

第1章 单片机概述

- 一、微型计算机概述
- 二、单片机的概念
- 三、单片机的发展
- 四、单片机的应用
- 五、计算机数制及其转换(补充)
- 六、二进制数运算(补充)
- 七、计算机码制和编码(补充)

一、微型计算机概述

1946年,美国宾夕法尼亚大学制成第一台ENIAC (Electronic Numerical Integrator And Computer)。经历了电子管、晶体管、集成电路、 大(超大)规模集成电路四个阶段。第四代计算机 可以分为巨型机、大型机、中型机、小型机、微型 机。

计算机的基本组成原理

础

输入设备:将程序和原始数据转换成二进制数送到存储器存放。如键盘等。

CPU(Central Processing Unit):运算控制器,运算器进行算术运算和逻辑运算,控制器指挥各部分协调工作。

存储器:存储各种信息,如数据、程序、文件等。分为内存储器(一般为半导体存储器)和外存储器(如磁盘、磁鼓、光盘等)。

输出设备:输出计算机的中间结果、最终结果、实时信息。如CRT(Cathode Ray Tube)显示器、打印机、绘图机等。

CPU和内存储器称为计算机的主机,输入/输出设备称为外部设备或I/O设备。

微型计算机的基本结构

微型计算机采用总线结构,各主要部分如下: 微处理器MPU:包括运算器和控制器,内部结构 极其复杂。

ROM (Read Only Memory):工作时只能读不能写的存储器,一般存放固定程序和常数。

RAM(Random Access Memory): 工作时能读能写的存储器,用于存放运算结果和实时数据。

I/O接口:微处理器和外部设备间的桥梁,外部设备通过接口才能与MPU相连。

微型计算机系统的组成:由硬件和软件两大部分组成。

硬件主要由主机箱、CRT显示器、键盘、打印机等, 主机箱内装有主机板、硬盘驱动器、软盘驱动器、 电源等。主机板(简称主板)上装有微处理器、存 储器、I/O接口电路等,还有扩展插槽。

软件包括系统软件和应用软件。系统软件是计算机系统赖于工作的系列化程序,是应用软件的支撑平台。应用软件是专门为解决每个领域里的具体任务而编写的程序。

微型计算机系统

硬件

软件

单片机

州

础

二、单片机的概念

单片机:单片微型计算机,是微型计算机的一个重要分支,它将微型机的主要部件集成在一块芯片上。

中央处理器(CPU): 运算器+控制器

随机存储器 (RAM)

只读存储器 (ROM)

中断系统

定时/计数器

I/O口电路,等等

单片机

机基

础

单片机也称:微控制器(MCU);嵌入式微控制器(EMCU)

单片机分类: 4位、8位、16位、32位

单片机系统:单片机芯片扩展其它应用电路。

单片机开发系统:单片机开发调试的工具,主要有在线仿真器(ICE)、微型机开发系统(MDS)。

单片机的程序设计语言: 机器语言、汇编语言、高级语言(C-51等)

三、单片机发展

1976年: Intel MCS-48

80年代初: Intel MCS-51

1983年: Intel MCS-96

现在主要生产公司:美国Intel、Motorola、Zilog、NS、Microchip、Atmel、TI; 日本NEC(日电)、Toshiba(东芝)、Fujitsu(富士通)、Hitachi(日立); 荷兰Philips、英国Inmos、德国Siemens(西门子); 等等。

単片

机

基础

典型产品系列:

MCS-51系列: HMOS工艺,功耗630mW;

80C51系列: CHMOS工艺,功耗120mW。

表 1-1 MCS-51 系列单片机分类

资源配置		片 内 RC)M 形式	·	片内	片内	定时器	中
子系列	无	ROM	EPROM	E² PROM	ROM 容量	RAM 容量	/计数器	断源
51 子系列	8031	8051	8751	8951	4KB	128B	2×16	5
52 子系列	8032	8052	8752	8952	8KB	256B	3×16	6

单片

机基

础

四、单片机应用

优点:体积小、可靠性高、功能强、灵活方便、成本低等。

应用领域:工业自动化、仪器仪表、家用电器、信息通信、军事装备等。

五、计算机数制及其转换(补充)

十进制数 有0~9十个不同的数码,逢十进一

二进制数 有0、1二个数码,逢二进一

十六进制数 有0~9、A、B、C、D、E、F共16 个不同的数码,逢十六进一

数制转换方法

1

例

11010. 01B =
$$1 \times 2^4 + 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^{-2}$$

= 26. 25

例

把所得余数按箭头方向从高到低排列起来便可得到:

$$215 = 110101111B$$

最低位

最高位

平片 机 基

础

单

机

基

础

4

六、二进制数运算(补充)

算术加法: 0+0=0, 1+0=0+1=1, 1+1=0(进位), 1+1+1=1(进位)

例 设有两个八位二进制数 X=10110110B, Y=11011001B, 试求出 X+Y 的值。

解:X+Y可写成如下竖式:

被加数 X 10110110B 加数 Y 11011001B

和 X+Y 110001111B

所以,X+Y=10110110B+11011001B=110001111B

算术减法: 0-0=0, 1-1=0, 1-0=1, 0-1=1(借位)

例 设两个 8 位二进制数 X=10010111B,Y=11011001B,试求 X-Y 之值。

解,由于 Y > X,故有 X - Y = -(Y - X),相应竖式为:

被减数 Y 11011001B 减数 X 10010111B

差数 Y-X 01000010B

所以,X-Y=-01000010B

单

机

基

逻辑与运算: 0^0=0, 1^0=0^1=0, 1^1=1

例 已知 X=01100110B,Y=11110000B,试求 X / Y 的值。 解,X / Y 的运算竖式为:

> 01100110B A 11110000B

所以,X \ Y=01100000B

逻辑或运算: 0>0=0,1>0=0>1=1,1>1=1

例 己知 X=00110101B,Y=00001111B,试求 X V Y 的值 解: X V Y 的运算竖式为:

> 0 0 1 1 0 1 0 1 B V 0 0 0 0 1 1 1 1 B

所以,XVY=00110101BV00001111B=00111111B

单

机

逻辑非运算: /0=1, /1=0

例

已知 X=11000011B,试求 X 的值。

解:∵

X = 11000011B

:.

 $\overline{X} = 00111100B$

逻辑异或运算: 0⊕0=1⊕1=0, 1⊕0=0⊕1=1

例

已知 X=10110110B,Y=11110000B,试求 X⊕Y 的值。

解:X+Y 的运算竖式为:

10110110B

⊕ 11110000B

01000110B

所以,X⊕Y=10110110B⊕11110000B=01000110B

础

七、计算机码制和编码(补充)

二进制数的原码

最高位为符号位,其余为数值位,符号位0表示正数,符号位1表示负数。例-1010B的原码为10001010B。

二进制数的反码

正数的反码和原码相同,负数反码的符号位和负数原码的符号位相同,数值位按位取反。例-0110110B的反码为11001001B。

二进制数的补码

正数的补码和原码相同,负数的补码是反码加1。例-01010B的补码为11110110B。

BCD码(十进制数的二进制编码)

Binary Coded Decimal,十进制数的二进制编码。常用的有8421码。如下表。

表 1-3 8421 BCD 编码表

<u>r</u> ,	十进制数	8421 码	十进制数	8421 码
色	0	0000B	8	1000B
Ţ	1	0001B	9	1001B
	2	0010B	10	00010000B
ţ	3	0011B	11 .	00010001B
	4	0100B	12	. 00010010B
	5	0101B	13	00010011B
	6	0110B	14	00010100B
	7	0111B	15	00010101B

ASCII码(字符编码)

American Standard Coded for Information Interchange,美国信息文换标准代码。ASCII码有7位二进制数码构成,共128个字符。

ASCII(美国信息交换标准码)字符表

	高份	0	1	2	3	4	5	6	7
低	位位	000	001	010	011	100	101	110	111
0	0000	NUL	DLE	SP	0	@	P		р
1	0001	SOH	DC1	!	1	Α	ď	a	q
2	0010	STX	DC2	**	2	В	R	ь	r
3	0011	ETX	DC3	#	3	С	s	C	s
4	0100	EOT	DC4	\$	4	D	Т	d	t
5	0101	ENQ	NAK	%	5	E	U	е	u
6	0110	ACK	SYN	8.	6	F	v	f	v
7	0111	BEL	ЕТВ	,	7	G	w	g	w
8	1000	BS	CAN	(8	Н	X	h	x
9	1001	HT	EM)	9	I	Y	i	у
A	1010	LF	SUB	*	:	J	Z	j	z
В	1011	VT	ESC	+	;	К		k	{
С	1100	FF	FS	,	<	L	١	1	
D	1101	CR	GS			М]	m	}
E	1110	SO	RS	•	> .	N	†	n	~
F	1111	SI	US	/	?	0	←	0	DEL

第2章单片机芯片的硬件结构

- 2.1 MCS-51单片机的逻辑结构及信号引脚
- 2.2 MCS-51单片机内部存储器
- 2.3 MCS-51单片机并行I/O电路结构
- 2.4 MCS-51单片机时钟电路与时序
- 2.5 MCS-51单片机工作方式

2.1 MCS-51单片机的逻辑结构及信号引脚

- 一、MCS-51单片机结构框图
- 二、MCS-51的信号引脚

一、MCS-51单片机结构框图

图 2.1 MCS-51 单片机系统结构框图

中央处理器: 8位

内部RAM: 128单元

内部ROM: 4kB

定时/计数器: 2个16位

并行I/O口: 4个8位I/O口

串行口: 1个

中断控制器: 5个中断源: 外中断2个、定时/计数中断2个、串行中断1个

时钟电路

础

二、MCS-51的信号引脚

图 2.3 80C51 单片机芯片引脚图

1、引脚

P0.0~P0.7 P0双向口线,8位

P1.0~P1.7 P1双向口线,8位

P2.0~P2.7 P2双向口线,8位

P3.0~P3.7 P1双向口线,8位

ALE 地址锁存信号,作用:①锁存P0口低8位地址;②外部时钟。

/PSEN 外部程序存储器读信号,作用: 读外部ROM

/EA 访问程序存储器控制信号,低: 读外部ROM; 高: 读内部ROM并延伸至外部ROM

RST 复位信号,高电平延续2个机器周期以上

XTAL1、XTAL2 外接晶振

Vss 地线

Vcc +5V电源

2,

2、引脚第二功能

P3口第二功能:

RXD (P3.0): 串行数据接收

TXD (P3.1): 串行数据发送

/INTO (P3.2): 外部中断0

/INT1 (P3.3): 外部中断1

T0 (P3.4): 定时/计数0

T1 (P3.5): 定时/计数1

/WR (P3.6): 外部RAM写选通

/RD (P3.7): 外部RAM读选通

编程信号

/PROG (30脚ALE): 编程脉冲

Vpp (31脚/EA): 编程电压

备用电源

Vpp, 9脚RST

2.2 MCS-51单片机内部存储器

- 一、内部RAM低128单元
- 二、内部RAM高128单元(专业寄存器区,SFR)
- 三、MCS-51的堆栈操作
- 四、内部ROM

内部RAM低128单元: 00H~7FH

	(低 128 单元)						
7FH	用户 RAM 区 (堆栈、数据缓冲)						
30H							
2FH 20H	位寻址区 (位地址 00H~7FH)						
1FH 18H	第3组通用寄存器区						
17H 10H	第2组通用寄存器区						
oFH 08H	第1组通用寄存器区						
07H 00H	第0组通用寄存器区						

_	(高	128 单元)
FFH		
F ₀ H	В	
E ₀ H	ACC	
DoH	PSW	专
B8H		用
BOH		寄
A8H		存
A ₀ H	_	器
	SBUF	Ø
	SCON	SFR
90H		
8DH	_	ļ
8CH	TH ₀	
8 <u>BH</u> 8 <u>A</u> H		
	TMOD	
	TCON	
	PCON	
83H		
82H		
81H		
80H	•	

图 2.4 80C51 内部数据存储器配置图

- 1. 寄存器区: 共4组×8个, 哪一组由程序状态字PSW中RS1、RS0决定, 8个通用寄存器名称R0~R8。
- 2. 位寻址区:可以进行位操作,当然也可以作一般RAM使用,共16个×8位。
- 3. 用户RAM区: 30H~7FH 共80个。

础

表 2-2 内部 RAM 位寻址区的位地址

单元地址	MSB←		4	位地址		→LSB		
2FH	7FH	7EH.	7DH	7CH	7BH	7AH	79H	78H
2EH	77 H	76H	75 H	74 H	73 H	72H	71H	70H
2DH	6FH	6EH	6DH	6CH	6BH	$6\mathrm{AH}$	69 H	68H
2CH	67H	66H	65 H	64 H	63 H	62 H	61H	60H
2BH	5FH	5EH	5DH	5CH	$5\mathrm{BH}$	5AH	59H	58H
2AH	57 H	56H	55 H	54 H	53H	52H	51 H	50H
29 H	4FH	4EH	4DH	4CH	4BH	4AH	$49\mathrm{H}$	48H
- 28H	47 H	46 H	45 H	44 H	43 H	42 H	41 H	40 H
27 H	3FH	3EH	3DH	3CH	звн	3AH	39 H	38H
26H	37 H	36 H	35 H	34 H	33H	32H	31H	30H
25 H	2FH	2EH	2DH	2CH	2BH	2AH	29 H	28 H
24 H	27 H	26 H	25 H	24 H	23 H	22 H	21 H	20 H
23H	1FH	1EH	1DH	1CH	1BH	1AH	19 H	18H
22H	17 H	16H	15 H	14 H	13H	12H	11 H	10 H
21 H	0FH	0EH	0DH	0CH	0BH	0AH	09 H	08H
20 H	07H	06H	05 H	04 H	03H	02H	01 H	00 H

二、内部RAM高128单元 (专用寄存器区,SFR)

- 1、专用寄存器(SFR)的字节寻址
- 2、专用寄存器简介
- 3、专用寄存器的位寻址

单片机

1、专用寄存器的字节寻址

专用寄存器(SFR) 共22个, 其中21个可寻址, 1个不可寻址。21个可寻址SFR如下:

表 2-3 MCS-51 专用寄存器一览表

寄存器符号	寄存器地址	寄存器名称
* ACC	0E0H	累加器
* B	0F0H	B寄存器
* PSW	0D0H	程序状态字
SP	81 H	堆栈指示器
DPL	82H	数据指针低 8 位
DPH	83H	数据指针高 8 位
* IE	0 A 8H	中断允许控制寄存器
* IP	0B8H	中断优先控制寄存器
* P ₀	80H	I/O 🗗 0

续表 2-3

寄存器符号	寄存器地址	寄存器名称
* P ₁	90 H	I/O 🗆 1
* P ₂	0A0H	I/O 🗆 2
* P ₃	0B0H	I/O p 3
PCON	87H	电源控制及波特率选择寄存器
* SCON	98H	串行口控制寄存器
SBUF	99H	串行数据缓冲寄存器
* TCON	88H	定时器控制寄存器
TMOD	89H	定时器方式选择寄存器
TL₀	8AH	定时器0低8位
TL_1	8BH	定时器1低8位
TH₀	8CH	定时器0高8位
TH ₁	8DH	定时器1高8位

2、专用寄存器简介

- ①PC 程序计数器:将要执行的指令地址,16位计数器,寻址范围64K,PC本身不可寻址
- ②ACC 累加器: 8位,有累加功能,使用最频繁
- ③B 寄存器: 8位,用于乘法、除法运算, 也可作一般数据寄存器使用

单片机

基

④PSW 程序状态字: 8位, 寄存程序运行状态

位序	PSW. 7	PSW. 6	PSW. 5	PSW. 4	PSW. 3	PSW. 2	PSW. 1	PSW. 0
位标志	CY	AC	F0	RS_t	RS ₀	OV	/	P

CY: 进位标志位, 功能: 算术运算进位标志、位操作:

AC: 辅助进位标志位, 功能: 低四位向高四位进位或借位时置1;

F0: 用户标志位,用户自定义;

RS1、RSO: 寄存器组选择

1 1	组 3	18∼1FH
1 0	组 2	10∼17H
0 1	组】	08~0FH
0 0	纽 0	00∼07H
RS ₁ RS ₀	寄存器组	R ₀ ~R ₇ 地址

OV: 溢出标志位,运算结果溢出时置1

P: 奇偶标志位, 累加器A中1的个数为偶数时P=0, 1的个数为奇数时P=1

⑤DPTR 数据指针,16位,寻址范围64K,用于访问外部RAM;也可以作为2个8位寄存器使用(DPH、DPL)

单片

机基

础

机

3、专用寄存器的位寻址

21个可寻址SFR中,有11个SFR可以位寻址,如下表。

表 2-4 专用寄存器位地址表

寄存器符号	MSB→			位地址,	/位名称	→LSB		
В	0F7H	0F6H	0F5H	0F4H	0F3H	0F2H	0F1H	0F0H
Α	0E7H	0E6H	0E5H	0E4H	0 E 3H	0E2H	0E1H	0 E 0H
DOW	0D7H	0D6H	0D5H	0D4H	0D3H	0D2H	0D1H	0D0H
PSW	CY	AC	F0	RS ₁	RS₀	OV	/	P
	OBFH	0BEH	0BDH	0BCH	ØBBH	0BAH	0B9H	0B8H
IP	/	/	/	PS	PT_1	PX ₁	PT _o	PX ₀

单

续表 2-4

寄存器符号		MSB→		位地址	/位名称		→LSB	
P_3	0B7H	0B6H	0B5H	0B4H	0B3H	0B2H	0B1H	0B0 H
	P _{3.7}	P _{3.6}	P _{3.5}	P _{3. 4}	P _{3.3}	P _{3, 2}	P _{3, 1}	P _{3.0}
ΙE	0AFH	0AEH	0ADH	0ACH	0ABH	0AAH	0 A9H	0 A 8H
IE	EA	/	/	ES	ET ₁	EX ₁	ET _o	EX ₀
Ъ	0 A 7H	0 A 6 H	0 A 5H	0 A4H	0 A 3H	0A2H	0 A 1H	0 A 0H
P ₂	P _{2.7}	P _{2.6}	P _{2.5}	P _{2.4}	P _{2.3}	P _{2. 2}	P _{2, 1}	P _{2.0}
SCON	9FH	9EH	9DH	9CH	9BH	9AH	99H	98 H
SCON	SM _o	SM ₁	SM ₂	REN	TB ₈	RB ₈	TI	RI
P ₁	97H	96H	95	94 H	93H	92H	91 H	90H
1 1	P _{1.7}	P _{1.6}	P _{1.5}	P _{1, 4}	P _{1.3}	P _{1.2}	P _{1, 1}	P _{1.0}
TCON	8FH	8EH	·8DH	8CH	8BH	8AH	89H	88H
ICON	TF ₁	TR ₁	TF ₀	TR₀	IE ₁	IT_1	IE ₀	ITo
P_0	87H	86H	85 H	84H	83H	82 H	81 H	80H
1 0	P _{0.7}	P _{0.6}	P _{0.5}	P _{0.4}	P _{0.3}	P _{0. 2}	P _{0.1}	P _{0.0}

础

三、MCS-51的堆栈操作

- 1、堆栈功用: ①保护断点; ②保护现场。
- 2、堆栈指示器SP: 指向堆栈栈顶的存储单元地址。进栈操作: 先SP加1,后写数据;出栈操作: 先读出数据,后SP减1;复位时: SP=07H,要将其初始化为30H~(7FH)。SP可以初始化为不同值,因此堆栈位置是浮动的。
- 3、堆栈使用方式:①自动方式:程序转移时,断点自动进栈,程序返回时,断点自动弹回PC;②指令方式:保护现场用PUSH,恢复现场用POP。

MCS-51堆栈的操作

四、内部ROM

80C51芯片内有4KROM,0000H~0FFH。其中0000H~002AH是有特殊用途的保留单元。一般在每个入口地址中存放一条无条件转移指令,转到相应的实际入口地址,执行程序。

0000H~0002H 复位时(PC)=0000H

0003H~000AH /INTO中断地址区

机

础

000BH~0012H 定时/计数0中断地址区

0013H~001AH /INT1中断地址区

001BH~0022H 定时/计数1中断地址区

0023H~002AH 串行中断地址区

80C51单片机系统的存储器空间

图 2.6 80C51 单片机系统的存储器结构和存储空间分配

2.3 MCS-51单片机并行I/0电路结构

一、PO口: ①通用I/O口; ②系统的地址数据线。

I/O输出时需 外接上拉电阻, I/O输入时需 预先置1

图 2.7 Pa口电路逻辑

片机基

础

单

单

P1口: 通用I/O口。

内带上拉电阻, I/O输出时不 需外接上拉电 阻, I/O输入 时需预先置1

图 2.8 P, 口电路逻辑

基

础

P2口: ①通用I/0口; ②高位地址线。

图 2.9 P₂ 口电路逻辑

内带上拉电阻, I/O输出时不 需外接上拉电阻, I/O输入 时需预先置1

单

P3口: ①通用I/0口; ②第二功能信号。

内带上拉电阻, I/O输出时不 需外接上拉电 阻, I/O输入 或第二功能输 入时需预先置 1

图 2.10 P₃口电路逻辑

2.4 MCS-51单片机时钟电路与时序

- 一、时钟电路
- 二、时序定时单位
- 三、MCS-51指令时序

一、时钟电路

①时钟信号内部产生:

图 2.12 MCS-51 单片机的时钟电路框图

②时钟信号外部引入:

图 2.13 8051 外部脉冲源接法 图 2.14 80C51 外部脉冲源接法

二、时序定时单位

- ①拍节(P):振荡脉冲的周期。
- ②状态(S): 时钟信号的周期(时钟信号为振荡周期的二分频)。即: 1个状态=2个拍节
- ③机器周期:6个状态为一个机器周期。即:
- 1个机器周期=6个状态(S1~S6)=12个拍节(S1P1、S1P2、.....、S6P1、S6P2)
- 例如: 晶振6MHz,则振荡周期1/6μS,时钟周期2/6μS,机器周期2μS。
- ④指令周期: 执行一条指令所需时间(1~4个机器周期)。

机

三、MCS-51指令时序

MCS-51指令按长度可分为:

单字节指令: 单机器周期、双机器周期、四机器周期;

双字节指令: 单机器周期、双机器周期;

三字节指令: 双机器周期

典型指令时序

(无效)

 S_5

 S_6

地址

无取指

 S_2

数据

 S_3

 S_1

访问外部存储器

无取指

Ss

 S_6

 S_4

读操作码

 S_2

 S_3

 S_4

(d) 1字节 【 2周期指令】

(例如:MOVX指令)

单

机

2.5 MCS-51单片机工作方式

一、复位方式

RST高电平有效,持续2个机器周期以上。上电复位和按钮复位。

复位状态

PC	H0000	TCON	00H
ACC	00 H	TL_0	00 H
PSW	00 H	TH_0	00H
SP	07 H	TL_1	00 H
DPTR	0000H	TH_1	00H
$P_0 \sim P_3$	0FFH	SCON	00 H
IP	××000000B	SBUF	不定
IE	0×000000B	PCON	0×××0000B
TMOD	00 H		

二、程序执行方式

复位时PC=0000H,要放无条件转移 指令。

掉电保护方式

- 1、信息转存: 检测电源下降→外部中断 (/INT0或/INT1)
- →中断服务程序中将信息保存到内部RAM。
- 2、接通备用电源: 当Vcc下降到Vpp以下时由Vpp供电。

图 2.16 复位电路逻辑图

四、80C51的低功耗方式

由电源控制寄存器PCON控制

位 序	B ₇	B_{6}	B_{5}	B_{4}	$\mathrm{B}_{\scriptscriptstyle 3}$	B_2	B ₁	B_0
位符号	SMOD	/	/	/	GF_1	GF_0	PD	IDL

①待机方式

IDL=1,80C51进入待机方式,CPU不能工作,寄存器冻结,中断功能继续有效。响应中断的同时,PCON.0被硬件自动清0,单片机退出待机进入正常。

②掉电保护方式

检测到电源故障→保护信息→PCON.1置1。这时单片机停止工作,内部RAM内容被保存。Vcc正常后,硬件复位信号维持10ms即可退出掉电方式。