Automata Jonny Hughes 1-21-20

Homework 1

1) L_1 and L_2 are 2 languagues, and $L_1^* U L_2^* \subseteq (L_1 U L_2)^*$?

If I start with the understanding that $L_1 \subseteq (L_1 \cup L_2)$.

Assuming this we can then come to the realization that $L_1^* \subseteq (L_1 \cup L_2)^*$.

Likewise we can also assume that $L_2 \subseteq (L_1 \cup L_2)$.

With this second assumption it becomes clear also that $L_2^* \subseteq (L_1 \cup L_2)^*$.

Since both L_1^* and L_2^* are subsets of $(L_1 \cup L_2)^*$, it follows to reason that the union of them $L_1^* \cup L_2^*$ is also a subset of $(L_1 \cup L_2)^*$.

Hence: $L_1^* \cup L_2^* \subseteq (L_1 \cup L_2)^*$

2)

Let's say that there is a language L_1 which contains only $\{\text{``x''}\}$ and another language L_2 which contains only $\{\text{``y''}\}$. Thus L_1 is simply the set of all possible lengths of the string "xxxxx..." and the same holds true for L_2 with the string "yyyy...". So with L_1 U L_2 we would have the Language $\{\text{``x''}, \text{``y''}\}$, so $(L_1$ U L_2) would contain both L_1 and L_2 , but it also would containt strings with both x and y which could not be made before, such as "xyxyx".

3) {0, 10, 1010, 01010,10010,10100...} So S would have to be the Language {0, 10}