CNNs

January 31st, 2025

Deep Learning (CS60010)

Convolutional networks

- Networks for images
- Invariance and equivariance
- 1D convolution
- Convolutional layers
- Channels
- Receptive fields
- Convolutional network for MNIST 1D

Image classification

- Multiclass classification problem (discrete classes, >2 possible classes)
- Convolutional network

Object detection

Image segmentation

- Multivariate binary classification problem (many outputs, two discrete classes)
- Convolutional encoder-decoder network

Networks for images

224x 224, images
pixels x3 channels

Cach (0, 255)
value

Problems with fully-connected networks

- 1. Size
 - 224x224 RGB image = 150,528 dimensions
 - Hidden layers generally larger than inputs
 - One hidden layer = 150,520x150,528 weights -- 22 billion
- 2. Nearby pixels statistically related
 - But could permute pixels and relearn and get same results with FC
- 3. Should be stable under transformations
 - Don't want to re-learn appearance at different parts of image

Convolutional networks

- Parameters only look at local image patches
- Share parameters across image

Convolutional networks

- Networks for images
- Invariance and equivariance
- 1D convolution
- Convolutional layers
- Channels
- Receptive fields
- Convolutional network for MNIST 1D

Invariance

• A function f[x] is invariant to a transformation t[] if:

$$\mathbf{f}[\mathbf{t}[\mathbf{x}]] = \mathbf{f}[\mathbf{x}]$$

i.e., the function output is the same even after the transformation is applied.

Invariance example

e.g., Image classification

• Image has been translated, but we want our classifier to give the same result

Equivariance

• A function f[x] is equivariant to a transformation t[] if:

$$\mathbf{f}[\mathbf{t}[\mathbf{x}]] = \mathbf{t}[\mathbf{f}[\mathbf{x}]]$$

i.e., the output is transformed in the same way as the input

Equivariance example

e.g., Image segmentation

• Image has been translated and we want segmentation to translate with it

Convolutional networks

- Networks for images
- Invariance and equivariance
- 1D convolution
- Convolutional layers
- Channels
- Receptive fields
- Convolutional network for MNIST 1D

Convolution* in 1D

= W, Xi-1+ W2 Xi+ W3 Xi+

• Input vector x:

$$\mathbf{x} = [x_1, x_2, x_I]$$

Output is weighted sum of neighbors:

$$z_i = \omega_1 x_{i-1} + \omega_2 x_i + \omega_3 x_{i+1}$$

2:

Convolutional kernel or filter:

$$oldsymbol{\omega} = [\omega_1, \omega_2, \omega_3]^T$$
 Kernel size = 3

^{*} Not really technically convolution

Convolution with kernel size 3

Convolution with kernel size 3

Equivariant to translation of input $\mathbf{f}[\mathbf{t}[\mathbf{x}]] = \mathbf{t}[\mathbf{f}[\mathbf{x}]]$

Zero padding

Treat positions that are beyond end of the input as zero.

"Valid" convolutions

Only process positions where kernel falls in image (smaller output).

Stride, kernel size, and dilation

- Stride = shift by k positions for each output
 - Decreases size of output relative to input
- Kernel size = weight a different number of inputs for each output
 Combine information from a larger area

 - But kernel size 5 uses 5 parameters
- Dilated convolutions = intersperse kernel values with zeros
 - Combine information from a larger area
 - Fewer parameters

d'latter 2	dilation 3
ω_1	ω_{i}
	Ø
0	0
We	wz
0	0
	D
WZ	Wz
	0
	O
	W4

Convolutional networks

- Networks for images
- Invariance and equivariance
- 1D convolution
- Convolutional layers
- Channels
- Receptive fields
- Convolutional network for MNIST 1D

Convolutional layer

$$h_i = \mathbf{a} \left[\beta + \omega_1 x_{i-1} + \omega_2 x_i + \omega_3 x_{i+1} \right]$$
$$= \mathbf{a} \left[\beta + \sum_{j=1}^3 \omega_j x_{i+j-2} \right]$$

Convolutional network:

Convolutional network:

$$h_i=\mathrm{a}\left[eta+\omega_1x_{i-1}+\omega_2x_i+\omega_3x_{i+1}
ight]$$

$$=\mathrm{a}\left[eta+\sum_{j=1}^3\omega_jx_{i+j-2}
ight]$$
 3 weights, 1 bias

Fully connected network:

$$h_i = \mathbf{a} \left[\beta_i + \sum_{j=1}^D \omega_{ij} x_j \right]$$

 D^2 weights, D biases

Fully connected network

Fully connected network

Convolution, kernel 3, stride 1, dilation 1

Fully connected network

Convolution, size 3, stride 1, dilation 1, zero padding

Convolution, size 3, stride 2, dilation 1, zero padding

Question 1

Kernel size? 5
Stride?
Dilation?
Zero padding / valid?

Question 2

Kernel size?
Stride?
Dilation?
Zero padding / valid?

Question 3

- Kernel size? 3
- Stride?
- Dilation? 2
- Zero padding / valid?

Convolutional networks

- Networks for images
- Invariance and equivariance
- 1D convolution
- Convolutional layers
- Channels
- Receptive fields
- Convolutional network for MNIST 1D

Channels

- The convolutional operation averages together the inputs
- Plus passes through ReLU function
- Has to lose information
- Solution:
 - apply several convolutions and stack them in channels
 - Sometimes also called feature maps

Two output channels, one input channel

Two output channels, one input channel

Two input channels, one output channel

How many parameters?

• If there are C_i input channels and kernel size K

$$\mathbf{\Omega} \in \mathbb{R}^{C_i imes K}$$

$$oldsymbol{eta} \in \mathbb{R}$$

• If there are C_i input channels and C_o output channels

$$\mathbf{\Omega} \in \mathbb{R}^{C_i \times C_o \times K}$$

$$oldsymbol{eta} \in \mathbb{R}^{C_o}$$