Risolvere gli esercizi inserendo le risposte negli **spazi appositi** con indicazione dei **calcoli** effettuati e fornendo **spiegazioni** chiare ed essenziali.

1. Applicare il metodo di Gauss-Jordan per determinare una base e la dimensione del sottospazio vettoriale S delle soluzioni del seguente sistema lineare in 6 incognite sul campo dei numeri reali \mathbb{R} .

$$\begin{cases} +x_2 & +x_3 & -2x_4 & +x_5 & -x_6 & = & 0 \\ x_1 & +x_2 & +2x_3 & +x_4 & & +x_6 & = & 0 \\ -x_1 & -2x_2 & -3x_3 & +x_4 & -x_5 & & = & 0 \\ x_1 & -x_2 & & +2x_4 & -x_5 & +x_6 & = & 0 \end{cases}$$

2. Siano V uno spazio vettoriale su un campo K e $\mathcal{B} = (u_1, \ldots, u_n)$ una sua base ordinata. Cosa sono le componenti di un vettore v di V in \mathcal{B} ? Determinare le componenti di v = (-4, 7) nella base ordinata $\mathcal{B} = ((-2, 1), (1, 3))$ di \mathbb{R}^2 .

3. Completare ciascuno dei seguenti sottoinsiemi che risulti essere linearmente indipendente in una base del suo spazio ambiente.

$$Y = \{(2, 1, -2) + \alpha(1, 0, 1) : \alpha \in \mathbb{R}\} \subseteq \mathbb{R}^{3}$$

$$Z = \{(2, 1, -2), (1, 0, 1), (1, 1, -3)\} \subseteq \mathbb{R}^{3}$$

$$T = \left\{ \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \right\} \subseteq \mathcal{M}_{2}(\mathbb{R})$$

- **4.** Data l'applicazione lineare $T:(a,b,c)\in\mathbb{R}^3 \to (2a-b+c,-2a+b-c,a+c,a-b,-b-c)\in\mathbb{R}^5,$
 - (i) spiegare se T è iniettiva e suriettiva
 - (ii) rappresentare l'immagine di T, ossia determinare un sistema di equazioni lineari il cui insieme delle soluzioni coincida con l'immagine di T.

5. Cosa è un autovalore di un endomorfismo di uno spazio vettoriale V su un campo K ?											
6. Sia V uno spazio vettoriale su \mathbb{R} con base ordinata (e_1, e_2, e_3) . Determinare autovalori e autovettori dell'endomorfismo $T: \alpha e_1 + \beta e_2 + \gamma e_3 \in V \to (\beta + \gamma)e_1 + (2\alpha + 2\gamma)e_2 + (-2\alpha + 2\beta)e_3 \in V$. Inoltre, stabilire											
se T è diagonalizzabile e, in caso di risposta affermativa, esibire una base spettrale di V rispetto a T .											

7.	Fissato un	riferimento	cartesiano	in un	piano	euclideo.	si	considerino i	punti A	(1.	-5°) e <i>B</i>	(-1,	1).
					P	7			P	\ - 7		,	· -,	, – ,	,

- (i) Rappresentare la retta per A e B sia in forma parametrica sia in forma cartesiana.
- (ii) Rappresentare la retta per l'origine dl riferimento che sia parallela alla retta passante per i punti A e B.

- 8. Fissato un riferimento cartesiano dello spazio euclideo di dimensione 3, si considerino le rette r:(x,y,z)=(1,0,1)+(2,1,1)t e $r':\begin{cases} x+y-z=1\\ -2x-y+3z=-2 \end{cases}$
 - (i) Verificare se le rette sono parallele incidenti o sghembe.
 - (ii) Rappresentare, se esiste, la retta incidente sia r sia r' e passante per il punto A(0,1,1).
 - (iii) Rappresentare il piano per l'origine del riferimento che sia ortogonale a r.