- 1. Poišči vse kompleksne rešitve spodnjih (ne)enačb, tj. opiši ali skiciraj množico rešitev v \mathbb{C} .
 - (a) $2\bar{z} z^2 = 0$,
 - (b) $\operatorname{Im}\left(\frac{1}{z}\right) = 1$,
 - (c) $\text{Re } z + \text{Im } z^2 = 2$,
 - (d) |z-3+2i|=4,
 - (e) |z+i| < |z-1|,
 - (f) |z-1|+|z+1|=4.
- 2. Poišči vsaj eno enačbo, ki ima za rešitev števila 2 + i, 2 i, -1 + 2i ter -1 2i in nima drugih rešitev.
- 3. Kaj naj velja za število $a \in \mathbb{R}$, da bo imela enačba $z^2 + 2z 3 + a = 0$ vsaj eno kompleksno rešitev, ki ni realna?
- 4. Prevedi v polarno obliko, nato pa z uporabo de Moivrove formule izračunaj
 - (a) $\left(-\frac{1}{2} + \frac{i}{2}\right)^8$,
 - (b) $(1 + i\sqrt{3})^{20}$,
 - (c) $(1-i)^{20}$
 - (d) $\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$.
- 5. Naj bo $v=1+i\sqrt{3}$ in w=1-i. V kompleksni ravnini $\mathbb C$ opazujemo kvadrat z oglišči 1, 3, 3+2i in 1+2i.
 - (a) V kaj se ta kvadrat preslika s transformacijo $z \mapsto vz + w$?
 - (b) V kaj se kvadrat preslika s transformacijo $z \mapsto v\overline{z} + w$ oz. $z \mapsto \overline{vz + w}$?
 - (c) Poišči kompleksno število t, da bo transformacija $z\mapsto tz$ zasukala kvadrat za kot $\pi/4$ okrog izhodišča $0\in\mathbb{C}$.
 - (d) Poišči transformacijo $z\mapsto tz+u$, s katero se bo kvadrat zasukal za kot $\pi/4$ okrog svojega težišča.
- 6. Reši enačbo $z^4+4=0$, nato pa razstavi polinom z^4+4 na dva kvadratna faktorja z realnimi koeficienti.
- 7. Poišči naslednja števila:
 - (a) $\sqrt{1+i}$,
 - (b) $\sqrt[3]{-27+27i}$,
 - (c) $\sqrt[5]{-32i}$,
 - (d) $\sqrt[3]{-1 + i\sqrt{3}}$.