Rafael de Santiago

Anotações para a Disciplina de Grafos Versão de 8 de abril de 2019- 10:30:08

Universidade Federal de Santa Catarina

Sumário

1	Intr	odução	0	. 3
	1.1		ico	
	1.2		ções Iniciais	
		1.2.1	Grafos Valorados ou Ponderados	. 6
		1.2.2	Grafos Orientados	. 7
		1.2.3	Hipergrafo	
		1.2.4	Multigrafo	
		1.2.5	Grau de um Vértice	. 9
		1.2.6	Igualdade e Isomorfismo	. 9
		1.2.7	Partição de Grafos	. 10
		1.2.8	Matriz de Incidência	. 10
		1.2.9	Operações com Grafos	. 10
		1.2.10	Vizinhança	. 11
		1.2.11	Grafo Regular	
		1.2.12	Grafo Simétrico	
		1.2.13	Grafo Anti-simétrico	
		1.2.14	<u> </u>	
		1.2.15	Grafo Complementar	
		1.2.16	Percursos em Grafos	
			Cintura e Circunferência	
2	Rep		ações Computacionais	
	2.1	Lista d	le Adjacências	. 15
	2.2		de Adjacências	
_	2.3		cios	
3			ı Grafos	
	3.1		em Largura	
		3.1.1	1	
		3.1.2	Propriedades e Provas	
			3.1.2.1 Caminhos Mínimos	
			3.1.2.2 Árvores em Largura	
	3.2		em Profundidade	
		3.2.1	Complexidade da Busca em Profundidade	
4		ninhos	e Ciclos	. 27
	4.1		thos e Ciclos Eulerianos	
		4.1.1	Algoritmo de Hierholzer	
	4.2		thos e Ciclos Hamiltonianos	
_	C	4.2.1	Caixeiro Viajante	
5			Mínimos	
	5.1	_	edades de Caminhos Mínimos	
		5.1.1	Propriedade de subcaminhos de caminhos mínimos o são	
		5.1.2	Propriedade de desigualdade triangular	
		5.1.3	Propriedade de limite superior	
		5.1.4	Propriedade de inexistência de caminho	
		5.1.5	Propriedade de convergência	
		5.1.6	Propriedade de relaxamento de caminho	
		5.1.7	Propriedade de relaxamento e árvores de caminho mínimo	
		5.1.8	Propriedade de subgrafo dos predecessores	. 40

5.2	Bellma	an-Ford	42
	5.2.1	Complexidade de Bellman-Ford	43
	5.2.2	Corretude de Bellman-Ford	43
5.3	Dijkstı	a	45
	5.3.1	Complexidade de Dijkstra	46
	5.3.2	Corretude do Algoritmo de Dijkstra	47
5.4	Floyd-	Warshall	48
	5.4.1	Complexidade de Floyd-Warshall	49
	5.4.2	Corretude de Floyd-Warshall	50
	5.4.3	Construção de Caminhos Mínimos para Floyd-Warshall	50
Referê	ncias .		55
A Rev	isão de	Matemática Discreta	57

Introdução

1.1 Histórico

Uma breve história do passado da Teoria de Grafos (NETTO, 2006):

- 1847: Kirchhoff utilizou modelos de grafos no estudo de circuitos elétricos, criando a teoria de árvores;
- 1857: Cayley usou grafos em química orgânica para enumeração de isômetos dos hidrocarbonetos alifáticos saturados:
- 1859: Hamilton inventou um jogo de buscar um percurso fechado envolvendo todos os vértices de um dodecaedro regular, de tal modo que cada vértice fosse visitado apenas uma vez;
- 1869: Jordan estudou matematicamente as árvores (grafos acíclicos);
- 1878: Sylvester foi o primeiro a utilizar o termo *graph*;
- 1879: Kempe não conseguiu demonstrar a conjectura das 4 cores;
- 1880: Tait falhou ao demonstrar uma prova falsa da conjectura das 4 cores;
- 1890: Haewood provou que a prova de Kempe estava errada e demonstrou uma prova consistente para 5 cores. A de 4 cores só saiu em 1976;

- 1912: Birkhoff definiu os polinômios cromáticos;
- 1926: Menger demonstour um importante teorema sobre o problema de desconexão de itinerários em grafos;
- 1930: Kuratowski encontrou uma condição necessária e suficiente para a planaridade de um grafo;
- 1931: Whitney criou a noção de grafo dual;
- 1936: Primeiro livro sobre grafos foi lançado por König;
- 1941: Brooks enunciou um teorema fornecendo um limite para o número cromático de um grafo;
- 1941: Turán foi o primeiro da teoria extremal dos grafos;
- 1947: Tutte resolveu o problema da existência de uma cobertura minimal em um grafo;
- 1956+: Com as publicações de Ford e Fulkerson, Berge (1957) e Ore (1962), a teoria de grafos passa a receber mais interesse;

1.2 Definições Iniciais

Antes de visitar a representação de grafos, é importante que saibamos o que são vértices e arestas. Vértices geralmente são representados como unidades, elementos ou entidades, enquanto as arestas representam as ligações/conexões entre pares de vértices. Geralmente, chamaremos o conjunto de vértices de V e o conjunto de arestas de E. Define-se que $E \subseteq V \times V$. Também usaremos n e m para denotarem o número de vértices e arestas respectivamente, então n = |V| e m = |E|. O número de arestas possível em um grafo é $\frac{n^2-n}{2}$.

Um grafo pode ser representado de duas formas (CORMEN et al., 2012). A primeira forma é chamada de lista de adjacências e tem mais popularidade em artigos científicos.

1.2. Definições Iniciais

Nela, o grafo é representado como uma dupla para especificar vértices e arestas. Por exemplo, para um grafo G, pode-se dizer que o mesmo é uma dupla G=(V,E), especificando assim que o grafo G possui um conjunto V de vértices e E de arestas. A segunda forma seria uma através de uma matriz binária, chamada de matriz de adjacência. Normalmente representada pela letra A(G), a matriz é definida por $A(G)=\{0,1\}^{|V|\times |V|}$, a qual seus elementos $a_{u,v}=1$ se existir uma aresta entre os vértices u e v. Um exemplo das das formas para um mesmo grafo pode ser visualizado no Exemplo 1.2.1.

Example 1.2.1. A Figura 1 exibe um grafo de 4 vértices e 4 arestas. Na representação por listas de adjacências, o grafo pode ser representado da seguinte forma

$$G = (\{1, 2, 3, 4\}, \{\{1, 2\}, \{1, 4\}, \{2, 4\}, \{3, 4\}\}). \tag{1.1}$$

A representação por uma matriz de adjacência ficaria assim

Figura 1 – Exemplo de grafo com 4 vértices e 4 arestas.

1.2.1 Grafos Valorados ou Ponderados

Um grafo é valorado quando um peso ou valor é associado a suas arestas. Na literatura, a definição do grafo passa a ser uma tripla G = (V, E, w), na qual V é o conjunto de vértices, E é o conjunto de arestas e $w : e \in E \to \mathbb{R}$ é a função que especifica o valor.

Quando não se possui valornas arestas, parte-se de uma relação binária entre existir ou não uma aresta entre dois vértices. Neste caso, se u e v possui uma aresta, geralmente se simboliza essa ligação com o valor 1, e se não existir 0.

Em uma matriz de adjacências para grafos valorados, o valor das arestas aparecem nas células da matriz. Em um par de vértices que não possui valor estabelecido (não há aresta), representa-se com uma lacuna ou com um valor simbólico para o problema que o grafo representa. Por exemplo, se os valores representam as distâncias, geralmente se associa o valor infinito aos pares de vértices que não possuem arestas.

Um exemplo de grafo valorado e suas representações pode ser visualizado no Exemplo 1.2.2.

Example 1.2.2. A Figura 2 exibe um grafo valorado de 4 vértices e 4 arestas. Na representação por listas de adjacências, o grafo pode ser representado da seguinte forma

$$G = (\{1, 2, 3, 4\}, \{\{1, 2\}, \{1, 4\}, \{2, 4\}, \{3, 4\}\}, w).$$

$$(1.2)$$

A função w teria os seguintes valores: $w(\{1,2\}) = 8$, $w(\{1,4\}) = 9$, $w(\{2,4\}) = 5$ e $w(\{3,4\}) = 7$.

A representação por uma matriz de adjacência ficaria assim

ou desta outra forma para o caso de uma aplicação a problemas que envolvam

Figura 2 – Exemplo de grafo valorado com 4 vértices e 4 arestas.

Grafos com Sinais

Para representar alguns problemas, utiliza-se valores negativos associados às arestas. Um exemplo disso, seriam grafos que representem relações de amizade e de inimizade. Para amizade, utiliza-se o valor 1 e para inimizade o valor -1. Nesse caso, não dizemos que o grafo é valorado ou ponderado, mas sim um grafo com sinais. Quando os valores negativos e positivos podem ser diferentes de 1 e -1, diz-se que os grafos são valorados e com sinais.

1.2.2 Grafos Orientados

Um grafo orientado é aquele no qual suas arestas possuem direção. Nesse caso, não chamamos mais de arestas e sim de arcos. Um grafo orientado é definido como uma

dupla G = (V, A), a qual V é o conjunto de vértices e A é o conjunto de arcos. O conjunto de arcos é composto por pares ordenados (u, v), os quais $u, v \in V$ e representam um arco saindo de u e incidindo em v. Duas funções importantes devem ser consideradas nesse contexto: a função de arcos saintes $\delta^+(v) = \{(v, u) : (v, u) \in A\}$ e arcos entrantes $\delta^-(v) = \{(u, v) : (u, v) \in A\}$.

O Exemplo 1.2.3 exibe a representação de um grafo orientado.

Example 1.2.3. A Figura 3 exibe um grafo orientado de 4 vértices e 4 arestas. Na representação por listas de adjacências, o grafo pode ser representado da seguinte forma

$$G = (\{1, 2, 3, 4\}, \{(1, 4), (2, 1), (4, 2), (4, 3)\}). \tag{1.3}$$

A representação por uma matriz de adjacência ficaria assim

Figura 3 – Exemplo de grafo orientado com 4 vértices e 4 arcos.

1.2.3 Hipergrafo

Um hipergrafo H=(V,E) é um grafo no qual as arestas podem conectar qualquer número de vértices. Cada aresta é chamada de hiperaresta $E\subseteq 2^V\setminus\{\}$.

1.2.4 Multigrafo

Um multigrafo G = (V, E) é um grafo que permite múltiplas arestas para o mesmo par de vértices. Logo, não se tem mais um conjunto de arestas, mas sim uma tupla de arestas. Para o exemplo da Figura 4, têm-se $E = (\{1,2\},\{1,2\},\{1,4\},\{2,4\},\{3,4\},\{3,4\})$.

Figura 4 – Exemplo de um multigrafo com 4 vértices e 6 arestas.

1.2.5 Grau de um Vértice

O grau de um vértice é a quantidade de arestas que se conectam a determinado vértice. É denotada por uma função d_v , onde $v \in V$. Em um grafo orientado, o número de arcos saintes para um vértice v é denotado por d_v^+ , e o número de arcos entrantes é denotado por d_v^- .

1.2.6 Igualdade e Isomorfismo

Diz-se que dois grafos $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$ são iguais se $V_1 = V_2$ e $E_1 = E_2$. Os dois grafos são considerados isomorfos se existir uma função bijetora (uma-por-uma) para todo $v \in V_1$ e para todo $u \in V_2$ preserve as relações de adjacência (NETTO, 2006).

1.2.7 Partição de Grafos

Uma partição de um grafo é uma divisão disjunta de seu conjunto de vértices. Um grafo G = (V, E) é dito k-partido se existir uma partição $P = \{p_i | i = 1, ..., k \land \forall j \in \{1, ..., k\}, j \neq i(p_i \cap p_i \neq \{\})\}$. Quando k = 2, dize que o grafo é bipartido (NETTO, 2006).

1.2.8 Matriz de Incidência

Sobre um grafo orientado G = (V, E), uma matriz de incidência $B(G) = \{+1, -1, \}^{|V| \times |A|}$ mapeia a origem e o destino de cada arco no grafo G. Dado um arco (u, v), $b_{u,(u,v)} = +1$ e $b_{v,(u,v)} = -1$ (NETTO, 2006).

1.2.9 Operações com Grafos

As seguintes operações binárias são descritas em Netto (2006):

- União: Dados os grafos $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$, $G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$;
- Soma (ou *join*): Dados os grafos $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$, $G_1 + G_2 = (V_1 \cup V_2, E_1 \cup E_2 \cup \{\{u, v\} : u \in V_1 \land v \in V_2\})$;
- Produto cartesiano: Dados os grafos $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$, $G_1 \times G_2 = (V_1 \times V_2, E)$, onde $E = \{\{(v, w), (x, y)\} : (v = x \land \{w, y\} \in E_2) \lor (w = y \land \{x, y\} \in E_1)\}$. $G_1 \times G_2$ e $G_2 \times G_1$ são isomorfos;
- Composição ou produto lexicográfico: Dados os grafos $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$, $G_1 \circ G_2 = (V_1 \times V_2, E)$, onde $E = \{\{(v, w), (x, y)\} : (\{v, x\} \in E_1 \lor v = x) \land \{w, y\} \in E_2\}$;
- Soma de arestas: Dados os grafos $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$, os quais $V_1 = V_2$, $G_1 \oplus G_2 = (V_1, E_1 \cup E_2)$.

A seguinte operação unária é descrita em Netto (2006):

Contração de dois vértices: Dado um grafo G = (V, E) e dois vértices u, v ∈ V, a operação de contração desses dois vértices em G, gera um grafo G' = (V', E') o qual
 V' = V\{u, v\} ∪ {uv\} e E' = {{x, y\} ∈ E : x ≠ u ∧ x ≠ v\} ∪ {{x, uv\} : {x, u\}, {x, v\} ∈ E}.

Outras operações sobre grafos são descritas na literatura. Esse texto irá omití-las por enquanto para que sejam utilizados no momento mais oportuno. Sõ elas: inserção e remoção de vértices e arestas, desdobramento de um vértice. Essa última depende do contexto de aplicação.

1.2.10 Vizinhança

A vizinhança de vértices é diferente para grafos não-orientados e orientados. Para um grafo grafo não-orientado G=(V,E), uma função de vizinhança é definida por $N: v \in V \to \{u \in V: \{v,u\} \in E\}$ e indica o conjunto de todos os vizinhos de um vértice específico. Para o grafo do Exemplo 1.2.1, $N(1)=\{2,4\}$.

Para um grafo orientado G=(V,A), diz-se que um vértice $u\in V$ é sucessor de $v\in V$ quando $(v,u)\in A$; e $u\in V$ é antecessor de $v\in V$ quando $(u,v)\in A$. As funções de vizinhança para um grafo orientado G são $N^+:v\in V\to \{u\in V:(v,u)\in A\},\,N^-:v\in V\to \{u\in V:(u,v)\in A\},\,\mathrm{e}\ N(v)=N^+(v)\cup N^-(v).$

Diz-se que a vizinhança de v é fechada quando esse mesmo vértice se inclui no conjunto de vizinhos. A função que representa vizinhança fechada v é simbolizada neste texto como $N_*(v) = N(v) \cup \{v\}$.

As funções de vizinhança também podem ser utilizadas para identificar um conjunto de vértices vizinhos de um grupo de vértices em um grafo G=(V,E) (orientado ou não). Nesse contexto, $N(S)=\bigcup_{v\in S}N(v),\,N^+(S)=\bigcup_{v\in S}N^+(v),\,\mathrm{e}\,N^-(S)=\bigcup_{v\in S}N^-(v).$

As noções de sucessor e antecessor podem ser aplicadas iterativamente. As Equações (1.4), (1.5), (1.6) e (1.7) exibem exemplos de fechos transitivos diretos.

$$N^{0}(\nu) = \{\nu\} \tag{1.4}$$

$$N^{+1}(\nu) = N^{+}(\nu) \tag{1.5}$$

$$N^{+2}(\nu) = N^{+}(N^{+1}(\nu)) \tag{1.6}$$

$$N^{+n}(v) = N^{+}(N^{+(n-1)}(v)) \tag{1.7}$$

Chama-se de fecho transitivo direto aqueles que correspondem aos vizinhos sucessivos e os inversos os que correspondem aos vizinhos antecessores. Um fecho transitivo direto de um vértice v de um grafo G = (V, E) são todos os vértices atingíveis a partir v no grafo G; ele é representado pela função $R^+(v) = \bigcup_{k=0}^{|V|} N^{+k}(v)$. Um fecho transitivo inverso de v é o conjunto de vértices que atingem v; ele é representado pela função $R^-(v) = \bigcup_{k=0}^{|V|} N^{-k}(v)$. Diz-se que w é descendente de v se $w \in R^+(v)$. Diz-se que w é ascendente de v se v0.

1.2.11 Grafo Regular

Um grafo não-orientado G = (V, E) que tenha $d(v) = k \forall v \in V$ é chamado de grafo k-regular ou de grau k. Um grafo orientado $G_o = (V, A)$ que possui a propriedade $d^+(v) = k \forall v \in V$ é chamado de grafo exteriormente regular de semigrau k. Se G_o tiver $d^-(v) = k \forall v \in V$ é chamado de grafo interiormente regular de semigrau k.

1.2.12 Grafo Simétrico

Um grafo orientado G = (V, A) é simétrico se $(u, v) \in A \iff (v, u) \in A \forall u, v \in V$.

1.2.13 Grafo Anti-simétrico

Um grafo orientado G = (V, A) é anti-simétrico se $(u, v) \in A \iff (v, u) \notin A \forall u, v \in V$.

1.2.14 Grafo Completo

Um grafo completo G = (V, E) é completo se $E = V \times V$.

Grafos bipartidos completos $G_B = ((X, Y), E)$ possuem $E = X \times Y$.

1.2.15 Grafo Complementar

Para um grafo G = (V, E), um grafo complementar é definido por $G^c = \overline{G} = (V, (V \times V) \setminus E)$.

1.2.16 Percursos em Grafos

"Um percurso, itinerário ou cadeia é uma família de ligações sucessivamente adjacentes, cada uma tendo uma extremidade adjacente a anterior e a outra à subsequente (à execeção da primeira e da última)" (NETTO, 2006). Diz-se que um percurso é aberto quando a última ligação é adjacente a primeira. Têm-se desse modo um ciclo.

Um percurso é considerado simples se não repetir ligações (NETTO, 2006).

Caminhos são cadeias em grafos orientados.

Circuitos são ciclos em grafos orientados.

1.2.17 Cintura e Circunferência

Cintura de um grafo G é comprimendo do menor ciclo existente no grafo. É representada pela função g(G). A circunferência é comprimento do maior ciclo. A circunferência do grafo G é representada pela função c(G).

Representações Computacionais

Duas formas de representação computacional de grafos são amplamente utilizadas. São elas "listas de adjacências" e "por matriz de adjacências" (CORMEN et al., 2012). Elas possuem vantagens e desvantagens principamente relacionadas à complexidade computacional (consumo de recursos em tempo e espaço). Detalhes sobre vantagens e desvantagens não aparecerão nesse documento. Um de nossos objetivos do momento será implementar e avaliar as duas formas de representação.

2.1 Lista de Adjacências

A representação de um grafo G = (V, E) por listas de adjacências consiste em um arranjo, chamado aqui de Adj. Esse arranjo é composto por |V| listas, e cada posição do arranjo representa as adjacências de um vértice específico (CORMEN et al., 2012). Para cada $\{u,v\} \in E$, têm-se Adj[u] = (...,v,...) e Adj[v] = (...,u,...) quando G for não-dirigido. Quando G for dirigido, para cada $(u,v) \in E$, têm-se Adj[u] = (...,v,...).

Para grafos ponderados, Cormen et al. (2012) sugere o uso da própria estrutura de adjacências para armazenar o peso. Dado um grafo ponderado não-dirigido G = (V, E, w), para cada $\{u, v\} \in E$, têm-se $Adj[u] = (..., (v, w(\{u, v\})), ...)$ e $Adj[v] = (..., (u, w(\{u, v\})), ...)$. Quando o grafo for dirigido, para cada $(u, v) \in E$, têm-se Adj[u] = (..., (v, w((u, v))), ...).

O Algoritmo 1 representa a carga de um grafo dirigido e ponderado G = (V, A, w) em uma lista de adjacências Adj.

Algoritmo 1: Criação de uma lista de adjacências para um grafo dirigido e ponderado.

```
Input :um grafo dirigido e ponderado G = (V, A, w)

1 criar arranjo Adj[|V|]

2 foreach v \in V do

3 Adj[v] \leftarrow \text{listaVazia}()

4 foreach (u, v) \in A do

5 Adj[u] \leftarrow Adj[u] \cup (v, w((u, v)))

6 return Adj
```

2.2 Matriz de Adjacências

Uma matriz de adjacência é uma representação de um grafo através de uma matriz A. Para um grafo não-dirigido G=(V,E), $A=\mathbb{B}^{|V|\times |V|}$, na qual cada elemento $a_{u,v}=1$ e $a_{v,u}=1$ se $\{u,v\}\in E; a_{u,v}=0$ e $a_{v,u}=0$ caso $\{u,v\}\notin E$. Para todo grafo não-dirigido G, $a_{u,v}=a_{v,u}$.

Para um grafo dirigido $G=(V,X), A=\mathbb{B}^{|V|\times |V|}$, na qual cada elemento $a_{u,v}=1$ se $(u,v)\in A; a_{u,v}=0$ e $a_{u,v}=0$ caso $(u,v)\notin X.$

Para um grafo não-dirigido e ponderado G=(V,E,w), a matriz será formada por células que comportem o tipo de dado representado pelos pesos. Assumindo que os pesos serão números reais, então a matriz de adjacências será $A=\mathbb{R}^{|V|\times |V|}$. Cada elemento $a_{u,v}=w(\{u,v\})$ e $a_{v,u}=w(\{u,v\})$ se $\{u,v\}\in E$; $a_{u,v}=\epsilon$ e $a_{v,u}=\epsilon$ caso $\{u,v\}\notin E$. ϵ é um valor que representa a não conexão, geralmente 0, $+\infty$ ou $-\infty$ dependendo do contexto de aplicação.

O Algoritmo 2 representa a carga de um grafo dirigido e ponderado G = (V, A, w) em uma matriz de adjacências Adj.

2.3. Exercícios 17

Algoritmo 2: Criação de uma matriz de adjacências para um grafo dirigido e ponderado.

```
Input :um grafo dirigido e ponderado G = (V, A, w : A \rightarrow \mathbb{R}), um símbolo \epsilon que representa a não adjacência

1 Adj \leftarrow \mathbb{R}^{|V| \times |V|}

2 foreach v \in V do

3 | foreach u \in V do

4 | Adj_{u,v} \leftarrow \epsilon

5 foreach (u, v) \in A do

6 | Adj_{u,v} \leftarrow w((u, v))

7 return Adj
```

2.3 Exercícios

Implemente as duas bibliotecas para grafos. Preencha a seguinte tabela a partir da análise computacional, de acordo com as operações abaixo determinadas.

	Lista de Adjacências	Matriz de Adjacências
Inserção de vértice		
inserção de arestas		
Remoção de vértice		
Remoção de arestas		
Teste se $\{u, v\} \in E$		
Percorrer vizinhos		
Grau de um vértice		

Buscas em Grafos

3.1 Busca em Largura

Dado um grafo G = (V, E) e uma origem s, a **busca em largura** (Breadth-First Search - BFS) explora as arestas/arcos de G a partir de s para cada vértice que pode ser atingido a partir de s. É uma exploração por nível. O procedimento descobre as distâncias (número de arestas/arcos) entre s e os demais vértices atingíveis de G. Pode ser aplicado para grafos orientados e não-orientados (CORMEN et al., 2012).

O algoritmo pode produzir uma árvore de busca em largur com raiz *s*. Nesta árvore, o caminho de *s* até qualquer outro vértice é um caminho mínimo em número de arestas/arcos (CORMEN et al., 2012).

O Algoritmo 3 descreve as operações realizadas em uma busca em largura. Nele, criam-se três estruturas de dados que serão utilizados para armazenar os resultados da busca. O arranjo C_v é utilizado para determinar se um vértice $v \in V$ foi visitado ou não; D_v determina a distância percorrida até encontrar o vértice $v \in V$; e A_v determina o vértice antecessor ao $v \in V$ em uma busca em largura a partir de s (CORMEN et al., 2012).

Algoritmo 3: Busca em largura.

```
Input : um grafo G = (V, E), vértice de origem s \in V
    // configurando todos os vértices
 1 C_v \leftarrow \mathbf{false} \ \forall v \in V
 2 D_v \leftarrow \infty \ \forall v \in V
 3 A_v ← null \forall v \in V
    // configurando o vértice de origem
 4 C_s \leftarrow \text{true}
 5 D_s \leftarrow 0
    // preparando fila de visitas
 6 Q \leftarrow Fila()
 7 Q.enqueue(s)
    // propagação das visitas
 8 while Q.empty() = false do
         u \leftarrow Q.dequeue()
 9
         foreach v \in N(u) do
10
              if C_v = false then
11
                   C_{\nu} \leftarrow \mathbf{true}
12
                   D_v \leftarrow D_u + 1
13
                   A_v \leftarrow u
14
                   Q.enqueue(v)
15
16 return (D, A)
```

3.1.1 Complexidade da Busca em Largura

O número de operações de enfileiramento e desenfileiramento é limitado a |V| vezes, pois visita-se no máximo |V| vértices. Como as operações de enfileirar e desenfileirar podem ser realizadas em tempo $\Theta(1)$, então para realizar estas operações demanda-se tempo de O(|V|). Deve-se considerar ainda, que muitas arestas/arcos incidem em vértices já visitados, então inclui-se na complexidade de uma BFS a varredura de todas as adjacências, que demandaria $\Theta(|E|)$. Diz-se então, que a complexidade computacional da BFS é O(|V|+|E|).

3.1.2 Propriedades e Provas

3.1.2.1 Caminhos Mínimos

A busca em largura garante a descoberta dos caminhos mínimos em um grafo nãoponderados G = (V, E) de um vértice de origem $s \in V$ para todos os demais atingíveis. 3.1. Busca em Largura 21

Para demonstrar isso, Cormen et al. (2012) examina algumas propriedades importantes a seguir. Considere a distância de um caminho mínimo $\delta(s, v)$ de s a v como o número mínimo de arestas/arcos necessários para percorrer esse caminho.

Lema 3.1.1. Seja G = (V, E) um grafo orientado ou não-orientado e seja $s \in V$ um vértice arbitrário, então $\delta(s, v) \le \delta(s, u) + 1$ para qualquer aresta/arco $(u, v) \in E$.

Prova: Se u pode ser atingido a partir de s, então o mesmo ocorre com v. Desse modo, o caminho mínimo de s para v não pode ser mais longo do que o caminho de s para u seguido pela aresta/arco (u,v) e a desigualdade vale. Se u não pode ser alcançado por s, então $\delta(s,u)=\infty$, e a desigualdade é válida.

Lema 3.1.2. Seja G = (V, E) um grafo orientado ou não-orientado e suponha que G tenha sido submetido ao algoritmo BFS (Algoritmo 3) partindo de um dado vértice de origem $s \in V$. Ao parar, o algoritmo BFS satisfará $D_v \ge \delta(s, v) \forall v \in V$.

Prova: Utiliza-se a indução em relação ao número de operações de enfileiramento (*enqueue*). A hipótese indutiva é $D_v \ge \delta(s, v) \forall v \in V$.

A base da indução é a situação imediatamente após s ser enfileirado na linha 7 do Algoritmo 3. A hipótese indutiva se mantém válida nesse momento porque $D_s=0=\delta(s,s)$ e $D_v=\infty \geq \delta(s,v) \, \forall \, v \in V \setminus \{s\}.$

Para o passo da indução, considere um vértice v não-visitado ($C_v = \mathbf{false}$) que é descoberto depois do último desempinhamento. Consideramos que o vértice desempunhado é $u \in V$. A hipótese da indução implica que $D_u \geq \delta(s, u)$. Pela atribuição da linha 13 e pelo Lema 3.1.1, obtem-se

$$D_v = D_u + 1 \ge \delta(s, u) + 1 \ge \delta(s, v).$$
 (3.1)

Então, o vértice v é enfileirado e nunca será enfileirado novamente porque ele também é marcado como visitado e as operações entre as linhas 12 e 15 são apenas executadas para vértices não-visitados. Desse modo, o valor de D_v nunca muda novamente e a hipótese de indução é mantida.

Lema 3.1.3. Suponha que durante a execução do algoritmo de busca em largura (Algoritmo 3) em um grafo G = (V, E), a fila Q contenha os vértices $(v_1, v_2, ..., v_r)$, onde v_1 é o início da fila e v_r é o final da fila. Então, $D_{v_r} \le D_{v_1} + 1$ e $D_{v_i} \le D_{v_{i+1}}$ para todo $i \in \{1, 2, ..., r-1\}$.

Prova: A prova é realizada por indução relacionada ao número de operações de fila.

Para a base da indução, imediatamente antes do laço de repetição (antes da linha 8), têm-se apenas o vértice *s* na fila. O lema se mantém nessa condição.

Para o passo da indução, deve-se provar que o lema se mantém para depois do desenfileiramento quanto do enfileiramento de um vértice. Se o início v_1 é desenfileirado, v_2 torna-se o início. Pela hipótese de indução, $D_{v_1} \le D_{v_2}$. Então $D_{v_r} \le D_{v_1} + 1 \le D_{v_2} + 1$. Assim, o lema prossegue com v_2 no início.

Quando enfileira-se um vértice v (linha 15), ele se torna v_{r+1} . Nesse momento, já se removeu da fila o vértice u cujo as adjacências estão sendo analisadas, e pela hipótese de indução, o novo início v_1 deve ter $D_{v_1} \ge D_u$. Assim, $D_{v_{i+1}} = D_v = D_u + 1 \le D_{v_1} + 1$. Pela hipótese indutiva, têm-se $D_{v_r} \le D_u + 1$, portanto $D_{v_r} \le D_u + 1 = D_v = D_{v_{i+1}}$ e o lema se mantém quando um vértice é enfileirado.

Corolário 3.1.4. Suponha que os vértices v_i e v_j sejam enfileirados durante a execução do algoritmo de busca em largura (Algoritmo 3) e que v_i seja enfileirado antes de v_j . Então, $D_{v_i} \leq D_{v_j}$ no momento que v_j é enfileirado.

Prova: Imediata pelo Lema 3.1.3 e pela propriedade de que cada vértice recebe um valor D finito no máximo uma vez durante a execução do algoritmo.

Teorema 3.1.5. Seja G = (V, E) um grafo orientado ou não-orientado, e suponha que o algoritmo de busca em largura (Algoritmo 3) seja executado em G partindo de um dado vértice $s \in V$. Então, durante sua execução, o algoritmo descobre todo o vértice $v \in V$ atingível por s. Ao findar sua execução, o algoritmo retornará a distância mínima entre s e $v \in V$, então $D_v = \delta(s, v) \forall v \in V$.

3.1. Busca em Largura 23

Prova: Por contradição, suponha que algum vértice receba um valor d não igual à distância de seu caminho mínimo. Seja v um vértice com $\delta(s,v)$ mínimo que recebe tal valor d incorreto. O vértice v não poderia ser s, pois o algoritmo define $D_s = 0$, o que estaria correto. Então deve-se encontrar um outro $v \neq s$. Pelo Lema 3.1.2, $D_v \geq \delta(s,v)$ e portanto, temos $D_v > \delta(s,v)$. O vértice v deve poder ser visitado a partir de s, se não puder, $\delta(s,v) = \infty \geq D_v$. Seja u o vértice imediatamente anterior a v em um caminho mínimo de s a v, de modo que $\delta(s,v) = \delta(s,u) + 1$. Como $\delta(s,u) < \delta(s,v)$, e em razão de selecionar-se v, têm-se $D_u = \delta(s,u)$. Reunindo essas propriedades, têm-se

$$D_{\nu} > \delta(s, \nu) = \delta(s, \mu) + 1 = D_{\mu} + 1.$$
 (3.2)

Considere o momento que o algoritmo opta por desenfileirar o vértice u de Q. Nesse momento, o vértice v pode ter sido não-visitado, visitado e está na fila, ou visitado e já foi removido da fila. O restante da prova trabalha em cada um desses casos:

- Se v é não-visitado (C_v = **false**), então a operação na linha 13 define D_v = D_u + 1, contradizendo o que é dito na Equação 3.2.
- Se v já foi visitado ($C_v = \mathbf{true}$) e foi removido da fila, pelo Corolário 3.1.4, têm-se $D_v \le D_u$ que também contradiz o que é dito na Equação 3.2.
- Se v já foi visitado e permanece na fila, quando v fora enfileirado w era o vértice antecessor imediato no caminho até v, logo $D_v = D_w + 1$. Considere também que w já foi desenfileirado. Porém, pelo Corolário 3.1.4, $D_w \le D_u$, então, temos $D_v = D_w + 1 \le D_u + 1$, contradizendo a Equação 3.2.

3.1.2.2 Árvores em Largura

O algoritmo de busca em largura (Algoritmo 3) criar uma árvore de busca em largura à medida que efetua busca no grafo G = (V, E). Também chamada de "subgrafo dos

predecessores", uma árvore de busca em lagura pode ser definida como $G_{\pi} = (V_{\pi}, E_{\pi})$, na qual $V_{\pi} = \{v \in V : A_{v} \neq \mathbf{null}\} \cup \{s\}$ e $E_{\pi} = \{(A_{v}, \pi, v) : v \in V_{\pi} \setminus \{s\}\}$.

3.2 Busca em Profundidade

A busca em profundidade (Depth-First Search - DFS) realiza a visita a vértices cada vez mais profundos/distantes de um vértice de origem *s* até que todos os vértices sejam visitados. Parte-se a busca do vértice mais recentemente descoberto do qual ainda saem arestas inexploradas. Depois que todas as arestas foram visitadas no mesmo caminho, a busca retorna pelo mesmo caminho para passar por arestas inexploradas. Quando não houver mais arestas inexploradas a busca em profundidade pára (CORMEN et al., 2012).

O Algoritmo 4 apresenta um pseudo-código para a busca em profundidade. Note que no lugar de usar uma fila, como na busca em largura (vide Algoritmo 3, utiliza-se uma pilha. Os arranjos C_v , T_v , e $A_v \, \forall \, v \in V$ são respectivamente o arranjo de marcação de visitados, do tempo de visita e do vértice antecessor à visita.

Cormen et al. (2012) afirma que é mais comum realizar a busca em profundidade de várias fontes. Desse modo, seu livro reporta um algoritmo que sempre que um subgrafo conexo é completamente buscado, parte-se de um outro vértice de origem não-visitado ainda (um vértice não atingível por *s*).

3.2.1 Complexidade da Busca em Profundidade

Da mesma maneira que a complexidade da busca em largura, a busca em profundidade possui complexidade O(|V| + |E|). As operações da pilha resultariam tempo O(|V|). Muitos arestas/arcos incidem em vértices já visitados, então inclui-se na complexidade de uma DFS a varredura de todas as adjacências, que demandaria $\Theta(|E|)$.

Algoritmo 4: Busca em profundidade.

```
Input : um grafo G = (V, E), vértice de origem s \in V
   // configurando todos os vértices
 1 C_v \leftarrow \mathbf{false} \ \forall v \in V
 2 T_v \leftarrow \infty \ \forall v \in V
 a A_v \leftarrow \mathbf{null} \ \forall v \in V
   // configurando o vértice de origem
 4 C_s \leftarrow \mathbf{true}
 5 tempo \leftarrow 0
   // preparando fila de visitas
 6 S \leftarrow Pilha()
 7 S.push(s)
   // propagação das visitas
8 while S.empty() = false do
         tempo \leftarrow tempo + 1
         u \leftarrow S.pop()
10
         T_u \leftarrow \text{tempo}
11
         foreach v \in N(u) do
12
              if C_v = false then
13
                   C_v \leftarrow \mathbf{true}
14
                   A_v \leftarrow u
15
                    S.push(v)
16
17 return (C, T, A)
```

Caminhos e Ciclos

Este capítulo tem o objetivo de introduzir o conceito de caminhos e ciclos, e seus principais problemas. Dois problemas clássicos serão definidos e algoritmos para os mesmos, apresentados.

Antes de iniciar a abordar os conteúdos deste capítulo, é importante entender o que é um caminho e um ciclo, para estabelecer suas diferenças no contexto de grafos. Um caminho é uma sequência de vértices $\langle v_1, v_2, \dots v_n \rangle$ conectados por uma aresta ou arco. Gross e Yellen (2006) definem um caminho como um grafo com dois vértices com grau 1 e os demais vértices com grau 2, formando uma estrutura linear. Um ciclo (ou circuito) é uma cadeia fechada de vértices $\langle v_1, v_2, \dots, v_n, v_1 \rangle$ onde cada par consecutivo é conectado por uma aresta ou arco. É como um caminho com o fim e o início conectados.

4.1 Caminhos e Ciclos Eulerianos

Dado um grafo orientado ou não orientado G=(V,E), um caminho Euleriano é uma "trilha" ou seja, uma sequência de arestas/arcos onde cada aresta/arco é visitada(o) uma

¹ Em inglês, chamado de *path*.

² Em inglês, chamado de *cycle* ou *circuit*.

única vez. O ciclo Euleriano é semelhante ao caminho, com exceção de que começa e termina na mesma aresta/arco. Um grafo é dito Euleriano se possui um ciclo Euleriano.

Os problemas de caminho e ciclo Euleriano surgiram com o conhecido problema das Sete Pontes de Königsberg por Euler em 1736. O problema consistia em atravessar as todas as sete pontes da cidade de Königsberg da Prussia (hoje Kaliningrado na Rússia) sem repetí-las.

Observando um mapa antigo das sete pontes, você consegue determinar o caminho Euleriano? Figura 5 – Mapa das sete pontes de Königsberg na época de in Euler.

4.1.1 Algoritmo de Hierholzer

return (true, Ciclo)

11

O algoritmo de Hierholzer (Algoritmo 5) foi desenvolvido em 1873. Ele identifica o ciclo Euleriano em tempo O(|E|).

```
Algoritmo 5: Algoritmo de Hierholzer.
   Input : um grafo G = (V, E)
1 foreach e \in E do
       C_e \leftarrow \mathbf{false}
3 v ← selecionar um v \in V arbitrariamente
   // "buscarSubcicloEuleriano" invoca o Algoritmo 6
4 (r, Ciclo) \leftarrow buscarSubcicloEuleriano(G, v, C)
5 if r = false then
       return (false,null)
7 else
       if \exists e \in E : C_e = false then
8
           return (false,null)
9
       else
10
```

Algoritmo 6: Algoritmo de Auxiliar "buscar Subciclo Euleriano".

```
Input : um grafo G = (V, E), um vértice v \in V, um vetor C
 1 Ciclo \leftarrow ()
2 t \leftarrow v
з repeat
         if \nexists \{v, u\} \in E : C_e = false then
               return (false,null)
 5
 6
         else
               \{v, u\} \leftarrow selecionar uma aresta e \in E tal que C_e = false
 7
 8
               C_{\{v,u\}} \leftarrow \mathbf{true}
 9
10 until v \neq t
11 foreach x \in \{u \in Ciclo : \exists \{u, w\} \in \{e \in E : C_e = false\}\}\ do
         (r,Ciclo') \leftarrow buscarSubcicloEuleriano(G,v,C)
12
         if r = false then
13
               return (false,null)
14
         Assumindo que Ciclo = \langle v_1, v_2, ..., x, ..., v_1 \rangle e Ciclo' = \langle x, u_1, u_2, ..., u_k, x \rangle, alterar
15
           Ciclo para Ciclo = \langle v_1, v_2, \dots, \underline{x}, u_1, u_2, \dots, u_k, x, \dots, v_1 \rangle, ou seja, inserir o Ciclo'
           no lugar da posição de x em Ciclo.
```

16 return (true, Ciclo)

Desafio

Explique porque a complexidade de Algoritmo de Hierholzer é de O(|E|).

Teorema 4.1.1. Um grafo não-orientado G = (V, E) é (ou possui um ciclo) Euleriano se e somente se G é conectado e cada vértice tem um grau par.

Prova: Para o grafo conectado G, para todo $m \ge 0$, considere S(m) ser a hipótese de que se G têm m arestas e todos os graus dos vértices forem pares, então G é Euleriano.

Vamos a prova por indução.

A base da indução é o S(0). Nessa hipótese, G não tem arestas, então para todo $v \in V$, $d_v = 0$. Como zero é par G é trivialmente Euleriano.

O passo da indução implica que as hipoteses $S(0) \land S(1) \land ... \land S(k-1) \implies S(k)$. Suponha um $k \ge 1$ e assuma que $S(1) \land ... \land S(k+1)$ é verdade. Precisa-se provar que S(k) é verdade. Suponha que G tenha k arestas, é conectado e possui somente vértices com valor de grau par.

- Desde que G é um grafo conectado e possui vértices com grau par, o menor grau
 é 2. Então esse grafo G precisa ter um ciclo C.
- Suponha um novo grafo H gerado a partir de G sem as arestas que estão no ciclo C. Note que H pode estar desconectado. Pode-se dizer que H é a união dos componentes conectados $H_1, H_2, \dots H_t$. O grau dos vértices cada H_i precisa ser par.
- Aplicando a hipótese de indução a cada H_i , que é $S(|E(H_1)|), ..., S(|E(H_t)|)$, cada H_i terá um ciclo Euleriano C_i .
- Pode-se criar um circuito Euleriano para G por dividir o ciclo C em ciclos C_i.
 Primeiro, comece em qualquer vértice em C_i e percorra até atingir outro H_i.
 Então, percorra C_i e volte ao C até atingir o próximo H_i.

Finalmente, G precisa ser Euleriano. Isso completa o passo da indução como $S(0) \land S(1) \land ... \land S(k-1) \implies S(k)$. Por esse princípio, para $m \ge 0$, S(m) é verdadeiro.

4.2 Caminhos e Ciclos Hamiltonianos

Ciclos ou caminhos Hamiltonianos são aqueles que percorrem todos os vértices de um grafo apenas uma vez. Mais especificamente para um ciclo Hamiltoniano, o início e o fim terminam no mesmo vértice. O nome Hamiltoniano vem de William Rowan Hamilton, o inventor de um jogo que desafia a buscar um ciclo pelas arestas de dodecaedro (figura tridimensional de 12 faces).

Um grafo é dito Hamiltoniano se possui um ciclo Hamiltoniano.

Há |V|! diferentes sequências de vértices que podem ser caminhos Hamiltonianos, então, um algoritmo de força-bruta demanda muito tempo computacional. O problema de decisão para encontrar um caminho ou ciclo Hamiltoniano é considerado NP-Completo.

4.2.1 Caixeiro Viajante

Dado um grafo completo³ G = (V, E, w) no qual V é o conjunto de vértices, E é o conjunto de arestas e $w : E \to \mathbb{R}^+$ é a função dos pesos (ou custo ou distâncias), busca-se pelo ciclo Hamiltoniano de menor soma total de peso (menor custo ou distância).

Um dos algoritmos mais eficientes para resolvê-lo é o de programação dinâmica Held-Karp (ou Bellman–Held–Karp, no Algoritmo 7). No entanto, o mesmo demanda tempo computacional de $O(2^{|V|}|V|^2)$.

Algoritmo 7: Algoritmo de Bellman-Held-Karp.

```
Input :um grafo G = (V, E = V \times V, w)

1 for k \leftarrow 2 to |V| do

2 C(\{k\}, k) \leftarrow w((1, k))

3 for s \leftarrow 2 to |V| - 1 do

4 | foreach S \in \{x \in \{2, 3, ..., |V|\} : |x| = s\} do

5 | foreach v \in S do

6 | C(S, v) \leftarrow \min_{u \neq v, u \in S} \{C(S \setminus \{v\}, u) + w((u, v))\}

7 return \min_{v \in V \setminus \{1\}} \{C(\{2, 3, ..., |V|\}, v) + w((v, 1))\}
```

Desafio

```
Execute o Algoritmo 7 sobre o grafo G = (V = \{1, 2, 3, 4\}, E = V \times V, w), no qual w(\{1, 2\}) \to 10, w(\{1, 3\}) \to 15, w(\{1, 4\}) \to 20, w(\{2, 3\}) \to 35, w(\{2, 4\}) \to 25 e w(\{3, 4\}) \to 30.
```

A resposta deve ser 80.

Em um grafo completo, o conjunto de arestas é definido por $E = V \times V$.

Caminhos Mínimos

Em um problema de Caminho Mínimo, há um grafo ponderado orientado ou não G = (V, E, w), onde V é o conjunto de vértices, E é o conjunto de arcos ou arestas, e $w : E \to \mathbb{R}$ é a função que representa o peso entre dois vértices (distância ou custo das arestas). Para um caminho $p = \langle v_1, v_2, ..., v_k \rangle$ seu peso é dado por $w(p) = \sum_{i=2}^k w(v_{i-1}, v_i)$ (CORMEN et al., 2012).

O peso de um caminho mínimo de u a v é dado por

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \overset{p}{\leadsto} v\}, & \text{se há um caminho de } u \text{ para } v, \\ \infty, & \text{caso contrário.} \end{cases}$$
 (5.1)

Há algumas variantes para os problemas de caminho mínimo (CORMEN et al., 2012):

- Problema de caminhos mínimos de fonte única: dado um grafo ponderado G = (V, E, w) e um vértice de origem $s \in V$, encontrar o caminho de custo $\delta(s, v)$ para todo o $v \in V$;
- Problema de caminhos mínimos para um destino:dado um grafo ponderado G=(V,E,w), um vértice de destino $t\in V$, determinar o caminho de custo $\delta(v,t)$ para todo o $v\in V$;

• Problema de caminhos mínimos para um par: dado um grafo ponderado G = (V, E, w), um vértice de origem $s \in V$ e um vértice de destino t, determinar o caminho de custo $\delta(s, t)$;

• Problema de caminhos mínimos para todos os pares: dado um grafo ponderado G = (V, E, w), encontrar o caminho de curso $\delta(u, v)$ para todo o par $u, v \in V$.

Pesos Negativos

Os problemas de caminho mínimo geralmente operam sem erros em grafos com pesos negativos. Uma exceção a isso é quando há um ciclo com peso negativo. Nesse caso, nunca haverá um peso definido, pois é sempre possível diminuir o peso total do caminho percorrendo o ciclo mais uma vez.

Inicialização e Relaxamento

Os Algoritmos 8 e 9 são utilizados em diversos algoritmos de resolução de caminhos mínimos. A estrutura de dados D é referente a estimativa de caminho que será obtida ao longo da execução de um caminho mínimo para cada vértice $v \in V$. A estrutura de dados A é utilizada para identificar o vértice anterior em cada caminho mínimo para

um vértice $v \in V$.

Algoritmo 8: Inicialização de G.

Input : um grafo G = (V, E, w), um vértice de origem $s \in V$

// inicialização

- 1 $D_v \leftarrow \infty \ \forall v \in V$
- 2 $A_v \leftarrow \mathbf{null} \ \forall v \in V$
- 3 D_s ← 0
- 4 return (D, A)

Algoritmo 9: Relaxamento de v.

Input : um grafo $G = (V, E, w)^a$, $(u, v) \in E$, A, D

1 **if** $D_v > D_u + w((u, v))$ **then**

$$D_v \leftarrow D_u + w((u,v))$$

 $\{u, v\} \in E$, ou seja, deve-se realizar o relaxamento nos dois sentidos.

5.1 Propriedades de Caminhos Mínimos

5.1.1 Propriedade de subcaminhos de caminhos mínimos o são

Lema 5.1.1. Dado um grafo ponderado G = (V, E, w), um caminho mínimo entre v_1 e v_k $p = \langle v_1, v_2, ..., v_k \rangle$, suponha que para quaisquer i e j, $1 \le i \le j \le k$. Todo o subcaminho de p chamado de $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$ é um caminho mínimo de v_i a v_j .

Prova: Se o caminho p for decomposto em $v_1 \overset{p_{1i}}{\leadsto} v_i \overset{p_{ij}}{\leadsto} v_j \overset{p_{jk}}{\leadsto} v_k$, têm-se $w(p) = w(p_{0j}) + w(p_{ij}) + w(p_{jk})$. Suponha que exista um caminho p'_{ij} de v_i a v_j com peso $w(p'_{ij}) < w(p_{ij})$. Então, $v_1 \overset{p_{1i}}{\leadsto} v_i \overset{p'_{ij}}{\leadsto} v_j \overset{p_{jk}}{\leadsto} v_k$ é um caminho de v_1 a v_k cujo o peso $w(p) = w(p_{0j}) + w(p'_{ij}) + w(p_{jk})$ é menor do que w(p), o que contradiz a hipótese de que p seja um caminho mínimo de v_1 a v_k .

Para o caso de G ser não-dirigido, deve-se realizar o relaxamento em (u, v) e (v, u) para uma aresta

5.1.2 Propriedade de desigualdade triangular

Lema 5.1.2. Seja G = (V, E, w) um grafo ponderado e $s \in V$ um vértice de origem, então para todas as arcos/arestas $(u, v) \in E$ têm-se

$$\delta(s, v) \le \delta(s, u) + w((u, v)). \tag{5.2}$$

Prova: Suponha que p seja um caminho entre s e v. Então, p não tem peso maior do que qualquer outro caminho de s a v. Especificamente, p não possui peso maior que o caminho de s até o vértice u que utiliza a aresta/arco (u, v) para atingir o destino v.

5.1.3 Propriedade de limite superior

Lema 5.1.3. Seja G = (V, E, w) um grafo ponderado dirigido ou não com a função de peso $w : E \to \mathbb{R}$. Seja $s \in V$ o vértice de origem, considera-se também o grafo G inicializado (Algoritmo 8). Então, $D_v \ge \delta(s, v)$ para todo $v \in V$, e esse invariante é mantido para qualquer sequência de etapas de relaxamentos em G (Algoritmo 9). Além disso, tão logo D_v alcance seu limite inferior $\delta(s, v)$, nunca mais se altera.

Prova: Prova-se que o invariante $D_v \ge \delta(s, v)$ para todo o vértice $v \in V$ por indução em relação ao número de etapas de relaxamento.

Para a base da indução, $D_v \ge \delta(s, v)$ é verdadeiro após a inicialização (Algoritmo 8), pois esse procedimento define que $D_v = \infty$ para todo $v \in V \setminus \{s\}$, ou seja, $D_v \ge \delta(s, v)$ mesmo que v seja inatingível em um caminho mínimo a partir de s. Nesse momento $D_s = 0 \ge \delta(s, s)$, observando que $\delta(s, s) = \infty$ caso s participa de um ciclo negativo.

Para o passo da indução, considere o relaxamento de uma aresta/arco (u, v). Pela hipótese de indução, $D_x \ge \delta(s, x)$ para todo o $x \in V$ antes do relaxamento. O único valor

de D que pode mudar é D_{ν} . Se ele mudar, têm-se

$$D_{v} = D_{u} + w((u, v))$$

$$\geq \delta(s, u) + w((u, v)) \text{ (pela hipótese da indução)}$$

$$\geq \delta(s, v) \text{ (pela desigualdade triangular,}$$

$$\text{Lema 5.1.2)}$$
(5.3)

e, portanto o invariante é mantido.

Para demonstrar que D_v não se altera depois que $D_v = \delta(s, v)$, por ter alcaçado seu limite inferior, D_v não pode diminuir porque $D_v \ge \delta(s, v)$ e não pode aumentar porque o relaxamento não aumenta valores de D.

5.1.4 Propriedade de inexistência de caminho

Corolário 5.1.4. Supõe-se que, em um grafo G = (V, E, w) ponderado dirigido ou não, nenhum caminho conecte o vértice de origem $s \in V$ a um vértice $v \in V$. Então, depois que o grafo G é inicializado (Algoritmo 8), temos $D_v = \delta(s, v) = \infty$ e essa desigualdade é mantida como um invariante para qualquer sequência de etapas de relaxamento (Algoritmo 9) nas arestas de G;

Prova: Pela propriedade de limite superior (Lema 5.1.3), têm-se sempre $\infty = \delta(s, v) \le D_v$, portanto $D_v = \infty = \delta(s, v)$.

5.1.5 Propriedade de convergência

Lema 5.1.5. Seja G = (V, E, w) um grafo ponderado dirigido ou não, $s \in V$ um vértice de origem $e \ s \leadsto u \to v$ um caminho mínimo de $s \ a \ v \ em \ G$. Suponha que $G \ s$ eja inicializado (Algoritmo 8) $e \ d$ epois uma sequência de etapas de relaxamento (Algoritmo 9) $e \ e$ executado para todas as arestas/arcos de $G \ Se \ D_u = \delta(s, u)$ em qualquer tempo anterior da chamada, então $D_u = \delta(s, u)$ igual em toda a chamada.

Prova: Pela propriedade do limite superior (Lema 5.1.3), se $D_u = \delta(s, u)$ em algum momento antes do relacamento da aresta/arco (u, v), então essa igualdade se mantém válida a partir de sua definição. Em particular, após o relaxamento (Algoritmo 9) da aresta/arco (u, v), têm-se:

$$D_v \le D_u + w((u, v))$$
 pelo Corolário 5.1.4)
= $\delta(s, u) + w((u, v))$ (5.4)
= $\delta(s, v)$ pelo Lema 5.1.1.)

Pela propriedade do limite superior (Lema 5.1.3) $D_v \ge \delta(s, v)$, da qual concluímos que $D_v = \delta(s, v)$, e essa igualdade é mantida daí em diante.

5.1.6 Propriedade de relaxamento de caminho

Lema 5.1.6. Seja G = (V, E, w) um grafo ponderado dirigido ou não $e s \in V$ um vértice de origem. Considere qualquer caminho mínimo $p = \langle v_1, v_2, \dots v_k \rangle$ de $s = v_1$ a v_k . Se G é inicializado (Algoritmo 8) e depois ocorre uma sequência de etapas de relaxamento (Algoritmo 9) que inclui, pela ordem, relaxar as arestas/arcos $(v_1, v_2), (v_2, v_3), \dots (v_{k-1}, v_k),$ então $D_k = \delta(s, v_k)$ depois desses relaxamentos e todas as vezes daí em diante. Essa propriedade se mantém válida, não importa quais outros relaxamentos forem realizados.

Prova: Esta prova é realizada por indução, na qual têm-se $D_{v_i} = \delta(s, v_i)$ depois que o i-ésimo aresta/arco do caminho p é relaxado.

Para a base, i=1 antes que quaisquer arestas/arcos em p sejam relaxados. Têm-se $D_{v_1}=D_s=0=\delta(s,s)$ pela inicialização. Pela propriedade do limite superior (Lema 5.1.3) o valor D_s nunca se altera depois da inicialização.

Pelo passo da indução, supõe-se que $v_{i-1} = \delta(s, v_{i-1})$ e examina-se o que acontece quando se relaxa a aresta (v_{i-1}, v_i) . Pela propriedade de convergência (Lema 5.1.5), após o relaxamento dessa aresta, têm-se $D_v = \delta(s, v_i)$ e essa igualdade é mantida todas as vezes depois disso. \blacksquare

5.1.7 Propriedade de relaxamento e árvores de caminho mínimo

Lema 5.1.7. Seja G = (V, E, w) um grafo ponderado dirigido ou não e si nV um vértice de origem, suponha que G não possua um ciclo de peso negativo que possa ser atingido por s. Então, depois que o grafo G é inicializado (Algoritmo 8), o subgrafo dos predecessores $G_{\pi} = (V_{\pi}, E_{\pi})$ forma uma árvore enraizada em s, e qualquer sequência de etapas de relaxamento em arestas em G (Algoritmo 9) mantém essa propriedade invariante.

Prova: Inicialmentem o único vértice em G_{π} é o vértice s, e o lema é trivialmente verdade. Considere um subgrafo dos predecessores G_{π} que surja depois de uma sequência de etapas de relavamento.

Primeiro, prova-se que o subgrafo é acíclico. Suponha por contradição que alguma etapa de relaxamento cria um ciclo no grafo G_{π} . Seja $c = \langle v_1, v_2, ..., v_k \rangle$ o ciclo onde $v_1 = v_k$. Então, $A_{v_i} = v_{i-1}$ para i = 1, 2, ..., k e, sem prejuízo de generalidade, pode-se supor que o relaxamento de arestas (v_{k-1}, v_k) criou o ciclo em G_{π} . Afirma-se que todos os vértices do ciclo c podem ser atingidos por s, pois cada um tem um predecessor não nulo (**null**). Portanto, uma estimativa de caminho mínimo fora atribuída a cada vértice em c quando um valor atribuídoo à A_v não foi igual a **null**. Pela propriedade do limite superior (Lema 5.1.3), cada vértice no ciclo c tem um peso de caminho mínimo infinito, o que implica que ele pode ser atingido por s.

Examina-se as estimativas de caminhos mínimos em c imediatamente antes de chamar o procedimento de relaxamento (Algoritmo 9) passando os parâmetros G, (v_{k-1}, v_k) , A, D e mostra-se que c é um ciclo de peso negativo, contradizendo a hipótese que G não possui um ciclo negativo que possa ser atingido por s. Imediatamente antes da chamada, têm0se $A_{v_i} = v_{i-1}$ para i = 2, 3, ..., k-1. Assim, para i = 2, 3, ..., k-1, a última atualização para D_{v_i} foi realizada pela atribuição $D_{v_i} \leftarrow D_{v_{i-1}} + w((v_{i-1}, v_i))$. Se $D_{v_{i-1}}$ mudou desde então, ela diminuiu. Por essa razão, imediatamente antes da chamada de relaxamento, têm-se

$$D_{v_i} \ge D_{v_{i-1}} + w((v_{i-1}, v_i)) \forall i \in \{2, 3, \dots, k-1\}$$
(5.5)

Como A_k é alterado pela chamada, imediatamente antes têm-se também a desigualdade estrita

$$D_{\nu_k} > D_{\nu_{k-1}} + w((\nu_{k-1}, \nu_k)). \tag{5.6}$$

Somando essa desigualdade estrita com as k-1 desigualdades (Equação (5.5)), obtêm-se a soma das estimativas dos caminhos mínimos em torno do ciclo c:

$$\sum_{i=2}^{k} D_{v_i} > \sum_{i=2}^{k} \left(D_{v_{i-1}} + w((v_{i-1}, v_i)) \right) = \sum_{i=2}^{k} D_{v_{i-1}} + \sum_{i=2}^{k} w((v_{i-1}, v_i)).$$
 (5.7)

Mas,

$$\sum_{i=2}^{k} D_{\nu_i} = \sum_{i=2}^{k} D_{\nu_{i-1}},\tag{5.8}$$

já que cada vértice no ciclo \boldsymbol{c} aparece exatamente uma vez em cada somatório. Esa desigualdade implica

$$0 > \sum_{i=2}^{k} w((v_{i-1}, v_i)). \tag{5.9}$$

Assim a soma dos pesos no ciclo c é negativa, o que dá acontradição desejada.

Agora, provamos que G_{π} é acíclico. Para mostrar que ele forma uma árvore enraizada em s, basta provar que há um único caminho simples de s a v em G_{π} para cada $v \in V_{\pi}$.

Primeiro, deve-se mostrar que existe um caminho de s a cada vértice em $v \in V_{\pi}$. Os vértices em V_{π} são os que têm os valores A não **null**, e o vértice s. Aqui a ideia é provar a indução que existe em um caminho de s para todos os vértices em V_{π} .

Para concluir a prova do lema, deve-se mostrar agora que, para qualquer vértice $v \in V_{\pi}$, o grafo G_{π} contém no máximo um caminho simples de s a v. Suponha o contrário: que existam dois caminhos simples de s a algum outro vértice $p_1 \langle s \leadsto u \leadsto x \to z \leadsto v$, e $p_2 \langle s \leadsto u \leadsto y \to z \leadsto v$ onde $x \neq y$. Mas então $A_z = x$ e $A_z = y$ o que implica uma contradição, pois x = y. Conclui-se que G_{π} contém um caminho simples único de s a v e G_{π} forma uma árvore enraizada em s.

5.1.8 Propriedade de subgrafo dos predecessores

Lema 5.1.8. Seja G = (V, E, w) um grafo ponderado orientado ou não e um vértice de origem $s \in V$. Suponha que G não possua um ciclo de peso negativo que possa ser atingido

por s. Chama-se de inicialização o procedimento do inicializado Algoritmo 8 e depois executar qualquer sequência de etapas de relaxamento de arestas de G (Algoritmo 9) que produza $D_v = \delta(s, v)$ para todo $v \in V$. Então, o subgrafo predecessor $G_\pi(V_\pi, E_\pi)$ é uma árvore de caminhos mínimos com uma raiz em s.

Prova: Para ilustrar a primeira propriedade, deve-se mostrar V_{π} é o conjunto de vértices atingidos por s. Por definição, um peso de caminho mínimo $\delta(s,v)$ é finito sse v pode ser alcançado por s. Isso implica que os vértices atingidos por s possuem peso de caminho finito. Porém, um vértice $v \in V \setminus \{s\}$ recebeu um valor finito para D_v sse $A_v \neq \mathbf{null}$. Assim, os vértices em V_{π} são exatamente aqueles que podem ser alcançados por s.

O Lema 5.1.7 define que após a inicialização, G_{π} possui raiz em s e assim permanece mesmo depois de sucessivas etapas de relaxamento.

Agora, prova-se que para todo vértice em $v \in V_{\pi}$, o único caminho simples em G_{π} de s a v é o caminho mínimo de s a v em G. Seja $p = \langle v_1, v_2, \dots v_k \rangle$, onde $v_1 = s$ e $v_k = v$. Para $i = 2, 3, \dots, k$, temos $D_v = \delta(s, v_i)$ e também $D_v \geq D_{v_{i-1}} + w \big((v_{i-1}, v_i) \big)$, do que concluímos $w \big((v_{i-1}, v_i) \big) \leq \delta(s, v_i) - \delta(s, v_{i-1})$. A soma dos pesos ao longo de p produz

$$w(p) = \sum_{i=2}^{k} w((v_{i-1}, v_i))$$

$$\leq \sum_{i=2}^{k} \delta(s, v_i) - \delta(s, v_{i-1})$$

$$= \delta(s, v_k) - \delta(s, v_0)$$

$$= \delta(s, v_k)$$

$$(5.10)$$

Assim $w(p) \le \delta(s, v_k)$. Visto que $\delta(s, v_k)$ é um limite inferior para o peso de qualquer caminho de s a v_k , conclui-se que $w(p) = \delta(s, v_k)$. Deste modo, p é um caminho mínimo de s a $v = v_k$.

5.2 Bellman-Ford

O algoritmo de Bellman-Ford resolve o problema de caminhos minimos de uma única fonte. Um pseudo-código está representado no Algoritmo 10. Como entrada para o algoritmo deve-se determinar um grafo ponderado orientado ou não G = (V, E, w), onde V é o conjunto de vértices, E o conjunto de arestas/arcos e $w: E \to \mathbb{R}$, e um vértice de origem $s \in V$. O algoritmo devolve um valor booleano **false** quando não foi encontrado um ciclo de peso negativo em G. Caso contrário, retorna **true**, o antecessor de cada vértice v no caminho mínimo em A_v e a peso $\delta(s, v)$ em D_v .

O algoritmo vai progressivamente diminuindo a estimativa de peso do caminho de s a $v \in V$ até que se obtenha o caminho mínimo e $D_v = \delta(s, v)$ para todo $v \in V$.

```
Algoritmo 10: Algoritmo de Bellman-Ford.
```

```
Input : um grafo G = (V, E, w), um vértice de origem s \in V
   // inicialização
 1 D_v \leftarrow \infty \ \forall v \in V
 2 A_v \leftarrow \mathbf{null} \ \forall v \in V
 3 D_s ← 0
 4 for i \leftarrow 1 to |V| - 1 do
         foreach (u, v) \in E do
              // relaxamento
              if D_v > D_u + w((u, v)) then
                   D_v \leftarrow D_u + w((u, v))
A_v \leftarrow u
 9 foreach (u, v) \in E do
         if D_v > D_u + w((u, v)) then
10
              return (false,null,null)
11
12 return (true, D, A)
```

5.2. Bellman-Ford 43

5.2.1 Complexidade de Bellman-Ford

Quanto a complexidade computacional em tempo computacional de Bellman-Ford, observando as primeiras instruções, têm-se a inicialização que demanda $\Theta(|V|)$ pois as estruturas são inicializadas para cada vértice. A partir do primeiro conjunto de laços de repetição, há o laço mais externo que repete |V|-1 vezes. Para cada repetição desse laço, passa-se por cada aresta em E, logo esse primeiro conjunto de laços dita (|V|-1)|E| execuções da comparação na linha 6. O último laço de repetição, faz ao máximo |E| verificações da comparação na linha 10. Então, o algoritmo de Bellman-Ford é executado no tempo computacional de O(|V||E|).

5.2.2 Corretude de Bellman-Ford

Lema 5.2.1. Seja G = (V, E, w) um grafo ponderado e um vértice de origem $s \in V$, suponha que G não possua nenhum ciclo de peso negativo que possa ser alcançado por s. Então, depois de executar as |V| - 1 iterações nas linhas 4 a 8 com o algoritmo de Bellman-Ford (Algoritmo 10), têm-se $D_v = \delta(s, v)$ para todo $v \in V$.

Prova: Prova-se o esse lema através da propriedade de relaxamento de caminho (Lema 5.1.6). Considera-se que qualquer vértice v possa ser atingido por s e seja $p = \langle v_1, v_2, ..., v_k \rangle$ um caminho mínimo de s a v, no qual $v_1 = s$ e $v_k = v$. Como caminhos mínimos são simples, p tem no máximo |V|-1 arestas/arcos, sendo $k \le |V|-1$. Cada uma das |V|-1 iterações do laço da linha q relaxa todas as q arestas/arcos. Entre as arestas relaxadas na q-ésima iteração, para q are q and q are q and q are q are q and q are q are q and q are q are

Corolário 5.2.2. Seja G = (V, E, w) um grafo ponderado dirigido ou não e $s \in V$ o vértice de origem, supõe-se que G não tenha nenhum ciclo negativo que possa ser atingido por s. Então, para cada vértice $v \in V$, existe um caminho de s a v sse o algoritmo de Bellman-Ford termina com $D_v < \infty$ quando é executado para G e s.

Prova: Se $v \in V$ pode ser atingido por s, então existe uma aresta/arco (u, v). Então, $\delta(s, v) < \infty$ através da propriedade de convergência (Lema 5.1.5).

Teorema 5.2.3. Considera-se o algoritmo de Bellman-Ford (Algoritmo 10) executado para um grafo G = (V, E, w) e o vértice de origem $s \in V$. Se G não contém nenhum ciclo de custo negativo, que pode ser alcançado de s, então o algoritmo retorna **true**, $D_v = \delta(s, v)$ para todo $v \in V$ e o subgrafo predecessor G_{π} é uma árvore de caminhos mínimos com raiz em s. Se G contém um ciclo de peso negativo que possa ser atingido por s, então o algoritmo retorna **false**.

Prova: Suponha que o grafo G não tenha um ciclo de peso negativo atingível por s. Primeiro, prova-se que $D_v = \delta(s, v)$ para todo $v \in V$. Se o vértice v pode ser atingido por s, então o Lema 5.2.1 prova essa afirmação. Se v não pode ser atingido por s, a prova decorre da propriedade da inexistência de caminho (Corolário 5.1.4). Portanto, a afirmação está provada. A propriedade de subgrafo dos predecessores (Lema 5.1.8) juntamente com essa última afirmação implica que G_π é uma árvore de caminhos mínimos. Agora, usa-se a afirmação para mostrar que Bellman-Ford retorna **true**. No término, têm-se para todas as arestas/arcos (u, v)inE,

$$D_{v} = \delta(s, v)$$

$$\leq \delta(s, u) + w((u, v)) \text{ (pela designal dade triangular - Lema 5.1.2)}$$

$$= D_{u} + w((u, v)),$$
(5.11)

e, assim, nenhum dos testes na linha 10 serão verdadeiros e Bellamn-Ford retorna **false**. Então, ele retorna **true**.

Agora, suponha que o grafo G contenha o ciclo de peso negativo que possa ser atingido por s. Seja esse ciclo $c = \langle v_1, v_2, ..., v_k \rangle$, onde $v_1 = v_k$. Então,

$$\sum_{i=2}^{k} w((v_{i-1}, v_i)) < 0 \tag{5.12}$$

5.3. Dijkstra 45

Considere, por contradição, que o algoritmo de Bellman-Ford retorna **true**. Assim, $D_{v_i} \leq D_{v_{i-1}} + w((v_{i-1}, v_i))$ para i = 2, 3, ..., k. Somando as desigualdades em torno do ciclo c têm-se

$$\sum_{i=2}^{k} D_{v_i} \le \sum_{i=2}^{k} D_{v_{i-1}} + w((v_{i-1}, v_i)) = \sum_{i=2}^{k} D_{v_{i-1}} + \sum_{i=2}^{k} w((v_{i-1}, v_i)).$$
 (5.13)

Como $v_0 = v_k$, cada vértice em c aparece exatamente apenas uma vez em cada um dos somatórios, portanto

$$\sum_{i=2}^{k} D_{\nu_i} = \sum_{i=2}^{k} D_{\nu_{i-1}}$$
 (5.14)

Além disso, pelo Corolário 5.2.2, D_{v_i} é finito para i = 2, 3, ..., k. Assim,

$$0 \le \sum_{i=2}^{k} w((v_{i-1}, v_i)), \tag{5.15}$$

o que contradiz a desigualdade da Equação (5.12). Conclui-se que o algoritmo de Bellman-Ford retorna **true** se o grafo G não contém nenhum ciclo negativo que possa ser alcançado a partir da fonte e **false** caso contrário.

5.3 Dijkstra

O algoritmo de Dijkstra resolve o problema de encontrar um problema de caminho mínimos de fonte única em um grafo G = (V, E, w) ponderados dirigidos ou não. Para esse algoritmo, as arestas/arcos não devem ter pesos negativos. Então, a função de pesos é redefinida como $w: E \to \mathbb{R}^+_*$. A vantagem está em o algoritmo de Dijkstra ser mais eficiente que o do Bellman-Ford se as for utilizada uma estrutura de dados adequada.

O algoritmo repetidamente seleciona o vértice de menor custo estimado até então. Quando esse vértice é selecionado, ele não é mais atualizado e sua distância é propagada para suas adjacências. A estrutura de dados C é utilizada no pseudo-código abaixo para definir se um vértice foi visitado (contém **true**) ou não (contém **false**).

Algoritmo 11: Algoritmo de Dijkstra.

```
Input : um grafo G = (V, E, w : E \to \mathbb{R}^+_*), um vértice de origem s \in V
 1 D_v \leftarrow \infty \ \forall v \in V
 2 A_v \leftarrow \mathbf{null} \ \forall v \in V
 3 C_v ← false \forall v \in V
 4 D_s \leftarrow 0
 5 while \exists v \in V(C_v = false) do
           u \leftarrow \arg\min_{v \in V} \{D_v | C_v = \text{false}\}\
           C_u \leftarrow \mathbf{true}
 7
           foreach v \in N(u) : C_v =  false do
 8
                 if D_v > D_u + w((u, v)) then
                       D_v \leftarrow D_u + w((u, v))A_v \leftarrow u
10
11
12 return (D, A)
```

5.3.1 Complexidade de Dijkstra

Se o algoritmo de Dijkstra manter uma fila de prioridades mínimas para mapear a distância estimada no lugar de D, o algoritmo torna-se mais eficiente que o Bellman-Ford. Seria utilizada uma operação do tipo "EXTRACT-MIN" no lugar da que está na linha 6, para encontrar o vértice com a menor distância. Ao extraí-lo da estrutura de prioridade, não mais seria necessário. Poderia-se gravar sua distância mínima em uma estrutura auxiliar e não mais utilizar a estrutura de visitas C. Ao atualizar as distâncias, poderia-se utilizar a operação de "DECREASE-KEY" da fila de prioridades no lugar da operação da linha 10.

Para essa fila de prioridades, poderia se utilizar um Heap, como o Heap Fibonacci, no qual a implementação das operações supracitadas tem complexidade de tempo computacional $O(\log_2 n)$ para o "DECREASE-KEY" e O(1) para o "EXTRACT-MIN". Para

5.3. Dijkstra 47

essa aplicação, n = |V|. Utilizando essa estrutura de dados, sabe-se que no máximo executa-se |E| operações de "DECREASE-KEY" e |V| operações de "EXTRACT-MIN". Então a complexidade computacional seria $O((|V| + |E|)\log_2|V|)$.

5.3.2 Corretude do Algoritmo de Dijkstra

Teorema 5.3.1. Dado um grafo $G = (V, E, w : E \to \mathbb{R}^+_*)$ e um vértice de origem $s \in V$, o algoritmo de Dijkstra termina com $D_v = \delta(s, v)$ para todo $v \in V$.

Prova: Usa-se a seguinte invariante de laço: no início de cada iteração do laço das linhas 5-11, $D_v = \delta(s,v)$ para todo v o qual $C_v = \mathbf{true}$. Para demonstrar isso, diz-se que $D_v = \delta(s,v)$ no momento em que v é marcado como visitado, ou seja, na linha 7. Uma vez demonstrado isso, recorre-se à propriedade do limite superior (Lema 5.1.3) para demonstrar que a igualdade é válida em todos os momentos a partir desse.

Inicialização: Inicialmente, C_u = **false** para todos $u \in V$. Então, a invariante é trivialmente verdadeiro.

Manutenção:

Por contradição, seja u o primeiro vértice para o qual $D_u \neq \delta(s, u)$ quando C_u tornase **true**. O vértice u não pode ser s, pois $D_s = \delta(s, v) = 0$ nesse momento. Como $u \neq s$, deve existir algum caminho de s a u, senão $D_u = \delta(s, u) = \infty$ pela propriedade de inexistência de caminho (Lema 5.1.4), o que contradiz $D_u \neq \delta(s, u)$.

Assume-se então que haja um mínimo caminho p de s a u. Antes de C_u se tornar **true**, o caminho p conecta um vértice v o qual C_v =**true** a u. Decompõe-se o caminho p em $s \stackrel{p_1}{\leadsto} x \to y \stackrel{p_2}{\leadsto} u$, no qual C_x =**true** e C_y =**false**. Afirma-se que $D_y = \delta(s,y)$ no momento que C_u se torna **true**. Para provar essa afirmação, observa-se que C_x =**true**. Então, u foi escolhido como primeiro vértice para o qual $D_u \neq \delta(s,u)$ quando C_u se torna **true**, tínha-se $D_x = \delta(s,x)$ quando C_x se tornou **true**. A aresta/arco (x,y) foi relaxada naquele momento, e a afirmação decorre da propriedade de convergência (Lema 5.1.5). Agora, pode-se obter uma contradição para provar que $D_u = \delta(s,u)$. Como y aparece

antes de u em um caminho mínimo de s a u e todos os pesoas das arestas/arcos são não-negativos, temos $\delta(s, y) \le \delta(s, u)$ e assim,

$$D_{y} = \delta(s, y)$$

$$\leq \delta(s, u) \tag{5.16}$$

 $\leq D_u$ (pela propriedade do limite superior – Lema 5.1.3).

Porém, como C_u =**false** e C_y =**false** quando u foi escolhido na linha 6, tem-se $D_u \le D_y$. Assim, as duas desigualdades da Equação (5.16) são de fato igualdades, o que dá

$$D_{v} = \delta(s, y) = \delta(s, u) = D_{u}. \tag{5.17}$$

Consequentemente, $D_u = \delta(s, u)$, o que contradiz a escolha de u. Conclui-se que $D_u = \delta(s, u)$ quando C_u se torna **true** e que essa igualdade é mantida até o término do algoritmo.

Término:

No término, quanto para $C_v = \mathbf{true}$ para todo $v \in V$, $D_v = \delta(s, v)$ para todo $v \in V$.

Corolário 5.3.2. Ao executar algoritmo de Dijkstra (Algoritmo 11) sobre o grafo G = (V, E, w) ponderado orientado ou não, sem ciclos de peso negativo, para o vértice de origem $s \in V$, o subgrafo dos predecessores G_{π} será uma árvore de caminhos mínimos em s.

Prova: Imediata pelo Teorema 5.3.1 e a propriedade do subgrafo dos predecessores (Lema 5.1.8). ■

5.4 Floyd-Warshall

O algoritmo de Floyd-Warshall (Algoritmo 12) encontra o caminho mínimo para um grafo G(V, E, w) ponderado dirigido ou não para todos os pares de vértices. O algoritmo

5.4. Floyd-Warshall 49

suporta arestas/arcos de pesos negativos, mas não opera em grafos com ciclos de peso negativo.

A função W (Equation (5.18)) define uma matriz de adjacências 1 para o algoritmo de Floyd-Warshall.

$$W(G(V, E, w))_{uv} = \begin{cases} 0, & \text{se } u = v, \\ w((u, v)), & \text{se } u \neq v \land (u, v) \in E, \\ \infty, & \text{se } u \neq v \land (u, v) \notin E. \end{cases}$$
 (5.18)

O algoritmo define um número de matrizes igual a |V|. Inicialmente, a matriz $D^{(0)}$ é definida como a matriz de adjacência de G (linha 1). Depois repete-se o procedimento de criar uma nova matriz e atualizar as distâncias de cada celula da nova matriz por |V| vezes (linhas 2 a 6).

```
Algoritmo 12: Algoritmo de Floyd-Warshall.
```

5.4.1 Complexidade de Floyd-Warshall

O algoritmo Floyd-Warshall (Algoritmo 12) demanda $|V|^2$ operações para executar a linha 1. Como há o aninhamento de três laços limitados a |V| iterações na sequência, a operação na linha 6 será executada $|V|^3$ vezes. Logo, a complexidade de tempo computacional de Floyd-Warshall é de $\Theta(|V|^3)$.

Para grafos não-dirigidos, deve-se preencher a matriz resultante de W(G) nas coordenadas (u, v) e (v, u)

Para este algoritmo, é interessante notar que foram utilizadas |V| matrizes de |V| linhas e |V| colunas. Logo a complexidade de espaço para uma implementação que utilize o pseudo-código do Algoritmo 12 utilizaria espaço computacional de $\Theta(|V|^3)$. No entanto, é possível reduzir essa complexidade de espaço computacional em $\Theta(|V|^2)$.

Desafio

Crie um pseudo-código para o Algoritmo 12 que demande complexidade de espaço computacional $\Theta(|V|^2)$.

5.4.2 Corretude de Floyd-Warshall

Desafio

Prove que quando o Floyd-Warshall pára sobre uma entrada G = (V, E, w) ele retornará as distâncias de caminhos mínimos para todo o par de vértice em V.

5.4.3 Construção de Caminhos Mínimos para Floyd-Warshall

O Algoritmo 13 além do peso dos caminhos mínimos em D, retorna a matriz dos predecessores Π , ou seja, uma matriz que indica o vértice anterior no caminho de cada

5.4. Floyd-Warshall 51

coordenada u, v.

Algoritmo 13: Algoritmo de Floyd-Warshall com Matriz dos Predecessores.

```
Input : um grafo G = (V, E, w)
1 D^{(0)} \leftarrow W(G)
    // Matriz dos predecessores
2 \Pi_{uv}^{(0)} \leftarrow \left(\pi_{uv}^{(0)}\right)uma nova matriz |V| \times |V|
 з foreach u \in V do
         foreach v \in V do
              if (u, v) \in E then
              else
 7
                  \pi_{uv}^{(0)} \leftarrow \mathbf{null}
 9 foreach k \in V do
         seja D^{(k)} = \left(d_{uv}^{(k)}\right) uma nova matriz |V| \times |V|
10
         seja \Pi^{(k)} = (\pi_{uv}^{(k)}) uma nova matriz |V| \times |V|
11
         foreach u \in V do
12
               foreach v \in V do
13
                    // atualizando matriz dos predecessores
                   14
15
                    d_{uv}^{(k)} \leftarrow \min \Bigl\{ d_{uv}^{(k-1)}, d_{uk}^{(k-1)} + d_{kv}^{(k-1)} \Bigr\}
16
17 return (D^{(|V|)}, \Pi^{(|V|)})
```

A impressão de cada caminho pode ser realizada através do Algoritmo 14, que recebe como entrada a matriz de predecessores gerada pelo Algoritmo 13, um vértice de origem u e um de destino v. Ao terminar, o algoritmo terá impresso na tela o caminho

mínimo de u a v.

Algoritmo 14: Print-Shortest-Path.

Input : a matriz dos predecessores Π, um vértice de origem u, um vértice de destino v

```
1 if u = v then
2 print(i)
3 else
4 if \pi_{uv} = null then
5 print("Caminho inexistente de <math>u para v")
6 else
7 Print-Shortest-Path(\Pi, u, \pi_{uv})
8 print(v)
```

Agradecimentos

Referências

CORMEN, T. H. et al. *Algoritmos: teoria e prática*. Rio de Janeiro: Elsevier, 2012. Citado 6 vezes nas páginas 4, 15, 19, 21, 24 e 33.

GROSS, J. T.; YELLEN, J. *Graph Theory and Its Applications*. FL: CRC Press, 2006. Citado na página 27.

NETTO, P. O. B. *Grafos: teoria, modelos, algoritmos*. São Paulo: Edgard Blucher, 2006. Citado 4 vezes nas páginas 3, 9, 10 e 13.

Revisão de Matemática Discreta

Conjuntos é uma coleção de elementos sem repetição em que a sequência não importa. No Brasil, utilizamos a seguinte notação para enumerar todos os elementos de um conjunto. Na Equação (A.1), é possível visualizar a representação de um conjunto denominado A, formado pelos elementos $e_1, e_2, ..., e_n$. Devido ao uso da vírgula como separador de decimais, usa-se formalmente o ponto-e-vírgula. Para essa disciplina, podemos utilizar a vírgula como o separador de elementos em um conjunto, desde que utilizados o ponto como separador de decimais¹. Para dar nome a um conjunto, geralmente utiliza-se uma letra maiúscula ou uma palavra com a inicial em maiúscula.

$$A = \{e_1; e_2; \dots; e_n\}$$
 (A.1)

Há duas formas de definir conjuntos. A forma por enumeração por elementos, utiliza notação semelhante a da Equação (A.1). São exemplos de definição de conjuntos por enumeração:

- $N = \{ \diamondsuit, \spadesuit, \heartsuit, \clubsuit \};$
- $V = \{a, e, i, o, u\};$
- $G = \{\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, \pi, \rho, \sigma, \tau, \nu, \phi, \chi, \psi, \omega\};$
- $R = \{-100.9, 12.432, 15.0\};$
- $D = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$

A forma por descrição de propriedades utiliza-se de uma notação que evidencia a natureza de cada elemento pela descrição de um em um formato genérico. Por exemplo o conjunto D, descrito na Equação (A.2), denota um conjunto com os mesmos elementos em $\{1,2,3,4,5,6,7,8,9,10\}$.

$$D = \{x \in \mathbb{Z} | x > 1 \land x \le 10\} \tag{A.2}$$

. Então para que complicar utilizando uma notação não enumerativa? Por dois motivos: por questões de simplicidade, dado a quantidade de conjuntos; ou para representar conjuntos infinitos, como no exemplo dos inteiros pares $Pares = \{x \in \mathbb{Z} | x \equiv 0 \pmod{2}\}$.

Nas anotações presentes nesse documento, utiliza-se a "notação americana". Para a Equação (A.1) , teria-se $A = \{e_1, e_2, ..., e_n\}$.

Para o conjunto dos pares, ainda podemos utilizar uma descrição mais informal, mas que é dependente da conhecimento sobre a linguagem Portuguesa: $Pares = \{x \in \mathbb{Z} | x \in inteiro e par \}$.

Para denotar a cardinalidade (quantidade de elementos) de um conjunto, utilizamos o símbolo "|". Para os conjuntos apresentados acima, é correto afirmar que:

- |N| = 4;
- |V| = 5;
- |R| = 3;
- |D| = 10;
- $|Pares| = \infty$.

A cardinalidade pode ser utilizada para identificar quantos símbolos são necessários para representar um elemento. Por exemplo, |12,66| = 5

Para denotar conjuntos vazios, adota-se duas formas de representação: {} ou \emptyset . Utilizando o operador de cardinalidade, têm-se $|\{\}| = |\emptyset| = 0$.

Como principais operações entre conjuntos, pode-se destacar:

- União (\cup): união de dois conjuntos. Exemplo: $\{1,2,3,4,5\} \cup \{2,4,6,8\} = \{1,2,3,4,5,6,8\}$;
- Intersecção (\cap): intersecção de dois conjuntos. Exemplo: $\{1,2,3,4,5\} \cup \{2,4,6,8\} = \{2,4\}$;
- Diferença (- ou \): diferença de dois conjuntos. Exemplo {1,2,3,4,5}\{2,4,6,8} = {1,3,5};
- Produto cartesiano (×): Exemplo $\{1, 2, 3\} \times \{A, B\} = \{(1, A), (2, A), (3, A), (1, B), (2, B), (3, B)\}$;
- Conjunto de partes (ou *power set*): o conjunto de todos os subconjuntos dos elementos de um conjunto. Para o conjunto $A = \{1,2,3\}$ o conjunto das partes seria $2^A = P(A) = \{\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}.$

Funções são representadas de forma diferente na matemática discreta. Busca-se estabelecer a relação entre um conjunto de domínio (entrada da função) e um contradomínio (resposta da função). A Equação (A.3) exibe a forma como é utilizada para formalizar uma função. Nesse formato, passa-se a natureza da entrada e da saída de um problema. Por exemplo, a função que gera a correspondência entre o domínio dos inteiros positivos em base decimal para base binária seria $f: x \in Z^+ \to \{0,1\}^{\log_2(|x|+1)}$.

nome da funcao: dominio
$$\rightarrow$$
 contradominio (A.3)

Para representar uma coleção de itens onde a sequência importa e a repetição pode ocorrer, utiliza-se as tuplas. Uma tupla é representada da forma demonstrada na Equação (A.4).

$$A = (e_1, e_2, \dots, e_n) \tag{A.4}$$

. Um exemplo de uma tupla, pode ser lista de chamada de uma turma ordenada lexicograficamente.