Формальные доказательства

- Формальные доказательства большой раздел математической логики
- * Формальное доказательство это конечная последовательность синтаксически корректных формул, составленная по правилам, определяемым системой доказательств
- Система доказательств состоит из
 - правил вывода (получения новых формул из имеющихся в доказательстве)
 - аксиом (формул, которые можно включать в доказательство без ограничений)
- ullet Цель формального доказательства из набора формул-условий получить требуемую формулу-заключение

Пример:

- ullet формулы слова над алфавитом $\{S,(,)\}$
- аксиома слово S
- ullet правила вывода: любой символ S в формуле можно заменить на SS, (S) или ()
- вывод формулы (()()) из пустого набора условий:
 - S (S)
 - (S) (SS)
 - (()5)
 - (()())
- \star формула над $\{(,)\}$ выводится из пустого набора условий
- ⇔ она является правильной расстановкой скобок
- Такие системы доказательств называются формальными грамматиками

Доказательство теорем

- Как выглядит теорема?
 - ullet даны условия F_1,\ldots,F_k и гипотеза G
 - доказать, что из условий следует гипотеза
 - \star т.е. что формула $(F_1 \wedge F_2 \wedge \cdots \wedge F_k) o G$ тавтология
 - \star если формула X o Y тавтология, то формула Y называется следствием X
- ullet Простейший случай: F_1,\ldots,F_k,G булевы формулы
 - ⋆ могут быть более сложные формулы (с предикатами, кванторами и т. д.)
 - * даже для булевых формул проверка «в лоб» очень трудоемка: таблицу значений формулы из m литералов и n переменных можно вычислить за время $\Theta(m \cdot 2^n)$
- Доказательство от противного:
 - ullet доказать, что $\overline{(F_1 \wedge F_2 \wedge \cdots \wedge F_k) o G}$ противоречие
 - \bullet эквивалентная формула: $F_1 \wedge F_2 \wedge \cdots \wedge F_k \wedge \bar{G}$
 - \star если каждую из формул $F_1,\ldots,F_k,ar{G}$ заменить на эквивалентную КНФ, общая формула станет КНФ
- Задача: дана КНФ, является ли она противоречием?
- \star Наблюдение: Y следствие $X \Leftrightarrow X$ эквивалентна $X \land Y$
- \star Следствие: 0 следствие $X \Leftrightarrow X$ противоречие
 - Стратегия доказательства: получить 0 как следствие исходной формулы
- Метод резолюций система доказательств, реализующая эту стратегию

Дискретная математика

Лемма о следствии

Лемма

Для любых булевых формул X,Y,Z формула $Y\vee Z$ — следствие формулы $(X\vee Y)\wedge (\bar{X}\vee Z).$

Доказательство:

- ullet пусть $F_{|ec{b}}$ обозначает результат подстановки набора значений $ec{b}$ в формулу F
- ullet пусть $ec{b}$ произвольный набор, такой что $((X ee Y) \wedge (ar{X} ee Z))_{|ec{b}} = 1$
- \Rightarrow $(X \lor Y)_{|\vec{b}} = 1$, $(\bar{X} \lor Z)_{|\vec{b}} = 1$
 - ullet если $X_{|ec{b}}=1$, то $ar{X}_{|ec{b}}=0 \Rightarrow Z_{|ec{b}}=1$
 - ullet если $X_{|\vec{b}}^{|\vec{c}|} = 0$, то $Y_{|\vec{b}}^{|\vec{c}|} = 1$
- $\Rightarrow (Y \vee Z)_{|\vec{b}} = 1$
- \Rightarrow $((X \lor Y) \land (\bar{X} \lor Z)) \rightarrow (Y \lor Z)$ тавтология

Метод резолюций

Метод резолюций:

- формулы, которыми оперирует метод это клозы (элементарные дизъюнкции)
- клоз рассматривается как множество литералов
 - порядок литералов не важен, повторяющиеся литералы стираются
- единственное правило вывода правило резолюций:
 - ullet если есть клозы вида $x \lor C$ и $\bar{x} \lor D$ (x переменная), дописать клоз $C \lor D$
 - \star клоз, содержащий пару литералов $\{y,ar{y}\}$, не дописывается
 - ullet если C и D пустые множества литералов, дописывается пустой клоз \Box
- аксиом нет
- условия все клозы КНФ, поданной на вход метода
- цель получить пустой клоз

Теорема о полноте

Теорема о полноте метода резолюций

КНФ $F = C_1 \wedge \cdots \wedge C_k$ является противоречием \Leftrightarrow существует доказательство методом резолюций с условиями C_1, \ldots, C_k и заключением \square .

Доказательство достаточности:

- рассмотрим доказательство методом резолюций с заключением 🗆
- каждая формула является либо условием, либо получено по правилу резолюций из каких-то предыдущих формул
 - а значит, является следствием конъюнкции этих формул согласно лемме
- отношение «быть следствием» транзитивно
- ullet любая формула вида $C_{i_1} \wedge \cdots \wedge C_{i_i}$ является следствием F
- \Rightarrow любая формула в доказательстве является следствием F
- \star пустой клоз является следствием формулы $x \wedge ar{x}$, а значит, задает константу 0
- \Rightarrow 0 следствие $F \Rightarrow F$ противоречие

Комментарий:

- * мы доказали корректность метода: если существует доказательство, содержащее пустой клоз, то заданная КНФ действительно является противоречием
- * обратная импликация доказывает <mark>полноту</mark> метода: если КНФ противоречие, то это можно доказать методом резолюций

Доказательство необходимости

- Проведем индукцию по числу n переменных в F
- База индукции: n = 1
 - F противоречие \Rightarrow F содержит клозы x и \bar{x}
 - \Rightarrow по правилу резолюций из imes и $ar{x}$ выводится пустой клоз
- Шаг индукции:
 - пусть $F = F(x_1, ..., x_n), S = \{C_1, ..., C_k\}$
 - считаем, что клоз не может содержать одновременно x_i и \bar{x}_i
 - если такой клоз есть, он задает константу 1 и может быть удален из F
 - \bullet построим два множества клозов, S^+ и S^- :
 - $S^+ = \{C \in S \mid B \mid C \mid C \mid C \mid (C \lor x_n) \in S\}$
 - $S^- = \{C \in S \mid B \mid C \mid C \mid C \mid (C \lor \bar{x}_n) \in S\}$
 - \star докажем, что КНФ $F^+ = \bigwedge_{C \in S^+} C$ является противоречием:
 - ullet пусть существует набор значений b_1,\dots,b_{n-1} такой, что $F^+_{|b_1,\dots,b_{n-1}|}=1$
 - рассмотрим значения всех клозов из множества S на наборе $b_1,\ldots,b_{n-1},0$:
 - ullet если клоз C не содержит переменную x_n , то $C_{|b_1,\dots,b_{n-1},\mathbf{0}}=C_{|b_1,\dots,b_{n-1}}=1$
 - ullet если клоз имеет вид $C \vee x_n$, то $(C \vee x_n)_{|b_1,\dots,b_{n-1},0} = C_{|b_1,\dots,b_{n-1}} = 1$
 - ullet клоз вида $C ee ar{x_n}$ превращается в 1 за счет значения $b_n = 0$
 - $\Rightarrow F_{|b_1,...,b_{n-1},0} = 1$, что невозможно, так как F противоречие
 - \star аналогично, $F^- = \bigwedge_{C \in S^-} C$ является противоречием
 - ullet к гипотетическому набору, выполняющему F^- , надо добавить $b_n=1$
 - \star по предположению индукции, из каждого из множеств S^+ , S^- можно вывести пустой клоз

Шаг индукции — окончание

- ullet Рассмотрим вывод пустого клоза из множества S^+
 - \bullet если в выводе участвовали только клозы из S, то из S выводим пустой клоз
 - пусть в выводе участвовал хотя бы один клоз $C \in S^+ \setminus S$; тогда $(C \vee x_n) \in S$
 - \Rightarrow построим вывод из S, заменив в выводе из S^+ каждый клоз из $S^+ \setminus S$ на соответствующий клоз из S
 - \Rightarrow во всех следствиях из таких клозов добавится литерал x_n
 - \Rightarrow из S выводится клоз x_n
- \star аналогично, из вывода пустого клоза из S^- получим вывод клоза $ar{x}_n$ из S
 - \Rightarrow из клозов x_n и \bar{x}_n получим пустой клоз

Комментарий:

- ★ искать доказательства методом резолюций может компьютер
 - существуют различные стратегии оптимизации поиска вывода
- на более общем варианте метода резолюций (для формул логики первого порядка) основан язык Пролог
- \star Если формула F не является противоречием, то метод резолюций заканчивает работу, когда не может вывести больше ни одного нового клоза
 - по построенным клозам можно восстановить набор значений, выполняющий F

Пример доказательства методом резолюций

Вася всегда приходит на совещание, если босс его позвал. Если босс хочет видеть Васю, он зовет его на совещание. Если босс не хочет видеть Васю и не зовет его на совещание, то Васю скоро уволят. Вася не пришел на совещание. Докажите, что его скоро уволят.

- Запишем теорему, которую надо доказать:
 - $\star \ \left((\mathsf{invite} \to \mathsf{attend}) \land (\mathsf{see} \to \mathsf{invite}) \land ((\overline{\mathsf{see}} \land \overline{\mathsf{invite}}) \to \mathsf{fire}) \land (\overline{\mathsf{attend}}) \right) \to \mathsf{fire}$
- Отрицание теоремы:
 - $\star \ (\textit{invite} \rightarrow \textit{attend}) \land (\textit{see} \rightarrow \textit{invite}) \land ((\overline{\textit{see}} \land \overline{\textit{invite}}) \rightarrow \textit{fire}) \land (\overline{\textit{attend}}) \land \overline{\textit{fire}}$
- КНФ отрицания теоремы и множество клозов:
 - $\star \ (\overline{\mathsf{invite}} \lor \mathsf{attend}) \land (\overline{\mathsf{see}} \lor \mathsf{invite}) \land (\mathsf{see} \lor \mathsf{invite} \lor \mathsf{fire}) \land (\overline{\mathsf{attend}}) \land (\overline{\mathsf{fire}})$
 - $S = \{\overline{invite} \lor attend, \overline{see} \lor invite, see \lor invite \lor fire, \overline{attend}, \overline{fire}\}$

Доказательство:

- 1. see ∨ invite ∨ fire условие
- 2. *fire* условие
- 3. see ∨ invite по правилу резолюций из 1,2
- 4. *see* ∨ *invite* условие
- 5. invite по правилу резолюций из 3,4; invite ∨ invite = invite
- 6. $\overline{invite} \lor attend$ условие
- 7. attend по правилу резолюций из 5,6
- 8. *attend* условие
- 9. По правилу резолюций из 7,8 жалко Васю.