31 Calcul intégral

I - Primitives d'une fonction numérique

Activité d'introduction 1

Soit la fonction $f: x \longrightarrow 2x + 3$.

Calcule la dérivée de chacune des fonctions F; G; H définies par :

 $F(x) = x^2 + 3x + 7$; $G(x) = x^2 + 3x - 30$ et $H(x) = (x + \frac{3}{2})^2 + 10$. Que remarques-tu?

Pour tout $x \in \mathcal{D}_f$, F'(x) = f(x), H'(x) = f(x), G'(x) = f(x).

On dit que F; G; H sont **des primitives de f sur Df**.

Définition 2

Soit f une fonction continue sur un intervalle I.

On appelle fonction primitive de f sur I, toute fonction F telle que :

pour tout $x \in I$, F'(x) = f(x).

Exemple 3

Vérifions que la fonction : $F(x) = \frac{e^{2x} + 1}{e^x + 5}$ est une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{e^{3x} + 10e^{2x} - e^x}{(e^x + 5)^2}$$

Pour cela dérivons la fonction F.

On a
$$F'(x) = \frac{2e^{2x}(e^x + 5) - e^x(e^{2x} + 1)}{(e^x + 5)^2} = \frac{2e^{3x} + 10e^{2x} - e^{3x} - e^x}{(e^x + 5)^2} = \frac{e^{3x} + 10e^{2x} - e^x}{(e^x + 5)^2}$$

Ainsi F est une primitive de f.

Propriété 4

Si F est une primitive de f sur I alors toute autre fonction de la forme F(x) + c où c est une constante est aussi primitive de f sur I.

Primitives des fonctions usuelles

Fonctions <i>f</i>	Primitives <i>F</i>
<i>a</i> un réel	ax
$\frac{x^n}{\frac{1}{\sqrt{x}}}$	$\frac{x^{n+1}}{n+1}$ $2\sqrt{x}$
$\frac{1}{x}$	$\ln x $
e^x	e ^x

Opérations sur les primitives

Propriété 5

Si F est une primitive de f sur I et G est une primitive de g sur I alors :

- F + G est une primitive de f + g sur I.
- Pour tout réel k, kF est une primitive de kf sur I.

Le tableau suivant découle des règles de dérivation des fonctions. \boldsymbol{u} désigne une fonction dérivable sur un intervalle I.

Fonction	Primitive		
$u'u^n$	$\frac{u^{n+1}}{n+1}$		
$\frac{u'}{\sqrt{u}}$ u'	$2\sqrt{u}$		
$\frac{\overline{u}}{u}$	$\ln u $		
$u'e^u$	e^u		
u'	1 1		
$\overline{u^n}$	$-\frac{1}{n-1}\frac{1}{u^{n-1}}$		

Exemple 6

Déterminons une primitive de chacune des fonctions suivantes.

1.
$$f(x) = x^2 - 2x + 5$$

2.
$$g(x) = 2x(x^2 + 3)^2$$

3.
$$h(x) = e^x(e^x + 2)^2$$

4.
$$i(x) = \frac{2e^x}{e^x + 1}$$

4.
$$i(x) = \frac{2e^x}{e^x + 1}$$

5. $j(x) = 2 + \frac{3}{(3x + 4)^2}$

6.
$$k(x) = x + 2 - \frac{4}{2x - 2}$$

Solution. 1. On a: $F(x) = \frac{1}{3}x^3 - x^2 + 5x$

- 2. $g(x) = 2x(x^2 + 3)^2$ est de la forme $f(x) = u'u^n$. Par suite $G(x) = \frac{1}{3}(x^2 + 3)^3$.
- 3. $h(x) = e^x (e^x + 2)^2$ est de la forme $f(x) = u'u^n$. Par suite $H(x) = \frac{1}{3}(e^x + 2)^3$.
- 4. $i(x) = \frac{2e^x}{e^x + 1}$ est de la forme $\frac{au'}{u}$. Par suite $I(x) = \ln(e^x + 1)$.
- 5. $j(x) = 2 + \frac{3}{(3x+4)^2}$ est une somme de deux fonctions : l'une étant une constante égale à 2 et l'autre de la forme $\frac{u'}{u^2}$.

Par conséquent $J(x) = 2x - \frac{1}{3x+4}$.

6. $k(x) = x + 2 - \frac{4}{2x - 2}$ on fait la somme des deux primitives d'où : $K(x) = \frac{1}{2}x^2 + 2x - 2\ln(2x - 2)$

II - Intégrale d'une fonction

Définition 7

Soit f une fonction continue sur un intervalle I et F une de ces primitives, soient a et b deux réels de I.

Le nombre réel F(b) – F(a) est appelé intégrale de f entre a et b et est notée $\int_a^b f(x) \mathrm{d}x$. Ainsi on a :

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Vocabulaire et notations

- Le réel $\int_a^b f(x) dx$ se lit « intégrale de a à b f(x) dx »
- Le nombre a est appelé borne inférieure et b la borne supérieure de l'intégrale
- Pour toute primitive F de f, on écrit $\int_a^b f(x) dx = [F(x)]_a^b = F(b) F(a)$. L'expression $[F(x)]_a^b$ se lit «F(x)» pris entre a et b.
- Dans l'écriture $\int_a^b f(x) dx$, on peut remplacer la lettre x par n'importe quelle lettre et on peut écrire $\int_a^b f(x) dx = \int_a^b f(u) du = \int_a^b f(t) dt$. On dit que x est une variable muette, elle n'intervient pas dans le résultat.

4

Exemple 8

Calculons $\int_0^1 (x^2 - 1) dx$ et $\int_{-1}^0 e^{-2x} dx$.

- Une primitive de la fonction $x \mapsto x^2 1$ sur [0, 1] est la fonction $F: x \mapsto \frac{1}{3}x^3 x$ On a donc $\int_0^1 (x^2 - 1) dx = \left[\frac{1}{3}x^3 - x\right]_0^1 = F(1) - F(0) = -\frac{2}{3}$.
- Une primitive de la fonction $x \longmapsto e^{-2x}$ sur $\mathbb R$ est la fonction $G: x \longmapsto \frac{-e^{-2x}}{2}$

On a donc
$$\int_{-1}^{0} e^{-2x} dx = G(0) - G(-1) = \frac{e^{2} - 1}{2}$$

Propriétés de l'intégrale

Propriété 9

Soit f et g deux fonctions continues sur un intervalle I contenant les réels a,b et c. Alors :

•
$$\int_a^b f(x) dx = -\int_b^a f(x) dx$$

•
$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$
(Relation de Chasles)

•
$$\int_a^b \alpha f(x) dx = \alpha \int_a^b f(x) dx$$
; $\alpha \in \mathbb{R}$.

•
$$\int_a^b f(x) dx + \int_a^b g(x) dx = \int_a^b f(x) + g(x) dx$$

III - Calculs d'aires

Le plan est muni d'un repère orthogonal $(O; \vec{i}, \vec{j})$.

L'unité d'aire notée par **u.a**, est l'aire du rectangle de dimensions $||\vec{i}||$ et $||\vec{j}||$.

Définition 10

Le plan est muni d'un repère orthogonal.

Soit f une fonction continue et **positive** sur un intervalle [a, b] et F une primitive de f sur [a, b].

L'aire (en u.a) de la partie du plan délimitée par la courbe de f, l'axe des abscisses et les droites d'équations x = a et x = b, est égale à l'intégrale $\int_{a}^{b} f(x) dx$.

Remarque 11

Lorsque f une fonction continue et **négative** sur un intervalle [a, b].

L'aire (en u.a) de la partie du plan délimitée par la courbe de f, l'axe des abscisses et les droites d'équations x = a et x = b, est égale à l'intégrale $-\int_a^b f(x) dx$.

Exercice 12

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 3x$.

Etudier les variations de f et construire sa courbe dans un repère orthonormé d'unité 2 cm. En déduire l'aire en cm² de la partie comprise entre les droites d'équation x = 0 et $x = \sqrt{3}$, l'axe des abscisses et la courbe représentative de f.

Solution. f est une fonction dérivable sur \mathbb{R} et $f'(x) = 3x^2 - 3 = 3(x-1)(x+1)$. D'où le tableau

(de va	<u>riati</u>	on s	<u>uivant</u>	•			
	x	$-\infty$		-1		1		$+\infty$
	f'(x)		+	0	_	0	+	
	f(x)	$-\infty$	/	<u>,</u> 2 -	\	-2		$+\infty$
						\mathscr{C}_{j}	r—	
				0		$\sqrt{3}$		
			1		\			

Sur l'intervalle $\left[0, \sqrt{3}\right]$ la fonction f est continue et négative et a pour primitive $F(x) = \frac{1}{4}x^4 - \frac{3}{2}x^2$. Une unité d'aire est égale à 4 cm².

L'aire de la partie en question est égale à :

Lane de la partie en question est egale à :
$$\mathcal{A} = -\int_0^{\sqrt{3}} f(x) dx = -\int_0^{\sqrt{3}} (x^3 - 3x) dx = -(F(\sqrt{3}) - F(0)) = 2.25$$
Soit en unité d'aire $\mathcal{A} = 2.25 \times 4c \, m^2 = 9c \, m^2$