Mounting GDrive directory

```
In []: from google.colab import drive
    drive.mount('/content/gdrive')
    %cd '/content/gdrive/MyDrive/Colab Notebooks/UoA_MSDS/Course_8/Capstone1_Ad_
```

Mounted at /content/gdrive

/content/gdrive/MyDrive/Colab Notebooks/UoA_MSDS/Course_8/Capstone1_Ad_Campa
ign_Recommender

Import libraries

```
In [ ]: %pip install basemap awscli --quiet
                                                    - 860.7/860.7 kB 5.9 MB/s eta 0:
       00:00
                                                    4.3/4.3 MB 19.7 MB/s eta 0:00:
       00
                                                    - 30.5/30.5 MB 37.8 MB/s eta 0:0
       0:00
                                                    - 11.3/11.3 MB 94.2 MB/s eta 0:0
       0:00
                                                    548.2/548.2 kB 45.7 MB/s eta
       0:00:00
                                                   -- 79.8/79.8 kB 9.3 MB/s eta 0:0
       0:00
       ERROR: pip's dependency resolver does not currently take into account all th
       e packages that are installed. This behaviour is the source of the following
       dependency conflicts.
       llmx 0.0.15a0 requires cohere, which is not installed.
       llmx 0.0.15a0 requires openai, which is not installed.
       llmx 0.0.15a0 requires tiktoken, which is not installed.
In [ ]: import os
        import csv
        from IPython.core.display import display, HTML
        import numpy as np
        import pandas as pd
        from matplotlib import pyplot as plt
        import seaborn as sns
        %matplotlib inline
        import warnings
        warnings.filterwarnings('ignore')
```

Subtask 1: Reading data

```
app_events.csv
```

- train_event_data.csv
- app_events_meta_data.csv
- train_mobile_brand.csv

```
In [ ]: datasets = {
          'app_events.csv': 's3://uoacapstone/app_events.csv',
          'train_event_data.csv' : 's3://uoacapstone/train_event_data.csv',
          'app_events_meta_data.csv': 's3://uoacapstone/app_events_meta_data.csv',
          'train_mobile_brand.csv' : 's3://uoacapstone/train_mobile_brand.csv',
In [ ]: # Download datasets if not already downloaded
        for k,v in datasets.items():
          if not os.path.exists(f'data/{k}'):
            !aws s3 cp "$v" "data/$k" --no-sign-request
       download: s3://uoacapstone/app events.csv to data/app events.csv
       download: s3://uoacapstone/train_event_data.csv to data/train_event_data.csv
       download: s3://uoacapstone/app_events_meta_data.csv to data/app_events_meta_
       data.csv
       download: s3://uoacapstone/train_mobile_brand.csv to data/train_mobile_bran
       d.csv
In [ ]: # Load into dataframes, disble quote parsing inside strings when loading
        # Ref: https://stackoverflow.com/a/29857126
        app_events = pd.read_csv('data/app_events.csv', quoting=csv.QUOTE_NONE)
        train event data = pd.read csv('data/train event data.csv', quoting=csv.QUOT
        app_events_meta_data = pd.read_csv('data/app_events_meta_data.csv', quoting=
        train_mobile_brand = pd.read_csv('data/train_mobile_brand.csv', quoting=csv.
```

Subtask 2: Cleaning data

Show some records

```
display(df.head(5))
display(HTML('<hr/>'))
```

app_events

	event_id	app_id	is_installed	is_active
0	2	5927333115845830913	1	1
1	2	-5720078949152207372	1	0
2	2	-1633887856876571208	1	0
3	2	-653184325010919369	1	1
4	2	8693964245073640147	1	1

train_event_data

device_id	gender	age	group_train	event_id	datetimestamp	latitud
-7548291590301750000	М	33	M32+	2369465.0	2016-05-03 15:55:35	33.9
-7548291590301750000	М	33	M32+	1080869.0	2016-05-03 06:07:16	33.9
-7548291590301750000	М	33	M32+	1079338.0	2016-05-04 03:28:02	33.9
-7548291590301750000	М	33	M32+	1078881.0	2016-05-04 02:53:08	33.9
-7548291590301750000	М	33	M32+	1068711.0	2016-05-03 15:59:35	33.9
	-7548291590301750000 -7548291590301750000 -7548291590301750000 -7548291590301750000	-7548291590301750000 M -7548291590301750000 M -7548291590301750000 M -7548291590301750000 M	-7548291590301750000 M 33 -7548291590301750000 M 33 -7548291590301750000 M 33 -7548291590301750000 M 33	-7548291590301750000 M 33 M32+ -7548291590301750000 M 33 M32+ -7548291590301750000 M 33 M32+ -7548291590301750000 M 33 M32+	-7548291590301750000 M 33 M32+ 2369465.0 -7548291590301750000 M 33 M32+ 1080869.0 -7548291590301750000 M 33 M32+ 1079338.0 -7548291590301750000 M 33 M32+ 1078881.0	-7548291590301750000 M 33 M32+ 2369465.0 2016-05-03 15:55:35 -7548291590301750000 M 33 M32+ 1080869.0 2016-05-03 06:07:16 -7548291590301750000 M 33 M32+ 1079338.0 2016-05-04 03:28:02 -7548291590301750000 M 33 M32+ 1078881.0 2016-05-04 02:53:08 -7548291590301750000 M 33 M32+ 1068711.0 2016-05-03

app_events_meta_data

	app_id	label_id	category
)	app_id	label_id	category
1	7324884708820027918	251	Finance
2	-4494216993218550286	251	Finance
3	6058196446775239644	406	unknown
1	6058196446775239644	407	DS_P2P net loan

train_mobile_brand

	device_id	gender	age	group_train	phone_brand	device_model
0	-7548291590301750000	М	33	M32+	Huawei	è £è€€3C
1	6943568600617760000	М	37	M32+	Xiaomi	xnote
2	5441349705980020000	М	40	M32+	OPPO	R7s
3	-5393876656119450000	М	33	M32+	Xiaomi	MI 4
4	4543988487649880000	М	53	M32+	samsung	Galaxy S4

Check data types and missing values

app_events

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32473067 entries, 0 to 32473066
Data columns (total 4 columns):
 #
   Column
                  Dtype
 0 event_id
                  int64
    app_id
                  int64
    is_installed int64
    is_active
                  int64
dtypes: int64(4)
memory usage: 991.0 MB
None
```

train_event_data

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1266933 entries, 0 to 1266932
Data columns (total 8 columns):

#	Column	Non-Null Count	υtype
0	device_id	1266933 non-null	int64
1	gender	1266933 non-null	object
2	age	1266933 non-null	int64
3	group_train	1266933 non-null	object
4	event_id	1215598 non-null	float64
5	datetimestamp	1215598 non-null	object
6	latitude	1215598 non-null	float64
7	longitude	1215598 non-null	float64
d+vn	oc: floa+64(3)	in+64(2) $ohiec+($	3 /

dtypes: float64(3), int64(2), object(3)

memory usage: 77.3+ MB

None

app_events_meta_data

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 459944 entries, 0 to 459943
Data columns (total 3 columns):

dtypes: object(3)
memory usage: 10.5+ MB

None

train_mobile_brand

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 74840 entries, 0 to 74839
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	device_id	74840 non-null	int64
1	gender	74840 non-null	object
2	age	74840 non-null	int64
3	group_train	74840 non-null	object
4	phone_brand	74840 non-null	object
5	device_model	74840 non-null	object

dtypes: int64(2), object(4)

memory usage: 3.4+ MB

None

For labels columns gender and age, assume there is no mismatch of labels in records with the same device id.

For other columns in the datasets, only train_event_data has missing values, and we can easily see that for many records there aren't associated events with them. Let's check again to make sure the missing events and related data are on the same records.

```
In [ ]: train_event_data[train_event_data['event_id'].isna()].info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 51335 entries, 1215595 to 1266932
        Data columns (total 8 columns):
             Column Non-Null Count Dtype
           device_id 51335 non-null int64
gender 51335 non-null object
age 51335 non-null int64
group_train 51335 non-null object
event_id 0 non-null float64
         1
         2
         3
             datetimestamp 0 non-null
         5
                                                object
         6
                                                float64
             latitude
                              0 non-null
                               0 non-null float64
              longitude
         7
        dtypes: float64(3), int64(2), object(3)
        memory usage: 3.5+ MB
```

That is correct, so there is no missing data in the input datasets

Let's see how many unique device ids that we have:

train_event_data unique devices:

74645

train_mobile_brand unique devices:

merged unique devices:

74645

The devices are the same in both train datasets.

The remaining cleaning is to cast datetime to correct data type

```
In [ ]: train_event_data['datetimestamp'] = pd.to_datetime(train_event_data['datetim')
In [ ]: train_event_data.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 1266933 entries, 0 to 1266932
       Data columns (total 8 columns):
            Column
                           Non-Null Count
                                               Dtype
                         1266933 non-null int64
1266933 non-null object
        0
            device id
        1
           gender
        2
                           1266933 non-null int64
            age
            group_train 1266933 non-null object event_id 1215598 non-null float64
            datetimestamp 1215598 non-null datetime64[ns]
        5
        6
                            1215598 non-null float64
            latitude
        7
                            1215598 non-null float64
            longitude
       dtypes: datetime64[ns](1), float64(3), int64(2), object(2)
       memory usage: 77.3+ MB
```

Check statistics for invalid records

```
In [ ]: for df, label in zip(
                app_events,
                train_event_data,
                app events meta data,
                train_mobile_brand,
            ],
                 'app_events',
                 'train_event_data',
                 'app_events_meta_data',
                 'train mobile brand',
            ],
          display(HTML(f'<h2>{label}</h2>'))
          display(df.describe())
          display(HTML('<h3>unique values:</h3>'))
          display(df.nunique())
          display(HTML('<hr/>'))
```

app_events

	event_id	app_id	is_installed	is_active
count	3.247307e+07	3.247307e+07	32473067.0	3.247307e+07
mean	1.625564e+06	1.182779e+18	1.0	3.921094e-01
std	9.384682e+05	5.360173e+18	0.0	4.882209e-01
min	2.000000e+00	-9.221157e+18	1.0	0.000000e+00
25%	8.134720e+05	-3.474568e+18	1.0	0.000000e+00
50%	1.626907e+06	1.387044e+18	1.0	0.000000e+00
75%	2.441106e+06	6.043001e+18	1.0	1.000000e+00
max	3.252948e+06	9.222488e+18	1.0	1.000000e+00

unique values:

event_id 1488096 app_id 19237 is_installed 1 is_active 2

dtype: int64

train_event_data

	device_id	age	event_id	latitude	longitude
count	1.266933e+06	1.266933e+06	1.215598e+06	1.215598e+06	1.215598e+06
mean	-2.967925e+16	3.340051e+01	1.626675e+06	2.182751e+01	7.839380e+01
std	5.322606e+18	9.762003e+00	9.396631e+05	1.564827e+01	5.381246e+01
min	-9.223067e+18	1.000000e+00	1.000000e+00	-3.380000e+01	-1.800000e+02
25%	-4.668347e+18	2.600000e+01	8.123205e+05	0.000000e+00	0.000000e+00
50%	-1.115514e+17	3.100000e+01	1.627310e+06	2.857000e+01	1.127500e+02
75%	4.631837e+18	3.900000e+01	2.440380e+06	3.401000e+01	1.171700e+02
max	9.222849e+18	9.600000e+01	3.252948e+06	5.364000e+01	1.511800e+02

unique values:

device_id	74645
gender	2
age	85
group_train	6
event_id	1215598
datetimestamp	497663
latitude	2707
longitude	2914
dtype: int64	

app_events_meta_data

	app_id	label_id	category
count	459944	459944	459944
unique	165044	554	472
top	-4550209074213737101	405	Industry tag
freq	22	49391	56902

unique values:

app_id 165044 label_id 554 category 472 dtype: int64

train_mobile_brand

	device_id	age
count	7.484000e+04	74840.000000
mean	2.381650e+14	31.407924
std	5.327486e+18	9.867279
min	-9.223067e+18	1.000000
25%	-4.617637e+18	25.000000
50%	-1.831665e+16	29.000000
75%	4.638645e+18	36.000000
max	9.222849e+18	96.000000

unique values:

device_id	74645
gender	2
age	85
group_train	6
phone_brand	97
device_model	1438
dtype: int64	

The input data contains valid values but the age range is questionable since minimum age in data is 1 year old.

For coordinate, latitude is within range of [-90, 90] and longitude is withing range [-180, 180] so they are valid values (reference:

https://developers.google.com/maps/documentation/javascript/reference/coordinates).

Subtask 3: Basic EDA and visualization and feature engineering ideas

1. Age and gender distribution

```
In [ ]: # Univariate analysis of age and gender
        fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16,5))
        sns.boxplot(train_event_data, x="age", ax=ax1)
        sns.countplot(train event data, x='gender', ax=ax2)
        plt.show()
```


Most of the data points are people of young age around 20 - 40. Although there is a questionable outliers of "baby" users, we will ignore it for now as it may still be a valid label depends on the domain and labeling rules.

There is an imbalance in gender between male and female. The data points from male

```
In []: # Bivariate analysis between age and gender

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16,5))

sns.boxplot(train_event_data, x='gender', y='age', ax=ax1)
sns.violinplot(train_event_data, x='gender', y='age', ax=ax2)

plt.show()
```


Male users tend to be a little younger than female users. The majority of users in both male and female groups are young ones.

There are some "baby" users in the male group, possibly due to wrong label. Since they are outliers, we may ignore them for now.

2. Trends in event data

a) Percentage of device ids with and without event data

```
In []: # Filter out records with empty event_id
    devices_with_event_data = (~train_event_data['event_id'].isna())
    ax = (
        devices_with_event_data.value_counts() * 100 / devices_with_event_data.c
    ).plot.bar()
    ax.bar_label(ax.containers[0], fmt='%g%%')
    plt.title('Percentage of devices with event data')
    plt.show()
```


There is only around 4.05% of devices are without event data

b) Distribution of events on different days of week

Out[]:		Day of week	event_count
	0	0	169381
	1	1	180296
	2	2	178371
	3	3	180041
	4	4	176657
	5	5	166835
	6	6	164017

```
In [ ]: ax = sns.barplot(events_per_weekday, y='Day of week', x='event_count', orier
# Map day of week indexes to labels
ax.set_yticks(
    range(7),
    labels=[
         'Monday',
         'Tuesday',
         'Wednesday',
         'Friday',
         'Saturday',
         'Sunday',
         ]
         plt.show()
```


There events are distributed equally over days of week.

c) Distribution of events per hour for one week data

Let's see the distribution of events over entire dataset and pick one week to see hourly event frequency.

```
In []: # Filter out records with empty event_id
hourly_event_data = train_event_data[~train_event_data['event_id'].isna()]
# Normalize the timestamp to hour unit
hourly_event_data['datetimestamp'] = hourly_event_data['datetimestamp'].dt.t
# Count events for each hour in whole dataset
hourly_event_data = hourly_event_data.groupby('datetimestamp')['event_id'].c
hourly_event_data.to_frame()
```

Out[]: event_id

datetimestamp

378
6689
3961
3130
2612
•••
8769
9529
8638
6565
1

170 rows × 1 columns

```
In [ ]: hourly_event_data.plot.line()
   plt.show()
```


The dataset is already collected within 1 week time range. Let's see the distribution of events hourly for every day in a week.

Out[]:		Hour of day	event_count
	0	0	44864
	1	1	27090
	2	2	20248
	3	3	16991
	4	4	16282
	5	5	24536
	6	6	43970
	7	7	55583
	8	8	59032
	9	9	62226
	10	10	68578
	11	11	62920
	12	12	62584
	13	13	58304
	14	14	56324
	15	15	55224
	16	16	57002
	17	17	58200
	18	18	57610
	19	19	61947
	20	20	65099
	21	21	67498
	22	22	61978
	23	23	51508

In []: sns.lineplot(one_week_hourly_event_data_by_hour, x='Hour of day', y='event_d
plt.show()

There is a period of low activity during 0h to 5h everyday.

d) Difference in the distribution of events per hour for males and females

Out[]:		Hour of day	gender	event_count
	0	0	F	11004
	1	0	М	33860
	2	1	F	6693
	3	1	М	20397
	4	2	F	5241
	5	2	М	15007
	6	3	F	4424
	7	3	М	12567
	8	4	F	4561
	9	4	М	11721
	10	5	F	7894
	11	5	М	16642
	12	6	F	14475
	13	6	М	29495
	14	7	F	17364
	15	7	М	38219
	16	8	F	17137
	17	8	М	41895
	18	9	F	17705
	19	9	М	44521
	20	10	F	19505
	21	10	М	49073
	22	11	F	17839
	23	11	М	45081
	24	12	F	17836
	25	12	М	44748
	26	13	F	16577
	27	13	М	41727
	28	14	F	16126
	29	14	М	40198
	30	15	F	16141
ing [MathJax]/ja	ax/outpi	ut/CommonHTML/fc	onts/TeX/fontda	39083

 $Loading\ [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js$

	Hour of day	gender	event_count
32	16	F	16288
33	16	М	40714
34	17	F	16550
35	17	М	41650
36	18	F	16486
37	18	М	41124
38	19	F	18314
39	19	М	43633
40	20	F	19670
41	20	М	45429
42	21	F	20934
43	21	М	46564
44	22	F	18242
45	22	М	43736
46	23	F	14286
47	23	М	37222

In []: sns.lineplot(hourly_event_by_gender, x='Hour of day', y='event_count', hue='
plt.show()

The event frequency of events generated from male user group is higher than female users.

Male users are very active at 10AM. Both male and female are active at around 9PM.

The frequency of events generated from female users are stable from morning to afternoon.

e) Difference in the distribution of events for different age groups over different days of week

```
In []: # Filter out records with empty event_id
    age_group_events_per_weekday = train_event_data[~train_event_data['event_id'
    # Get day of week from timestamp
    age_group_events_per_weekday['Day of week'] = (
        age_group_events_per_weekday['datetimestamp'].apply(lambda d: d.dayofwee))
    # Create bins of age groups: 0-24, 25-32, 33-45, 46+
    age_group_events_per_weekday['age_bin'] = pd.cut(
        age_group_events_per_weekday['age'],
        [0, 24, 32, 45, 100],
)
    # Count events per day of week for each age bin
    age_group_events_per_weekday = age_group_events_per_weekday.groupby(['Day of age_group_events_per_weekday = age_group_events_per_weekday.reset_index().re
    age_group_events_per_weekday
```

Out[]:		Day of week	age_bin	event_count
	0	0	(0, 24]	27123
	1	0	(24, 32]	65877
	2	0	(32, 45]	55232
	3	0	(45, 100]	21149
	4	1	(0, 24]	26144
	5	1	(24, 32]	71487
	6	1	(32, 45]	59882
	7	1	(45, 100]	22783
	8	2	(0, 24]	27114
	9	2	(24, 32]	69098
	10	2	(32, 45]	58851
	11	2	(45, 100]	23308
	12	3	(0, 24]	26842
	13	3	(24, 32]	72543
	14	3	(32, 45]	57949
	15	3	(45, 100]	22707
	16	4	(0, 24]	26975
	17	4	(24, 32]	70270
	18	4	(32, 45]	57477
	19	4	(45, 100]	21935
	20	5	(0, 24]	26357
	21	5	(24, 32]	65346
	22	5	(32, 45]	53836
	23	5	(45, 100]	21296
	24	6	(0, 24]	24524
	25	6	(24, 32]	64899
	26	6	(32, 45]	54704
	27	6	(45, 100]	19890

 $Loading\ [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js$

```
labels=[
    'Monday',
    'Tuesday',
    'Wednesday',
    'Thursday',
    'Friday',
    'Saturday',
    'Sunday',
    ]
)
plt.show()
```


The general trends are not different much between age groups. But, looking at the frequency, the most active age group are persons of age from 25 to 32 years old and decreasing futher to both sides (younger and older).

3. Phone Brand and Application Preferences

a) Top 10 mobile brands across male and female consumers

```
In []: # Group devices by gender and phone brand then count them
phone_brand_count = train_mobile_brand.groupby(['gender', 'phone_brand'])['p
# Get top 10 brands per gender
top_brands_by_gender = phone_brand_count.groupby('gender').nlargest(10)
# We got duplicate index, so just drop one of them
top_brands_by_gender = top_brands_by_gender.droplevel(0)

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

brand
```

```
top_brands_by_gender = top_brands_by_gender.swaplevel(0,1)
# Sort descending in order to plot
top_brands_by_gender = top_brands_by_gender.unstack().sort_values(by=['F', 'top_brands_by_gender)
```

```
Out[]:
                       F
             gender
                             М
        phone_brand
             Xiaomi 5930 11407
           samsung 5443 8263
            Huawei 4257 8744
               vivo 2660
                          2998
              OPPO 2581
                          3221
              Meizu 1306
                          3404
            Coolpad 1079
                          2270
             lenovo
                     894
                           1801
             Gionee
                     403
                           721
               HTC
                     321
                           694
```

```
In [ ]: top_brands_by_gender.plot.bar(stacked=True)
    plt.show()
```


Xiaomi is the most popular brand for both male and female, followed by Samsung in the second place.

b) Top 10 frequent applications and the corresponding percentage of male and female consumers

```
In [ ]: # Merge train_event_data and app_events to have app_id in dataframe
            top_frequent_apps = pd.merge(
                # Filter out records with empty event_id
                train_event_data[~train_event_data['event_id'].isna()]['event_id'],
                app events[['event id', 'app id']],
                on='event id',
                how='inner',
            # Just use 2 columns of interest
            top_frequent_apps = top_frequent_apps[['event_id', 'app_id']]
            # Group and count events per app and keep top 10 apps
            top frequent apps = top frequent apps.groupby('app id').count().nlargest(10,
            # Reset index to flatten columns
            top_frequent_apps = top_frequent_apps.reset_index().rename(columns={'event_i
            # Mege with metadata to get the categories
            top_frequent_apps = pd.merge(top_frequent_apps, app_events_meta_data[['app_i
            # Only use 3 columns of interest
            top_frequent_apps = top_frequent_apps[['app_id', 'event_count', 'category']]
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js | ing the categories
```

```
top_frequent_apps = top_frequent_apps.groupby(['app_id', 'event_count'])['ca
# Aggregate categories into lists and flatten columns again
top_frequent_apps = top_frequent_apps.apply(list).reset_index()
# Sort descending in order to plot
top_frequent_apps = top_frequent_apps.sort_values(by='event_count', ascendin
# Cast column app_id to string in order to keep ordering when plotting
top_frequent_apps['app_id'] = top_frequent_apps['app_id'].astype(str)
top_frequent_apps
```

Out[]:		app_id	event_count	category
	8	8693964245073640147	433106	[IM]
	6	5927333115845830913	338681	[IM]
	4	4348659952760821294	304722	[Pay, Finance, Pay]
	1	628020936226491308	239018	[fashion, online malls]
	2	3433289601737013244	147057	[nan]
	0	-2320783822570582843	112841	[weibo]
	7	6284164581582112235	103677	[nan]
	5	5729517255058371973	101888	[the film, Tencent, Custom label, "online shop
	9	8948670408023620661	99963	[nan]
	3	3683147815759994238	98647	[Wealth Management, Debit and credit, P2P net

The most popular apps are social apps and apps related to shopping and online payments.

c) Top 10 mobile phone brands by age groups

```
In []: # Create age bins
        phone_brand_count = train_mobile_brand[['age', 'phone_brand']]
        phone_brand_count['age_bin'] = pd.cut(
            train mobile brand['age'],
            [0, 24, 32, 45, 100],
        # Group devices by age bin and phone brand then count them
        phone_brand_count = phone_brand_count.groupby(['age_bin', 'phone_brand'])['phone_brand'])
        # Get top 10 brands per age bin
        top_brands_by_age_group = phone_brand_count.groupby('age_bin').nlargest(10)
        # We got duplicate index, so just drop one of them
        top_brands_by_age_group = top_brands_by_age_group.droplevel(0)
        # Swap index age bin⇔phone brand
        top brands by age group = top brands by age group.swaplevel(0,1)
        # Sort descending in order to plot
        top_brands_by_age_group = top_brands_by_age_group.unstack()
        top_brands_by_age_group = top_brands_by_age_group.loc[
            top_brands_by_age_group.sum(axis=1).sort_values(ascending=False).index
        top_brands_by_age_group
```

Out[]: age_bin (0, 24] (24, 32] (32, 45] (45, 100] phone_brand

Xiaomi	4235.0	7556.0	4005.0	1541.0
samsung	2370.0	5569.0	4183.0	1584.0
Huawei	2449.0	5122.0	3976.0	1454.0
ОРРО	1861.0	2378.0	1185.0	378.0
vivo	1980.0	2329.0	1016.0	333.0
Meizu	1687.0	2057.0	690.0	276.0
Coolpad	811.0	1213.0	943.0	382.0
lenovo	614.0	1005.0	739.0	337.0
Gionee	328.0	400.0	279.0	117.0
нтс	237.0	436.0	251.0	NaN
ZTE	NaN	NaN	NaN	115.0

```
In [ ]: top_brands_by_age_group.plot.bar(stacked=True)
   plt.show()
```


People from age group 25-32 are the majority in top brands. An interesting fact is that ZTE brand is only used by the elder people from age group 45-100 but no elder people uses HTC.

4. Feature engineering

a) Average daily events for each devices

There is a clear sign of relation between the time active on phone and gender/age as we can see while doing EDA above. So this maybe a good feature to have.

```
Out[]: device_id
        -9222956879900150000
                                4.524564e+07
        -9221026417907250000
                                3.711151e+07
        -9220830859283100000
                                4.175564e+06
        -9220061629197650000
                                1.154161e+07
        -9218960997324660000
                                1.588706e+06
         9216925254504440000
                                2.976483e+07
         9217638755105360000
                                1.957215e+06
         9219164468944550000
                                1.809837e+08
         9219842210460030000
                                6.756232e+06
         9220914901466450000
                                8.211310e+06
        Name: average_daily_events, Length: 23310, dtype: float64
In [ ]: # Save for later
        feature average daily events.to csv('data/feature average daily events.csv')
        os.listdir('data')
Out[]: ['app_events.csv',
         'train_event_data.csv',
          'app_events_meta_data.csv',
          'train_mobile_brand.csv',
          'feature average daily events.csv']
```

We have created 1 feature into csv file at data/feature_average_daily_events.csv.

For other data columns, there is no sign that effective features can be generated from them after doing EDA:

- As location data is not reliable enough since location can be disabled and enabled anytime on user's devices, making new features from that will just add more noise to the train data so we don't do it.
- Patterns from app categories can be learned easily by the model so no need to put effort into engineering them.