Tánicos	de Físics	Moderna	- 4° TESTE (A)
LODICOS	ue risica	i wioderna	- 4 ILSIL(A)

Nome

1. Considere a reação ${}^{2}\text{H} + {}^{63}\text{Cu} \rightarrow {}^{64}\text{Zn} + n$. Desprezando a energia cinética de ${}^{2}\text{H}$ e ${}^{63}\text{Cu}$, a energia libertada na reação é dada por (selecione a opção correta e justifique cuidadosamente a sua resposta):

A.
$$(m(^{2}H) + m(^{63}Cu) - m(^{64}Zn) - m(n))c^{2}$$

B.
$$(m(^{2}H) + m(^{63}Cu) + m(^{64}Zn) + m(n))c^{2}$$

C.
$$(m(^{2}H) + m(^{63}Cu) - m(^{64}Zn))c^{2}$$

D.
$$m(^{2}H) + m(^{63}Cu) - m(n))c^{2}$$

E.
$$(m(^{63}Cu) - m(^{64}Zn) - m(n))c^2$$

Notas: m(X) representa a massa em repouso de X; c é a velocidade da luz no vácuo.

- 2. Indique se existem bariões que resultam de combinações de quarks 'up', 'down' e 'strange' que tenham:
- a) carga Q = +1 e estranheza S = -1;
- b) carga Q = 0 e estranheza S = 0.

Justifique as suas respostas.

Tópicos de Física Moderna - 4º TESTE (B)

Nome

- 1. Suponha que, por cisão nuclear, um núcleo de $^{238}_{92}$ U dá origem a dois núcleos de $^{119}_{46}$ Pd, sendo o processo acompanhado pela libertação de energia. Comparativamente com a massa de ²³⁸₉₂U, a massa total dos dois núcleos de ¹¹⁹₄₆Pd é (selecione a opção correta e justifique cuidadosamente a sua resposta):
- A. igual

B. maior

C. menor

- 2. Indique se existem bariões que resultam de combinações de quarks 'up', 'down' e 'strange' que tenham:
- a) carga Q = +1 e estranheza S = -2;
- b) carga Q = +2 e estranheza S = 0.

Justifique as suas respostas.

Tópicos de Física Moderna - 4º TESTE (C)

Nome	N°	

1. Verifique se as seguintes reações são possíveis quanto à conservação da carga elétrica e estranheza:

a)
$$\pi^0 + n \rightarrow \pi^- + p$$

b)
$$K^- + p \rightarrow \overline{K}^+ + n$$

c)
$$\pi^- + p \rightarrow \overline{\Sigma}^- + \Sigma^0 + p$$

2. Considere as seguintes partículas e faça a correspondência unívoca entre os elementos das duas colunas (justifique a sua resposta):

A. udd	I. protão
B. dds	II. Σ ⁻
C. uud	III. mesão
D. d s	IV. neutrão

Tópicos de Física Moderna - 4º TESTE (D)

1. Verifique se as seguintes reações são possíveis quanto à conservação da carga elétrica e estranheza:

a)
$$\pi^0 + n \rightarrow \pi^+ + p$$

b)
$$\pi^+ + p \rightarrow K^+ + \Sigma$$

a)
$$\pi^{0} + n \rightarrow \pi^{+} + p$$
 b) $\pi^{+} + p \rightarrow K^{+} + \Sigma^{+}$ c) $\pi^{-} + p \rightarrow K^{+} + \Sigma^{0} + \pi^{-}$

2. Considere as seguintes partículas e faça a correspondência unívoca entre os elementos das duas colunas (justifique a sua resposta):

A. udd	I. Ξ⁻
B. uus	II. Σ^+
C. dss	III. mesão
D. ud	IV. neutrão

Tópicos de	Física	Moderna	- 4º	TESTE	(E)
I ODICOS UC	: r isica	Miduellia		ILOIL	(LL)

Nome_____No____

1. No Sol ocorre a fusão de quatro protões (p), resultando numa partícula alfa (α) e dois positrões (β ⁺). A energia máxima que pode ser libertada neste processo é dada por (selecione a opção correta e justifique cuidadosamente a sua resposta):

A.
$$(4m_p + m_\alpha + 2m_{\beta^+})c^2$$

B.
$$(4m_p - m_\alpha + 2m_{\beta^+})c^2$$

C.
$$(4m_p - m_\alpha - 2m_{\beta^+})c^2$$

D.
$$(4m_{\rm p} - m_{\rm q})c^2$$

E.
$$(4m_p - 2m_{\beta^+})c^2$$

Notas: m_x representa a massa em repouso de x; c é a velocidade da luz no vácuo.

2. Determine qual é fração de bariões obtidos a partir da combinação apenas dos quarks u, d, s, e c que têm simultaneamente carga +1 e charme +1.

Tópicos de Física Moderna - 4º TESTE (F)

Nome______No____

1. Numa reação de fusão de dois núcleos de He-3 resultam um núcleo de He-4 e dois protões (p). A energia máxima que pode ser libertada neste processo é dada por (selecione a opção correta e justifique cuidadosamente a sua resposta):

A.
$$(m({}_{2}^{3}\text{He}) - m({}_{2}^{4}\text{He}) - m(p))c^{2}$$

B.
$$(2m({}_{2}^{3}\text{He}) - m({}_{2}^{4}\text{He}) - 2m(p))c^{2}$$

C.
$$(2m({}_{2}^{3}\text{He}) + m({}_{2}^{4}\text{He}) + 2m(p))c^{2}$$

D.
$$(m({}_{2}^{3}\text{He}) - m({}_{2}^{4}\text{He}) + 2m(p))c^{2}$$

E.
$$(2m({}_{2}^{3}\text{He}) - m({}_{2}^{4}\text{He}) - m(p))c^{2}$$

Notas: m(X) representa a massa em repouso de X; c é a velocidade da luz no vácuo.

2. Determine qual é fração de bariões obtidos a partir da combinação apenas dos quarks u, d, s, e c que têm simultaneamente carga +2 e charme +2.

Tópicos de Física Moderna - 4º TESTE (G)

Nome	No	,

1. Um núcleo radioativo, A, desintegra-se, dando origem a um núcleo B, um eletrão (e) e um neutrino. A energia mínima do eletrão emitido é dada por (selecione a opção correta e justifique cuidadosamente a sua resposta):

A.
$$\left(\frac{m_A^2 - m_B^2 + m_e^2}{2m_A}\right) C^2$$

B.
$$m_e c^2$$

C.
$$(m_A - m_B - m_e)c^2$$

D.
$$(m_A + m_B + m_e)c^2$$

E.
$$(m_A - m_B)c^2$$

F. nenhuma das respostas anteriores

2. Indique se as afirmações seguintes são verdadeiras ou falsas e justifique cuidadosamente a sua resposta. Não é possível que um barião tenha:

A. carga elétrica nula e estranheza nula

B. carga elétrica –1 e estranheza –1

C. carga elétrica +1 e estranheza -1

D. carga elétrica +1 e estranheza -2

E. carga elétrica nula e estranheza +2

Tópicos de Física Moderna - 4º TESTE (H)

Nome______N°_____

1. Um neutrão (n) decai, dando origem a um protão (p), um eletrão (e) e um neutrino. A energia mínima do eletrão emitido é dada por (selecione a opção correta e justifique cuidadosamente a sua resposta):

A.
$$(m_n - m_p - m_e)c^2$$

B.
$$(m_n + m_p + m_e)c^2$$

$$C.\left(\frac{m_n^2 - m_p^2 + m_e^2}{2m_n}\right)c^2$$

$$\mathrm{D.}\; m_e c^2$$

E.
$$(m_n - m_n)c^2$$

F. nenhuma das respostas anteriores

2. Indique se as afirmações seguintes são verdadeiras ou falsas e justifique cuidadosamente a sua resposta. Não é possível que um barião tenha:

A. carga elétrica nula e estranheza -1

B. carga elétrica -1 e estranheza -1

C. carga elétrica +1 e estranheza +1

D. carga elétrica +1 e estranheza -1

E. carga elétrica nula e estranheza +1

Tópicos de Física Moderna - 4º TESTE (I)

Nome	N	0

1. Sejam: m a massa de um nuclídeo com número atómico Z e número de massa A; m_n , m_p e m_e as massas do neutrão, protão e eletrão, respetivamente. Podemos afirmar que (selecione a opção correta e justifique cuidadosamente a sua resposta):

A.
$$m > Z(m_p + m_e) + (A-Z)m_n$$

B.
$$m = Z(m_p + m_e) + (A-Z)m_n$$

C.
$$m < Z(m_p + m_e) + (A-Z)m_n$$

2. Considere os bariões com carga elétrica positiva e constituídos por quarks que tenham todos o mesmo sabor. Indique a carga elétrica desses bariões e ordene-os por ordem crescente da sua massa. Justifique.

Tópicos de Física Moderna - 4º TESTE (J)

	•		
Nome		N^{o}	

1. Sejam: m a massa de um nuclídeo com número atómico Z e número de massa A; m_n , m_p e m_e as massas do neutrão, protão e eletrão, respetivamente. Desprezando a energia de ligação dos eletrões ao núcleo, a energia de ligação dos nucleões é dada por (selecione a opção correta e justifique cuidadosamente a sua resposta):

A.
$$[m + Z(m_p + m_e) + (A-Z)m_n]c^2$$

B.
$$[m - Z(m_p + m_e) - (A-Z)m_n]c^2$$

C.
$$[Z(m_p + m_e) + (A-Z)m_n - m]c^2$$

D.
$$[Z(m_p + m_e) + Am_n - m]c^2$$

E.
$$[Z(m_p + m_e) + (A+Z)m_n - m]c^2$$

F. Nenhuma das respostas anteriores

2. Considere os bariões com carga elétrica negativa e constituídos por quarks que tenham todos o mesmo sabor. Indique a carga elétrica desses bariões e ordene-os por ordem crescente da sua massa. Justifique.