实变函数

乐绎华

学号: 23363017 2025年3月8日

第1次作业(截止时间: 3月12日23:59)

1. 设 $\{f_k(x)\}$ 是定义在 $E \subset \mathbb{R}^n$ 上的实值函数列. 试将下列的点集 A 用集族 $\mathscr A$ 中的点集经过至多三重的可列并或可列交运算后表示出来.

```
(1) \ A = \left\{ x \in E : \sup_{k} f_{k}(x) \leqslant a \right\}, \quad \mathscr{A} = \left\{ \left\{ x \in E : f_{k}(x) \leqslant t \right\} : t \in \mathbb{R}, k \geqslant 1 \right\};
(2) \ A = \left\{ x \in E : \inf_{k} f_{k}(x) \geqslant a \right\}, \quad \mathscr{A} = \left\{ \left\{ x \in E : f_{k}(x) \geqslant t \right\} : t \in \mathbb{R}, k \geqslant 1 \right\};
(3) \ A = \left\{ x \in E : \sup_{k} f_{k}(x) > a \right\}, \quad \mathscr{A} = \left\{ \left\{ x \in E : f_{k}(x) > t \right\} : t \in \mathbb{R}, k \geqslant 1 \right\};
(4) \ A = \left\{ x \in E : \inf_{k} f_{k}(x) < a \right\}, \quad \mathscr{A} = \left\{ \left\{ x \in E : f_{k}(x) < t \right\} : t \in \mathbb{R}, k \geqslant 1 \right\};
(5) \ A = \left\{ x \in E : \sup_{k} f_{k}(x) \geqslant a \right\}, \quad \mathscr{A} = \left\{ \left\{ x \in E : f_{k}(x) > t \right\} : t \in \mathbb{R}, k \geqslant 1 \right\};
(6) \ A = \left\{ x \in E : \lim_{k \to \infty} f_{k}(x) \geqslant a \right\}, \quad \mathscr{A} = \left\{ \left\{ x \in E : f_{k}(x) > t \right\} : t \in \mathbb{R}, k \geqslant 1 \right\};
(7) \ A = \left\{ x \in E : \lim_{k \to \infty} f_{k}(x) \geqslant a \right\}, \quad \mathscr{A} = \left\{ \left\{ x \in E : f_{k}(x) \geqslant t \right\} : t \in \mathbb{R}, k \geqslant 1 \right\};
(8) \ A = \left\{ x \in E : \lim_{k \to \infty} f_{k}(x) \geqslant a \right\}, \quad \mathscr{A} = \left\{ \left\{ x \in E : f_{k}(x) \geqslant t \right\} : t \in \mathbb{R}, k \geqslant 1 \right\};
(9) \ A = \left\{ x \in E : \lim_{k \to \infty} f_{k}(x) \geqslant a \right\}, \quad \mathscr{A} = \left\{ \left\{ x \in E : f_{k}(x) \geqslant t \right\} : t \in \mathbb{R}, k \geqslant 1 \right\};
(10) \ A = \left\{ x \in E : \lim_{k \to \infty} f_{k}(x) \geqslant a \right\}, \quad \mathscr{A} = \left\{ \left\{ x \in E : f_{k}(x) \geqslant t \right\} : t \in \mathbb{R}, k \geqslant 1 \right\};
(11) \ A = \left\{ x \in E : \lim_{k \to \infty} f_{k}(x) = +\infty \right\}, \quad \mathscr{A} = \left\{ \left\{ x \in E : f_{k}(x) \geqslant t \right\} : t \in \mathbb{R}, k \geqslant 1 \right\};
(12) \ A = \left\{ x \in E : \lim_{k \to \infty} f_{k}(x) = +\infty \right\}, \quad \mathscr{A} = \left\{ \left\{ x \in E : f_{k}(x) \geqslant t \right\} : t \in \mathbb{R}, k \geqslant 1 \right\};
```

- 2. 教材第一章习题第6题. 原题有个小错误, 请自行识别并更正.
- 3. 教材第一章习题第 9 题. 原题中的圆指的是圆周. 再分别考察 A_n 为开圆盘和闭圆盘的情形下的上下极限.
- 4. 教材第一章习题第 13 题
- 5. 教材第一章习题第 14 题.
- 6. 教材第一章习题第 15 题. 若正确, 予以证明; 若不正确, 举出反例.
- 7. 教材第一章习题第 21 题, 并增加
 - (4) 对任意 $A \subset B \subset X$, 有 $f(B \setminus A) = f(B) \setminus f(A)$.
- 8. 教材第一章习题第 26 题. 原题有误, $C \supset A$, $B \supset D$ 应为 $A \supset B$, $C \supset D$.

习题 1. 设 $\{f_k(x)\}$ 是定义在 $E \subset \mathbb{R}^n$ 上的实值函数列. 试将下列的点集 A 用集族 $\mathscr A$ 中的点集经过至多三重的可列并或可列交运算后表示出来.

- (1) $A = \{x \in E : \sup_k f_k(x) \le a\}, \quad \mathscr{A} = \{\{x \in E : f_k(x) \le t\} : t \in \mathbb{R}, k \ge 1\}$
- (2) $A = \{x \in E : \inf_k f_k(x) \ge a\}, \quad \mathscr{A} = \{\{x \in E : f_k(x) \ge t\} : t \in \mathbb{R}, k \ge 1\}$
- (3) $A = \{x \in E : \sup_{k} f_k(x) > a\}, \quad \mathscr{A} = \{\{x \in E : f_k(x) > t\} : t \in \mathbb{R}, k \ge 1\}$

(4)
$$A = \{x \in E : \inf_k f_k(x) < a\}, \quad \mathscr{A} = \{\{x \in E : f_k(x) < t\} : t \in \mathbb{R}, k \ge 1\}$$

(5)
$$A = \{x \in E : \sup_k f_k(x) \ge a\}, \quad \mathscr{A} = \{\{x \in E : f_k(x) > t\} : t \in \mathbb{R}, k \ge 1\}$$

(6)
$$A = \{x \in E : \sup_{k} f_k(x) \ge a\}, \quad \mathscr{A} = \{\{x \in E : f_k(x) \ge t\} : t \in \mathbb{R}, k \ge 1\}$$

(7)
$$A = \left\{ x \in E : \overline{\lim}_{k \to \infty} f_k(x) \geqslant a \right\}, \quad \mathscr{A} = \left\{ \left\{ x \in E : f_k(x) > t \right\} : t \in \mathbb{R}, k \geqslant 1 \right\}$$

(8)
$$A = \left\{ x \in E : \overline{\lim}_{k \to \infty} f_k(x) \geqslant a \right\}, \quad \mathscr{A} = \left\{ \left\{ x \in E : f_k(x) \geqslant t \right\} : t \in \mathbb{R}, k \geqslant 1 \right\}$$

(9)
$$A = \{x \in E : \underline{\lim}_{k \to \infty} f_k(x) \geqslant a\}, \quad \mathscr{A} = \{\{x \in E : f_k(x) \geqslant t\} : t \in \mathbb{R}, k \geqslant 1\}$$

(10)
$$A = \{x \in E : \underline{\lim}_{k \to \infty} f_k(x) \ge a\}, \quad \mathscr{A} = \{\{x \in E : f_k(x) > t\} : t \in \mathbb{R}, k \ge 1\}$$

(11)
$$A = \{x \in E : \sup_k f_k(x) = +\infty\}, \quad \mathscr{A} = \{\{x \in E : f_k(x) \ge t\} : t \in \mathbb{R}, k \ge 1\}$$

(12)
$$A = \{x \in E : \lim_{k \to \infty} f_k(x) = +\infty\}, \quad \mathscr{A} = \{\{x \in E : f_k(x) \ge t\} : t \in \mathbb{R}, k \ge 1\}$$

解答. (1)

$$A = \{x \in E : \sup_{k} f_k(x) \le a\} = \bigcap_{k=1}^{\infty} \{x \in E : f_k(x) \le a\}$$

(2)
$$A = \{x \in E : \inf_{k} f_k(x) \ge a\} = \bigcup_{k=1}^{\infty} \left\{ x \in E : \int_{k} f_k(x) \ge a \right\}$$

(3) 取(1)两边的补集

$$A = \{x \in E : \sup_{k} f_k(x) > a\} = A_1^c = \left(\bigcap_{k=1}^{\infty} \{x \in E : f_k(x) \le a\}\right)^c = \bigcup_{k=1}^{\infty} \{x \in E : f_k(x) > a\}$$

(4) 取(2)两边的补集

$$A = \{x \in E : \inf_{k} f_{k}(x) < a\} = A_{2}^{c} = \left(\bigcup_{k=1}^{\infty} \{x \in E : f_{k}(x) < a\}\right)^{c} = \bigcup_{k=1}^{\infty} \{x \in E : f_{k}(x) < a\}$$

(5) 对于任意 $x \in A$, $\sup_k f_k(x) \ge a$ 意味着对于任意 $\epsilon > 0$, 存在 k 使得 $f_k(x) > a - \epsilon$ 。 用集合语言表示,

$$A = \left\{ x \in E : \sup_{k} f_k(x) \ge a \right\} = \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} \left\{ x \in E : f_k(x) > a - \frac{1}{n} \right\}$$

(6) 对于任意 $x\in A$, $\sup_k f_k(x)\geq a$ 意味着对于任意 $\epsilon>0$, 存在 k 使得 $f_k(x)\geq a-\epsilon$ 。用集合语言表示,

$$A = \left\{ x \in E : \sup_{k} f_k(x) \ge a \right\} = \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} \left\{ x \in E : f_k(x) \ge a - \frac{1}{n} \right\}$$

$$(7)$$
 对于任意 $x \in A$,

$$\lim_{k \to \infty} \sup f_k(x) \ge a \iff \lim_{n \to \infty} \sup_{k > n} f_k(x) \ge a \iff \lim_{n \to \infty} g_n(x) \ge a$$

其中 $g_n := \sup_{k \ge n} f_k$ 且

$$\left\{x \in E : \lim_{n \to \infty} g_n(x) \ge a\right\} = \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \left\{x \in E : g_n(x) > a - \frac{1}{m}\right\}$$

$$\left\{x \in E : g_n(x) > a - \frac{1}{m}\right\} = \left\{x \in E : \sup_{k \ge n} f_k(x) > a - \frac{1}{m}\right\} = \bigcup_{k=-n}^{\infty} \left\{x \in E : \left| f_k(x) > a - \frac{1}{m}\right| \right\}$$

由于 $\bigcup_{k=n}^{\infty} \left\{ x \in E : f_k(x) > a - \frac{1}{m} \right\}$ 包含在 $\bigcup_{k=n-1}^{\infty} \left\{ x \in E : f_k(x) > a - \frac{1}{m} \right\}$ 中 我们有

$$\bigcup_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \left\{ x \in E : f_k(x) > a - \frac{1}{m} \right\} = \bigcup_{n=1}^{\infty} \left\{ x \in E : f_k(x) > a - \frac{1}{m} \right\}$$

因此

$$\left\{x \in E : \limsup_{k \to \infty} f_k(x) \ge a\right\} = \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \left\{x \in E : f_k(x) > a - \frac{1}{m}\right\}$$

(8) 类似于(7)

$$\left\{x \in E : \limsup_{k \to \infty} f_k(x) \ge a\right\} = \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \left\{x \in E : f_k(x) \ge a - \frac{1}{m}\right\}$$

(9)

$$\begin{aligned} \{x \in E : \liminf_{k \to \infty} f_k(x) \ge a\} &= \{x \in E : \liminf_{n \to \infty} f_k(x) \ge a\} \\ &=: \{x \in E : \lim_{n \to \infty} g_n(x) \ge a\} \\ &= \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \left\{ x \in E : \inf_{k \ge n} f_k(x) \ge a - \frac{1}{m} \right\} \\ &= \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{n=1}^{\infty} \left\{ x \in E : f_k(x) \ge a - \frac{1}{m} \right\} \end{aligned}$$

(10) 类似于(9)

$$\{x \in R : \liminf_{k \to \infty} f_k(x) \ge a\} = \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \left\{ x \in E : f_k(x) > a - \frac{1}{m} \right\}$$

$$\{x \in R : \sup_{k} f_{k}(x) = +\infty\} = \bigcap_{m=1}^{\infty} \{x \in R : \sup_{k} f_{k}(x) \ge m\}$$

$$\stackrel{(6)}{=} \bigcap_{m=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} \{x \in E : f(x) \ge m - \frac{1}{n}\}$$

$$= \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \{x \in E : f(x) \ge m\}$$

$$\{x \in R : \lim_{k \to \infty} f_{k}(x) = \infty\} = \bigcap_{k=1}^{\infty} \{x \in E : f_{k}(x) \ge m\}$$

$$(12)$$

6. 若 $\liminf_n (x) = f(x)(x \in E)$, 对于任意实数 c 用简写 E(f > c) 和 $E(f \ge c)$ 表示 $|x \in E|$

36 第一章 集合与点集

$$|f>c|$$
 和 $|x\in E|$ $|f\geqslant c|$,并令 $E_{a,k}=E\Big(f_a>c-\frac{1}{k}\Big)$, 试证 $\lim_{n\to\infty}E_{a,k}$ 存在,并且
$$E(f\geqslant c) =\bigcap_{n\to\infty}\lim_{n\to\infty}E_{a,k}.$$

习题 2. Find an error of the question above.

Errata: If $\lim_{n\to\infty} f_n(x) = f(x)$ for $x \in E$, $E_{n,k} := \{x \in E : f_n(x) > c - \frac{1}{k}\}$, show that for each fixed k, $\lim_{n\to\infty} E_{n,k}$ exists and

$$\{x \in E : f(x) \ge c\} = \bigcap_{k=1}^{\infty} \lim_{n \to \infty} E_{n,k}$$

证明. Fix k then $\lim_{n\to\infty} E_{n,k}$ exists iff $\limsup_{n\to\infty} E_{n,k}$ and $\liminf_{n\to\infty} E_{n,k}$ exists and equals.

$$\limsup_{n \to \infty} E_{n,k} = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} E_{n,k} = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} \left\{ x \in E : f_n(x) > c - \frac{1}{k} \right\} = \left\{ x \in E : \limsup_{n \to \infty} f_n(x) > c - \frac{1}{k} \right\}$$

$$\liminf_{n \to \infty} E_{n,k} = \left\{ x \in E : \liminf_{n \to \infty} f_n(x) > c - \frac{1}{k} \right\}$$

Since $\lim_{n\to\infty} f_n(x) = f(x)$ exists, $\lim\sup_{n\to\infty} f_n(x) = \lim\inf_{n\to\infty} f_n(x)$ thus $\lim\sup_{n\to\infty} E_{n,k} = \lim\inf_{n\to\infty} E_{n,k}$. Hence $\lim_{n\to\infty} E_{n,k}$ exists and equals to

实变函数

$$\left\{x \in E : f(x) > c - \frac{1}{k}\right\}$$
. Obviously, $\left\{x \in E : f(x) \ge c\right\} = \bigcap_{k=1}^{\infty} \lim_{n \to \infty} E_{n,k}$.

习题 3. 9. 设 A_n 是平面上以 $\left(\frac{(-1)^n}{n},0\right)$ 为心半径为 1 的圆,求 $\lim_{n\to\infty}A_n$ 和 $\overline{\lim}_{n\to\infty}A_n$.

解答. (1)

$$A_n = \left\{ (x, y) : \left(x - \frac{(-1)^n}{n} \right)^2 + y^2 = 1 \right\}$$

Then

$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} (\emptyset) = \emptyset$$

 $\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \{(x, y) \in \mathbb{R}^2 : \exists infinite \ many \ k_j \ such \ that \ (x, y) \in A_{k_j}\}$

If $(x,y) \in A_m \cap A_n$, $m \neq n$ then $(x,y) \notin A_k$ for $k \neq m, k \neq n$. Therefore $\limsup_{n \to \infty} A_n = \emptyset$.

(2)

$$A_n = \left\{ (x, y) : \left(x - \frac{(-1)^n}{n} \right)^2 + y^2 \le 1 \right\}$$

Then

$$\liminf_{n \to \infty} A_n = \{(x, y) \in \mathbb{R}^2 : \exists K, s.t. \ (x, y) \in A_k \ for \ all \ k > K\}$$

 $\limsup_{n \to \infty} A_n = \{(x, y) \in \mathbb{R}^2 : \exists \text{ infinite many } k_j \text{ such that } (x, y) \in A_{k_j}\}$

Claim that

$$\liminf_{n \to \infty} A_n = \{(x, y) : x^2 + y^2 < 1\}$$
$$\limsup_{n \to \infty} A_n = \{(x, y) : x^2 + y^2 \le 1\} \setminus \{(0, 1), (0, -1)\}$$

(3)

$$A_n = \left\{ (x, y) : \left(x - \frac{(-1)^n}{n} \right)^2 + y^2 < 1 \right\}$$

Then

$$\lim_{n \to \infty} \inf A_n = \{(x, y) \in \mathbb{R}^2 : \exists K, s.t. \ x \in A_k \ for \ all \ k > K\}$$

 $\limsup_{n \to \infty} A_n = \{(x, y) \in \mathbb{R}^2 : \exists \text{ infinite many } k_j \text{ such that } (x, y) \in A_{k_j}\}$

Claim that

$$\liminf_{n \to \infty} A_n = \{(x, y) : x^2 + y^2 < 1\}$$
$$\limsup_{n \to \infty} A_n = \{(x, y) : x^2 + y^2 \le 1\} \setminus \{(0, 1), (0, -1)\}$$

习题 4. 13. 设 f,g 是定义在集 E 上的实函数,证明:

$$\{x \mid x \in E, f(x) > g(x)\} = \bigcup_{k=1}^{\infty} (E(f > r_k) \cap E(g < r_k)),$$

其中 $\{r_k\}$ 是有理数 \mathbf{Q} 的一个排序.

解答. Denote that

$$A = \{x \in E : f(x) > g(x)\}, \quad B = \bigcup_{k=1}^{\infty} (\{x \in E : f(x) > r_k\} \cap \{x \in E : g(x) < r_k\})$$

For $x \in A$, we have f(x) > g(x). Since \mathbb{Q} is dense in \mathbb{R} , there exists $r_k \in (g(x), f(x))$ for some k, thus $x \in \{x \in E : f(x) > r_k\} \cap \{x \in E : g(x) < r_k\} \subset B$. Therefore $A \subset B$.

For $x \in B$, we have $f(x) > r_k$, $g(x) < r_k$ for some k then f(x) < g(x), i.e. $x \in \{x \in E : f(x) > g(x)\}$. Therefore $A \supset B$. Hence A = B.

习题 5. 14. 设函数 $\{f_n\}$ 在点集 E 上处处收敛于 f ,并且 $|f(x)|<\infty(x\in E)$. 证明: 对任意的 $\varepsilon>0$,集列极限 $\lim_{n\to\infty}E\left(|f_n-f|>\varepsilon\right)$ 存在且为空集.

证明. For any $\epsilon > 0$, denote that

$$A_n = \{ x \in E : |f_n(x) - f(x)| > \epsilon \}$$

Since $f_n \to f$ on E pointwisely and $|f(x)| < \infty, \forall x \in E$, we know that for any fixed $x \in E$, we have $\lim_{n \to \infty} f_n(x) = f(x)$ i.e. there exists N > 0 such that $|f_n(x) - f(x)| < \epsilon$ for all n > N.

$$\liminf_{n \to \infty} A_n = \{ x \in E : \exists K, \text{s.t. } x \in A_k \text{ for all } k > K \} = \emptyset$$

 $\limsup_{n\to\infty}A_n=\{x\in E:\exists \text{ infinite many } k_j \text{ such that } x\in A_{k_j}\}=\varnothing$

Therefore $\lim_{n\to\infty} A_n$ exists and equals to \varnothing .

习题 6. 15. 设 $A_1, A_2, \dots, A_k, \dots$ 是函数 f 定义域的子集, 试问等式

$$f\left(\bigcup_{k=1}^{\infty}A_{k}\right)=\bigcup_{k=1}^{\infty}f\left(A_{k}\right)\text{ for }\left(\bigcap_{k=1}^{\infty}A_{k}\right)=\bigcap_{k=1}^{\infty}f\left(A_{k}\right)$$

是否正确?

$$f\left(\bigcup_{k=1}^{\infty} A_k\right) = \bigcup_{k=1}^{\infty} f(A_k) \qquad f\left(\bigcap_{k=1}^{\infty} A_k\right) \subset \bigcap_{k=1}^{\infty} f(A_k)$$

Since $A_k \subset \bigcup_{k=1}^{\infty} A_k$ for any k, $f(A_k) \subset f(\bigcup_{k=1}^{\infty} A_k)$. Therefore $\bigcup_{k=1}^{\infty} f(A_k) \subset f(\bigcup_{k=1}^{\infty} A_k)$.

If $x \in f(\bigcup_{k=1}^{\infty} A_k) = \{f(y) : y \in \bigcup_{k=1}^{\infty} A_k\}$, then there exists $y \in \bigcup_{k=1}^{\infty} A_k$ such that f(y) = x. By the definition of $\bigcup_{k=1}^{\infty}$, we have $y \in A_n$ for some $n \in \mathbb{N}$ thus $x \in f(A_n) \subset \bigcup_{k=1}^{\infty} f(A_k)$. Therefore $f(\bigcup_{k=1}^{\infty} A_k) \subset \bigcup_{k=1}^{\infty} f(A_k)$. Hence $f(\bigcup_{k=1}^{\infty} A_k) = \bigcup_{k=1}^{\infty} f(A_k)$.

For $x \in f(\bigcap_{k=1}^{\infty} A_k)$, there exists $y \in \bigcap_{k=1}^{\infty} A_k$ such that x = f(y). For any $n \in \mathbb{N}$, $y \in \bigcap_{k=1}^{\infty} A_k \subset A_n$ then $x \in f(A_n)$. Therefore $x \in \bigcap_{k=1}^{\infty} f(A_k)$, i.e. $f(\bigcap_{k=1}^{\infty} f(A_k)) \subset \bigcap_{k=1}^{\infty} f(A_k)$.

习题 7. 21. 设 $f: X \to Y$, 则下面的命题互相等价:

- (1) f 是 X 到 f(X) 的一一映射;
- (2) 对任意的 $A,B \subset X$ 有 $f(A \cap B) = f(A) \cap f(B)$;
- (3) 对满足 $A \cap B = \emptyset$ 的 $A, B \subset X$ 有 $f(A) \cap f(B) = \emptyset$.
- (4) 对任意 $A \subset B \subset X$ 有 $f(B \setminus A) = f(B) \setminus f(A)$.
- (1) means f is one-one. Since $f: X \to f(X)$ is defined to be onto, then (1) means if $x \neq y$ for $x, y \in X$ then $f(x) \neq f(y)$. In other words, if f(x) = f(y) then x = y.
 - i 手男. (1) \Rightarrow (2) for any $x \in A \cap B$, we have $x \in A$ and $x \in B$ then $f(x) \in f(A)$ and $f(x) \in f(B)$ thus $x \in f(A) \cap f(B)$. Therefore $f(A \cap B) \subset f(A) \cap f(B)$. It suffices to show that $f(A) \cap f(B) \subset f(A \cap B)$. We argue by contradiction. If there is an element $y \in f(A) \cap f(B)$ not containd in $f(A \cap B)$, then there exists $a \in A$ and $b \in B$ such that f(a) = y, f(b) = y. Since f is one-one, we have a = b. Therefore $a = b \in A \cap B$, $y = f(a) \in f(A \cap B)$, which is a contradiction. Hence $f(A) \cap f(B) \subset f(A \cap B) \Rightarrow f(A) \cap f(B) = f(A \cap B)$.
 - $(2) \Rightarrow (3)$ Trivial.
 - (3) \Rightarrow (4) For fixed A and B, $A \subset B \subset X$, subtract f(A) from f(B). Since $A \cap (B \setminus A) = \emptyset$, then we have $f(A) \cap f(B \setminus A) = \emptyset$. But $f(B) = f(A \cup (B \setminus A))$, so $f(B) = f(A) \cup f(B \setminus A)$ i.e. $f(B) \setminus f(A) = f(B \setminus A)$.

(4) \Rightarrow (1) Pick $x_1, x_2 \in X$, $x_1 \neq x_2$, and let $A = \{x_1\}, B = \{x_1, x_2\}$, then $f(B \setminus A) = f(B) \setminus f(A)$ means $f(x_2) = f(\{x_1, x_2\} \setminus \{x_1\}) = f(\{x_1, x_2\}) \setminus f(\{x_1\})$, which implies $f(\{x_2\}) \cap f(\{x_1\}) = \emptyset$ i.e. $f(x_1) \neq f(x_2)$.

26. 论断"若 $A \sim C, B \sim D,$ 并且 $A \supset C, B \supset D,$ 则 $(A \backslash B) \sim (C \backslash D)$ "是否正确?请予证明或举出反例。

习题 8. Errata: 原题有误, $C \supset A, B \supset D$ 应改为 $A \supset B, C \supset D$.

解答. $(A \setminus B) \sim (C \setminus D)$ does not always hold. A counterexample is as follows. Let A, B, C, D be groups, B is a subgroup of A and D is a subgroup of C. The relation \sim on groups is defined to be group isomorphism. Then we have $A \cong C$ and $B \cong D$. Since \setminus is set minus, $A \setminus B$ or $C \setminus D$ is not a group! (without the identity) Therefore $(A \setminus B) \not\sim (C \setminus D)$.