Reasoning with Separation Logic Complexity, Expressive Power, Proof Systems

Alessio Mansutti

10 December 2020

CNRS, LSV, ENS Paris-Saclay, Université Paris-Saclay

Verifying industrial software

- millions of lines of code
- written by hundreds of programmer
- changes daily

Verifying industrial software

- millions of lines of code
- written by hundreds of programmer
- changes daily

Verification should be automatic and modular

"A single instruction should have a local effect in the syntactical proof"

Verifying industrial software

- millions of lines of code
- written by hundreds of programmer
- changes daily

Verification should be automatic and modular

Separation Logic [O'Hearn, Pym, Reynolds et al. – '01]

Modular reasoning for **pointer programs**.

$$\{x=0 \land y=0\} \qquad x \leftarrow 1 \qquad \{x=1 \land y=0\}$$

$$\{x = 0 \land y = 0\} \qquad \underbrace{x \leftarrow 1}_{\text{program}} \quad \{x = 1 \land y = 0\}$$

$$\{x=0 \land y=0\} \qquad x \leftarrow 1 \qquad \{x=1 \land y=0\}$$
 postcondition
$$x: \begin{array}{c|c} & \cdots & \\ \hline x: & 1 & \\ \hline y: & 0 & \\ \hline \end{array}$$

$$\{\mathtt{x} = \mathtt{0} \land \mathtt{y} = \mathtt{0}\} \qquad \mathtt{x} \leftarrow \mathtt{1} \qquad \{\mathtt{x} = \mathtt{1} \land \mathtt{y} = \mathtt{0}\}$$

Modularity

$$\frac{\{\varphi\}\ P\ \{\gamma\}\ \text{fv}(\psi)\cap\text{mv}(P)=\emptyset}{\{\varphi\wedge\psi\}\ P\ \{\gamma\wedge\psi\}}$$

- lacktriangledown fv(ψ) : free variables of ψ
- \blacksquare mv(P): variables modified by P

$$\{x = 0\}$$
 $x \leftarrow 1$ $\{x = 1\}$ $\{x = 0 \land y = 0\}$ $x \leftarrow 1$ $\{x = 1 \land y = 0\}$

Modularity

$$\frac{\{\varphi\}\ P\ \{\gamma\}\quad \mathsf{fv}(\pmb{\psi})\cap\mathsf{mv}(P)=\emptyset}{\{\varphi\wedge\pmb{\psi}\}\ P\ \{\gamma\wedge\pmb{\psi}\}}$$

- lacktriangledown fv(ψ) : free variables of ψ
- \blacksquare mv(P): variables modified by P

Assertion language

'99 Bunched Logics [Pym, O'Hearn]

Hoare calculus

Assertion language

'99 Bunched Logics [Pym, O'Hearn]

$$(x \hookrightarrow 0 * y \hookrightarrow 0) \Rightarrow x \neq y$$

Hoare calculus

Assertion language

'99 Bunched Logics [Pym, O'Hearn]

$$(x \hookrightarrow 0 * y \hookrightarrow 0) \Rightarrow x \neq y$$

Hoare calculus

Frame rule:

$$\frac{\{\varphi\}\,P\,\{\gamma\}\quad \mathsf{fv}(\psi)\cap\mathsf{mv}(P)=\emptyset}{\{\varphi*\psi\}\,P\,\{\gamma*\psi\}}$$

Assertion language

'99 Bunched Logics [Pym, O'Hearn]

$$(x \hookrightarrow 0 * y \hookrightarrow 0) \Rightarrow x \neq y$$

Hoare calculus

Frame rule:

$$\frac{\{\varphi\}\,P\,\{\gamma\}\quad \mathsf{fv}(\psi)\cap\mathsf{mv}(P)=\emptyset}{\{\varphi*\psi\}\,P\,\{\gamma*\psi\}}$$

$$\cfrac{\cfrac{\left\{x \hookrightarrow 0\right\}}{\left\{x \hookrightarrow 0 \right\}} \ \ ^*x \leftarrow 1 \ \ \left\{x \hookrightarrow 1\right\}}{\left\{x \hookrightarrow 0 * y \hookrightarrow 0\right\}} \ \ ^*x \leftarrow 1 \ \ \left\{x \hookrightarrow 1 * y \hookrightarrow 0\right\}}$$

This Thesis

Reachability in separation logic (Chapters 3, 4 & 5)

Goal: A separation logic for acyclicity and garbage freedom

This Thesis

Reachability in separation logic (Chapters 3, 4 & 5)

Goal: A separation logic for acyclicity and garbage freedom

Internal calculi for spatial logics (Chapters 6 & 7)

Goal: First Hilbert-style proof system for separation logic

This Thesis

Reachability in separation logic (Chapters 3, 4 & 5)

Goal: A separation logic for acyclicity and garbage freedom

Internal calculi for spatial logics (Chapters 6 & 7)

Goal: First Hilbert-style proof system for separation logic

Comparing composition operators (Chapters 8 & 9)

Goal: Differences between * of SL and | of ambient logic

Separation Logic is interpreted over **memory states** (s, h) where:

store, $s : VAR \rightarrow LOC$

■ heap, $h : LOC \rightarrow_{fin} LOC$

Separation Logic is interpreted over **memory states** (s, h) where:

Separation Logic is interpreted over **memory states** (s, h) where:

■ heap, $h : LOC \rightarrow_{fin} LOC$

Separation Logic is interpreted over **memory states** (s, h) where:

■ store, $s : VAR \rightarrow LOC$ ■ heap, $h : LOC \rightarrow_{fin} LOC$

Separation Logic is interpreted over **memory states** (s, h) where:

■ store, $s: VAR \rightarrow LOC$ ■ heap, $h: LOC \rightarrow_{fin} LOC$

- Disjoint heaps: $dom(h_1) \cap dom(h_2) = \emptyset$,
- Union of disjoint heaps $(h_1 + h_2)$: union of partial functions.

$$\varphi := \neg \varphi \ | \ \varphi_1 \wedge \varphi_2 \ | \ \mathsf{emp} \ | \ \mathtt{x} = \mathtt{y} \ | \ \mathtt{x} \hookrightarrow \mathtt{y} \ | \ \varphi_1 \ast \varphi_2 \ | \ \varphi_1 - \!\!\!* \varphi_2$$

$$\varphi := \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \text{emp} \mid \mathbf{x} = \mathbf{y} \mid \mathbf{x} \hookrightarrow \mathbf{y} \mid \varphi_1 * \varphi_2 \mid \varphi_1 - * \varphi_2$$
$$\operatorname{dom}(h) = \emptyset$$

$$\varphi := \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \text{emp} \mid \mathbf{x} = \mathbf{y} \mid \mathbf{x} \hookrightarrow \mathbf{y} \mid \varphi_1 * \varphi_2 \mid \varphi_1 - * \varphi_2$$

$$s(\mathbf{x}) = s(\mathbf{y})$$

$$arphi := \neg arphi \mid arphi_1 \wedge arphi_2 \mid \operatorname{emp} \mid x = y \mid x \hookrightarrow y \mid arphi_1 * arphi_2 \mid arphi_1 - * arphi_2$$

$$h(s(x)) = s(y)$$

The separating conjunction (*) and implication (-*)

$$(s,h) \models \varphi * \psi$$

There are two heaps h_1 , h_2 s.t.

- $h_1 \perp h_2$ and $h = h_1 + h_2$,
- $(s, h_1) \models \varphi,$
- $(s, h_2) \models \psi.$

 $(s,h) \models \varphi \twoheadrightarrow \psi$

The separating conjunction (*) and implication (-*)

$$(s,h) \models \varphi * \psi$$

There are two heaps h_1 , h_2 s.t.

- $h_1 \perp h_2$ and $h = h_1 + h_2$,
- \blacksquare $(s, h_1) \models \varphi$,
- $\bullet (s, h_2) \models \psi.$

$$(s,h) \models \varphi \twoheadrightarrow \psi$$

For every heap h',

 $\mbox{if} \ h' \perp h \ \mbox{and} \ (s,h') \models \varphi, \\ \mbox{then} \ (s,h+h') \models \psi.$

■
$$(s,h) \models \exists x \varphi$$
 \Leftrightarrow $(s[x \leftarrow \ell],h) \models \varphi$ for some $\ell \in \mathsf{LOC}$

$$lacksquare (s,h) \models \mathtt{reach}^+(\mathtt{x},\mathtt{y}) \Leftrightarrow h^n(s(\mathtt{x})) = s(\mathtt{y}) \text{ for some } n \geq 1$$

$$\exists x \; \mathtt{reach}^+(x, x)$$

■
$$(s,h) \models \exists x \varphi$$
 \Leftrightarrow $(s[x \leftarrow \ell],h) \models \varphi$ for some $\ell \in \mathsf{LOC}$

$$lacksquare (s,h) \models {\tt reach}^+({\tt x},{\tt y}) \Leftrightarrow h^n(s({\tt x})) = s({\tt y}) \ {\sf for some} \ n \geq 1$$

$$\exists x \text{ reach}^+(x, x)$$

■
$$(s,h) \models \exists x \varphi$$
 \Leftrightarrow $(s[x \leftarrow \ell],h) \models \varphi$ for some $\ell \in \mathsf{LOC}$

$$lacksquare (s,h) \models \mathtt{reach}^+(\mathtt{x},\mathtt{y}) \Leftrightarrow h^n(s(\mathtt{x})) = s(\mathtt{y}) \text{ for some } n \geq 1$$

$$\exists x \text{ reach}^+(x, x)$$

■
$$(s,h) \models \exists x \varphi$$
 \Leftrightarrow $(s[x \leftarrow \ell],h) \models \varphi$ for some $\ell \in \mathsf{LOC}$

$$lacksquare (s,h) \models \mathtt{reach}^+(\mathtt{x},\mathtt{y}) \Leftrightarrow h^n(s(\mathtt{x})) = s(\mathtt{y}) \text{ for some } n \geq 1$$

$$\exists x \; reach^+(x, x)$$

Reachability in separation logic

Reachability in separation logic (Chapters 3, 4 & 5)

Goal: A separation logic for acyclicity and garbage freedom

Internal calculi for spatial logics (Chapters 6 & 7)

Goal: First Hilbert-style proof system for separation logic

Comparing composition operators (Chapters 8 & 9)

Goal: Differences between * of SL and | of ambient logic

Set of properties that are important for a wide range of reasoning tasks in automated program analysis

Acyclicity:

 $\textbf{input:} \quad \text{an assertion } \varphi$

question: is every model of φ acyclic?

Set of properties that are important for a wide range of reasoning tasks in automated program analysis

Acyclicity:

 $\textbf{input:} \quad \text{an assertion } \varphi$

question: is every model of φ acyclic?

Set of properties that are important for a wide range of reasoning tasks in automated program analysis

Garbage freedom:

input: an assertion φ

question: in every (s, h) satisfying φ , is every location in dom(h)

reached by a variable in $fv(\varphi)$?

Set of properties that are important for a wide range of reasoning tasks in automated program analysis

Garbage freedom:

input: an assertion φ

question: in every (s, h) satisfying φ , is every location in dom(h)

reached by a variable in $fv(\varphi)$?

Goal (Chapters 3, 4 & 5)

Find an extension of quantifier-free separation logic

- with good decidability status
- where robustness properties reduce to entailment

Goal (Chapters 3, 4 & 5)

Find an extension of quantifier-free separation logic

- with good decidability status
- where robustness properties reduce to entailment

Acyclicity:

input: an assertion φ

question: does $\varphi \models \neg \exists u \, \mathtt{reach}^+(u, u) \, \mathsf{hold}?$

Goal (Chapters 3, 4 & 5)

Find an extension of quantifier-free separation logic

- with good decidability status
- where robustness properties reduce to entailment

Garbage freedom:

```
input: an assertion \varphi (with u \notin fv(\varphi))
```

$$\textbf{question:} \quad \mathsf{does} \; \varphi \models \forall \mathtt{u} \left(\mathtt{alloc}(\mathtt{u}) \Rightarrow \bigvee_{\mathtt{x} \in \mathsf{fv}(\varphi)} \mathtt{reach}(\mathtt{x},\mathtt{u}) \right) \; \mathsf{hold?}$$

Goal (Chapters 3, 4 & 5)

Find an extension of quantifier-free separation logic

- with good decidability status
- where robustness properties reduce to entailment

Garbage freedom:

input: an assertion φ (with $u \notin fv(\varphi)$)
question: does $\varphi \models \forall u (alloc(u) \Rightarrow \bigvee_{x \in fv(\varphi)} reach(x, u))$ hold?

$$(u \hookrightarrow u) * \bot$$

Goal (Chapters 3, 4 & 5)

Find an extension of quantifier-free separation logic

- with good decidability status
- where robustness properties reduce to entailment

Garbage freedom:

```
\label{eq:problem} \begin{array}{ll} \textbf{input:} & \text{an assertion } \varphi \text{ (with } u \not\in \mathsf{fv}(\varphi)) \\ \textbf{question:} & \text{does } \varphi \models \forall u \text{ (alloc(u)} \Rightarrow \bigvee_{x \in \mathsf{fv}(\varphi)} \mathsf{reach}(x,u)) \text{ hold?} \\ \\ & x = u \vee \mathsf{reach}^+(x,u) \end{array}
```

Goal (Chapters 3, 4 & 5)

Find an extension of quantifier-free separation logic

- with good decidability status
- where robustness properties reduce to entailment

Known extensions:

 $\label{eq:Theorem} \begin{tabular}{ll} \textbf{The satisfiability (+ model checking, entailment, validity)} \\ \textbf{problem for SL(*,-*,reach) is Non-RE.} \end{tabular}$

Theorem [Fossacs'18]

The satisfiability (+ model checking, entailment, validity) problem for SL(*, -*, reach) is NoN-RE.

Insight: reach, * and → simulate first-order quantification.

Theorem [Fossacs'18]

The satisfiability (+ model checking, entailment, validity) problem for SL(*, -*, reach) is NoN-RE.

Insight: reach, * and -* simulate first-order quantification.

Theorem [Fossacs'18]

The satisfiability (+ model checking, entailment, validity) problem for SL(*, -*, reach) is NoN-RE.

Insight: reach, * and → simulate first-order quantification.

Theorem [Fossacs'18]

The satisfiability (+ model checking, entailment, validity) problem for SL(*, -*, reach) is NoN-RE.

Insight: reach, * and → simulate first-order quantification.

Theorem [Fossacs'18]

The satisfiability (+ model checking, entailment, validity) problem for SL(*, -*, reach) is NoN-RE.

Insight: reach, * and -* simulate first-order quantification.

Theorem [Fossacs'18]

The satisfiability (+ model checking, entailment, validity) problem for SL(*, -*, reach) is NoN-RE.

Theorem [Fossacs'18]

The satisfiability (+ model checking, entailment, validity) problem for SL(*, -*, reach) is NoN-RE.

$$(y \mapsto _{-})*$$

$$\neg ((y \mapsto _{-}) \rightarrow *$$

$$\neg h(y) \hookrightarrow h(x))$$

Theorem [Fossacs'18]

The satisfiability (+ model checking, entailment, validity) problem for SL(*, -*, reach) is NoN-RE.

$$dom(h') = \{s(y)\}\$$

$$(y \mapsto _{-})*$$

$$\neg ((y \mapsto _{-})-*$$

$$\neg h(y) \hookrightarrow h(x))$$

Theorem [Fossacs'18]

The satisfiability (+ model checking, entailment, validity) problem for SL(*, -*, reach) is NoN-RE.

$$(y \mapsto _{-})*$$

$$\neg ((y \mapsto _{-}) \rightarrow *$$

$$\neg h(y) \hookrightarrow h(x))$$

Theorem [Fossacs'18]

The satisfiability (+ model checking, entailment, validity) problem for SL(*, -*, reach) is NoN-RE.

$$(y \mapsto _{-})*$$

$$\neg ((y \mapsto _{-}) \rightarrow *$$

$$\neg h(y) \hookrightarrow h(x))$$

Theorem [Fossacs'18]

The satisfiability (+ model checking, entailment, validity) problem for SL(*, -*, reach) is NoN-RE.

$$(y \mapsto _{-})*$$

$$\neg ((y \mapsto _{-}) \rightarrow *$$

$$\neg h(y) \hookrightarrow h(x))$$

Theorem [Fossacs'20]

The satisfiability problem for $SL([\exists]_1, *, alloc, reach^+)$ is Tower-complete.

Theorem [Fossacs'20] The satisfiability problem for $SL([\exists]_1, *, alloc, reach^+)$ is Tower-complete.

■ We introduce and study ALT (Auxiliary Logic on Trees)

Reachability predicates + sabotage modalities (e.g. $\phi \varphi$)

Theorem [Fossacs'20] The satisfiability problem for $SL([\exists]_1, *, alloc, reach^+)$ is Tower-complete.

- We introduce and study ALT (Auxiliary Logic on Trees) Reachability predicates + sabotage modalities (e.g. $\phi \varphi$)
- The satisfiability problem of ALT is TOWER-complete Tower-hard \sim non-emptiness *-free reg. expr.

Theorem [Fossacs'20] The satisfiability problem for $SL([\exists]_1, *, alloc, reach^+)$ is Tower-complete.

- We introduce and study ALT (Auxiliary Logic on Trees) Reachability predicates + sabotage modalities (e.g. $\phi \varphi$)
- The satisfiability problem of ALT is TOWER-complete Tower-hard \sim non-emptiness *-free reg. expr.
- Several logics capture ALT

$$\mathsf{SL}([\exists]_1,*,\mathtt{alloc},\mathtt{reach}^+)$$
 QCTL ...

Theorem [Fsttcs'18]

Under syntactical restrictions, $SL([\exists]_1, *, -*, reach^+)$ admits a PSPACE-complete satisfiability problem.

Theorem [Fsttcs'18]

Under syntactical restrictions, $SL([\exists]_1, *, -*, reach^+)$ admits a PSPACE-complete satisfiability problem.

Syntactical restrictions:

No reach $^+(u, x)$ (u quantified, x free)

Theorem [Fsttcs'18]

Under syntactical restrictions, $SL([\exists]_1, *, -*, reach^+)$ admits a PSPACE-complete satisfiability problem.

- Captures the robustness properties
- Extends $SL([\exists]_1, *, -*)$ and $SL(*, reach^+, alloc)$

 $\begin{tabular}{ll} \textbf{Theorem} \ [Fsttcs'18] \\ Under syntactical restrictions, $SL([\exists]_1,*,-*,reach^+)$ admits a $PSPACE$-complete satisfiability problem. \end{tabular}$

- Captures the robustness properties
- Extends $SL([\exists]_1, *, \rightarrow *)$ and $SL(*, reach^+, alloc)$

Proof

We establish a polynomial **small-heap property** based on the "core formulae technique".

Core formulae

 $\label{eq:theorem} \begin{tabular}{ll} \textbf{Theorem} & [M.-Fsttcs'18] \\ \textbf{Every SL}([\exists]_1,*,-*,reach^+) & formula* is logically equivalent to a Boolean combination of core formulae. \\ \end{tabular}$

■ Bound on the minimal model satisfying the equivalent Boolean combination of core formulae yields PSPACE

^{*:} satisfying the syntactical conditions

Core Local formulae

Theorem [Gaifman – 1981]

Every first-order sentence is logically equivalent to a Boolean combination of local formulae.

■ proof via Ehrenfeucht-Fraïssé games

Core Local formulae

Theorem [Gaifman – 1981]

Every first-order sentence is logically equivalent to a Boolean combination of local formulae.

■ proof via Ehrenfeucht-Fraïssé games

Simulation lemmata

```
Lemma (* simulation)
Let (s,h) \approx_n^{core} (s',h').
For every n_1 + n_2 = n and every h_1 + h_2 = h, (Spoiler)
there are h'_1 + h'_2 = h' such that (Duplicator)
(s,h_1) \approx_{n_1}^{core} (s',h'_1) and (s,h_2) \approx_{n_2}^{core} (s',h'_2).
```

Simulation lemmata

Lemma (* simulation)

Let
$$(s,h) \approx_n^{core} (s',h')$$
.

For every
$$n_1 + n_2 = n$$
 and every $h_1 + h_2 = h$, (Spoiler) there are $h'_1 + h'_2 = h'$ such that (Duplicator)

$$(s,h_1) pprox_{n_1}^{core}(s',h_1')$$
 and $(s,h_2) pprox_{n_2}^{core}(s',h_2')$.

Lemma (* simulation)
Let $(s,h) \approx_n^{core} (s',h')$.

For every $n_1 + n_2 = n$ and every $h_1 + h_2 = h$, (Spoiler)
there are $h'_1 + h'_2 = h'$ such that (Duplicator) $(s,h_1) \approx_{n_1}^{core} (s',h'_1) \text{ and } (s,h_2) \approx_{n_2}^{core} (s',h'_2).$


```
Lemma (* simulation)
Let (s,h) \approx_n^{core} (s',h').
For every n_1 + n_2 = n and every h_1 + h_2 = h, (Spoiler)
there are h'_1 + h'_2 = h' such that (Duplicator)
(s,h_1) \approx_{n_1}^{core} (s',h'_1) and (s,h_2) \approx_{n_2}^{core} (s',h'_2).
```


Lemma (* simulation) Let $(s,h) \approx_n^{core} (s',h')$. For every $n_1 + n_2 = n$ and every $h_1 + h_2 = h$, (Spoiler) there are $h'_1 + h'_2 = h'$ such that (Duplicator) $(s,h_1) \approx_{n_1}^{core} (s',h'_1) \text{ and } (s,h_2) \approx_{n_2}^{core} (s',h'_2).$


```
Lemma (* simulation)
Let (s,h) \approx_n^{core} (s',h').
For every n_1 + n_2 = n and every h_1 + h_2 = h, (Spoiler)
there are h'_1 + h'_2 = h' such that (Duplicator)
(s,h_1) \approx_{n_1}^{core} (s',h'_1) and (s,h_2) \approx_{n_2}^{core} (s',h'_2).
```

$$(s,h) (s',h')$$

```
Lemma (* simulation)
Let (s,h) \approx_n^{core} (s',h').

For every n_1 + n_2 = n and every h_1 + h_2 = h, (Spoiler)
there are h'_1 + h'_2 = h' such that (Duplicator)
(s,h_1) \approx_{n_1}^{core} (s',h'_1) \text{ and } (s,h_2) \approx_{n_2}^{core} (s',h'_2).
```

$$(s,h)$$
 $pprox_n^{core}(s,h_1)$ $pprox_n^{core}(s,h_2)$ $pprox_n^{core}(s,h_3)$ $pprox_n^{core}(s',h')$

Lemma (* simulation) Let $(s,h) \approx_n^{core} (s',h')$. For every $n_1 + n_2 = n$ and every $h_1 + h_2 = h$, (Spoiler) there are $h_1' + h_2' = h'$ such that (Duplicator)

 $(s, h_1) \approx_{n_1}^{core} (s', h'_1)$ and $(s, h_2) \approx_{n_2}^{core} (s', h'_2)$.

$$(s,h) \approx_n^{core} (s,h_1) \approx_n^{core} (s,h_2) \approx_n^{core} (s,h_3) \approx_n^{core} (s',h')$$

Lemma (* simulation) Let $(s,h) \approx_n^{core} (s',h')$. For every $n_1 + n_2 = n$ and every $h_1 + h_2 = h$, (Spoiler) there are $h_1' + h_2' = h'$ such that (Duplicator)

$$(s,h_1) pprox_{n_1}^{core}(s',h_1')$$
 and $(s,h_2) pprox_{n_2}^{core}(s',h_2')$.

Lemma (* simulation)
Let $(s,h) \approx_n^{core} (s',h')$.
For every $n_1 + n_2 = n$ and every $h_1 + h_2 = h$, (Spoiler)
there are $h'_1 + h'_2 = h'$ such that (Duplicator) $(s,h_1) \approx_{n_1}^{core} (s',h'_1)$ and $(s,h_2) \approx_{n_2}^{core} (s',h'_2)$.

Lemma (* simulation)
Let
$$(s,h) \approx_n^{core} (s',h')$$
.
For every $n_1 + n_2 = n$ and every $h_1 + h_2 = h$, (Spoiler)
there are $h'_1 + h'_2 = h'$ such that (Duplicator)
 $(s,h_1) \approx_{n_1}^{core} (s',h'_1)$ and $(s,h_2) \approx_{n_2}^{core} (s',h'_2)$.

Lemma (* simulation)
Let
$$(s,h) \approx_n^{core} (s',h')$$
.
For every $n_1 + n_2 = n$ and every $h_1 + h_2 = h$, (Spoiler)
there are $h'_1 + h'_2 = h'$ such that (Duplicator)
 $(s,h_1) \approx_{n_1}^{core} (s',h'_1)$ and $(s,h_2) \approx_{n_2}^{core} (s',h'_2)$.

Extending separation logic for robustness properties

Internal calculi for spatial logics

Reachability in separation logic (Chapters 3, 4 & 5)

Goal: A separation logic for acyclicity and garbage freedom

Internal calculi for spatial logics (Chapters 6 & 7)

Goal: First Hilbert-style proof system for separation logic

Comparing composition operators (Chapters 8 & 9)

Goal: Differences between * of SL and | of ambient logic

- \blacksquare sound and complete $\ \vdash \varphi \ \ \ \models \varphi$
- All axioms and rules are made of formulae from the logic

■ All axioms and rules are made of formulae from the logic

■ All axioms and rules are made of formulae from the logic

All axioms and rules are made of formulae from the logic

Goal (Chapters 6 & 7)

Design Hilbert-style proof systems for spatial logics.

- quantifier-free separation logic SL(*, →*)
- modal logic with composition operators (ambient logic)

Theorem [Lozes – 2004]

Every formula of $SL(*, -\!\!\!*)$ is logically equivalent to a Boolean combination of formulae (in $SL(*, -\!\!\!*)$) of the form:

$$x = y$$
 $x \hookrightarrow y$ $alloc(x)$ $size \ge n$

$$\operatorname{card}(\operatorname{dom}(h)) \geq n$$

Can we use these types of theorems to design Hilbert-style proof systems for separation logics?

Theorem [Lozes – 2004]

Every formula of SL(*, -*) is logically equivalent to a Boolean combination of formulae (in SL(*, -*)) of the form:

$$\mathtt{x} = \mathtt{y} \qquad \mathtt{x} \hookrightarrow \mathtt{y} \qquad \mathtt{alloc}(\mathtt{x}) \qquad \mathtt{size} \geq n$$

Theorem [Lozes – 2004]

Every formula of SL(*, -*) is logically equivalent to a Boolean combination of formulae (in SL(*, -*)) of the form:

$$\mathtt{x} = \mathtt{y} \qquad \mathtt{x} \hookrightarrow \mathtt{y} \qquad \mathtt{alloc}(\mathtt{x}) \qquad \mathtt{size} \geq n$$

Theorem [Lozes – 2004]

Every formula of SL(*, -*) is logically equivalent to a Boolean combination of formulae (in SL(*, -*)) of the form:

$$\mathtt{x} = \mathtt{y} \qquad \mathtt{x} \hookrightarrow \mathtt{y} \qquad \mathtt{alloc}(\mathtt{x}) \qquad \mathtt{size} \geq n$$

From a simple calculus for core formulae...

(PC) propositional calculus

(A)
$$x \hookrightarrow y \Rightarrow alloc(x)$$

(R)
$$x = x$$

(F)
$$x \hookrightarrow y \land x \hookrightarrow z \Rightarrow y = z$$

(S)
$$\varphi \wedge x = y \Rightarrow \varphi[y \leftarrow x]$$

(M) size
$$\geq n+1 \Rightarrow$$
 size $\geq n$

$$\text{(C)} \ \bigwedge_{x \in X} (\texttt{alloc}(x) \land \bigwedge_{y \in X \setminus \{x\}} x \neq y) \Rightarrow \texttt{size} \geq \operatorname{card}(X), \ \ \text{where} \ X \subseteq_{\mathsf{fin}} \mathsf{VAR}.$$

Lemma

Given φ Boolean combination of core formulae, $\models \varphi$ iff $\vdash \varphi$.

Proof. Standard countermodel construction.

...to $\mathcal{H}(*, -*)$, an adequate proof system for $\mathsf{SL}(*, -*)$

$$\begin{array}{lll} (\textbf{E}_1) & \texttt{alloc}(\textbf{x}) * \top \Rightarrow \texttt{alloc}(\textbf{x}) & & & & & & \\ (\textbf{E}_2) & \neg \texttt{alloc}(\textbf{x}) * \neg \texttt{alloc}(\textbf{x}) \Rightarrow \neg \texttt{alloc}(\textbf{x}) & & & & \\ (\textbf{I}_1) & \texttt{alloc}(\textbf{x}) * \neg \texttt{alloc}(\textbf{x}) \wedge \texttt{size} = 1) * \top & & & & & \\ (\textbf{I}_2) & \neg \texttt{emp} \Rightarrow \texttt{size} = 1 * \top & & & & & & \\ & & & & & & & \\ \hline \end{array}$$

Lemma

For all Boolean combinations of core formulae φ, ψ , there is a Boolean combination of core formulae γ s.t. $\vdash \varphi * \psi \Leftrightarrow \gamma$.

...to $\mathcal{H}(*, -*)$, an adequate proof system for $\mathsf{SL}(*, -*)$

$$\begin{array}{lll} (\textbf{E}_1) & \texttt{alloc}(\textbf{x}) * \top \Rightarrow \texttt{alloc}(\textbf{x}) & & & & & & \\ (\textbf{E}_2) & \neg \texttt{alloc}(\textbf{x}) * \neg \texttt{alloc}(\textbf{x}) \Rightarrow \neg \texttt{alloc}(\textbf{x}) & & & & \\ (\textbf{I}_1) & \texttt{alloc}(\textbf{x}) * \neg \texttt{alloc}(\textbf{x}) \wedge \texttt{size} = 1) * \top & & & & & \\ (\textbf{I}_2) & \neg \texttt{emp} \Rightarrow \texttt{size} = 1 * \top & & & & & & \\ \hline \end{array}$$

Lemma

For all Boolean combinations of core formulae φ, ψ , there is a Boolean combination of core formulae γ s.t. $\vdash \varphi \twoheadrightarrow \psi \Leftrightarrow \gamma$.

...to $\mathcal{H}(*, -*)$, an adequate proof system for SL(*, -*)

$$\textbf{(I_1)} \ \ \texttt{alloc(x)} \Rightarrow \textbf{(alloc(x)} \land \texttt{size} = \textbf{1)} * \top \\ \underline{\hspace{1cm} \varphi * \psi \Rightarrow \gamma}$$

Lemma

For all Boolean combinations of core formulae φ, ψ , there is a Boolean combination of core formulae γ s.t. $\vdash \varphi \twoheadrightarrow \psi \Leftrightarrow \gamma$.

 (I_2) $\neg emp \Rightarrow size = 1 * \top$

Theorem [CSL'20] $\mathcal{H}(*, -*)$ is sound and complete for SL(*, -*).

...to $\mathcal{H}(*, -*)$, an adequate proof system for $\mathsf{SL}(*, -*)$

(E₁) alloc(x) *
$$\top$$
 \Rightarrow alloc(x)
$$\frac{\varphi \Rightarrow \gamma}{\varphi * \psi \Rightarrow \gamma * \psi}$$

$$(\mathsf{E}_2) \ \neg \mathtt{alloc}(\mathtt{x}) * \neg \mathtt{alloc}(\mathtt{x}) \Rightarrow \neg \mathtt{alloc}(\mathtt{x})$$

$$\textbf{(I}_1) \ \mathtt{alloc(x)} \Rightarrow (\mathtt{alloc(x)} \land \mathtt{size} = 1) * \top$$

$$(\mathsf{I}_2)$$
 $\neg \mathtt{emp} \Rightarrow \mathtt{size} = 1 * \top$ $\varphi \Rightarrow (\psi - \!\!\!* \gamma)$

Lemma

For all Boolean combinations of core formulae φ,ψ , there is a

Question:

Can we do the same for ambient logics?

Theorem [COL 20]

 $\mathcal{H}(*, -*)$ is sound and complete for SL(*, -*).

Standard ML + composition operator $\varphi | \psi$:

$$\varphi := p \mid \top \mid \varphi \wedge \psi \mid \neg \varphi \mid \Diamond \varphi \mid \varphi \mid \psi$$

Standard ML + composition operator $\varphi | \psi$:

$$\varphi := p \mid \top \mid \varphi \wedge \psi \mid \neg \varphi \mid \Diamond \varphi \mid \varphi | \psi$$

Standard ML + composition operator $\varphi | \psi$:

$$\varphi := p \mid \top \mid \varphi \wedge \psi \mid \neg \varphi \mid \Diamond \varphi \mid \varphi \mid \psi$$

- $\blacksquare \mathfrak{M} = \mathfrak{M}_1 \mid_{\mathfrak{M}} \mathfrak{M}_2$

Standard ML + composition operator $\varphi | \psi$:

$$\varphi := p \mid \top \mid \varphi \wedge \psi \mid \neg \varphi \mid \Diamond \varphi \mid \varphi \mid \psi$$

- $\blacksquare \mathfrak{M} = \mathfrak{M}_1 \mid_{w} \mathfrak{M}_2$

A proof system for ML():

 \blacksquare GML = ML + $\Diamond >_k \varphi$

 $\mathfrak{M}, w \models \Diamond_{\geq k} \varphi$ iff w has $\geq k$ children satisfying φ

Theorem For every φ, ψ in GML there is γ in GML such that $\varphi \, | \, \psi \equiv \gamma.$

- Use GML as a family of core formulae
- Extend proof system of GML to prove $\varphi | \psi \equiv \gamma$ syntactically

Two ways to chop a tree

Reachability in separation logic (Chapters 3, 4 & 5)

Goal: A separation logic for acyclicity and garbage freedom

Internal calculi for spatial logics (Chapters 6 & 7)

Goal: First Hilbert-style proof system for separation logic

Comparing composition operators (Chapters 8 & 9)

Goal: Differences between * of SL and | of ambient logic

Separation logic and ambient logic

Separation logic and ambient logic are cousins:

- both instantiate the Bunched Logic BBI
- the first decidability result in ambient logic is based on decidability results for SL [Calcagno et al. – 2003]
- proof systems are surprisingly close (Chapters 6 & 7)

Goal (Chapters 8 & 9)

Build a common framework to compare the composition operators * and in terms of expressive power and complexity.

Modal logics with composition operators

Standard ML + φ | ψ from ambient logic:

$$\varphi := p \mid \top \mid \varphi \wedge \psi \mid \neg \varphi \mid \Diamond \varphi \mid \varphi \mid \psi$$

Interpretation on Kripke-style finite forests (\mathfrak{M}, w) :

$$(\mathfrak{M},\mathbf{w})\models\varphi \mathbf{|}\psi$$

 $\frac{(\mathfrak{M}, w) \models \varphi | \psi}{\text{there are } \mathfrak{M}_1, \, \mathfrak{M}_2 \text{ s.t.}}$

$$\blacksquare \mathfrak{M} = \mathfrak{M}_1 \mid_{w} \mathfrak{M}_2$$

$$\blacksquare \mathfrak{M}_2, w \models \psi$$

Modal logics with composition operators

Standard ML + $\varphi * \psi$ from separation logic

$$\varphi := p \mid \top \mid \varphi \wedge \psi \mid \neg \varphi \mid \Diamond \varphi \mid \varphi * \psi$$

Interpretation on Kripke-style finite forests (\mathfrak{M}, w) :

$$(\mathfrak{M}, \mathsf{w}) \models \varphi * \psi$$

 $\frac{(\mathfrak{M}, w) \models \varphi * \psi}{\text{there are } \mathfrak{M}_1, \, \mathfrak{M}_2 \text{ s.t.}}$

$$\blacksquare \mathfrak{M} = \mathfrak{M}_1 + \mathfrak{M}_2$$

$$\blacksquare \ \mathfrak{M}_1, w \models \varphi$$

$$\blacksquare \mathfrak{M}_2, w \models \psi$$

	w w	w w
	ML()	ML(*)
Expressive Power	GML	< GML
Complexity (SAT)	AEXP _{POLY} -complete	Tower-complete

	w w	w
	ML()	ML(*)
Expressive Power	GML	< GML
Complexity (SAT)	$AExp_{Poly}$ -complete	Tower-complete

	w w	w
	ML()	ML(*)
Expressive Power	GML	< GML
Complexity (SAT)	${ m AExp}_{ m Poly}$ -complete	Tower-complete

 $\lozenge_{=2} \lozenge_{=1} \top$ cannot be expressed in ML(*) (via EF-games)

Upper: exponential-size small model property

Lower: from SAT of propositional logic under team semantics

Tower-hardness: uniform reduction from $k\text{-}\mathrm{NEXP}\mathrm{TIME}$ version of the tiling problem, for every $k \geq 2$

Reachability in separation logic (Chapters 3, 4 & 5)

Result: A PSPACE SL for acyclicity and garbage freedom

Internal calculi for spatial logics (Chapters 6 & 7)

Result: First Hilbert-style proof system for SL(*, -*)

Comparing composition operators (Chapters 8 & 9)

Result: Expressiveness and complexity of ML(1) and ML(*)

Alternative solutions

- Path quantifiers [CSL'20]
- "strong" SL(*, -*, 1s) is in PSPACE [Pagel, Zuleger '20]

Internal calculi for spatial logics (Chapters 6 & 7)

Result: First Hilbert-style proof system for SL(*, -*)

Comparing composition operators (Chapters 8 & 9)

Result: Expressiveness and complexity of ML(1) and ML(*)

Alternative solutions

- Path quantifiers [CSL'20]
- \blacksquare "strong" $\mathsf{SL}(*, -\!\!*, 1s)$ is in PSPACE [Pagel, Zuleger '20]

Applications

- Improve calculi that are more geared for automation
- Preprocessing of formulae via axiom-based rewriting

Comparing composition operators (Chapters 8 & 9)

Result: Expressiveness and complexity of ML(1) and ML(*)

Alternative solutions

- Path quantifiers [CSL'20]
- "strong" SL(*, →, 1s) is in PSPACE [Pagel, Zuleger '20]

Applications

- Improve calculi that are more geared for automation
- Preprocessing of formulae via axiom-based rewriting

Close the gap

$$ML(I)$$
 $AEXP_{POLY}$
 $2AEXP_{POLY}$
 $3AEXP_{POLY}$
 \cdots
 $ML(*)$
 $TOWER$

$$) \cdots)$$