Lecture 5: Bellman-Ford

Overview

- Review: Notation
- Generic S.P. Algorithm
- Bellman-Ford Algorithm: Analysis & Correctness

Readings

CLRS, Section 24

Review: Notation

path
$$p = \langle v_0, v_1, \dots v_k \rangle$$

 $(v_i, v_{i+1}) \in E \text{ for } 0 \le i < k$
 $w(p) = \sum_{i=0}^{k-1} w(v_i, v_{i+1})$

General structure of S.P. Algorithms

Approach Problems

First: Time complexity could be exponential. How can we reduce it?

Second: What if we have negative cycles? How to terminate in this case? How can we approach graphs with negative cycles?

Approach Problems

First: Time complexity could be exponential. How can we reduce it?

Approach Problems

Second: What if we have negative cycles? How to terminate in this case? How can we approach graphs with negative cycles?

Bellman-Ford(G,W,s)

```
Initialize ()  \begin{aligned} &\text{for } i=1 \text{ to } |V|-1 \\ &\text{for each edge } (u,v) \in E \\ &\text{Relax}(u,v) \end{aligned} \end{aligned}  for each edge (u,v) \in E  \\ &\text{do if } d[v] > d[u] + w(u,v) \\ &\text{then report a negative-weight cycle exists}
```

Correctness

Theorem: If G = (V, E) contains no negative weight cycles, then after Bellman-Ford executes $d[v] = \delta(s, v)$ for all $v \in V$.

Proof: Let $v \in V$ be any vertex. Consider path $p = v_0, v_1, ..., v_k$ from $v_0 = s$ to $v_k = v$ that is a shortest path with minimum number of edges.

No negative weight cycles \Rightarrow p is simple \Rightarrow k \leq |V|-1

Correctness

Theorem: If G = (V, E) contains no negative weight cycles, then after Bellman-Ford executes $d[v] = \delta(s, v)$ for all $v \in V$.

Proof: After 1 pass through E, we have $d[v1] = \delta(s, v1)$, because we will relax the edge (v0, v1) in the pass, and we can't find a shorter path than this shortest path. After i passes through E, we have $d[vi] = \delta(s, vi)$. etc.

Corollary

Theorem: If a value d[v] fails to converge after |V|-1 passes, there exists a negative-weight cycle reachable from s

Proof: After |V|-1 passes, if we find an edge that can be relaxed, it means that the current shortest path from s to some vertex is not simple and vertices are repeated. Since this cyclic path has less weight than any simple path the cycle has to be a negative-weight cycle.

Example

End of pass 1

End of pass 2 (and 3 and 4)