

ÖLÇÜM BELİRSİZLİĞİ PROSEDÜRÜ

Dok. No: KY.PR.**7.6** Yayın Tarihi: 17.12.2008 Rev. No/Tarih: 03/01.11.2018 Sayfa No: 1/5

1. AMAÇ

Yapılan analiz/testlerin ölçüm belirsizliğinin belirlenmesinde izlenen yöntemi açıklamaktır.

2. KAPSAM

Ölçüm belirsizliğinin belirlenmesi sürecini ve bu süreçle ilgili temel kavram ile formülleri kapsar.

3. KISALTMALAR VE TANIMLAR

IEC : Uluslararası Elektroteknik Komisyonu

(The International Electrotechnical Commission

EURACHEM : Avrupa Analitik Kimya Laboratuvarları Birliği

(A Focus for Analytical Chemistry in Europe)

ISO : Uluslararası Standartlar Örgütü

(International Organization for Standardization)

TURKAK : Türk Akreditasyon Kurumu

Ölçüm Belirsizliği : Makul olarak ölçülen büyüklüğe atfedilen değerlerin dağılımını karakterize eden

ve ölçü sonucuyla ilgili olan parametredir.

4. İLGİLİ DOKÜMANLAR

TURKAK R20-02 Nicel Olarak Elde Edilen Deney Sonuçlarındaki Ölçüm Belirsizliği Tahmini İçin Prensipleri

ISO/IEC Guide 98-3 Uncertainty of Measurement - Part 3: Guide to the Expression of Uncertainty in Measurement

EURACHEM/CITAC Guide CG 4 Quantifying Uncertainty in Analytical Measurement KY.PR.8.4 Kayıtların Kontrolü Prosedürü

5. UYGULAMALAR

5.1 Analiz/Testlerde ölçüm belirsizliği; referans malzemeler, kullanılan metotlar ve cihazlar, çevre şartları, analiz/testi yapılan numunenin durumu, deneyi yapan gibi pek çok bileşene bağlıdır. Laboratuvar, ölçüm belirsizliğini hesaplarken analiz/testi etkileyen tüm ölçüm belirsizliği bileşenlerini tanımlar, mümkün olan en iyi tahmini yapar ve yazılan raporun belirsizlik hakkında yanlış fikir vermemesini sağlar.

Ölçüm belirsizliğinin hesaplanmasında; TURKAK R20-02 Nicel Olarak Elde Edilen Deney Sonuçlarındaki Ölçüm Belirsizliği Tahmini İçin Prensipler rehberinden, ISO/IEC Guide 98-3 Uncertainty of Measurement - Part 3: Guide to the Expression of Uncertainty in Measurement rehberinden,

HAZIRLAYAN	ONAYLAYAN
Aydan ÇALIK	Akan GÜLMEZ
Kalite Yöneticisi	Daire Başkanı

ÖLÇÜM BELİRSİZLİĞİ PROSEDÜRÜ

Dok. No: KY.PR.**7.6** Yayın Tarihi: 17.12.2008 Rev. No/Tarih: 03/01.11.2018 Sayfa No: 2/5

EURACHEM/CITAC Guide CG 4 Quantifying Uncertainty in Analytical Measurement rehberinden, ölçüm belirsizliği eğitim notlarından ve literatürde mevcut diğer dokümanlardan yararlanılır.

5.2 Ölçüm belirsizliği hesaplamaları, ölçüm belirsizliği eğitimi almış ve analiz/test metoduna hakim laboratuvar personeli tarafından yapılır. Her analiz/test metodu için ayrı ayrı ölçüm belirsizliği hesaplanarak rapor hazırlanır, hazırlayan personel tarafından imzalanır ve Birim Yöneticisi tarafından onaylanır.

Ölçüm belirsizliğinin hesaplanmasında temel olarak aşağıdaki süreç takip edilir:

- a) Ölçülen büyüklüğün model fonksiyonunun oluşturulması,
- b) Belirsizlik kaynaklarının belirlenmesi,
- c) Belirsizlik bileşenlerinin tahmini ve hesaplanması,
- d) Bileşik belirsizliğin hesaplanması,
- e) Genişletilmiş belirsizliğin hesaplanması,
- f) Ölçüm sonucunun raporlanması.

Ölçüm belirsizliğinin belirlenmesi sırasında göz önüne alınan bazı temel kavram ve formüller:

a) Aritmetik ortalama, \bar{x} :

$$\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n}$$
 (x_i=ölçüm sonucu, n=ölçüm sayısı)

b) Numune standart sapması, s:

$$s = \sum_{i=1}^{n} \frac{(x_i - \bar{x})^2}{n - 1}$$

c) Ortalamanın standart sapması, 5=:

$$s_{\tilde{x}} = \frac{s}{\sqrt{n}}$$

d) Bağıl standart sapma, RSD:

$$RSD = \frac{s}{\bar{s}}$$

HAZIRLAYAN	ONAYLAYAN
Aydan ÇALIK	Akan GÜLMEZ
Kalite Yöneticisi	Daire Başkanı

ÖLÇÜM BELİRSİZLİĞİ PROSEDÜRÜ

Dok. No: KY.PR.**7.6** Yayın Tarihi: 17.12.2008 Rev. No/Tarih: 03/01.11.2018 Sayfa No: 3/5

- e) Belirsizlik türleri:
- A tipi belirsizlik: Gözlem serilerinin belirsizlik hesaplarının istatistiksel analiz yöntemidir.
- B tipi belirsizlik: Gözlem serilerinin belirsizlik hesaplarının istatistiksel olmayan diğer yöntemleridir. (önceki ölçümlerden elde edilen veriler, üretici firma spesifikasyonları, kalibrasyon sertifikasından gelen değerler, ilgili el kitaplarında verilen değerler vb.)
- f) Standart belirsizlik, u(x_i): Ölçüm sonuçlarının dağılımının standart sapma olarak hesaplanan değeridir.
- g) B tipi belirsizliğin hesaplanmasında kullanılan istatistiksel dağılım türleri;
- Normal dağılım: Tahmini x_i değerinin alındığı kaynakta x_i'nin belirsizliği standart sapmanın belli bir çarpanı (k) olarak verilirse;

$$u(x_i) = \frac{belirtilen\ belirsizlik}{k}$$

- Dikdörtgen dağılım: Sertifikalarda veya verilen diğer bilgilerde güven aralığı verilmemişse ve bir büyüklüğün değişim göstereceği aralık biliniyor ise;

$$u(x_i) = \frac{a}{\sqrt{3}}$$
 (tolerans değeri = a)

- Üçgen dağılım: Büyüklüğün değişim gösterebileceği aralık biliniyorsa ve değerlerin merkezde toplanma olasılığı güçlü ise;

$$u(x_i) = \frac{a}{\sqrt{6}}$$
 (tolerans değeri = a)

h) Bileşik belirsizlik, u_c(y): Bir ölçüm sonucuna etkiyen belirsizlik bileşenlerinin ölçüm sonucuna etkisinin göz önüne alınması ile hesaplanan belirsizliktir.

 $y = f(x_1, x_2, ..., x_n)$ model fonksiyonu için;

$$u_c(y(x_1, x_2, ..., x_n)) = \sum_{i=1}^n c_i^2 u(x_i)^2$$
 (c_i, hassasiyet katsayısı = $\frac{\partial y}{\partial x_i}$)

HAZIRLAYAN	ONAYLAYAN
Aydan ÇALIK	Akan GÜLMEZ
Kalite Yöneticisi	Daire Başkanı

ÖLÇÜM BELİRSİZLİĞİ PROSEDÜRÜ

Dok. No: KY.PR.**7.6** Yayın Tarihi: 17.12.2008 Rev. No/Tarih: 03/01.11.2018 Sayfa No: 4/5

i) Fonksiyon sadece toplama/çıkarma veya çarpma/bölme işlemi içeriyor ve bölme gerektiren fonksiyonlarda pay ve paydada aynı nicelik tekrarlanmıyorsa hassasiyet katsayıları metodu kullanılmadan aşağıdaki pratik yollarla bileşik belirsizlik hesaplanabilir:

p'nin standart belirsizliği, u(p) q'nin standart belirsizliği, u(q) r'nin standart belirsizliği, u(r) y'nin bileşik belirsizliği, u_c

- toplama/çıkarma var ise;

$$u_c(y(p,q,r)) = \sqrt{u(p)^2 + u(q)^2 + u(r)^2}$$

- çarpma/bölme var ise;

$$u_c\big(y(p,q,r)\big) = y\sqrt{\left(\frac{u(p)}{p}\right)^2 + \left(\frac{u(q)}{q}\right)^2 + \left(\frac{u(r)}{r}\right)^2}$$

- hem toplama/çıkarma hem çarpma/bölme var ise;

örnek:
$$y = \frac{o+p}{\sigma+r}$$

Pay ve payda ayrı ayrı (a) maddesine göre hesaplanır, sonra birlikte (b) maddesi uygulanır.

j) Kapsam faktörü, k: Genişletilmiş belirsizliği hesaplamak amacıyla bileşik belirsizlikle çarpılan sayısal faktördür.

Güvenilirlik aralığı	k
%68	1
%95	2
%99	3

HAZIRLAYAN	ONAYLAYAN
Aydan ÇALIK	Akan GÜLMEZ
Kalite Yöneticisi	Daire Başkanı

ÖLÇÜM BELİRSİZLİĞİ PROSEDÜRÜ

Dok. No: KY.PR. 7.6	Yayın Tarihi: 17.12.2008	Rev. No/Tarih: 03/01.11.2018	Sayfa No: 5/5

k) Genişletilmiş belirsizlik, U: Ölçülen bir niceliğin beklentiye göre ölçüm sonucunu değerlerinin büyük bir kısmını içeren aralık olarak tanımlanır.

$$U = k \times u_c(y)$$

- 5.3 Hesaplanan ölçüm belirsizliği;
- analiz/test sonucunun tayin edilmiş bir toleransı veya sınır değeri ilgili belirsizlik uygulandığında aşması halinde.
- analiz/testi talep edenin istemesi halinde,
- analiz/test sonuçlarının geçerliliği veya uygulanması için gerekli olduğunda,

ölçü birimi de belirtilerek analiz/test sonucu ile birlikte rapor edilir.

- 5.4 Ölçüm belirsizliği hesaplamaları;
- laboratuvarda yeni bir prosedür kullanılmaya başlandığında,
- ölçüm cihazı, personel, numune türü vb. gibi kritik durumlarda değişiklik olduğunda,
- analiz/test metodunda değişiklik olduğunda,
- belirsizlik bileşenlerinden herhangi birinde değişiklik olduğunda,
- numune hazırlamada değişiklik olduğunda,
- metot validasyonunun yenilenmesi gibi durumlarda tekrar yapılır.

6. ARŞİV VE KAYITLAR

Tüm kayıtlar "Kayıtların Kontrolü Prosedürü"ne uygun olarak muhafaza edilir.

7. REVİZYONLAR

"Ölçüm Belirsizliği Prosedürü"nde yapılan revizyonlar aşağıda verilen tabloda gösterilir.

Revizyon No/Tarih	Sayfa No	Revizyon Nedeni
01/18.11.2009	5	6. maddede değişiklik
02/11.11.2014	5	5.4 maddesi ilave edilmesi
03/01.11.2018	Tümü	Doküman numarası ve Madde 6'da değişiklik

HAZIRLAYAN	ONAYLAYAN
Aydan ÇALIK	Akan GÜLMEZ
Kalite Yöneticisi	Daire Başkanı