Undecidability II

Sections 21.4 - 21.7

Is There a Pattern?

- Does L contain some particular string w?
- Does *L* contain ε ?
- Does *L* contain any strings at all?
- Does L contain all strings over some alphabet Σ ?

- A = $\{ \langle M, w \rangle : TM M \text{ accepts } w \}$.
- $A_{\varepsilon} = \{ < M > : TM M \text{ accepts } \varepsilon \}.$
- $A_{ANY} = \{ < M > :$ there exists at least one string that TM M accepts $\}$.
- $A_{ALL} = \{ < M > : TM M accepts all inputs \}.$

Rice's Theorem

Any nontrivial property of the SD languages is <u>undecidable</u>.

or

Any language that can be described as:

$${: P(L(M)) = True}$$

for any nontrivial property *P*, is not in D.

A *nontrivial property* is one that is not simply:

- True for all languages, or
- False for all languages.

Applying Rice's Theorem

To use Rice's Theorem to show that a language *L* is not in D we must:

- Specify property P.
- Show that the domain of P is the SD languages.
- Show that *P* is nontrivial:
 - P is true of at least one language
 - P is false of at least one language

Examples

- 1. $\{ \langle M \rangle : L(M) \text{ contains only even length strings} \}$.
- 2. $\{ \langle M \rangle : L(M) \text{ contains an odd number of strings} \}$.
- 3. $\{ < M > : L(M) \text{ contains all strings that start with a} \}$.
- 4. $\{ \langle M \rangle : L(M) \text{ is infinite} \}$.
- 5. $\{ < M > : L(M) \text{ is regular} \}$.
- 6. $\{ < M > : M \text{ contains an even number of states} \}$.
- 7. $\{ < M > : M \text{ has an odd number of symbols in its tape alphabet} \}$.
- 8. $\{<M>: M \text{ accepts } \varepsilon \text{ within 100 steps}\}.$
- 9. $\{<M>: M \text{ accepts } \epsilon\}$.
- 10. $\{ \langle M_a, M_b \rangle : L(M_a) = L(M_b) \}$.

Proof of Rice's Theorem

Proof: Let P be any nontrivial property of the SD languages.

$$H = \{ \langle M, w \rangle : TM M \text{ halts on input string } w \}$$
 R

(?Oracle)
$$L_2 = \{ : P(L(M)) = T \}$$

Either $P(\emptyset) = T$ or $P(\emptyset) = F$. Assume it is $P(\emptyset) = F$ (a matching proof exists if it is T).

Since P is nontrivial, there is some SD language L_{T} such that $P(L_{\mathsf{T}}) = T$. Let M_{T} be some Turing machine that semidecides L_{T} .

Proof (cont'd)

```
R(< M, w>) =
```

- 1. Construct $\langle M\# \rangle$, so M#(x) operates as follows:
 - 1.1. Copy its input x to another track for later.
 - 1.2. Erase the tape.
 - 1.3. Write *w* on the tape.
 - 1.4. Run *M* on *w*.
 - 1.5 Put x back on the tape and run M_{τ} on x.
- 2. Return <*M*#>.

$C = Oracle(R(\langle M, w \rangle))$ decides H:

 $\langle M, w \rangle \in H$: M halts on w. M# makes it to 1.5.

So it is equivalent to M_{τ} .

$$L(M\#) = L(M_T)$$
 and so $P(L(M\#)) = P(L(M_T)) = T$.

Oracle decides P. Oracle accepts.

< M, $w > \notin H$: M does not halt on w. M# gets stuck in 1.4.

So it accepts nothing.

$$L(M\#) = \emptyset$$
 and so $P(L(M\#)) = P(\emptyset) = F$.

Oracle decides *P. Oracle* rejects.

Given a TM M, is L(M) Regular?

The problem: Is L(M) regular?

The language: Is $\{<M>: L(M) \text{ is regular}\}$ in D?

Rice's Theorem says no:

- P = True if L is regular and False otherwise.
- The domain of *P* is the set of SD languages since it is the set of languages accepted by some TM.
- *P* is nontrivial:
 - $ightharpoonup P(a^*) = True.$
 - \bullet $P(A^nB^n) = False.$

Reduction from H

R(<M, w>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Save *x* for later.
 - 1.2. Erase the tape.
 - 1.3. Write *w* on the tape.
 - 1.4. Run *M* on *w*.
 - 1.5. Put *x* back on the tape.
 - 1.6. If $x \in A^nB^n$ then accept, else reject.
- 2. Return <*M*#>.

If Oracle decides L_2 , then $C = \neg Oracle(R(\langle M, w \rangle))$ decides H:

- <M, $w> \in H$: M# makes it to step 1.5. Then it accepts x iff $x \in A^nB^n$. So M# accepts A^nB^n , which is not regular. *Oracle* rejects. C accepts.
- <M, $w> \notin H$: M does not halt on w. M# gets stuck in step 1.4. It accepts nothing. $L(M\#) = \emptyset$, which is regular. *Oracle* accepts. C rejects.

But no machine to decide H can exist, so neither does *Oracle*.

Without Flipping

R(< M, w>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. If $x \in A^nB^n$ then accept, else:
 - 1.2. Erase the tape.
 - 1.3. Write *w* on the tape.
 - 1.4. Run *M* on *w*.
 - 1.5. Accept
- 2. Return <*M*#>.

If *Oracle* exists, $C = Oracle(R(\langle M, w \rangle))$ decides H:

- *C* is correct: *M*# immediately accepts all strings AⁿBⁿ:
 - <*M*, w> \in H: M# accepts everything else in step 1.5. So $L(M\#) = \Sigma^*$, which is regular. *Oracle* accepts.
 - <M, $w> \notin H$: M# gets stuck in step 1.4, so it accepts nothing else. $L(M\#) = A^nB^n$, which is not regular. *Oracle* rejects.

But no machine to decide H can exist, so neither does *Oracle*.

Any Nonregular Language Works

R(< M, w>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. If $x \in WW$ then accept, else:
 - 1.2. Erase the tape.
 - 1.3. Write *w* on the tape.
 - 1.4. Run *M* on *w*.
 - 1.5. Accept
- 2. Return <*M*#>.

If *Oracle* exists, $C = Oracle(R(\langle M, w \rangle))$ decides H:

- C is correct: M# immediately accepts all strings WW:
 - <M, $w> \in H$: M# accepts everything else in step 1.5. So $L(M\#) = \Sigma^*$, which is regular. *Oracle* accepts.
 - <M, $w> \notin H$: M# gets stuck in step 1.4, so it accepts nothing else. L(M#) = WW, which is not regular. *Oracle* rejects.

But no machine to decide H can exist, so neither does *Oracle*.

Is L(M) Context-free?

How about: $L_3 = \{ \langle M \rangle : L(M) \text{ is context-free} \}$?

$$R(< M, w>) =$$

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. If $x \in A^nB^nC^n$ then accept, else:
 - 1.2. Erase the tape.
 - 1.3. Write *w* on the tape.
 - 1.4. Run *M* on *w*.
 - 1.5. Accept
- 2. Return <*M*#>.

Practical Implications on Programs

- 1. Does *P*, when running on *x*, halt?
- 2. Might *P* get into an infinite loop on some input?
- 3. Does *P*, when running on *x*, ever output a 0? Or anything at all?
- 4. Are P_1 and P_2 equivalent?
- 5. Does *P*, when running on *x*, ever assign a value to *n*?
- 6. Does *P* ever reach a coding segment *S* on any input (in other words, can we chop it out?
- 7. Does *P* reach *S* on every input (in other words, can we guarantee that *S* happens)?

Turing Machine Questions Can be Reduced to Program Questions

EqPrograms =

 $\{\langle P_a, P_b \rangle : P_a \text{ and } P_b \text{ are } PL \text{ programs and } L(P_a) = L(P_b)\}.$

We can build, in any programming language *PL*, *SimUM*:

- that is a *PL* program
- that implements the Universal TM U and so can simulate an arbitrary TM.

TM Questions and Program Questions

EqPrograms = $\{\langle P_a, P_b \rangle : P_a \text{ and } P_b \text{ are } PL \text{ programs and } L(P_a) = L(P_b)\}.$

Theorem: EqPrograms is not in D.

Proof: Reduction from EqTMs = $\{<M_a, M_b>: L(M_a) = L(M_b)\}.$

$$R(< M_{\rm a}, M_{\rm b}>) =$$

- 1. Build P_1 , a PL program that, on w, returns $SimUM(M_a, w)$.
- 2. Build P_2 , a PL program that, on w, returns $SimUM(M_b, w)$.
- 3. Return $< P_1, P_2 >$.

If *Oracle* exists and decides EqPrograms, then $C = Oracle(R(< M_a, M_b>))$ decides EqTMs. C is correct. $L(P_1) = L(M_a)$ and $L(P_2) = L(M_b)$. So:

- $\langle M_a, M_b \rangle \in \text{EqTMs: } L(M_a) = L(M_b). \text{ So } L(P_1) = L(P_2). \text{ } Oracle(\langle P_1, P_2 \rangle)$ accepts.
- $<M_a$, $M_b> \notin EqTMs$: $L(M_a) \neq L(M_b)$. So $L(P_1) \neq L(P_2)$. Oracle($<P_1, P_2>$) rejects.

But no machine to decide EqTMs can exist, so neither does *Oracle*.

$\{<M, q>: M \text{ reaches } q \text{ on some input}\}$

 $H_{ANY} = \{ \langle M \rangle : \text{ there exists some string on which TM } M \text{ halts} \}$

R

(?Oracle)

 $L_2 = \{ \langle M, q \rangle : M \text{ reaches } q \text{ on some input} \}$

R(<M>) =

1. Build < M#> so that M# is identical to M except that, if M has a transition $((q_1, c_1), (q_2, c_2, d))$ and q_2 is a halting state other than h, replace that transition with: $((q_1, c_1), (h, c_2, d))$.

2. Return <*M*#, *h*>.

If *Oracle* exists, then C = Oracle(R(< M>)) decides H_{ANY} :

- *R* can be implemented as a Turing machine.
- *C* is correct: *M*# will reach the halting state *h* iff *M* would reach some halting state. So:
 - < M> \in H_{ANY} : There is some string on which M halts. So there is some string on which M# reaches state h. *Oracle* accepts.
 - < $M> \notin H_{ANY}$: There is no string on which M halts. So there is no string on which M# reaches state h. *Oracle* rejects.

But no machine to decide H_{ANY} can exist, so neither does *Oracle*.

How many Turing machines does it take to change a light bulb?

One.

How can you tell whether your Turing machine is the one?

You can't.

Non-SD Languages

There is an uncountable number of non-SD languages, but only a countably infinite number of TM's (hence SD languages).

...The class of non-SD languages is <u>much</u> bigger than that of SD languages!

Non-SD Languages

Intuition: Non-SD languages usually involve either infinite search or knowing a TM will go to an infinite loop.

Examples:

- $\neg H = \{ \langle M, w \rangle : TM M \text{ does } not \text{ halt on } w \}.$
- $\{<M>: L(M) = \Sigma^*\}.$
- $\{<M>: TM M halts on nothing\}.$

Proving a language is not in SD:

- L is the complement of an SD\D Language.
 - Recall that $L, \neg L \in SD \Rightarrow L, \neg L \in D$
- Reduction from a known non-SD language

Complement is in SD/D

Theorem: $H_{\neg ANY} = \{ < M > : \text{ there does } \textbf{not } \text{ exist any string on } \text{ which TM } M \text{ halts} \} \text{ is not in SD.}$

Proof: $\neg H_{\neg ANY} = H_{ANY} =$

 $\{< M>:$ there exists at least one string on which TM M halts $\}$.

We already know:

- ¬H¬ANY is in SD.
- ¬H¬ANY is not in D.

So $H_{\neg ANY}$ is not in SD because, if it were, then H_{ANY} would be in D but it isn't.

Using Reduction

Theorem: If there is a reduction R from L_1 to L_2 and L_1 is not SD, then L_2 is not SD.

So, we must:

- Choose a language L_1 that is known not to be in SD.
- Hypothesize the existence of a semideciding TM Oracle.

Note: R may not swap accept for loop!

Using Reduction for H_{ANY}

 $\neg H = \{ \langle M, w \rangle : TM M \text{ does not halt on input string } w \}$

(?Oracle)

 $H_{\neg ANY} = \{ < M > : \text{ there does not exist a string}$ on which TM M halts $\}$

$$R() =$$

- 1. Construct the description < M#> of M#(x):
 - 1.1. Erase the tape.
 - 1.2. Write *w* on the tape.
 - 1.3. Run *M* on *w*.
- 2. Return <*M*#>.

Using Reduction for H_{¬ANY}

$$R(< M, w>) =$$

- 1. Construct the description < M#> of M#(x):
 - 1.1. Erase the tape.
 - 1.2. Write *w* on the tape.
 - 1.3. Run *M* on *w*.
- 2. Return <*M*#>.

If *Oracle* exists, then C = Oracle(R(< M, w>)) semidecides $\neg H$:

- \bullet *C* is correct: M# ignores its input. It halts on everything or nothing, depending on whether M halts on w. So:
 - <*M*, $w> \in \neg H$: *M* does not halt on w, so M# halts on nothing. *Oracle* accepts.
 - <M, $w> \notin \neg H$: M halts on w, so M# halts on everything. Oracle does not accept.

But no machine to semidecide $\neg H$ can exist, so neither does *Oracle*.

$A_{anbn} = \{ \langle M \rangle : L(M) = A_n B_n \}$

A_{anbn} contains strings that look like:

```
(q00, a00, q01, a00, \rightarrow),

(q00, a01, q00, a10, \rightarrow),

(q00, a10, q01, a01, \leftarrow),

(q00, a11, q01, a10, \leftarrow),

(q01, a00, q00, a01, \rightarrow),

(q01, a01, q01, a10, \rightarrow),

(q01, a10, q01, a11, \leftarrow),

(q01, a11, q11, a01, \leftarrow)
```

It does not contain strings like aaabbb.

But AnBn does.

$A_{anbn} = \{ \langle M \rangle : L(M) = A_nB_n \} \text{ is not SD}$

$$\neg H = \{ \langle M, w \rangle : TM M \text{ does not halt on } w \}$$

$$\downarrow R$$

(?Oracle)
$$A_{anbn} = \{ < M > : L(M) = A^n B^n \}$$

$$R(< M, w>) =$$

- 1. Construct the description $\langle M\# \rangle$, where M#(x) operates as follows:
 - 1.1 Copy the input x to another track for later.
 - 1.2. Erase the tape.
 - 1.3. Write w on the tape.
 - 1.4. Run *M* on *w*.
 - 1.5. Put x back on the tape.
 - 1.6. If $x \in A^nB^n$ then accept, else loop.
- 2. Return <*M*#>.

If Oracle exists, $C = Oracle(R(\langle M, w \rangle))$ semidecides $\neg H: !?!?$

$A_{anbn} = \{ \langle M \rangle : L(M) = A_n B_n \} \text{ is not SD}$

 $R(\langle M, w \rangle)$ reduces $\neg H$ to A_{anbn} :

- 1. Construct the description <*M*#>:
 - 1.1. If $x \in A^nB^n$ then accept. Else:
 - 1.2. Erase the tape.
 - 1.3. Write *w* on the tape.
 - 1.4. Run *M* on *w*.
 - 1.5. Accept.
 - 2. Return <*M*#>.

If *Oracle* exists, then C = Oracle(R(< M, w>)) semidecides $\neg H$: M# immediately accepts all strings in A^nB^n . If M does not halt on w, those are the only strings M# accepts. If M halts on w, M# accepts everything:

- <*M*, w> $\in \neg$ H: M does not halt on w, so M# accepts strings in AⁿBⁿ in step 1.1. Then it gets stuck in step 1.4, so it accepts nothing else. It is an AⁿBⁿ acceptor. *Oracle* accepts.
- <*M*, $w> \notin \neg H$: *M* halts on w, so M# accepts everything. *Oracle* does not accept.

But no machine to semidecide $\neg H$ can exist, so neither does *Oracle*.

$H_{ALL} = \{ \langle M \rangle : TM \text{ halts on } \Sigma^* \}$

 $\neg H = \{ \langle M, w \rangle : TM M \text{ does not halt on } w \}$

$$R \downarrow$$

(?Oracle)
$$H_{ALL} = \{ \langle M \rangle : TM \text{ halts on } \Sigma^* \}$$

Reduction Attempt 1: R(<M, w>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write w on the tape.
 - 1.3. Run *M* on *w*.
- 2. Return <*M*#>.

If *Oracle* exists, $C = Oracle(R(\langle M, w \rangle))$ semidecides $\neg H$:

- < M, $w > \in \neg H$: M does not halt on w, so M# gets stuck in step 1.3 and halts on nothing. *Oracle* does not accept.
- < M, $w > \not \in \neg H$: M halts on w, so M# halts on everything. Oracle accepts.

Problem: cannot flip the answer.

$H_{ALL} = \{ \langle M \rangle : TM \text{ halts on } \Sigma^* \}$

 $R(\langle M, w \rangle)$ reduces $\neg H$ to H_{ALL} :

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Copy the input *x* to another track for later.
 - 1.2. Erase the tape.
 - 1.3. Write *w* on the tape.
 - 1.4. Run M on w for |x| steps or until M naturally halts.
 - 1.5. If *M* naturally halted, then loop.
 - 1.6. Else halt.
- 2. Return <*M*#>.

If *Oracle* exists, $C = Oracle(R(\langle M, w \rangle))$ semidecides $\neg H$:

- <M, $w> \in \neg H$: No matter how long x is, M will not halt in |x| steps. So, for all inputs x, M# makes it to step 1.6. So it halts on everything. *Oracle* accepts.
- <M, w> ∉ ¬H: M halts on w in n steps. On inputs of length less than n, M# makes it to step 1.6 and halts. But on all inputs of length n or greater, M# will loop in step 1.5. Oracle does not accept.

EqTMs = $\{ \langle M_a, M_b \rangle : L(M_a) = L(M_b) \}$

We've already shown it's not in D.

Now we show it's also not in SD.

EqTMs = $\{ \langle M_a, M_b \rangle : L(M_a) = L(M_b) \}$

$$\neg H = \{ \langle M, w \rangle : TM \ M \text{ does not halt on } w \}$$
 $R \downarrow$

(?Oracle) EqTMs =
$$\{ \langle M_a, M_b \rangle : L(M_a) = L(M_b) \}$$

$$R() =$$

- 1. Construct the description <*M*#>:
- 2. Construct the description <*M*?>:
- 3. Return < M#, M?>.

If *Oracle* exists, $C = Oracle(R(\langle M, w \rangle))$ semidecides $\neg H$:

- <*M*, *w*> ∈ ¬H:
- <*M*, *w*> ∉ ¬H:

EqTMs = $\{ \langle M_a, M_b \rangle : L(M_a) = L(M_b) \}$

R(< M, w>) =

- 1. Construct the description <*M*#>:
 - 1.1 Erase the tape.
 - 1.2 Write *w* on the tape.
 - 1.3 Run *M* on *w*.
 - 1.4 Accept.
- 2. Construct the description <*M*?>: 1.1 Loop.
- 3. Return <*M*#, *M*?>.

If *Oracle* exists, $C = Oracle(R(\langle M, w \rangle))$ semidecides $\neg H: M$? halts on nothing.

- <*M*, $w> \in \neg H$: *M* does not halt on w, so M# gets stuck in step 1.3 and halts on nothing. *Oracle* accepts.
- <*M*, $w> \notin \neg H$: *M* halts on w, so M# halts on everything. *Oracle* does not accept.

The Details Matter

 $L_1 = \{ < M > : M \text{ has an even number of states} \}.$

 $L_2 = {<M>: |<M>| is even}.$

 $L_3 = {< M>: |L(M)| \text{ is even}}.$

 $L_4 = \{ < M > : M \text{ accepts all even length strings} \}.$

The Details Matter

 $L_3 = {< M>: |L(M)| \text{ is even}}.$

$$\neg H \leq_M L_3$$
: $R(\langle M, w \rangle) =$

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1 Copy the input *x* to another track for later.
 - 1.2 Erase the tape.
 - 1.3 Write *w* on the tape.
 - 1.4 Run *M* on *w*.
 - 1.5 If $x = \varepsilon$ then accept. Else loop.
- 2. Return <*M*#>.
- <*M*, *w*> ∈ ¬H:
- <*M*, *w*> ∉ ¬H:

The Details Matter

 $L_4 = \{ < M > : M \text{ accepts all even length strings} \}$

$$\neg H \leq_M L_4$$
: $R(\langle M, w \rangle) =$

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1 Copy the input x to another track for later.
 - 1.2 Erase the tape.
 - 1.3 Write *w* on the tape.
 - 1.4 Run M on w for |x| steps or until M naturally halts.
 - 1.5 If *M* halted naturally, then loop.
 - 1.6 Else accept.
- 2. Return <*M*#>.
- <*M*, *w*> ∈ ¬H:
- <*M*, *w*> ∉ ¬H:

Accepting, Rejecting, Halting, and Looping

Consider:

 $L_1 = \{ < M, w > : M \text{ rejects } w \}.$

 $L_2 = \{ \langle M, w \rangle : M \text{ does not halt on } w \} (\neg H)$

 $L_3 = \{ \langle M, w \rangle : M \text{ is a deciding TM and rejects } w \}.$

$\{<M, w>: M \text{ is a Deciding TM and Rejects } w\}$

 $\neg H = \{ < M, w > : TM M \text{ does not halt on } w \}$ $R \downarrow$ $\{ < M, w > : M \text{ is a deciding TM and rejects } w \}$

R(< M, w>) =

(?Oracle)

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1 Erase the tape.
 - 1.2 Write w on the tape.
 - 1.3 Run *M* on *w*.
 - 1.4 Reject.
- 2. Return < M#, $\epsilon >$.

If *Oracle* exists, C = Oracle(R(< M, w>)) semidecides $\neg H$:

- <*M*, *w*> ∈ ¬H:
- <*M*, *w*> ∉ ¬H:

Problem:

$\{<M, w>: M \text{ is a Deciding TM and Rejects } w\}$

$$H_{ALL} = \{ < M > : TM \ M \text{ halts on } \Sigma^* \}$$

$$R \downarrow$$

$$\{ < M, \ w > : M \text{ is a deciding TM and rejects } w \}$$

(?Oracle)

R(< M>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1 Run *M* on *x*.
 - 1.2 Reject.
- 2. Return <*M*#, ε>.

If *Oracle* exists, C = Oracle(R(< M>)) semidecides H_{ALL} :

- < M> \in H_{ALL} : M# halts and rejects all inputs. *Oracle* accepts.
- < $M> \notin H_{ALL}$: There is at least one input on which M doesn't halt. So M# is not a deciding TM. *Oracle* does not accept.

No machine to semidecide H_{ALL} can exist, so neither does *Oracle*.

What About These?

$$L_1 = \{a\}.$$

$$L_2 = \{ < M > : M \text{ accepts a} \}.$$

$$L_3 = {< M> : L(M) = {a}}.$$

$$\neg H \leq_M L_3$$
: $R(< M, w>) =$

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1 If x = a, accept.
 - 1.2 Erase the tape.
 - 1.2 Write *w* on the tape.
 - 1.3 Run *M* on *w*.
 - 1.4 Accept.
- 2. Return <*M*#>.
- <*M*, *w*> ∈ ¬H:
- <*M*, *w*> ∉ ¬H:

$\{\langle M_a, M_b \rangle : \varepsilon \in L(M_a) - L(M_b)\}$

R is a reduction from $\neg H$. $R(\langle M, w \rangle) =$

- 1. Construct the description of M#(x) that operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write *w*.
 - 1.3. Run *M* on *w*.
 - 1.4. Accept.
- 2. Construct the description of M?(x) that operates as follows: 2.1. Accept.
- 3. Return <*M*?, *M*#>.

If *Oracle* exists and semidecides L, C = Oracle(R(< M, w>)) semidecides $\neg H$: M? accepts everything, including ε . So:

- <M, $w> \in \neg H$: L(M?) L(M#) =
- $< M, w > \notin \neg H: L(M?) L(M#) =$

The Problem View	The Language View	Status
Does TM <i>M</i> have an even number of states?	{< <i>M</i> > : <i>M</i> has an even number of states}	D
Does TM <i>M</i> halt on <i>w</i> ?	$H = \{ < M, w > : M \text{ halts on } w \}$	SD/D
Does TM <i>M</i> halt on the empty tape?	$H_{\varepsilon} = \{ \langle M \rangle : M \text{ halts on } \varepsilon \}$	SD/D
Is there any string on which TM <i>M</i> halts?	$H_{ANY} = \{ < M > : \text{ there exists at least one string on which TM } M \text{ halts } \}$	SD/D
Does TM <i>M</i> halt on all strings?	$H_{ALL} = \{ \langle M \rangle : M \text{ halts on } \Sigma^* \}$	¬SD
Does TM M accept w?	$A = \{ \langle M, w \rangle : M \text{ accepts } w \}$	SD/D
Does TM M accept ε ?	$A_{\varepsilon} = \{ \langle M \rangle : M \text{ accepts } \varepsilon \}$	SD/D
Is there any string that TM <i>M</i> accepts?	A_{ANY} {< M >: there exists at least one string that TM M accepts }	SD/D

というできたができるとうないできたがあるというできた。

Does TM <i>M</i> accept all strings?	$A_{ALL} = \{ \langle M \rangle : L(M) = \Sigma^* \}$	¬SD
Do TMs M_a and M_b accept the same languages?	EqTMs = $\{ < M_a, M_b > : L(M_a) = L(M_b) \}$	¬SD

たる様がいうではなると

では、100mmのできたが、100mmのでは、100mmのできた。1

Does TM <i>M</i> not halt on any string?	$H_{\neg ANY} = \{ < M > : \text{ there does not } $ exist any string on which M halts $\}$	¬SD
Does TM <i>M</i> not halt on its own description?	$\{ < M > : TM \mid M \text{ does not halt on input } < M > \}$	¬SD
Is the language that $TM M$ accepts regular?	TMreg = $\{ : L(M) \text{ is regular} \}$	¬SD
Does TM M accept the language A^nB^n ?	$A_{anbn} = \{ \langle M \rangle : L(M) = A^n B^n \}$	¬SD

Language Summary

SD IN OUT Semideciding TM Reduction Н Enumerable Unrestricted grammar **Deciding TM** $A^nB^nC^n$ Diagonalize Lexico. enum Reduction L and $\neg L$ in SD **Context-Free Pumping** CF grammar A^nB^n Closure PDA Closure Regular **Regular Expression** a*b* **Pumping** Closure **FSM**