اصول و روشهای داده کاوی (Data Mining) درس چهارم: روش های پایه در کاوش الگوهای مکرر

مدرس: سميرا لويمي

گروه مهندسی کامپیوتر - دانشگاه شهید چمران اهواز

Data Mining: Concepts and

Techniques

Data Mining:

Concepts and Techniques

(3rd ed.)

— Chapter 6 —

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University ©2011 Han, Kamber & Pei. All rights reserved.

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern
 - **Evaluation Methods**
- Summary

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Cheese and Cheeses?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- **Applications**
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. 4

Why Is Freq. Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data
 - Classification: discriminative, frequent pattern analysis
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles
 - Broad applications

Basic Concepts: Frequent Patterns

Tid	Items bought
10	Cheese, Nuts, Bread
20	Cheese, Coffee, Bread
30	Cheese, Bread, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Bread, Eggs, Milk

- itemset: A set of one or more items
- k-itemset $X = \{x_1, ..., x_k\}$
- (absolute) support, or, support count of X: Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is *frequent* if X's support is no less than a *minsup* threshold

Basic Concepts: Association Rules

Tid	Items bought
10	Cheese, Nuts, Bread
20	Cheese, Coffee, Bread
30	Cheese, Bread, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Bread, Eggs, Milk

Note: Itemset: $X \cup Y$, a subtle notation!

Find all the rules $X \rightarrow Y$ with minimum support and confidence

- support, s, probability that a transaction contains X ∪ Y
- confidence, c, conditional probability that a transaction having X also contains Y

Frequent itemsets: Let: minsup = 50%

- Freq. 1-itemsets: Cheese: 3, Nuts: 3, Bread: 4, Eggs: 3
- Freq. 2-itemsets: {Cheese, Bread}: 3

Association rules: Let: minconf = 50%

- Cheese → Bread (60%, 100%)
- Bread → Cheese (60%, 75%)

Q: Are these all rules?

Closed Patterns and Max-Patterns

• A long pattern contains a combinatorial number of subpatterns, e.g., $\{a_1, ..., a_{100}\}$ contains

In total:
$$\binom{100}{1} + \binom{100}{2} + \dots + \binom{100}{100} = 2^{100} - 1$$
 sub-patterns!

Solution: Mine closed patterns and max-patterns instead

Solution 1: Closed patterns: A pattern (itemset) X is closed if X is *frequent*, and there exists *no super-pattern* $Y \supset X$, *with the <u>same support</u>* as X

- Let Transaction DB TDB₁: T_1 : $\{a_1, ..., a_{50}\}$; T_2 : $\{a_1, ..., a_{100}\}$
- Suppose minsup = 1, How many closed patterns does TDB₁ contain?
 - Two: P_1 : " $\{a_1, ..., a_{50}\}$: 2"; P_2 : " $\{a_1, ..., a_{100}\}$: 1"

Solution 2: Max-patterns: A pattern X is a Max-pattern if X is frequent and there exists no frequent super-pattern $Y \supset X$

- Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules

Closed Patterns and Max-Patterns

- Exercise. DB = $\{\langle a_1, ..., a_{100} \rangle, \langle a_1, ..., a_{50} \rangle\}$
 - Min_sup = 1.
- What is the set of closed itemset?
 - <a>, ..., a₁₀₀>: 1
 - \bullet < a_1 , ..., a_{50} >: 2
- What is the set of max-pattern?
 - <a>, ..., a₁₀₀>: 1
- What is the set of all patterns?
 - !!

Computational Complexity of Frequent Itemset Mining

- How many itemsets are potentially to be generated in the worst case?
 - The number of frequent itemsets to be generated is sensitive to the minsup threshold
 - When minsup is low, there exist potentially an exponential number of frequent itemsets
 - The worst case: M^N where M: # distinct items, and N: max length of transactions
- The worst case complexty vs. the expected probability
 - Ex. Suppose Walmart has 10⁴ kinds of products
 - The chance to pick up one product 10-4
 - The chance to pick up a particular set of 10 products: ~10⁻⁴⁰
 - What is the chance this particular set of 10 products to be frequent 10³ times in 10⁹ transactions?

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-TestApproach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical
 Data Format

The Downward Closure Property and Scalable Mining Methods

- The downward closure (also called Apriori) property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {Cheese, Bread, nuts} is frequent, so is {Cheese, Bread}
 - i.e., every transaction having {Cheese, Bread, nuts} also contains {Cheese, Bread}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

Apriori: A Candidate Generation & Test Approach

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB to find frequent (k+1)itemsets
 - Terminate when no frequent or candidate set can be generated

The Apriori Algorithm—An Example

 C_k : Candidate k-itemset

 L_k : frequent k-itemset

Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

 L_2

 C_{I} $\xrightarrow{1^{\text{st}} \text{ scan}}$

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3
-	

	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

Itemset	sup	
{A, C}	2	
{B, C}	2	
{B, E}	3	
{C, E}	2	

 C2
 Itemset
 sup

 {A, B}
 1

 {A, C}
 2

 {A, E}
 1

 {B, C}
 2

 {B, E}
 3

 {C, E}
 2

 C_2 $2^{\text{nd}} \text{ scan}$

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 C_3 Itemset {B, C, E}

 3^{rd} scan L_3

Itemset	sup
{B, C, E}	2

The Apriori Algorithm (Pseudo-Code)

```
C<sub>k</sub>: Candidate itemset of size k
L_k: frequent itemset of size k
L_1 = \{ frequent items \};
for (k = 1; L_k! = \emptyset; k++) do begin
   C_{k+1} = candidates generated from L_k;
   for each transaction t in database do
     increment the count of all candidates in C_{k+1} that
      are contained in t
   L_{k+1} = candidates in C_{k+1} with min_support
   end
return \bigcup_k L_k;
```

Implementation of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- Example of Candidate-generation
 - $L_3=\{abc, abd, acd, ace, bcd\}$
 - Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - $C_4 = \{abcd\}$

Further Improvement of the Apriori Method

- Major computational challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Partition: Scan Database Only Twice

- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
 - Scan 1: partition database and find local frequent patterns
 - Scan 2: consolidate global frequent patterns
- A. Savasere, E. Omiecinski and S. Navathe, VLDB'95

Partitioning

Figure 6.6 Mining by partitioning the data.

ECLAT: Mining by Exploring Vertical Data Format

- Vertical format: $t(AB) = \{T_{11}, T_{25}, ...\}$
 - tid-list: list of trans.-ids containing an itemset
- Deriving frequent patterns based on vertical intersections
 - t(X) = t(Y): X and Y always happen together
 - t(X) ⊂ t(Y): transaction having X always has Y
- Using diffset to accelerate mining
 - Only keep track of differences of tids
 - $t(X) = \{T_1, T_2, T_3\}, t(XY) = \{T_1, T_3\}$
 - Diffset (XY, X) = {T₂}

A transaction DB in Horizontal Data Format

Tid	Itemset
10	a, c, d, e
20	a, b, e
30	b, c, e

The transaction DB in Vertical Data Format

Item	TidList
a	10, 20
b	20, 30
c	10, 30
d	10
e	10, 20, 30

CHARM: Mining by Exploring Vertical Data Format

- Vertical format: $t(AB) = \{T_{11}, T_{25}, ...\}$
 - tid-list: list of trans.-ids containing an itemset
- Deriving closed patterns based on vertical intersections
 - t(X) = t(Y): X and Y always happen together
 - t(X) ⊂ t(Y): transaction having X always has Y
- Using diffset to accelerate mining
 - Only keep track of differences of tids
 - $t(X) = \{T_1, T_2, T_3\}, t(XY) = \{T_1, T_3\}$
 - Diffset (XY, X) = $\{T_2\}$
- Eclat/MaxEclat (Zaki et al. @KDD'97), VIPER(P. Shenoy et al.@SIGMOD'00), CHARM (Zaki & Hsiao@SDM'02)

DHP: Reduce the Number of Candidates

- A *k*-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
 - Candidates: a, b, c, d, e
 - Hash entries
 - {ab, ad, ae}
 - {bd, be, de}
 - · ...
 - Frequent 1-itemset: a, b, d, e

count itemsets

35 {ab, ad, ae}

88 {bd, be, de}

. . .
. .
. .
. .
. .
. .
. .
. . .
. . .

Hash Table

- ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae}
 is below support threshold
- J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95

Pattern-Growth Approach: Mining Frequent Patterns Without Candidate Generation

- Bottlenecks of the Apriori approach
 - repeatedly scan the whole database and check a large set of candidates pattern matching.
 - generates a huge number of candidates.
- The FPGrowth Approach (J. Han, J. Pei, and Y. Yin, SIGMOD' 00)
 - Depth-first search
 - Avoid explicit candidate generation
- Major philosophy: Grow long patterns from short ones using local frequent items only
 - "abc" is a frequent pattern
 - Get all transactions having "abc", i.e., project DB on abc: DB|abc
 - "d" is a local frequent item in DB|abc → abcd is a frequent pattern

Construct FP-tree from a Transaction Database

TID	Items bought	(ora
100	$\{f, a, c, d, g, i, m\}$,p
200	$\{a, b, c, f, l, m, o\}$	
300	$\{b, f, h, j, o, w\}$	
400	$\{b, c, k, s, p\}$	
500	$\{a, f, c, e, l, p, m\}$	$, n \}$

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- 2. Sort frequent items in frequency descending order, f-list
- 3. Scan DB again, construct FP-tree

Partition Patterns and Databases

- Frequent patterns can be partitioned into subsets according to f-list
 - F-list = f-c-a-b-m-p
 - Patterns containing p
 - Patterns having m but no p
 - **...**
 - Patterns having c but no a nor b, m, p
 - Pattern f
- Completeness and non-redundency

Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of transformed prefix paths of item p to form p's conditional pattern base

Conditional pattern bases

<u>item</u>	cond. pattern base
\boldsymbol{c}	<i>f</i> :3
a	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

From Conditional Pattern-bases to Conditional FP-trees

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

Recursion: Mining Each Conditional FP-tree

Cond. pattern base of "cam": (f:3) f:

cam-conditional FP-tree

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
- Reduction of the single prefix path into one node
- Concatenation of the mining results of the two $a_2:n_2$ parts

Benefits of the FP-tree Structure

- Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database (not count node-links and the count field)

The Frequent Pattern Growth Mining Method

- Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition
- Method
 - For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Performance of FPGrowth in Large Datasets

FP-Growth vs. Apriori

Advantages of the Pattern Growth Approach

- Divide-and-conquer:
 - Decompose both the mining task and DB according to the frequent patterns obtained so far
 - Lead to focused search of smaller databases
- Other factors
 - No candidate generation, no candidate test
 - Compressed database: FP-tree structure
 - No repeated scan of entire database
 - Basic ops: counting local freq items and building sub FP-tree, no pattern search and matching
- A good open-source implementation and refinement of FPGrowth
 - FPGrowth+ (Grahne and J. Zhu, FIMI'03)

MaxMiner: Mining Max-Patterns

- 1st scan: find frequent items
 - A, B, C, D, E
- 2nd scan: find support for

Tid	Items
10	A, B, C, D, E
20	B, C, D, E,
30	A, C, D, F

- AB, AC, AD, AE, ABCDE
- BC, BD, BE, BCDE
- CD, CE, CDE, DE

Potential

max-patterns

- Since BCDE is a max-pattern, no need to check BCD, BDE,
 CDE in later scan
- R. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98

Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern

Evaluation Methods

Summary

Pattern Evaluation

How to Judge if a Rule/Pattern Is Interesting?

- Pattern-mining will generate a large set of patterns/rules
 - Not all the generated patterns/rules are interesting
- Interestingness measures: Objective vs. Subjective
 - Objective interestingness measures:
 - Support, confidence, correlation, ...
 - Subjective interestingness measures: One man's trash could be another man's treasure

Which Patterns Are Interesting?

Limitation of the Support-Confidence Framework

- Are s and c interesting in association rules: "A \Rightarrow B" [s, c]? Be careful!
- Example: Suppose one school may have the following statistics on # of students who may play basketball and/or eat cereal: 2-way contingency table

	play-basketball	not play-basketball	sum (row)
eat-cereal	400	350	750
not eat-cereal	200	50	250
sum(col.)	600	400	1000

- Association rule mining may generate the following:
 - play-basketball ⇒ eat-cereal [40%, 66.7%] (higher s & c)
- But this strong association rule is misleading: The overall % of students eating cereal is 75% > 66.7%, a more telling rule:
 - $\neg play-basketball \Rightarrow eat-cereal$ [35%, 87.5%] (high s & c)

Interestingness Measure: Correlations (Lift)

 $A \Rightarrow B$ [support, confidence, correlation].

Measure of dependent/correlated events: Lift

$$lift(B,C) = \frac{c(B \to C)}{s(C)} = s(B \cup C)$$

- Lift(B, C) may tell how B and C are correlated
 - Lift(B, C) = 1: B and C are independent
 - > 1: positively correlated
 - < 1: negatively correlated
- In our example,

$$lift(B,C) = \frac{400/1000}{600/1000 \times 750/1000} = 0.89$$

$$lift(B, \neg C) = \frac{200/1000}{600/1000 \times 250/1000} = 1.33$$

- Thus:
 - B and C are negatively correlated since lift(B, C) ≤ 1;
 - B and \neg C are positively correlated since lift(B, \neg C) > 1

Lift is more telling than s & c

	В	¬В	\sum_{row}
C	400	350	750
¬C	200	50	250
Σ _{col} .	600	400	1000

Interestingness Measure: χ^2

• Another measure to test correlated events: χ^2

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

	В	¬В	Σrow	
С	400 (450)	350 (300)	750	
¬С	200 (150)	50 (100)	250	
Σ_{col}	600	400	1000	

Expected value: 600*750/1000

- General rules:
 - $\chi^2 = 0$: independent
 - $-\chi^2 > 0$: correlated, either positive or negative, so it needs additional test

Observed value

- Now, $\chi^2 = \frac{(400 450)^2}{450} + \frac{(350 300)^2}{300} + \frac{(200 150)^2}{150} + \frac{(50 100)^2}{100} = 55.56$
- χ^2 shows B and C are negatively correlated since the expected value is 450 but the observed is only 400
- χ^2 is also more telling than the support-confidence framework

Are *lift* and χ^2 Good Measures of Correlation?

- Null Transactions: transactions that contain neither B nor C
 - Let's examine the dataset D
 - BC (100) is much rarer than B¬C (1000) and
 ¬BC (1000), but there are many ¬B¬C (100000)
 - Unlikely B & C will happen together!
- But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are strongly positively correlated!)
- $\chi^2 = 670$: Observed(BC) >> expected value (11.85) [B and C are positively correlated]
 - Too many null transactions may "spoil the soup"!

Contingency table with expected values added

	В	¬В	$\sum_{\mathbf{row}}$
C	100 (11.85)	1000	1100
¬C	1000 (988.15)	100000	101000
Σ _{col.}	1100	101000	102100

Pattern Evaluation Measures

$$all_conf(A,B) = \frac{sup(A \cup B)}{max\{sup(A), sup(B)\}} = min\{P(A|B), P(B|A)\},$$

$$max_conf(A, B) = max\{P(A | B), P(B | A)\}.$$

$$Kulc(A,B) = \frac{1}{2}(P(A|B) + P(B|A)).$$

$$\begin{aligned} cosine(A,B) &= \frac{P(A \cup B)}{\sqrt{P(A) \times P(B)}} = \frac{sup(A \cup B)}{\sqrt{sup(A) \times sup(B)}} \\ &= \sqrt{P(A|B) \times P(B|A)}. \end{aligned}$$

Interestingness Measures & Null-Invariant

- Null invariance: Value does not change with the # of null-transactions
- · A few interestingness measures: Some are null invariant

Measure	Definition	Range	Null-Invariant]
$\chi^2(A,B)$	$\sum_{i,j=0,1} \frac{(e(a_i b_j) - o(a_i b_j))^2}{e(a_i b_j)}$	$[0,\infty]$	No	χ^2 and lift are
Lift(A, B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0,\infty]$	No	not null-invariant
AllConf(A, B)	$\frac{s(A \cup B)}{max\{s(A), s(B)\}}$	[0, 1]	Yes	Tanand sanding
Jaccard(A,B)	$\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$	[0, 1]	Yes	Jaccard, consine, AllConf,
Cosine(A,B)	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	[0, 1]	Yes	MaxConf, and
Kulczynski(A,B)	$\frac{1}{2} \left(\frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)} \right)$	[0, 1]	Yes	Kulczynski are null-invariant
MaxConf(A, B)	$max\{\frac{s(A)}{s(A \cup B)}, \frac{s(B)}{s(A \cup B)}\}$	[0, 1]	Yes	measures

T. Wu, Y. Chen, and J. Han, Association Mining in Large Databases: A Re-Examination of Its Measures, PKDD 2007.

Which is the best in assessing the discovered pattern relationships?

Null Invariance: An Important Property

- Why is null invariance crucial for the analysis of massive transaction data?
 - Many transactions may contain neither milk nor coffee!

milk vs. coffee contingency table

	milk	$\neg milk$	Σ_{rou}
coffee	mc	$\neg mc$	c
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

- Lift and χ^2 are not null-invariant: not good to evaluate data that contain too many or too few null transactions!
- Many measures are not null-invariant!

Null-transactions w.r.t. m and c

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	χ^2	Lift
D_1	10,000	1,000	1,000	100,000	90557	9.26
D_2	10,000	1,000	1,000	100	0	1
D_3	100	1,000	1,000	100,000	670	8.44
D_4	1,000	1,000	1,000	100,000	24740	25.75
D_5	1,000	100	10,000	100,000	8173	9.18
D_6	1,000	10	100,000	100,000	965	1.97

 2×2 Contingency Table for Two Items

	milk	milk	$\Sigma_{\sf row}$
coffee	тс	$\overline{m}c$	С
coffee	$m\overline{c}$	\overline{mc}	\overline{c}
Σ_{col}	m	\overline{m}	Σ

Comparison of Six Pattern Evaluation Measures Using Contingency Tables for a Variety of Data Sets

Data										
Set	mc	mc	mc	mc	χ^2	lift	all_conf.	max_conf.	Kulc.	cosine
$\overline{D_1}$	10,000	1000	1000	100,000	90557	9.26	0.91	0.91	0.91	0.91
D_2	10,000	1000	1000	100	0	1	0.91	0.91	0.91	0.91
D_3	100	1000	1000	100,000	670	8.44	0.09	0.09	0.09	0.09
D_4	1000	1000	1000	100,000	24740	25.75	0.5	0.5	0.5	0.5
D_5	1000	100	10,000	100,000	8173	9.18	0.09	0.91	0.5	0.29
D_6	1000	10	100,000	100,000	965	1.97	0.01	0.99	0.5	0.10

Which Null-Invariant Measure Is Better?

 IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications

$$IR(A,B) = \frac{|sup(A) - sup(B)|}{sup(A) + sup(B) - sup(A \cup B)}$$

- Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D₄ through D₆
 - D₄ is balanced & neutral
 - D₅ is imbalanced & neutral
 - D₆ is very imbalanced & neutral

Data	mc	$\overline{m}c$	$m\overline{c}$	\overline{mc}	$all_conf.$	$max_conf.$	Kulc.	cosine	$_{ m IR}$
$\overline{D_1}$	10,000	1,000	1,000	100,000	0.91	0.91	0.91	0.91	0.0
D_2	10,000	1,000	1,000	100	0.91	0.91	0.91	0.91	0.0
D_3	100	1,000	1,000	100,000	0.09	0.09	0.09	0.09	0.0
D_4	1,000	1,000	1,000	100,000	0.5	0.5	0.5	0.5	0.0
D_5	1,000	100	10,000	100,000	0.09	0.91	0.5	0.29	0.89
D_6	1,000	10	100,000	100,000	0.01	0.99	0.5	0.10	0.99

Summary

- Basic concepts: association rules, supportconfident framework, closed and max-patterns
- Scalable frequent pattern mining methods
 - Apriori (Candidate generation & test)
 - Projection-based (FPgrowth, CLOSET+, ...)
 - Vertical format approach (ECLAT, CHARM, ...)
- Which patterns are interesting?
 - Pattern evaluation methods

Ref: Basic Concepts of Frequent Pattern Mining

- (Association Rules) R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD'93
- (Max-pattern) R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98
- (Closed-pattern) N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
 Discovering frequent closed itemsets for association rules. ICDT'99
- (Sequential pattern) R. Agrawal and R. Srikant. Mining sequential patterns.
 ICDE'95

Ref: Apriori and Its Improvements

- R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
 VLDB'94
- H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules. KDD'94
- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB'95
- J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95
- H. Toivonen. Sampling large databases for association rules. VLDB'96
- S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket analysis. SIGMOD'97
- S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD'98

Ref: Depth-First, Projection-Based FP Mining

- R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm for generation of frequent itemsets. J. Parallel and Distributed Computing, 2002.
- G. Grahne and J. Zhu, Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc.
 FIMI'03
- B. Goethals and M. Zaki. An introduction to workshop on frequent itemset mining implementations. *Proc. ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03)*, Melbourne, FL, Nov. 2003
- J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
 SIGMOD' 00
- J. Liu, Y. Pan, K. Wang, and J. Han. Mining Frequent Item Sets by Opportunistic Projection. KDD'02
- J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining Top-K Frequent Closed Patterns without Minimum Support. ICDM'02
- J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets. KDD'03

Ref: Vertical Format and Row Enumeration Methods

- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithm for discovery of association rules. DAMI:97.
- M. J. Zaki and C. J. Hsiao. CHARM: An Efficient Algorithm for Closed Itemset Mining, SDM'02.
- C. Bucila, J. Gehrke, D. Kifer, and W. White. DualMiner: A Dual-Pruning Algorithm for Itemsets with Constraints. KDD'02.
- F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. Zaki, CARPENTER: Finding Closed Patterns in Long Biological Datasets. KDD'03.
- H. Liu, J. Han, D. Xin, and Z. Shao, Mining Interesting Patterns from Very High Dimensional Data: A Top-Down Row Enumeration Approach, SDM'06.

Ref: Mining Correlations and Interesting Rules

- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97.
- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94.
- R. J. Hilderman and H. J. Hamilton. Knowledge Discovery and Measures of Interest.
 Kluwer Academic, 2001.
- C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for mining causal structures. VLDB'98.
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02.
- E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE'03.
- T. Wu, Y. Chen, and J. Han, "Re-Examination of Interestingness Measures in Pattern Mining: A Unified Framework", Data Mining and Knowledge Discovery, 21(3):371-397, 2010