SECTION 03 30 00 CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.01 RELATED SECTIONS

- A. Division 1 Sections
- B. Section 031000 Concrete Forming and Accessories.
- C. Section 032000 Concrete Reinforcement.
- D. Section 036200 Non-shrink Grout.

1.02 REFERENCES

- A. The publications listed below form a part of this specification. The publications are referenced to within the text by the basic designation only.
 - ACI 117 Standard Specifications for Tolerances for Concrete Construction and Materials.
 - ACI 301 Specifications for Structural Concrete.
 - ACI 305.1 Specification for Hot Weather Concreting.
 - ACI 306.1 Standard Specification for Cold Weather Concreting.
 - ACI 308.1 Specification for Curing Concrete.
 - ACI 311.6 Specification for Testing Ready Mixed Concrete
 - ACI 311.7 Specification for Inspection of Concrete Construction
 - ACI 318 Building Code Requirements for Structural Concrete.
 - ASTM C31 Standard Practice for Making and Curing Concrete Test Specimens in the Field.
 - ASTM C33 Standard Specification for Concrete Aggregates.
 - ASTM C39 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.
 - ASTM C94 Standard Specification for Ready-Mixed Concrete.
 - ASTM C138 Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete.
 - ASTM C150 Standard Specification for Portland Cement.
 - ASTM C172 Standard Practice for Sampling Freshly Mixed Concrete.

ANIMAL CONTROL FACILITY

ASTM C173 – Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method.

ASTM C260 – Standard Specification for Air-Entraining Admixtures for Concrete.

ASTM C309 – Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete.

ASTM C469 – Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression.

ASTM C494 – Standard Specification for Chemical Admixtures for Concrete.

ASTM C618 – Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.

ASTM C920 – Standard Specification for Elastomeric Joint Sealants

ASTM D994 – Standard Specification for Preformed Expansion Joint Filler for Concrete (Bituminous Type)

ASTM E1155 – Standard Test Method for Determining F_F Floor Flatness and F_L Floor Levelness Numbers.

1.03 SUBMITTALS

- A. Refer to Structural Quality Assurance Plan in the Structural Drawings for additional submittal requirements.
- B. Submit the concrete mix designs. Include the following:
 - 1. Documentation of mix design proportions complying with ACI 301.
 - 2. Type and quantities of materials including admixtures
 - 3. Slump
 - 4. Air content
 - 5. Water/cement ratio
 - 6. Fresh unit weight
 - 7. Aggregates sieve analysis
 - 8. Design compressive strength
 - 9. Location of placement in structure
 - 10. Method of placement
 - 11. Method of concrete curing
 - 12. Method of protection of concrete
 - 12. Seven-day and 28-day compressive strengths
- C. Mix design submittals not conforming to the above will be rejected.

1.04 QUALITY ASSURANCE

- A. The ready-mixed concrete plant shall be certified for conformance with the requirements of the National Ready Mix Concrete Association.
- B. Refer to the Structural Quality Assurance Plan in the Structural Drawings.

ANIMAL CONTROL FACILITY

- C. The procedures used in sampling shall include the use of every precaution that will assist in obtaining samples that are truly representative of the nature and condition of concrete sampled.
- D. Concrete sampling shall be performed as the concrete is delivered from the mixer to the conveying vehicle used to transport the concrete to the forms.
- E. Sample the concrete by collecting two or more portions taken at regularly spaced intervals during discharge of the middle portion of the batch. The elapsed time shall not exceed 15 min. between obtaining the first and final portions of the composite sample. Take the samples so obtained within the time limit of 15 min. and combine them into one composite sample for test purposes. In any case do not obtain samples until after all of the water and any admixtures have been added to the mixer. Do not obtain samples from the very first or last portions of the batch discharge. Sample by repeatedly passing a receptacle through the entire discharge stream or by completely diverting the discharge into a sample container. Regulate the rate of discharge of the batch by the rate of revolution of the drum and not by the size of the gate opening.
- F. Start tests for slump, temperature, and air content within 5 min after obtaining the final portion of the composite sample and complete these tests expeditiously. Start molding specimens for strength tests within 15 min. after fabricating the composite sample. Expeditiously obtain and use the sample and protect the sample from the sun, wind, and other sources of rapid evaporation, and from contamination.

PART 2 - PRODUCTS

2.01 CONCRETE MIX DESIGN

- A. Establish concrete mix design proportions in accordance with Article 4.2.3 of ACI 301.
- B. Concrete Strength: See Structural Notes in Structural Drawings.
- C. Slump
 - 1. Design concrete with a slump between four and ten inches.
 - 2. If a slump greater than five inches is desired, use a water reducer.
- D. Water/Cementitious Materials Ratio (w/cm): See Structural Notes in Structural Drawings.
- E. Entrained Air Content: See Structural Notes in Structural Drawings.
- F. Fresh Unit Weight
 - 1. Normal weight concrete: Fresh unit weight of 137 to 148 pcf.

2.02 MATERIALS

- A. Obtain all concrete mixtures from a single ready-mixed concrete manufacturer for entire Project.
- B. Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant.
- C. Obtain aggregate from single source.
- D. Obtain each type of admixture from single source from single manufacturer.

E. Materials designated by specific manufacturer's trade names are approved, subject to compliance with the quality and performance indicated by the manufacturer. Instructions and recommendations, published by the manufacturer of such materials are included in and are a part of these Specifications.

2.03 CEMENT

A. Cement: Portland cement – ASTM C150.

2.04 FLY ASH

A. Fly Ash: Class C or Class F – ASTM C618. When fly ash is used, the quantity shall be a minimum amount of 15 percent and a maximum amount of 25 percent by weight of the total cementitious materials, unless otherwise specified.

2.05 AGGREGATE

- A. Fine Aggregate: Fine aggregate complying with ASTM C33. Natural sand is preferred to manufactured sand.
- B. Fine Aggregate in slabs: The gradation of fine aggregate in concrete mix designs for floor slabs shall meet the requirements in the Table below:

	Percent Passing	
Sieve Designation	Normalweight Aggregate	Lightweight Aggregate
3/8 in.	100	100
No. 4	85 to100	85 to100
No. 8	80 to 90	_
No. 16	50 to 75	40 to 80
No. 30	30 to 50	30 to 65
No. 50	10 to 20	10 to 35
No. 100	2 to 5	5 to 20

- C. For normalweight concrete, the weight of fine aggregate in the mix proportion shall not exceed 50 percent of the total weight of fine plus coarse aggregate.
- D. Coarse Aggregate: Washed gravel or crushed stone conforming to ASTM C33. When a single size or combinations of two or more sizes of coarse aggregates are used, the final grading shall conform to the grading requirements of ASTM C33, unless otherwise specified or permitted.
 - 1. Unless governed by the maximum size as specified in Section 2 below, the largest practical-size coarse aggregate shall be used. Except for topping slabs 3-in. thick or less the largest size of coarse aggregate in normalweight concrete shall be a nominal ¾-in. and the largest size of coarse aggregate in lightweight concrete shall be a nominal ½-in. For topping slabs that are 3-in. thick or less the maximum size of coarse aggregate shall be 3/8 inch.
 - 2. The nominal maximum size of coarse aggregate shall not exceed three-fourths of the minimum clear spacing between reinforcing bars, one-fifth of the narrowest dimension between sides of forms, or one-third of the thickness of slabs or toppings.

WINCHESTER, TN

FRANKLIN CO. ANIMAL CONTROL FACILITY

2.06 WATER

A. Water: Potable water

2.07 AIR ENTRAINING AGENT

A. Air Entraining Agent: Air entraining agent shall conform with ASTM C260. For normalweight concrete air entrainment shall not be used in flatwork to receive a hard steel-troweled finish.

2.08 WATER REDUCER

A. Water Reducer: Water reducing agent shall conform with ASTM C494.

2.09 ACCELERATORS

A. Accelerators: Non-chloride accelerators shall conform with ASTM C494.

2.10 RETARDERS

A. Retarders: Retarders shall conform with ASTM C494.

2.11 CHLORIDE

A. Chlorides: Chlorides of any form shall not be used in concrete.

2.12 CURING COMPOUND

A. Curing Compound: A water-based, VOC-compliant concrete curing agent, hardener, and dustproofer that complies with ASTM C309. The curing agent shall be residue-free and contains no wax, resin, or other materials that would inhibit the bond of subsequent coatings and/or treatments. An example of a curing compound that meets this specification is Med-Cure by W.R. Meadows. Coordinate curing compound with flooring supplier to ensure compatibility.

PART 3 - EXECUTION

3.01 GENERAL

- A. Prepare place of deposit, mix, convey, and place in accordance with ACI 301 and ACI 304. If concrete is pumped, use a 5-inch minimum hose diameter.
- B. Wet forms before placing concrete.
- C. Deposit concrete continuously and as near as practical to final position.
- D. Deposit concrete in one layer or in multiple layers. Do not place fresh concrete against concrete that would result in cold joints.
- E. Do no flowing of concrete with vibrators.
- F. Place and finish concrete members to comply with tolerances in ACI 117.
- G. Do not use aluminum equipment in placing and finishing concrete.

3.02 SLABS-ON-GROUND

- A. Place concrete for slabs-on-ground on properly prepared granular subbase with vapor barrier.
- B. Place thickened slabs for partitions integral with floor slabs.

3.03 WATER REDUCERS

A. Water reducers are to be added at dosage recommended by the manufacturer. The slump of the concrete shall be one to four inches at the time the water reducers are added. Do not permit fresh concrete containing superplasticizers to come in contact with fresh concrete not containing superplasticizers.

3.04 ADDITION OF WATER AT JOB SITE

A. Water may be added at the jobsite if neither the maximum permissible water/cement ratio nor the maximum slump is exceeded. All concrete delivery trucks will have actual batch weight tickets available that clearly indicate the quantity of water that may be added at the jobsite that will not exceed the maximum water/cement ratio.

3.05 TIME LIMIT

A. Deposit concrete within one and one-half hours after batching.

3.06 VIBRATION

- A. Consolidate concrete by vibration. Consolidate concrete around reinforcement, embedded items, and into corners of forms. Use immersion-type vibrators with nonmetallic heads for consolidating concrete around epoxy-coated or zinc and epoxy dual-coated reinforcing bars.
- B. Do not use vibrators to move concrete in a manner that will result in segregation.
- C. Spacing of immersion vibrator insertions shall not exceed 1-1/2 times the vibrator's radius of action in concrete being consolidated.

3.07 WEATHER PROVISIONS

- A. Do not place concrete while rain, sleet, or snow is falling unless protection is provided. Do not allow precipitation to increase mixing water or to damage concrete surface.
- B. Perform cold weather concreting in accordance with ACI 306. Concrete temperatures at delivery shall meet the requirements of Section 4 in ACI 301. Do not place concrete in contact with surfaces less than 35°F. Unless otherwise specified, this requirement shall not apply to reinforcing steel.
- C. Perform hot weather concreting in accordance with ACI 305. Unless otherwise specified, concrete temperature as placed shall meet the requirements of Section 4 of ACI 301. If temperature of reinforcement, embedments, or forms is greater than 120°F, use a fine mist of water to moisten and cool hot surfaces. Remove standing water before placing concrete.
- D. Protect concrete from drying and excessive temperature for the first seven days. Protect fresh concrete from wind.

3.08 CONTRACTION JOINTS

- A. Obtain Architect/Structural Engineer's approval for location of contraction joints.
- B. Unless noted otherwise in the architectural or structural drawings, provide contraction joints in slabs-on-ground to form a regular grid with a maximum spacing as noted in the Structural Drawings. The long dimension of the grid shall not exceed 1.5 times the short dimension of the grid. Contraction joints may be saw cut if cut within 24 hours after placement of concrete. Saw cuts shall be a depth equal to one-fourth the slab thickness by one-eighth inch wide. Alternately, contraction joints may be provided by preformed plastic strip inserts.

3.09 CONCRETE FINISHES

- A. Finish Concrete in accordance with ACI 301.
- B. After form removal, give each formed surface the specified finish. If the Architectural and Structural drawings do not specify a finish, provide a SF-1.0 finish on concrete surfaces not exposed to view and a SF-2.0 finish on concrete surfaces exposed to view.
 - Surface Finish 1.0 (SF1.0)1. No formwork facing material is specified
 - 2. Patch voids larger than 1-1/2 in. wide or 1/2 in. deep
 - 3. Remove projections larger than 1 in.
 - 4. Tie holes need not be patched
 - 5. Surface tolerance Class D as specified in ACI 117
 - 6. Mockup not required
 - Surface Finish 2.0 (SF2.0)1. Patch voids larger than 3/4 in. wide or 1/2 in. deep
 - 2. Remove projections larger than 1/4 in.
 - 3. Patch tie holes
 - 5. Surface tolerance Class B as specified in ACI 117
 - 6. Unless otherwise specified, provide mockup of concrete surface appearance and texture
- C. If a Rubbed Finish is specified in the Architectural or Structural drawings, produce the smooth-rubbed finish no later than the day following formwork removal. Wet the surface and rub it with an abrasive such as carborundum brick until uniform color and texture are produced. If insufficient cement paste can be drawn from the concrete itself by the rubbing process, use a grout made with cementitious materials from the same sources as used for in-place concrete.
- D. If a finish is not otherwise specified for the unformed surfaces the following finishes shall apply (Refer to Section 5 of ACI 301 for requirements of each finish):
 - 1. Scratch finish—For surfaces intended to receive bonded cementitious or setting beds
 - 2. Float finish—For walks; steps; and for surfaces intended to receive waterproofing, roofing, insulation, or sand-bed terrazzo
 - 3. Trowel finish—For interior floors
 - 4. Broom finish—For parking slabs and exterior surfaces, including slabs, ramps, walkways, and steps, light broom finish for exterior balconies.

3.10 CURING

A. Begin curing procedures in accordance with Section 5 of ACI 301 immediately following the commencement of the finishing operation. If bleed water sheen is not visible on surface of concrete after strikeoff and initial bull floating, provide initial curing by means of fogging or

ANIMAL CONTROL FACILITY

FRANKLIN CO.

application of evaporation retarder until final curing method is applied. Do not use fogging in cold weather concreting.

- B. After the initial curing outlined in A., apply the curing procedure as specified below. Apply curing in a manner that prevents marring, marking, or discoloration of finished surface. The curing methods below refer to ACI 301 (Specifications for Structural Concrete) and ACI 308.1 (Specification for Curing Concrete). The curing methods below are described in detail in these documents and the provisions of the curing method specified shall be adhered to. In addition, ACI 308 (Guide to External Curing of Concrete) may be used as a reference guide.
- C. Moist cure the unformed surface of all interior concrete slabs in accordance with ACI 301 and ACI 308 using either of the three methods below. The requirements for each of these curing methods can be found in Section 3 of ACI 308. Keep the concrete surface continually moist a minimum of 3 days. Do not allow the surface to dry or undergo cycles of drying and wetting.
 - 1. Ponding
 - 2. Sprinkling
 - 3. Fogging
- D. If the concrete will be exposed with a polished or stained finish use curing water that is free of substances that will stain or discolor concrete. The staining ability of curing water can be evaluated by means of CRD-C 401.
- E. After the 3-day moist cure period, apply a membrane-forming curing compound in accordance with manufacturer's recommendations. The curing compound used must be compatible with all adhesives to be used on the concrete surface. Do not use a curing compound in areas to receive material that does not adhere to concrete cured with a curing compound.
- F. For formed surfaces, unless otherwise specified, if formwork is loosened or removed so that concrete surface is exposed to ambient air less than 7 days from concrete placement continue curing by either continuous fogging, ponding, continuous sprinkling, or a membrane-forming curing compound as described above and in ACI 301 and ACI 308.
- G. Maintain concrete temperature to prevent freezing of concrete and to ensure strength development. Unless otherwise specified, duration of thermal protection shall be at least 3 days.
- H. Maintain curing measures until the concrete has reached a minimum of 70 percent of the specified 28-day strength compressive strength, f_c , but not less than 7 days.

3.11 CUTTING CONCRETE

A. Obtain Architect/Structural Engineer's written approval prior to cutting concrete for installation of other work.

3.12 PATCHWORK AND REPAIRS

- A. Repair tie holes and other surface defects in formed finishes unless otherwise specified. Where the concrete surface will be textured by sandblasting or bush-hammering, repair surface defects before texturing.
- B. Notify Architect/Structural Engineer of any defective areas (other than tie holes) in concrete to be patched or repaired. Unless otherwise specified or permitted, repair surface defects by the following method. Outline repair area with a 1/2 in. deep saw cut and remove defective concrete down to sound concrete. Leave chipped edges perpendicular to the saw-cut surface or slightly undercut. Do not feather edges. Dampen the area to be patched plus 6 in. around the patch area

WINCHESTER, TN

perimeter. Prepare scrub coat mix using one-part portland cement and one-part sand by loose volume with water. Thoroughly brush scrub coat into the surface. When the scrub coat begins to lose water sheen, apply patching mortar (for concrete exposed to view, mortar shall match adjacent concrete color) and thoroughly consolidate mortar into place. Strike off mortar, finishing flush to the final surface. Leave the patch undisturbed for 1 hour before finishing. Keep the patch damp for 7 days.

END OF SECTION