FUNDAÇÃO GETÚLIO VARGAS

Escola de Pós-Graduação em Economia Teoria Macroeconômica III - Lista 03

Professor: Ricardo de Oliveira Cavalcanti Monitora: Kátia Aiko Nishiyama Alves Alunos: Samuel Barbosa e Gustavo Bulhões

Exercício 01

Neste exercício consideramos a economia de trocas estudada por Huggett (1993).

Item (a)

Utilizando o limite de endividamento $\underline{a}=-2$ e seguindo os demais parâmetros em Hugget (1993), obtemos as seguintes funções valor e política nos estados e_H e e_L :

Item (b)

Código anexo.

Item (c)

Observe que

$$(M'-1I)\lambda = 0 \iff M'\lambda = \lambda,$$

isto é, o autovetor associado ao autovalor unitário de M' é uma distribuição invariante de M'. Ao normalizar este autovetor, podemos interpretá-lo, no modelo de Huggett, como a probabilidade (ou proporção) estacionária de indivíduos em cada estado (a,e).

Item (d)

Podemos calcular a distribução invariante de M iterando $\lambda_{j+1} = \lambda_j M$ até obter $\lambda_{j+1} = \lambda_j$. Como esperado, a distribuição obtida é idêntica à calculada no item anterior.

Item (e)

Ainda com $\underline{a}=-2$ e definindo o preço inicial do ativo em q=1, obtemos, inicialmente, excesso de oferta de crédito z=1.4399.

Item (f)

Ajustando iterativamente os preços, obtemos equilíbrio com q=1.0129 quando a=-2.

Item (g)

A tabela a seguir apresenta os preços de equilíbrio nos estados e_H e e_L , para diferentes valores de \underline{a} .

\underline{a}	q		
-2	1.0129		
-4	0.9981		
-6	0.9951		
-8	0.9942		
-10	0.9939		
-12	0.9937		

Exercício 02

Neste exercício consideramos a economia descrita em Imrohoroglu (1992). Seguindo os passos descritos na seção 3 do artigo, conforme código anexo, reproduzimos os resultados da Tabela 1. Π representa as diferentes taxas de inflação, e entre parênteses reportamos os desvios-padrão obtidos.

	$\Pi=0.0125$	$\Pi=0.0062$	$\Pi = 0.0000$
Average real cash balances	11.014 (0.3444)	$14.852 \\ (0.4649)$	$22.844 \\ (0.7232)$
Average consumption	0.9403 (0.1107)	0.9401 (0.0959)	0.9400 (0.0750)
Average income	0.9400 (0.2035)	0.9400 (0.2035)	0.9400 (0.2035)
Average utility	-0.0817	-0.0765	-0.0707

Exercício 03

Neste exercício consideramos a economia descrita em Aiyagari (1994).

Item (a)

Neste cenário, encontramos a taxa de juros de equilíbrio r=0.0813.

Item (b)

No equilíbrio anterior tínhamos $r=0.0813,\ K=7.1567$ e w=1.4779. Com a mudança, encontramos $r=0.0802,\ K=5.3166$ e w=1.4892. A nova matriz de transição da produtividade da economia possui uma distribuição invariante com maior proporção da força de trabalho de baixa produtividade. Dessa forma, no equilíbrio, os trabalhadores passam a ter renda menor e, assim, acumulam menos capital. Logo, o estoque de capital diminui e, pelas condições de otimalidade do problema da firma, a taxa de juros diminui e o salário aumenta.

Item (c)

O novo equilíbrio é $r=0.2396,\,K=1.3225$ e w=0.8047. Com uma depreciação maior, o benefício de acumular capital se reduz. Isso faz com que, no equilíbrio, o estoque de capital seja menor. Logo, pelas condições de otimalidade do problema da firma, a taxa de juros aumenta e o salário diminui.