Fully-Differential Folded Cascode OTA Design

Bilal Ramadan

Supervisor: Dr. Hesham Omran

Table of Contents

Part 1:	OTA Design	. 6
1.	OTA Initial Devices Sizing	. 7
2.	OTA final design schematic	. 8
3.	Resizing Cascode Devices $M6\&M7$. 8
4.	Biasing Circuits Design Vcascn&Vcascp	10
Part 2:	Open-Loop OTA Simulation (Behavioral CMFB)	
1.	OP Simulation	
2.	Diff Small Signal CCS	15
Part 3:	CMFB Circuit Design	
1.	Actual CMFB Schematic	17
2.	PMOS Current Mirror $M10a,b\&c$	17
3.	PMOS Input Devices M11a, b&c	17
4.	NMOS Current Mirror M12	19
5.	PMOS Error Amp Diode Connected Load $M14a\&b$	20
6.	NMOS Error Amp Input Pair $M13a\&b$	20
7.	Resistive Network Ro, 1	21
8.	CMFB initial Devices Sizing	21
9.	CMFB Final Design Schematic	22
Part 4:	Open-Loop OTA Simulation (Actual CMFB)	22
1.	OP simulation	22
.2	Diff small signal ccs	24
Part 5:	Closed Loop Simulation (AC and STB Analysis)	26
1.	OP simulation	26
2.	Diff closed-loop response	28
3.	Differential and CMFB loops stability (STB analysis)	28
Part 6:	Closed Loop Simulation (Transient Analysis)	30
1.	Differential input pulse	30
2.	CM input pulse	31
3.	Output swing	32

Part 7:	Design Specs	34
Table	e of Figures	
Figure 1:	: OTA schematic	7
Figure 2:	: fully differential OTA final design schematic after tuning	8
Figure 3:	: W/ID chart for M6	8
Figure 4:	: W/ID chart for M7	9
Figure 5	: VGS chart for M18	10
Figure 6:	: W/ID chart for M18	10
Figure 7:	: VGS chart for M15	11
Figure 8:	: W/ID chart for M15	11
Figure 9	: Final design schematic with biasing circuits	12
Figure 10	0: CMFB circuit behavioral model	12
Figure 1	1: Open-loop testbench	13
Figure 1	2: bias circuit with DC node voltages annotated	13
Figure 13	3: OTA schematic with DC node voltages and OP parameters annotated	13
Figure 1	4: Behavioral CMFB schematic with DC node voltages annotated	14
Figure 1	5: diff gain bode plot (magnitude)	15
Figure 10	6: Differential gain bode plot (phase)	15
Figure 1	7: open-loop gain Gx	15
Figure 1	8: diff small signal results	16
Figure 1	9: Cout_parasitics	16
Figure 20	0: Actual CMFB schematic	17
Figure 1: Figure 1: Figure 1:	6: Differential gain bode plot (phase)	15 15 16

Figure 21: VGS chart for M11	18
Figure 22: VA chart for M10	18
Figure 23: VA chart for M11	19
Figure 24: W/ID chart for M11	19
Figure 25: W/ID chart for M14	20
Figure 26: W/ID chart for M13	21
Figure 27: CMFB final design schematic after tuning	22
Figure 28: bias circuit with DC node voltages annotated	22
Figure 29: OTA schematic with DC node voltages and OP parameters annotated	23
Figure 30: CMFB schematic with DC node voltages and OP parameters annotated	23
Figure 31: Differential gain bode plot (magnitude)	24
Figure 32: Differential gain bode plot (phase)	24
Figure 33: open-loop gain Gx	24
Figure 34: STB analysis results	25
Figure 35: Cout_parasitics	25
Figure 36: Testbench schematic	26
Figure 37: bias circuit with DC node voltages annotated	26
Figure 38: OTA schematic with DC node voltages and OP parameters annotated	27
Figure 39: CMFB schematic with DC node voltages and OP parameters annotated	27
Figure 40: Vodiff vs frequency	28
Figure 41: diff small signal results	28
Figure 42: Diff loop bode plot (magnitude and phase)	28
Figure 43: CMFB loop (magnitude and phase)	29
Figure 44: Vsource setup	30

Figure 45: Vinp, Vinn, Voutp, Voutn & Vocm vs time in diff pulse response
Figure 46: settling time expression
Figure 47: settling time evaluation
Figure 48: Vinp, Vinn, Voutp, Voutn & Vocm vs time in CM pulse response
Figure 49: sine wave setup
Figure 50: Vinp, Vinn, Voutp, Voutn & Vocm vs time in diff sine wave response
Figure 51: VINDIFF & VODIFF vs time
Figure 52: VINDIFF & VODIFF vs time
Tables
Tables Table 1: Desired Specs
Table 1: Desired Specs6
Table 1: Desired Specs 6 Table 2: OTA initial devices sizing 7
Table 1: Desired Specs
Table 1: Desired Specs
Table 1: Desired Specs

Part 1:OTA Design

Technology	180 nm CMOS
Supply Voltage	2.5 <i>V</i>
Closed loop gain	2
Phase margin at the required ACL	≥ 70°
CMIR - low	≤ 0 V
CMIR - high	≥ 1 V
Differential output swing	$1.2 V_{pk2pk}$
Load	500 fF
DC loop gain	60 <i>dB</i>
CL settling time for 1% error	100 ns

Table 1: Desired Specs

At first, we need to identify the topology.

Since the CMIR is near to GND, therefore the topology we will use in the Fully-Differential Folded Cascode OTA is PMOS for the CS stage and NMOS for the CG stage.

Figure 1: OTA schematic

1. OTA Initial Devices Sizing

Device	M_1	M_2	M_3	M_4	M_5	M_6	M_7	M_8	M_9
W	5 μm	981 nm	3.1 μm	11 μm	27.3 μm	2.8 μm	885 nm	711 nm	6.1 μm
L	500 nm	500 nm	500 nm	500 nm	420 nm	460 nm	520 nm	1.3 μm	1.3 μm
g_m	80 μS	16 μS	48 μS	176 μS	176 μS	48 μS	48 μS	16 μS	136 μS
I_D	10 μΑ	2 μΑ	6 μΑ	22 μΑ	11 μΑ	6 μΑ	6 μΑ	2 μΑ	17 μΑ
g_m/I_D	8	8	8	8	16	8	8	8	8
$ V_{DSsat} $	214 mV	214 mV	214 mV	214 mV	110 mV	230 mV	219 mV	212 mV	212 mV
V_{ov}	211 mV	211 mV	211 mV	211 mV	45 mV	210 mV	195 mV	208 mV	208 mV
V^*	250 mV	250 mV	250 mV	250 mV	125 mV	250 mV	250 mV	250 mV	250 mV

Table 2: OTA initial devices sizing

$$\begin{split} CMIR_{low} &= 0.5 + V_5^* - |V_{GS5}| = -0.5 \, V, CMIR_{high} = V_{DD} - V_4^* - |V_{GS5}| = 1.12 \, V. \\ V_{out} \; upper \; limit = V_{DD} - 0.5 - V_6^* = 1.75 \, V, lower \; limit = 0.5 + V_7^* = 0.75 \, V. \end{split}$$

$$.\,V_{cascp} = V_{DD} - |V_{GS6}| - 0.5 = 0.816\,V, V_{cascn} = V_{GS7} + 0.5 = 1.56\,V.$$

2. OTA final design schematic

Figure 2: fully differential OTA final design schematic after tuning

The DC differential gain is much higher than desired due to body effect for $M_{6,7}$ and due to the difference between nmos/pmos and nfet/pfet models so we can save some area resources by decreasing the cascode devices lengths.

3. Resizing Cascode Devices $(M_6 \& M_7)$

For the PMOS cascode devices $(M_{6(a\&b)})$

Figure 3: W/ID chart for M6

Keep same gm/ID and decrease L and get the corresponding W till the gain decreases enough, we got $L_6=300$ nm, $W_6=1.8$ μm .

And do the same for the NMOS cascode devices $(M_{7(a\&b)})$ till we get the wanted gain (about 3.1 K)

Figure 4: W/ID chart for M7

 $L_7 = 350 \text{ nm}, W_7 = 670 \text{ nm}.$

4. Biasing Circuits Design $(V_{cascn} \& V_{cascp})$

Now we will design the biasing circuits for V_{cascn} and V_{cascp} .

For both circuits we will use two stack devices so the cascode one works in sat and we will make it matched to the cascode device in the targeted circuit, we will only size the 2^{nd} device. For these devices we will have $V_{SB} = 0$, $|V_{DS}| = 0.5 V$ (the same V_{DS} wanted for the NMOS/PMOS current mirrors).

For the NMOS device (M_{18}) :

Figure 5: VGS chart for M18

Figure 6: W/ID chart for M18

We will use a current of 2 μ A to get a usable width $L_{18} = 6 \mu m$, $W_{18} = 273 nm$.

For the PMOS device (M_{15}) :

Figure 7: VGS chart for M15

Figure 8: W/ID chart for M15

We will use a current of only 1 μA as it's enough to get a usable width in order to minimize the current consumption $L_{18}=6~\mu m$, $W_{18}=273~nm$.

So, after fine tuning we get the desired V_{cacsn} and V_{cascp} .

Part 2: Open-Loop OTA Simulation (Behavioral CMFB)

Figure 9: Final design schematic with biasing circuits.

1. OP Simulation

Figure 10: CMFB circuit behavioral model

- Set VICM to 0.5 V (half CMIR).
- Set VREF to 1.25 V as the output swing (single rail) is from 0.75 to 1.75 V.

Figure 11: Open-loop testbench

Figure 12: bias circuit with DC node voltages annotated

Figure 13: OTA schematic with DC node voltages and OP parameters annotated

Figure 14: Behavioral CMFB schematic with DC node voltages annotated

- All devices are in sat except the non-degenerated devices in the biasing circuits.
- The output swing is from 0.75 to 1.75 V so we set V_{ref} to 1.25 V.
- The total current consumption in the fully differential OTA and current mirror branches is about 49.4 μ A (34 μ A in the OTA).
- If we check the branches currents we will find out that it's near from what we expected as we took VDS into consideration in the W/ID charts and done fine tuning.
- The current and gm in the input pair exactly equal, due to the absence of differential signal and dc offset and no mismatch between the devices.
- The dc level of V_{out} is 1.2486 V as a result of the CMFB circuit which tends to minimize the error between the common mode dc level of V_{out} and V_{ref} and the error equals the reciprocal of the CMFB loop-gain.
- The differential input and output voltages of the error amplifier are $-1.4 \, mV$ (the same) as the relation between them is the error amplifier gain which is 1.

2. Diff Small Signal CCS

Figure 15: diff gain bode plot (magnitude)

Figure 16: Differential gain bode plot (phase)

Figure 17: open-loop gain Gx

Test	Output	Nominal	Spec
ITI_labs:lab11_TB1:1	Avd @dc	3.893k	> 3.1k
ITI_labs:lab11_TB1:1	TB1:1 Avd @dc (dB) 71.81		> 70
ITI_labs:lab11_TB1:1	BW	13.73k	
ITI_labs:lab11_TB1:1	GBW	53.59M	> 34.3M
ITI_labs:lab11_TB1:1	UGF	54.94M	> 34.3M

Figure 18: diff small signal results

getData("I0.M6a:cdd" ?result "dcOp") + getData("I0.M7a:cdd" ?result "dcOp")		_ Expression	Value
	ı	1 (getData("10.M6	420.7E-18

Figure 19: Cout_parasitics

$$\begin{split} |DC\ diff\ gain| &= g_{m5} * \left((g_{m6} + g_{mb6}) r_{o6} r_{o3} \parallel (g_{m7} + g_{mb7}) r_{o7} (r_{o5} \parallel r_{o9}) \right) \\ BW &\approx \frac{1}{2\pi ((g_{m6} + g_{mb6}) r_{o6} r_{o3} \parallel (g_{m7} + g_{mb7}) r_{o7} (r_{o5} \parallel r_{o9})) c_L}, GBW = \frac{g_{m5}}{2\pi c_L} \text{ (parasitics are too small can be neglected)} \end{split}$$

Spec	Simulation	Hand analysis
DC diff gain	71.8 <i>dB</i>	71.7 <i>dB</i>
BW	13.73 <i>KHz</i>	14.34 <i>KHz</i>
GBW	53.6 <i>MHz</i>	54.96 <i>MHz</i>
PM	78°	89.5°

Table 3: open-loop simulation vs hand analysis

- UGF and GBW are almost the same and that's an indicator to the good PM.
- BW & GBW hand analysis are different from the simulation as the parasitic caps values are not accurate (I think).

Part 3: CMFB Circuit Design

- The topology selection will depend on the CM controlled by the CMFB circuit, which is the PMOS tail CM so we need the CM load of the error amplifier to be PMOS too, the CD stage is defined to be a PMOS CD stage as the OTA input stage will be NMOS so we need to shift the *V_{out}* value up so that the CMIR of the error amplifier is matched.
- Let the current budget for CMFB circuit be 17 μ A (half differential OTA budget) so let it be 5 μ A in each branch to increase the current capability in the source follower stage except the error amp $I_{ss} = 2 \mu$ A is enough.
- The sizing steps are simple not as strict as the OTA because the CMFB loop-gain not necessarily high so we will design with simple steps and make fine tuning in order to get a good design.

1. Actual CMFB Schematic

Figure 20: Actual CMFB schematic

2. PMOS Current Mirror $(M_{10(a,b\&c)})$

We will use the same sizing as M1 with half its width and it can be tuned a little bit later. $L_{10} = 500 \text{ nm}$, $W_{10} = 2.5 \mu m$. Note that $V_{10}^* = V_1^* = 250 \text{ mV}$ as we will need it in the max V_{outCM} value calculations.

3. PMOS Input Devices $(M_{11(a,b\&c)})$

Let VDS=0.9 V as a good initial guess then later we will make fine tuning if necessary. We need max output swing in one rail to be $> \frac{1.2}{2} = 0.6 \ V$, $V_{outmin} = 0.75 \ V$ as calculated before so we need $V_{outmax} \ge V_{outmin} + 0.6 = 1.35 \ V$, $V_{outmax} = V_{DD} - V_{10}^* - |V_{GS11}|$ so we need $|V_{GS11}| \le 900 \ mV$

Figure 21: VGS chart for M11

We need
$$\left(\frac{g_m}{I_D}\right)_{11} \ge 12$$
.

In order to increase linearity and get better buffer gain we should trigger $V_{A11} \ge V_{A10}$ and high

$$\left(\frac{g_m}{I_D}\right)_{11} \text{As } A_v = \frac{g_{m11}(r_{o10} \| r_{o11})}{1 + g_{m11}(r_{o10} \| r_{o11})} = \frac{\left(\frac{g_m}{I_D}\right)_{11}(V_{A10} \| V_{A11})}{1 + \left(\frac{g_m}{I_D}\right)_{11}(V_{A10} \| V_{A11})}.$$

Figure 22: VA chart for M10

Figure 23: VA chart for M11

so let
$$\left(\frac{g_m}{I_D}\right)_{11}=15, L_{11}=1~\mu m.$$
 So $|V_{GS11}|\approx 850~mV$ so $V_{outmax}=1.4~V.$

Now get W from W/ID chart where $I_{D11} = 5 \mu A$.

Figure 24: W/ID chart for M11

$$W_{11} = 32 \, \mu m$$
.

4. NMOS Current Mirror (M_{12})

We will use the same sizing as M8. its width can be tuned a little bit later. $L_{12}=1.3~\mu m, W_{12}=711~nm.$

5. PMOS Error Amp Diode Connected Load $(M_{14(a\&b)})$

 M_{11} is desired to be matched to M_4 to get a CMFB voltage near to the required V_{BP} . Then $\left(\frac{g_m}{I_D}\right)_{14}=8$ and let $L_{14}=500$ nm, $V_{DS11}=V_{GS4}\approx 1$ V. So now we can get initial value for W and tune it later if necessary.

Figure 25: W/ID chart for M14

 $W_{14} = 500 \, nm.$

6. NMOS Error Amp Input Pair $(M_{13(a\&b)})$

Let $V_{DS13} = 0.5 V$ as a good assumption.

In order to get the higher possible gain we need to bias M13 in MI with high gm/ID let it be 16 as minimum value to get error amp gain of about 2. $A_v \approx \frac{g_{m11}}{2g_{m14}}$ (note that the error amp gain is half the diff amp gain in order to avoid high impedance nodes which have bad effect on stability) and let $L_{13} = 1 \ \mu m$. So now we can get initial value for W and tune it later if necessary.

Figure 26: W/ID chart for M13

 $W_{13} = 1.84 \, \mu m.$

7. Resistive Network $(R_{o,1})$

We need the maximum current in the resistive network to be less than 5 μA - where the max voltage drop on the two resistors is $1.4-0.75=0.65\,V$ - let it be about $2.5\,\mu A$ (50% of I_{D10}) in order to enhance linearity so we need $\frac{0.65}{2R} \leq 2.5\,\mu A$ so $R \geq 130\,K\Omega$. Let $R=130\,K\Omega$.

8. CMFB initial Devices Sizing

Device	M_{10}	M_{11}	M_{12}	M_{13}	M_{14}
W	2.5 μm	32 μm	711 nm	1.84 μm	500 nm
L	500 nm	1 μm	1.3 μm	1 μm	500 nm
g_m	40 μS	75 μS	14.8 μS	16 μS	8 μS
I_D	5 μΑ	5 μΑ	2 μΑ	1 μΑ	1 μΑ
g_m/I_D	8	15	7.4	16	8

Table 4: CMFB initial devices sizing

9. CMFB Final Design Schematic

Figure 27: CMFB final design schematic after tuning

Part 4: Open-Loop OTA Simulation (Actual CMFB)

1. OP simulation

Figure 28: bias circuit with DC node voltages annotated

Figure 29: OTA schematic with DC node voltages and OP parameters annotated

Figure 30: CMFB schematic with DC node voltages and OP parameters annotated

- All devices are in sat except the non-degenerated devices in the biasing circuits.
- We set V_{REF} to 1.08 V as V_{out} max swing is from 0.75 V to 1.4 V.
- The total current consumption in the fully differential OTA, CMFB circuit and current mirror branches is about 66.74 μ A (51.5 μ A without the current mirror and biasing branches) but that low current consumption in the CMFB circuit results in a very big value for the resistive network in order to activate the circuit plus enhancing linearity.
- The current and gm in the input pair exactly equal, due to the absence of differential signal and dc offset and no mismatch between the devices.
- The dc level of V_{out} is 1.0775 V as a result of the CMFB circuit which tends to minimize the error between the common mode dc level of V_{out} and V_{ref} where the error equals the reciprocal of the CMFB loop-gain.
- The differential input and output voltages of the error amplifier are $-2.5 \, mV$, $-5.4 \, mV$. the relation between them is the error amplifier gain (2.2).

2. Diff small signal ccs

Figure 31: Differential gain bode plot (magnitude)

Figure 32: Differential gain bode plot (phase)

Figure 33: open-loop gain Gx

 $PM \approx 78^{o}$

Test	Output	Nominal	Spec
ITI_labs:lab11_TB1:1	Avd @dc	3.386k	> 3.1k
ITI_labs:lab11_TB1:1	bs:lab11_TB1:1 Avd @dc (dB)		> 70
ITI_labs:lab11_TB1:1	BW	15.24k	
ITI_labs:lab11_TB1:1	GBW	51.71M	> 34.3M
ITI_labs:lab11_TB1:1	UGF	53.4M	> 34.3M

Figure 34: STB analysis results

getData("I0.M6a:cdd" ?result "dcOp")+getData("I0.M7a:cdd" ?result "dcOp")+getData("I13.M11a:cgg" ?result "dcOp")

VIDAC getData(... "dcOp")

1 1.000 107.6E-15

Figure 35: Cout_parasitics

$$\begin{split} |DC\ diff\ gain| &= g_{m5} * \left((g_{m6} + g_{mb6}) r_{o6} r_{o3} \parallel (g_{m7} + g_{mb7}) r_{o7} (r_{o5} \parallel r_{o9}) \right) \\ BW &\approx \frac{1}{2\pi \left((g_{m6} + g_{mb6}) r_{o6} r_{o3} \parallel (g_{m7} + g_{mb7}) r_{o7} (r_{o5} \parallel r_{o9}) \right) (C_L + C_{out_p})} \\ GBW &= \frac{g_{m5}}{2\pi \left(C_L + C_{out_p} \right)} \\ PM &= 180 - \tan^{-1} \left(\frac{\omega_u}{\omega_{p2}} \right). \end{split}$$

Spec	simulation	hand analysis
DC gain	70.6 dB	70.4 <i>dB</i>
BW	13.4 <i>KHz</i>	13.6 <i>KHz</i>
GBW	51.7 MHz	45 <i>MHz</i>
PM	78°	89°

Table 5: open-loop simulation vs hand analysis

 GBW & PM hand analysis are different from the simulation as the parasitic caps are not accurate.

Part 5: Closed Loop Simulation (AC and STB Analysis)

Figure 36: Testbench schematic

1. OP simulation

Figure 37: bias circuit with DC node voltages annotated

Figure 38: OTA schematic with DC node voltages and OP parameters annotated

Figure 39: CMFB schematic with DC node voltages and OP parameters annotated

- The OTA output CM level is 1.074 V as the CMFB circuit tends to minimize the error between it and VREF (which is 1.08 V where the error equals the reciprocal of the CMFB loop gain).
- The OTA input CM level is 1.074 V same value as the output CM level because the input capacitance decouples DC and the resistance 1 Tohm creates a DC path with nearly no current between the OTA input and output. So in conclusion, the CMFB circuit manages to adjust the OTA input and output to the value of VREF.
- All devices are in sat except the non-degenerated devices in the biasing branches because the CMIR is up to 1.1 V so it will operate in this configuration with $V_{outcm} = 1.08 V$.

2. Diff closed-loop response

Figure 40: Vodiff vs frequency

Test	Output	Nominal	Spec
ITI_labs:lab11_TB2:1	Acl @DC in V/V	1.998	range 1.99 2.01
ITI_labs:lab11_TB2:1	BWd	8.742M	> 7.33M
ITI_labs:lab11_TB2:1	GBWd	17.3M	> 14.64M
ITI_labs:lab11_TB2:1	UGF	16.94M	

Figure 41: diff small signal results

3. Differential and CMFB loops stability (STB analysis)

Figure 42: Diff loop bode plot (magnitude and phase)

Figure 43: CMFB loop (magnitude and phase)

Spec	diff-loop	CMFB-loop
GBW	7.3 MHz	11.22 MHz
PM	88°	70°

Table 6: diff vs CMFB simulations

- GBW is larger in the CMFB as the CMFB loop GBW is nearly the open-loop GBW times 1/2 as gm of the input pair and tail CM are almost the same and it's halved as in the CM half circuit the two branches of the output appears in parallel so the Cout is doubled and the diff loop GBW is the open-loop GBW times β which is less than 1/3 so $diff\ GBW = 2\beta * CMFB\ GBW$.
- The PM of the CMFB loop is less than that of the diff loop as the have near poles but different UGFs so the one with smaller UGF (diff loop) will maintain better stability and better PM.

Spec	closed — loop	open — loop	mapped open to closed
diff loop gain	61 <i>dB</i>	70.6 <i>dB</i>	60.9 dB
GBW	7.3 <i>MHz</i>	51.7 MHz	8 MHz

Table 7: comparison with open-loop simulations

• The specs from open-loop are mapped as following:

$$\beta = \frac{C_F}{C_F + C_{in} + C_{in_{ota}}} = 0.328, loop \ gain = A_{ol}(dB) + 20 \log(\beta)$$

$$GBW_{LG} = GBW_{ol} * \frac{C_L + C_{out_p}}{C_L + C_{out_p} + \left(C_F \parallel (C_{in} + C_{inota})\right)} * \beta$$

• As we see the GBW is different as in fact the loop gain GBW is UGF not GBW so as it's not a 1st order system so they are not equal that's one of the causes, other reason is that the loading of the CMFB circuit at the output (parasitics) is not accurate from the simulator as a value.

Part 6: Closed Loop Simulation (Transient Analysis)

1. Differential input pulse

Figure 44: Vsource setup

Figure 45: Vinp, Vinn, Voutp, Voutn & Vocm vs time in diff pulse response

- No differential ringing as the PM in the diff loop is much greater than 76.3° (88°) and the CMFB PM is less than 76.3° so it will face ringing but it's very small or even doesn't exist as the circuit is symmetric so the change in $V_{outp} \& V_{outn}$ is differentially symmetric and as the CMFB is so fast (high GBW) so its response to any change between the output nodes will be handled instantly.
- Note that the V_{incm} doesn't matter but I put it 0.7 V to make the graph clearer.

riseTime v("/VODIFF" ?result "tran") 0 nil 0.2 nil 0 99 nil "time"

Figure 46: settling time expression

Test	Output	Nominal	Spec
ITI_labs:lab11_TB2:1	settling time	97.98n	< 100n

Figure 47: settling time evaluation

- The spec is satisfied.
- A possible solution if the spec is not met is to decrease $C_{in} \& C_F$ values as they limit the closed-loop bandwidth but this may make a problem in the spec too as they are the main reason of the small spark which appears in the output as they make voltage divider for few nano seconds, and another solution is to increase the current in the OTA by only increasing the devices widths using cross multiplication.

2. CM input pulse

Figure 48: Vinp, Vinn, Voutp, Voutn & Vocm vs time in CM pulse response

- No differential ringing as the PM in the diff loop is much greater than 76.3° (88°) and the CMFB PM is less than 76.3° so it will face ringing but it's very small as the CMFB is so fast (high GBW) so its response to any transient change will be handled instantly.
- The small spark which appears in the output is due to the capacitive feedback as they make voltage divider for the first few nano seconds in the transient response.
- V_{incm} value doesn't matter but I made the pulse from 0.5 to 0.6 V to make the graph clearer.

3. Output swing

Figure 49: sine wave setup

Figure 50: Vinp, Vinn, Voutp, Voutn & Vocm vs time in diff sine wave response

Figure 51: VINDIFF & VODIFF vs time

• Diff input and output peak-to-peak swings are 300 mV and 599.3 mV respectively. So $A_{CL} = 1.998$ the same 4-digits precision as calculated from AC analysis.

Now apply a sine wave of 300 mV as an input to test the maximum differential swing.

Figure 52: VINDIFF & VODIFF vs time

• Diff input and output peak-to-peak swings are 600 mV and 1.198 V respectively. So $A_{CL} \approx 1.997$ i.e. error of 0.15 % from the Spec (note that the error is in the fourth digit). Also the V_{outcm} deviates to 1.07 V (1% maximum error from V_{ref}) So the peak-to-peak maximum output swing spec is justified (1.2 V).

Part 7: Design Specs

Spec	Required	Achieved
Supply Voltage	2.5 V	2.5 V
Closed loop gain	2	1.998
Phase margin at the required ACL	≥ 70°	88°
CMIR - low	≤ 0 <i>V</i>	-0.5 V
CMIR - high	≥ 1 V	1.1 V
Differential output swing	$1.2 V_{pk2pk}$	$1.2 V_{pk2pk}$
Load	500 fF	500 fF
DC loop gain	60 dB	61 <i>dB</i>
CL settling time for 1% error	100 ns	98 ns
Total Current consumption (including the CM branches)	_	63.5 μΑ
Total devices area (OTA + CMFB)	_	$55.3 + 105.3$ $= 160.6 (\mu m)^2$

Table 8: Design specs