3ª Guía Compiladores

)

Nombre: Escalona Zuñiga Juan Carlos

Grupo: 5CM2

Falso o Verdadero (F/V)		
1En lenguaje C los parámetros formales no tienen nombre	(F
2En lenguaje C los parámetros formales son como variables locales que ya fueron inicializadas en el momento de la llamada a la función o procedimiento 3En lenguaje C las variables locales (no estáticas) se crean cuando se entra a una función y se destruyen cuando se sale de la función	(v v
4En hoc los parámetros formales no tienen nombre	(F
5No es posible definir funciones recursivas en hoc	(F
6En hoc no hay variables locales	(F
7Es imposible que la pila de hoc se desborde (Stack Overflow)	(F
8En hoc cuando una función termina su ejecución se saca su marco de la pila9En hoc los parámetros reales son listas de expresiones	(V V
10En hoc las llamadas a función no son expresiones	((F V F
14En el Análisis sintáctico ascendente el árbol de análisis sintáctico la construcción se inicia en	(F
la raíz y avanza hacia las hojas 15En el Análisis sintáctico descendente se construye el árbol de análisis sintáctico de la cadena de desde las hojas y avanza hacia las raíz	(F
1Cuantas pilas hay en HOC6? B a) 1 b) 2 c) 3 d) 4		
2En HOC6 que se usa como pila de llamadas? B a) prog b) stack c) frame d) fp		
3,-Cual es el apuntador que apunta a la pila de llamadas? D a) stack b) stackp c) frame d) fp		
4Cual es el apuntador que apunta a la 1a instruccion de una funcion builtin? B a) ptr b) defn c) progbase d) progp		
5Cual es el apuntador que apunta a la 1a instruccion del cuerpo de una funcion o precedimien definido por el usuario? a) ptr b) defn c) progbase d) progp	1to	A
6Cual es el tipo de retorno de una funcion definida por el usuario en HOC6? A a) double b) int c) Datum d) Symbol		

```
7.-Que instruccion saca un marco de funcion de la pila de llamadas? A
a) --stackp b) --fp c) ++stackp d) ++fp
8.-Cual es el apuntador que apunta al ultimo de los parametros? D
a) stackp b) progbase c) fp d) argn
```

Problema.-Que codigo genera hoc5 para el codigo de abajo (dibuje el mapa de memoria)

```
i=0
while(1) print I

push 0
store i

L1:
    push 1
    jz L2
    load i
    print
    jmp L1
L2:
```

halt

tabla de analisis sintactico LR

Edo	acción			ir_a					
	id	+	*	()	\$	E	T	F
0	d5			d4			1	2	3
1		d6				acep			
2		r2	d7		r2	r2			
3		r4	r4		r4	r4			
4	d5			d4			8	2	3
5		r6	r6		r6	r6			
6	d5			d4				9	3
7	d5			d4					10
8		d6			d11				
9		r1	d7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Gramatica

(1)
$$E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3) T
$$\rightarrow$$
 T * F

(4)
$$T \rightarrow F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow id$$

Problema.--Analice la siguientes cadenas:

```
id * ( id + id * ( id + id ) )
```

1. Cadena: id * id

	Pila	Entrada	Acción
0		id * id \$	d5 (desplazar a estado 5)
0 ic	15	* id \$	r6 (reducir por $E \rightarrow id$)
0 E	3	* id \$	r4 (reducir por $J \rightarrow E$)
0 J	2	* id \$	d7 (desplazar a estado 7)
0 J	2 * 7	id \$	d5 (desplazar a estado 5)
0 J	2 * 7 id 5	\$	r6 (reducir por $E \rightarrow id$)
0 J	2 * 7 E 10	\$	r3 (reducir por $J \rightarrow J * E$)
0 J	2	\$	r2 (reducir por $E \rightarrow J$)
0 E	1	\$	acep (cadena aceptada)

2. Cadena: id * (id + id)

Pila	Entrada	Acción
0	id * (id + id) \$	d5 (desplazar a estado 5)
0 id 5	* (id + id) \$	r6 (reducir por $E \rightarrow id$)
0 E 3	* (id + id) \$	r4 (reducir por $J \rightarrow E$)
0 J 2	* (id + id) \$	d7 (desplazar a estado 7)
0 J 2 * 7	(id + id)\$	d4 (desplazar a estado 4)
0 J 2 * 7 (4	id + id) \$	d5 (desplazar a estado 5)
0 J 2 * 7 (4 id 5	+ id) \$	r6 (reducir por $E \rightarrow id$)
0 J 2 * 7 (4 E 8	+ id) \$	d6 (desplazar a estado 6)
0 J 2 * 7 (4 E 8 + 6	id) \$	d5 (desplazar a estado 5)
0 J 2 * 7 (4 E 8 + 6 id 5) \$	r6 (reducir por $E \rightarrow id$)
0 J 2 * 7 (4 E 8 + 6 E 9) \$	r1 (reducir por $E \rightarrow E + E$)
0J2*7(4E8) \$	d11 (desplazar a estado 11)
0 J 2 * 7 (4 E 8) 11	\$	r5 (reducir por $E \rightarrow (E)$)
0 J 2 * 7 E 10	\$	r3 (reducir por $J \rightarrow J * E$)
0 J 2	\$	r2 (reducir por $E \rightarrow J$)
0 E 1	\$	acep (cadena aceptada)

3. Cadena: (id + id) * (id + id)

Pila	Entrada	Acción
0	(id + id) * (id + id) \$	d4 (desplazar a estado 4)
0 (4	id + id) * (id + id) \$	d5 (desplazar a estado 5)
0 (4 id 5	+ id) * (id + id) \$	r6 (reducir por $E \rightarrow id$)
0 (4 E 8	+ id) * (id + id) \$	d6 (desplazar a estado 6)
0.(4 E 8 + 6)	id) * (id + id) \$	d5 (desplazar a estado 5)

Pila	Entrada	Acción
0 (4 E 8 + 6 id 5)) * (id + id) \$	r6 (reducir por $E \rightarrow id$)
0 (4 E 8 + 6 E 9) * (id + id) \$	r1 (reducir por $E \rightarrow E + E$)
0 (4 E 8) * (id + id) \$	d11 (desplazar a estado 11)
0 (4 E 8) 11	* (id + id) \$	r5 (reducir por $E \rightarrow (E)$)
0 E 1	* (id + id) \$	d6 (desplazar a estado 6)
0 E 1 * 6	(id + id)\$	d4 (desplazar a estado 4)
0 E 1 * 6 (4	id + id) \$	d5 (desplazar a estado 5)
0 E 1 * 6 (4 id 5	+ id) \$	r6 (reducir por $E \rightarrow id$)
0 E 1 * 6 (4 E 8	+ id) \$	d6 (desplazar a estado 6)
0 E 1 * 6 (4 E 8 + 6	id) \$	d5 (desplazar a estado 5)
0 E 1 * 6 (4 E 8 + 6 id 5)\$	r6 (reducir por $E \rightarrow id$)
0 E 1 * 6 (4 E 8 + 6 E 9)\$	r1 (reducir por $E \rightarrow E + E$)
0 E 1 * 6 (4 E 8)\$	d11 (desplazar a estado 11)
0 E 1 * 6 (4 E 8) 11	\$	r5 (reducir por $E \rightarrow (E)$)
0 E 1 * 6 E 9	\$	r1 (reducir por $E \rightarrow E * E$)
0 E 1	\$	acep (cadena aceptada)

4. Cadena: id * (id + id * (id + id))

Pila	Entrada	Acción
0	id * (id + id * (id + id)) \$	d5 (desplazar a estado 5)
0 id 5	* (id + id * (id + id)) \$	r6 (reducir por $E \rightarrow id$)
0 E 3	* (id + id * (id + id)) \$	r4 (reducir por $J \rightarrow E$)
0 J 2	* (id + id * (id + id)) \$	d7 (desplazar a estado 7)
0 J 2 * 7	(id + id * (id + id))\$	d4 (desplazar a estado 4)
0 J 2 * 7 (4	id + id * (id + id))\$	d5 (desplazar a estado 5)
0 J 2 * 7 (4 id 5	+ id * (id + id)) \$	r6 (reducir por $E \rightarrow id$)
0 J 2 * 7 (4 E 8	+ id * (id + id)) \$	d6 (desplazar a estado 6)
0 J 2 * 7 (4 E 8 + 6	id * (id + id)) \$	d5 (desplazar a estado 5)
0 J 2 * 7 (4 E 8 + 6 id 5	* (id + id)) \$	r6 (reducir por $E \rightarrow id$)
0 J 2 * 7 (4 E 8 + 6 E 9	* (id + id)) \$	r1 (reducir por $E \rightarrow E + E$)
0 J 2 * 7 (4 E 8	* (id + id)) \$	d7 (desplazar a estado 7)
0 J 2 * 7 (4 E 8 * 7	(id + id))\$	d4 (desplazar a estado 4)
0 J 2 * 7 (4 E 8 * 7 (4	id + id)) \$	d5 (desplazar a estado 5)
0 J 2 * 7 (4 E 8 * 7 (4 id 5	+ id)) \$	r6 (reducir por $E \rightarrow id$)
0 J 2 * 7 (4 E 8 * 7 (4 E 8	+ id)) \$	d6 (desplazar a estado 6)
0 J 2 * 7 (4 E 8 * 7 (4 E 8 + 6	id)) \$	d5 (desplazar a estado 5)
0 J 2 * 7 (4 E 8 * 7 (4 E 8 + 6 id 5)) \$	r6 (reducir por $E \rightarrow id$)
0 J 2 * 7 (4 E 8 * 7 (4 E 8 + 6 E 9)) \$	r1 (reducir por $E \rightarrow E + E$)
0 J 2 * 7 (4 E 8 * 7 (4 E 8)) \$	d11 (desplazar a estado 11)

Pila	Entrada	Acción
0 J 2 * 7 (4 E 8 * 7 (4 E 8) 11)\$	r5 (reducir por $E \rightarrow (E)$)
0 J 2 * 7 (4 E 8 * 7 E 10)\$	r3 (reducir por $J \rightarrow J * E$)
0 J 2 * 7 (4 J 2)\$	r2 (reducir por $E \rightarrow J$)
0 J 2 * 7 (4 E 8)\$	d11 (desplazar a estado 11)
0 J 2 * 7 (4 E 8) 11	\$	r5 (reducir por $E \rightarrow (E)$)
0 J 2 * 7 E 10	\$	r3 (reducir por $J \rightarrow J * E$)
0 J 2	\$	r2 (reducir por $E \rightarrow J$)
0 E 1	\$	acep (cadena aceptada)

Muestre el contenido de la pila, la entrada y la acción a realizar

Problema.-Considere la siguiente gramática:

$S \rightarrow A$	$A \to \epsilon$	$A \rightarrow \mathbf{bb}A$	
-------------------	------------------	------------------------------	--

-Analice la siguiente cadena: **bbbb** Muestre el contenido de la pila, la entrada y la acción a realizar

tabla de analisis sintactico

	b	\$
S	$S \rightarrow A$	$S \rightarrow A$
A	$A \rightarrow bbA$	$A \to \epsilon$

Tabla de Análisis Sintáctico (SLR):

Estado	Acción (b)	Acción (\$)	Ir a (S)	Ir a (A)
0	desplazar	-	-	1
1	-	aceptar	-	-
2	desplazar	-	-	3
3	reducir $(A \rightarrow bbA)$	reducir $(A \rightarrow bbA)$	-	-

Proceso de Análisis para bbbb

Pila	Entrada	Acción	Detalle
0	b b b b \$	desplazar (b)	Se lee el primer b.
0 b 2	b b b \$	desplazar (b)	Se lee el segundo b.
0 b 2 b 2	b b \$	desplazar (b)	Se lee el tercer b.
0 b 2 b 2 b 2	b \$	desplazar (b)	Se lee el cuarto b.
0 b 2 b 2 b 2 b 2	\$	reducir $(A \rightarrow \epsilon)$	No hay más b, se reduce a A \rightarrow ϵ .
0 b 2 b 2 b 2 A 3	\$	$reducir (A \rightarrow bbA)$	Se reduce bbA a A.
0 b 2 A 3	\$	$reducir (A \rightarrow bbA)$	Nueva reducción bbA a A.
0 A 1	\$	aceptar	Cadena aceptada.

Problema.-Considere la siguiente gramática:

1)
$$A \rightarrow xA$$

3)
$$A \rightarrow y$$

-Analice la siguiente cadena: xyy

Muestre el contenido de la pila, la entrada y la acción a realizar

tabla de analisis sintactico

	x	у	\$
A	$A \rightarrow xA$	$A \rightarrow yA$	
		$A \rightarrow y$	

Tabla de Análisis Sintáctico (SLR):

Estado Acción (x) Acción (y) Acción (\$) Ir a (A)

desplazar desplazar 0

1

desplazar desplazar aceptar

Proceso de Análisis para xyy

Pila	Entrada	Acción	Detalle
0	x y y \$	desplazar (x)	Se lee el primer x.
0 x 2	y y \$	desplazar (y)	Se lee el primer y.
0 x 2 y 3	y \$	reducir $(A \rightarrow y)$	Se reduce y a A.
$0 \times 2 A 4$	y \$	desplazar (y)	Se lee el segundo y.
0 x 2 A 4 y 3	\$	reducir $(A \rightarrow y)$	Se reduce y a A.
0 x 2 A 4 A 5	\$	reducir $(A \rightarrow yA)$	Se reduce yA a A.
0 A 1	\$	aceptar	Cadena aceptada.

Problema.-Considere la siguiente gramática:

1)
$$A \rightarrow A \mathbf{m}$$

2)
$$A \rightarrow \mathbf{n}$$

-Analice la siguiente cadena: nmmm

Muestre el contenido de la pila, la entrada y la acción a realizar

tabla de analisis sintactico

	accion			Ir_a
	m	n	\$	A
0		d1		2
1	r2		r2	
2	d3		ace	
3	r1		r1	

Tabla de Análisis Sintáctico (SLR):

Estado Acción (m) Acción (n) Acción (\$) Ir a (A)

0	-	d1	-	2
1	r2	-	r2	-
2	d3	-	aceptar	-
3	r1	-	r1	-

Proceso de Análisis para nmmm

Pila	Entrada	Acción	Detalle
0	$n\ m\ m\ m\ \$$	desplazar (n)	Se lee el primer símbolo n.
0 n 1	m m m \$	reducir $(A \rightarrow n)$	Se reduce n a A.
0 A 2	m m m \$	desplazar (m)	Se lee el primer m.
0A2m3	m m \$	reducir $(A \rightarrow A m)$	Se reduce A m a A.
0 A 2	m m \$	desplazar (m)	Se lee el segundo m.
0A2m3	m \$	reducir $(A \rightarrow A m)$	Se reduce A maA.
0 A 2	m \$	desplazar (m)	Se lee el tercer m.
0A2m3	\$	reducir $(A \rightarrow A m)$	Se reduce A m a A.
0 A 2	\$	aceptar	Cadena aceptada.

Problema.-Considere la siguiente gramática:

1) $C \rightarrow AB$	$2) A \rightarrow \mathbf{a}$	3) B → a

-Analice la siguiente cadena: **aa** Muestre el contenido de la pila, la entrada y la acción a realizar

tabla de analisis sintactico

	accion				
	a	\$	A	В	C
0	d1		3		2
1	r2				
2		ac			
3	d4			5	
4		r3			
5		r1			

Tabla de Análisis Sintáctico (SLR):

Estado Acción (a) Acción (\$) Ir a (A) Ir a (B) Ir a (C)

0	d1	-	3	-	2
1	r2	r2	-	-	-
2	-	aceptar	-	-	-
3	d4	-	-	5	-
4	-	r3	-	-	-
5	-	r1	-	-	_

Proceso de Análisis para aa

Pila	Entrada	Acción	Detalle
0	a a \$	desplazar (a)	Se lee el primer a.
0 a 1	a \$	reducir $(A \rightarrow a)$	Se reduce a a A.
0 A 3	a \$	desplazar (a)	Se lee el segundo a.
0 A 3 a 4	\$	reducir $(B \rightarrow a)$	Se reduce a a B.
0 A 3 B 5	\$	reducir $(C \rightarrow A B)$	Se reduce A B a C.
0 C 2	\$	aceptar	Cadena aceptada.

PROBLEMAS

Dada la gramatica LISTA -> LISTA + DIGITO | LISTA - DIGITO | DIGITO DIGITO -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

1.-Dibuje el **arbol de analisis sintactico**, el **arbol sintactico** y el **grafo de dependencias** para las siguientes cadenas:

1+2+3+4 y 2+4-6+8-10

Grafo de Dependencias

graph TD

1 --> +

2 --> +

+ --> +2

3 --> +2

+2 --> +3

4 -->

Grafo de dependencias

2 --> +

4 --> +

+ --> -

6 --> -

- --> +

8 --> +

+ --> -

10 --> -

2.-Dibuje el **arbol sintactico** para las siguientes cadenas:

$$(2+3) * (10-5) y a/(b+c/(d+e))$$

- 3.-Esciba las expresiones de tipo para:
- a) un entero \rightarrow int
- b) un apuntador a entero \rightarrow int *
- c) un arreglo de apuntadores a char → char *[]
- d) struct agregado { char x; int y; double z};
- 4.-Supongase que los nombres de tipos enlace y nodo se definen como en la seccion 6.3 del libro del dragon. Cuales de las siguientes expresiones de tipos son estructuralmente equivalentes? enlace

pointer nodo

pointer enlace

pointer(record ((infoXinteger)X(siguienteXpointer(nodo)))

enlace y pointer(record...).

pointer enlace y pointer(record...) (si enlace es el record).

PROBLEMAS

Genere el codigo de 3 direcciones de

1.-
$$a * - (b+c) y a := (b+c) * (e+f);$$

$$t1 = b + c$$

$$t1 = b + c$$
$$t2 = e + f$$

$$t2 = -t1$$

$$t3 = t1 * t2$$

$$t3 = a * t2$$

$$a = t3$$

```
2.-(a*b+h)-j*k+1

t1 = a*b
t2 = t1 + h
t3 = j*k
t4 = t2 - t3
t5 = t4 + 1

3.-a > b + h or b == d

t1 = b + h
t2 = a > t1
t3 = b == d
t4 = t2 or t3

Problema.- Traduzca a
booleanas

I) a < b or c < d
if a < b goto L_true
if a < d goto L_true
```

Problema.- Traduzca a flujo de control (obtenga el codigo de tres direcciones) las siguientes expresiones booleanas

```
I) a < b \text{ or } c < d
if a < b goto L_true
if c < d goto L_true
if e < f goto L_true
goto L_false
L_true:
  // ...
L_false:
  // ...
II) a < b or c < d or e < f
if a < b goto L_true
if c < d goto L_true
if e < f goto L_true
if g < h goto L_true
goto L_false
L_true:
  // ...
L_false:
  // ...
III) a < b or c < d or e < f or g < h
if a < b goto L_true
if c < d goto L_true
if e < f goto L_true
if g < h goto L_true
goto L_false
L_true:
  // ...
L_false:
```

```
// ...
IV) a < b and c < d
if a >= b goto L_false
if c >= d goto L_false
goto L_true
L_true:
  // ...
L_false:
  // ...
V) a < b and c < d and e < f
f a >= b goto L_false
if c >= d goto L_false
if e >= f goto L_false
goto L_true
L_true:
  // ...
L_false:
  // ...
VI) a < b and c < d and e < f and g < h
if a >= b goto L_false
if c >= d goto L_false
if e >= f goto L_false
if g >= h goto L_false
goto L_true
L_true:
  // ...
L_false:
  // ...
VIII) a < b or c < d and e < f
if a < b goto L_true
if c >= d goto L_false
if e >= f goto L_false
goto L_true
L_true:
  // ...
L_false:
  // ...
IX) a < b and c < d or e < f
if a < b goto L_check_cd
goto L_check_ef
L_check_cd:
  if c < d goto L_true
  goto L_check_ef
L_check_ef:
  if e < f goto L_true
  goto L_false
```

```
L_true:
// ...
L_false:
// ...
```

.-Genere el codigo de 3 direcciones de :

```
a := 0

while (a <= 5) {

a := a + 1

}

for (i = 0; i < 5; i=i+1){

A;

A;

}
```

```
a = 0
                                                     i = 0
L1:
                                                     L3:
                                                        t2 = i < 5
                                                        if t2 == 0 goto L4 // Si i \ge 5, salir del bucle
  t1 = a \le 5
  if t1 == 0 goto L2 // Si a > 5, salir del bucle
                                                        // Cuerpo del for (vacío o instrucciones
  // Cuerpo del while (vacío o instrucciones
                                                      específicas)
                                                        i = i + 1
específicas)
                                                                        // Incremento
                                                                        // Repetir bucle
  goto L1
                   // Repetir bucle
                                                        goto L3
L2:
                                                      L4:
```

6.-Genere el codigo de 3 direcciones de :

```
\begin{array}{ll} a:=2*x+10;\\ \text{while (a <= p + 2) } \{\\ a:=p[4+i*2];\\ a:=a+1; \end{array} \qquad \begin{array}{ll} \text{for (i = 0; i < 5; i=i+1)} \{\\ a=p[2*i];\\ \}\\ \end{array}
```

i = 0

t1 = 2 * x

$$\begin{array}{lll} a=t1+10 & L3: \\ \text{ $t7=i<5$} \\ \text{if $t7==0$ goto $L4$} \\ L1: \\ t2=p+2 & \text{ $// a=p[2*i]$} \\ t3=a<=t2 & t8=2*i \\ \text{ if $t3==0$ goto $L2$} & t9=p+t8 \\ a=*t9 & \\ \text{ $// a:=p[4+i*2]$} \\ t4=i*2 & i=i+1 \\ t5=4+t4 & goto $L3$} \\ t4=i*6 & goto $L1$ & L4: \\ \end{array}$$

Generacion Codigo Objeto

7Si una instrucción de asignación de la forma x=y+z . Se traduce a:	Como se traducen
mov y, R0	a = b + c;
add z, R0	d = a + c;
mov R0, x	a = a + 1;

mov b, R0 add c, R0 mov R0, a mov a, R0 add c, R0 mov R0, d mov a, R0 add 1, R0 mov R0, a

8Si una instrucción de asignación de la forma a=a+1 . Se traduce a:	Como se traducen
Mov a , R0 add #1, R0 mov R0, a	a = c + 2 $d = a + 3$

mov c, R0 add #2, R0

```
mov R0, a
mov a, R0
add #3, R0
mov R0, d
9.-Para el siguiente codigo genere el codigo de 3 direcciones y divida el codigo generado en bloques
w = 0;
x = x + y;
y=0;
if (x > z)
 y = x;
  x++;
} else {
  y = z;
  z++;
w = x + z;
BLOQUE 1
\mathbf{w} = \mathbf{0}
t1 = x + y
x = t1
y = 0
BLOQUE 2
t2 = x > z
if t2 == 0 goto 10
BLOQUE 3
y = x
x = x + 1
goto 12
BLOQUE 4
```

y = z z = z + 1 **BLOQUE 5** t3 = x + zw = t3