CS203 (2023) – Second assignment

Total marks: 40	
•	Note. Answers without clear and concise explanations will not be taken into account. Use o immoral means will get severe punishment.
	Name:
	Roll No:
Que	estions
1.	(15 marks) Write a python program which takes a random variable X with range having 5 elements (each element can have probability as a multiple of $1/1000$). Draw n random samples from X and compute the sample mean. Repeat this experiment multiple times and plot these sample means.
	You should get a plot closer and closer to bell shape, as n increases.
	Solution:
2.	(5+3+7 marks) In an undirected graph $G = (V, E)$, a cut is specified by an $S \subseteq V$, where the size of the cut is the number of edges between S and \bar{S} . A random cut is obtained by keeping each vertex of V in S with probability half.
	 (a) Show that a random cut will have expected size E /2. Justify that each random bit (whether the vertex belongs to S or not) can be pairwise independent. (b) Using pairwise independent bits (the generation was shown in class), construct an efficient algorithm to find such a cut.
	Solution:
3.	(10 marks) Let U be a set of n elements and S_1, S_2, \dots, S_m be subsets of U . For a function $f: U \to \{-1, 1\}$, define $f(S_i) := \sum_{x \in S_i} f(x)$. Show that there exist a function f such that for all $i, f(S_i) \le 100\sqrt{n \ln m}$.
	Hint: Assign 1, -1 randomly to U . Find the probability that a particular S_i is bad. What is the expected number of S_i which are bad?
	Solution: