- 1. What do you mean by computer Architecture and Computer Organization?
- 2. What is Von-Neumann architecture? Briefly explain the basic building blocks of the computer.
- 3. Define Logical gate? List and define basic gates require to design logical circuit. Describe Universal gates in brief.
- 4. Given the Boolean function

$$F = xy'z+x'y'z+xyz$$

List the truth table for the above function and draw the logical circuit.

- 5. Convert the hexadecimal number F3AC72 to binary and octal.
- 6. Convert the following numbers into Binary
 - i. (4310)₅
 - ii. (198)₁₀
 - iii. $(246)_8$
- 7. Convert the following into decimal
 - i. $(10110.0101)_2$
 - ii. (BABA)₁₆
 - iii. (26.24)₈
- 8. The 8-bit registers AR, BR, CR and DR initially have the following values:

Determine the 8-bit values in each register after the execution of the following sequence of microoperations

 $AR \leftarrow AR + BR$ Add BR to AR $CR \leftarrow CR \land DR$ AND DR to CR $BR \leftarrow BR + 1$ increment BR

AR←AR-CR Subtract CR from AR

- 9. The solution of the quadratic equation $x^2-11x+22=0$ are x=3 & x=6. What is the base/radix of the number?
- 10. Add these number without converting them into Decimal
 - i. Binary numbers 1011 and 101

11. Complete the Following

Deci mal	Binary	Octal	Hexadeci mal
33			
	1101011.11		
		3.07	
			C82

12. Convert:

a.
$$(10110.0101)_2 \rightarrow ()$$

b.
$$(16.5)_{16} \rightarrow (?)_{10}$$

c.
$$(26.24)_{16} \rightarrow (?)_{10}$$

- 13. Perform the arithmetic operations (-70) + (+80) and (-70) + (-80) in binary using signed-2's complement representation for negative numbers.
- 14. Represent 100.125 in IEEE 754 single and double precision hexadecimal notation.
- 15. Differentiate
 - i. Multiplexer and Demultiplexer
 - ii. Binary adder and CLA
 - iii. Memory read and Memory write
 - iv. Full Adder and Full Subtractor
- 16. What is the need of stack organization? Explain PUSH and POP operations. Convert the following arithmetic expression into reverse polish notation (RPN) and show the stack operations for evaluating it.

$$7*5+(5+6)+(4*6+2)$$