OI: pesquisa, desenvolvimento e patentes

Aula 4 – 1ª Parte

Baseado nos slides de Paul Belleflamme e Martin Peitz

Agenda

- Market structure and incentives to innovate
- R&D cooperation and spillovers
- Remedies to the appropriability problem
- Optimal patent design

Definitions

- Process vs. product innovation
 - Process innovation: generation, introduction and diffusion of a new production process (with the products remaining unchanged)
 - Product innovation: generation, introduction and diffusion of a new product (with the production process being unchanged)
- Major vs. minor process innovation
 - Major innovation: allows the innovator to behave as a monopolist without being constrained by price competition in the industry
 - Minor innovation: innovator may gain some cost advantage over its rivals but competition constrains the innovator

Major vs. minor innovation

Major innovation if the monopoly price corresponding to the new cost falls below the cost of the non-innovating firms.

Market structure and incentives to innovate

- Schumpeter (Capitalism, Socialism, and Democracy, 1943)
 - Stresses link between market structure and R&D
 - Necessity of tolerating the creation of monopolies as a way to encourage the innovation process
 - Economic rationale behind protection of IP
 - R&D efforts are more likely to be undertaken by large firms
 - Large firms have a larger capacity to undertake R&D
 - → deal better with market failures on innovating without IP
- Do large firms have larger incentives to R&D?
 - Profit incentive to innovate: which market structure, monopoly, oligopoly or perfect competition, provides firms with the highest incentives to undertake R&D?
 - What about strategic incentives?

Monopoly/perfect competition: replacement effect

- How much is a firm willing to pay for an innovation that it would be the only one to use?
- Model
 - Homogeneous product, constant marginal cost of production
 - − Minor innovation \downarrow cost from c_0 to $c_1 < c_0$
 - Profit incentive: willingness to pay for the innovation measured by the increase in profit that the innovation generates
 - Comparison between
 - Competitive situation (n firms competing à la Bertrand)
 - Monopoly situation
 - Social planner (benchmark)
- Lesson: A competitive firm places a larger value on a minor process innovation than a monopoly does

Replacement effect

Per-period value of the innovation

- for competitive firm: sum of areas 1 and 2
- for monopolist: area 1
- for social planner: sum of areas 1, 2 and 3

Competitive firm willing to pay more than monopolist. Why? Replacement effect

→ prior to the innovation, the monopolist already earns a positive profit, whereas the competitive firm just recoups its costs.

Value for competitive firm < social value Why? Competitive firm fails to appropriate the increase in consumer surplus (area 3).

Incentives to innovate in oligopolies (1)

- Conjecture
 - Oligopolies = intermediate market structure between monopoly and perfect competition ⇒ incentives to innovate in oligopolies are between the low incentives in monopoly and the high incentives in perfect competition
- This conjecture is wrong!
- Intensity of competition depends on
 - Number of firms
 - Degree of product differentiation
 - Type of competition (price or quantity)
- **In general:** these 3 properties affect incentives to innovate in non-monotonic, different, and potentially opposite ways

Incentives to innovate in oligopolies (2)

- Impact of the number of firms
 - Simple linear Cournot model with n firms
 - Profit incentive may follow an inverse U-shape as $n \uparrow$
- In a Cournot industry with a homogeneous product, the market structure that gives the largest profit incentive to innovate is monopoly when the innovation size is not too large; it is oligopoly otherwise and the 'ideal' number of firms in the industry increases with the innovation size
- **Intuition**: 2 opposite effects when $n \uparrow$
 - Competition effect: profits for all firms \downarrow
 - Competitive advantage: cost advantage of innovator
 with n

Information and appropriability (1)

- Activities generating information (knowledge!) suffer from the 3 generic sources of market failure
 - Indivisibilities
 - R&D programmes involve high fixed set up costs, display economies of scale (extensive division of highly specialized labour)
 - Knowledge is inherently discrete
 - Uncertainty: 2 sources of uncertainty for R&D
 - Technological uncertainty → how to make a new product and how to make it work?
 - Market uncertainty → how to sell the new product and make it a commercial success?
 - + moral hazard problems → why does the product fail? inherent scientific difficulty or lack of effort?

Information and appropriability (2)

- 3 generic sources of market failure (cont'd)
 - Public good nature
 - Information is nonrival
 - Consumption by one doesn't prevent (rival) consumption by others
 - At any level of production of information, the marginal cost of delivering it to an extra consumer is zero (!!!)
 - Information is nonexcludable
 - One person cannot exclude another person from consuming information (once acquired!)
 - Excludability depends on the available technology for exclusion and on the institutional (legal) framework
- 3 market failures ⇒ problem of appropriability
 - General presumption: markets provide too little incentive to introduce innovations (!!)

Intellectual property protection (1)

Intellectual property (IP)

- Legal rights resulting from intellectual activity in the industrial, scientific, literary and artistic fields
 - Industrial property branch → inventions, business methods, industrial processes, chemical formulae, unique names
 - Copyright branch → all information products that derive their intrinsic value from creative expression, literary creation, ideas, or presentations

Main objective of IP law

- To promote innovation and aesthetic creativity
- How? By granting exclusive use of the protected knowledge or creative work to the creator

Intellectual property protection (2)

Incentives versus use

- Nonexcludability → hard to appropriate the returns from intellectual activities → underproduction problem
- But exclusivity allows creators to set prices above (zero)
 marginal costs → underutilization problem
- IP law solves (?) the 2 problems sequentially
 - Legal protection makes the good excludable
 - Creators have incentives to produce new knowledge
 - Once protection is over, the good falls in public domain.
 - All users may access the good for free (i.e., at marginal cost).
- IP law strikes a balance between
 - Incentives to create and innovate
 - Use of the results of creation and innovation

Intellectual property protection (3)

	Patent	Copyright
Requirements for protection	Novelty, inventive step, practical use	Originality, authorship, form of expression
Ownership	First to file First to invent	Author/creator
Rights	Bundle of rights extending to the idea: exclusive rights against all commercial uses (make, use, sell the innovation)	Economic and moral rights on the form of expression: exclusive rights against copying (rights of performance, display, reproduction, derivative works)
Scope of protection	Wide	Narrow
Duration	20 years from filing	Life of author + 70 years
Costs of protection	Filing, issue, and maintenance fees; litigation costs	No filing necessary; suit requires registration; litigation costs

Patent licensing (1)

- Patents are transferable rights (through licenses)
- Importance of transferability
 - Ensures that innovations and artistic creations are used by the agents who value them most
 - Additional source of profit to the innovator
- Mode of patent licensing
 - Royalty per unit produced with technology (influences price)
 - Fixed fee (influences the division of profits)
 - Combination of the previous two options

Terms

- Any firm can buy one license?
- Auction a limited number of licenses?

Patent licensing (2)

Social viewpoint

Licenses increase diffusion and use of knowledge

Private viewpoint

- Do licenses increase incentives to innovate?
- Additional source of profits for the innovators
 - Only effect if licensee operates in a totally different market
- Potential negative effect if licensor and licensee are direct competitors
- Net effect depends on
 - Size of innovation
 - Market structure

Licensing by an outside innovator (1)

- Patentee licenses innovation outside his own industry
 - No competition with his potential licensees

Model

- Inverse demand: P(q) = a q
- n firms, with pre-innovation constant marginal cost of c
- Innovation \downarrow cost from c to c-x
- Major if x > a c, minor if x < a c
- Outside innovator decides how to license (fixed-fee vs. royalty) and to whom, to maximize licensing revenues
- 3-stage game
 - 1. Innovator sets a fixed licensing fee or a per unit royalty rate
 - 2. Firms decide simultaneously whether to accept the offer
 - 3. Bertrand or Cournot competition

Licensing by an outside innovator (2)

Bertrand competition

- No point in granting more than one license in case of fixed fee
- Major innovation
 - Value of exclusive license: $\pi^m = (a c + x)^2 / 4$
 - Patentee can capture this value by setting
 - Fixed fee $F = \pi^m$ or
 - Royalty = monopoly margin: r = (a + c x) / 2 (c x) = (a c + x) / 2
- Minor innovation
 - Licensee sets its price just below c and make a profit of $\pi^{mc} = x (a c)$.
 - Patentee can capture this value by setting $F = \pi^{mc}$ or r = x
- Lesson: if an outside innovator licenses his process innovation to an industry competing à la Bertrand, he chooses to grant one license at a fixed fee or to offer several licenses at a royalty rate

Licensing by an outside innovator (3)

Cournot competition

- 3rd stage (duopoly)

$$q_i^*(c_i, c_j) = \frac{1}{3}(a - 2c_i + c_j)$$

$$Q^*(c_i, c_j) = \frac{1}{3}(2a - c_i - c_j)$$

$$\pi_i^*(c_i, c_j) = \frac{1}{9}(a - 2c_i + c_j)^2$$

- 2nd stage Fixed fee
 - Maximum fee to be exclusive licensee (F_1) or one of two licensees (F_2)

$$F_1 = \begin{cases} \pi_i^* (c - x, c) - \pi_i^* (c, c) \text{ (nondrastic innovation),} \\ \pi^m (c - x) - \pi_i^* (c, c) \text{ (drastic innovation),} \end{cases}$$

$$F_2 = \begin{cases} \pi_i^* (c - x, c - x) - \pi_i^* (c, c - x) \text{ (nondrastic innovation),} \\ \pi_i^* (c - x, c - x) - 0 \text{ (drastic innovation).} \end{cases}$$

Licensing by an outside innovator (4)

Cournot competition (cont'd)

1st stage: Fixed fee: optimal to give an exclusive license iff

$$F_1 > 2F_2 \Leftrightarrow x > a - c$$

- 2nd stage: Royalty
 - Let r be the amount of royalty licensees have to pay
 - If licensee, cost becomes c x + r
 - \rightarrow if $r \le x$, both firms choose to license and if r > x, no firm will license
- 1st stage: Royalty
 - Set $r \le x$, so that both firms choose to license
 - Problem: $\max_{r} r^{\frac{2}{3}}(a-c+x-r)$ s.t. $r \le x$
 - FOC:

$$r^* = \frac{1}{2}(a - c + x)$$
with $r^* \le x \Leftrightarrow x \ge a - c$

Total quantity when both firms have cost c - x + r

Licensing by an outside innovator (5)

- Cournot competition (cont'd)
 - 1st stage Royalty
 - Major innovations
 - Optimal royalty is r^*
 - Licensing revenues: $R_d = \frac{1}{6}(a-c+x)^2$
 - Minor innovations
 - Optimal royalty is x
 - Licensing revenues: $R_n = \frac{2}{3}x(a-c)$
 - Fixed fee vs. royalty
 - Major innovations: fixed fee dominates if and only if

$$F_1 > R_d \Leftrightarrow \frac{1}{4}(a-c+x)^2 - \frac{1}{9}(a-c)^2 > \frac{1}{6}(a-c+x)^2$$
 OK

Minor innovations: fixed fee dominates if and only if

$$2F_2 > R_n \Leftrightarrow \frac{8}{9}x(a-c) > \frac{2}{3}x(a-c)$$
 OK

Licensing by an outside innovator (6)

 Lesson: If an outside innovator licenses his process innovation to an industry competing à la Cournot, he always prefers fixed-fee licensing to royalty licensing. He licenses drastic innovations to only one firm and nondrastic innovations to more than one firm

Intuition

- Fixed-fee → licensing firm(s) become more efficient → innovator can exploit this efficiency gain by reaping a licensing revenue via fixed fee → This total revenue is always larger than that obtainable under royalty licensing when the firms are equally efficient
- But, in reality, the 2 forms of licensing are equally prevalent
- 2 ways to reconcile theory and facts
 - Stage 1: patentee also decides how many licensees he will accept
 - Licensees have asymmetric costs

Licensing by an inside innovator (1)

Major innovations

- Cournot and Bertrand competition \rightarrow no incentive to license
 - No license: innovator becomes **monopolist**
 - License: duopoly at lower cost; innovator can reap total duopoly profit, but this is smaller than monopoly profit

Minor innovations

- Bertrand competition → no gain from licensing
 - Same setting as above
 - No license: $p = c \varepsilon \rightarrow \text{margin of } (x \varepsilon)$ on each unit sold
 - Any license: only sensible royalty rate is $r = x \varepsilon$
 - quantity sold doesn't change
 - Innovator secures a margin of $(x \varepsilon)$ on the units she sells
 - Innovator collects a royalty of $r = x \varepsilon$ on the units sold by the licensees.

Licensing by an inside innovator (2)

- Minor innovations (cont'd)
 - Cournot competition
 - Royalty licensing is now the preferred option
 - Innovator can secure licensing revenues without damaging his competitive advantage
 - 3-stage game
 - Incumbent innovator selects royalty rate r
 → it selects r < x
 - Other firms decide whether or not to become licensees
 → they all buy a license because this ↓ marginal cost from c to c x + r
 - Cournot competition among all firms → i.e. 1 firm with cost c - x and n - 1 firms with cost c - x + r

Licensing by an inside innovator (3)

- Minor innovations (cont'd)
 - Cournot competition → analysis
 - Equilibrium quantity and profit for typical firm k

$$q_k^* = \frac{1}{n+1} \left(a - nc_k + \sum_{j \neq k} c_j \right) \pi_k^* = \left(q_k^* \right)^2$$

Apply to innovator and licensees

$$q_{inn}^* = \frac{a - c + x + r(n-1)}{n+1}$$
 and $q_{lic}^* = \frac{a - c + x - 2r}{n+1}$

• Innovator's profit

$$\pi_{inn} = (q_{inn}^*)^2 + r(n-1)q_{lic}^*$$

Licensing by an inside innovator (4)

- Minor innovations (cont'd)
 - Cournot competition → analysis
 - Optimal royalty rate

$$\frac{\partial \pi_{inn}}{\partial r} = \frac{(n-1)(n+3)}{(n+1)^2} (a-c+x-2r) > 0 \Longrightarrow r^* = x$$

• Equilibrium innovator's profit

$$\pi_{inn}^* = \frac{(a-c)^2 + (2n+n^2-1)(a-c)x + x^2}{(n+1)^2}$$

Innovator's gain from licensing

$$\pi_{inn}^* - \pi_{inn}^{\text{no license}} = \frac{(n-1)(a-c-x)x}{n+1} > 0$$

- Society also gains from licensing
 - Consumers and rivals are as well off but innovator is strictly better off.

Licensing by an inside innovator (5)

- Lesson: In the case of quantity competition on the product market, it is always profitable for an incumbent innovator to license a minor costreducing innovation to its industry rivals
 - Licensing also benefits society
- Intuition
 - Same competitive situation if license or not
 - Marginal costs: c x for innovator, c for rivals
 - → same (direct) profit for innovator in both situations
 - If licensing, innovator also collects royalties
 - → higher total profit

Innovation affecting market structure

- What if ideas are common knowledge?
 - Several firms have the simultaneous opportunity to achieve competing innovations
 - Innovation becomes a competitive tool in itself
 - How does it affect market structure?
- Possible outcomes
 - Incentive to innovate for monopoly threatened by entry
 - → does monopoly persist because of innovation?
 - Low-risk innovation: challenging entrant possible
 - Uncertain innovation: asymmetric patent races
 - Dynamic R&D competition between symmetric firms

Asymmetric patent race model (1)

- Incumbent and entrant can both acquire innovation (which \downarrow marginal cost from c_0 to $c_1 < c_0$)
- Entrant can enter profitably only with innovation
- Objective of R&D: be the 1st to come up with an innovation → patent race
- Firms decide about
 - Intensity of R&D investments
 - Timing of of R&D investments
- Combined influence of
 - Replacement effect: monopoly power = disincentive to R&D for incumbent
 - Efficiency effect: threat of entry = incentive to R&D for incumbent

Asymmetric patent race model (2)

- Lesson: in a patent race, it is in general ambiguous whether the incumbent or the entrant has a stronger incentive to invest
- Intuition: outcome depends on balance between
 - Efficiency effect → higher incentives for incumbent
 - Net flow profit incumbent receives by preempting the entrant is larger than what the entrant gains by being first.
 - Replacement effect → lower incentives for incumbent
 - Marginal productivity of R&D expenditure for the incumbent ↓with its initial profits (by investing more, incumbent moves discovery date forward and hastens its own replacement).

R&D cooperation and spillovers

Innovative environment

- Ideas are common knowledge (e.g., automobile industry) (!!)
- R&D investments result immediately and for sure into an innovation (no tournament, no uncertainty) (!!!!)
- R&D investments are a form of strategic commitment
- R&D leads to spillovers which benefit other firms
- Firms may cooperate on R&D decisions to internalize spillovers

Issues

- Do firms invest more or less when they recognize the strategic nature of their R&D decisions?
- Should firms be allowed to coordinate their decisions at the R&D stage?
- Is it worthwhile modelling R&D as an certain process?

Effects of R&D cooperation

- R&D activities with spillovers create 2 externalities:
 - R&D affects overall industry profits
 - This externality increases with the level of spillovers
 - Ignored when firms choose R&D separately
 - Internalized when firms choose R&D cooperatively
 - R&D affects a firm's competitive advantage w.r.t. its rival
 - This externality reduces with the level of spillovers
 - Present when firms choose R&D separately
 - Internalized when firms choose R&D cooperatively
- Lesson: when firms behave strategically, R&D
 cooperation leads to more (less) R&D when spillovers are
 large (small)

Referências

- BELLEFLAMME, P.; PEITZ, M. Industrial Organization: Markets and Strategies, 2 ed. Cambridge (UK): Cambridge University, 2015.
- TIROLE, J. The Theory of Industrial
 Organization. Cambridge (MA): MIT, 1988.