Message Passing and Node Classification

Outline

- Main question today: Given a network with labels on some nodes, how do we assign labels to all other nodes in the network?
- Example: In a network, some nodes are fraudsters and some other nodes are fully trusted. How do you find the other fraudsters and trustworthy nodes?
- We already discussed node embeddings as a method to solve this

Example: Node Classification

- Given labels of some nodes
- Let's predict labels of unlabeled nodes
- This is called semi-supervised node classification

Outline

- Today we will discuss some intuitions behind the framework: message passing
- Intuition: Correlations exist in networks.
 - In other words: Similar nodes are connected
 - Key concept is collective classification: Idea of assigning labels to all nodes in a network together
- We will look at some techniques today:
 - Relational classification
 - Iterative classification

Correlations in Networks

- Individual behaviors are correlated in the network
- Correlation: nearby nodes have the same color (belonging to the same class)

Correlations in Networks

Main types of dependencies that lead to correlation:

Homophily

- Homophily: The tendency of individuals to associate and bond with similar others
 - "Birds of a feather flock together"
 - It has been observed in a vast array of network studies, based on a variety of attributes (e.g., age, gender, organizational role, etc.)
 - Example: Researchers who focus on the same research area are more likely to establish a connection (meeting at conferences, interacting in academic talks, etc.)

Homophily

Homophily: Example

Example of homophily

- Online social network
 - Nodes = people
 - Edges = friendship
 - Node color = interests (sports, arts, etc.)
- People with the same interest are more closely connected due to homophily

(Easley and Kleinberg, 2010)

Influence

- Influence: Social connections can influence the individual characteristics of a person.
 - Example: I recommend my musical preferences to my friends, until one of them grows to like my same favorite genres!

Influence

Classification with Networks

How do we leverage this correlation observed in networks to help predict node labels?

How do we predict the labels for the nodes in grey?

Motivation

- Similar nodes are typically close together or directly connected in the network:
 - Guilt-by-association: If I am connected to a node with label X, then I am likely to have label X as well.
 - Example: Malicious/benign web page:
 Malicious web pages link to one another to increase visibility, look credible, and rank higher in search engines

Motivation

- Classification label of a node v in network may depend on:
 - Features of v
 - Labels of the nodes in v's neighborhood
 - Features of the nodes in v's neighborhood

Semi-supervised Learning

Formal setting Given:

- Graph
- Few labelled nodes

Find: class (red/green) of remaining nodes

Main assumption:

There is homophily in the network

Semi-supervised Learning

Example task:

- Let A be a $n \times n$ adjacency matrix over n nodes
- Let $Y = \{0, 1\}^n$ be a vector of labels:
 - $Y_v = 1$ belongs to Class 1
 - $\mathbf{Y}_{v} = \mathbf{0}$ belongs to Class $\mathbf{0}$
 - There are unlabeled node needs to be classified
- Goal: Predict which unlabeled nodes are likely
 Class 1, and which are likely Class 0

Collective Classification

Many applications:

- Document classification
- Part of speech tagging
- Link prediction
- Optical character recognition
- Image/3D data segmentation
- Entity resolution in sensor networks
- Spam and fraud detection

Collective Classification

- Intuition: Simultaneous classification of interlinked nodes using correlations
- Probabilistic framework
- Markov Assumption: the label Y_v of one node v depends on the labels of its neighbors N_v

$$P(Y_v) = P(Y_v | N_v)$$

Collective classification involves 3 steps:

Local Classifier

Assign initial labels

Relational Classifier

Capture correlations between nodes

Collective Inference

Propagate correlations through network

Collective Classification

Local Classifier

 Assign initial labels

Relational Classifier

Capture correlations between nodes

Collective Inference

Propagate correlations through network

Local Classifier: Used for initial label assignment

- Predicts label based on node attributes/features
- Standard classification task
- Does not use network information

Relational Classifier: Capture correlations

- Learns a classifier to label one node based on the labels and/or attributes of its neighbors
- This is where network information is used

Collective Inference: Propagate the correlation

- Apply relational classifier to each node iteratively
- Iterate until the inconsistency between neighboring labels is minimized
- Network structure affects the final prediction

Problem Setting

- How to predict the labels Y_v for the unlabeled nodes v (in grey color)?
- Each node v has a feature vector f_v
- Labels for some nodes are given (1 for green,0 for red)
- **Task:** Find P(Yv) given all features and the network P(Yv) = ?

What next?

- We focus on semi-supervised node classification
- Intuition is based on homophily: Similar nodes are typically close together or directly connected
- Techniques we will introduce:
 - Relational classification
 - Iterative classification

Relation Classification and Iterative Classification

Collective Classification Models

- Relational classifiers
- Iterative classification

Probabilistic Relational Classifier

- Basic idea: Class probability Y_v of node v is a weighted average of class probabilities of its neighbors
- For **labeled nodes** v, initialize label Y_v with ground-truth label $Y_v^{\,*}$
- For unlabeled nodes, initialize $Y_v = 0.5$
- Update all nodes in a random order until convergence or until maximum number of iterations is reached

Probabilistic Relational Classifier

• Update for each node v and label c (e.g. 0 or 1)

$$P(Y_v = c) = \frac{1}{\sum_{(v,u)\in E} A_{v,u}} \sum_{(v,u)\in E} A_{v,u} P(Y_u = c)$$

- If edges have strength/weight information, $A_{v,u}$ can be the edge weight between v and u
- $P(Y_v = c)$ is the probability of node v having label c

Challenges:

- Convergence is not guaranteed
- Model cannot use node feature information

Initialization

Initialization:

- All labeled nodes with their labels
- All unlabeled nodes 0.5 (belonging to class 1 with probability 0.5) Let $P_{Y_1} = P(Y_1 = 1)$

1st Iteration, Update Node 3

- Update for the 1st Iteration:
 - For node 3, $N_3 = \{1, 2, 4\}$

$$P(Y_3) = (0 + 0 + 0.5)/3 = 0.17$$

1st Iteration, Update Node 4

- Update for the 1st Iteration:
 - For node 4, $N_4 = \{1, 3, 5, 6\}$

After Node 3 is updated

1st Iteration, Update Node 5

- Update for the 1st Iteration:
 - For node 5, $N_5 = \{4, 6, 7, 8\}$

End of 1st Iteration

After Iteration 1
 (a round of updates for all unlabeled nodes)

After 2nd Iteration

After Iteration 2

After 3rd Iteration

After Iteration 3

After 4th Iteration

After Iteration 4

Convergence

- All scores stabilize after 4 iterations. We therefore predict:
 - Nodes 4, 5, 8, 9 belong to class 1 ($P_{Y_v} > 0.5$)
 - Nodes 3 belong to class 0 ($P_{Y_v} < 0.5$)

Collective Classification Models

Relational classifiers

Iterative classification

Iterative Classification

- Relational classifiers do not use node attributes. How can one leverage them?
- Main idea of iterative classification: Classify node v based on its attributes f_v as well as labels z_v of neighbor set N_v

Iterative Classification

- Input: Graph
 - f_v : feature vector for node v
 - Some nodes v are labeled with Y_v
- Task: Predict label of unlabelled nodes
- Approach: Train two classifiers:
- $\phi_1(f_v)$ = Predict node label based on node feature vector f_v
- $\phi_2(f_v, z_v)$ = Predict label based on node feature vector f_v and summary z_v of labels of v's neighbors.

35

Computing Summary z_v

How do we compute the summary z_v of labels of v's neighbors N_v ?

Ideas: z_v = vector captures labels around node v

- Histogram of the number (or fraction) of each label in N_{ν}
- Most common label in N_{ν}
- Number of different labels in N_{ν}

Architecture of Iterative Classifiers

Phase 1: Classify based on node attributes alone

- On a training set, train classifier (e.g., linear classifier, neural networks, ...):
- $\phi_1(f_v)$ to predict Y_v based on f_v
- ϕ_2 (f_v, z_v) to predict Y_v based on f_v and summary z_v of labels of v's neighbors

Phase 2: Iterate till convergence

- On **test set**, set labels Y_v based on the classifier ϕ_1 , compute z_v and predict the labels with ϕ_2
- Repeat for each node v
 - Update z_v based on Y_u for all $u \in N_v$
 - Update Y_v based on the new z_v (ϕ_2)
- Iterate until class labels stabilize or max number of iterations is reached
- Note: Convergence is not guaranteed

Example: Web Page Classification

- Input: Graph of web pages
- Node: Web page
- Edge: Hyper-link between web pages
 - Directed edge: a page points to another page
- Node features: Webpage description
 - For simplicity, we only consider 2 binary features
- Task: Predict the topic of the webpage

Example: Web Page Classification

 Baseline: train a classifier (e.g., linear classifier) to classify pages based on binary node attributes.

Example: Web Page Classification

- Each node maintains vectors \mathbf{z}_{v} of neighborhood labels:
 - I = Incoming neighbor label information vector.
 - O= Outgoing neighbor label information vector.
 - $I_0 = 1$ if at least one of the incoming pages is labelled 0. Similar definitions for I_1 , O_0 , and O_1

- On training labels, train two classifiers:
 - Node attribute vector only: $\phi_1(f_v)$
 - Node attribute and link vectors z_v : $\phi_2(f_v, z_v)$

1. Train classifiers

- 2. Apply classifier to unlab. set
- 3. Iterate
 - 4. Update relational features z_v
 - 5. Update label Y_v

- On the unlabeled set:
 - Use trained node feature vector classifier ϕ_1 to set Y_v

- 1. Train classifiers
- Apply classifier to unlab. set
- 3. Iterate
 - 4. Update relational features z_v
 - 5. Update label Y_v

• Update z_v for all nodes:

- 1. Train classifiers
- 2. Apply classifier to unlab. set
- 3. Iterate
 - 4. Update relational features 🚁
 - 5. Update label Y_v

• Re-classify all nodes with ϕ_2 :

- 1. Train classifiers
- 2. Apply classifier to unlab. set
- 3. Iterate
 - 4. Update relational features z_v

5. Update label $Y_{\!\scriptscriptstyle D}$

Iterative Classifier - Iterate

- Continue until convergence
 - Update z_v based on Y_v
 - Update $Y_v = \phi_2(f_v, z_v)$

- 1. Train classifiers
- 2. Apply classifier to unlab. set
- 3. Iterate
 - 4. Update relational features z_v
 - 5. Update label Y_v

Iterative Classifier – Prediction

Stop iteration

 After convergence or when maximum iterations are reached

Summary

We talked about 2 approaches to collective classification

Relational classification

 Iteratively update probabilities of node belonging to a label class based on its neighbors

Iterative classification

- Improve over collective classification to handle attribute/feature information
- Classify node i based on its features as well as labels of neighbors