

SISTEM BILANGAN

Matematika Informatika Politeknik Negeri Malang 2020

Deasy Sandhya Elya Ikawati, S. Si, M. Si

SISTEM BILANGAN

- OUT THE THE PART OF THE PART O
- 1. Sistem bilangan pada komputer
- 2. Penulisan baku sistem bilangan
- 3. Konversi bilangan
- 4. Operasi bilangan

SISTEM BILANGAN PADA KOMPUTER

Sistem bilangan biner
Sistem bilangan oktal
Sistem bilangan desimal
Sistem bilangan heksadesimal

Sistem Bilangan Biner

- Simbol bilangan: 0 dan 1
- Contoh:

10, 11011, 101011, 1110111

Sistem Bilangan Oktal

Simbol bilangan: 0, 1,2,3,4,5,6 dan 7

Contoh:

16, 317, 341072, 6504722

Sistem Bilangan Desimal

Simbol bilangan: 0, 1,2,3,4,5,6,7,8 dan 9

Contoh:

8, 12, 1543, 806194, 3289723489

Sistem Bilangan Heksadesimal

Simbol bilangan:

1,2,3,4,5,6,7,8,9, A, B, C, D, E, F

Contoh: 7F0A9E

Penulisan Baku Sistem Bilangan

Bilangan biner 10010 ditulis 100102

Bilangan oktal 3610 ditulis 3610₈

Bilangan desimal 16822 ditulis 16822₁₀

Bilangan heksadesimal C58FB ditulis C58FB₁₆

Konversi Bilangan

bel 5.1: Konversi dari Desimal ke Biner, Oktal, dan Heksadesin

No.	Desimal	Biner	Oktal	Heksadsml
1	0	0	0	0
2	1	1	1	1
3	2		2	2
4	3		3	3
5	4		4	4
6	5		5	5
7	6		6	6
8	7		7	7
9	8			8
10	9			9
11	10			A
12	11			В
13	12			С
14	13			D
15	14			E
16	15			F

Tabel 5.2: Konversi Oktal-Biner dan Heksadesimal-Biner

No.	Oktal	Biner
1	0	000
2	1	001
3	2	010
4	3	011
5	4	100
6	5	101
7	6	110
8	7	111

No.	Heksadsml	Biner
1	0	0000
2	1	0001
3	2	0010
4	3	0011
5	4	0100
6	5	0101
7	6	0110
8	7	0111
9	8	1000
10	9	1001
11	A	1010
12	В	1011
13	С	1100
14	D	1101
15	E	1110
16	F	1111

Biner - Oktal

Jumlah digit bilangan harus dijadikan kelipatan 3, dengan menambahkan 0 di depan

Konversi dilakukan dengan memecah beberapa segmen menjadi 3 digit angka

Contoh

$1101100_2 = 001101100_2$

 $1101100_2 = 154_8$

Tabel 5.2: Konversi Oktal-Biner dan Heksadesimal-Biner

No.	Oktal	Biner
1	0	000
2	1	001
3	2	010
4	3	011
5	4	100
6	5	101
7	6	110
8	7	111

No.	Heksadsml	Biner
1	0	0000
2	1	0001
3	2	0010
4	3	0011
5	4	0100
6	5	0101
7	6	0110
8	7	0111
9	8	1000
10	9	1001
11	A	1010
12	В	1011
13	С	1100
14	D	1101
15	E	1110
16	F	1111

Biner - Desimal

Mengkalikan setiap digit bilangan biner dengan 2^n , n adalah posisi bilangan biner.

Contoh

$$1101100_{2} = 1 \cdot 2^{6} + 1 \cdot 2^{5} + 0 \cdot 2^{4} + 1 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 0 \cdot 2^{0}$$

$$= 64 + 32 + 0 + 8 + 4 + 0 + 0$$

$$= 108_{10}$$

 $1101100_2 = 108_{10}$

Biner - Heksadesimal

Jumlah digit bilangan harus dijadikan kelipatan 4, dengan menambahkan 0 di depan

Konversi dilakukan dengan memecah beberapa segmen menjadi 4 digit angka, kemudian lihat tabel.

Contoh

$1101100_2 = 01101100_2$

 $1101100_2 = 6C_{16}$

<u>Tabel 5.2: Konversi Oktal-Biner dan Heksadesimal-Biner</u>

No.	Oktal	Biner
1	0	000
2	1	001
3	2	010
4	3	011
5	4	100
6	5	101
7	6	110
8	7	111

No.	Heksadsml	Biner
1	0	0000
2	1	0001
3	2	0010
4	3	0011
5	4	0100
6	5	0101
7	6	0110
8	7	0111
9	8	1000
10	9	1001
11	A	1010
12	В	1011
13	С	1100
14	D	1101
15	E	1110
16	F	1111

Konversi Bilangan

Oktal - Biner

Konversi dilakukan dengan melihat tabel.

Menghilangkan angka 0 di depan angka. Contoh

2175₈

 $010\ 001\ 111\ 101_2 = 10\ 001\ 111\ 101_2$

No.	Oktal	Biner
1	0	000
2	1	001
3	2	010
4	3	011
5	4	100
6	5	101
7	6	110
8	7	111

Oktal - Desimal

Mengkalikan setiap digit bilangan biner dengan 8^n , n adalah posisi bilangan biner.

Contoh

$$2175_8 = 2 \cdot 8^3 + 1 \cdot 8^2 + 7 \cdot 8^1 + 5 \cdot 8^0$$
$$= 2 \cdot 512 + 1 \cdot 64 + 7 \cdot 8 + 5 \cdot 1$$
$$= 1024 + 64 + 56 + 5 = 1149_{10}$$

$$2175_8 = 1149_{10}$$

Oktal - Heksadesimal

Mengkonversi terlebih dahulu dari oktal ke biner, setelah itu dikonversikan ke heksadesimal Contoh:

$$2175_8 = 10\ 001\ 111\ 101_2$$

$$2175_8 = 47D_{16}$$

Mengkonversi terlebih dahulu dari oktal ke desimal, setelah itu dikonversikan ke heksadesimal (dijelaskan selanjutnya)

$$2175_8 = 1149_{10}$$

$$1149_{10} = 47D_{16}$$

$$2175_8 = 47D_{16}$$

Post Test

- Konversikan bilangan 1010011₂ ke dalam:
 bilangan oktal, desimal, dan heksadesimal.
- 2. Konversikan bilangan 4216₈ ke dalam bilangan biner, desimal, dan heksadesimal.
- Konversikan bilangan 131214₁₀ ke dalam bilangan biner, oktal, dan heksadesimal.
- Konversikan bilangan 4ED71₁₆ ke dalam bilangan biner, oktal, dan desimal.

Post Test

- $5.1110010_2 + 100111_2 =$
- $6.27135_8 + 6329_8 =$
- 7. $D3965A_{16} + 234CB1_{16} =$

Refrensi

- Munir, Rinaldi, "Matematika Diskrit Ed.
 Revisi Ke-3", Informatika Bandung, 2012
- Yan Watequlis S., ST, "Diktat Kuliah Matematika Diskrit", Program Studi Manajemen Informatika, Politeknik Negeri Malang.