

Spectroscopic Data in R and Validation of Soft Classifiers:

Classifying Cells and Tissues by Raman
Spectroscopy

Claudia Beleites^{1,2} (Claudia.Beleites@ipht-jena.de), Christoph Krafft², Jürgen Popp^{2,3}, and Valter Sergo¹

¹ CENMAT and Dept. of Industrial and Information Engineering, University of Trieste, Trieste/Italy ²Institute of Photonic Technology, Jena/Germany ³Abbe Center of Photonics, University Jena/Germany

UseR! 2011

Gliomas

[wikipedia:Astrozytom.jpg]

- Most common primary brain tumors
- Astrocytomas most frequent subgroup

```
WHO grades: (Normal)
(↓)
Astro. °II

↓
Astro. °III
↓
Glioblastoma (°IV)
```


Classification of Tumour Tissues

- De-differentiate over time
 - Mixture of tumour grades
 - 37 % of tumour sections mainly tissue between grades
- Are polymorphous / heterogeneous:
 - One tumour has different cell populations
 - Infiltrative growth
 - Areas with mixtures of cells

Soft Classification

- class membership as fraction of 0 100%
- interpretation:
- mixture
 - probability
- soft prediction: very common
- soft reference: less common, but available
- soft test: topic of this talk

Raman Spectroscopy

- Molecular vibrations: atoms oscillate against each other
- Vibration has particular energetic level
- Characteristic frequencies
 - \Rightarrow biochemical composition
 - ⇒ (lipids, proteins, carbohydrates, ...)
- Fingerprint region
 - \Rightarrow identification of cell/tissue type

Spectra

Data Set Composition

	crisp reference		soft reference	
class	patients	spectra	patients	spectra
Normal	16	7 456	35	15 747
thereof controls	9	4 902	9	4 902
Astrocytoma °II	17	4171	47	19 128
Astrocytoma °III+	27	8 279	53	21 617
total	53	19 906	80	37 015

LR Projection

LR Projection

LR Projection

Model setup

- No data-driven optimization
- Intensity calibration
- Baseline correction (linear + quadratic)
- Normalization: area 2900 3025 cm⁻¹
- "Centering": substract mean spectrum of normal gray matter
- Classification: Logistic regression (nnet::multinom)
- 125× 8-fold cross validation
- Splitting patient-wise spectra of one patient are not statistically independent

Classifier Performance Measures

"Classical" Confusion Matrix

$$\mathcal{Z}_{i,j} = \begin{cases} 1 & \text{if } \mathbf{Y}_i = \widehat{\mathbf{Y}}_j = 1 \\ 0 & \text{else} \end{cases}$$

Continuous AND Operators

weak AND: $min(ref_i, pred_i)$

highest possible overlap \sim best case performance

product: $ref_i \cdot pred_i$ expected overlap for uniform mixture \sim

expected performance

strong AND: $\max(ref_i + pred_i - 1, 0)$

lowest possible overlap → worst case performance

- crisp pred and ref: all coincide with "classical" AND
- strong- and product-AND: performance <100 % for pred == ref
- \rightarrow use difference to performance for pred == ref
- product-AND: → weighted MAE and RMSE

Results for Astrocytoma Grading

median and inter quartile range over 125 iterations crossval

Results for Astrocytoma Grading

Results for Astrocytoma Grading

Acknowledgements

A.B.C. Burlo

- Homepage: softclassval.r-forge.r-project.org hyperSpec.r-forge.r-project.org
- Contact: Claudia.Beleites@ipht-jena.de
- Installation: install.packages ("softclassval")