

Física Nivel superior Prueba 1

Martes 8 de noviembre de 2016 (mañana)

1 hora

Instrucciones para los alumnos

- No abra esta prueba hasta que se lo autoricen.
- · Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Se necesita una copia sin anotaciones del cuadernillo de datos de física para esta prueba.
- La puntuación máxima para esta prueba de examen es [40 puntos].

- 1. Un chico salta desde un muro de 3 m de altura. ¿Cuál será una buena estimación de la variación de su momento lineal cuando alcanza el suelo sin rebotar?
 - A. $5 \times 10^{0} \,\mathrm{kg} \,\mathrm{m} \,\mathrm{s}^{-1}$
 - B. $5 \times 10^{1} \text{ kg m s}^{-1}$
 - C. 5×10^2 kg m s⁻¹
 - D. 5×10^3 kg m s⁻¹
- 2. Un automóvil se desplaza en dirección norte con una rapidez constante de 3 m s⁻¹ durante 20 s y después hacia el este con una rapidez constante de 4 m s⁻¹ durante 20 s. ¿Cuál es la rapidez media del coche durante este movimiento?
 - A. $7.0 \,\mathrm{m \, s^{-1}}$
 - B. $5,0 \,\mathrm{m \, s^{-1}}$
 - C. $3,5 \,\mathrm{m\,s^{-1}}$
 - D. $2.5 \,\mathrm{m \, s^{-1}}$

3. Un alumno traza una gráfica que muestra la variación con el tiempo *t* de la aceleración *a* de un objeto.

¿Qué podrá deducir el alumno a partir tan solo de la gráfica? ¿Y qué magnitud de la gráfica empleará para hacer esta deducción?

	Deducción	Magnitud empleada
A.	variación en velocidad	pendiente de la gráfica
B.	variación en velocidad	área bajo la línea
C.	variación en desplazamiento	pendiente de la gráfica
D.	variación en desplazamiento	área bajo la línea

4. Mediante una cuerda se cuelga una masa del techo de un vagón de tren. La cuerda forma un ángulo θ con la vertical cuando el tren acelera sobre una vía horizontal y recta.

¿Cuál será la aceleración del tren?

- A. $g \sin \theta$
- B. $g\cos\theta$
- C. $g \tan \theta$
- D. $\frac{g}{\tan \theta}$

5. Un objeto, inicialmente en reposo, se acelera mediante una fuerza constante. ¿Qué gráficas muestran la variación de la energía cinética con el tiempo *t*, y la variación de la rapidez del objeto con el tiempo *t*?

A.

rapidez

B.

rapidez

C.

rapidez

D.

rapidez

6. Se conectan dos objetos estacionarios de masa 1 kg y 2 kg mediante un hilo y se cuelgan de un muelle (resorte).

Si se corta el hilo, ¿cuánto valdrán los módulos de las aceleraciones de los objetos inmediatamente después del corte en función de la aceleración debida a la gravedad *g*?

	Aceleración del objeto de 1 kg	Aceleración del objeto de 2kg
A.	3 <i>g</i>	2 <i>g</i>
B.	2 <i>g</i>	2 <i>g</i>
C.	3 <i>g</i>	1 <i>g</i>
D.	2 <i>g</i>	1 <i>g</i>

- 7. Se lanza en vertical hacia abajo un objeto de masa 2 kg con energía cinética inicial de 100 J. ¿Cuál será la distancia recorrida por el objeto en el instante en que su energía cinética se haya duplicado?
 - A. 2,5 m
 - B. 5,0 m
 - C. 10 m
 - D. 14 m
- 8. Un alumno cuyo peso es de 600 N sube por una escalera vertical de 6,0 m de altura en un tiempo de 8,0 s. ¿Cuál será la potencia desarrollada en contra de la gravedad por el alumno?
 - A. 22W
 - B. 45W
 - C. 220W
 - D. 450W

9. A una masa fija de un material se le suministra energía a ritmo constante. El material es inicialmente sólido. La gráfica muestra la variación de la temperatura del material frente al tiempo.

- Si los calores específicos de las formas sólida, líquida y gaseosa del material son c_s c_l y c_q respectivamente, ¿qué se puede deducir de los valores de c_s c_l y c_q ?
- A. $C_s > C_g > C_l$
- B. $c_1 > c_s > c_g$
- C. $c_1 > c_g > c_s$
- D. $C_a > C_s > C_l$
- **10.** Se reduce, a temperatura constante, la presión de una masa fija de un gas ideal en un recipiente. Las moléculas del gas sufrirán una disminución en:
 - A. su velocidad cuadrática media.
 - B. el número de ellas que golpean las paredes del recipiente en cada segundo.
 - C. la fuerza entre ellas.
 - D. su diámetro.

11. Se mantiene a una presión constante p un gas ideal de N moléculas. La gráfica muestra cómo varía el volumen V del gas frente a la temperatura absoluta T.

-7-

¿Cuál será la pendiente de la gráfica?

- A. $\frac{N}{p}$
- B. $\frac{NR}{p}$
- C. $\frac{Nk_{E}}{p}$
- D. $\frac{N}{Rp}$
- **12.** Una partícula oscila con movimiento armónico simple (mas) de período *T*. ¿Cuál de las gráficas muestra la variación con el tiempo de la energía cinética de la partícula?

A. energía cinética 0 T tiempo

C. energía cinética 0 T tiempo

13. Un rayo de luz incide sobre la frontera aire—diamante. Si el índice de refracción del diamante es mayor que 1, ¿cuál de los diagramas muestra la trayectoria correcta del rayo de luz?

A.

B.

C.

D.

- **14.** Una fuente puntual de luz de amplitud A_0 da lugar a una intensidad de luz concreta cuando se observa a cierta distancia de la fuente. Al hacer mayor la amplitud y duplicar la distancia de observación se duplica la intensidad de la luz. ¿Cuál es la nueva amplitud de la fuente?
 - A. 2*A*₀
 - B. $2\sqrt{2} A_0$
 - C. 4*A*₀
 - D. 8*A*₀

15. ¿Cuál de los diagramas muestra la forma del frente de onda que resulta de la difracción de ondas planas por un objeto?

A.

B.

C.

D.

16. Una carga de $-5\,\mu\text{C}$ y otra de $+10\,\mu\text{C}$ se encuentran separadas por una distancia fija.

¿Dónde puede anularse el campo eléctrico?

- A. en la posición I solamente
- B. en la posición II solamente
- C. en la posición III solamente
- D. en las posiciones I, II y III
- 17. Una batería de 12V tiene una resistencia interna de $2,0\Omega$. Se conecta a la batería una resistencia variable y se regula esta última para igualarla a la resistencia interna de la batería. ¿Qué afirmación será correcta para este circuito?
 - A. La corriente en la batería es de 6A.
 - B. La diferencia de potencial en la resistencia variable es de 12 V.
 - C. La potencia disipada en la batería es de 18W.
 - D. La resistencia en el circuito es de $1,0\Omega$.

- A. $\frac{F}{4}$
- B. $\frac{F}{2}$
- C. *F*
- D. 2*F*

19. Un objeto en el extremo de una barra de madera gira en una circunferencia vertical con velocidad angular constante. ¿Qué afirmación es correcta respecto a la tensión en la barra?

- A. Es máxima cuando el objeto está en lo más bajo de la circunferencia.
- B. Es máxima cuando el objeto está a mitad de altura sobre la circunferencia.
- C. Es máxima cuando el objeto está en lo más alto de la circunferencia.
- D. No varía durante el movimiento.

20. ¿Cuál de las siguientes enumera las partículas emitidas durante la desintegración radiactiva en orden creciente de poder de ionización?

- A. γ , β , α
- B. β, α, γ
- C. α , γ , β
- D. α , β , γ

21. Cuando una partícula alfa colisiona con un núcleo de nitrógeno 14 (14/7N), puede producirse un núcleo X junto con un protón. ¿Cuál será X?

- A. 18 X
- B. 17 X
- C. 18 X
- D. 17 X

- **22.** El defecto de masa del deuterio es de 4×10^{-30} kg. ¿Cuál es entonces la energía de enlace del deuterio?
 - A. $4 \times 10^{-7} \text{ eV}$
 - B. $8 \times 10^{-2} \text{ eV}$
 - C. $2 \times 10^6 \text{ eV}$
 - D. $2 \times 10^{12} eV$
- **23.** ¿Cuáles son las principales transiciones de energía en una célula fotovoltaica y en un panel calefactor solar?

	Célula fotovoltaica	Panel calefactor solar
A.	solar a eléctrica	solar a térmica
B.	solar a térmica	solar a térmica
C.	solar a eléctrica	eléctrica a térmica
D.	solar a térmica	eléctrica a térmica

- 24. La constante solar es la intensidad de la radiación solar:
 - A. en la superficie de la Tierra.
 - B. a la distancia media entre el Sol y la órbita de la Tierra alrededor del Sol.
 - C. en la superficie del Sol.
 - D. a 10 km sobre la superficie de la Tierra.
- **25.** X e Y son dos cuerpos negros radiantes esféricos que emiten la misma potencia total. La temperatura absoluta de X es la mitad de la de Y.

¿Cuál será el cociente
$$\frac{\text{radio de X}}{\text{radio de Y}}$$
?

- A. 4
- B. 8
- C. 16
- D. 32

26. Si una partícula oscila con movimiento armónico simple (mas) de amplitud x_0 y energía cinética máxima E_k , ¿cuál será la energía potencial del sistema cuando la partícula está a una distancia $0,20x_0$ de su desplazamiento máximo?

-12-

- A. $0,20E_{k}$
- B. $0,36E_{k}$
- C. 0,64 E
- D. $0,80E_{k}$
- 27. Sobre una doble rendija incide luz monocromática. Las dos rendijas tienen una anchura finita. La luz produce un patrón de interferencia sobre una pantalla a cierta distancia. ¿Cuál de las gráficas muestra la variación de la intensidad frente a la distancia desde el centro del patrón?

A. intensidad \(\)

distancia desde el centro del patrón

B. intensidad

distancia desde el centro del patrón

C. intensidad distancia desde el centro del patrón

intensidad

28. Sobre una red de difracción con una separación entre rendijas de $\frac{7\lambda}{2}$ incide en perpendicular luz con longitud de onda λ . ¿Cuál será el mayor número de máximos que podrá observarse mediante este montaje?

D.

- A. 4
- B. 6
- C. 7
- D. 9

- 29. Se utiliza una red de difracción para observar luz con longitud de onda de 400 nm. Si la luz ilumina 100 rendijas de la red, ¿cuál será la mínima diferencia en longitudes de onda que podrá ser resuelta al observar el segundo orden de difracción?
 - A. 1nm
 - B. 2nm
 - C. 4nm
 - D. 8nm
- **30.** ¿Cuál es la unidad de $G\varepsilon_0$, en donde G es la constante gravitacional y ε_0 es la permitividad del espacio vacío?
 - A. $C kg^{-1}$
 - B. $C^2 kg^{-2}$
 - C. Ckg
 - D. $C^2 kg^2$
- **31.** Se conectan dos placas paralelas a un suministro de potencia de corriente continua (CC). En el espacio entre las placas se forma un campo eléctrico como el que se muestra.

¿Cuál será la forma de las superficies equipotenciales que resultan de este montaje?

32. Un satélite con masa de 1500 kg se encuentra en el campo gravitatorio de la Tierra. Se desplaza desde un punto en el que el potencial gravitatorio es de –30 MJ kg⁻¹ hasta otro punto en el que el potencial gravitatorio es de –20 MJ kg⁻¹. ¿Cuál será el sentido del movimiento del satélite y la variación en su energía potencial gravitatoria?

	Sentido de movimiento del satélite	Variación en la energía potencial gravitatoria / GJ
A.	alejándose de la Tierra	15
B.	alejándose de la Tierra	75
C.	hacia la Tierra	15
D.	hacia la Tierra	75

- **33.** ¿Cuál de las siguientes acciones reduce las pérdidas de energía de un transformador?
 - A. El uso de cables más finos para el devanado.
 - B. El uso de un núcleo sólido en vez de uno laminado.
 - C. El uso de un núcleo de acero en vez de hierro.
 - D. El aumento del enlace de flujo desde el núcleo primario hasta el secundario.

34. Se conecta la bobina secundaria de un transformador de corriente alterna (CA) a dos diodos, tal como se muestra.

¿Cuál de las gráficas muestra la variación con el tiempo de la diferencia de potencial $V_{\rm XY}$ entre X e Y?

Α

В

 \sim

D.

- **35.** Se conecta un condensador (capacitor) de placas paralelas a una batería. ¿Qué ocurre cuando se inserta una lámina de material dieléctrico entre las placas sin desconectar la batería?
 - A. La capacidad (capacitancia) no varía.
 - B. La carga almacenada se reduce.
 - C. La energía almacenada aumenta.
 - D. La diferencia de potencial entre las placas se reduce.

36. Se disponen tres condensadores (capacitores) tal como se muestra.

– 16 **–**

¿Cuál es la capacidad (capacitancia) total de esta disposición?

- A. 1,0 F
- B. 2,5F
- C. 3,0 F
- 4,0F D.
- **37**. En presencia de un núcleo, un fotón provoca una creación de pares. En este proceso, ¿qué cantidades se conservan de entre el momento y la energía?

	Momento	Energía
A.	no se conserva	no se conserva
B.	no se conserva	se conserva
C.	se conserva	no se conserva
D.	se conserva	se conserva

- 38. La incertidumbre en la posición de un electrón de masa m es r. ¿Cuál será la incertidumbre en la velocidad del electrón??

 - B.
 - C.
 - D.

- **39.** ¿Cuáles de las siguientes observaciones en un experimento de desintegración radiactiva proporcionan evidencia de la existencia de niveles nucleares de energía?
 - I. El espectro de energías de las partículas alfa
 - II. El espectro de energías de las partículas beta
 - III. El espectro de energías de los rayos gamma
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- **40.** ¿Cuál es la carga de un antineutrino electrónico y en el transcurso de qué proceso se produce un antineutrino electrónico?

	Carga del antineutrino electrónico	Producción del antineutrino electrónico
A.	negativa	durante la emisión $\beta^{\scriptscriptstyle +}$
B.	negativa	durante la emisión β ⁻
C.	nula	durante la emisión β ⁺
D.	nula	durante la emisión β^-