Geometric Data Analysis HW 2

Gilad Turok, gt2453 gt2453@columbia.edu

February 27, 2023

1 LLE

2 Non-Manifold Spaces

An example of a non-manifold space is two unit circles, one centered at (-1,0) and the other at (1,0), that touch at a single point (0,0):

$$(x-1)^2 + y^2 = 1$$

 $(x+1)^2 + y^2 = 1$

This space is not a manifold because at the overlapping point (0,0), a propert chart cannot be constructed. It's neighborhood looks like a rotated '+' sign which is not homeomorphic to a line segment in \mathbb{R}^1 .

3 Chart Mapping to Zero

Show that given any point $m \in \mathcal{M}$, where \mathcal{M} is a topoligical manifold, we can choose a chart $\theta: U \to \mathbb{R}^n$ such that $\theta(m) = 0$.

Proof. Consider all neighborhoods that contain m in its domain i.e. $m \in U_1, U_2, \ldots$ By definition of a manifold, for each neighborhood U_i , there exists some corresponding chart $\theta_i : U_i \to \mathbb{R}^n$ where m is mapped to some arbitrary location $p \in \mathbb{R}^n$.

To instead make $\theta_i(m) = 0$, we can simply translate the chart by -p. Thus we can construct entirely new charts:

$$\theta_i'(x) = \theta_i(x) - p = \theta_i(x) - \theta_i(m)$$

which ensures $\theta_i(m) = 0$ always.

4 Coordinate Charts and Transition Functions for Circles

We will explicitly construct coordinate charts and transition functions for a circle defined by the angle and x, y projections respectively. To do so, consider S, the unit circle $x^2 + y^2 = 1$ defined for $[0, 2\pi]$.

4.1 Angle Construction

Let α be some angle less than π and let ϕ be the angle between a point $(x, y) \in S$ and the x axis. Now divide the circle into two coordinate patches:

$$U_1 = \{(x, y) \in S | -\alpha \le \phi \le \pi + \alpha\}$$

 $U_2 = \{(x, y) \in S | \pi \le \phi \le 2\pi\}$

Now define two corresponding charts $\theta:U\to\mathbb{R}$. I do so based on the arctan2 function, which uniquely computes the angle between a point (x,y) and the x axis.

$$\theta_1(x,y) = \begin{cases} \arctan(\frac{y}{x}) & \text{if } x > 0\\ \arctan(\frac{y}{x}) + \pi & \text{if } x < 0, y \ge 0\\ \arctan(\frac{y}{x}) - \pi & \text{if } x < 0, y < 0\\ \frac{\pi}{2} & \text{if } x = 0, y > 0\\ -\frac{\pi}{2} & \text{if } x = 0, y < 0\\ \text{undefined} & \text{if } x = 0, y = 0 \end{cases}$$

$$\theta_2(x,y) = \begin{cases} \arctan(\frac{y}{x}) & \text{if } x > 0\\ \arctan(\frac{y}{x}) + \pi & \text{if } x < 0, y \ge 0\\ \arctan(\frac{y}{x}) - \pi & \text{if } x < 0, y < 0\\ \frac{\pi}{2} & \text{if } x = 0, y > 0\\ -\frac{\pi}{2} & \text{if } x = 0, y < 0\\ \text{undefined} & \text{if } x = 0, y = 0 \end{cases}$$

These charts sufficiently cover the circle, thus forming at atlas. We now construct two transition functions from $\mathbb{R} \to S \to \mathbb{R}$ for some point $p \in \mathbb{R}$. These overlaps occur below the x-axis on the left and right hand sides of the circle, between $[\pi, \pi + \alpha]$ and $[-\alpha, 2\pi]$ respectively.

$$T_1 : [\pi, \pi + \alpha] \to (x, y) \to [\pi, \pi + \alpha]$$

 $T_1(p) = \theta_1(\theta_2^{-1}(p)) = \theta_2(\theta_1^{-1}(p)) = p$

$$T_1: [-\alpha, 2\pi] \to (x, y) \to [-\alpha, 2\pi]$$

 $T_1(p) = \theta_1(\theta_2^{-1}(p)) = \theta_2(\theta_1^{-1}(p)) = p$

4.2 Projection Construction

Divide the circle into four coordinate patches, each of which is a half-plane:

$$U_{top} = \{(x, y) \in S | y \ge 0\}$$

$$U_{bottom} = \{(x, y) \in S | y \le 0\}$$

$$U_{right} = \{(x, y) \in S | x \ge 0\}$$

$$U_{left} = \{(x, y) \in S | x \le 0\}$$

Now define four corresponding charts $\theta:U\to\mathbb{R}$ and their inverses $X^{-1}:\mathbb{R}\to U$:

$$X_{top}(x,y) = x X_{top}^{-1}(x) = (x, \sqrt{1-x^2})$$

$$X_{bottom}(x,y) = x X_{bottom}^{-1}(x) = (x, \sqrt{1-x^2})$$

$$X_{left}(x,y) = y X_{left}^{-1}(y) = (\sqrt{1-y^2}, y)$$

$$X_{right}(x,y) = y X_{right}^{-1}(y) = (\sqrt{1-y^2}, y)$$

This sufficently covers the entire circle, forming an atlas. Where the charts overlap, we construct four transition functions $T: R \to R$ for some point $p \in \mathbb{R}$:

$$T_1(p) = X_{right}(X_{top}^{-1}(p)) = X_{right}(p, \sqrt{1 - p^2}) = \sqrt{1 - p^2}$$

$$T_2(p) = X_{right}(X_{bottom}^{-1}(p)) = X_{right}(p, \sqrt{1 - p^2}) = \sqrt{1 - p^2}$$

$$T_3(p) = X_{left}(X_{bottom}^{-1}(p)) = X_{left}(p, \sqrt{1 - p^2}) = \sqrt{1 - p^2}$$

$$T_4(p) = X_{left}(X_{top}^{-1}(p)) = X_{left}(p, \sqrt{1 - p^2}) = \sqrt{1 - p^2}$$

Note that the order of function composition does not matter here. sub-matrix along the diagonal is the same dissimilarity matrix via paper.