Jacobi Straight line Madela O His a
Recapi Straight Line Models, Outliers, Influential points, Q-Q plots and Box plots
Section 6.5: > Analysis of pained Measurements.
Let's Look at Example 6.5.1 of ch.6 (Pg-49).
() Ho: M1 = M2 on, Ho: M1-M2 = 0
where, $M_1 = Mean grade of Test 1.$
Because the two groups of measurements are not indepent of. this is not an appearopriate set up for a 2-Sample test.
Define, di as the it défenence in test voluit : 1,2,,12.
de, de,, die 10 N(Md, 8d) is over assumed known)
In 2-Samples of thof = 11-1 denotes it's from the differenced data
1 . My = 0, Sa contención.
Jest - Statistic of = $\frac{\chi_d - \mu_o}{S_{d/fn}} \sim t_{(n-1)}$ In this example, $\mu_o = 0$, $n = 12$, $S_d^2 = 472.96^2$, $\chi_e = -16.6$
In this example, No=0, n=12, Sd=474.962,
$\overline{x}_a = -16.6$

P-value =
$$2P(T \ge |t_{obs}|)$$

= $2 \cdot P(t_{11} > 2.65)$
 $2(0.01) \le p$ -value $\le 2(0.025)$
on, p -value $\in (0.02, 0.05)$
We have evidence against to, given p -value ≥ 0.05
 $100(1-a)$ ≤ 100 ≥ 100

- 1 CES complete.
- 2 Practice Problems_ Answer.

END & CHAPTER 6

M CHAPTER 1: Review

- © Experiment, Dample Space, Transom Variables
- © Various disto's and their applications

 (a) recognize distos from experiment Set-up.

 (b) familiar with disto assumptions.
- 1 Defining bol's and brook's and CDF's

	CHAPTER 2: Likelihood Methods.
•	Construct a (log)-likelihood function given n observations
	from a dist of integrest.
(a)	The MLE from the Score function.
	and a come test using the
	the to test hypothesis of fire
(Healthand intervals using Velance
	* Using groots of 12LF
0	I amoberty of MLE'S
	C) those to anchon is monotone.

Composing Medians/percentiles

@ Knowing when Calculus fails and, finding

MLES "Hewish cally", (unusual Chamble) =.

1 Monatone, Can you find the MLE's?