Estudo de um condensador

Ana Sofia Camões de Sousa | 96508 Duarte Miguel de Aguiar Pinto e Morais Marques | 96523 Isabel Maria Jaló Alexandre | 96537 Martim da Costa Graça Marques Ferreira | 96554

Grupo 5C

Objetivos

Este trabalho experimental tem como objetivo o estudo de um condensador, nomeadamente os seus processos de carga e descarga num circuito RC e a variação com a frequência da permitividade ε de um dielétrico com perdas.

Montagem

Figura 1: Esquema elétrico e de blocos da montagem para o estudo da carga e descarga de um condensador.

Figura 2: Esquema elétrico da montagem para o estudo da carga e descarga de um condensador tendo em conta a existência de uma resistência de perdas R_p .

Figura 3: Esquema elétrico e de blocos da montagem para o estudo da constante dielétrica.

Figura 4: Esquema elétrico da montagem para o estudo da constante dielétrica tendo em conta a resistência R_p e o condensador C_p (em paralelo) da ponta de prova Y_2 .

Formulário

Circuito RC

$$\tau = CR_{eq} \tag{1}$$

Carga

$$\ln U_{R_{eq}}(t) = \ln \varepsilon' - \frac{t}{\tau} \tag{2}$$

$$\varepsilon' = \varepsilon \frac{R_i}{R_i + R_1} \tag{3}$$

$$R_{eq}(R_1) = \frac{R_1 R_i}{R_i + R_1} \tag{4}$$

$$W_{\epsilon} = \frac{\varepsilon'}{R_{eq}} \int_{0}^{+\infty} U_{R_{eq}}(t)dt \tag{5}$$

$$W_{R_{eq}} = \frac{1}{R_{eq}} \int_0^{+\infty} U_{R_{eq}}^2(t) dt \tag{6}$$

$$W_c = W_{\varepsilon} - W_{R_{eq}} \tag{7}$$

$$W_c = \frac{C}{2}(U_c(\infty))^2 \tag{8}$$

Descarga

$$\ln U_c(t) = \ln U_c^0 - \frac{t}{\tau} \tag{9}$$

$$U_c^0 = \varepsilon \frac{R_i}{R_i + R} \tag{10}$$

$$R_{eq} = \frac{R_1 R_i}{R_i + R_1} \tag{11}$$

$$W_{R_{eq}} = \frac{1}{R_{eq}} \int_{0}^{+\infty} U_c^2(t) dt$$
 (12)

$$W_c = W_{R_{eq}} \tag{13}$$

$$W_c = \frac{C}{2} (U_c^0)^2 (14)$$

Variação da permissividade

$$R_2 = \frac{R_{eq}R_p}{R_p - R_{eq}} \tag{15}$$

$$R_{eq} = R_1 \frac{U_{2ef}^2}{\langle U_1 U_2 \rangle - U_{2ef}^2} \tag{16}$$

$$C_{eq} = \frac{1}{\omega R_1} \sqrt{\left(\frac{U_{1ef}}{U_{2ef}}\right)^2 - \left(1 + \frac{R_1}{R_{eq}}\right)^2}$$
 (17)

$$\varepsilon_r = \frac{dC}{S} \tag{18}$$

$$\varepsilon_i = \frac{-d}{\omega R_2 S} \tag{19}$$

Procedimento experimental

Circuito RC

Descarga

- 1. Foi montado o circuito, escolhendo o valor para a capacidade do condensador de $C = 1\mu F$.
- 2. Foi ligada a fonte de tensão contínua e selecionado, com recurso ao voltímetro, $\varepsilon_1 = 9.00 \pm 0.01 \ V.$
- 3. Foi selecionada uma resistência $R_1 = 10 \ k\Omega$.
- 4. Foram selecionadas as ligações ao interruptor S_1 de modo a estudar o processo de descarga do condensador.
- 5. Para cada valor tirado foi selecionado no menu do osciloscópio o tempo adequado, tendo em conta o ruído do sinal observado no computador. Procurou-se ter uma escala em que o sinal apresenta-se pouco ruído.
- 6. Foi realizada a representação de $ln(U_c(t))$, tendo sido registados na tabela 1 os valores de declive e ordenada na origem para 3 retas obtidas.
- 7. Foram ainda registados 3 valores do integral de $U_c^2(t)$ na tabela 2 e 3 valores iniciais de $U_c(t)$ na tabela 3.
- 8. O processo foi repetido para $R_1=20~k\Omega,~R_1=30~k\Omega,~R_1=40~k\Omega,~R_1=50~k\Omega$ e $R_1=60~k\Omega.$

$R(k\Omega)$	m_1	b_1	m_2	b_2	m_3	b_3	$t_{max} (ms)$
10	-0.101	2.17	-0.101	2.18	-0.100	2.17	55
20	-0.051	2.12	-0.051	2.12	-0.051	2.12	110
30	-0.0349	2.11	-0.0347	2.11	-0.0348	2.11	165
40	-0.0267	2.10	-0.0266	2.09	-0.0265	2.09	220
50	-0.0216	2.05	-0.0216	2.06	-0.0216	2.06	275
60	-0.0184	2.04	-0.0184	2.05	-0.0183	2.03	330

Tabela 1: Valores registados para as retas de $ln(U_c(t))$ para resistências variadas

$R(k\Omega)$	W_1	W_2	W_3	$t_{max} \ (ms)$
10	403	403	404	30
20	726	726	727	60
30	1028	1027	1027	90
40	1251	1251	1250	120
50	1489	1488	1488	150
60	1698	1699	1699	180

Tabela 2: Valores registados para resistências variadas do integral de $U_c^2(t)$

$R(k\Omega)$	$U_1(V)$	$U_2(V)$	$U_3(V)$
10	8.81	8.81	8.80
20	8.63	8.64	8.65
30	8.48	8.47	8.47
40	8.32	8.31	8.32
50	8.17	8.17	8.17
60	8.02	8.02	8.02

Tabela 3: Valores registados para resistências variadas de $U_c(t=0)$

Carga

- 9. Foram selecionadas as ligações ao interruptor S_1 de modo a estudar o processo de carga do condensador.
- 10. Foi ajustada, com recurso ao voltímetro, $\varepsilon_1 = 9.00 \pm 0.01~V$. Por vezes esta voltagem oscilava para 9.01.
- 11. Novamente, para cada valor tirado foi selecionado no menu do osciloscópio o tempo adequado, tendo em conta o ruído do sinal observado no computador.
- 12. Na tabela 4 é possível observar o valor para o qual tende $U_c(t)$ no infinito, ε' , para cada uma das resistências consideradas. Para obter cada valor foi necessário esperar algum tempo para deixar o sistema estabilizar.
- 13. Criou-se uma nova variável no software, com o mesmo valor de U, mas com 6 casas decimais, em vez de 2, de forma a tentar obter valores mais precisos/exatos para $U(t=\infty)$. Os valores respetivos são apresentados na tabela 4 apenas até à última casa decimal não nula.

$R(k\Omega)$	$U_1(V)$
10	8.81
20	8.64
30	8.48
40	8.325
50	8.17
60	8.025

Tabela 4: Valores registados para resistências variadas de $U_c(t=\infty),\,t_{max}=500\;ms$

- 14. Foi selecionada uma resistência $R_1 = 10 \ k\Omega$.
- 15. Foi obtida a função $U_{R_{eq}}(t) = \varepsilon' U_c(t)$, através da opção Select formula.
- 16. Selecionou-se a opção de Evaluate on graph.
- 17. Foi realizada a representação de $ln(U_{R_{eq}}(t))$, tendo sido registados 3 valores de declives e de ordenadas na origem presentes na tabela 5.

- 18. Foram ainda registados 3 valores do integral de $U_{R_{eq}}(t)$ na tabela 6 e 3 valores do integral de $U_{R_{eq}}^2(t)$ na tabela 7.
- 19. O processo foi repetido para $R_1=20~k\Omega,~R_1=30~k\Omega,~R_1=40~k\Omega,~R_1=50~k\Omega$ e $R_1=60~k\Omega.$

$R(k\Omega)$	m_1	b_1	m_2	b_2	m_3	b_3	$t_{max} \ (ms)$
10	-0.101	2.19	-0.101	2.19	-0.101	2.19	50
20	-0.051	2.16	-0.052	2.16	-0.052	2.16	100
30	-0.0348	2.11	-0.0348	2.11	-0.0348	2.11	150
40	-0.0264	2.09	-0.0264	2.09	-0.0265	2.09	200
50	-0.0218	2.09	-0.0219	2.09	-0.0219	2.09	250
60	-0.0184	2.05	-0.0185	2.05	-0.0185	2.05	300

Tabela 5: Valores registados para as retas de $ln(U_{Reg}(t))$ para resistências variadas

Nas medições acima, a tensão lida no voltímetro havia estabilizado a 9.01 V. Em todas as medições anteriores, havia permanecido em 9.00 V.

20. Alterando a representação dos dados, e fazendo Evaluate on graph, obtiveram-se os integrais presentes na tabela 6. O t_{max} da tabela 6 para $R=10k\Omega$ foi selecionado de forma a que a função integranda apresentasse valores que se considerassem suficientemente próximos de zero, de forma a obter integrais o mais exatos possíveis. Os valores de t_{max} para as outras resistências são múltiplos inteiros do t_{max} inicial.

$R(k\Omega)$	W_1	W_2	W_3	$t_{max} (ms)$
10	87.4	87.5	87.5	60
20	163	162	163	120
30	237	237	237	180
40	307	307	307	240
50	361	362	362	300
60	421	421	421	360

Tabela 6: Valores registados para resistências variadas do integral de $U_{Req}(t)$

21. Foi a nova representação, feito *Evaluate on graph* e selecionada uma escala de tempo adequada, tal como no passo anterior, sendo obtidos os dados presentes na tabela 7.

$R(k\Omega)$	$W_1(V*ms)$	$W_2(V*ms)$	$W_3(V*ms)$	$t_{max} \ (ms)$
10	404	405	403	30
20	728	728	727	60
30	1030	1030	1030	90
40	1257	1257	1258	120
50	1494	1495	1494	150
60	1705	1705	1704	180

Tabela 7: Valores registados para resistências variadas do integral de $U^2_{Req}(t)$

22. Decidiu-se repetir as medições para os declives e ordenadas na origem dos ajustes lineares, selecionando menores escalas de tempo (metade dos anteriores, presentes na tabela 5), de forma a obter menos oscilações nos gráficos que haviam sido obtidos anteriormente. A tensão no voltímetro permanecia a 9.01 V.

$R(k\Omega)$	m_1	b_1	m_2	b_2	m_3	b_3	$t_{max} (ms)$
10	-0.101	2.20	-0.101	2.21	-0.101	2.20	25
20	-0.052	2.17	-0.052	2.17	-0.052	2.17	50
30	-0.0350	2.14	-0.0351	2.14	-0.0350	2.14	75
40	-0.0267	2.12	-0.0267	2.12	-0.0267	2.12	100
50	-0.0218	2.09	-0.0218	2.09	-0.0218	2.09	125
60	-0.0185	2.07	-0.0185	2.07	-0.0185	2.07	150

Tabela 8: Novos valores registados para as retas de $ln(U_{Reg}(t))$ para resistências variadas

Resistência R_i

- 23. Foi determinada a resistência interna do capacitor como "infinita".
- 24. Foi determinada a resistência interna do voltímetro em 9. A tensão no voltímetro era de 9.01 V.

$R_i \pm 0.1 \; (k\Omega)$
501.1
500.8
500.5
500.0
500.3

Tabela 9: Valores medidos de R_i

Descarga

- 25. Optou-se por repetir as medições efetuadas em 1, novamente com uma escala de tempo menor, procurando obter um melhor ajuste. Estes dados constam em 10.
- 26. Constatou-se que a tensão no voltímetro seria agora de 9.02~V.

$R(k\Omega)$	m_1	b_1	m_2	b_2	m_3	b_3	$t_{max} (ms)$
10	-0.101	2.20	-0.101	2.20	-0.101	2.20	30
20	-0.052	2.16	-0.052	2.16	-0.052	2.16	60
30	-0.0351	2.14	-0.0351	2.14	-0.0351	2.14	90
40	-0.0268	2.10	-0.0268	2.10	-0.0268	2.10	120
50	-0.0218	2.09	-0.0218	2.09	-0.0218	2.09	150
60	-0.0185	2.07	-0.0185	2.07	-0.0185	2.07	180

Tabela 10: Novos valores registados para as retas de $ln(U_c(t))$ para resistências variadas

Variação da permissividade

- 27. Foi montado o circuito, ajustando R_1 de modo a que a tensão no condensador U_2 tenha uma amplitude máxima de cerca de metade da amplitude máxima do gerador U_1 . Amplitude teórica da tensão do gerador: 7.000 V.
- 28. Quando se iam iniciar as medições, o multímetro deixou de conseguir ler o valor da resistência. Pensou-se que o problema estaria no interruptor da caixa de resistências. Desmontou-se o interruptor, mas o problema persistia. Acabou-se por desligar e voltar a ligar o multímetro e ele voltou a funcionar normalmente. Entretanto, o interruptor já não estava funcional, tendo sido necessário alterar as ligações do circuito de forma a prosseguir com a experiência.
- 29. Foram registados os valores eficazes de U_2 , U_1 e $< U_1U_2>$, e o valor de R, para vários valores da frequência do gerador. Cada valor foi registado três vezes, de forma a estimar incertezas. Para as resistências considera-se uma incerteza correspondente ao menor dígito (por exemplo, 0.25310 ± 0.00001).

$f \pm 0.001 (Hz)$	$R_1 (M\Omega)$	$R_2 (M\Omega)$	$R_3 (M\Omega)$
200	0.25310	0.25436	0.25616
500	0.11680	0.11741	0.11667
1000	$15.672 * 10^{-3}$	$15.582 * 10^{-3}$	$15.707 * 10^{-3}$
2000	$7.3650 * 10^{-3}$	$7.3681 * 10^{-3}$	$7.3721 * 10^{-3}$
5000 ± 1	$5.5555 * 10^{-3}$	$5.5660*10^{-3}$	$5.5588 * 10^{-3}$
10000 ± 1	$5.2704 * 10^{-3}$	$5.2671 * 10^{-3}$	$5.2668 * 10^{-3}$
20000 ± 1	$2.8252 * 10^{-3}$	$2.8248 * 10^{-3}$	$2.8258 * 10^{-3}$
50000 ± 1	$1.0559 * 10^{-3}$	$1.0561 * 10^{-3}$	$1.0556 * 10^{-3}$
1000000 ± 1	$0.53003 * 10^{-3}$	$0.52942 * 10^{-3}$	$0.52911 * 10^{-3}$
200000 ± 1 *	$0.17663 * 10^{-3}$	$0.17659 * 10^{-3}$	$0.17645 * 10^{-3}$
500000 ± 100 *	$0.12888 * 10^{-3}$	$0.12904 * 10^{-3}$	$0.12874 * 10^{-3}$
20000 ± 1	$2.7140*10^{-3}$	$2.7373 * 10^{-3}$	$2.7178 * 10^{-3}$

Tabela 11: Valores de resistência para frequências variadas - nos valores assinalados com *, a amplitude do gerador era inferior a 7V devido à baixa resistência R

f(Hz)	$U_2(V)$	$U_1(V)$	$< U_1 U_2 > (V^2)$
200	2.29494644	4.93609994	6.60293231
500	2.52322559	4.93778244	7.08120877
1000	2.49953805	4.94186234	6.68641963
2000	2.61449697	4.93494922	7.12361366
5000	2.63883085	4.89828497	7.16903889
10000	2.47729109	4.79918915	6.30169949
20000	2.47531046	4.81423468	6.26955245
50000	2.50292069	4.63691764	6.37938992
100000	2.23589195	4.27481362	5.08339619
200000	2.24140861	3.30956745	5.04803342
500000	1.59010381	3.71242329	2.59019104
20000	2.51272695	4.8304762	6.40879943

Tabela 12: Registo 1 dos valores eficazes de U_2 , U_1 e $< U_1 U_2 >$

f(Hz)	$U_2(V)$	$U_1(V)$	$< U_1 U_2 > (V^2)$
200	2.25489542	4.93319634	6.52565269
500	2.52380902	4.93807644	7.08679971
1000	2.50021155	4.94188211	6.68878386
2000	2.61626628	4.93524122	7.13272227
5000	2.64096938	4.90109717	7.18066131
10000	2.47983915	4.80225108	6.31709448
20000	2.47552333	4.81272947	6.2701888
50000	2.50480646	4.63837336	6.38886691
100000	2.24762163	4.29190872	5.13675467
200000	2.24437068	3.31049665	5.0612768
500000	1.59061785	3.71125443	2.59173888
20000	2.5418733	4.82942503	6.55141418

Tabela 13: Registo 2 dos valores eficazes de U_2 , U_1 e $< U_1 U_2 >$

20 de maio de 2021

f(Hz)	$U_2(V)$	$U_1(V)$	$ < U_1 U_2 > (V^2) $
200	2.25982404	4.93428689	2.57206996*
500	2.5242207	4.93835211	7.09000079
1000	2.50046602	4.9419105	6.68842974
2000	2.61639761	4.93465931	7.13326919
5000	2.63768439	4.89442132	7.16269983
10000	2.47971082	4.80104367	6.31380981
20000	2.47604309	4.81326342	6.27272696
50000	2.50354022	4.6341545	6.3820628
100000	2.21449463	4.22532007	4.98627959
200000	2.24805754	3.31525506	5.07774403
500000	1.5902104	3.71260303	2.59055801
20000	2.5548662	4.82888463	6.61348009

Tabela 14: Registo 3 dos valores eficazes de $U_2,\,U_1$ e < $U_1U_2>$

^{*}É altamente provável que este valor se trate de um erro, tendo em conta o desvio ao padrão estabelecido pelos outros ensaios com a mesma frequência e com frequências diferentes.

Análise dos dados

Circuito RC

 $R_i = 490 \pm 3 \ k\Omega$

Figura 5: Carga

Figura 6: Descarga

 $C=1.02\pm0.02~\mu F,$ desvio à exatidão de 2%

Figura 7: Carga - ensaio 1

Figura 8: Carga - ensaio 2

Figura 9: Descarga - ensaio 1

Figura 10: Descarga - ensaio 2

Figura 11: Carga - ensaio 1

Figura 12: Carga - ensaio 2

Figura 13: Descarga - ensaio 1

Figura 14: Descarga - ensaio 2

Variação da permissividade

Uma análise preliminar dos resultados obtidos para esta parte do trabalho experimental originou resultados curiosos. Assim sendo, para ter resultados mais consistentes, seria importante fazer uma análise mais extensa, possivelmente considerando um modelo mais complexo que tivesse em conta uma pequena camada de ar entre o polímero e as placas do condensador.

Figura 15: Variação de R_2 com a frequência. Foram desprezados os 2 primeiros valores por o primeiro ter incerteza na mesma ordem de grandeza do próprio valor e o segundo ser negativo.

Figura 16: Variação de C com a frequência.

Figura 17: Variação de ε_r com a frequência.

Figura 18: Variação de $-\varepsilon_i$ com a frequência. Foram desprezados os primeiros 2 valores de ε_i por serem positivos.

Procedimento experimental

Variação da permissividade

- Repetiram-se os pontos 27 e 29 do procedimento anterior, sendo que a principal alteração foi ter-se alterado a frequência de sampling do conversor analógico digital de forma a que um período em cada frequência tivesse sempre aproximadamente o mesmo número de pontos.
- 2. Foram repetidos novamente as primeiras frequências porque as estimativas que se obtinham da resistência do condensador eram muito elevadas.
- 3. Repetiu-se uma terceira vez para a frequência de 500~Hz porque a estimativa que se obtinha da resistência do condensador não era tão elevada como as outras.

f(Hz)	$U_2(V)$	$U_1(V)$	$< U_1 U_2 > (V^2)$
200	2.30445191	4.96351789	6.93065625
500	2.66216356	4.9626466	7.85880346
1000	2.53543226	4.93863538	6.71422803
2000	2.54885738	4.93020897	6.66676382
5000	2.55365166	4.92282277	6.68851735
10000	2.51236275	4.88895569	6.46750113
20000	2.55271943	4.82579572	6.64859532
50000	2.39879634	4.72710334	5.86408459
100000	2.60742139	4.55308073	6.87611944
200000	2.58042774	4.22979515	6.70260107
500000	0.390332998	4.56817398	0.22801512
200	2.26001408	4.93548925	6.51385285
500	2.49026	4.94332453	6.87971537
1000	2.44810239	4.9383682	6.26913252
2000	2.50731252	4.92824244	6.44872551
500	2.4314849	4.93732239	6.54409869

Tabela 15: Registo repetido dos valores eficazes de $U_2,\,U_1$ e < $U_1U_2>$

Figura 19: Variação de R_2 com a frequência. Foram desprezados os 2 primeiros valores por o primeiro ter incerteza na mesma ordem de grandeza do próprio valor e o segundo ser negativo.

Figura 20: Variação de C com a frequência. A média é de $C=4.98\ nF$.

Figura 21: Variação de ε_r com a frequência.

Figura 22: Variação de ε_i com a frequência. Foram desprezados os primeiros 2 valores por serem negativos.

Os dados recolhidos hoje são mais conclusivos. Os valores da capacidade estão mais próximos que nos dados anteriores, parecendo mais certo que esta não varie com a frequência. R_2 , por outro lado, claramente é inversamente proporcional, ou varia com uma exponencial negativa, com o logaritmo da frequência, tendo sido excluídos até do gráfico os pontos para frequências mais baixas por serem demasiado elevados. Quanto aos ϵ , não têm uma tendência clara mas é visível que ϵ_r será da ordem de ϵ_0 , pelo que será necessário formular um modelo mais completo do condensador.