Quinta sesión

Análisis Convexos - CM3E2

Jonathan Munguia¹

¹Facultad de Ciencias Universidad Nacional de Ingeniería

27 de abril de 2021

Outline

- Teorema de Carathéodory
 - Teorema de Carathéodory

Proposición 1

Sea $U \subset \mathbb{R}^n$. Un elemento $x \in \mathbb{R}^n$ es una combinación convexa de U, si y solo si existen $p \in \mathbb{N}$, $t_i > 0$ $y \{x_i\}_{i=1}^p \subset U$ tales que

$$x = \sum_{i=1}^{p} t_i x_i$$
, $\sum_{i=1}^{p} t_i = 1$.

3/22

Teorema 1 (Carathéodory)

Dado $S \subset \mathbb{R}^n$. Si $x \in co(S)$, entonces existen $p \in \mathbb{N}$ con $p \le n$, $x_i \in S$, $t_i > 0$ para $i = 0, 1, \dots, p$, tales que los p + 1 puntos x_i son afinamente independientes y

$$x = \sum_{i=0}^{p} t_i x_i$$
, $\sum_{i=0}^{p} t_i = 1$.

Demostración

Si $x \in co(S)$, entonces $x = \sum_{i=0}^{p} \mu_i x_i$ para $\mu_i > 0$, $x_i \in S$ y $\sum_{i=0}^{p} \mu_i = 1$. Si

los p+1 son afinamente independientes, entonces $p \leq n$. Sino, primero eliminamos los x_i nulos y si los puntos restantes continuan siendo afinamente dependientes, es decir existen $\gamma_i \in \mathbb{R}$ no todos nulos tal que

$$\sum_{i=1}^p \gamma_i(x_i - x_0) = 0.$$

Munguia (FC-UNI)

4 / 22

Demostración (cont...)

Suponemos que
$$I := \{i : \gamma_i > 0\} \neq \emptyset$$
 y sea $\epsilon > 0$ tal que
$$x - x_0 = \sum_{i=1}^p \mu_i (x_i - x_0)$$

$$= \sum_{i=1}^p \mu_i (x_i - x_0) - \epsilon \sum_{i=1}^p \gamma_i (x_i - x_0)$$

$$= \sum_{i=1}^p (\mu_i - \epsilon \gamma_i) (x_i - x_0).$$

$$= \sum_{i=1}^p (\mu_i - \epsilon \gamma_i) (x_i - x_0).$$

$$= \sum_{i=1}^p (\mu_i - \epsilon \gamma_i) (x_i - x_0).$$

$$= \sum_{i=1}^p (\mu_i - \epsilon \gamma_i) (x_i - x_0).$$

Tomando
$$\epsilon = \min\left\{\frac{\mu_i}{\gamma_i}: i \in I\right\} = \frac{\mu_{i_0}}{\gamma_{i_0}}, \text{ con } i_0 \in I \text{ y } \beta_i = \mu_i - \epsilon \gamma_i$$

4 D > 4 D > 4 E > 4 E > E 99 P

Demostración (cont...)

Entonces, obtenemos la relación

$$x - x_0 = \sum_{i=1}^{p} \beta_i (x_i - x_0) \text{ con } \beta_{i_0} = 0 \text{ y } \beta_i \ge 0 \text{ para todo } i = 1, \dots, p.$$

Continuando este procedimiento, después de un número finito de etapas, podemos representar x como combinación convexa de elementos afinamente independientes.

Munguia (FC-UNI)

6/22

7 / 22

Corolario 1 (Carathéodory)

Para cualquier $M \subset \mathbb{R}^d$ con $\dim(\operatorname{aff}(M)) = n$, la cápsula convexa $\operatorname{co}(M)$ es el conjunto de todas las combinaciones convexas de familias n+1 puntos de M afinamente independientes, es decir

$$\operatorname{co}(M) = \left\{ \sum_{i=0}^n t_i x_i \ \middle| \ \sum_{i=0}^n t_i = 1, \ t_i \geq 0, \ \{x_i\}_{i=0}^n \subset \widehat{M} \right\}$$
 afin. independiente

Demostración

- Para cada $x \in co(M)$, por el teorema anterior, existe un conjunto de puntos x_0, x_1, \cdots, x_p con $\underline{p} \leq \underline{n}$ afinamente independientes que lo generan. Es decir $\{x_1 x_0, \cdots, x_p x_0\}$ son linealmente independientes.
- Ademá, existe $\{v_1 x_0, \dots, v_n x_0\}$ una base de $\mathsf{aff}(M) x_0$.

VII-.. , No e aff(H)

Cont...

- Luego, completando con vectores linealmente independientes obtenemos otra base $\{x_1 x_0, \dots, x_p x_0, v_{j_1} x_0, \dots, v_{j_{n-p}} x_0\}$
- Así, $\{x_0, x_1, \dots, x_p, x_{p+1}, \dots, x_n\}$ con $x_{p+i} = v_{j_i}$, $i = 1, \dots, n-p$, forma una familia de n+1 puntos afinamente independientes que generan a x, donde hemos completando con nulos los coeficientes correspondiente a los últimos n-p puntos.

Observación 1

El teorema de Carathéodory no establece la existencia de una base con n+1 elementos para la cápsula convexa de un conjunto, como es el caso de las combinaciones lineales. Aquí, los generadores x_j pueden depender de la x particular que se vaya a calcular.

4□ > 4□ > 4□ > 4 = > 4 = > = 90

Corolario 2

La cápsula convexa de un conjunto compacto, es compacto.

Demostración

Sea $S \subset \mathbb{R}^n$ compacto. Consideramos

$$K = \Big\{ t = (t_0, \dots, t_n) \in \mathbb{R}^{n+1} : \sum_{i=0}^n t_i = 1 \operatorname{con} \{t_i\}_{i=0}^n \in [0, 1] \Big\},$$

claramente $K=I^{n-1}\cap h^{-1}(\{1\})$ es compacto, donde $h(t)=\sum_{i=0}^n t_i$ e

I=[0,1]. Además, sea $f:\mathbb{R}^{n+1} imes (\mathbb{R}^n)^{n+1} o \mathbb{R}^n$, definida como

$$f(t, x_0, x_1, \cdots, x_n) = \sum_{i=0}^n t_i x_i$$

Siendo K, S compactos y f continua, entonces $co(S) = f(K \times S^{n+1})$ es compacto.

Observación 2

Otra forma de probar el Corolario 2. Dado S compacto y $\{x_n\}$ una sucesión en co(S) probar que existe una subsucesión convergente en co(S). Ver Teorema 2.8 de [2].

Teorema 2

Sea $M = \{x_1, \cdots, x_n\} \subset \mathbb{R}^d$ un conjunto de puntos afinamente dependiente. Entonces, existen subconjuntos M_1 y M_2 de M con $M_1 \cap M_2 = \emptyset$ y $M_1 \cup M_2 = M$ tal que

$$co(M_1) \cap co(M_2) \neq \emptyset$$
.

Demostración

Ver Teorema 2.6 de [2].

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 9

Corolario 3

Para todo $\Omega \subset \mathbb{R}^n$ y para todo $x \in \mathcal{K}_{\Omega} \setminus \{0\}$, donde $\mathcal{K}_{\Omega} = \operatorname{cono-convexo}(\Omega)$, tenemos que

$$x = \sum_{i=1}^{m} \lambda_i a_i \text{ con } \lambda_i > 0, \ a_i \in \Omega, \text{ cuando } i = 1, \dots, m \ \text{ y } m \leq n$$

donde los a_i son linealmente independientes.

Demostración

Se sigue usando los mismos argumentos del Teorema 1. Ver Proposición 3.5 de [1].

<ロト <個ト < きト < きト き りへぐ :

Proposición 2

Sea a_1, \dots, a_m elementos linealmente dependientes en \mathbb{R}^n , donde $a_i \neq 0$ para todo $i = 1, \dots, m$. Defina los conjuntos

$$\Omega := \{a_1, \cdots, a_m\} \quad \wedge \quad \Omega_i := \Omega \setminus \{a_i\}, \ i = 1, \cdots, m.$$

Entonces, las cápsulas convexas cónicas de estos conjuntos están relacionadas como

$$K_{\Omega} \stackrel{\textstyle >}{=} \bigcup_{i=1}^m K_{\Omega_i}$$

las, . T. am) non l.d sics Sio > hanj, ..., onk Li

Demostración

(Puede ver Proposición 3.8 de [1])

Es inmediato que $K_{\Omega_i} \subset K_{\Omega}$ para todo $i = 1, \dots, m$.

Veamos la inclusión inversa, para cada $x \in K_{\Omega}$, se tiene por el Corolario 3 que existen $a_{n_1}, \cdots, a_{n_k} \in \Omega$ linealmente independientes con

 $\{n_1, \dots, n_k\} \subset \{1, \dots, m\}$ y $\mu_i > 0$ para $j = 1, \dots, k$, tal que

 $x = \sum_{i=1}^{n} \mu_i a_{n_i}$. Por la dependencia de los a_i con $i = 1, \dots, m$, existe

 $i_0 \in \{1, \cdots, m\} \setminus \{n_1, \cdots, n_k\}$, entonces $x \in K_{\Omega_{i_0}}$

Proposición 3

Sea $\Omega = \{a_1, \dots, a_m\} \subset \mathbb{R}^n$. Entonces, la cápsula cónica convexa K_{Ω} generada por Ω es cerrada.

Demostración

Ver Proposición 3.9 de [1].

Teorema 3

Sea $\Omega = \{a_1, \dots, a_m\} \subset \mathbb{R}^n$ y $b \in \mathbb{R}^n$. Las sgtes afirmaciones son equivalentes:

- i) $b \in K_{\Omega}$
- ii) Para $x \in \mathbb{R}^n$ cualesquiera, se tiene la implicación

$$\left[\langle a_i, x \rangle \leq 0, \ i = 1, \cdots, m\right] \Longrightarrow \left[\langle b, x \rangle \leq 0\right].$$

Demostración

Ver Teorema 3.10 de [1].

P P P

Definición 1 (Función convexa)

Una función $f:\mathbb{R}^n o \overline{\mathbb{R}}:=\mathbb{R} \cup \{\pm \infty\}$ es convexa si su epígrafo:

$$\mathrm{epi}(f) := \Big\{ (x, \mu) \in \mathbb{R}^n \times \mathbb{R} \, : \, f(x) \le \mu \Big\},\,$$

es convexo. Además, consideramos las sgtes reglas:

$$\alpha+\infty=\infty+\alpha=\infty \quad \text{para} \quad -\infty<\alpha\le\infty,$$

$$\alpha-\infty=-\infty+\alpha=-\infty \quad \text{para} \quad -\infty<\alpha\le\infty,$$

$$\alpha\infty=\infty\alpha=\infty, \ \alpha(-\infty)=(-\infty)\alpha=-\infty \quad \text{para} \quad 0<\alpha\le\infty,$$

$$\alpha\infty=\infty\alpha=-\infty, \ \alpha(-\infty)=(-\infty)\alpha=\infty \quad \text{para} \quad -\infty\le\alpha<0,$$

$$-(-\infty)=\infty.$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 9

Observación 3

La definición es dada desde un punto de vista geométrico. Además, la definición del epigrafo no involucra lo que pasa cuando f alcanza el valor ∞ .

Ejemplo 1

Sea
$$f(x) = \begin{cases} \frac{1}{x}, & x > 0, \\ +\infty, & \text{en otro caso.} \end{cases}$$
 $(0, \infty) \notin \text{epi}(f)$, es más

 $(y, \infty) \notin \operatorname{epi}(f)$ para todo y < 0. Luego, claramente $\operatorname{epi}(f)$ es convexo y por tanto f es convexa.

epif CRAH

Definición 2 (Dominio efectivo)

El dominio efectivo de f, se define como

efectivo de
$$f$$
, se define como
$$dom(f) := \operatorname{proy}_{\mathbb{R}^n} \operatorname{epi}(f)$$

$$= \left\{ x \in \mathbb{R}^n : \exists \mu \in \mathbb{R}, \ (x, \mu) \in \operatorname{epi}(f) \right\}$$

$$= \left\{ x \in \mathbb{R}^n : f(x) < \infty \right\}.$$

Observación 4

dom(f) es convexo. Basta notar que la proyección proy : $\mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$, $proy(x, \mu) = x$ es afín y por ende lleva convexos en convexos.

bush (of () =: gout

Teorema 4 (Representación algebraica)

 $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ es convexa si y solo si

$$\exists \mathbb{R}^n \to \mathbb{R} \text{ es convexa si y solo si}$$

$$\forall x,y \in \mathbb{R}^n, \ \forall t \in (0,1): \quad f(tx+(1-t)y) \leq tf(x)+(1-t)f(y).$$

Demostración

⇒) Se nota que

$$\forall x, y \in \mathbb{R}^n$$
, $\forall t \in (0,1)$: $f(tx+(1-t)y) \leq \infty$.

Si $x \in dom(f) \land y \notin dom(f)$ o $x, y \notin dom(f)$ se verifica que $t f(x) + (1-t)f(y) = \infty$.

(K)

Demostración (cont...)

En caso que $x, y \in \text{dom}(f)$ y $t \in (0,1)$, se tiene en particular que $(x, f(x)), (y, f(y)) \in \underbrace{\text{epi}(f)}_{f}$ y por la convexidad del epi(f) se obtiene $\underbrace{(tx + (1-t)y)}_{f}\underbrace{tf(x) + (1-t)f(y)}_{f}) = t(x, f(x)) + (1-t)(y, f(y)) \in \text{epi}(f),$

luego, se verifica la propiedad

$$f(tx+(1-t)y) \le tf(x)+(1-t)f(y).$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Demostración (cont...)

 \Leftarrow) Sean $(x_1, \mu_1), (x_2, \mu_2) \in \operatorname{epi}(f)$ y $t \in (0, 1)$, es decir $f(x_i) \leq \mu_i$, i = 1, 2. Así por la propiedad, se tiene

$$f(t x_1 + (1-t)x_2) \le t \underbrace{f(x_1)}_{\mu_1} + (1-t)\underbrace{f(x_2)}_{\mu_2} \le t\mu_1 + (1-t)\mu_2,$$

lo cual implica que

$$t(x_1, \mu_1) + (1-t)(x_2, \mu_2)$$

$$= (t \underbrace{x_1 + (1-t)}_{} x_2, t\mu_1 + (1-t)\mu_2) \in \operatorname{epi}(f),$$

así, se concluye que epi(f) es convexo.

◆ロト ◆個ト ◆差ト ◆差ト を めんぐ

Referencias bibliográficas

- Boris S. Mordukhovich and Nguyen Mau Nam. An Easy Path to Convex Analysis and Applications. Morgan & Claypool Publishers series, 2014.
- 2. Brondsted, Arne. An Introduction to Convex Polytopes. Graduate Texts in Mathematics, vol 90, 1983.

FIN