Maschinellen Lernen Aufgabenblatt 07

Prof. Dr. David Spieler Hochschule München

14. Oktober 2019

Aufgabe 1 (Entscheidungsbäume) Zur Klassifikation, ob Sie wandern gehen sollten (ja, nein), haben Sie sich entschlossen einen Entscheidungsbaum zu trainieren. Hierfür haben Sie die Daten in Tabelle Tabelle 1 erhoben.

Datenpunkt	$\mathbf{x}_1^{(i)}$ (Himmel)	$\mathbf{x}_2^{(i)}$ (Temperatur)	$\mathbf{x}_{2}^{(i)}$ (Luftfeuchtigkeit)	$y^{(i)}$
$\mathbf{x}^{(1)}$	frei	mild	$_{ m normal}$	ja
$\mathbf{x}^{(2)}$	frei	mild	hoch	ja
$\mathbf{x}^{(3)}$	frei	heiß	normal	nein
$\mathbf{x}^{(4)}$	bewölkt	mild	hoch	nein
$\mathbf{x}^{(5)}$	bewölkt	heiß	normal	ja
$\mathbf{x}^{(6)}$	bewölkt	heiß	hoch	nein

Tabelle 1: Trainingsdaten für den Entscheidungsbaum.

- 1. Erstellen Sie einen Entscheidungsbaum nach dem Algorithmus in der Vorlesung mit Hilfe der Entropie als Unreinheitsmaß.
- 2. Würden Sie dem Entscheidungsbaum nach an einem heißen Tag mit hoher Luftfeuchtigkeit und freiem Himmel wandern gehen?
- 3. Würden Sie dem Entscheidungsbaum nach an einem milden Tag mit normaler Luftfeuchtigkeit und bewölktem Himmel wandern gehen?

Aufgabe 2 (Praxisbeispiel Entscheidungsbäume) Wir wollen nun einen Entscheidungsbaum trainieren, welcher von den Features im Auto.csv Datensatz nach der Anzahl der Zylinder klassifiziert.

- 1. Laden Sie dazu den Auto.csv Datensatz in einen DataFrame und korrigieren Sie ggf. fehlende bzw. fehlerhafte Daten.
- 2. Laden Sie in den Zielvektor y die Zylinderzahlen und wählen Sie als Features X alle vorhandenen Features außer name und cylinders.

- 3. Trainieren Sie einen sklearn. tree. Decision Tree Classifier mit Hilfe 3-facher Kreuzvalidierung.
- 4. Welche Genauigkeit können Sie erreichen?