C++ Advanced - Exam (18 June 2022)

The following tasks should be submitted to the SoftUni Judge system.

Only source code will be accepted as solution for each task.

Sum of Odds

Write a program that reads an **integer number**, used for the dimensions of a matrix, and a sequence of numbers (the elements of the matrix) and prints the sum of all odd numbers on a non-diagonal position.

Example

5

6 9 8 3 7

9 0 3 8 9

1 5 5 4 6

0 4 2 4 5

8 2 7 8 9

The sum is: 51

Input

- On the **first line**, you are given the integer **N number of rows and columns** of the matrix [3...6]
- On the **second line**, you are given a sequence of elements integer **numbers [N*N** numbers1

Output

• Print "The sum is: {sum}".

Example Input and Output

Input	Output	Comments
3 1 3 5 2 4 6 8 9 7	The sum is: 12	Number of rows and columns: 3 The matrix is: 1 3 5 * 3 * 2 4 6 -> 2 * 6 8 9 7 * 9 * If the number is at non-diagonal position and is odd, add to the sum. sum = 3 + 9 = 12
4	The sum is: 85	
4 65 32 6 1 8 9 0 5 16 15 1 6 13 16		

133	

