Lab Assignment-9

MTH 308 and & MTH 308B: Numerical Analysis and SCIENTIFIC COMPUTING-I

January-April 2024, IIT Kanpur

1. (Trapezoidal/Trapozoidal): Write a C/Matlab program on Trapozoidal rule to find approximate integral of a function in an interval.

Hint: (You may use the following algorithm)

INPUT: End points a, b of the interval of the interval [a, b], integer N or h (for number of partition of the interval [a, b].

OUTPUT: Approximation of $\int_a^b f(x) dx$ is T_h . Step-1: Set h = (b-a)/N; or N = (b-a)/h; (of course choose h so that N is an integer)

$$T_h = (f(a) + f(b))/2;$$

Step-2: For i = 1, 2, ..., N - 1, set $T_h = T_h + f(a + ih)$.

Step-3: $T_h = h \cdot T_h$

Step-4: OUTPUT (T_h) .

Step-5: STOP.

2. (Simpson's 1/3): Write a C/Matlab program on Simpson's rule to find approximate integral of a function in an interval.

Hint: (You may use the following algorithm)

INPUT: End points a, b of the interval of the interval [a, b], an integer N or h (for number of partition of the interval [a, b]).

OUTPUT: Approximation of $\int_a^b f(x) dx$ is S_h . Step-1: Set h = (b-a)/2N; or N = (b-a)/2h; (of course choose h so that N is an integer)

$$T_h = (f(a) + f(b))$$

 $T_h = (f(a) + f(b));$ Step-2: For i = 1, 2, ..., N - 1, set $T_h = T_h + 2 \cdot f(a + 2ih).$

Step-3: For i = 1, 2, ..., N, set $T_h = T_h + 4 \cdot f(a + (2i - 1)h)$.

Step-4: $T_h = hT_h/3$

Step-5: OUTPUT (T_h) .

Step-6: STOP.

Find the approximate integration of the following with your coding:

(i)
$$\int_{0.5}^{1} x^4 dx$$
, (ii) $\int_{1}^{1.5} x^2 \ln x dx$, (iii) $\int_{1}^{1.6} \frac{2x}{x^2 - 4} dx$, (iv) $\int_{0}^{\frac{\pi}{4}} x \sin x dx$

1

$$(v) \int_0^{0.5} \frac{2}{x-4} \, dx, \quad (vi) \int_0^1 x^2 e^{-x} \, dx \quad (vii) \int_0^{0.35} \frac{2}{x^2-4} \, dx, \quad (viii) \int_0^{\frac{\pi}{4}} e^{3x} \sin 2x \, dx.$$

3. (Euler's method): Write a C/Matlab program on Euler method to solve and ODE.

Hint: (You may use the following algorithm)

INPUT: End points a, b of the interval of the interval [a, b], integer N or h (for number of partition of the interval [a, b]) and initial condition y_0 .

OUTPUT: Approximation z to y at the t = a + Nh = b

Step-1: Set h = (b-a)/N; or N = (b-a)/h; (of course choose h so that N is an integer)

$$t(1) = a;$$

$$w(1) = y_0;$$

Step-2: For
$$i = 2, 3, ..., N + 1$$
, set $w(i) = w(i - 1) + hf(t(i - 1), w(i - 1))$, $t(i) = a + (i - 1)h$.

Step-3: OUTPUT (t, w).

Step-4: Plot the Graph of T-vs-W.

Step-5: STOP.

Solve the following ODEs with your coding:

$$\begin{array}{ll} \text{(a)} & \text{i. } y'=te^{3t}-2y, \quad 0 \leq t \leq 1, \quad y(0)=0, \text{ with } h=0.2 \\ & \text{ii. } y'=1+(t-y)^2, \quad 2 \leq t \leq 3, \quad y(2)=1, \text{ with } h=0.5 \\ & \text{iii. } y'=1+\frac{y}{t}, \quad 1 \leq t \leq 2, \quad y(1)=2, \text{ with } h=0.25 \\ & \text{iv. } y'=\cos 2t+\sin 3t, \quad 0 \leq t \leq 1, \quad y(0)=1, \text{ with } h=0.2. \end{array}$$

(b) i.
$$y' = e^{t-y}$$
, $0 \le t \le 1$, $y(0) = 1$, with $h = 0.1$
ii. $y' = \frac{1+t}{1+y}$, $1 \le t \le 2$, $y(1) = 2$, with $h = 0.1$
iii. $y' = -y + ty^{\frac{1}{2}}$, $2 \le t \le 3$, $y(2) = 2$, with $h = 0.25$
iv. $y' = t^{-2}(\sin 2t - 2ty)$, $1 < t < 2$, $y(1) = 2$, with $h = 0.2$.

Note: Problem 3 is not included in endsem lab exam, and can be tried after Monday's (15.04.24) lecture.

End.