Appunti di Fisica

Gabriel Antonio Videtta

 $18~{\rm gennaio}~2022$

Capitolo 1

I moti principali della fisica

1.1 Moto rettilineo uniforme (m.u.a.)

Conoscendo le definizioni di accelerazione $(\vec{a} = \frac{d\vec{v}}{dt})$ e di velocità $(\vec{v} = \frac{d\vec{x}}{dt})$ è possibile, ponendo l'accelerazione costante (i.e. il jerk è nullo, $\frac{d\vec{a}}{dt} = 0$), ricavare numerose formule.

1.1.1 Le equazioni del moto in un sistema di riferimento unidimensionale

Le equazioni del moto sono le seguenti:

$$\begin{cases} x(t) = x_0 + v_0 t + \frac{1}{2} a_0 t^2 \\ v(t) = v_0 + at \end{cases}$$
 (1.1)

Dimostrazione. Da $a=\frac{dv}{dt},$ si ricava $dv=a\cdot dt,$ da cui:

$$\int dv = \int a \, dt = a \int dt \Rightarrow v = v_0 + at$$

Dimostrata questa prima equazione, è possibile dimostrare in modo analogo l'altra:

$$\int dx = \int v \cdot dt = \int v_0 \, dt + \int at \, dt = x_0 + v_0 t + \frac{1}{2} a t^2$$

La dimostrazione può essere inoltre resa immediata se si sviluppano x(t) e v(t) come serie di Taylor-Maclaurin.

1.1.2 Lo spostamento in funzione della velocità e dell'accelerazione

Senza ricorrere alla variabile di tempo t, è possibile esprimere lo spostamento in funzione della velocità e dell'accelerazione mediante le seguente formula:

$$x - x_0 = \frac{v^2 - v_0^2}{2a} \tag{1.2}$$

Dimostrazione. Considerando $a=\frac{dv}{dt},$ è possibile riscrivere mediante l'impiego delle formule di derivazione delle funzioni composte quest'ultima formula in

$$a = \frac{dv}{dt} = \frac{dx}{dt}\frac{dv}{dx} = v\,\frac{dv}{dx}$$

Da ciò si può ricavare infine l'ultima formula:

$$a dx = v dv \Rightarrow a \int dx = \int v dv$$

E quindi:

$$a(x-x_0) = \frac{v^2 - v_0^2}{2} \Rightarrow x - x_0 = \frac{v^2 - v_0^2}{2a}$$