Оглавление

Оглавление	2
Описание условия задачи	3
Описание технического задания	3
Входные данные:	3
Выходные данные:	3
Действие программы:	3
Обращение к программе:	4
Описание структуры данных	5
Описание алгоритма	5
Набор тестов	6
Ответы на контрольные вопросы	8
1. Каков возможный диапазон чисел, представляемых в ПК?	8
2. Какова возможная точность представления чисел, чем она определяется?	8
3. Какие стандартные операции возможны над числами?	8
4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?	8
5. Как можно осуществить операции над числами, выходящими за рамки машинного представления?	9
ВЫВОД	9

Описание условия задачи

Смоделировать операцию деления целого числа длиной до 40 десятичных цифр на действительное число в форме \pm m.n E K, где суммарная длина мантиссы (m+n) - до 40 значащих цифр, а величина порядка K - до 5 цифр. Результат выдать в форме \pm 0.m1 E \pm K1, где m1 - до 40 значащих цифр, а K1 - до 5 цифр.

Описание технического задания

Входные данные:

Целое число: строка, содержащая целое число в виде [+\-m]. Если не указать знак перед числом — по умолчанию будет считаться за '+'. Длина числа m - 40 цифр.

Действительное число: строка, содержащая вещественное число в форме ±m.n[E/e]±K. Если не указать знак перед числом и/или экспонентой—по умолчанию будет считаться за '+'. Максимальная длина мантиссы — 40 цифр, максимальная длина порядка — 5 цифр.

Выходные данные:

Строка в виде [+-]0.me[+/-]K1. Длина мантиссы — 40 цифр; длина порядка — до 5 цифр.

Действие программы:

Деление целого числа на действительное.

Обращение к программе:

Программа запускается через терминал, в командной строке, с помощью команды ./арр.ехе. После запуска пользователь увидит приглашение к вводу. Далее вводятся числа. Если запускать программу с флагом -h, то на экран выводится справочная информация.

Аварийные ситуации:

- **1.** Некорректный ввод: ввод символа при вводе целого числа Код ошибки 1.
- **2.** Некорректный ввод: ввод лишних символов при вводе вещественного числа

Код ошибки - 1.

- **3.** Некорректный ввод: превышение длины целого числа Код ошибки 2.
- **4.** Некорректный ввод: превышение длины мантиссы при вводе вещественного числа

Код ошибки - 2.

5. Некорректный ввод: превышение порядка при вводе вещественного числа

Код ошибки - 3.

- **6.** Некорректный ввод: переполнение строки при вводе целого числа Код ошибки 4.
- **7.** Некорректный ввод: переполнение строки при вводе вещественного числа

Код ошибки - 4.

- **8.** Некорректный ввод: Введенное число не является целым Код ошибки 7.
- 9. Некорректный ввод: Пустой ввод

Код ошибки - 9.

10. Поведение программы: Деление на ноль

Код ошибки - 10.

Во всех нештатных ситуациях, программа выводит место, где произошла ошибка.

Описание структуры данных

И целое, и вещественное, хранятся в структуре long_number.

```
typedef struct
{
    unsigned short sign; // 0 - минус, 1 - плюс
    unsigned short mantise_size;
    unsigned short order;
    short mantise[MANTISE_DEFINE];
} long_number;
```

Листинг 1. Структура long number

Поля структуры:

- 1. sign знак числа хранится в переменной;
- 2. mantise_size размер мантиссы
- 3. order порядок числа
- 4. mantise мантисса числа.

Описание алгоритма

- 1. Программа считывает две строки, первая содержит целое число, а вторая действительное.
- 2. Нормализация ввода.
- 3. Если действительное число не равно нулю делим.
- 4. Ищется неполное делимое
- 5. В цикле ищется частное неполного делимого и делителя, остаток записывается в неполное делимое.
- 6. Нормализация числа.

7. Вывод результата на экран.

Описание основных функций

int input_string(char *string)

Функция реализует ввод строки из stdin.

Входные параметры: указатель на строку.

Выходные параметры: измененная строка.

Возвращаемый результат: код возврата.

int input_int_number(long_number *number)

Функция реализует ввод целого числа

Входные параметры: указатель на структуру с длинным числом.

Выходные параметры: значение, записанное в структуру с длинным

числом.

числом.

Возвращаемый результат: код возврата.

int input_real_number(long_number *number)

Функция реализует ввод действительного числа

Входные параметры: указатель на структуру с длинным числом.

Выходные параметры: значение, записанное в структуру с длинным

Возвращаемый результат: код возврата.

void long_number_normalization(long_number *number)

Функция нормализует действительное число

Входные параметры: указатель на структуру с длинным числом.

Выходные параметры: измененная структура с длинным числом.

void find_part_divisible(long_number *part_divisible, long_number
divisible, long_number divider)

Функция поиска неполного делимого

Входные параметры: указатель на неполное делимое, структура с делимым, структура с делителем.

Выходные параметры: измененная структура с неполным делителем.

int	long_divisible(long_number	divisible,	long_number	divider,
long_	number *result)			

Функция деления длинного числа на длинное число.

Входные параметры: делимое, делитель, указатель на частное.

Выходные параметры: частное деления, записанное в структуру.

Возвращаемый результат: код возврата.

void rounding(long_number *result, int last_number)

Функция реализует округление длинного числа

Входные параметры: указатель на структуру с результатом, последняя цифра мантиссы.

Выходные параметры: измененная структура с результатом.

Набор тестов

№	Описание теста	Первое число	Второе число	Вывод
1	Деление единицы на единицу (в обычном виде)	1	1	0.1e1
2	Деление единицы на единицу в экспоненциальной форме	1	0.1e1	0.1e1
3	Деление на меньшее число	1	0.5	0.2e1
4	Деление меньшего на большее	1	2	0.5e0
5	Деление с уменьшением порядка	1	10	0.1e0
6	Деление с изменением знака	1	-100	-0.1e-1

7	Деление двух отрицательных чисел	-1	-2	0.5e0
8	Деление граничных значений	11111111111 111111111111 111111111111 1111	21	0.5291005 291005291 005291005 291005291 005285e37
9	Деление длинного целого на действительное	222222222 222222222 222222222 2222222	1.11111111 11111111111 11111111111 11111	2e57
10	Деление на ноль	12	0	Error, division on zero
11	Переполнение строки	11111111111 111111111111 111111111111 1111		Error, overflow input
12	Символ в записи числа	1a	2.121a	Error, number must not contain any characters
13	Целое число записано с вещественной частью	1.12		Error, number must not contain any characters
14	Целое число записано с экспонентой	1e10		Error, number must not contain any characters

15	Вещественное число записано с лишними символами		+123.121e +10.	Error, number must not contain any characters
16	Ошибка с порядком числа		1e4444444	Error in order size. It's must be short then 5 digits
17	Пустой ввод			Error, input is empty
18	Деление с округлением	2	3	0.6666666 66666667

Ответы на контрольные вопросы

1. Каков возможный диапазон чисел, представляемых в ПК?

Диапазон чисел зависит от разрядности процессора и типа переменной. Максимальное значение 64-разрядного беззнакового целого числа (unsigned long int) равно 18 446 744 073 709 551 615.

2. Какова возможная точность представления чисел, чем она определяется?

Точность представления вещественных чисел определяется количеством памяти, выделяемой для хранения мантиссы числа. Для мантиссы числа типа double выделяется 52 бита, с помощью этого мантисса числа может иметь значение до 4 503 599 627 370 496.

3. Какие стандартные операции возможны над числами?

Операции сложения, вычитания, умножения, деление, взятие остатка, сравнения.

4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?

Программист может создать собственную структуру, где можно записать мантиссу, знак числа и порядка. Также может использовать массив символов.

5. Как можно осуществить операции над числами, выходящими за рамки машинного представления?

Нужно использовать самостоятельно разработанные функции. Те, которые поразрядно умножают/складывают/делят/возводят в степень/сравнивают числа.

вывод

Разработанный тип данных является очень важной структурой данных потому, что его длина ограничена только размером памяти компьютера/аппаратного стека. С такими числами можно проводить физические расчеты с очень большой точностью или хранить очень большие числа. Такой тип данных можно использовать, например, в астрофизике.