Figure 1: Top 10 BLASTP hits for INSP179 polypeptide sequence (SEQ ID NO:10) against NCBI-nr

BLASTP 2.2.2 [Jan-08-2002]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.

Query= INSP179.pp (880 letters)

Database: All non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF

1,594,288 sequences; 522,190,286 total letters

Searching......done

Sequences producing significant alignments:	Score (bits)	E Value
ref XP_291099.2 similar to hypothetical protein MGC38937 [Homo	1747	0.0
ref NP 705796.1 hypothetical protein MGC38937 [Mus musculus] >g	. 684	0.0
ref XP 223356.1 similar to hypothetical protein MGC38937 [Rattu	650	0.0
ref[XP 221358.2] similar to Carboxypeptidase N 83 kDa chain (Car		5e-14
ref[NP 570843.1] leucine rich repeat containing 15; leucine-rich		2e-12
gb AAH25836.1 1300018K11Rik protein [Mus musculus]		7e-12
ref[XP 148373.1] RIKEN cDNA 1300018K11 [Mus musculus] >gi 380806	. 75	7e-12
ref[NP 659551.1] leucine-rich repeat protein induced by beta-amy	. 74	1e-11
dbj BAD01045.1 toll-like receptor 3 [Paralichthys olivaceus]	73	3e-11
dbj BAB85498.1 18 wheeler [Bombyx mori]	72	5e-11

Figure 2: Pairwise alignment of INSP179 to top annotated BLASTP hit (mouse ortholog)

Score = 684 bits (1765), Expect = 0.0 Identities = 422/888 (47%), Positives = 529/888 (59%), Gaps = 41/888 (4%) MKNLYFRVITIVIGLYFTGIMTNASRKSNILFNSECQWNEYILTNCSFTGKCDIPVDISQ 60 Query: 1 M++ Y RV +V GL F +T SRKS++ FN E Q N +L N S MRDFYVRVTILVTGLCFVETVTTPSRKSSVSFNPEYQRNGDLLVNWSSIRH-----VSQ 54 Sbjct: 1 Query: 61 TAATVDVSFNFFRVLLQSHTKKEEWKIKHLDLSNNLISKITLSPFAYLHALEVLNLSNNA 120 +D SF FFRVL Q HT+KE IK D +++ ISK+TL P A+LHALE+LNLSN A Sbjct: 55 NTDAMDRSFYFFRVLFQPHTQKER-HIKPPDRTHHRISKVTLDPLAHLHALEILNLSNKA 113 Query: 121 IHSLSLDLLSPKSSWVKRHRSSFRNRFPLLKVLILQRNKLSDTPKGLWKLKSLQSLDLSF 180 IH SLD P SS KRH +R P L+VLILQRN+LS TPKGLWKLKSL+SLDLSF Sbjct: 114 IHYFSLDQPLPPSSHQKRHGGHSHSRLPRLQVLILQRNQLSGTPKGLWKLKSLRSLDLSF 173 Query: 181 NGILQIGWSDFHNCLQLENLCLKSNKIFKIPPQAFKDLKKLQVIDLSNNALITILPMMII 240 N I+ IG SDFH CLQLE++ LKSNKI I P+AFK LKKLQV+DL +NAL T++P++ I Sbjct: 174 NRIVHIGLSDFHGCLQLESIYLKSNKICTIHPKAFKGLKKLQVVDLRSNALTTLVPIVTI 233 Query: 241 ALEFPHLVVDLADNNWQCDDSVAVFQNFISESWRKKWNVICNRSIGSEEANGGTPQSRIS 300 ALE PHL + LADN WQC +S FQN S SWR+ W ICN S+ ++ N T Q R S Sbjct: 234 ALELPHLELGLADNQWQCSESNVNFQNITSSSWREIWKAICNMSVENKRPNAETHQIRKS 293 Query: 301 RETRL---PPIHLHRMKSLIRSKAERPQGGRHTGISTLGKKAKAGSG-LRKKQRRLPRSV 356 R+T L PP L KSLI+SKAERPQ G +S LGK+AK G G LR + P + Sbjct: 294 RDTHLLLSPPSDL---KSLIQSKAERPQAGMDMHLSALGKEAKDGYGDLRGMWPQSPVEL 350 Query: 357 RSTRDVQAAGKKEDAPQDLALAVCLSVFITFLVAFSLGAFTRPYVDRLWQKKCQSKSPGL 416 R ++D Q +K+D P L LA+CLSVFITF+VAF LGAF RPY+DRL Q++C +K PG Sbjct: 351 RDSQDEQVTDRKDDKPPALELAICLSVFITFVVAFCLGAFARPYIDRLRQQRCSNKRPGS 410 Query: 417 DNAYSNEGFYDDMEAAGHTPHPETHLRQVFPHLSLYENQTPFWVTQPHPHATVIPDRTLG 476 DNAYSN+GF+ D+E A H + T L Q HL L ENQ P WV +P PH+ V ++ LG Sbjct: 411 DNAYSNKGFHGDIEGAQHMEYQGTDLHQTTHHLHLSENQNPSWVAEPIPHSAVQSEQMLG 470 Query: 477 RSRKDPGSSQSPGQCGDNTGAGSGND-----GAVYSILQRHPHAGNRELMSAAQDHIHR 530 + DPG QSP Q D+ + SG+ + L P+A + +S Q H Sbjct: 471 SNGTDPGHQQSPEQLKDSNESRSGDSIVLPSGPVAHLALHGLPNADAHKAISPVQ---HH 527 Query: 531 NDILGEWTYETVAQEEPLSAHSVGVSSVAGTSHAVSGSSRYDSNELDPSLSGEITASLCK 590 +D L E Y+TVAQE L + SS+ G S ++L PS ++ AS K Sbict: 528 HDFLEEAHYDTVAQEYSLIDDVMDRSSITGPLGTFPSSVESRRDDLHPSQPRDVVASFSK 587 Query: 591 MLTHAEAQRTGDSKERGGTEQ-SLWDSQMEFSKERQVSSSIDLLSIQQPRLSGARAEEAL 649 L HA + S E G E DSQM S+ERQVS+SI L+ QQP G AEE L Sbjct: 588 TLAHANTREAEGSMETGCPEPLGAMDSQMGSSEERQVSNSIRELATQQPSFQGVDAEERL 647 Query: 650 SAHYSEVPYGDPRDTGPSVFPPRWDSGLDVTPANKEPVQKSTPSDTCCELES--DCDSDE 707 S YSEV + DP PS+ PRW SG V PA EPV++ P D +L + + DSDE Sbjct: 648 SHVYSEVLHNDP----PSL-RPRWGSGHYVIPATGEPVERDAPFDPHYDLVTNYESDSDE 702 Query: 708 GSLFTLSSISSESARSKTEEAVPDE----ESLQDESSGASKDNVTAVDSLEENVTFQTI 762 GSLFTLSS SE RS EE E + L + G KD+VT+ +S+E+ +T Q I Sbict: 703 GSLFTLSSEGSEDTRSLAEEQASVENDGTSQPLPSRNLGEYKDSVTSAESVED-LTSQRI 761 Query: 763 PGKCKNQEDPFEKPLISAPDSGMYKTHLENASDTDRSEGLSPWPRSPGNSPLGDEFPGMF 822 P KC+ QE LIS PDS + +T+ EN S + E S WP+ PG+ Sbjct: 762 PEKCEAQEAHLRNTLISGPDSCVCETNQENDSSSLDPENRSTWPQLPGHKLSHHETLGTY 821

Query: 823 TYDYDTALQSKAAEWHCSLRDLEFSNVDVLQQTPPCSAEVPSDPDKAA 870 D QS+A +WH SLRDLE NVD +PP S E S P+ A

Sbjct: 822 G---DIEPQSEAVDWHYSLRDLESPNVD-SSPSPPYSDEDLSGPEDRA 865

Figure 3: Domain Professor results for INSP179

Query: INSP179.pp

E-values and regions on this page use repsilon and are approximate - hit "Aln" for Blastpgp evalues and alignments

11	SCOP von Willebrand	82%	c.10.2.7 (A:) von Willebrand factor binding domain of glycoprotein Ib alpha {Human (Homo sapiens)}	d1gwba_	35-271	4-221	-/-	<u>2</u> /1.4e-25
2	N . 26 - 37 - 1	82%	3:80:10:10 Alpha Beta; rforseshoe; Ribonuclease Inhibitor;	Mr. 93	35-271	4-221	- (<u>2</u> / 1.4e-25
3	IPL Whole_length		Ferrodoxin-like / Adenylyl and guanylyl cyclase catalytic domain Ascomycotal and Fungal ACs, most of the full length alignment. Have added hCP46367.1 and hCP46942.1 to the alignment for this profile.	<u>IPL002890</u>	40-255	1060- 1254	<u>1</u> /1.4e-15	-/-
4	CDD COG4886	33%	Leucine-rich repeat (LRR) protein [Function unknown]	COG4886.	90-238	98-228	1/5.3e-14	/w.
5	SPAN DOMAIN	31%	DOMAIN EXTRACELLULAR (POTENTIAL) sp LGR5_HUMAN O75473 1- 561	<u>075473</u>	45-231	51-222	<u>1</u> /3.0e-11	-/-
6	SPAN DOMAIN	81%	DOMAIN ASP/SER-RICH sp SR40_YEAST P32583 25-314	<u>P32583</u>	549-797	15-248	1/9.0e-05	-/-

Figure 4: Signal peptide prediction (SignalP V2.0) for INSP179 polypeptide sequence (SEQ ID NO: 10).

>INSP179.pp SignalP-NN prediction (euk networks): INSP179.pp C score 1.0 S score Y score 0.8 0.6 0.4 0.2 0.0 MKNLYFRV I T IV IGLYFTG IMTNASRKSN I LFNSECOMNEY I LTNCSFTGKCD I PVD I SQTAATVDVSF 0 10 20 30 40 50 60 70 Position >INSP179.pp length = 70Position Value Cutoff signal peptide? # Measure max. C 0.179 0.33 25 max. Y 25 0.318 0.32 NO 0.933 0.82 YES max. S 9 0.697 0.47 YES 1 - 24mean S # Most likely cleavage site between pos. 24 and 25: TNA-SR SignalP-HMM prediction (euk models): INSP179.pp Cleavage prob. 1.0 n-region prob. h-region prob. c-region prob. 0.8 0.6 0.4 0.2 0.0 MKNLYFRVIT IV IGLYFTG IMTNASRKSN I LFNSECOMNEY I LTNCSFTGKCD I PVD I SQTAATVDVSFN

>INSP179.pp
Prediction:

0

Prediction: Signal anchor

Signal peptide probability: 0.065 Signal anchor probability: 0.778

10

Max cleavage site probability: 0.031 between pos. 24 and 25

Position

50

60

70

20

Figure 5: INSP179 DNA and polypeptide sequence

1 61	ttccgaaatc attgtgaata	ttaaattgaa agtcaattca	aattaaattt ttttcctttt	gctgcttatt tccaggcatt	gctgttagtt atgaaaaacc m k n	tttatatatt tctatttcag l y f
					INSP	179-CP1
121	agtcattacc	atagttatag i v i	gtctttattt g l y	tactggaata f t g i	atgacaaatg m t n	catcaagaaa a s r
181	aagcaatatt k s n i	ttattcaatt 1 f n	ctgaatgcca s e c	atggaatgaa q w n e	tatattctga y i l	caaattgttc t n c
241	ttttaccgga s f t g	aagtgtgata k c d	tacctgtgga i p v	catatcacag d i s q	acagcagcca t a a	ctgtggatgt t v d
301	aagtttcaat v s f n	ttctttagag f f r	ttctcttaca v l l	gtctcacacg q s h t	aaaaaagaag k k e	
361		gacctcagta d l s			accttaagcc t l s	
421			taaacctcag l n l		atccactccc i h s	tctcattgga l s l
481	_	cctaagtcct p k s		acgccacaga k r h r	agcagcttca s s f	gaaacaggtt r n r
541					agtgacactc s d t	
601	gtggaaactg l w k l	aagtcattgc k s l	agagtttgga q s l	tctgtcattc d l s f	aatgggatat n g i	tgcaaatagg l q i
661	gtggtctgat g w s d			ggagaatctc l e n l	tgtttaaaga c l k	gcaacaagat s n k
721		ccccacaag p p q		cctcaaaaaa d l k k		tagaccttag ì d l
781			tcctaccaat i l p		gctctagaat a l e	ttccccatct f p h
841	agtggttgac l v v d	ttggctgata l a d	ataactggca n n w	gtgtgatgat q c d d	agtgtggcag s v a	tctttcaaaa v f q
901	ttttatttct n f i s	gaatcctgga e s w	ggaaaaagtg r k k	gaatgtcatt w n v i	tgcaacaggt c n r	ctatagggag s i g
961	tgaggaggcc s e e a	aacgggggca n g g	ctccccagag t p q	caggatttcc s r i s	agggaaaccc r e t	gccttcctcc r l p
1021					gcagagaggc a e r	cccagggagg
1081	aaggcacacg g r h t	ggcatttcta g i s	ctctggggaa t l g	gaaggcaaag k k a k	gccggctctg a g s	gtctcaggaa g l r

1141	gaagcagaga k k q r	cggctgccaa r l p		r s t r	q A d	ctgccggcaa a a g
				INSP179-CP	2	
1201	aaaagaggac	gctccccagg	acctggctct	ggcggtgtgc	ctgtcagtgt	tcatcacatt
	k k e d	a p q	d l a	l a v c	l s v	f i t
1261	ccttgtcgcc	ttcagcctgg	gggctttcac	aaggccttat	gttgacagac	tgtggcaaaa
	f l v a	f s l	g a f	t r p y	v d r	l w q
1321	aaagtgccag	agcaaaagcc	ctggcctgga	caacgcgtat	tcaaacgagg	gcttctacga
	k k c q	s k s	p g l	d n a y	s n e	g f y
1381	tgacatggaa d d m e	gctgcggggc a a g	acacaccaca h t p	cccagagacc h p e t	catctgcgcc h 1 r	
1441	tcatctaagc	ctctacgaga	accagacccc	tttctgggtg	acacagccac	acccacacgc
	p h l s	l y e	n q t	p f w v	t q p	h p h
1501	caccgtaatt	cctgatagaa	ctctgggaag	gagcagaaag	gatcctggca	gttcgcagag
	a t v i	p d r	t l g	r s r k	d p g	s s q
1561	cccaggacag s p g q	tgcggggaca c g d	acaccggggc n t g	aggaagtgga a g s g		cagtctattc a v y
1621	cattctccag s i l q	agacatccac r h p	atgccggtaa h a g	ccgtgaacta n r e l	atgtcagcag m s a	
1681	catccatagg	aatgatattc	tcggagaatg	gacttatgaa	actgtggccc	aggaagagcc
	h i h r	n d i	l g e	w t y e	t v a	q e e
1741	tctcagtgca p 1 s a	cattcagtgg h s v		tgtagctggc s v a g		ctgtctctgg a v s
1801	ctcaagccgt	tatgattcca	atgaattaga	cccttccctc	tccggagaaa	taacagcttc
	g s s r	y d s	n e l	d p s l	s g e	i t a
1861	cctctgtaaa	atgctaacac	atgcagaagc	acagaggact	ggagatagta	aggaaagagg
	s l c k	m l t	h a e	a q r t	g d s	k e r
1921	gggcactgaa	cagtcacttt	gggactcgca	gatggaattt	tctaaggaaa	ggcaagtgag
	g g t e	q s l	w d s	q m e f	s k e	r q v
1981	ttcatccatt	gatttgctga	gcatacagca	gccaaggctg	tccggggcaa	gggctgagga
	s s s i	d l l	s i q	q p r l	s g a	r a e
2041	agcgctttca	gcccactaca	gcgaggttcc	atacggtgac	ccaagagaca	caggcccatc
	e a l s	a h y	s e v	p y g d	p r d	t g p
2101	agtctttcct	ccaagatggg	acagtggcct	ggatgtcact	cctgctaaca	aggaaccagt
	s v f p	prw	d s g	l d v t	p a n	k e p
2161	gcagaaatco	actccttctg	acacttgctg	tgagttggag	agtgactgtg	actctgatga
	v q k s	t p s	d t c	c e l e	s d c	d s d
2221	ggggtctctg	ttcactctga	gctccataag	ttcagagagt	gcaaggagca	agactgaaga
	e g s l	f t l	s s i	s s e s	a r s	k t e
2281	ggcagtgcct	gatgaggagt	ccctgcagga	. cgagagctca	ggggcaagca	aggacaatgt
	e a v p	d e e	s l q	d e s s	g a s	k d n

2341	gacggctgta	gacagtcttg	aggaaaatgt	taccttccaa	acaattccag	ggaaatgcaa
	vtav	d s l	e e n	vtfq	tip	g k c
2401	gaatcaagaa	gatccctttg	aaaaacctct	catttctgct	ccagactctg	gcatgtacaa
	k n q e	d p f	e k p	lisa	p d s	g m y
2461	gactcatctg	gaaaatgcct	ctgacactga	tagatctgag	ggcctgtcac	cctggcccag
	k t h 1	e n a	s d t	d r s e	g l s	p w p
2521	gtcaccaggg	aatagtccct	taggggatga	gtttccgggc	atgttcactt	atgattatga
	r s p g	n s p	l g d	e f p g	m f t	y d y
2581	cacagetett	caatccaagg	cagcagaatg	gcattgctca	cttagagact	tagaattttc
	dtal	q s k	a a e	whcs	l r d	l e f
2641	aaatgtggac	gttttacagc	aaacaccacc	atgttctgct	gaagttccct	cagatectga
	s n v d	v l q	q t p	pcsa	e v p	s d p
2701	taaggctgcc	ttccatgaaa	gagactcaga	cattttaaaa	taagaatctt	tcattaagga
	dkaa	f h e	r d s	dilk		
2761	aatattcaca	gctctaaaca	atattctttt	aaagatcatg	gcaggggaaa	actaaagcct
2821		atcctgaagg			aagtggacac	tgatgcaaat
2881	gagggttttg	tgggcccact	cgagggcgac	9466		

Position and sense of PCR primers

Figure 6: INSP179-EC DNA and polypeptide sequence

1	atgaaaaacc	tctatttcag	agtcattacc	atagttatag	gtctttattt	tactggaata
	m k n	l y f		i v i	g l y	ftgi
		INSP179-CP1				
61	atgacaaatg	catcaagaaa	aagcaatatt	ttattcaatt	ctgaatgcca	atggaatgaa
	_	a s r	k s n i	l f n	s e c	q w n e
121	tatattctga	caaattgttc	ttttaccgga	aagtgtgata	tacctgtgga	catatcacag
	y i ĺ	t n c	s f t g	k c d	i p v	d i s q
181	acagcagcca	ctgtggatgt	aagtttcaat	ttctttagag	ttctcttaca	gtctcacacg
	t a a	t v d	v s f n	f f r	v 1 1	q s h t
241	aaaaaagaag	agtggaaaat	aaaacatctg	gacctcagta	acaatctcat	atcaaaaata
	k k e	e w k	i k h l	d l s	n n 1	iski
301	accttaagcc	cttttgcata	tttacatgct	ttggaagtgt	taaacctcag	caacaatgcc
					l n l	
361	atocactoco	teteatteea	tctactcact	cctaadtcct	catgggtgaa	acccacaca
301		l s l				k r h r
421	agcagcttca	gaaacaggtt	tccattgctg	aaggtgctca	ttcttcaaag	aaataaactc
	s s f	r n r	f p l l	k v l	i l q	r n k l
481	agtgacactc	ccaagggact	gtggaaactg	aagtcattgc	agagtttgga	tctgtcattc
	s d t	p k g	l w k l	k s l	q s l	d l s f
541	aatgggatat	tgcaaatagg	gtggtctgat	tttcacaact	gcctgcaact	ggagaatctc
	n g i	l q i	g w s d	f h n	c l q	l e n l
601	tatttaaaga	gcaacaagat	attcaaaatt	ccccacaaq	ccttcaagga	cctcaaaaaa
001	c l k	s n k	i f k i	p q q		d 1 k k
661	ttacaddtca	tagaccttag	caacaatgct	ctgattacca	tcctaccaat	gatgatcata
001					i 1 p	
721	gctctagaat	ttccccatct	agtggttgac	ttggctgata	ataactggca	gtgtgatgat
					n n w	
781	agtgtggcag	tctttcaaaa	ttttatttct	gaatcctgga	ggaaaaagtg	gaatgtcatt
		v f q	n f i s		r k k	wnvi
841	tacaacaaat	ctatadddad	taaaaaaaacc	aacgggggga	ctcccagag	caggatttcc
041	c n r	s i g	s e e a	n g g	t p q	s r i s
901	agggaaaccc	accttectee	cattcatcto	catcgcatga	aaagcctcat	aaggagcaaa
	r e t		p i h l		k s l	i r s k
961	acaasasaca	cccsaaasaa	aaddcacacd	agcatttcta	ctctggggaa	daaddcaaad
201	a e r	p q g	g r h t		t 1 g	k k a k

Position and sense of PCR primers ----

Figure 7: INSP179-EC-SV1 DNA and polypeptide sequence

1	atgaaaaacc m k n	tctatttcag l y f	agtcattacc r v i t	atagttatag i v i	gtctttattt g l y	tactggaata f t g i
		INSP179-CP1				
61	atgacaaatg m t n	catcaagaaa a s r	aagcaatatt k s n i	ttattcaatt l f n	ctgaatgcca s e c	atggaatgaa q w n e
121	tatattctga y i l	caaattgttc t n c	ttttaccgga s f t g	aagtgtgata k c d	tacctgtgga i p v	
181		ctgtggatgt t v d	aagtttcaat v s f n	ttctttagag f f r		
241		agtggaaaat e w k	aaaacatctg i k h l		acaatctcat n n l	atcaaaaata i s k i
301	accttaagcc t l s	cttttgcata p f a	tttacatgct y l h a	ttggaagtgt l e v	taaacctcag l n l	caacaatgcc s n n a
361	atccactccc i h s		tctactcagt d l l s			
421	agcagcttca s s f	gaaacaggtt r n r	tccattgctg f p l l	aaggtgctca k v l	ttcttcaaag i l q	aaataaactc r n k l
481	agtgacactc s d t		tgaggaggcc s e e a	aacgggggca n g g		caggatttcc s r i s
541	agggaaaccc r e t	gccttcctcc r l p	cattcatctg p i h l	catcgcatga h r m	aaagcctcat k s l	aaggagcaaa i r s k
601	gcagagaggc a e r	cccagggagg p q g	aaggcacacg g r h t		ctctggggaa t l g	
661	gccggctctg a g s	gtctcaggaa g l r	gaagcagaga k k q r	cggctgccaa r l p	ggagtgttag r s v	aagcacccgc r s t r
721	gatgtgcag d v q				IN	SP179-CP2

Figure 8: Alignment of INSP179-EC and INSP179-EC-SV1 nucleotide sequences

179EC-SV1	ATGAAAAACCTCTATTTCAGAGTCATTACCATAGTTATAGGTCTTTATTTTACTGGAATA
INSP179EC	ATGAAAAACCTCTATTTCAGAGTCATTACCATAGTTATAGGTCTTTATTTTACTGGAATA
179EC-SV1	ATGACAAATGCATCAAGAAAAAGCAATATTTTATTCAATTCTGAATGCCAATGGAATGAA
INSP179EC	ATGACAAATGCATCAAGAAAAAGCAATATTTTATTCAATTCTGAATGCCAATGGAATGAA
179EC-SV1	TATATTCTGACAAATTGTTCTTTTACCGGAAAGTGTGATATACCTGTGGACATATCACAG
INSP179EC	TATATTCTGACAAATTGTTCTTTTACCGGAAAGTGTGATATACCTGTGGACATATCACAG
179EC-SV1	ACAGCAGCCACTGTGGATGTAAGTTTCAATTTCTTTAGAGTTCTCTTACAGTCTCACACG
INSP179EC	ACAGCAGCCACTGTGGATGTAAGTTTCAATTTCTTTAGAGTTCTCTTACAGTCTCACACG
179EC-SV1	AAAAAAGAAGAGTGGAAAATAAAACATCTGGACCTCAGTAACAATCTCATATCAAAAATA
INSP179EC	AAAAAAGAAGAGTGGAAAATAAAACATCTGGACCTCAGTAACAATCTCATATCAAAAATA
179EC-SV1	ACCTTAAGCCCTTTTGCATATTTACATGCTTTGGAAGTGTTAAACCTCAGCAACAATGCC
INSP179EC	ACCTTAAGCCCTTTTGCATATTTACATGCTTTGGAAGTGTTAAACCTCAGCAACAATGCC
179EC-SV1	ATCCACTCCCTCTCATTGGATCTACTCAGTCCTAAGTCCTCATGGGTGAAACGCCACAGA
INSP179EC	ATCCACTCCCTCTCATTGGATCTACTCAGTCCTAAGTCCTCATGGGTGAAACGCCACAGA
179EC-SV1	AGCAGCTTCAGAAACAGGTTTCCATTGCTGAAGGTGCTCATTCTTCAAAGAAATAAACTC
INSP179EC	AGCAGCTTCAGAAACAGGTTTCCATTGCTGAAGGTGCTCATTCTTCAAAGAAATAAACTC
179EC-SV1 INSP179EC	AGTGACACTCCCAAGGGAGTGACACTCCCCAAGGGACTGTGGAAACTGAAGTCATTGCAGAGTTTGGATCTGTCATTC
179EC-SV1 INSP179EC	AATGGGATATTGCAAATAGGGTGGTCTGATTTTCACAACTGCCTGC
179EC-SV1 INSP179EC	TGTTTAAAGAGCAACAAGATATTCAAAAATTCCCCCACAAGCCTTCAAGGACCTCAAAAAA
179EC-SV1 INSP179EC	TTACAGGTCATAGACCTTAGCAACAATGCTCTGATTACCATCCTACCAATGATGATCATA
179EC-SV1 INSP179EC	GCTCTAGAATTTCCCCATCTAGTGGTTGACTTGGCTGATAATAACTGGCAGTGTGATGAT
179EC-SV1 INSP179EC	AGTGTGGCAGTCTTTCAAAATTTTATTTCTGAATCCTGGAGGAAAAAGTGGAATGTCATT
179EC-SV1 INSP179EC	GAGTGAGGAGGCCAACGGGGCACTCCCCAGAGCAGGATTTCC TGCAACAGGTCTATAGGGAGTGAGGAGGCCAACGGGGGCACTCCCCAGAGCAGGATTTCC
179EC-SV1	AGGGAAACCCGCCTTCCTCCCATTCATCTGCATCGCATGAAAAGCCTCATAAGGAGCAAA
INSP179EC	AGGGAAACCCGCCTTCCTCCCATTCATCTGCATCGCATGAAAAGCCTCATAAGGAGCAAA
179EC-SV1 INSP179EC	GCAGAGAGGCCCCAGGGAGGAAGGCACACGGGCATTTCTACTCTGGGGAAGAAGGCAAAGGCAGAGAGGGCCCCAGGGAGGAAGGCACACGGGCATTTCTACTCTGGGGAAGAAGGCAAAG
179EC-SV1	GCCGGCTCTGGTCTCAGGAAGAAGCAGAGACGGCTGCCAAGGAGTGTTAGAAGCACCCGC
INSP179EC	GCCGGCTCTGGTCTCAGGAAGAAGCAGAGACGGCTGCCAAGGAGTGTTAGAAGCACCCGC
179EC-SV1	GATGTGCAG
INSP179EC	GATGTGCAG

Figure 9: Alignment of predicted INSP179 and the cloned INSP179-EC and INSP179-EC-SV1 polypeptide sequences

INSP179-EC_PREDICTION INSP179-EC_CLONED INSP179-EC-SV1_CLONED	MKNLYFRVITIVIGLYFTGIMTNASRKSNILFNSECQWNEYILTNCSFTG MKNLYFRVITIVIGLYFTGIMTNASRKSNILFNSECQWNEYILTNCSFTG MKNLYFRVITIVIGLYFTGIMTNASRKSNILFNSECQWNEYILTNCSFTG ************************************
INSP179-EC_PREDICTION INSP179-EC_CLONED INSP179-EC-SV1_CLONED	KCDIPVDISQTAATVDVSFNFFRVLLQSHTKKEEWKIKHLDLSNNLISKI KCDIPVDISQTAATVDVSFNFFRVLLQSHTKKEEWKIKHLDLSNNLISKI KCDIPVDISQTAATVDVSFNFFRVLLQSHTKKEEWKIKHLDLSNNLISKI ***********************************
INSP179-EC_PREDICTION INSP179-EC_CLONED INSP179-EC-SV1_CLONED	TLSPFAYLHALEVLNLSNNAIHSLSLDLLSPKSSWVKRHRSSFRNRFPLL TLSPFAYLHALEVLNLSNNAIHSLSLDLLSPKSSWVKRHRSSFRNRFPLL TLSPFAYLHALEVLNLSNNAIHSLSLDLLSPKSSWVKRHRSSFRNRFPLL ***********************************
INSP179-EC_PREDICTION INSP179-EC_CLONED INSP179-EC-SV1_CLONED	KVLILQRNKLSDTPKGLWKLKSLQSLDLSFNGILQIGWSDFHNCLQLENL KVLILQRNKLSDTPKGLWKLKSLQSLDLSFNGILQIGWSDFHNCLQLENL KVLILQRNKLSDTPK
INSP179-EC_PREDICTION INSP179-EC_CLONED INSP179-EC-SV1_CLONED	CLKSNKIFKIPPQAFKDLKKLQVIDLSNNALITILPMMIIALEFPHLVVD CLKSNKIFKIPPQAFKDLKKLQVIDLSNNALITILPMMIIALEFPHLVVD
INSP179-EC_PREDICTION INSP179-EC_CLONED INSP179-EC-SV1_CLONED	LADNNWQCDDSVAVFQNFISESWRKKWNVICNRSIGSEEANGGTPQSRIS LADNNWQCDDSVAVFQNFISESWRKKWNVICNRSIGSEEANGGTPQSRISGSEEANGGTPQSRIS ***********************************
INSP179-EC_PREDICTION INSP179-EC_CLONED INSP179-EC-SV1_CLONED	RETRLPPIHLHRMKSLIRSKAERPQGGRHTGISTLGKKAKAGSGLRKKQR RETRLPPIHLHRMKSLIRSKAERPQGGRHTGISTLGKKAKAGSGLRKKQR RETRLPPIHLHRMKSLIRSKAERPQGGRHTGISTLGKKAKAGSGLRKKQR **********************************
INSP179-EC_PREDICTION INSP179-EC_CLONED INSP179-EC-SV1_CLONED	RLPRSVRSTRDVQ RLPRSVRSTRDVQ RLPRSVRSTRDVQ *********

Figure 10: Predicted INSP179 glycosylation sites

NetNGlyc 1.0: predicted N-glycosylation sites in Sequence

(Threshold=0.5)

SeqName	Position	Potential	Score	
Sequence	23 NASR	0.5420	(6/9)	
Sequence	45 NCSF	0.6932	(9/9)	
Sequence	115 NLSN	0.6702	(9/9)	
Sequence	282 NRSI	0.4953	(4/9)	
Sequence	454 NQTP	0.1590	(9/9)	
Sequence	746 NVTA	0.7102	(9/9)	
Sequence	756 NVTF	0.6390	(9/9)	
Sequence	792 NASD	0.6288	(6/9)	

⊠(dual-channel)user-provided log ratio ■percentile ranked and binned value of a spot compared to all other spots within that sample