Assignment 1

Quinn Perfetto, 104026025 60-454 Design and Analysis of Algorithms

January 25, 2017

Question 1. (i). We want to prove that when Algorithm Summation terminates its execution,

$$y = \sum_{j=0}^{n} a_j x^j$$

Proof. We shall apply induction to prove that after the mth iteration of the for loop the following invariant holds true:

$$y = \sum_{j=0}^{m-1} a_{n-j} x^{n-i-j}$$

(Induction basis) First, we note that y is initialized to 0 in Line 1. When m = 1 and i = n in Line 3,

$$y = a_n + x * y$$

$$= a_n + x * 0$$

$$= a_n$$

$$= a_n x^0$$

$$= \sum_{j=0}^{0} a_{n-j} x^{n-i-j}$$

(Induction Hypothesis) Suppose for iteration $m-1 < n, y = \sum_{j=0}^{m-2} a_{n-j} x^{n-i-j-1}$ (Induction Step) When Line 3 is executed for the mth time,

$$y = a_{n-i} + x \sum_{j=0}^{m-2} a_{n-j} x^{n-i-j-1}$$

$$= a_{n-i} + \sum_{j=0}^{m-2} a_{n-j} x^{n-i-j}$$

$$= a_{n-i} x^0 + \sum_{j=0}^{m-2} a_{n-j} x^{n-i-j}$$

$$= \sum_{i=0}^{m-1} a_{n-j} x^{n-i-j}$$
(Induction Hypothesis)

Therefore we can conclude that the invariant $y = \sum_{j=0}^{m-1} a_{n-j} x^{n-i-j}$ holds $\forall m > 0$.

On the n+1th iteration (where i=0) we then have,

$$y = \sum_{j=0}^{n} a_{n-j} x^{n-j}$$

$$= a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 x^0$$

$$= \sum_{j=0}^{n} a_j x^j$$
(By reversing the order of the terms)

Question 1. (ii).

Key Operation: Multiplication of real numbers.

Input size: n (The size of the input array)

The Summation algorithm must perform the key operation on each of the n elements of the input array.

- 1. Worst-case Time Complexity: T(n) = n
- 2. Average-case Time Complexity: $T_{ave}(n) = n$

Question 3. I assert that the claim is false, and will provide a counter example such that $f \in O(g) \land h(f) \notin O(h(g))$.

Proof. Let

$$f(n) = n^{2},$$

$$g(n) = n^{3},$$

$$h(n) = \frac{1}{n}$$

Lemma I. $f \in O(g)$, using Theorem 0.2

$$\lim_{n \to \infty} \frac{n^2}{n^3}$$

$$= \lim_{n \to \infty} \frac{1}{n}$$

$$= 0(>= 0)$$
 (Theorem 0.2)

Given the defintion of f and h we can see that $h(f(n)) = \frac{1}{n^2}$. Given the defintion of g and h we can see that $h(g(n)) = \frac{1}{n^3}$. All that remains is to prove that $\frac{1}{n^2} \notin O(\frac{1}{n^3})$,

$$\lim_{n \to \infty} \frac{\frac{1}{n^2}}{\frac{1}{n^3}}$$

$$= \lim_{n \to \infty} \frac{n^3}{n^2}$$

$$= \lim_{n \to \infty} n$$

$$= \infty (\notin \mathbb{R}^+)$$

Hence combining Lemma I with the above proof we have created a counter example such that,

$$f \in O(g) \land h(f) \notin O(h(g))$$