

# **1024-Position, Digital Potentiometer with** Maximum ±1% R-Tolerance Error and 20-TP Memory

AD5292-EP **Enhanced Product** 

#### **FEATURES**

Single-channel, 1024-position resolution 20 kΩ nominal resistance Maximum ±1% nominal resistor tolerance error (resistor

performance mode) 20-times programmable wiper memory

Rheostat mode temperature coefficient: 35 ppm/°C

Voltage divider temperature coefficient: 5 ppm/°C

+9 V to +33 V single-supply operation ±9 V to ±16.5 V dual-supply operation

**SPI-compatible serial interface** Wiper setting readback

Power-on refreshed from 20-TP memory

### **ENHANCED PRODUCT FEATURES**

Supports defense and aerospace applications (AQEC) Temperature range: -55°C to +125°C Controlled manufacturing baseline 1 assembly/test site

1 fabrication site

**Product change notification** 

Qualification data available on request

#### **APPLICATIONS**

Mechanical potentiometer replacement Instrumentation: gain and offset adjustment Programmable voltage-to-current conversion Programmable filters, delays, and time constants **Programmable power supply** Low resolution DAC replacement Sensor calibration

#### **GENERAL DESCRIPTION**

The AD5292-EP is a single-channel, 1024-position digital potentiometer1 that combines industry leading variable resistor performance with nonvolatile memory (NVM) in a compact package. This device is capable of operating across a wide voltage range, supporting both dual supply operation at  $\pm 10.5$  V to  $\pm 16.5$ V and single-supply operation at +21 V to +33 V, while ensuring less than 1% end-to-end resistor tolerance error and offering 20time programmable (20-TP) memory.

The guaranteed industry leading low resistor tolerance error feature simplifies open-loop applications as well as precision calibration and tolerance matching applications.

### **Document Feedback** Rev. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no

responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

#### FUNCTIONAL BLOCK DIAGRAM



The AD5292-EP device wiper settings are controllable through the SPI digital interface. Unlimited adjustments are allowed before programming the resistance value into the 20-TP memory. The AD5292-EP does not require any external voltage supply to facilitate fuse blow, and there are 20 opportunities for permanent programming. During 20-TP activation, a permanent blow fuse command freezes the wiper position (analogous to placing epoxy on a mechanical trimmer).

The AD5292-EP is available in a compact 14-lead TSSOP package. The part is guaranteed to operate over the extended industrial temperature range of -55°C to +125°C.

Additional application and technical information can be found in the AD5292 data sheet.

<sup>&</sup>lt;sup>1</sup> The terms digital potentiometer and RDAC are used interchangeably.

# **TABLE OF CONTENTS**

| reatures                             | 1 |
|--------------------------------------|---|
| Enhanced Product Features            | 1 |
| Applications                         | 1 |
| Functional Block Diagram             | 1 |
| General Description                  | 1 |
| Revision History                     | 2 |
| Specifications                       | 3 |
| Electrical Characteristics—AD5292-EP | 3 |
| Resistor Performance Mode Code Range | 4 |
|                                      |   |

| Interface Timing Specifications             | 5  |
|---------------------------------------------|----|
| Absolute Maximum Ratings                    | 7  |
| Thermal Resistance                          | 7  |
| ESD Caution                                 | 7  |
| Pin Configuration and Function Descriptions | 8  |
| Typical Performance Characteristics         | 9  |
| Test Circuits                               | 14 |
| Outline Dimensions                          | 15 |
| Ordaring Guida                              | 15 |

### **REVISION HISTORY**

| 4/2018—Rev. 0 to Rev. A                     |    |
|---------------------------------------------|----|
| Change to Enhanced Product Features Section | 1  |
| Changes to Ordering Guide                   | 15 |

9/2011—Revision 0: Initial Version

# **SPECIFICATIONS**

## **ELECTRICAL CHARACTERISTICS—AD5292-EP**

 $V_{DD} = 21 \ V \ to \ 33 \ V, V_{SS} = 0 \ V; V_{DD} = 10.5 \ V \ to \ 16.5 \ V, V_{SS} = -10.5 \ V \ to \ -16.5 \ V; V_{LOGIC} = 2.7 \ V \ to \ 5.5 \ V, V_{A} = V_{DD}, V_{B} = V_{SS}, -55^{\circ}C < T_{A} < +125^{\circ}C, unless \ otherwise \ noted.$ 

Table 1.

| Parameter                                             | Symbol                                        | Conditions                                                                                                                | Min                      | Typ <sup>1</sup> | Max       | Unit   |
|-------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|-----------|--------|
| DC CHARACTERISTICS—RHEOSTAT MODE                      |                                               |                                                                                                                           |                          |                  |           |        |
| Resolution                                            | N                                             |                                                                                                                           | 10                       |                  |           | Bits   |
| Resistor Differential Nonlinearity <sup>2</sup>       | R-DNL                                         | $R_{WB}$ , $V_A = NC$                                                                                                     | -1                       |                  | +1        | LSB    |
| Resistor Integral Nonlinearity <sup>2</sup>           | R-INL                                         | $R_{AB} = 20 \text{ k}\Omega$ , $ V_{DD} - V_{SS}  = 26 \text{ V to } 33 \text{ V}$                                       | -2                       |                  | +2        | LSB    |
| ,                                                     | R-INL                                         | $R_{AB} = 20 \text{ k}\Omega$ , $ V_{DD} - V_{SS}  = 21 \text{ V to } 26 \text{ V}$                                       | -3                       |                  | +3        | LSB    |
| Nominal Resistor Tolerance (R-Perf Mode) <sup>3</sup> | ΔR <sub>AB</sub> /R <sub>AB</sub>             | See Table 2                                                                                                               | -1                       | ±0.5             | +1        | %      |
| Nominal Resistor Tolerance (Normal Mode) <sup>4</sup> | ΔR <sub>AB</sub> /R <sub>AB</sub>             |                                                                                                                           |                          | ±7               |           | %      |
| Resistance Temperature Coefficient                    | $(\Delta R_{AB}/R_{AB})/\Delta T \times 10^6$ | Code = full scale; see Figure 14                                                                                          |                          | 35               |           | ppm/°C |
| Wiper Resistance                                      | R <sub>w</sub>                                | Code= zero scale                                                                                                          |                          | 60               | 100       | Ω      |
| DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE         |                                               |                                                                                                                           |                          |                  |           |        |
| Resolution                                            | N                                             |                                                                                                                           | 10                       |                  |           | Bits   |
| Differential Nonlinearity <sup>5</sup>                | DNL                                           |                                                                                                                           | -1                       |                  | +1        | LSB    |
| Integral Nonlinearity <sup>5</sup>                    | INL                                           |                                                                                                                           | -2.5                     |                  | +2.5      | LSB    |
| Voltage Divider Temperature Coefficient <sup>4</sup>  | $(\Delta V_W/V_W)/\Delta T \times 10^6$       | Code = half scale; see Figure 17                                                                                          |                          | 5                |           | ppm/°C |
| Full-Scale Error                                      | V <sub>WFSE</sub>                             | Code = full scale                                                                                                         | -8                       |                  | +1        | LSB    |
| Zero-Scale Error                                      | V <sub>wzse</sub>                             | Code = zero scale                                                                                                         | 0                        |                  | 10        | LSB    |
| RESISTOR TERMINALS                                    | 1 11232                                       |                                                                                                                           |                          |                  |           | 1      |
| Terminal Voltage Range <sup>6</sup>                   | $V_A, V_B, V_W$                               |                                                                                                                           | V <sub>SS</sub>          |                  | $V_{DD}$  | V      |
| Capacitance A, Capacitance B <sup>4</sup>             | C <sub>A</sub> , C <sub>B</sub>               | f = 1 MHz, measured to GND,                                                                                               | • 33                     | 85               | • 00      | pF     |
| capacitance N, capacitance b                          | CA, CB                                        | code = half scale                                                                                                         |                          | 05               |           | Pi     |
| Capacitance W <sup>4</sup>                            | C <sub>w</sub>                                | f = 1 MHz, measured to GND, code = half scale                                                                             |                          | 65               |           | pF     |
| Common-Mode Leakage Current⁴                          | Ісм                                           | $V_A = V_B = V_W$                                                                                                         | -120                     | ±1               | 120       | nA     |
| DIGITAL INPUTS                                        |                                               | JEDEC compliant                                                                                                           |                          |                  |           |        |
| Input Logic High⁴                                     | V <sub>IH</sub>                               | $V_{LOGIC} = 2.7 \text{ V to } 5.5 \text{ V}$                                                                             | 2.0                      |                  |           | ٧      |
| Input Logic Low <sup>4</sup>                          | V <sub>IL</sub>                               | $V_{LOGIC} = 2.7 \text{ V to } 5.5 \text{ V}$                                                                             |                          |                  | 0.8       | ٧      |
| Input Current                                         | I <sub>IL</sub>                               | $V_{IN} = 0 \text{ V or } V_{LOGIC}$                                                                                      |                          |                  | ±1        | μΑ     |
| Input Capacitance <sup>4</sup>                        | C <sub>IL</sub>                               |                                                                                                                           |                          | 5                |           | pF     |
| DIGITAL OUTPUTS (SDO and RDY)                         |                                               |                                                                                                                           |                          |                  |           |        |
| Output High Voltage <sup>4</sup>                      | Voh                                           | $R_{PULL\ UP} = 2.2 \text{ k}\Omega \text{ to } V_{LOGIC}$                                                                | V <sub>LOGIC</sub> – 0.4 |                  |           | ٧      |
| Output Low Voltage <sup>4</sup>                       | Vol                                           | $R_{PULL\ UP} = 2.2 \text{ k}\Omega \text{ to } V_{LOGIC}$                                                                |                          |                  | GND + 0.4 | V      |
| Three-State Leakage Current                           |                                               |                                                                                                                           | -1                       |                  | +1        | μA     |
| Output Capacitance <sup>4</sup>                       | C <sub>OL</sub>                               |                                                                                                                           |                          | 5                |           | pF     |
| POWER SUPPLIES                                        |                                               |                                                                                                                           |                          |                  |           |        |
| Single-Supply Power Range                             | $V_{DD}$                                      | $V_{SS} = 0 V$                                                                                                            | 9                        |                  | 33        | V      |
| Dual-Supply Power Range                               | V <sub>DD</sub> /V <sub>SS</sub>              | 133                                                                                                                       | ±9                       |                  | ±16.5     | V      |
| Positive Supply Current                               | I <sub>DD</sub>                               | $V_{DD}/V_{SS} = \pm 16.5 \text{ V}$                                                                                      |                          | 0.1              | 2         | μA     |
| Negative Supply Current                               | Iss                                           | $V_{DD}/V_{SS} = \pm 16.5 \text{ V}$<br>$V_{DD}/V_{SS} = \pm 16.5 \text{ V}$                                              | -2                       | -0.1             | 2         | μΑ     |
| Logic Supply Range                                    | VLOGIC                                        | -00, 133 -10.0                                                                                                            | 2.7                      | 5.1              | 5.5       | V      |
| Logic Supply Current                                  | ILOGIC ILOGIC                                 | $V_{LOGIC} = 5 \text{ V}, V_{IH} = 5 \text{ V or } V_{IL} = GND$                                                          |                          | 1                | 10        | μA     |
| OTP Store Current <sup>4,7</sup>                      |                                               | $V_{LOGIC} = 3 \text{ V, VIH} = 3 \text{ V OI VIL} = \text{GND}$<br>$V_{IH} = 5 \text{ V or VIL} = \text{GND}$            |                          | 25               | 10        | mA     |
| OTP Read Current <sup>4,8</sup>                       | LOGIC_PROG                                    | $V_{\text{IH}} = 5 \text{ V or } V_{\text{IL}} = \text{GND}$                                                              |                          | 25<br>25         |           | mA     |
| Power Dissipation <sup>9</sup>                        | LOGIC_FUSE_READ                               | $V_{\text{IH}} = 5 \text{ V or } V_{\text{IL}} = \text{GND}$ $V_{\text{IH}} = 5 \text{ V or } V_{\text{IL}} = \text{GND}$ |                          | 25<br>8          | 110       |        |
| •                                                     | P <sub>DISS</sub>                             |                                                                                                                           |                          |                  | 110       | μW     |
| Power Supply Rejection Ratio                          | PSRR                                          | $\Delta V_{DD}/\Delta V_{SS} = \pm 15 \text{ V} \pm 10\%$                                                                 | 1                        | 0.103            |           | %/%    |

| Parameter                                | Symbol            | Conditions                                                                                                                           | Min Typ¹ Max | Unit   |
|------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|
| DYNAMIC CHARACTERISTICS <sup>5, 10</sup> |                   |                                                                                                                                      |              |        |
| Bandwidth                                | BW                | -3 dB                                                                                                                                | 520          | kHz    |
| <b>Total Harmonic Distortion</b>         | THDw              | $V_A = 1 \text{ V rms}, V_B = 0 \text{ V}, f = 1 \text{ kHz}$                                                                        | -93          | dB     |
| V <sub>W</sub> Settling Time             | ts                | $V_A = 30 \text{ V}$ , $V_B = 0 \text{ V}$ , $\pm 0.5 \text{ LSB}$ error band, initial code = zero scale, board capacitance = 170 pF |              |        |
|                                          |                   | Code = full-scale, normal mode                                                                                                       | 750          | ns     |
|                                          |                   | Code = full-scale, R-Perf mode                                                                                                       | 2.5          | μs     |
|                                          |                   | Code = half-scale, normal mode                                                                                                       | 2.5          | μs     |
|                                          |                   | Code = half-scale, R-Perf mode                                                                                                       | 5            | μs     |
| Resistor Noise Density                   | e <sub>N_WB</sub> | Code = half-scale, $T_A = 25$ °C, 0 kHz to 200 kHz                                                                                   | 10           | nV/√Hz |

 $<sup>^1</sup>$  Typical values represent average readings at 25°C,  $V_{DD}$  = 15 V,  $V_{SS}$  = -15 V, and  $V_{LOGIC}$  = 5 V.

#### RESISTOR PERFORMANCE MODE CODE RANGE

Table 2.

| Resistor       | −55°C < T <sub>A</sub> < +125°C                     |                        |                                                     |                        |                                                     |                        |                                                     |                        |
|----------------|-----------------------------------------------------|------------------------|-----------------------------------------------------|------------------------|-----------------------------------------------------|------------------------|-----------------------------------------------------|------------------------|
| Tolerance per  | $ V_{DD} - V_{SS}  = 30 \text{ V to } 33 \text{ V}$ |                        | $ V_{DD} - V_{SS}  = 26 \text{ V to } 30 \text{ V}$ |                        | $ V_{DD} - V_{SS}  = 22 \text{ V to } 26 \text{ V}$ |                        | $ V_{DD} - V_{SS}  = 21 \text{ V to } 22 \text{ V}$ |                        |
| Code           | R <sub>WB</sub>                                     | R <sub>WA</sub>        |
| 1% R-Tolerance | From 0x1EF<br>to 0x3FF                              | From 0x000<br>to 0x210 | From 0x1F4<br>to 0x3FF                              | From 0x000<br>to 0x20B | From 0x1F4<br>to 0x3FF                              | From 0x000<br>to 0x20B | N/A                                                 | N/A                    |
| 2% R-Tolerance | From 0x0C3<br>to 0x3FF                              | From 0x000<br>to 0x33C | From 0x0E6<br>to 0x3FF                              | From 0x000<br>to 0x319 | From 0x131<br>to 0x3FF                              | From 0x000<br>to 0x2CE | From 0x131<br>to 0x3FF                              | From 0x000<br>to 0x2CE |
| 3% R-Tolerance | From 0x073<br>to 0x3FF                              | From 0x000<br>to 0x38C | From 0x087<br>to 0x3FF                              | From 0x000<br>to 0x378 | From 0x0AF<br>to 0x3FF                              | From 0x000<br>to 0x350 | From 0x0AF<br>to 0x3FF                              | From 0x000<br>to 0x350 |

<sup>&</sup>lt;sup>2</sup> Resistor position nonlinearity error. R-INL is the deviation from an ideal value measured between  $R_{WB}$  at Code 0x00B and Code 0x3FF or between  $R_{WA}$  at Code 0x3F3 and Code 0x000. R-DNL measures the relative step change from ideal between successive tap positions. The specification is guaranteed in resistor performance mode, with a wiper current of 1 mA for  $V_A$  < 12 V and 1.2 mA for  $V_A$  < 12 V.

<sup>&</sup>lt;sup>3</sup> Resistor performance mode. The terms resistor performance mode and R-Perf mode are used interchangeably.

 $<sup>^{\</sup>rm 4}$  Guaranteed by design and characterization, not subject to production test.

<sup>&</sup>lt;sup>5</sup> INL and DNL are measured at  $V_W$  with the RDAC configured as a potentiometer divider similar to a voltage output DAC.  $V_A = V_{DD}$  and  $V_B = 0$  V. DNL specification limits of ±1 LSB maximum are guaranteed monotonic operating conditions.

<sup>&</sup>lt;sup>6</sup> Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground-referenced bipolar signal adjustment.

 $<sup>^{7}</sup>$  Different from operating current; supply current for fuse program lasts approximately 550  $\mu s.$ 

 $<sup>^{8}</sup>$  Different from operating current; supply current for fuse read lasts approximately 550  $\mu s$ .

<sup>&</sup>lt;sup>9</sup> P<sub>DISS</sub> is calculated from  $(I_{DD} \times V_{DD}) + (I_{SS} \times V_{SS}) + (I_{LOGIC} \times V_{LOGIC})$ .

<sup>&</sup>lt;sup>10</sup> All dynamic characteristics use  $V_{DD} = 15 \text{ V}$ ,  $V_{SS} = -15 \text{ V}$ , and  $V_{LOGIC} = 5 \text{ V}$ .

### INTERFACE TIMING SPECIFICATIONS

 $V_{DD}/V_{SS} = \pm 15 \text{ V}, V_{LOGIC} = 2.7 \text{ V} \text{ to } 5.5 \text{ V}, -55^{\circ}\text{C} < T_A < +125^{\circ}\text{C}.$  All specifications  $T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted.

Table 3.

| Parameter                    | Limit <sup>1</sup> | Unit   | Description                                                          |
|------------------------------|--------------------|--------|----------------------------------------------------------------------|
| t <sub>1</sub> <sup>2</sup>  | 20                 | ns min | SCLK cycle time                                                      |
| t <sub>2</sub>               | 10                 | ns min | SCLK high time                                                       |
| t <sub>3</sub>               | 10                 | ns min | SCLK low time                                                        |
| t <sub>4</sub>               | 10                 | ns min | SYNC to SCLK falling edge setup time                                 |
| $t_5$                        | 5                  | ns min | Data setup time                                                      |
| t <sub>6</sub>               | 5                  | ns min | Data hold time                                                       |
| $t_7$                        | 1                  | ns min | SCLK falling edge to SYNC rising edge                                |
| t <sub>8</sub>               | 400³               | ns min | Minimum SYNC high time                                               |
| <b>t</b> 9                   | 14                 | ns min | SYNC rising edge to next SCLK fall ignore                            |
| $t_{10}{}^4$                 | 1                  | ns min | RDY rising edge to SYNC falling edge                                 |
| t <sub>11</sub> 4            | 40                 | ns max | SYNC rising edge to RDY fall time                                    |
| $t_{12}^4$                   | 2.4                | μs max | RDY low time, RDAC register write command execute time (R-Perf mode) |
| $t_{12}^4$                   | 410                | ns max | RDY low time, RDAC register write command execute time (normal mode) |
| $t_{12}^4$                   | 8                  | ms max | RDY low time, memory program execute time                            |
| $t_{12}^4$                   | 1.5                | ms min | Software/hardware reset                                              |
| t <sub>13</sub> 4            | 450                | ns max | RDY low time, RDAC register readback execute time                    |
| t <sub>13</sub> 4            | 1.3                | ms max | RDY low time, memory readback execute time                           |
| t <sub>14</sub> <sup>4</sup> | 450                | ns max | SCLK rising edge to SDO valid                                        |
| treset                       | 20                 | ns min | Minimum RESET pulse width (asynchronous)                             |
| t <sub>POWER-UP</sub> 5      | 2                  | ms max | Power-on OTP restore time                                            |

<sup>&</sup>lt;sup>1</sup> All input signals are specified with  $t_R = t_F = 1$  ns/V (10% to 90% of  $V_{DD}$ ) and timed from a voltage level of  $(V_{IL} + V_{IH})/2$ .



Figure 2. Shift Register Content

<sup>&</sup>lt;sup>2</sup> Maximum SCLK frequency is 50 MHz.

 $<sup>^3</sup>$  Refer to t<sub>12</sub> and t<sub>13</sub> for RDAC register and memory commands operations.  $^4$  R<sub>PULL\_UP</sub> = 2.2 k $\Omega$  to V<sub>LOGIC</sub>, with a capacitance load of 168 pF.  $^5$  Maximum time after V<sub>LOGIC</sub> is equal to 2.5 V.

## **Timing Diagrams**



Figure 3. Write Timing Diagram, CPOL = 0, CPHA = 1



Figure 4. Read Timing Diagram, CPOL = 0, CPHA = 1

## **ABSOLUTE MAXIMUM RATINGS**

 $T_A = 25$ °C, unless otherwise noted.

Table 4.

| Table 4.                                          |                                                        |  |  |
|---------------------------------------------------|--------------------------------------------------------|--|--|
| Parameter                                         | Rating                                                 |  |  |
| V <sub>DD</sub> to GND                            | −0.3 V to +35 V                                        |  |  |
| V <sub>SS</sub> to GND                            | +0.3 V to -25 V                                        |  |  |
| V <sub>LOGIC</sub> to GND                         | −0.3 V to +7 V                                         |  |  |
| $V_{DD}$ to $V_{SS}$                              | 35 V                                                   |  |  |
| $V_A$ , $V_B$ , $V_W$ to GND                      | $V_{SS} - 0.3 \text{ V}, V_{DD} + 0.3 \text{ V}$       |  |  |
| Digital Input and Output Voltage to GND           | $-0.3 \text{ V to V}_{LOGIC} + 0.3 \text{ V}$          |  |  |
| EXT_CAP Voltage to GND                            | −0.3 V to +7 V                                         |  |  |
| I <sub>A</sub> , I <sub>B</sub> , I <sub>W</sub>  |                                                        |  |  |
| Continuous                                        | ±3 mA                                                  |  |  |
| Pulsed <sup>1</sup>                               |                                                        |  |  |
| Frequency > 10 kHz                                | ±3/d <sup>2</sup>                                      |  |  |
| Frequency ≤ 10 kHz                                | ±3/√d²                                                 |  |  |
| Operating Temperature Range <sup>3</sup>          | −55°C to +125°C                                        |  |  |
| Maximum Junction Temperature (T <sub>J</sub> max) | 150°C                                                  |  |  |
| Storage Temperature Range                         | −65°C to +150°C                                        |  |  |
| Reflow Soldering                                  |                                                        |  |  |
| Peak Temperature                                  | 260°C                                                  |  |  |
| Time at Peak Temperature                          | 20 sec to 40 sec                                       |  |  |
| Package Power Dissipation                         | (T <sub>J</sub> max – T <sub>A</sub> )/θ <sub>JA</sub> |  |  |

<sup>&</sup>lt;sup>1</sup> Maximum terminal current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

#### THERMAL RESISTANCE

 $\theta_{\text{JA}}$  is defined by JEDEC specification JESD-51 and the value is dependent on the test board and test environment.

**Table 5. Thermal Resistance** 

| Package Type  | θја             | θις | Unit |
|---------------|-----------------|-----|------|
| 14-Lead TSSOP | 93 <sup>1</sup> | 20  | °C/W |

<sup>&</sup>lt;sup>1</sup> JEDEC 2S2P test board, still air (0 m/sec to 1 m/sec air flow).

### **ESD CAUTION**



**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

<sup>&</sup>lt;sup>2</sup> Pulse duty factor.

 $<sup>^{\</sup>rm 3}$  Includes programming of OTP memory.

# PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 5. Pin Configuration

### **Table 6. Pin Function Descriptions**

| Pin No. | Mnemonic           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | RESET              | Hardware Reset Pin. Refreshes the RDAC register with the contents of the 20-TP memory register. Factory default loads midscale until the first 20-TP wiper memory location is programmed. RESET is activated at the logic high transition. Tie RESET to VLOGIC if not used.                                                                                                                                                                                                                     |
| 2       | Vss                | Negative Supply. Connect to 0 V for single-supply applications. This pin should be decoupled with 0.1 $\mu$ F ceramic capacitors and 10 $\mu$ F capacitors.                                                                                                                                                                                                                                                                                                                                     |
| 3       | Α                  | Terminal A of RDAC. $V_{SS} \le V_A \le V_{DD}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4       | W                  | Wiper Terminal of RDAC. $V_{SS} \le V_W \le V_{DD}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5       | В                  | Terminal B of RDAC. $V_{SS} \le V_B \le V_{DD}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6       | $V_{\text{DD}}$    | Positive Power Supply. This pin should be decoupled with 0.1 μF ceramic capacitors and 10 μF capacitors.                                                                                                                                                                                                                                                                                                                                                                                        |
| 7       | EXT_CAP            | External Capacitor. Connect a 1 $\mu$ F capacitor to EXT_CAP. This capacitor must have a voltage rating of $\geq$ 7 V.                                                                                                                                                                                                                                                                                                                                                                          |
| 8       | V <sub>LOGIC</sub> | Logic Power Supply; 2.7 V to 5.5 V. This pin should be decoupled with 0.1 $\mu F$ ceramic capacitors and 10 $\mu F$ capacitors.                                                                                                                                                                                                                                                                                                                                                                 |
| 9       | GND                | Ground Pin, Logic Ground Reference.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10      | DIN                | Serial Data Input. The AD5292-EP has a 16-bit shift register. Data is clocked into the register on the falling edge of the serial clock input.                                                                                                                                                                                                                                                                                                                                                  |
| 11      | SCLK               | Serial Clock Input. Data is clocked into the shift register on the falling edge of the serial clock input. Data can be transferred at rates up to 50 MHz.                                                                                                                                                                                                                                                                                                                                       |
| 12      | SYNC               | Falling Edge Synchronization Signal. This is the frame synchronization signal for the input data. When SYNC goes low, it enables the shift register and data is transferred in on the falling edges of the following clocks. The selected register is updated on the rising edge of SYNC following the 16 <sup>th</sup> clock cycle. If SYNC is taken high before the 16 <sup>th</sup> clock cycle, the rising edge of SYNC acts as an interrupt, and the write sequence is ignored by the DAC. |
| 13      | SDO                | Serial Data Output. This open-drain output requires an external pull-up resistor. SDO can be used to clock data from the shift register in daisy-chain mode or in readback mode.                                                                                                                                                                                                                                                                                                                |
| 14      | RDY                | Ready Pin. This active-high open-drain output identifies the completion of a write or read operation to or from the RDAC register or memory.                                                                                                                                                                                                                                                                                                                                                    |

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 6. R-INL in R-Perf Mode vs. Code



Figure 7. INL in R-Perf Mode vs. Code



Figure 8. R-INL in Normal Mode vs. Code



Figure 9. R-DNL in R-Perf Mode vs. Code



Figure 10. DNL in R-Perf Mode vs. Code



Figure 11. R-DNL in Normal Mode vs. Code



Figure 12. INL in Normal Mode vs. Code



Figure 13. Supply Current (IDD, ISS, ILOGIC) vs. Temperature



Figure 14. Rheostat Mode Tempco ΔR<sub>WB</sub>/ΔT vs. Code



Figure 15. DNL in Normal Mode vs. Code



Figure 16. Supply Current I<sub>LOGIC</sub> vs. Digital Input Voltage



Figure 17. Potentiometer Mode Tempco  $\Delta R_{WB}/\Delta T$  vs. Code



Figure 18. 20  $k\Omega$  Gain vs. Frequency vs. Code



Figure 19. THD + Noise vs. Frequency



Figure 20. Bandwidth vs. Code vs. Net Capacitance



Figure 21. Power Supply Rejection Ratio vs. Frequency



Figure 22. THD + Noise vs. Amplitude



Figure 23. IDD Waveform While Blowing/Reading Fuse



Figure 24. Large-Signal Settling Time from Code Zero Scale



Figure 25. Theoretical Maximum Current vs. Code



Figure 26. Maximum Transition Glitch



Figure 27. Digital Feedthrough



Figure 28. VEXT\_CAP Waveform While Reading Fuse Or Calibration



Figure 29. VEXT\_CAP Waveform While Writing Fuse



Figure 30. Code Range > 1% R-Tolerance Error vs. Temperature



Figure 31. Code Range > 1% R-Tolerance Error vs. Voltage

# **TEST CIRCUITS**

Figure 32 to Figure 37 define the test conditions used in the Specifications section.



Figure 32. Resistor Position Nonlinearity Error (Rheostat Operation; R-INL, R-DNL)



Figure 33. Potentiometer Divider Nonlinearity Error (INL, DNL)



Figure 34. Wiper Resistance



Figure 35. Power Supply Sensitivity (PSS, PSRR)



Figure 36. Gain vs. Frequency



Figure 37. Common-Mode Leakage Current

# **OUTLINE DIMENSIONS**



Figure 38. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters

### **ORDERING GUIDE**

| Model <sup>1</sup> | R <sub>AB</sub> (kΩ) | Resolution | Memory | Temperature Range | Package Description | Package Option |
|--------------------|----------------------|------------|--------|-------------------|---------------------|----------------|
| AD5292SRU-20-EP    | 20                   | 1024       | 20-TP  | −55°C to +125°C   | 14-Lead TSSOP       | RU-14          |
| AD5292SRUZ-20-EP   | 20                   | 1024       | 20-TP  | −55°C to +125°C   | 14-Lead TSSOP       | RU-14          |

 $<sup>^{1}</sup>$  Z = RoHS Compliant Part.

**NOTES** 

