C. Le Bihan Gautier	TP Courbes de Bézier

Exercice 1

Créer un programme permettant de tracer une courbe d'Hermite. Ce programme appellera une méthode avec 4 paramètres (P0, P1, V0, V1)

Exercice 2

On veut créer une courbe de Bézier cubique en utilisant les polynômes de Berstein. Les points de contrôles sont :

On rappelle que : les polynômes de Bernstein $B_{i,n}$ de degré n sont définis pour i=0,...,n par la formule :

$$B_{i,n}(t) = \frac{n!}{i!(n-i)!} t^{i} (1-t)^{n-i}$$

Il y a (n+1) polynômes de Bernstein de degré n.

Théorème : soit maintenant P_0 , ..., P_{n-1} les points de contrôle. Soit $t \in [0,1]$, la courbe de Bézier Q d'ordre (n-1) ayant les points P_i pour points de contrôles s'exprime par :

$$Q(t) = \sum_{i=0}^{n-1} P_i B_{i,n-1}(t)$$

1. afficher le polygone qui relie les 4 points de contrôles ;

Le carré bleu sur le premier point de contrôle permet de montrer quel est le point sélectionné.

Exercice 3 (option)

Les courbes de Béziers peuvent être obtenues avec l'algorithme de casteljau. Implémentez cette solution pour un nombre de points de contrôles paramétrable.