Часть І

I. Функция z = f(x, y) не имеет точек локального экстремума, если:

1.
$$z = x^2 + y^2 + 3xy + x - y$$

$$2. z = x^4 + y^4 + 5x^2 + 3y^2$$

II. Пусть $f(x) = x^2 + 4xy + y^2 + 2x + 4y$. Тогда верны утверждения

3. точка (2, 1) является стационарной точкой функции f(x, y)

4. в точке(-1, 0)выполняется необходимое условие экстремума функции f(x, y)

5. функции f(x,y) не имеет точек минимума

III. Справедливы утверждения для определённого интеграла:

6.
$$\grave{O}_a^b f(x) dx = - \grave{O}_b^a f(x) dx$$

6.
$$\grave{O}_a^b f(x) dx = - \grave{O}_b^a f(x) dx$$
 7.
$$\grave{O}_a^b f(x) dx = \grave{O}_a^c f(x) dx + \grave{O}_c^b f(x) dx$$

8.
$$\mathbf{\hat{O}}_{a}^{a} f(x) dx = f(a)$$

8.
$$\grave{O}_a^a f(x)dx = f(a)$$
9. $\grave{O}_a^b f(x)g(x)dx = \grave{O}_a^b f(x)dx \grave{O}_a^b g(x)dx$

IV. Справедливо следующее утверждение:

10.
$$\partial d(x^4 - 2x) = x^4 - 2x + c$$

11.
$$\partial_{\mathbf{O}}(2f(x) - 3g(x))dx = 2\partial_{\mathbf{O}}f(x)dx - 3\partial_{\mathbf{O}}g(x)dx + c$$

12.
$$(\grave{o}(x^3 - 3x)dx)' = x^3 - 3x + c$$

V. На отрезке [5;8] для функции f(x): $2 \le f(x) \le 6$, тогда

13.
$$\int_{5}^{8} (3f(x) - 8) dx \le 6$$

14.
$$\int_{5}^{8} (3f(x) - 8) dx \ge 0$$

15.
$$\int_{5}^{8} (3f(x) - 8) dx \ge \int_{8}^{5} (3f(x) - 8) dx - 2$$

16.
$$\int_{3}^{5} f(x)dx = \int_{3}^{8} f(x)dx - \int_{9}^{5} f(x)dx$$

Часть II

A.
$$\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C$$
 B. $\frac{1}{2}x^2 \ln x + C$

$$\text{B. } \frac{1}{2}x^2 \ln x + C$$

B.
$$\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2$$

B.
$$\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2$$
 Γ . $\frac{1}{2}x^2 \ln x - \frac{1}{2}x^2 + C$

2. Неопределённый интеграл $\hat{\mathbf{O}}(3x^2 + 2x)dx$ равен:

$$A.x^3 + x^2 + C$$

$$5.9x^3 + 4x$$

B.
$$x^3 + 3$$

3. Дифференциал функции $f(x,y) = 3x^4y^2$ равен:

A.
$$12x^3y^2Dx + 6x^4yDy$$
 B. $24x^3yDxDy$

$$\mathbf{E.} \ 24x^3y\mathbf{D}x\mathbf{D}y$$

$$\int \cdot 12x^3y^2 + 6x^4y^2$$

4. Пусть для некоторой функции z = f(x,y) в точке (1,1) выполнены необходимые условия экстремума и $f_{xx}(1,1)=2$, $f_{xy}(1,1)=5$, $f_{yy}(1,1)=1$. Тогда в точке (1,1)

функция $z = f(x, y) \dots$

А. имеет минимум

Б. имеет максимум

В. не имеет экстремума

Г. может иметь экстремум, а может его не иметь

A.
$$\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C$$
 As E. $\frac{1}{2}x^2 \ln x + C$

B.
$$\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2$$

1. Найти скалярное произведение вектора N=(2;-1) и градиента функции $z(x,y) = -2x^2 + 3y^2$ в точке (-1;1).

2. Найти значение функции $z = x^2 + 4y^2 - 2xy + 1$ в точке локального экстремума.

3. Вычислить интеграл $\partial_2^{\frac{1}{2}} \frac{dx}{(2+3x)^2}$.

4. Значение полного дифференциала функции $z = \sqrt{2x + 3y}$ в точке M_0 (2;4) при при $\Delta x = -3$, $\Delta y = -6$ равно

5. Область определения функции $z(x,y) = \sqrt{x+1} + \sqrt{y-1} + 2$ ограничена неравенством: $x + y \ \pounds \ 2$. Найти площадь области определения этой функции.