WHAT IS CLAIMED IS:

steps of:

A method of mechanically treating a substrate, the method comprising the f.

- (a) providing a substrate for mechanical treatment, the substrate selected from the group consisting of a rigid disk or a rigid disk substrate;
- (b) providing an abrasive article in contact with the substrate at a pressure, the abrasive article comprising:

a backing having a first major surface and a second major surface; and

an abrasive coating consisting essentially of:

a hardened binder coating having a first surface adhered to the flexible backing and a second structured surface comprising a plurality of preciselyshaped protrusions; and

a diamond-like carbon coating superposed and adhered to at least a portion of the structured surface of the hardened binder coating; and

- (c) moving at least one of the substrate and the abrasive article relative to the other to provide the mechanical treatment.
- 2. The method of claim 1, wherein the mechanical treatment is texturing, buffing, or cleaning.
- 3. The method of claim 1, wherein the substrate is a rigid disk substrate comprising a metal base having opposite major surfaces and a metal coating formed on at least one of the major surfaces.
- 30 4. The method of claim 1, wherein the substrate is a rigid disk substrate comprising glass or ceramic.

15

- 5. The method of claim 1, wherein the substrate is circular having a center and wherein step (c) comprises rotating the substrate about the center to form substantially circumferential scratches in the substrate.
- 6. The method of claim 1, further including the step of: introducing a liquid between the abrasive article and the rigid disk or rigid

disk substrate.

5

- 7. The method of claim 1, wherein step (c) comprises oscillating the abrasive article in a direction substantially perpendicular to a direction of travel of the substrate.
- 8. The method of claim 1, wherein said plurality of precisely-shaped protrusions have shapes selected from the group consisting of cubes, prisms, cones, truncated cones, pyramids, and truncated pyramids.
 - 9. The method of claim 1, wherein said backing has a machine direction axis and opposite side edges, each side edge being parallel to said machine direction axis, wherein said structured surface comprises a plurality of parallel elongate ridges deployed in fixed position on said backing, wherein each of said ridges intersects said side edges at an angle from about 0 degrees to about 90 degrees.
- 10. The method of claim 9, wherein said parallel elongate ridges each comprise
 25 a continuous protrusion of hardened binder extending continuously between the side edges of the backing.
 - 11. The method of claim 9, wherein said protrusion is a pyramidal shape having an apex and sides, said sides intersecting at said apex to form an angle
- 30 therebetween of from about 70 to about 110 degrees.

10

The method of claim 9, wherein said ridges each comprise a plurality of separate precisely-shaped protrusions aligned with transverse centers located on said longitudinal axis.

j

- 5 13. The method of claim 12, wherein each of said protrusions comprises a pyramidal shape having at least three sides.
 - 14. The method of claim 13, wherein said pyramidal shape comprises a truncated pyramidal shape.

15. The method of claim 1, wherein the diamond-like carbon coating has a thickness ranging from about 5 nm to 1 micrometer.

- 16. The method of claim 1, wherein the diamond-like carbon coating has a plasmon energy greater than about 26 eV.
 - 17. The method of claim 1, wherein the backing is polyethylene terephthalate film having a thickness between about 25 and 125 micrometers.
- 20 18. The method of claim 1, wherein the binder is an acrylate or a methacrylate.
 - 19. The method of plaim 1, wherein the binder is free of abrasive particles.

An abrasive article comprising:

a backing having a first major surface and a second major surface; and

an abrasive coating consisting essentially of:

a hardened binder coating having a first surface adhered to the flexible backing and a second structured surface comprising a plurality of preciselyshaped protrusions; and

a diamond-like carbon coating superposed and adhered to at least a portion of the structured surface of the hardened binder coating.

5

- 21. The abrasive article of claim 20, wherein said plurality of precisely-shaped protrusions have shapes selected from the group consisting of cubes, prisms, cones, truncated cones, pyramids, and truncated pyramids.
- 10 22. The abrasive article of claim 20, wherein said backing has a machine direction axis and opposite side edges, each side edge being parallel to said machine direction axis, wherein said structured surface comprises a plurality of parallel elongate ridges deployed in fixed position on said backing, wherein each of said ridges intersects said side edges at an angle from about 0 degrees to about 90 degrees.
 - 23. The abrasive article of claim 22, wherein said parallel elongate ridges each comprise a continuous protrusion of hardened binder extending continuously between the side edges of the backing.

20

24. The abrasive article of claim 22, wherein said protrusion is a pyramidal shape having an apex and sides, said sides intersecting at said apex to form an angle therebetween of from about 70 to about 110 degrees.

) 125 q 28.\ Q plur

The abrasive article of claim 22, wherein said ridges each comprise a plurality of separate precisely-shaped protrusions aligned with transverse centers located on said longitudinal axis.

26. The abrasive article of claim 25, wherein each of said protrusions30 comprises a pyramidal shape having at least three sides.

- 27. The abrasive article of claim 26, wherein said pyramidal shape comprises a truncated pyramidal shape.
- 5 28. The abrasive article of claim 20, wherein the diamond-like carbon coating has a thickness ranging from about 5 nm to 1 micrometer.
 - 29. The abrasive article of claim 20, wherein the diamond-like carbon coating has a plasmon energy greater than about 26 eV.
 - 30. The abrasive article of claim 20, wherein the backing is polyethylene terephthalate film having a thickness between about 25 and 125 micrometers.
- 31. The abrasive article of claim 20, wherein the binder is an acrylate or a methacrylate.
 - 32. The abrasive article of claim 20, wherein the binder is free of abrasive particles.

20