Wybrane zagadnienia z geodezji wyższej Ćwiczenie nr 3 – sprawozdanie

Wykonanie:

Ćwiczenie zostało wykonane w języku programowania Python 3.10 z wykorzystaniem biblioteki numpy.

Dane wejściowe:

n = 15

	φA=50°15' + nr*15' λA=20°45'	φC=50°15' + nr*15' λC=21°15'
	φB=50°00' + nr*15' λB=20°45'	φD=50°00' + nr*15' λD=21°15'

Wyniki:

Punkt środkowy przy użyciu algorytmu Vincentego i Kivioji:

 $\lambda = 21^{\circ} \text{ 0' } 2.68389'' \ \phi = 53^{\circ} 52.0' \ 30.94191'' \ A_z = 130^{\circ} \ 14' \ 9.341''$

Punkt środkowy z średniej arytmetycznej:

 $\lambda = 21^{\circ} 0' 0'' \phi = 53^{\circ} 52' 30'' A_z = 130^{\circ} 5' 31.42295''$

Odległość pomiędzy środkami: 57.03 m

Pole: 915075126.3929 m²

Zastosowania:

Przydatność wyznaczania odległości na kuli ziemskiej jest powszechna, można w ten sposób na przykład oszacować ile potrzeba materiału do budowy autostrady. Wyznaczanie środka jest przydatne, gdy ważne jest, aby coś znajdowało się po środku 2 obiektów, np. gdy chce się zapewnić, że sygnał dojdzie do dwóch miejsc w tym samym czasie.

Całkowanie numeryczne upraszcza jakiś wykres, którego funkcję możemy nie znać albo może być bardzo skomplikowana, do wielu prostych kształtów, które łatwo można scałkować, robiąc w ten sposób przybliżenie prawdziwej całki