1. 设置环境

进入到项目所在目录 conda create -n sfm python==3.7.6 conda activate sfm pip install -r requirements.txt

2. 运行脚本

2.1 对 temple 数据集进行预处理

python preprocess.py --dataset temple

2.2 对 mini-temple 数据集进行预处理

python preprocess.py --dataset mini-temple

```
(sfm) PS D:\Anoconda3\envs\opencv_gradio\project\homework-04-lab03-sfm-ba-li338> python preprocess.py --dataset mini-temple
INFO: detecting image keypoints...

| 11/11 [00:01<00:00, 8.04it/s]
INFO: creating pairwise matches between images...

| 55/55 [00:01<00:00, 37.67it/s]
INFO: creating ransac matches...

| 100%|
| 55/55 [00:01<00:00, 40.72it/s]
INFO: creating scene graph...
```

2.3 执行不包含捆绑调整的结构从运动中恢复

python sfm.py --dataset temple

```
(sfm) PS D:\Anoconda3\envs\opencv_gradio\project\homework-04-lab03-sfm-ba-li338> python sfm.py --dataset te
mple
100%| 45/45 [00:03<00:00, 11.32it/s]</pre>
```

2.4 在 mini-temple 数据集上执行包含捆绑调整的结构从运动中恢复

python sfm.py --dataset mini-temple -ba

100%					9/9 [00:00<00:00, 14.97it/s]
Iteration	Total nfev	Cost	Cost reduction	Step norm	Optimality
0	1	6.0598e+02			1.32e+05
1	12	5.3862e+02	6.74e+01	5.44e-04	2.14e+04
2	14	5.3358e+02	5.04e+00	2.72e-04	1.97e+04
3	15	5.3346e+02	1.20e-01	2.72e-04	4.66e+04
4	16	5.3033e+02	3.13e+00	6.80e-05	1.45e+04
5	17	5.2904e+02	1.29e+00	1.36e-04	1.57e+04
6	18	5.2856e+02	4.80e-01	1.36e-04	2.25e+04
7	19	5.2765e+02	9.07e-01	3.40e-05	1.08e+04
8	20	5.2694e+02	7.14e-01	6.80e-05	7.09e+03
9	21	5.2645e+02	4.88e-01	6.80e-05	1.73e+04
10	22	5.2604e+02	4.08e-01	6.80e-05	2.82e+04
11	23	5.2556e+02	4.78e-01	6.80e-05	2.94e+04
12	24	5.2504e+02	5.26e-01	6.80e-05	2.95e+04
13	25	5.2456e+02	4.82e-01	6.80e-05	3.02e+04
14	26	5.2403e+02	5.26e-01	6.80e-05	2.99e+04
15	27	5.2355e+02	4.76e-01	6.80e-05	3.04e+04
16	28	5.2304e+02	5.18e-01	6.80e-05	3.00e+04
17	29	5.2257e+02	4.68e-01	6.80e-05	3.05e+04
18	30	5.2206e+02	5.10e-01	6.80e-05	3.01e+04
The maximum number of function evaluations is exceeded.					
Function evalua	ations 30, ini	tial cost 6.0598	Be+02, final cost	5.2206e+02,	first-order optimality 3.01e+04.

2.5 在 mini-temple 数据集上执行不包含捆绑调整的结构从运动中恢复 python sfm.py --dataset mini-temple

```
(sfm) PS D:\Anoconda3\envs\opencv_gradio\project\homework-04-lab03-sfm-ba-li338> python sfm.py --dataset mi ni-temple
100%| 9/9 [00:00<00:00, 9.46it/s]
```

- 3. 可视化
- 3.1 从重建中可视化 3D 点云

python visualize.py --dataset mini-temple

3.2 temple 数据集上的重建 3D 点云

python visualize.py --dataset temple

