Linear Classifiers

Song Liu (song.liu@bristol.ac.uk)

Reference

Today's class *roughly* follows Chapter 4-4.2.

Pattern Recognition and Machine Learning Christopher Bishop, 2006

Outline

Geometry of decision function

Non probabilistic classifiers

Least square classifier

Fisher discriminant analysis

Probabilistic classifiers

Generative Classifiers

4

Binary Classification

- Input: $x \in R^d$
- Output: $y \in \{-1, +1\}$
- ullet A decision boundary is defined by a function f(x)

Geometry of Binary Classification

Multi-class Classification

• Input: $x \in R^d$

• Output: $y \in \{1 ... K\}$

The geometry gets a lot more complicated...

• Cannot simply check the sign of a single f(x).

One versus The Other

- ullet Construct K-1 binary classifiers
- Classify Class k vs. the rest of classes

One versus The Other

One versus the other also creates confusion!

One versus One

 We can create pairwise binary classifiers and check majority vote.

One versus One

One versus one creates confusion as well...

Multi-class Classification

- Or...
- rather than relying on sign of f to make predictions, we can fit a vector valued function $f\colon R^d \to R^K$:
- Given an x, prediction is $\hat{k} = \underset{k}{\operatorname{argmax}} f^{(k)}(x)$,
- The classification does not have a simple geometry interpretation anymore.
- We will see an example soon.

Least Squares Classifier

For binary classification, perform LS on D.

•
$$\boldsymbol{w}_{\text{LS}} \coloneqq \underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{i \in D} [y_i - f(\boldsymbol{x}_i; \boldsymbol{w})]^2$$

ullet Now y_i takes binary value 1 or -1

• Prediction function $f(x_i; w_{LS})$.

• The predicted label $\hat{y}\coloneqq \mathrm{sign}(f(\pmb{x}_i;\pmb{w}_{\mathrm{LS}}))$

east Square Classifier

east Square Classifier

ullet You can use feature transform $oldsymbol{\phi}$ for f as well.

•
$$f(x; w) := \langle w, \phi(x) \rangle$$
,

e.g. poly., trigonometric, RBF, kernel

east Square Classifier

Data may not be separable in the original space but can be separable in the **feature space** created by $oldsymbol{\phi}$!

Multi-class LS classification

- LS can be adapted to multi-class classification.
- Suppose output $y \in \{1 ... K\}$
- Replace $y_i = k$ in D with $oldsymbol{t}_i \in \{0,1\}^K$.
 - $t_i^{(k)} = 1$.
- $t_i^{(j)} = 0, \forall j \neq k$
- "One-hot encoding"

•
$$W_{LS} \coloneqq \operatorname{argmin}_{W} \sum_{i \in D} || \boldsymbol{t}_i - \boldsymbol{f}(\boldsymbol{x}_i; \boldsymbol{W}) ||^2$$

•
$$W_{LS} \coloneqq \operatorname{argmin}_{W} \sum_{i \in D} ||\boldsymbol{t}_{i} - f(\boldsymbol{x}_{i}; W)||^{2}$$

• $W \in R^{(d+1) \times K}$, $\widetilde{\boldsymbol{x}}_{i} \coloneqq \left[\boldsymbol{x}_{i}^{\mathsf{T}}, 1\right]^{\mathsf{T}} \in R^{d}$, $f(\boldsymbol{x}; W) = W^{\mathsf{T}}$

• Prediction:
$$\hat{k} = argmaxf^{(k)}(\boldsymbol{x}; \boldsymbol{W}) = argmax \left(\boldsymbol{w}_{LS}^{(k)}\right)^{\top} \tilde{\boldsymbol{x}}$$

Why not to use LS Classifier?

- Square loss does not make sense in classification tasks.
- Data point far away from decision boundary can influence the decision boundary by a lot.

Why not to use LS Classifier?

- Unlike LS regression,
- LS classification lacks a probabilistic interpretation.
- Likelihood of some probabilistic model It cannot be interpreted as Maximum

Fisher Discriminant Analysis (FDA)

Embedding by Inner Product

• The inner product $\langle w, x \rangle$ "embeds" x, onto a onedimensional line along w direction.

Embedding by Inner Product

- What would be a good embedding?
- Clearly, we prefer \boldsymbol{w} to \boldsymbol{w}' , as the embedding is more separated between + and -
- We want points within the class close, but points between two classes far apart.

Within Class and Between Class Scatterness

Within-class Scatterness

- Embedding is $w^{\mathsf{T}}x$.
- ullet Embedded center for class k:

$$oldsymbol{\hat{\mu}}_k = rac{1}{n_k} \sum_{i,y_i=k} oldsymbol{w}^{ op} oldsymbol{x}_i$$

Within class scatterness of class k:

$$\bullet s_{\mathrm{W},k} = \sum_{i,y_i=k} (\mathbf{W}^{\mathsf{T}} \mathbf{x}_i - \hat{\mu}_k)^2$$

Sum over points in individual classes.

Between-class Scatterness

Embedded dataset center:

$$oldsymbol{\cdot} \hat{\mu} = rac{1}{n} \sum_{i=1}^n oldsymbol{w}^{\mathsf{T}} oldsymbol{x}_i$$

Between-class scatterness

$$\bullet s_{b,k} = n_k (\hat{\mu}_k - \hat{\mu})^2$$

 $ullet n_k$ is needed to make $s_{\mathrm{b},k}$ at the same scale with $S_{\mathrm{W},k}$.

Fisher Discriminant Analysis

- **Maximizing** between class scatterness \forall_k .
- Minimize within class scatterness \forall_k •
- $\max_{\mathbf{w}} \sum_{k} S_{\mathbf{b},k} / \sum_{k} S_{\mathbf{w},k}$

• If K=2, this has a simple solution that

$$ullet W \coloneqq S_w^{-1}(\mu_+ - \mu_-), S_w \coloneqq \sum_{k=1}^K S_k$$

- ullet S_k is sample covariance of class k times n_k .
- Read PRML 4.14 for its derivation

Example of FDA

Fisher Discriminant Analysis

- However, FDA does not learn a decision function f.
- $f(x; w_{\text{FDA}}) = \langle w_{\text{FDA}}, x \rangle$ obtained by FDA cannot be directly used for making a prediction:
- as positive or negative data point: FDA does not care about • In general, $f(x; oldsymbol{w}_{ ext{FDA}}) > 0$ does not mean x is predicted classification accuracy, a.k.a., minimizing FP or FN.

Generative Classifiers Probabilistic

Probabilistic Classification

 How to put classification problem under a prob. framework?

Minimize Expected Loss:

$$\hat{y} \coloneqq \operatorname{argmin}_{y_0} \mathbb{E}_{p(y|x)}[L(y, y_0) | x]$$

• We need: p(y|x), $y \in \{1, ..., K\}$

- Discriminative: Infer p(y|x) directly.
- **Generative**: Infer $p(y|x) \propto p(x|y)p(y)$, infer p(x|y)!

Continuous Input Variable

- To infer p(x|y), we need a model.
- If x is continuous, MVN is a natural choice for p(x|y).
- Model $p(x|y=k;w) \coloneqq N_x(\mu_k,\Sigma_k)$
- Assuming IID, and all classes have shared covariance ∑
- Write down the likelihood over D:
- $\bullet \ p(D|\mathbf{w}) = \prod_{i \in D} p(\mathbf{x}_i, y_i|\mathbf{w}) = \prod_{i \in D} p(\mathbf{x}_i|y_i; \mathbf{w}) p(y_i)$ $= \left| \ \left| N_{x_i}(\boldsymbol{\mu}_{y_i}; \boldsymbol{\Sigma}) \, p(y_i) \right| \right.$

Continuous Input Variable

•
$$\widehat{\boldsymbol{\mu}}_{1...K}, \widehat{\boldsymbol{\Sigma}} := \underset{\boldsymbol{\mu}_{1...k,\Sigma}}{\text{arg max}} \sum_{i \in D} \log[N_{x_i}(\boldsymbol{\mu}_{y_i}; \boldsymbol{\Sigma}) p(y_i)]$$

- 1. Plug in estimates for $p(y_i = k)$, which is $\frac{n_k}{n}$.
- Now work out the MLE for $\widehat{\pmb{\mu}}_k\coloneqq \frac{1}{n_k}\sum_{i\in D,y_i=k}\pmb{x}_i$
- $\sum (x_i \widehat{\boldsymbol{\mu}}_k)(x_i \widehat{\boldsymbol{\mu}}_k)^{\mathsf{T}}$ 3. Plug in $\widehat{\boldsymbol{\mu}}_k$ to work out $\widehat{\Sigma} := \sqrt{\frac{n_k}{1}}$

MLE of covariance of individual classes!

Linear Decision Boundary

- Prediction: $\hat{y} := \operatorname{argmax}_{y} p(y|\mathbf{x}; \hat{\mathbf{w}}) \propto p(\mathbf{x}|y; \hat{\mathbf{w}}) p(y)$
- Prove: when using shared covariance matrix MVN model,
 - $\{x|p(y=k|x; \widehat{\mathbf{w}}) = p(y=k'|x; \widehat{\mathbf{w}})\}$ $\forall k \neq k'$ the decision boundary is piecewise-linear. The decision boundary is

Which is the same as the set

$$\left\{ x \middle| \frac{p(\boldsymbol{x}|\boldsymbol{y} = k; \hat{\boldsymbol{w}}) p(\boldsymbol{y} = k)}{p(\boldsymbol{x}|\boldsymbol{y} = k'; \hat{\boldsymbol{w}}) p(\boldsymbol{y} = k')} = 1 \right\}$$

$$\forall k \neq k'$$

Hint: take log on both sides of the equality.

Linear Decision Boundary

Continuous Input Variable

- You can also assume for each class k, there are different covariance matrices Σ_k .
- The MLE reduces to estimating individual $oldsymbol{\mu}_{k}$ and $oldsymbol{\Sigma}_{k}$.
- The decision boundary is no longer linear.

0.5

PRML, Figure 434

35

Discrete Input Variable x

- In many classification tasks, we are dealing with discrete variables as x. For example, in a spam filter,
- document. This is called "bag of words" representation. $oldsymbol{x}\coloneqq \left[x^{(1)},...,x^{(d)}
 ight]^{ op}$ are frequencies of words in a
- $y \in \{\text{spam, ham}\}$.
- For example, the document "to be or not to be"
- x := [to = 2, be = 2, or = 1, not = 1, question = 0]
- $x^{(i)} \in N_0$

Naïve Bayes

- Assume $x^{(1)}$... $x^{(d)}$ follows multinomial distribution
- $p(x=x_0|y) \propto \prod_{i=1\dots d} eta(i|y)^{x_0^{(i)}}$ up to constant does not depend on y.
- $\beta(i|y=k)$ is the probability of word i occurs in class k.
- It is easy to estimate:

$$\beta(i|y = k) \approx \frac{\sum_{j \in D, y_j = k} x_j^{(i)}}{\sum_{j \in D, y_j = k} \sum_{i=1}^d x_j^{(i)}}$$

• $\beta(\text{to}|y=\text{spam})$ is occurrences of the word "to" in "spam" emails divided by total number of words in "spam" emails in our training dataset.

Naïve Bayes

• Prediction: $\hat{y} := \operatorname{argmax}_{y} p(x = x_0 | y) p(y)$

•
$$p(y=k)$$
: $\frac{n_k}{n}$

$$ullet p(x=x_0|y) \propto \prod_{i=1...d} eta(i|y)^{x_0^{(i)}}$$

• $\beta(i|y)$ has been obtained by previous counting.

•
$$p(x = "to be or not to be" | y = spam) \propto \beta(to|spam)^2 \beta(be|spam)^2 \beta(or|spam)\beta(not|spam)$$

Conclusion

We have studied classification problem:

Geometry of decision function

Least square classifier

Fisher discriminant analysis

Within and between scatterness

Generative Classifiers:

MVN for continuous input variable

Naïve Bayes for discrete input variable

Homework

Prove the statement on page 33.

parameters in multinomial distribution. (2) Explain the Naïve Bayes classifier using a Maximum Likelihood (1) Derive the maximum likelihood estimation for framework.

Computing Lab

Implement a version of Perception classifier: "Simplitron"

• Demo.