Computer Assignment 1

Aviral Agarwal

180167

Important:- All the relative error vs iteration plots are relative error PERCENTAGE vs number of iterations graphs

Q1) Test Function: -

1)
$$F(X) = 600*x.^4 - 550*x.^3 + 200*x.^2 - 20*x - 1 = 0$$

a) Bisection Method: -

Plot: -

F(x) vs x:

Relative approximate error vs iteration number:-

'The required root of the equation is: 0.232385'

b) False Position Method: -

Plot: -

F(x) vs x:

Relative approximate error vs iteration number:-

'The required root of the equation is: 0.181460'

c) Modified False Position Method: -

Plot: -

F(x) vs X:

Relative approximate error vs iteration number:-

'The required root of the equation is: 0.232384'

d) Newton Raphson Method: -

Plot: -

F(x) vs X:

Relative approximate error vs iteration number:-

'The required root of the equation is: 0.232353'

e) Secant Method: -

Plot: -

F(x) vs X:

Relative approximate error vs iteration number:-

'The required root of the equation is: 0.232353'

Equation 2: $-F(X) = \exp(-x) - x = 0$

a) Bisection Method: -

Plot: -

F(x) vs x:

Relative approximate error vs iteration number:-

'The required root of the equation is: 0.567139'

b) False Position Method: -

Plot: -

F(x) vs x:

Relative approximate error vs iteration number:-

'The required root of the equation is: 0.567150'

c) Modified False Position Method: -

Plot: -

F(x) vs X:

Relative approximate error vs iteration number:-

'The required root of the equation is: 0. 567197'

d) Newton Raphson Method: -

Plot: -

F(x) vs X:

Relative approximate error vs iteration number:-

'The required root of the equation is: 0. 567143'

e) Secant Method: -

Plot: -

F(x) vs X:

Relative approximate error vs iteration number:-

'The required root of the equation is: 0. 567143'

Q2) Test Function: -

1)
$$F(X) = 600*x.^4 - 550*x.^3 + 200*x.^2 - 20*x - 1 = 0$$

a) Muller Method: -

Plot: -

F(x) vs x:

'The required root of the equation is: 0. 232353'

b) Bairstow Method: -

Plot: -

F(x) vs x:

All the roots of the given equation are as follows: -

- 0.232353+0.000000i
- -0.035840+0.000000i
- 0.360077+0.265492i
- 0.360077-0.265492i

Equation 2: $-F(X) = x^3 + x^2 - 4x - 4 = 0$

a) Muller Method: -

Plot: -

F(x) vs x:

'The required root of the equation is: -1.000000'

b) Bairstow Method:-

Plot:-

F(x) vs x:

All the roots of the given equation are as follows: -

- 2.000000+0.000000i
- -1.000000+0.000000i
- -2.000000+0.000000i