```
<110> German, Michael S.
Lin, Joseph
```

<120> PRODUCTION OF PANCREATIC ISLET CELLS
AND DELIVERY OF INSULIN

```
<130> UCSF-129CIP

<150> 09/535,145
<151> 2000-03-24

<150> 60/128,180
<151> 1999-04-06

<160> 19

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 5340
<212> DNA
<213> Homo Sapiens
```

<400> 1 ggatccctcg tggccagggt tcccttcaag gtgcttagcc aggtcaggag gccctagaga 60 agcatggttt ggattttctt tcccagacca aaaaagctcc aagttggttc tctcccagtt 120 tctaacttgc agttaaataa atcaggcaag gctggcctat gaggcagaca agtgtgaaga 180 240 300 cttgaatgga cagtggttcc ccttgcctag aaaatgggac cattatttct tttctaatct 360 gacccccaga ctcaggactt cctctatttt ctgcattttg gggtctcttg ttttgccttg 420 aaaaaaaatg ttttctccca aatcaaggag cagtagctgg tgcaagggaa aatctagggc 480 taggagtott aagatatgac ttotatgtgg ttotgataga acttgctggg tgaccttgag 540 agagtcactc cccctctctg ggccttgatt ttttcatctt taaagaaggc ctcaaattcc 600 cattettatg agaagaagae aageteetag tgagtggtga eetaagggag eagetgeage 660 aaaatgctaa cctgacagtc ccagatggtc cctttattgg ttctgaccct ggtctcaggc 720 ttcatttccc cacagcaagg gaaggagcct gctcacagag caccagctaa gatcagcagg 780 accgcgccac acccccgccc agtcctagag cccccctctc gctggttcct gagcatacca 840 ccctcttcct tggaggaaaa tttgccccca agcagcctag gcggtaagag gctatcacta 900 960 ctgtcccctc ctgcagtttc cgggagactc aggatatctg gacctgctag aaagagaagc 1020 1080 cttcctcgcc taaggagact taaaccggga tacttaaacc tcccgcctcg gcgtcttcct ccaggcacga ccgggtcaag agagagaagc ggaagctgca acccctcact ctgagtgacc 1140 ggaagcagaa gaccacggga tgtcccaggc ggggacaaga ggaggggctg gggaagaaag 1200 gagggatgat gagttcagag tccctttgga aaggtttcca gagagcgcta ccagggacaa 1260 cccaaggggc tggggaagtc cctgccttgt gctctctgtg cgatgcccga gtgatgcaga 1320 ggcagggggc tggagcaggt gactgctggc agctgctgtc tgtctgtgat tggaccggag 1380 gactaagggg agaaaaagtt tatcagcttc tcccagtgcc tgcacgctgt ggtagttcaa 1440 aagacacgag ggggaggggc acagcagctc tgcttcccag cgccttggga gactgaagtg 1500 aaaggaacgc ttgagcccag gagttcgaga ccatcctggg caacaaagca agaccgcccc 1560 1620 tcaccccata caaaataaaa atacaaataa attagccggg cacagtggcg catgcctgta 1680 gtctcagcta ctgggaaggc tgaagtggga ggatagcttg agcccaggag atcaaggctg 1740 cagtgagctg tgattgcacc actgcagtcc agcctgggcg acagaaggag accgtttttt 1800 ggttttgttt gttcgtttaa aaaaaaaaag aagcaagagc tcactgtgaa ctcctggttc 1860 cttcctcccc tcctcacact tcccagaact cttcctgtca cggttcctgg ccagaacgct 1920 gggatactat ctacaagctg tagtaggctt gtagtaatgg aatgtccgct tgaggggtcc ccgcacagcc aaccccggcc tctggagtgg gatctatggg ggtggggttc taagcgcctc 1980 tggggagtgt gaggtagcat ctcagggtgt ggcagaggct cggacacccc caaaaggtct 2040 gtgaatggaa gggacatagg caggatetet etcagtgatg teceetgtet tecaggatga 2100 2160 agagaggcag tgaaacacca ggagagcagg gcgtccttta gaattcctgg acccttctcc 2220 aggctgctag tcaggacaat gagctcgtgg ttgtctttgc cactatcttc ctgtgcgatt 2280 tcagacaagc cacctccctc actaagccta aatttcccca tgtgtaacgt gcaggcattg taccctagag gcatcaaagt cccctccagg acagatgcta aggaaagata ggctaggagc 2340 2400 aaageegtet gaggtggeet gaeeagagee acaegagget etteteaetg ggegaggete 2460 tttgaggaac cgagagttgc tgggacccag cccgccctcg agagagcaaa cagagcggcg 2520 ctcccctccc ccgaccccgg ccctttgtcc ggaatccagc tgtgctgcgg gggaggagcg 2580 ggctcgcgtg gcgcggcccc agggccccgg cgctgattgg ccggtggcgc gggcagcagc cgggcaggca cgctcctggc ccgggcgaag cagataaagc gtgccaaggg gcacacgact 2640 tgctgctcag gaaatccctg cggtctcacc gccgcgcctc gagagagagc gtgacagagg 2700 2760 cctcggaccc cattctctct tcttttctcc tttggggctg gggcaactcc caggcggggg cgcctgcagc tcagctgaac ttggcgacca gaagcccgct gagctcccca cggccctcgc 2820 2880 tgctcatcgc tctctattct tttgcgccgg tagaaaggta atatttggag gcctccgagg gacgggcagg ggaaagaggg atcctctgac ccagcggggg ctgggaggat ggctgttttt 2940 3000 gttttttccc acctagcctc ggaatcgcgg actgcgccgt gacggactca aacttaccct 3060 tecetetgae eccgeegtag gatgaegeet caaccetegg gtgegeecae tgtecaagtg 3120 accegtgaga eggageggte ettececaga geeteggaag acgaagtgae etgeeceaeg 3180 tccgccccgc ccagccccac tcgcacacgg gggaactgcg cagaggcgga agagggaggc 3240 tgccgagggg ccccgaggaa gctccgggca cggcggggg gacgcagccg gcctaagagc 3300 gagttggcac tgagcaagca gcgacggagt cggcgaaaga aggccaacga ccgcgagcgc 3360 aatcgaatgc acaacctcaa ctcggcactg gacgccctgc gcggtgtcct gcccaccttc 3420 ccagacgacg cgaagctcac caagatcgag acgctgcgct tcgcccacaa ctacatctgg gegetgaete aaacgetgeg catageggae cacagettgt aegegetgga geegeeggeg 3480 3540 ccgcactgcg gggagctggg cagcccaggc ggttcccccg gggactgggg gtccctctac 3600 tccccagtct cccaggctgg cagcctgagt cccgccgcgt cgctggagga gcgacccggg ctgctggggg ccacctcttc cgcctgcttg agcccaggca gtctggcttt ctcagatttt 3660 3720 ctgtgaaagg acctgtctgt cgctgggctg tgggtgctaa gggtaaggga gagggaggga 3780 geegggagee gtagagggtg geegaeggeg geggeeetea aaageaettg tteettetge ttctccctgg ctgacccctg gccggcccag gctccacggg ggcggcaggc tgggttcatt 3840 3900 ccccggccct ccgagccgcg ccaacgcacg caacccttgc tgctgcccgc gcgaagtggg 3960 cattgcaaag tgcgctcatt ttaggcctcc tctctgccac caccccataa tctcattcaa 4020 agaatactag aatggtagca ctacccggcc ggagccgccc accgtcttgg gtcgccctac 4080 cctcactcaa gtctgtctgc ctctcagtct cttaccaccc ctcctccaat gtgattcaat 4140 4200 gctctactcc caatcaggtc cgggatttca gggcgcctca ctctgcctta aagccacgaa 4260 ggcgaccctc tgccttctcc tcgtgcactt ttcggagcca ttgccctccc ggggcggaag 4320 accaggetgt gaactgggaa agegetagee eggeeaggga geateteeee ageeteeetg 4380 cgaactgcgc ctgaaacgtg agctgcgctg caggtgcctg gagcaccgcg catcttttt 4440 ttttaaatct gtttgtaaat tatatgatgc cttttgaaat caattttggt acagtaaaat 4500 tatatggccc ctcccctgtt ttacacattt gtatttatta atgagatttc acagcaggga aaagcctata ttttggatat tagattattt agggattgct ggatgacatt taagccaata 4560 4620 aaaaaaaatg gaccttcaag aagccttggc aagatgactc cattgtgtgt tggggagagg 4680 agggccacag tcactacagc tgaggaagag cacttctgtc caaagagagg gatgacactc 4740 tttctggagg tctgggctag agccagggca gattgggttt ggagagctgg aagtcttcta 4800 agtaattatt ggtccagctc ccttttttct atatagggca atgactcctc ttatttcaaa

```
gagtggttta gaagaaagac aagcctccaa ctaggacaac tgactctcac ttgctggccc
                                                                     4860
tttccccaac tccaccagcc tagctttaga gcaactgttg gttgcacttg gggaagggat
                                                                     4920
acagtaataa ttcaattgca gagtcagagt cctcggaaac acggctgggc tgggcatcct
                                                                     4980
aggaattttc ccaaggtgct tagaggccta gcaaatcccc tgagcatatt ttactcccca
                                                                     5040
ggcactgagg tggctgtgtc gtgaactcct tgaactgagc agccaggagc aaagaaggtg
                                                                     5100
gagegtetgg etggaatate cageaacgee cectecetea teacetggea geettgattg
                                                                     5160
aaaacttatt aagaaactgt tcaaggtttc cagccacacc atgtctctta ctggcaaggt
                                                                     5220
ggaataggac tggtgcagca tgagcactga aatctgtccc aggagtgcca gtagagcacc
                                                                     5280
actacatgac ttcagggacc cctaggacct cagagaatat ggtctaagct gtaaggatcc
                                                                     5340
```

```
<210> 2
<211> 214
<212> PRT
<213> Homo Sapiens
<400> 2
Met Thr Pro Gln Pro Ser Gly Ala Pro Thr Val Gln Val Thr Arg Glu
Thr Glu Arg Ser Phe Pro Arg Ala Ser Glu Asp Glu Val Thr Cys Pro
                                25
            20
Thr Ser Ala Pro Pro Ser Pro Thr Arg Thr Arg Gly Asn Cys Ala Glu
                            40
Ala Glu Glu Gly Gly Cys Arg Gly Ala Pro Arg Lys Leu Arg Ala Arg
                        55
Arg Gly Gly Arg Ser Arg Pro Lys Ser Glu Leu Ala Leu Ser Lys Gln
                                         75
                    70
Arg Arg Ser Arg Arg Lys Lys Ala Asn Asp Arg Glu Arg Asn Arg Met
                                     90
His Asn Leu Asn Ser Ala Leu Asp Ala Leu Arg Gly Val Leu Pro Thr
                                 105
            100
Phe Pro Asp Asp Ala Lys Leu Thr Lys Ile Glu Thr Leu Arg Phe Ala
                             120
His Asn Tyr Ile Trp Ala Leu Thr Gln Thr Leu Arg Ile Ala Asp His
                                             140
                         135
Ser Leu Tyr Ala Leu Glu Pro Pro Ala Pro His Cys Gly Glu Leu Gly
                                         155
                    150
Ser Pro Gly Gly Ser Pro Gly Asp Trp Gly Ser Leu Tyr Ser Pro Val
                                     170
Ser Gln Ala Gly Ser Leu Ser Pro Ala Ala Ser Leu Glu Glu Arg Pro
            180
                                 185
Gly Leu Leu Gly Ala Thr Ser Ser Ala Cys Leu Ser Pro Gly Ser Leu
                                                 205
                             200
Ala Phe Ser Asp Phe Leu
    210
<210> 3
<211> 1861
<212> DNA
<213> Mus musculus
```

<400> 3

ggatcccaag gtgatattga acctggccaa gcaatagttt ctgagtagaa aggacttgag

60

```
cagggaccgt ctctggtcac tctgtcctct ttcccaggat ggagtcagtc tgtgaaacat
                                                                       120
ggttgcacac acatttcctg acccaaccca tagtggcgga gagctggata gcactttgaa
                                                                      180
ctaatgggcg ctcctcccag ctgccagcca agaagacact tgactccttg atcgctggtt
                                                                       240
                                                                       300
catttagaca agccgtttcc ctctctgagc caaaagaccc catgtgtaat actcaaagaa
gaggcettee ttatatatat ataggcacce ceaaacetee tteatgetae caagaaaggg
                                                                       360
tctggacaca tgccaaaaag aaagaggaaa aggcaaagct ctccccagcg gccggacggg
                                                                       420
actcttctgg ctgggcgagg ctctttgagg aaccgagagt tgctgggact gagcccgcga
                                                                       480
cgggggaggc gtggagtggg ggaacaaaca gagtgctgct cccctcccc gacccctgcc
                                                                       540
                                                                       600
ctttgtccgg aatccagctg tgctctgcgg gtgggggttg tggggggagg agcgggctcg
cgtggcgcag cccctgggcc ccctccgctg attggcccgt ggtgcaggca gcagcccggc
                                                                       660
aggcacgctc ctggccgggg gcagagcaga taaagcgtgc caggggacac acgacttgca
                                                                       720
                                                                       780
tgcagctcag aaatccctct gggtctcatc actgcagcag tggtcgagta cctcctcgga
gettttetae gaetteeaga egeaatttae teeaggegag ggegeetgea gtttageaga
                                                                       840
acttcagagg gagcagagag gctcagctat ccactgctgc ttgacactga ccctatccac
                                                                       900
tgctgcttgt cactgactga cctgctgctc tctattcttt tgagtcggga gaactaggta
                                                                       960
acaattegga aacteeaaag ggtggatgag gggegegegg ggtgtgtgtg ggggataete
                                                                      1020
tggtcccccg tgcagtgacc tctaagtcag aggctggcac acacacacct tccattttt
                                                                      1080
cccaaccgca ggatggcgcc tcatcccttg gatgcgctca ccatccaagt gtccccagag
                                                                      1140
acacaacaac cttttcccgg agcctcggac cacgaagtgc tcagttccaa ttccacccca
                                                                      1200
cctagcccca ctctcatacc tagggactgc tccgaagcag aagtgggtga ctgccgaggg
                                                                      1260
acctcgagga agctccgcgc ccgacgcgga gggcgcaaca ggcccaagag cgagttggca
                                                                      1320
ctcagcaaac agcgaagaag ccggcgcaag aaggccaatg atcgggagcg caatcgcatg
                                                                      1380
cacaacctca acteggeget ggatgegetg egeggtgtee tgeecacctt eeeggatgae
                                                                      1440
gccaaactta caaagatcga gaccctgcgc ttcgcccaca actacatctg ggcactgact
                                                                      1500
cagacgetge geatagegga ceaeagette tatggeeegg ageceeetgt geeetgtgga
                                                                      1560
gagetgggga geceeggagg tggetecaae ggggaetggg getetateta eteceeagte
                                                                      1620
teccaagegg gtaacetgag eeceaeggee teattggagg aatteeetgg eetgeaggtg
                                                                      1680
                                                                      1740
cccagctccc catcctatct gctcccggga gcactggtgt tctcagactt cttgtgaaga
gacctgtctg gctctgggtg gtgggtgcta gtggaaaggg aggggaccag agccgtctgg
                                                                      1800
agtgggaggt agtggaggct ctcaagcatc tcgcctcttc tggctttcac tacttggatc
                                                                      1860
                                                                      1861
```

<210> 4 <211> 214 <212> PRT <213> Mus musculus

<400> 4

Met Ala Pro His Pro Leu Asp Ala Leu Thr Ile Gln Val Ser Pro Glu Thr Gln Gln Pro Phe Pro Gly Ala Ser Asp His Glu Val Leu Ser Ser 25 Asn Ser Thr Pro Pro Ser Pro Thr Leu Ile Pro Arg Asp Cys Ser Glu 40 Ala Glu Val Gly Asp Cys Arg Gly Thr Ser Arg Lys Leu Arg Ala Arg 60 55 Arg Gly Gly Arg Asn Arg Pro Lys Ser Glu Leu Ala Leu Ser Lys Gln 70 75 Arg Arg Ser Arg Arg Lys Lys Ala Asn Asp Arg Glu Arg Asn Arg Met 90 His Asn Leu Asn Ser Ala Leu Asp Ala Leu Arg Gly Val Leu Pro Thr 105 Phe Pro Asp Asp Ala Lys Leu Thr Lys Ile Glu Thr Leu Arg Phe Ala 120 His Asn Tyr Ile Trp Ala Leu Thr Gln Thr Leu Arg Ile Ala Asp His

	130					135					140			~- 7	_	
	Phe	Tyr	Gly	Pro	Glu 150	Pro	Pro	Val	Pro	Cys 155	Gly	Glu	Leu	Gly	Ser 160	
145 Pro	Glv	Gly	Gly	Ser		Gly	Asp	Trp	Gly		Ile	Tyr	Ser	Pro		
	_			165					170					175		
Ser	Gln	Ala	Gly	Asn	Leu	Ser	Pro	Thr 185	Ala	Ser	Leu	Glu	Glu 190	Phe	Pro	
Gly	Leu	Gln	180 Val	Pro	Ser	Ser	Pro		Tyr	Leu	Leu	Pro		Ala	Leu	
		195					200					205				
Val	Phe 210	Ser	Asp	Phe	Leu											
<210)> 5															
<211																
<212			iaia.	7 50	സഹാ	70										
<213	5> A.	LUII.	icia.	ı se	4nem	-C										
<220			,	. ,	.											
<223	3> 0.	11go	nucl	eoti	ae p	rıme:	r									
<400)> 5															
tgga	agaa	ctg	tcaa	agcg	at c	tg										23
<210	0> 6															
	L> 2	3														
	2 > D			1 0												
<213	3> A	rtii	icia	I Se	quen	ce										
<220	0>															
<223	3> p	rime	r													
<400	0> 6															
			gttt	ctat	tg g	tc										23
-01/	0> 7															
	0> / 1> 1															
<21	2> D	NA														
<21	3> A	rtif	icia	l Se	quen	ce										
<22	0>															
		ligo	nucl	eoti	de p	rime	r									
-40	0> 7															
			tggg	aa												16
	0 > 8 1 > 2															
	1> 2 2> [
			icia	al Se	quen	.ce										
	_															
<22		oli <i>a</i> a	nucl	eoti	de r	rime	er									
~44	J/ (90	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				_									
	0 > 8															21
tga	aaqq	rtgt	gtgt	gtgc	ca g	Ī										41

<210> 9	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
3227 1222	
<220>	
<223> oligonucleotide primer	
<400> 9	
gatctagaga cttagaggtc actgc	25
gatetagaga ettagaggte ueege	
<210> 10	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
22137 ATCHILCTAL Dequence	
<220>	
<223> H3-1	
<400> 10	
	30
gatetetega gagageaaae agegeggegg	
<210> 11	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<213> Artificial bequence	
<220>	
<223> H3-2	
<400> 11	
	31
ttattattat tttagcaaac actggagaca g	-
<210> 12	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
(213) Altilicial bequence	
<220>	
<223> H1	
<400> 12	
atctcttgta attatttatt aaacgaaatc tatt	34
accepta actactact adacguades eace	
<210> 13	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
(ST3) WICTITCIAL Bedrence	
<220>	
<223> H2	
4400 12	
<400> 13	34
ttaaacgaaa tctatttatt attattttag caaa	24

an didin didindilinan is

	0> 14	
<21	1> 26	
<21	2> DNA	
<21	3> Artificial Sequence	
10-	•, ••••••••••••••••••••••••••••••••••••	
<22	^	
	3> H1P	
4 22	3) HIF	
-10	0> 14	
	ctcgcca cgagccacaa ggattg	26
gat	cccycca cyayccacaa ggaccy	
.01	0. 15	
	0> 15	
	1> 30	
	2> DNA	
<21	3> Artificial Sequence	
<22		
<22	3> E1	
	0> 15	30
gat	ctaaatt tccccatgtg taacgtgcag	30
<21	.0> 16	
	1> 32	
<21	.2> DNA	
<21	.3> Artificial Sequence	
<22	20>	
<22	23> N1	
	00> 16	2.0
gat	cetggage gggetegegt ggegeggeee eg	32
<21	10> 17	
<21	11> 31	
<21	12> DNA	
<21	13> Artificial Sequence	
<22	20>	
<22	23> N2	
<40	00> 17	
gat	tctgccgg gcaggcacgc tcctggcccg g	31
<23	10> 18	
<2:	11> 31	
<23	12> DNA	
<2	13> Artificial Sequence	
	-	
<22	20>	
<22	23> N3/4	
,	•	
<4	00> 18	
	tctaaagc gtgccaaggg gcacacgact g	31

<210> 19 <211> 75 <212> DNA <213> Hom	o sapiens					
<400> 19 cttgtaatt gtggggctt	a tttattaaac t ctttt	gaaatctatt	tattattatt	ttagcaaaca	ctggagacag	60 75

STATEMENT OF THE STATEM