Lanyue Zhang (606086099) Juntao Li (906092273) Wenxuan Du (506084251) Steven Li (705494229)

Final Project

June 9, 2023

```
[1]: import pandas as pd
     import numpy as np
     import itertools
     #Plotting libraries
     import matplotlib.pyplot as plt
     import seaborn as sns
     import altair as alt
     #statistics libraries
     import statsmodels.api as sm
     import statsmodels.formula.api as smf
     import scipy
     from scipy.stats import anderson
     from statsmodels.tools.eval_measures import rmse
     from statsmodels.tsa.stattools import adfuller
     from statsmodels.graphics.tsaplots import month_plot, seasonal_plot, plot_acf,_u
      →plot_pacf, quarter_plot
     from statsmodels.tsa.seasonal import seasonal decompose
     from statsmodels.tsa.holtwinters import ExponentialSmoothing, SimpleExpSmoothing
     from statsmodels.stats.diagnostic import acorr ljungbox as ljung
     from statsmodels.tsa.statespace.tools import diff as diff
     import pmdarima as pm
     from pmdarima import ARIMA, auto_arima
     from scipy import signal
     from scipy.stats import shapiro
     from scipy.stats import boxcox
     from sklearn.preprocessing import StandardScaler
     from scipy.stats import pearsonr
     from statsmodels.tsa.api import VAR
     from statsmodels.tsa.stattools import grangercausalitytests
     import warnings
     warnings.filterwarnings("ignore")
```

```
[2]: gold = pd.read_excel('gold.xls')
gold
```

```
[2]:
                Date
                           Gold
         1994-01-01 137.31491
     0
      1
         1994-02-01 136.52517
      2
         1994-03-01 133.95854
      3
         1994-04-01 134.74827
      4
         1994-05-01 133.46496
      347 2022-12-01 617.17670
      348 2023-01-01 638.79566
      349 2023-02-01 662.68509
      350 2023-03-01 634.15597
      351 2023-04-01 693.48470
      [352 rows x 2 columns]
 [3]: gold['Date'] = pd.to_datetime(gold['Date'])
      gold.set_index('Date', inplace=True)
 [4]: gold.head()
 [4]:
                      Gold
     Date
      1994-01-01 137.31491
      1994-02-01 136.52517
      1994-03-01 133.95854
      1994-04-01 134.74827
      1994-05-01 133.46496
     1 Time Series Plot
[64]: plt.figure(figsize=(8,6))
      plt.plot(gold['Gold'])
      plt.xlabel('Time')
      plt.ylabel('Value')
      plt.title('Export Gold Index over Time')
      plt.show()
```



```
[6]: plot_acf(gold['Gold']);
```


[7]: plot_pacf(gold['Gold']);

2 STL decomposition

[114]: Text(0.5, 0.98, 'Additive Decomposition')


```
[9]: ljung_p = np.mean(ljung(x=decomposeA.resid.dropna())['lb_pvalue'])
ljung_p = round(ljung_p, 3)
print("Ljung Box (A), p value:", ljung_p, ", Residuals are uncorrelated" if
ljung_p>0.05 else ", Residuals are correlated")
```

Ljung Box (A), p value: 0.0, Residuals are correlated

Ljung Box (A), p value: 0.0 , Residuals are correlated

```
import pandas as pd
import numpy as np
from datetime import datetime
import matplotlib.pyplot as plt
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.api import VAR
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.stattools import grangercausalitytests
from scipy.stats import pearsonr
from sklearn.metrics import mean_squared_error
```

3 VAR Model

```
[2]: df = pd.read_excel("G&O.xls",index_col=0)
    df.head()
```

```
[2]: 0i1 Gold
Date
1994-01-01 55.11754 137.31491
1994-02-01 52.44123 136.52517
1994-03-01 53.45389 133.95854
1994-04-01 61.19349 134.74827
1994-05-01 66.18445 133.46496
```

```
[3]: plt.figure(figsize=(12,6))
  gold, = plt.plot(df['Gold'])
  oil, = plt.plot(df['Oil'], color='red')

for year in range(1994, 2025):
    plt.axvline(datetime(year,1,1), linestyle='--', color='k', alpha=0.1)

plt.xlabel('Time')
  plt.ylabel('Price Index')
  plt.legend(['Gold', 'Oil'], fontsize=16)
  plt.show()
```


3.1 ADF Test

p-value: 0.9791306790222112

```
[4]: adf_test_oil = adfuller(df['Oil'])
     adf_statistic_oil = adf_test_oil[0]
     adf_pvalue_oil = adf_test_oil[1]
     adf_critical_values_oil = adf_test_oil[4]
     print('ADF Test for Oil:')
     print(f'ADF Statistic: {adf_statistic_oil}')
     print(f'p-value: {adf_pvalue_oil}')
    ADF Test for Oil:
    ADF Statistic: -2.3964936369495327
    p-value: 0.1427285004217443
[5]: adf_test_gold = adfuller(df['Gold'])
     adf_statistic_gold = adf_test_gold[0]
     adf_pvalue_gold = adf_test_gold[1]
     adf_critical_values_gold = adf_test_gold[4]
     print('ADF Test for Gold:')
     print(f'ADF Statistic: {adf_statistic_gold}')
     print(f'p-value: {adf_pvalue_gold}')
    ADF Test for Gold:
    ADF Statistic: 0.3405591027490211
```

3.2 Normalized

```
[6]: # Normalized
avg = df.mean()
dev = df.std()

for col in df:
    df[col] = (df[col]-avg.loc[col]) / dev.loc[col]

plt.figure(figsize=(12,6))
gold, = plt.plot(df['Gold'])
oil, = plt.plot(df['Oil'], color='red')

for year in range(1994, 2025):
    plt.axvline(datetime(year,1,1), linestyle='--', color='k', alpha=0.1)

plt.xlabel('Time')
plt.legend(['Gold', 'Oil'], fontsize=16)
plt.show()
```



```
[7]: # Remove Trend
df = df.diff().dropna()

plt.figure(figsize=(12,6))
gold, = plt.plot(df['Gold'])
oil, = plt.plot(df['Oil'], color='red')
```

```
for year in range(1994, 2025):
    plt.axvline(datetime(year,1,1), linestyle='--', color='k', alpha=0.1)

plt.xlabel('Time')
plt.ylabel('First Difference')
plt.legend(['Gold', 'Oil'], fontsize=16)
plt.show()
```



```
[8]: # Remove Increasing Volatility
vol = df.groupby(df.index.year).std()

df['gold_vol'] = df.index.map(lambda d: vol.loc[d.year, 'Gold'])
df['oil_vol'] = df.index.map(lambda d: vol.loc[d.year, 'Oil'])

df['Gold'] = df['Gold']/df['gold_vol']
df['Oil'] = df['Oil']/df['oil_vol']

plt.figure(figsize=(12,6))
gold, = plt.plot(df['Gold'])
oil, = plt.plot(df['Gold']), color='red')

for year in range(1994, 2025):
    plt.axvline(datetime(year,1,1), linestyle='--', color='k', alpha=0.1)

plt.xlabel('Time')
plt.ylabel('First Difference')
plt.legend(['Gold', 'Oil'], fontsize=16)
plt.show()
```



```
[9]: fig, ax = plt.subplots(figsize=(15, 10))
plot_pacf(df["Gold"], method='ywm', ax=ax)
plt.show
```

[9]: <function matplotlib.pyplot.show(close=None, block=None)>

3.3 VAR Model

```
[10]: var_df = df[["Gold","Oil"]]
var_df.index = pd.DatetimeIndex(var_df.index, freq='MS')

train_data = var_df[:-12]
test_data = var_df[-12:]
```

```
[11]: var_mod = VAR(train_data)
var_mod_fit = var_mod.fit(maxlags=12)
var_mod_fit.summary()
```

[11]: Summary of Regression Results

Model: VAR Method: OLS Date: Thu, 08, Jun, 2023 Time: 18:30:28

 No. of Equations:
 2.00000
 BIC:
 0.767051

 Nobs:
 327.000
 HQIC:
 0.418778

 Log likelihood:
 -908.650
 FPE:
 1.20701

 AIC:
 0.187547
 Det(Omega_mle):
 1.04165

Results for equation Gold

=======	coefficient	std. error	t-stat	prob
const	0.063003	0.059742	1.055	0.292
L1.Gold	0.135864	0.057532	2.362	0.018
L1.0il	0.021502	0.058715	0.366	0.714
L2.Gold	-0.053441	0.057868	-0.924	0.356
L2.0il	0.140323	0.058286	2.407	0.016
L3.Gold	0.030404	0.057641	0.527	0.598
L3.0il	-0.036469	0.059061	-0.617	0.537
L4.Gold	-0.007928	0.057692	-0.137	0.891
L4.0il	-0.071068	0.059262	-1.199	0.230
L5.Gold	0.057933	0.057798	1.002	0.316
L5.0il	-0.040417	0.059400	-0.680	0.496
L6.Gold	-0.009281	0.057661	-0.161	0.872
L6.0il	-0.014732	0.059161	-0.249	0.803
L7.Gold	0.103544	0.057954	1.787	0.074
L7.0il	0.001673	0.059025	0.028	0.977
L8.Gold	-0.022509	0.058064	-0.388	0.698
L8.0il	-0.047345	0.059137	-0.801	0.423
L9.Gold	0.044247	0.058091	0.762	0.446

L9.0il	-0.013884	0.058929	-0.236	0.814
L10.Gold	0.123153	0.058298	2.112	0.035
L10.0il	-0.014806	0.058412	-0.253	0.800
L11.Gold	0.071997	0.057829	1.245	0.213
L11.0il	0.066070	0.058104	1.137	0.255
L12.Gold	-0.026091	0.057605	-0.453	0.651
L12.0il	0.006586	0.058581	0.112	0.910

Results for equation Oil

========		=======================================		
	coefficient	std. error	t-stat	prob
const	0.061039	0.058229	1.048	0.295
L1.Gold	0.029253	0.056075	0.522	0.602
L1.0il	0.045530	0.057228	0.796	0.426
L2.Gold	0.094658	0.056403	1.678	0.093
L2.0il	-0.075694	0.056810	-1.332	0.183
L3.Gold	0.108027	0.056181	1.923	0.055
L3.0il	0.007438	0.057565	0.129	0.897
L4.Gold	0.068013	0.056231	1.210	0.226
L4.0il	-0.068223	0.057761	-1.181	0.238
L5.Gold	0.017901	0.056334	0.318	0.751
L5.0il	-0.036593	0.057896	-0.632	0.527
L6.Gold	0.082861	0.056201	1.474	0.140
L6.0il	0.039106	0.057663	0.678	0.498
L7.Gold	-0.014894	0.056486	-0.264	0.792
L7.0il	-0.087961	0.057530	-1.529	0.126
L8.Gold	-0.069778	0.056594	-1.233	0.218
L8.0il	-0.021524	0.057640	-0.373	0.709
L9.Gold	0.020237	0.056620	0.357	0.721
L9.0il	0.021802	0.057436	0.380	0.704
L10.Gold	0.035720	0.056822	0.629	0.530
L10.0il	0.043842	0.056933	0.770	0.441
L11.Gold	-0.041313	0.056365	-0.733	0.464
L11.0il	0.122108	0.056632	2.156	0.031
L12.Gold	-0.063838	0.056146	-1.137	0.256
L12.0il	-0.077052	0.057098	-1.349	0.177

Correlation matrix of residuals

Gold 0il
Gold 1.000000 0.000252
Oil 0.000252 1.000000

Comment:

Therefore our final model will be:

```
Gold = 0.136Gold_{t-1} + 0.14Oil_{t-2}
```

3.4 Granger-Causality Test

```
Granger Causality
number of lags (no zero) 1
ssr based F test:
                         F=1.1795 , p=0.2782 , df_denom=347, df_num=1
ssr based chi2 test: chi2=1.1897 , p=0.2754 , df=1
likelihood ratio test: chi2=1.1877
                                  , p=0.2758 , df=1
parameter F test:
                         F=1.1795 , p=0.2782 , df denom=347, df num=1
Granger Causality
number of lags (no zero) 2
                         F=3.3004 , p=0.0380 , df_denom=344, df_num=2
ssr based F test:
ssr based chi2 test: chi2=6.6968 , p=0.0351 , df=2
likelihood ratio test: chi2=6.6333
                                  , p=0.0363 , df=2
parameter F test:
                         F=3.3004 , p=0.0380 , df_denom=344, df_num=2
Granger Causality
number of lags (no zero) 3
ssr based F test:
                         F=2.2737 , p=0.0798 , df_denom=341, df_num=3
ssr based chi2 test: chi2=6.9611 , p=0.0731 , df=3
likelihood ratio test: chi2=6.8923
                                  , p=0.0754 , df=3
parameter F test:
                        F=2.2737 , p=0.0798 , df_denom=341, df_num=3
Granger Causality
number of lags (no zero) 4
ssr based F test:
                         F=2.0311 , p=0.0897 , df_denom=338, df_num=4
```

```
, p=0.0799 , df=4
                          chi2=8.3407
     likelihood ratio test: chi2=8.2420
                                         , p=0.0831 , df=4
     parameter F test:
                               F=2.0311
                                         , p=0.0897 , df_denom=338, df_num=4
     Granger Causality
     number of lags (no zero) 5
     ssr based F test:
                               F=1.5063
                                         , p=0.1872 , df denom=335, df num=5
                                         , p=0.1688 , df=5
     ssr based chi2 test:
                           chi2=7.7789
     likelihood ratio test: chi2=7.6928
                                         , p=0.1740 , df=5
     parameter F test:
                               F=1.5063
                                         , p=0.1872 , df_denom=335, df_num=5
     Granger-Causality test (lag=1):
       No significant evidence of Granger causality (p-value=0.2754)
     Granger-Causality test (lag=2):
       There is evidence of Granger causality (p-value=0.0351)
     Granger-Causality test (lag=3):
       No significant evidence of Granger causality (p-value=0.0731)
     Granger-Causality test (lag=4):
       No significant evidence of Granger causality (p-value=0.0799)
     Granger-Causality test (lag=5):
       No significant evidence of Granger causality (p-value=0.1688)
[13]: |gc_mod_fit = var_mod.fit(maxlags=12,ic="aic")
[14]: gc_mod_fit.test_causality("Gold","Oil",kind='f').summary()
[14]: <class 'statsmodels.iolib.table.SimpleTable'>
[15]: | gc_mod_fit.test_causality("Oil", "Gold", kind='f').summary()
[15]: <class 'statsmodels.iolib.table.SimpleTable'>
     3.5 Forecast
[16]: org_df = pd.read_excel("G&O.xls",index_col=0)
      org_df.tail()
Г16]:
                                  Gold
                        Oil
     Date
      2022-12-01 289.90958 617.17670
      2023-01-01 285.53345 638.79566
      2023-02-01 278.04702 662.68509
      2023-03-01 273.70705 634.15597
      2023-04-01 277.68535 693.48470
```

ssr based chi2 test:

```
[17]: # Forecast 12 steps ahead
      forecast = var_mod_fit.forecast(var_mod_fit.endog, steps=12)
      forecast_gold = forecast[:, 0]
      # Print forecasted values
      print("Forecasted Gold Price:", forecast_gold)
     Forecasted Gold Price: [-0.23615863 -0.10639113 -0.06046261 0.1164994
     0.06634034 0.0424161
       0.04570182 \quad 0.16772837 \quad 0.39596913 \quad 0.3107158 \quad 0.05819648 \quad -0.00217214
[18]: # Transform Back
      forecast_gold = forecast_gold * np.array(df['gold_vol'][-12:])
      forecast_gold = pd.DataFrame(forecast_gold).cumsum()
      forecast_gold = forecast_gold*dev[1]+2.1*avg[1]
      forecast_gold = np.array(forecast_gold).flatten()
      forecast_gold
[18]: array([654.71496905, 652.1338232, 650.666945, 653.49332665,
             655.10280372, 656.13185712, 657.24062491, 661.3098683,
             675.61629665, 686.84250823, 688.94515646, 688.8666768 ])
[19]: # Calculate confidence intervals for the forecasted values
      alpha = 0.5 # significance level
      forecast_ci = var_mod_fit.forecast_interval(var_mod_fit.endog[-var_mod_fit.k_ar:
       →], steps=12, alpha=alpha)
      # Access confidence intervals for Gold and Transform Back
      ci_lower_gold = pd.DataFrame(forecast_ci[1][:, 0]*np.array(df['gold_vol'][-12:
       →])).cumsum()*dev[1]+2.1*avg[1]
      ci_lower_gold = np.array(ci_lower_gold).flatten()
      ci_upper_gold = pd.DataFrame(forecast_ci[2][:, 0]*np.array(df['gold_vol'][-12:
       \rightarrow])).cumsum()*dev[1]+2.1*avg[1]
      ci_upper_gold = np.array(ci_upper_gold).flatten()
[29]: # Plot forecast with error bands
      plt.figure(figsize=(14, 5))
      plt.plot(org_df['Gold'], label='Actual Gold Price')
      forecast_dates = pd.date_range(start=org_df.index[-12] + pd.DateOffset(days=1),__
       →periods=12, freq='M')
      plt.plot(forecast_dates, forecast_gold, label='VAR Forecast Gold Price')
      plt.fill_between(forecast_dates,
                       ci_lower_gold,
                       ci_upper_gold,
                       alpha=0.05, label='Error Bands')
      plt.legend(fontsize=16, loc='upper left')
```

```
plt.xlabel('Date')
plt.ylabel('Price')
plt.title('VAR Data and Forecast with Error Bands--Gold')
plt.show()
```


3.6 Model Performance

```
[24]: # Calculate RMSE
rmse = np.sqrt(mean_squared_error(org_df["Gold"][-12:], forecast_gold))
print("RMSE:", rmse)
RMSE: 47.183848206899654
```

```
[25]: # Calculate MAPE
mape = np.mean(np.abs((org_df["Gold"][-12:] - forecast_gold) /

org_df["Gold"][-12:])) * 100
print("MAPE:", mape)
```

MAPE: 6.62067276982332

```
In [1]: ######## Working with time series data in R
library(forecast)
library(ggplot2)
library(readxl)
data = read_excel('G&O.xls')
```

Registered S3 method overwritten by 'quantmod': method from as.zoo.data.frame zoo

```
In [2]: library(readxl)
```

In [3]: head(data) data[1,1]

A tibble: 6 × 3

Date	Oil	Gold	
<dttm></dttm>	<dbl></dbl>	<dbl></dbl>	
2008-02-01	369.5281	307.5025	
2008-03-01	402.4522	318.6574	
2008-04-01	429.2582	330.2073	
2008-05-01	483.2078	312.3396	
2008-06-01	517.9212	305.5281	
2008-07-01	521.1387	307.0089	

A tibble: 1 ×

1

Date

<dttm>

2008-02-01

In [4]: # convert data to a monthly time series, starting 1/2004
my_ts <- ts(data\$Gold, start=1994, freq=12)
my_ts</pre>

A Time Series: 16 × 12

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Ser
1994	307.5025	318.6574	330.2073	312.3396	305.5281	307.0089	323.0997	288.2527	287.5617
1995	297.2359	325.1728	318.3613	307.1076	320.3356	325.8638	322.2113	327.4432	343.6328
1996	385.0938	377.4926	383.5143	395.4590	415.1037	424.5804	410.4640	419.0523	438.696§
1997	467.4235	473.2478	490.6219	509.5755	520.5331	525.3702	544.1264	606.5153	605.2320
1998	573.0503	599.4077	576.2093	568.4107	547.2853	550.5429	548.8648	561.9941	602.3692
1999	575.3208	560.6120	548.5686	513.5242	488.1540	461.5992	444.9161	465.9427	463.7710
2000	429.8124	449.2596	460.1185	447.6802	430.3060	455.6762	448.0750	437.1175	418.0652
2001	435.1431	414.3139	416.8806	411.1550	409.0819	403.6525	376.7029	390.4245	395.1629
2002	393.5834	430.5035	425.1728	444.4225	421.3228	468.1145	467.7196	462.3889	440.6713
2003	417.1767	428.9240	432.5765	429.8124	441.8559	421.9151	437.1175	462.4877	438.8944
2004	457.0582	457.3544	460.1185	452.1224	447.6802	432.4778	420.8292	413.8203	414.610 ⁻
2005	454.0967	446.0020	446.1007	442.5469	459.8223	483.1194	512.9319	529.3188	516.5844
2006	542.2507	567.8184	556.8608	588.8450	592.3001	613.8203	697.1372	675.2221	658.5390
2007	631.3919	594.1757	603.3564	625.5676	655.0839	626.1599	625.3702	627.5420	609.9704
2008	624.5805	667.4235	669.7927	649.5558	641.6584	608.0948	613.0306	591.6091	587.8578
2009	662.6851	634.1560	693.4847						

In [5]:

```
plot(my_ts,col = 'red', main = 'Gold', ylab = 'Index')

autoplot(my_ts) +
    ggtitle('Gold Price Trends') +
    ylab('Index') +
    xlab('Date')

# stats
mean(my_ts)

sd(my_ts)

median(my_ts)

summary(my_ts)
```


479.892004535519

104.875175410121

454.39289

Min. 1st Qu. Median Mean 3rd Qu. Max. 261.6 414.9 454.4 479.9 573.7 697.1

Gold Price Trends


```
In [6]: # assignment
    tsmean = mean(my_ts)
    print(tsmean)

tsmean <- mean(my_ts)
    print(tsmean)

mean(my_ts) -> tsmean
    print(tsmean)
```

- [1] 479.892
- [1] 479.892
- [1] 479.892

4. MAPA

In [7]: install.packages("MAPA")

The downloaded binary packages are in /var/folders/81/jjv33vws4cs7b2lsyrkgf1q00000gn/T//Rtmp8wh70B/downloaded_packages

In [8]: install.packages("thief")

The downloaded binary packages are in /var/folders/81/jjv33vws4cs7b2lsyrkgf1q00000gn/T//Rtmp8wh70B/downloaded_packages

ARIMA(0,1,0) with drift

Coefficients: drift 2.1208 s.e. 1.4659

sigma^2 = 393.2: log likelihood = -801.42 AIC=1606.83 AICc=1606.9 BIC=1613.24

		Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Apr	2009		695.6055	670.1921	721.0189	656.7390	734.4720
May	2009		697.7263	661.7862	733.6663	642.7608	752.6918
Jun	2009		699.8470	655.8297	743.8644	632.5283	767.1658
Jul	2009		701.9678	651.1410	752.7947	624.2349	779.7008
Aug	2009		704.0886	647.2625	760.9148	617.1805	790.9967
Sep	2009		706.2094	643.9595	768.4593	611.0063	801.4124
0ct	2009		708.3302	641.0926	775.5678	605.4991	811.1612
Nov	2009		710.4510	638.5709	782.3310	600.5199	820.3820
Dec	2009		712.5717	636.3314	788.8120	595.9723	829.1712
Jan	2010		714.6925	634.3282	795.0568	591.7859	837.5991
Feb	2010		716.8133	632.5265	801.1001	587.9078	845.7188
Mar	2010		718.9341	630.8994	806.9688	584.2966	853.5715

A Time Series: 2 × 12

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Ser
2009				695.6055	697.7263	699.8470	701.9678	704.0886	706.2094
2010	714 6925	716 8133	718 9341						

In [10]:

```
library(MAPA)
# Detailed view of the data at each temporal aggregation level (daily,
# Note: paral = 2 \longrightarrow Run in parallel cluster mode with e.g., in my call
mapasimple(my_ts,outplot=2,paral=2)
#Dynamic Fit to the data
mapafit <- mapaest(my ts,outplot=2, paral=2)</pre>
plot(mapafit)
mapafit
mapafor(my_ts,mapafit,ifh=12,fh=0)
# Best fit MAPA model by temporal decomposition + Forecast
# N=None, A=Additive, M=Multiplicative, d=Damped
# Exmaple: MAM = Holt-Winters
mapafit <- mapaest(my_ts,paral=2)</pre>
mapafor(my_ts,mapafit)
# Forecast with Error Bands
mapa(my_ts,conf.lvl=c(0.8,0.9,0.95,0.99),outplot=1)
Loading required package: parallel
Loading required package: RColorBrewer
Loading required package: smooth
Loading required package: greybox
Package "greybox", v1.0.8 loaded.
This is package "smooth", v3.2.1
Running with 8 cores
              t+2
                       t+3
                                 ++4
                                          t+5
                                                             t+7
     t+1
                                                    t+6
                                                                       +
+8
668.0484 668.0484 668.0484 668.0484 668.0484 668.0484 668.0484
84
     t+9
             t+10
                      t+11
                                t+12
668.0484 668.0484 668.0484 668.0484
Running with 8 cores
```



```
MAPA fitted using ets
                        Original frequency: 12
Aggregation level: 1
                        Method: ETS(MNN)
Aggregation level: 2
                        Method: ETS(MNN)
Aggregation level: 3
                        Method: ETS(MNN)
Aggregation level: 4
                        Method: ETS(MNN)
Aggregation level: 5
                        Method: ETS(MNN)
Aggregation level: 6
                        Method: ETS(MNN)
Aggregation level: 7
                        Method: ETS(MNN)
Aggregation level: 8
                        Method: ETS(ANN)
Aggregation level: 9
                        Method: ETS(ANN)
Aggregation level: 10
                        Method: ETS(ANN)
Aggregation level: 11
                        Method: ETS(ANN)
Aggregation level: 12
                        Method: ETS(ANN)
```

```
MAPA fit MSE: 560.89, MAE: 18.06
MAPA fit MSE: 987.74, MAE: 24.14

MAPA fit MSE: 1445.63, MAE: 30.06
MAPA fit MSE: 1898.27, MAE: 34.8
MAPA fit MSE: 2352.04, MAE: 38.85
MAPA fit MSE: 2843.24, MAE: 43.16
MAPA fit MSE: 3367.11, MAE: 45.98
MAPA fit MSE: 3880.34, MAE: 48.85
MAPA fit MSE: 4387.12, MAE: 51.75
MAPA fit MSE: 4897.57, MAE: 54.7
MAPA fit MSE: 5522.04, MAE: 58.64
```

MAPA fit MSE: 6158.1, MAE: 61.96 Out-of-samplpe forecasts: NULL

Running with 8 cores

MAPA fit MSE: 560.89, MAE: 18.06

Out-of-samplpe forecasts:

t+1 t+2 t+3 t+4 t+5 t+6 t+7 t

668.0484 6680 668.0484 668.0484 668.0484 668.0484 668.0484 668.0484 668.048

t+9 t+10 t+11 t+12 668.0484 668.0484 668.0484

ETS components

MAPA fit MSE: 560.89, MAE: 18.06 Out-of-sample forecasts:

Lower 0.80 Lower 0.90 Lower 0.95 Lower 0.99 Forecast Upper 0.99 Upper 0.95 t+1 637.6973 629.0931 621.6304 607.0447 668.0484 729.0520 714.4664 606.4499 587.0942 668.0484 t+2 627,7713 616.3533 749.0026 729,6469 t+3 619.3219 605.5086 593.5277 570.1116 668.0484 765.9852 742.5691 ---EOO CE 44

t+4 753.4		590.3835	582.0544	555.821/	008 . 0484	/80.2/51
t+5		588.2766	572.9944	543.1263	668.0484	792.9705
763.1	023					
t+6	599.7134	580.3414	563.5391	530.6999	668.0484	805.3969
772.5						
t+7		572.6029	554.3180	518.5814	668.0484	817.5154
781.7						
t+8		565.5866	545.9576	507.5939	668.0484	828.5029
790.1		FFO 1010	F20 220C	407 4075	660 0404	020 6502
t+9		559.1010	538.2296	49/.43/5	668.0484	838.6593
797 . 8 t+10		552.9372	530.8850	107 7051	668.0484	848.3117
805.2		332.9372	220.0020	40/1/031	000.0404	040.311/
t+11		545.8186	522.4026	476.6374	668.0484	859.4594
813.6						
t+12	567.4805	538.9709	514.2431	465.9139	668.0484	870.1829
821.8	537					
	Upper 0.90	Upper 0.80				
t+1	707.0036	698.3995				
t+2	719.7435	708.3255				
t+3	730.5881	716.7749				
t+4	739.7133	723.8845				
t+5	747.8202	730.2008				
t+6	755.7554	736.3834				
t+7	763.4939	742.4127				
t+8	770.5102	747.8793				
t+9	776.9958	752.9324				
t+10	783.1596	757.7347				
t+11	790.2782	763.2810				
t+12	797.1259	768.6163				

Forecast


```
0 50 100 150 200
```

```
In [11]: mapafit <- mapaest(my_ts,paral=2)</pre>
          mapafor(my_ts,mapafit)
          Running with 8 cores
          MAPA fit MSE: 560.89, MAE: 18.06
          Out-of-samplpe forecasts:
               t+1
                        t+2
                                  t+3
                                            t+4
                                                      t+5
                                                               t+6
                                                                         t+7
          +8
          668.0484 668.0484 668.0484 668.0484 668.0484 668.0484 668.0484
          84
                       t+10
               t+9
                                 t+11
                                           t+12
          668.0484 668.0484 668.0484 668.0484
In [12]: ts_data <- ts(data$Gold, start=2008, freq=12)</pre>
          train_data <- window(ts_data, end = c(2022, 3))</pre>
          test data \leftarrow window(ts data, start = c(2022, 4))
```

5. THieF

2022

59.8415

68.6513

```
# install.packages('thief', dependencies = TRUE)
       library(thief)
       library(ggplot2)
       fc <- thief(train_data)</pre>
       autoplot(fc)
       fc <- thief(train data, usemodel = 'arima')</pre>
       fc
       autoplot(fc)
                      Feb
                                                          Jul
               Jan
                             Mar
                                                   Jun
                                           May
                                    Apr
       Aug
```

2023 663.1512 665.9324 668.0635 663.6346 665.7657 668.5731 667.6691 6

2024 671.5462 674.3548 676.4860

654,3989 656,5300 659,0074 659,4236 6

Sep Oct Nov Dec 2022 661.9726 660.9455 663.0766 663.9502 2023 670.7824 669.3399 671.4710 672.4550 2024

Forecasts from THieF-ARIMA

In [14]: print(mapafit)

```
MAPA fitted using ets
                        Original frequency: 12
Aggregation level: 1
                        Method: ETS(MNN)
Aggregation level: 2
                        Method: ETS(MNN)
Aggregation level: 3
                        Method: ETS(MNN)
Aggregation level: 4
                        Method: ETS(MNN)
Aggregation level: 5
                        Method: ETS(MNN)
Aggregation level: 6
                        Method: ETS(MNN)
Aggregation level: 7
                        Method: ETS(MNN)
Aggregation level: 8
                        Method: ETS(ANN)
Aggregation level: 9
                        Method: ETS(ANN)
Aggregation level: 10
                        Method: ETS(ANN)
Aggregation level: 11
                        Method: ETS(ANN)
Aggregation level: 12
                        Method: ETS(ANN)
```

6. Combination

```
In [15]: h <- nrow(data) - length(train_data)
ETS <- forecast(ets(train_data), h=h)
ARIMA <- forecast(auto.arima(train_data, lambda=0, biasadj=TRUE),
    h=h)
STL <- stlf(train_data, lambda=0, h=h, biasadj=TRUE)
NNAR <- forecast(nnetar(train_data), h=h)
TBATS <- forecast(tbats(train_data, biasadj=TRUE), h=h)</pre>
```

```
In [19]: Combination <- (ETS[["mean"]] + ARIMA[["mean"]] +
    STL[["mean"]] + NNAR[["mean"]] + TBATS[["mean"]])/5
    autoplot(ts_data) +
        autolayer(ETS, series="ETS", PI=FALSE) +
        autolayer(ARIMA, series="ARIMA", PI=FALSE) +
        autolayer(STL, series="STL", PI=FALSE) +
        autolayer(NNAR, series="NNAR", PI=FALSE) +
        autolayer(TBATS, series="TBATS", PI=FALSE) +
        xlab("Year")</pre>
```


In [20]: autoplot(ts_data) +
 autolayer(Combination, series="Combination")

In [21]: autoplot(ts_data) +
 autolayer(NNAR, series="NNAR", PI=FALSE)


```
In [22]: autoplot(ts_data) +
   autolayer(ARIMA, series="ARIMA", PI=FALSE)
```


7. ARIMA

```
In [23]: ARIMA <- forecast(auto.arima(train_data, lambda=0, biasadj=TRUE), h=h)
# Forecast using the trained model
forecast <- forecast(ARIMA, h = 12)

# Extract the forecasted values
forecast_values <- forecast$mean

# Calculate the Mean Absolute Error (MAE)
mae <- mean(abs(forecast_values - test_data))

# Print the MAE
print(mae)</pre>
```

[1] 68.418

```
In [24]:
    mse <- mean((forecast_values - test_data)^2)
    mrse <- sqrt(mse)
    print(mrse)</pre>
```

[1] 75.06919

```
In [25]: mape <- mean(abs((forecast_values - test_data) / test_data)) * 100
# Print the MAPE
print(mape)</pre>
```

[1] 11.2063

```
In [26]: fitted_values_arima <- fitted(ARIMA)
plot(fitted_values_arima - train_data, type = "p", ylab = "Residuals")</pre>
```


In [27]: plot(forecast_values - test_data, type = "p", ylab = "Residuals")

In [28]: summary(ARIMA)

Forecast method: ARIMA(1,1,0)(1,0,0)[12] with drift

Model Information: Series: train_data

ARIMA(1,1,0)(1,0,0)[12] with drift Box Cox transformation: lambda= 0

Coefficients:

ar1 sar1 drift 0.0599 0.0016 0.0046 s.e. 0.0766 0.0811 0.0032

sigma^2 = 0.001591: log likelihood = 307.98 AIC=-607.96 AICc=-607.72 BIC=-595.42

Error measures:

ME RMSE MAE MPE MAPE MASE Training set -0.4102585 18.97984 14.7419 -0.154984 3.154251 0.2449689 ACF1 Training set -0.02497386

Forecasts:

1010003131							
		Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
	Apr 202	22	673.4007	639.3327	708.1569	622.2634	727.5824
	May 202	22	677.1454	627.4772	728.2826	603.2153	757.5747
	Jun 202	22	680.8178	619.2381	744.6603	589.7342	781.9150
	Jul 202	22	684.5578	612.9195	759.2616	579.1500	803.5333
	Aug 202	22	688.3231	607.7748	772.7479	570.3447	823.4611
	Sep 202	22	692.0733	603.4141	785.4282	562.7449	842.1907
	Oct 202	22	695.8927	599.7044	797.6045	556.1040	860.1393
	Nov 202	22	699.7117	596.4523	809.3310	550.1634	877.4253
	Dec 202	22	703.5676	593.5985	820.7416	544.8138	894.2339
	Jan 202	23	707.4290	591.0507	831.8660	539.9307	910.6260
	Feb 202	23	711.3881	588.8362	842.8619	535.5090	926.7959
	Mar 202	73	715.2971	586.7941	853.5931	531.3790	942.6104

In [29]:

```
model_a <- forecast(arima(train_data, order = c(1, 1, 0)), h=h)
# Print the model summary
summary(model_a)</pre>
```

```
Forecast method: ARIMA(1,1,0)
```

Model Information:

Call:

 $arima(x = train_data, order = c(1, 1, 0))$

Coefficients:

ar1

0.0471

s.e. 0.0765

sigma^2 estimated as 364.2: log likelihood = -742.51, aic = 1489.03

Error measures:

ME RMSE MAE MPE MAPE MASE

ACF1

Training set 2.021343 19.02692 14.71198 0.3600966 3.15007 0.2444716 - 0.01170269

Forecasts:

1016643631							
	Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95	
Apr 2022		669.9042	645.4486	694.3597	632.5026	707.3057	
May 2022		669.9094	634.5010	705.3179	615.7569	724.0620	
Jun 2022		669.9097	626.1808	713.6386	603.0321	736.7872	
Jul 2022		669.9097	619.2066	720.6128	592.3660	747.4534	
Aug 2022		669.9097	613.0819	726.7375	582.9990	756.8203	
Sep 2022		669.9097	607.5559	732.2635	574.5478	765.2716	
Oct 2022		669.9097	602.4812	737.3381	566.7868	773.0326	
Nov 2022		669.9097	597.7627	742.0567	559.5704	780.2490	
Dec 2022		669.9097	593.3343	746.4850	552.7978	787.0216	
Jan 2023		669.9097	589.1484	750.6709	546.3960	793.4234	
Feb 2023		669.9097	585.1690	754.6503	540.3100	799.5093	
Mar 2023		669.9097	581.3683	758.4510	534.4973	805.3220	

```
In [30]: forecast <- forecast(model_a, h = 12)
    # Extract the forecasted values
    forecast_values_a <- forecast$mean
    mse <- mean((forecast_values_a - test_data)^2)
    mrse <- sqrt(mse)
    print(mrse)

[1] 55.26651

In [31]: mape <- mean(abs((forecast_values_a - test_data) / test_data)) * 100
# Print the MAPE
    print(mape)

[1] 7.928594

In [36]: fitted_values <- ARIMA$mean</pre>
In [37]: residual <- forecast_values - test_data
```

In [38]: plot(residual, type = "l", ylab = "Residuals")

In [39]: acf(residual)

Plot the PACF
pacf(residual)

Series residual

Series residual

[1] 11.2063

8. NNAR

```
In [44]: library(forecast)
          # Train the NNAR model
          model <- nnetar(train data)</pre>
          # Forecast using the trained model
          forecast <- forecast(model, h = 12)</pre>
          # Extract the forecasted values
          forecast_values_NNAR <- forecast$mean</pre>
          # Calculate the Mean Absolute Error (MAE)
          mae <- mean(abs(forecast_values_NNAR - test_data))</pre>
          # Print the MAE
          print(mae)
          [1] 29.69858
In [45]: fitted_values_nnar <- fitted(model)</pre>
In [47]: | current dir <- getwd()</pre>
          print(current_dir)
          [1] "/Users/dwx/Documents/spring2023/ECON412 Big Data/Final Project/t
          hief"
In [48]: | mse <- mean((forecast_values_NNAR - test_data)^2)</pre>
          mrse <- sqrt(mse)</pre>
          print(mrse)
          [1] 36.40232
```

```
In [49]: autoplot(ts_data) +
  autolayer(NNAR, series="NNAR", PI=FALSE)
```



```
In [50]: mape <- mean(abs((forecast_values_NNAR - test_data) / test_data)) * 10
# Print the MAPE
print(mape)</pre>
```

[1] 4.77901

```
In [51]: residuals <- train_data-fitted_values_nnar
plot(residuals, type = "p", ylab = "Residuals")</pre>
```



```
In [52]:
    residuals <- test_data - forecast_values_NNAR

# Create a residual plot
    plot(residuals, type = "p", ylab = "Residuals")</pre>
```


9. ETS

In [53]: model <- ets(train_data)
 forecast <- forecast(model, h=12)
 forecast_values_ets <- forecast\$mean
 forecast_values_ets</pre>

A Time Series: 2 × 12

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Ser
2022				669.7925	669.7925	669.7925	669.7925	669.7925	669.7925
2023	669.7925	669.7925	669.7925						

```
In [54]: fitted_values_ets <- fitted(model)</pre>
In [55]: print(model)
          ETS(M,N,N)
          Call:
            ets(y = train_data)
             Smoothing parameters:
               alpha = 0.9999
             Initial states:
               l = 307.0221
             sigma: 0.0404
                         AICc
                AIC
                                     BIC
          1880.220 1880.363 1889.645
In [56]: | aic_score <- AIC(model)</pre>
          bic_score <- BIC(model)</pre>
          # Print AIC and BIC scores
          cat("AIC:", aic_score, "\n")
cat("BIC:", bic_score, "\n")
          AIC: 1880.22
          BIC: 1889.645
In [57]: | mse <- mean((forecast_values - test_data)^2)</pre>
          rmse <- sqrt(mse)</pre>
          print(rmse)
           [1] 75.06919
In [58]: mape <- mean(abs((forecast_values - test_data) / test_data)) * 100</pre>
          # Print the MAPE
          print(mape)
           [1] 11.2063
```

```
In [66]: autoplot(ts_data) +
   autolayer(ETS, series="ETS", PI=FALSE)
```


10. LSTM

```
In [1]:
             import pandas as pd
             import numpy as np
             import matplotlib.pyplot as plt
             from arch import arch_model
             from sklearn.model_selection import train_test_split
             import warnings
             warnings.filterwarnings("ignore")
In [2]:
          data = pd.read_excel("G&0.xls")
             data.set_index('Date', inplace=True)
            data
In [3]:
    Out[3]:
                              Oil
                                      Gold
                   Date
              1994-01-01
                         55.11754 137.31491
              1994-02-01
                         52.44123 136.52517
              1994-03-01
                         53.45389 133.95854
              1994-04-01
                         61.19349 134.74827
              1994-05-01
                         66.18445 133.46496
              2022-12-01 289.90958 617.17670
              2023-01-01 285.53345 638.79566
              2023-02-01 278.04702 662.68509
              2023-03-01 273.70705 634.15597
              2023-04-01 277.68535 693.48470
             352 rows × 2 columns
             train_data = data["Gold"][:-12]
In [4]:
             test data = data["Gold"][-12:]
```

```
In [5]:

► test_data

   Out[5]: Date
            2022-05-01
                          649.55577
            2022-06-01
                          641.65844
            2022-07-01
                          608.09477
            2022-08-01
                          613.03060
                          591.60908
            2022-09-01
                          587.85785
            2022-10-01
            2022-11-01
                          570.48371
            2022-12-01
                          617.17670
            2023-01-01
                          638.79566
            2023-02-01
                          662.68509
            2023-03-01
                          634.15597
                          693.48470
            2023-04-01
            Name: Gold, dtype: float64
In [6]:
        ▶ from sklearn.preprocessing import MinMaxScaler
            scaler = MinMaxScaler(feature range=(0, 1))
            train_data_scaled = scaler.fit_transform(train_data.values.reshape(-1, 1
            test_data_scaled = scaler.transform(test_data.values.reshape(-1, 1))
In [7]:
         ▶ from tensorflow.keras.models import Sequential
            from tensorflow.keras.layers import LSTM, Dense
            model = Sequential()
            model.add(LSTM(units=50, activation='relu', input shape=(1, 1)))
            model.add(Dense(units=1))
```

```
Epoch 1/40
Epoch 2/40
34/34 [=============== ] - 0s 2ms/step - loss: 0.1110
Epoch 3/40
Epoch 4/40
Epoch 5/40
Epoch 6/40
34/34 [=============== ] - 0s 2ms/step - loss: 0.0284
Epoch 7/40
34/34 [============ ] - 0s 3ms/step - loss: 0.0224
Epoch 8/40
34/34 [=============== ] - 0s 3ms/step - loss: 0.0170
Epoch 9/40
Epoch 10/40
34/34 [============= ] - 0s 3ms/step - loss: 0.0080
Epoch 11/40
34/34 [=================== ] - 0s 3ms/step - loss: 0.0050
Epoch 12/40
34/34 [=============== ] - 0s 3ms/step - loss: 0.0029
Epoch 13/40
Epoch 14/40
34/34 [================= ] - 0s 3ms/step - loss: 8.7218e-04
Epoch 15/40
34/34 [================= ] - 0s 3ms/step - loss: 5.1604e-04
Epoch 16/40
34/34 [================ ] - 0s 3ms/step - loss: 3.5598e-04
Epoch 17/40
34/34 [================= ] - 0s 3ms/step - loss: 2.9312e-04
Epoch 18/40
Epoch 19/40
34/34 [================= ] - 0s 2ms/step - loss: 2.5467e-04
Epoch 20/40
34/34 [================= ] - 0s 2ms/step - loss: 2.4419e-04
Epoch 21/40
34/34 [================ ] - 0s 2ms/step - loss: 2.4051e-04
Epoch 22/40
34/34 [================ ] - 0s 2ms/step - loss: 2.3575e-04
Epoch 23/40
34/34 [================= ] - 0s 2ms/step - loss: 2.3809e-04
Epoch 24/40
Epoch 25/40
34/34 [================== ] - 0s 2ms/step - loss: 2.2605e-04
Epoch 26/40
34/34 [================= ] - 0s 2ms/step - loss: 2.2354e-04
Epoch 27/40
Epoch 28/40
34/34 [================ ] - 0s 2ms/step - loss: 2.1431e-04
Epoch 29/40
```

```
34/34 [================ ] - 0s 2ms/step - loss: 2.1536e-04
          Epoch 30/40
          34/34 [================ ] - 0s 3ms/step - loss: 2.1189e-04
          Epoch 31/40
          Epoch 32/40
          34/34 [================ ] - 0s 3ms/step - loss: 2.0512e-04
          Epoch 33/40
          34/34 [================= ] - 0s 2ms/step - loss: 1.9947e-04
          Epoch 34/40
          34/34 [================ ] - 0s 2ms/step - loss: 1.9775e-04
          Epoch 35/40
          34/34 [================ ] - 0s 3ms/step - loss: 1.9441e-04
          Epoch 36/40
          34/34 [================ ] - 0s 3ms/step - loss: 1.9238e-04
          Epoch 37/40
          Epoch 38/40
          34/34 [================ ] - 0s 2ms/step - loss: 1.8172e-04
          Epoch 39/40
          34/34 [================= ] - 0s 3ms/step - loss: 1.8507e-04
          Epoch 40/40
          Out[8]: <keras.callbacks.History at 0x2059b4e90a0>
        ▶ | predictions_scaled = model.predict(train_data scaled[-12:].reshape(-1, 1
In [16]:
          predictions = scaler.inverse transform(predictions scaled)
          1/1 [======= ] - 0s 194ms/step
In [15]:
          predictions = np.squeeze(predictions)
          predictions = pd.Series(predictions, index=test data.index)
          predictions
   Out[15]: Date
          2022-05-01
                     638.990967
          2022-06-01
                     673.876282
          2022-07-01
                     639.685547
          2022-08-01
                     638.759399
          2022-09-01
                     641.307068
          2022-10-01
                     620.780640
          2022-11-01
                     632.172791
          2022-12-01
                     630.212219
          2023-01-01
                     638.875122
          2023-02-01
                     637.833801
          2023-03-01
                     688.624817
          2023-04-01
                     691.467590
          dtype: float32
```



```
In [12]: N plt.figure(figsize=(15, 10))
    plt.plot(test_data, label='Test')
    plt.plot(predictions, label='Prediction')
    plt.legend()
    plt.xlabel('Date')
    plt.ylabel('Gold Price')
    plt.title('LSTM Model Forecast')
    plt.show()
```


RMSE: 34.06774754057272 MAPE: 4.634053137000738

11. Reference

- 1. U.S. Bureau of Labor Statistics, Export Price Index (End Use): Nonmonetary Gold [IQ12260], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/IQ12260, June 9, 2023.
- 2. U.S. Energy Information Administration, Crude Oil Prices: West Texas Intermediate (WTI) Cushing, Oklahoma [DCOILWTICO], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/DCOILWTICO, June 9, 2023.

Coding Source:

- [1] pandas (Version 1.3.5). McKinney, W. Retrieved from https://pandas.pydata.org
- [2] Seabold, S. & Perktold, J. Retrieved from http://conference.scipy.org/proceedings/scipy2010/seabold.html
- [3] NumPy (Version 1.22.0). Oliphant, T. E. Retrieved from https://numpy.org
- [4] Matplotlib (Version 3.5.1). Hunter, J. D.. Retrieved from https://matplotlib.org

在此处键入文本