

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2004/008490

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 B23K20/12 F16D1/068 B23K33/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 B23K F16D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	DE 199 34 855 C (DAIMLER CHRYSLER AG) 9 November 2000 (2000-11-09) cited in the application the whole document -----	1-12
Y	DE 299 05 633 U (KUKA SCHWEISSANLAGEN GMBH) 10 August 2000 (2000-08-10) page 2, lines 12-31 -----	1-12
A	GB 1 475 678 A (WOODHOUSE RIXSON LTD) 1 June 1977 (1977-06-01) page 2, lines 28-45 -----	1-12
P, X	PATENT ABSTRACTS OF JAPAN vol. 2003, no. 12, 5 December 2003 (2003-12-05) & JP 2004 138209 A (DAIHATSU MOTOR CO LTD), 13 May 2004 (2004-05-13) abstract -----	1,8,9

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

23 November 2004

Date of mailing of the international search report

29/11/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Caubet, J-S

INTERNATIONAL SEARCH REPORTInternational Application No
PCT/EP2004/008490

Patent document cited in search report	Publication date		Patent family member(s)		Publication date
DE 19934855	C	09-11-2000	DE 19934855 C1 WO 0107200 A1 EP 1198323 A1 JP 2003505249 T US 6660407 B1		09-11-2000 01-02-2001 24-04-2002 12-02-2003 09-12-2003
DE 29905633	U	10-08-2000	DE 29905633 U1		10-08-2000
GB 1475678	A	01-06-1977	NONE		
JP 2004138209	A	13-05-2004	NONE		

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/008490

A. Klassifizierung des Anmeldungsgegenstandes
IPK 7 B23K20/12 F16D1/068 B23K33/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 B23K F16D

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	DE 199 34 855 C (DAIMLER CHRYSLER AG) 9. November 2000 (2000-11-09) in der Anmeldung erwähnt das ganze Dokument	1-12
Y	DE 299 05 633 U (KUKA SCHWEISSANLAGEN GMBH) 10. August 2000 (2000-08-10) Seite 2, Zeilen 12-31	1-12
A	GB 1 475 678 A (WOODHOUSE RIXSON LTD) 1. Juni 1977 (1977-06-01) Seite 2, Zeilen 28-45	1-12
P, X	PATENT ABSTRACTS OF JAPAN Bd. 2003, Nr. 12, 5. Dezember 2003 (2003-12-05) & JP 2004 138209 A (DAIHATSU MOTOR CO LTD), 13. Mai 2004 (2004-05-13) Zusammenfassung	1, 8, 9

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *'E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmelde datum veröffentlicht worden ist
- *'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *'P' Veröffentlichung, die vor dem internationalen Anmelde datum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *'T' Spätere Veröffentlichung, die nach dem internationalen Anmelde datum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *'X' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *'Y' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

23. November 2004

Absendedatum des Internationalen Recherchenberichts

29/11/2004

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Caubet, J-S

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/008490

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung	
DE 19934855	C	09-11-2000	DE 19934855 C1 WO 0107200 A1 EP 1198323 A1 JP 2003505249 T US 6660407 B1	09-11-2000 01-02-2001 24-04-2002 12-02-2003 09-12-2003
DE 29905633	U	~ 10-08-2000	DE 29905633 U1	10-08-2000
GB 1475678	A	01-06-1977	KEINE	
JP 2004138209	A	13-05-2004	KEINE	

Fügestellenstruktur für ein Reibschweißverfahren und
Verfahren zu deren Herstellung

Die Erfindung betrifft eine Fügestellenstruktur und ein Verfahren zu deren Herstellung nach den Oberbegriffen der Ansprüche 1 und 9.

Im Fahrzeugbau werden in zahlreichen Anwendungen Verbundwerkstücke eingesetzt, die aus einer Welle und einem im wesentlichen rotationssymmetrischen Nabenteil zusammengesetzt sind. Beispiele für Scheiben sind Getriebe- und Kupplungsteile oder auch scheibenförmige Rohlinge, die noch mechanisch bearbeitet werden müssen.

Es ist bekannt, eine Welle und Nabenteil in einem Verbindungsreich durch Reibschweißen zu verbinden. Herkömmlicherweise wird dabei eine Stirnseite der Welle mit einer Stirnseite des Nabenteils verschweißt. Alternativ hierzu können Welle und Nabenteil mit Hilfe des aufgleitenden Reibschweißens verbunden werden; dabei handelt es sich um eine Variante des Pressschweißens, bei dem im Gegensatz zum konventionellen stirnseitigen Reibschweißen die Fügeflächen am Umfang der Bauteile angeordnet sind. Dabei wird z.B. eine Welle mit einem Nabenteil mit Überdeckung verschweißt, indem eines der beiden Bauteil in Rotation versetzt und auf das andere, in Ruhe befindliche, Gegenstück aufgepresst wird. Der Schweißprozess beginnt an den Berührflächen der Bauteile. Nach der Plastifizierung des dort befindlichen Materials durch die Reibwärme entsteht nach dem Ende der Rotationsbewegung eine unlösbare Verbindung.

In der DE 199 34 855 C 1 ist ein reibgeschweißtes Welle/Scheibe- Verbundwerkstück gezeigt, das aus einer Scheibe mit Durchgangsloch und einer Welle mittels aufgleitendem Reibschiessen gefügt ist. Beim Verschweißen von Welle und Scheibe entstehen ringförmige Verbindungsabschnitte, zwischen denen ringförmige Hohlräume gebildet werden. Durch die radial und axial zueinander versetzten Fügestellen wird eine Gewichtsverringerung des Gesamtteils erreicht, wobei die Hohlräume zur z.B. Ölführung genutzt werden können.

Wird ein Nabenteil einer Scheibe mit einer Welle mittels aufgleitendem Reibschiessen gefügt, können beim Aufschieben des Nabenteils auf die kalte Welle beim Reibschiessen Fehlstellen entstehen, die Kerben und Risse zur Folge haben können.

Aufgabe der Erfindung ist es, eine neue Gestaltung der Fügestelle für ein Welle/Scheibe- Verbundwerkstück anzugeben, mit der Fehlstellen minimiert und die Festigkeitswerte der Verbindung erhöht werden. Weiterhin liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung der Fügestelle anzugeben.

Die Aufgabe wird erfindungsgemäß durch die Merkmale der Ansprüche 1 und 9 gelöst. Vorteilhafte Ausgestaltungen sind den Unteransprüchen zu entnehmen.

Gemäß der Erfindung ist die Fügestellenstruktur eines Welle/Nabe-Verbundwerkstücks, insbesondere für das Verbinden von einer Welle mit einem Verbindungsflansch eines Nabenteils eines Antriebsrades mittels Reibschiessen, in einer solchen Weise gestaltet, dass zwischen der Welle und dem Verbindungsflansch des Nabenteils vor und hinter der Fügestelle ein definierter Spalt eingebracht ist, der das beim Reibschiessen erweichte Material in seiner Ausbreitung behindert.

Bevor die Fügepartner mittels aufgleitendem Reibschiessen miteinander verbunden werden, liegen zwischen Welle und Na-

benteil somit ringförmige Hohlräume („Spalte“) vor, die während dem Reibschweißen einerseits das erweichte, aus dem Fügebereich verdrängte Material aufnehmen, andererseits – aufgrund ihrer geringen lichten Höhe – dieses erweichte Material aber in seiner Ausbreitung hemmen. Je mehr Material in Zuge der Stauchphase des Reibschweißens in die Hohlräume gepresst wird, desto weiter wird es innerhalb der Hohlräume – von der eigentlichen Fügestelle ausgehend – in kühlere Nachbarbereiche der heißen Fügestelle gedrängt. In diesen kühleren Nachbarbereichen verfestigt sich das verdrängte Material aufgrund der niedrigeren Umgebungstemperatur etwas, bekommt dabei eine teigigere Konsistenz und behindert aufgrund seiner höheren Viskosität die Ausbreitung des nachdrängenden Materials. Dadurch wird in den Hohlräumen ein Staudruck aufgebaut, der eine hohe Dichte des in die Spalte gepressten Materials zur Folge hat. Dies stellt einen grundsätzlichen Unterschied dar zum konventionellen aufgleitenden Reibschweißen, bei dem das teigige Material in Form eines Wulstes frei aus der Fügestelle entweichen kann.

Da die Spalte zwischen Welle und Nabenteil im Zuge des Reibschweißvorgangs (zumindest teilweise) mit teigigem, aus dem Fügebereich verdrängtem Material angefüllt werden, besitzt das Verbundwerkstück eine verbreiterte Bindezone. So entsteht beispielsweise bei einer Reiblänge von etwa 6 mm und einer lichten Höhe des Spalts von 1,5 mm eine axiale Erstreckung der Bindezone von etwa 10 mm. Durch diese axiale Verbreiterung der Bindezone wird die Festigkeit der Verbindung erheblich erhöht, da das in die Spalte hineingedrängte Material zur Verschweißung der Fügepartner beiträgt.

Eine solche, bei Verwendung des erfindungsgemäßen Verfahrens auftretende Festigkeitserhöhung der Bindezone kann bei Verwendung des herkömmlichen aufgleitenden Reibschweißens nicht erreicht werden: Um beim herkömmlichen aufgleitenden Reibschweißen die Bindezone zwischen den Fügepartnern zu verbreitern, müsste man nämlich ein erhöhtes Abmaß

vorsehen und die Fügepartner dann entsprechend stärker stauchen, um die gewünschte erhöhte axiale Überdeckung zu erreichen. Mit dieser stärkeren Stauchung würde jedoch eine Erhöhung der Fehlstellen einhergehen, durch die die Festigkeit der Verbindung verringert würde. - Die Tatsache, dass sich durch die erfindungsgemäße Gestaltung der Fügepartner die effektive Bindezone in der beschriebenen Weise erheblich verbreitern lässt und dabei eine Erhöhung der Festigkeit erreicht wird, stellt somit einen überraschenden Effekt dar.

Der Vorsprung oder Übersprung aufgrund des herausgedrückten Materials an der Fügestelle wird vorzugsweise nach dem Reibschiessen spanend bearbeitet, um eine Verrundung zu erreichen.

In einer vorteilhaften Ausgestaltung der Erfindung werden zwischen Welle und Nabenteil mehrere axial zueinander versetzte Fügestellen vorgesehen. Dabei ist es für die Selbstzentrierung und relative axiale Ausrichtung der Fügepartner während des Reibschiessens vorteilhaft, die Fügestellen der Fügepartner in einer solchen Weise axial und radial gegeneinander zu versetzen, dass die Fügestellen auf dem Verbundwerkstück nach der Verschweißung in einem Winkelbereich zwischen 10° - 20° , bevorzugt 15° , zueinander angeordnet sind. Das entstehende Verbundwerkstück ist dann zylindersymmetrisch.

Im Unterschied zum stirnseitigen Reibschiessen der Welle mit dem Nabenteil, bei dem durch unsymmetrische Schrumpfen des Nabenteils nach dem Reibschiessen ein konischer Verzug des Nabenteils auftreten kann, ist das erfindungsgemäße Verfahren mit keinerlei konischen Verzügen der Fügepartner verbunden; die ursprüngliche Zylindersymmetrie der beiden Fügepartner bleibt also im Verbundwerkstück mit hoher Genauigkeit erhalten.

Zur Herstellung der erfindungsgemäßen Fügestellenstruktur müssen auf mindestens einem der beiden Fügepartner Hinter-

schnitte in Radialrichtung vorgesehen werden. Vorteilhaftweise werden alle für die Ausbildung der Fügestelle notwendigen Hinterschnitte auf der Welle angebracht, so dass der Verbindungsflansch des Nabenteils keine Hinterschnitte aufweist. Dies ist herstellungstechnisch besonders preisgünstig, da das Einbringen von Hinterschneidungen bei der spanenden Bearbeitung der Welle mit keinem Zusatzaufwand verbunden ist und zur Herstellung des Nabenteils ein gestuftes Werkzeug eingesetzt werden kann, mit Hilfe dessen die Innenbearbeitung des Nabenteils in einem einzigen Prozessschritt erfolgt.

Welle und Nabenteil können aus unterschiedlichen Werkstoffen bestehen. Insbesondere kann eine gehärtete Welle verwendet werden, und/oder das Nabenteil kann fertig bearbeitet (gehärtet, geschliffen etc.) sein.

Befindet sich der Fügebereich in der Nähe eines hochbelasteten Bereichs des Verbundwerkstücks, z.B. eines Lagers, so kann es vorteilhaft sein, die Welle und die Nabe so zu gestalten, dass die Fügestelle radial nach außen verlegt ist, so dass der hochbelastete Bereich vollkommen frei ist von Einflüssen der Fügestelle.

Die Spalthöhen der Fügestellen werden in einer solchen Weise auf den jeweiligen Anwendungsfall optimiert, dass der Durchmesser der Fügestelle, die radiale Überdeckung und die Werkstoffe der zu verbindenden Bauteile aufeinander abgestimmt sind. Bei einer Welle mit einem Durchmesser von 60 mm wurden beispielsweise mit einem Spaltmaß von 1,5 mm und einer radialen Überdeckung der zu verbindenden Bauteile im Bereich von 1,5 - 2,5 mm, bevorzugt 2 mm, gute Fügeergebnisse erzielt.

Im folgenden wird die Erfindung anhand eines in den schematischen Zeichnungen dargestellten Ausführungsbeispiels beschrieben. Die Zeichnungen, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln be-

trachten und zu sinnvollen weiteren Kombinationen zusammenfassen.

- Fig. 1a, 1b zeigen ein Welle/Scheibe- Verbundwerkstück mit einstufigem Verbindungsflansch
- Fig. 2a, 2b, 2c zeigt die Strukturierung der Fügestelle eines einstufigem Verbindungsflansches
- Fig. 3 zeigt ein Welle/Scheibe Verbundwerkstück mit zweistufigem Verbindungsflansch

Gemäß Fig. 1a wird eine Welle 1, z.B. eine Kurbelwelle, mit einer Scheibe, z.B. einem Nabenteil eines Antriebsrads mit einem Verbindungsflansch 2, verbunden. Durch stirnseitige Fortsätze auf der Vorder- und Hinterseite des Verbindungsflansches 2 werden vor und hinter der Fügestelle 3 zwischen Welle 1 und Verbindungsflansch 2 je ein definierter Spalt 4, 4' mit lichter Höhe 10, 10' eingebracht. In Zusammenbaulage der Welle 1 mit dem Verbindungsflansch 2 bilden diese Spalte 4, 4' ringförmige Hohlräume. Die radiale Überdeckung 5 von Welle 1 und Verbindungsflansch 2 beträgt beispielsweise 2 mm. Durch das Reibschiweißen versucht das erwärmte, weiche Material aus der Fügestelle 3 auszutreten, wird aber in radialer Richtung durch den Spalt 4, 4' daran gehindert. Dies führt zu einer Bindezone 8 zwischen Welle 1 und Verbindungsflansch 2, deren effektive Breite 11' vergrößert ist gegenüber der Breite 11 eines auf dem Verbindungsflansch 2 an der Fügestelle 3 ursprünglich vorgesehenen Stegs 12. In Fig. 2 ist die Strukturierung der Fügestelle eines einstufigen Verbindungsflansches dargestellt. Nach dem Reibschiweißen entsteht ein Vorsprung oder Übersprung 6, 6' des Materials an der Fügestelle, der z.B. nach dem Reibschiweißen spanend bearbeitet wird, um eine Verrundung 7, 7' zu erreichen.

Fig. 3 zeigt einen zweistufigen Verbindungsflansch 2. Zwischen der Welle 1 und dem Verbindungsflansch 2 ist in Axial-

richtung vor und hinter den Fügestellen 3, 3' je ein Spalt 4, 4', 4'' vorgesehen. Der Spalt 4', in den während des Reibschiessens erweichtes Material aus beiden Fügestellen 3, 3' eindringt, ist bezüglich seiner Höhe und Länge so dimensioniert, dass das aus der Fügestelle 3 verdrängte Material den Materialfluss aus Fügestelle 3' nicht behindert. Der zweistufige Verbindungsflansch 2 des Nabenteils weist in diesem Ausführungsbeispiel keinerlei Hinterschnitte in Radialrichtung auf; die für die Ausbildung der Fügestellen 3, 3' notwendigen Hinterschnitte 9, 9', 9'' sind alle auf der Welle 1 angebracht.

Die erfindungsgemäße Fügestellenstruktur wird z.B. bei der Verbindung einer Kurbelwelle mit einem Antriebsrad verwendet.

Zur Herstellung eines Verbundwerkstücks einer Kurbelwelle 1 für ein Kraftfahrzeug mit einem Verbindungsflansch 2 eines Nabenteils eines Antriebsrades wird zunächst eine einteilige Nabeneinheit - umfassend das Nabenteil des Antriebsrads und den Verbindungsflansch - hergestellt. Zwischen der Kurbelwelle und dem Verbindungsflansch der Nabeneinheit wird vor und hinter der vorgesehenen Fügestelle je ein definierter Spalt eingebracht, der das beim nachfolgenden Verbinden von Kurbelwelle und Verbindungsflansch durch Reibschiessen erweichte Material in seiner Ausbreitung behindert.

Zur Bearbeitung der der Welle zugewandten Bereiche des Nabenteils wird ein gestuftes Werkzeug verwendet, so dass die Innenbearbeitung der Nabe mit Hilfe eines einzigen Werkzeugs in einem einzigen Prozessschritt durchgeführt wird.

Während des Reibschiessens kann das Antriebsrad gekühlt werden, um beispielsweise das Anlassen einer auf dem Antriebsrad vorgesehenen gehärteten Verzahnung während des Reibschiessens zu vermeiden.

Patentansprüche

1. Fügestellenstruktur für ein Welle-/Nabe-Verbundwerkstück, insbesondere für das Verbinden von der Welle (1) mit einem Verbindungsflansch (2) eines Nabenteils mittels Reibschiessen,
dadurch gekennzeichnet, dass zwischen der Welle (1) und dem Verbindungsflansch (2) des Nabenteils vor und hinter einer Fügestelle (3) je ein definierter Spalt (4, 4') eingebracht ist, der das beim Reibschiessen erweichte Material in seiner Ausbreitung behindert.
2. Fügestellenstruktur nach Anspruch 1,
dadurch gekennzeichnet, dass die Höhe (10,10') des Spalts (4,4') so dimensioniert ist, dass das Verbundwerkstück vor und hinter der Fügestelle (3) eine verbreiterte Bindezone (8) besitzt.
3. Fügestellenstruktur nach Anspruch 2,
dadurch gekennzeichnet, dass bei einer Reiblänge von 6 mm und einem Spaltabstand von 1,5 mm die Bindezone (8) eine axiale Erstreckung von 10 mm besitzt.
4. Fügestellenstruktur nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,

dass das Nabenteil einen zweistufigen Verbindungsflansch (2) besitzt, der keine Hinterschnitte aufweist.

5. Fügestellenstruktur nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Welle (1) Hinterschnitte (9, 9', 9'') aufweist.
6. Fügestellenstruktur nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass Welle (1) und Nabenteil aus unterschiedlichen Werkstoffen bestehen.
7. Fügestellenstruktur nach Anspruch 11,
dadurch gekennzeichnet,
dass die zu verbindenden Bauteile (1,2) eine radiale Überdeckung (5) aufweisen, die im Bereich von 1,5 bis 2,5 mm liegt.
8. Verwendung einer Fügestellenstruktur nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass eine Kurbelwelle mit einem Antriebsrad verbunden wird.
9. Verfahren zum Verfügen einer Welle (1), insbesondere eine Kurbelwelle für ein Kraftfahrzeug, mit einem Verbindungsflansch (2) eines Nabenteils eines Antriebsrades,
dadurch gekennzeichnet,
dass zwischen Welle (1) und Verbindungsflansch (2) vor und hinter einer Fügestelle (3) je ein definierter Spalt (4,4') eingebracht wird, der das beim nachfolgenden Verbinden von Welle (1) und Verbindungs-

flansch (2) durch Reibschweißen erweichte Material in seiner Ausbreitung behindert.

10. Verfahren nach Anspruch 9,
dadurch gekennzeichnet,
dass das Antriebsrad während des Reibschweißens gekühlt wird.
11. Verfahren nach Anspruch 9 oder 10,
dadurch gekennzeichnet,
dass das Nabenteil ohne Hinterschnitte hergestellt wird, und dass die für die Ausbildung eines 2-stufigen Verbindungsflansches (2) notwendigen Hinterschnitte (9, 9', 9'') auf der Welle (1) hergestellt werden.
12. Verfahren nach einem der Ansprüche 9 bis 11,
dadurch gekennzeichnet,
dass ein gestuftes Werkzeug zur Herstellung des Nabenteils verwendet wird, und dass die Innenbearbeitung der Nabe in einem Prozessschritt durchgeführt wird.

1/2

2/2

Fig.3