

Chest X-Ray analysis to predict presence of Lung Pathologies

Marcos Panyagua, Christos Maglaras

Who are you?

- Politician in a developing country
 - Main focus
- Managing function in a hospital
 - Independent of the size
- Someone from another area exploring the possibility of image classification
 - The image classification can be applied to several areas

Benefits of Machine Learning implementation in your hospital

- Efficient way to detect
 - Faster than a doctor, only ~5% less accurate
- Versatile
 - Can be implemented in any size of hospital
- Low-Cost
 - Over 100x cheaper than a doctor *

The Data

About 6000 X-ray images from kids ranging between 1 and 5 years old from <u>Guangzhou(广州) Women and Children's Medical Center</u>

Sourced from Cell

How to detect pneumonia from images?

- <u>CNN!</u>

Final Model

First Model: Loss: 0.7252 Recall: 0.8293

Final Model: Loss: 0.2129 71% improvement

Recall: 0.9593 16% improvement

Confusion Matrix

And our room for improvement

True Positive: 61.7% True Negative: 33.8%

False Positive: 3.8% False Negative: 1.7%

Conclusion:

- Development of reliable model
- Efficiency is key!
- A tool to increase hospital workflow and productivity

Thank You!!!

Questions?

Appendix

github.com/ChristosMaglaras

christos-maglaras.medium.com/

linkedin.com/christomaglaras/

github.com/marcosvppfernandes

sagatibaofmarcos.blogspot.com

<u>linkedin.com/marcosvprestesfernandes</u>

Model: "sequential_69"			
Layer (type)	Output	Shape	Param #
conv2d_276 (Conv2D)		126, 126, 32)	896
batch_normalization_8 (Batch	(None,	126, 126, 32)	128
max_pooling2d_276 (MaxPoolin	(None,	63, 63, 32)	0
conv2d_277 (Conv2D)	(None,	61, 61, 64)	18496
batch_normalization_9 (Batch	(None,	61, 61, 64)	256
max_pooling2d_277 (MaxPoolin	(None,	30, 30, 64)	0
dropout_207 (Dropout)	(None,	30, 30, 64)	0
conv2d_278 (Conv2D)	(None,	28, 28, 128)	73856
batch_normalization_10 (Batc	(None,	28, 28, 128)	512
max_pooling2d_278 (MaxPoolin	(None,	14, 14, 128)	0
dropout_208 (Dropout)	(None,	14, 14, 128)	0
conv2d_279 (Conv2D)	(None,	12, 12, 256)	295168
batch_normalization_11 (Batc	(None,	12, 12, 256)	1024
max_pooling2d_279 (MaxPoolin	(None,	6, 6, 256)	0
flatten_69 (Flatten)	(None,	9216)	0
dropout_209 (Dropout)	(None,	9216)	0
dense_138 (Dense)	(None,	256)	2359552
dense_139 (Dense)	(None,	1)	257
Total params: 2,750,145 Trainable params: 2,749,185			

Trainable params: 2,750,145
Trainable params: 2,749,185
Non-trainable params: 960