21-373, Algebraic Structures, Department of Mathematical Sciences, Carnegie Mellon University Fall 2011: (Math Studies Section) Monday, Wednesday, Friday, 10:30 am, Porter Hall 226B. Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

Assignment 9 - Tuesday November 22, 2011. Due Wednesday November 30

Exercise 57: Let K be a finite field. Show that every $k \in K$ can be written as $k = a^2 + b^2$ for some $a, b \in K$.

Exercise 58: Let E be a field, and let F = E(x). Let $P, Q \in E[x]$ with P, Q relatively prime.

- i) Show that x is algebraic over $E\left(\frac{P}{Q}\right)$, and $\left[F:E\left(\frac{P}{Q}\right)\right] = \max\{degree(P), degree(Q)\}$.
- ii) $x \mapsto \frac{P}{Q}$ induces a ring-homomorphism σ from F = E(x) into itself: if $\varphi, \psi \in E[x]$, then $\sigma(\varphi) = \varphi(\frac{P}{Q})$, and $\sigma(\frac{\varphi}{\psi}) = \frac{\sigma(\varphi)}{\sigma(\psi)}$. Show that σ is an automorphism of F if and only if $\max\{degree(P), degree(Q) = 1, \text{ and } \}$
- that $Aut_E(F)$ consists of all those automorphisms induced by $x\mapsto \frac{a\,x+b}{c\,x+d}$ with $a,b,c,d\in E$ and $a\,d-b\,c\neq 0$. iii) Show that if K is an intermediate field (between E and F) with $K\neq E$, one has $[F:K]<\infty$. Deduce that if E is infinite, then the fixed field of $Aut_E(F)$ is equal to E.

Exercise 59: Show that $x^4 + 1$ is irreducible in $\mathbb{Z}[x]$, but that it is reducible in $\mathbb{Z}_p[x]$ for all prime p, and more precisely that

- i) $x^4 + 1$ has a root (in \mathbb{Z}_p) if and only if either p = 2 or p has the form 8n + 1, ii) excluding the case i) $x^4 + 1$ factors as $(x^2 + b)(x^2 b)$ (for some $b \in \mathbb{Z}_p$) if and only if p has the form
- iii) excluding the case i) $x^4 + 1$ factors as $(x^2 + ax + 1)(x^2 ax + 1)$ (for some $a \in \mathbb{Z}_n$) if and only if phas the form 8n + 7.
- iv) excluding the case i) $x^4 + 1$ factors as $(x^2 + ax 1)(x^2 ax 1)$ (for some $a \in \mathbb{Z}_p$) if and only if p has the form 8n + 3.

Besides recalling that -1 is a quadratic residue for an odd prime q if and only if q has the form 4n + 1, it is useful to know that 2 is a quadratic residue for an odd prime q if and only if q has the form $8n \pm 1$.]

Exercise 60: (Putnam 1971-A2): Determine all polynomials P(x) such that $P(x^2 + 1) = (P(x))^2 + 1$ and P(0) = 0.

Implicitly, the above Putnam problem assumed that one works on \mathbb{R} , but here the question is

- i) for any field E of characteristic 0, show that the only $P \in E[x]$ satisfying $P(x^2 + 1) = (P(x))^2 + 1$ and P(0) = 0 is the "trivial solution" P = x.
 - ii) for any field E of characteristic p, show that there are infinitely many solutions $P \in E[x]$.

Exercise 61: (Putnam 1972-B4) Let n be an integer greater than 1. Show that there exists a polynomial P(x,y,z) with integral coefficients such that $x \equiv P(x^n, x^{n+1}, x + x^{n+2})$.

Exercise 62: (Putnam 1975-A4): Let n = 2m, where m is an odd integer greater than 1. Let $\theta = e^{2\pi i/n}$. Express $(1-\theta)^{-1}$ explicitly as a polynomial in θ ,

$$a_k \theta^k + a_{k-1} \theta^{k-1} + \ldots + a_1 \theta + a_0,$$

with integer coefficients a_i .

[Note that θ is a primitive n-th root of unity, and thus it satisfies all of the identities which hold for such roots.

Exercise 63: (Putnam 1985-B6): Let G be a finite set of real $n \times n$ matrices $\{M_i\}$, $1 \le i \le r$, which form a group under matrix multiplication. Suppose that $\sum_{i=1}^{r} \operatorname{tr}(M_i) = 0$, where $\operatorname{tr}(A)$ denotes the trace of the matrix A. Prove that $\sum_{i=1}^{r} M_i$ is the $n \times n$ zero matrix.

[Consider the above Putnam problem by replacing \mathbb{R} by a field E (i.e. the matrices have entries in E), and prove the same conclusion if E has characteristic 0, and if E has characteristic p with p satisfying the two conditions p > r and p > n.