

Table of Contents

Overview

Toy Example: MNIST

Position sizing: Meta Labeling

Problem of Non-Stationarity

Strategy Framework

Next Steps

Solution 1: Online Machine Learning

Trading Example

Conclusion

Solution 2: Meta Labeling

Position sizing: Kelly Criterion

Overview

Often we have the side of the position but are left asking how large should the size of our bet be, or if we should bet at all.

Meta-Labeling helps us to address situations where the primary model is likely to fail and thus reduce our position size, however in an event with a high probability of success it up weights position sizes. In this way it helps to both filter out false positives and size positions.

Problem: non-stationarity

Probability distribution shifts in time, consequently parameters such as mean, variance, and covariance also change over time.

The underlying data generating process f(x) is changing through time.

Most ML models assume that the data is generated by an independent and identically distributed (IID) processes.

Stuart Reid, Dynamic Systems, IndabaX, 2018

Problem: non-stationarity

Fundamentals change:

- Open outcry -> electronic
- A single exchange -> multiple across various locations.
- Introduction of HFT

Regimes:

- Trending
- Mean reverting
- Volatility clustering
- Random walk
- Recession

Problem: Structural Break / Regime Shift

Solution 1: Online Machine Learning

Fixed window size

- Pessimistic data sampling
- + Adapts to change quickly
- Less data to train on
- + Faster (less data)
- Inefficient data usage
- Hard with large models

Increasing window size

- Optimistic data sampling
- Adapts to change slowly
- + More data to learn from
- Slower (more data)
- Most data is irrelevant ~
 poor model performance

Stuart Reid, Dynamic Systems, IndabaX, 2018

Solution 2: Meta Labeling

To trade or not to trade!

- Meta-Labels: Takes the side from the primary model [-1, 1] and labels it as correct or incorrect.
- Train a secondary model to determine if we should trade the signal or not.
- Features:
 - Primary model features (Market state)
 - Features indicative of false positives
 - Additional market information
- Primary model can be, discretionary trader, technical rules, classic quant, ml model.
- Trade off between recall and precision. (Want more correct trades).

Important Classification Metrics

False Negatives (FN)

Toy Example: MNIST

р	recision	recall	fl-score	support
False	0.95	0.94	0.94	892
True	0.94	0.96	0.95	1010
micro avg	0.95	0.95	0.95	1902
macro avg	0.95	0.95	0.95	1902
veighted avg	0.95	0.95	0.95	1902
Confusion Matri	x			
[[700 192]				
[11 999]]				
ccuracy: 0.89	22			
accuracy. 0.05	33			
Meta Label Metr	ics:	rosall	fl core	Support
Meta Label Metr		recall	fl-score	support
Meta Label Metr	ics:	recall 0.96	f1-score 0.95	
Meta Label Metr p	ics: recision			892
Meta Label Metr p False	ics: recision 0.95	0.96	0.95	892 1010
Meta Label Metr p False True	ics: recision 0.95 0.96	0.96 0.95	0.95 0.96	892 1010 1902
Meta Label Metr p False True micro avg macro avg	ics: recision 0.95 0.96	0.96 0.95 0.96	0.95 0.96 0.96	892 1010 1902 1902
Meta Label Metr P False True micro avg macro avg veighted avg	ics: recision 0.95 0.96 0.96 0.96	0.96 0.95 0.96 0.96	0.95 0.96 0.96 0.96	892 1010 1902 1902
Meta Label Metr P False True micro avg macro avg weighted avg	ics: recision 0.95 0.96 0.96 0.96	0.96 0.95 0.96 0.96	0.95 0.96 0.96 0.96	support 892 1010 1902 1902
Meta Label Metr p False True micro avg	ics: recision 0.95 0.96 0.96 0.96	0.96 0.95 0.96 0.96	0.95 0.96 0.96 0.96	892 1010 1902 1902

Strategy Framework

Meta Labeling: Trading Example

		precision	recall	f1-score	support
	Θ	0.00	0.00	0.00	749
	1	0.17	1.00	0.29	151
micro	avg	0.17	0.17	0.17	988
macro	avg	0.08	0.50	0.14	900
weighted	avg	0.03	0.17	0.05	900
Confusion		ix			
[0 15					
Accuracy		77778			

Table 1: Out-of-sample (2018-01-04: 2019-01-28)

	Primary Model	Meta Model
Annual return		
Cumulative returns	19.7%	39.6%
Annual volatility	95.0%	56.7%
Sharpe ratio	0.65	0.82
Calmar ratio	0.29	0.96
Max drawdown	-61.9%	-36.8%
Daily value at risk	-11.7%	-7.0%

Position Sizing: Kelly Criterion

$$f^*=rac{eta p-q}{eta}$$

$$f^* = p - q$$
$$f^* = 2p - 1$$

Where:

- f* = optimal bet size
- Beta = odds (win amount / lose amount)
- p = probability of success
- q = probability of failure (1-p)

Additional papers:

- A New Interpretation of Information Rate
- <u>Understanding the Kelly Capital Growth</u>
 <u>Investment Strategy</u>
- How Does the Fortune's Formula Kelly Capital Growth Model Perform?
- A Response to Professor Paul A. Samuelson's Objections to Kelly Capital Growth Investing
- Good and bad properties of the Kelly criterion

The Investment Opportunities

Win Probability	Odds	Prob. of Selection in Simulation	Kelly Bets	
0.570	1-1	0.1	0.140	
0.380	2-1	0.3	0.070	
0.285	3-1	0.3	0.047	
0.228	4-1	0.2	0.035	
0.190	5-1	0.1	0.028	

Final Wealth Statistics by Kelly Fraction: Ziemba-Hausch [1986] Model

Kelly Fraction						
Statistic	1.0k	0.75k	0.50k	0.25k	0.125k	
Max	318854673	4370619	1117424	27067	6330	
Mean	524195	70991	19005	4339	2072	
Min	4	56	111	513	587	
St. Dev.	8033178	242313	41289	2951	650	
Skewness	35	11	13	2	1	
Kurtosis	1299	155	278	9	2	
$> 5 \times 10$	1981	2000	2000	2000	2000	
10^{2}	1965	1996	2000	2000	2000	
$> 5 \times 102$	1854	1936	1985	2000	2000	
$> 10^3$	1752	1855	1930	1957	1978	
$> 10^4$	1175	1185	912	104	0	
> 105	479	284	50	0	0	
$> 10^{6}$	111	17	1	0	0	

How Does the Fortune's Formula Kelly Capital Growth Model Perform?

Position Sizing with Meta Labeling

z =

$$z = \frac{p[x=1] - \frac{1}{2}}{\sqrt{p[x=1](1 - p[x=1])}}$$

Where:

- p[x] = probability that label x takes place.
- z = test statistic
- x is element of {-1, 1}

2

3

$$f = side(2Z[z] - 1)$$
$$f^* = 2p - 1$$

Where: Z[.] = is the CDF of Z.

Next Steps

- The concepts of position sizing and meta-labeling are both addressed in the textbook Advances in Financial Machine Learning.
- A great additional resource is the Journal of Financial Data Science and the Journal of Portfolio Management.
- If these concepts interest you, there is room available in our research group. You will get to work with high quality tick data and contribute to open-source.

Conclusion

- Meta-Labeling helps to address the problem of non-stationarity and structural breaks by down weighting position sizes in strategies that have a low probability of success in a given market state.
- The Kelly Criterion can be used to determine optimal position sizes.

