processi

capitolo 3 e 5 del libro (VII ed.)

Processi

la CPU esegue i diversi job uno di seguito all'altro

sistema batch

il SO deve mantenere informazioni riguardo i diversi task: ogni task esegue un programma, elabora dei dati, ha un utente "proprietario", può avere una priorità. Un task viene **interrotto** e **ripreso**: occorre mantenere tutte le informazioni necessarie

sistema time-sharing:

il tempo di CPU è diviso fra i task di più utenti collegati tramite terminali diversi

Processi

- programma (o sezione testo)
- program counter (istruzione da eseguire)
- stack di esecuzione (con vrb, parametri, ind. di ritorno)
- heap (memoria allocata dinamicamente)

SEZIONE DATI NB: ogni processo ha la propria sezione dati e non gli è consentito leggere o modificare le sezioni dati di altri processi!!!

SO

"processo" è un'astrazione, una rappresentazione interna al SO, che consente di pensare e realizzare meccanismi quali multi-tasking, scheduling della CPU, protezione

Esempio

Quanti processi erano in esecuzione sul mio portatile quando scrivevo queste slide?

Parallelismo virtuale

- Attraverso al SO i processi si suddividono l'uso delle risorse in modo tale portare avanti tutti quanti insieme la propria computazione
- Al più un processo per CPU può, in realtà, essere attivo in ogni istante ma gli utenti non se ne accorgono, percepiscono le diverse esecuzioni come parallele

realtà

Categorie di processi

insieme di tutti I processi in un certo istante

I processi cambiano stato

Parallelismo virtuale

- In un contesto in cui la CPU è una sola e i processi sono tanti (anche centinaia o migliaia) nasce l'esigenza di associare un'informazione di stato a ogni processo:
 - 1)nuovo, è lo stato di un processo appena creato
 - 2)running, in esecuzione
 - 3)waiting, in attesa di un evento (es. completamento di un'operazione di I/O)
 - 4)ready, il processo è pronto per essere eseguito ma al momento non ha assegnata la CPU
 - 5)terminato, ha cessato l'esecuzione

Diagramma di transizione

 Diagramma di transizione degli stati di un processo

