TASTY BYTES Site traffic boost

- Raise site traffic with better recipes' selection powered by machine learning
- Metrics to follow, improvements in data collection and next steps

Data validation

Data Integrity

Missing values, business rules, data types

Dataset size = 947 registers

Missing values from the target represent the "0"

Data validation: Summary 1

Data Integrity

Missing values, business rules, data types

Column	Validation	Issues	Cleaning/Handling	Business Rule
calories	Range, missing, type	5.49% missing	Dropped from the dataset	>= 0
carbohydrate	Range, missing, type	5.49% missing	Dropped from the dataset	>= 0
sugar	Range, missing, type	5.49% missing	Dropped from the dataset	>= 0
protein	Range, missing, type	5.49% missing	Dropped from the dataset	>= 0
category	Value check, missing, type	11 categories vs 10 in spec	Mapped 'Chicken Breast' to 'Chicken'	10 predefined groups
servings	Value check, missing, type	'4 as snack' format	Converted to integer	Must be 1, 2, 4 or 6
high_traffic	Missing, type	39.4% nulls	Converted to integer (1=High, 0=Low)	Target variable
recipe	Uniqueness, type	None	Converted to string	Unique identifier

Statistical Data validation Outliers properties × × carbohydrate sugar **IQR** caping 3.0 2.5 2.0 carbohydrate

1.5

1.0

0.5

0.0

protein

Data validation

Skewness

Log and sqrt transformations

Column	Initial Skewness	Outlier Detection	Transformation Applied	Final Skewness
calories	2.03	IQR (Upper bound)	Log(x+1)	0.33
carbohydrate	3.75	IQR (Upper bound)	Log(x+1)	0.39
sugar	4.22	IQR (Upper bound)	Log(x+1)	0.02
protein	3.50	IQR (Upper bound)	Square root	-0.20
servings	0.01	None	None	0.01

Feature engineering

Exploratory Data Analysis

Patterns and correlations

Feature engineering

Exploratory Data Analysis

Patterns and correlations

Model selection

Modeling **Ensemble**

Logistic Regression and Random Forest

Model selection

Modeling **Ensemble**

Logistic Regression and Random Forest

Model selection

```
from sklearn.ensemble import VotingClassifier
ensemble = VotingClassifier(
    estimators=[("logreq", clf_tuned), ("rf", rf_pruned)],
    voting="hard" # Uses probabilities
    , weights=[2, 1]
ensemble.fit(X_train_processed_final, y_train_)
v_test_pred = ensemble.predict(X_test_processed)
print(classification_report(y_test, y_test_pred))
              precision
                          recall f1-score
                                              support
                   0.67
                             0.75
                                       0.71
                                                   73
                            0.75
                                       0.78
                   0.81
                                                  106
                                       0.75
                                                 179
    accuracy
                                      0.74
  macro avq
                   0.74
                             0.75
                                                 179
weighted avg
                   0.76
                             0.75
                                       0.75
                                                  179
```

Modeling **Ensemble**

Logistic Regression and Random Forest

Ensemble model

81% 75%

Precision Recall

An ensemble voting classifier combining **Logistic Regression** and **Random Forest**

Recommendations for the marketing team

Ensemble model

81% 75%

Precision Recall

An ensemble voting classifier combining **Logistic Regression** and **Random Forest**

The metric

Precision > 80%

Deploy ensemble model

 Build admin tool (Python + Streamlit/Flask) to predict "POPULAR"/"NOT POPULAR" w/ probability.

Monitor Performance

Track % high-traffic recipes weekly; retrain if precision
 <75%.

Hybrid human-model decision making

 Allow overrides from the product manager when model's confidence is between 60-80%.

Enhance data

Collect user feedback (ratings, cooking time).

A/B test

 Run 2-week trial: model vs. manual picks. Measure traffic & subscriptions.

TASTY BYTES Site traffic boost

Thank you!

André Canal July 09th, 2025