Class 7: Machine Learning

Pagna Hout

4/26/23

Example of K-means clustering

First step is to make up some data with a known structure, so we know what the answer should be.

```
tmp <- c(rnorm (30, mean = -3), rnorm (30, mean = 3))
x <- cbind(x = tmp, y = rev(tmp))
plot(x)</pre>
```


Now we have some structured data in x. Let's see if k-means is able to identify the two groups.

```
k <- kmeans (x, centers = 2, nstart = 20)
k</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

```
x y
1 3.011910 -3.177176
2 -3.177176 3.011910
```

Clustering vector:

Within cluster sum of squares by cluster:

```
[1] 61.87937 61.87937 (between_SS / total_SS = 90.3 %)
```

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"

Let's explore k:

```
k$centers
```

```
x y
1 3.011910 -3.177176
2 -3.177176 3.011910
```

Adding colors to each clusters:

```
plot(x, col = k$cluster)
```


Adding the clusters centers:

```
plot(x, col = k$cluster)
points(k$centers, col = 'blue', pch = 15)
```


Example of Hierarchical Clustering

Let's use the same data as before, which we stored in 'x'. We will use the 'hclust()' function.

```
clustering <- hclust(dist(x))
clustering</pre>
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

plot(clustering)

Cluster Dendrogram

dist(x) hclust (*, "complete")

Let's add an horizontal line.

```
plot(clustering)
abline(h = 10, col = 'pink')
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

To get our results (i.e., membership vector), we need to cut the tree. The function for doing that is cutree().

```
subgroups <- cutree(clustering, h=10)
subgroups</pre>
```

Plotting this...

```
plot(x, col = subgroups)
```


You can also "cut" your tree with a number of clusters you want:

```
cutree(clustering, k = 2)
```

Principle Component Analysis (PCA)

PCA of UK Food

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names = 1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other meat	685	803	750	586

Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Now we can generate some basic visualizations.

```
barplot(as.matrix(x), col = rainbow(nrow(x)))
```


Refining our barplot:

```
barplot(as.matrix(x), col = rainbow(nrow(x)), beside=T)
```


Other visualizations that can be useful...

```
pairs(x, col = rainbow(nrow(x)), pch = 16 )
```


Applying PCA... using the command "prcomp()". This function expects the transpose of our data (flipping rows and columns).

```
#transpose_matrix <- t(x)
#pca <- prcomp(transpose_matrix)

#combining the two lines to make the code shorter
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

Let's plot the PCA results.

```
plot(pca)
```


We need to access the results of the PCA analysis:

```
attributes(pca)
```

\$names

[1] "sdev" "rotation" "center" "scale" "x"

\$class

[1] "prcomp"

We can explore the pca\$x dataframe

pca\$x

	PC1	PC2	PC3	PC4
England	-144.99315	2.532999	-105.768945	1.042460e-14
Wales	-240.52915	224.646925	56.475555	9.556806e-13
Scotland	-91.86934	-286.081786	44.415495	-1.257152e-12
N.Ireland	477.39164	58.901862	4.877895	2.872787e-13

Plotting:

```
plot( x = pca$x[,1], y = pca$x[,2] )
```


Adding colors and labels...

```
plot( x = pca$x[,1], y = pca$x[,2] )
colors_countries <- c('orange', 'pink', 'blue', 'green')
text( x = pca$x[,1], y = pca$x[,2], colnames(x), col = colors_countries )</pre>
```



```
## Lets focus on PC1 as it accounts for > 90% of variance
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```


PCA of RNA-seq data

Loading the data...

```
url2 <- "https://tinyurl.com/expression-CSV"
rna.data <- read.csv(url2, row.names=1)</pre>
```

Q10: How many genes and samples are in this data set?

```
dim(rna.data)
```

[1] 100 10

Answer: There are 100 genes and 10 samples.

Applying PCA...

```
pca_rna = prcomp(t(rna.data))
summary(pca_rna)
```

Importance of components:

```
PC1
                                    PC2
                                             PC3
                                                      PC4
                                                               PC5
                                                                        PC6
Standard deviation
                      2214.2633 88.9209 84.33908 77.74094 69.66341 67.78516
Proportion of Variance
                         0.9917 0.0016 0.00144 0.00122
                                                           0.00098
                                                                    0.00093
Cumulative Proportion
                         0.9917 0.9933 0.99471
                                                  0.99593 0.99691 0.99784
                           PC7
                                    PC8
                                             PC9
                                                      PC10
Standard deviation
                      65.29428 59.90981 53.20803 2.715e-13
Proportion of Variance 0.00086
                                0.00073 0.00057 0.000e+00
Cumulative Proportion
                       0.99870 0.99943 1.00000 1.000e+00
```

Plotting principle components 1 and 2.

```
plot(pca_rna$x[,1], pca_rna$x[,2], xlab='PC1', ylab='PC2')
```



```
#colnames(rna.data)
cols_samples <- c(rep('blue', 5), rep('red', 5))
cols_samples

[1] "blue" "blue" "blue" "blue" "blue" "red" "red" "red" "red"

#using cols_samples to plot
plot(pca_rna$x[,1], pca_rna$x[,2], xlab='PC1', ylab='PC2', col = cols_samples )</pre>
```


barplot(pca_rna\$rotation[,1])

gene50	gene18	gene3	gene57	gene75	gene79
-0.188796985	-0.185668500	-0.183374164	-0.160771014	-0.153164404	-0.146803635
gene56	gene61	gene27	gene17	gene44	gene13
-0.132330117	-0.124572881	-0.123615228	-0.122536548	-0.117808971	-0.113357525
gene59	gene54	gene53	gene25	gene1	gene39
-0.103935563	-0.102503320	-0.093979884	-0.083761992	-0.081247810	-0.077306742
gene82	gene29	gene58	gene51	gene49	gene86
-0.076658760	-0.075605635	-0.075274651	-0.069855142	-0.069530208	-0.069165267
gene91	gene32	gene19	gene94	-	gene11
-0.065288752	-0.064721235	-0.062411218	-0.061938300	-0.059547317	-0.055698801
gene81	gene40	gene31	gene46	gene70	gene77
-0.043780416	-0.037323670	-0.037219970	-0.031990529	-0.030784982	-0.029225446
gene78	gene24	gene12	gene26	gene96	gene80
-0.025639741	-0.025407507	-0.024870802	-0.022868107	-0.022293151	
gene43	gene42	gene65	gene64	gene9	gene84
-0.020617052	-0.014550791	-0.014052839	-0.012639567	-0.007495075	-0.001289937
gene83	gene69	gene4	gene5	gene97	gene37
0.008504287	0.008871890	0.014242602	0.014303808	0.014994546	0.021280555
gene88	gene8	gene89	gene6	gene92	gene35
0.024015925	0.024026657	0.027652967	0.028634131	0.029394259	0.031349942
gene95	gene71	gene52	gene67	gene74	gene73
0.035342407	0.035589259	0.035802086	0.037840851	0.044286948	0.044581700
gene93	gene15	gene36	gene14	gene22	gene2
0.044940861	0.049090676	0.051765605	0.052004194	0.053013523	0.053465569
gene63	gene7	gene38	gene47	gene33	gene20
0.060529157	0.063389255	0.066665407	0.067141911	0.068437703	0.071571203
gene72	gene16	gene30	gene76	gene55	gene34
0.078551648	0.081254592	0.089150461	0.104435777	0.114988217	0.119604059
gene85	gene68	gene28	gene99	gene100	gene41
0.134907896	0.144227333	0.150812015	0.151678253	0.152877246	0.153077075
gene23	gene66	gene90	gene60	gene62	gene48
0.165155192	0.171311307	0.173156806	0.183139926	0.184203008	0.190495289
gene21	gene10	gene45	gene98		
0.194884023	0.197905454	0.225149201	0.230633225		

Questions

 ${\bf Q1}$. How many rows and columns are in your new data frame named ${\bf x}$? What R functions could you use to answer this questions?

There are 17 rows and 4 columns in the new data frame named x.

R function used: dim(x)

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

I prefer the row.names =1 better because it gives a straightforward direction as to putting column #1 as the name of the row. I think this approach is better than the other one because if we replace x to another value than the x from before would be replaced.

Q3: Changing what optional argument in the above **barplot()** function results in the following plot?

Adding beside=T in the barplot() function.

Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

The code displays a matrix of scatterplots. The diagonal shows the names of the variables of the data. The points in the scatterplot represents the differences or similarities between the two compared variables. If a given point lies on the diagonal, it means that the two variables are correlated.

Q6. What is the main differences between N. Ireland and the other countries of the UK in terms of this data-set?

Based on the data set, people in Northern Ireland eat more fresh potatoes than other countries of the UK, and there is a lower amount of people who consume alcoholic drinks.

Q7. Complete the code below to generate a plot of PC1 vs PC2. The second line adds text labels over the data points.

```
# Plot PC1 vs PC2
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x))
```

Q8. Customize your plot so that the colors of the country names match the colors in our UK and Ireland map and table at start of this document.

```
plot( x = pca$x[,1], y = pca$x[,2] )

colors_countries <- c('orange', 'pink', 'blue', 'green')

text( x = pca$x[,1], y = pca$x[,2], colnames(x), col = colors countries )
```

Q9: Generate a similar 'loadings plot' for PC2. What two food groups feature prominantely and what does PC2 maniply tell us about?

PC2 mainly tell us about the second most variation in the data. The two food groups are fresh potatoes and soft drinks.

Q10: How many genes and samples are in this data set?

There are 100 genes and 10 samples in this data set.