

MANDI PRICE PREDICTION
BY
SUDHANSU TAPARIA

CONTENTS

acknowledgement	Error! Bookmark not defined.
Project Purpose	3
About our sponsor	Error! Bookmark not defined.
About the Dataset	4
Attributes	4
Challenges Faced	8
Solution to the Challenges Faced	8
Exploratory Data Analysis	9
Imputation for missing values	9
Variables selected for modelling	9
Summary statistics of variables	10
Exploratory data analysis plots	11
Scatter Plots	11
box and whiskers plot	13
Correlation and covariance matrix	16
Correlation matrix	16
Covariance matrix	16
Clustering characterstics of The Dataset	17
Clustering the Group of crops with K-Means Clustering	17
Output interpretation	17
Price prediction using Multiple linear regression	18
Loading the CSV data file into R Studio	18
Handling categorical variables using dummy variable	18
Log Transformation of variables	18
Partition the dataset into Training and Test set	18
Handling NA values	18
Multiple Linear Regression Model	19
Model 1	19
Model 1: Prediction Accuracy and summary	20
Model 1: Interpretation of the Regression output	20
Model 1: Multiple Linear Regression Regression subset plot	21
Model 1: Residuals vs fitted value plot	21
Model 1: Finding the influential observations using cooks distance	
Model 1: Q-Q Plot of Residuals	
Price Prediction using Time series forecasting	23
Basic Statistics of Data to be used for Time series forecasting	23
Visualization of Time Series Plots	23

	Model 1: Mean Method	24
	Model 2: Naïve Forecast Method	24
	Model 3: Exponential Smoothing	26
	Model 4: ARIMA Model	28
	Model 4: ACF Plot	28
	Model_4:_PACF Plot	28
	Diagnostic tests using ljung box test	29
Ma	ndi Price Predictor Mobile Application	30
V	Wireframes of mobile Application	30

PROJECT PURPOSE
The demand for e-market in agriculture is increasing YoY. With it, there is considerable interest in automation of trading and farming. In the developing countries like India, there are no standardized rules for prices/rates for which traders are always at a gain than farmers. For the benefit of farmers, government institutions, and other policy makers we attempt to build a system by taking various factors like rainfall, past mandi pricing, the cost of cultivation to predict the mandi price. A strict and stringent reform policies can be implemented by the policy makers which benefits the farmers in the country.
PAGE 3

ABOUT THE DATASET

The primary sources of dataset which were used in our analysis comprised of the

- Mandi Prices Dataset
- Monthly Rainfall Dataset
- Cost of Cultivation Dataset

Mandi Prices Dataset

Mandi Prices Dataset consists of Maximum, Minimum and Mode of Prices at which crops were sold in the market. It also consists of attributes such as Group of the crop which suggest if the crop is a type of cereal or pulses etc., the arrival quantity of the crop in the market and its unit, the unit of the selling price, state name etc.

Monthly Rainfall Dataset

Monthly Rainfall Dataset consists of the average rainfall per month per year for each District. It consists of columns Year, Individual Months, State, District and the Annual Total Rainfall.

Cost of Cultivation Dataset

Cost of Cultivation Dataset consists of various costs involved in cultivation of crops. It consists of columns such as Labor Cost and Labor hours, Machinery Cost and Machinery Hours, Animals Owned Hours and Cost, Total Capital Cost, Insecticide Cost, Manure Cost, Fertilizer Cost Seed, Quantity and Cost etc. The dataset is at a year level for each district and each crop.

ATTRIBUTES

The Mandi Price Dataset has got 33,774,767 records in total with 20 attributes. The Mandi Price Dataset is for data from year 2000-2010 but for year 2000-2003 the data is not available in the sheet. Hence we are only considering the data from 2004-2010

The Monthly Rainfall Dataset has got 707 records in total with 16 attributes. The Monthly Rainfall data is also available from 2004-2010

The Cost of Cultivation Dataset has got 2,42,446 records in total with 78 attributes. The data is available for years from 2004-2012. But since we do not have the mandi prices dataset and the monthly rainfall dataset for 2011-2012 we will be only considering the period of 2004-2010 for our analysis.

Mandi Price Dataset	Monthly Rainfall Dataset	Cost of Cultivation Dataset					
Date	State	State					
Market	District	Crop					
Arrivals	Year	Year					
Unit_of_Arr	January	tehsilcultivator					
Variety	February	Pps					
Min_Prices	March	season					
Max_Prices	April	mainprd_qtl					
Mod_Prices	May	croparea_ha					

Unit_Price	June	mainprd_rs
State	July	byprd_rs
Month	August	famlab_hrs
Year	September	famlab_rs
Dt	October	atchdlab_hrs
missing1	November	atchdlab_rs
c_miss_missing1	December	casuallab_hrs
Group	Annual Total	casuallab_rs
Commodity		hrdanimllab_hrs
Mth		hrdanimllab_rs
n		ownanimllab_hrs
nn		ownanimllab_rs
		hrdmchn_hrs
		hrdmchn_rs
		ownmchn_hrs
		ownmchn_rs
		seed_kg
		seed_rs
		fertn_kg
		fertn_rs
		fertp_kg
		fertp_rs
		fertk_kg
		fertk_rs
		fertoth_kg

	fertoth_rs
	ferttotal_kg
	ferttotal_rs
	Zone
	tehsil_code_d
	Sizegroup
	manure_qtl
	manure_rs
	insecticide_rs
	ownirrimchn_hrs
	ownirrimchn_rs
	hrdirrimchn_hrs
	hrdirrimchn_rs
	misc_rs
	landrevenue_rs
	rpll_rs
	imputedrent_rs
	totaldepre_rs
	totalcapital_rs
	ss_groupno
	area_sel_cr_vil_ha
	nvillages_tehsil
	ngrowers_cluster
	cluster_weight

	cropareainzone_ha
	cropprodinzone_qtl
	Ntehsilsinzone
	n_samp_teh_zone
	area_sel_cr_zn_ha
	Minrent
	Maxrent
	samp_zo_state
	samp_cl_state
	Tenure
	Variety
	canalandothirri_rs
	state_code
	crop_code
	zone_cb
	district_cb
	tehsil_code_cb
	tehsil_cb
	state_11
	district_code
	district_11

CHALLENGES FACED

To build an advanced analytical model to perform Price Prediction Analysis and Clustering Analysis for the market and crop groups we wanted to relate the data and get rid of impurities in the dataset.

Major Challenges that the team faced were:

- The Mandi Price Dataset was not having pricing details for year from 2000-2003
- The Mandi Price Dataset had a lot of junk values (e.g. A Price field consists of values like N.R, blanks values and null values)
- The Price for the commodity in the dataset was in Rupee/Quintal but the arrival quantity was in Tonne.
- The Monthly Rainfall dataset was having columns as Jan, Feb, March month names which needed to be unpivoted.
- The Cost of Cultivation Dataset had district codes instead of actual names which had to be mapped to the Mandi Price Dataset and Monthly Rainfall Dataset.

SOLUTION TO THE CHALLENGES FACED

The Mandi Price Dataset was not having pricing details for year from 2000-2003

We had to let go of the rows for the year from 2000-2003 as there was no data which was available for those days. We only utilized the data from 2004-2010

• The Mandi Price Dataset had a lot of junk values (e.g. A Price field consists of values like N.R, blanks values and null values)

We replaced the N.R. values with 0 instead to make it possible to do aggregations. The blank values were replaced and set to null values. The null values were then handled during data pre-processing and were imputed which is described in the section on Exploratory Data Analysis and Data Pre-Processing.

• The Price for the commodity in the dataset was in Rupee/Quintal but the arrival quantity was in Tonne.

We multiplied the Price of the commodity by 10 to bring it Rupee/Tonne which would be our unit in this study.

• The Monthly Rainfall dataset was having columns as Jan, Feb, March month names which needed to be unpivoted.

The monthly Rainfall Dataset was unpivoted to have the Months on rows instead of columns and can analyze.

• The Cost of Cultivation Dataset had district codes instead of actual names which had to be mapped to the Mandi Price Dataset and Monthly Rainfall Dataset.

We created a bridge table consisting of District Codes and their Names and then connected the Cost of Cultivation Dataset to Mandi Price Dataset and Rainfall Dataset.

EXPLORATORY DATA ANALYSIS

In this section of the document we will focus on the exploratory data analysis of the Mandi Prices Dataset, Monthly Rainfall Dataset and the Cost of Cultivation dataset. We shall also look at the preprocessing/ cleaning performed on the same.

IMPUTATION FOR MISSING VALUES

The below mentioned numeric attributes contain Null values which are impute using the following approach.

For which ever district the rainfall data was NULL, the same was replaced by the average of the rainfall in that State in that month if the same amount of rainfall will happen in that area too.

For which ever district the Cost of Cultivation dataset was NULL, the same was replaced by the average of that price for that crop group in that state in the same month of the year.

VARIABLES SELECTED FOR MODELLING

The following table shows the complete list of variables:

Variable Name	Description	Distinct Count	Mean
PRICE	Price of the crop	63083	181.51
Market	Market Name	820	NA
State	State Name	4	NA
Year	Year	7	NA
Month	Month of Year	12	NA
Group	Crop Group	13	NA
QUANTITY	Quantity of Arrival	57716	171.35
RAINFALL	Amount of Rainfall	1739	71.99
MainProduct_Tonne	Main Product in tonne	788	841.12
CropArea_Hectare	Crop Area in Hectare	749	1.026
FarmLabour_Hours	Farm Labor Hours	791	196.32
FarmLabour_Cost	Farm Labor Cost	792	2185.8
AnimalOwned_Hours	Animal Owned Hour	723	27.99
AnimalOwned_Cost	Animal Owned Cost	772	1105.58

Machinery_Hours	Machinery Hours	469	6.2
Machinery_Cost	Machinery Cost	481	816.09
SeedQuantity_Kg	Seed Quantity in Kg	693	157.95
Seed_Cost	Seed Cost	763	2698.24
FertilizerQuantity_Kg	Fertilizer Quantity in Kg	764	93.79
Fertilizer_Cost	Fertilizer Cost	785	996.49
Manure_Tonne	Manure Quantity in Tonne	530	101.53
Manure_Cost	Manure Cost	534	3245.53
Insectiside_Cost	Insecticide Cost	568	660.51
TotalCapital_Cost	Total Capital Cost	790	101638.55

SUMMARY STATISTICS OF VARIABLES

Market	State	Year	Month	Group	PRICE
Aurangabad : 768 Guja		lin. :2004 Febr	uary: 9909 Ce		Min. : 0.10
					1st Qu.: 80.29
		ledian :2007 Marc		_	Median : 141.44
Bangalore : 552 Punj		lean :2007 Apri			Mean : 181.51
Tumkur : 547		Brd Qu.:2008 May			3rd Qu.: 222.28
Davangere : 540					Max. :116180.31
(Other) :99214				Other) :16354	
QUANTITY RAINFALL	MainProduct	•			r_Cost AnimalOwned_Hours
	.00 Min. :	3.5 Min. :0.0			0 Min. : 0.00
		645.6 1st Qu.:0.6			
		341.1 Median :1.0			
Mean : 171.36 Mean : 72		341.1 Mean :1.0			2186 Mean : 28.00
3rd Qu.: 33.33 3rd Qu.: 122		92.0 3rd Qu.:1.2			
Max. :259213.75 Max. :2281	•	200.0 Max. :3.1	•	•	4805 Max. :248.00
AnimalOwned_Cost Machinery_Hours	Machinery_Cost	SeedQuantity_Kg	Seed_Cost	FertilizerQua	ntity_Kg Fertilizer_Cost
Min. : 0.0 Min. : 0.000	Min. : 0.0) Min. : 0.00	Min. :	0 Min. : 0.0	0.0 Min. : 0.0
1st Qu.: 975.2 1st Qu.: 1.242	1st Qu.: 104.5	1st Qu.: 27.03	1st Qu.: 145	54 1st Qu.: 37.8	30 1st Qu.: 406.3
Median :1105.6 Median : 3.441	Median : 269.0	Median : 79.24	Median : 217	78 Median : 70.4	8 Median: 834.1
Mean :1105.6 Mean : 6.201	Mean : 816.1	. Mean : 157.95	Mean : 269	98 Mean : 93.8	30 Mean : 996.5
3rd Qu.:1390.5 3rd Qu.: 6.201	3rd Qu.: 816.1	3rd Qu.: 157.95	3rd Qu.: 269	98 3rd Qu.: 93.8	30 3rd Qu.: 996.5
Max. :7776.0 Max. :69.524	Max. :14957.7	Max. :8225.00	Max. :8222	25 Max. :822.0	00 Max. :7885.4
Manure_Tonne Manure_Cost	Insectiside_Cos	t TotalCapital_Cos	t		
Min. : 0.00 Min. : 0	Min. : 0.0	Min. : 600			
1st Qu.: 47.06 1st Qu.: 2406	1st Qu.: 108.1	1st Qu.: 59811			
Median : 96.27 Median : 3068	Median : 479.9	Median : 91339			
Mean : 101.54 Mean : 3246	Mean : 660.5	Mean :101639			
3rd Qu.: 105.42 3rd Qu.: 3246	3rd Qu.: 660.5	3rd Qu.:101639			
Max. :1600.00 Max. :89367	Max. :5516.9	Max. :539049			

EXPLORATORY DATA ANALYSIS PLOTS

SCATTER PLOTS

0 10 20 30 40 50 60 70 60 Avg Ma

100 110 120 130 140 150 160 170

BOX AND WHISKERS PLOT

CORRELATION AND COVARIANCE MATRIX

CORRELATION MATRIX

	PRICE	QUANTITY	RAINFALL	MainProduc	CropArea_H	FarmLabour	FarmLabour	AnimalOwn	AnimalOwn	Machinery_	Machinery_0	SeedQuantit	Seed_Cost	FertilizerQu:	Fertilizer_Co	Manure_Tor	Manure_Cos	Insectiside_	TotalCapital_Cost
PRICE	1																		
QUANTITY	0.0178484	1																	
RAINFALL	0.0105752	-0.010875	1																
MainProduc	-0.019293	0.0245349	0.0162657	1															
CropArea_H	0.0008533	0.0520724	-0.041572	0.2862601	1														
FarmLabour	0.0456463	0.0192046	0.0370614	0.1562971	0.4426503	1													
FarmLabour	0.0393874	0.037306	-0.061832	0.1964412	0.7679955	0.6969346	1												
AnimalOwn	0.0315269	-0.010111	0.1058854	-0.019844	-0.245621	0.3441266	-0.197148	1											
AnimalOwn	0.0293084	-0.032055	0.0558358	-0.16075	-0.533295	0.0518404	-0.337422	0.7891735	1										
Machinery_I	-0.04008	0.0318767	-0.07663	0.2748035	0.7639118	0.0264981	0.4894228	-0.62297	-0.719689	1									
Machinery_	-0.045751	0.0272209	-0.080329	0.3197135	0.7145376	-0.037553	0.423995	-0.637812	-0.705819	0.9817265	1								
SeedQuantit	-0.034399	0.0125508	-0.032836	0.4208903	0.309221	0.0039699	0.0882415	-0.364996	-0.413643	0.5401147	0.639784	1							
Seed_Cost	-0.022181	0.0050514	-0.048616	0.4305718	0.3671284	0.1347399	0.2075952	-0.321078	-0.372628	0.5284082	0.6281042	0.9422673	1						
FertilizerQu	-0.037855	0.0341466	-0.082971	0.3391722	0.8017028	0.1095896	0.5584539	-0.622065	-0.723555	0.9639822	0.9605071	0.5525131	0.5675663	1					
Fertilizer_Co	-0.036	0.03378	-0.087371	0.3300427	0.8079779	0.1273403	0.5787195	-0.620855	-0.724649	0.9577313	0.9509787	0.5302497	0.5504102	0.9984992	1				
Manure_Tor	-0.026853	0.0334654	-0.038603	0.3986769	0.6383316	0.3450851	0.4157392	-0.147596	-0.413597	0.6499214	0.6229069	0.3187262	0.3569315	0.6731592	0.6746325	1			
Manure_Cos	0.0046422	0.0035165	0.0558308	0.4175393	0.0398953	0.3504094	0.0249076	0.4848952	0.2250442	-0.137469	-0.155618	-0.13158	-0.078135	-0.110918	-0.106738	0.5219753	1		
Insectiside_	-0.021972	0.0352145	-0.105764	0.1586378	0.8043199	0.1066951	0.6436462	-0.609321	-0.691638	0.9123494	0.8765466	0.3204856	0.3458192	0.9271066	0.9341444	0.6097485	-0.159567	1	
TotalCapital_	-0.049446	0.0187192	-0.089851	0.1901859	0.5958034	-0.131092	0.3570638	-0.71998	-0.698378	0.9034221	0.9201363	0.5133125	0.4812617	0.9092481	0.9057581	0.5568279	-0.237232	0.853514	1

Based on the correlation matrix we can derive a strong relationship between:

- Machinery cost and Machinery hours
- Seed cost and Seed quantity
- Fertilizer quantity with Machinery Hours & Machinery Cost
- Fertilizer cost with Fertilizer Quantity, Machinery Hours & Machinery Cost
- Insecticide cost with Machinery Cost, Fertilizer Quantity, Fertilizer Cost
- Total Capital Cost with Machinery Hours, Machinery Cost, Fertilizer Quantity and Fertilizer Cost

COVARIANCE MATRIX

										1.		1.							
	PRICE	QUANTITY	RAINFALL	Product_T	Area_Hea	Labour_H	nLabour_(alOwned_	halOwned_	chinery_H	achinery_C	dQuantity	Seed_Cost	zerQuantit	rtilizer_Co	nure_Ton	anure_Co	ectiside_0	TotalCapital_Cost
PRICE	165414																		
QUANTITY	11966	2717251																	
RAINFALL	469.847	-1958.31	11933.4																
MainProduct_Tonne	-4893.71	25223.8	1108.2	388977															
CropArea_Hectare	0.13847	34.248	-1.81196	71.2336	0.15919														
FarmLabour_Hours	1338.52	2282.47	291.903	7028.24	12.7338	5198.38													
FarmLabour_Cost	15749.6	60460.1	-6640.82	120454	301.264	49402.8	966611												
AnimalOwned_Hours	188.514	-245.033	170.057	-181.952	-1.4408	364.778	-2849.67	216.149											
AnimalOwned_Cost	6087.77	-26985.9	3115.13	-51202.7	-108.67	1908.9	-169426	5925.55	260831										
Machinery_Hours	-141.931	457.509	-72.8854	1492.26	2.65379	16.6345	4189.59	-79.7452	-3200.26	75.8092									
Machinery_Cost	-25098.9	60525.1	-11836.4	268962	384.552	-3652.09	562282	-12648.4	-486229	11529.7	1819432								
SeedQuantity_Kg	-6111.81	9038.11	-1567.04	114676	53.898	125.043	37900.1	-2344.26	-92288.4	2054.42	377002	190846							
Seed_Cost	-31105.1	28710.7	-18311.8	925918	505.062	33496.2	703733	-16276.2	-656176	15863.4	2921222	1419322	1.2E+07						
FertilizerQuantity_Kg	-1328.97	4858.65	-782.373	18259.4	27.6108	682.036	47393.3	-789.435	-31897.4	724.493	111834	20834.8	168922	7450.89					
Fertilizer_Cost	-12761	48530.4	-8318.34	179399	280.964	8001.82	495887	-7955.28	-322549	7267.64	1117963	201888	1654018	75117.4	759587				
Manure_Tonne	-871.159	4400.3	-336.376	19833.7	20.3156	1984.64	32603.8	-173.09	-16849.2	451.381	67021.2	11106.6	98168.2	4634.93	46900.5	6362.71			
Manure_Cost	4821.57	14803.2	15575.1	665019	40.6499	64518.6	62536.4	18205.4	293510	-3056.62	-536047	-146794	-687999	-24450.2	-237565	106328	6521538		
Insectiside_Cost	-6882.04	44704.1	-8897.8	76195.7	247.146	5924.34	487343	-6898.97	-272032	6117.64	910552	107823	918281	61630.5	626996	37457.1	-313820	593094	
TotalCapital Cost	-1448669	2222796	-707054	8544539	17124.3	-680864	2.5E+07	-762509	-2.6E+07	566631	8.9E+07	1.6E+07	1.2E+08	5653728	5.7E+07	3199562	-4.4E+07	4.7E+07	5189158225

Based on the covariance matrix we can derive the direction of the linear relationship. Major variables have a positive direction of linear relationship while a few like Rainfall and Quantity, Rainfall and Farm Labor Cost is having a negative direction of linear relationship.

CLUSTERING CHARACTERSTICS OF THE DATASET

CLUSTERING THE GROUP OF CROPS WITH K-MEANS CLUSTERING

We perform the cluster analysis using K-means clustering with K set to 3. We also tried our analysis with K set to other numbers but the Clustering came out to be best with K=3.

We used the below code to perform the analysis.

```
#Load the Datafile
Crop=read.csv("D:/ISB/Capstone/Capstone_PredictionData/CapstonePrediction_Data.csv")
#Copy the Crop dataset into another dataset
Crop.f=Crop
#Set the categorical variables to null
Crop.f$Market<-NULL
Crop.f$Year<-NULL
Crop.f$Group<-NULL
Crop.f$State<-NULL
Crop.f$Month<-NULL
#Scale the data to normalize
Crop.stand = scale(Crop.f[-1])
#Perform K means clustering
results<-kmeans(Crop.stand,3)
attributes(results)
#Table of Cluster
table(Crop$Group,results$cluster)
```

And below is the cluster table.

	1	2	3
Cereals	18845	2381	2485
Drug and Narcotics	1821	0	529
Dry Fruits	219	2	69
Fibre Crops	4658	666	654
Flowers	33	0	4
Forest Products	1468	4	458
Fruits	4436	2957	527
Live Stock/Poultry/Fisheries	0	0	1
Oil Seeds	13014	411	1830
Other	4263	25	1480
Pulses	13743	160	1136
Spices	6624	673	896
Vegetables	10791	4233	1274

Overall accuracy of the clustering is around 77%.

OUTPUT INTERPRETATION

The K means cluster analysis with K set to 3 does a decent job in most of the cases apart from Vegetables and Cereals where the clusters overlap each other, but clustering in terms of dry fruits, Flowers, Pulses etc. did a good job.

PRICE PREDICTION USING MULTIPLE LINEAR REGRESSION

LOADING THE CSV DATA FILE INTO R STUDIO

```
#Load the Datafile
Crop=read.csv("D:/ISB/Capstone/Capstone_PredictionData/CapstonePrediction_Data.csv")
```

HANDLING CATEGORICAL VARIABLES USING DUMMY VARIABLE

We have a few categorical variables in our dataset like Group which needs to be converted to dummy variables before they can be used in Multiple Linear Regression.

```
new <- dummy.code(Crop$Group)
new.sat <- data.frame(new,Crop)
round(cor(Crop,use="pairwise"),2)</pre>
```

LOG TRANSFORMATION OF VARIABLES

The variables in our study are quite varied in terms of their unit and hence they require transformation to bring them to the same scale. We tried both square root transformation and log transformation but ultimately used log transformation as it provided us better results.

We have added 1 to the value because some of the data is 0 in our dataset and log10 of 0 becomes infinity which is difficult to handle. Adding one removes that possibility and gives us a better set.

```
#Log Transformation of Variables
new.sat$PRICE.use=log10(new.sat$PRICE+1)
new.sat$QUANTITY.use=log10(new.sat$QUANTITY+1)
new.sat$RAINFALL.use = log10(new.sat$RAINFALL+1)
new.sat$MainProduct_Tonne.use=log10(new.sat$CropArea_Hectare+1)
new.sat$CropArea_Hectare.use=log10(new.sat$CropArea_Hectare+1)
new.sat$FarmLabour_Hours.use=log10(new.sat$FarmLabour_Hours+1)
new.sat$FarmLabour_Cost.use=log10(new.sat$FarmLabour_Cost+1)
new.sat$AnimalOwned_Hours.use=log10(new.sat$AnimalOwned_Hours+1)
new.sat$AnimalOwned_Cost.use=log10(new.sat$AnimalOwned_Cost+1)
new.sat$Machinery_Hours.use=log10(new.sat$Machinery_Hours+1)
new.sat$Machinery_Cost.use=log10(new.sat$Machinery_Cost+1)
new.sat$SeedQuantity_Kg.use=log10(new.sat$SeedQuantity_Kg+1)
new.sat$Seed_Cost.use=log10(new.sat$Seed_Cost+1)
new.sat$FertilizerQuantity_Kg.use=log10(new.sat$FertilizerQuantity_Kg+1)
new.sat$Fertilizer_Cost.use=log10(new.sat$Fertilizer_Cost+1)
new.sat$Manure_Tonne.use = log10(new.sat$Manure_Tonne+1)
new.sat$Manure_Cost.use= log10(new.sat$Manure_Cost+1)
new.sat\$Insectiside\_Cost.use = log10(new.sat\$Insectiside\_Cost+1)
new.sat$TotalCapital_Cost.use = log10(new.sat$TotalCapital_Cost+1)
```

PARTITION THE DATASET INTO TRAINING AND TEST SET

We partitioned the Dataset into the training and test set using the below code which basically divided the dataset into 75% training dataset and 25% test dataset.

```
#Creating Test and Training Set
## 75% of the sample size
smp_size <- floor(0.75 * nrow(new.sat))
## set the seed to make your partition reproductible
set.seed(123)
train_ind <- sample(seq_len(nrow(new.sat)), size = smp_size)
train <- new.sat[train_ind, ]
test <- new.sat[-train_ind, ]</pre>
```

HANDLING NA VALUES

```
#Set NA values to 0 train$Cereals()] <- 0
```

MULTIPLE LINEAR REGRESSION MODEL

MODEL 1

train\$Spices

We build the below model using multiple linear regression:

```
Price of a crop = \beta_0 + \beta_1 * Group of crop +\beta_2 * Quantity of Arrival in market +\beta_3 * Rainfall +\beta_4 * Main Product +\beta_5 * Farm Labor Hours +\beta_6 * Farm Labor Cost +\beta_7 * Animal Owned Hours +\beta_8 * Animal Owned Cost +\beta_9 * Machinery Hours +\beta_{10} * Machinery Cost +\beta_{11} * Fertilizer Quantity +\beta_{12} * Fertilizer Cost +\beta_{13} * Manure Quantity +\beta_{14} * Manure Cost +\beta_{15} * Insecticide Cost +\beta_{16} * Total Capital Cost +\varepsilon
```

```
#Model1
fit.train <- lm(train$PRICE.use ~
                  train$Cereals+
                  train$Drug.and.Narcotics+
                  train$Dry.Fruits+
                  train$Fibre.Crops+
                  train$Flowers+
                  train$Forest.Products+
                  train$Fruits+
                  train$Live.Stock.Poultry.Fisheries+
                  train$0il.Seeds+
                  train$Other+
                  train$Pulses+
                  train$Spices+
                  train$Vegetables+
                  train $OUANTITY.use+
                  train$RAINFALL.use+
                  train$FarmLabour_Hours.use+
                  train Farm Labour Cost.use+
                  train$Insectiside_Cost.use+
                  train$MainProduct_Tonne.use+
                  train$TotalCapital_Cost.use+
                  train$Manure_Cost.use+
                  train$Manure_Tonne.use+
                  train$Fertilizer_Cost.use+
                  train$FertilizerQuantity_Kg.use+
                  train$Seed_Cost.use+
                  train$SeedQuantity_Kg.use+
                  train$Machinery_Cost.use+
                  train$Machinery_Hours.use+
                  train$AnimalOwned_Cost.use+
                  train$AnimalOwned_Hours.use+
                  train$CropArea_Hectare.use
                , data=train)
summary(fit.train)
Coefficients: (2 not defined because of singularities)
                                    Estimate Std. Error t value Pr(>|t|)
                                              0.046629 22.007 < 2e-16 ***
(Intercept)
                                    1.026148
                                               0.002514 13.020 < 2e-16 ***
train$Cereals
                                   0.032727
                                               0.005344 151.804 < 2e-16 ***
train$Drug.and.Narcotics
                                   0.811234
                                   0.812874
                                               0.014370 56.565
                                                                < 2e-16 ***
train$Dry.Fruits
train$Fibre.Crops
                                   0.471324
                                               0.003699 127.408 < 2e-16 ***
                                               0.037861 -5.961 2.51e-09 ***
train$Flowers
                                   -0.225698
train$Forest.Products
                                   -0.008503
                                               0.005854 -1.452 0.146392
                                               0.003302 55.523 < 2e-16 ***
train$Fruits
                                   0.183312
train$Live.Stock.Poultry.Fisheries 0.789181
                                               0.207053
                                                         3.811 0.000138 ***
                                    0.399807
                                               0.002779 143.863 < 2e-16 ***
train$0il.Seeds
                                    0.410699
                                               0.003847 106.766 < 2e-16 ***
train$Other
                                               0.002823 146.741 < 2e-16 ***
train$Pulses
                                    0.414306
```

0.645883

0.003274 197.284 < 2e-16 ***

```
train$QUANTITY.use
                                    0.022530
                                               0.001004
                                                         22.439 < 2e-16 ***
                                               0.000849
                                                         7.656 1.94e-14 ***
                                   0.006500
train$RAINFALL.use
                                   -0.259642
                                               0.016263 -15.966
                                                                < 2e-16 ***
train$FarmLabour_Hours.use
                                                                < 2e-16 ***
                                               0.013189 27.197
train$FarmLabour_Cost.use
                                   0.358683
                                   0.029124
                                               0.002905
                                                        10.027
                                                                < 2e-16 ***
train$Insectiside Cost.use
train$MainProduct_Tonne.use
                                   0.044050
                                               0.023722
                                                          1.857 0.063326 .
                                   0.006027
                                               0.007681
                                                          0.785 0.432692
train$TotalCapital_Cost.use
train$Manure_Cost.use
                                   0.001305
                                               0.004643
                                                          0.281 0.778578
                                               0.007848
train$Manure_Tonne.use
                                   0.004123
                                                          0.525 0.599321
train$Fertilizer_Cost.use
                                   0.174325
                                               0.024378
                                                         7.151 8.70e-13 ***
train$FertilizerQuantity_Kg.use
                                   -0.283519
                                               0.030488
                                                        -9.299
                                                                < 2e-16 ***
                                                                < 2e-16 ***
                                   0.090301
                                               0.005572
                                                        16.205
train$Seed_Cost.use
                                                                < 2e-16 ***
train$SeedQuantity_Kg.use
                                   -0.062313
                                               0.004135 -15.071
                                                                < 2e-16 ***
train$Machinery_Cost.use
                                   -0.036309
                                               0.003802 -9.550
train$Machinery_Hours.use
                                   -0.035706
                                               0.009509
                                                        -3.755 0.000173 ***
                                                                < 2e-16 ***
train$AnimalOwned_Cost.use
                                   0.084149
                                               0.008451
                                                         9.958
                                                                < 2e-16 ***
train$AnimalOwned_Hours.use
                                   -0.146888
                                               0.011739 -12.513
train$CropArea_Hectare.use
                                                                      NA
                                                     NA
                                                             NA
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.207 on 77047 degrees of freedom
Multiple R-squared: 0.5706,
                               Adjusted R-squared: 0.5705
F-statistic: 3531 on 29 and 77047 DF, p-value: < 2.2e-16
```

MODEL 1: PREDICTION ACCURACY AND SUMMARY

```
predTst <- predict(fit.train, test, interval="prediction")</pre>
summary(predTst)
      fit
                      lwr
                                       upr
                 Min.
       :1.544
                       :1.131
                                        :1.956
1st Qu.:1.909
                 1st Qu.:1.504
                                  1st Qu.:2.315
Median :2.197
                 Median :1.791
                                  Median : 2.603
       :2.140
                 Mean :1.734
                                  Mean :2.546
Mean
                 3rd Qu.:1.902
 3rd Qu.:2.308
                                  3rd Qu.:2.713
       :2.864
                       :2.458
                                        :3.274
Max.
                 Max.
                                  Max.
rmse <- function(error)</pre>
 sqrt(mean(error∧2))
rmse(fit.train$residuals)
> rmse(fit.train$residuals)
[1] 0.206989
```

Above is the result of the linear regression model on the test data which predicts the lower bound, upper bound and the fit value for the model. We also have predicted the RMSE value of the model which comes out to be 0.206989 which is high in price predictions.

MODEL 1: INTERPRETATION OF THE REGRESSION OUTPUT

- The intercept value(β_0) is 1.0268.
- Most of the variables are all statistically significant.
- The multiple R² which is the percentage of variation in the response variable that is explained by the variations in the explanatory variables is rather good at about 0.5706.
- The adjusted R² is almost same as R²
- The RMSE for the model is 0.2069 which means that the multiple linear regression model has an accuracy percentage of 20.69 %.

MODEL 1: MULTIPLE LINEAR REGRESSION REGRESSION SUBSET PLOT

Adjusted R^2

MODEL 1: RESIDUALS VS FITTED VALUE PLOT

MODEL 1: FINDING THE INFLUENTIAL OBSERVATIONS USING COOKS DISTANCE

MODEL 1: Q-Q PLOT OF RESIDUALS

PRICE PREDICTION USING TIME SERIES FORECASTING

BASIC STATISTICS OF DATA TO BE USED FOR TIME SERIES FORECASTING

In this model we try to work with the Mandi Prices Dataset and try to construct a time series forecasting model at a grain of a day level.

Below we point the basic statistics of the data at hand.

```
> start(CropPrices)
[1] "2004-01-01"
> end(CropPrices)
[1] "2010-05-05"
> frequency(CropPrices)
[1] 1
> summary(CropPrices)
     Index
                        CropPrices
        :2004-01-01
                              :-0.7393334
Min.
                      Min.
 1st Qu.:2005-08-01
                      1st Qu.:-0.0317695
Median :2007-03-02
                      Median :-0.0002122
       :2007-03-02
                             : 0.0058404
Mean
                      Mean
 3rd Qu.:2008-09-30
                      3rd Qu.: 0.0333135
        :2010-05-05
Max.
                             : 3.0870161
                      NA's
                              :1
```

VISUALIZATION OF TIME SERIES PLOTS

There seems to be a growing pattern in the time series apart from the lag at latter half. We will try to perform the Time Series forecasting to forecast the future values.

MODEL 1: MEAN METHOD

We wanted to first try a very simple method of forecasting the prices of crop groups in a market in a state using the average method. The forecasts of all the future values are equal to the mean of the historical data.

```
meanf(Data$Price, 20)
```

And here is the forecast we got based on this very simple and elegant model.

	Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
1		787.2035	565.7332	1008.674	448.4133	1125.994
2		787.2035	565.7332	1008.674	448.4133	1125.994
3		787.2035	565.7332	1008.674	448.4133	1125.994
4		787.2035	565.7332	1008.674	448.4133	1125.994
5		787.2035	565.7332	1008.674	448.4133	1125.994
6		787.2035	565.7332	1008.674	448.4133	1125.994
7		787.2035	565.7332	1008.674	448.4133	1125.994
8		787.2035	565.7332	1008.674	448.4133	1125.994
9		787.2035	565.7332	1008.674	448.4133	1125.994
10		787.2035	565.7332	1008.674	448.4133	1125.994
11		787.2035	565.7332	1008.674	448.4133	1125.994
12		787.2035	565.7332	1008.674	448.4133	1125.994
13		787.2035	565.7332	1008.674	448.4133	1125.994
14		787.2035	565.7332	1008.674	448.4133	1125.994
15		787.2035	565.7332	1008.674	448.4133	1125.994
16		787.2035	565.7332	1008.674	448.4133	1125.994
17		787.2035	565.7332	1008.674	448.4133	1125.994
18		787.2035	565.7332	1008.674	448.4133	1125.994
19		787.2035	565.7332	1008.674	448.4133	1125.994
20		787.2035	565.7332	1008.674	448.4133	1125.994

MODEL 2: NAÏVE FORECAST METHOD

We also developed another simple yet elegant method, the naïve forecast method. The method says that all observations are simply set to be the value of the last observation.

rwf(Data\$Price, 20)

```
Point Forecast
                       Lo 80
                                Hi 80
                                                   Hi 95
2315
           980.9267 892.2499 1069.603 845.3073 1116.546
2316
           980.9267 855.5188 1106.334 789.1319 1172.721
           980.9267 827.3341 1134.519 746.0271 1215.826
2317
2318
           980.9267 803.5732 1158.280 709.6880 1252.165
2319
           980.9267 782.6395 1179.214 677.6726 1284.181
2320
           980.9267 763.7139 1198.139 648.7285 1313.125
2321
           980.9267 746.3101 1215.543 622.1116 1339.742
2322
           980.9267 730.1110 1231.742 597.3372 1364.516
2323
           980.9267 714.8965 1246.957
                                       574.0686 1387.785
2324
           980.9267 700.5062 1261.347
                                       552.0606 1409.793
           980.9267 686.8192 1275.034 531.1282 1430.725
2325
2326
           980.9267 673.7415 1288.112 511.1274 1450.726
2327
           980.9267 661.1982 1300.655 491.9441 1469.909
2328
           980.9267 649.1287 1312.725 473.4855 1488.368
                                                1506.178
2329
           980.9267 637.4832
                             1324.370 455.6752
           980.9267 626.2198 1335.634 438.4493 1523.404
2330
2331
           980.9267 615.3032 1346.550 421.7538 1540.100
2332
           980.9267 604.7032 1357.150 405.5425 1556.311
           980.9267 594.3938 1367.460 389.7756 1572.078
2333
2334
           980.9267 584.3523 1377.501 374.4185 1587.435
```

We also tried the seasonal naïve method as well as crops could be prone to seasonality:

```
snaive(Data$Price, 20)
```

```
Lo 95
     Point Forecast
                       Lo 80
                                 Hi 80
2315
           980.9267 892.2499 1069.603 845.3073 1116.546
2316
           980.9267 855.5188 1106.334 789.1319 1172.721
2317
           980.9267 827.3341 1134.519 746.0271 1215.826
2318
           980.9267
                    803.5732 1158.280 709.6880 1252.165
2319
           980.9267
                    782.6395 1179.214 677.6726 1284.181
           980.9267 763.7139 1198.139 648.7285 1313.125
2320
           980.9267 746.3101 1215.543 622.1116 1339.742
2321
2322
           980.9267 730.1110 1231.742 597.3372 1364.516
2323
           980.9267 714.8965 1246.957 574.0686 1387.785
2324
           980.9267
                    700.5062 1261.347
                                       552.0606 1409.793
2325
           980.9267 686.8192 1275.034 531.1282 1430.725
2326
           980.9267 673.7415 1288.112 511.1274 1450.726
2327
           980.9267 661.1982 1300.655 491.9441 1469.909
           980.9267 649.1287 1312.725 473.4855 1488.368
2328
2329
           980.9267
                    637.4832 1324.370 455.6752 1506.178
2330
           980.9267 626.2198 1335.634 438.4493 1523.404
2331
           980.9267 615.3032 1346.550 421.7538 1540.100
2332
           980.9267 604.7032 1357.150 405.5425 1556.311
           980.9267
                    594.3938 1367.460 389.7756 1572.078
2333
2334
                    584.3523 1377.501 374.4185 1587.435
```

We also tried the DRIFT method which allows the forecast to increase or decrease where the amount of change over time (called the drift) is set to be the average change seen in the historical data.

fit=rwf(Data\Price, 20, drift=TRUE)

	Point	Forecast	Lo 80	ні 80	Lo 95	ні 95
2315		981.1152	892.4196	1069.811	845.4670	1116.763
2316		981.3037	855.8421	1106.765	789.4267	1173.181
2317		981.4922	827.8005	1135.184	746.4411	1216.543
2318		981.6807	804.1745	1159.187	710.2084	1253.153
2319		981.8692	783.3684	1180.370	678.2885	1285.450
2320		982.0577	764.5641	1199.551	649.4299	1314.685
2321		982.2462	747.2756	1217.217	622.8897	1341.603
2322		982.4347	731.1864	1233.683	598.1836	1366.686
2323		982.6232	716.0767	1249.170	574.9755	1390.271
2324		982.8117	701.7865	1263.837	553.0208	1412.603
2325		983.0002	688.1950	1277.805	532.1346	1433.866
2326		983.1887	675.2085	1291.169	512.1736	1454.204
2327		983.3772	662.7523	1304.002	493.0237	1473.731
2328		983.5657	650.7659	1316.365	474.5924	1492.539
2329		983.7542	639.1997	1328.309	456.8035	1510.705
2330		983.9427	628.0119	1339.874	439.5935	1528.292
2331		984.1312	617.1673	1351.095	422.9084	1545.354
2332		984.3197	606.6359	1362.004	406.7022	1561.937
2333		984.5082	596.3918	1372.625	390.9353	1578.081
2334		984.6967	586.4122	1382.981	375.5731	1593.820

MODEL 3: EXPONENTIAL SMOOTHING

We will try to build the model using the holt winters method below

```
# simple exponential - models level
fit.mean <- HoltWinters(x=Data$Price, alpha = 0.2,beta=FALSE, gamma=FALSE)
#Predicting 100 days ahead in time
fit.predict <-predict(fit.mean,n.ahead=100,prediction.interval=TRUE)
fit.predict
#Plot of fitted value upper bound and lower bound
plot.ts(Data$Price,xlim=c(0,2414))
lines(fit.mean$fitted[,1],col="green")
lines(fit.predict[,1],col="blue")
lines(fit.predict[,2],col="red")
lines(fit.predict[,3],col="red")</pre>
```


The green line shows exponentially weighted moving average of the fitted value as we chose alpha = 0.2, the blue line shows the prediction and the red lines show the upper and lower bound of the prediction.

Here below are the predicted values.

	fit	upr	lwr
2315	871.03	982.7992	759.2608
2316	871.03	985.0127	757.0473
2317	871.03	987.1840	754.8760
2318	871.03	989.3154	752.7446
2319	871.03	991.4091	750.6509
2320	871.03	993.4671	748.5930
2321	871.03	995.4909	746.5691
2322	871.03	997.4825	744.5776
2323	871.03	999.4431	742.6170
2324	871.03	1001.3742	740.6858
2325	871.03	1003.2771	738.7829
2326	871.03	1005.1531	736.9070
2327	871.03	1007.0031	735.0569
2328	871.03	1008.8284	733.2317

We now try to add a trend to the model by setting the beta.

```
# simple exponential - models level
fit.mean <- HoltWinters(x=Data$Price, alpha = 0.2,beta=0.1, gamma=FALSE)
#Predicting 100 days ahead in time
fit.predict <-predict(fit.mean,n.ahead=100,prediction.interval=TRUE)
fit.predict
#Plot of fitted value upper bound and lower bound
plot.ts(Data$Price,xlim=c(0,2414))
lines(fit.mean$fitted[,1],col="green")
lines(fit.predict[,1],col="blue")
lines(fit.predict[,2],col="red")
lines(fit.predict[,3],col="red")</pre>
```


Now we see that it has added a trend which is going upwards. This will help in predicting the trend of the prices. The predicted data and trend looks like below.

```
upr
2315
      902.8731 1017.639 788.1068
2316
      911.6374 1029.148 794.1266
2317
      920.4017 1041.097 799.7060
2318
      929.1660 1053.496 804.8365
2319
      937.9303 1066.346 809.5152
      946.6947 1079.645 813.7440
2320
2321
      955.4590 1093.389 817.5292
      964.2233 1107.566 820.8803
2322
2323
      972.9876 1122.166 823.8091
2324
      981.7519 1137.174 826.3294
      990.5162 1152.577 828.4559
2325
2326
      999.2805 1168.357 830.2037
2327 1008.0449 1184.501 831.5883
2328 1016.8092 1200.994 832.6245
2329 1025.5735 1217.820 833.3272
2330 1034.3378 1234.965 833.7101
2331 1043.1021 1252.418 833.7866
2332 1051.8664 1270.164 833.5691
2333 1060.6307 1288.192 833.0692
2334 1069.3951 1306.492 832.2979
```

MODEL 4: ARIMA MODEL

We also build an ARIMA based model to predict the price of a crop group in a market in a State. We are going to determine the number of AR and MA terms using AUTO.ARIMA function.

Coefficients:

```
ar1
             ar2
                      ar3
                                ar4
                                                 ma2
                                        ma1
-0.7828
         -0.0097
                  -0.0522
                           -0.1194
                                     0.0687
                                             -0.4410
0.0768
          0.0685
                   0.0496
                            0.0264
                                    0.0755
                                             0.0602
```

sigma^2 estimated as 3090: log likelihood=-12572.81
AIC=25159.62 AICc=25159.66 BIC=25199.84

The output of AUTO.ARIMA tells us that there are total of 4 AR terms and 2 MA terms.

ACF PLOT

PACF PLOT

We then tried to build the ARIMA model using these features.

```
acf(Data$Price)
pacf(Data$Price)
auto.arima(Data$Price)
fit1<- arima(Data$Price, order = c(4,0,2))</pre>
```

DIAGNOSTIC TESTS USING LJUNG BOX TEST

We performed the diagnostic tests on the model using the LJung-Box test.

But since the p value is very low for this model the model is not so good at prediction of the price of the crop.

MANDI PRICE PREDICTOR MOBILE APPLICATION

We have formulated an idea to develop a mobile application which will help both farmers and traders get a price prediction of various crop groups in their local markets. The app will be powered by an API which will continuously be feed by the Mandi price market data, rainfall data and the cost of cultivation data. We present below the wireframes of the mobile application:

WIREFRAMES OF MOBILE APPLICATION

The app can be easily downloaded from play store. The is using a symbol of swastika on a crop field which is very auspicious. The UI is kept extremely simple so that any individual with the very basic knowledge of how to operate a mobile phone can use this application. The application ask user to provide the State and the Market name and will in turn provide the Prices for all the Crop groups in that market. It will also provide an indicator which will suggest if the price has moved up or down month on month in that market.

