# UART e buffers de entrada/saída

- Pequeno Relatório -

Thiago Werner
Sistemas Embarcados
Instituto Federal de Santa Catarina
São José, SC
wernerthiago@gmail.com

## 1. INTRODUÇÃO

Um método de transmissão de dados de Sistemas Embarcados é o serial, mais conhecido como UART. Este método como todos os outros métodos de comunicação dependem de um protocolo e o formato da mensagem. Na UART temos sempre o primeiro bit e o último bit da palavra código como controle.

Com isso, para simularmos a tarefa de receber e transmitir dados através de uma serial iremos utilizar para este auxilio dois buffers, que farão o papel de duas filas, uma de entrada e outra de saída. Assim, podemos utilizar um único microcontrolador para operar o sistema, fazendo com que os buffers se tornem buffers circulares.

Para realizar o experimento, utilizaremos o recurso extremamente importante de Sistemas Embarcados chamada interrupção. Uma interrupção sempre sinaliza a ocorrência de algum evento. Quando ela acontece, desvia a execução da posição atual de programa para uma rotina específica. [1]

Assim, para testar o experimento, aumentaremos gradativamente a taxa de bits da serial do microcontrolador, simulando na aplicação um tempo de processamento X em cada taxa. O envio de dados será feito através do software Cutecom, em que colocaremos um arquivo de tamanho Y para cada taxa de bits serial. Será analisado com qual tamanho de palavra dos buffers implementados será necessário para transmitir os dados em sua integridade.

### 2. MODELO ANALÍTICO

Neste experimento, será utilizado uma serial 8N1, que consiste em 8 bits de dados e 2 bits de controle. Para analisarmos o problema, precisamos realizar alguns cálculos, que nos dirão o tamanho, em um ambiente ideal, da palavra do buffer para cada taxa de bits da serial.

Primeiramente, precisamos definir, no pior caso, qual é a taxa de em bytes por segundo de chegada da serial. Para isso, devemos dividir a taxa de bits escolhida da serial pelo número de bits por mensagem, que no caso do experimento é 10 bits. Ver EQ1.

$$A = \frac{9600}{10} = 960 \, bytes/s \tag{1}$$

Assim calculada a taxa de chegada, devemos definir a taxa de saída da serial, para isso utilizamos o tempo de processamento simulado na aplicação, que neste caso será de 1 ms - 4 ms - 8 ms. A taxa de saída em bytes por segundo será o inverso do tempo de processamento. Ver EQ2.

$$D = \frac{1}{1x10^{-3}} = 1 \, kbytes/s \tag{2}$$

Com isso, para calcularmos o tamanho que a palavra do buffer deve ter para a taxa de bits de 9600 bps e o tempo de processamento de 1 ms é  $\rm A/D.$  Ver EQ3.

$$U = \lceil \frac{A}{D} \rceil = 1 \, bytes \tag{3}$$

Podemos fazer os mesmos cálculos para diferentes taxas de bits e diferentes tempos de processamento. Ver Tabela 1.

Table 1: Tempo de processamento x Tamanho do Buffer

| Tempo de      | U [9600] | U [19200] | U [57600] | U [115200] |
|---------------|----------|-----------|-----------|------------|
| Processamento | bytes    | bytes     | bytes     | bytes      |
| 1 ms          | 1        | 2         | 6         | 12         |
| 4  ms         | 4        | 8         | 24        | 47         |
| 8 ms          | 8        | 16        | 47        | 93         |

No gráfico 1 podemos ver esses dados de uma forma mais didática. Identifica-se que quanto maior é a taxa de bits da serial maior é o tamanho da palavra que o buffer deve ter. A mesma relação é feita quanto o tempo de processamento e a taxa de bits da serial, quanto maior o tempo de processamento maior é a quantidade de erros de transmissão de dados ou seja, maior será a palavra que o buffer precisará.



Figura 1: Time vs U

### 3. MONTAGEM DO EXPERIMENTO

Neste experimento foi utilizado o microcontrolador Arduino Uno, com o processador ATMega328P. Para fazer realizar o experimento o microcontrolador foi ligado no computador com Linux e rodando o software Cutecom para simular a comunicação com a serial.

Para injetarmos dados na serial, utilizamos o pior caso para cada taxa de bits da serial. Ou seja, para 9600 bps injetamos um arquivo com o tamanho de 960 bytes e assim por diante conforme a equação 1. A simulação do pior caso nos dá a noção exata se todos os bytes serão transmitidos ou não pela serial.

#### 4. RESULTADOS

Depois de feito o modelo analítico, podemos comparar os resultados do modelo analítico com a realidade do experimento. Ao todo, os resultados do experimento não foram semelhantes aos do modelo analítico, sendo assim, para descobrir o tamanho da palavra do buffer, foi aumentado gradativamente o tamanho da palavra conforme o tempo de processamento e a taxa de bits da serial.

Os resultados não foram bons, podemos compara-los no gráfico 2. Vemos que na realidade do experimento tivemos que utilizar um tamanho da palavra do buffer muito maior do calculado.



Figura 2: Time vs U

## 5. DISCUSSÃO

Neste experimento foram encontrados problemas com as taxas de bits mais elevadas. Como podemos ver no gráfico da Figura 2, a taxa de 115200 bps não aparece. Isso deve-se pelo fato que o software implementado tem limitações para operar nessas taxas. Provavelmente, essas limitações devem estar na sincronização das operações de interrupção e tratamento de palavras maiores do buffer.

No entanto, todas as outras taxas de bits da serial tiveram resultados, mesmo que não satisfatórios, podemos perceber que quanto maior é a velocidade da serial - maior é o tamanho do buffer. Esse tamanho depende logicamente da capacidade de cada processador.

Conclui-se também que as condições de implementação do software é muito importante para garantirmos a sincronização do sistema. Esse atributo é muito importante para Sistemas Embarcados, que muitas vezes utilizam da interrupção para lidar com comunicação de dados de entrada e saída.

#### 6. REFERENCES

[1] R. S. d. Oliveira, A. d. S. Carissimi, and S. S. Toscani. Sistemas operacionais. Revista de informática teórica e aplicada. Porto Alegre. Vol. 8, n. 3 (dez. 2001), p. 7-39, 2001.