Deep-6DPose

论文地址: https://arxiv.org/abs/1802.10367v1

1创新点

- (1) 提出一种仅基于rgb图片,能够端到端,无需pose refinement的、同时进行目标检测、实例分割和6d姿态估计的快速算法,前向帧率可达到10fps
 - (2) 基于优异的mask RCNN算法,新增一个6d姿态回归分支进行6d姿态估计,并提出一个简单的loss函数
- (3) 6d姿态估计采用解耦回归方式,把3d旋转矩阵和3d平移向量解耦输出,同时为了保证可训练性,将3d旋转矩阵通过李代数Lie algebra转化表示

2核心思想

本文算法思想非常简单。基于Mask RCNN算法,新增一个6d姿态分支,新增分支要考虑以下几个问题:

- (1) 6d姿态包括3d旋转和3d平移,目前的做法都是解耦预测,作者也是采用解耦输出
- (2) 3d旋转矩阵是一个特殊矩阵,如果直接进行回归,是无法训练的,需要进行转化,常用的转化方法有李代数 so(3),欧拉角和四元数,考虑复杂性,作者采用的是so(3),转化为旋转向量
- (3) 3d平移向量是一个3x1的向量,如果直接预测是可以的,但是实际上没有必要,因为我们在其他分支预测了2d 边界框,通过2d边界框中心即可得到3d平移向量中的x,y,所以作者在3d平移向量中只预测输出z分量即可,加上旋转向量,6d姿态回归分支一共预测4个值即可
 - (4) 既然引入了新的分支,那么就需要定义loss,作者基于范数设计了一个非常简单的Loss

3 模型

3.1 网络结构

由于网络结构和mask rcnn几乎不变,故不详述。

3.2 loss

$$L = \alpha_1 L_{cls} + \alpha_2 L_{box} + \alpha_3 L_{mask} + \alpha_4 L_{pose}$$
$$L_{pose} = \|r - \hat{r}\|_p + \beta \|t_z - \hat{t}_z\|_p$$

 L_{cls} 分类损失函数是softmax loss, L_{box} 边界框损失函数是smooth L1, L_{mask} 掩码损失是二值交叉熵,r是回归的旋转向量, \hat{r} 是真实旋转向量, t_z 是回归的平移向量z轴, $\hat{t_z}$ 是真正的平移向量z轴,p是距离范数, β 是平衡两者的权重。实际实验中作者设置的参数为: $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 为1,1,2,2, $\hat{m}_p=1$, $\beta=1.5$ 。

4 训练

训练参数设置为:sgd+0.9 momentum,0:0005 weight decay,Titan X GPU ,350k iterations,每个batch为1张图片,前150k代学习率是0.001,剩下的学习率为0.0001,RPN输出的Rols固定为2000个。前向计算时候RPN输出固定为1000个。

在预测时候,输出4维表征旋转和平移的向量后,对前3个向量使用指数罗德里格映射算法得到3d旋转矩阵,同样,在训练时候使用罗德里格映射算法将3d旋转矩阵变为旋转向量即可。而第4个维度向量是平移向量的z轴,联合2d边界框的中心点坐标,可以很容易算出3d平移向量:

$$t_x = \frac{(u_0 - c_x)t_z}{f_x}$$

$$t_y = \frac{(v_0 - c_x)t_z}{f_y}$$

其中 u_0 , v_0 是2d边界框的中心点坐标, c_x , f_x , f_y 是相机内参。注意:上面原图的公式中 t_y 写错了,应该是 $t_y=[(v_0-c_y)t_z]/f_y$.

作者所采用的训练数据集一共是2个:单目标数据集linemod和多目标数据集Tejani。在实际训练中有一个技巧:对于单目标数据集,假设每张图片中一共15个物体,但是每次我只标注其中一个物体进行训练,也就是说假设物体1在图片中,当前时刻物体1是前景,其他14个物体是背景,但是在下一次训练差不多类型的图片中,物体1是背景,其他某一个物体是前景,那么在分割中就会给网络带来混乱,也就是该物体一会说是背景,一会说是前景,导致的结果就是分割的结果不太好,且收敛速度慢。作者的解决办法是:使用当前最优秀的语义分割网络RefineNet作者预处理网络,具体操作是假设一共15个目标训练数据,对每个标注的单目标图片集训练一个RefineNet,训练

好15个RefineNet后,拿出任意一个RefineNet,假设该网络是用于分割目标1,然后对RefineNet1输入其他目标的图片,如果该分割网络也输出部分掩码,那么就把对应掩码的像素直接过滤掉即可,所有的图片都处理一遍以及所有的RefineNet网络都过一遍,就可以去除以上问题。

5 结果

5.1 评价指标计算

作者的评价指标和其他人的计算不太一样,所以需要特殊说明。

Detection指标:首先得到所有测试图片的真实bbox值,网络预测输出所有图片的预测bbox,当某一个预测的bbox值与真实bbox值的IOU大于某一定值时候,则预测正确bbox个数加1,最终的结果是预测正确的bbox个数除以真实bbox个数。IOU作者设置了两个取值,分别是0.5和0.9。对于Segmentation指标的计算也是一样的。

2D-pose 指标:首先得到所有测试图片的真实姿态值,包括旋转矩阵和旋转向量,网络预测输出所有图片的预测 姿态,利用真实姿态和模型文件、相机内参可以绚烂出3d模型,然后得到2d图片,进而可得到物体掩码信息,最终得到bbox值,预测姿态也采用同样处理。然后当某一个预测的bbox值与真实bbox值的IOU大于0.5时候,则预测正确bbox个数加1,最终的结果是预测正确的bbox个数除以真实bbox个数。

5cm5°指标:计算预测的平移向量与真实值在5cm范围内以及预测的角度与真实值在5°范围内的姿态个数占全部真实姿态的比重。

ADD 指标:average distance指标。计算真实姿态和预测姿态的变换模型点云数据直接的平均距离,然后当平均距离小于物体的直径的10%时候,就预测正确个数加1,最终的结果是预测正确的姿态个数除以真实姿态个数。

5.2 预测结果

以下结果单位都是%。

	Ape	Bvise	Cam	Can	Cat	Driller	Duck	Box	Glue	Holep	Iron	Lamp	Phone	Average
	IoU 0.5													
Detection	99.8	100	99.7	100	99.5	100	99.8	99.5	99.2	99.0	100	99.8	100	99.7
Segmentation	99.5	99.8	99.7	100	99.1	100	99.4	99.5	99.0	98.6	99.2	99.4	99.7	99.4
Segmentation	77.5	77.0	77.1	100	77.1	100			77.0	70.0	77.2	77.4	77.1	77.4
	IoU 0.9													
Detection	85.4	91.7	93.3	93.6	89.3	87.5	86.3	94.2	81.1	93.2	92.5	91.3	90.8	90.0
Segmentation	80.6	57.0	91.4	62.5	52.1	74.6	81.2	91.9	73.3	84.6	90.3	85.0	84.6	77.6
		ъ.		•	C .	D '''	ъ 1	ъ	CI				DI	
	Ape	Bvise	Cam	Can	Cat	Driller	Duck	Box	Glue	Holep	Iron	Lamp	Phone	Average
	2D-pose metric													
Deep-6DPose	99.8	100	99.7	100	99.2	100	99.8	99.0	97.1	98.0	99.7	99.8	99.1	99.3
Brachmann 5	98.2	97.9	96.9	97.9	98.0	98.6	97.4	98.4	96.6	95.2	99.2	97.1	96.0	97.5
SSD-6D[13]		-	-	-	-	-	-	-	-	-			-	99.4
								-	•					<i>77.</i> 4
	5cm5° metric													
Deep-6DPose	57.8	72.9	75.6	70.1	70.3	72.9	67.1	68.4	64.6	70.4	60.7	70.9	69.7	68.5
Brachmann 5	34.4	40.6	30.5	48.4	34.6	54.5	22.0	57.1	23.6	47.3	58.7	49.3	26.8	40.6
BB8 25	80.2	81.5	60.0	76.8	79.9	69.6	53.2	81.3	54.0	73.1	61.1	67.5	58.6	69.0
	ADD metric													
Deep-6DPose	38.8	71.2	52.5	86.1	66.2	82.3	32.5	79.4	63.7	56.4	65.1	89.4	65.0	65.2
Brachmann[5]	33.2	64.8	38.4	62.9	42.7	61.9	30.2	49.9	31.2	52.8	80.0	67.0	38.1	50.2
BB8[25]	40.4	91.8	55.7	64.1	62.6	74.4	44.3	57.8	41.2	67.2	84.7	76.5	54.0	62.7
SSD-6D[13]	-	-	-	-	-	-	-	-	-	-	-	-	-	76.3

左1为原始rgb图片,中间为预测的2d边界框和mask,右1为估计的6d姿态(红色框为预测值,绿色框为真实值)

6 补充内容

6.1 三维刚体运动描述方式

本节考虑:一个刚体在三维空间中的运动是如何描述的?简单来说就是由一次旋转加一次平移组成,平移是比较简单的,无需多考虑,然而旋转就比较复杂了。三维刚体旋转运动的数学表示方式一共有4种方式:旋转矩阵,旋转向量,欧拉角和4元数。下面分开讲解。

6.1.1 旋转矩阵

旋转矩阵R是一个3x3的矩阵,代表了相机的旋转。假设大家已经知道旋转矩阵的含义了,旋转矩阵有些特殊性质,事实上,它是一个行列式为 1 的正交矩阵。反之,行列式为 1 的正交矩阵也是一个旋转矩阵。所以,可以把旋转矩阵的集合定义如下:

$$SO(n) = \{ \mathbf{R} \in \mathbb{R}^{n \times n} | \mathbf{R} \mathbf{R}^T = \mathbf{I}, \det(\mathbf{R}) = 1 \}.$$

SO(n)是特殊正交群(Special Orthogonal Group)的意思,后面会详细讲解。这个集合由 n 维空间的旋转矩阵组成,特别的,SO(3)就是三维空间的旋转了。通过旋转矩阵,我们可以直接谈论两个坐标系之间的旋转变换,而不用再从基开始谈起。换句话说,**旋转矩阵可以描述相机的旋转**。

考虑旋转,设某个单位正交基(e1, e2, e3)经过一次旋转,变成了 (e1', e2', e3')。那么,对于同一个向量 a,它 在两个坐标系下的坐标为 [a1, a2, a3]T和 [a1', a2', a3']T。根据坐标的定义,有:

$$egin{aligned} \left[egin{aligned} a_1 \ a_2 \ a_3 \end{aligned}
ight] = \left[egin{aligned} e_1^{'}, e_2^{'}, e_3^{'}
ight] \left[egin{aligned} a_1^{'} \ a_2^{'} \ a_3^{'} \end{array}
ight]. \end{aligned}$$

$$\left[egin{array}{c} a_1 \ a_2 \ a_3 \end{array}
ight] = \left[egin{array}{ccc} e_1^Te_1^{'} & e_1^Te_2^{'} & e_1^Te_3^{'} \ e_2^Te_1^{'} & e_2^Te_2^{'} & e_2^Te_3^{'} \ e_3^Te_1^{'} & e_3^Te_2^{'} & e_3^Te_3^{'} \end{array}
ight] \left[egin{array}{c} a_1^{'} \ a_2^{'} \ a_3^{'} \end{array}
ight] riangleq m{R}m{a}^{'}.$$

$$\mathbf{a}' = \mathbf{R}^{-1}\mathbf{a} = \mathbf{R}^T\mathbf{a}.$$

由于旋转矩阵为正交阵,它的逆(即转置)描述了一个相反的旋转。显然 $oldsymbol{R^T}$ 刻画了一个相反的旋转。

在欧氏变换中,除了旋转之外还有一个平移。考虑世界坐标系中的向量 a,经过一次旋转(用 R 描述)和一次平移 t 后,得到了 a,那么把旋转和平移合到一起,有:

$$a' = Ra + t.$$

通过上式,我们用一个旋转矩阵 R 和一个平移向量 t 完整地描述了一个欧氏空间的坐标变换关系。

6.1.2 旋转向量

前面已知,可以用旋转矩阵来描述旋转,但是,矩阵表示方式至少有以下几个缺点:

- (1) SO(3) 的旋转矩阵有九个量,但一次旋转只有三个自由度。因此这种表达方式是冗余的
- (2) 旋转矩阵自身带有约束:它必须是个正交矩阵,且行列式为 1。当我们想要估计或优化一个旋转矩阵时,这些约束会使得求解变得更困难。

因此,我们希望有一种方式能够紧凑地描述旋转和平移。例如,用一个三维向量表达旋转。实际上也是可行的。

对于坐标系的旋转,我们知道,**任意旋转都可以用一个旋转轴和一个旋转角来刻画**。于是,我们可以使用一个向量,其方向与旋转轴一致,而长度等于旋转角。这种向量,称为**旋转向量**(或轴角, AxisAngle)。这种表示法只需一个三维向量即可描述旋转。

假设有一个旋转轴为 n,角度为 θ 的旋转,显然,它对应的旋转向量为 θn ,由旋转向量到旋转矩阵的过程由罗德里格斯公式(Rodrigues's Formula)计算,具体推导不讲:

$$\mathbf{R} = \cos \theta \mathbf{I} + (1 - \cos \theta) \, \mathbf{n} \mathbf{n}^T + \sin \theta \mathbf{n}^{\wedge}.$$

符号 $^{\prime}$ 是向量到反对称的转换符,例如下式的a向量:

$$m{a} imes m{b} = egin{bmatrix} m{i} & m{j} & m{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = egin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix} = egin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} m{b} \stackrel{\triangle}{=} m{a}^{\wedge} m{b}.$$

以上公式即可将旋转向量转化为旋转矩阵。

对于转角 θ ,有:

$$\operatorname{tr}(\boldsymbol{R}) = \cos \theta \operatorname{tr}(\boldsymbol{I}) + (1 - \cos \theta) \operatorname{tr}(\boldsymbol{n} \boldsymbol{n}^T) + \sin \theta \operatorname{tr}(\boldsymbol{n}^{\wedge})$$
$$= 3 \cos \theta + (1 - \cos \theta)$$
$$= 1 + 2 \cos \theta.$$

可得:

$$\theta = \arccos(\frac{\operatorname{tr}(\boldsymbol{R}) - 1}{2}).$$

以上公式即可将旋转矩阵转化为转角。对于转轴n,由于旋转轴上的向量在旋转后不发生改变,说明

$$Rn = n$$
.

因此,转轴n 是矩阵 R特征值 1 对应的特征向量。求解此方程,再归一化,就得到了旋转轴。通过以上两个公式即可将旋转矩阵转化为旋转向量,而由旋转向量得到旋转矩阵就更容易了。

6.1.3 欧拉角

无论是旋转矩阵、旋转向量,虽然它们能描述旋转,但对我们人类是非常不直观的。当我们看到一个旋转矩阵或旋转向量时,采用欧拉角的方式是最直观的。欧拉角则提供了一种非常直观的方式来描述旋转——**它使用了三个分离的转角,把一个旋转分解成三次绕不同轴的旋转**。当然,由于分解方式有许多种,所以欧拉角也存在着不同的定义方法。比如说,当我先绕 X 轴旋转,再绕 Y 轴,最后绕 Z 轴,就得到了一个 XYZ 轴的旋转。同理,可以定义 ZYZ、 ZYX等等旋转方式。如果讨论更细一些,还需要区分每次旋转是绕固定轴旋转的,还是绕旋转之后的轴旋转的,这也会给出不一样的定义方式。欧拉角中比较常用的一种,便是用"偏航-俯仰-滚转"(yaw-pitch-roll)三个角度来描述一个旋转的,它等价于 ZYX 轴的旋转。具体是:

- (1) 绕物体的Z轴旋转,得到偏航角yaw;
- (2) 绕**旋转之后**的Y轴旋转,得到俯仰角pitch;
- (3) 绕旋转之后的X轴旋转,得到滚转角roll。

此时,我们可以使用 $[r;p;y]^T$ 这样一个三维的向量描述任意旋转。这个向量十分的直观,我们可以从这个向量想象出旋转的过程。注意:由旋转矩阵转化为欧拉角是不唯一的,因为在转化中需要arcsin,而sin45°值等于sin135°,除非限定范围,一般欧拉角应用在人眼观察方面,优化方面通常使用四元数。

欧拉角的一个重大缺点是会碰到著名的**万向锁问题**(Gimbal Lock):在俯仰角为±90°时,第一次旋转与第三次旋转将使用同一个轴,使得系统丢失了一个自由度(由三次旋转变成了两次旋转)。这被称为奇异性问题,在其他形式的欧拉角中也同样存在。**理论上可以证明,只要我们想用三个实数来表达三维旋转时,都会不可避免地碰到奇异性问题**,包括旋转向量。

6.1.4 四元数

旋转矩阵用九个量描述三自由度的旋转,具有冗余性;欧拉角和旋转向量是紧凑的,但具有奇异性。而四元数表示法则不存在上述问题。

回忆我们以前学习过的复数。我们用复数集 C 表示复平面上的向量,而复数的乘法则能表示复平面上的旋转:例如,乘上复数i相当于逆时针把一个复向量旋转 90 度。类似的,在表达三维空间旋转时,也有一种类似于复数的代数:四元数(Quaternion)。四元数既是紧凑的,也没有奇异性。

一个四元数 q 拥有一个实部和三个虚部:

$$\mathbf{q} = q_0 + q_1 i + q_2 j + q_3 k,$$

其中i,j,k为四元数的三个虚部。这三个虚部满足关系式:

$$\begin{cases} i^2 = j^2 = k^2 = -1 \\ ij = k, ji = -k \\ jk = i, kj = -i \\ ki = j, ik = -j \end{cases}.$$

由于它的这种特殊表示形式,有时人们也用一个标量和一个向量来表达四元数:

$$q = [s, v], \quad s = q_0 \in \mathbb{R}, v = [q_1, q_2, q_3]^T \in \mathbb{R}^3,$$

考虑到三维空间需要三个轴,四元数也有三个虚部,那么一个虚四元数(实部为0)对应到一个空间点。我们知道一个模长为 1 的复数,可以表示复平面上的纯旋转(没有长度的缩放),那么我们用**单位四元数**表示三维空间中任意一个旋转,假设某个旋转是绕单位向量 $n = [nx; ny; nz]^T$ 进行了角度为 θ 的旋转,那么这个旋转的四元数形式为:

$$\mathbf{q} = \left[\cos\frac{\theta}{2}, n_x \sin\frac{\theta}{2}, n_y \sin\frac{\theta}{2}, n_z \sin\frac{\theta}{2}\right]^T.$$

反之,我们亦可从单位四元数中计算出对应旋转轴与夹角:

$$\begin{cases} \theta = 2 \arccos q_0 \\ \left[n_x, n_y, n_z\right]^T = \left[q_1, q_2, q_3\right]^T / \sin \frac{\theta}{2} \end{cases}.$$

通过以上公式,可以对旋转矩阵、旋转向量和四元数进行相互转换。上述公式描述的是四元数转换为旋转向量,然后再转换为旋转矩阵,但是实际上可以直接将四元数和旋转矩阵进行转换:

设四元数 $q = q_0 + q_1 i + q_2 j + q_3 k$, 对应的旋转矩阵 **R** 为:

$$\mathbf{R} = \begin{bmatrix} 1 - 2q_2^2 - 2q_3^2 & 2q_1q_2 + 2q_0q_3 & 2q_1q_3 - 2q_0q_2 \\ 2q_1q_2 - 2q_0q_3 & 1 - 2q_1^2 - 2q_3^2 & 2q_2q_3 + 2q_0q_1 \\ 2q_1q_3 + 2q_0q_2 & 2q_2q_3 - 2q_0q_1 & 1 - 2q_1^2 - 2q_2^2. \end{bmatrix}$$
(3.35)

反之,由旋转矩阵到四元数的转换如下。假设矩阵为 $\mathbf{R} = \{m_{ij}\}, i, j \in [1, 2, 3]$,其对应的四元数 \mathbf{q} 由下式给出:

$$q_0 = \frac{\sqrt{\operatorname{tr}(R) + 1}}{2}, q_1 = \frac{m_{23} - m_{32}}{4q_0}, q_2 = \frac{m_{31} - m_{13}}{4q_0}, q_3 = \frac{m_{12} - m_{21}}{4q_0}.$$
 (3.36)

无论是四元数、旋转矩阵还是轴角,它们都可以用来描述同一个旋转。我们应该在实际中选择对我们最为方便的形式,而不必拘泥于某种特定的样子。

6.2 李群和李代数

李群和李代数在SLAM中是一个非常重要的数学基础,但是对于基于深度学习的6d姿态估计问题来说,不是很重要,但是其有助于理解旋转矩阵和旋转向量的一些性质,旋转矩阵和旋转向量的相互转化也会用于这部分数学原理。但是如果不关心的读者,只需要了解6.1节部分就可以,6.2部分可不看。

其实旋转矩阵构成了一个特殊正交群SO(3),而变换矩阵T构成了特殊欧氏群SE(3)。

$$SO(3) = \{ \mathbf{R} \in \mathbb{R}^{3 \times 3} | \mathbf{R} \mathbf{R}^T = \mathbf{I}, det(\mathbf{R}) = 1 \}.$$

$$SE(3) = \left\{ \boldsymbol{T} = \begin{bmatrix} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0}^T & 1 \end{bmatrix} \in \mathbb{R}^{4 \times 4} | \boldsymbol{R} \in SO(3), \boldsymbol{t} \in \mathbb{R}^3 \right\}$$

注意:旋转矩阵也好,变换矩阵也好, 它们对加法是不封闭的。换句话说,对于任意两个旋转矩阵 R1 , R2 ,它们按照矩阵加法的定义,和不再是一个旋转矩阵。

4.2.1 群定义

群(Group)是一种集合加上一种运算的代数结构。我们把集合记作 A,运算记作·,那么群可以记作 $G = (A; \cdot)$ 。群要求这个运算满足以下几个条件:

- 1. 封闭性: $\forall a_1, a_2 \in A, a_1 \cdot a_2 \in A.$
- 2. 结合律: $\forall a_1, a_2, a_3 \in A$, $(a_1 \cdot a_2) \cdot a_3 = a_1 \cdot (a_2 \cdot a_3)$.
- 3. 幺元: $\exists a_0 \in A$, s.t. $\forall a \in A$, $a_0 \cdot a = a \cdot a_0 = a$.
- 4. $\not\exists a$: $\forall a \in A$, $\exists a^{-1} \in A$, s.t. $a \cdot a^{-1} = a_0$.

我们可以验证,旋转矩阵集合和矩阵乘法构成群。很容易可知,旋转矩阵是特殊正交群SO(3)。

群结构保证了在群上的运算具有良好的性质。**李群**是指具有连续(光滑)性质的群。像整数群Z那样离散的群没有连续性质,所以不是李群。而SO(n)和SE(n),它们在实数空间上是连续的。我们能够直观地想象一个刚体能够连续地在空间中运动,所以它们都是李群。相机运动仅仅关心两种李群SO(3)、SE(3)和对应的两种李代数SO(3)、Se(3)。

4.2.2 李代数定义

每个李群都有与之对应的李代数。李代数描述了李群的局部性质。通用的李代数的定义如下:李代数由一个集合 V,一个数域 F和一个二元运算 [;] 组成。如果它们满足以下几条性质,称 (V; F;[;]) 为一个李代数,记作 g。

- 1. 封闭性 $\forall X, Y \in \mathbb{V}, [X, Y] \in \mathbb{V}.$
- 2. 双线性 $\forall X, Y, Z \in \mathbb{V}, a, b \in \mathbb{F}, 有:$

$$[aX + bY, Z] = a[X, Z] + b[Y, Z], [Z, aX + bY] = a[Z, X] + b[Z, Y].$$

- 3. 自反性^① $\forall X \in \mathbb{V}, [X, X] = \mathbf{0}.$
- 4. 雅可比等价 $\forall X, Y, Z \in \mathbb{V}, [X, [Y, Z]] + [Z, [Y, X]] + [Y, [Z, X]] = 0.$

其中二元运算被称为**李括号**。看起来蛮复杂的。但是其实转化到具体的三维空间来看,就非常简单了。三维向量 R^3 上定义的叉积×是一种李括号,因为在三维空间中的2个向量叉乘,得到的新向量是垂直于这两个向量所构成的平面的,因此 $g=(R^3;R;\times)$ 构成了一个李代数。

4.2.3 李代数 so(3)

考虑任意旋转矩阵 R, 我们知道它满足:

$$\mathbf{R}\mathbf{R}^T = \mathbf{I}$$
.

现在,我们说,R是某个相机的旋转,它会随时间连续地变化,即为时间的函数:R(t)。由于它仍是旋转矩阵,有

$$\mathbf{R}(t)\mathbf{R}(t)^T = \mathbf{I}.$$

在等式两边对时间求导,得到:

$$\dot{\mathbf{R}}(t)\mathbf{R}(t)^T + \mathbf{R}(t)\dot{\mathbf{R}}(t)^T = 0.$$

整理得:

$$\dot{\mathbf{R}}(t)\mathbf{R}(t)^T = -\left(\dot{\mathbf{R}}(t)\mathbf{R}(t)^T\right)^T.$$

可以看出 $\dot{R}(t)R(t)^T$ 是一个反对称矩阵。联系前面将的知识点,通过引入了 ^ 符号,将一个向量变成了反对称矩阵,同理,对于任意反对称矩阵,我们亦能找到一个与之对应的向量,把这个运算用符号 V 表示

$$oldsymbol{a}^\wedge = oldsymbol{A} = \left[egin{array}{ccc} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{array}
ight], \quad oldsymbol{A}^ee = oldsymbol{a}.$$

因此我们可以找到一个三维向量 $\phi(t) \in \mathbb{R}^3$ 与之对应。于是有:

$$\dot{\mathbf{R}}(t)\mathbf{R}(t)^T = \boldsymbol{\phi}(t)^{\wedge}.$$

等式两边右乘 R(t), 由于 R 为正交阵,有:

$$\dot{\mathbf{R}}(t) = \boldsymbol{\phi}(t)^{\hat{}} \mathbf{R}(t) = \begin{bmatrix} 0 & -\phi_3 & \phi_2 \\ \phi_3 & 0 & -\phi_1 \\ -\phi_2 & \phi_1 & 0 \end{bmatrix} \mathbf{R}(t).$$

可以看到,每对旋转矩阵求一次导数,只需左乘一个 $\phi(t)^{\wedge}$ 矩阵即可。为方便讨论,我们设 $t_0=0$,并设此时旋转矩阵为 R(0)=I。按照导数定义,可以把R(t)在 0 附近进行一阶泰勒展开:

$$\mathbf{R}(t) \approx \mathbf{R}(t_0) + \dot{\mathbf{R}}(t_0)(t - t_0)$$

= $\mathbf{I} + \boldsymbol{\phi}(t_0)^{\wedge}(t)$.

同时在 t_0 附近,设 ϕ 保持为常数 $\phi(t_0)=\phi_0$,由R(t)的导数式子(上上个公式):

$$\dot{\mathbf{R}}(t) = \boldsymbol{\phi}(t_0)^{\wedge} \mathbf{R}(t) = \boldsymbol{\phi}_0^{\wedge} \mathbf{R}(t).$$

上式是一个关于 R 的微分方程,而且我们知道初始值 R(0) = I,解之,得:

$$\mathbf{R}(t) = \exp\left(\phi_0^{\wedge} t\right).$$

最终得到上述公式,**注意上述公式是我们真正关心的,非常重要**。我们看到,旋转矩阵R与另一个反对称矩阵 ϕ_0 通过指数关系发生了联系。也就是说,当我们知道某个时刻的R时,存在一个向量 ϕ ,它们满足这个矩阵指数关系。 **其实上述公式就是旋转矩阵和旋转向量转化的罗德里格旋转公式(6.1节我们是直接用了而已),而矩阵指数正是李群与李代数间的指数/对数映射。**

也就是说 ϕ ,事实上是一种李代数。 SO(3)对应的李代数是定义在 R^3 上的向量,我们记作 ϕ 。根据前面的推导,每个 ϕ 都可以生成一个反对称矩阵, 即so(3) 的元素是 3 维向量或者 3 维反对称矩阵:

$$\mathfrak{so}(3) = \left\{ \boldsymbol{\phi} \in \mathbb{R}^3, \boldsymbol{\Phi} = \boldsymbol{\phi}^{\wedge} \in \mathbb{R}^{3 \times 3} \right\}.$$

至此,我们已清楚了so(3)的内容。它们是一个由三维向量组成的集合,每个向量对应到一个反对称矩阵,可以表达旋转矩阵的导数。它与SO(3)的关系由指数映射给定。

4.2.4 指数与对数映射

由于这部分推导对我们算法没有啥帮助,这里就不写了,只讲结论:SO(3)上的指数映射即为李代数so(3),也可以推导出罗德里格旋转公式。这表明,so(3)实际上就是由所谓的**旋转向量**组成的空间,而**指数映射即罗德里格斯公式**。通过它们,我们把so(3)中任意一个向量对应到了一个位于 SO(3) 中的旋转矩阵。反之,如果定义对数映射,我们也能把SO(3) 中的元素对应到so(3)中,这正好就是旋转向量和旋转矩阵的相互转化。

需要注意的是:**指数映射只是一个满射**。这意味着每个SO(3)中的元素,都可以找到一个so(3) 元素与之对应;但是可能存在多个so(3)中的元素,对应到同一个SO(3)。至少对于旋转角 θ ,我们知道多转 360 度和没有转是一样的——它具有周期性。但是,如果我们把旋转角度固定在土 π 之间,那么李群和李代数元素是一一对应的。

