Tutorial 10

Groups (with solution)

Q.1 Group or Not?

Is each of the following cases a group? If so, is it an Abelian group?

- a) Even numbers under addition
- b) Odd numbers under addition
- c) Multiples of 7 under addition
- d) 2×2 real matrices under addition
- e) 2×2 real matrices under multiplication

Q.1

- a) Yes. Abelian, addition is commutative.
- b) No.
 - It violates the Closure property and there is no identity.
- c) Yes. Abelian, addition is commutative.
- d) Yes. Abelian, addition is commutative.
- e) No. There are no inverses for matrices with zero determinant.

Q.2 Unit Circle on Complex Plane

□ Consider the set of complex numbers on the unit circle:

$$H = \{ z \in \mathbb{C} \colon |z| = 1 \}.$$

 \square Denote multiplication by \times .

• e.g.
$$(1+2i)(3-i)$$

= $(3+2)+(6-1)i$
= $5+5i$.

- a) Show that $\langle H, \times \rangle$ forms a group.
- Find the cube roots of unity, or roots satisfying the equation: $z^3 = 1$, where $z \in \mathbb{C}$. Do the roots form a subgroup of H?

<u>Q.2</u>

- a) It is a group.
- Closure
 - $e^{j\theta_1} \times e^{j\theta_2} = e^{j(\theta_1 + \theta_2)}$
- Identity
 - \bigcirc 1 is the identity, since $1 \times e^{j\theta} = e^{j\theta}$ for any $e^{j\theta}$.
- Inverse
 - The inverse of $e^{j\theta}$ is $e^{-j\theta}$, since $e^{-j\theta} \times e^{j\theta} = 1$.
- Associativity

Q.2

b)
$$z^3 = 1 = e^{j2\pi k}$$

☐ Then the cube roots of unity are given by

$$z = e^{j2\pi k/3}, k = 0,1,2$$

 \square {1, $e^{j2\pi/3}$, $e^{j4\pi/3}$ } forms a subgroup of H.

<u>Q.2</u>

□ Furthermore, the n-th roots of unity form a subgroup of H of order n.

Closure

• The product of two *n*th roots of unity is also *n*th roots of unity. If $x^n = 1$ and $y^n = 1$, then $(xy)^n = 1$.

Identity

○ 1 is the identity

Inverse

• The inverse of one *n*th roots of unity is also *n*th roots of unity. If $x^n = 1$, then If $(x^{-1})^n = 1$.

Associativity

Straightforward.

Q.3 Binary Linear Code

- \square Recall that a binary linear code C is a subset of \mathbb{B}^n .
- □ It is defined by the encoding function $f: \mathbb{B}^k \to \mathbb{B}^n$, where f(u) = uG and G is the generator matrix.
- \square It can be checked that \mathbb{B}^n with binary addition is a group.
- \square Is C a subgroup of \mathbb{B}^n ?

Q.3

- Yes, it is a subgroup.
- a) Closure
 - \circ Consider two codewords, c_u and c_v .
 - $c_u + c_v = uG + vG = (u + v)G$, which is a codeword.
- b) Identity
 - \circ 0 is a codeword, since u = 0 implies f(u) = uG = 0.
 - \circ 0 is the identity, since c + 0 = c for any codeword c.
- c) Inverse
 - The inverse of c is c itself, since c + c = 0.
- d) Associativity
 - $c_u + c_v + c_w = c_u + (c_v + c_w)$