Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 3

Zpracoval: Lukáš Lejdar Naměřeno: 25. února 2025

Obor: F **Skupina:** Út 14:00 **Testováno:**

Úloha č. 7: Optická emisní spektra atomů a molekul

1. Úvod

Cílem úlohy je identifikovat spektrální čáry par železa v obloukovém výboji a molekulové spektrum radikálů OH, měřené v nízkoteplotním plazmatu. Z obou spekter potom zjistím příslušnou teplotu plazmatu ze sklonu pyrometrické přímky.

2. Teorie

2.1. Intenzita spektrálních čar

Při přechodu elektronu z m-té hladiny o energii $E_{\rm m}$ na nižší s energií $E_{\rm n}$ se vyzáří světlo, které pozorujeme jako spektrální čáru o vlnové délce $\lambda_{\rm mn}$ a relativní intenzitě

$$I_{\rm mn} = \frac{A_{\rm mn}g_{\rm m}}{\lambda_{\rm mn}} \exp\left(-\frac{E_{\rm m}}{kT}\right),\tag{1}$$

kde $A_{\rm mn}$ je pravděpodobnost přechodu z m-té hladiny na n-tou a $g_{\rm m}$ je statistická váha horního energetického stavu. T je absolutní teplota zářící látky a k boltzmannova konstanta. Experimentálně jsou přímo měřitelné intenzity spektrálních čar a ke každé známe i součin $A_{\rm mn}g_{\rm m}$ a excitační energie $E_{\rm m}$. Úpravou vztahu (1) dostávám

$$\ln\left(\frac{I_{\rm mn}\lambda_{\rm mn}}{A_{\rm mn}g_{\rm m}}\right) = \left(-\frac{E_{\rm m}}{kT}\right) = f(E_{\rm m}). \tag{2}$$

Graf závislosti $f(E_{\rm m})$ je známý jako pyrometrická přímka se sklonem $-\frac{1}{kT}$.

2.2. Intenzita rotační čáry

Rotační energie molekuly je na rozdíl od té translační kvantovaná. Můžeme tedy pozorovat i spektrální čáry způsobené změnou stavu rotace molekuly a pro její intenzitu platí vztah

$$I_{n''v''J''}^{n'v'J'} = C_{n''v''J''}^{n'v'J'}\bar{\nu}^4 S_{J'J''} \exp\left(-\frac{B_{v'}N'(N'+1)hc}{kT}\right)$$
(3)

 $B_{\mathbf{v}'}$ je rotační konstanta pro horní vibrační stav, N' je rotační kvantové číslo horního stavu, $\bar{\nu}^4 = \lambda^{-4}$ je vlnočet rotační čáry, $S_{J'J''}$ je Hönl-Londonův intenzitní faktor a J' je kvantové číslo pro celkový moment hybnosti. V případě dat měřených v praktiku platí $N' = J' - \frac{1}{2}$. Rovnici (3) můžeme opět upravit na pyrometrický tvar

$$\ln \frac{I_{n''v'J''}^{n'v'J''}}{\bar{\nu}^4 S_{J'J''}} = -\frac{B_{v'}hc}{kT}N'(N'+1) + konst. = f(N'(N'+1))$$
(4)

3. Výsledky měření

3.1. Atomové spektrum par železa

Spektrální závislost z grafu 1 jsem dostal už naměřenou ze sady 7 a data jsem jen zpracovával. Naměřené emisní spektrum bývá posunuté až o několik nanometrů, takže je potřeba ho nejdřív lineárně transformovat, aby odpovídalo známým vlnovým délkám spektrálních čar. Soubor jsem otevřel v programu Span 1.7 a označil vybrané spektrální čáry podle předpokládaného tvaru spektrální závislosti, který se dá zjistit třeba pomocí programu Lifebase 2.1. Jejich vlnové délky jsou uvedené v tabulce 1, kde ve 4. sloupci jsou i programem odečtené intenzity.

Graf 1: Naměřená spektrální závislost par železa měřené v obloukovém výboji. Graf je korektovaný podle známých vlnových délek spektrálních čar a šumu pozadí.

Z tabulky 1 jsem potom sestrojil graf 2 podle rovnice $y=f(E_{\rm m})$ ze vztahu 2 a z fitu přímkou určil teplotu plazmatu.

$$a = -1.94015 \pm 0.1613$$

 $k = 8.6173303 \cdot 10^{-5} \text{ eVK}^{-1}$
 $T = 6000 \pm 500 \text{ K}$

Graf 2: Pyrometrická přímka par železa

$\lambda_{ m mn}$	$E_{ m m}$	$A_{ m mn}g_{ m m}$	I
(nm)	(eV)	(s^{-1})	(a.u.)
429.413	4.371	0.71	774
429.924	5.308	5.2	1166
430.791	4.434	5.9	2924
431.509	5.070	1.5	564
432.576	4.473	6.1	2930
433.705	4.415	0.23	416
435.274	5.070	1.0	341
436.977	5.882	2.2	331
437.593	2.832	0.0094	284
438.357	4.312	7.7	3585
440.475	4.371	4.4	2992
441.512	4.415	2.8	1637
442.731	2.851	0.0099	178
444.234	4.988	1.1	597
444.772	5.009	1.1	316
445.912	4.955	1.0	556
446.655	5.606	5.3	705
447.602	5.614	5.4	527
448.217	2.875	0.0053	518
449.457	4.955	1.22	513
452.862	4.913	1.8	1476

Tabulka 1: Parametry spektrálních čar

3.2. Spektrum radikálů OH

Data jsem zase dostal už naměřená ze sady 7 a zpracovávání probíhalo podobně jako v předchozím případě. Pomocí programu Lifebase 2.1 jsem zjistil které spektrální čáry odpovídají zvoleným vlnovým délkám z tabulky 2 a ty označil v programu Span 1.7, který celý graf posunul, aby hodnoty co nejlépe odpovídaly. Program odečetl i jejich intenzity, které jsou uvedené taky v tabulce 2.

Graf 3: Naměřená spektrální závislost radikálů OH. Graf je korektovaný podle známých vlnových délek spektrálních čar a šumu pozadí.

Z tabulky 2 sestrojím graf pyrometrické přímky podle vztahu (4) a ze sklonu $a=-\frac{B_{\rm v}/hc}{kT}$ zjistím rotační teplotu plazmatu.

$$a = -0.089 \pm 0.003$$

 $h = 6.62607015 \cdot 10^{-34} \text{ Js}$
 $c = 299792458 \text{ ms}^{-1}$
 $k = 1.380649 \cdot 10^{-23} \text{ JK}^{-1}$
 $B_{v'} = 1696 \text{ m}^{-1}$
 $T = 273 \pm 10 \text{ K}$

Graf 4: Pyrometrická přímka radikálů OH

N'	J'	$S_{ m J^{\prime}J^{\prime\prime}}$	$\lambda_{ m nm}$	I (a.u.)
1	1/2	0.563	307.844	6.90
2	5/2	1.065	307.995	8.65
4	9/2	2.100	308.328	4.17
5	11/2	2.640	308.520	2.37
6	13/2	3.160	308.734	1.09

Tabulka 2: Parametry rotačních spektrálních čar

4. Závěr

Pomocí programu Span 1.7 jsem zjistil intenzitu vybraných spektrálních čar par železa a z pyrometrické přímky určil teplotu plazmatu na $T=6000\pm500$ K. Program zároveň umožňuje vyhodnotit teplotu automaticky, odkud mám hodnotu $T=6500\pm950$ K. Zpracované spektrum vzniklo ze záření obloukového výboje, takže by spočítané hodnoty mohli být reálné.

Při vyhodnocování radikálů OH jsem použil jen 5 čar, ale zato vyšla velmi dobrá přímka a výsledná teplota $T=273\pm10$ K má menší relativní nejistotu. Program vyhodnotil teplotu o něco výš na $T=312\pm12$ K, pravděpodobně protože využívá sofistikovanější způsob výpočtu teploty.

Reference

 $[1] \ \ N\'{a}vod\ k\ \'{u}loze\ \ https://is.muni.cz/auth/el/sci/jaro2025/F4210/um/fp3-7_spektra.pdf.$