	Shankar's	Mine (lindbladInit_for-DMD-4.4)
	(lindbladInit)	
Output data files (required by later real-time dynamics)	A single file ldbd.dat	Multi files in the folder ./ldbd_data, each storing one kind of quantity (additionally ImSigma_ePh)
Output electron-phonon quantities	$G^- = g^- \sqrt{\delta}$ stored in sparse form	E-ph-related matrices for both Lindblad and conventional equation. For Lindblad, $P_{1234}^{I} = \sum_{\pm \lambda} G_{13}^{\pm} G_{24}^{\pm,*} n^{\pm}$ $P_{1234}^{II} = \sum_{\pm \lambda} G_{31}^{\pm} G_{42}^{\pm,*} n^{\mp}$ For conventional, $P_{1234}^{I} = \sum_{\pm \lambda} g_{13}^{\pm} G_{24}^{\pm,*} n^{\pm}$ $P_{1234}^{II} = \sum_{\pm \lambda} g_{31}^{\pm} G_{42}^{\pm,*} n^{\mp}$ $G = g\delta$ of a k pair (ik,jk) with ik <= jk ($P^{I,kk'} = P^{II,k'k,*}$ and $P^{II,kk'} = P^{I,k'k,*}$) in dense form. Due to the difference of output e-ph quantities, energy conservation for k pair selection is not the
Information in std::out		same Spin-relaxation time calculated using P? matrices and G matrices with different kind of smearings (constant or ImSigma ePh)
Energy ranges	Two – one for probe; one for pump and e-ph for both conduction and valance bands	Three – for probe; for pump; for e-ph, if ePhOnlyElec (ePhOnlyHole) = 1, only e-ph of conduction (valence) bands will be written down; Parameter nkBT is added to control energy range, default 7, 7 is enough for real-time but may not be for rate formula
Energy conservation input	Delta function is non- standard Gaussian $\frac{1}{\sqrt{\pi}\sigma}e^{-x^2/\sigma^2}$	Delta function is Gaussian $\frac{1}{\sqrt{2\pi}\sigma}e^{-x^2/(2\sigma^2)}$, smearing parameter ePhDelta in my code's input is $\frac{1}{\sqrt{2}}$ of ePhDelta in Shankar's code's input

Energy	(i) Detailed balance:	Technique (i) can be turned on/off by setting input parameter detailBalance=1/0
conservation	$n_q(\omega_q)$ replaced by	Technique (ii) can be turned on/off by setting input
techniques	$n_q(\varepsilon_k-\varepsilon_{k-q})$	parameter variedDelta=1/0
	(ii) Varied Delta: $\sigma =$	
	$\min\left(\sigma_0, \frac{\omega_q}{N+1}\right), N \text{ is }$	
	input parameter nEphDelta	
Energy	nEphDelta = 4	nEphDelta is an input parameter. This is important for spin lifetime computations inside the code,
conservation		since different smearings (e.g., max of
range		ImSigme_ePh can be much larger than ePhDelta) will be used
		Notice that nEphDelta in my code's input is $\sqrt{2}$ of
		nEphDelta in Shankar's code's input
VBM & CBM		In case VBM is not zero (metal, Fermi smearing or
determination		finite electric field), parameter band_skipped, starting band index of wannier relative to DFT, can
uctel illination		be used to determine VBM and CBM correctly
k-point selection		In 3D cases, there can be too many k points. To
		speed up eLoop, we need temporally turn off spin and velocity matrices computations. This is
		achieved by introducing eEneOnly in FeynWann
		(see if (eEneOnly) return; in setState in
	V mainte	FeynWann.cpp)
Parallel for e-ph	K points	K pairs
E-ph matrix	Use ePhLoop with mask (whether satisfying energy	Firstly, run eCalc at all selected k points in parallel (and use bcastState_inEphLoop to collect them)
elements	conservation)	and store electronic states in
computation	,	std::vector <feynwann::statee> state_elec;</feynwann::statee>
computation		Secondly, use ePhCalc for each k pair with stored
		FeynWann::StateE state_elec[ik] and state_elec[jk]. In some cases, compute1is slow, e.g., GaN, it is
		very helpful to run eCalc only once and reuse them
		in e-ph computations. Otherwise, compute1 must
		be run for each k pair instead of for each k point My code is however not suitable to the cases where
		most k points are selected (e.g., iron) or there are
		more than 10,000 k points so that state_elec will
		take too huge memory