Détection de fractures osseuses

Pourquoi?

Deux approches

Recherche de sets de données

Format DICOM

Recherche de sets de données Images normales

Détection des bords

Détection des bords

Un problème de texture

bas: 60 haut: 40

bas: 40 haut: 120

bas: 60 haut: 180

Détection des bords

Recherche des seuils optimaux

seuils(image)

seuils(luminosité, contraste)?

seuils(luminosité, contraste)?

Seuils optimaux de détection de bords, avec un flou de taille 3

Autres solutions

- Approche statistique par « vote »
- Approches heuristiques

Détection de segments Deux approches envisagées

Vectorisation

Vectorisation

Avec potrace


```
<g
transform="..."
fill="#0000000transparent"
stroke="black"
stroke-width="10px"
>
```


Détection des traits Avec la Transformée de Hough

Classique (détecte des droites)

Probabiliste (détecte des segments)

Calcul des angles

Calcul des angles

Avec de la trigonométrie

$$\theta = \arccos \frac{\text{adjacent}}{\text{hypoténuse}} = \arccos \frac{|y_1 - y_0|}{\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}}$$

Critère de décision

Critère de décision

 $\max \text{ angles} > \varepsilon \iff \text{ cass\'e}$

Compensations

Compensation De l'inclinaison

Détecté comme cassé Contraste: 33.66743856808608 Luminosité: 104.73228202716 0 20 -40 60 -80 -100 -120 -140 160 25 75

50

75

50

25

Identification du type de fracture

Identification du type de fracture

Noms des différentes lignes de fracture du fémur

nom fracture(Θ , ($x_0 y_0$))

github.com/ewen-lbh/bone-fracture-detection