PRINTABLE VERSION

Quiz 11

You scored 100 out of 100

Question 1

Your answer is CORRECT.

The congruence equation " $-78 \equiv -166 \mod 22$ " means

- a) -166 and 22 have the same remainder when they are divided by -78.
- **b)** \bigcirc -78 and 22 have the same remainder when they are divided by -166.
- \mathbf{c}) ~ -78 and -166 have the same quotient when they are divided by 22.
- d) \circ -78 and -166 have the same remainder when they are divided by 22.

Ouestion 2

Your answer is CORRECT.

The integers 94 and -29 are congruent mod n for which value of n?

- a) 0 n = -29
- b) \bigcirc There are no values of n for which these two integers are congruent (except n=1).
- (c) n = 41
- **d)** \bigcirc n = 94
- **e)** 0 = 42

Ouestion 3

Your answer is CORRECT.

Consider the following proposition:

Proposition. If $a \equiv b \mod n$, then $a^2 \equiv b^2 \mod n$.

If you were writing a direct proof of this proposition, which of the following statements could be used as your first line?

a) \bigcirc Suppose (a - b)|n.

- b) Suppose n|(a-b).
- c) \bigcirc Suppose a | n and a | b.
- d) Suppose n divides a and b.
- e) \bigcirc Suppose n|a and b|a.

Ouestion 4

Your answer is CORRECT.

Is the following statement true or false?

 $\forall x, y, a, b \in Z, n \in N^*, (x \equiv a \mod n \land y \equiv b \mod n) \Rightarrow xy \equiv ab \mod n.$ (Note: for this problem N^* refers to the positive natural numbers $N^* = N - \{0\} = \{1, 2, 3, ...\}$.)

- a) Ohis statement is false.
- **b)** This statement is true.

Ouestion 5

Your answer is CORRECT.

A (direct) proof for a Proposition is presented below. Read through the proof and then determine which Proposition was proven.

Proposition.

Proof (Direct).

- (1) Let $x \in Z$ satisfy $x \not\equiv 0 \mod 3$.
- (2) By The Division Algorithm, there are only two cases to consider.
- (3) When x is divided by 3 either it has a remainder of 1 or of 2.

Case 1. $x \equiv 1 \mod 3$

(4) It follows that $x^2 \equiv 1^2 \mod 3 \equiv 1 \mod 3$.

Case 2. $x \equiv 2 \mod 3$

- (5) It follows that $x^2 \equiv 2^2 \mod 3 \equiv 4 \mod 3 \equiv 1 \mod 3$.
- (6) Therefore, in all cases $x^2 \equiv 1 \mod 3$.

a)
$$\bigcirc \forall x \in Z, x \equiv 0 \mod 3 \implies x^2 \not\equiv 1 \mod 3.$$

- $b \in \mathbb{Z}, x \not\equiv 0 \mod 3 \implies x^2 \equiv 0 \mod 3.$
- e) $\forall x \in \mathbb{Z}, x \not\equiv 0 \mod 3 \Rightarrow x^2 \equiv 1 \mod 3.$
- **d)** Technically no proposition was proven true since there is a mistake in Line (2); The Division Algorithm does *not* leave only two cases to consider.

Question 6

Your answer is CORRECT.

Use the Euclidean Algorithm to find the inverse of 40 mod 19 (if it exists).

- a) \bigcirc 40 does not have an inverse mod 19 because $gcd(40, 19) \neq 1$.
- **b)** \bigcirc 19 is an inverse.
- \mathbf{c}) 0.1/40 is an inverse.
- d) 0.019/40 is an inverse.
- e) 10 is an inverse.

Ouestion 7

Your answer is CORRECT.

Of the options provided below, determine the one that best completes this sentence: "The modular equation $-17x \equiv -50 \text{ mod } 51$ "

- a) has multiple solutions.
- **b)** has exactly one solution.
- c) has no solutions.

Ouestion 8

Your answer is CORRECT.

Which steps should one take when solving a congruence equation $ax \equiv b \mod n$? A helpful summary is presented below, only one step is missing:

Steps for solving $ax \equiv b \mod n$.

- Step 1. Use the Euclidean Algorithm to compute gcd(a, n).
- Step 2. If $gcd(a, n) \mid b$, then proceed to step 3, otherwise there are no solutions.
- Step 3. Use work from Step 1 to calculate one solution $x_0 \in Z$.
- Step 4.

Of the following options, which could be used for the missing Step 3?

- a) \odot Step 4. Add $\frac{n}{\gcd(a,n)}$ to x_0 to create other solutions.
- **b)** \bigcirc Step 4. Add b to x_0 to create other solutions.
- c) \bigcirc Step 4. Add $\frac{b}{\gcd(a,n)}$ to x_0 to create other solutions.
- d) \bigcirc Step 4. Add $\frac{a}{\gcd(a,n)}$ to x_0 to create other solutions.
- e) \bigcirc Step 4. Add $\frac{\gcd(a, n)}{b}$ to x_0 to create other solutions.

Question 9

Your answer is CORRECT.

Find a solution to the congruence equation $17x \equiv 9 \mod 5$.

- a) x = 13 is a solution.
- **b)** \bigcirc x = 5/17 is a solution.
- c) x = 9/17 is a solution.
- d) \bigcirc x = 5 is a solution.
- e) x = 12 is a solution.

Ouestion 10

Your answer is CORRECT.

Find a solution to the congruence equation $-25x \equiv 2 \mod 8$.

- a) x = 14 is a solution.
- **b)** \bigcirc x = 0 is a solution.
- \mathbf{c} $\mathbf{x} = 15$ is a solution.
- d) There are no solutions.

e) x = 13 is a solution.