Page 112: 1, 3, 39, 40

Exercise 1

Let
$$\alpha = \left[\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 4 & 6 \end{array} \right]$$
 and $\beta = \left[\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 4 & 3 & 5 \end{array} \right]$

Compute each of the following:

b.
$$\beta \alpha$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 2 & 3 & 4 & 5 \end{bmatrix}$$

c.
$$\alpha \beta$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 2 & 1 & 5 & 3 & 4 \end{bmatrix}$$

Exercise 3

Write each of the following permutations as a product of disjoint cycles:

$$1 \longrightarrow 3 \longrightarrow 5 \longrightarrow 1$$

(15)

$$2 \longrightarrow 2 \longrightarrow 3$$

$$3 \longrightarrow 4 \longrightarrow 4$$

$$4 \longrightarrow 1 \longrightarrow 2$$

(234)

b. (13256)(23)(46512)

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 2$$

$$2 \longrightarrow 4 \longrightarrow 4 \longrightarrow 4$$

$$3 \longrightarrow 3 \longrightarrow 2 \longrightarrow 5$$

$$4 \longrightarrow 6 \longrightarrow 6 \longrightarrow 1$$

$$5 \longrightarrow 1 \longrightarrow 1 \longrightarrow 3$$

$$6 \longrightarrow 5 \longrightarrow 5 \longrightarrow 6$$

(124)(35)(6)

c.
$$(12)(13)(23)(142)$$

$$1 \ \longrightarrow 4 \ \longrightarrow 4 \ \longrightarrow 4 \ \longrightarrow 4$$

$$2 \longrightarrow 1 \longrightarrow 1 \longrightarrow 3 \longrightarrow 3$$

$$3 \longrightarrow 3 \longrightarrow 2 \longrightarrow 2 \longrightarrow 1$$

$$4 \longrightarrow 2 \longrightarrow 3 \longrightarrow 1 \longrightarrow 2$$

(1423)

Exercise 39

In S_4 , find a cyclic subgroup of order 4 and a noncyclic subgroup of order 4.

$$\langle (1234) \rangle = \{ \mathrm{e}, \, (1234), \, (1234)^2, \, (1234)^3 \}$$

The set $\langle (1234) \rangle$ under composition is a cyclic group of order 4 and a subgroup of S_4 .

For the noncyclic subgroup of order 4:

Let
$$S = \{e, (12), (34), (12)(34)\}.$$

Exercise 40

In S₃, find elements α and β such that $|\alpha| = 2$, $|\beta| = 2$, and $|\alpha\beta| = 3$.

$$S_3 = \{e, (23), (12), (132), (123), (13)\}$$

Let
$$\alpha = (12), \beta = (23)$$

Notice: $\alpha = 213$, $\alpha^2 = 123$, $\beta = 132$, $\beta^2 = 123$.

Notice also: $(\alpha \ \beta) = 312, (\alpha \ \beta)^2 = 231, \text{ and } (\alpha \ \beta)^3 = 123.$

Hence, $\alpha = (12)$ and $\beta = (23)$ is a solution.