Семинар 2.

Модель парной регрессии. МНК-оценивание.

- 1. Пусть $x_i = X_i \bar{X}$ центрированное значение X_i . Обозначим $k_i = \frac{x_i}{\sum_j x_j^2}$. По-кажите, что k_i удовлетворяют следующим условиям:
 - (a) $\sum k_i = 0$;
 - (b) $\sum k_i x_i = \sum k_i X_i = 1;$
 - (c) $\sum k_i^2 = 1/\sum x_i^2$;
 - (d) $\sum k_i y_i = \sum k_i Y_i$.
- 2. Рассмотрим модель парной регрессии без константы

$$Y_i = \beta_1 X_i + \varepsilon_i.$$

Найдите:

- (a) MHK-оценку для β_1 ;
- (b) $Var(\hat{\beta}_1)$.
- 3. Рассмотрим модель парной регрессии с константой

$$Y_i = \beta_1 + \beta_2 X_i + \varepsilon_i.$$

Получите выражения для:

- (a) $Var(\hat{\beta}_1)$;
- (b) $Var(\hat{\beta}_2);$
- (c) $\operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_2)$.
- 4. Рассмотрим модель парной регрессии с константой:

$$Y_i = \beta_1 + \beta_2 X_i + \varepsilon_i.$$

Покажите, что $\overline{\widehat{Y}} = \overline{Y}$. Будет ли данное тождество верным для парной модели без константы?

5. Рассмотрим модель парной регрессии

$$Y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$$
.

Предложите несмещённую оценку для дисперсии σ^2 случайной ошибки ε .

6. Для модели парной регрессии покажите, что равенство TSS = ESS + RSS выполняется, только если в модель включена константа.