1. INTRODUCTION

1.1 Project Overview

This project focuses on building an **interactive Tableau dashboard** to visualize and analyze **housing market trends**, specifically focusing on **sale prices and key property features** (e.g., number of bedrooms, location, size, year built). By leveraging real estate datasets, the goal is to help **home buyers**, **investors**, **agents**, **and analysts** make **informed decisions** by uncovering hidden patterns and market dynamics through **intuitive data visualizations**.

1.2 Purpose

To provide an **interactive and data-driven visualization platform** using Tableau that helps **home buyers, investors, real estate agents, and analysts** understand housing market trends through the analysis of **sale prices and property features** over time and across locations.

2. IDEATION PHASE

2.1 Problem Statement

Problem Statement (PS)	l am	I am trying to	But	Because	Which makes me feel
PS-1	A contractor	planning to construct an apartment for people	the workers are not working properly		this project will not continue
PS-2	a designer	design the houses perfectly	the apartme nts are not accurate for my design	the workers are not experienced	Frustrated on the workers for the lack of experience
PS-3	a worker	work on building the houses	I do not receive my daily payments	some workers are not working sincerely	unworthy for this work
PS-4	a real estate person	buy the lands and apartments	the lands are in the city outskirts	in the city the lands are more priced	selling these lands is complicated

2.2 Empathy Map Canvas

2.3 Brainstorming

LTVIP2025TMID47526

Brainstorm & idea prioritization

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

- (§ 10 minutes to prepare
- 1 hour to collaborate
- 1 2-8 people recommended

Before you collaborate A little bit of preparation goes a long way with this session. Here's what you need to do to get going. 10 minutes Team gathering

Define who should participate in the session and send an invite. Share relevant information or pre-work ahead.

Set the goal

Think about the problem you'll be focusing on solving in the brainstorming session.

Learn how to use the facilitation tools

Use the Facilitation Superpowers to run a happy and productive session.

Open article →

Define your problem statement

What problem are you trying to solve? Frame your problem as a How Might We statement. This will be the focus of your brainstorm.

() 5 minutes

How might we [your problem statement]?

3. REQUIREMENT ANALYSIS

3.1 Customer Journey map

Stage	Need	Action	Touchpoint	Pain point	Opportunity
Discover	Understand the importance of visualizing real estate trends	Searches Google, reads blogs or market reports	Google Search, Tableau Blog, LinkedIn, YouTube tutorials	Too much scattered data; unsure where to start	Create awareness via blog series, webinars, or LinkedIn posts
Explore	Identify tools, data sources, and examples for visualization	Compares Tableau with Excel, Power BI, etc.	Tableau trial version, real estate forums, data portals	Unsure how Tableau handles real estate data	Offer real estate- specific templates or Tableau sample workbooks
Engage	Collect and clean data; begin designing dashboards	Downloads data, preps it using Tableau Prep or Excel	Tableau Desktop, Tableau Prep, Zillow/Redfin/MLS data	Dirty or inconsistent data; dashboard logic confusion	Provide step- by-step guides and training content
Decide	Finalize and share insights; take investment or reporting action	Builds final dashboard, presents to stakeholders	Tableau Server, Tableau Public, Email, PDF export	Stakeholders struggle to interpret complex visuals	Embed story points, tooltips, filters, and user guides

3.2 Solution Requirement

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Data Import	The system should allow the user to upload or connect to housing datasets in formats like CSV, Excel, or databases (SQL).
FR-2	Time Series Visualization	The dashboard should visualize sale price trends over Time.
FR-3	Geographic Visualization	Display a map view showing sale prices and density across different regions
FR-4	Dashboard Sharing	Users should be able to export dashboards (PDF) or share online via Tableau Public or Server.
FR-5	Comparative Analysis	Allow the user to compare housing features, such as price vs square footage using scatter plots.
FR-6	Time Series Visualization	The dashboard should visualize sale price trends over Time .

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Performance	Dashboards must load within 3–5 seconds even with filters applied.
NFR-2	Scalability	The dashboard must handle larger datasets efficiently without crashing or lag.
NFR-3	Responsiveness 4	Dashboard layout should be usable on laptops and projectors during presentations.
NFR-4	Security & Privacy	The system should protect sensitive data and follow privacy regulations if address-level or user data is used.
NFR-5	Usability	The dashboard must be intuitive , easy to navigate, and require minimal training.
NFR-6	Data Accuracy	The system must ensure clean, accurate, and regularly updated data sources.

3.3 Data Flow Diagram

3.4 Technology Stack

Component	Tool/Technology	Purpose
Data Source	CSV, JSON files	Raw smartphone sales and specs data
Visualization	Tableau Desktop	Creating interactive dashboards and stories
Storage	Google Drive / Local	Storing raw and processed datasets
Collaboratio n	Google Docs, Slack	Team communication and report writing
Deployment	Tableau Public / Server	Dashboard sharing and stakeholder access

4. PROJECT DESIGN

4.1 Problem Solution Fit

4.2 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Understanding and analyzing housing market trends can be challenging due to the complexity and volume of real estate data. Users lack intuitive tools to interpret pricing patterns and property features
2.	Idea / Solution description	The project proposes an interactive data visualization dashboard built using Tableau to analyze and interpret housing market data. The dashboard will show trends in sale prices and the impact of key features.

3.	Novelty / Uniqueness	Unlike static reports, this solution offers dynamic visualizations that allow real-time interaction. The integration of geospatial analysis with property features is a unique strength.
4.	Social Impact / Customer Satisfaction	The solution helps buyers, sellers, and real estate analysts make informed decisions. It improves transparency in the housing market and empowers customers with easy-to-understand data insights.
5.	Business Model (Revenue Model)	The solution can be monetized as a data analytics product or service for real estate agencies, governments, or financial institutions. It can also be offered as a freemium model with premium customization.
6.	Scalability of the Solution	The dashboard can be scaled by integrating real-time APIs, covering more regions, and expanding features such as predictive analytics. It can also be deployed across cloud platforms for broader accessibility.

4.3 Solution Architecture

- **5. PROJECT PLANNING & SCHEDULING**
- **5.1 Project Planning**

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint- 1	Data Collection	USN-2	As a user, I can load data into the processing environment	1	High	ALL
Sprint- 2	Data Preprocessing	USN-3	As a user, I can handle missing values in the dataset	3	Medium	ALL
Sprint- 2	Data Preprocessing	USN-4	As a user, I can encode or map categorical variables appropriately	2	Medium	ALL
Sprint- 3	Making Graphs/Visualizations	USN-5	As a user, I can build the initial model based on processed data	5	High	ALL
SPRINT - 4	Dashboard & STORIES	USN - 6	Dark ui with eye feasted color palette	6	HIGH	ALL
SPRINT - 5	Report & documentation	USN - 7	The step-by-step guide documentation	7	MEDIUM	ALL

6. FUNCTIONAL AND PERFORMANCE TESTING

S.No.	Parameter	Screenshot / Values
1.	Data Rendered	10,000 rows from CSV dataset (e.g., housing_data.csv)
0.	Data Preprocessing	Removed 132 records with missing sale price or area
3.	Utilization of Filters	Applied Tableau filters for city/region, sale year, bedrooms/bathrooms, price range and getting responsiveness in 3 seconds
4.	Calculation fields Used	Average Price per sqftAverage price by cityYOY price growth
5.	Dashboard design	No of Visualizations / Graphs 1 Dashboards
6	Story Design	No of Visualizations / Graphs – 1 Stories with 4 story points each

7. RESULTS

7.1 Output Screenshots

DASHBOARDS:

STORY OUTPUTS:

Story 1

House age distribution is more influenced by the number of bedrooms compared to bathrooms and floors

The age of house varies based on their renovation status, providing a comprehensive overview

The importance of recent renovations in boosting property sales

Story 1

House age distribution is more influenced by

the number of bedrooms compared to
bathrooms and floors

The age of house varies based on their renovation status, providing a comprehensive overview

The importance of recent renovations in boosting property sales

Story 1

House age distribution is more influenced by The age of house varies based on their the number of bedrooms compared to bathrooms and floors

renovation status, providing a comprehensive overview

The importance of recent renovations in boosting property sales

8. ADVANTAGES & DISADVANTAGES

• ADVANTAGES:

- o **User-Friendly Dashboards:** Intuitive interface with dark-themed visuals that reduce eye strain and enhance readability.
- o **Interactive Insights:** Real-time filtering and data slicing allow users to extract exactly what they need without manual intervention.
- **Reusable Framework:** The dashboard model can be reused for other smartphone brands or markets by simply updating the dataset.

- o **Data-Driven Decision Making:** Helps strategists, marketers, and executives make smarter, evidence-based decisions.
- **Time-Saving:** Reduces the manual workload for analysts by providing ready-to-explore visualizations.

• **DISADVANTAGES**:

- o **Platform Limitation:** Tableau Public may limit some functionality such as real-time backend connection and publishing privacy.
- Dependence on Data Accuracy: Insights are only as good as the quality of input data; inaccurate or outdated datasets could mislead.
- Static Structure in Story: While dashboards are interactive, Tableau stories have limited flexibility in dynamic narration.

9. **CONCLUSION**

In conclusion, the project "Visualizing Housing Market Trends" using Tableau successfully transforms complex housing data into meaningful, interactive, and user-friendly visual insights. By analyzing key factors such as sale prices, property features, location, and time-based trends, the visualization empowers users—including buyers, sellers, investors, and analysts—to make informed decisions based on real-time data.

10. FUTURE SCOPE

- Connect to live real estate APIs and databases for up-to-date visualizations
- Use advanced analytics (via Python/R integration) to predict future price trends
- Add detailed location data (zip codes, landmarks, schools) for better local analysis
- Create dashboards that adjust based on user preferences like budget or property type
- Design responsive dashboards and integrate voice assistants for on-the-go access
- Combine property data with social trends or user sentiment for richer insights

11. APPENDIX

Dataset Link

 $\underline{https://www.kaggle.com/datasets/rituparnaghosh18/transformed-housing-data-2}$

GitHub & Project Demo Link

https://github.com/sudha11n2/Visualizing-Housing-Market-Trends