Transmission Rate, Transmission Delay, Propagation Delay, and Queuing Delay

Introduction

When a packet travels through a computer network, it experiences multiple types of delays before reaching its destination. These delays depend on:

- Packet size and link bandwidth
- Physical distance between sender and receiver
- Router load and congestion

The four key performance measures are:

Transmission Rate, Transmission Delay, Propagation Delay, Queuing Delay.

Transmission Rate (Bandwidth)

Definition

The **Transmission Rate** R is the speed at which bits are transmitted over a link, measured in **bits per second (bps)**.

$$R = \frac{\text{Number of bits transmitted}}{\text{Time (s)}}$$

Example

If $R = 100 \,\mathrm{Mbps}$, the link can transmit 100×10^6 bits every second.

Analogy

Think of a water pipe. The width of the pipe corresponds to the transmission rate. A wider pipe allows more water (bits) per second.

1

Transmission Delay

Definition

The time required to push all the bits of a packet into the link:

$$D_{\rm trans} = \frac{L}{R}$$

Example

If packet size $L=8\times 10^6$ bits and $R=10\,\mathrm{Mbps}$:

$$D_{\text{trans}} = \frac{8 \times 10^6}{10 \times 10^6} = 0.8 \,\text{s}$$

Analogy

Filling a water tank with a pump. The time taken to push *all the water* into the pipe is like transmission delay.

Propagation Delay

Definition

The time for a bit to physically travel across the medium:

$$D_{\text{prop}} = \frac{d}{s}$$

Example

If $d = 3000 \,\text{km}$ and $s = 2 \times 10^8 \,\text{m/s}$:

$$D_{\text{prop}} = \frac{3 \times 10^6}{2 \times 10^8} = 0.015 \,\text{s}$$

Analogy

The time taken for the **first drop of water** to travel through a long pipe is like propagation delay.

Queuing Delay

Definition

The time a packet spends waiting in a router's buffer before transmission.

Example

If 4 packets are ahead, each needing 0.8 seconds to transmit:

$$D_{\text{queue}} = 4 \times 0.8 = 3.2 \,\text{s}$$

Analogy

Cars waiting at a toll booth. Each car must wait until the cars ahead pass. This waiting time is the queuing delay.

Summary Table

Concept	Formula	Analogy
Transmission Rate	$R ext{ (bps)}$	Pipe width
Transmission Delay	$D_{\rm trans} = L/R$	Filling a tank
Propagation Delay	$D_{\text{prop}} = d/s$	First drop in pipe
Queuing Delay	Depends on traffic	Cars at toll booth