

Introducción al Cálculo - MAT1107

Rodrigo Vargas

¹ Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Chile

²LIES Laboratorio Interdisciplinario de Estadística Social, Pontificia Universidad Católica de Chile, Chile

27 de Abril de 2022

Definición.

Dada $f: A \rightarrow B$ una función diremos que:

- f es estrictamente creciente si para todo $x_1, x_2 \in A$ con $x_1 < x_2$ se tiene que $f(x_1) < f(x_2)$.
- ② f es **creciente** si para todo $x_1, x_2 \in A$ con $x_1 < x_2$ se tiene que $f(x_1) \leq f(x_2)$.
- f es estrictamente decreciente si para todo $x_1, x_2 \in A$ con $x_1 < x_2$ se tiene que $f(x_1) > f(x_2)$.
- f es **decreciente** si para todo $x_1, x_2 \in A$ con $x_1 < x_2$ se tiene que $f(x_1) \ge f(x_2)$.
- f es monótona en A si es creciente o decreciente.

Observación La mayoría de las funciones presentan cierto tipo de monotonía a tramos, es decir, sobre un intervalo son crecientes y sobre otro son decrecientes.

Proposición.

Sea $f: A \rightarrow B$ una función. Si f es estrictamente monótona, entonces f es inyectiva.

Demostración Para fijar ideas supongamos que f es estrictamente creciente. Sean $x_1, x_2 \in A$ con $x_1 \neq x_2$. Entonces $x_1 < x_2$ o bien $x_2 < x_1$. Como f es estrictamente creciente, entonces $f(x_1) < f(x_2)$ o bien $f(x_2) < f(x_1)$ y en cualquier caso $f(x_1) \neq f(x_2)$. Esto muestra que f es inyectiva.

Definición. (Función Inversa)

Dada $f: A \to B$ una función biyectiva, se define la función inversa de f, denotada por $f^{-1}: B \to A$, como la función de B en A dada por:

$$(\forall x \in A)(\forall y \in B)(f^{-1}(y) = x \Longleftrightarrow y = f(x)).$$

Proposición

Si $f:A\to B$ es función biyectiva, entonces su inversa $f^{-1}:B\to A$ es tal que

- ① $(\forall x \in A)(f^{-1}(f(x)) = x.$
- ② $(\forall y \in B)(f(f^{-1}(y)) = y.$

Proposición

Si $f: A \to B$ es biyectiva, entonces f^{-1} es biyectiva y $(f^{-1})^{-1} = f$.

Si $f:A\to B$ es biyectiva, entonces sabemos que existe una función $g:B\to A$ que es la inversa de f (es decir, $g=f^{-1}$) que satisface las siguientes tres propiedades

- $\bullet f \circ g = id_B.$
- g es biyectiva.

El siguiente resultado establece un recíproco.

Proposición

Sean $f: A \to B$ y $g: B \to A$ funciones reales. Si de las condiciones \P , \P y \P , las funciones f y g satisfacen dos cualesquiera, entonces f es biyectiva y su inversa es g (es decir, $g = f^{-1}$).

Recuerde que la ecuación que define la inversa de una función biyectiva es

$$y = f(x) \Longleftrightarrow x = f^{-1}(y)$$

Esta ecuación provee de un método para hallar la inversa.

Cómo hallar la inversa de una función biyectiva

- Escriba y = f(x).
- ② Despeje x de esta ecuación en términos de y (si es posible).
- **3** Intercambie x e y. La ecuación resultante es $y = f^{-1}(x)$.

Sabemos que

$$b = f(a) \Longleftrightarrow a = f^{-1}(b)$$

En otras palabras, si $(a, b) \in Graf(f)$ si y solo si $(b, a) \in Graf(f^{-1})$. Se sabe que el punto (b, a) se obtiene de (a, b) al reflejar con respecto a la recta y = x. Hemos obtenido el siguiente resultado:

Gráfica de una función inversa

La gráfica de f^{-1} se obtiene al reflejar la gráfica de f en la recta y = x.

EJEMPLO 1 Sea $h: [0, \infty[\rightarrow] - \infty, -2]$ definida por $h(x) = -\sqrt{x^4 + 4}$. Defina, si existe, la función inversa de h.

EJEMPLO 2 Sea

$$f(x) = \begin{cases} -3x^2 + 1 & \text{si } x < 0 \\ 3x + 2 & \text{si } x \geqslant 0 \end{cases}$$

Halle, si existe, la inversa de f.

EJEMPLO 3 Considere la regla de asignación
$$f(x) = \frac{x}{2} + \sqrt{\frac{x^2}{4} - 1}$$
.

- Determine el dominio de la función f.
- ② Determine la gráfica de la función f y deduzca su recorrido.
- Oetermine si la función f es biyectiva, de lo contrario restringa el dominio y el codominio para que la función sea biyectiva.
- O Calcule la inversa de f y gráfiquela.

EJEMPLO 4 Considere la función $g : \mathbb{R} \to \mathbb{R}$ definida por

$$g(x) = \sqrt[3]{x + \sqrt{1 + x^2}} + \sqrt[3]{x - \sqrt{1 + x^2}}$$
.

- Calcule la inversa de g
- ② Verifique que $g \circ f = id$ y $f \circ g = id$, donde $f = g^{-1}$.
- Oeduzca que g es biyectiva.