金沢大	学大学院自然科学 入 学		問	題
14	<u> </u>	8	Ħ	*
電気回路		電子情報システム専攻 (電気電子コース)		

注意:問1と問2の解答は別々の答案用紙に書くこと。

間 1

図1の回路がある。この回路において $E=10e^{j\theta}$ (|E|=10 V), $R_1=\sqrt{3}$ Ω であるとする。この回路につ いて以下の聞いに答えなさい。

- ϕ (1) 電源の角周波数 ω =100 rad/s に設定したところ、 $|V_{\rm R_1}|=5\sqrt{3}$ V となった。この場合の $V_{\rm L}$ および $V_{\mathrm{R}_{\mathrm{I}}}$ のベクトル図 (フェーザ図) を図示せよ。このとき E を基準ベクトルとすること。
- (0)(2)前間(1)の時、1に対して上は進相かそれとも遅相かを述べ、位相差を求めよ。また、インダクタンス Lの値を求めよ。

- Δ imes imes岡相になった。素子がコンデンサかコイルかを述べ、その素子のキャパシタンスあるいはインダクタンスの 値を求めよ。
 - Δ (4) 端子 ab 間に抵抗 R_2 を接続した場合について、I の一般式を B、 R_1 、 R_2 、L および ω を用いて扱しなさ い。また、ωを0から∞まで変化させた場合の1のベクトル軌跡を描きなさい。このとき、Εを基準ベク トルにとり、図には ω = 0, ∞ の点を明示すること。

图 1. 回路

図2に示す回路において、時刻t < 0では $e(t) = E_0$ であった電圧源が、時 刻t>0ではe(t)=Eとなった。以下の設間に答えよ。

- (a) t < 0 でのインダクタの初期電流を求めよ。
- (b) t>0 において、インダクタを流れる電流のラブラス変換 $I_{L}(s)$ を求めよ。
- (c) t>0 において、インダクタを流れる電流 $i_L(t)$ を求めよ。
- (d) $E=E_0/2$ であるとき、 $i_L(t)$ の時間変化のグラフを描け。また、時定数 ィを記せ。

图 2: 回路