Problem 1

- 1) 当 x, y 同为偶数或同为奇数, x+y 为偶数 f(x+y)=1, f(x)·f(y)=1, f(x+y)=f(x)·f(y) 当 x, y 为一个奇数与一个偶数, x+y 为奇数, f(x+y)=-1, f(x)·f(y)=-1, f(x+y)=f(x)·f(y) 说明 f 是群 G1 到 G2 的同态, 但 f 既不是单射也不是满射 则既不是单同态, 也不是满同态, 更不是同构. f(G1) = {1, -1}
- 2) $f(x+y) = cos(x+y) + i \cdot sin(x+y)$, $f(x) \cdot f(y) = (cosx + i \cdot sinx)(cosy + i \cdot siny)$ = $(cosxcosy - sinxsiny) + i \cdot (cosxsiny + sinxcosy) = cos(x+y) + i \cdot sin(x+y) = f(x+y)$ f 是群 G1 到 G2 的同态,又 f(x)在 R 上的周期为 2π , f 在 Z 上是单射,f 是单同态对 $f(x) \in A$ 有 $|f(x)|^2 = cos^2x + sin^2x$ 恒成立,f 在 Z 上不是满射,f 不是满同态f 不是同构, $f(G1) = \{cosx + i \cdot sinx \mid x \in Z\}$

Problem 2

设 G 是生成元为 a 的循环群, 则 G=<a>, 任取 x, y \in G 有 m, n \in Z 使 x=a^m, y=a^n x·y = a^m·a^n = a^(m+n) = a^(n+m) = a^n·a^m = y·x, G 满足交换性, G 是阿贝尔群 阿贝尔群不一定是循环群, 如克莱因四元群是阿贝尔群却不是循环群

	е	а	b	С
е	е	а	b	С
а	а	е	С	b
b	b	С	е	а
С	С	b	а	е

Problem 3

设 G1 是生成元为 a 的循环群,则 G1=<a>,任取 $x\in G1$ 有 $m\in Z$ 使 $x=a^m$ 令 $y=f(x)=f(a^m)\in f(G1)$,y=f(a)f(a)······f(a) ($m \uparrow f(a)$),则 f(a)是 f(G1)的生成元即 f(G1)=<f(a)>,可见 f(G1)也是循环群

Problem 4

- 1) 小于或等于 15 且与 15 互素的数是 1, 2, 4, 7, 8, 11, 13, 14 则 G 的所有生成元为 a, a^2, a^4, a^7, a^8, a^11, a^13, a^14
- 2) 15 的因子有 1, 3, 5, 15 则 G 的所有子群为 <a>=G, <a^3>={e, a^3, a^6, a^9, a^12}, <a^5>={e, a^5, a^10}, <a^15>={e}

Problem 5

取任意三阶群 G, |G|=3, 取 $a \in G$ 且 $a \neq e$, 构造以 a 为生成元的循环群< a >, $< a > \in G$ |< a > | | |G|=3, 又 $a \neq e$, $|< a > | \neq 1$, |< a > | = 3 = |G|, $G = \{e, a, a^2\}$ 是三阶循环群 (实际上,同理可得所有素数阶群都是循环群)

Problem 6

任取 a, b \in G (a \neq e, b \neq e), 有 a*a=e, b*b=e, a*b*a*b = (a*b)*(a*b) = e 则 b*a = b*a*(a*b*a*b) = b*(a*a)*b*a*b = (b*b)*a*b = a*b, <G, *>是阿贝尔群

Problem 7

G 为阿贝尔群, 任取 a, b∈G 有 ab=ba, (ab)²=(ab)(ab)=a(ba)b=a(ab)b=(aa)(bb)=a²b²