OPTIMIZACIÓN

Primer Cuatrimestre 2025

Ejercicios para pensar

Gradiente Proyectado

Aplicaremos el método de Gradiente Proyectado a problemas de optimización con restricciones lineales:

mín
$$f(x)$$

s.a.: $a_i^T x \le b_j$ $i \in J_1$
 $a_j^T x = b_j$ $j \in J_2$

La idea de este método está motivada por el Método del Gradiente para problemas sin restricciones.

Comenzamos tomando un punto inicial factible \mathbf{x}_0 . En nuestro punto inicial \mathbf{x}_0 tendremos un conjunto de q condiciones activas que satisfacen $a_i^T x = b_i$ y algunas restricciones inactivas $a_i^T x < b_i$.

Comenzamos tomando $W = \{j : a_j^T x = b_j\}$ y consideramos la matriz A_w que tiene como filas a los a_j tales que $j \in W$. A_w es de $q \times n$ de rango q < n.

Ahora buscamos **d** una dirección de descenso, i.e., que satisfaga $\nabla f(\mathbf{x}_0)^T \mathbf{d} < 0$. Pero además queremos que $a_j^T \mathbf{d} = 0 \quad \forall j \in W$ para que las restricciones activas sigan siéndolo. Queremos entonces que $\mathbf{d} \in \langle a_j \rangle_{j \in W}^{\perp}$.

Ejercicio 1 Probar que **d** está dada por $\mathbf{d} = -(I - A_w^T (A_w A_w^T)^{-1} A_w) \nabla f(x_0)$ y comprobar que efectivamente es una dirección de descenso si $\mathbf{d} \neq 0$. Sugerencia: Tener en cuenta que $\mathbb{R}^n = S \oplus S^T$.

Ejercicio 2 Asumiendo que tenemos solo restricciones de igualdad. Probar que si el algoritmo converge cuando $||P(\nabla f(x))|| < \varepsilon$, donde $P = I - A^T (A^T A)^{-1} A$, entonces converge a una solución aproximada de las condiciones de KKT.

Ejercicio 3 Escribir un posible algoritmo para implementar Gradiente Proyectado en caso de que las restreicciones sean todas de igualdad.

Ejercicio 4 Considerar el siguiente problema

$$\min \quad f(x) = \frac{1}{2}x^T Q x + b^T x$$

donde $\Omega = \{x \in \mathbb{R}^n : a_i \le x_i \le b_i\}.$

- (a) Calcular $P_{\Omega}(x)$ la proyección de x sobre $\Omega.$
- (b) Mostrar como queda la iteración del método de gradiente proyectado.