Statistika za jezikoslovno istraživanje

Damir Ćavar 17.3.2010.

© 2010 by Damir Ćavar

Primjeri u R-u

- dodavanje rezultata
- aritmetička sredina
- srednja vrijednost
- varianca
- učitavanje tabela iz Excela ili OpenOffice Calca
- sortiranje

Primjer:

- -"A House of Pomegranates" od Oscara Wilde
- -Broj pojavnica: 33570
- -Broj različitih riječi: 4066
- –Dužina riječi
- -Frekvencija riječi

Dužina i frekvencija riječi

 Simetrična distribucija: aritmetična sredina, medijan i mod su isti

Teorija vjerojatnosti

 Vjerojatnost jednog specifičnog događaja možemo odrediti kao odnos između broja pogodnih ishoda i cjelokupnog broja mogućih ishoda.

$$P(A) = \frac{\text{broj pogodnih ishoda}}{\text{broj svih mogućih ishoda}}$$

Pristup: frekvencijski

Teorija vjerojatnosti

Značajne činjenice:

- –Ako dvije varijable nisu povezane:
 - P(XY) = P(X) P(Y)
- –Ako jesu povezane:
 - $P(XY) \neq P(X) P(Y)$

Primjer: Kolokacije

- Riječi u kontekstu
 - -distribucija
 - -idijomi
 - -kolokacije
 - statističke osobine
 - funkcionalne riječi
- Kako testirati da li je niz riječi kolokacija?
 - -Statistički, signifikantnost

- Osnovni statistički rezultati
- Strategija:
 - -Formuliramo hipotezu što znanstveno očekujemo: Istraživačka hipoteza ili alternativna hipoteza (Ha)
 - Što očekujemo i testiramo

Strategija:

- -Formuliramo hipotezu koja tvrdi suprotno od naše znanstvene hipoteze: Nulta hipoteza (H0)
 - Testiramo samo nultu hipotezu
- Ako možemo odbiti ili falsificirati nultu hipotezu, imamo podršku za istraživačku hipotezu.
- Hipotezu obično ne možemo "dokazati", samo možemo naći potporu za neku hipotezu.

- Alternativna hipoteza:
 - –Na Sveučilištu u Zadru ocjene studenata lingvistike iz područja statistike razlikuju se od ocjena studenata psihologije.
 - Ha: µ1 ≠ µ2
 - Ha: $\mu 1 \mu 2 \neq 0$

- Nulta hipoteza:
 - –Na Sveučilištu u Zadru ocjene studenata lingvistike iz područja statistike ne razlikuju se od ocjena studenata psihologije.
 - H0: μ 1 = μ 2
 - H0: μ 1 μ 2 = 0

- Još specifičnija Alternativna hipoteza:
 - Na Sveučilištu u Zadru studenti lingvistike imaju bolje ocjene iz statistike od studenata psihologije.
 - Ha: μ 1 > μ 2
 - Ha: $\mu 1 \mu 2 > 0$

- Još specifičnija Nulta hipoteza
 - Na Sveučilištu u Zadru studenti lingvistike imaju lošije ocjene iz statistike od studenata psihologije.
 - H0: µ1 ≤ µ2
 - H0: μ 1 μ 2 \leq 0

- Ako imamo distribuciju nekog poznatog područja
 - -npr. Normalnu distribuciju
- Izračunamo vjerojatnost da su se rezultati dobili slučajno.
- Ako je ta vjerojatnost niska, alternativna hipoteza (da nisu rezultat slučajnosti) ima potporu.

- Dvije mogućnosti:
 - -Odbijamo Nultu hipotezu
 - -Prihvaćamo Nultu hipotezu

 Favorizirane aktivnosti iz jedne populacije od 125 studenata:

	nogomet	ples	računala	ukupno
muški	30	29	16	75
ženski	12	33	5	50
ukupno	42	62	21	125

- Je li izbor favorizirane aktivnosti slučajan i neovisan o spolu ispitanika?
 - –Ako te dvije varijable spol i aktivnost ne ovise jedna od druge, možemo predvidjeti koliko ispitanika možemo očekivati u svakoj kombinaciji.
 - Ako se očekivanje značajno razlikuje od rezultata, te dvije varijable vjerojatno ovise jedna od druge.

- Alternativna hipoteza:
 - U ovom eksperimentu te varijable ovise jedna od druge.
- Nulta hipoteza:
 - -Te varijable ne ovise jedna od druge.

Vjerojatnost da je slučajno izabrani ispitanik:

-muško: 75/125 = .6

-žensko: 50/125 = .4

 Vjerojatnost da slučajno izabrani ispitanik preferira:

-nogomet: 42/125 = .336

-ples: 62/125 = .496

-računala: 21/125 = .168

 Ne ovisne varijable: umnožak pojedinačne vjerojatnosti

$$-P(XY) = P(X) P(Y)$$

 Očekivana vjerojatnost da je jedan slučajno izabrani ispitanik muško i preferira nogomet:

-P(muško & nogomet): .6 x .336 = .202

-Očekivani broj: .202 x 125 = 25.2

- IIi:
 - –umnožak sumacije reda sa sumacijom razreda, i djeljenjem kroz ukupni broj ispitanika:
- $(75 \times 42) / 125 = 25.2$

	nogomet	ples	računalo	ukupno
muški	30 (25.2)	29 (37.2)	16 (12.6)	75
ženski	12 (16.8)	33 (24.8)	5 (8.4)	50
ukupno	42	62	21	125

• Formula:

$$\chi^2 = \sum \frac{(\text{rezultat} - \text{očekivano})^2}{\text{očekivano}}$$

$$\chi^2 = \frac{(30-25.2)^2}{25.2} + \frac{(29-37.2)^2}{37.2} + \frac{(16-12.6)^2}{12.6} + \frac{(12-16.8)^2}{16.8} + \frac{(33-24.8)^2}{24.8} + \frac{(5-8.4)^2}{8.4} = 9.097$$

- Što veći χ2 to vjerojatnije su varijable ovisne.
- Velike razlike se povećaju uz efekt kvadrata.

- Naći rezultat u tabeli:
 - –Degree-of-freedom:
 - df = (broj redova 1) x (broj razreda 1)
 - Naš primjer: $(2-1) \times (3-1) = 2$
 - -U tabeli: 9.097 (< .025; > .01)

- Primjer: 9.097 (< .025; > .01)
 - -Signifikantnost (na razini: .05, .01)!
 - -Odbijamo Nultu hipotesu (ne ovisnost varijabli)

- Collocations
 - -new, companies

	rı=new	rı¬new	ukupno
r2=companies	8	4667	4675
r2¬companies	15820	14287181	14303001
ukupno	15828	14291848	14307676

- Kolokacije
 - -new, companies

	rı=new	rı¬new	ukupno
r2=companies	8 (5)	4667 (4669)	4675
r2¬companies	15820 (15822)	14287181 (14287178)	14303001
ukupno	15828	14291848	14307676

- Kolokacije
 - -ban, derenčin = 267771.9929697935

	rı=ban	rı¬ban	ukupno
r2=derenčin	31 ()	69 ()	100
r2¬derenčin	3019 ()	84972930 ()	84975949
ukupno	3050	84972999	84976049

Domaći

 R: posložite podatke sample.dat po dužini riječi i izgenerirajte grafiku po frekvenciji kao barplot

 Nađite tako jedan par pojavnica u korpusu: Korpus hrvatskog jezika (riznica.ihjj.hr) i izračunajte Chi2 vrijednost i vjerojatnost da se radi o kolokaciji, ili uradite to za dvije prethodne tabele.