Lab Assigment 2:

Objective: To apply linear regression on a dataset.

Name: Aakash Verma

Registration No.: 24-08-26

Course : M.Tech.(Cyber Security)

```
In [1]: # installing necessary packages
  install.packages("tidyverse")
  install.packages("datarium")
  install.packages("gridExtra")
```

```
In [3]: library(tidyverse)
library(gridExtra)
```

```
In [4]: data("marketing", package = "datarium")
```

In [5]: head(marketing)

A data.frame: 6 × 4

	youtube	facebook	newspaper	sales
	<dbl></dbl>	<dbi></db	<dbl></dbl>	<dbl></dbl>
1	276.12	45.36	83.04	26.52
2	53.40	47.16	54.12	12.48
3	20.64	55.08	83.16	11.16
4	181.80	49.56	70.20	22.20
5	216.96	12.96	70.08	15.48
6	10.44	58.68	90.00	8.64

In [6]: summary(marketing)

youtube	facebook	newspaper	sales	
Min. : 0.84	Min. : 0.00	Min. : 0.36	Min. : 1.92	
1st Qu.: 89.25	1st Qu.:11.97	1st Qu.: 15.30	1st Qu.:12.45	
Median :179.70	Median :27.48	Median : 30.90	Median :15.48	
Mean :176.45	Mean :27.92	Mean : 36.66	Mean :16.83	
3rd Qu.:262.59	3rd Qu.:43.83	3rd Qu.: 54.12	3rd Qu.:20.88	
Max. :355.68	Max. :59.52	Max. :136.80	Max. :32.40	

```
In [7]: ggplot(marketing, aes(x = youtube, y = sales)) +
    geom_point()

ggplot(marketing, aes(x = facebook, y = sales)) +
    geom_point()

ggplot(marketing, aes(x = newspaper, y = sales)) +
    geom_point()
```


In [8]: # training linear regression model for different column with sales
model1 = lm(sales ~ youtube, marketing)
model2 = lm(sales ~ facebook, marketing)
model3 = lm(sales ~ newspaper, marketing)

```
In [9]: # details of model params
      model1
      print('----')
      model2
      print('-----')
      model3
      Call:
      lm(formula = sales ~ youtube, data = marketing)
      Coefficients:
                youtube
0.04754
      (Intercept)
         8.43911
      Call:
      lm(formula = sales ~ facebook, data = marketing)
      Coefficients:
      (Intercept) facebook
         11.1740
                   0.2025
      [1] "-----"
      Call:
      lm(formula = sales ~ newspaper, data = marketing)
      Coefficients:
      (Intercept) newspaper
```

14.82169 0.05469

```
In [18]: # plotting of data points w.r.t trained model
ggplot(marketing, aes(youtube, sales)) +
    geom_point() +
    stat_smooth(method = lm)

ggplot(marketing, aes(facebook, sales)) +
    geom_point() +
    stat_smooth(method = lm)

ggplot(marketing, aes(newspaper, sales)) +
    geom_point() +
    stat_smooth(method = lm)
```

`geom_smooth()` using formula = 'y ~ x'
`geom_smooth()` using formula = 'y ~ x'

 $\ensuremath{\text{`geom_smooth()`}}\ using formula = 'y \sim x'$

In [13]: calculating residuals and adding it to marketing dataframe columns
 marketing\$residuals_youtube <- residuals(model1)
 marketing\$residuals_facebook <- residuals(model2)
 marketing\$residuals_newspaper <- residuals(model3)</pre>

In [14]: head(marketing)

A data.frame: 6 × 7

	youtube	facebook	newspaper	sales	residuals_youtube	residuals_facebook	residuals_ne
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
1	276.12	45.36	83.04	26.52	4.9550706	6.1608256	
2	53.40	47.16	54.12	12.48	1.5024311	-8.2436669	-
3	20.64	55.08	83.16	11.16	1.7397315	-11.1674335	-
4	181.80	49.56	70.20	22.20	5.1187265	0.9903433	
5	216.96	12.96	70.08	15.48	-3.2726618	1.6816889	-
6	10.44	58.68	90.00	8.64	-0.2953948	-14.4164183	-1
4							

```
In [19]:
         library(ggplot2)
         # plotting of residuals w.r.t. the fitted data.
         ggplot(marketing, aes(x = fitted(model1), y = residuals_youtube)) +
           geom point() +
           geom_hline(yintercept = 0, linetype = "dashed", color = "red") +
           labs(title = "Residuals vs. Fitted Values",
                x = "Fitted Values",
                y = "Residuals") +
           theme_minimal()
         ggplot(marketing, aes(x = fitted(model2), y = residuals_youtube)) +
           geom point() +
           geom_hline(yintercept = 0, linetype = "dashed", color = "red") +
           labs(title = "Residuals vs. Fitted Values",
                x = "Fitted Values",
                y = "Residuals") +
           theme_minimal()
         ggplot(marketing, aes(x = fitted(model3), y = residuals_youtube)) +
           geom point() +
           geom_hline(yintercept = 0, linetype = "dashed", color = "red") +
           labs(title = "Residuals vs. Fitted Values",
                x = "Fitted Values",
                y = "Residuals") +
           theme_minimal()
```


Conclusion

- 1. Scatter plot gives better understanding whether the linear model will work for the dataset or not.
- 2. Facebook Advertising: Most impactful, increasing sales by 0.203 units per unit spent
- 3. Newspaper Advertising: Moderate impact, increasing sales by 0.055 units per unit spent.
- 4. YouTube Advertising: Least impact, increasing sales by 0.048 units per unit spent.
- 5. Data Overview: Facebook has the highest mean spend (27.92 units), while YouTube has the highest range (0.84 to 355.68 units).