BAZY DANYCH PRZESTRZENNYCH – ĆWICZENIA 6; POSTGIS RASTER

Kroki postępowania:

- 1. Utworzenie nowej bazy danych w pgAdmin.
- 2. Utworzenie schematów,
- 3. Dodanie rozszerzeń: postgis i postgis_raster.
- 4. Załadowanie kopii bazy danych przy użyciu Restore,
- 5. Załadowanie danych według instrukcji w pliku:

Przykład 1 – ładowanie rastru przy użyciu pliku .sql

(dane zostały załadowane do wiersza poleceń bezpośrednio w folderu w którym znajduje się raster2pgsql.exe)

 $raster2pgsql.exe -s \ 3763 -N -32767 -t \ 100x100 -I -C -M -d \ "D:\AGH\semestr \ V\BDP \ roboczy\Dane -cwiczenia \ 6\rasters\cm^2 \ "D:\AGH\semestr \ V\BDP \ roboczy\Dane -cwiczenia \ 6\rasters\dem.sql"$

Przykład 2 – ładowanie rastru bezpośrednio do bazy

 $raster2pgsql.exe -s 3763 -N -32767 -t 100x100 -I -C -M -d "D:\AGH\semestr V\BDP roboczy\Dane - cwiczenia 6\rasters\srtm_1arc_v3.tif" rasters.dem | psql -d zajecia6 -hlocalhost -U postgres -p 5432$

Przykład 3 – załadowanie danych landsat 8 o wielkości kafelka 128x128 bezpośrednio do bazy danych.

raster2pgsql.exe -s 3763 -N -32767 -t 128x128 -I -C -M -d "D:\AGH\semestr V\BDP roboczy\Dane - cwiczenia 6\rasters\Landsat8_L1TP_RGBN.TIF" rasters.landsat8 | psql -d zajecia6 -h localhost -U postgres -p 5432

Kolejne etapy wykonano według poleceń opisanych w pliku pdf.

- 6. Tworzenie rastrów z istniejących rastrów i interakcja z wektorami.
 - Przykład 1- ST_Intersetcs.

Przecięcie rastra z wektorem. W tym przykładzie zostało pokazane jak wyodrębnić kafelki nakładające się na geometrię.

```
CREATE TABLE jalocha.intersects AS SELECT

a.rast, b.municipality FROM rasters.dem AS a, vectors.porto parishes AS b
```

WHERE ST_Intersects(a.rast, b.geom) AND b.municipality
ilike 'porto';

W przypadku tworzenia tabel zawierających dane rastrowe sugeruje się wykonanie poniższych kroków:

1. dodanie serial primary key:

alter table jalocha.intersects
add column rid SERIAL PRIMARY KEY;

2. utworzenie indeksu przestrzennego:

CREATE INDEX idx_intersects_rast_gist ON jalocha.intersects
USING gist (ST_ConvexHull(rast));

3. dodanie raster constraints:

(-- schema::name table_name::name raster_column::name)

SELECT

AddRasterConstraints('jalocha'::name,'intersects'::name,'rast'::name
);

Wizualizacja w QGiS:

Przykład 2 - ST_Clip

Obcinanie rastra na podstawie wektora.

CREATE TABLE jalocha.clip AS

SELECT ST_Clip(a.rast, b.geom, true), b.municipality

FROM rasters.dem AS a, vectors.porto_parishes AS b

WHERE ST Intersects(a.rast, b.geom) AND b.municipality like 'PORTO';

Wizualizacja w QGiS:

• Przykład 3 - ST_Union

Połączenie wielu kafelków w jeden raster.

CREATE TABLE jalocha.union AS

SELECT ST_Union(ST_Clip(a.rast, b.geom, true))

FROM rasters.dem AS a, vectors.porto_parishes AS b

WHERE b.municipality ilike 'porto' and ST Intersects(b.geom,a.rast);

7. Tworzenie rastrów z wektorów (rastrowanie).

• Przykład 1 - ST AsRaster

Przykład pokazuje użycie funkcji ST_AsRaster w celu rastrowania tabeli z parafiami o takiej samej charakterystyce przestrzennej tj.: wielkość piksela, zakresy itp.

```
CREATE TABLE jalocha.porto_parishes AS
WITH r AS (
SELECT rast FROM rasters.dem
LIMIT 1
)
SELECT ST_AsRaster(a.geom,r.rast,'8BUI',a.id,-32767) AS rast
FROM vectors.porto_parishes AS a, r
WHERE a.municipality ilike 'porto';
```

Wizualizacja:

• Przykład 2 - ST_Union

Drugi przykład łączy rekordy z poprzedniego przykładu przy użyciu funkcji ST_UNION w pojedynczy raster.

• Przykład 3 - ST_Tile

Po uzyskaniu pojedynczego rastra można generować kafelki za pomocą funkcji ST_Tile.

```
DROP TABLE jalocha.porto_parishes; --> drop table porto_parishes first

CREATE TABLE jalocha.porto_parishes AS

WITH r AS (

SELECT rast FROM rasters.dem

LIMIT 1 )

SELECT st_tile(st_union(ST_AsRaster(a.geom,r.rast,'8BUI',a.id,-32767)),128,128,true,-32767) AS rast

FROM vectors.porto_parishes AS a, r

WHERE a.municipality ilike 'porto';
```


8. Konwertowanie rastrów na wektory (wektoryzowanie).

• Przykład 1 - ST_Intersection

Funkcja St_Intersection jest podobna do ST_Clip. ST_Clip zwraca raster, a ST_Intersection zwraca zestaw par wartości geometria-piksel, ponieważ ta funkcja przekształca raster w wektor przed rzeczywistym "klipem". Zazwyczaj ST_Intersection jest wolniejsze od ST_Clip więc zasadnym jest przeprowadzenie operacji ST_Clip na rastrze przed wykonaniem funkcji ST_Intersection.

CREATE TABLE jalocha.intersection AS SELECT

a.rid, (ST_Intersection(b.geom,a.rast)).geom, (ST_Intersection(b.geom, a.rast)).val

FROM rasters.landsat8 AS a, vectors.porto_parishes AS b
WHERE b.parish ilike 'paranhos' and ST Intersects(b.geom,a.rast);

Wizualizacja:

Przykład 2 - ST_DumpAsPolygons

ST_DumpAsPolygons konwertuje rastry w wektory (poligony).

CREATE TABLE jalocha.dumppolygons AS SELECT

 $a.rid, (ST_DumpAsPolygons(ST_Clip(a.rast,b.geom))).geom, (ST_DumpAsPolygons(ST_Clip(a.rast,b.geom))).val$

FROM rasters.landsat8 AS a, vectors.porto_parishes AS b
WHERE b.parish ilike 'paranhos' and ST Intersects(b.geom,a.rast);

- 9. Analiza rastrów.
 - Przykład 1 ST_Band

Funkcja ST_Band służy do wyodrębniania pasm z rastra.

CREATE TABLE jalocha.landsat_nir AS
SELECT rid, ST_Band(rast,4) AS rast
FROM rasters.landsat8;

Przykład 2 - ST_Clip

ST_Clip może być użyty do wycięcia rastra z innego rastra. Poniższy przykład wycina jedną parafię z tabeli vectors.porto_parishes. Wynik będzie potrzebny do wykonania kolejnych przykładów.

CREATE TABLE jalocha.paranhos_dem AS

SELECT a.rid,ST_Clip(a.rast, b.geom,true) as rast

FROM rasters.dem AS a, vectors.porto_parishes AS b

WHERE b.parish ilike 'paranhos' and ST Intersects(b.geom,a.rast);

Wizualizacja:

Przykład 3 - ST_Slope

Poniższy przykład użycia funkcji ST_Slope wygeneruje nachylenie przy użyciu poprzednio wygenerowanej tabeli (wzniesienie).

CREATE TABLE jalocha.paranhos_slope AS

SELECT a.rid,ST_Slope(a.rast,1,'32BF','PERCENTAGE') as rast

FROM jalocha.paranhos dem AS a;

Przykład 4 - ST_Reclass

Aby zreklasyfikować raster należy użyć funkcji ST_Reclass.

```
CREATE TABLE jalocha.paranhos_slope_reclass AS

SELECT a.rid,ST_Reclass(a.rast,1,']0-15]:1, (15-30]:2, (30-9999:3','32BF',0)

FROM jalocha.paranhos slope AS a;
```

Wizualizacja:

• Przykład 5 - ST_SummaryStats

Aby obliczyć statystyki rastra można użyć funkcji ST_SummaryStats. Poniższy przykład wygeneruje statystyki dla kafelka.

SELECT st_summarystats(a.rast) AS stats FROM jalocha.paranhos dem AS a;

• Przykład 6 - ST_SummaryStats oraz Union

Przy użyciu UNION można wygenerować jedną statystykę wybranego rastra

```
SELECT st_summarystats(ST_Union(a.rast))
FROM jalocha.paranhos dem AS a;
```

Przykład 7 - ST_SummaryStats z lepszą kontrolą złożonego typu danych

• Przykład 8 - ST_SummaryStats w połączeniu z GROUP BY

Aby wyświetlić statystykę dla każdego poligonu "parish" można użyć polecenia GROUP BY

Przykład 9 - ST Value

Funkcja ST_Value pozwala wyodrębnić wartość piksela z punktu lub zestawu punktów. Poniższy przykład wyodrębnia punkty znajdujące się w tabeli vectors.places. Ponieważ geometria punktów jest wielopunktowa, a funkcja ST_Value wymaga geometrii jednopunktowej, należy przekonwertować geometrię wielopunktową na geometrię jednopunktową za pomocą funkcji (ST_Dump(b.geom)).geom.

```
SELECT b.name,st_value(a.rast,(ST_Dump(b.geom)).geom)
FROM
rasters.dem a, vectors.places AS b
WHERE ST_Intersects(a.rast,b.geom)
ORDER BY b.name;
```

Przykład 10 - ST_TPI

TPI porównuje wysokość każdej komórki w DEM ze średnią wysokością określonego sąsiedztwa wokół tej komórki. Wartości dodatnie reprezentują lokalizacje, które są wyższe niż średnia ich otoczenia, zgodnie z definicją sąsiedztwa (grzbietów). Wartości ujemne reprezentują lokalizacje, które są niższe niż ich otoczenie (doliny).

Funkcja ST_Value pozwala na utworzenie mapy TPI z DEM wysokości.

```
CREATE TABLE jalocha.tpi30 AS

SELECT ST_TPI(a.rast,1) as rast

FROM rasters.dem a;

--Poniższa kwerenda utworzy indeks przestrzenny:

CREATE INDEX idx_tpi30_rast_gist ON jalocha.tpi30

USING gist (ST_ConvexHull(rast));

--Dodanie constraintów:

SELECT

AddRasterConstraints('jalocha'::name,'tpi30'::name,'rast'::name);
```


Problem do samodzielnego rozwiązania

Przetwarzanie poprzedniego zapytania może potrwać dłużej niż minutę, a niektóre zapytania mogą potrwać zbyt długo. W celu skrócenia czasu przetwarzania czasami można ograniczyć obszar zainteresowania i obliczyć mniejszy region. Dostosuj zapytanie z przykładu 10, aby przetwarzać tylko gminę Porto. Musisz użyć ST_Intersects, sprawdź Przykład 1 - ST_Intersects w celach informacyjnych. Porównaj różne czasy przetwarzania. Na koniec sprawdź wynik w QGIS.

```
CREATE TABLE jalocha.tpi30_p_intersects AS

SELECT ST_TPI(a.rast,1) AS rast

FROM rasters.dem AS a, vectors.porto_parishes AS b

WHERE ST_Intersects(a.rast, b.geom) AND b.municipality ILIKE
'porto';

Indeks przestrzenny:

CREATE INDEX idx_tpi30_rast_gist ON jalocha.tpi30_p_intersects

USING gist (ST_ConvexHull(rast));

Dodanie constraintów:

SELECT

AddRasterConstraints('jalocha'::name,'tpi30_p_intersects'::name,'rast'::name);
```


10. Algebra map.

- Przykład 1 Wyrażenie Algebry Map.
 - --Wzór na NDVI:
 - --NDVI=(NIR-Red)/(NIR+Red)

```
CREATE TABLE jalocha.porto ndvi AS
WITH r AS (
           SELECT a.rid, ST Clip(a.rast, b.geom, true) AS rast
           FROM rasters.landsat8 AS a, vectors.porto parishes AS b
           WHERE b.municipality ilike 'porto' and
ST Intersects (b.geom, a.rast)
)
SELECT
          r.rid,ST MapAlgebra(
                      r.rast, 1,
                      r.rast, 4,
                            '([rast2.val] - [rast1.val]) /
([rast2.val] +[rast1.val])::float','32BF'
                ) AS rast
FROM r;
--Poniższe zapytanie utworzy indeks przestrzenny na wcześniej
stworzonej tabeli:
CREATE INDEX idx porto ndvi rast gist ON jalocha.porto ndvi
USING gist (ST ConvexHull(rast));
-- Dodanie constraintów:
SELECT
AddRasterConstraints('jalocha'::name, 'porto ndvi'::name, 'rast'::name
);
```


Przykład 2 – Funkcja zwrotna

W pierwszym kroku należy utworzyć funkcję, które będzie wywołana później:

```
CREATE OR REPLACE FUNCTION jalocha.ndvi(
    value double precision [] [] [],
    pos integer [][],
    VARIADIC userargs text []
)
RETURNS double precision AS
$$
BEGIN
    --RAISE NOTICE 'Pixel Value: %', value [1][1][1];-->For debug
purposes
    RETURN (value [2][1][1] - value [1][1][1])/(value
[2][1][1]+value[1][1][1]); --> NDVI calculation!
END;
$$
LANGUAGE 'plpgsql' IMMUTABLE COST 1000;
```

W kwerendzie algebry map należy można wywołać zdefiniowaną wcześniej funkcję:

Dodanie indeksu przestrzennego:

CREATE INDEX idx_porto_ndvi2_rast_gist ON jalocha.porto_ndvi2
USING gist (ST ConvexHull(rast));

Dodanie constraintów:

SELECT

AddRasterConstraints('jalocha'::name,'porto_ndvi2'::name,'rast'::nam
e);

Wizualizacja:

11. Eksport danych.

- Przykład 0 Użycie QGIS
- Przykład 1 ST_AsTiff

SELECT ST_AsTiff(ST_Union(rast))
FROM jalocha.porto ndvi;

Przykład 2 - ST AsGDALRaster

```
SELECT ST_AsGDALRaster(ST_Union(rast), 'GTiff',
ARRAY['COMPRESS=DEFLATE',
'PREDICTOR=2', 'PZLEVEL=9']) FROM jalocha.porto ndvi;
```

Przykład 3 - Zapisywanie danych na dysku za pomocą dużego obiektu (large object, lo)

Przykład 4 - Użycie Gdal

gdal_translate -co COMPRESS=DEFLATE -co PREDICTOR=2 -co ZLEVEL=9 PG:"host=localhost port=5432 dbname=zajecia6 user=postgres password=**** schema=jalocha table=porto_ndvi mode=2" porto_ndvi.tiff

• Publikowanie danych za pomocą MapServer

```
MAP

NAME 'map'

SIZE 800 650

STATUS ON

EXTENT -58968 145487 30916 206234

UNITS METERS

WEB

METADATA

'wms_title' 'Terrain wms'

'wms_srs' 'EPSG:3763 EPSG:4326 EPSG:3857'

'wms_enable_request' '*'

'wms_onlineresource'

'http://54.37.13.53/mapservices/srtm'

END
```

```
END
  PROJECTION
'init=epsg:3763'
END
LAYER
 NAME srtm
TYPE raster
STATUS OFF
DATA "PG:host=localhost port=5432 dbname='zajecia6' user='postgres'
password='****' schema='rasters' table='dem' mode='2'" PROCESSING
"SCALE=AUTO"
PROCESSING "NODATA=-32767"
OFFSITE 0 0 0
METADATA
'wms_title' 'srtm'
    END
    END
END
```