Week 02 - Part 3

Review: - Deriving Wes by finding the gradient an setting it - Deriving W_{ls} by (pseudo)-solving the system of linear equations y = X W.

Today: _ Deriving Wes with Geometric interpretedations
_ Regularized Least squares
_ Non-linear transformation

Recall:

Least square Solution: $W_{1s} = X^T y = (X^T X)^{-1} X^T y$

prediction by Wis: $\hat{y}_s = X \hat{y}_s = X \hat{y}_s = X \hat{y}_s$

It's like we take I and with a projection mutrix transforming it into yes.

** ** XX is a projection matrix.

This Observation leads us into geometric interpretation of least squares.

Geometric Interpretation of less Squares

Observe that $\hat{y} = X \underline{w} = \begin{bmatrix} \chi_{10} & \chi_{11} & \dots & \chi_{1d} \\ \chi_{20} & \chi_{21} & \dots & \chi_{2d} \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ \chi_{N0} & \chi_{N1} & \dots & \chi_{Nd} \end{bmatrix}$

So, y is linear Combination of ...

Thus, y is in the space of all possible linear Combinations of Columns of X The space of all possible linear Combination of Glumns of X is alled Col-span X4 Let's illustrate Gl-span(X) for N=3, d=1, and $X=\begin{bmatrix}1&0\\1&2\end{bmatrix}$.

Col-span(X) =

The best $\hat{\mathcal{G}}$ (i.e. $\hat{\mathcal{G}}_{LS}$) is the Projection of \mathcal{I} onto Col-span $\{X\}$.

That means (y-y's) must be orthogonal to any vector in Col-span f X y.

Thus, $(y-\hat{y}_b)$ is orthogonal to every column of X. Reminder: alb \Longrightarrow at b=0

Thus,
$$X^{T}(\underline{y}-\hat{y}_{ls})=0$$

Regularized Linear Regression/Lest squares	
Previously, we tried to minimize $\ \chi_{w}-y\ ^2$	
In regularized version, we minimize $\ \chi_w - y\ ^2 + \lambda \ y\ ^2$ penalty function. (against large weight) The mativation is to avoid overlitting	ОИ
The mativation is to avoid oversiting	H)
Byour data is noisy Byou do not have enough data (compared to the comple of the target function)	xit

E.g. terget: f(m) = Sin (7cx)

Note: 1) $\lambda = 0 \implies LS$ 2) How to choose 29 validation How do we Solve this Problem?

We want to min 1/X w - 2/2 + 2 /1 w/12

Observe that
$$\nabla_{\underline{w}} f(\underline{w}) = 2 \chi^{T} (\chi_{\underline{w}} - \underline{y}) + 2 \chi_{\underline{w}}$$

We want
$$\nabla_{\underline{w}} f(\underline{w}) = 0 \Rightarrow (XX + \lambda I)\underline{w} = XY$$

$$\Rightarrow \underline{w}_{RLS} = (X^TX + \lambda I)^{-1} X^TY$$

E.g. Linear decision boundaries

Won't parlow well. Then define 3,=x, and $3,=x_2$ The points are

linearly separable in Z-space.

Suppose PLA gives you $h(x) = Sign(x_1 + x_2 - 1)$. Then, we know $g(x) = Sign(x_1 + x_2 - 1)$ In general: Let $g = \Phi(x)$ be non-linear transformation ("feature transformation") Let h(g) be a linear classifier/regression function in g space $(h(g) = Sign(w^Tg))$ or $h(g) = w^Tg$

Then $g(x) = h(\Phi(x))$ is non-linear classifier in 2 space

Quadratic Regression

Define
$$3 = (3 = 1, 3 = x, 3 = x^2)$$

$$= W_0 + W_1 \chi L + W_2 \chi^2 \qquad Quadrance$$

$$, \chi_3 =$$