# Algoritmos y Estructuras de Datos 2.

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

TP 1: Lollapatuza.

| Integrante                  | LU     | Correo electrónico             |
|-----------------------------|--------|--------------------------------|
| Nicolás Pachón Pintos       | 301/20 | pintosn1511@gmail.com          |
| Kevin Alexander Perez Marzo | 770/16 | stixerks@gmail.com             |
| Javier Mareque              | 112/22 | javiermaxmareque@gmail.com     |
| Pablo Villavicencio         | 799/07 | pablovillavicencio87@gmail.com |

### Reservado para la cátedra

| Instancia       | Docente  | Nota     |
|-----------------|----------|----------|
| Primera entrega | Santiago | Aprobado |
| Segunda entrega |          |          |

#### Resolución 1.

TAD COMIDA es STRING

#### TAD PUESTO DE COMIDA

usa dicc, nat, bool

Observadores, Igualdad Observacional, Generadores, Otras operaciones exporta

géneros PDC

#### observadores básicos

menu : PDC 
$$\longrightarrow$$
 dicc(Comida, nat)  $\checkmark$  stockProducto : PDC  $p \times$  Comida  $c \longrightarrow$  nat  $\checkmark$  {def?(c,menu(p))} promocionesProducto : PDC  $p \times$  Comida  $c \longrightarrow$  dicc(nat, nat)  $\checkmark$  {def?(c,menu(p))}

#### igualdad observacional

$$(\forall a, b : \text{PDC}) \left( a =_{\text{obs}} b \iff \begin{pmatrix} \text{menu(a)} =_{\text{obs}} \text{menu(b)} \land_{\text{L}} \\ (\forall c : \text{Comida})(c \in \text{claves(menu(a))} \Rightarrow_{\text{L}} (\text{stock-Producto(a,c)} =_{\text{obs}} \\ \text{stockProducto(b,c)} \land \\ \text{promocionesProducto(b,c)} \end{pmatrix} \right)$$

#### generadores

```
abrirPuesto: dicc(Comida, nat) \longrightarrow PDC
  agregarStock : PDC p \times \text{Comida } c \times \text{nat} \longrightarrow \text{PDC} \checkmark
  Nueva
Promocion : PDC p \times \text{Comida } c \times \text{nat } k \times \text{nat } d \longrightarrow \text{PDC} podría estar desde la apertura.
                              \{c \in claves(menu(p)) \land_L \neg def?(k,promocionProducto(p,c)) \land d<100\}
  Podría ser "otra operación? •
otras operaciones
  precio
De<br/>Compra : PDC p \times Comida c \times int k \longrightarrow nat
                                                             \{c \in claves(menu(p)) \land_{L} hayStock(p,c,k)\}
  hayStock : PDC \times Comida \times nat \longrightarrow bool
```

hayPromocion : PDC  $\times$  Comida  $\times$  nat  $\longrightarrow$  bool

#### axiomas

```
\forall p: PDC, \forall c, c_g, c_o: comida, \forall k,d: nat, \forall m: dicc(comida, nat)
  hayStock(p,c,k) \equiv k \leq stockProducto(p,c)
  hayPromocion(p,c,k) \equiv if k = 0 then false else
                                if def?(k,promocionesProducto(p,c)) then true
                                else hayPromocion(p,c,k - 1) fi \checkmark
  menu(abrirPuesto(m)) \ \stackrel{\mathbf{fi}}{\equiv} \ m
  menu(agregarStock(p,c,k)) \equiv menu(p)
  menu(NuevaPromocion(p,c,k,d)) \equiv menu(p)
  menu(venta(p,c,k)) \equiv menu(p)
  stockProducto(abrirPuesto(m),c) \not\equiv 0 \\ stockProducto(agregarStock(p,c_g,k),c_o) \equiv \textbf{if} \ c_g = c_o \ \textbf{then}
                                                          k + \text{stockProducto}(p, c_a)
                                                       else
                                                          stockProducto(p,c_o)
  \text{stockProducto}(\text{nuevaPromocion}(\mathbf{p}, c_g, \mathbf{k}, \mathbf{d}), c_0) \ \equiv \ \text{stockProducto}(\mathbf{p}, c_0)
  stockProducto(venta(p, c_g, k), c_0) \equiv if c_g = c_0 then
                                                 stockProducto(p,c_g) - k
                                              else
                                                 stockProducto(p,c_0)
  promocionesProducto(abrirPuesto(m),c) \equiv vacio
  promocionesProducto(agregarStock(p,c_q,k),c_o) \equiv promociones<math>Producto(p,c_o)
  promocionesProducto(nuevaPromocion(p,c_g,k,d),c_0) \equiv if c_g = c_0 then
                                                                          definir(k,d,promocionesProducto(p,c_q))
                                                                      else
                                                                         promocionesProducto(p, c_0))
  promociones
Producto(venta(p, c_g, k), c_0) \equiv promociones
Producto(p, c_0)
```

```
precioDeCompra(p,c,k) \equiv if hayPromocion(p,c,k) then
                                        aplicarDescuento(precioTotal(p,c,k),mayorDescuentoPosible(p,c,k))
                                        precioTotal(p,c,k)
                                    fi
\operatorname{precioTotal}: \operatorname{PDC} \times \operatorname{Comida} \times \operatorname{nat} \longrightarrow \operatorname{nat}
precioTotal(p,c,k) \equiv obtener(c,menu(p))*k
mayor
Descuento
Posible : PDC \times Comida \times nat \longrightarrow nat
mayorDescuentoPosible(p,c,k) \equiv if def?(k,promocionesProducto(p,c)) then
                                                 obtener(k,promocionesProducto(p,c))
                                             else
                                                 mayorDescuentoPosible(p,c,k-1)
                                             \mathbf{fi}
\operatorname{div}: \operatorname{nat} \times \operatorname{nat} k \longrightarrow \operatorname{nat}
                                                                                                                       \{k>0\}
div(n,k) \equiv if n < k then 0 else 1 + div(n - k,k) fi
aplicar
Descuento : nat \times nat d \longrightarrow nat
                                                                                                                    {d<100}
aplicarDescuento(p,d) \equiv \text{div}(p^*(100\text{-d}),100)
```

#### Fin TAD

TAD PERSONA es STRING

TAD COMPRA es TUPLA (COMIDA, NAT, PDC)

#### TAD LOLLAPATUZA

multiconj, conj, nat, bool, PDC usa

exporta Observadores, Igualdad Observacional, Generadores, Otras operaciones

LPZgéneros

#### observadores básicos

puestos : LPZ  $\longrightarrow \text{conj}(\text{PDC})$  multiconj. Podrías tener puestos kon mismo menú y stock.

personas Habilitadas : LPZ  $\longrightarrow$  conj(Personas)

compras : LPZ  $l \times \text{Persona } n \longrightarrow \text{multiconj}(\text{Compra})$ 

 $\{n \in personasHabilitadas(l)\}$ 

#### igualdad observacional

$$(\forall a, b : \text{LPZ}) \left( a =_{\text{obs}} b \iff \begin{pmatrix} (\text{puestos}(a) =_{\text{obs}} \text{puestos}(b) \land \\ \text{personasHabilitadas}(a) =_{\text{obs}} \\ \text{personasHabilitadas}(b)) \land_{\text{L}} \\ (\forall n : \text{Persona})(n \in \text{personasHabilitadas}(a) \land \Rightarrow_{\text{L}} \\ \text{compras}(a, n) =_{\text{obs}} \text{compras}(b, n)) \end{pmatrix} \right)$$

#### generadores

 $lollapatuza : conj(PDC) ps \times conj(Personas) \longrightarrow LPZ$  {cumplePoliticasLollapatuza(ps)} realiza Compra : LPZ <br/> l × PDC p × Persona <br/> n × Comida c × nat k<br/>  $\longrightarrow$  LPZ  $\begin{cases} \mathbf{p} \in \mathrm{puestos}(\mathbf{l}) \land \mathrm{def?}(\mathbf{c}, \mathrm{menu}(\mathbf{p})) \land \mathbf{n} \in \mathrm{personasHabilitadas}(\mathbf{l}) \land \mathbf{k} > 0 \\ \land \mathrm{hayStock}(\mathbf{p}, \mathbf{c}, \mathbf{k}) \end{cases}$ realizarHackeo : LPZ  $l \times \mathrm{Comida} \ c \times \mathrm{Persona} \ n \longrightarrow \mathrm{LPZ} \$ 

realizar hackeo podría ser otras operaciones.

 $\{\text{existeCompraSinPromo}(l,n,c)\}$ 

#### otras operaciones

consumoTotal : LPZ  $l \times Persona n \longrightarrow nat$  $\{n \in personasHabilitadas(l)\}$ 

#### axiomas

 $\forall$  ps: conj(PDC),  $\forall$  ns : conj(personas),  $\forall$  l : LPZ,  $\forall$  p : PDC,  $\forall$  n,  $n_q$ ,  $n_o$  : persona ,  $\forall$  c : comida,  $\forall k : nat$ 

 $puestos(lollapatuza(ps,ns)) \equiv ps$ 

personasHabilitadas(lollapatuza(ps,ns))  $\equiv$  ns

 $compras(lollapatuza(ps,ns),n) \equiv \emptyset$ 

```
puestos(realizaCompra(l,p,n,c,k)) \; \equiv \; Ag(venta(p,c,k),puestos(l) \; \text{--} \; \{p\})
  personasHabilitadas(realizaCompra(l,p,n,c,k)) \equiv personasHabilitadas(l)
  compras(realizaCompra(l,p,n_q,c,k),n_0) \equiv if n_q = n_o then
                                                     Ag(\langle c, k, p \rangle, compras(l, n_q))
                                                  else
                                                     Compras(l, n_o)
                                                  fi
  puestos(realizarHackeo(l,c,n)) \equiv Ag(
                                        agregarStock(dameUno(puestosComproSD(compras(l,n),c),c,1),
                                        puestos(l) - \{dameUno(puestosComproSD(compras(l,n),c)\})
  puestosComproSD : multiconj(Compra) \times Comida \longrightarrow Conj(PDC)
∀ cs : multiconj(Compra), ∀ c: comida
  puestosComproSD(cs,c) \equiv if \ vacio?(cs) \ then
                                     \emptyset
                                  else
                                     if \pi_1(\text{dameUno(cs)}) = c \land \neg \text{hayPromocion}(\pi_3(\text{dameUno(cs)})),
                                     \pi_1(\text{dameUno(cs)}), \pi_2(\text{dameUno(cs)})) then
                                     Ag(\pi_3(dameUno(cs)), puestosComproSD(sinUno(cs)))
                                     else puestosComproSD(sinUno(cs)) fi
                                  fi
  personasHabilitadas(realizarHackeo(l,c,n)) \equiv personas<math>Habilitadas(l)
  compras(realizarHackeo(l,c,n_h),n_o) \equiv if n_h = n_o then
                                                 reduceCantDeCompra(c,compras(l,n_h),
                                                 dameUno(puestosComproSD(compras(l,n_h),c)))
                                              else
                                                 compras(1, n_o)
                                              \mathbf{fi}
```

```
reduceCantDeCompra : Comida \times multiconj(Compra) \times PDC \longrightarrow multiconj(Compra)
     \forall c : comida , \forall cs : multiconj(compra) , \forall p :PDC
        reduceCantDeCompra(c,cs,p) \equiv if \pi_1(dameUno(cs)) = c \land \pi_3(dameUno(cs)) = p
                                                \land \neg \text{hayPromocion}(p,c,\pi_2(\text{dameUno}(\text{cs}))) then
                                                   Ag(\langle \pi_1(dameUno(cs)), \pi_2(dameUno(cs)) -1,
                                                   \pi_3(\text{dameUno(cs)}), \sin \text{Uno(cs)})
                                                else
                                                   Ag(dameUno(cs), reduceCantDeCompra(c,sinUno(cs)))
        Me parece que les falta el caso de las compras de un solo item. En ese caso deberían borrar la compra entera
        consumoTotal(l,n) \equiv todosLosConsumos(compras(l,n))
        todosLosConsumos: multiconj(Compra) \longrightarrow nat
     ∀ cs : multiconj(compra)
        todosLosConsumos(cs) \equiv if vacio?(cs) then
                                           0
          totalDePlataGastada
                                        else
                                           \operatorname{precioDeCompra}(\pi_3(\operatorname{dameUno}(\operatorname{cs})), \pi_1(\operatorname{dameUno}(\operatorname{cs})), \pi_2(\operatorname{dameUno}(\operatorname{cs})))
                                           todosLosConsumos(sinUno(cs))
                                        fi
        personaQueMasGasto(l) \equiv mayorGasto(l, sinUno(personasHabilitadas(l)),
                                         dameUno(personasHabilitadas(1)))
        mayorGasto: LPZ \times conj(Personas) \times Persona \longrightarrow Persona
     \forall 1: LPZ, \forall ns: conj(personas), \forall n: persona
        mayorGasto(l,ns,n) \equiv if vacio?(ns) then
                                       n
                                   else
                                       if consumoTotal(l,n) >= consumoTotal(l,dameUno(ns)) then
                                       mayorGasto(l,sinUno(ns),n) else
                                       mayorGasto(l,sinUno(ns),dameUno(ns)) fi
                                   fi
Fin TAD
```

## 2. Anexo: Predicados



```
cumplePoliticasLollapatuza(ps) \equiv (\forall a, b: PDC)(\forall c: Comida)(a \in ps \land b \in ps \land def?(c,menu(a)))
\land def?(c,menu(b)) \Rightarrow_{L} obtener(c,menu(a)) = obtener(c,menu(b)))
existeCompraSinPromo(l,n,c) \equiv (\exists a: Compra)((a \in compras(l,n) \land \pi_{2}(a) = c) \land_{L}
\neg hayPromocion(\pi_{3}(a),\pi_{1}(a),\pi_{2}(a))
```