Lecture 11: Characterisation of States and Limiting Distributions

Concepts checklist

At the end of this lecture, you should be able to:

- Characterise states of a CTMC in terms of communicating classes, irreducibility, and recurrence / transience;
- Understand the relationship between these characteristics and equilibrium probabilities; and,
- State a theorem regarding the existence and uniqueness of a limiting distribution for irreducible, finite-state CTMCs.

Summary of three examples of equilibrium distributions

- In Example 6. Reliability (Pure Death), we have N equilibrium probabilities equal to 0, and one equilibrium probability equal to 1.
- In Example 4. Reliability (Birth and Death), we have N+1 equilibrium probabilities, all of which are greater than 0.
 - Both reliability models are finite state space continuous-time Markov chain.
- In Example 3. Single-server queue, we either have
 - all positive equilibrium probabilities if $\lambda < \mu$, or
 - no solution to the equilibrium equations which sums to 1, otherwise.
 - The single server queue is an infinite state space continuous-time Markov chain.

Question: What characteristics of a CTMC lead to these different types of behaviour?

Characterisation of States

Definition 8. For $i, j \in \mathcal{S}$, state j is said to be accessible from state i if there is some path of transitions via which the Markov chain can move from state i to state j. In other words, there exists a sequence of states $\{i = i_0, i_1, i_2, \ldots, i_n = j\}$ such that

$$q_{i_0,i_1}q_{i_1,i_2}\dots q_{i_{n-1},i_n}>0.$$

Definition 9. States i and j are said to communicate (and we write $i \leftrightarrow j$) if

- 1. j = i, or
- 2. j is accessible from i and i is accessible from j.

Proposition 1. The relation \iff , i.e., communication, is an equivalence relation.

Proof. We need to show that \iff is Reflexive, Symmetric and Transitive.

- (i) Reflexive means that $i \leftrightarrow i$. This follows directly from the definition.
- (ii) Symmetric means that if $i \iff j$ then $j \iff i$. This also follows directly from the definition.
- (iii) Transitive means that if $i \longleftrightarrow k$ and $k \longleftrightarrow j$ then we have $i \longleftrightarrow j$. This follows because if k is accessible from i and j is accessible from k, then there exists a path from i to j (via k). This implies that j is accessible from i. Similarly, if k is accessible from j and i from k, then i is accessible from j. Hence, $i \longleftrightarrow j$.

Corollary 1. The state space S of a continuous-time Markov chain can be partitioned into communicating classes S_1, S_2, \ldots such that $i, j \in S_k$ if and only if $i \iff j$.

Example 3. M/M/1 Queue

Here, all states are accessible from every other state. Thus, there is a single communicating class $S = \{0, 1, 2, ...\}$.

Example 6. Linear pure-death process

Recall, in this example we have N individuals, each subject dying after an exponentially distributed amount of time with rate μ . Here, state n-1 is accessible from state n, but state n is not accessible from n-1. Therefore, states n and n-1 do not communicate. Furthermore, each state is in its own communicating class,

$$\Rightarrow \mathcal{S} = \bigcup_{i=0}^{N} \mathcal{S}_i$$
, where $\mathcal{S}_i = \{i\}$.

Example 4. N-machine reliability (Birth and Death)

Each state is accessible from every other state – failure, and repair! Thus, there is a single communicating class, which is the whole state space $S = \{0, 1, ..., N\}$.

Let's introduce some further terminology, to label common communicating class structures, and also some properties possessed by states in communicating classes.

Definition 10. A continuous-time Markov chain is said to be **irreducible** if it has a single communicating class, and to be **reducible** otherwise.

Definition 11. A state is said to be **recurrent** if the probability that the continuous-time Markov chain returns to that state after it has left is 1. The state is **transient** otherwise.

Definition 12. A state that is recurrent is said to be **positive recurrent** if the mean return time is finite (or it is an absorbing state). Otherwise, it is called **null recurrent**.

Within a communicating class, states are either all recurrent or all transient. Recurrence or transience is a property of communicating classes; hence in the irreducible case, recurrence or transience is a property of the CTMC itself.

The classification of states and hence communicating classes depends on the probability that a continuous-time Markov chain returns to a state after it has left it.

Theorem 6. Consider a communicating class C and let $i \in C$. If there exists $j \notin C$ such that j is accessible from i, then C is transient.

Proof. Note that state i cannot be accessible from j, because then j would be in C. Therefore, the probability of returning to i having left it, must be less than 1.

Theorem 7. If C is finite and if for every $i \in C$ there exists no $j \notin C$ that is accessible from state i, then C is recurrent.

Note, Theorem 7 does not extend to infinite communicating classes. For example, the single server queue with $\lambda > \mu$ is transient, and yet it has a single communicating class.

Now, returning to linking this characterisation of states and equilibrium distributions. We have

Theorem 8. If j is in a transient communicating class C, then there exists no solution $(\pi_i)_{i \in S}$ with $\sum_i \pi_i = 1$ and $\pi_j > 0$.

This theorem shows that equilibrium probabilities for states in the transient communicating classes are equal to zero. This can arise in one of two ways:

- 1. The solution to the equilibrium equations for π_j is zero, as in Example 6 (Pure Death), for all states j > 0.
- 2. There exists a positive solution $(\pi_i)_{i\in\mathcal{S}}$ to the equilibrium equations, but it is impossible to normalise it such that $\sum_{i\in\mathcal{S}} \pi_i = 1$, as in the single-server queue (Example 3) with $\lambda > \mu$.

Theorem 9. If j is in a recurrent communicating class C, then there exists two possibilities:

- 1. C is positive-recurrent: There exists a solution $(\pi_i)_{i\in\mathcal{S}}$ with $\sum_{i\in\mathcal{S}} \pi_i = 1$ to the equilibrium equations, in which $\pi_i > 0$.
- 2. C is null-recurrent: There exists no solution $(\pi_i)_{i\in\mathcal{S}}$ with $\sum_{i\in\mathcal{S}} \pi_i = 1$ to the equilibrium equations, in which $\pi_i > 0$.

Examples 6, 4, 3.

- 1. The communicating class $S = \{0\}$ in Example 6 is positive-recurrent, since $\pi_0 = 1$ and $\pi_i = 0$ otherwise.
- 2. The communicating class $S = \{0, 1, ..., N\}$ in Example 4 is positive-recurrent, since $\pi_i > 0$ for all $i \in \{0, 1, ..., N\}$.

- 3. The communicating class $S = \{0, 1, 2, ...\}$ in the single-server queue (Example 3)
 - with $\lambda < \mu$ is positive-recurrent,
 - with $\lambda = \mu$ is null-recurrent (will justify this later).

Finally, a theorem regarding the long-term behaviour of a certain class of CTMC.

Theorem 10. For an irreducible finite-state CTMC $(X(t), t \ge 0)$ with state space S, there exists a unique limiting probability vector, $\pi = (\pi_i)_{i \in S}$, i.e., there exists a unique probability vector π such that

$$\lim_{t \to \infty} P_{ij}(t) = \pi_j, \ \forall i, j \in S.$$

Moreover, that limiting probability vector π is the unique stationary (and equilibrium) probability vector, i.e., if

$$\Pr(X(0) = j) = \pi_j, \ \forall j \in S,$$

then

$$\Pr(X(t) = j) = \pi_j, \ \forall j \in S \ and \ t > 0.$$