	٦	WYBRANE:
		(system operacyjny)
		(program użytkowy)
Miejsce na identyfikację szkoły		(środowisko programistyczne)
<u>. </u>		

ARKUSZ PRÓBNEJ MATURY Z OPERONEM INFORMATYKA, CZ. I

POZIOM ROZSZERZONY

Czas pracy: 60 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Odpowiedzi zapisz w miejscu na to przeznaczonym przy każdym zadaniu.
- Pisz czytelnie. Używaj tylko długopisu/pióra z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 6. Wpisz zadeklarowany przez Ciebie na egzamin system operacyjny, program użytkowy oraz środowisko programistyczne.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w notacji wybranej przez siebie: listy kroków, pseudokodu lub języka programowania, który wybierasz na egzamin.
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Życzymy powodzenia!

Za rozwiązanie wszystkich zadań można otrzymać łącznie 15 punktów.

WYPEŁNIA ZDAJĄCY

Wpisuje zdający przed rozpoczęciem pracy	
PESEL ZDAJĄCEGO	KOD ZDAJĄCEGO

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON. Kopiowanie w całości lub we fragmentach bez zgody wydawcy zabronione.

Zadanie 1. Liczby palindromiczne

Liczba palindromiczna (symetryczna) – liczba naturalna, która nie zmienia się po zapisaniu jej cyfr w odwrotnej kolejności.

Liczby palindromiczne:

- a) pierwsze: 2, 3, 5, 7, 11, 101, 131, 151, ...
- b) kwadratowe: 0, 1, 4, 9, 121, 484, 676, 10201, 12321, ...
- c) sześcienne: 0, 1, 8, 343, 1331, 1030301, 1367631, 1003003001,
- d) binarne: 0, 1, 11, 101, 111, 1001, 1111, 10001, 10101, 11011, 11111, ...

Uwaga: Przyjmujemy, że liczby palindromiczne zapisujemy w najkrótszej możliwej postaci, tzn. bez ewentualnych zer wiodących.

Zadanie 1.1. (0-1)

Sprawdź, które liczby sześciocyfrowe palindromiczne w systemie dwójkowym są liczbami palindromicznymi w systemie dziesiętnym.

Miejsce na obliczenia:

Zadanie 1.2. (0-6)

Napisz algorytm (w postaci listy kroków, w pseudokodzie lub w wybranym języku programowania), który znajdzie sumę wszystkich liczb mniejszych niż milion, które są palindromiczne jednocześnie w systemie dziesiętnym i dwójkowym. **Uwaga:** Przy ocenie będzie brana pod uwagę złożoność obliczeniowa algorytmu.

Specyfikacja:

Dane:

n – liczba całkowita mniejsza od miliona

Wynik:

suma – liczba całkowita będąca sumą liczb palindromicznych jednocześnie w systemie dziesiętnym i dwójkowym

Miejsce na algorytm:

	Nr zadania	1.1.	1.2.
Wypełnia egzaminator	Maks. liczba pkt	1	6
	Uzyskana liczba pkt		

Zadanie 2. Szyfr Fibonacciego

Szyfr podstawieniowy – szyfr, w którym każdy znak tekstu jawnego jest zastępowany przez inny znak lub znaki szyfrogramu.

Liczbą Fibonacciego nazywamy każdy wyraz ciągu (u_n) określonego równościami:

```
\begin{cases} u_1 = 1 \\ u_2 = 1 \\ u_{n+2} = u_n + u_{n+1}, \end{cases}
```

dla $n \in \mathbb{N}_+$. Początkowe elementy ciągu liczb
 Fibonacciego wynoszą 1, 1, 2, 3, 5, 8, 13, 21, 34, 55...

Pan Kowalski stworzył funkcję szyfrującą, która do tworzenia szyfru wykorzystuje liczby ciągu Fibonacciego. Tekst zaszyfrowany powstaje poprzez przesunięcie *k*-tej litery tekstu jawnego o wartość *n mod* 26, gdzie *n* jest wartością *k*-tej liczby z ciągu Fibonacciego.

Uwaga: mod – reszta z dzielenia całkowitego.

Specyfikacja:

Dane:

fibonacci(k) – funkcja rekurencyjna obliczająca wartość k-tej liczby z ciągu Fibonacciego w arytmetyce modularnej mod~26

s[1..d] – tekst jawny składający się z dużych liter alfabetu o długości d znaków znak(k) – funkcja zamieniająca liczbę całkowitą k na znak o kodzie k, np.: znak(70) ->'F'

kod(zn) – funkcja zamieniająca znak na jego kod dziesiętny w kodach ASCII, np.: kod('D') -> 68

Wynik:

szyfr[1..d] – tekst po zaszyfrowaniu składający się z dużych liter alfabetu o długości d znaków

```
fibonacci(k)

jeśli k < 3

podaj wynik 1

w przeciwnym wypadku

podaj wynik (fibonacci(k-1) + fibonacci(k-2)) mod 26

od i=1 do d

jeżeli s[i] >='A' i s[i] <='Z'

szyfr[i] = znak(65+(kod(s[i])-65+fibonacci(i)) mod 26)
```

Uwaga:

wypisz szyfr

A	В	С	D	Е	F	G	Н	I	J	K	L	M
65	66	67	68	69	70	71	72	73	74	75	76	77

N	О	P	Q	R	S	T	U	V	W	X	Y	Z
78	79	80	81	82	83	84	85	86	87	88	89	90

Zadanie 2.1. (0-1)

Korzystając powyższego algorytmu, uzupełnij tabelę.

Tekst jawny	Tekst zaszyfrowany
JANKOWALSKIPOZDRAWIA	
NIEPRZYJACIELNADCHODZI	

Miejsce na obliczenia:

Zadanie 2.2. (0–4)

Pan Kowalski zauważył, że w jego algorytmie występują dwa problemy.

- 1. Funkcja rekurencyjna bardzo spowalnia działanie algorytmu.
- 2. Za każdym uruchomieniem algorytm do szyfrowania używa tych samych wartości, ponieważ ciąg liczb Fibonacciego jest stały i jego dwa początkowe elementy mają zawsze wartości 1 i 1.

Pan Kowalski planuje wykorzystać swój pomysł z użyciem ciągu Fibonacciego. Jednak chce zmienić algorytm tak, aby przed każdym szyfrowaniem możliwe było ustalenie dwóch początkowych wartości oraz wyznaczenie każdej następnej jako sumy dwóch poprzednich na bieżąco – iteracyjnie, w trakcie szyfrowania.

Napisz algorytm (w postaci listy kroków, schematu blokowego, pseudokodu lub w wybranym języku programowania), który będzie szyfrował wiadomości zgodnie z wymogami pana Kowalskiego.

Specyfikacja:

Dane:

F1, F2 – dwie liczby naturalne określające początkowe wartości pseudociągu Fibonacciego

F – kolejny wyraz pseudociągu Fibonacciego liczony w arytmetyce modularnej $mod\ 26$ s[1..d] – tekst jawny składający się z dużych liter alfabetu o długości d znaków

Wynik:

szyfr[1..d] – tekst po zaszyfrowaniu składający się z dużych liter alfabetu o długości d znaków

Miejsce na algorytm:

	Nr zadania	2.1.	2.2.
Wypełnia egzaminator	Maks. liczba pkt	1	4
	Uzyskana liczba pkt		

Zadanie 3. Test

Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe. Za każde zadanie otrzymasz 1 punkt, jeśli zaznaczysz wszystkie poprawne odpowiedzi.

Zadanie 3.1. (0-1)

Po pomnożeniu dwóch liczb 1100110₂ oraz 32₄ zapisanych w systemie dwójkowym i czwórkowym otrzymamy:

1.	2624 ₈	P	F
2.	10111010100_2	P	F
3.	694 ₁₆	P	F
4.	1121104	P	F

Zadanie 3.2. (0-1)

1.	Adresy IP są niepowtarzalnymi identyfikatorami wszystkich stacji należących do intersieci TCP/IP. Stacją może być komputer, terminal, router, a także koncentrator. Każda stacja wymaga adresu niepowtarzalnego w całej intersieci TCP/IP; żadnej ze stacji nie można przypisać adresu już istniejącego.	Р	F
2.	Każdy z adresów IP jest ciągiem trzydziestu dwóch zer i jedynek. Pierwsze dwa bity adresu klasy A to "10". 16 bitów identyfikuje numer sieci, a ostatnie 16 bitów identyfikuje adresy potencjalnych hostów.	P	F
3.	Adresy IPv4 klasy D to wszystkie adresy zaczynające się od binarnego 1110. W adresach klasy D nie dokonujemy już podziału na adres sieci oraz hosta.	P	F
4.	192.168.1.256 jest adresem klasy C.	P	F

Zadanie 3.3. (0-1)

Po wykonaniu podanego zapytania SQL do pewnej bazy danych wyniki będą zawsze uporządkowane niemalejąco według pola *nazwa*.

1.	SELECT nazwa, wartosc FROM dane ORDER BY nazwa DESC	P	F
2.	SELECT nazwa, wartosc FROM dane ORDER BY nazwa	P	F
3.	SELECT nazwa, sum(wartosc) FROM dane GROUP BY nazwa	P	F
4.	SELECT nazwa, sum(wartosc) FROM dane GROUP BY nazwa ORDER BY nazwa	P	F

	Nr zadania	3.1.	3.2.	3.3.
Wypełnia egzaminator	Maks. liczba pkt	1	1	1
	Uzyskana liczba pkt			

BRUDNOPIS (nie podlega ocenie)

