In preparation for the upcoming term test, we will do an overview of what we've learned so far.

Functions

Problem 1

Determine if the maps below are valid functions.

- 1. $f: \mathbb{R} \to \mathbb{R}, f(x) = \sqrt{x}$.
- 2. $f: \mathbb{R} \to [0, 2\pi], f(x) = \cos\left(\frac{1}{x^2}\right)$.
- 3. $f:(0,1)\to\mathbb{N}, f(x)=2^{x_1}3^{x_2}5^{x_3}7^{x_4}...$, where $0.x_1x_2x_3x_4...$ is the decimal representation of x.
- 4. $f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} 2x+1 & x \ge 0\\ 1-x^2 & x \le 0 \end{cases}$

Problem 2

Let $f: B \to C$, $g: A \to B$ be surjective.

- 1. What is the domain and codomain of $f \circ g$?
- 2. Show that $f \circ g$ is surjective.
- 3. Suppose, instead of knowing that f and g are both surjective, that we only know $f \circ g$ is surjective. Must f be surjective? Must g be surjective?

Suprema/Infima

Problem 3

- 1. State the completeness axiom.
- 2. Show that the completeness axiom doesn't hold if \mathbb{R} is replaced with \mathbb{Q} .

Problem 4

Let $S \subseteq \mathbb{R}$. Give two equivalent definitions for " $M = \sup S$ ". Give two equivalent definitions for " $m = \inf S$ ".

Problem 5

Show that $\sup(-\infty, x) = x$ for any $x \in \mathbb{R}$.

Density of Rationals

Problem 6

Let

$$h: \mathbb{R} \to \mathbb{R}, h(x) = \begin{cases} 0 & x \notin \mathbb{Q} \\ x & x \in \mathbb{Q}. \end{cases}$$

Show that $\sup\{h(x) : x \in (a,b)\} = b$, for any open interval $(a,b) \subseteq \mathbb{R}, a < b$.

Problem 7

In this question, we provide a proof that the *irrationals* are *dense*.

- 1. Define what it means for a set $S \subseteq \mathbb{R}$ to be dense.
- 2. Define *countable* and *uncountable* sets. Recall that \mathbb{Q} is countable, while \mathbb{R} is uncountable.
- 3. Show that $|\mathbb{R}| = |(-\frac{\pi}{2}, \frac{\pi}{2})|$ by defining a bijection between them. If you prefer, you may draw a graph instead of explicitly defining this bijection. This shows $(-\frac{\pi}{2}, \frac{\pi}{2})$ is uncountable.
- 4. Show that $|(a,b)| = |(-\frac{\pi}{2}, \frac{\pi}{2})|$ for any a < b. This shows any open interval (a,b) is uncountable.
- 5. Prove by contradiction that any open interval (a, b) contains an irrational number. Conclude that the irrationals are dense.