Week 40: Mean-field theories, stability of Hartree-Fock equations and the homogeneous electron gas

Morten Hjorth-Jensen^{1,2}

Department of Physics and Center for Computing in Science Education,
University of Oslo, Norway¹

Department of Physics and Astronomy and Facility for Rare Isotope Beams, Michigan State University, USA²

Week 40, September 30-October 4

© 1999-2024, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license

Week 40, September 30-October 4, 2024

- 1. Topics to be covered
 - 1.1 Thursday:
 - 1.1.1 Efficient ways of implementing the Hartree-Fock algorithm,
 - 1.1.2 Thouless' theorem and stability of Hartree-Fock equations
 - 1.1.3 Video of lecture
 - 1.1.4 Whiteboard
 - notes":"https://github.com/ManyBodyPhysics/FYS4480/blob/maste
 - 1.2 Friday:
 - 1.2.1 Stability of Hartree-Fock equations and Thouless' theorem
 - 1.2.2 The homogeneous electron gas in three dimensions
- Lecture Material: These slides and Szabo and Ostlund, sections 3.1-3.4
- Seventh exercise set at https://github.com/ManyBodyPhysics/FYS4480/blob/ master/doc/Exercises/2024/ExercisesWeek40.pdf

Another possibility is to expand the single-particle functions in a known basis and vary the coefficients, that is, the new single-particle wave function is written as a linear expansion in terms of a fixed chosen orthogonal basis (for example the well-known harmonic oscillator functions or the hydrogen-like functions etc). We define our new Hartree-Fock single-particle basis by performing a unitary transformation on our previous basis (labelled with greek indices) as

$$\psi_{\rho}^{HF} = \sum_{\lambda} C_{\rho\lambda} \phi_{\lambda}. \tag{1}$$

In this case we vary the coefficients $C_{p\lambda}$. If the basis has infinitely many solutions, we need to truncate the above sum. We assume that the basis ϕ_{λ} is orthogonal.

It is normal to choose a single-particle basis defined as the eigenfunctions of parts of the full Hamiltonian. The typical situation consists of the solutions of the one-body part of the Hamiltonian, that is we have

$$\hat{h}_0\phi_\lambda=\epsilon_\lambda\phi_\lambda.$$

The single-particle wave functions $\phi_{\lambda}(\mathbf{r})$, defined by the quantum numbers λ and \mathbf{r} are defined as the overlap

$$\phi_{\lambda}(\mathbf{r}) = \langle \mathbf{r} | \lambda \rangle.$$

In deriving the Hartree-Fock equations, we will expand the single-particle functions in a known basis and vary the coefficients, that is, the new single-particle wave function is written as a linear expansion in terms of a fixed chosen orthogonal basis (for example the well-known harmonic oscillator functions or the hydrogen-like functions etc).

We stated that a unitary transformation keeps the orthogonality. To see this consider first a basis of vectors v_i ,

$$v_i = \begin{bmatrix} v_{i1} \\ \dots \\ v_{in} \end{bmatrix}$$

We assume that the basis is orthogonal, that is

$$\mathbf{v}_{i}^{T}\mathbf{v}_{i}=\delta_{ij}.$$

An orthogonal or unitary transformation

$$w_i = Uv_i$$

preserves the dot product and orthogonality since

$$\mathbf{w}_i^T \mathbf{w}_i = (\mathbf{U} \mathbf{v}_j)^T \mathbf{U} \mathbf{v}_i = \mathbf{v}_i^T \mathbf{U}^T \mathbf{U} \mathbf{v}_i = \mathbf{v}_i^T \mathbf{v}_i = \delta_{ij}.$$

This means that if the coefficients $C_{p\lambda}$ belong to a unitary or orthogonal trasformation (using the Dirac bra-ket notation)

$$|p\rangle = \sum_{\lambda} C_{p\lambda} |\lambda\rangle,$$

orthogonality is preserved, that is $\langle \alpha | \beta \rangle = \delta_{\alpha\beta}$ and $\langle p | q \rangle = \delta_{pq}$. This propertry is extremely useful when we build up a basis of many-body Stater determinant based states.

Note also that although a basis $|\alpha\rangle$ contains an infinity of states, for practical calculations we have always to make some truncations.

Before we develop the Hartree-Fock equations, there is another very useful property of determinants that we will use both in connection with Hartree-Fock calculations. This applies also to our previous discussion on full configuration interaction theory. Consider the following determinant

$$\begin{vmatrix} \alpha_1 b_{11} + \alpha_2 s b_{12} & a_{12} \\ \alpha_1 b_{21} + \alpha_2 b_{22} & a_{22} \end{vmatrix} = \alpha_1 \begin{vmatrix} b_{11} & a_{12} \\ b_{21} & a_{22} \end{vmatrix} + \alpha_2 \begin{vmatrix} b_{12} & a_{12} \\ b_{22} & a_{22} \end{vmatrix}$$

We can generalize this to an $n \times n$ matrix and have

$$\begin{vmatrix} a_{11} & a_{12} & \dots & \sum_{k=1}^{n} c_k b_{1k} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & \sum_{k=1}^{n} c_k b_{2k} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & \sum_{k=1}^{n} c_k b_{nk} & \dots & a_{nn} \end{vmatrix} = \sum_{k=1}^{n} c_k \begin{vmatrix} a_{11} & a_{12} & \dots & b_{1k} \\ a_{21} & a_{22} & \dots & b_{2k} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & \sum_{k=1}^{n} c_k b_{nk} & \dots & a_{nn} \end{vmatrix}$$

This is a property we will use in our Hartree-Fock discussions.

We can generalize the previous results, now with all elements a_{ij} being given as functions of linear combinations of various coefficients c and elements b_{ij} ,

$$\begin{vmatrix} \sum_{k=1}^{n} b_{1k} c_{k1} & \sum_{k=1}^{n} b_{1k} c_{k2} & \dots & \sum_{k=1}^{n} b_{1k} c_{kj} & \dots & \sum_{k=1}^{n} b_{1k} c_{kn} \\ \sum_{k=1}^{n} b_{2k} c_{k1} & \sum_{k=1}^{n} b_{2k} c_{k2} & \dots & \sum_{k=1}^{n} b_{2k} c_{kj} & \dots & \sum_{k=1}^{n} b_{2k} c_{kn} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \sum_{k=1}^{n} b_{nk} c_{k1} & \sum_{k=1}^{n} b_{nk} c_{k2} & \dots & \sum_{k=1}^{n} b_{nk} c_{kj} & \dots & \sum_{k=1}^{n} b_{nk} c_{kn} \end{vmatrix} = 0$$

where det(C) and det(B) are the determinants of $n \times n$ matrices with elements c_{ij} and b_{ij} respectively. This is a property we will use in our Hartree-Fock discussions. Convince yourself about the correctness of the above expression by setting n=2.

With our definition of the new basis in terms of an orthogonal basis we have

$$\psi_p(x) = \sum_{\lambda} C_{p\lambda} \phi_{\lambda}(x).$$

If the coefficients $C_{p\lambda}$ belong to an orthogonal or unitary matrix, the new basis is also orthogonal. Our Slater determinant in the new basis $\psi_p(x)$ is written as

$$\frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_{\rho}(x_1) & \psi_{\rho}(x_2) & \dots & \psi_{\rho}(x_N) \\ \psi_{q}(x_1) & \psi_{q}(x_2) & \dots & \psi_{q}(x_N) \\ \dots & \dots & \dots & \dots \\ \psi_{t}(x_1) & \psi_{t}(x_2) & \dots & \dots & \psi_{t}(x_N) \end{vmatrix} = \frac{1}{\sqrt{N!}} \begin{vmatrix} \sum_{\lambda} C_{\rho\lambda}\phi_{\lambda}(x_1) & \sum_{\lambda} C_{q\lambda}\phi_{\lambda}(x_1) & \sum_{\lambda} C_{q\lambda}\phi_{\lambda}(x_1) & \sum_{\lambda} C_{t\lambda}\phi_{\lambda}(x_1) & \sum_{\lambda} C_{t\lambda}\phi_{$$

which is nothing but $det(C)det(\Phi)$, with $det(\Phi)$ being the determinant given by the basis functions $\phi_{\lambda}(x)$.

In our discussions hereafter we will use our definitions of single-particle states above and below the Fermi (F) level given by the labels $ijkl\cdots \leq F$ for so-called single-hole states and $abcd\cdots > F$ for so-called particle states. For general single-particle states we employ the labels $pqrs\ldots$. We have

$$E[\Phi] = \sum_{\mu=1}^{N} \langle \mu | h | \mu \rangle + \frac{1}{2} \sum_{\mu=1}^{N} \sum_{\nu=1}^{N} \langle \mu \nu | \hat{v} | \mu \nu \rangle_{AS},$$

we found the expression for the energy functional in terms of the basis function $\phi_{\lambda}(\mathbf{r})$. We then varied the above energy functional with respect to the basis functions $|\mu\rangle$.

Now we are interested in defining a new basis defined in terms of a chosen basis as defined in Eq. (1). We can then rewrite the energy functional as

$$E[\Phi^{HF}] = \sum_{i=1}^{N} \langle i|h|i\rangle + \frac{1}{2} \sum_{ij=1}^{N} \langle ij|\hat{v}|ij\rangle_{AS}, \qquad (2)$$

where Φ^{HF} is the new Slater determinant defined by the new basis of Eq. (1).

Using Eq. (1) we can rewrite Eq. (2) as

$$E[\Psi] = \sum_{i=1}^{N} \sum_{\alpha\beta} C_{i\alpha}^* C_{i\beta} \langle \alpha | h | \beta \rangle + \frac{1}{2} \sum_{ij=1}^{N} \sum_{\alpha\beta\gamma\delta} C_{i\alpha}^* C_{j\beta}^* C_{i\gamma} C_{j\delta} \langle \alpha\beta | \hat{v} | \gamma\delta \rangle_{AS}.$$
(3)

We wish now to minimize the above functional. We introduce again a set of Lagrange multipliers, noting that since $\langle i|j\rangle=\delta_{i,j}$ and $\langle \alpha|\beta\rangle=\delta_{\alpha,\beta}$, the coefficients $C_{i\gamma}$ obey the relation

$$\langle i|j\rangle = \delta_{i,j} = \sum_{\alpha\beta} C_{i\alpha}^* C_{i\beta} \langle \alpha|\beta\rangle = \sum_{\alpha} C_{i\alpha}^* C_{i\alpha},$$

which allows us to define a functional to be minimized that reads

$$F[\Phi^{HF}] = E[\Phi^{HF}] - \sum_{i=1}^{N} \epsilon_i \sum_{\alpha} C_{i\alpha}^* C_{i\alpha}.$$
 (4)

Minimizing with respect to $C_{i\alpha}^*$, remembering that the equations for $C_{i\alpha}^*$ and $C_{i\alpha}$ can be written as two independent equations, we obtain

$$\frac{d}{dC_{i\alpha}^*}\left[E[\Phi^{HF}]-\sum_j\epsilon_j\sum_\alpha C_{j\alpha}^*C_{j\alpha}\right]=0,$$

which yields for every single-particle state i and index α (recalling that the coefficients $C_{i\alpha}$ are matrix elements of a unitary (or orthogonal for a real symmetric matrix) matrix) the following Hartree-Fock equations

$$\sum_{\beta} C_{i\beta} \langle \alpha | h | \beta \rangle + \sum_{j=1}^{N} \sum_{\beta \gamma \delta} C_{j\delta}^* C_{j\delta} C_{i\gamma} \langle \alpha \beta | \hat{\mathbf{v}} | \gamma \delta \rangle_{AS} = \epsilon_i^{HF} C_{i\alpha}.$$

We can rewrite this equation as (changing dummy variables)

$$\sum_{\beta} \left\{ \langle \alpha | h | \beta \rangle + \sum_{j}^{N} \sum_{\gamma \delta} C_{j\gamma}^* C_{j\delta} \langle \alpha \gamma | \hat{v} | \beta \delta \rangle_{AS} \right\} C_{i\beta} = \epsilon_i^{HF} C_{i\alpha}.$$

Note that the sums over greek indices run over the number of basis set functions (in principle an infinite number).

$$\mathbf{\textit{h}}_{\alpha\beta}^{\textit{HF}} = \langle \alpha | \mathbf{\textit{h}} | \beta \rangle + \sum_{j=1}^{N} \sum_{\gamma\delta} \textit{C}_{j\gamma}^* \textit{C}_{j\delta} \langle \alpha \gamma | \hat{\mathbf{\textit{v}}} | \beta \delta \rangle_{\textit{AS}},$$

we can rewrite the new equations as

$$\sum_{\beta} h_{\alpha\beta}^{HF} C_{i\beta} = \epsilon_i^{HF} C_{i\alpha}. \tag{5}$$

The latter is nothing but a standard eigenvalue problem. We see that we do not need to compute any integrals in an iterative procedure for solving the equations. It suffices to tabulate the matrix elements $\langle\alpha|h|\beta\rangle$ and $\langle\alpha\gamma|\hat{v}|\beta\delta\rangle_{AS}$ once and for all. Successive iterations require thus only a look-up in tables over one-body and two-body matrix elements. These details will be discussed below when we solve the Hartree-Fock equations numerical.

Hartree-Fock algorithm

Our Hartree-Fock matrix is thus

$$\hat{h}_{\alpha\beta}^{HF} = \langle \alpha | \hat{h}_0 | \beta \rangle + \sum_{j=1}^{N} \sum_{\gamma\delta} C_{j\gamma}^* C_{j\delta} \langle \alpha \gamma | \hat{v} | \beta \delta \rangle_{AS}.$$

The Hartree-Fock equations are solved in an iterative waym starting with a guess for the coefficients $C_{j\gamma}=\delta_{j,\gamma}$ and solving the equations by diagonalization till the new single-particle energies $\epsilon_{j}^{\rm HF}$ do not change anymore by a prefixed quantity.

Normally we assume that the single-particle basis $|\beta\rangle$ forms an eigenbasis for the operator \hat{h}_0 , meaning that the Hartree-Fock matrix becomes

$$\hat{h}_{lphaeta}^{ extit{HF}} = \epsilon_{lpha}\delta_{lpha,eta} + \sum_{j=1}^{ extit{N}}\sum_{\gamma\delta}C_{j\gamma}^{*}C_{j\delta}\langlelpha\gamma|\hat{v}|eta\delta
angle_{ extit{AS}}.$$

The Hartree-Fock eigenvalue problem

$$\sum_{eta} \hat{h}_{lphaeta}^{HF} C_{ieta} = \epsilon_i^{ ext{HF}} C_{ilpha},$$

can be written out in a more compact form as

$$\hat{h}^{HF}\hat{C} = \epsilon^{HF}\hat{C}.$$

The Hartree-Fock equations are, in their simplest form, solved in an iterative way, starting with a guess for the coefficients $C_{i\alpha}$. We label the coefficients as $C_{i\alpha}^{(n)}$, where the subscript n stands for iteration n. To set up the algorithm we can proceed as follows:

- We start with a guess $C_{i\alpha}^{(0)} = \delta_{i,\alpha}$. Alternatively, we could have used random starting values as long as the vectors are normalized. Another possibility is to give states below the Fermi level a larger weight.
- ► The Hartree-Fock matrix simplifies then to (assuming that the coefficients $C_{i\alpha}$ are real)

$$\hat{h}^{HF}_{lphaeta} = \epsilon_{lpha}\delta_{lpha,eta} + \sum_{i=1}^{N}\sum_{\gamma\delta}C^{(0)}_{j\gamma}C^{(0)}_{j\delta}\langlelpha\gamma|\hat{v}|eta\delta
angle_{AS}.$$

Solving the Hartree-Fock eigenvalue problem yields then new eigenvectors $C_{i\alpha}^{(1)}$ and eigenvalues $\epsilon_i^{HF(1)}$.

► With the new eigenvalues we can set up a new Hartree-Fock potential

$$\sum_{j=1}^{N} \sum_{\gamma \delta} C_{j\gamma}^{(1)} C_{j\delta}^{(1)} \langle \alpha \gamma | \hat{\mathbf{v}} | \beta \delta \rangle_{AS}.$$

The diagonalization with the new Hartree-Fock potential yields new eigenvectors and eigenvalues. This process is continued till for example

$$\frac{\sum_{p} |\epsilon_{i}^{(n)} - \epsilon_{i}^{(n-1)}|}{m} \leq \lambda,$$

where λ is a user prefixed quantity ($\lambda \sim 10^{-8}$ or smaller) and p runs over all calculated single-particle energies and m is the number of single-particle states.

Using the density matrix

The equations are often rewritten in terms of a so-called density matrix, which is defined as

$$\rho_{\gamma\delta} = \sum_{i=1}^{N} \langle \gamma | i \rangle \langle i | \delta \rangle = \sum_{i=1}^{N} C_{i\gamma} C_{i\delta}^{*}.$$
 (6)

It means that we can rewrite the Hartree-Fock Hamiltonian as

$$\hat{h}_{lphaeta}^{ extit{HF}} = \epsilon_lpha \delta_{lpha,eta} + \sum_{\gamma\delta}
ho_{\gamma\delta} \langle lpha\gamma | V | eta\delta
angle_{ extit{AS}}.$$

It is convenient to use the density matrix since we can precalculate in every iteration the product of two eigenvector components C.

```
Code example
  import numpy as np
  class HartreeFock:
    def __init__(self, num_electrons, num_orbitals):
        self.num_electrons = num_electrons
        self.num_orbitals = num_orbitals
        # You would need to replace these by proper integrals
        self.h = np.random.rand(num_orbitals, num_orbitals) # One-ele
        self.coulomb = np.random.rand(num_orbitals, num_orbitals, num_
    def build_fock_matrix(self, density_matrix):
        fock_matrix = self.h.copy()
        for i in range(self.num_orbitals):
            for j in range(self.num_orbitals):
```

```
fock_matrix[i, j] += np.sum(density_matrix * self.coul
    return fock_matrix
def build_density_matrix(self, coefficients):
    density_matrix = np.zeros((self.num_orbitals, self.num_orbital
    for i in range(self.num_electrons):
        density_matrix += np.outer(coefficients[:, i], coefficient
    return density_matrix
def diagonalize(self, fock_matrix):
    energy, coefficients = np.linalg.eigh(fock_matrix)
    return energy, coefficients
def run(self, max_iter=100, tol=1e-6):
    coeffs = np.zeros((self.num_orbitals, self.num_electrons))
    density_matrix = np.zeros((self.num_orbitals, self.num_orbital
    for iteration in range(max_iter):
        fock_matrix = self.build_fock_matrix(density_matrix)
        energies, coeffs = self.diagonalize(fock_matrix)
```

Hartree-Fock in second quantization and stability of HF solution

We wish now to derive the Hartree-Fock equations using our second-quantized formalism and study the stability of the equations. Our ansatz for the ground state of the system is approximated as (this is our representation of a Slater determinant in second quantization)

$$|\Phi_0\rangle = |c\rangle = a_i^{\dagger} a_i^{\dagger} \dots a_I^{\dagger} |0\rangle.$$

We wish to determine \hat{u}^{HF} so that $E_0^{HF}=\langle c|\hat{H}|c\rangle$ becomes a local minimum.

In our analysis here we will need Thouless' theorem, which states that an arbitrary Slater determinant $|c'\rangle$ which is not orthogonal to

a determinant $|c
angle = \prod_i a_{lpha_i}^\dagger |0
angle$, can be written as

$$|c'
angle = exp\left\{\sum_{a>F}\sum_{i\leq F}C_{ai}a_a^{\dagger}a_i
ight\}|c
angle$$

Let us give a simple proof of Thouless' theorem. The theorem states that we can make a linear combination av particle-hole excitations with respect to a given reference state $|c\rangle$. With this linear combination, we can make a new Slater determinant $|c'\rangle$ which is not orthogonal to $|c\rangle$, that is

$$\langle c|c'\rangle\neq 0.$$

To show this we need some intermediate steps. The exponential product of two operators $\exp \hat{A} \times \exp \hat{B}$ is equal to $\exp (\hat{A} + \hat{B})$ only if the two operators commute, that is

$$[\hat{A},\hat{B}]=0.$$

If the operators do not commute, we need to resort to the Baker-Campbell-Hauersdorf. This relation states that

$$\exp \hat{C} = \exp \hat{A} \exp \hat{B},$$

with

$$\hat{C} = \hat{A} + \hat{B} + \frac{1}{2}[\hat{A}, \hat{B}] + \frac{1}{12}[[\hat{A}, \hat{B}], \hat{B}] - \frac{1}{12}[[\hat{A}, \hat{B}], \hat{A}] + \dots$$

From these relations, we note that in our expression for $|c'\rangle$ we have commutators of the type

$$[a_a^{\dagger}a_i, a_b^{\dagger}a_j],$$

and it is easy to convince oneself that these commutators, or higher powers thereof, are all zero. This means that we can write out our new representation of a Slater determinant as

$$|c'
angle = exp\left\{\sum_{a>F}\sum_{i\leq F}C_{ai}a_a^{\dagger}a_i\right\}|c
angle = \prod_i\left\{1+\sum_{a>F}C_{ai}a_a^{\dagger}a_i + \left(\sum_{a>F}C_{ai}a_a^{\dagger}a_i\right)\right\}$$

We note that

$$\prod_{i}\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\sum_{b>F}C_{bi}a_{b}^{\dagger}a_{i}|c\rangle=0,$$

and all higher-order powers of these combinations of creation and annihilation operators disappear due to the fact that $(a_i)^n|c\rangle=0$ when n>1. This allows us to rewrite the expression for $|c'\rangle$ as

$$|c'
angle = \prod_{i} \left\{ 1 + \sum_{a>F} C_{ai} a_a^{\dagger} a_i
ight\} |c
angle,$$

which we can rewrite as

$$|c'
angle = \prod_i \left\{ 1 + \sum_{a>r} C_{ai} a^\dagger_a a_i
ight\} |a^\dagger_{i_1} a^\dagger_{i_2} \dots a^\dagger_{i_n} |0
angle.$$

The last equation can be written as

$$|c'\rangle = \prod_{i} \left\{ 1 + \sum_{a>F} C_{ai} a_{a}^{\dagger} a_{i} \right\} |a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} \dots a_{i_{n}}^{\dagger} |0\rangle = \left(1 + \sum_{a>F} C_{ai_{1}} a_{a}^{\dagger} a_{i_{1}} \right) a_{i_{1}}^{\dagger}$$

$$\times \left(1 + \sum_{a>F} C_{ai_{2}} a_{a}^{\dagger} a_{i_{2}} \right) a_{i_{2}}^{\dagger} \dots |0\rangle = \prod_{i} \left(a_{i}^{\dagger} + \sum_{a>F} C_{ai} a_{a}^{\dagger} \right) |0\rangle.$$
(8)

New operators

If we define a new creation operator

$$b_i^{\dagger} = a_i^{\dagger} + \sum_{a>F} C_{ai} a_a^{\dagger}, \tag{9}$$

we have

$$|c'\rangle = \prod_{i} b_{i}^{\dagger} |0\rangle = \prod_{i} \left(a_{i}^{\dagger} + \sum_{a>F} C_{ai} a_{a}^{\dagger} \right) |0\rangle,$$

meaning that the new representation of the Slater determinant in second quantization, $|c'\rangle$, looks like our previous ones. However, this representation is not general enough since we have a restriction on the sum over single-particle states in Eq. (9). The single-particle states have all to be above the Fermi level.

The question then is whether we can construct a general representation of a Slater determinant with a creation operator

$$\tilde{b}_i^{\dagger} = \sum_{p} f_{ip} a_p^{\dagger},$$

where f_{ip} is a matrix element of a unitary matrix which transforms our creation and annihilation operators a^{\dagger} and a to \tilde{b}^{\dagger} and \tilde{b} . These new operators define a new representation of a Slater determinant as

$$|\tilde{c}\rangle = \prod_{i} \tilde{b}_{i}^{\dagger} |0\rangle.$$

Showing that $|\tilde{c}\rangle = |c'\rangle$ We need to show that $|\tilde{c}\rangle = |c'\rangle$. We need also to assume that the new state is not orthogonal to $|c\rangle$, that is $\langle c|\tilde{c}\rangle \neq 0$. From this it follows that

$$\langle c | \tilde{c} \rangle = \langle 0 | a_{i_n} \dots a_{i_1} \left(\sum_{p=i_1}^{i_n} f_{i_1 p} a_p^\dagger \right) \left(\sum_{q=i_1}^{i_n} f_{i_2 q} a_q^\dagger \right) \dots \left(\sum_{t=i_1}^{i_n} f_{i_n t} a_t^\dagger \right) | 0 \rangle,$$

which is nothing but the determinant $det(f_{ip})$ which we can, using the intermediate normalization condition, normalize to one, that is

$$det(f_{ip}) = 1$$
,

meaning that f has an inverse defined as (since we are dealing with orthogonal, and in our case unitary as well, transformations)

$$\sum_{k} f_{ik} f_{kj}^{-1} = \delta_{ij},$$

and

$$\sum_{i} f_{ij}^{-1} f_{jk} = \delta_{ik}.$$

Using these relations we can then define the linear combination of creation (and annihilation as well) operators as

$$\sum_{i} f_{ki}^{-1} \tilde{b}_{i}^{\dagger} = \sum_{i} f_{ki}^{-1} \sum_{p=i_{1}}^{\infty} f_{ip} a_{p}^{\dagger} = a_{k}^{\dagger} + \sum_{i} \sum_{p=i_{n+1}}^{\infty} f_{ki}^{-1} f_{ip} a_{p}^{\dagger}.$$

Defining

$$c_{kp} = \sum_{i < F} f_{ki}^{-1} f_{ip},$$

we can redefine

$$a_{k}^{\dagger} + \sum_{i} \sum_{p=i_{n+1}}^{\infty} f_{ki}^{-1} f_{ip} a_{p}^{\dagger} = a_{k}^{\dagger} + \sum_{p=i_{n+1}}^{\infty} c_{kp} a_{p}^{\dagger} = b_{k}^{\dagger},$$

our starting point.

We have shown that our general representation of a Slater determinant

$$|\tilde{c}\rangle = \prod_{i} \tilde{b}_{i}^{\dagger} |0\rangle = |c'\rangle = \prod_{i} b_{i}^{\dagger} |0\rangle,$$

with

$$b_k^{\dagger} = a_k^{\dagger} + \sum_{p=i_{n+1}}^{\infty} c_{kp} a_p^{\dagger}.$$

This means that we can actually write an ansatz for the ground state of the system as a linear combination of terms which contain the ansatz itself $|c\rangle$ with an admixture from an infinity of one-particle-one-hole states. The latter has important consequences when we wish to interpret the Hartree-Fock equations and their stability. We can rewrite the new representation as

$$|c'\rangle = |c\rangle + |\delta c\rangle,$$

where $|\delta c\rangle$ can now be interpreted as a small variation. If we approximate this term with contributions from one-particle-one-hole (1p-1h) states only, we arrive at

$$|c'
angle = \left(1 + \sum_{ai} \delta C_{ai} a_a^\dagger a_i \right) |c
angle.$$

In our derivation of the Hartree-Fock equations we have shown that

$$\langle \delta c | \hat{H} | c \rangle = 0,$$

which means that we have to satisfy

$$\langle c|\sum_{ai}\delta C_{ai}\left\{a_a^{\dagger}a_i\right\}\hat{H}|c\rangle=0.$$

With this as a background, we are now ready to study the stability of the Hartree-Fock equations. This is the topic for week 40.

Hartree-Fock in second quantization and stability of HF solution

The variational condition for deriving the Hartree-Fock equations guarantees only that the expectation value $\langle c|\hat{H}|c\rangle$ has an extreme value, not necessarily a minimum. To figure out whether the extreme value we have found is a minimum, we can use second quantization to analyze our results and find a criterion for the above expectation value to a local minimum. We will use Thouless' theorem and show that

$$\frac{\langle c'|\hat{H}|c'\rangle}{\langle c'|c'\rangle} \geq \langle c|\hat{H}|c\rangle = E_0,$$

with

$$|c'\rangle = |c\rangle + |\delta c\rangle.$$

Using Thouless' theorem we can write out $|c'\rangle$ as

$$|c'\rangle = \exp\left\{\sum_{a>F}\sum_{i\leq F}\delta C_{ai}a_a^{\dagger}a_i\right\}|c\rangle$$
 (10)