Parallel Programming

Lecture 3

István Reguly

reguly.istvan@itk.ppke.hu

Data dependencies

- Most directive based parallelisation consists of splitting up big for loops into independent chunks that the many processors can work on simultaneously
- For example in case of a simple loop

```
// vector add example
for (int i = 0; i < 100000; i++) {
          c[i] = a[i] + b[i]
}</pre>
```

You can run on a 1000 processors, each executing a 100 iterations

No data dependencies

Data dependency

- What if the iterations of the loop are not independent?
- Take the following loop

• There is a "loop carried dependency": need result from previous iteration

Data dependencies

• This is a data dependency – if the compiler even suspects that there is a data dependency, it will, for the sake of correctness, refuse to parallelise that loop

Loop carried dependence of 'c' prevents parallelization Loop carried backward dependence of 'c' prevents vectorization

- What can you do?
 - Rearrange code to make clear that there is not really any data dependency
 - Eliminate a real dependency by changing the code
 - Override the compiler's judgement risking invalid results. #pragma omp for does just that
- Why is this important?
 - Looking at your for loops, compilers will try to automatically parallelise them, particularly with Single-Instruction-Multiple-Data

Control Structure of Parallel Platforms

- Parallelism ranges from instructions to processes
- Processor control structure alternatives:
 - Work independently
 - Operate under the centralised control of a single control unit
- MIMD
 - Multiple Instruction streams
 - Each processor has its own control unit
 - Each processor can execute different instructions
 - Multiple Data streams
 - Processors work on their own data
- SIMD
 - Single Instruction Stream
 - Single control unit dispatches the same instruction to processors
 - Multiple Data Streams
 - Processors work on their own data

SIMD and MIMD processors

PE = Processing Element

SIMD control

- SIMD is very good with computations that have a regular structure
 - Media processing, linear algebra, etc...
- Activity mask
 - Per PE predicated execution: turn off operations on certain PEs
 - Each PE tests own conditional and sets own activity mask

Example: 128-bit SIMD vectors

Data types: anything that fits into 16 bytes, e.g.

- Instructions operate in parallel on data in this 16 byte register
 - Add, multiply, etc.
 - Data bytes must be contiguous in memory and aligned
- Additional instructions needed for:
 - Masking data
 - Moving data from one part of a register to another

Computing with SIMD units

- Scalar processing
 - One operation produces one result
- SIMD vector units
 - One operation produces multiple results

Alex Klimovitski & Dean Macri, Intel Corporation

SIMD operation

SIMD execution

- Performs an operation in parallel on an array of 2,4,8,16, or 32 values, depending on the size of the values
- Data parallel operation
- The operation can be
 - Data movement
 - Arithmetic instruction
 - Logical instruction
 - Comparison instruction
 - Conversion instruction
 - Shuffle instruction

Packed and scalar operations

 Packed operations apply in parallel to 2, 4 or 8 floating-point values

- Scalar operations apply an operation on a single floating-point value
- Cost is the same!

Conditional execution

SIMD examples

- Historically: SIMD computers
 - Connection Machine CM-1/2: 65536 1-bit processors
- Today: SIMD units or accelerators
 - Vector units
 - SSE/2/3/4 Streaming SIMD Extensions
 - 128 bit registers
 - AVX/2/512 Advanced Vector Extensions
 - 256 or 512 bit registers (Sandy Bridge/Skylake)
 - Co-processors
 - NVIDIA GPUs
 - Intel Xeon Phi

Intel Xeon Phi

- 64 cores
 - 64 KB L1 cache
 - 512 KB L2 cache
 - 32 512-bit vector registers
 - 4-way SMT per core
- Up to 1.5 GHz
- 16 GB Stacked memory
 - Max 450 GB/s
- 3 TFlops

NVIDIA A100 GPU

- 108 Streaming Multiprocessors (SMX)
- Each SMX
 - 64 CUDA cores
 - Fully pipelined FP and INT units
 - Four warp schedulers
 - 32-thread groups (warps)
 - 4 warps issue and execute concurrently
 - 2 instructions/warp/cycle
 - 64 double precision units
 - 32 Load-Store Units
 - 32 Special Function Units
- 9.7/19.5 TFLOP

Programming for vector units

- Different ways to use vector instructions in your program
- 1. Automatic vectorisation by the compiler
 - No explicit vectorised programming required, but we have to arrange the code so that the compiler can recognize possibilities for vectorisation
- 2. Express the computation as arithmetic expressions on vector data types
 - Declare variables of a vector type
 - Express computations as normal arithmetic expressions
- 3. Use compiler intrinsic functions for vector operations
 - Functions that implement vector instructions in a high-level language
 - Requires detailed knowledge of the vector instruction set

Programming with intrinsics

We really do not want to write vector code ourselves...

```
void saxpy(int n, float alpha, float *X, float *Y) {
  for (int i=0; i<n; i++)
     Y[i] = alpha*X[i] + Y[i];
}

void saxpy(int n, float alpha, float *X, float *Y) {
    __m128 x_vec, y_vec, a_vec, res_vec; /* Vector variables */
    a_vec = _mm_set1_ps(alpha);
  for (int i=0; i<n; i+=4) { /* Vector of 4 alpha values */
     x_vec = _mm_load_ps(&X[i]); /* Load 4 values from X */
     y_vec = _mm_load_ps(&Y[i]); /* Load 4 values from y */
     /* Compute */
    res_vec = _mm_add_ps(_mm_mul_ps(a_vec, x_vec), y_vec);
    _mm_store_ps(&Y[i], res_vec); /* Store the result */
}</pre>
```


Automatic vectorization

- Requires a compiler with vectorising capabilities
 - In g++, enabled above -O3 (add -ffast-math), or -Ofast
 - Intel compiler is the best
- The compiler automatically recognises loops that can be implemented with vectorised code
 - Really difficult thing to do, the compiler has to guarantee that correct code is generated!
- Help the compiler by giving hints:
 - Pointers with "__restrict": no aliasing
 - Align arrays to 32 bytes: faster load

Example: SAXPY

Single-precision Alpha X Plus Y

```
void saxpy(int n, float alpha, float *X, float *Y) {
  for (int i=0; i<n; i++)
    Y[i] = alpha*X[i] + Y[i];
}</pre>
```

Vectorised code will do the computation on 4 values at a time

Try: CC saxpy.cpp -o saxpy -Ofast -fopenmp

Using compiler vectorisation

• Use the compiler switches —Ofast and -fopt-info[-vec] (for gcc) to see reports about which loops were vectorised

```
g++ saxpy.cpp -o saxpy -Ofast -std=c++11 -fopenmp -fopt-info-vec
saxpy.cpp:8:3: note: loop vectorized
saxpy.cpp:8:3: note: loop versioned for vectorization because of possible aliasing
Later g++ more clever:
saxpy.cpp:8:18: optimized: loop vectorized using 16 byte vectors
saxpy.cpp:8:18: optimized: loop versioned for vectorization because of possible aliasing
saxpy.cpp:8:18: optimized: loop vectorized using 8 byte vectors
saxpy.cpp:8:18: optimized: loop vectorized using 16 byte vectors
Cray CC
CC saxpy.cpp -o saxpy -Ofast -fopenmp -Rpass="loop|vect" -Rpass-missed="loop|vect" -Rpass-analysis="loop|vect"
remark: saxpy.cpp:8:3: vectorized loop (vectorization width: 8, interleaved count: 4) [-Rpass=loop-vectorize]
remark: saxpy.cpp:8:3: List vectorization was possible but not beneficial with cost 0 >= 0 [-Rpass-missed=slp-ve-
remark: saxpy.cpp:8:3: preserved loop [-Rpass=loop-delete]
remark: saxpy.cpp:8:3: unrolled loop by a factor of 4 with run-time trip count [-Rpass=loop-unroll]
remark: saxpy.cpp:8:3: loop not distributed: use -Rpass-analysis=loop-distribute for more info [-Rpass-missed=lo-
remark: saxpy.cpp:8:3: vectorized loop (vectorization width: 8, interleaved count: 4) [-Rpass=loop-vectorize]
remark: saxpy.cpp:8:3: preserved loop [-Rpass=loop-delete]
```

Explicit vector data types

- Declare variables of vector data types and express the computations with normal arithmetic expressions
 - +,-,*,etc. are overloaded with the corresponding vector operations

```
#include <xmmintrin.h>
void saxpy(int n, float alpha, float * __restrict X, float * __restrict Y) {
  const __m128 * __restrict x = (__m128*)__builtin_assume_aligned (X, 32);
  __m128 * __restrict y = (__m128 *)__builtin_assume_aligned (Y, 32);
  for (int i=0; i<n/4; i++)
    y[i] = alpha*x[i] + y[i];
}</pre>
```

- Note that the number of operations in the loop is now n/4
 - x[i] and y[i] are now vectors of 4 floating-point values
 - Alpha is a scalar

Using compiler intrinsics

- Functions for performing vector operations on packed data
 - Implemented as functions which call the corresponding vector instructions
 - Implemented with inline assembly code
- Vectorised programming with intrinsics is very low-level
 - Also non-portable...
- Operate on vector data types __mm128, __mm256
- Often used for vector operations that can not be expressed as normal arithmetic operations
 - Loading/storing, shuffle, masking...

SAXPY with vector intrinsics

```
void saxpy(int n, float alpha, float *X, float *Y) {
   __m128 x_vec, y_vec, a_vec, res_vec; /* Vector variables */
   a_vec = _mm_set1_ps(alpha);
   for (int i=0; i<n; i+=4) { /* Vector of 4 alpha values */
        x_vec = _mm_load_ps(&X[i]); /* Load 4 values from X */
        y_vec = _mm_load_ps(&Y[i]); /* Load 4 values from y */
        /* Compute */
        res_vec = _mm_add_ps(_mm_mul_ps(a_vec, x_vec), y_vec);
        _mm_store_ps(&Y[i], res_vec); /* Store the result */
}</pre>
```

- Declare vector variables of appropriate type
- Load data values into the variables
- Do arithmetic operations by calling intrinsics
- Load/store require alignment
 - Unaligned: _mm_loadu_ps

Arranging data for vector operations

- It is important to organize data in memory so it can be accessed as vectors
 - Consider a structure with four elements: x,y,z,v
- Array of structures

• Structure of arrays

• Hybrid structure:

Rearranging data in memory for vector operation is called data swizzling:
 there are shuffle intrinsics

Portability

- Explicitly vectorised code is not portable
 - Only runs on the architectures which support them
 - Sometimes not even portable across compilers
- Can use conditional compilation in the code
 - Program contains both scalar and vectorised versions

```
#ifdef __SSE2__
    // SSE2 version of the code
#else
    // Normal scalar version of the code
#endif
```

 Can use CPU dispatch: multiple versions, runtime detection (but no portability across compilers)

THE SECULATION

Exercise

- Take our matrix-matrix multiplication code (from last class)
- Determine memory access patterns of the innermost loop
 - Does it vectorise? (see if it reports vectorized for the given line number)
- Can we rearrange computations so it will vectorise?
 - With k as innermost loop we have data dependency across k iterations (since the same value in matrix3 is written)
 - Do you get the same result if you swap the k and j loops?
- How many floating point operations per second?
- Optional excercise: create a bar chart with achieved floating point operations per second with the vectorizing and non-vectorizing variants at different matrix sizes
- Running with OpenMP:

OMP_PROC_BIND=TRUE OMP_NUM_THREADS=xx ./matmat

Measuring parallel performance

- Speedup is helpful for comparing to the theoretical metrics
 - Time a parallel region, and see how close speedup is to the number of threads
- But it can also be very deceiving
 - Is it really a fair comparison? If you significantly rewrote/optimised your algorithm to get it running in parallel, then perhaps not
 - All too often, as you increase the number of threads, the speedup doesn't follow is something wrong with your code?
 - Taking a poorly written algorithm and making it run in parallel can look great, but is it actually efficiently making use of the hardware?
- On any given machine, there is a finite set of resources question is, how efficiently are we using them, and which one becomes the bottleneck?

Examples

• Take for example a classical benchmark (STREAM Triad, 10 million)

1 thread	2 threads	4 threads	8 threads
0.018692 sec	0.017075 sec	0.017179 sec	0.017270 sec
1x	1.09x	1.08x	1.08x

 Compare it to the matrix-matrix multiply example (2048^2)

1 thread	2 threads	4 threads	8 threads
3.346 sec	1.743 sec	1.062 sec	0.873 sec
1x	1.91x	3.15x	3.83x

Computations & Data Movement

- It all comes down to moving data and computing on data
 - Intel Core i7-6700K can do 8 single precision fused-multiply-add operations (2 ops) per core per clock cycle -> 2*8*4*4.2 (GHz) = 268 GFLOPs (Giga floating operations per second). Has a 34 GB/s bandwidth to DDR4.
 - 31 operations per byte
 - NVIDIA GTX 4090 can do 82000 single precision GFLOPs, has a 1008 GB/s bandwidth to GDDR6X
 - 325 operations per byte
- The cost of data movement is enormous.
 - 200-600 cycles (vs 1 cycle for compute), 100x in terms of power
 - Fortunately we have on-chip caches which are ~10x faster and more efficient but they are small

Examples

- Coming back to the vector add example, we see that at each iteration, we are moving 3 values, and performing 2 operations (1 add, 1 mul)
 - We are not using those values again
 - A ratio of 0.6 this algorithm is limited by data movement
 - The key bottleneck (resource) is the amount of available bandwidth around 18 GB/s on my laptop

1 thread	2 threads	4 threads	8 threads
0.017679 sec	0.015957 sec	0.015065 sec	0.015125 sec
1x	1.11x	1.17x	1.16x
13.5 GB/s	15.04 GB/s	15.9 GB/s	15.8 GB/s

 A single thread can almost fully utilize this resource – on larger machines you will need more threads, but usually less than the number of cores

Examples

- The matrix-matrix multiplication on the on the other hand moves 3*N^2 values and performs 2*N^3 operations
 - Assuming of course that each value is only moved once and then re-used N times
 - We have a ratio of up to 1.5N the algorithm is limited by computational throughput
 - The key bottleneck (resource) is the amount of available computational throughput (up to 73 Gflops/s on my laptop)

1 thread	2 threads	4 threads	8 threads
3.346 sec	1.743 sec	1.062 sec	0.873 sec
1x	1.91x	3.15x	3.83x
5.1 Gflops/s	9.8 Gflops/s	16.2 Gflops/s	19.7 Gflops/s

Our naïve implementation is not great, but still compute limited

Data movement and communication

- Latency: how long does a single operation take?
 - Measured in cycles or microseconds
- Bandwidth: What data rate can be sustained?
 - Measured in MBytes or Gbytes per seconds
- These terms can be applied to
 - Memory access
 - Messaging

The Cache

- The Cache is integrated onto the CPU
 - fast but small memory
 - used to store a small part of main memory for faster access
 - typically useful when you access the same small part of main memory multiple times
- CPU has different strategies for which small part of main memory to store in the Cache
 - Tries to be clever and predict what you don't need anymore and what you will need soon
- Different kinds of cache proximity to the core & size
 - L1, L2, L3

A memory hierarchy

Memory bandwidth

- Limited by both:
 - the bandwidth of the memory bus
 - the bandwidth of the memory modules
- Can be improved by increasing the size of memory blocks
- Memory system takes I time units to deliver b units of data
 - I is the latency of the system
 - B is the block size

Reusing data in the memory hierarchy

- Spatial reuse: using more than one "word" in a multi-word line
 - Unit of transfer is a cache line: 64B
 - Using multiple values on a cache line
- Temporal reuse: using a "word" repeatedly
 - Accessing the same word in a cache line more than once
- Think about matrix-matrix multiply!

Cache line and fetch utilisation

```
Program A
                                           Program B
struct DATA
                                          struct DATA
                                               int a;
    int a;
                                               int b;
    int b;
    int c;
    int d;
DATA * pMyData;
                                          DATA * pMyData;
for (long i=0; i<10*1024*1024; i++)</pre>
                                          for (long i=0; i<10*1024*1024; i++)</pre>
    pMyData[i].a = pMyData[i].b;
                                               pMyData[i].a = pMyData[i].b;
```

- Compare the two versions: cachetest.cpp
- Why do they not run at the same speed?
- The unit of loading is a cache line: 64 bytes

A full 64 byte cache line for Program A. Every block represents a 32 bit integer.

A full 64 byte cache line for Program B. Every block represents a 32 bit integer.

Struct alignment

- Any data has to be aligned to a multiple of its size
 - E.g. an int has to be 32-bit aligned, a double 64-bit, etc.

```
Program C
                                         Program D
struct DATA
                                          struct DATA
                                              int b;
    char a;
    int b:
                                              char a;
    char c;
                                              char c;
};
DATA * pMyData;
                                         DATA * pMyData;
for (long i=0; i<36*1024*1024; i++)</pre>
                                          for (long i=0; i<36*1024*1024; i++)
    pMyData[i].a++;
                                              pMyData[i].a++;
```

Take a look at aligned.cpp – why the size of the struct?

Strided accesses

Program E	Program F
char * p;	char * p;
<pre>p = new char[SIZE];</pre>	<pre>p = new char[SIZE];</pre>
<pre>for (long x=0; x<srowsize; (long="" for="" pre="" x++)="" y="0;" y++)="" y<nbrows;="" {<=""></srowsize;></pre>	<pre>for (long y=0; y<nbrows; (long="" for="" pre="" x="0;" x++)="" x<srowsize;="" y++)="" {<=""></nbrows;></pre>
<pre>p[x+y*sRowSize]++; }</pre>	<pre>p[x+y*sRowSize]++; }</pre>

- Take a look at strided.cpp why the performance difference?
 - We write the same data
 - Just not in the same order
- Try program E with different nbRows (keeping total size the same)
- Check cache accesses, hits & misses: valgrind --tool=cachegrind ./strided

Memory System Performance

- Exploiting spatial and temporal locality is critical for
 - Amortizing memory latency
 - Increasing effective memory bandwidth
- Ratio #operations / #memory accesses
 - Good indicator of anticipated tolerance to memory bandwidth
- Memory layout and computation organisation significantly affect spatial and temporal locality

Hiding latency with multithreading

- A thread is a single stream of control in the flow of a program
- Take e.g. the matrix-vector multiply

- Each dot product (row) is independent of each other
- Can rewrite with OpenMP:

On a single core

- Consider how the code would execute on a single CPU core, with two threads
 - First thread accesses a pair of data elements, and waits for them
 - Second thread can access two other data elements in the next CPU cycle
- After I units of time (I is the latency of the memory)
 - First thread gets its data and performs its multiply-add
- Next cycle
 - Data for the second thread arrives, performs its multiply add
- Then next loads, etc...
- If we have I threads, then for every cycle, we can perform a computation

Latency hiding

- Two major assumptions:
 - Memory system can service multiple outstanding requests
 - Processor can switch between threads at every clock cycle
- Really far from the truth on CPUs
 - Requires e.g. replicated register files
 - Intel has 2 threads per core, IBM 8
- GPUs do almost exactly this: up to ~28000 threads active

Vector type library

- There is an open source C++ vector types library
 - Take a look (vectorclass.cpp): https://www.agner.org/optimize/vectorclass.pdf
 - Use the Vec8f (float) or Vec4d (double) classes, the load and store methods, and horizontal_add methods to implement the saxpy example and matrix-matrix multiplication
 To compile: g++ -mavx2 -mfma -Ofast

```
// Simple vector class example C++ file
#include <stdio.h>
#include <vectorclass/vectorclass.h>
int main() {
   // define and initialize integer
   //vectors a and b Vec4i
   a(10,11,12,13); Vec4i
   b(20,21,22,23); // add the two vectors
   Vec4i c = a + b; // Print the results
   for (int i = 0; i < c.size(); i++) {
     printf(" %5i", c[i]);
   }
   printf("\n");
   return 0;
}</pre>
```

Homework due March 24th midnight

Time each method, and estimate the achieved bandwidth

Output at the very end of execution:

Name	Count	Time	GB/s
kernel1	10	0.2 s	s 35
kernel2	7	1. 3s	22

• • •