Cours Communications Numériques

Chapitre 3
Transmission sur canal à bande limitée

Amin ZRIBI

Plan du Chapitre

- 1. Chaine de transmission numérique
- 2. Etudes des paramètres après émission/réception
- 3. Débit et rapidité
- 4. Interférences entre symboles (IES)
- 5. Diagramme de l'œil
- 6. Annulation de l'IES
- 7. Filtre en cosinus surélevé
- 8. La notion d'égalisation

Chaine de transmission numérique

Emetteur: mise en forme du signal

- Différents messages
 - -m[n]: message binaire de m bits
 - -A[k]: k symboles contenant chacun n/k bits
 - -e(t): signal modulé
 - $-h_e(t)$: RI du filtre de mise en forme

Chaine de transmission numérique

Canal de transmission

- Modèle général (Chap. 1)
- Différents messages:
 - $-h_c(t)$: RI du canal de transmission
 - -z(t): Bruit blanc additif Gaussien

Chaine de transmission numérique

Détecteur du signal

Différents messages

- $-h_r(t)$: RI du filtre de réception
- -r[kt]: signal filtré, puis échantillonné
- $-\hat{a}_k$: symboles de modulation détectés
- $-\hat{A}_k$: vecteurs de bits démodulés

- **Emetteur:** *v* bits à la sortie codeur source
 - Après codage canal (n > v bits) et conversion série parallèle: k vecteurs de n/k bits chacun: A[k]
 - Modulateur:
 - Transformation de chaque vecteur A[k] en symbole de modulation $a_k \in \mathbb{R}$, \mathbb{C} selon un alphabet M-aire ($M = 2^{n/k}$)
 - Génération d'une série d'impulsions modulées à l'horloge symbole T_s : $e(t) = \sum_{k \in \mathbb{Z}} a_k \delta(t kT_s)$
 - Filtre de mise en forme:

$$x(t) = \sum_{k \in \mathbb{Z}} a_k h_e(t - kT_s)$$

• Emetteur: Exemple

Canal de transmission:

- Signal à la sortie du canal : y(t) = s(t) + z(t)
- BBAG aléatoire: z(t)
- Composante filtrée:

$$s(t) = x(t) * h_c(t) = e(t) * h_e(t) * h_c(t)$$

- Définition: $h(t) = h_e(t) * h_c(t)$
- Signal reçu:

$$y(t) = e(t) * h(t) + z(t) = \sum_{k \in \mathbb{Z}} a_k h(t - kT_s) + z(t)$$

Le canal inclut une déformation de l'impulsion de base émise, et du bruit Gaussien

- Le récepteur:
 - Filtre de réception: $r(t) = y(t) * h_r(t)$
 - Définition: $g(t) = h_e(t) * h_c(t) * h_r(t)$
 - Signal obtenu:

$$r(t) = e(t) * g(t) + b(t) = \sum_{n \in \mathbb{Z}} a_n g(t - nT_s) + b(t)$$

– Echantillonnage aux instants $t = kT_s$

$$r(kT_S) = \sum_{n \in \mathbb{Z}} a_n g(kT_S - nT_S) + b(kT_S)$$

- Seuillage: $r(kT_s)$ à comparer avec un seuil de décision

Distorsion et bruit peuvent causer une erreur symbole → erreur(s) bit

Débit et rapidité

- Débit symbole de modulation:
 - Rapidité de modulation en Bauds
 - $-D_S=R=\frac{1}{T_S}$, avec T_S : durée d'un symbole
- Débit binaire:
 - Débit bit en bits/seconde
 - $-D_b = \frac{1}{T_b}$, avec T_b : durée d'un bit d'information
- Relation débit binaire et rapidité de modulation:
 - $-n = log_2(M)$, où M est le nombre de symboles de modulation possibles
 - $-D_b = n.D_s$
 - Exemple
 - Compromis débit/qualité

Interférences entre symboles (IES)

- Hypothèse: canal à bande limitée non bruité $z(t) = 0 \rightarrow b(kT_s) = 0$
- Le signal reçu, filtré et échantillonné devient:

Interférences entre symboles (IES)

L'interférence entre symboles est un phénomène qui se produit si le niveau échantillonné a l'instant de décision ne dépend pas du seul symbole attendu, mais se trouve altéré par la superposition d'un ou plusieurs autres symboles voisins.

Distorsion maximale:

$$D = \frac{\sum_{n \in \mathbb{Z}} |a_n g(nT_s)|}{|a_0 g(0)|} = \left[\frac{\sum_{n \in \mathbb{Z}} |a_n g(nT_s)|}{|a_0 g(0)|} \right]_{|a_n|=1}$$

Interprétations: D > 1, D < 1

Diagramme de l'œil

- Moyen efficace pour détecter la présence IES
- Superposition de plusieurs signaux pendant N temps symbole

Diagramme de l'œil

- En l'absence d'IES, tous les signaux passent par les memes points à l'instant d'échantillonnage (2 en binaire, M points en M-aires).
- Le diagramme est complètement ouvert a l'instant de décision

Diagramme de l'œil

Exemples

Rappel signal reçu:

$$r(kT_S) = \sum_{n \in \mathbb{Z}} a_n g((k-n)T_S) = a_k g(0) + \sum_{\substack{n \in \mathbb{Z} \\ n \neq k}} a_n g((k-n)T_S)$$

Pour avoir IES nulle il faut:

$$\sum_{\substack{n \in \mathbb{Z} \\ n \neq k}} a_n g((k-n)T_S) = 0, \qquad \forall n \neq k$$

Donc, le filtre global doit être définie tels que:

$$g(t) = h_e(t) * h_c(t) * h_r(t) = \begin{cases} g(kT_s) = 0, \forall k \neq 0 \\ g(0) \neq 0 \end{cases}$$

$$g(kT_s) = g(0)\delta(k)$$
Filtre de Nyquist

La forme du filtre n'est pas importante, il faut juste avoir l'annulation aux instants symboles différents de kT_s

Exemples

- La condition est satisfaite lorsque:
 - -g(t) est de durée $< T_s$
 - -g(t) vérifie $g(kT_s) = 0, \forall k \neq 0$

- Etude fréquentielle:
 - Le critère de Nyquist implique que le signal reçu échantillonné vérifie:

$$\sum_{n\in\mathbb{Z}}g(t-nT_s)=g(t)\times\sum_{n\in\mathbb{Z}}\delta(t-nT_s)=g(0)\delta(k)$$

– En fréquentiel, on aura:

$$G(f) * \frac{1}{T_S} \sum_{n \in \mathbb{Z}} \delta(f - n/T_S) = g(0)$$

– Ainsi:

$$\sum_{n \in \mathbb{Z}} G\left(f - \frac{n}{T_s}\right) = T_s. g(0)$$
 Critère de Nyquist en fréquence

$$\sum_{n \in \mathbb{Z}} G\left(f - \frac{n}{T_s}\right) = T_s. g(0)$$
 Critère de Nyquist en fréquence

- Explication pour un canal de largeur B
 - **Cas 1**: $\frac{1}{2T_s} > B$: $\sum_{n \in \mathbb{Z}} G\left(f \frac{n}{T_s}\right)$ est plusieurs répétitions de G(f) séparées de $\frac{1}{T_s}$ qui ne se recouvrent pas: condition non vérifiée.
 - Cas 2: $\frac{1}{2T_S} = B$: c'est possible. Exemple: $G(f) = g(0)T_S$ pour |f| < B. Ainsi, $B = \frac{1}{2T_S}$ est la bande minimale nécessaire pour transmettre sans IES un signal à une rapidité de $\frac{1}{T_c}$
 - Cas 3: $\frac{1}{2T_s} < B$: $\sum_{n \in \mathbb{Z}} G\left(f \frac{n}{T_s}\right)$ est plusieurs répétitions de G(f) séparées de $\frac{1}{T_s}$ qui se recouvrent. Possible si le point $\left(\frac{1}{2T_s}, \frac{g(0)}{2}\right)$ est un centre de symétrie pour G(f)

Il faut que:

- -G(f) soit constante sur une largeur de bande $B > \frac{1}{2T_S}$
- Support borné On appelle bande de Nyquist la largeur de bande minimale

$$B = \frac{1}{2T_S}$$

Canal de Nyquist idéal:

$$B = \frac{1}{2T_s}$$

- Spectre G(f) rectangulaire, de bande passante $B = \frac{1}{2Ts}$
- Impulsion correspondante dans le domaine temporel:

$$g(t) = \frac{\sin(2\pi Bt)}{2\pi Bt} = sinc(\frac{t}{Ts})$$

Canal de Nyquist idéal:

- Elimination des IES
- Minimum de bande passante (rapidité maximale)

Mais

- Transition abrupte de la réponse du filtre, irréalisable en pratique
- L'impulsion g(t) décroît en 1/|t|, ce qui provoque une dégradation importante des performances en cas d'erreur de timing

Solution:

- Extension de la bande passante depuis la valeur minimale $B=\frac{1}{2Ts}$ vers une valeur ajustable entre B et 2B
- Pour un filtre dont le spectre est limité à la bande [-2B, 2B], on peut se contenter de spécifier le critère de Nyquist dans la bande [-B, B] comme:

$$\sum_{n \in \mathbb{Z}} G\left(f - \frac{n}{T_s}\right) = G(f) + G(f - \frac{1}{T_s}) + G(f + \frac{1}{T_s}) = T_s. g(0)$$

- Solution possible: filtre en cosinus surélevé (raised cosine filter) constitué d'une partie plate et une partie dite 'roll-off' de forme sinusoïdale
- Fonction de transfert est:

$$G(f) = \begin{cases} g(0)Ts, & si|f| < \frac{1-\alpha}{2Ts} \\ \frac{g(0)Ts}{2} \left[1 + \cos\left(\frac{\pi Ts}{\alpha} \left(f - \frac{1-\alpha}{2Ts}\right)\right)\right], & si\frac{1-\alpha}{2Ts} < |f| < \frac{1+\alpha}{2Ts} \\ 0, & si|f| > \frac{1+\alpha}{2Ts} \end{cases}$$

• Avec α est le coefficient d'excès en bande

$$B_T = B(1 + \alpha)$$

• *Cas1:* $\alpha = 0$: Filtre rectangulaire

• Cas 2:
$$\alpha = 1$$
: $G(f) = \frac{g(0)Ts}{2} [1 + \cos(\pi T_s f)]$

Analyse temporelle du filtre

La réponse impulsionnelle du filtre vaut:

impulsion de Nyquist idéale, assurant le passage par 0 aux instants adéquats

décroissance en $\frac{1}{|t|^2}$, réduisant l'importance de la 'queue' de l'impulsion, ce qui la rend moins sensible aux erreurs de timing

Impact sur le diagramme de l'œil

Impact sur la bande

La notion d'égalisation

- En présence du bruit, le filtre de réception doit corriger, de façon adaptative, la distorsion linéaire responsable de l'IES introduite par le canal.
- Le canal est dit **égalisé** lorsque la réponse globale vérifie le critère de Nyquist.
- En pratique, on y parvient à l'aide d'un filtre supplémentaire appelé égaliseur placé derrière le filtre d'entrée du récepteur, après échantillonnage (filtre numérique)