Materiais Elétricos e Magnéticos para Engenharia

Professor: Marcus V. Batistuta

Laboratório #4

LDR

1º Semestre de 2018

FGA - Universidade de Brasília

LDR: Light Dependent Resistor

		$E_{\rm g},{ m eV}$	
Semicondutor	Tipo	0 K	300 K
CdS	d	2,582	2,42
CdSe	d	1,840	1,74

LDR: Light Dependent Resistor

Resistance vs. Illumination

 $1 lux = 1 lúmen/m^2$

Fotometria

Quantity Unit			Dimension	Natas	
Name	Symbol ^[nb 1]	Name	Symbol	Symbol	Notes
Luminous energy	Q _v [nb 2]	lumen second	lm⋅s	T.J [nb 3]	Units are sometimes called talbots.
Luminous flux / luminous power	Φ _v ^[nb 2]	lumen (= cd·sr)	lm	J [nb 3]	Luminous energy per unit time.
Luminous intensity	I _v	candela (= lm/sr)	cd	J [nb 3]	Luminous power per unit solid angle.
Luminance	L _v	candela per square metre	cd/m ²	L ⁻² ·J	Luminous power per unit solid angle per unit <i>projected</i> source area. Units are sometimes called <i>nits</i> .
Illuminance	E _v	lux (= lm/m ²)	lx	L ⁻² .J	Luminous power incident on a surface.
Luminous exitance / luminous emittance	M _v	lux	lx	L ⁻² ⋅J	Luminous power <i>emitted</i> from a surface.
Luminous exposure	H _V	lux second	lx⋅s	L ⁻² ⋅T⋅J	
Luminous energy density	ω_{v}	lumen second per cubic metre	lm⋅s⋅m ⁻³	L ⁻³ ⋅T⋅J	
Luminous efficacy	η ^[nb 2]	lumen per watt	lm/W	M ⁻¹ ·L ⁻² ·T ³ ·J	Ratio of luminous flux to radiant flux or power consumption, depending on context.
Luminous efficiency / luminous coefficient	V			1	
See also: SI · Photometry · Radiometry					

4

Fotômetro Analógico

$$P_{\rm (W)} = \Phi_{\rm v(lm)} / \eta_{\rm (lm/W)}$$

Luminous efficacy table

Light type	Typical luminous efficacy (lumens/watt)
Tungsten incandescent light bulb	12.5-17.5 lm/W
Halogen lamp	16-24 lm/W
Fluorescent lamp	45-75 lm/W
LED lamp	30-90 lm/W
Metal halide lamp	75-100 lm/W
High pressure sodium vapor lamp	85-150 lm/W
Low pressure sodium vapor lamp	100-200 lm/W
Mercury vapor lamp	35-65 lm/W

Lumens to watts table

Lumens	Incandescent light bulb watts	Fluorecent / LED watts
375 lm	25 W	6.23 W
600 lm	40 W	10 W
900 lm	60 W	15 W
1125 lm	75 W	18.75 W
1500 lm	100 W	25 W
2250 lm	150 W	37.5 W
3000 Im	200 W	50 W

Examples		
Illuminance	Surfaces illuminated by:	
0.0001 lux	Moonless, overcast night sky (starlight)[3]	
0.002 lux	Moonless clear night sky with airglow[3]	
0.27-1.0 lux	Full moon on a clear night ^{[3][4]}	
3.4 lux	Dark limit of civil twilight under a clear sky ^[5]	
50 lux	Family living room lights (Australia, 1998)[6]	
80 lux	Office building hallway/toilet lighting[7][8]	
100 lux	Very dark overcast day ^[3]	
320–500 lux	Office lighting ^{[9][10][11]}	
400 lux	Sunrise or sunset on a clear day.	
1000 lux	Overcast day; [3] typical TV studio lighting	
10 000–25 000 lux	Full daylight (not direct sun)[3]	
32 000–100 000 lux	Direct sunlight	

Criação e Recombinação de Pares Elétron-Buraco

Figura 5.5: Absorção de um fóton de energia $\hbar\omega$ e vetor de onda desprezível acompanhada da criação de um par elétron-buraco em semicondutor de gap direto.

$$J = (\sigma_n + \sigma_p)\mathcal{E} = \sigma\mathcal{E}$$
$$\sigma = e(n_0 \mu_n + p_0 \mu_p)$$

Fig. 3--Characteristic curves of photosensitive devices compared with the response curve of the human eye.

Montagem Experimental

LED – Light Emitting Diode

Espectro de LED Vermelho

14

Optoeletrônica - Fotoresistor

$$I(x,\lambda) = I_0 e^{-\alpha(\lambda).x} [W/m^2]$$

Figura 8.16: Estrutura simples de um foto-resistor, ou LDR.

Geração de Pares Elétron-Lacuna

$$\frac{\partial \delta p}{\partial t} = \frac{\partial \delta n}{\partial t} = g = \frac{\eta I_0}{\hbar \omega d}$$

g – Taxa de Geração de pares elétron-lacuna [m⁻³s⁻¹]

d – Espessura do Semicondutor (Profundidade) [m]

 I_0 – Radiação Incidente com ABSORÇÃO UNIFORME [W/m²]

 η – Eficiência de geração de pares elétron-lacuna

 ω – Frequência Média dos Fótons [rad/s]

Semicondutor Intrínseco:

$$n_0 = p_0 = n_i$$

$$\int p = p_0 + \delta p \quad \text{[m-3]}$$

$$n = n_0 + \delta n \quad \text{[m-3]}$$

$$n = n_0 + \delta n \quad \text{[m-3]}$$

Geração e Recombinação de Pares Elétron-Lacuna

$$\frac{\partial \delta n}{\partial t} = g - r = \frac{\eta I_0}{\hbar \omega d} - \frac{\delta n}{\tau_r}$$

$$\frac{\partial \delta p}{\partial t} = g - r = \frac{\eta I_0}{\hbar \omega d} - \frac{\delta p}{\tau_r}$$

 τ_r – Tempo de Recombinação [s]

r – Taxa de Recombinação [1/m³.s]

Regime Estacionário:
$$g = r \longrightarrow \frac{\partial}{\partial t} = 0$$

Semicondutor Intrínseco:
$$\delta p = \delta n = g \, \tau_r = \frac{\eta I_0 \tau_r}{\hbar \, \omega d}$$

Geração e Recombinação de Pares Elétron-Lacuna

$$\sigma = n.e.\mu_n + p.e.\mu_p = (n_0 + \delta n).e.\mu_n + (p_0 + \delta p).e.\mu_p$$

 σ – Condutividade [S/m]

μ – Mobilidades de Elétrons e Lacunas

$$\sigma = n.e.\mu_n + p.e.\mu_p = (n_i + \Delta)e(\mu_n + \mu_p)$$

$$\Delta = \frac{\eta I_0 \tau_r}{\hbar \omega d} = C.I_0 \qquad I_0 \approx k.I_{LED}$$

$$\sigma = (n_i + C.I_0)e(\mu_n + \mu_p)$$

Concentração Intrínseca vs. Temperatura

$$n_i = p_i = \sqrt{n_i p_i} = (N_c N_v)^{1/2} e^{-E_g/2k_B T}$$

$$n = N_c e^{-(E_c - E_F)/k_B T}$$

$$p = N_v e^{-(E_F - E_v)/k_B T}$$

$$N_c = 2 \left(\frac{m_c^* k_B T}{2\pi \hbar^2} \right)^{3/2}$$

$$N_v = 2 \left(\frac{m_v^* k_B T}{2\pi \hbar^2} \right)^{3/2}$$

Assumindo Invariante: Temperatura ~ 300 K

Corrente vs. Tensão no LDR

$$\sigma = (n_i + C.I_0).e(\mu_n + \mu_p)$$

$$I = G.V \quad \frac{1}{R} = G = \frac{A\sigma}{l} \qquad I = \frac{A\sigma}{l}V$$

$$I = \frac{A\sigma}{l}V = \left[\frac{A}{l}(n_i + C.I_0).e(\mu_n + \mu_p)\right].V$$

$$I = \left[\frac{A}{l}(n_i + C.k.I_{LED}).e(\mu_n + \mu_p)\right].V$$

$$I_{LDR} = [C_1.I_{LED} + C_2]V_{LDR}$$

Desafio: Ganho de Corrente, Tensão e Potência

$$I_{LDR} = \left[C_1.I_{LED} + C_2\right]V_{LDR}$$

- 1) Possível? $i_{LDR} > i_{LED}$ $G_i = i_{LDR}/i_{LED}$
- 2) Possível? $v_{LDR} > v_{LED}$ $G_v = v_{LDR}/v_{LED}$

3) Possível?
$$i_{LDR}v_{LDR} > i_{LED}v_{LED}$$

$$G = (i_{LDR}v_{LDR})/(i_{LED}v_{LED})$$

Pequenos sinais em regime permanente senoidal.