DIFFERENTIAL PRIVACY Machine Learning Meetup

Manuel Haußmann

February 9, 2017

TABLE OF CONTENTS

- 1 Introduction
- 2 DIFFERENTIAL PRIVACY
 - Laplace Mechanism
 - Exponential Mechanism
- 3 Conclusion
- 4 Examples
 - Logistic Regression
 - Reusable Holdout
 - Privacy-Preserving Bayesian Data Analysis

Outline for section 1

- Introduction
- 2 DIFFERENTIAL PRIVACY
 - Laplace Mechanism
 - Exponential Mechanism
- 3 Conclusion
- 4 Examples
 - Logistic Regression
 - Reusable Holdout
 - Privacy-Preserving Bayesian Data Analysis

In machine learning the quality of the ingredients, the quality of the data provided, has a massive impact on the intelligence that is produced.

- Neil Lawrence¹

• Data are our resource → the more we have the better(?)

Manuel Haußmann

¹ http://www.theguardian.com/media-network/2015/dec/14/ openai-benefit-humanity-data-sharing-elon-musk-peter-thiel

In machine learning the quality of the ingredients, the quality of the data provided, has a massive impact on the intelligence that is produced.

- Neil Lawrence¹

• Data are our resource \rightarrow the more we have the better(?)

• What about privacy?

MANUEL HAUBMANN

¹ http://www.theguardian.com/media-network/2015/dec/14/openai-benefit-humanity-data-sharing-elon-musk-peter-thiel

In machine learning the quality of the ingredients, the quality of the data provided, has a massive impact on the intelligence that is produced.

- Neil Lawrence¹

- Data are our resource \rightarrow the more we have the better(?)
- What about privacy? We want fair trade ingredients

What if we just anonymize the data?

MANUEL HAUGMANN

http://www.theguardian.com/media-network/2015/dec/14/openai-benefit-humanity-data-sharing-elon-musk-peter-thiel

 Medical Records (Sweeney, 1997), (Sweeney, Abu, Winn, 2013)...

²See e.g. https://research.neustar.biz/2014/09/15/

- Medical Records (Sweeney, 1997), (Sweeney, Abu, Winn, 2013)...
- AOL Search Data
 3 Months worth of search data released

²See e.g. https://research.neustar.biz/2014/09/15/

- Medical Records (Sweeney, 1997), (Sweeney, Abu, Winn, 2013)...
- AOL Search Data
 3 Months worth of search data released
- Netflix Challenge

²See e.g. https://research.neustar.biz/2014/09/15/

- Medical Records (Sweeney, 1997), (Sweeney, Abu, Winn, 2013)...
- AOL Search Data
 3 Months worth of search data released
- Netflix Challenge
- New York Taxi Data²

²See e.g. https://research.neustar.biz/2014/09/15/

ANONYMIZATION GONE WRONG

- Medical Records (Sweeney, 1997), (Sweeney, Abu, Winn, 2013)...
- AOL Search Data 3 Months worth of search data released
- Netflix Challenge
- New York Taxi Data²
- ⇒ Linkage Attacks

²See e.g. https://research.neustar.biz/2014/09/15/

- Medical Records (Sweeney, 1997), (Sweeney, Abu, Winn, 2013)...
- AOL Search Data
 3 Months worth of search data released
- Netflix Challenge
- New York Taxi Data²
- \Rightarrow Linkage Attacks \Rightarrow Data cannot be fully Anonymized and Remain Useful

See e.g. https://research.neustar.biz/2014/09/15/

• What if we just anonymize the data?

- What if we just anonymize the data?
- How about we only allow aggregate over large groups of individuals?

- What if we just anonymize the data?
- How about we only allow aggregate over large groups of individuals?
- How about we place a guy in the middle who checks the queries?

- What if we just anonymize the data?
- How about we only allow aggregate over large groups of individuals?
- How about we place a guy in the middle who checks the queries?
- How about we just release summary statistics?

- What if we just anonymize the data?
- How about we only allow aggregate over large groups of individuals?
- How about we place a guy in the middle who checks the queries?
- How about we just release summary statistics?
- Then we just release "ordinary" facts?

- What if we just anonymize the data?
- How about we only allow aggregate over large groups of individuals?
- How about we place a guy in the middle who checks the queries?
- How about we just release summary statistics?
- Then we just release "ordinary" facts?
- Well, as long as most people are protected, who cares about "a few"?

My data should have no impact on the released results

- My data should have no impact on the released results
- An attacker, shouldn't be able to learn anything new about me

- My data should have no impact on the released results
- An attacker, shouldn't be able to learn anything new about me
- Demand by Tore Dalenius in 1977: Anything that can be learned about a respondent from the statistical database, should be learnable without access to the database.

From having access to a study, Alice should not be able to figure out whether Bob participated or not

- My data should have no impact on the released results
- An attacker, shouldn't be able to learn anything new about me
- Demand by Tore Dalenius in 1977: Anything that can be learned about a respondent from the statistical database, should be learnable without access to the database.

From having access to a study, Alice should not be able to figure out whether Bob participated or not

⇒ Randomization is the key

AN EXAMPLE: RANDOMIZED RESPONSE

Participating in a Study on whether or not you did X last week you are told to use the following procedure for answering:

- Flip a coin
- If tails, respond with the truth
- Else, flip a second coin
 - If tails: Respond "Yes"
 - If head: Respond "No"

Expected Number of "Yes" answers: $0.25 \cdot (1 - p) + 0.75 \cdot p = 0.25 + p/2$

MANUEL HAUSMANN DIFFERENTIAL PRIVACY February 9, 2017

AN EXAMPLE: RANDOMIZED RESPONSE

OUTLINE FOR SECTION 2

- 1 Introduction
- 2 DIFFERENTIAL PRIVACY
 - Laplace Mechanism
 - Exponential Mechanism
- 3 Conclusion
- 4 Examples
 - Logistic Regression
 - Reusable Holdout
 - Privacy-Preserving Bayesian Data Analysis

DEFINITION: A randomized mechanism \mathcal{M} is called ε -differentially private, if for all $S \subseteq \text{Range}(\mathcal{M})$ and for all neighboring databases $\mathcal{D}_1, \mathcal{D}_2$:

$$P(\mathcal{M}(D_1) \in S) \le \exp(\varepsilon)P(\mathcal{M}(D_2) \in S)$$

DEFINITION: A randomized mechanism \mathcal{M} is called (ε, δ) -differentially private, if for all $S \subseteq \text{Range}(\mathcal{A})$ and for all neighboring databases $\mathcal{D}_1, \mathcal{D}_2$:

$$P(\mathcal{M}(\mathcal{D}_1) \in S) \le \exp(\varepsilon)P(\mathcal{M}(\mathcal{D}_2) \in S) + \delta$$

DEFINITION: A randomized mechanism \mathcal{M} is called (ε, δ) -differentially private, if for all $S \subseteq \text{Range}(\mathcal{A})$ and for all neighboring databases $\mathcal{D}_1, \mathcal{D}_2$:

$$P(\mathcal{M}(\mathcal{D}_1) \in S) \le \exp(\varepsilon)P(\mathcal{M}(\mathcal{D}_2) \in S) + \delta$$

Note: $\exp(\varepsilon) \approx 1 + \varepsilon$

DEFINITION: A randomized mechanism \mathcal{M} is called (ε, δ) -differentially private, if for all $S \subseteq \text{Range}(\mathcal{A})$ and for all neighboring databases $\mathcal{D}_1, \mathcal{D}_2$:

$$P(\mathcal{M}(\mathcal{D}_1) \in S) \le \exp(\varepsilon)P(\mathcal{M}(\mathcal{D}_2) \in S) + \delta$$

Note: $\exp(\varepsilon) \approx 1 + \varepsilon$

Probability that privacy loss does not exceed ε is at most $1-\delta$

NEIGHBORING DATABASE?

Generally two different interpretations:

- \mathcal{D}_1 can be obtained from \mathcal{D}_2 by adding or removing one entry (unbounded DP)
- \mathcal{D}_1 can be obtained from \mathcal{D}_2 by changing one entry (bounded DP)

Example: Mean Salary in a company: We don't want to hide the fact that Bob works there, only how much he earns

Post-Processing Let f be some arbitrary randomized mapping and $\mathcal M$ be (ε,δ) -DP, then $f\circ\mathcal M$ is (ε,δ) -DP.

Post-Processing Let f be some arbitrary randomized mapping and $\mathcal M$ be (ε,δ) -DP, then $f\circ\mathcal M$ is (ε,δ) -DP.

Group privacy. Any $(\varepsilon,0)\text{-DP}$ mechanism is $(k\varepsilon,0)\text{-DP}$ for groups of size k

Post-Processing Let f be some arbitrary randomized mapping and $\mathcal M$ be (ε,δ) -DP, then $f\circ\mathcal M$ is (ε,δ) -DP.

Group privacy Any $(\varepsilon,0)$ -DP mechanism is $(k\varepsilon,0)$ -DP for groups of size k Composition Composition of k DP mechanisms, where \mathcal{M}_i is (ε_i,δ_i) -DP is $(\sum_i \varepsilon_i,\sum_i \delta_i)$ -DP

Post-Processing Let f be some arbitrary randomized mapping and $\mathcal M$ be (ε,δ) -DP, then $f\circ\mathcal M$ is (ε,δ) -DP.

Group privacy Any $(\varepsilon,0)$ -DP mechanism is $(k\varepsilon,0)$ -DP for groups of size k Composition Composition of k DP mechanisms, where \mathcal{M}_i is (ε_i,δ_i) -DP is $(\sum_i \varepsilon_i, \sum_i \delta_i)$ -DP

Note: Composition and Group privacy are not the same! (We can get stronger results for Composition)

THEOREM:For all $\varepsilon, \delta, \delta' \geq 0$, the class of (ε, δ) -DP mechanisms, satisfies $(\varepsilon', k\delta + \delta')$ -DP under k-fold adaptive composition for

$$\varepsilon' = \sqrt{2k\ln(1/\delta')}\varepsilon + k\varepsilon(e^{\varepsilon} - 1)$$

 Protection against linkage attacks (are in general unaffected by auxiliary information)

- Protection against linkage attacks (are in general unaffected by auxiliary information)
- Independent of an adversaries computational power

PROPERTIES OF DP

- Protection against linkage attacks (are in general unaffected by auxiliary information)
- Independent of an adversaries computational power
- Quantification of Privacy Loss

AN EXAMPLE: RANDOMIZED RESPONSE

CLAIM: The Randomized Response scheme from earlier is $(\ln 3,0)$ differentially private.

Proof:

$$\frac{P(\mathsf{Response} = \mathsf{"Yes"}|\mathsf{Truth} = \mathsf{"Yes"})}{P(\mathsf{Response} = \mathsf{"Yes"}|\mathsf{Truth} = \mathsf{"No"})} = \frac{3/4}{1/4} = \frac{P(\mathsf{Response} = \mathsf{"No"}|\mathsf{Truth} = \mathsf{"No"})}{P(\mathsf{Response} = \mathsf{"No"}|\mathsf{Truth} = \mathsf{"Yes"})} = 3$$

15 / 51

Laplace Mechanism

QUICK INTRO TO THE LAPLACE DISTRIBUTION

$$\mathcal{L}ap(x|\mu, b) = \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right)$$

 $\mathbb{E}[x] = \mu \quad \text{var}[x] = 2b^2$

DEFINITION: The ℓ_1 sensitivity of a function f is:

$$\Delta f = \max_{x_1, x_2} |f(x_1) - f(x_2)|_1$$

for two neighboring datasets x_1, x_2

• Measure of how much a single person can influence the outcome.

DEFINITION: The ℓ_1 sensitivity of a function f is:

$$\Delta f = \max_{x_1, x_2} |f(x_1) - f(x_2)|_1$$

for two neighboring datasets x_1, x_2

- Measure of how much a single person can influence the outcome.
- \bullet Δ for query: "How many Mathematicians?"

Definition: The ℓ_1 sensitivity of a function f is:

$$\Delta f = \max_{x_1, x_2} |f(x_1) - f(x_2)|_1$$

for two neighboring datasets x_1, x_2

- Measure of how much a single person can influence the outcome.
- ullet Δ for query: "How many Mathematicians?"
- ullet Δ for query: "How many siblings?"

DEFINITION: The ℓ_1 sensitivity of a function f is:

$$\Delta f = \max_{x_1, x_2} |f(x_1) - f(x_2)|_1$$

for two neighboring datasets x_1, x_2

- Measure of how much a single person can influence the outcome.
- Δ for query: "How many Mathematicians?"
- Δ for query: "How many siblings?"
- Δ for query: "Histogram of salary/income?"

MANUEL HAUGMANN DIFFERENTIAL PRIVACY FEBRUARY 9, 2017 18 / 51

LAPLACE MECHANISM

DEFINITION: Given any function f, the *Laplace Mechanism* is defined as: $\mathcal{M}_L(x, f(\cdot), \varepsilon) = f(x) + (Y_1, ..., Y_k)$ where $Y_i \sim \mathcal{L}ap(0, \Delta f/\varepsilon)$ (iid)

THEOREM: The Laplace Mechanism preserves $(\varepsilon, 0)$ -DP.

PROOF: Let x_1, x_2 be two neighboring datasets, then

$$\begin{split} \frac{p_{x_1}(z)}{p_{x_2}(z)} &= \frac{\exp\left(-\frac{\varepsilon|f(x_1)-z|}{\Delta f}\right)}{\exp\left(-\frac{\varepsilon|f(x_2)-z|}{\Delta f}\right)} \\ &= \exp\left(\frac{\varepsilon(|f(x_2)-z|-|f(x_1)-z|)}{\Delta f}\right) \\ &\leq \exp\left(\frac{\varepsilon|f(x_2)-f(x_1)|}{\Delta f}\right) \leq \exp(\varepsilon) \end{split}$$

EXAMPLE: LAPLACE MECHANISM

Situation: Study of Drug Usage among Cryptographers.

A QUICK DETOUR: LAPLACE VS GAUSS

What does the Gaussian Version look like? **DEFINITION:** ℓ_2 sensitivity of a function f is

$$\Delta_2 f = \max_{x_1, x_2} ||f(x) - f(y)||_2$$

where x_1, x_2 are neighboring datasets.

A QUICK DETOUR: LAPLACE VS GAUSS

What does the Gaussian Version look like?

Definition: ℓ_2 sensitivity of a function f is

$$\Delta_2 f = \max_{x_1, x_2} ||f(x) - f(y)||_2$$

where x_1, x_2 are neighboring datasets.

THEOREM: Let $\varepsilon \in (0,1)$ be arbitrary. For $c^2>2\ln(1.25/\delta)$, the Gaussian Mechanism with parameter $\sigma \geq c\Delta_2 f/\varepsilon$ is (ε,δ) -DP

What about queries like:

- "Most frequent bachelor degree in this room?"
- "Most frequent eye color?"

EXPONENTIAL MECHANISM

DEFINITION: The *Exponential Mechanism* $A_E(x, u, \mathcal{R})$, selects and outputs an element $r \in \mathcal{R}$ with probability proportional to $\exp\left(\frac{\varepsilon u(x,r)}{2\Delta u}\right)$, where u is a suitable utility/scoring function

THEOREM: The *Exponential Mechanism* preserves $(\varepsilon, 0)$ -differential privacy **Proof**: Analogous to Laplace

MANUEL HAUGMANN DIFFERENTIAL PRIVACY FEBRUARY 9, 2017 24 / 51

So far: We give Alice our function f and she returns a noisy result to use. Can we do this offline on our own?

• There is work on *Synthetic Data* that can be published and freely operated on, but...

So far: We give Alice our function f and she returns a noisy result to use. Can we do this offline on our own?

- There is work on *Synthetic Data* that can be published and freely operated on, but...
- ... need to specify which kind of questions will be asked beforehand

So far: We give Alice our function f and she returns a noisy result to use. Can we do this offline on our own?

- There is work on *Synthetic Data* that can be published and freely operated on, but...
- ... need to specify which kind of questions will be asked beforehand
- ... only certain computations can be done with a reasonable accuracy

So far: We give Alice our function f and she returns a noisy result to use. Can we do this offline on our own?

- There is work on *Synthetic Data* that can be published and freely operated on, but...
- ... need to specify which kind of questions will be asked beforehand
- ... only certain computations can be done with a reasonable accuracy
- Maybe intermediate approach? Spend part of your privacy budget on looking at the data and the rest to build a synthetic dataset

So far: We give Alice our function f and she returns a noisy result to use. Can we do this offline on our own?

- There is work on *Synthetic Data* that can be published and freely operated on, but...
- ... need to specify which kind of questions will be asked beforehand
- ... only certain computations can be done with a reasonable accuracy
- Maybe intermediate approach? Spend part of your privacy budget on looking at the data and the rest to build a synthetic dataset
- Looks so far like work in progress

A SIMPLE AND PRACTICAL ALGORITHM FOR DIFFERENTIAL PRIVACY (HARDT, LIGETT, McSherry,NIPS 2012)

For i = 1, ..., T

① Exponential Mechanism: Sample $q_i \in Q$ using EM, parametrized with $\varepsilon/2T$ and score function

$$s_i(D, q) = |q_i(A_{i-1}) - q(D)|$$

- ② Laplace Mechanism: Let $m_i = q_i(D) + \mathcal{L}ap(2T/\varepsilon)$
- Multiplicative Weights:

$$A_i(x) \propto A_{i-1}(x) \exp(q_i(x) \cdot (m_i - q_i(A_{i-1}))/2n)$$

Return $A = avgA_i$

A SIMPLE AND PRACTICAL ALGORITHM FOR DIFFERENTIAL PRIVACY (HARDT, LIGETT, McSherry,NIPS 2012)

For i = 1, ..., T

① Exponential Mechanism: Sample $q_i \in Q$ using EM, parametrized with $\varepsilon/2T$ and score function

$$s_i(D, q) = |q_i(A_{i-1}) - q(D)|$$

- ② Laplace Mechanism: Let $m_i = q_i(D) + \mathcal{L}ap(2T/\varepsilon)$
- Multiplicative Weights:

$$A_i(x) \propto A_{i-1}(x) \exp(q_i(x) \cdot (m_i - q_i(A_{i-1}))/2n)$$

Return $A = avgA_i$

PROOF OF PRIVACY:

Manuel Haußmann Differential Privacy February 9, 2017

26 / 51

A SIMPLE AND PRACTICAL ALGORITHM FOR DIFFERENTIAL PRIVACY (HARDT, LIGETT, McSherry,NIPS 2012)

For i = 1, ..., T

① Exponential Mechanism: Sample $q_i \in Q$ using EM, parametrized with $\varepsilon/2T$ and score function

$$s_i(D, q) = |q_i(A_{i-1}) - q(D)|$$

- ② Laplace Mechanism: Let $m_i = q_i(D) + \mathcal{L}ap(2T/\varepsilon)$
- Multiplicative Weights:

$$A_i(x) \propto A_{i-1}(x) \exp(q_i(x) \cdot (m_i - q_i(A_{i-1}))/2n)$$

Return $A = avgA_i$

Proof of Privacy:
$$\varepsilon/(2T) + \varepsilon/(2T) = \varepsilon$$

Manuel Haußmann Differential Privacy February 9, 2017

26 / 51

SUBSAMPLE AND AGGREGATE

[Figure 7.1 from (Dwork, Roth, 2014)]

What about ε ?

Let's say Bob will be in $k=10000~(\varepsilon_0,0)$ -DP databases. Binding his cumulative lifetime privacy loss at $\varepsilon=1$ with probability $(1-e^{-32})$ we need $\varepsilon_0=1/801$ for each database.

• How about a ε per study?

What about ε ?

Let's say Bob will be in $k=10000~(\varepsilon_0,0)$ -DP databases. Binding his cumulative lifetime privacy loss at $\varepsilon=1$ with probability $(1-e^{-32})$ we need $\varepsilon_0=1/801$ for each database.

- How about a ε per study?
- Or ε per researcher?

What about ε ?

Let's say Bob will be in $k=10000~(\varepsilon_0,0)$ -DP databases. Binding his cumulative lifetime privacy loss at $\varepsilon=1$ with probability $(1-e^{-32})$ we need $\varepsilon_0=1/801$ for each database.

- How about a ε per study?
- Or ε per researcher?
- Allow a total budget of ε for the dataset and bet on innovation to optimize use of this resource.

RESULTS AND EXTENSIONS

- What can we learn privately?, (Kasivisvanathan, et al. 2008) "Therefore, almost anything learnable is learnable privately: specifically, if a concept class is learnable by a (non-private) algorithm with polynomial sample complexity and output size, then it can be learned privately using a polynomial number of samples"
- Concentrated Differential Privacy, (Dwork and Rothblum, 2016s) Relaxation to (ε, δ) , with higher accuracy, while preserving composition results

DP & ML

- Very broad literature: Cryptography & Security, Statistics, Machine Learning, some game theoretic approach etc.
- Many algorithms have a privatized version of them
- DP & ML share a similar goal: Learn information about the distribution of the data, without depending too much/being sensitive on individual data points
- Where to introduce noise?
 - perturb input \Rightarrow similar to our beginning example
 - perturb objective ⇒ can be seen as a kind of regularization
 - perturb output ⇒ what we have done so far

MANUEL HAUGMANN DIFFERENTIAL PRIVACY February 9, 2017 30 / 51

Outline for section 3

- 1 Introduction
- 2 DIFFERENTIAL PRIVACY
 - Laplace Mechanism
 - Exponential Mechanism
- 3 Conclusion
- 4 Examples
 - Logistic Regression
 - Reusable Holdout
 - Privacy-Preserving Bayesian Data Analysis

Conclusion

- Still a lot of open questions (how to choose ε , how to get rid of the intermediary curator, better compositions for reducing privacy leakage, popular implementations ...)
- But a very fast growing field (given that term and definition stem from 2006.)
- Differential Privacy looks like a very promising way to conduct privacy preserving ML
- See, No Free Lunch in Data Privacy (Kifer and Machanyajjhala, 2011) for a critical discussion of DP
- Data Trusts?³

32 / 51

³http://inverseprobability.com/2016/05/29/data-trusts DIFFERENTIAL PRIVACY

Main Sources

- "A Firm Foundation for Private Data Analysis", (Dwork, 2011)
- "Algorithmic Foundations of Differential Privacy", by Cynthia Dwork and Aaron Roth
- "Differential Privacy and Learning: The Tools, The Results, and The Frontier", NIPS Tutorial, 2014 by Katrina Ligett

Outline for section 4

- 1 Introduction
- 2 DIFFERENTIAL PRIVACY
 - Laplace Mechanism
 - Exponential Mechanism
- 3 Conclusion
- 4 Examples
 - Logistic Regression
 - Reusable Holdout
 - Privacy-Preserving Bayesian Data Analysis

Privacy Preserving Logistic Regression

Chaudhuri, Monteleoni, NIPS 2008

Simple approach using that the sensitivity of logistic regression is $2/n\lambda$

- Compute w^* by the usual regularized logistic regression on $(x_1, y_1), ..., (x_n, y_n)$
- ② pick noise vector $\eta \sim \mathcal{L}ap(2/(n\lambda\varepsilon))$
- Return $w^* + \eta$

DIFFERENTIAL PRIVACY FEBRUARY 9, 2017 35 / 51

PRIVACY PRESERVING LOGISTIC REGRESSION

Chaudhuri, Monteleoni, NIPS 2008

More sophisticated

- ① Pick $b \sim \mathcal{L}ap(1/\varepsilon)$
- ② Given $(x_1, y_y), ..., (x_n, y_n)$ and regularizer λ , compute

$$w^* = \arg\min_{w} \frac{1}{2} \lambda w^\top w + \frac{b^\top w}{n} + \frac{1}{n} \sum_{i} \log(1 + \exp(-y_i w^\top x_i))$$

Return w*

REUSABLE HOLDOUT

Generalization in Adaptive Data Analysis and Holdout Reuse (Dwork et al., NIPS 2015)

Ideal Situation4:

Standard holdout method

⁴Image due to Moritz Hardt via http://googleresearch.blogspot.de/ 2015/08/the-reusable-holdout-preserving.html

Generalization in Adaptive Data Analysis and Holdout Reuse (Dwork et al., NIPS 2015)

Suggested Solution⁵:

Reusable holdout method

⁵Image due to Moritz Hardt via http://googleresearch.blogspot.de/2015/08/the-reusable-holdout-preserving.html

GENERALIZATION IN ADAPTIVE DATA ANALYSIS AND HOLDOUT REUSE (Dwork et al., NIPS 2015)

Input: Training set S_t , Holdout set S_h , threshold T, noise rate σ , Budget B

sample $\gamma \sim \mathcal{L}ap(2\sigma)$; $\hat{T} \leftarrow T + \gamma$ and for each guery ϕ :

- **1** if B < 1 return \emptyset
- else
 - ① sample $\eta \sim \mathcal{L}ap(4\sigma)$
 - \circ if $|\mathcal{E}_{S_n}[\phi] \mathcal{E}_{S_n}[\phi]| > \hat{T} + \eta$
 - sample $\xi \sim \mathcal{L}ap(\sigma), \gamma \sim \mathcal{L}ap(2\sigma)$
 - \bullet $B \leftarrow B 1$. $\hat{T} \leftarrow T + \gamma$
 - output $\mathcal{E}_{S_k}[\phi] + \xi$
 - 3 else output $\mathcal{E}_{S_{\bullet}}[\phi]$

MANUEL HAUGMANN DIFFERENTIAL PRIVACY FEBRUARY 9, 2017 39 / 51

GENERALIZATION IN ADAPTIVE DATA ANALYSIS AND HOLDOUT REUSE (DWORK ET AL., NIPS 2015)

[(Dwork et al., 2015)]

MANUEL HAUGMANN DIFFERENTIAL PRIVACY February 9, 2017 40 / 51

GENERALIZATION IN ADAPTIVE DATA ANALYSIS AND HOLDOUT REUSE (DWORK ET AL., NIPS 2015)

[(Dwork et al., 2015)]

MANUEL HAUGMANN DIFFERENTIAL PRIVACY February 9, 2017 41 / 51

(Foulds, Geumlek, Welling, Chaudhuri, UAI 2016)

Bayes as we know and love him

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)}$$

• See posterior as EM with utility $u(X, \theta) = \log P(X, \theta)$

(Foulds, Geumlek, Welling, Chaudhuri, UAI 2016)

Bayes as we know and love him

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)}$$

- See posterior as EM with utility $u(X, \theta) = \log P(X, \theta)$
- Draw θ from

$$f(\theta; X, \varepsilon) \propto \exp\left(\frac{\varepsilon \log P(\theta, X)}{2\Delta \log P(\theta, X)}\right)$$

MANUEL HAUBMANN DIFFERENTIAL PRIVACY FEBRUARY 9, 2017 42 / 51

(Foulds, Geumlek, Welling, Chaudhuri, UAI 2016)

Bayes as we know and love him

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)}$$

- See posterior as EM with utility $u(X, \theta) = \log P(X, \theta)$
- Draw θ from

$$f(\theta; X, \varepsilon) \propto \exp\left(\frac{\varepsilon \log P(\theta, X)}{2\Delta \log P(\theta, X)}\right)$$

Sensitivity:

$$\Delta \log P(X, \theta) = \max \left| \log P(\theta, X^{(1)}) - \log P(\theta, X^{(2)}) \right|$$
$$= \max_{x, x', \theta} \left| \log P(x'|\theta) - \log P(x|\theta) \right|$$

Manuel Haußmann Differential Privacy

42 / 51

(Foulds, Geumlek, Welling, Chaudhuri, UAI 2016)

• **THEOREM:** If $\log P(X, \theta) \leq C$, releasing one sample from the posterior distribution $P(\theta|X)$ with any prior is 2C-DP

(Foulds, Geumlek, Welling, Chaudhuri, UAI 2016)

- **THEOREM:** If $\log P(X, \theta) \leq C$, releasing one sample from the posterior distribution $P(\theta|X)$ with any prior is 2C-DP
- Can rewrite f as Boltzman distribution

$$f(\theta; X, \varepsilon) \propto \exp\left(\frac{\varepsilon \log P(\theta, X)}{2\Delta \log P(\theta, X)}\right)$$

$$\propto \exp\left(\frac{-E(\theta)}{T}\right)$$

with
$$E(\theta) = -u(X, \theta) = -\log P(\theta, X)$$
, $T = \frac{2\Delta u(X, \theta)}{\varepsilon}$

(Foulds, Geumlek, Welling, Chaudhuri, UAI 2016)

Note:

- $\varepsilon=0$ corresponds to sampling from uniform distribution \Rightarrow perfect privacy
- $\varepsilon = 2\Delta \log P(\theta, X)$ gives us samples from the posterior
- $\varepsilon \to \infty$ sample most likely θ (cap it at '=')
- For privacy budget $\varepsilon' \geq 2q\Delta \log P(\theta,X)$ with $q \in \mathbb{N}$, can draw q posterior samples within our budget

(Foulds, Geumlek, Welling, Chaudhuri, UAI 2016)

Note:

- $\varepsilon=0$ corresponds to sampling from uniform distribution \Rightarrow perfect privacy
- $\varepsilon = 2\Delta \log P(\theta, X)$ gives us samples from the posterior
- $\varepsilon \to \infty$ sample most likely θ (cap it at '=')
- For privacy budget $\varepsilon' \geq 2q\Delta \log P(\theta,X)$ with $q \in \mathbb{N}$, can draw q posterior samples within our budget

(Foulds, Geumlek, Welling, Chaudhuri, UAI 2016)

What can we say when working with the exponential family?

Exp Family:
$$P(x|\theta) = h(x)g(\theta) \exp(\theta^{\top}S(x))$$

Conj Prior:
$$P(\theta|\chi,\alpha) = f(\chi,\alpha)g(\theta)^{\alpha} \exp(\alpha\theta^{\top}\chi)$$

$$\text{Posterior:} \quad \textit{P}(\theta|\textit{X},\chi,\alpha) \propto \textit{g}(\theta)^{\textit{N}+\alpha} \exp\left(\theta^\top \left(\sum_{\textit{i}} \textit{S}(\textit{x}_{\textit{i}}) + \alpha\chi\right)\right)$$

with a sensitivity of

$$\Delta \log P(\theta, X) = \sup |\theta^{\top} (S(x') - S(x)) + \log h(x') - \log h(x)|$$

(Foulds, Geumlek, Welling, Chaudhuri, UAI 2016)

But:

• Data interacts only through the sufficient statistic $S(X) = \sum_i S(x_i)$.

(Foulds, Geumlek, Welling, Chaudhuri, UAI 2016)

But:

- Data interacts only through the sufficient statistic $S(X) = \sum_i S(x_i)$.
- Use Laplace mechanism to get privacy instead:

(Foulds, Geumlek, Welling, Chaudhuri, UAI 2016)

But:

- Data interacts only through the sufficient statistic $S(X) = \sum_i S(x_i)$.
- Use Laplace mechanism to get privacy instead:

•
$$\hat{S}(X) = \text{proj}(S(X) + (Y_1, ..., Y_N))$$

(Foulds, Geumlek, Welling, Chaudhuri, UAI 2016)

But:

- Data interacts only through the sufficient statistic $S(X) = \sum_i S(x_i)$.
- Use Laplace mechanism to get privacy instead:
 - $\hat{S}(X) = \text{proj}(S(X) + (Y_1, ..., Y_N))$
 - $Y_i \sim \mathcal{L}ap(\Delta S(X)/\varepsilon)$

(Foulds, Geumlek, Welling, Chaudhuri, UAI 2016)

But:

- Data interacts only through the sufficient statistic $S(X) = \sum_i S(x_i)$.
- Use Laplace mechanism to get privacy instead:
 - $\hat{S}(X) = \text{proj}(S(X) + (Y_1, ..., Y_N))$
 - $Y_i \sim \mathcal{L}ap(\Delta S(X)/\varepsilon)$
- where $\Delta S(X) = \sup_{x,x'} ||S(x') S(x)||_1$

ON THE THEORY AND PRACTICE OF PRIVACY-PRESERVING BDA

(Foulds, Geumlek, Welling, Chaudhuri, UAI 2016)

But:

- Data interacts only through the sufficient statistic $S(X) = \sum_i S(x_i)$.
- Use Laplace mechanism to get privacy instead:
 - $\hat{S}(X) = \text{proj}(S(X) + (Y_1, ..., Y_N))$
 - $Y_i \sim \mathcal{L}ap(\Delta S(X)/\varepsilon)$
- where $\Delta S(X) = \sup_{x,x'} ||S(x') S(x)||_1$
- Example: beta posterior has S(x) = [x, 1 x] giving us a sensitivity of 2

MANUEL HAUGMANN DIFFERENTIAL PRIVACY FEBRUARY 9, 2017 47 / 51

(Foulds, Geumlek, Welling, Chaudhuri, UAI 2016)

MANUEL HAUGMANN DIFFERENTIAL PRIVACY February 9, 2017 48 / 51

(Foulds, Geumlek, Welling, Chaudhuri, UAI 2016)

MANUEL HAUGMANN DIFFERENTIAL PRIVACY February 9, 2017 49 / 51

50 / 51

Conclusion

- Still a lot of open questions (how to choose ε , how to get rid of the intermediary curator, better compositions for reducing privacy leakage, popular implementations ...)
- But a very fast growing field (given that term and definition stem from 2006.)
- Differential Privacy looks like a very promising way to conduct privacy preserving ML
- See, No Free Lunch in Data Privacy (Kifer and Machanvajjhala, 2011) for a critical discussion of DP
- Data Trusts?⁶

Haußmann Differential Privacy February 9, 2017

⁶http://inverseprobability.com/2016/05/29/data-trusts

MAIN SOURCES

- "A Firm Foundation for Private Data Analysis", (Dwork, 2011)
- "Algorithmic Foundations of Differential Privacy", by Cynthia Dwork and Aaron Roth
- "Differential Privacy and Learning: The Tools, The Results, and The Frontier", NIPS Tutorial, 2014 by Katrina Ligett