

	Krzywa w postaci JAWNEJ	Krzywa w postaci PARAMETRYCZNEJ	Krzywa w postaci BIEGUNOWEJ
	y=f(x)	$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$	$ ho = ho(\varphi)$
	$x \in \langle a, b \rangle$	$t \in \langle \alpha, \beta \rangle$	$\varphi \in \langle \varphi_1, \varphi_2 \rangle$
POLA OBSZARÓW	$P = \int_{a}^{b} \left[g(x) - f(x) \right] dx$	$P = \int_{\alpha}^{\beta} y(t) \cdot x'(t) dt$	$P = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} \rho^2(\varphi) d\varphi$
DŁUGOŚCI ŁUKÓW	$L = \int_{a}^{b} \sqrt{1 + \left[f'(x) \right]^{2}} dx$	$L = \int_{\alpha}^{\beta} \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} dt$	$P = \int_{\varphi_1}^{\varphi_2} \sqrt{\rho^2(\varphi) + \left[\rho'(\varphi)\right]^2} d\varphi$
OBJĘTOŚCI BRYŁ OBROTOWYCH	$V = \pi \int_{a}^{b} f^{2}(x) dx$ $V = \pi \int_{a}^{b} \left[g^{2}(x) - f^{2}(x) \right] dx$	$V = \pi \int_{\alpha}^{\beta} y^{2}(t) x'(t) dt$ $d la x'(t) \ge 0$	$V = \int_{\varphi_1}^{\varphi_2} \sqrt{\rho^2(\varphi) + \left[\rho'(\varphi)\right]^2} d\varphi$
POLA POWIERZCHNI BRYŁ OBROTOWYCH	$P_{p} = 2\pi \int_{a}^{b} f(x) \sqrt{1 + \left[f'(x) \right]^{2}} dx$ $d \ln f(x) \ge 0$	$P_{p} = 2\pi \int_{\alpha}^{\beta} y(t) \sqrt{\left[x'(t)\right]^{2} + \left[y'(t)\right]^{2}} dx$ $d a y(t) \ge 0$	$P_{P} = 2\pi \int_{\varphi}^{\varphi} \rho(\varphi) \sin(\varphi \sqrt{\rho^{2}(\varphi) + [\rho(\varphi)]^{2}} d\varphi$