

EEC1509 - Machine Learning Lesson #13 Deep Learning Fundamentals II

Ivanovitch Silva December, 2018

Update repository

git clone https://github.com/ivanovitchm/EEC1509_MachineLearning.git

Ou

git pull

Agenda

- Forms of machine learning beyond classification and regression
- Formal evaluation procedures for machine learning models
- Preparing data for deep learning
- Feature engineering
- Tackling overfitting
- The universal workflow for approaching machine learning problems
- Case study

Four branches of machine learning

- Supervised learning
 - dominant form of deep learning today
- Unsupervised learning
 - dimensionality reduction and clustering
- Self-supervised learning
 - learning without annotated labels (generated by heuristic algorithm)
- Reinforcement learning
 - o self-driving cars, robotics, resource management, education, and so on.

Evaluating ML models

- The goal is to achieve models that **generalize**
 - perform well on never-before-seen data
 - overfitting is the central obstacle
- Training, validation and test sets
 - Hold-out validation
 - K-Fold
 - Iterated K-Fold validation with shuffling

Evaluating ML models

Hold-Out validation

K-Fold validation


```
# Hold-out validation pseudo-code
num validation samples = 10000
                                                         Hold-out
# Shuffling the data is usually appropriate.
np.random.shuffle(data)
                                                         Validation
# Defines the validation set
validation data = data[:num validation samples]
data = data[num validation samples:]
# Defines the training set
training data = data[:]
# Trains a model on the training data, and evaluates it on the validation data
model = get model()
model.train(training data)
validation score = model.evaluate(validation data)
# At this point you can tune your model, retrain it, evaluate it, tune it again...
# Once you've tuned your hyperparameters, it's common to train your final model
# from scratch on all non-test data available.
model = get model()
model.train(np.concatenate([training data,
validation data]))
test score = model.evaluate(test data)
```



```
# K-Fold Validation
                                                    K-Fold Validation
k = 4
num validation samples = len(data) // k
np.random.shuffle(data)
validation scores = []
for fold in range(k):
   # Selects the validation data partition
   validation data = data[num validation samples * fold:num validation samples * (fold + 1)]
   # Uses the remainder of the data as training data. Note that the + operator is list concatenation, not
summation
    training data = data[:num validation samples * fold] + data[num validation samples * (fold + 1):]
   # Creates a brand-new instance of the model (untrained)
   model = get model()
   model.train(training data)
   validation score = model.evaluate(validation data)
   validation scores.append(validation score)
# Validation score: average of the validation scores of the k folds
validation score = np.average(validation scores)
# Trains the final model on all nontest data available
model = get model()
model.train(data)
test score = model.evaluate(test data)
```

Data Preprocessing and Feature Engineering

Data Preprocessing

- vectorization
- normalization
- handling missing values
- feature extraction

Feature Engineering

Raw data: pixel grid		
Better features: clock hands' coordinates	{x1: 0.7, y1: 0.7} {x2: 0.5, y2: 0.0}	{x1: 0.0, y2: 1.0} {x2: -0.38, 2: 0.32}
Even better features: angles of clock hands	theta1: 45 theta2: 0	theta1: 90 theta2: 140

Underfitting and Overfitting

Underfitting and Overfitting

To prevent a model from learning misleading or irrelevant patterns found in the training data, the best solution is to **get more training data**.

A model trained on more data will naturally generalize better.

When that isn't possible, the next-best solution:

- to modulate the quantity of information that your model is allowed to store
- to add constraints on what information it's allowed to store.

Regularization

- If a network can only afford to memorize a small number of patterns, the optimization process will force it to focus on the most prominent patterns, which have a better chance of generalizing well.
- The processing of fighting overfitting this way is called regularization.
 - Reducing the network size
 - Adding weight regularization (L1, L2)
 - Adding dropout

Regularization: reducing the network size

```
from keras import models
                                            Original Size
from keras import layers
model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
                                            Lower capacity
model = models.Sequential()
model.add(layers.Dense(4, activation='relu', input shape=(10000,)))
model.add(layers.Dense(4, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
```

Regularization: reducing the network size

Adding weight regularization

- L1 regularization
 - The cost added is proportional to the absolute value of the weight coefficients (the L1 norm of the weights).
- L2 regularization
 - The cost added is proportional to the square of the value of the weight coefficients (the L2 norm of the weights)

```
# Adding L2 weight regularization to the model
from keras import regularizers
model = models.Sequential()
model.add(layers.Dense(16, kernel_regularizer=regularizers.12(0.001),
activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, kernel_regularizer=regularizers.12(0.001),
activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
```


Adding weight regularization

Regularization: adding dropout

0.3	0.2	1.5	0.0	500/	0.0	0.2	1.5	0.0
0.6	0.1	0.0	0.3	50% dropout	0.6	0.1	0.0	0.3
0.2	1.9	0.3	1.2		0.0	1.9	0.3	0.0
0.7	0.5	1.0	0.0		0.7	0.0	0.0	0.0

The core idea is that introducing noise in the output values of a layer can break up happenstance patterns that aren't significant

Regularization: adding dropout

```
# Adding dropout to the IMDB network
model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation='sigmoid'))
```


The universal workflow of ML

- 1. Defining the problem and assembling a dataset
- 2. Choosing a measure of success
- 3. Deciding on an evaluation protocol
 - hold-out validation set
 - K-fold cross-validation
 - iterated K-fold validation
- 4. Preparing your data
 - scaled to small values (-1,1) or (0,1)
 - if different features take values in different ranges, then the data should be normalized.
 - feature engineering, especially for small-data problems.

The universal workflow of ML

- 5. Developing a model that does better than a baseline
 - a. you need to make three key choices to build your first working model

Problem type	Last-layer activation	Loss function
Binary classification	sigmoid	binary_crossentropy
Multiclass, single-label classification	softmax	categorical_crossentropy
Multiclass, multilabel classification	sigmoid	binary_crossentropy
Regression to arbitrary values	None	mse
Regression to values between 0 and 1	sigmoid	mse Or binary_crossentropy

The universal workflow of ML

- Scaling up: developing a model that overfits
 - add layers.
 - make the layers bigger.
 - train for more epochs.
 - note: when you see that the model's performance on the validation data begins to degrade, you've achieved overfitting
- Regularizing your model and tuning your hyperparameters
 - Add dropout. a.
 - Try different architectures: add or remove layers.
 - Add L1 and/or L2 regularization
 - Try different hyperparameters (such as the number of units per layer or the learning rate of the optimizer) to find the optimal configuration.
 - Optionally, iterate on feature engineering: add new features, or remove features that don't seem to be informative.

Binary Classification with Kaggle and Titanic

- 1. Defining the problem and assembling a dataset
 - a. Kaggle gave us: train.csv, test.csv
 - b. Binary classification
- 2. Choosing a measure of success
 - a. Accuracy
- 3. Deciding on an evaluation protocol
 - a. K-fold (dataset is small)
- 4. Preparing your data
 - a. EDA, feature engineering

Binary Classification with Kaggle and Titanic

- Developing a model that does better than a baseline
- Scaling up: developing a model that overfits
 Regularizing your model and tuning your hyperparameters

GridSearchCV

Exploring the gridsearch to create models

```
# Create different models
def create model(id model=0,
                 hidden=32,
                 activations="relu",
                 losses="binary crossentropy"):
    model = models.Sequential()
    if id model == 0:
        model.add(layers.Dense(hidden, activation=activations, input shape=(train data.shape[1],)))
        model.add(layers.Dense(hidden, activation=activations))
        model.add(layers.Dense(1, activation='sigmoid'))
    elif id model == 1:
        model.add(layers.Dense(hidden, activation=activations, input shape=(train data.shape[1],)))
        model.add(layers.Dense(hidden, activation=activations))
        model.add(layers.Dense(hidden, activation=activations))
        model.add(layers.Dense(1, activation='sigmoid'))
        . . .
    # compile the model
    model.compile(optimizer='rmsprop',loss=losses,metrics=['accuracy'])
    return model
```


Wrap Keras model to Scikit-learn

```
1 # Wrap keras model so it can be used by scikit-learn
 2 model = KerasClassifier(build fn=create model, verbose=0)
 4 # Create hyperparameter space
 5 hidden units = [64]
 6 activations funct = ['relu']
 7 loss funct = ['binary crossentropy']
 8 \text{ id models} = [0,8]
 9 \text{ epochs} = [50]
10 batch size = [50]
11
12
13 # Create hpyerparameter options
14 hyperparameters = dict(id model=id models,
15
                           hidden=hidden units,
16
                           activations=activations funct,
17
                           losses=loss funct,
                           epochs=epochs,
18
19
                           batch size=batch size,
2.0
                           verbose=[0])
21
22 # Create grid search
23 grid = GridSearchCV(estimator=model, param grid=hyperparameters, cv=3)
24
25 # Fit grid search
26 grid results = grid.fit(train data, train label)
```


Creating a submission file

```
submission = pd.DataFrame()
submission['PassengerId'] = df_test.PassengerId

best_model = grid_results.best_estimator_
submission['Survived'] = best_model.model.predict_classes(test_data)

# create a csv file
submission.to_csv("submission_model.csv",index=False)
```


Save and Load a Model

```
1 # save your model to a file
2 best model.model.save("model.h5")
1 from keras.models import load model
3 # load the model
4 model = load model("model.h5")
```


The End