Università di Pisa

Pietro Ducange

Algoritmi e strutture dati Alberi Generici e Binari di Ricerca

a.a. 2020/2021

Alberi generici: definizione

- · un nodo p è un albero
- un nodo + una sequenza di alberi A1 .. An è un albero

- radice
- padre
- i-esimo sottoalbero
- i-esimo figlio
- livello

Alberi generici: differenza con alberi binari

alberi binari

diverso da

sottoalbero destro vuoto sottoalbero sinistro vuoto

alberi generici

unico albero: radice: A, un sottoalbero

Alberi generici: visite

```
void preOrder ( albero ) {
     esamina la radice;
     se l'albero ha n sottoalberi {
             preOrder ( primo sottoalbero);
             preOrder ( n-esimo sottoalbero);
                            ABDCEGHFR
```

Alberi generici: visite

```
void postOrder ( albero ) {
       se l'albero ha n sottoalberi {
             postOrder ( primo sottoalbero);
             postOrder ( n-esimo sottoalbero);
       esamina la radice;
}
                            DBGHEFCRA
```

Alberi generici: memorizzazione

MEMORIZZAZIONE a liste multiple

Alberi generici: memorizzazione

MEMORIZZAZIONE FIGLIO-FRATELLO

- primo figlio a sinistra
- primo fratello a destra

Alberi generici: memorizzazione R В H G

Esercizio

Dato il seguente albero binario effettuare:

La visita pre order: ???

La visita simmetrica: ????

Alberi generici: corrispondenza fra visite

Utilizzando la memorizzazione figlio-fratello:

La visita preorder del trasformato corrisponde alla visita preorder dell'albero generico

La visita inorder del trasformato corrisponde alla visita postorder dell'albero generic

il tempo delle visite in un albero generico è lineare nel numero dei nodi.

Per la ricerca, l'inserimento e la cancellazione di un nodo, il tempo è comunque lineare. Infatti queste operazioni possono essere programmate mantenendo la struttura delle visite.

Esempi di programmi su alberi generici: conta nodi e foglie

conta i nodi (vedi albero binario)

```
int nodes (Node* tree) {
    if (!tree) return 0;
    return 1+nodes(tree->left)+nodes(tree->right);
                      conta le foglie
int leaves(Node* tree) {
  if (!tree) return 0;
  if (!tree->left) return 1+ leaves(tree->right); // foglia
  return leaves(tree->left)+ leaves(tree->right);
```

Esempi di programmi su alberi generici: inserimento

Inserisci F come ultimo figlio di A

Esempi di programmi su alberi generici: inserimento

inserisce un nodo in fondo a una lista di fratelli

Esempi di programmi su alberi generici: inserimento

inserisce son come ultimo figlio di father.

int insert(InfoType son, InfoType father, Node* &tree) {
 Node* a=findNode(father, tree); // a: puntatore di father
 if (!a) return 0; // father non trovato
 addSon(son, a->left);

return 1;

Alberi generici: memorizzazione R В H G

Riferimenti Bibliografici

Demetrescu:

Paragrafo 3.3

Cormen:

Paragrafo 10.4

Alberi binari di ricerca: definizione

Un albero binario di ricerca è un albero binario tale che per ogni nodo p:

- i nodi del sottoalbero sinistro di p hanno etichetta minore dell'etichetta di p
- i nodi del sottoalbero destro di p hanno etichetta maggiore dell'etichetta di p

Un albero binario di ricerca

Dalla proprietà base segue che i nodi di un albero binario di ricerca hanno tutti etichette diverse

Un albero binario di ricerca con gli stessi nodi

Un albero binario di ricerca con gli stessi nodi

Alberi binari di ricerca: proprietà e operazioni

- non ci sono doppioni
- la visita simmetrica elenca le etichette in ordine crescente

OPERAZIONI

- ricerca di un nodo
- inserimento di un nodo
- cancellazione di un nodo

Alberi binari di ricerca: ricerca

```
Node* findNode (InfoType n, Node* tree) {
 if (!tree) return 0;
                                   // albero vuoto
 if (n == tree->label) return tree; // n=radice
                            // n<radice
 if (n<tree->label)
    return findNode(n, tree->left);
 return findNode(n, tree->right); // n>radice
```

Alberi binari di ricerca: ricerca

$$T(0)=a$$

 $T(n)=b+T(k)$ $k < n$

$$T(0)=a$$

$$T(n)=b+T(n/2)$$
O(log n)

$$T(0)=a$$
 $O(n)$
 $T(n)=b+T(n-1)$

in media: O(logn)

Alberi binari di ricerca: inserimento

```
void insertNode (InfoType n, Node* &tree) {
  if (!tree) {
                          // albero vuoto: creazione nodo
    tree=new Node;
    tree->label=n;
    tree->left = tree->right = NULL; return;
  if (n<tree->label)
                                       // n<radice
        insertNode (n, tree->left);
  if (n>tree->label)
                                      // n>radice
        insertNode (n, tree->right);
                       O(\log n)
```


Alberi binari di ricerca: cancellazione

- Prima si cerca il nodo da cancellare effettuando una ricerca come negli algoritmi precedenti.
- Se il nodo viene trovato, sia esso p, possono verificarsi due situazioni diverse.
 - Se p ha un sottoalbero vuoto, il padre di p viene connesso all'unico sottoalbero non vuoto di p
 - Se p ha entrambi i sottoalberi non vuoti si cerca il nodo con etichetta minore nel sottoalbero destro di p, si cancella e si mette la sua etichetta come etichetta di p

Esempio di cancellazione: 2 Caso

Alberi binari di ricerca: cancellazione

restituisce l'etichetta del nodo più piccolo di un albero ed elimina il nodo che la contiene

```
void deleteMin (Node* &tree, InfoType &m) {
  if (tree->left) //c'è un nodo più piccolo
       deleteMin(tree->left, m);
  else {
                          //restitusco l'etichetta
    m=tree->label;
    Node* a=tree;
    tree=tree->right;
                          //connetto il sottoalbero destro di
                          // m al padre di m
    delete a;
                          //elimino il nodo
```

Alberi binari di ricerca: cancellazione

```
void deleteNode(InfoType n, Node* &tree) {
  if (tree)
    if (n < tree->label) //n minore della radice
            { deleteNode(n, tree->left); return; }
    if (n > tree->label) //n maggiore della radice
            { deleteNode(n, tree->right); return; }
    if (!tree->left)
                                  //n non ha figlio sinistro
            { Node* a=tree; tree=tree->right; delete a;return;}
    if (!tree->right)
                                  //n non ha figlio destro
           { Node* a=tree; tree=tree->left; delete a; return;}
    deleteMin (tree->right, tree->label); //n ha entrambi i figli
}
```

O(log n)

Domande

In quanto tempo è possibile ricercare una chiave in un albero binario di ricerca di n elementi?

- (a) $O(\log n)$
- (b) $O(\sqrt{n})$
- (c) O(n)
- (d) $O(n^2)$

In quanto tempo è possibile trovare il minimo in un albero binario di ricerca bilanciato di n elementi?

- (a) $O(\log n)$
- (b) $O(\sqrt{n})$
- (c) O(n)
- (d) $O(n^2)$

Esercizio 1

Dato il seguente albero binario di ricerca:

Disegnare gli alberi risultanti dopo l'aggiunta del valore 27 e la successiva eliminazione del valore 20.

Altri esercizi

- 1. Scrivere un programma C++ che dato un albero generico, sommare 1 ad ogni sua etichetta
- 2. Scrivere un programma C++ che somma ad ogni nodo di un albero generico il numero dei suoi figli

Riferimenti Bibliografici

Demetrescu:

Paragrafo 6.1

Cormen:

Paragrafo 12.1, 12.2 e 12.3