

$$\frac{a_1}{a} = \frac{b_1}{b} = \frac{c_1}{c}$$

 $\frac{a_{\rm l}}{a_{\rm 2}} = \frac{b_{\rm l}}{b_{\rm 2}} = \frac{c_{\rm l}}{c_{\rm 2}}$ AB will be parallel to CD, if

$$\frac{a_1}{a_2} = \frac{-2}{2} = -1$$

$$\frac{b_1}{b} = \frac{-4}{4} = -1$$

$$\frac{c_1}{c_2} = \frac{-4}{4} = -1$$

$$\therefore \ \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

Thus, AB is parallel to CD.

Question 4:

Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector $3\hat{i} + 2\hat{j} - 2\hat{k}$

It is given that the line passes through the point A (1, 2, 3). Therefore, the position vector through A is $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$

$$\vec{b} = 3\hat{i} + 2\hat{j} - 2\hat{k}$$

It is known that the line which passes through point A and parallel to $ec{b}$ is given by $\vec{r} = \vec{a} + \lambda \vec{b}$, where λ is a constant.

$$\Rightarrow \vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda (3\hat{i} + 2\hat{j} - 2\hat{k})$$

This is the required equation of the line.

Question 5:

Find the equation of the line in vector and in Cartesian form that passes through the point with position vector ${}^2\hat{i}-\hat{j}+4\hat{k}$ and is in the direction ${}^{\hat{i}}+2\hat{j}-\hat{k}$.

It is given that the line passes through the point with position vector

$$\vec{a} = 2\hat{i} - \hat{j} + 4\hat{k} \qquad \dots (1)$$

$$\vec{b} = \hat{i} + 2\hat{j} - \hat{k} \qquad \dots (2)$$

It is known that a line through a point with position vector \vec{a} and parallel to \vec{b} is given by the equation, $\vec{r} = \vec{a} + \lambda \vec{b}$

$$\Rightarrow \vec{r} = 2\hat{i} - \hat{j} + 4\hat{k} + \lambda(\hat{i} + 2\hat{j} - \hat{k})$$

This is the required equation of the line in vector form.

$$\vec{r} = x\hat{i} - y\hat{j} + z\hat{k}$$

$$\Rightarrow x\hat{i} - y\hat{j} + z\hat{k} = (\lambda + 2)\hat{i} + (2\lambda - 1)\hat{j} + (-\lambda + 4)\hat{k}$$

Eliminating λ , we obtain the Cartesian form equation as

$$\frac{x-2}{1} = \frac{y+1}{2} = \frac{z-4}{-1}$$

This is the required equation of the given line in Cartesian form.

Find the Cartesian equation of the line which passes through the point

(-2, 4, -5) and parallel to the line given by
$$\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$$

It is given that the line passes through the point (-2, 4, -5) and is parallel to

$$\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$$

$$\frac{x+3}{x+3} = \frac{y-4}{x+3} = \frac{z+8}{x+3}$$

The required line is parallel to
$$\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$$

Therefore, its direction ratios are 3k, 5k, and 6k, where $k \neq 0$

It is known that the equation of the line through the point (x_1, y_1, z_1) and with direction

$$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{a}$$

ratios, a, b, c, is given by $\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$

Therefore the equation of the required line is

$$\frac{x+2}{3k} = \frac{y-4}{5k} = \frac{z+5}{6k}$$
$$\Rightarrow \frac{x+2}{3} = \frac{y-4}{5} = \frac{z+5}{6} = k$$

Question 7:

$$\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$$
 The Cartesian equation of a line is

The Cartesian equation of the line is

$$\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2} \qquad \dots (1)$$

The given line passes through the point (5, -4, 6). The position vector of this point is $\vec{a} = 5\hat{i} - 4\hat{j} + 6\hat{k}$

Also, the direction ratios of the given line are 3, 7, and 2.

This means that the line is in the direction of vector, $\vec{b}=3\hat{i}+7\hat{j}+2\hat{k}$

It is known that the line through position vector \vec{a} and in the direction of the vector \vec{b} is given by the equation, $\vec{r} = \vec{a} + \lambda \vec{b}, \lambda \in R$

$$\Rightarrow \vec{r} = (5\hat{i} - 4\hat{j} + 6\hat{k}) + \lambda(3\hat{i} + 7\hat{j} + 2\hat{k})$$

This is the required equation of the given line in vector form.

Find the vector and the Cartesian equations of the lines that pass through the origin and

The required line passes through the origin. Therefore, its position vector is given by,

$$\vec{a} = \vec{0}$$
 ... (1)

The direction ratios of the line through origin and (5, -2, 3) are

$$(5-0) = 5, (-2-0) = -2, (3-0) = 3$$

The line is parallel to the vector given by the equation, $\vec{b}=5\hat{i}-2\hat{j}+3\hat{k}$

The equation of the line in vector form through a point with position vector \vec{a} and parallel

to
$$\vec{b}_{is}$$
, $\vec{r} = \vec{a} + \lambda \vec{b}$, $\lambda \in R$

$$\Rightarrow \vec{r} = \vec{0} + \lambda \left(5\hat{i} - 2\hat{j} + 3\hat{k}\right)$$

$$\Rightarrow \vec{r} = \lambda \left(5\hat{i} - 2\hat{j} + 3\hat{k} \right)$$

The equation of the line through the point (x_1, y_1, z_1) and direction ratios a, b, c is given

by,
$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$$

Therefore, the equation of the required line in the Cartesian form is

$$\frac{x-0}{5} = \frac{y-0}{-2} = \frac{z-0}{3}$$
$$\Rightarrow \frac{x}{5} = \frac{y}{-2} = \frac{z}{3}$$

Ouestion 9:

Find the vector and the Cartesian equations of the line that passes through the points (3, -2, -5), (3, -2, 6),

Answer

Let the line passing through the points, P(3, -2, -5) and Q(3, -2, 6), be PQ.

Since PQ passes through P (3, -2, -5), its position vector is given by,

$$\vec{a} = 3\hat{i} - 2\hat{j} - 5\hat{k}$$

The direction ratios of PQ are given by,

$$(3-3) = 0, (-2+2) = 0, (6+5) = 11$$

The equation of the vector in the direction of PQ is

$$\vec{b} = 0.\hat{i} - 0.\hat{j} + 11\hat{k} = 11\hat{k}$$

The equation of PQ in vector form is given by, $\vec{r}=\vec{a}+\lambda\vec{b}$, $\lambda\in R$

$$\Rightarrow \vec{r} = (3\hat{i} - 2\hat{j} - 5\hat{k}) + 11\lambda\hat{k}$$

The equation of PQ in Cartesian form is

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$$
i.e.,
$$\frac{x - 3}{0} = \frac{y + 2}{0} = \frac{z + 5}{11}$$

Question 10:

Find the angle between the following pairs of lines:

(i)
$$\vec{r} = 2\hat{i} - 5\hat{j} + \hat{k} + \lambda (3\hat{i} - 2\hat{j} + 6\hat{k})$$
 and $\vec{r} = 7\hat{i} - 6\hat{k} + \mu (\hat{i} + 2\hat{j} + 2\hat{k})$
(ii) $\vec{r} = 3\hat{i} + \hat{j} - 2\hat{k} + \lambda (\hat{i} - \hat{j} - 2\hat{k})$ and $\vec{r} = 2\hat{i} - \hat{j} - 56\hat{k} + \mu (3\hat{i} - 5\hat{j} - 4\hat{k})$

Answer

(i) Let Q be the angle between the given lines.

$$\cos Q = \left| \frac{\vec{b_1} \cdot \vec{b_2}}{\left| \vec{b_1} \right| \left| \vec{b_2} \right|} \right|$$

The angle between the given pairs of lines is given by,

The given lines are parallel to the vectors, $\vec{b}_{\rm l}=3\hat{i}+2\hat{j}+6\hat{k}$ and $\vec{b}_{\rm 2}=\hat{i}+2\hat{j}+2\hat{k}$, respectively.

$$\begin{split} \therefore \left| \vec{b}_1 \right| &= \sqrt{3^2 + 2^2 + 6^2} = 7 \\ \left| \vec{b}_2 \right| &= \sqrt{(1)^2 + (2)^2 + (2)^2} = 3 \\ \vec{b}_1 \cdot \vec{b}_2 &= \left(3\hat{i} + 2\hat{j} + 6\hat{k} \right) \cdot \left(\hat{i} + 2\hat{j} + 2\hat{k} \right) \\ &= 3 \times 1 + 2 \times 2 + 6 \times 2 \\ &= 3 + 4 + 12 \\ &= 19 \end{split}$$

********* END ********