6. MCH - Laboratory test result of the second of the patient of th	ies are imported here.	isures the number of platele amount in each of the red bl ge amount of hemoglobin in ize of your red blood cells)	ets in your blood) ood cells of a protein w		around your body)	
<pre>from sklearn.linear_model from sklearn.metrics impor from sklearn.feature_select import math from scipy import stats #Describing the size, shap patient_data = pd.read_csv</pre>	<pre>g import MinMaxScaler ion import train_test_split import LinearRegression, L rt classification_report, c ction import SelectKBest, c pe and dimension of the dat v('patient_treatment.csv')</pre>	LogisticRegression confusion_matrix, mean chi2	_squared_error				
print("There are {} number print("The dataset has a data there are 3309 number of rought the dataset has a 2 dimens the dataset has a 300 number of rought the dataset has a 2 dimens the dataset has a 3 dimens the dat	ecords and 11 number of fictional structure. of the dataset are: ".1 lataset are: INS ERYTHROCYTE LEUCOCYTE 1.1 4.18 4.6 1.0 6.86 6.3 1.0 4.57 6.2 1.4 4.67 3.5	of fields with a {} s.format(patient_data.n) elds with a (3309, 11) format(patient_data.he) THROMBOCYTE MCH M 150 26.6 3 232 20.4 3 336 30.6 3 276 30.8 3	hape.".format(patidim)) shape. ad())) CHC \ 2.8 1.4 2.6 4.4	ent_data.shape[6], patient_dat	a.shape[1], patient	_data.shape))
<pre>#The conversion is require patient_data['SEX'] = pati</pre>	NS ERYTHROCYTE LEUCOCYTE1 4.18 4.6	data within a given r 'F', 'M'], [1, 0]) : ".format(patient) THROMBOCYTE MCH M 150 26.6 3	_data.head())) CHC \ 2.8				
2 42.9 14 3 41.9 14 4 40.6 13 MCV AGE SEX SOURCE 0 80.9 33 1 1 1 65.0 36 0 0 2 93.9 70 1 0 3 89.7 18 1 0 4 83.7 36 0 0 #Printing the data types print("The datatype of the The datatype of the datase HAEMATOCRIT float64 HAEMOGLOBINS float64	e dataset are: ".format	336 30.6 3 276 30.8 3 711 27.4 3	2.6 4.4 2.8				
ERYTHROCYTE float64 LEUCOCYTE float64 THROMBOCYTE int64 MCH float64 MCV float64 AGE int64 SEX int64 SOURCE int64 dtype: object #Statistical description of print(patient_data.description) count HAEMATOCRIT 3309.0 38. HAEMOGLOBINS 3309.0 12.	mean std min 226111 5.971943 13.70 749350 2.084325 3.80	34.30 38.70 42.5 11.40 12.90 14.2	0				
ERYTHROCYTE 3309.0 4. LEUCOCYTE 3309.0 8. THROMBOCYTE 3309.0 258. MCH 3309.0 28. MCCV 3309.0 33. MCV 3309.0 84. AGE 3309.0 46. SEX 3309.0 0. SOURCE 3309.0 0. max HAEMATOCRIT 69.00 HAEMOGLOBINS 18.90 ERYTHROCYTE 7.86 LEUCOCYTE 76.60 THROMBOCYTE 1121.00 MCH 40.80 MCH 40.80 MCHC 38.40	5448020.7845101.487155334.9912991.10	4.04 4.58 5.0 5.70 7.60 10.3 191.00 257.00 322.0 27.20 28.70 29.8 32.70 33.40 34.1 81.50 85.30 88.8 29.00 48.00 64.0 0.00 0.00 1.0 0.00 0.00 1.0	6 0 0 0 0 0 0				
_scatter_matrix_data = scatter matrix can be	can be constructed to dispatter_matrix(patient_data, constructed to display how	olay how the data are figsize=(30,30), diag	onal='hist'))		
HAEMATOCRIT HAEMATOCRIT HAEMATOCRIT HAEMATOCRIT 12.2 - 0.0 - 0							
2 - 60 - 40 - 1000 - 1000 - 200 - 40 - 200 - 40 - 200 - 40 - 4							
35 - H30 - 25 - 20 - 20 - 34 - 34 - 30 - 28 - 26 - 110 - 100 - 20 - 20 - 20 - 20 - 20 -							
≥ 80 - 70 - 60 - 100 - 80 - 100 - 1							
Looking at the graph, we can see against Haemoglobins and so on. We can plot the correlation between	Let us see how the correlation is	defined for these variables	e linear correlation amo	-		AGE 最	I and similarly Haemato
<pre>\nWhereas from the sca \nBelow is the list or for data_keys in patient_content skewness = patient_content if skewness > 0: print(data_keys) elif skewness < 0: print(data_keys) else: print(data_keys) From the above graph while Whereas from the scatter p</pre>	<pre>data[data_keys].skew() , "is Right Skewed") , "is Left Skewed") , "is Normally Distributed' e considering the histograms</pre>	e are few outliers in set and determines whe	the dataset. \ ther they are norm e that most of the aset.	ally distributed	or skewed. \n	")	
HAEMATOCRIT is Left Skewed HAEMOGLOBINS is Left Skewe ERYTHROCYTE is Left Skewed LEUCOCYTE is Right Skewed THROMBOCYTE is Right Skewe MCH is Left Skewed MCHC is Left Skewed MCV is Left Skewed AGE is Left Skewed SEX is Right Skewed SOURCE is Right Skewed correlations = patient_dar plt.figure(figsize=(10,10) heatmap_ = sns.heatmap(cor	ta.corr()						
	1 0.28 -0.0077 0.01 -0.012	-0.24 -0.31 -0.25 -0.42 -0.25 -0.24	- 1.0 - 0.8 - 0.6				
	5 0.01 -0.19 0.59 1 0.26	0.048 -0.22 0.026 0.41 -0.00016 -0.014 1 -0.016 0.11	- 0.2 - 0.0 0.2				
As seen in the scatter plot above, variables are created by providing. The correlation is 1 for the diagon. The heatmap highlights the pairs in the scatter plot above.	and comparing with the heatmap g us with a correlation coeffeicient nal since plotting the correlation of	we can see that they both value.	gives out strong corre	lation.		tmap shows us how wel	I the correlation betwee
haemoglobins_data = patienerythrocyte_data = p	<pre>ion for few of the pair variables be n HAEMOGLOBINS and ERYTHROG nt_data['HAEMOGLOBINS'].val t_data['ERYTHROCYTE'].value y_test = train_test_split(m(X_train)</pre>	CYTE. Lues.reshape(-1,1) es.reshape(-1,1)	ythrocyte_data, te	st_size=0.25)			
	sion() _train) ct(X_test) the line of best fits. Here lue and the explanatory var t, c="grey", alpha=0.5) color='red', linewidth=2)		plotted between ha	emoglobins and e	rythrocyte and	the best line of f	it is created by p
7 - 6 - 5 - 4 - 3 - 2 - 0.1 0.2 0.3 0.4 0.5 0	0.6 0.7 0.8 0.9						
<pre>mse = mean_squared_error() print("Where the Slope is with mean squared error or</pre>	{} and the y intercept is f {} and \nroot mean square coef_[0][0], regression.int for the above can be found 4.650123374958852x. 23374958852 and the y intercept is foliated as foliated	{} \n\ ed error of {}" tercept_[0], mse, math d using :	.sqrt(mse)))	ormat(regression	.intercept_[0]	, regression.coef_[[0][0]))
pearson_coef, p_value = siprint("The Pearson coefficient of Here, the strength of linear regres between the Haemoglobin and Erprint("Similarly the coefficient Similarly similarly similarly the coefficient similarly s	tats.pearsonr(pd.DataFrame(cient of the variables is reference to the variation is the variables is reference to the variables in the variables is reference to the variables in the variables in the variables is reference to the variables in the variables in the variables is reference to the variables in th	r = {}".format(pearson) 52210741293029 positive as per the value of {}%".format(regression)	_coef)) Pearson coefficient. T	he Pearson coefficie		/ the positive slope valu	e that shows the correl
ity - pit. ityuie (itysize -	e(haemoglobins_data)[0], po , size=24) , size=18)		e_data)[0], color=	'magenta')			
Erythrocyte			•				
age_data = patient_data['/	Haemoglobins s an idea of the variability in the d	lues.reshape(-1,1)			moscedastic patte	ern.	
<pre>#between the predicted val plt.scatter(X_test, y_test plt.plot(X_test, y_pred, or </pre>	<pre>(X_test) sion() _train) ct(X_test) the line of best fits. Here lue and the explanatory var t, c="grey", alpha=0.5) color='red', linewidth=2)</pre>		plotted between ha	emoglobins and a	ge and the bes	t line of fit is cr	reated by plotting
[<matplotlib.lines.line2d] -<="" 18="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></matplotlib.lines.line2d]>							
<pre>mse = mean_squared_error() print("Where the Slope is with mean squared error or</pre>	{} and the y intercept is f {} and \nroot mean square coef_[0][0], regression.int for the above can be found (-2.1084613808368373)x. 613808368373 and the y interpretation of the square coefficient of	{} \n\ ed error of {}" tercept_[0], mse, math d using :	.sqrt(mse)))	.format(regressi	on.intercept_[0], regression.coef	·_[0][0]))
pearson_coef, p_value = siprint("The Pearson coefficient of Here, the strength of linear regres the Haemoglobin and Age is negative = plt.figure(figsize = sns.residplot(pd.DataFrame # title and labels plt.title('Residual plot')	tats.pearsonr(pd.DataFrame) cient of the variables is r the variables is r = -0.24 ssion is weak and the distance is r ative. = (10, 7)) e(haemoglobins_data)[0], po	r = {}".format(pearson 411697377282028 negative as per the value of	_coef)) Pearson coefficient. T	he Pearson coefficie	ent is supported by	the negative slope that	t shows the correlation
plt.xlabel('Haemoglobins', plt.ylabel('Age', size=18			•				
-20 -40 -60 -40 -60 -60 -60 -60 -60 -60 -60 -60 -60 -6	8 10 12 Haemoglobins	14 16 18	lo [‡] :	، دنور دنور			
<pre>X = patient_data.iloc[:, or y = patient_data.iloc[:,</pre>	chi2 method to find the most important to find the top fee 0:10] -1] st(score_func=chi2, k=5) st.fit(X, y) t_result.scores_) columns)	ortant featuers and find the satures that helps to d	regression and correlat	ion between the pre		rariables.	
Field Scores.nlarger Field Fie	gest(10, 'Score')) ore .43 .39 .85 .253 .31 .510 .528 .89 .526						
<pre>#Finding the correlation of predictor_data = patient_d target_data = patient_data</pre>	<pre>y_test = train_test_split(m(X_train) (X_test) sion()</pre>	h the target variable]].values.reshape(-1,2	SOURCE.)	0.25)			
<pre>format(regression.in mse = mean_squared_error() print("Where the Slope are with mean squared error or</pre>	best fit for the above can ntercept_, regression.coef_ y_test, y_pred) e {} and the y intercept is f {} and \nroot mean square coef_, regression.intercept for the above can be found (-1.144041380648387)X1 + (0	_[0], regression.coef_ s {} \n\ ed error of {}" t_, mse, math.sqrt(mse d using : 0.2754058731323951)X2.	[1])))))	{})X2. \n".			
The Pearson coefficient of THROMBOCYTE THROMBOCYTE 1.00000 AGE 0.02469 SOURCE -0.22955 Performance Improvem Logistic Regression is a Regression	ta[['THROMBOCYTE', 'AGE', 'cient of the variables are the variables are :	: ".format(pearso	s dependent variable a	and one or more nor	ninal,ordinal or rat	io independent variable	. Thus, for the above m
<pre># Defining the dataset for predictor_data = patient_d target_data = patient_data X_train, X_test, y_train, # Data normalization scaler = MinMaxScaler() scaler.fit_transform(X_train X_train = scaler.transform X_test = scaler.transform</pre>	r Logistic Regression. data[['THROMBOCYTE', 'AGE', a['SOURCE'] y_test = train_test_split(ain) m(X_train) (X_test)	figuration using the GridSea	es.reshape(-1,3)		. સા		
regression = LogisticRegresolvers = ['newton-cg', 'spenalty = ['12'] c = [0.01, 0.1, 1.0, 10] param_grid = dict(solver=specific products) a Repeated Straction of the Repeated Straction of the Repeated StratifiedKFG # Parameterizing the grid grid_search = GridSearchCV grid_result = grid_search # summarize results print("Best: %f using %s"	lbfgs', 'liblinear'] solvers, penalty=penalty, C=c atifier KFold with 10 split old(n_splits=10, n_repeats= search V(estimator=regression, par .fit(X_train, np.ravel(y_tr % (grid_result.best_score_	c) ts and 2 repeats for t =2, random_state=1) ram_grid=param_grid, n rain))	_jobs=-1, cv=cv, s		',error_score=	0)	
print("%f (%f) with: 9 Best: 0.695895 using {'C': 0.599759 (0.001654) with: 0.599759 (0.001654) with: 0.599759 (0.001654) with: 0.661233 (0.015826) with: 0.661233 (0.015826) with: 0.659016 (0.018389) with: 0.691662 (0.021003) with: 0.691662 (0.021003) with: 0.690051 (0.020172) with:	ults_['std_test_score'] esults_['params'] zip(means, stds, params): %r" % (mean, stdev, param)) 10, 'penalty': 'l2', 'soly {'C': 0.01, 'penalty': 'l2 {'C': 0.01, 'penalty': 'l2 {'C': 0.1, 'penalty': 'l2', {'C': 0.1, 'penalty': 'l2', {'C': 0.1, 'penalty': 'l2', {'C': 1.0, 'penalty': 'l2',	ver': 'newton-cg'} ', 'solver': 'newton-c ', 'solver': 'lbfgs'} ', 'solver': 'liblinea , 'solver': 'newton-cg , 'solver': 'lbfgs'} , 'solver': 'liblinear , 'solver': 'newton-cg , 'solver': 'libfgs'} , 'solver': 'lbfgs'} , 'solver': 'liblinear	r'} '} '}				
0.690051 (0.020172) with: 0.695895 (0.023475) with: 0.695895 (0.023475) with: 0.695088 (0.022300) with: Here we can see that Logistic Rec C = 10 penalty = I2 solver = newton-cg gives us the best result for the date	{'C': 10, 'penalty': '12', {'C': 10, 'penalty': '12', {'C': 10, 'penalty': '12', gression with taset when THROMBOCYTE, AG r Logistic Regression. data[['THROMBOCYTE', 'AGE',	'solver': 'newton-cg' 'solver': 'lbfgs'} 'solver': 'liblinear' GE and HAEMATOCRIT are , 'HAEMATOCRIT']].valu	<pre>} explanatory variables es.reshape(-1,3)</pre>	and the SOURCE is	the response vari	able.	
target_data = patient_data	ain) m(X_train) (X_test) ameters for our grid search ession(penalty='12', solven _train)	'n	_ualā)				
<pre>predictor_data = patient_data target_data = patient_data X_train, X_test, y_train, # Data normalization scaler = MinMaxScaler() scaler.fit_transform(X_train) X_train = scaler.transform X_test = scaler.transform # Defining models and para regression = LogisticRegre regression.fit(X_train, y_train) y_pred = regression.predict</pre>	_						
<pre>predictor_data = patient_data target_data = patient_data X_train, X_test, y_train, # Data normalization scaler = MinMaxScaler() scaler.fit_transform(X_train) X_train = scaler.transform X_test = scaler.transform # Defining models and para regression = LogisticRegre regression.fit(X_train, y_ y_pred = regression.predic print(regression.coef_[0] -5.172125772710793 print("Thus, the line of large format(regression.in mse = mean_squared_error(y_print("Where the Slope are with mean squared error or</pre>	best fit for the above can ntercept_, regression.coef_ y_test, y_pred) e {} and the y intercept is f {} and \nroot mean square coef_[0], regression.intercent for the above can be found (2125772710793)X1 + (0.43683)	_[0][0], regression.co s {} \n\ ed error of {}" cept_, mse, math.sqrt(d using : 3772984059827)X2 + (-4	mse)))				
predictor_data = patient_data X_train, X_test, y_train, # Data normalization scaler = MinMaxScaler() scaler.fit_transform(X_train) X_train = scaler.transform X_test = scaler.transform # Defining models and para regression = LogisticRegro regression.fit(X_train, y, y_pred = regression.predic print(regression.coef_[0] -5.172125772710793 print("Thus, the line of language of the scaler of the scale of the sc	best fit for the above can ntercept_, regression.coef_ y_test, y_pred) e {} and the y intercept is f {} and \nroot mean square coef_[0], regression.intercept is for the above can be found 2125772710793)X1 + (0.4368372)X1 + (0.4368373)X1 +	_[0][0], regression.co s {} \n\ ed error of {}" cept_, mse, math.sqrt(d using : 3772984059827)X2 + (-4 1803] and the y interc 'SOURCE']].corr() : ".format(pearso	ef_[0][1], regress mse))) .340518027012843)X ept is [2.92494828 n_coef))		Vo.	CVT '	a ho#-