Uma Introdução aos Sistemas Dinâmicos Discretos

Agenor Gonçalves Neto

São Paulo, 2020

Sumário

1	Conceitos Iniciais	1
2	Função Logística	2
	2.1 Estudo Inicial	2
	2.2 Conjuntos de Cantor	3
	2.3 Caos	5
	2.4 Conjugação Topológica	6
	2.5 Dinâmica Simbólica	8
3	Teorema de Sharkovsky	10
4	Derivada de Schwarz	12
5	Bifurcação	14
6	Subshift	18

1 Conceitos Iniciais

Seja $f: X \to X$ uma função, onde X é um espaço métrico. Dado $x \in X$ e denotando por f^n a n-ésima composição de f com ela mesma, queremos estudar as propriedades da sequência $(x, f(x), f^2(x), \ldots)$.

Definição 1.1.

- a. Se $x \in X$, então $\mathcal{O}(x) = \{x, f(x), f^2(x), \dots\}$ é a órbita de x.
- b. Se $p \in X$ e $f^n(p) = p$ para algum n > 0, então p é um ponto periódico de período n. Em particular, se n = 1, então p é um ponto fixo. Denotaremos por Per(f) o conjunto de todos os pontos periódicos.
- c. Se p é um ponto periódico de período n e $f^k(p) \neq p$ para todo 0 < k < n, então n é o período principal de p. Denotaremos por $\operatorname{Per}_n(f)$ o conjunto de todos os pontos periódicos de período principal n.

d. Se p um ponto periódico de período n, então $\mathcal{B}(p) = \{x \in X : \lim_{k \to \infty} f^{kn}(x) = p\}$ é a bacia de atração de p. Além disso, $\mathcal{B}(\infty) = \{x \in X : \lim_{k \to \infty} |f^k(x)| = \infty\}$ é a bacia de atração do ∞ .

Proposição 1.2. Seja $f:[a,b] \to \mathbb{R}$ uma função contínua. Se $f([a,b]) \subset [a,b]$ ou $f([a,b]) \supset [a,b]$, então f possui ponto fixo.

Demonstração. Suponha que $f([a,b]) \subset [a,b]$. Considere a função g(x) = f(x) - x definida em [a,b]. Observando que $g(a) \geq 0$ e $g(b) \leq 0$ e utilizando o TVI, existe $p \in [a,b]$ tal que g(p) = 0. Suponha que $f([a,b]) \supset [a,b]$ e sejam $c,d \in [a,b]$ tais que f(c) = a e f(d) = b. Considere a função g(x) = f(x) - x definida em [a,b]. Observando que $g(c) \leq 0$ e $g(d) \geq 0$ e utilizando o TVI, existe $p \in [a,b]$ tal que g(p) = 0.

Definição 1.3. Sejam $f:[a,b] \to [a,b]$ uma função de classe \mathcal{C}^1 e $p \in \operatorname{Per}_n(f)$.

- a. Se $|\partial f^n(p)| \neq 1$, então p é um ponto hiperbólico.
- b. Se $|\partial f^n(p)| < 1$, então p é um ponto atrator.
- c. Se $|\partial f^n(p)| > 1$, então p é um ponto repulsor.

Teorema 1.4. Sejam $f:[a,b] \to [a,b]$ uma função de classe C^1 e $p \in Per_n(f)$.

- 1. Se p é um ponto atrator, então existe uma vizinhança de p contida em $\mathcal{B}(p)$.
- 2. Se p é um ponto repulsor, então existe uma vizinhança V de p com a seguinte propriedade: se $x \in V$ e $x \neq p$, então $f^{kn}(x) \notin V$ para algum $k \geq 1$.

Demonstração.

- 1. Sendo ∂f contínua, existe $\varepsilon > 0$ tal que $|\partial f^n(x)| \le \lambda < 1$ para todo $x \in (p-\varepsilon, p+\varepsilon)$. Pelo TVM, se $x \in (p-\varepsilon, p+\varepsilon)$, então $|f^n(x)-p| \le \lambda |x-p|$. Por indução, $|f^{kn}(x)-p| \le \lambda^k |x-p|$ para todo $k \ge 1$. Desse modo, $\lim_{k \to \infty} f^{kn}(x) = p$.
- 2. Demonstração análoga.

2 Função Logística

2.1 Estudo Inicial

Proposição 2.1. Se $\mu > 1$, então

- 1. F(1) = F(0) = 0.
- 2. $F(\frac{1}{\mu}) = F(p_{\mu}) = p_{\mu}$, onde $p_{\mu} = \frac{\mu 1}{\mu}$.
- 3. $0 < p_{\mu} < 1$.

Proposição 2.2. Se $\mu > 1$, então $(-\infty, 0) \cup (1, \infty) \subset \mathcal{B}(\infty)$.

Demonstração. Inicialmente, se $x \in (1, \infty)$, então $F(x) \in (-\infty, 0)$. Por fim, observamos que a sequência $(x, F(x), F^2(x), \dots)$ é estritamente decrescente e ilimitada quando $x \in (-\infty, 0)$.

Proposição 2.3. Se $1 < \mu < 3$, então

- 1. 0 é um ponto repulsor e p_{μ} é um ponto atrator.
- 2. $(0,1) \subset \mathcal{B}(p_{\mu})$.

2.2 Conjuntos de Cantor

Se $\mu > 4$, então $F(\frac{1}{2}) = \frac{\mu}{4} > 1$, ou seja, existem pontos em [0,1] que não permanecem em [0,1] após uma iteração de F. Em vista da Proposição 2.2, tais pontos pertencem ao conjunto $\mathcal{B}(\infty)$. De modo mais geral, se um ponto de [0,1] não permanece em [0,1] após um número finito de iterações, então ele pertence ao conjunto $\mathcal{B}(\infty)$.

Desse modo, considere o conjunto $\Lambda_n = \{x \in [0,1] : F^n(x) \in [0,1]\}$ formado pelos pontos que permanecem em [0,1] após n iterações de F e considere o conjunto $\Lambda = \bigcap_{n=0}^{\infty} \Lambda_n = \{x \in [0,1] : F^n(x) \in [0,1] \text{ para todo } n \geq 1\}$, que é formado pelos pontos de [0,1] que sempre permanecem em [0,1] por iterações de F. Observe que $\Lambda_n \supset \Lambda_{n+1}$, para todo $n \geq 1$, pois se $F^{n+1}(x) = F(F^n(x)) \in [0,1]$, então $F^n(x) \in [0,1]$.

Proposição 2.4. Se $\mu > 4$, então

- 1. $\Lambda_1 = [0, x_1] \cup [x_2, 1]$, onde $x_1 = \frac{1}{2} \frac{\sqrt{\mu^2 4\mu}}{2\mu}$ $e \ x_2 = \frac{1}{2} + \frac{\sqrt{\mu^2 4\mu}}{2\mu}$.
- 2. Λ_n é a união de 2^n intervalos fechados disjuntos e F^n : $[a,b] \to [0,1]$ é bijetora, onde [a,b] é um desses intervalos.

Demonstração.

1. Basta resolver a equação de segundo grau $\mu x(1-x)=1$.

Analisando F' observamos que F é estritamente crescente no intervalo $\left[0,\frac{1}{2}\right]$ e estritamente decrescente no intervalo $\left[\frac{1}{2},1\right]$. Como F(0)=F(1)=0 e $F\left(\frac{1}{2}\right)>1$, o Teorema do Valor Intermediário garante que existem $x_1\in \left(0,\frac{1}{2}\right)$ e $x_2\in \left(\frac{1}{2},1\right)$ tais que $F(x_1)=F(x_2)=1$. Os valores de x_1 e x_2 são encontrados resolvendo a equação de segundo grau $\mu x(1-x)=1$. Logo, $F([0,x_1])=F([x_2,1])=[0,1]$ e F(x)>1 para todo $x\in (x_1,x_2)$. Portanto, $\Lambda_1=[0,x_1]\cup [x_2,1]$ e o item 1 está demonstrado.

A demonstração dos itens 2 e 3 será feita por indução. De acordo com a primeira parte, Λ_1 é a união de $2^1 = 2$ intervalos fechados disjuntos e F restrita é cada um desses intervalos é uma bijeção com o intervalo [0,1].

Suponha que Λ_{k-1} é a união de 2^{k-1} intervalos fechados disjuntos de modo que F^{k-1} : $[a,b] \to [0,1]$ é bijetora para todo intervalo [a,b] que forma Λ_{k-1} . Sendo F^{k-1} bijetora, $(F^{k-1})'(x) > 0$ ou $(F^{k-1})'(x) < 0$ para todo $x \in [a,b]$. Como as demonstrações para os dois casos são análogas, podemos supor que $(F^{k-1})'(x) > 0$.

Como F^{k-1} é estritamente crescente, o Teorema do Valor Intermediário afirma que existem únicos $\overline{x_1}, \overline{x_2} \in (a, b)$ tais que

- (a) $a < \overline{x_1} < \overline{x_2} < b$,
- (b) $F^{k-1}([a, \overline{x_1}]) = [0, x_1],$
- (c) $F^{k-1}((\overline{x_1}, \overline{x_2})) = (x_1, x_2)$ e
- (d) $F^{k-1}([\overline{x_2}, 1]) = [x_2, 1].$

As condições acima garantem que os intervalos $[a, \overline{x_1}]$, $[\overline{x_2}, b]$ são disjuntos e que $F^k(x) = F(F^{k-1}(x)) > 1$ para todo $x \in (\overline{x_1}, \overline{x_2})$. Também, temos que $F^k([a, \overline{x_1}]) = F([0, x_1]) = [0, 1]$ e, analogamente, $F^k([\overline{x_2}, 1]) = [0, 1]$. Além disso,

$$(F^k)'([a,\overline{x_1}]) = F'(F^{k-1}([a,\overline{x_1}]))(F^{k-1})'([a,\overline{x_1}]) = F'([0,x_1])(F^{k-1})'([a,\overline{x_1}]) > 0$$

e, analogamente,

$$(F^k)'([\overline{x_2}, 1]) = F'([x_2, 1])(F^{k-1})'([\overline{x_2}, 1]) < 0.$$

Logo, F^k é uma bijeção entre $[a, \overline{x_1}]$ e [0, 1] e entre $[\overline{x_2}, 1]$ e [0, 1].

Portanto, a partir de cada intervalo fechado de Λ_{k-1} , construímos dois novos intervalos fechados disjuntos tais que F^k restrita em cada um desses intervalos é um bijeção com [0,1] e, dessa maneira, esses intervalos estão contidos em Λ_k . Desse modo, se Λ_{k-1} é formado por 2^{k-1} intervalos fechados disjuntos, então Λ_k é formado por $2 \times 2^{k-1} = 2^k$ intervalos fechados disjuntos. Assim, o resultado está provado.

Definição 2.5. Seja $\Gamma \subset \mathbb{R}$ um conjunto não vazio. Dizemos que Γ é um conjunto de Cantor se as seguintes condições são válidas:

- i. Γ é compacto.
- ii. Γ não possui intervalos.
- iii. Todo ponto de Γ é um ponto de acumulação de Γ .

Lema 2.6. Se $\mu > 2 + \sqrt{5}$, então

- 1. existe $\lambda > 1$ tal que $|\partial F(x)| > \lambda$ para todo $x \in \Lambda_1$.
- 2. $b-a<\frac{1}{\lambda^n}$, onde [a,b] é um dos intervalos que formam Λ_n .
- 3. $dados \ x \in \Lambda \ e \ \varepsilon > 0$, existe um intervalo $[a,b] \subset \Lambda_n$ para algum $n \ge 1$ tal que $x \in [a,b]$, $b-a < \varepsilon \ e \ F^n : [a,b] \to [0,1]$ é bijetora.
- Demonstração. 1. Inicialmente, observamos que $\mu^2 4\mu > 1$ quando $\mu > 2 + \sqrt{5}$. Desse modo, $F'(x_1) = \sqrt{\mu^2 4\mu} > 1$ e $F'(x_2) = -\sqrt{\mu^2 4\mu} < -1$, onde x_1 e x_2 são como na Proposição 2.4. Observamos também que F' é estritamente decrescente, pois $F''(x) = -2\mu < 0$. Portanto, $F'(x) \geq F'(x_1) > 1$ para todo $x \in [0, x_1]$ e $F'(x) \leq F'(x_2) < -1$ para todo $x \in [x_2, 1]$. De acordo com a Proposição 2.4, $\Lambda_1 = [0, x_1] \cup [x_2, 1]$ e, desse modo, |F'(x)| > 1 para todo $x \in \Lambda_1$. Sendo F' contínua e Λ_1 compacto, existe $\lambda > 1$ tal que $|F'(x)| > \lambda$ para todo $x \in \Lambda_1$.

2. De acordo com a Proposição 2.4, Λ_n é formado pela união de 2^n intervalos disjuntos. Seja [a,b] um desses intervalos. Se $x \in [a,b]$, em particular $F^k(x) \in \Lambda_1$ para todo $0 \le k < n$. Desse modo, de acordo com o item anterior, temos que $(F^n)'(x) = F'(F^{n-1}(x)) \times F'(F^{n-2}(x)) \times \cdots \times F'(x) > \lambda^n$.

Pelo Teorema do Valor Médio, existe $c \in [a, b]$ tal que

$$|F^n(b) - F^n(a)| = |(F^n)'(c)||b - a| > \lambda^n |b - a|$$

Como $F^n: [a,b] \to [0,1]$ é contínua e bijetora, temos que $|F^n(b) - F^n(a)| = 1$. Desse modo, $|b-a| < \frac{1}{\lambda^n}$ e a afirmação está provada.

3. Sejam $x \in \Lambda$, $\varepsilon > 0$ e $n \ge 1$ tal que $\frac{1}{\lambda^n} < \varepsilon$, onde $\lambda > 1$ é como no primeiro item. Em particular, $x \in \Lambda_n$. Seja I um dos intervalos que formam Λ_n e que contém x. Pelo item anterior, o tamanho de I é menor que ε . Além disso, pela Proposição 2.4, $F^n: I \to [0,1]$ é bijetora e, portanto, a afirmação está provada.

Teorema 2.7. Se $\mu > 2 + \sqrt{5}$, então Λ é um conjunto de Cantor.

Demonstração. Λ é não vazio pois $0 \in \Lambda$, é limitado pois $\Lambda_1 \subset [0,1]$ e é fechado pois é intersecção de conjuntos fechados.

Agora, suponha que Λ contém algum intervalo. Então, existem $x, y \in I$, x < y, tais que $[x, y] \subset \Lambda$. Seja k tal que $\frac{1}{\lambda^k} < |x - y|$. Em particular, $[x, y] \subset \Lambda_k$. Mas, de acordo com o Lema 2.6, os intervalos de Λ_k possuem tamanho menor que $\frac{1}{\lambda^k}$. Absurdo e, portanto, Λ não possui intervalos.

Por fim, observe que, se x é um ponto extremo de algum intervalo de Λ_n , então $x \in \Lambda$ pois $F^{n+1}(x) = 0$. Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. Em particular, $x \in \Lambda_k$ e, portanto, x é elemento de algum intervalo cujo tamanho é menor que ε , de acordo com o Lema 2.6. Portanto, existe $y \in \Lambda$ ponto extremo do intervalo que contém x tal que $|x - y| < \varepsilon$. Como ε é arbitrário, concluímos que x é um ponto de acumulação de Λ .

2.3 Caos

Proposição 2.8. Se $\mu > 2 + \sqrt{5}$, então o conjunto de pontos periódicos de $F : \Lambda \to \Lambda$ é denso em Λ .

Demonstração. Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. De acordo com o Lema 2.6, o intervalo fechado $I \subset \Lambda_k$ que contém x possui tamanho menor que ε . Pela Proposição 2.4, $F^k : I \to [0,1]$ é bijetora. Como $F^k(I) \supset I$, a Proposição ?? afirma que existe $y \in I$ tal que $F^k(y) = y$. Observando que $y \in \Lambda$ e $|x - y| < \varepsilon$, o resultado está provado.

Definição 2.9. Seja $f: X \to X$ uma função. Dizemos que f é transitiva topologicamente se dados $x, y \in X$ e $\varepsilon > 0$, existem $z \in X$ e $j \ge 1$ tais que $|z - x| < \varepsilon$ e $|f^j(z) - y| < \varepsilon$.

Proposição 2.10. Se $\mu > 2 + \sqrt{5}$, então $F : \Lambda \to \Lambda$ é transitiva topologicamente.

Demonstração. Sejam $x, y \in \Lambda$ e $\varepsilon > 0$. Existe $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. De acordo com o Lema 2.6, o tamanho de cada intervalo fechado em Λ_k é menor que $\frac{1}{\lambda^k}$ e, portanto, menor que ε . Como $x \in \Lambda_k$, existe um intervalo $[a,b] \subset \Lambda_k$ que contém x. Pela Proposição 2.4, $F^k : [a,b] \to [0,1]$ é bijetora e, pelo Teorema do Valor Intermediário, existe $z \in [a,b]$ tal que $F^k(z) = y$. Observando que $z \in \Lambda$, concluímos que F é transitiva topologicamente.

Definição 2.11. Seja $f: X \to X$ uma função. Dizemos que f depende sensivelmente das condições iniciais se existe $\delta > 0$ com a seguinte propriedade: dados $x \in X$ e $\varepsilon > 0$, existem $y \in X$ e $j \ge 1$ tais que $|x - y| < \varepsilon$ e $|f^j(x) - f^j(y)| > \delta$.

Proposição 2.12. Se $\mu > 2 + \sqrt{5}$, então $F : \Lambda \to \Lambda$ depende sensivelmente das condições iniciais.

Demonstração. Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. Como na demonstração da Proposição anterior, seja I o intervalo fechado contido em Λ_k que contém x e cujo tamanho é menor que ε . Como $F^k: I \to [0,1]$ é um bijeção, então $F^k(a) = 0$ e $F^k(b) = 1$, onde a e b são pontos extremos de I. Como $F(\frac{1}{2}) > 1$ e $x \in \Lambda$, segue que $F^k(x) \in \left[0, \frac{1}{2}\right) \cup \left(\frac{1}{2}, 1\right]$. Se $F^k(x) \in \left[0, \frac{1}{2}\right)$, então $|F^k(x) - F^k(b)| = |F^k(x) - 1| > \frac{1}{2}$ e se $F^k(x) \in \left(\frac{1}{2}, 1\right]$, então $|F^k(x) - F^k(a)| = |F^k(x)| > \frac{1}{2}$. Observando que $|x - a| < \varepsilon$ e $|x - b| < \varepsilon$, temos o resultado para $\delta = \frac{1}{2}$.

Definição 2.13. Seja $f: X \to X$ uma função. Dizemos que f é caótica se as seguintes condições são válidas:

- i. O conjunto de pontos periódicos de f é denso em X.
- ii. f é transitiva topologicamente.
- iii. f depende sensivelmente das condições iniciais.

Teorema 2.14. Se $\mu > 2 + \sqrt{5}$, então $F : \Lambda \to \Lambda$ é caótica.

Teorema 2.15. Seja $X \subset \mathbb{R}$ um conjunto infinito e $f: X \to X$ é uma função. Se o conjunto de pontos periódicos de f é denso em X e f é transitiva topologicamente, então f é caótica.

2.4 Conjugação Topológica

Definição 2.16. Sejam $f: X \to X, g: Y \to Y$ e $\tau: X \to Y$ funções. Dizemos que f e g são conjugadas topologicamente por τ se τ se as seguintes condições são válidas:

- i. τ é um homeomorfismo.
- ii. $\tau \circ f = g \circ \tau$.

Proposição 2.17. Sejam $f: X \to X$, $g: Y \to Y$ e $\tau: X \to Y$ funções. Se f e g são conjugadas topologicamente por τ , então

- 1. $g \ e \ f \ s\tilde{a}o \ conjugadas \ topologicamente \ por \ \tau^{-1}$.
- 2. $\tau \circ f^j = g^j \circ \tau \text{ para todo } j > 1.$

- 3. p é ponto periódico de f se e somente se $\tau(p)$ é ponto periódico de g.
- 4. $\mathcal{B}(\tau(p)) = \tau(\mathcal{B}(p))$, onde p é um ponto periódico de f.
- 5. o conjunto de pontos periódicos de f é denso em X se e somente se o conjunto de pontos periódicos de g é denso em Y.
- 6. f é transitiva topologicamente se e somente se g é transitiva topologicamente.
- Demonstração. 1. Como τ é um homeomorfismo, a função inversa τ^{-1} existe e também é um homeomorfismo. Além disso, $\tau \circ f = g \circ \tau$ implica que $f \circ \tau^{-1} = \tau^{-1} \circ g$. Portanto, τ^{-1} é conjugação topológica de g e f.
 - 2. Por definição, a afirmação é verdadeira quando n=1. Suponha que $\tau \circ f^{n-1} = g^{n-1} \circ \tau$. Desse modo, $\tau \circ f^n = \tau \circ f^{n-1} \circ f = g^{n-1} \circ \tau \circ f = g^{n-1} \circ g \circ \tau = g^n \circ \tau$. Portanto, a afirmação é verdadeira para todo $n \geq 1$.
 - 3. Suponha que p é um ponto periódico de f com período principal n. Desse modo, $g^n(\tau(p)) = \tau(f^n(p)) = \tau(p)$. Se $k = 1, \ldots, n-1$, então $g^k(\tau(p)) = \tau(f^k(p)) \neq \tau(p)$, pois $f^k(p) \neq p$ e τ é injetora. Portanto, $\tau(p)$ é um ponto periódico de g com período principal n. A outra implicação é demonstrada de maneira análoga.
 - 4. Suponha que p é um ponto periódico com período n. Se $x \in W^s(\tau(p))$, então $\lim_{k\to\infty} g^{kn}(x) = \tau(p)$. Como τ^{-1} é contínua, temos $\lim_{k\to\infty} f^{kn}(\tau^{-1}(x)) = \lim_{k\to\infty} \tau^{-1}(g^{kn}(x)) = p$. Então, $x \in \tau(W^s(p))$ pois $\tau^{-1}(x) \in W^s(p)$.

Por outro lado, se $\tau(x) \in \tau(W^s(p))$, então $\lim_{k\to\infty} f^{kn}(x) = p$. Como τ é contínua, temos $\lim_{k\to\infty} g^{kn}(\tau(x)) = \lim_{k\to\infty} \tau(f^{kn}(x)) = \tau(p)$ e, portanto, $\tau(x) \in W^s(\tau(p))$.

- 5. Se o conjunto Per(f) dos pontos periódicos de f é denso em A, então $\tau(Per(f))$ é denso em B pois τ é um homeomorfismo. Como $\tau(Per(f)) = Per(g)$, temos que Per(g) é denso em B. A outra implicação é demonstrada de maneira análoga.
- 6. Inicialmente, sendo τ é contínua, dado $\varepsilon > 0$ existe $\delta > 0$ de modo que, se $z \in A$, $|x-z| < \delta$ e $|y f^n(z)| < \delta$, então $|\tau(x) \tau(z)| < \varepsilon$ e $|\tau(y) \tau(f^n(z))|$, onde $n \ge 1$ é fixado.

Se $x',y' \in B$, existem $x,y \in A$ tais que $\tau(x)=x'$ e $\tau(y)=y'$. Como f é transitiva topologicamente, existe $z \in A$ tal que $|x-z| < \delta$ e $|y-f^n(z)| < \delta$ para algum $n \ge 1$. Portanto, $|\tau(x)-\tau(z)| < \varepsilon$ e $|\tau(y)-\tau(f^n(z))| < \varepsilon$. Se $\tau(z)=z'$, então $|x'-z'| < \varepsilon$ e $|y'-g^n(z')| < \varepsilon$ e, portanto, g é transitiva topologicamente. A outra implicação é demonstrada de maneira análoga.

Lema 2.18. A função $T:[0,1] \rightarrow [0,1],\ dada\ por$

$$T(x) = \begin{cases} 2x & x \in \left[0, \frac{1}{2}\right] \\ 2 - 2x & x \in \left[\frac{1}{2}, 1\right] \end{cases},$$

é caótica.

 $\begin{array}{l} \textit{Demonstração}. \text{ Inicialmente, provaremos por indução que } T^n: \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right] \to [0,1] \text{ \'e uma função linear bijetora para todo } 0 \leq k < 2^n. \text{ Pela definição de } T, \text{ a afirmação \'e verdadeira quando } n = 1. \text{ Suponha que } T^{n-1}: \left[\frac{k}{2^{n-1}}, \frac{k+1}{2^{n-1}}\right] \to [0,1] \text{ \'e uma função linear bijetora para todo } 0 \leq k < 2^{n-1}. \text{ Fixado } k, \text{ podemos supor que } T^{n-1}\left(\frac{k}{2^{n-1}}\right) = 0 \text{ e } T^{n-1}\left(\frac{k+1}{2^{n-1}}\right) = 1. \text{ O caso em que } T^{n-1}\left(\frac{k}{2^{n-1}}\right) = 1 \text{ e } T^{n-1}\left(\frac{k+1}{2^{n-1}}\right) = 0 \text{ \'e tratado de maneira análoga. Temos que } T^{n-1}(\overline{x}) = \frac{1}{2}, \text{ onde } \overline{x} = \frac{2k+1}{2^n} \text{ \'e o ponto médio do intervalo } \left[\frac{k}{2^{n-1}}, \frac{k+1}{2^{n-1}}\right]. \text{ Portanto, } T^n(\overline{x}) = T(T^{n-1}(\overline{x})) = T\left(\frac{1}{2}\right) = 1, T^n\left(\frac{k}{2^{n-1}}\right) = T(0) = 0 \text{ e } T^n\left(\frac{k+1}{2^{n-1}}\right) = T(1) = 0. \text{ Desse modo, } T^n: \left[\frac{k}{2^{n-1}}, \overline{x}\right] \to [0,1] \text{ e } T^n: \left[\overline{x}, \frac{k+1}{2^{n-1}}\right] \to [0,1] \text{ são funções lineares(pois são composições de funções lineares) e bijetoras para todo <math>0 \leq k < 2^{n-1}. \text{ Observando que } \left[\frac{k}{2^{n-1}}, \overline{x}\right] = \left[\frac{2k}{2^n}, \frac{2k+1}{2^n}\right] \text{ e } \left[\overline{x}, \frac{k+1}{2^{n-1}}\right] = \left[\frac{2k+1}{2^n}, \frac{2k+2}{2^n}\right], \text{ concluímos que que } T^n: \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right] \to [0,1] \text{ \'e uma função linear bijetora para todo } 0 \leq k < 2^n \text{ e, portanto, a afirmação está provada.} \end{cases}$

Para provar que T é caótica, seja $\varepsilon > 0$. Pelo afirmação do parágrafo anterior, existem $n \ge 1$ e $I = \left\lceil \frac{k}{2^n}, \frac{k+1}{2^n} \right\rceil$ tais que $\frac{1}{2^n} < \varepsilon, \ x \in I$ e $T^n : I \to [0,1]$ é bijetora.

Seja $x \in [0,1]$. Como $T(I) \supset I$, a Proposição ?? afirma que existe $p \in I$ tal que $T^n(p) = p$. Observando que $|x-p| \le \frac{1}{2^n} < \varepsilon$, concluímos que o conjunto de pontos periódicos de T é denso em [0,1].

Sejam $x,y\in[0,1]$. Como $T^n:I\to[0,1]$ é sobrejetora, existe $z\in I$ tal que $T^n(z)=y$. Observando que $|z-x|\le\frac{1}{2^n}<\varepsilon$ e $|T^n(z)-y|=0<\varepsilon$, concluímos que T é transitiva topologicamente.

Seja $x \in [0,1]$. Como $T^n: I \to [0,1]$ é sobrejetora, existem $a,b \in I$ tais que $T^n(a) = 0$ e $T^n(b) = 1$. Se $T^n(x) \in [0,\frac{1}{2}]$, então $|T^n(x) - T^(b)| = |T^n(x) - 1| \ge \frac{1}{2}$ e se $T^n(x) \in [\frac{1}{2},1]$, então $|T^n(x) - T^n(a)| = |T^n(x)| \ge \frac{1}{2}$. Observando que $|x - a| \le \frac{1}{2^n} < \varepsilon$ e $|x - b| \le \frac{1}{2^n} < \varepsilon$, concluímos que T depende sensivelmente das condições iniciais.

Teorema 2.19. Se $\mu = 4$, então F é caótica.

Demonstração. Basta observar que $F \circ \tau = \tau \circ T$, onde $\tau : [0,1] \to [0,1]$ é o homeomorfismo dado por $\tau(x) = \text{sen}^2\left(\frac{\pi x}{2}\right)$.

2.5 Dinâmica Simbólica

Definição 2.20. $\Sigma_2 = \{(s_0 \, s_1 \, s_2 \, \dots) : s_j \in \{0, 1\} \text{ para todo } j \geq 0\}$ é o espaço das sequências de $0 \in \mathbb{N}$.

Proposição 2.21. A função $d: \Sigma_2 \times \Sigma_2 \to \mathbb{R}$, dada por

$$d(s,t) = \sum_{j=0}^{\infty} \frac{|s_j - t_j|}{2^j},$$

 \acute{e} uma distância em Σ_2 .

Proposição 2.22. Sejam $s = (s_0 s_1 s_2 \dots)$ e $t = (t_0 t_1 t_2 \dots)$ elementos de Σ_2 .

- 1. Se $s_j = t_j$ para todo $0 \le j \le n$, então $d(s,t) \le \frac{1}{2^n}$.
- 2. Se $d(s,t) < \frac{1}{2^n}$, então $s_j = t_j$ para todo $0 \le j \le n$.

Demonstração. Suponha que $s_k = t_k$ para todo $0 \le k \le n$. Desse modo,

$$d(s,t) = \sum_{k=0}^{\infty} \frac{|s_k - t_k|}{2^k} = \sum_{k=n+1}^{\infty} \frac{|s_k - t_k|}{2^k} \le \sum_{k=n+1}^{\infty} \frac{1}{2^k} = \frac{1}{2^n}$$

Por outro lado, se $s_i \neq t_i$ para algum $0 \leq i \leq n$, então

$$d(s,t) = \sum_{k=0}^{\infty} \frac{|s_k - t_k|}{2^k} \ge \frac{1}{2^i} \ge \frac{1}{2^n}$$

Portanto, se $s_k = t_k$ para todo $0 \le k \le n$, concluímos que $d(s,t) < \frac{1}{2^n}$.

Definição 2.23. A função $\sigma: \Sigma_2 \to \Sigma_2$, dada por $\sigma(s_0 \, s_1 \, s_2 \, \dots) = (s_1 \, s_2 \, s_3 \, \dots)$, é chamada de função shift.

Proposição 2.24. σ é contínua.

Demonstração. Sejam $s=(s_0\,s_1\,s_2\,\dots)\in\Sigma_2,\ \varepsilon>0$ e $n\geq 1$ tal que $\frac{1}{2^n}<\varepsilon$. Se $t=(t_0\,t_1\,t_2\,\dots)\in\Sigma_2$ e $d(s,t)<\frac{1}{2^{n+1}}$, então $s_k=t_k$ para todo $0\leq k\leq n+1$, de acordo com a Proposição 2.22. Como $\sigma(s)=(s_1s_2s_3\dots)$ e $\sigma(t)=(t_1t_2t_3\dots)$, temos que as primeiras n+1 entradas de $\sigma(s)$ e $\sigma(t)$ são iguais. Novamente, utilizando a Proposição 2.22, temos que $d(\sigma(s),\sigma(t))\leq\frac{1}{2^n}<\varepsilon$. Como s é um ponto arbitrário em Σ_2 , concluímos que σ é contínua. \square

Proposição 2.25. 1. existem 2^n pontos periódicos de período n.

- 2. existe um ponto cuja órbita é densa.
- 3. o conjunto dos pontos periódicos é denso.

Demonstração. 1. Se $s = (s_0 s_1 s_2 \dots)$ é um ponto periódico com período n, então

$$\sigma^k(\sigma^n(s)) = (s_{n+k}s_{n+k+1}s_{n+k+2}\dots) = (s_ks_{k+1}s_{k+2}\dots) = \sigma^k(s)$$

para todo $k \ge 0$. Desse modo, s é formado pela repetição das entradas $s_0 s_1 \dots s_{n-1}$. Pelo Princípio Fundamental da Contagem, existem 2^n sequências distintas para $s_0 s_1 \dots s_{n-1}$ e, portanto, a afirmação está provada.

- 2. Considere o ponto $s^* = (0\,1\,00\,01\,10\,11\,000\,001\dots)$ formado por todos os blocos de tamanho 1, depois por todos os blocos de tamanho 2, e assim sucessivamente.
 - Sejam $s \in \Sigma_2$, $\varepsilon > 0$ e $n \ge 1$ tal que $\frac{1}{2^n} < \varepsilon$. É fácil ver que existe $k \ge 0$ de modo que $\sigma^k(s^*)$ e s são iguais nas primeiras n+1 entradas. De acordo com a Proposição 2.22, $d(s, \sigma^k(s^*)) \le \frac{1}{2^n} < \varepsilon$ e, portanto, a afirmação está provada.
- 3. Sejam $s = (s_0 s_1 s_2 \dots) \in \Sigma_2$, $\varepsilon > 0$ e $n \ge 1$ tal que $\frac{1}{2^n} < \varepsilon$. Considere o ponto periódico t com período n + 1 formado pela repetição da sequência $s_0 s_1 s_2 \dots s_n$. De acordo com a Proposição 2.22, $d(s,t) \le \frac{1}{2^n} < \varepsilon$ e, portanto, a afirmação está provada.

3 Teorema de Sharkovsky

Ao longo dessa seção, consideraremos $f: \mathbb{R} \to \mathbb{R}$ uma função contínua. Além disso, escreveremos $J_0 \longrightarrow J_1 \longrightarrow \cdots \longrightarrow J_n$ quando J_0, J_1, \ldots, J_n são intervalos fechados e $f(J_k) \supset J_{k+1}$ para todo $0 \le k < n$.

Lema 3.1. Se $J_0 \longrightarrow J_1$, então existe um intervalo fechado $J'_0 \subset J_0$ tal que $f(J'_0) = J_1$.

Demonstração. Sejam $p, q \in [a, b]$ tais que f(p) = c e f(q) = d, onde $J_0 = [a, b]$ e $J_1 = [c, d]$. Se $p \leq q$, definimos $b' = \inf\{x \in [p, q] : f(x) = d\}$ e $a' = \sup\{x \in [p, b'] : f(x) = c\}$ e, pela continuidade de f, podemos concluir que $f(J'_0) = J_1$, onde $J'_0 = [a', b']$. Se $q \leq p$, a demonstração é análoga.

Lema 3.2. Se $J_0 \longrightarrow J_1 \longrightarrow \cdots \longrightarrow J_{n-1} \longrightarrow J_0$, então existe $p \in J_0$ tal que as seguintes condições são válidas:

- 1. $f^k(p) \in J_k$ para todo $1 \le k < n$.
- 2. $f^n(p) = p$.

Demonstração. Pelo Lema anterior, podemos construir uma sequência de intervalos fechados $J'_0, J'_1, \ldots, J'_{n-1}$ com as seguintes propriedades:

a.
$$J_0 \supset J'_0 \supset J'_1 \supset \cdots \supset J'_{n-1}$$
.

b.
$$f^{k}(J'_{k-1}) = J_{k}$$
 para todo $1 \le k < n$.

c.
$$f^n(J'_{n-1}) = J_0$$
.

Desse modo, existe $p \in J'_{n-1}$ tal que $f^n(p) = p$. Em particular, $p \in J_0$ e $f^k(p) \in J_k$ para todo $1 \le k < n$.

Teorema 3.3. Se $\operatorname{Per}_3(f) \neq \emptyset$, então $\operatorname{Per}_k(f) \neq \emptyset$ para todo $k \geq 1$.

Demonstração. Sejam $p_1 < p_2 < p_3$ os pontos da órbita de um elemento de $Per_3(f)$ e suponha que $f(p_1) = p_2$ e $f(p_2) = p_3$. Se $f(p_1) = p_3$ e $f(p_3) = p_2$, a demonstração é análoga. Definindo $J_0 = [p_1, p_2]$ e $J_1 = [p_2, p_3]$, temos que $J_0 \longrightarrow J_1$, $J_1 \longrightarrow J_0$ e $J_1 \longrightarrow J_1$. Com isso, podemos demonstrar as seguintes afirmações:

a. $Per_1(f) \neq \emptyset$.

De fato, $J_1 \longrightarrow J_1$ implica que existe $p \in J_1$ tal que f(p) = p.

b. $Per_2(f) \neq \emptyset$.

De fato, $J_0 \longrightarrow J_1 \longrightarrow J_0$ implica que existe $p \in J_0$ tal que $f(p) \in J_1$ e $f^2(p) = p$. Se f(p) = p, então $p \in J_0 \cap J_1$, o que é um absurdo, pois $J_0 \cap J_1 = \{p_2\}$ e $p_2 \in \operatorname{Per}_3(f)$.

c. $\operatorname{Per}_n(f) \neq \emptyset, n \geq 4$.

Se $J_1 \longrightarrow \cdots \longrightarrow J_1 \longrightarrow J_0 \longrightarrow J_1$ é um ciclo de tamanho n, existe $p \in J_1$ tal que $f^k(p) \in J_1$, para todo $k = 1, \ldots, n-2, f^{n-1}(p) \in J_0$ e $f^n(p) = p$. Se $f^{n-1}(p) = p$, então

 $p \in J_0 \cap J_1 = \{p_2\}$, o que é um absurdo pois implica que $f(p) = p_3 \in J_0$. Se $f^k(p) = p$ para algum $k = 1, \ldots, n-2$ implica que $f^k(p) \in J_1$, para todo $k \ge 1$. Em particular, $f^{n-1}(p) \in J_0 \cap J_1 = \{p_2\}$ e, portanto, $p = f^n(p) = p_3$, o que é um absurdo pois implica que $f(p) = p_1 \in J_1$.

- a. n = 1: Como $J_1 \longrightarrow J_1$, existe $p \in J_1$ tal que f(p) = p.
- b. n = 2: Como $J_0 \longrightarrow J_1 \longrightarrow J_0$, existe $p \in J_0$ tal que $f(p) \in J_1$ e $f^2(p) = p$. Se f(p) = p, então $p \in J_0 \cap J_1 = \{p_2\}$, o que é um absurdo pois p_2 possui período principal 3. Desse modo, o período principal de p é 2.
- c. n > 3: Se $J_1 \longrightarrow \cdots \longrightarrow J_1 \longrightarrow J_0 \longrightarrow J_1$ é um ciclo de tamanho n, existe $p \in J_1$ tal que $f^k(p) \in J_1$, para todo $k = 1, \ldots, n-2$, $f^{n-1}(p) \in J_0$ e $f^n(p) = p$. Se $f^{n-1}(p) = p$, então $p \in J_0 \cap J_1 = \{p_2\}$, o que é um absurdo pois implica que $f(p) = p_3 \in J_0$. Se $f^k(p) = p$ para algum $k = 1, \ldots, n-2$ implica que $f^k(p) \in J_1$, para todo $k \ge 1$. Em particular, $f^{n-1}(p) \in J_0 \cap J_1 = \{p_2\}$ e, portanto, $p = f^n(p) = p_3$, o que é um absurdo pois implica que $f(p) = p_1 \in J_1$.

Definição 3.4 (Ordenação de Sharkovsky).

$$3 \mathrel{\triangleright} 5 \mathrel{\triangleright} \cdots \mathrel{\triangleright} 2 \cdot 3 \mathrel{\triangleright} 2 \cdot 5 \mathrel{\triangleright} \cdots \mathrel{\triangleright} 2^2 \cdot 3 \mathrel{\triangleright} 2^2 \cdot 5 \mathrel{\triangleright} \cdots \mathrel{\triangleright} 2^k \cdot 3 \mathrel{\triangleright} 2^k \cdot 5 \mathrel{\triangleright} \cdots \mathrel{\triangleright} 2^2 \mathrel{\triangleright} 2 \mathrel{\triangleright} 1.$$

Teorema 3.5 (Sharkovsky). Se f admite ponto de período principal n, então f admite ponto de período principal m, para todo $m \triangleleft n$.

Teorema 3.6. Para todo $n \ge 1$ existe uma função f que admite ponto periódico de período principal n e que não admite ponto de período principal m se m > n.

Demonstração. Seja $T:[0,1] \to [0,1]$ a função dada por T(x)=1-|2x-1| e considere a família de funções $T_h(x)=\min\{h,T(x)\}$ definidas em [0,1], com o parâmetro h variando em [0,1]. Observe que $T_1=T$, pois $T(x) \le 1$ para todo $x \in [0,1]$. Além disso, observando o gráfico de T_1 concluímos que a função possui 2^k pontos periódicos de período k e assim podemos definir, para cada $k \ge 1$,

$$h(k) = \min\{\max\{\mathcal{O} : \mathcal{O} \text{ \'e uma \'orbita de tamanho } n \text{ de } T_1\}\}$$

A ideia principal da prova consiste no fato de que h(k) desempenha os papéis de parâmetro, máximo e ponto de uma órbita de $T_{h(k)}$. As seguintes afirmações tornarão preciso esse fato.

- (a) Se $\mathcal{O} \subset [0,h)$ é uma órbita de T_h , então \mathcal{O} é uma órbita de T_1 . Se $p \in \mathcal{O}$ então $T_h(p) \in [0,h)$. Desse modo, $T_h(p) = \min\{h,T(p)\} = T(p) = T_1(p)$, ou seja, T_h e T_1 coincidem em \mathcal{O} e, portanto, \mathcal{O} é uma órbita de T_1 .
- (b) Se $\mathcal{O} \subset [0, h]$ é uma órbita de T_1 , então \mathcal{O} é uma órbita de T_h . Se $p \in \mathcal{O}$ então $T_1(p) \in [0, h]$. Desse modo, $T_h(p) = \min\{h, T(p)\} = \min\{h, T_1(p)\} = T_1(p)$, ou seja, T_h e T_1 coincidem em \mathcal{O} e, portanto, \mathcal{O} é uma órbita de T_h .

(c) $T_{h(k)}$ possui uma órbita $\mathcal{O} \in [0, h(k))$ de tamanho l se e somente se h(k) > h(l).

Se $T_{h(k)}$ possui uma órbita $\mathcal{O} \in [0, h(k))$ de tamanho l, então \mathcal{O} é uma órbita de T_1 por (a) e, pela definição de h(l), concluímos que h(l) < h(k).

Por outro lado, se h(l) < h(k), então T_1 possui uma órbita $\mathcal{O} \subset [0, h(l)] \subset [0, h(k)]$ de tamanho l e, desse modo, \mathcal{O} é uma órbita de $T_{h(k)}$ por (b).

(d) A órbita de T_1 que contém h(k) é uma órbita de tamanho k de $T_{h(k)}$. Além disso, todas as outras órbitas de $T_{h(k)}$ estão em [0, h(k)).

Pela definição de h(k), T_1 possui uma órbita $\mathcal{O} \subset [0, h(k)]$ de tamanho k e, portanto, \mathcal{O} é uma órbita de $T_{h(k)}$ por (b).

Para demonstrar a segunda parte, basta observar que h(k) é o valor máximo de $T_{h(k)}$ e, desse modo, toda órbita de $T_{h(k)}$ está contida em [0, h(k)]. Em particular, se a órbita não contém h(k), então ela está contida em [0, h(k)).

(e) $k \triangleright l$ se o somente se h(k) > h(l).

Suponha que k > l. Por (d), $T_{h(k)}$ possui uma órbita de tamanho k. De acordo com o Teorema de Sharkovsky e com (d), $T_{h(k)}$ admite uma órbita de tamanho l contida em [0, h(k)). Desse modo, h(k) > h(l) por (c).

Por outro lado, suponha que h(k) > h(l). Caso $l \triangleright k$, a demonstração no parágrafo anterior implicaria que h(k) < h(l), contrariando a hipótese. Desse modo, $k \triangleright l$.

Assim, para cada $n \geq 1$, $T_{h(n)}$ possui órbita de tamanho n. Além disso, se $m \triangleright n$ então h(m) > h(n) por (e) e, portanto, $T_{h(n)}$ não possui órbita de tamanho m por (c).

4 Derivada de Schwarz

Definição 4.1. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função de classe \mathcal{C}^3 . A função $\mathcal{S}f$ dada por

$$Sf(x) = \frac{\partial^3 f(x)}{\partial f(x)} - \frac{3}{2} \left(\frac{\partial^2 f(x)}{\partial f(x)} \right)^2$$

para todo x tal que $\partial f(x) \neq 0$ é a derivada de Schwarz de f.

Lema 4.2. Se Sf < 0, então $Sf^k < 0$ para todo $k \ge 1$.

Demonstração. Pela Regra da Cadeia, podemos concluir que $\mathcal{S}f^2(x) < 0$ para todo x tal que $\partial f^2(x) \neq 0$. Por indução, $\mathcal{S}f^k < 0$ para todo $k \geq 1$.

Lema 4.3. Se Sf < 0 e x_0 é um ponto de mínimo local de ∂f , então $\partial f(x_0) \leq 0$.

Demonstração. Se $\partial f(x_0) \neq 0$, então $\mathcal{S}f(x_0) = \frac{\partial^3 f(x_0)}{\partial f(x_0)} - \frac{3}{2} \frac{\partial^2 f(x_0)}{\partial f(x_0)} < 0$. Sendo x_0 ponto de mínimo local de ∂f , temos que $\partial^2 f(x_0) = 0$ e $\partial^3 f(x_0) \geq 0$. Portanto, $\partial f(x_0) < 0$.

Lema 4.4. Se Sf < 0 e a < b < c são pontos fixos de f, com $\partial f(b) \leq 1$, então f possui ponto crítico em (a, c).

Demonstração. Pelo Teorema do Valor Médio, existem $r \in (a,b)$ e $s \in (b,c)$ tais que $\partial f(r) = \partial f(s) = 1$. Sendo ∂f contínua, ∂f restrita ao intervalo [r,s] possui mínimo global. Como $b \in (r,s)$ e $\partial f(b) \leq 1$, temos que ∂f possui mínimo local em (r,s). Utilizando Lema anterior e o Teorema do Valor Intermediário, a demonstração está concluída.

Lema 4.5. Se Sf < 0 e a < b < c < d são pontos fixos de f, então f possui ponto crítico em (a,d).

Demonstração. Se $\partial f(b) \leq 1$ ou $\partial f(c) \leq 1$, o resultado é verdadeiro pelo Lema anterior. Se $\partial f(b) > 1$ e $\partial f(c) > 1$, existem $r, t \in (b, c)$ tais que r < t, f(r) > r e f(t) < t. Pelo Teorema do Valor Médio, existe $s \in (r, t)$ tal que $\partial f(s) < 1$. Portanto, ∂f possui mínimo local em (b, c). Utilizando Lema 4.3 e o Teorema do Valor Intermediário, a demonstração está concluída.

Lema 4.6. Se f possui finitos pontos críticos, então f^n possui finitos pontos críticos para todo $n \ge 1$.

Demonstração. Pelo Teorema do Valor Médio, f possui ponto crítico entre dois elementos de $f^{-1}(c)$. Como f possui finitos pontos críticos, $f^{-1}(c)$ é finito. Além disso, se $f^{-k}(c)$ é finito, então $f^{-(k+1)}(c) = \{x \in \mathbb{R} : f(f^k(x)) = c\}$ é finito pois $f^{-1}(c)$ é finito e, por hipótese de indução, $f^{-k}(c)$ é finito para cada $c_i \in f^{-1}(c)$. Portanto, $f^{-n}(c)$ é finito para todo $n \geq 1$.

Temos que $(f^n)'(x) = \prod_{k=0}^{n-1} \partial f(f^k(x)) = 0$ se e somente se $f^k(x)$ é ponto crítico de f para algum $k = 1, \ldots, n-1$. Assim, o conjunto de pontos críticos de f^n é finito pois é dado pela união dos conjuntos $\bigcup_{k=0}^{n-1} f^{-k}(c_i)$, onde c_i é ponto crítico de f.

Observe que o Lema anterior, ao contrário dos outros, não exige que Sf < 0.

Teorema 4.7 (Singer). Se Sf < 0 e f possui n pontos críticos, então f possui no máximo n+2 órbitas periódicas não repulsoras.

Demonstração. Sejam p um ponto periódico não repulsor de f de período m e $g = f^m$. Desse modo, p é um ponto fixo não repulsor de g, ou seja, g(p) = p e $|g'(p)| \le 1$. Seja K a componente conexa de $B(p) = \{x : \lim_{k \to \infty} g^k(x) = p\}$ que contém p.

Suponha que K é limitado e |g'(p)| < 1. Vamos mostrar que K é aberto, $g(K) \subset K$ e g preserva os pontos extremos de K.

Como |g'(p)| < 1, p é um ponto atrator e, portanto, existe uma vizinhança V de p contida em B(p). Além disso, $g(\bar{V}) \subset V$. Sendo g contínua, $g^{-n}(V)$ é um aberto que contém p para todo $n \geq 1$. Como $g^n(p) = p \in V$, considere $g^{-n}(V)^*$ a componente conexa de $g^{-n}(V)$ que contém p.

Observe que, se $x \in K$, existe $n \ge 1$ tal que $g^n(x) \in V$. Desse modo, podemos escrever $K = \bigcup_{n=0}^{\infty} g^{-n}(V)^*$. Portanto, K é aberto e, por construção, $g(K) \subset K$.

Seja a um ponto extremo de K e suponha que $g(a) \in K$. Desse modo, existe uma vizinhança V de g(a) contida em K. Sendo g contínua, $g^{-1}(V)$ é uma vizinhança de a contida B(p), o que contraria o fato de K ser a componente conexa de B(p) que contém p. Como $g(K) \subset K$ e g é contínua, concluímos que g preserva os pontos extremos de K.

Desse modo, escrevendo K=(a,b), ocorre um dos três casos abaixo. Vamos mostrar que em cada caso, g possui ponto crítico em K. Observe que Sg < 0.

- a) Se g(a) = a e g(b) = b, g possui ponto crítico em K pelo Lema 4.4.
- b) Se g(a) = b e g(b) = a, considerando $h = g^2$ e utilizando novamente o Lema 4.4, h possui ponto crítico em K. Como $g(K) \subset K$, g possui ponto crítico em K.
- c) Se g(a) = g(b), g possui ponto crítico em K pelo Teorema do Valor Médio.

Suponha que K é limitado e |g'(p)| = 1. Pelo Lema anterior, g possui finitos pontos fixos e, portanto, são isolados.

Se g'(p) = 1 e, para x numa vizinhança de p, g(x) > x quando x > p e g(x) < x quando x < p, então $g'(x^*) > 0$, para x^* próximo de p, é um mínimo local de g' maior que zero, o que contradiz o Lema 4.3. Se g'(p) = -1, basta considerar $h = g^2$ e obter o mesmo resultado. Portanto, p é atrator em pelo menos um dos lados. Desse modo, K é um intervalo não trivial, $g(K) \subset K$ e g preserva os pontos extremos de K. Assim, é possível concluir de maneira análoga que g possui ponto crítico em K.

Pela Regra da Cadeia, se g possui ponto crítico $x_0 \in K$, então $f^i(x_0)$ é ponto crítico de f para algum $i=0,\ldots,m-1$. Desse modo, se p é um ponto periódico não repulsor de f cujo intervalo associado K é limitado, então K possui pelo menos um ponto crítico e, como existem n pontos críticos, existem no máximo n intervalos K limitados. Não é possível obter a mesma conclusão se K não é limitado, mas observando que existem no máximo dois intervalos desse tipo, a demonstração está concluída.

Corolário 4.8. $F_{\mu}(x) = \mu x(1-x), \ \mu > 0, \ possui \ no \ máximo \ 1 \ órbita \ periódica \ não \ repulsora.$

Demonstração. Observe que F_{μ} possui um único ponto crítico em $\frac{1}{2}$. Pelo Teorema de Singer, F_{μ} possui no máximo 3 órbitas periódicas não repulsoras. Se p é ponto fixo de F_{μ} e observando que $\lim_{n\to\infty} |F_{\mu}^n(x)| = \infty$ quando |x| é suficientemente grande, concluímos que B(p) é limitado. Portanto, F_{μ} possui no máximo 1 órbita periódica não repulsora.

5 Bifurcação

Ao longo de seção, f_{λ} representará uma família parametrizada de funções no parâmetro λ de modo que a função

$$G(x,\lambda) = f_{\lambda}(x),$$

definida num aberto de \mathbb{R}^2 , seja de classe \mathcal{C}^{∞} nas variáveis $x \in \lambda$.

Teorema 5.1. Seja f_{λ} uma família parametrizada de funções. Suponha que

- 1. $f_{\lambda_0}(x_0) = x_0$
- 2. $f'_{\lambda_0}(x_0) \neq 1$

Então existem vizinhanças I e J de λ_0 e x_0 , respectivamente, e uma função $p: I \to J$ de classe C^{∞} tais que

- 1. $p(\lambda_0) = x_0$
- 2. $f_{\lambda}(p(\lambda)) = p(\lambda)$ para todo $\lambda \in I$

Além disso, f_{λ} não possui outros pontos fixos em J.

Demonstração. Seja $G(x,\lambda) = f_{\lambda}(x) - x$. Observe que x é ponto fixo de f_{λ} se e somente se $G(x,\lambda) = 0$.

Pelo Teorema da Função Implícita, como $G(x_0, \lambda_0) = 0$ e

$$\frac{\partial G}{\partial x}(x_0, \lambda_0) = f'_{\lambda_0}(x_0) - 1 \neq 0,$$

existem vizinhanças I e J de λ_0 e x_0 , respectivamente, e uma função $p:I\to J$ de classe \mathcal{C}^{∞} tal que $p(\lambda_0)=x_0$ e $G(p(\lambda),\lambda)=0$ para todo $\lambda\in I$.

Além disso, para cada $\lambda \in I$ está associado um único $x \in J$ e, portanto, $x \in J$ e $G(x, \lambda) = 0$ se e somente se $x = p(\lambda)$.

De acordo com o Teorema anterior, se x_0 é um ponto fixo hiperbólico de f_{λ_0} , então f_{λ} possui um único ponto fixo numa vizinhança de x_0 para cada λ numa vizinhança de λ_0 .

Utilizando a notação do Teorema anterior, considere a função $g_{\lambda}(x) = f_{\lambda}(x + p(\lambda)) - p(\lambda)$. Observe que $g_{\lambda}(0) = f(p(\lambda)) - p(\lambda) = 0$ para todo $\lambda \in I$, ou seja, 0 é ponto fixo de g_{λ} para todo $\lambda \in I$. Além disso, f_{λ} e g_{λ} são topologicamente conjugadas por $h_{\lambda}(x) = x - p(\lambda)$.

Teorema 5.2 (Bifurcação Tangente). Suponha que

- 1. $f_{\lambda_0}(0) = 0$
- 2. $f'_{\lambda_0}(0) = 1$
- 3. $f_{\lambda_0}''(0) \neq 0$
- 4. $\frac{\partial f_{\lambda}}{\partial \lambda}|_{\lambda=\lambda_0}(0) \neq 0$

Então existem uma vizinhança I de 0 e uma função $p: I \to \mathbb{R}$ de classe \mathcal{C}^{∞} tais que

- 1. $p(0) = \lambda_0$
- 2. $f_{n(x)}(x) = x$

Além disso, p'(0) = 0 e $p''(0) \neq 0$.

Demonstração. Considere a função $G(x,\lambda) = f_{\lambda}(x) - x$. Observe que x é um ponto fixo de f_{λ} se e somente se $G(x,\lambda) = 0$.

Pelo Teorema da Função Implícita, como $G(0,\lambda_0)=0$ e

$$\frac{\partial G}{\partial \lambda}(0, \lambda_0) = \frac{\partial f_{\lambda}}{\partial \lambda}|_{\lambda = \lambda_0}(0) \neq 0,$$

existem uma vizinhança I de 0 e uma função $p: I \to \mathbb{R}$ tais que $p(0) = \lambda_0$ e G(x, p(x)) = 0 para todo $x \in I$.

Além disso, pela Regra da Cadeia, é válido que

$$p'(0) = -\frac{\frac{\partial G}{\partial x}(0, \lambda_0)}{\frac{\partial G}{\partial \lambda}(0, \lambda_0)} = -\frac{f'_{\lambda_0}(0) - 1}{\frac{\partial f_{\lambda_0}}{\partial \lambda}|_{\lambda = \lambda_0}(0)} = 0$$

e

$$p''(0) = -\frac{\frac{\partial^2 G}{\partial x^2}(0, \lambda_0) \frac{\partial G}{\partial \lambda}(0, \lambda_0) - \frac{\partial G}{\partial x}(0, \lambda_0) \frac{\partial^2 G}{\partial x \partial \lambda}(0, \lambda_0)}{\left(\frac{\partial G}{\partial \lambda}(0, \lambda_0)\right)^2} = -\frac{\frac{\partial^2 G}{\partial x^2}(x, \lambda_0)}{\frac{\partial f_{\lambda}}{\partial \lambda}|_{\lambda = \lambda_0}(0)} \neq 0$$

No Teorema anterior, se p''(0) > 0, então a concavidade de p é para cima. Esboçando o gráfico de p, podemos observar que f não possui pontos fixos para $\lambda < \lambda_0$, possui um único ponto fixo para $\lambda = \lambda_0$ e possui dois pontos fixos para $\lambda > \lambda_0$. Se p''(0) < 0, a concavidade de p é para baixo e a conclusão é análoga, invertendo os sentidos.

Teorema 5.3 (Bifurcação com Duplicação de Período). Suponha que

- 1. $f_{\lambda_0}(0) = 0$ para todo λ numa vizinhança de λ_0
- 2. $f'_{\lambda_0}(0) = -1$
- 3. $\frac{\partial (f_{\lambda}^2)'}{\partial \lambda}|_{\lambda=\lambda_0}(0) \neq 0$
- 4. $S_{f_{\lambda_0}}(0) \neq 0$

Então existem uma vizinhança I de 0 e uma função $p: I \to \mathbb{R}$ de classe \mathcal{C}^{∞} tais que

- 1. $p(0) = \lambda_0$
- 2. $f_{p(x)}(x) \neq x$ para todo $x \in I$
- 3. $f_{p(x)}^2(x) = x \text{ para todo } x \in I$

Além disso, p'(0) = 0 e $p''(0) \neq 0$.

Demonstração. Seja $G(x,\lambda)=f_{\lambda}^2(x)-x$. Sendo $G(0,\lambda)=0$ para todo λ numa vizinhança de λ_0 , temos que

$$\frac{\partial G}{\partial \lambda}(0, \lambda_0) = 0$$

e, portanto, não podemos utilizar o Teorema da Função Implícita diretamente. Seja

$$H(x,\lambda) = \begin{cases} \frac{G(x,\lambda)}{x} & \text{se } x \neq 0\\ \\ \frac{\partial G}{\partial x}(0,\lambda) & \text{se } x = 0 \end{cases}$$

Desse modo, H é de classe \mathcal{C}^{∞} e são válidas as igualdades

(I)
$$H(0,\lambda_0) = \frac{\partial G}{\partial x}(0,\lambda_0) = (f_{\lambda_0}^2)'(0) - 1 = f_{\lambda_0}'(f_{\lambda_0}(0))f_{\lambda_0}'(0) - 1 = 0$$

(II)
$$\frac{\partial H}{\partial \lambda}(0, \lambda_0) = \frac{\partial}{\partial \lambda} \left(\frac{\partial G}{\partial x}(0, \lambda) \right) |_{\lambda = \lambda_0} = \frac{\partial}{\partial \lambda} ((f_{\lambda}^2)'(0) - 1) |_{\lambda = \lambda_0} = \frac{\partial (f_{\lambda}^2)'}{\partial \lambda} |_{\lambda = \lambda_0}(0) \neq 0$$

(III)
$$\frac{\partial H}{\partial x}(0,\lambda_0) = \frac{1}{2} \frac{\partial^2 G}{\partial x^2}(0,\lambda_0)$$

(IV)
$$\frac{\partial^2 H}{\partial x^2}(0,\lambda_0) = \frac{1}{3} \frac{\partial^3 G}{\partial x^3}(0,\lambda_0)$$

Para provar as igualdades (III) e (IV), observe que podemos escrever

$$G(x,\lambda) = G(0,\lambda) + x\frac{\partial G}{\partial x}(0,\lambda) + \frac{x^2}{2}\frac{\partial^2 G}{\partial x^2}(0,\lambda) + \frac{x^3}{6}\frac{\partial^3 G}{\partial x^3}(0,\lambda) + \cdots$$

para todo x numa vizinhança de 0 e para λ fixado numa vizinhança de λ_0 , utilizando a Série de Taylor. Sendo $G(0,\lambda)=0$, podemos escrever

$$H(x,\lambda) = \frac{\partial G}{\partial x}(0,\lambda) + \frac{x}{2} \frac{\partial^2 G}{\partial x^2}(0,\lambda) + \frac{x^2}{6} \frac{\partial^3 G}{\partial x^3}(0,\lambda) + \cdots$$

para $x \neq 0$ nessa vizinhança. Portanto, H é de classe \mathcal{C}^{∞} . Escrevendo a Série de Taylor de H numa vizinhança de 0 e igualando os termos correspondentes, concluímos que $\frac{\partial H}{\partial x}(0,\lambda_0) = \frac{1}{2} \frac{\partial^2 G}{\partial x^2}(0,\lambda_0)$ e $\frac{1}{2} \frac{\partial^2 H}{\partial x^2}(0,\lambda_0) = \frac{1}{6} \frac{\partial^3 G}{\partial x^3}(0,\lambda_0)$.

Pelas igualdades (I) e (II), e pelo Teorema da Função Implícita, existem uma vizinhança I de 0 e uma função $p: I \to \mathbb{R}$ de classe \mathcal{C}^{∞} tais que $p(0) = \lambda_0$ e H(x, p(x)) = 0 para todo $x \in I$. Em particular, se $x \neq 0$,

$$0 = \frac{G(x, p(x))}{x} = \frac{f_{p(x)}^{2}(x) - x}{x}$$

ou seja, $f_{p(x)}^2(x) = x$ para todo $x \in I$. Além disso, pelo Teorema 5.1, f_{λ} possui um único ponto fixo numa vizinhança de 0 e, portanto, podemos considerar que $f_{p(x)}(x) \neq x$ para todo $x \in I$, $x \neq 0$.

Como

$$\frac{\partial^2 G}{\partial x^2}(0,\lambda_0) = (f_{\lambda_0})''(x)|_{x=0}
= [f'_{\lambda_0}(f_{\lambda_0}(x))f'_{\lambda_0}(x)]'|_{x=0}
= [f''_{\lambda_0}(f_{\lambda_0}(x))(f'_{\lambda_0}(x))^2 + f'_{\lambda_0}(f_{\lambda_0}(x))f''_{\lambda_0}(x)]|_{x=0}
= f''_{\lambda_0}(f_{\lambda_0}(0)) - f''_{\lambda_0}(0) = 0$$

temos que

$$p'(0) = -\frac{\frac{\partial H}{\partial x}(0, \lambda_0)}{\frac{\partial H}{\partial \lambda}(0, \lambda_0)} = -\frac{1}{2} \frac{\frac{\partial^2 G}{\partial x^2}(0, \lambda_0)}{\frac{\partial H}{\partial \lambda}(0, \lambda_0)} = 0$$

Por fim,

$$\begin{split} \frac{\partial^3 G}{\partial x^3}(0,\lambda_0) &= [f_{\lambda_0}''(f_{\lambda_0}(x))(f_{\lambda_0}'(x))^2 + f_{\lambda_0}'(f_{\lambda_0}(x))f_{\lambda_0}''(x)]'|_{x=0} \\ &= [f_{\lambda_0}'''(f_{\lambda_0}(x))(f_{\lambda_0}'(x))^3 + 2f_{\lambda_0}''(f_{\lambda_0}(x))f_{\lambda_0}''(x)f_{\lambda_0}'(x) + f_{\lambda_0}''(f_{\lambda_0}(x))f_{\lambda_0}''(x)f_{\lambda_0}''(x) \\ &+ f_{\lambda_0}'(f_{\lambda_0}(x))f_{\lambda_0}'''(x)]|_{x=0} \\ &= f_{\lambda_0}'''(0)(f_{\lambda_0}'(0))^3 + 2(f_{\lambda_0}''(0))^2f_{\lambda_0}'(0) + (f_{\lambda_0}''(0))^2f_{\lambda_0}'(0) + f_{\lambda_0}'(0)f_{\lambda_0}'''(0) \\ &= -2f_{\lambda_0}'''(0) - 3(f_{\lambda_0}''(0))^2 \\ &= 2\frac{f_{\lambda_0}'''(0)}{f_{\lambda_0}'(0)} - 3\left(\frac{f_{\lambda_0}''(0)}{f_{\lambda_0}'(0)}\right)^2 = 2S_{f_{\lambda_0}}(0) \end{split}$$

e, portanto,

$$p''(0) = -\frac{\frac{\partial^2 H}{\partial x^2}(0, \lambda_0) \frac{\partial H}{\partial \lambda}(0, \lambda_0)}{\left(\frac{\partial H}{\partial \lambda}(0, \lambda_0)\right)^2} = -\frac{1}{3} \frac{\frac{\partial^3 G}{\partial x^3}(0, \lambda_0)}{\frac{\partial H}{\partial \lambda}(0, \lambda_0)} = -\frac{2}{3} \frac{S_{f_{\lambda_0}}(0)}{\frac{\partial H}{\partial \lambda}(0, \lambda_0)} \neq 0.$$

6 Subshift

Seja $N \geq 2$. Definimos o conjunto Σ_N formado pelas sequências de números naturais limitados entre 1 e N. Precisamente,

$$\Sigma_N = \{(x_n)_{n=0}^{\infty} \in \mathbb{N}^{\mathbb{N}} : 1 \le x_n \le N \text{ para todo } n \ge 0\}.$$

Definimos também a função $d_N: \Sigma_N \times \Sigma_N \to \mathbb{R}$ que é dada por

$$d_N(x,y) = \sum_{i=0}^{\infty} \frac{|x_i - y_i|}{N^i},$$

onde $x = (x_n)_{n=0}^{\infty}$ e $y = (y_n)_{n=0}^{\infty}$. Como $\sum_{i=0}^{\infty} \frac{N-1}{N^i} < \infty$, temos que d_N está bem definida.

Proposição 6.1. (Σ_N, d_N) é um espaço métrico.

Demonstração. Se $x=(x_n)_{n=0}^{\infty}, y=(y_n)_{n=0}^{\infty}, z=(z_n)_{n=0}^{\infty}\in\Sigma_N$, então

- 1. $d_N(x,y) \ge 0$, pois $|x_i y_i| \ge 0$ para todo $i \ge 0$.
- 2. $d_N(x,y) = d_N(y,x)$, pois $|x_i y_i| = |y_i x_i|$ para todo $i \ge 0$.
- 3. $d_N(x,z) \le d_N(x,y) + d_N(y,z)$, pois $|x_i z_i| = |x_i y_i + y_i z_i| \le |x_i y_i| + |y_i z_i|$ para todo $i \ge 0$.

Desse modo, d_N é uma distância em Σ_N e (Σ_N, d_N) é um espaço métrico.

Proposição 6.2. Sejam $x = (x_n)_{n=0}^{\infty}, y = (y_n)_{n=0}^{\infty} \in \Sigma_N$.

- 1. Se $x_i = y_i$ para todo $0 \le i \le k$, então $d_N(x,y) \le \frac{1}{N^k}$.
- 2. Se $d_N(x,y) < \frac{1}{N^k}$, então $x_i = y_i$ para todo $0 \le i \le k$.

Demonstração. 1. Se $x_i = y_i$ para todo $0 \le i \le k$, então

$$d_N(x,y) \le \sum_{i=k+1}^{\infty} \frac{N-1}{N^i} = \frac{N-1}{N^{k+1}} \sum_{i=0}^{\infty} \frac{1}{N^i} = \frac{N-1}{N^{k+1}} \frac{N}{N-1} = \frac{1}{N^k}.$$

2. Se $x_j \neq y_j$ para algum $0 \leq j \leq k,$ então

$$d_N(x,y) \ge \frac{1}{N^j} \ge \frac{1}{N^k}.$$

Definimos a função shift $\sigma: \Sigma_N \to \Sigma_N$ que é dada por $\sigma(x) = (x_n)_{n=1}^{\infty}$ para todo $x = (x_n)_{n=0}^{\infty} \in \Sigma_N$, isto é, $\sigma(x_0, x_1, \dots) = (x_1, x_2, \dots)$.

Proposição 6.3. σ é contínua.

Demonstração. Sejam $\varepsilon > 0$ e $x = (x_n)_{n=0}^{\infty} \in \Sigma_N$. Seja $k \ge 1$ tal que $\frac{1}{N^k} < \varepsilon$ e defina $\delta = \frac{1}{N^{k+1}}$. Pela Proposição anterior, se $y = (y_n)_{n=0}^{\infty} \in \Sigma_N$ e $d_N(x,y) < \delta$, então $x_i = y_i$ para todo $i = 0, \dots, k+1$. Desse modo, $\sigma(x)$ e $\sigma(y)$ coincidem nas k primeiras entradas. Utilizando a Proposição anterior novamente, concluímos que $d_N(\sigma(x), \sigma(y)) \le \frac{1}{N^k} < \varepsilon$.

Seja $A = (a_{ij})_{1 \leq i,j \leq N}$ uma matriz quadrada de ordem N tal que $a_{ij} \in \{0,1\}$ para todo $1 \leq i,j \leq N$. Dizemos que A é uma matriz de transição. Definimos o conjunto Σ_A como

$$\Sigma_A = \{(x_n)_{n=0}^{\infty} \in \Sigma_N : a_{x_i x_{i+1}} = 1 \text{ para todo } i \ge 0\}.$$

Seja $x = (x_n)_{n=0}^{\infty} \in \Sigma_A$. Observando que $a_{x_i x_{i+1}} = 1$ para todo $i \geq 1$, temos que $\sigma(x) = (x_n)_{n=1}^{\infty} \in \Sigma_A$. Desse modo, podemos definir a função $\sigma_A : \Sigma_A \to \Sigma_A$ como sendo a restrição de σ em Σ_A . Dizemos que σ_A é o subshift definido por A.

Proposição 6.4. Σ_A é um subconjunto fechado de Σ_N .

Demonstração. Seja $(x_n)_{n=0}^{\infty}$ uma sequência de elementos em Σ_A convergente para $x = (\xi_n)_{n=0}^{\infty} \in \Sigma_N$. Observe que a sequência $(x_n)_{n=0}^{\infty}$ é uma sequência de sequências, pois cada x_n é elemento de Σ_N .

Suponha que $x \notin \Sigma_A$. Então, existe $j \geq 0$ tal que $a_{\xi_j \xi_{j+1}} = 0$. Por outro lado, pela definição de convergência, existe $n_0 \geq 0$ tal que $d(x_{n_0}, x) < \frac{1}{N^{j+1}}$ e, portanto, as j+2 primeiras entradas de x e x_{n_0} são iguais. Escrevendo $x_{n_0} = (\eta_n)_{n=0}^{\infty}$, concluímos que $a_{\eta_j \eta_{j+1}} = a_{\xi_j \xi_{j+1}} = 0$. Absurdo, pois $x_{n_0} \in \Sigma_A$.

No restante dessa seção vamos estudar a dinâmica da função quadrática $F_{\mu}(x) = \mu x(1-x)$, onde o parâmetro $\mu = 3.839$ está fixado. Será omitido μ na notação da função e escreveremos apenas F.

Sejam a=0.149888, $\varepsilon=10^{-3}$ e $I=(a-\varepsilon,a+\varepsilon)$. Através de cálculos é possível mostrar que $F^3(I)\subset I$ e $|(F^3)'(I)|\leq |(F^3)'(a-\varepsilon)|<1$ e, portanto, o intervalo I possui um ponto periódico atrator de F de período 3. Se a_1 , a_2 e a_3 são os elementos dessa órbita em ordem crescente, então

$$a_1 \simeq 0.149888, a_2 \simeq 0.489149 \text{ e } a_3 \simeq 0.959299.$$

De acordo com o Teorema de Sharkovsky, F possui infinitos pontos periódicos. Além disso, de acordo com o Teorema de Singer, essa é a única órbita atratora de F.

De modo análogo, concluímos que F possui outra órbita de tamanho 3. Se b_1 , b_2 e b_3 são os elementos dessa órbita em ordem crescente, então

$$b_1 \simeq 0.169040, b_2 \simeq 0.539247 \text{ e } b_3 \simeq 0.953837.$$

Observando o gráfico de F^3 , concluímos que para cada b_i , existe b'_i no lado oposto de b_i em relação ao ponto a_i tal que $F^3(b'_i) = b_i$. Defina $A_1 = (b'_1, b_1)$, $A_2 = (b'_2, b_2)$ e $A_3 = (b_3, b'_3)$.

Cada A_i é exatamente o intervalo maximal contendo a_i utilizado na demonstração do Teorema de Singer.

Figura: Gráfico de F^3 com os pontos a_1 , a_2 e a_3 assinalados.

Sendo F^3 simétrica em relação ao ponto $\frac{1}{2}$, temos que $F(b_2') = F(b_2) = b_3$. Além disso, $F(b_1') = b_2'$ e $F(b_3') = b_1'$.

Desse modo, F mapeia, de forma monótona, A_1 em A_2 e A_3 em A_1 . Observando que o máximo de F em A_2 é $F\left(\frac{1}{2}\right) = 0.95975 < b_3'$, concluímos que $F(A_2) \subset A_3$.

Sabemos que se $x \notin [0,1]$, então $\lim_{n\to\infty} F^n(x) = -\infty$. Além disso, o único ponto periódico de A_i é a_i e todos os pontos em A_i tendem para a órbita de a_i . Desse modo, todos os outros pontos periódicos de F residem no complemento de $A_1 \cup A_2 \cup A_3$ em [0,1], que é formado por quatro intervalos fechados. Sejam $I_0 = [0,b_1']$, $I_1 = [b_1,b_2']$, $I_2 = [b_2,b_3]$ e $I_3 = [b_3',1]$ tais intervalos. A Proposição a seguir nos permite dizer mais.

Proposição 6.5. Se $x \notin \{0, a_1, a_2, a_3\}$ é um ponto periódico de F, então $x \in I_1 \cup I_2$.

Demonstração. Observando que F é monótona em cada I_k , temos que $F(I_0) = I_0 \cup A_1 \cup I_1$, $F(I_1) = I_2$, $F(I_2) = I_1 \cup A_2 \cup I_2$ e $F(I_3) = I_0$. Desse modo, se $x \in I_1 \cup I_2$ é periódico, então órbita de x permanece em $I_1 \cup I_2$.

Por outro lado, se $x \in I_0 - \{0\}$, existe um menor $n \ge 1$ tal que $F^n(x) \notin I_0$. Se $F^n(x) \in A_1$, então x não pode ser periódico, pois o único ponto periódico de A_1 é a_1 . Se $F^n(x) \in I_1$, então x não pode ser periódico, pois caso contrário a órbita de x estaria contida em $I_1 \cup I_2$ e nunca retornaria para I_0 .

Finalmente, se $x \in I_3$, então $F(x) \in I_0$ e a análise segue como no parágrafo anterior.

Defina o conjunto Λ como

$$\Lambda = \{x \in I_1 \cup I_2 : F^n(x) \in I_1 \cup I_2 \text{ para todo } n \ge 1\}.$$

Pela Proposição anterior, todos os pontos periódicos de F estão em Λ , com exceção dos pontos 0, a_1 , a_2 e a_3 .

Lema 6.6. Existe $N \ge 1$ tal que $|(F^n)'(\Lambda)| > 1$ para todo $n \ge N$.

Demonstração. Como F''<0, temos que F' é estritamente decrescente. Sendo $F'\left(\frac{1}{2}\right)=0$, concluímos que A_2 é uma vizinhança da única raiz de F'. Além disso, $|(F^3)'(b_2)|=|(F^3)'(b_2')|\simeq 0.3$. Desse modo, $|F'(I_1 \cup I_2)| \geq \nu$ para algum $\nu \in (0,1)$.

Observando o gráfico de F^3 , concluímos que o subconjunto de $I_1 \cup I_2$ no qual $|F'| \leq 1$ é formado por três intervalos fechados. Sejam B_1 , B_2 e B_3 tais intervalos, numerados da esquerda para direita. Utilizando a simetria do gráfico de F^3 e o fato de que $(F^3)'(b_1) > 1$, temos que $F^3(B_3) \subset A_1$ e, portanto, $B_3 \cap \Lambda = \emptyset$.

Por outro lado, $B_2 \subset [0.661, 0.683]$, já que $(F^3)'(0.661) > 1$ e $(F^3)'(0.683) < -1$. Desse modo, $F(B_2) \subset A_3$. Utilizando novamente a simetria do gráfico de F^3 , concluímos que $F(B_1) \subset A_3$. Portanto, $B_1 \cap \Lambda = \emptyset$ e $B_2 \cap \Lambda = \emptyset$. Assim, $|(F^3)'(\Lambda)| \geq \lambda$ para algum $\lambda > 1$. Observe que

se $x \in \Lambda$ e $L \ge 1$, então

$$\left| \left(F^{3L} \right)'(x) \right| = \prod_{i=0}^{L-1} \left| \left(F^3 \right)' \left(F^{3i}(x) \right) \right| \ge \lambda^L.$$

Finalmente, sejam $x \in \Lambda$ e $K \ge 1$ tal que $\nu^2 \lambda^K > 1$. Se N = 3K e $n \ge N$, podemos escrever $n = 3L + \alpha$, onde $L \ge K$ e $\alpha \in \{0, 1, 2\}$. Desse modo,

i. se $\alpha = 0$, então

$$\left|\left(F^{n}\right)'(x)\right| = \left|\left(F^{3L}\right)'(x)\right| \ge \lambda^{L} \ge \lambda^{K} > 1.$$

ii. se $\alpha = 1$, então

$$\left|\left(F^{n}\right)'(x)\right| = \left|F'\left(F^{3L}(x)\right)\right| \left|\left(F^{3L}\right)'(x)\right| \ge \nu\lambda^{L} > \nu^{2}\lambda^{K} > 1.$$

iii. se $\alpha = 2$, então

$$|(F^n)'(x)| = |F'(F^{3L+1}(x))| |F'(F^{3L}(x))| |(F^{3L})'(x)| \ge \nu^2 \lambda^L \ge \nu^2 \lambda^K > 1.$$

Para as demonstrações dos próximos resultados, vamos considerar a matriz de transição

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}.$$

Podemos definir a função $S: \Lambda \to \Sigma_A$ por $S(x) = (x_n)_{n=0}^{\infty}$, onde $x_i = 1$ se $F^i(x) \in I_1$ e $x_i = 2$ se $F^i(x) \in I_2$ para todo $i \geq 0$. Observe que está S bem definida, pois $F(I_1) = I_2$ e $F(I_2) \subset I_1 \cup I_2$ e, portanto, $a_{x_i x_{i+1}} = 1$ para todo $i \geq 0$.

Lema 6.7. Λ não contém intervalos.

Demonstração. Suponha que Λ contém algum intervalo e sejam $a, b \in \Lambda$, com a < b, tais que $[a, b] \subset \Lambda$. Utilizando a notação do Lema anterior, seja $k \geq N$ tal que $(b - a)\nu^N \lambda^{k-N} > 1$. Pelo Teorema do Valor Médio, existe $c \in [a, b]$ tal que

$$|F^{k}(b) - F^{k}(a)| = |(F^{k})'(c)|(b - a)$$

$$= \left| \prod_{i=0}^{k-1} F'(F^{i}(c)) \right| (b - a)$$

$$= \left| \prod_{i=0}^{N-1} F'(F^{i}(c)) \right| \left| \prod_{i=N}^{k-1} F'(F^{i}(c)) \right| (b - a)$$

$$\geq \nu^{N} \lambda^{k-N} (b - a) > 1$$

e, portanto, $F^k(a)$ ou $F^k(b)$ não é elemento de [0,1], o que é um absurdo.

Proposição 6.8. S é um homeomorfismo.

Demonstração. i. S é injetora:

Sejam $x,y \in \Lambda$, com x < y, e suponha que S(x) = S(y). Desse modo, $F^n(x)$ e $F^n(y)$ está no mesmo lado em relação ao ponto crítico $\frac{1}{2}$ e, portanto, F é monótona no intervalo J_n , cujos pontos extremos são $F^n(x)$ e $F^n(y)$, para todo $n \geq 0$. Desse modo, se $z \in [x,y]$, então $F^n(z) \in J_n \subset I_1 \cup I_2$ para todo $n \geq 0$ e, portanto, $z \in \Lambda$. Mas isso implica que $[x,y] \subset \Lambda$, o que é um absurdo.

ii. S é sobrejetora:

Seja $(x_n)_{n=0}^{\infty} \in \Sigma_A$. Vamos provar que existe $x \in \Lambda$ tal que $S(x) = (x_n)_{n=0}^{\infty}$.

Inicialmente, para cada $n \ge 0$, considere

$$I_{x_0\cdots x_n} = \{x \in [0,1] : x \in I_{x_0}, \dots, F^n(x) \in I_{x_n}\}.$$

Observe que $x \in I_{x_0 \dots x_n}$ se, e somente se, $x \in I_{x_0}$ e $F(x) \in \{y \in [0,1] : y \in I_{x_1}, \dots, F^{n-1}(y) \in I_{x_n}\}$. Desse modo, $I_{x_0 \dots x_n} = I_{x_0} \cap F^{-1}(I_{x_1 \dots x_n})$.

Assim, por indução, é possível concluir que $I_{x_0\cdots x_n}$ é um intervalo fechado não vazio. Além disso, $I_{x_0\cdots x_n}=I_{x_0\cdots x_{n-1}}\cap F^{-n}(I_{x_n})\subset I_{x_0\cdots x_{n-1}}$.

Desse modo, $(I_{x_0\cdots x_n})_{n=0}^{\infty}$ é uma sequência de intervalos encaixantes fechados e não vazios e, portanto, existe $x \in \bigcap_{n=0}^{\infty} I_{x_0\cdots x_n}$. Como $F^i(x) \in I_{x_i}$ para todo $i \geq 0$, concluímos que $S(x) = (x_n)_{n=0}^{\infty}$. Observe que $x \in \bigcap_{n=0}^{\infty} I_{x_0\cdots x_n}$ é único, pois S é injetora.

iii. S é contínua:

Seja $x \in \Lambda$, com $S(x) = (x_n)_{n=0}^{\infty}$. Sejam também $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{N^k} < \varepsilon$.

Como $I_{x_0...x_k}$ um intervalo fechado e $x \in I_{x_0...x_k}$, tome $\delta > 0$ tal que $y \in \Lambda$ e $|x - y| < \delta$ implica que $y \in I_{x_0...x_k}$. Desse modo, S(x) e S(y) são iguais nas primeiras k + 1 entradas e, portanto, $d_N(S(x), S(y)) \leq \frac{1}{N^k} < \varepsilon$.

Teorema 6.9. $S \circ F|_{\Lambda} = \sigma_A \circ S$.

Demonstração. Seja $x \in \Lambda$. Utilizando a notação da Proposição anterior, se $S(x) = (x_n)_{n=0}^{\infty}$, então x é o único elemento de $\bigcap_{n=0}^{\infty} I_{x_0 \cdots x_n}$.

Podemos escrever $I_{x_0...x_n} = I_{x_0} \cap F^{-1}(I_{x_1}) \cap \cdots \cap F^{-n}(I_{x_n})$. Se $x_0 = 1$, então $x_1 = 2$ e, portanto, $F(I_{x_0}) = I_{x_1}$. Se $x_0 = 2$, então $F(I_{x_0}) = I_1 \cup A_2 \cup I_2$. Em ambos os casos, $F(I_{x_0}) \supset I_{x_1}$ e, desse modo,

$$F(I_{x_0...x_n}) = I_{x_1} \cap \cdots \cap F^{-n+1}(I_{x_n}).$$

Portanto,

$$S \circ F|_{\Lambda}(x) = S(F(\cap_{n=0}^{\infty} I_{x_0 \cdots x_n}))$$

$$= S(\cap_{n=1}^{\infty} I_{x_1 \cdots x_n})$$

$$= (x_n)_{n=1}^{\infty} = \sigma \circ S(x)$$

Proposição 6.10. Seja A uma matriz de transição de ordem N. Então σ_A possui $Tr(A^k)$ pontos periódicos de período k.

Demonstração. Observe que $x=(x_n)_{n=0}^{\infty}\in\Sigma_N$ é um ponto periódico de período k de σ se, e somente se, $x_i=x_{i+k}$ para todo $i\geq 0$, ou seja,

$$x = (x_0, x_1, \dots, x_{k-1}, x_0, x_1, \dots, x_{k-1}, \dots).$$

Desse modo, $x \in \Sigma_A$ se, e somente se, $a_{x_0x_1} = a_{x_1x_2} = \cdots = a_{x_{k-1}x_0} = 1$ e, portanto,

$$\begin{cases} a_{x_0 x_1} a_{x_1 x_2} \dots a_{x_{k-1} x_0} = 1, & \text{se } x \in \Sigma_A \\ a_{x_0 x_1} a_{x_1 x_2} \dots a_{x_{k-1} x_0} = 0, & \text{se } x \notin \Sigma_A \end{cases}$$

Assim, a quantidade de pontos periódicos de período k de σ_A é dada por

$$\sum_{1 \le x_0, \dots, x_{k-1} \le N} a_{x_0 x_1} a_{x_1 x_2} \dots a_{x_{k-1} x_0}.$$

Por outro lado, utilizando a definição de multiplicação de matrizes podemos mostrar por indução que $A^k=(c_{ij})_{1\leq i,j\leq N},$ onde

$$c_{ij} = \sum_{1 \le x_1, \dots, x_{k-1} \le N} a_{ix_1} a_{x_1 x_2} \dots a_{x_{k-1} j}$$

e, portanto,

$$\operatorname{Tr}(A^k) = \sum_{x_0=1}^N c_{x_0 x_0} = \sum_{1 \le x_0, \dots, x_{k-1} \le N} a_{x_0 x_1} a_{x_1 x_2} \dots a_{x_{k-1} x_0}.$$