SYDNEY TECHNICAL HIGH SCHOOL

(Est. 1911)

Year 11 Assessment Task 1

May 2007

Extension 1 Mathematics

Time allowed: 70 mins.

Instructions:

- Write neatly and do not cramp your work. Use a ruler to draw straight lines in diagrams.
- Marks may not be awarded for careless or badly arranged work.
- Staple these questions to the front of your answers.
- All necessary working must be shown.
- Indicated marks are for guidance and may be changed slightly during the marking process.

Q1	Q2	Q3	Q4	Q5	TOTAL
/11	/11	/12	/12	/12	/58

Question 1.

a) Factorise fully:
$$4a^2 - 9b^2 - 4a - 6b$$

b) Simplify
$$\frac{|x|}{x}$$
 ($x \neq 0$), stating the values of x for which your answer applies. 2

c) Test the function
$$f(x) = \frac{x}{2+x^2}$$
 and state whether it is *odd*, *even* or *neither*.

From the following solution, copy the lines i), ii) and iii) onto your page and fill in the missing parts:

To find *x*:

$$\angle$$
 BAF = 32°

iii) Now
$$64^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = 180^{\circ} \ (\underline{\hspace{1cm}})$$
 1
$$\therefore x = 49$$

e) Solve
$$\frac{4}{x-3} - \frac{6}{x+1} = 1$$

Question 2. (Begin a new page)

a) Simplify
$$\frac{\frac{1}{a-1} + \frac{1}{a}}{\frac{1}{a-1} - \frac{1}{a}}$$

- b) i) Expand and simplify $(\sqrt{x} + \sqrt{y})^2$
 - ii) Hence or otherwise find values for x and y such that $\sqrt{7 + 2\sqrt{10}} = \sqrt{x} + \sqrt{y}$
- c) i) Sketch the function $y = \sqrt{4-x}$ showing clearly any x intercepts. (Use a ruler to draw the axes)
 - ii) Shade in the region $y \ge \sqrt{4-x}$
- d) Solve for x: $\frac{3x+1}{x-3} \ge 2$

Question 3. (Begin a new page)

a) Solve
$$|x+2| = |3x-6|$$

- b) Simplify fully:
 - i) $\frac{\tan A}{\sec A}$
 - ii) $\cot A(\sec^2 A 1)$ 2
- c) Copy the following diagram onto your writing page.

- i) \angle ACB is a multiple of x. Find the value of n.
- ii) Determine any values of x which make this configuration of triangles possible.

1

d) Solve: $2\sin^2 2x = 1$ for $0^{\circ} \le x \le 360^{\circ}$

Question 4. (Begin a new page)

- a) If $\sin x = \frac{3}{5}$ and $90^{\circ} \le x \le 270^{\circ}$, find the value of $\tan x$.
- b) Find the sum of the interior angles of a regular polygon if each interior angle is 150°.
- d) i) Sketch y = |2x 4| showing clearly the x and y intercepts. 1

 (Use a ruler to draw the axes).
 - ii) Use your sketch to help solve |2x-4| < x+4.
- d) In a rectangular prism the face diagonal AC is inclined 40° to the base while the internal diagonal AD is inclined 30° to the base. The length of AB is 50m.

- i) Use trigonometry to find an *expression* for the height CB.
- ii) Use the result of part i) to find an *expression* for the length of EA.
- iii) Hence find the length of EB to the nearest metre.

1

Question 5. (Begin a new page)

a) A ship sails for 60 kilometres from O to R on a bearing of 025°. It then changes course and sails for 40 kilometres to S on a bearing of 105°.

- i) Calculate the ship's distance from O to the nearest kilometre.
- ii) Find the size of $\angle ROS$ to the nearest degree.

3

- iii) Hence find the bearing of the ship from O (to the nearest degree).
- b) i) Sketch the graph of $y = x^2 1$ (Use a ruler to draw the axes)
 - ii) On the same diagram sketch the graph of $y = \frac{1}{x^2 1}$ showing 2 clearly any intercepts and asymptotes.
 - iii) The two graphs intersect at (0, -1) and at two other points.

 Find the other two points of intersection.

End of Test

Question 1

a)
$$4a^2 - 9b^2 - 4a - 6b = (2a - 3b)(2a + 3b) - 2(2a + 3b)$$
 2 marks
= $(2a + 3b)[(2a - 3b) - 2]$ 2 marks
allow 1 for diff. of 2 squares
= $(2a + 3b)(2a - 3b - 2)$

b)
$$\frac{|x|}{x} = 1 \text{ for } x > 0,$$

$$= -1 \text{ for } x < 0$$
1 mark for each

$$f(-x) = \frac{-x}{2 + (-x)^2}$$
c)
$$= -\frac{x}{2 + x^2}$$

$$= -f(x)$$

$$\therefore \text{ function is odd}$$
1 if odd (even if test not shown)

d) i)
$$\therefore \angle AFB = 32^{\circ}$$
 (angles opposite equal sides or similar) 1
ii) $\therefore \angle CBE$ (or equivalent) = 64° (exterior angle of triangle) 1
iii) Now 64° + 67° + x ° = 180° (angle sum of triangle) 1

e)
$$\frac{4}{x-3} - \frac{6}{x+1} = 1$$

$$4(x+1) - 6(x-3) = (x-3)(x+1)$$

$$-2x + 22 = x^2 - 2x - 3$$

$$x^2 - 25 = 0$$
Therefore $x = \pm 5$

$$3 \text{ marks}$$

$$1$$

$$\frac{\frac{1}{a-1} + \frac{1}{a}}{\frac{1}{a-1} - \frac{1}{a}} = \frac{\left(\frac{1}{a-1} + \frac{1}{a}\right) \times a(a-1)}{\left(\frac{1}{a-1} - \frac{1}{a}\right) \times a(a-1)}$$

a)
$$= \frac{a+a-1}{a-(a-1)}$$

$$= \frac{2a-1}{1}$$

$$= 2a-1$$

1 mark (working need not be shown)

b) i)
$$\left(\sqrt{x} + \sqrt{y}\right)^2 = x + y + 2\sqrt{xy}$$

1 mark

ii)
$$\sqrt{7 + 2\sqrt{10}} = \sqrt{x} + \sqrt{y}$$

$$\therefore 7 + 2\sqrt{10} = x + y + 2\sqrt{xy}$$

$$\therefore x + y = 7 \text{ and } xy = 10$$

$$\therefore x = 2, 5$$

$$y = 5, 2$$

2 marks, only 1 set of values need be shown

1 for correct graph

1 for shading above

1 for correct right boundary

d)
$$\frac{3x+1}{x-3} \ge 2$$
 Critical values at $x = 3$ ($x \ne 3$) and when $3x + 1 = 2x - 6$ i.e. $x = -7$ 2 marks

When
$$x < -7$$
, $\frac{3x+1}{x-3} > 2$

x > 3, $\frac{3x+1}{x-3} > 2$

When -7 < x < 3, $\frac{3x+1}{x-3} < 2$

1 mark

Correct answer – 4 marks total - suggestions shown.

Allow 1 for excluding 3 from the solution

Suggest in general, 1 mark off for each error.

 $\cdot \quad r < -7 \quad r > 3$

When

1 mai

Marking rubric here should be

Solve
$$|x+2| = |3x-6|$$

Solutions occur when

$$x + 2 = 6 - 3x \qquad A$$

and

$$x + 2 = 3x - 6$$
 B

Which give
$$x = 1$$
 and $x = 4$

1 for each correct solution

i)
$$\frac{\tan A}{\sec A} = \frac{\sin A}{\cos A} \times \cos A$$
$$= \sin A$$

ii)
$$\cot A(\sec^2 A - 1) = \frac{1}{\tan A} \times \tan^2 A$$
$$= \tan A$$

2 marks

Allow 1 for substitution

2 marks

Allow 1 for substitution

i) n = 3

1 mark

ii)
$$5x = 180$$

x = 36 2 marks

Allow 1 for correct equation

d) Solve:
$$2\sin^2 2x = 1$$
 for $0^\circ \le x \le 180^\circ$

$$\sin^2 2x = \frac{1}{2}$$

$$\sin 2x = \pm \frac{1}{\sqrt{2}}$$

 $2x = 45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$

3 marks (1 mark each step)

a)

 $\sin x = \frac{3}{5} \text{ and } 90^{\circ} \le x \le 270^{\circ},$

x must be in the second quadrant

:.
$$\tan x = -\frac{3}{4}$$

1 for 3/4

1 for correct sign

b) Exterior angle =
$$30^{\circ}$$
 : polygon has 12 sides

1 mark

Interior sum =
$$12 \times 150^{\circ}$$

= 1800°

1 mark

1 mark for y = |2x - 4|

Points of intersection occur when

$$x = 0$$
 and when $x + 4 = 2x-4$

i.e.
$$x = 0$$
 and $x = 8$

$$\therefore |2x-4| \le x+4 \text{ when } 0 \le x \le 8$$

2 marks 1 mark

i) CB =
$$50 \tan 40^{\circ}$$
.

1 mark

ii)
$$\frac{EA}{DE} = \tan 60^{\circ}$$

$$\therefore EA = DE \tan 60^{\circ}$$

$$= CB \tan 60^{\circ}$$

$$=50 \tan 40^{\circ} \tan 60^{\circ}$$

1 mark

iii)
$$EB = \sqrt{EA^2 - AB^2}$$

2 marks

$$-\sqrt{2500 \tan^2 40^\circ \tan^2 60^\circ}$$
 2500

i)
$$OS^2 = 60^2 + 40^2 - 2.60.40.\cos 100^\circ$$
 . 2 marks
 $\therefore OS = 78 \text{ km}$ 1 mark

ii)
$$\frac{\sin \angle ROS}{40} = \frac{\sin 100^{\circ}}{78} \qquad \cos \angle ROS = \frac{78^{2} + 60^{2} - 40^{2}}{2.78.60}$$

$$\angle ROS = \sin^{-1} \left(\frac{40 \sin 100^{\circ}}{78}\right) \qquad OR \qquad \therefore \angle ROS = \cos^{-1} \left(\frac{78^{2} + 60^{2} - 40^{2}}{2.78.60}\right)$$

$$\approx 30^{\circ} \qquad \qquad \therefore \angle ROS \approx 30^{\circ} \qquad 3 \text{ marks}$$

iii) Bearing of the ship from O is 055°.

1 mark

b) i)
$$y = x^2 - 1 \quad 1 \text{ mark}$$

$$y = \frac{1}{x^2 - 1}$$
1 for graph 1 for asymptotes

iii)
$$\frac{1}{x^2 - 1} = x^2 - 1$$

$$\therefore (x^2 - 1)^2 = 1$$
i.e. $x^2 - 1 = \pm 1$

$$\therefore x^2 = 0 \text{ or } 2$$