ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ **ΓΟCT P** 52857.11— 2007

Сосуды и аппараты

НОРМЫ И МЕТОДЫ РАСЧЕТА НА ПРОЧНОСТЬ

Метод расчета на прочность обечаек и днищ с учетом смещения кромок сварных соединений, угловатости и некруглости обечаек

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0 — 2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- 1 РАЗРАБОТАН Открытым акционерным обществом «Научно-исследовательский и конструкторский институт химического машиностроения» (ОАО НИИХИММАШ); Закрытым акционерным обществом «Петрохим Инжиниринг» (ЗАО Петрохим Инжиниринг); Открытым акционерным обществом «Всероссийский научно-исследовательский и проектно-конструкторский институт нефтяного машиностроения» (ОАО ВНИИНЕФТЕМАШ); Федеральной службой по экологическому, технологическому и атомному надзору (Ростехнадзор)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 260 «Оборудование химическое и нефтегазоперерабатывающее»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2007 г. № 503-ст
- 4 В настоящем стандарте учтены основные нормативные положения следующих международных и европейских стандартов: Директивы 97/23 ЕС Европейского Парламента и Совета от 29 мая 1997 г. по сближению законодательств государств-членов, касающейся оборудования, работающего под давлением; ЕН 13445-3: 2002 «Сосуды, работающие под давлением. Часть 3. Расчет» (EN 13445-3: 2002 «Unfired pressure vessel Part 3: Design»)

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

ΓΟCT P 52857.11—2007

Содержание

1	Область применения
2	Нормативные ссылки
3	Обозначения
4	Общие положения
5	Смещение кромок сварных швов
6	Общая некруглость цилиндрических обечаек (овальность)
7	Локальная некруглость (увод сварных соединений, вмятины)
Π	риложение А (справочное) Рисунки, поясняющие текст стандарта

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Сосуды и аппараты

НОРМЫ И МЕТОДЫ РАСЧЕТА НА ПРОЧНОСТЬ

Метод расчета на прочность обечаек и днищ с учетом смещения кромок сварных соединений, угловатости и некруглости обечаек

Vessels and apparatus. Norms and methods of strength calculation.

Method of strength calculation of shells and heads according to weld misalignment,
angular misalignment and shell nonroundness

Дата введения — 2008—04—01

1 Область применения

Настоящий стандарт устанавливает нормы и методы расчета на прочность обечаек, выпуклых днищ и крышек сосудов и аппаратов, работающих в условиях однократных и многократных статических нагрузок под внутренним или наружным давлением, с учетом отклонений от правильной геометрической формы (общая и локальная некруглости, угловатость, смещение кромок сварных соединений).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты: ГОСТ Р 52857.1 — 2007 Сосуды и аппараты. Нормы и методы расчета на прочность. Общие требова-

ГОСТ Р 52857.2 — 2007 Сосуды и аппараты. Нормы и методы расчета на прочность. Расчет цилиндрических и конических обечаек, выпуклых и плоских днищ и крышек

ГОСТ Р 52857.6 — 2007 Сосуды и аппараты. Нормы и методы расчета на прочность. Расчет на прочность при малоцикловых нагрузках

ГОСТ Р 52630 — 2006 Сосуды и аппараты стальные сварные. Общие технические условия

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Обозначения

В настоящем стандарте применены следующие обозначения:

- а параметр, характеризующий некруглость, %;
- c сумма прибавок к расчетной толщине стенки обечайки, мм;
- D внутренний диаметр идеальной обечайки, мм;
- $D_{\rm K}$ расчетный диаметр гладкой конической обечайки, мм;
- D_{max} наибольший наружный диаметр обечайки, мм;

 D_{\min} — наименьший наружный диаметр обечайки, мм;

Е — модуль продольной упругости при расчетной температуре, МПа;

f— геометрический параметр обечайки;

 K_1, K_2, K_v — безразмерные коэффициенты;

 $K_{\rm s}$ — эффективный коэффициент концентрации напряжений для сварных швов;

I — расчетная длина гладкой обечайки, мм (см);

[//] — допускаемое число циклов нагружения;

n — параметр зоны некруглости;

 $n_{\rm v}$ — коэффициент запаса устойчивости;

p — расчетное внутреннее избыточное или наружное давление, МПа;

[р] — допускаемое внутреннее избыточное или наружное давление, МПа;

 $[p]_E^0$ — допускаемое наружное давление из условия устойчивости в пределах упругости для обечайки с отклонениями формы, МПа;

[p]_E — допускаемое наружное давление из условия устойчивости в пределах упругости для оболочки круговой формы (без дефектов), МПа;

 $ho_{ ext{ iny KD}}$ — критическое давление длинной обечайки, МПа;

 $[p]_p$ — допускаемое наружное давление из условия прочности ϕ = 1, МПа;

 $R_{m/t}$ — минимальное значение временного сопротивления (предела прочности) при расчетной температуре, МПа;

 $R_{e/t}(R_{p0,2/t})$ — предел текучести материала при расчетной температуре, МПа;

 $r_{\rm B}$ — радиус вмятины в плане, мм;

s — исполнительная толщина стенки обечайки, мм;

 s_{κ} — исполнительная толщина стенки конической обечайки, мм;

 α_{σ} — коэффициент концентрации напряжений;

 δ — величина отклонения от идеальной круговой формы или величина смещения и увода кромок, мм;

 $\lambda_0, \lambda_{0\nu}, \lambda_1, \lambda_{1\nu}$ — безразмерные коэффициенты;

 σ_{H} — номинальное напряжение, МПа;

σ_а — амплитуда напряжений, МПа;

 $[\sigma_{a}]$ — допускаемая амплитуда напряжений, МПа;

[σ] — допускаемое напряжение для материала обечайки при расчетной температуре, МПа;

ф — коэффициент прочности сварных швов;

ψ — половина центрального угла зоны некруглости, рад.

4 Общие положения

- 4.1 Приведенный в настоящем стандарте расчет применим, если предварительно определены толщины стенок элементов и допускаемые давления для элементов сосудов и аппаратов, удовлетворяющих техническим требованиям к качеству изготовления и контроля по нормативным документам.
- 4.2 Расчетные значения допускаемых напряжений и механических характеристик материала принимаются по ГОСТ Р 52857.1.
- 4.3 Формулы применимы для сосудов, изготовленных из материалов, пластичных в условиях эксплуатации.
- 4.4 Методы расчета не применимы при сочетании отдельных дефектов в расчетных элементах. В отдельных случаях методы расчета могут быть применены при наличии нескольких дефектов в расчетном элементе сосуда, если расстояние между ними превышает $1,5\sqrt{Ds}$.
- 4.5 Приведенные методы расчета допустимы, если неточности изготовления (за исключением смещения стенок кольцевых сварных швов) находятся от штуцеров, фланцевых соединений, колец жесткости и т.п. на расстоянии не менее $1.5\sqrt{Ds}$.
- 4.6 Максимальные напряжения в местах нарушения правильной формы обечаек и днищ определяются в предположении неограниченной упругости материала согласно ГОСТ Р 52857.1 (пункт 8.10).
- 4.7 Допускается проводить оценку прочности сосудов и аппаратов с учетом отклонений от идеальной формы с помощью специальных исследований, например экспериментальным методом или численными методами, например конечных элементов.

37*

5 Смещение кромок сварных швов (см. рисунки А.1, А.2)

5.1 Смещение кромок продольного сварного шва цилиндрической или конической обечайки 5.1.1 Проверка прочности при нагружении внутренним избыточным давлением

Максимальное напряжение для цилиндрической обечайки вычисляют по формуле

$$\sigma_{\text{max}} = \frac{pD}{2(s-c)} \left[1 + 3 \frac{\delta}{s-c} \right]. \tag{1}$$

Условие прочности σ_{max} ≤ 1,5 ϕ [σ],

где [σ] — допускаемое напряжение по ГОСТ Р 52857.1;

 ϕ — коэффициент прочности сварного шва, определяемый по ГОСТ Р 52857.1.

Максимальное напряжение для конической обечайки вычисляют по формуле

$$\sigma_{\text{max}} = \frac{pD_{\text{p}}}{2(s-c)\cos\alpha} \left[1 + 3\frac{\delta}{s-c} \right]. \tag{2}$$

 $D_{\rm p}$ наибольший внутренний диаметр конической обечайки в месте смещения кромок сварного шва. Условие прочности $\sigma_{\rm max} \leq 1,5\phi$ [σ],

где [σ] — допускаемое напряжение по ГОСТ Р 52857.1;

φ — коэффициент прочности сварного шва, определяемый по ГОСТ Р 52857.1.

5.1.2 Проверка устойчивости при нагружении внешним давлением

Допускаемое внешнее давление вычисляют по формуле

$$[p] = \frac{[p]_p}{\sqrt{1 + \left(\frac{[p]_p}{[p]_E}\right)^2}}.$$
(3)

Допускаемое давление из условий устойчивости $[p]_E$ определяют по ГОСТ Р 52857.2.

Допускаемое давление из условий прочности вычисляют по формуле

- для цилиндрической обечайки:

$$[\rho]_{p} = \frac{2[\sigma](s-c)}{D+(s-c)}\lambda_{1}; \tag{4}$$

- для конической обечайки:

$$[\rho]_{p} = \frac{2[\sigma](s_{k} - c)}{\frac{D_{k}}{\cos \alpha} + (s_{k} - c)} \lambda_{1}.$$
 (5)

Коэффициент λ_1 равняется:

$$\lambda_1 = 1 \quad \text{при } \frac{\delta}{s} \le 0,1;$$

$$\lambda_1 = \frac{1,105}{\frac{\delta}{s} + \sqrt{\left(\frac{\delta}{s}\right)^2 + 1}} \quad \text{при } \frac{\delta}{s} > 0,1.$$
 (6)

5.2 Смещение кромок кольцевого сварного шва в цилиндрической или конической обечайке

5.2.1 Проверка прочности при нагружении внутренним избыточным давлением

Максимальное напряжение для цилиндрической обечайки вычисляют по формуле

$$\sigma_{\text{max}} = \frac{pD}{4(s-c)} \left[1 + 3 \frac{\delta}{s-c} \right]. \tag{7}$$

Условие прочности σ_{max} ≤ 1,5 ϕ [σ],

где $[\sigma]$ — допускаемое напряжение по ГОСТ Р 52857.1;

φ — коэффициент прочности сварного шва, определяемый по ГОСТ Р 52857.1.

Максимальное напряжение для конической обечайки вычисляют по формуле

$$\sigma_{\text{max}} = \frac{pD_{\text{p}}}{4(s-c)\cos\alpha} \left[1 + 3\frac{\delta}{s-c} \right]. \tag{8}$$

 $D_{\rm p}$ — внутренний диаметр конической обечайки в месте, где расположен кольцевой сварной шов со смещением.

Условие прочности $\sigma_{\text{max}} \le 1,5\phi$ [σ],

где [σ] — допускаемое напряжение по ГОСТ Р 52857.1;

ф — коэффициент прочности сварного шва, определяемый по ГОСТ Р 52857.1.

5.2.2 Проверка устойчивости при нагружении внешним давлением по ГОСТ Р 52857.2.

5.3 Оценка малоцикловой прочности по ГОСТ Р 52857.6

Амплитуду напряжений вычисляют по формуле

$$\sigma_{a} = K_{3} \frac{\sigma_{\text{max}}}{2}.$$
 (9)

Эффективный коэффициент концентрации по таблице 1.

Условие прочности при циклическом нагружении $\sigma_a \leq [\sigma_a]$.

6 Общая некруглость цилиндрических обечаек (овальность) (см. рисунок А.3)

Под общей некруглостью (овальностью) понимается общее отклонение от круговой формы по всему периметру поперечного сечения цилиндрической обечайки.

Некруглость вычисляют по формуле

$$a = \frac{2(D_{\text{max}} - D_{\text{min}})}{D_{\text{max}} + D_{\text{min}}} 100\%. \tag{11}$$

6.1 Проверка прочности при нагружении внутренним избыточным давлением

Максимальное напряжение вычисляют по формуле

$$\sigma_{\text{max}} = \frac{pD}{2(s-c)} \left[1 + \frac{3a \frac{D}{200(s-c)}}{1 + 0.455 \frac{p}{E} \left(\frac{D}{s-c} \right)^3} \right].$$
 (12)

Предварительно проверяется условие прочности без учета овальности по ГОСТ Р 52857.2. Затем проверяется условие прочности с учетом овальности обечайки по формуле

$$\sigma_{\text{max}} \leq 3\phi \, [\sigma].$$

Условие прочности при малоцикловой нагрузке:

$$\sigma_a \leq [\sigma]_a$$
.

Амплитуду напряжений при малоцикловой нагрузке вычисляют по формуле

$$\sigma_{a} = \frac{pD}{4(s-c)} \left[1 + 3a \frac{D}{200(s-c)} \right]. \tag{13}$$

6.2 Расчет обечаек, нагруженных наружным давлением

6.2.1 Допускаемое наружное давление вычисляют по формуле

$$[\rho] = \frac{[\rho]_{p}}{\sqrt{1 + \left(\frac{[\rho]_{p}}{[\rho]_{E}^{0}}\right)^{2}}}.$$
(14)

Допускаемое давление $[p]_E^0$ из условия устойчивости овальной обечайки в пределах упругости вычисляют по формуле

- при
$$a \le 0.5 \%$$
 $[p]_{E}^{0} = [p]_{E}$,
- при $0.5 \% \le a \le 2 \%$ $[p]_{E}^{0} = \frac{[p]_{E}}{1 + 1.5 af \frac{[p]_{E}}{p_{T}} n_{y}}$; (15)

$$\rho_{\mathsf{T}} = \frac{2R_{p0,2/t}(s-c)}{D+(s-c)};\tag{16}$$

Допускаемое давление $[p]_{\rm p}$ из условия прочности вычисляют по формуле

$$[p]_{p} = \frac{2[\sigma](s-c)}{D+(s-c)}\lambda_{0y}, \qquad (18)$$

где λ_{0v} = 1 при $a \le 0.5$ %,

$$\lambda_{0y} = \frac{\frac{DK_y}{400(s-c)} + \sqrt{\left(\frac{DK_y}{400(s-c)}\right)^2 + 1}}{\frac{aDK_y}{200(s-c)} + \sqrt{\left(\frac{aDK_y}{200(s-c)}\right)^2 + 1}} \text{ при } 0,5\% < a \le 2\%.$$
(19)

Коэффициент K_{y} рассчитывают по соотношениям:

при
$$\frac{l}{D} > \sqrt{\frac{D}{2(s-c)}}$$
 $K_y = \frac{1}{1 - \frac{p}{p_{\text{kp}}}},$ при $\frac{l}{D} \le \sqrt{\frac{D}{2(s-c)}}$ $K_y = 1$ (20)

где
$$p_{\text{кр}} = 0.275 \left[\frac{2(s-c)}{D} \right]^3 E.$$
 (21)

6.2.2 Амплитуду напряжений в условиях циклического нагружения наружным давлением вычисляют по формуле

$$\sigma_{a} = \frac{pD}{4(s-c)} \left[1 + \frac{3aDK_{y}}{200(s-c)} \right]. \tag{22}$$

Условие прочности при циклической нагрузке:

$$\sigma_a \leq [\sigma_a]$$
.

7 Локальная некруглость (увод сварных соединений, вмятины) (см. рисунок A.4)

Под локальной некруглостью понимаются отклонения оболочки от правильной формы распределенной на части окружности, обусловленные уводом кромок сварного шва или вмятиной.

7.1 Проверка прочности при нагружении внутренним избыточным давлением

7.1.1 Определение максимальных напряжений

Максимальное напряжение вычисляют по формулам:

- при вытянутой вдоль оси обечайки вмятине или при уводе сварного шва (угловатость):

$$\sigma_{\text{max}} = \frac{pD}{2(s-c)} \left[1 + \frac{\frac{6\delta}{(s-c)}}{1 + \frac{1,365}{n^2 - 1} \frac{p}{E} \left(\frac{D}{s-c} \right)^3} \right], \tag{23}$$

где $n = \frac{\pi}{2w}$ — параметр, характеризующий зону отклонения (см. рисунок A.4);

- при круговой в плане вмятине:

$$\sigma_{\text{max}} = \alpha_{\sigma} \sigma_{\text{H}}.$$
 (24)

Номинальное напряжение вычисляют по формулам:

- для цилиндрической обечайки:

$$\sigma_{H} = \frac{pD}{2(s-c)}; \tag{25}$$

- для выпуклого днища:

$$\sigma_{\rm H} = \frac{\rho R_{\rm p}}{2(s-c)},\tag{26}$$

где $R_{\rm p}$ — радиус кривизны выпуклого днища в зоне вмятины. Коэффициент концентрации вычисляют по формуле

$$\alpha_{\sigma} = 1 + B \left(\frac{\delta'}{s} \right)^m, \tag{27}$$

где для цилиндрической обечайки:

$$B = -0.234 \frac{r_{\rm B}^2}{D\,\rm s} + \frac{r_{\rm B}}{\sqrt{D\,\rm s}} + 1.05,$$

$$m = 0.222 \frac{r_{\rm B}}{\sqrt{D \, \rm s}} + 0.358,$$

$$\delta' = \delta (1 - \sigma_{\rm H} / R_{m/t});$$

ГОСТ P 52857.11—2007

- для сферического днища:

$$B = -0.216 \frac{r_{\rm B}^2}{R_{\rm p} \, \rm s} + 0.84 \, \frac{r_{\rm B}}{\sqrt{R_{\rm p} \, \rm s}} + 1.36,$$

$$m = 0.315 \frac{r_{\rm B}}{\sqrt{R_{\rm p} \, \rm s}} + 0.232,$$

$$\delta' = \delta (1 - \sigma_{\rm H} / R_{m/t}).$$

7.1.2 Проверка прочности

Предварительно проверяют условие прочности без учета отклонений от идеальной геометрической формы обечаек по ГОСТ Р 52857.2. Затем проверяют условие прочности с учетом местных напряжений по формуле

$$\sigma_{\text{max}} \le 3\phi \, [\sigma].$$
 (28)

7.2 Расчет обечаек, нагруженных наружным давлением

Допускаемое давление вычисляют по формулам (14)—(17). Параметр *а*, входящий в формулу (15), вычисляют по формулам:

$$a = \frac{4\delta}{D}$$
100% — в случае вмятины; (29)

а = 0 — в случае наружного увода кромок (наружной вмятины) [см. рисунок А.4б].

Давление $[p]_p$ вычисляют по формуле

$$[p]_{p} = \frac{2[\sigma](s-c)}{D+(s-c)}\lambda_{1y},$$
(30)

где $\lambda_{1\nu}$ вычисляют по формулам:

- при толщине листов s ≤ 20 мм

при
$$\frac{\delta}{s} \le 0,1$$
 $\lambda_{1y} = 1$

при
$$\frac{\delta}{s} > 0,1$$
 $\lambda_{1y} = \frac{1,105}{\frac{\delta}{s} \kappa_y + \sqrt{\left(\frac{\delta}{s} \kappa_y\right)^2 + 1}};$

- при толщине листов от 20 до 50 мм

при
$$\frac{\delta}{s} \le 0.15$$
 $\lambda_{1y} = 1$

при
$$\frac{\delta}{s} > 0,15$$

$$\lambda_{1y} = \frac{1,160}{\frac{\delta}{s} \, K_y \, + \sqrt{\left(\frac{\delta}{s} \, K_y\right)^2 \, + \, 1}}.$$

Если увод кромок (вмятины) направлен наружу, то при вычислении $[p]_p \ K_y$ принимают равным единице.

7.3 При циклической нагрузке условия прочности проверяют по формуле

$$\sigma_a = 0.5 K_a \sigma_{max} \leq [\sigma_a].$$

Эффективный коэффициент концентрации $K_{\mathfrak{g}}$ определяют по таблице 1.

Таблица 1

Характеристика сварного шва	Схема сварного шва	Эффективный коэффициент концентрации напряжений	
		Углеродистая сталь	Низколегированная и аустенитная сталь
Стыковой сварной шов с плавным переходом и полным проваром		1,0	1,0
Стыковой сварной шов с подкладным листом по всей длине шва		1,2	1,4
Стыковой сварной шов (односторонний) с неполным проваром		1,5	1,8
Стыковой шов со смеще- нием кромок		1,3	1,5

Приложение A (справочное)

Рисунки, поясняющие текст стандарта

а — продольный сварной шов

 δ — кольцевые сварные швы

Рисунок А.1 — Смещение кромок

а — наружный увод кромок

 δ — внутренний увод кромок

Рисунок А.2 — Увод кромок кольцевого шва

Рисунок А.3 — Общая некруглость

Рисунок А.4 — Локальная некруглость

ГОСТ Р 52857.11—2007

УДК 66.023:006.354 OKC 71.120 F02 OKП 36 1500 75.200

Ключевые слова: сосуды и аппараты, нормы и методы расчета на прочность, смещение кромок сварных швов, некруглость