	_
二加州(季爱,首先分析是否有二加种)	
平面汇交力系 两个方程 STX = 0 STy = 0	
X面的对点之生巨解析表达 Mo(〒)=XFy-YFX	- 6
力图只能与力偶平衡,力偶起大小与灰色心无关	6
加偶合成等于各分3個矩代数和	1
145 T 1/7 / 5	
力的平新定理	
作用点A扩平均多至点B,必须避路均加一为图MB=MB(F)=Fd	
原为下对操作作用点的发包	-
平面任务旅 STX=0, SFy=0 SM。=0	
SFX-O SMA®OSMB-O ABRYSY垂直	
∑MA=O ∑MB=O ∑MC=O SATE	
稻州分於 SFX=0, SMAZO 名为对数别轴重	
SMAZO SMB-O.AB不与各方不好	
空间为对热丝图 M。(下)=下X下= 艾丁下	
TX TY FE	
= (YF2-ZFy)i+(2Fx-XF2)j+(XFy-YFx)F	
力对如 (F) = Mo (Fxy) = I Fxy-h	(1)
包点给张传来 FR +0, Mo+0, FR 1 Mo -力	0
VOINTE TO THE TOURS AND LONG TO THE	
TH +0, TH-+0. THE TO THE TO	1 (
- Alphi Margare	0
7 (10, 100+0, FR (10) 加强被 R +0, No+0, FR (10) 加强被 d = Moll = Mo sind FR = FR'	

•
~
~
-
(

依然相对固定的OFE为 I.= I. + 尼xm Cc	
厂、二 厂、 质彩在绝对色动双弧 二相对质心形成对	
Cc= Cc+ 质邻在绝对显动对象心二相对质心形成对 使心的动量处区	
版和技术公司量的理 dlu = SMc (File))	•
mQcx = SIX	
$m Q_{CY} = \sum X$ 刚体验证的微节扩整	
$J_c \alpha = \sum Mc(F)$	0
京 <i>价</i> 设建里	
T,= ±mVc2+ ±Jcw2 = ±Jcw2(晚0)(晚0)	
$W_{12} = 2 T_2 - T_1$	
块巨对弃药由功车 D = MW	0
*	0
	0
	0
	~
	0
	0

达钢贝尔原理	
用学校为1与日方向相较) 超代的花等, 达平衡学代系	
平力 $\vec{F}_{gR} = -M\vec{Q}_{c}$ 後心	
庭轴 $\overline{F_{gR}} = -M \overline{\Omega_c} = -M(\overline{\Omega_c}^2 + \overline{\Omega_c}^2)$ 有由点。	
$Mgo = -J_2 \cdot d$	
例体平面运动 $\overline{F}_{R} = -m\overline{\alpha}_{c}$ $\overline{M}_{gc} = -J_{cd}$ 後心 (
度伦约原理(符合的束条件的无限从伦约)	
给形取小位约(07战位约,07何伦约) 用8束示	
虚功対象 $\Sigma SW_F = \Sigma \vec{F} i \cdot \vec{S} r_i = 0$	
南接力与主动处理	
约束幼应逐个解除某方向的束,屯的来力	
用约束幼代考进而为主动力	
·/	
·	
	0
	^