Set Operations

Chapter 2

Cartesian

Definition: The Cartesian product of A with B, denoted $A \times B$, is the set of ordered pairs $\{ \langle a, b \rangle \mid a \in A \land b \in B \}$

Notation:
$$\underset{i=1}{\overset{n}{\times}} A_i = \{ \langle a_1, a_2, ..., a_n \rangle | a_i \in A_i \}$$

Note: The Cartesian product of anything with \emptyset is \emptyset . (why?)

Example

$$A = \{a,b\}, B = \{1, 2, 3\}$$

$$AxB = \{ \langle a, 1 \rangle, \langle a, 2 \rangle, \langle a, 3 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle, \langle b, 3 \rangle \}$$

What is BxA? AxBxA?

If
$$|A| = m$$
 and $|B| = n$, what is $|AxB|$?

Equality

Definition: Two sets A and B are *equal*, denoted A = B, iff

$$\forall x[x \in A \leftrightarrow x \in B].$$

Note: By a previous logical equivalence we have

$$A = B \text{ iff } \forall x[(x \in A \to x \in B) \land (x \in B \to x \in A)]$$

or

$$A = B \text{ iff } A \subseteq B \text{ and } B \subseteq A$$

Definitions

• The union of A and B, denoted A∪ B, is the set

$$\{x \mid x \in A \lor x \in B\}$$

 The intersection of A and B, denoted A ∩ B, is the set

$$\{x \mid x \in A \land x \in B\}$$

Note: If the intersection is void, A and B are said to be disjoint.

• The *complement* of A, denoted \overline{A} , is the set

$$\{x \mid \neg(x \in A)\}$$

Note: Alternative notation is Ac, and $\{x | x \notin A\}$.

More Definitions

• The difference of A and B, or the complement of B relative to A, denoted A - B, is the set

$$A \cap \overline{B}$$

Note: The (absolute) complement of A is U - A.

• The *symmetric difference* of A and B, denoted $A \oplus B$, is the set

$$(A-B)\cup(B-A)$$

Example

Examples: $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

$$A = \{1, 2, 3, 4, 5\}, B = \{4, 5, 6, 7, 8\}.$$
 Then

- $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- $A \cap B = \{4, 5\}$
- $\bullet \overline{A} = \{0, 6, 7, 8, 9, 10\}$
- $\bullet \ \overline{B} = \{0, 1, 2, 3, 9, 10\}$
- $A B = \{1, 2, 3\}$
- $B A = \{6, 7, 8\}$
- $A \oplus B = \{1, 2, 3, 6, 7, 8\}$

Venn Diagrams

A useful geometric visualization tool (for 3 or less sets)

- The Universe U is the rectangular box
- Each set is represented by a circle and its interior
- All possible combinations of the sets must be represented

For 3 sets

Shade the appropriate region to represent the given set operation.

What about intersection?

What about complement?

What about set difference?

What about symmetric difference?

Symmetric difference of A and B

Can you express symmetric difference using only union, intersection, and complement?

Set Identities

Identity	Name Identity Laws		
$A \cup \phi = A$ $A \cap U = A$			
$A \cap \phi = \phi$ $A \cup U = U$	Domination Laws		
$A \cup A = A$ $A \cap A = A$	Idempotent Laws		
$\overline{\overline{(A)}} = A$	Complement Laws		
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative Laws		

some more ...

Identity	Name		
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws		
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws		
$\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$	DeMorgan's laws		
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws		
$A \cup \overline{A} = U$ $A \cap \overline{A} = \phi$	Complement laws		

How to prove set identities?

- Several methods:
 - Use basic definition of sets, and apply logic

Use existing set identities

Use set table membership

Example with definitions and logic

The complement of the union is the intersection of the complements:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

Proof: To show:

$$\forall x[x \in \overline{A \cup B} \leftrightarrow x \in \overline{A} \cap \overline{B}]$$

To show two sets are equal we show for all x that x is a member of one set if and only if it is a member of the other.

continued...

- We will use "universal generalization"
 - We will perform our proof of P(x) using an "arbitrary" x
 - Since we did not assume anything specific about x,
 we can then conclude that
 - $\forall x P(x)$

$$x \in A \cup B$$

$$\equiv x \notin (A \cup B)$$

$$\equiv \neg(x \in (A \cup B))$$

$$\equiv \neg(x \in A \lor x \in B)$$

$$\equiv \neg(x \in A) \land \neg(x \in B)$$

$$\equiv x \notin A \land x \notin B$$

$$\equiv x \in \bar{A} \land x \in \bar{B}$$

$$\equiv x \in (\bar{A} \cap \bar{B})$$

Def. of complement

Def. of ∉

Def. of union

DeMorgan's Laws

Def. of ∉

Def. of complement

Def. of intersection

Example using set identities

Show that
$$A - B = A \cap \overline{(A \cap B)}$$

$$A \cap \overline{(A \cap B)}$$

$$= A \cap (\overline{A} \cup \overline{B})$$

$$= (A \cap \overline{A}) \cup (A \cap \overline{B})$$

$$= \phi \cup (A \cap \overline{B})$$

$$= (A \cap \overline{B})$$

$$= A - B$$

De Morgan's laws

Distributive Rule

Complement Law

Identity Law

Definition of difference

Membership Table

A B	$A \cup B$	\overline{A}	\overline{B}	$\overline{A \cup B}$	$\overline{A} \cap \overline{B}$
1 1	1	0	0	0	0
1 0	1	0	1	0	0
0 1	1	1	0	0	0
0 0	0	1	1	1	1

Computer Representation

- Assume that the universal set U is finite and a reasonable size n.
- Order the set.
- Represent a subset A of U to be the bit string of length n which has a 1 in the i^{th} position if the i^{th} element in the ordering is in set A and a 0 otherwise.

Example

- U = {1,2,3,4,5,6,7,8,9,10} be ordered in the usual fashion.
- The set $S = \{1,5,8\}$
- Has the representation

1000100100

Union and Intersection of Indexed Collections

Union and intersection are associative

Let $A_1, A_2, ..., A_n$ be an indexed collection of sets.

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \ldots \cup A_n$$

and

$$\bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap ... \cap A_n$$

$$A_i = [i, \infty), 1 \leq i < \infty$$

Example
$$\bigcup_{i=1}^{n} A_i = [1, \infty)$$

$$\bigcap_{i=1}^{n} A_i = [n, \infty)$$