MA-652 Advanced Calculus Homework 1, Jan. 9 Adam Frank

Problem 1. Let $f:[a,b]\to\mathbb{R}$ be differentiable at $x\in(a,b)$ and $k\in\mathbb{R}$. Prove that (kf)'(x)=kf'(x).

If we define the difference quotient at $x \in (a, b)$,

$$\phi(x) = \frac{(kf)(t) - (kf)(x)}{t - x}$$

then our task is to find $\lim_{t\to x} \phi(x)$. But since

$$\lim_{t \to x} \phi = \lim_{t \to x} \frac{kf(t) - kf(x)}{t - x}$$

by definition of multiplying functions, then this is

$$\lim_{t \to x} k \frac{f(t) - f(x)}{t - x} = k \lim_{t \to x} \frac{f(t) - f(x)}{t - x} = k f'(x)$$

where this limit is guaranteed to exist by the differentiability of f in this interval.

Problem 2. Let $f, g : [a, b] \to \mathbb{R}$ be differentiable at $x \in (a, b)$.

(a). Prove the quotient rule using the limit definition, wherever the denominator isn't 0.

For any $x \in (a,b)$ such that $g(x) \neq 0$ we will show that $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$. We define the difference quotient

$$\phi(t) = \frac{f(t)/g(t) - f(x)/g(x)}{t - x} = \frac{\frac{f(t)g(x) - f(x)g(t)}{g(t)g(x)}}{t - x}$$

Therefore

$$\left(\frac{f}{g}\right)'(t) = \lim_{t \to x} \frac{f(t)g(x) - f(x)g(t)}{[g(t)g(x)](t - x)}$$

$$= \frac{1}{g(x)} \lim_{t \to x} \frac{1}{g(t)} \left(\frac{f(t)g(x) - f(x)g(x) + f(x)g(x) - f(x)g(t)}{t - x}\right)$$

$$= \frac{1}{g(x)} \lim_{t \to x} \frac{1}{g(t)} \cdot \lim_{t \to x} \left(\frac{f(t) - f(x)}{t - x} \cdot g(x) - f(x)\frac{g(t) - g(x)}{t - x}\right)$$

$$= \frac{1}{[g(x)]^2} (f'(x)g(x) - f(x)g'(x))$$

The final equation follows because we assumed that $g(x) \neq 0$ and therefore $\lim_{t \to x} \frac{1}{g(t)} = \frac{1}{g(x)}$. Also we assumed both functions are differentiable in the interval and hence $\lim_{t \to x} \frac{f(t) - f(x)}{t - x} = f'(x)$ and also $\lim_{t \to x} \frac{g(t) - g(x)}{t - x} = g'(x)$. The proof is then complete.

(b). Use the limit definition to find the derivative of $\frac{1}{x}$.

$$\lim_{t \to x} \frac{\frac{1}{t} - \frac{1}{x}}{t - x} = \lim_{t \to x} \frac{\frac{x - t}{tx}}{t - x}$$

$$= -\lim_{t \to x} \frac{1}{tx}$$

$$= -\frac{1}{x^2}$$

(c). Use (b) with the chain rule to derive the quotient rule.

$$\left(\frac{f}{g}\right)'(x) = \left(f(x) \cdot \frac{1}{g(x)}\right)'$$

$$= f'(x) \cdot \frac{1}{g(x)} + f(x) \left[\frac{1}{g(x)}\right]'$$

by the product rule. Now by the chain rule

$$\left[\frac{1}{g(x)}\right]' = -\frac{1}{[g(x)]^2}g'(x)$$

So we can infer from these two equations that

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)}{g(x)} - f(x)\frac{g'(x)}{[g(x)]^2}$$
$$= \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

Problem 3. Rudin page 114 problem 1. If f is defined on \mathbb{R} and $\forall x, y \in \mathbb{R}$ we have $|f(x) - f(x)| \leq (x - y)^2$, then prove that f is constant.

This feels like a complex analysis theorem—this sort of thing isn't supposed to be true for real functions! \odot

To show that f is constant we'll prove that the derivative is zero everywhere. That is to say, we'll show that at every $x \in \mathbb{R}$

$$\left| \frac{f(t) - f(x)}{t - x} \right| < \varepsilon$$

for each $\varepsilon \in \mathbb{R}^+$, whenever $|t-x| < \delta$ for some corresponding δ . Choose $\delta = \varepsilon$ in fact. Then if $|t-x| < \delta$ we have

$$\left|\frac{f(t)-f(x)}{t-x}\right|<\frac{(t-x)^2}{\delta}<\frac{\delta^2}{\delta}=\varepsilon$$

Problem 4. Rudin page 114 problem 2. Suppose f'(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b). Let g be its inverse. Prove that g is differentiable and

$$g'(f(x)) = \frac{1}{f'(x)}$$

We already know that f is monotonically increasing due to theorem 5.11. Moreover, since f'(x) > 0 we have that there can be no two values $c, d \in (a, b)$ such that c < d and f(c) = f(d). If there were, by the mean-value theorem there would have to be a point $x_0 \in (c, d)$ such that $f'(x) = \frac{f(d) - f(c)}{d - c} = 0$. Since f is strictly increasing it is one-to-one and has an inverse. By definition

Since f is strictly increasing it is one-to-one and has an inverse. By definition if g is the inverse then f(g(y)) = y for all y in the co-domain of f. By the chain rule we have

$$f'(g(y))g'(y) = 1 \Rightarrow$$

$$g'(y) = \frac{1}{f'(g(y))}$$

If we regard y = f(x) and hence g(y) = x then we have

$$g'(f(x)) = \frac{1}{f'(x)}$$

Problem 5. Rudin page 114 problem 4. If $C_0 + \frac{C_1}{2} + \cdots + \frac{C_n}{n+1} = 0$ then

$$C_0 + C_1 x + \dots + C_n x^n = 0$$

has at least one solution in [0,1].

Define $F(x)=C_0x+C_1x^2/2+\cdots+C_nx^n/(n+1)$ and observe that $F'(x)=C_0+\cdots+C_nx^n$. Now F(0)=0 and $F(1)=C_0+\cdots+\frac{C_n}{n+1}=0$. By the mean value theorem there is a point $c\in(0,1)$ such that $F'(c)=\frac{F(1)-F(0)}{1-0}=0$.

Problem 6. Rudin page 114 problem 5. Suppose f is defined and differentiable for every x>0, and $\lim_{x\to\infty}f'(x)=0$. Let g(x)=f(x+1)-f(x). Prove that $\lim_{x\to\infty}g(x)=0$.

Let $M \in \mathbb{R}$ be such that $|f'(a)| < \varepsilon$ for all a > M. We will show that, for this value of M, it follows that $|g(x)| < \varepsilon$ for all x > M.

Now for any such x>M we have that x+1>M. So on the interval (x,x+1) we have that $\frac{f(x+1)-f(x)}{x+1-x}=f(x+1)-f(x)=f'(c)$ for some $c\in(x,x+1)$. Therefore $|f(x+1)-f(x)|=|f'(c)|<\varepsilon$. Since x was chosen arbitrarily in (M,∞) , we have shown

$$\lim_{x \to \infty} g(x) = 0$$

Problem 7. Rudin page 114 problem 6. Suppose (a) f is continuous for $x \ge 0$, (b) f'(x) exists for x > 0, (c) f(0) = 0, (d) f' is monotonically increasing. Put $g(x) = \frac{f(x)}{x}$ for x > 0 and prove that g is monotonically increasing.

We show that the derivative is non-negative. Since

$$g'(x) = \frac{f'(x)x - f(x)}{x^2}$$

then it suffices to show that $f'(x)x - f(x) \ge 0$ for every $x \in \mathbb{R}^+$. To leverage condition (d) we apply the mean value theorem. There must exist a 0 < c < x such that

$$\frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x} = f'(c)$$

and hence f(x) = f'(c)x. Since x > 0, and since f' is increasing and c < x, we must have

$$f(x) = f'(c)x \le f'(x)x$$

which implies

$$0 \le f'(x)x - f(x)$$

as desired.

Problem 8. Rudin page 117 problem 22 abc.

First we need to show that based on these assumptions, (kf)'(x) exists.

Problem 9. Rudin page 119 problem 26.

First we need to show that based on these assumptions, (kf)'(x) exists.

Problem 10. Rudin page 119 problem 27.

First we need to show that based on these assumptions, (kf)'(x) exists.