解答 3.2.4

$$n(S_0) = 0$$

$$n(S_1) = 3 + 3 \times 0 + 0^3 = 3$$

$$n(S_2) = 3 + 3 \times 3 + 3^3 = 39$$

$$n(S_3) = 3 + 3 \times 39 + 39^3 = 59439$$

解答 3.2.5

任意の i について $S_i \subseteq S_{i+1}$ であることを数学的帰納法で示す.

- ・ i=0 のとき $S_0=\emptyset$ より、 $S_0\subseteq S_1$ である.
- i=1 のとき $S_1=\{ ext{true, false},\ 0\}$ より, $S_1\subseteq S_2$ である.
- i=k のとき, $S_i\subseteq S_{i+1}$ が成り立つと仮定して,i=k+1 のとき $t_1\in S_{k+1}$ について
 - $-t_1$ が定数のとき S の定義より, $t_1 \in S_{k+2}$ である.
 - $-t_1 = \mathsf{succ}\ t_2$ または $t_1 = \mathsf{pred}\ t_2$ または $t_1 = \mathsf{iszero}\ t_2$ のとき S の定義より, $t_2 \in S_k$ であり,帰納法の仮定から $t_2 \in S_{k+1}$ を得る. ゆえに,S の定義から $t_1 \in S_{k+2}$ である.
 - $-t_1=$ if t_2 then t_3 else t_4 のとき S の定義より、 $t_2,t_3,t_4\in S_k$ であり、帰納法の仮定から $t_2,t_3,t_4\in S_{k+1}$ を得る. ゆえに、S の定義から $t_1\in S_{k+2}$ である.

したがって、 $S_{i+1} \subseteq S_{i+2}$ が成り立つ.

以上から, 各 i について $S_i \subseteq S_{i+1}$ であるので, 集合 S_i は累積的である.

Ans 3.2.5

We prove that $S_i \subseteq S_{i+1}$ holds for all i by mathematical induction.

- For i = 0Since $S_0 = \emptyset$, $S_0 \subseteq S_1$ holds.
- For i = 1Since $S_1 = \{ \text{true}, \text{ false}, 0 \}, S_1 \subseteq S_2 \text{ holds}.$
- Assume $S_i \subseteq S_{i+1}$ holds for i = k, then for i = k+1For $t_1 \in S_{k+1}$
 - When t_1 is a constant By definition of S, $t_1 \in S_{k+2}$.
 - When $t_1 = \mathtt{succ}\ t_2$ or $t_1 = \mathtt{pred}\ t_2$ or $t_1 = \mathtt{iszero}\ t_2$ By definition of $S,\ t_2 \in S_k$, and by induction hypothesis, we get $t_2 \in S_{k+1}$. Therefore, by definition of $S,\ t_1 \in S_{k+2}$.
 - When $t_1 = \text{if } t_2 \text{ then } t_3 \text{ else } t_4$ By definition of S, t_2 , t_3 , $t_4 \in S_k$, and by induction hypothesis, we get t_2 , t_3 , $t_4 \in S_{k+1}$. Therefore, by definition of S, $t_1 \in S_{k+2}$.

Hence, $S_{i+1} \subseteq S_{i+2}$ holds.

From the above, since $S_i \subseteq S_{i+1}$ holds for each i, the set S_i is cumulative.

解答 3.2.6

命題3.2.6の証明例が少々分かりにくかったので、私なりにまとめてみる.

T はある条件を満たす最小の集合と定義された. よって(a) と(b) を示せば十分.

- (a) S は条件を満たすこと
- (b) S は条件を満たす集合の中で最小であること

ある条件:

- (1) $\{\text{true, false, }0\} \in \mathcal{T}$
- (2) $t_1 \in \mathcal{T}$ ならば succ t_1 , pred t_1 , iszero $t_1 \in \mathcal{T}$
- (3) $t_1,t_2,t_3\in\mathcal{T}$ ならば if t_1 then t_2 else $t_3\in\mathcal{T}$

証明 以下,証明を行う.

(a) S は条件を満たすこと

- $-S_1 = \{ \text{true}, \text{ false}, 0 \}$ より、条件(1)を満たす.
- ある i が存在して、 $t_1 \in S_i$ のとき、S の定義より、succ t_1 , pred t_1 , iszero $t_1 \in S_{i+1}$ であるから、条件(2)を満たす.
- ある i が存在して, $t_1, t_2, t_3 \in S_i$ のとき, S の定義より, if t_1 then t_2 else $t_3 \in S_{i+1}$ であるから, 条件(3)を満たす.

(b) S は条件を満たす集合の中で最小であること

ある集合 S' が条件(1), (2), (3)を満たすとする. すべての i に対して $S_i \subseteq S'$ であることを示す.

- -i=0のとき
 - $S_0 = \emptyset \subset S'$ である.
- -i = 1 のとき

 $S_1 = \{ \text{true}, \text{ false}, 0 \}$ であり、条件(1)より、 $S_1 \subseteq S'$ である.

-i=k のとき、 $S_i \subseteq S'$ が成り立つと仮定して、i=k+1 のとき

 $t_1 \in S_{k+1}$ について

- * t₁ が定数のとき
 - S の定義より、 $t_1 \in S_k$ である. よって、帰納法の仮定より、 $t_1 \in S'$ である.
- * $t_1 =$ succ t_2 $\sharp \mathcal{L}$ $t_1 =$ pred t_2 $\sharp \mathcal{L}$ $t_1 =$ iszero t_2 \mathcal{O} \mathcal{L} \mathfrak{F}

S の定義より, $t_2 \in S_k$ である.帰納法の仮定より, $S_k \subseteq S'$ であるから, $t_2 \in S'$ を得る.よって,条件(2)より, $t_1 \in S'$ である.

* $t_1 = \text{if } t_2 \text{ then } t_3 \text{ else } t_4 \mathcal{O} \succeq \mathfrak{F}$

S の定義より, $t_2, t_3, t_4 \in S_k$ である. 帰納法の仮定より, $S_k \subseteq S'$ であるから, $t_2, t_3, t_4 \in S'$ を得る. よって, 条件(3)より, $t_1 \in S'$ である.

したがって、すべての i に対して $S_i \subseteq S'$ であるから、 $S = \bigcup_{i=0}^{\infty} S_i \subseteq S'$ が成り立つ.

以上から、S はある条件を満たす最小の集合である.

(a) と (b) が示されたので、T = S を得る.

Ans 3.2.6

Since the example proof of Proposition 3.2.6 was somewhat difficult to understand, I'll summarize it in my own way.

 \mathcal{T} was defined as the smallest set satisfying certain conditions. Therefore, it is sufficient to show (a) and (b).

- (a) S satisfies the conditions
- (b) S is the smallest among sets satisfying the conditions

The conditions:

- (1) $\{\text{true, false, }0\} \in \mathcal{T}$
- (2) if $t_1 \in \mathcal{T}$ then succ t_1 , pred t_1 , iszero $t_1 \in \mathcal{T}$
- (3) if $t_1, t_2, t_3 \in \mathcal{T}$ then if t_1 then t_2 else $t_3 \in \mathcal{T}$

Proof In what follows, we give a proof.

- (a) S satisfies the conditions
 - Since $S_1 = \{ \text{true}, \text{ false}, 0 \}$, it satisfies condition (1).
 - When there exists some i such that $t_1 \in S_i$, by definition of S, succ t_1 , pred t_1 , iszero $t_1 \in S_{i+1}$, thus satisfying condition (2).
 - When there exists some i such that $t_1, t_2, t_3 \in S_i$, by definition of S, if t_1 then t_2 else $t_3 \in S_{i+1}$, thus satisfying condition (3).
- (b) S is the smallest among sets satisfying the conditions

Let S' be a set satisfying conditions (1), (2), (3). We show that $S_i \subseteq S'$ for all i.

- For i = 0

$$S_0 = \emptyset \subset S'$$
.

- For i=1

Since $S_1 = \{ \text{true}, \text{ false}, 0 \}$ and by condition $(1), S_1 \subseteq S'$.

- Assume $S_i \subseteq S'$ holds for i = k, then for i = k + 1

For $t_1 \in S_{k+1}$

* When t_1 is a constant

By definition of $S, t_1 \in S_k$. Thus, by induction hypothesis, $t_1 \in S'$.

* When $t_1 = \mathtt{succ}\ t_2 \ \mathrm{or}\ t_1 = \mathtt{pred}\ t_2 \ \mathrm{or}\ t_1 = \mathtt{iszero}\ t_2$

By definition of S, $t_2 \in S_k$. By induction hypothesis, since $S_k \subseteq S'$, we get $t_2 \in S'$. Therefore, by condition (2), $t_1 \in S'$.

st When $t_1 = ext{if } t_2 ext{ then } t_3 ext{ else } t_4$

By definition of S, $t_2, t_3, t_4 \in S_k$. By induction hypothesis, since $S_k \subseteq S'$, we get $t_2, t_3, t_4 \in S'$. Therefore, by condition (3), $t_1 \in S'$.

Thus, since $S_i \subseteq S'$ holds for all i, we have $S = \bigcup_{i=0}^{\infty} S_i \subseteq S'$.

From the above, S is the smallest set satisfying the conditions.

Since (a) and (b) have been shown, we obtain $\mathcal{T} = S$.