Toronto Dwellings Analysis

In this assignment, you will perform fundamental analysis for the Toronto dwellings market to allow potential real estate investors to choose rental investment properties.

```
In [1]:
    # imports
    import panel as pn
    pn.extension('plotly')
    import plotly.express as px
    import pandas as pd
    import hvplot.pandas
    import matplotlib.pyplot as plt
    import os
    from pathlib import Path
    from dotenv import load_dotenv
    import random
```

```
In [2]: # Read the Mapbox API key
load_dotenv()
map_box_api = os.getenv("MAPBOX_API_KEY")
# Set the Mapbox API
px.set_mapbox_access_token(map_box_api)
```

Load Data

```
In [3]: # Read the census data into a Pandas DataFrame
    file_path = Path("Data/toronto_neighbourhoods_census_data.csv")
    to_data = pd.read_csv(file_path, index_col="year")
    to_data.head()
```

Out[3]:		neighbourhood	single_detached_house	apartment_five_storeys_plus	movable_dwelling	semi_detached
	year					
	2001	Agincourt North	3715	1480	0	
	2001	Agincourt South-Malvern West	3250	1835	0	
	2001	Alderwood	3175	315	0	
	2001	Annex	1060	6090	5	
	2001	Banbury-Don Mills	3615	4465	0	

Dwelling Types Per Year

In this section, you will calculate the number of dwelling types per year. Visualize the results using bar charts and the Pandas plot function.

Hint: Use the Pandas groupby function.

Optional challenge: Plot each bar chart in a different color.

```
In [4]:
         # Calculate the sum number of dwelling types units per year (hint: use groupby)
         #We will also drop the columns which are not the dwelling types
         dwellings per year = to data.groupby("year").sum().drop(columns=["average house value", "s
         dwellings per year
Out[4]:
              single_detached_house apartment_five_storeys_plus movable_dwelling semi_detached_house row_hc
         vear
         2001
                           300930
                                                     355015
                                                                         75
                                                                                         90995
                                                                                                    52
        2006
                           266860
                                                     379400
                                                                        165
                                                                                         69430
                                                                                                   54
         2011
                           274940
                                                     429220
                                                                        100
                                                                                         72480
                                                                                                   60
         2016
                           269680
                                                     493270
                                                                        95
                                                                                         71200
                                                                                                    61
In [5]:
         # Save the dataframe as a csv file
         dwellings per year.to csv("Data/dwelling types per year.csv")
In [6]:
         # Helper create bar chart function
         def create bar chart (data, title, xlabel, ylabel, color):
             Create a barplot based in the data argument.
             data = DataFrame to use for plotting the data
             title = Chart Title
             xlabel = Label for X Axis
             ylabel = Label for Y Axis
             color = Colour of the bar chart
             data.plot(kind="bar", xlabel=xlabel, ylabel=ylabel, color=color, title=title)
             #We want to show the plot after plotting it, if we dont do this, it will overwrite the
             plt.show()
In [7]:
         # Create a bar chart per year to show the number of dwelling types
         colors = ["red", "pink", "blue", "yellow"]
         #We will use a for loop to do charts for each year rather than repeating the code and we
         for index in dwellings per year.index:
            title = "Dwelling Types in Toranto in " + str(index)
             ylabel = "Dwelling Type Units"
             create bar chart(dwellings per year.loc[index], title=title, xlabel=index, ylabel=ylak
```


Average Monthly Shelter Costs in Toronto Per Year

In this section, you will calculate the average monthly shelter costs for owned and rented dwellings and the average house value for each year. Plot the results as a line chart.

Optional challenge: Plot each line chart in a different color.

```
#dwellings_per_year = to_data[[]].groupby("year").mean().drop(columns=["average_house_value")
monthly_shelter_cost_per_year = to_data[["shelter_costs_owned", "shelter_costs_rented"]].gue
monthly_shelter_cost_per_year
```

Out [8]: shelter_costs_owned shelter_costs_rented

```
    year

    2001
    846.878571
    1085.935714

    2006
    1316.800000
    925.414286

    2011
    1448.214286
    1019.792857

    2016
    1761.314286
    1256.321429
```

```
In [9]:
# Helper create_line_chart function
def create_line_chart(data, title, xlabel, ylabel, color):
    """
    Create a line chart based in the data argument.

Input:
    data = DataFrame to use for plotting the data
    title = Chart Title
    xlabel = Label for X Axis
    ylabel = Label for Y Axis
    color = Colour of the bar chart

"""
    data.plot(kind="line", xlabel=xlabel, ylabel=ylabel, color=color, title=title)

#We want to show the plot after plotting it, if we dont do this, it will overwrite the plt.show()
```

```
In [10]: # Create two line charts, one to plot the monthly shelter costs for owned dwelleing and of
# Line chart for owned dwellings

create_line_chart(data=monthly_shelter_cost_per_year["shelter_costs_owned"], title="Average xlabel="Year", ylabel="Average Monthly Shelter Costs", color="red")
# Line chart for rented dwellings
create line chart(data=monthly shelter cost per year["shelter costs rented"], title="Average")
```

xlabel="Year", ylabel="Average Monthly Shelter Costs", color="yellow")

Average House Value per Year

In this section, you want to determine the average house value per year. An investor may want to understand better the sales price of the rental property over time. For example, a customer will want to know if they should expect an increase or decrease in the property value over time so they can determine how long to hold the rental property. You will visualize the average_house_value per year as a bar chart.

```
In [11]:
          # Calculate the average house value per year
          average house value = to data["average house value"].groupby("year").mean()
          average house value
Out[11]:
         2001
                 289882.885714
         2006
                 424059.664286
         2011
                 530424.721429
         2016
                 664068.328571
         Name: average house value, dtype: float64
In [12]:
          # Plot the average house value per year as a line chart
          create line chart (data=average house value, title="Average House Value in Toronto ",
                             xlabel="Year", ylabel="Average House Value", color="blue")
```


Average House Value by Neighbourhood

In this section, you will use hvplot to create an interactive visualization of the average house value with a dropdown selector for the neighbourhood.

Hint: It will be easier to create a new DataFrame from grouping the data and calculating the mean house values for each year and neighbourhood.

In [13]:

Create a new DataFrame with the mean house values by neighbourhood per year
avg_house_value_by_neighbourhood = to_data[["neighbourhood","average_house_value"]].reset
avg_house_value_by_neighbourhood.head(10)

Out[13]:

	year	neighbourhood	average_house_value
0	2001	Agincourt North	200388
1	2001	Agincourt South-Malvern West	203047
2	2001	Alderwood	259998
3	2001	Annex	453850
4	2001	Banbury-Don Mills	371864
5	2001	Bathurst Manor	304749
6	2001	Bay Street Corridor	257404
7	2001	Bayview Village	327644
8	2001	Bayview Woods-Steeles	343535
9	2001	Bedford Park-Nortown	565304

```
In [14]:
```

Use hvplot to create an interactive line chart of the average house value per neighbourh
The plot should have a dropdown selector for the neighbourhood
avg_house_value_by_neighbourhood.hvplot.line(x="year", y="average_house_value", xlabel="Year")

Out[14]:

Number of Dwelling Types per Year

In this section, you will use hyplot to create an interactive visualization of the average number of dwelling types per year with a dropdown selector for the neighbourhood.

In [15]:

Fetch the data of all dwelling types per year dwelling types per year = to data.drop(columns=["average house value", "shelter costs owned to be detailed by the cost of the costs of dwelling_types_per_year.head(10)

 _		Га	51	
111	-	1.1	5 1	=

	neighbourhood	single_detached_house	apartment_five_storeys_plus	movable_dwelling	semi_detached
year					
2001	Agincourt North	3715	1480	0	
2001	Agincourt South-Malvern West	3250	1835	0	
2001	Alderwood	3175	315	0	
2001	Annex	1060	6090	5	
2001	Banbury-Don Mills	3615	4465	0	
2001	Bathurst Manor	2405	1550	0	
2001	Bay Street Corridor	10	7575	0	
2001	Bayview Village	2170	630	0	
2001	Bayview Woods-Steeles	1650	1715	0	
2001	Bedford Park- Nortown	4985	2080	0	

In [13]:

Use hvplot to create an interactive bar chart of the number of dwelling types per neight # The plot should have a dropdown selector for the neighbourhood

dwelling types per year.hvplot.bar(groupby="neighbourhood",rot=90, ylabel="Dwelling Type V

The Top 10 Most Expensive Neighbourhoods

In this section, you will need to calculate the house value for each neighbourhood and then sort the values to obtain the top 10 most expensive neighbourhoods on average. Plot the results as a bar chart.

```
In [16]:
# Getting the data from the top 10 expensive neighbourhoods
ten_expensive_neighbourhoods = to_data.groupby("neighbourhood").mean().sort_values(by="ave
ten_expensive_neighbourhoods.head(10)
```

Out[16]:		neighbourhood	single_detached_house	apartment_five_storeys_plus	movable_dwelling	semi_detached_h
	0	Bridle Path- Sunnybrook- York Mills	2260.00	331.25	0.00	3
	1	Forest Hill South	1742.50	2031.25	1.25	6
	2	Lawrence Park South	3472.50	773.75	0.00	12
	3	Rosedale- Moore Park	2498.75	4641.25	0.00	48
	4	St.Andrew- Windfields	3225.00	1670.00	0.00	18
	5	Casa Loma	916.25	2310.00	0.00	28
	6	Bedford Park- Nortown	4865.00	1981.25	0.00	4
	7	Forest Hill North	1488.75	3392.50	0.00	1
	8	Kingsway South	2326.25	576.25	0.00	6
	9	Yonge-St.Clair	565.00	3948.75	0.00	42

```
In [17]:
# Plotting the data from the top 10 expensive neighbourhoods
ten_expensive_neighbourhoods.head(10).hvplot.bar(rot=90, ylabel="Average House Value", xla
#ten_expensive_neighbourhoods[["average_house_value","shelter_costs_rented"]]
```


Neighbourhood Map

In this section, you will read in neighbourhoods location data and build an interactive map with the average house value per neighbourhood. Use a scatter_mapbox from Plotly express to create the visualization. Remember, you will need your Mapbox API key for this.

Load Location Data

0

```
In [18]:  # Load neighbourhoods coordinates data
    file_path = Path("Data/toronto_neighbourhoods_coordinates.csv")
    df_neighbourhood_locations = pd.read_csv(file_path)
    df_neighbourhood_locations
```

ut[18]:		neighbourhood	lat	lon
	0	Agincourt North	43.805441	-79.266712
	1	Agincourt South-Malvern West	43.788658	-79.265612
	2	Alderwood	43.604937	-79.541611
	3	Annex	43.671585	-79.404001
	4	Banbury-Don Mills	43.737657	-79.349718
	•••		•••	•••
	135	Wychwood	43.676919	-79.425515
	136	Yonge-Eglinton	43.704689	-79.403590
	137	Yonge-St.Clair	43.687859	-79.397871
	138	York University Heights	43.765736	-79.488883
	139	Yorkdale-Glen Park	43.714672	-79.457108

Data Preparation

Wychwood

Yonge-St.Clair

York University

Yonge-

Eglinton

Heights

You will need to join the location data with the mean values per neighbourhood.

- 1. Calculate the mean values for each neighbourhood.
- 2. Join the average values with the neighbourhood locations.

```
In [19]:  # Calculate the mean values for each neighborhood
   mean_data_neighbourhoods = to_data.groupby("neighbourhood").mean().reset_index()
   mean_data_neighbourhoods.head()
```

Out[19]:		neighbourhood	single_detached_house	apartment_five_storeys_plus	movable_dwelling	semi_detached_ho
	0	Agincourt North	3435.00	1947.50	2.50	86
	1	Agincourt South-Malvern West	2897.50	2180.00	1.25	37
	2	Alderwood	2903.75	302.50	1.25	50
	3	Annex	751.25	7235.00	1.25	137
	4	Banbury-Don Mills	3572.50	5388.75	1.25	27

#Set the index to neighbourhood so we join without any errors or inaccuracies
mean_data_neighbourhoods.set_index(keys="neighbourhood",inplace=True)
df_neighbourhood_locations.set_index(keys="neighbourhood",inplace=True)

In [21]: # Join the average values with the neighbourhood locations
 neighbourhood_with_location = pd.concat([mean_data_neighbourhoods, df_neighbourhood_location)
 neighbourhood_with_location

Out[21]:		single_detached_house	apartment_five_storeys_plus	movable_dwelling	semi_detached_hous
	neighbourhood				
	Agincourt North	3435.00	1947.50	2.50	863.7!
	Agincourt South-Malvern West	2897.50	2180.00	1.25	375.00
	Alderwood	2903.75	302.50	1.25	503.7!
	Annex	751.25	7235.00	1.25	1375.00
	Banbury-Don Mills	3572.50	5388.75	1.25	273.7!
	•••	•••		•••	••

1236.25

1638.75

3948.75

5165.00

0.00

0.00

0.00

1.25

992.50

470.00

425.00

1316.2!

1056.25

1468.75

565.00

1355.00

nei	ah	ho	ur	hስ	വ

Yorkdale-Glen	2286 25	134750	0.00	72 71
Park	2200.25	1347.50	0.00	/3./:

140 rows × 13 columns

Mapbox Visualization

Plot the average values per neighbourhood using a Plotly express scatter_mapbox visualization.

```
In [22]: # Create a scatter mapbox to analyze neighbourhood info
    avg_house_value_map= px.scatter_mapbox(
        neighbourhood_with_location,
        lat="lat",
        lon="lon",
    color="average_house_value", title="Average House Value in Toronto"
    )
    avg_house_value_map.show()
```

Average House Value in Toronto

In this section, you will use Plotly express to a couple of plots that investors can interactively filter and explore various factors related to the house value of the Toronto's neighbourhoods.

Create a bar chart row facet to plot the average house values for all Toronto's neighbourhoods per year

to_d	lata				
	neighbourhood	single_detached_house	apartment_five_storeys_plus	movable_dwelling	semi_detac
year					
2001	Agincourt North	3715	1480	0	
2001	Agincourt South-Malvern West	3250	1835	0	
2001	Alderwood	3175	315	0	
2001	Annex	1060	6090	5	
2001	Banbury-Don Mills	3615	4465	0	
•••	•••				
2016	Wychwood	920	1295	0	
2016	Yonge-Eglinton	1400	1995	0	
2016	Yonge-St.Clair	520	4315	0	
2016	York University Heights	1235	5505	0	
2016	Yorkdale-Glen Park	2165	1185	0	

Average House Values in Toronto Per Neighbourhood

px.bar(to data, x="neighbourhood", y="average house value",color="average house value",

Create a sunburst chart to conduct a costs analysis of most expensive neighbourhoods in Toronto per year

```
In [26]:
           # Fetch the data from all expensive neighbourhoods per year.
           ten most expensive neighbourhoods per year = to data.sort values(by="average house value"
           ten most expensive neighbourhoods per year
Out[26]:
                 neighbourhood single_detached_house apartment_five_storeys_plus movable_dwelling semi_detached
           year
                    Bridle Path-
                                                                                                0
           2016
                   Sunnybrook-
                                                2275
                                                                            590
                      York Mills
                    Bridle Path-
                                                                                                0
           2011
                   Sunnybrook-
                                                2285
                                                                            480
                      York Mills
```

	neighbourhood	single_detached_house	apartment_five_storeys_plus	movable_dwelling	semi_detache
year					
2016	Forest Hill South	1685	2025	0	
2016	Lawrence Park South	3420	925	0	
2016	Rosedale- Moore Park	2450	4990	0	
2016	St.Andrew- Windfields	3245	1745	0	
2016	Casa Loma	875	2680	0	
2006	Bridle Path- Sunnybrook- York Mills	2205	145	0	
2011	Forest Hill South	1730	1825	0	
2016	Bedford Park- Nortown	4820	1995	0	
2011	Lawrence Park South	3465	855	0	
2011	Rosedale- Moore Park	2485	4905	0	
2016	Forest Hill North	1470	3430	0	
2016	Kingsway South	2310	790	0	
2016	Yonge-St.Clair	520	4315	0	
2011	St.Andrew- Windfields	3285	1740	0	
2011	Casa Loma	880	2630	0	
2006	Forest Hill South	1740	1835	0	
2011	Bedford Park- Nortown	4870	1960	0	
2006	Lawrence Park South	3415	745	0	
2006	Rosedale- Moore Park	2450	4790	0	
2011	Forest Hill North	1470	3350	0	
2011	Kingsway South	2350	695	0	
2001	Bridle Path- Sunnybrook- York Mills	2275	110	0	
2011	Yonge-St.Clair	530	4070	0	
2006	St.Andrew- Windfields	3095	1740	0	
2006	Casa Loma	875	2230	0	

year					
2006	Bedford Park- Nortown	4785	1890	0	
2006	Forest Hill North	1450	3410	0	
2006	Kingsway South	2275	560	0	
2001	Forest Hill South	1815	2440	5	
2006	Yonge-St.Clair	540	3785	0	
2001	Lawrence Park South	3590	570	0	
2001	Rosedale- Moore Park	2610	3880	0	
2001	St.Andrew- Windfields	3275	1455	0	
2001	Casa Loma	1035	1700	0	
2001	Bedford Park- Nortown	4985	2080	0	
2001	Forest Hill North	1565	3380	0	
2001	Kingsway South	2370	260	0	
2001	Yonge-St.Clair	670	3625	0	

neighbourhood single_detached_house apartment_five_storeys_plus movable_dwelling semi_detached

Rosedale-Mo St.Andrew-W Bay Pomple St.Andrew-W St.Andrew-W St.Andrew-W St.Andrew-W St.Andrew-W St.Andrew-W St.Andrew-W