Pattern Recognition and having it deep and structured

Yizhen Lao

HNU

What is Machine Learning?

You know how to program ...

- You can ask computers to do lots of things for you.
- However, computer can only do what you ask it to do.
- Computer can never solve the problem you can't solve.

Some tasks are very complex

 One day, you are asked to write a program for speech recognition.

Find the common patterns from the left waveforms.

You quickly get lost in the exceptions and special cases.

It seems impossible to write a program for speech recognition.

Let the machine learn by itself

Learning ≈ Looking for a Function

Speech Recognition

Handwritten Recognition

Weather forecast

$$f($$
 weather today $)=$ "sunny tomorrow"

Play video games

$$f(\begin{array}{c} \text{Positions and} \\ \text{number of enemies} \end{array}) = \text{"fire"}$$

Framework

Training:
Pick the best
Function f*

Function

 f^*

x:function input \hat{y} :function output

Testing:

 $f^*(x') = y'$

$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \ldots\}$$

Training

Data

This Course

Deep Learning

What is Deep Learning?

End-to-end training:

What each function should do is learned automatically

- Speech Recognition
- Shallow Approach

Each box is a simple function in the production line:

- Speech Recognition
- Deep Learning

"Bye bye, MFCC"
- Deng Li in
Interspeech 2014

Less engineering labor, but machine learns more

- Image Recognition

:hand-crafted

Shallow Approach

http://www.robots.ox.ac.uk/~vgg/research/encod ing_eval/ monkey? classification pooling [monkey, dog, tree, ...] encoding feature extr.

:learned from data

- Image Recognition

Reference: Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In *Computer Vision–ECCV* 2014 (pp. 818-833)

Deep Learning

What is Deep Learning?

End-to-end training:

What each function should do is learned automatically

 Deep learning usually referred to neural network based approach

Inspired from Human Brains

A Neuron for Machine

Each neuron is a very simple function

Deep Learning

A neural network is a complex function:

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Cascading the neurons to form a neural network.
 Each layer is a simple function in the production line.

Ups and downs of Deep Learning

- 1960s: Perceptron (single layer neural network)
- 1969: Perceptron has limitation
- 1980s: Multi-layer perceptron
 - Do not have significant difference from DNN today
- 1986: Backpropagation
 - Usually more than 3 hidden layers is not helpful
- 1989: 1 hidden layer is "good enough", why deep?
- 2006: RBM initialization (breakthrough)
- 2009: GPU
- 2011: Start to be popular in speech recognition
- 2012: win ILSVRC competition (image)

Why Deep Learning?

Deeper is Better.

Speech recognition

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Why Deeper is Better?

Deep works better simply because it uses more parameters.

Shallow

Deep

Universality Theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given enough hidden neurons)

What is the reason to be deep?

Reference:

http://neuralnetworksandde eplearning.com/chap4.html

Why "Deep" neural network not "Fat" neural network?

Fat + Short v.s. Thin + Tall

If they have the same parameters,

Which one is better?

Deep

Fat + Short v.s. Thin + Tall Toy Example $f: \mathbb{R}^2 \to \{0,1\}$

Sample 10,0000 points as training data

Fat + Short v.s. Thin + Tall Toy Example

1 hidden layer:

3 hidden layers:

Q: the number of parameters close to (A), (B) or (C)?

Fat + Short v.s. Thin + Tall Hand-writing digit classification

Same parameters

Deeper: Using less parameters to achieve the same performance

Fat + Short v.s. Thin + Tall Speech Recognition

Word error rate (WER)

Multiple layers

1 hidden layer

LxN	DBN-PT (%)	1xN	DBN-PT (%)
1×2k	24.2		
2×2k	20.4		
3×2k	18.4		
4×2k	17.8		
5×2k	17.2	1×3,772	22.5
7×2 k	17.1	1×4,634	22.6
		1×16K	22.1

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Think about Logic Circuits

- A two-layer circuit of logic gates can represent any Boolean function.
- Using multiple layers of logic gates to build some functions are much simpler (less gates needed).
- E.g. parity check

Think about Logic Circuits

- A two-layer circuit of logic gates can represent any Boolean function.
- Using multiple layers of logic gates to build some functions are much simpler (less gates needed).
- E.g. *parity check*

With multiple layers, we need only O(d) gates.

Back to Deep Learning

- Some functions can be easily represented by deep structure
 - Perhaps the functions that can be naturally decomposed into several steps
 - E.g. image

Back to Deep Learning

- Some functions can be easily represented by deep structure
 - Perhaps the functions that can be naturally decomposed into several steps
 - E.g. image
- To represent the functions with shallow structure needs much more parameters
 - More parameters imply more training data needed
- To achieve the same performance, deep learning needs less training data
- With the same amount of data, deep learning can achieve better performance.

Size of Training Data

Different numbers of training examples

Size of Training Data

Hand-writing digit classification

Deeper: Using less training data to achieve the same performance

Why deep is not popular before?

• In the past, usually deep does not work

We will go back to this issue in the following lectures.

What is Structured Learning?

In the real world

X (Input domain):

Sequence, graph structure, tree structure

Y (Output domain):

Sequence, graph structure, tree structure

Retrieval

"Machine learning" (keyword)

機器學習基石(Machine Learning Foundations) - Coursera

https://www.coursera.org/course/ntumlone ▼

機器學習基石(Machine Learning Foundations) is a free online class taught by Hsuan-Tien Lin, 林軒田of National Taiwan University.

機器學習技法(Machine Learning Techniques) - Coursera

https://www.coursera.org/course/ntumltwo •

機器學習技法(Machine Learning Techniques) is a free online class taught by Hsuan-Tien Lin, 林軒田of National Taiwan University.

Machine Learning - Coursera

https://www.coursera.org/course/ml ▼ 翻譯這個網頁

About the Course. Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has ...

A list of web pages (Search Result)

Translation

$$f: X \to Y$$

X:

"Machine learning and having it deep and structured"

(One kind of sequence)

Y:

"机器学习及其深层 结构化"

(Another kind of sequence)

Speech Recognition

$$f: X \to Y$$

Y:

"大家好,欢迎来选修模 式识别课程"

(Another kind of sequence)

Speech Summarization

Object Detection

Image

Object Positions

Pose Estimation

Source of images: http://groups.inf.ed.ac.uk/calvin/Publications/eichner-techreport10.pdf

Concluding Remarks

Reference

- No Textbook
- Deep Learning
 - "Neural Networks and Deep Learning"
 - written by Michael Nielsen
 - http://neuralnetworksanddeeplearning.com/
 - "Deep Learning" (not finished yet)
 - Written by Yoshua Bengio, Ian J. Goodfellow and Aaron Courville
 - http://www.iro.umontreal.ca/~bengioy/dlbook/
- Structured Learning
 - No suggested reference

Thank you!

Human Brains are Deep

