Lab0 实验报告

学号: 521021910952

姓名: 杜心敏

1. 数据结构设计

图1数据结构

总体结构类似 HashMap 的形式,但由于输入有序,且无需查询操作,所以与hash表不同,非零行号连续存放,与其下标没有关系。由于不涉及插入、删除操作,没有采取链式存储,选择 vector 存储(数组也可)。

结构:

- Col_value:保存非零列号col,数值val
- Row_list:保存非零行号 row,以及该行的一条数据记录 vector< Col_value* >

```
1 | struct Col_value{
2
       int col;
        int val;
3
4
   };
5
6
   struct Row_list{
7
       int row;
8
        vector<Col_value*> list;
9
   };
10
11 vector<Row_list*> Matrix;
```


图2 存储示例

存储示例如上。非零行号按序存在连续空间上,同时存储该行上所有非零列号和对应的数值(连续空间)。

2.时空复杂度分析

存储的时空复杂度

存储单个 $M \times N$, 非零元素占比 (稀疏程度) p

● 普通二维数组存储法: O(M × N)

• 该结构: $O(pM \times N)$

矩阵乘法时空复杂度

设左矩阵大小为M×N,右矩阵大小为N×K,总体稀疏程度p

本次矩阵乘法实现如下:

```
for left_row := LeftMatrix.begin() to LeftMatrix.end()
        while left != left_row.end() && right_row != RightMatrix.end() do
 2
            if left.col == right.row then
 3
                for right := right_row.begin() to right_row.end()
 4
 5
                    tmp[right.col] += left * right
                1eft++
 6
 7
                right_row++
            if left.col < right.row then left++</pre>
 8
            if left.col < right.row then right_row++</pre>
9
10
        for i := 0 to ans.col
11
12
            if tmp[i] != 0 then
13
                ans_Row.push_back(Col_value(i, tmp[i]))
```

- 1. 取出左矩阵的一行 left_row
- 2. 同时遍历该行 1eft_row 中的元素的**列号**,以及右矩阵的**行号**
- 3. 当左矩阵元素列号 left_row 等于右矩阵某一行的行号 right.row 时,用左矩阵该**元素** left 依次乘右矩阵对应 行的每一个元素,存放在**暂存区** tmp 数组,下标为**右矩阵元素的列号** right.col。
- 4. 左矩阵一行 left_row 遍历完后, tmp 数组就是乘积矩阵的一行,行号为左矩阵该行的行号 left.row
- 最坏的结果是左矩阵非零元素全部**遍历一遍**,右矩阵遍历了 left.row 次。

• 额外空间: 用于暂存累加值的 tmp 数组, 长度为 right.col。

• 运算复杂度: $O(pM \times N + pM \times N \times K) = O(pM \times N \times K)$

普通矩阵乘法:

• 无需额外空间

• 运算复杂度: $O(M \times N \times K)$

3.实验探究

表1 实验数据记录

矩阵规模(M,N,K)	稀疏程度	普通算法 耗时	优化算法 耗时	普通算法 空间消耗	优化算法 空间消耗
(57,31,404)	0.59%	0.004	0	37319	710
(57,31,404)	1.22%	0.004	0.001	37319	1229
(57,31,404)	4.43%	0.008	0.004	37319	6491
(57,31,404)	8.98%	0.024	0.015	37319	19976
(57,31,404)	13.21%	0.033	0.030	37319	37823
(57,31,404)	19.96%	0.056	0.050	37319	58244
(57,31,404)	57.5%	0.109	0.089	37319	94139
(57,31,404)	79.1%	0.074	0.076	37319	103421
(125,240,540)	0.49%	0.121	0.002	227100	4098
(125,240,540)	0.98%	0.129	0.006	227100	10086
(125,240,540)	5.04%	0.163	0.091	227100	117285
(125,240,540)	10.01%	0.237	0.187	227100	125805960
(1000,2000,3000)	0.93%	64.586	1.74	$11 imes 10^6$	$1.86 imes 10^6$
(1000,2000,3000)	4.98%	71.181	8.693	$11 imes 10^6$	$10.1 imes 10^6$
(25,12,42)	22.14%	0.001	0.001	1854	1842
(35,101,52)	15.19%	0.007	0.008	10607	8968

1. 其中稀疏程度计算方法为: $\frac{\$ \otimes \pi \otimes \wedge \otimes}{MN + NK}$

2. 元素大小范围: [0,100]

3. 耗时使用 time.h 中的 clock() 函数计时,单位为秒

4. 空间消耗以一个 int 为单位,例如优化算法中三元组占3个单位,包括新构建矩阵的空间。

数据分析

图3 时空消耗对比

- 普通算法:由于每次都是遍历全部,运算速度随p的变化相对较小(图1由于时间较短,曲线起伏略明显);空间消耗不随p变化。
- 优化后:运算速度随p变化较大,但由于减少了遍历次数,算法速度较快;
 空间消耗受p影响较大。p较小时,有明显优势。分别在10%和5%左右空间消耗程度激增,失去优势。

2. 比较不同规模, 算法失效的p的临界值

注:由于减少遍历次数,优化后算法运算速度普遍快于普通算法,此处"失效"由空间消耗程度衡量。源数据在表1中。

图4不同规模下p临界值

实验结论

- 程序简便程度:在p较大、元素数据较小的时候,使用普通的矩阵算法较为方便,且空间存储量较小。
- 空间优势:当矩阵的行列在 10^3 数量级以内的,p的临界值在5%左右,稀疏度大于5%SparseMatrix没有优势。
- 时间优势:由于优化后的算法减少了遍历次数,普遍比原算法快。

4. 实验反思

- 1. 实验中衡量空间消耗程度,仅仅用存储的 int 型数据的数量衡量,没有考虑结构体中 vector 指针以及 vector 实现时额外的空间消耗。
- 2. 矩阵规模过大且p较高时,输出文件过大导致出现错误。所以没有对更大规模的矩阵进行p的临界值实验。