

# Steganography

Prepared by: A H M Kamal



### **Multimedia Communications**

# What is Multimedia?

Combination of Text, Video,
Audio and other data



Transfer of message, information is Called Multimedia Communication



# Multimedia Communication Security

# Multimedia Security

 Preventing unauthorized interceptors

# Multimedia Security Threats:

- Message alteration
- •Leak and stealing of secured data
- Threats to stored
- ·multimediaring
- •cannynication threats



## Cryptography



#### Cons of Cryptography

- Security key not unbreakable
- Security compromised if key is stolen
- Encrypted message can be identified and filtration is possible
- Message can be altered

Steganography solves these issues of Cryptography



## Steganography



- Existence of message Realized.
- Keys can be guessed or stolen
- Portion of message can be guessed



# Steganography: Hiding Information









Step 1

Step 2

Step 3

Step 4



# During Transmission nothing to suspect





# Retrieving Back the Hided information





# Pictorial view of Embedding Process





# Category: Based on Reversibility





## Category: Based on Domain



Principle: embedding at pixel values

Common methoppin principle: embedd Principle: first compression then embedding

Add/Sub Comcommon method: Common method: Standard Compression algorithm+

Examples: Barl Example: Linetal (embedding et al (2009), Tasi et al (2009), Wien et al (2010), Ni

(2003), Alattar (2006) Example: Chang et al(2007), Lu et al(2009)

Elsevier)



#### **Performance Parameters**

- 1. Embedding Payload
- -How many message bits can be embedded.





- 2. Embedding capacity:
  - embedded bits per pixel (bpp)

$$capacity = \frac{number \ of \ bits \ embedded}{number \ of \ pixels \ in \ embedding \ space} \ bpp$$

- 3. PSNR: Peak Signal to Noise Ratio
  - To measure the visual quality

$$PSNR = 10 \times \log_{10} \frac{255^{2}}{MSE} (dB)$$

$$MSE = \frac{1}{M \times N} \sum_{i=1}^{M} \sum_{j=1}^{N} (I(i, j) - I'(i, j))^{2}$$

Where MSE: Mean Square Error



#### **Error Histogram Steganography Schemes**

1. Basic pixel reference error (BPRE) histogram scheme, Tsai et al (2009)



2. Prediction error (PE) histogram scheme, Wien et al (2010)

Embedding Space





#### **Error Histogram Steganography Schemes**

3. Neighbor pixel reference distance (NPRD) histogram scheme, Tai et al



 $d_i$  is the neighbor reference error

4. Median Edge Detection Based Prediction Error (MEDPE) histogram scheme, Wien Hong (2012)

Embedding Space





# Basic pixel reference errors (BPRE) Scheme

1. Find **basic** and **non-basic** pixels

| $b_{i,2}$ | $b_{i,3}$ | $b_{i,4}$ | Basic pixel      |
|-----------|-----------|-----------|------------------|
| $b_{i,t}$ | $C_{i}$   | $b_{i,5}$ | Non-basic pixels |
| $b_{i,8}$ | $b_{i,7}$ | $b_{i,6}$ | 3x3 image block  |

2. Find basic pixel reference error

$$r_{i,j} = c_i - b_{i,j}, \qquad 1 \le j \le 8$$

3. Draw error histogram





- $P_{\perp}$ : Position error with highest frequency
- P: Negative error with highest frequency
- $Z_{\perp}$ : Highest positive error
- Z: Highest negative error

 $h_1$ =Frequencies of  $P_1$  at histogram  $h_2$ =Frequencies of  $P_1$  at histogram  $E_1$ =Frequencies of  $E_2$ =Freque



#### **BPRE Scheme Cont...**

#### Entry to location map

Saturated pixels (0, 255) can't be used for embedding. So make a entry to location may.



#### 5. Embedding process

if 
$$b\neq 0/255$$
 then
$$\overset{\sim}{r_{i,j}} = r_{i,j} + m \quad \text{if } r_{i,j} = P_{+} \\
\overset{\sim}{r_{i,j}} = r_{i,j} - m \quad \text{if } r_{i,j} = P_{-}$$

Where *m* is message bit

Shift all other  $r_{i,j}$  by 1 if  $r_{i,j} > P_+$  and by -1 if  $r_{i,j} < P_-$ 

#### 6. Calculating stego block

$$\tilde{b}_{i,j} \leftarrow c_i + \tilde{r}_{i,j}$$

| $\tilde{b}_{i,2}$ | $\tilde{\mathrm{b}}_{\mathrm{i,3}}$ | $\tilde{b}_{i,4}$                   |   | $c_{i}$ | $c_{i}$ | $C_i$   |   | $\tilde{r}_{i,2}$ | $\tilde{r}_{i,3}$ | $\tilde{r}_{i,4}$             |
|-------------------|-------------------------------------|-------------------------------------|---|---------|---------|---------|---|-------------------|-------------------|-------------------------------|
| $\tilde{b}_{i,1}$ | $c_{i}$                             | $\tilde{b}_{i,5}$                   | = | $c_{i}$ | $c_{i}$ | $c_{i}$ | + | $\tilde{r}_{i,1}$ |                   | $	ilde{	ilde{r}}_{	ext{i,5}}$ |
| $\tilde{b}_{i,8}$ | $\tilde{\mathrm{b}}_{\mathrm{i},7}$ | $\tilde{\mathrm{b}}_{\mathrm{i,6}}$ |   | $c_{i}$ | $c_{i}$ | $c_{i}$ |   | $\tilde{r}_{i,8}$ | $\tilde{r}_{i,7}$ | $\tilde{r}_{i,6}$             |
| Stego block       |                                     |                                     |   | Bas     | sic pix | el      | • | Ste               | go-BP             | RE                            |

Basic pixel Stego-BPKE



# Prediction error (PE) histogram scheme

Divide cover image into assistant and message block



```
d-bits assistant
                 information
Embedded by LSB
Replacement Method
A_{\text{info}} = |L| ||L|| P_{+} ||Z_{+}|| P_{-} ||Z_{-}|| TH || |S|
 Here
 L: location map; contains location of 0 and 255 pixels
 values
 L: Length of location map
 TH: Threshold valuessagecide as smooth/complex
 hlookhadda
                   e Data
 |S|d Isogth of data bits
 ||: Poppatenation symbol
```



1. Message block is divided into N mxm blocks.



| $p_{i,2}$        | p <sub>i,3</sub> | p <sub>i,4</sub> |  |  |  |
|------------------|------------------|------------------|--|--|--|
| $p_{i,1}$        | $c_{i}$          | $p_{i,5}$        |  |  |  |
| p <sub>i,8</sub> | $p_{i,7}$        | $p_{i,6}$        |  |  |  |

Calculating Prediction, p<sub>i,j</sub>

$$\begin{aligned} p_{i,1} &= \operatorname{round}(\frac{1}{3}(2c_i + c_i^L)), & p_{i,5} &= \operatorname{round}(\frac{1}{3}(2c_i + c_i^R)), \\ p_{i,2} &= \operatorname{round}(\frac{1}{3}(c_i + c_i^L + c_i^T)), & p_{i,6} &= \operatorname{round}(\frac{1}{3}(c_i + c_i^R + c_i^B)), \\ p_{i,3} &= \operatorname{round}(\frac{1}{3}(2c_i + c_i^T)), & p_{i,7} &= \operatorname{round}(\frac{1}{3}(2c_i + c_i^B)), \\ p_{i,8} &= \operatorname{round}(\frac{1}{3}(c_i + c_i^B + c_i^L)), \end{aligned}$$





3. Decide block as complex/smooth

$$var(c_{i}) = \frac{1}{5}((c_{i} - c_{m})^{2} + (c_{i}^{L} - c_{m})^{2} + (c_{i}^{R} - c_{m})^{2} + (c_{i}^{T} - c_{m})^{2} + (c_{i}^{B} - c_{m})^{2}),$$
Block is complex if  $var(c_{i}) > TH$ 
Smooth Otherwise

4. Calculate errors

$$e_{i,j} \leftarrow b_{i,j} - p_{i,j}$$

| $e_{i,2}$        | $e_{i,3}$        | e <sub>i,4</sub> | b <sub>1,3</sub> b <sub>1,4</sub> b <sub>1,4</sub>                                  | $p_{i,2}$        | $p_{i,3}$        |
|------------------|------------------|------------------|-------------------------------------------------------------------------------------|------------------|------------------|
| $e_{i,1}$        |                  | $e_{i,5}$        | =   b <sub>i,3</sub>   c <sub>i</sub>   b <sub>i,5</sub>   -                        | $p_{i,1}$        | C,               |
| e <sub>i,8</sub> | e <sub>i,7</sub> | e <sub>i,6</sub> | $\mathbf{b}_{i,\mathbf{s}}$ $\mathbf{b}_{i,\mathbf{r}}$ $\mathbf{b}_{i,\mathbf{s}}$ | p <sub>i,8</sub> | p <sub>i,7</sub> |

|   | $p_{i,2}$ | $p_{i,3}$ | $p_{i,4}$        |
|---|-----------|-----------|------------------|
| ı | $p_{i,1}$ | ¢,        | p <sub>i,5</sub> |
|   | $p_{i,8}$ | $p_{i,7}$ | $p_{i,6}$        |

- 5.1. Draw error's histogram
- 5.2. Find  $(P_+, Z_+)$  and  $(P_-, Z_-)$







Embedding at positive peak

$$\tilde{e}_{i,j} = e_{i,j} + s$$
 if  $e_{i,j} = P_+$   $\tilde{e}_{i,j} = e_{i,j} - s$  if  $e_{i,j} = P_-$ 

b) Embedding at negative peak

$$\tilde{e}_{i,j} = e_{i,j} - s$$
 if  $e_{i,j} = P_{i,j}$ 

Where s is message bit

Not embedding but shifting

If 
$$e_{i,j} \neq P_+$$
 or  $P_-$  Then

Shift  $e_{i,j}$  by 1 if  $e_{i,j} > P_+$  and by -1 if  $e_{i,j} < P_-$ 



#### Changes in histogram



Prediction Error Histogram



Stego Error Histogram

7. Calculate Stego Image Block

$$\tilde{b}_{i,j} \leftarrow p_{i,j} + \tilde{e}_{i,j}$$



Message embedding is done!!



### PE histogram scheme data extraction

1. Measure predicted values No change in c<sub>i</sub> and

$$c_i^L$$
,  $c_i^R$ ,  $c_i^T$   $c_i^B$  so  $p_{ij}^T$ . So

$$e_{i,j}^{\sim} \leftarrow \overline{b}_{i,j} - \overline{p}_{i,j}$$

2. Extract message bit s

s=0 if 
$$\tilde{e}_{i,j} = P_+$$
 or  $\tilde{e}_{i,j} = P_-$  and s=1 if  $\tilde{e}_{i,j} = P_+ + 1$  or  $\tilde{e}_{i,j} = P_- + 1$   
3. Calculate prediction errors  $e_{i,j} = \tilde{e}_{i,j} - 1$  if  $\tilde{e}_{i,j} > P_+$ 

$$e_{i,j} = \tilde{e}_{i,j} - 1$$
 if  $\tilde{e}_{i,j} > P_+$   
 $e_{i,j} = \tilde{e}_{i,j} + 1$  if  $\tilde{e}_{i,j} < P_-$   
 $e_{i,j} = \tilde{e}_{i,j}$  otherwise

4. Reconstruction of original image

| $\tilde{\tilde{e}}_{i,2}$ | $\tilde{e}_{i,3}$                   | $\tilde{e}_{i,4}$ |   | f   |                             |   |                  | $c_i^{T}$                   |                                       |     |                             |     | $\tilde{p}_{i,4}$ |     |
|---------------------------|-------------------------------------|-------------------|---|-----|-----------------------------|---|------------------|-----------------------------|---------------------------------------|-----|-----------------------------|-----|-------------------|-----|
| $\tilde{e}_{i,1}$         | ,0                                  | $\tilde{e}_{i,5}$ | = | f   |                             |   | Ď <sub>1,2</sub> | Ď                           | $\tilde{b}_{i,\prime}$                |     |                             |     | $\tilde{p}_{i,5}$ | 100 |
| $\tilde{e}_{i,8}$         | $\tilde{\mathrm{e}}_{\mathrm{i},7}$ | $\tilde{e}_{i,6}$ |   | б   | C <sub>i</sub> <sup>L</sup> | ) | Ď <sub>i,1</sub> | <b>C</b> <sub>i</sub>       | )ĥ <sub>i,5</sub><br>b <sub>i,6</sub> | (   | C <sub>i</sub> <sup>R</sup> |     | $\tilde{p}_{i,6}$ |     |
| Ste                       | go                                  |                   |   | Ste | go                          |   |                  |                             |                                       | ite |                             |     | -                 |     |
|                           | ors                                 |                   |   | blo | ck                          |   |                  | C <sub>i</sub> <sup>B</sup> | ) F                                   | re  | dic                         | tio | 'n                |     |
| and                       |                                     |                   |   |     |                             |   |                  |                             |                                       |     |                             |     | _                 |     |



Stego Cover Extraptivets is done!! Prediction Prediction error