CS240 Database Management Systems

Radhika Sukapuram

What is a database?

A collection of inter-related data that models some aspect of the real world

What is an example of a database? Is there a database that you use every day?

Examples

- > Data regarding academic aspects of IIITG students
 - Courses
 - Instructors
 - Registration information of students
 - Grades of students
- > Web-based services (Amazon)
 - Online retailers: order tracking, customized recommendations
 - Online advertisements

Examples (contd.)

- > Aadhaar
 - Biometric information
 - Phone numbers, address
- > Banking and finance
 - customer information, accounts, loans, and banking transactions.
 - Credit card transactions
 - Finance: sales and purchases of financial instruments (e.g., stocks and bonds); storing real-time market data

Examples (contd.)

- > Airlines:
 - reservations, schedules
- > Telecommunication:
 - records of calls, texts and data usage
 - generating monthly bills
 - maintaining balances on prepaid calling cards

Databases are everywhere.

What are the common features of these databases?

Common features

Contains data that is

- > Highly valuable
- > Relatively large
- Accessed by multiple users and applications, often at the same time.

But is it sufficient to collect all this data?

But is a database sufficient?

- > How to read, write, modify data in a database?
 - Buy from Amazon
 - Book a railway ticket
 - Withdraw money from a bank
 - Make a phone call!

How to do that efficiently and conveniently?

Database Management System

> We need a collection of programs

A Database Management System (DBMS) is a collection of interrelated data and a set of programs to access that data.

Can't we just store all data in a set of files?

Data redundancy and inconsistency

Major: CS				
Student roll no	Address	Phone No		
2018-91	West Fort Road, Nagpur	9012345678		

- Change address of student 2018-91
- -> Higher storage, access cost
- -> Data inconsistency

Minor: Mechanical				
Student roll no	Address	Phone No		
2018-91	West Fort Road, Nagpur	9012345678		

Difficulty in accessing data

> Find the phone numbers of all students who have CGPA >

- > What if there is no application program that calculates this ?
- Suppose we additionally require that these students have A grades in their DBMS course?

-> We need more responsive systems for general use

Data isolation

File 1 : CS Majors

- In comma separated value format
- 2018-91, West Fort Road Nagpur, 9012345678

- > Files in different formats
- -> Writing new application programs is difficult

File 2 : CGPA

- In XML
- <roll no> 2018-91<grade>9.2</grade></roll no>

Integrity problems

- Every bank account must maintain a minimum balance consistency constraint
- -> Developers must add new code to maintain this
- -> The constraint is buried in code, hard to add new constraints
- No customer must have more than one account and every account must have an Aadhaar number associated with it

Atomicity problem

- Leela withdraws Rs.1000 from one bank account and deposits it into her mother's account
- The program fails during execution
- -> Money is withdrawn, but not deposited!

Funds transfer must be atomic – either it must happen in its entirety or not happen at all

Difficult to maintain atomicity in a conventional file system

Concurrent access anomalies

Difficult to provide supervision of programs to prevent this in a conventional file system

Security problems

- If Aadhaar number is shared with a mobile company, the mobile company must not be able to access personal information
- A user must not be able to view the accounts of any one else in a bank
- -> Difficult to enforce security constraints in a conventional file system

That is why we need a Database Management System

What are the common features of DBMSs?

Data Abstraction

A DBMS provides users with an abstract view of its data –
it hides details of how data is stored and maintained.

Other examples of abstractions ?

Data Abstraction: comparison with a program

Each level hides details from the level above and provides an interface

An architecture for a DBMS

Physical data independence

- Users at the logical level need not know the implementation of physical level structures
- > Provides protection from changes in physical structures

Instances and schemas

PROGRAMS

- Type definitions and variable declarations
- Values of variables at an instance

DBMS

- Database schema : overall design of the database
- Database instance: collection of information stored in a database at a particular moment

Course_info (cid:string,enrollment:intege Schema Subschema: describe different views of the database view level view 2 view 1 view n Logical schema : DB design at logical logical level level Students(sid: string, name: string, login: string, age: integer, gpa:real) Physical schema : DB design at physical level Courses(cid: string, cname:string, physical level credits:integer) Relations stored as unordered files. Enrolled(sid:string, cid:string, grade:string)

Data Model

- > A collection of tools that describe
 - Data (Values in Students, Courses etc.)
 - Data Relationships (Enrolled)
 - Data semantics (meaning and interpretation of data, what the data represents)
 - Consistency constraints (account balance must always be greater than 0)

Relational Model

All data are stored in tables (also called relations)

(a) The *instructor* table

Relational Model

- > Database has several records of several types
- > Each table (also called relation) has records (2222, Einstein, Physics, 95000) of a particular type (instructor)
- Each record type has a fixed number of fields, called attributes (ID, name, department name, salary)

The most widely used model!

Other data models

- > Entity Relationship model
 - An entity is a "thing" in the real world that is distinguishable from other things
 - Uses a collection of entities and their relationships
- › Object-based data model
 - Uses a richer type system compared to the relational model
 - Extends the E-R model with object-oriented notions
- > Semi-structured data model
 - Permits specification of data where individual data items of the same type may have different sets of attributes
 - Eg: Some items in a store may have an additional attribute called "unit of measure"

How can we create a database?

We need a language!

Database Languages

- Data definition language
 DDL
- > To create schemas
- To specify integrity constraints, which are checked every time a DB is updated

Some integrity constraints

- Domain constraints : associating a domain of possible values with every attribute
- Referential integrity: A dept_name, say "CSE, in a course record must appear in the dept_name attribute of the department relation

course	course department		
Course id	Dept_name	Dept_id	Dept_name

 A value that appears in one relation for a given set of attributes also appears in a certain set of attributes in another relation

Some integrity constraints contd.

> Assertions

- Any condition that the DB must always satisfy
- Domain constraints and referential integrity are special forms of assertions
- Many constraints cannot be expressed using these
- Eg: Every department must offer at least five courses every semester

Some integrity constraints contd.

> Authorization

Differentiates users on the type of access permitted to various data

Read authorization

Insert authorization

Update authorization

Delete authorization

May assign all, none or a combination of the above

Is a DDL sufficient?

How to retrieve, insert, delete or modify data?

Data Manipulation Languages

- > Retrieval, insertion, deletion and modification of information
- > Types of DMLs
 - Procedural DMLs: user must specify what data are needed and how to get that data
 - Declarative DMLs / Non-procedural DMLs: user must specify what data are needed and NOT how to get that data

Query

- > A statement requesting retrieval of information
- Eg: Get the names of all students who are enrolled in the Winter semester of 2019

› Query language: The portion of DML that involves information retrieval

SQL

- > A non-procedural language
- Consists of both DDL and DML

How can an end user access a database?

Application Programs

- Non-procedural query languages such as SQL are not as powerful as a universal Turing machine.
- > SQL does not support actions such as input from users, output to displays, or communication over the network.
- Such computations and actions must be written in a host language, such as C/C++, Java or Python, with embedded SQL queries that access the data in the database.
- Application programs -- are programs that are used to interact with the database in this fashion.