Image Segmentation and Visualization

Xiaolong Wang

Segmentation Problem and FCN

The problem

image classification

object detection

instance segmentation

The problem

Semantic Segmentation

Full image

Simply staring one pixel is impossible to do the classification

Let's put in some context!

Semantic Segmentation

Semantic Segmentation

Time Consuming!

Can we process the whole image at one time?

Full image

AlexNet input: 227 x 277 x 3

AlexNet Conv5: 13 x 13 x 128

Output ? 13 x 13 x 21

Output is too small!

Can we process the whole image at one time?

Full image

AlexNet input: 227 x 277 x 3

AlexNet Conv5: 13 x 13 x 128

Fully Convolutional Network

Convolution at original image resolution has high computation cost.

Fully Convolutional Network

Predictions: H x W

Make the feature map small increases the receptive field

Make the feature map larger again increases the resolution

The upsamling

Upsampling Layer

Deconvolution Layer

Transpose Convolution Layer

Transpose Convolution

3 X 3 convolution with stride 1 and padding 1

3 X 3 convolution with stride 1 and padding 1

3 X 3 convolution with stride 2 and padding 1

Input: 4 x 4 Output: 2 x 2

3 X 3 convolution with stride 2 and padding 1

Input: 4 x 4 Output: 2 x 2

Transpose Convolution

3 X 3 transpose convolution, stride 2 and padding 1

Transpose Convolution

Sum over the overlapping region

Input: 2 x 2

Output: 4 x 4

1D Transpose Convolution Example

2D Convolution

Regular convolution (stride 1, pad 0)

x_{11}	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
x_{21}	x_{22}	x_{23}	x_{24}
x_{31}	<i>x</i> ₃₂	x_{33}	x_{34}
x_{41}	<i>x</i> ₄₂	<i>x</i> ₄₃	<i>x</i> ₄₄

Matrix-vector form:

$$\begin{bmatrix} w_{11} & w_{12} & w_{13} & 0 & w_{21} & w_{22} & w_{23} & 0 & w_{31} & w_{32} & w_{33} & 0 & 0 & 0 & 0 \\ 0 & w_{11} & w_{12} & w_{13} & 0 & w_{21} & w_{22} & w_{23} & 0 & w_{31} & w_{32} & w_{33} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & w_{11} & w_{12} & w_{13} & 0 & w_{21} & w_{22} & w_{23} & 0 & w_{31} & w_{32} & w_{33} & 0 \\ 0 & 0 & 0 & 0 & 0 & w_{11} & w_{12} & w_{13} & 0 & w_{21} & w_{22} & w_{23} & 0 & w_{31} & w_{32} & w_{33} \\ 0 & 0 & 0 & 0 & 0 & w_{11} & w_{12} & w_{13} & 0 & w_{21} & w_{22} & w_{23} & 0 & w_{31} & w_{32} & w_{33} \\ \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{12} \\ x_{13} \\ x_{14} \\ \vdots \\ x_{44} \end{bmatrix} = \begin{bmatrix} z_{11} \\ z_{12} \\ z_{21} \\ z_{22} \end{bmatrix}$$

4x4 input, 2x2 output

Transpose Convolution

 $x_{11} \\ x_{12}$

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄
<i>x</i> ₃₁	x ₃₂	<i>x</i> ₃₃	<i>x</i> ₃₄
<i>x</i> ₄₁	<i>x</i> ₄₂	<i>x</i> ₄₃	<i>x</i> ₄₄

$\left(w_{11} \right)$	0	0	0	
w_{12}	w_{11}	0	0	
w_{13}	w_{12}	0	0	
0	W_{13}	0	0	
w_{21}	0	w_{11}	0	
w_{22}	w_{21}	w_{12}	w_{11}	
w_{23}	w_{22}	w_{13}	w_{12}	
0	W_{23}	0	w_{13}	
w_{31}	0	w_{21}	0	
w_{32}	w_{31}	W_{22}	w_{21}	
W_{33}	W_{32}	w_{23}	w_{22}	
0	W_{33}	0	w_{23}	
0	0	w_{31}	0	
0	0	W_{32}	w_{31}	
0	0	W_{33}	w_{32}	
0	0	0	w_{33}	

$$\begin{pmatrix}
z_{11} \\
z_{12} \\
z_{21} \\
z_{22}
\end{pmatrix} = \begin{pmatrix}
x_{13} \\
x_{24} \\
x_{23} \\
x_{24} \\
x_{31} \\
x_{32} \\
x_{33} \\
x_{34} \\
x_{41} \\
x_{42} \\
x_{43} \\
x_{44}
\end{pmatrix}$$

2x2 input, 4x4 output

Not an inverse of the original convolution operation, simply reverses dimension change!

W_{32} w_{31} Trans $w_{22} | w_{21}$ w_{11} w_{13} w_{12}

z_{11}	z ₁₂
z ₂₁	Z ₂₂

	<i>w</i> ₁₁	<i>w</i> ₁₂	<i>w</i> ₁₃
*T	<i>w</i> ₂₁	<i>w</i> ₂₂	W_{23}
	w ₃₁	<i>w</i> ₃₂	W ₃₃

=

 $x_{11} = w_{11} z_{11}$

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄
<i>x</i> ₃₁	x ₃₂	<i>x</i> ₃₃	<i>x</i> ₃₄
<i>x</i> ₄₁	x ₄₂	<i>x</i> ₄₃	<i>x</i> ₄₄

, ,	-3

_					
1	/ W ₁₁	0	0	0 /	١
	w_{12}	w_{11}	0	0	
	w_{13}	w_{12}	0	0	
	0	W_{13}	0	0	
	w_{21}	0	w_{11}	0	
	w_{22}	w_{21}	w_{12}	w_{11}	
	w_{23}	w_{22}	W_{13}	w_{12}	
	0	W_{23}	0	w_{13}	
	w_{31}	0	w_{21}	0	
	w_{32}	w_{31}	W_{22}	w_{21}	
	W_{33}	W_{32}	W_{23}	w_{22}	
	0	W_{33}	0	w_{23}	
	0	0	w_{31}	0	
	0	0	W_{32}	w_{31}	
	0	0	W_{33}	w_{32}	
	0	0	0	W_{33}	
	\			/	

$$\begin{pmatrix}
z_{11} \\
z_{12} \\
z_{21} \\
z_{22}
\end{pmatrix} = \begin{pmatrix}
z_{11} \\
z_{22} \\
z_{23} \\
z_{24} \\
z_{31} \\
z_{32} \\
z_{33} \\
z_{34} \\
z_{41} \\
z_{42} \\
z_{43} \\
z_{44} \\
z_{44} \\
z_{45} \\
z_{$$

$$egin{array}{c} x_{11} \\ x_{12} \\ x_{13} \\ x_{14} \\ x_{21} \\ x_{22} \\ x_{23} \\ x_{24} \\ x_{31} \\ x_{32} \\ x_{33} \\ x_{34} \\ x_{41} \\ x_{42} \\ x_{43} \\ x_{44} \\ \end{pmatrix}$$

Trans $\begin{bmatrix} w_{33} & w_{32} & w_{31} \\ w_{23} & w_{22} & w_{21} \end{bmatrix}$ Convolution $\begin{bmatrix} w_{13} & w_{12} & w_{11} \\ w_{13} & w_{12} & w_{11} \end{bmatrix}$

z ₁₁	Z ₁₂
z ₂₁	Z ₂₂

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄
<i>x</i> ₃₁	x ₃₂	<i>x</i> ₃₃	<i>x</i> ₃₄
<i>x</i> ₄₁	<i>x</i> ₄₂	<i>x</i> ₄₃	<i>x</i> ₄₄

_						
	$\left(w_{11} \right)$	0	0	0	/	x_{11}
	w_{12}	w_{11}	0	0		x_{12}
	w_{13}	w_{12}	0	0		x_{13}
	0	W_{13}	0	0		x_{14}
	w_{21}	0	w_{11}	0		x_{21}
	w_{22}	w_{21}	W_{12}	w_{11}	$ (z_{11}) $	x_{22}
	<i>w</i> ₂₃	w_{22}	W_{13}	w_{12}		x_{23}
	0	W_{23}	0	w_{13}	$\begin{vmatrix} z_{12} \\ z_{12} \end{vmatrix} =$	x_{24}
	<i>w</i> ₃₁	0	w_{21}	0	$ z_{21} $	x_{31}
	w_{32}	w_{31}	w_{22}	w_{21}	$ Z_{22} $	x_{32}
	W_{33}	W_{32}	w_{23}	w_{22}		
	0	W_{33}	0	w_{23}		x_{33}
	0	0	w_{31}	0		x_{34}
	0	0	W_{32}	w_{31}		x_{41}
	0	0	W_{33}	W_{32}		x_{42}
	0	0	0	W_{33})	x_{43}
					<i>'</i>	χ_{44}

$$\begin{array}{c|c}
x_{11} \\
x_{12} \\
x_{13} \\
x_{14} \\
x_{21} \\
x_{22} \\
x_{23} \\
x_{24} \\
x_{31} \\
x_{32} \\
x_{33} \\
x_{34} \\
x_{41} \\
x_{42} \\
x_{43} \\
\end{array}$$

W_{31} prodution Transpo w_{21}

 W_{12} w_{11}

<i>z</i> ₁₁	<i>z</i> ₁₂
<i>z</i> ₂₁	Z ₂₂

 $_*T$

<i>w</i> ₁₁	<i>w</i> ₁₂	<i>w</i> ₁₃
<i>w</i> ₂₁	<i>w</i> ₂₂	w_{23}
<i>w</i> ₃₁	w_{32}	W_{33}

 x_{14} x_{21}

 x_{22} x_{23}

 x_{24}

 x_{31}

 χ_{32}

 χ_{33}

 x_{34}

 x_{41}

 x_{42}

 x_{43}

 x_{44}

<i>x</i> ₁₁	x ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
<i>x</i> ₂₁	<i>x</i> ₂₂	x_{23}	<i>x</i> ₂₄
<i>x</i> ₃₁	x ₃₂	<i>x</i> ₃₃	<i>x</i> ₃₄
<i>x</i> ₄₁	x ₄₂	<i>x</i> ₄₃	x ₄₄

/	w_{11}	0	0	0	<u> </u>	$\int x_{11}$
			^	^		

 W_{33}

w_{12}	w_{11}	U	U
W_{13}	w_{12}	Ü	Ü
0	W_{13}	0	0
w_{21}	0	w_{11}	0
w_{22}	w_{21}	w_{12}	w_{11}
w_{23}	w_{22}	w_{13}	w_{12}

$$\begin{pmatrix} z_{11} \\ z_{12} \\ z_{21} \\ z_{22} \end{pmatrix} =$$

Convolve input with *flipped* filter
$$x_{12}$$

$$x_{13}$$

$$x_{13}$$

$$x_{14} = w_{12}z_{11} + w_{11}z_{12}$$

z_{11}	z ₁₂
z_{21}	Z ₂₂

x ₁₁	x ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
x ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄
x ₃₁	x ₃₂	<i>x</i> ₃₃	x ₃₄
<i>x</i> ₄₁	<i>x</i> ₄₂	<i>x</i> ₄₃	<i>x</i> ₄₄

)	0	0	(x_{11})	Convolve input with <i>flipped</i> filter
	Λ	Λ	24	

$$x_{12} = w_{12}z_{11} + w_{11}z_{12}$$

	$^{-12}$
	x_{13}
	x_{14}
	x_{21}
Z_{11}	x_{22}
z_{12}	x_{23}
	x_{24}
Z_{21}	x_{31}
Z_{22}	x_{32}
	x_{33}
	x_{34}
	x_{41}
	x_{42}
	x_{43}
	x_{44}

Transpos

<i>w</i> ₁₃	<i>w</i> ₁₂	w_{11}

z_{11}	z ₁₂
z ₂₁	Z ₂₂

<i>w</i> ₁₁	<i>w</i> ₁₂	<i>w</i> ₁₃
w ₂₁	w ₂₂	<i>W</i> ₂₃
w ₃₁	<i>w</i> ₃₂	W ₃₃

_	_	
=	=	

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄
<i>x</i> ₃₁	x ₃₂	<i>x</i> ₃₃	<i>x</i> ₃₄
<i>x</i> ₄₁	x ₄₂	x ₄₃	x ₄₄

$$\begin{array}{ccccccc} w_{23} & w_{22} & w_{13} & w_{12} \\ 0 & w_{23} & 0 & w_{13} \\ w_{31} & 0 & w_{21} & 0 \\ w_{32} & w_{31} & w_{22} & w_{21} \end{array}$$

U	U	w_{31}	U
0	0	w_{32}	w_{31}
0	0	w_{33}	w_{32}

$$\begin{pmatrix} x_{11} \\ x_{12} \end{pmatrix}$$

$$x_{13}$$
 x_{14}

$$= \begin{array}{c|c} x_{21} \\ x_{22} \\ x_{23} \\ x_{24} \\ x_{31} \\ x_{32} \end{array}$$

 z_{11}

 Z_{12}

 z_{21}

 Z_{22}

$$x_{23}$$
 x_{24}
 x_{31}
 x_{32}
 x_{33}
 x_{34}
 x_{41}
 x_{42}
 x_{43}

 x_{44}

$$x_{13} = w_{13}z_{11} + w_{12}z_{12}$$

Transpos

Z ₁₁	Z ₁₂
z ₂₁	Z ₂₂

x ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
x ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄
x ₃₁	x ₃₂	<i>x</i> ₃₃	x ₃₄
<i>x</i> ₄₁	<i>x</i> ₄₂	<i>x</i> ₄₃	<i>x</i> ₄₄

$$x_{13} = w_{13}z_{11} + w_{12}z_{12}$$

$$egin{array}{c} x_{11} \\ x_{12} \\ \hline x_{13} \\ \hline x_{14} \\ x_{21} \\ x_{22} \\ x_{23} \\ x_{24} \\ x_{31} \\ x_{32} \\ x_{33} \\ x_{34} \\ x_{41} \\ x_{42} \\ x_{43} \\ x_{44} \\ \hline \end{array}$$

Transpose

 x_{11}

x ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
x ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄
x ₃₁	x ₃₂	<i>x</i> ₃₃	x ₃₄
x ₄₁	x ₄₂	<i>x</i> ₄₃	x ₄₄

olve input with *flipped* filter

$$\begin{pmatrix} w_{11} & 0 & 0 & 0 \\ w_{12} & w_{11} & 0 & 0 \\ w_{13} & w_{12} & 0 & 0 \\ 0 & w_{13} & 0 & 0 \\ \end{pmatrix}$$

$$\begin{pmatrix} w_{21} & 0 & w_{11} & 0 \\ w_{22} & w_{21} & w_{12} & w_{11} \\ w_{23} & w_{22} & w_{13} & w_{12} \\ 0 & w_{23} & 0 & w_{13} \\ w_{31} & 0 & w_{21} & 0 \\ w_{32} & w_{31} & w_{22} & w_{21} \\ w_{33} & w_{32} & w_{23} & w_{22} \\ 0 & w_{33} & 0 & w_{23} \\ 0 & 0 & w_{31} & 0 \\ 0 & 0 & w_{32} & w_{31} \\ 0 & 0 & w_{33} & w_{32} \\ 0 & 0 & 0 & w_{33} \end{pmatrix}$$

$$x_{12}$$
 x_{13}
 x_{14}
 x_{21}
 x_{22}
 x_{23}
 x_{24}
 x_{31}
 x_{32}
 x_{33}
 x_{34}
 x_{41}
 x_{42}
 x_{43}

 x_{44}

$$x_{14} = w_{13} z_{12}$$

W_{31} Trans nvelution W_{13} w_{11} W_{12}

z_{11}	z_{12}
z_{21}	Z_{22}

<i>w</i> ₁₁	w ₁₂	<i>w</i> ₁₃
<i>w</i> ₂₁	<i>w</i> ₂₂	W_{23}
<i>w</i> ₃₁	w_{32}	W_{33}

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄
<i>x</i> ₃₁	x ₃₂	<i>x</i> ₃₃	<i>x</i> ₃₄
<i>x</i> ₄₁	x ₄₂	<i>x</i> ₄₃	<i>x</i> ₄₄

$\left(w_{11} \right)$	0	0	0 /)
w_{12}	w_{11}	0	0	
w_{13}	w_{12}	0	0	
0	W_{13}	0	0	
<i>w</i> ₂₁	0	w_{11}	0	
w ₂₂	w_{21}	w_{12}	w_{11}	$\left(z_{11}\right)$
w_{23}	w_{22}	w_{13}	w_{12}	
0	w_{23}	0	w_{13}	$ z_{12} $
<i>w</i> ₃₁	0	w_{21}	0	$ z_{21}$
w_{32}	w_{31}	w_{22}	w_{21}	$ z_{22} $
w_{33}	w_{32}	w_{23}	w_{22}	
0	W_{33}	0	w_{23}	
0	0	w_{31}	0	

 w_{32}

 w_{31}

 W_{32}

 W_{33}

$$egin{array}{c} x_{12} \\ x_{13} \\ x_{14} \\ \hline x_{21} \\ x_{22} \\ x_{23} \\ x_{24} \\ x_{31} \\ x_{32} \\ x_{33} \\ x_{34} \\ x_{41} \\ x_{42} \\ x_{43} \\ x_{44} \\ \hline \end{array}$$

 x_{11}

$$x_{21} = w_{21}z_{11} + w_{11}z_{21}$$

 W_{12} w_{11}

Z ₁₁	Z ₁₂
Z ₂₁	z ₂₂

*T

<i>w</i> ₁₁	<i>w</i> ₁₂	<i>w</i> ₁₃
<i>w</i> ₂₁	<i>w</i> ₂₂	W ₂₃
<i>w</i> ₃₁	w_{32}	W_{33}

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄
<i>x</i> ₃₁	x ₃₂	<i>x</i> ₃₃	<i>x</i> ₃₄
<i>x</i> ₄₁	x ₄₂	<i>x</i> ₄₃	<i>x</i> ₄₄

Convolve input with flipped filter

$$\begin{vmatrix} w_{11} & 0 & 0 & 0 \\ w_{12} & w_{11} & 0 & 0 \\ w_{13} & w_{12} & 0 & 0 \\ 0 & w_{13} & 0 & 0 \\ \cdots & & & & 0 \end{vmatrix}$$

W_{22}	w_{21}	w_{12}	w_{11}
w_{23}	w_{22}	w_{13}	W_{12}
0	w_{23}	0	W_{13}
w_{31}	0	w_{21}	0

$$egin{array}{ccccc} w_{32} & w_{31} & w_{22} & w_{21} \\ w_{33} & w_{32} & w_{23} & w_{22} \\ 0 & w_{33} & 0 & w_{23} \\ \end{array}$$

0	0	w_{31}	0
0	0	w_{32}	w_{31}
0	0	W_{33}	W_{32}

$$0 0 0 w_{33} w_{32}$$

$$\begin{cases}
 x_{11} \\
 x_{12} \\
 x_{13}
 \end{cases}$$

 x_{14} x_{21}

 x_{22}

z_{11}	
z_{12}	_
z_{21}	

 Z_{22}

$$egin{array}{c} x_{23} \\ x_{24} \\ x_{31} \\ x_{32} \\ x_{33} \\ x_{34} \\ x_{41} \\ x_{42} \\ x_{43} \\ \end{array}$$

 x_{44}

$$x_{22} = w_{22}z_{11} + w_{21}z_{12} + w_{12}z_{21} + w_{11}z_{22}$$

Transpos

 $*^T$

w13	W12	VV
Z _{1.1}	Z ₁₂	

 $egin{array}{cccc} z_{12} & & & & & & \\ z_{1} & z_{22} & & & & & \\ \end{array}$

<i>w</i> ₁₁	<i>w</i> ₁₂	<i>w</i> ₁₃
w ₂₁	w ₂₂	<i>w</i> ₂₃
<i>w</i> ₃₁	w_{32}	W ₃₃

 x_{11}

 x_{12}

 x_{13}

 x_{14}

 x_{21}

 x_{22}

 x_{23}

 x_{24}

 x_{31}

 χ_{32}

 χ_{33}

 χ_{34}

 x_{41}

 x_{42}

 χ_{43}

 x_{44}

_	_
	=
	=

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄
<i>x</i> ₃₁	x ₃₂	<i>x</i> ₃₃	<i>x</i> ₃₄
<i>x</i> ₄₁	x ₄₂	<i>x</i> ₄₃	<i>x</i> ₄₄

Convolve input with flipped filter

$$\begin{pmatrix} w_{11} & 0 & 0 & 0 \\ w_{12} & w_{11} & 0 & 0 \\ w_{13} & w_{12} & 0 & 0 \\ 0 & w_{13} & 0 & 0 \\ w_{21} & 0 & w_{11} & 0 \\ w_{22} & w_{21} & w_{12} & w_{11} \\ \hline & w_{23} & w_{22} & w_{13} & w_{12} \\ \hline & 0 & w_{23} & 0 & w_{13} \\ w_{31} & 0 & w_{21} & 0 \\ w_{32} & w_{31} & w_{22} & w_{21} \\ w_{33} & w_{32} & w_{23} & w_{22} \\ 0 & w_{33} & 0 & w_{23} \\ 0 & 0 & w_{31} & 0 \\ 0 & 0 & w_{32} & w_{31} \\ 0 & 0 & w_{33} & w_{32} \\ 0 & 0 & 0 & w_{33} \end{pmatrix} = \begin{bmatrix} Z_{11} \\ Z_{21} \\ Z_{22} \end{bmatrix} =$$

$$x_{23} = w_{23}z_{11} + w_{22}z_{12} + w_{13}z_{21} + w_{12}z_{22}$$

Transpose Convolution

Advanced Techniques in Segmentation

U-Net

Visualizing Deep Networks using "Saliency map"

Zhou et al. 2016

Visualizing Deep Networks by maximizing activation

Visualization by optimization

 We can synthesize images that maximize activation of a given neuron.

• Find image x maximizing target activation f(x) subject to natural image regularization penalty R(x):

$$x^* = \arg\max_{x} f(x) - \lambda R(x)$$

Visualization by optimization

- Maximize $f(x) \lambda R(x)$
 - f(x) is score for a category before softmax
 - R(x) is L2 regularization
 - Perform gradient ascent starting with zero image, add dataset mean to result

Simonyan et al. 2014

Visualization by optimization

BP the gradients, but do not train the network

Keep adding/aggregating the gradients under constraint R(x)

Google DeepDream

Amplify one layer instead of just one neuron.

Choose an image and a layer in a CNN; repeat:

- 1. Forward: compute activations at chosen layer
- 2. Set gradient of chosen layer equal to its activation Equivalent to maximizing $\sum_{i} f_{i}^{2}(x)$
- 3. Backward: Compute gradient w.r.t. image
- 4. Update image (with some tricks)

Next Class

Object Detection