HOCHSCHULE HANNOVER

UNIVERSITY OF APPLIED SCIENCES AND ARTS

_

Fakultät IV Wirtschaft und Informatik

Improvements on AFB

Advancing the Metaheuristic for TSP

Pit Hüne; Tim Cares, 24.10.2023

Inhaltsverzeichnis

Chapter 1	Recap	Page 4
Chapter 2	Methodology	Page 7
Chapter 3	Top-b Join	Page 11
Chapter 4	3-Opt	

Chapter 5 Delegating Responsibility

Chapter 5 Nearest-neighbor Initialization

Inhaltsverzeichnis

Chapter 1	Motivation	Page 4
Chapter 2	From Birds to TSP	Page 7
Chapter 3	Algorithm Details	Page 11

- Each Birds represents one possible solution (one tour)
- Each operation performed by a bird, alters its respective solutions

Each action of a bird corresponds to a change of its own solution

· Each solution is valid

The number of candidate solutions (or agents respectively) does not change

(currently)

(3) Return

(4) Join

Methodology

- To benchmark our improvements, we select all feasible solutions from TSPLIB (86 problems)
 - Up to 6000 nodes
- Each problem is run 10x, to account for the randomness (860 test in total)
- We record the median percentage error, and the median time in seconds

Top-b Join

- Default behavior: If a big bird joins another, he chooses one randomly
- Contradicts the idea that birds tend to join others, if they found a good food source
 - Good food source translates to a good solution
- That is why we decide to allow a big bird to only join the top-b percent
 - Pick one of the top-b birds randomly
- Means ordering the birds by their tour length after each iteration/phase
 - Increases runtime due to sorting complexity

Top-b Join

Top-b	1	0.25	0.20	0.15	0.05	0.01
PercentError	215	122	5.92	6.14	6.01	5.2
Time (in s)	7.6	8.6	8.7	8.1	8.3	8.1

3-Opt

- When performing the walk-operation, so the local search, a bird uses 2-opt to search for a potential better solution
- Naturally, we also tested 3-opt as a more powerful alternative

3-Opt

Delegating Responsibility

- Seen before: 3-opt (+ sorting for top-b join), yield very high computation effort
- How can one make the algorithm faster while keeping the performance close to before?
- Answer: Allow only big/small birds to perform 3-opt, the other 2-opt
 - Both were tested, but big birds make more sense regarding their "superiority"

Delegating Responsibility

Nearest-Neighbor Initialization

Vielen Dank für Ihre Aufmerksamkeit!

Literature

• Jean-Baptiste Lamy. Artificial Feeding Birds (AFB): a new metaheuristic inspired by the behavior of pigeons. Advances in nature-inspired computing and applications, 2019, 10.1007/978-3-319-96451- 5_3 . hal-02264232

