Mittwoch, 6. Mai 2020

15:58

3. Theoretische Fragen

3.1 Konstruktoren und Destruktoren

main1;

Anton ctor;

Berta ctor;

main2;

Anton body;

main3;

Berta dtor;

Anton dtor;

3.2 Gültigkeitsbereiche von Variablen

- das Objekt Anton wird an Stelle 15 auf dem Stack gespeichert
- damit zeigt front auf die Stelle 15 vom Stack
- Berta wird an der gleichen Stelle gespeichert
 - -> Adresse, auf die front zeigt, wird überschrieben
 - -> Aufruf quasi von berta.body()

3.3 Kontrollfragen

- 1. Was ist ein Prozess im Sinne der Informatik? Durch welche Teile definiert er sich?
 - Programm in Ausführung
 - eigener Laufzeitkontext
 - PROZESS DES KOCHENS
 - bezeichnet ein im Ablauf befindliches Computerprogramm
 - besteht aus
 - o Programm samt Daten
 - Prozesskontext
 - Prozess P ist ein Tripel (S, f, s)
 - S = Zustandsraum
 - o f = Aktionsfunktion
 - o s ⊂ S = Anfangszustände des Prozesses P
- 2. Warum ist die Abstraktion eines Prozesses sinnvoll? Betrachte hierbei den Aspekt der Monopolisierung einer CPU!
- 3. Was versteht man konkret unter einem Prozesswechsel (welche notwendigen Schritte müssen unternommen werden)? - Wechsel von einem Prozess zu einen anderen
 - schwergewichtete Prozesse
 - o erfordern Adressraumwechsel, da eigener Adressraum
 - leichtgewichtige Prozesse(threads)
 - o kein Adressraumwechsel nötig
 - Adressraum
 - o besteht aus 4 logischen Speicherbereichen
 - Code- oder Textsegment
 - Datensegment
 - Heapsegment
 - Stack
- 4. Wie sieht ein Prozesswechsel dementsprechend auf der x86 Hardware aus?

```
switchContext:
;> fuegt hter Euren Code ein!
push ebp
mov ebp, esp

push edi
push esi
push esi
push esi
mov eax, [ebp + 8]
mov [eax], esp
mov eax, [ebp + 12]
mov esp, [eax]

pop ebx

pop esi
pop edi
pop ebb

index

pret => ; Ruecksprung zum Aufrufer
```

- 5. Wie sieht der Stack beim ersten Wechsel zu einem Prozess aus?
 - das ist der Stack von der main
- 6. Was ist ein Prozesskontrollblock und was beschreibt er?
 - enthält alle zu einem einzelnen Prozess gehörenden Verwaltungsinformationen
 - o Prozess-ID
 - o CPU-Register
 - Ausführungszustand
 - o Adressraum
 - sobald neuer Prozess: neuer PCB wird als Verwaltungsstruktur angelegt
 - für jeden Prozess existiert somit ein eigener PCB
- 7. In welchem Kontext macht ein Prozesskontrollblock Sinn?
 - wenn man viele Prozesse hat und diese verwalten muss
 - wenn man die Reihenfolge der Prozessaufrufe steuern will
- 8. Welche Arten von Prozessverwaltung gibt es?
 - User-Level Threads
 - Verwaltung im User-Space
 - o BS kennt nur den Prozess, nicht die Threads
 - Kernel-Level Threads
 - o BS verwaltet Threads
- 9. Nenne und erkläre grundlegende Algorithmen der Prozessverwaltung!
 - Dispatcher
 - Worker
- 10. Was ist eine Ready-Liste und wozu dient sie?
 - beinhaltet alle lauffähigen Prozesse
 - wenn ein Prozess den Löffel abgibt, weiß die Liste, welcher Prozess als nächstes kommt
- 11. Müssen Prozesse beendet werden? Wenn ja, wann und wie? Wenn nein, warum nicht? Wie lange existieren Prozesse dann?
 - **-** ja
- o selbstständig, erklärt sich mittels Systemaufruf als beendet
- unselbstständig
 - aus Warteschlange gelöscht
 - von anderem Prozess beendet
- sollte vor Ende sämtliche Dateien schließen und jegliche Ressourcen zurückgeben
- 12. Was ist eine Coroutine?
 - Basis aller Prozesse
 - "Prozeduren" mit eigenem Laufzeitkontext
 - o Kontrollfluss kann von einer Coroutine zur anderen explizit transferiert werden
 - viel mächtiger als Prozeduraufrufe
 - o Kontrolltransfer nicht hierarchisch eingeschränkt wie bei Prozeduraufrufen
 - o unabhängige Aktivitäten statt Prozeduren
 - Aktivitäten können explizit suspendiert und wiederaufgenommen werden
 - transferieren den Kontrollfluss