Liniowe zadanie aproksymacji średniokwadratowej

funkcja przybliżana
$$f(x)$$
, siatka węzłów x_i , $i=0,...,m$, $f_i=f(x_i)$ dane: punkty węzłowe (x_i,f_i) $i=0,...,m$ współczynniki wagowe $w_i>0$ $i=0,...,m$ funkcje bazowe $\varphi_i(x)$ $i=0,...,n$ funkcja aproksymująca $f^*(x)=\sum_{i=0}^n c_i\varphi_i(x)$ szukane stałe c_i takie by $\sum_{i=0}^m (f^*(x_i)-f_i)^2w_i \to min$

Jak szukamy ekstremum funkcji (wielu zmiennych)?

Notacja:

dla dowolnych funkcji $f(\cdot)$, $g(\cdot)$, przy danej siatce węzłów i wsp. wagowych

$$\langle f,g\rangle := \sum_{i=0}^m f(x_i)g(x_i)w_i$$

Jeżeli $\langle f,g\rangle=0$ to funkcje $f(\cdot)$, $g(\cdot)$, nazywamy ortogonalnymi.

Jeżeli $\langle f_i, f_j \rangle = 0$ dla $i \neq j$ i $\langle f_i, f_i \rangle \neq 0$ to funkcje $f_i(\cdot)$, i = 1,2,... układem (rodziną) funkcji ortogonalnych.

Twierdzenie

Jeżeli funkcje bazowe są liniowo niezależne to liniowe zadanie aproksymacji średniokwadratowej ma jedyne rozwiązanie. Rozwiązanie to spełnia układ równań

$$\begin{bmatrix} \langle \varphi_0, \varphi_0 \rangle & \langle \varphi_1, \varphi_0 \rangle & \cdots & \langle \varphi_n, \varphi_0 \rangle \end{bmatrix} \begin{bmatrix} c_0 \end{bmatrix}$$

$$\begin{bmatrix} \langle \varphi_0, \varphi_0 \rangle & \langle \varphi_1, \varphi_0 \rangle & \cdots & \langle \varphi_n, \varphi_1 \rangle \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} \langle f, \varphi_0 \rangle \\ \langle f, \varphi_1 \rangle \\ \cdots \\ \langle f, \varphi_n \rangle \end{bmatrix}$$

$$\begin{bmatrix} \langle f, \varphi_0 \rangle \\ \langle f, \varphi_1 \rangle \\ \vdots \\ \langle f, \varphi_n \rangle \end{bmatrix}$$

Jeżeli funkcje bazowe są rodziną funkcji ortogonalnych to rozwiązanie upraszcza się do:

$$c_i = \frac{\langle f, \varphi_i \rangle}{\langle \varphi_i, \varphi_i \rangle}, \quad i = 0,...,n$$

Przykład

$$\varphi_{i}(x) = x^{i},$$
 $i = 0,...,n$
 $x_{0} = 0,$
 $x_{1} = \frac{1}{m},$
 $..., x_{m} = 1, m = 10$
 $w_{i} = 1,$
 $i = 0,..., m$

n	el. max. mac. odwr.
1	0.9
2	12.5
3	375
4	9 874
5	252 828
6	8 771 904
7	3.9133e+008

n	el. max. mac. odwr.
8	1.9908e+010
9	1.4199e+012
10	2.4218e+014

Wielomiany Czebyszewa

$$T_n(x) = cos(n \ arc \ cos \ x)$$
 $-1 \le x \le 1$, $n = 0,1,...$

$$T_0(x) = 1$$
 $T_1(x) = x$, $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$ $n = 1,2,...$

Współczynnik wiodący wielomianu $T_n(x)$ jest równy 2^{n-1} dla n=1,2,...

$$T_n(-x) = (-1)^n T_n(x)$$

Wielomian $T_{n+1}(x)$ ma n+1 zer

$$x_k = cos \frac{(2k+1)\pi}{2(n+1)}, \qquad k = 0,1,...,n, \qquad n = 0,1,....$$

Układ wielomianów $T_0(x), T_1(x), ..., T_n(x)$ jest ortogonalny względem wag $w_i = 1$ i węzłów x_i , które są zerami wielomianu $T_{n+1}(x)$:

$$\langle T_i, T_j \rangle = \begin{cases} 0 & dla & i \neq j \\ \frac{n+1}{2} & dla & i = j \neq 0 \\ n+1 & dla & i = j = 0 \end{cases}$$

Zadanie wielomianowej aproksymacji jednostajnej

funkcja przybliżana f(x), siatka węzłów x_i , i=0,...,m, $f_i=f(x_i)$ dane: punkty węzłowe (x_i,f_i) i=0,...,m

funkcja aproksymująca $f^*(x) = \sum_{i=0}^n a_i x^i$ ma być wielomianem stopnia co najwyżej n szukane stałe a_i takie by $\max_i \left| f^*(x_i) - f_i \right| \to \min_i$

Tw. Weierstrassa

Jeżeli funkcja f(x) jest ciągła w skończonym przedziale [a,b], to dla każdego $\varepsilon>0$ istnieje wielomian $P_n(x)$ stopnia n, taki że dla każdego $x\in[a,b]$, $|f(x)-P_n(x)|<\varepsilon$

