Procesos estocásticos (86.09)

- Variables y vectores aleatorios
- Simulación Monte Carlo

Vectores aleatorios

Vectores Aleatorios

Vector aleatorio

Media de un vector aleatorio X

$$\mathbb{E}[\mathbf{X}] = \mu_{\mathbf{X}} = \mathbb{E}\left[\begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}\right] = \begin{bmatrix} \mathbb{E}[X_1] \\ \vdots \\ \mathbb{E}[X_n] \end{bmatrix}$$

$$f_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n)$$

Matriz de autocovarianza

Matriz de Covarianza – Autocovarianza

Matriz de autocovarianza de un vector aleatorio \boldsymbol{X}

$$C_{\mathbf{X}} = \mathbb{E}\left[(\mathbf{X} - \mu_{\mathbf{X}})(\mathbf{X} - \mu_{\mathbf{X}})^T \right] \in \mathbb{R}^{n \times n}$$

Matriz de Covarianza – Autocovarianza

$$C_{\mathbf{X}} = \mathbb{E} \begin{bmatrix} X_1 - \mu_{X_1} \\ X_2 - \mu_{X_2} \\ \vdots \\ X_n - \mu_{X_n} \end{bmatrix} \begin{bmatrix} X_1 - \mu_{X_1} & X_2 - \mu_{X_2} & \dots & X_n - \mu_{X_n} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbb{E}\left[(X_1 - \mu_{X_1})(X_1 - \mu_{X_1}) \right] & \mathbb{E}\left[(X_1 - \mu_{X_1})(X_2 - \mu_{X_2}) \right] & \dots & \mathbb{E}\left[(X_1 - \mu_{X_1})(X_n - \mu_{X_n}) \right] \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{E}\left[(X_n - \mu_{X_n})(X_1 - \mu_{X_1}) \right] & \mathbb{E}\left[(X_n - \mu_{X_n})(X_2 - \mu_{X_2}) \right] & \dots & \mathbb{E}\left[(X_n - \mu_{X_n})(X_n - \mu_{X_n}) \right] \end{bmatrix}$$

Vectores aleatorios – Estimadores

Estimación de la media de un vector aleatorio

$$\widehat{\mu}_{\mathbf{X}} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k}$$

Estimación de la matriz de autocovarianza de un vector aleatorio

$$\widehat{C}_X = \frac{1}{n-1} \sum_{k=1}^{n} (\mathbf{X}_k - \widehat{\mu}_{\mathbf{X}}) (\mathbf{X}_k - \widehat{\mu}_{\mathbf{X}})^T$$

Actividad 1

Genere N = 1000 muestras para definir los siguientes vectores aleatorios.:

- 1. $\mathbf{X} = [X_1 \ X_2]^T$, a partir de dos variables Rayleigh independientes, $X_1 \sim \text{Rayl}(3)$ y $X_2 \sim \text{Rayl}(2)$.
- 2. $\mathbf{V} = [V_1 \ V_2]^T$ a partir de una transformación de X, tal que $\mathbf{V} = B\mathbf{X}$.
- 3. $\boldsymbol{U} = [U_1 \ U_2]^T$, a partir de una transformación de X, tal que $\boldsymbol{U} = H\boldsymbol{X}$.

Haga el gráfico de dispersión (ej: scatter(x1, x2)) y calcule el coeficiente ϱ de correlación entre las componentes de cada vector.

Defina el límite de los ejes del gráfico con axis([-2 12 0 14]).

$$B = \begin{bmatrix} 0.6 & -0.2 \\ 0.4 & 0.7 \end{bmatrix} \qquad H = \begin{bmatrix} 0.6 & -0.2 \\ 0.4 & 0.2 \end{bmatrix}$$

Transformación del vector **x**

$$y = A x$$

$$\varrho(X_1, X_2) = 0.016$$

$$\varrho(V_1, V_2) = 0.421$$

Actividad 2

Estime la matriz de autocovarianza para los vectores aleatorios del ejercicio anterior: X, U y V.

Analice las propiedades de la matriz y la particularidad de cada una en relación a los resultados del ejercicio anterior (observe la covarianza entre componentes y cómo esto se refleja en las matrices de correlación).

Matriz de Covarianza – Estimadores

Matriz de covarianza Matlab:

```
Cx = cov(X); % Covarianza de X (filas: observaciones, col: componentes)
```

Matriz de covarianza Python

```
Cx = np.cov(X); # Covarianza de X (filas: componentes, col: observaciones)
```

```
Cx =

3.9425 -0.0401
-0.0401 1.6235
```

```
Cv =

1.4938     0.7053
0.7053     1.4039
```

```
Cu =

1.4938    0.8797
0.8797    0.6893
```

Actividad 3

Dados dos VeA, $X_1 \sim U(0,2)$ y $X_2 \sim U(0,3)$ independientes, con N=1000 realizaciones.

- 1. Genere muestras de un vector aleatorio $\mathbf{Y} = [Y_1 \ Y_2]^T$ a partir del vector $\mathbf{X} = [X_1 \ X_2]^T$ aplicando una transformación $\mathbf{Y} = R \ \mathbf{X}$, donde R es una matriz de rotación (definida abajo) considerando un ángulo de rotación $\theta = 0$. Haga un gráfico de dispersión para \mathbf{X} y para \mathbf{Y} . Calcule su coeficiente de correlación.
- 2. Estime la matriz de autocovarianza del vector aleatorio Y.
- 3. Repita los puntos 1 y 2, pero para un ángulo rotación $\theta = \pi/10$ y $\theta = \pi/4$.

$$R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Sugerencia:

Simulación Monte Carlo

Simulación Monte carlo

Historia

- El nombre "Monte Carlo" fue acuñado en los años 40 por científicos del Proyecto Manhattan, en particular Stanislaw Ulam y John von Neumann, quienes desarrollaron el método para resolver problemas en física nuclear.
- El término hace referencia al famoso casino de Monte Carlo en Mónaco, debido a que el método se basa en la aleatoriedad y el muestreo estadístico, al igual que los juegos de azar.

Stanislaw Ulam

Simulación Monte carlo

¿Qué es Monte Carlo?

- Permite aproximar valores de interés mediante simulación aleatoria.
- Monte Carlo es una aplicación de la Ley de los Grandes Números, ya que conforme se incrementa el número de muestras, los resultados convergen a las cantidades de interés.

Ley (Débil) de los Grandes Números (LGN)

Sean $X_1,...,X_n$ una sucesión de variables aleatorias iid, tal que $\mu=\mathbb{E}[X_i]<\infty$, entonces para

$$ar{X}_n = rac{1}{n} \sum_{i=1}^n X_i \, ext{ se cumple que } \, \, orall \epsilon > 0, \quad \lim_{n o \infty} \mathbb{P}ig[|ar{X}_n - \mu| > \epsilonig] = 0.$$

En otras palabras, se dice que converge "en probabilidad a μ ", $ar{X}_n o \mu$

Ejercicio: Demostrar asumiendo varianza finita y aplicando la desigualdad de Tchebychev:

$$\mathbb{P}(|X - \mu_X| \geq a) \leq rac{\sigma_X^2}{a^2}$$

Propiedad Importante: para toda función g(.) continua,

Si
$$X_n o X$$
, entonces $g(X_n) o g(X)$

Simulación Monte carlo

Algunas aplicaciones típicas de Monte Carlo

- Generación de muestras de VA con cierta distribución.
- Generación de procesos aleatorios.
- Estudio de problemas de optimización.
- Estimación de parámetros para eventos complejos.
- Simulación de modelos físicos o biológicos.
- Resolución numérica de integrales.
- Análisis de riesgos.
- Etc

Generación de variables aleatorias

Generación de variables aleatorias

¿Cómo generar muestras de diferentes distribuciones?

Generación de variables aleatorias

- Método de la transformación inversa.
- 2. Método de la transformación de Box-Muller
- 3. Otros

Método de la transformación inversa

Generación de VA – Método de la Transformación Inversa

Queremos una transformación $g: \mathbb{R} \to \mathbb{R}$ para obtener realizaciones de una VA X (de cierta distribución) a partir de una VA uniforme $U \sim U(0,1)$.

Requerimientos

• $F_X(x)$ debe ser una función continua, monótona creciente e invertible

Procedimiento del método

- 1. Generar un número random $U \sim U(0,1)$
- 2. Obtener una realización de X como: $Z = g(U) = F_X^{-1}(U)$.

Método de la transformación de Box-Muller

Generación de VA – Método de Box-Muller

El método consiste en generar muestras de dos VAs uniformes iid U_1 , U_2 , y aplicar dos transformaciones para obtener a dos VAs normales estándar Z_1 , $Z_2 \sim N(0,1)$ iid:

$$egin{cases} Z_1 = \sqrt{-2\ln(U_1)}\cos(2\pi U_2) \ Z_2 = \sqrt{-2\ln(U_1)}\sin(2\pi U_2) \end{cases}$$

Sea una integral I definida en un intervalo arbitrario [a, b] para de una función conocida g(x):

$$I = \int_a^b g(x) \, dx,$$

Se puede resolver esta integral generando N muestras $X_1, X_2, ..., X_N$ iid, de una VA uniforme $X \sim \mathrm{U}(a,b)$ aplicando la siguiente aproximación:

$$Ipprox rac{b-a}{N}\sum_{i=1}^N g(X_i).$$

Sea una VA uniforme X ~ U(a, b)

$$f_X(x)=rac{1}{b-a}, \ \ a\leq x\leq b$$

Se puede expresar la integral de la función g(x) en [a.b] en términos de la E[g(X)]:

$$I=\int_a^b g(x)dx=\int_a^b g(x)(b-a)f_U(x)dx=(b-a)\int_a^b g(x)f_X(x)dx=(b-a)\mathbb{E}[g(X)]$$

Por LGN, se cumple que: $\frac{1}{N}\sum_{i=1}^N g(X_i) \xrightarrow[N \to \infty]{} \mathbb{E}[g(X)]$

Por lo tanto, para N suficientemente grande podemos aproximar la integral como:

$$Ipprox rac{b-a}{N}\sum_{i=1}^N g(X_i).$$

Para una función $g: \mathbb{R}^m \to \mathbb{R}, g(x_1, x_2, ..., x_m)$, la integral en un dominio hipercúbico $[a_1, b_1] \times [a_2, b_2] \times ... \times [a_m, b_m]$ resulta:

$$I = \int_{a_1}^{b_1} \int_{a_2}^{b_2} \ldots \int_{a_m}^{b_m} g(x_1, x_2, \ldots, x_m) dx_1 dx_2 \ldots dx_m \, .$$

Siguiendo el mismo razonamiento que para una dimensión, aplicando la LGN, la aproximación de la integral a partir de N muestras de m uniformes (cada una en su intervalo $[a_i,b_i]$) resulta:

Rem uses
$$Ipprox rac{\prod_{i=1}^m(b_i-a_i)}{N}\sum_{i=1}^Ng(X_1^{(i)},X_2^{(i)},\ldots,X_m^{(i)}).$$

Donde $X_{\mathbf{k}}^{(i)}$ representa la i-ésima realización de la k-ésima VA uniforme

Algoritmo para estimar
$$I = \int_{A\subset \mathbb{R}^n} g(\mathbf{x}) d\mathbf{x}$$

- 1. Generamos muestras $\{\mathbf{X}_i\}_{i\in\mathbb{N}}$ iid con distribución Uniforme sobre cierto recinto $A\subset\mathbb{R}^n$, i.e. $\mathbf{X}_i\sim\mathcal{U}(A)$.
- 2. Aplicamos la función $g(\mathbf{X}_i)$
- 3. Calculamos la media muestral y aplicamos la LGN:

$$ar{\mathbf{X}}_n = rac{1}{N} \sum_{i=1}^N g(\mathbf{X}_i) \overset{}{\underset{n o \infty}{\longrightarrow}} \mathbb{E}[g(\mathbf{X}_1)] = rac{1}{\int_A d\mathbf{x}} I$$

4. Finalmente:

$$\hat{I} = \left(\int_{A} d\mathbf{x}\right) \cdot \frac{1}{N} \sum_{i=1}^{N} g(\mathbf{X_i}).$$

Estimación de probabilidades

Observar que:

$$\mathbb{P}(\mathbf{X} \in A) = \mathbb{E}\big[\mathbf{1}\{X \in A\}\big]$$

donde \mathbf{X} es una variable (vector aleatorio) y $A \subset \mathbb{R}^n$. Luego utilizando la LGN.

- 1. Generamos muestras $\{\mathbf{X}_i\}_{i\in\mathbb{N}}$ iid con la distribución de \mathbf{X} .
- 2. Calculamos la media muestral y aplicamos LGN

$$rac{1}{N}\sum_{i=0}^{N}\mathbf{1}\{\mathbf{X}_{i}\in A\}\underset{n
ightarrow\infty}{\longrightarrow}\mathbb{E}igl[\mathbf{1}\{\mathbf{X}\in A\}igr]=\mathbb{P}(\mathbf{X}\in A).$$

Actividad 4

Actividad 4 Método Montecarlo – Resolución de integrales

Se requiere resolver la siguiente integral:

$$I = \int_0^1 \cdots \int_0^1 e^{-\sum_{i=1}^{10} x_i^2} dx_1 \cdots dx_{10}$$

Utilice el método Monte Carlo para resolver esta integral que comprende una integral múltiple de dimensión 10. Compare el resultado con el analítico para 100000 muestras.

Nota: para este caso se puede usar como referencia la siguiente forma alternativa que requiere el cálculo de solo una integral:

$$I = \left(\int_0^1 e^{-x^2} dx\right)^{10}$$
 MATLAB
$$I = (\operatorname{sqrt(pi)/2*erf(1))^10}$$

Actividad 5 Método Montecarlo – Resolución de integrales II

Se desea utilizar el método de Monte Carlo para estimar el número π mediante la siguiente integral:

$$I = \int_{-1}^{1} \frac{dx}{\sqrt{1 - x^2}}$$

Se cuenta para ello con un generador de números aleatorios que genera variables aleatorias independientes uniformes en (0, 1).

- 1. Diseñe un experimento Monte Carlo que permita estimar el número π a partir de la integral I.
- 2. Simule 1000 realizaciones de las variables iid uniformes en (0,1) $U_1, U_2, \ldots, U_{1000}$. Sea \hat{I}_n el estimador que se obtiene con el experimento desarrollado en (1) usando las 1eras n uniformes. Realice un gráfico del cociente \hat{I}_n/π y extraiga conclusiones.