```
#include "string.h"
        #include "spparks.h"
 SPPARKS
         #include "memory.h"
         #include "error.h"
         #include "universe.h"
        #include "input.h"
         #in ]
Getting
         #in
                   SPPARKS for microstructural science
         #in
         #include "potential.h"
         #include "random mars.h"
         #include "timer.h"
                                     Brian DeCost
         #include "output.h"
         using namespace SPPARKS NS;
                                     -11 July 2014
            allocate fundamental classes (memory, error, universe, input)
            parse input switches
            initialize communicators, screen & logfile output
            input is allocated at end after MPI info is setup
         SPPARKS::SPPARKS(int narg, char **arg, MPI_Comm communicator)
```

error = new Error(this):

1/19

Stochastic Parallel PARticle Kinetic Simulator¹

SPPARKS

Introduction to SPPARKS

Getting started with SPPARKS

Demo: Running

Demo: Grain growth kinetics

Demo: Visualization with ParaView

Running SPPARKS in parallel

SPPARKS is an efficient parallel Kinetic Monte Carlo framework

- ▷ Mesoscale materials phenomena as stochastic processes
- ▷ Scalable to thousands of processors
- ▶ Modular C++ facilitates user-defined models/statistics
- ▷ Open Source (GPLv3)
- ▷ Related to the LAMMPS Molecular Dynamics framework

¹http://spparks.sandia.gov/

What applications is SPPARKS useful for?

SPPARKS

Introduction to SPPARKS

Getting started with SPPARKS

Demo: Running SPPARKS

Demo: Grain growth kinetics

Demo: Visualization with ParaView

Running SPPARKS in parallel

- ▷ off-lattice models

In this session, we'll focus on the Potts model

- ▶ Modeling grain growth, recrystallization, and related phenomena
- ▶ Annealing synthetic microstructures to achieve local equilibrium along triple lines

Spatially decomposed parallelization

SPPARKS

Introduction to SPPARKS

Getting started witl SPPARKS

Demo: Running SPPARKS

Demo: Grain growth kinetics

Demo: Visualization with ParaView

The SPPARKS distribution

SPPARKS

Introduction

Getting started with SPPARKS

Demo: Running SPPARKS

Demo: Grair growth kinetics

Demo: Visualization with ParaView

Running SPPARKS in parallel

Download SPPARKS from

http://www.sandia.gov/~sjplimp/download.html

Unpack the SPPARKS source archive

```
mkdir -p ~/Software && cd ~/Software
tar xvzf ~/Downloads/spparks.tar.gz
cd spparks*/src
ls ~/Software/spparks*/
```

SPPARKS uses the Unix build system make

SPPARKS

Introduction to SPPARKS

Getting started with SPPARKS

Demo:

Demo: Grai

Demo: Visualization with

Running SPPARKS in parallel SPPARKS is distributed with several makefiles, found in src/MAKE/.

```
bdecost@unix6 > ls MAKE :-/Software/spparks-19Novl3/src
Makefile.blackrose Makefile.mac Makefile.serial
Makefile.g++ Makefile.mac mpi Makefile.serial_debug
Makefile.linux Makefile.redsky Makefile.xt5
```

You will likely have to edit Makefile.linux, Makefile.g++, or Makefile.mac_mpi to reflect your system to get SPPARKS to compile.²

 $^{^2\}mbox{You'll}$ likely need to supply the location of the MPI library files on your system.

Building SPPARKS

SPPARKS

Introduction to SPPARKS

Getting started with SPPARKS

Demo: Running SPPARKS

Demo: Grain growth

Demo: Visualization with ParaView

Running SPPARKS in parallel Try to compile SPPARKS by running make with the appropriate build target for your system as an argument.

Building SPPARKS using Makefile.mac_mpi

make -j4 mac_mpi

The result is an executable named spk_mac_mpi in src/.

Building serial SPPARKS

SPPARKS

Introduction to SPPARKS

Getting started with SPPARKS

Demo:

Demo: Grain

Demo: Visualization with ParaView

Running SPPARKS in parallel The JPEG library can also cause build problems which are difficult to resolve. Makefile.demo will build a serial version of SPPARKS without the JPEG library.

First build the MPI stubs:

cd STUBS

make

cd ..

Copy Makefile.demo into src/MAKE/

Build the demo version of =SPPARKS=

make demo

"Installing" SPPARKS³

SPPARKS

Introduction to SPPARKS

Getting started with SPPARKS

Demo: Running

Demo: Grai

Demo: Visualization with ParaView

Kunning SPPARKS in parallel To avoid copying the SPPARKS executable or typing the full path to it repeatedly, define a *shell alias*:

alias spk='^/Software/spparks*/src/spk_demo'

Now typing spk into the shell prompt from any working directory runs SPPARKS. Try this now.

 $^{^3}$ To make this persistent, append this command to $^{\sim}$.bashrc ($^{\sim}$ /.bash_profile on a mac)

Running SPPARKS with no input

SPPARKS

Introduction to SPPARKS

Getting started with SPPARKS

Demo: Running SPPARKS

Demo: Grai growth kinetics

Demo: Visualization with

```
SPPARKS reads commands from stdin

brian@rsfern > spk

SPPARKS (19 Nov 2013)

Press Ctrl-C to exit.
```

SPPARKS input scripts

SPPARKS

Introduction to SPPARKS

Getting started with SPPARKS

Demo: Running SPPARKS

Demo: Grain growth kinetics

Demo: Visualization with ParaView

Running SPPARKS in parallel SPPARKS is controlled by a script of commands which are executed line-by-line.

Run the =basic= demo

cd ~/Downloads/spparks-demo-master/demos/basic
spk < basic.spkin</pre>

Anatomy of an input script: basic.spkin

SPPARKS

Introduction to SPPARKS

Getting started with SPPARKS

Demo: Running SPPARKS

Demo: Grain growth kinetics

Demo: Visualization with ParaView

Running SPPARKS in parallel # Minimal SPPARKS Potts script

seed 56789

app_style potts 100

dimension 3

lattice sc/26n 1.0

region box block 0 32 0 32 0 32

create_box box
create_sites box

set site range 1 100

solve_styletreediag_styleenergystats10.0run100.0

Diagnostics

SPPARKS

Introduction to SPPARKS

Getting started with SPPARKS

Demo: Running

Demo: Grain growth kinetics

Demo: Visualization with ParaView

Log file

SPPARKS

Introduction to SPPARKS

Getting started with SPPARKS

Demo: Running

Demo: Grain growth kinetics

Demo: Visualization with ParaView

The dump command

SPPARKS

Introduction to SPPARKS

Getting started with

Demo: Running SPPARKS

Demo: Grair growth

Demo: Visualization with ParaView

Running SPPARKS in $Post-processing.\ pizza.py\ or\ custom\ scripts.$

Installing pizza.py⁴

SPPARKS

Introductio to SPPARKS

Getting started wir SPPARKS

Running SPPARKS

Demo: Grain growth kinetics

Demo: Visualization with ParaView

Running SPPARKS in parallel Download and unpack the pizza.py archive from http://www.sandia.gov/~sjplimp/download.html

Unpack the SPPARKS source archive

mkdir -p ~/Software && cd ~/Software
tar xvzf ~/Downloads/pizza.tar.gz
cd clica pizza-/puthon i ~/Software/piz

alias pizza='python -i ~/Software/pizza*/src/pizza.py'

⁴As with SPPARKS, append the alias command to ~/.bashrc or ~/.bash_profile to make this "installation" persistent.

Conversion to vtk with pizza.py

SPPARKS

Introduction to SPPARKS

Getting started with SPPARKS

Demo: Running SPPARKS

Demo: Grain growth kinetics

Demo: Visualization with ParaView

Running SPPARKS i

mpirun

SPPARKS

Introduction to SPPARKS

Getting started wit SPPARKS

Demo: Running SPPARKS

Demo: Grain growth kinetics

Demo: Visualization with ParaView

Processor partitions

SPPARKS

Introduction to SPPARKS

Getting started with

Demo:
Running

Demo: Grain growth kinetics

Demo: Visualization with ParaView