Departamento de Ciência de Computadores Desenho e Análise de Algoritmos (CC211)

FCUP 2012/13

Exame (15.01.2013) $dura c \tilde{a}o: 3h30$ Cotação: 3, 3.5, 4, 3.5, 2.5, 3.5

N.º		Nome	
-----	--	------	--

- 1. Pretende-se uma função POSMIN(v, k, n) para determinar o índice da posição que contém o menor elemento de um vetor v de n inteiros quando considerados apenas os elementos $v[k], v[k+1], \ldots, v[n]$. Os elementos do vetor são indexados de 1 a n. Se k for maior do que n ou menor do que 1, a função retorna -1. Caso contrário, retorna o índice da primeira ocorrência do mínimo.
- a) Apresente em pseudocódigo a função POSMIN(v, k, n). Justifique sucintamente, mas com rigor, a correção do algoritmo apresentado.
- **b)** Assuma que $1 \le k \le n$ e que a comparação dos valores se efetua em tempo constante. Descreva duas instâncias que determinem a complexidade temporal assintótica do algoritmo no melhor e no pior caso e caracterize tal complexidade como função de k e n.
- **2.** Considere o algoritmo apresentado abaixo, em que POSMIN é a função descrita no problema **1.** FUNC(v, n)

```
Para cada k \leftarrow 1 até n-1 fazer j \leftarrow \text{Posmin}(v, k, n);

Se j \neq k então aux \leftarrow v[k]; v[k] \leftarrow v[j]; v[j] \leftarrow aux;
```

- a) Escreva o enunciado de um problema que tal algoritmo resolve.
- b) Prove que o algoritmo resolve corretamente o problema enunciado. Comece por descrever com rigor o estado das variáveis à entrada do ciclo "Para" e no fim de cada iteração desse ciclo. Na prova, admita que Posmin está correta e que o vetor v guarda inteiros como no problema 1.
- c) Seja T(v,n) o tempo de execução do algoritmo numa instância arbitrária. Prove que existem constantes c_1, c_2 e n_0 positivas (não dependentes de v) tais que $c_1 n^2 \le T(v,n) \le c_2 n^2$ para $n \ge n_0$.
- d) Na continuação de 2c), diga para que valores de $p \in \mathbb{N}$, a complexidade temporal do algoritmo se pode caracterizar como $\Theta(n^p)$, $\Omega(n^p)$ ou $O(n^p)$. Explique.
- **3.** Considere uma estrutura de dados Q semelhante à dada nas aulas para implementação de uma heap de mínimo (com informação adicional) e a função HEAPIFY(i) apresentada abaixo.

```
\begin{aligned} & \text{Heapify}(i) \\ & | l \leftarrow \text{Left}(i); \\ & \text{Se } (l > Q.s) \text{ então } l \leftarrow i; \\ & r \leftarrow \text{Right}(i); \\ & \text{Se } (r > Q.s) \text{ então } r \leftarrow i; \\ & smallest \leftarrow i; \\ & \text{Se } (Q.x[l].k < Q.x[smallest].k) \text{ então } \\ & smallest \leftarrow l; \\ & \text{Se } (Q.x[r].k < Q.x[smallest].k) \text{ então } \\ & smallest \leftarrow r; \\ & \text{Se } (i \neq smallest) \text{ então } \\ & \text{SWAP}(i, smallest); // \text{ trocar elementos } \\ & \text{Heapify}(smallest); \end{aligned}
```

A estrutura tem quatro campos x, y, s e m, sendo x e y vetores e s o número de elementos que estão na heap e m o número máximo de elementos que pode conter. Cada elemento de x (i.e., da heap) é um par de valores (k, v) em que k define a prioridade e v o identificador do elemento. A posição v de y contém o índice da posição associada a v em x. Sabe-se que v não está na heap sse y[v] = 0.

- a) Que propriedades caracterizam uma heap de mínimo?
- b) Escreva em pseudocódigo LEFT(i), RIGHT(i) e SWAP(i,j), e ainda, uma função NOTEMPTY(i) para verificar se a heap ainda guarda elementos. Devem ter complexidade O(1).
- c) Que finalidade tem HEAPIFY(i)? Qual é a sua complexidade? Justifique.
- d) Escreva em pseudocódigo uma função Func_Heap() para retirar da heap o elemento que tem prioridade mínima (i.e., o valor de k menor), mantendo as propriedades da estrutura de dados. A função retorna o valor de v correspondente e deve ter complexidade $O(\log_2(Q.s))$, se $Q.s \ge 1024$.
- e) Suponha que Q.m = 12, Q.s = 11 e que o estado das variáveis é o seguinte

Q.x:	3:10	4:11	7:5	10:3	7:4	10:7	15:2	20:1	24:12	8:6	10:8	3:7

onde k:v designa (k,v) e se supõe que a posição mais à esquerda tem índice 1. Represente Q.x por uma árvore e indique o estado de Q.x, Q.y, Q.m e Q.s após a aplicação de Func_Heap().

4. Seja G o grafo seguinte em que os pesos associados aos ramos representam distâncias.

Das alíneas 4a) e 4b), resolva apenas uma.

- a) Aplique o algoritmo de Dijkstra para determinar um caminho mínimo de J para cada um dos restantes vértices do grafo. Para cada vértice $v \neq J$, deve indicar a distância mínima $\delta(J,v)$ e o vértice prec[v] que precede v no caminho encontrado pelo algoritmo. Acrescente informação ao grafo que permita compreender como obteve o resultado.
- b) Aplique o algoritmo de Prim para construir uma árvore de cobertura para G de peso total mínimo, partindo de J. Para cada nó $v \neq J$, deve indicar o vértice pai[v] a que v ficou ligado nessa árvore. Acrescente informação ao grafo que permita compreender como obteve o resultado.
- c) Por redução ao absurdo, prove que o ramo $\{I, J\}$ não pertence a **nenhuma** árvore de cobertura de G com peso total mínimo. Comece por justificar que o grafo que se obtém quando se retira um ramo $\{u, v\}$ a uma árvore de cobertura \mathcal{T} de G tem exatamente duas componentes conexas.
- d) Suponha que pretende determinar o caminho de comprimento mínimo entre um nó s e cada nó v de um grafo $\mathcal{G} = (\mathcal{V}, \mathcal{E}, d)$ não dirigido **conexo**, tal que $v \neq s$. Tem disponível uma função AlgoPrim (\mathcal{G}, pai, s) que lhe permite construir uma árvore de cobertura de \mathcal{G} de peso mínimo, com raíz em s, dando como resultado o vetor pai[v] que identifica o vértice a que v ficou ligado na árvore. Justifique que o algoritmo seguinte não resolve corretamente o problema.

```
CAMINHOSMINIMOS(s, \mathcal{G}) ESCREVECAMINHO(s, v, pai)

ALGOPRIM(\mathcal{G}, pai, s); Se v \neq s então

ESCREVECAMINHO(s, v, pai); escrever(v); (CONTINUA)
```

Departamento de Ciência de Computadores Desenho e Análise de Algoritmos (CC211)

FCUP 2012/13

Exame (15.01.2013	Exame	(15.01.2013)
-------------------	-------	--------------

(continuação)

N.º	Nome	

- **5.** Considere o grafo dirigido simétrico que resulta do grafo representado no problema **4.** por substituição de cada ramo $\{u, v\}$ por dois arcos (u, v) e (v, u), com o mesmo peso. Suponha que os pesos designam as capacidades dos arcos.
- a) Represente nesse grafo um fluxo máximo de C para J e justifique que é máximo.
- b) Suponha que o fluxo que indicou era o obtido pelo algoritmo de Edmonds-Karp numa dada iteração (após aumento de fluxo). Descreva sucintamente quais seriam os passos seguintes nesse algoritmo.
- **6.** Seja $G_A = (V, A, d)$ um grafo dirigido acíclico com pesos e $G_E = (V, E, d')$ o grafo não dirigido que resulta de G_A por substituição de cada arco $(u, v) \in A$ por um ramo não dirigido $\{u, v\}$, com peso $d'(\{u, v\}) = d(u, v)$. Seja Γ um conjunto finito de caminhos em G_A , sendo cada caminho $\gamma \in \Gamma$ dado pela sequência de vértices que o define. Pretende-se verificar se é possível reconstruir G_A a partir de G_E e de Γ .

(Como exemplo, suponha que $\Gamma = \{\text{MDKJH}, \text{MEIJH}, \text{DK}, \text{HLFG}, \text{CNA}, \text{LBA}\}\ e\ G_E$ é o grafo não dirigido representado no problema 4.)

- a) Seja $G_{\Gamma} = (V, A_{\Gamma})$ o grafo dirigido **acíclico** formado por V e pelos arcos que constituem os caminhos de Γ . Prove que:
 - i. qualquer que seja o ramo $\{u, v\} \in E$, se v é acessível de u em G_{Γ} então $(u, v) \in A$ (se for u acessível de v então $(v, u) \in A$);
 - ii. se v é acessível de u em G_{Γ} , então a relação de acessibilidade não varia se se acrescentar o arco (u, v) a A_{Γ} .
 - iii(*). qualquer que seja o ramo $\{u,v\} \in E$, se v não é acessível de u em G_{Γ} nem u é acessível de v em G_{Γ} então nada se pode concluir sobre o ramo $\{u,v\}$. (Sugestão: recorde que G_A é acíclico e mostre que, para um $\{u,v\}$ fixo existiriam sempre pelo menos dois grafos G_A possíveis; se necessário, use indução matemática)
- **b)** Suponha que os vértices estão numerados de 1 a |V| e que Γ é lido da entrada padrão (pode arbitrar a representação que entender para Γ). Apresente (em pseudocódigo) um algoritmo **polinomial** para determinar, para cada $v \in V$, o conjunto de vértices C_v dos quais v é acessível em G_Γ . Pode explorar o facto de G_Γ ser um grafo dirigido acíclico.
- c) Na continuação da **6b**), apresente um algoritmo **polinomial** para resolver o problema da reconstrução de G_A . O algoritmo deve produzir informação sobre a parte de G_A que se consegue reconstruir e os sobre os ramos sobrantes, se existirem. Suponha que G_E é dado por uma matriz de adjacências simétrica (M[i,j] = M[j,i] = 1 se $\{i,j\} \in E$, e M[i,j] = M[j,i] = 0 se $\{i,j\} \notin E$).

(FIM)