1: PAC Learning

Rule 1: You are free to combine any of the parts as they are.

Rule 2: You may also cut any of the parts into two distinct pieces before using them.

(1a)

Given N parts, each product that can be made out of these parts is a distinct hypothesis h in the hypothesis space H. From $Rule\ 1$, a worker can choose to include or not include any of the parts in a product. This can be viewed as a monotone conjunction as a product is defined by choosing to include or not include each of the N parts. There exists 2^N possible products as there are two choices for each of the N parts.

$$|H|=2^N$$

(1b)

The experienced worker now creates a product using $Rule\ 1$ and $Rule\ 2$. There are now four choices that can be made for each of the parts: don't include it, include it, cut the part and use the first half or cut the part and use the second half. A product is now defined as making four choices for each of the N parts. Thus there are 4^N possible products.

$$|H| = 4^N$$

(1c)

By applying the principles of Occams's Razor we can make a statement about the number of required examples the robot will have to see to have an error of 0.01 with probability 99% on products with 6 available parts.

Given a hypothesis space H, we can say with probability $1 - \delta$, a hypothesis $h \in H$, that is consistent with a training set of size m, will have an error $< \epsilon$ on future examples if

$$m > \frac{1}{\epsilon}(ln(|H|) + ln\frac{1}{\delta})$$

We want an error rate of $\epsilon = 0.01$ with probability $1 - \delta = 0.99$ with a $|H| = 4^6 = 4{,}096$.

$$m > \frac{1}{0.01}(ln(4,096) + ln\frac{1}{0.01})$$

 $m > 1.864.39$

The robot will have to see at least 1,865 examples to guarantee a 0.01 error with probability 99% if there are 6 available parts. We round up as the number of required examples must be an integer value and rounding down would not satisfy the equality.

at least 1,865 examples

(5)

3: AdaBoost

2