অধ্যায় - ৯

বাইনারি সংখ্যা পদ্ধতি - Class 8 Math BD 2024 – ৯ম অধ্যায় (অনুশীলনীঃ ১ – ১১ পর্যন্ত)

বাইনারি সংখ্যা পদ্ধতি

আমাদের সমাজে বা দৈনন্দিক জীবনে গণনা পদ্ধতিতে আমরা দশমিক সংখ্যা ব্যবহার করি যেমনঃ ০,১,২,৩,....৮,৯। কিন্তু তুমি কি ভেবে দেখেছ আমরা যে কম্পিউটার ব্যবহার করি সেটি কি এই দশমিক সংখ্যার ভিত্তিতে চলে? না, কম্পিউটার চলে নতুন এক সংখ্যা পদ্ধতিতে আর সেই পদ্ধতিকে বলে বাইনারি সংখ্যা পদ্ধতি। এই পদ্ধতিতে কম্পিঅউটার শুধুমাত্র ০ ও ১; এই দুইটি সংখ্যা ব্যবহার করে থাকে। বাইনারি সংখ্যা পদ্ধতি অধ্যায়ে বিভিন্ন হিসাব নিকাশ যেমন যোগ, গুণ, বিয়োগ বা ভাগ কিভাবে করে তা অনুশীলনীর প্রশ্নের সমাধানের মাধ্যমে শিখব।

৯ম অধ্যায় (৮ম শ্রেণি)

i) 010101

ii) 110011

iii) 100011

iv) 101000

v) 101100

vi) 001100.101

vii) 010010.111

viii) 0010111111.11

সমাধানঃ

i) (010101)₂

$$= 0 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

$$= 0 + 16 + 0 + 4 + 0 + 1$$

 $= (21)_{10}$

ii) (110011)₂

$$= 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

$$= 32 + 16 + 0 + 0 + 2 + 1$$

 $= (51)_{10}$

iii) (100011)₂

If it is helpful for you,

Bkash Personal

01916973743

$$= 1 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

$$= 32 + 0 + 0 + 0 + 2 + 1$$

$$= (35)_{10}$$
iv) $(101000)_{2}$

$$= 1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$$

$$= 32 + 0 + 8 + 0 + 0 + 0$$

$$= (40)_{10}$$
v) $(101100)_{2}$

$$= 1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$$

$$= 32 + 0 + 8 + 4 + 0 + 0$$

$$= (44)_{10}$$
vi) $(001100.101)_{2}$

$$= 0 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

$$= 0 + 0 + 8 + 4 + 0 + 0 + 0 + 0.5 + 0 + 0.125$$

$$= (12.625)_{10}$$
vii) $(010010.111)_{2}$

$$= 0 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3}$$

$$= 0 + 16 + 0 + 0 + 2 + 0 + 0.5 + 0.25 + 0.125$$

```
=(18.875)_{10}
```

viii) (0010111111.11)₂

$$= 0 \times 2^9 + 0 \times 2^8 + 1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}$$

$$= 0 + 0 + 128 + 0 + 32 + 16 + 8 + 4 + 2 + 1 + 0.5 + 0.25$$

$$= (191.75)_{10}$$

২। নিচের দশভিত্তিক সংখ্যাগুলোকে বাইনারিতে রূপান্তর করো।

i) 6

ii) 19

iii) 56

iv) 129

v) 127

vi) 96

vii) 25

viii) 200

সমাধানঃ

i) 6:

6÷2=3; ভাগশেষ 0

3÷2=1; ভাগশেষ 1

1÷2=0; ভাগশেষ 1

If it is helpful for you,

Bkash Personal

01916973743

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 110

$$(6)_{10} = (110)_2$$

ii) 19:

19÷2=9; ভাগশেষ 1

9÷2=4; ভাগশেষ 1

4÷2=2; ভাগশেষ 0

2÷2=1; ভাগশেষ 0

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10011

$$(19)_{10} = (10011)_2$$

iii) 56:

56÷2=28; ভাগশেষ 0

28÷2=14; ভাগশেষ 0

14÷2=7; ভাগশেষ 0

7÷2=3; ভাগশেষ 1

3÷2=1; ভাগশেষ 1

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 111000

 $(56)_{10} = (111000)_2$

```
iv) 129:
129÷2=64; ভাগশেষ 1
64÷2=32; ভাগশেষ 0
32÷2=16; ভাগশেষ 0
16÷2=8; ভাগশেষ 0
8÷2=4; ভাগশেষ 0
4÷2=2; ভাগশেষ 0
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10000001
(129)_{10} = (10000001)_2
v) 127:
127÷2=63; ভাগশেষ 1
63÷2=31; ভাগশেষ 1
31÷2=15; ভাগশেষ 1
15÷2=7; ভাগশেষ 1
7÷2=3; ভাগশেষ 1
3÷2=1; ভাগশেষ 1
1÷2=0; ভাগশেষ 1
```

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1111111

$$(127)_{10} = (11111111)_2$$

vi) 96:

96÷2=48; ভাগশেষ 0

48÷2=24; ভাগশেষ 0

24÷2=12; ভাগশেষ 0

12÷2=6; ভাগশেষ 0

6÷2=3; ভাগশেষ 0

3÷2=1; ভাগশেষ 1

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1100000

$$(96)_{10} = (1100000)_2$$

vii) 25:

25÷2=12; ভাগশেষ 1

12÷2=6; ভাগশেষ 0

6÷2=3; ভাগশেষ 0

3÷2=1; ভাগশেষ 1

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 11001

 $(25)_{10} = (11001)_2$

```
viii) 200:
200÷2=100; ভাগশেষ 0
100÷2=50; ভাগশেষ 0
50÷2=25; ভাগশেষ 0
25÷2=12; ভাগশেষ 1
12÷2=6; ভাগশেষ 0
6÷2=3; ভাগশেষ 0
3÷2=1; ভাগশেষ 1
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 11001000
(200)_{10} = (11001000)_2
৩। নিচের বাইনারি সংখ্যাগুলোর যোগফল নির্ণয় করো। [এটা হলো বাইনারি সংখ্যা পদ্ধতি অধ্যায়ের
৩নং প্রশ্ন।]
i) 101111 + 101101
ii) 10101 + 100010
iii) 1010101 + 1000001
সমাধানঃ
(i)
101111
+ 101101
1011100
```


19 কে বাইনারিতে রুপান্তরঃ

19÷2=9; ভাগশেষ 1

9÷2=4; ভাগশেষ 1

4÷2=2; ভাগশেষ 0

2÷2=1; ভাগশেষ 0

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10011

 $(19)_{10} = (10011)_2$

এখন,

 $(6)_{10} + (19)_{10}$

 $= (110)_2 + (10011)_2$

 $= (11001)_2$

(ii) 10 + 32

10 কে বাইনারিতে রুপান্তরঃ

10÷2=5; ভাগশেষ 0

5÷2=2; ভাগশেষ 1

2÷2=1; ভাগশেষ 0

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1010

 $(10)_{10} = (1010)_2$

32 কে বাইনারিতে রুপান্তরঃ

32÷2=16; ভাগশেষ 0

16÷2=8; ভাগশেষ 0

8÷2=4; ভাগশেষ 0

4÷2=2; ভাগশেষ 0

2÷2=1; ভাগশেষ 0

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 100000

 $(32)_{10} = (100000)_2$

এখন,

 $(10)_{10} + (32)_{10}$

 $= (1010)_2 + (100000)_2$

 $= (101010)_2$

iii) 56 + 16

56 কে বাইনারিতে রুপান্তরঃ

56÷2=28; ভাগশেষ 0

28÷2=14; ভাগশেষ 0

14÷2=7; ভাগশেষ 0

7÷2=3; ভাগশেষ 1

3÷2=1; ভাগশেষ 1

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 111000

$$(56)_{10} = (111000)_2$$

16 কে বাইনারিতে রুপান্তরঃ

16÷2=8; ভাগশেষ 0

8÷2=4; ভাগশেষ 0

4÷2=2; ভাগশেষ 0

2÷2=1; ভাগশেষ 0

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10000

 $(16)_{10} = (10000)_2$

এখন,

 $(56)_{10} + (16)_{10}$

 $= (111000)_2 + (10000)_2$

 $= (1001000)_2$

iv) 127 + 127

127 কে বাইনারিতে রুপান্তরঃ

127÷2=63; ভাগশেষ 1

63÷2=31; ভাগশেষ 1

31÷2=15; ভাগশেষ 1

If it is helpful for you,

Bkash Personal

01916973743


```
i) 2351
ii) 90152
iii) 10003
iv) 9999
সমাধানঃ
i) 2351
ধরি, a = 2351 তাহলে, 9999 এর সাপেক্ষে,
∵ a এর 9's Complement, a* = 9999 - 2351 = 7648
∵ a এর 10's Complement, a** = 7648 + 1 = 7649
ii) 90152
ধরি, a = 90152 তাহলে, 99999 এর সাপেক্ষে,
∵ a এর 9's Complement, a* = 99999 - 90152 = 9847
∵ a এর 10's Complement, a** = 9847 + 1 = 9848
iii) 10003
ধরি, a = 10003 তাহলে, 99999 এর সাপেক্ষে,
∵ a এর 9's Complement, a* = 99999 - 10003 = 89996
∵ a এর 10's Complement, a** = 89996 + 1 = 89997
```

iv) 9999

ধরি, a = 9999 তাহলে, 9999 এর সাপেক্ষে,

∵ a এর 9's Complement, a* = 9999 - 9999 = 0

```
∵ a এর 10's Complement, a** = 0 + 1 = 1
```

৭। পূরক ব্যবহার করে নিচের দশভিত্তিক সংখ্যার বিয়োগফল নির্ণয় করো।

```
i) 43101 - 5032
```

সমাধানঃ

i) 43101 - 5032

$$= 43101 + (99999 - 5032) - 999999$$
[: a*=99999 - 5032]

$$= 43101 + 94967 - 99999$$

$$= 43101 + (94967+1) - 99999 - 1 [: a**=94967+1]$$

$$= 43101 + 94968 - 100000$$

= 38069

ii) 70081 - 6919

$$= 70081 + (99999-6919) - 99999 [\because a*=99999 - 6919]$$

$$= 70081 + 93080 - 99999$$

$$= 70081 + (93080+1) - 99999 - 1 [: a** = 93080+1]$$

= 63162

iii) 2173901 - 5835

```
= 2173901 + (9999999-5835) - 99999999 [: a*=9999999-5835]
= 2173901 + 9994164 - 9999999
= 2173901 + (9994164+1) - 99999999 - 1 [:: a**=9994164+1]
= 2173901 + 9994165 - 10000000
= 2168066
৮। নিচের বাইনারি সংখ্যাগুলোর 2's Complement নির্ণয় করো।
i) 1111
ii) 1011001
iii) 1010101
iv) 1000001
সমাধানঃ
i) 1111
ধরি, a = 1111; তাহলে,
∵ a এর 1's complement, a* = 1111-1111 = 0
ii) 1011001
ধরি, a = 1011001; তাহলে,
∵ a এর 1's complement, a* = 1111111-1011001 = 0100110
∵ a এর 2's complement, a** = 0100110 + 1 = 0100111
iii) 1010101
```

```
ধরি, a = 1010101; তাহলে,
∵ a এর 1's complement, a* = 1111111-1010101 = 0101010
∵ a এর 2's complement, a** = 0101010 + 1 = 0101011
iv) 1000001
ধরি, a = 1000001; তাহলে,
∵ a এর 1's complement, a* = 1111111-1000001 = 0111110
∵ a এর 2's complement, a** = 01111110 + 1 = 01111111
৯। পুরক ব্যবহার করে নিচের বাইনারি সংখ্যার বিয়োগফল নির্ণয় করো।
i) 11001 - 1001
ii) 100101 - 10011
iii) 11000101 - 101101
সমাধানঃ
i) 11001 - 1001
= 11001 + (11111 - 1001) - 111111 [\because a*=11111 - 1001]
= 11001 + 10110 - 11111
= 11001 + (10110 + 1) - 111111 - 1 [\because a**=10110 + 1]
= 11001 + 10111 - 100000
= 110000 - 100000
= 10000
```

```
ii) 100101 - 10011
= 100101 + (1111111 - 10011) - 1111111 [: a*=111111- 10011]
= 100101 + 0101100 - 111111
= 100101 + (0101100+1) - 1111111 - 1 [: a^{**} = 0101100 + 1]
= 100101 + 0101101 - 1000000
= 01010010 - 1000000
= 010010
iii) 11000101 - 101101
= 11000101 + (111111111 - 101101) - 111111111
= 11000101 + 11010010 - 111111111
= 11000101 + (11010010 + 1) - 111111111 - 1
= 11000101 + 11010011 - 100000000
= 110011000 - 100000000
= 10011000
১০। নিচের দশভিত্তিক সংখ্যাগুলোকে বাইনারিতে রূপান্তর করে গুণ করে দেখাও।
i) 18 \times 6
ii) 32 \times 23
iii) 21 \times 7
iv) 59 \times 18
v) 118.2 \times 46
```

সমাধানঃ

i)
$$18 \times 6$$

18 কে বাইনারিতে রুপান্তরঃ

18÷2=9; ভাগশেষ 0

9÷2=4; ভাগশেষ 1

4÷2=2; ভাগশেষ 0

2÷2=1; ভাগশেষ 0

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10010

$$(18)_{10} = (10010)_2$$

6 কে বাইনারিতে রুপান্তরঃ

6÷2=3; ভাগশেষ 0

3÷2=1; ভাগশেষ 1

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 110

$$(6)_{10} = (110)_2$$

এখন, 10010 × 110 নির্ণয়ঃ

10010

(×) 110

00000
10010x

10010xx

1101100
$$\therefore$$
 (18)₁₀ × (6)₁₀ = (1101100)₂

32 কে বাইনারিতে রুপান্তরঃ

32÷2=16; ভাগশেষ 0

16÷2=8; ভাগশেষ 0

8÷2=4; ভাগশেষ 0

4÷2=2; ভাগশেষ 0

2÷2=1; ভাগশেষ 0

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 100000

$$(32)_{10} = (100000)_2$$

23 কে বাইনারিতে রুপান্তরঃ

23÷2=11; ভাগশেষ 1

11÷2=5; ভাগশেষ 1

5÷2=2; ভাগশেষ 1

2÷2=1; ভাগশেষ 0

If it is helpful for you,

Bkash Personal

01916973743

```
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10111
(32)_{10} = (10111)_2
এখন, 100000 × 10111 নির্ণয়ঃ
 100000
(×) 10111
    100000
   100000x
 100000xx
000000xxx
100000xxxx
1011100000
(32)_{10} \times (23)_{10} = (1011100000)_2
iii) 21 \times 7
21 কে বাইনারিতে রুপান্তরঃ
21÷2=10; ভাগশেষ 1
```

10÷2=5; ভাগশেষ 0

5÷2=2; ভাগশেষ 1

2÷2=1; ভাগশেষ 0

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10101

```
(21)_{10} = (10101)_2
```

7 কে বাইনারিতে রুপান্তরঃ

7÷2=3; ভাগশেষ 1

3÷2=1; ভাগশেষ 1

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 111

$$(7)_{10} = (111)_2$$

এখন, 10101 × 111 নির্ণয়ঃ

10101

(×) 111

10101

10101x

10101xx

10010011

 $(21)_{10} \times (7)_{10} = (10010011)_2$

iv) 59×18

59 কে বাইনারিতে রুপান্তরঃ

59÷2=29; ভাগশেষ 1

29÷2=14; ভাগশেষ 1

14÷2=7; ভাগশেষ 0

7÷2=3; ভাগশেষ 1

```
3÷2=1; ভাগশেষ 1
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 111011
(59)_{10} = (111011)_2
18 কে বাইনারিতে রুপান্তরঃ
18÷2=9; ভাগশেষ 0
9÷2=4; ভাগশেষ 1
4÷2=2; ভাগশেষ 0
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10010
(18)_{10} = (10010)_2
এখন, 111011 × 10010 নির্ণয়ঃ
111011
(×) 10010
   000000
  111011x
 000000xx
 000000xxx
111011xxxx
10000100110
(59)_{10} \times (18)_{10} = (10000100110)_2
```

v) 118.2 × 46

118.2 কে বাইনারিতে রুপান্তরঃ

১ম অংশঃ

118÷2=59; ভাগশেষ 0

59÷2=29; ভাগশেষ 1

29÷2=14; ভাগশেষ 1

14÷2=7; ভাগশেষ 0

7÷2=3; ভাগশেষ 1

3÷2=1; ভাগশেষ 1

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1110110

 $(118)_{10} = (1110110)_2$

২য় অংশঃ

0.2×2=0.4; পূর্ণসংখ্যা 0

0.4×2=0.8; পূর্ণসংখ্যা 0

0.8×2=1.6; পূর্ণসংখ্যা 1

0.6×2=1.2; পূর্ণসংখ্যা 1

0.2×2=0.4; পূর্ণসংখ্যা 0

0.4×2=0.8; পূর্ণসংখ্যা 0

0.8×2=1.6; পূর্ণসংখ্যা 1

```
0.6×2=1.2; পূর্ণসংখ্যা 1
উপর থেকে নিচে পূর্ণসংখ্যাগুলো সাজিয়ে পাই: 00110011...
(0.2)_{10} = (00110...)_2
তাহলে,
(118.2)_{10} = (1110110.00110011...)_2
46 কে বাইনারিতে রুপান্তরঃ
46÷2=23; ভাগশেষ 0
23÷2=11; ভাগশেষ 1
11÷2=5; ভাগশেষ 1
5÷2=2; ভাগশেষ 1
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 101110
(46)_{10} = (101110)_2
এখন, 1110110.00110011... × 101110 নির্ণয়ঃ
 1110110.00110011...
(x) 101110
    000000.00000000...
   11101100.0110011...
  111011000.110011...
 1110110001.10011...
```

```
000000000.0000...
111011000110.011...
1010100111101.00110011...
(118.2)_{10} \times (46)_{10} = (1010100111101.00110...)_2
vi) 180.50 \times 65
180.50 কে বাইনারিতে রুপান্তরঃ
১ম অংশঃ
180÷2=90; ভাগশেষ 0
90÷2=45; ভাগশেষ 0
45÷2=22; ভাগশেষ 1
22÷2=11; ভাগশেষ 0
11÷2=5; ভাগশেষ 1
5÷2=2; ভাগশেষ 1
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10110100
(180)_{10} = (10110100)_2
২য় অংশঃ
0.5×2=1.0; পূর্ণসংখ্যা 1
```

```
(0.5)_{10} = (1)_2
তাহলে,
(180.5)_{10} = (10110100.1)_2
65 কে বাইনারিতে রুপান্তরঃ
65÷2=32; ভাগশেষ 1
32÷2=16; ভাগশেষ 0
16÷2=8; ভাগশেষ 0
8÷2=4; ভাগশেষ 0
4÷2=2; ভাগশেষ 0
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1000001
(65)_{10} = (1000001)_2
এখন, 10110100.1 × 1000001 নির্ণয়ঃ
10110100.1
(x) 1000001
      10110100.1
     0.00000000.0
    0.00000000.0
    0.000000000.0
    0.0000000000.0
```

 $(180.5)_{10} \times (65)_{10} = (10110111010100.1)_2$

vii) 192 × 22

192 কে বাইনারিতে রুপান্তরঃ

192÷2=96; ভাগশেষ 0

96÷2=48; ভাগশেষ 0

48÷2=24; ভাগশেষ 0

24÷2=12; ভাগশেষ 0

12÷2=6; ভাগশেষ 0

6÷2=3; ভাগশেষ 0

3÷2=1; ভাগশেষ 1

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 11000000

 $(192)_{10} = (11000000)_2$

22 কে বাইনারিতে রুপান্তরঃ

22÷2=11; ভাগশেষ 0

11÷2=5; ভাগশেষ 1

5÷2=2; ভাগশেষ 1

2÷2=1; ভাগশেষ 0

```
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10110
(22)_{10} = (10110)_2
এখন, 11000000 × 10110 নির্ণয়ঃ
11000000
(x) 10110
   0000000
  11000000x
 11000000xx
00000000xxx
11000000xxxx
1000010000000
(192)_{10} \times (22)_{10} = (1000010000000)_2
viii) 111 × 101
111 কে বাইনারিতে রুপান্তরঃ
111÷2=55; ভাগশেষ 1
55÷2=27; ভাগশেষ 1
27÷2=13; ভাগশেষ 1
13÷2=6; ভাগশেষ 1
6÷2=3; ভাগশেষ 0
```

3÷2=1; ভাগশেষ 1

1÷2=0; ভাগশেষ 1 নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1101111 $(111)_{10} = (1101111)_2$ 101 কে বাইনারিতে রুপান্তরঃ 101÷2=50; ভাগশেষ 1 50÷2=25; ভাগশেষ 0 25÷2=12; ভাগশেষ 1 12÷2=6; ভাগশেষ 0 6÷2=3; ভাগশেষ 0 3÷2=1; ভাগশেষ 1 1÷2=0; ভাগশেষ 1 নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1100101 $(101)_{10} = (1100101)_2$ এখন, 1101111 × 1100101 নির্ণয়ঃ 1101111 (×) 1100101 If it is helpful for you, 1101111 **Bkash Personal** 0000000x 11011111xx 01916973743 0000000xxx donate us please 0000000xxxx

11011111xxxxx

11011111xxxxxx

10101111001011

 $(111)_{10} \times (101)_{10} = (10101111001011)_2$

১১। নিচের দশভিত্তিক সংখ্যাগুলোকে বাইনারিতে রূপান্তর করে ভাগ করে দেখাও।

- i) $16 \div 4$
- ii) $34 \div 17$
- iii) 15 ÷ 3
- iv) 99 ÷ 99
- $v) 157 \div 46$
- vi) $180 \div 69$
- vii) 192 ÷ 22
- viii) 111 ÷ 101

সমাধানঃ

i) $16 \div 4$

16 কে বাইনারতে রুপান্তরঃ

16÷2=8; ভাগশেষ 0

8÷2=4; ভাগশেষ 0

4÷2=2; ভাগশেষ 0

2÷2=1; ভাগশেষ 0

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10000

$$(16)_{10} = (10000)_2$$

4 কে বাইনারতে রুপান্তরঃ

4÷2=2; ভাগশেষ 0

2÷2=1; ভাগশেষ 0

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 100

$$(4)_{10} = (100)_2$$

এখন, (10000)₂ ÷ (100)₂ নির্ণয়ঃ

100)10000(100

100

00

00

0

· নির্ণেয় ভাগফলঃ (100)₂

ii) 34 ÷ 17

34 কে বাইনারতে রুপান্তরঃ

34÷2=17; ভাগশেষ 0

17÷2=8; ভাগশেষ 1

8÷2=4; ভাগশেষ 0

4÷2=2; ভাগশেষ 0

```
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 100010
(34)_{10} = (100010)_2
17 কে বাইনারতে রুপান্তরঃ
17÷2=8; ভাগশেষ 1
8÷2=4; ভাগশেষ 0
4÷2=2; ভাগশেষ 0
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10001
(17)_{10} = (10001)_2
এখন, (100010)<sub>2</sub> ÷ (10001)<sub>2</sub> নির্ণয়ঃ
10001)100010(10
       10001
            0
```

0

· নির্ণেয় ভাগফলঃ (10)₂

iii) 15 ÷ 3

15 কে বাইনারতে রুপান্তরঃ

```
15÷2=7; ভাগশেষ 1
7÷2=3; ভাগশেষ 1
```

3÷2=1; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1111

$$(15)_{10} = (1111)_2$$

3 কে বাইনারতে রুপান্তরঃ

3÷2=1; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 11

$$(3)_{10} = (11)_2$$

এখন, (1111)₂ ÷ (11)₂ নির্ণয়ঃ

11)1111(101

ৢ নির্ণেয় ভাগফলঃ (101)₂

99 কে বাইনারতে রুপান্তরঃ

99÷2=49; ভাগশেষ 1

```
49÷2=24; ভাগশেষ 1
24÷2=12; ভাগশেষ 0
12÷2=6; ভাগশেষ 0
6÷2=3; ভাগশেষ 0
3÷2=1; ভাগশেষ 1
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1100011
(99)_{10} = (1100011)_2
এখন, (1100011)<sub>2</sub> ÷ (1100011)<sub>2</sub> নির্ণয়ঃ
1100011)1100011(1
          1100011
              0
· নির্ণেয় ভাগফলঃ (1)<sub>2</sub>
v) 157 \div 46
157 কে বাইনারতে রুপান্তরঃ
157÷2=78; ভাগশেষ 1
78÷2=39; ভাগশেষ 0
39÷2=19; ভাগশেষ 1
19÷2=9; ভাগশেষ 1
9÷2=4; ভাগশেষ 1
```

4÷2=2; ভাগশেষ 0

```
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10011101
(157)_{10} = (10011101)_2
46 কে বাইনারতে রুপান্তরঃ
46÷2=23; ভাগশেষ 0
23÷2=11; ভাগশেষ 1
11÷2=5; ভাগশেষ 1
5÷2=2; ভাগশেষ 1
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 101110
(46)_{10} = (101110)_2
এখন, (10011101)<sub>2</sub> ÷ (101110)<sub>2</sub> নির্ণয়ঃ
101110)10011101(011.011
        101110
        1000001
         101110
      -----
           1001000
            101110
             110100
             101110
```

.....চলবে

· নির্ণেয় ভাগফলঃ (11.011..)₂

vi) $180 \div 69$

180 কে বাইনারতে রুপান্তরঃ

180÷2=90; ভাগশেষ 0

90÷2=45; ভাগশেষ 0

45÷2=22; ভাগশেষ 1

22÷2=11; ভাগশেষ 0

11÷2=5; ভাগশেষ 1

5÷2=2; ভাগশেষ 1

2÷2=1; ভাগশেষ 0

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10110100

 $(180)_{10} = (10110100)_2$

69 কে বাইনারতে রুপান্তরঃ

69÷2=34; ভাগশেষ 1

34÷2=17; ভাগশেষ 0

17÷2=8; ভাগশেষ 1

8÷2=4; ভাগশেষ 0

4÷2=2; ভাগশেষ 0

2÷2=1; ভাগশেষ 0

If it is helpful for you,

Bkash Personal

01916973743

```
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1000101
(69)_{10} = (1000101)_2
এখন, (10110100)<sub>2</sub> ÷ (1000101)<sub>2</sub> নির্ণয়ঃ
1000101)10110100(10.10011...
         1000101
         1010100
          1000101
           1111000
           1000101
             1100110
             1000101
             .....চলবে
```

vii) 192 ÷ 22

192 কে বাইনারতে রুপান্তরঃ

192÷2=96; ভাগশেষ 0

96÷2=48; ভাগশেষ 0

48÷2=24; ভাগশেষ 0

24÷2=12; ভাগশেষ 0

12÷2=6; ভাগশেষ 0

6÷2=3; ভাগশেষ 0

```
3÷2=1; ভাগশেষ 1
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 11000000
(192)_{10} = (11000000)_2
22 কে বাইনারতে রুপান্তরঃ
22÷2=11; ভাগশেষ 0
11÷2=5; ভাগশেষ 1
5÷2=2; ভাগশেষ 1
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10110
(22)_{10} = (10110)_2
এখন, (11000000)<sub>2</sub> ÷ (10110)<sub>2</sub> নির্ণয়ঃ
10110)11000000(1000.10111...
       10110
         100000
         10110
          101000
           10110
```

.....চলবে

100100

10110

নির্ণেয় ভাগফলঃ (1000.10111...)₂

viii) 111 ÷ 101

111 কে বাইনারতে রুপান্তরঃ

111÷2=55; ভাগশেষ 1

55÷2=27; ভাগশেষ 1

27÷2=13; ভাগশেষ 1

13÷2=6; ভাগশেষ 1

6÷2=3; ভাগশেষ 0

3÷2=1; ভাগশেষ 1

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1101111

 $(111)_{10} = (1101111)_2$

101 কে বাইনারতে রুপান্তরঃ

101÷2=50; ভাগশেষ 1

50÷2=25; ভাগশেষ 0

25÷2=12; ভাগশেষ 1

12÷2=6; ভাগশেষ 0

6÷2=3; ভাগশেষ 0

3÷2=1; ভাগশেষ 1

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1100101

```
    ∵ (101)<sub>10</sub> = (1100101)<sub>2</sub>

    ⊴খন, (1101111)<sub>2</sub> ÷ (1100101)<sub>2</sub> নির্ণয়ঃ

1100101)

    1100101

    -----

    10100000
        1100101

    -----

    1110110
        1100101

    -----

    10001 ........চলবে

    ∵ নির্ণেয় ভাগফলঃ (1.00011...)<sub>2</sub>
```

If it is helpful for you,

Bkash Personal

01916973743