Corrigé agro-véto 2011 épreuve B

Partie A : Fonction génératrice d'une variable à valeurs dans \mathbf{I}_n

1. (a) Si X est à valeurs dans I_n , alors $\forall t \in \mathbb{R}$, $g_X(t) = \sum_{k=0}^n a_k t^k$, g_X est un polynôme de degré n.

 $g_X(1) = \sum_{k=0}^{n} a_k = 1$ par définition d'une variable aléatoire à valeurs dans I_n .

$$g_X(1) = 1$$

- (b) g_X est un polynôme à coefficients réels. Si g_X est donnée, par unicité des coefficients d'un polynôme, les coefficients a_k sont déterminés de façon unique. Donc la loi de X est connue.
- 2. (a) Pour tout réel t, $E(t^{Z_1+Z_2}) = E(t^{Z_1}t^{Z_2}) = E(t^{Z_1})E(t^{Z_2})$ car les variables aléatoires Z_1 et Z_2 étant indépendantes, t^{Z_1} et t^{Z_2} sont indépendantes. On a bien :

$$\forall t \in \mathbb{R}, \ g_{Z_1 + Z_2}(t) = g_{Z_1}(t)g_{Z_2}(t)$$

(b) Si X suit une loi binomiale de paramètres n et p, alors

$$\forall t \in \mathbb{R}, \ g_X(t) = \sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k} t^k = (pt + q)^n. \ (\text{On a posé } q = 1 - p).$$

(c) Si Y suit aussi une loi binomiale de paramètres n' et p, et si X et Y sont indépendantes, alors $\forall t \in \mathbb{R}, \ g_{X+Y}(t) = (pt+q)^n(pt+q)^{n'} = (pt+q)^{n+n'}$.

On reconnaît la fonction génératrice d'une variable aléatoire suivant la loi binomiale de paramètres $n+n^{'}$ et p.

La fonction génératrice caractérise une loi, donc X + Y suit une loi binomiale de paramètres n + n' et p.

3. (a) Si X_1 et X_2 suivent une loi uniforme sur I_6^* , alors:

$$\forall t \in \mathbb{R}, \ g_{X_1}(t) = g_{X_2}(t) = \frac{1}{6} \sum_{k=1}^{6} t^k.$$

Si X_1 et X_2 sont indépendantes, alors :

$$g_{X_1+X_2}(t) = g_{X_1}(t)g_{X_2}(t) = \frac{1}{36} \sum_{k=2}^{7} (k-1)t^k + \frac{1}{36} \sum_{k=8}^{12} (13-k)t^k.$$

On en déduit la loi de probabilité de $X_1 + X_2$:

$$\forall k \in \{2,..,7\}, \quad P(X_1 + X_2 = k) = \frac{k-1}{36}, \quad \forall k \in \{8,..,12\}, \quad P(X_1 + X_2 = k) = \frac{13-k}{36}$$

1

(b) i. Si *Y* suit une loi uniforme sur *I'*, alors
$$\forall t \in \mathbb{R}$$
, $R(t) = g_Y(t) = \frac{1}{11} \sum_{k=2}^{12} t^k = \frac{t^2}{11} \sum_{k=0}^{10} t^k$.

ii.
$$\forall t \in \mathbb{R} - \{1\}, \ R(t) = \frac{t^2}{11} \times \frac{1 - t^{11}}{1 - t}.$$

0 est racine double de ce polynôme.

Les nombres complexes $e^{i\frac{2k\pi}{11}}$ pour k entier entre 1 et 10 sont racines non réelles de R. On a trouvé au moins 12 racines (comptées avec leur ordre de multiplicité) de R. Comme le polynôme R est de degré 12, il n'a pas d'autres racines.

iii.
$$\forall t \in \mathbb{R}, \ g_{X_1}(t) = \sum_{k=1}^{6} P(X_1 = k) t^k.$$

0 est racine du polynôme g_{X_1} , ce polynôme est divisible par t.

Il existe donc un polynôme à coefficients réels P tels que $g_{X1}(t) = tP(t)$.

Le polynôme $\sum_{k=1}^{6} P(X_1 = k) t^k$ étant de degré 6, P est de degré 5.

De même il existe un polynôme Q de degré 5 tel que $\sum_{k=1}^{6} P(X_2 = k) t^k = tQ(t)$.

Or X_1 et X_2 sont indépendantes, donc $R(t) = g_{X_1}(t)g_{X_2}(t) = t^2P(t)Q(t)$.

$$R(t) = t^2 P(t) Q(t)$$

iv. Les racines de P et Q seraient les nombres complexes non réels $\mathrm{e}^{i\frac{2k\pi}{11}}$ pour k entier entre 1 et 10. Ce qui est absurde, car P étant de degré impair, il devrait avoir au moins une racine réelle.

On ne peut donc pas truquer les dés de manière que la loi de $X_1 + X_2$ soit uniforme sur I'.

Partie B : Fonction génératrice d'une variable à valeurs dans N

1. $\forall t \in [-1,1], \forall n \in \mathbb{N}, |a_n t^n| \leq a_n$.

La série de terme $\sum a_n$ converge, et sa somme vaut 1.

Le théorème de comparaison des séries à termes positifs nous permet d'affirmer que la série $\sum a_n t^n$ converge absolument.

Or la convergence absolue entraîne la convergence.

Donc
$$g_X$$
 est défini sur $[-1,1]$.

$$g_X(1) = \sum_{n=0}^{+\infty} a_n = 1$$
, par définition d'une variable aléatoire.

2. Si X et Y sont indépendantes, alors $\forall t \in [-1, 1]$ les variables aléatoires t^X et t^Y sont indépendantes et admettent des espérances d'après le 1.

Donc
$$g_{X_1+X_2}(t) = E(t^{X_1+X_2}) = E(t^{X_1}t^{X_2}) = E(t^{X_1})E(t^{X_2}) = g_{X_1}(t)g_{X_2}(t)$$
.

$$g_{X_1+X_2}(t) = g_{X_1}(t)g_{X_2}(t)$$

3. (a) Si X suit une loi géométrique de paramètre p à valeurs dans \mathbb{N}^* , alors

$$\forall t \in [-1,1], \ g_X(t) = \sum_{k=1}^{+\infty} q^{k-1} p t^k = p t \sum_{k=0}^{+\infty} (q t)^k = \frac{p t}{1 - q t}, \ \operatorname{car} |q t| < 1$$

(b) Si
$$X$$
 suit une loi Poisson de paramètre λ , alors $\forall t \in [-1,1]$, $g_X(t) = \sum_{k=0}^{+\infty} e^{-\lambda} \frac{\lambda^k}{k!} t^k = e^{-\lambda} e^{\lambda t}$.

Partie C : Fonction génératrice de la somme d'un nombre aléatoire de variables aléatoires

- 1. Soit \mathcal{P}_n la propriété : " $\forall t \in [0,1], \psi_n(t) = (f(t))^n$ ".
 - \mathcal{P}_1 est vraie.
 - Supposons que \mathcal{P}_n soit vraie. Sous cette hypothèse, les variables aléatoires X_1, \dots, X_{n+1} étant indépendantes, $X_1 + \dots + X_n$ et X_{n+1} sont indépendantes.

D'après B.2 la fonction génératrice de $X_1 + \cdots + X_n + X_{n+1}$ est $\psi_{n+1} = g_{X_1 + \cdots + X_n} g_{X_{n+1}}$ En utilisant l'hypothèse de récurrence, $\forall t \in [-1,1]$, $\psi_{n+1}(t) = (f(t))^n f(t) = (f(t))^{n+1}$. Donc \mathscr{P}_{n+1} est vraie.

- Par récurrence, $\forall n \in \mathbb{N}^*$, \mathscr{P}_n est vraie.
- 2. La variable aléatoire N étant à valeurs dans I_s , la famille $(N=n)_{n\in I_s}$ est un système complet d'événements. Utilisons la formule des probabilités totales :

$$\forall k \in \mathbb{N}, \ P(Y=k) = \sum_{n=0}^{s} P((S_n=k) \bigcap (N=n)).$$

Or si
$$N = n$$
, alors $Y = S_n$. Donc $P(Y = k) = \sum_{n=0}^{s} P((S_n = k) \cap (N = n))$.

3.
$$\forall t \in [-1, 1], \ g(t) = g_Y(t) = \sum_{k=0}^{+\infty} P(Y = k) t^k = \sum_{k=0}^{+\infty} \left(\sum_{n=0}^{s} P((S_n = k) \cap (N = n)) \right) t^k$$

$$g(t) = \sum_{k=0}^{+\infty} \left(\sum_{n=0}^{s} P(S_n = k) P(N = n) \right) t^k$$

car N est indépendante des variables X_n , donc de S_n .

4. Soit $t \in [-1,1]$. Pour tout $n \in I_s$ la série de terme général $P(S_n = k) t^k$ est absolument convergente.

Donc la combinaison linéaire $\sum_{n=0}^{s} P(N=n) \left(\sum P(S_n=k) t^k \right)$ est absolument convergente et

$$\sum_{n=0}^{s} P(N=n) \left(\sum_{k=0}^{+\infty} P(S_n=k) t^k \right) = \sum_{k=0}^{+\infty} \left(\sum_{n=0}^{s} P(N=n) P(S_n=k) t^k \right) = g(t)$$

Donc
$$g(t) = \sum_{n=0}^{s} P(N=n) \left(\sum_{k=0}^{+\infty} P(S_n = k) t^k \right) = \sum_{n=0}^{s} P(N=n) \psi_n(t)$$

$$g(t) = \sum_{n=0}^{s} P(N=n)(f(t))^{n} = h(f(t)).$$

Ce qui montre que:

$$\forall \in [-1,1], \ g(t) = (h \circ f)(t).$$

5. On a vu au B.3.a. que $\forall t \in [-1, 1], f(t) = \frac{pt}{1 - qt}$ et $h(t) = \frac{p't}{1 - q't}$.

Donc
$$g(t) = h(f(t)) = \frac{p'f(t)}{1 - q'f(t)} = \frac{p'\frac{pt}{1 - qt}}{1 - q'\frac{pt}{1 - qt}} = \frac{pp't}{1 - (q + q'p)t}.$$

$$g(t) = \frac{pp't}{1 - (q + q'p)t}.$$

Or q + q'p = 1 - p + (1 - p')p = 1 - pp', donc $g(t) = \frac{pp't}{1 - (1 - pp')t}$. On reconnaît la fonction génératrice d'une variable aléatoire suivant une loi géométrique de paramètre pp'.

Y suit la loi géométrique de paramètre pp'

Partie D : Multiplication d'une bactérie

- 1. Si à la génération n il n'y a plus de bactéries, alors à génération n+1 il n'y a pas non plus de bactérie. L'événement $Y_n=0$ entraîne l'événement $Y_{n+1}=0$, donc $x_n\leqslant x_{n+1}$. La suite (x_n) est croissante, majorée par 1 (ce sont des probabilités), donc converge.
- 2. Y_1 est le nombre de fils de la bactérie de départ. Donc Y_1 suit une loi de Poisson de paramètre λ . $f(0) = \sigma_{Y_1}(0) = P(Y_1 = 0) = r_1$

$$f(0) = g_{Y_1}(0) = P(Y_1 = 0) = x_1$$

$$x_1 = f(x_0)$$

3. Si $Y_1 = 0$, alors $Y_2 = 0$

Sinon : la bactérie de départ a Y_1 fils qu'on peut numéroter de 1 à Y_1 .

Appelons X_k le nombre de fils du fils numéro k.

Notons, comme dans le C. $S_n = \sum_{k=1}^n X_k$

Le nombre de fils de la seconde génération est $Y_2 = S_{Y_1}$

Par hypothèse les variables aléatoires $(X_k)_{k\geq 1}$ sont indépendantes et suivent la même loi que X.

Nous avons montré à la question C.4 que alors $g_{Y_2} = g_{Y_1} \circ f = f \circ f$.

- 4. (a) Soit \mathcal{P}_n la proposition : " $g_{Y_n} = f^n$ " (composée n-ème de f).
 - \mathcal{P}_1 est vraie.

• Supposons que \mathcal{P}_n soit vraie.

Si
$$Y_n = 0$$
, alors $Y_{n+1} = 0$

Sinon : à la génération n il y a Y_n bactéries qu'on peut numéroter de 1 à Y_n .

Appelons X_k le nombre de fils du fils numéro k.

Notons, comme dans le C. $S_n = \sum_{k=1}^n X_k$.

Le nombre de fils de la (n+1)-ème génération est $Y_{n+1} = S_{Y_n}$

Par hypothèse les variables aléatoires $(X_k)_{k\geq 1}$ sont indépendantes et suivent la même loi que X.

Nous avons montré à la question C.4 que alors $g_{Y_{n+1}} = g_{Y_n} \circ f$ En utilisant l'hypothèse de récurrence, $g_{Y_{n+1}} = f^n \circ f = f^{n+1}$.

Par récurrence, $g_{Y_{n+1}} = f^n$ pour tout $n \in \mathbb{N}^*$.

Donc $x_n = g_{Y_n}(0) = f^n(0) = f(f^{n-1}(0)) = f(x_{n-1}).$

$$\forall n \ge 1, \quad x_n = f(x_{n-1})$$

(b) Lorsque *n* tend vers $+\infty$, (x_n) tend vers p.

 (x_{n-1}) tend aussi vers p. La fonction f étant continue en p, $(f(x_{n-1}))$ tend vers f(p).

Or $x_n = f(x_{n-1})$, donc par unicité de la limite p = f(p).

$$p = f(p)$$
.

5. Soit $\lambda \leq 1$.

$$\forall t \in [0,1], \ \varphi(t) = f(t) - t = e^{\lambda(t-1)} - t, \ \varphi'(t) = \lambda e^{\lambda(t-1)} - 1.$$

 $\forall t \in [0,1[,t-1<0 \text{ donc } e^{\lambda(t-1)}<1, \text{ donc } \lambda e^{\lambda(t-1)}<1 \text{ et } \varphi'<0 \text{ sur } [0,1].$

 φ est strictement décroissante de [0,1] sur [0,e^{- λ}].

Le seul zéro de φ est 1. Or les zéros de φ sont les point fixes de f, donc nécessairement p=1.

5

La probabilité que la bactérie disparaisse est 1

6. Soit $\lambda > 1$.

(a)
$$\forall t \in]1, +\infty[, \theta'(t) = \frac{\ln u - 1}{u^2}.$$

D'après le tableau de variations : $\forall u > 1$, $\theta(u) > 0$, donc $\frac{\ln u}{u} < 1$ et donc que $\ln u < u$.

$$\forall u > 1$$
, $\ln u < u$

(b) $\forall t \in [0,1], \ \varphi(t) = f(t) - t = e^{\lambda(t-1)} - t, \ \varphi'(t) = \lambda e^{\lambda(t-1)} - 1 \text{ et } \varphi''(t) = \lambda^2 e^{\lambda(t-1)} > 0.$ φ' est continue, strictement croissante sur [0,1] dans $J = [\lambda e^{-\lambda} - 1, \lambda - 1]$ donc réalise une bijection entre ces deux intervalles.

On a montré à la question précédente que $\ln \lambda < \lambda$, donc $\lambda < e^{\lambda}$ et $\lambda e^{-\lambda} - 1 < 0$.

Comme $\lambda - 1 > 0$, 0 est élément de J. Il existe donc un unique $\beta \in]0,1[$ tel que $\varphi'(\beta) = 0$. φ' est négative sur $[0,\beta]$ et positive sur $[\beta,1]$.

t	0	α	β	1
$\varphi'(t)$	$\lambda e^{-\lambda} - 1 < 0$	_	0	+
	$\mathrm{e}^{-\lambda}$			0
		• 0		1
		0 \		
arphi			/	

 φ est strictement décroissante sur $[0,\beta]$ et strictement croissante sur $[\beta,1]$.

- (c) $\varphi(1)$ étant égal à 0, nécessairement $\varphi(\beta) < 0$. La restriction de φ à $[0,\beta]$ réalise une bijection entre $[0,\beta]$ et $[\varphi(\beta),e^{-\lambda}]$. Il existe donc un réel unique $\alpha \in]0,\beta[$ tel que $\varphi(\alpha)=0$. Or $\varphi(\alpha)=0$ équivaut à $f(\alpha)=\alpha$. Donc il existe un unique $\alpha \in]0,1[$ tel que $f(\alpha)=\alpha$.
- (d) f est continue strictement croissante de $[0, \alpha]$ dans $[e^{-\lambda}, \alpha] \subset [0, \alpha]$. Le segment $[0, \alpha]$ est stable par f.

Comme $x_0 = 0$, on montre facilement par récurrence que $\forall n \in \mathbb{N}, x_n \in [0, \alpha]$.

La limite de (x_n) est donc élément de $[0, \alpha]$.

Or on a vu que la limite de (x_n) est un point fixe de f. Le seul point fixe de f dans ce segment est α , donc la suite (x_n) tend vers α .

La probabilité de disparition de la bactérie est α qui est strictement inférieur à 1.