

What is claimed is:

Claims

1. A method for treating allergic rhinitis in a patient, said method
 5 comprising administering to the patient a pharmaceutically effective amount of a composition comprising a compound of formula (I):

10 Wherein R_1 is R_a , R_aR_b -, R_a-O-R_b -, or $(R_c)(R_d)N-R_b$ -, where R_a is H, cyano, $-(C=O)N(R_c)(R_d)$, $-C(=NH)(NH_2)$, C₁₋₁₀ alkyl, C₃₋₈ alkenyl, C₃₋₈ cycloalkyl, C₂₋₅ heterocyclic radical, or phenyl; where R_b is C₁₋₈ alkylene, C₂₋₈ alkenylene, C₃₋₈ cycloalkylene, bivalent C₃₋₈ heterocyclic radical, or phenylene; and R_c and R_d are each independently H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₃₋₈ cycloalkyl, or phenyl;

15 R_2 is H, methyl, ethyl, NR_pR_q , $-(CO)NR_pR_q$, $-(CO)OR_r$, $-CH_2NR_pR_q$, or CH_2OR_r ; where R_p , R_q , and R_r are independently selected from C₁₋₆ alkyl, C₃₋₆ cycloalkyl, phenyl; (C₃₋₆ cycloalkyl)(C₁₋₂ alkylene), benzyl or phenethyl; or R_p and R_q taken together with the nitrogen to which they are attached, form a 4-7
 20 membered heterocyclic ring with 0 or 1 additional heteroatoms selected from O, S, and N;

25 R_3 is H, methyl, ethyl, NR_sR_t , $-(CO)NR_sR_t$, $-(CO)OR_u$, $-CH_2NR_sR_t$, or CH_2OR_u ; where R_s , R_t , and R_u are independently selected from C₁₋₆ alkyl, C₃₋₆ cycloalkyl, phenyl; (C₃₋₆ cycloalkyl)(C₁₋₂ alkylene), benzyl or phenethyl; or R_s and R_t taken together with the nitrogen to which they are attached, form a 4-7

membered heterocyclic ring with 0 or 1 additional heteroatoms selected from O, S, and N;

- R₅ is methyl, ethyl, or H;
- R₆ is methyl, ethyl, or H;
- 5 R₇ is methyl, ethyl, or H;
- X₄ is NR₁ or S;
- X₁ is CR₃;
- R₃ is F, Cl, Br, CHO, R_f, R_fR_{g-}, R_fO-R_{g-}, or (R_h)(R_i)N-R_{g-}, where R_f is H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₃₋₆ cycloalkyl, C₂₋₅ heterocyclic radical, or phenyl;
- 10 where R_g is C₁₋₆ alkylene, C₂₋₆ alkenylene, C₃₋₆ cycloalkylene, bivalent C₃₋₆ heterocyclic radical, or phenylene; and R_h and R_i are each independently H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₃₋₆ cycloalkyl, or phenyl;
- X₂ is NR_e or O; R_e is H or C₁₋₆ alkyl;
- X₃ is N;
- 15 Z is =O or =S;
- each of R₄ and R₆ is independently H, F, Cl, Br, I, COOH, OH, nitro, amino, cyano, C₁₋₄ alkoxy, or C₁₋₄ alkyl;
- R₅ is H, F, Cl, Br, I, (C=O)R_j, OH, nitro, NR_jR_k, cyano, phenyl, -OCH₂-Ph, C₁₋₄ alkoxy, or C₁₋₄ alkyl;
- 20 R₇ is H, F, Cl, Br, I, (C=O)R_m, OH, nitro, NR_lR_m, cyano, phenyl, -OCH₂-Ph C₁₋₄ alkoxy, or C₁₋₄ alkyl;
- wherein each of R_j, R_k, R_l, and R_m is independently selected from H, C₁₋₆ alkyl, hydroxy, phenyl, benzyl, phenethyl, and C₁₋₆ alkoxy;
- each of the above hydrocarbyl (including alkyl, alkoxy, phenyl, benzyl,
- 25 cycloalkyl, and so on) or heterocyclic groups being independently and optionally substituted with between 1 and 3 substituents selected from C₁₋₃ alkyl, halo, hydroxy, amino, and C₁₋₃ alkoxy;
- wherein n is 0, 1, or 2; where n is 2, the moiety -(CHR_{5'})_{n-2}- is -(CHR_{5'}-CHR_{7'})- where CHR_{5'} is between CHR_{6'} and CHR_{7'};
- 30 provided at least one of R₁, R₂, R₃, R₄, R₅, R₆, and R₇ is other than H when Z is O;

and provided, where Z is O, n = 1, and each of R₄, R₅, R₆, R₇, R_{2'}, R_{3'}, R_{5'}, and R_{6'} is H, then (a) where X₂ is NH, then R₁ is (i) not methyl, pyridyl, phenyl, or benzyl, and (b) where X₂ is O, then R₁ is not methyl;

- and provided, where Z is O, X₂ is NH, n = 1, R₁ is methyl, each of R₄, R₆, R₇, R_{2'}, R_{3'}, R_{5'}, and R_{6'} is H, then R₅ is not methoxy; or a pharmaceutically acceptable salt, ester, or amide thereof.

2. The method of claim 1 wherein said composition comprises a compound of the formula:

10

- Wherein R₁ is R_a, R_aR_b-, R_a-O-R_b-, or (R_c)(R_d)N-R_b-, where R_a is H, C₁₋₁₀ alkyl, C₃₋₈ alkenyl, C₃₋₈ cycloalkyl, C₂₋₅ heterocyclic radical, or phenyl; where R_b is C₁₋₈ alkylene, C₃₋₈ alkenylene, C₃₋₈ cycloalkylene, bivalent C₃₋₈ heterocyclic radical, or phenylene; and R_c and R_d are each independently H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₃₋₈ cycloalkyl, or phenyl;

R₂ is ortho or meta, and is methyl or H;

X₁ is CR₃;

- R₃ is F, Cl, Br, R_f, R_fR_g-, R_f-O-R_g-, or (R_h)(R_i)N-R_g-, where R_f is H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₃₋₆ cycloalkyl, C₂₋₅ heterocyclic radical, or phenyl; where R_g is C₁₋₆ alkylene, C₂₋₆ alkenylene, C₃₋₆ cycloalkylene, bivalent C₃₋₆ heterocyclic radical, or phenylene; and R_h and R_i are each independently H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₃₋₆ cycloalkyl, or phenyl;

X₂ is NR_e or O; R_e is H or C₁₋₆ alkyl;

25 X₃ is N;

- Z is =O or =S;
 each of R₄ and R₆ is independently H, F, Cl, Br, I, COOH, OH, nitro, amino, cyano, C₁₋₄ alkoxy, or C₁₋₄ alkyl;
 R₅ is H, F, Cl, Br, I, (C=O)R_j, OH, nitro, NR_jR_k, cyano, -OCH₂-Ph,
- 5 C₁₋₄ alkoxy, or C₁₋₄ alkyl;
 R₇ is H, F, Cl, Br, I, (C=O)R_m, OH, nitro, NR_jR_m, cyano, C₁₋₄ alkoxy, or C₁₋₄ alkyl;
 wherein each of R_j, R_k, R_l, and R_m is independently selected from H, C₁₋₆ alkyl, hydroxy, phenyl, benzyl, phenethyl, and C₁₋₆ alkoxy;
- 10 each of the above hydrocarbyl or heterocyclic groups being independently and optionally substituted with between 1 and 3 substituents selected from C₁₋₃ alkyl, halo, hydroxy, amino, and C₁₋₃ alkoxy;
 provided at least one of R₁, R₂, R₃, R₄, R₅, R₆, and R₇ is other than H when Z is O;
- 15 or a pharmaceutically acceptable salt, ester, or amide thereof.
3. The method of claim 1 wherein said composition comprises a compound wherein R₁ is R_a, R_aR_b-, R_a-O-R_b-, or (R_c)(R_d)N-R_b-, where R_a is H, C₁₋₁₀ alkyl, C₂₋₅ alkenyl, C₃₋₈ cycloalkyl, C₂₋₅ heterocyclic radical, or phenyl; where R_b is C₁₋₆ alkylene, or C₂₋₈ alkenylene; and R_c and R_d are each independently H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₃₋₈ cycloalkyl, or phenyl;
- 20 R₂ is methyl or H;
 R₃ is methyl or H;
 R₅ is methyl or H;
 R₆ is methyl or H;
 R₇ is methyl or H;
 X₁ is CR₃;
- 25 R₃ is F, Cl, Br, methyl, ethyl, or propyl;
- 30 X₂ is NR_e or O; R_e is H or C₁₋₆ alkyl;
 X₃ is N;
 Z is =O or =S;

each of R₄ and R₆ is independently H, F, Cl, Br, I, COOH, OH, nitro, amino, cyano, C₁₋₃ alkoxy, or C₁₋₃ alkyl;

R₅ is H, F, Cl, Br, I, (C=O)R_j, OH, nitro, NR_jR_k, cyano, -OCH₂-Ph, C₁₋₄ alkoxy; or C₁₋₄ alkyl;

5 R₇ is H, F, Cl, Br, I, (C=O)R_m, OH, nitro, NR_lR_m, cyano, C₁₋₄ alkoxy, or C₁₋₄ alkyl;

wherein each of R_j, R_k, R_l, and R_m is independently selected from H, C₁₋₆ alkyl, hydroxy, phenyl, benzyl, phenethyl, and C₁₋₆ alkoxy;

10 each of the above hydrocarbyl or heterocyclic groups being independently and optionally substituted with between 1 and 3 substituents selected from C₁₋₃ alkyl, halo, hydroxy, amino, and C₁₋₃ alkoxy;

n is 1;

provided at least one of R₁, R_{2'}, R_{3'}, R₄, R₅, R₆, and R₇ is other than H when Z is O;

15 or a pharmaceutically acceptable salt, ester, or amide thereof.

4. The method of claim 1 wherein said composition comprises a compound wherein

R₁ is H, methyl, or ethyl;

20 One of R_{2'} and R_{3'} is methyl, and the other is H, where R₁ is H; R₂ is otherwise H;

X₁ is CR₃; R₃ is H, F, Cl, or Br;

X₂ is NR_e or O;

R_e is H or C₁₋₃ alkyl;

25 Z is =O or =S;

each of R₄ and R₆ is independently H, OH, C₁₋₄ alkyl, C₁₋₄ alkoxy, cyano, or amino;

R₅ is H, F, Cl, Br, COOH, OH, amino, cyano, C₁₋₄ alkoxy, or C₁₋₄ alkyl; and

30 R₇ is H, F, Cl, Br, C₁₋₄ alkyl, C₁₋₄ alkoxy, cyano, or amino; provided at least one of R₅ and R₇ is not H.

5. The method of claim 1 wherein said composition comprises a compound wherein
 R_1 is H, methyl, or ethyl;
 R_2 and R_3 are independently methyl or H;
X₁ is CR₃ or N; R₃ is H, F, or Cl;
X₂ is NR_e or O; R_e is H or C₁₋₆ alkyl;
Z is =O or =S;
each of R₄ and R₆ is H;
R₅ is H, F, Cl, Br, methyl, ethyl, or propyl; and
R₇ is H, F, Cl, Br, or C₁₋₄ alkyl; provided at least one of R₅ and R₇
is not H.
- 10
- 15
6. The method of claim 1 wherein said composition comprises a compound wherein X₂ is N.
7. The method of claim 1 wherein said composition comprises a compound wherein X₂ is O.
8. The method of claim 1 wherein said composition comprises a compound wherein R₁ is H, methyl or ethyl.
- 20
9. The method of claim 1 wherein said composition comprises a compound wherein R₁ is methyl.
- 25
10. The method of claim 1 wherein said composition comprises a compound wherein R₂ is H.
11. The method of claim 1 wherein said composition comprises a compound wherein R₂ is methyl.
- 30
12. The method of claim 1 wherein said composition comprises a compound wherein R₃ is H or Cl.

13. The method of claim 12 wherein said composition comprises a compound wherein R₃ is Cl.
- 5 14. The method of claim 1 wherein said composition comprises a compound wherein R₅ is F, Cl, Br, or methyl and R₇ is F, Cl, or Br.
- 10 15. The method of claim 1 wherein said composition comprises a compound wherein each of R₅ and R₇ is independently selected from H, F, Cl, Br, and methyl, provided at least one of R₅ and R₇ is not H.
- 15 16. The method of claim 1 wherein said composition comprises a compound wherein each of R₄ and R₆ is independently H, methyl, or Cl.
17. The method of claim 1 wherein said composition comprises a compound wherein R₃ is H or Cl; R₅ is F, Cl, Br, or methyl; and R₇ is H, F, Cl, or Br.
- 20 18. The method of claim 17 wherein said composition comprises a compound wherein each of R₄ and R₆ is independently H, methyl, or Cl.
- 25 19. The method of claim 1 wherein said composition comprises a compound wherein Z is =S.
20. The method of claim 1 wherein said composition comprises a compound selected from: (5-Chloro-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (5-Fluoro-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (5-Bromo-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (5-Methyl-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (5,7-Difluoro-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (7-Chloro-1H-indol-2-yl)-(4-methyl-

piperazin-1-yl)-methanone; (5,7-Dichloro-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (5-Chloro-7-methyl-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; and (3,5-Dichloro-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone.

5

21. The method of claim 1 wherein said composition comprises a compound selected from: (6-Chloro-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (1H-Indol-2-yl)-(3-methyl-piperazin-1-yl)-methanone; (7-Bromo-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (5-Bromo-benzofuran-2-yl)-(4-methyl-piperazin-1-yl)-methanone; and (1H-Indol-2-yl)-(4-methyl-piperazin-1-yl)-methanethione.

10

22. The method of claim 1 wherein said composition comprises a compound selected from: (5-Chloro-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (5-Bromo-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (5-Methyl-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (5,7-Difluoro-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; and (5,7- Dichloro-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone.

15

23. The method of claim 1 wherein said composition comprises a compound selected from:

25

(4-Methyl-piperazin-1-yl)-(5-trifluoromethyl-1H-indol-2-yl)-methanone; (7-Amino-5-methyl-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (5-Amino-7-methyl-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (7-Amino-5-bromo-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (5-Amino-7-bromo-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (5-Fluoro-7-methyl-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (7-Fluoro-5-methyl-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (6-Bromo-5-hydroxy-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (5-Bromo-6-hydroxy-1H-indol-2-yl)-(4-

30

methyl-piperazin-1-yl)-methanone; (6-Bromo-7-hydroxy-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (4-Bromo-7-hydroxy-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; (6-Bromo-7-methyl-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; and (4-Bromo-7-methyl-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone.

- 10 24. The method of claim 1 wherein said composition comprises a compound selected from: (5,7-Dichloro-1H-indol-2-yl)-piperazin-1-yl-methanone; (5,7-Difluoro-1H-indol-2-yl)-piperazin-1-yl-methanone; (5,7-Difluoro-1H-indol-2-yl)-(3-methyl-piperazin-1-yl)-methanone; (5,6-Difluoro-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone; and (4,6-Difluoro-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone.

15 25. The method of claim 1 wherein said composition comprises a compound selected from:
1-(5-Chloro-1H-indole-2-carbonyl)-4-methyl-piperazine-2-carboxylic acid methyl ester; 4-(5-Chloro-1H-indole-2-carbonyl)-1-methyl-piperazine-2-carboxylic acid methyl ester; 4-(5-Chloro-1H-indole-2-carbonyl)-1-methyl-piperazine-2-carboxylic acid amide;
1-(5-Chloro-1H-indole-2-carbonyl)-4-methyl-piperazine-2-carboxylic acid amide; 4-(5-Chloro-1H-indole-2-carbonyl)-1-methyl-piperazine-2-carboxylic acid methylamide; 1-(5-Chloro-1H-indole-2-carbonyl)-4-methyl-piperazine-2-carboxylic acid methylamide; 4-(5-Chloro-1H-indole-2-carbonyl)-1-methyl-piperazine-2-carboxylic acid dimethylamide; 1-(5-Chloro-1H-indole-2-carbonyl)-4-methyl-piperazine-2-carboxylic acid dimethylamide; (5-Chloro-1H-indol-2-yl)-(3-hydroxymethyl-4-methyl-piperazin-1-yl)-methanone; (5-Chloro-1H-indol-2-yl)-(3-methoxymethyl-4-methyl-piperazin-1-yl)-methanone; (5-Chloro-1H-indol-2-yl)-(2-methoxymethyl-4-methyl-piperazin-1-yl)-methanone; (5-Chloro-1H-indol-2-yl)-(4-methyl-3-

20

25

30

5

methylaminomethyl-piperazin-1-yl)-methanone; (5-Chloro-1H-indol-2-yl)-(4-methyl-2-methylaminomethyl-piperazin-1-yl)-methanone; (5-Chloro-1H-indol-2-yl)-(3-dimethylaminomethyl-4-methyl-piperazin-1-yl)-methanone; and (5-Chloro-1H-indol-2-yl)-(2-dimethylaminomethyl-4-methyl-piperazin-1-yl)-methanone.

26. The compound (5-Chloro-7-methyl-1H-indol-2-yl)-(4-methyl-piperazin-1-yl)-methanone.

10