Algebra Abstrakcyjna i Kodowanie Lista zadań

Jacek Cichoń, WPPT PWr, Wrocław 2016/17

1 Grupy

Zadanie 1 — Pokaż, że jeśli grupy G i H są abelowe, to grupa $G \times H$ też jest abelowa.

Zadanie 2 — Niech X będzie niepustym zbiorem. Niech \triangle oznacza różnicę symetryczną zbiorów.

- 1. Pokaż, że $(P(X), \triangle)$ jest grupą abelową.
- 2. Załóżmy, że X jest skończony. Niech n=|X|. Pokaż, że grupa $(P(X), \triangle)$ jest izomorficzna z grupą $\underbrace{C_2 \times \cdots \times C_2}$.

Zadanie 3 — Wyznacz podgrupę grupy G generowaną przez zbiór X:

- 1. $X = \{4, 10, -18\}, G = (\mathbb{Z}, +)$
- 2. $X = \{\sqrt{2}, \sqrt{3}\}, G = (\mathbb{R}, +)$
- 3. $X = \{2, \sqrt{3}\}, G = (\mathbb{R}, +)$
- 4. $X = \{i\}, G = (\mathbb{C} \setminus \{0\}, \cdot)$

Zadanie 4 — Pokaż, że grupa symetrii S_3 nie jest cykliczna.

Zadanie 5 — Pokaż, że grupy $C_5 \times C_5$ oraz C_{25} nie są izomorficzne.

Zadanie 6 — Załóżmy, że H jest podgrupą grupy G oraz, że |G/H|=2. Pokaż, że H jest normalną podgrupą grupy G.

Zadanie 7 — Niech $G = (\mathbb{R}^2, +)$ oraz $H = \{(x, 0) : x \in \mathbb{R}\}.$

- 1. Pokaż, że H jest normalną podgrupą grupy G.
- 2. Znajdź homomorfizm $f: G \to \mathbb{R}$ taki, że ker(f) = H.
- 3. Wyznacz G/H.

Zadanie 8 — Narysuj diagramy Cayley'a grup $C_3 \times C_5$, $\mathbb{Z} \times C_3$, $\mathbb{Z} \times \mathbb{Z}$, \mathbb{D}_{10}

Zadanie 9 — Niech τ oznacza obrót o 90° w grupie \mathbb{D}_8 zaś α odbicie. Pokaż, że $\{e, \tau^2, \alpha\tau, \alpha\tau^3\}$ jest podgrupą grupy \mathbb{D}_8 .

Zadanie 10 — Centrum grupy G nazywamy zbiór $Z(G) = \{x \in G : (\forall g \in G)(xg = gx)\}$. Pokaż, że centrum grupy jest podgrupą grupy G.

Zadanie 11 — Wyznacz warstwy następujących podgrup H w gripie G:

- 1. $H = \{0, 3\}, G = C_6$
- 2. $H = \{Id, (2,3)\}, G = S_3$
- 3. $H = \mathbb{R} \times \{0\}, G = (\mathbb{R}^2, +)$
- 4. $H = \{(x, x) : x \in \mathbb{R}\}, G = (\mathbb{R}^2, +)$
- 5. $H = \{1, i, -1, -i\}, G = (\{z \in \mathbb{C} : |z| = 1\}, \cdot)$
- 6. $H = \{0, \alpha\}, G = \mathbb{D}_8$

Zadanie 12 — (Twierdzenie Cayley'a) Niech (G,\cdot) będzie grupą. Niech Sym(G) oznacza grupę wszystkich bijekcji ze zbioru G w zbiór G z działaniem określonym jako złożenie bijekcji. Dla każdego $a \in G$ definiujemy funkcję $f_a: G \to G$ wzorem $f_a(x) = a \cdot x$. (Uwaga: tu był błąd; było $f_a(x) = x \cdot a$)

- 1. Pokaż, że $f_a \in Sym(G)$
- 2. Pokaż, że jeśli $f_a = f_b$ to a = b
- 3. Pokaż, że funkcja $\phi: G \to Sym(G)$ zadana wzorem $\phi(a) = f_a$ jest monomorfizmem $\phi: (G, \cdot) \to Sym(G)$.

Zadanie 13 — Pokaż, że każda podgrupa H grupy $(\mathbb{Z}, +)$ jest postaci $a\mathbb{Z} = \{ak : k \in \mathbb{Z}\}$ dla pewnej liczby naturalnej a.

Zadanie 14 — Wyznacz warstwy następujących podgrup H grupy G:

- 1. $H = \{0, 5\}, G = C_{10}$
- 2. $H = \{e, \tau\}, G = \mathbb{D}_{10}$
- 3. $H = \{-1, 1\}, G = (R \setminus \{0\}, \cdot)$

Zadanie 15 — Niech G będzie grupą abelową. Niech $a,b\in G$ będą takie, że ord(a)=5 oraz ord(b)=2. Pokaż, że

$$\langle \{a,b\} \rangle = \{e, a, a^2, a^3, a^4, b, ba, ba^2, ba^3, ba^4\}.$$

Zadanie 16 — Niech $G = \langle g \rangle$ będzie n elementową grupą cykliczną o generatorze g.

- 1. Pokaż, że $\left\langle g^k\right\rangle = \left\langle g^{nwd(k,n)}\right\rangle$ dla każdego $k\geq 1.$
- 2. Wywnioskuj z tego, że jeśli d|m to w grupie cyklicznej m-elementowej istnieje dokładnie jedna podgrupa mocy d.

Zadanie 17 — Wyznacz wszystkie podgrupy grupy C_8 .

Zadanie 18 — Niech p,q będą różnymi liczbami pierwszymi. Wyznacz wszystkie podgrupy grup C_p , C_{pq} oraz C_{p^2q} .

Zadanie 19 — Pokaż, że $\left\{ \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} : k \in \mathbb{Z} \right\}$ jest cykliczną podgrupą grupy $GL(2, \mathbb{R})$.

2 Elementy Teorii Liczb

Zadanie 20 — Oblicz $2^{2017} \mod 11$, $2^{20} + 3^{30} + 4^{40} + 5^{50} + 6^{60} \mod 7$.

Zadanie 21 — Niech p będzie liczbą pierwszą. Pokaż, że dla dowolnych liczb całkowitych a, b mamy $(a+b)^p \equiv a^p + b^p \mod p$.

Zadanie 22 — Oblicz $\phi(2500),\,\phi(81000)$ znajdując rozkład argumentów na czynniki pierwsze.

Zadanie 23 — Pokaż, że $\phi(n)$ jest liczbą parzystą dle n > 2.

Zadanie 24 — Wyznacz wszystkie takie liczby n, że $\phi(n)=4$ oraz $\phi(n)=6$.

Zadanie 25 — Pokaż, że nie istnieje n takie, że $\phi(n) = 14$.

Zadanie 26 — Wyznacz wszystkie takie liczby n, że $\phi(n)|n$.

Zadanie 27 — Niech p,q będą dwoma różnymi liczbami pierwszymi. Niech a będzie liczbą, która nie jest podzielna przez p ani przez q. Pokaż, że

$$a^{(p-1)(q-1)} \equiv 1 \mod pq$$

Zadanie 28 — Znajdź takie $x \in \{0, \dots, 99\}$, że $x \equiv 6 \mod 25$ oraz $x \equiv 7 \mod 4$.

Zadanie 29 — Skorzystaj z Chińskiego twierdzenia o resztach do znalezienia rozwiązania równania $x^3 - x + 1 \equiv 0 \mod 35$.

Zadanie 30 — (Twierdzenie Wilsona) Niech p będzie liczbą pierwszą. Dla $x \in \mathbb{Z}_p^*$ określamy $f(x) = x^{-1}$.

- 1. Zauważ, że $f \circ f = Id_G$ oraz znajdź punkty stałe odwzorowania f.
- 2. Oblicz w grupie \mathbb{Z}_p^* iloczyn $1\cdot 2\cdots (p-1)$ grupując elementy $x,\,y$ takie, że y=f(x)
- 3. Wywnioskuj z tego Twierdzenie Wilsona: jeśli p jest liczbą pierwszą, to $(p-1)! \equiv -1 \mod p$.

Zadanie 31 — Niech g będzie takim elementem pewnej grupy, że ord(g) = 20. Wyznacz liczby $ord(g^2)$, $ord(g^5)$, $ord(g^8)$, $ord(g^3)$.

Zadanie 32 — Wyznacz wszystkie generatory grup Z_5^* , Z_7^* , Z_{11}^* .

Zadanie 33 — Sprawdź, że liczba 1000003 jest pierwsza.

- 1. Wyznacz najmniejszy generator grupy $Z_{1000003}^*$. Wskazówka: Napisz w dowolnym języku programowania odpowiednią procedurę. Zastosuj algorytm szybkiego potegowania modulo n.
- 2. Zaimplementuj protokół Diffie-Helmana oparty na znalezionym generatorze.

Zadanie 34 — (RSA) Oto szyfrogram pewnego tekstu:

```
03f824fd:033c7a71:050a6706:050a6706:03ffab5e:03f824fd:0189a78d:
```

005bca7d:00734305:04046ca6:017698b6:005bca7d:03f824fd:03d10ac0:

003622e4:011c1c7e:030cf03c:011c1c7e:03d10ac0:01b60e5d:03f824fd:

00734305:007a18e6:03ffab5e:00734305:0179f797:037906bb:050a6706:

007a18e6:015d897d:03f824fd:037906bb:03f824fd:0451f198:059ff1e0:

03d10ac0:02e6b154:037906bb:03f824fd:00734305:003622e4:011c1c7e:

0414fa45:03f824fd:00a6891a:042edbee

Tekst został zakodowany Twoim kluczem publicznym. Wiadomo, że kodowano oddzielnie wszystkie litery (najpierw przekształcono je na kody UTF-8, potem otrzymane liczby podniesiono do pewnej potęgi modulo 101080891 i otrzymane liczby zapisano w układzie szesnastkowym i połączono je w jeden łańcuch, oddzielając poszczególne podłańcuchy dwukropkiem. Twoim kluczem prywatnym jest para (2062465, 101080891).

- 1. Odkoduj ten tekst.
- 2. Znajdź faktoryzację liczby 101080891.
- 3. Jaki jest Twój klucz publiczny?

Zadanie 35 — Załóżmy, że (G, \cdot) i (H, \star) są takimi skończonymi grupami, że ndw(|G|, |H|) = 1. Pokaż, że jedynym homomorfizmem z (G, \cdot) do (H, \star) jest homomorfizm trywialny (czyli taki, że $h(x) = e_2$ dla dowolnego $x \in G$, i gdzie e_2 oznacza element neutralny grupy (H, \star) .)

Zadanie 36 — Niech $\mathcal{G} = (G, \cdot)$ będzie grupą. Niech $Aut(\mathcal{G})$ oznacza rodzinę wszystkich izomorfizmów między \mathcal{G} i \mathcal{G} .

- 1. Pokaż, że $Aut(\mathcal{G})$ jest grupą, gdy działanie określimy jako złożenie funkcji
- 2. Wyznacz $Aut((\mathbb{Z}, +))$.
- 3. Pokaż, że jeśli $f \in Aut(C_n)$, to istnieje k takie, że nwd(n,k) = 1 oraz $f(x) = kx \mod n$ dla każdego $x \in C_n$. Wywnioskuj z tego, że $|Aut(C_n)| = \phi(n)$.
- 4. Załóżmy, że (G, \cdot) i (H, \star) są takimi skończonymi grupami, że ndw(|G|, |H|) = 1. Pokaż, że grupy $Aut(G \times H)$ oraz $Aut(G) \times Aut(H)$ są izomorficzne.
- 5. Wykorzystaj poprzedni punkt do pokazania, że jeśli nwd(n,m)=1 to $\phi(n\cdot m)=\phi(n)\cdot\phi(m)$.

3 Pierścienie

Zadanie 37 — Niech

$$\mathcal{R} = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} : a, b \in \mathbb{R} \right\} .$$

- 1. Pokaż, że $\mathcal R$ jest podpierścieniem pierścienia $M_{2\times 2}(\mathbb R)$
- 2. Pokaż, że funkcja

$$f\left(\begin{bmatrix} a & b \\ -b & a \end{bmatrix}\right) = a + b \cdot i$$

jest izomorfizmem \mathcal{R} z ciałem liczb zespolonych.

Zadanie 38 — Niech $R = \mathbb{R}[x]$ oraz $a \in \mathbb{R}$. Określmy $\theta_a(w) = w(a)$.

- 1. Pokaż, że $\theta_a:R\to\mathbb{R}$ jest homomorfizmem pieścieni
- 2. Wyznacz $ker(\theta_a)$ oraz $img(\theta_a)$.
- 3. Wyznacz pierścień $\mathbb{R}[x]/ker(\theta_a)$.

Zadanie 39 — Załóżmy, że I_1 , I_2 są ideałami (przemiennego) pierścienia R. Niech

$$I_1 + I_2 = \{a + b : a \in I_1 \land b \in I_2\}$$

- 1. Pokaż, że $I_1 + I_2$ jest ideałem.
- 2. Pojaż, że I_1+I_2 jest najmniejszym ideałem zawierającym $I_1\cup I_2.$
- 3. Czy suma $I_1 \cup I_2$ musi być ideałem ideałem?

Zadanie 40 — Niech $R = (\mathbb{Z}, +, \cdot)$, oraz $a, b \in \mathbb{Z}$.

- 1. Pokaż, że (a, b) = (nwd(a, b)).
- 2. Pokaż, że $(a) \cap (b) = (\text{nww}(a, b))$.

Zadanie 41 — Niech $\mathbb{Z}[i]$ oznacza pierścień liczb całkowitych Gaussa.

- 1. Wyznacz ideały (1), (i), (-1).
- 2. Wyznacz ideał (1+i).

Zadanie 42 — Niech R będzie przemiennym pierścieniem z jednością który ma tylko dwa ideały: $\{0\}$ i R. Pokaż, że R jest ciałem.

Zadanie 43 — Opisz wszystkie ideały pierścienia \mathbb{Z}_n .

Zadanie 44 — Pokaż, że $\mathbb{Z}[z]/(x) \simeq \mathbb{Z}$.

Zadanie 45 — Pokaż, że funkcja $f: \mathbb{R} \to \mathbb{R}[x]/(x^2+1)$ określona wzorem $f(a) = (x^2+1) + a$ jest zanurzeniem ciała \mathbb{R} w ciało $\mathbb{R}[x]/(x^2+1)$ (czli, że jest różnowartościowym homomorfizmem).

Zadanie 46 — Zbadaj pierścień ilorazowy $\mathbb{R}[x]/(x^2-1)$. Zacznij od znalezienia dzielników zera w tym pierścieniu.

Zadanie 47 — Przez R[x, y] rozumiemy pierścień wszystkich wielomianów dwóch zmiennych x i y o współczynnikach z pierścienia R.

- 1. Pokaż, że $R[x, y] \simeq (R[x])[y]$.
- 2. Pokaż, że w pierścieniu $\mathbb{R}[x,y]$ ideał (x,y) nie jest głównym ideałem.

Zadanie 48 — Rozważamy rodzinę $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{5}i : a, b \in \mathbb{Z}\}$

- 1. Pokaż, że $\mathbb{Z}[\sqrt{-5}]$ ze standardowym dodawaniem i mnożeniem z ciała \mathbb{R} jest pierścieniem.
- 2. Niech $z=2+\sqrt{5}i$. Pokaż, że z jest elementem nierozkładalnym w $\mathbb{Z}[\sqrt{-5}]$.
- 3. Pokaż, że $z|3 \cdot 3$ oraz, że $\neg(z|3)$.
- 4. Wywnioskuj z tego, że z jest elementem nierozkładalnym, który nie jest elementem pierwszym.

Zadanie 49 — Znajdź takie liczby naturalne a i b, że $a^2 + b^2 = 2017$.

Zadanie 50 — Niech $\mathcal{R} = (R, +, \cdot)$ będzie pierścieniem ideałów głównych. Niech $a, b, d \in R$.

- 1. Pokaż, że d jest największym wspólnym dzielnikiem elementów a i b wtedy i tylko wtedy, gdy (a,b)=(d)
- 2. Zdefiniuje pojęcie najmniejszej wspólnej wielokrotności.
- 3. Pokaż, że przekrój dwóch ideałów w dowolnym pierścieniu jest ideałem.
- 4. Pokaż, że d jest najmniejszą wspólną wielokrotnością elementów a i b wtedy i tylko wtedy, gdy $(a) \cap (b) = (d)$

Zadanie 51 — Pokaż, że wielomian $w(x) = 1 + x + x^3$ jest wielomianem nierozkładalnym w pierścieniu $\mathbb{Z}_2[x]$. Niech [v] = (w) + x dla $v \in \mathbb{Z}_2[x]$.

- 1. Wypisz wszystkie elementy ciała $GF_8 = \mathbb{Z}_2[x]/(w)$. Jaka jest moc tego ciała?
- 2. Niech C oznacza zbiór wielomianów stałych w pierścieniu $\mathbb{Z}_2[x]$. Pokaż, że $F = \{[a] : a \in C\}$ jest podciałem ciała GF_8 izomorficznych z ciałem \mathbb{Z}_2 .
- 3. Sprawdź, że GF_8 jest przestrzenią liniową nad ciałem F. Jaki jest wymiar tej przestrzeni?
- 4. Niech I = [x]. Pokaż, że w(I) = 0. Wywnioskuj z tego, że w ciele GF_8 mamy $I^3 = 1 + I$.
- 5. Wyznacz tabliczki dodawania oraz mnożenia w GF_8 .
- 6. Rozłóż wielomian w na czynniki liniowe w ciele GF_8 .
- 7. Znajdź generator grupy multiplikatywnej $(GF_8)^*$ ciała GF_8 .

4 Elementy Teorii Kodowania

Zadanie 52 — Sprawdź, że odległość Hamminga, czyli funkcja $d_H: \Sigma^n \times \Sigma^n \to \mathbb{N}$ określona wzorem

$$d_H(x, y) = |\{i : x_i \neq y_i\}|$$

jest metryką na przestrzeni Σ^n .

Zadanie 53 — Ile błędów może wykryć oraz ile błędów może naprawić $(n, M, 8)_q$ - kod?

Zadanie 54 — Wyznacz parametry następujących kodów binarnych i sprawdź dla nich "Singleton Bound" oraz "Hamming Bound":

- 1. $C_1 = \{000, 011, 101, 110\}$
- 2. $C_2 = \{000, 001, 010, 011, 100, 101, 110, 111\}$
- 3. $C_3 = \{000, 011, 101, 110\}$
- 4. $C_4 = \{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111\}$

Zadanie 55 — Ustalmy liczby q, n i M.

- 1. Pokaż, że jeśli istnieje $(n, M, d)_q$ kod, to $1 \le d \le n$.
- 2. Zbuduj $(n, q^n, 1)_q$ kod.
- 3. Zbuduj $(n, q, n)_q$ kod.

Zadanie 56 — Niech C będzie $(n, M, d)_q$ kodem, gdzie $d \ge 2$. Zbuduj z kodu C kod o parametrach $(n-1, M, q-1)_q$.

Zadanie 57 — Niech C będzie binarnym (n, M, d) kodem. Załóżmy, że d jest liczbą nieparzystą. Dla $x = (x_1, \dots, x_n) \in C$ określamy

$$\hat{x} = (x_1, \dots, x_n, (x_1 + \dots + x_n) \mod 2)$$

Uwaga: Konstrukcję tę nazywamy dodaniem bitu przystości.

- 1. Pokaż, że $\{\hat{x}: x \in C\}$ jest (n+1,M,d+1) kodem. Wskazówka: Zauważ, że dla $\Sigma = \{0,1\}$ mamy $d_H(x,y) = w(x) + w(y) 2w(x \wedge y)$ gdzie $w(x) = d_H(x,\vec{0})$.
- 2. Dlaczego założyliśmy, że d jest liczba nieparzysta?

Zadanie 58 — Niech $A_q(n,d)$ oznacza największą liczbę naturalną M dla której istnieje q-arny (n,M,d) kod.

- 1. Skorzystaj z "Singleton bound" do pokazania, że dla dowolnej liczby $q \leq 2$ mamy $A_q(3,2) \leq q^2$.
- 2. Pokaż, że dla każdej liczby naturalnej $q \ge 2$ mamy $A_q(3,2) = q^2$. Wskazówka: Rozważ grupę C_q .
- 3. Na wykładzie przyglądaliśmy się kodowi

$$C_2 = \begin{cases} 00000 \\ 01101 \\ 10110 \\ 11011 \end{cases}$$

Pokaż,że jest to (5,4,3)-kod oraz, że $A_2(5,3)=4$.

4. Oszacuj złożoność obliczeniową próby wyznaczenia liczby $A_q(n,d)$ metodą "brute force" (czyli przeglądania wszystkich możliwych kodów w zbiorze q^n

Zadanie 59 — Rozważmy przestrzeń dwuwymiarową V nad ciałem Z_3 .

- 1. Ile jest prostych w przestrzeni V?
- 2. Ile jest punktów na każdej z tych prostych?
- 3. Ile jest prostych równoległych do danej prostej?
- 4. Zbuduj z punktów i kierunków w przestrzeni V przestrzeń rzutową PG(2,3) (dwuwymiarową przestrzeń rzutową nad ciałem trójelementowym). Ile ma ona wierzchołków oraz ile ma linii?
- 5. Spróbuj znaleźć w miarę czytelną graficzną reprezentację PG(2,3).

Zadanie 60 — ("Konstrukcja Plotkina") Niech (u|v) oznacza konkatenację ciągów u i v. Niech C_1 będzie binarnym (n, M_1, d_1) kodem oraz niech C_2 będzie binarnym (n, M_2, d_2) kodem. Rozważmy kod

$$C_3 = \{(u|u+v) : u \in C_1 \land v \in C_2\}$$
.

(operacja + oznacza tutaj dodawanie w przestrzeni liniowej $\{0,1\}^n$ nad ciałem Z_2). Pokaż, że C_3 jest $(2n, M_1 \cdot M_2, d)$ kodem, gdzie $d = \min\{2d_1, d_2\}$.

Wskazówka: Pokaż najpierw, że $w(x) \leq w(y) + w(x+y)$ dla dowolnych $x, y \in \{0, 1\}^n$, gdzie $w(x) = d_H(x, \vec{0})$.

Zadanie 61 — Znajdź (4,8,2) oraz (4,2,4) binarne kody. Zastosuj czterokrotnie konstrukcję z poprzedniego zadania do zbudowania (32,64,16) kodu. Jest to tak zwany kod Reed'a-Mullera pierwszego rodzaju zastosowany do transmisji zdjęć Marsa przez sondy Mariner 6,7 i 9.

Zadanie 62 — Pokaż, że relacja podobieństwa kodów jest relacją równoważności na zbiorze q^n .

Zadanie 63 — Niech $H(x) = x \log_2 \frac{1}{x} + (1-x) \log_2 \frac{1}{1-x}$ dla $x \in (0,1)$, oraz H(0) = H(1) = 0 (entropia binarna).

- 1. Pokaż, że H jest funkcją ciągłą na [0,1].
- 2. Wyznacz pochodną prawostronną funkcji ${\cal H}$ w punkcie 0.
- 3. Znajdź trzy pierwsze wyrazy rozwinięcia w szereg Taylora funkcji H w punkcie $\frac{1}{2}$.

Zadanie 64 — Niech $\lambda \in (0, \frac{1}{2})$. Skorzystaj ze wzoru Stirlinga do pokazania, że $\binom{n}{\lambda n} = 2^{n(H(\lambda) - \frac{1}{2}\log_2(n) + O(1))}$.

Zadanie 65 — Niech $E_n = \{x \in (\mathbb{Z}_2)^n : \sum_{i=1}^n x_i = 0\}$

- 1. Pokaż, że E_n jest kodem liniowym.
- 2. Pokaż, że $E_n = \{x \in (\mathbb{Z}_2)^n : x_n = \sum_{i=1}^{n-1} x_i\}.$
- 3. Wyznacz parametry tego kodu.
- 4. Wyznacz macierzy generującą tego kodu.
- 5. Wyznacz macierz kontroli parzystości dla tego kodu.

Zadanie 66 — Niech $G_{n,k} = [I_n|I_n|\dots|I_n]$, gdzie macierz identycznościowa I_n jest powtórzona k razy. Niech $C_{n,k}$ będzie kodem liniowym o macierzy generatorów $G_{n,k}$.

1. Pokaż, że dla dowolnego $x \in F^n$ mamy $w(x \cdot G_{n,k}) = kw(x)$.

- 2. Wyznacz $\Delta(C_{n,k})$.
- 3. Wyznacz macierz kontroli parzystości.

Zadanie 67 — Niech C będzie [n,k] kodem liniowym. Pokaż, że $(C^{\perp})^{\perp} = C$.

Zadanie 68 — Zastosuj binarny kod liniowy o macierzy kontroli parzystości

$$H = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

do odkodowanie otrzymanego wektora 1011.

Zadanie 69 — Niech $\mathcal C$ będzie binarnym [6,M,d] kodem o macierzy generującej

$$G = \left(\begin{array}{cccccc} 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \end{array}\right)$$

- 1. Wyznacz macierz kontroli parzystości kodu $\mathcal C$
- 2. Wyznacz parametry M oraz d
- 3. Ile błędów może naprawić kod C?
- 4. Czy to jest kod doskonały?
- 5. Załóżmy, że otrzymaliśmy wektor 011011. Czy wektor ten może być odkodowany przy założeniu, że podczas transmisji doszło do maksymalnie jednego błędu. Jeśli tak, to wskaż ten wektor.
- 6. Załóżmy, że otrzymaliśmy wektor 011010. Czy wektor ten może być odkodowany przy założeniu, że podczas transmisji doszło do maksymalnie jednego błędu. Jeśli tak, to wskaż ten wektor.

Zadanie 70 — Załóżmy, że \mathcal{C} jest kodem blokowym długości n taki, że $\mathcal{C}^{\perp} = \mathcal{C}$. Pokaż, że n jest liczbą parzystą oraz, że \mathcal{C} jest $[n, \frac{n}{2}]$ kodem.

c.d.n.

Powodzenia,

Jacek Cichoń