

Submitted By:

Pranav Míshra 11ID60R20

Let's consider...

- Luna wants to go on a vacation.
- She has 3 options

Hogwarts

Hogsmead

Azkaban

How to decide..???

Let us consider...

- Each option can be evaluated against certain criteria.
- Criteria for <u>vacation destinations</u> can be:
 - Entertainment
 - Facilities
 - Accommodation cost
 - Travel cost

Similarly...

- Selecting a *source of information* (library, internet, etc...) involves various criteria such as:
 - Reliability of information
 - Time to gather information
 - Cost of acquiring information

 These are examples of MULTI-CRITERIA problems and requires MCDM approach.

MCDM

Multiple Criteria Decision Making

• Selection of the best, from a set of alternatives, each of which is evaluated against multiple criteria.

Some problem solving techniques are:

- SAW (Simple Additive Weighting)
- TOPSIS (Technique for Order Preference by Similarity to the Ideal Solution)
- ELECTRE (Elimination et Choice Translating Reality)
- AHP (The Analytical Hierarchy Process)
- SMART (The Simple Multi Attribute Rating Technique)
- ANP (Analytic network process)

 Alternatives — These are the options which are to be evaluated for selection of the best.

Example: (for vacation problem)Hogwarts, Hogsmeade, Azkaban

 Criteria or Attributes — These will impact the selection of alternatives.

Example: (for vacation problem) entertainment, facilities, travel cost, accommodation cost

- Completeness: It is important to ensure that all of the important criteria are included.
- Redundancy: In principle, criteria that have been judged relatively unimportant or to be duplicates should be removed at a very early stage.
- Operationality: It is important that each alternative can be judged against each criterion.

- Weights These estimates relative importance of criteria.
 - Each attribute is given certain points on 0-10 or 0-100 rating scale by a team of *experts* or *decision makers*.
 - Example:

<u>criteria</u>			weight	<i>rating</i>
<u>scale</u>				
 Entertainment 	-	4	10 very	y good -1 none
Facilities	-	2	10 very	y good -1 none
 Travel cost 	-	6	10 low	-1 very high
 Accomodation 	-	8	10 low	-1 very high

- ...! 1 - ...! -

- Decision makers These are experts who are assigned with the task of weighting each attribute.
 - There can be 'n' number of decision makers.
 - Example:

<u>criteria </u>		rating scale
 Entertainment 	-	10 very good -1 none
 Facilities 	-	10 very good -1 none
 Travel cost 	-	10 low-1 very high
 Accomodation 	-	10 low-1 very high

Criteria	Dec	cision	makers	Attributes	s weights
	Harry	Ron	Hermoine		
entertainmen t	4	2	6	$= \frac{4+2+6}{3} \\ \frac{2+3+1}{3}$	= 4
Facilities	2	3	1	= 3	= 2

- Decision matrix A table that is used to objectively make decision about making selection from a range of options.
 Decision maker rates each attribute of each alternative

 - **Example:** for alternate 1 (hogwarts)

Criteria	Dec	cision	makers	Attributes weights
	Harry	Ron	Hermoine	
entertainmen	10	8	9	$=\frac{10+8+9}{3}=9$
Ţ				7+8+6
Facilities	7	8	6	$=$ $_{5+6+7}^{3}$ $=$ 7
Travel cost	5	6	7	$= {}^{3}_{9+5+7} = 6$
Acc. Cost	9	5	7	= 3 = 7

Similarly...

• for alternate 2 (hogsmeade)

Criteria	Dec	cision	makers	Attributes weights
	Harry	Ron	Hermoine	
entertainmen t	9	6	9	$= \frac{9+6+9}{3} = 8$ $\frac{8+9+4}{3}$
Facilities	8	9	4	= 7 + 10 + 10 = 7
Travel cost	7	10	10	= 5+7+6 = 9
Acc. Cost	5	7 (aban)	6	= 3 = 6

for alternate 3 (azkaban)

Criteria	Dec	cision	makers	Attributes weights		
	Harry	Ron	Hermoine			
entertainmen t	9	4	8	$= \frac{\frac{9+4+8}{3}}{\frac{7+9+8}{3}} = 7$		
Facilities	7	9	8	= 6+5+7 = 8		
Travel cost	6	5	7	$= \frac{3}{7+6+5} = 6$		
Acc. Cost	7	6	5	= = 6		

Decision matrix...

Acc. Cost

Criteria Hogy					arts	ł	og	smo	eade	Az	kaba	n
enterta	inme	en		9				8			7	
t												
					┡							
Facilitie	es			7				7			8	
Travel	cost			6				9			6	
Acc. Co	ost		-	7	_			6			1	
Criteria		cision	makers		tribute	se woir	dista					
Criteria	Harry	Ron	Hermoine		TOBLE							
entertainment	10	8	9	=	0 + 8 + 9	= 9						
Facilities	7	8	6	=	7+9+6	= 7			logwa	arts (Table	e 1)
Travel cost	5	6	7	=	5+6+7	= 6				,		,
Acc. Cost	9	5	7	=	9+5+7	= 7					/	
Criteria	De	cision	makers	At	tribute	es weig	hts					
	Harry	Ron	Hermoine			and the same of th				/		
entertainment	9	6	9	=	9+6+9	= 8		∟	logsn	noad	o (To	hlo
Facilities	8	9	4	=	8+9+4	= 7		I	oysii	ICAU	c (10	וטוכ
Travel cost	7	10	10	=	7 + 10 + 10 3	= 9						
Acc. Cost	5	7	6	=	$\frac{5+7+6}{3}$	= 6						
Criteria	De	cision	makers	At	tribute	s weig	hts					
	Harry	Ron	Hermoine									
entertainment	9	4	8	=	9+4+8	= 7				/		^ \
Facilities	7	9	8	=	$\frac{7+9+8}{3}$	= 8		A	zkab	an (I	able	3)
Travel cost	6	5	7	=	$\frac{6+5+7}{3}$	= 6						
4 2		12	144		91414							

TOPSIS

Technique for Order Preference by Similarity to Ideal Solution

In this method two artificial alternatives are hypothesized:

- Ideal alternative: One which has the best attributes values (i.e. max. benefit attributes and min. cost attributes)
- Negative ideal alternative: One which has the worst attribute values. (i.e. min. benefit attributes and max. cost attributes)

TOPSIS selects the alternative that is the closest to the ideal solution and farthest from negative ideal solution.

- Step 1 standardize the decision matrix.
 - This step transforms various attribute dimensions into non-dimensional attributes, which allows comparisons across criteria.

 For standardizing, each column of decision matrix, is divided by root of sum of square of respective

Criteria	Hogwarts	Hogsmeade	Azkabar		
entertainmen	9	8	7=	$\sqrt{(9^2+8^2+7^2)}$	→13.93
t				$\sqrt{(7^2+7^2+8^2)}$	
Facilities	7	7	8 =	$\sqrt{(6^2 + 9^2 + 6^2)}$	=12.73
Travel cost	6	9	6 =	$\sqrt{(7^2+6^2+6^2)}$	=12.37
Acc. Cost	7	6	6 =		= 11.00
D	ECISION	MATRIX			

- Step 1 standardize the decision matrix.
 - This step transforms various attribute dimensions into non-dimensional attributes, which allows comparisons across criteria.

 For standardizing, each column of decision matrix, is divided by root of sum of square of respective

Criteria	Hogwarts	Hogsmeade	Azkaba	n	
entertainmen	9	8	7 =	$\sqrt{(9^2+8^2+7^2)}$	= 13.93
t				$\sqrt{(7^2+7^2+8^2)}$	→
Facilities	7	7	= 8	$\sqrt{(6^2+9^2+6^2)}$	=12.73
Travel cost	6	9	6 =	$\sqrt{(7^2+6^2+6^2)}$	=12.37
Acc. Cost	7	6	6 =		= 11.00

- Step 1 standardize the decision matrix.
 - This step transforms various attribute dimensions into non-dimensional attributes, which allows comparisons across criteria.

 For standardizing, each column of decision matrix, is divided by root of sum of square of respective

Criteria	Hogwarts	Hogsmeade	Azkaba	n	
entertainmen	9	8	7 =	$\sqrt{(9^2 + 8^2 + 7^2)}$	= 13.93
t				$\sqrt{(7^2 + 7^2 + 8^2)}$	
Facilities	7	7	8 =	$\sqrt{(6^2+9^2+6^2)}$	=12.73
Travel cost	6	9	6 =	$\sqrt{(7^2+6^2+6^2)}$	=12.37
Acc. Cost	7	6	6 =		= 11.00

	Criteria	Hogw	arts	Hogsm	eade	Azkaban	ķ.	
ente	ertainment	9	W.	8		7 =	<u> </u>	3.93
Faci	lities		7	7		8 =	=12	2.73
Trav	vel cost	6	V	9		6 =	=10	2.37
Acc	Cost	7	\	6		6 =	=1	1.00
	Crite	ria	Hog	warts	Hog	gsmead	Azkaban	
	Entertainmen t		9/	3.93				
	Facilities	3						
	Travel co	ost						
	Crite	ria	Нос	rarts	Hog e	gsmead	Azkaban	
	Entertainmen t		().65				
	Facilities	3						
	Travel co	ost						

	Criteria	Hogw	arts	Hogsm	eade	Azkaban	ł		
ente	ertainment	9	N.	8		7 =		= 13.	93
Faci	lities	7	Y.	7		8 =		=12.	73
Trav	vel cost	6	V.	9		6 =		=12.	37
Acc	. Cost	7	11	6	7	6 =		= 11.	00
	Crite	ria	Нос	gwarts	Hog e	smead <	<i>P.</i> zkak	oan	
	Entertainmen t		9 /	13.93	8 /	3.93			
	Facilities	3							
	Travel co	ost							
	Crite	ria	Но	gwarts	Hog e	nead	Azkal	oan	
	Entertainmen t			0.65		0.57			
	Facilities	3							
	Travel co	ost							

110	Criteria	Hogw	arts	Hogsmo	eade	Azkaban		
entertainment		9		8		7 =		₹ 13
Fac	ilities	7	27	7		8 =		=12
Tra	vel cost	6	W.	9		6 =		=12
Acc	. Cost	7	1)	6		6 =		= 11
	Crite	ria	Hog	warts	Hog e	gsmead	Avka	b⊕n
	Entertair t	nmen	9/	13.93	8	/ 13.93	7/	3.93
	Facilities	3						
	Travel co	ost						
	Criteria Entertainmen t		Hog	jwarts	Ho(gsmead	Azk	an
			().65		0.57	0.	50
	Facilities	3						
	Travel c	ost						

Similarly....

Criteria	Hogwarts	Hogsmeade	Azkaban
Entertainment	0.65	0.57	0.50
Facilities	0.55	0.55	0.63
Travel cost	0.49	0.73	0.49
Acc. Cost	0.64	0.55	0.55

 Step 2 - Construct weighted standardized decision matrix by multiplying attributes weight to each

Criteria	Decision makers			Attribu	ites weights					
	Harry	Ron	Hermoine			Criteria	Hogwa	arts	Hogsmeade	Azkaban
entertainment	4	2	6	=	= 4	X	0.6	5	0.57	0.50
Facilities	2	3	1	=	= 2	Facilities	0/5	5	0.55	0.63
Travel cost	6	4	8		= 6	Travel cost	0.4	.9	0.73	0.49
Accomodation	8	9	7		= 8	Acc. Cost	0.6	4	0.55	0.55

Attributes weights

Standardized decision matrix

Criteria	Hogwarts	Hogsmead Azkaban e	
Entertainmen t	2.6		V
Facilities			
Travel cost			

Weighted Standardized decision matrix

 Step 2 - Construct weighted standardized decision matrix by multiplying attributes weight to each

Criteria	De	Decision makers Attributes weights										
	Harry	Ron	Hermoine				Criteria	Hogwarts	Но	gsmead	de	Azkaban
entertainment	4	2	6	=	= 4		X			0.57		0.50
Facilities	2	3	1	=	= 2		Facilities	0.55		0 55		0.63
Travel cost	6	4	8		= 6		Travel cost	0.49		0.73		0.49
Accomodation	8	9	7		= 8		Acc. Cost	0.64		0.55		0.55

Attributes weights

Standardized decision matrix

Criteria	Hogwarts	Hogsrnead e	Azkaban	
Entertainmen t	2.6	2.28		Λ
Facilities				
Travel cost				

Weighted Standardized decision matrix

 Step 2 - construct weighted standardized decision matrix by multiplying attributes weight to each

Criteria	Decision makers		Attri	butes weights						
	Harry	Ron	Hermoine			Criteria	Н	ogwarts	s Hogsmeade	Azkaban
entertainment	4	2	6	=	= 4	Entertainment		0.65	0.57	0.50
Facilities	2	3	1	=	= 2	X		0.55	0.55	0.63
Travel cost	6	4	8		= 6	Travel cost		0 49	0.73	0.49
Accomodation	8	9	7		<i>‡</i> 8	Acc. Cost		0.64	0.55	0.55

Attributes weights

ratina

Standardized decision matrix

Criteria	Hogwarts	Hogsmead e	Azkabarı
Entertainmen t	2.6	2.28	
Facilities	1.1		
Travel cost			

Weighted Standardized decision matrix

 Step 2 - construct weighted standardized decision matrix by multiplying attributes weight to each rating. Similarly....

Criteria	Hogwarts	Hogsmead e	Azkaban
Entertainmen t	2.6	2.28	2
Facilities	1.1	1.1	1.26
Travel cost	2.94	4.38	2.94
Acc. Cost	5.12	4.4	4.4

Weighted Standardized decision matrix

• Step 3 — Determine *ideal solution* and *negative ideal* solution.

A set of maximum values for each criteria is **Ideal solution**.

Criteria	Hogwarts	Hogsmead	Azkaban	
	Max.	^		⇒2.6
Entertainmen	2.6	2.28	Max. ²	→1.26
T	4.4	Max.	4.00	⇒4.38
Facilities	1.1	1.1	1.26	⇒ 5.12
Travel cost	Max, 94	4.38	2 94	
Acc. Cost	5.12	4.4	4.4	

Ideal solution = $\{2.6, 1.26, 4.38, 5.12\}$

• Step 3 — Determine *ideal solution* and *negative ideal* solution.

A set of minimum values for each criteria is **Negative Ideal**

sol	ution Criteria	Hogwarts	Hogsmead e	Azkaban Min.	2.0
	Entertainmen t	2.6	Min ^{2.28}		→1.1 →2.94
,	Facilities	1.1	1.1	1.26	4.4
•	Travel cost	2.94	4.38	2.94	
	Acc. Cost	5.12	4.4	4.4	

Negative Ideal solution = {2.6, 1.26, 2.94, 4.4}

• Step 4 — Determine separation from *ideal solution*. S_i^*

Criteria	Hogwarts	Hogsmeade	Azkaban
Entertainment	(2.6 <mark>-2.6</mark>) ²	(2.28 <mark>-2.6</mark>) ²	(2.0-2.6) ²
Facilities	(1.1 <mark>-1.26</mark>) ²	(1.1 <mark>-1.26</mark>) ²	(1.26-1.26) ²
Travel cost	(2.94-2.94) ²	(4.38 <mark>-2.94</mark>) ²	(2.94- <mark>2.94</mark>) ²
Acc. Cost	(5.12-4.4) ²	(4.4-4.4) ²	(4.4-4.4) ²

Criteria	Но	gwarts	Hogsmeade	Azkaban
Entertainment		0.0	0.10	0.36
Facilities		0.02	0.02	0.0
Travel cost		0.0	2.07	0.0
Acc. Cost		0.51	0.0	0.0

$$\mathbf{S}_{i}^{*} = \frac{(0.+0.02+0+0.51)^{1/2}}{(0.36+.0+9+0)^{1/2}} = \frac{(0.1+.02+2.07+0)^{1/2}}{1.48}$$

• Step 5 — Determine separation from *negative ideal*

solution

Criteria	Hogwarts	Hogsmeade	Azkaban
Entertainment	(2.6-2.0) ²	(2.28 <mark>-2.0</mark>) ²	(2.0-2.0) ²
Facilities	(1.1 <mark>-1.1</mark>) ²	(1.1 <mark>-1.1</mark>) ²	(1.26 <mark>-1.1</mark>) ²
Travel cost	(2.94-4.38) ²	(4.38 <mark>-4.38</mark>) ²	(2.94-4.38) ²
Acc. Cost	(5.12 <mark>-5.12</mark>) ²	(4.4-5.12) ²	(4.4- <mark>5.12</mark>) ²

Criteria	Н	ogwarts	Hogsmeade	Azkaban
Entertainment		0.36	0.07	0.0
Facilities		0.0	0.0	0.02
Travel cost		2.07	0.0	2.07
Acc. Cost		0.0	0.51	0.51

• Step 6 — Determine relative closeness to *ideal solution*.

Criteria	Hogwarts	Hogsmeade	Azkaban
S _i *	0.74	1.48	0.6
S _i '	1.56	0.773	1.618
$S_i^*+S_i^{\prime}$	2.3	2.253	2.218
C'//C*.C')	1.56/2.3	0.77/2.25	1.62/2.21
$S_i'/(S_i^*+S_i')$	0.68	0.343	Max. 0.729

- Consider 3 suppliers...
 - •S₁
 - •S₂
 - •S₃
- •3 suppliers are evaluated against 4 attributes —cost attribute

ATTRIBUTES

- Special factor (Q₁)
- •On time delivery (Q₂)
- Performance history (Q₃)
- Technical capability (Q₄)

- •There are 4 decision makers...
 - •D₁
 - •D₂
 - $\bullet D_3$
 - $\bullet D_4$

...to express their preferences and ratings to select the best supplier.

•Step 1 – finding **ATTRIBUTE WEIGHTS**.

rating given to each attribute by each decision maker is shown in

tabla		`									
		Attrib	utes	D ₁	D ₂		D_3	D_4	W	Normali	zed W
	AVE	RAGE	1	H(.375)	M(.27	5) ML((.225	VL(.125)	.25	.25/.91 =	0.275
	AVE	RAGE)				
	AVE	RAGP	2	VH(.425	VL(.12	25 VVI	_(.05	ML(.225)	.21	.21/.91 =	= 0.230
	A\/F	RAGĘ)))				
	/ \ \ L	Q	3	L(.175)	VL(.12	25 VVI	_ (.05	MH(.325	.17	.17/.91 =	= 0.187
)))			
		Q	4	VH(.425	L(.175	5) M(.	275)	ML(.225)	.28	.28/.91 =	- 0.308
)							
	sca	ie otaj	itribute	e weights					N 9	1 0	\cap
						ATTR	BUTE	SCALE			
			VVL	VL	L	ML	M	MH	Н	VH	VVH
	WE	IGHT S	.05	.125	.175	.225	.275	.325	.375	.425	.475

•Step 1 – finding **ATTRIBUTE WEIGHTS**.

rating given to each attribute by each decision maker is shown in

	Attrib		D ₁	D ₂		D_3	D ₄	W	Normali	zed W
	Q	1	H(.375)	M(.27	5) ML	(.225)	VL(.125)	.25 –	3. 25/.91 □	0.275
Q_2		2	VH(.425)	VL(.12	25 VV	L(.05)	ML(.225)	.21	21/.91 =	0.230
	Q	3	L(.175)	VL(.12	25 VV	L(.05)	MH(.325)	.17	.17/91	0.187
	Q_4		VH(.425	L(.175	5) M(.275)	ML(.225)	.28	.28/.91 =	0.308
sca	le of a	ttribute	e weights					0.9	1 ∩	n
					ATTR	IBUTE	SCALE			
		VVL	VL	L	ML	M	МН	Н	VH	VVH
WE	IGHT S	.05	.125	.175	.225	.27	5 .325	.375	.425	.475

•Step 2 – finding **ATTRIBUTE RATINGS**.

Rating given to each supplier by each decision maker for attribute

Suppliers	D ₁	D_2	D_3	D_4	G_1
AVERAGE₁	.03	.03	.03	.03	.03
AVERAGS ₂	.05	.05	.05	.05	.05
AVERAGS₃	.01	.01	.01	.01	.01

Rating given to each supplier by each decision maker for attribute

Suppliers	D ₁	D_2	D_3	D_4	G_2
AVERAGE₁	.95	.95	.95	.95	.95
AVERAGE ₂	.98	.98	.98	.98	.98
AVERAGS ₃	.85	.85	.85	.85	.85

•Step 2 – finding **ATTRIBUTE RATINGS**.

rating given to each supplier by each decision maker for attribute

	rating give												
	Suppliers	D ₁		D_2) ₃		D_4		G_3			
AVE	RAGE ₁	G(9)		P(1)	MF	P(3)		MP(3)		4			
AVE	RAGE ₂	MP(3)	MI	P&F(4	MP	&F(4	M	IP&F(4)		3.75	5		
AVE	RAGE))							
	rating give	n to each	sup	F(5) oplier l	MPa oy ea	&F(4 ich de	eci	F(5) sion ma	aker	4.75 for	<u>.</u> attrik	oute)
	Suppliers	D ₁		D_2	D	3		D_4		G_3			
AVE	RAG5₁	G(9)	N	IP(3)	P(1)	ľ	MP(3)		4			
AVE	RAGS ₂	MP(3)	MF	P&F(4	F(5)		F(5)	 	4.25			
AVE	RAGE)									
	S ₃	G(9)	(G(9)	MP8	kG(6	M	P&G(6	• •	8.5			
) ALIKI	51011	F 5	(, A)	E	
	scale of attribute					Р		MP	F		MC		G
						P		IVIE	Г		IVIC	7	G
	rat	ings		RATII	NGS	1		3	5		7		9

Suppliers

Suppliers

S

•Step 3 – construct **DECISION TABLE**.

					Attı	ribut	es						
	Supp	oliers	Q_1		Q_2		Q_3						
	S	31	.03		.95		4		4				
	S	2	.05		.98	,	3.75	4	4.25				
	S) ₃	.01		.85	-	4.75		8.5				
			-		10) }	-	_	1				
D ₁	D ₂	D ₁	D ₄	G ₁		opliers	D ₁	D	2		D ₄	G	3,
.03	.03	.03	.03	.03	1	Sı	G(9)	P(1)	MP(3)	MP(3)	4	4
.05	.05	.05	.05	.05		S ₂	MP(3)	MP&	F(4)	MP&F(4)	MP&F(4)	3.	75
.01	.01	.01	.01	.01		S ₃	F(5)	F(5	5) 1	MP&F(4)	F(5)	4.	75
				\neg	Q_{\angle}	1							
Di	D ₂	D ₃	D ₄	G		pliers	D ₁	D	2	D ₃	D ₄	C	;,
.95	.95	.95	.95	.95		Sı	G(9)	MP	(3)	P(1)	MP(3)		4
.98	.98	.98	.98	.98		S ₂	MP(3)	MP&	F(4)	F(5)	F(5)	4.3	25
.85	.85	.85	.85	.85		S ₃	G(9)	G(9) 1	MP&G(6)	MP&G(6)	8	.5

•Step 4 – **STANDARDIZE** DECISION

TARI F

88	00000000) I I										
1						Attrik						
	Supplier	Q_1	Q_2			Q_3			Q_4			
	S											
	S_1	.03			.95			4			4	
	S_2	.05		.98			3.75			4.25		
	S_3	.01		.85				4.75			8.5	
		1/13 ² +.05 ² +.01 ²) 1/95 ² +.98 ² +.85 ²		1//2+;	3.75 ^{2.})	+4.75²	2 1/42+4.252		+8.5 ²	
		= 0.059	9	= 1.608			= 7.254			= 10.31		

•Step 4 – **STANDARDIZE** DECISION

Attributes

DECISION TAB	Supplier s	Q_1	Q_2	Q_3	Q_4
Z	S_1	.03	.95	4	4
0	S_2	.05	.98	3.75	4.25
<u>S</u>	S_3	01	.85	4.75	8.5
DE($\sqrt{(.03^2+.05^2+.01^2)}$	$\sqrt{(.95^2+.98^2+.85^2)}$	$\sqrt{(4^2+3.75^2+4.75^2)}$	$\sqrt{(4^2+4.25^2+8.5^2)}$
			Attri	butes	
	Supplier s	Q_1	Q_2	Q_3	Q_4
	S ₁	.03/.059 = .508			
	S ₂				
	S_3		STANDARD DEC	ISION TABLE	

•Step 4 - STANDARDIZE DECISION

1888		<u>) </u>			
N.			Attrik	outes	
ABL	Supplier s	Q_1	Q_2	Q_3	Q_4
Z	S_1	.03	.95	4	4
	S_2	. <mark>0</mark> 5	.98	3.75	4.25
2	S_3	.01	.85	4.75	8.5
סח		$\sqrt{(.03^2+.05^2+.01^2)}$	$\sqrt{(.95^2+.98^2+.85^2)}$	$\sqrt{(4^2+3.75^2+4.75^2)}$	$\sqrt{(4^2+4.25^2+8.5^2)}$
			Attri	butes	
	Supplier	\mathbb{Q}_1	Q_2	Q_3	$Q_{\mathtt{A}}$

		Attributes					
Supplier s	(Q ₁	Q_2	Q_3	Q_4		
S ₁	.03/.059	9 = .508					
S_2	.05/.059	9 = .845					
S_3		<u>.</u>	STANDARD DECI	SION TABLE			

•Step 4 – **STANDARDIZE** DECISION

			Attributes					
ABL	Supplier s	Q_1	(Q_2	Q_3	Q_4		
Z	S_1	.03		95	4	4		
CIVION	S_2	.05		98	3.75	4.25		
2	S_3	.01		85	4.75	8.5		
DEC		$\sqrt{(.03^2+.05^2+.01^2)}$	√(.95²-	.98 ² +.85 ²	$\sqrt{(4^2+3.75^2+4.75^2)}$	$\sqrt{(4^2+4.25^2+8.5^2)}$		
				Attri	hutes			

			Attrik	outes	
Supplier s	Q ₁	Q	2	Q_3	Q_4
S ₁	.03/.059 = .508	.95/1.608	8= .591		
S_2	.05/.059 = .845				
S_3		STANDAF	RD DECI	SION TABLE	

•Step 4 - STANDARDIZE DECISION

		Attributes						
ן ק	Supplier s	Q_1	Q_2	Q_3	Q_4			
Z	S ₁	.03	.95	4	4			
2	S_2	.05	.98	3.75	4.25			
2	S_3	.01	.85	4.75	8.5			
7 П		$\sqrt{(.03^2+.05^2+.01^2)}$	$\sqrt{(.95^2 + .98^2 + .85^2)}$	$\sqrt{(4^2+3.75^2+4.75^2)}$	$\sqrt{(4^2+4.25^2+8.5^2)}$			

			Attrik	outes	
Supplier s	Q_1	Q,	2	Q_3	Q_4
S ₁	.03/.059 = .508	.95/1.608	3=.591		
S_2	.05/.059 = .845	.98/1.608	3= .609		
S_3		STANDAF	RD DECI	SION TABLE	

•Step 4 - STANDARDIZE DECISION

			Attributes						
105	Supplier s	Q_1	Q_2	Q_3	Q_4				
Z	S ₁	.03	.95	4	4				
)	S_2	.05	.98	3.75	4.25				
2	S_3	.01	.85	4.75	8.5				
7 1		$\sqrt{(.03^2+.05^2+.01^2)}$	$\sqrt{(.95^2+.98^2+.85^2)}$	$\sqrt{(4^2+3.75^2+4.75^2)}$	$\sqrt{(4^2+4.25^2+8.5^2)}$				
			A ++ ril	outos					

))))
		Attrik	outes	
Supplier s	Q_1	Q_2	Q_3	Q_4
S ₁	.03/.059 = .508	.95/1.608= .591	4/7.254= .551	4/10.31= .388
S_2	.05/.059 = .845	.98/1.608= .609 STANDARD DECI	3.75/7.254= .517 SION TABLE	4.25/10.31= .412
	04/050 400	05/4 000 500		0 = // 0 0 / 00 /

•Step 4 – **STANDARD** DECISION TABLE.

	Attributes						
Supplier s	Q_1	Q_2	Q_3	Q_4			
S ₁	.508	.591	.551	.388			
S_2	.845	.609	.517	.412			
S_3	.169	.529	.655	.824			

•Step 5 – WEIGHTED STANDARD DECISION TABLE.

Multiplying **attribute weights** as obtained in **step-1**, with respective attribute values in **standard decision matrix**.

	Attributes							
Supplier s	Q_1	Q_2	Q_3	Q_4				
S ₁	.508X.275							
S_2								
S_3								

	Attributes					
Suppliers	Qı	Q_2	Q ₃	Q ₄		
S	.508	.591	.551	.388		
S ₂	.845	.609	.517	.412		
S ₃	.169	.529	.655	.824		

Standard decision table as obtained from Step-4

	ATTRIBUTES			
	Q_1	Q_2	Q_3	Q_4
WEIGHT				
attribute w	eights	as obta	ained f	rom
Step-1				

•Step 5 – WEIGHTED STANDARD DECISION TABLE.

Multiplying **attribute weights** as obtained in **step-1**, with respective attribute values in **standard decision matrix**.

	Attributes			
Supplier s	Q_1	Q_2	Q_3	Q_4
S_1	.508X.275			
S_2	.845X.275			
S_3				

		Attri	butes	
Suppliers	Qı	Q_1	Q ₃	Q ₄
S	.508	.591	.551	.388
S ₂	.845	.609	.517	.412
S ₃	.169	.529	.655	.824

Standard decision table as obtained from Step-4

	ATTRIBUTES			
	Q_1	Q_2	Q_3	Q_4
WEIGHT S				
attribute w	eights	as obta	ained f	rom
Step-1				

•Step 5 – WEIGHTED STANDARD DECISION TABLE.

Multiplying **attribute weights** as obtained in **step-1**, with respective attribute values in **standard decision matrix**.

		Attrik	outes	
Supplier s	Q_1	Q_2	Q_3	Q_4
S ₁	.508X.275	.591X.230		
S_2	.845X.275			
S_3				

		Att/ib	utes	
Suppliers	Qı	Q_2	Q ₃	Q ₄
S	.508	.591	.551	.388
S ₂	.845	.609	.517	.412
S ₃	.169	.529	.655	.824

Standard decision table as obtained from Step-4

		ATTRIE	BUTES	
	Q_1	Q_2	Q_3	Q_4
WEIGHT	0.275	0.230	0.187	0.308
Step-1	eights	as obta	ained f	rom

•Step 5 - WEIGHTED STANDARD DECISION TABLE.

Multiplying **attribute weights** as obtained in **step-1**, with respective attribute values in **standard decision matrix**.

	Attributes			
Supplier s	Q_1	Q_2	Q_3	Q_4
S ₁	.508X.275	.591X.230	.551X.187	
S_2	.845X.275			
S_3				

	*****	Attri	butes	
Suppliers	Qı	Q ₂	Q ₃	Q ₄
Si	.508	.591	.551	.388
S ₂	.845	.609	.517	.412
S ₃	.169	.529	.655	.824

Standard decision table as obtained from Step-4

	ATTRIBUTES			
	Q_1	Q_2	Q_3	Q_4
WEIGHT	0.275	0.230	0.187	0.308
attribute w	eights	as obta	ained f	rom
Step-1				

•Step 5 – WEIGHTED STANDARD DECISION TABLE.

Multiplying **attribute weights** as obtained in **step-1**, with respective attribute values in **standard decision matrix**.

	Attributes			
Supplier s	Q_1	Q_2	Q_3	Q_4
S ₁	.508X.275	.591X.230	.551X.187	.388X.308
S_2	.845X.275	.609X.230	.517X.187	.412X.308
S_3	.169X.275	.529X.230	.655X.187	.824X.308

Suppliers		Attri	butes	
	Qı	Q_2	Q ₃	Q ₄
S	.508	.591	.551	.388
S ₂	.845	.609	.517	.412
S ₃	.169	.529	.655	.824

Standard decision table as obtained from Step-4

	ATTRIBUTES				
	Q_1	Q_2	Q_3	Q_4	
WEIGHT					
S attribute weights as obtained from					
Step-1					

•Step 5 – WEIGHTED STANDARD DECISION TABLE.

	Attributes				
Supplier s	Q_1	Q_2	Q_3	Q_4	
S ₁	0.14	0.135	0.103	0.119	
S_2	0.232	0.14	0.097	0.126	
S_3	0.046	0.121	0.122	0.253	

•Step 6 — Construct the <u>IDEAL SOLUTION</u> & <u>NEGATIVE IDEAL</u> <u>SOLUTION</u>.

IDEAL SOLTION

- Minimum value of Cost Attributes are Ideal.
- •Maximum value of Benefit Attributes are Ideal.

	Cost attribute		Benefit attributes	
Supplier s	Q_1	Q_2	Q_3	Q_4
S_1	_ 0.14	_0.135	_0.103	0.119
S_2	0.232	(Max) 0.14	0.097	0.126
S_3	(min.) 0.046	0.121	(Max) 0.122	(Max) 0.253

- •Step 6 Construct the <u>IDEAL SOLUTION</u> & <u>NEGATIVE IDEAL</u> <u>SOLUTION</u>.
 - NEGATIVE IDEAL SOLTION
 - Maximum value of Cost Attributes are Negative Ideal.
 - •Minimum value of Benefit Attributes are Negative Ideal.

	Cost attribute		Benefit attributes	
Supplier s	Q_1	Q_2	Q_3	Q_4
S ₁	_ 0.14	_0.135	0.103	(min.) 0.119
S_2	(max.) 0.232	0.14	(min.) 0.097	0.126
S_3	0.046	(min.) 0.121	0.122	0.253

Negative Ideal solution = $\{0.232, 0.121, 0.097 0.119\}$

- •Step 7 Construct the <u>SEPARATION</u> from Ideal solution & negative ideal solution.
 - SEPARATION from Ideal solution S_i*

	Cost attribute		Benefit attributes	
Supplier s	Q_1	Q_2	Q_3	Q_4
S ₁	$(-)4046)^2 = 0.009$	$(0.135 - 0.14)^2 = 0.000$	$(0.103 - 0.122)^2 = 0.0004$	$(0.119 - 0.253)^2 = 0.018$
S_2	0.232	0.14	0.097	0.126
S_3	0.046	0.121	0.122	0.253

$$S_1^* = (0.009 + 0.00 + 0.0004 + 0.018)^{1/2} = 0.166$$

- •Step 7 Construct the <u>SEPARATION</u> from Ideal solution & negative ideal solution.
 - SEPARATION from Ideal solution S_i*

•		(3.5.5, 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_00)
	Cost attribute		Benefit attribute	S
Supplier s	Q ₁	Q_2	Ø3	Q_4
S ₁	(0.14046) ² = 0.009	(0.135 0.14) ² ≜ 0.000	(0.103 - 0.122) ² = 0.0004	(0.119 - 0.253) ² = 0.018
S ₂	$(0.232046)^2$ = 0.035	$(0.14 - 0.14)^2$ $= 0.000$	(0.097 - 0.122) ² = 0.0006	$(0.126 - 0.253)^2 = 0.016$
S 5/3=(0	0.009 <mark>+0.06</mark> +0.00	004+0:078)1/2	$=0.166^{122}$	0.253
$S_2^* = (0.035 + 0.00 + 0.0006 - 0.016)^{1/2} = 0.227$				

- •Step 7 Construct the <u>SEPARATION</u> from Ideal solution & negative ideal solution.
 - SEPARATION from Ideal solution S_i*

	Cost attribute		Benefit attribute	es
Supplier s	Q_1	Q_2	Q_3	Q_4
S ₁	(0.14046) ² = 0.009	(0.135 - 0.14) ² = 0.000	(0.103 - 0.122) ² = 0.0004	(0.119 - 0.253) ² = 0.018
S ₂	(0.232046) ² = 0.035	(0.14 - 0.44)	$(0.097^{2} - 0.122)^{2} = 0.0006$	$(0.126 - 0.253)^2 = 0.016$
$S_1^{S_{*3}} = (0)$ $S_2^* = (0)$ $S_3^* = (0)$	0. 60946 .0 646) 0.035 7 0:00+0.00 0.00+0.0004+0.0	0644606814 006 <u>=</u> 0.016)4 00+0.0000)1	$h^2 = 0.166122 - 0.22122)^2 = 0.220000$	$(0.253 - 0.253)^2 = 0.000$

- •Step 7 Construct the <u>SEPARATION</u> from Ideal solution & negative ideal solution.
 - SEPARATION from Negative ideal solution

Negative Ideal solution = $\{0.232, 0.121, 0.097\}$

l					
0.119}	Cost attribute	Benefit attributes			
Supplier s	Q_1	Q_2	Q_3	Q_4	
S ₁	$(0.14232)^2 = 0.008$	$(0.135121)^2$ = 0.0002	$(0.103097)^2 = 0.0000$	$(0.119119)^2$ = 0.000	
S ₂	$(0.232232)^2$ = 0.000	$(0.14121)^2 = 0.0004$	$(0.097097)^2 = 0.0000$	$(0.126119)^2$ = 0.0001	
S_3	$(0.046232)^2$ = 0.035	$(0.121121)^2$ = 0.000	(0.122097) ² = 0.0006	$(0.253119)^2$ = 0.0179	
C 1 -	$\mathbf{c} : \mathbf{c} = (0.000 \pm 0.0000 \pm 0.000) 1/2 = 0.000$				

$$S_1' = (0.008 + 0.0002 + 0.000 + 0.000)^{1/2} = 0.09$$

$$S_2' = (0.00+0.0004+0.000+0.00001)^{1/2} = 0.022$$

$$S_3' = (0.035 + 0.00 + 0.0006 + 0.0179)^{1/2} = 0.231$$

- •Step 8 Calculate the <u>RELATIVE CLOSENESS</u> to Ideal solution.
 - CLOSENESS to ideal solution $C_i^* = S_i'/(S_i^* + S_i')$

Criteria	S ₁	S_2	S ₃
S _i *	0.166	0.227	0.02
S _i '	0.09	0.022	0.231
S _i *+S _i '	0.256	0.249	0.251
C'//C*.C')	0.09/0.256	0.022/0.249	0.231/0.251
$S_i'/(S_i^*+S_i')$	0.351	0.088	0.920

$$C_1^* = 0.351$$

 $C_2^* = 0.088$
 $C_3^* = 0.920$

$$C_3^* > C_1^* > C_2^*$$

- •Step 8 RANK THE ORDER of suppliers based on STEP 8
 - $C_3^* > C_1^* > C_2^*$

Supplier₃ > Supplier₁ > Supplier₂

THANK YOU