Number Systems I

Number Representation

- Decimal Notation: 10 digits (0-9)
- Binary Notation: 2 digits (0,1)
- 10 is the base for Decimal, 2 is the base for binary notation

Number Representation

- Decimal Notation: 10 digits (0-9)
- Binary Notation: 2 digits (0,1)
- 10 is the base for Decimal, 2 is the base for binary notation

Number Representation

Representation of n base b is called the base b expansion of n

For an integer b > 1. Every positive integer n can be expressed uniquely as:

$$n = a_k \cdot \boldsymbol{b^k} + a_{k-1} \cdot \boldsymbol{b^{k-1}} + \cdots + a_1 \cdot \boldsymbol{b^1} + a_0 \cdot \boldsymbol{b^0},$$

where k is a non-negative integer, each a_i is an integer in the range from 0 to b - 1, and $a_k \neq 0$.

$$1308 = 1 \times 10^3 + 3 \times 10^2 + 0 \times 10^1 + 8 \times 10^0$$

Converting from base b to decimal

For an integer b > 1. Every positive integer n can be expressed uniquely as:

$$n = a_k \cdot \boldsymbol{b^k} + a_{k-1} \cdot \boldsymbol{b^{k-1}} + \cdots + a_1 \cdot \boldsymbol{b^1} + a_0 \cdot \boldsymbol{b^0},$$

where k is a non-negative integer, each a_i is an integer in the range from 0 to b - 1, and $a_k \neq 0$.

$$(2012)_3 = 2 \times 3^3 + 0 \times 3^2 + 1 \times 3^1 + 2 \times 3^0$$

= $2 \times 27 + 0 \times 9 + 1 \times 3 + 2 \times 1$
= 59

Hexadecimal Numbers

- 16 digits
- o 0, 1,2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Hex	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

- A 4-bit binary number can be represented with 1 Hexadecimal Digit
- 1 byte is equivalent to 8 bits
- So, 1 byte can be represented by 2 Hexadecimal digits

Hexadecimal Numbers

- 16 digits
- 0, 1,2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Hex	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

$$(3B2)_{16} = 3 \times 16^{2} + B \times 16^{1} + 2 \times 16^{0}$$

= $3 \times 256 + 11 \times 16 + 2 \times 1$
= 946

Converting from decimal to base b

For an integer b > 1. Every positive integer n can be expressed uniquely as:

$$n = a_k \cdot \boldsymbol{b^k} + a_{k-1} \cdot \boldsymbol{b^{k-1}} + \cdots + a_1 \cdot \boldsymbol{b^1} + a_0 \cdot \boldsymbol{b^0},$$

where k is a non-negative integer, each a_i is an integer in the range from 0 to b - 1, and $a_k \neq 0$.

Converting from decimal to base b

Given n = 1161

$$1161 = (3246)_7$$

Find base 7 digits:

$$3 \cdot 7^3 + 2 \cdot 7^2 + 4 \cdot 7 + 6 = 1161$$

Multiple of 7

$$3 \cdot 7^3 + 2 \cdot 7^2 + 4 \cdot 7 + 6 = 1161$$

For remaining digits use

For remaining digits use 165 div 7= 23 \checkmark

For remaining digits use 23 div 7=3

Next digit is 165 mod 7=4

Digit in the range

Rightmost digit is

 $1161 \mod 7 = 6$

0, 1, 6...,

Next digit is 23 mod 7=2

$$1161 = (3246)_7$$

Example

Convert the following decimal numbers to a base 2 number: