Data Mining: Concepts and Techniques

(3rd ed.)

Jiawei Han, Micheline Kamber, and Jian Pei
University of Illinois at Urbana-Champaign &
Simon Fraser University
© 2011 Han, Kamber & Pei. All rights reserved.

Chapter 8. Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Model Evaluation and Selection

- Techniques to Improve Classification Accuracy:
 Ensemble Methods
- Summary

Model Evaluation and Selection

- Evaluation metrics: How can we measure accuracy? Other metrics to consider?
- Use validation test set of class-labeled tuples instead of training set when assessing accuracy
- Methods for estimating a classifier's accuracy:
 - Holdout method, random subsampling
 - Cross-validation
 - Bootstrap
- Comparing classifiers:
 - Confidence intervals
 - Cost-benefit analysis and ROC Curves

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted class	C ₁	¬ C ₁		
C_1	True Positives (TP)	False Negatives (FN)		
¬ C ₁	False Positives (FP)	True Negatives (TN)		

Example of Confusion Matrix:

Actual class\Predicted	buy_computer	buy_computer	Total
class	= yes	= no	
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

- Given m classes, an entry, $CM_{i,j}$ in a confusion matrix indicates # of tuples in class i that were labeled by the classifier as class j
- May have extra rows/columns to provide totals

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

A\P	С	¬C	
C	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

 Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified

Accuracy = (TP + TN)/AII

Error rate: 1 – accuracy, or Error rate = (FP + FN)/All

Class Imbalance Problem:

- One class may be rare, e.g. fraud, or HIV-positive
- Significant majority of the negative class and minority of the positive class
- Sensitivity: True Positive recognition rate
 - Sensitivity = TP/P
- Specificity: True Negative recognition rate
 - Specificity = TN/N

Classifier Evaluation Metrics: Precision and Recall, and F-measures

Precision: exactness – what % of tuples that the classifier labeled as positive are actually positive

$$precision = \frac{TP}{TP + FP}$$

- **Recall:** completeness what % of positive tuples did the classifier label as positive?
- Perfect score is 1.0
- Inverse relationship between precision & recall
- **F measure** (F_1 or **F-score**): harmonic mean of precision and

recall,
$$F = \frac{2 \times precision \times recall}{precision + recall}$$

$$F_{\beta} \text{: weighted measure of precision and recall}$$

- - assigns ß times as much weight to recall as to precision

$$F_{\beta} = \frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$$

Classifier Evaluation Metrics: Example

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.40 (accuracy)

$$Recall = 90/300 = 30.00\%$$

Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods

Holdout method

- Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
- Random sampling: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained
- Cross-validation (k-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - At i-th iteration, use D_i as test set and others as training set
 - <u>Leave-one-out</u>: k folds where k = # of tuples, for small sized data
 - ***Stratified cross-validation***: folds are stratified so that class dist. in each fold is approx. the same as that in the initial data

Evaluating Classifier Accuracy: Bootstrap

Bootstrap

- Works well with small data sets
- Samples the given training tuples uniformly with replacement
 - i.e., each time a tuple is selected, it is equally likely to be selected again and re-added to the training set
- Several bootstrap methods, and a common one is .632 boostrap
 - A data set with d tuples is sampled d times, with replacement, resulting in a training set of d samples. The data tuples that did not make it into the training set end up forming the test set. About 63.2% of the original data end up in the bootstrap, and the remaining 36.8% form the test set (since $(1-1/d)^d \approx e^{-1} = 0.368$)
 - Repeat the sampling procedure k times, overall accuracy of the model:

$$Acc(M) = \frac{1}{k} \sum_{i=1}^{k} (0.632 \times Acc(M_i)_{test_set} + 0.368 \times Acc(M_i)_{train_set})$$

Estimating Confidence Intervals: Classifier Models M₁ vs. M₂

- Suppose we have 2 classifiers, M_1 and M_2 , which one is better?
- Use 10-fold cross-validation to obtain $\overline{err}(M_1)$ and $\overline{err}(M_2)$
- These mean error rates are just estimates of error on the true population of future data cases
- What if the difference between the 2 error rates is just attributed to chance?
 - Use a test of statistical significance
 - Obtain confidence limits for our error estimates

Estimating Confidence Intervals: Null Hypothesis

- Perform 10-fold cross-validation
- Assume samples follow a **t distribution** with k-1 degrees of freedom (here, k=10)
- Use t-test (or Student's t-test)
- Null Hypothesis: M₁ & M₂ are the same
- If we can reject null hypothesis, then
 - we conclude that the difference between M₁ & M₂ is
 statistically significant
 - Chose model with lower error rate

Estimating Confidence Intervals: t-test

- If only 1 test set available: pairwise comparison
 - For ith round of 10-fold cross-validation, the same cross partitioning is used to obtain $err(M_1)_i$ and $err(M_2)_i$
 - Average over 10 rounds to get $\overline{err}(M_1)$ and $\overline{err}(M_2)$
 - t-test computes t-statistic with k-1 degrees of freedom:

$$t = rac{\overline{err}(M_1) - \overline{err}(M_2)}{\sqrt{var(M_1 - M_2)/k}}$$
 where

$$var(M_1 - M_2) = \frac{1}{k} \sum_{i=1}^{k} \left[err(M_1)_i - err(M_2)_i - (\overline{err}(M_1) - \overline{err}(M_2)) \right]^2$$

Estimating Confidence Intervals: t-test

If two test sets available: use non-paired t-test

$$var(M_1 - M_2) = \sqrt{\frac{var(M_1)}{k_1} + \frac{var(M_2)}{k_2}},$$

where $k_1 \& k_2$ are # of cross-validation samples used for $M_1 \& M_2$, resp.

Estimating Confidence Intervals: Statistical Significance

- Are M₁ & M₂ significantly different?
 - Compute t. Select significance level (e.g. sig = 5%)
 - Consult table for t-distribution: Find t value corresponding to k-1 degrees of freedom (here, 9)
 - t-distribution is symmetric: typically upper % points of distribution shown \rightarrow look up value for **confidence limit** z=sig/2 (here, 0.025)
 - If t > z or t < -z, then t value lies in rejection region:</p>
 - Reject null hypothesis that mean error rates of M₁ & M₂
 are same
 - Conclude: <u>statistically significant</u> difference between M₁
 & M₂
 - Otherwise, conclude that any difference is chance

Estimating Confidence Intervals: Table for t-distribution

TABLE B: #-DISTRIBUTION CRITICAL VALUES

- Symmetric
- Significance level,
 e.g., sig = 0.05 or
 5% means M₁ & M₂
 are significantly
 different for 95% of population
- Confidence limit, z = sig/2

	e-sp				Tai	l probabi	lity p				*	. Tail probability p										
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.000										
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6										
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.6										
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.9										
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.61										
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.86										
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.95										
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.40										
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5:04										
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.78										
10	.700	.879	1.093	1.372	1.812	2.228	2,359	2.764	3.169	3.581	4.144	4.58										
11	.697	.876	1.088	1.363	1.796	2,201	2.328	2.718	3.106	3.497	4.025	4.43										
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.31										
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.22										
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.14										
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.07										
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.01										
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.96										
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.92										
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.88										
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850										
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819										
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792										
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768										
24	685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467.	3.745										
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725										
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.70										
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690										
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674										
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3,659										
30	.683	.854	1.055	1.310	1.697	2.042	2.147	2:457	2.750	3.030	3.385	3.646										
10	.681	.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551										
50	.679	.849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.496										
50	.679	.848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.460										
30	.678	.846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.416										
00	.677	.845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.390										
00	.675	.842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.300										
00	.674	.841	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.091	3.291										
1	50%	60%	70%	80%	90%	95%	96%	98%	99%	99.5%	99.8%	99.9%										

Model Selection: ROC Curves

- ROC (Receiver Operating Characteristics) curves: for visual comparison of classification models
- Originated from signal detection theory
- Shows the trade-off between the true positive rate and the false positive rate
- The area under the ROC curve is a measure of the accuracy of the model
- Rank the test tuples in decreasing order: the one that is most likely to belong to the positive class appears at the top of the list
- The closer to the diagonal line (i.e., the closer the area is to 0.5), the less accurate is the model

- Vertical axis represents the true positive rate
- Horizontal axis rep.
 the false positive rate
- The plot also shows a diagonal line
- A model with perfect accuracy will have an area of 1.0

Issues Affecting Model Selection

Accuracy

classifier accuracy: predicting class label

Speed

- time to construct the model (training time)
- time to use the model (classification/prediction time)
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases

Interpretability

- understanding and insight provided by the model
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules