Question: addressed FSSP Problem (6.15)

This problem is from Methods and Models in Mathematical Programming by MirHassani S.A., Hooshmand F.

Sets and indices and parameters are like the book.

The decision variables are as follows:

 $\delta_{i,j,j'}$: Binary variable that if job j ' is done immediately after job j on machine i

 $\forall i \in I$, $\forall j,j' \in J$, $j \neq j'$ is one otherwise zero

 $\alpha_{i,j}$: A binary variable that is one if the job j is done in machine i , otherwise

 $\forall i \in I$, $\forall j \in J$ it is zero.

 $\beta_{\it i,j}$: The binary variable that if in machine i work j is done in the last

 $\forall i \in I$, $\forall j \in J$ position is one otherwise zero.

: The continuous and nonnegative variable represents the start time j on $x_{i,j}$

 $\forall i \in I$, $\forall j \in J$ machine i.

Now we define the model as follows:

$$Min \ Max_{j \in J} \ (x_{m,j} + t_{m,j})$$

$$S.T.$$
(1)

$$S.I$$
.

$$x_{m,j} + t_{m,j} \le d_j \tag{2}$$

$$x_{i,j} + t_{i,j} \le x_{i+1,j} \qquad \forall j \in J , i \in I , i < (3)$$

$$x_{i,j} + t_{i,j} \le x_{i+1,j}$$
 $\forall j \in J , i \in I , i < (3)$ $\forall j \in J , i \in I , i < (4)$ $\forall j \in J , i \in I , i < (5)$ $\forall j,j' \in J , i \in I$

$$\alpha_{i,j} = 1 \quad \forall \qquad \exists j' \in J \quad \delta_{i,j',j} = 1 \qquad \forall j \in J \quad , \quad \forall i \in I \qquad (5)$$

$$\beta_{i,j} = 1 \quad \forall \qquad \exists j' \in J \quad \delta_{i,j,j'} = 1 \qquad \forall j \in J \quad , \quad \forall i \in I \qquad (6)$$

$$\beta_{i,j} = 1 \quad \forall \quad \exists j' \in J \quad \delta_{i,i,j'} = 1 \qquad \forall j \in J \quad \forall i \in I \quad (6)$$

$$\sum_{i \in J} \alpha_{i,j} = 1 \tag{7}$$

$$\sum_{j \in J} \beta_{i,j} = 1 \tag{8}$$

$$\delta_{iii'} \in \{0,1\} \qquad \forall i \in I , \qquad (9)$$

$$\forall j, j' \in J , j \neq j'$$

$$\alpha_{i,j}, \beta_{i,j} \in \{0,1\}$$

$$\forall i \in I , \forall j \in J$$
(10)

$$x_{i,j} \ge 0$$
 $\forall i \in I$, $\forall j \in J$ (11)

Now I will linearize the above constraints:

We underline adverb (4) as follows:

$$x_{i,j} + t_{i,j} + p_{i,j,j'} \le x_{i,j'} + M(1 - \delta_{i,j,j'})$$
 $\forall j,j' \in J, j \ne j', \forall i \in I$

and for M we consider:

$$x_{i,j} + t_{i,j} + p_{i,i,j'} - x_{i,j'} \le M$$

In the GAMS code, I set the value of M to 100, which is a valid upper bound. Now I linearize adverb (5) as follows:

$$\begin{aligned} \alpha_{i,j} &= 1 \quad \forall \quad \exists \ j' \in J \quad \delta_{i,j',j} = 1 \quad \forall j,j' \in J \quad , \quad j \neq j' \quad , \quad \forall i \in I \\ \left(if \ \rho^{(1)}_{i,j} &= 1 \quad then \ \alpha_{i,j} = 1 \right) \quad and \quad \left(\ if \ \rho^{(1)}_{i,j} &= 0 \quad then \quad \exists \ j' \in J \quad \delta_{i,j',j} = 1 \right) \end{aligned}$$

after linearization we have:

$$\alpha_{i,j} \ge 1 - M \left(1 - \rho^{(1)}_{i,j} \right)$$

$$\sum_{j' \in J, \ j' \neq j} \delta_{i,j',j} \ge 1 - M \rho^{(1)}_{i,j}$$

$$\sum_{j' \in J, \ j' \neq j} \delta_{i,j',j} \le 1 + M \rho^{(1)}_{i,j}$$

$$\left(if \ \rho^{(2)}_{i,j} = 1 \ then \ \beta_{i,j} = 1 \ \right) \ and \ \left(if \ \rho^{(2)}_{i,j} = 0 \ then \ \exists \ j' \in J \ \delta_{i,j,j'} = 1 \right)$$

$$\beta_{i,j} \ge 1 - M \left(1 - \rho^{(2)}_{i,j} \right)$$

$$\sum_{j' \in J, \ j' \neq j} \delta_{i,j,j'} \ge 1 - M \rho^{(2)}_{i,j}$$

$$\sum_{j' \in J, \ j' \neq j} \delta_{i,j,j'} \le 1 + M \rho^{(2)}_{i,j}$$

$$\rho^{(1)} + \rho^{(2)} \le 1$$

Model in a linear way:

$$Min w S.T.$$
 (1)

$$w \ge x_{m,j} + t_{m,j}$$
 $\forall j \in J$ (2)

$$x_{m,j} + t_{m,j} \le d_j \qquad \forall j \in J$$
 (3)

$$x_{i,j} + t_{i,j} \le x_{i+1,j} \qquad \forall j \in J , i \in I , i < m$$
 (4)

$$x_{i,j} + t_{i,j} + p_{i,i,j'} \le x_{i,i'} + M\left(1 - \delta_{i,i,j'}\right) \qquad \forall j \in J, \quad \forall i \in I$$
 (5)

	machine 1	machine 2	machine 3
x = 0	x = 0 job 7		-
x = 1	job 9	job 7	-
x = 2	-	-	-
x = 3	job 2	-	-
x = 4	-	-	-
x = 5	-	-	-
x = 6	-	job 9	job 7
x = 7	-	-	-
x = 8	job 1	-	-
x = 9	-	job 2	-
x = 10	job 5	job 1	job 2
x = 11	-	-	job 9
x = 12	job 8	-	-
x = 13	-	-	-
x = 14	-	-	<u>-</u>
x = 15	job 3	job 8	-

<i>x</i> = 16	-	-	job 1
x = 17	-	-	-
x = 18	-	-	-
x = 19	job 4	job 3	-
x = 20	job 6	job 5	job 3
x = 21	-	-	-
x = 22	-	job 4	job 5
x = 23	-	-	-
x = 24	-	-	-
x = 25	-	job 6	-
x = 26	-	-	job 4
x = 27	-	-	-
x = 28	-	-	job 8
x = 29	-	-	job 8

Arrangement of work on the machine 1:

$$9-2-1-5-8-3-4-6$$

Arrangement of work on the machine 2:

$$7 - 9 - 2 - 1 - 8 - 3 - 5 - 4 - 6$$

Arrangement of work on the machine 3:

$$7-2-9-1-3-5-4-8-6$$

 $w^* = 32$

	87 VARI	ABLE z.L		=	32.000	
	87 VARI	ABLE x.L				
	1	2	3	4	5	6
1	8.000	3.000	15.000	19.000	10.000	20.000
2	10.000	9.000	19.000	22.000	20.000	25.000
3	16.000	10.000	20.000	26.000	22.000	29.000
+	7	8	9			
1		12.000	1.000			
2	1.000	15.000	6.000			
3	6.000	28.000	11.000			

	87 VARIABLE a.
	7
1	1.000
2	1.000
3	1.000
	87 VARIABLE b.
	6
1	1.000
2	1.000
3	1.000

	87 VARIABLE y.L					
	1	2	3	4	5	6
1.1					1.000	
1.2	1.000					
1.3				1.000		
1.4						1.000
1.8			1.000			
1.9		1.000				
2.2	1.000					
2.3					1.000	
2.4						1.000
2.5				1.000		
2.8			1.000			
2.9		1.000				
3.1			1.000			
3.3					1.000	
3.5				1.000		
3.7		1.000				
3.8						1.000
3.9	1.000					
+	8	9				
1.5	1.000					
1.7		1.000				
2.1	1.000					
2.7		1.000				
3.2		1.000				
3.4	1.000					