Prob 140 Fall 2019 Final Exam Reference Sheet	inal Exar	n Reference Sheet			A. Adhikari	hikari
name and parameters	values	mass function or density	cdf F or survival function	expectation	variance	$mgf\; M(t)$
Uniform	$m \le k \le n$	1/(n-m+1)		(m+n)/2	$((n-m+1)^2-1)/12$	
Bernoulli (p)	0, 1	$p_1=p, p_0=q$		d	bd	$q + pe^t$
Binomial (n, p)	$0 \le k \le n$	$\binom{n}{k} p^k q^{n-k}$		du	bdu	$(q + pe^t)^n$
Poisson (μ)	$k \geq 0$	$e^{-\mu}\mu^k/k!$		μ	η	$\exp(\mu(\mathrm{e}^t-1))$
Geometric (p)	$k \geq 1$	$q^{k-1} ho$	$P(X > k) = q^k$	1/p	d/b^2	
"Negative binomial" (r, p)	$k \ge r$	$inom{k-1}{r-1} ho^{r-1} q^{k-r} ho$		r/p	rq/p²	
Geometric (<i>p</i>)	$k \geq 0$	$d_k p$	$P(X > k) = q^{k+1}$	d/b	d/b^2	
Negative binomial (r, p)	<i>k</i> ≥ 0	$inom{k+r-1}{r-1} p^{r-1} q^k p$		rd/p	rq/p²	
Hypergeometric (N, G, n)	$0 \le g \le n$	$\binom{G}{g}\binom{B}{b}/\binom{N}{n}$		$n\frac{G}{N}$	$n \frac{G}{N} \cdot \frac{B}{N} \cdot \frac{N-n}{N-1}$	
Uniform	$x \in (a, b)$	1/(b-a)	F(x) = (x - a)/(b - a)	(a + b)/2	$(b-a)^2/12$	
Beta (r, s)	$x \in (0,1)$	$\frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1}$	by uniform order statistics if r, s integers	r/(r+s)	$rs/\big((r+s)^2(r+s+1)\big)$	
Exponential $(\lambda)=$ Gamma $(1,\lambda)$	0 ≤ x	$\lambda e^{-\lambda x}$	$F(x) = 1 - e^{-\lambda x}$	$1/\lambda$	$1/\lambda^2$	
Gamma (r,λ)	0 < x	$\frac{\lambda'}{\Gamma(r)} \chi^{r-1} e^{-\lambda x}$	for integer r : $F(x) = 1 - \sum_{k=0}^{r-1} e^{-\lambda x} rac{(\lambda x)^k}{k!}$	r/λ	r/λ^2	$(\lambda/(\lambda-t))',\ t<\lambda$
Chi-square (n)	0 < ×	same as gamma $(n/2, 1/2)$		и	2 <i>n</i>	
Normal (0, 1)	$\overset{x}{\mapsto} R$	$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$	$cdf: \Phi(x)$	0	1	$\exp(t^2/2)$
Normal (μ,σ^2)	$x \in \mathbb{R}$	$rac{1}{\sigma}\phi((x-\mu)/\sigma)$	cdf: $\Phi((x-\mu)/\sigma)$	μ	σ^2	
Rayleigh	0 \\ x	$xe^{-\frac{1}{2}x^2}$	$F(x) = 1 - e^{-\frac{1}{2}x^2}$	$\sqrt{\pi/2}$	$(4 - \pi)/2$	
Cauchy	$x \in \mathbb{R}$	$1/\pi(1+x^2)$	$F(x) = \frac{1}{2} + \frac{1}{\pi} \operatorname{arctan}(x)$			

• If X_1, X_2, \dots, X_n are i.i.d. with variance σ^2 , then $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ is an unbiased estimator of σ^2 but $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ is not.

• For r>0, the integral $\Gamma(r)=\int_0^\infty x^{r-1} e^{-x} dx$ satisfies $\Gamma(r+1)=r\Gamma(r)$. So $\Gamma(r)=(r-1)!$ if r is an integer. Also, $\Gamma(1/2)=\sqrt{\pi}$.

ullet If Z_1 and Z_2 are i.i.d. standard normal then $\sqrt{Z_1^2+Z_2^2}$ is Rayleigh.

ullet If Z is standard normal then $E(|Z|)=\sqrt{2/\pi}$

• The kth order statistic $U_{(k)}$ is kth smallest of U_1, U_2, \ldots, U_n i.i.d. uniform (0,1), so $U_{(1)}$ is min and $U_{(n)}$ is max. Density of $U_{(k)}$ is beta (k, n-k+1).

• If S_n is the number of heads in n tosses of a coin whose probability of heads was chosen according to the beta (r,s) distribution, then the distribution of S_n is beta-binomial (r,s,n) with $P(S_n=k)=\binom{n}{k}C(r,s)/C(r+k,s+n-k)$ where $C(r,s)=\Gamma(r+s)/(\Gamma(r)\Gamma(s))$ is the constant in the beta (r,s) density.

ullet If **X** has mean vector μ and covariance matrix Σ then ${f AX+b}$ has mean vector ${f A}\mu+{f b}$ and covariance matrix ${f A}\Sigma{f A}^T$.

• If X has the multivariate normal distribution with mean vector μ and covariance matrix Σ , then X has density $f(\mathbf{x}) = \frac{1}{(\sqrt{2\pi})^n \sqrt{\det(\Sigma)}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)$

• The least squares linear predictor of Y based on the $p \times 1$ vector \mathbf{X} is $\hat{Y} = \mathbf{b}^T(\mathbf{X} - \mu_{\mathbf{x}}) + \mu_Y$ where $\mathbf{b} = \Sigma_{\mathbf{x}}^{-1} \Sigma_{\mathbf{x},Y}$. Here the ith element of the $p \times 1$ vector $\Sigma_{\mathbf{x},Y}$ is $Cov(X_i,Y_j)$. In the case p=1 this is the equation of the regression line, with slope $Cov(X_i,Y_j)/Var(X_j) = rSD(Y_j)/SD(X_j)$ and intercept $E(Y_j)$ slope $E(X_j)$.

• If $W = Y - \hat{Y}$ is the error in the least squares linear prediction, then E(W) = 0 and $Var(W) = Var(Y) - \Sigma_{Y,X} \Sigma_X^{-1} \Sigma_{X,Y}$. In the case p = 1, $Var(W) = (1 - r^2) Var(Y)$.

• If Y and X are multivariate normal then the formulas in the above two bullet points are the conditional expectation and conditional variance of Y given X.

• If Y and X are standard bivariate normal with correlation r, then $Y = rX + \sqrt{1-r^2}Z$ for some standard normal Z independent of X.

ullet Under the multiple regression model ${f Y}={f X}eta+\epsilon$, the least squares estimate of eta is $\hat{eta}=({f X}^{T}{f X})^{-1}{f X}^{T}{f Y}$.