=0.9Hz), 6.29 (1H, s), 6.32 (1H, d, J=12.1Hz), 6.80 (1H, d, J=12.1Hz), 7.15 (1H, d, J=8.5Hz), 7.28 (2H, m), 7.35 (1H, dd, J=8.5, 2.3Hz), 7.42 (2H, m), 7.6-7.8 (4H, m)                                                                                           |
| 14-59 | 3.48 (3H, s), 6.34 (1H, s), 6.72 (1H, d, J=16.0Hz), 7.02 (1H, d, J=8.4Hz), 7.18 (1H, d, J=16.0Hz), 7.30 (1H, dd, J=10.7, 2.3Hz), 7.39 (2H, m), 7.48 (1H, dd, J=8.7, 1.2Hz), 7.73 (5H,m)                                                                                        |
| 14-60 | 1.25 (1.5H, t, J=7.1Hz), 1.26 (1.5H, t, J=7.1Hz), 2.92(1H, m), 3.26 (1H, m), 3.57 (3H, m), 4.22 (2H, m), 4.36 (1H, m), 6.37 (0.5H, s), 6.38 (0.5H, s), 7.2-7.3 (2H, m)                                                                                                         |
| 14-61 | 1.21 (3H, m), 2.49 (3H, s), 3.33 (2H, m), 3.90 (3H, s), 4.18 (2H, m), 4.52 (1H, t, J=7.2Hz), 7.05 (1H, t, J=58.0Hz)7.25 (1H, d, J=8.9Hz)                                                                                                                                       |
| 14-62 | 1.46 (3H, t, J=7.0), 3.58 (3H, s), 4.12 (2H, q, J=7.0 Hz), 6.37 (1H, s), 7.26 (1H, d, J= 8.7 Hz)                                                                                                                                                                               |
| 14-63 | 1.22 (3H, t, J= 7.2 Hz), 1.47 (3H, t, J=7.0), 3.00 (1H, dd, 14.2, 5.2 Hz), 3.23 (1H, dd, J=14.2, 8.4 Hz), 3.55 (3H, q, J=0.8 Hz), 4.12 (2H, q, J=7.0), 4.12 (2H, m), 4.57 (1H, dd, J=8.4, 5.2 Hz), 6.37 (1H, s), 7.26 (1H, d, J= 8.7 Hz)                                       |
| 14-64 | 1.23 (3H, t, J= 7.1 Hz), 1.46 (3H, t, J=7.0 Hz), 2.94 (1H, dd, 14.4, 6.4 Hz), 3.32 (1H, dd, J=14.4, 7.0 Hz), 3.55 (3H, q, J=0.8 Hz), 4.10 (2H, q, J=7.0 Hz), 4.17 (2H, q, J=7.1 Hz), 4.61 (1H, dd, J=7.0, 6.4 Hz), 6.34 (1H, s), 7.25 (1H, d, J= 8.9 Hz)                       |
| 14-65 | 0.89 (3H, t, J= 7.3 Hz), 1.46 (3H, t, J=7.0 Hz), 1.62 (2H, qt, J=7.3, 6.9 Hz), 3.03 (1H, dd, J=14.2, 5.4 Hz), 3.21 (1H, dd, J=14.2, 8.3 Hz), 3.55 (3H, q, J=1.0 Hz), 4.04 (2H, q, J=7.0 Hz), 4.10 (2H, m), 4.59 (1H, dd, J=8.3, 5.4 Hz), 6.37 (1H, s), 7.25 (1H, d, J= 8.8 Hz) |
| 14-66 | 0.90 (3H, t, J= 7.3 Hz), 1.46 (3H, t, J=7.0 Hz), 1.63 (2H, qt, J=7.3, 6.9 Hz), 2.94 (1H, dd, J=14.4, 6.8 Hz), 3.32 (1H, dd, J=14.4, 6.9 Hz), 3.55 (3H, q, J=1.0 Hz), 4.07 (2H, q, J=7.0 Hz), 4.10 (2H, m), 4.64 (1H, dd, J=6.9, 6.8 Hz), 6.35 (1H, s), 7.25 (1H, d, J= 8.9 Hz) |
| 14-67 | 1.38 (6H, t, J=6.2), 3.57 (3H, q, J=1.2 Hz), 4.58 (1H, q, J=6.2 Hz), 6.37 (1H, s), 7.27 (1H, d, J= 8.7 Hz)                                                                                                                                                                     |
| 14-68 | 1.22 (3H, t, J=7.1 Hz), 1.34, 1.39 (6H, t, J=6.2 Hz), 3.03 (1H, dd, J=14.2, 5.3 Hz), 3.26 (1H, dd, J=14.2, 8.3 Hz), 3.55 (3H, s), 4.14 (3H, q, J=7.1 Hz), 4.58 (1H, dd, J=8.3, 5.3 Hz), 4.68 (1H, q, J=6.2 Hz), 6.36 (1H, s), 7.25 (1H, d, J= 8.9 Hz)                          |
| 14-69 | 1.22 (3H, t, J=7.1 Hz), 1.35, 1.37 (6H, t, J=6.2 Hz), 2.94 (1H, dd, J=14.4, 6.5 Hz), 3.35 (1H, dd, J=14.4, 7.1 Hz), 3.56 (3H, s), 4.16 (3H, q, J=7.1 Hz), 4.64 (1H, q, J=6.2 Hz), 4.66 (1H, dd, J=7.1, 6.5 Hz), 6.34 (1H, s), 7.25 (1H, d, J= 8.9 Hz)                          |
| 14-70 | 1.25 (3H, t, J=7.1 Hz), 2.39 (3H, s), 2.89 (1H, dd, J=14.8, 7.8 Hz), 3.23 (1H, dd, J=14.8, 6.1 Hz), 3.56 (3H, q, J=1.0 Hz), 4.17 (2H, q, J=7.1 Hz), 4.39 (1H, dd, J=7.8, 6.1 Hz), 6.37, 6.38 (1H, s), 7.00 (1H, d, J=8.0 Hz), 7.22 (1H, d, J=8.0 Hz), 7.27 (1H, s)             |
| 14-71 | 0.89 (3H, m), 1.63 (2H, m), 3.00 (1H, m), 3.30 (1H, m), 3.54, 3.55 (3H, s), 3.93 (3H, s), 4.09 (1H, m), 6.36, 6.38 (1H, s), 7.23 (1H, d, J=8.2 Hz), 8.07 (1H, dd, J=8.2, 1.9 Hz), 8.16 (1H, d, J=1.9 Hz)                                                                       |
| 14-72 | 0.86, 0.88 (3H, t, J=6.8 Hz), 1.57, 1.62 (2H, m), 2.43 (3H, s), 2.96 (1H, dd, J=14.2, 6.9 Hz), 3.39 (1H, dd, J=14.2, 7.2 Hz), 3.93 (3H, s), 4.05 (2H, m), 4.54 (1H, dd, J=7.2, 6.9 Hz), 7.28, 7.29 (1H, d, J=8.8 Hz), 8.02, 8.04 (1H, s)                                       |

|       |                                                                                                                                                          |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14-73 | 3.14 (2H, m), 3.54 (3H, 2s), 3.94 (3H, 2s), 4.63 (1H, m), 6.38 (1H, 2s), 7.25 (1H, d, J=8.9 Hz), 9.5(1H, broad)                                          |
| 14-74 | 4.06 (3H, s), 7.47 (1H, d, J=8.4 Hz), 8.10 (1H, m), 8.80 (1H, m)                                                                                         |
| 14-75 | 3.87 (3H, s), 6.61 (1H, d, J=9.4 Hz), 8.12 (1H, m), 8.88 (1H, m)                                                                                         |
| 15-1  | 3.53 (3H, s), 3.7 (2H, broad), 6.4 (1H, broad), 6.29 (1H, s), 6.68 (1H, d, J=9.1Hz)                                                                      |
| 15-2  | 0.7-0.9 (4H, m), 1.23(1H, m), 3.51(3H, s), 3.87(3H, s), 6.24 (1H, s), 6.47(1H, s), 6.83 (1H, d, J=9.0Hz), 8.02(1H, s)                                    |
| 15-3  | 3.02 (3H, s), 3.92 (3H, s), 5.99 (1H, s), 6.74 (1H, s), 6.79 (1H, d, J=9.0Hz), 7.38 (2H, 2d), 7.53 (1H, 2d), 7.72 (2H, d, J=7.2Hz), 8.85 (1H, s)         |
| 15-4  | 3.31 (3H, s), 4.05(3H, s), 6.20(1H, s), 6.86(2H, m), 6.89(1H, d, J=9.1Hz), 7.03(1H, m), 8.12(1H, m), 8.23(1H, m)                                         |
| 15-5  | 2.91 (3H, s), 3.91 (3H, s), 5.99 (1H, s), 6.76 (1H, d, J=9.0Hz), 6.81 (1H, s), 7.59 (2H, m), 7.82 (4H, m), 8.32 (1H, s), 8.98 (1H, s)                    |
| 15-6  | 1.21 (3H, t, J=7.1Hz), 3.55 (3H, s), 3.95 (3H, s), 4.07 (2H, q, J=7.1Hz), 6.28 (1H, bs), 6.31 (1H, s), 6.43 (1H, bs), 6.87 (1H, d, J=9.1Hz)              |
| 15-7  | 3.46 (3H, s), 3.93 (3H, s), 6.29 (1H, s), 6.52 (1H, bs), 6.90 (1H, d, J=9.0Hz), 7.10 (3H, m), 7.21 (1H, m), 7.34 (2H, m)                                 |
| 15-8  | 3.28 (3H, s), 3.90 (3H, s), 6.11 (1H, s), 6.66 (1H, s), 6.84 (3H, m), 6.93 (1H, d, J=8.9Hz), 7.87 (1H, s), 8.07 (1H, m)                                  |
| 15-9  | 1.33 (3H, t, J=7.1Hz), 3.16 (3H, s), 3.50 (3H, s), 4.05 (3H, s), 4.18 (2H, m), 6.29 (1H, s), 6.68 (1H, s), 6.85 (1H, d, J=9.1Hz), 9.73 (1H, s)           |
| 15-10 | 3.54 (3H, s), 3.85 (3H, s), 5.40 (2H, m), 5.96 (1H, m), 6.32 (1H, s), 6.72 (1H, d, J=9.2Hz), 7.32 (1H, d), 8.13 (1H, s)                                  |
| 15-11 | 0.51 (2H, m), 0.82 (2H, m), 1.27 (1H, m), 3.56 (3H, s), 3.83 (3H, s), 6.34 (1H, s), 6.67 (2H, m), 7.82 (1H, s)                                           |
| 15-12 | 1.76 (3H, s), 1.80 (3H, s), 3.54 (3H, s), 3.87 (3H, s), 6.31 (1H, s), 6.69 (1H, d, J=9.1Hz), 7.63 (1H, s)                                                |
| 15-13 | 1.69 (3H, s), 3.39 (3H, s), 3.54 (3H, s), 3.83 (3H, s), 4.13 (2H, s), 6.30 (1H, s), 6.66 (1H, d, J=9.3Hz), 9.79 (1H, s)                                  |
| 15-14 | 2.07 (3H, s), 2.33 (2H, m), 2.52 (2H, m), 3.56 (3H, s), 3.86 (3H, s), 6.33 (1H, s), 6.72 (1H, d, J=9.2Hz), 7.06 (1H, t, J=5.2Hz), 7.92 (1H, s)           |
| 15-15 | 3.30 (2H, d, J=5.9Hz), 3.52 (3H, s), 3.84 (3H, s), 6.33 (1H, s), 6.72 (1H, d, J=9.1Hz), 7.07 (2H, d, J=7.5Hz), 7.28 (4H, m); 7.95 (1H, s)                |
| 15-16 | 1.25 (3H, t, J=7.1Hz), 1.91 (3H, s), 2.98 (2H, 2d), 3.54 (3H, s), 3.89 (3H, s), 4.11 (2H, q, J=7.1Hz), 6.30 (1H, s), 6.74 (1H, d, J=9.1Hz), 7.76 (1H, s) |
| 15-17 | 1.24 (3H, m), 3.46 (1H, m), 3.50, 3.55 (3H, 2s), 3.84 (3H, s), 6.33, 6.37 (1H, 2s), 6.71 (1H, d, J=9.2Hz), 7.10 (3H, m), 7.28 (3H, m), 7.91 (1H, s)      |
| 15-18 | 2.32 (2H, m), 2.81 (2H, m), 3.55 (3H, s), 3.57 (2H, m), 3.94 (3H, s), 6.32 (1H, s), 6.74 (1H, d, J=9.1Hz), 7.18 (4H, m), 7.75 (1H, s)                    |
| 15-19 | 2.46 (2H, m), 2.91 (2H, m), 3.25 (2H, m), 3.57 (3H, s), 3.87 (3H, s), 6.36 (1H, s), 6.69 (1H, d, J=9.1Hz), 7.19 (4H, m), 7.64 (1H, s)                    |
| 15-20 | 3.51 (3H, s), 3.90 (3H, s), 6.35 (1H, s), 6.77 (3H, m), 7.25 (1H, m), 7.83 (1H, s), 8.36 (1H, s)                                                         |
| 15-21 | 3.54 (3H, s), 3.86 (3H, s), 6.31 (1H, s), 6.37 (1H, s), 6.79 (1H, d, J=9.3Hz)                                                                            |
| 15-22 | 3.53 (3H, s), 3.90 (3H, s), 6.41 (1H, s), 6.74 (1H, d, J=9.2Hz), 7.39 (1H, m), 7.48 (2H, m), 7.66 (2H, m), 7.80 (3H, m), 8.34 (1H, s)                    |
| 16-1  | 3.55 (3H, s), 6.36 (1H, s), 6.61 (1H, d, J=2.1Hz), 7.04 (1H, d, J=2.1Hz), 7.97 (1H, s)                                                                   |
| 16-2  | 3.56 (3H, s), 3.81 (3H, s), 6.35 (1H, s), 6.94 (1H, d, J=2.0Hz), 7.16 (1H, d, J=2.0Hz)                                                                   |

|      |                                                                                                                                          |
|------|------------------------------------------------------------------------------------------------------------------------------------------|
| 16-3 | 3.54 (3H, s), 5.11 (2H, s), 6.34 (1H, s), 6.8-6.9 (2H, m), 6.96 (1H, d, J=2.0Hz), 7.19 (1H, d, J=2.1Hz), 7.25 (1H, m)                    |
| 16-4 | 3.53 (3H, s), 6.35 (1H, s), 6.86 (1H, m), 7.00 (1H, m), 7.49 (1H, d, J=2.2Hz), 7.71 (1H, d, J=2.2Hz), 8.02 (1H, m)                       |
| 16-5 | 3.42 (3H, s), 6.31 (1H, s), 7.49 (1H, d, J=2.2Hz), 7.61 (3H, m), 7.93 (4H, m), 8.58 (1H, m)                                              |
| 16-6 | 3.54 (3H, s), 3.86 (3H, s), 6.35 (1H, s), 6.82 (1H, d, J=9.2Hz), 6.9 (1H, broad)                                                         |
| 16-7 | 3.44 (3H, s), 3.88 (3H, s), 6.26 (1H, s), 7.29 (1H, d, J=8.9Hz), 7.63 (2H, m), 7.95 (3H, m), 8.09 (1H, 2d, J=1.7Hz, 8.6Hz), 8.71 (1H, s) |
| 17-1 | 2.39 (3H, s), 3.56 (3H, s), 3.97 (3H, s), 6.37 (1H, s), 7.28 (1H, d, J= 9.0 Hz)                                                          |
| 17-2 | 1.15 (6H, m), 3.56 (3H, s), 3.73 (2H, m), 3.95 (3H, s), 6.36 (1H, s), 7.28 (1H, d, J= 9.0 Hz)                                            |
| 17-3 | 3.51 (3H, s), 4.01 (3H, s), 4.10 (2H, m), 6.32 (1H, s), 7.24 (5H, m), 7.30 (1H, d, J= 8.6 Hz)                                            |
| 17-4 | 3.14 (3H, s), 3.83 (3H, s), 6.19 (1H, s), 7.46 (8H, m)                                                                                   |
| 17-5 | 3.14 (2H, m), 3.57 (5H, m), 3.96 (3H, s), 6.40 (1H, s), 7.28 (1H, d, J= 9.0 Hz)                                                          |

The compounds of the present invention exhibit excellent herbicidal effects when used as an active ingredient of a herbicide. The herbicide can be used for a wide range of applications, for example on crop lands such as paddy fields, upland farms, orchards and mulberry fields, and non-crop lands such as forests, farm roads, playgrounds, and factory sites. The application method may be suitably selected for soil treatment application and foliar application.

The compounds of the present invention are capable of controlling noxious weeds including grass (gramineae) such as barnyardgrass (*Echinochloa crus-galli*), large crabgrass (*Digitaria sanguinalis*), green foxtail (*Setaria viridis*), goosegrass (*Eleusine indica* L.), wild oat (*Avena fatua* L.), Johnsongrass (*Sorghum halepense*), quackgrass (*Agropyron repens*),  
alexandergrass (*Brachiaria plantaginea*), paragrass (*Panicum purpurascens*), sprangletop  
(*Leptochloa chinensis*) and red sprangletop (*Leptochloa panicea*); sedges (or Cyperaceae) such  
as rice flatsedge (*Cyperus iria* L.), purple nutsedge (*Cyperus rotundus* L.), Japanese bulrush  
(*Scirpus Juncoides*), flatsedge (*Cyperus serotinus*), small-flower umbrellaplant (*Cyperus*  
*difformis*), slender spikerush (*Eleocharis acicularis*), and water chestnut (*Eleocharis kuroguwai*);  
alismataceae such as Japanese ribbon wapato (*Sagittaria pygmaea*), arrow-head (*Sagittaria*  
*trifolia*) and narrowleaf waterplantain (*Alisma canaliculatum*); pontederiaceae such as  
monochoria (*Monochoria vaginalis*) and monochoria species (*Monochoria korsakowii*);  
scrophulariaceae such as false pimpernel (*Lindernia pyxidaria*) and abunome (*Dopatrium*  
*Junceum*); lythraceae such as toothcup (*Rotala indica*) and red stem (*Ammannia multiflora*); and  
broadleaves such as redroot pigweed (*Amaranthus retroflexus*), velvetleaf (*Abutilon theophrasti*),  
morningglory (*Ipomoea hederacea*), lambsquarters (*Chenopodium album*), prickly sida (*Sida*  
*spinosa* L.), common purslane (*Portulaca oleracea* L.), slender amaranth (*Amaranthus viridis*  
L.), sicklepod (*Cassia obtusifolia*), black nightshade (*Solanum nigrum* L.), pale smartweed  
(*Polygonum lapathifolium* L.), common chickweed (*Stellaria media* L.), common cocklebur  
(*Xanthium strumarium* L.), flexuous bittercress (*Cardamine flexuosa* WITH.), henbit (*Lamium*  
*amplexicaule* L.) and threeseeded copperleaf (*Acalypha australis* L.). Accordingly, it is useful  
for controlling noxious weeds non-selectively or selectively in the cultivation of a crop plant  
such as corn (*Zea mays* L.), soybean (*Glycine max* Merr.), cotton (*Gossypium* spp.), wheat  
(*Triticum* spp.), rice (*Oryza sativa* L.), barley (*Hordeum vulgare* L.), oat (*Avena sativa* L.), sorgo  
(*Sorghum bicolor* Moench), rape (*Brassica napus* L.), sunflower (*Helianthus annuus* L.), sugar  
beet (*Beta vulgaris* L.), sugar cane (*Saccharum officinarum* L.), Japanese lawngrass (*Zoysia*  
*Japonica stend*), peanut (*Arachis hypogaea* L.) or flax (*Linum usitatissimum* L.).

For use as herbicides, the active ingredients of this invention are formulated into herbicidal compositions by mixing herbicidally active amounts with inert ingredients known to the art to facilitate either the suspension, dissolution or emulsification of the active ingredient for the desired use. The type of formulation prepared recognizes the facts that formulation, crop and use pattern all can influence the activity and utility of the active ingredient in a particular use. Thus for agricultural use the present herbicidal compounds may be formulated as water dispersible granules, granules for direct application to soils, water soluble concentrates, wettable powders, dusts, solutions, emulsifiable concentrates (EC), microemulsion, suspoemulsion, invert emulsion or other types of formulations, depending on the desired weed targets, crops and application methods.

These herbicidal formulations may be applied to the target area (where suppression of unwanted vegetation is the objective) as dusts, granules or water or solvent diluted sprays. These formulation may contain as little as 0.1% to as much as 97% active ingredient by weight.

Dusts are admixtures of the active ingredient with finely ground materials such as clays (some examples include kaolin and montmorillonite clays), talc, granite dust or other organic or inorganic solids which act as dispersants and carriers for the active ingredient; these finely ground materials have an average particle size of less than 50 microns. A typical dust formulation will contain 1 % active ingredient and 99% carrier.

Wettable powders are composed of finely ground particles which disperse rapidly in water or other spray carriers. Typical carriers include kaolin clays, Fullers earth, silicas and other absorbent, wettable inorganic materials. Wettable powders can be prepared to contain from 1 to 90% active ingredient, depending on the desired use pattern and the absorbability of the carrier. Wettable powders typically contain wetting or dispersing agents to assist dispersion in water or other carriers.

Water dispersible granules are granulated solids that freely disperse when mixed in water. This formulation typically consists of the active ingredient (0.1% to 95% active ingredient), a wetting agent (1-15% by weight), a dispersing agent (1 to 15% by weight) and an inert carrier (1-95% by weight). Water dispersible granules can be formed by mixing the ingredients intimately then adding a small amount of water on a rotating disc (said mechanism is commercially available) and collecting the agglomerated granules. Alternatively, the mixture of ingredients may be mixed with an optimal amount of liquid (water or other liquid) and passed through an extruder (said mechanism is commercially available) equipped with passages which allow for the formation of small extruded granules. Alternatively, the mixture of ingredients can be granulated

using a high speed mixer (said mechanism is commercially available) by adding a small amount of liquid and mixing at high speeds to affect agglomeration. Alternatively, the mixture of ingredients can be dispersed in water and dried by spraying the dispersion through a heated nozzle in a process known as spray drying (spray drying equipment is commercially available).  
5 After granulation the moisture content of granules is adjusted to an optimal level (generally less than 5%) and the product is sized to the desired mesh size.

Granules are granulated solids that do not disperse readily in water, but instead maintain their physical structure when applied to the soil using a dry granule applicator. These granulated solids may be made of clay, vegetable material such as corn cob grits, agglomerated silicas or other agglomerated organic or inorganic materials or compounds such as calcium sulfate. The formulation typically consists of the active ingredient (1 to 20%) dispersed on or absorbed into the granule. The granule may be produced by intimately mixing the active ingredient with the granules with or without a sticking agent to facilitate adhesion of the active ingredient to the granule surface, or by dissolving the active ingredient in a solvent, spraying the dissolved active ingredient and solvent onto the granule then drying to remove the solvent. Granular formulations 10 are useful where in-furrow or banded application is desired.  
15

Emulsifiable concentrates (EC) are homogeneous liquids composed of a solvent or mixture of solvents such as xylenes, heavy aromatic naphthas, isophorone or other proprietary commercial compositions derived from petroleum distillates, the active ingredient and an emulsifying agent or agents. For herbicidal use, the EC is added to water (or other spray carrier)  
20 and applied as a spray to the target area. The composition of an EC formulation can contain 0.1% to 95% active ingredient, 5 to 95% solvent or solvent mixture and 1 to 20% emulsifying agent or mixture of emulsifying agents.

Suspension concentrate (also known as flowable) formulations are liquid formulations  
25 consisting of a finely ground suspension of the active ingredient in a carrier, typically water or a non-aqueous carrier such as an oil. Suspension concentrates typically contain the active ingredient (5 to 50% by weight), carrier, wetting agent, dispersing agent, anti-freeze, viscosity modifiers and pH modifiers. For application, suspension concentrates are typically diluted with water and sprayed on the target area.

30 Solution concentrates are solutions of the active ingredient (1 to 70%) in solvents which have sufficient solvency to dissolve the desired amount of active ingredient. Because they are simple solutions without other inert ingredients such as wetting agents, additional additives are usually added to the spray tank mix before spraying to facilitate proper application.

Microemulsions are solutions consisting of the active ingredient (1 to 30%) dissolved in a surfactant or emulsifier, without any additional solvents. There are no additional solvents added to this formulation. Microemulsions are particularly useful when a low odor formulation is required such as in residential turfgrass applications.

Suspoemulsions are combinations of two active ingredients. One active ingredient is made as a suspension concentrate (1-50% active ingredient) and the second active is made as a emulsifiable concentrate (0.1 to 20%). A reason for making this kind of formulation is the inability to make an EC formulation of the first ingredient due to poor solubility in organic solvents. The suspoemulsion formulation allows for the combination of the two active ingredients to be packaged in one container, thereby minimizing packaging waste and giving greater convenience to the product user.

The herbicidal compounds of this invention may be formulated or applied with insecticides, fungicides, acaricides, nematicides, fertilizers, plant growth regulators or other agricultural chemicals. Certain tank mix additives, such as spreader stickers, penetration aids, wetting agents, surfactants, emulsifiers, humectants and UV protectants may be added in amounts of 0.01% to 5% to enhance the biological activity, stability, wetting, spreading on foliage or uptake of the active ingredients on the target area or to improve the suspensibility, dispersion, redispersion, emulsifiability, UV stability or other physical or physico-chemical property of the active ingredient in the spray tank, spray system or target area.

The compositions of the present invention may be used in admixture with or in combination with other agricultural chemicals, fertilizers, adjuvants, surfactants, emulsifiers, oils, polymers or phytotoxicity-reducing agents such as herbicide safeners. In such a case, they may exhibit even better effects or activities. As other agricultural chemicals, herbicides, fungicides, antibiotics, plant hormones, plant growth regulators, insecticides, or acaricides may, for example, be mentioned. Especially with herbicidal compositions having the compounds of the present invention used in admixture with or in combination with one or more active ingredients of other herbicides, it is possible to improve the herbicidal activities, the range of application time(s) and the range of applicable weed types. Further, the compounds of the present invention and an active ingredient of another herbicide may be separately formulated so they may be mixed for use at the time of application, or both may be formulated together. The present invention covers such herbicidal compositions.

The blend ratio of the compounds of the present invention with the active ingredient of other herbicides can not generally be defined, since it varies depending on the time and method

of application, weather conditions, soil type and type of formulation. However one active ingredient of other herbicide may be incorporated usually in an amount of 0.01 to 100 parts by weight , per one part by weight of the compounds of the present invention. Further, the total dose of all of the active ingredients is usually from 1 to 10000 g/ha, preferably from 5 to 500 g/ha.

5 The present invention covers such herbicidal compositions.

As the active ingredients of other herbicides, the following (common name) may be mentioned. Herbicidal compositions having the compounds of the present invention used in combination with other herbicides, may occasionally exhibit a synergistic effect.

1. Those that are believed to exhibit herbicidal effects by disturbing auxin activities of plants, including a phenoxy acetic acid type such as 2,4-D, 2,4-DB, 2,4-DP, MCPA, MCPP, MCPB or naphroanilide (including the free acids, esters or salts thereof), an aromatic carboxylic type such as 2,3,6 TBA, dicamba, dichlobenil, a pyridine type such as picloram (including free acids and salts thereof), triclopyr or clopyralid and others such as naptalam, benazolin, quinclorac, quinmerac or diflufenzopyr (BAS 654H).

15 2. Those that are believed to exhibit herbicidal effects by inhibiting photosynthesis of plants including a urea type such as diuron, linuron, isoproturon, chlorotoluron, metobenzuron, tebuthiuron or fluometuron, a triazine type such as simazine , atrazine, cyanazine, terbutylazine, atraton, hexazinone, metribuzin, simetryn, ametryn, prometryn, dimethametryn or triaziflam, a uracil type such as bromacil, terbacil or lenacil, an anilide type such as propanil or cypromid, a carbamate type such as desmedipham or phenmedipham, a hydroxybenzonitrile type such as bromoxynil or ioxynil, and others such as pyridate, bentazon and methazole.

20 3. A quaternary ammonium salt type such as paraquat, diquat or difenzoquat, which is believed to be converted to free radicals by itself to form active oxygen in the plant and thus to exhibit quick herbicidal effects.

25 4. Those which are believed to exhibit herbicidal effects by inhibiting chlorophyll biosynthesis in plants and abnormally accumulating a photosensitizing peroxide substance in the plant body, including a diphenyl ether type such as nitrofen, lactofen, acifluorfen-sodium, oxyfluorfen, fomesafen, bifenoxy, or chlomethoxyfen, a cyclic imide type such as chlorphthalim, flumioxazin, cinidon-ethyl, or flumiclorac-pentyl, and others such as oxadiazon, sulfentrazone, thidiazimin, azafenidin, carfentrazone, isopropazole, fluthiacet-methyl, pentozacone, pyraflufen-ethyl and oxadiargyl.

30 5. Those which are believed to exhibit herbicidal effects characterized by whitening activities by inhibiting chromogenesis of plants such as carotenoids including a pyridazinone

type such as norflurazon, chloridazon or metflurazon, a pyrazol type such as pyrazolate, pyraoxyfen or benzofenap, and others such as fluridone, fluramone, diflufencam, methoxyphenone, clomazone, amitrole, sulcotrione, mesotrione, isoxaflutole and isoxachlortole.

6. Those which exhibit herbicidal effects specifically to gramineous plants including an  
aryloxyphenoxypropionic acid type (either as a mixture of isomers or as a resolved isomer) such  
as diclofop-methyl, pyrofenop-sodium, fluazifop butyl or fluazifop-p-butyl, haloxyfop-methyl,  
quizalofop p-ethyl, quizalafop p-tefuryl, fenoxaprop ethyl or fenoxaprop-p-ethyl, flamprop-M-  
methyl or flamprop-m-isopropyl or cyhalofop-butyl and a cyclohexanedione type such as  
alloxydim-sodium, sethoxydim, clethodim, tepraloxydim or tralkoxydim.

10 7. Those which are believed to exhibit herbicidal effects by inhibiting amino acid  
biosynthesis of plants, including a sulfonylurea type such as chlorimuron-ethyl, nicosulfuron,  
metsulfuron-methyl, triasulfuron, primisulfuron, tribenuron-methyl, chlorosulfuron, bensulfuron-  
methyl, sulfometuron-methyl, prosulfuron, halosulfuron or halosulfuron-methyl, thifensulfuron-  
methyl, rimsulfuron, azimsulfuron, flazasulfuron, imazosulfuron, cyclosulfamuron,  
15 flupyrifos, iodosulfuron, ethoxysulfuron, flucarbazone, sulfosulfuron, oxasulfuron a  
triazolopyrimidinesulfonamide type such as flumetsulam, metosulam, chloransulam or  
chloransulam-methyl, an imidazolinone type such as imazapyr, imazethapyr, imazaquin,  
imazamox, imazameth, imazamethabenz methyl, a pyrimidinesalicylic acid type such as  
pyrthiobac-sodium, bispyribac-sodium, pyriminobac-methyl or pyribenzoxim (LGC-40863), and  
20 others such as glyphosate, glyphosate-ammonium, glyphosate-isopropylamine or sulfosate.

8. Those which are believed to exhibit herbicidal effects by interfering with the normal  
metabolism of inorganic nitrogen assimilation such as glufosinate, glufosinate-ammonium,  
phosphinothrinicin or bialaphos.

9. Those which are believed to exhibit herbicidal effects by inhibiting cell division of  
25 plant cells, including a dinitroaniline type such as trifluralin, oryzalin, nitralin, pendamethalin,  
ethafluralin, benefin and prodiamine, an amide type such as bensulide, napronamide, and  
pronamide, a carbamate type such as propanil, chlorpropanil, barban, and asulam, an  
organophosphorous type such as amiprofos-methyl or butamifos and others such as DCPA and  
dithiopyr.

30 10. Those which are believed to exhibit herbicidal effects by inhibiting protein synthesis  
of plant cells, including a chloroacetanilide type such as alachlor, metolachlor (including  
combinations with safeners such as benoxacor, or resolved isomeric mixtures of metolachlor  
including safeners such as benoxacor) propachlor, acetochlor (including combinations with

herbicide safeners such as dichlormid or MON 4660 or resolved isomeric mixtures of acetochlor containing safeners such as dichlormid or MON 4660), propisochlor or dimethenamid or an oxyacetamide type such as flufenacet.

11. Those in which the mode of action causing the herbicidal effects are not well understood  
5 including the dithiocarbamates such as thiobencarb, EPTC, diallate, triallate, molinate, pebulate, cycloate, butylate, vernolate or prosulfocarb and miscellaneous herbicides such as MSMA, DSMA, endothall, ethofumesate, sodium chlorate, pelargonic acid and fosamine.

A few formulation examples of the present invention are given as follows.

Formulation example 1. Emulsifiable Concentrate

| Ingredient                  | Chemical Name                                   | Supplier           | Function          | % wt./wt.  |
|-----------------------------|-------------------------------------------------|--------------------|-------------------|------------|
| Trade Name<br>Compound 2-75 |                                                 |                    | Active Ingredient | 5.0        |
| Toximul H-A                 | Calcium sulfonate and nonionic surfactant blend | Stepan Co.         | Emulsifier        | 2.5        |
| Toximul D-A                 | Calcium sulfonate and nonionic surfactant blend | Stepan Co.         | Emulsifier        | 7.5        |
| Aromatic 200                | Aromatic hydrocarbon                            | Exxon Chemical Co. | Solvent           | QS to 100% |

10

Formulation example 2. Suspension Concentrate

| Ingredient                  | Chemical Name                       | Supplier      | Function          | % wt./wt. |
|-----------------------------|-------------------------------------|---------------|-------------------|-----------|
| Trade Name<br>Compound 2-75 |                                     |               | Active Ingredient | 10.00     |
| Proylene glycol             |                                     |               | Anti-freeze       | 5.00      |
| Antifoam 1530               | Silicone defoamer                   | Dow Corning   | Anti-foam         | 0.50      |
| Rhodopol 23                 | Xanthan gum                         | Rhone-Poulenc | Suspending Aid    | 0.25      |
| Morwet D-425                | Naphthalene formaldehyde condensate | Witco Corp.   | Dispersant        | 3.00      |
| Igepal CA-720               | Octylphenol ethoxylate              | Rhone-Poulenc | Wetting agent     | 3.00      |
| Proxel GXL                  | 1,2 benziso-thiazolin-3-one         | ICI Americas  | Preservative      | 0.25      |
| Water                       |                                     |               | Diluent           | 68.00     |

Formulation example 3. Wettable Powder

| Ingredient                  | Chemical Name                     | Supplier      | Function          | % wt./wt. |
|-----------------------------|-----------------------------------|---------------|-------------------|-----------|
| Trade Name<br>Compound 2-75 |                                   |               | Active Ingredient | 50.00     |
| Geropon T-77                | Sodium -N-methyl-N-oleoyl taurate | Rhone-Poulenc | Wetting agent     | 3.00      |

|                         |                                      |                             |                      |               |
|-------------------------|--------------------------------------|-----------------------------|----------------------|---------------|
| Lomar PW<br>Kaolin clay | Naphthalene Sulfonate<br>Kaolin clay | Henkel Corp.<br>J. M. Huber | Dispersant<br>Filler | 5.00<br>42.00 |
|-------------------------|--------------------------------------|-----------------------------|----------------------|---------------|

Formulation example 4. Water Dispersible Granule

| Ingredient<br>Trade Name    | Chemical<br>Name                    | Supplier        | Function                           | %<br>wt./wt.  |
|-----------------------------|-------------------------------------|-----------------|------------------------------------|---------------|
| Compound 2-75<br>Morwet EFW |                                     |                 | Active Ingredient<br>Wetting agent | 50.00<br>2.00 |
| Morwet D-425                | Naphthalene formaldehyde condensate | Witco Corp.     | Dispersant                         | 10.00         |
| ASP 400                     | Kaolin Clay                         | Engelhard Corp. | Filler                             | 38.00         |

Test Example

5 A standard greenhouse herbicide activity screening system was used to evaluate the herbicidal efficacy and crop safety of these test compounds. Seven broadleaf weed species including redroot pigweed (*Amaranthus retroflexus*, AMARE), velvetleaf (*Abutilon theophrasti*, ABUTH), sicklepod (*Cassia obtusifolia*, CASOB), ivyleaf morningglory (*Ipomoea hederacea*, IPOHE), lambsquarters (*Chenopodium album*, CHEAL), common ragweed (*Ambrosia artemisiifolia* L., AMBEL), and cocklebur (*Xanthium strumarium*, XANST) were used as test species. Four grass weed species including green foxtail (*Setaria viridis*, SETVI), barnyardgrass (*Echinochloa crus-galli*, ECHCG), johnsongrass (*Sorghum halepense*, SORHA), and large crabgrass (*Digitaria sanguinalis*, DIGSA) were also used. In addition, three crop species, field corn (*Zea mays* L., var. Dekalb 535, CORN), soybean (*Glycine max* L., var. Pella 86, SOY), and upland rice (*Oryza sp.*, var. Tebonnet, RICE) were included.

Pre-emerge test

20 All plants were grown in 10 cm square plastic pots which were filled with a sandy loam soil mix. For pre-emerge tests, seeds were planted one day prior to application of the test compounds. For post-emerge tests, seeds were planted 8-21 days prior to the test to allow emergence and good foliage development prior to application of the test substances. At the time of the post-emerge application, plants of all species were usually at the 2-3 leaf stage of development.

25 All test compounds were dissolved in acetone and applied to the test units in a volume of 187 l/ha. Test materials were applied at rates ranging from 15 g ai/ha to 1000 g ai/ha using a track sprayer equipped with a TJ8001E even flow flat fan spray nozzle. Plants were arranged on a shelf so that the top of the canopy (post-emerge) or top of the soil surface (pre-emerge) was 40-

45 cm below the nozzle. Pressurized air was used to force the test solution through the nozzle as it was mechanically advanced (via electrically driven chain drive) over the top of all test plants/pots. This application simulates a typical commercial field herbicide application.

Post-emerge test

In the post-emerge test, a commercial non-ionic surfactant was also included (0.25% v/v) to enhance wetting of the leaf surfaces of target plants. Immediately after application, test units of the pre-emerge applications were watered at the soil surface to incorporate the test materials. Subsequently, these test units were bottom-watered. Post-emerge test units were always bottom-watered.

At 14 days after application of the test materials, phytotoxicity ratings were recorded. A rating scale of 0-100 was used as previously described in *Research Methods in Weed Science*, 2nd edition, B. Truelove, Ed., Southern Weed Science Society, Auburn University, Auburn, Alabama, 1977. Briefly, "0" corresponds to no damage and "100" corresponds to complete death of all plants in the test unit. This scale was used both to determine efficacy against weed species of all plants in the test unit. Herbicide activity data for various compounds of this invention, which are shown by compound No. in Tables 1-8, are shown in Tables 11 and 12. The data demonstrate significant differences between compounds for both efficacy against weeds and selectivity for crop species. For selected compounds, excellent activity against a majority of the weed species was observed with minimal damage to at least one of the crop species.

Following table XIX shows comparative data for the pre-emerge herbicidal activity of compound 1.4 of present invention and the compound 2 reported in the Japanese patent Toku Kai Hei 5-25144 (1993). The data clearly shows the high level of activity observed with compound 1.4.



25

**Table XIX**  
**Comparative herbicidal activity of compounds 1.4 and 2**

| Cmpd no. | Rate (g ai/ha) | AMARE | ABUTH | CASOB | IPOHE | CHEAL | XANST | SETVI | ECHCG | SORHA | DIGSA | MAIZE | SOY | RICE |
|----------|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|------|
| 1.4      | 3.9            | 30    | 95    | 0     | 0     | 30    | 0     | 0     | 0     | 0     | 30    | 0     | 0   | 0    |
|          | 7.8            | 100   | 100   | 30    | 0     | 60    | 0     | 60    | 0     | 0     | 30    | 0     | 0   | 10   |
|          | 15.6           | 90    | 100   | 100   | 0     | 100   | 20    | 80    | 0     | 0     | 30    | 0     | 0   | 20   |
|          | 31.3           | 100   | 100   | 0     | 50    | 100   | 10    | 80    | 10    | 30    | 30    | 0     | 15  | 0    |

|   |      |     |     |     |     |     |    |     |     |     |     |    |     |    |
|---|------|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|----|-----|----|
|   | 62.5 | 100 | 100 | 80  | 90  | 100 | 50 | 100 | 30  | 40  | 95  | 0  | 40  | 50 |
|   | 125  | 100 | 100 | 95  | 100 | 100 | 50 | 100 | 95  | 95  | 100 | 40 | 90  | 60 |
|   | 250  | 100 | 100 | 100 | 100 | 100 | 90 | 100 | 100 | 100 | 100 | 95 | 100 | 65 |
| 2 | 3.9  | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 0   | 0   | 0   | 0  | 0   | 0  |
|   | 7.8  | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 0   | 0   | 0   | 0  | 0   | 0  |
|   | 15.6 | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 0   | 0   | 0   | 0  | 0   | 0  |
|   | 31.3 | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 0   | 0   | 0   | 0  | 0   | 0  |
|   | 62.5 | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 0   | 0   | 0   | 0  | 0   | 0  |
|   | 125  | 0   | 0   | 30  | 0   | 30  | 0  | 0   | 0   | 0   | 0   | 0  | 0   | 0  |
|   | 250  | 0   | 50  | 50  | 0   | 50  | 60 | 0   | 0   | 0   | 0   | 0  | 0   | 15 |

Tables XX and XXI show pre-emerge and post-emerge herbicidal activity data respectively for a few representative examples of the compounds described herein.

TABLE XX

## Pre-emerge Herbicidal Activity

| Cmpd. no. | Rate g ai/ha | AMARE | ABUTH | CASOB | IPOHE | CHEAL | AMBEL | SETVI | ECHCG | SORHA | DIGSA | SOY | CORN | RICE |
|-----------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|------|------|
| 1-2       | 63           | 0     | 50    | 90    | 0     | 0     | ---   | 20    | 0     | 0     | 0     | 0   | 0    | 0    |
|           | 250          | 0     | 10    | 100   | 0     | 0     | ---   | 0     | 0     | 85    | 100   | 90  | 70   | 60   |
| 1-4       | 63           | 100   | 100   | 90    | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100 | 100  | 80   |
|           | 250          | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100 | 100  | 0    |
| 1-5       | 63           | 20    | 30    | 0     | 0     | 60    | 0     | 0     | 0     | 0     | 0     | 0   | 0    | 10   |
|           | 250          | 95    | 100   | 0     | 10    | 100   | 20    | 90    | 0     | 20    | 70    | 10  | 0    | 95   |
| 1-9       | 63           | 100   | 100   | 100   | 100   | 0     | 30    | 0     | 0     | 0     | 0     | 0   | 0    | 0    |
| 1-10      | 63           | 70    | 100   | 20    | 0     | 30    | 0     | 0     | 0     | 0     | 0     | 30  | 50   | 0    |
|           | 250          | 100   | 100   | 50    | 60    | 100   | 60    | 100   | 0     | 0     | 90    | 10  | 0    | 20   |
| 1-11      | 63           | 100   | 100   | 20    | 20    | 100   | 50    | 80    | 0     | 90    | 90    | 70  | 60   | 70   |
|           | 250          | 100   | 100   | 60    | 90    | 100   | 100   | 100   | 95    | 98    | 100   | 70  | 60   | 95   |
| 1-13      | 63           | 100   | 100   | 80    | 100   | 100   | 100   | 100   | 90    | 95    | 100   | 100 | 95   | 100  |
|           | 250          | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100 | 100  | 0    |
| 1-15      | 63           | 0     | 20    | 0     | 0     | 40    | ---   | 70    | 0     | 0     | 0     | 0   | 0    | 30   |
|           | 250          | 20    | 90    | 0     | 0     | 50    | ---   | 80    | 0     | 20    | 90    | 0   | 0    | 0    |
| 1-16      | 63           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0   | 0    | 0    |
|           | 250          | 0     | 0     | 0     | 0     | 70    | 0     | 0     | 0     | 0     | 0     | 0   | 40   | 30   |
| 1-18      | 63           | 100   | 100   | 70    | 100   | 100   | ---   | 95    | 0     | 70    | 70    | 100 | 95   | 70   |
|           | 250          | 100   | 100   | 100   | 100   | 100   | ---   | 100   | 90    | 90    | 95    | 60  | 50   | 80   |
| 1-19      | 63           | 95    | 100   | 90    | 60    | 100   | ---   | 100   | 100   | 100   | 100   | 70  | 80   | 95   |
|           | 250          | 100   | 100   | 100   | 100   | 100   | ---   | 100   | 100   | 100   | 100   | 15  | 60   | 0    |
| 1-20      | 63           | 100   | 100   | 100   | 40    | 100   | ---   | 80    | 50    | 30    | 50    | 70  | 65   | 70   |
|           | 250          | 100   | 100   | 100   | 100   | 100   | ---   | 100   | 100   | 70    | 90    | 0   | 0    | 0    |
| 1-21      | 63           | 98    | 70    | 0     | 0     | 100   | 0     | 95    | 0     | 0     | 0     | 0   | 0    | 10   |
|           | 250          | 100   | 100   | 0     | 40    | 100   | 100   | 100   | 95    | 90    | 100   | 0   | 0    | 0    |
| 1-22      | 63           | 95    | 100   | 0     | 0     | 95    | ---   | 100   | 60    | 60    | 60    | 20  | 10   | 50   |
|           | 250          | 100   | 100   | 0     | 20    | 100   | ---   | 100   | 0     | 0     | 0     | 0   | 0    | 10   |
| 1-30      | 63           | 0     | 50    | 0     | 0     | 85    | ---   | 10    | 0     | 0     | 0     | 20  | 10   | 30   |
|           | 250          | 60    | 100   | 70    | 70    | 100   | ---   | 100   | 0     | 10    | 90    | 0   | 0    | 0    |
| 1-31      | 63           | 80    | 100   | 70    | 0     | 95    | ---   | 50    | 0     | 0     | 0     | 0   | 0    | 10   |
|           | 250          | 100   | 100   | 95    | 80    | 100   | ---   | 100   | 40    | 90    | 90    | 50  | 20   | 0    |
| 1-32      | 63           | 0     | 90    | 40    | 0     | 90    | 0     | 0     | 0     | 0     | 0     | 20  | 0    | 40   |
|           | 250          | 100   | 100   | 40    | 50    | 100   | 50    | 100   | 95    | 30    | 100   | 90  | 15   | 60   |
| 1-37      | 63           | 100   | 100   | 80    | 100   | 100   | ---   | 100   | 90    | 90    | 100   | 100 | 90   | 90   |
|           | 250          | 100   | 100   | 100   | 100   | 100   | ---   | 100   | 100   | 100   | 100   | 80  | 70   | 90   |
| 1-38      | 63           | 100   | 100   | 100   | 100   | 100   | ---   | 100   | 100   | 100   | 100   | 90  | 90   | 100  |
|           | 250          | 100   | 100   | 100   | 100   | 100   | ---   | 100   | 100   | 100   | 100   | 100 | 0    | 10   |
| 1-51      | 63           | 90    | 90    | 0     | 50    | 90    | 30    | 30    | 0     | 10    | 20    | 10  | 0    | 10   |
|           | 250          | 100   | 100   | 30    | 80    | 100   | 80    | 90    | 50    | 60    | 90    | 60  | 70   | 70   |
| 1-53      | 63           | 100   | 100   | 0     | 50    | 100   | 50    | 50    | 0     | 50    | 40    | 50  | 95   | 50   |
|           | 250          | 100   | 100   | 50    | 95    | 100   | 90    | 95    | 80    | 90    | 90    | 90  | 100  | 90   |
| 1-54      | 63           | 100   | 100   | 30    | 100   | 100   | 100   | 90    | 45    | 80    | 80    | 100 | 100  | 95   |
|           | 250          | 100   | 100   | 80    | 100   | 100   | 100   | 100   | 100   | 100   | 100   | 100 | 100  | 95   |
| 1-55      | 63           | 70    | 90    | 0     | 0     | 95    | ---   | 0     | 10    | 20    | 50    | 0   | 10   | 0    |
|           | 250          | 70    | 90    | 0     | 0     | 95    | ---   | 0     | 10    | 20    | 50    | 0   | 10   | 30   |
| 1-59      | 63           | 100   | 100   | 30    | 100   | 100   | ---   | 30    | 0     | 30    | 30    | 70  | 30   | 70   |
|           | 250          | 100   | 100   | 80    | 100   | 100   | ---   | 90    | 70    | 85    | 90    | 90  | 50   | 40   |
| 1-60      | 63           | 100   | 100   | 70    | 90    | 100   | ---   | 100   | 95    | 75    | 70    | 40  | 30   | 50   |
|           | 250          | 100   | 100   | 100   | 100   | 100   | 60    | 95    | 75    | 70    | 40    | 30  | 60   | 50   |
| 1-61      | 63           | 95    | 100   | 30    | 60    | 100   | 100   | 100   | 99    | 99    | 99    | 90  | 95   | 95   |
|           | 250          | 100   | 100   | 80    | 90    | 100   | 100   | 100   | 40    | 50    | 80    | 0   | 10   | 80   |
| 1-63      | 63           | 100   | 100   | 20    | 20    | 100   | ---   | 100   | 100   | 99    | 100   | 30  | 90   | 95   |
|           | 250          | 100   | 100   | 90    | 95    | 100   | 50    | 80    | 10    | 30    | 20    | 50  | 30   | 80   |
| 2-1       | 63           | 60    | 100   | 80    | 95    | 90    | 50    | 80    | 10    | 30    | 20    | 50  | 80   | 90   |
|           | 250          | 100   | 100   | 100   | 100   | 100   | 100   | 95    | 70    | 70    | 100   | 100 | 100  | 10   |
| 2-2       | 63           | 100   | 100   | 60    | 90    | 100   | 40    | 90    | 30    | 60    | 50    | 50  | 70   | 50   |
|           | 250          | 100   | 100   | 90    | 100   | 100   | 100   | 100   | 90    | 90    | 95    | 90  | 40   | 20   |
| 2-3       | 63           | 100   | 100   | 60    | 60    | 100   | ---   | 90    | 0     | 10    | 30    | 40  | 60   | 50   |
|           | 250          | 100   | 100   | 100   | 100   | 100   | ---   | 100   | 40    | 30    | 60    | 80  | 30   | 50   |

|      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 2-4  | 63  | 80  | 30  | 0   | 20  | 50  | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|      | 250 | 95  | 100 | 0   | 70  | 100 | --- | 80  | 0   | 0   | 50  | 20  | 20  | 20  | 10  |
| 2-5  | 63  | 90  | 100 | 40  | 90  | 100 | --- | 100 | 10  | 60  | 50  | --- | 10  | 70  | 80  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 90  | 90  | 95  | --- | --- | 0   | 0   |
| 2-6  | 63  | 0   | 0   | 0   | 0   | 0   | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|      | 250 | 50  | 0   | 0   | 0   | 0   | --- | 80  | 0   | 20  | 10  | 0   | 0   | 0   | 0   |
| 2-7  | 63  | 90  | 100 | 60  | 70  | 100 | --- | 95  | 40  | 90  | 95  | 70  | 10  | 60  | 50  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 95  | 100 | 95  | 70  | 90  | 50  |
| 2-8  | 63  | 40  | 0   | 0   | 0   | 60  | --- | 90  | 0   | 40  | 80  | 60  | 15  | 15  | 50  |
|      | 250 | 100 | 100 | 0   | 100 | 100 | --- | 90  | 0   | 40  | 80  | 60  | 15  | 15  | 50  |
| 2-10 | 63  | 50  | 100 | 50  | 60  | 100 | 100 | 40  | 0   | 90  | 45  | 0   | 0   | 0   | 0   |
|      | 250 | 100 | 100 | 90  | 100 | 100 | 100 | 95  | 80  | 95  | 100 | 40  | 30  | 0   | 0   |
| 2-11 | 63  | 30  | 90  | 0   | 70  | 100 | --- | 0   | 0   | 0   | 0   | 0   | 0   | 10  | 50  |
|      | 250 | 100 | 100 | 60  | 100 | 100 | --- | 100 | 40  | 50  | 60  | 20  | 10  | 0   | 0   |
| 2-12 | 63  | 0   | 50  | 30  | 40  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|      | 250 | 0   | 70  | 40  | 70  | 30  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 2-14 | 63  | 50  | 90  | 0   | 0   | 50  | --- | 60  | 0   | 0   | 0   | 0   | 0   | 0   | 30  |
|      | 250 | 100 | 100 | 60  | 100 | 100 | --- | 100 | 0   | 30  | 20  | 60  | 0   | 0   | 30  |
| 2-15 | 63  | 0   | 20  | 0   | 20  | 60  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 10  |
|      | 250 | 80  | 90  | 0   | 30  | 40  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 2-16 | 63  | 50  | 80  | 0   | 0   | 95  | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 15  |
|      | 250 | 100 | 100 | 100 | 90  | 100 | --- | 100 | 40  | 80  | 100 | 0   | 20  | 0   | 0   |
| 2-18 | 63  | 40  | 0   | 0   | 0   | 10  | --- | 0   | 0   | 0   | 0   | 0   | 30  | 0   | 20  |
|      | 250 | 100 | 100 | 40  | 40  | 90  | --- | 80  | 0   | 0   | 0   | 0   | 5   | 10  | 10  |
| 2-19 | 63  | 80  | 90  | 0   | 10  | 95  | --- | 20  | 0   | 0   | 40  | 30  | 5   | 40  | 60  |
|      | 250 | 100 | 100 | 10  | 100 | 100 | --- | 100 | 50  | 60  | 100 | 90  | 25  | 60  | 80  |
| 2-23 | 63  | 100 | 100 | 70  | 100 | 100 | 100 | 100 | 100 | 90  | 100 | 90  | 100 | 95  | 90  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 95  | 100 | 90  | 95  | 90  | 90  |
| 2-24 | 63  | 100 | 100 | 90  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 98  | 99  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 0   | 0   |
| 2-26 | 63  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|      | 250 | 80  | 0   | 0   | 0   | 90  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 2-27 | 63  | 100 | 100 | 60  | 80  | 100 | 100 | 100 | 50  | 30  | 95  | 30  | 20  | 70  | 90  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 80  | 100 | 70  | 90  | 90  | 90  |
| 2-28 | 63  | 100 | 100 | 5   | 80  | 100 | --- | 50  | 0   | 10  | 50  | 10  | 0   | 60  | 70  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 20  | 50  | 90  | 70  | 10  | 0   | 70  |
| 2-29 | 63  | 100 | 100 | 60  | 30  | 100 | 0   | 100 | 0   | 0   | 60  | 0   | 0   | 45  | 65  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | 0   | 60  | 100 | 80  | 90  | 45  | 15  | 0   | 0   |
| 2-30 | 63  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|      | 250 | 0   | 20  | 0   | 0   | 70  | 0   | 20  | 0   | 0   | 0   | 0   | 0   | 20  | 40  |
| 2-31 | 63  | 100 | 100 | 100 | 100 | 100 | --- | 100 | 40  | 60  | 90  | 70  | 20  | 40  | 90  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 85  | 100 | 100 | 40  | 80  | 80  |
| 2-32 | 63  | 100 | 100 | 95  | 100 | 100 | --- | 100 | 99  | 90  | 100 | 90  | 95  | 99  | 99  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 10  | 70  | 70  |
| 2-33 | 63  | 100 | 100 | 100 | 100 | 100 | --- | 100 | 95  | 90  | 100 | 90  | 90  | 80  | 80  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 95  | 90  | 100 | 90  | 90  | 40  | 40  |
| 2-34 | 63  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99  | 85  | 100 | 90  | 90  | 90  | 90  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99  | 85  | 100 | 90  | 90  | 0   | 0   |
| 2-36 | 63  | 100 | 100 | 10  | 0   | 90  | 0   | 25  | 0   | 0   | 0   | 0   | 0   | 0   | 40  |
|      | 250 | 100 | 100 | 70  | 60  | 100 | 30  | 90  | 10  | 20  | 30  | 10  | 0   | 0   | 0   |
| 2-37 | 63  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|      | 250 | 30  | 30  | 0   | 0   | 50  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 2-39 | 63  | 100 | 100 | 100 | 95  | 100 | 100 | 100 | 90  | 60  | 99  | 70  | 70  | 90  | 90  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 85  | 60  | 90  | 95  | 50  | 95  |
| 2-40 | 63  | 100 | 100 | 80  | 90  | 100 | 100 | 100 | 85  | 100 | 100 | 100 | 100 | 95  | 100 |
|      | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 95  | 50  | 30  | 70  | 80  | 35  | 50  |
| 2-41 | 63  | 100 | 100 | 80  | 90  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 95  | 90  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 85  | 90  |
| 2-42 | 63  | 100 | 100 | 80  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 98  | 99  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 20  |
| 2-44 | 63  | 100 | 100 | 60  | 90  | 100 | 100 | 100 | 99  | 30  | 50  | 60  | 80  | 10  | 20  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99  | 95  | 100 | 100 | 100 | 70  | 80  |
| 2-45 | 63  | 70  | 0   | 0   | 0   | 60  | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|      | 250 | 100 | 70  | 0   | 0   | 90  | --- | 30  | 0   | 0   | 0   | 0   | 0   | 0   | 20  |
| 2-46 | 63  | 100 | 50  | 30  | 0   | 100 | --- | 90  | 0   | 30  | 30  | 30  | 30  | 0   | 70  |
|      | 250 | 100 | 100 | 100 | 60  | 100 | --- | 100 | 50  | 90  | 70  | 100 | 90  | 40  | 70  |
| 2-47 | 63  | 100 | 100 | 90  | 100 | 100 | 100 | 100 | 99  | 90  | 100 | 100 | 99  | 95  | 95  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 95  | 95  | 100 | 90  | 90  | 90  |
| 2-48 | 63  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 85  | 95  | 95  | 100 | 90  | 90  |

|       |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 95  | 100 | 100 | 99  | 99  |
| 2-49  | 63  | 100 | 100 | 0   | 0   | 100 | 100 | 80  | 0   | 0   | 20  | 0   | 0   | 20  |
|       | 250 | 100 | 100 | 100 | 90  | 100 | 100 | 95  | 10  | 0   | 100 | 40  | 15  | 60  |
|       | 250 | 100 | 100 | 60  | 70  | 100 | 60  | 90  | 10  | 30  | 70  | 90  | 5   | 25  |
| 2-50  | 63  | 100 | 100 | 100 | 60  | 70  | 100 | 100 | 100 | 80  | 100 | 100 | 70  | 90  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 70  | 90  |
| 2-52  | 63  | 100 | 10  | 0   | 0   | 50  | 0   | 40  | 0   | 0   | 0   | 0   | 0   | 0   |
| 2-53  | 63  | 100 | 100 | 95  | 100 | 100 | 80  | 100 | 40  | 40  | 90  | 95  | 25  | 80  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99  | 100 | 100 | 100 | 90  | 90  |
| 2-54  | 63  | 100 | 100 | 100 | 85  | 100 | 100 | 100 | 90  | 90  | 100 | 100 | 98  | 90  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 98  | 90  |
| 2-56  | 63  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99  | 100 | 40  | 80  | 30  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 90  | 95  | 95  |
| 2-58  | 63  | 100 | 100 | 30  | 20  | 100 | 50  | 100 | 50  | 70  | 90  | 15  | 40  | 80  |
|       | 250 | 100 | 100 | 99  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 95  | 95  |
| 2-59  | 63  | 100 | 100 | 30  | 20  | 100 | 50  | 100 | 40  | 40  | 70  | 10  | 10  | 25  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 90  | 100 | 100 | 70  | 75  |
| 2-61  | 63  | 100 | 100 | 40  | 90  | 100 | 80  | 10  | 85  | 80  | 90  | 30  | 10  | 75  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 80  | 95  | 95  |
| 2-63  | 63  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 95  | 90  | 100 | 95  | 60  | 95  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| 2-64  | 63  | 90  | 100 | 0   | 0   | 90  | 0   | 100 | 0   | 10  | 40  | 0   | 0   | 10  |
|       | 250 | 100 | 100 | 100 | 40  | 100 | 60  | 100 | 60  | 50  | 70  | 20  | 35  | 60  |
| 2-66  | 63  | 100 | 100 | 35  | 40  | 100 | 0   | 95  | 0   | 20  | 60  | 10  | 0   | 10  |
|       | 250 | 100 | 100 | 90  | 80  | 100 | 60  | 100 | 60  | 95  | 99  | 20  | 15  | 60  |
| 2-67  | 63  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 50  | 80  | 100 | 100 | 90  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99  | 90  |
| 2-69  | 63  | 90  | 100 | 0   | 0   | 100 | 50  | 70  | 0   | 0   | 20  | 0   | 0   | 20  |
|       | 250 | 100 | 100 | 80  | 40  | 100 | 60  | 95  | 10  | 30  | 90  | 0   | 10  | 30  |
| 2-70  | 63  | 70  | 100 | 0   | 0   | 80  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 90  | 40  | 60  | 100 | 30  | 60  | 0   | 0   | 20  | 10  | 0   | 10  |
| 2-72  | 63  | 100 | 100 | 30  | 20  | 100 | 0   | 60  | 0   | 0   | 30  | 0   | 0   | 10  |
|       | 250 | 100 | 100 | 90  | 20  | 100 | 50  | 100 | 50  | 50  | 100 | 50  | 5   | 40  |
| 2-73  | 63  | 100 | 100 | 100 | 90  | 100 | --- | 100 | 90  | 75  | 100 | 100 | 100 | 100 |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 95  | 100 |
| 2-74  | 63  | 100 | 100 | 40  | 0   | 100 | --- | 70  | 0   | 0   | 20  | 0   | 0   | 30  |
|       | 250 | 100 | 100 | 70  | 50  | 100 | --- | 100 | 100 | 100 | 100 | 100 | 40  | 60  |
| 2-75  | 63  | 100 | 100 | 100 | 20  | 100 | --- | 100 | 20  | 20  | 70  | 0   | 0   | 30  |
|       | 250 | 100 | 100 | 100 | 60  | 100 | --- | 100 | 100 | 60  | 100 | 20  | 0   | 80  |
| 2-77  | 63  | 70  | 30  | 0   | 0   | 90  | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 100 | 30  | 30  | 100 | --- | 60  | 0   | 0   | 30  | 20  | 0   | 20  |
| 2-78  | 63  | 100 | 100 | 100 | 20  | 100 | --- | 90  | 10  | 10  | 30  | 10  | 0   | 40  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 80  | 100 | 100 | 10  | 95  |
| 2-81  | 63  | 100 | 100 | 90  | 60  | 100 | --- | 100 | 70  | 90  | 100 | 70  | 0   | 70  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 90  | 100 | 80  | 90  | 90  |
| 2-82  | 63  | 100 | 100 | 80  | 0   | 100 | --- | 80  | 0   | 0   | 30  | 0   | 0   | 10  |
|       | 250 | 100 | 100 | 100 | 0   | 100 | --- | 100 | 0   | 20  | 80  | 0   | 0   | 0   |
| 2-83  | 63  | 60  | 10  | 0   | 0   | 30  | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 100 | 0   | 0   | 90  | --- | 40  | 0   | 20  | 30  | 0   | 0   | 0   |
| 2-84  | 63  | 80  | 0   | 0   | 0   | 40  | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 80  | 0   | 0   | 100 | --- | 50  | 0   | 0   | 0   | 0   | 0   | 0   |
| 2-86  | 63  | 100 | 100 | 100 | 90  | 100 | --- | 100 | 95  | 99  | 100 | 20  | 95  | 90  |
|       | 250 | 100 | 100 | 95  | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 99  | 99  |
| 2-87  | 63  | 100 | 100 | 100 | 90  | 100 | --- | 90  | 60  | 50  | 100 | 15  | 5   | 40  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 90  | 85  | 100 | 100 | 75  | 90  |
| 2-89  | 63  | 100 | 100 | 95  | 95  | 100 | --- | 100 | 50  | 60  | 99  | 20  | 10  | 40  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 90  | 90  | 100 | 40  | 30  | 90  |
| 2-92  | 63  | 50  | 100 | 40  | 30  | 100 | --- | 30  | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 90  | 20  | 40  | 20  | 90  | 20  | 10  |
| 2-98  | 63  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 80  | 30  | 30  | 40  | 50  | 60  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 90  | 90  |
| 2-100 | 63  | 100 | 100 | 30  | 100 | 100 | 100 | 90  | 100 | 70  | 85  | 90  | 100 | 45  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 95  | 90  |
| 2-102 | 63  | 30  | 0   | 0   | 0   | 0   | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 0   | 0   | 0   | 0   | 0   | --- | 0   | 0   | 0   | 0   | 0   | 10  | 50  |
| 2-105 | 63  | 100 | 100 | 30  | 20  | 100 | --- | 100 | 20  | 40  | 90  | 0   | 10  | 70  |
|       | 250 | 100 | 100 | 60  | 95  | 100 | --- | 100 | 100 | 95  | 100 | 0   | 0   | 40  |
| 2-115 | 63  | 100 | 100 | 20  | 0   | 100 | --- | 90  | 80  | 20  | 90  | 0   | 0   | 40  |
|       | 125 | 100 | 100 | 80  | 90  | 100 | --- | 99  | 95  | 30  | 100 | 0   | 0   | 30  |
| 2-117 | 63  | 90  | 100 | 80  | 100 | 100 | --- | 30  | 10  | 10  | 30  | 10  | 10  | 30  |

|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 70  | 60  | 90  | 95  | 35  | 90  |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 2-118 | 63  | 40  | 90  | 90  | 10  | 90  | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 100 | 40  | 80  | 100 | --- | 50  | 0   | 0   | 20  | 25  | 10  | 30  |
| 2-119 | 63  | 100 | 100 | 60  | 70  | 100 | --- | 100 | 70  | 75  | 70  | 30  | 20  | 70  |
|       | 250 | 100 | 100 | 90  | 100 | 100 | --- | 100 | 95  | 100 | 100 | 40  | 90  | 100 |
| 2-120 | 63  | 90  | 100 | 40  | 50  | 100 | --- | 70  | 60  | 50  | 80  | 0   | 0   | 80  |
|       | 250 | 100 | 100 | 70  | 80  | 100 | --- | 100 | 90  | 95  | 100 | 60  | 90  | 95  |
| 2-121 | 63  | 100 | 100 | 0   | 0   | 80  | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 100 | 50  | 90  | 100 | --- | 60  | 0   | 0   | 30  | 10  | 10  | 0   |
| 2-122 | 63  | 100 | 100 | 30  | 30  | 100 | 30  | 80  | 20  | 30  | 100 | 0   | 0   | 20  |
|       | 250 | 100 | 100 | 50  | 90  | 100 | 90  | 100 | 80  | 60  | 100 | 50  | 10  | 45  |
| 2-123 | 63  | 100 | 100 | 60  | 100 | 100 | 95  | 80  | 40  | 30  | 60  | 0   | 0   | 30  |
|       | 250 | 100 | 100 | 90  | 100 | 100 | 100 | 100 | 80  | 70  | 100 | 90  | 15  | 80  |
| 2-124 | 63  | 40  | 0   | 0   | 0   | 20  | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 80  | 20  | 20  | 80  | --- | 10  | 0   | 0   | 20  | 30  | 0   | 0   |
| 2-125 | 63  | 100 | 100 | 30  | 0   | 100 | --- | 50  | 10  | 20  | 30  | 50  | 10  | 45  |
|       | 250 | 100 | 100 | 70  | 100 | 100 | --- | 90  | 50  | 50  | 90  | 50  | 0   | 10  |
| 2-126 | 63  | 100 | 100 | 10  | 10  | 100 | --- | 40  | 10  | --- | 30  | 0   | 0   | 10  |
|       | 250 | 100 | 100 | 70  | 90  | 100 | --- | 100 | 40  | --- | 90  | 30  | 5   | 60  |
| 2-127 | 63  | 90  | 100 | 0   | 0   | 100 | --- | 20  | 0   | --- | 30  | 0   | 0   | 0   |
|       | 250 | 100 | 100 | 40  | 50  | 100 | --- | 80  | 40  | --- | 100 | 0   | 0   | 10  |
| 2-128 | 63  | 100 | 30  | 0   | 0   | 100 | --- | 30  | 0   | --- | 20  | 0   | 0   | 0   |
|       | 250 | 100 | 90  | 0   | 40  | 100 | --- | 100 | 30  | --- | 70  | 10  | 5   | 0   |
| 2-129 | 63  | 90  | 100 | 60  | 50  | 100 | --- | 90  | 30  | --- | 60  | 40  | 50  | 40  |
|       | 250 | 100 | 100 | 90  | 70  | 100 | --- | 100 | 80  | --- | 100 | 90  | 90  | 80  |
| 2-130 | 63  | 40  | 100 | 0   | 0   | 60  | --- | 50  | 0   | --- | 20  | 0   | 0   | 0   |
|       | 250 | 100 | 100 | 40  | 30  | 100 | --- | 100 | 30  | --- | 90  | 25  | 5   | 15  |
| 2-131 | 63  | 90  | 85  | 60  | 30  | 90  | --- | 90  | 60  | --- | 80  | 20  | 0   | 50  |
|       | 250 | 95  | 100 | 95  | 85  | 100 | --- | 90  | 60  | --- | 80  | 20  | 0   | 50  |
| 2-132 | 63  | 100 | 100 | 50  | 20  | 100 | --- | 90  | 30  | 30  | 60  | 0   | 5   | 15  |
|       | 250 | 100 | 100 | 100 | 40  | 100 | --- | 100 | 40  | 50  | 100 | 10  | 15  | 45  |
| 2-133 | 63  | 100 | 100 | 55  | 80  | 100 | --- | 95  | 65  | 75  | 95  | 5   | 20  | 70  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 95  | 100 | 100 | 70  | 80  | 90  |
| 2-134 | 63  | 100 | 60  | 10  | 20  | 100 | --- | 35  | 0   | 0   | 20  | 0   | 0   | 10  |
|       | 250 | 100 | 80  | 30  | 30  | 100 | --- | 80  | 30  | 30  | 90  | 0   | 0   | 20  |
| 2-135 | 63  | 95  | 90  | 10  | 20  | 100 | --- | 80  | 10  | --- | 60  | 0   | 0   | 35  |
|       | 250 | 100 | 100 | 60  | 100 | 100 | --- | 100 | 30  | --- | 95  | 5   | 0   | 0   |
| 2-136 | 63  | 40  | 80  | 0   | 0   | 90  | --- | 10  | 0   | --- | 10  | 10  | 0   | 10  |
|       | 250 | 90  | 100 | 40  | 100 | 100 | --- | 40  | 0   | --- | 10  | 10  | 0   | 20  |
| 2-137 | 63  | 100 | 80  | 50  | 30  | 100 | --- | 30  | 10  | 0   | 50  | 0   | 0   | 20  |
|       | 250 | 100 | 100 | 50  | 30  | 100 | --- | 60  | 50  | 70  | 100 | 70  | 10  | 50  |
| 2-140 | 63  | 100 | 100 | 40  | 10  | 100 | --- | 50  | 40  | 10  | 40  | 0   | 0   | 30  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 80  | 80  | 60  | 95  | 60  | 15  | 85  |
| 2-141 | 63  | 100 | 100 | 30  | 40  | 100 | --- | 30  | 30  | --- | 35  | 10  | 0   | 30  |
|       | 250 | 100 | 100 | 90  | 100 | 100 | --- | 70  | 95  | --- | 70  | 50  | 45  | 70  |
| 2-142 | 63  | 0   | 0   | 0   | 0   | 40  | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 40  | 0   | 0   | 0   | 70  | --- | 0   | 0   | 0   | 0   | 0   | 0   | 20  |
| 2-143 | 63  | 100 | 100 | 0   | 0   | 100 | --- | 30  | 30  | 30  | 30  | 0   | 0   | 20  |
|       | 250 | 100 | 100 | 90  | 35  | 100 | --- | 70  | 85  | 80  | 100 | 5   | 5   | 65  |
| 2-144 | 63  | 99  | 70  | 0   | 0   | 100 | --- | 40  | 20  | 10  | 20  | 0   | 0   | 20  |
|       | 250 | 100 | 100 | 20  | 30  | 100 | --- | 90  | 75  | 70  | 70  | 0   | 0   | 45  |
| 2-145 | 63  | 100 | 90  | 40  | 10  | 100 | --- | 60  | 35  | 30  | 90  | 10  | 0   | 60  |
|       | 250 | 100 | 100 | 90  | 100 | 100 | --- | 100 | 60  | 50  | 100 | 10  | 0   | 60  |
| 2-146 | 63  | 30  | 70  | 20  | 40  | 90  | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 80  | 10  | 0   | 20  | 100 | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 2-147 | 63  | 100 | 100 | 40  | 80  | 100 | 80  | 100 | 90  | 90  | 90  | 90  | 100 | 100 |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| 2-148 | 63  | 100 | 100 | 50  | 50  | 100 | 0   | 80  | 90  | 0   | 95  | 0   | 0   | 60  |
|       | 250 | 100 | 100 | 95  | 99  | 100 | 100 | 95  | 100 | 30  | 100 | 0   | 0   | 0   |
| 2-149 | 63  | 100 | 99  | 0   | 30  | 100 | 0   | 50  | 50  | 30  | 90  | 20  | 0   | 50  |
|       | 250 | 100 | 100 | 50  | 70  | 100 | 100 | 90  | 100 | 50  | 100 | 50  | 20  | 50  |
| 2-151 | 63  | 0   | 30  | 0   | 0   | 0   | --- | 0   | 0   | 0   | 40  | 40  | 0   | 30  |
|       | 250 | 0   | 100 | 70  | 40  | 80  | --- | 0   | 0   | 40  | 40  | 0   | 30  | 30  |
| 2-152 | 63  | 100 | 60  | 0   | 0   | 95  | --- | 30  | 10  | 0   | 50  | 0   | 0   | 30  |
|       | 250 | 100 | 90  | 50  | 0   | 100 | --- | 70  | 70  | 30  | 80  | 0   | 0   | 0   |
| 2-153 | 63  | 100 | 20  | 0   | 0   | 70  | --- | 30  | 0   | 10  | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 50  | 0   | 0   | 90  | --- | 90  | 0   | 0   | 40  | 0   | 0   | 20  |
| 2-154 | 63  | 100 | 100 | 60  | 80  | 100 | --- | 70  | 50  | 80  | 85  | 80  | 10  | 35  |
|       | 250 | 100 | 100 | 95  | 100 | 100 | --- | 100 | 95  | 95  | 95  | 90  | 90  | 70  |



|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 2-201 | 63  | 95  | 98  | 0   | 55  | 98  | 30  | 0   | 15  | 0   | 45  | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 95  | 100 | 0   | 80  | 100 | 80  | 75  | 75  | 30  | 95  | 35  | 0   | 0   | 35  |     |
| 2-202 | 63  | 100 | 100 | 30  | 100 | 100 | --- | 40  | 90  | --- | 30  | 0   | 0   | 0   | 40  |     |
|       | 250 | 100 | 100 | 80  | 100 | 100 | --- | 100 | 100 | --- | 100 | 60  | 50  | 90  |     |     |
| 2-203 | 63  | 70  | 75  | 30  | 10  | 100 | --- | 20  | 0   | 0   | 60  | 0   | 0   | 0   | 10  |     |
|       | 250 | 100 | 100 | 90  | 70  | 100 | --- | 70  | 80  | 40  | 90  | 30  | 0   | 0   | 20  |     |
| 2-204 | 63  | 100 | 99  | 60  | 50  | 70  | 50  | 95  | 20  | 40  | 35  | 20  | 50  | 0   |     |     |
|       | 250 | 100 | 100 | 75  | 100 | 100 | 85  | 99  | 70  | 80  | 100 | 95  | 70  | 30  |     |     |
| 2-205 | 63  | 100 | 100 | 0   | 0   | 100 | 80  | 70  | 80  | 40  | 70  | 0   | 0   | 0   | 20  |     |
|       | 250 | 100 | 100 | 40  | 95  | 100 | 90  | 100 | 99  | 85  | 99  | 15  | 50  | 70  |     |     |
| 2-206 | 63  | 0   | 70  | 20  | 50  | 50  | --- | 0   | 0   | 0   | 0   | 10  | 50  | 60  |     |     |
|       | 250 | 80  | 100 | 60  | 90  | 100 | --- | 70  | 90  | 40  | 80  | 100 | 100 | 80  |     |     |
| 3-1   | 63  | 0   | 0   | 0   | 0   | 20  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 30  | 20  | 0   | 0   | 80  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 3-4   | 63  | 0   | 0   | 0   | 0   | 0   | --- | 20  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 100 | 60  | 50  | 100 | --- | 60  | 0   | 10  | 10  | 10  | 0   | 15  |     |     |
| 3-6   | 63  | 90  | 100 | 100 | 100 | 100 | --- | 100 | 40  | 30  | 30  | 10  | 0   | 30  |     |     |
|       | 250 | 100 | 100 | 100 | 95  | 100 | --- | 100 | 80  | 80  | 100 | 100 | 90  | 80  |     |     |
| 3-23  | 63  | 0   | 0   | 0   | 0   | 0   | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 0   | 40  | 0   | 0   | 70  | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 3-26  | 63  | 80  | 75  | 40  | 50  | 80  | 10  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 100 | 90  | 100 | 90  | 90  | 85  | 30  | 50  | 80  | 20  | 30  | 40  |     |     |
| 4-1   | 63  | 100 | 100 | 95  | 100 | 100 | --- | 100 | 10  | 60  | 60  | 70  | 10  | 50  |     |     |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 80  | 95  |     |     |
| 4-2   | 63  | 100 | 100 | 0   | 0   | 100 | 30  | 70  | 0   | 0   | 40  | 20  | 0   | 10  |     |     |
|       | 250 | 100 | 100 | 80  | 100 | 100 | 100 | 100 | 80  | 70  | 90  | 70  | 5   | 20  |     |     |
| 4-7   | 63  | 100 | 100 | 70  | 80  | 100 | --- | 100 | 70  | 80  | 100 | 10  | 60  | 70  |     |     |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 90  | 95  | 100 | 40  | 95  | 100 |     |     |
| 4-23  | 63  | 100 | 100 | 80  | 100 | 100 | --- | 80  | 80  | 70  | 80  | 70  | 35  | 60  |     |     |
|       | 250 | 100 | 100 | 100 | 80  | 100 | --- | 100 | 95  | 90  | 100 | 40  | 90  | 90  |     |     |
| 4-24  | 63  | 100 | 50  | 0   | 20  | 100 | --- | 90  | 10  | 10  | 30  | 0   | 0   | 10  |     |     |
|       | 250 | 100 | 100 | 80  | 30  | 100 | --- | 100 | 50  | 40  | 70  | 0   | 5   | 50  |     |     |
| 4-25  | 63  | 30  | 0   | 0   | 0   | 60  | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 60  | 20  | 0   | 100 | --- | 50  | 0   | 0   | 10  | 10  | 0   | 0   | 0   | 0   |
| 4-26  | 63  | 70  | 80  | 0   | 0   | 100 | --- | 75  | 0   | 0   | 10  | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 100 | 0   | 10  | 100 | --- | 95  | 30  | 20  | 90  | 0   | 0   | 45  |     |     |
| 4-27  | 63  | 70  | 80  | 0   | 20  | 80  | --- | 30  | 0   | 0   | 0   | 10  | 0   | 10  |     |     |
|       | 250 | 100 | 100 | 30  | 50  | 100 | --- | 50  | 0   | 0   | 0   | 40  | 0   | 50  |     |     |
| 4-28  | 63  | 40  | 20  | 0   | 0   | 70  | --- | 20  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 70  | 60  | 0   | 0   | 100 | --- | 60  | 0   | 0   | 0   | 0   | 0   | 0   | 15  |     |
| 4-29  | 63  | 100 | 100 | 40  | 70  | 100 | --- | 100 | 70  | 70  | 100 | 25  | 80  | 50  |     |     |
|       | 250 | 100 | 100 | 80  | 90  | 100 | --- | 100 | 90  | 90  | 100 | 50  | 95  | 85  |     |     |
| 4-30  | 63  | 100 | 100 | 90  | 60  | 100 | --- | 100 | 60  | 30  | 90  | 20  | 30  | 90  |     |     |
|       | 250 | 100 | 100 | 95  | 100 | 100 | --- | 100 | 90  | 80  | 100 | 45  | 70  | 90  |     |     |
| 4-31  | 63  | 100 | 30  | 0   | 0   | 90  | --- | 90  | 10  | 10  | 50  | 0   | 0   | 10  |     |     |
|       | 250 | 100 | 100 | 10  | 40  | 100 | --- | 100 | 30  | 20  | 100 | 10  | 10  | 30  |     |     |
| 4-32  | 63  | 50  | 0   | 0   | 0   | 80  | --- | 30  | 0   | 0   | 20  | 0   | 0   | 0   |     |     |
|       | 250 | 100 | 70  | 30  | 40  | 100 | --- | 95  | 50  | 30  | 80  | 5   | 10  | 30  |     |     |
| 4-33  | 63  | 100 | 50  | 0   | 0   | 100 | --- | 100 | 20  | 30  | 45  | 10  | 10  | 20  |     |     |
|       | 250 | 100 | 100 | 50  | 70  | 100 | --- | 100 | 80  | 80  | 90  | 30  | 50  | 40  |     |     |
| 4-34  | 63  | 100 | 100 | 40  | 30  | 100 | --- | 80  | 50  | 40  | 90  | 25  | 10  | 50  |     |     |
|       | 250 | 100 | 100 | 95  | 80  | 100 | --- | 100 | 90  | 80  | 95  | 80  | 90  | 95  |     |     |
| 4-36  | 63  | 90  | 100 | 80  | 100 | 100 | --- | 60  | 30  | --- | 100 | 95  | 100 | 95  |     |     |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 90  | --- | 100 | 95  | 100 | 95  |     |     |
| 4-37  | 63  | 100 | 100 | 30  | 30  | 100 | --- | 90  | 10  | --- | 60  | 0   | 0   | 10  |     |     |
|       | 250 | 100 | 90  | 40  | 50  | 100 | --- | 100 | 60  | --- | 90  | 15  | 0   | 30  |     |     |
| 4-38  | 63  | 100 | 80  | 30  | 60  | 100 | --- | 100 | 30  | --- | 95  | 10  | 10  | 35  |     |     |
|       | 250 | 100 | 100 | 60  | 50  | 100 | --- | 100 | 60  | --- | 100 | 10  | 20  | 60  |     |     |
| 4-39  | 63  | 100 | 100 | 30  | 80  | 100 | --- | 100 | 60  | --- | 100 | 30  | 70  | 80  |     |     |
|       | 250 | 100 | 100 | 90  | 100 | 100 | --- | 100 | 80  | --- | 100 | 30  | 90  | 80  |     |     |
| 4-40  | 63  | 100 | 100 | 60  | 30  | 100 | --- | 100 | 60  | --- | 100 | 10  | 0   | 30  |     |     |
|       | 250 | 100 | 100 | 90  | 90  | 100 | --- | 100 | 85  | --- | 100 | 80  | 75  | 70  |     |     |
| 4-41  | 63  | 100 | 100 | 100 | 100 | 100 | --- | 100 | 80  | --- | 100 | 40  | 15  | 40  |     |     |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 90  | --- | 100 | 80  | 65  | 80  |     |     |
| 4-42  | 63  | 30  | 60  | 0   | 0   | 40  | --- | 30  | 0   | --- | 10  | 10  | 0   | 0   | 0   |     |
|       | 250 | 90  | 100 | 100 | 40  | 100 | --- | 100 | 40  | --- | 60  | 0   | 0   | 0   | 0   |     |
| 4-43  | 63  | 10  | 20  | 0   | 0   | 30  | --- | 0   | 0   | --- | 0   | 0   | 0   | 0   | 0   |     |
|       | 250 | 60  | 50  | 40  | 10  | 80  | --- | 70  | 10  | --- | 60  | 10  | 0   | 10  |     |     |

|      |     |     |     |     |     |     |     |     |     |     |     |    |    |    |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|
| 4-44 | 63  | 100 | 100 | 100 | 100 | 100 | --- | 100 | 80  | --- | 100 | 60 | 70 | 70 |
|      | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 95  | --- | 100 | 50 | 95 | 65 |
| 4-45 | 63  | 30  | 50  | 0   | 10  | 50  | --- | 0   | 0   | --- | 0   | 0  | 0  | 0  |
|      | 250 | 100 | 90  | 40  | 40  | 95  | --- | 50  | 40  | --- | 70  | 15 | 20 | 10 |
| 4-46 | 63  | 80  | 50  | 30  | 10  | 100 | --- | 40  | 20  | 20  | 70  | 0  | 0  | 10 |
|      | 250 | 100 | 100 | 40  | 85  | 100 | --- | 100 | 60  | 60  | 95  | 15 | 5  | 50 |
| 4-47 | 63  | 70  | 100 | 0   | 30  | 100 | --- | 80  | 60  | --- | 70  | 0  | 30 | 20 |
|      | 250 | 100 | 100 | 70  | 100 | 100 | --- | 100 | 98  | --- | 100 | 15 | 90 | 70 |
| 4-48 | 63  | 100 | 100 | 40  | 80  | 100 | --- | 100 | 50  | 60  | 100 | 40 | 30 | 20 |
|      | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 70  | 90  | 100 | 35 | 50 | 70 |
| 4-49 | 63  | 100 | 95  | 30  | 40  | 100 | 80  | 70  | 10  | 50  | 70  | 10 | 0  | 30 |
|      | 250 | 100 | 100 | 60  | 100 | 100 | 60  | 100 | 75  | 90  | 100 | 10 | 15 | 25 |
| 4-50 | 63  | 20  | 20  | 0   | 0   | 40  | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  |
|      | 250 | 100 | 100 | 0   | 30  | 100 | 0   | 10  | 0   | 0   | 30  | 20 | 0  | 10 |
| 4-53 | 63  | 100 | 100 | 20  | 30  | 100 | --- | 80  | 10  | 30  | 40  | 20 | 0  | 10 |
|      | 250 | 100 | 100 | 60  | 80  | 100 | --- | 100 | 85  | 85  | 100 | 90 | 25 | 50 |
| 4-54 | 63  | 100 | 100 | 30  | 30  | 90  | --- | 90  | 50  | 30  | 60  | 0  | 0  | 10 |
|      | 250 | 100 | 90  | 80  | 70  | 100 | --- | 100 | 85  | 80  | 100 | 10 | 5  | 60 |
| 4-55 | 63  | 30  | 80  | 0   | 20  | 90  | --- | 40  | 0   | 0   | 0   | 0  | 0  | 0  |
|      | 250 | 90  | 100 | 30  | 70  | 100 | --- | 90  | 30  | 60  | 70  | 70 | 30 | 60 |
| 4-56 | 63  | 100 | 100 | 10  | 40  | 100 | --- | 90  | 50  | 50  | 50  | 0  | 35 | 50 |
|      | 250 | 100 | 100 | 100 | 100 | 100 | --- | 95  | 80  | 90  | 95  | 50 | 80 | 90 |
| 4-57 | 63  | 95  | 100 | 10  | 50  | 100 | --- | 80  | 20  | 10  | 60  | 20 | 0  | 20 |
|      | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 75  | 70  | 95  | 50 | 45 | 70 |
| 4-58 | 63  | 100 | 100 | 70  | 30  | 100 | --- | 80  | 30  | 20  | 30  | 10 | 0  | 30 |
|      | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 70  | 60  | 100 | 50 | 25 | 70 |
| 4-59 | 63  | 100 | 100 | 20  | 95  | 100 | --- | 30  | 10  | 40  | 40  | 50 | 5  | 0  |
|      | 250 | 100 | 100 | 90  | 100 | 100 | --- | 90  | 90  | 95  | 100 | 90 | 80 | 70 |
| 4-60 | 63  | 100 | 100 | 90  | 50  | 100 | --- | 90  | 40  | 30  | 100 | 10 | 0  | 60 |
|      | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 70  | 50  | 100 | 60 | 30 | 70 |
| 4-61 | 63  | 100 | 60  | 40  | 30  | 100 | --- | 80  | 30  | 20  | 50  | 0  | 0  | 0  |
|      | 250 | 100 | 70  | 30  | 60  | 100 | --- | 75  | 50  | 50  | 90  | 0  | 0  | 50 |
| 4-62 | 63  | 100 | 100 | 50  | 60  | 100 | --- | 80  | 10  | 10  | 50  | 10 | 0  | 10 |
|      | 250 | 100 | 100 | 100 | 30  | 100 | --- | 100 | 60  | 50  | 90  | 10 | 10 | 70 |
| 4-63 | 63  | 100 | 100 | 40  | 40  | 100 | --- | 70  | 30  | 30  | 70  | 10 | 0  | 40 |
|      | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 70  | 50  | 95  | 75 | 35 | 90 |
| 4-64 | 63  | 100 | 100 | 20  | 40  | 100 | --- | 100 | 30  | 40  | 100 | 30 | 0  | 30 |
|      | 250 | 100 | 100 | 90  | 70  | 100 | --- | 100 | 70  | 80  | 100 | 80 | 45 | 80 |
| 4-65 | 63  | 100 | 100 | 80  | 90  | 100 | --- | 100 | 80  | --- | 100 | 10 | 55 | 65 |
|      | 250 | 100 | 100 | 90  | 100 | 100 | --- | 100 | 90  | --- | 100 | 70 | 75 | 90 |
| 4-66 | 63  | 100 | 100 | 30  | 60  | 100 | --- | 70  | 30  | --- | 80  | 30 | 0  | 20 |
|      | 250 | 100 | 100 | 70  | 90  | 100 | --- | 100 | 90  | --- | 100 | 95 | 50 | 65 |
| 4-67 | 63  | 100 | 100 | 40  | 80  | 100 | --- | 90  | 40  | --- | 100 | 10 | 5  | 60 |
|      | 250 | 100 | 100 | 60  | 90  | 100 | --- | 100 | 80  | --- | 100 | 10 | 15 | 40 |
| 4-68 | 63  | 100 | 100 | 40  | 40  | 100 | --- | 100 | 60  | --- | 100 | 35 | 45 | 50 |
|      | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 98  | --- | 100 | 80 | 80 | 90 |
| 4-69 | 63  | 30  | 80  | 0   | 0   | 70  | --- | 95  | 30  | --- | 100 | 0  | 0  | 10 |
|      | 250 | 80  | 90  | 50  | 40  | 90  | --- | 100 | 70  | --- | 100 | 10 | 0  | 30 |
| 4-70 | 63  | 100 | 100 | 50  | 100 | 100 | --- | 60  | 40  | --- | 60  | 80 | 90 | 40 |
|      | 250 | 100 | 100 | 80  | 100 | 100 | --- | 100 | 95  | --- | 100 | 95 | 95 | 70 |
| 5-3  | 63  | 60  | 100 | 0   | 0   | 100 | --- | 70  | 0   | 0   | 30  | 0  | 0  | 20 |
|      | 250 | 100 | 100 | 30  | 10  | 100 | --- | 100 | 20  | 95  | 100 | 10 | 0  | 20 |
| 5-15 | 63  | 0   | 0   | 0   | 0   | 0   | --- | 0   | 0   | 0   | 0   | 0  | 0  | 0  |
|      | 250 | 0   | 0   | 0   | 0   | 0   | --- | 0   | 0   | 0   | 0   | 0  | 0  | 0  |
| 5-16 | 63  | 0   | 0   | 0   | 0   | 0   | --- | 0   | 0   | 0   | 0   | 0  | 0  | 0  |
|      | 250 | 0   | 0   | 0   | 0   | 20  | --- | 0   | 0   | 0   | 0   | 0  | 0  | 0  |
| 5-17 | 63  | 30  | 40  | 0   | 0   | 70  | --- | 95  | 0   | 40  | 30  | 0  | 0  | 20 |
|      | 250 | 100 | 100 | 30  | 0   | 100 | --- | 100 | 40  | 70  | 50  | 0  | 0  | 20 |
| 5-18 | 63  | 30  | 40  | 0   | 0   | 70  | --- | 95  | 0   | 40  | 30  | 0  | 0  | 20 |
|      | 250 | 0   | 70  | 10  | 0   | 95  | --- | 90  | 0   | 30  | 20  | 0  | 0  | 10 |
| 5-26 | 63  | 100 | 70  | 10  | 0   | 100 | --- | 60  | 20  | 0   | 30  | 0  | 0  | 15 |
|      | 250 | 100 | 100 | 80  | 40  | 100 | --- | 90  | 30  | 30  | 80  | 10 | 0  | 40 |
| 5-28 | 63  | 100 | 100 | 100 | 60  | 100 | --- | 50  | 30  | 20  | 30  | 15 | 10 | 30 |
|      | 250 | 100 | 100 | 100 | 100 | 100 | --- | 85  | 60  | 30  | 90  | 20 | 20 | 60 |
| 6-13 | 63  | 60  | 10  | 0   | 0   | 40  | --- | 80  | 10  | --- | 80  | 0  | 0  | 0  |
|      | 250 | 100 | 40  | 0   | 0   | 100 | --- | 100 | 40  | --- | 90  | 10 | 0  | 10 |
| 6-14 | 63  | 90  | 100 | 40  | 60  | 100 | --- | 100 | 100 | --- | 100 | 70 | 90 | 90 |
|      | 250 | 100 | 100 | 60  | 100 | 100 | --- | 100 | 100 | 50  | 80  | 40 | 0  | 20 |
| 6-15 | 63  | 100 | 100 | 70  | 70  | 100 | --- | 95  | 50  | 50  | 80  | 40 | 0  | 20 |

|       | 250 | 100 | 100 | 80  | 40  | 100 | --- | 100 | 80  | 100 | 100 | 30  | 5  | 60 |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|
| 6-16  | 63  | 30  | 10  | 0   | 0   | 100 | --- | 60  | 10  | --- | 30  | 0   | 0  | 0  |
|       | 250 | 50  | 20  | 0   | 0   | 100 | --- | 90  | 30  | --- | 90  | 0   | 0  | 20 |
| 6-17  | 63  | 90  | 30  | 0   | 0   | 100 | --- | 70  | 10  | --- | 30  | 0   | 0  | 0  |
|       | 250 | 100 | 95  | 20  | 30  | 100 | --- | 99  | 90  | --- | 99  | 0   | 0  | 40 |
| 6-19  | 63  | 30  | 20  | 0   | 0   | 70  | --- | 0   | 0   | 0   | 0   | 0   | 0  | 0  |
|       | 250 | 70  | 50  | 0   | 0   | 90  | --- | 10  | 0   | 0   | 0   | 0   | 0  | 0  |
| 6-20  | 63  | 10  | 0   | 0   | 0   | 50  | --- | 0   | 0   | 0   | 0   | 0   | 0  | 0  |
|       | 250 | 0   | 0   | 0   | 0   | 30  | --- | 0   | 0   | 0   | 0   | 0   | 0  | 0  |
| 6-22  | 63  | 30  | 20  | 0   | 0   | 40  | --- | 10  | 0   | 0   | 0   | 0   | 0  | 0  |
|       | 250 | 100 | 100 | 60  | 0   | 100 | --- | 50  | 0   | 10  | 20  | 0   | 0  | 10 |
| 6-23  | 63  | 50  | 0   | 0   | 0   | 30  | --- | 0   | 0   | --- | 0   | 0   | 0  | 0  |
|       | 250 | 100 | 50  | 10  | 20  | 100 | --- | 60  | 0   | --- | 10  | 0   | 0  | 0  |
| 6-24  | 63  | 20  | 0   | 0   | 0   | 30  | --- | 0   | 0   | --- | 0   | 0   | 0  | 0  |
|       | 250 | 100 | 70  | 0   | 0   | 90  | --- | 40  | 0   | --- | 20  | 10  | 0  | 10 |
| 7-2   | 63  | 100 | 95  | 30  | 60  | 100 | 80  | 95  | 70  | 95  | 100 | 50  | 20 | 20 |
|       | 250 | 100 | 100 | 30  | 80  | 100 | 100 | 100 | 100 | 100 | 100 | 10  | 40 | 30 |
| 7-14  | 63  | 40  | 40  | 10  | 30  | 70  | --- | 0   | 0   | --- | 60  | 15  | 0  | 5  |
|       | 250 | 80  | 60  | 50  | 20  | 100 | --- | 70  | 40  | --- | 70  | 10  | 0  | 20 |
| 7-15  | 63  | 80  | 40  | 0   | 0   | 100 | --- | 0   | 0   | 0   | 0   | 0   | 0  | 0  |
|       | 250 | 100 | 90  | 10  | 50  | 100 | --- | 60  | 10  | 20  | 60  | 0   | 0  | 10 |
| 8-2   | 63  | 90  | 80  | 0   | 0   | 80  | --- | 20  | 0   | 0   | 0   | 0   | 0  | 20 |
|       | 250 | 100 | 100 | 90  | 0   | 100 | --- | 100 | 40  | 20  | 70  | 10  | 20 | 30 |
| 8-3   | 63  | 99  | 98  | 30  | 30  | 99  | --- | 95  | 0   | 20  | 30  | 0   | 10 | 0  |
|       | 250 | 100 | 100 | 50  | 10  | 100 | --- | 98  | 10  | 30  | 60  | 0   | 0  | 0  |
| 8-4   | 63  | 60  | 0   | 0   | 0   | 80  | --- | 30  | 0   | 0   | 20  | 0   | 0  | 0  |
|       | 250 | 100 | 90  | 0   | 0   | 99  | --- | 70  | 0   | 20  | 20  | 0   | 0  | 20 |
| 8-5   | 63  | 40  | 0   | 0   | 0   | 0   | --- | 70  | 0   | 0   | 0   | 0   | 0  | 0  |
|       | 250 | 95  | 70  | 40  | 0   | 80  | --- | 90  | 0   | 20  | 0   | 0   | 0  | 0  |
| 8-7   | 63  | 99  | 100 | 0   | 0   | 95  | --- | 95  | 0   | 10  | 50  | 0   | 0  | 0  |
|       | 250 | 100 | 100 | 0   | 0   | 100 | --- | 99  | 70  | 70  | 80  | 0   | 10 | 0  |
| 8-13  | 63  | 50  | 90  | 0   | 0   | 100 | --- | 20  | 0   | 0   | 0   | 0   | 0  | 10 |
|       | 125 | 70  | 100 | 0   | 0   | 70  | --- | 40  | 30  | 30  | 40  | 0   | 0  | 10 |
| 8-18  | 63  | 60  | 90  | 0   | 0   | 70  | --- | 50  | 10  | 0   | 10  | 0   | 0  | 10 |
|       | 250 | 100 | 100 | 60  | 30  | 100 | --- | 100 | 90  | 50  | 80  | 0   | 10 | 30 |
| 8-30  | 63  | 100 | 70  | 20  | 20  | 100 | --- | 20  | 0   | 0   | 30  | 0   | 0  | 5  |
|       | 250 | 100 | 90  | 20  | 10  | 100 | --- | 70  | 20  | 30  | 50  | 0   | 5  | 10 |
| 8-31  | 63  | 90  | 60  | 0   | 0   | 100 | --- | 10  | 0   | 0   | 0   | 0   | 0  | 0  |
|       | 250 | 100 | 95  | 20  | 30  | 100 | --- | 10  | 0   | 10  | 10  | 0   | 10 | 30 |
| 8-36  | 63  | 100 | 80  | 10  | 10  | 100 | --- | 0   | 0   | 0   | 0   | 0   | 0  | 40 |
|       | 250 | 100 | 30  | 30  | 20  | 100 | --- | 30  | 0   | 0   | 40  | 0   | 0  | 0  |
| 9-4   | 63  | 60  | 90  | 30  | 10  | 30  | --- | 0   | 0   | 0   | 0   | 0   | 0  | 0  |
|       | 250 | 100 | 100 | 60  | 50  | 80  | --- | 70  | 10  | 30  | 60  | 50  | 0  | 10 |
| 9-14  | 63  | 40  | 20  | 0   | 0   | 80  | --- | 0   | 0   | 0   | 0   | 0   | 0  | 0  |
|       | 250 | 65  | 85  | 0   | 10  | 100 | --- | 30  | 40  | 10  | 30  | 0   | 0  | 10 |
| 9-15  | 63  | 100 | 100 | 10  | 70  | 100 | --- | 20  | 0   | 0   | 10  | 0   | 0  | 25 |
|       | 250 | 100 | 100 | 80  | 100 | 100 | --- | 60  | 30  | 20  | 40  | 10  | 10 | 60 |
| 9-16  | 63  | 70  | 100 | 20  | 70  | 100 | --- | 30  | 0   | 10  | 10  | 40  | 0  | 80 |
|       | 250 | 100 | 100 | 60  | 70  | 100 | --- | 70  | 40  | 40  | 40  | 95  | 90 | 90 |
| 9-19  | 63  | 100 | 100 | 0   | 30  | 100 | --- | 0   | 0   | 0   | 0   | 0   | 0  | 30 |
|       | 250 | 100 | 100 | 20  | 0   | 100 | --- | 60  | 0   | 20  | 80  | 20  | 0  | 50 |
| 11-6  | 63  | 100 | 95  | 20  | 0   | 100 | --- | 100 | 90  | 0   | 100 | 20  | 20 | 50 |
|       | 250 | 100 | 100 | 99  | 80  | 100 | --- | 100 | 100 | 40  | 100 | 20  | 20 | 50 |
| 11-13 | 63  | 100 | 95  | 0   | 65  | 100 | 30  | 70  | 30  | 0   | 60  | 0   | 0  | 15 |
|       | 250 | 10  | 100 | 85  | 80  | 100 | 60  | 100 | 80  | 40  | 100 | 0   | 0  | 50 |
| 12-2  | 63  | 100 | 100 | 90  | 95  | 100 | --- | 95  | 40  | 90  | 95  | 90  | 40 | 50 |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 99  | 100 | 100 | 100 | 99 | 99 |
| 12-3  | 63  | 95  | 100 | 30  | 0   | 100 | --- | 0   | 0   | 0   | 0   | 0   | 0  | 10 |
|       | 250 | 100 | 100 | 70  | 90  | 100 | --- | 30  | 0   | 0   | 30  | 20  | 0  | 20 |
| 12-5  | 63  | 30  | 70  | 0   | 0   | 90  | --- | 0   | 0   | --- | 0   | 0   | 0  | 0  |
|       | 250 | 100 | 90  | 80  | 20  | 100 | --- | 0   | 40  | --- | 10  | 0   | 0  | 10 |
| 12-8  | 63  | 100 | 0   | 0   | 0   | 100 | --- | 60  | 0   | 10  | 50  | 0   | 0  | 30 |
|       | 250 | 100 | 100 | 20  | 40  | 100 | --- | 100 | 40  | 40  | 100 | 0   | 0  | 40 |
| 13-3  | 63  | 100 | 0   | 0   | 0   | 90  | --- | 10  | 0   | 0   | 0   | 0   | 0  | 0  |
|       | 250 | 100 | 20  | 30  | 0   | 100 | --- | 40  | 10  | 10  | 30  | 0   | 0  | 0  |
| 13-4  | 63  | 60  | 90  | 0   | 10  | 100 | --- | 30  | 0   | 10  | 0   | 0   | 0  | 0  |
|       | 250 | 100 | 100 | 50  | 90  | 100 | --- | 90  | 30  | 40  | 90  | 35  | 15 | 30 |
| 13-5  | 63  | 30  | 0   | 0   | 0   | 20  | 0   | 30  | 0   | 0   | 0   | 0   | 0  | 0  |
|       | 250 | 95  | 0   | 0   | 0   | 50  | 0   | 50  | 0   | 30  | 10  | 0   | 0  | 0  |

|       |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 14-1  | 63  | 100 | 75  | 0   | 30  | 98  | 0   | 15  | 15  | 0   | 40  | 20  | 0   | 15  |
|       | 250 | 100 | 100 | 0   | 75  | 100 | 0   | 55  | 30  | 90  | 85  | 60  | 10  | 45  |
| 14-2  | 63  | 100 | 35  | 0   | 50  | 100 | 0   | 20  | 0   | 10  | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 100 | 10  | 85  | 100 | 50  | 30  | 0   | 60  | 65  | 10  | 30  | 10  |
| 14-3  | 63  | 100 | 100 | 20  | 0   | 100 | 0   | 40  | 0   | 0   | 30  | 20  | 0   | 0   |
|       | 250 | 100 | 100 | 80  | 50  | 100 | 65  | 80  | 40  | 60  | 90  | 90  | 90  | 50  |
| 14-4  | 63  | 90  | 50  | 20  | 0   | 60  | —   | 10  | 0   | —   | 20  | 0   | 0   | 0   |
|       | 250 | 100 | 80  | 20  | 70  | 100 | —   | 40  | 0   | —   | 95  | 95  | 20  | 15  |
| 14-5  | 63  | 70  | 100 | 0   | 20  | 70  | —   | 10  | 0   | —   | 20  | 25  | 0   | 0   |
|       | 250 | 100 | 100 | 10  | 30  | 100 | —   | 60  | 40  | —   | 95  | 20  | 70  | 20  |
| 14-6  | 63  | 100 | 30  | 30  | 10  | 20  | —   | 10  | 0   | 0   | 90  | 30  | 0   | 15  |
|       | 250 | 100 | 100 | 30  | 20  | 100 | —   | 100 | 70  | 30  | 100 | 50  | 5   | 50  |
| 14-7  | 63  | 90  | 100 | 20  | 0   | 40  | 0   | 10  | 0   | 0   | 90  | 0   | 10  | 0   |
|       | 250 | 100 | 100 | 0   | 0   | 85  | 50  | 90  | 75  | 70  | 100 | 50  | 90  | 40  |
| 14-8  | 63  | 100 | 0   | 0   | 0   | 70  | 0   | 0   | 0   | 0   | 40  | 0   | 0   | 0   |
|       | 250 | 99  | 40  | 0   | 0   | 95  | 40  | 0   | 20  | 0   | 100 | 0   | 0   | 0   |
| 14-9  | 63  | 80  | 0   | 0   | 0   | 60  | 0   | 0   | 0   | 0   | 90  | 0   | 0   | 0   |
|       | 250 | 100 | 90  | 0   | 0   | 90  | 0   | 20  | 70  | 30  | 100 | 0   | 75  | 5   |
| 14-10 | 63  | 100 | 0   | 0   | 0   | 0   | 50  | 0   | 0   | 0   | 0   | 0   | 0   | 20  |
|       | 250 | 100 | 90  | 0   | 70  | 100 | 100 | 0   | 0   | 30  | 90  | 50  | 40  | 30  |
| 14-11 | 63  | 100 | 50  | 0   | 30  | 70  | 0   | 0   | 0   | 0   | 50  | 0   | 0   | 0   |
|       | 250 | 100 | 100 | 0   | 50  | 100 | 100 | 50  | 0   | 0   | 100 | 0   | 0   | 0   |
| 14-12 | 63  | 60  | 0   | 0   | 0   | 50  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 20  | 0   | 0   | 60  | 0   | 0   | 0   | 0   | 100 | 20  | 0   | 0   |
| 14-13 | 63  | 80  | 10  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 30  | 0   | 0   | 0   |
|       | 250 | 100 | 80  | 0   | 0   | 70  | 30  | 10  | 0   | 0   | 100 | 10  | 5   | 0   |
| 14-14 | 63  | 100 | 0   | 0   | 0   | 60  | —   | 0   | 0   | 0   | 50  | 20  | 0   | 0   |
|       | 250 | 100 | 20  | 0   | 20  | 100 | —   | 50  | 10  | 0   | 90  | 30  | 0   | 20  |
| 14-15 | 63  | 100 | 50  | 0   | 0   | 20  | —   | 0   | 0   | 0   | 70  | 0   | 0   | 0   |
|       | 250 | 100 | 100 | 40  | 20  | 95  | —   | 30  | 80  | 0   | 100 | 20  | 0   | 0   |
| 14-16 | 63  | 100 | 0   | 0   | 0   | 100 | —   | 0   | 0   | 0   | 50  | 0   | 0   | 0   |
|       | 250 | 100 | 90  | 0   | 0   | 100 | —   | 0   | 0   | 0   | 100 | 0   | 0   | 0   |
| 14-17 | 63  | 100 | 50  | 0   | 0   | 90  | —   | 0   | 0   | 0   | 90  | 0   | 0   | 0   |
|       | 250 | 100 | 100 | 0   | 30  | 100 | —   | 80  | 50  | 30  | 100 | 0   | 40  | 0   |
| 14-18 | 63  | 100 | 40  | 0   | 0   | 100 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 70  | 20  | 20  | 100 | 70  | 20  | 20  | 10  | 90  | 0   | 0   | 10  |
| 14-19 | 63  | 0   | 0   | 0   | 0   | 0   | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 90  | 50  | 0   | 0   | 80  | —   | 0   | 0   | 0   | 80  | 50  | 0   | 0   |
| 14-20 | 63  | 50  | 0   | 0   | 0   | 0   | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 90  | 0   | 0   | 80  | —   | 30  | 40  | 20  | 90  | 20  | 50  | 0   |
| 14-21 | 63  | 60  | 40  | 0   | 0   | 20  | 0   | 0   | 10  | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 95  | 100 | 10  | 0   | 75  | 40  | 0   | 20  | 35  | 70  | 70  | 70  | 20  |
| 14-22 | 63  | 100 | 0   | 0   | 0   | 20  | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 70  | 0   | 0   | 90  | —   | 0   | 0   | 0   | 50  | 30  | 0   | 10  |
| 14-23 | 63  | 95  | 0   | 0   | 0   | 0   | —   | 0   | 10  | 0   | 30  | 0   | 0   | 0   |
|       | 250 | 100 | 80  | 0   | 30  | 90  | —   | 40  | 30  | 80  | 90  | 0   | 0   | 0   |
| 14-24 | 63  | 50  | 0   | 0   | 0   | 0   | —   | 0   | 0   | 0   | 20  | 0   | 0   | 0   |
|       | 250 | 100 | 80  | 30  | 0   | 50  | —   | 0   | 0   | 0   | 80  | 10  | 0   | 20  |
| 14-25 | 63  | 100 | 100 | 50  | 70  | 100 | —   | 90  | 80  | 80  | 70  | 80  | 95  | 90  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | —   | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| 14-26 | 63  | 100 | 80  | 0   | 0   | 70  | —   | 0   | 0   | 0   | 50  | 0   | 0   | 0   |
|       | 250 | 100 | 100 | 20  | 0   | 100 | —   | 99  | 95  | 70  | 95  | 30  | 50  | 80  |
| 14-27 | 63  | 50  | 0   | 0   | 0   | 0   | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 30  | 0   | 0   | 90  | —   | 0   | 0   | 0   | 90  | 0   | 0   | 0   |
| 14-28 | 63  | 90  | 0   | 0   | 0   | 0   | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 80  | 0   | 0   | 95  | —   | 0   | 20  | 40  | 100 | 40  | 20  | 0   |
| 14-29 | 63  | 20  | 0   | 0   | 0   | 0   | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 95  | 80  | 0   | 0   | 50  | —   | 0   | 0   | 0   | 50  | 20  | 10  | 20  |
| 14-30 | 63  | 70  | 0   | 0   | 0   | 0   | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 50  | 0   | 0   | 80  | —   | 0   | 0   | 0   | 90  | 0   | 0   | 0   |
| 14-31 | 63  | 70  | 0   | 0   | 0   | 40  | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 70  | 0   | 50  | 50  | —   | 0   | 0   | 0   | 90  | 20  | 30  | 0   |
| 14-32 | 63  | 100 | 10  | 0   | 0   | 80  | —   | 0   | 0   | 0   | 20  | 0   | 0   | 0   |
|       | 250 | 100 | 50  | 30  | 0   | 100 | —   | 40  | 30  | 20  | 100 | 20  | 0   | 10  |
| 14-33 | 63  | 100 | 20  | 0   | 0   | 0   | —   | 0   | 0   | 0   | 0   | 0   | 10  | 0   |
|       | 250 | 100 | 90  | 0   | 0   | 90  | —   | 50  | 0   | 30  | 99  | 20  | 20  | 10  |
| 14-34 | 63  | 100 | 100 | 20  | 10  | 95  | —   | 30  | 20  | 0   | 90  | 30  | 0   | 20  |
|       | 250 | 100 | 100 | 10  | 10  | 100 | —   | 100 | 90  | 30  | 100 | 100 | 25  | 90  |
| 14-35 | 63  | 100 | 100 | 0   | 0   | 50  | —   | 80  | 0   | 0   | 50  | 0   | 0   | 0   |

|       |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
|       | 250 | 100 | 100 | 0   | 0   | 100 | —   | 100 | 99  | 50  | 95  | 20  | 25  | 10  |    |
| 14-36 | 63  | 75  | 100 | 0   | 0   | 75  | 10  | 10  | 0   | 0   | 30  | 95  | 40  | 10  | 10 |
|       | 250 | 100 | 100 | 0   | 0   | 100 | 80  | 95  | 90  | 30  | 95  | 40  | 10  | 70  |    |
| 14-37 | 63  | 100 | 90  | 0   | 0   | 100 | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |    |
|       | 250 | 100 | 100 | 0   | 0   | 100 | —   | 95  | 99  | 0   | 100 | 0   | 0   | 80  |    |
| 14-38 | 63  | 99  | 40  | 0   | 0   | 90  | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |    |
|       | 250 | 100 | 100 | 0   | 0   | 100 | —   | 80  | 70  | 0   | 90  | 0   | 0   | 30  |    |
| 14-39 | 63  | 100 | 100 | 0   | 0   | 100 | —   | 70  | 10  | 0   | 95  | 0   | 0   | 0   |    |
|       | 250 | 100 | 100 | 20  | 0   | 100 | —   | 100 | 95  | 60  | 100 | 0   | 0   | 80  |    |
| 14-40 | 63  | 100 | 100 | 0   | 0   | 95  | 30  | 50  | 10  | 0   | 60  | 0   | 0   | 20  |    |
|       | 250 | 100 | 100 | 0   | 0   | 100 | 90  | 100 | 80  | 40  | 100 | 20  | 0   | 60  |    |
| 14-41 | 63  | 100 | 90  | 0   | 0   | 100 | —   | 30  | 0   | 0   | 50  | 0   | 0   | 0   |    |
|       | 250 | 100 | 100 | 0   | 40  | 100 | —   | 100 | 80  | 0   | 100 | 50  | 0   | 50  |    |
| 14-42 | 63  | 95  | 80  | 0   | 0   | 90  | 0   | 30  | 0   | 0   | 0   | 0   | 0   | 10  |    |
|       | 250 | 100 | 95  | 0   | 30  | 100 | 100 | 80  | 20  | 0   | 50  | 95  | 20  | 30  |    |
| 14-43 | 63  | 100 | 90  | 0   | 0   | 100 | 0   | 30  | 0   | 20  | 80  | 0   | 0   | 10  |    |
|       | 250 | 100 | 100 | 0   | 0   | 100 | 100 | 95  | 80  | 30  | 100 | 70  | 20  | 40  |    |
| 14-44 | 63  | 70  | 80  | 0   | 0   | 70  | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |    |
|       | 250 | 100 | 100 | 0   | 0   | 100 | —   | 70  | 50  | 0   | 90  | 100 | 0   | 50  |    |
| 14-45 | 63  | 100 | 100 | 0   | 0   | 95  | —   | 0   | 0   | 0   | 30  | 0   | 0   | 10  |    |
|       | 250 | 100 | 100 | 0   | 0   | 100 | —   | 95  | 80  | 50  | 99  | 80  | 10  | 80  |    |
| 14-46 | 63  | 60  | 80  | 0   | 0   | 0   | 50  | 0   | 0   | 0   | 0   | 0   | 0   | 0   |    |
|       | 250 | 95  | 100 | 0   | 0   | 90  | 100 | 0   | 0   | 0   | 0   | 30  | 0   | 30  |    |
| 14-47 | 63  | 100 | 100 | 0   | 0   | 100 | —   | 0   | 0   | 0   | 30  | 0   | 0   | 0   |    |
|       | 250 | 100 | 100 | 0   | 0   | 100 | —   | 99  | 95  | 20  | 100 | 100 | 0   | 70  |    |
| 14-48 | 63  | 90  | 90  | 0   | 0   | 50  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 30  |    |
|       | 250 | 100 | 100 | 0   | 0   | 100 | 80  | 50  | 50  | 0   | 70  | 95  | 40  | 70  |    |
| 14-49 | 63  | 100 | 100 | 0   | 50  | 100 | —   | 50  | 0   | 20  | 50  | 0   | 10  | 40  |    |
|       | 250 | 100 | 100 | 70  | 90  | 100 | —   | 100 | 100 | 90  | 100 | 100 | 95  | 95  |    |
| 14-50 | 63  | 100 | 0   | 0   | 10  | 100 | —   | 0   | 0   | 50  | 0   | 0   | 10  | 0   |    |
|       | 250 | 100 | 50  | 30  | 70  | 100 | —   | 50  | 30  | 95  | 40  | 0   | 90  | 0   |    |
| 14-51 | 63  | 100 | 10  | 0   | 0   | 90  | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |    |
|       | 250 | 100 | 100 | 0   | 50  | 100 | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |    |
| 14-52 | 63  | 40  | 70  | 0   | 0   | 80  | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |    |
|       | 250 | 90  | 100 | 0   | 30  | 100 | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |    |
| 14-54 | 63  | 20  | 0   | 0   | 0   | 10  | 0   | 20  | 0   | 0   | 0   | 0   | 0   | 0   |    |
|       | 250 | 85  | 70  | 10  | 40  | 100 | 0   | 80  | 0   | 30  | 30  | 0   | 0   | 15  |    |
| 14-55 | 63  | 0   | 10  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |    |
|       | 250 | —   | —   | —   | —   | —   | —   | —   | —   | —   | —   | —   | —   | —   |    |
| 14-56 | 63  | 100 | 30  | 0   | 0   | 80  | —   | 20  | 0   | 0   | 0   | 30  | 0   | 10  |    |
|       | 250 | 100 | 60  | 10  | 0   | 100 | —   | 70  | 0   | 30  | 40  | 0   | 0   | 10  |    |
| 14-57 | 63  | 0   | 0   | 0   | 0   | 0   | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |    |
|       | 250 | 0   | 0   | 0   | 0   | 0   | —   | 0   | 0   | 0   | 20  | 0   | 0   | 0   |    |
| 14-59 | 63  | 0   | 0   | 0   | 0   | 40  | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |    |
|       | 250 | 0   | 0   | 0   | 0   | 0   | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |    |
| 14-60 | 63  | 100 | 100 | 0   | 90  | 100 | —   | 10  | 0   | 0   | 0   | 0   | 0   | 0   |    |
|       | 250 | 100 | 100 | 0   | 100 | 100 | —   | 60  | 20  | 10  | 30  | 10  | 0   | 20  |    |
| 14-61 | 63  | 30  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |    |
|       | 250 | 95  | 40  | 0   | 20  | 80  | 0   | 60  | 0   | 20  | 40  | 0   | 0   | 0   |    |
| 14-62 | 63  | 40  | 15  | 0   | 0   | 20  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |    |
|       | 250 | 100 | 95  | 0   | 0   | 80  | 30  | 60  | 20  | 60  | 50  | 0   | 5   | 15  |    |
| 14-63 | 63  | 99  | 70  | 0   | 0   | 80  | 0   | 30  | 0   | 0   | 70  | 0   | 0   | 0   |    |
|       | 250 | 100 | 100 | 50  | 0   | 99  | 60  | 99  | 50  | 20  | 100 | 0   | 0   | 0   |    |
| 14-64 | 63  | 100 | 90  | 0   | 0   | 60  | 20  | 0   | 0   | 0   | 50  | 0   | 0   | 0   |    |
|       | 250 | 100 | 100 | 0   | 0   | 100 | 60  | 100 | 95  | 20  | 100 | 0   | 0   | 10  |    |
| 14-65 | 63  | 100 | 90  | 40  | 40  | 60  | 100 | 20  | 0   | 20  | 90  | 20  | 0   | 0   |    |
|       | 250 | 100 | 100 | 80  | 70  | 100 | 70  | 90  | 80  | 20  | 100 | 40  | 0   | 0   |    |
| 14-66 | 63  | 100 | 90  | 0   | 0   | 90  | 0   | 20  | 50  | 0   | 90  | 0   | 0   | 0   |    |
|       | 250 | 100 | 100 | 0   | 60  | 100 | 0   | 100 | 100 | 30  | 100 | 0   | 0   | 20  |    |
| 15-1  | 63  | 100 | 100 | 100 | 100 | 100 | —   | 100 | 99  | —   | 100 | 95  | 95  | 90  |    |
|       | 250 | 100 | 100 | 100 | 100 | 100 | —   | 100 | 100 | —   | 100 | 100 | 100 | 100 |    |
| 15-2  | 63  | 100 | 100 | 100 | 10  | 100 | —   | 100 | 100 | 100 | 100 | 90  | 80  | 99  |    |
|       | 250 | 100 | 100 | 100 | 100 | 100 | —   | 100 | 100 | 100 | 100 | 100 | 100 | 95  |    |
| 15-3  | 63  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |    |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 90  | 100 |    |
| 15-4  | 63  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 80  | —   | 100 | 100 | 100 | 80  |    |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | —   | 100 | 100 | 100 | 100 |    |
| 15-5  | 63  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 70  | —   | 100 | 90  | 80  | 70  |    |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99  | —   | 100 | 99  | 99  | 99  |    |

|       |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15-6  | 63  | 100 | 100 | 90  | 100 | 100 | --- | 99  | 99  | 100 | 100 | 95  | 95  | 98  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 95  | 100 | 100 |
| 15-7  | 63  | 100 | 100 | 100 | 95  | 100 | --- | 100 | 80  | 95  | 90  | 95  | 85  | 90  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| 15-8  | 63  | 60  | 40  | 20  | 0   | 60  | --- | 20  | 0   | --- | 30  | 10  | 0   | 15  |
|       | 250 | 100 | 100 | 80  | 70  | 100 | --- | 0   | 40  | --- | 100 | 80  | 90  | 90  |
| 15-9  | 63  | 100 | 100 | 90  | 99  | 100 | --- | 100 | 99  | 100 | 90  | 100 | 85  | 95  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 98  | 100 |
| 15-10 | 63  | 100 | 100 | 80  | 100 | 100 | 100 | 100 | 99  | 100 | 100 | 100 | 75  | 80  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| 15-11 | 63  | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 99  | 100 | 100 |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| 15-12 | 63  | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 99  | 100 | 99  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| 15-13 | 46  | 100 | 100 | 100 | 100 | 100 | --- | 100 | 99  | 99  | 100 | 60  | 35  | 90  |
|       | 185 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| 15-14 | 63  | 100 | 100 | 90  | 100 | 100 | --- | 100 | 100 | 100 | 100 | 99  | 40  | 99  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 99  | 100 |
| 15-15 | 63  | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 95  | 95  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| 15-16 | 63  | 100 | 100 | 90  | 90  | 100 | --- | 100 | 80  | 100 | 100 | 90  | 65  | 90  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| 15-17 | 63  | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 80  | 100 |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 95  | 100 |
| 15-18 | 63  | 100 | 100 | 100 | 90  | 100 | --- | 95  | 75  | 75  | 100 | 75  | 80  | 90  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 95  | 99  |
| 15-19 | 63  | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 95  | 80  | 90  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| 15-20 | 63  | 100 | 100 | 60  | 80  | 100 | --- | 100 | 50  | 100 | 80  | 65  | 70  | 100 |
|       | 250 | 100 | 100 | 100 | 80  | 100 | --- | 100 | 100 | 100 | 100 | 100 | 95  | 100 |
| 15-21 | 63  | 100 | 100 | 100 | 100 | 100 | --- | 100 | 99  | 100 | 100 | 100 | 100 | 100 |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| 15-22 | 63  | 100 | 100 | 100 | 50  | 100 | --- | 90  | 60  | --- | 100 | 40  | 25  | 30  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | --- | 100 | 90  | 95  | 99  |
| 16-2  | 63  | 40  | 75  | 0   | 10  | 80  | --- | 10  | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 100 | 60  | 50  | 100 | --- | 60  | 10  | 30  | 50  | 15  | 0   | 0   |
| 16-6  | 63  | 70  | 90  | 50  | 50  | 90  | --- | 0   | 0   | 0   | 0   | 20  | 10  | 0   |
|       | 250 | 100 | 100 | 70  | 90  | 100 | --- | 40  | 50  | 50  | 70  | 60  | 90  | 70  |
| 16-7  | 63  | 0   | 0   | 0   | 0   | 0   | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 50  | 0   | 0   | 0   | 0   | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 17-1  | 63  | 30  | 95  | 0   | 10  | 90  | --- | 50  | 0   | 0   | 20  | 10  | 0   | 10  |
|       | 250 | 90  | 100 | 80  | 70  | 100 | --- | 80  | 70  | 60  | 80  | 10  | 10  | 30  |
| 17-2  | 63  | 30  | 0   | 0   | 0   | 60  | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 60  | 20  | 0   | 0   | 90  | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 17-4  | 63  | 30  | 0   | 0   | 0   | 20  | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 60  | 10  | 10  | 70  | --- | 20  | 0   | 0   | 10  | 0   | 0   | 10  |
| 17-5  | 63  | 80  | 60  | 0   | 30  | 90  | --- | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 100 | 100 | 30  | 35  | 100 | --- | 50  | 0   | 20  | 60  | 0   | 0   | 10  |

**TABLE XXI**  
**Post-emerge Herbicidal Activity**

| Cmpd.<br>no. | Rate<br>g ai/ha | AMARE | ABUTH | CASOB | IPOHE | CHEAL | AMBEL | SETVI | ECHCG | SORHA | DIGSA | SOY | CORN | RICE |
|--------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|------|------|
| 1-4          | 63              | 30    | 100   | 60    | 100   | 60    | 50    | ----  | 0     | 0     | 0     | 80  | 0    | 0    |
|              | 250             | 95    | 100   | 100   | 100   | 95    | 90    | ----  | 40    | 70    | 50    | 100 | 20   | 35   |
| 1-5          | 63              | 0     | 10    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 10  | 0    | 0    |
|              | 250             | 40    | 60    | 30    | 70    | 50    | 30    | 0     | 0     | 0     | 0     | 50  | 5    | 0    |
| 1-9          | 63              | 100   | 100   | 90    | 100   | 100   | 90    | 90    | 70    | 90    | 90    | 100 | 30   | 40   |
|              | 250             | 30    | 90    | 10    | 70    | 50    | 30    | 0     | 0     | 0     | 0     | 40  | 0    | 0    |
| 1-10         | 63              | 40    | 70    | 0     | 40    | 50    | 10    | 0     | 0     | 0     | 0     | 0   | 0    | 0    |
|              | 250             | 60    | 100   | 0     | 70    | 95    | 10    | 50    | 0     | 0     | 0     | 30  | 0    | 0    |
| 1-13         | 63              | 100   | 100   | 30    | 100   | 100   | 70    | 30    | 30    | 10    | 0     | 80  | 20   | 30   |
|              | 250             | 100   | 100   | 70    | 100   | 100   | 85    | 90    | 70    | 90    | 75    | 100 | 80   | 80   |
| 1-15         | 63              | 0     | 30    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0   | 0    | 0    |
|              | 250             | 30    | 50    | 0     | 40    | 20    | 0     | 0     | 0     | 0     | 0     | 15  | 0    | 0    |
| 1-16         | 63              | 30    | 30    | 0     | 20    | 30    | 0     | 0     | 0     | 0     | 0     | 0   | 0    | 0    |
|              | 250             | 70    | 50    | 0     | 50    | 60    | 0     | 0     | 0     | 0     | 0     | 10  | 0    | 0    |
| 1-18         | 63              | 70    | 100   | 30    | 80    | 70    | ----  | 70    | 0     | 50    | 50    | 50  | 0    | 0    |
|              | 250             | 100   | 100   | 95    | 100   | 100   | ----  | 70    | 0     | 50    | 50    | 100 | 0    | 0    |
| 1-19         | 63              | 30    | 100   | 10    | 30    | 30    | ----  | 20    | 0     | 0     | 0     | 40  | 5    | 25   |
|              | 250             | 70    | 100   | 30    | 95    | 90    | ----  | 95    | 80    | 70    | 10    | 95  | 45   | 80   |
| 1-20         | 63              | 90    | 100   | 0     | 100   | 90    | ----  | 0     | 30    | 10    | 10    | 100 | 10   | 20   |
|              | 250             | 100   | 100   | 50    | 100   | 100   | ----  | 60    | 80    | 70    | 20    | 100 | 40   | 50   |
| 1-21         | 63              | 95    | 85    | 10    | 70    | 75    | 10    | 10    | 0     | 0     | 0     | 40  | 5    | 10   |
|              | 250             | 100   | 100   | 30    | 90    | 95    | 30    | 30    | 0     | 0     | 0     | 40  | 5    | 10   |
| 1-22         | 63              | 60    | 100   | 0     | 40    | 40    | ----  | 0     | 0     | 0     | 0     | 30  | 5    | 10   |
|              | 250             | 80    | 100   | 0     | 90    | 80    | ----  | 80    | 0     | 10    | 0     | 60  | 15   | 40   |
| 1-30         | 63              | 10    | 30    | 0     | 20    | 0     | 0     | 0     | 0     | 0     | 0     | 0   | 0    | 0    |
|              | 250             | 30    | 100   | 30    | 100   | 60    | 70    | 0     | 0     | 0     | 0     | 20  | 10   | 20   |
| 1-31         | 63              | 10    | 20    | 0     | 10    | 0     | 0     | 0     | 0     | 0     | 0     | 0   | 0    | 0    |
|              | 250             | 30    | 50    | 0     | 50    | 40    | 0     | 0     | 0     | 0     | 0     | 20  | 0    | 10   |
| 1-32         | 63              | 10    | 30    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0   | 0    | 0    |
|              | 250             | 30    | 0     | 70    | 60    | 30    | 0     | 0     | 0     | 0     | 0     | 10  | 0    | 0    |
| 1-37         | 63              | 90    | 100   | 65    | 100   | 95    | ----  | 20    | 30    | 10    | 10    | 60  | 10   | 25   |
|              | 250             | 100   | 100   | 90    | 100   | 100   | ----  | 80    | 90    | 70    | 70    | 100 | 60   | 60   |
| 1-38         | 63              | 80    | 100   | 50    | 80    | ----  | 10    | 0     | 0     | 10    | 10    | 80  | 25   | 35   |
|              | 250             | 100   | 100   | 90    | 100   | ----  | ----  | 80    | 80    | 80    | 80    | 100 | 70   | 70   |
| 1-51         | 63              | 70    | 60    | 40    | 40    | 30    | 70    | 0     | 0     | ----  | 10    | 10  | 10   | 10   |
|              | 250             | 70    | 80    | 60    | 95    | 95    | 90    | 30    | 10    | ----  | 20    | 50  | 20   | 30   |
| 1-53         | 63              | 80    | 100   | 60    | 95    | 50    | ----  | 0     | 0     | 0     | 0     | 95  | 0    | 10   |
|              | 250             | 100   | 100   | 95    | 100   | 100   | ----  | 80    | 50    | 40    | 50    | 100 | 30   | 60   |
| 1-54         | 63              | 100   | 100   | 90    | 100   | 100   | 100   | 40    | 20    | ----  | 40    | 99  | 50   | 40   |
|              | 250             | 100   | 100   | 100   | 100   | 100   | 100   | 60    | 75    | ----  | 70    | 100 | 70   | 45   |
| 1-55         | 63              | 10    | 80    | 10    | 30    | 0     | 70    | 0     | 0     | 0     | 0     | 0   | 0    | 0    |
|              | 250             | 10    | 90    | 20    | 95    | 20    | 50    | 40    | 0     | 0     | 30    | 20  | 10   | 0    |
| 1-59         | 63              | 95    | 100   | 40    | 100   | 100   | ----  | 10    | 30    | 10    | 0     | 90  | 45   | 30   |
|              | 250             | 100   | 100   | 100   | 100   | 100   | ----  | 70    | 80    | 50    | 40    | 100 | 80   | 60   |
| 1-60         | 63              | 90    | 100   | 50    | 90    | 99    | ----  | 0     | 0     | 0     | 0     | 90  | 0    | 10   |
|              | 250             | 100   | 100   | 90    | 100   | 100   | ----  | 10    | 20    | 20    | 50    | 100 | 50   | 40   |
| 1-61         | 63              | 50    | 70    | 60    | 100   | 30    | 70    | 10    | 0     | ----  | 10    | 20  | 10   | 10   |
|              | 250             | 70    | 100   | 70    | 100   | 70    | 85    | 30    | 10    | ----  | 30    | 80  | 30   | 35   |
| 1-63         | 63              | 10    | 70    | 0     | 95    | 20    | 0     | 0     | 0     | 0     | 0     | 0   | 0    | 10   |
|              | 250             | 10    | 100   | 0     | 90    | 50    | 50    | 20    | 30    | 0     | 0     | 80  | 0    | 40   |
| 2-1          | 63              | 50    | 100   | 50    | 100   | 95    | 30    | 0     | 0     | 0     | 0     | 90  | 10   | 30   |
|              | 250             | 100   | 100   | 100   | 100   | 100   | 85    | 30    | 10    | 0     | 0     | 100 | 15   | 70   |
| 2-2          | 63              | 90    | 95    | ----  | 95    | 60    | 0     | 0     | 0     | 0     | 0     | 50  | 0    | 20   |
|              | 250             | 100   | 100   | ----  | 100   | 100   | 70    | 30    | 40    | 50    | 30    | 95  | 0    | 60   |
| 2-3          | 63              | 10    | 80    | 0     | 60    | 30    | ----  | 0     | 0     | 0     | 0     | 70  | 0    | 0    |
|              | 250             | 40    | 100   | 0     | 100   | 30    | ----  | 0     | 0     | 0     | 0     | 90  | 10   | 40   |
| 2-4          | 63              | 0     | 0     | 0     | 0     | 50    | ----  | 0     | 0     | 10    | 0     | 30  | 0    | 0    |
|              | 250             | 70    | 50    | 0     | 20    | 50    | ----  | 0     | 0     | 10    | 0     | 30  | 0    | 0    |
| 2-5          | 63              | 20    | 90    | 10    | 50    | 40    | ----  | 0     | 0     | 0     | 0     | 60  | 5    | 30   |
|              | 250             | 40    | 100   | 50    | 90    | 70    | ----  | 0     | 0     | 30    | 0     | 60  | 10   | 40   |
| 2-6          | 63              | 0     | 0     | 0     | 0     | 0     | ----  | 0     | 0     | 0     | 0     | 0   | 0    | 0    |
|              | 250             | 10    | 70    | 0     | 30    | 30    | ----  | 0     | 0     | 0     | 0     | 5   | 5    | 0    |



|       |     |     |     |     |     |     |     |     |     |     |    |     |     |     |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|
| 2-53  | 63  | 90  | 100 | 70  | 90  | 95  | 70  | 20  | 0   | 0   | 0  | 100 | 10  | 30  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 90  | 40  | 70  | 50  | 20 | 100 | 70  | 70  |
| 2-54  | 63  | 100 | 100 | 90  | 100 | 100 | 90  | 10  | 20  | 50  | 10 | 100 | 80  | 90  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 50  | 90  | 80  | 20 | 100 | 80  | 95  |
| 2-56  | 63  | 100 | 100 | 100 | 100 | 100 | 70  | 80  | 0   | 0   | 0  | 100 | 30  | 45  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 60  | 50  | 60  | 30 | 100 | 80  | 90  |
| 2-58  | 63  | 100 | 100 | 100 | 95  | 100 | 100 | 50  | 20  | 20  | 10 | 100 | 40  | 50  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 60  | 90  | 90  | 40 | 100 | 90  | 85  |
| 2-59  | 63  | 100 | 100 | 90  | 100 | 100 | 70  | 20  | 0   | 30  | 0  | 75  | 70  | 70  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 20  | 30  | 65  | 30 | 90  | 80  | 80  |
| 2-61  | 63  | 100 | 100 | 100 | 100 | 100 | 100 | 60  | 40  | 20  | 20 | 100 | 35  | 60  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 95  | 90  | 70  | 70  | 50 | 100 | 90  | 90  |
| 2-63  | 63  | 100 | 100 | 100 | 100 | 99  | 80  | 50  | 10  | 20  | 0  | 100 | 50  | 70  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 95  | 100 | 100 | 70 | 100 | 95  | 95  |
| 2-64  | 63  | 85  | 100 | 40  | 70  | 80  | 60  | 20  | 30  | 20  | 10 | 50  | 50  | 60  |
|       | 250 | 100 | 100 | 70  | 90  | 100 | 90  | 50  | 40  | 20  | 20 | 60  | 60  | 90  |
| 2-66  | 63  | 100 | 100 | 100 | 100 | 100 | 100 | 90  | 70  | 10  | 10 | 95  | 15  | 50  |
|       | 250 | 100 | 100 | 70  | 90  | 100 | 75  | 80  | 50  | 50  | 20 | 90  | 70  | 90  |
| 2-67  | 63  | 100 | 100 | 100 | 99  | 100 | 100 | 20  | 0   | 0   | 0  | 100 | 20  | 70  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 30  | 40  | 80  | 40 | 100 | 95  | 80  |
| 2-69  | 63  | 40  | 100 | 10  | 50  | 50  | 40  | 0   | 0   | 0   | 0  | 20  | 0   | 0   |
|       | 250 | 50  | 100 | 30  | 40  | 60  | 30  | 0   | 0   | 0   | 0  | 30  | 0   | 0   |
| 2-70  | 63  | 70  | 100 | 10  | 60  | 50  | 30  | 20  | 0   | 0   | 0  | 10  | 0   | 0   |
|       | 250 | 70  | 100 | 20  | 60  | 70  | 30  | 0   | 0   | 0   | 0  | 20  | 0   | 0   |
| 2-72  | 63  | 70  | 100 | 70  | 50  | 70  | 70  | —   | 0   | 0   | 0  | 15  | 0   | 0   |
|       | 250 | 90  | 100 | 95  | 60  | 80  | 60  | —   | 0   | 0   | 0  | 30  | 10  | 20  |
| 2-73  | 63  | 100 | 100 | 60  | 100 | 70  | 100 | 50  | 30  | 10  | 30 | 95  | 25  | 20  |
|       | 250 | 100 | 100 | 100 | 100 | 95  | 100 | 90  | 60  | 50  | 30 | 100 | 50  | 70  |
| 2-74  | 63  | 95  | 100 | 30  | 60  | 70  | 70  | 0   | 0   | 0   | 0  | 60  | 0   | 25  |
|       | 250 | 100 | 100 | 70  | 60  | 70  | 95  | 20  | 0   | 0   | 0  | 100 | 15  | 50  |
| 2-75  | 63  | 100 | 100 | 100 | 100 | 100 | —   | 30  | 10  | 20  | 0  | 100 | 10  | 70  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | —   | 80  | 50  | 40  | 20 | 100 | 15  | 80  |
| 2-77  | 63  | 10  | 100 | 40  | 60  | 100 | —   | 0   | 0   | 0   | 0  | 40  | 0   | 20  |
|       | 250 | 100 | 100 | 100 | 95  | 80  | —   | 0   | 0   | 0   | 0  | 90  | 10  | 40  |
| 2-78  | 63  | 100 | 100 | 70  | 80  | 100 | —   | 30  | 10  | 0   | 0  | 80  | 25  | 50  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | —   | 30  | 10  | 10  | 0  | 100 | 30  | 65  |
| 2-81  | 63  | 100 | 100 | 70  | 100 | 90  | —   | 40  | 50  | 20  | 20 | 90  | 30  | 60  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | —   | 60  | 90  | 80  | 80 | 100 | 90  | 90  |
| 2-82  | 63  | 100 | 100 | 100 | 60  | 90  | —   | 40  | 20  | 0   | 0  | 60  | 10  | 50  |
|       | 250 | 100 | 100 | 100 | 90  | 90  | —   | 50  | 30  | 30  | 30 | 50  | 25  | 40  |
| 2-83  | 63  | 40  | 50  | 0   | 10  | 20  | —   | 0   | 0   | 0   | 0  | 10  | 0   | 100 |
|       | 250 | 90  | 70  | 0   | 20  | 50  | —   | 0   | 0   | 0   | 0  | 10  | 0   | 0   |
| 2-84  | 63  | 80  | 30  | 20  | 30  | 30  | —   | 30  | 0   | 0   | 0  | 70  | 10  | 20  |
|       | 250 | 100 | 100 | 100 | 70  | 80  | —   | 0   | 0   | 0   | 0  | 100 | 90  | 80  |
| 2-86  | 63  | 100 | 100 | 100 | 100 | 100 | —   | 90  | 90  | 70  | 30 | 100 | 100 | 100 |
|       | 250 | 100 | 100 | 100 | 100 | 100 | —   | 100 | 100 | 100 | 95 | 100 | 100 | 100 |
| 2-87  | 63  | 100 | 100 | 40  | 100 | 80  | —   | 30  | 10  | 10  | 10 | 95  | 30  | 40  |
|       | 250 | 100 | 100 | 100 | 100 | 90  | —   | 40  | 50  | 50  | 50 | 100 | 80  | 75  |
| 2-89  | 63  | 70  | 100 | 50  | 90  | 60  | —   | 20  | 0   | 0   | 0  | 80  | 0   | 60  |
|       | 250 | 100 | 100 | 60  | 100 | 90  | —   | 20  | 10  | 10  | 0  | 99  | 0   | 70  |
| 2-92  | 63  | 20  | 100 | 0   | 20  | 20  | —   | 0   | 0   | 0   | 0  | 10  | 0   | 10  |
|       | 250 | 50  | 100 | 30  | 100 | 80  | —   | 0   | 0   | 0   | 0  | 80  | 30  | 60  |
| 2-98  | 63  | 75  | 100 | 100 | 100 | 70  | 80  | —   | 0   | 0   | 0  | 100 | 20  | 40  |
|       | 250 | 100 | 100 | 100 | 100 | 90  | 100 | —   | 20  | 90  | 50 | 100 | 90  | 90  |
| 2-100 | 63  | 80  | 100 | 70  | 100 | 80  | 70  | 60  | 0   | 0   | 0  | 100 | 15  | 45  |
|       | 250 | 100 | 100 | 60  | 100 | 80  | 90  | 70  | 30  | 60  | 20 | 100 | 80  | 70  |
| 2-102 | 63  | 0   | 0   | 0   | 0   | 0   | —   | 0   | 0   | 0   | 0  | 0   | 0   | 0   |
|       | 250 | 40  | 30  | 0   | 0   | 0   | —   | 0   | 0   | 0   | 0  | 40  | 0   | 0   |
| 2-105 | 63  | 100 | 100 | 80  | 100 | 80  | 100 | 70  | 10  | 0   | 0  | 100 | 0   | 0   |
|       | 250 | 100 | 100 | 80  | 100 | 90  | 100 | 100 | 30  | 30  | 10 | 100 | 10  | 30  |
| 2-115 | 63  | 100 | 100 | 90  | 90  | 100 | —   | 0   | 10  | 0   | 20 | 50  | 5   | 20  |
|       | 250 | 100 | 100 | 95  | 95  | 100 | —   | 0   | 20  | 0   | 50 | 50  | 5   | 50  |
| 2-117 | 63  | 10  | 80  | 40  | 90  | —   | —   | 0   | 0   | 0   | 0  | 30  | 5   | 10  |
|       | 250 | 70  | 100 | 95  | 100 | —   | —   | 0   | 0   | 0   | 0  | 90  | 20  | 40  |
| 2-118 | 63  | 30  | 60  | 0   | 50  | —   | —   | 0   | 0   | 0   | 0  | 40  | 10  | 10  |
|       | 250 | 30  | 80  | 30  | 90  | —   | —   | 0   | 0   | 0   | 0  | 90  | 20  | 10  |
| 2-119 | 63  | 90  | 100 | 30  | 100 | 80  | —   | 40  | 40  | 60  | 30 | 100 | 70  | 60  |
|       | 250 | 100 | 100 | 60  | 100 | 100 | —   | 90  | 90  | 90  | 80 | 95  | 90  | 90  |
| 2-120 | 63  | 90  | 100 | 40  | 100 | 80  | —   | 20  | 40  | 40  | 10 | 70  | 50  | 50  |

|       |     |     |     |     |     |     |     |    |    |     |    |     |     |     |
|-------|-----|-----|-----|-----|-----|-----|-----|----|----|-----|----|-----|-----|-----|
|       | 250 | 100 | 100 | 30  | 100 | 80  | --- | 60 | 30 | 50  | 60 | 90  | 70  | 90  |
| 2-121 | 63  | 90  | 70  | 10  | 100 | 60  | --- | 0  | 0  | 0   | 0  | 25  | 10  | 15  |
|       | 250 | 100 | 100 | 60  | 100 | 80  | --- | 20 | 0  | 10  | 10 | 60  | 20  | 25  |
| 2-122 | 63  | 100 | 100 | 100 | 100 | 100 | --- | 90 | 30 | 30  | 40 | 90  | 40  | 35  |
|       | 250 | 100 | 100 | 100 | 80  | 100 | --- | 95 | 50 | 60  | 60 | 100 | 40  | 60  |
| 2-123 | 63  | 100 | 100 | 100 | 100 | 100 | --- | 20 | 10 | 10  | 10 | 70  | 35  | 60  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 30 | 20 | 30  | 30 | 95  | 40  | 70  |
| 2-124 | 63  | 30  | 40  | 0   | 20  | 30  | --- | 0  | 0  | 0   | 0  | 15  | 0   | 0   |
|       | 250 | 90  | 95  | 20  | 30  | 50  | --- | 0  | 0  | 0   | 0  | 15  | 5   | 0   |
| 2-125 | 63  | 100 | 100 | 90  | 100 | 100 | --- | 40 | 20 | 30  | 20 | 90  | 10  | 40  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 60 | 40 | 40  | 40 | 100 | 20  | 70  |
| 2-126 | 63  | 80  | 90  | 60  | 80  | 80  | --- | 30 | 0  | 0   | 20 | 30  | 10  | 10  |
|       | 250 | 100 | 100 | 60  | 100 | 95  | --- | 40 | 10 | 10  | 30 | 60  | 10  | 50  |
| 2-127 | 63  | 100 | 100 | 100 | 100 | 70  | --- | 30 | 30 | 20  | 20 | 35  | 10  | 30  |
|       | 250 | 100 | 100 | 60  | 95  | 100 | --- | 40 | 20 | 20  | 30 | 70  | 15  | 35  |
| 2-128 | 63  | 100 | 100 | 60  | 100 | 100 | --- | 50 | 10 | --- | 10 | 60  | 5   | 10  |
|       | 250 | 100 | 100 | 80  | 100 | 100 | --- | 60 | 20 | --- | 35 | 60  | 15  | --- |
| 2-129 | 63  | 100 | 100 | 80  | 100 | 100 | --- | 80 | 30 | --- | 30 | 100 | 70  | 35  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 90 | 50 | --- | 70 | 100 | 100 | 75  |
| 2-130 | 63  | 100 | 100 | 80  | 100 | 100 | --- | 60 | 50 | --- | 30 | 80  | 10  | 20  |
|       | 250 | 100 | 100 | 70  | 100 | 100 | --- | 70 | 60 | --- | 50 | 90  | 30  | 25  |
| 2-131 | 63  | 100 | 100 | 80  | 100 | 100 | --- | 70 | 30 | --- | 30 | 90  | 15  | 10  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 90 | 60 | --- | 70 | 100 | 70  | 75  |
| 2-132 | 63  | 100 | 100 | 100 | 100 | 100 | --- | 40 | 20 | --- | 10 | 80  | 60  | 50  |
|       | 250 | 100 | 100 | 99  | 100 | 100 | --- | 60 | 40 | --- | 25 | 100 | 75  | 80  |
| 2-133 | 63  | 100 | 100 | 80  | 90  | 100 | --- | 70 | 50 | --- | 30 | 100 | 70  | 80  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 75 | 85 | --- | 70 | 95  | 95  | 95  |
| 2-134 | 63  | 100 | 100 | 90  | 100 | 100 | --- | 20 | 10 | 10  | 0  | 70  | 10  | 50  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 60 | 30 | 30  | 30 | 90  | 20  | 80  |
| 2-135 | 63  | 100 | 100 | 70  | 100 | 100 | --- | 15 | 0  | --- | 0  | 50  | 10  | 20  |
|       | 250 | 100 | 100 | 100 | 95  | 100 | --- | 40 | 20 | --- | 10 | 90  | 25  | 40  |
| 2-136 | 63  | 100 | 100 | 60  | 80  | 95  | --- | 20 | 0  | --- | 0  | 70  | 15  | 5   |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 30 | 10 | --- | 20 | 90  | 10  | 10  |
| 2-137 | 63  | 100 | 100 | 100 | 100 | 100 | --- | 10 | 0  | --- | 0  | 70  | 10  | 10  |
|       | 250 | 100 | 100 | 90  | 90  | 100 | --- | 30 | 30 | --- | 10 | 90  | 60  | 70  |
| 2-140 | 63  | 100 | 100 | 100 | 100 | 100 | --- | 40 | 30 | --- | 20 | 100 | 10  | 50  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 60 | 85 | --- | 65 | 100 | 70  | 80  |
| 2-141 | 63  | 95  | 100 | 50  | 100 | 95  | --- | 20 | 10 | --- | 10 | 70  | 5   | 15  |
|       | 250 | 95  | 100 | 95  | 95  | 100 | --- | 40 | 30 | --- | 30 | 70  | 10  | 65  |
| 2-142 | 63  | 0   | 0   | 0   | 0   | 20  | --- | 0  | 0  | --- | 0  | 15  | 10  | 10  |
|       | 250 | 40  | 40  | 10  | 50  | 60  | --- | 0  | 0  | --- | 0  | 30  | 15  | 0   |
| 2-143 | 63  | 100 | 100 | 70  | 60  | --- | --- | 0  | 0  | --- | 0  | 100 | 10  | 40  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 40 | 30 | --- | 40 | 95  | 35  | 70  |
| 2-144 | 63  | 75  | 85  | 60  | 60  | 60  | --- | 0  | 0  | --- | 0  | 40  | 40  | 15  |
|       | 250 | 90  | 100 | 85  | 70  | 70  | --- | 30 | 10 | --- | 0  | 40  | 20  | 35  |
| 2-145 | 63  | 95  | 100 | 100 | 100 | 100 | --- | 0  | 0  | 0   | 0  | 80  | 10  | 35  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 40 | 20 | 10  | 10 | 95  | 20  | 60  |
| 2-146 | 63  | 30  | 70  | 20  | 40  | 30  | --- | 0  | 0  | 0   | 0  | 10  | 10  | 10  |
|       | 250 | 30  | 73  | 50  | 50  | 40  | --- | 0  | 0  | 0   | 0  | 10  | 5   | 10  |
| 2-147 | 63  | 100 | 100 | 80  | 100 | 100 | 95  | 20 | 10 | --- | 20 | 90  | 15  | 50  |
|       | 250 | 100 | 100 | 95  | 100 | 100 | 100 | 40 | 50 | --- | 50 | 100 | 90  | 75  |
| 2-148 | 63  | 100 | 100 | 95  | 80  | 100 | --- | 50 | 50 | 0   | 40 | 80  | 25  | 0   |
|       | 250 | 90  | 100 | 100 | 90  | 100 | --- | 40 | 20 | 10  | 40 | 90  | 30  | 10  |
| 2-149 | 63  | 80  | 100 | 95  | 70  | 90  | --- | 10 | 20 | 0   | 0  | 80  | 0   | 0   |
|       | 250 | 80  | 100 | 95  | 95  | 95  | --- | 20 | 50 | 0   | 20 | 90  | 15  | 10  |
| 2-151 | 63  | 10  | 0   | 10  | 30  | 10  | 20  | 0  | 0  | 0   | 0  | 0   | 0   | 0   |
|       | 250 | 20  | 50  | 50  | 100 | 10  | 30  | 0  | 0  | 0   | 0  | 0   | 0   | 10  |
| 2-152 | 63  | 100 | 100 | 100 | 100 | 98  | --- | 30 | 30 | 20  | 20 | 60  | 15  | 40  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 50 | 50 | 40  | 30 | 70  | 30  | 65  |
| 2-153 | 63  | 60  | 95  | 0   | 100 | 80  | --- | 20 | 10 | 0   | 0  | 70  | 5   | 0   |
|       | 250 | 90  | 100 | 30  | 95  | 95  | --- | 30 | 20 | 20  | 10 | 50  | 5   | 10  |
| 2-154 | 63  | 100 | 100 | 50  | 100 | 100 | --- | 40 | 80 | --- | 10 | 90  | 10  | 65  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 95 | 95 | --- | 85 | 100 | 85  | 90  |
| 2-155 | 63  | 100 | 100 | 100 | 100 | 100 | --- | 50 | 30 | 30  | 40 | 80  | 70  | 25  |
|       | 125 | 100 | 100 | 100 | 100 | 100 | --- | 70 | 60 | 50  | 50 | 99  | 90  | 80  |
| 2-158 | 63  | 100 | 95  | 90  | 20  | 90  | 50  | 10 | 0  | 0   | 0  | 40  | 0   | 20  |
|       | 250 | 100 | 100 | 100 | 80  | 95  | 100 | 70 | 50 | 0   | 30 | 50  | 0   | 60  |
| 2-161 | 63  | 100 | 100 | 100 | 100 | 100 | 30  | 0  | 20 | 0   | 0  | 80  | 0   | 20  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 20 | 60 | 30  | 50 | 80  | 20  | 70  |

|       |      |     |     |     |     |     |     |    |     |     |    |     |    |    |
|-------|------|-----|-----|-----|-----|-----|-----|----|-----|-----|----|-----|----|----|
| 2-163 | 63   | 100 | 99  | 90  | 98  | 100 | --- | 50 | 55  | 0   | 30 | 80  | 35 | 20 |
|       | 250  | 100 | 100 | 90  | 95  | 100 | --- | 60 | 70  | 10  | 45 | 85  | 40 | 55 |
| 2-168 | 63   | 20  | 60  | 0   | 60  | 30  | --- | 0  | 0   | 0   | 0  | 30  | 5  | 10 |
|       | 250  | 50  | 100 | 80  | 100 | 50  | --- | 10 | 0   | 0   | 0  | 80  | 10 | 30 |
| 2-169 | 63   | 10  | 70  | 10  | 50  | 30  | --- | 0  | 0   | 0   | 0  | 70  | 10 | 10 |
|       | 250  | 0   | 80  | 10  | 40  | 40  | --- | 0  | 0   | 0   | 0  | 50  | 10 | 10 |
| 2-170 | 63   | 20  | 35  | 10  | 50  | 60  | --- | 10 | 0   | 0   | 0  | 30  | 5  | 5  |
|       | 250  | 30  | 90  | 60  | 95  | 50  | --- | 20 | 20  | 10  | 30 | 90  | 15 | 10 |
| 2-171 | 63   | 30  | 60  | 30  | 60  | 40  | --- | 0  | 0   | 0   | 0  | 20  | 0  | 0  |
|       | 250  | 50  | 100 | 40  | 100 | 90  | --- | 10 | 0   | 10  | 10 | 80  | 10 | 10 |
| 2-172 | 63   | 60  | 60  | 50  | 90  | 35  | 30  | 0  | 0   | 0   | 0  | 20  | 5  | 0  |
|       | 250  | 60  | 100 | 90  | 100 | 60  | 80  | 10 | 0   | 0   | 0  | 80  | 10 | 10 |
| 2-173 | 63   | 50  | 60  | 50  | 100 | 40  | 30  | 0  | 0   | 0   | 0  | 20  | 0  | 0  |
|       | 250  | 50  | 100 | 70  | 80  | 65  | 50  | 0  | 0   | 0   | 0  | 40  | 5  | 10 |
| 2-174 | 63   | 60  | 60  | 60  | 70  | 55  | --- | 10 | 0   | 0   | 0  | 30  | 10 | 20 |
|       | 250  | 60  | 80  | 75  | 80  | 85  | --- | 10 | 0   | 0   | 10 | 80  | 25 | 20 |
| 2-175 | 63   | 100 | 100 | 100 | 100 | 100 | --- | 0  | 0   | 0   | 0  | 80  | 10 | 50 |
|       | 250  | 100 | 100 | 100 | 100 | 100 | --- | 20 | 20  | 10  | 10 | 90  | 10 | 80 |
| 2-176 | 63   | 100 | 50  | 10  | 70  | 80  | --- | 0  | 0   | 0   | 0  | 15  | 0  | 10 |
|       | 250  | 100 | 90  | 30  | 95  | 90  | --- | 0  | 0   | 0   | 0  | 35  | 5  | 30 |
| 2-177 | 63   | 100 | 100 | 100 | 100 | 100 | --- | 45 | 20  | 30  | 30 | 95  | 15 | 50 |
|       | 250  | 100 | 100 | 100 | 100 | 100 | --- | 60 | 40  | 40  | 50 | 100 | 20 | 60 |
| 2-178 | 63   | 50  | 40  | 0   | 30  | 30  | --- | 0  | 0   | 0   | 0  | 10  | 0  | 0  |
|       | 250  | 70  | 50  | 0   | 20  | 40  | --- | 0  | 0   | 0   | 0  | 15  | 0  | 0  |
| 2-179 | 63   | 100 | 100 | 80  | 80  | 80  | --- | 30 | 70  | 10  | 0  | 90  | 15 | 30 |
|       | 250  | 100 | 100 | 100 | 100 | 100 | --- | 55 | 50  | --- | 50 | 100 | 15 | 60 |
| 2-180 | 63   | 100 | 100 | 100 | 100 | 100 | --- | 60 | 40  | --- | 40 | 100 | 5  | 20 |
|       | 250  | 100 | 100 | 100 | 100 | 100 | --- | 70 | 60  | --- | 40 | 100 | 20 | 65 |
| 2-181 | 63   | 100 | 100 | 100 | 100 | 100 | --- | 70 | 40  | --- | 30 | 90  | 10 | 15 |
|       | 250  | 100 | 100 | 100 | 100 | 100 | --- | 80 | 60  | --- | 70 | 95  | 20 | 60 |
| 2-182 | 63   | 90  | 100 | 60  | 100 | 95  | --- | 10 | 0   | --- | 0  | 70  | 5  | 0  |
|       | 250  | 95  | 100 | 95  | 100 | 100 | --- | 80 | 30  | --- | 20 | 100 | 70 | 70 |
| 2-183 | 63   | 0   | 0   | 0   | 0   | 0   | --- | 0  | 0   | --- | 0  | 10  | 0  | 0  |
|       | 250  | 10  | 50  | 0   | 40  | 80  | --- | 0  | 0   | --- | 0  | 30  | 0  | 0  |
| 2-184 | 63   | 100 | 100 | 100 | 100 | 100 | --- | 60 | 40  | --- | 20 | 95  | 10 | 40 |
|       | 250  | 100 | 100 | 100 | 100 | 100 | --- | 80 | 50  | --- | 90 | 100 | 75 | 65 |
| 2-185 | 63   | 80  | 100 | 40  | 60  | 70  | --- | 0  | 0   | --- | 0  | 50  | 0  | 20 |
|       | 250  | 100 | 100 | 60  | 80  | 100 | --- | 20 | 0   | --- | 10 | 75  | 5  | 35 |
| 2-187 | 63   | 99  | 100 | 70  | 100 | 100 | --- | 40 | 20  | --- | 10 | 100 | 15 | 50 |
|       | 250  | 100 | 100 | 100 | 100 | 100 | --- | 60 | 40  | --- | 40 | 100 | 75 | 90 |
| 2-188 | 63   | 85  | 100 | 55  | 100 | 80  | --- | 10 | 30  | --- | 0  | 70  | 25 | 20 |
|       | 250  | 90  | 100 | 90  | 100 | 100 | --- | 20 | 40  | --- | 10 | 95  | 45 | 40 |
| 2-189 | 40.5 | 100 | 85  | 40  | 60  | 100 | --- | 0  | 0   | 0   | 0  | 15  | 0  | 0  |
|       | 162  | 100 | 100 | 60  | 100 | 100 | --- | 0  | 10  | 0   | 0  | 60  | 5  | 5  |
| 2-190 | 63   | 95  | 90  | 20  | 50  | 90  | --- | 0  | 0   | 0   | 0  | 20  | 5  | 0  |
|       | 250  | 99  | 90  | 80  | 90  | 100 | --- | 0  | 10  | 50  | 0  | 95  | 10 | 5  |
| 2-191 | 63   | 40  | 70  | 30  | 80  | --- | --- | 0  | 0   | 0   | 0  | 20  | 10 | 10 |
|       | 250  | 90  | 90  | 80  | 100 | --- | --- | 10 | 0   | 0   | 0  | 35  | 20 | 20 |
| 2-192 | 63   | 70  | 85  | 40  | 50  | 60  | --- | 0  | 0   | 0   | 0  | 40  | 5  | 0  |
|       | 250  | 70  | 85  | 60  | 70  | 50  | --- | 0  | 0   | 0   | 0  | 70  | 15 | 20 |
| 2-194 | 63   | 99  | 95  | 50  | 95  | 90  | 95  | 20 | 0   | 0   | 0  | 50  | 5  | 30 |
|       | 250  | 99  | 100 | 70  | 99  | 100 | 90  | 20 | 10  | 10  | 20 | 95  | 5  | 40 |
| 2-196 | 63   | 100 | 100 | 100 | 90  | 100 | 100 | 30 | 10  | 10  | 10 | 100 | 10 | 30 |
|       | 250  | 100 | 100 | 100 | 100 | 100 | 90  | 20 | 10  | 10  | 20 | 100 | 15 | 15 |
| 2-197 | 63   | 100 | 100 | 80  | 100 | 100 | 100 | 10 | 0   | 0   | 0  | 10  | 70 | 10 |
|       | 250  | 100 | 100 | 80  | 90  | 100 | 100 | 20 | 20  | 50  | 10 | 100 | 10 | 30 |
| 2-198 | 63   | 80  | 80  | 50  | 80  | 80  | --- | 10 | 5   | 0   | 10 | 90  | 10 | 10 |
|       | 250  | 95  | 100 | 30  | 100 | 90  | --- | 10 | 5   | 50  | 10 | 95  | 40 | 30 |
| 2-199 | 63   | 95  | 100 | 100 | 100 | 100 | --- | 50 | 60  | 40  | 30 | 90  | 30 | 80 |
|       | 250  | 100 | 100 | 100 | 100 | 100 | --- | 90 | 100 | 95  | 95 | 100 | 90 | 90 |
| 2-200 | 63   | 100 | 100 | 100 | 100 | 100 | 100 | 30 | 0   | 0   | 0  | 80  | 10 | 10 |
|       | 250  | 100 | 100 | 100 | 100 | 100 | 100 | 50 | 0   | 0   | 0  | 95  | 20 | 20 |
| 2-201 | 63   | 99  | 95  | 60  | 95  | 95  | 95  | 20 | 50  | 0   | 35 | 75  | 30 | 60 |
|       | 250  | 100 | 99  | 85  | 95  | 98  | --- | 30 | 60  | 0   | 45 | 85  | 35 | 65 |
| 2-202 | 63   | 100 | 100 | 100 | 100 | 100 | 100 | 30 | 10  | 0   | 0  | 90  | 15 | 20 |
|       | 250  | 100 | 100 | 100 | 100 | 100 | 100 | 40 | 40  | --- | 30 | 100 | 30 | 60 |
| 2-203 | 63   | 100 | 100 | 100 | 60  | 100 | 100 | 20 | 10  | 10  | 10 | 30  | 10 | 25 |
|       | 250  | 100 | 100 | 100 | 95  | 100 | 100 | 30 | 30  | 20  | 30 | 60  | 10 | 30 |
| 2-204 | 63   | 50  | 40  | 10  | 30  | 20  | 10  | 0  | 0   | 0   | 0  | 30  | 5  | 0  |

|       |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
|       | 250 | 70  | 80  | 500 | 60  | 95  | 70  | 20  | 0   | 0   | 10  | 80  | 10  | 30  |    |
| 2-205 | 63  | 90  | 100 | 90  | 100 | 70  | 70  | 10  | 0   | 0   | 10  | 40  | 10  | 30  |    |
|       | 250 | 40  | 100 | 100 | 70  | 70  | 100 | 10  | 0   | 0   | 10  | 30  | 20  | 30  |    |
| 2-206 | 63  | 20  | 50  | 50  | 70  | 50  | --- | 0   | 0   | 0   | 30  | 30  | 0   | 0   |    |
|       | 250 | 50  | 90  | 80  | 90  | 70  | --- | 0   | 30  | 0   | 20  | 70  | 0   | 70  |    |
| 3-1   | 63  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |    |
|       | 250 | 60  | 0   | 0   | 30  | 60  | 0   | 0   | 0   | 0   | 0   | 0   | 10  | 0   |    |
| 3-4   | 63  | 0   | 40  | 0   | 0   | 0   | --- | 0   | 0   | 0   | 0   | 10  | 0   | 0   |    |
|       | 250 | 0   | 50  | 0   | 0   | 0   | --- | 0   | 0   | 0   | 0   | 20  | 0   | 10  |    |
| 3-6   | 63  | 100 | 100 | 40  | 90  | 50  | --- | 0   | 0   | 0   | 0   | 95  | 20  | 30  |    |
|       | 250 | 100 | 100 | 90  | 100 | 90  | --- | 40  | 20  | 20  | 10  | 100 | 70  | 70  |    |
| 3-26  | 63  | 50  | 60  | 20  | 60  | 50  | --- | 0   | 0   | 0   | 0   | 15  | 3   | 10  |    |
|       | 250 | 65  | 60  | 60  | 90  | 60  | --- | 0   | 0   | 0   | 0   | 30  | 10  | 30  |    |
| 4-1   | 63  | 50  | 100 | 30  | 100 | 60  | 40  | 0   | 0   | 0   | 0   | 50  | 10  | 20  |    |
|       | 250 | 95  | 100 | 50  | 100 | 98  | 90  | 10  | 0   | 20  | 0   | 100 | 20  | 50  |    |
| 4-2   | 63  | 50  | 70  | 0   | 70  | 40  | 0   | 0   | 0   | 0   | 0   | 40  | 0   | 0   |    |
|       | 250 | 85  | 100 | 40  | 100 | 95  | 30  | 20  | 0   | 0   | 0   | 75  | 10  | 30  |    |
| 4-7   | 63  | 100 | 100 | 100 | 100 | 100 | --- | 70  | 50  | 90  | 40  | 100 | 90  | 65  |    |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 90  | 90  | 100 | 100 | 90  |    |
| 4-23  | 63  | 100 | 100 | 80  | 100 | 80  | --- | 40  | 20  | 10  | 10  | 95  | 35  | 60  |    |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 70  | 60  | 50  | 40  | 100 | 80  | 80  |    |
| 4-24  | 63  | 100 | 100 | 70  | 100 | 100 | --- | 50  | --- | 60  | 50  | 95  | 70  | 45  |    |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 80  | --- | 60  | 50  | 80  | 35  | 20  |    |
| 4-25  | 63  | 70  | 70  | 20  | 40  | 75  | --- | 20  | --- | 0   | 0   | 30  | 5   | 0   |    |
|       | 250 | 100 | 95  | 30  | 60  | 85  | --- | 30  | --- | 10  | 0   | 80  | 15  | 20  |    |
| 4-26  | 63  | 100 | 100 | 30  | 100 | 90  | --- | 20  | 10  | 10  | 20  | 40  | 5   | 15  |    |
|       | 250 | 100 | 100 | 60  | 100 | 100 | --- | 60  | 50  | 50  | 50  | 80  | 20  | 45  |    |
| 4-27  | 63  | 60  | 70  | 20  | 70  | 60  | --- | 0   | 0   | 0   | 0   | 30  | 5   | 0   |    |
|       | 250 | 80  | 100 | 40  | 80  | 100 | --- | 10  | 0   | 0   | 0   | 50  | 10  | 10  |    |
| 4-28  | 63  | 80  | 100 | 50  | 60  | 70  | --- | 10  | 0   | 0   | 0   | 40  | 0   | 10  |    |
|       | 250 | 100 | 100 | 50  | 80  | 90  | --- | 30  | 20  | 10  | 20  | 50  | 5   | 15  |    |
| 4-29  | 63  | 100 | 100 | 90  | 100 | 90  | --- | 80  | 70  | 60  | 50  | 100 | 80  | 60  |    |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 99  | 90  | 100 | 90  | 100 | 100 | 85  |    |
| 4-30  | 63  | 100 | 100 | 100 | 100 | 100 | --- | 80  | 50  | 50  | 50  | 100 | 90  | 80  |    |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 90  | 100 | 85  | 100 | 99  | 85  |    |
| 4-31  | 63  | 100 | 100 | 10  | 100 | 100 | --- | 20  | 10  | 0   | 0   | 40  | 10  | 20  |    |
|       | 250 | 100 | 100 | 30  | 100 | 100 | --- | 40  | 10  | 10  | 10  | 80  | 25  | 40  |    |
| 4-32  | 63  | 100 | 90  | 80  | 100 | 100 | --- | 30  | 0   | 10  | 10  | 50  | 20  | 20  |    |
|       | 250 | 100 | 100 | 80  | 100 | 100 | --- | 50  | 20  | 30  | 20  | 80  | 30  | 40  |    |
| 4-33  | 63  | 100 | 100 | 30  | 100 | 90  | --- | 30  | 10  | 0   | 10  | 70  | 15  | 30  |    |
|       | 250 | 100 | 100 | 70  | 100 | 100 | --- | 40  | 20  | 30  | 30  | 80  | 25  | 40  |    |
| 4-34  | 63  | 100 | 100 | 90  | 100 | 100 | --- | 50  | 20  | 30  | 35  | 90  | 25  | 40  |    |
|       | 250 | 100 | 100 | 100 | 90  | 100 | --- | 75  | 50  | 30  | 60  | 95  | 50  | 80  |    |
| 4-36  | 63  | 100 | 100 | 100 | 100 | 100 | --- | 90  | 20  | 10  | 30  | 100 | 50  | 60  |    |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 90  | 60  | 90  | 70  | 100 | 100 | 100 |    |
| 4-37  | 63  | 100 | 100 | 90  | 100 | 100 | --- | 90  | 20  | 40  | 50  | 80  | 20  | 10  |    |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 90  | 60  | 60  | 70  | 100 | 60  | 60  |    |
| 4-38  | 63  | 100 | 100 | 90  | 100 | 100 | --- | 60  | 50  | --- | 40  | 80  | 40  | 35  |    |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 80  | 50  | --- | 40  | 100 | 85  | 50  |    |
| 4-39  | 63  | 100 | 100 | 100 | 100 | 100 | --- | 80  | 60  | --- | 50  | 100 | 70  | 60  |    |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 90  | 90  | --- | 80  | 100 | 100 | 60  |    |
| 4-40  | 63  | 100 | 100 | 100 | 100 | 100 | --- | 80  | 50  | --- | 40  | 90  | 30  | 40  |    |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 90  | 90  | --- | 90  | 100 | 70  | 60  |    |
| 4-41  | 63  | 100 | 100 | 100 | 100 | 100 | --- | 95  | 80  | --- | 90  | 100 | 75  | 50  |    |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 95  | 90  | --- | 100 | 100 | 90  | 85  |    |
| 4-42  | 63  | 75  | 100 | 0   | 40  | 80  | --- | 0   | 0   | --- | 0   | 20  | 0   | 0   |    |
|       | 250 | 100 | 100 | 0   | 30  | 90  | --- | 0   | 10  | --- | 0   | 40  | 0   | 0   |    |
| 4-43  | 63  | 70  | 60  | 50  | 40  | 80  | --- | 0   | 0   | --- | 0   | 30  | 0   | 0   |    |
|       | 250 | 100 | 100 | 60  | 40  | 90  | --- | 40  | 10  | --- | 0   | 40  | 10  | 0   |    |
| 4-44  | 63  | 100 | 100 | 100 | 100 | 100 | --- | 95  | 70  | --- | 70  | 100 | 90  | 70  |    |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 90  | 90  | --- | 95  | 100 | 100 | 80  |    |
| 4-45  | 63  | 90  | 100 | 80  | 95  | 100 | --- | 30  | 20  | --- | 10  | 30  | 10  | 10  |    |
|       | 250 | 95  | 100 | 80  | 100 | 90  | --- | 60  | 20  | --- | 20  | 80  | 20  | 20  |    |
| 4-46  | 63  | 100 | 95  | 80  | 100 | 90  | --- | 10  | 20  | --- | 0   | 50  | 10  | 10  |    |
|       | 250 | 100 | 90  | 95  | 90  | 100 | --- | 10  | 30  | --- | 40  | 90  | 30  | 30  |    |
| 4-47  | 63  | 75  | 100 | 100 | 100 | 100 | --- | 40  | 30  | --- | 40  | 90  | 65  | 60  |    |
|       | 250 | 95  | 100 | 100 | 100 | 100 | --- | 60  | 50  | --- | 30  | 95  | 90  | 80  |    |
| 4-48  | 63  | 100 | 100 | 100 | 95  | 100 | 100 | --- | 30  | 20  | --- | 20  | 95  | 90  | 80 |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | --- | 40  | 80  | --- | 40  | 100 | 90  | 80 |

|      |     |     |     |     |     |     |   |     |    |    |    |     |     |     |
|------|-----|-----|-----|-----|-----|-----|---|-----|----|----|----|-----|-----|-----|
| 4-49 | 63  | 100 | 100 | 80  | 80  | 100 | — | 30  | 10 | 0  | 10 | 40  | 20  | 10  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | — | 30  | 10 | 10 | 10 | 90  | 80  | 70  |
| 4-50 | 63  | 30  | 60  | 0   | 30  | 40  | — | 0   | 0  | 0  | 0  | 15  | 0   | 0   |
|      | 250 | 70  | 95  | 20  | 90  | 95  | — | 0   | 0  | 0  | 0  | 20  | 10  | 0   |
| 4-53 | 63  | 70  | 100 | 30  | 100 | 60  | — | 10  | 0  | 0  | 0  | 60  | 5   | 30  |
|      | 250 | 100 | 100 | 90  | 100 | 90  | — | 70  | 60 | 40 | 40 | 90  | 70  | 65  |
| 4-54 | 63  | 100 | 100 | 90  | 100 | 100 | — | 80  | 70 | 40 | 30 | 70  | 40  | 90  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | — | 90  | 80 | 70 | 60 | 100 | 75  | 100 |
| 4-55 | 63  | 50  | 100 | 20  | 40  | 50  | — | 10  | 0  | 0  | 0  | 30  | 10  | 0   |
|      | 250 | 80  | 100 | 40  | 85  | 90  | — | 40  | 20 | 10 | 10 | 60  | 5   | 35  |
| 4-56 | 63  | 100 | 100 | 100 | 100 | 100 | — | 90  | 50 | 40 | 20 | 100 | 80  | 65  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | — | 100 | 90 | 90 | 70 | 100 | 100 | 83  |
| 4-57 | 63  | 100 | 100 | 60  | 100 | 95  | — | 50  | 30 | 30 | 10 | 95  | 40  | 50  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | — | 90  | 40 | 50 | 60 | 100 | 90  | 80  |
| 4-58 | 63  | 100 | 100 | 90  | 100 | 100 | — | 50  | 30 | 30 | 20 | 100 | 30  | 60  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | — | 90  | 40 | 50 | 60 | 100 | 70  | 75  |
| 4-59 | 63  | 90  | 100 | 30  | 100 | 100 | — | 0   | 0  | 0  | 0  | 60  | 5   | 50  |
|      | 250 | 100 | 100 | 60  | 100 | 100 | — | 30  | 20 | 30 | 20 | 90  | 25  | 60  |
| 4-60 | 63  | 100 | 100 | 60  | 100 | 100 | — | 65  | 60 | 50 | 40 | 90  | 25  | 50  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | — | 90  | 50 | 50 | 60 | 100 | 55  | 70  |
| 4-61 | 63  | 100 | 100 | 100 | 100 | 100 | — | 70  | 40 | 50 | 50 | 100 | 50  | 40  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | — | 80  | 60 | 70 | 70 | 95  | 70  | 80  |
| 4-62 | 63  | 100 | 100 | 90  | 100 | 100 | — | 60  | 20 | 30 | 10 | 100 | 30  | 30  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | — | 80  | 40 | 30 | 50 | 90  | 45  | 30  |
| 4-63 | 63  | 100 | 100 | 60  | 100 | 80  | — | 0   | 0  | 0  | 0  | 90  | 10  | 10  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | — | 30  | 20 | 10 | 10 | 100 | 30  | 60  |
| 4-64 | 63  | 100 | 100 | 60  | 100 | 100 | — | 50  | 20 | 10 | 10 | 100 | 30  | 15  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | — | 80  | 30 | 30 | 30 | 90  | 40  | 50  |
| 4-65 | 63  | 100 | 100 | 100 | 100 | 100 | — | 100 | 60 | 70 | 60 | 100 | 80  | 70  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | — | 100 | 70 | 80 | 80 | 100 | 90  | 80  |
| 4-66 | 63  | 80  | 100 | 20  | 100 | 80  | — | 10  | 0  | 0  | 10 | 40  | 15  | 30  |
|      | 250 | 100 | 100 | 90  | 100 | 100 | — | 60  | 40 | 50 | 50 | 80  | 60  | 70  |
| 4-67 | 63  | 100 | 100 | 100 | 100 | 100 | — | 90  | 40 | —  | 70 | 100 | 55  | 50  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | — | 90  | 70 | —  | 80 | 100 | 70  | 70  |
| 4-68 | 63  | 100 | 100 | 100 | 100 | 100 | — | 100 | 90 | —  | 75 | 100 | 95  | 60  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | — | 100 | 98 | —  | 90 | 100 | 100 | 80  |
| 4-69 | 63  | 100 | 100 | 40  | 70  | 90  | — | 40  | 20 | —  | 20 | 40  | 5   | 0   |
|      | 250 | 100 | 100 | 70  | 100 | 100 | — | 80  | 40 | —  | 50 | 80  | 35  | 40  |
| 4-70 | 63  | 90  | 100 | 60  | 100 | 90  | — | 60  | 40 | —  | 30 | 100 | 40  | 30  |
|      | 250 | 100 | 100 | 90  | 100 | 100 | — | 95  | 80 | —  | 70 | 100 | 90  | 70  |
| 5-17 | 63  | 0   | 90  | 0   | 30  | 20  | — | 0   | 0  | 0  | 0  | 15  | 0   | 10  |
|      | 250 | 30  | 100 | 30  | 40  | 60  | — | 80  | 20 | 10 | 0  | 70  | 10  | 50  |
| 5-18 | 63  | 0   | 70  | 0   | 0   | 10  | — | 0   | 0  | 0  | 0  | 10  | 0   | 20  |
|      | 250 | 10  | 70  | 0   | 0   | 10  | — | 0   | 0  | 0  | 0  | 20  | 0   | 20  |
| 5-26 | 63  | 100 | 100 | 90  | 90  | 100 | — | 40  | 20 | —  | 20 | 70  | 10  | 50  |
|      | 250 | 90  | 100 | 100 | 70  | 100 | — | 70  | 60 | —  | 30 | 80  | 15  | 60  |
| 5-28 | 63  | 100 | 100 | 90  | 100 | 100 | — | 10  | 0  | —  | 10 | 60  | 25  | 60  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | — | 30  | 50 | —  | 30 | 90  | 70  | 70  |
| 6-13 | 63  | 70  | 100 | 0   | 50  | 85  | — | 50  | 0  | 0  | 20 | 30  | 15  | 10  |
|      | 250 | 90  | 90  | 30  | 60  | 90  | — | 90  | 30 | 10 | 30 | 45  | 20  | 30  |
| 6-14 | 63  | 80  | 100 | 60  | 100 | 100 | — | 90  | 20 | 30 | 60 | 100 | 60  | 60  |
|      | 250 | 100 | 100 | 90  | 100 | 100 | — | 100 | 90 | 90 | 90 | 100 | 100 | 90  |
| 6-15 | 63  | 100 | 100 | 100 | 100 | 100 | — | 50  | 40 | —  | 30 | 90  | 15  | 60  |
|      | 250 | 100 | 100 | 100 | 100 | 100 | — | 85  | 70 | —  | 60 | 90  | 25  | 90  |
| 6-16 | 63  | 100 | 100 | 80  | 100 | 100 | — | 30  | 20 | —  | 20 | 40  | 20  | 20  |
|      | 250 | 90  | 100 | 60  | 75  | 100 | — | 60  | 40 | —  | 30 | 70  | 35  | 70  |
| 6-17 | 63  | 60  | 90  | 50  | 50  | 90  | — | 0   | 0  | —  | 0  | 20  | 5   | 0   |
|      | 250 | 70  | 100 | 70  | 70  | 90  | — | 30  | 30 | —  | 20 | 20  | 15  | 10  |
| 6-19 | 63  | 0   | 0   | 0   | 0   | 0   | — | 0   | 0  | 0  | 0  | 0   | 0   | 0   |
|      | 250 | 30  | 50  | 0   | 30  | 60  | — | 0   | 0  | 0  | 0  | 10  | 0   | 0   |
| 6-20 | 63  | 0   | 0   | 0   | 0   | 0   | — | 0   | 0  | 0  | 0  | 0   | 0   | 0   |
|      | 250 | 60  | 50  | 0   | 40  | 60  | — | 0   | 0  | 0  | 0  | 10  | 0   | 0   |
| 6-22 | 63  | 70  | 60  | 0   | 20  | 50  | — | 0   | 0  | 0  | 0  | 30  | 0   | 0   |
|      | 250 | 100 | 80  | 0   | 70  | 70  | — | 0   | 0  | 0  | 0  | 30  | 0   | 30  |
| 6-23 | 63  | 20  | 40  | 0   | 10  | 20  | — | 0   | 0  | 0  | 0  | 10  | 0   | 0   |
|      | 250 | 85  | 55  | 10  | 30  | 70  | — | 30  | 0  | 0  | 0  | 10  | 15  | 15  |
| 6-24 | 63  | 0   | 20  | 0   | 0   | 30  | — | 0   | 0  | 0  | 0  | 10  | 0   | 0   |
|      | 250 | 80  | 95  | 10  | 60  | 90  | — | 40  | 0  | 0  | 0  | 20  | 0   | 0   |
| 7-2  | 63  | 100 | 100 | —   | 80  | 95  | 0 | 20  | 30 | 20 | 20 | 40  | 10  | 30  |

|       | 250 | 100 | 100 | —   | 100 | 100 | 10  | 50 | 90  | 40 | 70  | 80  | 10  | 20 |
|-------|-----|-----|-----|-----|-----|-----|-----|----|-----|----|-----|-----|-----|----|
| 7-14  | 63  | —   | —   | —   | —   | —   | —   | —  | —   | —  | —   | —   | —   | —  |
|       | 250 | 70  | 95  | 60  | 100 | 90  | —   | 20 | 10  | —  | 10  | 40  | 25  | 15 |
| 7-15  | 63  | 100 | 100 | 40  | 70  | 100 | —   | 10 | 0   | 0  | 0   | 30  | 10  | 0  |
|       | 250 | 100 | 99  | 80  | 70  | 100 | —   | 10 | 10  | 0  | 0   | 30  | 10  | 30 |
| 8-2   | 63  | 95  | 100 | 50  | 50  | 40  | 30  | 40 | 20  | 10 | 30  | 40  | 10  | 20 |
|       | 250 | 100 | 100 | 30  | 90  | 80  | 90  | 60 | 30  | 0  | 30  | 80  | 20  | 15 |
| 8-3   | 63  | 90  | 90  | 0   | 40  | 70  | —   | 0  | 0   | 0  | 0   | 20  | 0   | 20 |
|       | 250 | 100 | 100 | 50  | 60  | 90  | —   | 70 | 0   | 20 | 0   | 30  | 0   | 80 |
| 8-4   | 63  | 70  | 60  | 0   | 0   | 70  | —   | 0  | 0   | 0  | 0   | 30  | 0   | 50 |
|       | 250 | 90  | 80  | 10  | 20  | 90  | —   | 30 | 0   | 0  | 0   | 50  | 0   | 50 |
| 8-5   | 63  | 40  | 70  | 0   | 0   | 70  | —   | 0  | 0   | 0  | 0   | 20  | 0   | 40 |
|       | 250 | 100 | 90  | 10  | 40  | 70  | —   | 20 | 0   | 0  | 0   | 50  | 0   | 50 |
| 8-7   | 63  | 95  | 95  | 0   | 10  | 95  | —   | 0  | 0   | 0  | 0   | 50  | 10  | 0  |
|       | 250 | 100 | 100 | 90  | 70  | 99  | —   | 90 | 20  | 0  | 10  | 90  | 10  | 90 |
| 8-13  | 63  | 100 | 100 | 30  | 50  | 90  | —   | 30 | 20  | 10 | 20  | 30  | 10  | 30 |
|       | 125 | 100 | 100 | 50  | 60  | 90  | —   | 30 | 40  | 20 | 10  | 60  | 40  | 70 |
| 8-18  | 63  | 100 | 100 | 30  | 50  | 70  | —   | 30 | 10  | 10 | 10  | 30  | 5   | 50 |
|       | 250 | 100 | 100 | 40  | 60  | 80  | —   | 30 | 30  | 30 | 20  | 70  | 30  | 60 |
| 8-30  | 63  | 100 | 100 | 80  | 100 | 100 | —   | 40 | 30  | 30 | 20  | 90  | 10  | 40 |
|       | 250 | 100 | 100 | 100 | 100 | 100 | —   | 70 | 70  | 50 | 40  | 95  | 15  | 35 |
| 8-31  | 63  | 100 | 100 | 60  | 100 | 100 | —   | 20 | —   | 10 | 10  | 80  | 10  | 45 |
|       | 250 | 100 | 100 | 80  | 100 | 100 | —   | 20 | —   | 30 | 30  | 90  | 10  | 30 |
| 8-36  | 63  | 95  | 100 | 70  | 100 | 95  | —   | 10 | 0   | 0  | 10  | 30  | 10  | 10 |
|       | 250 | 90  | 100 | 95  | 85  | 100 | —   | 10 | 20  | 10 | 5   | 40  | 15  | 20 |
| 9-4   | 63  | 50  | 50  | 20  | 45  | 70  | —   | 20 | —   | 0  | 0   | 40  | 5   | 10 |
|       | 250 | 80  | 100 | 60  | 100 | 85  | —   | 30 | —   | 10 | 0   | 90  | 10  | 40 |
| 9-14  | 63  | 85  | 100 | 40  | 80  | 95  | —   | 10 | 0   | —  | 0   | 60  | 15  | 0  |
|       | 250 | 100 | 100 | 40  | 90  | 100 | —   | 20 | 10  | —  | 10  | 90  | 50  | 40 |
| 9-15  | 63  | 100 | 100 | 100 | 100 | 100 | —   | 10 | 0   | 0  | 0   | 100 | 5   | 40 |
|       | 250 | 100 | 100 | 100 | 100 | 100 | —   | 35 | 10  | 10 | 20  | 100 | 10  | 70 |
| 9-16  | 63  | 30  | 100 | 50  | 90  | 65  | —   | 0  | 0   | 0  | 10  | 90  | 5   | 30 |
|       | 250 | 75  | 100 | 85  | 100 | 80  | —   | 20 | 10  | 0  | 0   | 100 | 65  | 70 |
| 9-19  | 63  | 80  | 100 | 80  | 75  | 100 | —   | 10 | 0   | 0  | 0   | 60  | 10  | 15 |
|       | 250 | 98  | 100 | 95  | 90  | 100 | —   | 20 | 10  | 0  | 10  | 80  | 10  | 25 |
| 11-6  | 63  | 100 | 100 | 100 | 70  | 80  | 100 | 10 | 50  | 0  | 0   | 10  | 0   | 20 |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 100 | 50 | 80  | 0  | 0   | 40  | 20  | 60 |
| 11-13 | 63  | 100 | 95  | 85  | 98  | 100 | —   | 55 | 65  | 0  | 40  | 65  | 45  | 45 |
|       | 250 | 100 | 100 | 85  | 98  | 100 | —   | 40 | 55  | 15 | 60  | 85  | 45  | 65 |
| 12-2  | 63  | 30  | 100 | 50  | 90  | 100 | —   | 0  | 30  | 10 | 0   | 60  | 10  | 20 |
|       | 250 | 100 | 100 | 95  | 100 | 100 | —   | 50 | 80  | 90 | 70  | 100 | 100 | 80 |
| 12-3  | 63  | 95  | 90  | 20  | 50  | 90  | —   | 0  | 0   | 0  | 0   | 20  | 5   | 0  |
|       | 250 | 99  | 90  | 80  | 90  | 100 | —   | 0  | 10  | 50 | 0   | 95  | 10  | 5  |
| 12-5  | 63  | 70  | 100 | 40  | 100 | 100 | —   | 20 | 10  | —  | 0   | 40  | 25  | 20 |
|       | 250 | 85  | 100 | 60  | 99  | 99  | —   | 10 | 10  | —  | 10  | 30  | 20  | 15 |
| 12-8  | 63  | 80  | 100 | 50  | 90  | 95  | —   | 20 | 10  | 0  | 10  | 40  | 5   | 20 |
|       | 250 | 90  | 100 | 70  | 80  | 99  | —   | 25 | 10  | 10 | 0   | 80  | 10  | 15 |
| 13-3  | 63  | 90  | 100 | 90  | 75  | 100 | —   | 10 | 0   | —  | 0   | 30  | 10  | 25 |
|       | 250 | 90  | 90  | 100 | 70  | 100 | —   | 30 | 20  | —  | 10  | 40  | 10  | 20 |
| 13-4  | 63  | 100 | 100 | 95  | 85  | 95  | —   | 20 | 10  | —  | 0   | 70  | 5   | 30 |
|       | 250 | 95  | 100 | 100 | 85  | 100 | —   | 40 | 30  | —  | 10  | 90  | 5   | 50 |
| 13-5  | 63  | 70  | 70  | 40  | 50  | 95  | —   | 0  | 0   | 0  | 0   | 10  | 7   | 10 |
|       | 250 | 75  | 70  | 30  | 60  | 90  | —   | 10 | 0   | 0  | 20  | 25  | 15  | 20 |
| 14-1  | 63  | 100 | 85  | 55  | 85  | 80  | —   | 40 | 85  | 25 | 80  | 100 | 85  | 40 |
|       | 250 | 100 | 98  | 70  | 100 | 98  | —   | 70 | 95  | 75 | 95  | 100 | 100 | 80 |
| 14-2  | 63  | 100 | 80  | 50  | 75  | 95  | —   | 30 | 0   | 0  | 20  | 35  | 35  | 25 |
|       | 250 | 100 | 100 | 60  | 100 | 95  | —   | 20 | 45  | 30 | 40  | 40  | 45  | 30 |
| 14-3  | 63  | 95  | 100 | 10  | 50  | 90  | —   | 30 | 99  | 80 | 99  | 100 | 100 | 5  |
|       | 250 | 100 | 100 | 75  | 100 | 100 | —   | 70 | 100 | 70 | 100 | 100 | 100 | 80 |
| 14-4  | 63  | 100 | 80  | 50  | 50  | 100 | —   | 30 | 85  | —  | 75  | 100 | 70  | 15 |
|       | 250 | 100 | 100 | 100 | 60  | 100 | —   | 65 | 99  | —  | 95  | 100 | 80  | 40 |
| 14-5  | 63  | 100 | 100 | 10  | 30  | 100 | —   | 60 | 40  | —  | 95  | 20  | 70  | 20 |
|       | 250 | 100 | 100 | 50  | 100 | 100 | —   | 95 | 100 | —  | 100 | 95  | 100 | 30 |
| 14-6  | 63  | 95  | 90  | 50  | 70  | 80  | 40  | 30 | 99  | 50 | 50  | 100 | 50  | 0  |
|       | 250 | 100 | 100 | 100 | 100 | 100 | 80  | 80 | 100 | 65 | 75  | 100 | 60  | 35 |
| 14-7  | 63  | 95  | 50  | 0   | 20  | 90  | 50  | 60 | 100 | 70 | 80  | 85  | 95  | 10 |
|       | 250 | 100 | 100 | 20  | 60  | 99  | 90  | 85 | 100 | 90 | 100 | 99  | 100 | 25 |
| 14-8  | 63  | 90  | 60  | 30  | 30  | 70  | 10  | 10 | 95  | —  | 40  | 95  | 40  | 5  |
|       | 250 | 100 | 100 | 80  | 95  | 99  | 50  | 40 | 99  | —  | 85  | 100 | 80  | 30 |

|       |     |     |     |     |     |     |     |     |     |    |     |     |     |     |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|
| 14-9  | 63  | 90  | 70  | 0   | 0   | 60  | 10  | 30  | 98  | —  | 75  | 80  | 70  | 5   |
|       | 250 | 99  | 100 | 0   | 80  | 99  | 70  | 60  | 100 | —  | 75  | 90  | 99  | 20  |
| 14-10 | 63  | 90  | 80  | 80  | 70  | 90  | —   | 50  | 95  | 20 | 80  | 100 | 20  | 0   |
|       | 250 | 100 | 100 | 90  | 80  | 100 | —   | 90  | 100 | 50 | 100 | 100 | 60  | 20  |
| 14-11 | 63  | 95  | 80  | 50  | 90  | 50  | —   | 80  | 100 | 80 | 99  | 60  | 100 | 10  |
|       | 250 | 100 | 100 | 70  | 100 | 100 | —   | 100 | 100 | 99 | 100 | 100 | 100 | 20  |
| 14-12 | 63  | 85  | 10  | 20  | 40  | 90  | 80  | 30  | 98  | —  | 50  | 95  | 30  | 0   |
|       | 250 | 90  | 85  | 80  | 70  | 99  | 80  | 40  | 99  | —  | 60  | 100 | 85  | 10  |
| 14-13 | 63  | 90  | 30  | 0   | 40  | 60  | 30  | 20  | 100 | —  | 65  | 75  | 55  | 0   |
|       | 250 | 100 | 80  | 20  | 60  | 100 | 40  | 40  | 99  | —  | 90  | 98  | 100 | 15  |
| 14-14 | 63  | 50  | 50  | 0   | 30  | 50  | 70  | 50  | 100 | 0  | 90  | 100 | 10  | 0   |
|       | 250 | 100 | 100 | 60  | 50  | 90  | 70  | 70  | 100 | 20 | 100 | 100 | 50  | 30  |
| 14-15 | 63  | 100 | 60  | 0   | 50  | 50  | 20  | 70  | 100 | 50 | 95  | 40  | 20  | 0   |
|       | 250 | 100 | 90  | 50  | 90  | 100 | 100 | 80  | 100 | 40 | 100 | 100 | 60  | 0   |
| 14-16 | 63  | 60  | 60  | 20  | 40  | 95  | —   | 0   | 95  | 0  | 95  | 100 | 0   | 0   |
|       | 250 | 100 | 100 | 40  | 50  | 100 | —   | 30  | 100 | 30 | 100 | 100 | 70  | 10  |
| 14-17 | 63  | 100 | 100 | 20  | 20  | 90  | —   | 20  | 100 | 50 | 100 | 80  | 70  | 0   |
|       | 250 | 100 | 100 | 30  | 70  | 100 | —   | 70  | 100 | 90 | 100 | 100 | 95  | 0   |
| 14-18 | 63  | 100 | 30  | 20  | 30  | 99  | 0   | 10  | 99  | 10 | 20  | 10  | 20  | 10  |
|       | 250 | 100 | 60  | 60  | 60  | 100 | 10  | 20  | 100 | 30 | 60  | 40  | 50  | 25  |
| 14-19 | 63  | 90  | 60  | 40  | 30  | 90  | —   | 0   | 100 | 0  | 100 | 100 | 0   | 0   |
|       | 250 | 100 | 100 | 70  | 90  | 100 | —   | 30  | 100 | 0  | 100 | 100 | 40  | 20  |
| 14-20 | 63  | 95  | 99  | 0   | 50  | 80  | —   | 0   | 100 | 10 | 100 | 70  | 0   | 0   |
|       | 250 | 100 | 100 | 50  | 70  | 100 | —   | 50  | 100 | 90 | 100 | 100 | 80  | 10  |
| 14-21 | 63  | 90  | 100 | 30  | 40  | 70  | 50  | 10  | 99  | 10 | 70  | 95  | 50  | 10  |
|       | 250 | 100 | 95  | 60  | 50  | 95  | 95  | 40  | 100 | 70 | 98  | 100 | 100 | 45  |
| 14-22 | 63  | 50  | 30  | 0   | 10  | 50  | 100 | 30  | 100 | 40 | 80  | 95  | 10  | 0   |
|       | 250 | 100 | 100 | 50  | 80  | 90  | 100 | 60  | 100 | 60 | 95  | 100 | 50  | 10  |
| 14-23 | 63  | 50  | 50  | 20  | 80  | 50  | 50  | 60  | 100 | 40 | 50  | 100 | 0   | 0   |
|       | 250 | 100 | 90  | 70  | 95  | 80  | 40  | 70  | 100 | 50 | 95  | 100 | 40  | 20  |
| 14-24 | 63  | 40  | 70  | 0   | 20  | 80  | 50  | 0   | 100 | 0  | 95  | 30  | 10  | 10  |
|       | 250 | 90  | 100 | 0   | 40  | 90  | 50  | 50  | 100 | 50 | 100 | 100 | 20  | 50  |
| 14-25 | 63  | 95  | 100 | 50  | 70  | 80  | 100 | 50  | 100 | 40 | 95  | 100 | 100 | 10  |
|       | 250 | 100 | 100 | 80  | 100 | 100 | 100 | 80  | 100 | 95 | 100 | 100 | 100 | 50  |
| 14-26 | 63  | 90  | 70  | 50  | 20  | 60  | 100 | 0   | 100 | 30 | 100 | 100 | 40  | 10  |
|       | 250 | 100 | 100 | 90  | 100 | 100 | 100 | 0   | 100 | 70 | 100 | 100 | 100 | 10  |
| 14-27 | 63  | 50  | 70  | 50  | 70  | 90  | —   | 0   | 99  | 0  | 70  | 95  | 5   | 0   |
|       | 250 | 90  | 80  | 30  | 50  | 100 | —   | 20  | 100 | 10 | 95  | 100 | 10  | 0   |
| 14-28 | 63  | 90  | 100 | 30  | 50  | 95  | —   | 0   | 100 | 0  | 20  | 80  | 10  | 0   |
|       | 250 | 100 | 100 | 30  | 70  | 100 | —   | 30  | 100 | 50 | 50  | 100 | 70  | 40  |
| 14-29 | 63  | 90  | 50  | 0   | 80  | 30  | 100 | 20  | 100 | 50 | 70  | 100 | 15  | 0   |
|       | 250 | 100 | 100 | 40  | 80  | 60  | 100 | 70  | 100 | 70 | 95  | 100 | 50  | 10  |
| 14-30 | 63  | 70  | 60  | 20  | 0   | 50  | —   | 0   | 100 | 0  | 60  | 100 | 10  | 0   |
|       | 250 | 100 | 100 | 60  | 50  | 100 | —   | 30  | 100 | 50 | 100 | 100 | 20  | 0   |
| 14-31 | 63  | 90  | 90  | 50  | 10  | 70  | —   | 0   | 100 | 0  | 95  | 50  | 10  | 0   |
|       | 250 | 100 | 100 | 50  | 70  | 90  | —   | 50  | 100 | 20 | 100 | 100 | 50  | 0   |
| 14-32 | 63  | 95  | 90  | 20  | 0   | 0   | 40  | 40  | 100 | 0  | 70  | 70  | 0   | 0   |
|       | 250 | 100 | 95  | 40  | 20  | 80  | 40  | 70  | 100 | 10 | 90  | 100 | 0   | 0   |
| 14-33 | 63  | 100 | 90  | 0   | 20  | 20  | 0   | 40  | 100 | 10 | 70  | 10  | 10  | 0   |
|       | 250 | 100 | 100 | 0   | 20  | 70  | 100 | 90  | 100 | 95 | 100 | 70  | 95  | 0   |
| 14-34 | 63  | 100 | 99  | 40  | 60  | 100 | 40  | 100 | 100 | 60 | 70  | 99  | 80  | 25  |
|       | 250 | 100 | 100 | 100 | 90  | 100 | 100 | 100 | 100 | 80 | 99  | 100 | 100 | 70  |
| 14-35 | 63  | 100 | 95  | 0   | 70  | 100 | 100 | 50  | 100 | 30 | 50  | 100 | 100 | 80  |
|       | 250 | 100 | 100 | 90  | 100 | 100 | 95  | 100 | 70  | 95 | 100 | 100 | 100 | 100 |
| 14-36 | 63  | 100 | 95  | 20  | 30  | 99  | 100 | 85  | 99  | 20 | 40  | 95  | 95  | 35  |
|       | 250 | 100 | 100 | 40  | 70  | 100 | 95  | 99  | 100 | 40 | 65  | 100 | 95  | 60  |
| 14-37 | 63  | 100 | 100 | 20  | 30  | 100 | 100 | 90  | 100 | 0  | 80  | 90  | 20  | 70  |
|       | 250 | 100 | 100 | 50  | 100 | 100 | 100 | 100 | 100 | 30 | 100 | 100 | 95  | 100 |
| 14-38 | 63  | 100 | 100 | 0   | 70  | 100 | —   | 90  | 100 | 0  | 95  | 0   | 50  | 0   |
|       | 250 | 100 | 100 | 0   | 70  | 100 | —   | 100 | 100 | 30 | 100 | 20  | 100 | 40  |
| 14-39 | 63  | 100 | 99  | 60  | 20  | 100 | 50  | 95  | 100 | 30 | 60  | 90  | 30  | 90  |
|       | 250 | 100 | 100 | 100 | 50  | 100 | 50  | 100 | 100 | 40 | 100 | 100 | 50  | 100 |
| 14-40 | 63  | 100 | 90  | 20  | 30  | 100 | 90  | 85  | 100 | 20 | 20  | 50  | 35  | 15  |
|       | 250 | 100 | 100 | 60  | 60  | 100 | 100 | 99  | 100 | 20 | 40  | 95  | 70  | 75  |
| 14-41 | 63  | 100 | 100 | 0   | 30  | 100 | —   | 90  | 100 | 40 | 100 | 100 | 100 | 20  |
|       | 250 | 100 | 100 | 0   | 50  | 100 | —   | 100 | 100 | 70 | 100 | 100 | 100 | 95  |
| 14-42 | 63  | 100 | 100 | 60  | 100 | 100 | —   | 100 | 100 | 60 | 95  | 100 | 100 | 95  |
|       | 250 | 100 | 100 | 90  | 100 | 100 | —   | 100 | 100 | 95 | 100 | 100 | 100 | 100 |
| 14-43 | 63  | 100 | 100 | 40  | 95  | 100 | —   | 90  | 100 | 80 | 80  | 100 | 95  | 95  |

|       |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|       | 250 | 100 | 100 | 90  | 100 | 100 | —   | 100 | 100 | 95  | 100 | 100 | 100 | 100 | 100 |
| 14-44 | 63  | 100 | 100 | 0   | 50  | 100 | —   | 100 | 100 | 30  | 100 | 100 | 100 | 100 | 90  |
|       | 250 | 100 | 100 | 0   | 90  | 100 | —   | 100 | 100 | 80  | 100 | 100 | 100 | 100 | 100 |
| 14-45 | 63  | 100 | 100 | 30  | 100 | 100 | 100 | 70  | 100 | 70  | 90  | 90  | 70  | 70  | 70  |
|       | 250 | 100 | 100 | 30  | 100 | 100 | 100 | 100 | 95  | 100 | 90  | 100 | 100 | 100 | 100 |
| 14-46 | 63  | 95  | 100 | 60  | 100 | 100 | —   | 90  | 100 | 80  | 80  | 100 | 95  | 60  |     |
|       | 250 | 100 | 100 | 90  | 100 | 100 | —   | 100 | 100 | 95  | 100 | 100 | 100 | 100 | 100 |
| 14-47 | 63  | 100 | 100 | 0   | 80  | 100 | 100 | 100 | 90  | 100 | 70  | 95  | 100 | 40  | 100 |
|       | 250 | 100 | 100 | 70  | 100 | 100 | 100 | 100 | 100 | 80  | 100 | 100 | 100 | 100 | 100 |
| 14-48 | 63  | 100 | 100 | 0   | 0   | 100 | 80  | 50  | 50  | 0   | 70  | 95  | 40  | 70  |     |
|       | 250 | 100 | 100 | 100 | 100 | 100 | —   | 100 | 100 | 90  | 90  | 100 | 100 | 100 | 100 |
| 14-49 | 63  | 100 | 100 | 70  | 100 | 100 | 100 | 100 | 80  | 100 | 70  | 70  | 95  | 80  | 50  |
|       | 250 | 100 | 100 | 95  | 100 | 100 | 100 | 100 | 100 | 95  | 95  | 100 | 100 | 95  |     |
| 14-50 | 63  | 100 | 30  | 90  | 0   | 50  | —   | 0   | 0   | 0   | 0   | 0   | 0   | 10  | 30  |
|       | 250 | 100 | 50  | 100 | 0   | 100 | —   | 0   | 0   | 0   | 50  | 20  | 30  | 50  |     |
| 14-51 | 63  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 10  | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 0   | 50  | 0   | 30  | 10  | 20  | 0   | 20  | 0   | 0   | 30  | 0   | 0   | 0   |
| 14-52 | 63  | 20  | 90  | 0   | 100 | —   | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 50  | 100 | 70  | 100 | —   | —   | 0   | 10  | 0   | 0   | 100 | 10  | 0   |     |
| 14-54 | 63  | 40  | 60  | 0   | 30  | 20  | —   | 10  | 30  | 0   | 0   | 30  | 5   | 10  |     |
|       | 250 | 50  | 80  | 30  | 80  | 60  | —   | 10  | 30  | 0   | 10  | 35  | 15  | 10  |     |
| 14-55 | 63  | 30  | 70  | 10  | 70  | 30  | —   | 0   | 10  | 0   | 0   | 10  | 5   | 20  |     |
|       | 250 | —   | —   | —   | —   | —   | —   | —   | —   | —   | —   | —   | —   | —   | —   |
| 14-56 | 63  | 100 | 70  | 30  | 100 | 99  | 90  | 30  | 20  | 30  | 10  | 40  | 10  | 0   |     |
|       | 250 | 100 | 100 | 40  | 100 | 100 | 80  | 70  | 80  | 70  | 50  | 50  | 30  | 25  |     |
| 14-59 | 63  | 20  | 50  | 0   | 30  | 10  | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 20  | 30  | 10  | 30  | 10  | —   | 0   | 0   | 0   | 0   | 10  | 0   | 0   | 0   |
| 14-60 | 63  | 70  | 100 | 40  | 100 | 99  | —   | 20  | 50  | 20  | 10  | 100 | 10  | 10  |     |
|       | 250 | 100 | 100 | 70  | 100 | 100 | —   | 30  | 75  | 50  | 60  | 100 | 60  | 20  |     |
| 14-61 | 63  | 20  | 30  | 0   | 20  | 40  | —   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 250 | 60  | 60  | 30  | 50  | 75  | —   | 20  | 60  | 20  | 70  | 40  | 70  | 30  |     |
| 14-62 | 63  | 30  | 40  | 0   | 30  | 10  | 40  | 0   | 0   | —   | 0   | 15  | 5   | 0   |     |
|       | 250 | 50  | 60  | 30  | 50  | 20  | 30  | 0   | 0   | —   | 0   | 15  | 5   | 5   |     |
| 14-63 | 63  | 95  | 90  | 95  | 70  | 80  | 20  | 50  | 100 | —   | 40  | 95  | 35  | 5   |     |
|       | 250 | 100 | 100 | 100 | 70  | 100 | 50  | 70  | 99  | —   | 90  | 100 | 80  | 15  |     |
| 14-64 | 63  | 100 | 100 | 10  | 30  | 70  | 30  | 30  | 100 | —   | 40  | 90  | 99  | 5   |     |
|       | 250 | 100 | 100 | 20  | 80  | 99  | 40  | 70  | 100 | —   | 99  | 90  | 100 | 10  |     |
| 14-65 | 63  | 100 | 100 | 90  | 50  | 90  | —   | 100 | 100 | 30  | 99  | 100 | 0   | 0   |     |
|       | 250 | 100 | 100 | 100 | 70  | 100 | —   | 100 | 100 | 60  | 100 | 100 | 50  | 10  |     |
| 14-66 | 63  | 95  | 100 | 80  | 70  | 80  | —   | 95  | 100 | 60  | 100 | 80  | 90  | 0   |     |
|       | 250 | 100 | 100 | 90  | 90  | 99  | —   | 100 | 100 | 80  | 100 | 99  | 100 | 10  |     |
| 15-1  | 63  | 100 | 100 | 100 | 100 | 100 | —   | 80  | 80  | —   | 90  | 100 | 80  | 75  |     |
|       | 250 | 100 | 100 | 100 | 100 | 100 | —   | 100 | 99  | —   | 100 | 100 | 95  | 95  |     |
| 15-2  | 63  | 20  | 80  | 10  | 90  | —   | —   | 0   | 0   | 0   | 0   | 40  | 15  | 50  |     |
|       | 250 | 95  | 100 | 75  | 100 | —   | —   | 80  | 90  | 70  | 80  | 100 | 80  | 75  |     |
| 15-3  | 63  | 95  | 100 | 70  | 95  | 95  | —   | 30  | 10  | 0   | 20  | 90  | 25  | 50  |     |
|       | 250 | 100 | 100 | 100 | 100 | 100 | —   | 80  | 90  | 90  | 80  | 100 | 80  | 90  |     |
| 15-4  | 63  | 70  | 100 | 50  | 100 | 100 | —   | 50  | 40  | —   | 30  | 90  | 50  | 70  |     |
|       | 250 | 100 | 100 | 80  | 100 | 100 | —   | 80  | 90  | —   | 70  | 100 | 90  | 95  |     |
| 15-5  | 63  | 70  | 100 | 40  | 90  | 100 | —   | 40  | 40  | —   | 30  | 100 | 70  | 60  |     |
|       | 250 | 100 | 100 | 80  | 100 | 100 | —   | 80  | 90  | —   | 70  | 100 | 90  | 90  |     |
| 15-6  | 63  | 50  | 100 | 30  | 50  | —   | —   | 30  | 20  | —   | 0   | 60  | 25  | 60  |     |
|       | 250 | 85  | 100 | 70  | 100 | —   | —   | 75  | 95  | —   | 90  | 100 | 80  | 95  |     |
| 15-7  | 63  | 100 | 100 | 60  | 100 | 100 | —   | 30  | 40  | —   | 20  | 90  | 60  | 50  |     |
|       | 250 | 100 | 100 | 100 | 100 | 100 | —   | 90  | 95  | —   | 75  | 100 | 80  | 90  |     |
| 15-8  | 63  | 20  | 70  | 0   | 50  | 95  | —   | 0   | 0   | —   | 0   | 60  | 0   | 10  |     |
|       | 250 | 60  | 100 | 40  | 90  | 90  | —   | 30  | 20  | —   | 0   | 90  | 55  | 60  |     |
| 15-9  | 63  | 10  | 80  | 10  | 100 | —   | —   | 0   | 0   | —   | 0   | 40  | 30  | 50  |     |
|       | 250 | 95  | 100 | 60  | 85  | —   | —   | 80  | 90  | —   | 80  | 95  | 70  | 90  |     |
| 15-10 | 63  | 100 | 100 | 100 | 100 | 100 | —   | 30  | 10  | 30  | 60  | 95  | 45  | 50  |     |
|       | 250 | 100 | 100 | 100 | 100 | 100 | —   | 75  | 80  | 70  | 90  | 95  | 65  | 80  |     |
| 15-11 | 63  | 95  | 100 | 90  | 100 | 100 | —   | 40  | 50  | 50  | 50  | 95  | 45  | 65  |     |
|       | 250 | 100 | 100 | 100 | 100 | 100 | —   | 80  | 99  | 99  | 95  | 100 | 85  | 99  |     |
| 15-12 | 63  | 95  | 100 | 90  | 100 | 100 | —   | 70  | 70  | 80  | 95  | 100 | 80  | 80  |     |
|       | 250 | 100 | 100 | 100 | 100 | 100 | —   | 100 | 100 | 99  | 100 | 100 | 95  | 99  |     |
| 15-13 | 63  | 80  | 100 | 60  | 100 | 95  | —   | 20  | 20  | 10  | 10  | 95  | 15  | 60  |     |
|       | 250 | 95  | 100 | 100 | 100 | 100 | —   | 60  | 85  | 70  | 70  | 100 | 50  | 90  |     |
| 15-14 | 63  | 100 | 100 | 80  | 100 | 100 | —   | 20  | 20  | 20  | 20  | 100 | 20  | 40  |     |
|       | 250 | 100 | 100 | 100 | 100 | 100 | —   | 55  | 90  | 70  | 60  | 100 | 65  | 50  |     |

|       |     |     |     |     |     |     |     |     |     |     |     |     |    |    |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|
| 15-15 | 63  | 100 | 100 | 80  | 90  | 100 | --- | 40  | 30  | 30  | 40  | 95  | 45 | 70 |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 95  | 100 | 99  | 100 | 100 | 90 | 95 |
| 15-16 | 63  | 80  | 100 | 80  | 100 | 100 | --- | 30  | 10  | 10  | 20  | 95  | 15 | 40 |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 60  | 90  | 70  | 80  | 100 | 45 | 80 |
| 15-17 | 63  | 90  | 100 | 80  | 100 | --- | --- | 40  | 50  | 20  | 40  | 90  | 35 | 75 |
|       | 250 | 100 | 100 | 100 | 100 | --- | --- | 90  | 99  | 95  | 99  | 100 | 80 | 90 |
| 15-18 | 63  | 100 | 100 | 40  | 90  | 100 | --- | 20  | 10  | 0   | 10  | 90  | 20 | 30 |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 80  | 95  | 99  | 100 | 100 | 80 | 85 |
| 15-19 | 63  | 100 | 100 | 75  | 100 | 100 | --- | 40  | 50  | 40  | 50  | 90  | 35 | 65 |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | 100 | 100 | 100 | 85 | 90 |
| 15-20 | 63  | 100 | 100 | 80  | 100 | 100 | --- | 80  | 50  | --- | 30  | 95  | 40 | 35 |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 100 | 100 | --- | 90  | 100 | 85 | 80 |
| 15-21 | 63  | 95  | 100 | 100 | 100 | 100 | --- | 50  | 60  | 40  | 30  | 90  | 30 | 80 |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 90  | 100 | 95  | 95  | 100 | 90 | 90 |
| 15-22 | 63  | 100 | 100 | 70  | 100 | 100 | --- | 40  | 40  | --- | 30  | 90  | 30 | 50 |
|       | 250 | 100 | 100 | 100 | 100 | 100 | --- | 95  | 100 | --- | 90  | 100 | 90 | 90 |
| 16-2  | 63  | 60  | 40  | 0   | 0   | 30  | --- | 0   | 0   | 0   | 0   | 10  | 0  | 0  |
|       | 250 | 60  | 70  | 10  | 0   | 70  | --- | 0   | 0   | 0   | 0   | 40  | 10 | 20 |
| 16-4  | 63  | 0   | 0   | 0   | 0   | 0   | --- | 0   | 0   | 0   | 0   | 0   | 0  | 0  |
|       | 250 | 0   | 0   | 0   | 0   | 0   | --- | 0   | 0   | 0   | 0   | 0   | 0  | 0  |
| 16-6  | 63  | 70  | 70  | 0   | 30  | 0   | --- | 0   | 0   | 20  | 20  | 0   | 0  | 0  |
|       | 250 | 70  | 100 | 0   | 70  | 70  | --- | 0   | 0   | 40  | 80  | 0   | 0  | 10 |
| 16-7  | 63  | 0   | 0   | 0   | 0   | 0   | --- | 0   | 0   | 0   | 0   | 0   | 0  | 0  |
|       | 250 | 0   | 0   | 30  | 30  | 0   | --- | 0   | 0   | 0   | 0   | 0   | 0  | 0  |
| 17-1  | 63  | 10  | 70  | 20  | 80  | 30  | --- | 0   | 0   | 0   | 0   | 10  | 0  | 0  |
|       | 250 | 30  | 70  | 10  | 80  | 60  | --- | 0   | 0   | 0   | 0   | 30  | 5  | 0  |
| 17-2  | 63  | 0   | 0   | 0   | 0   | 0   | --- | 0   | 0   | 0   | 0   | 0   | 0  | 0  |
|       | 250 | 30  | 50  | 10  | 20  | 40  | --- | 0   | 0   | 0   | 0   | 10  | 0  | 0  |
| 17-4  | 63  | 20  | 35  | 10  | 40  | 20  | --- | 0   | 0   | 0   | 0   | 10  | 0  | 0  |
|       | 250 | 70  | 70  | 20  | 80  | 40  | --- | 0   | 0   | 0   | 0   | 15  | 0  | 0  |
| 17-5  | 63  | 10  | 50  | 10  | 30  | 40  | --- | 0   | 0   | 0   | 0   | 20  | 0  | 0  |
|       | 250 | 40  | 80  | 20  | 70  | 80  | --- | 0   | 0   | 0   | 0   | 35  | 10 | 0  |

Claims

1. A compound represented by the formula I or its salts



I

5 wherein X is hydrogen, halogen, nitro, amino, NHR, N(R)<sub>2</sub>, amide, thioamide, cyano, alkylcarbonyl, alkoxycarbonyl, alkylsulfonamide, unsubstituted or substituted alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxycarbonylalkoxy, benzyloxy, aryloxy, or heteroaryloxy; Y is hydrogen, halogen, or nitro; W is hydrogen, OR, SR, NHR, N(R)<sub>2</sub>, CH<sub>2</sub>R, CH(R)<sub>2</sub>, C(R)<sub>3</sub>, halogen, nitro, or cyano, 10 where multiple R groups represent any possible combination of substituents described by R; R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, alkoxy, cycloalkyloxy, aryloxy, heteroaryloxy, alkylsulfonyl, benzyl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, or heteroaryloxycarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups 15 represented by one or more of the following: halogen, cyano, nitro, amino, carboxyl, alkyl, haloalkyl, alkylsilyl, alkylcarbonyl, haloalkylcarbonyl, alkoxy, alkoxycarbonyl, haloalkoxy, haloalkoxycarbonyl, alkylsulfonyl, haloalkylsulfonyl, aryl, heteroaryl, or cycloalkyl;

Q is a heterocycle, examples of which are as follows:





wherein R<sub>1</sub> is hydrogen, alkyl, haloalkyl, alkenyl, alkynyl, amino, alkoxyalkyl, acetyl, alkoxycarbonylamino, alkylcarbonylamino, or alkoxycarbonyl;

R<sub>2</sub> is alkyl or haloalkyl;

R<sub>1</sub> and R<sub>2</sub> could combine to form a five- or six-membered heterocyclic ring;

R<sub>3</sub> is hydrogen, halogen, nitro, amino, alkylamino, haloalkylamino, cyano, or amide;

R<sub>8</sub> and R<sub>9</sub> are independently oxygen, sulfur, or imino group;

Q6, Q7, and Q10 may optionally be unsaturated containing one or two double bonds in the 6-membered ring;

Z is amino, hydroxyl, thiol, formyl, carboxyl, cyano, alkylcarbonyl, arylcarbonyl, azido, or one of the following:



wherein R<sub>4</sub> is alkyl, alkenyl, alkynyl, amino, cycloalkyl, heterocycloalkyl, alkylsulfonyl, arylsulfonyl, benzyl, aryl, heteroaryl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl,

cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, alkylthiocarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, arylthio-carbonyl, aryl-thiocarbonyl, heteroaryloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylamino carbonyl, alkoxy carbonyl carbonyl or aryl carbonyl carbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxy carbonyl, alkylthio, alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio,

heteroaryl, heteroaryloxycarbonyl or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxycarbonyl, cycloalkyl, aryl, or heterocycloalkyl; and R<sub>5</sub> is hydrogen or any one of the groups represented by R<sub>4</sub>; or R<sub>4</sub> and R<sub>5</sub> could combine to form a 4-8 membered heterocyclic ring;



5

wherein R<sub>6</sub> represents alkyl, haloalkyl, dialkylamino, unsubstituted or substituted aryl and heteroaryl; and R<sub>7</sub> represents hydrogen, halogen or any of the groups represented by R<sub>6</sub>;

10

-OR<sub>4</sub>,

-SR<sub>4</sub>,

-CH<sub>2</sub>R<sub>10</sub>,

-CH(R<sub>10</sub>)<sub>2</sub>,

-C(R<sub>10</sub>)<sub>3</sub>, or

-CH=CHR<sub>10</sub>

wherein R<sub>10</sub> is carboxyl, alkyl, alkenyl, alkynyl, amino, cycloalkyl, heterocycloalkyl, alkylsulfonyl, arylsulfonyl, benzyl, aryl, heteroaryl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, alkylthiocarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, arylthio-carbonyl, aryl-thiocarbonyl, heteroaryloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, alkoxycarbonylcarbonyl or arylcarbonylcarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxycarbonyl, alkylthio, alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxycarbonyl, cycloalkyl, aryl, or heterocycloalkyl; provided that (1) Z is not alkyl, alkoxy, haloalkyl, haloalkoxy, alkylthio, haloalkylthio, alkenyl, haloalkenyl, amino, monoalkylamino, dialkylamino, alkoxyalkoxy or cyano, when Q is Q1 and R<sub>2</sub> is haloalkyl,

(2) Z is not amino when Q is Q3, and

(3) Z is not hydroxyl, alkoxy, alkenyloxy, alkynyoxy, haloalkoxy, haloalkenyloxy, or -NR<sub>4</sub>R<sub>5</sub>, wherein R<sub>4</sub> is alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, alkylsulfonyl, alkylcarbonyl, alcoxycarbonyl, or cycloalkylalkyl, and R<sub>5</sub> is alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, alkylcarbonyl, alcoxycarbonyl, or cycloalkylalkyl, when Q is Q14 or Q15.

5 2. The compound according to claim 1 wherein Z is represented by the following:



wherein R<sub>4</sub> and R<sub>5</sub> are the same as defined in claim 1;

or -CH<sub>2</sub>R<sub>10</sub>,

10 wherein R<sub>10</sub> is the same as defined in claim 1.

3. The compound according to claims 1 or 2

wherein X is halogen or cyano;

Y is halogen;

W is OR;

15 R is alkyl, alkenyl, or alkynyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, or carboxyl.

4. The compound according to claim 1

wherein Q is



20

wherein R<sub>1</sub> is alkyl, amino, or haloalkyl;

R<sub>2</sub> is haloalkyl;

R<sub>3</sub> is hydrogen;

R<sub>8</sub> and R<sub>9</sub> are independently oxygen, sulfur, or imino group.

25 5. The compound according to claim 1

wherein X is halogen;

Y is fluorine;

W is OR; R is alkyl, alkenyl, or alkynyl, where any of these groups may be unsubstituted or substituted with halogen or cyano;

Q is



5 wherein R<sub>1</sub> is alkyl, amino, or haloalkyl;

R<sub>2</sub> is haloalkyl;

R<sub>3</sub> is hydrogen;

R<sub>8</sub> and R<sub>9</sub> are independently oxygen, sulfur, or imino group;

Z is represented by the following:



10

wherein R<sub>4</sub> is alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcacbonyl, alkoxy carbonyl, alkylthiocarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, arylthio-carbonyl, aryl-thiocarbonyl, heteroaryloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, alkoxy carbonyl carbonyl, or

15 arylcarbonylcacbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxy carbonyl, alkylthio, alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, 20 aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl, or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxy carbonyl, cycloalkyl, aryl, or heterocycloalkyl; and R<sub>5</sub> is hydrogen;

or -CH<sub>2</sub>R<sub>10</sub>,

25 wherein R<sub>10</sub> is carboxyl, alkyl, alkenyl, or alkynyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxy carbonyl, alkylthio,

alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl, or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy,

5 alkoxy carbonyl, cycloalkyl, aryl, or heterocycloalkyl.

6. A compound selected from the group consisting of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione and 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-amino-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione.

7. A herbicidal composition, characterized in that it contains at least one compound

10 according to claim 1 and an agricultural adjuvant.

8. A method for controlling undesired vegetation which comprises applying to a locus to be protected a herbicidally effective amount of a compound of claim 1.

9. The method of claim 8 wherein the locus to be protected is a cereal crop field.

10. The method of claim 9 wherein the compound of claim 1 is applied to soil as a  
15 preemergent herbicide.

11. The method of claim 9 wherein the compound of claim 1 is applied to plant foliage.

12. A method to defoliate potato and cotton using a compound of claim 1.

13. A process for preparing a compound represented by the formula I-1 or its salts:



20 wherein X is hydrogen, halogen, nitro, amino, NHR, N(R)<sub>2</sub>, amide, thioamide, cyano, alkylcarbonyl, alkoxy carbonyl, alkylsulfonamide, unsubstituted or substituted alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxy carbonylalkoxy, benzyloxy, aryloxy, or heteroaryloxy;

Y is hydrogen, halogen, or nitro;

W is hydrogen, OR, SR, NHR, N(R)<sub>2</sub>, CH<sub>2</sub>R, CH(R)<sub>2</sub>, C(R)<sub>3</sub>, halogen, nitro, or cyano,

25 where multiple R groups represent any possible combination of substituents described by R; R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, alkoxy, cycloalkyloxy, aryloxy, heteroaryloxy, alkylsulfonyl, benzyl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxy carbonyl, aryloxycarbonyl, or heteroaryloxycarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, carboxyl, alkyl,

30

haloalkyl, alkylsilyl, alkylcarbonyl, haloalkylcarbonyl, alkoxy, alkoxycarbonyl, haloalkoxy, haloalkoxycarbonyl, alkylsulfonyl, haloalkylsulfonyl, aryl, heteroaryl, or cycloalkyl;

Q is a heterocycle, examples of which are as follows:



5

wherein R<sub>1</sub> is hydrogen, alkyl, haloalkyl, alkenyl, alkynyl, amino, alkoxyalkyl, acetyl, alkoxycarbonylamino, alkylcarbonylamino, or alkoxycarbonyl;

R<sub>2</sub> is alkyl or haloalkyl;

R<sub>1</sub> and R<sub>2</sub> could combine to form a five- or six-membered heterocyclic ring;

10 R<sub>3</sub> is hydrogen, halogen, nitro, amino, alkylamino, haloalkylamino, cyano, or amide;

R<sub>8</sub> and R<sub>9</sub> are independently oxygen, sulfur, or imino group;

Q6, Q7, and Q10 may optionally be unsaturated containing one or two double bonds in the 6-membered ring;

Z' is one of the following:



wherein R<sub>4</sub> is alkyl, alkenyl, alkynyl, amino, cycloalkyl, heterocycloalkyl, alkylsulfonyl, arylsulfonyl, benzyl, aryl, heteroaryl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxy carbonyl, alkylthiocarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, arylthio-carbonyl, aryl-thiocarbonyl, heteroaryloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, alkoxy carbonylcarbonyl, or arylcarbonylcarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxy carbonyl, alkylthio, alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl, or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, 15 alkoxy carbonyl, cycloalkyl, aryl, or heterocycloalkyl; and R<sub>5</sub> is hydrogen or any one of the groups represented by R<sub>4</sub>; or R<sub>4</sub> and R<sub>5</sub> could combine to form a 4-8 membered heterocyclic ring;



wherein R<sub>6</sub> represents alkyl, haloalkyl, dialkylamino, unsubstituted or substituted aryl and heteroaryl; and R<sub>7</sub> represents hydrogen, halogen or any of the groups represented by R<sub>6</sub>;

- 20                    -CH<sub>2</sub>R<sub>10</sub>,  
                   -CH(R<sub>10</sub>)<sub>2</sub>,  
                   -C(R<sub>10</sub>)<sub>3</sub>, or  
                   -CH=CHR<sub>10</sub>

wherein R<sub>10</sub> is carboxyl, alkyl, alkenyl, alkynyl, amino, cycloalkyl, heterocycloalkyl, 25 alkylsulfonyl, arylsulfonyl, benzyl, aryl, heteroaryl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxy carbonyl, alkylthiocarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, arylthio-carbonyl, aryl-thiocarbonyl, heteroaryloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, alkoxy carbonylcarbonyl or arylcarbonylcarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one 30 or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl,

- alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxycarbonyl, alkylthio, alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl or methylenedioxy, wherein the alkyl moiety or aryl moiety  
5 may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxycarbonyl, cycloalkyl, aryl, or heterocycloalkyl;  
provided that (1) Z' is not alkyl, haloalkyl, alkenyl, haloalkenyl, monoalkylamino, or dialkylamino, when Q is Q1 and R<sub>2</sub> is haloalkyl, and  
(2) Z' is not -NR<sub>4</sub>R<sub>5</sub>, wherein R<sub>4</sub> is alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl,  
10 haloalkenyl, alkylsulfonyl, alkylcarbonyl, alkoxycarbonyl, or cycloalkylalkyl, and R<sub>5</sub> is alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, alkylcarbonyl, alkoxycarbonyl, or cycloalkylalkyl, when Q is Q14 or Q15,  
which comprises of reacting a compound represented by the formula II:



- 15 with a compound selected from the group consisting of an alkyl halide, alkyl acid halide, aryl acid halide, alkyl acid anhydride, aryl acid anhydride, alkylhaloformate, alkyl isocyanate, aryl isocyanate, alkyl dihalide, aliphatic aldehyde, aliphatic ketone, aromatic aldehyde, and aromatic ketone.

14. A compound represented by the formula III:



- 20 wherein X is hydrogen, halogen, nitro, amino, NHR, N(R)<sub>2</sub>, amide, thioamide, cyano, alkylcarbonyl, alkoxycarbonyl, alkylsulfonamide, unsubstituted or substituted alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxycarbonylalkoxy, benzyloxy, aryloxy, or heteroaryloxy;

Y is hydrogen, halogen, or nitro;

- 25 W is hydrogen, OR, SR, NHR, N(R)<sub>2</sub>, CH<sub>2</sub>R, CH(R)<sub>2</sub>, C(R)<sub>3</sub>, halogen, nitro, or cyano, where multiple R groups represent any possible combination of substituents described by R; R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, alkoxy, cycloalkyloxy, aryloxy,

heteroaryloxy, alkylsulfonyl, benzyl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, or heteroaryloxycarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, carboxyl, alkyl, haloalkyl, alkylsilyl, alkylcarbonyl, haloalkylcarbonyl, alkoxy, alkoxycarbonyl, haloalkoxy, haloalkoxycarbonyl, alkylsulfonyl, haloalkylsulfonyl, aryl, heteroaryl, or cycloalkyl;

Q is a heterocycle, examples of which are as follows:



- 10 wherein R<sub>1</sub> is hydrogen, alkyl, haloalkyl, alkenyl, alkynyl, amino, alkoxyalkyl, acetyl, alkoxycarbonylamino, alkylcarbonylamino, or alkoxycarbonyl;  
R<sub>2</sub> is alkyl or haloalkyl;  
R<sub>1</sub> and R<sub>2</sub> could combine to form a five- or six-membered heterocyclic ring;  
R<sub>3</sub> is hydrogen, halogen, nitro, amino, alkylamino, haloalkylamino, cyano, or amide;  
15 R<sub>4</sub> and R<sub>5</sub> are independently oxygen, sulfur, or imino group;

Q6, Q7, and Q10 may optionally be unsaturated containing one or two double bonds in the 6-membered ring;

M is nitro.

15. A compound represented by the following formulae IV or V:



IV



V

5

wherein X' and Y' are halogens; and R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, alkoxy, cycloalkyloxy, aryloxy, heteroaryloxy, alkylsulfonyl, benzyl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, or heteroaryloxycarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, carboxyl, alkyl, haloalkyl, alkylsilyl, alkylcarbonyl, haloalkylcarbonyl, alkoxy, alkoxycarbonyl, haloalkoxy, haloalkoxycarbonyl, alkylsulfonyl, haloalkylsulfonyl, aryl, heteroaryl, or cycloalkyl.

10

## INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/17197

## A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :Please See Extra Sheet.  
 US CL :Please See Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : Please See Extra Sheet.

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAS ONLINE

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                     | Relevant to claim No. |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X         | WO 97/07104 A1 (SUMITOMO CHEMICAL COMPANY LIMITED) 27 February 1997, page 45, formula [63], pages 83-84.                                                                                                               | 1-3, 5, 7-12          |
| X         | WO 97/12883 A1 (BASF AKTIENGESELLSCHAFT) 10 April 1997, see page 30, compound no. 1.429.                                                                                                                               | 1, 7-12               |
| X         | KATO, S. et al. Synthesis of 4-Chloro-7-ethoxy-2(3H)-benzoxazolone-6-carboxylic Acid. Journal of Heterocyclic Chemistry. July-August 1996, Vol. 33, No. 4, pages 1171-1178, especially page 1172, formulae 10c and 11c | 1, 14                 |

Further documents are listed in the continuation of Box C.  See patent family annex.

|                                                                                                                                                                         |     |                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| * Special categories of cited documents:                                                                                                                                | "T" | later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention                                              |
| "A" document defining the general state of the art which is not considered to be of particular relevance                                                                | "X" | document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone                                                                     |
| "E" earlier document published on or after the international filing date                                                                                                | "Y" | document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) | "&" | document member of the same patent family                                                                                                                                                                                                    |
| "O" document referring to an oral disclosure, use, exhibition or other means                                                                                            |     |                                                                                                                                                                                                                                              |
| "P" document published prior to the international filing date but later than the priority date claimed                                                                  |     |                                                                                                                                                                                                                                              |

Date of the actual completion of the international search

11 FEBRUARY 1999

Date of mailing of the international search report

01 MAR 1999

Name and mailing address of the ISA/US  
Commissioner of Patents and TrademarksBox PCT  
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

DEEPAK RAO

Telephone No. (703) 308-1235

## INTERNATIONAL SEARCH REPORT

International application No.  
PCT/US98/17197

## C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                        | Relevant to claim No. |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X         | MEEGALLA, S.K. et al. Synthesis and Pharmacological Evaluation of Isoindolo[1,2-b]quinazolinone and Isoindolo[2,1- $\alpha$ ]benzimidazole Derivatives Related to the Antitumor Agent Batracylin. Journal of Medicinal Chemistry. 30 September 1994, Vol. 37, No. 20, pages 3434-3439, especially page 3436, formula 13a. | 14                    |
| X         | US 4,881,967 A (SEMPLE) 21 November 1989, col. 28, lines 30-31 and 48-49, compounds 41B and 41C.                                                                                                                                                                                                                          | 1-3, 7-12             |
| X         | Chem. abstr., Vol. 96, No. 24, 14 June 1982 (Columbus, OH, USA) page 43, column 1, the abstract No. 200709g, CHERNIKOV, A.Y. et al. 'Thermostable composition.' FR 2,476,068, 21 August 1981.                                                                                                                             | 1                     |
| X         | WITTEK, P.J. Synthetic Studies of the Antitumor Antibiotic Streptonigrin. 3 synthesis of the C-D Ring of Streptonigrin by an Unsymmetrical Ullmann Reaction. Journal of Organic Chemistry. March 1979, Vol. 44, No. 5, pages 870-872, especially page 870, formula 9.                                                     | 1                     |
| X         | HALL, J.H. et al. Formation of cis, cis-1,4-dicyano-1,3-butadienes by Thermal Decomposition of 1,2-Diazidobenzenes. Journal of the American Chemical Society. 08 November 1967, Vol. 89, No. 23, pages 5856-5861, especially page 5860, col. 2, lines 6 and 33.                                                           | 1                     |
| X         | Chem. abstr., Vol. 69, No. 23, 02 December 1968 (Columbus, OH, USA) page 8993, column 1, the abstract No. 96206v, AGRIPAT, S.A. '2-Nitro-3(and 5)-phenoxy(and phenylthio)anilines and their o-phenylenediamine derivatives.' FR 1,499,717, 27 October 1967.                                                               | 15                    |
| X         | Chem. abstr., Vol. 45, No. 16, 25 August 1951 (Columbus, OH, USA) page 1951 column 1, the abstract No. 7033i, FINGER, G.C. et al. 'Aromatic Fluorine compounds. II. 1,2,4,5-Tetrafluorobenzene and related compounds' J. Am. Chem. Soc., 1951, 73, 145-9.                                                                 | 15                    |
| Y         | US 5,281,571 A (WOODARD et al) 25 January 1994, col. 1, lines 60-67, formula I.                                                                                                                                                                                                                                           | 1-3, 7-14             |
| A         | US 5,116,404 A (ISHII et al) 26 May 1992, col. 2, lines 27-35, formula (I).                                                                                                                                                                                                                                               | 1-15                  |

**INTERNATIONAL SEARCH REPORT**

International application No.

PCT/US98/17197

**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claims Nos.:  
because they relate to subject matter not required to be searched by this Authority, namely:
  
2.  Claims Nos.:  
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
  
3.  Claims Nos.:  
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

**Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)**

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1.  As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.  As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.  As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
  
4.  No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

**Remark on Protest**

- The additional search fees were accompanied by the applicant's protest.  
 No protest accompanied the payment of additional search fees.

**INTERNATIONAL SEARCH REPORT**International application No.  
PCT/US98/17197**A. CLASSIFICATION OF SUBJECT MATTER:**

IPC (6):

C07D 221/02, 471/02, 491/02, 498/02, 211/70, 211/72, 211/82, 211/84, 213/62, 213/54, 213/44, 237/26, 237/28, 487/00, 401/00, 403/00, 239/02, 241/36, 471/00, 241/02, 257/00, 249/12, 231/10, 209/48, 209/38; C07C 211/00, 215/00; A01N 43/36, 43/38, 43/40, 43/42, 43/54, 43/58, 43/60, 43/64, 43/653

**A. CLASSIFICATION OF SUBJECT MATTER:**

US CL :

504/236, 238, 243, 244, 254, 273, 280, 287; 544/235, 236, 238, 311, 312, 349, 350, 408; 546/112, 113, 121, 295, 329, 339; 548/251, 263.2, 264.6, 375.1, 476, 513

**B. FIELDS SEARCHED**

Minimum documentation searched

Classification System: U.S.

504/236, 238, 243, 244, 254, 273, 280, 287; 544/235, 236, 238, 311, 312, 349, 350, 408; 546/112, 113, 121, 295, 329, 339; 548/251, 263.2, 264.6, 375.1, 476, 513

**BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING**

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s) 1-14, drawn to compounds, compositions, method of use and process of preparing compounds of formula I where Q is as set forth in Q1, Q12 or Q13.

Group II, claim(s) 1-3 and 7-14, drawn to compounds, compositions, method of use and process of preparing compounds of formula I where Q is as set forth in Q2 or Q11.

Group III, claim(s) 1-3 and 7-14, drawn to compounds, compositions, method of use and process of preparing compounds of formula I where Q is as set forth in Q3.

Group IV, claim(s) 1-3 and 7-14, drawn to compounds, compositions, method of use and process of preparing compounds of formula I where Q is Q4.

Group V, claim(s) 1-3 and 7-14, drawn to compounds, compositions, method of use and process of preparing compounds of formula I where Q is Q5.

Group VI, claim(s) 1-5 and 7-14, drawn to compounds, compositions, method of use and process of preparing compounds of formula I where Q is Q6 or Q7.

Group VII, claim(s) 1-3 and 7-14, drawn to compounds, compositions, method of use and process of preparing compounds of formula I where Q is Q8.

Group VIII, claim(s) 1-3 and 7-14, drawn to compounds, compositions, method of use and process of preparing compounds of formula I where Q is Q9, Q14 or Q15.

Group IX, claim(s) 1-3 and 7-14, drawn to compounds, compositions, method of use and process of preparing compounds of formula I where Q is Q10.

Group X, claim(s) 15, drawn to compounds of formulae IV and V.

The inventions listed as Groups I-IX do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: the variable core created by varying definitions of Q in the compounds of formula I do not belong to a recognized class of chemical compounds in the art.

**NOTIFICATION OF DECISION CONCERNING PROTEST**

International application No.

PCT/US98/17197

Applicant's Protest of the Holding of Lack of Unity of Invention has been denied for the following reasons:

Applicant's protest of the Invitation to Pay Additional Fees asserts that a common core structure is present and that the Examiner's assertion that due to the variability in the Q moiety that no common core was present is in error.

However, applicant does not set forth a precise description of what he views as the core. The only structurally defined portion of the claimed compounds is a benzene ring. If this is the common core then unity of invention is lacking because benzene is well known in the art and thus no special technical feature as defined by PCT Rule 13.2 linking all the compounds is present.

Moreover, a common core must represent a substantial portion of the claimed compounds. In this instance the presence of the heterocyclic rings of the Q moiety represent elements contributing at least as much as the putative benzene core to the structure of the compounds. Indeed, a consideration of the myriad other possible moieties embraced by X, W and Z suggests that the benzene ring does not represent a substantial portion of the compound.