STAT241/251 Lecture Notes Chapter 4 Part B

Yew-Wei Lim

Ch 4 Part B

One minute recap:

We have learnt how to calculate the mean and variance of a discrete random variable. The 'mean' is the same as asking for E(X) where X is a random variable.

Example:

The manager of a stockroom in a factory has constructed the following probability distribution for the daily demand (number of times used) for a particular tool.

у	0	1	2
P(Y=y)	0.1	0.5	0.4

Find

- (a) $E(Y) \Leftarrow this$ is asking us to find the mean number of times used per day
- (b) Var(Y)

Solution:

$$E(Y) = (0 \times 0.1) + (1 \times 0.5) + (2 \times 0.4)$$

$$= 1.3$$

$$E(Y^{2}) = (0^{2} \times 0.1) + (1^{2} \times 0.5) + (2^{2} \times 0.4)$$

$$= 2.1$$

$$Var(Y) = E(Y^{2}) - [E(Y)]^{2}$$

$$= 2.1 - 1.3^{2}$$

$$= 0.41$$

The above example calculates the mean and variance of a discrete random variable. We now continue with the study of continuous random variables.

There are many continuous random variables, but for STAT 241/251, we learn 3 types of continuous random variables thoroughly:

- (a) Uniform distribution \leftarrow today's topic
- (b) Exponential distribution
- (c) Normal distribution \leftarrow Chapter 5

By thorough, it means you are expected to know how to arrive at the <u>mean</u>, <u>variance</u>, <u>cdf</u> when given a uniform/exponential distribution.

Uniform Distribution

In general, this is the pdf of a random variable X which has the uniform distribution on the interval (a, b).

We can therefore write out the pdf of a uniform random variable when we know the 'x range' (e.g. $a \le x \le b$, the proper word for it is 'support of X').

Example, pdf of a random variable which has a uniform distribution on (1,5) is:

$$f(x) = \begin{cases} \frac{1}{4}, & \boxed{1 \le x \le 5}, \leftarrow \text{ support of } X \\ 0 & \text{otherwise} \end{cases}$$

In general,

Proof:

(a) Let us show that $E(X) = \frac{a+b}{2}$

$$E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

$$= \int_{a}^{b} x \cdot \frac{1}{b-a} dx$$

$$= \frac{1}{b-a} \left[\frac{x^2}{2} \right]_{a}^{b}$$

$$= \frac{1}{b-a} \left(\frac{b^2}{2} - \frac{a^2}{2} \right)$$

$$= \frac{1}{b-a} \left(\frac{b^2 - a^2}{2} \right)$$

$$= \frac{1}{b-a} \frac{(b+a)(b-a)}{2}$$

$$= \frac{b+a}{2}$$

(b) Proof that $Var(X) = \frac{(b-a)^2}{12}$ when $X \sim Uniform(a, b)$

* Note: This is how we write out the distribution of a random variable. $X \sim Uniform(a,b)$ [your coursenotes use $X \sim U(\underbrace{-\frac{1}{2}}_{5},\underbrace{\frac{4}{5}}_{1})$ which is fine too]

To find Var(X), we first find $E(X^2)$.

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} \cdot f(x) dx$$

$$= \int_{a}^{b} x^{2} \cdot \frac{1}{b-a} dx$$

$$= \frac{1}{b-a} \left[\frac{x^{3}}{3} \right]_{a}^{b}$$

$$= \frac{1}{b-a} \left(\frac{b^{3}}{3} - \frac{a^{3}}{3} \right)$$

$$= \frac{1}{3(b-a)} (b^{3} - a^{3})$$

$$= \frac{1}{3(b-a)} (b-a)(b^{2} + ab + a^{2})$$
 I'll show how you get this under **

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$

$$= \frac{1}{3}(b^{2} + ab + a^{2}) - (\frac{a+b}{2})^{2}$$

$$= \frac{b^{2} + ab + a^{2}}{3} - \frac{a^{2} + 2ab + b^{2}}{4}$$

$$= \frac{4(b^{2} + ab + a^{2}) - 3(a^{2} + 2ab + b^{2})}{12}$$

$$= \frac{b^{2} - 2ab + a^{2}}{12}$$

$$= \frac{(b-a)^{2}}{12}$$

** To show how I obtain $b^3 - a^3 = (b - a)(b^2 + ab + a^2)$

Let $f(b) = b^3 - a^3$, then $f(a) = a^3 - a^3 = 0 \Rightarrow b - a$ is a factor, [use factor theorem]

$$\begin{array}{r}
b^2 + ab + a^2 \\
b - a) b^3 - a^3 \\
\underline{-(b^3 - ab^2)} \\
ab^2 \\
\underline{-(ab^2 - a^2b)} \\
a^2b - a^3 \\
\underline{-(a^2b - a^3)} \\
0$$

$$\Rightarrow b^3 - a^3 = (b - a)(b^2 + ab + a^2)$$

(c) Show that F(x) is $\frac{(x-a)}{b-a}$ when $X \sim Uniform(a,b)$

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

$$= \int_{a}^{x} \frac{1}{b-a} dt$$

$$= \frac{1}{b-a} [t]_{a}^{x}$$

$$= \frac{x-a}{b-a}$$

$$\Rightarrow F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1 & x > b \end{cases}$$

Make sure you either memorize these results or have them on your cheatsheet:

$$X \sim Uniform(a, b)$$

$$\begin{cases} E(X) = \frac{a+b}{2} \\ Var(X) = \frac{(b-a)^2}{12} \end{cases}$$

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

Simple Example: $X \sim Uniform(-2,3)$, then

$$f(x) = \begin{cases} \frac{1}{5} & -2 \le x < \le 3\\ 0 & \text{otherwise} \end{cases}$$

$$E(X) = \frac{-2+3}{2} = 0.5, Var(X) = \frac{[3-(-2)]^2}{12} = \frac{25}{12}$$

$$F(x) = \begin{cases} 0 & x < -2\\ \frac{x+2}{5} & -2 \le x \le 3\\ 1 & x > 3 \end{cases}$$