

LINGUAGENS FORMAIS E AUTÓMATOS LINGUAGENS

Artur Pereira <artur@ua.pt>

DETI, Universidade de Aveiro

DEFINIÇÃO INFORMAL DE LINGUAGEM

- Uma linguagem é um sistema de símbolos usado para comunicar informação.
- Uma mensagem nessa linguagem é uma sequência de símbolos
 - Mas nem todas as sequências são válidas
- Logo, uma linguagem é caracterizada por:
 - um conjunto de símbolos;
 - uma forma de descrever o conjunto das sequências válidas.
- Ou seja, uma linguagem é um conjunto de sequências, definidas sobre um conjunto de símbolos.

EXEMPLOS DE LINGUAGENS (1)

• O conjunto {"abc", "bbb", "aaa"}

Cada elemento do conjunto é uma sequência definida sobre o conjunto {'a','b','c'}.

Conjunto dos vocábulos em português

Cada vocábulo é uma sequência definida sobre o conjunto das letras (incluindo as vogais acentuadas e o ç)

 Conjunto das sequências binárias com um número par de uns

Cada elemento do conjunto é uma sequência definida sobre o conjunto {'0','1'}

EXEMPLOS DE LINGUAGENS (2)

 O conjunto das sequências políndromas com as letras 'a' e 'b'

Cada elemento do conjunto é uma sequência definida sobre o conjunto {'a','b'}.

O conjunto das expressões aritméticas válidas

Cada elemento do conjunto é uma sequência definida sobre o conjunto $\{'0', '1', \cdots, '9', '+', \cdots\}$.

 O conjunto das expressões que representam endereços de correio electrónico

Cada elemento é uma sequência de caracteres alfanuméricos contendo uma ocorrência do símbolo '@' e uma ou mais ocorrências do símbolo '.'

EXEMPLOS DE LINGUAGENS (3)

A linguagem de programação Java

Cada elemento é uma sequência de identificadores, constantes numéricas, palavras reservadas, operadores e sinais de pontuação.

A Língua portuguesa

Cada elemento do conjunto é um texto em português, portanto é uma sequência definida sobre o conjunto dos vocábulos mais os sinais de pontuação.

Noções básicas (1)

- O símbolo, também designado por letra, é o átomo das linguagens.
- O alfabeto é um conjunto (finito, não vazio) de símbolos
- Exemplos:
 - $A_1 = \{0, 1\}$ é o alfabeto do conjunto dos números binários
 - A₂ = {0, 1, ···, 9} é o alfabeto do conjunto dos números decimais
 - Qual é o alfabeto do conjunto dos vocábulos em português?
 - Qual é o alfabeto da Língua Portuguesa?
 - Qual é o alfabeto do código Morse?

Noções básicas (2)

A palavra, também designada por string, é uma sequência de símbolos sobre um dado alfabeto A

$$u = a_1 a_2 \cdots a_n$$
, com $a_i \in A \land n \ge 0$

• Exemplos:

```
• A_1 = \{0, 1\}

0010, 11

• A_2 = \{0, 1, \dots, 9\}

2011, 1999999

• A_3 = \{0, 1, \dots, 9, a, b, \dots, z, @, .\}

artur@ua.pt
```

- ${\cal D}\,$ A **palavra vazia** é uma sequência de 0 (zero) símbolos e denota-se por $\varepsilon.$
 - ullet não pertence ao alfabeto

Noções básicas (3)

- \mathcal{D} Uma **sub-palavra** de uma palavra u é uma sequência de 0 ou mais símbolos intermédios de u.
- \mathcal{D} Um **prefixo** de uma palavra u é uma sequência de 0 ou mais símbolos iniciais de u.
- \mathcal{D} Um **sufixo** de uma palavra u é uma sequência de 0 ou mais símbolos terminais de u.

Exemplos:

- as é uma sub-palavra de casa, mas não prefixo nem sufixo
- 001 é prefixo e sub-palavra de 001111, mas não é sufixo
- ε é prefixo, sufixo e sub-palavra de qualquer palavra u.
- qualquer palavra u é prefixo, sufixo e sub-palavra de si mesma.

NOCÕES BÁSICAS (4)

O fecho do alfabeto A, denotado A*, representa o conjunto de todas as palavras definíveis sobre o alfabeto A, incluindo a palavra vazia.

Exemplos:

$$\begin{split} \{0,1\}^* &= \{\varepsilon,0,1,00,01,10,11,000,001,\cdots\} \\ \{\clubsuit,\diamondsuit,\heartsuit,\spadesuit\}^* &= \{\varepsilon,\clubsuit\clubsuit,\clubsuit\diamondsuit,\clubsuit\heartsuit,\clubsuit\spadesuit,\diamondsuit\clubsuit,\cdots,\diamondsuit\diamondsuit\diamondsuit,\cdots\} \end{split}$$

Dado um alfabeto A, uma linguagem L sobre A é um conjunto finito ou infinito de palavras definidas com símbolos de A.

Isto é $L \subseteq A^*$

Nocões (5)

Exemplos de linguagens sobre o alfabeto $A = \{0, 1\}$

```
L_{1} = \{u \in A^{*} \mid |u| \leq 2\} = \{\varepsilon, 0, 1, 00, 01, 10, 11\}
L_{2} = \{u \in A^{*} \mid \forall_{i} u(i) = 0\} = \{0, 00, 000, 0000, \cdots\}
L_{3} = \{\}
L_{4} = \{\varepsilon\}
L_{5} = A
L_{6} = A^{*}
```

Note que $\{\}$, $\{\varepsilon\}$, A e A^* são linguagens sobre A qualquer que seja o A.

OPERAÇÕES SOBRE PALAVRAS (1)

- \mathcal{D} O **comprimento** da palavra u denota-se |u| e representa o seu número de símbolos.
 - O comprimento da palavra vazia é zero

$$|\varepsilon| = 0$$

É habitual interpretar-se a palavra u como uma função

$$u: \{1 \cdots n\} \rightarrow A, \text{ com } n = |u|$$

u(i) (ou u_i) representa o i-ésimo símbolo de i

 \mathcal{D} O **reverso** de uma palavra u é a palavra, denotada por u^R , que se obtém invertendo a ordem dos símbolos de u

$$u = u_1 u_2 \cdots u_n \quad \Rightarrow \quad u^R = u_n \cdots u_2 u_1$$

OPERAÇÕES SOBRE PALAVRAS (2)

- A concatenação, ou produto, das palavras u e v denota-se por u.v, ou simplesmente uv, e representa a justaposição de u e v, i.e., a palavra constituída pelos símbolos de u seguidos pelos símbolos de v.
 - Propriedades da concatenação:
 - |u.v| = |u| + |v|
 - u.(v.w) = (u.v).w = u.v.w (associatividade)
 - $u.\varepsilon = \varepsilon.u = u$ (elemento neutro)
 - em geral, $u.v \neq v.u$ (não comutatividade)
- \mathcal{D} A **potência** de ordem n, com $n \ge 0$, de uma palavra u denota-se por u^n e representa a concatenação de n réplicas de u, ou seja, $\underbrace{uu\cdots u}$.
 - $u^0 = \varepsilon$

OPERAÇÕES SOBRE LINGUAGENS (1)

REUNIÃO

 A reunião de duas linguagens L₁ e L₂ denota-se por L₁ ∪ L₂ e é dada por

$$L_1 \cup L_2 = \{u \mid u \in L_1 \lor u \in L_2\}$$

OPERAÇÕES SOBRE LINGUAGENS (1)

REUNIÃO

 A reunião de duas linguagens L₁ e L₂ denota-se por L₁ ∪ L₂ e é dada por

$$L_1 \cup L_2 = \{u \mid u \in L_1 \lor u \in L_2\}$$

EXEMPLO

Sobre o alfabeto $A = \{a, b\}$ considere as linguagens $L_a = \{u \mid u \text{ começa por a}\} = \{aw \mid w \in A^*\}$ $L_b = \{u \mid u \text{ termina com a}\} = \{wa \mid w \in A^*\}$

$$Q L = L_a \cup L_b$$
?

OPERAÇÕES SOBRE LINGUAGENS (1)

REUNIÃO

A reunião de duas linguagens L₁ e L₂ denota-se por
 L₁ ∪ L₂ e é dada por

$$L_1 \cup L_2 = \{u \mid u \in L_1 \lor u \in L_2\}$$

EXEMPLO

Sobre o alfabeto $A = \{a, b\}$ considere as linguagens $L_a = \{u \mid u \text{ começa por a}\} = \{aw \mid w \in A^*\}$ $L_b = \{u \mid u \text{ termina com a}\} = \{wa \mid w \in A^*\}$

$$Q L = L_a \cup L_b$$
?

$$\mathcal{R}$$
 $L = \{ w_1 a w_2 \mid w_1, w_2 \in A^* \land (w_1 = \varepsilon \lor w_2 = \varepsilon) \}$

OPERAÇÕES SOBRE LINGUAGENS (2)

Intersecção

 A intersecção de duas linguagens L₁ e L₂ denota-se por L₁ ∩ L₂ e é dada por

$$L_1 \cap L_2 = \{u \mid u \in L_1 \land u \in L_2\}$$

OPERAÇÕES SOBRE LINGUAGENS (2)

INTERSECÇÃO

• A intersecção de duas linguagens L_1 e L_2 denota-se por $L_1 \cap L_2$ e é dada por

$$L_1 \cap L_2 = \{u \mid u \in L_1 \land u \in L_2\}$$

EXEMPLO

Sobre o alfabeto $A = \{a, b\}$ considere as linguagens $L_a = \{u \mid u \text{ começa por a}\} = \{aw \mid w \in A^*\}$ $L_b = \{u \mid u \text{ termina com a}\} = \{wa \mid w \in A^*\}$

$$Q L = L_a \cap L_b$$
?

OPERAÇÕES SOBRE LINGUAGENS (2)

INTERSECÇÃO

 A intersecção de duas linguagens L₁ e L₂ denota-se por L₁ ∩ L₂ e é dada por

$$L_1 \cap L_2 = \{u \mid u \in L_1 \land u \in L_2\}$$

EXEMPLO

Sobre o alfabeto $A = \{a, b\}$ considere as linguagens $L_a = \{u \mid u \text{ começa por a}\} = \{aw \mid w \in A^*\}$ $L_b = \{u \mid u \text{ termina com a}\} = \{wa \mid w \in A^*\}$

$$Q L = L_a \cap L_b$$
?

$$\mathcal{R}$$
 $L = \{awa \mid w \in A^*\} \cup \{a\}$

OPERAÇÕES SOBRE LINGUAGENS (3)

DIFERENÇA

• A diferença entre duas linguagens L_1 e L_2 denota-se por L_1-L_2 e é dada por

$$L_1 - L_2 = \{u \mid u \in L_1 \land u \not\in L_2\}$$

OPERAÇÕES SOBRE LINGUAGENS (3)

DIFERENÇA

• A diferença entre duas linguagens L_1 e L_2 denota-se por L_1-L_2 e é dada por

$$L_1 - L_2 = \{u \mid u \in L_1 \land u \notin L_2\}$$

EXEMPLO

Sobre o alfabeto $A = \{a, b\}$ considere as linguagens $L_a = \{u \mid u \text{ começa por a}\} = \{aw \mid w \in A^*\}$ $L_b = \{u \mid u \text{ termina com a}\} = \{wa \mid w \in A^*\}$

$$Q L = L_a - L_b$$
?

OPERAÇÕES SOBRE LINGUAGENS (3)

DIFERENÇA

• A diferença entre duas linguagens L_1 e L_2 denota-se por $L_1 - L_2$ e é dada por

$$L_1 - L_2 = \{ u \mid u \in L_1 \land u \notin L_2 \}$$

EXEMPLO

Sobre o alfabeto $A = \{a, b\}$ considere as linguagens $L_a = \{u \mid u \text{ começa por a}\} = \{aw \mid w \in A^*\}$ $L_b = \{u \mid u \text{ termina com a}\} = \{wa \mid w \in A^*\}$

$$Q L = L_a - L_b$$
?

$$\mathcal{R}$$
 $L = \{ awx \mid w \in A^* \land x \in A \land x \neq a \}$

OPERAÇÕES SOBRE LINGUAGENS (4)

COMPLEMENTAÇÃO

• A **complementação** da linguagem L_1 denota-se por $\overline{L_1}$ e é dada por

$$\overline{L_1} = A^* - L_1 = \{u \mid u \not\in L_1\}$$

OPERAÇÕES SOBRE LINGUAGENS (4)

COMPLEMENTAÇÃO

• A **complementação** da linguagem L_1 denota-se por $\overline{L_1}$ e é dada por

$$\overline{L_1} = A^* - L_1 = \{u \mid u \not\in L_1\}$$

EXEMPLO

Sobre o alfabeto $A = \{a,b\}$ considere a linguagem $L_a = \{u \mid u \text{ começa por a}\} = \{aw \mid w \in A^*\}$

$$Q L = \overline{L_a}$$
?

OPERAÇÕES SOBRE LINGUAGENS (4)

COMPLEMENTAÇÃO

• A **complementação** da linguagem L_1 denota-se por $\overline{L_1}$ e é dada por

$$\overline{L_1} = A^* - L_1 = \{u \mid u \not\in L_1\}$$

EXEMPLO

Sobre o alfabeto $A = \{a,b\}$ considere a linguagem $L_a = \{u \mid u \text{ começa por a}\} = \{aw \mid w \in A^*\}$

$$Q L = \overline{L_a}$$
?

$$\mathcal{R}$$
 $L = \{xw \mid w \in A^* \land x \in A \land x \neq a\} \cup \{\varepsilon\}$

OPERAÇÕES SOBRE LINGUAGENS (5)

CONCATENAÇÃO

• A concatenação de duas linguagens L_1 e L_2 denota-se por $L_1.L_2$ e é dada por

$$L_1.L_2 = \{uv \mid u \in L_1 \land v \in L_2\}$$

OPERAÇÕES SOBRE LINGUAGENS (5)

CONCATENAÇÃO

 A concatenação de duas linguagens L₁ e L₂ denota-se por L₁.L₂ e é dada por

$$L_1.L_2 = \{uv \mid u \in L_1 \land v \in L_2\}$$

EXEMPLO

Sobre o alfabeto $A = \{a, b\}$ considere as linguagens $L_a = \{u \mid u \text{ começa por a}\} = \{aw \mid w \in A^*\}$ $L_b = \{u \mid u \text{ termina com a}\} = \{wa \mid w \in A^*\}$

$$Q L = L_a.L_b$$
?

OPERAÇÕES SOBRE LINGUAGENS (5)

CONCATENAÇÃO

 A concatenação de duas linguagens L₁ e L₂ denota-se por L₁.L₂ e é dada por

$$L_1.L_2 = \{uv \mid u \in L_1 \land v \in L_2\}$$

EXEMPLO

Sobre o alfabeto $A = \{a, b\}$ considere as linguagens $L_a = \{u \mid u \text{ começa por a}\} = \{aw \mid w \in A^*\}$ $L_b = \{u \mid u \text{ termina com a}\} = \{wa \mid w \in A^*\}$

$$Q L = L_a.L_b$$
?

$$\mathcal{R}$$
 $L = \{awa \mid w \in A^*\}$

OPERAÇÕES SOBRE LINGUAGENS (6)

POTENCIAÇÃO

 A potência de ordem n da linguagem L denota-se por Lⁿ e é definida indutivamente por

$$L^{0} = \{\varepsilon\}$$
$$L^{n+1} = L^{n}.L$$

OPERAÇÕES SOBRE LINGUAGENS (6)

POTENCIAÇÃO

 A potência de ordem n da linguagem L denota-se por Lⁿ e é definida indutivamente por

$$L^{0} = \{\varepsilon\}$$
$$L^{n+1} = L^{n}.L$$

EXEMPLO

Sobre o alfabeto $A = \{a,b\}$ considere a linguagem $L_a = \{u \mid u \text{ começa por a}\} = \{aw \mid w \in A^*\}$

$$Q L = L_a^2$$
?

OPERAÇÕES SOBRE LINGUAGENS (6)

POTENCIAÇÃO

 A potência de ordem n da linguagem L denota-se por Lⁿ e é definida indutivamente por

$$L^{0} = \{\varepsilon\}$$
$$L^{n+1} = L^{n}.L$$

EXEMPLO

Sobre o alfabeto $A = \{a,b\}$ considere a linguagem $L_a = \{u \mid u \text{ começa por a}\} = \{aw \mid w \in A^*\}$

$$Q L = L_a^2$$
?

$$\mathcal{R}$$
 $L = \{aw_1aw_2 \mid w_1, w_2 \in A^*\}$

OPERAÇÕES SOBRE LINGUAGENS (7)

FECHO DE KLEENE

 O fecho de Kleene da linguagem L denota-se por L* e é dado por

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{i=0}^{n-1} L^i$$

OPERAÇÕES SOBRE LINGUAGENS (7)

FECHO DE KLEENE

 O fecho de Kleene da linguagem L denota-se por L* e é dado por

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{i=0}^{\infty} L^i$$

EXEMPLO

Sobre o alfabeto $A = \{a,b\}$ considere a linguagem $L_a = \{u \mid u \text{ começa por a}\} = \{aw \mid w \in A^*\}$

$$Q L = L_a^*$$
?

OPERAÇÕES SOBRE LINGUAGENS (7)

FECHO DE KLEENE

 O fecho de Kleene da linguagem L denota-se por L* e é dado por

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{i=0}^{\infty} L^i$$

EXEMPLO

Sobre o alfabeto $A = \{a,b\}$ considere a linguagem $L_a = \{u \mid u \text{ começa por a}\} = \{aw \mid w \in A^*\}$

$$Q L = L_a^*$$
?

$$\mathcal{R}$$
 $L = L_a \cup \{\varepsilon\}$

Note que para n > 1 $L_a^n \subset L_a$

OPERAÇÕES SOBRE LINGUAGENS (8)

PROPRIEDADES

Leis de DeMorgan:

$$L_1 - (L_2 \cup L_3) = (L_1 - L_2) \cap (L_1 - L_3)$$

$$L_1 - (L_2 \cap L_3) = (L_1 - L_2) \cup (L_1 - L_3)$$

Propriedades da reunião:

$$L_1\cup (L_2\cup L_3)=(L_1\cup L_2)\cup L_3=L_1\cup L_2\cup L_3 \text{ (associativa)}$$

$$L_1\cup L_2=L_2\cup L_1 \text{ (comutativa)}$$

Propriedades da intersecção:

$$L_1 \cap (L_2 \cap L_3) = (L_1 \cap L_2) \cap L_3 = L_1 \cap L_2 \cap L_3 \text{ (associativa)}$$

$$L_1 \cap L_2 = L_2 \cap L_1 \text{ (comutativa)}$$

OPERAÇÕES SOBRE LINGUAGENS (9)

PROPRIEDADES (CONT.)

Propriedades da concatenação:

$$L_1.(L_2.L_3)=(L_1.L_2).L_3=L_1.L_2.L_3$$
 (associativa) $L.\{\varepsilon\}=\{\varepsilon\}.L=L$ (existência de elemento neutro) $L.\emptyset=\emptyset.L=\emptyset$ (existência de elemento absorvente) $L_1.(L_2\cup L_3)=L_1.L_2\cup L_1.L_3$ (distributiva em relação à reunião) $L_1.(L_2\cap L_3)=L_1.L_2\cap L_1.L_3$ (distributiva em relação à intersecção)

OPERAÇÕES SOBRE LINGUAGENS (10)

NOTAS ADICIONAIS

- Nas operações binárias não é necessário que as duas linguagens estejam definidas sobre o mesmo alfabeto
- \mathcal{Q} Sejam L_a e L_b duas linguagens definidas sobre os alfabetos A_a e A_b , respectivamente. Qual é o alfabeto A da linguagem

$$L = L_a op L_b$$
?

 \mathcal{R}

$$A = A_a \cup A_b$$

EXEMPLO (1) DE GRAMÁTICA

Considere, sobre o alfabeto $T = \{a,b\}$, o conjunto de regras (de rescrita) seguinte

$$S
ightarrow$$
 b $S
ightarrow$ a S

EXEMPLO (1) DE GRAMÁTICA

Considere, sobre o alfabeto $T=\{a,b\},$ o conjunto de regras (de rescrita) seguinte

$$S
ightarrow$$
 b $S
ightarrow$ a S

Que palavras apenas constituídas por símbolos do alfabeto T se podem gerar a partir de S?

 \mathcal{R}

$$L = \{a^nb : n \ge 0\}$$

O conjunto de regras é equivalente à expressão regular a*b

Introdução às gramáticas

EXEMPLO (2) DE GRAMÁTICA

Considere, sobre o alfabeto $T=\{a,b,c\},$ o conjunto de regras (de rescrita) seguinte

$$S \rightarrow a S$$

 $S \rightarrow b S$
 $S \rightarrow c S$
 $S \rightarrow a b a X$
 $X \rightarrow a X$
 $X \rightarrow b X$
 $X \rightarrow c X$
 $X \rightarrow \varepsilon$

EXEMPLO (2) DE GRAMÁTICA

Considere, sobre o alfabeto $T=\{a,b,c\},$ o conjunto de regras (de rescrita) seguinte

$$S \rightarrow a S$$

 $S \rightarrow b S$
 $S \rightarrow c S$
 $S \rightarrow a b a X$
 $X \rightarrow a X$
 $X \rightarrow b X$
 $X \rightarrow c X$
 $X \rightarrow \varepsilon$

Que palavras apenas constituídas por símbolos do alfabeto T se podem gerar a partir de S?

$$L = \{\omega_1 \text{aba}\omega_2 : \omega_1, \omega_2 \in T^*\}$$

EXEMPLO (3) DE GRAMÁTICA

Considere, sobre o alfabeto $T=\{a,b,c\},$ o conjunto de regras (de rescrita) seguinte

$$S \rightarrow X$$
 a b a X
 $X \rightarrow$ a X
 $X \rightarrow$ b X
 $X \rightarrow$ c X
 $X \rightarrow \varepsilon$

EXEMPLO (3) DE GRAMÁTICA

Considere, sobre o alfabeto $T=\{a,b,c\}$, o conjunto de regras (de rescrita) seguinte

$$S \rightarrow X$$
 a b a X
 $X \rightarrow$ a X
 $X \rightarrow$ b X
 $X \rightarrow$ c X
 $X \rightarrow \varepsilon$

Que palavras apenas constituídas por símbolos do alfabeto T se podem gerar a partir de S?

$$L = \{\omega_1 \text{aba}\omega_2 : \omega_1, \omega_2 \in T^*\}$$

Exemplo (4) de Introdução às gramáticas

Considere, sobre o alfabeto $T=\{a,b,c\}$, o conjunto de regras (de rescrita) seguinte

$$egin{aligned} S &
ightarrow \mathbf{c} \ S &
ightarrow \mathbf{a} \ S &
ightarrow \mathbf{b} \ S \end{aligned}$$
 b

Exemplo (4) de Introdução às gramáticas

Considere, sobre o alfabeto $T=\{a,b,c\}$, o conjunto de regras (de rescrita) seguinte

$$egin{aligned} S &
ightarrow \mathbf{c} \ S &
ightarrow \mathbf{a} \ S &
ightarrow \mathbf{b} \ S \ \mathbf{b} \end{aligned}$$

Que palavras apenas constituídas por símbolos do alfabeto T se podem gerar a partir de S?

$$L = \{\omega c \omega^R : \omega \in (\{a,b\})^*\}$$

EXEMPLO (5) DE GRAMÁTICA

Considere, sobre o alfabeto $T=\{a,b,c\},$ o conjunto de regras (de rescrita) seguinte

$$S
ightarrow$$
 a b $S
ightarrow$ a S b

EXEMPLO (5) DE GRAMÁTICA

Considere, sobre o alfabeto $T=\{a,b,c\}$, o conjunto de regras (de rescrita) seguinte

$$S
ightarrow$$
 a b $S
ightarrow$ a S b

Que palavras apenas constituídas por símbolos do alfabeto T se podem gerar a partir de S?

$$L = \{a^n b^n : n > 0\}$$

Exemplo (6) de Introdução às gramáticas

Considere, sobre o alfabeto $T=\{a,b,c\}$, o conjunto de regras (de rescrita) seguinte

$$S \rightarrow \varepsilon$$

 $S \rightarrow a S B c$
 $c B \rightarrow B c$
 $a B \rightarrow a b$
 $b B \rightarrow b b$

Exemplo (6) de Introdução às gramáticas

Considere, sobre o alfabeto $T=\{a,b,c\}$, o conjunto de regras (de rescrita) seguinte

$$S \rightarrow \varepsilon$$

 $S \rightarrow a$ S B c
 c $B \rightarrow B$ c
 a $B \rightarrow a$ b
 b $B \rightarrow b$ b

Que palavras apenas constituídas por símbolos do alfabeto T se podem gerar a partir de S?

$$L = \{a^n b^n c^n : n \ge 0\}$$

DEFINIÇÃO DE GRAMÁTICA

Uma gramática é um quádruplo G = (T, N, P, S), onde

- T é um conjunto finito não vazio de símbolos terminais;
- N, sendo N ∩ T = ∅, é um conjunto finito não vazio de símbolos não terminais;
- P é um conjunto de produções (ou regras de rescrita), cada uma da forma α → β;
- $S \in N$ é o símbolo inicial.
- $\alpha \in (N \cup T)^*N(N \cup T)^*$
- $\beta \in (N \cup T)^*$
- As restrições a α e β definem uma taxonomia das linguagens (gramáticas)

- $\alpha \in (N \cup T)^*N(N \cup T)^*$
- $\beta \in (N \cup T)^*$
- As restrições a α e β definem uma taxonomia das linguagens (gramáticas) hierarquia de Chomsky

Categoria	Restrição
Tipo-0	sem restrições
Tipo-1 (Dependentes do contexto)	$ \alpha \ge \beta $
Tipo-2 (Independentes do contexto)	$\alpha \in \mathbf{N} \wedge \beta \in (\mathbf{T} \cup \mathbf{N})^*$
Tipo-3 (Regulares)	$\alpha \in \mathbf{N} \wedge \beta \in \mathbf{T}^* \cup \mathbf{T}^*\mathbf{N}$
Tipo-3 (Regulares)	$\alpha \in \mathbf{N} \wedge \beta \in \mathbf{T}^* \cup \mathbf{N} \mathbf{T}^*$

 ${\cal Q}$ Considere, sobre o alfabeto ${\cal T}=\{{\tt a},{\tt b}\},$ a gramática seguinte

$$S
ightarrow$$
 a $S
ightarrow$ a $X
ightarrow$ b $X
ightarrow \varepsilon$

Identifique a linguagem descrita pela gramatica

 ${\color{red}\mathcal{Q}}$ Considere, sobre o alfabeto ${\color{blue}\mathcal{T}}=\{\mathtt{a},\mathtt{b}\},$ a gramática seguinte

$$S
ightarrow$$
 a $S
ightarrow$ a $X
ightarrow$ b $X
ightarrow arepsilon$

Identifique a linguagem descrita pela gramatica

$$L = \{a^nb^m : n > m\}$$

 $\mathcal Q$ Sobre o alfabeto $\mathcal T=\{\mathtt a,\mathtt b\},$ defina uma gramática que representa a linguagem seguinte

$$L = \{a^nb^m : n \ge m\}$$

 ${\cal Q}$ Sobre o alfabeto ${\cal T}=\{{\tt a},{\tt b}\},$ defina uma gramática que representa a linguagem seguinte

$$L=\{\mathtt{a}^n\mathtt{b}^m\ :\ n\geq m\}$$

 \mathcal{R}

$$S o X \ X o a X$$
 b $X o arepsilon$

S
ightarrow a S

 $\mathcal Q$ Sobre o alfabeto $\mathcal T=\{\mathtt a,\mathtt b\},$ defina uma gramática que representa a linguagem seguinte

$$L = \{a^n b^m : n \leq m\}$$

 $\mathcal Q$ Sobre o alfabeto $\mathcal T=\{\mathtt a,\mathtt b\},$ defina uma gramática que representa a linguagem seguinte

$$L=\{\mathtt{a}^n\mathtt{b}^m\ :\ n\leq m\}$$

$$S
ightarrow$$
 a S b $S
ightarrow X$ $X
ightarrow$ b X $X
ightarrow arepsilon$

 \mathcal{Q} Considere, sobre o alfabeto $T = \{a, b, c\}$, a gramática G definida a seguir

$$S \rightarrow c X$$

 $S \rightarrow a S b X$
 $X \rightarrow \varepsilon$
 $X \rightarrow c X$
 $X \rightarrow a S b X$

(A) Identifique
$$L_1 = \{u \in L(G) : |u| \le 4\}$$

 $\ensuremath{\mathcal{Q}}$ Considere, sobre o alfabeto $T=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ a gramática G definida a seguir

$$S \rightarrow c X$$

 $S \rightarrow a S b X$
 $X \rightarrow \varepsilon$
 $X \rightarrow c X$
 $X \rightarrow a S b X$

- (A) Identifique $L_1 = \{u \in L(G) : |u| \le 4\}$
- (B) Identifique a linguagem descrita pela gramatica