MA553: Qual Preparation

Carlos Salinas

July 19, 2016

Contents

1	Ulrio	\mathbf{h}	2
	1.1	Ulrich: Winter 2002	2

1 Ulrich

1.1 Ulrich: Winter 2002

Problem 1. Let *G* be a group and *H* a subgroup of finite index. Show that there exists a normal subgroup *N* of *G* of finite index with $N \subset H$.

Solution. $ightharpoonup \text{Let } n = [G:H] \text{ and } X = \{H,g_1H,\ldots,g_{n-1}H\} \text{ the set of left-cosets of } H \text{ in } G \text{ with representatives } g_0 = e,g_1,\ldots,g_{n-1}. \text{ Let } G \text{ act on } X \text{ by left multiplication, i.e., } g \mapsto gg_iH; \text{ this is indeed an action since } e(g_iH) = eg_iH = g_iH \text{ for all } g_iH \in X \text{ and for } k_1,k_2 \in G \text{ } k_2(k_1g_iH) = k_2k_1g_iH = (k_2k_1)g_iH. \text{ By Cayley's theorem, this induces a homomorphism } \varphi \colon G \to S_n. \text{ Note that the action is not necessarily faithful. However, by the first isomorphism theorem, the kernel of } \varphi, N = \text{Ker } \varphi, \text{ is a normal subgroup of } G \text{ with index } [G:N] \leq |S_n| = n! \text{ and } N \subset H \text{ since } g \in N \text{ if and only if } gg_iH = g_iH \text{ which, in particular, implies that } gH = H. \text{ Thus, } N \subset H \text{ and } [G:N] < \infty.$

Problem 2. Show that every group of order 992 (= $32 \cdot 31$) is solvable.

Solution. \blacktriangleright Suppose G is a group with order $|G| = 992 = 2^5 \cdot 3$. By Sylow's theorem, the number of 2-Sylow subgroups in G is either 1 or 3. If the number of 2-Sylow subgroups is 1, then $P \triangleleft G$ and the quotient G/P has order [G:P] = 3, hence, is cyclic. Moreover, since P is a p-group, it is solvable. Since P and G/P are solvable, G is solvable.

Now, suppose the number of 2-Sylow subgroups is 3. Let $_2(G) = \{P, P_1, P_2\}$. Then, by Sylow's theorem, the three 2-Sylow subgroups are conjugate, i.e., there exists $g_1, g_2 \in G$ such that $P_1 = g_1 P g_1^{-1}$ and $P_2 = g_2 P g_2^{-1}$. Thus, G acts on the set $_2(P)$ by conjugation. This actions defines a (not necessarily injective) homomorphism $\varphi \colon G \to S_3$. Now, we ask: What is the kernel of this homomorphism? By the first isomorphism theorem, we know that the index of the kernel in G divides the order of S_3 , i.e., $[G \colon \operatorname{Ker} \varphi] \mid G$. Since $|G| < \infty$ implies that the order of the kernel is one of the following values

$$|\text{Ker }\varphi| = 2^4, 2^4 \cdot 3, 2^5, 2^5 \cdot 3.$$

Now, $|\text{Ker }\varphi| \neq 2^5 \cdot 3$ since we know at least one automorphism, namely conjugation by g_1 , which sends $P \mapsto P_1$. Thus, the order of the kernel is either 2^4 , $2^4 \cdot 3$ or 2^5 . If the $|\text{Ker }\varphi| = 2^4$ or 2^5 , we are done for similar reasons to the argument we gave in the previous paragraph, namely, that $|\text{Ker }\varphi| = 2^4$, the quotient $G/|\text{Ker }\varphi|$ has order 6 so is isomorphic to one of two groups, S_3 or S_6 , both of which are solvable).

Suppose Ker φ has order $2^4 \cdot 3$. Then the number of 3-Sylow subgroups is either 1, 4 or 16. If this number is 1, we are done as $Q \in_3$ (Ker φ) is a normal subgroup and the quotient is a p-group. Suppose the number of 3-Sylow subgroups is 16. Then there are $16 \cdot 2 = 32$ elements of order 3 in Ker φ .

Problem 3. Let *G* be a group of order 56 with a normal 2-Sylow subgroup *Q*, and let *P* be a 7-Sylow subgroup of *G*. Show that either $G \simeq P \times Q$ or $Q \simeq \mathbb{Z}/(2) \times \mathbb{Z}/(2) \times \mathbb{Z}/(2)$.

[*Hint*: P acts on $Q \setminus \{e\}$ via conjugation. Show that this action is either trivial or transitive.]

Solution. ▶

Problem 4. Let R be a commutative ring and Rad(R) the intersection of all maximal ideals of R.

- (a) Let $a \in R$. Show that $a \in \text{Rad}(R)$ if and only if 1 + ab is a unit for every $b \in R$.
- (b) Let R be a domain and R[X] the polynomial ring over R. Deduce that Rad(R[X]) = 0.

Solution. ▶

Problem 5. Let *R* be a unique factorization domain and *P* a prime ideal of R[X] with $P \cap R = 0$.

- (a) Let n be the smallest possible degree of a nonzero polynomial in P. Show that P contains a primitive polynomial f of degree n.
- (b) Show that P is the principal ideal generated by f.

Solution. ▶

Problem 6. Let k be a field of characteristic zero. assume that every polynomial in k[X] of odd degree and every polynomial in k[X] of degree two has a root in k. Show that k is algebraically closed.

Solution. ▶

Problem 7. Let $k \subset K$ be a finite Galois extension with Galois group $\operatorname{Gal}(K/k)$, let L be a field with $k \subset L \subset K$, and set $H = \{ \sigma \in \operatorname{Gal}(K/k) : \sigma(L) = L \}$.

- (a) Show that H is the normalizer of Gal(K/L) in Gal(K/k).
- (b) Describe the group $H/\operatorname{Gal}(K/L)$ as an automorphism group.

Solution. ▶