传热学第四章大作业

——二维稳态导热问题的数值解法

说明:

- 1) 两个题目。
- 2) 独立完成。
- 3) 交作业时间: 12月15日前。
- 4) 对作业的要求:见模板。编程语言不限。
- 5) 随机抽查答辩。答辩时间和地点再通知。
- 6) 请务必重视,期末占成绩。

第一题

如图所示,一个无限长矩形柱体,其横截面的边长分别为 L_1 和 L_2 ,常物性。该问题可视为二维稳态导热问题,边界条件如图中所示,其中 L_1 =0.6m, L_2 =0.4m, T_{w1} =60°C, T_{w2} =20°C, λ =200 W/(m·K)。

- 1)编写程序求解二维导热方程。
- 2) 绘制 $x=L_1/2$ 和 $y=L_2/2$ 处的温度场,并与解析解进行比较。已知矩形内的温度场的解析

解为:
$$t(x,y) = t_{w1} + t_{w2} \sin(\pi x/L_1) \frac{\sinh(\pi y/L_1)}{\sinh(\pi L_2/L_1)}$$

第二题

将第一题中y = L,处的边界条件变为 $t = t_w$,,其他条件不变。

- 1) 编写程序求解二维导热方程并计算从y=0处导入的热量 Φ_2 。
- 2) 当 $L_2 \ll L_1$ 时,该二维导热问题可简化为一维导热问题。在一维的近似下,试计算从 y=0 处导入的热量 Φ_1 ,并比较不同 L_2/L_1 下 Φ_2/Φ_1 的比值。由该问题的解析解可知:

L_2/L_1	0.007	0.01	0.05	0.08	0.1
Φ_2/Φ_1	0.9987	0.9912	0.956	0.93	0.912