## Fisica CdL in Viticoltura ed Enologia

## Appello 17/04/2019

**Problema 1:** Un oggetto descrivibile come un punto materiale P di massa  $m=350\,\mathrm{g}$  si muove su una circonferenza ideale di raggio  $r=19\,\mathrm{cm}$  con velocità costante  $v=369\,\mathrm{cm/s}$ .

- i) Calcolare la velocità angolare  $\omega$  (in rad/s). (1 pt)
- ii) Trovare il valore della forza applicata su P (in N). (2 pt)
- iii) Trovare il valore dell'accelerazione tangenziale di P (in  $m/s^2$ ). (1 pt)
- iv) Calcolare la sua energia cinetica in Joule. (1 pt)
- v) Se improvvisamente P è soggetto anche ad un'accelerazione tangenziale  $a_t = 100 \text{ cm/s}^2$ , trovare l'accelerazione complessiva di P nell'istante iniziale in m/s². (2 pt)

**Problema 2:** Una vasca cilindrica per la raccolta dell'acqua è posta su una collina all'altezza di  $H=117\,\mathrm{m}$ . Il raggio della base della vasca è  $r=2\,\mathrm{m}$ , mentre la sua altezza è  $h=1\,\mathrm{m}$ . La vasca è alimentata dall'acqua di una sorgente posta ai piedi della collina che è convogliata in cima per mezzo di una pompa collegata ad una condotta.

- i) Calcolare la pressione minima che la pompa deve esercitare affinché il flusso d'acqua possa raggiungere la cima della collina. (Tenere conto della pressione atmosferica all'uscita della condotta.) (1.5 pt)
- ii) La pompa esercita una pressione di  $P=1.4\times 10^6\,\mathrm{Pa}$  e riempie completamente la vasca nel tempo di  $t=1\,\mathrm{h}$ . Quale è la potenza sviluppata dalla pompa e quale è il lavoro totale compiuto? (2.5 pt)
- iii) Se la vasca è complemente piena, quale è la pressione sul fondo? (Assumere che la vasca sia aperta, in modo che la pressione alla superficie dell'acqua sia pari a quella atmosferica.) (0.5 pt)
- iv) Al livello del fondo della vasca è posto un rubinetto. Se questo viene aperto, quale è la velocità di fuoriuscita dell'acqua? (1.5 pt)
- v) Supponiamo che la vasca sia completamente piena e che il rubinetto abbia una sezione di  $A = 3 \,\mathrm{cm}^2$ . Che quantità di acqua fuoriesce nel tempo di  $t_{rub} = 32 \,\mathrm{s}$  quando il rubinetto è completamente aperto? (Trascurate il fatto che il livello dell'acqua cala leggermente mentre l'acqua fuoriesce dalla vasca.) (1 pt)

**Domande a risposta multipla** (risposta corretta 1.5 pt, nessuna risposta 0 pt, risposta errata -0.25 pt)

- 1. Un punto materiale P si muove di moto rettilineo uniformemente accelerato e percorre una distanza  $s=28\,\mathrm{km}$  in un tempo  $t=16\,\mathrm{minuti}$ , partendo da fermo. Calcolare l'accelerazione di P.
  - a)  $0.03038 \,\mathrm{m/s^2}$
- b)  $0.06076 \,\mathrm{m/s^2}$
- c)  $2.188 \,\mathrm{m/s^2}$
- d)  $0.6076 \,\mathrm{m/s^2}$
- 2. Un punto materiale P di massa  $m=662\,\mathrm{g}$  è attaccato ad una molla disposta verticalmente di costante elastica  $k=19.2\,\mathrm{N/m}$ . Trovare l'allungamento della molla in condizioni di equilibrio.
  - a) 337.9 cm
- b) 0.3379 cm
- c) 33.79 cm
- d) 33.79 m
- 3. Un punto materiale P di massa  $m=504\,\mathrm{g}$  è poggiato su un piano inclinato ruvido di angolo  $\alpha=39\,^\circ$ . Trovare il coefficiente di attrito  $\mu$  quando P è fermo.
  - a) 0.8092
- b) 0.2765
- c) 3.615
- d) 0.2428
- 4. Quale delle seguenti affermazioni <u>non</u> è corretta?
  - a) La cinematica studia il moto degli oggetti materiali in relazione alle cause che lo hanno generato.
  - b) Il punto materiale è un oggetto di dimensioni trascurabili.
  - c) L'accelerazione di gravità può essere considerata costante in prossimità della superficie terrestre.
  - d) La massa è una proprietà intrinseca del punto materiale.
- 5. Trovare la variazione di energia potenziale gravitazionale quando si sposta un punto materiale P di massa  $m = 7.54 \,\mathrm{kg}$  da un'altezza  $h_1 = 305 \,\mathrm{cm}$  ad un'altezza  $h_2 = 25 \,\mathrm{cm}$ .
  - a) -206.9 J
- b) -21.11 J
- c) -20690 J
- d) -413.8 J

6. Un motore con potenza  $P=10.8\,\mathrm{W}$  rimane acceso per un tempo  $t=3\,\mathrm{ore}.$  Calcolare l'energia totale consumata dal motore.

a) 116.6 kJ

b) 116.6 J

c) 32.4 kJ

d) 3.6 J

7. A che temperatura in gradi Celsius corrisponde la temperatura in Fahrenheit  $T_F = 73\,^{\circ}\mathrm{F}$ ?

a) 163.4°C

b) 99.4°C

c) 58.33°C

d) 22.78°C

8. Un dirigibile di massa di  $M=25635\,\mathrm{kg}$  viene riempito di elio. Quale è il minimo volume di elio necessario per per far volare il dirigibile? (Suggerimento: un corpo nell'atmosfera è soggetto alla spinta di Archimede dovuta all'aria. Le densità dell'aria e dell'elio sono date in tabella.)

a)  $42720 \,\mathrm{m}^3$ 

b)  $25110 \,\mathrm{m}^3$ 

c)  $21360 \,\mathrm{m}^3$ 

d) 143200 m<sup>3</sup>

9. Un gas perfetto compie il ciclo termodinamico mostrato nel diagramma in figura. Se gli estremi del ciclo sono  $V_1 = 3.6 \,\mathrm{m}^3$ ,  $V_2 = 10.4 \,\mathrm{m}^3$ ,  $P_1 = 3.06 \times 10^3 \,\mathrm{Pa}$  e  $P_2 = 7.96 \times 10^3 \,\mathrm{Pa}$ , calcolare il lavoro fatto <u>dal</u> gas in un ciclo.



a)  $-10400 \,\mathrm{J}$ 

b)  $-33320 \,\mathrm{J}$ 

c) 16660 J

d) 25480 J

- 10. Quale delle seguenti affermazioni sulla forza elettrostatica tra due particelle cariche <u>non</u> è corretta?
  - a) La forza è attrattiva o repulsiva a seconda delle cariche.
  - b) La forza è inversamente proporzionale al quadrato della distanza tra le particelle.
  - c) La forza è direttamente proporzionale alle cariche delle particelle.
  - d) La forza è inversamente proporzionale alla massa delle particelle
- 11. Un gas perfetto alla temperatura  $T_0 = 267^{\circ}\text{C}$  è contenuto in un recipiente di volume V = 2.51 ad una pressione  $P_0 = 20000\,\text{Pa}$ . Con una trasformazione termodinamica si porta il gas alla temperatura  $T_1 = 137^{\circ}\text{C}$  mantenendone costante il volume. Quale è la pressione finale del gas?

a) 15190 Pa

b) 20000 Pa

c) 10260 Pa

d) 5073 Pa

12. Un filo conduttore cilindrico di rame ha lunghezza  $l=117\,\mathrm{cm}$  e raggio  $r=0.814\,\mathrm{mm}$ . Quale è la resistenza del conduttore tra i due estremi? (La resistività del rame è data in tabella.)

a)  $0.01911 \Omega$ 

b)  $0.009555 \Omega$ 

c)  $0.5621\,\Omega$ 

d)  $0.03002\,\Omega$ 

## Costanti fisiche

| gravità                     |                                                     |
|-----------------------------|-----------------------------------------------------|
| acc. gravità Terra          | $g = 9.81\mathrm{m/s^2}$                            |
| acc. gravità Luna           | $g_L = 1.62\mathrm{m/s^2}$                          |
| densità                     |                                                     |
| acqua                       | $\rho = 1000  \mathrm{kg/m^3}$                      |
| aria                        | $ ho = 1.20\mathrm{kg/m^3}$                         |
| elio                        | $\rho=0.179\mathrm{kg/m^3}$                         |
| pressioni                   |                                                     |
| pressione atmosferica       | $1.013 \times 10^5  \mathrm{Pa}$                    |
| calori specifici            |                                                     |
| acqua                       | 4186 J/kg⋅°C                                        |
| ghiaccio                    | $2090\mathrm{J/kg}\cdot^{\circ}\mathrm{C}$          |
| vapore                      | $2010\mathrm{J/kg}\cdot^{\circ}\mathrm{C}$          |
| calori latenti              |                                                     |
| fusione ghiaccio            | $3.33 \times 10^5  \mathrm{J/kg}$                   |
| vaporizzazione acqua        | $2.26 \times 10^6 \mathrm{J/kg}$                    |
| costanti termodinamiche     |                                                     |
| costante universale dei gas | $R = 8.314 \mathrm{J/mol \cdot K}$                  |
| costante di Boltzmann       | $k_B = 1.38 \times 10^{-23} \mathrm{J/K}$           |
| numero di Avogadro          | $N_A = 6.022 \times 10^{23} / \text{mol}$           |
| equiv. meccanico del calore | $1\mathrm{cal} = 4.186\mathrm{J}$                   |
| zero assoluto               | $-273.15^{\circ}{\rm C}$                            |
| costanti elettromagnetiche  |                                                     |
| costante di Coulomb         | $k_e = 8.988 \times 10^9 \mathrm{N \cdot m^2/C^2}$  |
| carica del protone          | $e = 1.602 \times 10^{-19}  \mathrm{C}$             |
| resistività del rame        | $\rho = 1.7 \times 10^{-8} \Omega \cdot \mathrm{m}$ |