Uncertainty-aware Self-training for Few-shot Text Classification

Subhabrata Mukherjee, Ahmed Hassan Awadallah NeurIPS 2020

14th October, 2020

Summary

- Problem: Fine-tuning requires 1000s of labeled samples
- Baseline: Self-training, Backtranslation
- Cons: Self-training focuses mostly on easy samples (little to gain)
 - Ignores hard samples (lot to gain)
- Challenge: Hard samples could be noisy or too difficult to learn from
 - Not trivial to generate uncertainty estimates for non-probabilistic models
- Proposal: Leverage bayesian deep learning to obtain uncertainty estimates of the teacher for pseudo-labeling
- Result: 20-30 labeled samples per class approx 3% of fine-tuning 1000s

Background

- $D_1 = \{x_i, y_i\}$
- n labeled instances
- y_i being the class label for x_i
- $x_i = \{x_{i1}, ..., x_{im}\}$, sequence of m tokens
- $D_u = \{x_i\}$, N unlabeled instances
- n << N

Self-training

- Subset $S_u \subset D_u$
- Subset selection based on confidence scores of the teacher model

$$min_W \mathbb{E}_{x_l,y_l \in D_l}[-log \ p(y_l|x_l;W)] + \lambda \mathbb{E}_{x_u \in S_u,S_u \subset D_u} \mathbb{E}_{y \sim p(y|x_u;W^*)}[-log \ p(y|x_u;W)]$$

Bayesian Neural Network

- Weights are random variables
 - Prior distribution over the parameters
- Neural net inference

$$P(y = c | x, W) = softmax(f^{W}(x))$$

- Posterior distribution, p(W|X,Y)
- Bayesian inference

$$p(y = c|\dot{x}) = \int_{W} p(y = c|f^{W}(x))p(W|X,Y)d\dot{W}$$

• Surrogate distribution, $q_{\theta}(W)$ approx. by dropout dist. $\{\widetilde{W}_t\}_{t=1}^{T} \sim q_{\theta}(W)$

p(y=3)

0.33

0.3

0.01

p(y=2)

0.33

0.2

0.01

1 0.33

2 0.5

0.98

$$p(y = c|x) \approx p(y = c|f^{W}(x))q_{\theta}(W)dW$$

$$\approx \frac{1}{T} \sum_{t=1}^{T} p(y = c|f^{\widetilde{W}_{t}}(x)) = \frac{1}{T} \sum_{t=1}^{T} softmax(f^{\widetilde{W}_{t}}(x))$$

Uncertainty-aware self-training

p(y=2)p(y=3)p(y=1)0.33 0.33 0.33 0.5 0.2 0.3 0.01 0.98 0.01 0.18 0.21 E(y)0.6

• Surrogate distribution, $q_{\theta}(W)$ approx. by dropout dist

$$p(y = c|x) \approx p(y = c|f^{W}(x))q_{\theta}(W)dW$$

$$\approx \frac{1}{T} \sum_{t=1}^{T} p(y = c | f^{\widetilde{W}_t}(x)) = \frac{1}{T} \sum_{t=1}^{T} softmax(f^{\widetilde{W}_t}(x))$$

Compute uncertainty score of an unlabeled instance

$$p(y_t^*) = softmax(f^{\widetilde{W_t}}(x_u)) \qquad E(y) = \frac{1}{T} \sum_{t=1}^{T} softmax(f^{\widetilde{W_t}}(x))$$
$$y_u = argmax_c \sum_{t=1}^{T} \mathbb{I}[argmax_{c'}(p(y_t^* = c')) = c]$$

$$min_W \mathbb{E}_{x_l,y_l \in D_l}[-log \ p(y_l|x_l;W)] + \lambda \mathbb{E}_{x_u \in S_u,S_u \subset D_u} \mathbb{E}_{y \sim p(y|x_u;W^*)}[-log \ p(y|x_u;W)]$$

$$min_{W,\theta} \mathbb{E}_{x_u \in S_u, S_u \subset D_u} \mathbb{E}_{\widetilde{W} \sim q_{\theta}(W^*)} \mathbb{E}_{y \sim p(y|f^{\widetilde{W}}(x_u))} [-log \ p(y|f^W(x_u))]$$

Sample selection

Т	p(y=1)	p(y=2)	p(y=3)
1	0.97	0.02	0.01
2	0.96	0.02	0.02
3	0.98	0.01	0.01
E(y)	0.97	0.02	0.01

Т	p(y=1)	p(y=2)	p(y=3)
1	0.33	0.33	0.33
2	0.33	0.33	0.33
3	0.33	0.33	0.33
E(y)	0.33	0.33	0.33

- Based on Bayesian Active Learning by Disagreement (BALD)
- Select samples that maximize info. gain about model parameters
 - Max. infogain between predictions and model posterior

$$\mathbb{B}(y_u, W|x_u, D'_u) = \mathbb{H}[y_u|x_u, D'_u] - \mathbb{E}_{p(W|D'_u)}[\mathbb{H}[y_u|x_u, W]].$$

$$\widehat{\mathbb{B}}(y_u, W|x_u, D'_u) = -\sum_{c} \left(\frac{1}{T}\sum_{t} \widehat{p}_c^t\right) log\left(\frac{1}{T}\sum_{t} \widehat{p}_c^t\right) + \frac{1}{T}\sum_{t,c} \widehat{p}_c^t log(\widehat{p}_c^t)$$

where,
$$\widehat{p}_c^t = p(y_u = c | f^{\widetilde{W}_t}(x_u) = softmax(f^{\widetilde{W}_t}(x_u)).$$

 High value indicates that teacher model is highly confused about the expected label of the instance

Sample selection

- Class-dependent selection
 - Avoids sampling instances from harder class
 - Create pseudo-labeled set for every class
- Selection with exploration
 - Without replacement with probability

$$p_{u,c}^{easy} = \frac{1 - \widehat{\mathbb{B}}(y_u, W | x_u, D_u')}{\sum_{x_u \in S_u, c} 1 - \widehat{\mathbb{B}}(y_u, W | x_u, D_u')} \qquad p_{u,c}^{hard} = \frac{\widehat{\mathbb{B}}(y_u, W | x_u, D_u')}{\sum_{x_u \in S_{u,c}} \widehat{\mathbb{B}}(y_u, W | x_u, D_u')}$$

Confident learning

- Prev. method select samples using predictive mean, while ignoring the uncertainty of the model in terms of predictive variance
- Prediction uncertainty of the teacher model is given by the variance of the marginal distribution

$$Var(y) = Var[\mathbb{E}(y|W,x)] + \mathbb{E}[Var(y|W,x)]$$

$$= Var(softmax(f^{W}(x)) + \sigma^{2})$$

$$\approx \left(\frac{1}{T} \sum_{t=1}^{T} y_{t}^{*}(x)^{T} y_{t}^{*}(x) - E(y)^{T} E(y)\right) + \sigma^{2}$$

$$E(y) = \frac{1}{T} \sum_{t=1}^{T} y_{t}^{*}(x).$$

$$E(y) = \frac{1}{T} \sum_{t=1}^{T} y_{t}^{*}(x).$$

Final self-training loss

$$min_{W,\theta} \mathbb{E}_{x_u \in S_u, S_u \subset D_u} \mathbb{E}_{\widetilde{W} \sim q_{\theta}(W^*)} \mathbb{E}_{y \sim p(y|f^{\widetilde{W}}(x_u))}[log \ p(y|f^{W}(x_u) \cdot log \ Var(y)]$$

Confident learnin	Т	p(y=1)	p(y=2)	p(y=3)	y_t(x)*y_t(x)	
	1	0.97	0.02	0.01	[0.97 0.02 0.01] [0.97 0.02 0.01] = 0.9414	
 Prev. method select samp 	2	0.96	0.02	0.02	[0.96 0.02 0.02] [0.96 0.02 0.02] = 0.9224	
the uncertainty of the mo	3	0.98	0.01	0.01	[0.98 0.01 0.01] [0.98 0.01 0.01] = 0.9606	
. Doe dietien om enteinte ef	F(v)	0.97	0.02	0.01	0.9415	

$$Var(y) = Var[\mathbb{E}(y|W,x)] + \mathbb{E}[Var(y|W,x)]$$

$$= Var(softmax(f^{W}(x)) + \sigma^{2})$$

$$\approx \left(\frac{1}{T} \sum_{t=1}^{T} y_{t}^{*}(x)^{T} y_{t}^{*}(x) - E(y)^{T} E(y)\right) + \sigma^{2}$$

$$E(y) = \frac{1}{T} \sum_{t=1}^{T} y_{t}^{*}(x).$$

Final self-training loss

$$min_{W,\theta} \mathbb{E}_{x_u \in S_u, S_u \subset D_u} \mathbb{E}_{\widetilde{W} \sim q_{\theta}(W^*)} \mathbb{E}_{y \sim p(y|f^{\widetilde{W}}(x_u))}[log \ p(y|f^{W}(x_u) \cdot log \ Var(y)]$$

Algorithm Summary

end

Algorithm 1: Uncertainty-aware self-training pseudo-code. Continue pre-training teacher language model on task-specific unlabeled data D_u ; Fine-tune model f^W with parameters W on task-specific small labeled data D_l ; while not converged do Randomly sample S_u unlabeled examples from D_u ; for $x \in S_u$ do for $t \leftarrow 1$ to T do $W_t \sim Dropout(W);$ $y_t^* = softmax(f^{W_t}(x));$ end Compute predictive sample mean E(y) and predictive sample variance Var(y) with Equation 11; Compute BALD acquisition function with Equation 6; end Sample R instances from S_u employing sample selection with Equations 7 or 8; Pseudo-label R sampled instances with model f^W ; Re-train model on R pseudo-labeled instances with Equation 12 and update parameters W;

Experiments

• Base model – BERT Train on K=30 instances per class

Dataset	All train	in 30 labels per class for training and for validation					
	BERT	BERT (base)	UDA	Classic ST	UST (our method)		
SST	92.12	69.79 (6.45)	83.58 (2.64) († 19.8)	84.81 (1.99) († 21.5)	88.19 (1.01) († 26.4)		
IMDB	91.70	73.03 (6.94)	89.30 (2.05) († 22.3)	78.97 (8.52) († 8.1)	89.21 (0.83) († 22.2)		
Elec	93.46	82.92 (3.34)	89.64 (2.13) († 8.1)	89.92 (0.36) († 8.4)	91.27 (0.31) († 10.1)		
AG News	92.12	80.74 (3.65)	85.92 (0.71) († 6.4)	84.62 (4.81) († 4.8)	87.74 (0.54) († 8.7)		
DbPedia	99.26	97.77 (0.40)	96.88 (0.58) (\psi 0.9)	98.39 (0.64) († 0.6)	98.57 (0.18) († 0.8)		
Average	93.73	80.85 (4.16)	89.06 (1.62) († 10.2)	87.34 (3.26) († 8.0)	91.00 (0.57) († 12.6)		

Ablation Analysis

	SST	IMDB	Elec	AG News	Dbpedia	Average
BERT Base	69.79	73.03	82.92	80.74	97.77	80.85
Classic ST (Uniform)	84.81	78.97	89.92	84.62	98.39	87.34
UST (Easy) - removing <i>Class</i> - removing <i>Conf</i>	88.19 87.33 86.73	89.21 87.22 90.00	91.27 89.18 90.40	87.74 86.88 84.17	98.57 98.27 98.49	91.00 89.78 89.96
UST (Hard) - removing <i>Class</i> - removing <i>Conf</i>	88.02 80.45 88.48	88.49 89.28 87.93	90.00 90.07 88.74	85.02 83.07 84.45	98.56 98.46 98.26	90.02 88.27 89.57

(a) UST accuracy with K train labels/class.

(b) UST accuracy over iterations.

Figure 2: Improvement in UST accuracy with more training labels and epochs.