Lecture 19b: Applications of Max Bipartite Matching

Version of April 2, 2019

Applications of Max Bipartite Matching

We just saw how to solve the Max-Bipartite
Matching problem by reduction to (integral)
Max-Flow and then using the Ford-Fulkerson
Max-Flow algorithm.

 We will now see how to solve various scheduling problem by recasting them as Max-Bipartite Matching problems

1. Feasible Schedules

- 2. Balanced Assignments
- 3. Constrained Assignments

Max Flows: Feasible Schedule

Assume *n* roommates $r_1,...r_n$.

For fairness, every day $d_1,...d_n$ a different roommate is supposed to cook dinner. However, due to other obligations, some roommates are unable to cook on certain days.

Let $C_{i,j}$ =true, if r_i can cook on day d_j .

Describe an algorithm to determine if is possible to have a feasible schedule such that each roommate cooks exactly once during the *n* days.

Max Flows: Feasible Schedule

 $C_{i,j}$ =true, if r_i can cook on day d_i .

Describe an algorithm to determine if is possible to have a feasible schedule such that each roommate cooks exactly once during the *n* days.

Solution: This is a matching problem.

Create **bipartite graph** in which each roommate $r_1,...r_n$ and each day $d_1,...d_n$ are nodes. Construct edge (r_i, d_i) iff $C_{i,i}$ =true.

Add source node s with outgoing edges to all roommates $r_1,...r_n$, and sink t with incoming edges from all days $d_1,...d_n$. Set all edge capacities equal 1.

A feasible schedule exists if and only if The bipartite graph has a perfect matching, i.e., A matching touching every vertex.

This happens iff the max s-t flow has value *n*.

- 1. Feasible Schedules
- 2. Balanced Assignments
- 3. Constrained Assignments

Max Flows: Balanced Assignment

Your company wishes to assign n customers $c_1,...c_n$ to k facilities $f_1,...f_k$.

Each customer can only be served by some facility in his vicinity:

 $C_{i,j}$ =true means that customer c_i can be served by facility f_j .

An **assignment** of customers to facilities is balanced, if each facility serves the same number n/k of customers (assume that n/k is integer).

Given the constraints $C_{i,j}$, describe an algorithm to determine if is possible to construct a balanced assignment

Max Flows: Balanced Assignment

 $C_{i,i}$ =true means that customer c_i can be served by facility f_i .

Given constraints $C_{i,j}$, describe an algorithm to determine if is possible to construct a balanced assignment

Solution: Create a bipartite graph.

Each customer $c_1,...c_n$ and each facility $f_1,...f_k$ are nodes.

Edge (c_i, f_i) exists iff $C_{i,i}$ =true.

Add source s connected to all customers $c_1,...c_n$, and sink t with incoming edges from all facilities $f_1,...f_k$. All edge capacities = 1, except for the edges (f_i, t) whose capacity is n/k.

A balanced assignment exists if and only if maximum s-t flow has value *n*.

- 1. Feasible Schedules
- 2. Balanced Assignments
- 3. Constrained Assignments

Max Flows: Constrained Assignment

Your company now wishes to assign n customers $c_1,...c_n$ to k facilities $f_1,...f_k$.

Each customer can only be served by some facility in his vicinity:

 $C_{i,j}$ =true means that customer c_i can be served by facility f_j

An **assignment** of customers to facilities is **constrained**, so that facility f_i can serve n_i customers where $\sum_{i=1}^k n_i = n$.

Given the constraints $C_{i,j}$ and the n_i , describe an algorithm to determine if is possible to construct a constrained assignment that serves all of the customers and, if such an assignment exists, to construct it.

Max Flows: Constrained Assignment

 $C_{i,j}$ =true means that customer c_i can be served by facility f_i . Facility f_i serves at most n_i customers where $\sum_{i=1}^k n_i = n$

Describe an algorithm to determine if is possible to construct a constrained assignment given the constraints $C_{i,j}$ and values n_i

Solution: Create a bipartite graph in which each customer $c_1,...c_n$ and each facility $f_1,...f_k$ are nodes. Edge (c_i, f_i) exists iff $C_{i,i}$ =true.

Add

source s with outgoing edges to customers $c_1,...c_n$ sink t with incoming edges from all facilities $f_1,...f_k$ All edge capacities equal 1, except for the edges (f_i, t) whose capacity is n_i

A constrained assignment exists if and only if maximum s-t flow has value n.

