Mérési hiba, hibaterjedés

2018. február 11.

Adatmodellezés

Fizikai törvény:

- Egy elmélet, valamilyen idea a világról
- Matematikai összefüggéseket adunk a mennyiségek között
- Az összefüggések konstansokat, paramétereket tartalmaznak

Példa: feldobott kő

$$F = m\ddot{x} = -g \cdot m$$

A differenciálegyenlet megoldása:

$$x(t) = -\frac{g}{2}t^2 + v_0t + x_0$$

Kísérlet

Kísérlet:

- bizonyos mennyiségeket mérünk
- sokszor más mennyiségek függvényében
- más, független mennyiség pl. az idő vagy hely
- az elméleti törvény összefüggéseket feltételez a mérhető mennyiségek között

Cél:

- ellenőrizni a fizikai törvény helyességét,
- megadni a konstansok és paraméterek értékét,
- továbbá megmondani, hogy a kísérlet alapján mennyire lehetünk abban bizonyosak, hogy a megalkotott törvény a valóságot írja le

Egy kísérlet eredménye

Az elmélet szerint a pontok az $x(t) = -\frac{g}{2}t^2 + v_0t + x_0$ görbén vannak, de mi g, v_0 és x_0 értéke?

Adatmodellezés

Adatmodellezés:

- Választunk egy elméletileg megfelelő függvényalakot
- A függvény paramétereit úgy állítjuk be, hogy az valamilyen szempont szerint a lehető legjobban illeszkedjen a mért adatokra

Problémák:

- a mért adatok sosem pontosan a valóságot adják vissza
- az adatokat torzítás, zaj és mérési hiba terheli
- milyen szempont szerint optimalizálunk?
- mennyire lehetünk biztosak az eredményben?

Mérési adatok

A méréseket műszerrel végezzük, aminek van

- mérési tartománya
- mérési pontossága

A mért értékek emiatt lehetnek

- valódi mért értékek (hibával!)
- ▶ felső korlátok (ha a műszer nem elég érzékeny)
- alsó korlátok (ha a műszer túl érzékeny)

A mért értékek hibákkal terheltek

- a műszer kalibrációjából eredő szisztematikus hiba
- a műszer véletlenszerű működéséből eredő statisztikus hiba
- ► a külső környezetből származó zaj
- a műszer "felbontásából" eredő leolvasási hiba
- a fizikai folyamat jellegéből adódó zaj

Egy kísérlet eredménye becsült hibával

Mivel itt bejön a képbe a valószínűség, biztos, hogy egzakt értéket nem fogunk kapni az illesztett paraméterekre. Azoknak is lesz hibája.

A szisztematikus hiba

A szisztematikus hibát nehéz kezelni

- a műszer kalibrációjának pontossága
- nem véletlenszerű
- mindig hozzáadódik a méréshez
- lehet állandó: ekkor nullponti hibáról van szó
- de függhet a mért értéktől is
- statisztikus módszerekkel nem lehet tőle megszabadulni

Csökkentéséhez a műszert kalibrálni kell.

Példa:

- egy rosszul tárázott mérleg mindig 1 g-mal kevesebbet mér
- egy gyenge minőségű voltmérő mindig a valós érték 1,01-szeresét méri

A statisztikus hiba

Megismételt méréskor mindig már és más értéket mérünk. A statisztikus hiba a mérés jellegéből adódóan *véletlenszerű*

- tökéletlen műszer
- a műszer érzékeny lehet külső, random tényezőkre
- ezek valamilyen háttérzaj jellegű tényezők, sosem közvetlenül a mért folyamatból erednek
- akkor is jelentkeznek, ha a műszer be van kapcsolva, de nem mérünk vele semmit
- termikus, elektromágneses stb. random zajok

Csökkentéséhez a műszert hűteni, elektromágnesesen árnyékolni, stb. kell.

A leolvasási hiba

A leolvasási hiba a műszer számábrázolásából adódik

- A mutató megállhat két érték között is
- A digitális kijelzőn véges sok tizedesjegy van
- A digitális kijelző utolsó számjegye ugrálhat

Csökkenteni jobb felbontású műszerrel lehet.

Példa:

Egy műszer két tizedes jegyet ír ki, ekkor a leolvasási hiba $\pm 0,005$

Kvantumjelenségek határozatlansága

Heisenberg-féle határozatlansági reláció:

$$\Delta E \cdot \Delta t \approx \hbar$$

Ha energiát mérünk nagy felbontással, akkor sosem kapunk egy jól definiált értéket, hanem a mért érték egy adott energia körül fog szórni.

- ez a fizikai folyamat sajátja
- nem mérési hiba vagy zaj

Példa:

Egy spektrométer az izotóp emissziós gamma-vonalait kiszélesedettnek méri. A vonalak valóban szélesek a természetes vonalkiszélesedés jelensége miatt.

A Poisson-zaj

A mérési hiba és a zaj nem feltétlenül ugyanaz

- a mérési hiba a műszer tökéletlensége
- a zaj lehet a mért fizikai folyamat saját tulajdonsága

CCD detektor sörétzaja

- egy távcső kamerája nagyon halvány galaxisokat rögzít
- a CCD detektor képes megszámolni a beérkező fotonokat
- egy perc alatt nagyon kevés foton érkezik
- a fotonok nem azonos időközönként érkeznek
- emiatt a percenként detektált fotonok száma minden percben más és más

A Poisson-eloszlás

Kiindulás:

- ightharpoonup egységnyi idő alatt érkező fotonok száma: λ
- ▶ a fotonok egymástól függetlenül követik egymást

Mi a valószínűsége annak, hogy egy adott egységnyi időintervallum alatt éppen k darab fotont detektálunk?

Poisson-eloszlás¹:

$$p(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

Várható értéke és szórása:

$$\langle k \rangle = \sigma^2 = \lambda$$

 $^{^{1}}$ levezetése: binomiális eloszlásból $p=\lambda/n,\ n o\infty$ határesetben

A Poisson-eloszlás különböző k-kra

A Poisson-eloszlásból adódó mérési hiba

A Poisson-eloszlás $\lambda\gg 1$ esetben átmegy a Gauss-eloszlásba

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

 $\text{ahol } \mu = \lambda \text{ \'es } \sigma = \sqrt{\lambda}.$

Keressük annak a várható értékét, hogy egy rövid mérés mennyire tér el a nagyon hosszú időre vett átlagtól. Ezt jól jellemzi a σ szórás.

A jel-zaj arány² a várható érték és a random eltérések aránya:

$$\mathsf{SNR} = \frac{\lambda}{\sqrt{\lambda}}$$

A relatív hiba ennek reciproka.

²signal to noise ratio (SNR)

A statisztikus hiba eloszlása

Ismételjük meg ugyanazt a mérést sokszor egymás után, majd tekintsük az átlagtól való eltérést.

- Az átlagtól való eltérést jellemezze a négyzetes eltérés (szórás vagy variancia)
- Lehetne pl. abszolút érték is, de látni fogjuk, hogy a négyzetes eltérés jobb

Ha a mérési hiba *sok független* valószínűségi változó *átlagaként* áll elő.

- akkor érvényes rá a centrális határeloszlás tétel, azaz
- a hiba eloszlása Gauss-eloszlást követ
- lacktriangle a hiba nagyságát az Gauss-eloszlás σ szórása jellemzi.

Ha modellillesztéskor nekünk csak egy-egy mért érték van a mérési pontokban, akkor ezekhez *becsült hiba* tartozik.

A normális, vagy Gauss-eloszlás

A mérési hiba kifejezése

Relatív hiba

a hiba mértékét leosztjuk a mért értékkel:

$$\delta y = \frac{\Delta y}{y}$$

- megadható százalékban is
- nincsen mértékegysége

Abszolút hiba

a hibát a valós értéktől való eltérésként adjuk meg:

$$\Delta y = y - y_0$$

- van mértékegysége
- az ábrára ezt rajzoljuk fel

Megismételt mérések hibája

Egy mérést N alkalommal, egymástól függetlenül elvégzünk. Hogy állapítjuk meg ebből a mérés hibáját?

A mért értékek:

$$y_1, y_2, ..., y_N$$

Végeredményként a sok mérés átlagát tekintjük:

$$\langle y \rangle = \frac{\sum y_i}{N}$$

A szórás a négyzetes eltérés átlaga:

$$\sigma = \sqrt{\frac{\sum (y_i - \langle y \rangle)^2}{N}}$$

Viszont mi hibának nem az egyes mérések szórását akarjuk tekinteni, hanem az *N*-szer megismételt mérésből származó *átlag hibájára* vagyunk kíváncsiak.

Az átlag standard hibája

Ha egy mérést sokszor egymás után megismétlünk, valamint

- ► a mérések egymástól függetlenek,
- ▶ a hiba normális eloszlást követ,
- ▶ a hiba becsült nagysága minden mérésnél azonos, akkor
- a relatív hiba csökkenthető.

Az átlag standard hibája³ a mérések számának gyökével csökken:

$$SEM = \frac{\sigma}{\sqrt{N}}$$

³standard error of the mean (SEM)

Az átlag standard hibája - szemléltetés

Az átlag standard hibája - szemléltetés

Hibaterjedés

Adott egy mért x mennyiség, aminek ismerjük a Δx hibáját. Mekkora y = f(x) hibája, ha f egy differenciálható függvény?

$$\Delta y = \left| \frac{\mathrm{d}f}{\mathrm{d}x} \right| \Delta x$$

Hibaterjedés több változó esetén

Az x_i változók hibája normális eloszlású, melyet δx_i relatív hiba, illetve σ_x szórás jellemez. Mekkora lesz az $f(x_1, x_2, ..., x_i)$ minden változójában differenciálható függvény által kifejezett mennyiség hibája.

Tekintsük f Taylor-sorát az x_i változók átlaga körül:

$$f - \langle f \rangle \approx \sum_{i} \frac{\partial f}{\partial x_{i}} (x_{i} - \langle x_{i} \rangle) + \dots$$

A szórás a Taylor-sor négyzete:

$$\sigma_f^2 = \sum_i \left(\frac{\partial f}{\partial x_i}\right)^2 (x_i - \langle x_i \rangle)^2 +$$

$$+ 2 \sum_{i < j} \left(\frac{\partial f}{\partial x_i}\right) \left(\frac{\partial f}{\partial x_j}\right) (x_i - \langle x_i \rangle) (x_j - \langle x_j \rangle) + \dots$$

Hibaterjedés több változóra

A Taylor-sor négyzetében felfedezhetők a szórások és a kovarianciák kifejezései, vagyis:

$$\sigma_f^2 = \sum_{i} \left(\frac{\partial f}{\partial x_i} \right)^2 \sigma_{x_i}^2 + 2 \sum_{i < j} \left(\frac{\partial f}{\partial x_i} \right) \left(\frac{\partial f}{\partial x_j} \right) \operatorname{cov}_{ij}$$

Példa: Két független változó u = x + y összegének hibája:

$$\sigma_u^2 = \sigma_x^2 + \sigma_v^2$$

Példa: Két független változó $u = x \cdot y$ szorzatának hibája:

$$\sigma_u^2 = u^2 \left(\frac{\sigma_x^2}{x^2} + \frac{\sigma_y^2}{y^2} \right)$$