a f o 11

A mathematician like a painter or poet is a maker of patterns. If his patterns are more permanent than theirs, it is because they are made with ideas.

- G. H. Hardy

11.1 પ્રાસ્તાવિક

ધોરણ IXમાં આપણે વર્તુળનો અભ્યાસ કર્યો. આપણે વર્તુળની વ્યાખ્યા આપી અને વર્તુળ સાથે સંકળાયેલાં કેટલાંક પદો જેવાં કે વર્તુળની ત્રિજ્યા, જીવા, ચાપ, વૃત્તખંડ, વૃત્તાંશ વગેરે વ્યાખ્યાયિત કર્યાં. આપણે વર્તુળના કેટલાક ગુણધર્મોનો પણ અભ્યાસ કર્યો. આપણે આ બધાનું ટૂંકમાં પુનરાવર્તન કરી લઈએ. અહીં માત્ર અગત્યના મુદ્દાઓનો જ ઉલ્લેખ કરીશું.

- (i) વર્તુળ એક સમતલીય બિંદુઓનો ગણ છે. સમતલના એક નિશ્ચિત બિંદુથી સમાન અંતરે આવેલા તે જ સમતલના બિંદુઓના ગણને વર્તુળ કહેવામાં આવે છે. આ નિશ્ચિત બિંદુને આપણે વર્તુળનું કેન્દ્ર કહીએ છીએ અને કેન્દ્ર અને વર્તુળ પરના બિંદુને જોડતા રેખાખંડને આપણે વર્તુળની ત્રિજ્યા કહીએ છીએ. ત્રિજ્યા શબ્દ આપણે રેખાખંડ તેમજ તે રેખાખંડની લંબાઈ એમ બંને અર્થમાં ઉપયોગમાં લઈએ છીએ.
 - (ii) એક વર્તુળની (અથવા એકરૂપ વર્તુળોની) એકરૂપ જીવાઓ (તેમના અનુરૂપ) કેન્દ્ર આગળ એકરૂપ ખૂણાઓ આંતરે છે.
- (iii) જો કોઈ વર્તુળમાં (કે એકરૂપ વર્તુળોમાં) બે જીવાઓ વર્તુળના કેન્દ્ર (કે તેમના અનુરૂપ વર્તુળોનાં કેન્દ્રો) આગળ એકરૂપ ખૂશાઓ આંતરે તો તે જીવાઓ એકરૂપ હોય.
- (iv) વર્તુળના કેન્દ્રમાંથી પસાર થતી અને વર્તુળની કોઈ જીવાને લંબરેખા તે જીવાને દુભાગે છે. વર્તુળના કેન્દ્રમાંથી પસાર થતી રેખા વ્યાસ સિવાયની જીવાને દુભાગે તો તે જીવાને લંબ હોય છે.
 - (v) ત્રણ ભિન્ન અસમરેખ બિંદુઓમાંથી પસાર થતું અનન્ય વર્તુળ મળે.
- (vi) વર્તુળની (કે એકરૂપ વર્તુળોની) એકરૂપ જીવાઓ વર્તુળના કેન્દ્રથી (કે અનુરૂપ વર્તુળોનાં કેન્દ્રથી) સમાન અંતરે આવેલી હોય. ઉપરોક્ત વિધાનનું પ્રતિપ્રમેય પણ સત્ય છે.
- (vii) જો વર્તુળ (કે એકરૂપ વર્તુળો)નાં બે ચાપ એકરૂપ હોય, તો તેમની અનુરૂપ જીવાઓ પણ એકરૂપ હોય. આ વિધાનનું પ્રતિવિધાન પણ સત્ય છે.
 - (viii) વર્તુળમાં (કે એકરૂપ વર્તુળોમાં) એકરૂપ ચાપ વર્તુળનાં (કે અનુરૂપ વર્તુળોનાં) કેન્દ્ર આગળ એકરૂપ ખૂણાઓ આંતરે.
- (ix) વર્તુળની લઘુચાપે વર્તુળના કેન્દ્ર આગળ આંતરેલા ખૂશાનું માપ એ તે જ ચાપે સંગત ગુરુચાપ પરના કોઈ બિંદુએ આંતરેલા ખૂશાના માપ કરતાં બમણું હોય છે.
 - (x) વર્તુળના એક જ વૃત્તખંડમાં સંગત જીવા વડે અંતરાયેલા ખૂશાઓ એકરૂપ હોય છે.
 - (xi) અર્ધવર્તુળમાં અંતર્ગત ખૂણો કાટખૂણો હોય છે.
- (xii) જો કોઈ રેખાખંડ તે રેખાખંડને સમાવતી રેખાનાં કોઈ એક અર્ધતલમાં આવેલાં બે ભિન્ન બિંદુ આગળ સમાન માપના ખૂશા આંતરે અને આ રેખાખંડ અને બે ભિન્ન બિંદુઓ એક જ સમતલમાં હોય, તો રેખાખંડના બે અંત્યબિંદુઓ અને આપેલા બે ભિન્ન બિંદુઓ એક જ વર્તુળ પર હોય. આપશે આ ચાર બિંદુઓને ચક્રીય બિંદુ કહીએ છીએ અને તે ચાર બિંદુથી રચાતા ચતુષ્કોશને ચક્રીય યતુષ્કોશ કહેવામાં આવે છે. ચક્રીય ચતુષ્કોશના સામસામેના ખૂશાઓ પૂરકકોશની જોડ રચે છે.

(xiii) જો કોઈ ચતુષ્કોણના સામસામેના ખૂણાઓની એક જોડના ખૂણાનાં માપનો સરવાળો 180 હોય, તો તે ચતુષ્કોણ ચક્રીય ચતુષ્કોણ હોય.

એક જ સમતલમાં આવેલ વર્તુળ તથા રેખાનો છેદ :

હવે આપણે વર્તુળ અને વર્તુળના સમતલમાં આવેલી રેખાના છેદ વિશે વિચારીએ. વર્તુળના બિંદુઓના ગણને S વડે અને રેખા પર બિંદુઓના ગણને I વડે દર્શાવીએ. આપણને નીચેની ત્રણ શક્યતાઓ મળે છે :

(1) $l \cap S = \emptyset$ આ વિકલ્પમાં રેખા વર્તુળને છેદતી નથી. આકૃતિ 11.1 જુઓ.

આકૃતિ 11.1

(2) $l \cap S$ એકાકીગણ હોય.

આકૃતિ 11.2માં રેખા / વર્તુળને એક બિંદુ P માં છેદે છે.

આ વિકલ્પમાં આપણે કહીએ છીએ કે રેખા / વર્તુળ S ને બિંદુ P આગળ સ્પર્શે છે. બિંદુ P ને સ્પર્શ**િંદુ (Point of contact)** કહે છે.

આકૃતિ 11.2

(3) $S \cap l = બે બિંદુ ધરાવતો ગણ.$

આકૃતિ 11.3માં રેખા l વર્તુળ S ને બે ભિન્ન બિંદુઓ P અને Q માં છેદે છે. તેથી $S \cap l = \{P, Q\}$. જે રેખા વર્તુળને બે બિંદુમાં છેદે તે રેખાને વર્તુળની છેદિકા (Secant) કહેવામાં આવે છે.

આ પ્રકરણમાં વિકલ્પ (2) વિશે આપણે વિગતવાર વિચારીશું.

આકૃતિ 11.3

11.2 વર્તુળનો સ્પર્શક

વર્તુળના સમતલમાં દોરેલી કોઈ રેખા વર્તુળને એક જ બિંદુમાં છેદે તો તે રેખાને વર્તુળનો સ્પર્શક (Tangent) કહેવામાં આવે છે અને સ્પર્શક વર્તુળને જે બિંદુમાં છેદે તે બિંદુને સ્પર્શકનું વર્તુળ સાથેનું સ્પર્શબિંદુ કહેવામાં આવે છે.

 $\begin{array}{c} l \\ Q_4 \\ Q_3 \\ Q_2 \\ Q_1 \end{array} \begin{array}{c} l_2 \\ Q_1 \\ Q_1 \end{array}$

આકૃતિ 11.4

સ્પર્શકની સંકલ્પના એક બીજા દષ્ટિબિંદુથી વિચારીએ.

આકૃતિ 11.4માં રેખા I_1 વર્તુળ Sને P અને Q_1 એમ બે ભિન્ન બિંદુમાં છેદે છે. તેથી I_1 વર્તુળ Sની છેદિકા છે. રેખાઓ I_2 , I_3 , I_4 ,... એ તે જ સમતલમાં એવી રીતે દોરી છે કે જેથી દરેક P માંથી પસાર થાય જ પણ વર્તુળને બીજા એક બિંદુ અનુક્રમે Q_2 , Q_3 , Q_4 ,.... માં પણ છેદે. આપણે બીજી રીતે એમ પણ કહી શકીએ કે P માંથી પસાર થતી રેખા I વર્તુળના સમતલમાં રહીને P આસપાસ પરિભ્રમણ કરે છે અને બિંદુઓની શ્રેણી Q_1 , Q_2 , Q_3 , Q_4 ,.... એ P તરફ આગળ વધે છે. જ્યારે P અને Q એકાકાર થાય ત્યારે રેખા I વર્તુળની છેદિકા ન રહેતા તે વર્તુળનો સ્પર્શક બને છે.

224

તેથી આપણે કહી શકીએ કે વર્તુળનો સ્પર્શક એ વર્તુળની છેદિકાની એક વિશિષ્ટ સ્થિતિ છે, જેમાં છેદિકા સાથે સંગત જીવાના બે અંત્યબિંદુઓ એકાકાર હોય.

વર્તુળના અને વ્યાપક રીતે કોઈ પણ સમતલીય વક્કના સ્પર્શકને વ્યાખ્યાયિત કરવાનો આ અભિગમ મહાન ભૂમિતિવિદ્ રૅને દ' કાર્તે સૌપ્રથમ આપ્યો. પાછળથી આ અભિગમ ન્યૂટન અને લાઇબ્નિત્ઝ જેવા કલનશાસ્ત્રના સ્થાપકોએ અપનાવ્યો. અલબત્ત અહીં જે રીત આપવામાં આવી છે તે એક સમજૂતી છે, સ્પર્શકની શાસ્ત્રીય વ્યાખ્યા નથી.

વર્તુળના પ્રત્યેક બિંદુએ વર્તુળને સ્પર્શક દોરી શકાય ? વર્તુળ પરના એક નિશ્ચિત બિંદુમાંથી પસાર થતા હોય તેવા કેટલા સ્પર્શકો હોય ? આ પ્રશ્નોના ઉત્તર સમજવા માટે ફરી એક પ્રવૃત્તિ કરીએ :

પ્રવૃત્તિ : એક વર્તુળ દોરીએ અને તેના કેન્દ્ર Oમાંથી પસાર થતી રેખા l દોરીએ. રેખા l ના વર્તુળ સાથેનાં છેદબિંદુઓને A અને B વડે દર્શાવીએ. (તમે જાણો જ છો કે \overline{AB} વર્તુળનો વ્યાસ છે). આપણે જાણીએ છીએ કે l પરના પ્રત્યેક બિંદુ P માંથી વર્તુળના સમતલમાં l ને લંબ હોય તેવી અનન્ય રેખા દોરી શકાય. રેખા l પર આકૃતિ 11.5 માં દર્શાવ્યા છે તે ક્રમમાં P_1 , P_2 , P_3 ,... એવાં બિંદુઓ લઈએ કે જેથી પ્રત્યેક P_i માટે O-A- P_i , i = 1, 2, 3,... હોય.

હવે વર્તુળના સમતલમાં P_1 , P_2 , P_3 ,... માંથી પસાર થતી અને રેખા lને લંબ હોય તેવી રેખાઓ દોરીએ. P_1 , P_2 , P_3 ,... એ બધાં જ બિંદુઓ વર્તુળની બહારના ભાગમાં છે. આકૃતિ 11.5માં દર્શાવ્યા મુજબ અંતરો OP_1 , OP_2 , OP_3 એ વર્તુળની ત્રિજ્યા r કરતાં મોટાં છે. બિંદુઓ P_1 , P_2 , P_3 ,... એ Aની નજીક જાય છે. તેથી OP_1 , OP_2 , OP_3 ,... અંતરો નાનાં થતાં જાય છે. કોઈક i માટે જયારે P_i એ A સાથે એકાકાર થાય ત્યારે P માંથી પસાર થતી, વર્તુળના સમતલમાં lને લંબ દોરેલી રેખા એ વર્તુળનો સ્પર્શક બની જશે.

આકૃતિ 11.5

આમ, O કેન્દ્રિત વર્તુળ પરના દરેક બિંદુ A માટે $l = \overrightarrow{OA}$ લઈએ તો A માંથી પસાર થતી અને વર્તુળના સમતલમાં આવેલી \overrightarrow{OA} ને લંબ હોય તેવી અનન્ય રેખા હંમેશા મળે જ. તેથી કહી શકાય કે વર્તુળ પરના પ્રત્યેક બિંદુએ વર્તુળને અનન્ય સ્પર્શક દોરી શકાય.

ઉપરોક્ત પ્રવૃત્તિ દ્વારા વર્તુળ પરના પ્રત્યેક બિંદુએ અનન્ય સ્પર્શકનું અસ્તિત્વ જ માત્ર પ્રતિપાદિત નથી થતું, આ સ્પર્શકનો એક મહત્ત્વનો ગુણધર્મ કે, ''વર્તુળના કોઈ પણ બિંદુએ વર્તુળને દોરેલો સ્પર્શક એ તે બિંદુમાંથી પસાર થતી વર્તુળની ત્રિજયાને લંબ હોય છે.'' તે પણ જોઈ શકાય છે.

આ ગુણધર્મ આપણે પ્રમેય 11.1 તરીકે સાબિત કરીશું પણ તે પહેલાં વર્તુળનો એક બીજો ગુણધર્મ યાદ કરી લઈએ. જો $\Theta(O, r)$ ના સમતલમાં આવેલું બિંદુ P એ વર્તુળના બહારના ભાગમાં હોય, તો OP > r છે. અને જો P એ $\Theta(O, r)$ ના સમતલમાં આવેલું એવું બિંદુ હોય કે જેથી OP > r હોય, તો P વર્તુળના બહારના ભાગમાં આવેલું હોય. અલબત્ત, આ તો ''વર્તુળના બહારના ભાગ''ની વ્યાખ્યા છે!

હવે પ્રમેય 11.1 સાબિત કરીએ :

પ્રમેય 11.1 : વર્તુળનો સ્પર્શક એ સ્પર્શબિંદુમાંથી પસાર થતી ત્રિજ્યાને તે જ સમતલમાં લંબ હોય છે.

પક્ષ : રેખા *l* એ ⊚(O, *r*) ને A બિંદુએ સ્પર્શે છે.

સાધ્ય : $\overline{OA} \perp l$.

સાબિતી : ધારો કે $P \in I$ અને $P \neq A$.

જો P બિંદુ એ $\Theta(O, r)$ ના અંદરના ભાગમાં હોય તો રેખા I એ વર્તુળની છેદિકા હોય, સ્પર્શક ન હોય. પરંતુ I વર્તુળનો સ્પર્શક છે.

તેથી બિંદુ P વર્તુળના અંદરના ભાગમાં નથી. ઉપરાંત P ≠ A.

આકૃતિ 11.6

∴ બિંદુ P વર્તુળના બહારના ભાગમાં છે.

 \therefore OP > OA.

(OA વર્તુળની ત્રિજ્યા છે.)

તેથી A સિવાયના દરેક $P \in I$ માટે બિંદુ P, અસમતા OP > OAનું સમાધાન કરે છે.

OA એ વર્ત્ાળના કેન્દ્રથી રેખા *l* નું લઘુતમ અંતર છે.

 $\therefore \overline{OA} \perp l.$

આ પ્રમેયના પ્રતિપ્રમેય વિશે શું કહી શકાય ? પ્રમેય 11.1નું પ્રતિપ્રમેય નીચે પ્રમાણે લખી શકાય :

આકૃતિ 11.7

વર્તુળની ત્રિજ્યાના વર્તુળ પરના અંત્યબિંદુએ વર્તુળના સમતલમાં ત્રિજ્યાને દોરેલી લંબરેખા વર્તુળનો સ્પર્શક છે.

આ વિધાન સત્ય છે ? હા, જો આ લંબરેખા વર્તુળના સમતલમાં આવેલી રેખા હોય તો વિધાન સત્ય છે. આપણે આ પરિશામને પ્રમેય 11.2 તરીકે સાબિતી આપ્યા વિના સ્વીકારીશું.

પ્રમેય 11.2 : જો વર્તુળના સમતલમાં આવેલી કોઈ રેખા વર્તુળની કોઈ ત્રિજ્યાને તેના વર્તુળ પરના અંત્યબિંદુએ લંબ હોય, તો આ રેખા વર્તુળનો સ્પર્શક છે.

આકૃતિ 11.8

આકૃતિ 11.8 માં રેખા I અને $\Theta(O, r)$ સમતલ α માં છે. A એ ત્રિજ્યાનું વર્તુળ પરનું અંત્યબિંદુ છે. I એ વર્તુળની ત્રિજ્યા \overline{OA} ને લંબ છે. રેખા I પર P એ A સિવાયનું કોઈ પણ બિંદુ હોય, તો

 $\overline{OA} \perp l$ હોવાથી OA < OP

∴ OP > OA એટલે કે OP > r

તેથી રેખા l પરના A સિવાયના તમામ બિંદુ P એ $\Theta(O, r)$ ના બહારના ભાગમાં છે.

.. રેખા l એ $\Theta(O, r)$ ને એક જ બિંદુ Aમાં છેદે છે. l એ $\Theta(O, r)$ નો A બિંદુ આગળનો સ્પર્શક છે.

નોંધ : (1) આ ચર્ચા પરથી એવું પણ ફ્લિત થાય છે કે વર્તુળ પરના કોઈ પણ બિંદુએ વર્તુળને એક જ સ્પર્શક દોરી શકાય.

(2) જો કોઈ રેખા વર્તુળનો સ્પર્શક હોય, તો તે રેખા વર્તુળને એક અને માત્ર એક બિંદુએ છેદે છે. સ્પર્શકનો આ ગુણધર્મ વર્તુળ માટે સાચો છે. પણ ઘણા બધા સમતલીય વક્કો માટે સાચો નથી. પ્રકરણ 2માં તમે આવા વક્કોનો જુદા સંદર્ભમાં અભ્યાસ કર્યો છે. ત્રિઘાત વક્ક તરીકે જાણીતા વક્કનો આલેખ આકૃતિ 11.9માં આપેલો છે. આપણે જોઈ શકીએ છીએ કે વક્કને P બિંદુએ દોરેલો સ્પર્શક ફરી વક્કને Q બિંદુએ છેદે છે.

આકૃતિ 11.9

(3) વક્ક પરના P બિંદુએ દોરેલા સ્પર્શકને P બિંદુએ વક્કના સમતલમાં દોરેલી લંબ રેખાને વક્કનો P બિંદુએ અભિલંબ કહેવામાં આવે છે. વર્તુળ પરના પ્રત્યેક બિંદુએ વર્તુળનો અભિલંબ વર્તુળના કેન્દ્રમાંથી પસાર થાય છે. આ ગુષ્કાધર્મ પરથી વર્તુળની એવી વ્યાખ્યા પણ આપી શકાય કે જે સમતલીય વક્કના પ્રત્યેક બિંદુએ દોરેલા અભિલંબો વક્કના સમતલના કોઈ નિશ્ચિત બિંદુએ સંગામી હોય તે વક્કને વર્તુળ કહેવામાં આવે છે અને જે બિંદુએ અભિલંબો સંગામી થતા હોય તે બિંદુને વર્તુળનું કેન્દ્ર કહેવામાં આવે છે.

ઉદાહરણ 1 : વર્તુળના કેન્દ્ર O માંથી પસાર થતી એક રેખા વર્તુળના એક સ્પર્શકને Q બિંદુમાં છેદે છે. સ્પર્શકનું સ્પર્શબિંદુ P છે. વર્તુળની ત્રિજયા 5 હોય અને OQ = 13 હોય, તો PQ શોધો.

226 ગણિત 10

ઉકેલ : O વર્તુળનું કેન્દ્ર છે અને સ્પર્શકનું સ્પર્શબિંદુ P છે.

- ∴ OP = વર્તુળની ત્રિજ્યા
- \therefore OP = 5, OQ = 13

અને ∠OPQ કાટખૂર્ણો છે કારણ કે સ્પર્શકના સ્પર્શબિંદુએ દોરેલી ત્રિજ્યા સ્પર્શકને લંબ હોય.

$$\therefore$$
 5² + PO² = 13²

$$PO^2 = 13^2 - 5^2 = 169 - 25 = 144$$

$$\therefore$$
 PQ = 12

0

આકૃતિ 11.11

ઉદાહરણ 2 : AB એક વર્તુળનો વ્યાસ છે. સાબિત કરો કે A અને B બિંદુએ વર્તુળને દોરેલા સ્પર્શકો પરસ્પર સમાંતર છે.

 $\overline{\mathbf{63}}$ લ : ધારો કે $\overline{\mathbf{AB}}$ એ O કેન્દ્રિત વર્તુળનો વ્યાસ છે. l_1 અને l_2 આ વર્તુળના અનુક્રમે A અને B બિંદુએ દોરેલા સ્પર્શકો છે. તેથી l_1 અને l_2 એ વર્તુળના સમતલમાં દોરેલી રેખાઓ છે.

 l_1 અને l_2 એ વર્તુળના સમતલમાં દોરેલી રેખાઓ છે અને $\overleftrightarrow{\mathrm{AB}}$ આ રેખાઓની છેદિકા છે.

ધારો કે
$$l_1$$
 પર T કોઈ બિંદુ છે T \neq A.

ધારો કે l_2 પર R એ B સિવાયનું કોઈ બિંદુ છે જેથી T અને R એ $\stackrel{\longleftrightarrow}{AB}$ ના ભિન્ન અર્ધતલોમાં હોય. l_1 અને l_2 એ O કેન્દ્રિત વર્તુળનાં સ્પર્શકો છે અને તેમના સ્પર્શબિંદુઓ અનુક્રમે A અને B છે. તેથી, $l_1 \perp \stackrel{\longleftrightarrow}{OA}$ અને $l_2 \perp \stackrel{\longleftrightarrow}{OB}$

પરંતુ AB વર્તુળનો વ્યાસ છે.

∴ A-O-B
$$l_1 \perp \overline{\rm AB} \ \ \mbox{w} + l_2 \perp \overline{\rm AB} \label{eq:lambda}$$

(બંને કાટખૂણા છે.)

→ l₂

> l₁

∴ $\angle {\sf TAB} \cong \angle {\sf RBA}$ પરંતુ આ તો l_1 અને l_2 ની છેદિકા $\stackrel{\longleftrightarrow}{\sf AB}$ દ્વારા બનતા યુગ્મકોણો છે.

 $\therefore l_1 \parallel l_2$

ઉદાહરણ $3: \Theta(O, r_1)$ અને $\Theta(O, r_2)$ બે સમકેન્દ્રી વર્તુળો છે, જેમાં $r_1 > r_2$. $\Theta(O, r_1)$ ની જીવા \overline{AB} એ $\Theta(O, r_2)$ ને P બિંદુએ સ્પર્શ છે. સાબિત કરો કે P એ \overline{AB} નું મધ્યબિંદુ છે.

6કેલ : Θ (O, r_1)ની જીવા \overline{AB} છે.

 \overline{AB} એ $\Theta(O, r_2)$ ને P બિંદુએ સ્પર્શે છે.

 $\therefore \overline{OP} \perp \overline{AB}$

 $\Theta(\mathrm{O},\,r_1)$ ના કેન્દ્ર O માંથી જીવા $\overline{\mathrm{AB}}$ પરના લંબનો લંબપાદ P છે.

∴ P જીવા ABનું મધ્યબિંદુ છે.

આકૃતિ 11.12

ઉદાહરણ 4 : બે સમકેન્દ્રી વર્તુળોની ત્રિજ્યાઓ 26 અને 24 છે. મોટી ત્રિજ્યાવાળાં વર્તુળની જીવા નાની ત્રિજ્યાવાળાં વર્તુળને સ્પર્શે છે. આ જીવાની લંબાઈ શોધો.

6કેલ : ધારો કે આપેલા સમકેન્દ્રી વર્તુળોનું કેન્દ્ર O છે. ધારો કે મોટી ત્રિજ્યાવાળાં વર્તુળની જીવા \overline{AB} એ નાની ત્રિજ્યાવાળા વર્તુળને P બિંદુએ સ્પર્શ છે.

- ∴ OP = નાના વર્ત્ળની ત્રિજ્યા = 24
- ∴ OA =મોટા વર્તુળની ત્રિજ્યા = 26 \overline{AB} એ $\Theta(O, 24)$ ને P આગળ સ્પર્શ છે. તેથી $\overline{AB} \perp \overline{OP}$. $\triangle OPA$ કાટકોણ ત્રિકોણ છે, જેમાં $m\angle OPA = 90$

 $\therefore OP^2 + AP^2 = OA^2$

$$\therefore 24^2 + AP^2 = 26^2$$

$$AP^2 = 26^2 - 24^2$$
$$= 676 - 576 = 100$$

આકૃતિ 11.13

- \therefore AP = 10
- ∴ વર્તુળના કેન્દ્ર O માંથી \overline{OP} \bot \overline{AB} છે અને \overline{AB} એ Θ (O, 26)ની જીવા છે.
- ∴ P એ ABનું મધ્યબિંદુ છે.
- \therefore AB = 2AP = 20

ઉદાહરણ 5 : A અને B એક વર્તુળ પરનાં બે ભિન્ન બિંદુઓ છે, જેથી AB વ્યાસ નથી. A અને B બિંદુએ વર્તુળને દોરેલા સ્પર્શકો P બિંદુમાં છેદે છે. સાબિત કરો કે ∠AOB અને ∠APB એકબીજાના પૂરકકોણો છે. ઉપરાંત સાબિત કરો કે PA = PB.

ઉકેલ : AB વર્તુળનો વ્યાસ નથી.

- ∴ વર્તુળ પરના બિંદુ A અને B આગળ દોરેલા સ્પર્શકો સમાંતર નથી.
- ∴ આ સ્પર્શકો કોઈક બિંદુ P માં છેદે છે.

ઉપરાંત,
$$\overline{OA} \perp \overline{AP}$$
, $\overline{OB} \perp \overline{BP}$

∴ □ OAPBમાં m∠A + m∠B = 90 + 90 = 180 ચતુષ્કોણના ચારે ખૂણાનાં માપનો સરવાળો 360 થાય.

∴ ∠AOB અને ∠APB એકબીજાના પૂરકખૂણાઓ છે.

 Δ OAP અને Δ OBPમાં સંગતતા OAP ↔ OBP માટે,

$$\overline{OP} \cong \overline{OP}$$

 $\overline{OA} \cong \overline{OB}$ $\angle OAP \cong \angle OBP$ $\therefore \quad \triangle OAP \cong \triangle OBP$

 $\therefore \overline{PA} \cong \overline{PB}$

 \therefore PA = PB

નોંધ : (1) □ OAPB ચક્રીય ચતુષ્કોણ છે.

(2) $\overline{\mathrm{OP}}$ ને વ્યાસ લઈને દોરેલું વર્તુળ A અને Bમાંથી પસાર થાય છે.

આકૃતિ 11.14

(વર્તુળની ત્રિજ્યાઓ)

(બંને કાટખૂણા છે.)

(કાકબા)

(કેમ ?)

(કેમ ?)

स्वाध्याय 11.1

- 1. A અને B એ $\Theta(O, r)$ પરનાં ભિન્ન બિંદુઓ છે. \overline{AB} વર્તુળનો વ્યાસ નથી. સાબિત કરો કે A અને B બિંદુએ વર્તુળને દોરેલા સ્પર્શકો સમાંતર નથી.
- 2. O(O, r) પર A અને B એવાં ભિન્ન બિંદુઓ છે કે જેથી A અને B બિંદુએ વર્તુળને દોરેલા સ્પર્શકો P બિંદુએ છેદે છે. સાબિત કરો કે \overrightarrow{OP} એ $\angle AOB$ નો અને \overrightarrow{PO} એ $\angle APB$ નો દ્વિભાજક છે.
- 3. $\Theta(O, r)$ પરનાં બિંદુઓ A અને B આગળ વર્તુળને દોરેલા સ્પર્શકો P માં છેદે છે. સાબિત કરો કે \overline{OP} જેનો વ્યાસ છે તેવું વર્તૂળ A અને B માંથી પસાર થાય છે.
- **4.** $\Theta(O, r_1)$ અને $\Theta(O, r_2)$ માં $r_1 > r_2$. $\Theta(O, r_1)$ ની જીવા \overline{AB} એ $\Theta(O, r_2)$ ને સ્પર્શ છે. AB ને r_1 અને r_2 નાં સ્વરૂપમાં મેળવો.
- 5. દાખલા 4 માં જો $r_1 = 41$ અને $r_2 = 9$ હોય, તો AB શોધો.

11.3 વર્તુળના સમતલ પરના બિંદુમાંથી વર્તુળને દોરેલા સ્પર્શકોની સંખ્યા

ધારો કે બિંદુ P એ વર્તુળના સમતલમાં આવેલું કોઈ બિંદુ છે. બિંદુ P ના સ્થાન માટે ત્રણ વિકલ્પો છે : (1) P વર્તુળના અંદરના ભાગમાં હોય, (ii) P વર્તુળ પરનું બિંદુ હોય, (iii) P વર્તુળના બહારના ભાગમાં હોય.

- (1) જો બિંદુ P વર્તુળના અંદરના ભાગમાં હોય તો P માંથી પસાર થાય તેવી કોઈ રેખા દોરી શકાય કે જે વર્તુળનો સ્પર્શક હોય ? જવાબ છે 'ના', કારણ કે P માંથી પસાર થતી કાઈ પણ રેખા વર્તુળને બે ભિન્ન બિંદુઓમાં છેદે છે. આવી રેખાઓ વર્તુળની છેદિકાઓ છે, સ્પર્શક નથી.
- (2) વર્તુળ પર આપેલા બિંદુમાંથી પસાર થતા સ્પર્શકની વાત આપણે આગળ વિગતવાર કરી ગયા છીએ. વર્તુળ પરના બિંદુમાંથી પસાર થતી એક અને માત્ર એક રેખા એવી મળે કે જે વર્તુળનો સ્પર્શક હોય.
- (3) પ્રવૃત્તિ : ધારો કે આપણે O કેન્દ્રિત એક વર્તુળની બે ત્રિજ્યાઓ \overline{OA} અને \overline{OB} દોરીએ કે જેથી \overline{AB} વર્તુળનો વ્યાસ ન હોય.

A માંથી પસાર થતી રેખા I_1 દોરીએ કે જે વર્તુળને સ્પર્શતી હોય. આ રચના શક્ય છે. વર્તુળના સમતલમાં A બિંદુમાંથી \overline{OA} ને લંબરેખા I_1 રચી શકાય. આગળ જોયું તે પ્રમાણે I_1 વર્તુળનો સ્પર્શક થશે. તે જ પ્રમાણે વર્તુળ પરના B બિંદુએ વર્તુળને સ્પર્શતી રેખા I_2 દોરો.

આકૃતિ 11.15

આકૃતિ 11.16

આકૃતિ 11.17

હવે I_1 અને I_2 સમતલીય રેખાઓ છે અને \overline{AB} વર્તુળનો વ્યાસ નથી. તેથી I_1 અને I_2 પરસ્પર છેદશે. ધારો કે I_1 અને I_2 નું છેદબિંદુ P છે. P બિંદુ વર્તુળના બહારના ભાગમાં છે, કારણ કે સ્પર્શકના સ્પર્શબિંદુ સિવાયનાં તમામ બિંદુઓ વર્તુળના બહારના ભાગમાં હોય. આમ, સમતલ પર એવું બિંદુ P મળ્યું કે જેમાંથી વર્તુળને બે સ્પર્શકો દોરી શકાય. વર્તુળના બહારના ભાગમાં આવેલા પ્રત્યેક બિંદુમાંથી વર્તુળને બે ભિન્ન સ્પર્શકો દોરી શકાય ? પ્રશ્નનો જવાબ 'હા' છે. હવે પછીના પ્રકરણમાં વર્તુળના બહારના બિંદુમાંથી વર્તુળને બે સ્પર્શકો દોરવાની રચના શીખવાના છીએ.

આકૃતિ 11.18

અામ, જો બિંદુ P વર્તુળના બહારના ભાગમાં હોય, તો \leftrightarrow વર્તુળને $\overrightarrow{PT_1}$ અને $\overrightarrow{PT_2}$ એમ બે સ્પર્શકો દોરી શકાય. જયાં, T_1 અને T_2 આ સ્પર્શકોના વર્તુળ સાથેના સ્પર્શબિંદુઓ છે. આકૃતિ 11.18 જુઓ.

 $\overline{PT_1}$ અને $\overline{PT_2}$ ના માપને આ સ્પર્શકોની લંબાઈ કહેવામાં આવે છે.

જો વર્તુળના બહારના ભાગમાં આવેલા કોઈ બિંદુમાંથી વર્તુળનો સ્પર્શક દોરવામાં આવે તો આ બહારનાં બિંદુથી સ્પર્શબિંદુ સુધીના અંતરને એ વર્તુળના સ્પર્શકની લંબાઈ કહેવામાં આવે છે.

આપણે નીચે આપેલું વિધાન સાબિતી આપ્યા વિના સ્વીકારીશું.

પ્રમેય 11.3 : વર્તુળના બહારના ભાગમાં આવેલા બિંદુમાંથી વર્તુળને દોરેલા સ્પર્શકોની લંબાઈ સમાન હોય છે.

આકૃતિ 11.19માં $\Theta(O,r)$ ના બહારના ભાગમાં આવેલા બિંદુ P માંથી વર્તુળને દોરેલા સ્પર્શકોના સ્પર્શબિંદુ T_1 અને T_2 છે. તેથી ઉપર્યુક્ત પ્રમેય અનુસાર $PT_1=PT_2$ થવું જોઈએ.

OP રચો.

 $\Delta \mathrm{OPT}_1$ અને $\Delta \mathrm{OPT}_2$ માં સંગતતા $\mathrm{OPT}_1 \leftrightarrow \mathrm{OPT}_2$ માટે $\angle \mathrm{OT}_1 \mathrm{P} \cong \angle \mathrm{OT}_2 \mathrm{P}$ $\overline{\mathrm{OP}} \cong \overline{\mathrm{OP}}$ $\overline{\mathrm{OT}}_1 \cong \overline{\mathrm{OT}}_2$

 $\therefore \quad \Delta OPT_1 \cong \Delta OPT_2.$

તેથી $\overline{PT_1}\cong \overline{PT_2}$

 \therefore PT₁ = PT₂

ઉદાહરણ 6 : □ ABCDની ચારેય બાજુઓને એક વર્તુળ સ્પર્શે છે. સાબિત કરો કે AB + CD = AD + BC.

ઉકેલ : ધારો કે વર્તુળ □ ABCD ની બાજુઓ AB, BC,

 $\overline{\text{CD}}$, $\overline{\text{DA}}$ ને અનુક્રમે P, Q, R, Sમાં સ્પર્શે છે.

 \therefore AP = AS, DS = DR, CR = CQ, BQ = BP (i)

અને A-P-B, B-Q-C, C-R-D, A-S-D (ii)

હવે, AB + CD = AP + PB + CR + RD

(A-P-B अने C-R-D)

આકૃતિ 11.19

(બંને કાટખૂશાઓ છે.)

(વર્તુળની ત્રિજ્યાઓ) (કાકબા)

$$= AS + BQ + CQ + DS$$

$$= AS + DS + BQ + CQ$$

$$= AD + BC$$

(A-S-D અને B-Q-C)

આમ, AB + CD = AD + BC.

નોંધ: (1) આપેલા ચતુષ્કોણની ચારેય બાજુઓને સ્પર્શતું વર્તુળ એ ચતુષ્કોણમાં અંતર્ગત વર્તુળ કે ચતુષ્કોણના અંતઃવર્તુળ તરીકે ઓળખાય છે.

(2) જે ચતુષ્કોણનું અંતઃવર્તુળ મળે તે ચતુષ્કોણની સામસામેની બાજુઓની બંને જોડની બાજુઓની લંબાઈનો સરવાળો સમાન હોય.

આ પરિશામનું પ્રતિવિધાન પણ સત્ય છે. જો □ ABCDમાં AB + CD = AD + BC હોય, તો □ ABCDમાં અંતર્ગત વર્તુળ ચોક્કસ મળે જ. આ પરિશામ પરથી કહી શકાય કે પ્રત્યેક ચતુષ્કોણ માટે અંતઃવર્તુળ મળે જ તે જરૂરી નથી.

(3) ત્રિકોશ માટે તેની ત્રશે બાજુઓને સ્પર્શતું વર્તુળ દોરવું હંમેશાં શક્ય છે. આ વર્તુળને એ ત્રિકોશનું અંતઃવર્તુળ કહેવામાં આવે છે. આ વર્તુળની ત્રિજ્યા એ ત્રિકોશની અંતઃત્રિજ્યા છે.

ઉદાહરણ 7 : જો એક વર્તુળ સમાંતરબાજુ ચતુષ્કોણની ચારેય બાજુઓને સ્પર્શે, તો તે સમાંતરબાજુ ચતુષ્કોણ સમબાજુ ચતુષ્કોણ હોય.

ઉકેલ : □ ABCDની ચારેય બાજુઓને સ્પર્શતું વર્તુળ મળે તો AB + CD = AD + BC.

વળી, 🗆 ABCD સમાંતરબાજુ ચતુષ્કોણ છે.

તેથી, AB + CD = AD + BC અને AB = CD, AD = BC.

 \therefore 2CD = 2BC

∴ BC = CD ઉપરાંત BC = AD અને CD = AB

 \therefore AB = BC = CD = AD

∴ □ *"*ABCD સમબાજુ ચતુષ્કોણ છે.

આકૃતિ 11.21

ઉદાહરણ 8 : \triangle ABCમાં $m\angle$ B = 90. એક વર્તુળ \triangle ABCની બધી જ બાજુઓને સ્પર્શે છે. જો AB = 5, BC = 12, હોય, તો વર્તુળની ત્રિજયા શોધો.

ઉકેલ : ત્રિકોણની ત્રણે બાજુઓને સ્પર્શતું વર્તુળ હંમેશાં મળે જ.

જો આ વર્તુળનું કેન્દ્ર I હોય અને વર્તુળની ત્રિજ્યા r હોય, તો આકૃતિ 11.22માં બતાવ્યા પ્રમાણે.

$$ID = IE = IF = r$$

આપેલો ΔABC કાટકોણ ત્રિકોણ છે જેમાં $\angle B$ કાટખૂણો છે.

ઉપરાંત $\overline{\mathrm{ID}} \perp \overline{\mathrm{BC}}$ અને $\overline{\mathrm{AB}} \perp \overline{\mathrm{BC}}$

- $\therefore \overline{\mathbb{D}} \parallel \overline{AB}$
- $\therefore \overline{\mathbb{D}} \parallel \overline{FB}$

તે જ પ્રમાશે, $\overline{IF} \parallel \overline{BD}$

- ∴ □ IFBD સમાંતરબાજુ ચતુષ્કોણ છે.
- ∴ ID = FB = r અને BD = IF = r
- ∴ □ ^mIFBD સમબાજુ ચત્ષ્કોણ છે.

આકૃતિ 11.22

 $(\mathbf{F} \in \overline{\mathbf{AB}})$

ઉપરાંત, ∠B કાટખૂણો છે.

∴ □IFBD ચોરસ છે.

હવે,
$$AB^2 + BC^2 = AC^2$$

(∠B કાટખુણો છે.)

$$\therefore$$
 AC² = 5² + 12² = 13²

$$\therefore$$
 AC = 13

$$\therefore$$
 AB + BC + AC = 5 + 12 + 13

$$\therefore$$
 AF + FB + BD + DC + AC = 30

$$\therefore AE + r + r + CE + AC = 30$$

(AF = AE, DC = CE)

$$\therefore$$
 2r + (AE + CE) + AC = 30

$$\therefore 2r + 2AC = 30$$

$$\therefore$$
 2r + 2(13) = 30

$$r + 13 = 15$$

$$\therefore$$
 $r=2$

∴ વર્તુળની ત્રિજ્યા 2 છે.

નોંધ : ΔABC માં જો ∠B કાટખૂણો હોય, તો ત્રિકોણની ત્રણે બાજુઓને સ્પર્શતા વર્તુળની ત્રિજયા $\frac{AB+BC-AC}{2}$

થાય.

ઉદાહરણ 9: એક વર્તુળ ΔABC ની બાજુઓ $\overline{BC},\ \overline{CA},\ \overline{AB}$ ને અનુક્રમે $D,\ E,\ Fમાં સ્પર્શે છે. વર્તુળની ત્રિજ્યા <math>4$ એકમ

ABને અનુક્રમે D, E, F માં સ્પર્શતા વર્તુળનું કેન્દ્ર I છે.

$$\therefore$$
 $\overrightarrow{\text{ID}} \perp \overrightarrow{\text{BC}}, \overrightarrow{\text{IE}} \perp \overrightarrow{\text{AC}}, \overrightarrow{\text{IF}} \perp \overrightarrow{\text{AB}}$ અને

ઉપરાંત આપેલ છે કે BD = 8 અને DC = 6

$$\therefore$$
 BF = BD = 8, CE = CD = 6

ધારો કે
$$AF = AE = x$$
 અને $BC = a$, $CA = b$, $AB = c$

$$c = AB = x + 8, b = AC = x + 6, a = BC = 14$$

∴
$$\triangle ABC$$
ની પરિમિતિ = $AB + BC + AC = 2x + 28$

$$\triangle$$
 ABCની અર્ધ-પરિમિતિ = $s = x + 14$

$$\Delta ABC$$
ਜ਼ੁਂ ਕੇਸ਼ਝਾਪ = $\sqrt{s(s-a)(s-b)(s-c)}$ = $\sqrt{(x+14) \cdot x \cdot 8 \cdot 6}$ = $\sqrt{48x(x+14)}$

$$\triangle AIB$$
ਜ਼ੁਂ ਕੈਸ਼ਝળ = $\frac{1}{2}AB \cdot IF = \frac{1}{2}(x + 8) \cdot 4 = 2(x + 8)$

$$\Delta \text{BIC}$$
નું ક્ષેત્રફળ = $\frac{1}{2}\text{BC} \cdot \text{ID} = \frac{1}{2}(14) \cdot 4 = 28$

આકૃતિ 11.23

232

$$\Delta \text{CIA}$$
નું ક્ષેત્રફળ = $\frac{1}{2}\text{AC} \cdot \text{IE} = \frac{1}{2}(x+6) \cdot 4 = 2(x+6)$

ID = IF

∴ BI એ ∠Bનો દ્વિભાજક છે.

તે જ પ્રમાણે AI એ ∠Aનો દ્વિભાજક છે.

અને CI એ ∠Cનો દ્વિભાજક છે.

- ∴ બિંદુ I એ ∆ABCના અંદરના ભાગમાં છે.
- \triangle \triangle AIBનું ક્ષેત્રફળ + \triangle BICનું ક્ષેત્રફળ + \triangle CIAનું ક્ષેત્રફળ = \triangle ABCનું ક્ષેત્રફળ

$$\therefore 2(x+8) + 28 + 2(x+6) = \sqrt{48x(x+14)}$$

 $\therefore x + 14 = 3x$

 $(x + 14 \neq 0, x > 0)$

- \therefore x = 7
- \therefore AB = x + 8 = 15, AC = x + 6 = 13

स्वाध्याय 11.2

- 1. બિંદુ P એ ⊙(O, r) ની બહારનું બિંદુ છે. P માંથી વર્ત્ ળને દોરેલા સ્પર્શકો વર્ત્ ળને X અને Y બિંદુએ સ્પર્શે છે.
 - (1) જો r = 12, XP = 5 હોય, તો OP શોધો.
 - (2) *m*∠XOY = 110 હોય, તો *m*∠XPO શોધો.
 - (3) જો OP = 25 અને PY = 24 હોય, તો r શોધો.
 - (4) જો $m\angle XPO = 80$ હોય, તો $m\angle XOP$ શોધો.
- 2. જેની ત્રિજ્યા 73 અને 55 હોય તેવા બે સમકેન્દ્રી વર્તુળો આપેલ છે. મોટી ત્રિજ્યાવાળા વર્તુળની એક જીવા નાના વર્તુળને સ્પર્શે છે. આ જીવાની લંબાઈ શોધો.
- 3. AB એ ⊚(O, 10) નો વ્યાસ છે. B માંથી ⊚(O, 8)ને દોરેલી સ્પર્શરેખા ⊚(O, 8) ને D બિંદુએ સ્પર્શે છે. BD એ ⊚(O, 10) ને C માં છેદે છે. AC શોધો.
- 4. O કેન્દ્રિત વર્તુળના બહારના ભાગમાં કેન્દ્રથી 34 અંતરે બિંદુ P આવેલ છે. P માંથી વર્તુળને દોરેલો સ્પર્શક વર્તુળને Qમાં સ્પર્શ છે. જો PQ = 16 હોય, તો વર્તુળનો વ્યાસ શોધો.
- 5. આકૃતિ 11.24 માં વર્તુળની બહારના બિંદુ A માંથી વર્તુળને બે સ્પર્શકો દોરવામાં આવ્યા છે, જેમના સ્પર્શબિંદુઓ P અને Q છે. રેખા I વર્તુળને R બિંદુએ સ્પર્શ છે. રેખા I એ \overline{AP} અને \overline{AQ} ને આકૃતિમાં બતાવ્યા પ્રમાણે અનુક્રમે B અને C માં છેદે છે. જો AB = c, BC = a, CA = b હોય, તો સાબિત કરો કે,
 - (1) AP + AQ = a + b + c
 - (2) AB + BR = AC + CR = AP = AQ = $\frac{a+b+c}{2}$

આકૃતિ 11.24

- 6. સાબિત કરો કે વર્તુળના સ્પર્શકને સ્પર્શબિંદુએ દોરેલી લંબરેખા વર્તુળના કેન્દ્રમાંથી પસાર થાય છે.
- 7. $\mathbf{\Theta}(O, r)$ ની બહારના ભાગમાં આવેલા બિંદુ P માંથી વર્તુળને દોરેલા સ્પર્શકો વર્તુળને A અને Bમાં સ્પર્શ છે. સાબિત કરો કે $\overline{OP} \perp \overline{AB}$ અને \overline{OP} એ \overline{AB} ને દુભાગે છે.

- 8. $\Theta(O, r)$ ના બહારના ભાગમાં આવેલ બિંદુ P માંથી વર્તુળને સ્પર્શકો \overrightarrow{PT} અને \overrightarrow{PR} દોરેલા છે, જેમનાં સ્પર્શબિંદુઓ \overrightarrow{T} અને \overrightarrow{R} છે. સાબિત કરો કે $m\angle TPR = 2m\angle OTR$.
- 9. \overline{AB} , $\Theta(O, 5)$ ની જીવા છે. AB = 8. વર્તુળને A અને B બિંદુએ દોરેલા સ્પર્શકો P બિંદુએ છેદે છે. PA શોધો.
- 10. P એ ◉(O, 5) ના સમતલનું એવું બિંદુ છે કે જેથી OP = 13. P માંથી વર્તુળને બે સ્પર્શકો દોરેલા છે, જે વર્તુળને A અને B માં સ્પર્શે છે. AB શોધો.

स्वाध्याय 11

- 1. એક વર્તુળ \triangle ABCની બાજુઓ \overline{BC} , \overline{CA} , \overline{AB} ને અનુક્રમે D, E, Fમાં સ્પર્શ છે. BD = x, CE = y અને AF = z છે. સાબિત કરો કે \triangle ABC નું ક્ષેત્રફળ = $\sqrt{xyz(x+y+z)}$.
- 2. $\triangle ABC$ સમિદ્ધિબાજુ ત્રિકોણ છે, જેમાં $\overline{AB}\cong \overline{AC}$. ત્રિકોણની ત્રણે બાજુઓને સ્પર્શનું વર્તુળ \overline{BC} ને D માં સ્પર્શે છે. સાબિત કરો કે D એ \overline{BC} નું મધ્યબિંદુ છે.
- 3. △ABCમાં ∠B કાટખૂણો છે. જો AB = 24, BC = 7, તો △ABC ની ત્રણે બાજુઓને સ્પર્શતા વર્તુળની ત્રિજયા શોધો.
- 4. જેમાં $\angle B$ કાટખૂણો હોય તેવા $\triangle ABC$ ની ત્રણે બાજુઓને એક વર્તુળ સ્પર્શે છે. સાબિત કરો કે વર્તુળની ત્રિજયા $\frac{AB + BC AC}{2}$ છે.
- 5. □ ABCDમાં $m\angle$ D = 90. O કેન્દ્ર અને r ત્રિજયાવાળું વર્તુળ ચતુષ્કોણની બાજુઓ \overline{AB} , \overline{BC} , \overline{CD} અને \overline{DA} ને અનુક્રમે બિંદુઓ P, Q, R અને S માં સ્પર્શે છે. જો BC = 40, CD = 30 અને BP = 25, તો વર્તુળની ત્રિજયા શોધો.
- 6. બે સમકેન્દ્રી વર્તુળો આપેલાં છે. સાબિત કરો કે મોટી ત્રિજ્યાવાળા વર્તુળોની જીવાઓ હોય અને નાની ત્રિજ્યાવાળા વર્તુળને સ્પર્શતા હોય તેવા તમામ રેખાખંડો એકરૂપ હોય.
- 7. એક વર્તુળ □ ABCD ની બધી બાજુઓને સ્પર્શે છે. જો AB = 5, BC = 8, CD = 6 હોય, તો AD શોધો.
- 8. એક વર્તુળ ચતુષ્કોણની ચારે બાજુઓને સ્પર્શ છે. જો ચતુષ્કોણની સૌથી મોટી લંબાઈની બાજુ AB હોય, તો સાબિત કરો કે સૌથી નાની લંબાઈની બાજુ CD છે.
- 9. O કેન્દ્રિત વર્તુળના બહારના ભાગમાં આવેલું બિંદુ P છે. વર્તુળની ત્રિજ્યા 24 છે. P માંથી વર્તુળને દોરેલો સ્પર્શક વર્તુળને Qમાં સ્પર્શ છે. જો OP = 25 હોય, તો PQ શોધો.
- 10. નીચે આપેલું દરેક વિધાન સાચું બને તે રીતે આપેલા વિકલ્પો (a), (b), (c) અથવા (d) માંથી યોગ્ય વિકલ્પ પસંદ કરીને ___ માં લખો :

(1)	P એ ા(O, 15) ના બહ	પ્રરના ભાગમાં આવેલું બિંદ્	દુ છે. P માંથી વર્તુળને દો	રેલો સ્પર્શક વર્તુળને T માં સ્પર્શે	છે.		
	જો PT = 8 હોય, તો OP =						
	(a) 17	(b) 13	(c) 23	(d) 7			
(2)	$ \leftrightarrow \leftrightarrow \text{PA}, \text{ PB } \text{$\stackrel{>}{\sim}$} \text{\bigcirc}(\text{O}, r) $	ને A અને B માં સ્પર્શે છે	. જો <i>m</i> ∠AOB = 80 લ	હોય, તો <i>m∠</i> OPB = [
	(a) 80	(b) 50	(c) 10	(d) 100			

234 ગણિત 10

(3)	O કાન્દ્રત વતુળના બહ	ારના ભાગમાં આવલા ા	મદુ,મ માથા વતુળન દારલ	ા સ્પશક વતુળન Q મા સ્પ	ાશ છ.			
	જો OP = 13, PQ = 5 હોય, તો વર્તુળનો વ્યાસ છે.							
	(a) 576	(b) 15	(c) 8	(d) 24				
(4)	$\triangle ABC$ $\forall i AB = 3,$	BC = 4, AC = 5 हो	ય, તો ત્રિકોશની ત્રણે બ	ાજુઓને સ્પર્શતા વર્તુળની	ત્રિજયા			
	છે.							
	(a) 2	(b) 1	(c) 4	(d) 3				
(5)	O કેન્દ્રવાળા વર્તુળને PC		ને B બિંદુએ સ્પર્શે છે. જો	<i>m</i> ∠OPB = 30 અને OP	= 10			
	(a) 5	(b) 20	(c) 60	(d) 10				
(6)	O કેન્દ્રવાળા વર્તુળની	બહારના બિંદુ P માંથી વ	વર્તુળને દોરેલા સ્પર્શકોના	સ્પર્શબિંદુઓ A અને B દ	<u>ે</u> . જો			
	<i>m</i> ∠OPB = 30 હોય,	તો <i>m</i> ∠AOB =						
	(a) 30	(b) 60	(c) 90	(d) 120				
(7)	⊚(O, 5) ની એક જીવા	ા ૭ (O, 3) ને સ્પર્શે છે.	જીવાની લંબાઈ હશે					
	(a) 8	(b) 10	(c) 7	(d) 6				

不

સારાંશ

આ પ્રકરણમાં આપણે નીચે આપેલા મુદ્દાઓનો અભ્યાસ કર્યો :

- 1. વર્તુળના સ્પર્શકની સંકલ્પના
- 2. વર્તુળનો સ્પર્શક એ સ્પર્શબિંદુમાંથી પસાર થતી ત્રિજયાને તે જ સમતલમાં લંબ હોય.
- 3. વર્તુળની ત્રિજ્યાને તેના વર્તુળ પરના બિંદુએ તે જ સમતલમાં દોરેલી લંબરેખા તે વર્તુળનો સ્પર્શક છે.
- વર્ત્ળ પરના દરેક બિંદુએ વર્ત્ળને અનન્ય સ્પર્શક દોરી શકાય.
- 5. વર્તુળના સમતલના કોઈ બિંદુમાંથી વર્તુળને દોરેલ સ્પર્શકોની સંખ્યા
- 6. વર્તુળના સમતલમાં આવેલા વર્તુળની બહારના બિંદુમાંથી વર્તુળને દોરેલા સ્પર્શકની લંબાઈની વ્યાખ્યા.
- 7. વર્તુળની બહારના બિંદુમાંથી વર્તુળને દોરેલા બે સ્પર્શકોની લંબાઈ સમાન હોય.

•