Título do trabalho a ser apresentado à CPG para a dissertação/tese

Aarão Melo Lopes

DISSERTAÇÃO/TESE APRESENTADA
AO
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA
DA
UNIVERSIDADE DE SÃO PAULO
PARA
OBTENÇÃO DO TÍTULO
DE
MESTRE/DOUTOR EM CIÊNCIAS

Programa: Nome do Programa

Orientador: Prof. Dr. Nome do Orientador

Coorientador: Prof. Dr. Nome do Coorientador

Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro da ${\rm CAPES/CNPq/FAPESP}$

São Paulo, fevereiro de 2011

Redes Neurais Convolucionais Quaternion

Esta é a versão original da dissertação elaborada pelo candidato (Aarão Melo Lopes), tal como submetida à Comissão Julgadora.

Título do trabalho a ser apresentado à CPG para a dissertação/tese

Esta versão da dissertação/tese contém as correções e alterações sugeridas pela Comissão Julgadora durante a defesa da versão original do trabalho, realizada em 14/12/2010. Uma cópia da versão original está disponível no Instituto de Matemática e Estatística da Universidade de São Paulo.

Comissão Julgadora:

- Prof^a. Dr^a. Nome Completo (orientadora) IME-USP [sem ponto final]
- Prof. Dr. Nome Completo IME-USP [sem ponto final]
- Prof. Dr. Nome Completo IMPA [sem ponto final]

Agradecimentos

Texto texto

Resumo

SOBRENOME, A. B. C. **Título do trabalho em português**. 2010. 120 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2010.

Elemento obrigatório, constituído de uma sequência de frases concisas e objetivas, em forma de texto. Deve apresentar os objetivos, métodos empregados, resultados e conclusões. O resumo deve ser redigido em parágrafo único, conter no máximo 500 palavras e ser seguido dos termos representativos do conteúdo do trabalho (palavras-chave). Texto texto

Palavra-chave: palavra-chave1, palavra-chave2, palavra-chave3.

Abstract

SOBRENOME, A. B. C. **Título do trabalho em inglês**. 2010. 120 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2010.

Keywords: keyword1, keyword2, keyword3.

Sumário

Li	le Abreviaturas i	X		
Li	sta d	le Símbolos	ςi	
Li	le Figuras xi	xiii		
Li	sta d	le Tabelas x	v	
1	Intr	rodução	1	
	1.1	Considerações Preliminares	1	
	1.2	Objetivos	1	
	1.3	Contribuições	2	
	1.4	Organização do Trabalho	2	
2	Cor	aceitos	3	
	2.1	Perceptrons de Camada Única	3	
		2.1.1 Teorema de convergência do perceptron	3	
3	Cor	nclusões	7	
	3.1	Considerações Finais	7	
	3.2	Sugestões para Pesquisas Futuras	7	
A	Seq	uências	9	
\mathbf{R}	e fer ê	ncias Bibliográficas 1	1	
Ín	dica	Ramissivo 1	2	

Lista de Abreviaturas

 CFT Transformada contínua de Fourier (Continuous Fourier Transform) DFT Transformada discreta de Fourier (Discrete Fourier Transform) EIIP Potencial de interação elétron-íon (Electron-Ion Interaction Potentials) Tranformada de Fourier de tempo reduzido (Short-Time Fourier Transform) STFT

Lista de Símbolos

- ω Frequência angular
- ψ Função de análise wavelet
- Ψ Transformada de Fourier de ψ

Lista de Figuras

2.1	Grafo de fluxo do sinal do perceptron	3
2.2	Grafo de fluxo do sinal do perceptron	4
2.3	Número máximo de iterações	6

Lista de Tabelas

Capítulo 1

Introdução

Escrever bem é uma arte que exige muita técnica e dedicação. Há vários bons livros sobre como escrever uma boa dissertação ou tese. Um dos trabalhos pioneiros e mais conhecidos nesse sentido é o livro de Umberto Eco [Eco09] intitulado *Como se faz uma tese*; é uma leitura bem interessante mas, como foi escrito em 1977 e é voltado para teses de graduação na Itália, não se aplica tanto a nós.

Para a escrita de textos em Ciência da Computação, o livro de Justin Zobel, Writing for Computer Science [Zob04] é uma leitura obrigatória. O livro Metodologia de Pesquisa para Ciência da Computação de Raul Sidnei Wazlawick [Waz09] também merece uma boa lida. Já para a área de Matemática, dois livros recomendados são o de Nicholas Higham, Handbook of Writing for Mathematical Sciences [Hig98] e o do criador do T_EX, Donald Knuth, juntamente com Tracy Larrabee e Paul Roberts, Mathematical Writing [KLR96].

O uso desnecessário de termos em lingua estrangeira deve ser evitado. No entanto, quando isso for necessário, os termos devem aparecer *em itálico*.

```
Modos de citação:
indesejável: [AF83] introduziu o algoritmo ótimo.
indesejável: (Andrew e Foster, 1983) introduziram o algoritmo ótimo.
certo: Andrew e Foster introduziram o algoritmo ótimo [AF83].
certo: Andrew e Foster introduziram o algoritmo ótimo (Andrew e Foster, 1983).
certo: Andrew e Foster (1983) introduziram o algoritmo ótimo.
```

Uma prática recomendável na escrita de textos é descrever as legendas das figuras e tabelas em forma auto-contida: as legendas devem ser razoavelmente completas, de modo que o leitor possa entender a figura sem ler o texto onde a figura ou tabela é citada.

Apresentar os resultados de forma simples, clara e completa é uma tarefa que requer inspiração. Nesse sentido, o livro de Edward Tufte [Tuf01], *The Visual Display of Quantitative Information*, serve de ajuda na criação de figuras que permitam entender e interpretar dados/resultados de forma eficiente.

1.1 Considerações Preliminares

Considerações preliminares¹. Texto texto.

1.2 Objetivos

Texto texto.

¹Nota de rodapé (não abuse).

2 Introdução 1.4

1.3 Contribuições

As principais contribuições deste trabalho são as seguintes:

• Item 1. Texto texto.

• Item 2. Texto texto.

1.4 Organização do Trabalho

No Capítulo 2, apresentamos os conceitos ... Finalmente, no Capítulo 3 discutimos algumas conclusões obtidas neste trabalho. Analisamos as vantagens e desvantagens do método proposto ... As sequências testadas no trabalho estão disponíveis no Apêndice A.

Capítulo 2

Conceitos

2.1 Perceptrons de Camada Única

O perceptron é construído em torno de um neurônio não-linear, isto é, o modelo de MacCulloch-Pitts de um neurônio. Este modelo de neurônio consite de um combinador linear seguido por um limitador abrupto (realizando a função sinal), como apresentador na Figura 2.1. O nó aditivo do modelo neuronal caucula uma combinação linear das entradas aplicadas às sua sinapses e também incorpora um bias aplicado externamente. A soma resultante, isto é, o campo local induzido, é aplicado ao limitador abrupto.

Figura 2.1: Grafo de fluxo do sinal do perceptron

2.1.1 Teorema de convergência do perceptron

Para derivar o algoritmo de aprendizagem por correção de erro para o perceptron, achamos mais conveniente trabalhar com o modelo modificado do grafo de fluxo de sinal da Figura 2.2. Neste segundo modelo, que é equivalete àquele da Figura 2.1, o bias b(n) é tratado como um peso sináptico acionado por uma entrada fixa igual a +1. Podemos assim definir o vetor de entrada (m+1)-por-1

$$\mathbf{x}(n) = [+1, x_1(n) x_2(n), \cdots, x_m(n)]^T$$

onde n representa o passo de iteração na aplicação do algoritmo. Correspondentemente, definimos o vetor de pesos (m+1)-por-1 como

$$\mathbf{w}(n) = [b(n), w_1(n) w_2(n), \cdots, w_m(n)]^T$$

Corespondentemente, a saída do combinador linear pode ser escrita na forma compacta

$$v(n) = \sum_{i=0}^{m} w_i(n)x_i(n)$$
$$= \mathbf{w}^T(n)\mathbf{x}(n)$$
(2.1)

4 CONCEITOS 2.1

onde $w_0(n)$ representa o bias b(n). Para n fixo, a equação $\mathbf{w}^T\mathbf{x} = 0$, traçada em um espaço multidimensional (traçada para um bias determinado) com coordenadas $x_1 x_2, \dots, x_m$, define um hiperplano como a superfície de decisão entre duas classes diferentes de entradas.

Figura 2.2: Grafo de fluxo do sinal do perceptron

Para o perceptron funcionar corretamente, as duas classes \mathcal{C}_1 e \mathcal{C}_2 devem ser linearmente separáveis. Por sua vez, isto significa que os mpadrões a serem classificados devem estar suficientemente separados entre si para assegurar que a superfície de dicisão consista de um hiperplano.

Suponhamos então que as variáveis de entrada do perceptron se originem de duas classes linearmente separáveis. Seja \mathcal{X}_1 o subconjunto de vetores de treinamento $\mathbf{x}_1(1)$, $\mathbf{x}_1(2)$, \cdots que pertencem à classe \mathcal{C}_1 e seja \mathcal{X}_2 o subconjunto de vetores de treinamento $\mathbf{x}_2(1)$, $\mathbf{x}_2(2)$, \cdots que pertencem à classe \mathcal{C}_2 . A união de \mathcal{X}_1 e \mathcal{X}_2 é o conjunto de treinamento completo \mathcal{X} . Dados os conjuntos de vetores \mathcal{X}_1 e \mathcal{X}_2 para treinar o classificador, o processo de treinamento envolve o ajuste de peso \mathbf{w} de tal forma que as duas classes \mathcal{C}_1 e \mathcal{C}_2 sejam linearmente separáveis. Isto é, existe um vetor de peso \mathbf{w} para o qual podemos afirmar

$$\mathbf{w}^T \mathbf{x} > 0$$
 para todo vetor de entrada \mathbf{x} pertencente à classe \mathscr{C}_1
 $\mathbf{w}^T \mathbf{x} \leq 0$ para todo vetor de entrada \mathbf{x} pertencente à classe \mathscr{C}_2 (2.2)

Na segunda linha da Equação 2.2, escolhemos arbitrariamente que o vetor de entrada \mathbf{x} pertence à classe \mathscr{C}_2 se $\mathbf{w}^T\mathbf{x} = 0$. Dados os sobconjuntos de vetores de treinamento \mathscr{X}_1 e \mathscr{X}_2 , o problema de treinamento para o perceptron elementar é, então, encontrar um vetor de peso \mathbf{w} tal que as duas desigualdades da Equação 2.2 sejam satisfeitas.

O algoritmo para adaptar o vetor de peso do perceptron elementar pode ser formulado como segue:

1. Se o n-ésimo membro do conjunto de treinamento, $\mathbf{x}(n)$, é corretamente classificado pelo vetor de peso $\mathbf{w}(n)$ calculado na n-ésima iteração do algoritmo, então o vetor de peso do perceptron não é corrigido de acordo com a regra:

$$\mathbf{w}(n+1) = \mathbf{w}(n)$$
 se $\mathbf{w}^{T}(n)\mathbf{x}(n) > 0$ e $\mathbf{x}(n)$ pertencente à classe \mathscr{C}_{1}
$$\mathbf{w}(n+1) = \mathbf{w}(n)$$
 se $\mathbf{w}^{T}(n)\mathbf{x}(n) \leq 0$ e $\mathbf{x}(n)$ pertencente à classe \mathscr{C}_{2} (2.3)

2. Caso contrário, o vetor de peso do percptron é atualizado de acordo com a regra

$$\mathbf{w}(n+1) = \mathbf{w}(n) - \eta(n)\mathbf{x}(n) \quad \text{se } \mathbf{w}^{T}(n)\mathbf{x}(n) > 0 \text{ e } \mathbf{x}(n) \text{ pertencente à classe } \mathscr{C}_{2}$$

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \eta(n)\mathbf{x}(n) \quad \text{se } \mathbf{w}^{T}(n)\mathbf{x}(n) \leq 0 \text{ e } \mathbf{x}(n) \text{ pertencente à classe } \mathscr{C}_{1}$$

$$(2.4)$$

onde o parâmetro da taxa de aprendizagem $\eta(n)$ controla o ajuste aplicado ao vetor de peso na iteração n.

Se $\eta(n) = \eta > 0$, onde η é uma constante independente do número da iteração n, temos uma regra de adaptação com incremento fixo para o perceptron.

No que segue, primeiro provamos a convergência de uma regra de adaptação com incremento fixo para a qual $\eta=1$. Claramente, o valor de η não é importante, desde que seja positivo. Um valor de $\eta \neq 1$ meramente escala os vetores de padrões sem afetar a sua separabilidade.

A prova é apresentada para a condição inicial $\mathbf{w}(0) = \mathbf{0}$. Suponhamos que $\mathbf{w}^T(n)\mathbf{x}(n) < 0$ para $n = 1, 2, \dots$, e que o vetor de entrada $\mathbf{x}(n)$ pertença ao sbconjunto \mathscr{X}_1 . Isto é, o perceptron classifica incorretamente os vetores $\mathbf{x}(1), \mathbf{x}(2), \dots$, já que a segunda condição da Equação 2.2 é violada. Então, com a constante $\eta(n) = 1$, podemos a segunda linha da Equação 2.4 para escrever

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \mathbf{x}(n)$$
 para $\mathbf{x}(n)$ pertencente à classe \mathscr{C}_1 . (2.5)

Dada a condição inicial $\mathbf{w}(0) = \mathbf{0}$, podemos resolver iterativamente esta equação para $\mathbf{w}(n+1)$ obtendo o resultado

$$\mathbf{w}(n+1) = \mathbf{x}(1) + \mathbf{x}(2) + \dots + \mathbf{x}(n) \tag{2.6}$$

Como as classes \mathscr{C}_1 e \mathscr{C}_2 são assumidas como sendo linearmnete separáveis, existe uma solução \mathbf{w}_0 para a qual $\mathbf{w}^T(n)\mathbf{x}(n) > 0$ para os vetores $\mathbf{x}(1), \dots, \mathbf{x}(n)$ pertencentes ao subconjunto \mathscr{X}_1 . Para uma solução fixa \mathbf{w}_0 , podemos então definir um número positivo α como

$$\alpha = \min_{\mathbf{x}(n) \in \mathcal{X}_1} \mathbf{w}_0^T \mathbf{x}(n) \tag{2.7}$$

Assim, multiplicando ambos os lados da Equação 2.6 pelo vetor linha \mathbf{w}_0^T , obtemos

$$\mathbf{w}_0^T \mathbf{w}(n+1) = \mathbf{w}_0^T \mathbf{x}(1) + \mathbf{w}_0^T \mathbf{x}(2) + \dots + \mathbf{w}_0^T \mathbf{x}(n)$$

Consequentemente, com base na definição dada na Equação 2.7, temos

$$\mathbf{w}_0^T \mathbf{w}(n+1) \ge n\alpha$$

Da desiqualdade de Cauchy-Schwarz segue que

$$\|\mathbf{w}_0\|^2 \|\mathbf{w}(n+1)\|^2 \ge n^2 \alpha^2$$

ou de forma equivalente,

$$\|\mathbf{w}(n+1)\|^2 \ge \frac{n^2 \alpha^2}{\|\mathbf{w}_0\|^2}$$
 (2.8)

A seguir, seguimos com um outro caminho de desenvolvimento. Em particular, reescrevemos a Equação 2.5 na forma

$$\mathbf{w}(k+1) = \mathbf{w}(k) + \mathbf{x}(k) \quad \text{para } k = 1, \dots, n \in \mathbf{x}(k) \in \mathcal{X}_1$$
 (2.9)

Calculando a morma euclidiana quadrática de ambos os lados da Equação 2.9, obtemos

$$\|\mathbf{w}(k+1)\|^2 = \|\mathbf{w}(k)\|^2 + \|\mathbf{x}(k)\|^2 + 2\mathbf{w}^T(k)\mathbf{x}(k)$$
(2.10)

Mas, sob a suposição que o perceptron classifica incorretamente um vetor de entrada $\mathbf{x}(k)$ pertencente ao subconjunto \mathcal{X}_1 , temos $\mathbf{w}^T(k)\mathbf{x}(k) < 0$. Consequentemente, deduzimos da Equação 2.10 que

$$\|\mathbf{w}(k+1)\|^2 - \|\mathbf{w}(k)\|^2 \le \|\mathbf{x}(k)\|^2, \quad k = 1, \dots, n$$

Somando estas desigualdades para $k=1,\cdots,n$ e invocando a condição inicial assumida $\mathbf{w}(0)=\mathbf{0},$ obtemos a desigualdade:

$$\|\mathbf{w}(k+1)\|^2 \le \sum_{k=1}^n \|\mathbf{x}(k)\|^2$$

 $\le n\beta$ (2.11)

6 CONCEITOS 2.1

onde β é um número positivo definido por

$$\beta = \max_{\mathbf{x}(k) \in \mathcal{X}_1} \|\mathbf{x}(k)\|^2 \tag{2.12}$$

A Equação 2.11 afirma que a norma euclidana quadrática do vetor de peso $\mathbf{w}(n+1)$ cresce no máximo linearmente como o número de iterações n. O segundo resultado da Equação 2.11 está claramente em conflito com o resultado anterior da Equação 2.8 para valores suficientemente grandes de n. De fato, podemos afirmar que n não pode ser maior que um valor n_{max} para o qual as Equações 2.8 2.11 são ambas satisfeitas com um sinal de igualdade. Isto é, dada uma solução \mathbf{w}_0 temos

$$n_{\text{max}} = \frac{\beta \|\mathbf{w}_0\|^2}{\alpha^2} \tag{2.13}$$

Provamos assim que para $\eta(n)=1$ para todo n, e $\mathbf{w}(0)=\mathbf{0}$, e desde que exista um vetor solução \mathbf{w}_0 , a regra para adaptar os pesos sinápticos do perceptron deve terminar após no máximo n_{\max} iterações. Note também que das Equações 2.7, 2.12 e 2.13 que não existe uma solução única para \mathbf{w}_0 ou n_{\max} .

Figura 2.3: Número máximo de iterações

Capítulo 3

Conclusões

Texto texto.

3.1 Considerações Finais

Texto texto.

3.2 Sugestões para Pesquisas Futuras

Texto texto.

Finalmente, leia o trabalho de Uri Alon [Alo09] no qual apresenta-se uma reflexão sobre a utilização da Lei de Pareto para tentar definir/escolher problemas para as diferentes fases da vida acadêmica. A direção dos novos passos para a continuidade da vida acadêmica deveriam ser discutidos com seu orientador.

¹Exemplo de referência para página Web: www.vision.ime.usp.br/~jmena/stuff/tese-exemplo

Apêndice A

Sequências

Texto texto.

Limiar	MGWT			AMI			Spectrum de Fourier			Características espectrais		
	Sn	Sp	AC	Sn	Sp	AC	Sn	Sp	AC	Sn	Sp	AC
1	1.00	0.16	0.08	1.00	0.16	0.08	1.00	0.16	0.08	1.00	0.16	0.08
2	1.00	0.16	0.09	1.00	0.16	0.09	1.00	0.16	0.09	1.00	0.16	0.09
2	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10
4 5	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10
	1.00	0.16	0.11	1.00	0.16	0.11	1.00	0.16	0.11	1.00	0.16	0.11
6	1.00	0.16	0.12	1.00	0.16	0.12	1.00	0.16	0.12	1.00	0.16	0.12
7	1.00	0.17	0.12	1.00	0.17	0.12	1.00	0.17	0.12	1.00	0.17	0.13
8	1.00	0.17	0.13	1.00	0.17	0.13	1.00	0.17	0.13	1.00	0.17	0.13
9	1.00	0.17	0.14	1.00	0.17	0.14	1.00	0.17	0.14	1.00	0.17	0.14
10	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15
11	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15
12	1.00	0.18	0.16	1.00	0.18	0.16	1.00	0.18	0.16	1.00	0.18	0.16
13	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17
14	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17
15	1.00	0.18	0.18	1.00	0.18	0.18	1.00	0.18	0.18	1.00	0.18	0.18
16	1.00	0.18	0.19	1.00	0.18	0.19	1.00	0.18	0.19	1.00	0.18	0.19
17	1.00	0.19	0.19	1.00	0.19	0.19	1.00	0.19	0.19	1.00	0.19	0.19
17	1.00	0.19	0.20	1.00	0.19	0.20	1.00	0.19	0.20	1.00	0.19	0.20
19	1.00	0.19	0.21	1.00	0.19	0.21	1.00	0.19	0.21	1.00	0.19	0.21
20	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22

Tabela A.1: Exemplo de tabela.

Referências Bibliográficas

- [Alo09] Uri Alon. How To Choose a Good Scientific Problem. *Molecular Cell*, 35(6):726–728, Setembro 2009. 7
- [Eco09] Umberto Eco. *Como se Faz uma Tese*. Perspectiva, 22º edição, 2009. Tradução Gilson Cesar Cardoso de Souza. 1
- [Hig98] Nicholas J. Higham. *Handbook of Writing for the Mathematical Sciences*. SIAM: Society for Industrial and Applied Mathematics, segunda edição, Agosto 1998. 1
- [KLR96] Donald E. Knuth, Tracy Larrabee e Paul M. Roberts. *Mathematical Writing*. The Mathematical Association of America, Setembro 1996. 1
 - [Tuf01] Edward Tufte. The Visual Display of Quantitative Information. Graphics Pr, 2nd edição, Maio 2001. 1
- [Waz09] Raul S. Wazlawick. *Metodologia de Pesquisa em Ciencia da Computação*. Campus, primeira edição, 2009. 1
- [Zob04] Justin Zobel. Writing for Computer Science: The art of effective communication. Springer, segunda edição, 2004. 1

Índice Remissivo

DFT, veja transformada discreta de Fourier DSP, veja processamento digital de sinais

Fourier

transformada, veja transformada de Fourier

genoma

projetos, 1

STFT, veja transformada de Fourier de tempo reduzido

TBP, veja periodicidade região codificante

área do trabalho fundamentos, 3