Ideal Transformer

Properties

- · High permeability of the core
- · No Leakage Flux
- · No winding resistances.
- · Ideal core has no reluctance.
- · No Core losses.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Faraday's Law

If a flux ϕ passes through N turn of a coil, the induced in the coil is given by

$$e_{ind} = -N \frac{dq}{dt}$$

The negative sign is the statement of the Lenz's law stating that the polarity of the induced voltage should be such that a current produced by it produces a flux in the opposite of the original flux. This is illustrated below

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Relationships

· From Faraday's Law

$$\begin{cases} v_P(t) = -N_P \frac{d\varphi}{dt} \\ v_S(t) = -N_S \frac{d\varphi}{dt} \end{cases} \rightarrow \frac{v_P(t)}{v_S(t)} = \frac{N_P}{N_S} = a$$

• Since there is no magnetic potential drop in the ideal core,

$$N_s I_p(t) = N_s I_s(t)$$

$$\frac{I_p(t)}{I_n(t)} = \frac{N_s}{N} = \frac{1}{a}$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Relationships

• Since

$$\frac{N_p}{N_S} = \frac{V_p}{V_S} = \frac{I_S}{I_p}$$

• then

$$V_p I_p = V_s I_s$$

$$P_p = P_s$$

Power in equals power out.

No power loss in ideal transformer!

Relationships

• Reflected Impedance

$$Z_{L'} = \frac{V_p}{I_p} = \frac{\frac{N_p}{N_s}V_s}{\frac{N_s}{N_s}I_s} = \frac{aV_s}{\frac{1}{a}I_s} = a^2 Z_L$$

Dot Convention

- Help to determine the polarity of the voltage and direction of the current in the secondary winding.
- Voltages at the dots are in phase.
- When the <u>primary current</u> flows <u>into the dotted</u> end of the primary winding, the <u>secondary current</u> will <u>flow out of the dotted end</u> of the secondary winding.

• Case a: No transformer

$$\begin{split} I_L &= \frac{V}{Z_{Line} + Z_{load}} = \frac{480 < 0^{\circ}}{(0.18 + j0.24) + (4 + j3)} \\ &= 90.8 < -37.8 \; A \end{split}$$

$$V_{Load} = I_L Z_{Load} = (90.8 < -37.8 \text{ A})(4 + \text{j3}) = 453 < -0.9^{\circ}$$

$$P_{Line} = (I_{line})^2 R_{line} = (90.8)^2 (0.18) = 1484 W$$

• Case b: Two transformers

$$\begin{split} I_L &= \frac{V}{Z_{Line} + Z_{load}} = \frac{480 < 0^{\circ}}{(0.0018 + j0.0024) + (4 + j3)} \\ &= 95.9 < -36.9 \; A \end{split}$$

$$V_{Load} = I_L Z_{Load} = (95.9 < -36.9 \text{ A})(4 + \text{j3})$$

= 479.5 < -0.01°

$$P_{Line} = (l_{line})^2 R_{line} = \left(\frac{95.9}{10}\right)^2 (0.18) = 16.6 W$$

= $(95.9)^2 (0.0018) = 16.6 W$

• Higher voltage w/ less line losses!

Non-Ideal Single-Phase Transformers

Non-ideal facts:

- $\underline{}$ Winding resistances modeled as series resistors $R_{\scriptscriptstyle p}$ and R_s Also called Copper Losses.
- Leakage flux modeled as series inductances X_p and X_s
- \bullet <u>Core Losses</u> (Eddy Current and Hysteresis Losses) produce heating losses modeled as a shunt resistor $R_{\rm C}$ in the primary winding.
- •Magnetizing Current flows in the primary to establish the flux in the core. Modeled as a shunt inductance $X_{\rm m}$ in the primary winding.

Mutual (M) and Leakage (L) Flux

In a well designed transformer $\emptyset_M >> \emptyset_L$

Excitation Current

- When ac source is connected to the primary of the transformer a current flows even when the secondary winding circuit is open circuited. This <u>excitation current</u> (I_{ex}) is required to produce the flux in the core. It consists of two components:
- 1. $\underline{\textit{Magnetization Current}}$ (I_{M}): is the current required to produce the flux in the transformer core.
- 2. $\underline{\textit{Core-loss current}}$ ($I_{\text{h+e}}$): is the current required to overcome the hysteresis and eddy currents flux in the transformer core.

$$I_{ex} = I_M + I_{h+e}$$

 $\underline{\textit{Magnetization Current}}$ (I_{M}) is not sinusoidal because of the non-linear relation between the current and flux (magnetization curve)

 $\underline{Core\text{-loss Current}}$ (I_{h+e}) is not sinusoidal due to the non-linear effects of hysteresis. It peaks as flux passes through zero because of eddy currents are proportional to ${}^{d\emptyset}/_{dt}$ Faraday's law.

Total Excitation Current

$$I_{ex} = I_M + I_{h+e}$$
ne McGraw-Hill Companies, Inc. Permission required for reproduction or displac

In a well designed transformer I_{ex} is small.

The <u>equivalent circuit</u> for a single-phase non-ideal transformer is shown below:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

 The equivalent circuit may be simplified by reflecting impedances, voltages, and currents from the secondary to the primary as shown below:

 Below is the transformer model referred to Secondary Side.

 $\label{lem:copyright @The McGraw-Hill Companies, Inc. Permission required for reproduction or display.}$

• Simplified equivalent circuit referred to primary side:

• Simplified equivalent circuit referred to secondary side:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Transformer Equivalent Circuit without Excitation Branch

Transformer Voltage Regulation

- Because a real transformer has series impedances within it, the <u>output voltage will vary with the load</u> even if the input voltage remains constant.
- <u>Voltage Regulation</u> compares the no load to full load voltage.

$$VR = \frac{|V_{S,nl}| - |V_{S,fl}|}{|V_{S,fl}|} \times 100\% = \frac{|V_p|/a - |V_{S,fl}|}{|V_{S,fl}|} \times 100\%$$

Transformer Phasor Diagram

• Applying Kirchhoff 's law

$$\frac{V_p}{a} = V_s + R_{eq}I_s + jX_{eq}I_s$$

• For a Lagging PF (I lags V)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. $\frac{\mathbf{V}_p}{a}$ $V_s \qquad \qquad jX_{\rm eq}\mathbf{I}_s$

Transformer Efficiency

•
$$P_{out} = P_s = V_s I_s Cos(\theta_s)$$

•
$$P_{in} = P_s + P_{Losses} = V_s I_s Cos(\theta_s) + P_{core} + P_{cu}$$

•
$$\eta = \frac{P_{out}}{P_{in}} = \frac{V_s I_s Cos(\theta_s)}{V_s I_s Cos(\theta_s) + P_{core} + P_{cu}} x100\%$$

Ex.. Given: 2.2 kVA, 440/220V transformer. Equiv. circuit parameters referred to the primary are:

Req = 3Ω , Xeq = 4Ω , Rc = $2.5k\Omega$, Xm = $2 K\Omega$

Find: VR and n. Assume transformer is delivering rated current and voltage at full load and 0.707 pf.

$$\frac{\text{Solution}}{1. \text{ V}_{\text{s,fl}}} = 220 \text{ V} < 0^{\circ}$$

This is the full load secondary voltage.

We must now find the secondary voltage assuming the load was removed $V_{s,nl}$. This is found by adding in the voltage drop across Req + j Xeq that occurs at full load.

$$V_{s,nl} = \frac{V_p}{a} = V_{s,fl} + I_s(Req + jXeq)$$

$$2. I_s = 2200 \text{ VA} / 220 \text{V} = 10 \text{ A}$$

3.
$$\theta = \cos^{-1}(0.707) = 45^{\circ}$$

4. Using the primary referred circuit we get V_{n.nl}

$$\begin{split} V_{p,nl} &= \frac{I_{s}}{a}(Req + jXeq) + aV_{s} \\ &= (10 < -45^{\circ})/2 * (3+j4) + 2(220) \\ &= 464.8 < 0.4^{\circ} \\ So, \\ V_{s,nl} &= \frac{V_{p,nl}}{a} = 232.4 < 0.4 \end{split}$$

$$VR = \frac{|V_{S,nl}| - |V_{S,fl}|}{|V_{S,fl}|} \times 100\% = \frac{232.4 - 220}{220} =$$
5.63%

• To find **n** we need Pin and Pout

1. Pin = Vp · Ip cos(Ø) = Re{Vp · Ip*}
= Re{(464.8<0.4°)(
$$\frac{464.8<0.4}{2500} + \frac{464.8<0.4}{j2000} + \frac{10<-45°}{2}$$
)*}

2. Pout = Vs Is $\cos(\emptyset) = |S| \text{ pf} = 2200*0.707 = 1,555 W$

3.
$$\eta = \frac{1,555}{1,717} = 90.6\%$$

4. Note: Pin = Pout + P_{copper loss} + P_{core loss}
= Pout +
$$\frac{I_s^2}{a}R_{eq} + \frac{V_p^2}{R_c}$$
 = 1555 + (5)²3 + (464.8)²/2500

Determining the Values of Components in the Transformer Model

Transformer impedances may be obtained from two tests:

- Open-circuit test: to determine core losses and magnetizing reactance (R_c and X_m)
- Short-circuit test: to determine equivalent Series Impedance R_{eq}. and equivalent leakage reactances, X_{eq})

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Open-Circuit Test to Determine R_c and X_m

With secondary open, $\rm V_{\rm oc}, \, I_{\rm oc}, \, and \, P_{\rm oc}$ are measured on the primary side.

$$PF = \cos\theta = \frac{P_{\infty}}{V I}$$

$$\overline{Y}_{\epsilon} = \frac{I_{\infty}}{V_{\infty}} \angle -\theta = \frac{I_{\infty}}{V_{\infty}} \angle -(\cos^{-1}PF) = \frac{1}{R_{c}} - j\frac{1}{X_{\infty}}$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Short-Circuit Test to Determine Reg and Xeg

With secondary shorted, a reduced voltage is applied to primary such that rated current flows in the primary. V_{SC} , I_{SC} , and P_{SC} are measured on the primary side.

$$\underline{Z}_{\text{eq}} = \frac{V_{\text{eq}}}{I} \left[-\cos^{-1}PF = R_{\text{eq}} + jX_{\text{eq}} \right]$$

PRIOR PREPARATION:

Lab 3

Complete the following at a time determined by the laboratory instructor.

1. Given the following transformer open circuit and short circuit test data determine the resulting transformer equivalent circuit components.

Open Circuit Test | Short Circuit Test

	Voc = 120 V	Vsc = 10 V	
	Ioc = 0.02 A	Isc = 0.4 A	
	Poc = 2.0 W	Psc = 3.0 W	
IP.,	Req	Xeq Is/	a
+			+
Vp Rc	Xm		a Vs
- [-

Pre- lab 3 Solution

1. Open circuit (oc) test data to find Rc and Xm PFoc = $cos(\theta oc) = Poc/(Voc loc) = 2.0 / (120.0)(0.02)$

 θ oc = arcos(0.833) = 33.6 deg.

 $Y = 1/Rc - j/Xm = loc/Voc <- \theta oc = 0.02/120.0 <-33.6$ = $1.6667 \times 10^{-4} < -33.6 = (1.3882 - j 0.92232) \times 10^{-4}$

Rc = $1/1.3882 \times 10^{-4} = 7,204 \Omega$ $Xm = 1/0.92232 \times 10^{-4} = 10.842 \Omega$

Pre- lab 3 Solution (continued)

2. Short circuit (sc) test data to find Req and Xeq PFsc = $cos(\theta sc)$ = Psc/(Vsc Isc) = 3.0 / (10.0)(0.4) = 0.75

 $\theta sc = arcos(0.75) = 41.4 deg.$

 $Zeq = Req + j Xeq = Vsc/lsc < \theta sc$ = $10.0/0.4 < 41.4 = 25.0 < 41.4 = 18.8 + 16.5 \Omega$

Req = 18.8Ω $Xeq = 16.5 \Omega$ Pre- lab 3 Solution (continued)

 $\underline{\text{VRc and nc}}$ 1. Find secondary voltage using input voltage and voltage divider w/ ZL = 300 Ω

$$V_s = \frac{Z_L}{Z_L + Z_{eq}} V_P = \frac{300}{300 + 18.8 + j16.5} 120.0 = 112.8 volts$$

2. Find secondary current in load

$$I_s = \frac{V_s}{Z_L} = \frac{112.8}{300} = 0.376A$$

3. Find losses using eqv. circuit values

Pcopper = $(Is)^2$ Req = $(0.376)^2$ 18.8 = 2.66 w Pcore = $(Vprimary/a)^2$ / Rc = $(120.0)^2$ / 7204 = 2.0 W (note Pcor = Poc)

4. Find efficiency nc and VRc using eqv. circuit values

$$VR_c = \frac{V_{s,notload} - V_{s,fullLoad}}{V_{s,fullLoad}}x100\% = \frac{V_p - V_s}{V_s}x100\% = \frac{120.0 - 112.8}{112.8}x100\% = 6.38\%$$

Pout = Vs Is PF = (112.8)(0.376)(1) = 42.4 w

$$\eta_c = \frac{P_{out}}{P_{in}} x100\% = \frac{P_{out}}{P_{out} + P_{cop} + P_{core}} x100\% = \frac{42.4}{42.4 + 2.66 + 2.0} x100\% = 90.1\%$$

Three-Phase Transformers

A three-phase transformer bank composed of independent transformers

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Three-Phase Transformers

Figure 2-36

A three-phase transformer wound on a single three-legged core.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

37

Problems: 1. If loads are unbalanced, transformer phase voltages will be severely unbalanced. {Use neutral line}

will be severely unbalanced. {Use neutral line} 2. Large third harmonic voltages since they add. {Use a third Δ connected winding to cancel}

Y-∆ Transformer Connection

Note: 1. Secondary phase voltage shifted by 30° due to connection.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

∆-Y Transformer Connection

$$\frac{V_{\emptyset P}}{V_{\emptyset S}} = \alpha$$

$$\frac{V_{LP}}{V_{LS}} = \frac{V_{\emptyset P}}{\sqrt{3}V_{\emptyset S}} = \frac{a}{\sqrt{3}}$$

Note: 1. Secondary phase voltage shifted by 30 ° due to connection.

Δ- Δ Transformer Connection

Note: No issues

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Transformer Ratings

Voltage and Frequency rating

- Protects the winding insulation from excessive voltage.
- Protects winding from large magnetization currents resulting from large voltages or low frequencies. Since

$$\emptyset(t) = \frac{1}{N_p} \int v(t)dt = \frac{1}{N_p} \int V\sin \omega t \ dt$$
$$= -\frac{V}{\omega N_p} \cos \omega t \quad \Longrightarrow$$

