Readme

weilrep contains some Sage code for working with Weil representations and their modular forms and Jacobi forms. In particular it computes Fourier expansions of (bases of) vector-valued modular forms and Jacobi forms. This note gives a short explanation of what the program weilrep calculates and a few examples of how to use it.

This program is built around an algorithm for vector-valued Eisenstein series using Cowan–Katz–White's formula [7] for the Igusa zeta functions attached to quadratic functions (in other words, the local densities). In particular it works best in weights at least 5/2.

Contents

1	Wei	il repre	sentations				
	1.1	Constr	uction				
	1.2	Basic a	attributes				
		1.2.1	Gram matrix				
		1.2.2	Quadratic form				
		1.2.3	Signature				
		1.2.4	Discriminant				
		1.2.5	Symmetric weights				
		1.2.6	Discriminant group				
		1.2.7	Dual				
	1.3	Constr	uction of modular forms				
		1.3.1	Eisenstein series				
		1.3.2	Old Eisenstein series				
		1.3.3	New Eisenstein series				
		1.3.4	Theta series				
		1.3.5	Bruinier-Bundschuh isomorphism				
			Poincaré square series				
	1.4		of modular forms				
		1.4.1	Modular forms				
		1.4.2	Cusp forms				
		1.4.3	Modular forms with specified order at ∞				
		1.4.4	Nearly holomorphic modular forms				
		1.4.5	Borcherds obstruction space				
	1.5	Dimens	sion formulas				
		1.5.1	Modular forms				
		1.5.2	Cusp forms				
			•				
2	Vector-valued modular forms						
	2.1	Fourier	coefficients				
		2.1.1	Fourier expansion				
		2.1.2	Coefficients				
		2.1.3	Coefficient vector				
		2.1.4	Components				
	2.2	Arithm	netic operations				
			Multiplication				
	2.3	Other of	operations				
		2.3.1	Bol operator				
		2.3.2	Conjugation				

		2.3.3	Hecke operators	11
		2.3.4	Lattice reduction	12
		2.3.5	Serre derivative	12
		2.3.6	Theta contraction	12
		2.3.7	Trace map	12
3		obi for		13
	3.1		attributes	13
		3.1.1	Index	13
		3.1.2	Weil representation	13
	3.2		uction of Jacobi forms	13
		3.2.1	Jacobi Eisenstein series	13
		3.2.2	Theta blocks	14
		3.2.3	Jacobi forms from vector-valued modular forms	14
	3.3	Spaces	of Jacobi forms	14
		3.3.1	Jacobi forms	14
		3.3.2	Cusp forms	15
		3.3.3	Weak Jacobi forms	15
	3.4	Operat	ions on Jacobi forms	15
		3.4.1	Arithmetic operations	15
		3.4.2	Direct product	16
		3.4.3	Hecke operators	16
		3.4.4	Zero-values	17
		3.4.5	Pullback	17
		3.4.6	Theta decomposition	17
	3.5		ring Fourier coefficients from Jacobi forms	17
	0.0	ICCCOV	ang rounce coemeiones from success forms	
4	Mod	dular f	orms on orthogonal groups	18
4	Mod 4.1		orms on orthogonal groups uction of modular forms	
4				18
4		Constr	uction of modular forms	18 18
4		Constr 4.1.1	uction of modular forms	18 18 19 19
4		Constr 4.1.1 4.1.2	uction of modular forms Eisenstein series Additive theta lift Borcherds lift	18 18 19
4		Constr 4.1.1 4.1.2 4.1.3	uction of modular forms Eisenstein series Additive theta lift Borcherds lift Gritsenko lift	18 18 19 19 19 20
4		Constr 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5	uction of modular forms Eisenstein series Additive theta lift Borcherds lift Gritsenko lift Spezialschar	18 18 19 19 20 20
4	4.1	Constr 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Repres	uction of modular forms Eisenstein series Additive theta lift Borcherds lift Gritsenko lift Spezialschar entations of modular forms	18 18 19 19 20 20 20
4	4.1	Constr 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Repres 4.2.1	uction of modular forms Eisenstein series Additive theta lift Borcherds lift Gritsenko lift Spezialschar entations of modular forms Fourier expansion	18 18 19 19 20 20 20 20
4	4.1	Constr 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Repres 4.2.1 4.2.2	uction of modular forms Eisenstein series Additive theta lift Borcherds lift Gritsenko lift Spezialschar entations of modular forms Fourier expansion Fourier—Jacobi expansion	18 18 19 19 20 20 20 20 20 20
4	4.1	Constr 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Repres 4.2.1 4.2.2 4.2.3	uction of modular forms Eisenstein series Additive theta lift Borcherds lift Gritsenko lift Spezialschar entations of modular forms Fourier expansion Fourier—Jacobi expansion Coefficient dictionary	18 18 19 19 20 20 20 20 20 20 20 20
4	4.1	Constr 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Repres 4.2.1 4.2.2 4.2.3 Inputs	uction of modular forms Eisenstein series Additive theta lift Borcherds lift Gritsenko lift Spezialschar entations of modular forms Fourier expansion Fourier-Jacobi expansion Coefficient dictionary for Borcherds products	18 18 19 19 20 20 20 20 20 20 20 20 20 20
4	4.1	Constr 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Repres 4.2.1 4.2.2 4.2.3 Inputs 4.3.1	uction of modular forms Eisenstein series Additive theta lift Borcherds lift Gritsenko lift Spezialschar entations of modular forms Fourier expansion Fourier—Jacobi expansion Coefficient dictionary for Borcherds products Finding all holomorphic products of a given weight	18 18 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20
4	4.2	Constr 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Repres 4.2.1 4.2.2 4.2.3 Inputs 4.3.1 4.3.2	uction of modular forms Eisenstein series Additive theta lift Borcherds lift Gritsenko lift Spezialschar entations of modular forms Fourier expansion Fourier-Jacobi expansion Coefficient dictionary for Borcherds products Finding all holomorphic products of a given weight Bases of holomorphic products	18 18 19 19 20 20 20 20 20 20 20 21 21
4	4.1	Constr 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Repres 4.2.1 4.2.2 4.2.3 Inputs 4.3.1 4.3.2 Other	uction of modular forms Eisenstein series Additive theta lift Borcherds lift Gritsenko lift Spezialschar entations of modular forms Fourier expansion Fourier—Jacobi expansion Coefficient dictionary for Borcherds products Finding all holomorphic products of a given weight Bases of holomorphic products methods	18 18 19 19 20 20 20 20 20 21 21 21
4	4.2	Constr 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Repres 4.2.1 4.2.2 4.2.3 Inputs 4.3.1 4.3.2 Other 4.4.1	uction of modular forms Eisenstein series Additive theta lift Borcherds lift Gritsenko lift Spezialschar entations of modular forms Fourier expansion Fourier—Jacobi expansion Coefficient dictionary for Borcherds products Finding all holomorphic products of a given weight Bases of holomorphic products methods Maass relations	188 189 199 200 200 200 200 200 201 211 211 211
4	4.2	Constr 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Repres 4.2.1 4.2.2 4.2.3 Inputs 4.3.1 4.3.2 Other	uction of modular forms Eisenstein series Additive theta lift Borcherds lift Gritsenko lift Spezialschar entations of modular forms Fourier expansion Fourier—Jacobi expansion Coefficient dictionary for Borcherds products Finding all holomorphic products of a given weight Bases of holomorphic products methods	18 19 19 20 20 20 20 20 20 20 21 21 21 21
	4.1 4.2 4.3	Constr 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Repres 4.2.1 4.2.2 4.2.3 Inputs 4.3.1 4.3.2 Other 4.4.1 4.4.2	uction of modular forms Eisenstein series Additive theta lift Borcherds lift Gritsenko lift Spezialschar entations of modular forms Fourier expansion Fourier-Jacobi expansion Coefficient dictionary for Borcherds products Finding all holomorphic products of a given weight Bases of holomorphic products methods Maass relations Jacobian	18 18 19 19 20 20 20 20 20 21 21 21 21
	4.1 4.2 4.3 4.4	Constr 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Repres 4.2.1 4.2.2 4.2.3 Inputs 4.3.1 4.3.2 Other 4.4.1 4.4.2	uction of modular forms Eisenstein series Additive theta lift Borcherds lift Gritsenko lift Spezialschar entations of modular forms Fourier expansion Fourier-Jacobi expansion Coefficient dictionary for Borcherds products Finding all holomorphic products of a given weight Bases of holomorphic products methods Maass relations Jacobian Drms on orthogonal groups II	18 18 19 19 20 20 20 20 20 20 21 21 21 21 21
	4.1 4.2 4.3	Constr 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Repres 4.2.1 4.2.2 4.2.3 Inputs 4.3.1 4.3.2 Other 4.4.1 4.4.2 dular for Specia	uction of modular forms Eisenstein series Additive theta lift Borcherds lift Gritsenko lift Spezialschar entations of modular forms Fourier expansion Fourier-Jacobi expansion Coefficient dictionary for Borcherds products Finding all holomorphic products of a given weight Bases of holomorphic products methods Maass relations Jacobian Dorms on orthogonal groups II	18 18 19 20 20 20 20 20 21 21 21 21 21 22 22
	4.1 4.2 4.3 4.4	Constr 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Repres 4.2.1 4.2.2 4.2.3 Inputs 4.3.1 4.3.2 Other 4.4.1 4.4.2 dular f Specia 5.1.1	uction of modular forms Eisenstein series Additive theta lift Borcherds lift Gritsenko lift Spezialschar entations of modular forms Fourier expansion Fourier-Jacobi expansion Coefficient dictionary for Borcherds products Finding all holomorphic products of a given weight Bases of holomorphic products methods Maass relations Jacobian Dorms on orthogonal groups II Linputs Lattices that split a rescaled hyperbolic plane	18 18 19 20 20 20 20 20 21 21 21 21 22 22 22 22 22
	4.1 4.2 4.3 4.4 Mod 5.1	Constr 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Repres 4.2.1 4.2.2 4.2.3 Inputs 4.3.1 4.3.2 Other 4.4.1 4.4.2 dular f Specia 5.1.1 5.1.2	uction of modular forms Eisenstein series Additive theta lift Borcherds lift Gritsenko lift Spezialschar entations of modular forms Fourier expansion Fourier-Jacobi expansion Coefficient dictionary for Borcherds products Finding all holomorphic products of a given weight Bases of holomorphic products methods Maass relations Jacobian Dorms on orthogonal groups II linputs Lattices that split a rescaled hyperbolic plane Hilbert modular forms	18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
4	4.1 4.2 4.3 4.4	Constr 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Repres 4.2.1 4.2.2 4.2.3 Inputs 4.3.1 4.3.2 Other 4.4.1 4.4.2 dular f Specia 5.1.1 5.1.2	uction of modular forms Eisenstein series Additive theta lift Borcherds lift Gritsenko lift Spezialschar entations of modular forms Fourier expansion Fourier-Jacobi expansion Coefficient dictionary for Borcherds products Finding all holomorphic products of a given weight Bases of holomorphic products methods Maass relations Jacobian Dorms on orthogonal groups II Linputs Lattices that split a rescaled hyperbolic plane	18 18 19 20 20 20 20 20 21 21 21 21 22 22 22 22 22

1 Weil representations

The class WeilRep represents the dual Weil representation attached to an even lattice (Λ, Q) , i.e. the representation ρ of $\operatorname{Mp}_2(\mathbb{Z})$ defined on the standard generators $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ by

$$\rho(T)\mathfrak{e}_{\gamma} = \mathbf{e}(-Q(\gamma))\mathfrak{e}_{\gamma}$$

and

$$\rho(S)\mathfrak{e}_{\gamma} = \frac{1}{\sqrt{|\Lambda'/\Lambda|}} \mathbf{e}(\mathrm{sig}(\Lambda)/8) \sum_{\beta \in \Lambda'/\Lambda} \mathbf{e}(\langle \gamma, \beta \rangle) \mathfrak{e}_{\beta}.$$

Here $\mathbf{e}(x) = e^{2\pi i x}$; and \mathfrak{e}_{γ} is the standard basis of $\mathbb{C}[\Lambda'/\Lambda]$; and $\langle \gamma, \beta \rangle := Q(\gamma + \beta) - Q(\gamma) - Q(\beta)$.

1.1 Construction

A WeilRep instance is constructed with

WeilRep(S)

where S denotes either (1) a Gram matrix; i.e. a symmetric integer matrix whose diagonal consists of even integers; or (2) a QuadraticForm defined over the integers.

1.2 Basic attributes

Let

w = WeilRep(S)

be a Weil representation. The following basic attributes can be computed.

1.2.1 Gram matrix

The underlying Gram matrix can be recovered with

S = w.gram_matrix()

1.2.2 Quadratic form

The underlying quadratic form can be recovered with

Q = w.quadratic_form()

1.2.3 Signature

The signature of the underlying discriminant form can be recovered with

w.signature()

This is an element of $\mathbb{Z}/8\mathbb{Z}$ (equal to the signature of the Gram matrix S modulo 8).

1.2.4 Discriminant

The discriminant $|\det(S)|$ is computed with

w.discriminant()

1.2.5 Symmetric weights

Call a weight $k \in \frac{1}{2}\mathbb{Z}$ symmetric for the Weil representation attached to S if $2k + \text{sig}(S) \equiv 0 \mod 4$. In other words, every modular form of weight k is symmetric. (Similarly, call weights k antisymmetric if $2k + \text{sig}(S) \equiv 2 \mod 4$.) The method

```
w.is_symmetric_weight(k)
```

outputs 1 if k is a symmetric weight; 0 if k is an antisymmetric weight; and None otherwise.

1.2.6 Discriminant group

The method

w.ds()

outputs a set of representatives of the discriminant group $S^{-1}\mathbb{Z}^N/\mathbb{Z}^N$ as a list of vectors.

1.2.7 Dual

The method

w.dual()

returns the unitary dual of this representation. (This is the Weil representation attached to the matrix -S.)

1.3 Construction of modular forms

Modular forms for a given Weil representation can be constructed in the following ways.

1.3.1 Eisenstein series

```
w.eisenstein_series(k, prec, allow_small_weight = False)
```

This returns the Eisenstein series $E_{k,0}$ for the dual Weil representation associated to the Gram matrix S with Fourier expansion up to precision prec. It only accepts weight $k \geq 5/2$. Setting the optional parameter $allow_small_weight$ to true allows k to be arbitrary (but the result may not be a modular form)!

Example. Input:

```
w = WeilRep(matrix([[2,1],[1,2]]))
print(w.eisenstein_series(3,5))
```

Output:

```
 \begin{array}{l} [(0,\ 0),\ 1+72*q+270*q^2+720*q^3+936*q^4+0(q^5)] \\ [(2/3,\ 2/3),\ 27*q^2(2/3)+216*q^2(5/3)+459*q^2(8/3)+1080*q^2(11/3)+1350*q^2(14/3)+0(q^5)] \\ [(1/3,\ 1/3),\ 27*q^2(2/3)+216*q^2(5/3)+459*q^2(8/3)+1080*q^2(11/3)+1350*q^2(14/3)+0(q^5)] \end{array}
```

1.3.2 Old Eisenstein series

Certain oldform Eisenstein series can be computed using

```
w.eisenstein_oldform(k, b, prec, allow_small_weight = False)
```

Here b should be a nonzero isotropic vector in the discriminant group of w. This returns the oldform Eisenstein series

$$\sum_{\lambda \in \mathbb{Z}/d_b \mathbb{Z}} E_{k,\lambda b},$$

where d_b is the denominator of b (i.e. minimal with $d_b b \in \mathbb{Z}^N$).

Example. Input:

```
w = WeilRep(matrix([[8]]))
w.eisenstein_oldform(7/2, vector([1/2]), 5)
Output:
```

Output.

```
 \begin{split} & [(0),\ 1+126*q+756*q^2+2072*q^3+4158*q^4+0(q^5)] \\ & [(1/8),\ 0(q^5)] \\ & [(1/4),\ 56*q^(3/4)+576*q^(7/4)+1512*q^(11/4)+4032*q^(15/4)+5544*q^(19/4)+0(q^5)] \\ & [(3/8),\ 0(q^5)] \\ & [(1/2),\ 1+126*q+756*q^2+2072*q^3+4158*q^4+0(q^5)] \\ & [(5/8),\ 0(q^5)] \\ & [(3/4),\ 56*q^(3/4)+576*q^(7/4)+1512*q^(11/4)+4032*q^(15/4)+5544*q^(19/4)+0(q^5)] \\ & [(7/8),\ 0(q^5)] \end{split}
```

1.3.3 New Eisenstein series

Warning: this is experimental (and not at all optimized).

Certain newform Eisenstein series can be computed using

```
w.eisenstein_newform(k, b, prec, allow_small_weight = False)
```

Here b should be a nonzero isotropic vector in the discriminant group of w. This returns the newform Eisenstein series

$$\sum_{\lambda \in \mathbb{Z}/d_b \mathbb{Z}} \sum_{\chi} \chi(\lambda) E_{k,\lambda b},$$

where d_b is the denominator of b, and where χ runs through all primitive Dirichlet characters modulo d_b . For fixed χ we use the coefficient formula of [9] to compute the Fourier coefficients of $\sum_{\lambda} \chi(\lambda) E_{k,\lambda b}$ numerically; then the sum over all primitive χ is rational and we compute it as such by guessing denominators and rounding. (The denominator we guess is usually far too large.)

Example. Compute the Eisenstein series of weight 5/2 attached to the Gram matrix ((18)) using

```
w = WeilRep(matrix([[18]]))
w.eisenstein_newform(5/2, vector([1/3]), 5)
```

Via the theta decomposition the output corresponds to the Jacobi Eisenstein series of weight 3 and index 9.

1.3.4 Theta series

Note that theta series here come from *negative-definite* Gram matrices because we use the dual Weil representation. This convention is generally more natural in the context of Jacobi forms but in this case rather unfortunate.

This method simply takes the output of PARI's qfminim() and turns it into a vector-valued theta function. If w is a WeilRep instance that comes from a negative-definite Gram matrix or quadratic form then one can construct theta series using

```
w.theta_series(prec, P = None, test_P = True)
```

The required parameter is the precision prec. If P is given then it should be a polynomial in the appropriate number of variables which is homogeneous and harmonic with respect to the quadratic form. (If the optional parameter test_P is set to false then we do not test these properties of P - use at your own risk.)

1.3.5 Bruinier-Bundschuh isomorphism

Bruinier and Bundschuh [6] gave an isomorphism between the spaces of modular forms for lattices of odd prime discriminant and scalar-valued modular forms of prime level with the quadratic character whose Fourier expansions are supported either entirely on quadratic residues or entirely on quadratic nonresidues.

These lifts can be constructed with the method

```
w.bb_lift(mf)
```

Here mf is a ModularFormElement of the appropriate level and character that satisfies the plus/minus-space condition on Fourier coefficients.

Example. To obtain the Eisenstein series of weight three for the Gram matrix $S = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. Input:

```
w = WeilRep(matrix([[2,1],[1,2]]))
chi = DirichletGroup(3)[1]
mf = ModularForms(chi,3,prec=20).basis()[0]
w.bb_lift(mf)
```

Output:

```
 \begin{array}{l} [(0,\ 0),\ 1+72*q+270*q^2+720*q^3+936*q^4+2160*q^5+0(q^6)] \\ [(2/3,\ 2/3),\ 27*q^2(2/3)+216*q^2(5/3)+459*q^2(8/3)+1080*q^2(11/3)+1350*q^2(14/3)+2592*q^2(17/3)+0(q^6)] \\ [(1/3,\ 1/3),\ 27*q^2(2/3)+216*q^2(5/3)+459*q^2(8/3)+1080*q^2(11/3)+1350*q^2(14/3)+2592*q^2(17/3)+0(q^6)] \\ \end{array}
```

1.3.6 Poincaré square series

Let $\beta \in \Lambda'/\Lambda$ and $m \in \mathbb{Z} - Q(\beta)$ be an index and define by $Q_{k,m,\beta}$ the Poincaré square series

$$Q_{k,m,\beta} = \sum_{\lambda \in \mathbb{Z}} P_{k,\lambda^2 m,\lambda\beta}.$$

Here $P_{k,m,\beta}$ denotes the Poincaré series of exponential type (as in [5]). The Fourier coefficients of these series are rational and they can be computed in terms of Eisenstein series (associated to other lattices) [10]. (In fact these are the basic modular forms which are used here to produce cusp forms.) In this code we require $k \geq 5/2$.

These series are implemented with

```
w.pss(k, beta, m, prec)
```

The construction of modular forms of antisymmetric weights is similar [11] and implemented with

```
w.pssd(k, beta, m, prec)
```

1.4 Bases of modular forms

1.4.1 Modular forms

The method

```
w.modular_forms_basis(k, prec)
```

returns a basis in echelon form of the space of modular forms $M_k(\rho)$ with Fourier expansions to precision $O(q^{prec})$.

Example. Modular forms of weight 11/2 for the Weil representation attached to the Cartan matrix A_5 , with Fourier expansions up to $O(q^5)$:

```
WeilRep(CartanMatrix(['A', 5])).modular_forms_basis(11/2, 4)
```

Output:

```
 \begin{bmatrix} (0,\ 0,\ 0,\ 0,\ 0),\ 1 + 180*q + 4404*q^2 + 26562*q^3 + 0(q^4) \end{bmatrix} \\ [(5/6,\ 2/3,\ 1/2,\ 1/3,\ 1/6),\ 20*q^7(7/12) + 1472*q^7(19/12) + 14076*q^7(31/12) + 57920*q^7(43/12) + 0(q^4) \end{bmatrix} \\ [(2/3,\ 1/3,\ 0,\ 2/3,\ 1/3),\ q^7(1/3) + 693*q^7(4/3) + 8680*q^7(7/3) + 43252*q^7(10/3) + 0(q^4) \end{bmatrix} \\ [(1/2,\ 0,\ 1/2,\ 0,\ 1/2),\ 552*q^7(5/4) + 7040*q^7(9/4) + 39888*q^7(13/4) + 0(q^4) \end{bmatrix} \\ [(1/3,\ 2/3,\ 0,\ 1/3,\ 2/3),\ q^7(1/3) + 693*q^7(4/3) + 8680*q^7(7/3) + 43252*q^7(10/3) + 0(q^4) \end{bmatrix} \\ [(1/6,\ 1/3,\ 1/2,\ 2/3,\ 5/6),\ 20*q^7(7/12) + 1472*q^7(19/12) + 14076*q^7(31/12) + 57920*q^7(43/12) + 0(q^4) \end{bmatrix} \\ [(1/6,\ 2/3,\ 1/2,\ 1/3,\ 1/6),\ -7*q^7(7/12) - 13*q^7(19/12) + 171*q^7(31/12) - 157*q^7(43/12) + 0(q^4) \end{bmatrix} \\ [(2/3,\ 1/3,\ 0,\ 2/3,\ 1/3),\ q^7(1/3) + 18*q^7(4/3) - 14*q^7(7/3) - 380*q^7(10/3) + 0(q^4) \end{bmatrix} \\ [(1/2,\ 0,\ 1/2,\ 0,\ 1/2),\ q^7(1/4) - 30*q^7(5/4) + 81*q^7(9/4) - 12*q^7(13/4) + 0(q^4) \end{bmatrix} \\ [(1/3,\ 2/3,\ 0,\ 1/3,\ 2/3),\ q^7(1/3) + 18*q^7(4/3) - 14*q^7(7/3) - 380*q^7(10/3) + 0(q^4) \end{bmatrix} \\ [(1/6,\ 1/3,\ 1/2,\ 2/3,\ 5/6),\ -7*q^7(7/12) - 13*q^7(19/12) + 171*q^7(31/12) - 157*q^7(43/12) + 0(q^4) \end{bmatrix} \\ [(1/6,\ 1/3,\ 1/2,\ 2/3,\ 5/6),\ -7*q^7(7/12) - 13*q^7(19/12) + 171*q^7(31/12) - 157*q^7(43/12) + 0(q^4) \end{bmatrix} \\ [(1/6,\ 1/3,\ 1/2,\ 2/3,\ 5/6),\ -7*q^7(7/12) - 13*q^7(19/12) + 171*q^7(31/12) - 157*q^7(43/12) + 0(q^4) \end{bmatrix} \\ [(1/6,\ 1/3,\ 1/2,\ 2/3,\ 5/6),\ -7*q^7(7/12) - 13*q^7(19/12) + 171*q^7(31/12) - 157*q^7(43/12) + 0(q^4) \end{bmatrix} \\ [(1/6,\ 1/3,\ 1/2,\ 2/3,\ 5/6),\ -7*q^7(7/12) - 13*q^7(19/12) + 171*q^7(31/12) - 157*q^7(43/12) + 0(q^4) \end{bmatrix}
```

1.4.2 Cusp forms

The method

```
w.cusp_forms_basis(k, prec)
```

returns a basis in echelon form of the space of cusp forms $S_k(\rho)$ with Fourier expansions to precision $O(q^{prec})$.

Example. Cusp forms of weight 4 for the Weil representation attached to the Cartan matrix A_6 , with Fourier expansions up to $O(q^4)$:

```
WeilRep(CartanMatrix(['A', 6])).modular_forms_basis(4, 4)
```

Output:

```
 \begin{array}{l} [(0,\ 0,\ 0,\ 0,\ 0,\ 0),\ 0(q^4)] \\ [(6/7,\ 5/7,\ 4/7,\ 3/7,\ 2/7,\ 1/7),\ -17*q^(4/7)\ +\ 68*q^(11/7)\ -\ 135*q^(18/7)\ +\ 125*q^(25/7)\ +\ 0(q^4)] \\ [(5/7,\ 3/7,\ 1/7,\ 6/7,\ 4/7,\ 2/7),\ 5*q^(2/7)\ +\ 27*q^(9/7)\ -\ 89*q^(16/7)\ +\ 40*q^(23/7)\ +\ 0(q^4)] \\ [(4/7,\ 1/7,\ 5/7,\ 2/7,\ 6/7,\ 3/7),\ q^(1/7)\ -\ 45*q^(8/7)\ +\ 340*q^(22/7)\ +\ 0(q^4)] \\ [(3/7,\ 6/7,\ 2/7,\ 5/7,\ 1/7,\ 4/7),\ -q^(1/7)\ +\ 45*q^(8/7)\ -\ 340*q^(22/7)\ +\ 0(q^4)] \\ [(2/7,\ 4/7,\ 6/7,\ 1/7,\ 3/7,\ 5/7),\ -5*q^(2/7)\ -\ 27*q^(9/7)\ +\ 89*q^(16/7)\ -\ 40*q^(23/7)\ +\ 0(q^4)] \\ [(1/7,\ 2/7,\ 3/7,\ 4/7,\ 5/7,\ 6/7),\ 17*q^(4/7)\ -\ 68*q^(11/7)\ +\ 135*q^(18/7)\ -\ 125*q^(25/7)\ +\ 0(q^4)] \end{array}
```

1.4.3 Modular forms with specified order at ∞

The method

w.basis_vanishing_to_order(k, N, prec, inclusive=False)

returns a basis in echelon form of the space of modular forms of weight k which vanish to order at least N at ∞ . Setting the optional parameter *inclusive* to True forces the coefficient of q^N itself to zero.

Example. Let $M_{13}(\rho^*)$ be the space of modular forms of weight 13 for the Gram matrix $S = \begin{pmatrix} -2 & -1 \\ -1 & -2 \end{pmatrix}$. To compute the subspace of modular forms which vanish to order at least 2/3:

WeilRep(matrix([[-2,-1],[-1,-2]])).basis_vanishing_to_order(13, 2/3, 4)

Output:

```
 \begin{array}{l} [(0, 0), q - 18*q^2 + 108*q^3 + 0(q^4)] \\ [(1/3, 1/3), 3*q^4(4/3) - 69*q^7(7/3) + 690*q^1(10/3) + 0(q^4)] \\ [(2/3, 2/3), 3*q^4(4/3) - 69*q^7(7/3) + 690*q^1(10/3) + 0(q^4)] \end{array}
```

1.4.4 Nearly holomorphic modular forms

A nearly-holomorphic modular form is a function which transforms like a modular form and is holomorphic on $\mathbb H$ but may have a pole at cusps. The method

```
w.nearly_holomorphic_modular_forms_basis(k, N, prec, inclusive = False)
```

returns a basis of the space of nearly-holomorphic modular forms of weight k with a pole of order at most N at ∞ with principal parts which are as simple as possible. Setting the optional parameter *inclusive* to False does not allow forms with pole order exactly N.

Example. In [12] Zagier considered a sequence of forms $g_D(\tau) \in M_{3/2}^+(\Gamma_0(4))$ whose Fourier expansions take the form

$$g_D(\tau) = q^{-D} + \sum_{n=0}^{\infty} B(D, n)q^n, \ B(D, n) \in \mathbb{Z}$$

in his work on traces of singular moduli. We can realize these as modular forms for the Gram matrix (2) and compute them as follows.

WeilRep(matrix([[2]])).nearly_holomorphic_modular_forms_basis(3/2, 2, 3)

Output:

```
 \begin{bmatrix} (0), -2 - 492*q - 7256*q^2 - 53008*q^3 + 0(q^4) \end{bmatrix} \\ [(1/2), q^(-1/4) + 248*q^(3/4) + 4119*q^(7/4) + 33512*q^(11/4) + 192513*q^(15/4) + 0(q^4) \end{bmatrix} \\ [(0), q^-1 - 2 - 143376*q - 26124256*q^2 - 1417904008*q^3 + 0(q^4) ] \\ [(1/2), -26752*q^(3/4) - 8288256*q^(7/4) - 561346944*q^(11/4) - 18508941312*q^(15/4) + 0(q^4) ] \\ [(0), q^-565760*q - 190356480*q^2 - 16555069440*q^3 + 0(q^4) ] \\ [(1/2), q^(-5/4) + 85995*q^(3/4) + 52756480*q^(7/4) + 5874905295*q^(11/4) + 292658282496*q^(15/4) + 0(q^4) ] \\ [(0), q^-2 - 18473000*q - 29071392966*q^2 - 8251987131648*q^3 + 0(q^4) ] \\ [(1/2), -1707264*q^(3/4) - 5734772736*q^(7/4) - 2225561184000*q^(11/4) - 312211675238400*q^(15/4) + 0(q^4) ] \\ [(1/2), -1707264*q^(3/4) - 5734772736*q^(7/4) - 2225561184000*q^(11/4) - 312211675238400*q^(15/4) + 0(q^4) ] \\ [(1/2), -1707264*q^(3/4) - 5734772736*q^(7/4) - 2225561184000*q^(11/4) - 312211675238400*q^(15/4) + 0(q^4) ] \\ [(1/2), -1707264*q^(3/4) - 5734772736*q^(7/4) - 2225561184000*q^(11/4) - 312211675238400*q^(15/4) + 0(q^4) ] \\ [(1/2), -1707264*q^(3/4) - 5734772736*q^(7/4) - 2225561184000*q^(11/4) - 312211675238400*q^(15/4) + 0(q^4) ] \\ [(1/2), -1707264*q^(3/4) - 5734772736*q^(7/4) - 2225561184000*q^(11/4) - 312211675238400*q^(15/4) + 0(q^4) ] \\ [(1/2), -1707264*q^(3/4) - 5734772736*q^(7/4) - 2225561184000*q^(11/4) - 312211675238400*q^(15/4) + 0(q^4) ] \\ [(1/2), -1707264*q^(3/4) - 5734772736*q^(7/4) - 2225561184000*q^(11/4) - 312211675238400*q^(15/4) + 0(q^4) ] \\ [(1/2), -1707264*q^(3/4) - 5734772736*q^(7/4) - 2225561184000*q^(11/4) - 312211675238400*q^(15/4) + 0(q^4) ] \\ [(1/2), -1707264*q^(3/4) - 5734772736*q^(7/4) - 2225561184000*q^(11/4) - 312211675238400*q^(15/4) + 0(q^4) ] \\ [(1/2), -1707264*q^(3/4) - 5734772736*q^(7/4) - 2225561184000*q^(11/4) - 312211675238400*q^(15/4) + 0(q^4) ] \\ [(1/2), -1707264*q^(3/4) - 5734772736*q^(1/4) - 312211675238400*q^(15/4) + 0(q^4) ] \\ [(1/2), -1707264*q^(3/4) - 5734772736*q^(1/4) - 312211675238400*q^(15/4) + 0(q^4) ] \\ [(1/2), -1707264*q^(3/4) - 5734772736*q^(1/4) - 312211675238400*q^(15/4) + 0(q^4)
```

1.4.5 Borcherds obstruction space

Define the Borcherds obstruction space as the space of holomorphic modular forms whose constant terms are multiples of \mathfrak{e}_0 . Following [3] (for lattices of the correct signature) elements of this space may be thought of as obstructions to the existence of Borcherds products with specificed divisor and weight. In large weight (at least 5/2) this is spanned by the cusp space $S_k(\rho)$ and the Eisenstein series $E_{k,0}$.

This space can be computed with

w.borcherds_obstructions(k, prec)

where k is the weight and prec is the precision to which the Fourier series are computed.

1.5 Dimension formulas

We use the Riemann-Roch theorem to compute dimensions of spaces of modular forms in weight at least 2. In small weights we compute a *basis* of $M_k(\rho)$ first and then take its length. (This is slow!)

1.5.1 Modular forms

The method

w.modular_forms_dimension(k, eta_twist=0)

computes the dimension

$$\dim M_k(\rho \otimes \chi^N),$$

where χ is the multiplier system of $\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n)$ and N is the optional parameter eta_twist (by default N = 0).

1.5.2 Cusp forms

The method

w.cusp_forms_dimension(k, eta_twist=0)

computes the dimension

$$\dim S_k(\rho \otimes \chi^N),$$

where χ is the multiplier system of $\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n)$ and N is the optional parameter eta_twist (by default N = 0).

2 Vector-valued modular forms

Vector-valued modular forms are instances of the WeilRepModularForm class. Suppose f is a vector-valued modular form.

2.1 Fourier coefficients

2.1.1 Fourier expansion

The Fourier expansion of f is recovered with

f.fourier_expansion()

The output is a list of tuples of the form $(g, N, \phi_g(q))$ where g is a vector, $N \in \mathbb{Q}$ and ϕ_g is a power series in q, meant to indicate that

$$f = \sum_{q} q^{-N} \phi_g(q) \mathfrak{e}_g.$$

2.1.2 Coefficients

f.coefficients() produces the Fourier coefficients of f as a dictionary. The keys are tuples $(g_1, ..., g_d, n)$ and the output is the coefficient of $q^n \mathfrak{e}_{(g_1, ..., g_d)}$ in f.

2.1.3 Coefficient vector

```
f.coefficient_vector()
```

sorts the Fourier coefficients of f and combines them to a vector.

2.1.4 Components

f.components()

produces the components of f as a dictionary. The keys are tuples $(g_1, ... g_d)$ and the output is the Fourier series $f_{g_1, ..., g_d}$ (i.e. the component in f) as a power series with exponents rounded up to integers.

2.2 Arithmetic operations

Addition and subtraction are defined as usual.

2.2.1 Multiplication

Multiplication of vector-valued modular forms should be understood as the tensor product. If $f \in M_{k_1}(\rho_{S_1})$ and $g \in M_{k_2}(\rho_{S_2})$ are vector-valued modular forms for Weil representations associated to S_1 and S_2 then $f \otimes g$ is a modular form for the direct sum $S_1 \oplus S_2$.

Example. Input:

```
w = WeilRep(matrix([[-2]]))
E = w.eisenstein_series(5/2, 5)
E * E
```

The output is a modular form of weight 5 for the dual Weil representation attached to $\begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$:

To multiply $f \in M_k(\rho)$ by a scalar-valued modular form g one should convert g to a vector-valued modular form (for the rank zero lattice) using the command

```
smf(k, g)
```

and then multiply as usual.

Example. To multiply the Cohen Eisenstein series of weight 5/2 by the discriminant Δ , use

```
E = WeilRep(matrix([[-2]])).eisenstein_series(5/2, 5)
E * smf(12, delta_qexp(5))
```

2.3 Other operations

2.3.1 Bol operator

If f is a modular form of integral weight $k \leq 1$ then its image under the Bol operator

$$D = \left(\frac{1}{2\pi i} \frac{d}{d\tau}\right)^{1-k} f(\tau)$$

is a modular form of weight 2-k. This is implemented by the method

f.bol()

2.3.2 Conjugation

The method

f.conjugate(A)

can be used to change lattice bases. If f is a modular form for the Gram matrix then f.conjugate(A) is a modular form for the Gram matrix A^TSA . (Note: A does not need to be invertible.)

2.3.3 Hecke operators

The method

f.hecke_T(N)

applies the Hecke operator T_N to f using the formula of [1]. The lattice does not have to be positive-definite. (Warning: this is only implemented when N is coprime to the level of the lattice!)

Similarly the methods

f.hecke_U(N)

and

f.\hecke_V(N)

apply the index-raising Hecke operators U_N and V_N (cf. [4]). These are maps

$$U_N: M_k(\rho) \longrightarrow M_k(\rho(N^2)), \text{ and } V_N: M_k(\rho) \longrightarrow M_k(\rho(N)),$$

where $\rho(N)$ denotes the Weil representation for the lattice L(N) with quadratic form rescaled by N, i.e. $L(N) = (L, N \cdot Q)$. They specialize to the Eichler–Zagier Hecke operators on Jacobi forms when L is positive-definite.

Finally the method

f.hecke_P(N)

implements the index-lowering Hecke operator P_N of [4]. This is a map

$$P_N: M_k(\rho(N^2)) \longrightarrow M_k(\rho)$$

with the property $P_N \circ U_N = id$.

2.3.4 Lattice reduction

Suppose L is an isotropic lattice over \mathbb{Z} of signature (b^+, b^-) with a norm zero vector z. The method f.reduce_lattice()

implements the lattice-reduction map from L to the signature $(b^+ - 1, b^- - 1)$ lattice z^{\perp}/z . In the notation of Borcherds ([2], especially sections 5, 6) this takes the form F_M as input and yields the form F_K . The norm-zero vector z can be provided; if no z is given then we try to find one using PARI qfsolve().

In this setup note that $|L| = N^2 \cdot |z^{\perp}/z|$ for some N. In particular if L is isotropic but has squarefree discriminant (or if L has odd rank, and |L|/2 is squarefree) then this method always yields a modular form on a smaller lattice whose discriminant form is equivalent to that of L.

2.3.5 Serre derivative

If f is a modular form of weight k then its Serre derivative

$$Sf(\tau) = \frac{1}{2\pi i}f'(\tau) - \frac{k}{12}f(\tau)E_2(\tau)$$

is a modular form of weight k+2. This is implemented by the method

f.serre_derivative()

2.3.6 Theta contraction

Suppose f is a modular form of weight k for a Gram matrix \tilde{S} which can be written as a block matrix

$$\tilde{S} = \begin{pmatrix} S & S\beta \\ (S\beta)^T & 2m + \beta^T S\beta \end{pmatrix}$$

where $m \in \mathbb{Q}$, m > 0. The theta contraction Θf of f is a twisted product of f with a rank one theta function. The result is a modular form of weight k + 1/2 for the Gram matrix S. This is useful in the context of theta lifts as it corresponds to the pullbacks of modular forms on orthogonal groups.

Example. Compute the theta contraction of the weight three Eisenstein series E attached to the Gram matrix $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. Input:

```
S = matrix([[2, 1], [1, 2]])
E = WeilRep(S).eisenstein_series(3,5)
print(E.theta_contraction())
```

Output:

[(0), 1 + 126*q + 756*q^2 + 2072*q^3 + 4158*q^4 + 0(q^5)]
[(1/2), 56*q^(3/4) + 576*q^(7/4) + 1512*q^(11/4) + 4032*q^(15/4) + 5544*q^(19/4) + 0(q^5)]
i.e.
$$\Theta E$$
 is the Eisenstein series of weight 7/2 attached to the Gram matrix (2).

2.3.7 Trace map

Suppose $f \in M_k(\rho)$ and $g \in M_\ell(-\rho)$ are modular forms whose Gram matrices are negatives of one another. The operation

f & g

computes the trace-map

$$\langle f, g \rangle := \sum_{\gamma} f_{\gamma}(\tau) g_{\gamma}(\tau) \in M_{k+\ell},$$

which is a (scalar) modular form of weight $k + \ell$.

3 Jacobi forms

Construct the module of Jacobi forms of index m with

JacobiForms(m)

where m is either a positive-definite Gram matrix or a positive integer.

3.1 Basic attributes

Let

```
j = JacobiForms(m)
```

be a JacobiForms instance. The following basic attributes can be computed.

3.1.1 Index

```
j.index()
```

returns the index (as a matrix, or as a number if the matrix is one-dimensional).

```
j.index_matrix()
```

always returns the index as a matrix.

3.1.2 Weil representation

```
j.theta_decomposition()
```

returns the Weil representation corresonding to this module of Jacobi forms.

3.2 Construction of Jacobi forms

3.2.1 Jacobi Eisenstein series

```
j.eisenstein_series(k, prec)
```

computes the Jacobi Eisenstein series of weight k to precision prec (with respect to the $q = e^{2\pi i \tau}$ variable). For example the Jacobi Eisenstein series $E_{4,1}$ of weight 4 and index 1 can be computed to precision $O(q^5)$ with

```
JacobiForms(1).eisenstein_series(4, 5)
```

More directly,

```
jacobi_eisenstein_series(k, m, prec)
```

constructs the Jacobi Eisenstein series of weight k and index m.

Similarly the commands

```
j.eisenstein_oldform()
```

and

```
j.eisenstein_newform()
```

can be used to compute other Eisenstein series.

3.2.2 Theta blocks

Theta blocks were introduced in [8]. For $\mathbf{a} = (a_1, ..., a_r) \in \mathbb{Z} \setminus \{0\}$ and $n \in \mathbb{Z}$ define

$$\vartheta_{\mathbf{a},n} := \eta^n(\tau) \prod_{i=1}^r \vartheta(\tau, a_i z)$$

where

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n) = \sum_{n=1}^{\infty} {12 \choose n} q^{n^2/24}$$

and

$$\vartheta(\tau,z) = q^{1/8} \zeta^{1/2} \prod_{n=1}^{\infty} (1 - q^n) (1 - q^n \zeta) (1 - q^{n-1} \zeta^{-1}) = \sum_{n \in \mathbb{Z}} \binom{-4}{n} q^{n^2/8} \zeta^{n/2}.$$

When $\sum_{i=1} a_i$ is even and $r/8 + n/24 \in \mathbb{Z}$ this transforms like a Jacobi form. (Whether it is holomorphic in the cusps is a trickier point.)

Theta blocks are implemented with the command $theta_block(a, n, prec)$.

Example (from [8]). The (unique, up to scalar) Jacobi form of weight 2 and index 25 is the theta block with $\mathbf{a} = [1, 1, 1, 1, 2, 2, 2, 3, 3, 4]$ and n = -6. To compute it (here only to precision $O(q^2)$): Input:

print(theta_block([1,1,1,1,2,2,2,3,3,4],-6,2))

Output:

```
 (w_0^-10 - 4*w_0^-9 + 3*w_0^-8 + 6*w_0^-7 - 7*w_0^-6 - 2*w_0^-5 - 4*w_0^-4 + 10*w_0^-3 + 6*w_0^-2 - 10*w_0^-1 + 2 - 10*w_0 + 6*w_0^2 + 10*w_0^3 - 4*w_0^4 - 2*w_0^5 - 7*w_0^6 + 6*w_0^7 + 3*w_0^8 - 4*w_0^9 + w_0^10)*q + 0(q^2)
```

3.2.3 Jacobi forms from vector-valued modular forms

If f is a vector-valued modular form for the Weil representation attached to a positive-definite Gram matrix m, then f comes with the method

f.jacobi_form()

which produces the Jacobi form of index m whose theta decomposition is f itself.

3.3 Spaces of Jacobi forms

Again let

j = JacobiForms(m)

be a JacobiForms instance.

3.3.1 Jacobi forms

The method

j.basis(k, prec)

computes a basis of (holomorphic) Jacobi forms of weight k for the given index with Fourier expansions to precision prec (with respect to the $q = e^{2\pi i \tau}$ variable).

Generally we use whatever methods are avaiable to compute bases of spaces of vector-valued modular forms and then pass to the associated Jacobi forms. For scalar-index Jacobi forms of low weights (2 and 3) we sometimes look through families of theta blocks first.

The method

j.dimension(k)

computes the dimension of the space of (holomorphic) Jacobi forms of weight k using the Riemann-Roch formula.

3.3.2 Cusp forms

The method

j.cusp_forms_basis(k, prec)

computes a basis of Jacobi cusp forms of weight k for the given index with Fourier expansions to precision prec (with respect to the $q = e^{2\pi i \tau}$ variable).

Generally we use whatever methods are avaiable to compute bases of spaces of vector-valued cusp forms and then pass to the associated Jacobi forms. For scalar-index Jacobi forms of low weights (2 and 3) we sometimes look through families of theta blocks first.

The method

j.cusp_forms_dimension(k)

computes the dimension of the space of Jacobi cusp forms of weight k using the Riemann-Roch formula.

3.3.3 Weak Jacobi forms

A weak Jacobi form is a holomorphic function that transforms like a Jacobi form and has Fourier expansion of the form

$$\phi(\tau, z) = \sum_{n=0}^{\infty} \sum_{r} c(n, r) q^{n} \zeta^{r}$$

but without restrictions on r.

The method

j.weak_forms_basis(k, prec)

computes a basis of weak Jacobi forms of weight k for the given index with Fourier expansions to precision prec. (Here the weight k may be negative!)

3.4 Operations on Jacobi forms

3.4.1 Arithmetic operations

Jacobi forms of the same weight and index can be added and subtracted. Jacobi forms whose indices have the same rank can be multiplied in the usual way. Also Jacobi forms can be multiplied by modular forms (i.e. ModularFormElements).

3.4.2 Direct product

Call the direct product of two Jacobi forms f (of index m_1) and g (of index m_2) the Jacobi form in rank (m_1) + rank (m_2) elliptic variables obtained by inserting distinct elliptic variables in f and g and multiplying i.e.

$$(f \times g)(\tau, (z_1, z_2)) = f(\tau, z_1) \cdot g(\tau, z_2).$$

This is a Jacobi form of index $m_1 \oplus m_2$. It is implemented as the operation **.

Example. Let $E_{4,1}$ be the Jacobi Eisenstein series of weight 4 and index 1. We will take its direct product with itself. Input:

```
E41 = jacobi_eisenstein_series(4,1,2)
E41 ** E41
Output:
1 + (w_0^2 + w_1^2 + 56*w_0 + 56*w_1 + 252 + 56*w_1^-1 + 56*w_0^-1 + w_1^-2 + w_0^-2)*q + O(q^2)
```

3.4.3 Hecke operators

The Hecke operators T_N are currently only implemented for values N that are coprime to the level of the lattice. (Warning: when the index m is a scalar then the level is 4m!) This is the method $hecke_{-}T(N)$. The formula is taken from section 2.6 of A. Ajouz's thesis [1].

Example. The image of $E_{4,1}$ under T_3 . Input:

```
E41 = jacobi_eisenstein_series(4, 1, 40)
print(E41.hecke_T(3))
```

The Hecke U-operators are defined by

$$(\phi|U_N)(\tau,z) = \phi(\tau,Nz).$$

If ϕ has index m then $\phi|U_N$ has index N^2m . This is implemented with the method $hecke_-U(N)$.

Example. The image of $E_{4,1}$ under U_2 . Input:

```
E41 = jacobi_eisenstein_series(4,1,3)
print(E41.hecke_U(2))
```

Output:

 $+ 0(q^3)$

```
1 + (w_0^-4 + 56*w_0^-2 + 126 + 56*w_0^2 + w_0^4)*q + (126*w_0^-4 + 576*w_0^-2 + 756 + 576*w_0^2 + 126*w_0^4)*q^2 + 0(q^3)
```

The Hecke V-operators are defined by

E41 = jacobi_eisenstein_series(4,1,5)

$$\left(\phi|V_N\right)(\tau,z) = N^{k-1} \sum_{M} (c\tau + d)^{-k} e^{-2\pi i NcQ(z)/(c\tau + d)} \phi\left(\frac{a\tau + b}{c\tau + d}, \frac{Nz}{c\tau + d}\right)$$

where $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ runs through $\mathrm{SL}_2(\mathbb{Z})$ -cosets of matrices with integer entries and determinant N. If ϕ has index m then $\phi|V_N$ has index Nm. This is implemented with the method $hecke_-V(N)$.

Example. The image of $E_{4,1}$ under V_2 . Input:

```
print(E41.hecke_V(2))
Output:
9 + (126*w_0^-2 + 576*w_0^-1 + 756 + 576*w_0 + 126*w_0^2)*q
+ (9*w_0^-4 + 576*w_0^-3 + 2520*w_0^-2 + 4032*w_0^-1 + 5166 + 4032*w_0 + 2520*w_0^2 + 576*w_0^3 + 9*w_0^4)*q^2
```

3.4.4 Zero-values

Let $f(\tau, z_0, ..., z_{d-1})$ be a Jacobi form in d elliptic variables. The method substitute_zero(indices) returns the Jacobi form obtained by setting some subset of the z_i to zero. (In other words setting $w_i = e^{2\pi i z_i}$ to 1.) indices should be a list containing distinct numbers between 0 and d-1.

Example. The zero-value of the Jacobi Eisenstein series of weight four and index 1. Input:

```
E41 = jacobi_eisenstein_series(4,1,5)
E41.substitute_zero([0])
Output:
1 + 240*q + 2160*q^2 + 6720*q^3 + 17520*q^4 + O(q^5)
```

(This is a JacobiForm instance of index (empty matrix).)

The higher Taylor coefficients about zero are not (yet?) implemented.

3.4.5 Pullback

Let $f(\tau, \mathbf{z})$ be a Jacobi form with $\mathbf{z} \in \mathbb{C}^d$ and let $a \in \mathbb{Z}^{c \times d}$ be a matrix of rank c. The method pullback(a) computes the Jacobi form $f(\tau, a\mathbf{z})$. If f has index m then its pullback along a has index ama^T (and the same weight).

Example. The pullback of the weight 4 Jacobi Eisenstein series of index $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ along the matrix a = (1, 2) is a Jacobi form of index 7. Input:

```
f = jacobi_eisenstein_series(4,matrix([[2,1],[1,2]]),2)
f.pullback(matrix([[1,2]]))

Output:

1 + (w_0^-5 + w_0^-4 + 27*w_0^-3 + 27*w_0^-2 + 28*w_0^-1 + 72 + 28*w_0 + 27*w_0^2 + 27*w_0^3 + w_0^4 + w_0^5)*q + 0(q^2)
```

3.4.6 Theta decomposition

The method

f.theta_decomposition()

returns the Theta decomposition of a Jacobi form f as a vector-valued modular form.

3.5 Recovering Fourier coefficients from Jacobi forms

Let f be a JacobiForm instance.

The method

```
f.coefficient_vector()
```

outputs the Fourier coefficients c(n,r) of f without redundancy as a vector sorted by increasing value of $n-r^2/4m$ (and its generalization to lattice index Jacobi forms).

The method

f.q_coefficients()

outputs the Fourier coefficients of f with respect to q only as a list of multivariate Laurent polynomials in variables $w_i = e^{2\pi i z_i}$.

The method

f.fourier_expansion()

outputs the Fourier expansion of f as a power series in q.

4 Modular forms on orthogonal groups

The class Orthogonal Modular Forms represents spaces of modular forms on the Type IV domain attached to an even lattice (L, Q). For now we only allow lattices that are split by a hyperbolic plane over \mathbb{Z} ; i.e. those of the form

$$L \oplus H$$

where H is the hyperbolic plane (\mathbb{Z}^2 with quadratic form $(x,y) \mapsto xy$) and where L is Lorentzian. In this section we only consider the case where L is itself of the form $K \oplus H$ with K positive-definite. (For general L see the next chapter.)

An Orthogonal Modular Forms instance can be constructed by calling

OrthogonalModularForms(S)

where S is a Gram matrix for the *positive-definite* part L, or

OrthogonalModularForms(w)

where w is a WeilRep instance for a positive-definite quadratic form.

Orthogonal modular forms for the Gram matrix S (of rank n) have Fourier expansions of the form

$$f(Z) = f(\tau, z, w) = \sum_{a,c=0}^{\infty} \sum_{b \in L} \alpha(a, b, c) q^a r^b s^c,$$

where $\tau, w \in \mathbb{H}$ and $z \in \mathbb{C}^n$ with $Q(\operatorname{im}(z)) < \operatorname{im}(\tau) \cdot \operatorname{im}(w)$, and where $q = e^{2\pi i \tau}$, $r = e^{2\pi i b^T z}$ and $s = e^{2\pi i w}$.

Note:

ParamodularForms(N)

is a shortcut for the Orthogonal Modular Forms instance with Gram matrix S = ((2N)).

4.1 Construction of modular forms

Let

m = OrthogonalModularForms(S)

be an orthogonal modular forms instance.

4.1.1 Eisenstein series

The method

m.eisenstein_series(k, prec)

computes the weight k Eisenstein series

$$E_k(Z) = \sum_{M \in \Gamma_{S,\infty} \setminus \Gamma_S} j(M; Z)^{-k},$$

where Γ_S is the orthogonal modular group; j(M;Z) is the cocycle; and $\Gamma_{S,\infty}$ is the subgroup of Γ_S that leaves the constant 1 invariant. (This is actually computed as a theta lift.)

Here k should be an even integer (sufficiently large) and prec denotes the precision with respect to both q and s.

Example. The Siegel Eisenstein series of degree 2 and weight 4 up to precision 5. Input:

ParamodularForms(1).eisenstein_series(4, 5)

4.1.2 Additive theta lift

Let L be a positive-definite even lattice of rank n and let $M_k(\Gamma_L)$ denote the space of modular forms of weight k for the Type IV domain attached to $L \oplus II_{2,2}$. The additive theta lift is a linear map

$$\Phi: M_{k-n/2}(\rho_L) \longrightarrow M_k(\Gamma_L).$$

Also Φ takes cusp forms to cusp forms. This is implemented with the method theta_lift().

Example. The theta lift of the weight 8 cusp form attached to the A_2 root lattice. Input:

```
w = WeilRep(matrix([[2, 1], [1, 2]]))
f = w.cusp_forms_basis(8, 5)[0]
f.theta_lift()
```

4.1.3 Borcherds lift

Let L be a positive-definite even lattice of rank n. The Borcherds lift [2] is a multiplicative map

$$\Phi: M^!_{-n/2}(\rho_L) \longrightarrow M_*(\Gamma_L)$$

where $M^!_{-n/2}$ denotes nearly-holomorphic modular forms. The result may transform with a character. This is implemented with the method $borcherds_lift()$.

Example. The product of ten theta-constants is a Siegel modular form of degree two with weight 5 with a character of order two. Construction as a Borcherds product: input

```
w = WeilRep(matrix([[2]]))
f = w.nearly_holomorphic_modular_forms_basis(-1/2, 1/4, 5)[0]
f.borcherds_lift()
```

4.1.4 Gritsenko lift

If f is a Jacobi form then its Gritsenko lift

$$\Phi(f) = \sum_{n=0}^{\infty} (f|V_n)s^n$$

is an orthogonal modular form of the same weight. This is closely related to the additive theta lift. It is implemented with the method $gritsenko_lift()$.

Example. The Gritsenko lift of the Jacobi cusp form of index 2 and weight 11. Input:

f = JacobiForms(2).cusp_forms_basis(11, 5)[0]
f.gritsenko_lift()

4.1.5 Spezialschar

The method spezialschar(k, prec) computes a basis of the Maass Spezialschar of weight k to precision prec (i.e. cusp forms which are additive lifts).

Example. The Spezialschar of Siegel modular forms of degree two and weight 10. Input:

ParamodularForms(1).spezialschar(10, 5)

4.2 Representations of modular forms

4.2.1 Fourier expansion

The Fourier expansion of the modular form can be recovered with $fourier_expansion()$. The result is a power series in variables q, s over a ring of Laurent polynomials in the variables $r_0, ..., r_{n-1}$ where n is the rank of the lattice.

4.2.2 Fourier-Jacobi expansion

The Fourier–Jacobi expansion of the modular form f is the representation

$$f(\tau, z, w) = \sum_{n=0}^{\infty} \phi_n(\tau, z) s^n, \ s = e^{2\pi i w}$$

where each ϕ_n is a Jacobi form of the same weight. This is implemented with $fourier_jacobi()$. The result is a list of JacobiForm instances.

Example. The Fourier–Jacobi expansion of the Siegel Eisenstein series of degree 2 and weight 4. Input:

E4 = ParamodularForms(1).eisenstein_series(4, 5)
E4.fourier_jacobi()

4.2.3 Coefficient dictionary

The method coefficients() produces a dictionary of the modular form f's Fourier coefficients.

4.3 Inputs for Borcherds products

Let

m = OrthogonalModularForms(S)

be an Orthogonal Modular Forms instance.

4.3.1 Finding all holomorphic products of a given weight

The method $borcherds_input_by_weight(k, prec)$ outputs a list of all nearly-holomorphic vector-valued modular forms (to precision prec) whose Borcherds lifts are holomorphic and have weight k.

Example. To find the two Siegel modular forms of degree 2 and weight 35 that are Borcherds products: input

ParamodularForms(1).borcherds_input_by_weight(35, 5)

which produces the input functions to precision $O(q^5)$.

4.3.2 Bases of holomorphic products

Let $D \in \mathbb{R}_{>0}$ be a bound. The method borcherds_input_basis(D, prec) outputs a list ($F_1, ..., F_N$) of nearly-holomorphic vector-valued modular forms (to precision prec) with a pole at ∞ of order at most D, and which is minimal with the following property: the input functions F with pole order at most D whose Borcherds lifts are holomorphic are exactly the linear combinations

$$F = k_1 F_1 + ... + k_N F_N, \ k_i \in \mathbb{N}_0.$$

Example. To compute the semigroup of holomorphic Borcherds products for the paramodular group of level N=5 with zeros on Humbert surfaces of discriminant at most 10. Input:

ParamodularForms(5).borcherds_input_basis(1/2, 5)

Taking the Borcherds lifts of these forms yields 13 semigroup generators. These generators have weights 4, 5, 10, 11, 17, 18, 23, 24, 29, 30, 36, 42, 48.

4.4 Other methods

4.4.1 Maass relations

The method $is_lift()$ tests whether the given orthogonal modular form satisfies the Maass relations, i.e. whether it is a lift.

4.4.2 Jacobian

Suppose L has rank n and a list $F_0, ..., F_n$ of (n+1) orthogonal modular forms of weights $k_0, ..., k_n$ is given. The function

```
jacobian([F_0,...,F_n])
```

computes the modular Jacobian, or Rankin-Cohen-Ibukiyama operator:

$$J(F_0, ..., F_n) = \det \begin{pmatrix} k_0 F_0 & ... & k_n F_n \\ \nabla F_0 & ... & \nabla F_n \end{pmatrix}.$$

Example. The Jacobian of the Siegel Eisenstein series E_4 , E_6 , E_{10} , E_{12} is the Siegel cusp form of weight 35. Check this with

```
m = ParamodularForms(1)
C = -589927441461779261030400000/2354734631251
jacobian([m.eisenstein_series(k, 7) for k in [4, 6, 10, 12]]) / C
```

(We divide at the end to remove the funny multiple from the Fourier coefficients.)

5 Modular forms on orthogonal groups II

In this chapter we compute with orthogonal modular forms attached to more general lattices of the form L+H, where H is the hyperbolic plane and where L is a Lorentzian lattice i.e. of signature (l-1,1). Again construct an OrthogonalModularForms instance by calling

OrthogonalModularForms(S)

where S is a Gram matrix for the Lorentzian part L, or

OrthogonalModularForms(w)

where w is a WeilRep instance for a Lorentzian quadratic form.

Warning: for most applications we need to fix a generator of the negative cone attached to L. The program always tries to choose the vector (0, ..., 0, 1). In other words the Gram matrix S must always have a strictly negative bottom-right entry; otherwise most methods do not work!

5.1 Special inputs

5.1.1 Lattices that split a rescaled hyperbolic plane

There is a special way to call Lorentzian lattices L that are split by a hyperbolic plane over \mathbb{Q} (not necessarily over \mathbb{Z}). Orthogonal modular forms attached to these lattices are represented as Fourier–Jacobi expansions in variables q, r, s (similarly to chapter 4).

The rescaled hyperbolic lattice by $N \in \mathbb{N}$ can be constructed with

II(N)

This produces the quadratic form $(x,y) \mapsto Nx(x-y)$ i.e. the Gram matrix $\begin{pmatrix} 0 & N \\ N & -2N \end{pmatrix}$. If K is a positive-definite lattice with Gram matrix S then we can produce the lattice $L = K + \Pi_{1,1}(N)$ by adding:

WeilRep(S) + II(N)

5.1.2 Hilbert modular forms

If K is a real-quadratic number field then HMF(K) represents orthogonal modular forms for the (lorentzian) lattice of integers of K, which are essentially the same as Hilbert modular forms. Modular forms attached to HMF are represented as power series of the form

$$f(\tau_1, \tau_2) = \sum_{\nu} c(\nu) q_1^{\nu} q_2^{\nu'},$$

where $q_n = e^{2\pi i \tau_n}$ and where ν runs through totally-nonnegative elements of the dual lattice $\mathcal{O}_K^{\#}$ i.e. $\nu, \nu' \geq 0$ where ν' is the conjugate. As an example, for Hilbert modular forms over $\mathbb{Q}(\sqrt{5})$:

```
x = var('x')
K.<sqrt5> = NumberField(x^2 - 5)
h = HMF(K)
```

5.2 Construction of modular forms

Suppose m = Orthogonal Modular Forms(S) is an orthogonal modular forms instance over a Lorentzian lattice with Gram matrix S of signature (1, n - 1).

5.2.1 Eisenstein series

The method

```
m.eisenstein_series(k, prec)
```

computes the Fourier series of the Eisenstein series of weight k to precision prec.

5.2.2 Additive theta lift

The additive theta lift of a modular form f of weight 1 + k - n/2 is implemented with the method

```
f.theta_lift()
```

The result is an orthogonal modular form of weight k.

5.2.3 Borcherds lift

Suppose f is a nearly-holomorphic modular form of weight 1 - n/2 with integral Fourier coefficients. The Borcherds product constructed from f is implemented with the method

```
f.borcherds_lift()
```

Example. Suppose $L = II_{1,1}$. The lift of $j(\tau) - 744$ is the modular function $j(\tau_1) - j(\tau_2)$. To check this, input:

```
j = OrthogonalModularForms(II(1)).borcherds_input_basis(1, 10)[1]
j.borcherds_lift()
```

References

- [1] Ali Ajouz. Hecke operators on Jacobi forms of lattice index and the relation to elliptic modular forms. Dissertation (adviser N. Skoruppa, 2015.
- [2] Richard Borcherds. Automorphic forms with singularities on Grassmannians. *Invent. Math.*, 132(3): 491–562, 1998.
- [3] Richard Borcherds. The Gross-Kohnen-Zagier theorem in higher dimensions. *Duke Math. J.*, 97(2): 219–233, 1999.
- [4] Vincent Bouchard, Thomas Creutzig, and Aniket Joshi. Hecke operators on vector-valued modular forms. SIGMA Symmetry Integrability Geom. Methods Appl., 15:Paper 041, 31, 2019.
- [5] Jan Bruinier. Borcherds products on O(2, l) and Chern classes of Heegner divisors, volume 1780 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.
- Jan Bruinier and Michael Bundschuh. On Borcherds products associated with lattices of prime discriminant. Ramanujan J., 7(1-3):49-61, 2003.
- [7] Raemeon Cowan, Daniel Katz, and Lauren White. A new generating function for calculating the Igusa local zeta function. Adv. Math., 304:355–420, 2017.
- [8] Valery Gritsenko, Nils-Peter Skoruppa, and Don Zagier. Theta blocks. URL https://arxiv.org/pdf/ 1907.00188.pdf.
- [9] Markus Schwagenscheidt. Eisenstein series for the Weil representation. J. Number Theory, 193:74–90, 2018.

- [10] Brandon Williams. Poincaré square series for the Weil representation. Ramanujan J., 47(3):605-650, 2018.
- [11] Brandon Williams. A construction of antisymmetric modular forms for Weil representations. $Math.\ Z,$ 2019. In press.
- [12] Don Zagier. Traces of singular moduli. In *Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998)*, volume 3 of *Int. Press Lect. Ser.*, pages 211–244. Int. Press, Somerville, MA, 2002.