Tema 2 Análisis del rendimiento **Arquitectura de los Computadores**

Tema 2. Análisis del rendimiento

Objetivos

- Entender el concepto de rendimiento, la evolución del rendimiento en los computadores en los últimos años y su relación con el coste
- Saber cuantificar la ganancia de rendimiento o aceleración que puede obtenerse al mejorar alguna característica de un computador
- Mostrar al alumno distintas métricas para evaluar el rendimiento de una arquitectura, observando la relación que existe entre ellas.
- Adquirir conciencia de la necesidad de establecer métricas para llevar a cabo procesos de evaluación y comparación objetiva y contrastada de sistemas computacionales

Tema 2. Análisis del rendimiento

Contenido

- 2.1. Rendimiento. Concepto y definiciones
 - Concepto de rendimiento
 - Ley de Amdhal
 - Relación entre rendimiento y coste
- 2.2. Evaluación del rendimiento
 - Medidas del rendimiento
 - Programas para evaluar el rendimiento
 - Formulación de resultados

Tema 2 Análisis del rendimiento

Arquitectura de los Computadores

Concepto

Amdahl

Relación

Evolución del rendimiento

- La tecnología de computadores ha tenido un increible progreso en los últimos 65 años
- Por menos de 500€ es posible comprar un portátil que tiene más rendimiento, memoria y capacidad de disco que un computador que costaba casi 1 millón de € en 1985.
- Esta rápida mejora se debe fundamentalmente a:
 - Avances en la tecnología (casi constante) usada para construir computadores
 - Tamaño de los elementos en el chip (feature size), velocidad del reloj
 - Innovaciones en el diseño (menos consistentes)
 - Compiladores de lenguajes de alto nivel, UNIX
 - Provocado por arquitecturas RISC

Aparición del microprocesador (µP) (finales 1970)

- Capacidad de dirigir los avances en la tecnología de circuitos integrados
 - Tasa más alta de mejora del rendimiento (35% anual)
- Ventajas en el coste debido a la producción masiva de μPs
 - Aumenta el número de computadores basados en μPs.
- Además, dos cambios significantes:
 - Eliminación virtual de la programación en lenguaje ensamblador
 - Reduce la necesidad de la compatibilidad en el código objeto
 - Aparición de sistemas operativos estandarizados como UNIX
 - Reducen el coste y el riesgo en la aparición de una nueva arquitectura

RISC (Principios 1980)

- Cambios anteriores permiten el desarrollo de forma satisfactoria de un nuevo conjunto de arquitecturas con instrucciones más simples: arquitecturas RISC (Reduced Instruction Set Computer).
- Los diseñadores de máquinas RISC se centraron en dos técnicas clave para la mejora del rendimiento:
 - La explotación del paralelismo a nivel de instrucción
 - El uso de cachés
- El aumento del rendimiento forzó a las arquitecturas previas a mantener el ritmo o a desaparecer

Cae la mejora del rendimiento para un sólo procesador

 Máxima disipación de potencia de chips refrigerados por aire

1000

100

 Falta de más paralelismo a nivel de instrucción a explotar eficientemente.

Intel canceló sus proyectos de uniprocesadores de alto rendimiento y declaró que la via para obtener mayor rendimiento sería a través de múltiples procesadors por chip

Digital Alphastation 5/300, 300

IBM POWERstation 100, 150 MHz

IBM RS6000/540, 30 MHz 424

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

52%/year

Concepto

Amdahl

Relación

Concepto de rendimiento

• Qué significa cuando decimos que un computador es más rápido que otro?:

Usuario:

- Un computador es más rápido cuando un programa se ejecuta en menos tiempo
- Interesado en reducir el tiempo de respuesta/tiempo de ejecución
 - Tiempo transcurrido entre el inicio y el final de un evento

• Administrador de un Cluster:

- Un computador es más rápido cuando completa más transacciones por hora (Google, Amazon...)
- Interesado en aumentar la productividad/throughput
 - Cantidad total de trabajo realizado en un tiempo determinado

Amdahl

Relación

Ejemplo:

- ¿Las siguientes mejoras en el rendimiento afectan a la productividad, al tiempo de respuesta o a ambas cosas?
 - 1. Ciclo de reloj más rápido
 - 2. Múltiples procesadores para tareas separadas (sistema de reservas de una compañía aérea)
 - 3. Procesamiento paralelo de problemas científicos
 - La disminución del tiempo de respuesta habitualmente mejora la productividad.
 - 1 y 3 mejoran el tiempo de respuesta y en consecuencia la productividad. En el caso 2 no mejora el tiempo de respuesta pero si la productividad.
- La influencia de factores no determinísticos aconseja hablar de estas medidas de rendimiento con distribuciones de probabilidad.
 - Por ejemplo el tiempo de respuesta en un disco para una operación de entrada salida depende de:
 - Actividad del disco en el instante de petición.
 - Número de tareas intentando acceder al disco
 - Esta situación aconseja hablar de tiempo medio de respuesta de un acceso al disco

Concepto

Amdahl

Relación

Concepto de rendimiento

- El tiempo es la medida más fiable del rendimiento
- El tiempo de ejecución de un programa se mide en segundos
- La relación entre el tiempo y el rendimiento es inversa
- El rendimiento se mide como una frecuencia de eventos por segundo

Rendimiento=
$$\frac{1}{\text{tiempo}}$$

Amdahl

Relación

Relación de rendimientos entre máquinas

"X es más rápida que Y"

$$t_{ex} < t_{ey}$$

"X es n % más rápida que Y"

Porcentaje incremental

 $tiempo\ ejecuci\'on_X + rac{n}{100}\ tiempo\ ejecuci\'on_X = tiempo\ ejecuci\'on_Y$

Aceleración

$$\frac{tiempo\ ejecuci\'on_{Y}}{tiempo\ ejecuci\'on_{X}} = 1 + \frac{n}{100}$$

Concepto

Amdahl

Relación

Relación de rendimientos entre máquinas

En términos de rendimiento

$$1 + \frac{n}{100} = \frac{\text{tiempo ejecución}_{Y}}{\text{tiempo ejecución}_{X}} = \frac{\frac{1}{\text{Re } n \text{ dim } iento_{Y}}}{\frac{1}{\text{Re } n \text{ dim } iento_{X}}} = \frac{\text{Re } n \text{ dim } iento_{X}}{\text{Re } n \text{ dim } iento_{Y}}$$

Despejando

$$\frac{n}{100} = \frac{\text{Re } n \dim iento_X}{\text{Re } n \dim iento_Y} - 1 = \frac{\text{Re } n \dim iento_X}{\text{Re } n \dim iento_Y}$$

$$n = 100 \frac{\text{Re } n \dim iento_X - \text{Re } n \dim iento_Y}{\text{Re } n \dim iento_Y}$$

Expresado con tiempos de ejecución

$$n = 100 \frac{tiempo\ ejecuci\'on_{_{Y}} - tiempo\ ejecuci\'on_{_{X}}}{tiempo\ ejecuci\'on_{_{X}}}$$

Concepto

Amdahl

Relación

Relación de rendimientos entre máquinas

- Ejemplo: Si la máquina A ejecuta un programa en 10 segundos y la máquina B ejecuta un programa en 30 segundos. ¿Cuál de las siguientes afirmaciones es correcta?
 - A es el 30% más rápida que B
 - A es el 200% más rápida que B

Concepto

Amdahl

Relación

Relación de rendimientos entre máquinas

"La productividad de X es el 30 por 100 superior que la de Y"

Ejemplo: Si la máquina A ejecuta un programa en 10 segundos y la máquina B ejecuta el mismo programa en 15 segundos. ¿En que porcentaje es la máquina A más rápida que la B?

Concepto

Amdahl

Relación

Relación de rendimientos entre máquinas

"La productividad de X es el 30 por 100 superior que la de Y"

Ejemplo: Si la máquina A ejecuta un programa en 10 segundos y la máquina B ejecuta el mismo programa en 15 segundos. ¿En que porcentaje es la máquina A más rápida que la B?

$$n = 100 \frac{tiempo\ ejecuci\'on_{\scriptscriptstyle B} - tiempo\ ejecuci\'on_{\scriptscriptstyle A}}{tiempo\ ejecuci\'on_{\scriptscriptstyle A}}$$

$$n = 100 \frac{15 - 10}{10} = 50$$

"A es el 50% más rápida que B"

Concepto

Amdahl

Relación

• **Ejercicio 1**: Se dan los tiempos de ejecución en segundos del benchmark linpack y de 10.000 iteraciones del benchmark Dhrystone en dos modelos VAX y un procesador actual :

Modelo	Año	Tiempo linpack	Tiempo Dhrystone
VAX- 11/780	1978	4,9	5,69
VAX 8600	1985	1,43	1,35
Intel Xeon 4 cores	2010	2,24x10 ⁻⁴	2,74x10 ⁻⁴

- A) ¿Cuantas veces es más rápido el 8600 que el 780 utilizando Linpack? ¿Que ocurre cuando se utiliza Dhrystone?
- B) ¿Cuantas veces es más rápido el Xeon que el 780 utilizando Linpack? ¿Que ocurre cuando se utiliza Dhrystone?
- C) ¿Cual es el crecimiento medio del rendimiento por año entre el 780 y el 8600 utilizando linpack? ¿Que ocurre cuando se utiliza Dhrystone?
- D) ¿Cual es el crecimiento medio del rendimiento por año entre el 780 y el Xeon utilizando linpack? ¿Que ocurre cuando se utiliza Dhrystone?

Concepto

Amdahl

Relación

 a y c) Comparación de rendimientos para el VAX 780 y el VAX 8600 (Según Linpack)

$$te_{VAX780} = 4,9 \text{ s}$$

$$rend_{VAX780} = \frac{1}{te_{VAX780}} = 0,204$$

$$te_{VAX8600} = 1,43 \text{ s}$$

$$rend_{VAX8600} = \frac{1}{te_{VAX8600}} = 0,699$$

Porcentaje de incremento del rendimiento entre las dos arquitecturas:

$$porcentaje = n = 100 \frac{te_{VAX780} - te_{VAX8600}}{te_{VAX8600}} = 100 \frac{4.9 - 1.43}{1.43} = 243\%$$

$$porcentaje = n = 100 \frac{rend_{VAX8600} - rend_{VAX780}}{rend_{VAX780}} = 100 \frac{0,699 - 0,204}{0,204} = 243\%$$

Concepto

Amdahl

Relación

Aceleración del rendimiento entre las dos arquitecturas

$$aceleracion = \left(1 + \frac{n}{100}\right) = \frac{te_{VAX780}}{te_{VAX8600}} = \frac{4.9}{1.43} = 3.43 = \frac{rend_{VAX8600}}{rend_{VAX780}} = \frac{0.699}{0.204}$$

$$rend_{VAX8600} = 3,43 \cdot rend_{VAX780} \Rightarrow 0,699 = 3,43 \cdot 0,204$$

7 años

 Los incrementos anuales se aplican cada año sobre el anterior

$$rend_{an} = \Delta_{anual} \cdot rend_{an-1} \rightarrow rend_{a1} = \Delta_{anual} \cdot rend_{a0}$$

$$rend_{a2} = \Delta_{anual} \cdot rend_{a1} = (\Delta_{anual})^2 rend_{a0}$$

$$rend_{an} = \Delta_{anual} \cdot rend_{an-1} = (\Delta_{anual})^n rend_{a0}$$

Concepto

Amdahl

Relación

El incremento anual es:

$$\Delta_{anual} = \sqrt[n]{\frac{rend_{an}}{rend_{a0}}} = \sqrt[n]{\frac{te_{a0}}{te_{an}}}$$

Si consideramos n=7

$$te_{a0} = te_{VAX780}$$

$$te_{a0} = te_{VAX780} \qquad rend_{a0} = rend_{VAX780}$$

$$te_{a7} = te_{VAX8600}$$

$$te_{a7} = te_{VAX8600}$$
 $rend_{a7} = rend_{VAX8600}$

$$\Delta_{anual} = \sqrt[n]{\frac{rend_{a7}}{rend_{a0}}} = \sqrt[n]{\frac{te_{a0}}{te_{a7}}} = \sqrt[n]{\frac{rend_{VAX8600}}{rend_{VAX780}}} = \sqrt[n]{\frac{te_{VAX780}}{te_{VAX8600}}} = \sqrt[n]{3,43} = 1,193$$

$$aceleración = \left(1 + \frac{n}{100}\right) = \Delta_{anual} \iff n = (\Delta_{anual} - 1) \cdot 100 = 19,3\%$$

Concepto

Amdahl

Relación

- **Ejercicio 2:** Hay dos equipos de diseño en dos compañías diferentes. La gestión de la compañía más pequeña y más agresiva pide un ciclo de diseño de dos años para sus productos. La gestión de la compañía más grande y menos agresiva apuesta por un ciclo de diseño de cuatro años. Supongamos que en el mercado de hoy día se demanda 1.5 veces el rendimiento de un Intel Xeon 4 cores según Linpack.
- ¿Cuales deberían ser los objetivos de rendimiento para cada producto, si las frecuencias de crecimiento necesarias son el 22% por año?
- Supongamos que las compañías acaban de empezar a utilizar chips de DRAM de 2048 Megabits. Dado que la capacidad por chip se ha incrementado entre un 25% y un 40% por año recientemente y casi doblándose de 2 a 3 años. Supongamos que las frecuencias de crecimiento serán 30% y se duplicará en 3 años ¿Que tamaños de DRAM hay que planificar para utilizar en estos proyectos?. Obsérvese que el crecimiento de las DRAM es discreto

Concepto

Amdahl

Relación

 a) Actualmente 1.5 veces mas rendimiento que el Intel Xeon (según Linpack)

$$1.5 = \frac{te_{Xeon}}{te_{actual}} \Longrightarrow te_{actual} = \frac{te_{Xeon}}{1.5} = \frac{2.24 \cdot 10^{-4}}{1.5} = 1.49 \cdot 10^{-4} s$$

El rendimiento crece un 22% anual

$$rend_{a1} = rend_{act} + 0.22 \cdot rend_{act} = 1.22 \cdot rend_{act} \Rightarrow 1.22 = \frac{rend_{a1}}{rend_{act}} = \frac{te_{act}}{te_{a1}}$$

• El primer año
$$te_{a1} = \frac{1}{1.22} \cdot te_{act} = 0.82 \cdot te_{act}$$

• El segundo año
$$te_{a2} = \frac{1}{1.22} \cdot te_{a1} = 0.82 \cdot te_{a1} = (0.82)^2 \cdot te_{act}$$

• El año **n**
$$te_{an} = \frac{1}{1.22} \cdot te_{an-1} = 0.82 \cdot te_{an-1} = (0.82)^n \cdot te_{act}$$

Concepto

Amdahl

Relación

 a) Actualmente 1.5 veces mas rendimiento que el Intel Xeon (según Linpack)

$$1.5 = \frac{te_{Xeon}}{te_{actual}} \Longrightarrow te_{actual} = \frac{te_{Xeon}}{1.5} = \frac{2.24 \cdot 10^{-4}}{1.5} = 1.49 \cdot 10^{-4} s$$

El rendimiento crece un 22% anual

$$rend_{a1} = rend_{act} + 0.22 \cdot rend_{act} = 1.22 \cdot rend_{act} \Rightarrow 1.22 = \frac{rend_{a1}}{rend_{act}} = \frac{te_{act}}{te_{a1}}$$

Empresa A (2 años)

$$te_{a2} = (0.82)^2 \cdot te_{act} = (0.82)^2 \cdot 1.49 \cdot 10^{-4} = 1 \cdot 10^{-4} s = 100 \mu s$$

Empresa B (4 años)

$$te_{a4} = (0.82)^4 \cdot te_{act} = (0.82)^4 \cdot 1.49 \cdot 10^{-4} = 6.74.10^{-5} s = 67.4 \mu s$$

Concepto

Amdahl

Relación

b) El tamaño de la memoria actual es 2048 Mb

Tamaño de la memoria año 1

$$tm_{a1} = tm_{act} + 0.3 \cdot tm_{act} \Rightarrow tm_{a1} = 1.3 \cdot tm_{act}$$

Tamaño de la memoria año 2

$$tm_{a2} = tm_{a1} + 0.3 \cdot tm_{a1} \Longrightarrow tm_{a2} = 1.3 \cdot tm_1 = (1.3)^2 \cdot tm_{act}$$

Tamaño de la memoria año n

$$tm_{an} = tm_{an-1} + 0.3 \cdot tm_{an-1} \Rightarrow tm_{an} = 1.3 \cdot tm_{an-1} = (1.3)^n \cdot tm_{act}$$

Evolución continua

$$tm_{a2} = (1.3)^{2} \cdot tm_{act} = (1.3)^{2} \cdot 2048 = 3461,12Mb$$

$$tm_{a3} = (1.3)^{3} \cdot tm_{act} = (1.3)^{3} \cdot 2048 = 4449,45Mb$$

$$tm_{a4} = (1.3)^{4} \cdot tm_{act} = (1.3)^{4} \cdot 2048 = 5849,29Mb$$

$$tm_{a6} = (1.3)^{6} \cdot tm_{act} = (1.3)^{6} \cdot 2048 = 9885,30Mb$$

Concepto

Amdahl

Relación

b) El tamaño de la memoria actual es 2048 Mb

Tamaño de la memoria año 1

$$tm_{a1} = tm_{act} + 0.3 \cdot tm_{act} \Rightarrow tm_{a1} = 1.3 \cdot tm_{act}$$

Tamaño de la memoria año 2

$$tm_{a2} = tm_{a1} + 0.3 \cdot tm_{a1} \Longrightarrow tm_{a2} = 1.3 \cdot tm_1 = (1.3)^2 \cdot tm_{act}$$

Tamaño de la memoria año n

$$tm_{an} = tm_{an-1} + 0.3 \cdot tm_{an-1} \Longrightarrow tm_{an} = 1.3 \cdot tm_{an-1} = (1.3)^n \cdot tm_{act}$$

- Evolución discreta (x2 cada 3 años)
- Empresa A (salto superior más cercano 3 años x 2)

$$tm_{EmpA} = 2048Mb_{act} \cdot 2 = 4096Mb$$

Empresa B (salto superior más cercano 6 años x 2)

$$tm_{EmpB} = 2048Mb_{act} \cdot 2 \cdot 2 = 8192Mb$$

Concepto

Amdahl

Relación

Ley de Amdhal

- Relacionado con el principio de diseño de favorecer el caso frecuente
- Define la ganancia de rendimiento o aceleración que puede obtenerse al mejorar alguna característica de un computador
- La mejora obtenida en el rendimiento al utilizar algún modo de ejecución más rápido está limitada por la fracción de tiempo en que se puede utilizar ese modo más rápido

$$Aceleración \text{ Re } n \text{ dim } iento = \frac{\text{Re } n \text{ dim } iento \text{ con } mejora}{\text{Re } n \text{ dim } iento \text{ sin } mejora} = \frac{Tiempo \text{ ejecución } sin \text{ mejora}}{Tiempo \text{ ejecución } con \text{ mejora}}$$

Concepto

Amdahl

Relación

• **Ejemplo:** Se pretende viajar entre dos puntos cuyo trayecto involucra a dos tipos de terreno. El primer tramo es a través de las montañas y el segundo por el desierto. Tenemos varios tipos de vehículos pero las montañas tienen que ser recorridas necesariamente a pie, empleando para ello 20 horas. El segundo tramo de 200 millas puede ser recorrido de cinco formas diferentes:

Concepto

Amdahl

Relación

Tomando como referencia el recorrido a píe de la distancia completa

Vehículo segunda parte del viaje	Horas de la segunda parte del viaje	Aceleración en el desierto	Horas del viaje completo	Aceleración en el viaje completo
A pie	50	1=4/4=50/50	70=50+20	1,0=70/70
Bicicleta	20	2,5=10/4=50/20	40=20+20	1,8=70/40
Excel	4	12,5=50/4=50/4	24=20+4	2,9=70/24
Testarossa	1,67	30=120/4=50/1,67	21,67=20+1,67	3,2=70/21,67
Vehículo oruga	0,33	150=600/4=50/0,33	20,33=20+0,33	3,4=70/20,33

Concepto

Amdahl

Relación

- Ley de Amdahl: aceleración dependiente de dos factores:
- Fracción mejorada: fracción de tiempo de la opción sin la mejora que puede utilizarse para aprovechar la mejora (siempre menor o igual que uno). En el ejemplo anterior 50/70.
- Aceleración mejorada: Aceleración del modo mejorado (mayor que uno). En el ejemplo anterior aceleración en el desierto.

Concepto

Amdahl

Relación

■ El tiempo de ejecución nuevo (máquina original con el modo mejorado) (21,67) es el tiempo empleado sin utilizar la parte mejorada (20) mas el tiempo empleado utilizando la parte mejorada (1,67) (tiempo a pie + tiempo en Testarossa)

Análisis de rendimiento

> A pie Testarossa

20h 50h

20h 1,67h

Concepto

Amdahl

Relación

El tiempo de ejecución nuevo (máquina original con el modo mejorado) (21,67) es el tiempo empleado sin utilizar la parte mejorada (20) mas el tiempo empleado utilizando la parte mejorada (1,67) (tiempo a pie + tiempo en Testarossa)

$$Aceleraci\'{o}n_{global} = \frac{TE_{antiguo}}{TE_{nuevo}} = \frac{1}{(1 - Fracci\'{o}n_{mejorada}) + \frac{Fracci\'{o}n_{mejorada}}{Aceleraci\'{o}n_{mejorada}}}$$

$$\begin{split} &\text{fracci\'on}_{\text{mejorada}}\text{=}1 \rightarrow \text{aceleraci\'on}_{\text{global}}\text{=}\text{aceleraci\'on}_{\text{mejorada}} \\ &\text{fracci\'on}_{\text{mejorada}}\text{=}0 \rightarrow \text{aceleraci\'on}_{\text{global}}\text{=}1 \end{split}$$

Montañas

Concepto

Amdahl

Relación

• **Ejemplo:** Suponer que estamos considerando una mejora que corra diez veces más rápida que la máquina original, pero sólo es utilizable el 40% del tiempo. ¿Cual es la aceleración global lograda al incorporar la mejora?

Concepto

Amdahl

Relación

• **Ejemplo:** Suponer que estamos considerando una mejora que corra diez veces más rápida que la máquina original, pero sólo es utilizable el 40% del tiempo. ¿Cual es la aceleración global lograda al incorporar la mejora?

$$Fracción_{meiorada} = 0,4$$

 $Aceleración_{mejorada} = 10$

Aceleración_{global} =
$$\frac{1}{0.6 + \frac{0.4}{10}} = \frac{1}{0.64} \approx 1.56$$

• **Ejemplo:** Suponer que una cache es 5 veces más rápida que la memoria principal y supongamos que la cache puede ser utilizada el 90% del tiempo ¿Qué aumento de velocidad se logrará al utilizar la cache?

Concepto

Amdahl

Relación

• **Ejemplo:** Suponer que estamos considerando una mejora que corra diez veces más rápida que la máquina original, pero sólo es utilizable el 40% del tiempo. ¿Cual es la aceleración global lograda al incorporar la mejora?

$$Fracción_{meiorada} = 0,4$$

 $Aceleración_{mejorada} = 10$

Aceleración_{global} =
$$\frac{1}{0.6 + \frac{0.4}{10}} = \frac{1}{0.64} \approx 1.56$$

• **Ejemplo:** Suponer que una cache es 5 veces más rápida que la memoria principal y supongamos que la cache puede ser utilizada el 90% del tiempo ¿Qué aumento de velocidad se logrará al utilizar la cache?

Fracción_{meiorada} =
$$0.9$$

 $Aceleración_{mejorada} = 5$

$$Aceleración_{global} = \frac{1}{0,1 + \frac{0.9}{5}} = \frac{1}{0,25} = 3,6$$

Concepto

Amdahl

Relación

- **Ejercicio 3:** Para las cuatro siguientes preguntas, supongamos que se está considerando mejorar una máquina añadiéndole un modo vectorial. Cuando se ejecuta un cálculo en modo vectorial, es 20 veces más rápido que en el modo normal de ejecución. Llamamos al porcentaje de tiempo que puede emplearse el modo vectorial porcentaje de vectorización.
- 1. Dibujar un gráfico donde se muestre la aceleración como porcentaje del cálculo realizado en modo vectorial. Rotular el eje y con "aceleración neta" y el eje x con "porcentaje de vectorización".
- 2. ¿Que porcentaje de vectorización se necesita para conseguir una aceleración de 2?
- 3. ¿Que porcentaje de vectorización se necesita para conseguir la mitad de la aceleración máxima alcanzable utilizando el modo vectorial?.
- 4. Supongamos que hemos medido el porcentaje de vectorización de programas, obteniendo que es del 70%. El grupo de diseño hardware dice que puede duplicar la velocidad de la parte vectorizada con una inversión significativa de ingeniería adicional. Se desea saber si el equipo de compilación puede incrementar la utilización del modo vectorial como otra aproximación para incrementar el rendimiento. ¿Que incremento en el porcentaje de vectorización (relativo a la utilización actual) se necesitará para obtener la misma ganancia de rendimiento? ¿Que inversión es recomendable?.

Concepto

Amdahl

Relación

Análisis de rendimiento

Ejercicio 3:

• 1.Dibujar un gráfico donde se muestre la aceleración como porcentaje del cálculo realizado en modo vectorial. Rotular el eje y con "aceleración neta" y el eje x con "porcentaje de vectorización".

0%
$$a_g = \frac{1}{1 + \frac{0}{20}} = 1$$

10%
$$a_g = \frac{1}{0.9 + \frac{0.1}{20}} = 1.105$$

20%
$$a_g = \frac{1}{0.8 + \frac{0.2}{20}} = 1,235$$

90%
$$a_g = \frac{1}{0.1 + \frac{0.9}{20}} = 6.9$$

100%
$$a_g = \frac{1}{0 + \frac{1}{1}} = 20$$

Concepto

Amdahl

Relación

Ejercicio 3:

2.¿Que porcentaje de vectorización se necesita para conseguir una aceleración de 2?

$$2 = \frac{1}{\left(1 - f_m\right) + \frac{f_m}{20}} \Rightarrow f_m = 0,526 = 52,6\%$$

3.¿Que porcentaje de vectorización se necesita para conseguir la mitad de la aceleración máxima alcanzable utilizando el modo vectorial?.

$$10 = \frac{1}{(1 - f_m) + \frac{f_m}{20}} \Rightarrow f_m = 0,947 \square 95\%$$

Concepto

Amdahl

Relación

• 4. Hemos medido el porcentaje de vectorización de programas, obteniendo que es del 70%. El grupo de diseño hardware dice que puede duplicar la velocidad de la parte vectorizada con una inversión significativa de ingeniería adicional. Se desea saber si el equipo de compilación puede incrementar la utilización del modo vectorial como otra aproximación para incrementar el rendimiento. ¿Que incremento en el porcentaje de vectorización (relativo a la utilización actual) se necesitará para obtener la misma ganancia de rendimiento? ¿Que inversión es recomendable?.

$$TE_{ant} = TE_{vec} * 20 = TE_{vec.r} * 40 \rightarrow TE_{vec} = TE_{vec.r} * 2$$

Aceleración global conseguida por el grupo de hardware

$$a_g = \frac{1}{(1-0,7) + \frac{0,7}{40}} = 3,15$$

Concepto

Amdahl

Relación

• 4. Hemos medido el porcentaje de vectorización de programas, obteniendo que es del 70%. El grupo de diseño hardware dice que puede duplicar la velocidad de la parte vectorizada con una inversión significativa de ingeniería adicional. Se desea saber si el equipo de compilación puede incrementar la utilización del modo vectorial como otra aproximación para incrementar el rendimiento. ¿Que incremento en el porcentaje de vectorización (relativo a la utilización actual) se necesitará para obtener la misma ganancia de rendimiento? ¿Que inversión es recomendable?.

$$TE_{ant} = TE_{vec} * 20 = TE_{vec,r} * 40 \rightarrow TE_{vec} = TE_{vec,r} * 2$$

■ Incremento del % de vectorización para alcanzar a_g=3,15

$$a_g = 3.15 = \frac{1}{(1 - f_m) + \frac{f_m}{20}} \Rightarrow f_m = 0.719$$

$$\Delta\% \ vector = |0,7-0,719| = 0,019 = 1,9\%$$

Concepto

Amdahl

Relación

- **Ejercicio 4:** El coprocesador de un computador mejora en un factor de 5 el procesamiento de números en coma flotante. El tiempo de ejecución de cierto programa es de 1 minuto con el coprocesador instalado, y de 2,5 minutos sin este.
- a) Calcula el porcentaje del tiempo de ejecución, sin el coprocesador instalado, que el programa realiza operaciones en coma flotante.
- b) Calcula el tiempo de ejecución del programa sin el coprocesador instalado, para realiza las operaciones en coma flotante.
- c) Calcula el tiempo de ejecución del programa con el coprocesador instalado, para realiza las operaciones en coma flotante.
- d) Calcula el tiempo de ejecución del programa para realiza las operaciones enteras.
- e) Comprueba la coherencia del planteamiento sumando los resultados de los apartados c y d, obteniendo el tiempo de ejecución del programa con el coprocesador instalado.

Concepto

Amdahl

Relación

- **Ejercicio 4:** El coprocesador de un computador mejora en un factor de 5 el procesamiento de números en coma flotante. El tiempo de ejecución de cierto programa es de 1 minuto con el coprocesador instalado, y de 2,5 minutos sin este.
- a) Calcula el porcentaje del tiempo de ejecución, sin el coprocesador instalado, que el programa realiza operaciones en coma flotante.

$$a_g = \frac{t_{e.ant}}{t_{e.nue}} = \frac{2.5}{1} = \frac{1}{(1 - f_m) + \frac{f_m}{5}} \Rightarrow f_m = 0.75$$

Concepto

Amdahl

Relación

- **Ejercicio 4:** El coprocesador de un computador mejora en un factor de 5 el procesamiento de números en coma flotante. El tiempo de ejecución de cierto programa es de 1 minuto con el coprocesador instalado, y de 2,5 minutos sin este.
- b) Calcula el tiempo de ejecución del programa sin el coprocesador instalado, para realiza las operaciones en coma flotante.

Tarea sin punto flotante punto flotante

Sin copro 2,5m

Con copro 1m

$$t_{e.ant} = 2,5$$

 $t_{e.ant.flot} = 2,5 \square 0,75 = 1,875 m$

Concepto

Amdahl

Relación

- **Ejercicio 4:** El coprocesador de un computador mejora en un factor de 5 el procesamiento de números en coma flotante. El tiempo de ejecución de cierto programa es de 1 minuto con el coprocesador instalado, y de 2,5 minutos sin este.
- c) Calcula el tiempo de ejecución del programa con el coprocesador instalado, para realiza las operaciones en coma flotante.

$$t_{e.ant} = 2,5$$

$$t_{e.nue.flot} = \frac{1,875}{5} = 0,375m$$

Concepto

Amdahl

Relación

- **Ejercicio 4:** El coprocesador de un computador mejora en un factor de 5 el procesamiento de números en coma flotante. El tiempo de ejecución de cierto programa es de 1 minuto con el coprocesador instalado, y de 2,5 minutos sin este.
- d) Calcula el tiempo de ejecución del programa para realiza las operaciones enteras.

$$t_{e,\text{int}} = 2,5-1,875 = 0,625m$$

Concepto

Amdahl

Relación

- **Ejercicio 4:** El coprocesador de un computador mejora en un factor de 5 el procesamiento de números en coma flotante. El tiempo de ejecución de cierto programa es de 1 minuto con el coprocesador instalado, y de 2,5 minutos sin este.
- e) Comprueba la coherencia del planteamiento sumando los resultados de los apartados c y d, obteniendo el tiempo de ejecución del programa con el coprocesador instalado.

Tarea sin punto flotante punto flotante

Sin copro 2,5m

Con copro 1m

$$t_{nue} = t_{int} - t_{nue, flo} = 0,375 + 0,625 = 1 m$$

Concepto

Amdahl

Relación

Relación rendimiento y coste

¿Por qué el cliente se decide por un computador en lugar de otro?

- Las medidas estándares del rendimiento permiten comparar cuantitativamente a los diseñadores
- Las comparativas basan sus informes en aspectos relacionados con el rendimiento y coste de compra

Concepto

Amdahl

Relación

Relación rendimiento y coste

 El diseño de computadores abarca desde el alto coste alto rendimiento hasta el bajo coste bajo rendimiento

	Feature	Personal mobile device (PMD)	Desktop	Server	Clusters/warehouse- scale computer	Embedded
	Price of system	\$100-\$1000	\$300-\$2500	\$5000-\$10,000,000	\$100,000-\$200,000,000	\$10-\$100,000
Con	micro-	\$10–\$100	\$50-\$500	\$200–\$2000	\$50–\$250	\$0.01–\$100
Rel	Critical system design issues	Cost, energy, media performance, responsiveness	Price- performance, energy, graphics performance	Throughput, availability, scalability, energy	Price-performance, throughput, energy proportionality	Price, energy, application-specific performance

	Feature	Personal mobile device (PMD)	Desktop	Server	Clusters/warehouse- scale computer	Embedded
	Price of system	\$100–\$1000	\$300–\$2500	\$5000-\$10,000,000	\$100,000-\$200,000,000	\$10–\$100,000
on Ar	Price of micro-processor	\$10–\$100	\$50-\$500	\$200–\$2000	\$50–\$250	\$0.01-\$100
Rel	Critical system design issues	Cost, energy, media performance, responsiveness	Price- performance, energy, graphics performance	Throughput, availability, scalability, energy	Price-performance, throughput, energy proportionality	Price, energy, application-specific performance

	Personal Feature mobile device Desktop (PMD)		Server		Clusters/warehouse- scale computer		Embedded		
	Price o		00-\$1000	\$300-\$2500	\$5000-	-\$10,000,000	\$100,000–\$2	00,000,000	\$10-\$100,000
	Price o micro- process		0-\$100	\$50–\$500	\$200-5	\$2000	\$50–\$250		\$0.01-\$100
Rel	Critica system design issues	m pe	ost, energy, edia erformance, sponsiveness	Price- performance, energy, graphics performance	Throug availab scalabi		Price-perforn throughput, e proportionali	nergy	Price, energy, application-specific performance
		+							
				•	estacion	es de trab	ajo de a		
		<u>te</u>			•	Optimiza	r Precio-	Rendin	niento
		Coste		Escritorio	e (rendimie reducido	oprocesad nto y aqu aparecen mas de es	ellos de en prim	
	álisis de limiento		Embebid	os					
		ı	_	Re	endim	iento	+		

	Feature	Personal mobile device (PMD)	Desktop	Server	Clusters/warehouse- scale computer	Embedded
	Price of system	\$100–\$1000	\$300–\$2500	\$5000-\$10,000,000	\$100,000-\$200,000,000	\$10-\$100,000
on Ar	Price of micro- processor	\$10–\$100	\$50–\$500	\$200–\$2000	\$50–\$250	\$0.01–\$100
Rel	Critical system design issues	Cost, energy, media performance, responsiveness	Price- performance, energy, graphics performance	Throughput, availability, scalability, energy	Price-performance, throughput, energy proportionality	Price, energy, application-specific performance

Diseñados para una productividad eficiente

 Rendimiento global del servidor—en términos de transacciones por minuto o páginas web servidas por segundo—es crucial Supercomputadores

Clusters

Servidores

-tendimiento

	Feature	Personal mobile device (PMD)	Desktop	Server	Clusters/warehouse- scale computer	Embedded	
	Price of system	\$100–\$1000	\$300-\$2500	\$5000-\$10,000,000	\$100,000-\$200,000,000	\$10-\$100,000	
on Ar	Price of micro- processor	\$10–\$100	\$50–\$500	\$200–\$2000	\$50–\$250	\$0.01-\$100	
el	Critical system design issues	Cost, energy, media performance, responsiveness	Price- performance, energy, graphics performance	Throughput, availability, scalability, energy	Price-performance, throughput, energy proportionality	Price, energy, application-specific performance	

 Colecciones de computadores de escritorio o servidores conectados por redes de área local que actúan como un solo computador más grande

Cor

- Relacionados con aplicaciones de búsqueda, redes sociales, compartición de video, juegos multijugador...
- Precio-rendimiento es crítico

Supercomputadores
Clusters

res

....niento

	Feature	Personal mobile device (PMD)	Desktop	Server	Clusters/warehouse- scale computer	Embedded
	Price of system	\$100-\$1000	\$300-\$2500	\$5000-\$10,000,000	\$100,000-\$200,000,000	\$10-\$100,000
Con Ar Rel	micro-	\$10–\$100	\$50-\$500	\$200–\$2000	\$50–\$250	\$0.01-\$100
	Critical system design issues	Cost, energy, media performance, responsiveness	Price- performance, energy, graphics performance	Throughput, availability, scalability, energy	Price-performance, throughput, energy proportionality	Price, energy, application-specific performance

- Énfasis en el rendimiento del punto flotante, capaces de ejecutar grandes programas por lotes que pueden correr por semanas
- Rendimiento es crítico. El coste es menos importante

Supercomputadores

usters

renaimiento

Concepto

Amdahl

Relación

Coste

- El coste es un parámetro a tener muy en cuenta al diseñar un nuevo procesador o al modificar uno existente
- Los factores principales que influyen en el coste de un computador son:
 - Curva de aprendizaje:
 - Costes de manufacturación decrecen a lo largo del tiempo incluso sin mejoras en la tecnología de implementación básica
 - El porcentaje de dispositivos manufacturados que pasan los procedimientos de prueba se incrementa a lo largo del tiempo

Concepto

Amdahl

Relación

Coste

- El coste es un parámetro a tener muy en cuenta al diseñar un nuevo procesador o al modificar uno existente
- Los factores principales que influyen en el coste de un computador son:
 - Curva de aprendizaje:
 - Volumen: El incremento del volumen afecta al coste en:
 - Reduciendo el tiempo necesario para bajar la curva de aprendizaje
 - Incrementando la eficiencia de compra y manufactura (10% menos por cada doble de volumen)
 - Reduciendo la cantidad del coste de diseño que debe ser amortizado para cada computador

Concepto

Amdahl

Relación

Coste

- El coste es un parámetro a tener muy en cuenta al diseñar un nuevo procesador o al modificar uno existente
- Los factores principales que influyen en el coste de un computador son:
 - Curva de aprendizaje:
 - Volumen:
 - Mercado altamente competitivo:
 - Las DRAMs, discos, monitores, teclados son vendidos por diferentes fabricantes y son esencialmente idénticos
 - La competencia reduce la distancia entre el precio de venta y el coste, pero también reduce el coste porque:
 - Los componentes tienen tanto un gran volumen como una clara definición

Concepto

Amdahl

Relación

Coste de un circuito integrado (IC)

- Los costes de los ICs se están convirtiendo en una porción cada vez más grande del coste que varía entre computadores
- Los factores que influyen en el coste del silicio son:
 - El número de puertas: influye en el número de transistores necesarios. Un aumento de estos requiere un área de silicio mayor
 - Conexiones entre elementos: el número y la longitud
 - Regularidad del diseño: cuanto más regular sea el diseño, menos área ocupará
- Los procesos de IC están caracterizados por el "feature size":
 - Tamaño mínimo de un transistor o conexión sea en la dimensión X o Y (10 micras en 1971 a 0.032 micras en 2011)

- Microprocessor	16-bit address/ bus, microcoded	32-bit address/ bus, microcoded	5-stage pipeline, on-chip I & D caches, FPU	2-way superscalar, 64-bit bus	Out-of-order 3-way superscalar	Out-of-order superpipelined, on-chip L2 cache	Multicore OOO 4-way on chip L3 cache, Turbo
Product	Intel 80286	Intel 80386	Intel 80486	Intel Pentium	Intel Pentium Pro	Intel Pentium 4	Intel Core i7
Year	1982	1985	1989	1993	1997	2001	2010
Die size (mm ²)	47	43	81	90	308	217	240
Transistors	134,000	275,000	1,200,000	3,100,000	5,500,000	42,000,000	1,170,000,000
Processors/cmp	1	1	1	1	I	1	4
Pins	68	132	168	273	387	423	1366
Latency (clocks)	6	5	5	5	10	22	14
Bus width (bits)	16	32	32	64	64	64	196
Clock rate (MHz)	12.5	16	25	66	200	1500	3333
Bandwidth (MIPS)	2	6	25	132	600	4500	50,000
Latency (ns)	320	313	200	76	50	15	4

- Los procesos de IC están caracterizados por el "feature size":
 - Tamaño mínimo de un transistor o conexión sea en la dimensión X o Y (10 micras en 1971 a 0.032 micras en 2011)

Coste de un circuito integrado (IC)

El proceso básico de fabricación del silicio no ha cambiado: la oblea es testeada y cortada en dados que son empaquetados

Relación

Amdahl

Concepto

Concepto

Amdahl

Relación

Coste de un circuito integrado (IC)

El proceso básico de fabricación del silicio no ha cambiado: la oblea es testeada y cortada en dados que son empaqutados

$$Cost of integrated circuit = \frac{Cost of die + Cost of testing die + Cost of packaging and final test}{Final test yield}$$

Cost of die =
$$\frac{\text{Cost of wafer}}{\text{Dies per wafer} \times \text{Die yield}}$$

El número de dados por óblea es aproximadamente el área de la oblea divida po el área del dado. De forma más precisa, puede estimarse por:

Dies per wafer =
$$\frac{\pi \times (\text{Wafer diameter/2})^2}{\text{Die area}} - \frac{\pi \times \text{Wafer diameter}}{\sqrt{2 \times \text{Die area}}}$$

 Compensa los dados cerca de la periferia de la oblea.
 Aproximadamente el número de dados a lo largo del borde

Concepto

Amdahl

Relación

Coste de un circuito integrado (IC)

Este es el numero máximo de dados por oblea:

Dies per wafer =
$$\frac{\pi \times (\text{Wafer diameter/2})^2}{\text{Die area}} - \frac{\pi \times \text{Wafer diameter}}{\sqrt{2 \times \text{Die area}}}$$

- ¿Cual es la fracción de dados no defectuosos en la óblea, o el rendimiento del dado (die yield)? Asumiendo que:
 - Los defectos están distribuidos aleatoriamente
 - el rendimiendo es inversamente proporcional a la complejidad del proceso de fabricación

Die yield = Wafer yield
$$\times 1/(1 + \text{Defects per unit area} \times \text{Die area})^N$$

 Fórmula Bose-Einstein: modelo empírico teniendo en cuenta el rendimiento en muchas líneas de fabricación

- Defectos por unidad de área = 0.016-0.057 defectos por cm² (2010)
- N = factor de complejidad del proceso = 11.5-15.5 (40 nm, 2010)

Concepto

Amdahl

Relación

Ejercicio

Intel utiliza obleas de 300mm para construir su Core i7. Estas obleas tienen un coste de 20000€. El dado del Core i7 tiene unas dimensiones 20.7 mm x 10.5 mm. Asumiendo que el proceso de fabricación de Intel tiene una densidad de defectos de 0.023 por cm² y que el factor de complejidad del proceso para un tamaño mínimo del transistor de 32 nm es 13.5, calcula el coste del dado. ¿Cuál sería el coste del dado dentro de 2 años, sabiendo que el factor de complejidad del proceso para la tecnología de 32nm decrece un 5% por año?

Tema 2 Análisis del rendimiento

Arquitectura de los Computadores

Métricas

Benchmarks

Formulación

Tiempo de ejecución

- El tiempo es la medida más fiable del rendimiento
- El tiempo de ejecución de un programa se mide en segundos

El rendimiento

- La relación entre el tiempo y el rendimiento es inversa
- El rendimiento se mide como una frecuencia de eventos por segundo

Rendimiento=
$$\frac{1}{\text{tiempo}}$$

Métricas

Benchmarks

Formulación

Tiempo de programa / Tiempo de CPU

- Tiempo de reloj, tiempo de respuesta, tiempo transcurrido: Latencia para completar una tarea incluyéndolo todo: accesos a disco, accesos a memoria, actividades de entrada salida, gastos del sistema operativo, multiprogramación...
 - Rendimiento del sistema: Este término se utiliza para referenciar el tiempo transcurrido en un sistema no cargado.

Tiempo de CPU

- CPU usuario + CPU sistema
- Tiempo en que la CPU está calculando sin incluir tiempos de espera para E/S o para ejecución de otros programas
- Tiempo de programa: Este término se refiere al tiempo de CPU del usuario (nos centraremos en rendimiento de la CPU)

Métricas

Benchmarks

Formulación

Tiempo de programa / Tiempo de CPU

- Tiempo de reloj, tiempo de respuesta, tiempo transcurrido: Latencia para completar una tarea incluyéndolo todo: accesos a disco, accesos a memoria, actividades de entrada salida, gastos del sistema operativo, multiprogramación...
 - Rendimiento del sistema: Este término se utiliza para referenciar el tiempo transcurrido en un sistema no cargado.

La función time de Unix produce una salida de la forma: 90.7u 12.9s 2:39 65%, donde:

- Tiempo de CPU del usuario = 90.7 segundos
- Tiempo de CPU utilizado por el sistema = 12.9 segundos
- Tiempo de CPU= 90.7 seg.+ 12.9seg = 103.6
- Tiempo de respuesta = 2 minutos 39 segundos = 159 segundos
- Tiempo de CPU = 65% del tiempo de respuesta = 159 segundos*0.65 = 103.6
- Tiempo esperando operaciones de E/S y/o el tiempo ejecutando otras tareas 35% del tiempo de respuesta = 159 segundos*0.35 = 55.6 segundos

Métricas

Benchmarks

Formulación

Tiempo de programa / Tiempo de CPU

 El tiempo de CPU de un programa puede expresarse en función del ciclo de reloj

No tiene sentido mostrar el tiempo transcurrido en función del ciclo de reloj ya que la latencia de los dispositivos de entrada salida es independiente del ciclo de reloj de la CPU

Métricas

Benchmarks

Formulación

CPI

Número medio de ciclos de reloj por instrucción. Se expresa en función del número de ciclos de reloj y el número de instrucciones ejecutadas

Podemos expresar el tiempo de CPU en función del CPI:

Métricas

Benchmarks

Formulación

En ocasiones se detalla el CPI por cada tipo de instrucción estática i

Ciclos de reloj de la
$$CPU = \sum_{i=1}^{n} (CPI_i \cdot I_i)$$

 I_i = instrucciones dinámicas para cada tipo de instrucción estática i.

CPI_i = Número medio de ciclos de reloj para la instrucción tipo i.

Esto nos permite expresar

Tiempo de $CPU = \sum_{i=1}^{n} (CPI_i \cdot I_i) \cdot Duración del ciclo de reloj$

$$CPI = \frac{\sum_{i=1}^{n} (CPI_{i} \cdot I_{i})}{recuento\ de\ instrucciones} = \sum_{i=1}^{n} (CPI_{i} \cdot \frac{I_{i}}{recuento\ de\ instrucciones})$$

 CPI_i medido, no obtenido de tabla de referencia. Deben considerase fallos de cache y demás incidencias del sistema de memoria.

Métricas

Benchmarks

Formulación

Tres parámetros interdependientes

Tiempo de CPU = RI * CPI * clk

Arquitectura a nivel lenguaje máquina. Compiladores

RI

CPI

Organización

alto nivel del diseño de un computador

clk

Hardware

componentes específicos de una máquina

Análisis de rendimiento ción

Implementa

Métricas

Benchmarks

Formulación

Ejemplo: Suponer que estamos considerando dos alternativas para una instrucción de salto condicional:

CPU A. Una instrucción de comparación inicializa un código de condición y es seguida por un salto que examina el código de condición.

CPU B. Se incluye una comparación en el salto.

En ambas CPU, la instrucción de salto condicional emplea 2 ciclos de reloj, y las demás instrucciones 1 (en este sencillo ejemplo se están despreciando las pérdidas del sistema de memoria). En la CPU A, el 20% de todas las instrucciones ejecutadas son saltos condicionales; como cada salto necesita una comparación, otro 20% de las instrucciones son comparaciones. Debido a que la CPU A no incluye la comparación en el salto, su ciclo de reloj es un 25% más rápido que el de la CPU B. ¿Qué CPU es más rápida?.

Arquitectura de Computadores

Métricas

Benchmarks

Rendimiento

CPU A 20% saltos (2); 20% compara (1); 60% restos (1)

$$CLK_B = CLK_A + 0.25 * CLK_A = 1.25 CLK_A$$
 $T_{CPU,A} = RI_A * 1.2 * CLK_A$

CPU B

No ejecuta las comparaciones -> 20% saltos (2); 60% restos (1) =80% total 20/80=0,25 -> saltos (2) ; 60/80=0,75 -> resto (1)

$$CPI_B = 0,25*2 + 0,75*1 = 1,25$$
Saltos resto

$$RI_{B} = 80/100* RI_{A}$$

$$T_{CPU.B} = (0.8*RI_A)*1.25*(1.25*CLK_A)=1.25*RI_A*CLK_A$$

 $a = T_{CPU.B}/T_{CPU.A}=1.25/1.2=1.042 -> n=4.2\%$

Arquitectura de Computadores

Métricas

Benchmarks

Rendimiento

Ejemplo: Después de ver el análisis, un diseñador consideró que, volviendo a trabajar en la organización, la diferencia de las duraciones de los ciclos de reloj podía reducirse, fácilmente, a un 10%. ¿Qué CPU es más rápida ahora?.

$$CLK_B = CLK_A + 0.1*CLK_A = 1.1 CLK_A$$

CPU A

$$T_{CPU.A} = 1.2 * RI_A * CLK_A$$

CPU B

$$T_{CPU.B} = (0.8*RI_A) * 1.25 * (1.1*CLK_A) = 1.1 * RI_A* CLK_A$$

 $a = T_{CPU.A} / T_{CPU.B} = 1.2 / 1.1 = 1.09 -> n = 9 %$

Métricas

Benchmarks

Formulación

Ejemplo: Supongamos que estamos considerando otro cambio en un repertorio de instrucciones. La máquina, inicialmente, sólo tiene instrucciones de carga y de almacenamiento en memoria, y, después, todas las operaciones se realizan en los registros. Tales máquinas se denominan máquinas de carga almacenamiento (load/store). A continuación observamos medidas de la máquina de carga almacenamiento que muestran la frecuencia de instrucciones, denominada mezcla de instrucciones (instruction mix) y número de ciclos de reloj por instrucción.

Operación	Frecuencia	Cuenta de ciclos de reloj
Ops ALU	43%	1
Load	21%	2
store	12%	2
Saltos	24%	2

Métricas

Benchmarks

Formulación

Supongamos que el 25% de las operaciones de la unidad aritmético lógica (ALU) utilizan directamente un operando cargado que no se utiliza de nuevo.

Proponemos añadir instrucciones a la ALU que tengan un operando fuente en memoria. Estas nuevas instrucciones de registro memoria emplean dos ciclos de reloj. Supongamos que el repertorio extendido de instrucciones incrementa en 1 el número de ciclos de reloj para los saltos, pero sin afectar a la duración del ciclo de reloj. ¿Mejorará este cambio el rendimiento de la CPU?.

Operación	Frecuencia	Cuenta de ciclos de reloj
Ops ALU	43%	1
Load	21%	2
store	12%	2
Saltos	24%	2

Arquitectura de Computadores

Métricas

Benchmarks

Rendimiento

$$CPI_A = 0,43*1 + 0,21*2 + 0,12*2 + 0,24*2 = 1,57$$
alu load store saltos

$$T_{CPU.A} = RI_A * 1,57 * CLK_A$$

$$T_{CPU.B} = (0.893*RI_A) * 1.908 * CLK_A = 1.703 * RI_A * CLK_A$$

$$a = T_{CPU,B} / T_{CPU,A} = 1,703 / 1,57 = 1,085 -> n = 8,5\%$$

Métricas

Benchmarks

Formulación

Alternativas para la medida del rendimiento

- La medida más fiable del rendimiento es el tiempo de ejecución de los programas reales
- Alternativas al tiempo como medida del rendimiento y a los programas reales como objetos de medida han conducido a errores en el diseño de computadores

MIPS Millones de instrucciones por segundo

$$MIPS = \frac{recuento\ de\ instrucciones}{Tiempo\ de\ ejecuci\'on \cdot 10^6}$$

 Los MIPS se muestran como un parámetro intuitivo para reflejar el rendimiento. Máquinas más rápidas tienen MIPS más altos.

Métricas

Benchmarks

Formulación

Alternativas para la medida del rendimiento

Considerando

Re cuento de instrucciones =
$$\frac{tiempo \ de \ ejecución}{CPI \cdot ciclo \ de \ reloj}$$

$$MIPS = \frac{recuento \ de \ instrucciones}{Tiempo \ de \ ejecuci\'on \cdot 10^6}$$

$$MIPS = \frac{\underbrace{Tiempo\ de\ ejecuci\acute{o}n}}{CPI \cdot ciclo\ de\ reloj} = \frac{1}{CPI \cdot ciclo\ de\ reloj \cdot 10^6}$$

$$MIPS = \frac{Frecuencia\ de\ reloj}{CPI \cdot 10^6}$$

Métricas

Benchmarks

Formulación

Problemas derivados de la utilización de los MIPS

- Dependientes del repertorio de instrucciones. No es aconsejable comparar los MIPS de computadores con repertorios de instrucciones diferentes.
 - Reflejan el ritmo de ejecución de instrucciones
 - No reflejan la efectividad del repertorio RI
 - Los MIPS pueden variar inversamente al rendimiento.
- Dependencia del programa en el mismo computador.
- Ejemplo:

alto nivel

Arq1 RI = 100.10^6 t_e = $10s \rightarrow 10$ MIPS Programa

Arq2 RI = 30.10^6 t_e = $5s \rightarrow 6$ MIPS

Métricas

Benchmarks

Formulación

■ **Ejemplo**: Supongamos que construimos un compilador optimizado para la máquina de carga/almacenamiento descrita en el ejemplo anterior. El compilador descarta el 50% de las instrucciones de la ALU aunque no pueda reducir cargas, almacenamientos ni saltos. Ignorando las prestaciones del sistema y suponiendo una duración del ciclo de reloj de 20 ns (frecuencia de reloj de 50Mh). ¿Cuál es la frecuencia en MIPS para el código optimizado frente al código sin optimizar? ¿Está el criterio de los MIPS de acuerdo con el del tiempo de ejecución?.

Métricas

Benchmarks

Formulación

MIPS relativos y MIPS nativos

- Tiempo referencia = tiempo de ejecución de un programa en la máquina de referencia
- Tiempo no estimado = tiempo de ejecución del mismo programa en la máquina que se va a medir
- MIPS = estimación de los MIPS de la máquina de referencia

$$MIPS_{relativos} = \frac{Tiempo_{referencia}}{Tiempo_{no\,estimado}} \cdot MIPS_{referencia}$$

- Los MIPS relativos se apoyan en el tiempo de ejecución
- En los años 80 la máquina dominante como referencia era la VAX-11/780, denominada máquina de 1 MIPS.

Métricas

Benchmarks

Formulación

FLOPS

FLOPS = Operaciones de punto flotante por segundo

$$MFLOPS = \frac{N\'umero\ de\ operaciones\ en\ punto\ flotante\ de\ un\ pro\ gra\ ma}{Tiempo\ de\ ejecuci\'on \cdot 10^6}$$

$$GFLOPS = \frac{MFLOPS}{10^6}$$

- Problemas derivados de la utilización de los FLOPS
 - Dependencia del repertorio
 - Término basado en operaciones con objetivo de poder utilizarlo para comparar diferentes máquinas.
 - El conjunto de operaciones en punto flotante no es consistente en diferentes máquinas (CRAY-2 no tiene instrucciones de dividir mientras que el motorola 68882 si).

Métricas

Benchmarks

Formulación

FLOPS

FLOPS = Operaciones de punto flotante por segundo

$$MFLOPS = \frac{N\'umero\ de\ operaciones\ en\ punto\ flotante\ de\ un\ pro\ gra\ ma}{Tiempo\ de\ ejecuci\'on\cdot 10^6}$$

$$GFLOPS = \frac{MFLOPS}{10^6}$$

- Problemas derivados de la utilización de los FLOPS
 - Dependencia del repertorio
 - Dependencia del programa
 - La estimación de los MFLOPS cambia según la mezcla de operaciones rápidas y lentas en punto flotante del programa.
 - Si el 100% de las operaciones en punto flotante son sumas, la estimación será mayor que si el 100% son divisiones

Métricas

Benchmarks

Formulación

FLOPS Normalizados

- Solución a los problemas de FLOPS
- Operaciones normalizadas (Livermore Loops)

Operaciones reales PF	Operaciones normalizadas PF
ADD, SUB, COMPARE, MULT	1
DIVIDE, SQRT,	4
EXP, SIN	8

Programa 1

 4.10^6 sumas 3.10^6 div $t_e = 10$ s

MFLOPS Nativos

$$\frac{7\Box 0^6}{10\Box 0^6} = 0,7MFLOPS$$

MFLOPS Normalizados

$$\frac{16\Box 10^6}{10\Box 10^6} = 1,6MFLOPS$$

●Programa 2

 $7.10^6 \, \text{div}$ $t_e = 17 \, \text{s}$

MFLOPS Nativos

$$\frac{7\Box 10^6}{17\Box 10^6} = 0,4MFLOPS$$

MFLOPS Normalizados

$$\frac{28\square 0^6}{17\square 0^6} = 1,65MFLOPS$$

Métricas

Benchmarks

Formulación

■ Ejemplo: EL programa SPICE se ejecuta en la DECstation 3100 en 94 segundos. El número de operaciones en punto flotante ejecutadas en ese programa es el de la tabla. ¿Cuántos son los MFLOPS nativos para ese programa? Usando las conversiones ¿Cuántos son los MFLOPS normalizados?.

ADDD	25.999.440
SUBD	18.266.439
MULD	33.880.810
DIVD	15.682.333
COMPARED	9.745.930
NEGD	2.617.846
ABSD	2.195.930
CONVERTD	1.581.450
Total	109.970.178

Arquitectura de Computadores

Métricas

Benchmarks

Rendimiento

■ Ejemplo: EL programa SPICE se ejecuta en la DECstation 3100 en 94 segundos. El número de operaciones en punto flotante ejecutadas en ese programa es el de la tabla. ¿Cuántos son los MFLOPS nativos para ese programa? Usando las conversiones ¿Cuántos son los MFLOPS normalizados?.

$$MFLOPS_{NATIVOS} = n^{\circ} OPF/ Te = 110 M / 94. 10^{6} = 1,2 MFLOPS$$

$$MFLOPS_{NORM} = 157 \text{ M} / 94. 10^6 = 1,7 \text{ MFLOPS}$$

Benchmarks

Formulación

Programas para evaluar el rendimiento

- Tiempo de ejecución de la carga de trabajo del usuario (workload) (mezcla de programas y órdenes del S.O.)
- Programas reales. compiladores de C, software de tratamiento de textos como TeX y herramientas CAD como Spice
- Núcleos (Kernels). pequeños fragmentos clave de programas. Livermore Loops y Linpack.
- Benchmarks reducidos (toys). 10 y 100 líneas de código. Criba de Eratóstenes, Puzzle y clasificación rápida (quicksort).
- Benchmarks Sintéticos. se crean artificialmente intentando simular la frecuencia media de operaciones y operandos de un gran conjunto de programas. Whetstone y Dhrystone.
- Whetstone: instrucciones Algol principios de los años setenta.
- Dhrystone: Originalmente en ADA y más tarde en C y Pascal.

Formulación

Programas reales frente a otros benchmarks

- Importancia para las empresas de los benchmarks: empleo de recursos para optimizar el funcionamiento de estos pero no de programas reales.
- Ejemplo extremo: empleo de optimizadores de compiladores sensibles a los benchmarks que aplican optimizaciones.
- Si se utilizasen programas reales para evaluar el rendimiento, las mejoras repercutirían en el usuario final.

Razones de la utilización de benchmarks pequeños

- Portabilidad: En el pasado lenguajes de programación inconsistentes entre máquinas dificultando el transporte
- Fácil simulación: Cuando se diseña una nueva máquina
- Estandarización: Los pequeños benchmarks más fácilmente
- En la actualidad la popularidad de los sistemas operativos estándares (UNIX, WINDOWS...) elimina la principal dificultad.

Métricas

Benchmarks

Formulación

Colecciones de benchmarks

- Medir el rendimiento de los procesadores con una variedad de aplicaciones
- Ventajas clave: la debilidad de algún benchmark es minimizada por la presencia de otros
- Las colecciones de benchmarks formadas por programas que pueden ser núcleos, pero fundamentalmente programas reales

Métricas

Benchmarks

Formulación

Colecciones de benchmarks

- **SPEC**: El grupo System Performance Evaluation Cooperative se formó en 1988 con representantes de diversas compañías (Hewlett-Packard, DEC, MIPS, Sun) que llegaron al acuerdo de ejecutar un conjunto de programas y entradas reales.
- SPEC89, SPEC92, SPEC95, SPEC CPU2000, SPEC CPU2006.
- Desktop Benchmarks
 - SPEC CPU 2006 (CINT, CFP)
 - SPECviewperf (OpenGL Graphics Library)
 - SPECapc (ProEngineer; Solidworks; Unigraphics...)
- BenchMarks Para Servidores
 - SPECrate (productividad)
 - SPECSFS (Rendimiento sistema ficheros de red)
 - SPECWeb (Rendimiento servidores web)
- BenchMarks sistemas embebidos

Métricas

Benchmarks

Formulación

Colecciones de benchmarks

- Otras colecciones
- Business Winstone: Proceso por lotes Netscape, Corel, WordPerfect, Microsoft...
- CC Winstone: Aplicaciones creación contenido multimedia (Photoshop, Premiere, edición audio...)
- Winbench: Procesos por lotes miden rendimiento CPU, video, disco,... orientado a medida por subsistemas.

Métricas

Benchmarks

Formulación

Formulación de los resultados de la evaluación del rendimiento

- Reproductibilidad: enumerar todo lo necesario para repetir los experimentos.
- SPICE tarda 94 segundos en una DECstation 3100
- Este enunciado prescinde de aspectos como:
 - Entradas del programa
 - Versión del programa
 - Versión del compilador
 - Nivel de optimización y código compilado
 - Versión del sistema operativo
 - Cantidad de memoria principal
 - Número y tipos de disco
 - Versión de la CPU

Métricas

Benchmarks

Formulación

Formulación de los resultados de la evaluación del rendimiento

- Informe SPEC:
 - Descripción hardware
 - Descripción software
 - Descripción parámetros compilación
 - Publicación resultados básicos y optimizados

Métricas

Benchmarks

Formulación

Formulación de los resultados de la evaluación del rendimiento

- **Informe SPEC:**
 - Descripción hardware y software

Hardware

CPU Name:

CPU Characteristics:

CPU MHz:

FPU:

CPU(s) enabled:

CPU(s) orderable:

Primary Cache:

Secondary Cache:

L3 Cache:

Other Cache:

Memory:

Disk Subsystem:

Other Hardware:

Intel Core i7-965 Extreme Edition

Intel Turbo Boost Technology up to 3.46 GHz

3200

Integrated

4 cores, 1 chip, 4 cores/chip, 2 threads/core

1 chip

32 KB I + 32 KB D on chip per core

256 KB I+D on chip per core 8 MB I+D on chip per chip

None

12 GB (6 x 2GB Samsung M378B5673DZ1-CF8 DDR3-1066

80 GB Intel X-25M SATA Solid-State Drive

None

Software

Windows Vista Ultimate w/ SP1 (64-bit) Operating System:

Compiler:

Intel C++ Compiler Professional 11.0 for IA32 Build 20080930 Package ID: w cproc p 11.0.054

Microsoft Visual Studio 2008 (for libraries)

Auto Parallel: Yes File System: NTFS System State: Default Base Pointers: 32-bit Peak Pointers: 32-bit

Other Software: None

SmartHeap Library Version 8.1 from

http://www.microquill.com/

Métricas

Benchmarks

Formulación

Formulación de los resultados de la evaluación del rendimiento

- Informe SPEC:
 - Descripción hardware y software
 - Descripción parámetros compilación

Compiler Invocation

C benchmarks:

icl -0vc9 -0c99

C++ benchmarks:

icl -Qvc9

Base Optimization Flags

C benchmarks:

-QxSSE4.2 -Qipo -O3 -Qprec-div- -Qopt-prefetch -Qparallel -Qpar-runtime-control -Qvec-quard-write /F512000000

C++ benchmarks:

-QxSSE4.2 -Qipo -O3 -Qprec-div- -Qopt-prefetch -Qcxx-features /F512000000 shlw32m.lib -link /FORCE:MULTIPLE

Peak Optimization Flags

C benchmarks:

400.perlbench: -QxSSE4.2(pass 2) -Qprof_gen(pass 1) -Qprof_use(pass 2) -Qipo -O3 -Qprec-div- -Qansi-alias -Qopt-prefetch /F512000000 shlw32m.lib -link /FORCE:MULTIPLE

401.bzip2: -QxSSE4.2(pass 2) -Qprof_gen(pass 1) -Qprof_use(pass 2) -Qipo -O3 -Qprec-div- -Qopt-prefetch -Qansi-alias /F512000000

403.gcc: -QxSSE4.2(pass 2) -Qprof_gen(pass 1) -Qprof_use(pass 2) -Qipo -O3 -Qprec-div- /F512000000

429.mcf: -QxSSE4.2 -Qipo -O3 -Oprec-div- -Qopt-prefetch

Métricas

Benchmarks

Formulación

Formulación de los resultados de la evaluación del rendimiento

- Informe SPEC:
 - Descripción hardware y software
 - Descripción parámetros compilación
 - Publicación resultados básicos y optimizados

	Results Table											
Base					Peak							
Benchmark	Seconds	Ratio	Seconds	Ratio	Seconds	Ratio	Seconds	Ratio	Seconds	Ratio	Seconds	Ratio
400.perlbench	426	22.9	426	22.9	<u>426</u>	22.9	305	32.0	305	32.1	<u>305</u>	<u>32.0</u>
401.bzip2	526	18.3	<u>526</u>	<u>18.3</u>	526	18.3	517	18.7	518	18.6	<u>517</u>	<u>18.7</u>
403.gcc	<u>305</u>	<u>26.4</u>	305	26.4	302	26.7	264	30.5	267	30.1	<u>264</u>	30.5
429.mcf	189	48.3	<u>189</u>	48.3	190	48.0	189	48.2	192	47.5	<u>190</u>	48.0
445.gobmk	444	23.6	444	23.6	444	23.6	<u>396</u>	26.5	395	26.5	396	26.5
456.hmmer	496	18.8	495	18.9	<u>495</u>	<u>18.9</u>	392	23.8	<u>392</u>	23.8	392	23.8
458.sjeng	494	24.5	494	24.5	<u>494</u>	24.5	472	25.6	472	25.6	<u>472</u>	<u>25.6</u>
462.libquantum	99.5	208	99.6	208	99.9	207	99.5	208	99.6	208	99.9	207
464.h264ref	599	37.0	599	36.9	<u>599</u>	<u>37.0</u>	538	41.1	<u>539</u>	41.1	539	41.1
471.omnetpp	255	24.5	<u>254</u>	24.6	254	24.6	218	28.7	218	28.7	217	28.7
473.astar	395	17.8	<u>395</u>	<u>17.8</u>	395	17.8	355	19.8	<u>356</u>	<u>19.7</u>	356	19.7
483.xalancbmk	232	29.8	231	29.9	231	29.8	232	29.8	231	29.9	231	29.8

Métricas

Benchmarks

Formulación

Formulación de los resultados de la evaluación del rendimiento

	Computador A	Computador B	Computador C
Programa 1	1	10	20
Programa 2	1000	100	20
Tiempo total	1001	110	40

Afirmaciones:

- A es 900% más rápido que B para el programa 1.
- B es 900% más rápido que A para el programa 2.
- A es 1900% más rápido que C para el programa 1.
- C es 4900% más rápido que A para el programa 2.
- B es 100% más rápido que C para el programa 1.
- C es 400% más rápido que B para el programa 2.
- El contraste de las afirmaciones presenta un cuadro confuso.

Métricas

Benchmarks

Formulación

Resúmenes del rendimiento

Tiempo total de ejecución

	Computador A	Computador B	Computador C
Programa 1	1	10	20
Programa 2	1000	100	20
Tiempo total	1001	110	40

- B es 810% más rápido que A para los programa 1 y 2.
- C es 2400% más rápido que A para los programa 1 y 2.
- C es 175% más rápido que B para los programa 1 y 2.
- Tiempo medio de ejecución

$$\frac{1}{n}\sum_{i=1}^{n}Tiempo_{i}$$

Métricas

Benchmarks

Formulación

Resúmenes del rendimiento

- Tiempo de ejecución ponderado
 - ullet Asignar a cada programa un factor de peso $oldsymbol{w_i}$ que indique la frecuencia relativa del programa en la carga de trabajo.

$$\sum_{i=1}^{n} w_{i} \cdot Tiempo_{i}$$

- $\mathbf{w_i}$ = frecuencia del programa iésimo de la carga de trabajo
- **Tiempo**_i = tiempo de ejecución del programa i-ésimo

Media Geométrica

$$\sqrt[n]{\prod_{i=1}^{n} Tiempo_{i}} \qquad \frac{MG(x_{i})}{MG(y_{i})} = MG\left(\frac{x_{i}}{y_{i}}\right)$$

Métricas

Benchmarks

Formulación

Análisis de rendimiento

Intel Core i7-965

Benchmark	Base Ref Time	Base Run Time	Ratio
400.perlbench	9770	425.9	22.9396572
401.bzip2	9650	526.2	18.33903459
403.gcc	8050	305.2	26.37614679
429.mcf	9120	188.8	48.30508475
445.gobmk	10490	443.6	23.64743012
456.hmmer	9330	494.7	18.8599151
458.sjeng	12100	494.2	24.48401457
462.libquantum	20720	99.6	208.0321285
464.h264ref	22130	598.9	36.95107697
471.omnetpp	6250	253.9	24.61599055
473.astar	7020	395.1	17.76765376
483.xalancbmk	6900	231.3	29.83138781

Media Aritmética	10960.83333	371.45	41.67912673	29.5082335
	MA(TR)	MA(TE)	MA(TR/TE)	MA(TR)/MA(TE)

Média Geométrica	10108.21274	334.1591446	30.2496966	30.2496966
	MG(TR)	MG(TE)	MG(TR/TE)	MG(TR)/MG(TE)