

Electrical Circuits for Engineers (EC1000)

Lecture - 4(a)
Source Transformation
(Chapter 4)

Overview

- Source Transformation
- Thevenin's Theorem
- Norton's Theorem
- Maximum Power Transfer Theorem
- Superposition Theorem

1. Source Transformation (Chapter-4.4)

Source Transformation

A **source transformation** is the process of replacing a voltage source V_s in series with a resistor R by a current source i_s in parallel with a resistor R, or vice versa.

1. Use source transformation to find V_o

Contd.,

$$i = \frac{2}{2+8}(2) = 0.4 \text{ A}$$

$$v_o = 8i = 8(0.4) = 3.2 \text{ V}$$

2. Referring to below figure, use source transformation to determine the current and power absorbed by the 8 Ohm resistor.

Solution

Contd.,

3//6 = 2-ohm. Convert the current sources to voltages sources as shown below.

Applying KVL to the loop gives

$$p = VI = I^2 R = 8 W$$

3. For the circuit in shown below, use source transformation to find *i*.

Solution

We now transform only the voltage source to obtain the circuit in Fig. (b).

$$10||10 = 5 \Omega$$
, $i=[5/(5+4)](2-1)=5/9=555.5$ mA

(b)

Problems

1. Use source transformation to reduce the circuit in Figure to a single voltage source in series with a single resistor.

2. Apply source transformation to find V_0 and i_0 in the circuit of below Figure.

Ans: 666.7 mA, 8 V

Problems

3. Use source transformation to find v_x the voltage in the circuit of Figure.

4. Use source transformation to find v_0 in the circuit of Figure.

Liectric Ckts for Engineers