MONTE CARLO SIMULATION

- 1. Simulation of Electron Motion in 2D for give number of Collisions.
- ✓ The Results for Ten (10) Collisions:

The Plot of Distance from the Source against Number of Collisions

The Plot of Distance from the Source against Number of Collisions: Absolute Values

\checkmark The Results for Hundred (100) Collisions:

The Plot of Distance from the Source against Number of Collisions

The Plot of Distance from the Source against Number of Collisions: Absolute Values

\checkmark The Results for One Thousand (1000) Collisions:

The Plot of Distance from the Source against Number of Collisions

The Plot of Distance from the Source against Number of Collisions: Absolute Values

\checkmark The Results for Ten Thousand (10000) Collisions:

The Plot of Distance from the Source against Number of Collisions

The Plot of Distance from the Source against Number of Collisions: Absolute Values

2. The Graphs of log(L) versus log(N) to determine the Slope

✓ The four (4) graphs below represents the values of Slope (α) for different number of Collisions [10, 100, 1000, 10000]. The value of the Slope (α) is found to be less than one (α < 1).

[10] The Slope (α): 0.4293058632784144

[100] The slope (α): 0.5053217670252762

[1000] The Slope (α): 0.5174960787498081

[10000] The slope (α): 0.5126077474611049

3. Simulation of Electron Motion in 3D for give number of Collisions

✓ The Results for Ten (10) Collisions:

The Distance from the Source against Number of Collisions: Absolute Values

\checkmark The Results for Hundred (100) Collisions:

The Distance from the Source against Number of Collisions: Absolute Values

\checkmark The Results for One Thousand (1000) Collisions:

The Distance from the Source against Number of Collisions: Absolute Values

✓ The Results for Ten Thousand (10000) Collisions:

The Distance from the Source against Number of Collisions: Absolute Values

By Mfeuter Joseph, Tachia.

Moscow Institute of Physics and Technology (MIPT).

The codes for these Results can be found in My GitHub