FOUNDATIONS OF HIGHER MATHEMATICS HOMEWORK 1

Group Work

1. Find the power set of $A = \{1, 2, 3, 4\}$

$$\mathcal{P}(A) = \{\{\varnothing\}, \{1\}, \{2\}, \{3\}, \{4\}, \\ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \\ \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \\ \{1, 2, 3, 4\}\}$$

2. What is the cardinality of $\mathcal{P}(A)$?

$$|\mathcal{P}(A)| = 16$$

- 3. No, there is not a set with 12 subsets. As seen above, a set with 4 elements has 16 subsets. A set with 3 elements has 8 elements. We need a set less than 4 elements and more than 3, which clearly makes a set with 12 subsets impossible.
- 4. If A and B are sets and $A \subseteq B$ then $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
 - a) Proof 1: is **not correct**, because if we let $x \in \mathcal{P}(A)$ then $x \notin A$. Correction: $x \subseteq A$
 - b) Proof 2: is **not correct**, because we only proved the case where $A = \{1, 2\}$ and $B = \{1, 2, 3\}$.
 - c) *Proof 3:* is **not correct**, because it only shows a specific example for the power set. This only shows single elements in the power set, not all of the other possibilities.
- 5. Modified Proof 1. Let $x \in P(A)$. Then $x \subseteq A$. Since $A \subseteq B$, $x \subseteq B$. Therefore $x \in \mathcal{P}(A)$, so $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Problem 1

Proposition 2.1. If A is a set that has no members and B is a set that has no members, then A = B.

Proof. Assume A and B have no members. Then $A = \{\}$ and $B = \{\}$. For all x in A, it is (vacuously) true that it is in B. Thus, $A \subseteq B$. Similarly for B, all elements in B are in A. Hence, $B \subseteq A$. Therefore, A = B.

Problem 10

- a) $\emptyset \in {\emptyset}$ is true.
- b) $\emptyset \subseteq \{\emptyset\}$ is **true**.
- c) $\frac{\pi}{4} \in \{\frac{\pi}{4}\}$ is **true**.
- d) $\emptyset \in \{\frac{\pi}{4}\}$ is **false**.
- e) $\frac{\pi}{4} \in \{\{\frac{\pi}{4}\}\}\$ is **false**.

- f) $\left\{\frac{\pi}{4}\right\} \subseteq \left\{\left\{\frac{\pi}{4}\right\}\right\}$ is **false**.
- g) $\{\frac{\pi}{4}\} \in \{\{\frac{\pi}{4}\}\}\$ is **true**.
- h) $\varnothing \subseteq \{\{\frac{\pi}{4}\}\}\$ is **true**.
- i) $\left\{\frac{\pi}{4}\right\} \subseteq \left\{\frac{\pi}{4}, \left\{\frac{\pi}{2}\right\}\right\}$ is **true**.

9/11/13

Section: 2.1 Problems: 1, 10, 15, 17, 18, 19 & Group Work

Problem 15

- a) $\{x \in \mathbb{R} : x > 3, x^2 < 5, \text{ and } x \neq 4\} = \emptyset$
- d) $\{x \in \mathbb{R} : x > 3 \text{ and } -x < 3\}$ is all real numbers greater than 3.
- b) $\{x \in \mathbb{R} : x > 3 \text{ or } -x > 3\}$ is the set of all real numbers excluding 3.
- c) $\{x \in \mathbb{R} : x > 3 \text{ and } -x > 3\} = \emptyset$, a number cannot be above and below 3 at the same time.
- e) $\{x \in \mathbb{R} : x^2 \neq x\}$ is the set of all real numbers, excluding 1 and 0.

Problem 17

Suppose, A, B, and C are sets. If $A \not\subseteq B$ and $B \not\subseteq C$, then $A \not\subseteq C$.

"Proof 1". Let $x \in A$. Since $A \nsubseteq B$, $x \notin B$. Since $x \notin B$, $x \notin C$. Therefore x is a member of A and x is not a member of C, so $A \nsubseteq C$.

Proof 1 is **incorrect**. The step, Since $x \notin B$, $x \notin C$ is incorrect. If $x \in B$, then we could conclude $x \notin C$.

"Proof 2". Since $B \not\subseteq C$, there exists $x \in B$ such that $x \notin C$. Since $A \not\subseteq B$ there exists $y \in A$ such that $y \notin B$. Therefore, $x \neq y$, and therefore $A \not\subseteq C$.

Proof 2 is **incorrect** about the $x \neq y$, therefore $A \not\subseteq C$ part. $A \not\subseteq C$ does not follow from $x \neq y$.

"Counterexample". Let $A = \{1, 2, 3\}, B = \{1, 2, 4, 5\}, C = \{1, 2, 3, 4\}$

The counterexample is correct. $A \not\subseteq B$ because $3 \in A$ and $3 \notin B$. $B \not\subseteq C$ because $5 \in B$ and $5 \notin C$. The part that shows that the counter example is correct is that, A **is a subset** of C. $1, 2, 3 \in A$ and $1, 2, 3 \in C$.

Problem 18

See part 4 of the group work.

Problem 19

See part 5 of the group work.