

Constant population size (*N*), so between two time steps,

Constant population size (*N*), so between two time steps,

$$\#\mathbb{R}^{\mathbb{R}} = \#\mathbb{R}^{\mathbb{R}}$$

Constant population size (*N*), so between two time steps,

Constant population size (*N*), so between two time steps,

Constant population size (*N*), so between two time steps,

$$\#$$
 $=$ $\#$

Life-cycle "Death-Birth" updating

Constant population size (*N*), so between two time steps,

$$\#\mathbb{R} = \#\mathbb{R}$$

Life-cycle "Death-Birth" updating

Offspring production

Constant population size (*N*), so between two time steps,

$$\#$$
 $=$ $\#$

Life-cycle "Death-Birth" updating

Offspring production

Offspring dispersal

Constant population size (*N*), so between two time steps,

Life-cycle "Death-Birth" updating

Offspring production

Offspring dispersal

k parents die

Constant population size (*N*), so between two time steps,

$$\#$$
 $=$ $\#$

Life-cycle "Death-Birth" updating Offspring production Establishment of Offspring k offspring dispersal

k parents die