Topics in Computer Graphics Chap 17: Bézier Triangles fall, 2011

University of Seoul School of Computer Science Minho Kim

Table of contents

The de Casteljau Algorithm

Triangular Blossoms

Bernstein Polynomials

Derivatives

Subdivision

Differentiability

Degree Elevation

Nonparametric Patches

The Multivariate Case

The de Casteljau Algorithm

Triangular Blossoms

Bernstein Polynomials

Derivatives

Subdivision

Differentiability

Degree Elevation

Nonparametric Patches

The Multivariate Case

de Casteljau Algorithm with Barycentric Coordinates: 1D Case

For n=3

With barycentric coordinates $\mathbf{u} := (u_1, u_2) \in \mathbb{Z}_+^2$ (multi-index) where $|\mathbf{u}| := u_1 + u_2 = 1$,

$$\mathbf{b_i}(u_1, u_2) = u_1 \mathbf{b_{i+e_1}}(u_1, u_2) + u_2 \mathbf{b_{i+e_2}}(u_1, u_2)$$

- \mathbf{e}_i is the *j*-th unit vector: $\mathbf{e}_1 = (1,0)$ and $\mathbf{e}_2 = (0,1)$
- Univariate de Casteljau algorithm
- At k-th step, the subscript vector sums up to n k.
- Domain is a line segment.
- $\mathbf{b}(t) = \mathbf{b}_{00}(1-t,t)$

de Casteljau Algorithm with Barycentric Coordinates: 2D Case

For n=3

With barycentric coordinates $\mathbf{u} := (u_1, u_2, u_3) \in \mathbb{Z}_+^3$ where $|\mathbf{u}| := u_1 + u_2 + u_3 = 1$,

$$\mathbf{b_i}(\mathbf{u}) = u_1 \mathbf{b_{i+e_1}}(\mathbf{u}) + u_2 \mathbf{b_{i+e_2}}(\mathbf{u}) + u_3 \mathbf{b_{i+e_3}}(\mathbf{u})$$

- $\mathbf{e}_1 = (1,0,0), \, \mathbf{e}_2 = (0,1,0) \text{ and } \mathbf{e}_3 = (0,0,1)$
- Bivariate de Casteljau algorithm
- At k-th step, the subscript vector sums up to n k.
- # of control points = $\frac{1}{2}(n+1)(n+2)$
- Domain is a triangle. → A triangular patch (Bézier triangle) is generated.
- $\mathbf{b}(\mathbf{u}) = \mathbf{b}_{00}(\mathbf{u})$

Bézier Triangle: Properties

- Affine invariance
- Invariance under affine parameter transaformations
 The barycentric coordinates do not change when a triangle is transformed.
- Convex hull property
- Boundary curves

$$\mathbf{b_i}(u_1, 0, u_3) = u_1 \mathbf{b_{i+e_1}} + u_3 \mathbf{b_{i+e_3}}, \quad u_1 + u_3 = 1$$

ightarrow Univariate de Casteljau algorithm ightarrow A Bézier curve of degree n

The de Casteljau Algorithm

Triangular Blossoms

Bernstein Polynomials

Derivatives

Subdivision

Differentiability

Degree Elevation

Nonparametric Patches

The Multivariate Case

Blossoms with Barycentric Coordinates: 1D Case

- Let $\mathbf{x}(j)$ be the j-th element of vector \mathbf{x} .
- ▶ Different arguments in each level of de Casteljau algorithm: For n = 3, with univariate barycentric coordinates \mathbf{u}_j $(\mathbf{u}_i(1) + \mathbf{u}_i(2) = 1)$,

```
\begin{array}{lll} \mathbf{b}_{30} \\ \mathbf{b}_{21} & \mathbf{b}_{20}[\mathbf{u}_1] \\ \mathbf{b}_{12} & \mathbf{b}_{11}[\mathbf{u}_1] & \mathbf{b}_{10}[\mathbf{u}_1, \mathbf{u}_2] \\ \mathbf{b}_{03} & \mathbf{b}_{02}[\mathbf{u}_1] & \mathbf{b}_{01}[\mathbf{u}_1, \mathbf{u}_2] & \mathbf{b}_{00}[\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3] \end{array}
```

In general,

$$\begin{aligned} \mathbf{b_i}[\mathbf{u}_1, \dots, \mathbf{u}_{n-|\mathbf{i}|}] = & \mathbf{u}_{n-|\mathbf{i}|}(1)\mathbf{b_{i+e_1}}[\mathbf{u}_1, \dots, \mathbf{u}_{n-|\mathbf{i}|-1}] \\ &+ \mathbf{u}_{n-|\mathbf{i}|}(2)\mathbf{b_{i+e_2}}[\mathbf{u}_1, \dots, \mathbf{u}_{n-|\mathbf{i}|-1}] \end{aligned}$$

ullet The blossom is $\mathbf{b}[\mathbf{u}_1,\ldots,\mathbf{u}_n]=\mathbf{b}_{00}[\mathbf{u}_1,\ldots,\mathbf{u}_n]$

Blossoms with Barycentric Coordinates: 1D Case (cont'd)

The Bézier curve is obtained by

$$\mathbf{b}(\mathbf{u}) = \mathbf{b}[\mathbf{u}^{< n >}]$$

de Casteljau algorithm with blossoms

$$\begin{array}{lll} b[e_1,e_1,e_1] \\ b[e_1,e_1,e_2] & b[e_1,e_1,u] \\ b[e_1,e_2,e_2] & b[e_1,e_2,u] & b[e_1,u,u] \\ b[e_2,e_2,e_2] & b[e_2,e_2,u] & b[e_2,u,u] & b[u,u,u] \end{array}$$

Control points are obtained by

$$\mathbf{b_i} = \mathbf{b}[\mathbf{e}_1^{\langle \mathbf{i}(1) \rangle}, \mathbf{e}_2^{\langle \mathbf{i}(2) \rangle}]$$

where $\mathbf{i} \in \mathbb{Z}_+^2$ and $|\mathbf{i}| = \mathbf{i}(1) + \mathbf{i}(2) = n$. ex) For n = 3, control points are $\mathbf{b}_{30}, \mathbf{b}_{21}, \mathbf{b}_{12}, \mathbf{b}_{03}$.

Blossoms with Barycentric Coordinates: 1D Case (cont'd)

• Control points for general interval $[{\bf a},{\bf b}]$ (a and b are barycentric coordinates and ${\bf i}\in \mathbb{Z}_+^2$)

$$\mathbf{c_i} = \mathbf{b}[\mathbf{a}^{\mathbf{i}(1)}, \mathbf{b}^{\mathbf{i}(2)}] \quad (|\mathbf{i}| = n)$$

Lebniz formula

$$\mathbf{b}[(\alpha_1\mathbf{u}_1 + \alpha_2\mathbf{u}_2)^{< n>}] = \sum_{|\mathbf{i}|=n} \binom{n}{\mathbf{i}} \alpha_1^{\mathbf{i}(1)} \alpha_2^{\mathbf{i}(2)} \mathbf{b}[\mathbf{u}_1^{<\mathbf{i}(1)>}, \mathbf{u}_2^{<\mathbf{i}(2)>}]$$

- ightharpoonup u₁ and u₂ are barycentric coordinates
- $\alpha_1 + \alpha_2 = 1$
- ${}^{\blacktriangleright} \binom{n}{\mathbf{i}} := \frac{n!}{i_1!i_2!}$

Blossoms with Barycentric Coordinates: 2D Case

Control points are

$$\mathbf{b_i} = \mathbf{b}[\mathbf{e}_1^{\langle \mathbf{i}(1) \rangle}, \mathbf{e}_2^{\langle \mathbf{i}(2) \rangle}, \mathbf{e}_3^{\langle \mathbf{i}(3) \rangle}], \quad |\mathbf{i}| = n$$

New control points for general domain f₁, f₂, f₃ (in barycentric coordinates):

$$\mathbf{c_i} = \mathbf{b}[\mathbf{f}_1^{<\mathbf{i}(1)>}, \mathbf{f}_2^{<\mathbf{i}(2)>}, \mathbf{f}_3^{<\mathbf{i}(3)>}]$$

Blossoms with Barycentric Coordinates: 2D Case

Lebniz formula

$$\mathbf{b}[(\alpha_1\mathbf{u}_1 + \alpha_2\mathbf{u}_2)^{< n>}] = \sum_{|\mathbf{i}|=n} \binom{n}{\mathbf{i}} \alpha_1^{\mathbf{i}(1)} \alpha_2^{\mathbf{i}(2)} \mathbf{b}[\mathbf{u}_1^{<\mathbf{i}(1)>}, \mathbf{u}_2^{<\mathbf{i}(2)>}]$$

- A line through \mathbf{u}_1 and \mathbf{u}_2 in the domain with parameter (α_1, α_2) is mapped to a curve on the Bézier triangle. (See Fig 17.3)
- What are the control points? $\left\{\mathbf{b}[\mathbf{u}_1^{<\mathbf{i}(1)>},\mathbf{u}_2^{<\mathbf{i}(2)>}]\right\}_{|\mathbf{i}|=n}$
- Lebniz formula

$$\mathbf{b}[(\alpha_1\mathbf{u}_1 + \alpha_2\mathbf{u}_2 + \alpha_3\mathbf{u}_3)^{< n>}]$$

$$= \sum_{|\mathbf{i}|=n} {n \choose \mathbf{i}} \alpha_1^{\mathbf{i}(1)} \alpha_2^{\mathbf{i}(2)} \alpha_3^{\mathbf{i}(3)} \mathbf{b}[\mathbf{u}_1^{<\mathbf{i}(1)>}, \mathbf{u}_2^{<\mathbf{i}(2)>}, \mathbf{u}_3^{<\mathbf{i}(3)>}]$$

• A triangle composed of vertices $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ with parameter $(\alpha_1, \alpha_2, \alpha_3)$ is mapped to a Bézier triangle on the Bézier triangle.

The de Casteljau Algorithm

Triangular Blossoms

Bernstein Polynomials

Derivatives

Subdivision

Differentiability

Degree Elevation

Nonparametric Patches

The Multivariate Case

Bernstein Polynomials with Barycentric Coordinates: 1D Case

For univariate case barycentric coordinates

$$B_{\mathbf{i}}^{n}(\mathbf{u}) = \binom{n}{\mathbf{i}} \mathbf{u}(1)^{\mathbf{i}(1)} \mathbf{u}(2)^{\mathbf{i}(2)}, \quad \mathbf{i} \in \mathbb{Z}_{+}^{2}, |\mathbf{i}| = n$$

Recursion

$$B_{\mathbf{i}}^{n}(\mathbf{u}) = \mathbf{u}(1)B_{\mathbf{i}-\mathbf{e}_{1}}^{n}(\mathbf{u}) + \mathbf{u}(2)B_{\mathbf{i}-\mathbf{e}_{2}}^{n}(\mathbf{u})$$

Based on the relation

$$\binom{n}{\mathbf{i}} = \binom{n-1}{\mathbf{i} - \mathbf{e}_1} + \binom{n-1}{\mathbf{i} - \mathbf{e}_2}$$

A Bézier curve is defined as

$$\mathbf{b}(\mathbf{u}) = \sum_{|\mathbf{i}|=n} \mathbf{b}_{\mathbf{i}} B_{\mathbf{i}}^{n}(\mathbf{u})$$

Bernstein Polynomials with Barycentric Coordinates: 2D Case

For univariate case barycentric coordinates

$$B_{\mathbf{i}}^{n}(\mathbf{u}) = \binom{n}{\mathbf{i}} \mathbf{u}(1)^{\mathbf{i}(1)} \mathbf{u}(2)^{\mathbf{i}(2)} \mathbf{u}(3)^{\mathbf{i}(3)}, \quad \mathbf{i} \in \mathbb{Z}_{+}^{3}, |\mathbf{i}| = n$$

Recursion

$$B_{\mathbf{i}}^{n}(\mathbf{u}) = \mathbf{u}(1)B_{\mathbf{i}-\mathbf{e}_{1}}^{n}(\mathbf{u}) + \mathbf{u}(2)B_{\mathbf{i}-\mathbf{e}_{2}}^{n}(\mathbf{u}) + \mathbf{u}(3)B_{\mathbf{i}-\mathbf{e}_{3}}^{n}(\mathbf{u})$$

Based on the relation

$$\binom{n}{\mathbf{i}} = \binom{n-1}{\mathbf{i} - \mathbf{e}_1} + \binom{n-1}{\mathbf{i} - \mathbf{e}_2} + \binom{n-1}{\mathbf{i} - \mathbf{e}_3}$$

A Bézier triangle is defined as

$$\mathbf{b}(\mathbf{u}) = \sum_{|\mathbf{i}|=n} \mathbf{b}_{\mathbf{i}} B_{\mathbf{i}}^{n}(\mathbf{u})$$

The de Casteljau Algorithm

Triangular Blossoms

Bernstein Polynomials

Derivatives

Subdivision

Differentiability

Degree Elevation

Nonparametric Patches

The Multivariate Case

The de Casteljau Algorithm

Triangular Blossoms

Bernstein Polynomials

Derivatives

Subdivision

Differentiability

Degree Elevation

Nonparametric Patches

The Multivariate Case

The de Casteljau Algorithm

Triangular Blossoms

Bernstein Polynomials

Derivatives

Subdivision

Differentiability

Degree Elevation

Nonparametric Patches

The Multivariate Case

The de Casteljau Algorithm

Triangular Blossoms

Bernstein Polynomials

Derivatives

Subdivision

Differentiability

Degree Elevation

Nonparametric Patches

The Multivariate Case

The de Casteljau Algorithm

Triangular Blossoms

Bernstein Polynomials

Derivatives

Subdivision

Differentiability

Degree Elevation

Nonparametric Patches

The Multivariate Case

The de Casteljau Algorithm

Triangular Blossoms

Bernstein Polynomials

Derivatives

Subdivision

Differentiability

Degree Elevation

Nonparametric Patches

The Multivariate Case

The de Casteljau Algorithm

Triangular Blossoms

Bernstein Polynomials

Derivatives

Subdivision

Differentiability

Degree Elevation

Nonparametric Patches

The Multivariate Case