Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації» «Дослідження ітераційних циклічних алгоритмів» Варіант 2

Виконав	студент	ІП-12, Басараб Олег Андрійович
		(шифр, прізвище, ім'я, по батькові)
Перевіри	В	
		(прізвише, ім'я, по батькові)

Лабораторна робота №3 "Дослідження ітераційних циклічних алгоритмів" Варіант 2

Мета — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Задача 2. З точністю $\varepsilon = 10^{-6}$ обчислити значення функції $Ln \ x$:

$$Ln\ x=(a-1)-rac{(a-1)^2}{2}+rac{(a-1)^3}{3}-\cdots$$
, для $0\leq a\leq 2$

Порівняти одержане за допомогою ряду значення зі значенням, отриманим стандартною функцією.

Розв'язок

Постановка задачі. Результатом розв'язку є дійсні числа \ln_x та ratio. Для знаходження \ln_x та ratio повинні бути задані дійсне число a, де $0 \le a \le 2$ та константна дійсна змінна ассигасу = 10^{-6} . Інших початкових даних для розв'язку задачі не потрібно. В процесі розв'язання також будуть використані функції $\ln(x)$ та x abs(x) для знаходження натурального логарифму числа та абсолютного значення числа відповідно.

Побудова математичної моделі. Складемо таблицю імен змінних.

Змінна	Тип	Ім'я	Призначення
Значення а	Дійсний	a	Вхідне дане
Точність обчислень	Дійсний	accuracy	Початкове дане
Поточний елемент ряду	Дійсний	current_elem	Проміжне дане
Порядковий номер елементу ряду	Цілий	i	Проміжне дане
Натуральний логарифм числа а	Дійсний	ln_x	Результат
Відношення ln_a / ln(a)	Дійсний	ratio	Результат

Таким чином, математичне формулювання завдання зводиться до:

1) задання початкових значень змінним current_elem = a - 1, $ln_x = 0$, i = 0 (значення ассигасу = 0.000001 задано в умові, воно є незмінним);

- 2) використання ітераційного циклу з постумовою з умовою невиходу abs(current_elem) > accuracy. Використовуємо таку умову, оскільки елементи ряду при $i \to \infty$ прямують до 0. В тілі циклу виконуємо такі дії: $\ln_a + = \text{current_elem}; i + = 1 \text{ (обчислюємо номер елементу ряду); current_elem *= (-1 * (a 1) * i) / (i + 1) (використовуємо рекурентну формулу для обчислення елементу ряду);$
- 3) обчислюємо відношення ratio = $\ln_a / \ln(a)$, яке є результатом порівняння, одержаного за допомогою ряду значення натурального логарифму числа, і значення натурального логарифму, отриманого стандартною функцією.

Розіб'ємо наш алгоритм на кроки:

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію задання початкових значень змінних.

Крок 3. Деталізуємо дію знаходження значення ln_a за допомогою ряду з заданою точністю.

Крок 4. Деталізуємо дію знаходження відношення ratio.

Програмні специфікації запишемо у псевдокоді та в графічній формі в блок-схемі алгоритму.

Псевдокод.

Крок 1 Крок 2

початок початок

введення а введення а

<u>задання початкових значень</u> accuracy = 0.000001

<u>змінних</u> $ln_x = 0$

i = 0

 $current_elem = a - 1$

знаходження значення ln_a за <u>знаходження значення ln_a за</u>

допомогою ряду з заданою допомогою ряду з заданою

точністю точністю

знаходження відношення ratio знаходження відношення ratio

вивід ln_a, ratio вивід ln_a, ratio

кінець кінець

Крок 4

початок

введення а
$$accuracy = 0.000001$$

$$ln_x = 0$$

$$i = 0$$

current elem = a - 1

повторити

$$ln_a += current_elem$$
 $i += 1$
 $current_elem *= (-1 * (a - 1) *$
 $i) / (i - 1)$

поки abs(current_elem) > accuracy

все повторити

знаходження відношення ratio вивід ln_a, ratio

початок

введення а
$$accuracy = 0.000001$$
 $ln_x = 0$ $i = 0$ $current elem = a - 1$

повторити

поки abs(current_elem) > accuracy

все повторити

ratio =
$$ln_a / ln(a)$$

вивід ln_a , ratio

кінець

кінець

Блок-схема алгоритму.

Випробування алгоритму.

Перевірка №1

Блок	Дія
	Початок
1	Введення: 1.2
2	accuracy = 0.000001
	$ln_x = 0$
	i = 0
	current_elem = $1.2 - 1 = 0.2$
3	повторити
	ln_a += current_elem
	i += 1
	current_elem *= $(-1 * (a - 1) * i) / (i - 1)$
	поки abs(current_elem) > accuracy
	все повторити
4	ratio = 0.1823218614 / 0.1823215932 = 1.0000014305
5	Вивід: 0.182322; 1.0000014305
	Кінець

При обчисленні ratio використано числа з 10-ма цифрами після коми.

На скріншоті можна побачити усі елементи ряду, отримані в результаті виконання алгоритму з такими вхідними даними:

```
Elements of the series:
Element[0] = 0.2 Element[1] = -0.02 Element[2] = 0.00266667 Element[3] = -0.0004 Element[4] = 6.40001e-05 Element[5] = -1.06667e-05 Element[6] = 1.82857e-06
```

Перевірка №2

Блок	Дія
	Початок
1	Введення: 1.7
2	accuracy = 0.000001
	$ln_x = 0$
	i = 0
	$current_elem = 1.7 - 1 = 0.7$
3	повторити
	ln_a += current_elem
	i += 1
	current_elem *= $(-1 * (a - 1) * i) / (i - 1)$
	поки abs(current_elem) > accuracy
	все повторити
4	ratio = 0.5306286216 / 0.5306282640 = 1.0000007153
5	Вивід: 0.530629; 1.0000007153
	Кінець

При обчисленні ratio використано числа з 10-ма цифрами після коми.

На скріншоті можна побачити усі елементи ряду, отримані в результаті виконання алгоритму з такими вхідними даними:

```
Elements of the series:
Element[0] = 0.7 Element[1] = -0.245 Element[2] = 0.114333 Element[3] = -0.060025 Element[4] = 0.033614 Element[5] = -0.0196082 Element[6] = 0.0117649 Element[7] = -0.00720601 Element[8] = 0.00448374 Element[9] = -0.00282475 Element[10] = 0.00179757 Element[11] = -0.00115344 Element[12] = 0.000745301 Element[13] = -0.000484445 Element[14] = 0.000316504 Element[15] = -0.000207706 Element[16] = 0.000136842 Element[17] = -9.04675e-05 Element[18] = 5.99943e-05 Element[19] = -3.98 962e-05 Element[20] = 2.65975e-05 Element[21] = -1.777719e-05 Element[22] = 1.18995e-05 Element[23] = -7.98256e-06 Element[24] = 5.36428e-06 Element[25] = -3.61058e-06 Element[26] = 2.4338e-06 Element[27] = -1.64281e-06 Element[28] = 1.11031 e-06
```

Висновки. Таким чином, в результаті виконання лабораторної роботи було досліджено подання операторів повторення дій на прикладі оператора ітераційного циклу з постумовою та набуто практичних навичок їх використання під час складання циклічних програмних специфікацій. Також було вивчено особливості знаходження наближених значень із заданою точністю (в даному випадку ассигасу = 0.000001).