OpenCV ile Bilgisayarla Görme

Open Source

Computer Vision Library

intel.

OpenCV ile Bilgisayarlı Görme

İsmet YALABIK

791. Linux Kullanıcıları Derneği Üyesi

Araştırma Görevlisi Görüntü İşleme ve Örüntü Tanıma Laboratuvarı Bilgisayar Mühendisliği Bölümü Orta Doğu Teknik Üniversitesi

e-mail: ismet@ceng.metu.edu.tr

web: http://www.ceng.metu.edu.tr/~ismet

Bilgisayarlı Görme Nedir?

- Göz-Beyin İlişkisi
- Görme, Tanıma, Algılama
- Görüntünün Algılanması
- Nesnelerin Ayrıştırılması
- Nesnelerin Tanınması
- Nesnelerin Eşleştirilmesi

OpenCV Nedir?

- İlgili alanlardaki araştırma ve geliştirmeyi desteklemek için evrensel bir araç kutusu oluşturmak
 - Bilgisayarla Görme
 - İnsan-Bilgisayar Etkileşimi
 - Robot Bilimi
 - Biyoenformatik
 - Güvenlik
 - Görüntüleme

OpenCV'nin Anahtar Özellikleri

- Cross-platform
- Orta ile ileri seviyeli API
 - 350'den fazla C fonksiyonu
 - Birkaç C++ sınıfı
- Phyton eklentileri
- Çok az kütüphane bağımlılığı
- IPP(Intel Performance Primitives) desteği

OpenCV Tarihçesi

- Başlangıç: 2000, intel
- sourceforge.net'e geçiş
- CVPR-2001
- Stanley aracının anahtar kütüphanesi (2M \$lık darpa yarışı birincisi)

OpenCV Kütüphanesi Ana Yapısı

- Temel Yapılar
 - Nokta
 - Dikdörtgen
 - Ölçüt
 - Matris
 - Görüntü
 - Ayrık Matris

OpenCV: Temel Yapılar


```
typedef struct CvPoint {
  int x; /* x-coordinate, usually zero-based */
  int y; /* y-coordinate, usually zero-based */
} CvPoint;
typedef struct CvRect {
  int x; /* x-coordinate of the left-most
            rectangle corner[s] */
            /* y-coordinate of the top-most or
  int y;
            bottom-most rectangle corner[s] */
  int width; /* width of the rectangle */
  int height; /* height of the rectangle */
} CvRect;
```

OpenCV: Temel Yapılar

22/04/11


```
typedef struct IplImage {
                                 /* sizeof(IplImage) */
   int nSize;
                                 /* version (=0)*/
    int ID:
   int nChannels;
                                 /* Most of OpenCV functions support 1,2,3 or 4 channels */
                                 /* ignored by OpenCV */
   int alphaChannel;
                                 /* pixel depth in bits: IPL DEPTH 8U, IPL DEPTH 8S, IPL DEPTH 16U,
    int depth;
                                 IPL DEPTH 16S, IPL DEPTH 32S, IPL DEPTH 32F and IPL DEPTH 64F are
                                 supported*/
                                 /* ignored by OpenCV */
    char colorModel[4];
    char channelSeq[4];
                                 /* ditto */
    int dataOrder:
                                 /* 0 - interleaved color channels, 1 - separate color channels.
                                 cvCreateImage can only create interleaved images */
                                 /* 0 - top-left origin,
    int origin;
                                 1 - bottom-left origin (Windows bitmaps style) */
                                 /* Alignment of image rows (4 or 8).
    int align;
                                 OpenCV ignores it and uses widthStep instead */
    int width;
                                 /* image width in pixels */
                                 /* image height in pixels */
    int height;
                                 /* image ROI. when it is not NULL, this specifies image region to
    struct IplROI *roi;
                                 process */
                                 /* must be NULL in OpenCV */
    struct IplImage *maskROI;
    void *imageId;
                                 /* ditto */
    struct IplTileInfo *tileInfo;/* ditto */
    int imageSize;
                                 /* image data size in bytes (=image->height*image->widthStep in case
                                 of interleaved data)*/
    char *imageData;
                                 /* pointer to aligned image data */
                                 /* size of aligned image row in bytes */
    int widthStep;
    int BorderMode[4];
                                 /* border completion mode, ignored by OpenCV */
                                 /* ditto */
    int BorderConst[4];
    char *imageDataOrigin;
                                 /* pointer to a very origin of image data (not necessarily aligned) -
                                 it is needed for correct image deallocation */
} IplImage;
```

OpenCV: Temel Operasyonlar

- Aritmetik, Mantık ve Karşılaştırmalar
 - Matris Aritmetiği, Mantık İşlemeleri
- İstatistik
- Permütasyonlar ve Dönüşümler
 - Ayırma, Çevirme, Tekrarlama
- Lineer Cebir
 - Normalizasyon, Çapraz Çarpım, Ters
- Rastgele Sayı Üreticisi

OpenCV: Temel Veri Yapıları

- Hafıza depoları
- Sekanslar
- Kümeler
- Çizgeler
- Ağaçlar

OpenCV: Temel Veri Yapıları


```
#define CV SEQUENCE FIELDS() \
    int flags:
                            /* micsellaneous flags */ \
                                 /* size of sequence header */ \
    int header size;
    struct CvSeq* h prev;
                              /* previous sequence */ \
                                 /* next sequence */ \
    struct CvSeq* h next;
    struct CvSeq* v prev;
                                 /* 2nd previous sequence */ \
                                 /* 2nd next sequence */ \
    struct CvSeq* v next;
    int total:
                            /* total number of elements */ \
    int elem size;
                            /* size of sequence element in bytes */ \
    char* block max;
                                 /* maximal bound of the last block */ \
    char* ptr;
                                 /* current write pointer */ \
    int delta_elems;
                                 /* how many elements allocated when the sequence grows
                             (sequence granularity) */\
    CvMemStorage* storage;
                                 /* where the seg is stored */ \
    CvSeqBlock* free blocks; /* free blocks list */ \
    CvSeqBlock* first;
                            /* pointer to the first sequence block */
typedef struct CvSeq
  CV SEQUENCE FIELDS()
} CvSeq;
```

12

OpenCV: Kalan Ana Fonkyonlar

- Eğri ve Şekil Çizme Fonksiyonları
- Metin Yazma Fonksiyonları
- Dosya Depoları, okuma/yazma
- Hata kontrolü
- Hafıza Yönetimi ve sistem çağrıları

OpenCV: Şekil Çizme

Şekil, Çizgi, Metin Uygulaması

uygulama-1 (edge)

OpenCV: Görüntü İşleme

- Kenar, Köşe İşlemleri
- İnterpolasyon, Geometrik Transformasyon
- Morfolojik İşlemler
- Filtreler ve Renk Dönüşümleri
- Görüntü Bölütleme
- Özel Görüntü Dönüşümleri
- Histogram
- Eşleştirme

OpenCV: Kenarlar, Köşeler

- Sobel Filtresi
- Laplace Filtresi
- Canny Kenar Yör
- Harris Köşe Yöntemi
- Minimum Eigen Değeri Yöntemi

OpenCV: Canny Kenar Bulma

Canny Kenar Bulma Uygulaması

uygulama-2 (edge)

OpenCV: Interpolasyon ve Geometrik Dönüşümler

- Büyütme, küçültme
- Affine Dönüşümler
- Rotasyon
- Logpolar

OpenCV: Morfolojik İşlemler

- Erode
- Dilate
- Yapısal Elemanın Oluşturulması
- Gelişmiş Morfolojik
 Dönüşümler

OpenCV: Morfolojik İşlemler

Morfoloji Uygulaması

uygulama-3 (morphology)

OpenCV: Filtreler ve Renk Dönüşümleri

- Düzleştirme
- Konvolüsyon Filtre
- İntegral Görüntü
- Eşik Uygulama
- Renk Uzayı
 Dönüşümleri

OpenCV: Piramitler

Piramit Bölütleme Uygulaması

uygulama-4
(pyramid_segmentation)

OpenCV: Görüntü Bölütleme

• FloodFill, Birleşik Bileşenleri Bulma

Original image

Tolerance interval ± 5

Tolerance interval ± 6

OpenCV: Görüntü Bölütleme

Birleşik Bileşenler Uygulaması

uygulama-5 (contours)

OpenCV: Görüntü Bölütleme

Watershed Uygulaması

uygulama-6 (watershed)

OpenCV: Özel Görüntü Dönüşümleri

Hough Çizgi
 Dönüşümleri

Mesafe Dönüşümleri

OpenCV: Özel Görüntü Dönüşümleri

Hough Çizgi Dönüşümü Uygulaması

uygulama-7 (houghlines)

OpenCV: Özel Görüntü Dönüşümleri

Laplace Dönüşümü Uygulaması

uygulama-8 (laplace)

OpenCV: Histogram

Histogram Uygulaması

uygulama-9 (demhist)

OpenCV: Histogram


```
cvLUT( src image, dst image, lut mat ):
  cvShowImage( "image", dst image );
                                                                      dst image = cvCloneImage(src image);
                                                                      hist image = cvCreateImage(cvSize(320,200), 8, 1);
  cvCalcHist( &dst image, hist, 0, NULL );
                                                                      hist = cvCreateHist(1, &hist size, CV HIST ARRAY, ranges, 1);
  cvZero( dst image );
  cvGetMinMaxHistValue( hist, 0, &max value, 0, 0 );
                                                                      lut mat = cvCreateMatHeader( 1, 256, CV 8UC1 );
  cvScale( hist->bins, hist->bins, ((double)hist image-
                                                                      cvSetData( lut mat, lut, 0 );
>height)/max value, 0);
  /*cvNormalizeHist( hist, 1000 ):*/
                                                                      cvNamedWindow("image", 0);
                                                                      cvNamedWindow("histogram", 0);
  cvSet( hist image, cvScalarAll(255), 0);
  bin w = cvRound((double)hist image->width/hist size);
                                                                      cvCreateTrackbar("brightness", "image", & brightness, 200,
                                                                   update brightcont);
  for(i = 0; i < hist size; i++)
                                                                      cvCreateTrackbar("contrast", "image", & contrast, 200,
    cvRectangle( hist image, cvPoint(i*bin w, hist image->height),
                                                                   update brightcont);
            cvPoint((i+1)*bin w, hist image->height -
cvRound(cvGetReal1D(hist->bins,i))),
            cvScalarAll(0), -1, 8, 0);
                                                                      update brightcont(0);
                                                                      cvWaitKey(0);
  cvShowImage( "histogram", hist image );
                                                                      cvReleaseImage(&src image);
int main( int argc, char** argv )
                                                                      cvReleaseImage(&dst_image);
 // Load the source image. HighGUI use.
                                                                      cvReleaseHist(&hist);
  src image = cvLoadImage( argc == 2 ? argv[1] : file name, 0 );
                                                                      return 0;
  if(!src image)
    printf("Image was not loaded.\n");
    return -1;
                                                                   #ifdef EiC
                                                                   main(1,"demhist.c");
                                                                   #endif
```

ubuntu

OpenCV: Histogram


```
#ifdef CH
#pragma package <opencv>
#endif
#ifndef EiC
#include "cv.h"
#include "highqui.h"
#include <stdio.h>
#endif
char file name[] = "baboon.jpg";
int brightness = 100;
int contrast = 100;
int hist size = 64;
float range 0[]=\{0,256\};
float* ranges[] = { range 0 };
IplImage *src image = 0, *dst image = 0, *hist image = 0;
CvHistogram *hist;
uchar lut[256];
CvMat* lut mat;
/* brightness/contrast callback function */
void update brightcont( int arg )
  int brightness = brightness - 100;
  int contrast = contrast - 100;
  int i, bin w;
  float max value = 0;
                                                           31
22/04/11
```

```
if( contrast > 0 )
  double delta = 127.*contrast/100;
  double a = 255./(255. - delta*2);
  double b = a*(brightness - delta);
  for(i = 0; i < 256; i++)
     int v = cvRound(a*i + b);
     if (v < 0)
       v = 0:
     if(v > 255)
       v = 255:
     lut[i] = (uchar)v;
else
  double delta = -128.*contrast/100;
  double a = (256.-delta*2)/255.;
  double b = a*brightness + delta;
  for(i = 0; i < 256; i++)
     int v = cvRound(a*i + b);
     if(v < 0)
       v = 0:
     if(v > 255)
       v = 255:
     lut[i] = (uchar)v;
```

OpenCV: Yapısal Analiz

- Kontur İşleme
 - Kontur alanı, çizgi uzunluğu, kontur ağaçları
- İşlemsel Geometri
 - İki kareyi kapsayan en küçük kare
 - Elips oturtma, çizgi oturtma
 - convexHull
- Düzlemsel Alt Bölümlemeler
 - Voronin Diyagramları

OpenCV: Yapısal Analiz

Convexhull Uygulaması

uygulama-10 (convexhull)

OpenCV: Hareket Analizi, Nesne İzleme

- Arka Plan İstatistiklerinin Toplanması
- Hareket Şablonları
- Nesne İzleme
- Optik Akış
- Tahmin Ediciler

OpenCV: Hareket Analizi, Nesne İzleme

Nesne İzleme Uygulaması

uygulama-11 (camshiftdemo)

OpenCV: Örüntü Tanıma

- Nesne Tanıma
- Nesne Tanımaya Yönelik Basit Haar Özniteliklerinin Çıkarılması

Yüz Bulma Uygulaması

OpenCV: Yüz Bulma


```
#include "cv.h"
#include "highqui.h"
CvHaarClassifierCascade* load object detector( const char* cascade path )
  return (CvHaarClassifierCascade*)cvLoad( cascade path );
void detect and draw objects( IplImage* image,
                  CvHaarClassifierCascade* cascade,
                  int do pyramids )
  lpllmage* small image = image;
  CvMemStorage* storage = cvCreateMemStorage(0);
  CvSeq* faces;
  int i, scale = 1;
  /* if the flag is specified, down-scale the input image to get a
    performance boost w/o loosing quality (perhaps) */
  if( do pyramids )
    small image = cvCreateImage( cvSize(image->width/2,image->height/2), IPL DEPTH 8U, 3 );
    cvPyrDown( image, small image, CV GAUSSIAN 5x5 );
    scale = 2;
  /* use the fastest variant */
  faces = cvHaarDetectObjects( small image, cascade, storage, 1.2, 2, CV HAAR DO CANNY PRUNING );
  /* draw all the rectangles */
                                                          37
```

OpenCV: Yüz Bulma


```
for(i = 0; i < faces->total; i++)
    /* extract the rectaniges only */
    CvRect face rect = *(CvRect*)cvGetSegElem( faces, i, 0 );
    cvRectangle(image, cvPoint(face rect.x*scale,face rect.y*scale),
             cvPoint((face rect.x+face rect.width)*scale,
                  (face rect.y+face rect.height)*scale),
             CV RGB(255,0,0), 3);
  if( small image != image )
      cvReleaseImage( &small image );
      cvReleaseMemStorage(&storage);
/* takes image filename and cascade path from the command line */
int main( int argc, char** argv )
  IplImage* image;
  if( argc==3 \&\& (image = cvLoadImage( argv[1], 1 )) != 0 )
    CvHaarClassifierCascade* cascade = load object detector(argv[2]);
    detect and draw objects (image, cascade, 1);
    cvNamedWindow( "test", 0 );
    cvShowImage( "test", image );
    cvWaitKey(0);
    cvReleaseHaarClassifierCascade( &cascade );
    cvReleaseImage( &image );
  return 0;
22/04/11
```


OpenCV: Diğer Özellikler

- Kamera Kalibrasyonu
- Poz Tahmini

Niye OpenCV?

- Birçok kullanılabilir ve literatürde başarılı çalışmalara yer veriyor
- Özellikle işlemci bazında optimizasyon ile programların çok hızlı çalışması sağlanıyor
- Çok basit bir kullanım olanağı sağlıyor
- Gelişmiş arayüz fonkyonları sayesinde kullanıcı etkileşimini yükseltiyor
- Kamera kullanımını kolay kılan özellikleri

Niye Özgür Yazılım?

Paylaşarak hayatımızı güzelleştirmek için...

OpenCV

OpenCV'i Nereden Bulabilirim?

http://tech.groups.yahoo.com/group/OpenCV/

http://www.intel.com/technology/computing/opencv/index.htm

http://opencvlibrary.sourceforge.net/

OpenCV

Teşekkürler, Sorularınız???

