WHAT IS CLAIMED IS:

1. A compound having one of the following structures:

10 wherein:

5

15

a) each A is the same or different, and is selected from the group consisting of i) hydrogen, ii) a nitrile, iii) an amino, iv) an antibacterial agent, v) an antibiotic, vi) a quinolone, vii) an azaquinolone, and viii) one of the following groups:

where R_{12} is hydrogen or C_1 - C_6 straight or branched alkyl, and R_{11} is hydrogen, lower alkyl, an aromatic group or a heterocyclic group, with the proviso that with respect to structures I-III, both A's cannot be the adamantane structure above at the same time;

b) B is a straight chain or branched $C_1 - C_{30}$ alkyl group, which may be interrupted by oxygen, sulfur, optionally substituted aromatic nuclei, sulphoxide, optionally substituted cyclohexane, nitrogen optionally substituted with -NH-C (NH)-NH-C(NH)-A where A is defined above, tris (2-aminoethyl)amine, a heterocycle of the following structure:

where D is 1-3 carbon atoms and Q is hydrogen, halogen or lower alkyl; or

15

10

5

where Q is hydrogen, halogen or lower alkyl; or

20

25

- a hydrophilic moiety; and

c) R is hydrogen or $C_1 - C_6$ straight or branched alkyl.

2. The compound of claim 1, wherein A is an antibacterial agent selected from the group consisting of

$$R_3$$
 C CO_2R R_1 R_8

$$Z$$
 E
 CO_2R
 R_1
 R_2

or

$$R_3$$
 CO_2R R_1

or

$$Z$$
 E
 CO_2R
 R_1

where Z is one or more heterocyclic rings containing at least one N atom

$$G$$
 CH_2
 CH_2
 CH_2
 CH_2
 R_4
 R_5

5

which may be attached to the structure above through any available point of attachment;

10

where n is 0 to 3; R_4 , R_5 and R_6 are each independently hydrogen or lower alkyl or alkylene; G and M are independently O, S or NR_{10} ; where R_{10} is hydrogen, -C(N)-NH-CN, halogen, a single bond, or lower alkyl or alkylene;

E is nitrogen or CR_{10} , where R_{10} is hydrogen or halogen;

K is nitrogen or CR_7 , where R_7 is hydrogen, nitro, halogen, nitrile, carboxamide, carboxyl or an ester;

R is hydrogen or lower alkyl;

R₁ is hydrogen, a lower arylalkyl group having 1-6 carbon atoms, an alkyl group having 1-4 carbon atoms in the aliphatic part and 6 to 10 carbon atoms in the aromatic part, or an aryl group having 6 to 10 carbon atoms;

20

25

15

R₂ is an alkyl group having one to six carbon atoms; a cycloalkyl group having 3 to 7 carbon atoms optionally substituted with halogen; 2,4-difluorophenyl or 2- or 4-fluorophenyl; amino; lower alkylamino; propylamino; N-formyl-lower alkylamino or di-lower-alkylamino; a vinyl group; a 2-fluoroethyl group; a haloalkyl group or a 2-hydroxylkyl group; phenyl or substituted phenyl wherein the phenyl ring is substituted with one or two or three substituents independently selected from C1 to C6 alkyl, halogen, methylenedioxy and hydroxy; alkoxy or trifluoromethyl; 2-, 3-, or 4- pyridine; 2- or 3-thiophene; 2-imidazole; 2-oxazole or 2-thiazole; a pyridyl or adamantyl group; or a benzoxazine group;

 R_3 is a hydrogen, amino, substituted amino, halogen or a lower alkyl group;

 R_8 is hydrogen or lower alkyl; and X is methylene, O, S or NR9, where R9 is hydrogen or lower alkyl.

5

3. A compound according to claim 2, wherein Z is selected from the group consisting of

$$-N$$
 $N R_5$

$$-N$$
 R_4
 R_5

$$-N$$

where R_4 and R_5 are independently hydrogen or lower alkyl.

4. A compound according to claim 1, selected from the group consisting of:

1.
$$HO_2C$$
 NH
 NH

10.
$$HO_2C$$

17.
$$HO_2C$$
 C_2H_5
 C

33.
$$\begin{array}{c} H_2N \\ F \\ CH_3 \\ HO_2C \\ \end{array}$$

37.
$$HO_2C$$
 H_3C

41.
$$HO_2C$$
 HO_2C
 HO_2C

45.
$$HO_2C$$
 HO_2C HO_2C

69.
$$HO_2C$$
 NH
 NH

5. A compound according to claim 1, wherein the compound has the following structure:

- 5 where each V is independently hydrogen or halogen.
 - 6. A compound having the following structure:

10

- where each n is independently from 1-5;
 - Y¹ and Y² are the same or different, and are optionally substituted alkyl; optionally substituted aryl; an optionally substituted heterocycle; or a single bond;

X is optionally substituted alkyl; optionally substituted aryl; or an optionally substituted heterocycle; and

each Z is independently -C(NH)-NH-C(NH)-A

where A is the same or different, and is selected from the group consisting of i)

hydrogen, ii) a nitrile, iii) an amino, iv) an antibacterial agent, v) an antibiotic, vi) a
quinolone, vii) an azaquinolone, and viii) one of the following groups:

NH-
$$R_{12}, \quad NH$$

$$R_{13}, \quad NH$$

$$R_{14}, \quad NH$$

$$R_{15}, \quad NH$$

$$R_{16}, \quad NH$$

$$R_{17}, \quad NH$$

$$R_{18}, \quad NH$$

$$R_{19}, \quad NH$$

$$R_{19}, \quad NH$$

$$R_{19}, \quad NH$$

$$R_{11}, \quad NH$$

$$R_{11}, \quad NH$$

$$R_{12}, \quad NH$$

$$R_{12}, \quad NH$$

$$R_{12}, \quad NH$$

$$R_{13}, \quad NH$$

$$R_{14}, \quad NH$$

$$R_{15}, \quad NH$$

$$R_{15}, \quad NH$$

$$R_{15}, \quad NH$$

$$R_{15}, \quad NH$$

$$R_{16}, \quad NH$$

$$R_{17}, \quad NH$$

$$R_{19}, \quad NH$$

$$R_{19}, \quad NH$$

$$R_{19}, \quad NH$$

$$R_{11}, \quad NH$$

$$R_{11}, \quad NH$$

$$R_{11}, \quad NH$$

$$R_{12}, \quad NH$$

$$R_{12}, \quad NH$$

$$R_{12}, \quad NH$$

$$R_{12}, \quad NH$$

$$R_{13}, \quad NH$$

$$R_{14}, \quad NH$$

$$R_{15}, \quad NH$$

10

15

where R₁₂ is hydrogen or C₁-C₆ straight or branched alkyl, and R₁₁ is hydrogen, lower alkyl, an aromatic group or a heterocyclic group and pharmaceutically acceptable salts thereof.

- 7. The compound of claim 6, wherein both Y^1 and Y^2 are single bonds.
- 20 8. The compound of claim 7, wherein X is C_1 - C_{10} alkyl.
 - 9. The compound of claim 6, wherein Y^1 and Y^2 are lower alkyl and X is phenyl optionally substituted with halogen and/or lower alkyl.
- The compound of claim 9 wherein Y^1 and Y^2 are $-CH_2$ -

- 11. The compound of claim 6, wherein Y^1 and Y^2 are lower alkyl and X is pyridyl optionally substituted with halogen and/or lower alkyl.
 - 12. The compound of claim 11, wherein Y^1 and Y^2 are $-CH_2$.

13. A compound having the following structure:

10

5

where each n is independently from 1-5; each m is independently from 0-12; each Z is independently -C(NH)NH-C(NH)-A,

15

where each A is the same or different, and is selected from the group consisting of i) hydrogen, ii) a nitrile, iii) an amino, iv) an antibacterial agent, v) an antibiotic, vi) a quinolone, vii) an azaquinolone, and viii) one of the following groups:

NH-
$$R_{12}, \quad NH \quad NH \quad CH_{3}$$

$$CO_{2}R_{11}$$

$$CH_{3}$$

$$CO_{2}R_{11}$$

$$CH_{3}$$

$$CO_{2}R_{11}$$

$$CH_{3}$$

$$CO_{2}R_{11}$$

$$CH_{3}$$

$$CO_{2}R_{11}$$

where R_{12} is hydrogen or C_1 - C_6 straight or branched alkyl, and R_{11} is hydrogen, lower alkyl, an aromatic group or a heterocyclic group; and

T is hydrogen, lower alkyl optionally substituted aryl or an optionally substituted heterocycle; and X is from 0-8.

14. The compound of claim 13, wherein the compound has one of the following structures:

15

$$HO_2C$$
 HO_2C
 HO_2C

15. A compound having the following structure:

where each A is the same or different, and is selected from the group consisting of
i) hydrogen, ii) nitrile, iii) an amino, iv) an antibacterial agent, v) an antibiotic, vi)
a quinolone, vii) an azaquinolone, and viii) one of the following groups:

NH-
$$R_{12}, \quad NH$$

$$R_{12}, \quad NH$$

$$R_{12}, \quad NH$$

$$R_{13}C$$

$$R_{12}, \quad NH$$

$$R_{13}C$$

$$R_{12}, \quad NH$$

$$R_{13}C$$

$$R_{12}, \quad NH$$

$$R_{13}C$$

$$R_{13}, \quad NH$$

$$R_{14}C$$

$$R_{15}$$

$$R_{12}, \quad NH$$

$$R_{15}C$$

$$R_{15}$$

$$R_{12}, \quad NH$$

$$R_{15}C$$

$$R_{15}$$

where R_{12} is hydrogen or C_1 - C_6 straight or branched alkyl, and R_{11} is hydrogen, lower alkyl, an aromatic group or a heterocyclic group; with the priviso that at least one A is not hydrogen.

16. A compound having the following structure:

5

$$(CH_2)_n$$
 $(CH_2)_n$
 $(CH_2)_n$

wherein each n is independently from 1-5;

m is from 0-3;

each L is independently hydrogen, lower alkyl, optionally substituted aryl, or nitro;

X is CH or N;

each Z is independently -C(NH)NH-C(NH)-A where

each A is the same or different, and is selected from the group consisting of

- i) hydrogen, ii) a nitrile, iii) an amino, iv) an antibacterial agent, v) an antibiotic,
 - vi) a quinolone, vii) an azaquinolone, and viii) one of the following groups:

20 .

where R_{12} is hydrogen or C_1 - C_6 straight or branched alkyl, and R_{11} is hydrogen, lower alkyl, an aromatic group or a heterocyclic group.

17. A compound having the following structure:

5

15

where m is from 0-4;

each L is independently hydrogen, halogen, alkyl, aryl or nitro; each W is independently hydrogen, halogen, alkyl, alkoxy, or aryl; X and Y are each independently CH or N;

 Y^1 and Y^2 are each independently optionally substituted alkyl or a single bond; and

each Z is independently –C(NH)-NH-C(NH)-A,

where each A is the same or different, and is selected from the group consisting of i) hydrogen, ii a nitrile, iii) an amino, iv) an antibacterial agent, v) an antibiotic, vi) a quinolone, vii) an azaquinolone, and viii) one of the following groups:

NH-
$$R_{12}, \quad NH$$

$$R_{12}, \quad NH$$

$$R_{12}, \quad NH$$

$$R_{13}C$$

$$R_{12}, \quad NH$$

$$R_{13}C$$

$$R_{12}, \quad NH$$

$$R_{13}C$$

$$R_{13}, \quad NH$$

$$R_{14}C$$

$$R_{15}$$

$$R_{12}, \quad NH$$

$$R_{15}C$$

$$R_{12}, \quad NH$$

$$R_{15}C$$

$$R_{12}, \quad NH$$

$$R_{13}C$$

$$R_{14}C$$

$$R_{15}C$$

$$R_{15}$$

5

where R_{12} is hydrogen or C_1 - C_6 straight or branched alkyl, and R_{11} is hydrogen, lowere alkyl, an aromatic group or a heterocyclic group; and pharmaceutically acceptable salts thereof.

- 18. An antiviral and/or antibacterial composition which comprises:
 - a) an effective amount of a compound according to claim 1;
 - b) a pharmaceutically acceptable carrier.
- 15 19. A method for preventing or treating a viral and/or bacterial infection in a mammalian host, said method comprising administering to a mammal in need thereof an effective amount of a compound in accordance with claim 1.
 - 20. A compound having the following structure:

where each n is independently from 1-5;

Y¹ and Y² are the same or different, and are optionally substituted alkyl; optionally substituted aryl; an optionally substituted heterocycle; or a single bond;

X is optionally substituted alkyl; optionally substituted aryl; or an optionally substituted heterocycle; and

each Z is independently -C(NH)-NH-CN or $--(CH_2)_m-NH-C(NH)-NHCN$ where m is from 1 to 6.

21. A compound having the following structure:

15

10

$$Z \xrightarrow{N} (CH_2)_n \xrightarrow{N} Z$$

$$(CH_2)_n \xrightarrow{(CH_2)_n} (CH_2)_n - T]_x$$

$$Z \xrightarrow{N} (CH_2)_n \xrightarrow{N} Z$$

where each n is independently from 1-5; each m is independently from 0-12;

each Z is independently –C(NH)-NH-CN or —(CH2) $_q$ -NH-C(NH)-NH-CN where q is from 1-6, and

T is hydrogen, lower alkyl optionally substituted aryl or an optionally substituted heterocycle; and x is from 0-8.