El teorema de los cuatro colores

Introducción a la matemática discreta CM - 254

C. Aznarán Laos

F. Cruz Ordoñez

G. Quiroz Gómez

J. Navío Torres

Facultad de Ciencias

Universidad Nacional de Ingeniería

18 de junio del 2018

- Introducción
 - El problema de los cuatro colores
- 2 Un poco de historia
 - Formulación de la conjetura
 - Primer intento de demostración: Las cadenas de Kempe
 - El error fatal de Kempe por Heawood
 - Algunas definiciones más
 - Algunos ejemplos
 - Idea clave: La reducibilidad de mapas de Birkhoff
 - Demostración de Appel y Haken
 - Método de descarga
 - Método de reducibilidad
 - Demostración de Robertson y col.
- 3 Aplicaciones
 - Juego Hex
- 4 Conclusiones
 - Importancia del teorema para los matemáticos

- Introducción
- Un poco de historia
 - Método de descarga
 - Método de reducibilidad
- **3** Aplicaciones
- 4 Conclusiones

El problema de los cuatro colores

Pregunta

¿Es posible colorear cualquier mapa geográfico plano usando solamente cuatro colores, de modo que dos países con frontera común tengan colores diferentes?

Figura: Mapa político coloreado

Definición (Mapa conexo)

Un mapa es conexo^a y cada una de sus regiones también es conexa.

^ade una pieza

El problema de los cuatro colores

Pregunta

¿Es posible colorear cualquier mapa geográfico plano usando solamente cuatro colores, de modo que dos países con frontera común tengan colores diferentes?

Figura: Mapa político coloreado

Definición (Mapa conexo)

Un mapa es conexo^a y cada una de sus regiones también es conexa.

^ade una pieza

TIMELINE___

Teorema de 4 Colores

By: jose

- Introducción
- Un poco de historia
 - Método de descarga
 - Método de reducibilidad
- **3** Aplicaciones
- 4 Conclusiones

Francis Guthrie (1839-1899)

Abogado y botánico, observa que puede colorear un mapa complejo de los cantones de Inglaterra con 4 colores. En 1852, enuncia el problema a su hermano Frederick (University College London) y a éste a Augustus de Morgan. Francis Guthrie observa que 3 colores no son suficientes, con el diagrama crítico:

Figura: Diagrama Crítico.

Francis Guthrie (1839-1899)

Abogado y botánico, observa que puede colorear un mapa complejo de los cantones de Inglaterra con 4 colores. En 1852, enuncia el problema a su hermano Frederick (University College London) y a éste a Augustus de Morgan. Francis Guthrie observa que 3 colores no son suficientes, con el diagrama crítico:

Figura: Diagrama Crítico.

Formulación de la conjetura

Observación

Dos regiones no pueden tocarse solo en un punto, y así, se pueden ignorar regiones con una única línea frontera.

Figura: Distinciones de frontera de un mapa.

Es un problema topológico: no importa la forma de las regiones, sino como están colocadas unas respecto a otras.

- Introducción
- Un poco de historia
 - Método de descarga
 - Método de reducibilidad
- **3** Aplicaciones
- 4 Conclusiones

- Introducción
- Un poco de historia
 - Método de descarga
 - Método de reducibilidad
- **3** Aplicaciones
- 4 Conclusiones

El error fatal de Kempe por Heawood

Leonhard Euler

Teorema (Fórmula de Euler para mapas)

$$\#caras - \#aristas + \#v\'{e}rtices = 2.$$

Figura: Grafos de cada uno de los cinco sólidos platónicos.

- Introducción
- Un poco de historia
 - Método de descarga
 - Método de reducibilidad
- **3** Aplicaciones
- 4 Conclusiones

Algunas definiciones más I

Definición (Número cromático)

Sea G=(V,E) un grafo y sea k un número natural. Una aplicación $c:V\to\{1,2,\ldots k\}$ se llama coloración del grafo G si $c(x)\neq c(y)$ se cumple para cada rama $\{x,y\}\in E$.

El número cromático de G, denotado por x(G), es el *mínimo valor* de k para el cual existe una coloración $c:V(G)\to 1,2\ldots,k$.

Algunas definiciones más II

Definición (Grafo Dual)

Sea G=(V,E) un grafo planar con un dibujo planar fijo. Denotamos $\mathcal F$ por el conjunto de caras de G. Definimos un grafo, con posibles lazos y ramas múltiples, como $(\mathcal F,E,\epsilon)$, donde ϵ se define como $\epsilon(e)=F_i,F_J]$ siempre que la rama ϵ sea una frontera común de las caras F_i,F_j (también permitimos que $F_i=F_j$, en el caso en que la misma cara este ambos lados de una rama dada).

Este grafo $(\mathcal{F}, E, \epsilon)$ se le llama el dual (geométrico) de G y se denota por G^* .

- Introducción
- Un poco de historia
 - Método de descarga
 - Método de reducibilidad
- **3** Aplicaciones
- 4 Conclusiones

Algunos ejemplos I

Ejemplo (Ejemplo de Grafos Duales)

Para construir una gráfica dual de un grafo plano G se debe colocar un vértice dentro de cada región de G e incluir la región infinita de G. Para cada arista compartida por las 2 regiones, se debe dibujar una arista que conecte a los vértices dentro de estas regiones y para cada arista que se recorre 2 veces en el camino cerrado alrededor de las aristas de una región se dibuja un lazo en el vértice de la región.

Figura: Grafo G.

Figura: Grafo G y su dual G^* .

Algunos ejemplos II

Ejemplo (Otro ejemplo)

Sea G=(V,E) un grafo plano, se llama grafo dual de G y se denota por G^{st} , aquel construido de la siguiente manera:

- I Se elige un punto v_i en cada cara F_i de G. Estos puntos son los vértices de G^* .
- 2 Por cada arista $e \in E$ se traza una línea e^* que atraviesa únicamente la arista e, y se unen los vértices v_i pertenecientes a las caras adjuntas a e. Estas líneas son las aristas de G^* . A continuación se ilustra este procedimiento de construcción con un ejemplo:

Algunos ejemplos III

Figura: Grafo planar G y su grafo dual $G'=G^*$.

- Introducción
- Un poco de historia
 - Método de descarga
 - Método de reducibilidad
- **3** Aplicaciones
- 4 Conclusiones

Idea clave: La reducibilidad de mapas de Birkhoff

Teorema (Birkhoff)

- 1 La conjetura de los cuatro colores puede ser falsa.
- Es posible hallar una colección finita de configuraciones reducibles tal que cualquier mapa planar debe contener uno de ellos (lo que probaría la conjetura de cuatro colores)
- 3 la conjetura de cuatro colores puede ser cierta, pero pueden requerirse métodos más complicados para una prueba

- Introducción
- 2 Un poco de historia
 - Método de descarga
 - Método de reducibilidad
- **3** Aplicaciones
- 4 Conclusiones

- Introducción
- Un poco de historia
 - Método de descarga
 - Método de reducibilidad
- **3** Aplicaciones
- 4 Conclusiones

Fechas importantes

- 1852: Francis Guthrie plantea el problema a su hermano Frederick y éste a Augustus de Morgan.
- 1878: Arthur Cayley publica el enunciado de la conjetura.
- 1879: Sir Alfred Bray Kempe publica su demostración.
- 1913: George Birkhoff introduce la noción de configuración reducible.
- 1960: Se introduce el llamado método de descarga.
- 1969: Avances de Heinrich Heesch en reducibilidad y obtención de conjuntos inevitables de configuraciones.
- 1976: Ken Appel y Wolfgang Haken prueban con ayuda de un ordenador que sus 1.482 configuraciones son reducibles (50 días de cálculo).
- 1996: N. Robertson, D.P. Sanders, P. Seymour y R. Thomas mejoran la demostración con ayuda de ordenador (sólo 633 configuraciones) y automatizan la prueba de la inevitabilidad.

August de Morgan

Difusión del teorema

Augustus de Morgan (1806-1871) estaba muy interesado en la conjetura de los 4 colores y difundió entre sus colegas su importancia. Una de las primeras personas con las que "habló" fue con el matemático y físico irlandés Sir William Rowan Hamilton (1805-1865), que no compartía el interés de De Morgan por el problema. Le escribe una carta el 23 de octubre de 1852.

Respuesta de Hamilton

Cuatro días después, Hamilton le contesta: "I am not likely to attempt your "quaternion" of colours very soon".

Primera demostración

Kempe se interesa por el problema de los 4 colores tras la pregunta de Cayley en la London Mathematical Society.

En junio de 1879 obtiene su solución del teorema de los 4 colores y lo publica en el Amer. Journal of Maths. En 1880, publica unas versiones. simplificadas de su prueba, donde corrige algunas erratas de su prueba original, pero deja intacto el error fatal.

- Introducción
- Un poco de historia
 - Método de descarga
 - Método de reducibilidad
- **3** Aplicaciones
- 4 Conclusiones

Aplicaciones

El juego HEX

- Introducción
- Un poco de historia
 - Método de descarga
 - Método de reducibilidad
- **3** Aplicaciones
- 4 Conclusiones

Referencias I

Libros

- Rudolf Fritsch y Gerda Fritsch. The Four-Color Theorem: History, Topological Foundations, and Idea of Proof. Springer, 1998, págs. 1-41.
- Jiří Matoušek y Jaroslav Nešetřil. Invitation to Discrete Mathematics. Oxford University Press, 2009, págs. 206-214.
- Artículos matemáticos
 - Alfred Bray Kempe. "On the Geographical Problem of the Four Colours". En: *American Journal of Mathematics* 2.3 (1879), págs. 193-200.
 - George D. Birkhoff. "The Reducibility of Maps". En: American Journal of Mathematics 35.2 (1913), págs. 115-128.

Referencias II

- Kenneth Appel y Wolfgang Haken. "The Solution of the Four-Color-Map Problem". En: *Scientific American* 237.4 (1977), págs. 108-121.
- Neil Robertson y col. "The four-colour theorem". En: journal of combinatorial theory, Series B 70.1 (1997), págs. 2-44.
- V. Vilfred Kamalappan. "The four color theorem: a new proof by induction". En: (2017).
- Sitios web
 - Robin Thomas. The Four Color Theorem. 1995. URL: http://people.math.gatech.edu/~thomas/FC/ (visitado 13-11-1995).

Referencias III

Combinatorics y Optimization University of Waterloo. SiGMa 2017 László Miklós Lovász, Extremal graph theory and finite forcibility. 2017. URL:

https://www.youtube.com/watch?v=OfPf4qA1x_k (visitado 16-11-2017).

Combinatorics y Optimization University of Waterloo. SiGMa 2017 Paul Seymour, Rainbow induced paths in graphs with large chromatic and small clique number. 2017. URL:

https://www.youtube.com/watch?v=CnxmwDuYpX8 (visitado 30-11-2017).