Department of Electrical and Computer Engineering The University of Texas at Austin

EE 460N Spring 2014 Aater Suleman, Instructor Stephen Pruett, Jay Patel, Chirag Sakhuja, TAs Exam 2 April 16, 2014

Problem 1 (30 points):
Problem 2 (10 points):
Problem 3 (25 points):
Problem 4 (25 points):
Total (90 points):
You have 75 minutes to take this exam. Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space provided.
Note: Please be sure your name is recorded on each sheet of the exam.
Please sign the following. I have not given nor received any unauthorized help on this exam.
Signature:

GOOD LUCK!

Name:				
Problem 1 (30 points):				
Part a (5 points): What wobble between two bin				mal binade? Recall that the
				rate branch predictor, 100% ons/cycle, and retire up to 6
Part c (5 points): In	. , .	I/O, s	oftware can commu	nicate with the I/O devices
using regular load/store	instructions.			
Part d (5 points): On	an I/O bus where de	vices have different pri	orities, the piece of	logic that decides who is
going to use the I/O but	s next is called			. The inputs to this logic
includes the SACK and			signals from the dev	rices and the outputs are the
		signals to the devices.		

Problem 1 con	tinued
of 1.5GHz, ach a frequency of 2 use in a smartpl	s): Consider two microarchitectures for the LC-3b. One is an OoO processor which runs at a frequency ieves an IPC of 1.33, and consumes 2W of power. The alternate is an InOrder processor which runs at 2.5GHz, achieves and IPC of 0.8, and consumes 1.6W of power. Which one would you recommend for hone? Which microarchitecture will you recommend to a friend for a desktop? Explain your choice for a than 15 words.
Smartphone:	
Desktop:	
•	
taken). As the	ts): An aggie has designed a new branch predictor she calls FTBN (Forward-taken, Backward not-name implies, it predicts all forward branches to be taken and all backward branches to be not taken. e branch prediction accuracy of FTBN when executing the following code?
; The code	counts the number of zeros in an array
; Assume: 1	R1 = 4; R2 = Address of first ARRAY element; R3 = 0 LDR R4, R2, R1
LOOP	BRnp END
END	ADD R1 R1 #_1
END	ADD R1, R1, #-1 BRzp LOOP
ARRAY	HALT .fill Oxfeed
AKKAI	.fill Oxbeef
	<pre>.fill 0xcafe .fill 0xceed</pre>
	fill 0x0
	Branch Preditor Accuracy:

Name:___

Name:	
Problem 2 (10 points):	
Consider an 8-bit, radix-2, IEEE-like floating point specification. We know the highest representable Calculate the excess, number of exponent bits, and number of fraction bits. Show your work.	e value is $\frac{15}{8} \times 2^9$.
Number of fraction bits:	
Number of exponent bits:	
Excess:	
EACCSS!	

Problem 3 (25 points):						
	roblem, yo s follows:	u will work with a by	rte addressable memo	ry with a 16 bit memory bus. The	memory address	
	11 10	9 7	6 4	3	0	
	Channel	Bank	Row	Byte in row		
		That is the total size of		this memory?	Bytes	
Part c (2	points): V	What is the total numbe	er of byte addressable	chips needed for this memory?	Chips	

Part d (20 points): Assume an optimal memory scheduler, which schedules requests to complete them in minimum possible time, is presented with the physical addresses shown on the next page.

Notes:

Name:_

- 1. The memory bus is 16 bits and so are the accesses.
- 2. An older request must be scheduled first unless there is a performance gain otherwise.
- 3. On a row buffer hit, an access takes 1 cycle. On a row buffer miss, an access takes 3 cycles.
- 4. For all banks in memory, assume Row 0 is currently open.
- 5. Assume all banks are free at cycle 0.
- 6. A particular address can be sent to memory in a particular cycle if (1) the corresponding bank is free (notice how B is sent in cycle 0), or (2) the data from the previous request to that bank is being transferred concurrently (Notice D is sent in cycle 1).
- 7. Address0 and Data0 represent the lines to Channel0, and Address1 and Data1 are the lines to Channel1.

Name:

Problem 3 continued

Your job: Complete the timing diagram representing the cycles during which addresses are sent and the corresponding data is received. We have filled requests B and D as examples. You may not need to fill in all the cycles shown.

Oldest	A	0 01 000 1100	Е	0 00 001 1110	
	В	1 00 000 1010	F	0 00 001 0000	
	С	0 00 000 0100	G	1 11 111 1110	
	D	1 00 001 0000	Н	1 10 110 0000	→ Newest

	0	1	2	3	4	5	6	7	8	9
Address0					 	 		 		
Data0						 		 		
Address1	В	D				 				
Data1		[B]			[D]	 		 		

Problem 4 (25 points):

Consider an out-of-order processor with seven registers (R0-R6) with the following properties:

- 1. There is one multiplier and one adder. Both units are pipelined. These units take an unknown number of cycles to execute instructions.
- 2. There is a common Reservation Station (RS) shared between the multiply and the add unit.
- 3. The Allocate Reorder Buffer, Allocate RS and Update RAT takes place in the Decode stage. Thus, the pipeline looks like F-D-E1-E2-...-WB.
- 4. Only one instruction can be fetched, decoded, and retired in one cycle.
- 5. Instructions enter the reservation stations in program order. I.e. I1 is allocated in slot A, I2 is allocated in slot B and so on.
- 6. An instruction's reservation station entry is freed as soon as it begins execution.
- 7. The calculated value is broadcast to the Reservation station, Register Allocation Table and Reorder Buffer at the end of the last stage of execution (data will be available at the beginning of the next cycle).
- 8. There is in-order retirement, but the Reorder Buffer is not shown.

Part a (18 points): Identify the five instructions, I1-I5, to complete the partially filled table. Figure 1 (on next page) shows the Architectural Register File before I1 is fetched (i.e. at the beginning of cycle 0) and after I5 retires (i.e. at the end of cycle 14). Figure 2 shows a snapshot of the Reservation Station and the functional units at the end of cycle 6

	Opcode	DR	SR1	SR2
I1				
I2				R0
I3			R6	
I4				
I5				

Part b (7 points): Circle the number of cycles for the respective functional units.

ADD: 2 3 4

MUL: 2 3 4

PROBLEM IS CONTINUED ON THE NEXT PAGE!

N.T			
Name:			

Problem 4 continued

	Cycle 0
	Value
R0	10
R1	5
R2	3
R3	21
R4	68
R5	26
R6	16

	Cycle 14 Value
	v aruc
R0	8
R1	63
R2	3
R3	21
R4	48
R5	89
R6	16

Figure 1: Architectural Register File

Figure 2: Reservation Station and functional units at the end of cycle 6.

Note: Instruction tagged as B is being executed in the add functional unit and instruction tagged as D is being executed in the multiply functional unit.

Instruction A has finished executing.

Figure 3: LC-3b Instruction Encodings

Table 1: Data path control signals

C'anal Name C'anal Value				
Signal Name	Signal Values			
LD.MAR/1: LD.MDR/1:	NO(0), LOAD(NO(0), LOAD(
LD.IR/1:	NO(0), LOAD(
LD.BEN/1:	NO(0), LOAD(
LD.REG/1:	NO(0), LOAD(
LD.CC/1:	NO(0), LOAD(
LD.PC/1:	NO(0), LOAD(1)		
GatePC/1:	NO(0), YES(1)			
GateMDR/1:	NO(0), YES(1)			
GateALU/1:	NO(0), YES(1)			
GateMARMUX/1:	NO(0), YES(1)			
GateSHF/1:	NO(0), YES(1)			
PCMUX/2:	PC + 2(0)	;select pc+2		
	BUS(1)	;select value from bus		
	ADDER(2)	;select output of address adder		
DRMUX/1:	11.9(0)	;destination IR[11:9]		
	R7(1)	;destination R7		
SR1MUX/1:	11.9(0)	;source IR[11:9]		
	8.6(1)	;source IR[8:6]		
ADDR1MUX/1:	PC(0), BaseR(1)			
ADDR2MUX/2:	ZERO(0)	;select the value zero		
	offset6(1)	;select SEXT[IR[5:0]]		
	PCoffset9(2)	;select SEXT[IR[8:0]]		
	PCoffset11(3)	;select SEXT[IR[10:0]]		
MARMUX/1:	7.0(0)	;select LSHF(ZEXT[IR[7:0]],1)		
	ADDER(1)	;select output of address adder		
ALUK/2:	ADD(0), AND(1), XOR(2), PASSA(3)			
MIO.EN/1:	NO(0), YES(1)			
R.W/1:	RD(0), WR(1)			
DATA.SIZE/1:	BYTE(0), WOR	RD(1)		
LSHF1/1:	NO(0), YES(1)			

Table 2: Microsequencer control signals

Signal Name	Signal Va	lues
J/6: COND/2:	COND ₀ COND ₁ COND ₂ COND ₃	;Unconditional ;Memory Ready ;Branch ;Addressing Mode
IRD/1:	NO, YES	

Figure 4: A state machine for the LC-3b

Figure 5: The LC-3b data path

Figure 6: The microsequencer of the LC-3b base machine

Figure 7: The microsequencer of the LC-3b base machine