Exploring Common Variable Selection Approaches

Table Of Contents

S.no	Title	Page no.
1.	Variable selection method I	2
2.	Variable selection method II	5
3.	Variable selection method III	8
4.	Comparing the models	11
5.	Issues with the variable selection	12
6.	Hypothetical question	13
7.	Multicollinearity	14

Introduction:

The present report has been prepared by performing various tasks on the 'Parkinsons' dataset using the R platform. The dataset is imported onto R and named 'park'. The purpose of this report is to understand the various selection methods, the effects of having many predictors and multicollinearity.

Before performing the tasks, the 'park' dataset has been cleaned and named 'parkclean'. The dimension of the 'park' and the 'parkclean' datasets is as follows:

```
> dim(park)
[1] 5875    25
> dim(parkclean)
[1] 5869    25
```

1. Variable selection method I:

a. Backward Elimination:

Backward stepwise regression is a step-by-step iterative construction of a regression model where a **reduced final model is built from a full model**. The method at each step removes a variable from the full model that does not have a significant impact on the dependent variable. The significance of a variable here is determined based on the **exit criteria** set before the start of the process. Some of the parameters used to define the criteria are p-value, AIC, BIC, F-value, etc. This process is repeated until all the variables which are not significant are removed leaving behind the final model.

b. Backward Model:

A final model is built on R using the backward elimination method, where the dependent variable is 'total_UPDRS' and all other variables are independent. All the variables in the parkinsons dataset are included except for sex, test_time_hr and test_time_min. The variables 'test_time_hr' and 'test_time_min' are excluded as they are mathematical derivations of test_time and including them leads to singularities in the model. The 'olsrr' package has been used to implement the backward elimination.

The **exit criteria used is p-value which is set to 0.05**. So, at any step, the variable is checked for significance against this critical value.

On implementing the r code, the **following result is generated**:

• Elimination Steps:

Backward Eli	imination: Step 1					Backward Elim	nination: Step 2				
Variable Ji	itter.DDP Removed					Variable Shi	mmer.dB Removed				
	Model	Summary					Model S	Summary			
R	0.953	RMSE		3.255		R	0.953	RMSE		3.255	
R-Squared	0.908 red 0.908	Coef MSE	f. Var	11.218 10.596		R-Squared Adj. R-Square	0.908 ed 0.908	Coef	. Var	11.218 10.594	
Adj. R-Squar Pred R-Squar		MAE		2.431		Pred R-Square		MAE		2.431	
MSE: Mean S	Mean Square Error Square Error Absolute Error					MSE: Mean Sq	Mean Square Error quare Error osolute Error				
		ANOVA						ANOVA			
	Sum of Squares	DF	Mean Square	F	Sig.		Sum of Sauares	DF I	Maan Cawana	F	Si a
							Squares		Mean Square 		Sig.
Regression Residual Total	610082.234 61920.752 672002.986	19 5844 5863	32109.591 10.596	3030.461	0.0000	Residual	610080.294 61922.692	18 5845	33893.350 10.594	3199.257	0.0000
0.00000000						Total	672002.986	5863			
Backward Eli	mination: Step 3					Backward Elimi	nation: Step 4				
Variable Sh	nimmer.DDA Removed					Variable Shim	nmer.APQ3 Removed				
	Model 5	Summary					Model S	ummary			
R	0.953	RMSE		3.255		R	0.953	RMSE		3.255	
R-Squared	0.908		. Var	11.217		R-Squared	0.908	Coef.	Var	11.217	
Adj. R-Squar		MSE		10.594		Adj. R-Squared		MSE		10.593	
Pred R-Squar	'ed 0.907	MAE		2.431		Pred R-Squared		MAE		2.431	
MSE: Mean S	Mean Square Error Gquare Error Absolute Error					RMSE: Root Me MSE: Mean Squ MAE: Mean Abs					
		ANOVA						ANOVA			
	Sum of Squares	DE I	Mean Square	F	Sig.		Sum of	DF M			e:
									lean Square		Sig.
		17	35886.571	3387.511	0.0000	Regression	610065.707	16	38129.107	3599.462	0.0000
Residual	610071.701 61931.285 672002.986	5846 5863	10.594		0.0000	Residual	61937.279 672002.986	5847 5863	10.593		
Residual Total	61931.285 672002.986	5846	10.594			Residual Total	61937.279 672002.986	5847	10.593		
Residual Total Backward Eli	61931.285	5846	10.594			Residual Total	61937.279 672002.986 mination: Step 6	5847	10.593		
Residual Total Backward Eli	61931.285 672002.986 	5846 5863 Summary				Residual Total Backward Elim	61937.279 672002.986 mination: Step 6 R Removed	5847 5863 Summary	10.593		
Variable Ji	61931.285 672002.986 	5846 5863		3.255	0.0000	Residual Total Backward Elim	61937.279 672002.986 mination: Step 6 R Removed	5847 5863 Summary		3.255	
Residual Total Backward Eli Variable Ji R	61931.285 672002.986 imination: Step 5 itter.PPQS Removed Model 0.953 0.908	Summary RMSE Coef	E F. Var	11.217	0.0000	Residual Total Backward Elim Variable NHR	61937.279 672002.986 mination: Step 6 R Removed	5847 5863 Summary		3.255 11.217	
Residual Total Backward Eli Variable Ji R R R-Squared Adj, R-Squared	61931.285 672002.986 Immination: Step 5 itter.PPQS Removed Model 0.953 0.968 red 0.908	5846 5863 Summary	E f. Var	11.217 10.593		Residual Total Backward Elim Variable NHR R R-Squared Adj. R-Squared	61937.279 672002.986 mination: Step 6 R Removed Model 0.953 0.908	Summary RMSE Coet	E F. Var	11.217 10.593	
Residual Total Backward Eli Variable Ji R R R-Squared Adj. R-Squar Pred R-Squar	61931.285 672002.986 Imination: Step 5 Litter.PPQS Removed Model 0.953 0.908 red 0.908 red 0.908	Summary RMSE Coef	E f. Var	11.217		Residual Total Backward Elim Variable NHR R R-Squared Adj, R-Square Pred R-Square	61937.279 672002.986 mination: Step 6 R Removed Model 0.953 0.908	Summary RMSE Coet MSE MAE	E F. Var	11.217	
Residual Total Backward Eli Variable Ji R R R-Squared Adj, R-Squar Pred R-Squar RMSE: Root MSE: Mean S	61931.285 672002.986 Immination: Step 5 itter.PPQS Removed Model 0.953 0.968 red 0.908	Summary RMSE Coef	E f. Var	11.217 10.593		Residual Total Backward Elim Variable NHR R R-Squared Adj, R-Square Pred R-Square RMSE: Root M MSE: Mean Sq	61937.279 672002.986 mination: Step 6 Removed Model 0.953 0.908 ed 0.908 ed 0.907 Mean Square Error	Summary RMSE Coet MSE MAE	E F. Var	11.217 10.593	
Residual Total Backward Eli Variable Ji R R R-Squared Adj, R-Squar Pred R-Squar RMSE: Root MSE: Mean S	61931.285 672002.986 Imination: Step 5 itter.PPQS Removed Model 0.953 0.908 end 0.908 end 0.907 Mean Square Error Square Error	Summary RMSE Coef	E f. Var	11.217 10.593		Residual Total Backward Elim Variable NHR R R-Squared Adj, R-Square Pred R-Square RMSE: Root M MSE: Mean Sq	61937.279 672002.986 mination: Step 6 Removed Model 0.953 0.908 ed 0.907 Mean Square Error	Summary RMSE Coet MSE MAE	E F. Var	11.217 10.593	
Residual Total Backward Eli Variable Ji R R R-Squared Adj, R-Squar Pred R-Squar RMSE: Root MSE: Mean S	61931.285 672002.986 Imination: Step 5 Litter.PPQS Removed Model 0.953 0.908 red 0.908 red 0.908 red 0.907 Mean Square Error Square Error	Summary RMSE Coef MSE MAE	E f. Var	11.217 10.593		Residual Total Backward Elim Variable NHR R R-Squared Adj, R-Square Pred R-Square RMSE: Root M MSE: Mean Sq	61937.279 672002.986 mination: Step 6 R Removed 0.953 0.908 ed 0.908 ed 0.908 d 0.908	Summary RMSE Coet MSE MAE	E F. Var	11.217 10.593	
Residual Total Backward Eli Variable Ji R R R-Squared Adj, R-Squar Pred R-Squar RMSE: Root MSE: Mean S	61931.285 672002.986 Imination: Step 5 itter.PPQS Removed Model 0.953 0.908 end 0.908 end 0.907 Mean Square Error Square Error	Summary RMSE Coef MSE MAE	E f. Var	11.217 10.593	Sig.	Residual Total Backward Elim Variable NHR R R-Squared Adj, R-Square Pred R-Square RMSE: Root M MSE: Mean Sq	61937.279 672002.986 mination: Step 6 R Removed Model 0.953 0.908 ed 0.907 Mean Square Error puare Error Sum of Squares	Summary RMSE Coet MSE MAE	E F. Var	11.217 10.593	Sig.
Residual Total Total Backward Eli Variable Ji Residuared Adj. R-Squared Adj. R-Squared RMSE: Root MSE: Mean S MAE: Mean A	61931.285 672002.986 Imination: Step 5 itter.PPQS Removed Model 0.953 0.908 red 0.908 red 0.908 red 0.907 Mean Square Error Absolute Error Sum of Squares	Summary RMSE Coef MSE MAE ANOVA DF	E F. Var Mean Square 40670.163	11.217 10.593 2.430		Residual Total Backward Elim Variable NHR R R-Squared Adj. R-Square Pred R-Square RMSE: Root M MSE: Mean Sa MAE: Mean Ab	61937.279 672002.986 mination: Step 6 R Removed Model 0.953 0.908 ed 0.908 ed 0.908 ed 0.908 cd 0.907 Mean Square Error posolute Error Sum of Squares	Summary RMSE Coet MSE MAE	F. Var	11.217 10.593 2.431	Sig
Residual Total Backward Eli Variable Ji R R-Squared Adj. R-Squar Pred R-Squar RMSE: Root MSE: Mean A	61931.285 672002.986 Imination: Step 5 itter.PPQS Removed Model 0.953 0.908 red 0.908 red 0.907 Mean Square Error Absolute Error Sum of Squares	Summary RMSE Coef MSE MAE ANOVA DF	E F. Var Mean Square	11.217 10.593 2.430	Sig.	Residual Total Backward Elim Variable NHR R R-Squared Adj, R-Square Pred R-Square RMSE: Root M MSE: Mean Sq	61937.279 672002.986 mination: Step 6 R Removed Model 0.953 0.908 ed 0.907 Mean Square Error puare Error Sum of Squares	Summary RMSE Coet MSE MAE ANOVA	E F. Var	11.217 10.593 2.431	

Elimination summary:

Elimination Summary

Step	Variable Removed	R-Square	Adj. R-Square	C(p)	AIC	RMSE
1	Jitter.DDP	0.9079	0.9076	19.0993	30504.8964	3.2551
2	Shimmer.dB	0.9079	0.9076	17.2823	30503.0801	3.2549
3	Shimmer.DDA	0.9078	0.9076	16.0932	30501.8938	3.2548
4	Shimmer.APQ3	0.9078	0.9076	14.6589	30500.4613	3.2547
5	Jitter.PPQ5	0.9078	0.9076	13.9108	30499.7173	3.2548
6	NHR	0.9078	0.9076	12.7385	30498.5475	3.2547

Final model summary:

R	0.95	3 RM	ISE		3.255				
R-Squared	0.90	8 Co	ef. Var		11.217				
Adj. R-Square	ed 0.90	B MS	E		10.593				
Pred R-Square			_		2.431				
	Mean Square Erro								
MSE: Mean So	quare Error								
MAE: Mean Al	bsolute Error								
		ANOV							
	Sum of								
	Squares	DF		Square		Sig). 		
Regression	610043.669	14			4113.466	0.000	90		
	61959.317			10.593					
Total	672002.986	5863							
					Estimates				
mode	el Beta	Std.	Error	Std. B		t	Sig	lower	upper
(Intercept						1.828		-0.139	
ag	ge 0.068		0.005	0.	056 1	3.330	0.000	0.058	0.078
se	ex -1.403		0.102	-0.	061 -1	3.692	0.000	-1.604	-1.202
test_tim	ne 0.003		0.001	0.	013	3.180	0.001	0.001	0.004
motor_UPDF	RS 1.226		0.006	0.	931 21	5.774	0.000	1.215	1.238
Jitte	-271.965	5	2.637	-0.	143 -	5.167	0.000	-375.152	-168.778
Jitter.Ab	os 14032.325	308	7.240	0.	047	4.545	0.000	7980.192	20084.457
2111 01		-		-					

0.113

-0.114

0.141

-0.063

-0.039

0.030

-0.014

-0.033

c. Model equation:

Jitter.RAP

Shimmer.APQ5

immer.APQ11

Shimmer

HNR

DFA

PPE

385.396

-47.224

90.382

-33.614

-0.098

3.219

-2.123

-3.812

87.157

10.465

16.251

6.833

0.023

0.603

0.709 0.954

The final model after 6 steps of backward elimination consists of 14 independent variables. A total of 6 variables are eliminated from the full model and they are 'Jitter.DDP', 'Shimmer.dB', 'Shimmer.DDA', 'Shimmer.APQ3', 'Jitter.PPQ5' and 'NHR'.

4.422

-4.512

5.562

-4.919

-4.318

5.337

-2.994

-3.995

0.000

0.000

0.000

0.000

0.000

0.000

0.003

0.000

214.537

-67.740

58.523

-47.010

-0.143

2.036

-3.514

-5.682

556.255

-26.708

122.241

-20.218

-0.054

4.401

-0.733

-1.941

The **equation for the model** is written below based on the beta values generated from the model summary:

```
total UPDRS = 1.911 + 0.068*age - 1.403*sex + 0.003*test_time + 1.226*motor_UPDRS - 271.965*Jitter + 14032.325* Jitter.Abs + 385.396* Jitter.RAP - 47.224*Shimmer + 90.382*Shimmer.APQ5 - 33.614*Shimmer.APQ11 - 0.098* HNR + 3.219*RPDE - 2.123*DFA - 3.812*PPE
```

2. Variable selection method II:

a. Forward Selection:

Forward variable selection is a step-by-step iterative construction of a regression model where the **final model is built from a null model** (model with no variables) with only an intercept. The forward selection method at each step adds the most significant variable that gives the best improvement to the model. The significance of a variable here is determined based on the **entry criteria** set before the start of the process. Some of the parameters used to define the criteria are p-value, AIC, BIC, Fvalue, etc.

This process of adding variables and testing at each step continues as long as the model improves. The process stops once the model is no longer improving on adding more variables thus leading us to the final model.

b. Forward Model:

A final model is built on R using the Forward selection method, where the dependent variable is 'total_UPDRS' and all other variables are independent. All the variables in the parkinsons dataset are included except for test_time_hr and test_time_min. The reason is the same as stated in the previous section for not excluding the above two variables. The 'olsrr' package has been used to implement the Forward selection. The **entry criteria used is p-value which is set to 0.05**. So, at any step, the variable is checked for significance against this critical value.

On implementing the r code, the **following result is generated**:

☐ Selection Steps:

	_										
Forward Selection: Step	1			Forward Selection: St	ep 2			Forward Selection: S	itep 3		
+ motor_UPDRS	9			+ sex				+ age			
					7570 2582 68						
	Model Summa	iry			Model Sum	mary			Model Sum	mary	
	0.947	RMSE	3.432	R	0.950	RMSE	3.353	R	0.951	RMSE	3.309
	0.897 0.897	Coef. Var MSE	11.827 11.778	R-Squared Adj. R-Squared	0.902	Coef. Var MSE	11.557 11.246	R-Squared	0.905	Coef. Var MSE	11.405
	0.897	MAE	2.545	Pred R-Squared	0.902	MAE	2.423	Adj. R-Squared Pred R-Squared	0.904 0.904	MAE	10.951 2.440
RMSE: Root Mean Square MSE: Mean Square Error	Error			RMSE: Root Mean Squa MSE: Mean Square Err				RMSE: Root Mean Squ MSE: Mean Square En			
MAE: Mean Absolute Erro	r			MAE: Mean Absolute E				MAE: Mean Absolute			
Forward Selection: Step	4			Forward Selection: S	tep 5			Forward Selection:	Step 6		
+ RPDE				+ Shimmer.APQ11				+ Shimmer.APO5			
+ KPDE	_			+ Shimmer.APQII				Y SHEMMET I'M QS			
	Model Summa	iry			Model Sur	mmary			Model Si	ummary	
R	0.951	RMSE	3.301	R	0.952	RMSE	3.290	R	0.952	RMSE	3.280
	0.905	Coef. Var	11.375	R-Squared	0.906	Coef, Var	11.337	R-Squared	0.906	Coef. Var	11.303
	0.905	MSE MAE	10.894 2.436	Adj. R-Squared	0.906	MSE MAF	10.822	Adj. R-Squared Pred R-Squared	0.906 0.906	MSE MAE	10.757 2.433
Pred R-Squared	0.905	MAE	2.430	Pred R-Squared	0.905	MAE	2.434				
RMSE: Root Mean Square	Error			RMSE: Root Mean Squ				RMSE: Root Mean S			
MSE: Mean Square Error MAE: Mean Absolute Erro				MSE: Mean Square Er MAE: Mean Absolute				MSE: Mean Square MAE: Mean Absolut			
Forward Selection: Step	100			Forward Selection: S			-	Forward Selection:	10.000.0000		
Tornara Serection. Step				Torward Selection. 3	сер о			Tornara Screeceion.	эсср 3		
+ PPE				+ HNR				+ Jitter.Abs			
	Model Summa	ırv			Model Sun	nmarv			Model S	ummary	
	0.952 0.906	RMSE Coef. Var	3.276 11.292	R R-Squared	0.952 0.907	RMSE Coef. Var	3.271 11.272	R R-Squared	0.952 0.907	RMSE Coef. Var	3.268 11.264
	0.906	MSE	10.735	Adj. R-Squared	0.907	MSE Var	10.697	Adj. R-Squared	0.907	MSE Val	10.681
Pred R-Squared	0.906	MAE	2.429	Pred R-Squared	0.906	MAE	2.428	Pred R-Squared	0.907	MAE	2.423
RMSE: Root Mean Square	Error			RMSE: Root Mean Squi	are Error			RMSE: Root Mean S	auare Error		
MSE: Mean Square Error				MSE: Mean Square Er	ror			MSE: Mean Square	Error		
MAE: Mean Absolute Erro				MAE: Mean Absolute				MAE: Mean Absolut	Variable Control of the Control of t		
Forward Selection: Step	10			Forward Selection: St	ep 11			Forward Selection:	Step 12		
+ Shimmer				+ test_time				+ Jitter			
Mi .	Model Summa	in.			W-12 C				Model Sur	mary.	
					Model Sum	mary					
	0.952	RMSE	3.265	R	0.953	RMSE	3.263	R D. Course d	0.953	RMSE	3.262
	0.907 0.907	Coef. Var MSE	11.254 10.663	R-Squared Adj. R-Squared	0.907 0.907	Coef. Var MSE	11.247 10.649	R-Squared Adj. R-Squared	0.907 0.907	Coef. Var MSE	11.241 10.638
	0.907	MAE	2.422	Pred R-Squared	0.907	MAE	2.425	Pred R-Squared	0.907	MAE	2.422
RMSE: Root Mean Square	Error			DMCE: Dook Most Com				RMSE: Root Mean Sq	uano Ennon		
MSE: Mean Square Error	LITUE			RMSE: Root Mean Squa MSE: Mean Square Err				MSE: Mean Square E			
MAE: Mean Absolute Erro	r			MAE: Mean Absolute E				MAE: Mean Absolute			
Forward Selection: Step	13			Forward Selection: St	ep 14						
+ Jitter.RAP				DEA	20						
17 - 1.000, 11 - 12 - 15 - 15 - 15 - 15 - 15 - 15 -				+ DFA							
	Model Summa	iry			Model Sum						
R	0.953	RMSE	3.257	R	0.953	RMSE	3.255				
	0.908	Coef, Var	11.225	R-Squared	0.908	Coef. Var	11.217				
	0.907 0.907	MSE MAE	10.608 2.430	Adj. R-Squared	0.908	MSE	10.593				
u n-squareu				Pred R-Squared	0.907	MAE	2.431				
RMSE: Root Mean Square	Error			RMSE: Root Mean Squa							
MSE: Mean Square Error MAE: Mean Absolute Erro	r			MSE: Mean Square Err							
mas. Piculi Ausocuce Elifo	10			MAE: Mean Absolute E	rror						

[☐] Selection summary:

	Variable		Adj.			
tep	Entered	R-Square	R-Square	C(p)	AIC	RMSE
1	motor_UPDRS	0.8972	0.8972	655.5125	31133.6489	3.4319
2	sex	0.9019	0.9019	361.7038	30837.1672	3.3535
3	age	0.9045	0.9045	199.5796	30682.3511	3.3092
4	RPDE	0.9050	0.9050	169.1757	30652.8881	3.3006
5	Shimmer.APQ11	0.9057	0.9056	130.1451	30614.8051	3.2897
6	Shimmer.APQ5	0.9062	0.9061	95.2202	30580.4973	3.2798
7	PPE	0.9065	0.9063	83.9762	30569.4197	3.2764
8	HNR	0.9068	0.9067	64.3753	30550.0274	3.2707
9	Jitter.Abs	0.9070	0.9068	56.3739	30542.0960	3.2682
10	Shimmer	0.9071	0.9070	47.5117	30533.2908	3.2655
11	test_time	0.9073	0.9071	40.7418	30526.5523	3.2633
12	Jitter	0.9074	0.9072	35.5771	30521.4038	3.2616
13	Jitter.RAP	0.9077	0.9075	19.6963	30505.5249	3.2569
14	DFA	0.9078	0.9076	12.7385	30498.5475	3.2547

Model summary:

R	0.953	RMSE	3.255
R-Squared	0.908	Coef. Var	11.217
Adj. R-Squared	0.908	MSE	10.593
Pred R-Squared	0.907	MAE	2.431

RMSE: Root Mean Square Error MSE: Mean Square Error MAE: Mean Absolute Error

		ANOV	'A		
	Sum of				
	Squares	DF	Mean Square	F	Sig.
Regression	610043.669	14	43574.548	4113.466	0.0000
Residual	61959.317	5849	10.593		
Total	672002.986	5863			

Parameter Estimates

model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
(Intercept)	1.911	1.046		1.828	0.068	-0.139	3.961
motor_UPDRS	1.226	0.006	0.931	215.774	0.000	1.215	1.238
sex	-1.403	0.102	-0.061	-13.692	0.000	-1.604	-1.202
age	0.068	0.005	0.056	13.330	0.000	0.058	0.078
RPDE	3.219	0.603	0.030	5.337	0.000	2.036	4.401
Shimmer.APQ11	-33.614	6.833	-0.063	-4.919	0.000	-47.010	-20.218
Shimmer.APQ5	90.382	16.251	0.141	5.562	0.000	58.523	122.241
PPE	-3.812	0.954	-0.033	-3.995	0.000	-5.682	-1.941
HNR	-0.098	0.023	-0.039	-4.318	0.000	-0.143	-0.054
Jitter.Abs	14032.325	3087.240	0.047	4.545	0.000	7980.192	20084.457
Shimmer	-47.224	10.465	-0.114	-4.512	0.000	-67.740	-26.708
test_time	0.003	0.001	0.013	3.180	0.001	0.001	0.004
Jitter	-271.965	52.637	-0.143	-5.167	0.000	-375.152	-168.778
Jitter.RAP	385.396	87.157	0.113	4.422	0.000	214.537	556.255
DFA	-2.123	0.709	-0.014	-2.994	0.003	-3.514	-0.733

c. Model equation:

The final model after 14 steps of forward selection consists of 14 independent variables.

A total of 6 variables are not included and they are 'Jitter.DDP',

'Shimmer.dB', 'Shimmer.DDA', 'Shimmer.APQ3', 'Jitter.PPQ5' and 'NHR'.

The **equation for the model** is written below based on the beta values generated from the model summary:

```
total_UPDRS = 1.911 + 0.068*age - 1.403*sex + 0.003*test_time + 1.226*motor_UPDRS - 271.965*Jitter + 14032.325* Jitter.Abs + 385.396* Jitter.RAP - 47.224*Shimmer + 90.382*Shimmer.APQ5 - 33.614*Shimmer.APQ11 - 0.098* HNR + 3.219*RPDE - 2.123*DFA - 3.812*PPE
```

3. Variable selection method III:

a. Stepwise Selection:

Stepwise regression is a **combination of 'forward selection' and 'backward elimination'**. This method **is more flexible** compared to the above two methods. Like the above two methods, this method too is a step-by-step iterative construction. At each step first a variable is added based on pre-defined entry criteria and then all the variables already added in the model are checked for their significance against predefined exit criteria. If any variable in the added list is found to be nonsignificant, it is removed. Hence there are **two conditions set, one for entry and one for the exit**. These steps are continued until no more variables can be added or removed thus leading us to a final model.

b. Stepwise Model:

A final model is built on R using the stepwise regression method, where the dependent variable is 'total_UPDRS' and all other variables are independent. All the variables in the parkinsons dataset are included except for test_time_hr and test_time_min. The 'olsrr' package has been used to implement the Forward selection. The entry and exit criteria used is p-value which is set to 0.05. So, at any step, the variable is checked for significance against this critical value upon adding and for the significance of the variables already present in the model. If, at any step, a variable is found to be insignificant after adding, it is removed from the model.

On implementing the r code, the **following result is generated**:

Stepwise selection/elimination steps:

☐ <u>Stepwise summary:</u>

Stepwise Selection Summary

Step	Variable	Added/ Removed	R-Square	Adj. R-Square	C(p)	AIC	RMSE
1	motor_UPDRS	addition	0.897	0.897	655.5130	31133.6489	3.4319
2	sex	addition	0.902	0.902	361.7040	30837.1672	3.3535
3	age	addition	0.905	0.904	199.5800	30682.3511	3.3092
4	RPDE	addition	0.905	0.905	169.1760	30652.8881	3.3006
5	Shimmer.APQ11	addition	0.906	0.906	130.1450	30614.8051	3.2897
6	Shimmer.APQ5	addition	0.906	0.906	95.2200	30580.4973	3.2798
7	PPE	addition	0.906	0.906	83.9760	30569.4197	3.2764
8	HNR	addition	0.907	0.907	64.3750	30550.0274	3.2707
9	Jitter.Abs	addition	0.907	0.907	56.3740	30542.0960	3.2682
10	Shimmer	addition	0.907	0.907	47.5120	30533.2908	3.2655
11	test_time	addition	0.907	0.907	40.7420	30526.5523	3.2633
12	Jitter	addition	0.907	0.907	35.5770	30521.4038	3.2616
13	Jitter.RAP	addition	0.908	0.907	19.6960	30505.5249	3.2569
14	DFA	addition	0.908	0.908	12.7380	30498.5475	3.2547

Model summary:

R	0.953	RMSE	3.255
R-Squared	0.908	Coef. Var	11.217
Adj. R-Squared	0.908	MSE	10.593
Pred R-Squared	0.907	MAE	2.431

RMSE: Root Mean Square Error MSE: Mean Square Error MAE: Mean Absolute Error

		ANOV	/A		
	Sum of Squares	DF	Mean Square	F	Sig.
Regression	610043.669	14	43574.548	4113.466	0.0000
Residual	61959.317	5849	10.593		
Total	672002.986	5863			

Parameter Estimates

model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
(Intercept)	1.911	1.046		1.828	0.068	-0.139	3.961
motor_UPDRS	1.226	0.006	0.931	215.774	0.000	1.215	1.238
sex	-1.403	0.102	-0.061	-13.692	0.000	-1.604	-1.202
age	0.068	0.005	0.056	13.330	0.000	0.058	0.078
RPDE	3.219	0.603	0.030	5.337	0.000	2.036	4.401
Shimmer.APQ11	-33.614	6.833	-0.063	-4.919	0.000	-47.010	-20.218
Shimmer.APQ5	90.382	16.251	0.141	5.562	0.000	58.523	122.241
PPE	-3.812	0.954	-0.033	-3.995	0.000	-5.682	-1.941
HNR	-0.098	0.023	-0.039	-4.318	0.000	-0.143	-0.054
Jitter.Abs	14032.325	3087.240	0.047	4.545	0.000	7980.192	20084.457
Shimmer	-47.224	10.465	-0.114	-4.512	0.000	-67.740	-26.708
test_time	0.003	0.001	0.013	3.180	0.001	0.001	0.004
Jitter	-271.965	52.637	-0.143	-5.167	0.000	-375.152	-168.778
Jitter.RAP	385.396	87.157	0.113	4.422	0.000	214.537	556.255
DFA	-2.123	0.709	-0.014	-2.994	0.003	-3.514	-0.733

c. Model equation:

The final model after 14 steps of stepwise selection consists of 14 independent variables. A total of 6 variables are not selected and they are 'Jitter.DDP',

'Shimmer.dB', 'Shimmer.DDA', 'Shimmer.APQ3', 'Jitter.PPQ5' and 'NHR'.

The **equation for the model** is written below based on the beta values generated from the model summary:

```
total_UPDRS = 1.911 + 0.068*age - 1.403*sex + 0.003*test_time + 1.226*motor_UPDRS - 271.965*Jitter + 14032.325* Jitter.Abs + 385.396* Jitter.RAP - 47.224*Shimmer + 90.382*Shimmer.APQ5 - 33.614*Shimmer.APQ11 - 0.098* HNR + 3.219*RPDE - 2.123*DFA - 3.812*PPE
```

4. Comparing the models:

The models generated using the above methods are compared on various parameters to identify the best model. The **parameters used for the comparison are Adj R², RMSE, MAE, MSE, AIC and BIC**. While AIC and BIC are computed using AIC() and BIC() functions on R respectively, the remaining parameters are obtained from the model summary attached in the previous sections.

The table below summarizes the results for the three models:

	Backward elimination model (model 1)	Forward selection model (model 2)	Stepwise selection model (model 3)
Adj R ²	0.908	0.908	0.908
RMSE	3.302	3.302	3.302
MAE	2.449	2.449	2.449
MSE	10.906	10.906	10.906
AIC	30498.55	30498.55	30498.55
BIC	30605.37	30605.37	30605.37

Since the three methods have resulted in the same model, it is safe to assume that the model generated is the **best possible fit for the criteria defined**. It can also be observed from the above table that all the parameters have the same values for each model as they are representing the same independent and dependent variables.

Note:

In general, we always prefer models with the highest R² value and low values for RMSE, MAE, MSE, AIC and BIC.

5. <u>Issues with the variable selection:</u>

Although these selection methods are quick and easy, they have issues of their own. Some of the issues are as follows:

- <u>Miss suppressor relations:</u> Sometimes a predictor, which although has no correlation with a target variable, can help in predicting the target variable by complementing with parts of another predictor which doesn't help in explaining the target variable. These variables are called suppressor variables that enhance a model, and the forward selection or backward elimination can miss on these relations giving us not the most efficient model.
- Miss complementary variables: Complimentary variables are variables that are negatively correlated with each other. Often there can be such a pair in the list of predictors which together explain the target variable better thus enhancing the model. These relations can be missed while using a forward selection or backward elimination.
- <u>High probability of type 1 error:</u> Since the stepwise selection method performs a large number of T-tests at every step, there is a very high probability of type 1 error happening.
- <u>Lack of flexibility:</u> In forward and backward methods, once a variable is selected or eliminated it cannot be undone thus lacking flexibility. This leads to a serious efficiency issue of the model as these variables can either become significant at later steps of building the model or sometimes the variable can become insignificant after adding another variable.
- <u>Instability for low sample size:</u> There can be instability in choosing variables using the stepwise method if the sample size is small. Hence to overcome this, this method should always be used with a dataset having at least 50 events per variable.

• <u>Too many variables and collinearity issues:</u> These methods fail to provide the best model if there are too many candidate variables involved and also are bad at handling collinearity.

Hence these methods should only be used as a guide towards building the final model.

6. <u>Hypothetical question – What if we have too many predictors?</u>

While predictors help predict the target variable, having too many of them can lead to various issues. Three such issues are listed below:

Overfitting:

Overfitting is a problem caused in models when the model is very complicated and fits all the data very well. By complicated we mean including too many variables. Including too many variables **can retain some of the noisy variables** and when the model trains against this data and fits too close, the model becomes overfitted and cannot validate for data from new sources.

• Collinearity:

Including too many variables in a model can lead to collinearity issues. At times a pair of predictors can be spotted **having a high correlation** with each other. Having these pairs in the model can lead to inconsistent results or fluctuations. Hence, it's not a good practice to construct a complex model.

• Reduced statistical power:

Having too many variables in a model can **reduce the statistical power of the predictors and increase the chances of errors** in a model. So, unless the sample size is large, having too many variables in a regression model will affect the inference giving us a false sense of understanding.

7. Multicollinearity:

a. <u>Introduction:</u>

Multicollinearity is the state where there is a high correlation between two or more predictors that are used for a model. In simpler words, if one predictor can predict the other predictor there is a correlation between the two. Using such variables in a linear regression model can lead to redundancy issues thus giving skewed results.

On a high level, there are two types of multicollinearities:

- <u>Data-based multicollinearity:</u> This type of error is caused by poor design experiments or data collection methods. So before using data, it is important to identify if there are any high correlations.
- Structural multicollinearity: This is caused when the analyst while constructing a
 model creates new variables which are highly correlated with already existing
 predictors.

Since in regression models, our aim is to determine the effect of each predictor on the target variable, having multicollinearity can lead to a wrong interpretation as we do not know the clear effect of each individual variable. Hence it is very important to eliminate multicollinearity in regression models.

b. Methods to identify multicollinearity:

Three methods to identify multicollinearity are as follows:

Correlation matrix:

By generating a correlation matrix, we obtain the correlation coefficient values for all potential predictors being used. Using these values, one can spot pairs of variables that are having high correlation and thus can remove one of them from the model.

• Variance Inflation Factor:

The variance inflation factor is yet another method where a VIF test is run on the model in which multicollinearity is being assessed. After obtaining the results, we look for variables that have a VIF value greater than 5. The variables that are identified are the ones with high correlation with another predictor in the model.

• <u>High Standard errors:</u>

This is a very quick way to identify collinearity. After generating the model, the variables with high standard error for their coefficients are noted. These variables are the reason for multicollinearity in the model. It is best practice to confirm the results generated by this method with another method.

c. <u>Implementing the above methods:</u>

The above methods are implemented one by one to identify the variables which are posing the issue of multicollinearity.

Correlation matrix:

The correlation matrix has been created for the variables in the model to observe collinearity in the model. This has been achieved using the 'cor()' function on R. The generated result is as follows:

From the above matrix, we can see a **high correlation between Jitter and Jitter.RAP**. Also, a **high correlation can be observed between Jitter and Jitter.Abs**.

Other interesting pairs are Shimmer variables. **High correlation is noted among different Shimmer variables**. HNR can also be spotted with a high correlation with Shimmer and other variables of Shimmer.

• Variance Inflation Factor:

Variance inflation factor has been calculated for the final model generated using the selection methods. The result generated after running the vif() function for the final model is as follows:

> vif(finalmo	del)						
age	sex	test_time	motor_UPDRS	Jitter	Jitter.Abs	Jitter.RAP	Shimmer
1.130542	1.260827	1.014316	1.182252	48.555480	6.828097	41.083911	40.448104
Shimmer.APQ5	Shimmer.APQ11	HNR	RPDE	DFA	PPE		
40.567483	10.320015	5.285742	2.055809	1.398114	4.214126		

From the above output, we can notice that **Jitter**, **Jitter**.**Abs**, **Jitter**.**RAP**, **Shimmer**.**APQ5**, **Shimmer**.**APQ11**. Since HNR has a score of 5.28 which is very close to 5, the collinearity threat posed by this variable is not significant.

☐ High Standard Errors for coefficients:

After generating the model, the standard errors are checked for high values. The result for the model summary is as follows:

Coefficients:					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	1.9112051	1.0456829	1.828	0.06764	
age	0.0683262	0.0051258	13.330	< 0.000000000000000000002	***
sex	-1.4031464	0.1024760	-13.692	< 0.000000000000000000	***
test_time	0.0025476	0.0008012	3.180	0.00148	**
motor_UPDRS	1.2264538	0.0056840	215.774	< 0.0000000000000000000002	***
Jitter	-271.9649284	52.6366422	-5.167	0.0000002460	***
Jitter.Abs	14032.3245541	3087.2403356	4.545	0.0000055971	***
Jitter.RAP	385.3960796	87.1567020	4.422	0.0000099619	***
Shimmer	-47.2241852	10.4652654	-4.512	0.0000065332	***
Shimmer.APQ5	90.3819937	16.2513691	5.562	0.0000000279	***
Shimmer.APQ11	-33.6136516	6.8334796	-4.919	0.0000008938	***
HNR	-0.0982873	0.0227629	-4.318	0.0000160146	***
RPDE	3.2186516	0.6031372	5.337	0.0000000983	***
DFA	-2.1232970	0.7092906	-2.994	0.00277	**
PPE	-3.8118009	0.9540747	-3.995	0.0000654098	***

From the above results, it can be quickly noted that **the three Jitter and the three Shimmer variables have high standard errors**. Hence these variables cause multicollinearity in the model.

Conclusion:

Upon analyzing the selected variables using the three methods listed above, a common inference can be made. The three Jitter and three Shimmer variables are having high collinearity among themselves. The results are summarized below:

S.no.	Variables		Parameters				
		Correlation			VIF	Standard Error	
		Coefficient					
1.	Jitter	High vand 3	with	2	48.55	52.636	
2.	Jitter.Abs	High vand 2	with	1	6.828	3087.24	
3.	Jitter.RAP	High vand 3	with	1	41.08	87.156	
4.	Shimmer	High v	with	5	40.44	10.46	
5.	Shimmer.APQ5	High vand 6	with	4	40.56	16.25	
6.	Shimmer.APQ11	High vand 5	with	4	10.32	6.3	

Note: s.no of the variables are mentioned under the correlation coefficient column.

Hence the final model can **drop Jitter.Abs, Jitter.RAP, Shimmer.APQ5** and **Shimmer.APQ11** from the model and **retain Jitter and Shimmer** to remove multicollinearity.