Linear Independence

Definition: Linear Combination

Let E be a vector space over a field \mathbb{F} and let $X = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\}$ be a finite, nonempty subset of E. A *linear combination* of X is given by:

$$\vec{x} = \sum_{k=1}^{n} \lambda_k \vec{x}_k$$

where $\lambda_k \in \mathbb{F}$ and $\vec{x} \in E$ (by closure).

Definition: Trivial

Let E be a vector space over a field $\mathbb F$ an let $X=\{\vec x_1,\vec x_2,\ldots,\vec x_n\}$ be a finite, nonempty subset of E. The linear combination $\sum_{k=1}^n 0\vec x_k = \vec 0$ is called the *trivial* linear combination of X.

Otherwise, a linear combination is called *non-trivial*.

Definition: Linearly Independent

Let E be a vector space over a field \mathbb{F} and let $X = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\}$ be a finite, non-empty subset of E. To say that X is a linearly independent set means:

$$\sum_{k=1}^{n} \lambda_k \vec{x}_k = \vec{0} \implies \forall \lambda_k = 0$$

Otherwise, *X* is said to be *linearly dependent*.

Thus, X is linearly independent means only the trivial linear combination results in the zero vector. If a non-trivial linear combination that equals the zero vector exists then X is a linearly dependent set.

This definition can be extended to allow for infinite subsets:

Definition: Linearly Independent (general)

Let E be a vector space over a field \mathbb{F} and let X be a non-empty subset of E. To say that X is a linearly independent set means that any finite subset of X is linearly independent.

Otherwise, X is said to be linearly dependent.

Examples

1).
$$E = \ell^p$$
 and $e_n = (\delta_{kn})$

$$\sum_{k=1}^{\infty} (\delta_{kn})^p = 1 < \infty ext{ and so } e_n \in \ell^p.$$

2).
$$E = C(\Omega)$$
 and $f_n(t) = t^n$

Theorem

Let E be a vector space over a field \mathbb{F} and let X be a linearly independent subset of E. $\vec{0} \notin X$.

Proof

ABC: $\vec{0} \in X$.

Assume $\{\vec{0}, \vec{x}_2, \dots, \vec{x}_n\} \subset X$.

Assume
$$\alpha_1 \vec{0} + \sum_{k=2}^n \alpha_k \vec{x}_k = \vec{0}$$
.

Let $\alpha_1 = 1$ and the remaining $\alpha_k = 0$.

Assume
$$1\vec{0} + \sum_{k=2}^{n} 0\vec{x}_k = \vec{0}$$
.

So a non-trivial solution exists and thus X is a linearly dependent set.

CONTRADICTION!

$$\vec{0} \notin X$$
.

Theorem

Let E be a vector space over a field $\mathbb F$ and let $X=\{\vec x_1,\ldots,\vec x_n\}$ be a non-empty subset of E. Define a new set $X'=\{\lambda_1\vec x_1,\ldots,\lambda_n\vec x_n\}$ for some $\lambda_k\in\mathbb F$ and $\lambda_k\neq 0$:

X is linearly independent iff X' is linearly independent.

Proof

 \implies Assume X is a linearly independent set.

$$\sum_{k=0}^{n} \alpha_k \vec{x}_k = \vec{0} \implies \alpha_k = 0$$

Assume
$$\sum_{k=0}^{n} \beta(\lambda_k \vec{x}_k) = \vec{0}$$
.

$$\sum_{k=0}^{n} (\beta \lambda_k) \vec{x}_k = \vec{0}$$

But X is linearly independent, so $\beta_k \lambda_k = 0$. By assumption, $\lambda_k \neq 0$, and thus $\beta_k = 0$.

Therefore X' is a linearly independent set.

 $\begin{tabular}{ll} \longleftarrow & Assume X' is a linearly independent set. \end{tabular}$

$$\sum_{k=0}^{n} \alpha_k(\lambda_k \vec{x}_k) = \vec{0} \implies \alpha_k = 0$$

Assume
$$\sum_{k=0}^{n} \beta_k \vec{x}_k = \vec{0}$$
.

Since
$$\lambda_k \neq 0$$
 (by assumption), $\beta_k = \frac{\beta_k}{\lambda_k} \lambda_k$.

$$\sum_{k=0}^{n} \left(\frac{\beta_k}{\lambda_k} \lambda_k \right) \vec{x}_k = \vec{0}$$

$$\sum_{k=0}^{n} \frac{\beta_k}{\lambda_k} (\lambda_k \vec{x}_k) = \vec{0}$$

But
$$X'$$
 is linearly independent, so $\frac{\beta_k}{\lambda_k}=0.$

Therefore $\beta_k=0$ and thus \boldsymbol{X} is a linearly independent set.