

MSc in Computer Science and Engineering

Learning and Decision Making 2016-2017

Homework 2. Markov Decision Problems

1.

Note: we considered the fist square the square 0 instead of 1. This is more coherent with indexes in python.

Table 1 - Model of the board.

0	1
2	3

 $X = \{(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3), (2,0), (2,1), (2,2), (2,3), (3,0), (3,1), (3,2), (3,3)\},$ where the fist number in the tuples (X[i][O]) is the position of the wolf and the second number (X[i][1]) is the position of the hare.

Ex: \times [O] \approx (0,0) means that both wolf and hare are at square 0 and \times [6] = (1,2) means that the wolf is at the square 1 and hare ate square 2.

A = {Left, Right, Up, Down, Stay}

(b)

For this MDP since the board is Toroidal world the probabilities associated with Up and Down or Left and Right are the same.

Table 2 - Transition probabilities for actions Up and Down

	00	01	02	03	10	11	12	13	20	21	22	23	30	31	32	33
00	0.12	0.04	0.04	0.00	0.00	0.00	0.00	0.00	0.48	0.16	0.16	0.00	0.00	0.00	0.00	0.00
01	0.04	0.12	0.00	0.04	0.00	0.00	0.00	0.00	0.16	0.48	0.00	0.16	0.00	0.00	0.00	0.00
02	0.04	0.00	0.12	0.04	0.00	0.00	0.00	0.00	0.16	0.00	0.48	0.16	0.00	0.00	0.00	0.00
03	0.00	0.04	0.04	0.12	0.00	0.00	0.00	0.00	0.00	0.16	0.16	0.48	0.00	0.00	0.00	0.00
10	0.00	0.00	0.00	0.00	0.12	0.04	0.04	0.00	0.00	0.00	0.00	0.00	0.48	0.16	0.16	0.00
11	0.00	0.00	0.00	0.00	0.04	0.12	0.00	0.04	0.00	0.00	0.00	0.00	0.16	0.48	0.00	0.16
12	0.00	0.00	0.00	0.00	0.04	0.00	0.12	0.04	0.00	0.00	0.00	0.00	0.16	0.00	0.48	0.16
13	0.00	0.00	0.00	0.00	0.00	0.04	0.04	0.12	0.00	0.00	0.00	0.00	0.00	0.16	0.16	0.48
20	0.48	0.16	0.16	0.00	0.00	0.00	0.00	0.00	0.12	0.04	0.04	0.00	0.00	0.00	0.00	0.00
21	0.16	0.48	0.00	0.16	0.00	0.00	0.00	0.00	0.04	0.12	0.00	0.04	0.00	0.00	0.00	0.00
22	0.16	0.00	0.48	0.16	0.00	0.00	0.00	0.00	0.04	0.00	0.12	0.04	0.00	0.00	0.00	0.00
23	0.00	0.16	0.16	0.48	0.00	0.00	0.00	0.00	0.00	0.04	0.04	0.12	0.00	0.00	0.00	0.00
30	0.00	0.00	0.00	0.00	0.48	0.16	0.16	0.00	0.00	0.00	0.00	0.00	0.12	0.04	0.04	0.00
31	0.00	0.00	0.00	0.00	0.16	0.48	0.00	0.16	0.00	0.00	0.00	0.00	0.04	0.12	0.00	0.04
32	0.00	0.00	0.00	0.00	0.16	0.00	0.48	0.16	0.00	0.00	0.00	0.00	0.04	0.00	0.12	0.04
33	0.00	0.00	0.00	0.00	0.00	0.16	0.16	0.48	0.00	0.00	0.00	0.00	0.00	0.04	0.04	0.12

Table 3 - Transition probabilities for actions Left and Right

	00	01	02	03	10	11	12	13	20	21	22	23	30	31	32	33
00	0.12	0.04	0.04	0.00	0.48	0.16	0.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
01	0.04	0.12	0.00	0.04	0.16	0.48	0.00	0.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
02	0.04	0.00	0.12	0.04	0.16	0.00	0.48	0.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
03	0.00	0.04	0.04	0.12	0.00	0.16	0.16	0.48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10	0.48	0.16	0.16	0.00	0.12	0.04	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11	0.16	0.48	0.00	0.16	0.04	0.12	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12	0.16	0.00	0.48	0.16	0.04	0.00	0.12	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
13	0.00	0.16	0.16	0.48	0.00	0.04	0.04	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.04	0.04	0.00	0.48	0.16	0.16	0.00
21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.12	0.00	0.04	0.16	0.48	0.00	0.16
22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.12	0.04	0.16	0.00	0.48	0.16
23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.04	0.12	0.00	0.16	0.16	0.48
30	0.00	0.00	0.00	0.00	0.12	0.04	0.04	0.00	0.48	0.16	0.16	0.00	0.12	0.04	0.04	0.00
31	0.00	0.00	0.00	0.00	0.04	0.12	0.00	0.04	0.16	0.48	0.00	0.16	0.04	0.12	0.00	0.04
32	0.00	0.00	0.00	0.00	0.04	0.00	0.12	0.04	0.16	0.00	0.48	0.16	0.04	0.00	0.12	0.04
33	0.00	0.00	0.00	0.00	0.00	0.04	0.04	0.12	0.00	0.16	0.16	0.48	0.00	0.04	0.04	0.12

Table 4 - Transition probabilities for action Stay

	00	01	02	03	10	11	12	13	20	21	22	23	30	31	32	33
00	0.6	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
01	0.2	0.6	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
02	0.2	0.0	0.6	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
03	0.0	0.2	0.2	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	0.0	0.0	0.0	0.0	0.6	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11	0.0	0.0	0.0	0.0	0.2	0.6	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12	0.0	0.0	0.0	0.0	0.2	0.0	0.6	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.2	0.2	0.0	0.0	0.0	0.0	0.0
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.6	0.0	0.2	0.0	0.0	0.0	0.0
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.6	0.2	0.0	0.0	0.0	0.0
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.6	0.0	0.0	0.0	0.0
30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.2	0.2	0.0
31	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.6	0.0	0.2
32	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.6	0.2
33	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.6

Our cost function between a state x and an action c consist in the minimum number of movements the wolf needs to do to catch the hare at the state he will be after performing action a successfully, normalized between the cost of the other actions.

$$c(x^t, a) = \frac{\min(\textit{movements between wolf and hare at } x^{t+1})}{\sum c(x^t, a^i)}$$

 ${\it Table 5-Normalized\ Matrix\ with\ the\ cost\ of\ the\ actions\ for\ every\ state.}$

States \ actions	L	R	U	D	S
00	0.25	0.25	0.25	0.25	0.0
01	0.0	0.0	0.4	0.4	0.2
02	0.4	0.4	0.0	0.0	0.2
03	0.167	0.167	0.167	0.167	0.333
10	0.0	0.0	0.4	0.4	0.2
11	0.25	0.25	0.25	0.25	0.0
12	0.167	0.167	0.167	0.167	0.333
13	0.4	0.4	0.0	0.0	0.2
20	0.4	0.4	0.0	0.0	0.2
21	0.167	0.167	0.167	0.167	0.333
22	0.25	0.25	0.25	0.25	0.0
23	0.0	0.0	0.4	0.4	0.2
30	0.167	0.167	0.167	0.167	0.333
31	0.4	0.4	0.0	0.0	0.2
32	0.0	0.0	0.4	0.4	0.2
33	0.25	0.25	0.25	0.25	0.0

(c) Cost-to-Go function:

$$J^{\pi} = (I - \gamma P_{\pi})^{-1} c_{\pi}$$

with $\gamma = 0.99$:

	J^{π}
00	0.06218719
01	0.06335822
02	0.06161898
03	0.06283561
10	0.06335822
11	0.06218719
12	0.06283561
13	0.06161898
20	0.06161898
21	0.06283561
22	0.06218719
23	0.06335822
30	0.06283561
31	0.06161898
32	0.06335822
33	0.06218719