

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/03

Paper 3 Theory (Core)

For examination from 2023

SPECIMEN PAPER

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has 16 pages. Any blank pages are indicated.

© UCLES 2020 [Turn over

1 Fig. 1.1 shows the electronic configurations of five atoms, A, B, C, D and E.

Fig. 1.1

(a) Answer the following questions.

Each letter may be used once, more than once or not at all.

Give the letter of the atom, **A**, **B**, **C**, **D** or **E**, that:

Γ	111	ı
		ı
	۲.1	1

(ii) has 13 protons

Γ <i>4</i>	1
. 11	П

(iii) is a noble gas

[1]

(iv) forms a stable ion with a single negative charge.

r	4.1
	11

(b) Complete Table 1.1 to show the number of electrons, neutrons and protons in the sulfur atom and oxide ion.

Table 1.1

	number of electrons	number of neutrons	number of protons
³⁴ ₁₆ S	16		
¹⁸ ₈ O ²⁻		10	

[3]

[Total: 7]

(a) Table 2.1 shows the mass of ions present in a 100 cm³ sample of milk. 2

Table 2.1

ion	formula of ion	mass of ion in 100 cm ³ milk/mg
calcium	Ca ²⁺	125
chloride	Cl ⁻	120
magnesium	Mg ²⁺	12
negative ions of organic acids		160
phosphate	PO ₄ ³⁻	95
potassium	K ⁺	140
sodium	Na ⁺	58
sulfate	SO ₄ ²⁻	30

(i) Calculate the mass of calcium ions present in a 20 cm³ sample of this milk.

nass of calcium ions =		mg	[1]]
------------------------	--	----	-----	---

Identify the positive ion present in the highest concentration in the 100 cm³ sample of milk.

(iii) Complete Fig. 2.1 to show the electronic configuration of a potassium ion.

Fig. 2.1 [1]

[2]

(iv) Describe a test for chloride ions.

positive result

	(v)	Explain why the solutions used in qualitative chemical tests are made using distille water and not tap water.	∍d
		[1]
(b)	Whi	ch one of these salts is soluble in water?	
	Tick	one box.	
		barium sulfate	
		calcium carbonate	
		ammonium sulfate	
		iron(II) hydroxide	.41
		ι	[1]
(c)		of the organic acids present in milk is lactic acid. displayed formula of lactic acid is shown in Fig. 2.2.	
		н	
		H \O O	
		н—ċ—ċ—c″ 	

Fig. 2.2

(i) Draw a circle around the carboxylic acid functional group on the structure. [1]

(ii) Deduce the molecular formula of lactic acid. [1]

[Total: 9]

 $\bf 3$ Fig. 3.1 shows a coloured crystal of cobalt(II) chloride is placed at the bottom of a beaker containing water.

After two days, the colour has spread throughout the water.

Fig. 3.1

(a)	Exp	plain these observations.	
			[3]
(b)	Cok	palt(II) chloride can be used to test for the presence of water.	
		$CoCl_2 + 6H_2O \Rightarrow CoCl_2 \cdot 6H_2O$	
		anhydrous hydrated cobalt(II) chloride cobalt(II) chloride	
	(i)	State the meaning of the symbol <i>⇌</i> .	
			. [1]
	(ii)	State the colour change when water is added to anhydrous cobalt(II) chloride.	
		from to	[2]

(c) (i) Table 3.1 compares the reactivity of cobalt with that of three other metals.

Table 3.1

metal	reactivity with cold water	reactivity with steam
barium	reacts rapidly	
cobalt	no reaction	reacts slowly when heated
magnesium	reacts very slowly	reacts rapidly
zinc	no reaction	reacts easily when heated

Use this information to put the four metals in order of their reactivity. Put the least reactive metal first.

	least reactive → most reactive	
		[2]
	(ii) State the boiling point of pure water at room temperature and pressure.	
	°C [[1]
(d)	Cobalt is a transition element. Lithium is a Group I element.	
	Describe two ways in which the properties of cobalt differ from those of lithium.	
	1	
	2	 [2]
(e)	When cobalt(II) oxide, CoO, is heated in air an oxide with the formula ${\rm Co_3O_4}$ is formed.	

.......... CoO + $O_2 \rightarrow 2Co_3O_4$ [1]

(f) When the oxide Co₃O₄ is heated in hydrogen, cobalt metal is formed.

$$\mathrm{Co_3O_4}$$
 + $\mathrm{4H_2}$ \rightarrow 3Co + $\mathrm{4H_2O}$

Explain how this equation shows that Co_3O_4 is reduced.

______[1]

[Total: 13]

© UCLES 2020 0620/03/SP/23

Balance the equation for this reaction.

- **4** A student investigates the reaction of small pieces of zinc with dilute sulfuric acid at 20 °C. The zinc is in excess.
 - (a) Fig. 4.1 shows the volume of hydrogen gas released as the reaction proceeds.

volume of hydrogen gas/cm³

Fig. 4.1

(i)	Suggest why the volume of hydrogen gas stays the same after 10 minutes.
(ii)	Deduce the time taken from the start of the experiment to collect 20 cm ³ of hydrogen gas
	[1]
(iii)	The student repeats the experiment at 30 °C.
	All other conditions stay the same.

Draw a line on the grid in Fig. 4.1 to show how the volume of hydrogen gas changes

[2]

with time when the reaction is carried out at 30 °C.

(b)	The	student repeats the experiment using zinc powder instead of small pieces of zinc.	
	Des	scribe how the rate of reaction differs when zinc powder is used.	
	Give	e a reason for your answer.	
			. [2]
(c)	Sulf	furic acid is a compound.	
	(i)	Define the term compound.	
			. [1]
	(ii)	State the formula of the ion that is present in an aqueous solution of all acids.	
			. [1]
	(iii)	A few drops of the indicator methyl orange are added to aqueous dilute sulfuric acid.	
		State the colour change observed.	
		from orange to	. [1]
	(iv)	The formula of sulfuric acid is H ₂ SO ₄ .	
		Complete Table 4.1 to calculate the relative molecular mass of sulfuric acid.	
		Table 4.1	

atom	number of atoms	relative atomic mass	
hydrogen	2	1	2 × 1 = 2
sulfur			
oxygen			

relative molecular mass =[2]

[Total: 11]

5 Table 5.1 shows the properties of four substances.

Table 5.1

substance	boiling point	electrical conductivity of solid	electrical conductivity when molten	density in g / cm ³
aluminium	high	conducts	conducts	2.70
diamond				3.51
potassium bromide	high	does not conduct	conducts	2.75
sulfur	low	does not conduct		2.07

(a)	Cor	nplete Table 5.1 to show the electrical conductivity of solid diamond and molten sulfur. [2]
(b)		te one piece of evidence from Table 5.1 that shows that sulfur is a simple molecular stance.
		[1]
(c)	(i)	State the meaning of the term ionic bonding.
		[2]
	(ii)	Identify which information in Table 5.1 shows that potassium bromide is an ionic compound.
		[2]
(d)		te the property of aluminium given in Table 5.1 which makes it suitable for the manufacture ircraft.
		[1]
(e)	Mol	ten potassium bromide can be electrolysed.
	Pre	dict the products of this electrolysis at:
	the	anode
	the	cathode[2]

6	Aqu	eous sodium hydroxide is	a base.			
	(a)	Complete this sentence a	bout the different t	ypes of base	es.	
		Bases are metal hydroxide	es or metal			[1]
	(b)	Describe the reaction of a • a named acid	queous sodium hy	droxide with	n:	
		a named acid				
		an ammonium salt.				
	(c)	Ammonia is a soluble bas	e.			
		Draw a circle around the p	oH value of aqueou	us ammonia	l.	
		pH 1	pH 5	pH 7	pH 10	[1]
	(d)	Ammonia is used in the m	nanufacture of nitro	ogen-contain	ning fertilisers.	
		Which two of these compo	ounds are present	in fertilisers	?	
		Tick two boxes.				
			copper(II) oxid	е		
			potassium chlo	oride		
			sodium phosph	nate		
			strontium fluori	de		
			sulfur dioxide			[2]

(e)		e oxides of nitrogen escape into the atmosphere.	
	(i)	State one other source of oxides of nitrogen in the atmosphere.	
			[1]
	(ii)	Oxides of nitrogen contribute to photochemical smog.	
		Describe one other adverse effect of oxides of nitrogen on the environment.	
			[1]
		דן	otal: 10]

7 (a) Table 7.1 shows some properties of some of the halogens.

Table 7.1

halogen	melting point / °C	boiling point / °C	colour
chlorine	-101	-35	yellow-green
bromine	-7		red-brown
iodine	+114	+184	grey-black
astatine	+302	+337	

Use the information in Table 7.1 to suggest:

- the colour of astatine
- the boiling point of bromine
- the state of iodine at 190 °C.

 [3]
- (b) Aqueous chlorine reacts with aqueous potassium bromide as shown.

$$Cl_2 + 2KBr \rightarrow Br_2 + 2KCl$$

(i) Name the salt formed in this reaction.

.....[1]

(ii) Explain why aqueous bromine does **not** react with aqueous potassium chloride.

(iii) Complete the dot-and-cross diagram in Fig. 7.1 of a molecule of chlorine.

Show outer shell electrons only.

Fig. 7.1

[2]

[Total: 7]

13 8 Hydrogen is a fuel which can be obtained from water by electrolysis. Refinery gas and petrol are fuels obtained by the fractional distillation of petroleum. (a) (i) Complete the equation for the burning of hydrogen. $H_2(g) + O_2(g) \rightarrowH_2O(I)$ [1] (ii) State the meaning of (g) and (l). (g) (1) [2] (iii) Thermal energy is released to the surroundings when hydrogen is burnt. State the name of the type of reaction which transfers heat to the surroundings.[1] **(b)** Some cars use hydrogen–oxygen fuel cells as a source of energy. Explain one advantage to the environment of using a hydrogen-oxygen fuel cell instead of a petrol engine.[2] (c) Refinery gas contains methane. Methane is a gas which is responsible for climate change. State **two** strategies to reduce the amount of methane entering the atmosphere. 2 [2]

(d) Petrol is a mixture of alkanes.

One of the alkanes in petrol is octane, C_8H_{18} .

Name the **two** products formed when octane is burnt in excess air.

......and[2]

(e) More petrol can be made by cracking less useful petroleum fractions.

(i)	Define the term cracking.	
		[2]
(ii)	Complete the equation for the cracking of dodecane, $\mathrm{C}_{12}\mathrm{H}_{26}$, to formother hydrocarbon.	n ethene and one
	$C_{12}H_{26} \rightarrow C_2H_4 + \dots$	[1]
		[Total: 13]

The Periodic Table of Elements

	=	2 He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	52	Xe	xenon 131	98	R	radon	118	Og	oganesson
	II/			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	Н	iodine 127	85	At	astatine -	117	<u>s</u>	tennes sine -
	5			8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	moloulum -	116		livermorium -
	>			7	z	nitrogen 14	15	ட	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	: <u>.</u>	bismuth 209	115	Mc	moscovium -
	≥			9	ပ	carbon 12	14	:S	silicon 28	32	Ge	germanium 73	20	S	tin 119	82	Ъ	lead 207	114	Fl	flerovium –
	=			2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	I	indium 115	81	11	thallium 204	113	Z	nihonium –
										30	Zu	zinc 65	48	ප	cadmium 112	80	Нg	mercury 201	112	ပ်	copemicium
										29	Cn	copper 64	47	Ag	silver 108	79	Αn	gold 197	111	Rg	roentgenium -
Group										28	Ë	nickel 59	46	Pq	palladium 106	78	풉	platinum 195	110	Ds	darmstadtium -
J.Ö										27	රි	cobalt 59	45	格	rhodium 103	77	'n	iridium 192	109	M	meitnerium -
		- I	hydrogen 1							26	ъ	iron 56	44	Ru	ruthenium 101	9/	SO	osmium 190	108	¥	hassium –
										25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
					pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	д	tantalum 181	105	Op	dubnium –
					ato	rels				22	ï	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	Ŗ	rutherfordium -
										21	လွ	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	26	Ва	barium 137	88	Ra	radium -
	_			3	:=	lithium 7	£	Na	sodium 23	19	¥	potassium 39	37	&	rubidium 85	55	S	caesium 133	87	ΐ	francium -

_						
7.1		lutetium 175	103	۲	lawrencium	_
70	Υp	ytterbium 173	102	8 N	nobelium	1
69	E	thulium 169	101	Md	mendelevium	I
89	ш	erbium 167	100	FB	ferminm	_
29	운	holmium 165	66	Es	einsteinium	ı
99	ò	dysprosium 163	86	ರ	californium	I
65	욘	terbium 159	26	Ř	berkelium	I
64	В	gadolinium 157	96	Cm	curium	ı
63	Ш	europium 152	92	Am	americium	ı
62	Sm	samarium 150	94	P.	plutonium	1
61	Pm	promethium –	93	ď	neptunium	ı
09	PΝ	neodymium 144	92	⊃	uranium	238
29	ቯ	praseodymium 141	91	Ра	protactinium	231
58	Ce	cerium 140	06	Ч	thorium	232
22	Га	lanthanum 139	68	Ac	actinium	1

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.