Notas Curso Topología Algebraica ' Escuela Oaxaqueña de M aniel Alvarado 11 de enero de 2025 10° Escuela Oaxaqueña de Matemáticas

Cristo Daniel Alvarado ES Cristo Daniel Alvarado

Índice general

1. 10]	pologia Algebraica			2
El gru	ipo fundamental			
Camir	nos y Homotopías: El	grupo fundamental		3
Funto	rialidad			ϵ
Teore	ma de Van Kampen			10.57
Grupo	o Fundamental de una	gráfica		arago 8
Espac	ios Cubrientes			g
Levan	tamientos			10
2. Eje	ercicios y Problemas			12
Preeli	minares: el grupo fun	${f damental}$		12
Grupo	o Fundamental: Defini	ciones y Primeros Ejem	iplos	16
Espac	ios Cubrientes			21

Capítulo 1

Topología Algebraica

§1.1 EL GRUPO FUNDAMENTAL

Observación 1.1.1

De ahora en adelante X y Y serán espacios topológicos.

Definición 1.1.1

Sean X y Y espacios. Dos funciones continuas $f,g:X\to Y$ son **homotópicas** si $\exists H:X\times [0,1]\to Y$ continua (una **homotopía**) tal que:

$$H(x,0) = f(x)$$
 y $H(x,1) = g(x)$, $\forall x \in X$

Escribimos que $f \simeq g$.

Definición 1.1.2

Los espacios X y Y son homotópicamente equivalentes si $\exists f: X \to Y$ y $g: Y \to X$ funciones continuas (llamadas equivalencias homotópicas) tales que:

$$f \circ q \approx \mathbb{1}_X \quad \text{y} \quad q \circ f = \mathbb{1}_Y$$

a lo cual escribimos $X \simeq Y$.

Observación 1.1.2

 \simeq define una relación de equivalencia en la clase de espacios topológicos.

Demostración:

Ejercicio.

Proposición 1.1.1

Si X es homeomorfo a Y, entonces $X \simeq Y$.

Definición 1.1.3

Un espacio X es **contráctil** si $X \simeq \{*\}$.

Observación 1.1.3

Otra equivalencia es que $C_p: X \to X$ $x \mapsto p$ es homotópica a la identidad.

Ejemplo 1.1.1

 $\mathbb{R}^n, I = [0, 1], \mathbb{D}^n$ son contráctilces.

Definición 1.1.4

Un subespacio A de X es un retracto de X si $\exists r: X \to A$ continua tal que $r|_A = \mathbb{1}_A$. En este caso r es llamada una retracción.

Definición 1.1.5

Dos funciones son homotópicas relativas a A si para la función $H: X \times I \to Y$ es tal que:

$$H(a,t) = a, \quad \forall a \in A \forall t \in I$$

Definición 1.1.6

Un retracto A de X se llama **retracto por deformación** si $i \circ x : X \to X$ es homotópica a $\mathbb{1}_X$ relativa a A.

Ejemplo 1.1.2

X es contráctil si y sólo si $\forall p \in X, \{p\} \subseteq X$ es un retracto por deformación.

Ejemplo 1.1.3

 $\mathbb{S}^1 \subseteq \mathbb{C} \setminus 0$ es un retracto por deformación.

Ejemplo 1.1.4

 $\mathbb{S}^1 \vee \mathbb{S}^1 \subseteq \mathbb{C} \setminus \{p,q\}$ es un retracto por deformación (con $p \neq q$). En este caso, $\mathbb{S}^1 \vee \mathbb{S}^1$ es la suma puntuada (o wedge). En este caso:

$$\mathbb{S}^1 \vee \mathbb{S}^1 = \mathbb{S}^1 \sqcup \mathbb{S}^1/x \sim y$$

donde x está en la primer esfera y y en la segunda.

Ejemplo 1.1.5

 $\underbrace{\mathbb{S}^1 \vee \cdots \vee \mathbb{S}^1}_{n-\text{veces}}$ la rosa de n-pétalos es una deformación de retracción de $\mathbb{C} \setminus \{p_1, ..., p_n\}$.

Ejemplo 1.1.6

El círculo central de la banda de Möbius es retracto por deformación de X.

Surge naturalmente la siguiente pregunta:

¿Cuándo dos espacios topológicos X y Y NO son topológicamente equivalentes?

La topología algebraica nos da repuestas para este tipo de preguntas, ya que traducimos el problema a algo algebraico para luego resolverlo a partir de invariantes algebraicos.

§1.2 Caminos y Homotopías: El grupo fundamental

Definición 1.2.1

Sea X espacio topológico. Un **camino de** p **a** q **en** X (con $p, q \in X$) es una función continua $f: [0,1] \to X$ tal que f(0) = p y f(1) = q.

Definición 1.2.2

Dos caminos $\gamma_0, \gamma_1 : [0,1] \to X$ de $p \in X$ a $q \in X$ son **homotópicos** si $\exists H : [0,1] \times [0,1] \to X$ continua tal que:

$$H\big|_{[0,1]\times\{0\}} = \gamma_0, H\big|_{[0,1]\times\{1\}} = \gamma_1$$

y,
$$H\big|_{\{0\}\times[0,1]}=p$$
 y $H\big|_{\{1\}\times[0,1]}=1.$

Observación 1.2.1

En cierto sentido, la familia de caminos:

$$\left\{ \gamma_t = H \big|_{[0,1] \times \{t\}} \middle| t \in [0,1] \right\}$$

deforma al camino γ_0 en γ_1 .

Proposición 1.2.1

 \simeq es una relación de equivalencia en el conjunto de caminos en X de p a q.

Observación 1.2.2

Escribimos $[\gamma]$ para la clase de γ .

Lema 1.2.1

Sea $\gamma:[0,1]\to X$ un camino de p a q y $\varphi:[0,1]\to[0,1]$ continua. Entonces, $\gamma\simeq\gamma\circ\varphi$.

En otras palabras, reparametrizar da caminos homotópicos. Más aún, da básicamnete el mismo recorrido a diferentes velocidades.

Definición 1.2.3 (Concatenación de caminos)

Sean γ un camino de p a q en X y μ un camino de q a r. Definimos el camino $\gamma * \mu : [0,1] \to X$ de p a r como:

$$\gamma * \mu(t) = \begin{cases} \gamma(2t) & \text{si} \quad t \in [0, 1/2] \\ \mu(2t-1) & \text{si} \quad t \in [1/2, 1] \end{cases}$$

Definición 1.2.4

Sea $p \in X$, $e_p : [0,1] \to X$ dado por: $e_p(t) = p$ para todo $t \in [0,1]$ es el **camino constante** de p a p.

4

Lema 1.2.2

Sean $\gamma_0 \simeq \gamma_1$ caminos de p a q y $\mu_0 \simeq \mu_1$ caminos de q a r. Entonces: $\gamma_0 * \mu_0 \simeq \gamma_1 * \mu_1$.

Lema 1.2.3

Sea γ camino de p a q, μ de q a r y τ de r a s. Entonces, $\gamma*(\mu*\tau)\simeq(\gamma*\mu)*\tau$.

Lema 1.2.4

Sea γ camino de p a q. Entonces:

$$\gamma * e_p \simeq \gamma \simeq e_p * \gamma$$

Definición 1.2.5

Sea γ un camino de p a q. El **camio inverso** $\overline{\gamma}:[0,1]\to X$ de q a p está dado por:

$$\overline{\gamma}(t) = \gamma(1-t), \quad \forall t \in [0,1]$$

Lema 1.2.5

$$\gamma * \overline{\gamma} \simeq e_p, \ \overline{\gamma} * \gamma \simeq e_q \ y \ \overline{\overline{\gamma}} = \gamma.$$

Definición 1.2.6

Un camino es **cerrado/lazo** si sus extremos coinciden.

Definición 1.2.7

Decimos que γ es un lazo basado en $x_0 \in X$ si $\gamma(0) = \gamma(1) = x_0$.

Definición 1.2.8

Sea $x_0 \in X$. El grupo fundamental de X con punto base en x_0 es el conjunto $\pi_1(X, x_0)$ dado por:

$$\pi_1(X, x_0) = \left\{ [\gamma] \middle| \gamma : [0, 1] \to X \text{ es un lazo basado en } x_0 \in X \right\}$$

5

con el producto dado por el inducido por la concatenación de caminos.

Observación 1.2.3

* es asociativa, $[e_{x_0}]$ es el elemento neutro y $[\overline{\gamma}]$ es el inverso de $[\gamma]$.

Ejemplo 1.2.1

$$\pi_1(\mathbb{R}^n, x_0) = \{[e_{x_0}]\}.$$

Ejemplo 1.2.2

Si $U \subseteq \mathbb{R}^n$ tiene forma de estrella relativo a $x_0 \in \mathbb{R}^n$, entonces $\pi_1(X, x_0) = \langle e \rangle$.

Observación 1.2.4

Veremos que:

- (a) $\pi_1(\mathbb{S}^1, 1) \cong \mathbb{Z}$.
- (b) $\pi_1(\mathbb{S}^n, x_0) \cong \langle e \rangle$ si $n \geq 2$.
- (c) $\pi_1(\mathbb{C} \setminus \{p,q\}, x_0) \cong F_2$, el grupo libre en dos elementos.

Definición 1.2.9

Si X arco-conexo tal que $\pi(X, x_0) = \langle e \rangle$, X es llamdo **simplemente conexo**.

Lema 1.2.6 (Cambio de punto base)

Sea X espacio topológico y γ un camino de p a q. Definimos $\varphi_{\gamma}: \pi_1(X,p) \to \pi_1(X,q)$ dada por:

$$[\delta] \mapsto [\gamma * \delta * \overline{\gamma}]$$

Entonces, φ_{γ} es un homomorfismo de grupos que solo depende de la clase de homotopía de γ .

Lema 1.2.7

Se tiene que:

$$\varphi_{[\gamma]} \circ \varphi_{[\overline{\gamma}]} = \mathbb{1}_{\pi_1(X,q)}$$
$$\varphi_{[\overline{\gamma}]} \circ \varphi_{[\gamma]} = \mathbb{1}_{\pi_1(X,p)}$$

Corolario 1.2.1

 $\varphi_{[\gamma]}$ es un isomorfismo de grupos.

Lema 1.2.8

Si p, q están en la misma componente arco-conexa, entonces $\pi_1(X, p) = \pi_1(X, q)$.

§1.3 Funtorialidad

Observación 1.3.1

Podemos ver al grupo fundamental como un funtor:

$$\pi_1: \mathrm{Top}_* \to \mathrm{Grp}$$

tal que $(X, x) \mapsto \pi_1(X, x)$.

Proposición 1.3.1

Sea $f: X \to Y$ una función continua y $\gamma: [0,1] \to X$ un camino de p a q. Definimos $f_*(\gamma) = f \circ \gamma$.

- (a) $f_*(\gamma)$ es un camino de Y que une a f(p) con f(q).
- (b) Si $\gamma \simeq \gamma'$ entonces $f_*(\gamma) \simeq f_*(\gamma')$.
- (c) γ es un camino de p a q implica que $f_*(\gamma * \mu) =$.
- (d) Si $f:X\to Y$ y $g:Y\to Z$ son funciones continuas, entonces:

$$q_* \circ f_* = q_* \circ f_*$$

(e)
$$(\mathbb{1}_X)_* = \mathbb{1}_{\pi_1(X,x_0)}$$
.

Con lo anteroir estamos diciendo que π_1 es un funtor covariante de la categoría de espacios topológicos puntuados en la categoría de grupos.

6

Teorema 1.3.1

 π_1 es un invariante de homeomorfismo, es decir si $X \cong Y$, entonces $\pi_1(X, x_0) \stackrel{f_0}{\cong} \pi_1(Y, f(x_0))$.

Lema 1.3.1

Sean $f, g: X \to Y$ y $x_0 \in X$. Si $f \simeq g$ relativas a x_0 , entonces:

$$f_* = g_* : \pi_1(X, x_0) \to \pi(Y, f(x_0))$$

Teorema 1.3.2

Sea $f: X \to Y$ y $y_0 = f(x_0)$. Si f es una equivalencia de homotopía, entonces $f_*: \pi_1(X, x_0) \to \pi(Y, f(x_0))$ es un isomorfismo, es decir que π_1 es un invariante de homotopía.

Teorema 1.3.3

Si A es un retracto por deformación de X y $x_0 \in A$, entonces el mapeo inclusión $i: A \to X$ induce un homomorfismo:

$$i_*: \pi_1(A, x_0) \to \pi_1(X, x_0)$$

Teorema 1.3.4

Sean X y Y espacios topológicos arco-conexos, $x_0 \in X$ y $y_0 \in Y$, entonces:

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$$

Ejemplo 1.3.1

 $\pi_1(\mathbb{S}^1 \times \mathbb{S}^1, (0,0)) \cong \mathbb{Z}^2.$

Observación 1.3.2

En particular, si X es contráctil, entonces:

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(Y, y_0)$$

§1.4 Teorema de Van Kampen

Proposición 1.4.1

Sea $X = U \cup V$ donde U y V son abiertos arco-conexos y $U \cap V$ es arco conexo. Tomemos $x_0 \in X$. Sean $i: (U, x_0) \to (X, x_0)$ y $j: (V, x_0) \to (X, x_0)$ los homomorfismos inducidos. Entonces, las imágenes de:

$$i_*: \pi_1(U, x_0) \to \pi_1(X, x_0)$$

$$j_*: \pi_1(V, x_0) \to \pi_1(X, x_0)$$

generan el grupo $\pi_1(X, x_0)$, es decir que el homomorfismo inducido:

$$\psi: \pi_1(U, x_0) * \pi_1(V, x_0) \to \pi_1(X, x_0)$$

es sobreyectivo.

Demostración:

La estrategia de la prueba consiste en dividir el dominio de un lazo con punto base x_0 en invervalos más pequeños tales que las imágenes de cada uno de estos esté en U o V. En esencia, queremos escribir a $[\gamma]$ como producto de elementos en cada uno de los grupos fundamentales (no necesariamente va a ser grupo libre, por lo que el homomorfismo será solamente sobreyectivo!).

Observación 1.4.1

Hay un teorema de forma más general que el anterior. Si $X = \bigcup_{\alpha \in A} U_{\alpha}$ todos los elementos de la unión abiertos arco-conexos con $x_0 \in X$ en cada uno de ellos y cada una de las intersecciones $U_{\alpha} \cap U_{\beta}$ es arco conexa, entonces $\pi_1(X, x_0)$ está generado por las imágenes de $(i_{\alpha})_* : \pi_1(U_{\alpha}, x_0) \to \pi_1(X, x_0)$.

Ejemplo 1.4.1

Tomemos $X = \mathbb{S}^2 \subseteq \mathbb{R}^3$. Considere los puntos p = (0,0,1) y q = (0,0,-1). Consideremos los abiertos:

$$U = \mathbb{S}^2 \setminus \{p\} \cong \mathbb{R}^2$$
$$V = \mathbb{S}^2 \setminus \{q\} \cong \mathbb{R}^2$$

se tiene que $U \cap V = \mathbb{S}^2 \setminus \{p,q\}$ es arco conexo, U y V son arco conexos y $\mathbb{S}^2 = U \cup V$, por lo que el homomorfismo:

$$\psi: \pi_1(U, x_0) * \pi_1(V, x_0) \to \pi_1(\mathbb{S}^2, x_0)$$

es epimorfismo, pero como U y V con contráctiles, se sigue que:

$$\pi_1(U, x_0) * \pi_1(V, x_0) = \langle e \rangle$$

luego, $\pi_1(\mathbb{S}^2, x_0) = \langle e \rangle$.

Ejercicio 1.4.1

¿Cuál es el grupo fundamental de $\pi_1(\mathbb{S}^n, x_0)$ con $n \geq 3$? ¿Qué sucede si n = 1?

Ejercicio 1.4.2

Prueba que \mathbb{R}^2 no es homeomorfo a \mathbb{R}^n si $n \neq 2$.

Demostración:

Suponga que son homeomrfos. Se tienen dos casos:

- -n=1
- $n \geq 3$. Considere el

Teorema 1.4.1 (Teorema de Seifert-Van Kampen)

Sea $X = U \cup V$ y $x_0 \in U \cap V$ con U, V y $U \cap V$ abiertos arco-conexos. Sean $i_1 : U \to X$, $i_2 : V \to X$ y $j_1 : U \cap V \to U$ y $j_2 : U \cap V \to V$ los mapeos inclusión. Entonces, el morfismo inducido por i_1 y i_2

$$\psi: \pi_1(U, x_0) * \pi_1(V, x_0) \to \pi_1(X, x_0)$$

y más aún,

$$\ker(\psi) = \left\langle \left\langle (j_1)_*[\gamma] \left((j_2)_*([\gamma]) \right)^{-1} = [\gamma] \in \pi_1(U \cap V, x_0) \right\rangle \right\rangle$$

(subgrupo normal que contiene a lo de adentro) es decir,

$$\pi_1(X, x_0) = \pi_1(U, x_0) *_{\pi_1(U \cap V, x_0)} \pi_1(V, x_0)$$

es el producto amalgamado respecto al grupo formado por la intersección.

Ejercicio 1.4.3

Se tiene que $\pi_1(\mathbb{S}^1 \vee \mathbb{S}^1, x_0) \cong F_2$ (probar cada detalle de la demostración junto con las homotopías deseadas).

Ejercicio 1.4.4

$$\pi_1(\bigvee_{i=1}^n \mathbb{S}^1, x_0) \cong F_n.$$

§1.5 GRUPO FUNDAMENTAL DE UNA GRÁFICA

Resulta que:

- Todo árbol es contráctil.
- Toda gráfica conexa tiene un árbol maximal.

Definición 1.5.1

Sea X una gráfica. Un **subárbol maximal** es una subgráfica de X que es un árbol y es tal que V(T) = V(X).

Teorema 1.5.1

Sea X una gráfica conexa y $x_0 \in V(X)$. Entonces, $\pi_1(X, x_0)$ es un grupo libre.

Demostración:

Sea $T \subseteq X$ árbol maximal y sea $\{e_{\alpha}\}$ las aristas de X que no están en T. Dividimos a e_{α} en tres intervalos, esto es:

$$e_{\alpha} = e'_{\alpha} \cup e''_{\alpha} \cup e'''_{\alpha}$$

tal que $f_{\alpha}=e'_{\alpha}\cup e'''_{\alpha}$ es abierto en $e_{\alpha}.$ Tomemos $G_{\alpha}=T\cup e_{\alpha}$ y

$$U_{\alpha} = T \cup e_{\alpha} \cup \left(\bigcup_{\substack{\beta \\ \beta \neq \alpha}} f_{\alpha}\right)$$

es tal que $G_{\alpha} \subseteq U_{\alpha}$ con U_{α} abierto y $U_{\alpha} \simeq G_{\alpha}$. Entonces:

$$\pi_1(G_\alpha, x_0) \cong \mathbb{Z}$$

se tiene que $U_{\alpha} \cap U_{\beta}$ es arco-conexo y que $\pi_1(U_{\alpha} \cap U_{\beta}) \cong \langle e \rangle$ ya que $U_{\alpha} \cap U_{\beta} \simeq T$. Por Van-Kampen (en su versión general, se ocupan que las intersecciones dobles y triples sean arco-conexas). Luego:

$$\pi_1(X, x_0) \cong *_{\alpha} \pi_1(G_{\alpha}, x_0) \cong *_{\alpha} \mathbb{Z}$$

§1.6 Espacios Cubrientes

Definición 1.6.1

Sea B un espacio topológico. Un **espacio de recubrimiento de** B consiste de: un espacio topológico E, una función continua sobreyectiva $p:E\to B$ que satisface:

■ $\forall x \in B$ existe un abierto con $x \in U_x$ tal que $p^{-1}(U) = \bigsqcup_{\alpha} V_{\alpha}$ y $p\Big|_{V_{\alpha}} : V_{\alpha} \to U$ es homeomorfismo, para todo α .

p es llamada función cubriente y B es llamado espacio base.

Proposición 1.6.1

Sea (E, p) un espacio de recubrimiento de B. Entonces:

- 1. La fibra de $b \in B$, $p^{-1}b \subseteq E$ tiene la topología discreta.
- 2. $p: E \to B$ es una función abierta.

Ejemplo 1.6.1

Dado un espacio X, $\mathbb{1}_X : X \to X$ es una función cubriente.

Ejemplo 1.6.2

Dado un espacio X, la función $p: X \times \{1, ..., n\} \to X$ dada por:

$$f(x,i) = x, \quad \forall x \in X$$

y para todo i = 1, ..., n, es una función cubriente. Este espacio no es arco-conexo ni conexo, por lo que no resulta muy interesante analizarlo.

Proposición 1.6.2

Sea $p: E \to B$ una función cubriente. Si $B_0 \subseteq B$ y $E_0 = p^{-1}(B_0)$, entonces $p\Big|_{E_0}: E_0 \to B_0$ es función cubriente.

Proposición 1.6.3

Sean $p: E \to B$ y $p': E' \to B'$ funciones cubrientes, entonces:

$$p \times p' : E \times E' \to B \times B'$$

es función cubriente.

Ejemplo 1.6.3

Si $\mathbb{T} = \mathbb{S}^1 \times \mathbb{S}^1$, entonces $p : \mathbb{R} \to \mathbb{S}^1$ tal que $s \mapsto e^{2\pi i s}$, entonces $p \times p : \mathbb{R}^2 \to \mathbb{T}$ es función cubriente.

§1.7 LEVANTAMIENTOS

Definición 1.7.1

Sea $p: E \to B$ una función cubriente. Si $f: X \to B$ es una función continua, un **levantamiento** de f es una función continua $\widetilde{f}: X \to E$ tal que:

$$p \circ \widetilde{f} = f$$

Teorema 1.7.1

Sea $p:E\to B$ una función cubriente.

- 1. Para cada camino $\gamma:[0,1]\to B$ que comienza en $x_0\in B$ y $\widetilde{x}_0\in p^{-1}(x_0)$, existe un único levantamiento $\gamma:[0,1]\to E$ que empieza en \widetilde{x}_0 .
- 2. Para cada homotopía $H:[0,1]\times[0,1]\to B$ de caminos que empiezan en $x_0\in B$ y cada $\widetilde{x}_0\in p^{-1}(x_0)$ existe un único levantamiento $\widetilde{H}:[0,1]\times[0,1]\to B$ que es una homotopía de caminos que comienzan en \widetilde{x}_0

Si $p: E \to B$ es una función cubriente con $p(e_0) = b_0$, entonces la función $\phi: \pi_1(B, b_0) \to p^{-1}(b_0)$, $[\gamma] \mapsto \widetilde{\gamma}(1)$, está bien definida, donde $\widetilde{\gamma}$ es el único levantamiento de γ que empieza en e_0 .

Teorema 1.7.2

Se tienen las siguientes propiedades de ϕ :

- \blacksquare Si E es arco-conexo, entonces ϕ es sobrevectiva.
- Si E es simplemente conexo, entonces ϕ es inyectiva.

Proposición 1.7.1

Sea $p: E \to B$ función cubriente y $p(e_0) = b_0$.

- 1. El homomorfismo inducido $p_*: \pi_1(E, e_0) \to \pi_1(B, b_0)$ es inyectivo.
- 2. El subgrupo imagen $p_*(\pi_1(E, e_0)) \le \pi_1(B, b_0)$ consiste de las clases de homotopía de lazos en B basados en b_0 cuyos levantamientos a E empiezan en e_0 son lazos en E.

Proposición 1.7.2

Sea $H = p_* (\pi_1(E, e_0))$ la correspondencia $\phi : \pi_1(B, b_0) \to p^{-1}(b_0), [\gamma] \mapsto \widetilde{\gamma}(1)$ induce una funición inyectiva

$$\phi: \pi_1(B, b_0)/H \to p^{-1}(b_0)$$

es biyectiva si E es conexo.

En particular, $|p^{-1}(b_0)| = [\pi_1(B, b_0) : H]$ llamado número de hojas de la cubierta.

Teorema 1.7.3

Sea B arco-conexo, localmente arco-conexo

Capítulo 2

EJERCICIOS Y PROBLEMAS

§2.1 Preeliminares: el grupo fundamental

Observación 2.1.1

Durante todo el curso todas las funciones son continuas a menos que se diga explícitamente lo contrario.

Ejercicio 2.1.1

Muestre que el homomorfismo de cambio de punto base β_h depende sólo de la clase de homotopía de h.

Demostración:

Sea X espacio topológico y β un camino en X con puntos inicial y final p y q. Asumimos probado que $\beta_h: \pi_1(X,p) \to \pi_1(X,q)$ es homomorsifmo. Veamos que depende solo de la clase de homotopía.

En efecto, sea $h':[0,1]\to X$ otro camino homotópico a h y considere el homomorfismo $\beta_{h'}:\pi_1(X,p)\to\pi_1(X,q)$ dado por:

$$\beta_{h'}([\gamma]) = [h' * \gamma * \overline{h'}]$$

Sea γ un camino en X con punto base p, se tiene que como $h \simeq h'$, entonces por un lema $h * \gamma \simeq \gamma * h'$ y nuevamente por ese mismo lema

$$h*\gamma*\overline{h}\simeq h'*\gamma*\overline{h'}$$

por ende,

$$[h * \gamma * \overline{h}] = [h * \gamma * \overline{h}]$$

es decir que:

$$\beta_h([\gamma]) = \beta_{h'}([\gamma])$$

de forma inmediata se sigue que ambos homomorfismos son iguales.

Ahora, suponga que β_h y $\beta_{h'}$ son dos homomorfismos tales que:

$$\beta_h = \beta_{h'}$$

probaremos que h = h'. En efecto, por la igualdad se tiene que:

$$h*\gamma*\overline{h}\eqsim h'*\gamma*\overline{h'}$$

por ende,

$$\gamma \simeq \overline{h} * h' * \gamma * \overline{h'} * h$$

para todo camino γ . Tomando clases sucede que:

$$[\gamma] = [\overline{h} * h'] * [\gamma] * [\overline{\overline{h} * h'}], \quad \forall [\gamma] \in \pi_1(X, p)$$

y, por la estructura de grupo de $\pi_1(X, p)$ debe tenerse que este mapeo $[\gamma] \mapsto [\overline{h} * h'] * [\overline{\gamma}] * [\overline{\overline{h} * h'}]$ es el homomorfismo trivial, lo cual implica que $[\overline{h} * h']$ está en el centralizador de $\pi_1(X, p)$.

Ejercicio 2.1.2

Sea $f: X \to Y$ una función continua. Si $\alpha, \beta: I \to X$ son caminos homotópicos muestre que los caminos $f \circ \alpha$ y $f \circ \beta$ son homotópicos.

Demostración:

Suponga que $\alpha, \beta: I \to X$ son homotópicos, entonces existe una función $H: I \times I \to X$ continua tal que:

$$H(s,0) = \alpha(s), H(s,1) = \beta(s), \quad \forall s \in I$$

y además,

$$H(0,t) = \alpha(0) = \beta(0), H(1,t) = \alpha(1) = \beta(1), \quad \forall t \in I$$

Considere la función $G: I \times I \to Y$ dada por:

$$G(s,t) = f \circ H(s,t)$$

como f y H son funciones continuas, entonces G es continua y cumple por las condiciones anteriores que:

$$G(s,0) = f(H(s,0)) = f \circ \alpha(s), G(s,1) = f(H(s,1)) = f \circ \beta(s), \quad \forall s \in I$$

y,

$$G(0,t) = f(H(0,t)) = f \circ \alpha(0) = f \circ \beta(0), G(1,t) = f(H(1,t)) = f \circ \alpha(1) = f \circ \beta(1), \quad \forall t \in I$$

por lo cual, se sigue que los caminos $f \circ \alpha$ y $f \circ \beta$ son homotópicos.

Ejercicio 2.1.3

Si X_0 es la componente conexa por caminos del espacio X que contiene al punto base x_0 , muestre que la inclusión $i: X_0 \to X$ induce un isomorfismo $i_*: \pi_1(X_0, x_0) \to \pi_1(X, x_0)$ dado por $[\gamma] \mapsto [i \circ \gamma]$.

Note que hay que mostrar que i_* está bien definido, es un homomorfismo y es biyectivo.

Demostración:

Veamos que está bien definido. Sean γ_1, γ_2 caminos en X_0 con punto base x_0 tales que $\gamma_1 \simeq \gamma_2$. Se tiene que por el ejercicio anterior que $i \circ \gamma_1 \simeq i \circ \gamma_2$, luego $[i \circ \gamma_1] = [i \circ \gamma_2]$, es decir que $i_*([\gamma_1]) = i_*([\gamma_2])$, por lo que i_* está bien definido.

Veamos ahora que es homeomorfismo. En efecto, sean γ_1, γ_2 caminos en X_0 con punto base x_0 , se tiene que:

$$i_*(\gamma_1 * \gamma_2) = [i \circ (\gamma_1 * \gamma_2)]$$

Afirmamos que:

$$i\circ (\gamma_1*\gamma_2)\simeq (i\circ \gamma_1)*(i\circ \gamma_2)$$

En efecto, esto se tiene pues i es el mapeo inclusión.

Por lo cual,

$$i_*(\gamma_1 * \gamma_2) = [(i \circ \gamma_1) * (i \circ \gamma_2)]$$

= $[i \circ \gamma_1] * [i \circ \gamma_2]$
= $i_*([\gamma_1]) * i_*([\gamma_2])$

así que i_* es homeomorfismo.

Veamos que es isomorfismo. Primero notemos que es monomorfismo. En efecto, si γ es un camino tal que $i_*([\gamma]) = [e_{x_0}]$, entonces:

$$i \circ \gamma \simeq e_{x_0}$$

pero, notemos que $i \circ \gamma = \gamma$, por lo que $\gamma \simeq e_{x_0}$, es decir que $[\gamma] = [e_{x_0}]$.

Ahora veamos que es epimorfismo. Si η es un camino en X con punto base x_0 , por ser camino y al tenerse que $x_0 \in X_0$ siendo X_0 componente arco-conexa de X, debe suceder que $\gamma([0,1]) \subseteq X_0$, luego tomando $\gamma: [0,1] \to X_0$:

$$\gamma(t) = \eta(t), \quad \forall t \in [0, 1]$$

se sigue que $i_*([\gamma]) = [\eta]$.

Ejercicio 2.1.4

Muestre que no existen retracciones en los siguientes casos:

- (a) $X = \mathbb{R}^3$ con A cualquier subespacio homeomorfo a \mathbb{S}^1 .
- (b) $X = \mathbb{S}^1 \times \mathbb{D}^2$ con A su frontera $\mathbb{S}^1 \times \mathbb{S}^1$.
- (c) X la banda de Möbius y A su círculo frontera.

Demostración:

Ejercicio 2.1.5

Muestre que cualquier homomorfismo $\pi_1(\mathbb{S}^1) \to \pi_1(\mathbb{S}^1)$ puede ser realizado como el homomorfismo inducido ψ_* de una función $\psi: \mathbb{S}^1 \to \mathbb{S}^1$.

Demostración:

Ejercicio 2.1.6

Muestre que el complemento de un conjunto finito de puntos en \mathbb{R}^n es simplemente conexo si $n \geq 3$.

Demostración:

Sea $n \geq 3$ y tomemos $\{x_1, ..., x_m\} \subseteq \mathbb{R}^n$. Se tienen dos casos:

1. $0 \notin \{x_1, ..., x_m\}$. Existe una recta que pasa por 0 tal que no pasa por ninguno de este conjunto finito de puntos, digamos la ecuación de esta recta es:

Sea X el espacio cociente obtenido de \mathbb{S}^2 identificando el polo norte con el polo sur. Calcula $\pi_1(X)$.

Solución:

Ejercicio 2.1.12

El **mapping torus** T_f de una función $f: X \to X$ es el cociente obtenido de $X \times I$ identificando cada punto (x,0) con (f(x),1). En el caso $X = \mathbb{S}^1 \vee \mathbb{S}^1$ con f preservando el punto base, calcule una presentación de $\pi_1(T_f)$ en términos del homomoorfismo inducido $f_*: \pi_1(X) \to \pi_1(X)$.

Solución:

Ejercicio 2.1.13

Demuestre que el subespacio de \mathbb{R}^3 que es la unión de esferas de radio $\frac{1}{n}$ y centro $\left(\frac{1}{n},0,0\right)$ para n=1,2,..., es simplemente conexo.

Demostración:

Ejercicio 2.1.14

Sea X el subespacio de \mathbb{R}^2 que consiste de la unión de los círculos C_n de radio n y centro (n,0) para $n=1,2,\ldots$ Calcule $\pi_1(X)$.

Solución:

Ejercicio 2.1.15

Calcula el grupo fundamental de cualquier árbol conexo.

Solución:

Es trivial.

§2.2 Grupo Fundamental: Definiciones y Primeros Ejemplos

Ejercicio 2.2.1

Haga lo siguiente:

(a) Prueba que \mathbb{R} y I son espacios contráctiles.

Ejercicio 2.2.2

Sea $X \subseteq \mathbb{R}^3$ la unión de *n* lineas que pasan por el origen. Calcula $\pi_1(\mathbb{R}^3 \setminus X)$.

Solución:

Ejercicio 2.2.3

Si $m \geq 2$, entonces $\pi_1(\mathbb{S}^m, p) \cong \langle e \rangle$.

Demostración:

Antes, recordemos que:

$$\mathbb{S}^{n-1} \setminus \{p\} \cong \mathbb{R}^n$$

para todo $p \in \mathbb{S}^{n-1}$ (esta es la proyección estereográfica m-dimensional). Ahora, sean $p, -p \in \mathbb{S}^m$ puntos antipodales considere los abiertos $U, V \subseteq \mathbb{S}^m$ dados por:

$$U = \mathbb{S}^m \setminus \{p\}$$
$$V = \mathbb{S}^m \setminus \{-p\}$$

éstos cumplen que $\mathbb{S}^m \cong$. Se tiene que $U \cap V$ es un conjunto arco conexo no vacío si $m \geq 2$ ya que $\mathbb{S}^m \setminus \{p, -p\}$ es un conjunto arco conexo. En caso de que m = 1 se tendría que el $U \cap V$ no es arco conexo. Si m = 0 se tendría que $U \cap V = \emptyset$.

Sea $x_0 \in U \cap V$, por Seifert-Van Kampen el homomorfismo inducido por los mapeos inlusión de U y V en \mathbb{S}^m , respectivamente:

$$\psi: \pi_1(U, x_0) * \pi_1(V, x_0) \to \pi_1(\mathbb{S}^m, x_0)$$

16

es suprayectivo, por el recordatorio del inicio de la demostración se tiene que:

$$\pi_1(U, x_0) = \pi_1(\mathbb{S}^m \setminus \{p\}, x_0) \cong \pi_1(\mathbb{R}^{m+1}, 0) \cong \langle e \rangle$$

ya que \mathbb{R}^{m+1} es convexo (en particular tiene forma de estrella respecto a cualquier punto) de forma análoga:

$$\pi_1(U, x_0) \cong \langle e \rangle$$

así que: $\pi_1(U, x_0) * \pi_1(V, x_0) = \langle e \rangle * \langle e \rangle = \langle e \rangle$, por ser ψ suprayectiva debe suceder que $\pi(\mathbb{S}^m, x_0) \cong \langle e \rangle$.

Ejercicio 2.2.4

Demuestra que \mathbb{R}^2 no es homeomorfo a \mathbb{R}^n para $n \neq 2$.

Demostración:

Analicemos varios casos:

(1) n=1: En caso de que fuesen homeomorfos bajo el homeomorfismo $f:\mathbb{R}^2\to\mathbb{R}$, se tendría que los conjuntos:

$$\mathbb{R}^2 \setminus \{(0,0)\} \cong \mathbb{R} \setminus \{f(0,0)\}$$

son homeomorfos, donde $\mathbb{R}^2 \setminus \{(0,0)\}$ tiene una componente conexa y $\mathbb{R} \setminus \{f(0,0)\}$ tiene dos, cosa que no puede suceder ya que todo homeomorfismo preserva las componentes conexas $\#_c$.

(2) n > 2: Suponga que existe tal homeomorfismo, digamos $f: \mathbb{R}^2 \to \mathbb{R}^n$, en particular los espacios

$$\mathbb{R}^2 \setminus \{(0,0)\} \cong \mathbb{R}^n \setminus \{f(0,0)\}$$

son homeomorfos.

Afirmación: \mathbb{S}^{m-1} es retracto de deformación de $\mathbb{R}^m \setminus \{p\}$. En efecto, sea $p \in \mathbb{R}^m$, como $\mathbb{R}^m \setminus \{p\} \cong \mathbb{R}^m \setminus \{0\}$, podemos asumir que p = 0. Considere la función $r : \mathbb{R}^m \setminus \{0\} \to \mathbb{S}^{m-1}$ dada por:

$$x \mapsto \frac{x}{\|x\|}, \quad \forall x \in \mathbb{R}^m \setminus \{0\}$$

claramente esta función es continua y es tal que $r|_{\mathbb{S}^{m-1}} = \mathbb{1}_{\mathbb{S}^{m-1}}$. Veamos que:

$$i\circ r\simeq \mathbb{1}_{\mathbb{R}^n\backslash\{0\}}$$

En efecto, considere la función continua $H:I\times\mathbb{R}^n\setminus\{0\}\to\mathbb{R}^n\setminus\{0\}$ dada por:

$$H(x,t) = tx + (1-t)\frac{x}{\|x\|}$$

se tiene que que:

$$H(x,0) = \frac{x}{\|x\|} = r(x) = i \circ r(x)$$

y,

$$H(x,1) = x = \mathbb{1}_{\mathbb{R}^m \setminus \{0\}}(x)$$

por lo cual $i \circ r \simeq \mathbbm{1}_{\mathbb{R}^m \setminus \{0\}}$. Por tanto, \mathbbm{S}^{m-1} es retracto de deformación de $\mathbbm{R}^m \setminus \{p\}$, en particular:

$$\pi_1(\mathbb{S}^{m-1}, q) = \pi_1(\mathbb{R}^m \setminus \{p\}, q)$$

para todo $q \in \mathbb{S}^{m-1}$.

Ahora, como los espacios $\mathbb{R}^2 \setminus \{(0,0)\}$ y $\mathbb{R}^n \setminus \{f(0,0)\}$ son homeomorfos y arco-conexos, se tiene que sus grupo fundamentales en cualquier punto deben ser isomorfos, es decir:

$$\pi_1(\mathbb{R}^2 \setminus \{(0,0)\}) \cong \pi_1(\mathbb{R}^m \setminus \{f(0,0)\})$$

projective plane – disc = Möbius band (aka
$$RP^2 = M \cup_3 D^2$$
)

Figura 2.1: Construcción de la banda de Möbius en el espacio $\mathbb{R}P^2$.

lo probado en la afirmación anterior implica que:

$$\pi_1(\mathbb{S}^1, q) \cong \pi_1(\mathbb{S}^n, q)$$

donde $\pi_1(\mathbb{S}^1, q) \cong \mathbb{Z}$ y $\pi_1(\mathbb{S}^1, q) \cong \langle e \rangle \#_c$.

Por tanto, de los dos incisos anteriores se sigue que \mathbb{R}^2 no puede ser homeomorfo a \mathbb{R}^n .

Ejercicio 2.2.5

Calcula el grupo fundamental de la botella de Klein, el plano proyectivo $\mathbb{R}P^2$ y \mathbb{S}^3 .

Solución:

Por un ejercicio anterior se tiene que $\mathbb{S}^3 \cong \langle e \rangle$.

Calculemos el grupo fundamental de $\mathbb{R}P^2$. Antes, notemos que:

$$\mathbb{R}P^2 \setminus \mathbb{D}^2 \cong X$$

donde \mathbb{D}^2 es el 2-disco y X es la banda de Möbius.

Considere los abiertos $U, V \subseteq \mathbb{R}P^2$ dados por: $U = \mathring{\mathbb{D}}^2$ y $V = \mathbb{R}P^2 \setminus \widetilde{\mathbb{D}}^2$, donde $\widetilde{\mathbb{D}}^2 \subseteq \mathbb{D}^2$ es un disco de radio estrictamente menor que el radio de \mathbb{D}^2 . Se tiene que:

$$\mathbb{R}P^2 = U \cup V$$

Los dos conjuntos U y V son arco-conexos. Además, se tiene que $U\cap V$ es arco-conexo, pues éste coincide con el conjunto:

$$U \cap V = \mathring{\mathbb{D}}^2 \setminus \widetilde{\mathbb{D}^2}$$

es (en términos descriptivos) un aro. Por Seifert-Van Kampen para $x_0 \in U \cap V$ se tiene que:

$$\pi_1(\mathbb{R}P^2, x_0) \cong \pi_1(U, x_0) *_{\pi_1(U \cap V, x_0)} *_{\pi_1(V, x_0)}$$

donde:

$$\pi_1(U, x_0) = \pi_1(\mathring{\mathbb{D}}^2, x_0) \cong \langle e \rangle$$

por ser un conjunto convexo (en particular, tiene forma de estrella respecto a x_0), y

$$\pi_1(V, x_0) = \pi_1(\mathbb{R}P^2 \setminus \widetilde{\mathbb{D}^2}, x_0) \cong \pi(X, y_0)$$

siendo $\pi_1(X, y_0)$ el grupo fundamental de la banda de Möbius, el cuál es $\pi_1(\mathbb{S}^1, y_0) \cong \mathbb{Z}$. Finalmente:

$$\pi_1(U \cap V) \cong \mathbb{Z}$$

Figura 2.2: Modelo del espacio proyectivo $\mathbb{R}P^2$ como cociente a partir de la identificación de los lados de un cuadrado.

ya que $U \cap V$ es homotópico a \mathbb{S}^1 , con grupo fundamental \mathbb{Z} . Por ende:

$$\pi_1(\mathbb{R}P^2, x_0) \cong \langle e \rangle *_{\mathbb{Z}} \mathbb{Z}$$

Calculemos este grupo. Recordemos que:

$$\langle e \rangle * \mathbb{Z} / \langle \langle R \rangle \rangle$$

donde:

$$R = \left\{ (i_1)_*([\gamma])(i_2)_*([\gamma])^{-1} \middle| [\gamma] \in \pi_1(U \cap V, x_0) \right\}$$

siendo $(i_1)_*: \pi_1(U \cap V, x_0) \to \langle e \rangle$ y $(i_2)_*: \pi_1(U \cap V, x_0) \to \mathbb{Z}$ los homomorfismos dados a partir del mapeo inclusión. En particular, i_1 es trivial, por lo que todo depende de i_2 . Notamos que:

$$\langle e\rangle * \mathbb{Z} \cong \mathbb{Z}$$

Así que todo se reduce a:

$$\pi_1(\mathbb{R}P^2, x_0) \cong \mathbb{Z}/\langle\langle R \rangle\rangle$$

con:

$$R = \left\{ (i_2)_*([\gamma]) \middle| [\gamma] \in \pi_1(U \cap V, x_0) \right\}$$

Analicemos a $(i_2)_*: \pi_1(U \cap V, x_0) \to \pi_1(U, x_0)$, es decir a:

$$(i_2)_*: \pi_1(\mathring{\mathbb{D}}^2 \setminus \widetilde{\mathbb{D}}^2, x_0) \to \mathbb{R}P^2 \setminus \widetilde{\mathbb{D}}^2$$

Como todos los subgrupos normales de \mathbb{Z} son de la forma $n\mathbb{Z}$, entonces debe existir $n \in \mathbb{N}$ tal que:

$$\pi_1(\mathbb{R}P^2, x_0) \cong \mathbb{Z}/n\mathbb{Z}$$

Sea ahora $[\gamma]$ una clase de camino en $\pi_1(U \cap V, x_0)$ y considere el mapeo inclusión $i_2 : U \cap V \to U$. Ahora, se tiene que el homomorfismo que hace que $U \simeq \mathbb{S}^1$ es tal que todo elemento de U es enviado a la frontera del mismo. En términos simples, si γ es un camino que genera al grupo fundamental de $\pi_1(U, x_0)$:

$$[\gamma] \mapsto abab$$

(donde a y b son elementos de $\langle e \rangle$ y \mathbb{Z} , respectivamente y, el producto se considera en el producto libre del grupo). Por ende:

$$[\gamma] \mapsto b^2$$

es mapeado bajo $(i_2)_*$, así que:

$$R = \left\{ b^2 \middle| [\gamma] \in \pi_1(U \cap V, x_0) \right\}$$

es tal que su cerradura normal visto como subgrupo de \mathbb{Z} es:

$$\langle\langle R \rangle\rangle \cong 2\mathbb{Z}$$

(pues b es un generador de \mathbb{Z}). Así que:

$$\pi_1(\mathbb{R}P^2, x_0) \cong \mathbb{Z}/2\mathbb{Z}$$

Para la botella de Klein...

Ejercicio 2.2.6

Sea X el subespacio de \mathbb{R}^2 que consiste en la unión de los círculos C_n de radio n y centro (n,0) para $n \in \mathbb{N}$. Calcula $\pi_1(x)$.

Solución:

Para cada $n \in \mathbb{N}$ definamos:

$$U_n = \left(\bigcup_{\substack{m \in \mathbb{N} \\ m \neq n}} C_n\right)$$

Ejercicio 2.2.7

Obtener el grupo fundamental del toro con Seifert-Van Kampen.

Solución:

Considere el toro $\mathbb{T} = \mathbb{S}^1 \times \mathbb{S}^1$. Sean $x, y \in \mathbb{T}$ puntos opuestos del toro. Tomemos $U = \mathbb{T} \setminus \{p\}$ y $V = \mathbb{T} \setminus \{q\}$. El conjunto $U \cap V = \mathbb{T} \setminus \{p, q\}$ es arco-conexo y, además, se tiene que para $x_0 \in U \cap V$:

$$\pi_1(U, x_0) \cong \pi_1(V, x_0) \cong \langle a, b | \rangle$$

En efecto, lo probaremos para $\pi_1(U, x_0)$ (para el otro conjunto el proceso es análogo). Lo que estamos haciendo es *ponchar* al toro y con ello, podemos retraer todos los puntos al conjunto $\mathbb{S}^1 \vee \mathbb{S}^1$ como se muestra en la figura:

Figura 1. Toro \mathbb{T} .

tal conjunto tiene como grupo fundamental a $\mathbb{Z} * \mathbb{Z}$. Por el Teorema de Van-Kampen se tiene que:

$$\pi_1(\mathbb{T}, x_0) \cong (\mathbb{Z} * \mathbb{Z}) *_{\pi_1(U \cap V, x_0)} \mathbb{Z} * \mathbb{Z}$$

obtengamos a $\pi_1(U \cap V, x_0)$. Se tiene que este espacio se retrae a $\mathbb{S}^1 \vee \mathbb{S}^1 \vee \mathbb{S}^1$, que tiene como grupo fundamental a $\mathbb{Z} * \mathbb{Z} * \mathbb{Z}$, por lo cual:

$$\pi_1(\mathbb{T}, x_0) \cong F_2 *_{F_2} F_2 = \langle a, b, c, d | R \rangle$$

siendo a y c los círculos horizontales (en U) y, b y d los verticales (en V).

Tomemos una clase de camino $[\gamma]$ en $\pi_1(U \cap V, x_0)$. Este camino se expresa como producto de x, y, z de elementos en F_3 (en ese orden son los anillitos, siendo y el horizontal). Se tiene que:

- x y z son mandados en $\pi_1(U, x_0)$ a $a y a^{-1}$ (respectivamente), y y a b.
- x y z son mandados en $\pi_1(U, x_0)$ a $c^{-1} y c$ (respectivamente), y y a d.

por lo que, la expresión de $[\gamma]$ es enviada a algo en $\langle x, y, z \rangle$ y luego a ese mismo producto cambiando algunas letras. En particular, se tiene que:

$$c^{-1}a, d^{-1}b, \in R$$

por lo que el producto amalgamado solo tiene dos elementos generadores. Más aún, se tiene que:

$$xy \mapsto ab$$
 y $xy \mapsto c^{-1}d$

por lo cual,

$$d^{-1}cab \in R$$

por ende, las relaciones son:

$$\pi_1(\mathbb{T}, x_0) \cong \langle a, b, c, d | a = c, d = c, b^{-1}a^2b = 1 \rangle$$

 $\cong \langle a, b | ab = a^{-1}b \rangle$

Era más simple con la identificación del toro como espacio cociente.

Ejercicio 2.2.8

Sea X el subespacio de \mathbb{R}^3

§2.3 Espacios Cubrientes

Ejercicio 2.3.1

Para un espacio cubriente $p: \widetilde{X} \to X$ y un subespacio $A \subseteq X$, sea $\widetilde{A} = p^{-1}(A)$. Muestre que la restricción $p|_{\widetilde{A}}: \widetilde{A} \to A$ es un espacio cubriente.

Demostración:

Sea $q = p|_{\widetilde{A}}$. Esta función es continua por ser la restricción de una funcion continua, además es suprayectiva pues f lo es.

Veamos que cumple la condición deseada. Sea $x \in A$, en particular, $x \in X$, por lo que existe un abierto $U_x \subseteq X$ que contiene a x tal que

$$p^{-1}(U_x) = \bigsqcup_{\alpha \in I} V_\alpha$$

con $V_{\alpha} \cong U_x$ para todo $\alpha \in I$. Tomemos $V_x = U_x \cap A$. Este conjunto es abierto en A tal que $x \in V_x$. Se cumple que:

$$p^{-1}(V_x) = p^{-1}(U_x \cap A)$$

$$= p^{-1}(U_x) \cap p^{-1}(A)$$

$$= \left(\bigsqcup_{\alpha \in I} V_\alpha\right) \cap \widetilde{A}$$

$$= \bigsqcup_{\alpha \in I} V_\alpha \cap \widetilde{A}$$

$$= \bigsqcup_{\alpha \in I} W_\alpha$$

donde $W_{\alpha} = V_{\alpha} \cap \widetilde{A}$. Claramente la unión es disjunta pues originalmente era la unión disjunta de conjuntos. Veamos pues que la función $p\Big|_{W_{\alpha}} = q\Big|_{W_{\alpha}} : W_{\alpha} \to V_x$ es homeomorfismo. En efecto, sea α . Como $p\Big|_{V_{\alpha}}$ es homeomorfismo entre V_{α} y U_x , se tiene que en particular que la función $q\Big|_{W_{\alpha}} : W_{\alpha} \to q\Big|_{W_{\alpha}} (W_{\alpha})$ también lo es, donde el conjunto el conjunto:

$$W_{\alpha} = V_{\alpha} \cap \widetilde{A}$$

es homeomorfo a:

$$q\Big|_{W_{\alpha}}(W_{\alpha}) = p\Big|_{V_{\alpha}}(W_{\alpha})$$

$$= p\Big|_{V_{\alpha}}(V_{\alpha} \cap \widetilde{A})$$

$$= p\Big|_{V_{\alpha}}(V_{\alpha}) \cap p\Big|_{V_{\alpha}}(\widetilde{A})$$

$$= U_{x} \cap A$$

$$= W_{x}$$

Se sigue pues que $q:\widetilde{A}\to A$ es espacio cubriente.

Ejercicio 2.3.2

Sean $p_1: \widetilde{X}_1 \to X_1$ y $p_2: \widetilde{X}_2 \to X_2$ proyecciones cubrientes. Demuestre que la función $p_1 \times p_2: \widetilde{X}_1 \times \widetilde{X}_2 \to X_1 \times X_2$ también es una función cubriente.

Demostración:

Sea $q = p_1 \times p_2$ dada por:

$$q(\widetilde{x}_1, \widetilde{x}_2) = (p_1(\widetilde{x}_1), p_2(\widetilde{x}_2))$$

Claramente esta función es continua pues sus componentes son continuas, además es suprayectiva ya que también ambas funciones componentes son suprayectivas.

Sea $x = (x_1, x_2) \in X_1 \times X_2$, entonces existen $U_{x_1} \subseteq X_1$ y $U_{x_2} \subseteq X_2$ abiertos que contienen a x_1 y x_2 (respectivamente), tales que:

$$p_1^{-1}(U_{x_1}) = \bigsqcup_{\alpha_1} V_{\alpha_1} \quad \text{y} \quad p_2^{-1}(U_{x_2}) = \bigsqcup_{\alpha_2} V_{\alpha_2}$$

Tomemos $U_x = U_{x_1} \times U_{x_2}$. Este conjunto es abierto en $X_1 \times X_2$ (con la topología producto o de caja). Se tiene que:

$$p^{-1}(U_x) = \left\{ y \in \widetilde{X}_1 \times \widetilde{X}_2 \middle| p(y) \in U_{x_1} \times U_{x_1} \right\}$$

$$= \left\{ (\widetilde{y}_1, \widetilde{y}_2) \in \widetilde{X}_1 \times \widetilde{X}_2 \middle| p(\widetilde{y}_1, \widetilde{y}_2) \in U_{x_1} \times U_{x_2} \right\}$$

$$= \left\{ (\widetilde{y}_1, \widetilde{y}_2) \in \widetilde{X}_1 \times \widetilde{X}_2 \middle| p_1(\widetilde{y}_1) \in U_{x_1} \text{ y } p_2(\widetilde{y}_2) \in U_{x_2} \right\}$$

$$= \left\{ (\widetilde{y}_1, \widetilde{y}_2) \in \widetilde{X}_1 \times \widetilde{X}_2 \middle| \widetilde{y}_1 \in p_1^{-1}(U_{x_1}) \text{ y } \widetilde{y}_2 \in p_2^{-1}(U_{x_2}) \right\}$$

$$= p_1^{-1}(U_{x_1}) \times p_2^{-1}(U_{x_2})$$

$$= \bigsqcup_{\alpha_1, \alpha_2} V_{\alpha_1} \times V_{\alpha_2}$$

$$= \bigsqcup_{\alpha} V_{\alpha}$$

donde $V_{\alpha} = V_{\alpha_1} \times V_{\alpha_2}$ siendo $\alpha = (\alpha_1, \alpha_2)$ un indexador de esta familia. Veamos que la función $p\Big|_{V_{\alpha}}$ es un homeomorfismo entre V_{α} y U_x , para todo α . En efecto, se tiene que las funciones:

$$p\Big|_{V_{\alpha_1}}: V_{\alpha_1} \to U_{x_1} \quad \text{y} \quad p\Big|_{V_{\alpha_2}}: V_{\alpha_2} \to U_{x_2}$$

son homeomorfismos, en particular al tenerse que $p\Big|_{V_{\alpha}} = p\Big|_{V_{\alpha_1}} \times p\Big|_{V_{\alpha_2}}$, entonces $p\Big|_{V_{\alpha}}$ es función continua, biyectiva, con biyección también continua. Así que $p\Big|_{V_{\alpha}}$ es homeomorfismo.

Por tanto, $p = p_1 \times p_2$ es función cubriente.

Ejercicio 2.3.3

Sea $p: \widetilde{X} \to X$ un espacio cubriente con X conexo. Si $p^{-1}(x_0)$ tiene k-elementos para algún $x_0 \in X$, entonces $p^{-1}(x)$ tiene k-elementos para todo $x \in X$.

Demostración:

Supongamos que existe $x \in X$ tal que $p^{-1}(x)$ posee una cantidad distinta de k-elementos. Se tienen dos casos:

 $|p^{-1}(x)| < k = |p^{-1}(x_0)|$:

Definición 2.3.1

Sea X espacio topológico y G un grupo. Una acción $G \cap X$ es una acción de grupo continua tal que el mapeo:

$$g \cdot x \mapsto x$$

es continuo, para todo $g \in G$. En otras palabras, la acción es un homomorfismo entre el grupo G y el grupo de todos los homeomorfismos de X en X. En tal caso, se dice que X es un G-espacio.

Ejercicio 2.3.4

Sea X un G-espacio, es decir, X es un espacio topológico en el que G actúa. ¿Qué condiciones debemos pedir a la acción para que la función cociente $p: X \to X/G$ sea un espacio cubriente?

Solución:

Como X es un G-espacio, existe una acción de G en X, es decir, un homomorfismo $\varphi: G \to \operatorname{Hom}(X)$ (donde el conjunto $\operatorname{Hom}(X)$ es el conjunto de homeomorfismos de X en X).

Se tiene que la función cociente:

$$p: X \to X/G, x \mapsto [x]_G$$

donde: $[x]_G = \{y \in X | \exists g \in G \text{ tal que } y = gx\} = G \cdot x$. Esta función es continua y suprayectiva, por lo que hay que ver cuándo se cumple la condición de los abiertos.

Sea $x \in X$, debemos encontrar un subconjunto $U_{[x]_G}$ de X/G tal que:

$$p^{-1}(U_{[x]_G}) = \bigsqcup_{\alpha} V_{\alpha}$$

siendo V_{α} conjuntos abiertos en X y tales que $p|_{V_{\alpha}}: V_{\alpha} \to U_{[x]_G}$ es un homeomorfismo para todo α .

Proposición 2.3.1

Sea X un espacio conexo y localmente arco-conexo, entonces X es arco-conexo.

Observación 2.3.1

No todo espacio arco-conexo es localmente arco-conexo.

Ejercicio 2.3.5

Sean \widetilde{X} y \widetilde{Y} espacios cubrientes simplemente conexos de espacios arco-conexos y localmente arco-conexos. Muestre que si X tiene el mismo tipo de homotopía que Y, entonces \widetilde{X} tiene el mismo tipo de homotopía que \widetilde{Y} .

Demostración:

Sean $x_0 \in X$ y tomemos $y_0 = f(x_0)$. Por el teorema de clasificación de espacios de recubrimiento, existe una biyección entre los cubrientes de X y Y, con los subgrupos de $\pi_1(X, x_0)$ y $\pi_1(Y, y_0)$. Al ser $X \simeq Y$, se tiene que la función:

$$f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0), \quad f_*([\gamma]) \mapsto [f \circ \gamma]$$

es un isomorfismo de grupos. En particular, se tienen los siguientes subgrupos de $\pi_1(X, x_0)$ y $\pi_1(Y, y_0)$:

$$\pi_1(\widetilde{X}, \widetilde{x}_0)$$
 y $\pi_1(\widetilde{Y}, \widetilde{y}_0)$

donde $\widetilde{x}_0 \in \widetilde{X}$ y $\widetilde{y}_0 \in \widetilde{Y}$ son tales que $x_0 = p(\widetilde{x}_0)$ y $y_0 = q(\widetilde{y}_0)$ (con $p : \widetilde{X} \to X$ y $q : \widetilde{Y} \to Y$ los respectivos cubrientes). Por tanto, como ambos son el grupo trivial (pues son simplemente conexos) el isomorfismo $f_* : \pi_1(X, x_0) \to \pi_1(Y, y_0)$ debe ser tal que:

$$f_*(\pi_1(\widetilde{X},\widetilde{x}_0)) = \pi_1(\widetilde{Y},\widetilde{y}_0)$$

Observación 2.3.2

Como \widetilde{X} y \widetilde{Y} son simplemente conexos, entonces tienen el mismo tipo de homotopía que un punto, esto es que $\widetilde{X} \simeq \{*\}$ y $\widetilde{Y} \simeq \{*\}$ por lo que, al ser \simeq una relación de equivalencia, se sigue que $\widetilde{X} \simeq \widetilde{Y}$.

Ejercicio 2.3.6

Encuentre todos los espacios conexos de 2 y 3 hojas de $\mathbb{S}^1 \vee \mathbb{S}^1$ hasta homeomofismo.

Solución:

Ejercicio 2.3.7

Construye el cubriente universal de los siguientes espacios: $\mathbb{T}^n \times \mathbb{R}P^2$ y $\mathbb{S}^1 \vee \mathbb{S}^2$.

Solución:

Veamos uno por uno:

■ Para el espacio: $\mathbb{T}^n \times \mathbb{R}P^2$ basta con encontrar un cubriente universal de \mathbb{T}^n y otro de $\mathbb{R}P^2$ tales que ambos sean simplemente conexos, luego por un ejercicio anterior se seguiría que el producto de ambos es cubriente univeral del producto de estos dos espacios y, como:

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$$

entonces el producto de éstos dos cubrientes universales seguirá siendo cubriente universal.

Recordemos que:

$$\mathbb{T}^n \cong \underbrace{\mathbb{S}^1 \times \dots \times \mathbb{S}^1}_{n-\text{veces}}$$

por lo que, como \mathbb{S}^1 tiene como un cubriente universal a \mathbb{R} , se sigue que \mathbb{R}^n es cubriente universal de \mathbb{T}^n .

Ahora para $\mathbb{R}P^2$, afirmamos que \mathbb{S}^2 es cubriente universal de la esfera. En efecto, para ello recordemos que el espacio proyectivo es construído a partir de la identificación:

$$\mathbb{R}P^2 = \mathbb{S}^2/(x \sim -x)$$

Consideremos el mapeo cociente $q: \mathbb{S}^2 \to \mathbb{R}P^2$ dado por:

$$x \mapsto [x] = \{x, -x\}$$

esta función es continua y suprayectiva. Sea [x] una clase y considere el abierto:

$$U_{[x]} = q(U_x) \subseteq \mathbb{R}P^2$$

(ya que q es función abierta) donde $U_x \subseteq \mathbb{S}^2$ es tal que $x \in U_x$ y:

$$U_x = B(x, \delta) \cap \mathbb{S}^2$$

donde $B(x, \delta)$ es una bola en \mathbb{R}^3 de radio d > 0 que es menor al radio de la esfera \mathbb{S}^2 . Se tiene que:

$$q^{-1}(U_{[x]})$$

tiene dos componentes, dadas por:

$$q^{-1}(U_{[x]}) = U_x \sqcup U_{-x}$$

y, $q\Big|_{U_x}$ es homeomorfismo (pues es en ese abierto continua, biyectiva y con inversa continua). Así que \mathbb{S}^2 es cubriente universal de $\mathbb{R}P^2$.

Por tanto, $\mathbb{R}^n \times \mathbb{S}^2$ es cubriente universal de $\mathbb{T}^n \times \mathbb{R}P^2$.

■ Para el espacio: $\mathbb{S}^1 \vee \mathbb{S}^2$, veamos que el espacio:

$$X = \mathbb{R} \sqcup \left(\bigsqcup_{m \in \mathbb{Z}} \mathbb{S}^2\right) / \{m \sim p_m, \forall m \in \mathbb{Z} \subseteq \mathbb{R}\}$$

donde p_m es el polo norte de la m-ésima 2-esfera en la unión disjunta es cubriente universal. En efecto, no se complicado verificar (usando Van-Kampen) que este espacio es simplemente conexo. sea $p: X \to \mathbb{S}^1 \vee \mathbb{S}^2$ dada por:

$$p(s) = \begin{cases} e^{2\pi i s} & \text{si} & s \in \mathbb{R} \\ \pi(s) & \text{si} & s \in X \setminus \mathbb{R} \end{cases}$$

donde $\pi: \bigsqcup_{m \in \mathbb{Z}} \mathbb{S}^2 \to \mathbb{S}^2$ es la proyección de un elemento de cualquier 2-esfera en la otra 2-esfera, la cual es una función cubriente. Claramente esta función es suprayectiva y continua (por el lema del pegado y por ser $s \mapsto e^{2\pi i s} \pi$ funciones continuas). Veamos que cumple la condición de los abiertos. Se tienen tres casos:

- $x \in \mathbb{R} \setminus \mathbb{Z}$, entonces existe un entero $m \in \mathbb{Z}$ tal que m < x < m+1. Tomando este intervalo se sigue, al ser $s \mapsto e^{2\pi i s}$ cubriente universal de \mathbb{S}^1 , que tomando el abierto correspondiente en ese cubrente se sigue el resultado.
- $x \in X \setminus \mathbb{R}$, existe un abierto U_x en \mathbb{S}^2 tal que $x \in U_x \subseteq \mathbb{S}^1 \setminus \{1\}$. De forma inmediata se sigue que $p^{-1}(U_x)$ cumple la condición deseada.
- Si $x \in \mathbb{Z}$, entonces tomando los dos abiertos resultantes de las dos funciones cubrientes y haciendo su unión, se tiene el resultado.

por los tres incisos se sigue el resultado.

Ejercicio 2.3.8

Sean $p:\widetilde{X}\to X$ y $q:\widetilde{Y}\to Y$ dos cubrientes universales. Muestre que para cada función $f:X\to Y$ existe una función $\widetilde{f}:\widetilde{X}\to\widetilde{Y}$ tal que:

$$f \circ p = q \circ \widetilde{f}$$

Demostración:

Ejercicio 2.3.9

Demuestra la siguiente proposición: Si $p:(E,e_0)\to (X,x_0)$ y $p':(E',e'_0)\to (X,x_0)$ son ambos espacios cubrientes simplemente conexos de X, entonces existe un único homeomorfismo $\varphi:(E',e'_0)\to (E,e_0)$ tal que $p\circ\varphi=p'$.

Demostración:

Ejercicio 2.3.10

Para cualquier n > 0, sea C_n el círculo con centro $\left(\frac{1}{n}, 0\right)$ y radio $\frac{1}{n}$, defina $X = \bigcup_{n=1}^{\infty} C_n$. Muestre que este espacio no tiene cubriente universal.