ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ ΠΡΩΤΟ ΣΕΤ ΑΣΚΗΣΕΩΝ, ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2019-20

ΔΗΜΟΣΙΕΥΣΗ: 18.03.2020, ΠΑΡΑΔΟΣΗ: ΜΕΧΡΙ ΤΙΣ 19:00 ΣΤΙΣ 26.03.2020

Η ΗΜΕΡΟΜΗΝΙΑ ΚΑΙ Η Ω ΡΑ ΠΑΡΑ Δ ΟΣΗ Σ ΕΙΝΑΙ ΑΝΕΛΑ Σ ΤΙΚΕ Σ .

Μπορείτε να δουλέψετε ατομικά ή σε ομάδες των δύο. Οι ασκήσεις παραδίδονται σε ηλεκτρονική μορφή σε ένα αρχείο pdf. Καμία άλλη μορφή δεν θα γίνει δεκτή. Πού θα γίνει η παράδοση, θα καθοριστεί σύντομα.

Γράψιμο έστω και ενός σετ σε \LaTeX πριμοδοτείται με +15% για το πρώτο σετ (που θα γράψετε σε \LaTeX , όποιο κι αν είναι αυτό) και +5% για κάθε επόμενο.

Αν έχετε σχήματα (που θα έπρεπε), μην τα θυσιάσετε, να τα συμπεριλάβετε και αυτά στην ηλεκτρονική μορφή. Υπάρχουν πολλοί τρόποι. Ο σκοπός του ΙΑΤΕΧ είναι να παραδώσετε κάτι αισθητικά βελτιωμένο, όχι κάτι πιο δυσνόητο.

 $\mathbf{\Pi}$ ρόβλημα $\mathbf{1}$ [4 μονάδες]. Να δειχθεί ότι σε κάθε γράφημα με b τεμάχια και a συνεκτικές συνιστώσες

$$b - a = \sum_{v \in V(G)} (t(v) - 1)$$

όπου t(v) είναι ο αριθμός των τεμαχίων που περιέχουν την χορυφή v.

Πρόβλημα 2 [4 μονάδες]. Δίνεται δισυνεχτικό γράφημα G. Να δειχθεί ότι αν τα άχρα μιας αχμής $e \in E(G)$ αποτελούν διαχωριστή, τότε $\kappa(G-e)=2$, δηλαδή η αφαίρεση της αχμής δεν πλήττει τη δισυνεχτικότητα.

Πρόβλημα 3 [2 μονάδες]. Δίνεται k-συνεκτικό γράφημα G=(V,E) και $A,B\subseteq V$. Έστω $|A|\ge |B|$. Χρησιμοποιώντας το Θεώρημα Menger (Θεώρ. 4.2 στις σημειώσεις) δείξτε ότι υπάρχουν τουλάχιστον $\min\{k,|B|\}$ διακεκριμένα A-B μονοπάτια.

Πρόβλημα 4 [4 μονάδες]. Δίνεται δισυνεκτικό γράφημα G στο οποίο δεν υπάρχουν κορυφές $u, v \in V(G)$ που να συνδέονται με τρία εσωτερικά διακεκριμένα μονοπάτια (ισοδύναμα: το G δεν περιέχει το $K_{2,3}$ ως τοπολογικό έλασσον). Να αποδείξετε ότι για κάθε τρεις κορυφές του G υπάρχει κύκλος που περνάει και από τις τρεις.

Πρόβλημα 5 [5 μονάδες]. Έστω $k \geq 2$. Δείξτε ότι σε ένα k-συνεχτικό γράφημα οποιεσδήποτε k κορυφές βρίσκονται πάνω σε κύκλο. (Ο κύκλος μπορεί βέβαια να περιέχει και άλλες κορυφές).

 Υ πόδ ϵ ιξη: Μπορεί να λυθεί με επαγωγή στο k και χρήση του Πορίσματος 5.2 από τις σημειώσεις.

Παρατήρηση: η αντίστροφη πρόταση δεν ισχύει. Στο C_n , για $2 \le k \le n$, οποιεσδήποτε k κορυφές βρίσκονται πάνω σε κύκλο. Δείτε και το προηγούμενο πρόβλημα.