HICF1 - Final Report v4

Dr. Susanne Weller

August 6, 2014

Contents

1	Univariate Analysis	1
2	Associations	1
3	Model building - from here, only 209 data points will be used 3.1 Multiple logistic regression models	
4	Random Forest for variable importance 4.1 Determine performance and tuning the model 4.1.1 Number of trees 4.1.2 Weighted class 4.1.3 Cutoff selection	8
5	Estimating error and variation of Random forest 5.1 Repeated random sub-sampling	

1 Univariate Analysis

Note that TP53_mut are only mutation with >5%VAF! Univariate p-values change dramatically if you add more variables, this is due to the multiple testing problem. I have used False Discovery Rate, currently the least stringent correction method that was specifically designed for genetics.

Table 1: Univariate Analysis against MRD outcome

P								
B	р	sig	corr.p	sig.corr	MRDpos_0	MRDneg_0	MRDpos_1	MRDneg_1
B ATM_ALL	0.002	**	0.005	**	28%	40%	21%	11%
p ATM_bi	0.002	**	0.005	**	40%	49%	9%	2%
p ATM_del	0	***	0	***	35%	47%	13%	4%
p ATM_mono	0.836	n.s.	0.836	n.s.	43%	44%	6%	7%
p BIRC3_ALL	0.095	$_{ m trend}$	0.129	n.s.	38%	45%	11%	6%
p BIRC3_bi	0.360	n.s.	0.428	n.s.	47%	51%	1%	0%
p BIRC3_del	0.002	**	0.005	**	39%	48%	10%	3%
p BIRC3_mono	0.066	trend	0.101	n.s.	48%	48%	0%	3%
p NOTCH1_mut	0.069	trend	0.101	n.s.	44%	42%	4%	9%
p SAMHD1_ALL	0.054	$_{ m trend}$	0.093	trend	45%	50%	4%	1%
p SF3B1_mut	0.415	n.s.	0.464	n.s.	36%	41%	12%	11%
p TP53_ALL	0	***	0	***	40%	50%	9%	1%
p TP53_bi	0.009	**	0.021	*	44%	51%	4%	0%
p TP53_lowVAF	0.163	n.s.	0.206	n.s.	46%	50%	3%	1%
p TP53_mut	0	***	0	***	42%	51%	7%	0%
p Trisomy_12	0.002	**	0.005	**	45%	39%	4%	12%
p X11q_mono	0.046	*	0.093	trend	44%	50%	5%	1%
p Subclones	0.050	*	0.093	trend	NA%	NA%	NA%	NA%
pTotal_num_CNAs	0.483	n.s.	0.510	n.s.	NA%	NA%	NA%	NA%
D								

2 Associations

To test for associations, I first counted the number of patients that have a particular mutation, and derived the probablity of having this lesion: Example: 8 out of 209 patients have mutation X -> probability estimate for this mutation is 8/209 15 out of 209 patients have mutation Y -> probability estimate for this mutation is 15/209 The expected probablity of having both mutations is then $8/209 \times 15/209$

I then compared this expected probability to the observed probability using Exact Binomial Tests. This test is the only one that I could find that can deal with low numbers AND allows for testing agains expected frequencies. Fisher's Exact test is often used that way by constructing the expected frequencies from the expected probabilities, but does not allow for integers, which is a problem with the low numbers we are dealing with.

I again used False Discovery Rate to correct the p-values.

Total_num_CNAs	0.07	0.18	0.61	0.10	0.39	0.19	0.35	0.19	1.00	0.07	0.51	1.00	0.44	0.42	1.00	0.15	09:0	1.00	0.46	0.14	1.00	0.00	0.15	00:00	
Subclones	99.0	1.00	60.0	0.38	0.54	0.85	0.92	0.54	0.47	0.65	0.71	1.00	99.0	0.45	1.00	0.54	09.0	1.00	0.26	0.44	69.0	0.00	0.00		
X8q-ALL	80.0	0.63	1.00	0.18	0.42	0.74	0.25	0.34	0.43	0.39	0.34	1.00	0.27	1.00	1.00	0.42	0.21	1.00	0.28	0.54	1.00	0.00			
MED12mutation	69.0	0.82	0.17	0.88	1.00	0.80	0.52	1.00	0.35	0.54	0.82	0.86	0.90	0.50	1.00	1.00	0.91	1.00	0.08	0.84	1.00				
MYD88_mut	0.10	0.47	1.00	0.36	0.58	99'0	09'0	0.34	1.00	1.00	0.74	0.61	0.71	0.24	1.00	0.58	1.00	0.47	0.73	0.16					
SAMHD1_ALL	0.42	0.18	0.60	1.00	0.39	0.55	0.58	0.40	0.31	0.35	1.00	1.00	0.84	0.22	1.00	0.56	0.86	1.00	0.13						
XPO1_gain	0.43	0.65	0.10	1.00	1.00	0.44	0.16	0.83	1.00	1.00	99.0	0.02	0.45	0.59	0.49	0.71	0.25	0.02							
Trisomy-19	0.64	1.00	1.00	1.00	1.00	0.59	0.53	0.70	1.00	1.00	0.00	0.00	0.64	1.00	1.00	1.00	0.41								
Trisomy_18	0.63	0.67	1.00	1.00	0.48	0.00	0.00	0.00	1.00	0.00	0.00	0.18	0.02	0.03	1.00	0.29									
Trisomy-12	1.00	1.00	0.21	1.00	0.56	00:00	90.0	00'00	1.00	1.00	00:00	1.00	00:00	0.42	1.00										
	0.44	1.00	1.00	1.00	1.00	0.03	0.65	0.00	1.00	1.00	0.00	0.00	0.00	1.00											
X6qdel_ALL X13q.ALL	0.39	0.63	1.00	0.18	0.42	0.00	0.00	0.00	0.00	0.65	0.00	1.00	0.00												
SF3B1_mut	0.59	0.64	1.00	0.19	0.43	0.00	0.02	00'0	1.00	0.41	00:00	0.04													
NOTCH1_mut	1.00	1.00	1.00	0.64	1.00	0.37	0.20	0.02	1.00	1.00	0.00														
BIRC3_del	0.34	0.42	1.00	60.0	0.18	0.00	0.11	0.00	1.00	0.28															
BIRC3_mut	0.41	1.00	1.00	0.63	0.51	0.00	0.00	0.28	1.00																
BIRC3_ALL	1.00	1.00	1.00	1.00	1.00	0.03	0.01	1.00																	
ATM_cnLOH BIRC3_ALL	0.50	0.43	0.51	0.28	0.53	0.00	0.00																		
ATM_del	0.57	0.53	0.63	0.19	0.59	0.00																			
ATM_mut	0.51	0.27	1.00	0.17	0.64																				
TP53_mut ATM_ALL ATM_mut	00'0	00'0	0.00	0.00																					
	00'00	00'0	0.01																						
TP53_ALL TP53_del TP53_cnLOH	0.00	1.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
TP53_del	00:0									_						_								_	
		_	_	_	_	_	_	_	_		_	_	_	_	_		_	_	_	_	_	_	_		
variables	TP53_ALL	TP53_del	TP53_cnLOH	TP53_mut	ATMLALL	ATM_mut	ATM_del	ATM_cnLOH	BIRC3_ALL	BIRC3_mut	BIRC3_del	NOTCH1_mut	SF3B1_mut	X6qdel_ALL	X13q-ALL	Trisomy_12	Trisomy_18	Trisomy_19	XPO1 gain	SAMHD1_ALL	MYD88_mut	MED12mutation	X8d-ALL	Subclones	Total_num_CNAs

Table 2: Association chart, uncorrected pvalues, Fisher's test

Total_num_CNAs	0.37	0.68	1.00	0.46	0.99	89.0	86.0	89'0	1.00	0.34	1.00	1.00	0.99	0.99	1.00	0.64	1.00	1.00	1.00	0.63	1.00	0.00	0.64	00:00
Subclones	1.00	1.00	0.43	66.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.00	1.00	0.84	0.99	1.00	0.00	00:0	_
X8q-ALL	0.41	1.00	1.00	89.0	0.99	1.00	0.82	86.0	66'0	0.99	96.0	1.00	0.85	1.00	1.00	66.0	0.71	1.00	0.85	1.00	1.00	0.01		_
MED12mutation	1.00	1.00	0.68	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.39	1.00	1.00			
MYD88_mut	0.46	1.00	1.00	96.0	1.00	1.00	1.00	86.0	1.00	1.00	1.00	1.00	1.00	0.80	1.00	1.00	1.00	1.00	1.00	99'0				
SAMHDIALL	66.0	89.0	1.00	1.00	0.99	1.00	1.00	66.0	0.93	96.0	1.00	1.00	1.00	0.73	1.00	1.00	1.00	1.00	0.57					
XPO1 gain	66:0	1.00	0.46	1.00	1.00	66.0	0.65	1.00	1.00	1.00	1.00	0.28	66.0	1.00	1.00	1.00	0.82	0.25						
Trisomy_19	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	0.99							
Trisomy_18	1.00	1.00	1.00	1.00	1.00	00.00	00.00	0.02	1.00	0.00	0.05	99.0	0.10	0.15	1.00	0.86								
Trisomy_12	1.00	1.00	0.71	1.00	1.00	0.00	0.30	0.00	1.00	1.00	0.00	1.00	0.00	0.99	1.00									
X13q_ALL	0.99	1.00	1.00	1.00	1.00	0.18	1.00	0.01	1.00	1.00	0.01	0.00	0.00	1.00										
X6qdel_ALL	66.0	1.00	1.00	0.68	66.0	0.00	0.00	0.00	0.00	1.00	0.00	1.00	0.00											
SF3B1_mut	1.00	1.00	1.00	0.68	0.99	0.00	0.10	0.00	1.00	0.99	0.00	0.23												
NOTCH1_mut	1.00	1.00	1.00	1.00	1.00	0.99	0.69	0.11	1.00	1.00	0.00													
BIRC3_del	86.0	66.0	1.00	0.42	89.0	0.00	0.50	0.00	1.00	0.85														
BIRC3_mut	66.0	1.00	1.00	1.00	1.00	0.01	0.00	98'0	1.00															
BIRC3_ALL	1.00	1.00	1.00	1.00	1.00	0.18	0.07	1.00																
ATM_cnLOH	1.00	0.99	1.00	0.85	1.00	0.00	0.02																	
ATM_del	1.00	1.00	1.00	99.0	1.00	0.00																		
ATM_mut	1.00	0.85	1.00	0.68	1.00																			
t ATM_ALL	00:0	00:00	0.01	0.00		-					-	-						-					-	
OH TP53_mut	00:00	00'0	0.03																					
TP53_cnLOH	10.0	1.00																						
TP53_ALL TP53_del	00'0																							
⊢	rr	tel	HC	ınt	rr rr	ınt	tel	HC	rr	ınt	lel	ınt	ınt	T.	TI.	12	18	19	din	TI.	ınt	uo	rr	nes Ae
variables	TP53_ALI	TP53_d	TP53_cnLOH	TP53_mt	ATMLAL	ATM_m	ATM_a	ATM_cnLO	BIRC3_AL	BIRC3_mu	BIRC3_d	NOTCH1_m	SF3B1_mut	X6qdel_AL	X13q_AL	Trisomy_	Trisomy_	Trisomy_	XPOLga.	SAMHD1_AL	MYD88_mut	MED12mutation	X8d-ALL	Subclones

Table 3: Association chart, corrected pvalues, Fisher's test with FDR correction

Odds ratios and p-values for associations between genes are represented in this heatmap. Note that odds ratios 0-1 (the first bar in the colour key) are mutually exclusive, everything else already counts as co-occuring.

Note: Colour key still needs be adjusted to a somewhat funny scale to see this properly.

_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total_num_CNAs	0.30	0.00	1.07	0.21	0.30	1.32	1.24	1.45	0.85	2.16	1.18	0.85	1.29	1.27	0.85	1.85	1.16	0.85	99.0	1.46	0.85	2.13	1.61	2.17	
Subclones	1.10	0.95	2.39	1.32	1.19	1.03	1.02	1.14	1.43	1.19	1.07	0.95	1.11	1.24	0.95	1.19	0.82	0.95	0.65	1.16	1.11	2.50	0.00		
X8q-ALL	00'0	0.00	0.00	0.00	0.00	1.07	1.42	0.42	1.77	1.48	0.44	0.59	0.29	86.0	00'0	0.00	1.70	0.88	0.27	0.65	0.59	1.98			
MED12mutation	0.86	0.74	1.88	1.03	0.93	1.04	1.11	0.98	1.50	1.25	0.93	0.87	0.93	1.19	0.74	0.93	1.01	0.93	0.57	1.04	1.00				
MYD88_mut	2.30	1.60	00.0	1.60	1.14	1.16	1.27	1.53	00'0	00.0	1.20	1.06	1.06	1.78	00'0	1.14	98.0	1.60	0.50	1.79					
SAMHD1_ALL	1.27	0.00	1.11	0.88	0.31	1.13	1.13	1.28	1.78	1.48	1.00	0.88	1.03	1.49	0.88	1.27	0.83	0.88	0.41						
XPO1_gain	1.34	0.00	3.76	0.74	0.53	0.71	0.47	1.07	00.0	0.62	1.12	2.52	0.49	0.55	1.50	1.07	0.40	3.02							
Trisomy_19	00.00	0.00	0.00	0.00	0.00	0.57	0.38	1.14	0.00	0.00	6.19	16.59	0.00	0.88	0.00	0.00	0.00								
Trisomy_18	1.16	1.29	0.00	0.97	1.39	3.12	4.17	0.00	0.00	6.75	0.00	0.00	0.00	0.00	0.00	0.00									
Trisomy_12	0.61	00'0	4.28	0.85	1.22	3.00	00:00	5,98	00'0	0.00	4.41	00:00	5.90	00'0	00'0										
X13q-ALL	1.71	0.00	0.00	0.00	0.00	2.92	0.00	5.79	0.00	0.00	80.9	16.25	8.12	0.00											
X6qdel_ALL	0.31	0.00	0.00	0.00	0.00	3.12	4.15	5.01	9.02	0.00	3.72	0.59	4.66												
SF3B1_mut	0.57	00'0	00.0	0.00	0.00	3.15	1.96	6.36	00'0	00.0	69.9	2.69													
NOTCH1_mut	0.57	00.00	0.00	00.00	00.00	1.35	0.25	2.71	0.00	0.00	6.31														
BIRC3_del	0.42	0.00	0.00	00:00	00:00	2.51	1.55	5.10	0.00	0.00															
BIRC3_mut	1.43	00'0	00.0	00.0	1.42	2.98	3.94	00'0	00'0																
BIRC3_ALL	00'0	00'0	0.00	00:00	00:00	2.92	3.85	00'00																	
ATM_cnLOH	0.60	0.00	1.42	0.28	0.40	3.28	2.09																		
ATM_del	49'0	0.38	0.00	0.37	0.54	3.55																			
ATM_ALL ATM_mut	0.71	0.28	0.72	0.42	0.61																				
г	00'6	17.77	12.95	11.68																					
TP53_mut	9.22	12.43	90.6																						
TP53_cnLOH TP53_mut	99.8	0.00																							
TP53_ALL TP53_del	98'8			_	_	_	_				_	_	_				_	_	_			_			_
_																									
variables	TP53_ALL	TP53_del	TP53_cnLOH	TP53_mut	ATMALL	ATM_mut	ATM_del	ATM_cnLOH	BIRC3_ALL	BIRC3_mut	BIRC3_del	NOTCH1_mut	SF3B1_mut	X6qdel-ALL	X13q-ALL	Trisomy_12	Trisomy_18	Trisomy_19	XPO1 gain	SAMHDI ALL	MYD88_mut	MED12mutation	X8d-ALL	Subclones	The total course CNIAs

Table 4: Odds ratios for association between genes

Association for n=239

3 Model building - from here, only 209 data points will be used

3.1 Multiple logistic regression models

The goal is to compare several different models and their quality, and eventually compare them to clinical parameters that are currently used.

We first built a model with parameters that come out significant in the univariate analysis or have been described in the literature (genetic1). We can see that Trisomy12, NOTCH1 and BIRC3mono do not contribute to the model. There could be two reasons for this:

- (1) They really do not contribute to the model
- (2) There is a colinearity (or in factors, co-occurrence) that did not show up on the association chart.

In order to see which one contributes most to the model, I built three models with only one of the them in:

• genetic2 : NOTCH1

• genetic3: Trisomy12

• genetic4: BIRC3mono

You can see that NOTCH1 alone is not contributing to the model, Trisomy12 is contributing (and improving the AIC and Log Likelihood), and BIRC3mono contributes, but apparently towards MRD negativity, and with quite large variance(the number in brackets).

Table 5: Multiple log regression, n=209

				Dependent variable:			
	genetic1	genetic2	genetic3	MRD genetic4	genetic5	$_{ m vhmut}$	Binet
TP53_ALL1	2.62*** (0.77)	2.74*** (0.76)	2.64*** (0.77)	2.68*** (0.76)			
ATM_bi1	1.66*** (0.56)	1.67*** (0.54)	1.61*** (0.54)	1.85*** (0.55)			
BIRC3_mono1	-2.03(1.24)			-2.27*(1.18)			
Trisomy_121	-0.65(0.47)		-0.87^* (0.45)	` ′			
NOTCH1_mut1	-0.51(0.51)	-0.74(0.48)	` '				
SAMHD1_ALL1	1.95** (0.89)	1.80** (0.82)	1.65** (0.82)	2.10** (0.89)			
Subclones1					0.52*(0.28)		
vh_mutation_statusunmutated						1.15*** (0.31)	
BinetC							0.12(0.29)
Constant	-0.30 (0.19)	-0.42**(0.18)	-0.37**(0.18)	-0.47^{***} (0.17)	-0.29(0.19)	-0.75****(0.24)	-0.09(0.17)
Observations	209	209	209	209	209	181	209
Log Likelihood	-121.59	-124.83	-124.07	-123.34	-143.10	-118.14	-144.73
Akaike Inf. Crit.	257.19	259.65	258.13	256.68	290.19	240.28	293.46

Note:

*p<0.1; **p<0.05; ***p<0.01

3.2 Missclassification Error

Table 6: Missclassification for summarized models

B	model	correct_MRD_neg	false_MRD_neg	correct_MRD_pos	false_MRD_pos	missclasserr	unclassified
₿1	genetic1	99	59	43	8	0.321	0
p2	genetic2	98	58	44	9	0.321	0
p3	genetic3	98	58	44	9	0.321	0
p4	genetic4	99	59	43	8	0.321	0
p_5	genetic5	64	48	54	43	0.435	0
р6	Binet	72	66	36	35	0.483	0
p7	vhmutation	55	26	60	40	0.365	0.139
P							

4 Random Forest for variable importance

We will use the variables of the multivariate regression model *genetic3*:

- TP53_ALL
- \bullet ATM_bi
- Trisomy_12
- SAMHD1_ALL

Here is our model:

Call:

MRD_MRD negative MRD_MRD positive class.error MRD_MRD negative 98 9 0.08411215 MRD_MRD positive 58 44 0.56862745

4.1 Determine performance and tuning the model

We could potentially improve our model or shift its focus by changing the main tuning parameters:

- Number of trees
- Weighted classes
- Decision cutoff

4.1.1 Number of trees

Conclusion: The number of trees does not seem to play an important role, 500 should be sufficient.

4.1.2 Weighted class

The focus of our study is to find predictors for "MRD positive" (to give him/her access to the more expensive drug). There is cost of increasing true negative findings (real "MRD positives") as we will also generate more false positive findings ("MRD negatives" that are classified as positives).

We can incorporate class weights into the random forest classifier, thus making it more sensitive to find MRD positives. The resulting errors are shown below:

Here is an example for a model with weight slightly shifted towards finding more MRD positives:

Call:

No. of variables tried at each split: 2

OOB estimate of error rate: 43.54%

Confusion matrix:

MRD_MRD negative MRD_MRD positive class.error

MRD_MRD negative 24 83 0.77570093 MRD_MRD positive 8 94 0.07843137

Conclusion: Introducing more MRD positive findings makes the model produce more false positives as well. Not very helpful...

4.1.3 Cutoff selection

We can vary the cutoff that is used in the single decision trees (that are combined in the forest model) such that there is an emphasis on putting patients into MRD+ groups.

Conclusion: The model seems to be pretty stable for a cutoff between 0.5 and 0.75 and gets messy afterwards, so a change in cutoff is not advisable.

5 Estimating error and variation of Random forest

To estimate error and variation of the model, I devide our dataset at random 1:10 (ask Chris about this) into a a training set and a test set. I then train a model on the training set and check it's performance on the test set. This process is repeated 100 times.

5.1 Repeated random sub-sampling

The next figure shows how the different errors vary when choosing random subsets for training the model

5.2 ROC comparison of different models

Conclusion:

- (1) The log regression model does better than the vhmutation model as it is more specific (still not very good though, it is supposed to hug the top right corner more).
- (2) The random forest is still doing some really funny things, probably because it is highly overfitted to our data Apparently, calculating a ROC for random forests without deviding into train and test set is highly overoptimistic...