DATA HANDLING USING 'Pandas' and DATA VISUALIZATION USING 'Seaborn'

Using the pandas function read_csv(), read the given 'iris' data set.

- 1. Use appropriate functions in pandas to display
 - (i) Shape of the data set
 - (ii) First 5 and last five rows of data set(head and tail)
 - (iii) Size of dataset
 - (iv) No:of samples available for each variety
 - (v) Description of the data set(use describe

code:

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
iris=pd.read_csv("iris.csv")
print("shape of dataset= ",iris.shape)
print("")
print("first and last five rows : ")
print(iris.head)
print(" ")
print("size : ",iris.size)
print(" ")
print(" ")
print("no of samples available for each variety: ",
iris["variety"].value_counts())
print(" ")
print(" ")
print(iris.describe())
```

shape of dataset= (150, 5)

first and last	t five rows :						
<body> bound method</body>	NDFrame.head	of	sepal.length	sepal.width	h petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa		
1	4.9	3.0	1.4	0.2	Setosa		
2	4.7	3.2	1.3	0.2	Setosa		
3	4.6	3.1	1.5	0.2	Setosa		
4	5.0	3.6	1.4	0.2	Setosa		

145	6.7	3.0	5.2	2.3	Virginica		
146	6.3	2.5	5.0	1.9 \	Virginica		
147	6.5	3.0	5.2	2.0	Virginica		
148	6.2	3.4	5.4	2.3	Virginica		
149	5.9	3.0	5.1	1.8 \	Virginica		

[150 rows x 5 columns]>

size : 750

no of samples available for each variety : Setosa 50
Versicolor 50
Virginica 50
Name: variety, dtype: int64

	sepal.length	sepal.width	petal.length	petal.width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

2. Use pairplot() function to display pairwise relationships between attributes. Try different kind of plots {'scatter', 'kde', 'hist', 'reg'} and different kind of markers

code:

sns.pairplot(iris, hue="variety", kind="hist")

sns.pairplot(iris, hue="variety", kind="kde")

sns.pairplot(iris, hue="variety", kind="reg")

- **3.** using the iris data set,get familiarize with functions:
 - 1)displot()
 - 2) histplot()
 - 3) relplot()

code:

sns.displot(data=iris)

sns.histplot(data=iris)

sns.relplot(data=iris)

