Title: Predicting Buyer Type using Random Forest Classifier

Name: Aanjneya Nayak

Roll No.: 20240110030001

Course: CSE - AI

Project Type: Machine Learning Classification Project

Date: 22, April 2025

Introduction

In today's e-commerce and retail environment, understanding buyer behavior is crucial for enhancing user experience and increasing sales. This project aims to build a machine learning model that predicts whether a customer is a **bargain hunter** or a **premium buyer** based on their spending habits.

The dataset contains the following columns:

- total_spent: Total money spent by the customer.
- avg_purchase_value: Average amount spent per purchase.
- visits per month: Number of times the customer visits per month.
- buyer_type: The target variable (bargain_hunter or premium_buyer).

We used a **Random Forest Classifier** for this classification task due to its accuracy and robustness in handling tabular data.

Methodology

Step 1: Data Preprocessing

- Loaded the CSV file using pandas.
- Checked for missing values and cleaned the data.
- Encoded the target column buyer_type using label encoding:
 - o bargain hunter → 0
 - o premium_buyer → 1

Step 2: Feature Selection

- Selected total_spent, avg_purchase_value, and visits_per_month as input features (X).
- Used buyer_type as the output label (y).

Step 3: Model Training

- Split the data into **training (80%)** and **testing (20%)** sets using train test split.
- Trained a RandomForestClassifier on the training data.

Step 4: Evaluation

- Evaluated performance using:
 - Confusion Matrix
 - Accuracy
 - Precision
 - Recall
- Visualized the confusion matrix using seaborn.heatmap.

CODE:

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
import seaborn as sns
import matplotlib.pyplot as plt
# Load the dataset
df = pd.read_csv('/content/customer_behavior.csv')
# View data
print("Sample data:")
print(df.head())
# Check for missing values
print("\nChecking for missing values:")
print(df.isnull().sum())
# Encode the buyer_type column
df['buyer_type'] = df['buyer_type'].map({'bargain_hunter': 0, 'premium_buyer': 1})
# Features and labels
X = df[['total_spent', 'avg_purchase_value', 'visits_per_month']]
y = df['buyer_type']
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

```
# Model training
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)
# Predictions
y_pred = model.predict(X_test)
# Confusion matrix
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
      xticklabels=['Bargain', 'Premium'], yticklabels=['Bargain', 'Premium'])
plt.xlabel('Predicted Label')
plt.ylabel('Actual Label')
plt.title('Confusion Matrix Heatmap')
plt.show()
# Evaluation
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
print("\nEvaluation Metrics:")
print(f"Accuracy: {accuracy:.2f}")
print(f"Precision: {precision:.2f}")
print(f"Recall: {recall:.2f}")
```

Output/Result

Sample Output Screenshot:

References/Credits

- Dataset created manually based on hypothetical customer behavior.
- Scikit-learn documentation
- Pandas documentation
- Seaborn documentation