Table 2. Estimates of sAUC with convergence rate when c11 = 1Scenario 1-4

Yi

2021-04-01

Print table

s.rdt <- "scenario/18rows/set-0.5b-all-c10.RData"
dt <- "res/DT-pkg-0.5b-all-c10/"</pre>

Table 1: Estimates of sAUC when $(c_1^2 = 1; c_2^2 = 0)$

		$S_P = 25$		$S_P = 50$		$S_P = 200$	
	$SAUC_0$	Median [Q1, Q3]	CR	Median [Q1, Q3]	CR	Median [Q1, Q3]	CR
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.620	0.617 [0.503, 0.719]	99.3	0.626 [0.543, 0.690]	99.5	0.632 [0.591, 0.667]	99.2
Proposed $(c_1^2 = 1)$		$0.641 \ [0.521, \ 0.731]$	99.8	0.634 [0.548, 0.696]	99.7	0.624 [0.585, 0.660]	99.6
Proposed $(c_1^2 = c_2^2)$		0.623 [0.511, 0.714]	99.8	0.634 [0.561, 0.699]	99.9	0.656 [0.626, 0.683]	99.7
$Reistma_O$		0.665 [0.560, 0.738]	100.0	0.664 [0.607, 0.713]	100.0	0.662 [0.635, 0.688]	100.0
$Reistma_{P}$		$0.630 \ [0.537, \ 0.701]$	100.0	0.622 [0.563, 0.674]	100.0	$0.620 \ [0.591, \ 0.646]$	100.0
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.702	0.703 [0.621, 0.757]	99.6	$0.700 \ [0.645, \ 0.740]$	99.7	0.705 [0.685, 0.726]	100.0
Proposed $(c_1^2 = 1)$		$0.721 \ [0.643, \ 0.766]$	99.6	0.708 [0.657, 0.747]	99.7	0.705 [0.685, 0.724]	99.0
Proposed $(c_1^2 = c_2^2)$		0.702 [0.609, 0.759]	99.8	0.705 [0.654, 0.744]	99.6	0.713 [0.693, 0.732]	99.6
$Reistma_O$		0.725 [0.657, 0.770]	100.0	0.717 [0.676, 0.752]	100.0	0.717 [0.701, 0.734]	100.0
$Reistma_{P}$		0.708 [0.651, 0.751]	100.0	$0.703 \ [0.668, \ 0.735]$	100.0	0.703 [0.687, 0.719]	100.0
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.564	$0.589 \ [0.524, \ 0.654]$	99.9	$0.582 \ [0.521, \ 0.637]$	99.5	$0.570 \ [0.537, \ 0.610]$	98.7
Proposed $(c_1^2 = 1)$		$0.581 \ [0.507, \ 0.648]$	99.9	0.573 [0.518, 0.620]	100.0	0.566 [0.539, 0.591]	99.7
Proposed $(c_1^2 = c_2^2)$		0.616 [0.560, 0.665]	100.0	0.627 [0.589, 0.662]	99.8	$0.641 \ [0.623, \ 0.660]$	99.1
$Reistma_O$		0.649 [0.598, 0.695]	100.0	0.649 [0.620, 0.678]	100.0	0.649 [0.634, 0.665]	100.0
$Reistma_{P}$		0.567 [0.513, 0.611]	100.0	0.564 [0.529, 0.597]	100.0	0.563 [0.547, 0.582]	100.0
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.620	$0.633 \ [0.575, \ 0.679]$	99.9	$0.636 \ [0.584, \ 0.673]$	99.4	$0.641 \ [0.609, \ 0.666]$	98.6
Proposed $(c_1^2 = 1)$		$0.631 \ [0.577, \ 0.679]$	99.8	0.626 [0.589, 0.662]	100.0	$0.620 \ [0.602, \ 0.637]$	99.8
Proposed $(c_1^2 = c_2^2)$		$0.641 \ [0.601, \ 0.685]$	100.0	0.655 [0.621, 0.681]	99.6	0.666 [0.651, 0.680]	99.0
$Reistma_{O}$		$0.670 \ [0.635, \ 0.707]$	100.0	0.674 [0.647, 0.698]	100.0	0.673 [0.660, 0.684]	100.0
$Reistma_{P}$		$0.620 \ [0.579, \ 0.657]$	100.0	0.619 [0.589, 0.646]	100.0	0.618 [0.605, 0.632]	99.9

Note:

Here, $SAUC_0$ is true SAUC; Proposed $(tildec_1^2, tildec_2^2)$ is the proposed model estimating $(c_1^2, c_2^2)^T$; Proposed $(tildec_1^2, tildec_2^2)$ is the proposed model specified $c_1^2 = c_2^2 = 0.5$; Reitsma_O is Reitsma model based on the observed studies; and Reitsma_P is Reitsma model based on the population studies.