

OpenHW Group

Proven Processor IP

CV32E40P Debug Verification Kickoff

Mike Thompson

mike@openhwgroup.org

Objectives

- Launch the Verification of the Debug Feature for CV32E40P
 - Ideally also portable to CV32E40 and CV64A
- Obtain agreement on the following:
 - Definition of what we are building/verifying.
 - Staffing:
 - How many engineers.
 - Contribution level (days per week).
 - · Roles & Skills.
 - How we will manage and track progress.

What Are We Building?

CORE-V

- Currently, the "Device Under Test" is just the Core:
 - This is insufficient to support either Debug Verification or the OpenHW BHAG.
 - SiLabs has proposed a "RISC-V Subsystem".

Figure 2.1: RISC-V Debug System Overview

Recommendation

- Define, Implement & Verify a "Device under Test" similar to the "RISC-V Subsystem":
 - CORE-V Core (CV32E/CV64A).
 - Debug Module and associated Debug Module Interface (from riscv-dbg).
 - Exclude the Debug Transport Module (this is a delta from "RISCV Subsystem").
 - Define the System Bus:
 - Are we adopting Open Bus Interface?
 - Is Memory considered external to the "RISCV Subsystem"?

Note: in the meeting it was agreed to verify Debug at the CORE level first, and revisit Debug verification at the Subsystem level later.

- Verification will be executed in the UVM environment in core-v-verif:
 - DMI to be driven by a (new) purpose-built UVM Agent.

How Big Is this Job?

- We won't know until we have a few key items in place:
 - Joint understanding of scope.
 - User Manual updates.
 - Verification Plan.
- Verification can start now:
 - Much of the Vplan will come from the RISC-V Foundation Debug Spec.
 - Completion of the Vplan is gated by the User Manual.

Workflow: Vplans

- Template for Verification Plans exists:
 - HOWTO documentation available.
 - Lots of existing examples: currently, ~60% of the Vplan for CV32E40P is captured.

A Requirement	В	Sub	D	E	F	G	Н
Location	Feature	Feature	Description	Verification Goal	Pass/Fail Criteria	Test Type	Coverage Method
ISA Chapter 2	RV32I, Instruction non- specific		Coverage that need not be crossed with any specific RV32 instruction.	Add coverage to ensure toggles of all bits on all GPRs and all bits of immediates.	Compliance tests: correct test signature. Random tests: RTL matches ISS.	Non-test- specific	Functional coverage of GPR and immediate values. Note that this could also be done with code-coverage, but this will be micro-arch specific.
Chapter 2.4 R	RV32I Register- immediate Instructions	ADDI	addi rd., rs1, imm[11:0] rd = rs1 + Sext(imm[11:0]) Arithmetic overflow is lost and ignored	Exercise instruction using all combinations of source and destination operands. Exercise overflow and underflow.	Compliance tests: correct test signature. Random tests: RTL matches ISS.	Compliance / Random	Test case (Compliance). Functional coverage of verification goals with special attention to NOP.
		SLTI	slti rd, rs1, imm[11:0] rd = (rs1 < Sext[imm[11:0]) ? 1 : 0 Both imm and rs1 treated as signed numbers	Exercise instruction using all combinations of source and destination operands.	Compliance tests: correct test signature. Random tests: RTL matches ISS.	Compliance / Random	Test case (Compliance). Functional coverage of verification goals.
		SLTUI	sltuird, rs1, imm[11:0] rd = (rs1 < Sext(imm[11:0]) ? 1 : 0 Both imm and rs1 treated as unsigned numbers	Exercise instruction using all combinations of source and destination operands. Exercise with both +ve and -ve values of operands.	Compliance tests: correct test signature. Random tests: RTL matches ISS.	Compliance / Random	Test case (Compliance). Functional coverage of verification goals.
		ANDI	andi rd, rs1, imm[11:0] rd = rs1 & Sext(imm[11:0]) Note: this is a bitwise, not logical operation	Exercise instruction using all combinations of source and destination operands.	Compliance tests: correct test signature. Random tests: RTL matches ISS.	Compliance / Random	Test case (Compliance). Functional coverage of verification goals.
		ORI	ori rd, rs1, imm[11:0] rd = rs1 Sext(imm[11:0]) Note: this is a bitwise, not logical operation	Exercise instruction using all combinations of source and destination operands.	Compliance tests: correct test signature. Random tests: RTL matches ISS.	Compliance / Random	Test case (Compliance). Functional coverage of verification goals.
		XORI	xori rd. rs1, imm[11:0] rd = rs1 ^ Sext(imm[11:0]) Note: this is a bitwise, not logical operation	Exercise instruction using all combinations of source and destination operands. Cover specific case of XORI rd, rs1, -1 (bitwise NOT)	Compliance tests: correct test signature. Random tests: RTL matches ISS.	Compliance / Random	Test case (Compliance). Functional coverage of verification goals.

Workflow: Projects & Tasks on GitHub

- Two Projects relavent to this discussion:
 - CV32E40P Verification Planning (https://github.com/openhwgroup/core-v-docs/projects/1)
 - Tracks Vplan capture and review (also drives our Design colleagues to finish the UM!).
 - CV32E40P Debug Verification (https://github.com/openhwgroup/core-v-verif/projects/7)
 - Tracks Debug verification development and execution (mostly emtpy).

Thank You!

