Scilab Textbook Companion for Machine Design by U. C. Jindal¹

Created by
Vibha Manvi
B.E Mechanical
Mechanical Engineering
Cummins College of Engineering,Pune
College Teacher
Prof. N.r. Patil
Cross-Checked by
Ganesh R

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Machine Design

Author: U. C. Jindal

 ${\bf Publisher:}\ \, {\rm Dorling}\ \, {\rm Kindersley}\ \, ({\rm India})$

Edition: 1

Year: 2010

ISBN: 978-81-317-1659-5

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	5
3	MECHANICS OF SOLIDS	13
4	MANUFACTURING CONSIDERATIONS	37
5	INTRODUCTION TO PRESSURE VESSELS	42
6	LEVERS	47
7	STRUTS AND COLUMNS	54
8	SPRINGS	59
9	THREADED FASTENERS	74
10	PIPES AND PIPE JOINTS	82
11	RIVETED JOINTS	87
12	WELDED JOINTS	94
13	COTTER AND KNUCKLE JOINTS	101
14	KEYS AND COUPLINGS	106
15	SHAFTS	113
16	POWER SCREWS	119

17 SLIDING CONTACT BEARINGS	127
18 ROLLING BEARINGS	134
19 FLYWHEEL	142
20 FLAT BELT DRIVE	149
21 V BELT DRIVE	158
22 FRICTION CLUTCHES	164
23 BRAKES	174
24 ROPE DRIVE	182
25 GEARS	186
26 HELICAL GEARS	193
27 STRAIGHT BEVEL GEARS	198
28 WORM AND WORM WHEEL SET	206
29 GEARBOX	212
30 CHAIN DRIVE	216
31 SEALS PACKING AND GASKETS	220

List of Scilab Codes

Exa 3.1	MS1.														13
Exa 3.2	MS2.														14
Exa 3.3	MS3.														14
Exa 3.4	MS4.														15
Exa 3.5	MS5.														15
Exa 3.6	MS6.														16
Exa 3.7	MS7.														17
Exa 3.8	MS8.														17
Exa 3.9	MS9.														18
Exa 3.10	MS10														19
Exa 3.11	MS11														20
Exa 3.12	MS12														20
Exa 3.13	MS13														21
Exa 3.14	MS14														21
Exa 3.15	MS15														22
Exa 3.16	MS16														22
Exa 3.17	MS17														23
Exa 3.18	MS18														23
Exa 3.19	MS19														24
Exa 3.20	MS20														25
Exa 3.21	MS21														25
Exa 3.22	MS22														26
Exa 3.23	MS23														27
Exa 3.24	MS24														27
Exa 3.25	MS25														28
Exa 3.26	MS26														29
Exa 3.27	MS27														29
Exa 3.28	MS28														30

Exa 3.29	MS29	30
Exa 3.30	MS30	32
Exa 3.31	MS31	33
Exa 3.32	MS32	34
Exa 3.33	MS33	35
Exa 4.1	MF1	37
Exa 4.2	MF2	38
Exa 4.3	MF3	39
Exa 4.4	MF4	40
Exa 5.1	IPV5 1	42
Exa 5.2	IPV5 2	43
Exa 5.3	IPV5 3	44
Exa 5.4	IPV5 4	44
Exa 5.5	IPV5 5	45
Exa 6.1	L1	47
Exa 6.2	L2	48
Exa 6.3	L3	49
Exa 6.4	L4	50
Exa 6.5	L5	51
Exa 6.6	L6	52
Exa 7.1	SC1	54
Exa 7.2	SC2	55
Exa 7.3	SC3	55
Exa 7.4	SC4	56
Exa 7.5	SC5	56
Exa 7.6	SC6	57
Exa 7.7	SC7	58
Exa 8.1	S8 1	59
Exa 8.2	S8 2	60
Exa 8.3	S8 3	61
Exa 8.4	S8 4	61
Exa 8.5	S8 5	63
Exa 8.6	S8 6	63
Exa 8.7	S8 7	64
Exa 8.8	S8 8	66
Exa 8.9	S8 9	67
Exa 8.10	S8 10	68
Exa 8.11	S8 11	69

Exa 8.12	S8 12A	70
Exa 8.13	S8 13	71
Exa 8.14	S8 14	72
Exa 9.1	TF1	74
Exa 9.2	TF2	74
Exa 9.3	TF3	75
Exa 9.4	TF4	75
Exa 9.5	TF5	76
Exa 9.6	TF6	77
Exa 9.7	TF7	78
Exa 9.8	TF8	79
Exa 9.9	TF9	79
Exa 9.10	TF10	80
Exa 9.11	TF11	81
Exa 10.1	PPJ1	82
Exa 10.2	PPJ2	82
Exa 10.3	PPJ3	84
Exa 10.4	PPJ4	85
Exa 11.1	RJ1	87
Exa 11.2	RJ2	87
Exa 11.3	RJ3	88
Exa 11.4	RJ4	89
Exa 11.5	RJ5	90
Exa 11.6	RJ6	90
Exa 11.7	RJ7	91
Exa 11.8	RJ8	92
Exa 11.9	RJ9	93
Exa 12.1	WJ1	94
Exa 12.2	WJ2	94
Exa 12.3	WJ3	95
Exa 12.4	WJ4	95
Exa 12.5	WJ5	96
Exa 12.6	WJ6	97
Exa 12.7	WJ7	97
Exa 12.8	WJ8	98
Exa 12.9	WJ9	99
Exa 12.10	WJ10	99
Exa 12.10	WJ11	100

Exa 13.1	CKJ1	101
Exa 13.2	CKJ2	102
Exa 13.3	CKJ3	103
Exa 13.4	CKJ4	104
Exa 14.1	KC1	106
Exa 14.2	KC2	107
Exa 14.3	KC3	108
Exa 14.4	KC4	108
Exa 14.5	KC5	109
Exa 14.6	KC6	110
Exa 14.7	KC7	111
Exa 15.2	S2	113
Exa 15.3	S3	114
Exa 15.4	S4	115
Exa 15.5	S5	116
Exa 15.6	S6	117
Exa 15.7	S7	118
Exa 16.1	PS1	119
Exa 16.2	PS2	120
Exa 16.3	PS3	121
Exa 16.4	PS4	122
Exa 16.5	PS5	122
Exa 16.6	PS6	123
Exa 16.7	PS7	124
Exa 16.8	PS8	125
Exa 17.1	SCB1	127
Exa 17.2	SCB2	128
Exa 17.3	SCB3	128
Exa 17.4	SCB4	129
Exa 17.5	SCB5	130
Exa 17.6	SCB6	131
Exa 17.7	SCB7	132
Exa 18.1	RB1	134
Exa 18.2	RB2	134
Exa 18.4	RB4	135
Exa 18.5	RB5	136
Exa 18.6	RB6	137
Exa. 18.7	RB7	138

Exa 18.8	RB8	139
Exa 18.9	RB9	140
Exa 18.10	RB10	141
Exa 19.1	F1	142
Exa 19.2	F2	143
Exa 19.3	F3	144
Exa 19.4	F4	145
Exa 19.5	F5	145
Exa 19.6	F6	146
Exa 19.7	F7	147
Exa 20.1	FBD1	149
Exa 20.2	FBD2	150
Exa 20.3	FBD3	151
Exa 20.4	FBD4	152
Exa 20.5	FBD5	153
Exa 20.6	FBD6	155
Exa 20.7	FBD7	156
Exa 21.1	VBELT1	158
Exa 21.2	VBELT2	159
Exa 21.3	VBELT3	160
Exa 21.4	VBELT4	161
Exa 21.5	VBELT5	162
Exa 22.1	FC221	164
Exa 22.2	FC222	165
Exa 22.3	FC223	167
Exa 22.4	FC224	167
Exa 22.5	FC225	168
Exa 22.6	FC226	169
Exa 22.7	FC227	170
Exa 22.8	FC228	171
Exa 22.9	FC229	172
Exa 22.10	FC2210	172
Exa 23.1	B23 1	174
Exa 23.2	B23 2	175
Exa 23.3	B23 3	176
Exa 23.4	B23 4	177
Exa 23.5	B23 5	178
Exa 23.6	B23 6	179

Exa 23.7	B23 7	180
Exa 24.1	RD1	182
Exa 24.2	RD2	183
Exa 24.3	RD3	184
Exa 24.4	RD4	184
Exa 25.1	G1	186
Exa 25.2	G2	187
Exa 25.3	G3	188
Exa 25.4	G4	189
Exa 25.5	G5	190
Exa 25.6	G6	191
Exa 26.1	HG1	193
Exa 26.2	HG2	194
Exa 26.3	HG3	195
Exa 26.4	HG4	196
Exa 27.1	SBG1	198
Exa 27.2	SBG2	199
Exa 27.3	SBG3	199
Exa 27.4	SBG4	200
Exa 27.5	SBG5	201
Exa 27.6	SBG6	202
Exa 27.7	SBG7	203
Exa 27.8	SBG8	205
Exa 28.1	WWS1	206
Exa 28.2	WWS2	207
Exa 28.3	WWS3	207
Exa 28.4	WWS4	208
Exa 28.5	WWS5	209
Exa 28.6	WWS6	210
Exa 29.1	GB1	212
Exa 29.2	GB2	213
Exa 29.3	GB3	214
Exa 30.1	CD1	216
Exa 30.2	CD2	216
Exa 30.3	CD3	217
Exa 30.4	CD4	218
Exa 31.1	SPG1	220
Exa 31 2	SPG2	221

	Exa 31.3	SPG3											_																2	2	2
--	----------	------	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	---

List of Figures

3.1	MS29.										•				•	•		32
22.1	FC224																	168

Chapter 3

MECHANICS OF SOLIDS

Scilab code Exa 3.1 MS1

```
1 // \text{ sum } 3-1
2 clc;
3 clear;
4 d=10;
5 1 = 1500;
6 m = 12;
7 h=50;
8 E=210*10^3;
9 sigut=450;
10 A = \%pi*d^2/4;
11 W=m*9.81;
12 sigi=W/A*(1+sqrt(1+(2*E*A*h)/(W*l)));
13 deli=sigi*1/E;
14 siggradual=W/A;
15 sigsudden=2*siggradual;
16
     // printing data in scilab o/p window
17
     printf("sigi is %f N/mm^2 ",sigi);
printf("\n deli is %f mm ",deli);
18
19
     printf("\n siggradual is \%f N/mm^2
20
         siggradual);
```

```
21
22 // The difference in the answer of sigi and siggradual is due to round-off errors.
```

Scilab code Exa 3.2 MS2

```
1 // \text{ sum } 3-2
2 clc;
3 clear;
4 d=5;
5 A = \%pi*d^2/4;
6 1=100*10^3;
7 W = 600;
8 E=210*10^3;
9 \quad w=0.0784*10^{-3};
10 del1=W*1/(A*E);
11 de12=w*1^2/(2*E);
12 del=del1+del2;
13
14
     // printing data in scilab o/p window
     printf("del is %f mm ",del);
15
```

Scilab code Exa 3.3 MS3

```
1 // sum 3-3
2 clc;
3 clear;
4 m=25;
5 v=3;
6 E=210*10^3;
7 KE=0.5*m*v^2;
8 d=30;
9 L=2000;
```

```
10 A=%pi*d^2/4;
11 U=A*L/(2*E);
12 del=4*10^-5*A;
13 W=A*del;
14 sigi=sqrt(KE*10^3/(W+U));
15
16    // printing data in scilab o/p window
17 printf("del is %f N/mm^2 ",sigi);
```

Scilab code Exa 3.4 MS4

```
1 // \text{ sum } 3-4
2 clc;
3 clear;
4 P=40*10^3;
5 A = 60 * 18;
6 sig=P/A;
7 r1=12;
8 b1=60;
9 SCF1=1.7;
10 sigmax1=sig*SCF1;
11 r2=24;
12 b2=60;
13 SCF2=1.5;
14 sigmax2=sig*SCF2;
15
     // printing data in scilab o/p window
16
17
     printf("sigmax1 is %f N/mm^2 ", sigmax1);
     printf("\n sigmax2 is %f N/mm<sup>2</sup> ", sigmax2);
18
```

Scilab code Exa 3.5 MS5

```
1 // \text{ sum } 3-5
```

```
2 clc;
3 clear;
4 p=2.4;
5 //Let axial movement of nut be La
6 La=p*45/360;
7 d=20;
8 D=30;
9 L=500;
10 d1 = 18;
11 As = \%pi * d1^2/4;
12 Ac = \%pi * (D^2 - d^2)/4;
13 \text{ sigt} = 120/(3.543);
14 sigb=1.543*sigt;
15
     // printing data in scilab o/p window
16
     printf("sigt is %f N/mm^2", sigt);
17
     printf("\n sigb is %f N/mm^2
                                         ",sigb);
18
```

Scilab code Exa 3.6 MS6

```
1 // sum 3-6
2 clc;
3 clear;
4 delT=100;
5 ab=18*10^-6;
6 aa=23*10^-6;
7 delta=(360*ab*delT)+(450*aa*delT);
8 lc=delta-0.6;
9 Ea=70*10^3;
10 Eb=105*10^3;
11 Aa=1600;
12 Ab=1300;
13 P=lc/((360/(Ab*Eb))+(450/(Aa*Ea)));
14 P=P*10^-3;
15 //Let the change in length be delL
```

```
16 delL=(aa*450*delT)-(P*10^3*450/(Aa*Ea));
17
18    // printing data in scilab o/p window
19    printf("P is %f kN ",P);
20    printf("\n delL is %f mm ",delL);
21
22    // The difference in the answer of delL is due to round-off errors.
```

Scilab code Exa 3.7 MS7

```
1 // sum 3-7
2 clc;
3 clear;
4 a=23*10^-6;
5 E=70*10^3;
6 l=750;
7 sig=35;
8 delT=((sig*1/E)+0.8)/(l*a);
9
10 // printing data in scilab o/p window
11 printf("delT is %f degC",delT);
```

Scilab code Exa 3.8 MS8

```
1 // sum 3-8
2 clc;
3 clear;
4 OA=60;
5 AB=30;
6 OC=-20;
7 CD=-30;
8 theta=30;
```

```
9 angBEK=2*theta;
10 OM = 14;
11 KM = 49.5;
12 p1 = 70;
13 p2 = -30;
14 angBEH = -37;
15 angBEI=143;
16 theta1=angBEH/2;
17 theta2=angBEI/2;
18 Tmax=50;
19 angBEL=53;
20 angBEN=233;
21 theta3=angBEL/2;
22 theta4=angBEN/2;
23 // printing data in scilab o/p window
     printf("Stress on plane AB is %f MPa
                                               ",OM);
24
     printf("\n Stress on plane AB is %f MPa
25
                                                    ", KM);
26
     printf("\n Principal stress p1 is %f MPa
                                                   ",p1)
     printf("\n Principal stress p2 is %f MPa
                                                    ",p2)
27
     printf("\n Principal angle theta1 is %f deg
28
        theta1);
     printf("\n Principal angle theta2 is %f deg
29
        theta2);
     printf("\n Maximum shear stress is %f MPa
30
        Tmax);
     printf("\n Direction of plane theta3 is %f deg
31
            ",theta3);
     printf("\n Direction of plane theta4 is %f deg
32
            ",theta4);
33
34 //The answers in the book are written in form of
      degrees and minutes.
```

Scilab code Exa 3.9 MS9

```
1 // \text{ sum } 3-9
2 clc;
3 clear;
4 E=200*10^3;
5 v = 0.29;
6 E1=720*10^-6;
7 E2=560*10^-6;
8 p1=121.76;
9 p2 = -76.69;
10
11
     // printing data in scilab o/p window
     printf("p1 is %f MN/mm^2
                                ",p1);
12
                                       ",p2);
     printf("\n p2 is %f MN/mm^2
13
```

Scilab code Exa 3.10 MS10

```
1 // \text{ sum } 3-10
2 clc;
3 clear;
4 G=38*10^3;
5 d=10;
6 P=5*10^3;
7 A = \%pi*d^2/4;
8 \text{ sig=P/A};
9 deld=0.0002;
10 //Let the lateral strain be E1
11 E1=deld/d;
12 v=2*deld*G/(sig-(2*deld*G));
13 E=2*G*(1+v)*10^-3;
14
     // printing data in scilab o/p window
15
     printf("v is %0.4 f",v);
16
     printf("\n E is %0.3 f kN/mm^2
                                          ",E);
17
```

Scilab code Exa 3.11 MS11

```
1 // sum 3-11
2 clc;
3 clear;
4 D=1500;
5 p=1.2;
6 sigt=100;
7 sigc=p*D/2;
8 \text{ siga=p*D/4};
9 P=sigc*2*10^3;
10 n=0.75;
11 t=sigc/(n*sigt);
12
     // printing data in scilab o/p window
13
     printf("t is %0.1 f mm ",t);
14
```

Scilab code Exa 3.12 MS12

```
1 // sum 3-12
2 clc;
3 clear;
4 D=50;
5 t=1.25;
6 d=0.5;
7 n=1/d;
8 p=1.5;
9 siga=p*D/(4*t);
10 sigc=20.27;
11 sigw=sigc/0.31416;
12
```

```
// printing data in scilab o/p window
printf("sigw is %0.2 f N/mm^2 ", sigw);
```

Scilab code Exa 3.13 MS13

```
1 // sum 3-13
2 clc;
3 clear;
4 R1=50;
5 p=75;
6 pmax=125;
7 R2=sqrt((pmax+p)*R1^2/(pmax-p));
8 t=R2-R1;
9
10 // printing data in scilab o/p window
11 printf("t is %0.1 f mm",t);
```

Scilab code Exa 3.14 MS14

```
1 // sum 3-14
2 clc;
3 clear;
4 R1=40;
5 R2=60;
6 B=50;
7 E=210*10^3;
8 e=41*10^-6;
9 sig=2*R1^2/(R2^2-R1^2);
10 p=E*e/sig;
11 Fr=p*2*%pi*R1*B;
12 u=0.2;
13 Fa=u*Fr*10^-3;
14
```

```
// printing data in scilab o/p window
printf("Fa is %0.2 f kN ",Fa);
```

Scilab code Exa 3.15 MS15

```
1 // \text{ sum } 3-15
2 clc;
3 clear;
4 a1=10*1.5;
5 x1=15-0.75;
6 a2=1.5*(15-1.5);
7 x2=(15-1.5)/2;
8 y1=((a1*x1)+(a2*x2))/(a1+a2);
9 y2=a1-y1;
10 Ixx = (10*1.5^3)/12+(10*1.5*(5.06-1.5/2)^2)
      +(1.5*13.5^3/12)+(1.5*13.5*(9.94-6.75)^2);
11 Z1 = Ixx/y1;
12 Z2=Ixx/y2;
13 L=3;
14 sigc=50;
15 W=sigc*Z1/L*10^-3;
16
17
     // printing data in scilab o/p window
18
     printf("W is %0.3 f kN
                             ",W);
```

Scilab code Exa 3.16 MS16

```
1 // sum 3-16
2 clc;
3 clear;
4 D=22;
5 d=20;
6 r=1;
```

Scilab code Exa 3.17 MS17

```
1 // \text{ sum } 3-17
2 clc;
3 clear;
4 A = (12*2) + (12*2) + (30-4);
5 B = sqrt(A/2);
6 D = 2 * B;
7 B1=12;
8 D1 = 30;
9 d=26;
10 b=1;
11 Z1 = ((B1*D1^3) - ((B1-b)*d^3))/(B1*D1/2);
12 Zr = B*D^2/6;
13 //Let the ratio of both the sections be x
14 x=Z1/Zr;
15 M = 30 * 10^6;
16 \text{ sigmax=M/(Z1*10^3)};
17
18
     // printing data in scilab o/p window
     printf("Z1/Zr is \%0.2 f ",x);
19
     printf("\n sigmax is %0.2 f N/mm^2
                                              ",sigmax);
20
```

Scilab code Exa 3.18 MS18

```
1 // sum 3-18
2 clc;
3 clear;
4 //Tmax=F/(I*b)*[B*t(d/2+t/2)+(b*d*d/8)];
5 //T1=F/(I*b)*[B*t*(d+t)/2];
6 //Tmean=T1+2/3*(Tmax-T1);
7 //T=Tmax-Tmean;
8 //T=F*d^2/(24*I);
9 disp("Difference between maximum and mean shear stresses in the web is ,T=F*d^2/(24*I)");
```

Scilab code Exa 3.19 MS19

```
1 // \text{ sum } 3-19
2 clc;
3 clear;
4 x1=((13*3*1.5)+(2*15*8))/(39+30);
5 x2=13-x1;
6 \quad A = 30 + 39;
7 E=2*10^7;
8 \text{ Iyy} = 995.66;
9 e = 54.32;
10 x = x2 - 3;
11 sigb=e*x/Iyy;
12 \text{ sigd} = 1/69;
13 sigr=sigd+sigb;
14 //Let the strain be E1
15 E1=800*10^-6;
16 P=E1*E/sigr;
17 P=P*10^-3;
18
19
     // printing data in scilab o/p window
20
     printf("P is \%0.2 \text{ f kN}",P);
```

Scilab code Exa 3.20 MS20

```
1 // \text{ sum } 3-20
2 clc;
3 clear;
4 \text{ H=20};
5 D=5;
6 d=3;
7 rho=21;
8 sigd=rho*H;
9 p=2;
10 A = D * H;
11 P=p*A;
12 M=P*H/2;
13 Z=\%pi*(D^4-d^4)/(32*D);
14 sigb=M/Z;
15 sigmax=420+sigb;
16 sigmin=420-sigb;
17
    // printing data in scilab o/p window
18
   19
20
```

Scilab code Exa 3.21 MS21

```
1 // sum 3-21
2 clc;
3 clear;
4 D=30;
5 R=15;
6 T=0.56*10^6;
7 G=82*10^3;
```

```
8 J=%pi*R^4/2;
9 T1=T*R/J;
10 l=1000;
11 theta=T*1/(G*J)*180/%pi;
12 r=10;
13 Tr=T1*r/R;
14
15    // printing data in scilab o/p window
    printf("T1 is %0.2 f N/mm^2 ",T1);
    printf("\n theta is %0.2 f deg ",theta);
18    printf("\n Tr is %0.2 f N/mm^2 ",Tr);
```

Scilab code Exa 3.22 MS22

```
1 // \text{ sum } 3-22
2 clc;
3 clear;
4 T=8*10^3;
5 d=80;
6 D = 110;
7 1 = 2000;
8 Gst=80*10^3;
9 Gcop=Gst/2;
10 Js = \%pi * d^4/32;
11 Jc = \pi (D^4 - d^4)/32;
12 / Ts = 0.777 * Tc
13 Tc=T/1.777*10^3;
14 Ts = 0.777 * Tc;
15 Ts1=Ts/Js*d/2;
16 Tc1=Tc/Jc*D/2;
17 //Let tl be Angular twist per unit length
18 tl=Ts*10^3/(Js*Gst)*180/\%pi;
19 // Let the maximum stress developed when the Torque
      is acting in the centre of the shaft be Ts2 & Tc2
       resp. for steel and copper
```

```
20 \text{ Ts} 2 = \text{Ts} 1/2;
21 \text{ Tc} 2 = \text{Tc} 1/2;
22
23
     // printing data in scilab o/p window
24
     printf("Ts1 is %0.3 f N/mm^2
                                      ",Ts1);
25
     printf("\n Tc1 is %0.1 f N/mm^2
                                          ",Tc1);
     printf("\n theta/length is %0.3f deg/m
                                                   ",tl);
26
     ",Ts2);
27
     printf("\n Tc2 is \%0.2 \, f \, N/mm^2
                                          ",Tc2);
28
```

Scilab code Exa 3.23 MS23

```
1 // \text{ sum } 3-23
2 clc;
3 clear;
4 D = 100;
5 d=75;
6 r = 6;
7 K=1.45;
8 P = 20*746;
9 N = 400;
10 w=2*\%pi*N/60;
11 T=P/w;
12 Ts=16*T*10^3/(\%pi*d^3);
13 Tmax = K * Ts;
14
15
     // printing data in scilab o/p window
     printf("Tmax is %0.3 f MPa ",Tmax);
16
```

Scilab code Exa 3.24 MS24

```
1 // sum 3-24 2 clc;
```

```
3 clear;
4 G=84*10^3;
5 T=28*10^3;
6 l=1000;
7 theta=%pi/180;
8 J=T*1/(G*theta);
9 d=(J*32/%pi)^(1/4);
10
11    // printing data in scilab o/p window
12    printf("d is %0.1 f mm ",d);
```

Scilab code Exa 3.25 MS25

```
1 // \text{ sum } 3-25
2 clc;
3 clear;
4 P=2*10^6;
5 N = 200;
6 w=2*\%pi*N/60;
7 Tm = P/w;
8 W=5*10^3*9.81;
9 1 = 1800;
10 Mmax = W * 1/4;
11 Tmax=1.8*Tm*10^3;
12 Me=(Mmax+sqrt(Mmax^2+Tmax^2))/2;
13 Te=sqrt (Mmax^2+Tmax^2);
14 \text{ sig=60};
15 \text{ Ts} = 40;
16 d1=(32*Me/(\%pi*sig))^(1/3);
17 d2=(16*Te/(\%pi*Ts))^(1/3);
18
19
     // printing data in scilab o/p window
     printf("d is %0.1 f mm ",d2);
20
```

Scilab code Exa 3.26 MS26

```
1 // \text{ sum } 3-26
2 clc;
3 clear;
4 Q=4*10^3;
5 P=8*10^3;
6 sig=P;
7 T = Q;
8 p1=(sig/2+sqrt((sig/2)^2+T^2));
9 p2=(sig/2-sqrt((sig/2)^2+T^2));
10 sigyp=285;
11 FOS=3;
12 siga=sigyp/3;
13 A1=p1/siga;
14 d1=sqrt (4*A1/%pi);
15 A2=(p1-p2)*2/(siga*2);
16 d2 = sqrt(4*A2/\%pi);
17 v = 0.3;
18 A3 = sqrt(p1^2+p2^2-(2*v*p1*p2))/siga;
19 d3 = sqrt(4*A3/\%pi);
20
    // printing data in scilab o/p window
21
    printf("d1 is %0.2 f mm ",d1);
22
    23
                                  ",d3);
    printf("\n d3 is %0.2 f mm
24
```

Scilab code Exa 3.27 MS27

```
1 // sum 3-27
2 clc;
3 clear;
```

```
4 \text{ sigx} = -105;
5 \text{ Txy} = 105;
6 sigy = 270;
7 p1=(sigx/2+sqrt((sigx/2)^2+Txy^2));
8 p2=(sigx/2-sqrt((sigx/2)^2+Txy^2));
9 p3=0;
10 Tmax = (p1-p2)/2;
11 siga=sigy/2;
12 if (Tmax <= siga) then
       printf("The component is safe")
14 end
15
16
     // printing data in scilab o/p window
     printf("\n Tmax is %0.1 f MPa ",Tmax);
17
```

Scilab code Exa 3.28 MS28

```
1 // sum 3-28
2 clc;
3 clear;
4 rho=0.0078*9.81*10^-6;
5 sigc=150;
6 g=9.81;
7 V=sqrt(sigc*g/rho)*10^-3;
8 R=1;
9 w=V/R;
10 N=w*60/(2*%pi);
11
12 // printing data in scilab o/p window
13 printf("N is %0.3 f rpm ",N);
```

Scilab code Exa 3.29 MS29

```
1 // \text{ sum } 3-29
2 clc;
3 clear;
4 R1=50;
5 R2 = 200;
6 N=6*10^3;
7 w=2*\%pi*N/60;
8 v = 0.28;
9 rho = 7800 * 10^{-9};
10 g = 9810;
11 k1 = (3+v)/8;
12 k2=(1+(3*v))/8;
13 W=rho*9.81;
14 x=k1*w^2*W*(R1^2+R2^2)/g;
15 y=k1*w^2*W*(R1*R2)^2/g;
16 y1=k1*w^2*W/g;
17 z=k2*w^2*W/g;
18 r=sqrt(R1*R2);
19 sigrmax = x - (y/r^2) - (r^2 * y1);
20 r = 50:200
21 n=length(r);
22 for i=1:n
       sigr(i)=x-(y/r(i)^2)-(r(i)^2*y1)
23
24 end
25
26 \text{ for } j=1:n
       sigc(j)=x+(y/r(j)^2)-(r(j)^2*z)
27
28 end
29
30 plot (r, sigr);
31 plot (r, sigc);
32 xtitle('', 'r mm');
33 ylabel('stress N/mm^2');
34 xgrid(2);
35
     // printing data in scilab o/p window
36
     {\tt printf}("sigrmax is \%0.1 f MPa", sigrmax);
37
```


Figure 3.1: MS29

Scilab code Exa 3.30 MS30

```
1 // sum 3-30
2 clc;
3 clear;
4 r=500;
5 to=15;
6 N=3500;
7 w=2*%pi*N/60;
8 sig=80;
```

```
9 w1=0.07644*10^-3;
10 g=9810;
11 a=w1*w^2*r^2/(2*sig*g);
12 t=to*exp(-a);
13
14    // printing data in scilab o/p window
15    printf("t is %0.3 f mm ",t);
```

Scilab code Exa 3.31 MS31

```
1 // \text{ sum } 3-31
2 \text{ clc};
3 clear;
4 M=60*10^3;
5 y1=((5*1*2.5)+(6*1*5.5))/(5+6);
6 y2=6-y1;
7 R = 12;
8 R1 = R - y2;
9 R1=10.136
10 R2 = 11.136;
11 R3=R1+6;
12 B=6;
13 b=1;
14 A = (B*b) + ((B-1)*b);
15 //Let x = h^2/R^2
16 x=R/A*((B*log(R2/R1))+(b*log(R3/R2)))-1;
17 x = 1/x;
18 //Let Maximum compressive stress at B be sigB
19 sigB=M/(A*R)*(1+(x*y1/(R+y1)))*10^-2;
20 //Let Maximum tensile stress at A be sigA
21 sigA=M/(A*R)*((y2*x/(R-y2))-1)*10^-2;
22 // printing data in scilab o/p window
    printf("sigB is %0.1f MPa ",sigB);
23
     printf("\n sigA is %0.0 f MPa
24
                                     ",sigA);
25
```

26 //The answer to R^2/h^2 is calculated incorrectly in the book.

Scilab code Exa 3.32 MS32

```
1 // \text{ sum } 3-32
2 clc;
3 clear;
4 R1=24;
5 R2 = 30;
6 R3 = 50;
7 R4 = 54;
8 F = 200;
9 y1 = ((16*4*2) + (2*20*14*4) + (24*6*27)) / ((16*4) + (2*20*4))
      +(24*6));
10 y2=30-y1;
11 R = 24 + y2;
12 A = (24*6) + (2*4*20) + (4*16);
13 // \text{Let } x = h^2/R^2
14 x=R/A*((24*log(R2/R1))+(2*4*log(R3/R2))+(16*log(R4/R4))
      R3)))-1;
15 \quad x=1/x;
16 \text{ M=F*(60+R)};
17 sigd=F/A;
18 //Let bending stress at a be sigA
19 sigA=M/(A*R)*((y2*x/(R-y2))-1);
20 //Let bending stress at b be sigB
21 sigB=M/(A*R)*(1+(x*y1/(R+y1)));
22 //Let resultant at a be Ra
23 Ra=(sigA+sigd)*10;
24 //Let resultant at b be Rb
25 \text{ Rb} = (\text{sigB} - \text{sigd}) * 10;
26 // printing data in scilab o/p window
     printf("Ra is \%0.2 \, \text{f N/mm}^2", Ra);
27
     printf("\n Rb is %0.2 f N/mm^2
                                              ",Rb);
28
```

```
29 30 //The difference in the answers are due to rounding – off of values.
```

Scilab code Exa 3.33 MS33

```
1 // \text{ sum } 3-33
2 clc;
3 clear;
4 F = 50;
5 B1=4;
6 B2=8;
7 D=12;
8 y1=D/3*(B1+(2*B2))/(B1+B2);
9 y2=12-y1;
10 R=6+y2;
11 A = (B1+B2)/2*D;
12 / \text{Let } x = h^2/R^2
13 a=(B1+((B2-B1)*(y1+R)/D))*log((R+y1)/(R-y2))
14 x=R/(A)*(a -(B2-B1));
15 x=x-1;
16 x = 1/x;
17 KG=y2+8;
18 M=F*KG;
19 sigd=F/A;
20 //Let bending stress at a be sigA
21 sigA=M/(A*R)*(1+(x*y1/(R+y1)));
22 //Let bending stress at b be sigB
23 sigB=M/(A*R)*((y2*x/(R-y2))-1);
24 \text{ sigA} = (\text{sigA} - \text{sigd}) * 10;
25 \text{ sigB}=(\text{sigB}+\text{sigd})*10;
26 // printing data in scilab o/p window
27
    printf("sigA is %0.2 f MPa ",sigA);
                                       ",sigB);
28
     printf("\n sigB is %0.2 f MPa
29
```

 30 //The difference in the answers are due to rounding-off of values.

Chapter 4

MANUFACTURING CONSIDERATIONS

Scilab code Exa 4.1 MF1

```
1 // \text{ sum } 4-1
2 clc;
3 clear;
4 d=70;
5 \text{ dmin}=50;
6 dmax=80;
7 D=sqrt(dmin*dmax);
8 D=63;
9 i=0.458*(D^{(1/3)})+(0.001*D);
10
11 //standard tolerance for H8 is ST1
12 ST1=25*i;
13 ST1=ST1*10^-3;
14 //standard tolerance of shaft for grade g7 is ST2
15 ST2=16*i;
16 ST2=ST2*10^-3;
17 es=-(2.5*(D^0.333));
18 \text{ es=es*}10^{-3};
19 \text{ ei=es-ST2};
```

```
20 //Lower limit for hole is LLH
21 //Upper limit for hole is ULH
22 //Upper limit for shaft is ULS
23 //Lower limit for shaft is LLS
24 \text{ LLH=d};
25 ULH=LLH+ST1;
26 ULS=LLH+es;
27 LLS = ULS - ST2;
28 //Maximum clearance is Cmax
29 //minimum clearance is Cmin
30 Cmax=ULH-LLS;
31 Cmin=LLH-ULS;
32
33
     // printing data in scilab o/p window
     printf("LLH is %0.1 f mm ", LLH);
34
35
     printf("\n ULH is %0.3 f mm ",ULH);
     printf("\n ULS is %0.2 f mm ",ULS);
36
     printf("\n LLS is %0.2 f mm ",LLS);
37
38
     printf("\n Cmax is \%0.3 \, \text{f} mm", Cmax);
     printf("\n Cmin is %0.3 f mm ", Cmin);
39
```

Scilab code Exa 4.2 MF2

```
1 // sum 4-2
2 clc;
3 clear;
4 d=25;
5 //Lower limit for hole is LLH
6 //Upper limit for hole is ULH
7 //Upper limit for shaft is ULS
8 //Lower limit for shaft is LLS
9 ULH=d+0.021;
10 LLH=d+0;
11 ULS=d+0.041;
12 LLS=d+0.028;
```

```
//Maximum interference is Cmax
//minimum interference is Cmin
Cmax=ULS-LLH;
Cmin=LLS-ULH;
// printing data in scilab o/p window
printf("Cmax is %0.3 f mm", Cmax);
printf("\n Cmin is %0.3 f mm", Cmin);
```

Scilab code Exa 4.3 MF3

```
1 // \text{ sum } 4-3
2 clc;
3 clear;
4 d=50;
5 Es=0.039;
6 Ei = 0;
7 es=-9*10^{-3};
8 ei = -34*10^{-3};
9 //Shaft dia is D
10 D=d+es;
11 //Lower limit for hole is LLH
12 //Upper limit for hole is ULH
13 //Upper limit for shaft is ULS
14 //Lower limit for shaft is LLS
15 ULH=d+Es;
16 LLH=d+Ei;
17 ULS=d+es;
18 LLS=d+ei;
19 //Maximum interference is Cmax
20 //minimum interference is Cmin
21 Cmax=ULH-LLS;
22 Cmin=LLH-ULS;
23
24
     // printing data in scilab o/p window
```

```
printf("ULH is %0.3 f mm ",ULH);
printf("\n LLH is %0.3 f mm ",LLH);
printf("\n ULS is %0.3 f mm ",ULS);
printf("\n LLS is %0.3 f mm ",LLS);
printf("\n Cmax is %0.3 f mm ",Cmax);
printf("\n Cmin is %0.3 f mm ",Cmin);
disp('Therefore, H8g7 is easy running fit');
```

Scilab code Exa 4.4 MF4

```
1 // \text{ sum } 4-3
2 clc;
3 clear;
4 d=30;
5 Es=0.025;
6 Ei = 0;
7 es=11*10^-3;
8 ei = -5*10^{-3};
9 //Shaft dia is D
10 D=d+es;
11 //Lower limit for hole is LLH
12 //Upper limit for hole is ULH
13 //Upper limit for shaft is ULS
14 //Lower limit for shaft is LLS
15 ULH=d+Es;
16 LLH=d+Ei;
17 ULS=d+es;
18 LLS=d+ei;
19 //Maximum interference is Cmax
20 //minimum interference is Cmin
21 Cmax=ULH-LLS;
22 Cmin=ULS-LLH;;
23
24
     // printing data in scilab o/p window
25
     printf("ULH is %0.3 f mm ", ULH);
```

```
26     printf("\n LLH is %0.3 f mm", LLH);
27     printf("\n ULS is %0.3 f mm", ULS);
28     printf("\n LLS is %0.3 f mm", LLS);
29     printf("\n Cmax is %0.3 f mm", Cmax);
30     printf("\n Cmin is %0.3 f mm", Cmin);
```

Chapter 5

INTRODUCTION TO PRESSURE VESSELS

Scilab code Exa 5.1 IPV5 1

```
1 // \text{ sum } 5-1
2 clc;
3 clear;
4 p=2;
5 \text{ Rm} = 220;
6 //tensile hoop or circumferential stress= sigt
7 \text{ sigr} = -2;
8 / \sin t = (p*Rm) / t;
9 \text{ Sa} = 230/2;
10 //t1=thickness according to maximum principal stress
       theory
11 //t2=thickness according to maximum shear stress
      theory
12 t1=(p*Rm)/Sa;
13 t2=(p*Rm)/(Sa+sigr);
14
     // printing data in scilab o/p window
15
   printf("t1 is %0.2 f mm ",t1);
16
     printf("\n t2 is \%0.3 f mm",t2);
17
```

Scilab code Exa 5.2 IPV5 2

```
1 // \text{ sum } 5-2
2 clc;
3 clear;
4 //Elastic limit=sige
5 sige=310;
6 //inside diameter=di
7 \text{ di} = 300;
8 p=1.8;
9 FOS=2;
10 //design stress=sigd;
11 sigd=sige/2;
12 c=0.162;
13 d=380;
14 //cover plate thickness=t;
15 t=d*sqrt(c*p/sigd);
16 t = 17;
17 M = di * p * t / 4;
18
19 z=(1/6)*1*t^2;
20 //bending stress=sigb;
21 \text{ sigb=M/z};
22
     // printing data in scilab o/p window
23
     printf("t is %0.1fmm ",t);
24
     printf("\n M is \%0.1fmm",M);
25
     printf("\n sigb is %0.1fmm ",sigb);
26
     if (sigb <= sigd) then</pre>
27
       disp ('sigb is below allowable sigd.')
28
29 end
```

Scilab code Exa 5.3 IPV5 3

```
1 // \text{ sum } 5-3
2 clc;
3 clear;
4 \text{ sige} = 220;
5 v = 0.29;
6 Ri = 175;
7 FOS=3;
8 Sa=sige/3;
9 p = 10;
10 //t1=thickness according to maximum principal stress
       theory
11 //t2=thickness according to maximum shear stress
      theory
12 x=Sa+(p*(1-(2*v)));
13 y=Sa-(p*(1+v));
14 t1 = (sqrt(x/y) - 1) *Ri;
15 \text{ t1}=24;
16 //t1 = ((sqrt((Sa+(p*(1-(2*v)))))/(Sa-(p*(1+v))))-1)*
      Ri;
17 t2=Ri*((sqrt(Sa/(Sa-(2*p))))-1);
18
     // printing data in scilab o/p window
19
20
     printf("t1 is %0.1fmm ",t1);
     printf("\n t2 is \%0.3 \text{fmm}",t2);
21
22
23
     //The answer to t2 is not calculated in the book.
```

Scilab code Exa 5.4 IPV5 4

```
1 // sum 5-4
2 clc;
3 clear;
4 p=16;
```

```
5 Ri=250;
6 //Yield strength =sigy;
7 sigy=330;
8 v=0.3;
9 FOS=3;
10 Sa=sigy/3;
11 t=Ri*((sqrt(Sa/(Sa-(2*p))))-1);
12 t=50;
13 // printing data in scilab o/p window
14 printf("t is %0.1fmm",t);
```

Scilab code Exa 5.5 IPV5 5

```
1 // \text{ sum } 5-5
2 clc;
3 clear;
4 d=15;
5 Eg=480;
6 \text{ t=3};
7 //flange thickness=ft;
8 ft=12;
9 A = \%pi*d^2/4;
10 l=d+t+(ft/2);
11 E=210;
12 kb = A * E/1;
13 //effective area of gasket=Ag;
14 Ag = \%pi * (((ft+t+d)^2) - (d^2))/4;
15 kg = Ag * Eg/t;
16 // printing data in scilab o/p window
      printf("kb is \%0.3 \, f \, N/mm", kb);
17
18 \text{ kb=kb*10}^-3;
19 kg = kg * 10^{-3};
20 if (kb<=kg) then
21
        printf("\n The combines stiffness of bolt and
           gasket is %0.3 f kN/mm", kg)
```

```
22 end
23
24 //The difference in the value of kb is due to
    rounding-off the value of A
```

Chapter 6

LEVERS

Scilab code Exa 6.1 L1

```
1 // \text{ sum } 6-1
2 clc;
3 clear;
4 del=10;
5 k=500;
6 \quad W=k*del;
7 //Let load arm be 11
8 11=200;
9 //Let effort arm be 12
10 12 = 500;
11 P=W*11/12;
12 Ro=sqrt(W^2+P^2);
13 Ta=40;
14 d=sqrt(Ro*4/(2*%pi*Ta));
15 d=10;
16 pb=10;
17 d1=sqrt(Ro/(pb*1.5));
18 d1 = 20;
19 1=1.5*d;
20 t = 10;
21 T=Ro*4/(2*\%pi*d1^2);
```

Scilab code Exa 6.2 L2

```
1 // \text{ sum } 6-2
2 clc;
3 clear;
4 d1=80;
5 p=0.981;
6 \text{ Ta} = 40;
7 siga=80;
8 pa=15;
9 W=\%pi*(d1^2)*p/4;
10 P=W/8;
11 Ws = W - P;
12 d=sqrt(W*4/(%pi*2*Ta));
13 1=1.5*d;
14 D=2*d;
15 T=W/(2*\%pi*pa^2/4);
16 M1=P*(700-87.5-(D/2));
17 h=50;
18 b=h/4;
19 Z=b*h^2/6;
20 \text{ sigb=M1/Z};
21 \text{ pmax}=80;
22 T = 2465.6/h^2;
23 pmax=(sigb/2)+sqrt((sigb/2)^2+T^2);
```

```
// printing data in scilab o/p window
printf("h is %0.2 f mm ",h);
printf("\n pmax is %0.2 f MPa ",pmax);
// The difference in the value of pmax is due to rounding-off the digits.
```

Scilab code Exa 6.3 L3

```
1 // \text{ sum } 6-3
2 \text{ clc};
3 clear;
4 P = ((4*360) + (2*360))/900;
5 Fv = 4 - 2;
6 \text{ Fh=P};
7 Fr=sqrt(Fv^2+Fh^2);
8 P1 = 4 * 0.36 / 0.9;
9 Rf=sqrt(4^2+1.6^2);
10 d=sqrt(Rf*10^3/(15*1.25));
11 d=16;
12 1=1.25*d;
13 T=Rf*10^3*4/(2*\%pi*d^2);
14 D=2*d;
15 M1=Rf*10^3*(360-(D/2));
16 \text{ pa=} 15;
17 h=80;
18 b=h/4;
19 Z=b*h^2/6;
20 \text{ sigb=M1/Z};
21 T=4310/(b*h);
22 pmax=(sigb/2)+sqrt((sigb/2)^2+T^2);
23
24
     // printing data in scilab o/p window
     printf("P is %0.1 f KN
25
                                ",P);
```

Scilab code Exa 6.4 L4

```
1 // \text{ sum } 6-4
2 clc;
3 clear;
4 1 = 360;
5 P = 400;
6 Mh = 2*P*1/3;
7 \text{ sigb}=50;
8 11=60;
9 d=(Mh*32/(%pi*11))^(1/3);
10 d=30;
11 L=420;
12 siga=60;
13 H = 20;
14 B=H/3;
15 Mx = P * (L-H/2);
16 Tx = 2*P*1/3;
17 sigb1=Mx*18/H^3;
18 Td=P/(B*H);
19 Tr = 17.17 * Tx/H^4;
20 \text{ T=Tr+Td};
21 sigmax=(sigb1/2)+sqrt((sigb1/2)^2+T^2);
22 Tmax=sqrt((sigb1/2)^2+T^2);
23 T = P * L;
24 \text{ M=P*}(11+(2/3*1));
25 Te=sqrt(T^2+M^2);
26 \text{ Ta} = 40;
27 D=(Te*16/(\%pi*Ta))^(1/3);
28 D=30; //Rounding off to nearest whole number
29
30
     // printing data in scilab o/p window
     printf("d is %0.1 f mm
                                ",d);
31
```

Scilab code Exa 6.5 L5

```
1 // \text{ sum } 6-5
2 \text{ clc};
3 clear;
4 12 = 300;
5 1 = 450;
6 P = 400;
7 Mx = 2*P*12/3;
8 siga=80;
9 dh = (Mx * 32/(\%pi * siga))^(1/3);
10 dh=22;
11 L=(2*12/3)+1;
12 T=P*L;
13 Ta=40;
14 d=(T*16/(\%pi*Ta))^(1/3);
15 d=35;
16 \ d1=1.6*d;
17 Th=T*16*d1/(%pi*(d1^4-d^4));
18 \ 11=1.5*d;
19 My = P * (L - (d1/2));
20 B = dh;
21 \text{ H=} sqrt(3.66*75);
22 \text{ H} = 30;
23 \text{ Mz} = P * 11/2;
24 Te=sqrt(T^2+Mz^2);
25 d2=(Te*16/(\%pi*Ta))^(1/3);
26 d2 = 32;
27 b=d/4;
28 b=9; //Rounding off to nearest whole number
29 t = d/6;
30 t=6; //Rounding off to nearest whole number
31
```

```
// printing data in scilab o/p window
32
     printf("d is %0.1f mm
                                  ",d);
33
     printf("\n dh is %0.1 f mm
                                     ",dh);
34
                                     ",d1);
     printf("\n d1 is %0.1 f mm
35
                                     ",11);
36
     printf("\n l1 is %0.1 f mm
                                     ",d2);
     printf("\n d2 is %0.1 f mm
37
     printf("\n b is %0.1 f
                                     ",b);
38
                              mm
                                      ",t);
                   is %0.1 f
     printf("\n t
39
                              mm
```

Scilab code Exa 6.6 L6

```
1 // \text{ sum } 6-6
2 clc;
3 clear;
4 L=450;
5 P = 700;
6 \quad T = P * L;
7 \text{ Ta} = 50;
8 d=(T*16/(\%pi*Ta))^(1/3);
9 d=32;
10 d1=1.6*d;
11 d1=52; //Rounding off to nearest whole number
12 11=1.25*d;
13 My = P * (L - d1/2);
14 sigb=65;
15 H=(My*18/sigb)^(1/3);
16 \text{ H}=45;
17 B=H/3;
18 T1=P/(B*H);
19 \operatorname{sigmax} = (\operatorname{sigb}/2) + \operatorname{sqrt}((\operatorname{sigb}/2)^2 + \operatorname{T}^2);
20 \text{ Mx} = P * 11/2;
21 Te=sqrt((T)^2+(Mx^2));
22 d2=(Te*16/(\%pi*Ta))^{(1/3)};
23 d2=d2+6;
24 d2=38; //Rounding off to nearest whole number
```

Chapter 7

STRUTS AND COLUMNS

Scilab code Exa 7.1 SC1

```
1 // sum 7-1
2 clc;
3 clear;
4 \text{ sigc}=550;
5 \text{ FOS}=4;
6 sigw=sigc/FOS;
7 1 = 4000;
8 le=1/2;
9 A = \%pi*(1-0.7^2)/4;
10 K = (1+0.7^2)/16;
11 Pr=800*10^3;
12 a=1/1600;
13 D=130; //Rounding off to nearest whole number
14 d=D*0.7;
15
     // printing data in scilab o/p window
16
     printf("D is %0.1 f mm ",D);
17
                                   ",d);
     printf("\n d is %0.1 f mm
18
```

Scilab code Exa 7.2 SC2

```
1 // sum 7-2
2 clc;
3 clear;
4 1 = 500;
5 E=70*10^3;
6 P=20*10^3;
7 FOS=2;
8 d=P*2*12*4*1^2/((\%pi)^2*E);
9 d=(sqrt(8)*d)^0.25;
10 b=d/sqrt(8);
11
     // printing data in scilab o/p window
12
    printf("d is %0.2 f mm ",d);
13
     printf("\n b is \%0.2 \, \text{f} mm ",b);
14
```

Scilab code Exa 7.3 SC3

```
1 // sum 7-3
2 clc;
3 clear;
4 Ixx = (2*1696.6) + 115.4;
5 Iyy=1696.6+(2*115.4)+(2*25.27*10.27^2);
6 A = 3 * 25.27;
7 Kmin = sqrt(Ixx/75.81);
8 L=600;
9 \text{ k=L/Kmin};
10 sigc=110;
11 c=1/200;
12 sigw=sigc*(1-(c*k));
13 Pw=sigw*A;
14 a=1/7500;
15 sigc1=320;
16 Pr=(sigc1*A)/(1+(a*(L/Kmin)^2));
```

```
17 FOS=Pr/Pw;
18
19    // printing data in scilab o/p window
20    printf("FOS is %0.2 f ",FOS);
```

Scilab code Exa 7.4 SC4

```
1 // \text{ sum } 7-4
2 clc;
3 clear;
4 Iyy=193.4+(2*1.2*1.5^3/12);
5 E=200*10^3;
6 1 = 500;
7 Pe=(\%pi^2)*E*Iyy*10^5/(1^2);
8 \quad A=35.53+(2*1.2*15);
9 sige=Pe/7530;
10 k=sqrt(Iyy/A);
11 xc = 75;
12 sig=80;
13 sigo=20.875;
14 A = A * 100;
15 P = sigo * A;
16 P = P * 10^{-3};
17
     // printing data in scilab o/p window
18
     printf("P is %0.1 f kN
                               ",P);
19
20
21
     //The difference in the value of P is due to
        rounding-off the digits.
```

Scilab code Exa 7.5 SC5

```
1 // sum 7-5
```

```
2 clc;
3 clear;
4 sigc=330;
5 a=1/7500;
6 t = 4;
7 A=14.5*t^2;
8 1 = 300;
9 Kx = sqrt(1.4626*t^2);
10 Pr=sigc*A/(1+(a*(1/Kx)^2));
11 FOS=2;
12 P=Pr/FOS*10^-3;
13
14
     // printing data in scilab o/p window
     printf("P is %0.4 f KN
                             ",P);
15
```

Scilab code Exa 7.6 SC6

```
1 // sum 7-6
2 clc;
3 clear;
4 P = 1500;
5 \text{ FOS=2};
6 Pd=FOS*P;
7 1 = 280;
8 E=207*10^3;
9 I=Pd*1^2/(%pi^2*E);
10 D=(64*I/(\%pi*(1-0.8^4)))^(1/4);
11 D=8;
12 d=6.4;
13
     // printing data in scilab o/p window
14
     printf("D is %0.1 f mm ",D);
15
     printf("\n d is %0.1 f mm ",d);
16
```

Scilab code Exa 7.7 SC7

```
1 // sum 7-7
2 \text{ clc};
3 clear;
4 D=500;
5 p=0.3;
6 E=208*10^3;
7 \text{ sigc}=320;
8 a=1/7500;
9 1 = 2000;
10 le=1/2;
11 W = \%pi * D^2 * p/4;
12 FOS=4;
13 Wd = W * FOS;
14 I = Wd * 1^2 / (\%pi^2 * E);
15 d=(64*I/\%pi)^(1/4);
16 A = \%pi*d^2/4;
17 k=d/4;
18 d=45; //Rounding off to nearest whole number
19
20
     // printing data in scilab o/p window
     printf("d is %0.1 f mm
                                ",d);
21
```

Chapter 8

SPRINGS

Scilab code Exa 8.1 S8 1

```
1 // \text{ sum } 8-1
2 clc;
3 clear;
4 d=5;
5 D=30;
6 G=84*(10^3);
7 \text{ Na} = 15;
8 // Axial Load W
9 W = 300;
10 //Spring index C
11 C=30/5;
12 //Shear stress Augmentation factor Ks
13 Ks = ((2*C)+1)/(2*C);
14 //Wahl's factor Kw
15 K_W = (((4*C)-1)/((4*C)-4))+(0.615/C);
16 // Curvature correction factor Kc
17 Kc = Kw/Ks;
18 //Spring stiffness k
19 k=(G*(d^4))/(8*(D^3)*Na);
20 // Axial deflection delta
21 \text{ delta=W/k};
```

Scilab code Exa 8.2 S8 2

```
1 // \text{ sum } 8-2
2 clc;
3 clear;
4 W = 196.2;
5 lenthofscale=50;
6 k=196.2/50;
7 C=8;
8 Ks = (1+(0.5/C));
10 // Let us choose oil tempered wire 0.6-0.7 %C. Refer
       to Table 8-4 for constants A and m, relating
      strength wire
11 //diameter.
12 G=77.2*(10^3);
13 A = 1855;
14 \text{ m=0.187};
15 // equating Tmax=0.5*sig(ut).
16 // Ks*(8*W*D/(pi*(d^3)))=0.5*A/(d^2)
17 d1=(Ks*(8*W*C/(\%pi*A*0.5)));
18 d=d1^(1/1.813);
19 D = C * d;
20 Na=G*(d^4)/(8*(D^3)*k);
21 // Solid length = SL
22 SL = (Na - 1) * d
23
```

```
24
25     // printing data in scilab o/p window
26  printf(" wire diameter is %0.3 f mm ",d);
27  printf("\n mean diameter is %0.3 f mm ",D);
28  printf("\n Number of acting coils are %0.3 f ",Na);
29
30  //The difference in the values of d,D and Na is due to rounding-off the digits.
```

Scilab code Exa 8.3 S8 3

```
1 // \text{ sum } 8-3
2 clc;
3 clear;
4 d=1.626;
5 A = 2211;
6 m = 0.145;
7 \text{ rm} = 3;
8 ri = (rm - (d/2));
9 \text{ sigma=A/(d^m)};
10 W=(sigma*%pi*(d^3)*ri)/(32*(rm^2));
11
12
     // printing data in scilab o/p window
13 printf("Ultimate tensile Strength is %0.1 f MPa",
      sigma);
14 printf("\n Force at which the spring hook fails is
      \%0.1\,\mathrm{f} N ",W);
15
16 //The difference in the values of sigma and W is due
       to rounding-off the digits.
```

Scilab code Exa 8.4 S8 4

```
1 // \text{ sum } 8-4
2 clc;
3 clear;
4 Do = 25;
5 // mean coil diameter D=25-d
6 W = 150;
7 T = 800;
8 G=81000;
9 // Substituting values in equation T=8*W*D/(%pi*(d
      ^3))
10 // therefore, the equation becomes d^3 + 0.477*d =
      11.936
11 //consider d=2.2mm, (d can be taken between 2.2-2.3
      mm)
12 d=2.337; //(nearest available wire gauge)
13 C=9.5;
14 D=22.2;
15 Do=D+d;
16 Ks = 1 + (0.5/C);
17 Tmax=Ks*8*W*D/(%pi*(d^3));
18 // \text{ check for safety} - \text{Tmax} < T;
19 Lo=100;
20 \text{ Ls} = 40;
21 //Lo=Ls+delta+0.15*delta
22 delta=(Lo-Ls)/1.15;
23 delta=50;
24 k=150/50;
25 Na=(G*d^4)/(8*(D^3)*k);
26
27 N = Na + 2;
28 Ls=N*d;
29 Lo=Ls+(1.15*delta);
30
     // printing data in scilab o/p window
31
     printf("d is %0.3fmm ",d);
32
     printf("\n D is \%0.2 \, \text{f mm}",D);
33
     printf("\n Ls is \%0.2 \, \text{f mm}", Ls);
34
     printf("\n Lo is \%0.2 \text{ f mm}", Lo);
35
```

```
36   if (Do<=25)
37     disp ('The diameter is within space constraints'
     );
38  end</pre>
```

Scilab code Exa 8.5 S8 5

```
1 // \text{ sum } 8-5A
2 clc;
3 clear;
4 Di=15;
5 Do=20;
6 d=2.3;
7 D=17.5;
8 C=D/d;
9 Ks = 1 + (0.5/C);
10 Vmax = 100;
11 Tmax=Ks*8*Wmax*D/(%pi*(d^3));
12 G=81000;
13 delmax=67.7/2.366;
14 k=100/28;
15 Na=G*(d^4)/(8*k*(D^3));
16 Ls=Na+1; //(for plain ends)
17 delmax=28;
18 //TL= total working length
19 TL=Ls+delmax+(0.15*delmax);
20
21
     // printing data in scilab o/p window
     printf("d is %0.1fmm ",d);
22
     printf("\n C is \%0.1 \, \text{f} ",C);
23
      printf("\n Na is \%0.1f", Na);
24
```

Scilab code Exa 8.6 S8 6

```
1 // \text{ sum } 8-6
2 clc;
3 clear;
4 // 18 \text{ SWG} = 1.219 \text{MM} \text{ in dia}
5 d=1.219;
6 E=198.6*10^3;
7 G=80.7*10^3;
8 m = 0.19;
9 A = 1783;
10 sig=A/(d^m);
11 Tys=(0.4*sig);
12 Do=12.5;
13 D=Do-d;
14 C=D/d;
15 Ks = ((2*C)+1)/(2*C);
16 W=(Tys*\%pi*(d^3))/(8*D*Ks);
17 Nt=13.5;
18 Na=Nt-2;
19 del=(8*W*(D^3)*Na)/(G*(d^4));
20 Ls=(Nt-1)*d;
21 Lo=Ls+del+(0.15*del);
22
     // printing data in scilab o/p window
23
24
     printf("Tys is %0.1 f MPa ",Tys);
     printf("\n W is %0.1 f N ", W);
25
     printf("\n del is %0.3 f mm ",del);
26
     printf("\n Ls is %0.4 f mm ",Ls);
27
     printf("\n Lo is \%0.2 \text{ f mm}", Lo);
28
29
     //Answers in the book for Torsional yeild strength
30
         have been rounded-off to the nearest whole
        number.
```

Scilab code Exa 8.7 S8 7

```
1 // \text{ sum } 8-7
2 clc;
3 clear;
4 d=1.016;
5 \quad A = 2211;
6 m = 0.145;
7 G=81000;
8 \text{ Nt} = 16;
9 Na=16-2;
10 sig=A/(d^m);
11 Tys=0.45*sig;
12 Do=12.6;
13 D=Do-d;
14 C=D/d;
15 Ks = 1 + (0.5/C);
16 W=(Tys*\%pi*(d^3))/(8*D*Ks);
17 k=(G*(d^4))/(8*(D^3)*Na);
18 del=W/k;
19 Ls=(Nt-1)*d;
20 \text{ Lo=Ls+(1.15*del)};
21
22
     // printing data in scilab o/p window
23
     printf("Tys is %0.1f MPa ",Tys);
24
     printf("\n Do is \%0.1 \, f N ",Do);
25
     printf("\n W is \%0.1 \, f N ", W);
26
     printf("\n k is \%0.3 \, f N ",k);
27
     printf("\n del is \%0.2 \text{ f mm}", del);
28
     printf("\n Ls is \%0.2 \,\mathrm{f} mm", Ls);
29
     printf("\n Lo is \%0.3 \, \text{f mm}", Lo);
30
31
32
     if ((Lo/D) >= 5.26)
        disp ('The spring will fail under buckling');
33
34 end
35
36 // Values after the decimal point has not been
      considered for answer of Torsional yeild strength
       in the book, whereas answers for deflection and
```

Scilab code Exa 8.8 S8 8

```
1 // \text{ sum } 8-8
2 clc;
3 clear;
4 d=2;
5 Do=20;
6 D=Do-d;
7 C=D/d;
8 \text{ Na=9};
9 // Material hard drawn spring steel
10 A = 1783;
11 m = 0.19;
12 G = 81000;
13 sig=A/(d^m);
14 Tys=0.45*sig
15 Kf = 1.5;
16 Ta=Tys/Kf;
17 Ks = 1 + (0.5/C);
18 W = (Ta*\%pi*(d^3))/(8*D*Ks);
19 k=(G*(d^4))/(8*(D^3)*Na);
20 del=W/k;
21 Lo=((Na+1)*d)+(1.15*del);
22 p = (Lo - d) / Na;
23
24
     // printing data in scilab o/p window
     printf("k is %0.3 f N/mm ",k);
25
     printf("\n W is %0.1f N ", W);
26
     printf("\n Lo is \%0.3 \, \text{f} mm", Lo);
27
28
     printf("\n p is \%0.3 \, \text{f mm}",p);
29
30
```

```
31  if ((Lo)>=47.34)
32   disp ('The spring will fail under buckling');
33  end
34
35  //The answer for value of spring rate 'k' is
   misprinted in the book. Due to this all
   subsequent values of del,Lo,p is calucated
   incorrectly in the book.
```

Scilab code Exa 8.9 S8 9

```
1 // \text{ sum } 8-9
2 clc;
3 clear;
4 // for music wire
5 d1=11.5;
6 \quad A = 2211;
7 d=1.5;
8 m = 0.145;
9 sigut=A/(d^m);
10 sigy=0.78*sigut;
11 Do=16;
12 E=2*(10^5);
13 Nb=4.25;
14 \quad D = Do - d;
15 C=D/d;
16 Ki = ((4*(C^2))-C-1)/(4*C*(C-1));
17 Mmax = (sigy * \%pi * (d^3)) / (32 * Ki);
18 kc = ((d^4)*E)/(10.8*D*Nb);
19 theta3=Mmax/kc';
20 \quad 11 = 20;
21 12 = 20;
22 Ne=(11+12)/(3*\%pi*D);
23 \text{ Na=Nb+Ne};
24 k=((d^4)*E)/(10.8*Na*D);
```

```
25 thetat=Mmax/k';
26 ke=(3*\%pi*(d^4)*E)/(10.8*(11+12));
27 // angdisp=theta1+theta2=Mmax/ke;
28 angdisp=Mmax/ke;
29 //D1 is final coil diameter
30 D1=(Nb*D)/(Nb+theta3);
31 //IRC=Initial radial clearance
32 \quad IRC = ((D-d)-d1)/2;
33 //FRC=Final radial clearance
34 \text{ FRC} = ((D1-d)-d1)/2;
35
36
37
    // printing data in scilab o/p window
    printf("Maximum Torque is %0.2 f Nmm", Mmax);
38
    printf("\n theta3 is \%0.3 f turns ", theta3);
39
    printf("\n Ne is \%0.3 \, \text{f} turns ", Ne);
40
    printf("\n ke is \%0.1 \, \text{f N/mm}", ke);
41
42
    printf("\n theta1+theta2 is \%0.4 \, f turns ",angdisp);
43
    printf("\n D1 is \%0.2 \, \text{f mm}",D1);
    printf("\n IRC is %0.2 f mm ",IRC);
44
    printf("\n FRC is %0.2 f mm ",FRC);
45
```

Scilab code Exa 8.10 S8 10

```
1 // sum 8-10
2 clc;
3 clear;
4 A=1783;
5 m=0.190;
6 d=1.5;
7 D=15;
8 M=300;
9 E=20800;
10 k=30;
11 // sigult= ultimate strength of the material
```

```
12 // sigy= yield strength of the material
13 sigult=A/(d^m);
14 sigy=0.7*sigult;
15 //siga= allowable yield strength of the material
16 siga=sigy/2;
17 C=D/d;
18 Ki = (4*(C^2)-C-1)/(4*C*(C-1));
19 Z=\%pi*(d^3)/32;
20 //sigb=bending strength of the material;
21 \text{ sigb=Ki*M/Z};
22 while (sigb>=siga)
23
       d=d+0.15;
24
       D = 15;
       C=D/d;
25
       sigult=A/(d^m);
26
27 \text{ sigy=0.7*sigult};
28 siga=sigy/2;
29 Ki = (4*(C^2)-C-1)/(4*C*(C-1));
30 Z = \%pi*(d^3)/32;
31 sigb=Ki*M/Z;
32 end
33 d=2; // rounding off the value of the diameter.
34 D;
35 Na=(d^4)*E/(64*D*k);
36
     // printing data in scilab o/p window
37
     printf("d is %0.1 f mm ",d);
38
     printf("\n D is \%0.1 \, \text{f mm}",D);
39
     printf("\n Na is \%0.2 \, \text{f} mm", Na);
40
```

Scilab code Exa 8.11 S8 11

```
1 // sum 8-11
2 clc;
3 clear;
```

```
4 L=1180;
5 W=40*(10^3);
6 \text{ Nf} = 2;
7 \text{ Ng=8};
8 E=207*(10^3);
9 //sigut is ultimate strength
10 sigut=1400;
11 FOS=2;
12 //siga= allowable yield strength of the material
13 siga=1400/2;
14 //sigbf=bending strength in full length
15 sigbf = 700;
16 b = 75;
17 t=((4.5*W*L)/(((3*Nf)+(2*Ng))*sigbf))^(0.5);
18 t = 14;
19 I = (Nf*b*(t^3))/12;
20 Wf = (3*Nf*W)/((3*Nf)+(2*Ng));
21 del=(Wf*(L^3))/(48*E*I);
22
23
24
    // printing data in scilab o/p window
    printf("t is %0.0 f mm ",t);
25
   printf("\n Wf is \%0.0 \, \text{f N}", Wf);
26
   printf("\n I is \%0.0 \,\mathrm{f} \,\mathrm{mm}^4",I);
27
    printf("\n del is %0.1f mm",del);
28
```

Scilab code Exa 8.12 S8 12A

```
1 // sum 8-12A
2 clc;
3 clear;
4 W=80000;
5 sigbfr=500;
6 L=1100;
7 Nf=3;
```

```
8 \text{ Ng} = 10;
9 N = Nf + Ng;
10 t=((1.5*W*L)/(N*6*sigbfr))^(1/3);
11 t=15;
12 b=6*t;
13 E=207*10^3;
14 deli=(W*(L^3))/(8*E*N*b*(t^3));
15 Wi = (W*Nf*Ng)/(N*((3*Nf)+(2*Ng)));
16
17
    // printing data in scilab o/p window
18
   printf("t is %0.1 f mm ",t);
19
20
   printf("\n deli is %0.1f mm ",deli);
    printf("\n Wi is \%0.0 \, f N ", Wi);
21
```

Scilab code Exa 8.13 S8 13

```
1 // \text{ sum } 8-13
2 clc;
3 clear;
4 //ultimate strength=sigut
5 sigut=1500;
6 C = 7;
7 d=3;
8 D=C*d;
9 Ks = 1 + (0.5/C);
10 Kw = (((4*C)-1)/((4*C)-4)) + (0.615/C);
11 Pmax = 120;
12 Pmin=40;
13 Pm = 80;
14 Tm = (Ks*8*Pm*D)/(\%pi*(d^3));
15 Ta=(Kw*8*Pmin*D)/(%pi*(d^3));
16 Tse=0.22*sigut;
17 Tys=0.45*sigut;
18 x=(Tys-(0.5*Tse))/(0.5*Tse);
```

```
19 y=((x)*Ta)+Tm;
20 FOS=(Tys/y);
21
22    // printing data in scilab o/p window
23    printf("Tm is %0.2 f MPa ",Tm);
24    printf("\n Ta is %0.1 f MPa ",Ta);
25    printf("\n FOS is %0.3 f ",FOS);
```

Scilab code Exa 8.14 S8 14

```
1 // \text{ sum } 8-14
2 \text{ clc};
3 clear;
4 Tse=360;
5 Tys=660;
6 d=25;
7 P = 0.03;
8 m = 40;
9 Pmin = ((\%pi*(d^2)*P)/4) + (m*9.81/1000);
10 k=6;
11 // Additional load= Padd=k*further compression in
      spring
12 Padd=k*10;
13 Pmax=Padd+Pmin;
14 Pm = (Pmax + Pmin)/2;
15 Pa=(Pmax-Pmin)/2;
16 d=2;
17 D=12;
18 C=6;
19 Ks = 1 + (0.5/C);
20 \text{ Ks} = 1.083;
21 K_W = (((4*C)-1)/((4*C)-4))+(0.615/C);
22 Ta=(Kw*8*Pa*D)/(\%pi*(d^3));
23 Tm = (Ks*8*Pm*D)/(\%pi*(d^3));
24 x=(Tys-(0.5*Tse))/(0.5*Tse);
```

```
25  y=((x)*Ta)+Tm;
26  FOS=(Tys/y);
27
28     // printing data in scilab o/p window
29     printf("Tm is %0.2 f MPa ",Tm);
30     printf("\n Ta is %0.3 f MPa ",Ta);
31     printf("\n FOS is %0.2 f ",FOS);
```

Chapter 9

THREADED FASTENERS

Scilab code Exa 9.1 TF1

```
1 // \text{ sum } 9-1
2 clc;
3 clear;
4 p1=2;
5 d=16;
6 dt1=d-(0.93825*p1);
7 At1=%pi*dt1^2/4;
8 p2=1.5;
9 d=16;
10 dt2=d-(0.93825*p2);
11 At2=%pi*dt2^2/4;
12
    // printing data in scilab o/p window
13
14 printf("At1 is %0.1 f mm^2 ",At1);
15 printf("\n At2 is %0.1 f mm^2 ",At
                                            ",At2);
```

Scilab code Exa 9.2 TF2

```
1 // sum 9-2
2 clc;
3 clear;
4 W=20*10^3;
5 n=4;
6 // Let the load on each bolt be W1
7 W1=W/n;
8 At=W1/80;
9
10 // printing data in scilab o/p window
11 printf("At is %0.1 f mm^2 ",At);
```

Scilab code Exa 9.3 TF3

```
1 // \text{ sum } 9-3
2 clc;
3 clear;
4 d=18;
5 p=2.5;
6 dr=d-(1.2268*p);
7 dm = (d+dr)/2;
8 alpha=atan(p/(%pi*dm));
9 theta=\%pi*30/180;
10 u1=0.15;
11 u2=0.13;
12 x=(tan(alpha)+(u1/cos(theta)))/(1-(tan(alpha)*u1/cos
      (theta)));
13 K=dm*x/(2*d)+(0.625*u2);
14
15
     // printing data in scilab o/p window
     printf("K is \%0.5 \,\mathrm{f}
                                ",K);
16
```

Scilab code Exa 9.4 TF4

```
1 // \text{ sum } 9-4
2 clc;
3 clear;
4 d=20;
5 t=4;
6 Lg=84;
7 Ad = \%pi * d^2/4;
8 Eb=205*10^3;
9 Ed=105*10<sup>3</sup>;
10 kb=Ad*Eb/Lg;
11 lg=80;
12 x=5*(lg+(0.5*d))/(lg+(2.5*d));
13 kp = \%pi * Ed * d / (2 * log(x));
14 At = 245;
15 sigb=105;
16 Pe=20*10^3;
17 Pb=Pe*kb/(kb+kp);
18 sigad=Pb/At;
19 finalst=sigb+sigad;
20
21
     // printing data in scilab o/p window
22
     printf("final stress is %0.2 f N/mm^2
        finalst);
```

Scilab code Exa 9.5 TF5

```
1  // sum 9-5
2  clc;
3  clear;
4  Eb=207*10^3;
5  Ec=105*10^3;
6  sigp=650;
7  At=115;
8  Pi=0.75*sigp*At;
9  F=sigp*At;
```

```
10 //Let the additional load Fadd
11 Padd=F-Pi;
12 d=14;
13 Ad = \%pi * d^2/4;
14 Lg=63;
15 kb=Ad*Eb/Lg;
16 lg=60;
17 x=5*(lg+(0.5*d))/(lg+(2.5*d));
18 km = \%pi * Ec * d / (2 * log(x));
19 C=kb/(kb+km);
20 Pe=Padd/C;
21 \quad K = 0.2;
22 \text{ Ti=Pi*K*d*10^-3};
23
     // printing data in scilab o/p window
24
                                      ",Ti);
     printf("Ti is %0.2 f Nm
25
```

Scilab code Exa 9.6 TF6

```
1 // \text{ sum } 9-6
2 clc;
3 clear;
4 d=20;
5 \text{ sigp=600};
6 At = 245;
7 Pi=120*10^3;
8 Pe=30*10^3;
9 C=0.35;
10 Pb=C*Pe;
11 P=Pi+Pb;
12 sigi=Pi/At;
13 sigf=P/At;
14 \text{ K=0.18};
15 T=K*d*Pi*10^-3;
16 E1=sigi/sigp;
```

```
17 E2=sigf/sigp;
18
     // printing data in scilab o/p window
19
                                  ",sigi);
     printf("sigi is %0.1f MPa
20
     printf("\n sigi is %0.2 f MPa ", sigf);
21
                                  ",T);
     printf("\n T is %0.0 f Nm
22
     printf("\n E1 is \%0.3 f
                                  ",E1);
23
     printf("\n E2 is %0.3 f
                                  ",E2);
24
25
26
     //Value upto tenthth place is considered in the
        book for value of final stress in bolt, 'sigf'
```

Scilab code Exa 9.7 TF7

```
1 // \text{ sum } 9-7
2 // The sum sequence is numbered incorrectly in the
      book, from this sum ownwards.
3 clc;
4 clear;
5 p=2;
6 d=16;
7 dt=d-(0.938*p);
8 At=\%pi*dt^2/4;
9 r=60*sqrt(2);
10 Td=1/(4*At);
11 Ta=120;
12 T=8.722*10^{-3};
13 P=Ta/T*10^-3;
14
     // printing data in scilab o/p window
15
     printf("P is %0.3 f kN
                                  ",P);
16
17
     //Value upto hundredth place is considered in the
18
        book for value of permissible load, 'P'
```

Scilab code Exa 9.8 TF8

```
1 // \text{ sum } 9-8
2 clc;
3 clear;
4 sigyp=460;
5 \text{ FOS}=2;
6 Ts=0.577*sigyp/FOS;
7 At = 245;
8 r = 100;
9 P=Ts*At/1.453*10^-3;
10 // Open prob9p8.txt file
11 fid = mopen('prob9p8.txt', "w");
12 // error message
13
     if (fid == -1)
14
       error('cannot open file for writing');
15
     end
16
    mfprintf(fid, "Problem 9.8 Solution: \nThe
17
       eccentric load is %f N
                                      ",P);
18
     mclose(fid);
19
     // printing data in scilab o/p window
20
                             ",P);
     printf("P is %0.3 f kN
21
22
23
     //Value of thousandth place of eccentric load, 'P'
         is misprinted in the book.
```

Scilab code Exa 9.9 TF9

```
1 // sum 9-9 2 clc;
```

```
3 clear;
4 P=4*10^3;
5 e = 200;
6 11 = 150;
7 12 = 550;
8 \text{ sigyp=420};
9 FOS=3;
10 siga=sigyp/3;
11 M = P * e;
12 At = 12.5;
13 At = 14.2;
14
15
     // printing data in scilab o/p window
                                         ",At);
     printf("At is %0.1 f mm^2
16
```

Scilab code Exa 9.10 TF10

```
1 // \text{ sum } 9-10
2 clc;
3 clear;
4 Pi=10*10^3;
5 \text{ sigyp=420};
6 \text{ FOS}=2;
7 sige=sigyp/FOS;
8 \text{ K1=0.85};
9 \text{ K2=0.74};
10 \text{ K4=0.868};
11 SCF = 2.4;
12 \text{ K3=1/SCF};
13 sige=sige*K1*K2*K3*K4;
14 Pe=10*10^3/3;
15 Pmax=Pi+Pe;
16 Pmin=Pi;
17 Pa=(Pmax-Pmin)/2;
18 Pm = (Pmax + Pmin)/2;
```

Scilab code Exa 9.11 TF11

```
1 // \text{ sum } 9-11
2 clc;
3 clear;
4 Pi = 15;
5 Pmax = 15 + 3.75;
6 Pmin=15+1.25;
7 Pa=(Pmax-Pmin)/2;
8 \text{ Pm} = (\text{Pmax} + \text{Pmin})/2;
9 \text{ K1=0.85};
10 K2 = 0.7;
11 K4=0.897;
12 SCF = 2.4;
13 K3=1/SCF;
14 sige=900/4*K1*K2*K3*K4;
15 siga=28.115;
16 At=Pa*10^3/siga;
17 At=58;
18
     // printing data in scilab o/p window
19
                                          ",At);
     printf("At is %0.0 f mm^2
20
```

Chapter 10

PIPES AND PIPE JOINTS

Scilab code Exa 10.1 PPJ1

```
1 // \text{ sum } 10-1
2 clc;
3 clear;
4 sigta=140/2;
5 \text{ nt} = 0.75;
6 //Let the flow rate be Q
7 \quad Q = 0.25;
8 v = 1.2;
9 D=1.13*sqrt(Q/v);
10 D=520;
11 p=0.7;
12 C=9;
13 t=(p*D)/(2*sigta*nt)+C;
14
     // printing data in scilab o/p window
15
     printf(" t is %0.1 f mm ",t);
16
```

Scilab code Exa 10.2 PPJ2

```
1 // \text{ sum } 10-2
2 clc;
3 clear;
4 p=3*8;
5 \text{ sigta=60};
6 d=150;
7 t=d/2*sqrt(((sigta+p)/(sigta-p))-1);
8 t=75*sqrt((84/36)-1);
9 t = 40;
10 do=d+(2*t);
11 D=d+(2*t)+20;
12 \quad w = 10;
13 Ds=d+(2*w);
14 P = \%pi*(Ds^2)*8/4;
15 \text{ sigp} = 310;
16 FOS=4;
17 sigb=77.5;
18 At=P/(sigb*2);
19 At = 1300;
20 D = 250;
21 \text{ db} = 45;
22 b=D;
23 \ a=1.8*b;
24 CD=D+(2*db*1.2);
25 \text{ sigp} = 310;
26 Pr=0.75*sigp*At;
27 \text{ Pr=Pr*10}^{-3};
28 t = 40;
29 D1=d+(2*t)+20;
30 D2 = D1 + (4.6 * 31);
31 CD=D2-((3*t)+20);
32
33
      // printing data in scilab o/p window
                                      ",Pr);
     printf("Pr is %0.2 f kN
34
                                          ",D1);
     printf("\n D1 is %0.0 f mm
35
                                          ",D2);
     printf("\n D2 is %0.1 f mm
36
                                          ",CD);
37
     printf("\n CD is %0.1 f mm
```

Scilab code Exa 10.3 PPJ3

```
1 // \text{ sum } 10-3
2 \text{ clc};
3 clear;
4 p = 14;
5 d=50;
6 sigyp=270;
7 \text{ FOS} = 3;
8 sigta=sigyp/FOS;
9 pt=2*p;
10 t=d/2*sqrt(((sigta+pt)/(sigta-pt))-1);
11 t=10;
12 D1=d+(2*t);
13 Ds = D1 + 20;
14 P = \%pi * (Ds^2) * p/4;
15 sigba=380/4;
16 At=P/(4*sigba);
17 At = 245;
18 \text{ db} = 20;
19 Dd = 70 + (2 * 20) + 5;
20 R = db + 2.5;
21 B=(Dd/sqrt(2))+(2*(db+2.5));
22 B = 127;
23 Y = Dd/(2*sqrt(2));
24 \text{ Rm} = 34.12;
25 M = (P*Y/2) + (P*Rm/\%pi);
26 \text{ sigfa} = 250/5;
27 b = 127/70;
28 \ Z=b/6;
29 tf=sqrt(M/(sigfa*Z));
30 \text{ tf} = 44;
31
      // printing data in scilab o/p window
32
```

```
printf("d is %0.0 f mm
                                        ",d);
33
      printf("\n t is %0.0 f mm
                                            ",t);
34
      \label{eq:printf} \textbf{printf("} \setminus n \ B \ is \ \%0.0 \ f \ mm
                                            ",B);
35
                                            ",R);
      printf("\n R is \%0.1 f mm
36
                                            ",Y);
37
      printf("\n Y is %0.2 f mm
      printf("\n tf is %0.0 f mm
                                           ",tf);
38
```

Scilab code Exa 10.4 PPJ4

```
1 // \text{ sum } 10-4
2 clc;
3 clear;
4 p=1.25;
5 D = 200;
6 \text{ nt} = 0.75;
7 C=9;
8 sigta=20;
9 t=(p*D)/(2*sigta*nt)+C;
10 t = 18;
11 D1=D+(2*t);
12 \text{ dr} = D1 + 10;
13 sigp=310;
14 sigba=sigp/4;
15 \text{ db} = 16;
16 Db=dr+32+5;
17 Do = Db + (2*db);
18 P=\%pi*(251+db)^2*1.25/4;
19 n=6;
20 Y = (Db - dr)/2;
21 M=P/n*Y;
22 Z = dr * tand(30)/6;
23 tf=sqrt(M/(sigta*Z));
24 \text{ tf} = 22;
25 Deff=dr+db+5;
26
```

```
// printing data in scilab o/p window
printf("D is %0.0 f mm ",D);
printf("\n t is %0.0 f mm ",t);
printf("\n Y is %0.1 f mm ",Y);
printf("\n tf is %0.0 f mm ",tf);
printf("\n Deff is %0.0 f mm ",tf);
```

Chapter 11

RIVETED JOINTS

Scilab code Exa 11.1 RJ1

```
1 // \text{ sum } 11-1
2 clc;
3 clear;
4 t = 20;
5 p=100;
6 d=25;
7 sigt=40;
8 P=(p-d)*t*sigt;
9 Ts=(4*P)/(%pi*d^2);
10 sigb=P/(d*t);
11
    // printing data in scilab o/p window
12
  printf("P is \%0.0 f N ",P);
13
    printf("\n Ts is \%0.2 f MPa ",Ts);
14
                                      ",sigb);
    printf("\n sigb is %0.0 f MPa
15
```

Scilab code Exa 11.2 RJ2

```
1 // \text{ sum } 11-2
2 clc;
3 clear;
4 t=22;
5 t1=5*t/8;
6 d=30;
7 p = 100;
8 sigt=75;
9 P=(p-d)*t*sigt;
10 Ts=(2*P)/(\%pi*d^2);
11 sigb=P/(d*t);
12 P=P*10^-3
13
   // printing data in scilab o/p window
    printf("P is %0.1 f kN ",P);
14
    printf("\n Ts is \%0.1 f MPa ",Ts);
15
     printf("\n sigb is \%0.0 \, f \, N/mm^2", sigb);
16
```

Scilab code Exa 11.3 RJ3

```
1 / \text{sum } 11 - 3
2 clc;
3 clear;
4 t=15;
5 t1=5*t/8;
6 d=25;
7 n=2;
8 \text{ Ta} = 80;
9 sigta=100;
10 sigba=120;
11 Ps=n*1.875*\%pi*d^2*Ta/4;
12 Pb=n*d*t*sigba;
13 p=Pb/(t*Ta)+d;
14 Pp=p*t*Ta;
15 \text{ n=Pb/Pp};
16
```

Scilab code Exa 11.4 RJ4

```
1 // \text{ sum } 11-4
2 \text{ clc};
3 clear;
4 b = 200;
5 t = 16;
6 d=6*sqrt(t);
7 sigta=80;
8 \text{ Ta} = 60;
9 sigba=100;
10 Pt=(b-d)*t*sigta;
11 Ps=1.875*%pi*d^2*Ta/4;
12 Pb=d*t*sigba;
13 n1=Pt/Pb;
14 n1=6;
15 Pt2=((b-(2*d))*t*sigta)+Pb;
16 Pt3=((b-(3*d))*t*sigta)+(3*Pb);
17 Pp=b*t*sigta;
18 \text{ n2=Pt/Pp};
19 n2=n2*100;
20
21
     // printing data in scilab o/p window
                                    ",d);
22
     printf("d is %0.0 f mm
     printf("\n n1 is \%0.0 f
                                      ",n1);
23
                                         ",Pt);
     printf("\n Pt is %0.0 f N
24
     printf("\n Pt2 is \%0.0 f N
                                        ",Pt2);
25
     printf("\n Pt3 is %0.0 f N
                                        ",Pt3);
26
     printf("\n n2 is \%0.0 \,\mathrm{f}
                                      ",n2);
27
28
```

```
//Answer to strength of rivet in bearing 'Pb' is calculated incorrectly in the book, hence Pt2, Pt3 is calculated subsequently incorrect.
```

Scilab code Exa 11.5 RJ5

```
1 // \text{ sum } 11-5
2 clc;
3 clear;
4 a=50;
5 b = 75;
6 P=36*10^3;
7 d=24;
8 \text{ Ta} = 60;
9 n = 9;
10 A = \%pi*d^2/4;
11 Td=P/(n*A);
12 theta=atan(b/a);
13 Ts = 54.64;
14 r2=90.184;
15 e=A*29575.7/P;
16
17
     // printing data in scilab o/p window
                                  ",e);
     printf(" e is %0.1 f mm
18
```

Scilab code Exa 11.6 RJ6

```
1 // sum 11-6
2 clc;
3 clear;
4 P=12*10^3;
5 Tmax=100;
6 n=6;
```

```
7 e=50+50+(5/2);
8 T=P*e;
9 Td=P/n;
10 ra=125;
11 k=T/((2*125^2)+(2*75^2)+(2*25^2));
12 Tr=(k*ra)+Td;
13 A=Tr/Tmax;
14 d=sqrt(A*4/%pi);
15 d=12;
16
17 // printing data in scilab o/p window
printf(" d is %0.0 f mm ",d);
```

Scilab code Exa 11.7 RJ7

```
1 // \text{ sum } 11-7
2 clc;
3 clear;
4 t=15;
5 d=6*sqrt(t);
6 d=24;
7 sigta=75;
8 sigba=105;
9 \text{ Ta} = 60;
10 n=4;
11 Pt=n*%pi*d^2*Ta/4;
12 x=d*t*sigta;
13 y=2*t*sigta;
14 p = (Pt + x) / y;
15 p=60;
16 \quad C=4.17;
17 pmax = (C*t) + 41.28;
18 Pt1=(y*p)-x;
19 Ps=n*%pi*d^2*Ta/4;
20 Pb=n*d*t*sigba;
```

```
21 S=2*p*t*sigta;
22 n=Pt1/S;
23 n=n*100;
24
25    // printing data in scilab o/p window
26    printf(" n is %0.0 f ",n);
```

Scilab code Exa 11.8 RJ8

```
1 // \text{ sum } 11-8
2 clc;
3 clear;
4 D=1500;
5 p=2;
6 \text{ nt} = 0.75;
7 sigut=420;
8 \text{ FOS} = 5;
9 sigta=sigut/FOS;
10 t=p*D/(2*sigta*nt);
11 t = 24;
12 d=6*sqrt(t);
13 d=30;
14 \text{ Ta} = 330/5;
15 \text{ sigba}=640/5;
16 Ps=2*1.875*\%pi*(d^2)*Ta/4;
17 p=(Ps/(t*sigta))+d;
18 p = 117;
19 t1=5*t/8;
20 Pt=(p-d)*t*sigta;
21 Pp=p*t*sigta;
22 \text{ Pb=2*d*t*sigba};
23 \text{ n=Ps/Pb};
24 n=n*100;
25
     // printing data in scilab o/p window
26
```

```
printf(" n is %0.0 f ",n);
```

Scilab code Exa 11.9 RJ9

27

```
1 // \text{ sum } 11-9
2 clc;
3 clear;
4 D=1200;
5 p=2.5;
6 sigba=110;
7 Pa=%pi*D^2*p/4;
8 \text{ nt} = 0.8;
9 sigta=80;
10 t=p*D/(2*sigta*nt);
11 t = 24;
12 d=6*sqrt(t);
13 d=30;
14 \text{ Ta} = 55;
15 Ps=\%pi*(d^2)*Ta/4;
16 Np=Pa/Ps;
17 Np=74;
18 nr=Np/2;
19 p=%pi*(D+t)/nr;
20 \text{ pb} = 2*d;
21 \text{ m=1.5*d};
22 \text{ Pt}=(p-d)*t*sigta;
23 \text{ Ps} = 2 * \text{Ps};
24 \text{ Pb=}2*d*t*sigba;
25 Pp=p*t*sigta;
26 \text{ n=Ps/Pp};
27 n=n*100;
28
      // printing data in scilab o/p window
29
      printf(" n is \%0.0\,\mathrm{f}
                                       ",n);
30
```

Chapter 12

WELDED JOINTS

Scilab code Exa 12.1 WJ1

```
1 // sum 12-1
2 clc;
3 clear;
4 h=8;
5 F=100*10^3;
6 t=0.707*h;
7 A=4*60*t;
8 T=F/A;
9

10 // printing data in scilab o/p window printf("T is %0.1 f MPa",T);
```

Scilab code Exa 12.2 WJ2

```
1 // sum 12-2
2 clc;
3 clear;
4 FOS=3;
```

```
5 Ta=95/FOS;
6 P=350*10^3;
7 h=12.5;
8 t=0.707*h;
9 l=P/(2*t*Ta);
10
11    // printing data in scilab o/p window
12    printf("l is %0.0 f mm ",1);
```

Scilab code Exa 12.3 WJ3

```
1 // sum 12-3
2 clc;
3 clear;
4 h=12;
5 t=0.707*h;
6 l=60;
7 Ta=80;
8 P=2*1*t*Ta;
9 P=P*10^-3;
10
11    // printing data in scilab o/p window
12    printf("P is %0.3 f kN ",P);
```

Scilab code Exa 12.4 WJ4

```
1 // sum 12-4
2 clc;
3 clear;
4 P=6*10^3;
5 e=150+(100/2);
6 T=P*e;
7 A=200;
```

Scilab code Exa 12.5 WJ5

```
1 // \text{ sum } 12-5
2 clc;
3 clear;
4 h = 10;
5 t=10/sqrt(2);
6 \text{ Ta} = 80;
7 x=((50*25)+(50*0))/(50+50);
8 y=x;
9 ra=sqrt(x^2+37.5^2);
10 Ixx = (7.07*50^3/12) + (50*7.07*(12.5^2))
      +(50*7.07*12.5^2);
11 IG=2*Ixx;
12 e=100+(50-12.5);
13 Tr=16.09*10^-3;
14 P=Ta/Tr;
15 P=P*10^-3;
16
17
     // printing data in scilab o/p window
18
     printf("P is %0.3 f KN
                               ",P);
```

Scilab code Exa 12.6 WJ6

```
1 // \text{ sum } 12-6
2 clc;
3 clear;
4 P=16*10^3;
5 1 = 300;
6 r=50;
7 M = P * 1;
8 A = 2 * \%pi * r;
9 Ixx=%pi*r^3;
10 sigb=M*r/Ixx;
11 Td=P/A;
12 Tmax=sqrt((sigb/2)^2+(Td^2));
13 Ta = 90;
14 t=Tmax/Ta;
15 h=sqrt(2)*t;
16 h=5;
17 // printing data in scilab o/p window
     printf("h is %0.0 f mm ",h);
18
```

Scilab code Exa 12.7 WJ7

```
1 // sum 12-7
2 clc;
3 clear;
4 sigut=415;
5 sige=sigut/3;
6 Ka=0.5;
7 Kb=0.85;
8 Kc=0.897;
```

```
9 SCF=1.5;
10 Kd=1/SCF;
11 FOS=2;
12 sige1=sige*Ka*Kb*Kc*Kd/FOS;
13 Pa=50*10^3;
14 h=10;
15 t=0.707*h;
16 l=Pa/(2*sige1*t);
17
18  // printing data in scilab o/p window
19 printf("l is %0.0 f mm" ",1);
```

Scilab code Exa 12.8 WJ8

```
1 // \text{ sum } 12-8
2 clc;
3 clear;
4 1 = 300;
5 P=30*10^3;
6 T=P/(2*1);
7 \text{ Ta} = 124;
8 t1=T/Ta;
9 h1=sqrt(2)*t1;
10 M = P * 1;
11 Ixx=2*100*110^2;
12 sigb=M/Ixx*110;
13 //Let the allowable bending stress is Tab
14 \text{ Tab=200};
15 t2=sigb/Tab;
16 h2=t2/0.707;
17 h2=3;
18
19
     // printing data in scilab o/p window
     printf("h is %0.0 f mm
                                ",h2);
20
```

Scilab code Exa 12.9 WJ9

```
1 // \text{ sum } 12-9
2 \text{ clc};
3 clear;
4 Ta=60;
5 11=60;
6 12 = 40;
7 P1=Ta*0.707*11;
8 P2=Ta*0.707*12;
9 P=80*10^3;
10 h=P/(P1+P2);
11 h=20;
12 a = (P2*100)/(P1+P2);
13
     // printing data in scilab o/p window
14
    printf("h is %0.0 f mm ",h);
15
     printf("\n a is %0.0 f mm
                                   ",a);
16
```

Scilab code Exa 12.10 WJ10

```
1 // sum 12-10
2 clc;
3 clear;
4 P=300*10^3;
5 l=500;
6 A=2*1;
7 Td=P/A;
8 T=(350-250)*P;
9 IG=(1^3*2/12)+(1*2*5^2);
10 r=sqrt(250^2+5^2);
11 Ts=T*r/IG;
```

```
12 Ts=Ts+Td;
13 Ta=110;
14 t=Ts/Ta;
15 h=t/0.707;
16 h=9;
17
18    // printing data in scilab o/p window
19    printf("h is %0.0 f mm ",h);
```

Scilab code Exa 12.11 WJ11

```
1 // \text{ sum } 12-11
2 clc;
3 clear;
4 t=30;
5 sigut=417;
6 sige=sigut/2;
7 Ka=0.5;
8 \text{ Kb=0.85};
9 \text{ Kc} = 0.897;
10 SCF = 1.2;
11 Kd=1/SCF;
12 FOS=1.5;
13 sige1=sige*Ka*Kb*Kc*Kd/FOS;
14 Pa=60*10^3;
15 l=Pa/(sige1*t);
16
17
     // printing data in scilab o/p window
18
     printf("l is %0.1f mm
                               ",1);
```

Chapter 13

COTTER AND KNUCKLE JOINTS

Scilab code Exa 13.1 CKJ1

```
1 / \text{sum } 13 - 1
2 clc;
3 clear;
4 F=25*10^3;
5 sigat=50;
6 \text{ Ta} = 40;
7 pa=80;
8 d=sqrt((4*F)/(%pi*sigat));
9 d=26;
10 t = d/4;
11 t=7;
12 d1=1.2*d;
13 d1 = 32;
14 \text{ pc=F/(d1*t)};
15 t=10;
16 c=0.75*d;
17 c = 20;
18 d2 = 44;
19 tw = (d2 - d1)/2;
```

```
20 b=F/(2*t*Ta);
21 b = 34;
22 \quad a=0.5*d;
23 d3=(F/(pa*t))+d1;
24 d3 = 64;
25 \text{ e=F/(Ta*(d3-d1))};
26 d4 = sqrt((F*4/(%pi*pa))+d1^2);
27 d4 = 40;
28 f = 0.5 * d;
29 \text{ sigbc} = 3*F*d3/(t*b^2*4);
30
31
     // printing data in scilab o/p window
32
     printf(" d is %0.0 f mm
                               ",d);
                                   ",d1);
33
     printf("\n d1 is %0.0 f mm
                                      ",d2);
     printf("\n d2 is %0.0 f mm
34
                                     ",d3);
     printf("\n d3 is %0.0 f mm
35
     printf("\n d4 is %0.0f mm ",d4);
36
37
     printf("\n sigbc is %0.1 f MPa ", sigbc);
```

Scilab code Exa 13.2 CKJ2

```
1 // sum 13-2
2 clc;
3 clear;
4 P=40*10^3;
5 sigut=490;
6 FOS=4;
7 sigts=sigut/FOS;
8 sigcs=1.4*sigts;
9 sigs=0.8*sigts;
10 d=sqrt((4*P)/(%pi*sigts));
11 d=21;
12 sigcc=1.4*330/4;
13 Tc=0.8*330/4;
14 t=d/3;
```

```
15 b=P/(2*t*Tc);
16 b = 31;
17 t = 10;
18 d1 = 28;
19 d2=40;
20 c = d/2;
21 c = 15;
22 a=P/(2*(d2-d1)*98);
23 a = 20;
24 L=(2*a)+(2*b)+(2*c)+(2*3);
25
26
     // printing data in scilab o/p window
27
     printf("d is %0.0 f mm
                               ",d);
     printf("\n d1 is \%0.0 f mm
                                    ",d1);
28
                                     ",t);
     printf("\n t is %0.0 f mm
29
                                     ",b);
     printf("\n b is %0.0 f mm
30
                                    ",d2);
     printf("\n d2 is %0.0 f mm
31
     printf("\n L is %0.0 f mm
                                     ",L);
32
```

Scilab code Exa 13.3 CKJ3

```
1 // sum 13-3
2 clc;
3 clear;
4 P=40*10^3;
5 sigt=60;
6 sigc=125;
7 T=45;
8 a=sqrt(P*3/(2*sigt));
9 a=33;
10 t=a/3;
11 b=P/(4.5*t*T);
12 b=20;
13 b1=1.25*b;
14 t1=P*3/(4*a*sigt);
```

```
15 t1=16;
16 \ 12=P/(2*2*T*t1);
17 \quad 12 = 14;
18 \ 11=P/(2*a*T);
19 11=14;
20 \ 13 = (0.6*a);
21 13=20;
22 	 14 = 11;
23 \text{ sigcr=P/(t*a)};
24 \text{ sigcr1=P/(2*t1*t)};
25
26
     // printing data in scilab o/p window
27
     printf("a is %0.0 f mm
                               ",a);
     printf("\n t is %0.0 f mm
                                      ",t);
28
                                      ",t1);
29
     printf("\n t1 is %0.0 f mm
                                      ",b);
     printf("\n b is %0.0 f mm
30
     printf("\n b1 is %0.0 f mm
                                      ",b1);
31
     printf("\n l1 is \%0.0 f mm
                                      ",11);
32
                                       ",12);
33
     printf("\n l2 is %0.0 f mm
                                       ",13);
     printf("\n 13 is %0.0 f mm
34
                                    ",14);
     printf("\n 14 is \%0.0 \, \text{f} mm
35
     printf("\n sigcr is %0.1 f MPa ", sigcr);
36
     printf("\n sigcr1 is %0.1 f MPa
                                          ",sigcr1);
37
```

Scilab code Exa 13.4 CKJ4

```
1 // sum 13-4
2 clc;
3 clear;
4 P=50*10^3;
5 sigp=380;
6 FOS=4;
7 sigca=80;
8 Ta=50;
9 sigta=sigp/FOS;
```

```
10 At=P/sigta;
11 d=30;
12 d1=1.5*d;
13 t=P/(sigca*d1);
14 t=14;
15 A=(\%pi*(d1^2)/4)-(d1*t);
16 //let tearing stress be sigt
17 sigt=P/A;
18 b=P/(2*t*Ta);
19 b=36;
20
     // printing data in scilab o/p window
21
     printf("d is %0.0 f mm ",d);
22
     printf("\n sigt is %0.1f MPa ",sigt);
23
     printf("\n b is %0.0 f mm ",b);
24
25
    //The answer to tearing stress in bolt 'sigt' is
26
       calculated incorrectly in the book.
```

Chapter 14

KEYS AND COUPLINGS

Scilab code Exa 14.1 KC1

```
1 // \text{ sum } 14-1
2 clc;
3 clear;
4 d=40;
5 r=d/2;
6 P=6*10^3;
7 N = 350;
8 sigyt=380;
9 A = \%pi * 12^2/2;
10 theta=\%pi-(2*atan(4/12));
11 alpha=180-(theta*\%pi/180);
12 \ 1=2*12*cosd(19.5);
13 A1=1*4/2;
14 Abcd = (A*141/180) - A1;
15 A2=A-Abcd;
16 A3=8*1;
17 w=2*\%pi*N/60;
18 T=P/w;
19 Pt=T*10^3/r;
20 sigb=Pt/A2;
21 //Let shear stress developed in key Tk
```

Scilab code Exa 14.2 KC2

```
1 // \text{ sum } 14-2
2 \text{ clc};
3 clear;
4 n=12;
5 phi=360*%pi/(180*12*2);
6 R1 = 45/2;
7 R2 = 50/2;
8 1 = 60;
9 Rm = (R1+R2)/2;
10 p=6.5;
11 Pn = (R2 - R1) * 1 * p;
12 T = Pn * Rm;
13 T=T*n;
14 N = 400;
15 \text{ w}=2*\%\text{pi}*N/60;
16 P = T * w;
17 A = (\%pi*R1*1)/n;
18 Ts=Pn/A;
19 Ah = (\%pi*R2*1)/n;
20 Th=Pn/Ah;
21
     // printing data in scilab o/p window
22
23
     printf("Ts is %0.2 f N/mm^2
                                            ",Ts);
     printf("\n Th is %0.2 f N/mm^2
                                              ",Th);
24
```

Scilab code Exa 14.3 KC3

```
1 // \text{ sum } 14-3
2 clc;
3 clear;
4 N = 360;
5 w=2*\%pi*N/60;
6 sigyt=380;
7 r = 25;
8 P=40*10^3;
9 FOS=3;
10 T=P/w;
11 Pt=T*10^3/(2*r);
12 \text{ siga} = 380/3;
13 Ta=0.577*380/3;
14 11=Pt/(sqrt(2)*12*Ta);
15 12=Pt*sqrt(2)/(siga*12);
16
     // printing data in scilab o/p window
17
     printf("l1 is %0.0 f mm
                               ",11);
18
     printf("\n l2 is %0.2 f mm
                                    ",12);
19
```

Scilab code Exa 14.4 KC4

```
1 // sum 14-4
2 clc;
3 clear;
4 N=300;
5 w=2*%pi*N/60;
6 P=12*10^3;
7 Ks=1.25;
8 Pd=P*Ks;
```

```
9 \text{ T=Pd/w};
10 Tas = 50;
11 d=16*T*10^3/(\%pi*Tas);
12 d=d^{(1/3)};
13 d=40;
14 \text{ Ts} = 10;
15 d1 = (2*d) + 13;
16 x = (d1^4 - d^4)/d1;
17 //Let the shear stress in the key be Tsh
18 Tsh=T*10^3*16/(\%pi*x);
19 1=3.5*d;
20 Ft=T*2*10^3/d;
21 11=70;
22 \text{ sigak=50};
23 b=Ft/(l1*sigak);
24 t=2*Ft/(100*11);
25
26
     // printing data in scilab o/p window
     printf("d is %0.0 f mm ",d);
27
                                         ",Tsh);
     printf("\n Tsh is %0.2 f MPa
28
                                      ",b);
     printf("\n b is %0.0 f mm
29
     printf("\n t is \%0.0 \, f \, mm
                                       ",t);
30
```

Scilab code Exa 14.5 KC5

```
1 // sum 14-5
2 clc;
3 clear;
4 P=36*10^3;
5 N=200;
6 w=2*%pi*N/60;
7 T=P/w;
8 Tas=45;
9 d=16*T*10^3/(%pi*Tas);
10 d=d^(1/3);
```

```
11 d=60;
12 d1 = (2*d) + 13;
13 1=3.5*d;
14 Ftk=T*2/d;
15 lk=1/2;
16 \text{ Tak=40};
17 sigack=90;
18 b=Ftk*10^3/(lk*Tak);
19 t=2*Ftk*10^3/(sigack*lk);
20 n = 4;
21 sigatb=60;
22 u=0.25;
23 dr=16*T*10^3/(u*\%pi^2*sigatb*n*d);
24 dr=sqrt(dr);
25
     // printing data in scilab o/p window
26
27
     printf("d is %0.0 f mm
     printf("\n b is %0.1 f mm
     printf("\n t is \%0.0 \, \text{f mm} ",t);
29
                                     ",dr);
     printf("\n dr is %0.3 f mm
30
```

Scilab code Exa 14.6 KC6

```
1 // sum 14-5
2 clc;
3 clear;
4 P=16*10^3;
5 N=1000;
6 w=2*%pi*N/60;
7 T=P/w;
8 Ks=1.4;
9 Td=T*Ks;
10 Tas=40;
11 d=16*T*10^3/(%pi*Tas);
12 d=d^(1/3);
```

```
13 d=32;
14 d1 = 2 * d;
15 l=1.5*d;
16 \, ds = 1.5 * d;
17 Tak = 40;
18 sigack=70;
19 Ftk=Td*2/d;
20 b=Ftk*10^3/(1*Tak);
21 t=2*Ftk*10^3/(sigack*1);
22 Taf=10;
23 tf=Td*10^3*2/(%pi*Taf*d1^2);
24 Ftb=Td*10^3/(1.5*d*4);
25 \text{ Tab} = 40;
26 db=sqrt(Ftb*4/(Tab*%pi));
27 D = 4 * d;
28 \text{ trp=d/6};
29 Ftb1=Td*10^3/(45*4);
30 db1=sqrt(Ftb1*4/(Tab*%pi));
31
32
     // printing data in scilab o/p window
                                 ",d);
33
     printf("d is %0.0 f mm
     printf("\n b is %0.0 f mm
                                    ",b);
34
                                      ",t);
     printf("\n t is %0.0 f mm
35
     printf("\n db is \%0.2 \text{ f mm} ", db);
36
                                      ",db1);
     printf("\n db1 is \%0.2 f mm
37
38
39
     //The answer to Key thickness 't' is calculated
        incorrectly in the book.
```

Scilab code Exa 14.7 KC7

```
1 // sum 14-5
2 clc;
3 clear;
4 P=30*10^3;
```

```
5 N = 1440;
6 \text{ w}=2*\%\text{pi}*N/60;
7 T=P/w;
8 d=36;
9 d1 = 30;
10 d2 = 2 * d;
11 d3=d1*2;
12 1=1.5*d;
13 Dp=3.5*d;
14 n=6;
15 Ft = (2*T)/(Dp*n);
16 p=0.5;
17 A=Ft/p;
18 Lf=d;
19 dp=A/Lf;
20 M=Ft*10^3*(5+(Lf/2));
21 db = (32*M/(\%pi*40))^{(1/3)};
22 	ext{ db} = 15;
23 T=(4*526)/(\%pi*db^2);
24 sigb=32*M/(%pi*db^3);
25 \text{ sigmax} = (\text{sigb/2}) + \text{sqrt}(((\text{sigb/2})^2) + (\text{T}^2));
26 \text{ b=d/4};
27 t=6;
28 Lf=36;
29 \text{ La} = 10;
30 Do=126+30+(2*(5+1))+(2*6);
31
      // printing data in scilab o/p window
32
     printf("sigmax is %0.2 f MPa
33
                                          ",sigmax);
                                         ",b);
     printf("\n b is %0.0 f mm
34
                                         ",t);
      printf("\n t is %0.0 f mm
35
                                         ",Lf);
      printf("\n Lf is %0.0 f mm
36
                                           ",Do);
     printf("\n Do is %0.0 f mm
37
```

Chapter 15

SHAFTS

Scilab code Exa 15.2 S2

```
1 // \text{ sum } 15-2
2 clc;
3 clear;
4 \text{ dA} = 150;
5 	ext{ dB} = 250;
6 alpha=20*%pi/180;
7 W = 400;
8 sigyt=400;
9 sigut=500;
10 Kb=1.5;
11 Kt = 2;
12 T = W * dA / 2;
13 Pt=T/(dB/2);
14 Pr1=W*tan(alpha);
15 Pr2=Pt*tan(alpha);
16 RDH = ((W*120) - (Pt*320))/440;
17 RcH=W-RDH-Pt;
18 / \text{RcH} = 400 + 65.5 - 240;
19 McH=0;
20 \text{ MAH} = \text{RcH} * 120;
21 MBH = RDH * 120;
```

```
22 RDV=((Pr1*120)-(Pr2*320))/440;
23 RcV=Pr1-RDV-Pr2;
24 MAV=RcV*120;
25 MBV=RDV*120;
26 Mmax=sqrt((MAH^2)+(MAV^2));
27 T=30*10^3;
28 Ta=0.135*sigut;
29 d=16*sqrt((Kb*Mmax)^2+(Kt*T)^2)/(%pi*Ta);
30 d=d^(1/3);
31
32 // printing data in scilab o/p window
    printf("d is %0.2 f mm",d);
```

Scilab code Exa 15.3 S3

```
1 // \text{ sum } 15-3
2 clc;
3 clear;
4 P=16*746;
5 N = 3000;
6 w=2*\%pi*N/60;
7 T=P/w*10^3;
8 \text{ sigy} = 400;
9 Ty=sigy/2;
10 FOS=2;
11 Ta=Ty/FOS;
12 d=T*16/(%pi*Ta);
13 d1=d^{(1/3)};
14 \text{ r=3};
15 D=d1+(2*r);
16 SCF=1.196
17 Tys=Ta/SCF;
18 d=T*16/(%pi*Tys);
19 d2=d^(1/3);
20 d=14;
```

Scilab code Exa 15.4 S4

```
1 // \text{ sum } 15-4
2 clc;
3 clear;
4 P1=24*10^3;
5 P2=10*10<sup>3</sup>;
6 \text{ sigyt} = 460;
7 Tya=sigyt*0.3;
8 \text{ SCF} = 2.84;
9 Ta=Tya/SCF;
10 N = 400;
11 w=2*\%pi*N/60;
12 T1 = P1/w;
13 T2=P2/w;
14 d1=T1*16*10^3/(%pi*Ta);
15 d1=d1^(1/3);
16 d2=T2*16*10^3/(\%pi*Ta);
17 d2=d2^{(1/3)};
18 theta1=\%pi/3600;
19 11=120;
20 G=84*10^3;
21 d3=T1*10^3*11*32/(%pi*G*theta1);
22 d3=d3^(1/4);
23 d4=T2*11*10^3*32/(\%pi*G*theta1);
24 d4=d4^{(1/4)};
25
26
     // printing data in scilab o/p window
27
     printf("d1 is %0.2 f mm ",d1);
```

Scilab code Exa 15.5 S5

```
1 // \text{ sum } 15-5
 2 clc;
3 clear;
4 d=200;
5 r=d/2;
6 N = 300;
7 P = 5000;
8 D=500;
9 R=D/2;
10 u = 0.3;
11 E=205*10^3;
12 G=84*10^3;
13 Ta = 60;
14 Kb=1.5;
15 Kt = 2;
16 \quad w = 2 * \%pi * N / 60;
17 beta1=20*%pi/180;
18 V = r * w;
19 v = R * w;
20 // Let T1-T2 =T
21 T=P/V;
22 x=u*\%pi/sin(beta1);
23 T2=T/((exp(x)-1));
24 T1 = T2 * exp(x);
25 \text{ t=P/v};
26 y=u*%pi;
27 T3=t/((exp(x)-1));
28 T4 = T3 * exp(x);
29 T=P/w;
```

```
30 \text{ Rc} = 2612;;
31 \text{ RA} = 645.1;
32 \text{ MB} = 96.76;
33 MC = -208.96;
34 d=16*10^3*sqrt((Kb*MC)^2+(Kt*T)^2)/(%pi*Ta);
35 d=d^{(1/3)};
36 \quad 1 = 380;
37 J = \%pi * d^4/32;
38 \text{ theta=T*10^3*1/(G*J)};
39 theta=theta*180/%pi;
40
     // printing data in scilab o/p window
41
42
     printf("d is %0.1 f mm ",d);
     printf("\n theta is %0.2 f deg
                                            ",theta);
43
```

Scilab code Exa 15.6 S6

```
1 // \text{ sum } 15-6
2 clc;
3 clear;
4 T = 400;
5 Pt = 4800;
6 Pg = 3600;
7 sigyt=360;
8 E=205*10^3;
9 G=80*10^3;
10 Kb=2;
11 Kt=1.5;
12 FOS=3;
13 RC = ((Pt*90) + (Pg*200))/140;
14 RA=8400-RC;
15 MB = RA * 0.9;
16 \text{ MC=Pg*0.045};
17 Te = sqrt((Kb*MC)^2+(Kt*T)^2);
18 Ta=0.577*sigyt/FOS;
```

```
19 d=16*10^3*Te/(%pi*Ta);
20 d=d^(1/3);
21 L=110;
22 J=%pi*d^4/32;
23 T=400;
24 theta=T*10^3*L/(G*J);
25 theta=theta*180/%pi;
26
27 // printing data in scilab o/p window
28 printf("d is %0.0 f mm ",d);
29 printf("\n theta is %0.4 f deg ",theta);
```

Scilab code Exa 15.7 S7

```
1 // \text{ sum } 15-7
2 clc;
3 clear;
4 T=47*10^3;
5 M=32*10^3;
6 d=20;
7 siga=32*M/(%pi*d^3);
8 Tm=16*T/(%pi*d^3);
9 \text{ sige} = 75;
10 Tys=165;
11 n=1/sqrt((siga/sige)^2+(Tm/Tys)^2);
12
     // printing data in scilab o/p window
13
     printf("n is %0.2 f
14
                               ",n);
```

Chapter 16

POWER SCREWS

Scilab code Exa 16.1 PS1

```
1 // \text{ sum } 16-1
2 clc;
3 clear;
4 d=30;
5 W=20*10^3;
6 \text{ r1=8};
7 r2=16;
8 p=6;
9 u1=0.2;
10 u2=0.15;
11 dm=d-(p/2);
12 alpha=atan(p/(%pi*dm));
13 phi=atan(u1);
14 \text{ rm} = (r1+r2)/2;
15 Ttr=W*((dm*tan(alpha+phi)/2)+(u2*rm));
16 Ttr=Ttr*10^-3;
17
     // printing data in scilab o/p window
18
     printf("Ttr is %0.3 f Nm ",Ttr);
19
20
21
     //The answer to Ttr is slightly different than in
```

Scilab code Exa 16.2 PS2

```
1 // \text{ sum } 16-2
2 \text{ clc};
3 clear;
4 d=50;
5 W = 20 * 10^3;
6 \text{ r1=10};
7 r2=30;
8 p = 7;
9 u1=0.12/cosd(15);
10 u2=0.15;
11 dm=d-(p/2);
12 alpha=atan(3*p/(%pi*dm));
13 phi=atan(u1);
14 \text{ rm} = (r1+r2)/2;
15 Tr=W*((dm*tan(alpha+phi)/2)+(u2*rm));
16 Tr=Tr*10^-3;
17 Te=W*((dm*tan(phi-alpha)/2)+(u2*rm));
18 Te=Te*10^-3;
19 n=dm/2*tan(alpha)/(dm*tan(alpha+phi)/2+(u2*rm));
20 L=0.30;
21 Ph=Tr/L;
22
23
     // printing data in scilab o/p window
     printf("Tr is %0.2 f Nm
24
                                   ",Tr);
25
     printf("\n Te is %0.3f Nm
                                    ",Te);
                                   ",n);
     printf("\n n is %0.4 f
26
     printf("\n Ph is %0.2 f N
                                   ",Ph);
27
28
29
     //The answers to Tr, Te and Ph is slightly
        different than in the book due to rounding-off
        of values.
```

Scilab code Exa 16.3 PS3

```
1 // \text{ sum } 16-3
2 clc;
3 clear;
4 d=30;
5 W=5*10^3;
6 p=5;
7 \text{ rm} = 45/2;
8 u1=0.15/cosd(14.5);
9 u2=0.15;
10 dm=d-(p/2);
11 alpha=atan(p/(%pi*dm));
12 phi=atan(u1);
13 Tr1=W*((dm*tan(alpha+phi)/2)+(u2*rm));
14 Tr1=Tr1*10^-3;
15 n1=dm/2*tan(alpha)/(dm*tan(alpha+phi)/2+(u2*rm));
16 T1=W*((dm*tan(phi-alpha)/2)+(u2*rm));
17 T1=T1*10^-3;
18 n2=dm/2*tan(alpha)/(dm*tan(phi-alpha)/2+(u2*rm));
19 u2=0.02;
20 Tr2=W*((dm*tan(alpha+phi)/2)+(u2*rm));
21 Tr2=Tr2*10^-3;
22 \quad n3=dm/2*tan(alpha)/(dm*tan(alpha+phi)/2+(u2*rm));
23 Te=W*((dm*tan(phi-alpha)/2)+(u2*rm));
24 \text{ Te=Te*10^--3};
25 \quad \text{n4=dm/2*tan(alpha)/(dm*tan(phi-alpha)/2+(u2*rm))};
26
     // printing data in scilab o/p window
27
                                    ",Tr1);
     printf("Tr1 is %0.3f Nm
28
     printf("\n n1 is \%0.4 f
                                    ",n1);
29
30
     printf("\n T1 is %0.3 f Nm
                                     ",T1);
     printf("\n n2 is \%0.4 f
                                    ",n2);
31
     printf("\n Tr2 is %0.3 f Nm
                                     ",Tr2);
32
```

Scilab code Exa 16.4 PS4

```
1 // \text{ sum } 16-4
2 clc;
3 clear;
4 d=28;
5 P = 300;
6 L=180;
7 p=8;
8 r1=16;
9 r2=46;
10 rm = (r1+r2)/2;
11 u1=0.12;
12 u2=0.15;
13 dm=d-(p/2);
14 alpha=atan(p/(%pi*dm));
15 phi=atan(u1);
16 T = P * L;
17 F=T/((dm*tan(alpha+phi)/2)+(u2*rm));
18 F=F*10^-3;
19
20
     // printing data in scilab o/p window
     printf("F is %0.3 f kN
21
                              ",F);
```

Scilab code Exa 16.5 PS5

```
1 // \text{ sum } 16-5
```

```
2 clc;
3 clear;
4 d=25;
5 p=8;
6 F = 392.4;
7 L=250;
8 1=p*2;
9 u=0.14;
10 dm=d-(p/2);
11 alpha=atan(1/(%pi*dm));
12 phi=atan(u);
13 T=dm*tan(alpha+phi)/2;
14 M=F*L;
15 P=M/T*10^-3;
16
17
     // printing data in scilab o/p window
     printf("P is %0.1 f kN
                                ",P);
18
```

Scilab code Exa 16.6 PS6

```
1 // sum 16-6
2 clc;
3 clear;
4 d=52;
5 W=2.2*10^3;
6 p=8;
7 r1=15;
8 r2=30;
9 rm=(r1+r2)/2;
10 u1=0.15/cosd(14.5);
11 dm=d-(p/2);
12 alpha=atan(p/(%pi*dm));
13 phi=atan(u1);
14 Ts=W*dm*tan(alpha+phi)/2;
15 u2=0.12;
```

```
16  Tc=u2*W*rm;
17  T=10^-3*(Ts+Tc);
18  N=40;
19  w=2*%pi*N/60;
20  P=T*w*10^-3;
21  To=W*dm/2*tan(alpha);
22  n=To/(T*10^3);
23
24    // printing data in scilab o/p window
25    printf("P is %0.2 f KW ",P);
26    printf("\n n is %0.4 f ",n);
```

Scilab code Exa 16.7 PS7

```
1 // \text{ sum } 16-7
2 clc;
3 clear;
4 alpha=atan(2*0.2/(%pi*0.9));
5 u1=0.15;
6 phi=atan(u1);
7 P = 200;
8 L=250;
9 Tt=P*L;
10 W = 10 * 10^3;
11 u2=0.15;
12 x = Tt/W;
13 d=x/0.1716;
14 d=30;
15 p=6;
16 \, dr = 0.8 * d;
17 d=24;
18 p=5;
19 dr=d-p;
20 \text{ dm} = d - (p/2);
21
```

Scilab code Exa 16.8 PS8

```
1 // \text{ sum } 16-8
 2 clc;
3 clear;
4 FOS=3;
5 sigut=380;
6 \text{ Ta=0.577*sigut/FOS};
7 d=25;
8 \text{ Tus} = 460;
9 Ps=%pi*d*Tus;
10 siga=127;
11 dr=sqrt(Ps*4/(%pi*siga));
12 d=30;
13 p=6;
14 \text{ dr=d-p};
15 dm=d-(p/2);
16 u1=0.15;
17 alpha=atan(p*2/(%pi*dm));
18 phi=atan(u1);
19 T=Ps*dm*tan(alpha+phi)/2;
20 T1=16*T/(\%pi*dr^3);
21 sigc=4*Ps/(%pi*dr^2);
22 \operatorname{sigmax} = \operatorname{sigc} / 2 + \operatorname{sqrt} ((\operatorname{sigc} / 2^2) + (\operatorname{T1}^2));
23 Tmax = sqrt((sigc/2^2) + (T1^2));
24 n=tan(alpha)/tan(alpha+phi);
25 \text{ Uo=Ps/2};
26 Ui=Uo/n;
27 \text{ wav} = \% \text{pi} / 2;
28 \text{ wmax} = 2*\text{wav};
29 \quad I=Ui*2/wmax^2;
```

```
30 \text{ k=0.4};
31 \text{ Ir} = 0.9 * I * 10^-3;
32 \text{ m=Ir/k^2};
33 R = 0.4;
34 \text{ rho} = 7200;
35 a=sqrt(m/(2*%pi*R*rho));
36 T = T * 10^{-3};
37
     // printing data in scilab o/p window
38
     printf("T is %0.3 f Nm ",T);
39
     printf("\n n is \%0.4f ",n);
40
                                       ",a);
     printf("\n a is %0.5 f mm
41
42
     //The difference in the answers of T is due to
43
         rounding-off of values.
```

Chapter 17

SLIDING CONTACT BEARINGS

Scilab code Exa 17.1 SCB1

```
1 // \text{ sum } 17-1
2 clc;
3 clear;
4 Ta=22;
5 u=7/10^9;
6 \text{ nj} = 20;
7 r = 25;
8 1=2*r;
9 Ao = 30000;
10 Uo=15.3/10^3;
11 c=0.025;
12 //specific weight of the material is rho
13 rho=8.46*(10^-6);
14 \text{ Cp} = 179.8;
15 Tf=Ta+(16*%pi^3*u*nj^2*l*r^3/(Uo*Ao*c));
16 // avg mean film temperature is Tav
17 Tav = (Tf - Ta)/2;
18 x = 1*c*rho*%pi*r*nj*Cp*10^3;
19 y = Ao * Tav * Uo;
```

```
20 delT=y/x;
21
22    // printing data in scilab o/p window
23    printf("Tav is %0.2 f degC ",Tav);
24    printf("\n delT is %0.1 f degC ",delT);
```

Scilab code Exa 17.2 SCB2

```
1 // \text{ sum } 17-2
2 clc;
3 clear;
4 1=60;
5 d=60;
6 \text{ r=d/2};
7 ho = 0.008;
8 c=0.04;
9 S = 0.0446;
10 nj = 1260/60;
11 W = 6000;
12 p=W/(1*d);
13 u=S*(c/r)^2*p/nj;
14 u=u*10^9;
15
16
     // printing data in scilab o/p window
     printf("u is %0.3 f cP ",u);
17
```

Scilab code Exa 17.3 SCB3

```
1 // sum 17-3
2 clc;
3 clear;
4 d=60;
5 r=30;
```

```
6 1 = 60;
7 c=0.8*10^-3*r;
8 ho=0.2*c;
9 W = 21000/2;
10 p=W/(1*d);
11 S=0.0446;
12 nj = 1440/60;
13 u=S*(c/r)^2*p/nj;
14 u=u*10^9;
15 // since Q/(r*nj*l) = 4.62
16 \ Q=4.62*r*c*nj*1;
17 Q=Q*60/10^6;
18
     // printing data in scilab o/p window
19
20
     printf("u is %0.3 f cP ",u);
     printf("\n Q is \%0.4 f lpm ",Q);
21
```

Scilab code Exa 17.4 SCB4

```
1 // \text{ sum } 17-4
2 clc;
3 clear;
4 1=60;
5 d=60;
6 \text{ r=d/2};
7 W = 3000;
8 p=W/(1*d);
9 u=30*10^-9;
10 c=0.06;
11 nj = 1440/60;
12 S=(r/c)^2*u*nj/p;
13 //For ratio 1/d=1, values of different parameters
      are given in matrix A corresponding to S
14 A=[1 0.264 0.6 5.79 3.99
      1 0.121 0.4 3.22 4.33];
```

```
16 // let ho/c=x
17 x = (A(1,3)) - ((A(1,3) - (A(2,3))) * ((A(1,2)) - S) / ((A(1,2)))
      -(A(2,2)));
18 / let y = (r/c) * f = CFV
19 y = (A(1,4)) - ((A(1,4) - (A(2,4))) * ((A(1,2)) - S) / ((A(1,2)))
      -(A(2,2)));
20 //let z=Q/(r*c*nj*l)=FV
z = (A(1,5)) - ((A(1,5) - (A(2,5))) * ((A(1,2)) - S) / ((A(1,2)))
      -(A(2,2)));
22 f = y * c / r;
23 ho=x*c;
24 \ Q=z*r*c*nj*1;
25 Q=Q*60/10^6;
26 \text{ delT} = 8.3*p*y/z;
27 //let power lost in friction be Pf
28 Pf=2*%pi*nj*f*W*r/10^6;
29
30
     // printing data in scilab o/p window
31
     printf("f is %0.5f ",f);
     printf("\n ho is \%0.3 \, \text{f mm}",ho);
32
     printf("\n Q is %0.3f lpm ",Q);
33
     printf("\n delT is %0.1f degC ",delT);
34
     printf("\n Pf is \%0.4 \, \text{f KW}", Pf);
35
```

Scilab code Exa 17.5 SCB5

```
1 // sum 17-5
2 clc;
3 clear;
4 W=22000;
5 nj=960/60;
6 p=2.4;
7 u=20*10^-9;
8 d=sqrt(W/p);
9 d=96;
```

```
10 \text{ r=d/2};
11 l=d;
12 S = 0.0446;
13 pact=W/(1*d);
14 //x = r/c;
15 x=sqrt(S*pact/(u*nj));
16 \text{ c=r/x};
17 ho=0.2*c;
18 Q=r*c*nj*1*4.62;
19 Q=Q*60/10^6;
20
     // printing data in scilab o/p window
21
     printf("d is %0.0 f mm ",d);
22
     printf("\n l is \%0.0 f mm",1);
23
     printf("\n ho is \%0.4 \text{ f mm}",ho);
24
     printf("\n Q is \%0.3 f lpm ",Q);
25
26
27
     //The difference in answer to Q is due to rounding
         -off the value of c.
```

Scilab code Exa 17.6 SCB6

```
1 // sum 17-6
2 clc;
3 clear;
4 W=400*10^3;
5 Ro=200;
6 Ri=160;
7 ho=0.1;
8 t=150;
9 // specific gravity is rho
10 rho=0.86;
11 pi=2*W*log(Ro/Ri)/(%pi*(Ro^2-Ri^2));
12 zk=(0.22*t)-(180/t);
13 z=rho*zk;
```

Scilab code Exa 17.7 SCB7

```
1 / \text{sum } 17 - 7
2 \text{ clc};
3 clear;
4 //let number of pads be n
5 n=4;
6 W = 100 * 10^3;
7 Ro = 125;
8 \text{ Ri} = 50;
9 t = 200;
10 ho = 0.15;
11 pi=2*W*log(Ro/Ri)/(%pi*(Ro^2-Ri^2));
12 zk = (0.22*t) - (180/t);
13 // specific gravity is rho
14 rho=0.86;
15 z=rho*zk;
16 \ u=z/(10^9);
17 Q = \pi \sin \pi \cos (R \circ R i);
18 \ Q = Q * 60 / 10^6;
19
20
     // printing data in scilab o/p window
     printf("pi is %0.2 f MPa ",pi);
21
     printf("\n Q is \%0.3 f \n ",Q);
22
```

Chapter 18

ROLLING BEARINGS

Scilab code Exa 18.1 RB1

```
1 // \text{ sum } 18-1
2 clc;
3 clear;
4 Pr=16*10^3;
5 u=0.0011;
6 F=u*Pr;
7 r=20*10^-3;
8 //Let frictional moment be M
9 M=F*r;
10 N = 1440;
11 w=2*\%pi*N/60;
12 Pf = M * w;
13
     // printing data in scilab o/p window
14
     printf("Pf is %0.2 f W ",Pf);
15
```

Scilab code Exa 18.2 RB2

```
1 // \text{ sum } 18-2
2 clc;
3 clear;
4 C=5590;
5 \text{ Ca} = 2500;
6 \text{ Pa} = 625;
7 \text{ Pr} = 1250;
8 V = 1;
9 X = 0.56;
10 Y = 1.2;
11 P1 = (X*V*Pr) + (Y*Pa);
12 L1 = (C/P1)^3;
13 V = 1.2;
14 P2=(X*V*Pr)+(Y*Pa);
15 L2=(C/P2)^3;
16
17
     // printing data in scilab o/p window
     printf("L1 is %0.1f million revolutions
                                                          ",L1);
19
     printf("\n L2 is %0.2f million revoltions
                                                          ",L2)
```

Scilab code Exa 18.4 RB4

```
1 // sum 18-4
2 clc;
3 clear;
4 P=20*10^3;
5 Co=22400;
6 C=41000;
7 Ln=(C/P)^3;
8 Lh=Ln*10^6/(720*60);
9
10 // printing data in scilab o/p window
11 printf("Lh is %0.3 f hrs ",Lh);
```

Scilab code Exa 18.5 RB5

```
1 // \text{ sum } 18-5
2 \text{ clc};
3 clear;
4 R1x=120;
5 R1y = 250;
6 R2x = 300;
7 R2y = 400;
8 Lh=8000;
9 N = 720;
10 Ln = Lh *60 * N *10^-6;
11 R1 = sqrt(R1x^2 + R1y^2);
12 R2 = sqrt(R2x^2 + R2y^2);
13 //Let load factor be Ks
14 Ks=1.5;
15 P1=R1*Ks;
16 P2 = R2 * Ks;
17 C1=P1*(Ln^{(1/3)});
18 C2=P2*(Ln^(1/3));
19 //let designation ,d,D,B,C at bearing B1 be De1,d1,D1
       , B1, C1
20 d1 = 25;
21 D1 = 37;
22 B1 = 7;
23 \text{ C1} = 3120;
24 \text{ De1} = 61805;
25 //let designation, d, D, B, C at bearing B2 be De2, d2, D2
       , B2, C2
26 	 d2 = 25;
27 D2 = 47;
28 B2=8;
29 C2 = 7620;
30 \text{ De}2=16005;
```

```
31
32
     // printing data in scilab o/p window
     printf("Designation of Bearing B1 is %0.0f
33
        De1);
34
     printf("\n d1 is %0.0 f mm
                                    ",d1);
                                  ",D1);
     printf("\nD1 is \%0.0 f mm
35
     printf("\n B1 is %0.0 f mm
                                  ",B1);
36
                                 ",C1);
     printf("\n C1 is %0.0 f N
37
     printf("\n Designation of Bearing B2 is %0.0 f
38
       ",De2);
     printf("\n d2 is %0.0 f mm
                                   ",d2);
39
     printf("\n D2 is %0.0 f mm
                                   ",D2);
40
                                  ",B2);
41
     printf("\n B2 is %0.0 f mm
     printf("\n C2 is %0.0 f N
42
                                   ",C2);
43
     disp('Bearing 61805 at B1 and 16005 at B2 can be
44
        installed.')
```

Scilab code Exa 18.6 RB6

```
1 // sum 18-6
2 clc;
3 clear;
4 P=7500;
5 N=1440;
6 w=2*%pi*N/60;
7 T=P/w;
8 r=0.2;
9 //Let T1-T2=t
10 t=T/r;
11 T2=t/2.5;
12 T1=3.5*T2;
13 R=0.125;
14 Ft=T/R;
15 Fr=Ft*tan(20*%pi/180);
```

```
16 // RD & RA are reaction forces calculated in
      vertical and horizontal directions from FBD by
      force equilibrium
17 RDv = 186.5;
18 RAv = 236.2;
19 RDh=36.2;
20 RAh=108.56;
21 RA = sqrt(RAv^2 + RAh^2);
22 RD=sqrt(RDv^2+RDh^2);
23 \text{ Ks} = 1.4;
24 P1=RA*Ks;
25 P2=RD*Ks;
26 //let designation, d, D, B, C at bearing B1 be De1, d1, C1
27 	 d1 = 25;
28 C1=3120;
29 De1=61805;
30 //let designation, d, D, B, C at bearing B2 be De2, d2, C2
31 d2 = 25;
32 C2 = 2700;
33 \text{ De2} = 61804;
34 L1 = (C1/P1)^3;
35 Lh1=L1*10^6/(720*60);
36 L2=(C2/P2)^3;
37 Lh2=L2*10^6/(720*60);
38
     // printing data in scilab o/p window
39
     printf("Lh1 is %0.0 f hrs ",Lh1);
40
     printf("\n Lh2 is %0.0 f hrs
                                      ",Lh2);
41
42
     //Incorrect value of P2 is taken in the book while
43
         calculating L2.
```

Scilab code Exa 18.7 RB7

```
1 // \text{ sum } 18-7
```

```
2 clc;
3 clear;
4 P = 3500;
5 Lh=6000;
6 N = 1400;
7 R98 = 0.98;
8 R90=0.9;
9 L98=Lh*60*N/10^6;
10 x=(\log(1/R98)/\log(1/R90))^(1/1.17);
11 L90=L98/x;
12 C=P*L90^(1/3);
13
     // printing data in scilab o/p window
14
     printf("C is %0.0 f N ",C);
15
16
     //The difference in the value of C is due to
17
        rounding-off of value of L.
```

Scilab code Exa 18.8 RB8

```
1 // \text{ sum } 18-8
2 clc;
3 clear;
4 n=3;
5 P=3;
6 //Let Reliability of system be R
7 R=0.83;
8 L94=6;
9 R94=(R)^(1/n);
10 x = (log(1/R94)/log(1/0.90))^(1/1.17);
11 L90=L94/x;
12 C=P*L90^(1/3);
13
14
     // printing data in scilab o/p window
     printf("C is %0.3 f kN
15
                             ",C);
```

```
16
17  //The difference in the value of C is due to
      rounding-off of value of L.
```

Scilab code Exa 18.9 RB9

```
1 // \text{ sum } 18-9
2 clc;
3 clear;
4 P1=3000;
5 P2 = 4000;
6 P3 = 5000;
7 N1 = 1440;
8 N2 = 1080;
9 N3 = 720;
10 \text{ t1=1/4};
11 t2=1/2;
12 \ t3=1/4;
13 n1=N1*t1;
14 n2 = N2 * t2;
15 \text{ n3=N3*t3};
16 N = (n1+n2+n3);
17 Pe=(((n1*P1^3)+(n2*P2^3)+(n3*P3^3))/N)^(1/3);
18 Lh=10*10<sup>3</sup>;
19 L=Lh*60*N/10^6;
20 C = Pe * L^{(1/3)};
21
22
     // printing data in scilab o/p window
23
     printf("C is %0.0 f N ",C);
24
     //The difference in the value of C is due to
25
         rounding-off of value of Pe
```

Scilab code Exa 18.10 RB10

```
1 // \text{ sum } 18-10
2 clc;
3 clear;
4 Co = 695;
5 C=1430;
6 Pa1 = 200;
7 \text{ Pr1} = 600;
8 x=Pa1/Co;
9 y=Pa1/Pr1;
10 e=0.37+((0.44-0.37)*0.038/0.28);
11 X = 1;
12 Y = 0;
13 P1=600;
14 Pa2=120;
15 Pr2=300;
16 \quad X = 0.56;
17 Y=1.2-(0.2*0.042/0.12);
18 P2=(X*Pr2)+(Y*Pa2);
19 N1 = 1440;
20 N2 = 720;
21 t1=2/3;
22 t2=1/3;
23 \quad n1 = N1 * t1;
24 n2 = N2 * t2;
25 N = (n1+n2);
26 Pe=(((n1*P1^3)+(n2*P2^3))/N)^(1/3);
27 L=(C/Pe)^3;
28 Lh=L*10^6/(N*60);
29
     // printing data in scilab o/p window
30
     printf("Lh is %0.2 f hrs ",Lh);
31
32
33
     //The difference in the value of Lh is due to
         rounding-off of value of Pe
```

Chapter 19

FLYWHEEL

Scilab code Exa 19.1 F1

```
1 // \text{ sum } 19-1
2 clc;
3 clear;
4 R = 1200;
5 b=300;
6 t = 150;
7 N = 500;
8 m=7100*10^-9*b*t;
9 Ar=b*t;
10 Aa=Ar/4;
11 C=(20280/t^2)+0.957+(Ar/Aa);
12 w = 2 * \%pi * N / 60;
13 V = w * R * 10^{-3};
14 siga=2*10^3*m*V^2/(C*Aa*3);
15 theta=30*\%pi/180;
16 alpha=30*%pi/180;
17 x1=10^3*m*(V^2)/(b*t);
18 y1=cos(theta)/(3*C*sin(alpha));
19 z1=2000*R*10^-3/(C*t)*((1/alpha)-(cos(theta)/sin(
      alpha)));
20 sigrr1=x1*(1-y1+z1);
```

```
21 theta=0*\%pi/180;
22 	 x2=10^3*m*(V^2)/(b*t);
23 y2=\cos(theta)/(3*C*\sin(alpha));
z_{2}=2000*R*10^{-3}/(C*t)*((1/alpha)-(cos(theta)/sin(
      alpha)));
25 \text{ sigrr2}=x2*(1-y2-z2);
26
     // printing data in scilab o/p window
27
     printf("axial stress is %0.2 f MPa ", siga);
28
     printf("\n tensile stress for theta=30deg is %0.1f
29
             ",sigrr1);
     printf("\n tensile stress for theta=0deg is %0.2f
30
       MPa
              ",sigrr2);
31
     //The difference in the value of sigrr1 and sigrr2
32
         is due to rounding-off of values.
```

Scilab code Exa 19.2 F2

```
1 // \text{ sum } 19-2
2 \text{ clc};
3 clear;
4 N = 350;
5 theta1=asin(sqrt((3-0.6)/4));
6 theta1=theta1*180/%pi;
7 theta2=(180)-theta1;
8 / Ti = 16000 + 6000 * sind (3 * theta);
9 //To=16000+3600*sind(theta);
10 a=-3600*(cosd(theta2)-cosd(theta1));
11 b=2000*(cosd(3*theta2)-cosd(3*theta1));
12 c=a+b;
13 delU=c;
14 Ks=0.05;
15 w = 2 * \%pi * N / 60;
16 I=delU/(Ks*w^2);
```

```
17 V = 25;
18 Ir=I*0.95;
19 R=V/w;
20 Mr = Ir/R^2;
21 \text{ rho} = 7150;
22 t=sqrt(Mr*(10^6)/(2*\%pi*R*2*rho));
23 b = 2 * t;
24
25
    // printing data in scilab o/p window
    printf("t is %0.2 f mm ",t);
26
    27
                               ",R);
    printf("\n R is %0.3 f m
28
```

Scilab code Exa 19.3 F3

```
1 // \text{ sum } 19-3
2 clc;
3 clear;
4 N = 300;
5 Ks=0.03;
6 \text{ rho} = 7150;
7 \text{ Kr} = 0.9;
8 \text{ w} = 2 * \% \text{pi} * \text{N} / 60;
9 WD = (300*2*\%pi) + (4*\%pi*200/4);
10 Tm = 400;
11 delU=%pi*200/16;
12 Ir=Kr*delU/(w^2*Ks);
13 R=Ir/(rho*1.5*0.1*0.1*2*%pi);
14 R=R^{(1/5)};
15 t=0.1*R*1000;
16 b=1.5*t;
17
      // printing data in scilab o/p window
18
      printf("t is %0.2 f mm ",t);
19
      printf("\n b is \%0.2 \, \text{f mm} ",b);
20
```

```
21 printf("\n R is \%0.4 f m ",R);
```

Scilab code Exa 19.4 F4

```
1 / \text{sum } 19-4
2 clc;
3 clear;
4 d=20;
5 t=12;
6 Tus=450;
7 Pmax = \%pi*d*t*Tus;
8 WD = Pmax*t/2*10^-3;
9 n=0.95;
10 Wi = WD/n;
11 delU=5*Wi/6;
12 N = 300;
13 w = 2 * \%pi * N / 60;
14 Ks=0.2;
15 I=delU/(Ks*w^2);
16 Ir=I*0.9;
17 R = 0.5;
18 m=Ir/R^2;
19 rho=7150;
20 t=sqrt(m*10^6/(rho*2*\%pi*R*2));
21 b = 2 * t;
22
     // printing data in scilab o/p window
23
     printf("t is %0.1 f mm ",t);
24
     printf("\n b is \%0.1 \text{ f mm} ",b);
25
                                  ",R);
     printf("\n R is \%0.1 f m
26
```

Scilab code Exa 19.5 F5

```
1 // \text{ sum } 19-5
2 clc;
3 clear;
4 U=(500*2*\%pi)+(3*\%pi*500/2);
5 \text{ Tm}=U/(2*\%pi);
6 delU=2.25*%pi*125/2;
7 Ks = 0.1;
8 N = 250;
9 \text{ w}=2*\%\text{pi}*N/60;
10 I=delU/(Ks*w^2);
11 t=0.03;
12 rho=7800;
13 R=(I*2/(\%pi*rho*t))^(1/4);
14 V = R * w;
15 \quad v = 0.3;
16 sigmax=rho*V^2*(3+v)/8*10^-6;
17
18
     // printing data in scilab o/p window
19
     printf("R is %0.3 f m ",R);
     printf("\n sigmax is %0.2 f MPa
20
                                             ", sigmax);
```

Scilab code Exa 19.6 F6

```
1 // sum 19-6
2 clc;
3 clear;
4 N=1.5*8*60;
5 l=200;
6 t=1.5/2;
7 W=350*10^3;
8 WD=0.15*1*W*10^-6;
9 n=0.9; //since frictional effect is 10%, effciency of system is 90%
10 Wi=WD/n;
11 L=400;
```

```
12 delU=(L-(0.15*1))/(L)*10^3*Wi;
13 Ks=0.12;
14 \text{ w=}2*\%\text{pi*N/60};
15 I=delU/(Ks*w^2);
16 Ir=I*0.9;
17 R = 0.7;
18 m=Ir/R<sup>2</sup>;
19 rho=7150;
20 t=sqrt(m*10^6/(rho*2*\%pi*R*1.5));
21 b=1.5*t;
22
23
     // printing data in scilab o/p window
24
     printf("t is %0.1 f mm ",t);
     printf("\n b is %0.1 f mm ",b);
25
```

Scilab code Exa 19.7 F7

```
1 // \text{ sum } 19-7
2 clc;
3 clear;
4 N = 144;
5 //Let n be no. of punches/ min
6 n=8;
7 //Let t be timr for 1 punch
8 t = 60/n;
9 theta=N/60*2*\%pi*0.6;
10 T = 2.1;
11 U=T*theta;
12 //Let U1 be revolution of crankshaft in t sec
13 U1=t*N/60*2*\%pi;
14 delU=(U1-theta)/U1*U*10^3;
15 \text{ w}=2*\%\text{pi}*1440/60;
16 \text{ Ks} = 0.1;
17 I=delU/(Ks*w^2);
18 Ir=I*0.9;
```

```
19  rho=7100;
20
21  R=Ir/(rho*0.2*0.1*2*%pi);
22  R=R^(1/5);
23  t=0.1*R*1000;
24  b=0.2*R*10^3;
25  t=40;
26  b=80;
27  R=400;
28  // printing data in scilab o/p window
29  printf("t is %0.0 f mm ",t);
30  printf("\n b is %0.0 f mm ",b);
31  printf("\n R is %0.0 f mm ",R);
```

Chapter 20

FLAT BELT DRIVE

Scilab code Exa 20.1 FBD1

```
1 // \text{ sum } 20-1
2 clc;
3 clear;
4 b=0.2;
5 P=50*10^3;
6 v = 20;
7 m=1.95;
8 d=0.3;
9 D = 0.9;
10 C=5.8;
11 u=0.4;
12 //Let density be rho
13 \text{ rho} = 1000;
14 E=40;
15 / \text{Let T1-T2} = T
16 T=P/v;
17 //Let the centrifugal tension be Tc
18 Tc=m*v^2;
19 alpha=asind((D+d)/(2*C));
20 \text{ theta=180+(2*alpha);}
21 theta=theta*%pi/180;
```

```
22 x = \exp(u*theta);
23 T2 = (((1-x)*Tc)-T)/(1-x);
24 / T1 = T + T2;
25 \text{ T1=T+T2};
26 t=m/(b*rho)*10^3;
27 //Let maximum stress be sigmax
28 b = 200;
29 d = 300;
30 sigmax = (T1/(b*t) + ((E*t)/d));
31 sigmin=(T2/(b*t));
32
33
     // printing data in scilab o/p window
34
     printf("T1 is %0.1 f N ",T1);
     printf("\n T2 is \%0.1 f N ", T2);
35
     printf("\n is \%0.2 \, f \, mm",t)
36
     printf("\n theta is \%0.2 \, \mathrm{f} rad", theta)
37
     printf("\n sigmax is \%0.2 \, f \, N/mm^2", sigmax);
38
39
     printf("\n sigmin is \%0.3 \, f \, N/mm^2", sigmin);
40
     //The answer for T1 is miscalculated in the book.
41
```

Scilab code Exa 20.2 FBD2

```
1 // sum 20-2
2 clc;
3 clear;
4 P=12*10^3;
5 d=0.2;
6 D=0.5;
7 C=2;
8 sigmax=2*10^6;
9 t=8*10^-3;
10 // Let density be rho
11 rho=950;
12 u=0.38;
```

```
13 N = 1500;
14 //Let angle of contact = thetad
15 thetad=180-(2*asind((D-d)/(2*C)));
16 thetad=thetad*%pi/180;
17 thetaD=(2*\%pi)-thetad;
18 v = (2*\%pi*N*d)/(60*2);
19 / \text{Let T1-T2=T}
20 \text{ T=P/v};
21 x = exp(u*thetad);
22 b=(T*x)/((1-x)*t*((rho*v^2)-(sigmax)));
23 b=b*10^3;
24 //Let breadth of the pulley be b1
25 b1=b*10^3+13; //Table 20-3
26 L = sqrt((4*C^2) - (C*(D-d)^2)) + ((D*thetaD) + (d*thetad))
      /2;
27 // Let pulley crown for d=h1, D=h2
28 h1=0.6; // Table 20-4
29 h2=1;
30
31
     // printing data in scilab o/p window
32
     printf("b is %0.2 f mm ",b)
     printf("\n L is \%0.2 f m",L)
33
     printf("\n b1 is \%0.2 \, \text{f} mm", b1);
34
     printf("\n h1 is %0.1 f mm", h1);
35
36
     printf("\n h2 is %0.1 f mm", h2);
```

Scilab code Exa 20.3 FBD3

```
1 // sum 20-3
2 clc;
3 clear;
4 P=11;
5 N=1440;
6 n=480;
7 C=2.4;
```

```
8 //Let power transmitte dfrom high speed belt =P1
9 P1=0.0118;
10 V = 5;
11 Ks=1.2;
12 v = 15;
13 d=v*10^3*60/(2*\%pi*N);
14 d=0.2;
15 D=N/n*d;
16 //Let angle of contact =thetaA
17 thetaA=180-(2*asind((D-d)/(2*C)));
18 thetaA=thetaA*%pi/180;
19 v = (2*\%pi*N*d)/(60*2);
20 //Let the arc of contact correction factor be Ka
21 \text{ Ka} = 1.05;
22 \text{ Pd=P*Ka*Ks};
23 //Let corrected load rating=Pc
24 \text{ Pc=P1*v/V};
25 b=Pd/(Pc*4);
26 thetaB=(2*\%pi)-thetaA;
27 L=sqrt((4*C^2)-((D-d)^2))+((d*thetaA/2)+(D*thetaB))
      /2);
28
29
     // printing data in scilab o/p window
30
     printf("v is \%0.2 \,\mathrm{f} m/s ",v)
31
     printf("\n b is \%0.3 \, \text{f} mm",b)
32
33
     printf("\n L is \%0.4 \, \text{f m}",L);
```

Scilab code Exa 20.4 FBD4

```
1 // sum 20-4
2 clc;
3 clear;
4 N=1440;
5 i=2.5;
```

```
6 C = 3600;
7 //let load factor be LF
8 LF = 1.3;
9 P=12*10^3;
10 n=N/i;
11 V = 16;
12 d=V*10^3*60/(2*\%pi*N);
13 d=220;
14 D=d*i;
15 V=2*\%pi*N*d/(2*60*1000);
16 \text{ v} = 5;
17 //Let power transmitte dfrom high speed belt =P1
18 P1=0.0118;
19 //Let LR be the load rating of belt
20 LR=P1/v*V;
21 theta=180+(2*asind((D-d)/(2*C)));
22 theta=theta*%pi/180;
23 //Let Arc of contact connection factor be CF
24 \text{ CF} = 1 - (0.03/2);
25 \text{ Pd=P*LF*CF};
26 b=Pd/(LR*5);
27 b = 80;
28 L=sqrt((4*C^2)-(D+d)^2)+(theta*(D+d)/2);
29 L=L*10^-3;
30
31
     // printing data in scilab o/p window
     printf("V is \%0.1 \, \text{f m/s}", V)
32
     printf("\n b is \%0.0 \,\mathrm{f} mm",b)
33
     printf("\n L is \%0.3 \, \text{f} m",L);
34
```

Scilab code Exa 20.5 FBD5

```
1 // sum 20-5
2 clc;
3 clear;
```

```
4 i=3.6;
5 N = 1440;
6 d=220;
7 Ks = 1.2;
8 Kf = 1.1;
9 C=5000;
10 u=0.8;
11 D=i*d;
12 //From table 20-7, the following data is available
13 \text{ t=5};
14 b = 120;
15 Fa=30.64;
16 //let weight density be w
17 w=0.106*10^5;
18 Cp=0.71; //From table 20-6
19 Cv = 1;
20 T1=Fa*b*t*Cp*Cv;
21 \text{ m=w*b*t/} 10^6;
22 V=2*\%pi*N*d/(2*60*1000);
23 Tc=m*V^2/9.81;
24 theta=180+(2*asind((D-d)/(2*C)));
25 theta=theta*%pi/180;
26 \text{ x=u*theta};
27 T2=Tc+((T1-Tc)/exp(x));
28 Pd = (T1-T2)*V*10^-3;
29 P=Pd/(Ks*Kf);
30
     // printing data in scilab o/p window
31
32
     printf("V is \%0.2 \text{ f m/s}",V);
     printf("\n Pd is \%0.2 \text{ f KW}", Pd);
33
     printf("\n P is \%0.1 \text{ f KW}",P);
34
35
36
     //The value of T2 is calculated incorrectly,
         therefore there is a difference in the values
         of Pd and P.
```

Scilab code Exa 20.6 FBD6

```
1 // \text{ sum } 20-6
2 \text{ clc};
3 clear;
4 i=2.5;
5 C=4500;
6 N = 960;
7 P=20*10^3;
8 \text{ Ks} = 1.15;
9 \text{ Kf} = 1.10;
10 t=8;
11 //let weight density be w
12 \quad w=0.110*10^5;
13 m=w*t/10^6;
14 Fa=8.75;
15 d=200;
16 D=i*d;
17 u=0.4;
18 V=2*\%pi*N*d/(2*60*1000);
19 Pd=P*Ks*Kf;
20 \text{ Cp=1};
21 \text{ Cv=0.6};
\frac{22}{\sqrt{\text{to find b}}}
23 T1 = Fa*t*Cp*Cv;
24 \text{ Tc=m*V^2/9.81};
25 theta=180-(2*asind((D-d)/(2*C)));
26 theta=theta*%pi/180;
27 x=u*theta;
28 T2=Tc+((T1-Tc)/exp(x));
29 \text{ T=Pd/V};
30 b=T/(T1-T2);
31 / b = 90;
32 L=sqrt((4*C^2)-(D+d)^2)+(theta*(D+d)/2);
```

```
33 L=L*10^-3;
34
35     // printing data in scilab o/p window
36     printf("V is %0.2 f m/s ",V)
37     printf("\n b is %0.3 f mm ",b)
38     printf("\n L is %0.3 f m ",L);
```

Scilab code Exa 20.7 FBD7

```
1 // \text{ sum } 20-7
2 clc;
3 clear;
4 b=160;
5 t = 7;
6 P=3*10^3;
7 Ks = 1.2;
8 d=160;
9 N = 1440;
10 D=480;
11 C = 2400;
12 \quad w = 11200;
13 u = 0.4;
14 Fa=7.2;
15 \text{ m=w*b*t/} 10^6;
16 \quad V=2*\%pi*N*d/(2*60*1000);
17 Tc=m*V^2/9.81;
18 Cp=0.6; //\text{from table } 20-6
19 Cv = 0.98; //from table 20-7
20 Ta=Fa*b*Cp*Cv;
21 T=P/V;
22 theta=180-(2*asind((D-d)/(2*C)));
23 theta=theta*%pi/180;
24 x=u*theta;
25 / T2 = Tc + ((T1 - Tc) / exp(x));
26 T2=(T+((exp(x)*Tc)-Tc))/(exp(x)-1);
```

```
27 T1 = T + T2;
28 Kf=Ta/T1;
29 \text{ Pd=P*Ks*Kf};
30 \text{ Pd=Pd*10}^-3;
31
      // printing data in scilab o/p window
32
      \mbox{\tt printf}\mbox{\tt ("Tc}\mbox{\tt is }\%0.0\,\mbox{\tt f N}\mbox{\tt ",Tc);}
33
      printf("\n T1 is \%0.2 \, f N ",T1);
34
      printf("\n T2 is \%0.2 f N ", T2);
35
      printf("\n Kf is \%0.2 \,\mathrm{f} ", Kf);
36
      printf("\n Pd is %0.1 f KW ",Pd);
37
38
      //The difference in values of T1 and T2 is due to
39
          rounding-off of values.
```

Chapter 21

V BELT DRIVE

Scilab code Exa 21.1 VBELT1

```
1 // \text{ sum } 21-1
2 clc;
3 clear;
4 P1=12*10^3;
5 d=0.3;
6 D = 0.9;
7 C = 0.9;
8 A=230*10^-6;
9 //density is rho
10 \text{ rho} = 1100;
11 N = 1500;
12 //Maximum stress is sig
13 sig=2.1*10<sup>6</sup>;
14 //semi groove angle is b
15 b=20*\%pi/180;
16 u=0.22;
17 m=rho*A;
18 v=2*\%pi*N*d/(60*2);
19 Tc=m*v^2;
20 T1=A*sig;
21 //wrap angle is thetaA
```

```
22 \text{ ang} = (D-d)/(2*C);
23 thetaA=\%pi/180*(180-(2*asind(ang)));
24 thetaB=((2*\%pi)-thetaA);
25 x=u*thetaB;
26 T2=Tc+((T1-Tc)/exp(x));
27 P2=(T1-T2)*v;
28 n = P1/P2;
29 n=3; //(rounding off to nearest whole number)
30
     // printing data in scilab o/p window
31
     printf("Tc is %0.1 f N ",Tc);
32
     printf("\n T1 is \%0.0 f N ",T1);
33
     printf("\n T2 is %0.1 f N ",T2);
34
     printf("\n P2 is \%0.0 f W", P2);
35
     printf("\n n is \%0.0 \, f ",n);
36
```

Scilab code Exa 21.2 VBELT2

```
1 // \text{ sum } 21-2
2 clc;
3 clear;
4 D=0.6;
5 d=0.3;
6 C=0.9;
7 m = 0.193;
8 n=2;
9 N = 1500;
10 u = 0.3;
11 v=2*\%pi*N/60*d/2;
12 P=150*10^3;
13 Tc=m*v^2;
14 / let T1-T2=T
15 T=P/(n*v);
16 thetaA=\%pi/180*(180-(2*asind((D-d)/(2*C))));
17 thetaB=((2*\%pi)-thetaA);
```

```
18 //Groove angle=b
19 b=17.5*\%pi/180;
20 x=u*thetaA/sin(b);
21 y = exp(x);
22 c = (Tc * (1 - y));
23 T2 = (T + (Tc * (1 - y))) / (y - 1);
24 / T2 = (T-y) / Tc;
25 T1=T+Tc;
26 \text{ Lp}=2*sqrt((C^2)-((D-d)/2)^2)+(thetaA*d/2)+(thetaB*D)
      /2);
27 \ v = sqrt(T/(3*m));
28
29
      // printing data in scilab o/p window
      printf("Tc is \%0.2 \, \mathrm{f} \, \mathrm{N}",Tc);
30
      printf("\n T1 is \%0.0 \, f N ",T1);
31
     printf("\n T2 is \%0.2 \, f N ",T2);
32
33
      printf("\n Lp is \%0.3 \,\mathrm{f} m", Lp);
34
     printf("\n v is \%0.2 \, \text{f m/s}",v);
      printf("\nThe designation of the belt is B-3251-45
35
          ");
36
      //The difference in values of T1 and T2 is due to
37
         rounding-off of values.
```

Scilab code Exa 21.3 VBELT3

```
1 // sum 21-3
2 clc;
3 clear;
4 C=1;
5 m=0.35;
6 d=0.25;
7 P=22*10^3;
8 // Let the smaller pulley dia be n
9 // Let the larger pulley dia be N
```

```
10 n=1000;
11 N = 400;
12 D=d*n/N;
13 v=2*\%pi*n*d/(60*2);
14 Tc=m*v^2;
15 topwidth=22;
16 h=14;
17 bottomwidth=topwidth-(2*h*tand(20));
18 A = (topwidth + bottomwidth) / 2*h;
19 //let allowable tension be Ta
20 \text{ Ta} = 2.2;
21 T1 = A * Ta;
22 u=0.28;
23 thetaA=\%pi/180*(180-(2*asind((D-d)/(2*C))));
24 thetaB=((2*\%pi)-thetaA);
25 //Groove angle=b=19
26 b=19*\%pi/180;
27 x=u*thetaA/sin(b);
28 T2=Tc+((T1-Tc)/exp(x));
29 n=P/((T1-T2)*v);
30 Lp=2*sqrt((C^2)-((D-d)/2)^2)+(thetaA*d/2)+(thetaB*D
      /2);
31
32
     // printing data in scilab o/p window
     printf("Tc is \%0.2 \, \text{f N}",Tc);
33
     printf("\n T1 is \%0.1 f N ", T1);
34
     printf("\n T2 is %0.1 f N ",T2);
35
     printf("\n is \%0.1 f ",n);
36
37
     printf("\n Lp is \%0.3 \, \text{f m}", Lp);
     printf("\nThe designation of the belt is C-3414-47
38
         ");
39
40
    // difference in value of Lp is due to rounding-off
        the values of thetaA and thetaB.
```

Scilab code Exa 21.4 VBELT4

```
1 // \text{ sum } 21-4
2 clc;
3 clear;
4 P=12*10^3;
5 Ks = 1.1;
6 Pd=12*10^3*Ks;
7 N = 1440;
8 B=17;
9 t = 11;
10 d = 200;
11 i=3;
12 D=i*d;
13 C = 1000;
14 // since angle of contact theta is very small
15 theta=(D-d)/C;
16 theta=theta*180/%pi;
17 Kc = 0.8;
18 Lp=(2*C)+(\%pi/2*(D+d))+(((D-d)^2)/(4*C));
19 Li=Lp-45;
20 \text{ Ki} = 1.1;
21 //let number of v-belts required = n
22 //let the KW rating be KWR
23 \text{ KWR} = 5.23;
24 n = (P*Ks)/(KWR*Ks*Ki*10^3);
25 n=3;
26
27
     // printing data in scilab o/p window
     printf("D is %0.1 f mm ",D);
28
     printf("\n C is \%0.1 \, \text{f mm}",C);
29
     printf("\n is \%0.3 f",n);
30
     printf("\n Li is %0.0f mm ",Li)
31
```

Scilab code Exa 21.5 VBELT5

```
1 // \text{ sum } 21-5
2 clc;
3 clear;
4 N = 800;
5 P = 20;
6 i = 2.5;
7 Ks=1.5; //(\text{from table for } 3-5 \text{ hrs/day})
8 \text{ Pd=P*Ks};
9 d=250;
10 D=i*d;
11 C=1.6*D;
12 Lp=(2*C)+(\%pi*(D+d)/2)+((D-d)^2)/(4*C);
13 Li=Lp+74;
14 Listd=3454;
15 Lp=Listd+74;
16 p = [1 -1.0768 0.0175];
17
18 function r= myroots (p)
19
20 a = coeff (p, 0);
21 b= coeff (p ,1);
22 c = coeff (p , 2);
23 r(1)=(-b+ sqrt (b^2 -4*a*c))/(2*a);
24 \text{ r(2)} = (-b - \text{sqrt } (b^2 - 4*a*c))/(2*a);
25 endfunction
26 z = roots(p);
27 \text{ KW} = 9.4;
28 \text{ Kc} = 0.795;
29 \text{ K1=1};
30 \text{ n=Pd/(KW*Kc*K1)};
31
32
33
      // printing data in scilab o/p window
      printf("C is %0.4 f m ",z);
34
      printf("\n Pd is \%0.0 \, f \, KW",Pd);
35
      printf("\n is \%0.2 f KW",n);
36
```

Chapter 22

FRICTION CLUTCHES

Scilab code Exa 22.1 FC221

```
1 // 22-1
2 clc;
3 clear;
4 u=0.28 //(coefficient of friction)
5 N=300 //(Engine rpm)
6 I = 7.2
7 \text{ Pmax} = 0.1;
8 R1 = 70;
9 R2 = 110;
10 n=2; //(Both sides of the plate are effective)
11 // Using Uniform Wear Theory
12 // Axial Force W
13 W=n*\%pi*Pmax*R1*(R2-R1);
14 // Frictional Torque Tf
15 Tf = u * W * (R1 + R2) / 2 * (10^-3);
16 \text{ w}=2*\%\text{pi}*N/60;
17 //Power P
18 P=Tf*w;
19 //Torque = Mass moment of inertia * angular
      acceleration
20 a=Tf/I;
```

```
21 t=w/a;
22 //Angle turned by driving shaft thetal through which
       slipping takes place
23 theta1=w*t;
24 //angle turned by driven shaft theta2
25 \text{ theta2=a*(t^2)/2};
26 E=Tf*(theta1-theta2);
27
28
     // printing data in scilab o/p window
29 printf("\nThe force is \%0.1 \, \text{f N}", W);
30 printf("\nThe Torque is \%0.2 \, \text{f Nm}", Tf);
31 printf("\nThe Power is \%0.0 \, \text{f W}',P);
32 printf("\nThe angular acceleration is \%0.2 f rad/sec
      ^{\hat{}}2",a);
33 printf("\nThe time taken is \%0.1f sec",t);
34 printf("\nThe energy is \%0.2 \, \text{f Nm}",E);
35
36 //The difference in the answer of energy 'E' is due
      to rounding-off of values.
```

Scilab code Exa 22.2 FC222

```
1 // 22-2
2 clc;
3 clear;
4 //Power P
5 P=80*10^3; //(Watt)
6 N=3000; //(Engine rpm)
7 w=2*%pi*3*10^3/60
8 Tf=8*10^4/w;
9 Rm=100; //(mm)
10 p=0.2 //N/mm^2
11 u=0.22
12 // let width b= (R1-R2).
13 //Axial force W=2*pi*Rm*b*p
```

```
14 // Torque T=u*W*Rm
15 b=Tf/(u*2*\%pi*(Rm^2)*p);
16 b=50;
17 R2=Rm+b;
18 R1=Rm-b;
19 Di=2*R1; //inner diameter
20 \ W=2*\%pi*Rm*b*p;
21 n=8; //n is number of springs
22 // Axial force per spring W1
23 W1=W/n;
24 \text{ W1} = \text{W1} + \text{15};
25 //axial deflection del
26 \text{ del} = 10;
27 //stiffness k
28 \text{ k=W1/del};
29 // Spring index C
30 C=6;
31 //number of coils n1
32 \text{ n1=6}; //\text{Assumption}
33 d=k*n*n1*(C^3)/(80*10^3);
34 d=11; // Rounding off to nearest standard value
35 \quad D=C*d;
36 clearance=2;
37 FL=((n1+2)*d)+(2*del)+clearance; // two end coils,
      therefore (2*del)
38
39
     // printing data in scilab o/p window
40
41 printf("\nThe Torque is \%0.2 \, \text{f Nm}", Tf);
42 printf("\nThe width is \%0.0 \text{ f mm}",b);
43 printf("\nThe force is \%0.0 \, \text{f N}", W);
44 printf("\nThe Axial force per spring is \%0.0 f N", \W1)
45 printf("\nThe Spring stiffness is %0.0 f N/mm",k);
46 printf("\nThe Spring wire diameter is \%0.0 f mm",d);
47 printf("\nThe Mean coil diameter is \%0.0 f mm", D);
48 printf("\nThe Free length is \%0.0 \, \text{f mm}", FL);
```

Scilab code Exa 22.3 FC223

```
1 // 22-3
2 \text{ clc};
3 clear;
4 //Power P
5 P = 40 * 10^3 / Watt
6 n1=100; /rpm
7 n2=400; //rpm
8 //Speed factor Ks
9 Ks=0.9+0.001*n2;
10 //Clutch power Pc
11 Pc=P*n2/(n1*Ks)*10^-3;
12
13
     // printing data in scilab o/p window
14 printf("\nThe Speed factor is %0.1f ", Ks);
15 printf("\nThe clutch poweris %0.0 f KW", Pc);
```

Scilab code Exa 22.4 FC224

```
1 //22-4
2 clc;
3 clear;
4 // plot Torque vs Ro/Ri
5 //x=Ro/Ri
6 // According to Uniform Wear theory
7 x=[0 0.2 0.4 0.577 0.6 0.8 1.0];
8 n=length(x);
9 for i=1:n
10  Tf(i)=(x(i)-(x(i)^3));
```


Figure 22.1: FC224

```
11 end
12 plot (x,Tf);
13 xtitle('','Ro/Ri');
14 ylabel('Tf');
15 xgrid(2);
```

Scilab code Exa 22.5 FC225

```
1  // 22-5
2  clc;
3  clear;
4  n1=4;
5  n2=3;
6  n=(n1+n2-1);
7  R2=80;
8  R1=50;
```

```
9 //According to Uniform Pressure Theory
10 //W=p*pi*((R2^2)-(R1^2)) T=n*2*u*W*((R2^3)-(R1^3))
      /(((R2^2)-(R1^2))*3)
11 P=15*10^3;
12 N = 1400;
13 u=0.25;
14 \text{ w=} 2*\% \text{pi}*N/60;
15 T=P/w;
16 W=T*3*((R2^2)-(R1^2))/(n*2*u*((R2^3)-(R1^3)))*10^3;
17 p=W/(\%pi*((R2^2)-(R1^2)));
18
19
     // printing data in scilab o/p window
20 printf("\nThe angular speed is \%0.2 \, \text{f rad/sec}", w);
21 printf("\nThe Torque is \%0.3 \, f \, Nm", T);
22 printf("\nThe uniform pressure is \%0.3 \, \text{f N/mm}^2",p);
23 printf("\nThe Force is \%0.1 \, \text{f N}", \W);
```

Scilab code Exa 22.6 FC226

```
1 //FRICTION CLUTCHES
\frac{2}{\sqrt{PAGE}} 584, 22-6
3 \text{ clc};
4 P=5*10^3;
5 N = 1000;
6 w=2*\%pi*N/60;
7 \text{ Rm} = 50;
8 \text{ pm} = 0.3;
9 Tf = P/w;
10 u = 0.1;
11 R2=50*2/(0.6+1);
12 R1=0.6*R2;
13 // According to uniform Wear theory
14 W=pm*Rm*(R2-R1)*2*\%pi;
15 n=Tf*(10^3)/(u*W*Rm);
16 \text{ pmax=pm*Rm/R1};
```

Scilab code Exa 22.7 FC227

```
1 // 22-7
2 clc;
3 clear;
4 P=12*10^3;
5 N=750 / Speed=N
6 \text{ w}=2*\%\text{pi}*N/60;
7 Tf=P/w;
8 p1=0.12;
9 a=12.5; //Semi-cone angle
10 u=0.3;
11 k=u*0.18246*1.121/0.21644;
12 R1=(Tf*(10^3)/k)^(1/3);
13 R2=R1*1.242;
14 Rm = 1.121 * R1;
15 W=2*\%pi*p1*R1*(R2-R1);
16
17
     // printing data in scilab o/p window
18 printf("\nThe angular speed is \%0.2 f rad/sec", w);
19 printf("\nThe Torque is %0.1 f Nm", Tf);
20 printf("\nThe Inner radius is \%0.1 \text{ f mm}", R1);
21 printf("\nThe Outer radius is \%0.1 \text{ f mm}", R2);
22 printf("\nThe mean radius is \%0.2 f mm", Rm);
23 printf("\nThe axial force is \%0.0 \, \text{f N}", \w);
```

```
24 25 //The difference in the answer is due to rounding-off of values.
```

Scilab code Exa 22.8 FC228

```
1 / 22 - 8
2 clc;
3 clear;
4 //semi-cone angle is given as 15 degree
5 \text{ k=sin}(15*\%\text{pi}/180);
6 u = 0.3;
7 W = 300;
8 \text{ Rm} = 90/2;
9 Tf = u * W * Rm / k;
10 Tf = Tf * (10^-3);
11 I = 0.4;
12 a=Tf/I;
13 N = 1440;
14 \text{ w=} 2*\% \text{pi}*N/60;
15 t=w/a;
16 // During Slipping
17 theta1=w*t;
18 theta2=theta1/2;
19 U=Tf*(theta1-theta2);
20
      // printing data in scilab o/p window
22 printf("\nThe Torque is \%0.3 \, \text{f Nm}", Tf);
23 printf("\nThe angular acceleration is %0.3f rad/sec
       ^2",a);
24 printf("\nThe angular speed is %0.1 f rad/sec", w);
25 printf("\nThe time taken is \%0.2 \, \mathrm{f} \, \mathrm{sec}",t);
26 printf("\nThe Energy lost in friction is \%0.0 f Nm", U
      );
```

Scilab code Exa 22.9 FC229

```
1 // 22-9
2 clc;
3 clear;
4 P=15*10^3;
5 \text{ Ka=1.25};
6 N = 1500;
7 w=2*\%pi*N/60;
8 \text{ Tf} = P/w;
9 d=(Tf*16/(50*\%pi))^(1/3);
10 d=25;
11 Rm = 5 * d;
12 Pav = 0.12;
13 u=0.22;
14 b=Tf/(%pi*u*Pav*(Rm^2));
15 b=40;
16 R1=Rm-(b*sin(15*\%pi/180)/2);
17 R2=Rm+(b*sin(15*%pi/180)/2);
18
19
     // printing data in scilab o/p window
20 printf("\nThe Torque is \%0.2 \, f \, Nm", Tf);
21 printf("\nThe shaft diameter is \%0.0 \, f \, mm",d);
22 printf("\nThe width is \%0.0 \, \text{f mm}",b);
23 printf("\nThe Inner radius is %0.1 f mm", R1);
24 printf("\nThe Outer radius is %0.1 f mm", R2);
```

Scilab code Exa 22.10 FC2210

```
1 // 22-10
2 clc;
3 clear;
```

```
4 w2=2*\%pi*1400/60;
5 w1=0.8*w2;
6 P=40*10^3;
7 T=P/w2;
8 n = 4;
9 T1=T/4;
10 R=0.16; //Inner radius of drum
11 r=0.13; //radial distance of each shoe from axis of
      rotation
12 u=0.22; // coefficient of friction
13 x=u*r*R*((w2^2)-(w1^2))
14 m = T1/x;
15 1=R*\%pi/3;
16 N=T1/(R*u);
17 p=1*10^5;
18 b=N/(p*1)*10^3;
19
20
     // printing data in scilab o/p window
21 printf("\nThe full speed is \%0.1 \, \text{f rad/sec}", w2);
22 printf("\nThe engagement speed is \%0.2 f rad/sec", w1)
23 printf("\nThe number of shoes is \%0.0 \, \text{f} ",n);
24 printf("\nThe Torque is \%0.1 f Nm", T);
25 printf("\nThe Torque per shoe is %0.1 f Nm", T1);
26 printf("\nThe mass per shoe is \%0.2 \,\mathrm{f} kg",m);
27 printf("\nThe length of friction lining is \%0.5 \,\mathrm{f} m",
      1);
28 printf("\nThe width is %0.1 f mm",b);
```

Chapter 23

BRAKES

Scilab code Exa 23.1 B23 1

```
1 // \text{ sum } 23-1
2 clc;
3 clear;
4 W = 20 e3;
5 \text{ m=W/9.81};
6 //diameter of brake drum
7 Db = 0.6;
8 p=1;
9 \ Vi=1;
10 Vf = 0;
11 D=1;
12 R = 0.5;
13 wi=Vi/R;
14 \text{ wf=0};
15 w = 1;
16 \, \text{Vav=0.5};
17 S=2;
18 t=S/Vav;
19 //angle turned by by hoist drum=theta
20 theta=0.5*wi*t;
21 \text{ K.E=0.5*m*Vi^2};
```

```
22 P.E=2*W;
23 T.E=K.E+P.E;
24 T=T.E/theta;
25 P = wi * T * 10^{-3};
26 \text{ Rb=Db/2};
27 \text{ Ft} = 0.5 * T * p/Rb;
28 u=0.35;
29 N=Ft/u;
30 //contact area of brake lining=A
31 A=N/p;
32 b=0.3*Db;
33 L=A*10^-6/(b);
34 //angle subtended at brake drum centre=theta2
35 \text{ theta2=2*(asin(L/Db))};
36 theta2=theta2*180/%pi; // converting radian to
      degree
37
     // printing data in scilab o/p window
38
39
     printf("T is %0.1 f Nm ",T);
     printf("\n P is \%0.4 \, \text{f kW}",P);
40
     printf("\n b is \%0.2 \, \text{f m}",b);
41
     printf("\n L is \%0.3 \, \mathrm{f} m",L);
42
     printf("\n theta2 is \%0.0 f deg ",theta2);
43
```

Scilab code Exa 23.2 B23 2

```
1 // sum 23-2
2 clc;
3 clear;
4 b=80;
5 t=2;
6 theta=225*%pi/180;
7 u=0.22;
8 //F1/F2=e^(u*theta)
9 //let F1/F2=x;
```

```
10 x = exp(u*theta);
11 //maximum tensile stress in steel tape is siga
12 siga=60;
13 A = b * t;
14 F1=siga*A;
15 F2=F1/x;
16 \text{ r=0.2};
17 T=(F1-F2)*r;
18 OA = 30;
19 OB = 100;
20 \text{ OC} = 350;
P = ((F2*OB) + (F1*OA))/OC;
22 \quad OA = F2 * OB / F1;
23
     // printing data in scilab o/p window
24
     printf("F1 is %0.0 f N ",F1);
25
26
      printf("\n F2 is %0.1 f N ",F2);
27
     printf("\n T is \%0.2 \, f \, \text{Nm}",T);
28
      printf("\n OA is \%0.2 \, \text{f} mm", OA);
```

Scilab code Exa 23.3 B23 3

```
1 // sum 23-3
2 clc;
3 clear;
4 theta=%pi/3;
5 r=160;
6 u=0.3;
7 pmax=0.9;
8 b=40;
9 R=(4*r*sin(theta))/((2*theta)+sin(2*theta));
10 // frictional torque is T
11 T=2*u*pmax*b*(r^2)*sin(theta);
12 T=2*T*10^-3;
13 Rx=0.5*pmax*b*r*((2*theta)+(sin(2*theta)))*10^-3;
```

Scilab code Exa 23.4 B23 4

```
1 // \text{ sum } 23-4
2 clc;
3 clear;
4 d=320;
5 \text{ r=d/2};
6 b=50;
7 u=0.3;
8 \text{ pmax}=1;
9 c=115*2;
10 // From to fig. 23-9, distance OA=R is calculated.
11 R = sqrt(115^2+66.4^2);
12 C=115*2;
13 theta1=0;
14 theta2=120*\%pi/180;
15 theta0=120*%pi/180;
16 thetamax=%pi/2;
17 Tr=u*pmax*b*r^2*(cos(theta1)-cos(theta2))/sin(
      thetamax)*10^-3;
18 //the notation 'r' is used for moments of right hand
       shoe, similarly 'l' for the left shoe.
19 Mfr=u*pmax*b*r*(4*r*(cos(theta1)-cos(theta2))+(R*(
      cos(2*theta1)-cos(2*theta2))))/(4*sin(thetamax))
      *10^-3;
20 Mpr=pmax*b*r*R*((2*theta0)-(sin(2*theta2)-(sin(
      theta1))))/(4*sin(thetamax))*10^-3;
```

```
21 F = (Mpr - Mfr)/c*10^3;
22 / Mpl+Mfl=F*c;
23 x=F*c*10^-3;
24 y = (Mpr/pmax) + (Mfr/pmax);
25 \text{ pmax2=x/y};
26 Tl=pmax2*Tr;
27 \text{ Mpl=pmax2*Mpr};
28 \text{ Mfl=pmax2*Mfr};
29 T=T1+Tr;
30
     // printing data in scilab o/p window
31
     printf("Tr is %0.0 f Nm ",Tr);
32
     printf("\n Mf is \%0.2 \, f \, \text{Nm}", Mfr);
33
     printf("\n Mp is \%0.2 \, f Nm ", Mpr);
34
     printf("\n Tl is %0.1 f Nm ",Tl);
35
     printf("\n Mfl is %0.2 f Nm ", Mfl);
36
     printf("\n Mpl is %0.2 f Nm ", Mpl);
37
38
     printf("\n F is \%0.1 \, f N",F);
39
     printf("\n T is \%0.1 \, \text{f Nm}",T);
40
41
     //The difference in the answers are due to
         rounding-off of values.
```

Scilab code Exa 23.5 B23 5

```
1 // sum 23-5
2 clc;
3 clear;
4 m=1100;
5 V=65*5/18;
6 t=4;
7 r=0.22;
8 mb=12;
9 C=460;
10 S=0.5*V*t;
```

```
11 //Total kinetic energy TE=K.E(vehicle)+K.E(rotating
      parts).
12 TE = ((0.5*m*(V^2)) + (0.1*0.5*m*(V^2)));
13 E=TE/4;
14 w=V/r;
15 theta=S/r;
16 T=E/theta;
17 delT=E/(mb*C);
18
19
     // printing data in scilab o/p window
     printf("S is %0.2 f m ",S);
20
21
     printf("\n E is \%0.2 \, \text{f Nm}",E);
22
     printf("\n T is \%0.2 \, \text{f Nm}",T);
     printf("\n delT is \%0.2 \, f ", delT);
23
24
25 //The difference in the answers are due to rounding-
      off of values.
```

Scilab code Exa 23.6 B23 6

```
1 // sum 23-6
2 clc;
3 clear;
4 T=35000;
5 u=0.4;
6 p=0.7;
7 r=200;
8 N=T/(u*r)
9 b=sqrt(N/p);
10 l=b;
11 //2theta = theta2
12 theta2=2*asin(1/(2*r));
13 F=u*N;
14 P=((250*N)-(u*N*80))/550;
15 Ry=N-P;
```

```
16 Rx=u*N;
17 R = sqrt(Rx^2 + Ry^2);
18 \quad w = 2 * \%pi * 100/60;
19 // Rate of heat generated is Q
20 \quad Q=u*N*w*r/1000;
21
     // printing data in scilab o/p window
22
     printf("N is %0.1 f N ",N);
23
     printf("\n b is \%0.0 \, \text{f mm}",b);
24
     printf("\n P is %0.1 f N ",P);
25
     printf("\n R is \%0.2 \, f N ",R);
26
27
     printf("\n Q is \%0.2 \, f \, J/s",Q);
28
29 //The answer to Rate of heat generated 'Q' is
      calculated incorrectly in the book.
```

Scilab code Exa 23.7 B23 7

```
1 // \text{ sum } 23-7
2 clc;
3 clear;
4 Vi = 20*5/18;
5 \text{ Vf=0};
6 \text{ m} = 80;
7 \text{ pmax}=1;
8 u = 0.1;
9 S=50;
10 KE=0.5*m*Vi^2;
11 N=KE/(u*S*2);
12 t=sqrt(N/(pmax*3));
13 b=3*t;
14
     // printing data in scilab o/p window
15
     printf("KE is %0.1 f Nm ", KE);
16
     printf("\n N is \%0.2 f N ",N);
17
```

ROPE DRIVE

Scilab code Exa 24.1 RD1

```
1 // \text{ sum } 24-1
2 clc;
3 clear;
4 P = 150000;
5 m = 0.4;
6 D=1.8;
7 d=0.6;
8 C=4.2;
9 V = 15;
10 Fc=m*V^2;
11 BL=44.81*10<sup>3</sup>;
12 FOS = 35;
13 F1=BL/FOS;
14 theta=\%pi-(2*asin((D-d)/(2*C)));
15 beta=22.5*%pi/180;
16 u=0.13;
17 x=u*theta/sin(beta);
18 F2=(F1-Fc)/\exp(x);
19 n=P/((F1-F2)*V);
20 n = 13;
21
```

```
// printing data in scilab o/p window printf("n is %0.0f",n);
```

Scilab code Exa 24.2 RD2

```
1 // \text{ sum } 24-2
2 clc;
3 clear;
4 W = 1000;
5 m = 0.498;
6 BL=78;
7 d=12;
8 Am = 0.39*d^2;
9 dw = sqrt(Am*4/(6*19*%pi));
10 Ew = 74.4 * 10^3;
11 Ds = 56 * d;
12 sigb=Ew*dw/Ds;
13 Wb = sigb * \%pi * (d^2) / 4 * 10^-3;
14 1=20;
15 Ws=m*1;
16 \ a=1.2;
17 Wa=a*(W/2+Ws)*10^-3;
18 //Let the static load be Ps
19 Ps=(W/2+Ws)*9.81*10^-3;
20 //let the effective load be Peff
21 Peff=Ps+Wb+Wa;
22 FOS1=BL/Peff;
23 FOS2=BL/(5+0.612);
24
     // printing data in scilab o/p window
25
     printf("annual FOS is %0.2f", FOS1);
26
     printf("\n FOS neglecting bending load is %0.1f
27
           ",FOS2);
```

Scilab code Exa 24.3 RD3

```
1 // sum 24-3
2 clc;
3 clear;
4 d=12;
5 sigut=1960;
6 Pb=0.0025*sigut;
7 Ds=480;
8 F=Pb*d*Ds/2;
9 W=F*2*10^-3;
10
11    // printing data in scilab o/p window
12    printf("W is %0.3 f kN ", W);
```

Scilab code Exa 24.4 RD4

```
1 // \text{ sum } 24-4
2 clc;
3 clear;
4 sigut=1770;
5 Pb=0.0018*sigut;
6 W = 4000;
7 a=2.5/2;
8 \text{ Ws} = 90*0.5;
9 Wa=(W+Ws)*a/9.81;
10 Weff=W+Wa;
11 d=sqrt(Weff*2/(23*Pb));
12 d=12;
13
     // printing data in scilab o/p window
14
    printf("d is %0.0 f mm ",d);
15
```

GEARS

Scilab code Exa 25.1 G1

```
1 // \text{ sum } 25-1
2 clc;
3 clear;
4 Zp = 25;
5 Zg = 60;
6 \text{ m=5};
7 dp=m*Zp;
8 \text{ dg=m*Zg};
9 CD=(dp+dg)/2;
10 ha=m;
11 hf = 1.25*m;
12 c=hf-ha;
13 r = 0.4 * m;
14
      // printing data in scilab o/p window
15
     printf("dp is %0.0 f mm ",dp);
16
     printf("\n dg is %0.0 f mm ",dg);
printf("\n CD is %0.1 f mm ",CD);
17
18
                                       ",ha);
      printf("\n ha is %0.0 f mm
19
      printf("\n hf is \%0.2 \text{ f mm} ",hf);
20
21
      printf("\n c is %0.2 f mm
```

```
printf("\n r is \%0.0 \, \text{f mm} ",r);
```

Scilab code Exa 25.2 G2

22

```
1 // \text{ sum } 25-2
2 clc;
3 clear;
4 N = 800;
5 P = 6000;
6 n = 200;
7 Cs=1.4;
8 sigb=150;
9 FOS=2;
10 Zp=18;
11 Zg=Zp*N/n;
12 Y = \%pi * (0.154 - (0.912/Zp));
13 p=[1 \ 0 \ -9.5846 \ -38.135];
14
15 function r= myroots (p)
16
17 a = coeff (p, 0);
18 b = coeff (p , 1);
19 c= coeff (p ,2);
20 d = coeff (p, 3);
21 r(1) = (-b + sqrt (b^2 - 4*a*c))/(2*a);
22 r(2) = (-b - sqrt (b^2 - 4*a*c))/(2*a);
23 endfunction
24 \text{ m=roots(p)};
25 \text{ m} = 4.5;
26 	ext{dp=m*Zp};
27 \text{ dg=m*Zg};
28 // printing data in scilab o/p window
    printf("dp is %0.0 f mm ",dp);
29
     printf("\n dg is \%0.0 \, \text{f} \, \text{mm} ",dg);
30
```

Scilab code Exa 25.3 G3

```
1 // \text{ sum } 25-3
2 \text{ clc};
3 clear;
4 Zp = 30;
5 N = 1000;
6 Zg = 75;
7 m=5;
8 b=60;
9 sigut=450;
10 BHN = 350;
11 Cs=1.5;
12 FOS=2;
13 dp=m*Zp;
14 dg=m*Zg;
15 v=2*\%pi*N*dp/(60*1000*2);
16 Cv = 3/(3+v);
17 \text{ sigb} = 450/3;
18 \quad Y = 0.358;
19 Sb=m*b*sigb*Y;
20 Q = (2*Zg)/(Zp+Zg);
21 \text{ K=0.16*(BHN/100)^2};
22 Sw=b*dp*Q*K;
23 Pt=Sb*Cv/(Cs*FOS);
24 P=Pt*v;
25 P = P * 10^{-3};
26
     // printing data in scilab o/p window
27
     printf("Sb is %0.0 f N ",Sb);
29
     printf("\n Sw is \%0.0 \, \text{f N} ",Sw);
     printf("\n P is \%0.3 \, f \, kW ",P);
30
31
32 //The difference in the value of Sw is due to
```

Scilab code Exa 25.4 G4

```
1 // \text{ sum } 25-4
2 \text{ clc};
3 clear;
4 n = 240;
5 P=8000;
6 N = 1200;
7 CD = 300;
8 \text{ Cs} = 1.5;
9 alpha=20*%pi/180;
10 G=N/n;
11 dp = CD * 2/6;
12 \, dg = 5 * dp;
13 v=2*\%pi*N*dp/(60*1000*2);
14 Cv = 3/(3+v);
15 Pt=P/v;
16 Peff=Pt*Cs/Cv;
17 m=4;
18 b=10*m;
19 FOS=2;
20 Sb=Peff*FOS;
21 sigut=600;
22 sigb=sigut/3;
23 Zp=dp/m;
24 Zg=dg/m;
25 Q = (2*Zg)/(Zp+Zg);
26 \text{ K=Sb/(b*dp*Q)};
27 BHN=sqrt(K/0.16)*100;
28 \text{ BHN} = 333;
29
30
     // printing data in scilab o/p window
     printf("BHN is %0.0f", BHN);
31
```

Scilab code Exa 25.5 G5

```
1 // \text{ sum } 25-5
2 clc;
3 clear;
4 alpha=20*%pi/180;
5 N = 800;
6 P = 6000;
7 sigut=450;
8 i=5;
9 Cs=1.3;
10 \quad v = 3.6;
11 FOS=2;
12 Pt=P/v;
13 Cv = 3/(3+v);
14 sigb=sigut/3;
15 dp=3.6*1000*2*60/(2*\%pi*N);
16 \text{ dp=86};
17 Sb=Pt*Cs/Cv*FOS;
18 / \text{Let x be m}^2 \times Y
19 x = Sb/(10*sigb);
20 \text{ m=5};
21 \text{ Zp=18};
22 	ext{dp=m*Zp};
23 \text{ Zg=i*Zp};
24 dg=m*Zg;
25 b = 10 * m;
26 phip=m+(0.25*sqrt(dp));
27 \text{ ep}=32+(2.5*phip);
28 phig=m+(0.25*sqrt(dg));
29 \text{ eg} = 32 + (2.5 * phig);
30 e = ep + eg;
31 e=e*10^-3;
32 \text{ Ps=Cs*Pt};
```

```
33  r1=dp/2;
34  r2=dg/2;
35  Pd=e*N*Zp*b*r1*r2/(2530*sqrt(r1^2+r2^2));
36  Q=(2*Zg)/(Zp+Zg);
37  K=Sb/(b*dp*Q);
38  BHN=sqrt(K/0.16)*100;
39
40  // printing data in scilab o/p window
41  printf("Ps is %0.2 f N ",Ps);
42  printf("\n Pd is %0.1 f N ",Pd);
43  printf("\n BHN is %0.0 f ",BHN);
```

Scilab code Exa 25.6 G6

```
1 // \text{ sum } 25-4
2 clc;
3 clear;
4 P = 9000;
5 N = 900;
6 n = 150;
7 sigut=750;
8 \text{ BHN} = 300;
9 Cs=1.5;
10 FOS=2;
11 i=N/n;
12 x=sqrt(i);
13 Zp=18;
14 \text{ Zg=x*Zp};
15 Zg = 44;
16 //Let actual speed reduction be xa
17 xa=Zg/Zp;
18 n1=N/xa^2;
19 T1=P*60/(2*\%pi*N);
20 i2=N/xa;
21 T2=N/i2*T1;
```

```
22 m = 6;
23 dp = Zp * m;
24 \text{ dg=m*Zg};
25 phip=m+(0.25*sqrt(dp));
26 \text{ ep}=16+(1.25*\text{phip});
27 phig=m+(0.25*sqrt(dg));
28 \text{ eg} = 16 + (1.25 * \text{phig});
29 \text{ e=ep+eg};
30 e = e * 10^{-3};
31 Pt=26000;
32 \text{ Ps=Cs*Pt};
33 \text{ r1=dp/2};
34 \text{ r2=dg/2};
35 b = 10 * m;
36 Pd=e*i2*Zp*b*r1*r2/(2530*sqrt(r1^2+r2^2));
37 Q = (2*Zg)/(Zp+Zg);
38 sigb=sigut/3;
39 \quad Y = 0.308;
40
41 Sb=b*m*sigb*Y;
42 \text{ K=0.16*(BHN/100)^2};
43 Sw=b*dp*K*Q;
44
      // printing data in scilab o/p window
45
      printf("m is %0.0 f mm ",m);
46
      printf("\n Pd is %0.3 f N ",Pd);
47
      printf("\n Sw is \%0.0 \, f N ",Sw);
48
49
50
      //The difference in the values is due to rounding-
         off of the values.
```

HELICAL GEARS

Scilab code Exa 26.1 HG1

```
1 // \text{ sum } 26-1
2 clc;
3 clear;
4 Zp = 20;
5 Zg = 50;
6 alphan=20*%pi/180;
7 phi=15*%pi/180;
8 \text{ mn}=4;
9 m=mn/cos(phi);
10 alpha=180/%pi*atan(tan(alphan)/(cos(phi)));
11 dp = Zp * m;
12 dg = Zg * m;
13 ha=4;
14 hd=1.25*mn;
15 //Let addendum circle dia of pinion be Pa
16 Pa=dp+(2*mn);
17 //Let dedendum circle dia of pinion be Pd
18 Pd=dp-(2.5*mn);
19 //Let addendum circle dia of gear be Ga
20 Ga=dg+(2*mn);
21 //Let dedendum circle dia of gear be Gd
```

```
22 Gd=dg-(2.5*mn);
23 b = \%pi * mn / sin (phi);
24
     // printing data in scilab o/p window
25
26
     printf("m is %0.2 f mm ",m);
27
     printf("\n alpha is \%0.3 f \text{ deg}", alpha);
                                    ",Pa);
     printf("\n Pa is %0.1 f mm
28
                                    ",Pd);
     printf("\n Pd is %0.1 f mm
29
                                    ",Ga);
     printf("\n Ga is %0.0 f mm
30
                                   ",Gd);
     printf("\n Gd is %0.0 f mm
31
     printf("\n b is %0.2 f mm
32
                                   ",b);
```

Scilab code Exa 26.2 HG2

```
1 // \text{ sum } 26-2
2 clc;
3 clear;
4 P = 5000;
5 \text{ Zp} = 25;
6 Zg = 50;
7 \text{ mn}=4;
8 alphan=20*%pi/180;
9 phi=20*%pi/180;
10 N = 1200;
11 m=mn/cos(phi);
12 dp = Zp * m;
13 dg=Zg*m;
14 v=2*\%pi*N*dp/(60*2*1000);
15 Pt=P/v;
16 Pa=Pt*tan(phi);
17 Pr=Pt*tan(alphan)/cos(phi);
18
     // printing data in scilab o/p window
19
     printf("Pt is %0.2 f N ",Pt);
20
     printf("\n Pa is \%0.1 \, \text{f N} ",Pa);
21
```

Scilab code Exa 26.3 HG3

```
1 // \text{ sum } 26-3
2 clc;
3 clear;
4 Zp = 24;
5 Zg = 72;
6 alphan=20*%pi/180;
7 phi = 24 * \%pi / 180;
8 N = 720;
9 \text{ mn} = 5;
10 b=50;
11 sigut=600;
12 BHN = 360;
13 Cs=1.4;
14 FOS=2;
15 sigb=sigut/3;
16 dp=mn*Zp/cos(phi);
17 Zp=Zp/(cos(phi))^3;
18 Zg=Zg/(cos(phi))^3;
19 Y=0.358+((0.364-0.358)*1.48/2);
20 Sb=b*mn*sigb*Y;
21 Q = (2*Zg)/(Zp+Zg);
22 \text{ K=0.16*(BHN/100)^2};
23 Sw=b*dp*Q*K/(cos(phi)^2);
24 \text{ v=}2*\%\text{pi*N*dp/(60*2*1000)};
25 \text{ Cv} = 5.6/(5.6 + \text{sqrt}(v));
26 Peff=Sb/FOS;
27 Pt=Peff*Cv/Cs;
28 P = Pt *v;
29 P=P*10^-3;
30
31
     // printing data in scilab o/p window
```

```
32  printf("P is %0.3 f kW ",P);
33
34  //The difference in the value is due to rounding-off
      of the values.
```

Scilab code Exa 26.4 HG4

```
1 // \text{ sum } 26-4
2 clc;
3 clear;
4 Zp = 25;
5 Zg = 100;
6 P = 5000;
7 N = 2000;
8 alphan=20*%pi/180;
9 phi=15*%pi/180;
10 sigut=660;
11 Cs=1.5;
12 FOS=1.8;
13 v = 10;
14 Zp1=Zp/(cos(phi))^3;
15 Zg1=Zg/(cos(phi))^3;
16 \quad Y = 0.348 + (0.74 * 0.004);
17 sigb=sigut/3;
18 Cv=5.6/(5.6+sqrt(v));
19 //Sb=FOS*Peff
20 mn=FOS*P*Cs*60*1000*2*cos(phi)/(2*%pi*N*Cv*Zp*12*
      sigb*Y);
21 mn=mn^(1/3);
22 \, \text{mn} = 2.5;
23 dp=mn*Zp/cos(phi);
Q = (2*Zg)/(Zp+Zg);
25 b = 12 * mn;
26 \text{ Sb=} 12*\text{sigb*} Y;
27 K=Sb*(cos(phi)^2)/(dp*Q*b);
```

```
28 BHN=sqrt(K/0.16)*100;
29 dg=mn*Zg/cos(phi);
30 phip=mn+(0.25*sqrt(dp));
31 \text{ ep=} 16+(1.25*\text{phip});
32 phig=mn+(0.25*sqrt(dg));
33 \text{ eg}=16+(1.25*\text{phig});
34 \text{ e=ep+eg};
35 e=e*10^-3;
36 \text{ r1=dp/2};
37 \text{ r2=dg/2};
38 Pd=e*N*Zp1*b*r1*r2/(2530*sqrt(r1^2+r2^2));
39 v=2*\%pi*N*dp/(60*2*1000);
40 //Let tangential component be TC
41 TC=(Cs*1845/mn)+(Pd*cos(alphan)*cos(phi));
42
43 Sb=b*mn*sigb*Y;
44
     // printing data in scilab o/p window
45
     printf("mn is %0.1 f mm ",mn);
46
     printf("\n TC is %0.0 f N ",TC);
47
48
     printf("\n Sb is %0.1 f N ",Sb);
49
     //The difference in the value of Sb is due to
50
        rounding-off of t
```

STRAIGHT BEVEL GEARS

Scilab code Exa 27.1 SBG1

```
1 // \text{ sum } 27-1
2 clc;
3 clear;
4 P=8000;
5 \text{ N1} = 400;
6 N2 = 200;
7 i=N1/N2; //i=Zg/Zp=dg/dp
8 \text{ gamma1} = \text{atan}(1/i);
9 gamma2=90-gamma1;
10 rp=200;
11 R=rp/sin(gamma1);
12 b=0.2*R;
13 rm1=rp-(b*sin(gamma1)/2);
14 Pt=P*1000*60/(2*%pi*N1*rm1);
15 alpha=20*%pi/180;
16 Ps=Pt*tan(alpha);
17 Pr=Ps*cos(gamma1);
18 Pa=Ps*sin(gamma1);
19
20
     // printing data in scilab o/p window
    printf("Pt is %0.0 f N ",Pt);
21
```

Scilab code Exa 27.2 SBG2

```
1 // \text{ sum } 27-2
2 clc;
3 clear;
4 alpha=20*%pi/180;
5 Zp = 20;
6 Zg = 36;
7 \quad m=4;
8 sigut=600;
9 b = 25;
10 dp=m*Zp;
11 rp=dp/2;
12 dg=m*Zg;
13 \text{ rg=dg/2};
14 gamma1=atan(rp/rg);
15 Zpv=Zp/cos(gamma1);
16 \quad Y = 0.33 + 0.003 * 0.88;
17 sigb=sigut/3;
18 Sb=m*b*sigb*Y;
19
20
     // printing data in scilab o/p window
     printf("Zpv is %0.2f ",Zpv);
21
     printf("\n Sb is %0.0 f N ",Sb);
22
```

Scilab code Exa 27.3 SBG3

```
1 // \text{ sum } 27-3
2 clc;
3 clear;
4 \text{ m=6};
5 Zp = 30;
6 Zg = 45;
7 dp=m*Zp;
8 \text{ rp=dp/2};
9 dg=m*Zg;
10 \text{ rg=dg/2};
11 R=sqrt(rg^2+rp^2);
12 gamma1=180/%pi*asin(rp/R);
13 gamma2=(90-gamma1);
14 ha=6;
15 hf = 1.25 * ha;
16 phi=180/%pi*atan(ha/R);
17 beta=180/%pi*atan(hf/R);
18 //let Face Cone Angle be FCA
19 FCA = (gamma1 + phi);
20 //Let Root cone angle be RCA
21 RCA = (gamma1-beta);
22
      // printing data in scilab o/p window
23
     printf(" gamma1 is %0.1f deg ",gamma1);
24
      printf("\n gamma2 is \%0.1 \, \text{f deg} ", gamma2);
25
      printf("\n is \%0.2 \, \text{f} mm", R);
26
     printf("\n FCA is \%0.3 \text{ f deg} ",FCA);
printf("\n RCA is \%0.2 \text{ f deg} ",RCA);
27
28
```

Scilab code Exa 27.4 SBG4

```
1 // sum 27-4
2 clc;
3 clear;
4 alpha=20*%pi/180;
```

```
5 Zp = 25;
6 Zg = 40;
7 m=5;
8 b=30;
9 BHN=400;
10 dp=m*Zp;
11 rp=dp/2;
12 dg=m*Zg;
13 \text{ rg=dg/2};
14 gamma1=atan(rp/rg);
15 gamma1=180/%pi*gamma1;
16 gamma2=(90-gamma1);
17 a=cosd(gamma2);
18 Zp1=Zp/cos(gamma1);
19 Zg1=Zg/a;
20 Q = (2*Zg1)/(Zp1+Zg1);
21 \text{ K=0.16*(BHN/100)^2};
22 Sw=0.75*b*dp*Q*K/cosd(gamma1);
23
     // printing data in scilab o/p window
24
     printf("Sw is \%0.1 \, f \, N", Sw);
25
26
     //The difference in the value of Sw is due to
27
        rounding-off of the value of Q.
```

Scilab code Exa 27.5 SBG5

```
1 // sum 27-5
2 clc;
3 clear;
4 Zp=20;
5 Zg=36;
6 m=4;
7 b=25;
8 BHN=360;
```

```
9 \text{ Np} = 750;
10 FOS=1.75;
11 dp=m*Zp;
12 \text{ rp=dp/2};
13 dg=m*Zg;
14 rg=dg/2;
15 gamma1=atan(dp/dg);
16 gamma1=180/%pi*gamma1;
17 gamma2=(90-gamma1);
18 a=cosd(gamma2);
19 Zp1=Zp/cosd(gamma1);
20 \text{ Zg1=Zg/a};
21 Q=(2*Zg1)/(Zp1+Zg1);
22 \text{ K=0.16*(BHN/100)^2};
23 R=sqrt(rp^2+rg^2);
24 \quad Y = 0.33 + 0.003 * 0.86;
25 sigut=600;
26 sigb=sigut/3;
27 Sb=m*b*Y*sigb*(1-(b/R));
28 Sw=0.75*b*dp*Q*K/cosd(gamma1);
29
30
     // printing data in scilab o/p window
     printf("Sb is %0.0 f N ",Sb);
31
     printf("\n Sw is \%0.1 f N ",Sw);
32
33
34 //The answer to Sb is calculated incorrectly in the
       book.
```

Scilab code Exa 27.6 SBG6

```
1 // sum 27-6
2 clc;
3 clear;
4 Dp=300;
5 rp=150;
```

```
6 //Let the angular velocity ratio be i
7 i = 2/3;
8 rg=rp/i;
9 Dg=2*rg;
10 R=sqrt(rp^2+rg^2);
11 P = 15000;
12 N = 300;
13 Cs=1.5;
14 FOS=2;
15 sigb=100;
16 gamma1=atan(Dp/Dg);
17 gamma1=180/%pi*gamma1;
18 gamma2=(90-gamma1);
19 v=2*\%pi*N*rp/(60*1000);
20 \text{ Cv} = 5.6/(5.6 + \text{sqrt}(v));
21 Pt=P/v;
22 Peff=Pt*Cs/Cv;
23 Sb=Peff*FOS;
24 b=R/4;
25 / let x = m*Y
26 \text{ x=Sb/(b*sigb*(1-(b/R)))};
27 \text{ m=6};
28
29
     // printing data in scilab o/p window
     printf("m*Y is %0.3 f mm^2 ",x);
30
     printf("\n is \%0.0 \, \text{f mm} ",m);
31
```

Scilab code Exa 27.7 SBG7

```
1 // sum 27-7
2 clc;
3 clear;
4 Zp=24;
5 Zg=36;
6 N=1400;
```

```
7 P = 11600;
8 \text{ Cs} = 1.4;
9 FOS=2;
10 sigut=600;
11 sigb=sigut/3;
12 gamma1=atan(Zp/Zg);
13 gamma1=180/%pi*gamma1;
14 gamma2=(90-gamma1);
15 a=cosd(gamma2);
16 Zp1=Zp/cosd(gamma1);
17 \text{ Zg1=Zg/a};
18 Q=(2*Zg1)/(Zp1+Zg1);
19 v=1.76;
20 Pt=P/v;
21 \text{ Cv=5.6/(5.6+sqrt(v))};
22 Peff=Pt*Cs/Cv;
23 x = Peff * FOS;
24 \quad Y=0.352+(0.003*0.85);
y=2*sigb*Y*(1-(6/21.63));
26 \text{ m=} \text{sqrt}(x/y);
27 // Design is safe for m=4
28 \text{ m} = 4;
29 b = 6 * m;
30 \, dp = 24 * m;
31 \text{ rp=} 48;
32 dp=dp/cosd(gamma1);
33 \text{ v=}2*\%pi*N*rp/(60*1000);
34 \text{ Cv} = 5.6/(5.6 + \text{sqrt}(v));
35 Sb=y*m^2;
36 /Sw=Sb;
37 \text{ K=Sb/(0.75*b*dp*Q)};
38 BHN=sqrt(K/0.16)*100;
39
     // printing data in scilab o/p window
40
     printf("m is %0.0 f mm ",m);
41
     printf("\n BHN is %0.0f ",BHN);
42
43
     //The answer to BHN is calculated incorrectly in
44
```

Scilab code Exa 27.8 SBG8

```
1 // \text{ sum } 27-8
2 \text{ clc};
3 clear;
4 Zp = 40;
5 Zg = 60;
6 P = 3500;
7 N = 600;
8 \text{ Cs} = 1.5;
9 sigb=55;
10 gamma1=atan(Zp/Zg);
11 gamma1 = 180/%pi*gamma1;
12 gamma2=(90-gamma1);
13 a=cosd(gamma2);
14 Zp1=Zp/cosd(gamma1);
15 Zg1=Zg/a;
16 Q=(2*Zg1)/(Zp1+Zg1);
17 // Design is safe for m=6
18 m=6;
19 b=6*m;
20 dp = Zp * m;
21 \text{ rp=dp/2};
22 	ext{ dg=Zg*m};
23 \text{ rg=dg/2};
24 R=sqrt(rp^2+rg^2);
25
     // printing data in scilab o/p window
26
     printf("m is %0.0 f mm ",m);
27
     printf("\n b is \%0.0 \, \text{f} \, \text{mm} ",b);
28
     printf("\n R is %0.0 f mm ",R);
29
```

WORM AND WORM WHEEL SET

Scilab code Exa 28.1 WWS1

```
1 // \text{ sum } 28-1
2 clc;
3 clear;
4 Z1=1;
5 \quad Z2=30;
6 q = 10;
7 m=5;
8 d=q*m;
9 D = m * Z2;
10 //let the speed reduction ratio be G
11 G=Z2/Z1;
12 CD = (d+D)/2;
13
14
     // printing data in scilab o/p window
     printf("G is %0.0 f ",G);
15
                                   ",CD);
     printf("\n CD is %0.0 f mm
16
     printf("\n d is %0.0 f mm
17
     printf("\n D is %0.0 f mm
                                   ",D);
18
```

Scilab code Exa 28.2 WWS2

```
1 // \text{ sum } 28-2
2 clc;
3 clear;
4 Z1=1;
5 \quad Z2=52;
6 q = 10;
7 m = 8;
8 i=Z2/Z1;
9 CD = ((m*q) + (m*Z2))/2;
10 lambda=atan(Z1/q);
11 d=q*m;
12 da=m*(q+2);
13 df = m*(q+2-(4.4*cos(lambda)));
14 pa=m*%pi;
15 D=m*Z2;
16 Da=m*(Z2+(4*cos(lambda))-2);
17 Df = m*(Z2-2-(0.4*cos(lambda)));
18
     // printing data in scilab o/p window
19
20
     printf(" i is %0.0 f ",i);
     printf("\n CD is %0.0 f mm ",CD);
21
                                  ",pa);
",da);
     printf("\n pa is \%0.2 f mm
22
23
     printf("\n da is %0.0 f mm
                                   ",df);
     printf("\n df is %0.3 f mm
24
                                   ",Da);
     printf("\n Da is %0.3 f mm
25
     printf("\n Df is %0.3 f mm
                                   ",Df);
26
```

Scilab code Exa 28.3 WWS3

```
1 // \text{ sum } 28-3
```

```
2 clc;
3 clear;
4 Z1 = 2;
5 \quad Z2 = 60;
6 q = 10;
7 m=5;
8 P = 6000;
9 N = 1440;
10 u = 0.08;
11 alpha=20*%pi/180;
12 lambda = atan(Z1/q);
13 d=m*q;
14 \text{ w=} 2*\% \text{pi}*N/60;
15 T=P/w;
16 Ptw=T*10^3/(d/2);
17 a = \cos(alpha);
18 b=cos(lambda);
19 x = sin(alpha);
20 y=sin(lambda);
21 Paw=Ptw*(((a*b)-(u*y))/((a*y)+(u*b)));
22 Prw=Ptw*y/((a*y)+(u*b));
23 //Paw=Ptw*((cos(alpha)*cos(lambda))-(u*sin(lambda)))
      /((\cos(alpha)*\sin(lambda))+(u*\cos(lambda)));
24 / \text{Prw=Ptw}*((\sin(alpha))/((\cos(alpha)*\sin(lambda))+(u)
      *cos(lambda))));
25
26
     // printing data in scilab o/p window
     printf("Ptw=Pag is %0.1 f N ",Ptw);
27
     printf("\n Paw=Ptg is \%0.0 f N ", Paw);
28
     printf("\n Prw=Prg is %0.0 f N ",Prw);
29
30
31 //The difference in the value is due to rounding-off
       the values.
```

Scilab code Exa 28.4 WWS4

```
1 // \text{ sum } 28-4
2 clc;
3 clear;
4 Z1=2;
5 \quad Z2 = 40;
6 q = 8;
7 m=5;
8 d=q*m;
9 P=1.2;
10 lambda = atan(Z1/q);
11 N = 1000;
12 Vt=2*\%pi*N*20/(60*1000);
13 Vs=Vt/cos(lambda);
14 u=0.032;
15 alpha=20*%pi/180;
16 x = \cos(alpha);
17 y=tan(lambda);
18 z=(cos(lambda))/sin(lambda);
19 n=(x-(u*y))/(x+(u*z));
20 //Let power output be Po
21 Po=P*n;
22 //Let power lost in friction be Pf
23 Pf=P-Po;
24
     // printing data in scilab o/p window
25
     printf("P is %0.1 f kW ",P);
26
     printf("\n Po is \%0.3 \, f \, kW", Po);
27
                                   ",Pf);
28
     printf("\n Pf is %0.3f kW
```

Scilab code Exa 28.5 WWS5

```
1 // sum 28-5
2 clc;
3 clear;
4 Z1=2;
```

```
5 \quad Z2=54;
6 q = 10;
7 m=8;
8 P = 4000;
9 \quad A = 1.8;
10 K = 16;
11 N = 1000;
12 u=0.028;
13 lambda = atan(Z1/q);
14 alpha=20*%pi/180;
15 d=m*q;
16 Vt=2*\%pi*N*d/(2*60*1000);
17 Vs=Vt/cos(lambda);
18 x = \cos(alpha);
19 y=tan(lambda);
20 z=(cos(lambda))/sin(lambda);
21 n=(x-(u*y))/(x+(u*z));
22 delT=P*(1-n)/(K*A);
23
24
     // printing data in scilab o/p window
25
     printf("n is %0.3f ",n);
     printf("\n delT is %0.2f deg ",delT);
26
```

Scilab code Exa 28.6 WWS6

```
1 //sum 28-6
2 clc;
3 clear;
4 Z1=1;
5 Z2=30;
6 q=10;
7 m=6;
8 //Let the ultimate strength of gear is sigut
9 //Let the allowable strenth of wheel is sigb
10 sigut=450;
```

```
11 sigb=84;
12 N = 1200;
13 n=N/Z2;
14 alpha=20*%pi/180;
15 d=m*q;
16 D = Z2 * m;
17 b=3*d/4;
18 V=2*\%pi*n*D/(2*60*1000);
19 Cv = 6/(6+V);
20 y=0.154-(0.912/Z2);
21 \ Y = \%pi * y;
22 Sb=sigb*b*Cv*m*Y;
23 \text{ K=0.415};
24 \text{ Sw=b*D*K};
25
     // printing data in scilab o/p window
26
     printf("Sb is %0.0 f N ",Sb);
27
     printf("\n Sw is \%0.0 \, f N ", Sw);
28
29
30 //The difference in the value of Sb is due to
      rounding-off the values.
```

GEARBOX

Scilab code Exa 29.1 GB1

```
1 // \text{ sum } 29-1
2 clc;
3 clear;
4 Ts1=16;
5 \text{ Ts2=18};
6 \text{ Ts3=20};
7 \text{ Ts4} = 25;
8 \text{ Tr1=64};
9 \text{ Tr} 2 = 63;
10 \text{ Tr} 3 = 70;
11 Tr4=50;
12 //Let Nr1/Nr2=G1
13 G1=1+(Ts1/Tr1);
14 // Let Nr1/Ni=G2
15 G2=(Ts2/(Tr2*(1-(1/G1)+(Ts2/Tr2))));
16 //Let Ni/No=G3 (third gear)
17 G3=(1+(Ts3/Tr3))/((Ts3/Tr3)+G2);
18
19 / \text{Let Ni/Nr1}=G4
20 //The ratio calculations are done as above
21 \quad G4=1.2857/0.2857;
```

```
\frac{22}{\text{Let Ni/No}} = G5 (\text{second gear})
23 \text{ G5} = -20/70;
24 //Let Ni/No=G6(first gear)
25 \quad G6 = 1.2857/0.2857;
26 //Let Ni/No=G7(reverse gear)
27 \quad G7 = -1.7143/0.2857;
28
     // printing data in scilab o/p window
29
     printf("ratio for third gear is %0.3f
30
     printf("\n ratio for second gear is %0.4f ",G5);
31
     printf("\n ratio for first gear is \%0.1f ",G6);
32
     printf("\n ratio for reverse gear is \%0.3 \,\mathrm{f} ",G7)
33
```

Scilab code Exa 29.2 GB2

```
1 // \text{ sum } 29-2
 2 clc;
 3 clear;
 4 //Let reverse speed gear be RSG
 5 \text{ RSG} = 5.5;
6 / \text{Let } T5/T6 = Z1
 7 T1=2;
8 / \text{Let } T3/T7 = Z2
9 \quad Z2=2.75;
10 \quad T7 = 18;
11 T3=Z2*T7;
12 \quad T3 = 50;
13 / \text{Let } T3/T1 = Z3
14 \quad Z3 = 2.5;
15 T1=T3/Z3;
16 / \text{Let } T4/T2 = Z4
17 \quad Z4 = 2.25/2;
18 T2=(T1+T3)/(Z4+1);
19 T4 = T1 + T3 - T2;
```

```
20 / \text{Let } T5/T6 = Z5
21 \quad Z5=2;
22 \quad T6 = (T1 + T3)/3;
23 \quad T5 = (T1 + T3) - T6;
24 \quad T7 = 18;
25 //let first gear ratio is G1
26 \quad G1 = 50 * 47 / (20 * 23);
27
28 //Let 2nd gear ratio is G2
29 \quad G2 = 37 * 47 / (33 * 23);
30 //Let 3rd gear ratio is G3
31 G3=1;
32 //Let reverse gear ratio is R
33 R=50*47/(18*23);
34
      // printing data in scilab o/p window
35
      printf("T1 is %0.0 f
                                   ",T1);
36
37
      printf("\n T2 is %0.0 f
                                       ",T2);
38
      printf("\n T3 is %0.0 f
                                       ",T3);
                                       ",T4);
      printf("\n T4 is %0.0 f
39
                                       ",T5);
40
      printf("\n T5 is %0.0 f
                                       ",T6);
      printf("\n T6 is \%0.0 \,\mathrm{f}
41
      printf("\n T7 is \%0.0 \,\mathrm{f}
                                       ",T7);
42
                                       ",G1);
      printf ("\n G1 is \%0.3 f
43
                                       ",G2);
      printf("\n G2 is \%0.3 \,\mathrm{f}
44
      printf("\n G3 is \%0.1 f
                                       ",G3);
45
      printf("\n R is \%0.3 f
                                      ",R);
46
```

Scilab code Exa 29.3 GB3

```
1 // sum 29-3
2 clc;
3 clear;
4 //Let the constant gear ratio be G
5 G=2;
```

```
6 x=5.5^{(1/3)};
 7 G1=1;
8 G2=x;
9 \ G3 = x * x;
10 G4=x^3;
11 \quad T7 = 18;
12 T8=T7*(x^3)/2;
13 \quad T8 = 51;
14 \quad T5 = 69/2.558;
15 \quad T6 = 69 - 27;
16 \quad T4 = 69/1.8825;
17 \quad T3 = 69 - T4;
18 T1 = 23;
19 T2=46;
20 \text{ T9=18};
21 G1=T2*T8/(T1*T7);
22 G2=T2*T6/(T1*T5);
23 G3 = 1;
24 \quad G4 = -T2 * T8 / (T1 * T9);
25
26
       // printing data in scilab o/p window
27
      printf("T1 is %0.0 f
                                       ",T1);
                                           ",T2);
      printf("\n T2 is %0.0 f
28
      printf("\n T3 is \%0.0 f
                                           ",T3);
29
      \label{eq:printf} \texttt{printf("} \ \texttt{n} \ \texttt{T4} \ \texttt{is} \ \%0.0 \, \texttt{f}
                                           ",T4);
30
                                           ",T5);
      printf("\n T5 is \%0.0 \,\mathrm{f}
31
                                           ",T6);
      printf("\n T6 is \%0.0 \,\mathrm{f}
32
                                           ",T7);
       printf("\n T7 is %0.0 f
33
      printf("\n T8 is \%0.0 \,\mathrm{f}
                                           ",T8);
34
                                           ",T9);
      printf("\n T9 is %0.0 f
35
      printf("\n G1 is \%0.3 f
                                           ",G1);
36
                                           ",G2);
       printf ("\n G2 is \%0.3 f
37
                                           ",G3);
      printf("\n G3 is \%0.3 f
38
       printf("\n G4 is %0.3 f
                                           ",G4);
39
```

CHAIN DRIVE

Scilab code Exa 30.1 CD1

```
1 // \text{ sum } 30-1
2 clc;
3 clear;
4 n1=17;
5 n2=51;
6 C = 300;
7 p=9.52;
8 Ln=(2*C/p)+((n1+n2)/2)+((((n2-n1)/(2*%pi))^2)*(p/C))
9 x=(Ln-((n2+n1)/(2)))^2;
10 y=8*(((n2-n1)/(2*\%pi))^2);
11 z=Ln-((n1+n2)/2);
12 C=(p/4)*(z+(sqrt(x-y)))
13
14
     // printing data in scilab o/p window
15
    printf("C is %0.2 f mm ",C);
16
```

Scilab code Exa 30.2 CD2

```
1 // \text{ sum } 30-2
2 clc;
3 clear;
4 G=4;
5 n1=17;
6 n2=n1*G;
7 N1 = 2300;
8 Kc=1.2; //\text{from table } 30-2
9 p=12.7; //\text{fom table } 30-1
10 D1=p*n1;
11 D2=p*n2;
12 phi=2*10.6;
13 x = tan(phi/2); //phi/2 = 10.6 deg, from table 30-3
14 Da1=(p/x)+(0.6*p);
15 Da2=(p/x*4)+(0.6*p);
16 Cmin=Kc*((Da1+Da2)/2);
17 Ln1 = (2*Cmin/p) + ((n1+n2)/2) + ((((n2-n1)/(2*%pi))^2)*(p)
      /Cmin));
18 Ln1=80;
19
    // printing data in scilab o/p window
20
     printf("Ln is %0.0 f ",Ln1);
```

Scilab code Exa 30.3 CD3

```
1 // sum 30-3
2 clc;
3 clear;
4 N1=1000;
5 N2=500;
6 P=2.03*10^3; //from table 30-8
7 K1=1.26;
8 Ks=1;
9 //let Pc be the power transmitting capacity of the chain
10 Pc=P*K1/Ks;
```

```
11 p=9.52;
12 n1=21;
13 n2=42;
14 V=n1*p*N1/(60*10^3);
15 //Let the chain tension be T
16 T=Pc/V;
17 //Let the breaking load be BL
18 BL=10700;
19 FOS=BL/T;
20 C=50*p;
21 Ln=(2*C/p)+((n1+n2)/2)+((((n2-n1)/(2*%pi))^2)*(p/C))
22 L=Ln*p;
23 \text{ Pc=Pc}*10^{-3};
24
25
     // printing data in scilab o/p window
26
     printf("Pc is %0.2 f KW ",Pc);
27
     printf("\n V is \%0.3 \, \text{f m/s}",V);
     printf("\n T is \%0.1 \, f N ",T);
28
     printf("\n FOS is %0.2f ",FOS);
29
30
     printf("\n L is \%0.2 \, \text{f mm} ",L);
31
32 //The difference in the value of L and T is due to
      rounding-off the values.
```

Scilab code Exa 30.4 CD4

```
1 // sum 30-5
2 clc;
3 clear;
4 G=2;
5 P=5000;
6 Ks=1.7;
7 Pd=P*Ks;
8 K2=1.7;
```

SEALS PACKING AND GASKETS

Scilab code Exa 31.1 SPG1

```
1 // \text{ sum } 31-1
2 clc;
3 clear;
4 d=18;
5 \log = 25 + 25;
6 Eb = 210 * 10^3;
7 Ecl=90*10^3;
8 A = \%pi*d^2/4;
9 kb=A*Eb/lg;
10 x=(5*(lg+(0.5*d))/(lg+(2.5*d)));
11 km = \%pi * Ecl * d/(2 * log(x));
12 C=kb/(kb+km);
13 sigp=600;
14 At=192;
15 Pi=0.75*sigp*At;
16 F = 200;
17 C=0.322;
18 Pb=F*C*10^3;
19 FOS=2;
```

```
20 W=At*sigp;
21 N=Pb*FOS/(W-Pi);
22
23    // printing data in scilab o/p window
24    printf("N is %0.2 f ",N);
```

Scilab code Exa 31.2 SPG2

```
1 // \text{ sum } 31-2
2 clc;
3 clear;
4 d=16;
5 D=1.5*d;
6 t = 20;
7 \text{ tg}=4;
8 //Let Gasket diameter in compression zone be d1
9 d1=D+(2*t)+tg;
10 lg=40;
11 E=207*10^3;
12 kb = \%pi * d^2 * E/(lg * 4);
13 Ecl=90*10^3;
14 x=(5*(lg+(0.5*d))/(lg+(2.5*d)));
15 kp = \%pi * Ecl * d/(2 * log(x));
16 Ag = \%pi * (d1^2 - d^2)/4;
17 Eg=480;
18 kg = Ag * Eg / tg;
19 km=kg*kp/(kg+kp);
20 C=kb/(kb+km);
21 \text{ At} = 157;
22 \text{ sigp=600};
23 Pi=0.75*At*sigp/2;
24 FOS=2;
25 Pf = At * sigp/FOS;
26 \text{ W=Pf-Pi};
27 P=W/C;
```

```
28 N=5;
29 F=P*N;
30 p=F*4/(%pi*120^2);
31
32    // printing data in scilab o/p window
33    printf("p is %0.3 f N/mm^2 ",p);
```

Scilab code Exa 31.3 SPG3

```
1 // \text{ sum } 31-3
2 clc;
3 clear;
4 sigp=600;
5 \text{ FOS} = 3;
6 siga=sigp/FOS;
7 d=16;
8 D=1.5*d+60;
9 //Let Gasket diameter in compression zone be d1
10 d1 = (300 - 160) / 2;
11 //Let compressive stress in gasket for leak proof
      joint be sigl
12 sigl=12;
13 At=[1 157; 2 192; 3 245]
14 d=[1 16; 2 18; 3 20]
15
16 n=3;
17 for (i=1:n)
18
       Pi(i,2) = At(i,2) * d(i,2)
19
       Pc(i,2)=3*\%pi*(d1^2-d(i,2)^2)
       if (Pi(i,2) \ge Pc(i,2)) then
20
       printf("The Design is safe")
21
22 \quad end
23 \text{ end}
24
25
```

```
26
27 // printing data in scilab o/p window
28 printf("d is %0.0 f mm ",d(i,2));
```