(19)日本国特許庁(JP)

(12) 特 許 公 報 (B 2)

(11)特許出願公告番号

特公平7-103218

(24) (44)公告日 平成7年(1995)11月8日

(51) Int.Cl. ⁶	識別配号	庁内整理番号	FΙ	技術表示箇所
C 0 8 G 59/18	NLE	0100 47		
B 2 9 C 67/00	VDII	2126-4F		·
C 0 8 F 2/50	MDH			
C 0 8 L 63/00	NJX			
67/00	LPC			
				請求項の数2(全 9 頁) 最終頁に続く
(21)出願番号	特顧昭63-229379		(71)出願人	99999999
				旭電化工業株式会社
(22)出廣日	昭和63年(1988) 9月13日			東京都荒川区東尾久7丁目2番35号
			(72)発明者	大川 和夫
(65)公開番号	特開平2-75618			東京都荒川区東尾久7丁目2番35号 旭電
(43)公開日	平成2年(1990)3月	15日		化工業株式会社内
			(72)発明者	斉藤 誠一
				東京都荒川区東尾久7丁目2番35号 旭電
				化工業株式会社内
			(74)代理人	弁理士 古谷 馨
•			審査官	富士 良宏
			(56)参考文章	歓 特開 昭62-187722 (JP, A)
				特開 昭59-166526 (JP, A)
				特開 昭59-159820 (JP, A)
				特開 昭56-100817 (JP, A)
				特開 平2-28261 (JP, A)

(54) 【発明の名称】 光学的造形用樹脂組成物

【特許請求の範囲】

【請求項1】必須成分として、(a) エネルギー線硬化性カチオン重合性有機物質、(b) エネルギー線感受性カチオン重合開始剤、(c) エネルギー線硬化性ラジカル重合性有機物質、(d) エネルギー線感受性ラジカル重合開始剤及び(e) 水酸基含有ポリエステルを含有することを特徴とする光学的造形用樹脂組成物。

【請求項2】(a)エネルギー線硬化性カチオン重合性 有機物質が、1分子中に少なくとも2個以上のエポキシ 基を有する脂環族エポキシ樹脂を40重量%以上含有し、 (c)エネルギー線硬化性ラジカル重合性有機物質が、 1分子中に少なくとも3個以上の不飽和二重結合を有す る化合物を50重量%以上含有することを特徴とする請求 項1記載の光学的造形用樹脂組成物。

【発明の詳細な説明】

2

[産業上の利用分野]

本発明は、活性エネルギー線硬化型の光学的造形用樹脂 組成物に関する。

[従来の技術及び発明が解決しようとする課題]

一般に、鋳型製作時に必要とされる製品形状に対応する 模型、あるいは切削加工の倣い制御用又は形彫放電加工 電極用の模型の製作は、手加工により、あるいは、NCフ ライス盤等を用いたNC切削加工により行われていた。し かしながら、手加工による場合は、多くの手間と熟練と を要するという問題があり、NC切削加工による場合は、 刃物刃先形状変更のための交換や摩耗等を考慮した、複 雑な工作プログラムを作る必要があると共に、加工面に 生じた段を除くために、更に仕上げ加工を必要とする場 合があるという問題もある。最近、これらの従来技術の 問題点を解消し、鋳型製作用、倣い加工用、形彫放電加

工用の複雑な模型や種々の定形物を光学的造形法により 創成する新しい手法に関する技術開発が期待されてい る。

この光学的造形用樹脂としては、エネルギー線による硬化感度が優れていること、エネルギー線による硬化の解像度が良いこと、硬化後の紫外線透過率が良いこと、低粘度であること、γ特性が大きいこと、硬化時の体積収縮率が小さいこと、硬化物の機械強度が優れていること、自己接着性が良いこと、酸素雰囲気下での硬化特性が良いことなど、種々の特性が要求される。

一方、特開昭62-235318号公報には、トリアリールスルホニウム塩触媒を用いて、分子内に2個以上のエポキシ基を有するエポキシ化合物と、分子内に2個以上のビニル基を有するビニル化合物とを同時に光硬化させることを特徴とする発明が記載されている。しかしながら、この発明の合成方法は、特に光学的造形用樹脂を得ることを目的とはしていないため、これによって得られる樹脂を光学的造形用樹脂として用いても、光学的造形システムに最適なものではなかった。

[課題を解決するための手段]

本発明は、かかる光学的造形用樹脂として要求される各種の諸特性を有する感光性樹脂を鋭意検討した結果、見出されたものである。

本発明の目的は、活性エネルギー線による光学的造形システムに最適な樹脂組成物を提供することにある。 本発明の光学的造形用樹脂組成物は、必須成分として、

- (a) エネルギー線硬化性カチオン重合性有機物質、
- (b) エネルギー線感受性カチオン重合開始剤、(c) エネルギー線硬化性ラジカル重合性有機物質、(d) エネルギー線感受性ラジカル重合開始剤及び(e) 木酸基含有ポリエステルを含有することを特徴とするものである。

本発明の構成要素となるエネルギー線硬化性カチオン重合性有機物質(a)とは、エネルギー線感受性カチオン 重合開始剤(b)の存在下、エネルギー線照射により高分子化又は架橋反応するカチオン重合性化合物で、例えばエポキシ化合物、環状エーテル化合物、環状ラクトン化合物、環状アセタール化合物、環状チオエーテル化合物、スピロオルソエステル化合物、ビニル化合物などの1種又は2種以上の混合物からなるものである。かかるカチオン重合性化合物の中でも、1分子中に少なくとも2個以上のエポキシ基を有する化合物は、好ましいものであり、例えば従来公知の芳香族エポキシ樹脂、脂漿族エポキシ樹脂、脂肪族エポキシ樹脂が挙げられる。

ここで芳香族エポキシ樹脂として好ましいものは、少なくとも1個の芳香核を有する多価フェノール又はそのアルキレンオキサイド付加体のポリグリシジルエーテルであって、例えばビスフェノールAやビスフェノールF又はそのアルキレンオキサイド付加体とエピクロルヒドリンとの反応によって製造されるグリシジルエーテル、エ 50

ポキシノボラック樹脂が挙げられる。

また、脂環族エポキシ樹脂として好ましいものとして は、少なくとも1個の脂環族環を有する多価アルコール のポリグリシジルエーテル又はシクロヘキセン、又はシ クロペンテン環含有化合物を、過酸化水素、過酸等の、 適当な酸化剤でエポキシ化することによって得られるシ クロヘキセンオキサイド又はシクロペンテンオキサイド 含有化合物が挙げられる。脂環族エポキシ樹脂の代表例 としては、水素添加ピスフェノールAジグリシジルエー テル、3,4-エポキシシクロヘキシルメチル-3,4-エポ キシシクロヘキサンカルボキシレート、2-(3,4-エ ポキシシクロヘキシルー5,5-スピロー3,4-エポキシ) シクロヘキサンーメタージオキサン、ビス (3,4-エポ キシシクロヘキシルメチル) アジペート、ビニルシクロ ヘキセンジオキサイド、4-ビニルエポキシシクロヘキ サン、ビス(3.4-エポキシー6-メチルシクロヘキシ ルメチル) アジペート、3,4-エポキシー6-メチルシ クロヘキシルー3,4-エポキシー6-メチルシクロヘキ サンカルボキシレート、メチレンビス (3,4-エポキシ シクロヘキサン)、ジシクロペンタジエンジエポキサイ ド、エチレングリコールのジ(3,4-エポキシシクロへ キシルメチル)エーテル、エチレンビス(3,4-エポキ シシクロヘキサンカルボキシレート)、エポキシヘキサ ヒドロフタル酸ジオクチル、エポキシヘキサヒドロフタ ル酸ジー2-エチルヘキシルなどが挙げられる。

更に脂肪族エポキシ樹脂として好ましいものは、脂肪族 多価アルコール、又はそのアルキレンオキサイド付加物 のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリ グリシジルエステル、グリシジルアクリレートやグリシ ジルメタクリレートのホモポリマー、コポリマーなどが あり、その代表例としては、1,4-ブタンジオールのジ グリシジルエーテル、1,6-ヘキサンジオールのジグリ シジルエーテル、グリセリンのトリグリシジルエーテ ル、トリメチロールプロパンのトリグリシジルエーテ ル、ソルビトールのテトラグリシジルエーテル、ジペン タエリスリトールのヘキサグリシジルエーテル、ポリエ チレングリコールのジグリシジルエーテル、ポリプロピ レングリコールのジグリシジルエーテル、エチレングリ コール、プロピレングリコール、グリセリン等の脂肪族 多価アルコールに1種又は2種以上のアルキレンオキサ イドを付加することにより得られるポリエーテルポリオ ールのポリグリシジルエーテル、脂肪族長鎖二塩基酸の ジグリシジルエステルが挙げられる。更に脂肪族髙級ア ルコールのモノグリシジルエーテルやフェノール、クレ ゾール、ブチルフェノール又はこれらにアルキレンオキ サイドを付加することにより得られるポリエーテルアル コールのモノグリシジルエーテル、高級脂肪酸のグリシ ジルエステル、エポキシ化大豆油、エポキシステアリン 酸プチル、エポキシステアリン酸オクチル、エポキシ化 アマニ油、エポキシ化ポリブタジエン等が挙げられる。

エポキシ化合物以外のカチオン重合性有機物質の例とし ては、トリメチレンオキシド、3,3-ジメチルオキセタ ン、3,3-ジクロロメチルオキセタンなどのオキセタン 化合物; テトラヒドロフラン、2,3-ジメチルテトラヒ ドロフランのようなオキソラン化合物;トリオキサン、 1,3-ジオキソラン、1,3,6-トリオキサンシクロオクタ ンのような環状アセタール化合物;β-プロピオラクト ン、ε-カプロラクトンのような環状ラクトン化合物; エチレンスルフィド、チオエピクロロヒドリンのような チイラン化合物;1,3-プロピンスルフィド、3,3-ジメ チルチエタンのようなチエタン化合物;エチレングリコ ールジビニルエーテル、アルキルビニルエーテル、3,4 ージヒドロピランー2ーメチル(3,4ージヒドロピラン -2-カルボキシレート)、トリエチレングリコールジ ビニルエーテルのようなビニルエーテル化合物:エポキ シ化合物とラクトンとの反応によって得られるスピロオ ルソエステル化合物;ビニルシクロヘキサン、イソプチ レン、ポリブタジエンのようなエチレン性不飽和化合物 及び上記化合物の誘導体が挙げられる。これらのカチオ ン重合性化合物は、単独あるいは2種以上のものを所望 の性能に応じて配合して使用することができる。

これらのカチオン重合性有機物質のうち特に好ましいものは1分子中に少なくとも2個以上のエポキシ基を有する脂環族エポキシ樹脂であり、カチオン重合反応性、低粘度化、紫外線透過性、厚膜硬化性、体積収縮率、解像度などの点で良好な特性を示す。

本発明で使用するエネルギー線感受性カチオン重合開始 剤(b)とは、エネルギー線照射によりカチオン重合を 開始させる物質を放出することが可能な化合物であり、 特に好ましいものは、照射によりルイス酸を放出するオ ニウム塩である複塩の一群のものである。かかる化合物 の代表的なものは、一般式

 $(R^1aR^2bR^3cR^4dZ)$ +m (MX_{n+m}) -m

【式中カチオンはオニウムであり、 Z はS, Se, Te, P, As, Sb, Bi, 0, ハロゲン(例えばI, Br, Cl)、 N \equiv Nであり、 R^1 , R^2 , R^3 , R^4 は同一でも異なっていてもよい有機の基である。 a, b, c, d はそれぞれ $0\sim3$ の整数であって a+b+c+d は、 Z の価数に等しい。 Mは、ハロゲン化物錯体の中心原子である金属又は半金属(metalloid)であり、 B, P, As, Sb, Fe, Sn, Bi, Al, Ca, In, Ti, Zn, Sc, V, Cr, Mn, Co等である。 X はハロゲンであり、 m はハロゲン化物錯体イオンの正味の電荷であり、 n はハロゲン化物錯体イオン中の原子の数である。 M で表される。

上記一般式の陰イオン MX_{n+m} の具体例としては、テトラフルオロボレート(BF_4 -)、ヘキサフルオロホスフェート(PF_6 -)、ヘキサフルオロアンチモネート(SbF_6 -)、ヘキサフルオロアルセネート(AsF_6 -)、ヘキサクロロアンチモネート($SbCl_6$ -)等が挙げられる。 更に一般式 MX_n (OH)-で表される陰イオンも用いることができる。また、その他の陰イオンとしては、過塩素酸イ

6

オン($C104^-$)、トリフルオロメチル亜硫酸イオン($CF_3 S03^-$)、フルオロスルホン酸イオン($FS03^-$)、トルエンスルホン酸陰イオン、トリニトロベンゼンスルホン酸陰イオン等が挙げられる。

このようなオニウム塩の中でも特に芳香族オニウム塩をカチオン重合開始剤として使用するのが、特に有効であり、中でも特開昭50-151996号、特開昭50-151997号、特開昭52-30899号、特開昭56-55420号、特開昭55-125105号公報等に記載のVIA族芳香族オニウム塩、特開昭50-158698号公報等に記載のVA族芳香族オニウム塩、特開昭56-8428号、特開昭56-149402号、特開昭57-192429号公報等に記載のオキソスルホキソニウム塩、特公昭49-17040号公報等に記載の芳香族ジアゾニウム塩、米国特許第4139655号明細書に記載のチオビリリウム塩等が好ましい。また、鉄/アレン錯体やアルミニウム錯体/光分解

かかるカチオン重合開始剤には、ベンゾフェノン、ベン ゾインイソプロピルエーテル、チオキサントンなどの光 増感剤を併用することもできる。

ケイ素化合物系開始剤等も挙げられる。

本発明で使用するエネルギー線硬化性ラジカル重合性有機物質(C)とはエネルギー線感受性ラジカル重合開始剤(d)の存在下、エネルギー線照射により高分子化又は架橋反応するラジカル重合性化合物で、例えばアクリレート化合物、メタクリレート化合物、アリルウレタン化合物、不飽和ポリエステル化合物、ポリチオール化合物などの1種又は2種以上の混合物からなるものである。かかるラジカル重合性化合物の中でも、1分子中に少なくとも1個以上のアクリル基を有する化合物は好ましいものであり、例えばエポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエステルが手げられる。

ここで、エポキシアクリレートとして、好ましいものは、従来公知の芳香族エポキシ樹脂、脂環族エポキシ樹脂などと、アクリル酸とを反応させて得られるアクリレートである。これらのエポキシアクリレートのうち、特に好ましいものは、芳香族エポキシ樹脂のアクリレートであり、少なくとも1個の芳香核を有する多価フェノール又はそのアルキレンオキサイド付加体のポリグリシジルエーテルを、アクリル酸と反応させて得られるアクリレートであって、例えば、ビスフェノールA、又はそのアルキレンオキサイド付加体と、エピクロルヒドリンとの反応によって得られるグリシジルエーテルを、アクリル酸と反応させて得られるアクリレート、エポキシノボラック樹脂とアクリル酸とを反応させて得られるアクリレートが挙げられる。

ウレタンアクリレートとして好ましいものは、1種又は 2種以上の水酸基含有ポリエステルや、水酸基含有ポリ エーテルに水酸基含有アクリル酸エステルとイソシアネ

ート類を反応させて得られるアクリレートや、水酸基含 有アクリル酸エステルとイソシアネート類を反応させて 得られるアクリレートである。ここで使用する水酸基含 有ポリエステルとして好ましいものは、1種又は2種以 上の脂肪族多価アルコールと、1種又は2種以上の多塩 基酸とのエステル化反応によって得られる水酸基含有ポ リエステルであって、脂肪族多価アルコールとしては、 例えば1,3-プタンジオール、1,4-プタンジオール、1, 6-ヘキサンジオール、ジエチレングリコール、トリエ チレングリコール、ネオペンチルグリコール、ポリエチ レングリコール、ポリプロピレングリコール、トリメチ ロールプロパン、グリセリン、ペンタエリスリトール、 ジペンタエリスリトールが挙げられる。多塩基酸として は、例えば、アジピン酸、テレフタル酸、無水フタル 酸、トリメリット酸が挙げられる。水酸基含有ポリエー テルとして好ましいものは、脂肪族多価アルコールに1 種又は2種以上のアルキレンオキサイドを付加する事に よって得られる水酸基含有ポリエーテルであって、脂肪 族多価アルコールとしては、例えば、1,3-ブタンジオ ール、1,4-ブタンジオール、1,6-ヘキサンジオール、 ジエチレングリコール、トリエチレングリコール、ネオ ペンチルグリコール、ポリエチレングリコール、ポリプ ロピレングリコール、トリメチロールプロパン、グリセ リン、ペンタエリスリトール、ジペンタエリスリトール が挙げられる。アルキレンオキサイドとしては、例え ば、エチレンオキサイド、プロピレンオキサイドが挙げ られる。水酸基含有アクリル酸エステルとして好ましい ものは、脂肪族多価アルコールと、アクリル酸とのエス テル化反応によって得られる水酸基含有アクリル酸エス テルであって、脂肪族多価アルコールとしては、例え ば、エチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレン グリコール、トリエチレングリコール、ネオペンチルグ リコール、ポリエチレングリコール、ポリプロピレング リコール、トリメチロールプロパン、グリセリン、ペン タエリスリトール、ジペンタエリスリトールが挙げられ る。かかる水酸基含有アクリル酸エステルのうち、脂肪 族2価アルコールとアクリル酸とのエステル化反応によ って得られる水酸基含有アクリル酸エステルは、特に好 ましく、例えば2-ヒドロキシエチルアクリレートが挙 げられる。イソシアネート類としては、分子中に少なく とも1個以上のイソシアネート基をもつ化合物が好まし いが、トリレンジイソシアネートや、ヘキサメチレンジ イソシアネート、イソホロンジイソシアネートなどの2 価のイソシアネート化合物が特に好ましい。

ポリエステルアクリレートとして好ましいものは、水酸基含有ポリエステルとアクリル酸とを反応させて得られるポリエステルアクリレートである。ここで使用する水酸基含有ポリエステルとして好ましいものは、1種又は2種以上の脂肪族多価アルコールと、1種又は2種以上 50

8

の1塩基酸、多塩基酸、及びフェノール類とのエステル化反応によって得られる水酸基含有ポリエステルであって、脂肪族多価アルコールとしては、例えば1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、ネオペンチルグリコール、ポリエチレングリコール、ポリプロピレングリコール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ジペンタエリスリトールが挙げられる。1塩基酸としては、例えば、ギ酸、酢酸、ブチルカルボン酸、安息香酸が挙げられる。多塩基酸としては、例えばアジピン酸、テレフタル酸、無水フタル酸、トリメリット酸が挙げられる。フェノール類としては、例えばフェノール、p-ノニルフェノールが挙げられる。

ポリエーテルアクリレートとして好ましいものは、水酸基含有ポリエーテルと、アクリル酸とを反応させて得られるポリエーテルアクリレートである。ここで使用する水酸基含有ポリエーテルとして好ましいものは、脂肪族多価アルコールに1種又は2種以上のアルキレンオキサイドを付加する事によって得られる水酸基含有ポリエーテルであって、脂肪族多価アルコールとしては、例えば1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ジペンタエリスリトールが挙げられる。アルキレンオキサイドとしては、例えばエチレンオキサイド、プロピレンオキサイドが挙げられる。

アルコール類のアクリル酸エステルとして好ましいもの は、分子中に少なくとも1個の水酸基をもつ芳香族、又 は脂肪族アルコール、及びそのアルキレンオキサイド付 加体と、アクリル酸とを反応させて得られるアクリレー トであり、例えば2-エチルヘキシルアクリレート、2 ーヒドロキシエチルアクリレート、2-ヒドロキシプロ ピルアクリレート、イソアミルアクリレート、ラウリル アクリレート、ステアリルアクリレート、イソオクチル アクリレート、テトラヒドロフルフリルアクリレート、 イソボルニルアクリレート、ベンジルアクリレート、1. 3-ブタンジオールジアクリレート、1,4-ブタンジオー ルジアクリレート、1,6-ヘキサンジオールジアクリレ ート、ジエチレングリコールジアクリレート、トリエチ レングリコールジアクリレート、ネオペンチルグリコー ルジアクリレート、ポリエチレングリコールジアクリレ ート、ポリプロピレングリコールジアクリレート、トリ メチロールプロパントリアクリレート、ペンタエリスリ トールトリアクリレート、ジペンタエリスリトールヘキ サアクリレートが挙げられる。

これらのアクリレートのうち、多価アルコールのポリア クリレート類が特に好ましい。 これらのラジカル重合性有機物質は、単独あるいは2種 以上のものを所望の性能に応じて、配合して使用する事 ができる。

以上の(c)エネルギー線硬化性ラジカル重合性有機物質のうち、特に好ましいのは、1分子中に少なくとも3個以上の不飽和二重結合を有する化合物である。

本発明で使用するエネルギー線感受性ラジカル重合開始 剤(d)とは、エネルギー線照射によりラジカル重合を 開始させる物質を放出する事が可能な化合物であり、ア セトフェノン系化合物、ベンゾインエーテル系化合物、 ベンジル系化合物、ベンゾフェノン系化合物、チオキサ ントン系化合物などのケトン類が好ましい。アセトフェ ノン系化合物としては、例えばジエトキシアセトフェノ ン、2-ヒドロキシメチル-1-フェニルプロパン-1 ーオン、4′ーイソプロピルー2ーヒドロキシー2ーメ チループロピオフェノン、2-ヒドロキシ-2-メチル -プロピオフェノン、p-ジメチルアミノアセトフェノ ン、p-tert-ブチルジクロロアセトフェノン、p-te rtープチルトリクロロアセトフェノン、pーアジドベン ザルアセトフェノンが挙げられる。ベンゾインエーテル 系化合物としては、例えば、ベンゾイン、ベンゾインメ チルエーテル、ベンゾインエチルエーテル、ベンゾイン イソプロピルエーテル、ベンゾインノルマルブチルエー テル、ベンゾインイソブチルエーテルが挙げられる。ベ ンジル系化合物としては、ベンジル、ベンジルジメチル ケタール、ベンジルーβーメトキシエチルアセタール、 1-ヒドロキシシクロヘキシルフェニルケトンが挙げら れる。ベンゾフェノン系化合物としては、例えばベンゾ フェノン、oーベンゾイル安息香酸メチル、ミヒラース ケトン、4,4′ービスジエチルアミノベンゾフェノン、 4,4' -ジクロロベンゾフェノンが挙げられる。チオキ サントン系化合物としては、チオキサントン、2-メチ ルチオキサントン、2-エチルチオキサントン、2-ク ロロチオキサントン、2-イソプロピルチオキサントン が挙げられる。

これらのエネルギー線感受性ラジカル重合開始剤 (d) は、単独あるいは2種以上のものを所望の性能に応じて配合して使用することができる。

本発明で使用する(e) 水酸基含有ポリエステルとは、
1種又は2種以上の脂肪族多価アルコールと、1種又は
2種以上の1塩基酸、多塩基酸、フェノール類とのエステル化反応によって得られる水酸基含有ポリエステル、及び1種又は2種以上のラクトン類と、1種又は2種以上の1塩基酸、多塩基酸、フェノール類とのエステル化反応によって得られる水酸基含有ポリエステルであって脂肪族多価アルコールとしては、例えば1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、ポリプロピレングリコール、トリメチロールプロパン、グ50

10

リセリン、ペンタエリスリトール、ジペンタエリスリトールが挙げられる。1塩基酸としては、例えば、ギ酸、酢酸、ブチルカルボン酸、安息香酸が挙げられる。多塩基酸としては、例えばアジピン酸、テレフタル酸、無水フタル酸、トリメリット酸が挙げられる。フェノール類としては、例えばフェノール、pーノニルフェノールが挙げられる。ラクトン類としては、βープロピオラクトン、εーカプロラクトンが挙げられる。

これらの(e) 水酸基含有ポリエステルは、単独あるいは2種以上のものを所望の性能に応じて配合して使用することができる。

次に、本発明における(a)エネルギー線硬化性カチオン重合性有機物質、(b)エネルギー線感受性カチオン重合開始剤、(c)エネルギー線硬化性ラジカル重合性有機物質、(d)エネルギー線感受性ラジカル重合開始剤、(e)水酸基含有ポリエステルの組成割合について説明する。組成割合については、部(重量部)で説明する。

即ち、本発明におけるエネルギー線硬化性カチオン重合 性有機物質(a)及びエネルギー線硬化性ラジカル重合 性有機物質(c)の組成割合は、エネルギー線硬化性カ チオン重合性有機物質(a)と、エネルギー線硬化性ラ ジカル重合性有機物質(c)の合計を100部とすると、 エネルギー線硬化性カチオン重合性有機物質(a)を40 ~95部、即ち、エネルギー線硬化性ラジカル重合性有機 物質(c)を5~60部含有するものが好ましく、更に好 ましくはエネルギー線硬化性カチオン重合性有機物質 (a)を50~90部、即ち、エネルギー線硬化性ラジカル 重合性有機物質(c)を10~50部含有するものが、光学 的造形用樹脂組成物として、特に優れた特性を有する。 本発明の組成物において、エネルギー線硬化性カチオン 重合性有機物質(a)及びエネルギー線硬化性ラジカル 重合性有機物質(c)は、光学的造形用樹脂組成物とし て所望の特性を得るために、複数のエネルギー線硬化性 有機物質、即ち、エネルギー線硬化性カチオン重合性有 機物質(a)、及びエネルギー線硬化性ラジカル重合性 有機物質(c)を配合して使用することができる。 本発明の組成物におけるエネルギー線感受性カチオン重 合開始剤(b)の含有量は、エネルギー線硬化性有機物 質100部、即ち、エネルギー線硬化性カチオン重合性有 機物質(a)とエネルギー線硬化性ラジカル重合性有機 物質(c)の合計100部に対して、0.1~10部、好ましく は0.5~6部の範囲で含有することができる。又、本発 明の組成物におけるエネルギー線感受性ラジカル重合開

始剤(d)の含有量は、エネルギー線硬化性有機物質10

0部に対して、0.1~10部、好ましくは0.2~5部の範囲

で含有することができる。エネルギー線感受性カチオン

重合開始剤(b)及びエネルギー線感受性ラジカル重合

開始剤(d)は、光学的造形用樹脂組成物として、所望

の特性を得るために、複数のエネルギー線感受性カチオ

ン重合開始剤(b)及びエネルギー線感受性ラジカル重合開始剤(d)を配合して使用することができる。またこれらの重合開始剤をエネルギー線硬化性有機物質と混合する時は、重合開始剤を適当な溶剤に溶かして使用することもできる。

本発明の組成物における(e) 水酸基含有ポリエステルの含有量は、(a) エネルギー線硬化性カチオン重合性有機物質と(c) エネルギー線硬化性ラジカル重合性有機物質の合計100部に対して5~40部含有するものが好ましく、更に好ましくは10~30部含有するものが、光学 10的造形用樹脂組成物として、特に優れた特性を有する。本発明の組成物において、(e) 水酸基含有ポリエステルは、光学的造形用樹脂組成物として所望の特性を得るために、複数の水酸基含有ポリエステルを配合して使用することができる。

このように、本発明の組成物において、(e) 水酸基含有ポリエステルを(a) エネルギー線硬化性カチオン重合性有機物質と(c) エネルギー線硬化性ラジカル重合性有機物質の合計100部に対して、5~40部含有することにより硬化が促進され光学的造形用樹脂組成物として 20優れた特性を与えることができる。特に(e) 水酸基含有ポリエステルの含有量を(a) エネルギー線硬化性カチオン重合性有機物質と(c) エネルギー線硬化性ラジカル重合性有機物質の合計100部に対して10~30部となるように構成した場合、非常に優れた光学的造形システムを得ることができる。

本発明の組成物において、エネルギー線硬化性カチオン 重合性有機物質(a)の組成割合が多すぎる場合、即ち エネルギー線硬化性ラジカル重合性有機物質(c)の組 成割合が少なすぎる場合、得られる組成物は、活性エネ ルギー線による硬化反応の際、空気中の酸素による影響 を受けにくく、又、硬化時の体積収縮を小さくすること ができるため、硬化物に歪みや割れ等が生じ憎く、更に 低粘度の樹脂組成物が容易に得られるため、造形時間を 短縮する事ができる。しかし、活性エネルギー線による 硬化反応の際、活性エネルギー線の照射部分から周辺部 分へと重合反応が進み易いため、解像度が悪く、又、活 性エネルギー線の照射後、重合反応が終了するまで数秒 間の時間を要する。逆にエネルギー線硬化性カチオン重 合性有機物質(a)の組成割合が少なすぎる場合、即 ち、エネルギー線硬化性ラジカル重合性有機物質(c) の組成割合が多すぎる場合、活性エネルギー線の照射部 分から周辺部分へと重合反応が進みにくいため解像度が 良く、又、活性エネルギー線の照射後重合反応が終了す るまで、ほとんど時間を要さない。しかし、活性エネル ギー線による硬化反応の際、空気中の酸素により重合反 応が阻害され易く、又、硬化時の体積収縮が大きいため 硬化物にゆがみや割れなどが生じ易く、更に、低粘度化 するため低粘度ラジカル重合性樹脂を使用すると、皮膚 刺激性が大きい。この様な組成物はいずれも光学的造形 12

用樹脂組成物としては、適当ではない。

本発明の光学的造形用樹脂組成物を、特に(a)エネルギー線硬化性カチオン重合性有機物質が、1分子中に少なくとも2個以上のエポキシ基を有する脂環族エポキシ樹脂を40重量%以上含有し、(c)エネルギー線硬化性ラジカル重合性有機物質が、1分子中に少なくとも3個以上の不飽和二重結合を有する化合物を50重量%以上含有するように構成した場合、エネルギー線反応性が良く、機械的強度や解像度に優れ、収縮率が3%以下になり、非常に優れた光学的造形システムを構成することができる。

本発明の光学的造形用樹脂組成物は、本発明の効果を損なわない限り、必要に応じて、熱感受性カチオン重合開始剤; 顔料、染料等の着色剤; 消泡剤、レベリング剤、増粘剤、難燃剤、酸化防止剤等の各種樹脂添加剤; シリカ、ガラス粉、セラミックス粉、金属粉等の充填剤; 改質用樹脂などを適量配合して使用することができる。熱感受性カチオン重合開始剤としては、例えば、特開昭57-49613号、特開昭58-37004号公報記載の脂肪族オニウム塩類が挙げられる。

本発明組成物の粘度としては、好ましくは常温で2000cp s以下のもの、更に好ましくは、1000cps以下のものである。粘度があまり高くなると、造形所要時間が長くなるため、作業性が悪くなる傾向がある。

一般に造形用樹脂組成物は、硬化時に体積収縮をするので、精度の点から収縮の小さいことが要望される。本発明組成物の硬化時の体積収縮率としては、好ましくは5%以下、更に好ましくは3%以下のものである。

本発明の具体的実施方法としては、特開昭60-247515号

公報に記載されている様に、本発明の光学的造形用樹脂 組成物を容器に収容し、該樹脂組成物中に導光体を挿入 し、前記容器と該導光体とを相対的に、移動しつつ該導 光体から硬化に必要な活性エネルギー線を選択的に供給 することによって、所望形状の固体を形成することがで きる。本発明組成物を硬化する際に使用する活性エネル ギー線としては、紫外線、電子線、X線、放射線、ある いは髙周波等を用いることができる。これらのうちで も、1800~5000Åの波長を有する紫外線が経済的に好ま しく、その光源としては、紫外線レーザー、水銀ラン プ、キセノンランプ、ナトリウムランプ、アルカリ金属 ランプ等が使用できる。特に好ましい光源としては、レ ーザー光源であり、エネルギーレベルを高めて造形時間 を短縮し、良好な集光性を利用して、造形精度を向上さ せることが可能である。また、水銀ランプ等の各種ラン プからの紫外線を集光した点光源も有効である。更に、 硬化に必要な活性エネルギー線を、本樹脂組成物に選択 的に供給するためには、該樹脂組成物の硬化に適した波 長の2倍に相等しい波長を有し、かつ位相のそろった2 つ以上の光束を該樹脂組成物中において、相互に交叉す るように照射して2光子吸収により、該樹脂組成物の硬

化に必要なエネルギー線を得、該光の交叉箇所を移動し て行うこともできる。前記位相のそろった光束は、例え ばレーザー光により得ることができる。

本発明組成物は、活性エネルギー線によるカチオン重合 反応及びラジカル重合反応により硬化が進むため、使用 するカチオン重合性有機物質(a)及びラジカル重合性 有機物質(c)の種類によっては、活性エネルギー線照 射時、該樹脂組成物を、30~100℃程度に加熱すること により、架橋硬化反応を効果的に促進することもできる し、更に、エネルギー線照射して、得られた造形物を40 10 ~100℃の温度に加熱処理又は水銀ランプなどで、UV照 射処理をすることで、より機械強度の優れた造形物を得 ることもできる。

本発明の光学的造形用樹脂組成物は、三次元立体モデル を層状形成物の積み重ねによって作成するための非常に 優れたものであり、金型を用いないでモデルの創成加工 ができ、しかも自由曲面など、CAD/CAMとドッキングに よりあらゆる形状が高精度に創成できるなど、工業的価 値は極めて大きい。例えば、本樹脂組成物の応用分野と しては、設計の途中で外観デザインを審査するためのモ デル、部品相互の組み合わせの不都合をチェックするた めのモデル、鋳型を製作するための木型、金型を製作す るための倣い加工用モデルなど、幅広い用途に利用する ことができる。

具体的な適用分野としては、自動車、電子・電気部品・ 家具、建築構造物、玩具、容器類、鋳物、人形、など各 種曲面体のモデルや加工用が挙げられる。

〔実施例〕

以下、実施例によって本発明の代表的な例について、更 に具体的に説明するが、本発明は、以下の実施例によっ て制約されるものではない。例中「部」は重量部を意味 する。

実施例1

(a) エネルギー線硬化性カチオン重合性有機物質とし て、3,4-エポキシシクロヘキシルメチル-3,4-エポキ シシクロヘキサンカルボキシレート65部、1,4-プタン ジオールジグリシジルエーテル20部、(b) エネルギー 線感受性カチオン重合開始剤として、ビスー〔4-(ジ フェニルスルホニオ)フェニル]スルフィドピスジヘキ サフルオロアンチモネート3部、(c)エネルギー線硬 化性ラジカル重合性有機物質として、ジペンタエリスリ トールへキサアクリレート15部、(d) エネルギー線感 受性ラジカル重合開始剤として、ベンゾフェノン1部、 (e) 水酸基含有ポリエステルとして、トリメチロール プロパンの ε ーカプロラクトンエステル15部を充分混合 して、光学的造形用樹脂組成物を得た。樹脂組成物を入 れる容器をのせた三次元NC(数値制御)テーブル、ヘリ ウム・カドミウムレーザー (波長325nm) と、光学系及 びパーソナルコンピューターをメーンとする制御部より

構成される光造形実験システムを用いて、この樹脂組成 50

物から底面の直径12mm、高さ15mm、厚さ0.5mmの円錐を. 造形した。この造形物は歪みがなく、極めて造形精度が 高く、かつ機械強度が優れたものであった。

レーザーによる重合速度を比較するため造形に要する時 間を測定したところ、35分と短時間であった。また、造 形精度を測定するため、円錐状造形物の底面の直径を任 意に10箇所測定し、そのバラツキを測定したところ、平 均値からの平均誤差(以下造形精度という)が1.3%と 髙精度であった。

実施例2

(a) エネルギー線硬化性カチオン重合性有機物質とし て、3,4-エポキシシクロヘキシルメチル-3,4-エポキ シシクロヘキサンカルボキシレート50部、1,4-プタン ジオールジグリシジルエーテル20部、(b) エネルギー 線感受性カチオン重合開始剤として、トリフェニルスル ホニウムヘキサフルオロアンチモネート3部、(c) エ ネルギー線硬化性ラジカル重合性有機物質として、ジペ ンタエリスリトールヘキサアクリレート20部、トリメチ ロールプロパントリアクリレート10部、(d)エネルギ 一線感受性ラジカル重合開始剤として、ベンジルジメチ ルケタール1部、(e) 水酸基含有ポリエステルとし て、グリセリンの ε -カプロラクトンエステル10部を充 分混合して、光学的造形用樹脂組成物を得た。実施例1 に示したレーザー光造形実験システムを用いて、つりが ね状の造形物を作成したところ、この造形物は、歪みが なく、極めて造形精度が高く、かつ機械強度の優れたも のであった。また、本樹脂組成物は、低粘度で扱い易 く、レーザー光による硬化性の優れたものであった。 レーザーによる重合速度と造形精度を測定するため、実 施例1と同様の円錐状造形物を作成したところ、造形時 間が35分、造形精度が1.2%であった。 実施例3

- (a) エネルギー線硬化性カチオン重合性有機物質とし て、ビスフェノールAジグリシジルエーテル10部、3.4 ーエポキシシクロヘキシルメチルー3,4ーエポキシシク ロヘキサンカルボキシレート40部、ビニルシクロヘキセ ンオキシド10部、(b) エネルギー線感受性カチオン重 合開始剤として、トリフェニルスルホニウムヘキサフル オロアンチモネート2部、(c)エネルギー線硬化性ラ ジカル重合性有機物質として、ビスフェノールAエポキ シアクリレート15部、ペンタエリスリトールトリアクリ レート25部、(d)エネルギー線感受性ラジカル重合開 始剤として、2.2-ジエトキシアセトフェノン2部、
- (e) 水酸基含有ポリエステルとして、トリエチレング リコールの ε ーカプロラクトンエステル10部を充分混合 して、光学的造形用樹脂組成物を得た。実施例1に示し たレーザー光造形実験システムを用いて、この組成物を 60℃に加温しながらコップ状造形物を作成したところ、 歪みがなく、造形精度の優れたものが得られた。
- レーザーによる重合速度と造形精度を測定するため実施

例1と同様の円錐状造形物を作成したところ、60℃に加温しているため反応速度が速く、造形時間が25分と非常に短時間であった。また、造形精度は1.6%であった。 実施例4

(a) エネルギー線硬化性カチオン重合性有機物質とし て、3,4-エポキシシクロヘキシルメチル-3,4-エポキ シシクロヘキサンカルボキシレート55部、1,4-プタン ジオールジグリシジルエーテル10部、トリエチレングリ コールジビニルエーテル10部、(b) エネルギー線感受 性カチオン重合開始剤として、ピスー〔4-(ジフェニ ルスルホニオ)フェニル]スルフィドビスジヘキサフル オロアンチモネート2部、(c)エネルギー線硬化性ラ ジカル重合性有機物質として、ジペンタエリスリトール ヘキサアクリレート20部、(d)エネルギー線感受性ラ ジカル重合開始剤として、ベンゾフェノン1部、(e) 水酸基含有ポリエステルとして、1.4-ブタンジオール のアジピン酸エステル30部を充分混合して、光学的造形 用樹脂組成物を得た。この組成物を使用して実施例1に 示したレーザー光造形実験システムによるつりがね状造 形物を作成したところ、歪みがなく、機械的強度、造形 精度、表面平滑性の優れたものが得られた。

レーザーによる重合速度と造形精度を測定するため、実施例1と同様の円錐状造形物を作成したところ、造形時間が30分、造形精度が0.5%と非常に高精度であった。 比較例1

3,4-エポキシシクロヘキシルメチルー3,4-エポキシシクロヘキサンカルボキシレート60部、ビスフェノールAジグリシジルエーテル20部、1,4-ブタンジオールジグリシジルエーテル20部、トリフェニルスルホニウムヘキサフルオロアンチモネート3部を充分混合し、エネルギラル練硬化性カチオン重合性樹脂組成物を得た。この組成物を使用して、実施例1に示したレーザー光造形実験システムを用いて、実施例1と同様の円錐状造形物を作成したところ、この造形物は、歪みがなく、又、機械強度も優れたものであったが、本樹脂組成物はレーザー光による硬化時に解像度が悪いため、造形物の表面がざらざらとした造形精度の悪いものであった。又、レーザー照射時より重合反応が終了するまで、数秒間待たねばならず、造形所要時間が120分と長時間であった。また造形精度は6.8%と大きな値を示した。

比較例2

ビスフェノールAエポキシアクリレート70部、トリメチロールプロパントリアクリレート30部、ベンジルジメチルケタール3部を充分混合して、エネルギー線硬化性ラジカル重合性樹脂組成物を得た。この組成物を使用して、実施例1に示したレーザー光造形実験システムを用いて、実施例1と同様の円錐状造形物を作成したところ、造形時間は45分であったが、この造形物は、大きな硬化収縮による歪みが発生し、造形精度が10.0%と非常に劣るものであった。

16

比較例3

3,4ーエポキシシクロヘキシルメチルー3,4ーエポキシシクロヘキサンカルボキシレート65部、1,4ープタンジオールジグリシジルエーテル20部、ビス [4ー(ジフェニルスルホニオ)フェニル]スルフィドビスジヘキサフルオロアンチモネート3部、ジペンタエリスリトールへキサアクリレート15部、ベングフェノン1部を充分混合して、エネルギー線硬化性カチオン/ラジカル重合性樹脂組成物を得た。この組成物を使用して、実施例1に示したレーザー光造形実験システムを用いて、実施例1と同様の円錐状造形物を作成した。この造形物は歪みがなく、機械強度の優れたものであった。造形時間は50分、造形精度は3.0%であり、光学的造形用樹脂組成物としては、ある程度のレベルに達していたが、水酸基含有ポリエステルを含有するものと比べると明らかに劣っていた。

[発明の効果]

本発明の光学的造形用樹脂組成物は、エネルギー線硬化 性カチオン重合性有機物質及びエネルギー線硬化性ラジ カル重合性有機物質の混合組成物であるため、エネルギ 一線硬化性カチオン重合性有機物質の特性と、エネルギ 一線硬化性ラジカル重合性有機物質の特性の両方の利点 をもつ樹脂組成物である。カチオン重合性樹脂組成物 は、活性エネルギー線による硬化反応の際、空気中の酸 素による影響を全く受けることがない、硬化時の体積収 縮を小さくすることができるため、硬化物に歪みや割れ 等が生じにくい、硬化物の強度が優れている、低粘度樹 脂組成物が容易なため造形時間を短縮することができ る、等の利点がある。しかし、活性エネルギー線による 硬化反応の際、活性エネルギー線の照射部分から周辺部 分へと重合反応が進み易いため、解像度が悪い、活性エ ネルギー線の照射後、重合反応が終了するまで数秒間の 時間を要する、等の欠点がある。一方、ラジカル重合性 樹脂組成物は、活性エネルギー線による硬化反応の際、 活性エネルギー線の照射部分から周辺部分へと重合反応 が進みにくいため解像度が良い、活性エネルギー線の照 射後、重合反応が終了するまで、ほとんど時間を要さな い、という利点がある。しかし、空気中の酸素により重 合反応が阻害される、硬化時の収縮率が大きい、硬化物 の機械的強度が劣る、低粘度樹脂は、皮膚刺激性が大き い、臭気が強い等の欠点がある。

本発明では、(a) エネルギー線硬化性カチオン重合性 有機物質、(b) エネルギー線感受性カチオン重合開始 剤、(c) エネルギー線硬化性ラジカル重合性有機物 質、(d) エネルギー線感受性ラジカル重合開始剤及び (e) 水酸基含有ポリエステルを混合することにより、 以下のような特徴をもつ光学的造形用樹脂組成物を得る ことができた。即ち、空気中の酸素による影響をほとん ど受けることがない。硬化時の体積収縮を小さくするこ とができるため、硬化物に歪みや割れ等が生じにくい。

低粘度樹脂組成物が容易なため、造形時間を短縮することができる。活性エネルギー線照射の際、活性エネルギー線の照射部分から周辺部分へと、重合反応が進みにくいため解像度が良い。活性エネルギー線の照射後、重合反応が終了するまでほとんど時間を要さない。硬化物の

機械的強度や硬度が優れている。カチオン重合速度が促進され、硬化性に優れる。すなわち、硬化速度が速く、かつ硬化収縮が低いため高精度の光学的造形用樹脂組成物が得られる。

18

フロントページの続き

(51) Int. Cl. 6

識別記号

庁内整理番号

FΙ

技術表示箇所

G03F 7/029

7/038

503

【公報種別】特許法(平成6年法律第116号による改正前。)第64条及び第17条の3第1項の規定による 補正

【部門区分】第3部門第3区分

【発行日】平成11年(1999)12月27日

【公告番号】特公平7-103218

【公告日】平成7年(1995)11月8日

【年通号数】特許公報7-2581

【出願番号】特願昭63-229379

【特許番号】2140577

【国際特許分類第6版】

C08G 59/18 NLE
B29C 67/00
C08F 2/50 MDH
C08L 63/00 NJX
67/00 LPC
G03F 7/029
7/038 503

【手続補正書】

- 1 「特許請求の範囲」の項を「1 必須成分として、(a)エネルギー線硬化性カチオン重合性有機物質、(b)エネルギー線感受性カチオン重合開始剤として、ビスー〔4-(ジフェニルスルホニオ)フェニル〕スルフィドビスへキサフルオロアンチモネート、(c)エネルギー線硬化性ラジカル重合性有機物質、(d)エネルギー線感受性ラジカル重合開始剤及び(e)水酸基含有ポリエステル(但し重合性物質を除く)を含有することを特徴とする、三次元立体モデルを層状形成物の積み重ねによって作成するための光学的造形システムに用いられる光学的造形用樹脂組成物。
- 2 (a)エネルギー線硬化性カチオン重合性有機物質が、1分子中に少なくとも2個以上のエポキシ基を有する脂環族エポキシ樹脂を40重量%以上含有し、(c)エネルギー線硬化性ラジカル重合性有機物質が、1分子中に少なくとも3個以上の不飽和二重結合を有する化合物を50重量%以上含有することを特徴とする請求項1記載の光学的造形用樹脂組成物。」と補正する。
- 2 第3欄28行「(b) エネルギー……重合開始剤」を「(b) エネルギー線感受性カチオン重合開始剤として

- ビス- [4-(ジフェニルスルホニオ) フェニル] スルフィドビスへキサフルオロアンチモネート」と補正する。
- 3 第3欄31行「ポリエステル」の次に「(但し重合 性物質を除く)」を挿入する。
- 4 第5欄27行~第6欄17行「本発明で……挙げられる。」を「本発明で使用するエネルギー線感受性カチオン重合開始剤(b)は、ビスー〔4-(ジフェニルスルホニオ)フェニル〕スルフィドビスへキサフルオロアンチモネートである。」と補正する。
- 5 第13欄38行~40行、第15欄10行~12行及び第16欄4行~6行「ピス〔4……チモネート」を「ビスー〔4ー(ジフェニルスルホニオ)フェニル〕スルフィドビスヘキサフルオロアンチモネート」と補正する。

 2
- 6 第14欄10行~第15欄3行「実施例2……であった。」を削除する。
- 7 第15欄4行「実施例4」を「実施例2」と補正する。