Lambda Calcul

Lambda termeni

 $\begin{array}{c|c} \textbf{lambda termen} = \textbf{variabila} \\ & | \textbf{ aplicare} \\ & | \textbf{ abstracticare} \\ M, N ::= \textbf{\textit{x}} |(MN)|(\lambda x.M) \end{array}$

Conventii:

- Se elimina parantezele exterioare (M N) P inseamna M N P
- Aplicarea este asociativa la stanga
 - * M N P inseamna (M N) P
 - * f x y z inseamna ((f x) y) z
- Corpul abstractizarii se extinde la dreapta $\lambda x.MN$ inseamna $\lambda x.(MN)$
- In termenul $M \equiv (\lambda x.xy)(\lambda x.yz)$
 - * λ se numeste operator de legare
 - * x este variabila legata
 - * z este variabila libera
 - * y are o aparitie legata, si una libera
 - * multlimea variabilelor libere ale lui M este y, z
- N din $\lambda x.N$ se numeste **domeniul** de legare a lui x si toate aparitiile lui x in N sunt **legate**
- un termen fara variabile libere se numeste inchis(closed) sau combinator

$\beta - reductii$ reguli

Un pas de β – reductie \rightarrow_{β} este cea mai mica relatie pe lamba termeni care satisface regulile:

$$\begin{array}{l} \hline (\lambda.M)N \rightarrow_{\beta} M[N/x] \\ \underline{M \rightarrow_{\beta} M'} \\ \overline{MN \rightarrow_{\beta} M'N} \\ \underline{N \rightarrow_{\beta} N'} \\ \overline{MN \rightarrow_{\beta} MN'} \\ \underline{M \rightarrow_{\beta} N'} \\ \underline{M \rightarrow_{\beta} N'} \\ \overline{\lambda x.M \rightarrow_{\beta} \lambda x.M'} \end{array}$$

Redenumire de variabile

 $\mbox{\bf M}\ \langle y/x\rangle$ - rezultatul obtinut dupa redenumirea lui x cu y in M

- $x\langle y/x\rangle \equiv y$
- $z\langle y/x\rangle \equiv z$, daca $x \neq z$
- $(MN)\langle y/x\rangle \equiv (M\langle y/x\rangle)(N\langle y/x\rangle)$
- $(\lambda x.M)\langle y/x\rangle \equiv \lambda y.(M\langle y/x\rangle)$
- $(\lambda z.M)\langle y/z\rangle \equiv \lambda z.(M\langle y/x\rangle)$, daca $x \neq z$

 $\alpha - echivalenta$

 $\alpha-echivalenta$ - cea mai mica relatie de congruenta pe multimea lambda termenilor, astfel incat pentru orice termen M si orice variabila y care nu apare in M, avem: $\lambda.M =_{\alpha} \lambda y.(M\langle y/x\rangle)$

Substitutii

M[N/x]este rezultatul obtinut dupa inlocuirea lui x cu N in M.

- 1. Vrem sa inlocuim doar variabile libere: $x(\lambda xy.x)[N/x]$ este $N(\lambda xy.x)$ (NU $N(\lambda xy.N)$ sau $N(\lambda Ny.N)$
- 2. Nu vream sa legam variabile libere neintentionat asa ca redenumim variabilele legate inainte de substitutie.

M[N/x]

$$\begin{split} x[N/x] &\equiv N \\ y[N/x] &\equiv y, \; \mathrm{daca} \; x \neq y \\ (MP)[N/x] &\equiv (M[N/x])(P[N/x]) \\ (\lambda x.M)[N/x] &\equiv \lambda x.M \\ (\lambda y.M)[N/x] &\equiv \lambda y.(M[N/x]), \; x \neq y,y \notin FV(N) \\ (\lambda y.M)[N/x] &\equiv \lambda y'.(M\langle y'/y\rangle[N/x]), \; \mathrm{daca} \; x \neq y, \\ y &\in FV(N), \; y' \; \mathrm{variabila} \; \mathrm{noua} \\ FV(N) - \mathrm{multimea} \; \mathrm{variabilelor} \; \mathrm{libere} \; \mathrm{ale} \; \mathrm{lui} \; \mathrm{N} \end{split}$$

$\beta - reductii$

 $\beta - reductie =$ procesul de a evalua lambda termeni prin "pasarea de argumente"

 $\beta - redex = \text{un termen de forma } (\lambda x.M)N$ redusul unui redex $(\lambda x.M)N$ este M[N/x]

forma normala = un lambda termen fara redex-uri

$\beta - forma$ normala

 $M \twoheadrightarrow_{beta}$ - M
 poate fi $\beta - redus$ pana la $M^{'}$ in 0 sau mai multi pasi

M este:

slab normalizabil daca exista N in forma normala a.i. $M \rightarrow_{\beta} N$.

puternic normalizabil daca nu exista reduceri infinite care incep din M.

 $(\lambda xy.y)((\lambda x.xx)(\lambda x.xx))(\lambda z.z)$ este **slab nor-malizabil**, dar **NU** puternic normalizabil.

Teorema Church-Rosser

Daca $M \to_{\beta} M_1$ si $M \to_{\beta} M_2$ atunci exista $M^{'}$ a.i. $M_1 \to_{\beta} M^{'}$ si $M_2 \to_{\beta} M^{'}$.

Consecinta. Un lambda termen are cel mult o $\beta - forma$ normala (modulo $\alpha - echivalenta$).

Strategii de evaluare

— Strategia normala(leftmost-outermost) —

Daca M_1 si M_2 sunt redex-uri si M_1 este un subtermen al lui M_2 , atunci M_1 NU va fi urmatorul redex ales

$$\frac{(\lambda xy.y)((\lambda x.xx)(\lambda x.xx))}{\lambda_{\beta} \lambda x.x}(\lambda x.xx)(\lambda x.xx)(\lambda z.z) \rightarrow_{\beta} (\lambda y.y)(\lambda x.x)$$

— Strategia aplicativa(leftmost-innermost) —

Daca M_1 si M_2 sunt redex-uri si M_1 este un subtermen al lui M_2 , atunci M_2 NU va fi urmatorul redex ales.

$$(\lambda xy.y)((\lambda x.xx)(\lambda x.xx))(\lambda z.z) \rightarrow_{\beta} (\lambda xy.y)((\lambda x.xx)(\lambda x.xx))(\lambda z.z)$$

CBN si CBV

Strategia call-by-name(CBN) = strategia normala fara a face reducrei in corpul unei $\lambda - abstractizari$

Strategia call-by-value(CBV) = strategia aplicativa fara a face reduceri in corpui unei $\lambda-abstractizari$

Booleeni

 $\mathbf{T} \triangleq \lambda xy.x$ $\mathbf{F} \triangleq \lambda x y. y$ $\mathbf{if} \triangleq \lambda bt f.b t f$ and $\triangleq \lambda b_1 \lambda b_2$ if $b_1 b_2$ F $\mathbf{or} \triangleq \lambda b_1 \lambda b_2 \text{ if } b_1 \mathbf{T} b_2$ $\mathbf{not} \triangleq \lambda b_1 \text{ if } b_1 \mathbf{FT}$

Numere naturale

Numeralii Church: $\lambda fx.f^nx$ $\bar{0} \triangleq \lambda f x. f^0 x = \lambda f x. x$

 $\bar{1} \triangleq \lambda f x. f^1 x = \lambda f x. f x$ $\bar{2} \triangleq \lambda f x. f^1 x = \lambda f x. f(f x)$

Succesor: Succ $\triangleq \lambda n f x. f(n f x)$

Adunare:

 $add \triangleq \lambda mnfx.mf(nfx)$

 $add \triangleq \lambda mn.m$ Succ n

Inmultirea: $\mathbf{mul} \triangleq \lambda mn.m(\mathbf{add}n)\bar{0}$

Ridicarea la putere: $\exp \triangleq \lambda mn.m(\mathbf{mul}n)\bar{1}$ Verifica numar = 0: isZero $\triangleq \lambda nxy.n(\lambda z.y)x$

Puncte fixe

Spunem ca x este un punct fix al functiei f daca

THM. In lambda calcul fara tipuri, orice termen are un punct fix.

Daca F si M sunt λ -termeni, spunem ca M este un punct fix al lui F daca $FM =_{\beta} M$

Combinatorii de puncte fixe:

Curry: $\mathbf{Y} \triangleq y.(\lambda x.y(xx))(\lambda x.y(xx))$ Turing: $\Theta \triangleq (\lambda xy.y(xxy))(\lambda xy.y(xxy))$

Factorial

 $\mathbf{fact} \ n = \mathbf{if}(\mathbf{isZero} \ n)(\bar{1})(\mathbf{mul} \ n(\mathbf{fact}(\mathbf{pred} \ n)))$ $\mathbf{fact} \triangleq \mathbf{Y}(fn.\mathrm{if} (\mathbf{isZero} \ n)(\bar{1})(\mathbf{mul} \ n(f(\mathbf{pred} \ n)))$

Lambda calcul cu tipuri

Tipuri simple -

Fie $\mathbb{V} = \{\alpha, \beta, \gamma, ...\}$ o multime infinita de tipuri variabila. Multimea tuturor tipurilor simple $\mathbb T$ este definita prin:

 $\mathbb{T} = \mathbb{V} | \mathbb{T} \to \mathbb{T}$

(Tipul variabila) Daca $\alpha \in \mathbb{V}$, atunci $\alpha \in \mathbb{T}$ (Tipul sageata) Daca $\sigma, \tau \in \mathbb{T}$, atunci $(\sigma \to \tau) \in \mathbb{T}$

Termeni si tipuri -

Variabila. $x:\sigma$

Aplicare. Daca $M: \sigma \to \tau$ si $N: \sigma$, atunci $MN: \tau$. Abstractizare. Daca $x : \sigma \text{ si } M : \tau$, atunci $\lambda x.M: \sigma \to \tau$

— Deductie pentru Church $\lambda \rightarrow$ –

Multimea λ -termenilor cu pre-tipuri $\Lambda_{\mathbb{T}}$ este

 $\Lambda_{\mathbb{T}} = x | \Lambda_{\mathbb{T}} \Lambda_{\mathbb{T}} | \lambda x : \mathbb{T} . \lambda_{\mathbb{T}}$

O afirmatie este o expresie de form $M:\sigma$, unde $M \in \Lambda_{\mathbb{T}} \text{ si } \sigma \in \mathbb{T} \text{ (M- subject, } \sigma\text{- tip)}$

O declaratie este o afirmatie in care subjectul este o variabila $(x:\sigma)$

Un context este o lista de declaratii cu subiecti diferiti.

O judecata este o expresie de forma $\Gamma \vdash M : \sigma$, unde \vdash este context si $M : \sigma$ este o afirmatie.

Reguli

 $\frac{1}{\Gamma \vdash x : \sigma}$, daca $x : \in \Gamma$ (var)

 $\frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau} \text{ (app)}$

 $\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x : \sigma.M) : \sigma \to \tau} \text{ (abs)}$

Strategii de evaluare

Multimea tipurilor:

 $\mathbb{T} = \mathbb{V} \mid \mathbb{T} \to \mathbb{T} \mid \text{Unit} \mid \text{Void} \mid \mathbb{T} \times \mathbb{T} \mid \mathbb{T} + \mathbb{T}$ Multimea λ -termenilor cu pre-tipuri $\Lambda_{\mathbb{T}}$ este:

 $\Lambda_{\mathbb{T}} = x | \Lambda_{\mathbb{T}} \Lambda_{\mathbb{T}} | \lambda x : \mathbb{T} . \lambda_{\mathbb{T}} | \text{unit} | \langle \Lambda_{\mathbb{T}}, \Lambda_{\mathbb{T}} \rangle$ |fst $\Lambda_{\mathbb{T}}$ |snd $\Lambda_{\mathbb{T}}$ |Left $\Lambda_{\mathbb{T}}$ |Right $\Lambda_{\mathbb{T}}$ |case $\Lambda_{\mathbb{T}}$ of $\Lambda_{\mathbb{T}}$; $\Lambda_{\mathbb{T}}$

· Corespondenta Curry-Howard ·

 λ - calcul cu tipuri Deductie naturala

 $\frac{\Gamma \vdash M : \sigma \quad \Gamma \vdash N : \tau}{\Gamma \vdash \langle M, N \rangle : \sigma \times \tau} (\times_I) \qquad \frac{\Gamma \vdash \sigma \quad \Gamma \vdash \tau}{\Gamma \vdash \sigma \wedge \tau} (\wedge_I)$ $\frac{\Gamma \vdash M : \sigma \times \tau}{\Gamma \vdash fstM : \sigma} (\times_{E_1}) \qquad \frac{\Gamma \vdash \sigma \wedge \tau}{\Gamma \vdash \sigma} (\wedge_{E_1})$ $\frac{\Gamma \vdash p : \sigma \times \tau}{\Gamma \vdash snd \ p : \tau} \ (\times_{E_2})$ $\frac{\Gamma \vdash \sigma \land \tau}{\Gamma \vdash \tau} (\land_{E_2})$ $\frac{\Gamma \cup \{x : \sigma\} \vdash M : \tau}{\Gamma \vdash \lambda x.M : \sigma \to \tau} (\to_I) \qquad \frac{\Gamma \cup \{\sigma\} \vdash \tau}{\Gamma \vdash \sigma \supset \tau} (\supset_I)$ $\Gamma \vdash \lambda x.M : \sigma \to \tau \quad \Gamma \vdash N : \sigma \quad \Gamma \vdash \sigma \supset \tau \quad \Gamma \vdash \sigma$ $\bigcap_{\Gamma \vdash \tau} \Gamma \vdash \tau$ $\Gamma \vdash MN : \tau$ (\rightarrow_E)

Teoria tipurilor $\rightarrow Logica$ tipuri $\rightarrow formule$ $termeni \rightarrow demonstratii$ inhabitation a tipului $\sigma \to \text{demonstratie}$ a lui σ tip produs \rightarrow conjunctie $tip functie \rightarrow implicatie$ $tip suma \rightarrow disjunctie$ tipul void \rightarrow false tipul unit \rightarrow true Propositions are types! Proofs are terms!

Template folosit: Nelson Elias Rincon Quiñones