# Why Logic?

- General, "language-like" representation of knowledge applicable across many domains
- Provides a concrete way to formalize the notion of an inference & "common-sense knowledge"
- Allows us to represent sentences like:

"Every CSC UG course with ≥10 students has a TA"

"No man can run at 30 mph"

"A traffic light is yellow, green, or red at any time"

"If John doesn't like Mary, she doesn't like him; Mary likes John; therefore, John likes Mary"

\_ \_ \_

# **Facts & Representations**



## **Propositional logic**

- A string of symbols, separated by conjunctions, disjunctions & negations
- Examples:

"Socrates is a man" → SOCRATESMAN

"Plato is a man" → PLATOMAN

"Both Socrates and Plato are men" → SOCRATESMAN ∧ PLATOMAN

# **First-Order Logic: Motivation**

How do we represent the following sentences in propositional logic?

- Marcus was a Pompeian
- All Pompeians are Romans
- All Romans were either loyal to Caesar or hated him
- Everyone is loyal to someone
- People only try to assassinate rules they are not loyal to
- Marcus tried to assassinate Caesar
- Therefore, Marcus hated Caesar

# **First-Order Logic**

Instead of unanalyzed proposition symbols P<sub>1</sub>, P<sub>2</sub>, Q ..., use predicates & terms:



# Another example:

"John gives Mary Fifi"

Give(John, Mary, Fifi) or

Give(John, Mary, Fifi, Giving-event4)
During(Giving-event4, Feb18-99)

"John will give Mary Fifi on Feb 18/99"

# **First-Order Logic**

## More examples:



# Can use infix notation:

# Formulas in First-Order Logic

### • Term:

A constant (or variable, introduced later) or a function applied to an appropriate # of terms

# **Examples:**

```
Plus(2,2), 2+2, Mary, Mother-of(Fifi),
Mother-of(Mother-of(Fifi))

ground terms
(they contain no variables) well-formed formula
```

Atomic formula (or atom, or atomic wff):

A predicate applied to an appropriate # of terms

### **Examples:**

```
Person(Mary), Loves(Romeo, Juliet), 2+2=4
```

# Formulas in First-Order Logic

Complex formulas:

```
Formed by using the connectives

^, ∨, ⇒, ⇔ as in propositional logic
```

## **Examples:**

```
Eat(Fifi, Cookie1, Eat-event3) 
Cookie(Cookie1)
```

```
Eat(Fifi, Cookie1, Eat-event3) ∨ Eat(Lulu, Cookie1, Eat-event3)
```

```
Eat(Fifi, Cookie1, Eat-event3) ⇒
Inside(Cookie1, Fifi,
Result-state(Eat-event3))
```

"If Fifi ate the cookie (in a certain eating event), then the cookie was inside Fifi at the end of the eating event"

# Quantification

Quantification allows us to express properties of entire collections of objects without referencing each of them by name

Two types of quantification:

- Existential
- Universal

## Existential quantification:



Variables in first-order logic are placeholders for constants:

- -x is a free variable in Dog(x)
- -x is a bound variable in  $\exists x Dog(x)$

# **Existential Quantification (cont.)**

Another example:

```
\exists y \ (\text{Eat}(\text{Fifi}, y, \text{Eat-event3}) \land \text{Cookie}(y))
```

"Fifi ate a cookie" (in a certain eating event)

Without outer brackets there is a scope ambiguity:

 $\exists$ y Eat(Fifi, y, Eat-event3)  $\land$  Cookie(y)

could be interpreted as

 $(\exists y \text{ Eat(Fifi, y, Eat-event3)}) \land \text{Cookie(y)}$ 

variable bound by ∃

free variable

or as

 $(\exists y \text{ Eat(Fifi, y, Eat-event3}) \land \text{Cookie}(y))$ 

variable bound by ∃

# **Existential Quantification (cont.)**

### Dot notation:

```
\exists y.Eat(Fifi, y, Eat-event3) \land Cookie(y) means that y has the <u>widest possible scope</u>
```

## More examples:

```
∃y∃e.Eat(Fifi, y, e) ∧ Cookie(y)
∧ During(e, Supper4)
```

"Fifi ate a cookie during (a certain) supper"

```
\exists x \exists y \exists e. Eat(x, y, e) \land Dog(x) \land Cookie(y)
```

"A dog ate a cookie"

 $\exists x. Dog(x) \land Owns(John, x)$ 

"John has a dog"

# **Universal Quantification**

```
\forall x (Dog(x) \Rightarrow Animal(x))
\forall x.Dog(x) \Rightarrow Animal(x)
"Every dog is an animal"
```

## More examples:

```
\forall x (Dog(x) \Rightarrow \exists y (Person(y) \land Owns(y,x))
```

"Every dog is owned by someone"

```
(\forall x \text{ Has-weight}(x)) \Rightarrow \text{ Has-weight}(\text{Fifi})
```

"If everything has weight, then Fifi has weight"

"No whale is a fish"

$$\forall x. \text{ Whale}(x) \Rightarrow \neg \text{Fish}(x)$$

$$\forall x. \, \text{Fish}(x) \Rightarrow \neg \text{Whale}(x)$$

$$\neg \exists x. \text{ Whale}(x) \land \text{Fish}(x)$$

$$\forall x. \neg (Whale(x) \land Fish(x))$$

$$\forall x. \neg Whale(x) \lor \neg Fish(x)$$

# **Quantification (cont.)**

### In general:

```
\neg \exists x \phi equiv. to \forall x \neg \phi

\neg \forall x \phi equiv. to \exists x \neg \phi

\neg (\phi \lor \psi) equiv. to \neg \phi \land \neg \psi

\neg (\phi \land \psi) equiv. to \neg \phi \lor \neg \psi

(deMorgan's rule)
```

## Important contrast:

"Every dog is an animal"

 $\forall x. Dog(x) \Rightarrow Animal(x)$ 

"Some dog is a pet"

 $\exists x. Dog(x) \land Pet(x)$ 

 $\exists x. Dog(x) \Rightarrow Pet(x)$ 

"There is an  $\underline{x}$  such that if  $\underline{x}$  is a dog then it is a pet"

Formula is true if there is some x that is <u>not</u> a dog

# **First-Order Logic: Syntax**

The structure of all sentences in first-order logic is described by the following grammar:

```
Sentence → AtomicSentence
         Sentence Connective Sentence
        Ouantifier Variable Sentence
        ¬Sentence
        (Sentence)
AtomicSentence → Predicate(Term,...)
         Term = Term
Term \rightarrow Function(Term,...)
       Constant
        Variable
Connective \rightarrow \land | \lor | \Rightarrow | \Leftrightarrow
Quantifier \rightarrow \exists \mid \forall
\texttt{Constant} \, \rightarrow \, \texttt{A} \, \mid \, \texttt{X}_1 \, \mid \, \texttt{John} \, \mid \, ...
Variable \rightarrow a | x | s | ...
Predicate → Before | HasColor | ...
Function → Mother | LeftLegOf
```

# **Higher Order Logics**

 In First-Order Logic, variables & quantifiers refer to constants (i.e., objects)



 We can enhance the expressiveness of logic sentences by applying quantifiers to functions & relations, not just objects

$$\forall f \forall g. (f=g) \Leftrightarrow (\forall x. f(x)=g(x))$$

Functions of 1 variable

bound by  $\forall$ 

"two functions are equal if and only if they have the same value for all arguments"

# **More Examples**

"Fifi is a pink poodle"

Pink(Fifi) ∧ Poodle(Fifi)

"Fifi is the only pink poodle"

i.e. "Fifi is a pink poodle & every pink poodle is identical to Fifi"

$$Pink(Fifi) \land Poodle(Fifi) \land$$
  
 $\forall x.(Pink(x) \land Poodle(x)) \Rightarrow x=Fifi$ 

"No-one likes Fifi"

i.e. "for every person x, it is not the case that x likes Fifi"

 $\forall x. Person(x) \Rightarrow \neg Likes(x, Fifi)$ 

"If x eats y then y is inside x right afterwards"

```
\forall x \forall y \forall e. Eat(x,y,e) \Rightarrow
Inside(y,x,Result-state(e)
\forall x \forall y \forall e \forall e'. Eat(x,y,e) \land Rightafter(e,e') \Rightarrow
Inside(y,x,e')
```

# **More Examples (cont.)**

```
"If x is a parent of y, then x is older than y" \forall x \forall y. Parent(x,y) \Rightarrow Older(x,y)
```

"If x is the mother of y, then x is a parent of y"  $\forall x \forall y. Mother(x,y) \Rightarrow Parent(x,y)$ 

"Everyone is loyal to someone"

```
\forall x \exists y. Person(x) \land Person(y) \land Loyalto(x,y)
```

or  $\exists y \forall x. Person(x) \land Person(y) \land Loyalto(x,y)$ ? "there is a person to whom everyone is loyal"  $\rightarrow$  sentence is ambiguous!!

"People only try to assassinate rulers they are not loyal to"

```
\forall x \forall y. Person(x) \land Ruler(y) \land Tryassassinate(x,y) \Rightarrow \neg Loyalto(x,y)
```

or "the only thing people try to do is assassinate people they are not loyal to" → another ambiguous sentence!!

# **Inference in First-Order Logic**

### **Premises:**

- 1. If x is a parent of y, then x is older than y
- 2. If x is the mother of y, then x is a parent of y
- 3. Lulu is the mother of Fifi

### Conclusion:

Lulu is older than Fifi

## Mapping to first-order logic:

Premises in first-order logic:

- 1.  $\forall x \forall y. Parent(x,y) \Rightarrow Older(x,y)$
- 2.  $\forall x \forall y. Mother(x,y) \Rightarrow Parent(x,y)$
- 3. Mother(Lulu, Fifi)

### Conclusion:

Therefore, Older(x, y)

Inference achieved using axioms & rules (i.e., syntactical transformations) that generalize those found in propositional logic

# **Inference Rules in FOL**

$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$$
 Modus Ponens

Rule identical to the one used in propositional logic:

 $In(Mary, Garden), In(Mary, Garden) \Rightarrow \neg In(Mary, House)$ 

¬ In(Mary, House)

 $\frac{\forall x \alpha}{\alpha[x/k]}$  Universal Instantiation

 $\alpha[x/k]$ : a sentence  $\alpha$  with all free occurrences of variable x replaced by constant k (text uses SUBST( $\{x/k\}, \alpha$ ).)

∀x Has-weight(x)Has-weight(x)[x/Fifi]Has-weight(Fifi)is Has-weight(Fifi)

# **Inference Rules in FOL (cont.)**

### **Premises:**

- 1. If x is a parent of y, then y is older than x
- 2. If x is the mother of y, then x is a parent of y
- 3. Lulu is the mother of Fifi

### Conclusion:

Lulu is older than Fifi

## Premises in first-order logic:

- 1.  $\forall x \forall y. Parent(x,y) \Rightarrow Older(x,y)$
- 2.  $\forall x \forall y. Mother(x,y) \Rightarrow Parent(x,y)$
- 3. Mother(Lulu, Fifi)

### Proof:

- 1.  $\forall x \forall y. Mother(x,y) \Rightarrow Parent(x, y)$  $\forall y. Mother(Lulu, y) \Rightarrow Parent(Lulu, y)$
- 2.  $\forall$ y.Mother(Lulu,y)  $\Rightarrow$  Parent(Lulu, y) Mother(Lulu,Fifi)  $\Rightarrow$  Parent(Lulu, Fifi)
- 3. Mother(Lulu,Fifi),Mother(Lulu,Fifi)⇒Parent(Lulu,Fifi)
  Parent(Lulu,Fifi)
- 4. Derive Older(Lulu, Fifi) in 3 more steps

# **Inference Rules in FOL (cont.)**

Previous inference easier with strengthened rule:

$$\frac{\alpha_{1}[\underline{x}/\underline{k}],...,\alpha_{n}[x/k], \forall x_{1}...\forall x_{m}.(\alpha_{1}\wedge...\wedge\alpha_{n}) \Rightarrow \beta}{\beta[\underline{x}/\underline{k}]}$$

$$\underline{\mathbf{x}}/\underline{\mathbf{k}}:\{\mathbf{X}_1/\mathbf{k}_1,\ldots,\mathbf{X}_m/\mathbf{k}_m\}$$

# A proof of Older(Lulu, Fifi) using GMP:

```
1. Mother(Lulu, Fifi) given

2. Alive(Lulu) given

3. \forall x \forall y. Mother(x,y) \Rightarrow Parent(x,y) given

4. \forall x \forall y. (Parent(x,y) \land Alive(x)) \Rightarrow Older(x,y) given

5. Parent(Lulu, Fifi) 1,3, GMP

6. Older(Lulu, Fifi) 5,2,4, GMP
```

This use of GMP is called forward-chaining

# **Inference Rules in FOL (cont.)**

Another style of proof is to "reason backward" (backward-chaining):

Start with a goal (to be proved) & then derive new sub-goals until we have sub-goals known to be true

→ similar to problem reduction

Backward-chaining proof of Older(Lulu, Fifi) from premices:

```
1. Mother(Lulu, Fifi)
```

- 2. Alive(Lulu)
- 3.  $\forall x \forall y. Mother(x,y) \Rightarrow Parent(x, y)$
- 4.  $\forall x \forall y. (Parent(x,y) \land Alive(x)) \Rightarrow Older(x, y)$

```
Goal: (i) Older(Lulu, Fifi)

Match (i) against RHS of (4)
```

Subgoals: (ii) Parent(Lulu, Fifi) (iii) Alive(Lulu)

Match (iii) against (2) True

Match (ii) against RHS of (3)

Subgoal: (iv) Mother(Lulu, Fifi)

Match (iv) against (1)

# **Inference Rules in FOL**

Another style of proof is to "reason backward" (backward-chaining):

Start with a goal (to be proved) & then derive new sub-goals until we have sub-goals known to be true

→ similar to problem reduction

Backward-chaining proof of Older(Lulu, Fifi) from premices:

```
1. Mother(Lulu, Fifi)
```

- 2. Alive(Lulu)
- 3.  $\forall x \forall y. Mother(x,y) \Rightarrow Parent(x, y)$
- **4.**  $\forall x \forall y. (Parent(x,y) \land Alive(x)) \Rightarrow Older(x, y)$

```
Goal: (i) Older(Lulu, Fifi)

Match (i) against RHS of (4)
```

Subgoals: (ii) Parent(Lulu, Fifi) (iii) Alive(Lulu)

Match (iii) against (2) True

Match (ii) against RHS of (3)

Subgoal: (iv) Mother(Lulu, Fifi)

Match (iv) against (1)

# **Inference Rules in FOL**

## Example inference rule in First-Order Logic

Generalized Modus Ponens 
$$\underline{\alpha_1[\underline{x}/\underline{k}],...,\alpha_n[x/k], \ \forall x_1...\forall x_m.(\alpha_1 \wedge ... \wedge \alpha_n) \Rightarrow \beta}$$
 
$$\underline{\beta[x/k]}$$

$$\underline{\mathbf{x}}/\underline{\mathbf{k}}:\{\mathbf{X}_1/\mathbf{k}_1,\ldots,\mathbf{X}_m/\mathbf{k}_m\}$$

# A proof of Older(Lulu, Fifi) using GMP:

```
1. Mother(Lulu, Fifi) given

2. Alive(Lulu) given

3. \forall x \forall y.Mother(x,y) \Rightarrow Parent(x, y) given

4. \forall x \forall y.(Parent(x,y)\landAlive(x)) \Rightarrow Older(x, y) given

5. Parent(Lulu, Fifi) 1,3, GMP

6. Older(Lulu, Fifi) 5,2,4, GMP
```

This use of GMP is called forward-chaining

# **Resolution: Motivation**

- Steps in inferencing (e.g., forward-chaining)
  - 1. Define a set of inference rules
  - 2. Define a set of axioms
  - Repeatedly choose one inference rule & one or more axioms (or premices) to derive new sentences until the conclusion sentence is formed
- Basic requirement:

Rules + axioms should constitute a complete proof system

### Observation:

Automated inferencing could be a lot more efficient & easy to implement if there was just a <u>single</u> inference rule in the proof system!

# Resolution

Resolution (Robinson, 1965):

A form of inference that relies on a single rule to prove the truth or falsity of logic sentences

 Because of its simplicity, efficiency & completeness properties, resolution has dominated reasoning in AI

## Key characteristics:

Resolution produces proofs by refutation:

"To prove a statement, assume that the negation of the statement is true & try to arrive at a contradiction"

- Simplicity achieved by forcing inference rule to operate on sentences that have a very special form called Clause Normal Form (CNF)
- Completeness achieved because every logic sentence can be converted to CNF

# The Resolution Rule

Resolution relies on the following rule:

$$\frac{\neg \alpha \Rightarrow \beta, \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}$$
 Resolution rule

equivalently,

$$\frac{\alpha \vee \beta, \neg \beta \vee \gamma}{\alpha \vee \gamma}$$
 Resolution rule

# Applying the resolution rule:

1. Find two sentences that contain the same literal, once in its positive form & once in its negative form:

```
cnf ____ summer v winter, ¬winter v cold
```

2. Use the resolution rule to eliminate the literal from both sentences

→ summer ∨ cold

# The Resolution Rule (cont.)

### A resolution example:



## Another example:



### **Observations:**

- Resolution reduces the length of parent clauses by one literal
- Resolution applied after first converting all sentences to CNF form:
  - Disjunctions only
  - Negations of atoms only

# Resolution in Propositional Logic

## Basic steps for proving a proposition S:

1. Convert all propositions in premises to CNF

$$\begin{array}{lll} p & & & p \\ (p \wedge q) \Rightarrow r & \neg (p \wedge q) \vee r & \neg p \vee \neg q \vee r \\ (s \vee t) \Rightarrow q & \neg (s \vee t) \vee q & \neg s \vee q \\ t & t & t & CNF \end{array}$$

- 2. Negate S & convert result to CNF
- 3. Add negated S to premises
- 4. Repeat until contradiction or no progress is made:
  - a. Select 2 clauses (call them parent clauses)
  - b. Resolve them together
  - c. If resolvent is the empty clause, a contradiction has been found (i.e., S follows from the premises)
  - d. If not, add resolvent to the premises

# Resolution in Propositional Logic

### Premises:

$$\begin{array}{c} p \\ (p \wedge q) \Rightarrow r \\ (s \vee t) \Rightarrow q \end{array} \qquad \begin{array}{c} p \\ \neg p \vee \neg q \vee r \\ \neg s \vee q \\ \neg t \vee q \\ t \end{array} \qquad \begin{array}{c} \text{CNF} \end{array}$$

# A resolution proof of r:



# **Resolution in First-Order Logic**

# In propopositional logic:



# In first-order logic:



# To generalize resolution proofs to FOL we must account for

- Predicates
- Unbound variables
- Existential & universal quantifiers

- Disjunctions only
- Negations of atoms only

$$\neg P(A,B)$$

- No quantifiers:
  - universal quantification implicit

$$\forall x.P(x) \rightarrow P(x)$$

 existential quantification replaced by Skolem constants/functions

$$\exists x.P(x) \rightarrow P(E)$$
  
 $\forall y \exists x.P(x,y) \rightarrow P(E(y),y)$ 

# Ordinary FOL

### **Clause Form**

$$P(A) \xrightarrow{\text{none}} P(A)$$

$$\neg Q(A,B) \xrightarrow{\neg \text{elimination}} Q(A,B)$$

$$\neg (P(A) \land Q(B,C)) \xrightarrow{\text{deMorgan}} \neg P(A) \lor \neg Q(B,C)$$

$$\neg (P(A) \lor Q(B,C)) \xrightarrow{\text{deMorgan}} \neg P(A) , \neg Q(B,C)$$

$$2 \text{ unit clauses}$$

# Ordinary FOL $P(A) \Rightarrow Q(B,C)$ $\Rightarrow \text{elimination}$ $\neg (P(A) \Rightarrow Q(B,C))$ $\Rightarrow \text{elimination}$ $P(A) \lor Q(B,C)$ $\Rightarrow \text{elimination}$ $P(A), \neg Q(B,C)$

$$P(A) \wedge (Q(B,C) \vee R(D)) \xrightarrow{\wedge drop} P(A), Q(B,C) \vee R(D)$$

deMorgan, ∧ drop

$$P(A) \lor (Q(B,C) \land R(D)) \xrightarrow{\land drop} P(A) \lor Q(B,C),$$
 $P(A) \lor Q(B,C),$ 
 $P(A) \lor R(D)$ 

$$\forall x.P(x)$$
  $\forall drop$   $P(x)$ 

$$\forall x.P(x) \Rightarrow Q(x,A)$$
  $\Rightarrow \begin{array}{c} \text{elimination} \\ \forall \text{drop} \end{array}$   $\neg P(x) \lor Q(x,A)$ 

$$\exists x.P(x)$$
 skolemization  $P(E)$ , where E is a new constant

$$\neg \forall x. P(x) \qquad \qquad \frac{\text{deMorgan}}{\text{skolemization}} \qquad \neg P(G)$$

 $\exists x. \neg P(x)$ 

# Ordinary FOL Clause Form $\neg \exists x.P(x)$ $deMorgan \rightarrow \forall x. \neg P(x)$ $\neg P(G)$ ∀ drop $\neg(\exists x.P(x) \land \forall x.Q(x))$ $\xrightarrow{\text{deMorgan}} \neg \exists x. P(x) \lor \neg \forall y. Q(y)$ $\stackrel{\text{deMorgan}}{\longrightarrow} \forall x. \neg P(x) \lor \exists y. \neg Q(y)$ ∀ drop skolemization $\neg P(x) \vee \neg Q(H)$ $\forall x \exists y. P(x,y)$ fun. skolemization $\forall x.P(x,K(x))$ ∀ drop P(x,K(x))skolemization $\forall x \forall y \exists z. P(x,y,z)$ P(x,y,L(x,y))∀ drop

## Ordinary FOL

Clause Form

$$\forall x.P(x) \Rightarrow \exists y.Q(x,y) \xrightarrow{\Rightarrow \text{elimination}} \neg P(x) \lor Q(x,M(x))$$

$$(\forall x.P(x)) \Rightarrow \exists y.P(y)$$

$$\xrightarrow{\Rightarrow \text{elimination}} (\neg \forall x.P(x)) \lor \exists y.P(y)$$

$$\xrightarrow{\text{deMorgan}} \exists x.\neg P(x) \lor \exists y.P(y)$$

$$\xrightarrow{\text{skolemization}} \neg P(N) \lor P(O)$$

# **Conversion to Clause Form**

# Steps in general case:

- Rename all variables so that all quantifiers bind distinct variables
- 2. ⇒-elimination
- 3. deMorgan  $(\neg \lor, \neg \land, \neg \forall, \neg \exists)$
- 4. Skolemization (∃-elimination)
- 5. ∀-dropping
- 6. v-distribution
- 7. ∧-dropping

# **Resolution in First-Order Logic**

In propopositional logic:



In first-order logic:

To generalize resolution proofs to FOL we must account for

- Predicates
- Unbound variables
- Existential & universal quantifiers

Idea: <u>First</u> convert sentences to clause form <u>Then</u> unify variables



# **Resolution in First-Order Logic**

### Resolution examples:





Loves(x,Mother-of(x))  $\vee$  Psychotic(x)  $\neg$ Loves(Bill,y)  $\vee$  Sends-flowers(Bill,y)  $\{x/Bill\}$   $\{y/Mother-of(Bill)\}$ 

Psychotic(Bill) \( \times \) Sends-flowers(Bill, Mother-of(Bill))

### **Resolution Steps**

Resolution steps for 2 clauses containing

 $P(arg.list1), \neg P(arg.list2)$ 

- Make the variables in the 2 clauses distinct
- 2. Find the "most general unifier" of arg.list1 & arg.list2:

go through the lists "in parallel," making substitutions for variables only, so as to make the 2 lists the same

- 3. Make the substitutions corresponding to the m.g.u. throughout both clauses
- 4. The resolvent is the clause consisting of all the resulting literals except P & ¬P

### Unification

### Can we unify the following clauses?

Loves(x,x)

¬Loves(Bill,Paula)

NO--Can't substitute Bill for Paula or vice-versa

Loves(Mother-of(x),x)  $\neg$ Loves(Father-of(y),y)

NO--Can't make Mother-of(x) & Father-of(x) the same by substituting for a variable

Loves(Mother-of(x),x)
¬Loves(Mother-of(Bill),Bill)

Loves(y,Mother-of(y))  $\neg$ Loves(x,x)  $\{x/y\}$ ??

NO--Can't substitute Mother-of(y) for y (would give infinite regress)

# **Resolution in First-Order Logic**

In propositional logic:



In first-order logic:

To generalize resolution proofs to FOL we must account for

- Predicates
- Unbound variables
- Existential & universal quantifiers

Idea: <u>First</u> convert sentences to clause form <u>Then</u> unify variables



# **Resolution in First-Order Logic**

Basic steps for proving a conclusion S given premises

Premise<sub>1</sub>, ..., Premise<sub>n</sub> (all expressed in FOL):

- 1. Convert all sentences to CNF
- 2. Negate conclusion S & convert result to CNF
- 3. Add negated conclusion S to the premise clauses
- 4. Repeat until contradiction or no progress is made:
  - a. Select 2 clauses (call them parent clauses)
  - b. Resolve them together, performing all required unifications
  - c. If resolvent is the empty clause, a contradiction has been found (i.e., S follows from the premises)
  - d. If not, add resolvent to the premises

If we succeed in Step 4, we have proved the conclusion

# **Resolution Examples**

#### Example 1:

- If something is intelligent, it has common sense
- Deep Blue does not have common sense
- Prove that Deep Blue is not intelligent



### A resolution proof of $\neg I(D)$ :



# **Resolution Examples (cont.)**

### Example 2:

Premises:

Mother(Lulu, Fifi)

Alive(Lulu)  $\forall x \ \forall y. Mother(x,y) \Rightarrow Parent(x,y)$ Prove:

Older(Lulu, Fifi)

Denial:  $\neg Older(Lulu, Fifi)$   $\forall x \ \forall y. Mother(x,y) \Rightarrow Parent(x,y)$   $\forall x \ \forall y. (Parent(x,y) \land Alive(x)) \Rightarrow Older(x,y)$ 



### **Resolution Examples (cont.)**

### Could also have written the proof as:

```
C1. Mother(Lulu,Fifi)
                                                         given
C2. Alive(Lulu)
                                                         given
C3. \negMother(x,y) \vee Parent(x,y)
                                                         given
C4. \negParent(x,y) \vee \negAlive(x) \vee Older(x,y)
                                                         given
                                              denial of concl.
C5. ¬Older(Lulu, Fifi)
                                                    r[C1,C3a]
C6. Parent(Lulu,Fifi)
                                                    r[C6,C4a]
C7. \negAlive(Lulu) \vee Older(Lulu, Fifi)
                                                      r[C8,C5]
C8. Older(Lulu, Fifi)
C9. □
```

Proof consists of 4 resolution steps: longer than the proof with GMP because we can only resolve 2 clauses at once using this form of resolution

# **Resolution Examples (cont.)**

### Example 3:

 Suppose the desired conclusion had been "Something is older than Fifi" ∃x.Older(x, Fifi)

Denial:

```
\neg \exists x.Older(x, Fifi)
also written as: \forall x.\neg Older(x, Fifi)
in clause form: \neg Older(x, Fifi)
```

Last proof step would have been



Don't make mistake of <u>first</u> forming clause from conclusion & <u>then</u> denying it:

• Conclusion:

∃x.Older(x, Fifi)

clause form: Older(C, Fifi)

denial: ¬Older(C, Fifi)

-Older(C, Fifi)

# **Resolution for Question-Answering**

- So far, resolution was used to just prove logic sentences
- Resolution's unification mechanism allows us to answer questions as well:
  - Consider again the proof of "Something is older than Fifi" ∃x.Older(x, Fifi)
  - Denial clause:¬Older(x, Fifi)
  - Substitution made in disproof: {x/Lulu}
  - So Lulu is the "something" that's older than Fifi.
    - →Answers question "what is older than Fifi?"

# In general, to answer "what x has such-and-such properties?"

- Prove "there exists an x with such-and-such properties"
- Extract substitution for x

# **Question-Answering**

### Example 1:

"Who is Lulu older than?"

Prove that

"there is an x such that Lulu is older than x"

In FOL form:

```
\existsx.Older(Lulu, x)
```

Denial:

```
\neg \exists x.Older(Lulu, x)
\forall x.\neg Older(Lulu, x)
in clause form: \neg Older(Lulu, x)
```

Successful proof gives

```
{x/Fifi} [Verify!!]
```

#### Example 2:

"What is older than what?"

In FOL form:

```
\exists x \exists y.Older(x, y)
```

Denial:

```
\neg \exists x \exists y.Older(x, y)
in clause form: \neg Older(x, y)
```

Successful proof gives

```
{x/Lulu, y/Fifi} [Verify!!]
```

### **Getting Multiple Answers**

Assume additional facts:

```
Father(BowWow, Fifi)

¬Father(x, y) ∨ Parent(x,y)

Alive(BowWow)
```

 We can then answer ∃x.Older(x, Fifi) using {x/Lulu} or {x/BowWow}
 (i.e., 2 distinct proofs exist)

Q: Is it possible to find all answers to a given question using the resolution rule?

Ans: Yes, if the premises in the knowledge base are all Horn clauses

$$\neg A_1 \lor \neg A_2 \lor \dots \lor \neg A_n \lor B$$
$$A_1 \land A_2 \land \dots \land A_n \Rightarrow B$$

Achieved by finding all ways to refute a query

# **Getting Multiple Answers (cont.)**

To find all ways of refuting  $\neg Older(x, Fifi)$ :

Find unit clauses this resolves with (if any),
 adding substitutions for successful refutations
 to Answers

```
If Older(Fang, Fifi) was in KB, we would have Answers = Answers \cup \{x/Fang\}
```

Find clauses of the form

$$\neg A_1 \lor \neg A_2 \lor ... \lor \neg A_n \lor Older(x, Fifi)$$
 and resolve

- If successful, with unifier  $\theta$ , recursively find all refutations of the corresponding antecedent instances  $(\neg A_1, \neg A_2, ..., \neg A_n)$
- "Compose" the substitutions for these refutations with  $\theta$  and add to Answers

# **Factoring**

Resolution is "not quite" refutation-complete
 e.g. P(x,y) ∨ P(u,v) and ¬P(s,t) ∨ ¬P(w,z) are
 clearly contradictory, yet we can't derive □

### Factoring:

Allows us to unify 2 literals of the same clause



# **Equality**

• Suppose we are given:

Older(Lulu, Fifi)  $\neg$ Older(x,x)

resolution cannot be applied here

 Now, what if we know that Lulu & Fifi refer to the same entity?

Need an additional rule & axioms to treat equality

Paramodulation: essentially, substitution of equals (but with unification)

• Proving  $\neg(Lulu = Fifi)$ :



# **Resolution Strategies**

In a general KB, there may be many resolutions that can be applied at a given step

```
(1. Mother(Lulu,Fifi)
                                                         given
C2. Alive(Lulu)
                                                         given
C3. -Nother(x,y) \vee Parent(x,y)
                                                         given
C4. \negParent(x,y) \lor \negAlive(x) \lor Older(x,y)
                                                         given
                                              denial of concl.
C5. ¬Older(Lulu, Fifi)
C6. Parent(Lulu,Fifi)
                                                    r[C1,C3a]
                                                    r[C6,C4a]
C7. \negAlive(Lulu) \vee Older(Lulu, Fifi)
C8. Older(Lulu, Fifi)
                                                     r[C8,C5]
C9. □
```

We can use specific resolution strategies to ensure that we do not perform "useless" resolutions

### **Resolution Strategies**

Backward chaining strategy:

Reason backwards from a goal (used for finding multiple answers to a query)

#### Unit resolution:

One of the parent clauses is always chosen to contain a single literal



Idea: Length of resolvent always decreases by 1

→ gets closer to empty clause

(i.e., unit resolution is a Greedy method)

Caveat: Unit resolution is not complete!

### **Resolution Strategies (cont.)**

#### Input resolution:

One of the parent clauses is contained in the original KB

Input resolution is equivalent to unit resolution (and hence also incomplete)

#### Linear resolution:

Each parent is a linear resolvent, i.e., is either in the initial KB or is an ansestor of the other parent



### **Resolution Strategies (cont.)**

### Set-of-support resolution:

Given a set of clauses  $\Gamma$ , a set of support resolvent of  $\Gamma$  is a resolvent whose parents are either clauses of  $\Gamma$  or descendants of such clauses

Set-of-support resolution: always use a denial clause or a descendant of a denial clause as one parent

Idea: "Focus" the proof on using the denial clause(s) to derive a contradiction rather than grinding arbitrary KB facts together

# **Logic Programming**

Robert Kowalski's equation:

```
Programming = Logic + Control
```

In logic programming, algorithms are created by augmenting logical sentences with information to control the inference process (Russell & Norvig)

An FOL definition of the list member function:

```
\forall x \forall l. Member(x, [x|l])
\forall x \forall y \forall l. Member(x, l) \Rightarrow Member(x, [y|l])
```

Logic programming can be thought of as a "declarative language"

```
Program = sequence declarations

Control = implicit

Program execution = proof

e.g., prove member(3, [2,1,3])
```

# **Programming in Prolog**

- Developed in the early 70's
- It is the most popular logic programming language (in Europe, was even more popular than Lisp)
- It is an interpreted language
- Prolog programs are:
  - sequences of logical sentences
  - only Horn clauses are allowed:

```
Member(x, l) \Rightarrow Member(x, [y|l])
```

- terms can be constant symbols, variables, functional terms
- syntactically distinct terms assumed to be distinct objects (e.g., A cannot be unified with F(x))
- Uses "negation-as-failure" operator:
   not P is considered true if language fails
   to prove P

# **Programming in Prolog (cont.)**

Syntax:

```
∀x∀1.Member(x, [x|l])
    written as
> member(X, [X | L])

∀x∀y∀1.Member(x, l) ⇒ Member(x, [y|l])
    written as
> member(X, [Y | L]):-
    member(X, L)
```

 To check whether 1 is a member of list [1,2,3] we simply type

```
> member(1,[1,2,3])
```

 We can enumerate all members of [1,2,3] by typing

```
> member(X,[1,2,3])
X=1 (press Enter)
X=2 etc
```