Package 'beaver'

May 22, 2024

1914y 22, 2024	
Title Bayesian Model Averaging of Covariate Adjusted Negative-Binomial Dose-Response	
Version 1.0.0	
Description Dose-response modeling for negative-binomial distributed data with a variety of dose-response models. Covariate adjustment and Bayesian model averaging is supported. Functions are provided to easily obtain inference on the dose-response relationship and plot the dose-response curve.	
License MIT + file LICENSE	
<pre>URL https://github.com/rich-payne/beaver</pre>	
Depends R (>= $3.5.0$)	
Imports checkmate (>= 2.1), dplyr (>= 1.0), ellipsis (>= 0.3), fs (>= 1.5), ggplot2 (>= 3.3), purrr (>= 0.3), rjags (>= 4.12), rlang (>= 1.0), stringr (>= 1.5), tibble (>= 3.1), tidyr (>= 1.1), yodel (>= 1.0)	
Encoding UTF-8	
RoxygenNote 7.2.3	
Suggests testthat (>= 3.0.0)	
Config/testthat/edition 3	
NeedsCompilation no	
Author Richard Payne [aut], Hollins Showalter [aut, cre], Eli Lilly and Company [cph]	
Maintainer Hollins Showalter < hollins.showalter@gmail.com>	
Repository CRAN	
Date/Publication 2024-05-22 13:00:06 UTC	
R topics documented:	
beaver_mcmc	

beave	r_mcmc Bayesian Model Averaging of Covariate Adjusted Neg-Binomial Dose- Response
Index	5
	pr_eoi_g_comp
	posterior_g_comp
	posterior.beaver_mcmc_bma
	posterior.beaver_mcmc
	model_negbin_sigmoid_emax
	model_negbin_quad
	model_negbin_logquad
	model_negbin_linear
	model_negbin_indep
	model_negbin_exp
	model_negbin_emax
	draws

Description

Bayesian Model Averaging of Covariate Adjusted Neg-Binomial Dose-Response

Usage

Arguments

data	a dataframe with columns "dose", "response" and any covariates listed in the formula argument.
formul	a right-hand sided formula specifying the covariates.
	candidate models to be included in Bayesian model averaging. These should be created from calls to the model_negbin_* functions (e.g. model_negbin_emax()).
n_adap	t the number of iterations used to tune the MCMC algorithm.

```
    n_burn the number of MCMC iterations used for burn-in.
    n_iter the number of MCMC iterations to save.
    n_chains the number of MCMC chains.
    thin thinning for the MCMC chain.
    quiet logical indicating if MCMC chain progress output should be silenced.
```

Value

A list (with appropriate S3 classes) with the prior and posterior weights, sampled model index, and individual MCMC fits.

See Also

```
Other models: model_negbin_emax(), model_negbin_exp(), model_negbin_indep(), model_negbin_linear(), model_negbin_loglinear(), model_negbin_logquad(), model_negbin_quad(), model_negbin_sigmoid_emax()
Other posterior calculations: posterior.beaver_mcmc_bma(), posterior.beaver_mcmc(), posterior_g_comp(), pr_eoi_g_comp(), pr_eoi()
```

Examples

```
# The {beaver} package, by definition, performs MCMC for multiple models.
# Even with a small number of chains/burn-ins/samples, a minimally illustrative
# example requires >5s to run.
library(dplyr)
# No covariates----
set.seed(100)
df <- data_negbin_emax(</pre>
  n_per_arm = 10,
  doses = 0:3,
  b1 = 0,
  b2 = 2.5,
  b3 = 0.5,
  ps = 0.75
)
df %>%
  group_by(dose) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
mcmc <- beaver_mcmc(</pre>
  emax = model_negbin_emax(
```

```
mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
 ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = \sim 1,
  data = df,
  n_{iter} = 1e2,
  n_{chains} = 1,
  quiet = TRUE
)
mcmc$w_post
draws <- try(draws(mcmc)) #draws() is intended for single model fits only</pre>
draws_emax <- draws(mcmc$models$emax$mcmc)</pre>
draws_linear <- draws(mcmc$models$linear$mcmc)</pre>
draws_quad <- draws(mcmc$models$quad$mcmc)</pre>
draws_exp <- draws(mcmc$models$exp$mcmc)</pre>
post <- posterior(</pre>
  mcmc,
  contrast = matrix(1, 1, 1),
  doses = 0:3,
  reference_dose = 0,
```

```
reference_type = "difference"
pr_eoi(
 mcmc,
  eoi = c(5, 8),
 contrast = matrix(1, 1, 1),
 reference_dose = 0,
  reference_type = "difference"
)
post_g_comp <- posterior_g_comp(</pre>
 mcmc,
 new_data = df,
 reference_dose = 0,
 reference_type = "difference"
)
pr_eoi_g_comp(
 mcmc,
  eoi = c(5, 8),
 new_data = df,
 reference_dose = 0,
  reference_type = "difference"
)
plot(mcmc, contrast = matrix(1, 1, 1))
# With covariates----
set.seed(1000)
x <-
  data.frame(
   gender = factor(sample(c("F", "M"), 40, replace = TRUE))
  model.matrix(~ gender, data = .)
df_cov <-
  data_negbin_emax(
   n_per_arm = 10,
   doses = 0:3,
   b1 = c(0, 0.5),
   b2 = 2.5,
   b3 = 0.5,
   ps = 0.75,
   x = x
  ) %>%
  mutate(
   gender = case_when(
      genderM == 1 ~ "M",
      TRUE ~ "F"
   ),
```

```
gender = factor(gender)
 ) %>%
 select(subject, dose, gender, response)
df_cov %>%
 group_by(dose, gender) %>%
 summarize(
   mean = mean(response),
   se = sd(response) / sqrt(n()),
    .groups = "drop"
 )
mcmc_cov <- beaver_mcmc(</pre>
 emax = model_negbin_emax(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
 ),
 linear = model_negbin_linear(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   w_prior = 1 / 4
 ),
 quad = model_negbin_quad(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
 ),
 exp = model_negbin_exp(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 0,
   sigma_b3 = 3,
   w_prior = 1 / 4
 ),
 formula = ~ gender,
 data = df_cov,
 n_{iter} = 1e2,
 n_{chains} = 1,
 quiet = TRUE
)
```

```
mcmc_cov$w_post
draws_cov <- try(draws(mcmc_cov)) #draws() is intended for single model fits only</pre>
draws_cov_emax <- draws(mcmc_cov$models$emax$mcmc)</pre>
draws_cov_linear <- draws(mcmc_cov$models$linear$mcmc)</pre>
draws_cov_quad <- draws(mcmc_cov$models$quad$mcmc)</pre>
draws_cov_exp <- draws(mcmc_cov$models$exp$mcmc)</pre>
post_cov <- posterior(</pre>
  mcmc_cov,
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi(
  mcmc_cov,
  eoi = c(5, 8),
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  reference_dose = 0,
  reference_type = "difference"
)
post_g_comp_cov <- posterior_g_comp(</pre>
  mcmc_cov,
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi_g_comp(
  mcmc_cov,
  eoi = c(5, 8),
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
plot(mcmc_cov, new_data = df_cov, type = "g-comp")
```

data_negbin_emax

Generate data from a negative binomial EMAX model

Description

Generate data from a negative binomial EMAX model

Usage

```
data_negbin_emax(n_per_arm, doses, b1, b2, b3, ps, x = NULL)
```

Arguments

Х

n_per_arm

number of subjects in each dose arm.

doses

doses at which to simulate subjects.

b1, b2, b3, ps

parameters from which to simulate data. See model description below. If co-

variates are specified (through x), then b1 should be a vector of length ncol(x).

the model matrix for the covariates. Must have the same number of rows as the total number of subjects (sum(n_per_arm * rep(1, length(doses)))). If

NULL, then an intercept term is used by default.

Value

A dataframe with columns "subject", "dose", and "response".

Negative Binomial EMAX

Let y_{ij} be the jth subject on dose d_i . The model is

$$y_{ij} \; NB(p_i, r_i)$$

$$p_i \; Uniform(0, 1)$$

$$r_{ij} = (\mu_{ij} * p_i)/(1 - p_i)$$

$$log(\mu_{ij}) = x_{ij} * b1 + b2 * d_i/(b3 + d_i)$$

$$b1 \; N(`mu_b1`, `sigma_b1`^2)$$

$$b2 \; N(`mu_b2`, `sigma_b2`^2)$$

$$b3 \; N(`mu_b3`, `sigma_b3`^2)(Truncated to be positive)$$

The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is an EMAX model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (

 x_{ij}

).

Examples

```
# The {beaver} package, by definition, performs MCMC for multiple models.
# Even with a small number of chains/burn-ins/samples, a minimally illustrative
# example requires >5s to run.
library(dplyr)
# No covariates----
```

9

```
set.seed(100)
df <- data_negbin_emax(</pre>
 n_per_arm = 10,
  doses = 0:3,
  b1 = 0,
 b2 = 2.5,
 b3 = 0.5,
  ps = 0.75
)
df %>%
  group_by(dose) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
  )
mcmc <- beaver_mcmc(</pre>
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
```

```
w_prior = 1 / 4
  ),
  formula = \sim 1,
  data = df,
  n_{iter} = 1e2,
  n_{chains} = 1,
  quiet = TRUE
mcmc$w_post
draws <- try(draws(mcmc)) #draws() is intended for single model fits only</pre>
draws_emax <- draws(mcmc$models$emax$mcmc)</pre>
draws_linear <- draws(mcmc$models$linear$mcmc)</pre>
draws_quad <- draws(mcmc$models$quad$mcmc)</pre>
draws_exp <- draws(mcmc$models$exp$mcmc)</pre>
post <- posterior(</pre>
  {\tt mcmc},
  contrast = matrix(1, 1, 1),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi(
  mcmc,
  eoi = c(5, 8),
  contrast = matrix(1, 1, 1),
  reference_dose = 0,
  reference_type = "difference"
)
post_g_comp <- posterior_g_comp(</pre>
  mcmc,
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi_g_comp(
  mcmc,
  eoi = c(5, 8),
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)
plot(mcmc, contrast = matrix(1, 1, 1))
# With covariates----
set.seed(1000)
```

```
x <-
  data.frame(
   gender = factor(sample(c("F", "M"), 40, replace = TRUE))
  ) %>%
  model.matrix(~ gender, data = .)
df_cov <-
  data_negbin_emax(
   n_per_arm = 10,
   doses = 0:3,
   b1 = c(0, 0.5),
   b2 = 2.5,
   b3 = 0.5,
   ps = 0.75,
   x = x
  ) %>%
  mutate(
   gender = case_when(
      genderM == 1 \sim "M",
      TRUE ~ "F"
   ),
   gender = factor(gender)
  select(subject, dose, gender, response)
df_cov %>%
  group_by(dose, gender) %>%
  summarize(
   mean = mean(response),
   se = sd(response) / sqrt(n()),
    .groups = "drop"
  )
mcmc_cov <- beaver_mcmc(</pre>
  emax = model_negbin_emax(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
   mu_b1 = 0,
```

```
sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ gender,
  data = df_cov,
  n_{iter} = 1e2,
  n_{chains} = 1,
  quiet = TRUE
)
mcmc\_cov$w\_post
draws_cov <- try(draws(mcmc_cov)) #draws() is intended for single model fits only</pre>
draws_cov_emax <- draws(mcmc_cov$models$emax$mcmc)</pre>
draws_cov_linear <- draws(mcmc_cov$models$linear$mcmc)</pre>
draws_cov_quad <- draws(mcmc_cov$models$quad$mcmc)</pre>
draws_cov_exp <- draws(mcmc_cov$models$exp$mcmc)</pre>
post_cov <- posterior(</pre>
  mcmc_cov,
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi(
  mcmc_cov,
  eoi = c(5, 8),
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  reference_dose = 0,
  reference_type = "difference"
)
post_g_comp_cov <- posterior_g_comp(</pre>
 mcmc_cov,
 new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)
```

```
pr_eoi_g_comp(
    mcmc_cov,
    eoi = c(5, 8),
    new_data = df_cov,
    reference_dose = 0,
    reference_type = "difference"
)

plot(mcmc_cov, new_data = df_cov, type = "g-comp")
```

draws

Posterior Draws

Description

Extracts posterior draws and puts them into a dataframe or tibble.

Usage

```
draws(x, ...)
## S3 method for class 'beaver_mcmc'
draws(x, ...)
## S3 method for class 'beaver_mcmc_bma'
draws(x, ...)
```

Arguments

x MCMC output.

... additional arguments passed to methods.

Value

For generic: See specific method.

For class 'beaver_mcmc': A dataframe or tibble of MCMC draws.

For class 'beaver_mcmc_bma': An error.

Examples

```
# The {beaver} package, by definition, performs MCMC for multiple models.
# Even with a small number of chains/burn-ins/samples, a minimally illustrative
# example requires >5s to run.
```

```
library(dplyr)
# No covariates----
set.seed(100)
df <- data_negbin_emax(</pre>
  n_per_arm = 10,
  doses = 0:3,
  b1 = 0,
  b2 = 2.5,
 b3 = 0.5,
 ps = 0.75
df %>%
  group_by(dose) %>%
  summarize(
   mean = mean(response),
   se = sd(response) / sqrt(n()),
    .groups = "drop"
  )
mcmc <- beaver_mcmc(</pre>
  emax = model_negbin_emax(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
```

```
sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = \sim 1,
  data = df,
  n_{iter} = 1e2,
  n_{chains} = 1,
  quiet = TRUE
)
mcmc$w_post
draws <- try(draws(mcmc)) #draws() is intended for single model fits only</pre>
draws_emax <- draws(mcmc$models$emax$mcmc)</pre>
draws_linear <- draws(mcmc$models$linear$mcmc)</pre>
draws_quad <- draws(mcmc$models$quad$mcmc)</pre>
draws_exp <- draws(mcmc$models$exp$mcmc)</pre>
post <- posterior(</pre>
  mcmc,
  contrast = matrix(1, 1, 1),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi(
  mcmc,
  eoi = c(5, 8),
  contrast = matrix(1, 1, 1),
  reference_dose = 0,
  reference_type = "difference"
)
post_g_comp <- posterior_g_comp(</pre>
  \mathsf{mcmc}\,,
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi_g_comp(
  {\tt mcmc},
  eoi = c(5, 8),
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)
plot(mcmc, contrast = matrix(1, 1, 1))
```

```
# With covariates----
set.seed(1000)
x <-
  data.frame(
   gender = factor(sample(c("F", "M"), 40, replace = TRUE))
  model.matrix(~ gender, data = .)
df_cov <-
  data_negbin_emax(
   n_per_arm = 10,
   doses = 0:3,
   b1 = c(0, 0.5),
   b2 = 2.5,
   b3 = 0.5,
   ps = 0.75,
   x = x
  ) %>%
  mutate(
   gender = case_when(
      genderM == 1 ~ "M",
      TRUE ~ "F"
   ),
   gender = factor(gender)
  select(subject, dose, gender, response)
df_cov %>%
  group_by(dose, gender) %>%
  summarize(
   mean = mean(response),
   se = sd(response) / sqrt(n()),
    .groups = "drop"
  )
mcmc_cov <- beaver_mcmc(</pre>
  emax = model_negbin_emax(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   w_prior = 1 / 4
```

```
quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ gender,
  data = df_cov,
  n_{iter} = 1e2,
  n_{chains} = 1,
  quiet = TRUE
)
mcmc_cov$w_post
draws_cov <- try(draws(mcmc_cov)) #draws() is intended for single model fits only</pre>
draws_cov_emax <- draws(mcmc_cov$models$emax$mcmc)</pre>
draws_cov_linear <- draws(mcmc_cov$models$linear$mcmc)</pre>
draws_cov_quad <- draws(mcmc_cov$models$quad$mcmc)</pre>
draws_cov_exp <- draws(mcmc_cov$models$exp$mcmc)</pre>
post_cov <- posterior(</pre>
  mcmc_cov,
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi(
  mcmc_cov,
  eoi = c(5, 8),
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  reference_dose = 0,
  reference_type = "difference"
)
post_g_comp_cov <- posterior_g_comp(</pre>
  mcmc_cov,
  new_data = df_cov,
```

model_negbin_emax

```
reference_dose = 0,
  reference_type = "difference"
)

pr_eoi_g_comp(
  mcmc_cov,
  eoi = c(5, 8),
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc_cov, new_data = df_cov, type = "g-comp")
```

model_negbin_emax

Negative Binomial EMAX Dose Response

Description

Model settings for a negative binomial distribution assuming an EMAX Model on the mean. This function is to be used within a call to beaver_mcmc().

Usage

```
model_negbin_emax(
    mu_b1,
    sigma_b1,
    mu_b2,
    sigma_b2,
    mu_b3,
    sigma_b3,
    w_prior = 1
)
```

Arguments

Value

A list with the model's prior weight and hyperparameter values.

model_negbin_exp 19

Negative Binomial EMAX

Let y_{ij} be the jth subject on dose d_i . The model is

```
y_{ij} \ NB(p_i, r_i) p_i \ Uniform(0, 1) r_{ij} = (\mu_{ij} * p_i)/(1 - p_i) log(\mu_{ij}) = x_{ij} * b1 + b2 * d_i/(b3 + d_i) b1 \ N(`mu_b1`, `sigma_b1`^2) b2 \ N(`mu_b2`, `sigma_b2`^2) b3 \ N(`mu_b3`, `sigma_b3`^2)(Truncated to be positive)
```

The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is an EMAX model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (

```
x_{ij}
```

See Also

).

Other models: beaver_mcmc(), model_negbin_exp(), model_negbin_indep(), model_negbin_linear(), model_negbin_logquad(), model_negbin_quad(), model_negbin_sigmoid_emax()

model_negbin_exp

Negative Binomial Exponential Dose Response

Description

Model settings for a negative binomial distribution assuming an exponential model on the mean. This function is to be used within a call to beaver_mcmc().

Usage

```
model_negbin_exp(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  mu_b3,
  sigma_b3,
  w_prior = 1
)
```

20 model_negbin_exp

Arguments

Value

A list with the model's prior weight and hyperparameter values.

Negative Binomial Exponential

Let y_{ij} be the jth subject on dose d_i . The model is

$$y_{ij} \ NB(p_i,r_i)$$

$$p_i \ Uniform(0,1)$$

$$r_{ij} = (\mu_{ij} * p_i)/(1-p_i)$$

$$log(\mu_{ij}) = x_{ij} * b1 + b2 * (1 - exp(-b3 * d_i))$$

$$b1 \ N(`mu_b1`, `sigma_b1`^2)$$

$$b2 \ N(`mu_b2`, `sigma_b2`^2)$$

$$b3 \ N(`mu_b3`, `sigma_b3`^2)(Truncated to be positive)$$

The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is an exponential model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (

 x_{ij}

See Also

).

Other models: beaver_mcmc(), model_negbin_emax(), model_negbin_indep(), model_negbin_linear(), model_negbin_logquad(), model_negbin_quad(), model_negbin_sigmoid_emax()

model_negbin_indep 21

model_negbin_indep

Negative Binomial Independent Dose Response

Description

Model settings for a negative binomial distribution with an independent mean for each dose. This function is to be used within a call to beaver_mcmc().

Usage

```
model_negbin_indep(mu_b1, sigma_b1, mu_b2, sigma_b2, w_prior = 1)
```

Arguments

```
mu_b1, sigma_b1, mu_b2, sigma_b2
hyperparameters. See the model description below for context.
w_prior the prior weight for the model.
```

Value

A list with the model's prior weight and hyperparameter values.

Negative Binomial Independent

Let y_{ij} be the jth subject on the kth dose. The model is

$$y_{ij} \ NB(p_i, r_i)$$
 $p_i \ Uniform(0, 1)$
 $r_{ij} = (\mu_{ij} * p_i)/(1 - p_i)$
 $log(\mu_{ij}) = x_{ij} * b1 + b2_k$
 $b1 \ N(`mu_b1`, `sigma_b1`^2)$
 $b2_k \ N(`mu_b2`, `sigma_b2`^2)$

The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is an exponential model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (

 x_{ij}

).

See Also

```
Other models: beaver_mcmc(), model_negbin_emax(), model_negbin_exp(), model_negbin_linear(), model_negbin_logquad(), model_negbin_quad(), model_negbin_sigmoid_emax()
```

22 model_negbin_linear

model_negbin_linear

Negative Binomial Linear Dose Response

Description

Model settings for a negative binomial distribution assuming an linear model on the mean. This function is to be used within a call to beaver_mcmc().

Usage

```
model_negbin_linear(mu_b1, sigma_b1, mu_b2, sigma_b2, w_prior = 1)
```

Arguments

```
mu_b1, sigma_b1, mu_b2, sigma_b2
hyperparameters. See the model description below for context.
w_prior the prior weight for the model.
```

Value

A list with the model's prior weight and hyperparameter values.

Negative Binomial Linear

Let y_{ij} be the jth subject on dose d_i . The model is

$$y_{ij} \ NB(p_i, r_i)$$
 $p_i \ Uniform(0, 1)$
 $r_{ij} = (\mu_{ij} * p_i)/(1 - p_i)$
 $log(\mu_{ij}) = x_{ij} * b1 + b2 * d_i$
 $b1 \ N(`mu_b1`, `sigma_b1`^2)$
 $b2 \ N(`mu_b2`, `sigma_b2`^2)$

The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is a linear model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (

 x_{ij}

).

See Also

```
Other models: beaver_mcmc(), model_negbin_emax(), model_negbin_exp(), model_negbin_indep(), model_negbin_loglinear(), model_negbin_logquad(), model_negbin_quad(), model_negbin_sigmoid_emax()
```

model_negbin_loglinear

Negative Binomial Log-Linear Dose Response

Description

Model settings for a negative binomial distribution assuming a log-linear model on the mean. This function is to be used within a call to beaver_mcmc().

Usage

```
model_negbin_loglinear(mu_b1, sigma_b1, mu_b2, sigma_b2, w_prior = 1)
```

Arguments

```
mu_b1, sigma_b1, mu_b2, sigma_b2
hyperparameters. See the model description below for context.
w_prior the prior weight for the model.
```

Value

A list with the model's prior weight and hyperparameter values.

Negative Binomial Log-Linear

Let y_{ij} be the jth subject on dose d_i . The model is

$$y_{ij} \ NB(p_i, r_i)$$

$$p_i \ Uniform(0, 1)$$

$$r_{ij} = (\mu_{ij} * p_i)/(1 - p_i)$$

$$log(\mu_{ij}) = x_{ij} * b1 + b2 * log(1 + d_i)$$

$$b1 \ N(`mu_b1`, `sigma_b1`^2)$$

$$b2 \ N(`mu_b2`, `sigma_b2`^2)$$

The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is a log-linear model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (

$$x_{ij}$$

See Also

).

Other models: beaver_mcmc(), model_negbin_emax(), model_negbin_exp(), model_negbin_indep(), model_negbin_linear(), model_negbin_logquad(), model_negbin_quad(), model_negbin_sigmoid_emax()

model_negbin_logquad Negative Binomial Log-Quadratic Dose Response

Description

Model settings for an egative binomial distribution assuming a log-quadratic model on the mean. This function is to be used within a call to beaver_mcmc().

Usage

```
model_negbin_logquad(
   mu_b1,
   sigma_b1,
   mu_b2,
   sigma_b2,
   mu_b3,
   sigma_b3,
   w_prior = 1
)
```

Arguments

```
mu_b1, sigma_b1, mu_b2, sigma_b2, mu_b3, sigma_b3
hyperparameters. See the model description below for context.
w_prior the prior weight for the model.
```

Value

A list with the model's prior weight and hyperparameter values.

Negative Binomial Quadratic

Let y_{ij} be the jth subject on dose d_i . The model is

```
y_{ij} \ NB(p_i, r_i)
p_i \ Uniform(0, 1)
r_{ij} = (\mu_{ij} * p_i)/(1 - p_i)
log(\mu_{ij}) = x_{ij} * b1 + b2 * log(1 + d_i) + b3 * log(1 + d_i)^2
b1 \ N(`mu_b1`, `sigma_b1`^2)
b2 \ N(`mu_b2`, `sigma_b2`^2)
b3 \ N(`mu_b3`, `sigma_b3`^2)
```

The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is a quadratic model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (

 x_{ij}

).

model_negbin_quad 25

See Also

Other models: beaver_mcmc(), model_negbin_emax(), model_negbin_exp(), model_negbin_indep(), model_negbin_linear(), model_negbin_loglinear(), model_negbin_quad(), model_negbin_sigmoid_emax()

model_negbin_quad

Negative Binomial Quadratic Dose Response

Description

Model settings for a negative binomial distribution assuming an quadratic model on the mean. This function is to be used within a call to beaver_mcmc().

Usage

```
model_negbin_quad(
   mu_b1,
   sigma_b1,
   mu_b2,
   sigma_b2,
   mu_b3,
   sigma_b3,
   w_prior = 1
)
```

Arguments

```
mu_b1, sigma_b1, mu_b2, sigma_b2, mu_b3, sigma_b3
hyperparameters. See the model description below for context.
w_prior the prior weight for the model.
```

Value

A list with the model's prior weight and hyperparameter values.

Negative Binomial Quadratic

Let y_{ij} be the jth subject on dose d_i . The model is

$$y_{ij} \ NB(p_i, r_i)$$
 $p_i \ Uniform(0, 1)$
 $r_{ij} = (\mu_{ij} * p_i)/(1 - p_i)$
 $log(\mu_{ij}) = x_{ij} * b1 + b2 * d_i + b3 * d_i^2$
 $b1 \ N(`mu_b1`, `sigma_b1`^2)$
 $b2 \ N(`mu_b2`, `sigma_b2`^2)$

```
b3 N(`mu_b3`, `sigma_b3`^2)
```

The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is a quadratic model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (

```
x_{ij}
```

See Also

).

```
Other models: beaver_mcmc(), model_negbin_emax(), model_negbin_exp(), model_negbin_indep(), model_negbin_linear(), model_negbin_loglinear(), model_negbin_logquad(), model_negbin_sigmoid_emax()
```

```
model_negbin_sigmoid_emax
```

Negative Binomial Sigmoidal EMAX Dose Response

Description

Model settings for a negative binomial distribution assuming a Sigmoidal EMAX Model on the mean. This function is to be used within a call to beaver_mcmc().

Usage

```
model_negbin_sigmoid_emax(
    mu_b1,
    sigma_b1,
    mu_b2,
    sigma_b2,
    mu_b3,
    sigma_b3,
    mu_b4,
    sigma_b4,
    w_prior = 1
)
```

Arguments

```
mu_b1, sigma_b1, mu_b2, sigma_b2, mu_b3, sigma_b3, mu_b4, sigma_b4
hyperparameters. See the model description below for context.
w_prior the prior weight for the model.
```

Value

A list with the model's prior weight and hyperparameter values.

posterior.beaver_mcmc 27

Negative Binomial Sigmoidal EMAX

Let y_{ij} be the jth subject on dose d_i . The model is

```
y_{ij} \ NB(p_i, r_i)
p_i \ Uniform(0, 1)
r_{ij} = (\mu_{ij} * p_i)/(1 - p_i)
log(\mu_{ij}) = x_{ij} * b1 + b2 * d_i^b 4/(b3 + d_i^b 4)
b1 \ N(`mu_b 1`, `sigma_b 1^{\cdot 2})
b2 \ N(`mu_b 2`, `sigma_b 2^{\cdot 2})
b3 \ N(`mu_b 3`, `sigma_b 3^{\cdot 2})(Truncated to be positive)
b3 \ N(`mu_b 4`, `sigma_b 4^{\cdot 2})(Truncated to be positive)
```

The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is an EMAX model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (

```
x_{ij}
```

See Also

).

Other models: beaver_mcmc(), model_negbin_emax(), model_negbin_exp(), model_negbin_indep(), model_negbin_linear(), model_negbin_loglinear(), model_negbin_logquad(), model_negbin_quad()

Description

Calculate posterior quantities of interest using Bayesian model averaging.

Usage

```
## S3 method for class 'beaver_mcmc'
posterior(
    x,
    doses = attr(x, "doses"),
    reference_dose = NULL,
    prob = c(0.025, 0.975),
    return_stats = TRUE,
    return_samples = FALSE,
    new_data = NULL,
    contrast = NULL,
    reference_type = c("difference", "ratio"),
    ...
)
```

Arguments

x an object output from (internal function) run_mcmc().

doses doses at which to obtain the posterior.

reference_dose dose to which to compare as either a difference or ratio.

prob the percentiles of the posterior to calculate for each dose.

return_stats logical indicating if the posterior mean and quantiles should be returned.

return_samples logical indicating if posterior mean samples should be returned.

new_data a dataframe for which the posterior will be calculated for each observation's

covariate values.

contrast a matrix containing where each row contains a contrast for which the posterior

will be calculated.

reference_type whether to provide the posterior of the difference or the ratio between each dose

and the reference dose.

... additional arguments will throw an error.

Value

A list with the elements stats and samples. When using this function with default settings, samples is NULL and stats is a dataframe summarizing the posterior samples. stats contains, at a minimum, the columns "dose", ".contrast_index", "(Intercept)", "value", and variables corresponding to the values passed in prob ("2.50%" and "97.50%" by default). When return_stats is set to FALSE, stats is NULL. When return_samples is set to TRUE, samples is a dataframe with the posterior samples for each iteration of the MCMC. The dataframe will have, at a minimum, the column "iter", indicating the MCMC iteration, as well as the columns "dose", ".contrast_index", "(Intercept)", and "value". The functions used for each model are defined within the model_negbin_XYZ() functions and used in the run_mcmc() function.

See Also

```
Other posterior calculations: beaver_mcmc(), posterior.beaver_mcmc_bma(), posterior_g_comp(), pr_eoi_g_comp(), pr_eoi()
```

Examples

```
# The {beaver} package, by definition, performs MCMC for multiple models.
# Even with a small number of chains/burn-ins/samples, a minimally illustrative
# example requires >5s to run.
library(dplyr)
# No covariates----
set.seed(100)
df <- data_negbin_emax(
    n_per_arm = 10,</pre>
```

```
doses = 0:3,
  b1 = 0,
  b2 = 2.5,
 b3 = 0.5,
  ps = 0.75
)
df %>%
  group_by(dose) %>%
  summarize(
   mean = mean(response),
   se = sd(response) / sqrt(n()),
   .groups = "drop"
mcmc <- beaver_mcmc(</pre>
  emax = model_negbin_emax(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 0,
   sigma_b3 = 3,
   w_prior = 1 / 4
  ),
  formula = \sim 1,
  data = df,
  n_{iter} = 1e2,
```

30

```
n_{chains} = 1,
  quiet = TRUE
)
mcmc$w_post
draws <- try(draws(mcmc)) #draws() is intended for single model fits only</pre>
draws_emax <- draws(mcmc$models$emax$mcmc)</pre>
draws_linear <- draws(mcmc$models$linear$mcmc)</pre>
draws_quad <- draws(mcmc$models$quad$mcmc)</pre>
draws_exp <- draws(mcmc$models$exp$mcmc)</pre>
post <- posterior(</pre>
  mcmc,
  contrast = matrix(1, 1, 1),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi(
 mcmc,
  eoi = c(5, 8),
  contrast = matrix(1, 1, 1),
  reference_dose = 0,
  reference_type = "difference"
post_g_comp <- posterior_g_comp(</pre>
 mcmc,
 new_data = df,
 reference_dose = 0,
  reference_type = "difference"
)
pr_eoi_g_comp(
  {\tt mcmc},
  eoi = c(5, 8),
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)
plot(mcmc, contrast = matrix(1, 1, 1))
# With covariates----
set.seed(1000)
x <-
  data.frame(
    gender = factor(sample(c("F", "M"), 40, replace = TRUE))
  ) %>%
```

```
model.matrix(~ gender, data = .)
df_cov <-
  data_negbin_emax(
   n_per_arm = 10,
   doses = 0:3,
   b1 = c(0, 0.5),
   b2 = 2.5,
   b3 = 0.5,
   ps = 0.75,
   x = x
  ) %>%
  mutate(
   gender = case_when(
      genderM == 1 ~ "M",
      TRUE ~ "F"
   ),
   gender = factor(gender)
  ) %>%
  select(subject, dose, gender, response)
df_cov %>%
  group_by(dose, gender) %>%
  summarize(
   mean = mean(response),
   se = sd(response) / sqrt(n()),
    .groups = "drop"
mcmc_cov <- beaver_mcmc(</pre>
  emax = model_negbin_emax(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
  linear = model_negbin_linear(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
   mu_b1 = 0,
    sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
```

```
w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ gender,
  data = df_cov,
  n_{iter} = 1e2,
  n_{chains} = 1,
  quiet = TRUE
)
mcmc_cov$w_post
draws_cov <- try(draws(mcmc_cov)) #draws() is intended for single model fits only</pre>
draws_cov_emax <- draws(mcmc_cov$models$emax$mcmc)</pre>
draws_cov_linear <- draws(mcmc_cov$models$linear$mcmc)</pre>
draws_cov_quad <- draws(mcmc_cov$models$quad$mcmc)</pre>
draws_cov_exp <- draws(mcmc_cov$models$exp$mcmc)</pre>
post_cov <- posterior(</pre>
  mcmc_cov,
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi(
  mcmc_cov,
  eoi = c(5, 8),
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  reference_dose = 0,
  reference_type = "difference"
post_g_comp_cov <- posterior_g_comp(</pre>
 mcmc_cov,
 new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi_g_comp(
 mcmc_cov,
  eoi = c(5, 8),
  new_data = df_cov,
```

```
reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc_cov, new_data = df_cov, type = "g-comp")
```

posterior.beaver_mcmc_bma

Posterior Samples from Bayesian Model Averaging

Description

Calculate posterior quantities of interest using Bayesian model averaging.

Usage

```
## $3 method for class 'beaver_mcmc_bma'
posterior(
    x,
    doses = attr(x, "doses"),
    reference_dose = NULL,
    prob = c(0.025, 0.975),
    return_stats = TRUE,
    return_samples = FALSE,
    new_data = NULL,
    contrast = NULL,
    reference_type = c("difference", "ratio"),
    ...
)
```

Arguments

an object output from beaver_mcmc(). Х doses doses at which to obtain the posterior. reference_dose dose to which to compare as either a difference or ratio. prob the percentiles of the posterior to calculate for each dose. return_stats logical indicating if the posterior mean and quantiles should be returned. return_samples logical indicating if posterior mean samples should be returned. new_data a dataframe for which the posterior will be calculated for each observation's covariate values. contrast a matrix containing where each row contains a contrast for which the posterior will be calculated. reference_type whether to provide the posterior of the difference or the ratio between each dose and the reference dose. additional arguments will throw an error.

Value

A list with the elements stats and samples. When using this function with default settings, samples is NULL and stats is a dataframe summarizing the posterior samples. stats contains, at a minimum, the columns "dose", ".contrast_index", "(Intercept)", "value", and variables corresponding to the values passed in prob ("2.50%" and "97.50%" by default). When return_stats is set to FALSE, stats is NULL. When return_samples is set to TRUE, samples is a dataframe with the posterior samples for each iteration of the MCMC. The dataframe will have, at a minimum, the columns "iter" and "model", indicating the MCMC iteration and the model that was used in the calculations, as well as the columns "dose", ".contrast_index", "(Intercept)", and "value". The functions used for each model are defined within the model_negbin_XYZ() functions and used in the beaver_mcmc() function.

See Also

```
Other posterior calculations: beaver_mcmc(), posterior.beaver_mcmc(), posterior_g_comp(), pr_eoi_g_comp(), pr_eoi()
```

Examples

```
# The {beaver} package, by definition, performs MCMC for multiple models.
# Even with a small number of chains/burn-ins/samples, a minimally illustrative
# example requires >5s to run.
library(dplyr)
# No covariates----
set.seed(100)
df <- data_negbin_emax(</pre>
  n_per_arm = 10,
  doses = 0:3,
  b1 = 0,
  b2 = 2.5,
  b3 = 0.5,
  ps = 0.75
)
df %>%
  group_by(dose) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
mcmc <- beaver_mcmc(</pre>
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
```

```
mu_b2 = 0,
    sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
 ),
 linear = model_negbin_linear(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   w_prior = 1 / 4
 ),
 quad = model_negbin_quad(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
 ),
 exp = model_negbin_exp(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
    sigma_b2 = 10,
   mu_b3 = 0,
   sigma_b3 = 3,
   w_prior = 1 / 4
 ),
 formula = \sim 1,
 data = df,
 n_{iter} = 1e2,
 n_{chains} = 1,
 quiet = TRUE
)
mcmc$w_post
draws <- try(draws(mcmc)) #draws() is intended for single model fits only</pre>
draws_emax <- draws(mcmc$models$emax$mcmc)</pre>
draws_linear <- draws(mcmc$models$linear$mcmc)</pre>
draws_quad <- draws(mcmc$models$quad$mcmc)</pre>
draws_exp <- draws(mcmc$models$exp$mcmc)</pre>
post <- posterior(</pre>
 mcmc,
 contrast = matrix(1, 1, 1),
 doses = 0:3,
 reference_dose = 0,
 reference_type = "difference"
)
```

```
pr_eoi(
 mcmc,
  eoi = c(5, 8),
 contrast = matrix(1, 1, 1),
 reference_dose = 0,
  reference_type = "difference"
post_g_comp <- posterior_g_comp(</pre>
 {\tt mcmc},
 new_data = df,
 reference_dose = 0,
 reference_type = "difference"
)
pr_eoi_g_comp(
 {\tt mcmc},
  eoi = c(5, 8),
 new_data = df,
 reference_dose = 0,
  reference_type = "difference"
)
plot(mcmc, contrast = matrix(1, 1, 1))
# With covariates----
set.seed(1000)
x <-
  data.frame(
    gender = factor(sample(c("F", "M"), 40, replace = TRUE))
  model.matrix(~ gender, data = .)
df_cov <-
  data_negbin_emax(
    n_per_arm = 10,
    doses = 0:3,
    b1 = c(0, 0.5),
    b2 = 2.5,
    b3 = 0.5,
    ps = 0.75,
    x = x
  ) %>%
  mutate(
    gender = case_when(
      genderM == 1 ~ "M",
     TRUE ~ "F"
    ),
    gender = factor(gender)
  ) %>%
```

```
select(subject, dose, gender, response)
df_cov %>%
  group_by(dose, gender) %>%
  summarize(
   mean = mean(response),
   se = sd(response) / sqrt(n()),
    .groups = "drop"
  )
mcmc_cov <- beaver_mcmc(</pre>
  emax = model_negbin_emax(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
  linear = model_negbin_linear(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 0,
   sigma_b3 = 3,
   w_prior = 1 / 4
  ),
  formula = ~ gender,
  data = df_cov,
  n_{iter} = 1e2,
  n_{chains} = 1,
  quiet = TRUE
)
mcmc_cov$w_post
```

```
draws_cov <- try(draws(mcmc_cov)) #draws() is intended for single model fits only
draws_cov_emax <- draws(mcmc_cov$models$emax$mcmc)</pre>
draws_cov_linear <- draws(mcmc_cov$models$linear$mcmc)</pre>
draws_cov_quad <- draws(mcmc_cov$models$quad$mcmc)</pre>
draws_cov_exp <- draws(mcmc_cov$models$exp$mcmc)</pre>
post_cov <- posterior(</pre>
  mcmc_cov,
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi(
  mcmc_cov,
  eoi = c(5, 8),
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  reference_dose = 0,
  reference_type = "difference"
)
post_g_comp_cov <- posterior_g_comp(</pre>
  {\tt mcmc\_cov},
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi_g_comp(
  mcmc_cov,
  eoi = c(5, 8),
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)
plot(mcmc_cov, new_data = df_cov, type = "g-comp")
```

posterior_g_comp

Compute Posterior G-Computation Estimate

Description

Calculate the estimated effect for each observation at each dose and average over all observations. This function calculates the posterior marginal treatment effect at each dose.

Usage

```
posterior_g_comp(
    x,
    doses = attr(x, "doses"),
    reference_dose = NULL,
    prob = c(0.025, 0.975),
    return_stats = TRUE,
    return_samples = FALSE,
    new_data = NULL,
    reference_type = c("difference", "ratio")
)
```

Arguments

x an object output from beaver_mcmc() or (internal function) run_mcmc().

doses doses at which to obtain the posterior.

reference_dose dose to which to compare as either a difference or ratio.

prob the percentiles of the posterior to calculate for each dose.

return_stats logical indicating if the posterior mean and quantiles should be returned.

return_samples logical indicating if posterior mean samples should be returned.

new_data a dataframe containing all the variables used in the covariate adjustments to the

model used to obtain x. Usually this will be the same dataframe used to fit the

model.

reference_type whether to provide the posterior of the difference or the ratio between each dose

and the reference dose.

Value

A list with the elements stats and samples. When using this function with default settings, samples is NULL and stats is a dataframe summarizing the posterior samples. stats contains, at a minimum, the columns "dose", "value", and variables corresponding to the values passed in prob ("2.50%" and "97.50%" by default). When return_stats is set to FALSE, stats is NULL. When return_samples is set to TRUE, samples is a dataframe with the posterior samples for each iteration of the MCMC.

When x is of class 'beaver_mcmc_bma': The dataframe will have, at a minimum, the columns "iter" and "model", indicating the MCMC iteration and the model that was used in the calculations, as well as the columns "dose" and "value". The functions used for each model are defined within the model_negbin_XYZ() functions and used in the beaver_mcmc() function.

When x is of class 'beaver_mcmc': The dataframe will have, at a minimum, the column "iter", indicating the MCMC iteration, as well as the columns "dose" and "value". The functions used for each model are defined within the model_negbin_XYZ() functions and used in the run_mcmc() function.

See Also

```
Other posterior calculations: beaver_mcmc(), posterior.beaver_mcmc_bma(), posterior.beaver_mcmc(), pr_eoi_g_comp(), pr_eoi()
```

Examples

```
# The {beaver} package, by definition, performs MCMC for multiple models.
# Even with a small number of chains/burn-ins/samples, a minimally illustrative
# example requires >5s to run.
library(dplyr)
# No covariates----
set.seed(100)
df <- data_negbin_emax(</pre>
 n_per_arm = 10,
  doses = 0:3,
 b1 = 0,
 b2 = 2.5,
 b3 = 0.5,
  ps = 0.75
df %>%
  group_by(dose) %>%
  summarize(
   mean = mean(response),
   se = sd(response) / sqrt(n()),
    .groups = "drop"
mcmc <- beaver_mcmc(</pre>
  emax = model_negbin_emax(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   w_prior = 1 / 4
  quad = model_negbin_quad(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
```

```
sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = \sim 1,
  data = df,
  n_{iter} = 1e2,
  n_{chains} = 1,
  quiet = TRUE
)
mcmc$w_post
draws <- try(draws(mcmc)) #draws() is intended for single model fits only</pre>
draws_emax <- draws(mcmc$models$emax$mcmc)</pre>
draws_linear <- draws(mcmc$models$linear$mcmc)</pre>
draws_quad <- draws(mcmc$models$quad$mcmc)</pre>
draws_exp <- draws(mcmc$models$exp$mcmc)</pre>
post <- posterior(</pre>
  mcmc,
  contrast = matrix(1, 1, 1),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi(
  mcmc,
  eoi = c(5, 8),
  contrast = matrix(1, 1, 1),
  reference_dose = 0,
  reference_type = "difference"
)
post_g_comp <- posterior_g_comp(</pre>
  {\tt mcmc},
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi_g_comp(
  mcmc,
  eoi = c(5, 8),
```

```
new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)
plot(mcmc, contrast = matrix(1, 1, 1))
# With covariates----
set.seed(1000)
x <-
  data.frame(
    gender = factor(sample(c("F", "M"), 40, replace = TRUE))
  ) %>%
  model.matrix(~ gender, data = .)
df_cov <-
  data_negbin_emax(
   n_per_arm = 10,
   doses = 0:3,
   b1 = c(0, 0.5),
   b2 = 2.5,
   b3 = 0.5,
   ps = 0.75,
   x = x
  ) %>%
  mutate(
   gender = case_when(
      genderM == 1 ~ "M",
      TRUE ~ "F"
   ),
   gender = factor(gender)
  select(subject, dose, gender, response)
df_cov %>%
  group_by(dose, gender) %>%
  summarize(
   mean = mean(response),
   se = sd(response) / sqrt(n()),
    .groups = "drop"
  )
mcmc_cov <- beaver_mcmc(</pre>
  emax = model_negbin_emax(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
```

```
),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  formula = ~ gender,
  data = df_cov,
  n_{iter} = 1e2,
  n_{chains} = 1,
  quiet = TRUE
)
mcmc_cov$w_post
draws_cov <- try(draws(mcmc_cov)) #draws() is intended for single model fits only</pre>
draws_cov_emax <- draws(mcmc_cov$models$emax$mcmc)</pre>
draws_cov_linear <- draws(mcmc_cov$models$linear$mcmc)</pre>
draws_cov_quad <- draws(mcmc_cov$models$quad$mcmc)</pre>
draws_cov_exp <- draws(mcmc_cov$models$exp$mcmc)</pre>
post_cov <- posterior(</pre>
  mcmc_cov,
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi(
  mcmc_cov,
  eoi = c(5, 8),
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
```

```
reference_dose = 0,
  reference_type = "difference"
)
post_g_comp_cov <- posterior_g_comp(</pre>
  mcmc_cov,
 new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi_g_comp(
  mcmc_cov,
  eoi = c(5, 8),
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)
plot(mcmc_cov, new_data = df_cov, type = "g-comp")
```

pr_eoi

Calculate Probability of Meeting Effect of Interest

Description

Calculate a posterior quantity such as Pr(trt_arm1 - trt_arm2 > eoi)

Usage

```
pr_eoi(
    x,
    eoi,
    doses = attr(x, "doses"),
    reference_dose = NULL,
    new_data = NULL,
    contrast = NULL,
    reference_type = c("difference", "ratio"),
    direction = c("greater", "less")
)
```

Arguments

x an object output from beaver_mcmc() or (internal function) run_mcmc().
eoi effects of interest in the probability equation.
doses doses at which to obtain the posterior.
reference_dose dose to which to compare as either a difference or ratio.

new_data a dataframe for which the posterior will be calculated for each observation's covariate values.

contrast a matrix containing where each row contains a contrast for which the posterior will be calculated.

reference_type whether to provide the posterior of the difference or the ratio between each dose and the reference dose.

direction calculate whether the posterior quantity is greater or less than the eoi

Value

A dataframe or tibble with the posterior quantities.

See Also

```
Other posterior calculations: beaver_mcmc(), posterior.beaver_mcmc_bma(), posterior.beaver_mcmc(), posterior_g_comp(), pr_eoi_g_comp()
```

Examples

```
# The {beaver} package, by definition, performs MCMC for multiple models.
# Even with a small number of chains/burn-ins/samples, a minimally illustrative
# example requires >5s to run.
library(dplyr)
# No covariates----
set.seed(100)
df <- data_negbin_emax(</pre>
  n_per_arm = 10,
  doses = 0:3,
  b1 = 0,
  b2 = 2.5,
  b3 = 0.5,
  ps = 0.75
)
df %>%
  group_by(dose) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
mcmc <- beaver_mcmc(</pre>
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
```

```
mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = \sim 1,
  data = df,
  n_{iter} = 1e2,
  n_{chains} = 1,
  quiet = TRUE
)
mcmc$w_post
draws <- try(draws(mcmc)) #draws() is intended for single model fits only</pre>
draws_emax <- draws(mcmc$models$emax$mcmc)</pre>
draws_linear <- draws(mcmc$models$linear$mcmc)</pre>
draws_quad <- draws(mcmc$models$quad$mcmc)</pre>
draws_exp <- draws(mcmc$models$exp$mcmc)</pre>
post <- posterior(</pre>
 mcmc,
  contrast = matrix(1, 1, 1),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)
```

```
pr_eoi(
 mcmc,
  eoi = c(5, 8),
 contrast = matrix(1, 1, 1),
  reference_dose = 0,
  reference_type = "difference"
post_g_comp <- posterior_g_comp(</pre>
 mcmc,
 new_data = df,
 reference_dose = 0,
 reference_type = "difference"
)
pr_eoi_g_comp(
 {\tt mcmc},
  eoi = c(5, 8),
 new_data = df,
 reference_dose = 0,
  reference_type = "difference"
)
plot(mcmc, contrast = matrix(1, 1, 1))
# With covariates----
set.seed(1000)
x <-
  data.frame(
   gender = factor(sample(c("F", "M"), 40, replace = TRUE))
  model.matrix(~ gender, data = .)
df_cov <-
  data_negbin_emax(
   n_per_arm = 10,
   doses = 0:3,
   b1 = c(0, 0.5),
   b2 = 2.5,
   b3 = 0.5,
   ps = 0.75,
   x = x
  ) %>%
  mutate(
   gender = case_when(
      genderM == 1 ~ "M",
     TRUE ~ "F"
   ),
    gender = factor(gender)
  ) %>%
```

```
select(subject, dose, gender, response)
df_cov %>%
  group_by(dose, gender) %>%
  summarize(
   mean = mean(response),
   se = sd(response) / sqrt(n()),
    .groups = "drop"
  )
mcmc_cov <- beaver_mcmc(</pre>
  emax = model_negbin_emax(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
  linear = model_negbin_linear(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 0,
   sigma_b3 = 3,
   w_prior = 1 / 4
  ),
  formula = ~ gender,
  data = df_cov,
  n_{iter} = 1e2,
  n_{chains} = 1,
  quiet = TRUE
)
mcmc_cov$w_post
```

```
draws_cov <- try(draws(mcmc_cov)) #draws() is intended for single model fits only
draws_cov_emax <- draws(mcmc_cov$models$emax$mcmc)</pre>
draws_cov_linear <- draws(mcmc_cov$models$linear$mcmc)</pre>
draws_cov_quad <- draws(mcmc_cov$models$quad$mcmc)</pre>
draws_cov_exp <- draws(mcmc_cov$models$exp$mcmc)</pre>
post_cov <- posterior(</pre>
  mcmc_cov,
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi(
  mcmc_cov,
  eoi = c(5, 8),
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  reference_dose = 0,
  reference_type = "difference"
)
post_g_comp_cov <- posterior_g_comp(</pre>
  {\tt mcmc\_cov},
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi_g_comp(
  mcmc_cov,
  eoi = c(5, 8),
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)
plot(mcmc_cov, new_data = df_cov, type = "g-comp")
```

pr_eoi_g_comp

Calculate Probability of Meeting Effect of Interest using G-Computation

Description

Calculate a posterior quantity such as Pr(trt_arm1 - trt_arm2 > eoi) based on the posterior marginal treatment effect at each dose.

Usage

```
pr_eoi_g_comp(
    x,
    eoi,
    doses = attr(x, "doses"),
    reference_dose = NULL,
    new_data = NULL,
    reference_type = c("difference", "ratio"),
    direction = c("greater", "less")
)
```

Arguments

x an object output from beaver_mcmc() or (internal function) run_mcmc().

eoi effects of interest in the probability equation.

doses doses at which to obtain the posterior.

reference_dose dose to which to compare as either a difference or ratio.

new_data a dataframe containing all the variables used in the covariate adjustments to the

model used to obtain x. Usually this will be the same dataframe used to fit the

model.

reference_type whether to provide the posterior of the difference or the ratio between each dose

and the reference dose.

direction calculate whether the posterior quantity is greater or less than the eoi

Value

A dataframe or tibble with the posterior quantities.

See Also

```
Other posterior calculations: beaver_mcmc(), posterior.beaver_mcmc_bma(), posterior.beaver_mcmc(), posterior_g_comp(), pr_eoi()
```

Examples

```
# The {beaver} package, by definition, performs MCMC for multiple models.
# Even with a small number of chains/burn-ins/samples, a minimally illustrative
# example requires >5s to run.
library(dplyr)
# No covariates----
set.seed(100)
df <- data_negbin_emax(
    n_per_arm = 10,</pre>
```

```
doses = 0:3,
  b1 = 0,
  b2 = 2.5,
 b3 = 0.5,
  ps = 0.75
)
df %>%
  group_by(dose) %>%
  summarize(
   mean = mean(response),
   se = sd(response) / sqrt(n()),
   .groups = "drop"
mcmc <- beaver_mcmc(</pre>
  emax = model_negbin_emax(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 0,
   sigma_b3 = 3,
   w_prior = 1 / 4
  ),
  formula = \sim 1,
  data = df,
  n_{iter} = 1e2,
```

```
n_{chains} = 1,
  quiet = TRUE
)
mcmc$w_post
draws <- try(draws(mcmc)) #draws() is intended for single model fits only</pre>
draws_emax <- draws(mcmc$models$emax$mcmc)</pre>
draws_linear <- draws(mcmc$models$linear$mcmc)</pre>
draws_quad <- draws(mcmc$models$quad$mcmc)</pre>
draws_exp <- draws(mcmc$models$exp$mcmc)</pre>
post <- posterior(</pre>
  mcmc,
  contrast = matrix(1, 1, 1),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi(
 mcmc,
  eoi = c(5, 8),
  contrast = matrix(1, 1, 1),
  reference_dose = 0,
  reference_type = "difference"
post_g_comp <- posterior_g_comp(</pre>
 mcmc,
 new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi_g_comp(
  {\tt mcmc},
  eoi = c(5, 8),
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)
plot(mcmc, contrast = matrix(1, 1, 1))
# With covariates----
set.seed(1000)
x <-
  data.frame(
    gender = factor(sample(c("F", "M"), 40, replace = TRUE))
  ) %>%
```

```
model.matrix(~ gender, data = .)
df_cov <-
  data_negbin_emax(
   n_per_arm = 10,
   doses = 0:3,
   b1 = c(0, 0.5),
   b2 = 2.5,
   b3 = 0.5,
   ps = 0.75,
   x = x
  ) %>%
  mutate(
   gender = case_when(
      genderM == 1 ~ "M",
      TRUE ~ "F"
   ),
   gender = factor(gender)
  ) %>%
  select(subject, dose, gender, response)
df_cov %>%
  group_by(dose, gender) %>%
  summarize(
   mean = mean(response),
   se = sd(response) / sqrt(n()),
    .groups = "drop"
mcmc_cov <- beaver_mcmc(</pre>
  emax = model_negbin_emax(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
   w_prior = 1 / 4
  linear = model_negbin_linear(
   mu_b1 = 0,
   sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
   mu_b1 = 0,
    sigma_b1 = 10,
   mu_b2 = 0,
   sigma_b2 = 10,
   mu_b3 = 1.5,
   sigma_b3 = 3,
```

```
w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ gender,
  data = df_cov,
  n_{iter} = 1e2,
  n_{chains} = 1,
  quiet = TRUE
)
mcmc_cov$w_post
draws_cov <- try(draws(mcmc_cov)) #draws() is intended for single model fits only</pre>
draws_cov_emax <- draws(mcmc_cov$models$emax$mcmc)</pre>
draws_cov_linear <- draws(mcmc_cov$models$linear$mcmc)</pre>
draws_cov_quad <- draws(mcmc_cov$models$quad$mcmc)</pre>
draws_cov_exp <- draws(mcmc_cov$models$exp$mcmc)</pre>
post_cov <- posterior(</pre>
  mcmc_cov,
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi(
  mcmc_cov,
  eoi = c(5, 8),
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  reference_dose = 0,
  reference_type = "difference"
post_g_comp_cov <- posterior_g_comp(</pre>
 mcmc_cov,
 new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)
pr_eoi_g_comp(
 mcmc_cov,
  eoi = c(5, 8),
  new_data = df_cov,
```

```
reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc_cov, new_data = df_cov, type = "g-comp")
```

Index

```
* models
                                                  pr_eoi, 3, 28, 34, 39, 44, 50
                                                  pr_eoi_g_comp, 3, 28, 34, 39, 45, 49
    beaver_mcmc, 2
    model_negbin_emax, 18
    model_negbin_exp, 19
    model_negbin_indep, 21
    model_negbin_linear, 22
    model_negbin_loglinear, 23
    model_negbin_logquad, 24
    model_negbin_quad, 25
    model_negbin_sigmoid_emax, 26
* posterior calculations
    beaver_mcmc, 2
    posterior.beaver_mcmc, 27
    posterior.beaver_mcmc_bma, 33
    posterior\_g\_comp, 38
    pr_eoi, 44
    pr_eoi_g_comp, 49
beaver_mcmc, 2, 19-23, 25-28, 34, 39, 45, 50
data_negbin_emax, 7
draws, 13
model_negbin_emax, 3, 18, 20-23, 25-27
model_negbin_exp, 3, 19, 19, 21-23, 25-27
model_negbin_indep, 3, 19, 20, 21, 22, 23,
         25-27
model_negbin_linear, 3, 19-21, 22, 23,
         25-27
model_negbin_loglinear, 3, 19-22, 23,
         25-27
model_negbin_logquad, 3, 19-23, 24, 26, 27
model_negbin_quad, 3, 19-23, 25, 25, 27
model_negbin_sigmoid_emax, 3, 19-23, 25,
         26, 26
posterior.beaver_mcmc, 3, 27, 34, 39, 45, 50
posterior.beaver_mcmc_bma, 3, 28, 33, 39,
         45, 50
posterior_g_comp, 3, 28, 34, 38, 45, 50
```