Information Storage and Retrieval

CSCE 670
Texas A&M University
Department of Computer Science & Engineering
Instructor: Prof. James Caverlee

Vector Space Retrieval 26 January 2017

The Vector Space Model

Binary incidence matrix

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
ANTHONY	1	1	0	0	0	1
BRUTUS	1	1	0	1	0	0
CAESAR	1	1	0	1	1	1
CALPURNIA	0	1	0	0	0	0
CLEOPATRA	1	0	0	0	0	0
MERCY	1	0	1	1	1	1
WORSER	1	0	1	1	1	0

. . .

Each document is represented as a binary vector $\in \{0, 1\}^{|V|}$.

Count matrix

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
ANTHONY	157	73	0	0	0	1
BRUTUS	4	157	0	2	0	0
CAESAR	232	227	0	2	1	0
CALPURNIA	0	10	0	0	0	0
CLEOPATRA	57	0	0	0	0	0
MERCY	2	0	3	8	5	8
WORSER	2	0	1	1	1	5

Each document is now represented as a count vector $\in N^{|V|}$.

Binary → count → weight matrix

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
ANTHONY	5.25	3.18	0.0	0.0	0.0	0.35
BRUTUS	1.21	6.10	0.0	1.0	0.0	0.0
CAESAR	8.59	2.54	0.0	1.51	0.25	0.0
CALPURNIA	0.0	1.54	0.0	0.0	0.0	0.0
CLEOPATRA	2.85	0.0	0.0	0.0	0.0	0.0
MERCY	1.51	0.0	1.90	0.12	5.25	0.88
WORSER	1.37	0.0	0.11	4.15	0.25	1.95

. . .

Each document is now represented as a real-valued vector of tf-idf weights $\in R^{|V|}$.

Documents as vectors

- Each document is now represented as a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
- So we have a |V|-dimensional real-valued vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.
- Very high-dimensional: tens of millions of dimensions when you apply this to web search engines
- Each vector is very sparse most entries are zero.

Queries as vectors

- Key idea 1: do the same for queries: represent them as vectors in the high-dimensional space
- Key idea 2: Rank documents according to their proximity to the query
- proximity = similarity
- proximity ≈ negative distance
- Recall: We're doing this because we want to get away from the you're-either-in-or-out, feast-or-famine Boolean model.
- Instead: rank relevant documents higher than nonrelevant documents

How do we formalize vector space similarity?

- First cut: (negative) distance between two points
- (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- ... because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea

The Euclidean distance of \vec{q} and \vec{d}_2 is large although the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.

Questions about basic vector space setup?

Use angle instead of distance

- Rank documents according to angle with query
- Thought experiment: take a document d and append it to itself. Call this document d'. d' is twice as long as d.
- "Semantically" d and d' have the same content.
- The angle between the two documents is 0, corresponding to maximal similarity . . .
- ... even though the Euclidean distance between the two documents can be quite large.

From angles to cosines

- The following two notions are equivalent.
 - Rank documents according to the angle between query and document in decreasing order
 - Rank documents according to cosine(query, document) in increasing order
- Cosine is a monotonically decreasing function of the angle for the interval [0°, 180°]

Cosine

Length normalization

- How do we compute the cosine?
- A vector can be (length-) normalized by dividing each of its components by its length here we use the L_2 norm:

$$||x||_2 = \sqrt{\sum_i x_i^2}$$

- This maps vectors onto the unit sphere ...
- ... since after normalization: $||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$
- As a result, longer documents and shorter documents have weights of the same order of magnitude.
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.

Cosine similarity between query and document

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i is the tf-idf weight of term i in the query.
- d_i is the tf-idf weight of term i in the document.
- $|\vec{q}|$ and $|\vec{d}|$ are the lengths of \vec{q} and \vec{d} .
- This is the cosine similarity of \vec{q} and \vec{d}or, equivalently, the cosine of the angle between and \vec{q}

Cosine for normalized vectors

 For normalized vectors, the cosine is equivalent to the dot product or scalar product.

$$\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_i q_i \cdot d_i$$

• (if \vec{q} and \vec{d} are length-normalized).

Cosine similarity illustrated

Cosine: Example

How similar are these novels? SaS:

Sense and

Sensibility PaP:

Pride and

Prejudice WH:

Wuthering

Heights

equencies

(counts) term	SaS	PaP	WH
AFFECTION	115	58	20
JEALOUS	10	7	11
GOSSIP	2	0	6
WUTHERING	0	0	38

Cosine: Example

term frequencies (counts) log frequency weighting

term	SaS	PaP	WH	term	SaS	PaP	WH
AFFECTION	115	58		AFFECTION	3.06	2.76	2.30
JEALOUS	10	7		JEALOUS	2.0	1.85	2.04
GOSSIP	2	0		GOSSIP	1.30	0	1.78
WUTHERING	0	0	38	WUTHERING	0	0	2.58

(To simplify this example, we don't do idf weighting.)

Cosine: Example

log frequency weighting

log frequency weighting & cosine normalization

term	SaS	PaP	WH	term	SaS	PaP	WH
AFFECTION	3.06	2.76	2.30	AFFECTION	0.789 0.	832	0.524
JEALOUS	2.0	1.85	2.04	JEALOUS	0.5150.	555	0.465
GOSSIP	1.30	0	1.78	GOSSIP	0.335 0.		0.405
WUTHERING	0	0	2.58	WUTHERING			0.588

- $cos(SaS,PaP) \approx 0.789 * 0.832 + 0.515 * 0.555 + 0.335 * 0.0 + 0.0 * 0.0 \approx 0.94$
- \circ cos(SaS,WH) \approx 0.79
- $cos(PaP,WH) \approx 0.69$
- Why do we have cos(SaS,PaP) > cos(SAS,WH)?

Computing the cosine score

```
CosineScore(q)
     float Scores[N] = 0
 2 float Length[N]
 3 for each query term t
    do calculate w_{t,q} and fetch postings list for t
        for each pair(d, tf_{t,d}) in postings list
 5
        do Scores[d] + = w_{t,d} \times w_{t,q}
     Read the array Length
 8 for each d
     do Scores[d] = Scores[d]/Length[d]
     return Top K components of Scores[]
10
```

Components of tf-idf weighting

Term f	frequency	Docum	ent frequency	Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2+w_2^2++w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \frac{N-\mathrm{df}_{\mathfrak{k}}}{\mathrm{df}_{\mathfrak{k}}}\}$	u (pivoted unique)	1/u	
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$	
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$					

tf-idf example

- We often use different weightings for queries and documents.
- Notation: ddd.qqq
- Example: Inc.ltn
- document: logarithmic tf, no df weighting, cosine normalization
- query: logarithmic tf, idf, no normalization
- Isn't it bad to not idf-weight the document?
- Example query: "best car insurance"
- Example document: "car insurance auto insurance"

tf-idf example: Inc.ltn

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency weight: the final weight of the term in the query or document, n'lized: document weights after cosine normalization, product: the product of final query weight and final document weight

$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

 $1/1.92 \approx 0.52$ $1.3/1.92 \approx 0.68$

Final similarity score between query and document: $\sum_{i} w_{ai} \cdot w_{di} = 0 + 0 + 1.04 + 2.04 = 3.08$ Questions?

Summary: Ranked retrieval in the vector space model

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity between the query vector and each document vector
- Rank documents with respect to the query
- Return the top K (e.g., K = 10) to the user