#### Код Хэмминга

Александра Игоревна Кононова

ниу миэт

24 ноября 2019 г.



# Код Хэмминга

- 💶 Информация передаётся блоками.
- $oldsymbol{2}$  В блоке (n битов) никогда не встретится более чем одна ошибка.
- Ошибка инверсия бита.

Биты блока разделяются на

- информационные (независимые)
- и проверочные (значение рассчитывается по информационным).

Общий размер блока после кодирования

$$n=(m$$
 информационных $)+(k$  проверочных $)$ 

- ошибки нет;
- ошибка в i-й позиции.  $\}$

$$n+1$$
 указаний  $2^k\geqslant n+1$ 



# Длины кодов (оптимальные)

| Проверочных | Всего битов | Информационных | Информационных |
|-------------|-------------|----------------|----------------|
| битов $(k)$ | $(n=2^k-1)$ | битов          | байтов $(m/8)$ |
|             |             | (m=n-k)        |                |
| 1           | 1           | 0              | 0.00           |
| 2           | 3           | 1              | 0.12           |
| 3           | 7           | 4              | 0.50           |
| 4           | 15          | 11             | 1.38           |
| 5           | 31          | 26             | 3.25           |
| 6           | 63          | 57             | 7.12           |
| 7           | 127         | 120            | 15.00          |
| 8           | 255         | 247            | 30.88          |
| 9           | 511         | 502            | 62.75          |
| 10          | 1023        | 1013           | 126.62         |
| 11          | 2047        | 2036           | 254.50         |
| 12          | 4095        | 4083           | 510.38         |
| 13          | 8191        | 8178           | 1022.25        |
| 14          | 16383       | 16369          | 2046.12        |
| 15          | 32767       | 32752          | 4094.00        |
| 16          | 65535       | 65519          | 8189.88        |



# Бит чётности и группы

🚺 Бит чётности позволяет обнаружить одиночную ошибку в группе:

$$c=igoplus_{b_i\in G}b_i$$
 , соответственно,  $igoplus_{b_i\in \{c\}\cup G}b_i=c\oplus igoplus_{b_i\in G}b_i=0$ 

при одиночной ошибке в  $\{c\} \cup G$  получим  $igoplus_{b_i \in \{c\} \cup G} b_i = 1.$ 

- Несколько пересекающихся контрольных групп позволяют уточнить положение ошибки.
- Набор групп должен быть различным для каждого бита (для локализации ошибки до конкретного бита).
- Контрольный бит не должен входить более чем в одну группу (для упрощения расчёта).
- 5 Каждый информационный бит должен входить как минимум в две группы (из 3 и 4).



#### Несистематический код Хэмминга

 Набор контрольных групп — единицы натурального двоичного кода номера бита (с 1, чтобы каждый входил хотя бы в одну группу).

|   | • | , |   |   |   |   |   | • |    |    |    |    | ,  |    |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| × |   | × |   | × |   | × |   | × |    | ×  |    | ×  |    | ×  |
|   | × | × |   |   | × | × |   |   | ×  | ×  |    |    | ×  | ×  |
|   |   |   | × | × | × | × |   |   |    |    | ×  | ×  | ×  | ×  |
|   |   |   |   |   |   |   | × | × | ×  | ×  | ×  | ×  | ×  | ×  |

• Биты  $1,2,4,...2^s$  — контрольные (входят только в одну группу):

$$b_1 = b_3 \oplus b_5 \oplus b_7 \oplus b_9 \oplus b_{11} \oplus b_{13} \oplus b_{15} \dots$$
  
 $b_2 = b_3 \oplus b_6 \oplus b_7 \oplus b_{10} \oplus b_{11} \oplus b_{14} \oplus b_{15} \dots$ 

ullet При наличии ошибки несошедшиеся контрольные суммы образуют натуральный двоичный код инвертированного бита o исправление.



. . .

#### Систематический код Хэмминга

Перестановка столбцов кода Хэмминга образует другой код Хэмминга

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
| × |   | × |   | × |   | × |   | × |    | ×  |    | ×  |    | ×  |
|   | × | × |   |   | × | × |   |   | ×  | ×  |    |    | ×  | ×  |
|   |   |   | × | × | × | × |   |   |    |    | ×  | ×  | ×  | ×  |
|   |   |   |   |   |   |   | × | × | ×  | ×  | ×  | ×  | ×  | ×  |

Систематический код Хэмминга (простейший):

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
| 1 | 2 | 4 | 8 | 3 | 5 | 6 | 7 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| × |   |   |   | × | × |   | × | × |    | ×  |    | ×  |    | ×  |
|   | × |   |   | × |   | × | × |   | ×  | ×  |    |    | ×  | ×  |
|   |   | × |   |   | × | × | × |   |    |    | ×  | ×  | ×  | ×  |
|   |   |   | × |   |   |   |   | × | ×  | ×  | ×  | ×  | ×  | ×  |

#### Систематический код Хэмминга

Перестановка столбцов кода Хэмминга образует другой код Хэмминга

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
| × |   | × |   | × |   | × |   | × |    | ×  |    | ×  |    | ×  |
|   | × | × |   |   | × | × |   |   | ×  | ×  |    |    | ×  | ×  |
|   |   |   | × | × | × | × |   |   |    |    | ×  | ×  | ×  | ×  |
|   |   |   |   |   |   |   | × | × | ×  | ×  | ×  | ×  | ×  | ×  |

Систематический код Хэмминга (Л. Бриллюэн):

| 1  | 2 | 3  | 4  | 5  | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|----|---|----|----|----|---|---|---|---|----|----|----|----|----|----|
| 15 | 7 | 11 | 13 | 14 | 3 | 5 | 9 | 6 | 10 | 12 | 1  | 2  | 4  | 8  |
| ×  | × | ×  | ×  |    | × | × | × |   |    |    | ×  |    |    |    |
| ×  | × | ×  |    | ×  | × |   |   | × | ×  |    |    | ×  |    |    |
| ×  | × |    | ×  | ×  |   | × |   | × |    | ×  |    |    | ×  |    |
| ×  |   | ×  | ×  | ×  |   |   | × |   | ×  | ×  |    |    |    | ×  |

# Коды, исправляющие одиночную ошибку и обнаруживающие двойную $n=2^k$

Длина блока Хэмминга  $n=2^k-1$  бит o один бит не используется.

$$b_0 = igoplus_{i=1}^{n-1} b_i$$
 — дополнительный бит чётности  $\left(igoplus_{i=0}^{n-1} b_i = 0
ight)$ 

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
|   | × |   | × |   | × |   | × |   | × |    | ×  |    | ×  |    | ×  |
|   |   | × | × |   |   | × | × |   |   | ×  | ×  |    |    | ×  | ×  |
|   |   |   |   | × | × | × | × |   |   |    |    | ×  | ×  | ×  | ×  |
|   |   |   |   |   |   |   |   | × | × | ×  | ×  | ×  | ×  | ×  | ×  |
| × | × | × | × | × | × | × | × | × | × | ×  | ×  | ×  | ×  | ×  | ×  |

| Количество единиц<br>в контрольных группах | Общее<br>количество<br>единиц | Вывод                                                  |
|--------------------------------------------|-------------------------------|--------------------------------------------------------|
| Чётное во всех                             | Чётное                        | Данные верны                                           |
| Чётное во всех                             | Нечётное                      | Ошибка в дополнительном контрольном разряде $b_{ m 0}$ |
| Нечётное в некоторых                       | Нечётное                      | Однократная ошибка в коде $X$ эмминга $b_1\dots b_n$   |
| Нечётное в некоторых                       | Чётное                        | Двойная ошибка                                         |

### Спасибо за внимание!

НИУ МИЭТ http://miet.ru/

Александра Игоревна Кононова illinc@mail.ru