examples of G, R and S bits usage

assumed format:

- Code used for exponent representation is not important (for these examples).
- Mantissa is in sign and magnitude code:
 - addition/subtraction of mantissa \mapsto
 - \mapsto addition/subtraction of their absolute values,
 - multiplication/division of mantissa \mapsto
 - \mapsto multiplication/division of their absolute values.
- The principle of hidden one is used.
- We assume, that division on individual parts is already processed:

sign, absolute value of mantissa and exponent.

addition

$$91,5 + 114,25 = 205,75 \doteq \begin{cases} 206 \\ 206 \end{cases}$$

- conversion on same exponent (here without correction)
- shift to the right (eliminate overflow during addition of mantissa)

addition ii

$$45,75 + 3,5625 = 49,3125 \doteq \begin{cases} 49,375 \\ 49,25 \end{cases}$$

$oldsymbol{M}$	GRS	$oldsymbol{E}$	
$egin{array}{cccccccccccccccccccccccccccccccccccc$		5 1	operands
$\begin{array}{c} 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ \end{array}$	0 0 1 0	6 6	correction
0 1100 010			addition of mantissa
1 1000 101	0 1 0 0	5	standardization
$1\ 1000\ 101 \\ 1\ 1000\ 101$		5 5	rounding — pref. bigger number rounding — pref. even digit

addition iii

$$366 + 28,5625 = 394,5625 \doteq \begin{cases} 395 \\ 395 \end{cases}$$

```
GRS
                      {m E}
    M
1 0110 1110
                           operands
1 1100 1001
 1011 0111 0 0 0
                           correction
0 0000 1110 0 1 1
0 1100 0101 0 1 1
                           addition of mantissa
1 1000 1010 1 1 0
                           standardization
1 1000 1011
                       8
                           rounding — pref. bigger number
1 1000 1011
                           rounding — pref. even digit
```

addition iv

$$182,5 + 0,28125 = 182,78125 \doteq \begin{cases} 183 \\ 183 \end{cases}$$

$oldsymbol{M}$	GRS	$oldsymbol{E}$	
$1 0110 1101 \\ 1 0010 0000$		7 -2	operands
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8 8	correction
$0\ 1011\ 0110$	1 1 1		addition of mantissa
1 0110 1101	1 1 0	7	standardization
$1 0110 1110 \\ 1 0110 1110$		7 7	rounding — pref. bigger number rounding — pref. even digit

subtraction

$$366 - 361 = 5 \doteq \begin{cases} 5 \\ 5 \end{cases}$$

$M \qquad GRS$	$oldsymbol{E}$	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	8 8	operands
$egin{array}{cccccccccccccccccccccccccccccccccccc$	8	1. operand negation of $2.$ operand $+$ $arepsilon$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	corrections — shifts and G,R,S subtraction of mantissa
1 0100 0000 0 0 0	2	standardization
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2	rounding — pref. bigger number rounding — pref. even digit

subtraction ii

$$270 - 255,5 = 14,5 \doteq \begin{cases} 14,5 \\ 14,5 \end{cases}$$

GRSM ${m E}$ 1 0000 1110 8 operands 1 1111 1111 1 0000 1110 1. operand 0 0000 0001 negation of 2. operand $+ \varepsilon$ 1 0000 1110 0 0 0 corrections — shifts and G,R,S 0 0000 0000 1 0 0 0 0000 1110 1 0 0 subtraction of mantissa 1 1101 0000 0 0 0 standardization 1 1101 0000 rounding — pref. bigger number 1 1101 0000 rounding — pref. even digit

subtraction iii

$$367 - 90,5 = 276,5 \doteq \begin{cases} 277 \\ 276 \end{cases}$$

M	GRS E	\mathcal{L}	
$1 0110 1111 \\ 1 0110 1010$		8 6	operands
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8 6	1. operand $+$ $arepsilon$ negation of $2.$ operand $+$ $arepsilon$
$1\ 0\ 1\ 1\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1$		8 8	corrections — shifts and G,R,S
1 0001 0100	100	8	subtraction of mantissa
1 0001 0100	1 0 0	В	standardization
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8 8	rounding — pref. bigger number rounding — pref. even digit

subtraction iv

$$367 - 5,65625 = 361,34375 \doteq \begin{cases} 361 \\ 361 \end{cases}$$

```
GRS
     M
                         {m E}
1 0110 1111
                         8
                             operands
1 0110 1010
1 0110 1111
                         8
                             1. operand
0 1001 0110
                             negation of 2. operand + \varepsilon
1 0110 1111 0 0 0
                         8
                             corrections — shifts G,R,S
1 1111 1010 0 1 1
1 0110 1001 0 1 1
                             subtraction of mantissa
1 0 1 1 0 1 0 0 1 0 1 1
                         8
                             standardization
1 0110 1001
                         8
                             rounding — pref. bigger number
                         8
1 0110 1001
                             rounding — pref. even digit
```

multiplication

$$91.5 \cdot 228.5 = 20907.75 \doteq \begin{cases} 20928 \\ 20928 \end{cases}$$

GRS \mathcal{M} \boldsymbol{E} 1 0110 1110 6 operands 1 1100 1001 correction 1 0110 1110 0 0 0 6 0 1110 0100 1 0 0 0101 0001 1010 1011 1100 0000 all bits of product 1 0100 0110 1 0 1 14 multiplication 1 0100 0110 1 0 1 standardization 14 1 0100 0111 **14** pref. bigger number 1 0100 0111 14 pref. even digit

correction:

- ensuring that the intermediate result (i.e. multiplication)
- it should be always smaller than 2

multiplication ii

$$78 \cdot 164 = 12792 \doteq \begin{cases} 12800 \\ 12800 \end{cases}$$

$oldsymbol{M}$	GRS	$oldsymbol{E}$	
1001110 1010010		6 7	operands
1 0100 10 1 0011 10 0 1010 01	00 0 0 0	6 8	correction
	11 1000 0000 00		all bits of product
0 1100 01		14	multiplication
1 1000 11	11 1 1 0	13	standardization
$1\ 1001\ 00$ $1\ 1001\ 00$		13 13	pref. bigger number pref. even digit
1 1001 00	U U	19	pici. eveli digit

division

$$1:10=0.1 \doteq \begin{cases} 0.100\,097\,656\,25 \\ 0.100\,097\,656\,25 \end{cases}$$

M

GRS

 \boldsymbol{E}

$$1\ 0000\ 0000$$

0

$$0,1100\ 1100\ 11\ \overline{0011}$$

quotient

operands

operands & G & R & S

0,0000 0000 0000 1000 00

reminder

1 1001 1001 1 1 0 -4 standardization

-4 pref. bigger number

1 1001 1010

-4 pref. even digit

$$0,5 \leq a < 1$$

note.:
$$egin{array}{ccc} 0,5 \leq a < 1 \ 0,5 \leq b < 1 \end{array}
ight\} \;\; \Rightarrow \;\; 0,5 < a/b < 2$$