

Asymptotic Analysis

Analysis of Algorithms

- An algorithm is a finite set of precise instructions for performing a computation or for solving a problem.
- What is the goal of analysis of algorithms?
 - To compare algorithms mainly in terms of running time but also in terms of other factors (e.g., memory requirements, programmer's effort etc.)
- What do we mean by running time analysis?
 - Determine how running time increases as the size of the problem increases.

- Input size (number of elements in the input)
 - size of an array
 - polynomial degree
 - # of elements in a matrix
 - # of bits in the binary representation of the input
 - vertices and edges in a graph

Worst case

- Provides an upper bound on running time
- An absolute guarantee that the algorithm would not run longer, no matter what the inputs are

Best case

- Provides a lower bound on running time
- Input is the one for which the algorithm runs the fastest

Lower Bound ≤ Running Time ≤ Upper Bound

Average case

- Provides a prediction about the running time
- Assumes that the input is random

How do we compare algorithms?

- We need to define a number of <u>objective</u> measures.
 - (1) Compare execution times?
 Not good: times are specific to a particular computer!!
 - (2) Count the number of statements executed? Not good: number of statements vary with the programming language as well as the style of the individual programmer.

Ideal Solution

- Express running time as a function of the input size n (i.e., f(n)).
- Compare different functions corresponding to running times.
- Such an analysis is independent of machine time, programming style, etc.

Example

- Associate a "cost" with each statement.
 - Find the "total cost" by finding the total number of times each statement is executed.

Another Example

 $c_1 + c_2 \times (N+1) + c_2 \times N \times (N+1) + c_3 \times N^2$

Asymptotic Analysis

- To compare two algorithms with running times f(n) and g(n), we need a rough measure that characterizes how fast each function grows.
- Hint: use rate of growth
- Compare functions in the limit, that is, asymptotically!

(i.e., for large values of *n*)

Rate of Growth

 Consider the example of buying elephants and goldfish:

> Cost: cost_of_elephants + cost_of_goldfish Cost ~ cost_of_elephants (approximation)

 The low order terms in a function are relatively insignificant for large n

$$n^4 + 100n^2 + 10n + 50 \sim n^4$$

i.e., we say that $n^4 + 100n^2 + 10n + 50$ and n^4 have the same rate of growth

Asymptotic Notation

- O notation: asymptotic "less than":
 - f(n)=O(g(n)) implies: f(n) "≤" g(n)
 - Ω notation: asymptotic "greater than":
 - f(n)= Ω (g(n)) implies: f(n) "≥" g(n)
 - • notation: asymptotic "equality":
 - $f(n) = \Theta(g(n))$ implies: f(n) = g(n)

Big-O Notation

- We say f_A(n)=30n+8 is order n, or O (n)
 It is, at most, roughly proportional to n.
- $f_B(n)=n^2+1$ is order n^2 , or $O(n^2)$. It is, at most, roughly proportional to n^2 .
- In general, any $O(n^2)$ function is faster-growing than any O(n) function.

Visualizing Orders of Growth

 On a graph, as you go to the right, a faster growing function eventually becomes larger...

More Examples ...

- $n^4 + 100n^2 + 10n + 50$ is $O(n^4)$
- $10n^3 + 2n^2$ is $O(n^3)$
- $n^3 n^2$ is $O(n^3)$
- constants
 - -10 is O(1)
 - 1273 is O(1)

Back to Our Example

Algorithm 1 Algorithm 2 Cost Cost for(i=0; i<N; i++) arr[0] = 0; C1 C_2 arr[1] = 0; arr[i] = 0;C1 arr[2] = 0; arr[N-1] = 0; $c_1+c_1+...+c_1=c_1 \times N$ $(N+1) \times c_2 + N \times c_1 =$ $(c_2 + c_1) \times N + c_2$

Both algorithms are of the same order: O(N)

Example (cont'd)

Asymptotic notations

O-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotic upper bound* for f(n).

Big-O Visualization

O(g(n)) is the set of functions with smaller or same order of growth as g(n)

Examples

-
$$2n^2 = O(n^3)$$
: $2n^2 \le cn^3 \Rightarrow 2 \le cn \Rightarrow c = 1$ and $n_0 = 2$

-
$$n^2 = O(n^2)$$
: $n^2 \le cn^2 \Rightarrow c \ge 1 \Rightarrow c = 1$ and $n_0 = 1$

 $-1000n^2+1000n = O(n^2)$:

$$1000n^2 + 1000n \le 1000n^2 + n^2 = 1001n^2 \implies c = 1001 \text{ and } n_0 = 1000$$

-
$$n = O(n^2)$$
: $n \le cn^2 \Rightarrow cn \ge 1 \Rightarrow c = 1$ and $n_0 = 1$

More Examples

- Show that 30n+8 is O(n).
 - Show $\exists c, n_0$: 30*n*+8 ≤ *cn*, $\forall n$ >n₀.
 - Let c=31, $n_0=8$. Assume $n>n_0=8$. Then cn=31n=30n+n>30n+8, so 30n+8 < cn.

Big-O example, graphically

- Note 30n+8 isn't less than n anywhere (n>0).
- It isn't even less than 31n everywhere.
- But it is less than 31n everywhere to the right of n=8.

No Uniqueness

- There is no unique set of values for n₀ and c in proving the asymptotic bounds
- Prove that $100n + 5 = O(n^2)$
 - $-100n + 5 \le 100n + n = 101n \le 101n^2$

for all n ≥ 5

 $n_0 = 5$ and c = 101 is a solution

- $100n + 5 \le 100n + 5n = 105n \le 105n^2$ for all $n \ge 1$

 $n_0 = 1$ and c = 105 is also a solution

Must find **SOME** constants c and n₀ that satisfy the asymptotic notation relation

Asymptotic notations (cont.)

• Ω - notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

 $\Omega(g(n))$ is the set of functions with larger or same order of growth as g(n)

g(n) is an *asymptotic lower bound* for f(n).

Examples

- $-5n^2 = \Omega(n)$
 - $\exists c, n_0 \text{ such that: } 0 \le cn \le 5n^2 \Rightarrow cn \le 5n^2 \Rightarrow c = 1 \text{ and } n_0 = 1$
- 100n + 5 $\neq \Omega(n^2)$
 - \exists c, n_0 such that: $0 \le cn^2 \le 100n + 5$
 - $100n + 5 \le 100n + 5n \ (\forall n \ge 1) = 105n$
 - $cn^2 \le 105n \Rightarrow n(cn 105) \le 0$
 - Since n is positive \Rightarrow cn $105 \le 0 \Rightarrow$ n $\le 105/c$
 - \Rightarrow contradiction: n cannot be smaller than a constant
- $-n = \Omega(2n), n^3 = \Omega(n^2), n = \Omega(\log n)$

Asymptotic notations (cont.)

• ⊕-notation

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

 $\Theta(g(n))$ is the set of functions with the same order of growth as g(n)

g(n) is an asymptotically tight bound for f(n).

Examples

$$- n^2/2 - n/2 = \Theta(n^2)$$

•
$$\frac{1}{2} n^2 - \frac{1}{2} n \le \frac{1}{2} n^2 \ \forall n \ge 0 \implies c_2 = \frac{1}{2}$$

•
$$\frac{1}{2}$$
 $n^2 - \frac{1}{2}$ $n \ge \frac{1}{2}$ $n^2 - \frac{1}{2}$ $n * \frac{1}{2}$ $n (\forall n \ge 2) = \frac{1}{4}$ n^2

$$\Rightarrow$$
 c₁= $\frac{1}{4}$

- n ≠ $\Theta(n^2)$: $c_1 n^2 \le n \le c_2 n^2$
 - \Rightarrow only holds for: n \leq 1/c₁

Examples

- $6n^3$ ≠ $\Theta(n^2)$: $c_1 n^2 \le 6n^3 \le c_2 n^2$
 - \Rightarrow only holds for: n $\le c_2 / 6$

- n ≠ $\Theta(\log n)$: $c_1 \log n \le n \le c_2 \log n$
 - $\Rightarrow c_2 \ge n/\log n$, $\forall n \ge n_0$ impossible

Relations Between Different Sets

Subset relations between order-of-growth sets.

Common orders of magnitude

Common orders of magnitude

n	$f(n) = \lg n$	f(n) = n	$f(n) = n \lg n$	$f(n)=n^2$	$f(n)=n^3$	$f(n) = 2^n$
10	0.003 μs*	0.01 µs	0.033 μs	0.1 µs	1 μs	μs
20	0.004 µs	0.02 µs	0.086 μs	0.4 µs	8 μs	1 ms [†]
30	0.005 μs	0.03 µs	0.147 μs	0.9 µs	27 μs	l s
40	0.005 μs	0.04 µs	0.213 μs	1.6 gs	64 µs	18.3 mir
50	0.005 μs	0.05 µs	0.282 μs	2.5 LS	.25 μs	13 days
10 ²	0.007 µs	0.10 µs	0.664 μs	10 μs	1 ms	4×10^{15} years
103	0.010 µs	1.00 µs	9.966 µs	1 ms	1 s	
10 ⁴	0.013 μs	.0 µs	130 µs	100 ms	16.7 min	
10 ^s	0.017 μs	0.10 ms	1.67 ms	10 s	11.6 days	
106	0.020 µs	1 ms	19.93 ms	16.7 min	31.7 years	
107	0.023 µs	0.01 s	0.23 s	1.16 days	31,709 years	
10 ⁸	0.027 µs	0.10 s	2.66 s	115.7 days	3.17 × 10' years	
109	0.030 µs	1 s	29.90 s	31.7 years		

^{*1} $\mu s = 10^{-6}$ second.

 $^{^{\}dagger}1 \text{ ms} = 10^{-3} \text{ second.}$

Logarithms and properties

In algorithm analysis we often use the notation "log n" without specifying the base

Binary logarithm
$$\lg n = \log_2 n$$
 $\log x^y = y \log x$

Natural logarithm $\ln n = \log_e n$ $\log xy = \log x + \log y$
 $\lg^k n = (\lg n)^k$ $\log \frac{x}{y} = \log x - \log y$
 $\lg \lg n = \lg(\lg n)$ $\log \frac{x}{y} = \log x - \log y$
 $\log x = \log_b x = \log_b x$
 $\log_b x = \log_b x$

More Examples

 For each of the following pairs of functions, either f(n) is O(g(n)), f(n) is Ω(g(n)), or f(n) = Θ(g(n)). Determine which relationship is correct.

-
$$f(n) = \log n^2$$
; $g(n) = \log n + 5$ $f(n) = \Theta(g(n))$
- $f(n) = n$; $g(n) = \log n^2$ $f(n) = \Omega(g(n))$
- $f(n) = \log \log n$; $g(n) = \log n$ $f(n) = O(g(n))$
- $f(n) = n$; $g(n) = \log^2 n$ $f(n) = \Omega(g(n))$
- $f(n) = n \log n + n$; $g(n) = \log n$ $f(n) = \Omega(g(n))$
- $f(n) = 10$; $g(n) = \log 10$ $f(n) = \Theta(g(n))$
- $f(n) = 2^n$; $g(n) = 10n^2$ $f(n) = \Omega(g(n))$
- $f(n) = 2^n$; $g(n) = 3^n$ $f(n) = O(g(n))$

Properties

· Theorem:

$$f(n) = \Theta(g(n)) \Leftrightarrow f = O(g(n))$$
 and $f = \Omega(g(n))$

Transitivity:

- $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$
- Same for O and Ω

Reflexivity:

- $f(n) = \Theta(f(n))$
- Same for O and Ω

Symmetry:

- $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Transpose symmetry:
 - f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$

Asymptotic Notations in Equations

- On the right-hand side
 - $\Theta(n^2)$ stands for some anonymous function in $\Theta(n^2)$

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$
 means:

There exists a function $f(n) \in \Theta(n)$ such that $2n^2 + 3n + 1 = 2n^2 + f(n)$

On the left-hand side

$$2n^2 + \Theta(n) = \Theta(n^2)$$

No matter how the anonymous function is chosen on the left-hand side, there is a way to choose the anonymous function on the right-hand side to make the equation valid.

Common Summations

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1} (x \neq 1)$$

- Special case:
$$|\chi| < 1$$
:

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n$$

$$\sum_{k=1}^{n} \lg k \approx n \lg n$$

$$\sum_{k=1}^{n} k^{p} = 1^{p} + 2^{p} + \dots + n^{p} \approx \frac{1}{p+1} n^{p+1}$$

