Advances in Quantitative MRI: Acquisition, Estimation, and Application

Gopal Nataraj

Dissertation Defense March 23, 2018

Dept. of Electrical Engineering and Computer Science University of Michigan

Example: flow imaging

¹figure borrowed from [Hope et al., 2013]

Example: diffusion imaging

²figure borrowed from www.diffusion-imaging.com

Example: myelin water imaging

³figure adapted from [Nataraj et al., 2017a]

Goal: rapidly and accurately localize biomarkers from MR data

Goal: rapidly and accurately localize biomarkers from MR data

• biomarker measurable tissue property (e.g., flow rate) that indicates a biological process (e.g., blockage) characteristic to specific disorders (e.g., stroke)

Goal: rapidly and accurately localize biomarkers from MR data

- biomarker measurable tissue property (e.g., flow rate)
 that indicates a biological process (e.g., blockage)
 characteristic to specific disorders (e.g., stroke)
- localize produce quantitative MR images

Goal: rapidly and accurately localize biomarkers from MR data

- biomarker measurable tissue property (e.g., flow rate)
 that indicates a biological process (e.g., blockage)
 characteristic to specific disorders (e.g., stroke)
- localize produce quantitative MR images
- accurately physically realistic signal models
- rapidly fast acquisition, fast estimation

Goal: rapidly and accurately localize biomarkers from MR data

- biomarker measurable tissue property (e.g., flow rate)
 that indicates a biological process (e.g., blockage)
 characteristic to specific disorders (e.g., stroke)
- localize produce quantitative MR images
- accurately physically realistic signal models
- rapidly fast acquisition, fast estimation

Challenge: rapidly vs. accurately often competing goals

- more accurate models typically depend on more markers
- precisely estimating more markers usually requires longer scans and more computation

Advances in Quantitative MRI:

• Acquisition [Ch. 4]

How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

• Estimation [Ch. 5]
Given accurate models and informative data,

how can we rapidly quantify these biomarkers?

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

- Estimation [Ch. 5]
 Given accurate models and informative data,
 - how can we rapidly quantify these biomarkers?
- Application [Ch. 6]
 Using these tools, can we design a state-of-the-art biomarker?

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

- Estimation [Ch. 5]
 Given accurate models and informative data,
 - how can we rapidly quantify these biomarkers?
- **Application** [Ch. 6] Using these tools, can we design a state-of-the-art biomarker?

Signal Model

After reconstruction, single voxel y_d in dth image modeled as

$$y_d = s_d(\mathbf{x}; \boldsymbol{\nu}, \mathbf{p}_d) + \epsilon_d \tag{1}$$

- $\mathbf{x} \in \mathbb{R}^L$
- $\nu \in \mathbb{R}^K$
- $\mathbf{p}_d \in \mathbb{R}^A$
- $s_d: \mathbb{R}^{L+K+A} \mapsto \mathbb{C}$
- $\epsilon_d \in \mathbb{C}$

unknown parameters

"known" parameters

acquisition parameters

dth signal model

noise $\sim \mathbb{C}\mathcal{N}ig(0,\sigma_d^2ig)$

Signal Model

A scan profile is a set of D scans that produces at each voxel a measurement vector $\mathbf{y} := [y_1, \dots, y_D]^\mathsf{T}$ modeled as

$$\mathbf{y} = \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) + \boldsymbol{\epsilon} \tag{1}$$

•
$$\mathbf{x} \in \mathbb{R}^L$$

•
$$\nu \in \mathbb{R}^K$$

- $\bullet \ P := [p_1, \dots, p_D]$
- $\mathbf{s}: \mathbb{R}^{L+K+AD} \mapsto \mathbb{C}^D$
- ullet $\epsilon \sim \mathbb{C}\mathcal{N}(oldsymbol{0}_D, oldsymbol{\Sigma})$

unknown parameters

"known" parameters

acquisition parameter matrix

vector signal model

noise, with $\mathbf{\Sigma} := \mathsf{diag} ig(\sigma_1^2, \dots, \sigma_D^2 ig)$

7

Signal Model

• $\epsilon \sim \mathbb{C}\mathcal{N}(\mathbf{0}_D, \Sigma)$

A scan profile is a set of D scans that produces at each voxel a measurement vector $\mathbf{y} := [y_1, \dots, y_D]^\mathsf{T}$ modeled as

$$\mathbf{y} = \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) + \boldsymbol{\epsilon} \tag{1}$$

noise, with $\Sigma := \operatorname{diag}(\sigma_1^2, \dots, \sigma_D^2)$

•
$$\mathbf{x} \in \mathbb{R}^L$$
 unknown parameters
• $\boldsymbol{\nu} \in \mathbb{R}^K$ "known" parameters
• $\mathbf{P} := [\mathbf{p}_1, \dots, \mathbf{p}_D]$ acquisition parameter matrix
• $\mathbf{s} : \mathbb{R}^{L+K+AD} \mapsto \mathbb{C}^D$ vector signal model

Task: design P to enable precise unbiased estimation of x

Towards an Objective Function

When \mathbf{s} is analytic in \mathbf{x} (as is typical),

Fisher information characterizes unbiased estimator precision:

$$\mathbf{F}(\mathbf{x}; \nu, \mathbf{P}) := (\nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \nu, \mathbf{P}))^{\mathsf{H}} \mathbf{\Sigma}^{-1} \nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \nu, \mathbf{P}). \tag{2}$$

Towards an Objective Function

When s is analytic in x (as is typical),

Fisher information characterizes unbiased estimator precision:

$$\mathbf{F}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) := (\nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}))^{\mathsf{H}} \boldsymbol{\Sigma}^{-1} \nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{2}$$

When **F** is invertible, Cramér-Rao Bound (CRB) [Cramér, 1946] ensures covariance of unbiased estimates $\hat{\mathbf{x}}$ of \mathbf{x} satisfy

$$\operatorname{cov} \widehat{\mathbf{x}}; \boldsymbol{\nu}, \mathbf{P} \succeq \mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{3}$$

Maximum-likelihood (ML) estimates achieve CRB asymptotically or (equivalently for Gaussian data) at sufficiently high SNR.

Towards an Objective Function

When s is analytic in x (as is typical),

Fisher information characterizes unbiased estimator precision:

$$\mathbf{F}(\mathbf{x}; \nu, \mathbf{P}) := (\nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \nu, \mathbf{P}))^{\mathsf{H}} \mathbf{\Sigma}^{-1} \nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \nu, \mathbf{P}). \tag{2}$$

When **F** is invertible, Cramér-Rao Bound (CRB) [Cramér, 1946] ensures covariance of unbiased estimates $\hat{\mathbf{x}}$ of \mathbf{x} satisfy

$$\operatorname{cov} \widehat{\mathbf{x}}; \boldsymbol{\nu}, \mathbf{P} \succeq \mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{3}$$

Maximum-likelihood (ML) estimates achieve CRB asymptotically or (equivalently for Gaussian data) at sufficiently high SNR.

Idea: choose P such that imprecision matrix F^{-1} "small"

Idea: choose P to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \text{tr}\Big(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\Big), \tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Idea: choose P to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Idea: choose P to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Two problems considered:

min-max scan design

[Nataraj et al., 2017b]

$$\check{\mathbf{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \max_{\substack{\mathbf{x} \in \mathbb{X}^t \\ \boldsymbol{\nu} \in \mathbb{N}^t}} \Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) \right\}$$
(5)

where $\mathbb{X}^t \subseteq \mathbb{R}^L$ and $\mathbb{N}^t \subseteq \mathbb{R}^K$ are "tight" ranges of interest and \mathbb{P} is defined by acquisition/timing constraints

Idea: choose **P** to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Two problems considered:

• min-max scan design

[Nataraj et al., 2017b]

$$\mathbf{\check{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \max_{\substack{\mathbf{x} \in \mathbb{X}^{t} \\ \boldsymbol{\nu} \in \mathbb{N}^{t}}} \Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) \right\} \tag{5}$$

• Bayesian scan design

$$\breve{\mathbf{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \, \mathsf{E}_{\mathbf{x}, \nu}(\Psi(\mathbf{x}; \nu, \mathbf{P})) \right\} \tag{6}$$

Idea: choose **P** to minimize the objective

$$\Psi(\mathbf{x}; \nu, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \nu, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Two problems considered:

min-max scan design

[Nataraj et al., 2017b]

$$\mathbf{\check{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \max_{\substack{\mathbf{x} \in \mathbb{X}^{t} \\ \boldsymbol{\nu} \in \mathbb{N}^{t}}} \Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) \right\} \tag{5}$$

• Bayesian scan design

$$\mathbf{\check{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \, \mathsf{E}_{\mathbf{x}, \nu}(\Psi(\mathbf{x}; \nu, \mathbf{P})) \right\} \tag{6}$$

Detailed Example Study

Task: design fast acquisition for precise estimation of relaxation parameters T_1 , T_2 in white/gray matter (WM/GM) of brain

Detailed Example Study

Task: design fast acquisition for precise estimation of relaxation parameters T_1 , T_2 in white/gray matter (WM/GM) of brain

- Consider scan profiles consisting of two fast pulse sequences
 - Spoiled Gradient-Recalled Echo (SPGR) [Zur et al., 1991]
 - Dual-Echo Steady-State (DESS) [Redpath and Jones, 1988]

Detailed Example Study

Task: design fast acquisition for precise estimation of relaxation parameters T_1 , T_2 in white/gray matter (WM/GM) of brain

- Consider scan profiles consisting of two fast pulse sequences
 - Spoiled Gradient-Recalled Echo (SPGR) [Zur et al., 1991]
 - Dual-Echo Steady-State (DESS) [Redpath and Jones, 1988]
- For each scan profile feasible under total time constraint:
 - 1. Let **s** model corresponding single-component signal
 - $\mathbf{x} \leftarrow [m_0, T_1, T_2]^\mathsf{T}$, where m_0 is a scale factor
 - ullet u \leftarrow flip angle variation
 - ullet P \leftarrow nominal flip angles, repetition times
 - 2. Optimize **P** subject to flip angle, sequence timing constraints
 - $\mathbf{W} \leftarrow \mathsf{diag}(0, 0.1, 1)$ emphasizes T_1, T_2 est roughly equally
 - ullet \mathbb{X}^t chosen to focus on WM/GM at 3T field strength
 - ullet \mathbb{N}^{t} chosen to allow 10% flip angle variation

Scan Profile Comparison

(#SPGR, #DESS) Profiles	(2,1)	(1, 1)	(0, 2)
SPGR nom. flip (deg)	(15, 5)	15	_
DESS nom. flip (deg)	30	10	(35, 10)
SPGR rep. times (ms)	(12.2, 12.2)	13.9	_
DESS rep. times (ms)	17.5	28.0	(24.4, 17.5)
optimal max cost	4.0	4.9	3.5

Scan Profile Comparison

(#SPGR, #DESS) Profiles	(2,1)	(1, 1)	(0, 2)
SPGR nom. flip (deg)	(15, 5)	15	_
DESS nom. flip (deg)	30	10	(35, 10)
SPGR rep. times (ms)	(12.2, 12.2)	13.9	_
DESS rep. times (ms)	17.5	28.0	(24.4, 17.5)
optimal max cost	4.0	4.9	3.5

Main finding: 2 DESS sequences can yield T_1 , T_2 WM/GM estimates that are at least as precise as T_1 , T_2 estimates from SPGR/DESS scan profiles, under this competitive time constraint.

Experimental Setup

Candidate (2,1), (1,1), (0,2) SPGR/DESS scan profiles

- Prescribed optimized nominal flip angles, repetition times
- Used $256 \times 256 \times 8$ 3D matrix over $24 \times 24 \times 4$ cm FOV
- Required 1m37s scan time for each profile

Experimental Setup

Candidate (2,1), (1,1), (0,2) SPGR/DESS scan profiles

- Prescribed optimized nominal flip angles, repetition times
- Used $256 \times 256 \times 8$ 3D matrix over $24 \times 24 \times 4$ cm FOV
- Required 1m37s scan time for each profile

Reference scan profile

- Four inversion recovery (IR) scans for T_1 estimation
- Four spin-echo (SE) scans for T_2 estimation
- 256×256 matrix over $24 \times 24 \times 0.5$ cm FOV
- Required 40m58s scan time total

Experimental Setup

Candidate (2,1), (1,1), (0,2) SPGR/DESS scan profiles

- Prescribed optimized nominal flip angles, repetition times
- Used $256 \times 256 \times 8$ 3D matrix over $24 \times 24 \times 4$ cm FOV
- Required 1m37s scan time for each profile

Reference scan profile

- ullet Four inversion recovery (IR) scans for \mathcal{T}_1 estimation
- Four spin-echo (SE) scans for T_2 estimation
- 256×256 matrix over $24 \times 24 \times 0.5$ cm FOV
- Required 40m58s scan time total

Bloch-Siegert (BS) acquisition for separate flip angle calibration

- Acquired 2 BS-shifted 3D SPGR scans in 1m40s total
- Used for T_1 , T_2 est from both candidate and reference profiles

Phantom Accuracy Results

Figure 1: Colorbar ranges in ms.

Phantom Accuracy Results

Compared against NIST NMR measurements [Keenan et al., 2016]

Phantom Precision Results

- Repeated each profile 10 times
- ullet Estimated $\mathcal{T}_1,\,\mathcal{T}_2$ std dev of typical voxel across repetitions

Phantom Precision Results

	(2, 1)	(1, 1)	(0, 2)
V5 $\widehat{\sigma}_{\widehat{T}_1^{ ext{ML}}}$	50 ± 12	40 ± 10 .	39 ± 9.4
V6 $\widehat{\sigma}_{\widehat{\mathcal{T}}_1^{\mathrm{ML}}}$	70 ± 18	60 ± 15	60 ± 16
V7 $\widehat{\sigma}_{\widehat{T}_1^{\mathrm{ML}}}$	60 ± 13	50 ± 13	50 ± 13
V5 $\widehat{\sigma}_{\widehat{\mathcal{T}}_2^{\mathrm{ML}}}$	2.6 ± 0.63	6 ± 1.4	3.5 ± 0.84
V6 $\widehat{\sigma}_{\widehat{\mathcal{T}}_2^{\mathrm{ML}}}$	1.9 ± 0.46	5 ± 1.1	2.3 ± 0.54
V7 $\widehat{\sigma}_{\widehat{T}_2^{ ext{ML}}}$	1.4 ± 0.34	3.4 ± 0.80	1.5 ± 0.35
$\sqrt{\text{opt max cost}}$ estimate	8.9 ± 1.8	11 ± 2.6	$\textbf{8.3} \pm \textbf{2.1}$

Table 1: Pooled sample standard deviations \pm pooled standard errors of sample standard deviations (ms), from optimized SPGR/DESS profiles.

Phantom Precision Results

	(2, 1)	(1, 1)	(0, 2)
V5 $\widehat{\sigma}_{\widehat{T}_1^{ ext{ML}}}$	50 ± 12	40 ± 10 .	39 ± 9.4
V6 $\widehat{\sigma}_{\widehat{\mathcal{T}}_1^{\mathrm{ML}}}$	70 ± 18	60 ± 15	60 ± 16
$ extsf{V7} \ \widehat{\sigma}_{\widehat{T}_1^{ ext{ML}}}$	60 ± 13	50 ± 13	50 ± 13
V5 $\widehat{\sigma}_{\widehat{T}_2^{ ext{ML}}}$	2.6 ± 0.63	6 ± 1.4	3.5 ± 0.84
V6 $\widehat{\sigma}_{\widehat{T}_2^{\mathrm{ML}}}$	1.9 ± 0.46	5 ± 1.1	2.3 ± 0.54
$ extsf{V7} \ \widehat{\sigma}_{\widehat{T}_2^{ ext{ML}}}$	1.4 ± 0.34	3.4 ± 0.80	1.5 ± 0.35
$\sqrt{\text{opt max cost}}$ estimate	8.9 ± 1.8	11 ± 2.6	$\textbf{8.3} \pm \textbf{2.1}$

Table 1: Pooled sample standard deviations \pm pooled standard errors of sample standard deviations (ms), from optimized SPGR/DESS profiles.

Similar trends across profiles of empirical vs. theoretical std dev!

Contributions

- MR scan design method for precise parameter estimation
- \bullet Fast SPGR/DESS scan profile for ${\it T}_1, {\it T}_2$ estimation in brain

Contributions

- MR scan design method for precise parameter estimation
- Fast SPGR/DESS scan profile for T_1 , T_2 estimation in brain
 - Phantom (and omitted simulation) results validate method as a predictor of unbiased estimation precision.

Figure 2: Colorbar ranges in ms.

Contributions

- MR scan design method for precise parameter estimation
- Fast SPGR/DESS scan profile for T_1 , T_2 estimation in brain
 - Phantom (and omitted simulation) results validate method as a predictor of unbiased estimation precision.
 - In vivo results reveal discrepancies (especially in T₂ estimates), suggesting T₁, T₂ estimates sensitive to model mismatch.

Contributions

- MR scan design method for precise parameter estimation
- Fast SPGR/DESS scan profile for T_1, T_2 estimation in brain
 - Phantom (and omitted simulation) results validate method as a predictor of unbiased estimation precision.
 - In vivo results reveal discrepancies (especially in T₂ estimates), suggesting T₁, T₂ estimates sensitive to model mismatch.

How to address in vivo model mismatch?

- More accurate in vivo signal models
- More scalable parameter estimation

Overview

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

- Estimation [Ch. 5]
 Given accurate models and informative data,
- how can we rapidly quantify these biomarkers?

 Application [Ch. 6]

Using these tools, can we design a state-of-the-art biomarker?

Signal Model

Given: at every voxel, measurement vector $\mathbf{y} \in \mathbb{C}^D$ modeled as

$$y = s(x, \nu) + \epsilon \tag{7}$$

- $\mathbf{x} \in \mathbb{R}^L$
- $\nu \in \mathbb{R}^K$
- $\mathbf{s}: \mathbb{R}^{L+K} \mapsto \mathbb{C}^D$
- $oldsymbol{\epsilon} \in \mathbb{C}^D$

unknown parameters

"known" parameters

vector signal model

noise $\sim \mathbb{C}\mathcal{N}(\mathbf{0}_D, \mathbf{\Sigma})$

Signal Model

Given: at every voxel, measurement vector $\mathbf{y} \in \mathbb{C}^D$ modeled as

$$\mathbf{y} = \mathbf{s}(\mathbf{x}, \boldsymbol{\nu}) + \boldsymbol{\epsilon} \tag{7}$$

• $\mathbf{x} \in \mathbb{R}^L$ unknown parameters

• $u \in \mathbb{R}^K$ "known" parameters

• $\mathbf{s} : \mathbb{R}^{L+K} \mapsto \mathbb{C}^D$ vector signal model

 $oldsymbol{\epsilon} \in \mathbb{C}^D$ noise $\sim \mathbb{C} \mathcal{N}(oldsymbol{0}_D, oldsymbol{\Sigma})$

Task: design fast voxel-by-voxel estimator $\hat{\mathbf{x}}(\mathbf{y}, \nu)$

Task: design fast voxel-by-voxel estimator $\widehat{\mathbf{x}}(\mathbf{y}, \mathbf{\nu})$

Challenges:

- signal **s** often nonlinear in **x**: non-convex inverse problems
- \bullet signal \boldsymbol{s} might be difficult to write in closed form

Task: design fast voxel-by-voxel estimator $\widehat{\mathbf{x}}(\mathbf{y}, \nu)$

Challenges:

- signal **s** often nonlinear in **x**: non-convex inverse problems
- signal **s** might be difficult to write in closed form

Conventional Approaches:

- gradient-based local optimization
 - initialization-dependent solution
 - requires signal gradients

Task: design fast voxel-by-voxel estimator $\widehat{\mathbf{x}}(\mathbf{y}, \nu)$

Challenges:

- signal s often nonlinear in x: non-convex inverse problems
- signal s might be difficult to write in closed form

Conventional Approaches:

- gradient-based local optimization
 - initialization-dependent solution
 - requires signal gradients
- stochastic methods (e.g., simulated annealing)
 - unclear convergence analysis [Bertsimas and Tsitsiklis, 1993]
 - several unintuitive tuning parameters

Task: design fast voxel-by-voxel estimator $\widehat{\mathbf{x}}(\mathbf{y}, \nu)$

Challenges:

- signal s often nonlinear in x: non-convex inverse problems
- signal **s** might be difficult to write in closed form

Conventional Approaches:

- gradient-based local optimization
 - initialization-dependent solution
 - requires signal gradients
- stochastic methods (e.g., simulated annealing)
 - unclear convergence analysis [Bertsimas and Tsitsiklis, 1993]
 - several unintuitive tuning parameters
- dictionary-based grid search

Motivation

Grid search computational costs

	L	\sim number dictionary atoms
1-compartment relaxivity	3	$\sim 100^2$

Motivation

Grid search computational costs

	L	\sim number dictionary atoms
1-compartment relaxivity	3	${\sim}100^2$
flow velocity	4	${\sim}100^3$
diffusivity tensor	7	${\sim}100^6$
2-3 compartment relaxivity	6-10	$\sim \! 100^5 - 100^9$

Motivation

Grid search computational costs

	L	\sim number dictionary atoms
1-compartment relaxivity	3	${\sim}100^2$
flow velocity	4	${\sim}100^3$
diffusivity tensor	7	$\sim\!100^6$
2-3 compartment relaxivity	6-10	$\sim \! 100^5 - 100^9$

Can we scale computation with ${\it L}$ more gracefully?

- sample $(\mathbf{x}_1, \mathbf{\nu}_1, \epsilon_1), \dots, (\mathbf{x}_N, \mathbf{\nu}_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}

- sample $(\mathbf{x}_1, \nu_1, \epsilon_1), \dots, (\mathbf{x}_N, \nu_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_l(\cdot) := \widehat{h}_l(\cdot) + \widehat{b}_l$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_n := [\text{Re}(\mathbf{y}_n)^\mathsf{T}, \text{Im}(\mathbf{y}_n)^\mathsf{T}, \boldsymbol{\nu}_n^\mathsf{T}]^\mathsf{T} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

- sample $(\mathbf{x}_1, \nu_1, \epsilon_1), \dots, (\mathbf{x}_N, \nu_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_l(\cdot) := \widehat{h}_l(\cdot) + \widehat{b}_l$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_n := [\text{Re}(\mathbf{y}_n)^\mathsf{T}, \text{Im}(\mathbf{y}_n)^\mathsf{T}, \boldsymbol{\nu}_n^\mathsf{T}]^\mathsf{T} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

$$\left(\widehat{h}_{l},\widehat{b}_{l}\right) \in \left\{ \arg\min_{\substack{h_{l} \\ b_{l} \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_{l}(\mathbf{q}_{n}) + b_{l} - x_{l,n})^{2} \right\}$$

- sample $(\mathbf{x}_1, \nu_1, \epsilon_1), \dots, (\mathbf{x}_N, \nu_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_l(\cdot) := \widehat{h}_l(\cdot) + \widehat{b}_l$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_n := [\text{Re}(\mathbf{y}_n)^\mathsf{T}, \text{Im}(\mathbf{y}_n)^\mathsf{T}, \boldsymbol{\nu}_n^\mathsf{T}]^\mathsf{T} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

Idea: learn a nonlinear estimator from simulated training data

- sample $(\mathbf{x}_1, \mathbf{
 u}_1, \epsilon_1), \dots, (\mathbf{x}_N, \mathbf{
 u}_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_{l}(\cdot) := \widehat{h}_{l}(\cdot) + \widehat{b}_{l}$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_{n} := [\operatorname{Re}(\mathbf{y}_{n})^{\mathsf{T}}, \operatorname{Im}(\mathbf{y}_{n})^{\mathsf{T}}, \boldsymbol{\nu}_{n}^{\mathsf{T}}]^{\mathsf{T}} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

$$\left(\widehat{h}_{l}, \widehat{b}_{l}\right) \in \left\{ \arg \min_{\substack{h_{l} \in \mathbb{H} \\ b_{l} \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_{l}(\mathbf{q}_{n}) + b_{l} - x_{l,n})^{2} + \rho_{l} \|h_{l}\|_{\mathbb{H}}^{2} \right\} \quad (8)$$

Solution: Param Estimation via Regression with Kernels (PERK) [Nataraj et al., 2018]

- ullet restrict optimization to a certain rich function space ${\mathbb H}$
- optimal $\widehat{h}_l \in \mathbb{H}$ takes form $\widehat{h}_l = \sum_{n=1}^N \widehat{a}_{l,n} k(\cdot, \mathbf{q}_n)$ [Schölkopf et al., 2001]

PERK in a 1-D Toy Problem

Task: estimate T_2 , given samples from $y = \exp(-T_{\rm E}/T_2) + \epsilon$

Compare: $\widehat{T}_2^{\mathrm{PERK}}$ with method-of-moments (MOM) estimator

$$\widehat{T}_2^{ ext{MOM}}(\cdot) := -T_{ ext{E}}/\log|\cdot|$$

(PERK more useful when good MOM estimator unavailable)

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{\mathbf{x}}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathsf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(9)

•
$$\mathbf{x}_{l} := [x_{l,1}, \dots, x_{l,N}]^{\mathsf{T}}$$

training pt regressands

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{\mathbf{x}}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(9)

$$\bullet \ \mathbf{x}_I := \begin{bmatrix} x_{I,1}, \dots, x_{I,N} \end{bmatrix}^\mathsf{T} \qquad \text{training pt regressands}$$

$$\bullet \ \mathbf{K} := \begin{bmatrix} \mathbf{k}(\mathbf{q}_1, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ \mathbf{k}(\mathbf{q}_N, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$$
 Gram matrix

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{\mathbf{x}}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(9)

•
$$\mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^\mathsf{T}$$
 training pt regressands
• $\mathbf{K} := \begin{bmatrix} \mathbf{k}(\mathbf{q}_1, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ \mathbf{k}(\mathbf{q}_N, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$ Gram matrix
• $\mathbf{M} := \mathbf{I}_N - \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^\mathsf{T}$ de-meaning operator

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{\mathbf{x}}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(9)

$$\bullet \ \mathbf{x}_I := \begin{bmatrix} x_{I,1}, \dots, x_{I,N} \end{bmatrix}^\mathsf{T} \qquad \text{training pt re}$$

$$\bullet \ \mathbf{K} := \begin{bmatrix} k(\mathbf{q}_1, \mathbf{q}_1) & \cdots & k(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ k(\mathbf{q}_N, \mathbf{q}_1) & \cdots & k(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix} \qquad \text{Gram matrix}$$

$$\bullet \ \mathbf{M} := \mathbf{I}_N - \frac{1}{N} \mathbf{I}_N \mathbf{I}_N^\mathsf{T} \qquad \text{de-meaning of }$$

• $\mathbf{k}(\cdot) := [\mathbf{k}(\cdot, \mathbf{q}_1), \dots, \mathbf{k}(\cdot, \mathbf{q}_N)]^{\mathsf{T}}$

training pt regressands

de-meaning operator nonlin kernel embedding

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{x}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M} (\mathsf{K} \mathsf{M} + N \rho_{l} \mathsf{I}_{N})^{-1} \left(\mathsf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(9)

•
$$\mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^{\mathsf{T}}$$
 training pt regressands
• $\mathbf{K} := \begin{bmatrix} k(\mathbf{q}_1, \mathbf{q}_1) & \cdots & k(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ k(\mathbf{q}_N, \mathbf{q}_1) & \cdots & k(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$ Gram matrix
• $\mathbf{M} := \mathbf{I}_N - \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^{\mathsf{T}}$ de-meaning operator

Can we scale computation with L more gracefully?

• $\mathbf{k}(\cdot) := [\mathbf{k}(\cdot, \mathbf{q}_1), \dots, \mathbf{k}(\cdot, \mathbf{q}_N)]^{\mathsf{T}}$

ullet Perhaps, since (9) separable in $I \in \{1, \dots, L\}$ by construction

nonlin kernel embedding

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{x}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M} (\mathsf{K} \mathsf{M} + N \rho_{l} \mathsf{I}_{N})^{-1} \left(\mathsf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(9)

•
$$\mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^{\mathsf{T}}$$
 training pt regressands
• $\mathbf{K} := \begin{bmatrix} \mathbf{k}(\mathbf{q}_1, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ \mathbf{k}(\mathbf{q}_N, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$ Gram matrix
• $\mathbf{M} := \mathbf{I}_N - \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^{\mathsf{T}}$ de-meaning operator

Can we scale computation with L more gracefully?

• $\mathbf{k}(\cdot) := [\mathbf{k}(\cdot, \mathbf{q}_1), \dots, \mathbf{k}(\cdot, \mathbf{q}_N)]^T$

- Perhaps, since (9) separable in $I \in \{1, ..., L\}$ by construction
- However, explicitly computing **K** may be undesirable...

nonlin kernel embedding

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\dots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for $\dim(\mathcal{Q}) \ll Z \ll N$ $\mathbf{K} \approx \tilde{\mathbf{Z}}^T \tilde{\mathbf{Z}}. \tag{10}$

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\ldots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for $\dim(\mathcal{Q}) \ll Z \ll N$

$$\mathbf{K} \approx \tilde{\mathbf{Z}}^{\mathsf{T}}\tilde{\mathbf{Z}}.$$
 (10)

Plugging (10) into PERK solution (9) and rearranging gives

$$\widehat{x}_{l}(\cdot) \approx \frac{1}{N} \mathbf{x}_{l}^{\mathsf{T}} \mathbf{1}_{N} + \frac{1}{N} \mathbf{x}_{l}^{\mathsf{T}} \mathsf{M} \widetilde{\mathsf{Z}}^{\mathsf{T}} \left(\frac{1}{N} \widetilde{\mathsf{Z}} \mathsf{M} \widetilde{\mathsf{Z}}^{\mathsf{T}} + \rho_{l} \mathsf{I}_{Z} \right)^{-1} \left(\widetilde{\mathsf{z}}(\cdot) - \frac{1}{N} \widetilde{\mathsf{Z}} \mathbf{1}_{N} \right)$$

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\ldots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for $\dim(\mathcal{Q}) \ll Z \ll N$

$$\mathbf{K} \approx \tilde{\mathbf{Z}}^{\mathsf{T}}\tilde{\mathbf{Z}}.\tag{10}$$

Plugging (10) into PERK solution (9) and rearranging gives

$$\widehat{x}_{l}(\cdot) \approx \widehat{m}_{x_{l}} + \widehat{\mathbf{c}}_{x_{l}\tilde{\mathbf{z}}}^{\mathsf{T}} \left(\widehat{\mathbf{C}}_{\tilde{\mathbf{z}}\tilde{\mathbf{z}}} + \rho_{l} \mathbf{I}_{Z} \right)^{-1} (\tilde{\mathbf{z}}(\cdot) - \widehat{\mathbf{m}}_{\tilde{\mathbf{z}}})$$
(11)

which is regularized Z-dimensional affine regression!

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\ldots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for $\dim(\mathcal{Q}) \ll Z \ll N$

$$\mathbf{K} \approx \tilde{\mathbf{Z}}^{\mathsf{T}}\tilde{\mathbf{Z}}.\tag{10}$$

Plugging (10) into PERK solution (9) and rearranging gives

$$\widehat{x}_{l}(\cdot) \approx \widehat{m}_{x_{l}} + \widehat{\mathbf{c}}_{x_{l}\tilde{\mathbf{z}}}^{\mathsf{T}} \left(\widehat{\mathbf{C}}_{\tilde{\mathbf{z}}\tilde{\mathbf{z}}} + \rho_{l} \mathbf{I}_{Z} \right)^{-1} (\widetilde{\mathbf{z}}(\cdot) - \widehat{\mathbf{m}}_{\tilde{\mathbf{z}}})$$
(11)

which is regularized Z-dimensional affine regression!

Does such a $\tilde{\mathbf{z}}$ exist and work well in practice?

- Yes, e.g. for Gaussian $k(\mathbf{q}, \mathbf{q}') \leftarrow \exp\left(-\frac{1}{2} \|\mathbf{\Lambda}^{-1}(\mathbf{q} \mathbf{q}')\|_2^2\right)$ [Rahimi and Recht, 2007]
- In such cases, can reduce from $\sim N^2$ to $\sim NZ$ computations

Experimental Setup

Demonstrated PERK for T_1 , T_2 est from optim (2SP,1DE) scan

Experimental Setup

Demonstrated PERK for T_1 , T_2 est from optim (2SP,1DE) scan

- ullet PERK trained using $N \leftarrow 10^5$ samples from prior dist ${
 m p_{x,
 u}}$
- ullet To enable precise estimation, support of $p_{x,
 u}$ carefully chosen to coincide with min-max acquisition design support

Experimental Setup

Demonstrated PERK for T_1 , T_2 est from optim (2SP,1DE) scan

- PERK trained using $N \leftarrow 10^5$ samples from prior dist $p_{x,\nu}$
- ullet To enable precise estimation, support of $p_{x,
 u}$ carefully chosen to coincide with min-max acquisition design support

Compared PERK to two well-suited ML estimators:

- dictionary-based grid search estimator via variable projection method (VPM) [Golub and Pereyra, 2003]
- local optim estimator via preconditioned variant (PGPM)
 of classical gradient projection method [Rosen, 1960]

Within support of $p_{x,\nu}$,

PERK and grid search estimates agree excellently.

In vivo Results

In vivo Results

Summary

Contributions

• PERK: fast, dictionary-free estimator for QMRI

Summary

Contributions

- PERK: fast, dictionary-free estimator for QMRI
- demonstrated PERK for T_1 , T_2 estimation
 - Phantom (and omitted simulation) results show that PERK and ML estimators yield comparable accuracy/precision
 - In vivo PERK and ML estimates are comparable in WM/GM
 - PERK is consistently at least 140x faster

Summary

Contributions

- PERK: fast, dictionary-free estimator for QMRI
- demonstrated PERK for T_1, T_2 estimation
 - Phantom (and omitted simulation) results show that PERK and ML estimators yield comparable accuracy/precision
 - In vivo PERK and ML estimates are comparable in WM/GM
 - PERK is consistently at least 140x faster

Can we exploit PERK's speed in a more compelling problem?

Overview

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

• Estimation [Ch. 5]
Given accurate models and informative data,

how can we rapidly quantify these biomarkers?

Application [Ch. 6]
 Using these tools, can we design a state-of-the-art biomarker?

Numerical Simulation: Acquisition Design

- Simulated many WM-like, GM-like voxel realizations
- ullet Studied sample statistics of $\mathcal{T}_1,\,\mathcal{T}_2$ ML estimates $\widehat{\mathcal{T}}_1^{\mathrm{ML}},\,\widehat{\mathcal{T}}_2^{\mathrm{ML}}$

Profile	(2,1)	(1, 1)	(0, 2)	Truth
WM $\widehat{\mathcal{T}}_1^{ ext{ML}}$	830 ± 17	830 ± 15	830 ± 14	832
GM $\widehat{\mathcal{T}}_1^{ ext{ML}}$	$1330 \pm 30.$	1330 ± 24	1330 ± 24	1331
WM $\widehat{T}_2^{ ext{ML}}$	$80. \pm 1.0$	$80. \pm 2.1$	79.6 ± 0.94	79.6
GM $\widehat{T}_2^{ ext{ML}}$	$110.\pm1.4$	$110.\pm3.0$	$110.\pm1.6$	110

Table 2: $\widehat{T}_1^{\mathrm{ML}},\,\widehat{T}_2^{\mathrm{ML}}$ sample means \pm sample standard deviations

A Function Space over which Optimization is Tractable

Hilbert space: complete inner product function space

Reproducing kernel Hilbert space (RKHS)

Hilbert space $\mathbb H$ over input space $\mathcal Q$ with reproducing property

$$\langle h, \mathbf{k}(\cdot, \mathbf{q}) \rangle_{\mathbb{H}} = h(\mathbf{q}), \qquad \forall h \in \mathbb{H}, \mathbf{q} \in \mathcal{Q}$$

for some $k: \mathcal{Q}^2 \mapsto \mathbb{R}$ called a reproducing kernel (RK)

Relevant facts

- Bijection between RKHS \mathbb{H} and RK k [Aronszajn, 1950]
- Function $k(\cdot, \mathbf{q}) \in \mathbb{H}$ called a *feature mapping*

Function Optimization over a RKHS

Choose: RK $k : \mathcal{Q}^2 \mapsto \mathbb{R}$ that induces choice of RKHS \mathbb{H}

Solve: for each desired latent parameter $I \in \{1, \dots, L\}$,

$$\left(\widehat{h}_{l}, \widehat{b}_{l}\right) \in \left\{ \arg \min_{\substack{h_{l} \in \mathbb{H} \\ b_{l} \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_{l}(\mathbf{q}_{n}) + b_{l} - x_{l,n})^{2} + \rho_{l} \|h_{l}\|_{\mathbb{H}}^{2} \right\}$$

$$(12)$$

• Optimal \widehat{h}_I over $\mathbb H$ takes form

[Schölkopf et al., 2001]

$$\widehat{h}_{l}(\cdot) \equiv \sum_{n=1}^{N} \widehat{a}_{l,n} \mathbf{k}(\cdot, \mathbf{q}_{n})$$
 (13)

• Plug (13) into (12); solve now instead for $(\widehat{a}_I, \widehat{b}_I)$; construct:

$$\widehat{x}_{l}(\cdot) = \sum_{n=1}^{N} \widehat{a}_{l,n} \mathbf{k}(\cdot, \mathbf{q}_{n}) + \widehat{b}_{l}$$
(14)

Numerical Simulation: PERK Estimation

	Truth	VPM	PGPM	PERK
WM T_1	832	832.1 ± 17.2 (17.2)	832.1 ± 16.2 (16.2)	833.0 ± 16.5 (16.5)
GM T_1	1331	$1331.5 \pm 31.1 (31.1)$	$1331.2 \pm 29.7 (29.7)$	$1332.1 \pm 30.4 (30.4)$
WM T_2	79.6	79.61 ± 0.988 (0.988)	79.60 ± 0.952 (0.952)	79.46 ± 0.978 (0.989)
GM T_2	110.	$110.02 \pm 1.40 (1.40)$	$110.02 \pm 1.35 \ (1.35)$	$109.91 \pm 1.35 \ (1.35)$

Table 3: Sample means \pm sample standard deviations (RMSEs) of VPM, PGPM, and PERK m_0 , T_1 , T_2 estimates, computed in simulation over 7810 WM-like and 9162 GM-like voxels.

Mismatch in Scan Design vs. Sampling Dist Support

Widening supp($p_{x,\nu}$) degrades performance w/in scan design range. Thus, scan design and param est should be considered in tandem.

References i

Cran

Cramér, H. (1946).

Mathematical methods of statistics.

Princeton Univ. Press, Princeton.

Aronszajn, N. (1950).

Theory of reproducing kernels.

Trans. Amer. Math. Soc., 68(3):337-404.

Bertsimas, D. and Tsitsiklis, J. (1993).

Simulated annealing.

Statistical Science, 8(1):10–15.

Golub, G. and Pereyra, V. (2003).

Separable nonlinear least squares: the variable projection method and its applications.

Inverse Prob., 19(2):R1-26.

References ii

Hope, M. D., Wrenn, S. J., and Dyverfeldt, P. (2013). Clinical applications of aortic 4d flow imaging.

Curr. Cardiovasc. Imag. Rep., 6(2):128–39.

Keenan, K. E., Stupic, K. F., Boss, M. A., Russek, S. E., Chenevert, T. L., Prasad, P. V., Reddick, W. E., Cecil, K. M., Zheng, J., Hu, P., and Jackson, E. F. (2016).

Multi-site, multi-vendor comparison of T1 measurement using ISMRM/NIST system phantom.

In Proc. Intl. Soc. Mag. Res. Med., page 3290.

Nataraj, G., Nielsen, J.-F., and Fessler, J. A. (2017a).

Myelin water fraction estimation from optimized steady-state sequences using kernel ridge regression.

In Proc. Intl. Soc. Mag. Res. Med., page 5076.

References iii

Nataraj, G., Nielsen, J.-F., and Fessler, J. A. (2017b).

Optimizing MR scan design for model-based T1, T2 estimation from steady-state sequences.

IEEE Trans. Med. Imag., 36(2):467-77.

Nataraj, G., Nielsen, J.-F., Scott, C., and Fessler, J. A. (2018).

Dictionary-free MRI PERK: Parameter estimation via regression with kernels.

IEEE Trans. Med. Imag.

To appear.

Rahimi, A. and Recht, B. (2007).

Random features for large-scale kernel machines.

In NIPS.

Redpath, T. W. and Jones, R. A. (1988).

FADE-A new fast imaging sequence.

Mag. Res. Med., 6(2):224-34.

References iv

Rosen, J. B. (1960).

The gradient projection method for nonlinear programming, Part I: Linear constraints.

SIAM J. Appl. Math., 8(1):181-217.

Schölkopf, B., Herbrich, R., and Smola, A. J. (2001).

A generalized representer theorem.

In Proc. Computational Learning Theory (COLT), pages 416–426. LNCS 2111.

Zur, Y., Wood, M. L., and Neuringer, L. J. (1991).

Spoiling of transverse magnetization in steady-state sequences.

Mag. Res. Med., 21(2):251-63.