Министерство образования Республики Беларусь Учреждение Образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра электроники

Лабораторная работа № 4 «Исследование полевых транзисторов»

Проверил: Стома С.С

Выполнили: ст. гр. 950501 Деркач А.В. Романчук А.В.

Порядок выполнения работы:

- 1 Ознакомиться с методическим описанием лабораторной работы. (Теоретическое описание лабораторной работы изложено в методическом пособии [1], стр. 41-48).
- 2 Получить у преподавателя необходимый комплект для проведения лабораторной работы.
 - 3 Уточнить тип исследуемых транзисторов у преподавателя.
- 4 Собрать схему (рисунок 1) для исследования параметров полевого транзистора с управляющим p-n переходом.
- 5 Определить максимальный ток стока Ic_{max} и записать полученное значение в соответствующее поле.
- 6 Исследовать сток-затворную характеристику полевого транзистора с управляющим p-n переходом. Полученные результаты записать в таблицу 1. (Качественный вид и описание сток-затворной характеристики представлены в методическом пособии [1], стр. 45).
- 7 Исследовать выходные характеристики полевого транзистора для трех вариантов входного напряжения (Uзи). Полученные результаты записать в таблицы 2 4. (Качественный вид и описание выходных характеристик полевого транзистора представлены в методическом пособии [1], стр. 45).
- 8 Собрать схему (рисунок 2) для исследования параметров полевого МДП транзистора с индуцированным каналом.
- 9 Определить и записать значение порогового напряжения открытия транзистора (Uпор).
- 10 Исследовать сток-затворную характеристику полевого транзистора с индуцированным каналом. Полученные результаты записать в таблицу 5. (Качественный вид и описание сток-затворной характеристики представлены в методическом пособии [1], стр. 45).
- 11 Исследовать выходные характеристики полевого транзистора для трех вариантов входного напряжения (Uзи). Полученные результаты записать в таблицы 6 8. (Качественный вид и описание выходных характеристик полевого транзистора представлены в методическом пособии [1], стр. 45).
- 12 Собрать схему для исследования логических элементов (рисунок 3). Исследовать таблицу истинности собранной схемы и определить тип логического элемента. Аналогично выполнить для второй схемы (рисунок 4).
 - 13 Предоставить измеренные данные на проверку преподавателю.

Порядок оформления отчета:

- 1 По измеренным данным построить соответствующие графики.
- 2 По построенным графикам рассчитать дифференциальные параметры полевого транзистора с управляющим p-n переходом и полевого транзистора с индуцированным каналом в окрестностях рабочей точки.
 - 3 Записать общие выводы по проделанной лабораторной работе.
- [1] Электронные приборы. Лабораторный практикум: учеб.-метод. пособие. В 2 частях. Часть 1: Активные компоненты полупроводниковой электроники / А. Я. Бельский Минск: БГУИР, 2012

1 Цель работы

Изучить устройство, принцип действия, классификацию, области применения полевых транзисторов (ПТ). Экспериментально исследовать статические вольт-амперные характеристики (ВАХ) транзисторов и рассчитать дифференциальные параметры полевых транзисторов в заданной рабочей точке.

2 Ход работы

2.1 Исследование сток-затворной характеристики ПТ с управляющим р- п переходом в схеме с общим истоком (ОИ)

Для исследования сток-затворной характеристики ПТ собрана цепь по схеме, представленной на рисунке 1.

Рисунок 1 – Схема исследования характеристик ПТ в схеме с ОИ

Перед исследованием сток-затворной характеристики было определено значение максимального тока стока Ic_{max} при Uзu = 0B, Ucu = 4B, которое составило y = 7,513 мA (для каждого транзистора определяется экспериментально). Результаты исследований занесены в таблицу 1.

Таблица 1 — Результаты измерения (изменять значение $U_{\text{пит}1}$) сток-затворной характеристики ПТ $Ic=f(U_{3}u)$, при фиксированном значении $U_{c}u=4B$

Іс, мА	y = 7,513	0.9y = 6.762	0.8y = 6.010	0.7y = 5.259	0.6y = 4.508	0.5y = 3.756
U зи, В	0	$x_1 = 0.1487$	0,3005	0,4637	$x_2 = 0,6336$	0,8193
Іс, мА	0.4y = 3.005	0.3y = 2.254	0,2y = 1,503	0.1y = 0.751	0,05y=0,276	0
Uзи , В	1,0175	$x_3 = 1,2373$	1,4861	1,7937	2,003	4,399

Значения в ячейках, обозначенных х1, х2, х3, будут использованы в дальнейшем

2.2 Исследование выходных характеристик ПТ с управляющим p-n переходом в схеме с общим истоком (ОИ)

Семейство выходных характеристик Ic=f(Ucu) измерено для трех фиксированных значений входного напряжения затвор-исток $Usu=x_1; x_2; x_3 B$. Результаты исследований занесены в таблицу 2, таблицу 3 и таблицу 4 соответственно.

Таблица 2 — Результаты измерения (изменять значение $U_{\text{пит}2}$) выходной характеристики ПТ Ic=f(Ucu), при фиксированном значении $Usu=x_1$ (из таблицы 1) = 0,1487 В

U си, В	4	3,5	3	2,5	2	1,5	1	0,5	0,25	0,1	0
Іс, мА	6,753	6,674	6,573	6,395	6,008	5,370	4,489	2,405	1,281	0,533	0

Таблица 3 — Результаты измерения (изменять значение $U_{\text{пит}2}$) выходной характеристики ПТ Ic=f(Ucu), при фиксированном значении U3и = x_2 (из таблицы 1) = 0,6336 В

Иси, В	4	3,5	3	2,5	2	1,5	1	0,5	0,25	0,1	0
Іс, мА	4,521	4,483	4,029	4,350	4,203	3,872	3,154	1,866	1,006	0,420	0

Таблица 4 — Результаты измерения (изменять значение $U_{\text{пит}2}$) выходной характеристики ПТ Ic=f(Ucu), при фиксированном значении $Usu=x_3$ (из таблицы 1) = 1,2373 В

U си, В	4	3,5	3	2,5	2	1,5	1	0,5	0,25	0,1	0
Іс, мА	2,249	2,230	2,207	2,175	2,129	2,043	1,818	1,193	0,672	0,284	0

2.3 Исследование сток-затворной характеристики ПТ с индуцированным каналом в схеме с общим истоком (ОИ)

Для исследования сток-затворной характеристики ПТ собрана цепь по схеме, представленной на рисунке 2.

Рисунок 2 – Схема исследования характеристик ПТ в схеме с ОИ

Перед исследованием сток-затворной характеристики определено значение порогового напряжения $U_{\text{пор}}$, при котором ток стока составляет 10 мкA, которое составило $U_{\text{пор}} = 3,134$ В. Результаты исследований занесены в таблицу 5.

Таблица 5 — Результаты измерения (изменять значение $U_{\text{пит}1}$) сток-затворной характеристики ПТ Ic=f(Uзи), при фиксированном значении Uси = 4B

Іс, мА	0	0,01	$0,1\pm0,05$	$0,5\pm0,1$	1±0,1	2±0,1	3±0,1
Изи, В	0	$U_{\text{nop}}=3,134$	3,355	3,520	3,600	3,689	$x_4 = 3,748$
Іс, мА	4±0,1	5±0,1	6±0,1	7±0,1	8±0,1	9±0,1	10±0,1
U зи, В	3,794	3,832	$x_5 = 3,868$	3,898	3,924	$x_6 = 3,949$	3,972

-Значения в ячейках, обозначенных x4, x5, x6, будут использованы в дальнейшем

2.4 Исследование выходных характеристик ПТ с индуцированным каналом в схеме с общим истоком (ОИ)

Семейство выходных характеристик Ic=f(Ucu) измерено для трех фиксированных значений входного напряжения затвор-исток $Usu=x_4; x_5; x_6 B$. Результаты исследований занесены в таблицу 6, таблицу 7 и таблицу 8 соответственно.

Таблица 6 — Результаты измерения выходной характеристики ПТ Ic=f(Ucu), при **Uзи** = **x**₄ (из таблицы 5) = 3,748 В (Изменять значение $U_{пит2}$)

U си, В	4	3,5	3	2,5	2	1,5	1	0,5	0,25	0,1	0
Іс, мА	3,075	3,058	3,038	3,014	2,993	2,982	2,956	2,924	2,806	2,042	0

Таблица 7 — Результаты измерения выходной характеристики ПТ Ic=f(Ucu), при **Uзи** = **x**₅ (из таблицы 5) = 3,868 В (Изменять значение $U_{пит2}$)

Иси, В	4	3,5	3	2,5	2	1,5	1	0,5	0,25	0,1	0
Іс, мА	6,040	5,992	5,923	5,874	5,822	5,764	5,795	5,632	5,164	3,224	0

Таблица 8 — Результаты измерения выходной характеристики ПТ Ic=f(Ucu), при **Uзи** = **x**₆ (из таблицы 5) = 3,949 В (Изменять значение $U_{пит2}$)

Иси, В	4	3,5	3	2,5	2	1,5	1	0,5	0,25	0,1	0
Іс, мА	9,131	9,078	8,958	8,859	8,778	8,670	8,560	8,370	7,239	4,055	0

2.5 Исследование логических элементов на основе полевых транзисторов

Современные интегральные микросхемы представляют собой набор логических элементов, которые выполнены, в свою очередь, на полевых либо биполярных транзисторах. Поскольку полевые транзисторы имеют низкие затраты энергии на их управление, в отличие от биполярных, то микросхемы на полевых транзисторах получили наибольшее распространение. Простейшие логические элементы (И, И-НЕ, ИЛИ, ИЛИ-НЕ, исключающее ИЛИ, исключающее ИЛИ-НЕ) могут быть реализованы как в виде отдельных микросхем базовой логики, так и в составе сложных интегральных микросхем (регистры, счетчики, мультиплексоры, дешифраторы, триггеры).

Рисунок 3 – Логический элемент на полевых транзисторах

Для исследования логического элемента собрана схема (рисунок 3). Напряжение на канале Ch3 источника питания составляет 5В. Логические сигналы подаются на затворы полевых транзисторов (0 либо 5 В) каналами источника питания Ch1 и Ch2. Логическая «1» соответствует 5В источника питания, «0» — 0В. Логической выход для выполнен в виде светодиода. Горящий светодиод соответствует логической «1» выхода, потухший — «0». Для определения типа логического элемента построена таблица истинности (таблица 9).

Таблица 9 – Таблица истинности первого логического элемента

Ch1	Ch2	Выход
«0»	«0»	0
«0»	«1»	0
«1»	«0»	0
«1»	«1»	1

По таблице 9 определили, что схема на рисунке 3 представляет собой логическое ...И... .

Аналогичным образом исследована схема, представленная на рисунке 4. Для определения типа логического элемента построена таблица истинности (таблица 10).

Рисунок 3 – Логический элемент на полевых транзисторах

Таблица 10 – Таблица истинности второго логического элемента

Ch1	Ch2	Выход
«0»	«0»	1
«0»	«1»	0
«1»	«0»	0
«1»	«1»	0

По таблице 10 определили, что схема на рисунке 4 представляет собой логическое ... ИЛИ...НЕ... .

2.6 Результаты экспериментальных исследований

По результатам измерений ПТ с управляющим p-n переходом и ПТ с индуцированным каналом в схеме с ОИ построены графики сток-затворных и выходных характеристик этих ПТ (рисунки 5, 6, 7, 8).

Рисунок 5 — Сток-затворная характеристика Рисунок 6 — Выходные характеристики ПТ с ПТ с управляющим p-n переходом управляющим p-n переходом

Рисунок 7 — Сток-затворная характеристика Рисунок 8 — Выходные характеристики ПТ с ПТ с индуцированным каналом индуцированным каналом

2.7 Расчет дифференциальных параметров ПТ в схеме с ОИ

По построенным графикам характеристик ПТ в схеме с ОИ рассчитаны их дифференциальные параметры в окрестностях рабочих точек:

1) для транзистора с управляющим p-n переходом Ucu = 2.5 B и Ic = 0.6y (из таблицы 3) = 0.6336 мA;

$$S = \frac{(6,395 - 2,175) \cdot 10^{-3}}{1,2373 - 0,1487} = \frac{4,22 \cdot 10^{-3}}{1,0886} = 3,8765 \cdot 10^{-3} \frac{A}{B}$$

$$Ri = \frac{3.5 - 1.5}{(4.483 - 3.872) \cdot 10^{-3}} = \frac{2}{0.611 \cdot 10^{-3}} = 3.273 \cdot 10^{3} O_{M}$$

$$\mu = S \cdot R_i = 3,8765 \cdot 10^{-3} \cdot 3,273 \cdot 10^3 = 12,689$$

2) для транзистора с индуцированным каналом Ucu = 2.5 B, Ic = 6 MA.

$$S = \frac{(8,778 - 3,014) \cdot 10^{-3}}{3,949 - 3,748} = \frac{5,764 \cdot 10^{-3}}{0,201} = 28,677 \cdot 10^{-3} \frac{A}{B}$$

$$Ri = \frac{3.5 - 1.5}{(5.992 - 5.764) \cdot 10^{-3}} = \frac{2}{0.228 \cdot 10^{-3}} = 8,772 \cdot 10^{3} O_{M}$$

$$\mu = S \cdot R_i = 28,677 \cdot 10^{-3} \cdot 8,772 \cdot 10^3 = 251,555$$

3 Выводы

В этой лабораторной работе мы изучили устройство, принцип действия, классификацию, области применения полевых транзисторов (ПТ). Экспериментально исследовали статические вольт-амперные характеристики (ВАХ) транзисторов и рассчитали дифференциальные параметры полевых транзисторов в заданной рабочей точке.