Name:

Solution

Complete the derivations

1. Construct the equations of $Y_r(J\Omega)$ starting from $X_c(J\Omega)$ in the form of equations.

2. Downsampling: Sketch for M=3 and $\omega_N = \frac{\pi}{3}$, the original bandwidth of signal in radians.

-611

Quiz-2 (CLO1) BEE-12 (D) DSP

Name: So Cution

- 1. Downsampling: Sketch for M=4 and $\omega_N = \frac{\pi}{3}$, the original bandwidth of signal in radians. Label x and y-axis completely. Ignore the anti-aliasing filter in downsampling scheme.
- 2: Analyze the schematic below

How is y[n] related to $x_c(t)$? Write complete mathematical equations step by step according to the figure. Assume $H(e^{j\omega}) = \begin{cases} e^{-j\omega} & |\omega| < \pi/L \\ 0 & \pi/L < |\omega| \le \pi \end{cases}$ and $x_c(t)$ to be bandlimited with $|\Omega| < \frac{\pi}{T}$. Write only time domain equations.

