

planetmath.org

Math for the people, by the people.

product σ -algebra

Canonical name Productsigmaalgebra
Date of creation 2013-03-22 18:47:21
Last modified on 2013-03-22 18:47:21

Owner gel (22282) Last modified by gel (22282)

Numerical id 6

Author gel (22282) Entry type Definition Classification msc 28A60

Synonym product sigma-algebra

Related topic ProductMeasure

Related topic InfiniteProductMeasure

Given measurable spaces (E, \mathcal{F}) and (F, \mathcal{G}) , the product σ -algebra $\mathcal{F} \times \mathcal{G}$ is defined to be the σ -algebra on the Cartesian product $E \times F$ generated by sets of the form $A \times B$ for $A \in \mathcal{F}$ and $B \in \mathcal{G}$.

$$\mathcal{F} \times \mathcal{G} = \sigma (A \times B : A \in \mathcal{F}, B \in \mathcal{G}).$$

More generally, the product σ -algebra can be defined for an arbitrary number of measurable spaces (E_i, \mathcal{F}_i) , where i runs over an index set I. The product $\prod_i \mathcal{F}_i$ is the σ -algebra on the generalized cartesian product $\prod_i E_i$ generated by sets of the form $\prod_i A_i$ where $A_i \in \mathcal{F}_i$ for all i, and $A_i = E_i$ for all but finitely many i. If $\pi_j \colon \prod_i E_i \to E_j$ are the projection maps, then this is the smallest σ -algebra with respect to which each π_j is http://planetmath.org/MeasurableFunctions