

	11/6/19	
	Selected exercises from (A).	
		<u>:</u>
	L'atting started: McCovariance Function	
<u> </u>	· start with RBF and do shift-shift-tob to see argume	nts
	"tern" is for ternel another name for the Coveriance fund K(x) = 62 e-12/22 with n= 1xy-x2/ = state	TM
	(x(r) = 0 e 2 uith r= 1x2-x2/ e state	mary
	· Specify dimension, variance of and length scale !	
	· No docstring for plot = Google "Gpy plot tern" · x is the value to use for the 2nd argument	
	X & the value to like for the 2 acquired	
	> taken as 0 and then plat as function & r	
	· class onsher Exercise (1 a)	
	· Bo Esercise 10 · Skip Corvergale Functions in Gly	
	· Computing the Covariance Function grun the Imput Data, X	
- ()	of data invite in a dimension of my diamon	~.1
	· n data points in a dimensions = nxd army · Matern 52 = recall this k(r) = or (1+ for + single)	P 100 /
	X is full of anders normal (150, 0=1)	
	· X is Rill of random normal (100, 0=1) · get the covering matrix from C=k,K(X,X)	(45,493)
	~ X = 1x1 x = (x2) => 1= 1x+x3/+ 141-42 Coll co	(x, y)
	· Why do in know expensalves are 703 (No error from	log 10()
	· Notice range of eigenvalues in orders of magnitus.	
	· Try Matern 32 and RBF	
odany of	Greating try combining GPS	
R HE OU	lest where will a RBF's Ware more. What will max be	
with by ing	Small no from a Coursian Paris of trends in the data (ego a shally changing beh	elope of
18 1100	of symphotology from	, , , , , , , , , , , , , , , , , , ,
	Here he sample from M/4, C) where C is & Box X,X	· p 1
	, change to my = np. linspace (-1, lighter(X)) = underlying my	an Iunclian
-	· Ing some different coverignce knockens, Add	<u> </u>
	for i in range (nsumples); I What one the d	itable No.
	a.plot(XL(), tL()())	
	What do you expect for asomplis = 50.	

	1/4/9	(IB)
	3 A Gansking Process Repression Model	
	3 A Ganssius Process Regression Model Genrale data + noise to At.	
	testantille on RBF nobel	
	· Combine with buter : GPy, mobils, GPR expression (X, Y, E)	
	1	
	· noise is about by diffinit. => specify note var in . Make a beter lit with lengthside = 0,1 ml old lengthside. Step through Coverna Function Pararder Estimation	br Regressin
·	of to the control of the control of the control	<u>ki, 1≥0'1</u>
	" Step through Concerna trunchen transcen Estimation	
	4 A Granning Example.	
	4 A Kuming Example rexercise for the reader,	
······································		
· · · · · · · · · · · · · · · · · · ·		
	'	
		
<u>ال</u>		
		J

11/6/19 Application 1: A Bayestan Approach for Pagnety Estimation and Prediction using a Computationally Extensive Model by Higher et al > Bayesian model collibration for nuclear DFT using a GP emulator · landmark in low-energy nuclear physics but general idea of an emulator was not new.

Trudger density functional Pleary (DFT): given N houton number and Z (proton number), Functional predicts mass of nuclous (and ofter properties, such as size, and deformation) · Solve > N+7 Schrödinger equations iteratively (pairing is important) - For each nulous ~ 5-10 minutes and want to train on don't 100 nuclei => too expensive to have a model that runs An DET for every case => . Train a GP one use this in place of the OFT model > emulator" · Table I shows p=12 parameters to be determined · PCA and SVD used to enable a reduced basis for the mobil - With 9 combinations instead of original 12, can explain 99,912 of viciations, We'll come back to this of end of course. · Uniform privas assigned but with well informed intervals · Need to specify initial training set => see fig. 3 · Uses space-Pilling Latin hyperable => multidan ensional agreedication of 20 "unchallenged nock" problem · Figure 8 shows posterior for 8 >> main goal

· What is hall determined? [FDM/A]; what returns prior? [Vo]

What pairs are highly concidented (Ym/s and (500 a (500))

· An autent from the posterior is a prediction for a new measurement · Figure 10 shows how well it works. Predicted 90% intervals for MO)+E (light live). Is it too conservative?

