The Era of Self-Tuning Servers

February 7, 2017

Dr. Tomer Morad, CEO

tomer.morad@datarcs.com

www.datarcs.com

Intuition

Introduction to Tuning

☐ Knobs (in this talk) represent settings on a server that:

- ☐ Can be changed in real time
- ☐ Affects performance / energy efficiency
- ☐ Retains correctness
- ☐ Tuning
- Q)
- ☐ The process of finding the best setting of a knob
- ☐ Tuning example (one application, one on/off knob):

Run application X times on test data

Run application X times on test data

Run application X times on test data

Compare and set to best setting

Example knob: CPU Cache Prefetching

- ☐ On-chip memory is 10x-100x faster than off-chip memory
- ☐ CPU Cache Prefetching fetches data from off-chip memory **before** the CPU asks for it.
- ☐ Prefetcher for latency reduction:
 - □ <u>Predicts</u> which data the CPU will need in the future
 - □ <u>Predicts</u> which data the CPU will not require in the future
 - ☐ Fetches data that the prefetcher predicted the CPU will need and store it in the cache instead of data that the prefetcher predicted the CPU will not need

Tuning cache prefetching


```
[root@datarcs-ams-type1 ~]# wrmsr --all 0x1a4 0
[root@datarcs-ams-type1 ~]# ./demobench sequential
elapsed time: 6.352662865 seconds
[root@datarcs-ams-type1 ~]# wrmsr --all 0x1a4 7
[root@datarcs-ams-type1 ~]# ./demobench sequential
elapsed time: 9.297951911 seconds
[root@datarcs-ams-type1 ~]# wrmsr --all 0x1a4 0
[root@datarcs-ams-type1 ~]#
[root@datarcs-ams-type1 ~]#
[root@datarcs-ams-type1 ~]# ./demobench antiprefetch
elapsed time: 4.067213291 seconds
[root@datarcs-ams-type1 ~]# wrmsr --all 0x1a4 7
[root@datarcs-ams-type1 ~]# ./demobench antiprefetch
elapsed time: 3.501621960 seconds
[root@datarcs-ams-type1 ~]# wrmsr --all 0x1a4 0
```


Program phases

☐ Programs have phases, for example:

Phase 1 (pro-prefetching)

Phase 2 (anti-prefetching)

t

☐ In this example:

```
[root@datarcs-ams-type1 ~]# wrmsr --all 0x1a4 0
[root@datarcs-ams-type1 ~]# ./demobench phases
elapsed time: 55.852871715 seconds
[root@datarcs-ams-type1 ~]# wrmsr --all 0x1a4 7
[root@datarcs-ams-type1 ~]# ./demobench phases
elapsed time: 56.189048409 seconds
[root@datarcs-ams-type1 ~]# wrmsr --all 0x1a4 0
```

☐ Can we do better?

Tunable Knobs in Today's Systems

Hardware **Operating System Application Firmware** Power Task Scheduler Application- Hardware prefetching Management defined IO Scheduler Unit (PMU), Choice of SMT Page Cache DVFS, Power compiler Cache • File Prefetching States Choice of partitioning Algorithm • CPU Microcode libraries Peripheral power Memory states Allocation Algorithm Affinity

100's of different knobs to tune!

Some of the knobs (module-related) that can be tuned in Linux...

8250.nr_uarts	8250.share_irq	8250.skip_txen _test	acpi.aml_debu g_output	acpi.ec_busy_p	acpi.ec_delay	acpi.ec_event_ clearing	acpi.ec_polling _guard	acpi.ec_storm_ threshold	acpi.immediat e_undock	ahci.marvell_e nable	apparmor.audi t	apparmor.audi t_header	apparmor.deb ug	apparmor.lock _policy	apparmor.logs yscall	apparmor.mod	apparmor.para noid_load
apparmor.path _max	battery.cache_ time	cfg80211.cfg80 211_disable_4 0mhz 24ghz	debug_core.kg dbreboot	debug_core.kg db_use_con	dm_mod.dm_ mq_nr_hw_qu eues	dm_mod.dm_ mq_queue_de pth	dm_mod.dm_ numa_node	dm_mod.reser ved_bio_based ios	dm_mod.reser ved_rq_based ios	dm_mod.use_ blk_mq	drm_kms_help er.dp_aux_i2c_ speed khz	drm_kms_help er.dp_aux_i2c_ transfer_size	drm_kms_help er.edid_firmw are	drm_kms_help er.fbdev_emul ation	drm_kms_help er.poll	drm.debug	drm.timestam p_monotonic
drm.timestam p_precision_us ec	drm.vblankoff delay	dynamic_debu g.verbose	efi_pstore.psto re_disable	firmware_class .path	fuse.max_user _bgreq	fuse.max_user _congthresh	hid.debug	hid.ignore_spe	i8042.debug	i8042.unmask_ kbd_data	i915.enable_c md_parser	i915.enable_fb	i915.enable_h angcheck	i915.enable_ip	i915.enable_ps r	i915.fastboot	i915.invert_bri ghtness
i915.load_dete ct_test	i915.lvds_use_ ssc	i915.mmio_de bug	i915.nuclear_p ageflip	i915.panel_ign ore_lid	i915.prefault_ disable	i915.reset	i915.use_mmi o_flip	i915.verbose_s tate_checks	ima.ahash_buf size	ima.ahash_min size	intel_powercla mp.duration	intel_powercla mp.window_si ze	kdb.cmd_enab le	kdb.enable_n mi	kernel.ignore_ rlimit_data	kernel.initcall_ debug	kernel.panic
kernel.panic_o n_warn	kernel.pause_ on_oops	keyboard.brl_n bchords	keyboard.brl_ti meout	kgdb_nmi.knoc k	kgdb_nmi.mag ic	kgdboc.kgdboc	kvm.allow_uns afe_assigned_i nterrupts	kvm.halt_poll_ ns	kvm.halt_poll_ ns_grow	kvm.halt_poll_ ns_shrink	kvm.ignore_ms rs	kvm.lapic_time r_advance_ns	kvm.min_timer _period_us	kvm.tsc_tolera nce_ppm	libahci.devslp_i dle_timeout	libata.acpi_gtf _filter	libata.ignore_h pa
libata.zpodd_p oweroff_delay	mac80211.bea con_loss_coun t	mac80211.ieee 80211_default _rc_algo	mac80211.max _nullfunc_tries	mac80211.max _probe_tries	mac80211.min strel_vht_only	mac80211.pro be_wait_ms	module.sig_en force	mousedev.tap _time	mousedev.xres	mousedev.yres	netpoll.carrier _timeout	nf_conntrack_i pv4.hashsize	nf_conntrack.a cct	nf_conntrack.h ashsize	nf_conntrack.n f_conntrack_h elper	nf_conntrack.t stamp	overlay.check_ copy_up
parport_pc.ver bose_probing	pcie_aspm.poli cy	pciehp.pciehp_ debug	pciehp.pciehp_ force	pciehp.pciehp_ poll_mode	pciehp.pciehp_ poll_time	pci_hotplug.de bug	pci_hotplug.de bug_acpi	pci_slot.debug	ppp_generic.m p_protocol_co mpress	printk.always_ kmsg_dump	printk.console _suspend	printk.ignore_l oglevel	printk.time	processor.igno re_ppc	processor.igno re_tpc	processor.late ncy_factor	psmouse.proto
psmouse.rate	psmouse.reset after	psmouse.resol ution	psmouse.resyn c_time	psmouse.smar tscroll	pstore.update _ms	rcupdate.rcu_c pu_stall_suppr ess	rcupdate.rcu_c pu_stall_timeo ut	rcutree.jiffies_ till_first_fqs	rcutree.jiffies_ till_next_fqs	rcutree.jiffies_ till_sched_qs	rcutree.kthrea d_prio	rng_core.curre nt_quality	rng_core.defau lt_quality	scsi_mod.defa ult_dev_flags	scsi_mod.eh_d eadline	scsi_mod.inq_t imeout	scsi_mod.max_ luns
scsi_mod.scsi_l ogging_level	scsi_mod.use_ blk_mq	sg.allow_dio	sg.def_reserve d_size	sg.scatter_ele m_sz	shpchp.shpchp _debug	shpchp.shpchp _poll_mode	shpchp.shpchp _poll_time	snd_hda_code c_hdmi.static_ hdmi_pcm	snd_hda_code c.dump_coef	snd_hda_intel. align_buffer_si ze	snd_hda_intel. bdl_pos_adj	snd_hda_intel. power_save	snd_hda_intel. power_save_c ontroller	snd_seq_midi.i nput_buffer_si ze	snd_seq_midi. output_buffer _size	snd_seq.seq_d efault_timer_c ard	snd_seq.seq_d efault_timer_cl ass
snd_seq.seq_d efault_timer_d evice	snd_seq.seq_d efault_timer_r esolution	snd_seq.seq_d efault_timer_s class	snd_seq.seq_d efault_timer_s ubdevice	spurious.irqfix up	spurious.noirq debug	sr_mod.xa_tes t	suspend.pm_t est_delay	sysrq.reset_se q	sysrq.sysrq_do wntime_ms	tcp_cubic.beta	tcp_cubic.fast_ convergence	tcp_cubic.hyst art	tcp_cubic.hyst art_ack_delta	tcp_cubic.hyst art_detect	tcp_cubic.hyst art_low_windo w	tcp_cubic.initia I_ssthresh	tcp_cubic.tcp_f riendliness
thermal.act	thermal.crt	thermal.psv	tpm.suspend_ pcr	usbcore.author ized_default	usbcore.autos uspend	usbcore.initial_ descriptor_tim eout	usbcore.old_sc heme_first	usbcore.usbfs_ memory_mb	usbcore.usbfs_ snoop	usbcore.usbfs_ snoop_max	usbcore.use_b oth_schemes	usbhid.ignorel ed	usbhid.mousep oll	usb_storage.d elay_use	usb_storage.o ption_zero_cd	usb_storage.q uirks	usb_storage.s wi_tru_install
video.allow_du plicates	video.brightne ss_switch_ena bled	video.report_k ey_events	vt.color	vt.cur_default	vt.default_blu	vt.default_grn	vt.default_red	vt.default_utf8	vt.global_curso r_default	vt.italic	vt.underline	workqueue.de bug_force_rr_c pu	workqueue.wa tchdog_thresh	x86_pkg_temp _thermal.notif y_delay_ms	xhci_hcd.link_ quirk	zswap.compre ssor	zswap.enabled

Dat/\rcs

Limitations of manual tuning

100's of knobs – too many to manually tune Dependencies among different knobs

Knob settings depend on hardware

Knob settings depend on applications and input data

No practical way to "see" program phases

Labor intensive task

Requires expertise which is absent in most organizations

The Era of Self-Tuning Servers - DatArcs Optimizer©

Step 1: Install

Step 2: Learn

Step 3: Optimize

DatArcs Optimizer Advantages

Automatic

Optimizer tunes without any user input

Flexible

Tunes for speed, energy, power, power cap, etc.

Adaptive

Program phase and workload detection

Extensible

Users can add applicationspecific knobs

DatArcs Optimizer In a Nutshell

Energy & Performance

Metrics

Workload

Classification

Feedback Sources

Hardware Performance Monitors

OS Performance Data

User-Generated Performance Monitors

Workload Classifier Engine

Using machine learning techniques, Workload Classifier figures out the characteristics of the currently running workload

Dynamic Optimization Engine

Using machine
learning techniques,
the optimization
engine continuously
tests and finds optimal
knob values for the
currently running
workload

Optimized knob settings

System Knobs

Hardware Knobs

Firmware Knobs

OS Knobs

Application- Specific Knobs

DatArcs Optimizer boosts performance and energy efficiency of servers by optimizing 100's of system knobs available in current server systems

Dynamic Tuning demo

Manual Tuning

Dynamic Tuning

DatArcs Optimizer outperformed the manual method!

Apache HTTP SERVER PROJECT

Apache Web Server @ packet type-2 servers

Benchmark

• Phoronix test of Apache web server

Experiment phases

- Baseline 20 runs without Optimizer
- Learning 140 runs with Optimizer in learning mode
- *Optimization* 20 runs with Optimizer in optimization mode
- Static 20 runs after Optimizer applied the best knob values and exited

Server Configuration

 Packet type-2 server: 2x Intel E5-2650 @ 2.2GHz, 24 cores, 48 threads

Results

 DatArcs Optimizer correctly identified the effects of various knobs on the application performance, and achieved ~25% boost in performance

Apache HTTP SERVER PROJECT

Apache Web Server @ Intel E3-1270 V3 3.5Ghz (4 cores)

Static Tuning phase

Baseline phase

High-Speed Networking Results

- \square One knob: tx-usecs = (16 or 256)
- ☐ Two benchmarks, each prefers a different setting
- ☐ DatArcs Optimizer detects best setting for each benchmark

```
./demo mellanox 1
MIGRATED TCP STREAM TEST from 0.0.0.0
(0.0.0.0) port 0 AF INET to 147.75.108.33
() port 0 AF INET : demo
Interim result: 4496.55 10^6bits/s
Interim result: 4504.32 10^6bits/s
Interim result: 4556.30 10^6bits/s
Interim result: 4511.66 10^6bits/s
Interim result: 4490.83 10^6bits/s
Interim result: 8089.87 10^6bits/s
Interim result: 9259.31 10^6bits/s
Interim result: 9276.94 10^6bits/s
Interim result: 9258.05 10^6bits/s
Interim result: 9263.36 10^6bits/s
Interim result: 9218.19 10^6bits/s
Interim result: 9260.11 10^6bits/s
Interim result: 9255.66 10^6bits/s
Interim result: 9265.10 10^6bits/s
Interim result: 9264.68 10^6bits/s
Interim result: 9392.09 10^6bits/s
Interim result: 9267.17 10^6bits/s
```

```
# ./demo mellanox 2
MIGRATED TCP STREAM TEST from 0.0.0.0
(0.0.0.0) port 0 AF INET to 147.75.108.33
() port 0 AF INET : demo
Interim result: 1000.47 10^6bits/s
Interim result: 988.52 10^6bits/s
Interim result: 1012.41 10^6bits/s
Interim result: 1104.88 10^6bits/s
Interim result: 996.59 10^6bits/s
Interim result: 1047.43 10^6bits/s
Interim result: 1815.29 10^6bits/s
Interim result: 1600.28 10^6bits/s
Interim result: 1890.25 10^6bits/s
Interim result: 2052.70 10^6bits/s
Interim result: 2086.82 10^6bits/s
Interim result: 1973.90 10^6bits/s
Interim result: 2038.70 10^6bits/s
Interim result: 2026.54 10^6bits/s
Interim result: 2003.32 10^6bits/s
Interim result: 2062.60 10^6bits/s
Interim result: 2097.10 10^6bits/s
```


In-Memory Analytics: Recommendation System based on Spark @ type-2 packet

DatArcs Optimizer Performance

Benchmark

- Collaborative Filtering using Apache Spark
- Three containers on a single machine:
 - One Master
 - Two Workers

Server Configuration

Packet type-2 server: 2x
 Intel E5-2650 @ 2.2GHz,
 24 cores, 48 threads

Dynamic Tuning Trends

Number of knobs is rising

- Hardware becomes more complex and configurable
- Operating systems also become more complex and configurable
- Heterogeneity: GPUs, Accelerators, FPGAs, etc.

Expertise is becoming scarce

 Wrong to assume that tuning is being taken care of by the "cloud"

Hardware matters!

- More tuning opportunities
- VMs Vs. Bare Metal and Containers

Summary

- ✓ Server tuning as we know it is about to change! Dynamic tuning is a quick and simple way to improve performance and energy efficiency of existing systems
- ✓ DatArcs Optimizer is the first feedbackbased dynamic tuning software
- ✓ Significant improvement in benchmarks (~50%), and we've only just begun
- ✓ Version 0.5 now in closed beta feedback welcomed!

DatArcs Optimizer Performance

