一、单项选择题

- 1. 设 A, B 互不相容, 且概率都不为零, 则()正确.
 - A. P(A-B) = P(A)
- B. P(A | B) = 1
 - C. \overline{A} 与 \overline{B} 互不相容 D. \overline{A} 与 \overline{B} 相容
- 2. 设 $X \sim P(\lambda)$, 已知 $P(X = 1) = \frac{1}{2}P(X = 2)$, 则 $\lambda = ($).
 - A. 2
- B. 1
- C. 4
- D. 0.25
- 3. 若 $X \sim U[0,2]$, Y = 3X 1, 则().
 - A. Y服从[0,2]上的均匀分布 B. $Y \sim N(0,1)$

- C. $P(0 \le Y \le 2) = 1$
- D. $P(0 \le Y \le 3) = 0.5$
- 4. 设 X 的期望和方差存在,且 EX = a, $EX^2 = b$, 则 D(3X) = ().
 - A. $3(a-b^2)$

B. $3(b-a^2)$

C. $9(b-a^2)$

- D. $9(a-b^2)$
- 5. 设 $X \sim B(100, 0.2)$, 则 $P(10 \le X \le 30) \approx ($).
 - A. $\Phi_0(30) \Phi_0(10)$ B. $\Phi_0(10) \Phi_0(0)$
 - C. $\Phi(2.5) \Phi(-2.5)$ D. $2\Phi_0(2.5) 1$

二、填空题

- 1. 袋中装有 5 个球 (3 新 2 旧),每次取一个,不放回的抽取两次,则 第二次取到新球的概率为 ...
- 2. 设 A = B 是两个相互独立的事件,且 P(A-B) = 0.3, P(B) = 0.5,则

$$P(A | B) =$$
_____.

- 3. 设X与Y独立,且 $X \sim B(5,0.6), Y \sim B(9,0.6)$,则 $X + Y \sim$ _____.
- 4. 设X与Y独立,且DX = 4,DY = 2,则 $D(3X + 2Y) = _____.$
- 5. 设二维离散型随机变量(X,Y)的联合分布如图,若X与Y相互独立,则a与b分别为 .

Y X	1	2
1	$\frac{1}{6}$	$\frac{1}{3}$
2	$\frac{1}{9}$	а
3	$\frac{1}{18}$	b

6.设 $X \sim U[a,b]$, $(X_1, X_2, \dots, X_{30})$ 为来自总体X的一个样本,则 $E\overline{X} = \underline{\qquad}$.

7.设 X_1, X_2, \dots, X_n 是从正态总体 $X \sim N(\mu, \sigma^2)$ 中抽取的一个样本,

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 是其样本均值,则 $\sum_{i=1}^{n} (X_i - \bar{X})^2 / \sigma^2 \sim$ _______.

8. 设总体 X 的概率密度为 $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & 其它 \end{cases}$, X_1, X_2, \cdots, X_6 是 X 的一个样本,则 $P\left\{\max(X_1, X_2, \cdots, X_6) > \frac{1}{4}\right\} = \underline{\hspace{1cm}}$.

9. 一射手对同一目标独立地进行射击,直到射中目标为止,已知每次命

中率为 $\frac{3}{5}$,则射击次数的数学期望为______.

10. 设离散型随机变量 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < -1 \\ a, & -1 \le x < 1 \\ \frac{2}{3} - a, & 1 \le x < 2 \\ a + b, & x \ge 2 \end{cases}$$

且
$$P(X=2) = \frac{1}{2}$$
,则 $a = _____$, $b = _____$.

三、计算题

- 1. 当抛掷五枚硬币时,已知至少出现一个正面,问正面数刚好是三个的概率是多少?(假设每枚硬币出现正面的概率均为 0.5)
- 2. 随机变量 X 的密度函数为

$$f(x) = \begin{cases} ce^{-x}, & x > 0\\ 0, & x \le 0 \end{cases}$$

求: (1) 常数c; (2)X的分布函数F(x)。

3. 设随机变量(X,Y)的联合分布密度为

$$f(x,y) = \begin{cases} 6xy^2, & 0 < x < 1, 0 < y < 1 \\ 0, & 其他 \end{cases}$$

求Cov(X,Y), 并判断X,Y是否相关, 是否独立。

4. 抽样检查产品质量时,如果发现次品多于 10 个,则拒绝接受这批产品,设某批产品的次品率为 10%,问至少应抽取多少个产品检查才能保证拒绝接受该产品的概率达到 0.9? 注: $\Phi_0(-1.28) = 0.1$.

5. 设总体 $X \sim N(0,\sigma^2)$,样本 (X_1,X_2,\cdots,X_5) 来自 X ,求统计量

$$T = \frac{X_1^2 + X_2^2}{X_3^2 + X_4^2 + X_5^2} \cdot \frac{3}{2}$$

的分布.

6. 设总体 X 的密度函数为

$$f(x;\theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1 \\ 0, & \text{ 其他} \end{cases}$$

其中 $\theta>0$ 为未知参数,设样本 (X_1,X_2,\cdots,X_n) 来自总体X,求 θ 的极大似然估计.

附加题:一年中的哪个节日,会对生活产生实质性影响?

过节前:

过节中:

过节后: