- 1)
- a) Calcule $\lim_{x\to 0} \frac{tgx}{x}$.
- b) Calcule $\lim_{x\to 0} (1+kx)^{\frac{1}{x}}$.
- c) Calcule $\lim_{x \to 1} \frac{\ln(x)}{x 1}$.
- d) Uma função de distribuição acumulada de uma variável aleatória X, F(x), tem a seguinte propriedade: quando a variável aleatória tende a $-\infty$ o valor da função tende a zero e quando a variável aleatória tende a ∞ o valor da função tende a 1. Verifique se a função $F(x)=1-\frac{1}{1+x}$, $x\geq 0$ é uma função de distribuição acumulada.
- 2)
- a) Seja a função $f(x) = \frac{sen(3x)}{4^x}$, calcule a derivada de f(x).
- b) Seja a função $f(x) = \frac{1}{x^2 + 1}$, calcule a derivada de f(x) .
- c) Seja a função $f(x) = \ln(sen(x))$, calcule a derivada de f(x) .
- d) Seja a função $f(x)=x^{x+1}$, calcule a derivada de f(x) .
- e) Uma função densidade de probabilidade, f(x), de uma variável aleatória X corresponde à derivada da função de distribuição acumulada, F(x), dessa variável aleatória. Sendo assim, se $F(x) = 1 \frac{1}{1+x}$, $x \ge 0$, calcule a função densidade de probabilidade X.