HOME CHAPTERS LOGIN

18. GPS Error Sources

A thought experiment (Wormley, 2004): Attach your GPS receiver to a tripod. Turn it on, and record its position every ten minutes for 24 hours. Next day, plot the 144 coordinates your receiver calculated. What do you suppose the plot would look like?

Do you imagine a cloud of points scattered around the actual location? That's a reasonable expectation. Now, imagine drawing a circle or ellipse that encompasses about 95 percent of the points. What would the radius of that circle or ellipse be? (In other words, what is your receiver's positioning error?)

The answer depends in part on your receiver. If you used a hundred-dollar receiver, the radius of the circle you drew might be as much as ten meters to capture 95 percent of the points. If you used a WAAS-enabled, single frequency receiver that cost a few hundred dollars, your error ellipse might shrink to one to three meters or so. But if you had spent a few thousand dollars on a dual frequency, survey-grade receiver, your error circle radius might be as small as a centimeter or less. In general, GPS users get what they pay for.

As the market for GPS positioning grows, receivers are becoming cheaper. Still, there are lots of mapping applications for which it's not practical to use a survey-grade unit. For example, if your assignment was to GPS 1,000 manholes for your municipality, you probably wouldn't want to set up and calibrate a survey-grade receiver 1,000 times. How, then, can you minimize errors associated with mapping-grade receivers? A sensible start is to understand the sources of GPS error.

In this section you will learn to:

- 1. state the kinds and magnitude of error and uncertainty associated with uncorrected GPS positioning; and
- 2. use a PDOP chart to determine the optimal times for GPS positioning at a given location and date.

Note: My primary source for the material in this section is Jan Van Sickle's text *GPS for Land Surveyors, 2nd Ed.* If you want a readable and much more detailed treatment of this material, I recommend Jan's book. See the bibliography at the end of this chapter for more information about this and other resources.

4 17. Satellite Ranging

up

19. User Equivalent Range Errors >

The Nature of Geographic Information

Chapters

- ► Chapter 1: Data and Information
- Chapter 2: Scales and Transformations
- Chapter 3: Census Data and Thematic Maps
- Chapter 4: TIGER, Topology and Geocoding
- ▼ Chapter 5: Land Surveying and GPS
 - 1. Overview
 - 2. Geospatial Data Quality
 - 3. Error and Uncertainty
 - 4. Systematic vs. Random Errors
 - 5. Survey
 Control
 - 6. Measuring Angles
 - 7. Measuring Distances
 - 8. Horizontal Positions
 - 9. Traverse
 - 10. Triangulation
 - 11. Trilateration
 - 12. Vertical Positions
 - 13. Global Positioning System
 - 14. Space Segment

- 15. Control Segment
- 16. User Segment
- 17. Satellite Ranging
- 18. GPS Error Sources
- 19. User
 Equivalent
 Range Errors
- 20. Dilution of Precision
- 21. GPS Error Correction
- 22. Differential Correction
- 23. Real-Time Differential Correction
- 24. Post-Processed Differential Correction
- 25. Summary
- 26. Bibliography
- Chapter 6: National Spatial Data Infrastructure I
- Chapter 7: National Spatial Data Infrastructure II
- ► Chapter 8: Remotely Sensed Image Data
- ► Chapter 9: Integrating Geographic Data

Navigation

- login
- Search

Author: David DiBiase, Senior Lecturer, John A. Dutton e-Education Institute, and Director of Education, Industry Solutions, Esri. Instructors and contributors: Jim Sloan, Senior Lecturer, John A. Dutton e-Education Institute; Ryan Baxter, Senior Research Assistant, John A. Dutton e-Education Institute, Beth King, Senior Lecturer, John A. Dutton e-Education Institute and Assistant Program Manager for Online Geospatial Education, and Adrienne Goldsberry, Senior Lecturer, John A. Dutton e-Education Institute; College of Earth and Mineral Sciences, The Pennsylvania State University.

Penn State Professional Masters Degree in GIS: Winner of the 2009 Sloan Consortium award for Most Outstanding Online Program

This courseware module is offered as part of the Repository of Open and Affordable Materials at Penn State.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The College of Earth and Mineral Sciences is committed to making its websites accessible to all users, and welcomes comments or suggestions on access improvements. Please send comments or suggestions on accessibility to the site editor. The site editor may also be contacted with questions or comments about this Open Educational Resource.

The John A. Dutton Institute for Teaching and Learning Excellence is the learning design unit of the College of Earth and Mineral Sciences at The Pennsylvania State University.

Navigation

- Home
- News
- About
- Contact Us
- People
- Resources
- Services
- Login

EMS

- College of Earth and Mineral Sciences
- Department of Energy and Mineral Engineering
- Department of Geography
- Department of Geosciences
- Department of Materials Science and Engineering
- Department of Meteorology and Atmospheric Science
- Earth and Environmental Systems Institute
- Earth and Mineral Sciences Energy Institute

Programs

- Online Geospatial Education Programs
- iMPS in Renewable Energy and Sustainability Policy
- Office

 BA in Energy and Sustainability Policy Program

Office

Program

Related Links

- Penn State
 Digital
 Learning
 Cooperative
- Penn State
 World Campus
- Web Learning@ Penn State

2217 Earth and Engineering Sciences Building, University Park, Pennsylvania, 16802 Contact Us Privacy & Legal Statements | Copyright Information The Pennsylvania State University © 2023