THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Solutions to Truth Tables – Week 2 Tutorials

MATH1064: Discrete Mathematics for Computing

- 1. Use De Morgan's laws to find the negation of each of the following propositions.
 - (a) Kwame will take a job in industry or do a masters.

Solution: Let p be the proposition "Kwame will take a job in industry" and q be the proposition "Kwame will do a masters". Then the proposition is equivalent to $p \lor q$. De Morgan's laws give $\neg (p \lor q) \equiv \neg p \land \neg q$. So the negation is equivalent to "Kwame will not take a job in industry and not do a masters."

(b) Yoshiko knows Java and calculus.

Solution: Do this as above!

(c) James is young and strong.

Solution: Do this as above!

(d) Rita will move to Melbourne or Brisbane.

Solution: Do this as above!

- **2.** Draw truth tables for the following propositions.
 - (a) $\neg (p \lor q)$.

Solution:

p	q	$p \lor q$	$\neg(p \lor q)$
T	T	T	F
T	F	T	F
$\boldsymbol{\mathit{F}}$	T	T	F
F	F	F	T

(b) $\neg p \land \neg q$.

Solution:

(c) $p \land (p \rightarrow q)$.

Solution:

p	q	p o q	$p \wedge (p \rightarrow q)$
T	T	T	T
T	$\boldsymbol{\mathit{F}}$	F	F
$\boldsymbol{\mathit{F}}$	T	T	F
$\boldsymbol{\mathit{F}}$	F	T	F

- **3.** Show that the following pairs of propositions are equivalent:
 - (a) $(p \lor q) \to r$; $(\neg p \land \neg q) \lor r$.

Solution: This can be done with logical eqln -s ../header.tex header.texuivalences or truth tables. Here is a solution showing that the two given propositions have the same truth table. The truth tables for the two given propositions are:

p	q	r	$p \lor q$	$(p \lor q) \to r$
T	T	T	T	T
T	T	F	T	F
T	$\boldsymbol{\mathit{F}}$	T	T	T
T	$\boldsymbol{\mathit{F}}$	F	T	F
$\boldsymbol{\mathit{F}}$	T	T	T	T
$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$	T	F
$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	T	F	T
$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	F	F	T

p	q	r	$\neg p$	$\neg q$	$\neg p \land \neg q$	$(\neg p \land \neg q) \lor r$
\overline{T}	T	T	F	\overline{F}	F	T
T	T	F	F	F	F	F
T	F	T	F	T	F	T
T	F	F	F	T	F	F
F	T	T	T	$\boldsymbol{\mathit{F}}$	F	T
$\boldsymbol{\mathit{F}}$	T	F	T	F	F	F
F	F	T	T	T	T	T
$\boldsymbol{\mathit{F}}$	F	F	T	T	T	T

Since the given propositions have the same truth tables, they are equivalent.

(b) $p \rightarrow \neg q$; $q \rightarrow \neg p$.

Solution: This can be done with logical equivalences or truth tables. Here is a solution showing that the two given propositions have the same truth table.

			ı
p	q	$\neg q$	$p ightarrow \neg q$
T	T	F	F
T	$\boldsymbol{\mathit{F}}$	T	T
F	T	F	T
F	$\boldsymbol{\mathit{F}}$	T	T
		'	
p	q	$ \neg p $	q ightarrow eg p
$\frac{p}{T}$	$\frac{q}{T}$	$\neg p$ F	$\begin{array}{ c c }\hline q \to \neg p \\ \hline F \\ \hline \end{array}$
T	T	\overline{F}	F

Since the given propositions have the same truth tables, they are equivalent.

4. Show that

(a) $(p \land q) \land \neg (p \lor q)$ is a contradiction.

Solution: We have

p	q	$p \lor q$	$\neg(p \vee q)$	$(p \wedge q)$	$(p \land q) \land \neg (p \lor q)$
\overline{T}	T	T	\overline{F}	T	F
T	$\boldsymbol{\mathit{F}}$	T	F	F	F
F	T	T	F	F	F
F	F	F	T	F	F

Since every entry in the last column is F, the given proposition is a contradiction.

(b) $((p \lor q) \land \neg q) \to p$ is a tautology.

Solution: We have

p	q	$(p \lor q)$	$\neg q$	$((p \vee q) \wedge \neg q)$	$((p \vee q) \wedge \neg q) \to p$
T	T	T	F	F	T
T	$\boldsymbol{\mathit{F}}$	T	T	T	T
F	T	T	$\boldsymbol{\mathit{F}}$	F	T
$\boldsymbol{\mathit{F}}$	F	F	T	F	T

Since every entry in the last column is T, the given proposition is a tautology. Again, this can also be shown using logical equivalences.

5. For each of the following propositions, write down its truth table and determine whether or not it is a tautology or contradiction.

(a)
$$(p \land \neg q) \rightarrow \neg (p \rightarrow q)$$

Solution: Let $s = (p \land \neg q) \rightarrow \neg (p \rightarrow q)$. Then the truth table for the proposition s is

p	q	$\neg q$	$p \wedge \neg q$	$(p \to q)$	$\neg(p \to q)$	s
				T	F	T
_	F	_	T	F	T	T
	T		F	T	F	T
$\boldsymbol{\mathit{F}}$	F	T	F	T	F	T

Since every entry in the last column is T, the given proposition is a tautology.

(b) $(p \land \neg q) \land (\neg p \lor q)$

Solution: We have

p	q	$\neg p$	$\neg q$	$(p \land \neg q)$	$(\neg p \vee q)$	$(p \land \neg q) \land (\neg p \lor \neg q)$
\overline{T}	T	F	F	F	T	F
T	$\boldsymbol{\mathit{F}}$	F		T	F	F
F	T	T	F	F	T	F
F	$\boldsymbol{\mathit{F}}$	T	T	F	T	F

Since every entry in the last column is F, the given proposition is a contradiction.

(c) $(p \rightarrow q) \rightarrow (\neg p \lor q)$,

Solution: The truth table for the given proposition is

p	q	$(p \rightarrow q)$	$\neg p$	$(\neg p \vee q)$	$(p \to q) \to (\neg p \lor q)$
T	T	T	\overline{F}	T	T
T	$\boldsymbol{\mathit{F}}$	F	$\boldsymbol{\mathit{F}}$	F	T
F	T	T	T	T	T
$\boldsymbol{\mathit{F}}$	F	T	T	T	T

Since every entry in the last column is T, the proposition is a tautology.

(d) $(p \land q) \lor \neg (p \rightarrow q)$.

Solution: The truth table for the given proposition is

p	q	$(p \wedge q)$	$(p \to q)$	$\neg(p \to q)$	$(p \land q) \lor \neg (p \to q)$
T	T	T	T	F	T
T	$\boldsymbol{\mathit{F}}$	F	F	T	T
F	T	F	T	F	F
F	$\boldsymbol{\mathit{F}}$	F	T	F	F

Since not every entry in the last column is true, it is not a tautology; and since not every entry in the last column is false, it is not a contradiction.

6. (*) Dirichlet's approximation theorem states that for any real numbers $\alpha, \beta, \beta \ge 1$, there exist integers p and q such that $1 \le q \le \beta$ and

$$|q\alpha - p| \le \frac{1}{|\beta| + 1} < \frac{1}{\beta}$$

 $([\beta]$ denotes the integer part of β).

Prove Dirichlet's approximation theorem with the help of the pigeon hole principle.

Solution: For simplicity, denote the integer part of β by $b = \lfloor \beta \rfloor$. Moreover, define $0 \le \alpha_q = \alpha_q - \lfloor \alpha_q \rfloor < 1$ for all integers $1 \le q \le b$.

Now, consider the disjoint real intervals $I_k = \left[\frac{k-1}{b+1}, \frac{k}{b+1}\right]$ for all integers $1 \le k \le b+1$. Observe that any real number between 0 and up to, but not including, 1 is contained in one of those intervals. In particular, every α_q is contained in one of these intervals.

Suppose there exists an integer q such that $\alpha_q \in \left[0, \frac{1}{b+1}\right)$, then

$$0 \le \alpha_q = \alpha q - \lfloor \alpha q \rfloor < \frac{1}{b+1} = \frac{1}{|\beta|+1} < \frac{1}{\beta}$$

and we are done by taking $p = \lfloor \alpha q \rfloor$.

Suppose that this is not the case, but suppose that there exists q such that $\alpha_q \in \left[\frac{b}{b+1}, 1\right)$, then

$$\frac{b}{b+1} \le \alpha_q = \alpha q - \lfloor \alpha q \rfloor < 1$$

and hence

$$-\frac{1}{b+1} \le \alpha q - \lfloor \alpha q \rfloor - 1 < 0$$

and after multiplying by (-1) we obtain

$$0 < |\alpha q - (\lfloor \alpha q \rfloor + 1)| \le \frac{1}{b+1}$$

and again we are done (by taking $p = (\lfloor \alpha q \rfloor + 1)$).

If neither of the above cases holds, then the b-1 remaining intervals I_k contain the b values of α_q . Therefore, by the Pigeonhole Principle, there are $k_0 \in \{2,\ldots,b\}$ and $q_1 < q_2$ such that $\alpha_{q_1}, \alpha_{q_2} \in I_{k_0}$.

Then for $i \in \{1, 2\}$

$$\frac{k_0-1}{b+1} \le \alpha q_i - \lfloor \alpha q_i \rfloor < \frac{k_0}{b+1}.$$

In particular,

$$|lpha q_2 - lpha q_1 - \lfloor lpha q_2
floor + \lfloor lpha q_1
floor| < rac{1}{b+1}$$

and hence

$$\alpha(q_2-q_1)-(\lfloor\alpha q_2\rfloor-\lfloor\alpha q_1\rfloor)<\frac{1}{b+1}<\frac{1}{\beta}$$

and taking $q=(q_2-q_1)$ and $p=\lfloor \alpha q_2 \rfloor - \lfloor \alpha q_1 \rfloor$ completes the construction.