

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» $(M\Gamma T \mathcal{Y} \ \text{им. H. Э. Баумана})$

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕДРА	Прикладная математика

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

Решение жесткой системы дифференциальных уравнений Робертсона

Студент	ФН2-61Б		В. Г. Пиневич
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
D	· ~		А.В. Котович
Руководите	ль курсовой работы		А. Б. Котович
		(Подпись, дата)	(И. О. Фамилия)

Оглавление 2

Оглавление

Вв	ведение	3
1.	Постановка задачи	3
	1.1. Жесткая система	3
	1.2. Многошажные методы	4
M	етод Адамса-Моултона	4
	1.3. Порядок аппроксимации	4
	1.4. Устойчивость	5
M	етод формул дифференцирования назад	5
	1.5. Порядок аппроксимации	6
	1.6. Устойчивость	6
Pe	зультаты	8
За	ключение	12
Ст	исок использованных источников	13

Введение 3

Введение

Проблема решения задачи жестких систем дифференциальных уравнений возникает во многих сферах науки и техники, в частности рассмотренная в работе задача представляет собой модель химической кинетики. Существует большое количество различных методов решения таких задач. В данной работе будет рассмотрено решение задачи Робертсона методом формул дифференцирования назад, а так же методом Адамса-Моултона.

1. Постановка задачи

Задача данной работы — найти решение модели химических реакций Робертсона.

$$\begin{cases} \dot{y}_1 = -0.04y_1 + 10^4 y_2 y_3, \\ \dot{y}_2 = 0.04y_1 - 10^4 y_2 y_3 - 3 * 10^7 y_2^2, \\ \dot{y}_3 = 3 * 10^7 y_2^2, \end{cases}$$
(1)

где $t \in [0; T], T = 40, 100$. Начальные условия $y_1(0) = 1, y_2(0) = 0, y_3(0) = 0$.

Кроме того, требуется построить фазовые траектории решений рассмотренных методов и сделать вывод о целесообразности использования каждого из них.

1.1. Жесткая система

Пусть есть система дифференциальных уравнений

$$y_t = f(t, y), 0 \le t \le T, y(0) = y_0.$$
 (2)

Система называется жесткой, если для всех t, y (т. е. на решениях (2)), собственные значения матрицы А удовлетворяют условиям [1].

$$\begin{cases} \frac{\max\limits_{j}|Re\lambda_{j}|}{\min\limits_{k}|Re\lambda_{j}|} >> 1, Re\lambda_{j} < 0, \\ \max\limits_{j}|Im\lambda_{j}| << \max\limits_{k}|Re\lambda_{j}|, j, k = 1, ..., J. \end{cases}$$

Схема называется абсолютно устойчивой, если $|q(\sigma)| \leq 1$ выполняется при всех значениях [1].

Схема называется А-устойчивой, если кривая $|q(\sigma)| = 1$ лежит в правой полуплоскости σ [1]. Когда метод А-устойчивый возможен выбор шага исключительно из соображений точности [2]. Для решения жестких задач используются абсолютно устойчивые методы, в данной работе рассмотрены многошажные неявные методы, поскольку явные методы не могут быть А-устойчивы.

Порядок разностной схемы позволяет нам получить информацию о порядке ошибки метода. Когда мы переходим от t_n к t_{n+1} при достаточно малом h>0 мы будем иметь ошибку $o(h^{p+1})$

1.2. Многошажные методы

Мы можем записать многошажный метода в общей форме

$$\sum_{m=0}^{s} y_{n+m} = h \sum_{m=0}^{s} b_m f(t_{n+m}, y_{n+m}), n = 0, 1...$$
(3)

Многошажная схема имеет порядок $p \leq 1$ только при условии, что

$$\phi(t,y) = \sum_{m=0}^{s} a_m y(t+mh) - h \sum_{m=0}^{s} b_m y'(t+mh) = o(h^{p+1})$$

Метод Адамса-Моултона

Для схемы с двумя шагами использовалась следующая расчетная формула:

$$y_{n+2} = y_{n+1} + h\left(\frac{5}{12}f(t_{n+2}, y_{n+2}) + \frac{8}{12}f(t_{n+1}, y_{n+1}) - \frac{1}{12}f(t_n, y_n)\right)$$

Для решение системы алгебраических уравнений был использован метод Ньютона. Для нахождения значений в первых двух шагах использовался метод Рунге-Кутты.

1.3. Порядок аппроксимации

S-шажный метод Адамса-Моултона будет иметь порядок s+1. Вычислим порядок согласно формуле

$$p = \log_2 \frac{f_i - f}{f_{i+1} - f}. (4)$$

Получаем следующие результаты

Шаг	Разность	Порядок
0.1	1.66E-07	3.00
0.05	2.08E-08	3.00
0.025	2.60E-09	3.00
0.0125	3.25E-10	

Таблица 1. Порядки аппроксимации двухшажного метода Адамса-Моултона

1.4. Устойчивость

Устойчивость численных методов для решения жестких задач определяется с помощью области абсолютной сходимости метода. Для двухшажного метода Адамса-Моултона эта область показана на графике ниже.

Рис. 1. Область устйочивости двухшажного метода Адамса-Моултона [2]

Метод Адамса-Моултона, как видно на рис. 1, не является абсолютно устойчивым методом.

Метод формул дифференцирования назад

Для схемы с двумя шагами использовалась следующая расчетная формула:

$$y_{n+2} - \frac{4}{3}y_{n+1} + \frac{1}{3}y_n = \frac{2}{3}hf(t_{n+2}, y_{n+2})$$

Для схемы с четырьмя шагами использовалась следующая расчетная формула:

$$y_{n+4} - \frac{48}{25}y_{n+3} + \frac{36}{25}y_{n+2} - \frac{16}{25}y_{n+1} + \frac{3}{25}y_n = \frac{12}{25}hf(t_{n+4}, y_{n+4})$$

Для решение системы алгебраических уравнений был использован метод Ньютона. Для нахождения значений в первых шагах использовался метод Рунге-Кутты.

1.5. Порядок аппроксимации

S-шажный метод BDF имеет порядок s.

Вычислим порядок аппроксимации согласно формуле (4)

Шаг	Разность	Порядок
0.1	2.57E-06	1.95
0.05	7.36E-07	1.91
0.025	1.96E-07	1.96
0.0125	5.04E-08	

Таблица 2. Порядки аппроксимации метода BDF-2

Шаг	Разность	Порядок
0.1	1.27E-10	3.93
0.05	1.02E-11	3.99
0.025	7.06E-13	3.93
0.0125	4.64E-14	

Таблица 3. Порядки аппроксимации метода BDF-4

1.6. Устойчивость

Можно показать, что для порядков 1 и 2 BDF методы А-устойчивы, а для порядков от 3 до 6 область абсолютной устойчивости становится меньше по мере увеличения порядка. При порядке больше 7 и более размер области абсолютной сходимости недостаточен для решения жестких задач. Более подробно это описано в работах Gear (1971, раздел 11) и Lambert (1973, раздел 8).

Устойчивость численных методов для решения жестких задач определяется с помощью области абсолютной сходимости метода. Для методов BDF эти области показаны на графиках ниже.

BDF-2 метод является А-устойчивым [2]. Согласно второму барьеру Далквиста наибольший порядок многошажного метода второй. В идеале область сходимости должна включать в себя левую половину комплексной плоскости и в таком случае метод будет считаться А-устойчивым. Однако методы BDF с порядком больше двух

Рис. 2. Область устойчивости метода BDF-2 [5]

Рис. 3. Область устойчивости метода BDF-4 [5]

не могут быть А-устойчивыми. Но область устойчивости методов высокого порядка включает в себя большую часть левой полуплоскости и в частности всю отрицательную действительную ось. BDF методы являются наиболее эффективными линейными многошаговыми методами такого типа [2].

Метод считается $A(\alpha)$ устойчивым для $\alpha \in [0, \pi/2]$, если клин

$$\nu_{\alpha} = \{ \rho e^{i\theta} : \rho > 0, |\theta + \pi| < \alpha \}$$

содержится в области абсолютной устойчивости. Другими словами, если все собственные числа системы уравнений находятся в области ν_{α} , то уменьшение шага из-за ограничений устойчивости не требуется.

Результаты

Рассмотрим графики для задачи с интервалом $t \in [0, 40]$. Заметим, что с помощью метода Адамса-Моульона мы получили значительно отличающийся результат.

Рис. 4. Фазовые траектории при T=40

Рис. 5. Зависимость y_1 от t

Рис. 6. Зависимость y_2 от t

Рис. 7. Зависимость y_3 от t

Рассмотрим графики для задачи с интервалом $t \in [0, 100]$. Заметим, что с помощью метода Адамса-Моултона задачу на данном интервале решить не получилось, это можно объяснить тем, что данный метод не является абсолютно устойчивым.

Рис. 8. Фазовые траектории при T=100

Рис. 9. Зависимость y_1 от t

Рис. 10. Зависимость y_2 от t

Рис. 11. Зависимость y_3 от t

Заключение 12

Заключение

- 1) Метод Адамса-Моултона является плохим выбором при решении жестких задач, так как он не является абсолютно устойчивым.
- 2) В результатах расчетов решение для рассматриваемой задачи удалось получить лишь на интервале [0; 40].
- 3) Метод BDF-2 и BDF-4 позволили получить решение на поставленную задачу

Список использованных источников

- 1. Холодов А., Лобанов А., Евдокимов А. Разностные схемы для решения жестких обыкновенных дифференциальных уравнений в пространстве неопределенных коэффициентов, М.: Московский физико-технический институт, 2001. 48 с.
- 2. Iserles A. A First Course in the Numerical Analysis of Differential Equations, M.: Изд-во Cambridge University Press, 2009. 481 с.
- 3. Atkinson, Kendal E. An introduction to numerical analysis, М.: Изд-во John Wiley & Sons, 1988 663 с.
- 4. Хайер Э., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Жесткие и дифференциально-алгебраические задачи. Пер. с англ., М.: Изд-во Мир, 1999. 685 с.
- 5. Suli E., Mayers D. An Introduction to Numerical Analysis, M.: Изд-во Cambridge University Press, 2003. 444 с.