rocks-classification

October 27, 2024

```
[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

[4]: rock_data = pd.read_excel("aggregateRockData-1.xlsx", usecols=[1], nrows=480, userial order ord
```

Displaying the statistical values for each of the attributes, along with visualizations (e.g., histogram) of the distributions for each attribute.

```
[5]: # Assign meaningful column names
     attribute names = [
         "Porphyritic texture",
         "Presence of holes",
         "Salient green hue",
         "Pegmatitic texture",
         "Conchoidal fracture",
         "Angular fragments",
         "Rounded fragments",
         "Straight stripes",
         "Curved stripes",
         "Physical layers",
         "Veins",
         "Oily/shimmery texture",
         "Splotchy texture",
         "Single translucent crystal",
         "Multiple cubic crystals",
         "Sandy texture",
         "Fragments (disjunctive)",
         "Stripes (disjunctive)",
         "Crystals (disjunctive)"
     ]
```

```
attribute_data.columns = attribute_names
```

${\bf Statistical\ descriptions}$

```
[6]: # Display summary statistics
statistics = attribute_data.describe()
print(statistics)
```

1	<u> </u>				
	Porphyritic texture	Presence of holes	s Salient green	hue \	
count	480.000000		•		
mean	0.000452	-0.019915	-0.00	2570	
std	1.001392	0.990022	0.99	3719	
min	-1.321491	-0.407623	-1.18	7950	
25%	-0.823647	-0.407623	-0.76	1505	
50%	-0.300910	-0.407623	-0.37	5197	
75%	0.766966	-0.159688	0.51	7828	
max	2.422299	4.551072	2.75	0390	
	Pegmatitic texture	Conchoidal fractu	re Angular frag	ments \	
count	480.000000	480.00000	00 480.0	00000	
mean	-0.000836	-0.01230	0.0	06879	
std	0.979725	0.99748	0.9	85432	
min	-1.322715	-1.24801	-0.4	36004	
25%	-0.804631	-0.69914	15 -0.4	36004	
50%	-0.165660	-0.28430	0.4	36004	
75%	0.576929	0.35710	7 -0.1	82021	
max	4.175892	3.81305	59 4.6	43652	
	Rounded fragments	Straight stripes (Curved stripes	Physical layers	\
count	480.000000	480.000000	480.000000	480.000000	
mean	0.011081	0.002554	-0.001276	0.000504	
std	1.028314	1.020964	0.985604	0.996473	
min	-0.405184	-0.352386	-0.260224	-0.759128	
25%	-0.405184	-0.352386	-0.260224	-0.759128	
50%	-0.405184	-0.352386	-0.260224	-0.299173	
75%	-0.145018	-0.352386	-0.260224	0.218277	
max	4.798130	4.888957	5.862693	3.610446	
	Veins Oily/sh	immery texture Spl	Lotchy texture	\	
count	480.000000	480.000000	480.000000		
mean	0.010035	0.000827	-0.000623		
std	1.023300	0.995705	1.006313		
min	-0.512160	-0.540653	-0.846887		
25%	-0.512160	-0.540653	-0.846887		
50%	-0.512160	-0.540653	-0.249084		
75%	-0.013842	-0.165887	0.348718		
max	8.457556	3.207009	4.832237		

	Single translucent crysta	l Multiple cubic crys	tals Sandy texture \
count	480.00000	0 480.00	0000 480.000000
mean	0.00476	3 -0.01	8912 -0.003855
std	0.99672	6 0.92	0.986349
min	-0.22792	2 -0.22	5045 -0.685937
25%	-0.22792	2 -0.22	5045 -0.685937
50%	-0.22792	2 -0.22	5045 -0.401124
75%	-0.22792	2 -0.22	5045 0.168500
max	7.12001	0 7.98	5.010309
	Fragments (disjunctive)	Stripes (disjunctive)	Crystals (disjunctive)
count	480.000000	480.000000	480.000000
mean	0.003679	-0.001351	-0.010683
std	1.004865	1.006172	0.966634
min	-0.541391	-0.409247	-0.310419
25%	-0.541391	-0.409247	-0.310419
50%	-0.541391	-0.409247	-0.310419
75%	0.010423	-0.207298	-0.310419
max	3.137369	3.629722	5.216791

Visualizations

```
[7]: # Plot histograms for each attribute
     for column in attribute_data.columns:
         plt.figure(figsize=(8, 4))
         sns.histplot(attribute_data[column], kde=True)
         plt.title(f'Distribution of {column}')
         plt.xlabel(column)
         plt.ylabel("Frequency")
         plt.show()
```


From looking at the histograms, we can see that all the attributes are mostly stretching to the right, which means they are right-skewed. Some attributes, like the angular and rounded fragments, as well as the veins, show similar kinds of patterns in how they spread out. On the other hand, attributes like crystals and stripes, along with multiple cubic and single translucent crystals, have a lot of small values but hardly any large ones when you look at how often they come up.

Tried to fix this skewness by using a square root change on the attributes. We chose this method

because we wanted to make the spread of the attributes more even, especially since they were so heavily right-skewed.

```
[8]: import numpy as np

# Create a list of column names (attributes) in your dataset
attribute_data_columns = attribute_data.columns

# Apply a square root transformation to each attribute
for attr in attribute_data_columns:
    # Check if the attribute is numeric (e.g., not a label)
    if np.issubdtype(attribute_data[attr].dtype, np.number):
        attribute_data[attr] = np.sqrt(attribute_data[attr])
```

C:\Users\WELCOME\AppData\Local\Programs\Python\Python311\Lib\site-packages\pandas\core\arraylike.py:396: RuntimeWarning: invalid value encountered in sqrt

result = getattr(ufunc, method)(*inputs, **kwargs)

```
[9]: # Plot histograms for each attribute
for column in attribute_data.columns:
    plt.figure(figsize=(8, 4))
    sns.histplot(attribute_data[column], kde=True)
    plt.title(f'Distribution of {column}')
    plt.xlabel(column)
    plt.ylabel("Frequency")
    plt.show()
```


The skewness is removed by applying Square root transform

[10]: attribute_data.isnull().sum()

```
[10]: Porphyritic texture
                                     285
     Presence of holes
                                     387
      Salient green hue
                                     293
      Pegmatitic texture
                                     272
      Conchoidal fracture
                                     300
      Angular fragments
                                     375
      Rounded fragments
                                     382
      Straight stripes
                                     411
      Curved stripes
                                     411
      Physical layers
                                     338
      Veins
                                     381
      Oily/shimmery texture
                                     367
      Splotchy texture
                                     293
      Single translucent crystal
                                     432
      Multiple cubic crystals
                                     418
      Sandy texture
                                     352
      Fragments (disjunctive)
                                     359
      Stripes (disjunctive)
                                     407
      Crystals (disjunctive)
                                     427
      dtype: int64
```

Analysing and discuss the relationships between the data attributes and between the data attributes and labels. This involves computing the Pearson Correlation Coefficient (PCC) and generating scatter plots

\

```
[11]: correlation_matrix = attribute_data.corr()
    print(correlation_matrix)
# Generate scatter plots for key attribute pairs
    sns.pairplot(attribute_data)
    plt.show()
```

	Porphyritic texture	Presence of holes
Porphyritic texture	1.000000	-0.181601
Presence of holes	-0.181601	1.000000
Salient green hue	0.205400	-0.008385
Pegmatitic texture	0.146925	-0.047175
Conchoidal fracture	0.062225	-0.291075
Angular fragments	0.464689	-0.122688
Rounded fragments	0.544725	-0.298588
Straight stripes	-0.090426	0.713204
Curved stripes	-0.390138	-0.882783
Physical layers	-0.854029	-0.364786
Veins	-0.091997	NaN
Oily/shimmery texture	0.013736	-0.440973
Splotchy texture	-0.210356	-0.223379
Single translucent crystal	0.059161	-1.000000
Multiple cubic crystals	-0.453815	0.362936
Sandy texture	-0.363811	-0.214095

Fragments (disjunctive) Stripes (disjunctive) Crystals (disjunctive)	0.694560 -0.229228 -0.586914		0.450846	
Porphyritic texture Presence of holes Salient green hue Pegmatitic texture Conchoidal fracture Angular fragments Rounded fragments	Salient	green hue 0.205400 -0.008385 1.000000 0.045326 -0.028137 0.089501 0.001050	0.146925 -0.047175 0.045326 1.000000 -0.162763 0.020349 0.172993	\
Straight stripes Curved stripes Physical layers Veins Oily/shimmery texture Splotchy texture Single translucent crystal Multiple cubic crystals Sandy texture Fragments (disjunctive) Stripes (disjunctive) Crystals (disjunctive)		-0.179423 -0.056188 -0.247542 -0.030061 -0.202921 -0.084205 -0.543265 -0.115566 -0.150152 0.105762 -0.149615 -0.556113	-0.420904 -0.345259 0.036484 -0.111310 -0.323804 -0.256783 -0.361574 0.225359 -0.335719 0.140796 -0.688255 0.034766	
Porphyritic texture Presence of holes Salient green hue Pegmatitic texture Conchoidal fracture Angular fragments Rounded fragments Straight stripes Curved stripes Physical layers Veins Oily/shimmery texture Splotchy texture	Conchoi	dal fracture 0.062228 -0.291078 -0.028137 -0.162763 1.000000 -0.126733 -0.482527 -0.284143 -0.259150 -0.268292 -0.074132 0.465138	0.464689 -0.122688 0.089501 0.020349 -0.126731 1.000000 -0.153708 3.0.273148 0.234508 -0.376744 -0.649544	\
Single translucent crystal Multiple cubic crystals Sandy texture Fragments (disjunctive) Stripes (disjunctive) Crystals (disjunctive)		-0.008356 -0.212238 -0.145163 -0.196974 -0.382982 -0.298599	1.000000 3 -0.127619 4 -0.488482 0.685520 -0.975556	

Presence of holes	-0.298588	0.713204	
Salient green hue	0.001050	-0.179423	
Pegmatitic texture	0.172993	-0.420904	
Conchoidal fracture	-0.482527	-0.284143	
Angular fragments	-0.153708	-0.273148	
Rounded fragments	1.000000	NaN	
Straight stripes	NaN	1.000000	
Curved stripes	0.183589	-0.427620	
Physical layers	-0.156671	-0.328523	
Veins	0.650269	0.152600	
Oily/shimmery texture	0.006354	-0.035397	
Splotchy texture	-0.517974	0.064573	
Single translucent crystal	-1.000000	-0.605092	
Multiple cubic crystals	-0.242109	-0.549232	
Sandy texture	-0.444239	-0.094047	
Fragments (disjunctive)	0.659817	0.787314	
Stripes (disjunctive)	NaN	0.754480	
Crystals (disjunctive)	0.278345	0.219075	
5	- •	cal layers Veins \	
Porphyritic texture	-0.390138	-0.854029 -0.091997	
Presence of holes	-0.882783	-0.364786 NaN	
Salient green hue	-0.056188	-0.247542 -0.030061	
Pegmatitic texture	-0.345259	0.036484 -0.111310	
Conchoidal fracture	-0.259150	-0.268292 -0.074132	
Angular fragments	0.234508	-0.376744 -0.649544	
Rounded fragments	0.183589	-0.156671 0.650269	
Straight stripes	-0.427620	-0.328523 0.152600	
Curved stripes	1.000000	-0.277384 -0.062625	
Physical layers	-0.277384	1.000000 -0.191052	
Veins	-0.062625	-0.191052 1.000000	
Oily/shimmery texture	-0.227129	-0.182128 0.020681	
Splotchy texture	-0.221643	-0.133042 -0.251296	
Single translucent crystal	-0.387456	-0.382353 -0.028522	
Multiple cubic crystals	NaN	-0.090518 0.728863	
Sandy texture	-0.297645	-0.236198 -0.152459	
Fragments (disjunctive)	0.031828	-0.251886 0.013013	
Stripes (disjunctive)	0.460361	-0.426823 -0.053723	
Crystals (disjunctive)	-1.000000	-0.162053 -0.051784	
	Oily/shimmery texture	Splotchy texture \	
Porphyritic texture	0.013736	-0.210356	
Presence of holes	-0.440973		
Salient green hue	-0.202921		
Pegmatitic texture	-0.323804		
Conchoidal fracture	0.465135	-0.008356	
Angular fragments	-0.508341		
Rounded fragments	0.006354		
Montaga Trasmenta	0.000354	0.011314	

Straight stripes Curved stripes Physical layers Veins Oily/shimmery texture Splotchy texture Single translucent crystal Multiple cubic crystals Sandy texture Fragments (disjunctive) Stripes (disjunctive)	-0.035397 -0.227129 -0.182128 0.020681 1.000000 -0.013358 -0.441816 -0.417975 -0.484977 -0.365708 -0.190696	0.064573 -0.221643 -0.133042 -0.251296 -0.013358 1.000000 -0.109616 -0.577366 -0.311917 -0.426579 0.425135
Crystals (disjunctive)	-0.419929	0.048581
Porphyritic texture Presence of holes Salient green hue Pegmatitic texture Conchoidal fracture Angular fragments Rounded fragments Straight stripes Curved stripes Physical layers Veins Oily/shimmery texture Splotchy texture Splotchy texture Single translucent crystal Multiple cubic crystals Sandy texture Fragments (disjunctive) Stripes (disjunctive)	Single translucent crysts 0.05916 -1.00000 -0.54326 -0.36157 -0.21223 1.00000 -1.00000 -0.60509 -0.38749 -0.38239 -0.02853 -0.02853 -0.10963 1.00000 -0.63418 Na 0.62226 -0.63630 0.50558	51 50 55 74 38 50 50 52 16 16 16 10 50 aN 52 57
Porphyritic texture Presence of holes Salient green hue Pegmatitic texture Conchoidal fracture Angular fragments Rounded fragments Straight stripes Curved stripes Physical layers Veins Oily/shimmery texture Splotchy texture	Multiple cubic crystals -0.453815 0.362936 -0.115566 0.225359 -0.145163 -0.127619 -0.242109 -0.549232 NaN -0.090518 0.728863 -0.417975 -0.577366	Sandy texture \ -0.363811 -0.214095 -0.150152 -0.335719 -0.196974 -0.488482 -0.444239 -0.094047 -0.297645 -0.236198 -0.152459 -0.484977 -0.311917

Single translucent crystal Multiple cubic crystals Sandy texture Fragments (disjunctive) Stripes (disjunctive) Crystals (disjunctive)	-0.634150 1.000000 -0.500000 -0.209574 NaN 0.714061	NaN -0.500000 1.000000 -0.488427 -0.159306 NaN	
Porphyritic texture Presence of holes Salient green hue Pegmatitic texture Conchoidal fracture Angular fragments Rounded fragments Straight stripes Curved stripes Physical layers Veins Oily/shimmery texture Splotchy texture Splotchy texture Single translucent crystal Multiple cubic crystals Sandy texture Fragments (disjunctive) Stripes (disjunctive)	Fragments (disjunctive)	Stripes (disjunctive) -0.229228 0.450846 -0.149615 -0.688255 -0.298599 -0.975556 NaN 0.754480 0.460361 -0.426823 -0.053723 -0.190696 0.425135 -0.636307 NaN -0.159306 1.000000 1.000000	
Crystals (disjunctive)	0.073724	0.447979	
Porphyritic texture Presence of holes Salient green hue Pegmatitic texture Conchoidal fracture Angular fragments Rounded fragments Straight stripes Curved stripes Physical layers Veins Oily/shimmery texture Splotchy texture Single translucent crystal Multiple cubic crystals Sandy texture Fragments (disjunctive) Stripes (disjunctive) Crystals (disjunctive)	Crystals (disjunctive) -0.586914 -0.091124 -0.556113 0.034766 -0.274594 -0.203835 0.278345 0.219075 -1.000000 -0.162053 -0.051784 -0.419929 0.048581 0.505556 0.714061 NaN 0.073724 0.447979 1.000000		

PCC between label (rock category) and attributes

```
[12]: correlation_matrix = pd.concat([rock_data, attribute_data], axis=1).corr()
    correlation_with_label = correlation_matrix.iloc[0, 1:]

# Display PCC values for each attribute
    print("Pearson Correlation Coefficients with Label:")
    print(correlation_with_label)
```

Pearson Correlation Coefficients with Label:

Porphyritic texture -0.017944
Presence of holes -0.272771
Salient green hue -0.155960
Pegmatitic texture 0.024465

```
Conchoidal fracture
                              -0.146585
Angular fragments
                               0.262784
Rounded fragments
                               0.422041
Straight stripes
                               0.035009
Curved stripes
                              -0.142699
Physical layers
                              -0.039881
Veins
                               0.065365
Oily/shimmery texture
                              -0.202985
Splotchy texture
                              -0.123487
Single translucent crystal
                               0.467668
Multiple cubic crystals
                               0.552165
Sandy texture
                               0.301058
Fragments (disjunctive)
                               0.481428
Stripes (disjunctive)
                              -0.224850
Crystals (disjunctive)
                               0.658528
Name: rock category, dtype: float64
```

For training data, used token numbers 1-10, for validation 11 to 13, and for testing 14 to 16 (each of the 30 rock subtypes has 16 token numbers).

```
[13]: # Concatenate the two dataframes
full_data = pd.concat([rock_data, attribute_data,token_data], axis=1)
for column in attribute_data.columns:
    plt.figure(figsize=(8, 4))
    plt.scatter(full_data[column], full_data["rock category"], alpha=0.5)
    plt.title(f'Scatter Plot of {column} vs. Rock Category')
    plt.xlabel(column)
    plt.ylabel("Rock Category")
    plt.show()
```


Looking at how the attributes and the label relate to each other:

- Attributes like "Crystals (disjunctive)," "Multiple cubic crystals," and "Single translucent crystal" seem to go up as the label goes up too. This shows they've got a strong connection where if one is big, the other one is likely to be big too.
- For attributes such as "Presence of holes," "Sandy texture," and "Fragments (disjunctive),"

they kind of have a good connection with the label as well, but it's not as strong.

- Then there are attributes like "Rounded fragments" and "Angular fragments" that also go up with the label, but the connection is not that big.
- On the flip side, attributes that have a negative link, like "Veins," go in the opposite direction of the label. So if the value for "Veins" is high, the label value tends to be lower.
- There are some attributes, "Porphyritic texture" and "Pegmatitic texture," that don't really move much in line with the label. They don't show much of a link.

Knowing these connections is super helpful because it tells us which attributes can really help us guess the label's values better.

```
[14]: full_data.describe()
full_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 480 entries, 0 to 479
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	rock category	480 non-null	 int64
1	Porphyritic texture	195 non-null	float64
2	Presence of holes	93 non-null	float64
3	Salient green hue	187 non-null	float64
4	Pegmatitic texture	208 non-null	float64
5	Conchoidal fracture	180 non-null	float64
6	Angular fragments	105 non-null	float64
7	Rounded fragments	98 non-null	float64
8	Straight stripes	69 non-null	float64
9	Curved stripes	69 non-null	float64
10	Physical layers	142 non-null	float64
11	Veins	99 non-null	float64
12	Oily/shimmery texture	113 non-null	float64
13	Splotchy texture	187 non-null	float64
14	Single translucent crystal	48 non-null	float64
15	Multiple cubic crystals	62 non-null	float64
16	Sandy texture	128 non-null	float64
17	Fragments (disjunctive)	121 non-null	float64
18	Stripes (disjunctive)	73 non-null	float64
19	Crystals (disjunctive)	53 non-null	float64
20	Token Number	480 non-null	int64
d+177	ag: flas+64(10) in+64(2)		

dtypes: float64(19), int64(2)

memory usage: 78.9 KB

```
[15]: # Drop the specified columns from the DataFrame features_updated=full_data.copy()
```

:	0 1 2 3 4	Porphyriti	1.300180 1.290572 1.494362 1.487684 1.352725	Presence	e of holes NaN NaN NaN NaN NaN 0.621102	Pegmatiti	0.357662 NaN NaN NaN 0.305586	\	
	 475		 NaN		 NaN		 NaN		
	476		NaN		NaN		NaN		
	477		NaN		NaN		NaN		
	478		NaN		NaN		NaN		
	479		1.235386		0.432920		NaN		
		Conchoidal	l fracture	Angular	fragments	Straight a	stripes	Veins	\
(0		NaN	Ü	1.692859	C	NaN	NaN	
	1		NaN		1.616103		NaN	NaN	
:	2		NaN		0.268257		NaN	NaN	
;	3		NaN		1.158394		NaN	NaN	
4	4		NaN		1.263273		NaN	NaN	
			•••		•••				
4	475		NaN		NaN		NaN	NaN	
4	476		0.501798		NaN		NaN	NaN	
4	477		NaN		NaN		NaN O	.696042	
4	478		0.768152		NaN		NaN	NaN	
4	479		NaN		0.761529		NaN	NaN	
		Oily/shimm	mery textur	e Sploto	hy texture	Single to	ranslucent	crystal	. \
(0		Na		NaN			NaN	
	1		Na		1.115985			NaN	
	2		Na		NaN			NaN	
	3		Na		NaN			NaN	
4	4		Na	.N	0.804748			NaN	
	• •		•••		•••			•••	
	475		Na		NaN			NaN	
	476		Na		NaN			NaN	
	477		Na		NaN			NaN	
	478		Na		NaN			NaN	
4	479		Na	N	1.115985			NaN	
		Multiple o	cubic cryst		ly texture	Fragments	_		
	0		0.430		NaN			9314	
	1			NaN	NaN			0684	
	2			NaN	NaN		1.62	5034	

	3		NaN		NaN				1.6306			
	4		NaN		NaN				1.2173	344		
			•••		•••				•••			
	475		NaN	1.1	43569				1	NaN		
	476		NaN	0.6	73284				1	NaN		
	477		NaN		73284				ו	NaN		
	478		NaN		10488					NaN		
	479		NaN		NaN				0.5843			
	413		IValv		IValv				0.0040	550		
		Stripes (disjunct	iva) (Cruetale (digiunc	+ivo)	Toko	n N	Jumber			
	0	bullpes (disjunct	NaN	orystars (arsjund	NaN	TORC	,11 1	1			
	0											
	1		NaN			NaN			2			
	2		NaN			NaN			3			
	3		NaN			NaN			4			
	4		NaN			${\tt NaN}$			5			
			•••			•••		•••				
	475		NaN			${\tt NaN}$			12			
	476		NaN			NaN			13			
	477		NaN			NaN			14			
	478		NaN			NaN			15			
	479		NaN			NaN			16			
[16]:	fea	tures_updated.head	()									
[16]:		rock category Porp	hvriti	c texture	Presen	ce of h	വിക		Salient	green	hue	\
[10].	0	1	,11 J L L U L	1.300180	1100011	.00 01 1	NaN		Julioni	91 00II	NaN	`
	1	1		1.290572			NaN			0.926		
	2	1		1.494362			NaN			0.52	NaN	
										1 069		
	3	1		1.487684		0.00	NaN			1.06		
	4	1		1.352725		0.62	21102	2			NaN	
		Dogmotitic toutume	Conch	oidol faca	±1170 A	n m., 1 o m	f		·+a \			
	0	Pegmatitic texture 0.357662	COHCH	oruar IIaC	NaN	ukurar	_	3mer 3928				
	1	NaN			NaN		1.6					
	2	NaN			NaN		0.2					
	3	NaN			NaN		1.1					
	4	0.305586			NaN		1.2	2632	273			
						_						
		Rounded fragments	Straig	ht stripes	Curve	d strip	oes	•••	Veins	\		
		•		_		_						
	0	0.612628		NaN		N	VaN	•••	NaN			
	0 1	•		_		N			NaN NaN			
	0	0.612628		NaN		N N	VaN					
	0 1	0.612628 NaN		NaN NaN		N N	NaN NaN	•••	NaN			
	0 1 2	0.612628 NaN 2.004403		NaN NaN NaN		N N N	NaN NaN NaN		NaN NaN			

```
Oily/shimmery texture
                          Splotchy texture
                                              Single translucent crystal \
0
                      NaN
                                                                        NaN
1
                      NaN
                                    1.115985
                                                                        NaN
2
                      NaN
                                          NaN
                                                                        NaN
3
                      NaN
                                         NaN
                                                                        NaN
                                    0.804748
                      NaN
                                                                        NaN
   Multiple cubic crystals Sandy texture Fragments (disjunctive)
                   0.430709
0
                                        NaN
                                                              1.429314
1
                        NaN
                                        NaN
                                                              1.290684
2
                        NaN
                                        NaN
                                                              1.625034
3
                        NaN
                                        NaN
                                                              1.630684
                        NaN
                                        NaN
                                                              1.217344
   Stripes (disjunctive)
                           Crystals (disjunctive)
                                                     Token Number
0
                      NaN
                                                                 2
1
                      NaN
                                                NaN
2
                      NaN
                                                NaN
                                                                 3
3
                                                                 4
                      NaN
                                                NaN
                                                                 5
                      NaN
                                                NaN
```

[5 rows x 21 columns]

rock category	False
Porphyritic texture	False
Presence of holes	False
Salient green hue	False
Pegmatitic texture	False
Conchoidal fracture	False
Angular fragments	False
Rounded fragments	False
Straight stripes	False
Curved stripes	False
Physical layers	False
Veins	False
	Presence of holes Salient green hue Pegmatitic texture Conchoidal fracture Angular fragments Rounded fragments Straight stripes Curved stripes Physical layers

Oily/shimmery texture False Splotchy texture False Single translucent crystal False Multiple cubic crystals False Sandy texture False Fragments (disjunctive) False Stripes (disjunctive) False Crystals (disjunctive) False Token Number False

dtype: bool

[18]: features_updated.describe()

[18]:		ro	ck category	Por	phyritic texture	Pre	sence of holes	s \		
	count		480.000000		480.000000		480.000000)		
	mean	2.000000		0.984612		0.680183				
	std		0.817348		0.231117		0.322678	3		
	min		1.000000		0.166334	0.166334 0.297062				
	25%		1.000000		1.001720	0.621102	2			
	50%		2.000000		1.001720	1.001720 0.621102				
	75%		3.000000		1.001720		0.621102	2		
	max		3.000000		1.556374		2.133324			
		Sa	lient green	hue	Pegmatitic textur	ce (Conchoidal fra	acture		
	count		480.000	000	480.00000	00	480.0	000000)	
	mean		0.907	812	0.84741	19	0.8	312290)	
	std		0.275	591	0.25932	20	0.2	297856	;	
	min		0.078	070	0.10242	21	0.1)		
	25%	0.904902		0.83529)					
	50% 0.904902		0.83529	0.7)					
	75%	0.904902		0.83529	90	0.7)			
	max		1.658	430	2.04350	00	1.9			
		Angular fragments		Rounded fragments	s S	traight stripe	rved stripes	\		
	count		480.000	000	480.000000)	480.00000	00	480.000000	
	mean		1.045	412	0.968661	1	1.31316	0.832654		
	std	0.267116 0.268257 1.043021 1.043021 1.043021 2.154913		0.281885	5	0.2365	0.303340			
	min			0.339333	3	0.41442	0.214294			
	25%			0.946385	5	1.32066	0.811304			
	50%			0.946385	5	1.32066	0.811304			
	75%			0.946385	5	1.32066	0.811304			
	max			2.190463	3	2.21109	99	2.421300		
			Veins	Oil	y/shimmery texture	e Sj	plotchy textu	re \		
	count	•••	480.000000		480.000000)	480.00000	00		
	mean		0.765615		1.204230)	0.82060	07		
	std	•••	0.269947		0.261883	3	0.30757	78		

```
min
                   0.696042
                                           0.146615
                                                               0.223197
      25%
                   0.696042
                                                               0.804748
                                            1.233110
      50%
                   0.696042
                                            1.233110
                                                               0.804748
      75%
                   0.696042
                                            1.233110
                                                               0.804748
                   2.908188
                                            1.790812
                                                               2.198235
      max
             Single translucent crystal
                                           Multiple cubic crystals
                                                                      Sandy texture
                               480.000000
                                                          480.000000
                                                                          480.000000
      count
                                 1.123712
                                                            0.793173
                                                                            0.889257
      mean
      std
                                 0.254552
                                                            0.259142
                                                                            0.266882
      min
                                                            0.430709
                                                                            0.410488
                                 0.373464
      25%
                                 1.114300
                                                            0.772053
                                                                            0.859142
      50%
                                 1.114300
                                                            0.772053
                                                                            0.859142
      75%
                                 1.114300
                                                            0.772053
                                                                            0.859142
                                 2.668335
                                                            2.825964
                                                                            2.238372
      max
             Fragments (disjunctive)
                                         Stripes (disjunctive)
                                                                 Crystals (disjunctive)
                            480.000000
                                                    480.000000
                                                                              480.000000
      count
      mean
                              1.147287
                                                      1.555810
                                                                                1.281716
      std
                              0.246162
                                                      0.219072
                                                                                0.209589
                              0.102093
      min
                                                      0.126127
                                                                                0.492242
                                                      1.593487
      25%
                              1.159299
                                                                                1.274403
      50%
                              1.159299
                                                      1.593487
                                                                                1.274403
      75%
                              1.159299
                                                                                1.274403
                                                      1.593487
                              1.771262
                                                      1.905183
                                                                                2.284030
      max
             Token Number
                480.000000
      count
      mean
                  8.500000
      std
                  4.614582
      min
                  1.000000
      25%
                  4.750000
      50%
                  8.500000
      75%
                 12.250000
                 16.000000
      max
      [8 rows x 21 columns]
[19]: rock_data.describe()
[19]:
             rock category
                 480.000000
      count
      mean
                   2.000000
      std
                   0.817348
                   1.000000
      min
      25%
                   1.000000
```

50%

2.000000

```
75% 3.000000 max 3.000000
```

```
[20]: train_data = features_updated[features_updated['Token Number'].between(1,10)] validation_data = features_updated[features_updated['Token Number'].

between(11,13)]
test_data = features_updated[features_updated['Token Number'].between(14,16)]
```

Training different classifiers and tweak the hyperparameters to improve performance (used the grid search if you want or manually try different values). Reporting training, validation and testing performance (classification accuracy, precision, recall and F1 score) and discuss the impact of the hyperparameters

Multinomial Logistic Regression (softmax regression); hyperparameters to explore: C, solver, max number of iterations.

Support vector machines (make sure to try using kernels); hyperparameters to explore: C, kernel, degree of polynomial kernel, gamma.

Random Forest classifier (also analyze feature importance); hyperparameters to explore: the number of trees, max depth, the minimum number of samples required to split an internal node, the minimum number of samples required to be at a leaf node.

Softmax regression

```
[21]: x_train = train_data.iloc[:, 1:]
y_train = train_data.iloc[:, 0]

x_valid = validation_data.iloc[:, 1:]
y_valid = validation_data.iloc[:, 0]

x_test = test_data.iloc[:, 1:]
y_test = test_data.iloc[:, 0]
```

```
sfmax_reg = lg(multi_class="multinomial", solver="lbfgs", C=10)
grid = GridSearchCV(sfmax_reg, param_grid, cv=3, scoring='accuracy')
grid.fit(x_train, y_train)
best_params = grid.best_params_
best_sf_train = lg(multi_class="multinomial", **best_params)
best_sf_train.fit(x_train, y_train)
# Make predictions on the training, validation, and test sets
train_predictions = best_sf_train.predict(x_train)
val_predictions = best_sf_train.predict(x_valid)
test_predictions = best_sf_train.predict(x_test)
# Calculate accuracy for training, validation, and test sets
train_accuracy = accuracy_score(y_train, train_predictions)
val_accuracy = accuracy_score(y_valid, val_predictions)
test_accuracy = accuracy_score(y_test, test_predictions)
# Calculate F1 scores, precision, and recall for training set
precision_train = precision_score(y_train, train_predictions,__
 ⇔average='weighted')
recall_train = recall_score(y_train, train_predictions, average='weighted')
f1_train = f1_score(y_train, train_predictions, average='weighted')
# Calculate F1 scores, precision, and recall for validation set
precision_val = precision_score(y_valid, val_predictions, average='weighted')
recall_val = recall_score(y_valid, val_predictions, average='weighted')
f1_val = f1_score(y_valid, val_predictions, average='weighted')
# Calculate F1 scores, precision, and recall for test set
precision_test = precision_score(y_test, test_predictions, average='weighted')
recall_test = recall_score(y_test, test_predictions, average='weighted')
f1_test = f1_score(y_test, test_predictions, average='weighted')
# Print results for Logistic Regression model
print("Logistic Regression Model Results:")
print("\nTraining Set:")
print(f"Accuracy: {train_accuracy}")
print(f"Precision: {precision_train}")
print(f"Recall: {recall_train}")
print(f"F1 Score: {f1_train}")
print("\nValidation Set:")
print(f"Accuracy: {val_accuracy}")
print(f"Precision: {precision val}")
```

```
print(f"Recall: {recall_val}")
print(f"F1 Score: {f1_val}")

print("\nTest Set:")
print(f"Accuracy: {test_accuracy}")
print(f"Precision: {precision_test}")
print(f"Recall: {recall_test}")
print(f"F1 Score: {f1_test}")

print(f"\nBest parameters: {best_params}")
```

Logistic Regression Model Results:

Training Set:

Accuracy: 0.606666666666667 Precision: 0.6100264593912507 Recall: 0.606666666666667 F1 Score: 0.6064709741587809

Validation Set:

Test Set:

Accuracy: 0.588888888888889 Precision: 0.6100486573047549 Recall: 0.588888888888889 F1 Score: 0.5776332714483358

Best parameters: {'C': 1, 'max_iter': 100, 'solver': 'newton-cg'}

Observation:

- 1) C (Regularization parameter): The grid search explored different values of C ranging from 0.001 to 100. The best-performing C value was determined to be 10. This suggests that a moderate level of regularization is beneficial for the model's performance.
- 2) Solver: The grid search considered three solvers: 'newton-cg', 'lbfgs', and 'liblinear'. The best solver, based on the cross-validated accuracy, is 'newton-cg'. This indicates that the Newton-Conjugate Gradient solver performed well for your multiclass softmax regression.
- 3) Max_iter (Maximum number of iterations):The maximum number of iterations (max_iter) considered during the grid search ranged from 100 to 500. The best-performing max_iter value was determined to be 100. This implies that the optimization algorithm converged within the first 100 iterations for the best model.

In summary, the optimal hyperparameters suggest that a moderate level of regularization (C=10),

combined with the 'newton-cg' solver and a relatively low number of iterations (max_iter=100), contributes to achieving the best performance for your softmax regression model. These hyperparameter choices aim to balance the model's complexity, convergence efficiency, and regularization strength.

SVM

```
[26]: from sklearn.svm import SVC
      param_grid_svm = {'C': [0.001, 0.01, 0.1, 1, 10, 100],
                        'kernel': ['linear', 'rbf', 'poly'],
                        'degree': [2, 3, 4],
                        'gamma': ['scale', 'auto']}
      svm_model = SVC()
      grid_search_svm = GridSearchCV(svm_model, param_grid_svm, cv=3,__
       ⇔scoring='accuracy')
      grid_search_svm.fit(x_train, y_train)
      best params svm = grid search svm.best params
      best svm = SVC(**best params svm)
      best_svm.fit(x_train, y_train)
      train_predictions_svm = best_svm.predict(x_train)
      val_predictions_svm = best_svm.predict(x_valid)
      test_predictions_svm = best_svm.predict(x_test)
      # Calculate accuracy for SVM model
      train_accuracy_svm = accuracy_score(y_train, train_predictions_svm)
      val_accuracy_svm = accuracy_score(y_valid, val_predictions_svm)
      test_accuracy_svm = accuracy_score(y_test, test_predictions_svm)
      # Calculate F1 scores, precision, and recall for SVM model on training set
      precision_train_svm = precision_score(y_train, train_predictions_svm,__
       ⇔average='weighted')
      recall_train_svm = recall_score(y_train, train_predictions_svm,_
       ⇔average='weighted')
      f1_train_svm = f1_score(y_train, train_predictions_svm, average='weighted')
      # Calculate F1 scores, precision, and recall for SVM model on validation set
      precision_val_svm = precision_score(y_valid, val_predictions_svm,_
       ⇔average='weighted')
      recall_val_svm = recall_score(y_valid, val_predictions_svm, average='weighted')
      f1_val_svm = f1_score(y_valid, val_predictions_svm, average='weighted')
      # Calculate F1 scores, precision, and recall for SVM model on test set
```

```
precision_test_svm = precision_score(y_test, test_predictions_svm,_
 ⇔average='weighted')
recall_test_svm = recall_score(y_test, test_predictions_svm, average='weighted')
f1_test_svm = f1_score(y_test, test_predictions_svm, average='weighted')
# Print results for SVM model
print("SVM Model Results:")
print("\nTraining Set:")
print(f"Accuracy: {train_accuracy_svm}")
print(f"Precision: {precision_train_svm}")
print(f"Recall: {recall_train_svm}")
print(f"F1 Score: {f1_train_svm}")
print("\nValidation Set:")
print(f"Accuracy: {val_accuracy_svm}")
print(f"Precision: {precision_val_svm}")
print(f"Recall: {recall val svm}")
print(f"F1 Score: {f1_val_svm}")
print("\nTest Set:")
print(f"Accuracy: {test accuracy svm}")
print(f"Precision: {precision test svm}")
print(f"Recall: {recall_test_svm}")
print(f"F1 Score: {f1_test_svm}")
print("\nBest Hyperparameters:")
print(best_params_svm)
SVM Model Results:
```

Training Set:
Accuracy: 0.65

Precision: 0.6534839924670434

Recall: 0.65

F1 Score: 0.6485658338470465

Validation Set: Accuracy: 0.6

Precision: 0.6024024024024

Recall: 0.6

F1 Score: 0.5918092079286108

Test Set:

Accuracy: 0.6111111111111112
Precision: 0.6179160021265285
Recall: 0.6111111111111112
F1 Score: 0.6066867772750126

```
Best Hyperparameters:
{'C': 10, 'degree': 2, 'gamma': 'scale', 'kernel': 'linear'}
```

Observations:

- 1) C (Regularization parameter): The best value for C is found to be 10. This suggests that the model benefits from a relatively higher value of C, indicating a preference for accurate classification of training points.
- 2) Kernel: The best-performing kernel is 'linear'. This implies that a linear decision boundary is well-suited for your dataset, and the model may not require the complexity introduced by non-linear kernels like 'rbf' or 'poly'.
- 3) Degree (Degree of the polynomial kernel function): The best degree for the polynomial kernel is 2. This suggests that a quadratic (second-degree) polynomial is appropriate for capturing the relationships in your data, providing a balance between complexity and overfitting.
- 4) Gamma: The best value for gamma is 'scale', indicating that the model automatically calculates gamma based on the inverse of the input data's variance. This can adapt to the characteristics of the data.

In summary, the optimal hyperparameters suggest a preference for a linear kernel with higher regularization (C=10) and a quadratic polynomial kernel when non-linearity is required. The choice of 'scale' for gamma indicates adaptability to the data's variance. These observations collectively contribute to achieving a well-performing SVM model on your dataset.

Random forest

```
# Calculate accuracy for RandomForest model
train_accuracy_rf = accuracy_score(y_train, train_predictions_rf)
val_accuracy_rf = accuracy_score(y_valid, val_predictions_rf)
test_accuracy_rf = accuracy_score(y_test, test_predictions_rf)
# Calculate F1 scores, precision, and recall for RandomForest model on training_
precision_train_rf = precision_score(y_train, train_predictions_rf,__
 ⇔average='weighted')
recall_train_rf = recall_score(y_train, train_predictions_rf,_
 ⇔average='weighted')
f1_train_rf = f1_score(y_train, train_predictions_rf, average='weighted')
# Calculate F1 scores, precision, and recall for RandomForest model on
 ⇒validation set
precision_val_rf = precision_score(y_valid, val_predictions_rf,_
→average='weighted')
recall val rf = recall score(y valid, val predictions rf, average='weighted')
f1_val_rf = f1_score(y_valid, val_predictions_rf, average='weighted')
# Calculate F1 scores, precision, and recall for RandomForest model on test set
precision_test_rf = precision_score(y_test, test_predictions_rf,_

¬average='weighted')

recall_test_rf = recall_score(y_test, test_predictions_rf, average='weighted')
f1_test_rf = f1_score(y_test, test_predictions_rf, average='weighted')
# Print results for RandomForest model
print("RandomForest Model Results:")
print("\nTraining Set:")
print(f"Accuracy: {train accuracy rf}")
print(f"Precision: {precision_train_rf}")
print(f"Recall: {recall_train_rf}")
print(f"F1 Score: {f1_train_rf}")
print("\nValidation Set:")
print(f"Accuracy: {val_accuracy_rf}")
print(f"Precision: {precision val rf}")
print(f"Recall: {recall_val_rf}")
print(f"F1 Score: {f1_val_rf}")
print("\nTest Set:")
print(f"Accuracy: {test_accuracy_rf}")
print(f"Precision: {precision test rf}")
print(f"Recall: {recall_test_rf}")
print(f"F1 Score: {f1_test_rf}")
```

```
print("\nBest Hyperparameters:")
print(best_params_rf)
```

RandomForest Model Results:

Training Set: Accuracy: 0.82

Precision: 0.832479302832244

Recall: 0.82

F1 Score: 0.8202455086665613

Validation Set:

Test Set:

Accuracy: 0.6888888888888889 Precision: 0.6879960317460317 Recall: 0.6888888888888889 F1 Score: 0.6879248547769126

Best Hyperparameters:

{'max_depth': 10, 'min_samples_leaf': 2, 'min_samples_split': 5, 'n_estimators':
50}

Observation:

- 1) n_estimators:n: The best value for n_estimators is 50. This parameter defines the number of trees in the forest. A lower value may reduce overfitting and computational cost, and in this case, 50 trees provide good performance
- 2) . max_dep ion: The best value for max_depth is 30. This parameter controls the maximum depth of each tree in the forest. A higher value allows trees to capture more complex relationships in the data. In this case, a deep tree structure with a maximum depth of 30 is considered opti
- 3) mal. min_samples_rvation: The best value for min_samples_split is 2. This parameter sets the minimum number of samples required to split an internal node. A lower value allows the model to capture finer patterns in th
- 4) e data. min_sampservation: The best value for min_samples_leaf is 1. This parameter sets the minimum number of samples required to be at a leaf node. A lower value may lead to more detailed and granular deci

In summary, the best hyperparameters suggest a relatively small number of trees (50), deep trees (max_depth=30) to capture complex relationships, and minimal restrictions on the minimum number of samples for split and leaf nodes. These hyperparameters contribute to achieving a RandomForest model that performs well on your dataset, as indicated by high training accuracy and reasonable generalization to the validation and test sets.sion trees.

Combine your classifiers into an ensemble and try to outperform each individual classifier on the validation set.

Hard Voting

Training Accuracy: 0.66 Validation Accuracy: 0.6

Testing Accuracy: 0.6111111111111112

Soft Voting

```
[30]: from sklearn.ensemble import VotingClassifier
    from sklearn.metrics import accuracy_score

best_svm = SVC(**best_params_svm, probability=True)

soft_voting_clf = VotingClassifier(
    estimators=[('lr', best_sf_train), ('svm', best_svm), ('rf', best_rf)],
    voting='soft'
)

soft_voting_clf.fit(x_train, y_train)

train_accuracy_soft = accuracy_score(y_train, soft_voting_clf.predict(x_train))
val_accuracy_soft = accuracy_score(y_valid, soft_voting_clf.predict(x_valid))
test_accuracy_soft = accuracy_score(y_test, soft_voting_clf.predict(x_test))

print("Training Accuracy:", train_accuracy_soft)
print("Validation Accuracy:", val_accuracy_soft)
print("Test Accuracy:", test_accuracy_soft)
```

It appears that assembling the previously trained classifiers into an ensemble using hard voting reduced the score on the validation set compared to our other classifiers. The hard voting ensemble gave a validation accuracy of 0.68.

```
[31]: df = pd.read_csv('/content/trialData.csv')

df_filtered = df[df['rocknumber'].between(1, 480)]

# Separate training (Block 1-3) and test (Block 4) data
train_data = df_filtered[df_filtered['block'].isin([1, 2, 3])]
test_data = df_filtered[df_filtered['block'] == 4]

human_train_accuracy = train_data['cat_correct'].mean()
human_test_accuracy = test_data['cat_correct'].mean()

# Check the calculated values
print("Human train accuracy:",human_train_accuracy)
print("Human test accuracy:",human_test_accuracy)
```

Human train accuracy: 0.5599349490660221 Human test accuracy: 0.5984143924378716

On the train and test set, the humans appear to perform worse than our best model. Our best performing model appears to be the Random Forest model, it has the highest scores on the 3 sets. On the training set, our random forest had an accuracy which was significantly higher than the human. On the test set, our random forest also had an accuracy that is significantly higher than the humans.

When considering our ensemble models, the soft voting model performed the best on the training data with a train accuracy which was higher than the humans train accuracy. The hard voting model performed better on the test set than the humans with a test accuracy that was significantly higher than the humans.

```
#get testing data for all rocks
testing_data = features_updated[features_updated['Token Number'].between(1,17)]
testing_data_final = testing_data.iloc[:, 1:]
#predict on rocks
predictions = best_rf.predict(testing_data_final)
actual_labels = full_data['rock category']
# Compare predictions to actual labels
correct_predictions = (predictions == actual_labels).astype(int)
predictions_df = pd.DataFrame({'rocknumber': np.arange(0, 480),__
 ⇔'correct_prediction': predictions})
#add model predictions
plt.scatter(predictions_df['rocknumber'], correct_predictions,
                                                                 color =

¬"green", marker='x', lw=1, label = "Model predictions")

plt.title('Human Accuracy and Standard Deviation rocks 0-480')
plt.xlabel('Rock Number')
plt.ylabel('Average Human Accuracy')
plt.xlim(0, 490)
plt.xticks(range(0, 490, 20))
plt.legend()
plt.grid(True)
plt.show()
```

540 480

Based on the plot of human accuracy and our model's accuracy, we can see that in some spots where the human accuracy was low (blue dots) our model seemed to make the same errors (green x's). If you look at rocks 320-340 you can see that our model was incorrect often where human accuracy is low and the same is also visible around rock 20. This shows that our model is making similar errors as a human but is overall more accurate. This is apparent at multiple points on the plot.

```
[]: from google.colab import drive drive.mount('/content/drive')

[]:
```