Applied Machine Learning for Business Analytics

Lecture 10: Get Machine Learning Models in Production

Lecturer: Zhao Rui

Agenda

- 1. From Notebooks to Python Scripts
- 2. Interfaces of ML Systems
- 3. MLOps
- 4. Building ML Pipelines with better tools

1. From Notebooks to Python Scripts

Virtual environment

- Virtual Environment is required to isolate the packages necessary for applications from our other projects that may have different dependencies
- requirements.txt
 - Set up the development environment
 - o pip freeze will dump all dependencies of all our packages into the file
 - Try pipreqs, pip-tools
- setup.py
 - Redistribute the whole packages
 - Contains metadata, requirements and entry points

https://stackoverflow.com/questions/43658870/requirements-txt-vs-setup-py

Organized code

- Code should be readable, reproducible, scalable and efficient,
- Notebooks are only suitable for POC
- The code can be organized based on utility i.e., working pipeline components

Cookiecutter DS template

- One of templates we can use is:
 - https://drivendata.github.io/cookiecutter-data-science/

Cookiecutter Data Science

A logical, reasonably standardized, but flexible project structure for doing and sharing data science work.

Cookiecutter DS template

pip install cookiecutter cookiecutter https://github.com/drivendata/cookiecutter-data-science cd cuisine_tag

```
(bt5153env) rz@RuisPeralMacPro lab_lecture10 % cookiecutter https://github.com/drivendata/cookiecutter-data-science
project_name [project_name]: cuisine_tag
repo_name [cuisine_tag]: cuisine_tag
author_name [Your name (or your organization/company/team)]: rz_msba
description [A short description of the project.]: lecture10_demo
Select open_source_license:
1 - MIT
2 - BSD-3-Clause
3 - No license file
Choose from 1, 2, 3 [1]: 1
s3_bucket [[OPTIONAL] your-bucket-for-syncing-data (do not include 's3://')]:
aws_profile [default]:
Select python_interpreter:
  - python3
2 - python
Choose from 1, 2 [1]: 1
```

Metadata

Cookiecutter template

- The structure frame will be generated following the template
- Easier for us to understand and modify the code base

Config

Config directory or file should be created for the following:

- Hyper-parameters for training
- Specifications for model locations, logging and other hand-coded information
- Running a small test for training

Avoid hard coding

Config template

```
rz0718 init folder
As 1 contributor
35 lines (27 sloc) | 810 Bytes
  1 external_data_config:
        external_data_csv: data/external/sms.tsv
  4 raw_data_config:
       raw_data_csv: data/raw/train.csv
        model_var: ['label', 'message']
        train_test_split_ratio: 0.2
        target: label
        text: message
        random state: 111
        new_train_data_csv: data/raw/train_new.csv
 12
        label_encoding: {'ham':0, 'spam':1}
 13
     processed data config:
 15
        train_data_csv: data/processed/spam_train.csv
 16
        test_data_csv: data/processed/spam_test.csv
 17
 18
        artifacts_dir: artifacts
 20
        experiment_name: model_iteration1
 21
        run_name: random_forest
        registered_model_name: random_forest_model
 23
        remote_server_uri: http://localhost:1234
 24
 25
 26
      random_forest:
 27
        max depth: 35
 28
        n estimators: 42
 29
 30
      count_vectorizer:
 31
        max_features: 5000
 32
 33
      model_dir: models/model.joblib
 34
 35 model_webapp_dir: webapp/model_webapp_dir/model.joblib
```


https://circleci.com/blog/what-is-yaml-a-beginner-s-guide/

Logging is important for ML Sys

- Life is short. You need logs
- Do not rely too much on print statements
 - For example, print('aaaaaa')
- Logging is the process of tracking and recording key events that occur in the applications
 - Inspect processes
 - Fix issues
 - More powerful than print statement

Logging 101

Logger:

- The main object that emits the log messages from the whole project
- Can be specified to each module

Handler:

- Used for sending log records to a specific location and specifications for that location (name size, etc)
- Different handlers have different rules to save logs in local files

Formatter

- Used for style and layout of the log records
- Levels (according to different priorities)
 - CRITICAL > Error > WARNING > INFO > DEBUG

Levels in logs

```
import logging
      logging.basicConfig(stream=sys.stdout, level=logging.INFO)
  6
      # Logging levels (from lowest to highest priority)
      logging debug("Used for debugging your code.")
      logging.info("Informative messages from your code.")
      logging.warning("Everything works but there is something to be aware of.")
      logging.error("There's been a mistake with the process.")
      logging.critical("There is something terribly wrong and process may terminate.")
            OUTPUT TERMINAL DEBUG CONSOLE
(base) ruizhao@Ruis-MBP  ~/Desktop  python test.py
INFO: root: Informative messages from your code.
WARNING:root:Everything works but there is something to be aware of.
ERROR: root: There's been a mistake with the process.
CRITICAL: root: There is something terribly wrong and process may terminate.
(base) ruizhao@Ruis-MBP ~/Desktop | |
```

Best practices in logging

- Logger in each module
 - Examples:

```
| app.py
| package_a
| module_a.py
```

```
# app.py
import logging
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s:%(message)s')
from package_a import module_a

logger = logging.getLogger(__name__)
logger.warning('from app')

# module_a.py
import logging

logger = logging.getLogger(__name__)
logger.warning('from module_a')

$ python app.py
2019-12-24 21:53:21,915 - package_a.module_a - WARNING:from module_a
2019-12-24 21:53:21,916 - __main__ - WARNING:from app
```

Best practices in logging

- Logger in each module
 - Easy to identify the error source
 - But at the same time: it is important to throw the pot

"甩锅" ("throw the pot/pass the buck")

"你背" ("let you carry the pot", i.e., "lay the blame on you")

Best practices in logging

- Log all the details that you want to generate from the inside
 - It could be useful during development and model running check
- Should log messages outside of small functions and inside larger workflow
 - Logger could be placed within main.py and train.py since the smaller functions defined in other scripts are used here

Logging configuration

- Coding directly in scripts
- Using a config file
 - logging.config.fileConfig()
- Using the dictionary type
 - logging.config.dictConfig()
 - Can be put in config/config.py

Suitable for complex projects

Documenting your code

- Document our code is a way to organize our code
- What is more, make others and ourselves in the future to easily use the code base
- Most common documenting types:
 - Comments
 - Typing
 - Docstrings
 - Documentation

When it's been 7 hours and you still can't understand your own code

Comments

- Good code should not need comments because it is readable
- When do you need comments:

Ayush Goel, Learner, Worker

8

Answered Nov 21, 2013

Found this in the production code we use currently:

```
1 // This is black magic
2 // from
3 // *Some stackoverlow link
4 // Don't play with magic, it can BITE.
```

4.6K views · View 39 upvotes

Typing

- Make our code as explicit as possible
 - Naming for variables and functions should be self-explaining
- Typing: Define the types for our function's inputs and outputs

Starting from Python 3.9+, common types are **built in**

```
from typing import List, Tuple, Dict

def add(a: int, string: str, f: float, b: bool) -> Tuple[List, Tuple, Dict, bool]:

    list1 = list(range(a))
    tup = (string, string, string)
    d = {"a": f}
    bl = b
    return list1, tup, d, bl

print(add(5, "hhhh", 2.3, False))
```

Docstrings

- Docstrings could be placed in functions and classes
- Use <u>Python Docstrings Generator extension</u> in VS Code

autoDocstring: VSCode Python Docstring Generator Visual Studio Code extension to quickly generate docstrings for python functions.

number {integer} -- [description]

TypeError -- [description]
urns:
[type] -- [description]

kwarg {[type]} -- [description] (default: {3})

Keyword Arguments:

return kwarg

¥ master*+ ♥ 😵 0 🛦 0 Python 3.6.2 (3.6.2) 🗢

Documents

- The above are all placed inside scripts. The documentation is a separated doc.
- Some open-source packages could be used to automatically generate the documentation
 - mkdocs (generates project documentation)
 - o mkdocs-material (styling to beautiful render documentation)
 - mkdocstrings (fetch documentation automatically from docstrings)

Styling

- Code is read more often than it is written.
- Follow consistent style and formatting conventions -> make code easy to read
- Most conventions are based on PEP8 conventions.
- We have lots of pipeline tools in place to automatically and effortlessly ensure that consistency

Styling tools

- Those tools could be used with configurable options:
 - Black: an in-place reformatter that (mostly) adheres to PEP8.
 - isort: sorts and formats import statements inside Python scripts.
 - flake8: a code linter with stylistic conventions that adhere to PEP8.

```
# Black formatting
[tool.black]
line-length = 100
include = '\.pyi?$'
exclude = '''
11
                     # exclude a few common directories in the
      \.eggs
                     # root of the project
    | \.git
    | \.hg
    | \.mypy cache
    | \.tox
    \.venv
    | _build
     buck-out
      build
      dist
111
```

Formatting done by Black

```
def very_important_function(template: str, *variables, file: os.PathLike, engine: str, header: bool = True, debug: bool = False):
    """Applies `variables` to the `template` and writes to `file`."""
   with open(file, 'w') as f:
def very_important_function(
    template: str,
    *variables,
    file: os.PathLike,
    engine: str,
    header: bool = True,
    debug: bool = False,
    """Applies `variables` to the `template` and writes to `file`."""
    with open(file, "w") as f:
```

Makefile

- Makefile is an automation tool that organizes our commands
- Syntax:

```
# Makefile
target: prerequisites
<TAB> recipe
```

Makefile

- Different rules can be configured in Makefile
 - Example <u>here</u>

```
(bt5153env) rz@RuisPeralMacPro spam_detection % make
Available rules:
clean
       Delete all compiled Python files
create_environment Set up python interpreter environment
     Make Dataset
data
lint
    Lint using flake8
requirements Install Python Dependencies
(bt5153env) rz@RuisPeralMacPro spam_detection % make clean
find . -type f -name "*.py[co]" -delete
find . -type d -name "__pycache__" -delete
```

2 Interfaces of ML Systems

How to deploy ML models

- Batch Deployment
 - Generate Predictions at defined frequencies
- Real-time Deployment
 - Generate predictions as requests arrive
- Streaming Deployment
 - Generate predictions when specific events trigger
- Edge Deployment
 - o Generate predictions on users' side

They are also called as online prediction

Batch deployment

- Frequency: Periodical
- Processing accumulated data when you do not need immediate results
 - Predictions can be pre-computed and stored in a database. Then, can be easily retrieved when needed
 - However, predictions can be quickly outdated if we can not use recent data.
- Applications:
 - TripAdvisor hotel ranking
 - Netflix recommendation

Real-time deployment

- Frequency: as soon as requests come
 - A synchronous process when a user/customer requests a prediction
- The process starts with users' requests
 - Users' requests is pushed to a backend service (usually through HTTP API calls)
 - Then, it is pushed it to a ML service
 - ML service would either take features from the request or collect recent contextual information to return predictions
- Multi-threaded processes and vertical scaling by additional servers could handle latency and concurrency issues.
 - Multiple users raise additional parallel requests
- Applications:
 - Google translation

Streaming deployment

- Frequency: based on events
 - A more synchronous process compared to real-time deployment
- Events can trigger the start of prediction process
 - Users' requests is pushed to a backend service (usually through HTTP API calls)
 - For example, you are at tiktok page, the recommendation process would be triggered. And by the time your scroll, the recommendation results will be ready to be refreshed
 - Massage brokers like Kafka are always used as the queueing process
- Applications:
 - Facebooks Ads
 - Tiktok recommendation

Edge deployment

- Model is directly deployed on the client side
 - Web browser, Mobile phone, Car, IoT hardwares
 - Can be fastest and offline predictions (without internet)
 - Models' complexity are limited due to the smaller hardware

Source: https://www.kdnuggets.com/2018/09/deep-learning-edge.html

Batch vs Online deployment

Batch deployment

- Pro:
 - The most simple deployment approach
- Cons:
 - It is not efficient since most predictions might not be used at the end
 - It can not react to data changes

Real-time deployment

- Pro:
 - The model takes in account near real-time data and make fresh predictions
- Cons:
 - Has some steep learning curve

Hybrid: batch & real-time prediction

- Real-time prediction is default, but common queries are precomputed and stored
- Food delivery services
 - Restaurant recommendations use batch predictions
 - Within each restaurant, item recommendations use online predictions
- Streaming services
 - Title recommendations use batch predictions
 - Row orders use online predictions

Batch deployment

- A batch deployment usually work as on a fixed schedule (every 9:30 am), raw data are processed, and then model predictions are generated
- 3 pipeline architecture is usually used:
 - Feature pipeline
 - Training pipeline
 - Batch prediction pipeline

Batch deployment

Batch deployment: feature engineering

- Read raw data and generates features and labels
- Two engineering change would be applied:
 - Automation: feature pipeline to be executed in a fixed interval
 - Cron job
 - **Airflow**
 - GitHub action
 - Persistence: a place to store features generated by the script (instead of csv files on disk).
 - **Feast**
 - Other <u>feature store</u> tools

Batch deployment: model training

- Read raw data and generates features and labels
- Turn models into binary formats
 - scikit-learn, XGBoost -> joblib, pickle
 - TensorFlow -> .save()
 - PyTorch -> .save()
 - We can save the trained model in the <u>model registry</u> (such as mlflow)

Batch deployment: batch inference

- Create a new script to do the following things:
 - Loads the production model from the model registry
 - Loading the most recent feature batch
 - Make model predictions and save them in databases
- The above script should also be scheduled

Deploy ML model in RestAPI

Model as a web endpoint

- A model as an endpoint:
 - Prediction in response of a set of inputs
 - Here, inputs are feature vectors, images or model inputs
 - Other systems can easily use the predictive model which provides a real-time result

Python web frameworks

- Flask
 - Suitable for quickly prototype
- Django
 - First choice to build robust full-stack websites.
- FastAPI
 - Good at speed or scalability but quite new

A proper deployment also need a WSGI server that provides scaling, routing and load balancing.

Build a web app using Flask

- Flask: a lightweight web framework for Python
 - Create an API call which can be used from front-end
 - Build a full-on web application

```
from flask import Flask
# we define a variable called app
app = Flask(__name__)
# tells Flask what URL a user has to browse to call the function below.
# you will need to browse the url : '/ml-model'
@app.route("/test")
def run_model():
     #run model
     result = "First app in Flask"
     return result
if __name__ == '__main__':
     app.run(host='0.0.0.0', port=5000)
```


Web Server

Code snippet

Build a spam detection web app

 Spam detection from notebook needs to be deployed in order to be used by our end-users

Project folder

- Create a project folder:
 - Have required HTML, CSS and JS codes (<u>front-end</u>)
 - The model file (joblib) is required to be put in the model_webapp_dir

```
webapp
 model_webapp_dir
   model.joblib
  templates
    404.html
    index.html
```

Tree is generated via

https://marketplace.visualstudio.com/items?itemName=Shinotatwu-DS.file-tree-generator

Frontend design

- Created index.html for web page design
 - Collect text from users

• Display predictions whether it is spam or ham.

```
<div class="container-fluid masthead">
     <div class="row">
            <form method="POST">
                <div class="form-group">
                         Enter the text:
                   <textarea class="form-control" name="message" rows="1"
                      placeholder="message"></textarea>
                         Prediction:
                   <textarea readonly class="form-control" id="exTextarea" rows="5">{{ response }}</textarea>
```


Web UI

Code Snippet

Create app.py

- Create app.py under the main folder
 - Connect backend to frontend
 - Send the responses to the UI after predicting the label

```
@app.route("/", methods=["GET", "POST"])
def index():
    if request.method == "POST":
        try:
        if request.form:
            dict_req = dict(request.form)
            response = form_response(dict_req)
            return render_template("index.html", response=response)
    except Exception as e:
        print(e)
        error = {"error": "Something went wrong!! Try again later!"}
        error = {"error": e}
        return render_template("404.html", error=error)
else:
    return render_template("index.html")
```

Code Snippet

```
(Br515Serv) roz#RuisPeralMacPro spam_detection % python app.py
* Serving Flask app 'app'
* Debug mode: on
WANNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead.
* Running on all addresses (0.0.0.0)
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:5001
* Running on http://127.0.0.1:5
```


Create app.py

- Check the full implementation with ML pipeline in our <u>github page</u>
- Other examples:
 - Keras + Image Classification + Flask
 - o <u>Test REST API using Postman</u>
 - Using Gunicorn to provide a WSGI server for applications

Severless deployments

- Reduces the DevOps overhead of deploying models as web services
 - We have to take care of provisioning and server maintenance
 - Worry about scale. Would one server be enough?
 - Reduce the efforts and deployment time when the team size is small
- GCP Cloud Functions or AWS Lambda
- With serverless function environments,
 - Write a function that the runtime supports
 - Specify a list of dependencies
 - Deploy the function to production
 - The rest is fully managed by cloud platform such as provisioning servers, scaling up more machines to match demand, managing load balancers, and handling versioning.

3. MLOps

MLOps = ML + DevOps

MLOps:

- A sequence of steps implemented to deploy an ML Model to the production environment
- It is easy to create ML models that can predict based on the data you fed
- It is challenging to create such models are are reliable, fast, accurate, and can be used by a large number of users

DevOps (Software Features)

ML Project Lifecycle

MLOps concepts: I

Development Platform

- Enable smooth handover from ML Training to deployment
- A collaboration platform for performing ML experiments
- Enable secure access to data sources.

Versioning

Track the version of data and code

Model Registry

 An overview of deployed & legacy ML Models and their version history, and the deployment stage of each version

Model Governance

- Access control to training process related to any given models
- Access control for who can request/reject/approve transitions between deployment stages (dev to staging to prod) in the model registry

MLOps concepts: II

Monitoring

- Track performance metrics
 - ML metrics: F1 score, MSE, ...
 - Ops metrics: uptime, throughput, response time
- Drift detection
 - Concept drift: when the relation between input and output has changed
 - Label drift: changes in predictions, but the model still holds
 - Feature drift: change in the model's outcomes compared to training data
 - Prediction drift: change in the distribution of model input data
- Outlier detection
 - If the new input is totally different from any training samples, we can identify this sample as potential outlier and the risk on the trustworthy of the model's prediction

MLOps concepts: III

- Model Unit Testing: when we create, change or retrain a model, we should automatically validate the integrity of the model
 - Should meet minimum ml performance metrics on a test set
 - Should perform well on synthetic use case-specific datastest
- Devops Concepts:
 - o CI/CD
 - Unit Test
 - Code Structure
 - Documentation

Manual MLOPs

All the work are done manually

MLOPs

Automated Pipeline

https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

4. Building ML Pipelines with better tools

ML pipeline for spam detection

- Machine learning models are trained to predict churn
 - Kaggle data: https://www.kaggle.com/c/customer-churn-prediction-2020
- Tools used for the ML pipeline
 - Flask: create API as interfaces of models
 - MLFlow: for model registry
 - Github: for code version control
 - <u>Data Version Control (DVC)</u>: version control of the datasets and to make pipeline
 - <u>Cookiecutter</u>: Project templates

Git Repo: https://github.com/rz0718/churn_model

Create virtual environment

conda create -n spam_detection conda activate spam_detection

Create project structure using the cookiecutter

pip install cookiecutter cookiecutter https://github.com/drivendata/cookiecutter-data-science cd spam_detection

```
You've downloaded /Users/rz/.cookiecutters/cookiecutter-data-science before. Is
it okay to delete and re-download it? [yes]: yes
project_name [project_name]: spam_detection
repo_name [spam_detection]: spam_detection
author_name [Your name (or your organization/company/team)]: rz_nus
description [A short description of the project.]: endtoend ml pipeline
Select open_source_license:
1 - MTT
2 - BSD-3-Clause
 - No license file
Choose from 1, 2, 3 \lceil 1 \rceil: 1
s3_bucket [[OPTIONAL] your-bucket-for-syncing-data (do not include 's3://')]:
aws_profile [default]:
Select python_interpreter:
 - python3
 - python
Choose from 1, 2 [1]: 1
```

Create a github repo

git init -b main git add . git commit -m "Init project" git remote add origin <your_github_repo> git branch -m main git push -u origin main

Code Version Control

Track data version with DVC

pip install dvc dvc init dvc add <path for the data file>

Data Version Control

Write config file: params.yaml

- Store all the configurations related to this project
- Put the yaml file under main folder

Prepare source code inside the src folder

- Add data loading related scripts into the folder of data
- Add modeling related scripts into the folder of models

```
<- Source code for use in this project.
src
    init__.py
                  <- Makes src a Python module
                <- Scripts to download or generate data
    ___ make_dataset.py
   features
                  <- Scripts to turn raw data into features for modeling
    build_features.py
   models
                  <- Scripts to train models and then use trained models to make
                      predictions
       predict_model.py

    train model.pv
```

Data older

Model folder

- MLflow is used to track the model performances
- model_selection.py is used to select the best model from model registry and save the best model in the root/model directory

Pipeline creation with DVC

- With all scripts in src folder, create the dvc.yaml to define the pipeline
- Each stage in yaml files contains:
 - cmd: bash command to execute the script
 - deps: the dependencies to execute the step
 - outs: output from the cmd line (model or data)
 - o params: parameters used in the script
- With deps, we can create DAG
 - Call "dvc dag"

Pipeline creation with DVC

```
data/external/sms.tsv.dvc |
 raw dataset creation |
       split_data |
     | model_train |
log_production_model
```

```
39 lines (36 sloc) 1000 Bytes
     stages:
        raw dataset creation:
          cmd: python src/data/load data.py --config=params.yaml
         - src/data/load data.py
         - data/external/sms.tsv
         - data/raw/train.csv
  9
10
        split data:
 11
         cmd: python src/data/split_data.py --config=params.yaml
 12
13
         - src/data/split data.pv
 14
         - data/raw/train.csv
15
16
         - data/processed/spam train.csv
17
         - data/processed/spam_test.csv
18
19
        model train:
20
         cmd: python src/models/train_model.py --config=params.yaml
21
22
         - data/processed/spam train.csv
23
         - data/processed/spam_test.csv
24
         - src/models/train model.py
25
         params:
26
         - random forest.max depth
27
         - random forest.n estimators
28
         - count vectorizer.max features
29
30
        log production model:
         cmd: python src/models/model selection.py --config=params.yaml
31
32
33
         - src/models/model_selection.py
 34
35
         - random_forest.max_depth
         - random_forest.n_estimators
37
         - count_vectorizer.max_features
38
39
         - models/model.ioblib
```

Execute the pipeline

Use two terminals to execute:

mlflow server --backend-store-uri sqlite:///mlflow.db --default-artifact-root ./artifacts --host 0.0.0.0 -p 1234

Why DVC

- DVC only conduct the actions if dependencies and parameters are changed
- For example, run dvc repro again

```
(bt5153env) ruizhao@Ruis-MacBook-Pro-2 ?~/nus_course/spam_detection ??main ?dvc repro 'data/external/sms.tsv.dvc' didn't change, skipping
Stage 'raw_dataset_creation' didn't change, skipping
Stage 'split_data' didn't change, skipping
Stage 'model_train' didn't change, skipping
Stage 'log_production_model' didn't change, skipping
Data and pipelines are up to date.
```

- Change the hyper-parameters in params.yaml, the last two stages will be executed. We can use mlflow dashboard to track
 - Model_train
 - Log_production_model

Build ml pipeline using DVC and MLflow

Check the full implementation with ML pipeline in our <u>github page</u>

What we are missing

- Unit/Load tests
- Deploy the application in a real environment (not local env.)
- CI/CD
 - Push the change to git repo
 - It can be immediately deployed in production after passing the test
 - The answers from industries at this moment are:
 - Containers
 - Kubernetes
- Model Monitoring