Oddziaływanie Promieniowania Jonizującego z Materią

Zbiór Zadań

Problem 1.

Cząstki naładowane przechodząc przez materię tracą energię kinetyczną głównie przez jonizację i wzbudzenia. Straty te są opisywane przybliżonymi równaniami w zależności od tego, czy cząstka jest lekka, czy ciężka. Wykonaj obliczenia:

- a) maksymalnej energii, jaką może przekazać relatywistyczny: i) elektron, ii) proton o pędzie p.
- b) Porównaj wynik do otrzymanego z zależności przybliżonej: $E_{kin}^{max} \approx 2m_e c^2 \beta^2 \gamma^2$ lub $E_{kin}^{max} \approx \frac{p^2}{\gamma m_0 + m_0^2/2m_e}$

Rozwiązanie można przedstawić również np. w formie Jupyter Notebooka, podstawiając różne masy cząstek padających. Można również pokazać zależność od pędu.

Zadanie projektowe*. Badamy formułę Bethego.

- a) Proszę zrobić analizę formuły Bethego (omówione na wykładzie)
- b) policzyć mass collision stopping power w wodzie dla protonów o energii 1 MeV;

Problem 2.

Wielokrotne rozpraszanie (ang. multiple scattering) związane jest z oddziaływaniem cząstek naładowanych z jądrami atomowymi materiału, który penetrują. Podczas tych oddziaływań, z uwagi na znaczną różnicę w masie, cząstki nie tracą energii, lecz zmieniają pęd. Statystycznie, odchylenie średnie podczas przejścia przez cienki materiał detektora powinno być bliskie zeru. Wg teorii Moliere'a rozkład kąta odchylenia powinien być w przybliżeniu normalny o szerokości, którą możemy opisać jak poniżej:

$$\theta_{RMS} = \sqrt{\langle \theta^2 \rangle} = \frac{13.6 \ [MeV]}{\beta cp} z \sqrt{\frac{x}{X_0}} \left(1 + 0.038 \cdot ln \left(\frac{x}{X_0} \right) \right)$$

gdzie: p – jest pędem cząstki rozpraszanej, βc – oznacza jej prędkość oraz z – to jej ładunek. Grubość detektora mierzymy w jednostkach długości radiacyjnej X_0 .

Proszę wyznaczyć szerokość rozkładu kąta rozproszenia dla protonów o pędzie: 50~MeV oraz energii kinetycznej 200~MeV, które przechodzą przez: $0.1~g/cm^2$ Al oraz 2~mm Cu.

gdzie: m_0 – masa cząstki przyspieszanej, p – jej pęd oraz au – czas własny.

Problem 3.

Średni kąt rozproszenia elektronów w emulsji o grubości 500 μ m wynosi $\sqrt{\langle \theta^2 \rangle} = 5^\circ$. Wyznacz pęd elektronów, długość radiacyjna emulsji wynosi $X_0 = 5$ cm.

Problem 4.

Elektron o energii początkowej 2 GeV przechodzi przez 10 cm wody o długości radiacyjnej 36.1 cm. Oblicz jego końcową energię. A jaka będzie ta energia w przypadku mionu?

Problem 5.

Używając poniższego diagramu oszacuj, ile wynosi czas zatrzymania elektronu o energii 0.1 MeV oraz 0.5 MeV w:

- a) wodzie
- b) powietrzu

Problem 6.

Oddziaływanie promieniowania z materia zależy od liczby centrów rozpraszania znajdujących się w danym materiale. Wyznacz:

- a) liczbę atomów znajdujących się w $1 cm^3$
- b) liczbę atomów na 1 g

dla krzemu oraz węgla. Do jakich celów moglibyśmy użyć detektorów wykonanych z takich materiałów?

air

Plexiglas (Lucite)

concrete aluminium

iron

lead

Problem 7.

Cząstki α o energii kinetycznej $E_{kin}^{(i)}=5.2~MeV$ przechodzą przez cienką folię miedzianą o grubości $5~\mu m$. Wyznacz:

 10^{3}

 10^{2}

10

- a) stratę jonizacyjną w folii
- b) końcową energię kinetyczną cząstek $\boldsymbol{E}_{kin}^{(f)}$
- c) szerokość rozkładu opisującego efekt zmiany kąta na skutek wielokrotnego rozpraszania

Problem 8.

Odległość pomiędzy drutami komorze wielodrutowej wypełnionej argonem wynosi 2 mm. Jaka jest przestrzenna zdolność rozdzielcza tego detektora? Proszę porównać wynik z paskowym detektorem krzemowym – odległość między paskami wynosi 50-100 μm.

Problem 9.

Pion o energii 200 MeV przechodzi przez detektory opisane w Problemie 7. Proszę porównać straty energii w obydwu detektorach i policzyć liczbę ładunków wytworzonych w tych detektorach.

Problem 10.

Mion o energii $E_{\mu}=100~GeV$ przechodzi przez warstwę żelaza o grubości L=3~m. Jaki jest dominujący mechanizm straty energii dla tego mionu? Ile wyniesie średnia strata energii mionu?

Problem 11.

Rozpatrzmy rozpad naładowanego pionu: $\pi^+ \to \mu^+ \nu_\mu$. Jaka jest energia kinetyczna wyprodukowanego mionu? Jaki jest jego zasięg w ciekłym wodorze (przyjąć gęstość ciekłego wodoru: $\rho = 0.07~g/cm^3$.

Problem 12.

Jednym z najważniejszych zadań wielkich detektorów jest pomiar energii cząstek neutralnych. Wyznacz średnią liczbę cząstek w kaskadzie elektromagnetycznej, zainicjowanej przez foton pochodzący z rozpadu bozonu Higgsa. Przyjmijmy, że energia fotonu $E_{\nu} = 50 \; GeV.$ wynosi: Załóżmy, że kaskada rozwija się w bloku żelaznym pomiaru dokonujemy głębokościach na odpowiednio: 10, 13 i 20 *cm*.

Problem 13.

Oszacuj zasięg, w ciekłym wodorze, mionu wyprodukowanego w rozpadzie: $\pi^+ \to \mu^+ \nu_\mu$. W rozwiązaniu pomocny będzie poniższy diagram:

Problem 14.

Proton o dużej energii przechodzi przez scyntylator plastikowy o grubości $1\ cm$. Jaki jest dominujący mechanizm strat energii? Ile wyniesie średnia strata energii?

Dodatki.

Medium	$L_{rad} (\mathrm{g \ cm^{-2}})$	$\frac{L_{rad}}{\rho}$ (cm)	E_C (MeV)
Air	36.20	30050	83
H ₂ O	36.08	36.1	93
Pb	6.37	0.56	9.5
Cu	12.86	1.43	25
Al	24.01	8.9	51
Fe	13.84	1.76	27.4

$$X_0 = L_{rad} \simeq \frac{716.4 \,[\mathrm{g \ cm^{-2}}] A}{Z(Z+1) \ln(287/\sqrt{Z})}$$