Planificación de CPU

Adaptación de diferentes referencias (ver al final)

Conceptos

- Un solo procesador (o núcleo) significa un solo proceso a la vez en ejecución.
- Grado de multiprogramación
 - Número de procesos activos (en memoria principal) que mantiene un sistema
 - A más procesos activos mayor probabilidad de encontrar un proceso listo para ejecutar
 - Afecta de forma importante el rendimiento de un computador
- Objetivo de la multiprogramación
 - Tener algún proceso ejecutándose en todo momento para maximizar el uso de CPU

Ráfagas de CPU y de E/S

- La ejecución de un proceso consiste en alternar entre dos estados
 - En ejecución (ráfaga de CPU)
 - En espera por E/S (ráfaga de E/S)
- Patrón cíclico de ejecución de un proceso
- Objetivo de multiprogramación
 - Usar los tiempos de espera de E/S de un proceso para darle la CPU a otro proceso

• • •

Planificador de CPU

- Forma parte del núcleo del S.O
- Entra en ejecución cada vez que se activa el S.O
- Selecciona el siguiente proceso a ejecutar
 - Lo selecciona de la cola de listo.
 - La cola de listo puede atenderse con diferentes disciplinas.
 - No necesariamente es FIFO.

Planificación apropiativa y no apropiativa

- Circunstancias en las que entra el planificador a tomar decisiones
 - 1. Proceso pasa de ejecución a espera (E/S o llamada a wait)
 - 2. Proceso pasa de ejecución a listo (ocurre una interrupción)
 - 3. Proceso pasa de **espera** a **listo** (se completa una operación de E/S)
 - 4. Proceso termina

Planificación apropiativa y no apropiativa

Circunstancias 1 y 4

- No hay decisiones en términos de planificación
- Siempre que haya un proceso en estado de listo, él es el que sigue en CPU
- Planificación NO apropiativa
- El proceso permanece en CPU hasta que termine o hasta que pase a espera

Circunstancias 2 y 3

- Si hay decisiones en términos de planificación
- ¿A quién se le asigna la CPU? ¿Al proceso interrumpido? ¿A otro? ¿Se interrumpe el que ya está en ejecución?
- Planificación apropiativa
- Se dan condiciones de carrera: un proceso actualizando datos (compartidos) y entra otro

Despachador

- Forma parte del núcleo del S.O
- Responsable de entregarle a la CPU el proceso seleccionado por el planificador
 - Realiza el cambio de contexto
 - Cambia el modo de ejecución: pasa de modo kernel (ring 0) a modo usuario (ring 3)
 - Apunta el registro IP a la siguiente instrucción del proceso que será ejecutado
- Estas operaciones introducen un retardo
 - Retardo del despachador
 - Se desea que sea lo más rápido posible

Despachador

Criterios (objetivos) de planificación

Utilización CPU

• Mantener la CPU lo más ocupada posible: ejecutando algún proceso.

Throughput

Número de procesos que se completan por unidad de tiempo.

Tiempo de ida y vuelta

• Suma de tiempos: de espera en cola de listo + tiempo en CPU + tiempo en E/S

Tiempo de espera

• Suma de tiempos en los que proceso pasa esperando en la cola de listo.

• Tiempo de respuesta

 Tiempo que le toma al proceso comenzar a responder después de recibir una solicitud

Criterios (objetivos) de planificación

Deseable maximizar

- Uso de CPU
- Throughput

Deseable minimizar

- Tiempo de ida y vuelta
- Tiempo de espera
- Tiempo de respuesta

POSIX

- POSIX es una estándar de IEEE
 - Recomendación de una interfaz estándar del S.O.
 - También como Single Unix Specification SUS (hoy SUSv4 POSIX.1-2008)
- Incluye
 - Interfaz estándar del S.O y el entorno
 - Interpretes de comandos
 - Programas y utilidades comunes
- Propósito
 - Apoyar la portabilidad de aplicaciones a nivel de código fuente
- P. Ej.: POSIX.1
 - Biblioteca estándar de C, creación y control de procesos, etc.

Planificación en POSIX

- Cada proceso (o hilo) lleva asociada
 - Una política de planificación
 - Una prioridad
- Cada política de planificación lleva asociada un rango de prioridades
 - Al menos 32 niveles de prioridad según estándar POSIX
 - El planificador selecciona siempre el proceso con la prioridad más alta
- Linux/Unix
 - 40 niveles de prioridad: desde -20 (la más alta) a 19 (la más baja)
 - Procesos iniciados por usuarios se les asigna prioridad 0
 - El comando **nice** sirve para modificar la prioridad de un proceso en ejecución

Colas de planificación

Palabra resumen

Políticas de planificación en POSIX

• FIFO

- 1. Procesos se agregan al final de la cola de su prioridad asociada
- 2. Proceso se expulsa de CPU cuando ejecute llamada bloqueante
- Proceso se expulsa de CPU cuando aparezca un proceso con mayor prioridad

Reglas del planificador para FIFO

- 1. Proceso expulsado por causa No. 3: proceso expulsado pasa a ser el primero de la cola de su prioridad
- Proceso pasa de bloqueado a listo: proceso se agrega al final de la cola de su prioridad
- 3. Cambio de prioridad o política: se realiza replanificación, si resulta expulsado, se agrega al final de la cola

Políticas de planificación en POSIX

• Cíclica

- Se asigna rodaja de tiempo (quantum) a procesos en colas de prioridad
- Proceso que acaba su *quantum* se agrega al final de la cola de su prioridad
- Proceso expulsado por otro de mayor prioridad: expulsado se agrega al principio de la cola pero sin restaurar su *quantum*.

Planificación en Windows

- La unidad fundamental de planificación en Windows es el hilo
- Se usan 32 niveles de prioridades en planificación cíclica
 - 1. Dieciséis niveles para procesos en tiempo real: del 16 al 31
 - 2. Quince niveles variables: del 1 al 15
 - 3. Un nivel para el sistema: 0
- Procesos en mismo nivel reciben el mismo quantum.
- Procesos en nivel dos:
 - Inician con una prioridad determinada y ésta va cambiando pero sin llegar a nivel 16.
 - Prioridad disminuye si acaba su quantum
 - Prioridad aumenta si proceso se bloquea por E/S

Planificación en Windows

- Lectura complementaria
 - Processes, Threads, and Jobs in the Windows Operating System
 - https://www.microsoftpressstore.com/articles/article.aspx?p=2233328&seq <a href="https://www.microsoftpressstore.com/articles/article.aspx?p=2233328&seq

Referencias

- Carretero Pérez, J., García Carballeira, F., de Miguel Anasagasti, P., & Pérez Costoya, F. (2001). Planificación. In Sistemas operativos. Una Visión Aplicada (pp. 102–109). McGraw Hill.
- Silberschatz, A., Baer Galvin, P., & Gagne, G. (2018). CPU Scheduling.
 In Operating Systems Concepts (10th ed., pp. 199–205). John Wiley & Sons, Inc.