MRI Modality Transformation in Demon Registration

University of Twento Enschede - The Netherlands

Dirk-Jan Kroon¹ and Cornelis H. Slump¹

¹Signals and Systems Group, University of Twente, The Netherlands

Abstract

Demon registration which behaves likes fluid registration cannot deal with multiple MRI modalities. We introduce a MRI modality transformation which changes the representation of a T1 scan into a T2 scan using the maxima in joint histograms to allow registration.

Thirion: Demon Registration

Optical Flow: conservation of the intensity of points under motion can be used to approximate the velocity of points between 2 movie frames f and m.

$$\mathbf{v} = \frac{(f - m)\nabla f}{\left|\nabla f\right|^2}$$

This optical velocity equation is reversed and rewritten by Thirion et al. to define the pixel velocity field which can be used to register two

$$\mathbf{u} = \frac{(m-f)\nabla f}{|\nabla f|^2 + \alpha^2 (m-f)^2} + \frac{(m-f)\nabla m}{|\nabla m|^2 + \alpha^2 (m-f)^2}$$

The movement of the pixels is based on very local information during registration. To get global registration, the velocity field is Gaussian smoothed and iteratively used to update the pixel locations

Modality Transformation

The maxima of a mutual histogram of two images, can be used to convert the region gray level representation in one image into the representation of the other image.

Demon Minimizer Equations

$$E = \frac{1}{2} \|F_T - M \circ (S + U)\|^2 + \frac{1}{2} \|F - M_T \circ (S + U)\|^2 + \frac{\sigma_i^2}{\sigma_x^2} \|U\|^2$$

$$\nabla E = (M_T \circ S - F) \left(\frac{\nabla F}{|\nabla F|^2 + \alpha^2 (M_T \circ S - F)^2} \right)$$

$$+(M \circ S - F_T) \left(\frac{\nabla M}{|\nabla M|^2 + \alpha^2 (M \circ S - F_T)^2} \right)$$

- Registration error
- Transformation field
- Trans. field update
- F_T Mod. transformed static image M_T Mod. transformed moving image
- o Move / translate pixels

Flow Chart

Results

Modality transformation of T1 into T2 and visa versa

Registration of CT slice on MRI T1 slice

Registration between T1 and T2 brain slice with varying spherical distortion. Different bias fields and comparison to b-spline registration.

Rician statistical noise. Percentage % is ratio of standard deviation Gaussian noise versus signal reference tissue.

Registration of T1 on T2 brain slice with varying noise.

Conclusions

- Demon registration can better deal with non smooth deformations than b-spline registration of Rueckert.
- Registration is robust to noise.
- Registration times are approximately the same as those of b-spline transformation.