CARTE ML Workshop

Lecture 1-1: Introduction to ML

Artificial Intelligence

- Getting computers to behave intelligently:
 - Perform non-trivial tasks as well as humans do
 - Perform tasks that even humans struggle with
- Many sub-goals:
 - Perception
 - Reasoning
 - Control
 - Planning

My poker face: AI wins multiplayer game for first time

Pluribus wins 12-day session of Texas hold'em against some of the world's best human players

Speech Recognition: Perception + Reasoning

Autonomous Driving: Perception + ReasoningControl + Planning

Game Playing: Reasoning + Planning

Knowledge-Based Al

Write programs that simulate how people solve the problem

Fundamental limitations:

- Will never get better than a person
- Requires deep domain knowledge
- We don't know how we do some things (e.g., riding a bicycle)

Data-Based AI = Machine Learning

Write programs that learn the task from examples

- No need to know how we do it as humans
- Performance should improve with more examples
- X May need many examples!
- X May not understand how the program works!

Machine Learning

- Study of algorithms that
 - Improve their performance P
 - At some task T
 - With experience E
- Well defined learning task: <P,T,E>

The Machine Learning Process

- Study of algorithms that
 - Improve their performance P
 - At some task T
 - With <u>experience</u> E
- Well defined learning task:<P,T,E>

- Experience
 - Examples of the form (input, correct output)
- Task
 - Mapping from input to output
- Performance
 - "Loss function" that measures error w.r.t. desired outcome

Choices in ML Problem Formulation

- Experience
 - Examples of the form (input, correct output)
- Task
 - Mapping from input to output
- Performance
 - "Loss function" that measures error w.r.t. desired outcome

Loan Applications

- What historical examples do I have? What is a correct output?
- Predict probability of default?
 Loan decision? Credit score?
- Do I care more about minimizing False Positives? False negatives?

How will I rate "Chopin's 5th Symphony"?

Song	Rating
Some nights	
Skyfall	$\stackrel{\bigstar}{\sim}$
Comfortably numb	$\Rightarrow \Rightarrow \Rightarrow$
We are young	$\stackrel{\wedge}{\sim} \stackrel{\wedge}{\sim} \stackrel{\wedge}{\sim} \stackrel{\wedge}{\sim}$
Chopin's 5 th	???

Classification: Three Elements

1. Data:

- x: data example with d attributes
- y: label of example (what you care about)
- 2. Classification model: a function $f_{(a,b,c,...}$
 - Maps from X to Y
 - (a,b,c,...) are the parameters

3. Loss function:

Penalizes the model's mistakes

Song	Rating
Some nights	$^{\diamond}$ $^{\diamond}$ $^{\diamond}$ $^{\diamond}$ $^{\diamond}$
Skyfall	$\stackrel{\wedge}{\bowtie}$
Comfortably numb	$\stackrel{\wedge}{\sim} \stackrel{\wedge}{\sim} \stackrel{\wedge}{\sim}$
We are young	$^{\overset{\wedge}{\sim}} ^{\overset{\wedge}{\sim}} ^{\overset{\wedge}{\sim}} ^{\overset{\wedge}{\sim}}$
• • •	•••
Chopin's 5 th	???

Terminology Explanation

Song	Artist	Length	 Rating
Some nights	Fun	4:23	 $\Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$
Skyfall	Adele	4:00	 ☆
Comf. Numb	Pink Floyd	6:13	 $\Rightarrow \Rightarrow \Rightarrow$
We are young	Fun	3:50	 $\Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$
Chopin's 5 th	Chopin	5:32	 ???

Data example = data instance Attribute = feature = dimension Label = target attribute

What is a "model"?

A useful approximation of the world

Typically, there are many reasonable models for the same data

Training a model = finding appropriate values for (a,b,c,...)

- An optimization problem
- "appropriate" = minimizes the Loss (cost) function
- We will focus on a common training algorithm later on

Classification Loss Function

How unhappy are you with the answer that the model gave?

•
$$L_{0-1}(y, f(x)) = 1$$
 if: $y \neq f(x)$
0 otherwise

• **0-1 loss** function: intuitive but hard to optimize = train

• In practice, we use **approximations** of the 0-1 loss — getting warmer or getting colder

Why should this work at all?

The main theoretical basis of ML:

With a sufficient amount of "similar" data

+

an expressive model class:

Minimizing the loss function on the training data yields a highly accurate model on unseen test data, with high probability

- 1. Data: $S = \{(x_i, y_i)\}_{i=1,...,n}$
 - x_i: data example with d attributes
 - y_i: label of example (what you care about)
- 2. Classification model: a function $f_{(a,b,c,...)}$
 - Maps from X to Y
 - (a,b,c,...) are the parameters
- 3. Loss function: L(y, f(x))
 - Penalizes the model's mistakes

Decision Trees: To play tennis or not to?

- **Data**: attributes describing the weather; (sunny? humidity level, ...)
- Target: 1if it's good to Play,
 0 otherwise

- Model: f_T(x)
- Model parameters: T, the tree structure (and size)

Training (fitting) a Decision Tree

How to choose the attribute/value to split on at each level of the tree?

- Two classes (red circles / green crosses)
- Two attributes: X and Y
- 11 points in training data
- Idea: construct a decision tree such that the leaf nodes correctly predict the class for all the training examples

Training (fitting) a Decision Tree

Training (fitting) a Decision Tree

- 1. Find the best attribute to split on
- 2. Find the best split on the chosen attribute
- 3. Repeat 1 & 2 until stopping criterion is met

Common stopping criteria:

- Node contains very few data points
- Node is pure: most training data in node have same label

Final words on Decision Trees

Advantages

- Simple interpretation
- Fast predictions
- Handles mixed-type attributes

Caveats

- May be too simple for complex data
- Hard to figure out the right depth, stopping criterion, especially at the node level

Logistic Regression (LR)

Decision Trees predict discrete outcomes

LR predicts probabilities of outcomes

- Probabilities give a notion of certainty
- Model can still be used as a classifier

Probability of getting cervical cancer, p(x): p(age=42, #pregnancies=3, smoking=True, ...)

Logistic Regression: Assumptions

Probability of getting cervical cancer, p(x):

$$p(age = 42, pregnancies = 3, smoking = True ...)$$

LR Parameters: β_0 , β_1 , ..., β_d

$$\log \frac{p(x)}{1 - p(x)} = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$$

This is the model!

$$\Rightarrow p(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_d x_d)}}$$

Logistic Regression: Training

Data: $S = \{(x_i, y_i)\}$

x_i: example with d attributes (age, #pregnancies, ...)

y_i: cervical cancer diagnosis (0 or 1)

Maximum Likelihood Estimation (MLE)

Likelihood of observing the data for a given β

MLE seeks parameters β that maximize the likelihood

The optimal parameters, β^* , can be found by optimization

Final words on Logistic Regression

Advantages

- Simple interpretation
- Fast training (convex optimization)
- Fast predictions
- Handles mixed-type attributes

Caveats

A low-capacity, linear model

https://christophm.github.io/interpretable-ml-book/logistic.html

Support Vector Machines (SVM)

Which classifier is

the best?

A Course in Machine Learning by Hal Daumé III

SVM: The Maximum-Margin Principle

Vapnik (1990) derived the SVM as an "optimal" classifier

Intuitively, robust to outliers

 Support vectors: subset of data closest to classifier

 Great empirical success in the 90s – early 2000s

What about non-linearly separable data?

SVM for non-linearly separable data

SVM can do this "lifting" at a relatively small additional cost in computation

Final words on SVMs

Advantages

- Strong theoretical basis
- Easy to train linear SVMs
- Typically a strong baseline

Caveats

- Non-linear SVM slow to train
- Hard to specify a good kernel in advance

Recap

- ML vs Knowledge-Based Al
- The ML mindset
- Classification: definition and assumptions
- Classifiers:
 - Decision Trees
 - Logisitic Regression
 - Support Vector Machines

