Model Selection and Shrinkage

Vahid Partovi Nia

Lecture 05

Outline

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Lasso Implementation Credit dataset

2 All subsets

Stepwise selection

Manual Implementation

5 Shrinkage

6 Ridge Implementation

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

- Credit dataset involves 11 attributes. The objective is to model 'Balance'.
- Available attributes are: Income, Limit, Rating, Cards, Age, Education, Gender, Student, Married, and Ethnicity.
- Focus on quantitative variables: Income, Limit, Rating, Cards, Age, and Education.

Notation n observation, p features

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

$$\boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}, \mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}$$

$$\mathbf{X}_{n \times p} = \begin{pmatrix} \mathbf{x}_{1}^{\top} \\ \vdots \\ \mathbf{x}_{n}^{\top} \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix}$$

$$\mathbf{X}_{n \times (p+1)} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{pmatrix}$$

Matrix differentiation

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Lasso Implementation

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$S(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

What is the minimizer of $S(\beta)$?

Matrix differentiation

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Lasso Implementation

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

 $S(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$

What is the minimizer of $S(\beta)$?

$$\begin{split} \frac{\partial \mathbf{X}\boldsymbol{\beta}}{\partial \boldsymbol{\beta}} &= \mathbf{X}^{\top} \\ \frac{\partial \boldsymbol{\beta}^{\top} \mathbf{A} \boldsymbol{\beta}}{\partial \boldsymbol{\beta}} &= (\mathbf{A} + \mathbf{A}^{\top}) \boldsymbol{\beta} \end{split}$$

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

$$\begin{array}{rcl} \min & S(\boldsymbol{\beta}) \\ \frac{\partial S(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} &= 0 \\ (\mathbf{X}^{\top} \mathbf{X}) \boldsymbol{\beta} &= \mathbf{X}^{\top} \mathbf{y} \\ \boldsymbol{\beta} &= (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y} \end{array}$$

Quantitative attributes

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge

Lasso Implementation

Implementation

	Balance	Income	Limit	Rating	Cards	Age	Education
0	333	14.891	3606	283	2	34	11
1	903	106.025	6645	483	3	82	15
2	580	104.593	7075	514	4	71	11
3	964	148.924	9504	681	3	36	11
4	331	55.882	4897	357	2	68	16

Scatterplot Implementation

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge

Implementation

Lasso Implementation

8/26

Scatterplot

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Collinearity

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Lasso Implementation

10/26

Effect of collinearity on estimation

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Effect of collinearity on estimation

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Lasso Implementation

		Coefficient	Std. error	t-statistic	p-value
	Intercept	-173.411	43.828	-3.957	< 0.0001
Model 1	age	-2.292	0.672	-3.407	0.0007
	limit	0.173	0.005	34.496	< 0.0001
	Intercept	-377.537	45.254	-8.343	< 0.0001
Model 2	rating	2.202	0.952	2.312	0.0213
	limit	0.025	0.064	0.384	0.7012

All possible subsets

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Lasso Implementation Suppose you have the response vector \mathbf{y} and $\mathbf{x}_j, j = 1, \dots p$ attributes.

- Fit 2^p possible models
- Choose the model with the best AIC or BIC.

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Lasso Implementation Suppose you have the response vector \mathbf{y} and $\mathbf{x}_i, j = 1, \dots p$ attributes.

Repeat the following algorithm until all attributes are in the model.

- f 0 Initialize with the constant model ${f y}=eta_0$
- **2** Compute $\hat{\mathbf{y}}$
- $\textbf{3} \ \, \mathsf{Compute} \,\, \mathsf{the} \,\, \mathsf{residual} \,\, \mathbf{r} = \mathbf{y} \hat{\mathbf{y}} \,$
- 4 Find j' the most correlated attribute x_j with r.
- **6** Enter j' to the model
- **6** Go to 2

Select one of these models using AIC or BIC.

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

```
\label{eq:continuous_section} \begin{split} &\text{from sklearn.linear\_model import LinearRegression} \\ &y = &\text{credit} \left[ \text{'Balance'} \right]. \text{values} \\ &X = &\text{credit} \left[ \text{'Income'} \right] \right]. \text{values} \\ &\text{Ir} = &\text{LinearRegression} \left( \right) \\ &\text{Ir}. \text{fit} \left( X, y \right) \\ &\text{score1} = &\text{Ir}. \text{score} \left( X, y \right) \end{split}
```

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

```
from sklearn.linear_model import LinearRegression
y = credit['Balance'].values
X = credit[['Income']].values
Ir = LinearRegression()
Ir.fit(X,y)
score1 = Ir.score(X,y)

y = credit['Balance'].values
X = credit[['Limit']].values
Ir = LinearRegression()
Ir.fit(X,y)
score2 = Ir.score(X,y)
```


Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Lasso Implementation

```
from sklearn.linear_model import LinearRegression
y = credit ['Balance']. values
X = credit [['Income']]. values
Ir = LinearRegression()
Ir. fit (X, y)
score1 = Ir.score(X,v)
y = credit ['Balance']. values
X = credit [['Limit']]. values
Ir = LinearRegression()
Ir. fit (X, y)
score2 = Ir.score(X,y)
y = credit['Balance']. values
X = credit [['Rating']]. values
Ir = LinearRegression()
Ir. fit (X, y)
score3 = Ir.score(X,y)
```

Which attribute you choose?

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

```
y = credit['Balance'].values
X = credit[['Rating', 'Income']].values
lr = LinearRegression()
lr.fit(X,y)
score31 = lr.score(X,y)
```

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Lasso Implementation

```
y = credit['Balance'].values
X = credit[['Rating', 'Income']].values
Ir = LinearRegression()
Ir.fit(X,y)
score31 = Ir.score(X,y)

y = credit['Balance'].values
X = credit[['Rating', 'Limit']].values
Ir = LinearRegression()
Ir.fit(X,y)
score32 = Ir.score(X,y)
```

Which attribute you choose next?

Credit data

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Lasso Implementation

# Variables	Best subset	Forward stepwise
One	rating	rating
Two	rating, income	rating, income
Three	rating, income, student	rating, income, student
Four	cards, income	rating, income,
	student, limit	student, limit

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Lasso Implementation Suppose you have the response vector \mathbf{y} and $\mathbf{x}_j, j=1,\dots p$ attributes.

Repeat the following algorithm until there is no attribute in the model.

- **1** Initialize with the full $\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + \cdots + \beta_p x_p$
- **2** Compute $\hat{\mathbf{y}}$
- **3** Compute the residual $\mathbf{r} = \mathbf{y} \hat{\mathbf{y}}$ and $\mathrm{RSS} = \mathbf{r}^{\top}\mathbf{r}$
- f 4 Find j' the attribute the drops RSS the least possible
- **6** Remove j' from the model
- **6** Go to 2

Select one of these models using AIC or BIC.

Least squares

Credit dataset

Stepwise selection

Shrinkage

Lasso Implementation

Least squares

$$\hat{\boldsymbol{\beta}} = \min(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

Subset selection

$$\hat{\boldsymbol{\beta}} = \min(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

s.t. $\#\{\boldsymbol{\beta}_j \neq 0\} \leq s$

or

$$\hat{\boldsymbol{\beta}} = \min(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

s.t. $\sum_{j=1}^{p} I(\beta_j \neq 0) \leq s$

for a given model size s, where I(.) is the indicator function.

Towards shrinkage

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Lasso Implementation $\begin{array}{l} \mbox{for a given ball size } s \\ \mbox{Ridge regression} \end{array}$

$$\hat{\boldsymbol{\beta}} = \min(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$
s.t.
$$\sum_{j=1}^{p} \beta_{j}^{2} \leq s$$

Lasso regression

$$\hat{\boldsymbol{\beta}} = \min_{\boldsymbol{y}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$
s.t.
$$\sum_{j=1}^{p} |\beta_j| \le s$$

Shrinkage versus selection

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Lagrangian form

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Lasso Implementation For a given penalization constant λ Ridge regression

$$\hat{\boldsymbol{\beta}} = \min(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \sum_{j=1}^{\nu} \beta_j^2$$

Lasso regression

$$\hat{\boldsymbol{\beta}} = \min(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \sum_{j=1}^{p} |\beta_j|$$

All subsets

Stepwise selection

Manual Implementation

Shrinkage

- ...

Ridge Implementation

Lasso Implementation

All subsets

Stepwise selection

Manual Implementation

Shrinkage

- 0

Ridge Implementation

Lasso Implementation

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Lasso Implementation

Ridge Generalized Cross-validation

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Lasso Implementation

```
 \begin{array}{lll} from & sklearn.linear\_model & import & RidgeCV \\ alpha\_values & = np.linspace (0.0001, 0.01, num= 100) \\ rrcv & = RidgeCV (alphas=alpha\_values, & normalize & = True, & store\_cv\_values & = True) \\ rrcv.fit(X, y) \end{array}
```

import matplotlib.pyplot as plt
cv_values = np.sum(rrcv.cv_values_, axis=0)
plt.plot(alpha_values, cv_values, 'or');

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge

Implementation .

```
\label{eq:continuous} \begin{array}{lll} from & sklearn.linear\_model & import Lasso \\ Ir & = Lasso(alpha = 0.1, & normalize = True) \\ Ir.fit(X,y) \\ Ir.predict(X\_pred) \end{array}
```

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge

Implementation

```
 \begin{array}{lll} & from & sklearn.linear\_model & import & Lasso \\ Ir & = Lasso(alpha = 0.1, & normalize = True) \\ Ir. & fit(X,y) \\ Ir. & predict(X\_pred) \\ \end{array}
```

```
from sklearn.linear_model import LassoCV lrcv = LassoCV(alphas = alpha_values , cv = 10 , normalize = True) lrcv.fit(X, y) lrcv.alpha_
```


Least Angle Regression

Credit dataset

All subsets

Stepwise selection

Manual Implementation

Shrinkage

Ridge Implementation

Lasso Implementation The least angle regression provides a fast framework similar to forward selection gives the solution path for lasso.

```
import matplotlib.pyplot as plt
from sklearn.linear_model import lars_path
alphas,_,coefs = lars_path(X, y, method='lasso', verbose=True)
alphas[1]
coefs[:.1]
```


