

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/41

Paper 4 Theory (Extended)

October/November 2022

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1

The	names of	the elements	s of Period	d 2 of the F	Periodic Tabl	e are show	n.		
	lithium	beryllium	boron	carbon	nitrogen	oxygen	fluorine	neon	
		llowing quest may be used				all.			
lder	ntify the ele	ement which:							
(a)	is a produ	ct of photosy	nthesis						
									[1]
(b)	has an ox	ide found in							
									[1]
(c)	forms a ba	asic oxide wi	th the forr	mula X₂O					
									[1]
(d)	is a main	component c	of fertiliser	s used to i	mprove crop	growth			
									[1]
(e)	has the hi	ghest rate of	diffusion	at room te	mperature				
									[1]
			_						
(f)	produces	a red flame i	n a flame	test					
									[1]
(g)	has only 5	electrons in	each of i	ts atoms					
									[1]
/ b \	haa an ar	ido rocusus:	ala far a-:	d roin					
(n)	nas an ox	ide responsil	ole for acl	u rain.					F.4.7
									[1]

[Total: 8]

2	Potassium	is a	Group	l el	emen
_	i olassiuiii	13 0	Oloup	1 01	CHICH

(a)

(a)	Name and describe the bonding in potassium.
	name
	description
	[4]
(b)	Potassium combines with sulfur to form an ionic compound, potassium sulfide, K ₂ S.

(ii) Complete the dot-and-cross diagram to show the electron arrangement and charges of the ions in potassium sulfide.

(i) Give two physical properties of ionic compounds.

[3]

[2]

(c) When potassium is added to water, it reacts vigorously and a coloured flame is seen.

The	e equation for the reaction is shown.
	$2K(s) + 2H_2O(I) \rightarrow 2KOH(aq) + H_2(g)$
(i)	State the colour of the flame seen.
	[1]
(ii)	The solution formed is potassium hydroxide, a strong alkali.
	State the formula of the ion responsible for alkalinity in a solution.
	[1]
(iii)	State the colour of litmus in a strong alkali.
	[1]
(iv)	Calculate the volume, in cm³, of hydrogen gas formed when 2.34 g of potassium is added to excess water at room temperature and pressure.
	Use the following steps.
	Calculate the number of moles of potassium added.
	= mol
	Determine the number of moles of hydrogen gas formed.
	= mol
	Calculate the volume of hydrogen gas formed.
	volume = cm ³ [3]
	[~]

(d)		ueous potassium hydroxide reacts with a dilute acid to produce aqueous potassium chloride, $l(aq)$, which is a salt.
	(i)	Name the dilute acid used.
		[1]
	(ii)	State the type of reaction taking place.
		[1]
((iii)	Name the experimental technique used when salts are made by reacting a dilute acid with an aqueous alkali.
		[1]
(e)		en aqueous silver nitrate, ${\sf AgNO_3(aq)}$, is added to aqueous potassium chloride, a precipitate primed.
	(i)	State the colour of the precipitate formed.
		[1]
	(ii)	Name the precipitate formed.
		[1]
((iii)	Write the ionic equation for the reaction. Include state symbols.
		[3]
		[Total: 23]

3

shown.

Ammonia is made in an industrial process starting with nitrogen. The equation for the reaction is

	$N_2 + 3H_2 \rightleftharpoons 2NH_3$
(a)	Name the industrial process used to make ammonia.
	[1]
(b)	State the row material from which nitrogen is obtained
(b)	State the raw material from which nitrogen is obtained. [1]
	[1]
(c)	State what is meant by the symbol ← .
	[1]
(d)	State the temperature and pressure used in this industrial process.
()	temperature =°C
	pressure = atm
	[2]
(<u>a</u>)	
	Name the catalyst used in this industrial process.
(0)	Name the catalyst used in this industrial process. [1]
(0)	Name the catalyst used in this industrial process. [1]
(f)	
	[1]
	The forward reaction is exothermic. State the effect, if any, on the position of the equilibrium when the following changes are made.
	The forward reaction is exothermic. State the effect, if any, on the position of the equilibrium when the following changes are made. Explain your answers.
	The forward reaction is exothermic. State the effect, if any, on the position of the equilibrium when the following changes are made. Explain your answers.
	The forward reaction is exothermic. State the effect, if any, on the position of the equilibrium when the following changes are made. Explain your answers.
	The forward reaction is exothermic. State the effect, if any, on the position of the equilibrium when the following changes are made. Explain your answers. temperature is reduced
	The forward reaction is exothermic. State the effect, if any, on the position of the equilibrium when the following changes are made. Explain your answers. temperature is reduced

g) Explain, in terms of particles, what happens to the rate of reaction when the temperature is reduced.
[3
h) Give the formula of the compound formed when sulfuric acid reacts with ammonia.
[1]
[Total: 14

Α	stude	nt prepares calcium nitrate, $Ca(NO_3)_2$, by adding calcium carbonate to dilute nitric acid.	
(a) Wr	ite the chemical equation for this reaction.	
			[2]
(b	•	scribe two observations during this reaction.	
			[2]
(с	the	e student continues to add calcium carbonate until it is in excess. The student then removexcess calcium carbonate by filtration and collects the aqueous calcium nitrate.	ves
	Oic		[1]
			ι'.
(d) The	e student gently heats the aqueous calcium nitrate until the solution is saturated.	
	(i)	Suggest what is meant by the term saturated solution.	
			[2]
	(ii)	Describe how crystals are produced from a hot saturated solution.	
			[4]

(e)		cium nitrate crystals are hydrated and have the formula $Ca(NO_3)_2 \cdot xH_2O$ where x is a whole nber of molecules of water.
	The	e student heats the crystals to remove the molecules of water.
		$Ca(NO_3)_2 \cdot xH_2O(s) \rightarrow Ca(NO_3)_2(s) + xH_2O(g)$
	(i)	State the term used to describe the calcium nitrate after the molecules of water have been removed.
		[1]
	(ii)	The student heats a sample of $Ca(NO_3)_2 \cdot xH_2O$ and forms 2.46g of $Ca(NO_3)_2$ and 0.0600 moles of H_2O .
		Determine the value of <i>x</i> . Use the following steps.
		• Calculate the M_r of Ca(NO ₃) ₂ .
		$M_{\rm r} =$ • Determine the number of moles of ${\rm Ca(NO_3)_2}$ formed. ${\rm moles~of~Ca(NO_3)_2~formed} =$ • Determine the value of x in ${\rm Ca(NO_3)_2} {\rm ^\bullet xH_2O}$.
(f)	Nitr	x = [3] rates decompose on heating.
	Wri	te the chemical equation for the reaction when solid sodium nitrate is heated.
		[2]

[Total: 14]

5 Ethene is an alkene which reacts with bromine as shown in the equation.

$$C_2H_4 + Br_2 \rightarrow C_2H_4Br_2$$

(a) Write the general formula of alkenes.

-	4 7
- 1 1	1

(b) Describe the colour change seen when ethene is bubbled through aqueous bromine.

(c) In this reaction only one product is formed from two reactants.

Name this type of organic reaction.

(d) Part of the energy profile diagram of this reaction is shown.

(i) The reaction is exothermic.

Complete the energy profile diagram for this reaction. Include:

- the position of the products
- an arrow to show the activation energy, labelled as A
- an arrow to show the energy change for the reaction.

[3]

(ii) The chemical equation for the reaction can be represented as shown.

Some bond energies are given.

bond	bond energy /kJmol
C–H	410
C=C	610
Br–Br	190
C-C	350
C–Br	290

Use the bond energies in the table to calculate the energy change in this reaction.

Use the following steps.

• Calculate the energy needed to break bonds.

• Calculate the energy released in making bonds.

• Determine the energy change in this reaction.

[Total: 9]

6 Ester Y has the structure shown.

(a) (i) Name ester Y.

		[1]
(ii)	Deduce the empirical formula of ester Y.	

(b) Complete the dot-and-cross diagram to show the arrangement of electrons in a molecule of ester **Y**.

[3]

(c)	Este	er Y can be made by reacting two organic compounds together.	
	Nan	ne the compounds and draw their structures.	
	Sho	w all of the atoms and all of the bonds.	
	nam	ne	
	stru	cture	
	nam	ne	
	stru	cture	
			F 4 1
			[4]
(d)	(i)	Describe what is meant by the term <i>structural isomer</i> .	
			. [2]
	(ii)	Name a carboxylic acid which is a structural isomer of ester Y .	
			[1]
		[Tota	
		[.53	-1

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

		2	He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	牊	radon			
					o	ш	fluorine 19	17	Cl	chlorine 35.5	35	Б	bromine 80	53	П	iodine 127	85	¥	astatine -			
	>				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	Тe	tellurium 128	84	Ъ	moloum –	116	_	livermorium -
	>				7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	<u>B</u>	bismuth 209			
	≥		-		9	O	carbon 12	14	S	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	Ŀ	flerovium -
	≡				2	В	boron 11	13	Ν	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	<u>В</u>	cadmium 112	80	Ρ̈́	mercury 201	112	S	copernicium
											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
	dnoib										28	Ż	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium -
ئ ا	<u>5</u>				,						27	ပိ	cobalt 59	45	R	rhodium 103	77	٦	iridium 192	109	Σ	meitnerium -
		-	I	hydrogen 1							26	Pe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium
								1			25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
					_	loq	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>n</u>	tantalum 181	105	op O	dubnium –
						atc	rel				22	F	titanium 48	40	Zr	zirconium 91	72	茔	hafnium 178	104	Ŗ	rutherfordium -
											21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	88	ഗ്	strontium 88	26	Ba	barium 137	88	Ra	radium
	_				က	=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Вb	rubidium 85	22	S	caesium 133	87	Ļ	francium -

71	Γn	lutetium 175	103	۲	lawrencium	I
70	Υp	ytterbium 173	102	8	nobelium	ı
69	T	thulium	101	Md	mendelevium	ı
89	щ	erbium 167	100	Fm	fermium	1
29	웃	holmium 165	66	Es	einsteinium	ı
99	۵	dysprosium	86	ŭ	californium	ı
65	Д	terbium 150	97	Bk	berkelium	ı
64	Gd	gadolinium 157	96	Cm	curium	1
63	En	europium 152	95	Am	americium	ı
62	Sm	samarium 150	94	Pu	plutonium	ı
61	Pm	promethium	93	N	neptunium	ı
09	PZ	neodymium	92	\supset	uranium	238
69	Ā	praseodymium	91	Ра	protactinium	231
28	Ce	cerium	06	무	thorium	232
22	Гa	lanthanum 130	88	Ac	actinium	1

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).