Pompe oscillante ★

C2-09

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$ et $\overrightarrow{CA} = H\overrightarrow{j_0}$. De plus, R = 10 mm et H = 60 mm. Par ailleurs, on note $\overrightarrow{CB} = \lambda(t)\overrightarrow{i_2}$. De plus, on note :

- ► G_1 le centre d'inertie du solide **1** tel que $\overrightarrow{AG_1} = \frac{R}{2}\overrightarrow{i_1}$, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{R}_1}$ sa matrice d'inertie;
- ► G_2 le centre d'inertie du solide **2** tel que $\overrightarrow{CG_2} = \ell \overrightarrow{i_2}$, m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\Re_2}$ sa matrice d'inertie;
- ► G_3 le centre d'inertie du solide 3 tel que $\overrightarrow{BG_3} = -a\overrightarrow{i_2}$, m_3 sa masse et $I_{G_3}(2) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\Re_3}$ sa matrice d'inertie.

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide **2**, $F_h \overrightarrow{i_2}$ l'action du fluide sur **3** (le fluide agissant sur le solides **2** et **3**). L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice ??.

 $\label{eq:Question 1} \textbf{Question 1} \ \textbf{Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.}$

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble 1+2+3.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble 1+2+3.

Question 4 Déterminer \mathscr{C}_c (1+2+3/0).

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir .

