Inference about a Population Mean (μ) AAO unit 26; Baldi & Moore, Ch 17

Sahir Bhatnagar and James Hanley

EPIB 607 Department of Epidemiology, Biostatistics, and Occupational Health McGill University

sahir.bhatnagar@mcgill.ca
https://sahirbhatnagar.com/EPIB607/

October 1, 2018

Inference for μ when σ is not known

Up until now, all of our calculations have relied on us knowing the value of the population standard deviation (σ). It is rare that this is the case.

We now consider methods of inference for when σ is unknown.

When σ is unknown, we must estimate it from the data using s, the sample standard deviation.

Inference for μ when σ is unknown

■ When the true variance was known, we performed our calculations using the standardization

$$Z = \frac{\overline{y} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1).$$

Inference for μ when σ is unknown

When the true variance was known, we performed our calculations using the standardization

$$Z = \frac{y - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1).$$

■ We no longer can use this, so instead we use

$$t = \frac{\overline{y} - \mu}{s / \sqrt{n}} \sim t_{(n-1)}$$

which follows a *t*-distribution with n-1 degrees of freedom based on the n values, $y_1, ..., y_n$ in an SRS

Inference for μ when σ is unknown

■ When the true variance was known, we performed our calculations using the standardization

$$Z = \frac{\overline{y} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1).$$

■ We no longer can use this, so instead we use

$$t = \frac{\overline{y} - \mu}{s / \sqrt{n}} \sim t_{(n-1)}$$

which follows a *t*-distribution with n-1 degrees of freedom based on the n values, $y_1, ..., y_n$ in an SRS

■ There is a different t distribution for each sample size. The degrees of freedom specify which distribution we use, and are determined by the denominator used in estimating s which is (n-1).

σ known vs. unknown

σ	known	unknown	
Data	$\{y_1, y_2,, y_n\}$	$\{y_1, y_2,, y_n\}$	
Pop'n param	μ	μ	
Estimator	$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$	$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$	
SD	σ	$S = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{n-1}}$	
SEM	σ/\sqrt{n}	s/\sqrt{n}	
(1-lpha)100% CI	$\overline{y} \pm z_{1-\alpha/2}^{\star}(SEM)$	$\boxed{ar{y}\pm t^\star_{1-lpha/2,(n-1)}(SEM)}$	
test statistic	$\frac{\bar{y}-\mu}{\mathrm{SEM}} \sim \mathcal{N}(0,1)$	$\frac{\bar{y}-\mu}{\mathrm{SEM}} \sim t_{(n-1)}$	

t distribution vs. Normal distribution

Fig.: Density curves for the *t* distribution with 2 and 9 degrees of freedom and for the standard Normal distribution. All are symmetric with center 0. The *t* distributions are somewhat more spread out.

$t_{(5)}$ distribution vs. Standard Normal distribution

$t_{(30)}$ distribution vs. Standard Normal distribution

t distributions

Diat.

The t distribution is symmetric, but has heavier tails than the Normal distribution.

As the degrees of freedom increase (i.e., as *n* increases), the t-distribution becomes more and more similar to a Normal distribution.

In fact, the quantiles/area under the curve are similar for n > 30:

ribution	Cumulative Probability				
	0.005	0.010	0.025	0.0	
arm al	2.50	2 22	1.06	1 (

DISTIDUTION	Cumulative Probability			
	0.005	0.010	0.025	0.050
Normal	-2.58	-2.33	-1.96	-1.64
$t_{(50)}$	-2.68	-2.40	-2.01	-1.68
$t_{(30)}$	-2.75	-2.46	-2.04	-1.70
$t_{(10)}$	-3.17	-2.76	-2.23	-1.81

Quantiles

t procedures

We can calculate CIs and perform significance tests much as before (example coming up soon).

A significance test of a single sample mean using the *t*-statistic is called a one-sample *t*-test.

Collectively, the significance tests and confidence-interval based tests using the *t* distribution are called *t* procedures.

A note about the conditions for inference about a mean

B&M stress that the first of their conditions as very important: we can regard our data as a simple random sample (SRS) from the population

A note about the conditions for inference about a mean

- B&M stress that the first of their conditions as very important: we can regard our data as a simple random sample (SRS) from the population
- The **second**, observations from the population have a <u>Normal</u> distribution with unknown mean parameter μ and unknown standard deviation parameter σ less so
- In practice, inference procedures can accommodate some deviations from the Normality condition when the sample is large enough. (think CLT)

Robustness of the t procedures

A statistical procedure is said to be **robust** if it is insensitive to violations of the assumptions made.

- t procedures are not robust against extreme skewness, in small samples, since the procedures are based on using ȳ and s (which are sensitive to outliers).
- Recall: Unless there is a very compelling reason (e.g. known/confirmed error in the recorded data), outliers should not be discarded.

Robustness of the t procedures

t procedures are robust against other forms of non-normality and, even with considerable skew, perform well when n is large. Why?

Robustness of the *t* procedures

- t procedures are robust against other forms of non-normality and, even with considerable skew, perform well when n is large. Why?
- When n is large, s is a good estimate of σ (recall that s is unbiased and, like most estimates, precision improves with increasing sample size)
- CLT: \overline{y} will be Normal when n is large, even if the population data are not

When and why we use the t-distribution

■ When σ is unknown use t distribution. but why?

When and why we use the *t*-distribution

- When σ is unknown use t distribution. but why?
- the spread of the t distribution is greater than $\mathcal{N}(0,1)$

Rejecting the Null $(H_0: \mu = \mu_0)$ when σ is known

$$\underline{Z_{0.975}}_{\text{critical value}} = 1.96 = \frac{\bar{y} - \mu_0}{\sigma / \sqrt{n}} \to \frac{1.96\sigma}{\sqrt{n}} = \bar{y} - \mu_0$$

which means that to reject H_0 the difference between your sample mean and μ_0 needs to be greater than $\frac{1.96}{\sqrt{n}}$ standard deviations

Rejecting the Null $(H_0: \mu = \mu_0)$ when σ is known

$$\underbrace{Z_{0.975}}_{\text{critical value}} = 1.96 = \frac{\bar{y} - \mu_0}{\sigma / \sqrt{n}} \rightarrow \frac{1.96\sigma}{\sqrt{n}} = \bar{y} - \mu_0$$

which means that to reject H_0 the difference between your sample mean and μ_0 needs to be greater than $\frac{1.96}{\sqrt{n}}$ standard deviations

Rejecting the Null $(H_0: \mu = \mu_0)$ when σ is unknown

$$\underbrace{t_{0.975,df=3}}_{\text{critical value}} = 3.18 = \frac{\bar{y} - \mu_0}{s / \sqrt{n}} \to 3.18 \frac{s}{\sqrt{n}} = \bar{y} - \mu_0$$

which means that to reject H_0 the difference between your sample mean and μ_0 needs to be greater than $\frac{3.18}{\sqrt{n}}$ standard deviations

Rejecting the Null $(H_0: \mu = \mu_0)$ when σ is unknown

$$\underbrace{t_{0.975,df=3}}_{\text{critical value}} = 3.18 = \frac{\bar{y} - \mu_0}{s / \sqrt{n}} \to 3.18 \frac{s}{\sqrt{n}} = \bar{y} - \mu_0$$

which means that to reject H_0 the difference between your sample mean and μ_0 needs to be greater than $\frac{3.18}{\sqrt{n}}$ standard

deviations

■ Its harder to reject the null when using the *t* distribution

- Its harder to reject the null when using the t distribution
- This is due to our uncertainty about the estimated variance

- Its harder to reject the null when using the t distribution
- This is due to our uncertainty about the estimated variance
- lacksquare Larger samples lead to more accurate estimates of σ

- Its harder to reject the null when using the t distribution
- This is due to our uncertainty about the estimated variance
- lacksquare Larger samples lead to more accurate estimates of σ
- This is reflected in the fact that there is a different t distribution for each sample size

- Its harder to reject the null when using the t distribution
- This is due to our uncertainty about the estimated variance
- lacksquare Larger samples lead to more accurate estimates of σ
- This is reflected in the fact that there is a different t distribution for each sample size
- As $n \to \infty$, sample variance S gets closer to σ

- Its harder to reject the null when using the t distribution
- This is due to our uncertainty about the estimated variance
- lacksquare Larger samples lead to more accurate estimates of σ
- This is reflected in the fact that there is a different t distribution for each sample size
- As $n \to \infty$, sample variance S gets closer to σ
- As degrees of freedom increase, t distribution gets closer to Normal distribution

Sample size increases \to degrees of freedom increase \to t starts to look like $\mathcal{N}(0,1)$

