NANYANG TECHNOLOGICAL UNIVERSITY

SPECIAL TERM I EXAMINATION 2016-2017 MH1812 (P/T) - Discrete Mathematics

June 2017 TIME ALLOWED: 2 HOURS

INSTRUCTIONS TO CANDIDATES

- This examination paper contains FOUR (4) questions and comprises FOUR
 printed pages.
- 2. Answer **ALL** questions. The marks for each question are indicated at the beginning of each question.
- 3. Answer each question beginning on a FRESH page of the answer book.
- 4. This IS NOT an OPEN BOOK exam.
- 5. Candidates may use calculators. However, they should write down systematically the steps in the workings.

MH1812 (P/T)

QUESTION 1. (20 marks)

(a) Recall the definition of Euclidean division, show that the choice of quotient-remainder pair is unique. That is, given an integer m and a positive integer n, let (q_1, r_1) and (q_2, r_2) both be quotient-remainder pairs when dividing m with n, then we must have $q_1 = q_2$ and $r_1 = r_2$.

(b) Show that there is NO largest prime number. That is, given any prime number n, there is always a prime number greater than n. (Hint: Consider M = n! + 1. If M itself is prime, that is it. If M is not prime, there must be a prime factor p of M. Show that p > n.)

QUESTION 2. (25 marks)

(a) Copy the following truth table to your answer book and complete it.

p	q	r	$q \rightarrow r$	$p \land (\neg(q \to r))$	$r \vee \neg p$
\overline{T}	T	${ m T}$			
$\overline{\mathrm{T}}$	Т	F			
\overline{T}	F	T			:
\overline{T}	F	F			
F	Т	Т			
$\overline{\mathbf{F}}$	Т	F			
F	F	T			
\overline{F}	F	F			

- (b) Identify one row in the above truth table, which can be used as a counter-example for the FALSE equality $p \wedge (\neg(q \to r)) \equiv \neg(p \to r)$.
- (c) Using the method of mathematical induction, show that

$$\sum_{k=0}^{n} k(k+1) = \frac{1}{3}n(n+1)(n+2),$$

for every non-negative integer n.

MH1812 (P/T)

QUESTION 3.

(28 marks)

- (a) Let Q be a general set and P(Q) be its power set. Suppose R and S are two relations on P(Q), which are defined as $ARB \leftrightarrow A \subseteq B$ and $ASB \leftrightarrow A \cap B = \phi$.
 - (i) Is R a partial order? Justify your answer.
 - (ii) Show that S is symmetric but NOT an equivalence relation.
- (b) Let Z_6 and Z_7 denote the sets of integers modulo 6 and 7, respectively. Define two functions f_1 : $Z_6 \to Z_6$ and f_2 : $Z_7 \to Z_7$, as $f_1(x) = (2x+1) \mod 6$ and $f_2(x) = (5x+1) \mod 7$.
 - (i) Show that f_1 is NOT injective.
 - (ii) Show that f_2 is invertible.

MH1812 (P/T)

QUESTION 4. (27 marks)

For this question, intermediate workings will **NOT** be graded. You only need to present the final answer to each subquestion.

- (a) Consider the equation $x_1 + x_2 + ... + x_r = n$, where $n, r, x_1, x_2, ..., x_r$ are all positive and non-zero integers with n > r. Since we have more unknowns than equations, there are supposed to be more than one solutions.
 - (i) How many solutions are there when n=3 and r=2?
 - (ii) How many solutions are there when n = 5 and r = 3?
 - (iii) How many solutions are there when n = 7 and r = 5?
 - (iv) MULTIPLE CHOICE. How many solutions are there for general values of n and r?

A.
$$C(n-1,r-1)$$
. B. $C(n-1,r)$. C. $C(n,r-1)$. D. $C(n,r)$.

- (b) A standard deck of 52 different poker cards consists of 4 suits (spade, heart, diamond, club) with 13 distinct cards of each suit. We randomly draw 5 cards from the deck, and let Ω denote the sample space of this random experiment. Let A denote the event that the 5 chosen cards are of a same suit.
 - (i) Calculate $|\Omega|$.
 - (ii) Calculate |A|.
 - (iii) Calculate the probability of event A. Leave your answer to 4 decimal places.
- (c) Consider the complex number

$$z = \frac{7 - 5i}{1 - i}.$$

- (i) Find the exponential form of z. Leave the value of argument of z in terms of the tan^{-1} function.
- (ii) Find the rectangular form of \bar{z} , the conjugate of z.

END OF PAPER

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

MH1812 DISCRETE MATHEMATICS

Please read the following instructions carefully:

- 1. Please do not turn over the question paper until you are told to do so. Disciplinary action may be taken against you if you do so.
- 2. You are not allowed to leave the examination hall unless accompanied by an invigilator. You may raise your hand if you need to communicate with the invigilator.
- 3. Please write your Matriculation Number on the front of the answer book.
- 4. Please indicate clearly in the answer book (at the appropriate place) if you are continuing the answer to a question elsewhere in the book.