Métodos Numéricos

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

28 de Octubre de 2016

Hasta ahora...

- Aproximación de temperaturas en un alto horno
- Reconstrucción de imágenes eliminando ruido
- Reconocimiento facial
- Clasificación de noticias
- PageRank
- Generación de imágenes de tomografía computada
- Hoy: predicción de desempeño de equipos en NBA

Motivación

Sport Analytics

Utilización de técnicas estadísticas, inteligencia artificial y optimización en el deporte.

- ► En MLB surge la idea de usar programas estadísticos en los 70/80 y en 1980 surge el término *sabermetrics*.
- En NFL las estadísticas comienzan a usarse activamente en los 90/2000.
- ¿Qué pasa en el fútbol? Sólo algunos clubes de las principales ligas declararon haber comenzado a hacer uso de modelos ma emáticos, principalmente en Inglaterra e Italia en los últimos años.
 - En la BA, datos de cuya liga analizaremos en este trabajo, históricamente se relevaron estadísticas pero sólo en los 30 (2000 se comenzaron a diseñar indicadores específicos que contemplaran la dinámica del juego.

- ► En MLB surge la idea de usar programas estadísticos en los 70/80 y en 1980 surge el término *sabermetrics*.
- En NFL las estadísticas comienzan a usarse activamente en los 90/2000.
- ¿Qué pasa en el fútbol? Sólo algunos clubes de las principales ligas declararon haber comenzado a hacer uso de modelos matemáticos, principalmente en Inglaterra e Italia en los últimos años.
 - En la BA, datos de cuya liga analizaremos en este trabajo, históricamente se relevaron estadísticas pero sólo en los 30/2000 se comenzaron a diseñar indicadores específicos que contemplaran la dinámica del juego.

- ► En MLB surge la idea de usar programas estadísticos en los 70/80 y en 1980 surge el término *sabermetrics*.
- ► En NFL las estadísticas comienzan a usarse activamente en los 90/2000.
- ¿Qué pasa en el fútbol? Sólo algunos clubes de las principales ligas declararon haber comenzado a hacer uso de modelos matemáticos, principalmente en Inglaterra e Italia en los últimos años.
 - En la BA, datos de cuya liga analizaremos en este trabajo, históricamente se relevaron estadísticas pero sólo en los 20/2000 se comenzaron a diseñar indicadores específicos que contemplaran la dinámica del juego.

- ► En MLB surge la idea de usar programas estadísticos en los 70/80 y en 1980 surge el término *sabermetrics*.
- ► En NFL las estadísticas comienzan a usarse activamente en los 90/2000.
- ¿Qué pasa en el fútbol? Sólo algunos clubes de las principales ligas declararon haber comenzado a hacer uso de modelos ma emáticos, principalmente en Inglaterra e Italia en los últimos años.
 - En la BA, datos de cuya liga analizaremos en este trabajo, históricamente se relevaron estadísticas pero sólo en los 20/2000 se comenzaron a diseñar indicadores específicos que contemplaran la dinámica del juego.

- ► En MLB surge la idea de usar programas estadísticos en los 70/80 y en 1980 surge el término *sabermetrics*.
- ► En NFL las estadísticas comienzan a usarse activamente en los 90/2000.
- ¿Qué pasa en el fútbol? Sólo algunos clubes de las principales ligas declararon haber comenzado a hacer uso de modelos matemáticos, principalmente en Inglaterra e Italia en los últimos años.

En la BA, datos de cuya liga analizaremos en este trabajo, históricamente se relevaron estadísticas pero sólo en los 30/2000 se comenzaron a diseñar indicadores específicos que contemplaran la dinámica del juego.

- ► En MLB surge la idea de usar programas estadísticos en los 70/80 y en 1980 surge el término *sabermetrics*.
- ► En NFL las estadísticas comienzan a usarse activamente en los 90/2000.
- ¿Qué pasa en el fútbol? Sólo algunos clubes de las principales ligas declararon haber comenzado a hacer uso de modelos matemáticos, principalmente en Inglaterra e Italia en los últimos años.
- ► En la NBA, datos de cuya liga analizaremos en este trabajo, históricamente se relevaron estadísticas pero sólo en los 90/2000 se comenzaron a diseñar indicadores específicos que contemplaran la dinámica del juego.

¿Analytics?, ¿para qué?

También Big Data o Data Science

- 1. Observar los datos
- 2. Analizarlos y entenderlos
- 3. Tomar decisiones

En este TP: pluntear métricas sobre el rendimiento de los equipos y jugadores para predecir el desempeño del equipo al finalizar la temporada regular.

¿Analytics?, ¿para qué? También Big Data o Data Science

- 1. Observar los datos
- 2. Analizarlos y entenderlos
- 3. Tomar decisiones

En este TP: plantear métricas sobre el rendimiento de los equipos y jugadores para predecir el desempeño del equipo al finalizar la temporada regular.

Dominio del problema

NBA y temporada regular

- ▶ 30 equipos, 15 en el Este y 15 en el Oeste
- Cada equipo juega 82 partidos
- No existe el empate

^{*}Tomado de http://www.basketball-reference.com/leagues/NBA_2016.html

Dominio del problema

NBA y temporada regular

- ▶ 30 equipos, 15 en el Este y 15 en el Oeste
- Cada equipo juega 82 partidos
- ► No existe el empate

Eastern Confere	nce	W	L	W/L%	GB	PS/G	PA/G	SRS	
Cleveland Cavaliers	k (1)	57	25	.695	_	104.3	98.3	5.45	
Toronto Raptors*	(2)	56	26	.683	1.0	102.7	98.2	4.08	
Miami Heat*	(3)	48	34	.585	9.0	100.0	98.4	1.50	
Atlanta Hawks*	(4)	48	34	.585	9.0	102.8	99.2	3.49	
Boston Celtics*	(5)	48	34	.585	9.0	105.7	102.5	2.84	
Charlotte Hornets*	(6)	48	34	.585	9.0	103.4	100.7	2.36	
Indiana Pacers*	(7)	45	37	.549	12.0	102.2	100.5	1.62	
Detroit Pistons*	(8)	44	38	.537	13.0	102.0	101.4	0.43	
Chicago Bulls	(9)	42	40	.512	15.0	101.6	103.1	-1.46	
Washington Wizards	(10)	41	41	.500	16.0	104.1	104.6	-0.50	
Orlando Magic	(11)	35	47	.427	22.0	102.1	103.7	-1.68	
Milwaukee Bucks	(12)	33	49	.402	24.0	99.0	103.2	-3.98	
New York Knicks	(13)	32	50	.390	25.0	98.4	101.1	-2.74	
Brooklyn Nets	(14)	21	61	.256	36.0	98.6	106.0	-7.12	
Philadelphia 76ers	(15)	10	72	.122	47.0	97.4	107.6	-9.92	

Western Conference		W	L	W/L%	GB	PS/G	PA/G	SRS	
Golden State Warriors*	(1)	73	9	.890	_	114.9	104.1	10.38	
San Antonio Spurs*	(2)	67	15	.817	6.0	103.5	92.9	10.28	
Oklahoma City Thunder*	(3)	55	27	.671	18.0	110.2	102.9	7.09	
Los Angeles Clippers*	(4)	53	29	.646	20.0	104.5	100.2	4.13	
Portland Trail Blazers*	(5)	44	38	.537	29.0	105.1	104.3	0.98	
Dallas Mavericks*	(6)	42	40	.512	31.0	102.3	102.6	-0.02	
Memphis Grizzlies*	(7)	42	40	.512	31.0	99.1	101.3	-2.14	
Houston Rockets*	(8)	41	41	.500	32.0	106.5	106.4	0.34	
Utah Jazz	(9)	40	42	.488	33.0	97.7	95.9	1.84	
Sacramento Kings (1	10)	33	49	.402	40.0	106.6	109.1	-2.32	
Denver Nuggets (1	10)	33	49	.402	40.0	101.9	105.0	-2.81	
New Orleans Pelicans (1	12)	30	52	.366	43.0	102.7	106.5	-3.56	
Minnesota Timberwolves (1	13)	29	53	.354	44.0	102.4	106.0	-3.38	
Phoenix Suns (1	14)	23	59	.280	50.0		107.5		
Los Angeles Lakers (1	15)	17	65	.207	56.0	97.3	106.9	-8.92	

¹Tomado de http://www.basketball-reference.com/leagues/NBA_2016.html

Datos

Rk	Team	G	MP	FG	FGA	FG%	3P	3PA	3P%	2P	2PA	2P%	FT	FTA	FT%	ORB	DRB	TRB	AST	STL	BLK	TOV	PF	PTS	PTS/G
1	Golden State Warriors*	82	19880	3489	7159	.487	1077	2592	.416	2412	4567	.528	1366	1790	.763	816	2972	3788	2373	689	498	1245	1701	9421	114.9
2	Oklahoma City Thunder*	82	19830	3372	7082	.476	678	1945	.349	2694	5137	.524	1616	2067	.782	1071	2916	3987	1883	603	487	1305	1691	9038	110.2
3	Sacramento Kings	82	19805	3283	7083	.464	660	1839	.359	2623	5244	.500	1514	2089	.725	868	2760	3628	2009	733	368	1326	1676	8740	106.6
4	Houston Rockets*	82	19830	3094	6847	.452	878	2533	.347	2216	4314	.514	1671	2407	.694	930	2601	3531	1821	821	430	1307	1790	8737	106.5
5	Boston Celtics*	82	19780	3216	7318	.439	717	2142	.335	2499	5176	.483	1520	1929	.788	950	2733	3683	1981	752	348	1127	1796	8669	105.7
6	Portland Trail Blazers*	82	19805	3167	7040	.450	864	2336	.370	2303	4704	.490	1424	1889	.754	948	2782	3730	1748	562	380	1200	1782	8622	105.1
7	Los Angeles Clippers*	82	19830	3141	6759	.465	797	2190	.364	2344	4569	.513	1490	2152	.692	721	2727	3448	1873	709	460	1063	1746	8569	104.5
8	Cleveland Cavaliers*	82	19855	3171	6888	.460	880	2428	.362	2291	4460	.514	1333	1783	.748	873	2777	3650	1861	551	317	1114	1666	8555	104.3
9	Washington Wizards	82	19755	3238	7033	.460	709	1983	.358	2529	5050	.501	1349	1849	.730	743	2688	3431	2005	708	323	1186	1708	8534	104.1
10	San Antonio Spurs*	82	19705	3289	6797	.484	570	1518	.375	2719	5279	.515	1342	1672	.803	770	2831	3601	2010	677	485	1071	1433	8490	103.5
11	Charlotte Hornets*	82	19855	3036	6922	.439	873	2410	.362	2163	4512	.479	1534	1941	.790	734	2869	3603	1778	595	438	1030	1487	8479	103.4
12	Atlanta Hawks*	82	19830	3168	6923	.458	815	2326	.350	2353	4597	.512	1282	1638	.783	679	2772	3451	2100	747	486	1226	1570	8433	102.8

TP3: El problema

- Utilizar Cuadrados Mínimos Lineales (CML) como técnica e identificar modelos que describan el win rate (cantidad de partidos ganados sobre el total) a partir de los datos.
- Plantear dos métricas, una basada en estadísticas a nivel equipo y otra a nivel jugadores.
- Analizar los resultados y evaluarlos usando cross validation.
 Compararlos con Four Factors y Player Efficiency Rate.
- Utilizar los modelos para predecir el desempeño de los equipos.
- Aplicar las técnicas y metodologías aprendidas durante la materia.
- Libertad para plantear las métricas pero rigurosidad en su justificación y análisis.

Four Factors vs Win Rate

Player Efficiency Rate vs Win Rate

Modelo usando puntos a favor y en contra

Usando CML

- Considerar todas las estadísticas disponibles y elegirlas con criterio
- Considerar no sólo los datos sino eventualmente funciones aplicadas sobre los mismos (por ejemplo polinomios)
- Considerar datos de distintas temporadas y evaluar sobre temporadas futuras

Métricas de evaluación (1/2)

- ▶ *N* observaciones $(x_{(i)}, y_{(i)})$, con $x_{(i)} \in \mathbb{R}^k$ el vector de *features* e $y_{(i)} \in \mathbb{R}$ nuestra variable dependiente.
- ▶ Suponemos $y_{(i)} = f(x_{(i)}) + \epsilon_i$, i = 1, ..., N, donde ϵ_i es el error de la medición i-ésima.
- ▶ Dado un modelo \hat{f} de f y $(x_{(i)}, y_{(i)})$, definimos $\hat{y}_{(i)} = \hat{f}(x_{(i)})$ y $e_{(i)} = y_{(i)} \hat{y}_{(i)}$. Con estas definiciones, podemos calcular el MSE del modelo \hat{f} como

$$MSE(\hat{f}) = \frac{1}{N} \sum_{i=1}^{N} e_{(i)}^{2}.$$

Para evaluar cómo se comporta como modelo predictivo, podemos usar *Cross-Validation* combinado con MSE:

Métricas de evaluación (2/2)

- ► Es posible que existan dependencias temporales en los datos.
- Para ello, consideramos que cada observación está asociada a un determinado período de tiempo t, con $t=1,\ldots,T$, $(x_{(i)}^t,y_{(i)}^t)$, y asumimos que al menos K períodos de tiempo son necesarios para poder conformar el conjunto de training. Para evaluar los resultados de la predicción en el período $\tau \in [K,T]$ se puede:
 - 1. Tomar los conjuntos de observaciones correspondientes a períodos $1, \ldots, \tau 1$ como training.
 - 2. Calcular las métricas correspondientes tomando como test el período au.
 - 3. Al finalizar, reportar alguna medida sobre los resultados parciales obtenidos.

Desarrollo

- ► El TP se puede hacer en MATLAB, Python y/o C++. Se pueden usar bibliotecas con los métodos implementados.
- ▶ Junto al enunciado se presentan scripts en bash que extraen features y la información necesaria para obtener PER y Four Factors. Estos scripts pueden resultar útiles como inspiración para plantear sus propias herramientas. Éstas pueden ser compartidas entre ustedes, siempre y cuando se mantenga reservada la información de los experimentos. Deben hacerlo a través de la lista de alumnos.

Machete: mostrar cómo funcionan

Desarrollo

- ► El TP se puede hacer en MATLAB, Python y/o C++. Se pueden usar bibliotecas con los métodos implementados.
- ▶ Junto al enunciado se presentan scripts en bash que extraen features y la información necesaria para obtener PER y Four Factors. Estos scripts pueden resultar útiles como inspiración para plantear sus propias herramientas. Éstas pueden ser compartidas entre ustedes, siempre y cuando se mantenga reservada la información de los experimentos. Deben hacerlo a través de la lista de alumnos.
- Machete: mostrar cómo funcionan

Presentación

- Además del informe usual (esta vez bajo otro formato), el trabajo será expuesto en una presentación oral frente a alumnos y docentes.
- Para ello, harán una presentación mostrando lo que hicieron.
 Vamos a dar soporte y ayuda para prepararla.
- La exposición contará con 30 minutos totales: 15 minutos para presentar, 15 minutos de preguntas y respuestas. La nota de aprobación es individual.
- Para poder presentar en primera fecha, se deberá tener la aprobación previa por parte de los docentes correctores.

Trabajo Práctico

Fecha de entrega

- ► Formato Electrónico: Miércoles 16/11, hasta las 23:59 hs.
- ► Confirmación presentación oral: Viernes 18/11, por correo electrónico.
- ► Presentación oral: Lunes 21/11, en horario a determinar luego de la confirmación. Será en horario de clase de la materia.

Importante

El horario es estricto. Los correos recibidos después de la hora indicada serán considerados re-entrega.