DSC 255 - MACHINE LEARNING FUNDAMENTALS

IMPROVING THE PERFORMANCE OF NEAREST NEIGHBOR

SANJOY DASGUPTA, PROFESSOR

COMPUTER SCIENCE & ENGINEERING

HALICIOĞLU DATA SCIENCE INSTITUTE

Nearest neighbor classification

```
1410119134857868U32264141
8663597202992997225100467
0130844145910106154061036
3(106411103047526200997999
6689120867885571314279554
6010177501871129910899709
8401097075973319720155190
55107551825518251828143580109
4317875416554605546035460
```

Training images $x^{(1)}, ..., x^{(60000)}$ Labels $y^{(1)}, ..., y^{(60000)}$

To classify a new image x:

- Find its nearest neighbor amongst the $x^{(i)}$ using Euclidean distance in \mathbb{R}^{784}
- Return $v^{(i)}$

How accurate is this classifier?

Error rate of 3.09% on test set.

Examples of errors

Test set of 10,000 points:

- 309 are misclassified
- Error rate 3.09%

Examples of errors

Test set of 10,000 points:

- 309 are misclassified
- Error rate 3.09%

Ideas for improvement:

(1) better distance function (2) k-NN.

The Euclidean (ℓ 2) distance between these two images is very high!

The Euclidean (ℓ 2) distance between these two images is very high!

Much better idea: distance measures that are invariant under:

- Small translations and rotations. e.g., tangent distance.
- A broader family of natural deformations. e.g., shape context.

The Euclidean (ℓ 2) distance between these two images is very high!

Much better idea: distance measures that are invariant under:

- Small translations and rotations. e.g., tangent distance.
- A broader family of natural deformations. e.g., shape context.

Test error rates:	ℓ_2	tangent distance	shape context		
	3.09	1.10	0.63		

The Euclidean (ℓ 2) distance between these two images is very high!

Much better idea: distance measures that are invariant under:

- Small translations and rotations. e.g., tangent distance.
- A broader family of natural deformations. e.g., shape context.

Test error rates:
$$\ell_2$$
tangent distanceshape context3.091.100.63

More generally: better representations for nearest neighbor.

Another improvement: K-nearest neighbor classification

Classify a point using the labels of its k-nearest neighbors among the training points.

Another improvement: K-nearest neighbor classification

Classify a point using the labels of its k-nearest neighbors among the training points.

MNIST:	K	1	3	5	7	9	11
WII 413 1	Test error (%)	3.09	2.94	3.13	3.10	3.43	3.34

Another improvement: K-nearest neighbor classification

Classify a point using the labels of its k-nearest neighbors among the training points.

Problem: In real life, there's no test set. How to decide which k is best?