《大学物理 AI》作业 No.06 电场强度

业级	学号	姓名 _	成绩 _	
******	 *******************本	 -章教学要求****		·****
1、掌握电场强度和电容。 2、掌握用点电荷场。 3、确切理解静电场的 4、掌握点电荷、无约公式。	强公式及场强叠加原 的高斯定理,并掌握 线长带电直线、无线	(理求场强的方法 崔用高斯定理求场 《大带电平面、带	; 强分布的方法;	的电场分布
 一、填空题				
1.物体由于得到或失去的不连续性称为的电荷量,从平均效果_时,才需要考虑电荷的	。在讨论宏》 上考虑,可认为电荷是	观带电现象时由于宏	双物体所带电荷量远 边	远大于一个电子
2.实验证明,一个带电料 荷量是相同的,电荷的			三不同参考系中测量同-	一带电粒子的电
3.静电场是指相对	力(选填:静止,运动	力);静电场中单位	检验电荷受到的静电力	
4.点电荷系电场中任一均 体现。	汤点的场强等于		这就是场	,强叠加原理的
5.为了直观、形象地描述 为该点的 电场线;穿过某一给定 线方向相同,电通量为_ 对封闭曲面来说,求电	,其分布的	与该处的 技称为通过该曲面的 虽度的方向与曲面法	成正比,我们称 电通量,当电场强度的 线方向相反,电通量为	这样的曲线为 方向与曲面法
6.电场高斯定理 ∮ <i>Ē</i> · d <i>s</i>	$ \vec{\epsilon} = \frac{\sum q_{\text{ph}}}{\varepsilon_0} + \vec{E} \cdot d\vec{s} \vec{\epsilon} $	示	,而通过任意	針闭曲面 S 的
电场强度通量等于		,与	曲面外的电荷分布	。高
斯定理反映了电场和场				
或从出发			。场线有头有尾	,不闭合,故
静电场是一种	场。			

二、选择题

1. 一个带正电荷的质点,在电场力作用下从 A 点出发经 C 点运动到 B 点,其运动轨迹如图所示。已知质点运动的速率是递减的,下面关于 C 点场强方向的四个图示中正确的是:

- 2. 下面列出的真空中静电场的场强公式, 其中哪个是正确的?
- I I (A) 点电荷 q 的电场: $\vec{E} = \frac{q}{4\pi\varepsilon_0 r^2}$
- (B) "无限长"均匀带电直线(电荷线密度 λ)的电场: $\vec{E} = \frac{\lambda}{4\pi\epsilon_0 r^3} \vec{r}$
- (C) "无限大"均匀带电平面(电荷面密度 σ)的电场: $\vec{E}=\pm \frac{\sigma}{2\varepsilon_0}$
- (D) 半径为 R 的均匀带电球面(电荷面密度 σ)外的电场: $\vec{E} = \frac{\sigma R^2}{\varepsilon_0 r^3} \vec{r}$
- 3. 面积为S的空气平行板电容器,极板上分别带电量 $\pm q$,若不考虑边缘效应,则两极板间的相互作用力为
- [] (A) $\frac{q^2}{\varepsilon_0 S}$ (B) $\frac{q^2}{2\varepsilon_0 S}$ (C) $\frac{q^2}{2\varepsilon_0 S^2}$ (D) $\frac{q^2}{\varepsilon_0 S^2}$
- 4. 在空间有一非均匀电场,其电力线分布如图所示,在电场中作一半径为 R 的闭合球面 S,已知通过球面上某一面元 ΔS 的电场强度通量为 $\Delta \Phi_e$,则通过该球面其余部分的电场强度通量为:

(A)
$$-\Delta \Phi_e$$
 (B) $\frac{4\pi R^2}{\Delta S} \Delta \Phi_e$ (C) $\frac{4\pi R^2 - \Delta S}{\Delta S} \Delta \Phi_e$ (D) 0

三、简答题

- 1、有一点电荷 Q 置于半径为 R 的球面的中心,试求通过该球面的电场强度通量 Φ_e ,并讨论在下列情况下 Φ_e 有无变化。
- (1) Q 偏离球心, 仍在球面内;
- (2)球面外再放一个 q;
- (3)球面内再放一个 q;
- (4)将球面半径增至 2R。

2、六个相等的电荷放在正六边形的六个顶点上,问是否可以以正六边形外接圆圆心为球心作一个球面,利用高斯定理求出它们所产生的场强?对此球面高斯定理是否成立?

四		1	算	顣
ν \neg	`	v	1 1 1 1 1	ルハ

1.一电荷面密度为 σ 的"无限大"平面,在距离平面 a 米远处的一点的场强大小的一半是由平面上的一个半径为R 的圆面积范围内的电荷所产生的,试求该圆半径的大小。

2、一个内外半径分别为 R_1 和 R_2 的均匀带电球壳,其电荷体密度为 ρ ,试求处于球壳以下区域内电场强度的大小: (1) $r < R_1$; (2) $R_1 < r < R_2$; (3) $r > R_2$ 。