Week 2 Tutoring

Table manipulation and visualization & histograms!

Table Methods

Method	Function		
tbl.num_rows tbl.num_cols	Returns number of rows or columns in the table		
tbl.column(name)	Returns values of that column as an array		
tbl.select(col1, col2,)	Returns table of only those columns *col1, col2 can be either column indices or column names (in the form of strings)		
tbl.drop(col1, col2,)	Returns table without those columns		
<pre>tbl.sort(col_name) tbl.sort(col_name, descending=True)</pre>	Returns table sorted based on specified column		
tbl.show(n)	Returns first n rows of table		
tbl.take(row_indices)	Returns table with only specified row index or indices (input as an array)		

Table Methods (cont.)

Method	Function	
tbl.where(col_name, condition)	Returns new table with all rows satisfying condition	

*Note that the tbl.where method takes in a column name and a condition, and spits back all rows of the table that satisfy that condition. The condition can be a value (e.g. a string or an integer), in which case the method checks for equality. The condition can also be a predicate. See next slide for a list of predicates.

Table Predicates

Predicate	Description			
are.equal_to(Z)	Equal to Z			
are.above(x)	Greater than x			
are.above_or_equal_to(x)	Greater than or equal to x			
are.below(x)	Less than x			
are.below_or_equal_to(x)	Less than or equal to x			
are.between(x, y)	Greater than or equal to x, and less than y			
are.strictly_between(x, y)	Greater than x and less than y			
are.between_or_equal_to(x, y)	Greater than or equal to x, and less than or equal to y			
are.containing(S)	Contains the string S			

Table Visualization

- Relation between two numerical variables:
 - Scatter plots
 - Line graphs (often used to study change over time)
 - Both axes are numerical
- Distribution of one variable
 - Categorical: bar charts
 - Numerical values doesn't necessarily mean numerical variable
 - Remember census sex codes (0, 1, 2 for genders)
 - Numerical: histograms

Table Visualization Concept Check

- 1. You have collected data on the weights, heights, year of birth, and breeds of all dogs in your neighborhood. What kind(s) of data did you collect?
- 2. You want to see the relationship between dog weights and heights. What do you use to display your data?
- 3. What about for the distribution of years of birth?

Histograms

- Displays the distribution of a numerical variable
 - E.g. variable = ages
- Start with the axes!
- X-axis:
 - Bins are groupings of the numerical variable into continuous intervals
 - E.g. ages could be split into three bins: 0-45, 45-70, 70-120
 - Note that bin widths may not be equal
 - Bins are left inclusive, right exclusive [a, b)

Histograms (cont.)

- Y-axis:
 - Not proportion of items in bin but proportion of items relative to width of bin (density)
 - From textbook: **area of bar = height of bar x width of bar**
 - So:
 - Height of bar = area of bar / width of bar
- Think of each bar's area as representing the % of items in the bin
- Why not just plot counts?
 - Unequal bin widths

Histograms - Conceptual Check

- 1. How do we find what percent of items fall within a bin?
- 2. What does the y-axis of a histogram measure?
- 3. Why don't we use counts for the y-axis for a histogram?
- 4. What does the area of a histogram bar represent?

Histograms - Numerical Check

Bin (height in cm)	0-70	70-100	100-190	190-200	200-250
Height (proportion per cm)	0.00343	0.007	0.0047	?	0.0002

Given the above table of bin widths and heights for a particular histogram:

- 1. Set up the equation to calculate the missing height. No need to solve.
- 2. Let's say we redraw the histogram with different bins but with heights still measured in cm. One of the bars has a height of 0.0078 units of proportion per cm. If you re-measured the heights in meters instead of centimeters, what is the new height of the bar?