GALOIS COHOMOLOGY EXERCISES 10 (TWISTED FORMS)

The letter k denotes a field.

- **Exercise 1.** (i) Let V be a k-vector space of finite dimension n, and $f: V \times V \to k$ be a k-bilinear form. We assume that f(x,x) = 0 for all $x \in V$ (i.e. f is alternated) and that the k-linear map $V \to \operatorname{Hom}_k(V,k)$ sending x to the map $y \mapsto f(x,y)$ is bijective (i.e. f is nondegenerate). Show that n is even, and that V admits a k-basis e_1, \ldots, e_n such that $f(e_{2r+1}, e_{2r+2}) = 1$ and $f(e_{2r+2}, e_{2r+1}) = -1$ for all $0 \le r < n/2$, and $f(e_i, e_j) = 0$ for all other values of i, j.
 - (ii) When L/k is a separable field extension, consider the matrix (where blank entries are zero)

$$J = \begin{pmatrix} 0 & 1 & & & & & \\ -1 & 0 & & & & & \\ & & 0 & 1 & & & \\ & & -1 & 0 & & & \\ & & & \ddots & & \\ & & & & 0 & 1 \\ & & & & -1 & 0 \end{pmatrix} \in M_{2r}(L).$$

Show that letting

$$\operatorname{Sp}_{2r}(L) = \{ M \in M_{2r}(L) | M^t J M = J \},$$

where M^t denotes the transpose of M, defines a k-group Sp_{2r} such that $H^1(k,\operatorname{Sp}_{2r})=\{*\}.$

Exercise 2. We consider that k-group G defined by setting for every separable extension L/k

$$G(L) = \operatorname{Aut}_{L-\operatorname{alg}}(L[X]).$$

- (i) Show that every element of G(L) is of the form $X \mapsto aX + b$, where $a \in L^{\times}$ and $b \in L$.
- (ii) Show that we have an exact sequence of k-groups

$$1 \to \mathbb{G}_a \to G \to \mathbb{G}_m \to 1.$$

(iii) Let A be a k-algebra such that $A_L \simeq L[X]$ as L-algebra, for some separable extension L/k. Show that $A \simeq k[X]$ as k-algebra.

We now assume that k has positive characteristic p, and that $a \in k$ is such that $a \neq b^p$ for all $b \in k$. We consider the k-algebra $A = k[U, V]/(U^p - aV^p - V)$.

- (iv) Show that there exists an algebraic field extension K/k such that $A_K \simeq K[X]$ as K-algebra.
- (v) Show that A is not isomorphic to k[X] as k-algebra. (Hint: If $\varphi \colon A \to k[X]$ is a morphism of k-algebras, consider the equation satisfied by the polynomials $\varphi(U)$ and $\varphi(V)$ to deduce that $\varphi(A) = k$.)

(vi) Give an example of a field k of characteristic p, together with an element $a \in k$ such that $a \neq b^p$ for all $b \in k$.