

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет» РТУ МИРЭА

Институт Информационных Технологий **Кафедра** Инструментального и прикладного программного обеспечения

Отчёт по практическим работам

по дисциплине «Проектирование информационных систем»

Студент группы ИКБО-04-22

<u>Егоров Л.А.</u> (Ф.И.О. студента)

Принял

<u>Ткаченко Д.И.</u> (Ф.И.О. преподавателя)

СОДЕРЖАНИЕ

BBE	ДЕНИЕ 5
1 TE	ХНИЧЕСКОЕ ЗАДАНИЕ НА АВТОМАТИЗИРОВАННУЮ СИСТЕМУ . 6
1.1 C	Общие сведения 6
1.1.1	Полное наименование АС и её условное обозначение 6
1.1.2	Номер договора
1.1.3	Наименование организаций - Заказчика и Разработчика 6
1.1.4	Перечень документов, на основании которых создается АС, кем и когда
	утверждены эти документы
1.1.5	Плановые сроки начала и окончания работы по созданию системы 7
1.1.6	Общие сведения об источниках и порядке финансирования работ 7
1.1.7	Порядок оформления и предъявления заказчику результатов работ по
	созданию системы
1.2 L	Цели и назначение создания автоматизированной системы
1.2.1	Цели создания AC
1.2.2	Назначение AC 8
1.3 X	Карактеристика объекта автоматизации
1.3.1	Основные сведения об объекте автоматизации или ссылки на документы
	содержащие такие сведения 8
1.3.2	Сведения об условиях эксплуатации объекта автоматизации и
	характеристиках окружающей среды9
1.4 T	ребования к автоматизированной системе9
1.4.1	Требования к структуре AC в целом 9
	Требования к функциям (задачам), выполняемым АС
	Требования к видам обеспечения АС
1.4.4	Общие технические требования к АС
1.5 C	Состав и содержание работ по созданию автоматизированной системы 18
	Іорядок разработки автоматизированной системы
1.7 Г	Іорядок контроля и приёмки автоматизированной системы
1.7.1	Виды, состав и методы испытаний АС и ее составных частей 19

1.7.2 Общие требования к приемке работ, порядок согласования и утверх	ждения
приемочной документации	20
1.8 Требования к составу и содержанию работ по подготовке с	бъекта
автоматизации к вводу системы в действие	21
1.8.1 Создание условий функционирования объекта автоматизации, при к	оторых
гарантируется соответствие создаваемой АС требованиям, содержа	ащимся
в ТЗ на АС	22
1.8.2 Проведение необходимых организационно-штатных мероприятий.	22
1.8.3 Порядок обучения персонала и пользователей АС	22
1.9 Требования к документированию	23
1.9.1 Перечень подлежащих разработке документов	23
1.9.2 Вид представления и количество документов	24
1.10 Источники разработки	24
2 ПРОЕКТИРОВАНИЕ ДИАГРАММЫ ПРЕЦЕДЕ	ЕНТОВ
ИНФОРМАЦИОННОЙ СИСТЕМЫ В НОТАЦИИ UML	25
2.1 Цель и задачи работы	25
2.2 Описание взаимодействий субъектов и прецедентов	25
2.3 Use-case диаграмма	26
2.4 Выводы	26
3 ФУНКЦИОНАЛЬНОЕ ПРОЕКТИРОЕ	ВАНИЕ
МОДЕЛИ ИНФОРМАЦИОННОЙ СИСТЕМЫ С ИСПОЛЬЗОВА	НИЕМ
МЕТОДОЛОГИИ SADT	27
3.1 Цель и задачи работы	27
3.2 Описание потоков диаграммы	27
3.3 Контекстная диаграмма IDEF0	28
3.4 Выводы	28
4 ПРОЕКТИРОВАНИЕ СИСТЕМЫ В НОТАЦИИ IDEF0	30
4.1 Цель и задачи работы	30
4.2 Декомпозиция контекстной диаграммы	30
4.3 Выводы	31
5 ПРОЕКТИРОВАНИЕ СИСТЕМЫ В НОТАЦИИ DFD	32

5.1 Цель и задачи работы	
5.2 Построение контекстной диаграммы	32
5.3 Выводы	34
6 ПРОЕКТИРОВАНИЕ СТРУКТУРЫ ДАННЫХ ИНО	ФОРМАЦИОННОЙ
СИСТЕМЫ И СОЗДАНИЕ ER-ДИАГРАММЫ	35
6.1 Цель и задачи работы	35
6.2 Построение ER-диаграммы	35
6.3 Выводы	36
7 СОЗДАНИЕ ДИАГРАММЫ СОСТОЯНИЙ	37
7.1 Цель и задачи работы	37
7.2 Создание диаграммы состояний для выбранного прецеде	ента 37
7.3 Выводы	38
8 РАСЧЁТ ИНФОРМАЦИОННОЙ ЭНТРОПИИ І	ПРОЕКТИРУЕМОЙ
СИСТЕМЫ	39
8.1 Цель и задачи работы	39
8.2 Описание ЭСЕ и наполнение системы	39
8.3 Расчёт математического ожидания системы	40
8.4 Расчёт дисперсии системы	40
8.5 Расчёт среднеквадратического отклонения системы	41
8.6 Расчёт энтропии системы	41
8.7 Параметры проектируемой ИС	41
8.8 Выводы	41
ЗАКЛЮЧЕНИЕ	43

ВВЕДЕНИЕ

Автоматизированная система «Электронный университет» представляет собой специализированное программное решение, разрабатываемое для автоматизации ключевых образовательных процессов, связанных с управлением учебным планом, учетом успеваемости, организацией дистанционного обучения и анализом деятельности образовательного учреждения. В условиях растущих требований к качеству образования и повышения доступности обучения, внедрение такой системы становится необходимым шагом для повышения эффективности работы университета.

Актуальность разработки системы «Электронный университет» обусловлена рядом факторов:

- Автоматизация процессов позволит значительно сократить время на составление учебных планов, назначение преподавателей и формирование отчетов;
- Ручной ввод данных часто сопровождается ошибками, которые могут привести к недовольству студентов или преподавателей.
 Система «Электронный университет» обеспечит минимизацию человеческих ошибок за счет автоматизированного учета и контроля;
- **Все данные** о студентах, преподавателях, курсах и успеваемости будут храниться в единой базе данных, что упростит доступ к информации и ее анализ;
- Система предоставит инструменты для анализа ключевых показателей деятельности университета, таких как успеваемость студентов, загрузка преподавателей, финансовые результаты и т.д.
 Это позволит руководству принимать обоснованные управленческие решения.

Реализация системы «Электронный университет» соответствует современным тенденциям цифровизации образования. Переход на цифровую основу позволит университету не только оптимизировать внутренние процессы, но и повысить конкурентоспособность на рынке образовательных услуг.

1 ТЕХНИЧЕСКОЕ ЗАДАНИЕ НА АВТОМАТИЗИРОВАННУЮ СИСТЕМУ

1.1 Общие сведения

1.1.1 Полное наименование АС и её условное обозначение

Наименование системы: Электронный Университет МИРЭА.

Условное обозначение: ЭУ МИРЭА.

1.1.2 Номер договора

Шифр темы: АИС-ЭУ

Номер контракта: №69/11-420-11-228 от 20.02.2025

1.1.3 Наименование организаций - Заказчика и Разработчика

Заказчиком системы является РТУ МИРЭА.

Адрес заказчика: Проспект Вернадского, д. 78.

Разработчиком системы является ИП «Урокер».

Адрес разработчкиа: Российская Федерация, Московская область, г.Красногорск.

1.1.4 Перечень документов, на основании которых создается АС, кем и когда утверждены эти документы

При разработке автоматизированной системы и создании проектноэксплуатационной документации Исполнитель должен руководствоваться требованиями следующих нормативных документов:

- ГОСТ 19.106-78. Единая система программной документации.
 Требования к программным документам, выполненным печатным способом;
- ГОСТ 34.602–2020 Техническое задание на создание автоматизированной системы;

- ГОСТ Р 59793-2021. Информационные технологии. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания;
- ГОСТ 34.201–2020. Информационные технологии. Комплекс стандартов на автоматизированные системы. Виды, комплектность и обозначение документов при создании автоматизированных систем;
- ГОСТ Р 59795-2021. Информационные технологии. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Требования к содержанию документов;
- СМКО МИРЭА 7.1.4/03.П.15-20. Положение о центре дистанционного обучения.

1.1.5 Плановые сроки начала и окончания работы по созданию системы

Плановый срок начала работ по созданию системы ЭУ МИРЭА – 26 февраля 2025 года.

Плановый срок окончания работ по созданию системы ЭУ МИРЭА – 25 мая 2025 года.

1.1.6 Общие сведения об источниках и порядке финансирования работ

Собственные средства разработчика, в состав которых включена стипендия, размер которой регламентирован Приказом РТУ МИРЭА №1967 «О размерах стипендий» от 03.09.2024).

1.1.7 Порядок оформления и предъявления заказчику результатов работ по созданию системы

Результаты работ передаются Заказчику в порядке, определенном контрактом в соответствии с Календарным планом работ контракта на основании Актов сдачи-приемки выполненных работ (этапа работ).

Документация ЭУ МИРЭА передается на бумажных (два экземпляра, один экземпляр после подписания Заказчиком должен быть возвращен Исполнителю)

и на машинных носителях (в двух экземплярах). Текстовые документы, передаваемые на машинных носителях, должны быть представлены в форматах PDF.

Все материалы передаются с сопроводительными документами Исполнителя.

1.2 Цели и назначение создания автоматизированной системы

1.2.1 Цели создания АС

Основными целями создания ИС являются:

- реализация электронного обучения;
- обеспечение доступа к образовательным ресурсам;
- упрощение взаимодействия между участниками (студентами, преподавателями).

1.2.2 Назначение АС

Система учебного портала дистанционного обучения предназначена для автоматизации учебных процессов.

1.3 Характеристика объекта автоматизации

1.3.1 Основные сведения об объекте автоматизации или ссылки на документы, содержащие такие сведения

Объектом автоматизации являются учебные процессы, проводимые в РТУ МИРЭА и включающие в себя:

- контроль обучения студентов;
- составление расписания;
- проведение зачётной и экзаменационной сессий, а также пересдач академических задолженностей;
- подача студентами заявлений;
- контроль посещаемости занятий.

1.3.2 Сведения об условиях эксплуатации объекта автоматизации и характеристиках окружающей среды

Условия эксплуатации комплекса технических средств Системы должны соответствовать условиям эксплуатации группы 2 ГОСТ 21552-84 «Средства вычислительной техники. Общие технические требования, приемка, методы испытаний, маркировка, упаковка, транспортировка, хранение».

Условия эксплуатации персональных компьютеров Системы соответствуют Гигиеническим требованиям к видео-дисплейным терминалам, персо- нальным электронно-вычислительным машинам и организации работы (Санитарные правила и нормы. СанПиН 2.2.2.542-96).

Исполнитель должен проверить соблюдение условий эксплуатации комплекса технических средств на этапе технического проектирования.

1.4 Требования к автоматизированной системе

1.4.1 Требования к структуре АС в целом

1.4.1.1 Перечень подсистем, их назначение и основные характеристики

Система имеет несколько подсистем:

- 1. Сервис авторизации.
- 2. Подсистема «Личный кабинет», состоящая из двух подсистем:
- подсистема «Личный кабинет студента» (ЛКС);
- подсистема «Личный кабинет преподавателя» (ЛКП).
- 3. Подсистема «Система дистанционного обучения» (СДО).
- 4. Подсистема «Расписание».
- 5. Подсистема «Электронный журнал».
- 6. Подсистема «Техническая поддержка».
- 7. Подсистема «Электронная почта».

1.4.1.2 Требования к способам и средствам обеспечения информационного взаимодействия компонентов АС

Взаимодействие между компонентами должно осуществляться посредством локальной сети и сети Интернет. Также взаимодействие может осуществляться через обращение компонентов к БД.

1.4.1.3 Требования к характеристикам взаимосвязей создаваемой АС со смежными АС, требования к интероперабельности, требования к ее совместимости, в том числе указания о способах обмена информацией

Взаимосвязь осуществляется посредством сети Интернет.

Виртуальный информационно-коммуникационный ассистент ИИТ РТУ МИРЭА должен иметь доступ к АРІ подсистемы «Расписание».

Для подсистемы «Электронная почта» должна быть реализована интеграция с распространёнными электронными почтовыми службами (Gmail, Yandex, Mail).

Для СДО должна быть реализована интеграция с сервисом Moodle для проведения тестов на платформе.

1.4.1.4 Требования к режимам функционирования АС

Система должна функционировать в режиме круглосуточной работы с допустимыми перерывами на техническое обслуживание. Для гостевого режима доступна только СДО в режиме просмотра курсов.

1.4.1.5 Требования по диагностированию АС

Требования по диагностированию АС не предъявляются.

1.4.1.6 Перспективы развития, модернизации АС

Требования по перспективам развития и модернизации AC не предъявляются.

1.4.2 Требования к функциям (задачам), выполняемым АС

В таблице 1.1 представлены требования к функциям и их задачам, выполняемым системой.

Таблица 1.1 — Требования к функциям, выполняемым системой

Функция	Задачи
Авторизация и аутентификация	Регистрация пользователей
	Вход в систему с использованием логина и пароля
	Восстановление пароля
Управление ЛКС	Просмотр личной информации
	Отслеживание успеваемости
	Доступ к электронным материалам курсов
	Взаимодействие с преподавателями через внутреннюю почту или форум
Управление ЛКП	Просмотр и редактирование личной информации
	Управление курсами и материалами
	Взаимодействие со студентами через внутреннюю почту или форум
Управление курсами	Добавление нового курса
	Настройка доступа к курсу для студентов и преподавателей
	Редактирование содержимого курса
	Синхронизация между результатом прохождения курса и оценкой за дисциплину
Управление расписанием	Просмотр расписания с возможностью выбора учебной группы, аудитории или преподавателя
	Формирование расписания с учётом занятости аудиторного фонда
	Редактирование расписания для преподавателей и администраторов
Управление электронным журналом	Отметка посещения пары студентом
	Выгрузка информации о посещаемости
Техническая поддержка	Подача заявок на техническую поддержку
	Решение технических проблем и вопросов пользователей
Электронная почта	Отправка и получение электронных писем между пользователями системы
	Интеграция с внутренними системами для автоматических уведомлений
	Настройка фильтров и правил для сортировки писем

1.4.2.1 Функциональная структура системы

На Рисунке 1.1 представлена диаграмма функциональной структуры системы ЭУ МИРЭА.

Рисунок 1.1 — Диаграмма функциональной структуры системы

1.4.3 Требования к видам обеспечения АС

1.4.3.1 Требования к математическому обеспечению системы

Математическое обеспечение системы должно обеспечивать реализацию перечисленных в данном ТЗ функций, а также выполнение операций

конфигурирования, программирования, управления базами данных и документирования. Алгоритмы должны быть разработаны с учетом возможности получения некорректной входной информации и предусматривать соответствующую реакцию на такие события.

Для подсистемы «Расписание» требуется разработать алгоритм (группу алгоритмов), предназначенный для автоматического формирования расписания с соблюдением следующих требований:

- в расписание каждой группы должны быть включены все дисциплины, включённые в учебный план на текущий семестр, с соблюдением необходимого количества часов на лекционные и практические занятия;
- недопустимо проводить разные занятия в одной аудитории в одно и то же время;
- недопустимо проводить лекционные занятия в аудиториях, не предназначенных для таких занятий;
- недопустимо проведение смежных для одной группы занятий в разных корпусах;
- в процессе разработки эти требования могут дополняться.

1.4.3.2 Требования к информационному обеспечению системы

Состав, структура и способы организации данных в системе должны быть определены на этапе технического проектирования.

Данные, используемые системой, должны храниться в реляционной СУБД. Структура базы данных определяется с учетом особенностей внутренней модели системы принятия решений.

Информационный обмен между серверной и клиентской частями системы должен осуществляться по протоколу HTTPS, поскольку для системы не требуются обновления в реальном времени, но требуется безопасность соединения и совместимость со старыми браузерами.

Разработка клиентской части системы должна производиться с использованием языка JavaScript и библиотеки React.JS версии 18.2. Разработка

серверной части системы должна производиться с использованием языка Python и фреймворка Django версии не ниже 5.0.

Для подсистемы «Расписание» необходимо создание API, который будет использоваться внешними и смежными системами.

1.4.3.3 Требования к лингвистическому обеспечению системы

ЭУ МИРЭА должен быть реализован на русском, английском и китайском языках. Для данных языков должна быть предусмотрена система переключения через настройки пользователя, также должна поддерживаться система вводавывода.

1.4.3.4 Требования к программному обеспечению системы

Программное обеспечение клиентской части должно удовлетворять следующим требованиям:

- веб-браузер: Microsoft Edge 95 и выше, или Firefox 93 и выше, или
 Google Chrome 95 и выше, или Яндекс Браузер 21.11 и выше;
- включенная поддержка JavaScript и cookies.

1.4.3.5 Требования к техническому обеспечению системы

Платформа, на которой будет развернута серверная часть системы, должна удовлетворять следующим минимальным требованиям:

- не менее 64 GB оперативной памяти;
- не менее 10 ТВ свободного места на жестком диске;
- OC на базе Linux или OC Windows;
- поддерживаемый протокол передачи данных HTTPS, скорость передачи данных 1 Гбит/с;
- процессор с тактовой частотой не менее 4.6 GHz.

1.4.3.6 Требования к метрологическому обеспечению системы

Требования к метрологическому обеспечению не предъявляются.

1.4.3.7 Требования к организационному обеспечению системы

Требования к организационному обеспечению не предъявляются.

1.4.3.8 Требования к методическому обеспечению системы

Необходимо разработать несколько типов руководств:

- руководство пользователя для администраторов ресурса;
- руководство для студентов;
- руководство для преподавателей.

1.4.4 Общие технические требования к АС

1.4.4.1 Требования к численности и квалификации персонала и пользователей AC

Для поддержания сайта и эксплуатации веб-интерфейса системы управления сайтом от персонала не должно требоваться специальных технических навыков, знания технологий или программных продуктов, за исключением общих навыков работы с персональным компьютером и стандартным веб-браузером (например, Microsoft Edge 95 и выше или выше).

Режим работы других пользователей не ограничен.

1.4.4.2 Требования к показателям назначения

Доработанные и разработанные подсистемы должны обеспечивать следующие показатели назначения:

- 1. Коэффициент вовлечённости студентов не менее 85%.
- 2. Коэффициент достоверности информации не менее 92%.
- 3. Должна обеспечиваться доступность для пользователей с ограниченными возможностями.
- 4. Среднее время обучения основной функциональности системы должно составлять не более 30 минут.
- 5. Не менее 99% времени работы системы должно быть без сбоев.
- 6. На загрузку основных страниц должно уходить не более 2 секунд.

Требования к аппаратной части и масштабированию для обеспечения перечисленных показателей должны быть определены на этапе технического проектирования.

1.4.4.3 Требования к надежности

Программное обеспечение не должно выходить из строя более чем на 1 неделю.

Для устойчивости к потере данных необходимо регулярно производить выгрузку хранимой информации.

Уровень надежности должен достигаться согласованным применением организационных, организационно-технических мероприятий и программно-аппаратных средств.

Надежность должна обеспечиваться за счет:

- применения технических средств, системного и базового программного обеспечения, соответствующих классу решаемых задач;
- соблюдения правил эксплуатации и технического обслуживания программно-аппаратных средств предварительного обучения пользователей.

1.4.4.4 Требования по безопасности

Безопасность данных пользователей должна обеспечиваться шифрованием, а также обеспечением устойчивости программно-технических средств к возможным кибератакам.

1.4.4.5 Требования к эргономике и технической эстетике

Взаимодействие пользователей с прикладным программным обеспечением, входящим в состав системы должно осуществляться посредством визуального графического интерфейса (GUI). Интерфейс системы должен быть понятным и удобным, не должен быть перегружен графическими элементами и должен обеспечивать быстрое отображение экранных форм.

1.4.4.6 Требования к транспортабельности для подвижных АС

Требования к транспортабельности не предъявляются.

1.4.4.7 Требования к эксплуатации, техническому обслуживанию, ремонту и хранению компонентов AC

Техническим обслуживанием, ремонтом и хранением сервера AC занимаются сетевые инженеры-техники, специалисты по серверным и сетевым технологиям, а также мастера по ремонту компьютерного и другого технического оборудования.

1.4.4.8 Требования к защите информации от несанкционированного доступа

При работе с системой необходимо, чтобы данные могли быть восстановлены в случае потери, информация компании и пользователей была защищена от доступа или модификации несанкционированными лицами.

1.4.4.9 Требования по сохранности информации при авариях

Серверное программное обеспечение системы должно восстанавливать свое функционирование при перезапуске аппаратных средств. Для обеспечения сохранности данных требуется предусмотреть резервное копирование.

1.4.4.10 Требования к защите от влияния внешних воздействий

Требование к защите от влияния внешних воздействий не предъявляются.

1.4.4.11 Требования к патентной чистоте и патентоспособности

Требования к патентной чистоте не предъявляются.

1.4.4.12 Требования по стандартизации и унификации

Исходный код должен разрабатываться в соответствии со стандартами W3C (HTML 5). В качестве формата для данных должен использоваться JSON.

Документация должна соответствовать стандартам, указанным в Разделе 1.9.

Разработка системы должна осуществляться с использованием стандартных методологий функционального моделирования - группы технологий IDEF, DFD.

Для работы с базами данных должен использоваться язык запросов SQL, закреплённый в стандарте ISO/IEC 9075:2011.

1.4.4.13 Дополнительные требования

Дополнительные требования не предъявляются.

1.5 Состав и содержание работ по созданию автоматизированной системы

Разработка системы предполагается по укрупнённому плану, приведённому в Таблице 1.2.

Таблица 1.2 — Календарный план работ по созданию АС ЭУ МИРЭА

Этапы работ	Содержание работ	Сроки
1. Исследование и обоснование создания АС	1.1. Обследование (сбор и анализ данных) автоматизированного объекта, включая сбор сведений о зарубежных и отечественных аналогах	16.02.2025-23.02.2025
2. Составление технического задания	2.1. Разработка функциональных и нефункциональных требований к системе	24.02.2025-28.02.2025
3. Эскизное проектирование	3.1. Разработка предварительных решений по выбранному варианту АС и отдельным видам обеспечения	01.03.2025-09.03.2025
4. Техническое проектирование	4.1. Разработка диаграмм	10.03.2025-17.03.2025
	4.2. Разработка макетов интерфейса	18.03.2025-31.03.2025
5. Разработка программной части	5.1. Разработка подсистемы СДО МИРЭА	01.04.2025-25.04.2025
	5.2. Разработка подсистемы «Электронная почта»	
	5.3. Разработка подсистемы «Личный кабинет»	
	5.4. Разработка подсистемы «Электронный журнал»	
	5.5. Разработка сервиса авторизации	

Продолжение Таблицы 1.2

	5.6. Разработка подсистемы «Расписание»	
	5.7. Разработка подсистемы «Техническая поддержка»	
6. Предварительные комплексные испытания	6.1. Проверка работоспособности системы в условиях, приближенных к реальным	26.04.2025-03.05.2025
7. Опытная эксплуатация	7.1. Эксплуатация с привлечением небольшого количества участников	04.05.2025-10.05.2025
	7.2. Устранение замечаний, выявленных при эксплуатации АС	11.05.2025-15.05.2025
8. Ввод в промышленную эксплуатацию	8.1. Приемка AC в промышленную эксплуатацию (внедрение AC)	16.05.2025-25.05.2025

1.6 Порядок разработки автоматизированной системы

Разработка осуществляется в соответствии с календарным планом работ по созданию АС ЭУ МИРЭА, указанном в Таблице 1.2.

1.7 Порядок контроля и приёмки автоматизированной системы

1.7.1 Виды, состав и методы испытаний АС и ее составных частей

Система подвергается испытаниям следующих видов:

- 1. Предварительные испытания.
- 2. Опытная эксплуатация.
- 3. Приемочные испытания.

Состав, объем и методы предварительных испытаний системы определяются документом «Программа и методика испытаний».

Состав, объем и методы опытной эксплуатации системы определяются документом «Программа опытной эксплуатации».

Состав, объем и методы приемочных испытаний системы определяются документом «Программа и методика испытаний».

1.7.2 Общие требования к приемке работ, порядок согласования и утверждения приемочной документации

В Таблице 1.3 приведены требования к приёмке работ, порядок согласования и утверждения приёмочной документации.

Таблица 1.3 — Требования к приёмке работ

Стадия испы- таний	Участники ис- пытаний	Место и срок проведения	Порядок согласования доку-	Статус прие- мочной комис-
lannn	IIBITAIINN	проведения	ментации	сии
Предварительные испытания	Организации Заказчика и Раз- работчика	На территории Заказчика, с 26.04.2025 по 03.05.2025	Проведение предварительных испытаний. Фиксирование выявленных неполадок в Протоколе испытаний. Устранение выявленных неполадок. Проверка устранения выявленных неполадок. Принятие решения о возможности передачи АИС в опытную эксплуатацию. Составление и подписание Акта приёмки АИС в опытную эксплуатацию. В опытную эксплуатацию.	Экспертная группа
Опытная эксплуатация	Организации Заказчика и Раз- работчика	На территории Заказчика, с 04.05.2025 по 15.05.2025	Проведение опытной эксплуатации. Фиксирование выявленных неполадок в Протоколе испытаний. Устранение выявленных неполадок. Проверка устранения выявленных неполадок. Принятие решения о готовно-	Группа тестирования

Продолжение Таблицы 1.3

прооолжение таоли	іцы 1.3				
			сти АИС к при- емочным испы- таниям. Состав- ление и подпи- сание Акта о за- вершении опыт- ной эксплуата- ции АИС.		
Приемочные испытания	Организации Заказчика и Разработчика	На территории Заказчика, с 16.05.2025 по 21.05.2025	Проведение приемочных испытаний. Фиксирование выявленных неполадок в Протоколе испытаний. Устранение выявленных неполадок. Проверка устранения выявленных неполадок. Принятие решения о возможности передачи АИС в промышленную эксплуатацию. Составление и подписание Акта о завершении приемочных испытаний и передаче АИС в промышленную эксплуатацию. Оформление Акта завершения работ.	Приемочная миссия	КО-

1.8 Требования к составу и содержанию работ по подготовке объекта автоматизации к вводу системы в действие

Для обеспечения готовности объекта к вводу системы в действие провести комплекс мероприятий:

- приобрести компоненты программного обеспечения, заключить договора на их лицензионное использование;
- завершить работы по установке технических средств;

- провести диагностику устойчивости сети к нагрузкам;
- провести обучение сотрудников.

1.8.1 Создание условий функционирования объекта автоматизации, при которых гарантируется соответствие создаваемой АС требованиям, содержащимся в ТЗ на АС

Для функционирования создаваемой системы требуется платформа, технические характеристики которой соответствуют предъявленным.

1.8.2 Проведение необходимых организационно-штатных мероприятий

В рамках подготовки к вводу ИАС ЭУ МИРЭА в эксплуатацию необходимо обеспечить выполнение следующих условий:

- обеспечение серверных помещений необходимыми условиями эксплуатации согласно п. 3.2 ТЗ;
- установка и настройка серверного оборудования, рабочих станций и сетевых устройств в соответствии с техническими требованиями;
- устранение выявленных несоответствий, включая доработку аппаратного и программного обеспечения;
- разграничение прав доступа сотрудников согласно их ролям;;
- настройка систем шифрования данных и двухфакторной аутентификации для администраторов;
- успешное тестирование всех модулей системы;
- проведение пилотной эксплуатации на ограниченном участке объекта автоматизации.

1.8.3 Порядок обучения персонала и пользователей АС

Для обеспечения эффективной работы ИАС ЭУ МИРЭА необходимо выполнить следующие организационные мероприятия:

- назначение ответственных лиц за эксплуатацию системы, включая системного администратора и специалистов по техническому обслуживанию;
- определение ролей и обязанностей сотрудников сервисного центра в рамках работы с системой;
- создание инструкций по использованию системы для каждой роли;
- разработка регламентов резервного копирования данных и восстановления системы после сбоев;
- организация учебных классов или рабочих мест с доступом к тестовой версии системы;
- обеспечение учебных материалов (руководства пользователя, видеокурсы).

1.9 Требования к документированию

Проектная документация должна быть разработана в соответствии с ГОСТ 34.201-2020 и ГОСТ 7.32-2017.

1.9.1 Перечень подлежащих разработке документов

Предоставить документы:

- 1. Схема функциональной структуры автоматизируемой деятельности.
- 2. Описание технологического процесса обработки данных.
- 3. Описание информационного обеспечения.
- 4. Описание программного обеспечения АС.
- 5. Схема логической структуры БД.
- 6. Руководство пользователя.
- 7. Описание контрольного примера (по ГОСТ 24.102).
- 8. Протокол испытаний (по ГОСТ 24.102).

1.9.2 Вид представления и количество документов

Отчетные материалы должны включать в себя текстовые материалы (представленные в виде бумажной копии и на цифровом носителе в формате MS Word) и графические материалы.

1.10 Источники разработки

В данном разделе перечислены документы и информационные материалы, которые использовались при разработке технического задания (ТЗ) на создание информационно-аналитической системы сервисного центра (ИАС ЭУ МИРЭА) и которые должны быть применены при создании системы.

Использовалась нормативно-техническая документация в соответствии с п. 1.1.4 T3.

2 ПРОЕКТИРОВАНИЕ ДИАГРАММЫ ПРЕЦЕДЕНТОВ ИНФОРМАЦИОННОЙ СИСТЕМЫ В НОТАЦИИ UML

2.1 Цель и задачи работы

Цель работы: создать диаграмму прецедентов (use case) для одного из классов или прецедентов проектируемой информационной системы.

Задачи: изучить основные элементы и правила построения диаграммы вариантов использования, описать функциональные требования рассматриваемой системы с помощью диаграммы вариантов использования в рамках одного прецедента «Управление электронными курсами».

2.2 Описание взаимодействий субъектов и прецедентов

Описание взаимодействий субъектов и прецедентов приведено в таблице 2.1.

Таблица 2.1 — Описание взаимодействий субъектов и прецедентов

Субъект/Вариант использования	Тип связи	Субъект/Вариант использования
Студент	Ассоциация	Просмотреть материалы курса
Студент	Ассоциация	Выполнить задание
Студент	Ассоциация	Отслеживать успеваемость
Студент	Ассоциация	Авторизоваться
Преподаватель	Ассоциация	Авторизоваться
Преподаватель	Ассоциация	Проверить работу
Преподаватель	Ассоциация	Добавить материалы курса
Преподаватель	Ассоциация	Создать задание
Преподаватель	Ассоциация	Добавить дедлайн
Система отправки уведомлений	Ассоциация	Отправить уведомление о дедлайне
Администратор	Ассоциация	Авторизоваться
Администратор	Ассоциация	Создать курс
Администратор	Ассоциация	Управлять доступом к курсу
Выполнить задание	Включение	Просмотреть материалы курса
Добавить дедлайн	Включение	Создать задание
Выполнить тестовое задание	Расширение	Выполнить задание
Загрузить файлы	Расширение	Выполнить задание
Оставить комментарий к работе	Расширение	Проверить работу

Отправить уведомление о дедлайне Расширение Добавить дедлайн

2.3 Use-case диаграмма

На Рисунке 2.1 приведена построенная use-case диаграмма.

Рисунок 2.1 — Use-case диаграмма

2.4 Выводы

В ходе выполнения практической работы получены навыки построения диаграммы вариантов использования, изучены ее основные компоненты, типы связей между сущностями. Для проектируемой система построена диаграмма вариантов использования в рамках прецедента «Управление электронными курсами».

3 ФУНКЦИОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ МОДЕЛИ ИНФОРМАЦИОННОЙ СИСТЕМЫ С ИСПОЛЬЗОВАНИЕМ МЕТОДОЛОГИИ SADT

3.1 Цель и задачи работы

Цель работы: создать контекстную диаграмму в нотации IDEF0 для процесса «Управление электронными курсами».

Задачи:

- ознакомиться с принципами структурного анализа и проектирования (SADT);
- выявить ключевые функции проектируемой информационной системы;
- определить границы системы и взаимодействие с внешними объектами.

3.2 Описание потоков диаграммы

Описание потоков диаграммы представлено в таблице 3.1.

Таблица 3.1 — Описание потоков диаграммы

Название стрелки	Источник	Тип стрелки	Идентификатор стрел- ки
Данные пользователей	Граница диаграммы	Input	I1
Запросы на создание курсов	Граница диаграммы	Input	12
Запросы на редактирование курсов	Граница диаграммы	Input	I3
Запросы на удаление курсов	Граница диаграммы	Input	I4
Учебные материалы	Граница диаграммы	Input	I5
Результаты выполнения заданий	Граница диаграммы	Input	I6
Опубликованные курсы	A-0	Output	01
Отредактированные курсы	A-0	Output	O2
Удалённые курсы	A-0	Output	O3
Уведомления	A-0	Output	O4

Продолжение Таблицы 3.1

Отчёты об успеваемости студентов	A-0	Output	O5
Федеральные образовательные стандарты	Граница диаграммы	Control	C1
Внутренние регламенты университета	Граница диаграммы	Control	C2
Расписание учебного процесса	Граница диаграммы	Control	C3
Приказы и решения учебного отдела	Граница диаграммы	Control	C4
Интегрированные системы	Граница диаграммы	Mechanism	M1
Администраторы	Граница диаграммы	Mechanism	M2
Учебный персонал	Граница диаграммы	Mechanism	M3

3.3 Контекстная диаграмма IDEF0

На Рисунке 3.1 приведена построенная контекстная диаграмма.

Рисунок 3.1 — Контекстная диаграмма IDEF0

3.4 Выводы

В ходе выполнения практической работы получены навыки построения контекстной диаграммы в нотации IDEF0, изучены ее основные компоненты,

виды потоков между функциональными блоками. Для проектируемой системы построена контекстная диаграмма «Управление электронными курсами».

4 ПРОЕКТИРОВАНИЕ СИСТЕМЫ В НОТАЦИИ IDEF0

4.1 Цель и задачи работы

Цель работы: декомпозировать функциональную модель проектируемой системы в нотации IDEF0.

Задачи:

- ознакомиться с принципами структурного анализа и проектирования (SADT);
- выявить ключевые функции проектируемой информационной системы;
- определить границы системы и взаимодействие с внешними объектами;
- добавить описание функциональных блоков и потоков данных.

4.2 Декомпозиция контекстной диаграммы

На Рисунке 4.1 представлена декомпозиция контекстной диаграммы процесса «Управление электронными курсами».

Рисунок 4.1 — Декомпозицияя контекстной диаграммы

На Рисунке 4.2 представлена декомпозиция функционального блока «Управление курсом»

Рисунок 4.2 — Декомпозиция функционального блока «Управление курсом»

4.3 Выводы

В ходе выполнения практической работы получены навыки построения декомпозиции в нотации IDEF0, изучены ее основные компоненты, виды потоков между функциональными блоками. Для проектируемой системы построена декомпозиции контекстной диаграммы «Управление электронными курсами».

5 ПРОЕКТИРОВАНИЕ СИСТЕМЫ В НОТАЦИИ DFD

5.1 Цель и задачи работы

Цель работы: декомпозировать функциональную модель проектируемой системы в нотации DFD.

Задачи:

- ознакомиться с принципами структурного анализа и проектирования (SADT);
- выявить процессы проектируемой информационной системы;
- определить внешние сущности и хранилища данных;
- добавить описание потоков и процессов.

5.2 Построение контекстной диаграммы

На Рисунке 5.1 представлена контекстная диаграммы процесса «Управление электронными курсами».

Рисунок 5.1 — Контекстная диаграмма процесе «Управление электронными курсами»

На Рисунке 5.2 представлена декомпозиция контекстной диаграммы процесса «Управление электронными курсами».

Рисунок 5.2 — Декомпозиция контекстной диаграммы процесса «Управление электронными курсами»

На Рисунке 5.3 представлена декомпозиция контекстной диаграммы функционального блока «Назначение и проверка заданий».

Рисунок 5.3 — Декомпозиция функционального блока «Назначение и проверка заданий»

5.3 Выводы

В ходе выполнения практической работы получены навыки построения диаграммы в нотации DFD, изучены ее основные компоненты, виды потоков между функциональными блоками. Для проектируемой системы построена контекстная диаграмма процесса «Управление электронными курсами» и декомпозиции данной диаграммы.

6 ПРОЕКТИРОВАНИЕ СТРУКТУРЫ ДАННЫХ ИНФОРМАЦИОННОЙ СИСТЕМЫ И СОЗДАНИЕ ER-ДИАГРАММЫ

6.1 Цель и задачи работы

Цель работы: спроектировать логическую модель базы данных рассматриваемой системы.

Задачи: проанализировать предметную область, опеределить сущности, атрибуты и связи между сущностями, построить ER-диаграмму.

6.2 Построение ER-диаграммы

На Рисунке 6.1 представлена контекстная диаграммы процесса «Управление электронными курсами».

Рисунок 6.1 — ER-диаграмма базы данных

6.3 Выводы

В ходе выполнения практической работы получены навыки построения логической модели базы данных, изучены ее основные компоненты, виды связей. Для проектируемой системы построена ER-диаграмма.

7 СОЗДАНИЕ ДИАГРАММЫ СОСТОЯНИЙ

7.1 Цель и задачи работы

Цель работы: создать диаграмму состояний проектируемой информационной системы для одного из ранее разработанных прецедентов.

Задачи: изучить основные элементы и правила построения диаграммы состояний, проанализировать предметную область, определить прецедент или класс, для которого будет построена диаграмма состояний, определить элементы состояний, выявить развилки и соединения.

7.2 Создание диаграммы состояний для выбранного прецедента

Выбранный прецедент: «Добавить материалы курса». Диаграмма состояний для данного прецедента представлена на Рисунке 7.1.

Рисунок 7.1 — Диаграмма состояний для прецедента «Добавить материалы курса»

7.3 Выводы

В ходе выполнения практической работы получены навыки построения диаграммы состояний, изучены ее основные компоненты. Для проектируемой системы построена диаграмма состояний в рамках прецедента «Добавить материалы курса».

8 РАСЧЁТ ИНФОРМАЦИОННОЙ ЭНТРОПИИ ПРОЕКТИРУЕМОЙ СИСТЕМЫ

8.1 Цель и задачи работы

Цель работы: изучить методы расчета информационной энтропии проектируемой системы и применить их для анализа степени неопределенности данных в рамках проектирования информационной системы.

Задачи:

- освоить теоретические основы информационной энтропии, включая формулу Шеннона;
- провести анализ данных проектируемой системы для определения ключевых параметров, влияющих на энтропию;
- выполнить расчет энтропии системы на основе выявленных параметров;
- проинтерпретировать полученные результаты и оценить их влияние на проектирование информационной системы.

8.2 Описание ЭСЕ и наполнение системы

Элементарная семантическая единица (ЭСЕ) — неделимая единица информации, использующаяся в ИС. ЭСЕ представляет собой завершенную контекстную конструкцию, вызываемую в результате поиска по различным атрибутам или в результате тех или иных команд в виде отклика или отчета. В случае исследования системы «Электронный университет» за ЭСЕ выбрано количество долгов по изучаемым дисциплинам.

Система наполнена 100 ЭСЕ, но в рамках ограничения объёма данной работы приведены только первые десять записей в Таблице 8.1.

Таблица 8.1 — Список элементарных семантических единиц

Наименование дисциплины	Количество долгов
Проектирование баз данных	560
Математическая логика и теория алгоритмов	1940
Информатика	733

Продолжение Таблицы 8.1

Математический анализ	456
Моделирование сред и разработка приложений виртуальной и дополненной реальности	976
Проектирование информационных систем	1034
Объектно-ориентированное программирование	287
Структуры и алгоритмы обработки данных	254
Философия	156
Безопасность жизнедеятельности	1

Для оценки данных вероятностей принято решение разбить весь диапозон значений на 10 дискретных величин с шагом в 200 (Таблица 8.2).

Таблица 8.2 — Список элементарных семантических единиц

Диапозон	x	P(x)
0 — 200	78,5	0,2
200 — 400	270,5	0,2
400 — 600	508	0,2
600 — 800	733	0,1
800 — 1000	976	0,1
1000 — 1200	1034	0,1
1200 — 1400	0	0
1400 — 1600	0	0
1600 — 1800	0	0
1800 — 2000	1940	0,1

8.3 Расчёт математического ожидания системы

Расчет математического ожидания распределения долгов выполняется по Формуле 8.1.

$$M_{x_i} = \sum_{i=0}^{n} [p_i \cdot x_i]$$
 (8.1)

Рассчитанное значение математического ожидания равно 639,7 [долгов].

8.4 Расчёт дисперсии системы

Расчет дисперсии распределения долгов выполняется по Формуле 8.2.

$$D(x_i) = M(x_i^2) - M^2(x_i)$$
(8.2)

Рассчитанное значение дисперсии равно 290525,31 [долгов²].

8.5 Расчёт среднеквадратического отклонения системы

Расчет среднеквадроберского отклонения распределения долгов выполняется по Формуле 8.3.

$$\sigma_{x_i} = \sqrt{D_{x_i}} \tag{8.3}$$

Рассчитанное значение среднеквадратического отклонения равно 539 [долгов].

8.6 Расчёт энтропии системы

Энтропия системы — это сумма произведений вероятностей различных состояний системы на логарифмы этих вероятностей, взятая с обратным знаком (Формула 8.4).

$$H(x) = -\sum_{i=0}^{n} [p_i \cdot \log_a p_i]$$
 (8.4)

За основание логарифма а взято двоичное основание. Используя данные из Таблицы 8.2, получено значение энтропии, равное 2,722 [бит].

8.7 Параметры проектируемой ИС

В Таблице представлены результаты расчётов основных характеристик проектируемой ИС:

Таблица 8.3 — Параметры проектируемой ИС

Параметр	Значение	
Математическое ожидание	639,7 [долгов]	
Дисперсия	$290525,31$ [долгов 2]	
Среднеквадратическое отклонение	539 [долгов]	
Энтропия	2,722 [бит]	

8.8 Выводы

В рамках практической работы изучена теория информационной энтропии как меры неопределенности данных. На основе анализа параметров проектируемой системы проведены расчеты по формуле Шеннона. Результаты расчетов позволили количественно оценить уровень хаотичности информации

в системе и выявить области, требующие оптимизации. Полученные данные могут быть использованы для улучшения структуры базы данных, минимизации избыточности информации и повышения эффективности обработки данных в проектируемой информационной системе.

ЗАКЛЮЧЕНИЕ

В ходе выполнения работы получены навыки написания технического автоматизированных разработку информационных задания на систем, построения диаграмм в нотации UML (Use-case и диаграмма состояний), в методологии SADT (IDEF0 и DFD), а также ER-диаграмм. Все перечисленные информационной диаграммы построены ДЛЯ системы «Электронный университет» как целого или для отдельных прецедентов.