

Software for Cross Section measurements

04/05/2022

Giacomo Ubaldi

Global reconstruction

From SHOE branch "glbreco_v1": libs/src/TAGfoot/*GlobalRecoAna.cxx*

Global reconstruction of an event

Particle ID: Z,A

Kinematics: **E**,p

• Angular distribution: **0**

.root file with histograms of variable distribution

Aim of the new software:

- Measure differential cross section σ (Z,A, θ ,E) wrt all combination of variables
- Written in python

- There are only histos of A
- Every subdirectory is due to input binning of the variable
- Every histo is univocally discriminated by its path

The software

- takes info dinamically about input variables and binning
- Generates differential distribution wrt all combinations of variables

Es. beam of O 16 of 200 Mev/n against a target of C2H4 (MC)

Write Histo events ("A_/theta_", eventContainer, outFile,inputPar dict)

A 1: 2<A<4 amu 0°<θ<11°

0<A<20 amu

Write Histo events ("theta /A ", eventContainer, outFile,inputPar dict)

4 - differential distribution

Write_Histo_events ("Z_/A_/theta_/Ek_", eventContainer, outFile,inputPar_dict)

$$Z = 8$$

14\theta<1°

To do:

- Choose output binning in agreement with the input one
- Apply unfolding
- Do TH2 histograms
- Do it for signal, background and systematics
- Obtain final differential cross section

https://baltig.infn.it/gubaldi/xshoe