

Departamento de Engenharia Informática Faculdade de Ciências e Tecnologia Universidade de Coimbra

Sistemas Operativos – 2017/2018 Exame de Época Recurso

26 de janeiro de 2018 90 minutos

Nome: Tiao	Yorge	Coimbra	da	Silva	Nº aluno: 2022216216
0	7 X	-	•	71-	

- Qualquer tentativa de fraude conduzirá à anulação da prova para todos os intervenientes.
- Consulta apenas em papel. Durante o exame todos os dispositivos electrónicos têm que permanecer desligados, com excepção de calculadoras.
- Todas as respostas devem ser diretas, objetivas e obrigatoriamente efectuadas na folha fornecida.
- 1. Considere um sistema que usa paginação.

a. Num sistema deste tipo um processo não deve conseguir usar memória que não lhe pertença. Explique como isso é garantido pelo sistema operativo.

Num sistema de paginação, a meméria é dividida em blocos de tomanho fixo (frames) e os processos em blocos de tomanho fixo (paginos). Cada processo tem a riopria tabela de paginos que mapeiom cado pagina virtual num endereço físico distrito (frames na memôria

b. No entanto, em alguns casos, é necessário permitir que um processo possa aceder à memória usada por outro processo. Explique em que casos é necessário e de que forma o sistema operativo pode permitir o acesso de um processo à memória de outro processo.

Ovordo é necessario fortilhan memoria, fur exemplo, para l'empartilhan oriquivos podemos uson a chamada mmap permitindo assim portilha de paginos entre processo. No contento de uma aplicação também hade sur util fortilhar memária mendo para imo samget de firma a obter um bloco de mæmāria partilhado jatre processos.

2. A interrupção preemptiva de processos implica a existência de uma interrupção de relógio que permita interromper um processo em execução para dar lugar a outro. Tendo em conta os algoritmos de escalonamento que conhece, será que sempre que existe pelo menos um processo à espera para executar a interrupção de relógio leva à comutação de processos? Justifique.

Não recessaraments, depositiones que defendam de um quentum " de tempo ou que defendam de pripridades previomente estabeleados, não defendem do relogio pora como ton mocessos.

3. Qual a utilidade do Translation Look-aside Buffer num sistema de paging?
OTLB & principalmente otil plu facto de
No uma lache que contêm um nombro mais
reduzido de entradas fermitindo uma busca mais
Mer uma lache que contêm um nomero mais reduzido de entradas fermitindo uma busca mais rapida no caso da entrada a procuror ja 1º
Preontre no TLB.
4. Indique 2 formas de fazer o sistema mudar de <i>user level</i> para <i>kernel level mode</i> .
2 formas para este objetivo varo: system_colls (ofunções
2 formas para este objetivo voio: system_colls (oferações de I/O, docações de memoria etc e interrupções de
Landunge foil com a international come dellatition de entrand

5. Considere um sistema onde existem 6 páginas de processos (1 a 6) e 4 page frames em RAM. Vão ser feitos acessos à memória usando a string de referência seguinte:

R(4), W(6), R(3), R(5), W(3), W(1), R(2), R(5), R(6), R(4), R(1), W(3)

Supondo que inicialmente todas as *frames* estão vazias, que R() é uma operação de leitura, que W() é uma operação de escrita e que o sistema faz uso do *modify-bit*, preencha a tabela abaixo considerando os algoritmos pedidos:

	FIFO	LRU	CLOCK
Page-Faults			
Swap-outs			
Estado final das frames em RAM (indique a frame, a página que cada frame contém e o estado do modify bit)	1 1 1	3H 1	
)	4	6	
	Exame de Sistemas Operativos - 2 -	− ₹ de janeiro de 2018	/3

6. Considere um sistema de gestão de memória com um tempo de acesso à cache de 10ns e um tempo de acesso à memória principal de 200ns. Para o EAT (*Effective Access Time*) ser de 11 ns, qual terá de ser a hit ratio da cache?

7. Suponha que tem um sistema de gestão de memória que usa páginas de 1KB e onde cada PTE (*Page Table Entry*) tem 4 bytes. Se os endereços lógicos ocuparem 34 bits, quantos níveis de páginas precisa para que cada tabela de páginas caiba numa única página? Como será feita a divisão dos bits no enderese lógico?

8. Considere um disco com as seguintes características: 10000 rpm, 512 bytes por sector, 200 sectores por pista, com tempo médio de *seek* de 4,9ms. Nestas condições, quanto tempo em média demoraria a leitura de um bloco de 8KB contíguos no disco?