

OC Pizza

PizzaFlow

Dossier d'exploitation

Version 1.0

Auteur Paul-Emmanuel DOS SANTOS FACAO Analyste programmeur

TABLE DES MATIÈRES

1	- Versions	6
2	? - Introduction	7
	2.1 - Objet du document	7
	2.2 - Références	7
3	s - Pré-requis	8
	3.1 - Création d'une paire de clé	8
	3.2 - Système	
	3.2.1 - Serveur de Base de données User	
	3.2.1.1 - Description	
	3.2.1.2 - Caractéristiques techniques	10
	3.2.2 - Serveur de Base de données Stock	11
	3.2.2.1 - Description	11
	3.2.2.2 - Caractéristiques techniques	
	3.2.3 - Serveur de Base de données Gestion	
	3.2.3.1 - Description	
	3.2.3.2 - Caractéristiques techniques	
	3.2.4 - Serveur de configuration	
	3.2.4.1 - Description	
	3.2.4.2 - Caractéristiques techniques	
	3.2.5 - user-api	
	3.2.5.1 - Description	
	3.2.6 - stock-api	
	3.2.6.1 - Description	
	3.2.6.2 - Caractéristiques techniques	
	3.2.7 - web-api	
	3.2.7.1 - Description	
	3.2.7.2 - Caractéristiques techniques	
	3.2.8 - production-api	20
	3.2.8.1 - Description	20
	3.2.8.2 - Caractéristiques techniques	
	3.2.9 - gestion-api	22
	3.2.9.1 - Description	
	3.2.9.2 - Caractéristiques techniques	
	3.2.10 - Serveur de Fichiers	
	3.2.10.1 - Description	
	3.3 - Bases de données	
	3.4 - Les contrôleurs	
	3.5 - Web-services	
	3.6 - Serveur de configuration	
	3.7 - Les fichiers statiques	25

l - Procédure de déploiement	26
4.1 - Configuration de pgAdmin	26
4.2 - Création du schéma de la base User	
4.3 - Insérer les données initiales de la base User	30
4.4 - Création du schéma de la base Stock	31
4.5 - Insérer les données initiales de la base Stock	31
4.6 - Création du schéma de la base Gestion	31
4.7 - Insérer les données initiales de la base Gestion	31
4.8 - Configuration de PuTTY	31
4.9 - Déploiement de config-server	
4.9.1 - Installation de Git	
4.9.2 - Récupéreration de l'exécutable	36
4.9.3 - Variables d'environnement	36
4.9.4 - Lancer le microservice	36
4.9.5 - Vérifications	36
4.10 - Déploiement de user-api	37
4.10.1 - Installation de Git	
4.10.2 - Récupéreration de l'exécutable	
4.10.3 - Variables d'environnement	
4.10.4 - Configuration	
4.10.5 - Lancer le microservice	
4.10.6 - Vérifications	
4.11 - Déploiement de stock-api	
4.11.1 - Installation de Git	
4.11.2 - Récupéreration de l'exécutable	
4.11.3 - Variables d'environnement	
4.11.4 - Configuration	
4.11.5 - Lancer le microservice	
4.11.6 - Vérifications	
4.12 - Déploiement des fichiers statiques	
4.12.1 - Installation de Git	
4.12.2 - Récupération des fichiers	
4.13 - Déploiement de web-api	
4.13.2 - Récupéreration de l'exécutable	
4.13.3 - Variables d'environnement	
4.13.4 - Configuration	
4.13.5 - Lancer le microservice	
4.13.6 - Vérifications	
4.14 - Déploiement de production-api	
4.14.1 - Installation de Git	
4.14.2 - Récupéreration de l'exécutable	
4.14.3 - Variables d'environnement	
4.14.4 - Configuration	

4.14.5 - Lancer le microservice	47
4.14.6 - Vérifications	48
4.15 - Déploiement de gestion-api	
4.15.1 - Installation de Git	
4.15.2 - Récupéreration de l'exécutable	
4.15.3 - Variables d'environnement	
4.15.4 - Configuration	
4.15.5 - Lancer le microservice	
4.15.6 - Vérifications	51
5 - Procédure de démarrage / arrêt	52
5.1 - Base de données User	
5.1.1 - Préalable	52
5.1.2 - Démarrage	53
5.1.3 - Arrêt	
5.2 - Base de données Stock	54
5.3 - Base de données Gestion	54
5.4 - Config-server	54
5.4.1 - Préalable	54
5.4.2 - Démarrage	54
5.4.3 - Arrêt	55
5.5 - user-api	55
5.5.1 - Préalable	55
5.5.2 - Démarrage	55
5.5.3 - Arrêt	55
5.6 - stock-api	55
5.6.1 - Préalable	55
5.6.2 - Démarrage	56
5.6.3 - Arrêt	56
5.7 - web-api	56
5.7.1 - Préalable	56
5.7.2 - Démarrage	56
5.7.3 - Arrêt	56
5.8 - production-api	56
5.8.1 - Préalable	56
5.8.2 - Démarrage	57
5.8.3 - Arrêt	57
5.9 - gestion-api	57
5.9.1 - Préalable	57
5.9.2 - Démarrage	57
5.9.3 - Arrêt	57
6 - Procédure de mise à jour	58
6.1 - Base de données User	58
6.1.1 - Préalable	58
6.1.2 - Mise à jour	58

6. 1.3 - FINAIISATION	58
6.2 - Base de données Stock	58
6.2.1 - Préalable	58
6.2.2 - Mise à jour	59
6.2.3 - Finalisation	59
6.3 - Base de données Gestion	59
6.3.1 - Préalable	59
6.3.2 - Mise à jour	59
6.3.3 - Finalisation	60
6.4 - Microservice web-api	60
6.4.1 - Préalable	60
6.4.2 - Mise à jour	60
6.4.3 - Finalisation	
6.5 - Microservice production-api	60
6.5.1 - Préalable	60
6.5.2 - Mise à jour	61
6.5.3 - Finalisation	
6.6 - Microservicegestion-api	
6.6.1 - Préalable	
6.6.2 - Mise à jour	
6.6.3 - Finalisation	
6.7 - Serveur de configuration	
6.7.1 - Préalable	
6.7.2 - Mise à jour	
6.7.3 - Finalisation	
7 - Supervision/Monitoring	
7.1 - Supervision de l'application web	
8 - Procédure de sauvegarde et restauration	67
8.1 - Base de données	
8.1.1 - Sauvegarde d'une base de données	
8.1.2 - Restauration d'une base de données	
8.2 - Microservices	
8.2.1 - Sauvegarde ancienne configuration	70
8.2.2 - Restauration ancienne configuration	70
9 - Glossaire	71

1 - VERSIONS

Auteur	Date	Description	Version
PEDSF	09/05/2020	Création du document	1.0

2 - Introduction

2.1 - Objet du document

Le présent document constitue le dossier d'exploitation de l'application **PizzaFlow** à l'attention des mainteneurs et de l'équipe technique du client.

Les éléments du présent dossier découlent :

- 1. Des besoins exprimés par le client **OC Pizza** lors du premier contact,
- 2. De l'analyse des besoins de OC Pizza,
- 3. De la rédaction du dossier de conception fonctionnelle.
- 4. De la rédaction du dossier de conception technique.

2.2 - Références

Pour de plus amples informations, se référer également aux éléments suivants :

- DCT PDOCPizza_01_fonctionnelle : Dossier de conception fonctionnelle de l'application.
- **DCT PDOCPizza_02_technique** : Dossier de conception technique de l'application.

3 - Pré-requis

3.1 - Création d'une paire de clé

Après création d'un compte sur AWS, on doit générer une paire de clés qui servira d'authentification pour accéder aux **VM**. Lors de la création des instances RDS et EC2, on spécifiera l'utilisation de cette clé. Dans la console de gestion des instances sur **AWS** et on sélectionne dans le menu de gauche "RESEAU ET SECURITE" le sous-menu "Paires de Clés" et on sélectionne créer une paire de clés. Le menu de création de paire de clé apparait.

Rentrer le nom de la paire de clé et sélectionnez un format de fichier "ppk" pour l'utiliser avec **PuTTY**. Après validation sur la touche "Créer une paire de clés", la paire de clés générée apparait dans l'écran des paires de clés.

Le fichier PPK contenant la paire de clé générée est téléchargé via le navigateur. Copier le fichier sur votre ordinateur dans un endroit sécurisé.

3.2 - Système

3.2.1 - Serveur de Base de données User

3.2.1.1 - Description

On utilise une instance **Amazon RDS** (**Relational Database Service**) for **PostgreSQL** avec une réservation d'une année pour réduire le coût et permettre de modifier en fonction de l'utilisation du site web le type de l'instance. On sélectionne l'option **Multi-AZ** pour avoir une seconde instance en standby synchronisée avec la première par sécurité au cas où un problème advienne sur la base de données master.

La base de données stockant uniquement les données des utilisateurs, elle n'a pas besoin d'une grande quantité de stockage. En outre, elle reçoie la majorité des requêtes sont lors de la connexion et sont seulement en lecture donc on n'a pas besoin de puissance de calcul.

3.2.1.2 - Caractéristiques techniques

Storage Informations Enter the amount of storage you'd like for each instance.					
Storage volume General Purpose SSD (gp2) Storage amount		,			
▼ Show calculations					
5 GB per month x 0.266 USD x 1 instances = 1.33 USD (EBS Storage Cost)					
Storage pricing (monthly): 1.33 USD					

3.2.2 - Serveur de Base de données Stock

3.2.2.1 - Description

On utilise une instance **Amazon RDS** for **PostgreSQL** avec une réservation d'une année pour réduire le coût et permettre de modifier en fonction de l'utilisation du site web le type de l'instance. On sélectionne l'option **Multi-AZ** pour avoir une seconde instance en standby synchronisée avec la première par sécurité au cas où un problème advienne sur la base de données master.

La base de données stocke les informations des stocks, des paniers et des commandes. Elle a besoin de puissance de calcul et d'une réserve de stockage.

3.2.2.2 - Caractéristiques techniques

PostgreSQL instance specifications Informations

 Standard (Single-AZ)
 Single-AZ deployment, Amazon RDS provisions a database in one Availability Zone. Multi-AZ

Multi-AZ deployment, Amazon RDS provisions and maintains a synchronous standby replica in a different Availability Zone.

Instance type

Q db.m5.2xlarge

×

db.m5.2xlarge

On-Demand hourly cost

Reserved hourly cost (1YR, No upfront)

vCPUs

1.648 USD

1.1421 USD

8

Memory

32 GiB

Storage Informations

Enter the amount of storage you'd like for each instance.

Storage volume

General Purpose SSD (gp2)

▼ |

Storage amount

30

GB per month

•

▼ Show calculations

30 GB per month x 0.266 USD x 1 instances = 7.98 USD (EBS Storage Cost)

Storage pricing (monthly): 7.98 USD

IT C. & D. www.itcd.com

IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE : 6202A

3.2.3 - Serveur de Base de données Gestion

3.2.3.1 - Description

On utilise une instance **Amazon RDS** for **PostgreSQL** avec une réservation d'une année pour réduire le coût et permettre de modifier en fonction de l'utilisation du site web le type de l'instance. On sélectionne l'option **Multi-AZ** pour avoir une seconde instance en standby synchronisée avec la première par sécurité au cas où un problème advienne sur la base de données master.

La base de données stocke les données des ventes pour la gestion. Elle est utilisée par les Managers et la Direction donc elle a simplement besoin d'un espace de stockage conséquent sans puissance de calcul.

3.2.3.2 - Caractéristiques techniques

Storage Informations					
Enter the amount of storage you'd like for each instance.					
Storage volume					
General Purpose SSD (gp2) ▼					
Storage amount					
30	GB per month ▼				
▼ Show calculations					
30 GB per month x 0.266 USD x 1 instances = 7.98 USD (EBS Storage Cost)					
Storage pricing (monthly): 7.98 USD					

3.2.4 - Serveur de configuration

3.2.4.1 - Description

Il sert juste à distribuer les configurations et ne nécessite pas de puissance de calcul. On prendra la plus petite des instances **Amazon EC2** (**Elastic Cloud Compute**).

3.2.4.2 - Caractéristiques techniques

Paramètre Informations								
Système d'exploitation Choisissez le système d'exploitation avec lequel vous souhaitez exécuter les instances Amazon EC2. Linux								
Type d'instance Effectuez une recherche sur le nom ou saisissez la condition de recherche de l'instance la moins chère qui répond à vos besoins. Saisir des exigences minimales pour chaque instance: Rechercher des instances en fonction du nom:								
vCPU	•	1		Remove				
Mémoire (Gio)	•	1		Remove				
Add requirement D'après vos entrées, voici l'instance EC2 la moins coûteuse :								
t3a.micro								
Coût horaire à la demande 0.0106	vCPU 2		GPU NA					
Coût horaire standard réservé sur 1 an 0.0067	Mémoire (Gio) 1 GiB		Performances du résea Low to Moderate	u				

Le stockage sera partagé par toutes les instances Amazon EC2 pour mutualiser les ressources. On utilise 20Go de stockage avec 3 pics de 5Go modifié par jour vers les heures d'affluence et pour les transferts de données journaliers pour la maintenance en heure creuse.

Amazon Elastic Block Storage (EBS) Informations

Joindre des volumes de stockage de blocs persistants pour vos instances Amazon EC2

3.2.5 - user-api

3.2.5.1 - Description

On prendra une petite instance avec 2 cœurs **Amazon EC2** scalable à 2 pendant 5h tous les jours.

3.2.5.2 - Caractéristiques techniques

Workload Informations

Sélectionnez le graphique qui représente le mieux votre charge de travail mensuelle.

3.2.6 - stock-api

3.2.6.1 - Description

On prendra une instance avec 2 cœurs **Amazon EC2** scalable à 3 pendant 5h tous les jours.

3.2.6.2 - Caractéristiques techniques

EC2 Instances (131) Selected Instance: t3.micro						
Q Search by instance name or filter by keyword						
2 ▼ 1 GiB ▼	Any Network Perf ▼					
Workload Informations						
Sélectionnez le graphique qui représente le mieux votre c	harge de travail mensuelle.					
Outilisation constante Pic de trafic quotidien MMM	Pic de trafic hebdomadaire Pic de trafic mensuel					
▼ Modèle de pic quotidien	Supprimer le modèle					
Workload days Select days for your workload pattern. ✓ Dimanche ✓ Lundi ✓ Mardi ✓ Mercredi ✓ Jeudi ✓ Vendredi ✓ Samedi Baseline Saisissez le nombre minimum d'instances dont vous avez besoin comme quantité pour votre charge de travail.						
1						
Peak Saisissez le nombre maximal d'instances dont vous avez besoin au plus fort de votre charge de travail.						
3	\$					
Durée du pic (heures, minutes) Saisissez le nombre d'heures et de minutes pendant lesquelles le n						
5	0					

3.2.7 - web-api

3.2.7.1 - Description

On prendra une instance avec 4 cœurs **Amazon EC2** scalable à 3 pendant 5h tous les jours. On prend plus de puissance de calcul pour les microservices frontend.

3.2.7.2 - Caractéristiques techniques

Workload Informations

Sélectionnez le graphique qui représente le mieux votre charge de travail mensuelle.

3.2.8 - production-api

3.2.8.1 - Description

On prendra une instance avec 2 cœurs **Amazon EC2** scalable à 2 pendant 5h tous les jours. On prend plus de puissance de calcul pour les microservices frontend.

3.2.8.2 - Caractéristiques techniques

3.2.9 - gestion-api

3.2.9.1 - Description

On prendra une instance avec 4 cœurs **Amazon EC2** sans load-balancing. On prend plus de puissance de calcul pour les microservices frontend de gestion.

3.2.9.2 - Caractéristiques techniques

EC2 Instances (108) Selected Instance: c5.xlarge						
Q Search by instance name or filter by keyword						
4	▼	2 GiB	•	Any Network Perf ▼		

3.2.10 - Serveur de Fichiers

3.2.10.1 - Description

On utilise une instance **Amazon S3** (**Simple Storage Service**) pour stocker les fichiers statics des microservices frontend. On table sur 2 millions de transactions par mois et 20Go de données transférées.

▼ S3 Standard Informations					
Les calculs ci-dessous excluent les remises de l'offre gratuite.					
Stockage standard S3					
20	Go per mois ▼				
Demandes PUT, COPY, POST, LIST envoyées à S3 Standard					
1000000					
GET, SELECT et toutes les autres requêtes provenant de S3 Standard					
1000000	\$				
Données renvoyées par S3 Select					
20	Go per mois ▼				

...

3.3 - Bases de données

Les bases de données et schémas suivants doivent être accessibles et à jour dans le repository sur GitHub :

https://github.com/pizzaflow.git

BD	Schéma	Initial datas	Version
user	/db/schema/pizzaflow.user.init.sql	/db/data/pizzaflow.user.data.sql	1.0
stock	/db/schema/pizzaflow.stock. init.sql	/db/data/pizzaflow.stock.data.sql	1.0
gestion	/db/schema/pizzaflow.gestion. init.sql	/db/data/pizzaflow.gestion.data.sql	1.0

3.4 - Les contrôleurs

Les contrôleurs suivants doivent être accessibles et à jour dans le repository sur GitHub :

IT C. & D.IT Consulting & Development +33 1.23.45.67.89 - consulting@itcd.comwww.itcd.comS.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx - SIREN 999 999 999 - Code APE : 6202A

https://github.com/pizzaflow.git

Microservice	Fichier .jar	Version
user-api	/user-api/prod/1.0/user-api.jar	1.0
stock-api	/stock-api/prod/1.0/stock-api.jar	1.0
gestion-api	/ gestion-api/prod/1.0/ gestion-api.jar	1.0

3.5 - Web-services

Les web services suivants doivent être accessibles et à jour dans le repository sur GitHub :

https://github.com/pizzaflow.git

Microservice	Fichier .jar Version		
web-api	/ web -api/prod/1.0/ web-api.jar	1.0	
production-api	/ production-api/prod/1.0/ production-api.jar	1.0	
gestion-api	/ gestion-api/prod/1.0/ gestion-api.jar	1.0	

3.6 - Serveur de configuration

Le serveur config-server et les fichiers de configurations doivent être accessibles et à jour dans le repository sur GitHub :

https://github.com/pizzaflow.git

Composant	Path	Version
fichier JAR	/config-server/prod/1.0/config-server.jar	1.0
fichiers properties	/properties/prod/1.0/	1.0

3.7 - Les fichiers statiques

Les fichiers statiques pour les applications web doivent être accessibles et à jour dans le repository sur GitHub :

https://github.com/pizzaflow.git

Répertoire	Path	Version		
images	/resources/static/images/	1.0		
templates	/resources/templates/ 1.0			
locales	/resources/locale/	1.0		
css	/resources/static/css/	1.0		
js	/resources/static/js/	1.0		

4 - Procédure de déploiement

4.1 - Configuration de pgAdmin

Pour accéder aux bases de données on doit installer **pgAdmin 4** (**PostgreSQL Admin**). Le lien pour installer le logiciel sur son ordinateur est :

https://www.pgadmin.org/download/

Une fois le logiciel installé, il faut configurer la connexion.

Il faut créer un groupe de serveur pour classer les connexions aux bases de données dans le menu :

Objet/Créer/Groupe de serveur

Sélectionner le groupe de serveur créé.

Cliquer sur le menu:

Objet/Créer/Serveur

Indiquer le "Nom" de la connexion et une description dans la partie "Commentaires".

Sélectionner l'onglet "Connexion" pour renseigner les informations de connexion à la base de données. Entrer le "Nom d'hôte/Adresse" de la base de données, le "Nom utilisateur" et son "Mot de passe" en fonction des indications données lors de la création de la base de données et enregistrer.

Il faut créer une connexion pour chaque base de données.

4.2 - Création du schéma de la base User

Récupérer le schéma de la base de données **User** sur le repository **Git**.

https://github.com/pizzaflow/db/schema/pizzaflow.user.init.sql

Dans **pgAdmin** il faut sélectionner la base de données **User** et le menu **Outils/Editeur de requêtes**.

IT C. & D.

Www.itcd.com

IT Consulting & Development +33 1.23.45.67.89 - consulting@itcd.com

S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx - SIREN 999 999 999 - Code APE :
6202A

La fenêtre de l'éditeur s'ouvre dans la partie gauche de l'écran.

Cliquer sur l'icône "Ouvir fichier" en haut à gauche de la fenêtre de requêtes.

Sélectionner le fichier **pizzaflow.user.init.sql** et valider.

Dans la fenêtre des requêtes cliquer sur l'icône exécuter.

4.3 - Insérer les données initiales de la base User

Récupérer les données initiales de la base de données User sur le repository Git.

IT C. & D. www.itcd.com

IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE : 6202A

https://github.com/pizzaflow/db/schema/pizzaflow.user.data.sql

Faire la même opération avec le fichier **pizzaflow.user.data.sql** pour insérer les données dans la base.

4.4 - Création du schéma de la base Stock

Récupérer le schéma de la base de données **Stock** sur le repository **Git** et effectuer les mêmes opérations que la base **User**.

https://github.com/pizzaflow/db/schema/pizzaflow.stock.init.sql

4.5 - Insérer les données initiales de la base Stock

Récupérer les données initiales de la base de données **Stock** sur le repository **Git** et effectuer les mêmes opérations que la base **User**.

https://github.com/pizzaflow/db/schema/pizzaflow.stock.data.sql

4.6 - Création du schéma de la base Gestion

Récupérer le schéma de la base de données **Gestion** sur le repository **Git** et effectuer les mêmes opérations que la base **User**.

https://github.com/pizzaflow/db/schema/pizzaflow.gestion.init.sql

4.7 - Insérer les données initiales de la base Gestion

Récupérer les données initiales de la base de données **Gestion** sur le repository **Git** et effectuer les mêmes opérations que la base **User**.

https://github.com/pizzaflow/db/schema/pizzaflow.gestion.data.sql

4.8 - Configuration de PuTTY

On doit créer une configuration pour chaque connexion. Pour avoir les informations nécessaires on se connecte sur la console de gestion des instances sur AWS et on sélectionne dans le menu de gauche "INSTANCES" le sous-menu "Instances".

On sélectionne l'instance voulue puis on clique sur "Se connecter".

Connectez-vous à votre instance

X

Méthode de connexion

- Un client SSH autonome (i)
- O Session Manager (i)
- O Connexion d'instance EC2 (connexion SSH basée sur un navigateur) (i)

Pour accéder à votre instance :

- 1. Ouvrez un client SSH. (découvrir comment se connecter en utilisant PuTTY)
- Recherchez votre fichier de clé privée (pizzaflow-key-pair-paris.pem). L'assistant détecte automatiquement la clé que vous avez utilisée pour lancer l'instance.
- 3. Votre clé ne doit pas être visible publiquement pour que SSH fonctionne. Utilisez cette commande, si nécessaire :

chmod 400 pizzaflow-key-pair-paris.pem

4. Connectez votre instance à l'aide de son DNS public :

ec2-15-236-51-101.eu-west-3.compute.amazonaws.com

Exemple:

ssh -i "pizzaflow-key-pair-paris.pem" ec2-user@ec2-15-236-51-101.eu-west-3.compute.amazonaws.com

Veuillez noter que, dans la plupart des cas, le nom d'utilisateur ci-dessus sera correct. Veillez cependant à lire les instructions d'utilisation de votre AMI afin de vous assurer que le propriétaire de l'AMI n'a pas changé le nom d'utilisateur par défaut de l'AMI.

Si vous avez besoin d'aide pour vous connecter à votre instance, veuillez consulter notre documentation de connexion.

Fermer

- Copier le DNS public de l'instance et lancer PuTTY.
- Coller le nom du DNS dans la partie host name.
- Renseigner le "Port" 22.
- Sélectionner "SSH" dans le type de connexion.
- Renseigner le nom de sauvegarde de la connexion en spécifiant le nom du microservice.

- Dans le volet "Catégory", entrer dans le sous-menu "Connexion/SSH/Auth".
- Choisir "Parcourir" et sélectionner le fichier de paire de clé **PPK**.

- Revenir sur le sous-menu "Session" et cliquer sur "Save" pour enregistrer les modifications.
- Cliquer sur "Open" pour ouvrir une session sur la machine distante.

4.9 - Déploiement de config-server

On se connecte à la VM du edge microservice avec PuTTY.

4.9.1 - Installation de Git

Installer l'outil de versioning Git pour récupérer les fichiers avec les commandes suivante :

sudo yum update -y sudo yum install git -y

4.9.2 - Récupéreration de l'exécutable

Se placer dans le répertoire /srv de l'instance.

cd /srv

Récupérer le JAR du microservice qui est dans un repository de GitHub avec la commande :

sudo git clone https://raw.githubusercontent.com/pizzaflow/master/config-server

4.9.3 - Variables d'environnement

On doit spécifier les variables d'environnement pour les microservices afin qu'ils puissent récupérer leur configuration. On définit une variable d'environnement avec la commande :

export NOM_VARIABLE=Valeur

Ou peut renseigner ces valeurs dans le script **start.sh**.

Nom	Obligatoire	Description
JASYPT_SECRET	oui	Clé pour de cryptage des données sensibles des fichiers de propriétés.
PROPERTIES_PATH	oui	Chemin du repository contenant les fichiers de propriétés

4.9.4 - Lancer le microservice

Un script de commande fourni permet de lancer le microservice en tâche de fond après avoir défini les variables d'environnement et déployer les fichiers statiques. Se placer dans le répertoire du microservice, rendre exécutable les scripts et exécuter le script de démarrage.

cd /srv/config-server
sudo chmod g+x u+x *.sh
sudo ./start.sh

4.9.5 - Vérifications

Exécuter la commande suivante pour vérifier que le microservice fonctionne en tâche de fond.

ps -ef | grep config-server

IT C. & D.	IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com
www.itcd.com	S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE :
	6202A

4.10 - Déploiement de user-api

On se connecte à la VM du microservice avec PuTTY.

4.10.1 - Installation de Git

Installer l'outil de versioning Git pour récupérer les fichiers avec les commandes suivante :

sudo yum update -y sudo yum install git -y

4.10.2 - Récupéreration de l'exécutable

Se placer dans le répertoire /srv de l'instance.

cd /srv

Récupérer le JAR du microservice qui est dans un repository de GitHub avec la commande :

sudo git clone https://raw.githubusercontent.com/pizzaflow/master/user-api

4.10.3 - Variables d'environnement

On doit spécifier les variables d'environnement pour les microservices afin qu'ils puissent récupérer leur configuration. On définit une variable d'environnement avec la commande :

export NOM_VARIABLE=Valeur

Ou peut renseigner ces valeurs dans le script **start.sh**.

Nom	Obligatoire	Description
JASYPT_SECRE	T oui	Clé pour de cryptage des données sensibles des fichiers de propriétés.
CONFIG_IP	oui	Addresse IP du serveur de configuration
USER_DB_USERNA	ME oui	Identifiant de connexion à la base de données User
USER_DB_PASSWO	DRD oui	Mot de passe correspondant
IT C. & D.	IT Consulting & Deve	elopment +33 1.23.45.67.89 – consulting@itcd.com

TC. & D. IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com

www.itcd.com

S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE :
6202A

4.10.4 - Configuration

Le fichier de configuration **user-api-prod.properties** comme les fichiers de configuration de tous les microservices sont dans le repository **git** suivant :

https://github.com/pizzaflow/properties.git

Lors du démarrage, le microservice le demande au serveur de configuration qui va le chercher et le transmet.

```
## port par défaut pour la première instance de user-api
## utiliser la gamme des ports 4XXX pour les duplications d'instances
server.port=4000
## Propriétés générales de l'application PizzaFlow
pizzaflow.nomPropriété=Valeur
## Propriétés particulières du microservice user-api
pizzaflow.user.nomPropriété=Valeur
## configuration du pool de connexion par défaut
spring.datasource.hikari.connectionTimeout=20000
spring.datasource.hikari.maximumPoolSize=5
## configuration de PostgreSQL remplacer localhost par la vrai adresse IP
spring.datasource.url=jdbc:postgresql://localhost:5432/user
spring.datasource.driverClassName=org.postgresql.Driver
## identifiants temporaire de connexion à changer et crypter avec Jasypt pour
la production
spring.datasource.username=${USER_DB_USERNAME}
spring.datasource.password=${USER_DB_PASSWORD}
```



```
# DANGER!! mettre à create pour refaire le schéma
spring.jpa.hibernate.ddl-auto=update

## Properties pour les logs
logging.level.org.springframework.web=ERROR
logging.level.com.pizzaflow=DEBUG

## le pattern pour la console
logging.pattern.console= "%d{yyyy-MM-dd HH:mm:ss} - %msg%n"

## le pattern pour le nom du fichier
logging.pattern.file= "%d{yyyy-MM-dd HH:mm:ss}[%thread]%-5level %logger{36}
- %msg%n"

## le nom du fichier de log
logging.file=/var/log/pizzaflow/user-api.log
```

4.10.5 - Lancer le microservice

Un script de commande fourni permet de lancer le microservice en tâche de fond après avoir défini les variables d'environnement et déployer les fichiers statiques. Se placer dans le répertoire du microservice, rendre exécutable les scripts et exécuter le script de démarrage.

cd /srv/user-api
sudo chmod g+x u+x *.sh
sudo ./start.sh

4.10.6 - Vérifications

Exécuter la commande suivante pour vérifier que le microservice fonctionne en tâche de fond.

ps -ef | grep user-api

4.11 - Déploiement de stock-api

On se connecte à la VM du microservice avec PuTTY.

4.11.1 - Installation de Git

Installer l'outil de versioning Git pour récupérer les fichiers avec les commandes suivante :

sudo yum update -y sudo yum install git -y

4.11.2 - Récupéreration de l'exécutable

Se placer dans le répertoire /srv de l'instance.

cd /srv

Récupérer le JAR du microservice qui est dans un repository de GitHub avec la commande :

sudo git clone https://raw.githubusercontent.com/pizzaflow/master/stock-api

4.11.3 - Variables d'environnement

On doit spécifier les variables d'environnement pour les microservices afin qu'ils puissent récupérer leur configuration. On définit une variable d'environnement avec la commande :

export NOM_VARIABLE=Valeur

Ou peut renseigner ces valeurs dans le script start.sh.

Nom Obligatoire Description		Description
JASYPT_SECRET	JASYPT_SECRET oui Clé pour de cryptage des c de propriétés.	
CONFIG_IP	oui	Addresse IP du serveur de configuration
STOCK_DB_USERNAME	oui	Identifiant de connexion à la base de données Stock
STOCK_DB_PASSWORD	oui	Mot de passe correspondant

IT C. & D.	Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com
vvvv.icca.com	A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE : 02A

4.11.4 - Configuration

Le fichier de configuration **stock-api-prod.properties** comme les fichiers de configuration de tous les microservices sont dans le repository **git** suivant :

https://github.com/pizzaflow/properties.git

Lors du démarrage, le microservice le demande au serveur de configuration qui va le chercher et le transmet.

```
## port par défaut pour la première instance de stock-api
## utiliser la gamme des ports 5XXX pour les duplications d'instances
server.port=5000
## Propriétés générales de l'application PizzaFlow
pizzaflow.nomPropriété=Valeur
## Propriétés particulières du microservice stock-api
pizzaflow.stock.nomPropriété=Valeur
## configuration du pool de connexion par défaut
spring.datasource.hikari.connectionTimeout=20000
spring.datasource.hikari.maximumPoolSize=5
## configuration de PostgreSQL remplacer localhost par la vrai adresse IP
spring.datasource.url=jdbc:postgresql://localhost:5432/stock
spring.datasource.driverClassName=org.postgresql.Driver
## identifiants temporaire de connexion à changer et crypter avec Jasypt pour
la production
spring.datasource.username=${STOCK DB USERNAME}
spring.datasource.password=${STOCK_DB_PASSWORD}
# DANGER!! mettre à create pour refaire le schéma
spring.jpa.hibernate.ddl-auto=update
```



```
## Properties pour les logs
logging.level.org.springframework.web=ERROR
logging.level.com.pizzaflow=DEBUG

## le pattern pour la console
logging.pattern.console= "%d{yyyy-MM-dd HH:mm:ss} - %msg%n"

## le pattern pour le nom du fichier
logging.pattern.file= "%d{yyyy-MM-dd HH:mm:ss}[%thread]%-5level %logger{36}- %msg%n"

## le nom du fichier de log
logging.file=/var/log/pizzaflow/stock-api.log
```

4.11.5 - Lancer le microservice

Un script de commande fourni permet de lancer le microservice en tâche de fond après avoir défini les variables d'environnement et déployer les fichiers statiques. Se placer dans le répertoire du microservice, rendre exécutable les scripts et exécuter le script de démarrage.

cd /srv/stock-api
sudo chmod g+x u+x *.sh
sudo ./start.sh

4.11.6 - Vérifications

Exécuter la commande suivante pour vérifier que le microservice fonctionne en tâche de fond.

ps -ef | grep stock-api

4.12 - Déploiement des fichiers statiques

Se connecter au bucket S3 avec PuTTY pour faire l'installation.

IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com
www.itcd.com

S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE :
6202A

4.12.1 - Installation de Git

Installer l'outil de versioning Git pour récupérer les fichiers avec les commandes suivante :

sudo yum update -y sudo yum install git -y

4.12.2 - Récupération des fichiers

Se placer à la racine est faire un **git clone**.

cd/

sudo git clone https://github.com/pizzaflow/resources.git

4.13 - Déploiement de web-api

On se connecte à la VM du microservice avec PuTTY.

4.13.1 - Installation de Git

Installer l'outil de versioning Git pour récupérer les fichiers avec les commandes suivante :

sudo yum update -y sudo yum install git -y

4.13.2 - Récupéreration de l'exécutable

Se placer dans le répertoire /srv de l'instance.

cd /srv

Récupérer le JAR du microservice qui est dans un repository de GitHub avec la commande :

sudo git clone https://raw.githubusercontent.com/pizzaflow/master/web-api

4.13.3 - Variables d'environnement

On doit spécifier les variables d'environnement pour les microservices afin qu'ils puissent récupérer leur configuration. On définit une variable d'environnement avec la commande :

export NOM_VARIABLE=Valeur

Ou peut renseigner ces valeurs dans le script start.sh.

Nom	Obligatoire	Description	
JASYPT_SECRET	oui	oui Clé pour de cryptage des données sensibles des fichie de propriétés.	
CONFIG_IP	oui	Addresse IP du serveur de configuration	
USER_API_IP	oui	Addresse IP de user-api	
STOCK_API_IP	oui	Addresse IP de stock-api	
RESOURCES_PATH	oui	Chemin vers le bucket des ressources	

4.13.4 - Configuration

Le fichier de configuration **web-api-prod.properties** comme les fichiers de configuration de tous les microservices sont dans le repository **git** suivant :

https://github.com/pizzaflow/properties.git

Lors du démarrage, le microservice le demande au serveur de configuration qui va le chercher et le transmet.

```
## port par défaut pour la première instance de web-api
## utiliser la gamme des ports 7XXX pour les duplications d'instances
server.port=7000

## Propriétés générales de l'application PizzaFlow
pizzaflow.nomPropriété=Valeur

## Propriétés particulières du microservice web-api
pizzaflow.web.nomPropriété=Valeur
```

IT C. & D.	IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com
www.itcd.com	S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE : 6202A


```
## Properties pour les logs
logging.level.org.springframework.web=ERROR
logging.level.com.pizzaflow=DEBUG

## le pattern pour la console
logging.pattern.console= "%d{yyyy-MM-dd HH:mm:ss} - %msg%n"

## le pattern pour le nom du fichier
logging.pattern.file= "%d{yyyy-MM-dd HH:mm:ss}[%thread]%-5level %logger{36}- %msg%n"

## le nom du fichier de log
logging.file=/var/log/pizzaflow/web-api.log
```

4.13.5 - Lancer le microservice

Un script de commande fourni permet de lancer le microservice en tâche de fond après avoir défini les variables d'environnement et déployer les fichiers statiques. Se placer dans le répertoire du microservice, rendre exécutable les scripts et exécuter le script de démarrage.

cd /srv/web-api
sudo chmod g+x u+x *.sh
sudo ./start.sh

4.13.6 - Vérifications

Exécuter la commande suivante pour vérifier que le microservice fonctionne en tâche de fond.

ps -ef | grep web-api

4.14 - Déploiement de production-api

On se connecte à la VM du microservice avec PuTTY.

4.14.1 - Installation de Git

Installer l'outil de versioning Git pour récupérer les fichiers avec les commandes suivante :

sudo yum update -y sudo yum install git -y

4.14.2 - Récupéreration de l'exécutable

Se placer dans le répertoire /srv de l'instance.

cd /srv

Récupérer le JAR du microservice qui est dans un repository de GitHub avec la commande :

sudo git clone https://raw.githubusercontent.com/pizzaflow/master/production-api

4.14.3 - Variables d'environnement

On doit spécifier les variables d'environnement pour les microservices afin qu'ils puissent récupérer leur configuration. On définit une variable d'environnement avec la commande :

export NOM_VARIABLE=Valeur

Ou peut renseigner ces valeurs dans le script **start.sh**.

Nom	Obligatoire	Description	
JASYPT_SECRET	oui	Clé pour de cryptage des données sensibles des fichiers de propriétés.	
CONFIG_IP	oui	Addresse IP du serveur de configuration	
USER_API_IP	oui	Addresse IP de user-api	
STOCK_API_IP	oui	Addresse IP de stock-api	
WEB_API_IP	oui	Addresse IP de web-api	
RESOURCES_PATH	oui	Chemin vers le bucket des ressources	

4.14.4 - Configuration

Le fichier de configuration **production-api-prod.properties** comme les fichiers de configuration de tous les microservices sont dans le repository **git** suivant :

IT C. & D.	IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com
www.itcd.com	S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE :
	6202A

https://github.com/pizzaflow/properties.git

Lors du démarrage, le microservice le demande au serveur de configuration qui va le chercher et le transmet.

```
## port par défaut pour la première instance de production-api
## utiliser la gamme des ports 8XXX pour les duplications d'instances
server.port=8000
## Propriétés générales de l'application PizzaFlow
pizzaflow.nomPropriété=Valeur
## Propriétés particulières du microservice production-api
pizzaflow.production.nomPropriété=Valeur
## Properties pour les logs
logging.level.org.springframework.web=ERROR
logging.level.com.pizzaflow=DEBUG
## le pattern pour la console
logging.pattern.console= "%d{yyyy-MM-dd HH:mm:ss} - %msg%n"
## le pattern pour le nom du fichier
logging.pattern.file= "%d{yyyy-MM-dd HH:mm:ss}[%thread]%-5level %logger{36}
- %msg%n"
## le nom du fichier de log
logging.file=/var/log/pizzaflow/production-api.log
```

4.14.5 - Lancer le microservice

Un script de commande fourni permet de lancer le microservice en tâche de fond après avoir défini les variables d'environnement et déployer les fichiers statiques. Se placer dans le répertoire du

IT C. & D.	IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com
www.itcd.com	S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE :
	6202A

microservice, rendre exécutable les scripts et exécuter le script de démarrage.

cd /srv/production-api
sudo chmod g+x u+x *.sh
sudo ./start.sh

4.14.6 - Vérifications

Exécuter la commande suivante pour vérifier que le microservice fonctionne en tâche de fond.

ps -ef | grep production-api

4.15 - Déploiement de gestion-api

On se connecte à la VM du microservice avec PuTTY.

4.15.1 - Installation de Git

Installer l'outil de versioning Git pour récupérer les fichiers avec les commandes suivante :

sudo yum update -y sudo yum install git -y

4.15.2 - Récupéreration de l'exécutable

Se placer dans le répertoire /srv de l'instance.

cd /srv

Récupérer le **JAR** du microservice qui est dans un repository de **GitHub** avec la commande :

sudo git clone https://raw.githubusercontent.com/pizzaflow/master/gestion-api

4.15.3 - Variables d'environnement

On doit spécifier les variables d'environnement pour les microservices afin qu'ils puissent récupérer leur configuration. On définit une variable d'environnement avec la commande :

IT C. & D.Www.itcd.com

IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com

S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE :
6202A

export NOM_VARIABLE=Valeur

Ou peut renseigner ces valeurs dans le script start.sh.

Nom	Obligatoire	Description
JASYPT_SECRET	oui	Clé pour de cryptage des données sensibles des fichiers de propriétés.
CONFIG_IP	oui	Addresse IP du serveur de configuration
USER_API_IP	oui	Addresse IP de user-api
STOCK_API_IP	oui	Addresse IP de stock-api
WEB_API_IP	oui	Addresse IP de web-api
RESOURCES_PATH	oui	Chemin vers le bucket des ressources
GESTION_DB_USERNAME	oui	Identifiant de connexion à la base de données Gestion
GESTION_DB_PASSWORD	oui	Mot de passe correspondant

4.15.4 - Configuration

Le fichier de configuration **gestion-api-prod.properties** comme les fichiers de configuration de tous les microservices sont dans le repository **git** suivant :

https://github.com/pizzaflow/properties.git

Lors du démarrage, le microservice le demande au serveur de configuration qui va le chercher et le transmet.

```
## port par défaut pour la première instance de production-api
## utiliser la gamme des ports 9XXX pour les duplications d'instances
server.port=9000

## Propriétés générales de l'application PizzaFlow
pizzaflow.nomPropriété=Valeur

## Propriétés particulières du microservice gestion-api
pizzaflow.gestion.nomPropriété=Valeur
```

IT C. & D.	IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com
www.itcd.com	S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE :
	6202A


```
## configuration du pool de connexion par défaut
spring.datasource.hikari.connectionTimeout=20000
spring.datasource.hikari.maximumPoolSize=5
## configuration de PostgreSQL remplacer localhost par la vrai adresse IP
spring.datasource.url=jdbc:postgresql://localhost:5432/stock
spring.datasource.driverClassName=org.postgresql.Driver
## identifiants temporaire de connexion à changer et crypter avec Jasypt pour
la production
spring.datasource.username=${GESTION_DB_USERNAME}
spring.datasource.password=${GESTION DB PASSWORD}
# DANGER!! mettre à create pour refaire le schéma
spring.jpa.hibernate.ddl-auto=update
## Properties pour les logs
logging.level.org.springframework.web=ERROR
logging.level.com.pizzaflow=DEBUG
## le pattern pour la console
logging.pattern.console= "%d{yyyy-MM-dd HH:mm:ss} - %msg%n"
## le pattern pour le nom du fichier
logging.pattern.file= "%d{yyyy-MM-dd HH:mm:ss}[%thread]%-5level %logger{36}
- %msg%n"
## le nom du fichier de log
logging.file=/var/log/pizzaflow/gestion-api.log
```

4.15.5 - Lancer le microservice

Un script de commande fourni permet de lancer le microservice en tâche de fond après avoir défini

IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com

www.itcd.com

S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE :
6202A

les variables d'environnement et déployer les fichiers statiques. Se placer dans le répertoire du microservice, rendre exécutable les scripts et exécuter le script de démarrage.

cd /srv/gestion-api
sudo chmod g+x u+x *.sh
sudo ./start.sh

4.15.6 - Vérifications

Exécuter la commande suivante pour vérifier que le microservice fonctionne en tâche de fond.

ps -ef | grep gestion-api

5 - Procédure de démarrage / Arrêt

5.1 - Base de données User

5.1.1 - Préalable

Se connecter à l'interface de gestion de AWS et sélectionner le service RDS.

Choisir "Bases de données" pour voir les instances des bases de données.

Cliquer sur la base de données User.

5.1.2 - Démarrage

Dans le menu "Action" en haut à droite sélectionner "Redémarrer".

5.1.3 - Arrêt

Dans le menu "Action" en haut à droite sélectionner "Arrêter".

5.2 - Base de données Stock

Effectuer les mêmes opérations que pour la base de données **User** ci-dessus.

5.3 - Base de données Gestion

Effectuer les mêmes opérations que pour la base de données **User** ci-dessus.

5.4 - Config-server

5.4.1 - Préalable

Se connecter avec **PuTTY** sur la **VM** de **config-server** et se placer dans le répertoire de l'application.

cd /srv/config-server

5.4.2 - Démarrage

Exécuter le script de démarrage.

sudo ./start.sh

www.itcd.com S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE : 6202A	IT C. & D.	IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com
	www.itcd.com	S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE : 6202A

5.4.3 - Arrêt

Exécuter le script d'arrêt.

sudo ./shutdown.sh

5.5 - user-api

5.5.1 - Préalable

Se connecter avec **PuTTY** sur la **VM** de **user-api** et se placer dans le répertoire de l'application.

cd /srv/user-api

5.5.2 - Démarrage

Exécuter le script de démarrage.

sudo ./start.sh

5.5.3 - Arrêt

Exécuter le script d'arrêt.

sudo ./shutdown.sh

5.6 - stock-api

5.6.1 - Préalable

Se connecter avec **PuTTY** sur la **VM** de **stock-api** et se placer dans le répertoire de l'application.

cd /srv/stock-api

IT C. & D.
www.itcd.com

IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE : 6202A

5.6.2 - Démarrage

Exécuter le script de démarrage.

sudo ./start.sh

5.6.3 - Arrêt

Exécuter le script d'arrêt.

sudo ./shutdown.sh

5.7 - web-api

5.7.1 - Préalable

Se connecter avec **PuTTY** sur la **VM** de **web-api** et se placer dans le répertoire de l'application.

cd /srv/web-api

5.7.2 - Démarrage

Exécuter le script de démarrage.

sudo ./start.sh

5.7.3 - Arrêt

Exécuter le script d'arrêt.

sudo ./shutdown.sh

5.8 - production-api

5.8.1 - Préalable

Se connecter avec PuTTY sur la VM de production-api et se placer dans le répertoire de

IT C. & D. IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com www.itcd.com

S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE : 6202A

l'application.

cd /srv/production-api

5.8.2 - Démarrage

Exécuter le script de démarrage.

sudo ./start.sh

5.8.3 - Arrêt

Exécuter le script d'arrêt.

sudo ./shutdown.sh

5.9 - gestion-api

5.9.1 - Préalable

Se connecter avec **PuTTY** sur la **VM** de **gestion-api** et se placer dans le répertoire de l'application. **cd /srv/gestion-api**

5.9.2 - Démarrage

Exécuter le script de démarrage.

sudo ./start.sh

5.9.3 - Arrêt

Exécuter le script d'arrêt.

sudo ./shutdown.sh

IT C. & D. www.itcd.com

IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE : 6202A

6 - Procédure de mise à jour

Les mises à jour doivent se faire uniquement en période creuse et de préférence la nuit pour ne pas nuire aux utilisateurs et pour avoir assez de temps pour effectuer les opérations

6.1 - Base de données User

6.1.1 - Préalable

Récupérer le script **SQL** de mise à jour de la base de données **User** sur son ordinateur pour pouvoir l'exécuter dans **pgAdmin**.

Arrêter le microservice **user-api** suivant la procédure indiquée plus haut pour qu'ils n'accèdent pas à la base de données.

Faire une sauvegarde de la base de données comme indiqué dans les procédures de sauvegarde et de restauration.

6.1.2 - Mise à jour

Depuis **pgAdmin** se connecter à la base de données **User**. Dans la fenêtre éditeur de requêtes ouvrir le script **SQL** récupéré et l'exécuter comme pour l'ajout des données dans la base lors du déploiement.

6.1.3 - Finalisation

Relancer le microservice user-api.

6.2 - Base de données Stock

6.2.1 - Préalable

Récupérer le script **SQL** de mise à jour de la base de données **Stock** sur son ordinateur pour pouvoir l'exécuter dans **pgAdmin**.

Arrêter le microservice **stock-api** suivant la procédure indiquée plus haut pour qu'ils n'accèdent pas

IT C. & D.Www.itcd.com

IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com

S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE :
6202A

à la base de données.

Faire une sauvegarde de la base de données comme indiqué dans les procédures de sauvegarde et de restauration.

6.2.2 - Mise à jour

Depuis **pgAdmin** se connecter à la base de données **Stock**. Dans la fenêtre éditeur de requêtes ouvrir le script **SQL** récupéré et l'exécuter comme pour l'ajout des données dans la base lors du déploiement.

6.2.3 - Finalisation

Relancer le microservice stock-api.

6.3 - Base de données Gestion

6.3.1 - Préalable

Récupérer le script **SQL** de mise à jour de la base de données **Gestion** sur son ordinateur pour pouvoir l'exécuter dans **pgAdmin**.

Arrêter le microservice **gestion-api** suivant la procédure indiquée plus haut pour qu'ils n'accèdent pas à la base de données.

Faire une sauvegarde de la base de données comme indiqué dans les procédures de sauvegarde et de restauration.

6.3.2 - Mise à jour

Depuis **pgAdmin** se connecter à la base de données **Gestion**. Dans la fenêtre éditeur de requêtes ouvrir le script **SQL** récupéré et l'exécuter comme pour l'ajout des données dans la base lors du déploiement.

6.3.3 - Finalisation

Relancer le microservice gestion-api.

6.4 - Microservice web-api

6.4.1 - Préalable

Aller dans le répertoire de l'application avec la commande suivante :

cd /srv/web-api

Arrêter le microservice avec la commande :

sudo ./shutdown.sh

Effectuer une sauvegarde du microservice en suivant la procédure indiquée dans les sauvegardes des microservices.

6.4.2 - Mise à jour

Récupérer le JAR du microservice qui est dans un repository de GitHub avec la commande :

sudo git pull https://raw.githubusercontent.com/pizzaflow/master/web-api

6.4.3 - Finalisation

Relancer le microservice web-api.

6.5 - Microservice production-api

6.5.1 - Préalable

Aller dans le répertoire de l'application avec la commande suivante :

cd /srv/production-api

Arrêter le microservice avec la commande :

sudo ./shutdown.sh

IT C. & D. IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com

www.itcd.com

S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE:
6202A

Effectuer une sauvegarde du microservice en suivant la procédure indiquée dans les sauvegardes des microservices.

6.5.2 - Mise à jour

Récupérer le JAR du microservice qui est dans un repository de GitHub avec la commande :

sudo git pull https://raw.githubusercontent.com/pizzaflow/master/production-api

6.5.3 - Finalisation

Relancer le microservice production-api.

6.6 - Microservicegestion-api

6.6.1 - Préalable

Aller dans le répertoire de l'application avec la commande suivante :

cd /srv/gestion-api

Arrêter le microservice avec la commande :

sudo ./shutdown.sh

Effectuer une sauvegarde du microservice en suivant la procédure indiquée dans les sauvegardes des microservices.

6.6.2 - Mise à jour

Récupérer le JAR du microservice qui est dans un repository de GitHub avec la commande :

sudo git pull https://raw.githubusercontent.com/pizzaflow/master/gestion-api

6.6.3 - Finalisation

Relancer le microservice **gestion-api**.

IT C. & D.Www.itcd.com

IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com

S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE :
6202A

6.7 - Serveur de configuration

6.7.1 - Préalable

Aller dans le répertoire de l'application avec la commande suivante.

cd /srv/config-server

Arrêter le serveur avec la commande :

sudo ./shutdown.sh

Effectuer une sauvegarde en suivant la procédure indiquée dans les sauvegardes des microservices.

6.7.2 - Mise à jour

Récupérer le JAR du microservice qui est dans un repository de GitHub avec la commande :

sudo git pull https://raw.githubusercontent.com/pizzaflow/master/config-server

6.7.3 - Finalisation

Relancer le microservice config-server.

7 - Supervision/Monitoring

7.1 - Supervision de l'application web-api

Lancer un navigateur à l'adresse <u>www.pizzaflow.com</u> pour vérifier que la page d'accueil s'affiche correctement.

Se rendre sur l'application de gestion des instances **EC2** sur **AWS** et sélectionner l'écran **INSTANCES/Instances** pour voir l'état des instances.

L'état des instances doit être indiqué en vert comme dans l'exemple ci-dessus avec **user-api**. Sélectionner l'instance voulue puis l'onglet "Surveillance" pour voir le tableau de monitoring de l'instance.

7.2 - Supervision des microservices

Se rendre sur l'application de gestion des instances **EC2** sur **AWS** et sélectionner l'écran **INSTANCES/Instances** pour voir l'état des instances des microservices.

L'état des instances doit être indiqué en vert comme dans l'exemple ci-dessus avec **user-api**. Sélectionner l'instance voulue puis l'onglet "Surveillance" pour voir le tableau de monitoring de l'instance comme ci-dessus.

7.3 - Supervision des bases de données

Se rendre sur l'application de gestion **Amazon RDS** et sélectionner l'écran **Base de données** pour voir l'état des bases.

IT C. & D.Www.itcd.com

IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com

S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE :
6202A

Sélectionner une base de données puis l'onglet "Surveillance" pour voir le tableau de monitoring de la base choisie.

RDS > Bases de données > pizzaflow pizzaflow		
Récapitulatif		
Identifiant de base de données pizzaflow	Processeur 4.17%	Infos ② Disponible
Rôle Instance	Activité actuelle 1 Sessions	Moteur PostgreSQL
CloudWatch (20) Légende: pizzaflow	ux et événements Configuration Maintenance	et sauvegardes Balises C Ajouter une instance à
Utilisation de l'UC (Pourcentage) 5 4 3 2 1 0 12/05 12/05 16:30	Connections DB (Nombre) 0,75 0,5 0,25 0 12/05 16:00 16:30	Espace de stockage disponible (Mo) 20 000 15 000 10 000 5 000 0 12/05 16:00 16:30

8 - PROCÉDURE DE SAUVEGARDE ET RESTAURATION

8.1 - Base de données

8.1.1 - Sauvegarde d'une base de données

Par sécurité il faut toujours faire une sauvegarde de l'état de la base de données pour pouvoir revenir en arrière en cas de problème de mise à jour. Depuis le menu "Action" de l'interface **Amazon RDS** de la base de données choisie sélectionner "Prendre un instantané".

Dans la fenêtre qui s'ouvre on spécifie le nom de l'instantané en respectant l'expression :

[nom-base]YYYYMMDD-HHMM

Il apparait ensuite dans la liste des instantanés de la base.

Il suffira de le sélectionner l'instantané pour restaurer la base.

8.1.2 - Restauration d'une base de données

Dans l'arborescence à gauche de l'interface **Amazon RDS** de la base de données sélectionner "Instantanés".

Sélectionner ensuite l'instantané de la base voulu et choisir "Restaurer l'instantané" dans le menu "Action d'instantané".

La base de données est restaurée suivant l'instantané choisi.

8.2 - Microservices

8.2.1 - Sauvegarde ancienne configuration

Se connecter à l'instance du microservice choisi avec **PuTTY**. Aller dans le répertoire de l'application avec la commande suivante en modifiant la valeur entre crochets par le nom du microservice.

cd /srv/[nom-microservice]

Arrêter le microservice avec la commande :

sudo ./shutdown.sh

Lancer le script de sauvegarde du système avec la commande suivante :

sudo ./backup.sh

Le script créer un répertoire dont le nom est au format :

nom-microservice-YYYYMMDD-HHMM

Et copie un instantané du microservice. Relancer le microservice avec la commande :

sudo ./start.sh

8.2.2 - Restauration ancienne configuration

Se connecter à l'instance du microservice choisi avec **PuTTY**. Aller dans le répertoire de l'application avec la commande suivante en modifiant la valeur entre crochets par le nom du microservice.

cd /srv/[nom-microservice]

Arrêter le microservice avec la commande :

sudo ./shutdown.sh

Lancer le script de restauration en spécifiant la date et l'heure du système à restaurer avec la commande suivante :

sudo ./restore.sh YYYYMMDD-HHMM

La configuration dans le backup **nom-microservice-YYYYMMDD-HHMM** est restaurée. Relancer le microservice avec la commande :

sudo ./start.sh

9 - GLOSSAIRE

AMI (Amazon Machine Image) logiciel d'exploitation Amazone de type linux.

AWS (Amazon Web Services) service internet d'Amazon.

CNIL (Commission nationale de l'informatique et des libertés).

CSS (Cascading Style Sheets) fichier de style pour la présentation des pages HTML.

DTO (**Data Transfer Object**) type d'objet permettant de transférer des données.

EC2 (**Elastic Cloud Compute**) serveur de base permettant d'intégrer de nombreux

systèmes.

IAM (Identity and Access Management) service d'Amazon pour gérer

l'authentification des utilisateurs.

Jasypt (Java Simplified encryption) librairie java qui permet d'effectuer un cryptage

basic dans des fichiers de configuration.

JDK (Java Developer Kit) outils de développement du langage Java.

JRE (Java Runtime Environment) outils pour exécuter un exécutable Java.

Javascript est un langage de script pour les pages web.

JSON (JavaScript Object Notation) format léger d'échange de données facilement

compréhensible par l'homme et manipulable par l'ordinateur.

load-balancing Action de répartir la charge entre plusieurs instances d'une même application.

NoSQL (**Not Only SQL**) Type de base de données qui n'utilise pas l'architecture

classique des bases de données relationnelles SQL.

pgAdmin (**PostgreSQL Admin**) logiciel d'administration de bases de données.

PPK (Putty Private Key) Fichier de clé privée pour Putty.

PuTTY Logiciel pour se connecter à distance sur une machine.

RDS (**Relational Database Service**) Serveur avec un **SGBD-R** intégré.

Repository Répertoire dans le cloud.

(Simple storage Service) serveur de fichiers static pour les sites web.

SGBD-R (Système de Gestion de Bases de Données Relationnelles).

SLF4J (Simple Loggin Facade for Java) couche abstraite pour l'utilisation de

différents loggers.

VM (Virtual Machine) machine virtuelle qui contient un système d'exploitation pour

faire fonctionner une application.

IT C. & D. IT Consulting & Development +33 1.23.45.67.89 – consulting@itcd.com

www.itcd.com S.A.R.L. au capital de 1 000,00 € enregistrée au RCS de Xxxx – SIREN 999 999 999 – Code APE :

6202A