Name:- Kirti Vichare

Roll No:-1233

Acute Heart Disease Case Study

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from google.colab import drive
drive.mount('/content/drive');
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.

←

dataset = pd.read_csv('/content/Heart.csv')

dataset.head()

	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	
0	63	1	typical	145	233	1	2	150	0	2.3	3	
1	67	1	asymptomatic	160	286	0	2	108	1	1.5	2	
2	67	1	asymptomatic	120	229	0	2	129	1	2.6	2	
3	37	1	nonanginal	130	250	0	0	187	0	3.5	3	
4	41	0	nontypical	130	204	0	2	172	0	1.4	1	
4											•	

```
# display columns of dataset
df=dataset
```

df.columns

dataset.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
```

#	Column	Non-	-Null Count	Dtype
0	Age	303	non-null	int64
1	Sex	303	non-null	int64
2	ChestPain	303	non-null	object
3	RestBP	303	non-null	int64
4	Chol	303	non-null	int64
5	Fbs	303	non-null	int64
6	RestECG	303	non-null	int64
7	MaxHR	303	non-null	int64
8	ExAng	303	non-null	int64
9	Oldpeak	303	non-null	float64
10	Slope	303	non-null	int64
11	Ca	299	non-null	float64
12	Thal	301	non-null	object
13	AHD	303	non-null	object
	63	\		

dtypes: float64(2), int64(9), object(3)

memory usage: 33.3+ KB

df.isnull().sum()

Age	0
Sex	0
ChestPain	0
RestBP	0
Chol	0
Fbs	0
RestECG	0
MaxHR	0
ExAng	0
Oldpeak	0
Slope	0
Ca	4
Thal	2
AHD	0
dtype: int64	

#description detalis of object type column
df.describe(include='0')

	ChestPain	Thal	AHD	
count	303	301	303	
unique	4	3	2	
top	asymptomatic	normal	No	
freq	144	166	164	

#description details of numeric type column
df.describe(exclude='0')

	Age	Sex	RestBP	Chol	Fbs	RestECG	Max
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.0000
mean	54.438944	0.679868	131.689769	246.693069	0.148515	0.990099	149.6072
std	9.038662	0.467299	17.599748	51.776918	0.356198	0.994971	22.8750
min	29.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.0000
25%	48.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.5000
50%	56.000000	1.000000	130.000000	241.000000	0.000000	1.000000	153.0000
75%	61.000000	1.000000	140.000000	275.000000	0.000000	2.000000	166.0000
max	77.000000	1.000000	200.000000	564.000000	1.000000	2.000000	202.0000

#display row and column of dataset
df.shape

```
(303, 14)
```

```
print("number of rows in dataset:",df.shape[0])
```

number of rows in dataset: 303

Feature Engineering

```
df.Thal.unique()
         array(['fixed', 'normal', 'reversable', nan], dtype=object)

df.Thal.value_counts()
         normal 166
```

fixed 18 Name: Thal, dtype: int64

117

replacing null value with mode of column (higest ouccerence)

```
df.Thal.value_counts()[0]
```

reversable

166

```
df.Thal.value_counts().index[0]
```

'normal'

df.Ca.value_counts()

180

65

38

20 Name: Ca, dtype: int64

print(df.ChestPain.unique())

['fixed' 'normal' 'reversable']

print(df.Thal.unique()) print(df.AHD.unique())

['No' 'Yes']

0.0

1.0

2.0

3.0

```
Copy of AHD.ipynb - Colaboratory
df.Thal=df.Thal.fillna(df.Thal.value_counts().index[0])
df.Thal.value_counts()
     normal
                   168
     reversable
                   117
     fixed
                    18
     Name: Thal, dtype: int64
df.Thal.isnull().sum()
     0
df.Ca.unique()
     array([ 0., 3., 2., 1., nan])
df.Ca.value_counts()
     0.0
           176
     1.0
             65
     2.0
             38
     3.0
             20
     Name: Ca, dtype: int64
Replace the null values with mode of the column
df.Ca=df.Ca.fillna(0.0)
df.Ca.value_counts()
     0.0
            180
     1.0
           65
             38
     2.0
     3.0
             20
     Name: Ca, dtype: int64
df.Ca=df.Ca.fillna(df.Ca.value_counts().index[0])
```

['typical' 'asymptomatic' 'nonanginal' 'nontypical']

```
df_encoding = pd.get_dummies(df[['ChestPain','Thal','AHD']])
df_final=pd.concat([df,df_encoding],1)
df_final = df_final.drop(['ChestPain','Thal','AHD'],axis = 1)
df_final
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: FutureWarning: In a

	Age	Sex	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Ca	ChestPa
0	63	1	145	233	1	2	150	0	2.3	3	0.0	
1	67	1	160	286	0	2	108	1	1.5	2	3.0	
2	67	1	120	229	0	2	129	1	2.6	2	2.0	
3	37	1	130	250	0	0	187	0	3.5	3	0.0	
4	41	0	130	204	0	2	172	0	1.4	1	0.0	
298	45	1	110	264	0	0	132	0	1.2	2	0.0	
299	68	1	144	193	1	0	141	0	3.4	2	2.0	
300	57	1	130	131	0	0	115	1	1.2	2	1.0	
301	57	0	130	236	0	2	174	0	0.0	2	1.0	
302	38	1	138	175	0	0	173	0	0.0	1	0.0	

303 rows × 20 columns

df_final.isnull().sum()

Age	0
Sex	0
RestBP	0
Chol	0
Fbs	0
RestECG	0
MaxHR	0
ExAng	0
Oldpeak	0
Slope	0
Ca	0
ChestPain_asymptomatic	0
ChestPain_nonanginal	0
ChestPain_nontypical	0
ChestPain_typical	0
Thal_fixed	0
Thal_normal	0
Thal_reversable	0
AHD_No	0

```
AHD_Yes 0 dtype: int64
```

df_final.Sex.value_counts()

206
 97

Name: Sex, dtype: int64

df_final.Sex.value_counts().plot(kind='bar',color=['cyan','black'])

plt.show()

df_final.columns

ct=pd.crosstab(df_final.AHD_Yes,df_final.Sex)
ct

Sex	0	1	1
AHD_Yes			
0	72	92	
1	25	114	

```
ct.plot(kind='bar',color=['magenta','blue'])
plt.xlabel("AHD Yes(0 : Female)(1 : Male)")
plt.ylabel("counts")
plt.show()
```


df_final.AHD_Yes.value_counts()

0 1641 139

Name: AHD_Yes, dtype: int64

#df_final.AHD_Yes.value_counts().plot(kind='bar',color=['magenta','blue'])
plt.bar(df_final.AHD_Yes.unique(),df_final.AHD_Yes.value_counts(),color=['r','b'])
plt.show()

df_final.Sex[df_final.AHD_Yes==1].value_counts().plot(kind='bar',color=['b','r'])
plt.xlabel("Sex (0:Female)(1:Male)")
plt.ylabel("Counts")
plt.show()

	Age	Sex	RestBP	Chol	Fbs	RestECG
Age	1.000000	-0.097542	0.284946	0.208950	0.118530	0.148868
Sex	-0.097542	1.000000	-0.064456	-0.199915	0.047862	0.021647
RestBP	0.284946	-0.064456	1.000000	0.130120	0.175340	0.146560
Chol	0.208950	-0.199915	0.130120	1.000000	0.009841	0.171043
Fbs	0.118530	0.047862	0.175340	0.009841	1.000000	0.069564
RestECG	0.148868	0.021647	0.146560	0.171043	0.069564	1.000000
MaxHR	-0.393806	-0.048663	-0.045351	-0.003432	-0.007854	-0.083389
ExAng	0.091661	0.146201	0.064762	0.061310	0.025665	0.084867
Oldpeak	0.203805	0.102173	0.189171	0.046564	0.005747	0.114133
Slope	0.161770	0.037533	0.117382	-0.004062	0.059894	0.133946
Са	0.365323	0.086048	0.097528	0.123726	0.140764	0.131749
ChestPain_asymptomatic	0.135337	0.086398	0.027710	0.070343	-0.062929	0.122589
ChestPain_nonanginal	-0.051714	-0.117189	-0.050127	-0.033223	0.087027	-0.089526
ChestPain_nontypical	-0.151684	-0.037990	-0.083234	-0.016453	-0.060649	-0.102979
ChestPain_typical	0.045438	0.089828	0.149737	-0.053021	0.055511	0.065581
Thal_fixed	0.062042	0.142524	0.075157	-0.095743	0.091351	0.044672
Thal_normal	-0.132264	-0.387396	-0.139782	-0.006479	-0.073766	-0.028989
Thal_reversable	0.104902	0.326284	0.106210	0.053100	0.030953	0.007905
AHD_No	-0.223120	-0.276816	-0.150825	-0.085164	-0.025264	-0.169202
AHD_Yes	0.223120	0.276816	0.150825	0.085164	0.025264	0.169202

4

```
import seaborn as sns
```

```
fig,ax=plt.subplots(figsize=(15,10))
sns.heatmap(df_final.corr(), annot=True)
```

plt.show()

df_final = df_final.drop('AHD_No',axis=1)
df_final.head()

Age	Sex	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Ca	ChestPair
63	1	145	233	1	2	150	0	2.3	3	0.0	
67	1	160	286	0	2	108	1	1.5	2	3.0	
67	1	120	229	0	2	129	1	2.6	2	2.0	
37	1	130	250	0	0	187	0	3.5	3	0.0	
41	0	130	204	0	2	172	0	1.4	1	0.0	
	63 67 67 37	63 1 67 1 67 1 37 1	63 1 145 67 1 160 67 1 120 37 1 130	63 1 145 233 67 1 160 286 67 1 120 229 37 1 130 250	63 1 145 233 1 67 1 160 286 0 67 1 120 229 0 37 1 130 250 0	63 1 145 233 1 2 67 1 160 286 0 2 67 1 120 229 0 2 37 1 130 250 0 0	63 1 145 233 1 2 150 67 1 160 286 0 2 108 67 1 120 229 0 2 129 37 1 130 250 0 0 187	63 1 145 233 1 2 150 0 67 1 160 286 0 2 108 1 67 1 120 229 0 2 129 1 37 1 130 250 0 0 187 0	63 1 145 233 1 2 150 0 2.3 67 1 160 286 0 2 108 1 1.5 67 1 120 229 0 2 129 1 2.6 37 1 130 250 0 0 187 0 3.5	63 1 145 233 1 2 150 0 2.3 3 67 1 160 286 0 2 108 1 1.5 2 67 1 120 229 0 2 129 1 2.6 2 37 1 130 250 0 0 187 0 3.5 3	67 1 160 286 0 2 108 1 1.5 2 3.0 67 1 120 229 0 2 129 1 2.6 2 2.0 37 1 130 250 0 0 187 0 3.5 3 0.0


```
df_final.columns
```

Applying preprocessing-MinMaxScalar

	Age	Sex	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	
0	0.708333	1.0	0.481132	0.244292	1.0	1.0	0.603053	0.0	0.370968	1.0	
1	0.791667	1.0	0.622642	0.365297	0.0	1.0	0.282443	1.0	0.241935	0.5	
2	0.791667	1.0	0.245283	0.235160	0.0	1.0	0.442748	1.0	0.419355	0.5	
3	0.166667	1.0	0.339623	0.283105	0.0	0.0	0.885496	0.0	0.564516	1.0	
4	0.250000	0.0	0.339623	0.178082	0.0	1.0	0.770992	0.0	0.225806	0.0	


```
X=df_final.drop('AHD_Yes',axis=1)
y=df_final.AHD_Yes
```

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=1)
```

Model

RandomForestClassifier

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import r2_score,accuracy_score
```

```
rft=RandomForestClassifier()
rft.fit(X train,y train)
y_pred_rft=rft.predict(X_test)
print("R2 Score for predicted value: ", r2_score(y_test,y_pred_rft))
print("Accuracy Score of RFT: ", accuracy_score(y_test,y_pred_rft))
     R2 Score for predicted value: 0.13616557734204793
     Accuracy Score of RFT: 0.7868852459016393
from·sklearn.metrics·import·confusion_matrix,accuracy_score,classification_report
cm=confusion_matrix(y_test,y_pred_rft)
print('Confusion · Matrix' · )
print(cm)
print("Accuracy Score: .", .accuracy_score(y_test, y_pred_rft))
print('_'*20,'Classification.Report','-'*20)
print(classification_report(y_test,y_pred_rft))
     Confusion Matrix
     [[27 7]
     [ 6 21]]
     Accuracy Score: 0.7868852459016393
```

•	Classification Report										
		precision recall f1-score support									
	0	0.82	0.79	0.81	34						
	1	0.75	0.78	0.76	27						
accura	асу			0.79	61						
macro a	_	0.78 0.79	0.79 0.79	0.78 0.79	61 61						

AdaBoosting

```
from sklearn.ensemble import AdaBoostClassifier
adb=AdaBoostClassifier()
adb.fit(X_train,y_train)
y_pred_adb=adb.predict(X_test)

print("R2 Score for predicted value: ", r2_score(y_test,y_pred_adb))
print("Accuracy Score of KNN: ", accuracy_score(y_test,y_pred_adb))

R2 Score for predicted value: 0.20261437908496727
    Accuracy Score of KNN: 0.8032786885245902
```

Gradient Boosting

from sklearn.ensemble import GradientBoostingClassifier

```
gdb= GradientBoostingClassifier()
gdb.fit(X_train,y_train)
y_pred_gdb=gdb.predict(X_test)

print("R2 Score for predicted value: ", r2_score(y_test,y_pred_gdb))
print("Accuracy Score of KNN: ", accuracy_score(y_test,y_pred_gdb))

R2 Score for predicted value: 0.0032679738562091387
    Accuracy Score of KNN: 0.7540983606557377
```

XGBClassifier

weighted avg

```
from xgboost import XGBClassifier
from sklearn.metrics import r2_score,accuracy_score
xgb= XGBClassifier()
xgb.fit(X_train,y_train)
y pred xgb=xgb.predict(X test)
print("R2 Score for predicted value: ", r2_score(y_test,y_pred_xgb))
print("Accuracy Score of XGB: ", accuracy_score(y_test,y_pred_xgb))
     R2 Score for predicted value: 0.13616557734204793
    Accuracy Score of XGB: 0.7868852459016393
from sklearn.metrics import confusion matrix, accuracy score, classification report
cm=confusion_matrix(y_test,y_pred_xgb)
print('Confusion Matrix' )
print(cm)
print("Accuracy Score: ", accuracy_score(y_test,y_pred_xgb))
print('_'*20,'Classification Report','-'*20)
print(classification report(y test,y pred xgb))
    Confusion Matrix
     [[27 7]
     [ 6 21]]
    Accuracy Score: 0.7868852459016393
                      Classification Report -----
                  precision recall f1-score support
                                0.79
               0
                       0.82
                                           0.81
                                                       34
                       0.75
                                 0.78
                                           0.76
                                                       27
                                           0.79
                                                       61
        accuracy
                     0.78
                               0.79
                                           0.78
       macro avg
```

0.79

0.79

61

0.79

✓ 0s completed at 3:58 PM

×