24.6 Affine Independence and Affine Frames

Corresponding to the notion of linear independence in vector spaces, we have the notion of affine independence. Given a family $(a_i)_{i\in I}$ of points in an affine space E, we will reduce the notion of (affine) independence of these points to the (linear) independence of the families $(\overline{a_ia_j})_{j\in (I-\{i\})}$ of vectors obtained by choosing any a_i as an origin. First, the following proposition shows that it is sufficient to consider only one of these families.

Proposition 24.4. Given an affine space $\langle E, \overrightarrow{E}, + \rangle$, let $(a_i)_{i \in I}$ be a family of points in E. If the family $(\overrightarrow{a_ia_j})_{j \in (I-\{i\})}$ is linearly independent for some $i \in I$, then $(\overrightarrow{a_ia_j})_{j \in (I-\{i\})}$ is linearly independent for every $i \in I$.

Proof. Assume that the family $(\overline{a_ia_j})_{j\in(I-\{i\})}$ is linearly independent for some specific $i\in I$. Let $k\in I$ with $k\neq i$, and assume that there are some scalars $(\lambda_i)_{i\in(I-\{k\})}$ such that

$$\sum_{j \in (I - \{k\})} \lambda_j \overrightarrow{a_k a_j} = 0.$$

Since

$$\overrightarrow{a_k a_j} = \overrightarrow{a_k a_i} + \overrightarrow{a_i a_j},$$

we have

$$\begin{split} \sum_{j \in (I - \{k\})} \lambda_j \overrightarrow{a_k} \overrightarrow{a_j} &= \sum_{j \in (I - \{k\})} \lambda_j \overrightarrow{a_k} \overrightarrow{a_i} + \sum_{j \in (I - \{k\})} \lambda_j \overrightarrow{a_i} \overrightarrow{a_j}, \\ &= \sum_{j \in (I - \{k\})} \lambda_j \overrightarrow{a_k} \overrightarrow{a_i} + \sum_{j \in (I - \{i,k\})} \lambda_j \overrightarrow{a_i} \overrightarrow{a_j}, \\ &= \sum_{j \in (I - \{i,k\})} \lambda_j \overrightarrow{a_i} \overrightarrow{a_j} - \left(\sum_{j \in (I - \{k\})} \lambda_j\right) \overrightarrow{a_i} \overrightarrow{a_k}, \end{split}$$

and thus

$$\sum_{j \in (I - \{i, k\})} \lambda_j \overrightarrow{a_i a_j} - \bigg(\sum_{j \in (I - \{k\})} \lambda_j \bigg) \overrightarrow{a_i a_k} = 0.$$

Since the family $(\overrightarrow{a_ia_j})_{j\in(I-\{i\})}$ is linearly independent, we must have $\lambda_j=0$ for all $j\in(I-\{i,k\})$ and $\sum_{j\in(I-\{k\})}\lambda_j=0$, which implies that $\lambda_j=0$ for all $j\in(I-\{k\})$.

We define affine independence as follows.

Definition 24.4. Given an affine space $\langle E, \overrightarrow{E}, + \rangle$, a family $(a_i)_{i \in I}$ of points in E is affinely independent if the family $(\overrightarrow{a_ia_i})_{j \in (I-\{i\})}$ is linearly independent for some $i \in I$.