Some Ideas

 These are notes on the discussion. There is no assessment on the feasibility or complexity of these approaches. Just notes

- Signal Conditioning
 - Use dithering and oversampling and averaging to get a good reading from the ADC
 - Follow that with the equalizer to equalize the temperature sensor frequency response
- Also need an alarm function

Some Ideas

- Frequency Detection/Separation
 - Use a filter or filters to separate frequency ranges of signals
 - Band stop or Lowpass and High pass
 - Average the values out of the filter to determine amplitude
 - Use the standard deviation after the filter to determine amplitude
 - Use an FFT to look at the signal in the frequency domain. Determine levels of signals in different bin ranges
 - Check energy within bins that represent the ranges of frequency of interest (low freq range, mid freq range, high freq range)
 - Compare values from the ranges to determine the breathing rate
 - After the Equalizer differentiate the signal to determine the frequency value
 - Find the standard deviation of the output
 - Use a moving average filter to find the range

BD showing signal conditioning, FFT approach, Filtering approach

More detail on FFT and Filter Approach

Differentiator approach

