Maestría en Ciencias de la Computación

Asignatura: Metaheurísticas

Actividad No.10 Guía Taller No.5

Título: Solución de problemas mediante heurísticas de trayectoria simple

Contenido:

- Métodos heurísticos de solución de problemas.
- Ascenso de Colinas con Mutación Aleatoria
- Recocido Simulado

Objetivo: Comparar el desempeño de algoritmos de trayectoria simple, para la solución de problemas de competencia.

Qué Estudiar

- Métodos heurísticos. RHHC. Algoritmo de Recocido Simulado.
- Funciones de prueba del IEEE Congress on Evolutionary Computation CEC 2015 "Special Session and Competition on Bound Constrained Single-Objective Computationally Expensive Numerical Optimization"

Cómo Estudiar

Introducción

1. Explique brevemente el funcionamiento de los algoritmos de Ascenso de Colina con Mutación Aleatoria, y de Recocido Simulado, sus ventajas y desventajas, y sus aplicaciones.

Desarrollo

- 2. Analice detalladamente las seis funciones definidas en el documento "Funciones de prueba.pdf".
- 3. Implemente dichas funciones.
- 4. Implemente los algoritmos de Ascenso de Colina con Mutación Aleatoria, y de Recocido Simulado para la solución de los problemas de minimización de las funciones anteriores. Considere D=10 y posteriormente D=30 dimensiones.
- 5. Reporte los resultados obtenidos. Para ello, realice 20 ejecuciones independientes, con la siguiente configuración:
 - a. Considere un total de 500 evaluaciones de la función objetivo.
 - b. Muestre el mejor, peor, promedio, mediana y desviación estándar de los resultados en las 20 ejecuciones.
 - c. Muestre el mejor, peor, promedio, mediana y desviación estándar de los tiempos de ejecución (en segundos) en las 20 ejecuciones. Aclare la configuración de software y hardware utilizada para la corrida de los algoritmos.
 - d. Muestre el mínimo, máximo, promedio, mediana y desviación estándar de la temperatura mínima alcanzada por el algoritmo en las 20 ejecuciones.

- Discuta los resultados obtenidos, y valore críticamente el desempeño de los algoritmos a comparar.
- 6. Reporte, además, de forma independiente, para cada función y cada ejecución: mejor solución encontrada por el algoritmo, la temperatura a la que se encontró, el número de evaluaciones de la función objetivo a la que se encontró, y si fue conservada o no por el algoritmo (fue conservada si coincide con la solución devuelta, NO fue conservada si el algoritmo la desechó durante su ejecución).

Discuta los resultados obtenidos, y valore críticamente el desempeño de los esquemas de Recocido utilizados.

Conclusiones

- 7. Arribe a Conclusiones acerca del trabajo realizado, y del cumplimiento de los objetivos planteados (los objetivos del Taller se aprecian en la sección objetivos).
- 8. Detalle aspectos que puedan ser considerados como Trabajo a Futuro en su exploración.

Ejemplo de tabla de resultados, para los incisos b y c:

inpro de tabla de resurtados, para ros meisos o y e.								
Función	Mejor	Peor	Promedio	Mediana	Desviación Estándar			
f1								
•••								
• • •								
f6								
Promedios Globales	Avg(Mejor)	Avg(Peor)	Avg(Promedio)	Avg(Mediana)	Avg(Stdev)			

Ejemplo de tabla de resultados, para el inciso d:

Función	Máximo	Mínimo	Promedio	Mediana	Desviación Estándar
f1					
•••					
•••					
f6					
Promedios Globales	Avg(Máximo)	Avg(Mínimo)	Avg(Promedio)	Avg(Mediana)	Avg(Stdev)

Ejemplo de tabla de resultados, para el inciso e:

<u></u>									
Ejecución	F1				F6				
1	Valor de	Temperatura	Evaluación	Conservada		Valor de	Temperatura	Evaluación	Conservada
	la mejor					la mejor	_		
	solución					solución			
20									

Nota:

Para cada función, detalle los parámetros utilizados por cada algoritmo (número de evaluaciones, temperatura máxima, temperatura mínima, número de vecinos a evaluar, valor de alfa), así como el operador utilizado para la búsqueda de los vecinos.

Se premiará el mejor desempeño de los algoritmos. Se considerará como mejor desempeño a la máxima cantidad de valores mínimos para las funciones de prueba, considerando de forma conjunta los resultados de 10 y 30 dimensiones.

Por dónde Estudiar

- o Burke & Kendall. Search Metodologies 2005. Capítulo 7
- Chen, Q., Liu, B., Zhang, Q., Liang, J. J., Suganthan, P. N., & Qu, B. Y. (2014). Problem definition and evaluation criteria for CEC 2015 special session and competition on bound constrained single-objective computationally expensive numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, China and Nanyang Technological University, Singapore, Tech. Rep.
- o Materiales en la red.