Schülerskript SMP

Mach' dir keine Sorgen wegen deiner Schwierigkeiten mit der Mathematik. Ich kann dir versichern, daß meine noch größer sind.

Brief an ein Schulmädchen, 1943 Albert Einstein

> Clara Schaefer Bruno Gelfort Pascal Borel Rémy Moll

 $\mathbf{1}^{ere}$ & Te SMP

Inhaltsverzeichnis

2	1.1 1.2 1.3 1.4 Reil 2.1 2.2 Fun 3.1 3.2 3.3	Verschiedene Darstellungen 1.1.1 Explizite Darstellung 1.1.2 Rekursive Darstellung Auffällige Folgen 1.2.1 Arithmetische Folgen 1.2.2 Geometrische Folgen Klassifizierung von Folgen 1.3.1 Monotonie 1.3.2 Beschränktheit 1.3.3 Konvergenz Vollständige Induktion hen Artithmetische Reihen 2.1.1 Gauß'sche Summenformel 2.1.2 Allgemein Geometrische Reihen wiktionsuntersuchung Stetigkeit Differenzierbarkeit 3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit Ableitungsregeln		44455555556666666666666666666666666666
	1.3 1.4 Reil 2.1 2.2 Fun 3.1 3.2	1.1.2 Rekursive Darstellung Auffällige Folgen 1.2.1 Arithmetische Folgen 1.2.2 Geometrische Folgen Klassifizierung von Folgen 1.3.1 Monotonie 1.3.2 Beschränktheit 1.3.3 Konvergenz Vollständige Induktion hen Artithmetische Reihen 2.1.1 Gauß'sche Summenformel 2.1.2 Allgemein Geometrische Reihen wiktionsuntersuchung Stetigkeit Differenzierbarkeit 3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit		4 5 5 5 5 6 6 6 6 6 6 6 6 7 7 7 7 8 8 9 10 10
	1.3 1.4 Reil 2.1 2.2 Fun 3.1 3.2	Auffällige Folgen 1.2.1 Arithmetische Folgen 1.2.2 Geometrische Folgen Klassifizierung von Folgen 1.3.1 Monotonie 1.3.2 Beschränktheit 1.3.3 Konvergenz Vollständige Induktion hen Artithmetische Reihen 2.1.1 Gauß'sche Summenformel 2.1.2 Allgemein Geometrische Reihen hktionsuntersuchung Stetigkeit Differenzierbarkeit 3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit		5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 8 8 9 9 10 10
	1.3 1.4 Reil 2.1 2.2 Fun 3.1 3.2	1.2.1 Arithmetische Folgen 1.2.2 Geometrische Folgen Klassifizierung von Folgen 1.3.1 Monotonie 1.3.2 Beschränktheit 1.3.3 Konvergenz Vollständige Induktion hen Artithmetische Reihen 2.1.1 Gauß'sche Summenformel 2.1.2 Allgemein Geometrische Reihen sktionsuntersuchung Stetigkeit Differenzierbarkeit 3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit		5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 8 8 8 9 9 100 100 100 100 100 100 100 100 100
	1.4 Rei 2.1 2.2 Fun 3.1 3.2	1.2.1 Arithmetische Folgen 1.2.2 Geometrische Folgen Klassifizierung von Folgen 1.3.1 Monotonie 1.3.2 Beschränktheit 1.3.3 Konvergenz Vollständige Induktion hen Artithmetische Reihen 2.1.1 Gauß'sche Summenformel 2.1.2 Allgemein Geometrische Reihen sktionsuntersuchung Stetigkeit Differenzierbarkeit 3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit		5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 8 8 8 9 9 100 100 100 100 100 100 100 100 100
	1.4 Rei 2.1 2.2 Fun 3.1 3.2	1.2.2 Geometrische Folgen Klassifizierung von Folgen 1.3.1 Monotonie 1.3.2 Beschränktheit 1.3.3 Konvergenz Vollständige Induktion hen Artithmetische Reihen 2.1.1 Gauß'sche Summenformel 2.1.2 Allgemein Geometrische Reihen hktionsuntersuchung Stetigkeit Differenzierbarkeit 3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit		5 6 6 6 6 7 7 7 8 8 9 10 10
	1.4 Rei 2.1 2.2 Fun 3.1 3.2	Klassifizierung von Folgen 1.3.1 Monotonie 1.3.2 Beschränktheit 1.3.3 Konvergenz Vollständige Induktion hen Artithmetische Reihen 2.1.1 Gauß'sche Summenformel 2.1.2 Allgemein Geometrische Reihen hktionsuntersuchung Stetigkeit Differenzierbarkeit 3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit		6 6 6 6 7 7 7 8 8 9 10 10
	1.4 Rei 2.1 2.2 Fun 3.1 3.2	1.3.1 Monotonie 1.3.2 Beschränktheit 1.3.3 Konvergenz Vollständige Induktion hen Artithmetische Reihen 2.1.1 Gauß'sche Summenformel 2.1.2 Allgemein Geometrische Reihen hktionsuntersuchung Stetigkeit Differenzierbarkeit 3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit		6 6 6 6 7 7 7 7 8 8 9 10 10
	Reii 2.1 2.2 Fun 3.1 3.2	1.3.2 Beschränktheit 1.3.3 Konvergenz Vollständige Induktion hen Artithmetische Reihen 2.1.1 Gauß'sche Summenformel 2.1.2 Allgemein Geometrische Reihen hktionsuntersuchung Stetigkeit Differenzierbarkeit 3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit		6 6 6 7 7 7 7 8 8 9 10 10
	Reii 2.1 2.2 Fun 3.1 3.2	1.3.3 Konvergenz Vollständige Induktion hen Artithmetische Reihen 2.1.1 Gauß'sche Summenformel 2.1.2 Allgemein Geometrische Reihen hktionsuntersuchung Stetigkeit Differenzierbarkeit 3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit		7 7 7 8 8 9
	Reii 2.1 2.2 Fun 3.1 3.2	Vollständige Induktion hen Artithmetische Reihen 2.1.1 Gauß'sche Summenformel 2.1.2 Allgemein Geometrische Reihen hktionsuntersuchung Stetigkeit Differenzierbarkeit 3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit		7777788899
	Reii 2.1 2.2 Fun 3.1 3.2	hen Artithmetische Reihen 2.1.1 Gauß'sche Summenformel 2.1.2 Allgemein Geometrische Reihen ktionsuntersuchung Stetigkeit Differenzierbarkeit 3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit		7 7 7 8 8 9
	2.1 2.2 Fun 3.1 3.2	Artithmetische Reihen 2.1.1 Gauß'sche Summenformel 2.1.2 Allgemein Geometrische Reihen ktionsuntersuchung Stetigkeit Differenzierbarkeit 3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit	 	7 7 8 8 9 10
	2.1 2.2 Fun 3.1 3.2	Artithmetische Reihen 2.1.1 Gauß'sche Summenformel 2.1.2 Allgemein Geometrische Reihen ktionsuntersuchung Stetigkeit Differenzierbarkeit 3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit	 	7 7 8 8 9 10
3	2.2 Fun 3.1 3.2	2.1.1 Gauß'sche Summenformel 2.1.2 Allgemein Geometrische Reihen nktionsuntersuchung Stetigkeit Differenzierbarkeit 3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit	 	7 8 9 10
3	Fun 3.1 3.2	2.1.2 Allgemein	 	. 8 9 10 . 10
3	Fun 3.1 3.2	Geometrische Reihen	 	9 10 10
3	Fun 3.1 3.2	Stetigkeit	 	10
3	3.1 3.2	Stetigkeit	 	10
	3.1 3.2	Stetigkeit	 	10
	3.2	Differenzierbarkeit	 	
		3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit		
	3.3			
	0.0			
		3.3.1 Produktregel		
		3.3.2 Quotientenregel		
		3.3.3 Kettenregel		
	9.4	3.3.4 Tangente und Normale		
	3.4	Vollständige Funktionsuntersuchung		
		3.4.1 Definitionsbereich		
		3.4.2 Achsenschnittpunkte		
		3.4.3 Symmetrie		
		3.4.4 Grenzwerte		
		3.4.5 Asymptoten		
		3.4.6 Monotonie		
		3.4.7 Extremstellen		
		3.4.8 Wendestellen		
		3.4.9 Umkehrbarkeit	 	. 16
		3.4.10 Beispiel		
	3.5	Funktionenscharen	 	. 21
		3.5.1 Beispiel		21
4	Trig	gonometrie		25
	4.1	Kurze Wiederholung	 	25
	4.2	Additions- und Verdopplungssätze		
	4.3	Allgemeine Sinus- und Kosinussätze		. 26
	4.4	Sinusfunktionen	 	. 26
		4.4.1 Zusammengesetzte Sinusfunktionen		
	4.5	Polarkoordinaten		
		4.5.1 Umrechnung		
		Beispiel einer Funktionsdiskussion		
	4.6			. 27
	4.6	•		
	4.6	•		27

Inhaltsverzeichnis Skript SMP

		4.6.5 4.6.6 4.6.7	Ableitungen	28 29
5	Vek 5.1		Geometrie $oxed{e}$	31 31
	5.1		Besondere Vektoren	
	5.2		und Erzeugendensystem	
	0.2		Besondere Basen	
			Basistransformation	
	5.3		zwischen Vektoren	
			Orientierte Winkel	33
		5.3.2	Rechnungen mit Winkeln	33
	5.4		sombination	34
	5.5		orodukt	35
	5.6		orodukt	35
	5.7		n	38
			Darstellungen	38
			Abstand zu einem Punkt	
			Abstand zweier Geraden	
	5.8		1	
			Darstellungen	
			Lagebeziehungen zwischen Ebenen und Geraden	
		5.8.3	Lagebeziehungen zwischen Ebenen	48
			Winkel zwischen Ebenen (und Geraden)	
			Abstand zu einem Punkt	51
	5.9		und Kugeln	53
			Kreise	53 53
	5 10		odukt	
			ches Produkt	
		-		
			Der Satz des Apollinius	
6	Kon	nplexe	Zahlan	57
U	6.1	. Einführ	rung	
	6.2		llung komplexer Zahlen	
			Kartesische Darstellung	
			Polarkoordinatendarstellung	
		6.2.3	Umrechnung zwischen den Darstellungen	60
_	G	• 4•1	1337 1 1 1 1 1 1 1 1	01
7			nd Wahrscheinlichkeit nesentests	61
8	Δrit	thmetik	,	62
G			lständige Induktion	
9	Mat	rizen		65
•	9.1		e Gleichungssysteme und Gaußalgorythmus	65
	9.2		it dem Taschenrechner lösen	
		9.2.1	Eindeutig lösbare lineare Gleichungssysteme	65
		9.2.2	Nicht eindeutig lösbare lineare Gleichungssysteme	66
10	A 1 -	ami41	31-	C7
τO		$rac{\Delta \log r}{\Delta \log r}$	hmen und Programmierung	67 67
	10.1		Pseudocode	67
			Python	
	10.2		hmen und mathematische Anwendungen	
		_	Iterationsverfahren	

Inhaltsverzeichnis Skript SMP

11	Inte	egrale egrale	70
		•	70
	11.2	Bestimmte Integrale	70
	11.3	Stammfunktionen und der Hauptsatz der Differential- und Integralrechnung	71
		11.3.1 Sätze über Integrale	71
			72
	11.4	Flächen und Volumen mit Integralen berechnen	75
		11.4.1 Fläche zwischen einer Funktion und der x_1 -Achse	75
		11.4.2 Fläche zwischen zwei Funktionen	77
			77
	11.5	Uneigentliche Integrale	78
		Merkenswerte Integrale	
12			7 9
			79
	12.2		79
			79
		12.2.2 Herleitung zur Zahl e	
		12.2.3 e ist irrational	
		Eigenschaften	
	12.4	Ableitungsregeln	84
		12.4.1 Aktivität	-
		12.4.2 Exponentialfonktionen mit natürlicher Basis	84
		12.4.3 Exponentialfunktionen mit beliebiger Basis	84
	-		~~
13			85
		Eigenschaften	
	13.2	Rechengesetze	85
14	Alge	ehra	86
			-
15	AN!	HANG: Physik	87
	15.1	La physique des particules	87
		Interaction gravitationelle	
		15.2.1 Le champ de gravitation	87
	15.3	Interaction électromagnétique	88
		15.3.1 Le champ électrique	
		15.3.2 Le champ magnétique	
	15.4	Mouvement, vitesse et accélération d'un systeme physique	
		Les 3 lois de Newton	
		15.5.1 1 ^{ere} loi	

FOLGEN

Definition 1.0.0

Eine Funktion , bei der nur natürlichen Zahlen eine reelle Zahl zugeordnet wird, nennt man Folge. Folgen können auch nur für Teilbereiche von $\mathbb N$ definiert sein. $(a_n)_{n\in\mathbb N}$ bezeichnet die Folge, wobei $a:\mathbb N\to\mathbb R$

Bemerkung:

 $\overline{\text{In einem Ausdruck muss das } n}$ immer dasselbe bleiben!

1.1 Verschiedene Darstellungen

1.1.1 Explizite Darstellung

Definition 1.1.1

Wenn ein beliebiges Glied der Folge direkt berechenbar ist, ist ihre Darstellung explizit.

Beispiel:

- 1. $a_n = 3^n \Rightarrow a_4 = 3^4 = 91$
- 2. Die Folge der n-ten positiven, ungeraden Zahl: $a_n=1+2\cdot(n-1)\Rightarrow$ Die 8. positive, ungerade Zahl ist $a_8=1+2\cdot(8-1)=15$

1.1.2 Rekursive Darstellung

Definition 1.1.2

Wenn für die Berechnung des n - ten Gliedes einer Folge das (n - 1) - te Glied benötigt wird, ist ihre Darstellung rekursiv. In diesen Fällen braucht man immer ein Startglied, oft a_0 oder a_1 .

Beispiel:

- 1. $a_n = 3 \cdot a_{n-1} + 2$; $a_0 = 5$ $a_1 = 3 \cdot a_{1-1} + 2 = 3 \cdot a_0 + 2 = 3 \cdot 5 + 2 = 17$ $a_2 = 3 \cdot a_{2-1} + 2 = 3 \cdot a_1 + 2 = 3 \cdot 17 + 2 = 53$ $a_3 = 3 \cdot a_{3-1} + 2 = 3 \cdot a_2 + 2 = 3 \cdot 53 + 2 = 159$ und so weiter...
- 2. Die Folge der n ten positiven, ungeraden Zahl: $a_n = a_{n-1} + 2; a_1 = 1$

Bemerkung:

Für manche Folgen sind beide Darstellungen möglich, wobei die explizite Darstellung oftmals viel praktischer ist, da die Berechnung der Folgeglieder anhand der rekursiven Darstellung schnell sehr aufwendig wird.

GTR-Tipp:

Wie man im GTR macht

Kapitel 1. Folgen Skript SMP

Web-Diagramme

Hier handelt es sich um eine graphisches Verfahren, das dazu dient, das Verhalten einer Folge, deren Darstellung rekursiv ist, zu untersuchen.

Dazu muss man der rekursiven Folgenvorschrift eine Funktion $f(a_{n-1}) = a_n$ zuordnen, sodass - grob gesagt - "die Funktion das Gleiche mit x macht, dass die Folge macht, um von a_n auf a_{n+1} zu kommen. Zusätzlich zeichnet man in ein kartesisches Koordinatensystem die Hauptdiagonale ein (entspricht dem Graphen von f(x) = x). Dann trägt man das erste Folgeglied auf die Abzissenachse ein und verbindet ihn mit der entsprechenden Funktion anhand eines vertikalen

Bemerkung:

Dieses Verfahren kann aber ausschließlich bei rekusiven Folgen angewendet werden, bei denen keine zusätzliche Abhängigkeit von n vorliegt (Beispiel: $a_n = 3 \cdot a_{n-1} + 3 + 4 \cdot n$) oder die Rekursivitätsebene den 1. Grad überschreitet, was bedeutet, dass a_n nicht nur in Abhängigkeit von a_{n-1} beschrieben wird, sondern zusätzlich von mindestens a_{n-2} (Beispiel: die Fibonacci-Folge).

GTR-Tipp:

Verwendung mit dem GTR

1.2 Auffällige Folgen

1.2.1 Arithmetische Folgen

Definition 1.2.1

Eine Folge wird arithmetisch genannt, wenn die Differenz zweier aufeinander folgender Glieder konstant ist.

1. Rekursive Darstellung:

$$a_n = a_{n-1} + d$$

2. Explizite Darstellung:

Mit Startglied a_0 : $a_n = a_0 + n \cdot d$

Mit Startglied a_1 : $a_n = a_1 + (n-1) \cdot d$ Mit Startglied a_x : $a_n = a_x + (n-x) \cdot d$

Bemerkung:

Letzteres gilt auch für beliebige Folgeglieder, also ist $a_n = a_p + (n-p) \cdot d; n, p \in \mathbb{N}$

Beispiel:

$$\overline{a_n = a_{n-1} + 3}; a_0 = 0 \Leftrightarrow a_n = 0 + n \cdot 3$$

Bemerkung:

Jedes Folgeglied einer solchen Folge ist das arithmetische Mittel seines Vorgängers und Nachgängers: $a_n = \underbrace{a_{n-1} + a_{n+1}}_{2}$

1.2.2 Geometrische Folgen

Definition 1.2.2

Eine Folge wird geometrisch genannt, wenn der Quotient zweier aufeinander folgender Glieder konstant ist.

1. Rekursive Darstellung:

$$a_n = a_{n-1} \cdot q$$

2. Explizite Darstellung:

Mit Startglied a_0 : $a_n = a_0 \cdot q^n$

Mit Startglied a_1 : $a_n = a_1 \cdot q^{n-1}$

Mit Startglied a_x : $a_n = a_x \cdot q^{n-x}$

Kapitel 1. Folgen Skript SMP

Bemerkung:

Letzteres gilt auch für beliebige Folgeglieder, also ist $a_n = a_p \cdot q^{n-p}; n, p \in \mathbb{N}$

Beispiel:

$$\overline{a_n = a_{n-1} \cdot 3}; a_0 = 2 \Leftrightarrow a_n = 2 \cdot 3^n$$

Bemerkung:

Jedes Folgeglied einer solchen Folge ist das geometrische Mittel seines Vorgängers und Nachgängers: $a_n = \sqrt{a_{n-1} \cdot a_{n+1}}$

1.3 Klassifizierung von Folgen

- 1.3.1 Monotonie
- 1.3.2 Beschränktheit
- 1.3.3 Konvergenz

Definition

Epsilon-n0-Definition

Grenzwertsätze

1.4 Vollständige Induktion

REIHEN

Definition 2.0.0

Eine Reihe ist eine Folge, deren Glieder die Partialsummen einer anderen Folge ist. Das bedeutet, dass das n-te Glied der Reihe, die Summe der ersten n Glieder einer anderen Folge ist. Man hat also:

- 1. Mit Startglied a_0 : $s_n = \sum_{i=0}^{n-1} a_i$
- 2. Mit Startglied a_1 : $s_n = \sum_{i=1}^n a_i$
- 3. Mit Startglied a_x : $s_n = \sum_{i=x}^{x+n-1} a_i$

Bemerkung:

In manchen Fällen steht s_n für die Partialsumme einer anderen Folge bis zum n-ten Glied. Dann gilt für ein beliebiges Startglied a_x der Folge: $s_n = \sum_{i=x}^n a_i$

2.1 Artithmetische Reihen

2.1.1 Gauß'sche Summenformel

Die Gauß'sche Summenformel bezeichnet die Summe der n ersten natürlichen Zahlen, also:

$$1 + 2 + 3 + \ldots + n = \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Begründung:

	1	2	3	4	 n
	n	n-1	n-2	n-3	 1
$\overline{\Sigma}$	n+1	n+1	n+1	n+1	 $\overline{n+1}$

So sieht man also, dass wenn man die vorher bestimmte Reihe mit sich selbst addiert (ein Mal davon "falschrum"), man n Mal n+1 bekommt. Um dann den Wert einer einzelnen Reihe zu bekommen teilt man durch zwei.

Bemerkung:

Die Gauß'sche Summenformel ist ein Spezialfall der arithmetischen Reihe, ihre Glieder werden **Dreieckszahlen** genannt.

Kapitel 2. Reihen Skript SMP

Beweis

Um zu beweisen, dass für alle $n\in\mathbb{N}$ $\sum_{k=1}^n f(k)=g(n)$ gilt, reicht es aus, g(n)-g(n-1)=f(n) für alle positiven n und g(0)=0 zu zeigen. In der Tat trifft dies hier zu: $g(n)-g(n-1)=\frac{n(n+1)}{2}-\frac{(n-1)n}{2}=\frac{n(n+1-n+1)}{2}=\frac{n\cdot 2}{2}=n=f(n)$ für alle n und $g(0)=\frac{0\cdot 1}{2}=0$

Bemerkung:

Auch ein Beweis durch vollständige Induktion ist möglich, dieser wäre sogar empfehlenswert, da er einfacher durchzuführen ist: (Ziehe Kapitel 8)

2.1.2 Allgemein

Definition 2.1.2

Wenn s_n die Summe der ersten n Folgeglieder einer arithmetische Folge ist, heißt sie arithmetische Reihe. Sei eine arithmetische Folge a mit Startglied a_x und s, die entsprechende Reihe, dann gilt

$$s_n = \frac{n \cdot (a_x + a_{x+n-1})}{2}$$

Bemerkung:

- 1. Am häufigsten wird verwendet:
 - Mit Startglied $a_0: s_n = \frac{n \cdot (a_0 + a_{n-1})}{2}$
 - Mit Startglied $a_1: s_n = \frac{n \cdot (a_1 + a_n)}{2}$
- 2. Alternativ kann auch folgende Darstellung verwendet werden:

$$s_n = \frac{n \cdot (2a_x + (n-1) \cdot d)}{2}$$

Beweis

Sei eine arithmetische Folge a, mit Startglied a_x und Differenz d, und s, die entsprechende Reihe, dann gilt

$$\begin{split} s_n &= a_x + a_{x+1} + a_{x+2} + \dots a_{x+n-1} \\ &= a_x + (a_x + d) + (a_x + 2d) + \dots + (a_x + (n-1) \cdot d) \\ &= n \cdot a_x + d + 2d + \dots + (n-1) \cdot d \\ &= n \cdot a_x + (1 + 2 + \dots + (n-1)) \cdot d \qquad \text{(Gauß)} \\ &= n \cdot a_x + \frac{(n-1) \cdot n}{2} \cdot d \\ &= n \cdot \frac{2a_x + (n-1) \cdot d}{2} \\ &= n \cdot \frac{a_x + a_x + (n-1) \cdot d}{2} \\ &= n \cdot \frac{a_x + a_x + (n-1) \cdot d}{2} \\ &= n \cdot \frac{a_x + a_x + n - 1}{2} \end{split}$$

2.2 Geometrische Reihen

Definition 2.2.0

Wenn s_n die Summe der ersten n Folgeglieder einer geometrischen Folge ist, heißt sie geometrischen Reihe.

Sei eine geometrische Folge a mit Startglied a_x und s, die entsprechende Reihe, dann gilt

$$s_n = \sum_{i=x}^{n+x-1} a_i = a_x \cdot \frac{1-q^n}{1-q}$$

Bemerkung:

Am häufigsten wird verwendet:

- Mit Startglied $a_0: s_n = a_0 \cdot \frac{1-q^n}{1-q}$
- Mit Startglied $a_1: s_n = a_1 \cdot \frac{1-q^n}{1-q}$

Beweis

Allgemein:

$$\begin{split} &(1-q)(1+q+q^2+q^3+\ldots+q^n)\\ &=(1-q)+(q-q^2)+(q^2-q^3)+(q^3-q^4)+\ldots+(q^n-q^{n+1})\\ &=1+(-q+q)+(-q^2+q^2)+(-q^3+q^3)+\ldots+(-q^n+q^n)-q^{n+1}\\ &=1-q^{n+1} \end{split}$$

Man hat also
$$\sum\limits_{k=0}^{n}q^{k}=1+q+q^{2}+q^{3}+...+q^{n}=\frac{1-q^{n+1}}{1-q}$$

Entsprechend ergibt sich
$$\sum_{k=0}^{n-1} q^k = \underbrace{1 + q + q^2 + q^3 + \dots + q^{n-1}}_{n \quad Summanden} = \frac{1 - q^n}{1 - q}$$

Somit gilt für eine Reihe s, die die Partialsumme einer geometrischen Folge a, mit Quotient q und Anfangsglied a_x , ist, folgendes:

$$\begin{split} s_n &= \sum_{i=x}^{x+n-1} a_i \\ &= a_x + a_{x+1} + a_{x+2} + \ldots + a_{x+n-1} \\ &= a_x + a_x \cdot q + a_x \cdot q^2 + \ldots + a_x \cdot q^{n-1} \\ &= a_x \cdot (1 + q + q^2 + \ldots + q^{n-1}) \\ &= a_x \cdot \sum_{k=0}^{n-1} q^k \\ &= a_x \cdot \frac{1 - q^n}{1 - q} \end{split}$$

FUNKTIONSUNTERSUCHUNG

Die Analysis (griechisch análysis, deutsch "Auflösung") ist ein Teilgebiet der Mathematik. Die Untersuchung von reellen und komplexen Funktionen hinsichtlich Stetigkeit, Differenzierbarkeit und Integrierbarkeit zählt zu den Hauptgegenständen der Analysis. Die hierzu entwickelten Methoden sind in allen Natur- und Ingenieurwissenschaften von großer Bedeutung.

3.1 Stetigkeit

Definition 3.1.0

Eine Funktion ist stetig an der Stelle x_0 , wenn:

- 1. $x_0 \in D$
- 2. $\lim_{x \to x_0} f(x)$ existiert
- 3. $\lim_{x \to x_0^{\pm}} f(x) = f(x_0)$

Stetigkeit ist eine lokale Eigenschaft. Die Funktion f heißt dann stetig, wenn sie an jeder Stelle ihrer Definitionsmenge stetig ist.

Bemerkung:

Ist f stetig und $I \subset \mathbb{R}$ ein reelles Intevall, dann ist f(I) ebenfalls ein Intervall. Ist f zudem streng monoton, so ist die Umkehrfunktion f^{-1} ebenfalls stetig.

Bemerkung:

Stetige Funktionen haben sehr angenehme Eigenschaften, die intuitiv mit der "Definition" des Stiftes, welcher beim Zeichnen des Funktionsgraphen nicht angehoben wird, im Zusammenhang stehen.

So sagt der **Zwischenwertsatz** aus, dass eine reelle, im Intervall [a;b] stetige Funktion f jeden Wert zwischen f(a) und f(b) ainnimmt.

Haben a und b zudem verschiedene Vorzeichen, so verspricht der Zwischenwertsatz mindestens eine Nullstelle von f in diesem abgeschlossenen Intervall. Dieser Sonderfall ist als **Nullstellensatz** von Bolzano bekannt.

Definition 3.1.0

Zwischenwertsatz:

Ist $f:[a;b] \Rightarrow$ eine stetige reelle Funktion die auf einem Intervall definiert ist, dann existiert zu **jedem** $s \in [f(a); f(b)]$ bzw. [f(b); f(a)] (vom Vorzeichen der Funktionswerte abhängig) ein $c \in [a;b]$ mit f(c) = s

Stetige Fortsetzungen

beim Vereinfachen von gebrochenrationalen Funktionen ist Vorsicht geboten, denn eine hebbare Definitionslücke "aufzuheben" verändert den Definitionsbereich der Funktion. Die daraus resultierende Funktion wird **stetige** Fortsetzung genannt.

3.2 Differenzierbarkeit

Definition 3.2.0

Eine Funktion ist differenzierbar an der Stelle $x_0 \in D$, wenn der beitseitige Grenzwert des Differenzenquotienten für $h \to 0$ existiert. Anschaulich soll Die Funktion links und rechts des x_0 die selbe Ableitung haben.

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

Dieser Grenzwert ist die **Ableitung** von f an der Stelle x_0 .

Die Funktion heißt differenzierbar, wenn sie $\forall x \in D$ differenzierbar ist.

Die Funktion f(x) = |x| ist nicht differenzierbar, da bei der Stelle $x_0 = 0$ der linksseitige Grenzwert des Differenzenquotienten $(\lim_{h\to 0^-} f'(x_0) = -1)$ nicht mit dem rechtsseitigen Grenzwert (1) übereinstimmt.

3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit

Ist eine Funktion f an der Stelle x_0 differenzierbar, so ist sie an dieser Stelle auch stetig. Die Umkehrung gilt erst einmal nicht, aber es gibt eine verneinende Aussage: Ist f an der Stelle x_0 nicht stetig, so ist sie hier auch nicht differenzierbar.

Ist eine Funktion differenzierbar und ist ihre Ableitung zusätzlich stetig, dann wird sie **Stetig differenzierbar** genannt.

3.3 Ableitungsregeln

Ein Ableitungswert gibt die Steigung an einem bestimmten Punkt an. Im Allgemeinen und zum Beweisen wird der Differentenquotient benötigt, um eine Ableitungsfunktion zu definieren, es geht aber in vielen Fällen schneller.

3.3.1 Produktregel

Definition 3.3.1

Sind die Funktionen u und v an der Stelle $x_0 \in D$ differenzierbar, dann ist die Funktion $f(x) = u(x) \cdot v(x)$ bei x_0 auch differenzierbar und es gilt:

$$f'(x0) = u'(x_0)v(x_0) + u(x_0)v'(x_0)$$

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{u(x_0)v(x_0 + h) - u(x_0)v(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{u(x_0 + h)v(x_0 + h) - u(x_0)v(x_0 + h) + u(x_0)v(x_0 + h) - u(x_0)v(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{u(x_0 + h)v(x_0 + h) - u(x_0)v(x_0 + h)}{h} + \lim_{h \to 0} \frac{u(x_0)v(x_0 + h) - u(x_0)v(x_0)}{h}$$

$$= \lim_{h \to 0} v(x_0 + h) \frac{u(x_0 + h) - u(x_0)}{h} \lim_{h \to 0} u(x_0) \frac{v(x_0 + h) - v(x_0)}{h}$$

$$= v(x_0) \lim_{h \to 0} \frac{u(x_0 + h) - u(x_0)}{h} + u(x_0) \lim_{h \to 0} \frac{v(x_0 + h) - v(x_0)}{h}$$

$$= u'(x_0)v(x_0) - u(x_0)v'(x_0)$$

3.3.2 Quotientenregel

Definition 3.3.2

Sind die Funktionen u und v an der Stelle $x_0 \in D$ differenzierbar, dann ist die Funktion $f(x) = \frac{u(x)}{v(x)}$ bei x_0 auch differenzierbar und es gilt:

$$f'(x_0) = \frac{u'(x_0) \cdot v(x_0) - u(x_0) \cdot v'(x_0)}{v^2(x_0)}$$

Reweis

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{\frac{u(x_0 + h)}{v(x_0 + h)} - \frac{u(x_0)}{v(x_0)}}{\frac{u(x_0 + h)}{v(x_0)}} \\
= \lim_{h \to 0} \frac{\frac{u(x_0 + h)}{v(x_0 + h)} - \frac{u(x_0)}{v(x_0)}}{\frac{u(x_0 + h)}{v(x_0)} - \frac{u(x_0)v(x_0 + h)}{v(x_0)v(x_0 + h)}} \\
= \lim_{h \to 0} \frac{\frac{u(x_0 + h)v(x_0)}{v(x_0 + h)v(x_0)} - \frac{u(x_0)v(x_0 + h)}{v(x_0)v(x_0 + h)}}{\frac{u(x_0 + h)v(x_0)}{v(x_0 + h)v(x_0)}} \\
= \lim_{h \to 0} \frac{\frac{u(x_0 + h)v(x_0) - u(x_0)v(x_0 + h) + u(x_0)v(x_0)}{v(x_0 + h)v(x_0)}}{\frac{u(x_0 + h)v(x_0) - u(x_0)v(x_0)}{v(x_0 + h)v(x_0)}} \\
= \lim_{h \to 0} \frac{\frac{u(x_0 + h)v(x_0) - u(x_0)v(x_0 + h) + u(x_0)v(x_0)}{v(x_0 + h)v(x_0)}}{\frac{u(x_0 + h) - u(x_0)}{v(x_0 + h)v(x_0)}} \\
= \lim_{h \to 0} \frac{\frac{u(x_0 + h) - u(x_0)}{h}}{v(x_0 + h)v(x_0)} \\
= \lim_{h \to 0} \frac{\frac{u(x_0 + h) - u(x_0)}{h}}{v(x_0 + h)v(x_0)} \\
= \lim_{h \to 0} \frac{\frac{u(x_0 + h) - u(x_0)}{h}}{v(x_0 + h)v(x_0)} \\
= \frac{u'(x_0)v(x_0) - u(x_0)v'(x_0)}{h} \\
= \frac{u'(x_0)v(x_0) - u(x_0)v'(x_0)}{(v(x_0))^2}$$

3.3.3 Kettenregel

Definition 3.3.3

Die Funktion v sei an der Stelle x_0 differenzierbar und die Funktion u an der Stelle $v(x_0)$. Dann ist die Funktion $f = u \circ v$ mit der Gleichung f(x) = u(v(x)) an der Stelle x_0 differenzierbar. Es gilt:

$$f'(x_0) = v'(x_0) \cdot u'(v(x_0))$$

3.3.4 Tangente und Normale

Definition 3.3.4

Ist die Funktion f differenzierbar an der Stelle x_0 , dann hat die **Tangente** an dem Graphen von f die Steigung $a = f'(x_0)$ und den Y-Achsenabschnitt $b = -f'(x_0) \cdot x_0 + f(x_0)$. Daraus ergibt sich die Tangentengleichung:

$$T_{x_0}(x) = f'(x_0) \cdot (x - x_0) + f(x_0)$$

Eine Merkhilfe dazu ist das Wort "Fuxufu", wobei "u" dem x_0 entspricht.

Die Normale an der Stelle x_0 bezeichnet die Gerade, die genau senkrecht zur Tangente steht und diese im Berührpunkt des Graphen schneidet.

$$N_{x_0}(x) = -\frac{1}{f'(x_0)} \cdot (x - x_0) + f(x_0)$$

3.4 Vollständige Funktionsuntersuchung

3.4.1 Definitionsbereich

Am Anfang muss der Definitionsbereich angegeben werden, um eventuelle Divisionen durch null zu vermeiden. Man achte dabei auch auf hebbare Definitionslücken (siehe "Stetigkeit")

3.4.2 Achsenschnittpunkte

Es gibt zwei Arten von Achsenschnittpunkten:

- 1. X-Achsenschittpunkte (Nullstellen), die man mit der notwendigen und hinreichenden Bedingung für Nullstellen f(x) = 0 herausfindet
- 2. Y-Achsenschnittpunkt, den man durch einsetzen bekommt: f(0)

3.4.3 Symmetrie

Y-Achsensymmetrie

Durch Lösung der Gleichung f(x) = f(-x) findet man heraus ob die Funktion achsensymmetrisch ist. Zudem ist die Funktion dann achsensymmetrisch, wenn nur gerade Exponenten vorhanden sind. Die Funktion nennt man **gerade**.

Symmetrie zum Origo

Durch Lösung der Gleichung f(x) = -f(-x) findet man heraus ob die Funktion punktsymmetrisch ist. Zudem ist die Funktion dann punktsymmetrisch, wenn nur ungerade Exponenten vorhanden sind. Die Funktion nennt man **ungerade**.

Symmetrie zu einem beliebigen Punkt

Definition 3.4.3

Symmetrie zu einem Punkt liegt vor, wenn für den Punkt $P(x_0|y_0)$ gilt:

$$f(x_0 + h) - y_0 = -f(x_0 - h) + y_0$$

Beispiel:

$$f(x) = \frac{x}{x-1}$$

Aus dem Schnittpunkt der Asymptoten kann man vermuten, dass f(x) achsensymmetrisch zum Punkt P(1|1) ist.

$$\Rightarrow f(x_0 + h) - y_0 = \frac{1+h}{1+h-1} - 1 = \frac{1}{h}$$

$$\Rightarrow -f(x_0 - h) + y_0 = -\left[\frac{1-h}{1-h-1} + 1\right] = \frac{1}{h}$$
 Die Funktion f ist zu P symmetrisch.

3.4.4 Grenzwerte

Definition 3.4.4

Das Symbol $\lim_{x\to x_0} f(x)$ mit $x_0 \in \mathbb{R}$ ($\pm \infty$ eingeschlossen) bezeichnet den Limes der reellen Funktion $f:D\to\mathbb{R}$ für den Grenzübergang von x gegen eine Stelle x_0 , wobei x_0 nicht umbedingt in der Definitionsmenge von f enthalten sein muss.

Eine Zahl $g \in \overline{\mathbb{R}}$ ist der Grenzwert einer Funktion $f: D \to \mathbb{R}$ für $x \to x_0$, falls für jede Folge $(a_n)_{n \in \mathbb{N}}$ mit Folgegliedern aus D und Grenzwert x_0 die Folge $(f(a_n))_{n \in \mathbb{N}}$ den Grenzwert g hat.

$$\lim_{x \to x_0} f(x) = g \quad \Leftrightarrow \quad \forall (a_n)_{n \in \mathbb{N}} \text{ mit } \lim_{n \to \infty} a_n = x_0 : \lim_{n \to \infty} f(a_n) = g$$

Definition 3.4.4

Regel von l'Hospital: für Grenzwerte des Typs 0/0 und ∞/∞

Seien zwei Funktionen f und g differenzierbar und eine Zahl $x_0: g(\mathbf{x}_0) \neq 0$ und gelte entweder

$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} f(x) = \infty \qquad \text{ODER} \qquad \lim_{x \to x_0} g(x) = \lim_{x \to x_0} f(x) = 0$$

dann gilt:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Bemerkung:

- 1. Falls die Funktionsvorschrift nicht direkt ein Bruch ist (siehe 2. Beispiel) sollte man diese erst zu einem Bruch umformen, um mit der Hospital-Regel fortfahren zu können.
- 2. ACHTUNG: Die Hospital-Regel ist nicht umkehrbar!

Beispiel:

$$f(x) = \frac{\sin(x)}{x} \qquad x_0 = 0 \qquad D = \mathbb{R} \setminus \{0\}$$
$$\Rightarrow \lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{\sin(x)}{x} = \lim_{x \to x_0} \frac{\cos(x)}{1} = 1$$

$$g(x) = x \cdot \log\left(\frac{x+1}{x-1}\right) \qquad \text{für } x \to \infty \qquad D = \mathbb{R} \setminus \{1\}$$

$$\Rightarrow \lim_{x \to \infty} g(x) = \lim_{x \to \infty} x \cdot \log\left(\frac{x+1}{x-1}\right)$$

$$= \lim_{x \to \infty} \frac{\log\left(\frac{x+1}{x-1}\right)}{\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{\frac{x-1}{x+1} \cdot \frac{-2}{(x-1)^2}}{-\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{\frac{-2}{x^2-1}}{\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{2x^2}{x^2-1} = 2$$

3.4.5 Asymptoten

Eine Asymptote ist eine Gerade oder Kurve, die sich dem Graphen einer Funktion immer weiter annähert. Dabei unterscheidet man verschiedene Fälle:

Definition 3.4.5

1. Senkrechte Asymptote: Hat f an der stelle x_0 eine Polstelle, und gilt:

$$\lim_{x \to x_{-1}} f(x) = \pm \infty$$

dann ist die Gerade $x = x_0$ eine senkrechte Asymptote von f.

2. Waagerechte Asymptote: Konvergiert f für $x\to\infty$ gegen eine reelle Zahl $g\in\mathbb{R},$ das heißt $\lim_{x\to x_{0^+}}f(x)=g.$

Die Gerde y=g ist die waagerechte Asymptote von f. Das Gleiche gilt für $\lim_{x\to -\infty}$.

Bei gebrochen
rationalen Funktionen ist dies der Fall, wenn der Zählergrad kleiner (dann ist
 g=0) oder gleich dem Nennergrad m ist.

3. Schräge Asymptote: Sie ist eine Gerade $(g : \mathbb{R} \to \mathbb{R})$, der sich f mit $|x| \to \infty$ beliebig annähert: $\lim_{x \to \infty} [f(x) - g(x)] = 0$ oder $\lim_{x \to \infty} [f(x) - g(x)] = 0$

Bei einer gebrochen
rationalen Funktion ist der "Fehlergrad", das heißt der Abstand von g zu
 f durch den Rest der Polynomdivision von Zähler mit Nenner gegeben.

4. **Asymptotische Kurven** Indem man in der Definition der schrägen Asymptote auch Polynome zulässt, erhält man Näherungskuven, die die gleiche Limesbedingung erfüllen müssen:

$$\lim_{x \to \infty} [f(x) - P(x)] = 0 \text{ oder } \lim_{x \to -\infty} [f(x) - P(x)] = 0$$

Diese begegnen einen bei gebrochen
rationalen Funktion mit n > m + 1.

3.4.6 Monotonie

Definition 3.4.6

Eine stetige Funktion f mit $a, b \in I \subset D_f$ ist :

- 1. ... auf dem Intervall I monoton wachsend, wenn $\forall a < b : f(a) \leq f(b)$
- 2. ... auf dem Intervall I monoton fallend, wenn $\forall a < b : f(a) \geq f(b)$

Wenn die Ordnungsrelation strikt sind, dann wird die Funktion als **streng monoton** bezeichnet. Die Funktion f hat eine Ableitungsfunktion f'. Falls f...

- 1. monoton wachsend auf I ist, dann ist $f'(x) \geq 0$, $\forall x \in I$
- 2. monoton fallend auf I ist, dann ist $f'(x) \leq 0$, $\forall x \in I$
- 3. konstant auf I ist, dann ist f'(x) = 0, $\forall x \in I$

Beim Aufstellen der Monotonietabelle sind Definitinslücken zu beachten.

Es handelt sich dabei um eine Tabelle, die die Definitionsmenge in Intervalle mit monotonen Steigungsverhalten unterteilt wird. Das Monotonieverhalten verändert sich an Extrem- oder Polstellen.

Bemerkung:

f sei eine Funktion...

• dann ist die Zahl S obere Schranke, wenn $\forall x: f(x) \leq S$. f heißt in diesem Fall nach oben beschränkt. Die

in diesem Fall kleinstmögliche Zahl wird **Supremum** genannt: $\sup f$

• dann ist die Zahl s untere Schranke, wenn $\forall x: f(x) \geq s$. f ist in diesem Fall nach unten beschränkt. Die in diesem Fall größtmögliche Zahl wird **Infimum** genannt: inf f

3.4.7 Extremstellen

Für die Bestimmung von Extremstellen gilt es zwei Bedingungen zu überprüfen:

Hat an einer Stelle x_0 die erste Ableitung von f eine Nullstelle, also $f'(x_0) = 0$, dann handelt es sich um eine Extremstelle **oder** um einen Sattelpunkt. Diese Bedingung ist die notwendige Bedingung für eine Extremstelle. Mit ihr ist eine grobe Kategorisierung gemacht, eine Extremstelle ist noch nicht bewiesen.

Hat f' an der Stelle x_0 einen Vorzeichenwechsel oder ist $f''(x_0) \neq 0$, dann ist der Sonderfall des Wendepunktes ausgeschlossen und es handelt sich um deine Extremstelle. Es gilt also:

$$\exists ! \ x_0 \in I \subseteq D_f : f(x_0) \ge oder \le f(x)$$

Der Punkt $P(x_0|f(x_0))$ heißt Hochpunkt oder Tiefpunkt. Diese Bedingung ist die hinreichende Bedingung für eine Extremstelle.

3.4.8 Wendestellen

Für die Bestimmung von Wendestellen gilt es auch zwei Bedingungen zu überprüfen:

Hat an einer Stelle x_0 die zweite Ableitung von f eine Nullstelle, also $f''(x_0) = 0$, dann handelt es sich um eine Wendestelle **oder** um einen geraden Abschnitt. Diese Bedingung ist die notwendige Bedingung für eine Wendestelle.

Hat f'' an der Stelle x_0 einen Vorzeichenwechsel oder ist $f'''(x_0) \neq 0$, dann ist der Sonderfall ausgeschlossen und es handelt sich um deine Wendestelle. Der Punkt $W(x_0|f(x_0))$ heißt Wendepunkt. Diese Bedingung ist die hinreichende Bedingung für eine Wendestelle.

Bemerkung:

Eine Hilfsformel, die den Zusammenhang zwischen den verschiedenen Ableitungen einfach darstellt ist die NEW-Regel:

N = Nullstellen

E = Extremstellen

W = Wendestellen

3.4.9 Umkehrbarkeit

Definition 3.4.9

Sei f eine Funktion mit $f: D_f \mapsto W_f$ mit $x \mapsto y$, dann ist die Funktion genau dann eindeutig umkehrbar, wenn es zu jedem $y \in W_f$ genau ein $x \in D_f$ existiert.

Wenn diese Funktion umkehrbar ist, dann existiert auch eine Umkehrfunktion $\overline{f}(x)$ die jedem $x \in W_f$ genau ein $y \in D_f$ zuordnet, analog zur Funktion, nur andersrum, also mit $y \mapsto x$

Es gilt:
$$D_{\overline{f}} = W_f$$
 und $W_{\overline{f}} = D_f$

Bemerkung:

Es gibt viele Funktionen die nicht in ihren vollständigen Definitionsmengen umkehrbar sind, zum Beispiel x^n mit n als gerade Zahl, $\sin(x)$, $\tan(x)$, und viele mehr. Hier beschränkt man die Funktion auf ein bestimmtes

Intervall, um sie umkehren zu können.

Die Funktion $f(x) = x^2$ mit $D_f = \mathbb{R}$ und $W_f = \mathbb{R}_0^+$ hat für y = 4 zwei Urbilder: -2 und 2. Beschränkt man die Funktion auf $D_f = \mathbb{R}_0^+$, ist sie umkehrbar und die Umkehrfunktion lautet $\overline{f}(x) = \sqrt{x}$

Definition 3.4.9

Umkehrregel oder Inversenregel

Sei f eine bijektive (also umkehrbare), differenzierbare, reelle Funktion bei der gilt: $f'(x) \neq 0$, dann ist die Umkehrfunktion auch differenzierbar mit der Ableitung

$$\overline{f}'(y) = \frac{1}{f'(\overline{f}(y))} = \frac{1}{f'(x)}$$

$$\Rightarrow \qquad \overline{f}(f(x)) \qquad = \qquad x$$

ableiten

$$\Leftrightarrow \overline{f}'(f(x)) \cdot f'(x) = 1$$

$$\Leftrightarrow \qquad \overline{f}'(f(x)) \qquad = \quad \frac{1}{f'(x)}$$

$$\Leftrightarrow \qquad \overline{f}'(y) \qquad = \frac{1}{f'(x)}$$

$$\mid \min y = f(x)$$

Bemerkung:

Anschaulich ist eine Umkehrfunktion eine Axenspiegelung entlang der Winkelhalbierende am Ursprung, also dem Funktionsgraphen von f(x) = x

Beispiel:

Die Funktion $f(x) = x^2$ mit $D_f = \mathbb{R}_0^+$ ist umzukehren. Leichtes Spiel...

$$\Rightarrow y = x^{2}$$

$$\Leftrightarrow x = \sqrt{y} \quad Variablen \ tauschen$$

$$\Leftrightarrow y = \sqrt{x}$$

$$\Rightarrow \overline{f}(x) = \sqrt{x}$$

$$\Rightarrow \overline{f}(x) = \sqrt{x}$$

3.4.10 Beispiel

$$f(x) = \frac{4x^2 - 8x + 4}{2x - 1} = \frac{(2x - 2)^2}{2x - 1}$$
 $D_f = \mathbb{R} \setminus \{\frac{1}{2}\}$

$$f'(x) = \frac{(8x-8)(2x-1) - (4x^2 - 8x + 4)(2)}{(2x-1)^2} = \frac{16x^2 - 8x - 16x + 8 - 8x^2 + 16x - 8}{4x^2 - 4x + 1} = \frac{8x^2 - 8x}{(2x-1)^2}$$

$$f''(x) = \frac{(16x - 8)(4x^2 - 4x + 1) - (8x^2 - 8x)(8x - 4)}{((2x - 1)^2)^2}$$

$$= \frac{(2x - 1) \cdot 8 \cdot (4x^2 - 4x + 1) - (8x^2 - 8x) \cdot 4 \cdot (2x - 1)}{(2x - 1)^{\frac{1}{2}3}} = \frac{8}{8x^3 - 12x^3 + 6x - 1}$$

Achsenschnittpunkte

Bestimmung der Nullstelle(n):

$$\Rightarrow f(x) = 0 \quad D = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$$

$$\Leftrightarrow \frac{(2x-2)^2}{(2x-1)} = 0$$

$$\Leftrightarrow 2x-2 = 0$$

$$\Leftrightarrow x = 1 \quad L = \{1\}$$

Die Gleichung für die senkrechte Asymptote lautet deshalb x=1

Bestimmung des Y-Achsenabschnitts:

$$\Rightarrow f(0) = \frac{4}{-1} = -4$$

Symmetrie:

Man kann anhand des GTR vermuten dass f punktsymmetrisch ist. Dieser Symmetriepunkt P_0 lässt sich entweder dort ablesen oder ist (häufig) den Schnittpunkt der Asymptoten. $P_0(\frac{1}{2}|-2)$

$$\Rightarrow f(x_0 + h) - y_0 = f(\frac{1}{2} + h) + 2$$

$$= \frac{4(\frac{1}{2} + h)^2 - 8(\frac{1}{2} + h) + 4}{2(\frac{1}{2} + h) - 1} + 2$$

$$= \frac{4(\frac{1}{4} + h + h^2) - 4 - 8h + 4}{2h} + \frac{4h}{2h}$$

$$= \frac{1 + 4h + 4h^2 - 8h + 4h}{2h} = \frac{4h^2 + 1}{2h}$$

$$\Rightarrow -f(x_0 - h) + y_0 = -f(\frac{1}{2} - h) - 2$$

$$= -\frac{4(\frac{1}{2} - h)^2 - 8(\frac{1}{2} - h) + 4}{2(\frac{1}{2} - h) - 1} - 2$$

$$= -\frac{4(\frac{1}{4} - h + h^2) - 4 + 8h + 4}{-2h} - \frac{4h}{2h}$$

$$= \frac{1 - 4h + 4h^2 + 8h - 4h}{2h} = \frac{4h^2 + 1}{2h}$$

Hiermit hat man die Punktsymmetrie von f zu P_0 bewiesen.

Bestimmung der Grenzwerte der Funktion:

$$\Rightarrow \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{4x^2 - 8x + 4}{2x - 1} = \frac{\lim_{x \to +\infty} \left(4 - \frac{8}{x} + \frac{4}{x^2}\right)}{\lim_{x \to +\infty} \frac{2}{x} - \frac{1}{x^2}} = \frac{4 - 0 + 0}{0 - 0} = +\infty$$

$$\Rightarrow \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{4x^2 - 8x + 4}{2x - 1} = \frac{\lim_{x \to +\infty} \left(-4 + \frac{8}{x} + \frac{4}{x^2} \right)}{\lim_{x \to +\infty} -\frac{2}{x} - \frac{1}{x^2}} = \frac{-4 + 0 + 0}{-0 - 0} = -\infty$$

Bemerkung:

Da die Punktsymmetrie vorher bewiesen wurde hätte der $\lim_{x \to -\infty} f(x)$ gar nicht errechnet werden müssen!

$$\Rightarrow \lim_{x \to \frac{1}{2}^{+}} f(x) = \lim_{h \to 0} \frac{4(\frac{1}{2} + h)^{2} - 8(\frac{1}{2} + h) + 4}{2(\frac{1}{2} + h) - 1} = \lim_{h \to 0} \frac{1 + 4h + 4h^{2} - 4 + h + 4}{2h}$$

$$= \lim_{h \to 0} \frac{1 + 5h + 4h^{2}}{\lim_{h \to 0} 2h}$$

$$= \frac{1}{0} = +\infty$$

$$\Rightarrow \lim_{x \to \frac{1}{2}^{-}} f(x) = \lim_{h \to 0} \frac{4(\frac{1}{2} - h)^{2} - 8(\frac{1}{2} - h) + 4}{2(\frac{1}{2} - h) - 1} = \lim_{h \to 0} \frac{1 - 4h + 4h^{2} - 4 - 4h + 4}{-2h}$$

$$= \lim_{h \to 0} \frac{1 - 8h + 4h^{2}}{\lim_{h \to 0} -2h}$$

$$= -\frac{1}{0} = -\infty$$

Asymptoten:

Es liegt eine nicht hebbare Definitionslücke bei $x=\frac{1}{2}$ vor, also ist dies die Gleichung der senkrechten Asymptote.

Da der Grenzwert $\to \pm \infty$ keinen eindeutigen Wert annimmt, macht man eine Polynomdivision ...

$$\Rightarrow (4x^2 -8x +4) : (2x-1) = 2x-3+\frac{1}{2x-1}$$

$$-(4x^2 -2x)$$

$$-6x +4$$

$$-(-6x +3)$$

... und erhält die Gleichung der schiefen Asymptote y = 2x - 3

Monotonieverhalten:

Untersuchung auf Extremstellen:

• Notwendige Bedingung: $\Rightarrow f'(x) = 0$

$$\Leftrightarrow \frac{8x^2 - 8x}{4x^2 - 4x + 1} = 0 \qquad D = \mathbb{R} \setminus \{\frac{1}{2}\}$$

$$\Leftrightarrow x(8x - 8) = 0$$

$$\Leftrightarrow x = 0 \quad \forall \quad x = 1 \qquad L = \{1; 0\}$$

• Hinreichende Bedingung: Vorzeichenwechsel f'(x) oder $f''(x) \neq 0$

x	$-\infty$	0	$\frac{1}{2}$	1 +∞
x	_	0 +	+	+
(8x-8)	_	_	_	0 +
$(2x-1)^2$	+	+	+	+
f'(x)	+	0 —	_	0 +
f(x)	(0 <i>j</i> −∞	$f(0)$) $-\infty$	+∞ (1	$+\infty$ $ f(1))$

Krümmungsverhalten:

Untersuchung auf Wendestellen:

• Notwendige Bedingung: $\Rightarrow f''(x) = 0$

$$\Leftrightarrow \frac{8}{(2x-1)^3} = 0$$

$$\Leftrightarrow 8 = 0$$

Die Funktion weist keine Wendestellen vor. Bei Lösbarkeit der Gleichung ist als hinreichende Bedingung ein Vorzeichenwechsel von f''(x) zu zeigen oder $f'''\neq 0$ zu beweisen. Dann kann die Skizze beginnen:

3.5 Funktionenscharen

Erklärung:

Eine Funktionenschar ist eine Menge von Funktionen, die neben der Variable auch noch einen veränderlichen Parameter im Funktionsterm enthält. Jedem Wert des Parameters ist ein Graph der Schar zugeordnet. Der Parameter, oft a, wird hierbei überall wie eine Konstante behandelt.

Der Punkt, den alle Graphen, unabhängig von ihren Parametern, beinhalten, nennt man Bündel. Die Graphen einer Funktionenschar bilden gemeinsam eine Kurvenschar.

Hier ist die Kurvenschar der Funktion $f(x)=ax^3$. Sie verlaufen alle durch das Bündel P(0|0)

3.5.1 Beispiel

$$f_a(x) = \frac{x^2 - 3ax}{x + a}$$
 $D_f = \mathbb{R} \setminus \{-a\}, \quad a \in \mathbb{R}^+$

Sei K_a der Graph der Funktion.

Bestimmen Sie die Schnittpunkte von \mathcal{K}_a mit den Koordinatenachsen

$$f_a(0) = \frac{0}{x+a} = 0$$

$$\Rightarrow f_a(x) = 0 \quad \Leftrightarrow \quad x^2 - 3x = 0$$

$$\Leftrightarrow \quad x(x - 3a) = 0$$

$$\Leftrightarrow \quad x = 0 \quad \lor \quad x = 3a$$

Es ergeben sich die Punkte $P_1(0|0)$ und $P_2(3a|0)$

Bestimmen Sie die Asymptoten von K_a

$$\Rightarrow (x^2 -3ax +0) : (x+a) = x-4a + \frac{4a^2}{x+a}$$

$$-(x^2 +ax)$$

$$-4ax +0$$

$$-(-4ax -4a^2)$$

$$4a^2$$

Man erhält die schiefe Asymptote y = x - 4a

Es liegt eine nicht hebbare Definitionslücke bei -a vor, daraus ergibt sich eine vertikale Asymptote $\Rightarrow x = -a$

Zeigen Sie
$$f_a''(x) = \frac{8a^2}{(x+a)^3}$$

$$f'_{a}(x) = \frac{(2x - 3a)(x + a) - (x^{2} - 3ax)(1)}{(x + a)^{2}}$$

$$= \frac{2x^{2} + 2ax - 3ax - 3a^{2} - x^{2} - 3ax}{x^{2} + 2ax + a^{2}}$$

$$= \frac{x^{2} + 2ax - 3a^{2}}{(x + a)^{2}}$$

$$f''_{a}(x) = \frac{(2x+2a)(x^{2}+2ax+a^{2}) - (x^{2}-2ax-3a^{2})(2(x+a))}{(x+a)^{4}}$$

$$= \frac{2x^{2}+4ax+2a^{2}-2x^{2}+4ax+6a^{2}}{(x+a)^{3}}$$

$$= \frac{8a^{2}}{(x+a)^{3}}$$

Weisen Sie nach, dass K_a genau einen Hochpunkt und genau einen Tiefpunkt besitzt. Geben Sie die Koordinaten dieser Punkte in Abhängigkeit von a an und erstellen Sie eine Monotonietabelle der Funktionen f_a

Notwendige Bedingung für Extremstellen: $\Rightarrow f'(x) = 0$

$$\Leftrightarrow x^2 + 2ax - 3a^2 = 0 \qquad \qquad D = \mathbb{R} \setminus \{-a\}$$

$$\Rightarrow \Delta = 4a^2 + 12a^2 = 16a^2$$

$$\Leftrightarrow x_1 = a \quad \lor \quad x_2 = -3a \qquad \qquad L = \{a; -3a\}$$

$$\Rightarrow f(a) = \frac{a^2 - 3a^2}{2a} = -a$$
$$\Rightarrow f(-3a) = \frac{9a^2 + 9a^2}{-2a} = -9a$$

Es ergeben sich somit die Extremstellen H(-3a|-9a) und T(a|-a). Bevor man mit der Monotonietabelle beginnt, muss die Polstelle untersucht werden.

$$\lim_{x \to -a^+} f_a = \lim_{x \to -a^+} \frac{x^2 - 3ax}{x + a} = \lim_{h \to 0} \frac{(-a + h)^2 - 3a(-a + h)}{(-a + h) + a} = \lim_{h \to 0} \frac{h^2 - 5ah + 4a^2}{h} = +\infty$$

$$\lim_{x \to -a^{-}} f_{a} = \lim_{x \to -a^{-}} \frac{x^{2} - 3ax}{x + a} = \lim_{h \to 0} \frac{(-a - h)^{2} - 3a(-a - h)}{(-a - h) + a} = \lim_{h \to 0} \frac{h^{2} + 5ah + 4a^{2}}{-h} = -\infty$$

Jetzt kann die Monotonietabelle erstellt werden:

x	$-\infty$	-3a	-	-a	a		$+\infty$
$\begin{array}{ c c c } x^2 - \\ 2ax - 3a \end{array}$	+	0	_	-	0	+	
$(x+a)^2$	+		+	+		+	
$f_a'(x)$	+	0	_	_	0	+	
$f_a(x)$	H $-\infty$	(-3a -9	<i>a</i>) −∞	$+\infty$ T	(a -a))	+∞

Zeigen Sie, dass es genau einen Punkt gibt, durch den alle Graphen Ka gehen.

Diesen Punkt haben wir schon per "Zufall" herausgefunden, da wir eine Nullstelle gefunden haben, die nicht von a abhängt. Wenn man diesen aber nicht gefunden hat, geht man diesen Lösungsweg:

$$\Rightarrow f_1 = f_2 \Leftrightarrow \frac{x^2 - 3x}{x + 1} = \frac{x^2 - 6x}{x + 2}$$

$$\Leftrightarrow \frac{x - 3}{x + 1} = \frac{x - 6}{x + 2}$$

$$\Leftrightarrow -x = -5x$$

$$\Leftrightarrow x = 0$$

$$L = \{0\}$$

Bestimmen Sie $a \in \mathbb{R}^+$ so, dass der Graph K_a durch den Punkt $P(5|\frac{5}{3})$ verläuft

$$\Rightarrow f_a(5) = \frac{5}{3} \Leftrightarrow \frac{5^2 - 15a}{5 + a} = \frac{5}{3} \qquad D = \mathbb{R} \setminus \{-5\}$$

$$\Leftrightarrow 15 - 9a = 5 + a$$

$$\Leftrightarrow a = 1 \qquad L = \{1\}$$

Berechnen Sie die Schnittpunkte von K_1 mit der Geraden j(x) = -15x - 4

$$\Rightarrow f_1(x) = \frac{x^2 - 3x}{x + 1} = -15x - 4 = y$$

$$\Leftrightarrow x^2 - 3x = -15x^2 - 19x - 4$$

$$\Leftrightarrow 4x^2 + 4x + 1 = 0$$

$$\Delta = 0 \Rightarrow x = -\frac{1}{2}$$

$$\Rightarrow f_1(-\frac{1}{2}) = \frac{(\frac{1}{2})^2 - 3 \cdot (\frac{1}{2})}{-\frac{1}{2} + 1} = \frac{7}{2}$$

Es existiert genau ein Schnittpunkt von K_1 mit der Geraden $j \colon P_{K_1j}(-\frac{1}{2}|\frac{7}{2})$

Vom Punkt A(0|-4) wird die Tangente an K_1 gelegt. Bestimmen Sie eine Gleichung der Tangente und die Koordinaten des Berührpunktes

Sei $B(x_0|f_i(x_0))$, dann lautet die Tangentengleichung:

$$\Rightarrow T_{x_0}(x) = f'(x_0) \cdot (x - x_0) + f(x_0)$$
$$= \frac{x_0^2 + 2x_0 - 3}{(x_0 + 1)^2} \cdot (x - x_0) + \frac{x_0^2 - 3x_0}{x_0 + 1}$$

Jetzt werden die Koordinaten des Punktes A(0|-4), durch den die Tangente auch noch geht, eingesetzt.

$$\Rightarrow T_{x_0}(0) = -4 = \frac{x_0^2 + 2x_0 - 3}{(x_0 + 1)^2} \cdot (-x_0) + \frac{x_0^2 - 3x_0}{x_0 + 1} \qquad D = \mathbb{R} \setminus \{-1\}$$

$$\Leftrightarrow -4(x_0 + 1)^2 = (x_0^2 + 2x_0 - 3)(-x_0) + (x_0^2 - 3x_0)(x_0 + 1)$$

$$\Leftrightarrow -4x_0^2 - 8x_0 - 4 = -x_0^3 - 2x_0^2 + 3x_0 + x_0^3 + x_0^2 - 3x_0^2 - 3x_0$$

$$\Leftrightarrow 4x_0^2 + 8x_0 + 4 = 4x_0^2$$

$$\Leftrightarrow x_0 = -\frac{1}{2} \qquad L = \left\{-\frac{1}{2}\right\}$$

Nun werden die Koordinaten des Berührpunktes mit der Ursprünglichen Funktion f durch einsetzen errechnet.

$$\Rightarrow f_1\left(-\frac{1}{2}\right) = \frac{\left(-\frac{1}{2}\right)^2 - 3 \cdot -\frac{1}{2}}{-\frac{1}{2} + 1} = \frac{7}{2}$$
$$\Rightarrow B\left(-\frac{1}{2}|\frac{7}{2}\right)$$

Da es sich um eine Tangente handelt, muss nun die Steigung am Berührpunkt errechnet werden, um die Tangentengleichung bestimmen zu können.

$$\Rightarrow f_1'\left(-\frac{1}{2}\right) = \frac{\left(-\frac{1}{2}\right)^2 + 2\left(-\frac{1}{2}\right) - 3}{\left(-\frac{1}{2}\right)^2} = -15$$

Die Tangentengleichung lautet:

$$t(x) = -15x - 4 \qquad \text{mit} \quad D_t = \mathbb{R}$$

TRIGONOMETRIE

fleqntrue

4.1 Kurze Wiederholung

Definition 4.1.0

In einem Kreis mit Radius 1 gelte:

$$\cos(\alpha) = x_{\scriptscriptstyle M}$$

$$\sin(\alpha) = y_{\scriptscriptstyle M}$$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$

Es ergeben sich folgende (wissenswerte) Werte:

	0°	30°	45°	60°	90°	180°	270°	360°
	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π ı	$\frac{3\pi}{2}$	2π
$\sin(\alpha)$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\cos(\alpha)$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
$\tan(\alpha)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	X	0	X	0

4.2 Additions- und Verdopplungssätze

Theorem

$$cos(a - b) = cos(a) cos(b) + sin(a) sin(b)$$

$$sin(a - b) = sin(a) cos(b) - cos(a) sin(b)$$

$$cos(a + b) = cos(a) cos(b) - sin(a) sin(b)$$

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

Bemerkung:

Hieraus ergeben sich einige weitere Relationen, wie z.B. $\sin(2a)$. Diese lassen sich jedoch schnell und leicht herleiten.

4.3 Allgemeine Sinus- und Kosinussätze

In einem beliebigen Dreieck gelten abgewandelte Formen der aus der 8. Klasse bekannten Sätze:

Theorem

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$$
$$c^2 = a^2 + b^2 - 2ab\cos(\gamma)$$

Bemerkung:

 $\overline{\text{Man bemerkt}}$, dass sich die bekannten Relationen ergeben, wenn einer der Winkel den Wert $\frac{\pi}{2}$ annimmt.

4.4 Sinusfunktionen

Zur Vollständigen Funktionsdiskussion einer Sinus-Funktion sind einige Besonderheiten zu beachten:

- 1. Amplitude und Periodizität Eine Funktion der Form $f(x) = a \cdot \sin(b(x-c)) + d$ hat:
 - die Periode $P = \frac{2\pi}{|b|}$
 - die Amplitude A = |a|
 - \bullet die Verschiebung entlang der x-Achse um d und entlang der y-Achse um c
- 2. Symmetrieeigenschaften

Hier sollte zumindest bekannt sein, dass $f(x) = \sin(x)$ punktsymmetrisch zum Origo ist, und dass $f(x) = \cos(x)$ Achsensymmetrisch zur y-Achse ist.

3. Die Null-, Extrem- und Wendestellen sind in Form einer Menge anzugeben. (Es sei denn, die Aufgabenvorschrift fordert explizit zu einer Begrenzung auf ein angegebenes Intervall auf)

Beispiel:

Die Nullstellen der Funktion $f(x) = \sin(x)$ lassen sich dartstellen als: $x \in \{k\pi | k \in \mathbb{Z}\}$

4. Bei der Teilung durch eine Sinusfunktion können Definitionslücken an dessen Nullstellen entstehen. Auch diese können in der bereits gezeigten Form angegeben werden.

4.4.1 Zusammengesetzte Sinusfunktionen

4.5 Polarkoordinaten

In der Kursstufe beschränken wir uns auf die Benutzung von Polarkoordinaten für Punkte in der Ebene (2D).

Definition 4.5.0

Polarkoordinaten sind eine Form der eindeutigen Punktangaben, doch anstatt wie kartesische Koordinaten 2 Entfernungen x und y zu verwenden, haben sie die Form $(r|\varphi)$. r ist hierbei die Entfernung zum Origo und φ ein orientierter Winkel (in rad).

4.5.1 Umrechnung

 $\mathbf{Kartesisch} o \mathbf{Polar}$

$$r = \sqrt{x^2 + y^2}$$

•
$$\varphi = \tan(\frac{y}{x})$$

 $Polar \rightarrow Kartesisch$

•
$$x = r \cdot \cos(\varphi)$$

•
$$y = r \cdot \sin(\varphi)$$

4.6 Beispiel einer Funktionsdiskussion

Sei die Funktion $f(x) = 2\cos(x) + 2\sin(x)\cos(x)$, ihr Schaubild sei K. Untersuchen Sie K im Intervall $[0; 2\pi]$ auf gemeinsame Punkte mit der x-Achse, sowie Extrem- und Wendepunkte. Zeichnen Sie K im Intervall $[0; 2\pi]$. Untersuchen Sie K auf Symmetrie.

4.6.1 Definitionsmenge

 $D = \mathbb{R}$

4.6.2 Periodizität und Amplitude

Die Periode von f ist $P=2\pi.$ Die Amplitude A beträgt $\frac{3}{2}\sqrt{3}.$

4.6.3 Nullstellen

Notwendige und hinreichende Bedingung:

$$f(x) = 0$$

$$\Leftrightarrow 2\cos(x) + 2\sin(x)\cos(x) = 0$$

$$\Leftrightarrow 2\cos(x)(1 + \sin(x)) = 0$$

$$S.d.N \begin{cases} 2\cos(x) = 0 \\ 1 + \sin(x) = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \cos(x) = 0 \\ \sin(x) = -1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 = \frac{1}{2}\pi \\ x_2 = \frac{3}{2}\pi \end{cases}$$

$$\Rightarrow \mathbb{L} = \{(\frac{1}{2}\pi|0); (\frac{3}{2}\pi|0)\}$$

4.6.4 Ableitungen

$$f'(x) = -2\sin(x) + 2(\cos(x)\cos(x) - \sin(x)\sin(x))$$

$$= -2\sin(x) + 2(\cos^{2}(x) - \sin^{2}(x))$$

$$= -2\sin(x) + 2(1 - \sin^{2}(x) - \sin^{2}(x))$$

$$= -4\sin^{2}(x) - 2\sin(x) + 2$$

$$f''(x) = -4(\cos(x)\sin(x) + \sin(x)\cos(x)) - 2\cos(x)$$

$$= -8\sin(x)\cos(x) - 2\cos(x)$$

$$f'''(x) = -8(\cos(x)\cos(x) - \sin(x)\sin(x)) + 2\sin(x)$$

$$= -8(1 - \sin^{2}(x) - \sin^{2}(x)) + 2\sin(x)$$

$$= 16\sin^{2}(x) + 2\sin(x) - 8$$

4.6.5 Extremstellen

Notwendige Bedingung:

$$\begin{split} &\mathbf{f}'(\mathbf{x}) \! = \! 0 \\ &\Leftrightarrow 4\sin^2(x) - 2\sin(x) + 2 = 0 \\ &Substitution: y = \sin(x) \\ &\Rightarrow 4y^2 - 2y + 2 = 0 \\ &\stackrel{ABC-Formel}{\Rightarrow} y_{1,2} = \frac{2 \pm \sqrt{(-2)^2 - 4 * (-4) * 2}}{-8} \\ &Resubstitution: \\ &\Leftrightarrow \begin{cases} \sin(x) &= \frac{2 + \sqrt{20}}{-8} \\ \sin(x) &= \frac{2 - \sqrt{20}}{-8} \end{cases} \\ &\Rightarrow \mathbb{L} = \{\frac{1}{6}\pi; \frac{5}{6}\pi; \frac{3}{2}\pi\} \end{split}$$

Hinreichende Bedingung:

$$f''(x) \neq 0$$

$$\Rightarrow \begin{cases} f''(\frac{1}{6}\pi) & \stackrel{?}{=} 0 \\ f''(\frac{5}{6}\pi) & \stackrel{?}{=} 0 \end{cases}$$

$$\Rightarrow \begin{cases} 8\sin(\frac{1}{6}\pi)\cos(\frac{1}{6}\pi) - 2\sin(\frac{1}{6}\pi) & \stackrel{?}{=} 0 \\ 8\sin(\frac{5}{6}\pi)\cos(\frac{5}{6}\pi) - 2\sin(\frac{5}{6}\pi) & \stackrel{?}{=} 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 8\sin(\frac{3}{2}\pi)\cos(\frac{3}{2}\pi) - 2\sin(\frac{3}{2}\pi) & \stackrel{?}{=} 0 \\ 8\sin(\frac{3}{2}\pi)\cos(\frac{3}{2}\pi) - 2\sin(\frac{3}{2}\pi) & \stackrel{?}{=} 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 8*\frac{1}{2}*\frac{\sqrt{3}}{2} - 2*\frac{\sqrt{3}}{2} & \stackrel{!}{\neq} 0 , < 0 \Rightarrow HP \\ 8*\frac{1}{2}*-\frac{\sqrt{3}}{2} - 2*-\frac{\sqrt{3}}{2} & \stackrel{!}{\neq} 0 , > 0 \Rightarrow TP \\ 8*(-1)(0) - 2(0) & \stackrel{!}{=} 0 \Rightarrow \text{kein } EP \end{cases}$$

Ergebnis

Auf dem Intervall $[0; 2\pi]$ besitzt K den Hochpunkt $H(\frac{1}{6}\pi|f(\frac{1}{6}\pi))$ und den Tiefpunk $T(\frac{5}{6}\pi|f(\frac{5}{6}\pi))$. $\Leftrightarrow H(\frac{1}{6}\pi|\frac{3}{2}\sqrt{3})$ und $T(\frac{5}{6}\pi|-\frac{3}{2}\sqrt{3})$.

4.6.6 Wendestellen

Notwendige Bedingung:

$$f''(x) = 0$$

$$\Leftrightarrow -8\sin(x)\cos(x) - 2\cos(x) = 0$$

$$\Leftrightarrow \cos(x)(-2 - 8\sin(x)) = 0$$

$$\stackrel{SdN}{\Rightarrow} \begin{cases} \cos(x) = 0 \\ \sin(x) = -\frac{1}{4} \end{cases}$$

$$\Rightarrow \mathbb{L} = \{\frac{1}{2}\pi; \frac{3}{2}\pi; \sim 3,394; \sim 6,031\}$$

Hinreichende Bedingung:

$$f'''(x) \neq 0$$

$$\begin{cases} f'''(\frac{1}{2}\pi) & \stackrel{?}{=} 0 \\ f'''(\frac{3}{2}\pi) & \stackrel{?}{=} 0 \end{cases}$$

$$\Rightarrow \begin{cases} f'''(\frac{3}{2}\pi) & \stackrel{?}{=} 0 \\ f'''(3,394) & \stackrel{?}{=} 0 \end{cases}$$

$$f'''(6,031) & \stackrel{?}{=} 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 16\sin^2(\frac{1}{2}\pi) + \sin(\frac{1}{2}\pi) - 8 & \stackrel{?}{=} 0 \\ 16\sin^2(\frac{3}{2}\pi) + \sin(\frac{3}{2}\pi) - 8 & \stackrel{?}{=} 0 \\ 16\sin^2(3,394) + \sin(3,394) - 8 & \stackrel{?}{=} 0 \\ 16\sin^2(6,031) + \sin(6,031) - 8 & \stackrel{?}{=} 0 \end{cases}$$

$$, > 0 \Rightarrow WP$$

$$\Leftrightarrow \begin{cases} 16*1+1-8 & \neq & 0 & , > 0 \Rightarrow WP \\ 16*1-1-8 & \neq & 0 & , > 0, \text{ außerdem: } f'(\frac{3}{2}\pi)=0 \Rightarrow Sattelpunkt \\ -7.5 & \neq & 0 & , < 0 \Rightarrow WP \\ -7.5 & \neq & 0 & , < 0 \Rightarrow WP \end{cases}$$

Ergebnis

Auf dem Intervall $[0;2\pi]$ besitzt K die Wendepunkte $(\frac{1}{2}\pi|f(\frac{1}{2}\pi)), (3,394|f(3,394)), (6,031|f(6,031))$ und den Sattelpunkt $(\frac{3}{2}\pi|f(\frac{3}{2}\pi)).$

Sattelpunkt
$$(\frac{1}{2}\pi|f(\frac{1}{2}\pi))$$
.
 $\Leftrightarrow W_1(\frac{1}{2}\pi|0), W_2(3,394|-1,452), W_3(6,031|1,452), S(\frac{3}{2}\pi|0).$

4.6.7 Schaubild

4.6.8 Symmetrie

K ist punktsymmetrisch zu W_1 , denn es gilt:

$$\begin{split} f(\frac{1}{2}\pi + x) &= -1 * f(\frac{1}{2}\pi - x) \\ \Leftrightarrow 2\cos(\frac{1}{2}\pi + x) + 2\sin(\frac{1}{2}\pi + x)\cos(\frac{1}{2}\pi + x) &= -1 * (2\cos(\frac{1}{2}\pi - x) + 2\sin(\frac{1}{2}\pi - x)\cos(\frac{1}{2}\pi - x)) \\ \Leftrightarrow -2\sin(x) - 2\cos(x)\sin(x) &= -1 * (2\sin(x) + 2\cos(x)\sin(x)) \end{split}$$

K ist außerdem zu S punktsymmetrisch, denn es gilt:

$$\begin{split} f(\frac{3}{2}\pi + x) &= -1 * f(\frac{3}{2}\pi - x) \\ \Leftrightarrow 2\cos(\frac{3}{2}\pi + x) + 2\sin(\frac{3}{2}\pi + x)\cos(\frac{3}{2}\pi + x) &= -1 * (2\cos(\frac{3}{2}\pi - x) + 2\sin(\frac{3}{2}\pi - x)\cos(\frac{3}{2}\pi - x)) \\ \Leftrightarrow 2\sin(x) + 2\cos(x)\sin(x) &= -1 * (-2\sin(x) - 2\cos(x)\sin(x)) \end{split}$$

Vektorielle Geometrie

5.1 Vektoren

Definition 5.1.0

Ein Vektor ist Element eines Vektorraums.

Vektorräume, wir erinnern uns zurück. Verknüpfungen, inverse Elemente und die dazugehörenden Gesetze, konsequente Definitionen und mathematische Korrektheit, die guten alten Zeiten...

Tatsächlich kann ein Vektor in den meisten Fällen als Verschiebung bezeichnet werden, nicht aber als Pfeil oder Strich!

5.1.1 Besondere Vektoren

Der Ortsvektor

Der Vektor von O auf den Punkt P, geschrieben als \overrightarrow{OP} oder \overrightarrow{p} .

Hat P die Koordinaten $(P_1|P_2|...|P_n)$, so besitzt \vec{p} die Darstellung $\begin{pmatrix} P_1 \\ P_2 \\ ... \\ P_n \end{pmatrix}$.

Der Nullvektor

Der Vektor mit Wert $\begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix}$, er hat keine und alle Richtungen zugleich.

Bemerkung:

Er ist somit das neutrale Element der Vektoraddition.

Der Verbindungsvektor

Der Vektor \overrightarrow{AB} ist der Vektor, der den Punkt A auf den Punkt B abbildet. Er ist definiert als: $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$, woraus folgt, dass:

$$\overrightarrow{AB} = \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \\ \dots \\ b_n - a_n \end{pmatrix}.$$

Der Gegenvektor

Der Gegenvektor zu \overrightarrow{AB} ist \overrightarrow{BA} , definiert als $-\overrightarrow{AB}$.

Bemerkung:

Er ist somit das inverse Element der Vektoraddition.

Der Einheitsvektor

Norm eines Vektors

Die Norm eines Vektors ist anschaulich als seine Länge zu interpretieren. Der Betrag, wie sie ebenfalls genannt wird, eines Vektors \overrightarrow{v} ist folgendermaßen definiert: $|\overrightarrow{v}| = \sqrt{\sum_{i=1}^n v_i^2}; \overrightarrow{v} \in \mathbb{R}^n$.

Anhand dieser Graphik lässt sich die Berechnung der Norm eines Vektors $\vec{v} \in \mathbb{R}^3$ verdeutlichen. Für diesen glit: $|\vec{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$.

Ein Vektor, dessen Norm 1 beträgt wird als normiert oder Einheitsvektor bezeichnet. Für jeden Vektor $\overrightarrow{v} \in \mathbb{R}^3$ existiert ein Einheitsvektor $\overrightarrow{v^*}$, der folgendermaßen definiert wird: $\overrightarrow{v^*} = \frac{1}{|\overrightarrow{v}|} * \overrightarrow{v}$.

5.2 Basen und Erzeugendensystem

Eine endliche Anzahl von Vektoren $\overrightarrow{a_1}, \overrightarrow{a_2}, ..., \overrightarrow{a_n} \in V$ heißt Erzeugendensystem, wenn sich jeder Vektor $\overrightarrow{v} \in V$ als Linearkombination dieser Vektoren schreiben lässt. Um ein Erzeugendensystem zu bilden benötigt man mindestens die Anzahl Vektoren, die der Anzahl von Dimensionen von \overrightarrow{v} entspricht. Wenn man **genau** diese Anzahl besitzt, spricht man von einer Basis.

5.2.1 Besondere Basen

Orthogonalbasis

Sind die Vektoren der Basis paarweise orthogonal zueinander, so spricht man von einer Orthogonalbasis.

Orthonormalbasis

Sind die Vektoren zusätzlich zu dieser Bedingung normiert, wird sie als **Orthonormalbasis** bezeichnet. Die einfachste und meist benutzte Basis des \mathbb{R}^3 besteht aus den drei Vektoren $\overrightarrow{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \overrightarrow{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \overrightarrow{e_3} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. Sie wird als **Standardbasis** des \mathbb{R}^3 bezeichnet. Vektoren wie $\overrightarrow{v} = \begin{pmatrix} 2 \\ 3 \\ 8 \end{pmatrix}$ lassen sich als eine Linear-kombination der drei Vektoren der Standardbasis darstellen: $\overrightarrow{v} = 2 \cdot \overrightarrow{e_1} + 3 \cdot \overrightarrow{e_2} + 8 \cdot \overrightarrow{e_3}$.

5.2.2 Basistransformation

Bilden die Vektoren $\overrightarrow{a_1}, \overrightarrow{a_2}, ..., \overrightarrow{a_n}$ eine Basis des n-dimensionalen Vektorraums V und sei der Vektor $\overrightarrow{v} = \begin{pmatrix} v_1 \\ v_2 \\ ... \\ v_n \end{pmatrix}$; $\overrightarrow{v} \in V$. Dann gilt wie üblich: $\overrightarrow{v} = v_1 \cdot \overrightarrow{a_1} + v_2 \cdot \overrightarrow{a_2} + ... + v_n \cdot \overrightarrow{a_n}$. Sei eine weitere Basis $\overrightarrow{b_1}, \overrightarrow{b_2}, ..., \overrightarrow{b_n}$

des selben Vektorraumes, so besitzt der Vektor \vec{v} andere Koordinaten: $\vec{v} = \begin{pmatrix} v_1' \\ v_2' \\ \dots \end{pmatrix}$. Dabei muss gelten: $\overrightarrow{v} = v_1 \cdot \overrightarrow{a_1} + v_2 \cdot \overrightarrow{a_2} + \dots + v_n \cdot \overrightarrow{a_n} = v_1' \cdot \overrightarrow{b_1} + v_2' \cdot \overrightarrow{b_2} + \dots + v_n' \cdot \overrightarrow{b_n}$

Bemerkung:

Um die Koordinaten eines Vektors in einer anderen Basis als der Aktuellen zu bestimmen, löst man diese Gleichung, die sich ergibt.

Beispiel:

Basis 1: Standardbasis des
$$\mathbb{R}^3$$
, Basis 2: $\vec{b_1} = \begin{pmatrix} 4 \\ 9 \\ -1 \end{pmatrix}$, $\vec{b_2} = \begin{pmatrix} -2 \\ -2 \\ 8 \end{pmatrix}$, $\vec{b_3} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$, Vektor $\vec{v} = \begin{pmatrix} -5 \\ 3 \\ 2 \end{pmatrix}$ (in der Standardbasis des \mathbb{R}^3)

$$\vec{v} = -5 \cdot \vec{a_1} + 3 \cdot \vec{a_2} + 2 \cdot \vec{a_3} = r \cdot \vec{b_1} + s \cdot \vec{b_2} + t \cdot \vec{b_3} \Leftrightarrow \begin{vmatrix} 4r & -2s & t & = & -5 \\ 9r & -2s & 3t & = & 3 \\ -r & 8s & t & = & 2 \end{vmatrix}$$

$$\Leftrightarrow \begin{vmatrix} -r & 8s & t & = & 2 \\ 0 & 30s & 5t & = & 3 \\ 0 & 70s & 12t & = & 21 \end{vmatrix}$$

$$\Rightarrow \begin{vmatrix} -r & 8s & t & = & 2 \\ 0 & 30s & 5t & = & 3 \\ 0 & 0 & \frac{1}{3} \cdot t & = & 14 \end{vmatrix}$$

$$\Rightarrow \begin{vmatrix} r & = & -15.2 \\ s & = & -6.9 \\ t & = & 42 \end{vmatrix}$$

$$\text{L} = \{-15.2| -6.9|42\}$$
Daraus lässt sich folgern: $\vec{v} = -15.2 \cdot \vec{b_1} - 6.9 \cdot \vec{b_2} + 42 \cdot \vec{b_3} = \begin{pmatrix} -15.2 \\ -6.9 \\ 42 \end{pmatrix}$ (in der anderen Basis).

5.3 Winkel zwischen Vektoren

Definition 5.3.0

Unter einem Winkel zwischen zwei Vektoren versteht man den Winkel, der ensteht, wenn man beide Vektoren an einen **gemeinsamen Startpunkt** verschiebt ohne dabei ihre Ausrichtung zu verändern.

einem

5.3.1Orientierte Winkel

Wenn man in der Mathematik mit Winkeln arbeitet, werden sie immer im mathematisch positiven Sinn an-Dies bedeutet. dass gegeben. man von der an den Winkel grenzt, ausgeht und über Rotation um den Schnittpunkt "gegen den Uhrzeigersinn"zum anderen gelangt, bis beide übereinanderliegen (wenn man davon ausgeht, dass sich beide schneiden). So ergibt sich $\alpha = \angle ABC = \angle ac = (\overline{BA}, \overline{BC}) = \frac{\pi}{3}$. Ein Winkel α wird zudem immer so angegeben, dass $\alpha \in I$; $I = [-\pi, \pi]$ gilt. Dies bedeutet, dass man nur Winkel zwischen 0 und 180 erhält, und das in beide "Richtungen", als im mathematisch positiven und negativen Sinn. Diese Einschränkung kennzeichnet man mit dem Ausdruck "**modulo** 2π ".

5.3.2Rechnungen mit Winkeln

Bei Berechnungen von Winkeln zwischen Vektoren geht man genau wie in der elementaren Geometrie vor. So wird die Dif-

Vektor

oder

Schenkel,

ferenz zwischen zwei Winkeln θ_1 und θ_2 wie gehabt berechnet:

 $\Delta \theta = \theta_1 - \theta_2$. Jedoch benötigt man weitere Rechenregeln, um mit Winkeln rechnen zu können.

Theorem

Relation de Chasles:

$$(\vec{u}, \vec{w}) + (\vec{w}, \vec{v}) = (\vec{u}, \vec{v}); \quad modulo \quad 2\pi$$

Umformungen:

$$(1) \ (\overrightarrow{u}, \overrightarrow{v}) = -(\overrightarrow{v}, \overrightarrow{u})$$

$$(2) \ (-\overrightarrow{u}, -\overrightarrow{v}) = (\overrightarrow{u}, \overrightarrow{v})$$

(3)
$$(\overrightarrow{u}, \overrightarrow{v}) = \pi + (-\overrightarrow{u}, \overrightarrow{v})$$

Aus der ersten und letzten dieser Relationen lässt sich analog dazu bestimmen:

(4)
$$(\overrightarrow{u}, \overrightarrow{v}) = -(\overrightarrow{v}, \overrightarrow{u}) = \pi - (-\overrightarrow{v}, \overrightarrow{u})$$

5.4 Linearkombination

Vektoren lassen sich allgemein mit der additiven Verknüpfung des Vektorraums verknüpfen. Diese Verknüpfung zwischen zwei beliebigen Vektoren \overrightarrow{v} und \overrightarrow{u} erfolgt, wie auch schon im Teil Verbindungsvektor gezeigt wird, wie

$$\begin{array}{lll} \text{folgt:} & \overrightarrow{v} + \overrightarrow{u} & = \begin{pmatrix} v_1 + u_1 \\ v_2 + u_2 \\ & \dots \\ v_n + u_n \\ \end{pmatrix}. & \text{Anschaulich wird } \overrightarrow{u} \\ \text{an } \overrightarrow{v} \text{ angehängt und der Schaft von } \overrightarrow{v} \text{ mit der Spit-} \end{array}$$

an \overrightarrow{v} angehängt und der Schaft von \overrightarrow{v} mit der Spitze von \overrightarrow{u} verbunden, um den neuen Vektor zu bilden.

Definition 5.4.0

Eine Familie von Vektoren $\overrightarrow{a_1}, \overrightarrow{a_2}, ..., \overrightarrow{a_n} \in V$ wird als linear abhängig bezeichnet, wenn die Gleichung: $r_1 \cdot \overrightarrow{a_1} + r_2 \cdot \overrightarrow{a_2} + \dots + r_n \cdot \overrightarrow{a_n} = \overrightarrow{0}; r_i \in \mathbb{R}$ nicht nur die triviale Lösung $r_1 = r_2 = \dots = r_n = 0$ besitzt. Existiert nur diese Lösung, ist die Familie linear unabhägig.

Anders gesagt, ist eine Familie von Vektoren linear abhängig, wenn sich einzelne Vektoren dieser Familie als Linearkombination von einer beliebigen Anzahl anderer Vektoren der Familie darstellen lassen.

Bemerkung:

Eine linear abhängige Familie aus genau zwei Vektoren wird als kollinear bezeichnet. Eine linear abhängige Familie aus genau drei Vektoren dagegen nennt man komplanar.

5.5Skalarprodukt

Das Skalarprodukt ist eine ("multiplikative") Verknüpfung des Vektorraums. Seinen Namen trägt es, da es aus zwei Vektoren einen Skalar, alias eine Zahl macht. Es dient dazu ein Maß für den Winkel, den zwei Vektoren \vec{u} und \vec{v} einschließen, festzulegen. Zudem lässt sich von dieser Definition aus der Winkel selber anhand der Vektobestimmt

Es wird als die Multiplikation der Norm der Projektion des Vektors \vec{v} in die Richtung von \vec{u} , das heißt, der Anteil von \vec{v} der auf der Geraden liegt, entlang welcher \vec{u} liegt, mit der Norm von \overrightarrow{u} definiert. Im Klartext bedeutet das:

$$\vec{u} \odot \vec{v} := |\vec{u}| \cdot |\vec{v'}|$$
$$= |\vec{u}| \cdot |\vec{v}| \cdot \cos(\alpha)$$

el)
$$\Leftrightarrow$$
: $\cos \alpha > 0 \Leftrightarrow \vec{u} \odot \vec{v} > 0$

$$Vinkel) \Leftrightarrow : \cos \alpha < 0 \Leftrightarrow \vec{u} \odot \vec{v} < 0$$

$$\cos \alpha = 0 \Leftrightarrow \vec{u} \odot \vec{v} = 0$$

Aus dieser Gleichung folgt:
$$\cos(\alpha) = \frac{\vec{v} \odot \vec{u}}{|\vec{v}| \cdot |\vec{u}|}$$
.

Das Kreuzprodukt ist das zweite nützliche Werkzeug welches in der Vektorgeometrie genutzt wird. Es dient hauptsächlich zur einfachen Berechnung eines zu zwei nicht kollinearen Vektoren \vec{u} und \vec{v} orthogonalen

Vektors
$$\vec{i}$$
. Seine Formel lautet wie folgt: $\vec{i} = \vec{u} \times \vec{v} := \begin{pmatrix} u_2 \cdot v_3 - u_3 \cdot v_2 \\ u_3 \cdot v_1 - u_1 \cdot v_3 \\ u_1 \cdot v_2 - u_2 \cdot v_1 \end{pmatrix}$.

Seien \vec{u} und \vec{v} beliebige zueinander nicht kollineare Vektoren des \mathbb{R}^3 . Ein zu beiden Vektoren orthogonaler Vektor ergibt sich durch:

$$\Leftrightarrow \left\{ \begin{array}{lcl} i_1 & = & u_2v_3 - u_3v_2 & (1) \\ i_2 & = & u_3v_1 - u_1v_3 & (2) \\ i_3 & = & u_1v_2 - u_2v_1 & (3) \end{array} \right.$$

$$\Leftrightarrow \overrightarrow{i} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}$$

Bemerkung:

$$\vec{u} \times \vec{v} = 0 \Leftrightarrow \vec{u} \parallel \vec{v} (\vec{u} = r \cdot \vec{v}; r \in \mathbb{R})$$

Zudem gilt:

$$\begin{split} |\overrightarrow{i}| &= |\overrightarrow{u}| \cdot (\sin(\alpha) \cdot |\overrightarrow{v}|) \\ &= |\overrightarrow{u}| \cdot \left(\sin\left(\cos^{-1}\left(\frac{\overrightarrow{u} \odot \overrightarrow{v}}{|\overrightarrow{u}| \cdot |\overrightarrow{v}|}\right)\right) \cdot |\overrightarrow{v}|\right) \end{split}$$

Einfacher gesagt ist der Betrag des Vektors \vec{i} gleich der Fläche des Parallelogramms, welches die zwei Vektoren \vec{u} und \vec{v} aufspannen. Um diese doch recht verwirrende Erklärung etwas zu verdeutlichen folgt eine visuelle Darstellung:

Beweis

5.7 Geraden

5.7.1 Darstellungen

Eine Gerade ist ein sehr bekannter Bestandteil der elementaren Geometrie. Bezogen auf die Vektorgeometrie ist sie nichts anderes als ein unendlich langer Vektor, beziehungsweise eine Linearkombination aus unendlich vielen (identischen / kollinearen) Vektoren. Somit ergibt sich die eindeutige **Parameterform** einer Geraden $g: \vec{x} = \vec{q} + s \cdot \vec{u}; s \in \mathbb{R}$. Diese Schreibweise beschreibt die der Geraden zugehörigen Punktmenge. Der Vektor \vec{q} bestimmt die Position der Geraden im Raum und trägt folglich den Namen **Stützvektor**, wohingegen der Vektor \vec{u} die Ausrichtung der Geraden anzeigt und **Richtungsvektor** genannt wird.

Bemerkung:

Die Parameterform ist die einzige mögliche Darstellungsform einer Geraden im \mathbb{R}^3 , da ihr Normalvektor nicht eindeutig bestimmt werden kann. Im \mathbb{R}^2 jedoch ist dies möglich, ähnlich wie für Kreise. Zudem kann eine Gerade in Koordinatenform durch die Schnittmenge zweier Ebenen beschrieben werden (siehe auch,,5.7.3 Lagebeziehungen zwischen Ebenen").

5.7.2 Lagebeziehungen zwischen Geraden

Es gibt bezüglich Geraden vier verschiedene Beziehungen, vorausgesetzt diese befinden sich im \mathbb{R}^3 . Zwei Geraden g und h können...

$1) \ ... \mathbf{parallel} ...$

$2) \ ... \mathbf{identisch} ...$

$3) \ ... {\bf windschief \ zue in and er}...$

...sein oder...

4) ...sich schneiden

Die Lagebeziehung zwischen zwei Geraden g und hlässt sich wie folgt ermitteln:

5.7.3 Abstand zu einem Punkt

Definition 5.7.3

Der Lotfußpunkt L einer Geraden $g: \vec{x} = \vec{q} + t \cdot \vec{u}; t \in \mathbb{R}$ zu einem Punkt $P \notin g$ ist definiert durch: $\overrightarrow{LP} \odot \vec{u} = 0$. Er ist somit der dem Punkt P am nähesten gelegenen Punkt der Gerade g und wird folglich hauptsächlich zur Abstandsberechnung genutzt.

Der Abstand von einer Geraden g zu einem Punkt P ist äquivalent zur **Norm des Verbindungsvektors** \overrightarrow{LP} , wobei L der Lotfußpunkt der Geraden g zu P ist. Für die Berechnung des Abstands gibt es drei verschiedene Lösungsansätze (OHG) von denen zwei gebräuchlicher sind als der dritte.

Orthogonalität:

Da die Norm des Verbindungsvektors gesucht wird, gilt es nun diesen eindeutig zu bestimmen. Folgender Ablauf führt zum Ziel:

Abhängigkeit des Faktors des Richtungsvektors bestimmen:

$$\overrightarrow{l} = \begin{pmatrix} q_1 + t \cdot u_1 \\ q_2 + t \cdot u_2 \\ q_3 + t \cdot u_3 \end{pmatrix}$$

$$\overrightarrow{LP} = \begin{pmatrix} p_1 - (q_1 + t \cdot \boldsymbol{u}_1) \\ p_2 - (q_2 + t \cdot \boldsymbol{u}_2) \\ p_3 - (q_3 + t \cdot \boldsymbol{u}_3) \end{pmatrix}$$

sen (nach t auflösen):

$$-(q_1+t\cdot u_1)) + u_2 \cdot (p_2 - (q_2+t\cdot u_2)) + u_3 \cdot (p_3 - (q_3+t\cdot u_3))$$

$$-q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)$$

$$u_1^2 + u_2^2 + u_3^2$$

$$-\left(q_{1}+\frac{u_{1}\cdot (p_{1}-q_{1})+u_{2}\cdot (p_{2}-q_{2})+u_{3}\cdot (p_{3}-q_{3})}{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}\cdot u_{1}\right) \\ -\left(q_{2}+\frac{u_{1}\cdot (p_{1}-q_{1})+u_{2}\cdot (p_{2}-q_{2})+u_{3}\cdot (p_{3}-q_{3})}{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}\cdot u_{2}\right) \\ -\left(q_{3}+\frac{u_{1}\cdot (p_{1}-q_{1})+u_{2}\cdot (p_{2}-q_{2})+u_{3}\cdot (p_{3}-q_{3})}{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}\cdot u_{3}\right)\right)$$

berechnen:

$$\begin{vmatrix} (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ u_1^2 + u_2^2 + u_3^2 \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ u_1^2 + u_2^2 + u_3^2 \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ u_1^2 + u_2^2 + u_3^2 \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ u_1^2 + u_2^2 + u_3^2 \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ u_1^2 + u_2^2 + u_3^2 \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ u_1^2 + u_2^2 + u_3^2 \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ u_1^2 + u_2^2 + u_3^2 \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1) + u_2 \cdot (p_2-q_2) + u_3 \cdot (p_3-q_3) \\ \vdots \\ (p_1-q_1)$$

Hilfsebene:

Diese Methode hat sich Platz zwei erkämpft:

 \overrightarrow{u} $P \in E$, da die Gerade g die Ebene im rechten Winkel durchstößt und der ogonal zur Geraden ist):

$$- \vec{p}] = 0$$

$$\mathbf{u}_3 x_3 = \mathbf{u}_1 p_1 + \mathbf{u}_2 p_2 + \mathbf{u}_3 p_3$$

ach t auflösen):

$$\begin{aligned} & (p_1 + t \cdot u_2) + u_3(q_3 + t \cdot u_3) = u_1 p_1 + u_2 p_2 + u_3 p_3 \\ & \Leftrightarrow t = \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \end{aligned}$$

Grenzwertberechnung:

Zu guter Letzt wollen wir die Analysis Fanatiker befriedigen:

gkeit von t bestimmen:

$$\frac{+(p_2 - (q_2 + t \cdot u_2))^2 + (p_3 - (q_3 + t \cdot u_3))^2}{+2((q_1 - p_1) \cdot u_1 + (q_2 - p_2) \cdot u_2 + (q_3 - p_3) \cdot u_3)t}{)^2 + (p_3 - q_3)^2)}$$

nktion f(t):

$$\frac{+2((q_1-p_1)\cdot \mathbf{u_1} + (q_2-p_2)\cdot \mathbf{u_2} + (q_3-p_3)\cdot \mathbf{u_3})t}{(q_3-q_3)^2}$$

$$\frac{+2((q_1-p_1)\cdot u_1+(q_2-p_2)\cdot u_2+(q_3-p_3)\cdot u_3)}{+2((q_1-p_1)\cdot u_1+(q_2-p_2)\cdot u_2+(q_3-p_3)\cdot u_3)t}\cdots$$

$$\frac{1}{(q_2)^2+(p_3-q_3)^2)}$$

$$\frac{2((q_1 - p_1) \cdot \mathbf{u}_1 + (q_2 - p_2) \cdot \mathbf{u}_2 + (q_3 - p_3) \cdot \mathbf{u}_3)}{-q_2) + \mathbf{u}_3 \cdot (p_3 - q_3)}$$

$$\frac{2((q_1 - p_1) \cdot \mathbf{u}_1 + (q_2 - p_2) \cdot \mathbf{u}_2 + (q_3 - p_3) \cdot \mathbf{u}_3)}{2 + \mathbf{u}_3^2}$$

g ist nicht zu prüfen, sie gilt (der Minimalabstand existiert immer), und die falls vorbestimmt, da der Verbindungsvektor unendlich lang wird wenn man utungen entlang der Geraden verschiebt.

Bemerkung:

Wie sich unschwer erkennen lässt, sind die Formeln für die Berechnung von t bei allen drei Lösungsansätzen identisch. Die Methoden unterscheiden sich somit nur am Anfang voneiander.

Bemerkung:

Zur Abstandsberechnung gibt es eine allgemeine Formel, welche die oben aufgelisteten Vorgehensweisen überflüssig macht. Da sie für das Abitur allerdings nicht zugelassen ist, wird sie hier nicht bewiesen beziehungsweise graphisch ergänzt: $d(g,P) = \frac{|\overrightarrow{u} \times \overrightarrow{QP}|}{|\overrightarrow{u}|}$.

5.7.4 Abstand zweier Geraden

Zwei nicht sich schneidende oder identische Geraden haben einen **eindeutig definierten Minimalabstand**. Bei zwei parallelen Geraden ist dies einfach zu visualisieren, der Abstand zweier windschiefer Geraden jedoch weniger. Im Folgenden sollen beide Fälle untersucht werden.

Parallele Geraden:

Der Abstand zweier paralleler Geraden g und h entspricht genau dem Abstand eines Punktes $P \in g \lor P \in h$ zur jeweiligen gegenüberliegenden Geraden. Somit genügt es den Abstand zwischen zwischen dem Stützpunkt einer Geraden und der anderen zu berechnen.

Windschiefe Geraden:

Der minimale Abstand zweier windschiefer Geraden lässt sich mithilfe einer **Hilsebene** verbildlichen und bestimmen. Gegeben seien zwei Geraden $g: \vec{x} = \vec{p} + r \cdot \vec{u}; r \in \mathbb{R}$ und $h: \vec{x} = \vec{q} + s \cdot \vec{v}; s \in \mathbb{R}$. Daraus folgt, dass: $E: \vec{x} = \vec{p} + r \cdot \vec{u} + s \cdot \vec{v} \vee E: \vec{x} = \vec{q} + r \cdot \vec{u} + s \cdot \vec{v}; s, r \in \mathbb{R}$. Somit ergibt sich eine Ebene, welche entweder die Gerade g oder h enthält und parallel zur anderen ist. Der Minimalabstand ist äquivalent zum Abstand zwischen einem Punkt der Geraden, die nicht in der Ebene enthalten ist, und der Ebene. Für die genaue Vorgehensweise von diesem Punkt aus empfiehlt es sich sich den Teil "Abstand zu einem Punkt" unter Ebenen zuzuwenden.

Bemerkung:

Zur Berechnung des Abstands zweier windschiefer Geraden gibt es zudem eine Formel, welche zugleich das **Ergebnis des Skalarprodukts** veranschaulicht. Aus zwei Geraden

$$g: \overrightarrow{x} = \overrightarrow{p} + r \cdot \overrightarrow{u}; r \in \mathbb{R}$$
 und $h: \overrightarrow{x} = \overrightarrow{q} + s \cdot \overrightarrow{v}; s \in \mathbb{R}$

lässt sich mit dem Kreuzprodukt ein normierter Normalenvektor n_0 zu beiden Richtungsvektoren \vec{u} und \vec{v} errechnen, den man mit dem Verbindungsvektor der beiden Ortsvektoren $(\vec{q} - \vec{p})$ zur Minimalabstandsberechnung der beiden Geraden skaliert:

$$d(g,h) = |n_0 \odot (\overrightarrow{q} - \overrightarrow{p})| = |\frac{\overrightarrow{u} \times \overrightarrow{v}}{|\overrightarrow{u} \times \overrightarrow{v}|} \odot (\overrightarrow{q} - \overrightarrow{p})|$$

5.8 Ebenen

5.8.1 Darstellungen

Die Darstellung einer Ebene beinhaltet immer die gleichen Informationen: Ihre Position im Raum und ihre Ausrichtung:

Name	Darstellung
Parameterform	$E: \overrightarrow{x} = \overrightarrow{p} + s \cdot \overrightarrow{u} + t \cdot \overrightarrow{v}; \qquad s, t \in \mathbb{R}$
Normalenform	$E: (\vec{x} - \vec{q}) \odot \vec{n} = 0$
Koordinatenform	$E: n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3 = d; d = n_1 \cdot q_1 + n_2 \cdot q_2 + n_3 \cdot q_3$

Die erste bei Geraden bereits eingeführte Form ist leicht zu verstehen. An den Stützvektor setzt man anschließend einen zweiten Richtungsvektor; die beiden Vektoren werden **Spannvektoren** genannt, da sie gemeinsam die Ebene aufspannen. Da man sich über diese beliebig in zwei Dimensionen bewegen kann, ist jeder Punkt in einer Ebene erreichbar. Bei der Bildung der Ebene muss man beachten, dass die Spannvektoren **nicht kollinear** sind. In diesem Fall erhält man wieder eine Gerade.

Die Normalenform und Koordinatenform sind weitaus weniger intuitiv und erfordern eine genauere Erklärung. Sie lässt sich zudem leichter anhand einer Graphik erklären:

Somit ist jeder Punkt $X \in E$, wenn der Verbindingsvektor $(\vec{x} - \vec{q})$ orthogonal zum Vektor \vec{n} ist. Dabei spielt die Position des sogenannten **Normalenvektors** keine Rolle, ebenso wenig wie seine Norm. Allein seine Ausrichtung bestimmt die der Ebene. Um die Position im Raum genau zu bestimmen, benötigt man zudem einen Punkt $Q \in E$. Diese zusätzliche Information schließt alle anderen parallelen Ebenen aus, die durch einen kollinearen Normalenvektor defniert sind.

Aus der Normalenform lässt sich die Koordinatenform ableiten. Man macht häufiger Gebrauch von letzterer, da sich leichter mit ihr rechnen lässt. Man bildet sie wie folgt:

```
\begin{split} E: (\overrightarrow{x} - \overrightarrow{q}) \odot \overrightarrow{n} &= 0 \\ \Leftrightarrow E: \overrightarrow{x} \odot \overrightarrow{n} &= \overrightarrow{q} \odot \overrightarrow{n} \\ \Leftrightarrow E: n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3 &= d; \quad d = n_1 \cdot q_1 + n_2 \cdot q_2 + n_3 \cdot q_3 \end{split}
```

Bemerkung:

Ebenen lassen sich auch mittels **Spurpunkten** und **Spurgeraden** lokalisieren. Spurpunkte sind die der Achsen des Koordinatensystems, welche in der Ebene enthalten sind. Aus diesen lassen sich anschließend die Spurgeraden bilden (durch Verbinden der Punkte). Folgende Möglichkeiten bieten sich an:

- 1) 3 Spurpunkte
- 2) 2 Spurpunkte $\Rightarrow E \parallel \overrightarrow{x_1} \lor E \parallel \overrightarrow{x_2} \lor E \parallel \overrightarrow{x_3}$
- 3) 1 Spurpunkt $\Rightarrow E \parallel E_{x_1x_2} \vee E \parallel E_{x_2x_3} \vee E \parallel E_{x_1x_3}$

- 4) Ausnahme des vorherigen Falls: $P \equiv O \Rightarrow$ Ausrichtung von E lässt sich nicht bestimmen
- 5) ∞ Punkte \Rightarrow Eine der Achsen des Koordinatensystems $\in E$, Ausrichtung von E lässt sich nicht bestimmen
- 6) ∞ , \cdot 2" Punkte $\Rightarrow E \equiv E_{x_1x_2} \lor E \equiv E_{x_2x_3} \lor E \equiv E_{x_1x_3}$

Drei beziehungsweise zwei (falls man Normalenform und Koordinatenform als eine ansieht) verschiedene Darstellungsweisen sind zwar interessant und eine nicht ganz unwichtige Überlegung, jedoch scheint das auf den ersten Blick unnütz. Im Laufe dieser section wird sich der jeweilige Nutzen noch offenbaren. Dann wird einem auch deutlich, dass es manchmal von Vorteil sein kann die Formen umzuformen. Die Herangehensweisen für jede Umformung unterscheiden sich nur wenig voneiander, Folgendes Diagramm stellt eine Möglichkeit vor:

herausarbeiten \wedge Per Punktprobe (Koordinaten einsetzen) n

teln \wedge Stützpunkt P als Punkt Q einsetzen

ermitteln $\land Q$ als Stützpunkt $P \land (\overrightarrow{u} - \overrightarrow{q})$ und $(\overrightarrow{v} - \overrightarrow{q})$ als

alarprodukt "ausmultiplizieren"

5.8.2 Lagebeziehungen zwischen Ebenen und Geraden

Ebenen und Geraden können im Gegensatz zu zwei Geraden nur eine von den drei folgenden Beziehungen zueinander haben. Eine Ebene E und eine Gerade g können...

1) ...parallel...

...sein oder...

$2) \ ... {\bf sich \ schneiden}$

Zudem kann g...

3) ...in E liegen

Die Lagebeziehung zwischen einer Ebene E und einer Geraden g lässt sich wie folgt ermitteln:

5.8.3 Lagebeziehungen zwischen Ebenen

Ebenen teilen bezüglich ihrer Lage zueinander eine Eigenschaft mit einer Ebene und einer Geraden. Zwei Ebenen E_1 und E_2 können ebenfalls:

1) ...parallel...

$2) \ ... \mathbf{identisch}$

 \dots sein oder \dots

3) ...sich schneiden

Die Lagebeziehung zwischen zwei Ebenen ${\cal E}_1$ und ${\cal E}_2$ lässt sich wie folgt ermitteln:

Für die Berechnung der Schnittgeraden gibt es unterschiedliche Ansätze abhängig von der Ausgangssituation, welche durch die zwei möglichen Darstellungsweisen von Ebenen bedingt sind. Drei mögliche Fälle können auftreten:

$$= d; \quad d = n_1 \cdot q_1 + n_2 \cdot q_2 + n_3 \cdot q_3 \wedge E_2 : n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3 = d; \quad d = d; \quad d = n_1 \cdot q_1 + n_2 \cdot q_2 + n_3 \cdot q_3 \wedge E_2 : \vec{x} = \vec{p} + s \cdot \vec{u} + t \cdot \vec{v}; \quad s, t \in \mathbb{R}$$

$$, t \in \mathbb{R} \wedge E_2 : \vec{x} = \vec{p} + s \cdot \vec{u} + t \cdot \vec{v}; \quad s, t \in \mathbb{R}$$

5.8.4 Winkel zwischen Ebenen (und Geraden)

Die einzige bisher angesprochene Möglichkeit den Winkel zwischen zwei geometrischen Formen zu ermitteln macht sich der Definition des Skalarprodukts zunutze. Wie bereits erläutert gilt: $\cos(\alpha) = \frac{\overrightarrow{v} \odot \overrightarrow{u}}{|\overrightarrow{v}| \cdot |\overrightarrow{u}|}$. Hierbei soll erneut hervorgehoben werden, dass der Winkel der "kleinere"der beiden möglichen ist. Den anderen erhält man in Abhängigkeit des ersten. Daraus lässt sich ableiten wie zwei Geraden oder Ebenen oder auch eine Gerade und eine Ebene zueinander stehen:

5.8.5 Abstand zu einem Punkt

Eine simple und intuitive Art den Abstand einer Ebene E zu einem Punkt P zu bestimmen, wäre eine Gerade zu erstellen, welche durch P geht und die als Richtungsvektor den Normalenvektor Es hat, da \overrightarrow{n} per Definition orthogonal zu E ist und somit ein anderer kollinearer Vektor den ßchnellst möglichsten Weg zum Punkt"darstellt. Anschließend müsste man den Schnittpunkt der Geraden und E und die Norm des somit erhaltenen Vektors berechnen. Es sticht einem schnell ins Auge, dass dies ein großer Aufwand ist. Tatsächlich gibt es einen für das Abitur zugelassenen schnelleren Lösungsweg: die **Hess'sche Normalenform**.

Definition 5.8.5

Hess'sche Normalenform:

Die Hess'sche Normalenform ist eine besondere Normalenform einer Ebene, dadurch besonders, dass der Normalenvektor normiert ist. Sie lässt sich wie folgt ableiten: $E_h: \frac{\overrightarrow{n}\odot[\overrightarrow{x}-\overrightarrow{q}]}{|\overrightarrow{n}|}=0$

Anhand dieser Graphik lässt sich die Formel zur Berechnung des Abstands eines Punktes zu einer Ebene ablesen: $d = \frac{|\vec{n} \odot (\vec{p} - \vec{q})|}{|\vec{n}|}$

Beweis

$$\overrightarrow{FP} = r \cdot \overrightarrow{n}; r \in \mathbb{R}^+$$
:

Nach Theoremen der Trigonometrie und der Definition des Skalarprodukts gilt:

$$cos(\alpha) = \frac{d}{|\overrightarrow{QP}|}$$
$$cos(\alpha) = \frac{\overrightarrow{n} \odot \overrightarrow{QP}}{|\overrightarrow{n}| \cdot |\overrightarrow{QP}|}$$

Daraus folgt:

$$\frac{d}{|\overrightarrow{QP}|} = \frac{\overrightarrow{n} \odot \overrightarrow{QP}}{|\overrightarrow{n}| \cdot |\overrightarrow{QP}|}$$
$$d = \frac{\overrightarrow{n} \odot \overrightarrow{QP}}{|\overrightarrow{n}|}$$
$$d = \frac{\overrightarrow{n} \odot (\overrightarrow{p} - \overrightarrow{q})}{|\overrightarrow{n}|}$$

$$\overrightarrow{FP} = r \cdot \overrightarrow{n}; r \in \mathbb{R}^-:$$

$$\begin{split} \frac{d}{|\overrightarrow{QP}|} &= \frac{-\overrightarrow{n} \odot \overrightarrow{QP}}{|-\overrightarrow{n}| \cdot |\overrightarrow{QP}|} \\ d &= -\frac{\overrightarrow{n} \odot \overrightarrow{QP}}{|\overrightarrow{n}|} \\ d &= -\frac{\overrightarrow{n} \odot (\overrightarrow{p} - \overrightarrow{q})}{|\overrightarrow{n}|} \end{split}$$

Somit lautet die gesuchte Formel:
$$d = \frac{|\vec{n} \odot (\vec{p} - \vec{q})|}{|\vec{n}|}$$

5.9 Kreise und Kugeln

- 5.9.1 Kreise
- 5.9.2 Kugeln
- 5.10 Spatprodukt
- 5.11 Dyadisches Produkt
- 5.12 Sätze
- 5.12.1 Der Satz des Apollinius

Definition 5.12.1

Gegeben sind: Eine Strecke [AB] und eine positive Zahl $\lambda \in \mathbb{R}^+ \setminus \{1\}$. Dann ist die Punktmenge

$$M_A = \{X | \frac{\overline{AX}}{\overline{XB}} = \lambda\}$$

ein Kreis, den man **Kreis des Apollinius** nennt. Anschaulich:

Der Satz besagt also, dass alle Punkte X deren Abstände zu A (\overline{AX}) und zu B (\overline{XB}) im Verhältnis λ stehen, auf einem Kreis liegen.

Beweis

Beweis: Anfangen kann man den den Beweis damit, dass man zwei Punkte sucht, die die Bedingung erfüllen und auf der Geraden AB liegen. Logisch ist, dass einer dieser Punkte zwischen A und B sein wird, dieser wird innerer Teilungspunkt T_i genannt. Der andere Punkt liegt außerhalb der Strecke [AB] und wird äußerer Teilungspunkt T_a genannt.

Im letzten Schritt des Beweises wird man anhand des Skalarprodukts zeigen, dass für alle Punkte X, die ebenfalls die Verhältnisgleichung erfüllen, die Vektoren $\overrightarrow{T_iX}$ und $\overrightarrow{T_aX}$ orthogonal zueinander sind. Somit liegen diese Punkte auf dem Thaleskreis (frz.: Theoreme du triangle rectangle) über T_i und T_a , der dann **Apolliniuskreis** genannt wird.

1. Um uns die Arbeit so einfach wie möglich zu machen, platzieren wir unseren ersten Punkt A auf den Ursprung eines Koordinatensystems und die Strecke [AB] entlang der x-Achse . Der Punkt B hat den Abstand \overline{AB} zu A, den man b abkürzt. Gleichermaßen verfährt man mit den Längen $\overline{AT_i} = t_i$ und $\overline{AT_a} = t_a$, und man führt den Punkt X(x|y) ein. Hier nochmal ein Überblick:

$$\triangleright A(0|0)$$
 $\triangleright B(b|0)$ $\triangleright T_i(t_i|0)$ $\triangleright T_a(t_a|0)$ $\triangleright X(x|y)$

2. Nun gilt:

$$\frac{\overline{AT_i}}{\overline{T_iB}} = \lambda$$
 und $\frac{\overline{AT_a}}{\overline{T_aB}} = \lambda$

Das benutzt man, um die Koordinaten t_i und t_a in Abhängigkeit von b und λ auszudrücken, denn diese Punkte sind ja durch das Verhältnis λ in der Ebene festgelegt.

3. Jetzt wo wir T_i und T_a in Abhängigkeit von b und λ bestimmt haben, kann man die Vorraussetzung auch noch auf den Punkt X anwenden.

$$\frac{\overline{AX}}{\overline{XB}} = \lambda$$

$$\Leftrightarrow \left(\frac{\overline{AX}}{\overline{XB}}\right)^2 = \lambda^2$$

$$\Leftrightarrow \frac{(\overline{AX})^2}{(\overline{XB})^2} = \lambda^2$$

$$\Leftrightarrow \frac{x^2 + y^2}{(x - b)^2 + y^2} = \lambda^2$$

$$\Leftrightarrow x^2 + y^2 = \lambda^2[(x - b)^2 + y^2]$$

$$\Leftrightarrow x^2 + y^2 = \lambda^2 \cdot (x - b)^2 + \lambda^2 y^2 - x^2 - y^2$$

$$\Leftrightarrow 0 = \lambda^2 \cdot (x - b)^2 + \lambda^2 y^2 - x^2 - y^2$$

$$\Leftrightarrow 0 = x^2 \cdot \lambda^2 - 2bx \cdot \lambda^2 + b^2 \cdot \lambda^2 + y^2 \cdot \lambda^2 - x^2 - y^2$$
(1)

4. Bevor man zum Ende kommt, kann man noch die Ergebnisse aus 2) benutzen, um t_i und t_a miteinander zu verrechnen, denn diesen Zusammenhang braucht man gleich.

$$t_{i} + t_{a} = \frac{\lambda}{\lambda + 1} \cdot b + \frac{\lambda}{\lambda - 1} \cdot b = \left(\frac{\lambda}{\lambda + 1} + \frac{\lambda}{\lambda - 1}\right) \cdot b = \frac{\lambda^{2}}{\lambda^{2} - 1} \cdot 2b$$

$$t_{i} \cdot t_{a} = \frac{\lambda}{\lambda + 1} \cdot b \cdot \frac{\lambda}{\lambda + 1} \cdot b = \frac{\lambda^{2}}{\lambda^{2} - 1} \cdot b^{2}$$
(2)

5. Nun kommt der finale Schritt. Man bildet die Vektoren $\overrightarrow{T_iX} = \begin{pmatrix} x - t_i \\ y \end{pmatrix}$ und $\overrightarrow{T_aX} = \begin{pmatrix} x - t_a \\ y \end{pmatrix}$ und berechnet deren Skalarprodukt. * TROMMELWIRBEL*

$$\overrightarrow{T_{i}X} \cdot \overrightarrow{T_{a}X} = (x-t_{i}) \cdot (x-t_{a}) + y^{2}$$

$$= x^{2} - (t_{i} + t_{a})x + t_{i} \cdot t_{a} + y^{2}$$
Benutze (2) und (3)
$$= x^{2} - \frac{\lambda^{2}}{\lambda^{2} - 1} \cdot 2bx + \frac{\lambda^{2}}{\lambda^{2} - 1} \cdot b^{2} + y^{2}$$

$$= \frac{x^{2} \cdot (\lambda^{2} - 1) - 2bx \cdot \lambda^{2} + b^{2} \cdot \lambda^{2} + y^{2} \cdot (\lambda^{2} - 1)}{\lambda^{2} - 1}$$

$$= \frac{x^{2} \cdot \lambda^{2} - 2bx \cdot \lambda^{2}b^{2} \cdot \lambda^{2} + y^{2} \cdot \lambda^{2} - x^{2} - y^{2}}{\lambda^{2} - 1}$$
Benutze (1)
$$= 0$$

Damit hat man bewiesen, dass für alle Punkte X die Vektoren $\overrightarrow{T_iX}$ und $\overrightarrow{T_aX}$ orthogonal zueinander sind, weshalb sie auf dem Thaleskreis über T_i und T_a liegen müssen.

Die Figur und die Zusammenhänge, die man durch den Satz des Apollinius erhalten hat, kann man benutzen, um ein wenig mit Winkeln zu spielen:

Auf dieser Skizze sind 10 Winkel gekennzeichnet, zu welchen sich eine ganze Reihe von Beziehungen aufstellen lässt:

$$\rhd \alpha + \beta + \gamma = 180 \quad \rhd \beta + \gamma_2 + \delta_2 = 180 \quad \rhd \delta_1 + \delta_2 = 180 \quad \rhd \alpha + \gamma + \epsilon + \zeta = 180 \quad \rhd \epsilon + \zeta + \eta = 180 \\ \rhd + \gamma_1 + \delta_1 = 180 \quad \rhd \gamma_1 + \gamma_2 = \gamma \quad \rhd \gamma_2 + \epsilon = 90 \quad \rhd \beta + \eta = 180 \quad \rhd \gamma_2 + \delta_2 + \epsilon + \zeta = 180$$

Hiermit bekommt man ein zehndimensionales Gleichungssystem mit dem sich $\gamma_1 = \gamma_2$ zeigen lässt. Dies bedeutet dass die Gerade T_iX auch noch die Winkelhalbierende des Winkels $\gamma = \angle AXB$ ist:

Definition 5.12.1

Eine Innenwinkelhalbierende eines Dreiecks teilt die gegenüberliegende Seite im Verhältnis der Anliegenden Seiten. $\gamma_1 = \gamma_2 \Rightarrow \overline{AT_i} : \overline{T_iB} = \overline{AX} : \overline{XB}$

Quelle (Apollinus) : Tobias Rave, 06.03.18, Skript 1
ere SBC S.68-71

KOMPLEXE ZAHLEN

6.1 Einführung

<u>Problem:</u> Es gibt algebraische Gleichungen, die in der Menge der reellen Zahlen $\mathbb R$ keine Lösung besitzen.

$$\Rightarrow x^2 + 1 = 0$$

 $\Leftrightarrow x = \sqrt{-1}$ Keine Reelle Lösung!

Es kann hierbei ein neues Symbol eingeführt werden : $i=\sqrt{-1}$ Damit kann man der obigen Gleichung die Lösung x=i zuordnen

Wenn wir voraussetzen, dass diese neue Zahlen nach denselben Rechengesetzen genügen, wie die reellen Zahlen, erhalten wir damit auch Lösungen für andere bisher nicht lösbare quadratische Gleichungen, wie das folgende Beispiel zeigt:

$$\Rightarrow x^2 + 2x + 5 = 0$$

$$\Rightarrow x = \frac{-2\sqrt{16*(-1)}}{\sqrt{4-20}} = \frac{-24i}{2} = -12i$$

 $\frac{\text{Bemerkung:}}{\text{Bezeichnungen}}$

naginäre Einheit und wird hier mit i bezeichnet.

it $y \in \mathbb{R}$ heißen **imaginäre Zahlen**

+i*y mit $x,y \in \mathbb{R}$ werden als **Komplexe Zahlen** bezeichnet

exe Zahl, so heißen

n z

 $|x,y \in \mathbb{R}\}$ wird als Menge der Komplexen Zahlen bezeichnet

 $\frac{\text{Bemerkung:}}{\text{Aber}}$

Der **Imaginärteil** y einer komplexen Zahl z = x + i * y ist selbst eine reelle Zahl! Der **Imaginärteil** ist lediglich der Faktor bei i!

6.2 Darstellung komplexer Zahlen

Eine komplexe Zahl wird durch zwei reelle Zahlen charakterisiert. Wie bei zweidimensionalen Vektoren brauchen wir hier zur geometrischen Veranschaulichung auch eine zweidimensionale Ebene.

6.2.1 Kartesische Darstellung

Jeder komplexen Zahl z = x + i * y entspricht genau ein Punkt P = (x, y) in der komplexen Zahlenebene und umgekehrt.

 $\frac{\text{Bemerkung:}}{\text{Bezeichnungen}}$

nennt sich auch Gaußsche- Zahlenebene

Koordinatensystems als reelle Achse bzw. imaginäre Achse bezeichnet.

 $\frac{\text{Bemerkung:}}{\text{Beispiel}}$

Die folgenden komplexen Zahlen sind in der Gaußschen Zahlenebene darzustellen:

 $z_1 = 2 + 3 * j \ z_2 = -3 - j \ (i \text{ wird hier } j \text{ genannt})$

 $\frac{\text{Bemerkung:}}{\text{Bemerkungen}}$

Für manche Anwendungen ist es hilfreich, eine komplexe Zahl nicht als Punkt P=(x,y) in der Gaußschen Zahlenebene zu veranschaulichen, sondern stattdessen den Ortsvektor zu betrachten

$$z = x + j * y \Leftrightarrow z = \begin{pmatrix} x \\ y \end{pmatrix}$$

In diesem Fall spricht man von z als einem komplexen Zeiger.

6.2.2 Polarkoordinatendarstellung

Neben der eben eingeführten kartesischen Darstellung z = x + j * y kann eine komplexe Zahl auch entsprechend der hier stehenden Skizze dich ihren Radius und den Winkel eindeutig festgelegt werden.

 $\frac{\text{Bemerkung:}}{\text{Erinnerung}}$

Zusammenhang zwischen den Koordinaten P(x,y) und $P(r,\varphi)$:

$$\begin{pmatrix} x = r * cos(\varphi) \\ y = r * sin(\varphi) \end{pmatrix} \text{ bzw. } \begin{pmatrix} r = \sqrt{x^2 + y^2} \\ tan(\varphi) = \frac{y}{x} \end{pmatrix}$$

 $\frac{\text{Bemerkung:}}{\text{Bemerkung}}$

Der Zusammenhang zwischen dem Quotienten $\frac{x}{y}$ und dem Winkel $\varphi \in [0, 2\pi)$ eindeutig, da die Tangensfunktion-periodisch ist.

Damit erhält man die trigonometrische Darstellung:

$$z = x + j * y = r * cos(\varphi) + j * r * sin(\varphi) \Rightarrow z = r(cos(\varphi) + j * sin(\varphi))$$

Dieser Ausdruck von z wird im Folgenden sehr häufig auftreten. Deshalb wird dafür die Abkürzung

$$e^{j\varphi} = \cos(\varphi) + j * \sin(\varphi)$$

ein. Somit ergibt sich schließlich eine sehr kompakte Darstellung, die sogenannte **Exponentialdarstellung** einer komplexen Zahl:

$$z = r(\cos(\varphi) + r * j * \sin(\varphi)) = r * e^{j\varphi}$$

Bemerkung:

 $\overline{\text{Zusammenfassung}}$

Eine komplexe Zahl lässt sich auf verschiedene Arten darstellen:

- 1. z = x + j * y (kartesische Darstellung)
- 2. $z = (\cos(\varphi) + j * \sin(\varphi))$ (trigonometrische Darstellung)
- 3. $z = r * e^{j\varphi}$ (Exponential-Darstellung)

6.2.3 Umrechnung zwischen den Darstellungen

$K\alpha$	ipitel	7
		-

STATISTIK UND WAHRSCHEINLICHKEIT

7.1 Hypothesentests

ARITHMETIK

8.1 Die vollständige Induktion

Die vollständige Induktion ist eine mathematische Beweismethode, nach der eine Aussage für alle natürlichen Zahlen bewiesen wird, die größer oder gleich einem bestimmten Startwert sind.

Daher wird der Beweis in zwei Etappen durchgeführt; mit dem **Induktionsanfang** beweist man die Aussage für die kleinste Zahl, mit dem **Induktionsschritt** für die nächste Zahl, also logischerweise für alle darauffolgenden Zahlen.

Beweis

Beweis der Gaußschen Summenformel

$$Z_{\mathbf{Z}}: S(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Induktions an fang: $1 = \frac{1(1+1)}{2} = 1$

Induktionsvorraussetzung : für ein beliebiges, aber festes $k \in \mathbb{N}$ gilt: $\sum_{i=1}^k = \frac{k(k+1)}{2}$

Induktionsbehauptung: man behauptet, dass $\forall n \in \mathbb{N}$ gilt: $\sum_{i=1}^{n+1} = \frac{(n+1)((n+1)+1)}{2}$

Induktionsschluss: $\sum_{i=1}^{n} + (n+1) = \frac{n(n+1)}{2} + \frac{2(n+1)}{2} = \frac{(n+1)((n+1)+1)}{2}$

Beweis

Beweis der Summe ungerader Zahlen

Induktionsanfang : $\sum_{k=1}^{1} (2k-1) = 2 \cdot 1 - 1 = 1 = 1^2$

Induktionsvorraussetzung: für ein beliebiges, aber festes $i \in \mathbb{N}$ gilt: $\sum_{k=1}^{i} (2k-1) = i^2$

Induktionsbehauptung: man behauptet, dass $\forall n \in \mathbb{N} : \sum_{k=1}^{n+1} (2k-1) = (n+1)^2$

Induktionsschluss: $\sum_{k=1}^{n+1} (2k-1) = \sum_{k=1}^{n} (2k-1) + 2(n+1) - 1 = n^2 + 2n + 1 = (n+1)^2$

Reweis

Beweis der Bernoullischen Ungleichung

$$\mathbb{Z}_2: \forall n \in \mathbb{N} \quad n > 0: \qquad (1+x)^n \ge 1 + nx \qquad ; x \ge -1$$

Induktionsanfang:
$$(1+x)^0 = 1 \ge 1 = 1 + 0x$$

Induktionsvorraussetzung: Es gelte nun:
$$(1+x)^n \ge 1 + nx; n \in \mathbb{N}_0$$

Induktionsbehauptung:
$$(1+x)^{n+1} \ge 1 + (n+1)x$$

Induktionsschluss:
$$(1+x)^{n+1} = (1+x)^n \cdot (1+x) \stackrel{\text{I.V.}}{\geq} (1+nx) \cdot (1+x) = nx^2 + nx + x + 1$$

$$\geq 1 + x + nx = 1 + (n+1)x$$

Reweis

Beweis der Summe der Quadratzahlen

Mittels Induktion lässt sich "nur" eine vorhandene Formel beweisen.

$$\mathbf{Z}: \mathbf{S(n)} = \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Induktionsanfang:
$$S(1) = \sum_{i=1}^{1} i^2 = 1^2 = 1 = \frac{1(1+1)(2+1)}{6}$$

Induktionsvorraussetzung: keine Ahnung was hier rein soll

Induktionsbehauptung :
$$S(n+1) = \sum_{i=1}^{n+1} i^2 = \frac{(n+1)(n+2)(2(n+1)+1)}{6}$$

Induktionsschluss:
$$S(n) + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \frac{2n^3 + 9n^2 + 13n + 6}{6}$$

$$\frac{(n+1)(n+2)(2(n+1)+1)}{6} = \frac{2n^3 + 9n^2 + 13n + 6}{6}$$

Reweis

Beweis für eine Abschätzung der Summe der Quadratzahlen

$$Z_2: \sum_{i=1}^n i^2 > \frac{n^3}{3}$$

 ${\bf Induktions an fang:} \quad 1^2 > \frac{1^3}{3}$

Induktionsvorraussetzung : für ein beliebiges, aber festes $k \in \mathbb{N}$ gilt: $\sum_{i=1}^k i^2 > \frac{k^3}{3}$

 $\textbf{Induktionsbehauptung}: \quad \text{man behauptet, dass } \forall n \in \mathbb{N} \text{ gilt: } \sum_{i=1}^{n+1} i^2 > \frac{(n+1)^3}{3}$

Induktionsschluss: $\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n+1)^2 > \frac{n^3}{3} + (n+1)^2$ $= \frac{n^3 + 3n^2 + 6n + 3}{3}$ $= \frac{n^3 + 3n^2 + 3n + 1 + 3n + 2}{3}$ $= \frac{(n+1)^3}{3} + \frac{3n+2}{3} \stackrel{n \ge 0}{>} \frac{(n+1)^3}{3}$

Beweis

Summe der Kubikzahlen

Reweis

Beweis einer Abschätzung der Fakultät $\forall n \in \mathbb{N}, \quad n \geq 4: \quad n! > n^2$

Induktionsanfang: $n_o = 4$: $4! = 4 \cdot 3 \cdot 2 \cdot 1 \cdot 0! = 24 > 16 = 4^2$

 $\mbox{ Induktions vorraus setzung : } \ \exists n \in \mathbb{N}, \quad n \geq 4: \quad n! > n^2$

 $\textbf{Induktionsbehauptung}: \quad \mathbf{n}! \geq n^2 \Rightarrow (n+1)! > (n+1)^2 = \textcolor{red}{(n+1)} \cdot \textcolor{red}{(n+1)}$

Induktionsschluss: $(n+1)! = (n+1) \cdot n! > (n+1) \cdot n^2$

 $\Rightarrow n^2 \stackrel{?}{>} (n+1)$

Mini-induktion: $n_0 = 4$: $4^2 = 16 > 5 = 4 + 1$

 $\Rightarrow (n^2)' \stackrel{?}{>} (n+1)'$

 $\Leftrightarrow 2n \stackrel{!}{>} 1 \qquad \forall n \in \mathbb{N}$

Am Besten so viele Induktionen wie möglich?

Matrizen

9.1 Lineare Gleichungssysteme und Gaußalgorythmus

Lineare Gleichungssysteme lassen sich aufwendig mit Einsetzungsverfahren oder Additionsverfahren lösen, Carl Friedrich Gauß (1777-1855) hat ein "Algorythmus" erfunden, mit dem sie sich ohne Taschenrechner leicht und relativ schnell lösen lassen.

Am Besten wird dieser mit einem Beispiel Erläutert:

$$\Rightarrow \begin{cases} 4x + 3y + z &= 13 & (1) \\ 2x - 5y + 3z &= 1 & (2) \\ 7x - y - 2z &= -1 & (3) \end{cases}$$
 $\{ 1 \cdot (1) - 2 \cdot (2) \} \text{ und } \{ 7 \cdot (1) - 4 \cdot (3) \}$ $D = \mathbb{R}^3$

Hier versucht man in Zeile (2) und (3) die erste Variabel zu eliminieren

$$\Leftrightarrow \begin{cases} 4x + 3y + z &= 13\\ 0x + 13y - 5z &= 11\\ 0x + 25y + 15z &= 95 \end{cases} \left\{ \begin{array}{ll} 25 \cdot (2) - 13 \cdot (3) \end{array} \right\}$$

Jetzt versucht man die zweite Variabel in der dritten Gleichung zu eliminieren

$$\Leftrightarrow \begin{cases} 4x + 3y + z &= 13\\ 0x + 13y - 5z &= 11\\ 0x + 0y - 320z &= -960 & \Leftrightarrow z = 3 \end{cases}$$

Jetzt wird eingesetzt

$$\Leftrightarrow \begin{cases} 4x + 3y + z &= 13\\ 0x + 13y - 5 \cdot 3 &= 11\\ 0x + 0y + z &= 3 \end{cases} \Leftrightarrow y = 2$$

$$\begin{cases} x + 0y + 0z &= 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 0y + 0z &= 1\\ 0x + y + 0z &= 2\\ 0x + 0y + z &= 3 \end{cases}$$

 $\mathbb{L} = \{(1;2;3)\}$ Die Lösungsmenge wird als n-Tupel (geordente Objekte) alphabetisch sortiert.

9.2 LGS mit dem Taschenrechner lösen

9.2.1 Eindeutig lösbare lineare Gleichungssysteme

Ein lineares Gleichungssystem lässt sich sehr viel schneller mit dem Taschgenrechner lösen:

$$\Rightarrow \begin{cases} 4x + 3y + z = 13 \\ 2x - 5y + 3z = 1 \\ 7x - y - 2z = -1 \end{cases}$$

Hierfür geht man beim Taschenrechner auf [matrix] und auf [edit]. Dann gibt man seine Matrix (hier als Beispiel) ein:

65

Kapitel 9. Matrizen Skript SMP

$$\Rightarrow \begin{vmatrix} 4 & 3 & 1 & 13 \\ 2 & -5 & 3 & 1 \\ 7 & -1 & -2 & -1 \end{vmatrix}$$

Dann geht man wieder in den rechnen-Modus und gibt ein: [matrix], dann geht man auf [math], [rref]. dann geht man nochmal auf [matrix], [A] (die gerade bearbeitete Matrix):

$$\Leftrightarrow \left| \begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{array} \right| \qquad \Rightarrow \mathbb{L} = \{(1;2;3)\}$$

Die Lösungsmenge wird als n-Tupel angegeben.

Wenn sich Werte mit Kommazahlen ergeben, ist es nützlich, im Taschenrechner [Math] + [1](Frac) einzugeben, um sich die Werte in Brüchen anzeigen zu lassen.

9.2.2 Nicht eindeutig lösbare lineare Gleichungssysteme

Oft begegnen einem auch unterbestimmte LGS, sei es in der Geometrie (Zwei Ebenengleichungen, die in einem Gleichungssystem als Lösung die Schnittgerade ergeben) oder in anderen Teilbereichen. Sie sind auch recht aufwendig von Hand zu lösen, deshalb hier den schnelleren GTR-Lösungsweg:

$$\Rightarrow \begin{cases} x_1 - 2x_2 + 0x_3 &= 10 \\ x_1 - x_2 - x_3 &= 5 \end{cases}$$

Unterbestimmte LGS erkennt man daran, dass es mehr unbekannte als Gleichungen gibt:

$$\Rightarrow \left| \begin{array}{cccc} 1 & -2 & 0 & 10 \\ 1 & -1 & -1 & 5 \end{array} \right|$$

$$\Leftrightarrow \left| \begin{array}{ccc} 1 & -2 & 0 & 10 \\ 0 & 0 & 1 & 5 \end{array} \right| \qquad \Rightarrow \mathbb{L} = \left\{ (2t + 10; t; t + 5 | t \in \mathbb{R}) \right\}$$

Auch hier wird die Lösungsmenge als n-Tupel angegeben, in Abhängigkeit eines Faktors, dessen Wertebereich in der Lösungsmenge ebenfalls angegeben werden muss.

ALGORITHMIK

10.1 Algorithmen und Programmierung

Definition 10.1.0

Algorithmen besitzen die folgenden charakteristischen Eigenschaften:

- 1. Eindeutigkeit: ein Algorithmus darf keine widersprüchliche Beschreibung haben. Diese muss eindeutig sein.
- 2. Ausführbarkeit: jeder Einzelschritt muss ausführbar sein.
- 3. Finitheit (= Endlichkeit): die Beschreibung des Algorithmus muss endlich sein.
- 4. Terminierung: nach endlich vielen Schritten muss der Algorithmus enden und ein Ergebnis liefern.
- 5. Determiniertheit: der Algorithmus muss bei gleichen Voraussetzungen stets das gleiche Ergebnis liefern.
- 6. Determinismus: zu jedem Zeitpunkt der Ausführung besteht höchstens eine Möglichkeit der Fortsetzung. Der Folgeschritt ist also eindeutig bestimmt.

Diese Eigenschaften können in der Mathematik genutzt werden, um Probleme zu lösen. Hierfür bedarf es einer einheitlichen Schreibweise.

Insbesondere vor dem Abitur stehen den Schülern mehrere Möglichkeiten zur Verfügung, die im Folgenden behandelt werden.

10.1.1 Pseudocode

Pseudocode ist ein Programmcode, der nicht zur maschinellen Interpretation, sondern lediglich zur Veranschaulichung eines Algorithmus dient. Meistens ähnelt er höheren Programmiersprachen, gemischt mit natürlicher Sprache und mathematischer Notation. Er ist leichter verständlich als realer Programmcode aber klarer und weniger missverständlich als eine Beschreibung in natürlicher Sprache.

Beispiel:

Ein Beispiel erübrigt sich.

10.1.2 Python

Programmiersprache, bekannt durch ihre einfach verständliche Syntax, sie gilt als höhere Sprache, was sie zu einer auf die (gesprochene) Sprache angepasste Sprache macht. Sie ist somit gerade für Einsteiger interessant und eignet sich dennoch für größere Projekte. Ein weiterer Vorteil ist die mitlerweile allgegenwärtige Präsenz der Sprache, denn sie wird auch für Apps und Webdevelopment verwendet.

Syntax

Folgendes macht die Syntax Pythons aus:

 des

ktionen

Funktionsweise

Python verwendet Schleifen und Verzweigungen.

```
emente einer Sequenz (Zahl, Liste, Zeit...))
ge ein logischer Ausdruck wahr ist)
r Ausdruck wahr ist)
r logischer Ausdruck wahr ist)
ein, wenn keine der obigen Bedingungen erfuellt wurde)
```

Beispiel:

Man nehme den Algorithmus, der die Fibonacci-Sequenz bis zum n-ten Glied generiert:

```
a = 0
b = 1
n = 10
for iteration in range(n):
  print(a)
  a = a+b
  b = a-b
```

Algorithmen und mathematische Anwendungen 10.2

Iterationsverfahren 10.2.1

Unter Iteration versteht man ein Verfahren zur schrittweisen Annäherung an die Lösung einer Gleichung unter Anwendung eines sich wiederholenden Rechengangs. Das bedeutet, (wenn es möglich ist) aus einer Näherungslösung durch Anwenden eines Algorithmus zu einer besseren Näherungslösung zu kommen und die Lösung beliebig gut an die exakte Lösung heranzuführen. Man sagt dann, dass die Iteration konvergiert. Beispiele für Verfahren dieser Art werden im Folgenden behandelt.

Newton-Rhapson Verfahren

(x)

Das Newton-Rhapson Verfahren, auch bekannt als Newtonmethode dient der Nullstellenbestimmung komplexer Polynome und allgemein jeder differenzierbaren Funktion.

Die Grundidee ist, die Nullstelle der Tangente an der Stelle x_0 von f zu nehmen und den Vorgang mit $f(NS_T)$ zu wiederholen.

Eine mögliche Umsetung in Python wäre:

```
#beliebige Funktion (muss angegeben werden)
      #muss auch manuell angegeben werden
ert)
```

e(altwert))>Genauigkeit:

Heron-Verfahren

Es handelt sich hierbei um eine vereinfachte Version des Newton-Rhapson Verfahrens, da es zur Berechnung einer Näherung der Quadratwurzel einer reellen Zahl a>0 dient.

Man erhält das gewünschte Ergebnis durch die Berechnung der Nullstelle einer Funktion $f(x) = x^2 - a$. Es gilt also: f'(x) = 2x.

Durch die Verwendung des Newton-Rhapson Verfahrens erhält man die Iterationsvorschrift:
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \Leftrightarrow x_{n+1} = x_n - \frac{x_n^2 - a}{2x_n} = \frac{x_n^2 + a}{2x_n} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$
 Als kluger, ungefähr zutreffender Startwert gilt $x_0 = \frac{a+1}{2}$

Eine mögliche Umsetzung in Python wäre:

#Muss manuell angegeben werden ltwert))>Genauigkeit:

INTEGRALE

11.1 Einführung

Der Hauptunterschied zwischen einem bestimmten und einem unbestimmten Integral ist die Existenz (bestimmtes Integral) bzw. das Fehlen (unbestimmtes Integral) der Integrationsgrenzen.

Bei einem bestimmten Integral ist die Lösung ein Flächeinhalt, also ein einfacher Zahlenwert.

Bei einem unbestimmten Integral erhält man als Lösung eine Funktion, eine sogenannte Stammfunktion.

11.2 Bestimmte Integrale

Definition 11.2.0

Wenn Integrationsgrenzen angegeben werden, handelt es sich um ein bestimmtes Integral:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} U_n = \lim_{n \to \infty} s_n$$

$$= \lim_{n \to \infty} O_n = \lim_{n \to \infty} S_n$$

$$= \lim_{n \to \infty} \frac{b - a}{n} \sum_{k=1}^{n} f\left(\frac{b - a}{n} \cdot k\right)$$

 S_n und O_n bezeichnen die Obersumme, wohingegen s_n und U_n die Untersumme bezeichnen.

Bemerkung:

 \overline{a} und \overline{b} bezeichnen jeweils die untere und obere Grenze des zu berechnenden Integrals. Sie bezeichnen anschaulich die x-Werte, zwischen denen die Fläche berechnet wird.

Bemerkung:

Im allgemeinen Fall muss der Integrand f(x) im Intervall [a;b] stetig sein, damit das Integral bestimmt ist.

11.3 Stammfunktionen und der Hauptsatz der Differential- und Integralrechnung

Definition 11.3.0

Eine Funktion F heißt Stammfunktion der Funktion f, wenn F'(x) = f(x) gilt. Ist F irgendeine Stammfunktion von f, dann ist auch F(x) + C (mit konstantem C) eine Stammfunktion, denn beim Ableiten fällt C als konstanter Summand weg. Jede Funktion hat also unendlich viele Stammfunktionen, die sich aber nur um einen konstanten Summanden unterscheiden.

Bemerkung:

Man beobachtet hier eine Erweiterung der NEW-Regel (siehe 3.4.8, NEW-Regel):

N = Nullstellen

E = Extremstellen

W = Wendestellen

11.3.1 Sätze über Integrale

Theorem

$$\int_a^b f(x)dx = -\int_b^a f(x)dx \qquad \text{Invertieren der Intergrationsgrenzen}$$

$$\int_a^b (f(x) + g(x))dx = \int_a^b f(x)dx + \int_a^b g(x)dx \qquad \text{Summenregel}$$

$$\int_a^b r * f(x)dx = r^* \int_a^b f(x)dx \qquad \text{Linearität}$$

$$\int_a^b f(x)dx + \int_b^c f(x)dx = \int_a^c f(x)dx \qquad \text{Abschnittweise Integration}$$

Invertieren der Intergrationsgrenzen:

Beweis

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = -(F(a) - F(b)) = -\int_{b}^{a} f(x)dx$$

Summenregel:

Beweis

$$\int_{a}^{b} f(x) + g(x)dx = [F(x) + G(x)]_{a}^{b} = F(b) + G(b) - (F(a) + G(b)) = F(b) - F(a) + G(b) - G(b)$$
$$= \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

Linearität:

Beweis

$$\int_{a}^{b} r * f(x) dx = [r * F(x)]_{a}^{b} = r * F(b) - r * F(a) = r * (F(a) - F(b)) = r * \int_{a}^{b} f(x) dx$$

Abschnittweise Integration:

Reweis

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = F(a) - F(b) - (F(b) - F(c)) = F(c) - F(a) = \int_{a}^{c} f(x)dx$$

Theorem

Sei eine in [a;b] stetige Funktion f. Wenn für $m,M\in\mathbb{R}$ gilt: $m\leq f(t)\leq M\ \forall t\in[a;b]$, dann gilt:

$$m(b-a) \le \int_a^b f(t)dt \le M(b-a)$$

Beweis

Es reicht, $m \leq f(t) \leq M$ als Ungleichung zwischen a und b zu integrieren.

Bemerkung:

Eine Konsequenz davon ist, dass falls $|f(t)| \leq M \ \forall t \in [a; b]$, dann gilt:

$$\left| \int_{a}^{b} f(t)dt \right| \le M(|b-a|)$$

Außerdem:

Definition 11.3.1

Für eine auf [a;b] stetige Funktion f mit $a \neq b$ gilt: Der Mittelwert von f auf [a;b] ist gegeben durch

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(t)dt$$

11.3.2 Integrationsregeln

Partielle Integration

Theorem

Seien u und v zwei stetig differenzierbare Funktionen im Intervall I und u' und v' in I stetig. Dann gilt:

$$\int u(x)'v(x)dx = u(x)v(x) - \int u(x)v'(x)dx$$

Beweis

Nachweisen u, v diffbar und u', v' stetig (kommt noch in sauber)

$$(u(x) * v(x))' = u'(x)v(x) + u(x)v'(x)$$

$$\Leftrightarrow \qquad \int (u(x) * v(x))' dx = \int u'(x)v(x) + \int u(x)v'(x)$$

$$\Leftrightarrow \qquad u(x) * v(x) = \int u'(x)v(x) + \int u(x)v'(x)$$

$$\Leftrightarrow \qquad \int u(x)v'(x) = u(x) * v(x) - \int u'(x)v(x)$$

Beispiel:

$$\int x \sin(x) dx = \int x (-\cos(x))' dx$$

$$= -x \cos(x) - \int -\cos(x) * 1 dx$$

$$= -x \cos(x) + \int \cos(x) dx$$

$$= -x \cos(x) + \sin(x)$$

Partialbruchzerlegung

Die Partialbruchzerlegung ist ein allgemeines Verfahren zur Integration gebrochen rationaler Funktionen. Es sei gegeben:

$$f(x) = \frac{P(x)}{Q(x)} = \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_m x^m}$$
(11.1)

Im Falle $m \leq n$ führt man zuerst eine Polynomdivision aus, dann bekommt man eine ganzrationale Funktion und eine gebrochen rationale mit m > n, so dass wir uns für das Weitere auf den Fall m > n beschränken können.

Das Nennerpolynom kann im Komplexen vollständig in Linearfaktoren zerlegt werden, im Reellen bleiben ggf. quadratische Faktoren übrig, die keine reellen Nullstellen mehr haben. Seien nun x_k die Nullstellen von Q(x) mit der Vielfachheit ν_k dann kann man Q(x) stets auf die folgende Form bringen:

$$Q(x) = b_m(x - x_1)^{\nu_1} (x - x_2)^{\nu_2} \dots (x - x_k)^{\nu_k} (x^2 + \alpha_1 x + \beta_1)^{\mu_1} \dots (x^2 + \alpha_r x + \beta_r)^{\mu_r}$$
(11.2)

Die gebrochen rationale Funktion f(x) lässt sich nun als Summe von Partialbrüchen schreiben. Dabei gilt:

der Vielfachheit ν_k trägt zur Zerlegung die folgenden Summanden bei:

$$+ \frac{A_{\nu_k}}{(x - x_k)^{\nu_k}}$$

nit der Vielfachheit μ_k trägt die folgenden Summanden bei:

$$\frac{C_2}{(-\beta)^2} + \dots + \frac{C_{\mu_k} x + D_{\mu_k}}{(x^2 + \alpha x + \beta)^{\mu_k}}$$

Die Linearfaktoren lassen sich sofort integrieren, bei den quadratischen geht man so vor:

$$(x^2 + \alpha x + \beta) = (x + \frac{\alpha}{2})^2 + \delta^2 = (\delta y)^2 + \delta^2 = \delta^2 (y^2 + 1)$$

Hier hat man quadratisch ergänzt und $\delta \cdot y = x + \frac{\alpha}{2}$ substituiert. Mit dieser Substitution ist

$$x = \delta y - \frac{\alpha}{2}$$
 $y = \frac{x + \frac{\alpha}{2}}{\delta}$ $x = \delta y$

Nun wird das Integral zu:

$$\int \frac{Cx+D}{(x^2+\alpha x+\beta)^{\mu}} x = \frac{1}{\delta^{2\mu-1}} \int \frac{C\delta y+D-\frac{1}{2}C\alpha}{(y^2+1)^{\mu}} y$$
$$= \frac{C}{\delta^{2\mu-2}} \int \frac{yy}{(y^2+1)^{\mu}} + \frac{D-\frac{1}{2}C\alpha}{\delta^{2\mu-1}} \int \frac{y}{(y^2+1)^{\mu}}$$

Für das erste der beiden verbleibenden Integrale bekommt man dann

$$\int \frac{yy}{(y^2+1)^{\mu}} = \frac{1}{2} \int \frac{u}{u^{\mu}} = \begin{cases} \frac{u^{1-\mu}}{2(1-\mu)} = & \text{für } \mu = 2, 3, \dots \\ \frac{1}{2} \ln|u| & \text{für } \mu = 1 \end{cases}$$
(11.3)

Hier hat man $u = y^2 + 1$ gesetzt. Nun muss noch das zweite bestimmt werden.

$$J_{\mu} = \int \frac{y}{(y^2+1)^{\mu}}$$

Für $\mu = 1$ ist es bekannt, $J_1 = \arctan y$.

Wir werden eine Rekursionsformel für die J_{μ} herleiten. Wir beginnen mit der Beziehung

$$J_{\mu+1} = \int \frac{(y^2+1)-y^2}{(y^2+1)^{\mu+1}} y = J_{\mu} - \int \frac{y^2}{(y^2+1)^{\mu+1}} y$$

Nun denken wir uns den zweiten Integranden als y·Rest geschrieben und integrieren partiell:

$$\int y \cdot \frac{yy}{(y^2+1)^{\mu+1}} = \frac{-y}{2\mu(y^2+1)^{\mu}} + \frac{1}{2\mu} \int \frac{y}{(y^2+1)^{\mu}} = \frac{-y}{2\mu(y^2+1)^{\mu}} + \frac{1}{2\mu} J_{\mu}$$

Setzt man das oben ein, so bekommt man die Rekursionsformel:

$$J_{\mu+1} = \left(1 - \frac{1}{2\mu}\right)J_{\mu} + \frac{y}{2\mu(y^2 + 1)^{\mu}} \tag{11.4}$$

Insbesondere ist dann (rechne das nach!)

$$J_1 = \arctan y$$

$$J_2 = \frac{1}{2}\arctan y + \frac{y}{2(y^2 + 1)}$$

$$J_3 = \frac{3}{8}\left(\arctan y + \frac{y}{y^2 + 1}\right) + \frac{y}{4(y^2 + 1)^2}$$

$$J_4 = \frac{5}{16}\left(\arctan y + \frac{y}{y^2 + 1}\right) + \frac{5}{24} \cdot \frac{y}{(y^2 + 1)^2} + \frac{y}{6(y^2 + 1)^3}$$

Integrale von e-Funktionen

Theorem

Für
$$f(x) = e^{l(x)}$$
 mit $l(x) = ax + b$ gilt: $F(x) = \frac{1}{a}e^{l(x)}$

Beweis

Not yet...;((

Integrale von ln()-Funktionen

Theorem

Für $x \in \mathbb{R}^+$ ist F eine Stammfunktion zur Funktion $f(x) = \ln(x)$ mit $F(x) = x \ln(x) - x$

Beweis

Der Beweis erfolgt über partielle Integration und wird dem Schüler als Übung überlassen.

Integrale von geraden Funktionen

Theorem

Sei f eine auf einem Intervall I stetige und auf 0 zentrierte Funktion. Wenn f gerade ist, gilt für alle $a \in \mathbb{R}$: $\int_{-a}^{a} f(t)dt = 2 \int_{0}^{a} f(t)dt$, und wenn f ungerade ist $\int_{-a}^{a} f(t)dt = 0$

Beweis

Sei die Funktion $\varphi(x) = \int_{-x}^{x} f(t)dt = F(x) - F(-x)$ mit F, einer Stammfunktion von f. Also ist φ auf I = [-x; x] differenzierbar und $\varphi'(x) = F'(x) - F'(-x) = f(x) + f(-x)$. Wenn f auf I ungerade ist, gilt: $\varphi'(x) = 0$ und somit konstant (und außerdem = $\varphi(x)$) auf I, was $\int_{-x}^{x} f(t)dt = 0$ beweist.

Wenn f gerade ist, gilt: $\varphi'(x) = 2f(x)$. Also gilt für $\varphi(x) = \int_0^x 2f(t)dt$, einer Stammfunktion von 2f(x), $\varphi(0) = 0$, was $\int_{-a}^a f(t)dt = 2\int_0^a f(t)dt$ beweist.

Integrale von periodischen Funktionen

Theorem

Für jede auf \mathbb{R} stetige und periodische Funktion f gilt:

$$\int_a^{a+T} f(x) dx$$
ist unabhängig von a und $\int_a^{a+T} f(x) dx = \int_0^T f(x) dx$

Beweis

Sei die Funktion $\varphi = \int_x^{x+T} f(t)dt = F(x+T) - F(x)$ mit F, einer Stammfunktion von f. Dann ist $\varphi(x)$ auf f differenzierbar und $\varphi'(x) = F'(x+T) - F'(x) = f(x+T) - f(x) = 0$ (denn f hat die Periode T). Also ist $\varphi(x)$ auf $\mathbb R$ konstant. Daraus folgt, dass $\int_a^{a+T} f(t)dt$ nicht von a abhängt und dass $\int_a^{a+T} f(x)dx = \int_a^T f(x)dx.$

11.4 Flächen und Volumen mit Integralen berechnen

11.4.1 Fläche zwischen einer Funktion und der x_1 -Achse

Definition 11.4.1

Für die auf dem Intervall [a;b] (also stückweise) stetige Funktion f mit Nullstellen und $x_1, x_2, ..., x_n$ mit $a \le x_1 \le x_2 \le ... \le x_n \le b$ ist der Flächeninhalt A zwischen dem Graphen von f und der x_1 -Achse im Intervall [a;b] gegeben durch:

$$A = \left| \int_{a}^{x_{1}} f(x)dx \right| + \left| \int_{x_{1}}^{x_{2}} f(x)dx \right| + \dots + \left| \int_{x_{n-1}}^{x_{n}} f(x)dx \right| + \left| \int_{x_{n}}^{b} f(x)dx \right|$$

Bildhaft sieht das folgendermaßen aus:

Beispiel:

$$\overline{f(x) = x^2 - 2x^3}; x \in \mathbb{R}$$

notwendige und hinreichende Bedingung für Nullstellen: f(x) = 0

$$\Leftrightarrow x^{2}(1-2x) = 0$$

$$\stackrel{SdN}{\Leftrightarrow} \begin{cases} x^{2} = 0 \\ 1-2x = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_{1} = 0 \\ x_{2} = \frac{1}{2} \end{cases}$$

Also gilt:

$$\begin{split} A_{-1}^1 &= \left| \int_{-1}^0 x^2 - 2x^3 dx \right| + \left| \int_{0}^{0.5} x^2 - 2x^3 dx \right| + \left| \int_{0.5}^1 x^2 - 2x^3 dx \right| \\ &= \left| \left[\frac{1}{3} x^3 - \frac{1}{2} x^4 \right]_{-1}^0 \right| + \left| \left[\frac{1}{3} x^3 - \frac{1}{2} x^4 \right]_{0}^{0.5} \right| + \left| \left[\frac{1}{3} x^3 - \frac{1}{2} x^4 \right]_{0.5}^1 \right| \\ &= \left| 0 - \left(-\frac{1}{3} - \frac{1}{2} \right) \right| + \left| \frac{1}{24} - \frac{1}{32} - 0 \right| + \left| \frac{1}{3} - \frac{1}{2} - \left(\frac{1}{24} - \frac{1}{32} \right) \right| \\ &= 1 + \frac{1}{12} - \frac{1}{16} \\ &= \frac{49}{48} \text{ FE} \end{split}$$

GTR-Tipp:

 $\overline{\text{Mit }Y_1=f}(x)$ und $Y_2=abs(Y_1)$ bzw. $Y_2=|Y_1|$ (zu finden in 'MATH'>'NUM' oder über Alpha-F2) lässt sich die Fläche berechnen über 2nd-CALC mit der Option Integral.

Hierzu wählt man Y_2 aus und gibt a und b an.

11.4.2 Fläche zwischen zwei Funktionen

Theorem

Für zwei auf [a;b] stetige Funktionen f und g gilt: Die Fläche zwischen ihren Schaubildern C_f und C_g ist gegeben durch: $\int_a^b (g(x) - f(x)) dx.$

11.4.3 Volumenangaben mittels Integralen

Definition 11.4.3

Man betrachtet einen Körper, der durch zwei parallele Ebenen mit den Gleichungen $x_3 = a$ und $x_3 = b$ begrenzt wird. Für alle $a \le z \le b$ nennt man P_z die orthogonale Fläche zu (O_z) mit der Seite z und S(z) die Fläche des Schnitts des Körpers durch P_z . Ist S stetig, so ist ist das Volumen V des Körpers gegeben durch:

 $V = \int_{a}^{b} S(z)dz$

Daraus folgt, dass ein Körper, der durch die Rotation der Kurve von f um eine Achse entsteht, ein Volumen von $\int_{-b}^{b} \pi f^{2}(z)dz$ hat.

Tatsächlich ist die Fläche eines zu (O_z) parallelen Querschnitts die der Scheibe mit Radius f(z).

Unklar, ich weiß. (Ich habe es selbst noch nicht verstanden)

Uneigentliche Integrale 11.5

Definition 11.5.0

Ist die Funktion f auf $[a; +\infty)$ stetig und existiert der Grenzwert $\lim_{Z \to \infty} \int_a^Z f(x) dx$, so heißt dieser Grenzwert uneigentliches Integral von f über $[a; +\infty)$.

Schreibweise: $\int_{a}^{+\infty} f(x)dx$

Analog dazu spricht man von einem uneigentlichen Integral für $\int_{-b}^{b} f(x)dx$

$$f(x) = \frac{-3}{x^3}$$

$$A(z) = \int_{z}^{-2} \frac{-3}{x^3} dx = \left[\frac{3}{2}x^{-2}\right]_{z}^{-2} = \frac{3}{8} - \frac{3}{2}z^{-2}$$

$$\lim_{z \to \infty} \frac{3}{8} - \frac{3}{2}z^{-2} = \frac{3}{8}$$

Bemerkung:

Für Funktionen wie $f(x) = \frac{1}{\sqrt{x}}$ existiert kein Uneigentliches Integral. Stimmt nicht, sieht aber als Platzhalter gut aus.

11.6 Merkenswerte Integrale

Hier eine (möglicherweise unvollständige) rückblickende Liste mit Integralen, die insbesondere zum Abitur beherrscht werden sollten.

Diese sollten ohne weitere Rechtfertigung oder Beweis verwendet werden dürfen.

 $\ln, e^x, usw.$

EXPONENTIALFUNKTIONEN

Definition 12.0.0

Man bezeichnet als Exponentialfunktion eine Funktion der Form $x \to a^x$ mit $a \in \mathbb{R}^+ \setminus 1$ x ist die Variable und wird Exponent oder Hochzahl genannt. a nennt man Basis oder Grundzahl, sie ist für jede Funktion fest forgegeben. Die natürliche Exponentialfunktion wird durch die Funktionsvorschrift $f(x) = e^x$ beschrieben.

Hier Graphen für a<1 a>1 a=e

12.1 Wiederholung: Potenzgesetze

Seien $a, b \in \mathbb{R}$, sowie $n, m \in \mathbb{N}$, dann gilt:

6.
$$a^{-n} = \frac{1}{a^n}$$

7.
$$\frac{a^n}{a^m} = a^{n-m}$$

8.
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

9.
$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

10.
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

12.2 Die Eulersche Zahl (e)

Definition 12.2.0

e = 2,71828182845904523536028747135266249775724709369995...

e ist eine irrationale, transzendente und reelle Zahl, die die Basis des (natürlichen) Logarithmus und der (natürlichen) Exponentialfunktion ist.

Die Darstellung, der man am Häufigsten begegnet ist diese: $e=\lim_{t\to\infty}\left(1+\frac{1}{t}\right)^t$; $t\in\mathbb{R}$

Benannt nach dem bekannten Mathematiker Leonhard Euler ist diese Zahl eine der wichtigsten Konstanten der Mathematik. Sie ist die Basis des natürlichen Logarithmus und der natürlichen Exponentialfunktion. Diese (spezielle) Exponentialfunktion wird aufgrund dieser Beziehung zur Zahl e häufig kurz e-Funktion genannt.

Definition 12.2.0

Eine reelle Zahl heißt (oder allgemeiner eine komplexe Zahl) transzendent, wenn sie nicht Nullstelle eines Polynoms mit ganzzahligen Koeffizienten ist. Andernfalls handelt es sich um eine algebraische Zahl. Jede reelle transzendente Zahl ist überdies irrational.

12.2.1 Verschiedene Darstellungen

e ist darstellbar bzw. ergibt sich durch:

12.2.2Herleitung zur Zahl e

Wir definieren eine Folge $(e_n)n \in \mathbb{N}$ durch $e_n = \left(1 + \frac{1}{n}\right)^n$ und beweisen ihre Konvergenz.

$$1 + \frac{1}{n}$$

$$n + 1$$

uns auf den Term $\left(1-\frac{1}{(n+1)^2}\right)^{n+1}$ die Ungleichung von Bernoulli anzundes: $(1+x)^n>1+nx$ für $n\geq 2$ und x>-1

$$(n+1)\cdot\left(-\frac{1}{(n+1)^2}\right)$$

$$-\frac{1}{n+1}$$

$$\frac{n+1}{n}$$

n Ausdruck anwenden:

$$\frac{n+1}{n} \cdot \frac{n+1}{n}$$

steigend

Sei eine Folge f_n mit $f_n = \left(1 + \frac{1}{n}\right)^{n+2}$, deren Monotonieverhalten wir untersuhen wollen. Dazu formen wir den Term so um, dass die Bernoulli-Ungleichung angewandt werden kann.

$$\frac{1}{1 + \frac{1}{n}}$$

$$+1$$

$$\cdot \frac{n}{n+1}$$

$$\cdot \frac{n}{n}$$

x für $n \ge 2$ und x > -1

Eine streng monoton steigende Folge, die eine monoton fallende Folge, als ober Schranke hat, konvergiert. Es gilt also, dass e_n konvergent ist, e_n besitzt einen besonderen Grenzwert, der *Eulersche Zahl* genannt wird.

12.2.3 e ist irrational

Wie schon erwähnt, handelt es sich bei der Eulerschen Zahl um eine transzendente Zahl, daraus ergibt sich, dass sie ebenfalls irrational ist. Trotzdem ist es interessant, dies zu beweisen.

Beweis

Teil A: unnötig

Sei f eine Funktion mit $f(x) = xe^{1-x}$ mit Schaubild C

1. Monotonieverhalten:

$$f'(x) = e^{1-x} - xe^{1-x}$$

= $(1-x) \cdot e^{1-x}$

$$\begin{array}{lll} \forall x < 1 \colon & f\prime(x) > 0 & \Leftrightarrow f \nearrow \\ \text{für } x = 1 \colon & f\prime(x) = 0 & \text{und VZW} + \rightarrow - & \Leftrightarrow \text{Hochpunkt} \\ \forall x > 1 \colon & f\prime(x) < 0 & \Leftrightarrow f \searrow \end{array}$$

Grenzwerte:

$$-\lim_{x\to +\infty}\underbrace{x}_{\to +\infty}\underbrace{e^{1-x}}_{\to 0}=0$$
 (Croissance comparée)

$$-\lim_{x \to -\infty} \underbrace{x}_{\to -\infty} \underbrace{e^{1-x}}_{\to +\infty} = -\infty$$

- 2. Hier Graph von f
- 3. Man hat I_1 , das Integral mit $I_1 = \int_0^1 f(x) dx$

$$I_{1} = \int_{0}^{1} x e^{1-x} dx$$

$$= \left[-x e^{1-x} \right]_{0}^{1} - \int_{0}^{1} -e^{1-x} dx$$

$$= -1 e^{1-1} - 0^{1} - \left[e^{1-x} \right]_{0}^{1}$$

$$= -1 - 1 + e$$

$$= e - 2$$

$$u(x) = x \qquad u'(x) = 1$$

$$v'(x) = e^{1-x} \qquad v(x) = -e^{1-x}$$

Teil B:

Sei I_n das Integral mit $I_n = \int_0^1 x^n e^{1-x} dx$, $n \ge 1$

1. (a) \mathbb{Z} : $\forall x \in [0,1]$ gilt $x^n \leq x^n e^{1-x} \leq ex^n$

$$x^{n} \stackrel{?}{\leq} x^{n}e^{1-x} \stackrel{?}{\leq} ex^{n} \qquad |:x^{n}]$$

$$1 \stackrel{!}{\leq} e^{1-x} \stackrel{!}{\leq} e$$

N.R.: für $x \in [0;1]$ ist $(1-x) \in [0;1]$ und entsprechen $e^{1-x} \in [e^0;e^1] = [1;e]$

(b) Sei J_n das Integral mit $J_n = \int_0^1 x^n dx$

$$J_n = \int_0^1 x^n dx$$

$$= \left[\frac{1}{n+1} \cdot x^{n+1} \right]_0^1$$

$$= \frac{1}{n+1} - \frac{0^{n+1}}{n+1}$$

$$= \frac{1}{n+1}$$

(c) \mathbb{Z} : $\forall n \geq 1$ gilt $\frac{1}{n+1} \leq I_n \leq \frac{e}{n+1}$

$$x^{n} \leq f(x) = x^{n}e^{1-x} \leq ex^{n} \qquad |\int_{0}^{1}()dx$$

$$\Leftrightarrow \int_{0}^{1} x^{n}dx \leq I_{n} \leq \int_{0}^{1} ex^{n}dx$$

$$\Leftrightarrow J_{n} \leq I_{n} \leq e \cdot \int_{0}^{1} x^{n}dx = e \cdot J_{n}$$

$$\Leftrightarrow \frac{1}{n+1} \leq I_{n} \leq \frac{e}{n+1}$$

2. $\mathbb{Z}: \forall n \geq 1 \text{ gilt } I_{n+1} = (n+1)I_n - 1$

$$\begin{split} I_{n+1} &= \int_0^1 x^{n+1} \cdot e^{1-x} \mathrm{d}x \\ &= \left[-e^{1-x} \cdot x^{n+1} \right]_0^1 - \int_0^1 -(n+1)x^n ex - 1 \mathrm{d}x & u(x) = x^{n+1} \quad u'(x) = (n+1)x^n \\ &= -e^{1-1} \cdot 1^{n+1} - 0 + (n+1) \cdot I_n \\ &= (n+1)I_n - 1 \end{split}$$

- 3. (a)
 - (b)
 - (c)

4.

Herkunft der Aufgabenstellung: Buch? S.199 Nr. 78, d'après le bac (Blatt von Mme Treynard) □

12.3 Eigenschaften

eng monoton fallend monoton wachsend

$$(x) = -\infty$$

e Asmyptote

Zusammengesetzte Funktionen

Sei $f(x) = a^x$ mit a > 1 und $g(x) = x^n$ mit $n \in \mathbb{R}$:

$$-\lim_{x \to +\infty} f(x) \cdot g(x) = \lim_{x \to +\infty} = a^x \cdot x^n = +\infty$$
$$-\lim_{x \to -\infty} f(x) \cdot g(x) = \lim_{x \to -\infty} a^x \cdot x^n = 0$$

$$-\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{a^x}{x^n} = +\infty$$
$$-\lim_{x \to -\infty} \frac{f(x)}{g(x)} = \lim_{x \to -\infty} \frac{a^x}{x^n} = 0$$

$$-\lim_{x \to +\infty} \frac{g(x)}{f(x)} = \lim_{x \to +\infty} \frac{x^n}{a^x} = 0$$
$$-\lim_{x \to -\infty} \frac{g(x)}{f(x)} = \lim_{x \to -\infty} \frac{x^n}{a^x} = \pm \infty$$

Croissances comparées

Bemerkung:

Diese Grenzwerte gelten auch wenn g ein Polynom beliebig hohen Grades ist.

Allgemein kann man also sagen, dass eine Exponentialfunktion ihr Wachstum bezüglich dem jedes Polynoms immer durchsetzt.

Bemerkung:

△ Das Vorzeichen der anderen Funktion(en) muss natürlich immer beachtet werden.

Da die Wertemenge einer Exponentialfunktion immer \mathbb{R}^+ ist, hängt das Vorzeichen ausschließlich von der (den) anderen Funktion (en) ab. Wenn der (höchste) Exponent also eine gerade Zahl ist, dann bleiben die Grenzwerte dieselben (0 oder $+\infty$). Im Falle eines höchsten Exponenten, der ungerade ist, ändert sich dementsprechend das Vorzeichen (0 oder $-\infty$) des Grenzwertes für $x \to -\infty$. Der Grenzwert für $x \to +\infty$ bleibt derselbe, selbst wenn der höchste Exponent eine negative Zahl ist.

Für
$$f(x) = a^x$$
 mit $0 < a < 1$ und $g(x) = x^n$ mit $n \in \mathbb{R}$:

Es gilt weiterhin, dass sich das Wachstum der Exponentialfunktion durchsetzt, anhand dieser Aussage können die Grenzwerte von Funktionen, die Exponentialfunktionen mit Basis < 1 beinhalten, leicht bestimmt werden. △ Auch hier gilt es, auf das Vorzeichen der anderen Funktion(en) zu achten.

12.4 Ableitungsregeln

12.4.1 Aktivität

Quelle: Déclic 1ère

12.4.2 Exponentialfonktionen mit natürlicher Basis

12.4.3 Exponentialfunktionen mit beliebiger Basis

LOGARITHMEN

Definition 13.0.0

Der Logarithmus einer Zahl ist der Exponent, mit dem die Basis des Logarithmus' potenziert werden muss, um die gegebene Zahl zu erhalten. Logarithmen sind nur für positive reelle Zahlen definiert, die Basis muss positiv und ungleich 1 sein

$$\log_b a = x \Leftrightarrow b^x = a$$

Definition 13.0.0

Man bezeichnet als Logarithmus
funktion eine Funktion der Form $x \to \log_b x$ mit $b \in \mathbb{R}^+ \setminus 1$
x ist die Variable und wird ??? genannt, Logarithmus
funktionen sind nur für positive, reelle Zahlen definiert: $x \in \mathbb{R}^+$

b nennt man Basis oder Grundzahl, sie ist für jede Funktion fest forgegeben.

Hier Graphen

Besondere Logarithmen

13.1 Eigenschaften

eng monoton wachsend monoton fallend

$$(x) = -\infty$$

 $+\infty$

Asmyptote

13.2 Rechengesetze

Aus den Potenzgesetzen kann man die Logarithmussätze erhalten.

Kapitel 14	

ALGEBRA

ANHANG: PHYSIK

15.1 La physique des particules

Le modele standard de la physique dans sa beauté incontestée.

15.2 Interaction gravitationelle

Definition 15.2.0

L'interaction gravitationnelle est une force toujours attractive qui agit sur tout ce qui possde une masse, mais avec une intensité extrmement faible (c'est l'interaction la plus faible). Son domaine d'action est l'infini.

Un corps est considéré ponctuel si sa taille $\leq \frac{\text{distance d'observation}}{100}$

$$\overrightarrow{F_g} = -\frac{G \cdot m_a \cdot m_b}{r^2} \cdot \overrightarrow{u_{AB}}$$

Si: r = AB $G = 6,67 \cdot 10^{-11} (S.I)$ $\overrightarrow{u_{AB}} \rightarrow \text{vecteur norm\'e}$

15.2.1 Le champ de gravitation

Tout objet de Masse M et d'origine spaciale O crée autour de lui un champ gravitationnel. En un point quelconque P, ce champ s'écrit $\overrightarrow{\mathcal{G}}_{(P)}$.

Un deuxime objet de masse m placé en ce point \hat{P} est soumis a la force de gravitation:

$$\vec{F}_{O/P} = m \cdot \vec{\mathcal{G}}_{(P)}$$

D'ou on peut tirer la formule pour le champ de gravitation d'un objet considéré ponctuel de masse M a une distance d:

$$\mathcal{G}_o = \frac{G \cdot M}{d^2}$$

15.3 Interaction électromagnétique

Definition 15.3.0

L'interaction éléctromagnique est une force attractive ou répulsive qui agit sur tout ce qui possde une charge éléctrique. Son domaine d'action est également l'infini.

15.3.1 Le champ électrique

Definition 15.3.1

La loi de Coulomb

Dans le vide, 2 corps ponctuels A et B de charges q_a et q_b exercent l'un sur l'autre des forces:

$$\vec{F}_{A/B} = K \cdot \frac{q_a \cdot q_b}{r^2} \cdot \vec{U}_{A/B}$$

avec

$$K = \frac{1}{4\pi\varepsilon_0} = 9, 0 \cdot 10^9 (S.I.)$$

 ε_0 : permittivité du vide (réponse d'un milieu donné a un champ électrique appliqué) $(8,85\cdot10^9)$

 \overrightarrow{F} et \overrightarrow{E} n'ont pas forcément le meme sens, cela dépend de la charge q

La relation entre force électrique et champ électrique s'exprime avec q (Coulombs), charge de source:

$$\overrightarrow{F_e} = q \cdot \overrightarrow{E}$$

$$\Rightarrow F_e = |q| \cdot E$$

Le champ électrique s'exprime donc de cette maniere:

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{r^2} \cdot \vec{U}_{A/B}$$

$$m^2$$

 \overrightarrow{E} va dans le sens des potentiels décroissants

Les lignes de champ sont tangentes aux vecteurs champ électrique tandis que les équipotentielles relient les points ou le champ électrique possede la meme valeur (intensité)

Dans un condensateur plan, le champ électrique est uniforme (lignes de champ paralleles) et la valeur du champ électrique est

$$E = \frac{|U_{ab}|}{d} \qquad V$$

et, avec Q (charge totale) et S (surface des armatures)

$$J = \frac{Q - C}{\varepsilon_0 \cdot S}$$

$$S.I. \qquad m^2$$

15.3.2 Le champ magnétique

Definition 15.3.2

Dans une bobine: Soit B_i l'intensité du champ magnétique, I l'intensité du courant, N le nombre de spires (jointives) et l la longueur de la bobine,

$$B_i = \mu_0 \cdot \frac{N}{l}$$

$$S.I.$$

avec la perméabilité du vide

$$\mu_0 = 4\pi \cdot 10^{-7}$$

On obtient deux bobines de Helmholz quand d = R; Le champ est donc uniforme

15.4 Mouvement, vitesse et accélération d'un systeme physique

Definition 15.4.0

Dans la base de Frenet: avec a_{τ} l'accélération tangentielle et a_{η} l'accélération normale et ρ le rayon de courbure,

$$a_{\tau} = \frac{dV}{dt}$$
 et $a_{\eta} = \frac{v^2}{\rho}$ m

$$a = \sqrt{a_{\tau}^2 + a_{\eta}^2}$$

Voici les trois formules magiques pour un mouvement rectiligne uniformément varié:

$$a_x = cste$$

$$v_x = a_x \cdot t + v_{x0}$$

$$x = \frac{1}{2}a_x \cdot t^2 + v_{x0} + x_0$$

Dans un mouvement circulaire de rayon R, avec $\omega = \frac{\Delta \theta}{\Delta t}$ étant la vitesse angulaire,

$$V = \omega \cdot R$$
 rad/s

La fréquence f est définie

$$f(\mathrm{Hz}) = rac{1}{T(\mathrm{s})} = rac{\omega \, (\mathrm{rad/s})}{2\pi (\mathrm{rad})}$$

15.5 Les 3 lois de Newton

15.5.1 1^{ere} loi

bla