

Benchmark Tema 1 Grupo A resuelto.pdf Exámenes Resueltos (teoría y Prácticas)

- 2° Arquitectura de Computadores
- Grado en Ingeniería Informática
- Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación UGR - Universidad de Granada

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

ARQUITECTURA DE COMPUTADORES GRUPO A. BENCHMARK del TEMA 1

Estudiante:

- 1. En la expresión de la ley de Amdahl, $Sp \le p/(1+f(p-1))$, para la ganancia de velocidad de un computador al mejorar uno de sus recursos (Responda verdadero (V) o falso (F)):
 - p es el factor de incremento de prestaciones del recurso que se mejora

(V)

- f es la fracción del tiempo antes de la mejora en el que no se utiliza el recurso mejorado

(V)

- La máxima ganancia de velocidad que se puede conseguir, por mucho que se mejore el recurso es 1/(1-f)

(F)

- f puede ser mayor que 1

(F)

2. En un procesador superescalar a pleno rendimiento, el número de ciclos por instrucción (CPI) es menor que 1 (responda Verdadero, V, o Falso, F)

(V)

3. Los núcleos de la arquitectura Sunday Bridge de Intel pueden terminar hasta 8 operaciones en coma flotante (FLOP) por ciclo.

¿Cuál es la máxima velocidad (en GFLOPS) de un núcleo con dicha arquitectura que funciona a una frecuencia de reloj de 2.5 GHz?

8 FLOP/ciclo * 2.5 (Gciclos/s) = 20 GFLOPS

- 4. Responda Verdadero (V) o Falso (F):
 - En un computador NUMA, la memoria está físicamente distribuida aunque utiliza un modelo de programación de memoria compartida

(V)

- Un multicomputador también se denomina computador UMA

(F)

5. Si el bucle siguiente: for i=1 to N do a(i)=b(i)*c; se ejecuta en 5 segundos y N=10¹², siendo c, a(), y b() datos en coma flotante. ¿Cuántos GFLOPS alcanza la máquina al ejecutar el código?.

1*10¹² (FLOP)/(5s*10⁹)=1000/5 GFLOPS = 200 GFLOPS

- 6. Responda Verdadero (V) o Falso (F):
 - Las hebras de un proceso comparten la memoria asignada al proceso, los registros, la pila y el contador de programa

(F)

- Las hebras de un proceso necesitan recurrir a llamadas al sistema operativo para comunicarse

(**F**)

- Un multiprocesador puede funcionar como un computador MISD.

(V)

- 7. En la secuencia de instrucciones:
 - (a) add r1, r2, r3; r1 \leftarrow r2 + r3
 - (b) sub r1, r1, r4; r1 \leftarrow r1 r4
 - Hay dependencia RAW entre las instrucciones debido al registro r1

(V)

- Hay dependencia WAR entre las instrucciones debido al registro r1

(F)

