GeoSAMS Growth

Thomas Callaghan Version 0.1

Contents

G	coSAMS Growth	i
	Thomas Callaghan	i
	Version 0.1	i
1	Scallop Population Density	1
	1.1 Initialize Simulation Parameters	
	1.1.1 Read Input	
	1.2 Set Grid Manager	
	1.2.1 Load Grid and Initial State	
	1.2.2 Load Area Coordinates	
	1.3 Set Growth	
	1.3.1 Shell Length	
	1.3.2 Shell to Weigth, in grams	
	1.3.3 Compute Growth Parameters, given depth, latitude, and isClosed	
	1.3.4 Compute G matrix for given growth parameters	
	1.4 Set Recruitment	
	1.4.1 For years start_year to stop_year	
	1.4.2 This method is effectively setting	
	1.4.3 It then quantizes recruitment,	
	1.5 Set Mortality	
	1.5.1 Compute alpha	
	1.5.2 Compute Fishing Effort	
	1.6 Main Loop	
	1.6.1 For each time step	
_	1.6.2 For each grid	
2	Growth_Mod	
	2.1 Growth Class	
	2.1.1 Transition Matrix	
3	_	
	3.1 Recruitment Class	
4	Mortality_Mod	
	4.1 Read_Configuration	
	4.2 Load_Fishing_Mortalities	
	4.3 Set Mortality	
	4.4 Compute Alpha	10
	4.5 Compute Selectivity	10
	4.6 Compute Discard	10
	4.7 Mortality_Write_At_Timestep	11
5	Grid Manager Mod	12
	5.1 Grid Manager Class	12
	5.1.1 Brief	12
	5.1.2 Set Grid Manager	12
	5.1.3 Read Configuration	12
	5.1.4 Load Area Coordinates	12
	5.1.5 Is Grid In Special Access	12
	5.1.6 Set Config File Name	
	5.2 Point In Polygon	
	5.2.1 Point In Polygon Points	
	5.2.2 Point In Polygon Array	
	5.2.3 Point In Polygon Vector	
6	Common Parameters	
7	Modules Index	
	7.1 Modules List	
8	Data Type Index	
	8.1 Data Types List	

	X	
9.1 Fil	e List	17
10 Modu	ıle Documentation	18
10.1 glo	obals Module Reference	18
10.1.1	Functions/Subroutines	18
10.1.2	Variables	18
10.1.3	Function/Subroutine Documentation	19
10.1.4	Variable Documentation	21
10.2 gri	d_manager_mod Module Reference	
10.2.1	Data Types	
10.2.2	Functions/Subroutines	
10.2.3	Variables	
10.2.4	Function/Subroutine Documentation	
10.2.5	Variable Documentation.	
	owth mod Module Reference	
10.3 gr	Data Types	
10.3.1	type growth classFunctions/Subroutines	
10.3.2	Variables	
	Function/Subroutine Documentation	
10.3.4		
10.3.5	Variable Documentation	
	ortality_mod Module Reference	
10.4.1	Data Types	
10.4.2	Functions/Subroutines	
10.4.3	Variables	
10.4.4	Function/Subroutine Documentation	
10.4.5	Variable Documentation	
10.5 rec	ruit_mod Module Reference	
10.5.1	Data Types	
10.5.2	type recruitment_classFunctions/Subroutines	
10.5.3	Variables	56
10.5.4	Function/Subroutine Documentation	56
10.5.5	Variable Documentation	59
11 Data	Type Documentation	60
	ortality_mod::dataforplots Type Reference	
11.1.1	Public Attributes	
11.1.2	Member Data Documentation	
11.2 mc	ortality mod::fishingmortality Type Reference	
11.2.1	Public Attributes	
11.2.2	Member Data Documentation.	
	id Data Class Module Reference	
	d_manager_mod::grid_data_class Type Reference	
11.4.1	Public Attributes	
11.4.2	Member Data Documentation.	
	owth Class Module Reference	
11.5.1	Detailed Description	
	owth mod::growth class Type Reference	
11.0 grd	Public Attributes	
11.6.2	Member Data Documentation.	
	d_manager_mod::lonlatpoint Type Reference	
11.7.1	Public Attributes	
11.7.2	Member Data Documentation	
	d_manager_mod::lonlatvector Type Reference	
11.8.1	Public Attributes	
11.8.2	Member Data Documentation	
	ortality_Class Module Reference	
11.9.1	Detailed Description	71

72
72
73
74
74
74
75
75
76
76
77
77
77
77
79
79
79
79
80
81
81
81
83
83
83
83
84
85
85
85
85
86
88
88
88
93
93
93
93
93
94

1 Scallop Population Density

This program is used to compute Scallop Density after a given growth period The Growth year starts on June 1st, actually May 31 at 2400

```
Jun 1st @ 0600 is day 0.25 which is = 0.25 /365.2425 = 0.00068 years

June 1st @ 1200 is day 0.50 which is = 0.50 /365.2425 = 0.00137

June 1st @ 1800 is day 0.75 which is = 0.75 /365.2425 = 0.00205

June 1st @ 2359 is day 0.99 which is = 0.99931/365.2425 = 0.002736

Jun2 2nd @ 0000 is day 1 which is = 1.00000/365.2425 = 0.00274

Jun2 2nd @ 2400 is day 2 which is = 2.00000/365.2425 = 0.00548

Dec 31st @ 2400 is day 214 which is = 214. /365.2425 = 0.58591

Jan 1st @ 2400 is day 215 which is = 215. /365.2425 = 0.58865

= 1 + DayOfYear(12,31) - DayOfYear(5,31)

Apr 10 @ 2400 is day 314 which is = 314. /365.2425 = 0.85970

if leap year 315 which is = 315. /365.2425 = 0.86244 However, leap year will be handled in the main loop in which it is considered only for the current year
```

GUI specifies 2022 to 2026, however, it passes to this program 2022 to 2025 as these are the years for which growth starts. The resulting files are still the same.

```
X_Y_BIOM_2022_DN Initial state as of June 1, 2022 @ 00:00, i.e. May 31, 2022 @ 24:00 X_Y_BIOM_2023_DN Growth state as of May 31, 2023 @ 24:00, results for 1st year growth X_Y_BIOM_2024_DN Growth state as of May 31, 2024 @ 24:00, results for 2nd year growth X_Y_BIOM_2025_DN Growth state as of May 31, 2025 @ 24:00, results for 3rd year growth X_Y_BIOM_2026_DN Growth state as of May 31, 2026 @ 24:00, results for 4th year growth
```

1.1 Initialize Simulation Parameters

1.1.1 Read Input

Values are read in from file name given on command line, e.g.

ScallopPopDensity.exe Scallop.cfg

Time steps per Year: number of time steps each year

The following are used to name configuration files used by other modules Mortality Config File Recruit Config File Grid Manager Config File

Additional parameters are placed on the command line to facilitate batch processing

```
Start Year
Stop Year
Domain Name
MA
GB
AL, for both MA and GB
```

1.2 Set Grid Manager

1.2.1 Load Grid and Initial State

The initial state is defined by a hardcoded data file named as follows:

Data/bin5mmYYYY[MA|GB].csv

where the year, YYYY, is defined by the Start Year and MA or GB is specified by the given domain name.

The data in each file, Data/bin5mmYYYY[MA|GB].csv has grid information for where each grid is located and its depth. Data in the same row is used for the initial state, in units of scallop count per square for each size classs.

1.2.2 Load Area Coordinates

After the initial state has been loaded, GeoSAMS will check if any of the grid locations are in a special access area. This will be used later to set fishing mortality based on these location settings.

1.3 Set Growth

The simulation then instantiates parameters that define how growth occurs

1.3.1 Shell Length

Starting at 30mm to 150mm inclusive, in 5 mm steps.

That is (150 - 30) / 5 + 1, or 25 size classes

1.3.2 Shell to Weigth, in grams

GB

```
ShellToWeight = exp( - 6.69 + 2.878*log(shell_{length}) \\ - 0.0073*depth - 0.073*latitude \\ + (1.28 - 0.25*log(shell_{length})*isClosed)
```

MA

```
ShellToWeight = exp( - 9.713394 + 2.62025 * log(shell_{length}) 
- 0.004665 * depth + 0.021 * latitude 
- 0.031 * isClosed)
```

where isClosed is 1 if closed or 0 if open

1.3.3 Compute Growth Parameters, given depth, latitude, and isClosed

$$L_{\infty_{\mu}}$$

 $L_{\infty_{\sigma}}$
 K_{μ}
 K_{σ}

1.3.4 Compute G matrix for given growth parameters

From MN18 p. 1312, 1313, where
$$len = shell_{length}$$

$$c = 1.0 - exp(-K_{\mu} * \delta_t)$$

$$\eta = c * L_{\infty_{\mu}}$$
 For each size class, k
$$\omega_k = len_k - len_{k-1}, \text{typically 5mm}$$

$$\omega_{k_{avg}} = \frac{len_k + len_{k-1}}{2}, \text{typically 2.5mm}$$

$$\Omega = (1-c)\omega_k$$

$$X(y,k) = len_y - \eta - (1-c)len_k$$

$$\Phi(x,\mu,\sigma) = \frac{1}{2} \left(1 + Erf(\frac{x-\mu}{\sigma\sqrt{2}})\right)$$

$$\phi(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$H_{MN18}(x,\sigma,\omega) = \frac{1}{\omega} \left(x\Phi_N(x,0,\sigma^2) + \sigma^2\phi_N(x,0,\sigma^2)\right)$$

$$G(y, k, \sigma, \omega_k) = H_{MN18}(X(y, k-1), \sigma, \Omega) - H_{MN18}(X(y, k), \sigma, \Omega)$$

1.4 Set Recruitment

The simulation next instantiates how recruitment will be handled.

1.4.1 For years start_year to stop_year

Data is read randomly chosen from RecruitEstimates/RecruitEstimateDNYYYY.txt. YYYY is the range of years of available recruit information as pulled from the survey data file.

1.4.2 This method is effectively setting

For year in start_year to stop_year

Year_index = year - start_year + 1
for year_index in [1..max]

recruitment(year_index) = RecruitEstimate(random year index)
year(year_index) = year
rec_start = Start Period, typically 0/365.2425, or January 1st
rec_stop = Stop Period, typically 100/365.2425, or April 10

1.4.3 It then quantizes recruitment,

For each grid, n

$$\begin{split} L30mm &= \left(L_{\infty_{\mu}}(n) - 30\right) * exp(-K_{\mu}(n)) \\ \text{For each class, j} \\ &\quad \text{If (length(j) <= L30mm) recruit(n).max_rec_ind = j} \end{split}$$

1.5 Set Mortality

The simulation next sets mortality values.

Table 1 Mortality

Region	Adult	Incidental	Base Length
MA	25%	5%	65.0
GB	20%	10%	70.0

1.5.1 Compute alpha

$$\alpha(shell_{length}) = 1 - \frac{1}{1 + exp(-(shell_{length} - length_0)/10.0)}$$

1.5.2 Compute Fishing Effort

1.5.2.1 Compute landings at size for each grid location

Given The number of scallops per square meter:

$$scallops = selectivity_{loc} \cdot state_{loc}$$

and the exploitable biomass in grams per square meter

$$EBMS_{loc} = scall ops \cdot weight_{loc}$$

$$landi\vec{ng}s_{size} = (1.0 - exp((-F_{mort_{loc}} * \delta_1)) * state_{loc} * gridArea * selectivity_{loc}) * tate_{loc} * gridArea * selectivity_{loc} * grid$$

1.5.2.2 Compute landings by weight

$$landi\vec{n}gs_{wqt} = landi\vec{n}gs_{size} \cdot weight = catch$$

This is also considered total_catch

1.5.2.3 Total catch is used compute fishing effort

$$rms = \sum_{loc=1}^{n} \frac{EBMS(loc)^{2}}{scallops(loc))}$$

$$FishingEffort = \frac{E\vec{BMS}*catch/scallops}{rms*gridArea}$$

1.6 Main Loop

1.6.1 For each time step

1.6.1.1 Set Fishing Effort

Here there is defined a fishing effort that is independent of mortality. Whereas the mortality fishing effort is a function of region and historical data, this fishing effort is a function of cost, biomass or as a spatial constant within region.

1.6.2 For each grid

1.6.2.1 Compute natural mortality

Determine the number of scallops in millions, S, given the current state

$$S = state * domainArea$$

This is used to determine the juvenile mortality. Adult mortality was defined at module instantiation.

Mid-Atlantic:

$$M_{juv} = \begin{cases} exp(1.093 * log(S) - 9.701), & \text{if } S > 1400 \text{ million} \\ 0.25, & \text{otherwise} \end{cases}$$

Georges Bank:

$$M_{juv} = \begin{cases} exp((1.226*log(S)-10.49)), & \text{if } S > 1400 \text{ million} \\ 0.2, & \text{otherwise} \end{cases}$$

Finally

$$M_{nat} = \alpha * M_{juv} + (1 - \alpha)M_{adult}$$

1.6.2.2 Adjust population state based on von Bertalanffy growth

$$\vec{S} = |G| \times \vec{S}$$

1.6.2.3 Adjust population state based on von Bertalanffy growth

If within recruitment period, i.e. Jan 1st to April 10th

$$\vec{S} = \vec{S} + \delta_t \frac{\vec{R}}{RecruitDuration}$$

1.6.2.4 Compute Overall Mortality

$$\vec{M} = \vec{M}_{nat} + Fishing * (\vec{M}_{selectivity} + \vec{M}_{incidental} + \vec{M}_{discard})$$

1.6.2.5 Compute effect of mortality to arrive at new state

$$\vec{S}_{t+1} = \vec{S}_t * (1 - \delta_t * \vec{M})$$

2 Growth_Mod

2.1 Growth Class

The scallop state_vector at each node in the domain is a vector of length $N_{\rm sc} = (150-30)/5+1=25$ representing the abundance of scallops in size classes [30-35mm, 35-40mm, ...145-150mm, 150mm+]

Size class transition matrices are generated for each node based on the work of Millar and Nottingham 2018 Appendix C, henceforth MN18 [1], although other methods are present in the code including direct Monte Carlo simulation. including (see subroutine *GenTransMat*).

Growth in GeoSAMS is based off of von Bertanlffy growth.

$$\delta(u) = (L_{\infty} - u)(1 - e^{-K})$$

Or from HC2009 [2], equation (1)

$$L_t = L_{t-1}e^{-K} + L_{\infty}(1 - e^{-K})$$

We assume normal distribution on L_{∞} and K with all distribution parameters independent.

The shell height of the ith individual at time t+1, $L_{t+1,i}$ depends on the random effects (α_i and β_i) as well as the mean slope and intercept:

$$L_{t+1,i} = (m + \alpha_i)L_{t,i} + (b + \beta_i) + \epsilon$$
,
where ϵ is a random error with expected value zero.

The values of the distribution means ($\mu_{L_{\infty}}$ and μ_{K}) are taken from previous work of Hart, HC2009. The distribution of increments by size class as in MN18). Growth increment is given by the von Bertlanaffy growth curve

We begin by determining the scallop time to grow for a given year: Computes the overall growth of the scallop population over a time period of (num_time_steps * delta_time) in units of years, typically one year with delta time as a decimal year, e.g. one day = 1/365.2425 = 0.00274

For each time step, δ_t

Computes mortality based on current state vector.

Computes increase in population due to recruitment, \vec{R} , if within recruitment months, i.e. Jan to April 10th

$$\vec{S} = \vec{S} + \delta_t \frac{\vec{R}}{RecruitDuration}$$

Adjusts population based on von Bertalanffy growth

$$\vec{S} = |G| \times \vec{S}$$

where G is the transition matrix

Compute overall mortality, M

$$\vec{M} = \vec{M}_{nat} + Fishing * (\vec{M}_{selectivity} + \vec{M}_{incidental} + \vec{M}_{discard})$$

Compute new state vector

$$\vec{S_{t+1}} = \vec{S_t} * (1 - \delta_t * \vec{M})$$

- 1. MN18 refers to Miller, R. B. and Nottingham, 2018, "Improved approximations for estimation of size-transition probabilities within size-structured models"
- 2. HC2009 refers to Hart, D. R. and Chute, A. S. 2009, "Estimating von Bertalanffy growth parameters from growth increment data using a linear mixed-effects model, with an application to the sea scallop Placopecten magellanicus."

2.1.1 Transition Matrix

A transition matrix, 25 by 25, is computed under the assumption of von Bertlanaffy growth. It is assumed that the parameters of von BernBertlanaffy growth K and L inf have normal distributions.

From MN18 p. 1312, 1313

$$c = 1.0 - e^{-K_{\mu} * \delta_t}$$

$$\eta = c * L_{\infty_{\mu}}$$

$$\omega_k = l_k - l_{k-1}$$

$$\omega_{k_{avg}} = \frac{l_k + l_{k-1}}{2}$$

$$\Omega = (1 - c)\omega_k$$

$$X(y, k) = l_y - \eta - (1 - c)l_k$$

$$G(y, k, \sigma, \omega_k) = H_{MN18}(X(y, k - 1), \sigma, \Omega) - H_{MN18}(X(y, k), \sigma, \Omega)$$

2.1.1.1 Function H(x, sigma, omega)

Given (MN18 Appendix B)

 Φ_N denotes the normal **cumulative** distribution function.

 ϕ_N denotes the normal **density** function.

$$H_{MN18}(x, \sigma, \omega) = \frac{1}{\omega} \left(x \Phi_N(x, 0, \sigma^2) + \sigma^2 \phi_N(x, 0, \sigma^2) \right)$$

2.1.1.2 Normal Cumulative Distribution Function

$$\Phi(x, \mu, \sigma) = \frac{1}{2} \left(1 + Erf\left(\frac{x - \mu}{\sigma \sqrt{2}}\right)\right)$$

2.1.1.3 Normal Density Function

$$\phi(x, \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

3 Recruit_Mod

3.1 Recruitment Class

An array of weights is computed based on the number of recruitment years that favors more recent recruit estimates. The weighting is then used to randomly choose an index into the available recruit data. This index is used to preload the recruit data into the Recruitment Class structure.

recruitment() = data read in from randomly chosen recruit file year() = simulation year

rec_start = a decimal value given as day of the year divided by 365.2425. Typically 0, which would be January 1

rec_stop = decimal value given as day of the year divided by 365.2425. Typically 100/365.2425, which is April 10th.

4 Mortality_Mod

The methods in this class are used to determine the selectivity and discard of the scallops based on shell length and location.

Set_Mortality

Instantiates private members for this class.

Reads in its configuration parameters and stores to private members.

Loads Fishing Mortalities, if enabled by GridManager

Sets up a repository for key values to allow offline analysis

Loads historical data for Fishing Effort

Set selectivity as computed by Ring_Size_Selectivity based on shell length and grid location

4.1 Read_Configuration

Opens the configuration file specified in the simulation configuration file and as set by Set Config File Name

4.2 Load_Fishing_Mortalities

Opens the configuration file specified in the Mortality configuration file and as set by Set Fishing Mortality

4.3 Set Mortality

 $Mortality = Mortality_{adult}$

4.4 Compute Alpha

$$Alpha_{mortality} = 1.0 - \frac{1.0}{(1.0 + exp(-(shell_{lengths}(:)-length_0)/10.0))}$$

4.5 Compute Selectivity

Assign size class fishing selectivity based on increasing logistic function

$$selectivity = \frac{1}{1 + exp(F_{sel_a} - F_{sel_b} * (shell_{len} + shell_{len_{delta}}/2.0))}$$

4.6 Compute Discard

$$Discard = \begin{cases} 0.0, & \text{if } length > cullSize \text{ or gridIsClosed} \\ discard_{region} * selectivity, & \text{otherwise} \end{cases}$$

4.7 Mortality_Write_At_Timestep

5 Grid Manager Mod

5.1 Grid Manager Class

5.1.1 Brief

The Grid Manager is responsible for setting up the grid by reading in each grid's coordinates from the *Initial_Conditions* file named by the *Grid_Manager_Config_File* in Scallop.cfg.

The main program instantiates a Grid Manger by calling Set Grid Manager

5.1.2 Set Grid Manager

This routine initializes private variables. Calls *Read_Configuration that* reads in the Grid Manger configuration file as given by the main configuration and set via *Set_Config_File_Name*

Load_Grid_State loads the grid data from the file defined by the start year and domain. Data/bin5mmYYYYDN.csv

This establishes the number of grids, num grids, and the initial state of the scallop density, @ state.

If a special access area definitions are provided, these are loaded via *Load_Area_Coordinates*. Each grid location if then checked if it is in a special access area and identified as such by setting *special access index* to the index of the corresponding access area.

5.1.3 Read Configuration

Reads given file name and scans each line, input string, for tag and value characters. Also determines if special access areas are desired and if not sets use spec access data to false

5.1.4 Load Area Coordinates

If use_spec_access_data is true then reads given file name. Scans each input line for an area longitude vector coordinates followed by latitude vector coordinates. The length of each vector must be equal and establishes the number of vertices, or edges i.e. @ n_sides that define the special access area. The number of such vector pairs establishes the num_ares defined

5.1.5 Is Grid In Special Access

This method uses a grids longitude and latitude coordinates are in a special area. It does so by using a point in polygram algorithm. The data vector representation is used when calling <code>Point_In_Polygon_Vector</code> @section p4p3 Grid Manager Support Methods

5.1.6 Set_Config_File_Name

Sets config_file_name for **Read_Configuration** @subsection p4p2p2
Set_Init_Cond_File_Name Sets init_cond_fname for **Load_Grid_State** @subsection
p4p2p3 Set Special Access File Name

5.2 Point In Polygon

The Point_In_Polygon_Vector method is used to find if a point is in a polygon. The *Grid_Manager* also supports polygon data representation as an array of LonLatPoint points vial *Point_In_Polygon_Points* or as a n by 2, 2-dimensional array, where n is a maximum of max sides edges.

- 5.2.1 Point_In_Polygon_Points
- 5.2.2 Point_In_Polygon_Array
- 5.2.3 Point_In_Polygon_Vector

6 Common Parameters

7 Modules Index

7.1 Modules List

Here is a list of all modules with brief descriptions:

globals	. 18
grid manager mod	. 24
growth modgrowth mod	
mortality mod	
recruit mod	. 56

8 Data Type Index

8.1 Data Types List

Here are the data types with brief descriptions:

mortality_mod::dataforplots	60
mortality_mod::fishingmortality	62
Grid_Data_Class	63
grid_manager_mod::grid_data_class	
Growth_Class (Subroutines that determine expected growth of scallops)	66
growth mod::growth class	67
grid_manager_mod::lonlatpoint	69
grid_manager_mod::lonlatvector	70
Mortality Class (Subroutines that determine expected mortality of scallops)	
mortality_mod::mortality_class	
recruit_mod::recruitment_class	
Recruitment Class (Subroutines that determine expected growth of scallops)	

9 File Index

9.1 File List

Here is a list of all files with brief descriptions:

SRC/Globals.f90 77 SRC/GridManager.f90 79 SRC/IORoutines.f90 81 SRC/ScallopGrowth.f90 83 SRC/ScallopMortality.f90 85 SRC/ScallopPopDensity.f90 88 SRC/ScallopPopDensity.f90 93	SRC/aaaPageOrder.f90	
SRC/IORoutines.f90 81 SRC/ScallopGrowth.f90 83 SRC/ScallopMortality.f90 85 SRC/ScallopPopDensity.f90 88	SRC/Globals.f90	77
SRC/ScallopGrowth.f90 83 SRC/ScallopMortality.f90 85 SRC/ScallopPopDensity.f90 88	SRC/GridManager.f90	79
SRC/ScallopMortality.f90 85 SRC/ScallopPopDensity.f90 88	SRC/IORoutines.f90	81
SRC/ScallopMortality.f90 85 SRC/ScallopPopDensity.f90 88	SRC/ScallopGrowth.f90	83
	SRC/ScallopMortality,f90	85
	SRC/ScallopPopDensity.f90	88
SNC/Scanoprectuit.19093	SRC/ScallopRecruit.f90	

10 Module Documentation

10.1 globals Module Reference

10.1.1 Functions/Subroutines

```
elemental real(dp) function logic_to_double (value) real(dp) function, dimension(n, n) matrixinv (x, n) logical function leap_year (year) logical function divby (y, val) integer function dayofyear (m, d) logical function is_nan (x)
```

10.1.2 Variables

```
integer, parameter sp = selected real kind(6, 37)
integer, parameter dp = selected real kind(15, 307)
integer, parameter qp = selected real kind(33, 4931)
integer, parameter ndim = 1200\overline{0}
integer, parameter shell len max = 150
integer, parameter shell len min = 30
integer, parameter shell len delta = 5
integer, parameter num size classes = (shell len max - shell len min) / shell len delta + 1
integer, parameter max num years = 50
integer, parameter max num areas = 25
integer, parameter max sides = 8
integer, parameter region none =0
integer, parameter region n = 1
integer, parameter region s = 2
integer, parameter region sw = 3
integer, parameter region \mathbf{w} = 4
integer, parameter region ma =5
integer, parameter region gbk = 1
integer, parameter region mab = 5
integer, parameter tag len = 40
integer, parameter value len = 30
integer, parameter comment len = 80
integer, parameter line len = tag len+value len+comment len
integer, parameter fname len = 100
integer, parameter form len = 20
integer, parameter input str len = 100
integer, parameter csv line len = 2000
integer, parameter domain len = 2
integer, parameter read dev = 69
integer, parameter write dev = 63
real(dp), parameter zero threshold = 1.0D-99
real(dp), parameter pi = 3.14159265358979323846264338327950288D0
real(dp), parameter grams per pound = 453.592 dp
real(dp), parameter meters per naut mile = 1852.D0
real(dp), parameter grams per metric ton = 1000000. dp
real(dp), parameter grid area sqm = meters per naut mile**2
real(dp), parameter tow area sqm = 4516. dp
real(dp), parameter one scallop per tow = 1.D0 / tow area sqm
real(dp), parameter ma gb border = -70.5
```

```
real(dp), parameter days in year =365+0.25-0.01+0.0025
character(*), parameter term red = "//achar(27)//[31m'
character(*), parameter term yel = "//achar(27)//[33m'
character(*), parameter term grn = "//achar(27)//'[92m'
character(*), parameter term blu = "//achar(27)//'[94m'
character(*), parameter term blk = "//achar(27)//"[0m'
character(*), parameter init cond dir = 'InitialCondition/'
character(*), parameter growth_out_dir = 'GrowthOutput/'
character(*), parameter rec_input_dir = 'RecruitEstimates/'
character(*), parameter rec output dir = 'RecruitField/'
character(*), parameter output dir = 'Results/'
character(*), parameter config dir sim = 'Configuration/Simulation/'
character(*), parameter config dir interp = 'Configuration/Interpolation/'
character(*), parameter config_dir_special = 'Configuration/SpecialAccess/'
character(*), parameter grid dir = 'Grids/'
character(*), parameter data dir = 'Data/'
character(*), parameter anal dir = 'Analysis/'
integer, parameter num regions = 2
character(3), dimension(num regions) rgn = (/ ' GB', ' MA'/)
```

10.1.3 Function/Subroutine Documentation

10.1.3.1 integer function globals::dayofyear (integer, intent(in) m, integer, intent(in) d)

Here is the call graph for this function:

Here is the caller graph for this function:

10.1.3.2 logical function globals::divby (integer y, integer val)

Here is the call graph for this function:

Here is the caller graph for this function:

10.1.3.3 logical function globals::is_nan (real(dp), intent(in) x)

Here is the call graph for this function:

Here is the caller graph for this function:

10.1.3.4 logical function globals::leap_year (integer year)

Here is the call graph for this function:

Here is the caller graph for this function:

10.1.3.5 elemental real(dp) function globals::logic_to_double (logical, intent(in) value)

Here is the call graph for this function:

Here is the caller graph for this function:

10.1.3.6 real(dp) function, dimension(n,n) globals::matrixinv (real(dp), dimension(n,n), intent(in) x, integer, intent(in) n)

Here is the call graph for this function:

Here is the caller graph for this function:

globals::lo

10.1.4 Variable Documentation

- 10.1.4.1 character(*), parameter globals::anal dir = 'Analysis/'
- 10.1.4.2 integer, parameter globals::comment_len = 80
- 10.1.4.3 character(*), parameter globals::config_dir_interp = 'Configuration/Interpolation/'
- 10.1.4.4 character(*), parameter globals::config_dir_sim = 'Configuration/Simulation/'
- 10.1.4.5 character(*), parameter globals::config_dir_special = 'Configuration/SpecialAccess/'
- 10.1.4.6 integer, parameter globals::csv_line_len = 2000
- 10.1.4.7 character(*), parameter globals::data_dir = 'Data/'
- 10.1.4.8 real(dp), parameter globals::days_in_year =365+0.25-0.01+0.0025
- 10.1.4.9 integer, parameter globals::domain_len = 2
- 10.1.4.10 integer, parameter globals::dp = selected_real_kind(15, 307)
- 10.1.4.11 integer, parameter globals::fname len = 100
- 10.1.4.12 integer, parameter globals::form len = 20
- 10.1.4.13 real(dp), parameter globals::grams_per_metric_ton = 1000000._dp
- 10.1.4.14 real(dp), parameter globals::grams_per_pound = 453.592_dp
- 10.1.4.15 real(dp), parameter globals::grid_area_sqm = meters_per_naut_mile**2
- 10.1.4.16 character(*), parameter globals::grid_dir = 'Grids/'
- 10.1.4.17 character(*), parameter globals::growth out dir = 'GrowthOutput/'
- 10.1.4.18 character(*), parameter globals::init_cond_dir = 'InitialCondition/'
- 10.1.4.19 integer, parameter globals::input_str_len = 100
- 10.1.4.20 integer, parameter globals::line_len = tag_len+value_len+comment_len
- 10.1.4.21 real(dp), parameter globals::ma_gb_border = -70.5
- 10.1.4.22 integer, parameter globals::max_num_areas = 25
- 10.1.4.23 integer, parameter globals::max num years = 50

```
10.1.4.24 integer, parameter globals::max_sides = 8
```

- 10.1.4.25 real(dp), parameter globals::meters_per_naut_mile = 1852.D0
- 10.1.4.26 integer, parameter globals::ndim = 12000
- 10.1.4.27 integer, parameter globals::num_regions = 2
- 10.1.4.28 integer, parameter globals::num_size_classes = (shell_len_max shell_len_min) / shell_len_delta + 1
- 10.1.4.29 real(dp), parameter globals::one scallop per tow = 1.D0 / tow area sqm
- 10.1.4.30 character(*), parameter globals::output_dir = 'Results/'
- 10.1.4.31 real(dp), parameter globals::pi = 3.14159265358979323846264338327950288D0
- 10.1.4.32 integer, parameter globals::qp = selected_real_kind(33, 4931)
- 10.1.4.33 integer, parameter globals::read_dev = 69
- 10.1.4.34 character(*), parameter globals::rec_input_dir = 'RecruitEstimates/'
- 10.1.4.35 character(*), parameter globals::rec_output_dir = 'RecruitField/'
- 10.1.4.36 integer, parameter globals::region_gbk = 1
- 10.1.4.37 integer, parameter globals::region_ma =5
- 10.1.4.38 integer, parameter globals::region_mab = 5
- 10.1.4.39 integer, parameter globals::region n =1
- 10.1.4.40 integer, parameter globals::region_none =0
- 10.1.4.41 integer, parameter globals::region_s =2
- 10.1.4.42 integer, parameter globals::region_sw =3
- 10.1.4.43 integer, parameter globals::region_w =4
- 10.1.4.44 character(3), dimension(num regions) globals::rgn = (/ ' GB', ' MA'/)
- 10.1.4.45 integer, parameter globals::shell len delta = 5
- 10.1.4.46 integer, parameter globals::shell_len_max = 150
- 10.1.4.47 integer, parameter globals::shell_len_min = 30

- 10.1.4.48 integer, parameter globals::sp = selected_real_kind(6, 37)
- 10.1.4.49 integer, parameter globals::tag_len = 40
- 10.1.4.50 character(*), parameter globals::term_blk = "//achar(27)//"[0m"
- 10.1.4.51 character(*), parameter globals::term_blu = "//achar(27)//'[94m'
- 10.1.4.52 character(*), parameter globals::term_grn = "//achar(27)//"[92m"
- 10.1.4.53 character(*), parameter globals::term_red = "//achar(27)//"[31m"
- 10.1.4.54 character(*), parameter globals::term_yel = "//achar(27)//'[33m'
- 10.1.4.55 real(dp), parameter globals::tow_area_sqm = 4516._dp
- 10.1.4.56 integer, parameter globals::value_len = 30
- 10.1.4.57 integer, parameter globals::write_dev = 63
- 10.1.4.58 real(dp), parameter globals::zero_threshold = 1.0D-99
- 10.1.4.59

10.2 grid_manager_mod Module Reference

10.2.1 Data Types

type **grid_data_class**type **lonlatpoint** type **lonlatvector**

10.2.2 Functions/Subroutines

```
integer function set num grids ()
```

Determines the expected number of grids by simply counting the number of lines with text in the initial state file. It does not perform any error checking, only counting the number of lines with text and stopping at the first blank line.

subroutine set grid manager (state mat, grid, ngrids, dom name)

Initializes growth for startup.

subroutine set config file name (fname)

Used during instantiation to set the name of the file to read to for configuration parameters.

subroutine set_init_cond_file_name (fname)

Used during instantiation to set the name of the file to read to for grid locations, state.

subroutine set_special_access_file_name (fname)

Used during instantiation to set the name of the file to special access coordinates.

integer function get num of areas ()

Get'r function for private member num areas.

subroutine read_configuration ()

Read Configuration.

integer function load grid state (grid, state mat)

This function is used to set the grid parameters and the initial state to start the simulation.

```
integer function load area coordinates ()
```

integer function is grid in special access (lon, lat)

logical function point in polygon points (poly, point, nodes)

logical function point in polygon array (poly, point, nodes)

logical function **point in polygon vector** (polyx, polyy, x, y, nodes)

First of all, notice that each iteration considers two adjacent points and the target point. Then the if statement evaluates two conditions:

10.2.3 Variables

type(lonlatvector), dimension(max_num_areas), private area integer, private num_areas integer, private num_grids

logical, private use_spec_access_data character(domain_len), private domain_name character(fname_len), private config_file_name character(fname_len), private init_cond_fname character(fname_len), private special accesss fname

10.2.4 Function/Subroutine Documentation

10.2.4.1 integer function grid_manager_mod::get_num_of_areas

Get'r function for private member num_areas.

Here is the call graph for this function:

Here is the caller graph for this function:

10.2.4.2 integer function grid_manager_mod::is_grid_in_special_access (real(dp), intent(in) lon, real(dp), intent(in) lat)

Here is the call graph for this function:

Here is the caller graph for this function:

10.2.4.3 integer function grid_manager_mod::load_area_coordinates

Here is the call graph for this function:

Here is the caller graph for this function:

10.2.4.4 integer function grid_manager_mod::load_grid_state (type(grid_data_class), dimension(*), intent(out) grid, real(dp), dimension(1:num grids, 1:num_size_classes), intent(out) state mat)

This function is used to set the grid parameters and the initial state to start the simulation.

It does so by reading the CSV file at file name. This file has been generated by the TrawlData5mm.m Matlab script. The format is for each grid in a row, the columns are Decimal Year, UTM X, UTM Y, Latitude, Longitude, UTM Z, Grid Is Closed, Followed by Scallop Density in Count/m² sorted by shell length 30 to 150 mm in 5mm increments for 25 columns

10.2.4.4.1 Parameters

in,out	grid	Holds position information
out	state	Holds the initial state at various location specified by grid
in	file name	CSV name to be read in

Here is the call graph for this function:

Here is the caller graph for this function:

10.2.4.5 logical function grid manager mod::point in polygon array (real(dp), dimension(max sides,2), intent(in) poly, real(dp), dimension(2), intent(in) point, integer, intent(in) nodes)

10.2.4.5.1 Parameters

poly	Array of x,y coordinates that define polygram,
point	x,y coordinate of point we wish to determine if inside polygram
nodes	the number of corners, edges, that define the polygon

10.2.4.5.2 Returns

true if point is inside polygram, false if outsied if point is on an edge then is may return true of false

Here is the call graph for this function:

10.2.4.6 logical function grid_manager_mod::point_in_polygon_points (type(lonlatpoint), dimension(*), intent(in) poly, type(lonlatpoint), intent(in) point, integer, intent(in) nodes)

10.2.4.6.1 Parameters

poly	Array of LonLatPoint coordinates that define polygram,
point	LonLatPoint coordinate of point we wish to determine if inside polygram
nodes	the number of corners, edges, that define the polygon

10.2.4.6.2 Returns

true if point is inside polygram, false if outsied if point is on an edge then is may return true of false

Here is the call graph for this function:

_in_polygon_points

10.2.4.7 logical function grid_manager_mod::point_in_polygon_vector (real(dp), dimension(*), intent(in) polyx, real(dp), dimension(*), intent(in) polyy, real(dp), intent(in) x, real(dp), intent(in) y, integer, intent(in) nodes)

First of all, notice that each iteration considers two adjacent points and the target point. Then the if statement evaluates two conditions:

1.) Y-value of our target point is within the range [verty[j], verty[i]). 2.) X-value of our target point is below the linear line connecting the point j and i. If you're having problems to see this second condition, just write down the linear equation of the line, reorganize the expression a little bit and place testy as the free variable.

Every time the above two conditions are met, we toggle the flag c. So we return true if above conditions are met odd number of times and false otherwise.

http://alienryderflex.com/polygon/

10.2.4.7.1 Parameters

polyX	Array of horizontal, coordinates of corners
polyY	Array of vertical coordinates of corners
x	horizontal coordinate of point we wish to determine if inside polygram
y	vertical coordinate of point we wish to determine if inside polygram
nodes	the number of corners, edges, that define the polygon

10.2.4.7.2 Returns

true if point is inside polygram or if on vert or horiz edge, if point is on rise of falling edge then it may return true or false

Here is the call graph for this function:

Here is the caller graph for this function:

10.2.4.8 subroutine grid_manager_mod::read_configuration

Read_Configuration.

Read Input File

Reads a configuration file

Here is the call graph for this function:

Here is the caller graph for this function:

10.2.4.9 subroutine grid_manager_mod::set_config_file_name (character(*), intent(in) fname)

Used during instantiation to set the name of the file to read to for configuration parameters.

Read Input File

Sets file names for initial state data and special access data Here is the caller graph for this function:

10.2.4.10 subroutine grid_manager_mod::set_grid_manager (real(dp), dimension(1:ngrids, 1:num_size_classes), intent(out) state mat, type(grid_data_class), dimension(*), intent(out) grid, integer, intent(inout) ngrids, character(domain_len), intent(in) dom_name)

Initializes growth for startup.

Here is the call graph for this function:

10.2.4.11 subroutine grid_manager_mod::set_init_cond_file_name (character(*), intent(in) fname)

Used during instantiation to set the name of the file to read to for grid locations, state.

Read Input File

Sets name of a configuration file, typical 'Data/bin5mmYYYY[MA|GB].csv' Here is the caller graph for this function:

10.2.4.12 integer function grid_manager_mod::set_num_grids

Determines the expected number of grids by simply counting the number of lines with text in the initial state file. It does not perform any error checking, only counting the number of lines with text and stopping at the first blank line.

10.2.4.12.1Returns

The expected number of grids to process.

Here is the call graph for this function:

Here is the caller graph for this function:

Used during instantiation to set the name of the file to special access coordinates.

Read Input File

Sets file name for special access coordinates

Here is the caller graph for this function:

10.2.5 Variable Documentation

10.2.5.1 type(lonlatvector), dimension(max_num_areas), private grid_manager_mod::area[private]

10.2.5.2 character(fname_len), private grid_manager_mod::config_file_name[private]

10.2.5.3 character(domain_len), private grid_manager_mod::domain_name[private]

10.2.5.4 character(fname_len), private grid_manager_mod::init_cond_fname[private]

10.2.5.5 integer, private grid_manager_mod::num_areas[private]

10.2.5.6 integer, private grid_manager_mod::num_grids[private]

10.2.5.7 character(fname_len), private grid_manager_mod::special_accesss_fname[private]

10.2.5.8 logical, private grid_manager_mod::use_spec_access_data[private]

10.2.5.9

10.3 growth_mod Module Reference

10.3.1 Data Types

10.3.2 type growth classFunctions/Subroutines

subroutine **set_growth** (growth, grid, shell_lengths, num_ts, ts_per_year, dom_name, dom_area, state_mat, weight_grams, ngrids)

Initializes growth for startup.

$real (\textbf{dp}) \ function, \ dimension (1: \textbf{num_size_classes}, \ 1: \textbf{num_size_classes}) \ \textbf{gen_size_trans_matrix}$

(l_inf_mu, l_inf_sd, k_mu, k_sd, shell_lengths, method)

Transition matrix used to determine the growth of the scallop. The equations are based on MN18, Appendix C.

real(**dp**) function, dimension(**num_size_classes**) **set_shell_lengths** (length_min, length_delta) setup shell shell lengths intervals

subroutine get_growth_gb (depth, lat, is_closed, l_inf_mu, k_mu, l_inf_sd, k_sd)

Provides growth parameters L and K parameters for Georges Bank. From R code sent by Dvora July 28th 2021.

subroutine **get_growth_ma** (depth, lat, is_closed, l_inf_mu, k_mu, l_inf_sd, k_sd)

Provides growth parameters L and K parameters for Mid Atlantic From R code sent by Dvora July 28th 2021.

real(**dp**) function, dimension(**num_size_classes**, **num_size_classes**) **mn18_appxc_trans_matrix** (l_inf_mu, k_mu, l_inf_sd, k_sd, shell_lengths)

Purpose: This subroutine computes a sizeclass transition matrix under the assumption of von Bertlanaffy growth. It is assumed that the parameters of von BernBertlanaffy growth K and L_inf have normal distributions.

subroutine increment mean std (1 inf mu, k mu, 1 inf sd, k sd, size, mu, sigma)

Purpose: This subroutine computes a growth increment distribution parameters under the assumption of von Bertlanaffy growth and normally distributed growth increments. It is assumed that the parameters of von BernBertlanaffy growth K and L inf have normal distributions.

real(dp) function h mn18 (x, sigma, w)

Given (MN18 Appendix B)

real(dp) function norm cumul dist fcn (x, mu, sigma)

Computation of normal cumulative distribution function.

real(**dp**) function **norm_density_fcn** (x, mu, sigma)

Computation of normal density function.

subroutine enforce non negative growth (g)

real(**dp**) function, dimension(**num_size_classes**) **time_to_grow** (ts, growth, mortality, recruit, state_vector, fishing effort, year, longitude)

Computes growth in scallop population.

elemental real(**dp**) function **shell_to_weight** (shell_length_mm, is_closed, depth, latitude, longitude) *Computes weight given a shell height.*

subroutine gamma inc values (n data, a, x, fx)

10.3.3 Variables

integer, parameter growth_param_size = 4
integer, private num_grids
character(domain_len), private domain_name
real(dp), private domain_area_sqm
integer, private num_time_steps
integer, private time_steps_year
real(dp), private delta_time
logical, private show recruits msg

10.3.4 Function/Subroutine Documentation

10.3.4.1 subroutine growth_mod::enforce_non_negative_growth (real(dp), dimension(num size classes,*), intent(inout) g)

10.3.4.1.1 Parameters

in,out G - growth transition matrix with negative growth lumped into 0 growth

Here is the caller graph for this function:

10.3.4.2 subroutine growth_mod::gamma_inc_values (integer (kind = 4) n_data, real (kind = 8) a, real (kind = 8) x, real (kind = 8) fx)

Here is the caller graph for this function:

10.3.4.3 real(dp) function, dimension(1:num_size_classes, 1:num_size_classes) growth_mod::gen_size_trans_matrix (real(dp), intent(in) I_inf_mu, real(dp), intent(in) I_inf_sd, real(dp), intent(in) k_mu, real(dp), intent(in) k_sd, real(dp), dimension(*), intent(in) shell_lengths, character(*), intent(in) method)

Transition matrix used to determine the growth of the scallop. The equations are based on MN18, Appendix C.

$$\overrightarrow{Size}[Grid] = |GrowthMatrix[Grid]| \times \overrightarrow{Size}[Grid]$$

 $\times |e^{-(Mort_{nat}[Grid,Height_{shell}]+Mort_{fish}[Grid,Height_{shell}])*timestep}|$

10.3.4.3.1 Parameters

in	L_inf_mu	[real 1x1] = mean of von Bertlanaffy asymptotic growth parameter	
		L_inf(see HC09 eqn 1)	
in	L_inf_std	[real 1x1] = standard deviation of von Bertlanaffy asymptotic	
		growth parameter L inf(see HC09 eqn 1)	
in	K mu	[real 1x1] = mean of mean of von Bertlanaffy asymptotic growth	
		parameter K(see HC09 eqn 1)	
in	K sd	[real 1x1] = standard deviation of von Bertlanaffy growth parameter	
		K(see HC09 eqn 1)	
in	shell_lengths	for each size class	

10.3.4.3.2 Returns

Transition Matrix

10.3.4.3.3 Author

Keston Smith (IBSS corp) June-July 2021

Here is the call graph for this function:

scalloppopdensity

10.3.4.4 subroutine growth_mod::get_growth_gb (real(dp), intent(in) depth, real(dp), intent(in) lat, logical, intent(in) is_closed, real(dp), intent(out) l_inf_mu, real(dp), intent(out) k_mu, real(dp), intent(out) l_inf_sd, real(dp), intent(out) k_sd)

growth mod::set growth

Provides growth parameters L and K parameters for Georges Bank. From R code sent by Dvora July 28th 2021.

_trans_matrix

10.3.4.4.1 Parameters

in	depth	in meters	
in	lat	Geospatial coordinate, Latitude	
in	is_closed	Logical that indicates if grid is closed for fishing	
out	L_inf_mu	von Bertlanaffy asymptotic growth parameter	
out	K_mu	von Bertlanaffy asymptotic growth parameter	
out	L_inf_sd	standard deviation von Bertlanaffy asymptotic growth parameter	
out	K_sd	standard deviation von Bertlanaffy asymptotic growth parameter	
in	area_index	index to indicate management area	

Here is the call graph for this function:

10.3.4.5 subroutine growth_mod::get_growth_ma (real(dp), intent(in) depth, real(dp), intent(in) lat, logical, intent(in) is_closed , real(dp), intent(out) l_inf_mu , real(dp), intent(out) k_mu , real(dp), intent(out) l_inf_sd , real(dp), intent(out) k_sd)

Provides growth parameters L and K parameters for Mid Atlantic From R code sent by Dvora July 28th 2021.

10.3.4.5.1 Parameters

in	depth	in meters	
in	lat	Geospatial coordinate, Latitude	
in	is_closed	Logical that indicates if grid is closed for fishing	
out	L_inf_mu	von Bertlanaffy asymptotic growth parameter	
out	K_mu	von Bertlanaffy asymptotic growth parameter	
out	L_inf_sd	standard deviation von Bertlanaffy asymptotic growth parameter	
out	K_sd	standard deviation von Bertlanaffy asymptotic growth parameter	

Here is the call graph for this function:

10.3.4.6 real(dp) function growth_mod::h_mn18 (real(dp), intent(in) x, real(dp), intent(in) sigma, real(dp), intent(in) w)

Given (MN18 Appendix B)

 Φ_N denotes the normal **cumulative** distribution function.

 ϕ_N denotes the normal **density** function.

$$H_{MN18}(x, \sigma, \omega) = \frac{1}{\omega} [x\Phi_N(x, 0, \sigma^2) + \sigma^2 \phi_N(x, 0, \sigma^2)]$$

WAS

$$H_{MN18}(x,\sigma,\omega) = \frac{1}{\omega}(x*f + \sigma^2*f)$$

where $f = \Phi_N$

10.3.4.6.1 Parameters

in	x	- evaluation point	
in	sigma	- paramaters defined within MN18	
in	w	- paramaters defined within MN18	

10.3.4.6.2 Returns

H - variable

Here is the call graph for this function:

Here is the caller graph for this function:

10.3.4.7 subroutine growth_mod::increment_mean_std (real(dp), intent(in) \(I_inf_mu, \) real(dp), intent(in) \(k_mu, \) real(dp), intent(in) \(I_inf_sd, \) real(dp), intent(in) \(size, \) real(dp), intent(out) \(mu, \) real(dp), intent(out) \(sigma \)

Purpose: This subroutine computes a growth increment distribution parameters under the assumption of von Bertlanaffy growth and normally distributed growth increments. It is assumed that the parameters of von BernBertlanaffy growth K and L_inf have normal distributions.

10.3.4.7.1 Parameters

in	L_inf_mu	[real 1x1] = mean of von Bertlanaffy asymptotic growth	
		parameterL_inf(see HC09 eqn 1)	
in	K_mu	[real 1x1] = mean of von Bertlanaffy growth parameter K(see HC09	
		eqn 1)	
in	L_inf_sd	[real 1x1] = standard deviation of von Bertlanaffy	
		asymptoticgrowth parameter L_inf(see HC09 eqn 1)	
in	K_sd	[real $1x1$] = standard deviation of von Bertlanaffy growth parameter	
		(see HC09 eqn 1)	
in	size	[real 1x1] = size to estimate increment stats	
out	mu	[1x1] = mean of increment at size	
out	sigma	[1x1] = standard deviation of increment at size	

history: Written by keston Smith (IBSS corp) May 2021

Here is the call graph for this function:

Here is the caller graph for this function:

10.3.4.8 real(dp) function, dimension(num_size_classes, num_size_classes) growth_mod::mn18_appxc_trans_matrix (real(dp), intent(in) I_inf_mu, real(dp), intent(in) k_mu, real(dp), intent(in) I_inf_sd, real(dp), intent(in) k_sd, real(dp), dimension(num_size_classes), intent(in) shell lengths)

Purpose: This subroutine computes a size class transition matrix under the assumption of von Bertlanaffy growth. It is assumed that the parameters of von BernBertlanaffy growth K and L_inf have normal distributions.

From MN18 p. 1312, 1313

$$c = 1.0 - e^{-K_{\mu}*\delta_t}$$

$$\eta = c * L_{\infty_{\mu}}$$

$$\omega_k = l_k - l_{k-1}$$

$$\omega_{k_{avg}} = \frac{l_k + l_{k-1}}{2}$$

$$\Omega = (1 - c)\omega_k$$

$$X(y, k) = l_y - \eta - (1 - c)l_k$$

$$G(y, k, \sigma, \omega_k) = H_{MN18}(X(y, k - 1), \sigma, \Omega) - H_{MN18}(X(y, k), \sigma, \Omega)$$

10.3.4.8.1 Parameters

in	L_inf_mu	[real 1x1] = mean of von Bertlanaffy asymptotic growth parameter	
		L_inf(see HC09 eqn 1)	
in	K_mu	[real 1x1] = mean of mean of von Bertlanaffy asymptotic growth	
		parameter K(see HC09 eqn 1)	
in	L_inf_std	[real 1x1] = standard deviation of von Bertlanaffy asymptotic	
		growth parameter L_inf(see HC09 eqn 1)	
in	K_std	[real 1x1] = standard deviation of von Bertlanaffy growth parameter	
		K(see HC09 eqn 1)	
in	shell_lengths	[real nx1] = shell_lengths for each size class	

10.3.4.8.2 Returns

G [real n x n] = size transition matrix estimated under the assumption of uniform size distribution within size interval and growth distribution evaluated at mid point of size interval. Derivation is from MN18 appendix C.

Derivation of formula for growth increment mean and variance is in MN18eq7.pdf

history: Written by keston Smith (IBSS corp) May 2021

Here is the call graph for this function:

10.3.4.9 real(dp) function growth_mod::norm_cumul_dist_fcn (real(dp), intent(in) x, real(dp), intent(in) mu, real(dp), intent(in) sigma)

Computation of normal cumulative distribution function.

$$\Phi(x,\mu,\sigma) = \frac{1}{2}(1 + Erf(\frac{x-\mu}{\sigma\sqrt{2}}))$$

10.3.4.9.1 Parameters

in	mu	- mean
in	sigma	- standard deviation
in	x	- evaluation point

10.3.4.9.2 Returns

normal cdf value at x, f(x|mu,sigma)

Here is the call graph for this function:

Here is the caller graph for this function:

10.3.4.10 real(dp) function growth_mod::norm_density_fcn (real(dp), intent(in) x, real(dp), intent(in) mu, real(dp), intent(in) sigma)

Computation of normal density function.

$$\phi(x, \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

10.3.4.10.1Parameters

in	mu	- mean
in	sigma	- standard deviation
in	x	- evaluation point

10.3.4.10.2Returns

normal density function at x

Here is the call graph for this function:

Here is the caller graph for this function:

10.3.4.11 subroutine growth_mod::set_growth (type(growth_class), dimension(*), intent(inout) growth, type(grid_data_class), dimension(*), intent(in) grid, real(dp), dimension(*), intent(inout) shell_lengths, integer, intent(in) num_ts, integer, intent(in) ts_per_year, character(domain_len), intent(in) dom_name, real(dp), intent(out) dom_area, real(dp), dimension(1:ngrids, 1:num_size_classes), intent(inout) state_mat, real(dp), dimension(1:ngrids, 1:num_size_classes), intent(inout) weight_grams, integer, intent(in) ngrids)

Initializes growth for startup.

10.3.4.11.1Parameters

in,out	growth	Parameters that identify how the scallop should grow	
in	grid	Vector that identifies the geospatial locations under simulation	
in,out	shell_lengths	Vector of the size, length, of scallops	
in	num_ts	number of time steps per year for simulation	
in	num_sz_classes	Number of size classes to set private member	
in	domain_name	Name of domain being simulate, 'MA' or 'GB'	
out	domain_area,Size	of domain under consideration in square meters	
in	file_name	The name of the file with initial state, i.e. scallops per sq meter	
in	start_year	Year in which to start simulation	
out	state	Initial state as set by initial conditions	
in,out	weight_grams	Computed combined scallop weight	

Here is the call graph for this function:

10.3.4.12 real(dp) function, dimension(num_size_classes) growth_mod::set_shell_lengths (real(dp), intent(in) length_min, real(dp), intent(in) length_delta)

setup shell_lengths intervals

$$\begin{split} & \text{length_min} \\ & \text{length_min} + \text{length_delta} \\ & \textit{length_{shell}}(n) = length_{min} + (n-1) * length_{delta} \end{split}$$

10.3.4.12.1Parameters

in	length_min	Size of smallest size class
in	length_delta	amount between size classes

10.3.4.12.2Returns

shell length in millimeters

Here is the call graph for this function:

gr

Here is the caller graph for this function:

10.3.4.13 elemental real(dp) function growth_mod::shell_to_weight (real(dp), intent(in) shell_length_mm, logical, intent(in) is_closed, real(dp), intent(in) depth, real(dp), intent(in) latitude, real(dp), intent(in) longitude)

Computes weight given a shell height.

For Mid-Atlantic

$$x = -9.48 + 2.51 * log(length_{mm})$$

 $- 0.1743 - 0.059094$
 $- 0.0033 * depth$
 $+ 0.021 * latitude$
 $- 0.031 * isClosed$
 $+ 0.00525 * log(length_{mm} * 21.0$
 $- 0.000065 * 21.0 * depth$

For Georges Bank

$$\begin{array}{lll} x &=& -6.69 + 2.878*log(length_{mm})\\ &-& 0.0073*depth\\ &-& 0.073*latitude\\ &+& 1.28*isClosed\\ &-& 0.25*log(length_{mm})*isClosed\\ &&weight_g = e^x \end{array}$$

10.3.4.13.1Parameters

in	shell_length_mm	The shell height, or length, in millimeters	
in	is_closed	Logic to indicate if grid is open (F) or closed (T) to fishing	
in	depth	The depth of the grid in meters	
in	latitude	Geographic coordinate	
in	domain		

MA for Mid-Atlantic

GB for Georges Bank

in	ispp	Logic to indiate is Peter Pan

10.3.4.13.2Returns

weight in grams

Here is the call graph for this function:

Here is the caller graph for this function:

10.3.4.14 real(dp) function, dimension(num_size_classes) growth_mod::time_to_grow (integer, intent(in) ts, type(growth_class), intent(in) growth, type(mortality_class), intent(inout) mortality, type(recruitment_class), intent(inout) recruit, real(dp), dimension(*), intent(inout) state_vector, real(dp), intent(in) fishing_effort, integer, intent(in) year, real(dp), intent(in) longitude)

Computes growth in scallop population.

Computes the overall growth of the scallop population over a time period of (num_time_steps * delta time) in units of years, typically one year with delta time as a percent of year.

For each time step, δ_t

Computes mortality based on current state.

Computes increase in population due to recruitment, \vec{R} , if within recruitment months, i.e. Jan to April 10th

$$\vec{S} = \vec{S} + \delta_t \frac{\vec{R}}{RecruitDuration}$$

Adjusts population based on von Bertalanffy growth

$$\vec{S} = |G| \times \vec{S}$$

Compute overall mortality, M

$$\vec{M} = \vec{M}_{nat} + Fishing * (\vec{M}_{selectivity} + \vec{M}_{incidental} + \vec{M}_{discard})$$

Compute new state

$$\vec{S_{t+1}} = \vec{S_t} * (1 - \delta_t * \vec{M})$$

10.3.4.14.1Parameters

in	growth	object to hold growth simulation paramters
in,out	mortality	object to hold mortality simulation parameters
in,out	recruit	object to hold recruitment simulation parameters
in,out	state	vector of the current state in scallops per square meter
in	fishing_effort	vector of fishing effort by location
out	state_time_steps	State at each time step
in	start_year	under considration

Here is the call graph for this function:

10.3.5 Variable Documentation

- 10.3.5.1 real(dp), private growth_mod::delta_time[private]
- 10.3.5.2 real(dp), private growth_mod::domain_area_sqm[private]
- 10.3.5.3 character(domain_len), private growth_mod::domain_name[private]
- 10.3.5.4 integer, parameter growth_mod::growth_param_size = 4
- 10.3.5.5 integer, private growth_mod::num_grids[private]
- 10.3.5.6 integer, private growth_mod::num_time_steps[private]
- 10.3.5.7 logical, private growth_mod::show_recruits_msg[private]
- 10.3.5.8 integer, private growth_mod::time_steps_year[private]
- 10.3.5.9

10.4 mortality_mod Module Reference

10.4.1 Data Types

type dataforplotstype fishingmortality type mortality_class

10.4.2 Functions/Subroutines

```
subroutine set_select_data (value)
subroutine destructor ()
subroutine set_mortality (mortality, grid, shell_lengths, dom_name, dom_area, num_ts, ts_py, ngrids)
subroutine load fishing mortalities ()
```

Open file given by fishing_mort_fname. Reads in the year and number of entries in the list. If the number of entries exceeds the number of areas loaded by the GridManager then show the error and stop. Otherwise reads in the vectors for area list indices and for fishing mortality.

```
elemental real(dp) function ring_size_selectivity (shell_length, is_closed, longitude)
```

Purpose: Assign size class fishing selectivity based on increasing logistic function.

```
real(dp) function, dimension(num_grids) set_fishing_effort (year, ts, state_mat, weight_grams, mortality, grid)
```

Determines a real value of mortality due to fishing given a fishing type.

```
real(dp) function, dimension(1:num_size_classes) compute_natural_mortality (max_rec_ind, mortality, state_vector, longitude)
```

Computes the total number of scallops, S, in millions. Then recomputes juvenile mortality as a function of S.

```
elemental real(dp) function set_fishing_mortality (grid, year, use_f_loc, f_loc)
```

Computes Fishing Mortality.

Initializes growth for startup.

```
subroutine set config file name (fname)
```

Used during instantiation to set the name of the file to read to for configuration parameters.

```
subroutine set_fishing_mort_file_name (fname) subroutine read_configuration ()

*Read Configuration.
```

subroutine mortality_write_at_timestep (year, ts, state_mat, weight_grams, grid)

elemental real(**dp**) function **set_discard** (length, selectivity, cull_size, discard, is_closed) *Computes element of discard vector.*

```
elemental real(dp) function calc lpue (expl biomass, expl scallops)
```

Computes catch as pounds per day.

10.4.3 Variables

```
character(fname len), private config file name
character(fname len), private fishing mort fname
type(fishingmortality), dimension(max num years), private fmort list
logical, private use spec access data
integer, private num in list
integer, private num grids
integer, private num areas
character(domain len), private domain name
real(dp), private domain area sqm
integer, private num time steps
integer, private ts per year
real(dp), private delta time
real(dp), private fishing mort
real(dp), private alpha mort
real(dp), private ma cull size mm
real(dp), private ma discard
real(dp), private gb cull size mm
real(dp), private gb discard
real(dp), private ma fselect a
real(dp), private ma fselect b
real(dp), private gbc fselect a
real(dp), private gbc fselect b
real(dp), private gbo fselect a
real(dp), private gbo fselect b
real(dp), private ma mort adult
real(dp), private ma incidental
real(dp), private ma length 0
real(dp), private gb mort adult
real(dp), private gb incidental
real(dp), private gb length 0
real(dp), private lpue slope
real(dp), private lpue slope2
real(dp), private lpue intercept
integer, private max per day
real(dp), private max time hpd
real(dp), private dredge width m
real(dp), private towing_speed_knots
real(dp), dimension(:), allocatable, private expl biomass gpsqm
real(dp), dimension(:), allocatable, private expl scallops psqm
real(dp), dimension(:), allocatable, private f mort
real(dp), dimension(:), allocatable, private landings_by_num
real(dp), dimension(:), allocatable, private landings wgt grams
real(dp), dimension(:), allocatable, private lpue
real(dp), dimension(:), allocatable, private fishing effort
real(dp), dimension(:), allocatable, private landings accum
real(dp), dimension(:), allocatable, private landings wgt accum
real(dp), dimension(:), allocatable, private lpue accum
real(dp), dimension(num size classes), private expl scallops psqm at size
real(dp), dimension(num size classes), private landings at size
type(dataforplots), private data select
```

10.4.4 Function/Subroutine Documentation

10.4.4.1 elemental real(dp) function mortality_mod::calc_lpue (real(dp), intent(in) expl_biomass, real(dp), intent(in) expl_scallops)

Computes catch as pounds per day.

10.4.4.1.1 Parameters

in	expl_biomass	! Expl biomass
in	expl_scallops	! Expl Number of Scallops
out	dredge_time_hrs	! dredge bottom time
out	dredge area sqnm	! area swept per day

EBiomass/ENumber = ESize Total Weight of a Tow / Number of scallops caught = mean weight of individual scallop expl_biomass_gpsqm(grid) * 4516 / expl_scallops_psqm(grid) * 4516 = mean expl wght g xxxx xxxx

Here is the call graph for this function:

Here is the caller graph for this function:

10.4.4.2 real(dp) function, dimension(1:num_size_classes) mortality_mod::compute_natural_mortality (integer, intent(in) max_rec_ind, type(mortality_class), intent(inout) mortality, real(dp), dimension(*), intent(in) state_vector, real(dp), intent(in) longitude)

Computes the total number of scallops, S, in millions. Then recomputes juvenile mortality as a function of S.

$$M_{juv} = \begin{cases} exp(1.093*log(S) - 9.701), & \text{if } S > 1400 \text{ million (2030?)} \\ 0.25, & \text{otherwise} \end{cases}$$

A similar formula for GB Open:

$$M_{juv} = \begin{cases} exp((1.226 * log(S) - 10.49)), & \text{if } S > 1400 \text{ million } (2030?) \\ 0.2, & \text{otherwise} \end{cases}$$

Decreasing logistic function,

$$\alpha(length) = 1 - \frac{1}{1 + e^{-length_0[length - a]}}$$

TODO, current alpha equation is:

$$\alpha(length) = 1 - \frac{1}{1 + e^{-a*(length/10.0 - length_0)}}$$

where h_0 is 65 if MA or 70 if GB

Finally

$$M_{nat} = \alpha * M_{juv} + (1 - \alpha)M_{adult}$$

10.4.4.2.1 Parameters

in	recruit	
in,out	mortality	
in	state_vector	Current state_vector of scallop population in scallops/m^2

10.4.4.2.2 Returns

natural_mortality and juvenile mortality

Here is the call graph for this function:

Here is the caller graph for this function:

10.4.4.3 subroutine mortality_mod::destructor

Here is the caller graph for this function:

10.4.4.4 subroutine mortality mod::load fishing mortalities

Open file given by fishing_mort_fname. Reads in the year and number of entries in the list. If the number of entries exceeds the number of areas loaded by the GridManager then show the error and stop. Otherwise reads in the vectors for area list indices and for fishing mortality.

Here is the caller graph for this function:

10.4.4.5 subroutine mortality_mod::mortality_write_at_timestep (integer, intent(in) year, integer, intent(in) ts, real(dp), dimension(1:num_grids, 1:num_size_classes), intent(in) state_mat, real(dp), dimension(1:num_grids, 1:num_size_classes), intent(in) weight_grams, type(grid_data_class), dimension(*), intent(in) grid)

Initializes growth for startup.

Here is the call graph for this function:

Here is the caller graph for this function:

10.4.4.6 subroutine mortality_mod::read_configuration

Read Configuration.

Read Input File

Reads a configuration file, 'config_file_name.cfg', to set data parameters for Mortality Here is the call graph for this function:

10.4.4.7 elemental real(dp) function mortality_mod::ring_size_selectivity (real(dp), intent(in) shell_length, logical, intent(in) is_closed, real(dp), intent(in) longitude)

Purpose: Assign size class fishing selectivity based on increasing logistic function.

$$Selectivity = \frac{1}{1 + exp(a - b*length_{shell})}$$

3.5" rings were used from 1996-2004, 3.25" rings in 1995, and 3" rings through 1994. We don't have curves for the 3 and 3.25" ring dredges. To estimate these selectivity curves, I would simply shift the 3.5" ring curve to the left by 13 (for 3" rings) or 6 mm (for 3.25" rings). The primary purpose of GEOSAMS is for forecasting, where all of this is irrelevant, to do some hindcasting as a way of testing the model, in which case getting the historical selectivity right is important.@param [in] shell_length (real(dp)) length n vector of shell lengths@param [in] a, b (real(dp)) parameters of logistic selectivity curve@param [in] year (integer) Year to determine if this is before 2005 (3.5" rings) or after (4" rings)

10.4.4.7.1 Parameters

in	is_closed	true if grid is closed to fishing

10.4.4.7.2 Author

Keston Smith (IBSS corp) May 2022

10.4.4.7.3 Returns

length num size classes vector of selectivity

Here is the call graph for this function:

Here is the caller graph for this function:

10.4.4.8 subroutine mortality_mod::set_config_file_name (character(*), intent(in) fname)

Used during instantiation to set the name of the file to read to for configuration parameters.

Read Input File

Sets name of a configuration file, 'config_file_name.cfg' Here is the caller graph for this function:

10.4.4.9 elemental real(dp) function mortality_mod::set_discard (real(dp), intent(in) length, real(dp), intent(in) selectivity, real(dp), intent(in) cull_size, real(dp), intent(in) discard, logical, intent(in) is_closed)

Computes element of discard vector.

10.4.4.9.1 Parameters

in	length, vector	element for shell length
in	cull_size,determins	shell length below which are discarded
in	discard,percentage	of selectivity that will be discarded
in	selectivity, vector	element that determines scallops harvested

Here is the call graph for this function:

Here is the caller graph for this function:

10.4.4.10 real(dp) function, dimension(num_grids) mortality_mod::set_fishing_effort (integer, intent(in) year, integer, intent(in) ts, real(dp), dimension(1:num_grids, 1:num_size_classes), intent(in) state_mat, real(dp), dimension(1:num_grids, 1:num_size_classes), intent(in) weight_grams, type(mortality_class),

dimension(*), intent(in) mortality, type(grid_data_class), dimension(*), intent(in) grid)

Determines a real value of mortality due to fishing given a fishing type.

10.4.4.10.1Parameters

in	year	
in	state	matrix num_grids by num_size classes current state in scallops per
		square meter
in	weight_grams	matrix num_grids by num_size classes
in	mortality	vector(num_grids) @results fishing mortality

Here is the call graph for this function:

Here is the caller graph for this function:

10.4.4.11 subroutine mortality_mod::set_fishing_mort_file_name (character(*), intent(in) fname)

Here is the caller graph for this function:

10.4.4.12 elemental real(dp) function mortality_mod::set_fishing_mortality (type(grid_data_class), intent(in) grid, integer, intent(in) year, logical, intent(in) use_f_loc, real(dp), intent(in) f_loc)

Computes Fishing Mortality.

There is a year list for each year of interest, up to a total number of years of max_num_years For each list item there are two vectors.

The first vector is a list of special access by index.

The second vector is a list of corresponding fishing mortalities for that area Thus, if the current simulation year is in the year list

Check if the grids

Here is the call graph for this function:

Here is the caller graph for this function:

10.4.4.13 subroutine mortality_mod::set_mortality (type(mortality_class), dimension(*), intent(inout) mortality, type(grid_data_class), dimension(*), intent(in) grid, real(dp), dimension(*), intent(in) shell_lengths, character(domain_len), intent(in) dom_name, real(dp), intent(in) dom_area, integer, intent(in) num_ts, integer, intent(in) ts_py, integer, intent(in) ngrids)

10.4.4.13.1Parameters

in,out	mortality	Parameters that identify how the scallop should reaches mortality
in	grid	Vector that identifies the geospatial locations under simulation
in	shell_lengths	Vector of the size, or length, of scallops
in	num_sz_classes	Number of size classes to set private member
in	domain_name	Name of domain being simulate, 'MA' or 'GB'
in	domain area,Size	of domain under consideration in square meters

Here is the call graph for this function:

Here is the caller graph for this function:

10.4.4.14 subroutine mortality_mod::set_select_data (type(dataforplots), intent(in) value) Here is the caller graph for this function:

10.4.5 Variable Documentation

10.4.5.1 real(dp), private mortality mod::alpha mort[private] 10.4.5.2 character(fname len), private mortality mod::config file name[private] 10.4.5.3 type(dataforplots), private mortality mod::data select[private] 10.4.5.4 real(dp), private mortality_mod::delta_time[private] 10.4.5.5 real(dp), private mortality mod::domain area sqm[private] 10.4.5.6 character(domain_len), private mortality_mod::domain_name[private] 10.4.5.7 real(dp), private mortality mod::dredge width m[private] 10.4.5.8 real(dp), dimension(:), allocatable, private mortality mod::expl biomass gpsqm[private] 10.4.5.9 real(dp), dimension(:), allocatable, private mortality_mod::expl_scallops_psqm[private] 10.4.5.10 real(dp), dimension(num_size_classes), private mortality mod::expl_scallops_psqm_at_size[private] 10.4.5.11 real(dp), dimension(:), allocatable, private mortality mod::f mort[private] 10.4.5.12 real(dp), dimension(:), allocatable, private mortality mod::fishing effort[private] 10.4.5.13 real(dp), private mortality_mod::fishing_mort[private] 10.4.5.14 character(fname len), private mortality mod::fishing mort fname[private] 10.4.5.15 type(fishingmortality), dimension(max_num_years), private mortality_mod::fmort_list[private] 10.4.5.16 real(dp), private mortality mod::gb cull size mm[private] 10.4.5.17 real(dp), private mortality_mod::gb_discard[private] 10.4.5.18 real(dp), private mortality_mod::gb_incidental[private]

10.4.5.19 real(dp), private mortality mod::gb length 0[private]

10.4.5.20 real(dp), private mortality_mod::gb_mort_adult[private]

10.4.5.21 real(dp), private mortality mod::gbc fselect a[private]

```
10.4.5.22 real(dp), private mortality_mod::gbc_fselect_b[private]
10.4.5.23 real(dp), private mortality mod::gbo fselect a[private]
10.4.5.24 real(dp), private mortality_mod::gbo_fselect_b[private]
10.4.5.25 real(dp), dimension(:), allocatable, private
        mortality mod::landings accum[private]
10.4.5.26 real(dp), dimension(num_size_classes), private
        mortality mod::landings at size[private]
10.4.5.27 real(dp), dimension(:), allocatable, private
        mortality_mod::landings_by_num[private]
10.4.5.28 real(dp), dimension(:), allocatable, private
        mortality_mod::landings_wgt_accum[private]
10.4.5.29 real(dp), dimension(:), allocatable, private
        mortality_mod::landings_wgt_grams[private]
10.4.5.30 real(dp), dimension(:), allocatable, private mortality_mod::lpue[private]
10.4.5.31 real(dp), dimension(:), allocatable, private mortality mod::lpue accum[private]
10.4.5.32 real(dp), private mortality_mod::lpue_intercept[private]
10.4.5.33 real(dp), private mortality mod::|pue slope[private]
10.4.5.34 real(dp), private mortality mod::lpue slope2[private]
10.4.5.35 real(dp), private mortality_mod::ma_cull_size_mm[private]
10.4.5.36 real(dp), private mortality_mod::ma_discard[private]
10.4.5.37 real(dp), private mortality mod::ma fselect a[private]
10.4.5.38 real(dp), private mortality_mod::ma_fselect_b[private]
10.4.5.39 real(dp), private mortality mod::ma incidental[private]
10.4.5.40 real(dp), private mortality_mod::ma_length_0[private]
10.4.5.41 real(dp), private mortality mod::ma mort adult[private]
10.4.5.42 integer, private mortality mod::max per day[private]
10.4.5.43 real(dp), private mortality mod::max time hpd[private]
```

- 10.4.5.44 integer, private mortality_mod::num_areas [private]
- 10.4.5.45 integer, private mortality_mod::num_grids[private]
- 10.4.5.46 integer, private mortality_mod::num_in_list[private]
- 10.4.5.47 integer, private mortality_mod::num_time_steps[private]
- 10.4.5.48 real(dp), private mortality_mod::towing_speed_knots[private]
- 10.4.5.49 integer, private mortality_mod::ts_per_year[private]
- 10.4.5.50 logical, private mortality_mod::use_spec_access_data[private]
- 10.4.5.51

10.5 recruit_mod Module Reference

10.5.1 Data Types

10.5.2 type recruitment classFunctions/Subroutines

```
subroutine set_recruitment (recruit, n_grids, dom_name, dom_area, recr_yr_strt, recr_yr_stop, recruit_avg, l_inf_mu, k_mu, shell_length_mm, yr_start, yr_stop)

Set Recruitment.
```

integer function random_index ()

Defines a weighted distribution as defined in weights.

```
subroutine set config file name (fname)
```

Used during instantiation to set the name of the file to read to for configuration parameters.

subroutine read configuration ()

Read Configuration.

10.5.3 Variables

```
integer, parameter max_n_year = 50 character(fname_len), private config_file_name integer, private num_grids character(domain_len), private domain_name real(dp), private domain_area_sqm integer, private recruit_yr_strt integer, private recruit_yr_stop integer, private recruit_avg_num integer, private n_rand_yrs integer, private sim_start_year integer, private sim_start_year real(dp), private recr_period_start real(dp), private recr_period_stop real(dp), private wsum
```

10.5.4 Function/Subroutine Documentation

10.5.4.1 integer function recruit_mod::random_index

Defines a weighted distribution as defined in weights.

10.5.4.1.1 Returns

```
a value 1 <= x <= n_rand_yrs
```

Here is the call graph for this function:

Here is the caller graph for this function:

10.5.4.2 subroutine recruit_mod::read_configuration

Read_Configuration.

Read Input File

Reads a configuration file, 'config_file_name.cfg', to set data parameters for Recruitment Here is the caller graph for this function:

10.5.4.3 subroutine recruit_mod::set_config_file_name (character(*), intent(in) fname)

Used during instantiation to set the name of the file to read to for configuration parameters.

Read Input File

Sets name of a configuration file, 'config file name.cfg'

10.5.4.4 subroutine recruit_mod::set_recruitment (type(recruitment_class), dimension(*), intent(inout) recruit, integer, intent(in) n_grids, character(domain_len), intent(in) dom_name, real(dp), intent(in) dom_area, integer, intent(out) recr_yr_strt, integer, intent(out) recr_yr_stop, integer, intent(out) recruit_avg, real(dp), dimension(*), intent(in) l_inf_mu, real(dp), dimension(*), intent(in) k_mu, real(dp), dimension(*), intent(in) shell_length_mm, integer, intent(in) yr_start, integer, intent(in) yr_stop)

Set Recruitment.

Sets recruitment parameters

10.5.4.4.1 Parameters

in,out	recruit	
in	n_grids,The	number of grids under consideration, sets private value num_grids
in	dom_name,The	doomain being simulated, sets private value domain_name. Should
		be MA MidAtlantic or GB GeorgesBank
in	dom_area	the total area in square meters, sets domain_area_sqm
in	L_inf_mu	asymptotic size, average
in	K_mu	Brody growth coefficient K, average
in	shell_length_mm	Shell height in millimeters
out	recr_yr_strt	year start of available data
out	recr_yr_stop	year stop of available data

in	yr_start	simulation start year
in	yr stop	simulation end year

Here is the call graph for this function:

10.5.5 Variable Documentation

10.5.5.1 character(fname_len), private recruit_mod::config_file_name[private]
10.5.5.2 real(dp), private recruit_mod::domain_area_sqm[private]
10.5.5.3 character(domain_len), private recruit_mod::domain_name[private]
10.5.5.4 integer, parameter recruit_mod::max_n_year = 50
10.5.5.5 integer, private recruit_mod::n_rand_yrs[private]
10.5.5.6 integer, private recruit_mod::num_grids[private]
10.5.5.7 real(dp), private recruit_mod::recr_period_start[private]
10.5.5.8 real(dp), private recruit_mod::recr_period_stop[private]
10.5.5.9 integer, private recruit_mod::recruit_avg_num[private]
10.5.5.10 integer, private recruit_mod::recruit_yr_stop[private]
10.5.5.11 integer, private recruit_mod::recruit_yr_strt[private]
10.5.5.12 integer, private recruit_mod::sim_start_year[private]
10.5.5.13 integer, private recruit_mod::sim_stop_year[private]
10.5.5.14 real(dp), dimension(:), allocatable, private recruit_mod::weights[private]

11 Data Type Documentation

11.1 mortality_mod::dataforplots Type Reference

Collaboration diagram for mortality mod::dataforplots:

11.1.1 Public Attributes

logical plot abun

logical plot_biom

logical plot_ebms

logical plot feff

logical plot_fmor

logical plot_land

logical plot_lndw

logical plot_lpue

logical plot_recr

11.1.2 Member Data Documentation

- 11.1.2.1 logical mortality_mod::dataforplots::plot_abun
- 11.1.2.2 logical mortality_mod::dataforplots::plot_biom
- 11.1.2.3 logical mortality_mod::dataforplots::plot_ebms
- 11.1.2.4 logical mortality_mod::dataforplots::plot_feff
- 11.1.2.5 logical mortality_mod::dataforplots::plot_fmor
- 11.1.2.6 logical mortality_mod::dataforplots::plot_land
- 11.1.2.7 logical mortality_mod::dataforplots::plot_Indw
- 11.1.2.8 logical mortality_mod::dataforplots::plot_lpue
- 11.1.2.9 logical mortality_mod::dataforplots::plot_recr

11.1.2.10 The documentation for this type was generated from the following file: SRC/ScallopMortality.f90

11.1.2.11

11.2 mortality_mod::fishingmortality Type Reference

Collaboration diagram for mortality mod::fishingmortality:

mortality_mod::fishingmortality
+ integer year
+ integer n_areas
+ integer, dimension
 (max_num_areas) area_list
+ real(dp), dimension
 (max_num_areas) area
 _fish_mort

11.2.1 Public Attributes

integer year
integer n_areas
integer, dimension(max_num_areas) area_list
real(dp), dimension(max_num_areas) area_fish_mort

11.2.2 Member Data Documentation

- 11.2.2.1 real(dp), dimension(max_num_areas) mortality_mod::fishingmortality::area_fish_mort
- 11.2.2.2 integer, dimension(max_num_areas) mortality_mod::fishingmortality::area_list
- 11.2.2.3 integer mortality_mod::fishingmortality::n_areas
- 11.2.2.4 integer mortality_mod::fishingmortality::year

11.2.2.5 The documentation for this type was generated from the following file: SRC/ScallopMortality.f90

11.2.2.6

11.3 Grid_Data_Class Module Reference

Collaboration diagram for Grid_Data_Class:

The documentation for this module was generated from the following file: SRC/GridManager.f90

11.4grid_manager_mod::grid_data_class Type Reference

Collaboration diagram for grid manager mod::grid data class:

11.4.1 Public Attributes

real(dp) year
real(dp) x
real(dp) y
real(dp) lon
real(dp) lat

real(**dp**) **z** logical **is_closed**

real(dp) stratum
integer special access index

character(15) zone

character(15) region

11.4.2 Member Data Documentation

- 11.4.2.1 logical grid_manager_mod::grid_data_class::is_closed
- 11.4.2.2 real(dp) grid_manager_mod::grid_data_class::lat
- 11.4.2.3 real(dp) grid_manager_mod::grid_data_class::lon
- 11.4.2.4 character(15) grid_manager_mod::grid_data_class::region
- 11.4.2.5 integer grid_manager_mod::grid_data_class::special_access_index
- 11.4.2.6 real(dp) grid_manager_mod::grid_data_class::stratum
- 11.4.2.7 real(dp) grid_manager_mod::grid_data_class::x
- 11.4.2.8 real(dp) grid_manager_mod::grid_data_class::y
- 11.4.2.9 real(dp) grid_manager_mod::grid_data_class::year
- 11.4.2.10 real(dp) grid_manager_mod::grid_data_class::z
- 11.4.2.11 character(15) grid_manager_mod::grid_data_class::zone
- 11.4.2.12 The documentation for this type was generated from the following file: SRC/GridManager.f90
- 11.4.2.13

11.5 Growth_Class Module Reference

Subroutines that determine expected growth of scallops. Collaboration diagram for Growth_Class:

11.5.1 Detailed Description

Subroutines that determine expected growth of scallops.

The documentation for this module was generated from the following file: SRC/ScallopGrowth.f90

11.6 growth_mod::growth_class Type Reference

Collaboration diagram for growth_mod::growth_class:

11.6.1 Public Attributes

real(dp) l inf mu

Asymptotic size mean.

real(dp) k_mu

Growth coefficient mean.

real(dp) l_inf_sd

Asymptotic size standard deviation.

 $\text{real}(dp) \; k_sd$

Growth coefficient standard deviation.

real(dp), dimension(num_size_classes, num_size_classes) g Growth matrix.

11.6.2 Member Data Documentation

11.6.2.1 real(dp), dimension(num_size_classes, num_size_classes) growth_mod::growth_class::g

Growth matrix.

11.6.2.2 real(dp) growth_mod::growth_class::k_mu

Growth coefficient mean.

11.6.2.3 real(dp) growth_mod::growth_class::k_sd

Growth coefficient standard deviation.

11.6.2.4 real(dp) growth_mod::growth_class::l_inf_mu

Asymptotic size mean.

11.6.2.5 real(dp) growth_mod::growth_class::l_inf_sd

Asymptotic size standard deviation.

11.6.2.6 The documentation for this type was generated from the following file: SRC/ScallopGrowth.f90

11.6.2.7

11.7 grid_manager_mod::lonlatpoint Type Reference

Collaboration diagram for grid manager mod::lonlatpoint:

11.7.1 Public Attributes

real(dp) lon real(dp) lat

11.7.2 Member Data Documentation

11.7.2.1 real(dp) grid_manager_mod::lonlatpoint::lat

11.7.2.2 real(dp) grid_manager_mod::lonlatpoint::lon

11.7.2.3 The documentation for this type was generated from the following file: SRC/GridManager.f90

11.7.2.4

11.8 grid_manager_mod::lonlatvector Type Reference

Collaboration diagram for grid_manager_mod::lonlatvector:

11.8.1 Public Attributes

real(dp), dimension(max_sides) lon
real(dp), dimension(max_sides) lat
integer n sides

11.8.2 Member Data Documentation

- 11.8.2.1 real(dp), dimension(max_sides) grid_manager_mod::lonlatvector::lat
- 11.8.2.2 real(dp), dimension(max_sides) grid_manager_mod::lonlatvector::lon
- 11.8.2.3 integer grid_manager_mod::lonlatvector::n_sides

11.8.2.4 The documentation for this type was generated from the following file: SRC/GridManager.f90

11.8.2.5

11.9 Mortality_Class Module Reference

Subroutines that determine expected mortality of scallops. Collaboration diagram for Mortality_Class:

11.9.1 Detailed Description

Subroutines that determine expected mortality of scallops.

The documentation for this module was generated from the following file: SRC/ScallopMortality.f90

11.10mortality_mod::mortality_class Type Reference

Collaboration diagram for mortality_mod::mortality_class:

mortality_mod::mortality. _class + real(dp), dimension (num size classes) natural _mortality + real(dp) incidental + real(dp), dimension (num_size_classes) discard + real(dp), dimension (num_size_classes) selectivity + real(dp) natural mort _adult + real(dp) natural_mort_juv + real(dp), dimension (1:num_size_classes) alpha

11.10.1 Public Attributes

real(dp), dimension(num_size_classes) natural_mortality

real(dp) incidental

real(dp), dimension(num size classes) discard

real(dp), dimension(num size classes) selectivity

real(dp) natural mort adult

real(dp) natural mort juv

real(dp), dimension(1:num_size_classes) alpha

11.10.2 Member Data Documentation

- 11.10.2.1 real(dp), dimension(1:num_size_classes) mortality_mod::mortality_class::alpha
- 11.10.2.2 real(dp), dimension(num_size_classes) mortality_mod::mortality_class::discard
- 11.10.2.3 real(dp) mortality_mod::mortality_class::incidental
- 11.10.2.4 real(dp) mortality_mod::mortality_class::natural_mort_adult
- 11.10.2.5 real(dp) mortality_mod::mortality_class::natural_mort_juv
- 11.10.2.6 real(dp), dimension(num_size_classes)
 mortality_mod::mortality_class::natural_mortality
- 11.10.2.7 real(dp), dimension(num_size_classes) mortality_mod::mortality_class::selectivity
- 11.10.2.8 The documentation for this type was generated from the following file: SRC/ScallopMortality.f90
- 11.10.2.9

11.11recruit_mod::recruitment_class Type Reference

Collaboration diagram for recruit mod::recruitment class:

recruit_mod::recruitment
__class
+ real(dp), dimension
 (max_n_year) recruitment
+ real(dp) rec_start
+ real(dp) rec_stop
+ integer, dimension
 (max_n_year) year
+ integer n_year
+ integer max_rec_ind

11.11.1 Public Attributes

real(dp), dimension(max_n_year) recruitment real(dp) rec_start real(dp) rec_stop integer, dimension(max_n_year) year integer n_year integer max_rec_ind

11.11.2 Member Data Documentation

11.11.2.1 integer recruit_mod::recruitment_class::max_rec_ind

11.11.2.2 integer recruit_mod::recruitment_class::n_year

11.11.2.3 real(dp) recruit_mod::recruitment_class::rec_start

11.11.2.4 real(dp) recruit mod::recruitment class::rec stop

11.11.2.5 real(dp), dimension(max_n_year) recruit_mod::recruitment_class::recruitment

11.11.2.6 integer, dimension(max_n_year) recruit_mod::recruitment_class::year

11.11.2.7 The documentation for this type was generated from the following file:

SRC/ScallopRecruit.f90

11.11.2.8

11.12Recruitment_Class Module Reference

Subroutines that determine expected growth of scallops. Collaboration diagram for Recruitment Class:

11.12.1 Detailed Description

Subroutines that determine expected growth of scallops.

The documentation for this module was generated from the following file: SRC/ScallopRecruit.f90

12File Documentation

12.1 SRC/aaaPageOrder.f90 File Reference

12.2 SRC/Globals.f90 File Reference

12.2.1 Modules

module globals

12.2.2 Functions/Subroutines

```
elemental real(dp) function globals::logic to double (value)
real(dp) function, dimension(n, n) globals::matrixinv (x, n)
logical function globals::leap vear (year)
logical function globals::divby (y, val)
integer function globals::dayofyear (m, d)
logical function globals::is nan (x)
```

12.2.3 Variables

```
integer, parameter globals::sp = selected real kind(6, 37)
integer, parameter globals::dp = selected real kind(15, 307)
integer, parameter globals::qp = selected real kind(33, 4931)
integer, parameter globals::ndim = 12000
integer, parameter globals::shell len max = 150
integer, parameter globals::shell len min = 30
integer, parameter globals::shell len delta = 5
integer, parameter globals::num size classes = (shell len max - shell len min) / shell len delta + 1
integer, parameter globals::max num years = 50
integer, parameter globals::max num areas = 25
integer, parameter globals::max sides = 8
integer, parameter globals::region none =0
integer, parameter globals::region n =1
integer, parameter globals::region s =2
integer, parameter globals::region sw =3
integer, parameter globals::region w =4
integer, parameter globals::region ma =5
integer, parameter globals::region gbk = 1
integer, parameter globals::region mab = 5
integer, parameter globals::tag len = 40
integer, parameter globals::value len = 30
integer, parameter globals::comment len = 80
integer, parameter globals::line len = tag len+value_len+comment_len
integer, parameter globals::fname len = 100
integer, parameter globals::form len = 20
integer, parameter globals::input str len = 100
integer, parameter globals::csv line \overline{len} = 2000
integer, parameter globals::domain len = 2
integer, parameter globals::read dev = 69
integer, parameter globals::write dev = 63
real(dp), parameter globals::zero threshold = 1.0D-99
real(dp), parameter globals::pi = 3.14159265358979323846264338327950288D0
real(dp), parameter globals::grams per pound = 453.592 dp
real(dp), parameter globals::meters per naut mile = 1852.D0
real(dp), parameter globals::grams per metric ton = 1000000. dp
real(dp), parameter globals::grid area sqm = meters per naut mile**2
real(dp), parameter globals::tow_area_sqm = 4516._dp
real(dp), parameter globals::one scallop per tow = 1.D0 / tow area sqm
real(dp), parameter globals::ma gb border = -70.5
```

```
real(dp), parameter globals::days in year = 365+0.25-0.01+0.0025
character(*), parameter globals::term red = "//achar(27)//[31m'
character(*), parameter globals::term yel = "//achar(27)//'[33m'
character(*), parameter globals::term grn = "//achar(27)//[92m'
character(*), parameter globals::term blu = "//achar(27)//"[94m'
character(*), parameter globals::term blk = "//achar(27)//"[0m'
character(*), parameter globals::init cond dir = 'InitialCondition/'
character(*), parameter globals::growth_out_dir = 'GrowthOutput/'
character(*), parameter globals::rec_input_dir = 'RecruitEstimates/'
character(*), parameter globals::rec output dir = 'RecruitField/'
character(*), parameter globals::output dir = 'Results/'
character(*), parameter globals::config dir sim = 'Configuration/Simulation/'
character(*), parameter globals::config dir interp = 'Configuration/Interpolation/'
character(*), parameter globals::config dir special = 'Configuration/SpecialAccess/'
character(*), parameter globals::grid dir = 'Grids/'
character(*), parameter globals::data dir = 'Data/'
character(*), parameter globals::anal dir = 'Analysis/'
integer, parameter globals::num regions = 2
character(3), dimension(num regions) globals::rgn = (/ ' GB', ' MA'/)
```

12.3 SRC/GridManager.f90 File Reference

12.3.1 Data Types

```
type grid_manager_mod::grid_data_classtype grid_manager_mod::lonlatpoint type grid manager mod::lonlatvector
```

12.3.2 Modules

module grid manager mod

12.3.3 Functions/Subroutines

```
integer function grid_manager_mod::set_num_grids()
```

Determines the expected number of grids by simply counting the number of lines with text in the initial state file. It does not perform any error checking, only counting the number of lines with text and stopping at the first blank line.

```
subroutine grid_manager_mod::set_grid_manager (state_mat, grid, ngrids, dom_name)

Initializes growth for startup.
```

```
subroutine grid manager mod::set config file name (fname)
```

Used during instantiation to set the name of the file to read to for configuration parameters.

```
subroutine grid_manager_mod::set_init_cond_file_name (fname)
```

Used during instantiation to set the name of the file to read to for grid locations, state.

```
subroutine grid manager mod::set special access file name (fname)
```

Used during instantiation to set the name of the file to special access coordinates.

```
integer function grid manager mod::get num of areas ()
```

Get'r function for private member num areas.

```
subroutine grid_manager_mod::read_configuration ()
```

 $Read_Configuration.$

```
integer function grid manager mod::load grid state (grid, state mat)
```

This function is used to set the grid parameters and the initial state to start the simulation.

```
integer function <code>grid_manager_mod::load_area_coordinates</code> () integer function <code>grid_manager_mod::is_grid_in_special_access</code> (lon, lat) logical function <code>grid_manager_mod::point_in_polygon_points</code> (poly, point, nodes) logical function <code>grid_manager_mod::point_in_polygon_array</code> (poly, point, nodes) logical function <code>grid_manager_mod::point_in_polygon_vector</code> (polyx, polyy, x, y, nodes)
```

First of all, notice that each iteration considers two adjacent points and the target point. Then the if statement evaluates two conditions:

12.3.4 Variables

type(lonlatvector), dimension(max_num_areas), private grid_manager_mod::area integer, private grid_manager_mod::num_areas integer, private grid_manager_mod::num_grids logical, private grid_manager_mod::use_spec_access_data character(domain_len), private grid_manager_mod::domain_name character(fname_len), private grid_manager_mod::config_file_name character(fname_len), private grid_manager_mod::init_cond_fname character(fname_len), private grid_manager_mod::special_accesss_fname

12.4 SRC/IORoutines.f90 File Reference

12.4.1 Functions/Subroutines

subroutine read_scalar_field (file_name, m, vector_len) subroutine write 2d scalar field (nn, nsim, f, flnm, nndim)

Purpose: Write columns of a matrix (f) to a series of text files in exponential format. Inputs:

subroutine write_vector_scalar_field (vector_len, f, file_name) subroutine write csv (n, m, f, file name, nndim, append)

Purpose: Write values of a matrix (f) to a csv file in exponential format. Inputs:

subroutine **write_column_csv** (n, f, header, file_name, append) subroutine **read csv** (num rows, num cols, file name, m, nndim)

12.4.2 Function/Subroutine Documentation

- 12.4.2.1 subroutine read_csv (integer, intent(out) num_rows, integer, intent(in) num_cols, character (*), intent(in) file_name, real(dp), dimension(nndim,*), intent(out) m, integer, intent(in) nndim)
- 12.4.2.2 subroutine read_scalar_field (character(*), intent(in) file_name, real(dp), dimension(*), intent(out) m, integer, intent(inout) vector_len)

Here is the caller graph for this function:

12.4.2.3 subroutine write_2d_scalar_field (integer, intent(in) *nn*, integer, intent(in) *nsim*, real(dp), dimension(nndim,*), intent(in) *f*, character (*), intent(in) *flnm*, integer, intent(in) *nndim*)

Purpose: Write columns of a matrix (f) to a series of text files in exponential format. Inputs:

nn (integer) number of rows in f nsim(integer) number of columns in f f (real(dp)) values to write to text file flnm(character(72)) filename to write f to in csv format nndim(integer) leading dimension of f

12.4.2.3.1 Author

Keston Smith (IBSS corp) June-July 2021

12.4.2.4 subroutine write_column_csv (integer, intent(in) n, real(dp), dimension(*), intent(in) f, character(*), intent(in) header, character(*), intent(in) file_name, logical, intent(in) append)

Here is the caller graph for this function:

12.4.2.5 subroutine write_csv (integer, intent(in) *n*, integer, intent(in) *m*, real(dp), dimension(nndim,*), intent(in) *f*, character(*), intent(in) *file_name*, integer, intent(in) *nndim*, logical, intent(in) *append*)

Purpose: Write values of a matrix (f) to a csv file in exponential format. Inputs:

n (integer) number of rows in f m (integer) number of columns in f f (real(dp)) values to write to csv file flnm (character(72)) filename to write f to in csv format

12.4.2.5.1 Author

Keston Smith (IBSS corp) June-July 2021

Here is the caller graph for this function:

12.4.2.6 subroutine write_vector_scalar_field (integer, intent(in) vector_len, real(dp), dimension(*), intent(in) f, character (*), intent(in) file name)

12.4.2.7

12.5 SRC/ScallopGrowth.f90 File Reference

12.5.1 Data Types

12.5.2 type growth_mod::growth_classModules

module growth mod

12.5.3 Functions/Subroutines

subroutine **growth_mod::set_growth** (growth, grid, shell_lengths, num_ts, ts_per_year, dom_name, dom_area, state_mat, weight_grams, ngrids)

Initializes growth for startup.

real(dp) function, dimension(1:num size classes, 1:num size classes)

growth_mod::gen_size_trans_matrix (l_inf_mu, l_inf_sd, k_mu, k_sd, shell_lengths, method)

Transition matrix used to determine the growth of the scallop. The equations are based on MN18, Appendix C.

real(dp) function, dimension(num_size_classes) growth_mod::set_shell_lengths (length_min, length_delta)

setup shell shell lengths intervals

subroutine growth mod::get growth gb (depth, lat, is closed, 1 inf mu, k mu, 1 inf sd, k sd)

Provides growth parameters L and K parameters for Georges Bank. From R code sent by Dvora July 28th 2021.

subroutine growth_mod::get_growth_ma (depth, lat, is_closed, l_inf_mu, k_mu, l_inf_sd, k_sd)

Provides growth parameters L and K parameters for Mid Atlantic From R code sent by Dvora July 28th 2021.

real(dp) function, dimension(num_size_classes, num_size_classes)

growth_mod::mn18_appxc_trans_matrix (l_inf_mu, k_mu, l_inf_sd, k_sd, shell_lengths)

Purpose: This subroutine computes a sizeclass transition matrix under the assumption of von Bertlanaffy growth. It is assumed that the parameters of von BernBertlanaffy growth K and L_{inf} have normal distributions.

subroutine **growth_mod::increment_mean_std** (l_inf_mu, k_mu, l_inf_sd, k_sd, size, mu, sigma)

Purpose: This subroutine computes a growth increment distribution parameters under the assumption of von Bertlanaffy growth and normally distributed growth increments. It is assumed that the parameters of von BernBertlanaffy growth K and L_inf have normal distributions.

real(dp) function $growth_mod::h_mn18$ (x, sigma, w)

Given (MN18 Appendix B)

real(dp) function growth mod::norm cumul dist fcn (x, mu, sigma)

Computation of normal cumulative distribution function.

real(dp) function growth mod::norm density fcn (x, mu, sigma)

Computation of normal density function.

subroutine growth mod::enforce non negative growth (g)

real(dp) function, dimension(num_size_classes) growth_mod::time_to_grow (ts, growth, mortality, recruit, state vector, fishing effort, year, longitude)

Computes growth in scallop population.

elemental real(dp) function growth_mod::shell_to_weight (shell_length_mm, is_closed, depth, latitude, longitude)

Computes weight given a shell height.

subroutine growth mod::gamma inc values (n data, a, x, fx)

12.5.4 Variables

integer, parameter growth_mod::growth_param_size = 4

integer, private growth mod::num grids

character(domain_len), private growth_mod::domain_name

real(dp), private growth_mod::domain_area_sqm integer, private growth_mod::num_time_steps integer, private growth_mod::time_steps_year real(dp), private growth_mod::delta_time

logical, private growth_mod::show_recruits_msg

12.6 SRC/ScallopMortality.f90 File Reference

12.6.1 Data Types

type mortality_mod::mortality_classtype mortality_mod::fishingmortality type mortality mod::dataforplots

12.6.2 Modules

module mortality mod

12.6.3 Functions/Subroutines

```
subroutine mortality_mod::set_select_data (value)
subroutine mortality_mod::destructor ()
subroutine mortality_mod::set_mortality (mortality, grid, shell_lengths, dom_name, dom_area, num_ts, ts_py, ngrids)
subroutine mortality_mod::load_fishing_mortalities ()
```

Open file given by fishing_mort_fname. Reads in the year and number of entries in the list. If the number of entries exceeds the number of areas loaded by the GridManager then show the error and stop. Otherwise reads in the vectors for area list indices and for fishing mortality.

```
elemental real(dp) function mortality_mod::ring_size_selectivity (shell_length, is_closed, longitude) Purpose: Assign size class fishing selectivity based on increasing logistic function.
```

```
real(dp) function, dimension(num_grids) mortality_mod::set_fishing_effort (year, ts, state_mat, weight_grams, mortality, grid)
```

Determines a real value of mortality due to fishing given a fishing type.

```
real(dp) function, dimension(1:num_size_classes) mortality_mod::compute_natural_mortality (max rec ind, mortality, state vector, longitude)
```

Computes the total number of scallops, S, in millions. Then recomputes juvenile mortality as a function of S.

```
elemental real(dp) function mortality_mod::set_fishing_mortality (grid, year, use_f_loc, f_loc) Computes Fishing Mortality.
```

```
subroutine mortality mod::set config file name (fname)
```

Used during instantiation to set the name of the file to read to for configuration parameters.

```
subroutine mortality_mod::set_fishing_mort_file_name (fname) subroutine mortality_mod::read_configuration ()

*Read Configuration.
```

```
subroutine mortality_mod::mortality_write_at_timestep (year, ts, state_mat, weight_grams, grid)

Initializes growth for startup.
```

elemental real(**dp**) function **mortality_mod::set_discard** (length, selectivity, cull_size, discard, is_closed) *Computes element of discard vector.*

12.6.4 Variables

```
character(fname len), private mortality mod::config file name
character(fname len), private mortality mod::fishing mort fname
type(fishingmortality), dimension(max num years), private mortality mod::fmort list
logical, private mortality mod::use spec access data
integer, private mortality mod::num in list
integer, private mortality mod::num grids
integer, private mortality mod::num areas
character(domain len), private mortality mod::domain name
real(dp), private mortality mod::domain area sqm
integer, private mortality mod::num time steps
integer, private mortality mod::ts per year
real(dp), private mortality mod::delta time
real(dp), private mortality_mod::fishing_mort
real(dp), private mortality mod::alpha mort
real(dp), private mortality mod::ma cull size mm
real(dp), private mortality mod::ma discard
real(dp), private mortality mod::gb cull size mm
real(dp), private mortality mod::gb discard
real(dp), private mortality mod::ma fselect a
real(dp), private mortality mod::ma fselect b
real(dp), private mortality mod::gbc fselect a
real(dp), private mortality mod::gbc fselect b
real(dp), private mortality mod::gbo fselect a
real(dp), private mortality mod::gbo fselect b
real(dp), private mortality mod::ma mort adult
real(dp), private mortality mod::ma incidental
real(dp), private mortality mod::ma length 0
real(dp), private mortality mod::gb mort adult
real(dp), private mortality mod::gb incidental
real(dp), private mortality mod::gb length 0
real(dp), private mortality mod::lpue slope
real(dp), private mortality mod::lpue slope2
real(dp), private mortality mod::lpue intercept
integer, private mortality mod::max per day
real(dp), private mortality mod::max time hpd
real(dp), private mortality mod::dredge width m
real(dp), private mortality mod::towing speed knots
real(dp), dimension(:), allocatable, private mortality mod::expl biomass gpsqm
real(dp), dimension(:), allocatable, private mortality mod::expl scallops psqm
real(dp), dimension(:), allocatable, private mortality mod::f mort
real(dp), dimension(:), allocatable, private mortality mod::landings by num
real(dp), dimension(:), allocatable, private mortality mod::landings wgt grams
real(dp), dimension(:), allocatable, private mortality mod::lpue
real(dp), dimension(:), allocatable, private mortality mod::fishing effort
real(dp), dimension(:), allocatable, private mortality mod::landings accum
real(dp), dimension(:), allocatable, private mortality_mod::landings wgt accum
real(dp), dimension(:), allocatable, private mortality mod::lpue accum
real(dp), dimension(num size classes), private mortality mod::expl scallops psqm at size
```

 $\label{lem:condition} real(dp), dimension(num_size_classes), private \ mortality_mod::landings_at_size \ type(dataforplots), private \ mortality_mod::data_select$

12.7 SRC/ScallopPopDensity.f90 File Reference

12.7.1 Functions/Subroutines

program scalloppopdensity

subroutine **read_startup_config** (time_steps_per_year, start_year, stop_year, domain_name, plot_data_sel) *Read Input File.*

subroutine write lat lon preamble (num grids, grid, fname)

Writes lat and lon columns with headers to named file.

subroutine write_x_y_preamble (num_grids, grid, yr_offset, fname)

Writes year, UTM-X, UTM-Y, and Depth columns with headers to named file.

subroutine write_column_csv_by_region (n, f, c, lon, header, file_name, append, use_c)

Inputs: n (integer) number of rows in f m (integer) number of columns in f header string to write as a column header f (real(dp)) values to write to csv file file_name (character(72)) filename to write f to in csv format.

subroutine **setup_data_files** (plot_data_sel, num_grids, grid, domain_name, start_year, stop_year) subroutine **write_recruit_estimates** (ts, ts_per_year, num_grids, grid, domain_name, year, start_year, recruit)

12.7.2 Function/Subroutine Documentation

12.7.2.1 subroutine read_startup_config (integer, intent(out) time_steps_per_year, integer, intent(out) start_year, integer, intent(out) stop_year, character(domain_len), intent(out) domain_name, type(dataforplots), intent(out) plot data sel)

Read Input File.

Reads a configuration file, 'Scallop.inp', to set data parameters for simulation

12.7.2.1.1 Parameters

out	domain_name	can be either MA MidAtlantic or GB GeorgesBank
out	init_cond_file_nam	File name that contains intial simulation conditions
	e	
out	start_year	Starting year for simulation read from config file
out	stop_year	End year for simulation read from config file
out	time steps per yea	Number of times steps to evaluate growth
	r	
out	num_monte_carlo_i	Number of iterations for Monte Carlo simulation
	ter	

Here is the call graph for this function:

12.7.2.2 program scalloppopdensity

Here is the call graph for this function:

12.7.2.3 subroutine setup_data_files (type(dataforplots), intent(in) plot_data_sel, integer, intent(in) num_grids, type(grid_data_class), dimension(*), intent(in) grid, character(domain len), intent(out) domain name, integer, intent(in) start year, integer, intent(in) stop year)

Here is the call graph for this function:

Here is the caller graph for this function:

12.7.2.4 subroutine write_column_csv_by_region (integer, intent(in) n, real(dp), dimension(*), intent(in) f, character(15), dimension(*), intent(in) c, real(dp). dimension(*), intent(in) lon, character(*), intent(in) header, character(*), intent(in) file name, logical, intent(in) append, logical, intent(in) use c)

Inputs: n (integer) number of rows in f m (integer) number of columns in f header string to write as a column header f (real(dp)) values to write to csv file file name (character(72)) filename to write f to in csv format.

Here is the caller graph for this function:

12.7.2.5 subroutine write lat lon preamble (integer, intent(in) num grids, type(grid data class), dimension(*), intent(in) grid, character(*), intent(in) fname)

Writes lat and lon columns with headers to named file.

Here is the call graph for this function:

12.7.2.6 subroutine write_recruit_estimates (integer, intent(in) ts, integer, intent(in) ts_per_year, integer, intent(in) num_grids, type(grid_data_class), dimension(*), intent(in) grid, character(domain_len), intent(out) domain_name, integer, intent(in) year, integer, intent(in) start_year, type(recruitment_class), dimension(*), intent(in) recruit)

Here is the call graph for this function:

12.7.2.7 subroutine write_x_y_preamble (integer, intent(in) num_grids, type(grid_data_class), dimension(*), intent(in) grid, real(dp), intent(in) yr_offset, character(*), intent(in) fname)

Writes year, UTM-X, UTM-Y, and Depth columns with headers to named file. Here is the call graph for this function:

12.7.2.8

12.8 SRC/ScallopRecruit.f90 File Reference

12.8.1 Data Types

12.8.2 type recruit_mod::recruitment_class**Modules**

module recruit mod

12.8.3 Functions/Subroutines

```
subroutine recruit_mod::set_recruitment (recruit, n_grids, dom_name, dom_area, recr_yr_strt, recr_yr_stop, recruit_avg, l_inf_mu, k_mu, shell_length_mm, yr_start, yr_stop)

Set Recruitment.
```

integer function recruit_mod::random_index ()

Defines a weighted distribution as defined in weights.

```
subroutine recruit mod::set config file name (fname)
```

Used during instantiation to set the name of the file to read to for configuration parameters.

subroutine recruit_mod::read_configuration ()

Read Configuration.

12.8.4 Variables

```
integer, parameter recruit_mod::max_n_year = 50 character(fname_len), private recruit_mod::config_file_name integer, private recruit_mod::num_grids character(domain_len), private recruit_mod::domain_name real(dp), private recruit_mod::domain_area_sqm integer, private recruit_mod::recruit_yr_strt integer, private recruit_mod::recruit_yr_stop integer, private recruit_mod::recruit_avg_num integer, private recruit_mod::n_rand_yrs integer, private recruit_mod::sim_start_year integer, private recruit_mod::sim_stop_year real(dp), private recruit_mod::recr_period_start real(dp), private recruit_mod::recr_period_stop real(dp), dimension(:), allocatable, private recruit_mod::weights real(dp), private recruit_mod::wsum
```

13Index

alpha	domain_len
mortality_mod::mortality_class, 73	globals, 21
alpha_mort	domain_name
mortality_mod, 53	grid_manager_mod, 31
anal dir	growth mod, 43
globals, 21	mortality mod, 53
area	recruit mod, 59
grid_manager_mod, 31	dp
area fish mort	globals, 21
mortality mod::fishingmortality, 62	dredge width m
area_list	mortality mod, 53
mortality_mod::fishingmortality, 62	enforce_non_negative_growth
calc_lpue	growth_mod, 33
mortality_mod, 46	expl_biomass_gpsqm
comment len	mortality_mod, 53
globals, 21	expl_scallops_psqm
<u> </u>	
Common Parameters, 14	mortality_mod, 53
compute_natural_mortality	expl_scallops_psqm_at_size
mortality_mod, 46 config dir interp	mortality_mod, 53
	f_mort
globals, 21	mortality_mod, 53
config_dir_sim	fishing_effort
globals, 21	mortality_mod, 53
config_dir_special	fishing_mort
globals, 21	mortality_mod, 53
config_file_name	fishing_mort_fname
grid_manager_mod, 31	mortality_mod, 53
mortality_mod, 53	fmort_list
recruit_mod, 59	mortality_mod, 53
csv_line_len	fname_len
globals, 21	globals, 21
data_dir	form_len
globals, 21	globals, 21
data_select	g
mortality_mod, 53	growth_mod::growth_class, 67
dayofyear	gamma_inc_values
globals, 19	growth_mod, 33
days_in_year	gb_cull_size_mm
globals, 21	mortality_mod, 53
delta time	gb discard
growth_mod, 43	mortality_mod, 53
mortality mod, 53	gb_incidental
destructor	mortality_mod, 53
mortality_mod, 47	gb_length_0
discard	mortality mod, 53
mortality mod::mortality class, 73	gb mort adult
divby	mortality mod, 53
globals, 19	gbc fselect a
domain_area_sqm	mortality mod, 53
growth mod, 43	gbc fselect b
mortality_mod, 53	mortality mod, 54
recruit mod, 59	gbo fselect a
100.00,00	200_1001001_u

mortality_mod, 54	region_n, 22
gbo fselect b	region_none, 22
mortality_mod, 54	region_s, 22
gen_size_trans_matrix	region_sw, 22
growth mod, 33	region w, 22
get_growth_gb	rgn, 22
growth mod, 34	shell len delta, 22
get growth ma	shell len max, 22
growth mod, 35	shell len min, 22
get num of areas	$sp, 2\overline{3}$
grid_manager_mod, 25	tag_len, 23
globals, 18	term_blk, 23
anal dir, 21	term blu, 23
comment_len, 21	term grn, 23
config_dir_interp, 21	term red, 23
config dir sim, 21	term yel, 23
config dir special, 21	tow area sqm, 23
csv line len, 21	value_len, 23
data_dir, 21	write dev, 23
dayofyear, 19	zero_threshold, 23
days in year, 21	grams per metric ton
divby, 19	globals, 21
domain_len, 21	grams_per_pound
dp, 21	globals, 21
fname_len, 21	Grid Manager Mod, 12
form len, 21	grid_area_sqm
grams per metric ton, 21	globals, 21
grams_per_metrie_ten, 21	Grid Data Class, 63
grid_area_sqm, 21	grid dir
grid_dir, 21	globals, 21
growth_out_dir, 21	grid_manager_mod, 24
init_cond_dir, 21	area, 31
input_str_len, 21	config_file_name, 31
is nan, 19	domain_name, 31
leap_year, 20	get num of areas, 25
line len, 21	init cond fname, 31
logic to double, 20	is_grid_in_special_access, 25
ma_gb_border, 21	load area coordinates, 25
matrixinv, 20	load grid state, 26
max num areas, 21	num areas, 31
max_num_areas, 21 max_num_years, 21	num grids, 31
max_num_years, 21 max_sides, 22	point_in_polygon_array, 26
meters per naut mile, 22	point in polygon points, 27
ndim, 22	point in polygon vector, 27
num_regions, 22	read configuration, 28
num_size classes, 22	set_config_file_name, 28
one scallop per tow, 22	set grid manager, 29
output dir, 22	set init cond file name, 29
· = ·	
pi, 22	set_num_grids, 29
qp, 22	set_special_access_file_name, 30
read_dev, 22	special_accesss_fname, 31
rec_input_dir, 22	use_spec_access_data, 31
rec_output_dir, 22	grid_manager_mod::grid_data_class, 64
region_gbk, 22	is_closed, 65
region_ma, 22	lat, 65
region_mab, 22	lon, 65

region, 65	init cond dir
special_access_index, 65	globals, 21
stratum, 65	init_cond_fname
x, 65	grid_manager_mod, 31
y, 65	input_str_len
year, 65	globals, 21
z, 65	IORoutines.f90
zone, 65	read csv, 81
grid manager mod::lonlatpoint, 69	read_scalar_field, 81
lat, 69	write_2d_scalar_field, 81
lon, 69	write column csv, 81
grid manager mod::lonlatvector, 70	write csv, 82
lat, 70	write_vector_scalar_field, 82
lon, 70	is closed
n_sides, 70	grid manager mod::grid data class, 65
Growth Class, 66	is grid in special access
growth mod, 32	grid manager mod, 25
delta time, 43	is nan
domain_area_sqm, 43	globals, 19
domain_name, 43	k mu
enforce_non_negative_growth, 33	growth mod::growth class, 67
gamma inc values, 33	k_sd
gen_size_trans_matrix, 33	growth mod::growth class, 68
get_growth_gb, 34	l inf mu
get growth ma, 35	growth mod::growth class, 68
growth_param_size, 43	l inf sd
h mn18, 35	growth mod::growth class, 68
increment_mean_std, 36	landings accum
mn18_appxc_trans_matrix, 37	mortality mod, 54
norm_cumul_dist_fcn, 38	landings_at_size
norm_density_fcn, 39	mortality_mod, 54
num_grids, 43	landings by num
num time steps, 43	mortality_mod, 54
set growth, 39	landings_wgt_accum
set_grown, 39 set shell lengths, 40	
shell to weight, 41	mortality_mod, 54
= = •	landings_wgt_grams
show_recruits_msg, 43	mortality_mod, 54 lat
time_steps_year, 43	
time_to_grow, 42	grid_manager_mod::grid_data_class, 65
Growth_Mod, 7	grid_manager_mod::lonlatpoint, 69
growth_mod::growth_class, 67	grid_manager_mod::lonlatvector, 70
g, 67	leap_year
k_mu, 67	globals, 20
k_sd, 68	line_len
1_inf_mu, 68	globals, 21
1_inf_sd, 68	load_area_coordinates
growth_out_dir	grid_manager_mod, 25
globals, 21	load_fishing_mortalities
growth_param_size	mortality_mod, 47
growth_mod, 43	load_grid_state
h_mn18	grid_manager_mod, 26
growth_mod, 35	logic_to_double
incidental	globals, 20
mortality_mod::mortality_class, 73	lon
increment_mean_std	grid_manager_mod::grid_data_class, 65
growth_mod, 36	grid_manager_mod::lonlatpoint, 69

grid_manager_mod::lonlatvector, 70	domain_area_sqm, 53
lpue mortality mod 54	domain_name, 53
mortality_mod, 54	dredge_width_m, 53
lpue_accum	expl_biomass_gpsqm, 53
mortality_mod, 54	expl_scallops_psqm, 53
lpue_intercept	expl_scallops_psqm_at_size, 53
mortality_mod, 54	f_mort, 53
lpue_slope	fishing_effort, 53
mortality_mod, 54	fishing_mort, 53
lpue_slope2	fishing_mort_fname, 53
mortality_mod, 54	fmort_list, 53
ma_cull_size_mm	gb_cull_size_mm, 53
mortality_mod, 54	gb_discard, 53
ma_discard	gb_incidental, 53
mortality_mod, 54	gb_length_0, 53
ma_fselect_a	gb_mort_adult, 53
mortality_mod, 54	gbc_fselect_a, 53
ma_fselect_b	gbc_fselect_b, 54
mortality_mod, 54	gbo_fselect_a, 54
ma_gb_border	gbo_fselect_b, 54
globals, 21	landings_accum, 54
ma_incidental	landings_at_size, 54
mortality_mod, 54	landings_by_num, 54
ma_length_0	landings_wgt_accum, 54
mortality_mod, 54	landings_wgt_grams, 54
ma_mort_adult	load_fishing_mortalities, 47
mortality_mod, 54	lpue, 54
matrixinv	lpue_accum, 54
globals, 20	lpue_intercept, 54
max_n_year	lpue_slope, 54
recruit_mod, 59	lpue_slope2, 54
max_num_areas	ma_cull_size_mm, 54
globals, 21	ma_discard, 54
max_num_years	ma_fselect_a, 54
globals, 21	ma_fselect_b, 54
max_per_day	ma_incidental, 54
mortality_mod, 54	ma_length_0, 54
max_rec_ind	ma_mort_adult, 54
recruit_mod::recruitment_class, 74	max_per_day, 54
max_sides	max_time_hpd, 54
globals, 22	mortality_write_at_timestep, 47
max_time_hpd	num_areas, 55
mortality_mod, 54	num_grids, 55
meters_per_naut_mile	num_in_list, 55
globals, 22	num_time_steps, 55
mn18_appxc_trans_matrix	read_configuration, 48
growth_mod, 37	ring_size_selectivity, 48
Mortality_Class, 71	set_config_file_name, 49
mortality_mod, 44	set_discard, 49
alpha_mort, 53	set_fishing_effort, 49
calc_lpue, 46	set_fishing_mort_file_name, 50
compute_natural_mortality, 46	set_fishing_mortality, 50
config_file_name, 53	set_mortality, 51
data_select, 53	set_select_data, 52
delta_time, 53	towing_speed_knots, 55
destructor, 47	ts per year, 55

1	. 12. 1 77
use_spec_access_data, 55	mortality_mod, 55
Mortality_Mod, 10	num_regions
mortality_mod::dataforplots, 60	globals, 22
plot_abun, 61	num_size_classes
plot_biom, 61	globals, 22
plot_ebms, 61	num_time_steps
plot_feff, 61	growth_mod, 43
plot_fmor, 61	mortality_mod, 55
plot_land, 61	one_scallop_per_tow
plot_lndw, 61	globals, 22
plot_lpue, 61	output_dir
plot_recr, 61	globals, 22
mortality_mod::fishingmortality, 62	pi
area_fish_mort, 62	globals, 22
area_list, 62	plot_abun
n_areas, 62	mortality_mod::dataforplots, 61
year, 62	plot_biom
mortality_mod::mortality_class, 72	mortality_mod::dataforplots, 61
alpha, 73	plot_ebms
discard, 73	mortality_mod::dataforplots, 61
incidental, 73	plot_feff
natural_mort_adult, 73	mortality_mod::dataforplots, 61
natural_mort_juv, 73	plot_fmor
natural_mortality, 73	mortality_mod::dataforplots, 61
selectivity, 73	plot_land
mortality_write_at_timestep	mortality_mod::dataforplots, 61
mortality_mod, 47	plot_lndw
n areas	mortality_mod::dataforplots, 61
mortality_mod::fishingmortality, 62	plot_lpue
mortality_mod::fishingmortality, 62 n_rand_yrs	
	plot_lpue
n_rand_yrs	plot_lpue mortality_mod::dataforplots, 61
n_rand_yrs recruit_mod, 59	plot_lpue mortality_mod::dataforplots, 61 plot_recr
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult mortality_mod::mortality_class, 73	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points grid_manager_mod, 27 point_in_polygon_vector
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult mortality_mod::mortality_class, 73 natural_mort_juv	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points grid_manager_mod, 27 point_in_polygon_vector grid_manager_mod, 27
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult mortality_mod::mortality_class, 73 natural_mort_juv mortality_mod::mortality_class, 73	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points grid_manager_mod, 27 point_in_polygon_vector grid_manager_mod, 27 qp
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult mortality_mod::mortality_class, 73 natural_mort_juv mortality_mod::mortality_class, 73 natural_mortality	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points grid_manager_mod, 27 point_in_polygon_vector grid_manager_mod, 27 qp globals, 22
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult mortality_mod::mortality_class, 73 natural_mort_juv mortality_mod::mortality_class, 73	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points grid_manager_mod, 27 point_in_polygon_vector grid_manager_mod, 27 qp globals, 22 random_index
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult mortality_mod::mortality_class, 73 natural_mort_juv mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 ndim	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points grid_manager_mod, 27 point_in_polygon_vector grid_manager_mod, 27 qp globals, 22 random_index recruit_mod, 56
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult mortality_mod::mortality_class, 73 natural_mort_juv mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 ndim globals, 22	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points grid_manager_mod, 27 point_in_polygon_vector grid_manager_mod, 27 qp globals, 22 random_index recruit_mod, 56 read_configuration
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult mortality_mod::mortality_class, 73 natural_mort_juv mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 ndim globals, 22 norm_cumul_dist_fcn	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points grid_manager_mod, 27 point_in_polygon_vector grid_manager_mod, 27 qp globals, 22 random_index recruit_mod, 56 read_configuration grid_manager_mod, 28
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult mortality_mod::mortality_class, 73 natural_mort_juv mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 ndim globals, 22 norm_cumul_dist_fcn growth_mod, 38	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points grid_manager_mod, 27 point_in_polygon_vector grid_manager_mod, 27 qp globals, 22 random_index recruit_mod, 56 read_configuration grid_manager_mod, 28 mortality_mod, 48
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult mortality_mod::mortality_class, 73 natural_mort_juv mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 ndim globals, 22 norm_cumul_dist_fcn growth_mod, 38 norm_density_fcn	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points grid_manager_mod, 27 point_in_polygon_vector grid_manager_mod, 27 qp globals, 22 random_index recruit_mod, 56 read_configuration grid_manager_mod, 28 mortality_mod, 48 recruit_mod, 57
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult mortality_mod::mortality_class, 73 natural_mort_juv mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 ndim globals, 22 norm_cumul_dist_fcn growth_mod, 38 norm_density_fcn growth_mod, 39	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points grid_manager_mod, 27 point_in_polygon_vector grid_manager_mod, 27 qp globals, 22 random_index recruit_mod, 56 read_configuration grid_manager_mod, 28 mortality_mod, 48 recruit_mod, 57 read_csv
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult mortality_mod::mortality_class, 73 natural_mort_juv mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 ndim globals, 22 norm_cumul_dist_fcn growth_mod, 38 norm_density_fcn growth_mod, 39 num_areas	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points grid_manager_mod, 27 point_in_polygon_vector grid_manager_mod, 27 qp globals, 22 random_index recruit_mod, 56 read_configuration grid_manager_mod, 28 mortality_mod, 48 recruit_mod, 57 read_csv IORoutines.f90, 81
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult mortality_mod::mortality_class, 73 natural_mort_juv mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 ndim globals, 22 norm_cumul_dist_fcn growth_mod, 38 norm_density_fcn growth_mod, 39 num_areas grid_manager_mod, 31	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points grid_manager_mod, 27 point_in_polygon_vector grid_manager_mod, 27 qp globals, 22 random_index recruit_mod, 56 read_configuration grid_manager_mod, 28 mortality_mod, 48 recruit_mod, 57 read_csv IORoutines.f90, 81 read_dev
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult mortality_mod::mortality_class, 73 natural_mort_juv mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 ndim globals, 22 norm_cumul_dist_fcn growth_mod, 38 norm_density_fcn growth_mod, 39 num_areas grid_manager_mod, 31 mortality_mod, 55	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points grid_manager_mod, 27 point_in_polygon_vector grid_manager_mod, 27 qp globals, 22 random_index recruit_mod, 56 read_configuration grid_manager_mod, 28 mortality_mod, 48 recruit_mod, 57 read_csv IORoutines.f90, 81 read_dev globals, 22
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult mortality_mod::mortality_class, 73 natural_mort_juv mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 ndim globals, 22 norm_cumul_dist_fcn growth_mod, 38 norm_density_fcn growth_mod, 39 num_areas grid_manager_mod, 31 mortality_mod, 55 num_grids	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points grid_manager_mod, 27 point_in_polygon_vector grid_manager_mod, 27 qp globals, 22 random_index recruit_mod, 56 read_configuration grid_manager_mod, 28 mortality_mod, 48 recruit_mod, 57 read_csv IORoutines.f90, 81 read_dev globals, 22 read_scalar_field
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult mortality_mod::mortality_class, 73 natural_mort_juv mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 ndim globals, 22 norm_cumul_dist_fcn growth_mod, 38 norm_density_fcn growth_mod, 39 num_areas grid_manager_mod, 31 mortality_mod, 55 num_grids grid_manager_mod, 31	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points grid_manager_mod, 27 point_in_polygon_vector grid_manager_mod, 27 qp globals, 22 random_index recruit_mod, 56 read_configuration grid_manager_mod, 28 mortality_mod, 48 recruit_mod, 57 read_csv IORoutines.f90, 81 read_dev globals, 22 read_scalar_field IORoutines.f90, 81
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult mortality_mod::mortality_class, 73 natural_mort_juv mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 ndim globals, 22 norm_cumul_dist_fcn growth_mod, 38 norm_density_fcn growth_mod, 39 num_areas grid_manager_mod, 31 mortality_mod, 55 num_grids grid_manager_mod, 31 growth_mod, 43	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points grid_manager_mod, 27 point_in_polygon_vector grid_manager_mod, 27 qp globals, 22 random_index recruit_mod, 56 read_configuration grid_manager_mod, 28 mortality_mod, 48 recruit_mod, 57 read_csv IORoutines.f90, 81 read_dev globals, 22 read_scalar_field IORoutines.f90, 81 read_startup_config
n_rand_yrs recruit_mod, 59 n_sides grid_manager_mod::lonlatvector, 70 n_year recruit_mod::recruitment_class, 74 natural_mort_adult mortality_mod::mortality_class, 73 natural_mort_juv mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 natural_mortality mortality_mod::mortality_class, 73 ndim globals, 22 norm_cumul_dist_fcn growth_mod, 38 norm_density_fcn growth_mod, 39 num_areas grid_manager_mod, 31 mortality_mod, 55 num_grids grid_manager_mod, 31	plot_lpue mortality_mod::dataforplots, 61 plot_recr mortality_mod::dataforplots, 61 point_in_polygon_array grid_manager_mod, 26 point_in_polygon_points grid_manager_mod, 27 point_in_polygon_vector grid_manager_mod, 27 qp globals, 22 random_index recruit_mod, 56 read_configuration grid_manager_mod, 28 mortality_mod, 48 recruit_mod, 57 read_csv IORoutines.f90, 81 read_dev globals, 22 read_scalar_field IORoutines.f90, 81

rec_output_dir	globals, 22
globals, 22	region_none
rec start	globals, 22
recruit_mod::recruitment_class, 74	region s
rec_stop	globals, 22
recruit_mod::recruitment_class, 74	region sw
recr_period_start	globals, 22
recruit_mod, 59	region_w
recr_period_stop	globals, 22
recruit mod, 59	rgn
recruit avg num	globals, 22
recruit_mod, 59	ring_size_selectivity
recruit_mod, 56	mortality_mod, 48
config file name, 59	Scallop Population Density, 1
domain_area_sqm, 59	scalloppopdensity
domain name, 59	ScallopPopDensity.f90, 89
max_n_year, 59	ScallopPopDensity.f90
n_rand_yrs, 59	read startup config, 88
num grids, 59	scalloppopdensity, 89
random_index, 56	setup_data_files, 91
read_configuration, 57	write column csv by region, 91
recr period start, 59	write_lat_lon_preamble, 91
recr_period_stop, 59	write recruit estimates, 91
recruit avg_num, 59	write_x_y_preamble, 92
recruit yr stop, 59	selectivity
recruit_yr_strt, 59	mortality_mod::mortality_class, 73
set_config_file_name, 57	set config file name
set recruitment, 57	grid_manager_mod, 28
sim start year, 59	mortality_mod, 49
sim_stop_year, 59	recruit mod, 57
weights, 59	set discard
wsum, 59	mortality_mod, 49
Recruit_Mod, 9	set_fishing_effort
recruit mod::recruitment_class, 74	mortality_mod, 49
max rec ind, 74	set fishing mort file name
n year, 74	mortality_mod, 50
rec_start, 74	set fishing mortality
rec_start, 74	mortality_mod, 50
recruitment, 74	set_grid_manager
year, 74	grid manager mod, 29
•	
recruit_yr_stop	set_growth
recruit_mod, 59	growth_mod, 39
recruit_yr_strt	set_init_cond_file_name
recruit_mod, 59	grid_manager_mod, 29
recruitment	set_mortality
recruit_mod::recruitment_class, 74	mortality_mod, 51
Recruitment_Class, 75	set_num_grids
region	grid_manager_mod, 29
grid_manager_mod::grid_data_class, 65	set_recruitment
region_gbk	recruit_mod, 57
globals, 22	set_select_data
region_ma	mortality_mod, 52
globals, 22	set_shell_lengths
region_mab	growth_mod, 40
globals, 22	set_special_access_file_name
region n	grid manager mod, 30

setup_data_files	tow_area_sqm
ScallopPopDensity.f90, 91	globals, 23
shell len delta	towing_speed_knots
globals, 22	mortality_mod, 55
shell len max	ts_per_year
globals, 22	mortality_mod, 55
shell_len_min	use_spec_access_data
globals, 22	grid_manager_mod, 31
shell_to_weight	mortality_mod, 55
growth mod, 41	value len
show_recruits_msg	globals, 23
growth_mod, 43	weights
sim_start_year	recruit mod, 59
recruit mod, 59	write_2d_scalar_field
sim_stop_year	IORoutines.f90, 81
recruit mod, 59	write column csv
sp	IORoutines.f90, 81
globals, 23	write column csv by region
special access index	ScallopPopDensity.f90, 91
grid_manager_mod::grid_data_class, 65	write csv
special accesss fname	IORoutines.f90, 82
grid manager mod, 31	write dev
SRC/aaaPageOrder.f90, 76	globals, 23
SRC/Globals.f90, 77	write lat lon preamble
SRC/GridManager.f90, 79	ScallopPopDensity.f90, 91
SRC/IORoutines.f90, 81	write recruit estimates
SRC/ScallopGrowth.f90, 83	ScallopPopDensity.f90, 91
SRC/ScallopMortality.f90, 85	write_vector_scalar_field
SRC/ScallopPopDensity.f90, 88	IORoutines.f90, 82
SRC/ScallopRecruit.f90, 93	write x y preamble
stratum	ScallopPopDensity.f90, 92
grid_manager_mod::grid_data_class, 65	wsum
tag len	recruit mod, 59
globals, 23	_
term blk	grid manager mod::grid data class, 65
globals, 23	y
term blu	grid manager mod::grid data class, 65
globals, 23	year
term grn	grid manager mod::grid data class, 65
globals, 23	mortality mod::fishingmortality, 62
term red	recruit mod::recruitment class, 74
globals, 23	Z – – – – – – – – – – – – – – – – – – –
term yel	grid manager mod::grid data class, 65
globals, 23	zero threshold
time steps year	globals, 23
growth mod, 43	zone
time to grow	grid manager mod::grid data class, 65
growth mod, 42	