

Tutoring Section 13

Machine Learning: Correlation, Regression

Slides by Kevin Miao

Logistics

- Vibe Check:
 - Our How stressed/relaxed do you feel?
 - 2.5 weeks left of classes! How prepared do you feel for the last stretch of the class/semester?
- Project 3, movie recommendations, has been released!

As always, let me know if you have any questions about anything.

Today

Correlation Coefficient

Regression

• Errors: (R)MSE

Worksheet

Link: https://tinyurl.com/d8tutweek13

Associations

- Association
 - Any type of relationship between two variables
 - Could be linear, non-linear

In this class, we will only focus on linear relationships

Correlation

Correlation

- Goal: How do we quantify a linear relationship?
 - Correlation coefficient, r
 - Strength
 - Direction
- Calculation
 - Mean of the product of x and y in standard units
- Does our correlation coefficient change if ...
 - We swap our axes x, y?
 - We convert our x units from say inches to centimeters?
- What is the range of our correlation coefficient?

Q1.1a

Practice Problems

1.1 The following table, taters, depicts the number of tater tots a person has eaten, along with a number that quantifies their satisfaction, which is a number that goes from 0 to 10.

Tater Tots Consumed	Satisfaction	
1	8	
10	3	
4	7	
3	10	
7	6	
3	8	

a) Complete the function standard_units which takes in an array num array and returns the same array in standard units.

Q1.1bcd

b)Fill in the blanks to define a function correlation that finds the correlation from a table. It takes in three arguments: a table, tbl, and two column indices, x and y.

Hint: Use the standard_units function defined above!

c) Calculate \boldsymbol{r} by using the correlation function.

correlation(_____, _____)

d) Suppose that we calculated a value of r to be equal to -0.879. What can you conclude about the association between the number of tater tots consumed and a person's satisfaction?

Q1.2

1.2 True or False?

a. A high value of *r* shows that a change in *x* causes a change in *y*.

b. If we switch the axes of a plot, the correlation coefficient will not change.

c. Suppose that we calculated a value of *r* to be equal to .83. We should conclude that eating taters is indeed correlated with satisfaction.

Q1.3

1.3 Answer the following questions about the plots below.

- a. Order the scatter plots above in from least correlated to most correlated.
- b. Which plots have a positive correlation coefficient? Negative correlation coefficient?

Regression

- Objective: We want to predict a number based on given parameters.
 - Linear Regression
 - We know that the relationship between our variables and the number we want to predict has a linear shape.
 - Calculating the formula/line that predicts the numbers
 - Calculate the correlation coefficient
 - Mean of the product of x and y in standard units
 - Calculate the slope
 - Slope = r * (SD_Y/SD_X)
 - Calculate the intercept by plugging in the means of x and y

Q2.2

Practice Problems

The water table contains one row per country with data from 2014. The <code>OBS_VALUE</code> column represents the approximate price ranking of a 1.5 liter bottle of mineral water in that country, and the <code>mm_precipitation</code> column represents the average precipitation in that country (in millimeters).

COUNTRY	OBS_VALUE	mm_precipitation
Albania	0.55	1485
Algeria	N 27	ga

00	×01110	amittad)
 OS	rows	omitted)

Expression	Values
np.average(water.column('OBS_VALUE'))	0.919016
np.std(water.column('OBS_VALUE'))	0.464763
np.average(water.column('mm_precipitation'))	1010.4
np.std(water.column('mm_precipitation'))	752.475
correlation(water, 'OBS_VALUE', 'mm_precipitation')	0.262079

Q2.3

Practice Problems

The water table contains one row per country with data from 2014. The <code>OBS_VALUE</code> column represents the approximate price ranking of a 1.5 liter bottle of mineral water in that country, and the <code>mm_precipitation</code> column represents the average precipitation in that country (in millimeters).

COUNTRY	OBS_VALUE	mm_precipitation
Albania	0.55	1485
ΔΙαργία	N 27	ga

... (89 rows omitted)

Expression	Values
np.average(water.column('OBS_VALUE'))	0.919016
np.std(water.column('OBS_VALUE'))	0.464763
np.average(water.column('mm_precipitation'))	1010.4
np.std(water.column('mm_precipitation'))	752.475
correlation(water, 'OBS_VALUE', 'mm_precipitation')	0.262079

2.3 Using the regression line equation above, what would we expect the OBS_VALUE to be in 2014 for a country that had an average of 700 mm of precipitation?

Errors

- Context: In Data 8, we provide you a lot of statistical knowledge, but in traditional Machine Learning Engineering side, we will approach ML problems through this perspective.
- **Set-up:** You have a problem, you want to predict something, define a model (Linear Regression), define an error (RMSE/MSE) and minimize it. This gives you a model (line) with the lowest error possible given your data points.
- Here:
 - Root Mean Squared Errors (looks like SD)
 - Square root of the average of squared errors
 - $\sqrt{(error_{point 1}^2 + \cdots + error_{point n}^2)/n}$
 - Error = actual y predicted y

RMSE/MSE/Linear Regression Facts

- Statistics perspective vs Computer Science perspective
 - The line calculated with correlation coefficients is the same line that minimizes the error. In other words, the linear regression line is the line that is the best!
- Why do we pick RMSE?
 - It is completely in your right to substitute the RMSE by another loss function such as the absolute loss. It provides different assumptions.
- What does the minimize function do?
 - Imagine it takes the derivate, sets it to 0 and calculates the parameters for which the maximum is attained.
- What happens if we run minimize on MSE instead of RMSE?
 - MSE does not change the shape of the graph and will not affect the outputted line.

You don't have to know what's in grey.

Examples

Q3.1-3.2

Practice Problems

3.1 Write a function that returns the RMSE of an array of observed values if the predicted values are given by an array. The two arrays have the same length.

```
def RMSE(observed, predicted):
residual = _____
squared_residuals = _____
squared_resid_avg = _____
return _____
```

3.2 In the calculation of root mean squared error, why is it important for us to square the residual before taking the sum?