VECTOR

Question: P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that, $ar(\triangle APB) = ar(\triangle BQC)$. **Figure:**

Figure 1

Solution:

Using formulas:

1. Area of a parallelogram with sides \pmb{a} and \pmb{b} is $=\frac{1}{2}|\pmb{a}\times\pmb{b}|$ square units $=\frac{1}{2}|a.b\sin\theta|$

- 2. Area of a triangle with vertices $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ is $= \frac{1}{2} \times \begin{vmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$ square units . (only positive values will be taken as negative value of area is not possible)
- 3. If a triangle and a parallelogram are on the same base and between the same parallels, then area of the triangle is equal to half the area of the parallelogram.

From figure 1, considering $\triangle BQC$ and parallelogram ABCD, having same base BC and, AD is parallel to BC.

$$\implies \triangle BQC = \frac{1}{2} \times arABCD. \tag{1}$$

Considering $\triangle APB$ and parallelogram ABCD , having same base AB and DC is parallel to AB.

$$\implies \triangle APB = \frac{1}{2} \times arABCD. \tag{2}$$

By comparing equation (1) and equation (2) we obtain that,

$$ar(\triangle APB) = ar(\triangle BQC).$$
 (3)

Hence proved.

Proof by the help of diagram: (figure 1, table 1, table 2) Let the points Q and P divide AD and CD by k_1 : 1 and k_2 : 1 ratio respectively.

Symbols	Description	Value
AB = DC	Sides of parallelogram	a = 6(unit)
AD = BC	Sides of parallelogram	$b = \sqrt{29}$
θ	$\angle BAD$	$\sin^{-1}(\frac{5}{\sqrt{29}})$
A	vertex (at origin)	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
Q	Divides AD	$k_1:1$ ratio
P	Divides CD	$k_2:1$ ratio

Table 1: Table of input parameters

Symbols	Description	Value
В	vertex	$a\begin{pmatrix}1\\0\end{pmatrix}$
D	vertex	$b \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$
C	vertex	B+D
Q	$Vertex(\triangle BQC)$	$\begin{pmatrix} \frac{2k_1}{k_1+1} \\ \frac{5k_1}{k_1+1} \end{pmatrix}$
P	$Vertex(\triangle APB)$	$\begin{pmatrix} \frac{8\overline{k_2}+2}{k_2+1} \\ 5 \end{pmatrix}$

Table 2: Table of output parameters

For the $\triangle BQC$, the vertices of the triangle are

For the
$$\triangle BQC$$
, the vertices of the triangle $B = \begin{pmatrix} 6 \\ 0 \end{pmatrix}, Q = \begin{pmatrix} \frac{2k_1}{k_1+1} \\ \frac{5k_1}{k_1+1} \end{pmatrix}, C = \begin{pmatrix} 8 \\ 5 \end{pmatrix}$

$$\implies \triangle BQC = \begin{vmatrix} 1 & 1 & 1 \\ 6 & \frac{2k_1}{k_1+1} & 8 \\ 0 & \frac{5k_1}{k_1+1} & 5 \end{vmatrix}$$

$$\frac{1}{2} \times \left| 1(\frac{2k_1}{k_1+1}.5 - \frac{5k_1}{k_1+1}.8) - 6(5.1 - \frac{5k_1}{k_1+1}.1) + 0 \right|$$

$$= \frac{1}{2} \times \left| \frac{-40k_1 + 10k_1 - 30}{k_1+1} \right|$$

$$= \frac{1}{2} \times 30$$

$$= 15 \text{ square units.}$$

For the
$$\triangle APB$$
, the vertices of the triangle are $\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{8k_2+2}{k_2+1} \\ 5 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$

$$\implies \triangle APB = \begin{vmatrix} 1 & 1 & 1 \\ 0 & \frac{8k_2+2}{k_2+1} & 6 \\ 0 & 5 & 0 \end{vmatrix}$$

$$= \frac{1}{2} \times \left| 1(\frac{8k_2+2}{k_2+1}.0 - 6.5) + 0 + 0 \right|$$

$$= \frac{1}{2} \times \left| -30 \right|$$

$$= \frac{1}{2} \times 30$$

$$= 15 \text{ square units.}$$

For parallelogram ABCD, the vertices are

$$m{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, m{B} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}, m{C} = \begin{pmatrix} 8 \\ 5 \end{pmatrix}, m{D} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$\implies arABCD = a.b.\sin\theta$$

$$=6.\sqrt{29}.\sin(\sin^{-1}\frac{5}{\sqrt{29}})$$

$$=6.\sqrt{29}.\frac{5}{\sqrt{29}}$$

 $\Rightarrow arABCD = a.b. \sin \theta$ $=6.\sqrt{29}. \sin(\sin^{-1}\frac{5}{\sqrt{29}})$ $=6.\sqrt{29}. \frac{5}{\sqrt{29}}$ =30 square units.Therefore, $arABCD = \frac{1}{2} \times ar\triangle APB = \frac{1}{2} \times ar\triangle BQC \text{ (proved)}.$