

Algebra

Alessandro D'Andrea

7. Gruppi ciclici, diedrali, simmetrici e alterni

Richiami

- ▶ Piccolo teorema di Fermat; teorema di Eulero
- Il teorema di Lagrange per i gruppi ha applicazioni alle congruenze
- ► Esempi di gruppi: $(A, +), (A^{\times}, \cdot)$, dove A è un anello
- Oggi: Altri esempi (geometrici, combinatori) di gruppi
 - Gruppi ciclici e diedrali
 - Gruppi simmetrici e alterni

Gruppo ciclico C_n

E' il gruppo delle rotazioni del piano che portano il poligono regolare con *n* lati in se stesso.

E' generato dalla rotazione r di angolo $2\pi/n$, che ha ordine n. I suoi unici elementi sono le n potenze di r. Come ogni gruppo ciclico, è abeliano. L'ordine di r^i è n/MCD(n,i).

Gruppo diedrale D_n - I

E' il gruppo delle isometrie del piano che portano il poligono regolare con *n* lati in se stesso.

Possiede 2n elementi: ciascuna isometria è individuata dall'immagine di un vertice (n scelte) e dall'immagine di un vertice adiacente (2 scelte). In effetti, D_n contiene le n rotazioni di C_n e n ribaltamenti (= simmetrie assiali) rispetto agli assi di simmetria del poligono.

Gruppo diedrale D_n - II

Ogni ribaltamento ha ordine 2.

Indichiamo con s uno dei ribaltamenti, $s^2 = 1$. Dal momento che $C_n < D_n$, le due classi laterali (sinistre) sono C_n , s C_n .

Poiché C_n contiene le n rotazioni, $s C_n$ deve contenere tutti e soli gli n ribaltamenti. Ogni sr^i è un ribaltamento, e ha ordine 2.

$$(sr^i)^2 = 1 \implies sr^i = r^{-i}s, \qquad r^is = sr^{-i}.$$

Possiamo calcolare tutti i prodotti:

$$r^{i} \cdot r^{j} = r^{i+j}, \qquad sr^{i} \cdot r^{j} = sr^{i+j}$$

 $r^{i} \cdot sr^{j} = (r^{i}s)r^{j} = (sr^{-i})r^{j} = sr^{j-i}, \quad sr^{i} \cdot sr^{j} = s(r^{i} \cdot sr^{j}) = r^{j-i}.$

All'esponente, i + j va sempre inteso modulo n.

Notazione ciclica in S_n - I

Abbiamo già incontrato il gruppo simmetrico S_n , che contiene tutte le n! permutazioni di n elementi.

Vogliamo introdurre una notazione più compatta per descrivere una permutazione. Ad esempio le permutazioni

$$\sigma: \begin{cases} 1\mapsto 2\\ 2\mapsto 8\\ 3\mapsto 4\\ 4\mapsto 1\\ 5\mapsto 6\\ 6\mapsto 3\\ 7\mapsto 7\\ 8\mapsto 5 \end{cases}, \qquad \tau: \begin{cases} 1\mapsto 3\\ 2\mapsto 2\\ 3\mapsto 6\\ 4\mapsto 4\\ 5\mapsto 8\\ 6\mapsto 1\\ 7\mapsto 7\\ 8\mapsto 5 \end{cases}$$

si indicano con $\sigma = (1285634)$, $\tau = (136)(58)$.

Notazione ciclica in S_n - II

I cicli di lunghezza uno, cioè i punti fissi della permutazione, non sono indicati:

$$\tau = (136)(2)(4)(58)(7) = (136)(58).$$

Ad una stessa permutazione non corrisponde un'unica espressione ciclica. Ad esempio

$$\sigma = (1285634) = (8563412) = (3412856).$$

Se una permutazione contiene più cicli disgiunti, questi possono comparire in più di un ordine possibile:

$$\tau = (136)(58) = (58)(136) = (85)(361).$$

Si può ovviare a questa ridondanza decidendo che ogni ciclo inizia per il suo elemento minimo, e ordinando cicli disgiunti a seconda del loro primo elemento.

La notazione suggerisce che cicli disgiunti commutano tra loro, il che è vero.

Calcolo di prodotto e inverso

Se

$$\sigma = (1285634), \qquad \tau = (136)(58),$$

allora

$$\sigma^{-1} = (1436582), \qquad \tau^{-1} = (163)(58).$$

Inoltre

$$\sigma \tau = (14)(286), \qquad \tau \sigma = (125)(34).$$

La composizione $\sigma \tau$ si legge " σ dopo τ ".

Parità di permutazioni

In seguito, avremo bisogno del concetto di parità di una permutazione.

- Le permutazioni sono pari oppure dispari.
- Le parità si sommano per composizione: la parità di $\sigma\tau$ è la somma delle parità di σ e di τ .
 - ► Pari + pari = pari; pari + dispari = dispari; dispari + dispari = pari.
- ▶ Le trasposizioni cioè gli scambi di due soli elementi sono tutte dispari.

In pratica, per calcolare la parità di una permutazione σ , la esprimo come composizione di trasposizioni. La parità del numero di trasposizioni necessarie non dipende dall'espressione scelta.

Esempio: (124) = (14)(12) = (34)(13)(12)(34) è una permutazione pari.

Perché funziona? - I

Se $\sigma \in S_n$, considero le due espressioni

$$A = \prod_{1 \leq i < j \leq n} (j - i), \qquad A_{\sigma} = \prod_{1 \leq i < j \leq n} (\sigma(j) - \sigma(i)).$$

Entrambe moltiplicano tutte le possibili differenze tra i numeri 1,..., n. I fattori nei due prodotti sono gli stessi, e differiscono al più nel segno: nel primo prodotto sono tutti positivi, mentre nel secondo prodotto alcuni sono positivi e altri negativi.

Ad esempio, se $\sigma = (12)(34)$, allora

$$A = (2-1)(3-1)(4-1)(3-2)(4-2)(4-3),$$

$$A_{\sigma} = (1-2)(4-2)(3-2)(4-1)(3-1)(3-4).$$

I fattori sono gli stessi, ma (2-1) e (4-3) hanno cambiato segno. Il rapporto $\operatorname{sgn}(\sigma) = A_{\sigma}/A$ vale ± 1 . Se $\operatorname{sgn}(\sigma) = 1$, allora σ si dice pari, altrimenti dispari. $\operatorname{sgn}(12) = -1$.

Perché funziona? - II

Vale la proprietà

$$\operatorname{sgn}(\sigma\tau) = \frac{A_{\sigma\tau}}{A} = \frac{A_{\sigma\tau}}{A_{\tau}} \cdot \frac{A_{\tau}}{A} = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau).$$

Di conseguenza

$$sgn(Id) = 1$$

$$sgn(\sigma^{-1}) = sgn(\sigma)^{-1} = sgn(\sigma)$$

$$sgn(1 2) = -1$$

$$sgn(1 b) = sgn(2 b)(1 2)(2 b) = (sgn(2 b))^{2} sgn(1 2) = -1$$

$$sgn(a b) = sgn(1 a)(1 b)(1 a) = -1.$$

Calcolo pratico della parità

- Le trasposizioni sono dispari
- ▶ I 3-cicli sono pari:

$$(123) = (13)(12), (abc) = (ac)(ab).$$

- ► I 4-cicli sono dispari:
 - (1234) = (14)(13)(12).
- ▶ Un *n*-ciclo è pari se *n* è dispari, e dispari se *n* è pari.
- Le parità si sommano per composizione.

Ad esempio, (125)(3467) è dispari: infatti (125) è pari, mentre (3467) è dispari, e pari + dispari = pari.

Il gruppo alterno An

L'applicazione sgn : $S_n \to \{\pm\}$ è un omomorfismo di gruppi.

Il suo nucleo contiene tutte e sole le permutazioni pari, e costituisce un sottogruppo A_n , detto sottogruppo alterno di S_n .

 A_n è un sottogruppo normale di S_n e contiene n!/2 elementi.

Ad esempio, $A_3 = \{Id, (123), (132)\}\ ha\ 3 = 3!/2$ elementi.