Chapter 3 Ctd: Combinational Functions and Circuits

Value Fixing, Transferring, and Inverting

Four different functions are possible as a function of single Boolean variable

Transferring Inverting Value Fixing

Value Fixing for Implementing a Function

- Y is actually a function of six varibles truth table with 64 rows and 7 clmns
- Putting I_0 I_3 in the output column reduces the truth table

$$Y(A,B,I_0,I_1,I_2,I_3) = A'B'I_0 + A'BI_1 + AB'I_2 + ABI_3$$

Value Fixing for Implementing a Function

16 different functions can be implemented by setting $I_0 - I_3$ appropriately

■ TABLE 4-2 Function Implementation by Value-Fixing

Α	В	Y = A + B	$Y = A\overline{B} + \overline{A}B$	$Y = A + B (I_3 = 1) \text{ or } Y = A \overline{B} + \overline{A} B (I_3 = 0)$
0	0	0	0	0
0	1	1	1	1
1	0	1	1	1
1	1	1	0	I_3

What is a decoder?

- Decoder: A combinational circuit with an n-bit binary code applied to its inputs and m-bit binary code appearing at the outputs
 - n≤m≤2^n
 - Detect which of the 2ⁿ combinations is represented at the inputs
 - Produce m outputs, only one of which is "1"

1-to-2 (Line) Decoder

2-to-4 Decoder

- A 2-to-4 decoder operates according to the following truth table
 - The 2-bit input is called \$150, and the four outputs are Q0-Q3
 - If the input is the binary number i, then output Qi is uniquely true

51	50	Q0	Q1	Q2	Q3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

- For instance, if the input S1 S0 = 10 (decimal 2), then output Q2 is true, and Q0, Q1, Q3 are all false
- This circuit "decodes" a binary number into a "one-of-four" code

How can you build a 2-to-4 decoder?

Follow the design procedures from last time! We have a truth table, so
we can write equations for each of the four outputs (Q0-Q3)

51	50	Q0	Q1	Q2	Q3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

• In this case there's not much to be simplified. Here are the equations:

$$Q0 = 51' 50'$$

$$Q1 = 51' 50$$

$$Q2 = 51 50'$$

$$Q3 = 5150$$

2-to-4 Decoder

51	50	Q0	Q1	Q2	Q3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Enable Inputs

- Many devices have an additional enable input, which is used to "activate" or "deactivate" the device
- For a decoder,
 - EN=1 activates the decoder, so it behaves as specified earlier. Exactly one of the outputs will be 1
 - EN=0 "deactivates" the decoder. By convention, that means all of the decoder's outputs are 0
- We can include this additional input in the decoder's truth table:

EN	51	50	Q0	Q1	Q2	Q3
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

An aside: abbreviated truth tables

 In this table, note that whenever EN=0, the outputs are always 0, regardless of inputs S1 and S0.

EN	51	50	Q0	Q1	Q2	Q3
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

 We can abbreviate the table by writing x's in the input columns for S1 and S0

EN	51	50	Q0	Q1	Q2	Q3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

Blocks and Abstraction

- Decoders are common enough that we want to encapsulate them and treat them as an individual entity
- Block diagrams for 2-to-4 decoders are shown here. The names of the inputs and outputs, not their order, is what matters.

- A decoder block provides abstraction:
 - You can use the decoder as long as you know its truth table or equations,
 without knowing exactly what's inside
 - It makes diagrams simpler by hiding the internal circuitry
 - It simplifies hardware reuse. You don't have to keep rebuilding the decoder from scratch every time you need it
- These blocks are like functions in programming!

3-to-8 decoder

- Larger decoders are similar. Here is a 3-to-8 decoder
 - The block symbol is on the right
 - A truth table (without EN) is below
 - Output equations are at the bottom right
- Again, only one output is true for any input combination

52	S 1	<i>5</i> 0	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Q0	= 52' 51' 50'
Q1	= 52' 51' 50
Q2	= 52' 51 50'
Q3	= 52' 51 50
Q4	= 52 51' 50'
Q5	= 52 51' 50
Q6	= 52 51 50'
Q7	= 52 51 50

So what good is a decoder?

Do the truth table and equations look familiar?

51	50	Q0	Q1	Q2	Q3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

- Decoders are sometimes called minterm generators
 - For each of the input combinations, exactly one output is true
 - Each output equation contains all of the input variables
 - These properties hold for all sizes of decoders
- Arbitrary functions can be implemented with decoders. If a sum of minterms equation for a function is given, a decoder (a minterm generator) is used to implement that function

Design example: Addition

- Let's make a circuit that adds three 1-bit inputs X, Y and Z
- We will need two bits to represent the total; let's call them C and S, for "carry" and "sum." Note that C and S are two separate functions of the same inputs X, Y and Z
- Here are a truth table and sum-of-minterms equations for C and S

Decoder-based Adder

Here, two 3-to-8 decoders implement C and S as sums of minterms.

Using just one decoder

• Since the two functions C and S both have the same inputs, we could use just one decoder instead of two.

Building a 3-to-8 decoder

- You could build a 3-to-8 decoder directly from the truth table and equations below, just like how we built the 2-to-4 decoder
- Another way to design a decoder is to break it into smaller pieces
- Notice some patterns in the table below:
 - When 52 = 0, outputs Q0-Q3 are generated as in a 2-to-4 decoder
 - When 52 = 1, outputs Q4-Q7 are generated as in a 2-to-4 decoder

52	S 1	50	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Q0 =
$$52' \, 51' \, 50' = m_0$$

Q1 = $52' \, 51' \, 50 = m_1$
Q2 = $52' \, 51 \, 50' = m_2$
Q3 = $52' \, 51 \, 50' = m_3$
Q4 = $52 \, 51' \, 50' = m_4$
Q5 = $52 \, 51' \, 50' = m_5$
Q6 = $52 \, 51 \, 50' = m_6$
Q7 = $52 \, 51 \, 50' = m_7$

Decoder Expansion

 You can use enable inputs to string decoders together. Here's a 3-to-8 decoder constructed from two 2-to-4 decoders:

52	51	50	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Modularity

- Be careful not to confuse the "inner" inputs and outputs of the 2-to-4
 decoders with the "outer" inputs and outputs of the 3-to-8 decoder
 (which are in boldface)
- This is similar to having several functions in a program which all use a formal parameter "x"

A variation of the standard decoder

The decoders we've seen so far are active-high decoders

EN	51	50	Q0	Q1	Q2	Q3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

 An active-low decoder is the same thing, but with an inverted EN input and inverted outputs

EN'	S1 ′	50'	Q0'	Q1'	Q2'	Q3'
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0
1	X	X	1	1	1	1

Separated at birth?

Active-high decoders generate minterms, as we've already seen

 The output equations for an active-low decoder are mysteriously similar, yet somehow different

$$Q3' = (S1 S0)' = S1' + S0'$$
 $Q2' = (S1 S0)' = S1' + S0'$
 $Q2' = (S1 S0')' = S1' + S0'$
 $Q1' = (S1' S0)' = S1 + S0'$
 $Q0' = (S1' S0')' = S1 + S0'$

It turns out that active-low decoders generate maxterms

Active-low Decoder

- So we can use active-low decoders to implement arbitrary functions too, but as a product of maxterms
- For example, here is an implementation of the function $f(x,y,z) = \prod M(4,5,7)$ using an active-low decoder

 The "ground" symbol connected to EN represents logical 0, so this decoder is always enabled

Summary of Decoders

- A n-to-2ⁿ decoder generates the minterms of an n-variable function
 - As such, decoders can be used to implement arbitrary functions
 - Later on we'll see other uses for decoders too
- Some variations of the basic decoder include:
 - Adding an enable input
 - Using active-low inputs and outputs to generate maxterms
- We also talked about:
 - Applying our circuit analysis and design techniques to understand and work with decoders
 - Using block symbols to encapsulate common circuits like decoders
 - Building larger decoders from smaller ones

Encoder

- An encoder is a digital function that performs the inverse operation of a decoder
- Octal-to-Binary Encoder: This encoder has eight inputs, one for each
 of the octal digits, and three outputs that generate the corresponding
 binary number
 - Only one input can have the value of 1 at any given time

Octal-to-Binary Encoder

■ TABLE 4-4
Truth Table for Octal-to-Binary Encoder

	Inputs							Output	s	
D ₇	D 6	D ₅	\mathbf{D}_4	D ₃	D ₂	D ₁	D _O	A ₂	A ₁	A _O
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1
1	0	0	0	0	0	0	0	1	1	

Priority Encoder

- A priority encoder is a combinational circuit that implements a priority function
- Octal-to-Binary: If more than one input is active simultaneously, the output produces an incorrect combination
- Priority Encoder: If two or more inputs are active simultaneously, the input having the highest priority takes precedence

■ TABLE 4-5 Truth Table of Priority Encoder

Inputs					Outputs	
D ₃	\mathbf{D}_2	D ₁	D _o	A ₁	Ao	V
0	0	0	0	×	Х	0
0	O	O	1	0	O	1
0	0	1	X	0	1	1
0	1	X	X	1	O	1
1	X	X	X	1	1	1

4-Input Priority Encoder

4-Input Priority Encoder

Multiplexers

- Multiplexers, or muxes, are used to choose between resources
- A real-life example: in the old days before networking, several computers could share one printer through the use of a switch.

Multiplexers

- A 2^n -to-1 multiplexer sends one of 2^n input lines to a single output line
 - A multiplexer has two sets of *inputs*:
 - 2ⁿ data input lines
 - n select lines, to pick one of the 2ⁿ data inputs
 - The mux output is a single bit, which is one of the 2ⁿ data inputs
- The simplest example is a 2-to-1 mux:

$$Q = S' D0 + S D1$$

- The select bit S controls which of the data bits DO-D1 is chosen:
 - If S=0, then D0 is the output (Q=D0).
 - If S=1, then D1 is the output (Q=D1).

More truth table abbreviations

 Here is a full truth table for this 2-to-1 mux, based on the equation:

S	D1	DO	Q
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- Here is another kind of abbreviated truth table
 - Input variables appear in the output column
 - This table implies that when S=0, the output Q=D0, and when S=1 the output Q=D1
 - This is a pretty close match to the equation

5	Ø
0	DO
1	D1

2-to-1 Mux

4-to-1 Mux

■ TABLE 4-7 Condensed Truth Table for 4-to-1-Line Multiplexer

Տ ₁	S ₀	Y	
	0	Ιο	Y= (S1'S0')I0 + (S1'S0)I1 + (S1S0')I2 + (S1
	1	I_1	7- (3130)10 + (3130)11 + (3130)12 + (31
	0	I_2	
	1	I_3	Decoder

4-to-1 Mux

4-to-1 Mux with Enable Input

EN	S 1	50	Q
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	X	X	1

Quad 4-to-1 Mux

Implementing functions with multiplexers

- Muxes can be used to implement arbitrary functions
- One way to implement a function of n variables is to use an 2^n-to-1 mux:
 - For each minterm m_i of the function, connect 1 to mux data input Di. Each data input corresponds to one row of the truth table
 - Connect the function's input variables to the mux select inputs. These are used to indicate a particular input combination
- For example, let's look at $f(x,y,z) = \sum m(1,2,6,7)$.

X	У	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

A more efficient way

- We can actually implement $f(x,y,z) = \sum m(1,2,6,7)$ with just a 4-to-1 mux, instead of an 8-to-1
- Step 1: Find the truth table for the function, and group the rows into pairs. Within each pair of rows, x and y are the same, so f is a function of z only.
 - When xy=00, f=z
 - When xy=01, f=z'
 - When xy=10, f=0
 - When xy=11, f=1
- Step 2: Connect the first two input variables of the truth table (here, x and y) to the select bits S1 S0 of the 4-to-1 mux.
- Step 3: Connect the equations above for f(z) to the data inputs D0-D3.

×	У	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Example: multiplexer-based adder

- Let's implement the adder carry function, C(X,Y,Z), with muxes
- There are three inputs, so we'll need a 4-to-1 mux
- The basic setup is to connect two of the input variables (usually the first two in the truth table) to the mux select inputs

X	У	Ζ	С
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

With S1=X and S0=Y, then Q=X'Y'D0+X'YD1+XY'D2+XYD3

Multiplexer-based carry

 We can set the multiplexer data inputs DO-D3, by fixing X and Y and finding equations for C in terms of just Z.

X	У	Z	С
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

When XY=00, C=0

When XY=01, C=Z

When XY=10, C=Z

When XY=11, C=1

$$C = X' Y' DO + X' Y D1 + X Y' D2 + X Y D3$$

= $X' Y' O + X' Y Z + X Y' Z + X Y 1$
= $X' Y Z + X Y' Z + XY$
= $\Sigma m(3,5,6,7)$

Multiplexer-based sum

Here's the same thing, but for the sum function S(X,Y,Z)

X	У	Ζ	5
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

When XY=00, S=Z

When XY=01, S=Z'

When XY=10, S=Z'

When XY=11, S=Z

$$S = X' Y' DO + X' Y D1 + X Y' D2 + X Y D3$$

= $X' Y' Z + X' Y Z' + X Y' Z' + X Y Z$
= $\Sigma m(1,2,4,7)$

Dual multiplexer-based full adder

- We need two separate 4-to-1 muxes: one for C and one for S
- But sometimes it's convenient to think about the adder output as being a single 2-bit number, instead of as two separate functions
- A dual 4-to-1 mux gives the illusion of 2-bit data inputs and outputs
 - It's really just two 4-to-1 muxes connected together

Dual muxes in more detail

- You can make a dual 4-to-1 mux by connecting two 4-to-1 muxes. ("Dual" means "two-bit values.")
- In the diagram on the right, we're using S1-S0 to choose one of the following pairs of inputs:
 - 2D3 1D3, when S1 S0 = 11
 - 2D2 1D2, when S1 S0 = 10
 - 2D1 1D1, when S1 S0 = 01
 - 2D0 1D0, when S1 S0 = 00

Selecting based on 3-state buffers

Selecting based on TGs

Summary of Muxes

- A 2ⁿ-to-1 multiplexer routes one of 2ⁿ input lines to a single output line
- Just like decoders,
 - Muxes are common enough to be supplied as stand-alone devices for use in modular designs.
 - Muxes can implement arbitrary functions
- We saw some variations of the standard multiplexer:
 - Smaller muxes can be combined to produce larger ones
 - We can add active-low or active-high enable inputs
- As always, we use truth tables and Boolean algebra to analyze things