Universidade Federal da Paraíba Centro de Informática

Departamento de Informática

Aprendizado Profundo Modelos de Linguagem de Larga Escala (LLMs)

(Material Baseado em @CodeEmporium)

Tiago Maritan (tiago@ci.ufpb.br)

Modelos de Linguagem de Larga Escala (LLMs)

Com a possibilidade de paralelização das Redes
 Transformers, o <u>tamanho dos modelos neurais</u>,
 <u>especialmente os modelos de linguagem</u>, tem disparado nos últimos anos.

 Crescimento de até 5000x no tamanho dos modelos nos últimos anos.

Modelos de Linguagem de Larga Escala (LLMs)

Model	Organization	Date	Size (# params)
ELMo	AI2	Feb 2018	94,000,000
GPT	OpenAl	Jun 2018	110,000,000
BERT	Google	Oct 2018	340,000,000
XLM	Facebook	Jan 2019	655,000,000
GPT-2	OpenAl	Mar 2019	1,500,000,000
RoBERTa	Facebook	Jul 2019	355,000,000
Megatron-LM	NVIDIA	Sep 2019	8,300,000,000
T5	Google	Oct 2019	11,000,000,000
Turing-NLG	Microsoft	Feb 2020	17,000,000,000
GPT-3	OpenAl	May 2020	175,000,000,000
Megatron-Turing NLG	Microsoft, NVIDIA	Oct 2021	530,000,000,000
Gopher	DeepMind	Dec 2021	280,000,000,000

Fonte: stanford-cs324.github.io/winter2022/lectures/introduction

Modelos de Linguagem de Larga Escala (LLMs)

Model	Organization	Date	Size (# params)
ELMo	AI2	Feb 2018	94,000,000
GPT	OpenAl	Jun 2018	110,000,000
BERT	Google	Oct 2018	340,000,000
XLM	Facebook	Jan 2019	655,000,000
GPT-2	OpenAl	Mar 2019	1,500,000,000
RoBERTa	Facebook	Jul 2019	355,000,000
Megatron-LM	NVIDIA	Sep 2019	8,300,000,000
T5	Google	Oct 2019	11,000,000,000
Turing-NLG	Microsoft	Feb 2020	17,000,000,000
GPT-3	OpenAl	May 2020	175,000,000,000
Megatron-Turing NLG	Microsoft, NVIDIA	Oct 2021	530,000,000,000
Gopher	DeepMind	Dec 2021	280,000,000,000

Fonte: stanford-cs324.github.io/winter2022/lectures/introduction

BERT- Bidirecional Encoders for Representation from Transformers

Artigo: https://arxiv.org/pdf/1810.04805.pdf

Motivação

 Modelos de linguagem são geralmente treinados de forma unidirecional

h_{t+1} é gerado a partir de $x_0 \dots x_{t+1}$; $h_0 \dots h_t$

Informações de contexto geralmente da esquerda para direita

BERT

- BERT: Projetado para <u>pré-treinar</u> representações <u>bidirecionais</u> de textos não rotulados
 - Transformers são capazes de capturar de aprender contextos em <u>ambas as direções</u> simultaneamente
 - Mecanismo de self-attention

Transformer

Encoder e Decoder possuem papéis distintos!

Transformer

Contudo, ambos aprendem separadamente a compreender língua (linguagem)!!!

Transformer

É possível, portanto, separá-los e construir sistemas que compreendam o que é língua (linguagem)!

Transformers:

BERT: Encadeia vários "Encoders" (Transformers)

GPT: Encadeia vários "Decoders" (Transformers)

BERT - Ideia Geral

 Para resolver diferentes tarefas em PLN, é necessário compreender língua;

- Ideia geral:
- Pré-treina BERT para compreender língua;
- 2. **Refina (fine-tuning)** o BERT para aprender tarefas específicas
 - Análise de sentimentos
 - Tradução Automática
 - Sumarização, etc.

BERT - Ideia Geral

- Pré-treinamento: Aprende a <u>compreender língua</u> (<u>linguagem</u>)... com base em 2 tarefas:
 - Masked Language Model (MLM): sentenças com tokens aleatórios mascarados;
 - Objetivo é identificar os tokens mascarados;
 - Ajuda o BERT a <u>aprender contextos bidirecionais;</u>
 - 2. <u>Next Sentence Prediction (NSP)</u>: recebe duas sentenças e identifica se a 2a sentença segue a 1a.
 - Problema de classificação binária
 - Ajuda o BERT a <u>aprender contexto entre diferentes</u>
 <u>sentenças</u>

Pré-treinamento: Aprende a compreender língua (linguagem)... com base em 2 tarefas:

The [MASK1] brown BERT [MASK1] = quick Masked Language fox [MASK2] over [MASK2]= jumped Model (MLM) the lazy dog. Forward N× Next Sentence A: Ajay is a cool dude. Yes. Sentence B B: He lives in Ohio Prediction (NSP) follows sentence A

- Pré-treinamento: Treinamento simultâneo nos 2 problemas:
 - Entrada é um par de sentenças com tokens mascarados!

- Pré-treinamento: Treinamento simultâneo nos 2 problemas:
 - Entrada é um par de sentenças com tokens mascarados!

- Representação dos embeddings de entrada
 - Construído a partir da junção de 3 vetores

- Representação dos embeddings de entrada
 - Construído a partir da junção de 3 vetores

- Representação dos embeddings de entrada
 - Construído a partir da junção de 3 vetores

- Representação dos embeddings de entrada
 - Construído a partir da junção de 3 vetores

- Representação dos embeddings de entrada
 - Embeddings de segmento e de posição incluem ordenamento temporal nas palavras/tokens
 - Importante, pois os tokens/embeddings são incluídos simultaneamente no BERT
 - Modelos de linguagem necessitam que esse ordenamento seja preservado.

- Pré-treinamento: Treinamento simultâneo nos 2 problemas:
 - Saída é a classificação do NSP + sentença não mascarada

Vetores T_i possuem o mesmo tamanho e são gerados simultaneamente

- Cada vetor T_i passa por uma camada FC com 30k neurônios (tamanho do vocabulário) com função de ativação softmax
 - Treinada com a função de erro cross entropy

- Refinamento (Fine-tuning): Usa o conhecimento em língua aprendido como base para resolver problemas específicos:
 - Treina (refina) o BERT para problemas específicos
 - Geralmente utilizando dados supervisionados.
 - Substitui as camadas de saída totalmente conectadas da rede e as treinam/adaptam para a tarefa específica
 - Pesos das novas camadas de saída são treinados do zero.
 - Demais parâmetros do modelo são "suavemente" refinados!
 - Treinamento mais rápido e com necessidade de menos dados supervisionados!

Refinamento (Fine-tuning): Usa o conhecimento em língua aprendido como base para resolver problemas específicos:

Refinamento (Fine-tuning):

Ex: SQuAD v 1.1 - The Stanford Question Answering Dataset

Passage

- S₁: Pharmacists are healthcare professionals with specialized education and training who perform various roles to ensure optimal health outcomes for their patients through the quality use of medicines.
- **S₂:** Pharmacists may also be **small-business proprietors**, owning the pharmacy in which they practice.
- **S**₃: Since pharmacists know about the mode of action of a particular drug, and its metabolism and physiological effects on the human body in great detail, they play an important role in optimization of a drug treatment for an individual.

Question: What other role do many pharmacists play?

Answer: small-business proprietors

Refinamento (Fine-tuning): Usa o conhecimento em língua aprendido como base para resolver problemas específicos:

Refinamento (Fine-tuning): Usa o conhecimento em língua aprendido como base para resolver problemas específicos:

Saída inclui um vetor de start e end na parte da passagem que encapsula a resposta

Assumindo que a resposta está dentro da passagem.

BERT - Desempenho

► BERT_{BASE} e BERT_{LARGE}

Número de blocos

(Layers) Transformers

BERT - Desempenho

Todos os resultados do paper para o fine-tuning podem ser replicados com 1 TPU com menos de 1h de treinamento

BERT Large treinado para o SQuAD v1.1: 30 minutos de treinamento numa única TPU - F1-score de 91%

Generative Pretrained Transformers (GPT)

GPT-1: https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language-understanding-paper.pdf

GPT-2::https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

GPT - Ideia Geral

- Utiliza a mesma ideia geral do BERT
 - Ideia geral:
- 1. Pré-treinamento para compreender língua;
- 2. Fine-tuning para aprender tarefas específicas

GPT-1 - Arquitetura

Encadeamento de vários blocos Decoders (Transformers)

GPT-1 - Pré-treinamento

- Pré-treinamento: aprende como um modelo de linguagem
 - Recebe uma sentença como entrada e tenta prever a próxima palavra
 - Possível aprender a partir de dados não-rotulados
 - Self-supervised learning

GPT-1 - Fine-Tuning

- Fine-Tuning: Usa o conhecimento em língua aprendido como base para resolver problemas específicos
 - Precisa de dados rotulados para isso!
 - Requer menos dados que um treinamento do zero;
- Mas existem algumas questões com o fine-tuning!

1. Ainda requer muitos dados!

Task	Data Requirements
Machine Translation	~100,000 samples
Question-Answer	~100,000 samples
Text Summarization	~100,000 samples
Sentence Similarity	~100,000 samples

2. É fácil entrar em overfitting!

Necessário avaliar se o dataset do fine-tuning é uma boa representação (amostra) da natureza!

3. Não é como os humanos aprendem!

► Humanos aprendem com poucos exemplos (não milhares)!

<u>Task</u>	Data Requirements	<u>Human</u>
Machine Translation	~100,000 samples	10 samples
Question-Answer	~100,000 samples	1 sample
Text Summarization	~100,000 samples	2 samples
Sentence Similarity	~100,000 samples	3 samples

4. Não é natural para compreender questões mais abrangentes no contexto de PLN

GPT-2 - Meta-Learning

Uma alternativa para endereçar essas questões é o
 Meta-Learning - proposto no GPT2

- Ideia geral:
- Pré-treinamento para compreender língua como no GPT1;
- Zero-shot learning em vez de Fine-tuning;

- Zero-Shot Learning: Realiza uma tarefa específica quando é fornecido apenas uma <u>"instrução + entrada"</u>
- Não é necessário fazer atualização de parâmetros;
- Na inferência, é passado a <u>entrada</u> e também <u>um prompt:</u> que instrução deve ser feita com a entrada

Zero-Shot Learning: Realiza uma tarefa específica quando é fornecido apenas uma <u>"instrução + entrada"</u>

Título do artigo: "Language Models are Unsupervised Multitask Learners"

- Zero-short learning é muito difícil para o modelo!
 - É difícil até para humanos!
- Necessário escalar a arquitetura para capturar os mais variados padrões da língua para as mais variadas tarefas
- GPT-2 foi treinado com 1,5 bilhões de parâmetros!

 GPT-2 não se saiu tão bem em alguns benchmarks quando comparado com o estado da arte na área.

Mas escalar a arquitetura deu alguns sinais de ajuda na performance!

 Explorou a ideia de <u>escalar ainda mais arquitetura</u> com o uso de <u>meta-learning</u> (da GPT-2)

- GPT-3 possui 175 bilhões de parâmetros!!!
- Explora melhor o conceito de <u>Meta-Learning</u>, admitindo outras possibilidades:
 - Zero-shot Learning;
 - One-Shot Learning;
 - Few-shot Learning;

 Explorou a ideia de <u>escalar ainda mais arquitetura</u> com o uso de <u>meta-learning</u> (da GPT-2)

- GPT-3 possui 175 bilhões de parâmetros!!!
- Explora melhor o conceito de <u>Meta-Learning</u>, admitindo outras possibilidades:
 - Zero-shot Learning;
 - One-Shot Learning;
 - Few-shot Learning;

- One-Shot Learning: Um exemplo é passado para o modelo como contexto.
- IMPORTANTE: Não há atualização de parâmetros no GPT-3!

- <u>Few-Shot Learning</u>: Alguns exemplos são passados para o modelo como contexto.
 - Usualmente de 10 a 100 exemplos!

- Ótimo desempenho em algumas tarefas de PLN!
 - Vermelho GPT-3!
 - Verde SOTA!

ChatGPT

Contudo, <u>ChatGPT</u> 1a versão (Dez/2022) já utilizava uma versão <u>fine-tuned do GPT!</u>

Universidade Federal da Paraíba Centro de Informática

Departamento de Informática

Aprendizado Profundo Modelos de Linguagem de Larga Escala (LLMs)

(Material Baseado em @CodeEmporium)

Tiago Maritan (tiago@ci.ufpb.br)