Неприводимые многочлены

Определение. Многочлен с коэффициентами в \mathbb{K} называется *приводимым* над \mathbb{K} , если его можно представить в виде произведения двух многочленов ненулевой степени с коэффициентами в \mathbb{K} . В противном случае многочлен называется *неприводимым*.

Определение. Пусть \mathbb{K} равно \mathbb{Q} , \mathbb{R} или \mathbb{C} . *Наибольшим общим делителем* двух многочленов называется многочлен, который делит данные многочлены и кратен их любому другому общему делителю.

1. Лемма Гаусса.

- (a) Многочлен с коэффициентами в \mathbb{Z} называется npuмumuвным, если его коэффициенты взаимно просты в совокупности. Докажите, что произведение двух примитивных многочленов примитивный многочлен.
- (6) Докажите, что многочлен с целыми коэффициентами приводимый в $\mathbb Q$ приводим и в $\mathbb Z$.
- **2.** Многочлен $P^*(x)$ называется взаимным по отношению к многочлену $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$, если его коэффициенты расположены в обратном порядке: $P^*(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_n$. Докажите, что многочлен с рациональными коэффициентами и $a_0 \neq 0$ неприводим над \mathbb{Q} тогда и только тогда, когда неприводим его взаимный.
- (a) Воспользовавшись аналогом алгоритма Евклида для многочленов, докажите, что НОД многочленов существует и единственен с точностью до умножения на константу.
 - (б) Сформулируйте и докажите аналог теоремы Безу про НОД для многочленов.
 - (в) У двух многочленов, неприводимых над \mathbb{Q} , нашёлся общий вещественный корень. Докажите, что эти многочлены отличаются друг от друга умножением на константу.
- **4. Критерий Эйзенштейна.** Пусть $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$ многочлен с целыми коэффициентами. Известно, что существует такое простое число p, что a_i :p при $i=0,1,\ldots,n-1,\ a_0\not/p^2,\ a_n\not/p$. Докажите, что P(x) неприводим над \mathbb{Z} .
- **5.** Докажите, что следующие многочлены неприводимы над Q:
 - (a) $2x^4 4x^2 + 8x + 1$,
 - **(6)** $(x+1)^p + p 1$,
 - (в) $(x-a_1)(x-a_2)\dots(x-a_n)-1$, где a_1,a_2,\dots,a_n различные целые числа,
 - (г) $x^{p-1} + x^{p-2} + \ldots + x + 1$, где p некоторое простое число,
 - (д) $x^n + 5x^{n-1} + 3$.
- **6.** Неприводимый над \mathbb{Z} многочлен P(x) имеет два вещественных корня, дающих в произведении 1. Докажите, что P(x) имеет чётную степень.
- 7. Многочлен с целыми коэффициентами степени n принимает в некоторых n различных целых точках значения, отличные от нуля и по модулю меньшие, чем $\frac{m!}{2^m}$, где $m=n-\left[\frac{n}{2}\right]$. Докажите, что он неприводим над \mathbb{Z} .
- 8. Рациональное число x таково, что $\cos{(\pi x)}$ так же является рациональным. Докажите, что $\cos{(\pi x)} \in \{0, \pm 1, \pm \frac{1}{2}\}.$