Probabilistic Program Analysis with Martingales

Aleksandar Chakarov and Sriram Sankaranarayanan CAV'13

Report date: March 16, 2021

Introduction

- Probablistic programs: Standard imperative program + random value generators
 - Branching.
 - Assignment.
- Problem: Invariant synthesis and termination checking in probablistic settings.

Contributions

- Extend *quantitative invariants*, using Azuma-Hoeffding theorem to generate probabilistic assertions.
- Define super martigale ranking functions (SMRF) to prove almost sure termination (Pr(terminates) = 1) of probablistic programs.
- ► A constraint-based algorithm for supermartingale expression generation.

Restrictions

- Only applies to stochastic programs. (Not a demonic program with non-determinism)
- ▶ Restricted on linear expressions and systems.
- ▶ A.s. termination proving is sound but incomplete.

Motivating Examples

Example

```
1  real x = 0;
2  real N = 500;
5  for ( i=0; i < N; ++i )
4  x = x + unifRand(0,1);
5  // Prob(x \in [200,300]) ?</pre>
```

- ▶ Traditional invariant at loop exit: $0 \le x \le 501 \land i = N$
- ▶ Probablistic assertion: $Pr(x \in [200, 300]) \ge 0.84$

Motivating Examples

Example (Hare and Tortoise)

- Worst case: non-terminating.
- ▶ The expression t h decrease by 1.5 in expectation each iteration.

Probablistic Transition System

Definition 1 (Probabilistic Transition System). A Probabilistic Transition System (PTS) Π is defined by a tuple $\langle X, R, L, \mathcal{T}, \ell_0, \mathbf{x}_0 \rangle$ such that

- 1. X, R represent the program and random variables, respectively.
- 2. L represents a finite set of locations. $\ell_0 \in L$ represents the initial location, and x_0 represents the initial values for the program variables.
- 3. $\mathcal{T} = \{\tau_1, \dots, \tau_p\}$ represents a finite set of transitions. Each transition $\tau_j \in \mathcal{T}$ is a tuple $\langle \ell, \varphi, f_1, \dots, f_k \rangle$ consisting of (see Fig 2):
 - (a) Source location $\ell \in L$, and guard assertion φ over X,
 - (b) Forks $\{f_1, \ldots, f_k\}$, where each fork $f_j: (p_j, F_j, m_j)$ is defined by a fork probability $p_j \in (0, 1]$, a (continuous) update function $F_j(X, R)$ and a destination $m_j \in L$. The sum of the fork probabilities is $\sum_{j=1}^k p_j = 1$.

No Demonic: mutually exclusive and mutually exhaustive.

State and Post-Distribution

A *state* of PTS is a tuple (l, \mathbf{x}) where $l \in L$ and \mathbf{x} is a valuation of X.

Given a transition $\tau = \langle l, \phi, f_1, \dots, f_k \rangle$, if $\mathbf{x} \models \phi$ then the result of executing τ is a *probability distribution* over post states, obtained by:

- 1. Choose fork f_j with probability p_j , and a vector of random variables $\mathbf{r}:(r_1,\ldots,r_m)$ is drawn according to the joint distribution.
- 2. Update the states by computing the function $\mathbf{x}' = F_j(\mathbf{x}, \mathbf{r})$ and update l to m_j .

Post-Distrib
$$(s, \tau)$$
, Post-Distrib (s)

Operationally, PTS is a Markov chain.

State and Post-Distribution

Sampled Executions

Definition 2 (Sample Executions). Let Π be a transition system. A sample execution σ of Π is a countably infinite sequence of states $\sigma: (\ell_0, x_0) \xrightarrow{\tau_1} (\ell_1, x_1) \xrightarrow{\tau_2} \cdots \xrightarrow{\tau_n} (\ell_n, x_n) \cdots$, such that $(a) (\ell_0, x_0)$ is the unique initial state. (b) The state $s_j: (\ell_j, x_j)$ for $j \geq 0$ satisfies the guard for the transition τ_{j+1} . Note that by the no demonic restriction, τ_{j+1} is uniquely defined for each s_j . (c) Each state $s_{j+1}: (\ell_{j+1}, x_{j+1})$ is a sample from POST-DISTRIB (s_j) .

Example

Almost Sure Termination

Definition (Termination)

Let Π be a PTS with a special *final location* l_F . l_F has only one outgoing transition id. A sampled execution σ of Π *terminates* if it eventually reaches a state (l_F, \mathbf{x}) .

Probability of terminating paths:

- ▶ For a finite syntactic path $\pi: l_0 \stackrel{\tau_1}{\to} l_1 \stackrel{\tau_2}{\to} l_2 \dots l_F$, there is a well-defined probaility $\mu(\pi) \in [0,1]$ that characterizes the probaility of the path going through the locations.
- ► The overall probability of termination can be obtained as the sum of probability of all such finite syntactic paths.

Almost Sure Termination

The main idea to show μ on the infinite space is well-defined: Let $\Omega = \prod_{j=1}^{\infty} \Omega_j$ and $\mathcal{F} = \prod_{j=1}^{\infty} \mathcal{F}_j$.

- ▶ At each location l_i , there is a probability space $(\Omega_i, \mathcal{F}_i, \mu_i)$.
- For a given n, a measurable cylinder can be constructed by $B_n = \{\omega \in \Omega \mid (\omega_1, \dots, \omega_n) \in B^n\}$, where $B^n = \prod_{j=1}^n A_j, A_j \in \mathcal{F}_j$. Assume the measure is P_n .
- Theorem of cylinder construction, a probability measure space (Ω, \mathcal{F}, P) such that $P\{\omega \in \Omega \mid (\omega_1, \dots, \omega_n) \in B^n\} = P_n(B^n)$.

Almost Sure Termination

Definition (a.s. Termination)

A PTS is said to be almost sure terminating iff the sum of probabilities of all terminating syntactic paths is 1.

Pre-Expectation

Definition (Pre-expectation of an expression)

Let state $s:(l,\mathbf{x})$ be a state and τ be the enabled transition on s. The pre-expectation $\mathbb{E}(\mathbf{e}'|s)$ is defined as the conditional expected value of \mathbf{e}' over $\mathrm{Post-Distrib}(s)$ as

$$\mathbb{E}_{\tau}(\mathbf{e}'|s) = \Sigma_{j=1}^k p_j \mathbb{E}_R(\mathtt{pre}(\mathbf{e}', F_j))$$

Pre-Expectation

Example

$$\mathbb{E}(5t - 2h|(l_3, h, t))$$

Martingale and Supermartingale Expression

A discrete-time stochastic process $\{M_n\}$ is a countable sequence of random variables M_0, M_1, M_2, \ldots where M_n is distributed based on the samples drawn from M_0, \ldots, M_{n-1} . By convention, M_n denotes the random variable and m_n its sample.

Definition 4 (Martingales and Super Martingales). A process $\{M_n\}$ is a martingale iff for each n>0, $\mathbb{E}(M_n|m_{n-1},\ldots,m_0)=m_{n-1}$. In other words, at each step the expected value at the next step is equal to the current value. Likewise $\{M_n\}$ is a supermartingale iff for each n>0, $\mathbb{E}(M_n|m_{n-1},\ldots,m_0)\leq m_{n-1}$.

Adapting the original definition to PTS:

Definition 5 (Martingale Expressions). An expression $\mathbf{e}[X]$ over program variables X is a martingale for the PTS Π iff for every transition $\tau:(\ell,\varphi,f_1,\ldots,f_k)$ in Π and for every state $s:(\ell,x)$ for which τ is enabled, the pre-expectation of \mathbf{e} equals its current state value: $\forall x. \varphi[x] \Rightarrow \mathbb{E}_{\tau}(\mathbf{e}'|\ell,x) = \mathbf{e}$. Likewise, an expression is a super-martingale iff for each transition $\tau, \forall x. \varphi[x] \Rightarrow \mathbb{E}_{\tau}(\mathbf{e}'|\ell,x) \leq \mathbf{e}$.

Formal Definition of Martingale

From Martingale to Probabilistic Assertion

Theorem 1 (Azuma-Hoeffding Theorem). Let $\{M_n\}$ be a super martingale such that $|m_n-m_{n-1}|< c$ over all sample paths for constant c. Then for all $n\in\mathbb{N}$ and $t\in\mathbb{R}$ such that $t\geq 0$, it follows that $\Pr(M_n-M_0\geq t)\leq \exp\left(\frac{-t^2}{2nc^2}\right)$. Moreover, if $\{M_n\}$ is a martingale the symmetric bound holds as well: $\Pr(M_n-M_0\leq -t)\leq \exp\left(\frac{-t^2}{2nc^2}\right)$. Combining both bounds, we conclude that for a martingale $\{M_n\}$ we obtain $\Pr(|M_n-M_0|\geq t)\leq 2\exp\left(\frac{-t^2}{2nc^2}\right)$.

Almost-Sure Termination

Definition (Ranking Super Martingale(RSM))

A supermartingale $\{M_n\}$ is ranking iff

- ► There exists $\epsilon > 0$ s.t. for all sampled paths, $\mathbb{E}(M_{n+1}|m_n) \leq m_n \epsilon$.
- For all $n \ge 0$, $M_n \ge -K$ for some K > 0. (Equiv. Def. For all $T(\omega) > j$, $M_j \ge 0$).

Ranking function: will finally become negative.

Ranking supermartingale: will almost surely become negative.

Ranking function: will finally become negative.

Ranking supermartingale: will almost surely become negative.

Theorem (Main result)

A ranking supermartingale with a positive initial value will a.s. become negative.

Ranking function: will finally become negative.

Ranking supermartingale: will almost surely become negative.

Theorem (Main result)

A ranking supermartingale with a positive initial value will a.s. become negative.

Proof.

Stopping time:
$$t=\inf_{n\geq 0}m_n\leq 0$$
. Let the r.v. be $T.$ $M_n^T.$ $Y_n=M_n^T+\epsilon\min(n,T).$ $n< t,n\geq t.$

Ranking function: will finally become negative.

Ranking supermartingale: will almost surely become negative.

Theorem (Main result)

A ranking supermartingale with a positive initial value will a.s. become negative.

Proof.

Stopping time:
$$t=\inf_{n\geq 0}m_n\leq 0$$
. Let the r.v. be $T.$ $M_n^T.$ $Y_n=M_n^T+\epsilon\min(n,T).$ $n< t,n\geq t.$

Lemma

$$\{Y_n\}$$
 is a super martingale and $Y_n \ge -K$

Proof.

Hint: discuss
$$n+1 \ge t$$
 and $n+1 < t$

Theorem (Super Martingale Convergence Theorem)

A lower-bounded supermartingale converges almost surely.

Lemma

For any convergent sample path y_0, \ldots, y_n, \ldots , the corresponding $\{M_n\}$ sample path m_0, \ldots, m_n, \ldots eventually becomes negative eventually.

Proof.

Hint: assume $\{M_n\}$ sample path has stopping time $t=\infty$. By the definition of convergence and the definition of t.

Expression Map

Definition 7 (Martingales and Super Martingale Expression Maps). An expression map η is a martingale for a PTS Π iff for every transition $\tau:(\ell,\varphi,f_1,\ldots,f_k)$, we have $\forall x. \varphi[x] \Rightarrow \mathbb{E}_{\tau}(\eta'|\ell,x) = \eta(\ell)[x]$.

Likewise, the map is a super-martingale iff for every transition τ , $\forall x . \varphi[x] \Rightarrow \mathbb{E}_{\tau}(\eta'|\ell,x) \leq \eta(\ell)[x]$.

Example

Super Martingale Ranking Function

Definition 9 (Super Martingale Ranking Function). A super martingale ranking function (SMRF) η is a s.m. expression map that satisfies the following:

- $\eta(\ell) \ge 0$ for all $\ell \ne \ell_F$, and $\eta(\ell_F) \in [-K, 0)$ for some lower bound K.
- There exists a constant $\epsilon > 0$ s.t. for each transition τ (other than the self-loop id around ℓ_F) with guard φ , $(\forall x) \varphi[x] \Rightarrow \mathbb{E}_{\tau}(\eta'|\ell, x) \leq \eta(\ell)[x] \epsilon$.

How SMRF works?

How to Synthesize SMRF

Affine linear templates.

$$(\forall \, \pmb{x}) \ (\varphi[\pmb{x}]) \ \Rightarrow \ \underbrace{\mathbb{E}_{\tau}(\eta'|\ell, \pmb{x})}_{\text{template expression}} \ \leq \ \underbrace{\eta(\ell)[\pmb{x}]}_{\text{template expression}}$$

By Farkas Lemma convert the system to the system of parameters. [CAV'06]

Example

Template: $f_{l_3}(h, t) = c_1 h + c_2 t$

- $au = (l_3, (h \le t), f_1, f_2)$
- $ightharpoonup f_1: (\frac{1}{2}, (\lambda(h, t).h, t+1), l_3).$
- $ightharpoonup f_2: (\frac{1}{2}, (\lambda(h, t).h + r_1, t + 1))$