UNIVERSITATEA DE STAT DIN MOLDOVA

FACULTATEA MATEMATICĂ ȘI INFORMATICĂ DEPARTAMENTUL INFORMATICĂ

CEMÎRTAN CRISTIAN

Lucrarea individuală nr. 5 la disciplina *Arhitectura Calculatoarelor și Limbaje de Asamblare*

Coordonator: Sturza Greta, lector universitar

Cuprins

Sarcină	3
Cod sursă (versiunea .EXE)	3
Cod sursă (versiunea .COM)	5
Rezultate	7
Depanare	8
Concluzie	12

Sarcină

Este definit șirul **s1**. Să se scrie un program ce introduce de la tastatură simbolul **a1**, șirurile **s2**, **s3** și afișează concatenarea elementelor introduse în modul următor:

```
Introduceti sirul s2:
s2
Introduceti simbolul a1: a1
Introduceti sirul s3: s3
Rezultatul obtinut: s1bba1s1a1bbs2s3
```

Cod sursă (versiunea .EXE)

```
COMMENT *
     Lucrare individuala nr. 5, varianta 3
     Versiunea .EXE
     Copyright Cemirtan Cristian 2021
     Grupa I 2101
.MODEL small
.STACK
len
           EQU 10
crlf EQU ODh, OAh
.DATA
DB crlf
txt sir DB 'Introduceti sirul s'
cifra DB '2', \ ; truc pentru a nu crea mesaje redundante
':', crlf, '$'
txt sim DB OAh, 'Introduceti simbolul a1: $'
txt rez DB OAh, 'Rezultatul obtinut: $'
b DB ' $'; spatiu liber
al DB ?, '$'; caracter
s1 DB 'definit$'; sirul s1 este definit
msk DW \
      OFFSET s3, OFFSET s2, OFFSET b, OFFSET a1, \
      OFFSET s1, OFFSET a1, OFFSET b, OFFSET s1, \
      OFFSET txt rez
; tabelul de cautare
; se interpreteaza de la dreapta la stanga
msk\_idx EQU $ - msk - 2 ; pozitia ultimului pointer
```

```
lungime_s2_max DB len + 1
lungime s2 DB ?
s2 DB len + 2 DUP (?)
lungime s3 max DB ?
lungime s3 DB ?
s3 DB len + 2 DUP (?)
; initializarea segmentului de date
     mov dx, @data
      mov ds, dx
; optimizari de spatiu
      lea si, lungime s2 max
      lea di, lungime s3 max
      mov BYTE PTR [di], len + 1
      xor bx, bx ; liniile 66 si 92
; afisare text pentru sir #2
     mov ah, 09h
      lea dx, txt sir
      int 21h
; citeste s2
      inc ah ; acum e 0Ah
      mov dx, si
      int 21h
; inlocuim in s2 ODh cu '$'
      mov bl, [si + 1]
      mov BYTE PTR [si + bx + 2], '$'
; afisare text pentru caracter
      dec ah ; acum e 09h
      lea dx, txt sim
      int 21h
; citeste al
      mov ah, 1
      int 21h
      mov [a1], al
; formatam text pentru sir #3, conform cerintele sarcinii
      inc cifra
      mov WORD PTR [cifra + 2], '$ '
; afisare text pentru sir #3
      mov ah, 09h
      lea dx, [txt sir - 2]
      int 21h
; citeste s3
      inc ah
      mov dx, di
      int 21h
```

```
; inlocuim in s3 ODh cu '$'
      mov bl, lungime s3
      mov BYTE PTR [di + bx + 2], '$'
; afisare rezultat
      dec ah
      lea si, msk
      mov bx, msk idx
bucla:
      mov dx, [bx + si]
      int 21h
      sub bx, 2
      jnc bucla
; iesire cu succes, cu cod 0
      mov ax, 4C00h
      int 21h
END
```

Cod sursă (versiunea .COM)

```
COMMENT *
      Lucrare individuala nr. 5, varianta 3
      Versiunea .COM
      Copyright Cemirtan Cristian 2021
      Grupa I 2101
.MODEL tiny
.CODE
      ORG 100h
main:
; optimizari de spatiu
      lea si, lungime_s2_max
      lea di, lungime_s3_max
      mov BYTE PTR [di], len + 1
      xor bx, bx ; liniile 66 si 92
; afisare text pentru sir #2
      mov ah, 09h
      lea dx, txt sir
      int 21h
; citeste s2
      inc ah ; acum e 0Ah
      mov dx, si
      int 21h
; inlocuim in s2 ODh cu '$'
      mov bl, [si + 1]
```

```
mov BYTE PTR [si + bx + 2], '$'
; afisare text pentru caracter
      dec ah ; acum e 09h
      lea dx, txt sim
      int 21h
; citeste al
     mov ah, 1
      int 21h
      mov [a1], al
; formatam text pentru sir #3, conform cerintele sarcinii
      inc cifra
      mov WORD PTR [cifra + 2], '$ '
; afisare text pentru sir #3
      mov ah, 09h
      lea dx, [txt_sir - 2]
      int 21h
; citeste s3
     inc ah
      mov dx, di
      int 21h
; inlocuim in s3 ODh cu '$'
     mov bl, lungime s3
      mov BYTE PTR [di + bx + 2], '$'
; afisare rezultat
     dec ah
      lea si, msk
      mov bx, msk idx
bucla:
     mov dx, [bx + si]
      int 21h
      sub bx, 2
      jnc bucla
; iesire cu succes, cu cod 0
     mov ax, 4C00h
      int 21h
; date
     EQU 10
crlf EQU 0Dh, 0Ah
DB crlf
txt sir DB 'Introduceti sirul s'
cifra DB '2', \; truc pentru a nu crea mesaje redundante
':', crlf, '$'
txt sim DB OAh, 'Introduceti simbolul a1: $'
```

```
txt rez DB OAh, 'Rezultatul obtinut: $'
b DB ' $'; spatiu liber
al DB ?, '$'; caracter
s1 DB 'definit$'; sirul s1 este definit
msk DW \
      OFFSET s3, OFFSET s2, OFFSET b, OFFSET b, OFFSET a1, \
      OFFSET s1, OFFSET a1, OFFSET b, OFFSET s1, \
      OFFSET txt rez
; tabelul de cautare
; se interpreteaza de la dreapta la stanga
msk idx EQU $ - msk - 2; pozitia ultimului pointer
lungime_s2_max DB len + 1
lungime s2 DB ?
s2 DB len + 2 DUP (?)
lungime s3 max DB ?
lungime s3 DB ?
s3 DB len + 2 DUP (?)
END main
```

Rezultate

```
E:N>tasm i5
Turbo Assembler Version 3.0 Copyright (c) 1988, 1991 Borland International
Assembling file:
                   i5.ASM
Error messages:
                   None
Warning messages:
                  None
Passes:
Remaining memory: 451k
E:N>tlink i5
Turbo Link Version 2.0 Copyright (c) 1987, 1988 Borland International
E: \> i5
Introduceti sirul s2:
1234
Introduceti simbolul a1: "
Introduceti sirul s3: 5678
Rezultatul obtinut: definit "definit" 12345678
E:\>_
```

```
E:N>tasm i5com
Turbo Assembler Version 3.0 Copyright (c) 1988, 1991 Borland International
                   i5com.ASM
Assembling file:
Error messages:
                   None
Warning messages:
                   None
Passes:
Remaining memory:
                   451k
E:N>tlink /t i5com
Turbo Link Version 2.0 Copyright (c) 1987, 1988 Borland International
E:N>i5com.com
Introduceti sirul s2:
Versiunea
Introduceti simbolul a1: '
Introduceti sirul s3: .COM
                             'definit'
                                        Versiunea .COM
Rezultatul obtinut: definit
E:\>
```

Figurile 1 și 2. Programul executat cu succes.

Depanare

Figura 3. Depanatorul înainte de a rula programul sub format .EXE.

≡ File Edit View	Run Breakpoints Data Options Windo	ow Help READY				
[■] =CPU 80486=====		1[‡]-				
cs:0100▶BED001	mov si,01DO	ax 0000 c=0				
cs:0103 BFDE01	mov di,01DE	bx 0000 z=0				
cs:0106 C6050B	mov byte ptr [di],0B	cx 0000 s=0				
cs:0109 33DB	xor bx,bx	dx 0000 a=0				
cs:010B B409	mov ah,09	si 0000 p=0				
cs:010D BA6501	mov dx,0165	di 0000 a=0				
cs:0110 CD21	int 21	bp 0000 i=1				
cs:0112 FEC4	inc ah	sp FFFE d=0				
cs:0114 8BD6	mov dx,si	ds 4E98				
cs:0116 CD21	int 21	es 4E98				
cs:0118 8A5C01	mov bl,[si+01]	ss 4E98				
cs:011B C6400224	mov byte ptr [bx+si+02],24	cs 4E98				
cs:011F FECC	dec ah	ip 0100				
cs:0121 BA7D01	mov dx,017D					
cs:0124 CD21	int 21					
41						
ds:0000 CD 20 FF 9F	00 9A FO FE = ∫ Ü≣∎	ss:0000 20CD				
ds:0008 1D F0 E0 01	7F 1B AA 01 +≡αΘΔ←¬Θ	ss:FFFE▶0000				
ds:0010 7F 1B 89 02	DA 15 4C 07 ∆←ë 8 ŗ§L•	ss:FFFC 0000				
ds:0018 01 04 01 02	03 FF FF FF ⊕◆⊕ □	ss:FFFA 0000				
ds:0020 FF FF FF FF	FF FF FF FF	ss:FFF8 0000				
F1-Help F2-Bkpt F3-Mod F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu						

Figura 4. Depanatorul înainte de a rula programul sub format .COM. În deosebire de versiunea .EXE, nu necesită încărcarea manuală a registrului ds, deoarece modelul *small* unifică stiva, cod și date într-un singur segment.

- În afară de prologul programului, versiunile .EXE și .COM sunt identice.
- Anterior, vom depana versiunea .EXE.

≡ File Edit View Run Break	points Data Options W	lindow Help	READY
[1 = CPU 80486		1 1	=[‡]=
cs:0000▶BAAE4E mov	lx,4EAE	🔼 ax 0000	c=0
	ls,dx	■ bx 0000	z=0
	si,0075	cx 0000	s=0
cs:0008 BF8300 mov	li,0083	dx 0000	0=0
cs:000B C6050B mov 1	oyte ptr [di],0B	si 0000	p=0
cs:000E 33DB xor	ox,bx	di 0000	a=0
cs:0010 B409 mov a	th,09	Ър 0000	i = 1
cs:0012 BA0A00 mov	lx,000A	sp 0400	d=0
cs:0015 CD21 int 2	21	ds 4E98	
cs:0017 FEC4 inc	ιh	es 4E98	
	lx,si	ss 4EB8	
cs:001B CD21 int 2	21	cs 4EA8	
cs:001D 8A5C01 mov 1	ol,[si+01]	ip 0000	
cs:0020 C6400224 mov 1	oyte ptr [bx+si+02],24		
cs:0024 FECC dec	ιĥ	<u> </u>	
√1		T	
ds:0000 CD 20 FF 9F 00 9A F0 F	E = fÜ≣∎	ss:0402 00	000
ds:0008 1D F0 E0 01 7F 1B AA 0:		ss:0400▶00	000
ds:0010 7F 1B 89 02 DA 15 4C 0	? Δ←ë ⊟ r§L•	ss:03FE 06	000
ds:0018 01 04 01 02 03 FF FF FI	? ©◆© © ∳	ss:03FC 4F	EA8
ds:0020 FF FF FF FF FF FF FF FF		ss:03FA 06	18
F1-Help F2-Bkpt F3-Mod F4-Here F5-	-Zoom <mark>F6-Next F7-Trace F</mark>	'8-Step F9-Run F10-	-Menu

Figura 5. Registrul ds modificat explicit, după executarea instrucțiunii aflată la adresa cs:0003h. Registrul ip indică locația instrucțiunii ce va fi executată.

```
E:\>td i5
Turbo Debugger Version 3.1 Copyright (c) 1988,92 Borland International
Introduceti sirul s2:
Individ 5_
```

Figura 6. Introducem de la tastatură, șirul s2. Întreruperea a avut loc la adresa cs:001Bh.

	≡ File	Edit	View	Run	Brea	akpoints	Data	Options 0	Window	Help	READY
Г	=[=]=CPU									1_	—[‡]—
Ш	cs:0010	B409		m	ov	ah,09				ax 0A24	C=0
Ш	cs:0012	BAOAG	00	m	ov	dx,000i	ì			bx 0009	z=0
Ш	cs:0015	CD21		i	nt	21				cx 0000	s=0
Ш	cs:0017	FEC4		i	nc	ah				dx 0075	0=0
Ш	cs:0019	8BD6		m	οv	dx,si				si 0075	p=1
Ш	cs:001B	CD21		i	nt	21				di 0083	a=0
Ш	cs:001D	8A5C6	1	m	οv	bl,[si	+01]			Бр 0000	i = 1
Ш	cs:0020	C6400	224	m	οv	byte pi	tr [bx+	si+021,24		sp 0400	d=0
Ш	cs:0024	FECC		d	ec	ah				ds 4EAE	
Ш	cs:0026	BA226	00	m	οv	dx,002	2			es 4E98	
Ш	cs:0029	CD21		i	nt	21				ss 4EB8	
Ш	cs:002B	B401		m	οv	ah,01				cs 4EA8	
Ш	cs:002D	CD21		i	nt	21				ip 0024	
Ш	cs:002F	A2550	00	m	οv	[0055]	.al				
Ш	cs:0032				nc	byte p		D 1			
Щ						-9 P					
	es:01C8	00 57	00 5	5 00 5	3 00	53 W U	SS		Δ	ss:0408	0000
Ш	es:01D0	00 57	' 00 31	00 0	B 09	49 W =	ð∘I			ss:0406	0000
	es:01D8	6E 64	69 70	69 6	4 20	35 ndiv	id 5			ss:0404	0000
	es:01E0	24 00	00 01	3 00 0	0 00	00 \$ 8				ss:0402	0000
	es:01E8	00 00	00 00	00 0	0 00	00			V	ss:0400)	-0000
L									> ±		
F 1	l-Help F2	-Bkpt	F3-Mod	1 F4 -H	ere l	F5-Zoom 1	F6-Next	F7-Trace	F8-Step	F9-Run F1	. <mark>0−Menu</mark>

Figura 7. Segmentul de date modificat după prima întrerupere 0Ah. Instrucțiunea la adresa cs:0020h, a înlocuit explicit 0Dh cu '\$' la adresa ds:bx+si+2. Registrul bx conține lungimea șirului s1.

Figura 8. Bucla ce avantajează de tabelul de căutare. Tabelul conține adrese ale elementelor, care vor fi afișate pe ecran.

```
E:\>td i5
Turbo Debugger Version 3.1 Copyright (c) 1988,92 Borland International
Introduceti sirul s2:
Individ 5
Introduceti simbolul a1: ~
Introduceti sirul s3: x86 asm
Rezultatul obtinut: definit ~definit~ Individ 5x86 asm_
```

Figurile 9. Concatenarea elementelor.

Concluzie

Pe parcursul creării a acestui program, am utilizat o tehnică din programarea dinamică, ce ajută la o afișare eficientă a concatenării de elemente, prevăzute de sarcina lucrării individuale. Această tehnică se numește *tabel de căutare*, care înlocuiește computații complexe cu indexarea simplă a elementelor din tabel.

Am introdus în segmentul de cod a programului, un tabel de căutare ce conține deplasamente a elementelor ce vor fi afișate la consolă. Bucla, menționată în figura 8, iterează tabela și încarcă în registrul **dx**, adresa respectivă, pentru a afișa la ecran.

Considerând că iterația are loc de la dreapta la stânga, constă faptul că în registrul **si** este încărcată adresa începutului de tabel, și în \mathbf{bx} este indicele a ultimului element a tabelei. La fiecare iterație, \mathbf{bx} devine decrementat cu 2 (adresa este un cuvânt), și bucla se termină când \mathbf{bx} va fi mai mic decât 0 (fanionul $\mathbf{C} = 1$).