《机械原理四套试卷》

第一套

一、填空题: (30分)
· · · · · · · ·
1. 机构中的速度瞬心是两构件上() 为零的重合点,它用于平面机构
() 分析。
2. 下列机构中, 若给定各杆长度, 以最长杆为连架杆时, 第一组为
() 机构;第二组为() 机构。
b _0
a / c
δδ
d
(1) $a = 250$ $b = 200$ $c = 80$ $d = 100$;
(2) $a = 90$ $b = 200$ $c = 210$ $d = 100$ \circ
3. 机构和零件不同,构件是(),而零件是()。
4. 凸轮的基圆半径越小,则机构尺寸()但过于小的基圆半径会导致压力角()。
5. 用齿条型刀具范成法切制渐开线齿轮时,为使标准齿轮不发生根切,应使刀具的
6. 当要求凸轮机构从动件的运动没有冲击时,应选用()规律。
7. 间歇凸轮机构是将() 转化为(的运动。
8. 刚性转子的平衡中,当转子的质量分布不在一个平面内时,应采用
()方法平衡。其平衡条件为($\Sigma M = 0$; $\Sigma F = 0$)。
1. 9. 机械的等效动力学模型的建立,其等效原则是:等效构件所具有的动能应
()。等效力、等效力矩所作的功或瞬时功率应
().
10. 平面机构结构分析中,基本杆组的结构公式是()。而动态静力分析
中,静定条件是()。
一、 选择题: (20分)
1. 渐开线齿轮齿条啮合时,若齿条相对齿轮作远离圆心的平移,其啮合角()。
A)增大; B)不变; C)减少。
2. 为保证一对渐开线齿轮可靠地连续传动,应便实际啮合线长度()基圆齿距。
A) 等于; B) 小于; C) 大于。
3. 高副低代中的虚拟构件的自由度为()。
A) -1 ; B) $+1$; C) 0;
4. 压力角是在不考虑摩擦情况下,作用力与作用点的()方向的夹角。
A) 法线; B) 速度; C) 加速度; D) 切线;
5. 理论廓线相同而实际廓线不同的两个对心直动滚子从动件盘形凸轮,其推杆的运动规
a. 程比解线相间间头阶廓线不同的两个对心直动极了然动性盆形口花,共作们的运动观律是()。
77.5
A)相同的; B)不相同的; C)不一定的。
6. 飞轮调速是因为它能(①)能量,装飞轮后以后,机器的速度波动可以(②)。

- ① A)生产; B)消耗; C)储存和放出。
- ② A)消除:
- B) 减小:
- C)增大。
- 7. 作平面运动的三个构件有被此相关的三个瞬心。这三个瞬心()。

 - A) 是重合的: B) 不在同一条直线上: C) 在一条直线上的。
- 8. 渐开线标准齿轮在标准安装情况下,两齿轮分度圆的相对位置应该是()。
 - A) 相交的:
- B) 分离的; C) 相切的。
- 9. 齿轮根切的现象发生在()的场合。
- A) 模数较大; B)模数较小; C)齿数较多; D)齿数较少
- 10. 重合度 $\boldsymbol{\varepsilon}_{\alpha} = 1.6$ 表示一对轮齿啮合的时间在齿轮转过一个基圆齿距的时间内占 ().
- A) 40%:
- B) 60%; C) 25%
- 三. 计算下列机构自由度。 (10分)

四、 图示轮系中,已知 $Z_1=1$ (右旋), $Z_2=60$, $Z_3=40$, $Z_4=20$, $Z_5 = 18$, 齿轮 3、4、5、6 的模数和压力角分别相等。求 Z_6 齿数和传动比 i_{11} 。 (10 分)

七、设计一曲柄摇杆机构,已知摇杆一极限位置与机架夹角为 $\psi = 60^{\circ}$,行程速比系数 K = 1.4,摇杆 CD = 40 mm,机架 AD = 50 mm。图解出曲柄 AB 及连杆 BC 的长度。并作出所设计机构的最小传动角。 (10 分)

参考答案

- 一、填空题: (30分)
- 1. 机构中的速度瞬心是两构件上(<u>相对速度</u>)为零的重合点,它用于平面机构(速度)分析。
- 2. 下列机构中, 若给定各杆长度, 以最长杆为连架杆时, 第一组为
 - (双摇杆机构) 机构:第二组为(曲柄摇杆机构)机构。

- (1) a = 250 b = 200 c = 80 d = 100;
- (2) a = 90 b = 200 c = 210 d = 100 .
- 3. 机构和零件不同,构件是(运动的单元),而零件是(制造的单元)。
- 4. 凸轮的基圆半径越小,则机构尺寸(<mark>越大</mark>) 但过于小的基圆半径会导致压力角(<mark>增</mark>大)。
- 6. 当要求凸轮机构从动件的运动没有冲击时,应选用(摆线运动)规律。
- 7. 间歇凸轮机构是将(**主动轮的连续转动**)转化为(**从动转盘的间歇**)的运动。
- 8. 刚性转子的平衡中,当转子的质量分布不在一个平面内时,应采用 (动平衡) 方法平衡。其平衡条件为($\sum M = 0$; $\sum F = 0$)。
 - 2. 9. 机械的等效动力学模型的建立, 其等效原则是: 等效构件所具有的动能应(等于整个系统的总动能)。等效力、等效力矩所作的功或瞬时功率应(等于整个系统的所有力, 所有力矩所作的功或所产生的功率之和)。
- 10. 平面机构结构分析中,基本杆组的结构公式是($3n = 2P_L$)。而动态静力分析中,静定条件是($3n = 2P_L$)。
- 二、 选择题: (20分)
- 1. 渐开线齿轮齿条啮合时,若齿条相对齿轮作远离圆心的平移,其啮合角(**B**)。 A) 增大: **B)** 不变: C) 减少。
- 2. 为保证一对渐开线齿轮可靠地连续传动,应便实际啮合线长度(C)基圆齿距。 A)等于; B)小于; C)大于。
- 3. 高副低代中的虚拟构件的自由度为(A)。
 - **A)** -1; B) +1; C) 0;
- 4. 压力角是在不考虑摩擦情况下,作用力与作用点的(B)方向的夹角。
 - A) 法线; B) 速度; C) 加速度; D) 切线;
- 5. 理论廓线相同而实际廓线不同的两个对心直动滚子从动件盘形凸轮,其推杆的运动规律是(A)。
 - A) 相同的; B) 不相同的; C) 不一定的。
- 6. 飞轮调速是因为它能(C ①)能量,装飞轮后以后,机器的速度波动可以(B ②)。
 - ① A) 生产; B) 消耗; C) 储存和放出。

- ② A) 消除; B) 减小;
- C) 增大。
- 7. 作平面运动的三个构件有被此相关的三个瞬心。这三个瞬心(C)。
- 8. 渐开线标准齿轮在标准安装情况下,两齿轮分度圆的相对位置应该是(C)。 A) 相交的: B) 分离的: **C) 相切的。**

- 9. 齿轮根切的现象发生在(**D**) 的场合。

- B) 模数较大; B) 模数较小; C) 齿数较多; D) 齿数较少
- 10. 重合度 $\boldsymbol{\varepsilon}_{\alpha} = 1.6$ 表示一对轮齿啮合的时间在齿轮转过一个基圆齿距的时间内占 (**A**).
 - A) 40%:
- B) 60%;
- C) 25%
- 三. 计算下列机构自由度。 (10分)

 $F = 3 \times 5 - 2 \times 6 - 1 = 2$ $F = 3 \times 8 - 2 \times 11 - 1 = 1$

四、 图示轮系中,已知 $Z_1=1$ (右旋), $Z_2=60$, $Z_3=40$, $Z_4=20$, $Z_5=18$,齿轮 3、4、5、6 的模数和压力角分别相等。求 Z_6 齿数和传动比 i_{11} 。 (10 分)

解:区分轮系 3-4-5-6-H 为行星轮系,1-2 为定轴轮系。 由同心条件: $Z_6 = Z_3 - Z_4 + Z_5 = 40 - 20 + 18 = 38$

$$i_{3H} = 1 - i_{36}^{H} = 1 - \frac{Z_4 Z_6}{Z_3 Z_5} = 1 - \frac{20 \times 38}{40 \times 18} = -\frac{1}{18}$$

$$i_{12} = \frac{Z_2}{Z_1} = \frac{60}{1} = 60$$

$$\therefore n_3 = n_2 \qquad \therefore i_{1H} = i_{12} \cdot i_{3H} = 60 \times \frac{1}{18} = \frac{10}{3}$$

五. 作图求出图示凸轮机构滚子中心 $B_{\scriptscriptstyle 1}$ 到 $B_{\scriptscriptstyle 2}$ 时凸轮转角 φ , $B_{\scriptscriptstyle 2}$ 点时的压力角 α 和基圆半 径 $R_{\scriptscriptstyle 0}$

解:作图步骤: (每一步骤 2 分)

- 1)以A为圆心,ABi为半径,作出凸轮的理论轮廓圆。
- 2)以0为圆心作与导路线相切的偏距圆,切点为C1。
- 3)过 B_2 点作偏距圆的切线,切点为 C_2 。 $0C_1$ 与 $0C_2$ 的夹角即为所求的凸轮转角 ϕ 。
- 4) 作法线 AB_2 与切线 C_2B_2 的夹角即为所求位置的凸轮压力角 α 。
- 5)以0为圆心作与凸轮的理论轮廓圆相切的圆,即为所求的基圆,半径为 R_{\circ} 。

六.设一对渐开线正常齿制标准直齿轮啮合, $Z_1 = 33$, $Z_2 = 67$, m = 3。 若在安装时,将中心距比标准中心距增大 1.5 mm,求此时啮合角及重合度。 (10 分)

解:标准中心距
$$a = r_1 + r_2 = \frac{1}{2}(Z_1 + Z_2)m = \frac{1}{2}(33 + 67) \times 3 = 150$$

实际安装中心距 a' = a + 1.5 = 151.5 $\therefore a \cos \alpha = a' c \cos \alpha'$

$$\alpha' = \cos^{-1}\left(\frac{a}{a'}\cos\alpha\right) = \cos^{-1}\left(\frac{150}{151.5}\cos 20^{\circ}\right) = 21.5^{\circ}$$

$$r_{b1} = \frac{mZ_1}{2}\cos\alpha = 46.515$$
 $r_{b2} = \frac{mZ_2}{2}\cos\alpha = 94.439$

$$r_{a1} = r_1 + h_a^{\bullet} m = 49.5 + 3 = 52.5$$

$$r_{a2} = r_2 + h_a^{\bullet} m = 100.5 + 3 = 103.5$$

$$\alpha'_{a1} = \cos^{-1}\left(\frac{r_{b1}}{r_{a1}}\right) = 27.625^{\circ}$$
 $\alpha'_{a2} = \cos^{-1}\left(\frac{r_{b2}}{r_{a2}}\right) = 24.153^{\circ}$

$$\varepsilon_{\alpha} = \frac{1}{2\pi} \left[Z_1 \left(\tan \alpha_{a_1} - \tan \alpha' \right) + Z_2 \left(\tan \alpha_{a_2} - \tan \alpha' \right) \right]$$

$$= \frac{1}{2\pi} \left[33 \left(\tan 27.625^\circ - \tan 21.5^\circ \right) + 67 \left(\tan 24.153 - \tan 21.5^\circ \right) \right] = 1.261$$

七、设计一曲柄摇杆机构,已知摇杆一极限位置与机架夹角为 $\psi = 60^{\circ}$,行程速比系数 K = 1.4,摇杆 CD = 40 mm,机架 AD = 50 mm。图解出曲柄 AB 及连杆 BC 的长度。并作出所设计机构的最小传动角。 (10 分)

解: 求出极位夹角
$$\theta = 180^{\circ} \times \frac{K-1}{K+1} = 180^{\circ} \times \frac{1.4-1}{1.4+1} = 30^{\circ}$$

第二套

班级: 学号:	姓名:	评分
一、 填空题: (30分)		
1. 在曲柄摇杆机构中()与(总位置时可能出现最小传动角。
2. 连杆机构的急回特性用(70。其轴承对轴颈的摩擦力矩的方向与
3. 我幼副摩豫中,总及刀的TF用 ()方向()。	应与()相以	力。共抽承机抽项的摩擦力起的力问与
	· · · · · · · · · · · · · · · · · · ·	度圆()分度圆的大小取决于(),
节圆的大小取决于)。		
5. 渐开线齿轮传动须满足三个条	件为()。	
6. 槽轮机构是将() 转换为()运动。
7. 行星轮系中各轮	と 齿 数 的 碌	角定需要满足的条件为
)。
8 . 机 械 产 生	速 度	
9. 机概住稳定运转时期,在一个次 能的增量()。	医列伯环周期的	始末,驱动功和阻抗功的大小(),动
	·程的効素応(ま	(大學)反行程的效率应()。
二. 选择题: (20分)	1年时从平丛()	(1令)及[[柱的从中四(
	构中,若凸轮实	际廓线保持不变,而增大或减小滚子半
径,从动件运动规律会()。	, , , , , , , , , , , , , , , , , , , ,	
A) 改变; B) 不变		
2. 齿轮渐开线在()上的压力;		
	分度圆; D)	齿顶圆。
3. 速度瞬心是() 为零的重合		
A)相对速度; B)绝对速度4. 要将一个曲柄摇杆机构转化成		可收()
4. 安科一个曲枘摇杆机构转化成。 A)原机构的曲柄作机架;		
C)原机构的摇杆作机架。	D / /水小山勾山)是	[1]
	具加工时,刀具	向轮坯中心靠近,是采用()。
A) 正变位; B) 负变位;		
6. 在建立等效动力模型时,等效	力(或等效力矩))来代替作用在系统中的所有外力,它
是按()原则确定的。		
A)作功相等 B)对		
7. 为减小机器运转中非周期性速		
A) 飞轮; B) 变速装	置; (C)	调速器 。
8. 高副低代的方法是()		
A) 加上一个含有两低副的虚:	拟构件:	
B) 加上一个含有一个低副的		
C) 减去一个构件和两个低副		
9. 在机构力分析中,具有惯性力	,又有惯性力矩	的构件是()
A)作平面移动的构件; B) 绕通过质心的	定轴转动构件;

- C) 作平面复合运动的构件。
- 10. 图示的四个铰链机构中,图()是双曲柄机构。

三. 计算下列机构的自由度。 (10分)

四. 计算图示轮系的传动比 i_{1H} , 并确定输出杆 H 的转向. 已知各轮齿数 Z_1 = 1(右旋), Z_2 = 40, Z_2 = 20, Z_3 = 22, Z_3 = 20, Z_4 = 100。 (10 分)

五.	作出图示凸轮机	构转过 90°时的	压力角,及从	人动件位移量 S	
				动,已知齿数分别 , 重合度变化多少	为 25 和 69,模数为
0 IIII	11。 风水压彻底又	农世县汉平心此乡	自 <i>入</i> 、2 mm rj ;	至日及文化タク	

七. 用图解法设计一摇杆滑块机构,已知摇杆 AB 的两位置线 AE_1 和 AE_2 ,以及滑块 C 的两个对应位置 C_1 和 C_2 ,试确定摇杆上铰链 B 的位置,并要求摇杆的长度 AB 为最短。(直接在图上作图)

参考答案

- 一、填空题: (30分)
- 1. 在曲柄摇杆机构中 (曲柄) 与 (机架) 两次共线位置时可能出现最小传动 角。
- 2. 连杆机构的急回特性用 (**行程速比系数 K**) 表达。
- 3. 转动副摩擦中,总反力的作用应与(摩擦圆)相切。其轴承对轴颈的摩擦力矩的 方向与(相对角速度ω)方向(相反)。
- 4. 一对渐开线标准直齿轮非标准安装时,节圆和分度圆(不重合)分度圆的大小取 决于(**基圆**),节圆的大小取决于(**啮合角**)。
- 新开线齿轮传动须满足三个条件为(正确啮合条件、连续传动条件、无侧隙啮合 条件)。
- 6. 槽轮机构是将(**主动销的连续转动**)转换为(**槽轮的单向间歇**)运动。
- 7. 行星轮系中各轮齿数的确定需要满足的条件为(**传动比条件、同心条件、装配条件和** 邻接条件)。
- 8. 机械产生速度波动的原因是 (**等效驱动力矩不等于等效阻力矩,使机械的动能发** 生变化引起的)。
- 机械在稳定运转时期,在一个运动循环周期的始末,驱动功和阻抗功的大小(相等), 动能的增量(等于零)。
- 10. 在具有自锁性的机械中,正行程的效率应(大于零)反行程的效率应(小于零)。 一. 选择题: (20分)
- 1. 在移动滚子从动件盘型凸轮机构中, 若凸轮实际廓线保持不变, 而增大或减小滚子半 径,从动件运动规律会(B)。
 - A) 改变; B) 不变
- 2. 齿轮渐开线在(B)上的压力角,曲率半径最小。
 - A) 根圆: B) 基圆: C) 分度圆: D) 齿顶圆。
- 3. 速度瞬心是(A)为零的重合点。
 - A) 相对速度: B) 绝对速度: C) 加速度。
- 4. 要将一个曲柄摇杆机构转化成为双摇杆机构,可将(C)。)。
 - A) 原机构的曲柄作机架; B) 原机构的连杆作机架;
 - C) 原机构的摇杆作机架。
 - 5. 渐开线齿轮采用齿条型刀具加工时,刀具向轮坯中心靠近,是采用(B)。)。 A) 正变位: B) 负变位: C) 零变位。
- 6. 在建立等效动力模型时,等效力(或等效力矩)来代替作用在系统中的所有外力,它 是按(A)原则确定的。
 - A) 作功相等 B) 动能相等
- 7. 为减小机器运转中非周期性速度波动的程度,应在机械系统中安装(C)
- A) 飞轮; B) 变速装置; C) 调速器。
- 8. 高副低代的方法是(A)
 - A) 加上一个含有两低副的虚拟构件:
 - B) 加上一个含有一个低副的构件:
 - C)减去一个构件和两个低副。
- 9. 在机构力分析中,具有惯性力,又有惯性力矩的构件是(C)
 - A) 作平面移动的构件; B) 绕通过质心的定轴转动构件;
 - C) 作平面复合运动的构件。

10. 图示的四个铰链机构中,图(A)是双曲柄机构。

三. 计算下列机构的自由度。 (10分)

$$F = 3 \times 6 - 2 \times 8 - 1 = 1$$
 $F = 3 \times 3 - 2 \times 3 - 2 = 1$

解: 区分轮系 2-3-3 '-4-H 为行星轮系 1-2 为定轴轮系

$$\mathbf{i}_{12} = \frac{\mathbf{Z}_2}{\mathbf{Z}_1} = \frac{40}{1} = 40$$

$$\mathbf{i}_{2'H} = 1 - \mathbf{i}_{2'4}^H = 1 - \left(-\frac{\mathbf{Z}_3 \mathbf{Z}_4}{\mathbf{Z}_{2'} \mathbf{Z}_{3'}}\right) = 1 + \frac{22 \times 100}{20 \times 20} = \frac{13}{2}$$

$$\mathbf{i}_{1H} = \mathbf{i}_{12} \cdot \mathbf{i}_{2'H} = 40 \times \frac{13}{2} = 260$$

五. 作出图示凸轮机构转过90°时的压力角,及从动件位移量S

解: 1) 过0点作理论廓线圆和过A点作偏距圆。

- 2) 作偏距圆垂线交理论廓线圆于B点。
- 3) 过B点和0点作法线与偏距圆垂线的夹角 即为所求压力角。
- 4)以A为圆心,AB₀为半径作圆弧,交偏距圆垂线于C点,BC即为所求位移S。

六.一对正常齿制的渐开线直齿圆柱齿轮外啮合传动,已知齿数分别为 25 和 69,模数为 3 mm。试求在标准安装位置及中心距增大 2 mm 时,重合度变化多少?

$$\mathbf{\mathscr{H}}: \alpha_{a1} = \cos^{-1} \frac{\mathbf{r}_{b1}}{\mathbf{r}_{a1}} = \cos^{-1} \frac{\frac{1}{2} m \mathbf{Z}_{1} \cos \alpha}{\frac{1}{2} (\mathbf{Z}_{1} + 2) m} = \cos^{-1} \frac{25 \cos 20^{\circ}}{25 + 2} = 29^{\circ} 33'$$

$$\alpha_{a2} = \cos^{-1} \frac{\mathbf{r}_{b2}}{\mathbf{r}_{a2}} = \cos^{-1} \frac{\frac{1}{2} m \mathbf{Z}_{2} \cos \alpha}{\frac{1}{2} (\mathbf{Z}_{2} + 2) m} = \cos^{-1} \frac{69 \cos 20^{\circ}}{69 + 2} = 24^{\circ} 3'$$

标 准 安 装
$$\varepsilon_{\alpha} = \frac{1}{2\pi} \left[Z_1 \left(\tan \alpha_{a1} - \tan \alpha \right) + Z_2 \left(\tan \alpha_{a2} - \tan \alpha \right) \right] = 1.7$$
 增大中心距 2mm 后: $a' = \frac{m}{2} \left(Z_1 + Z_2 \right) + 2 = 141 + 2 = 143$

$$\alpha' = \cos^{-1}(\frac{a\cos\alpha}{a'}) = 22.096^{\circ}$$

$$\varepsilon'_{\alpha} = \frac{1}{2\pi} \left[Z_1 \left(\tan \alpha_{\alpha 1} - \tan 22 \circ 6' \right) + Z_2 \left(\tan \alpha_{\alpha 2} - \tan 22 \circ 6' \right) \right] = 1.06$$

增大中心距 2mm 后,重合度减小 $\Delta \varepsilon = \varepsilon_{\alpha} - \varepsilon_{\alpha}' = 1.7 - 1.06 = 0.63$

七. 用图解法设计一摇杆滑块机构,已知摇杆 AB 的两位置线 AE_1 和 AE_2 ,以及滑块 C 的两个对应位置 C_1 和 C_2 ,试确定摇杆上铰链 B 的位置,并要求摇杆的长度 AB 为最短。(直接在图上作图)

F₂ 解: 1)以A为圆心,任意长为半径作圆弧得AE₁、AE₂。

- 2) 连接C1E1、C2E2
- 3) "刚化" C₂E₂A, 反转E₂A与E₁A重合, 得E₂'点。
- 4) 作E₁E₂'垂直平分线m-m。
- 5) m-m线至A点的垂直距离ABi即为最短长度ABiEi 为所求摇杆,ABiCi即为所求机构。

第三套

<u>机械制造及自动化专业</u> <u>机械原理</u>课程期末试卷 (答案)

专业	k	班级	姓名	学	2号		
一、是	是非题(用"Υ"	表示正确,"	'N"表示错误填	在题末的括	号中)。		
(本大	题共 10 小题,	每小题 1 分,	总计 10 分)				
1	. 机器中独立边	运动的单元体,	称为零件。			())
2	. 当机构的自由	B度 $F>0$,且等	等于原动件数,	则该机构具	有确定的相对	寸运动	۰ ا
						()
3	. 在摆动导杆机	[构中,若取]	曲柄为原动件时	, 机构的最	小传动角 γ 📠	_n =90°	;
而取与	异杆为原动件时	,则机构的最	小传动角 γ min=0	O° .		()
4	. 任何机构当出	3现死点时,	都是不利的,因	此应设法避	免。	()	
5	. 凸轮机构中从	、动件作等加速	主 等减速运动时	将产生柔性	冲击。它适用	于中i	束
场合。						`)
6	. 在蜗杆传动口	中,蜗杆与蜗:	轮的旋向相同,	且它们的螺	旋角相等。	()
			满足给定的中心			。()
			好将飞轮安装在		• • • •	()
9	. 机器等效动	力学模型中的	等效力(矩)是一	一个假想力(矩),它的大	小等	于
-	器所有作用外力					())
1	0. 经过动平衡标	交正的刚性转子	,任一回转面内仍	可能存在偏心	心质量。	()
二、填	真空题(将正确的	り答案填在题	中横线上方空格	处)。			

(本大题共5小题,每小题2分,总计10分)

- 1. 三角螺纹的摩擦_____矩形螺纹的摩擦,因此,前者多用于____。
- 2. 试将下页左图 a)、b)所示直动平底从动件盘形凸轮机构的压力角数值填入括号内。

	3.	在题 3.	图两对蜗机	干传动中	」,a)图	国蜗轮的车	专向为:	。b) 图蜗杆的
螺旋	方向	可为: _	o					
	4.	机器中	安装飞轮的	的目的是		和		o
	5.	刚性转	子静平衡的	的力学翁	条件是:		,	而动平衡的力学条件
是:								0
三、	选扌	承题(将	正确的代码	A B	C、D填	入横线上	方的空	格处)。
(本)	し	共5小	题,每小题	[2分,	总计 10	分)		
	1.	根据机	械效率η,	判别机构	戒自锁的]条件是_		o
		(A) η	,		(B) $0 < \eta$			
		(C) η	$0 \le 0$;		(D) ^η 为	∞ .		
	2.	为使机	构具有急回	回运动,	要求行	程速比系	数	o
		(A) K	≔1 ;	(B) <i>K</i> >1;		(C)	<i>K</i> <1 ∘
	3.	用同一	凸轮驱动石	下同类型	!(尖顶、	滚子或写	平底式;	直动或摆动式)的从动
件时	,名	外 从动作		聿	0			
		(A)相	同;	(B) 不同;		(C) 2	在无偏距时相同。
	4.	增加斜	齿轮传动的	的螺旋角	, 将引起	起	°	
		(A) 重	合度减小,	轴向力	增加;	(B)	重合度》	咸小,轴向力减小;
		(C)重	合度增加,	轴向力	减小;	(D)	重合度均	曾加,轴向力增加。
	5.	机器运	转出现周期	月性速度	波动的	原因是		_•
		(A) 机	L器中存在 征	主复运动]构件,	惯性力难	以平衡;	
		(B) 机	L器中各回 车	专构件的]质量分	布不均匀	;	
		(C) 在	等效转动性	贯量为常	了数时,	各瞬时驱	动功率	和阻抗功率不相等,但
其平	均值	直相等,	且有公共	哥期;				
		(D) 机	器中各运动	边副的位	置布置	不合理。		
			出计算公式				的有关参	》数)。
(本力			题,每小题 7.二.+0.+5.45				ᄆᇸᄼ	, 鹿和麦奶素 / 松明氏
在之		17 异肾	当不机构的	目田及(右有复行	了钗链、 /	可削目出	接和虚约束,(指明所
,	解:						$\stackrel{F}{\longleftarrow}$	\bigcirc \bigcirc D
							111	E
							3 EG	c
							1	R

2. 在图示的四杆机构中, $l_{AB}=65_{\rm mm}$, $l_{DC}=90_{\rm mm}$, $l_{AD}=l_{BC}=125_{\rm mm}$, $\varphi_1=15^{\circ}$ 。 当构件 1以等角速度 $\omega_1=10_{\rm rad/s}$ 逆时针方向转动时,用瞬心法求 C 点的速度。 $\mu_{I}=0.002{\rm m/mm}$

3. 起重卷扬机机构运动简图如图所示,电机以 $n_1 = 750_{\rm r/min}$,按图示方向转动,各齿轮的齿数为 $z_1 = 40$, $z_2 = z_2$ = 20,试求卷筒的转速和旋转方向。

五、图解题(通过图解求解题目所要求的有关参数)。 (本大题共 3 小题,前两小题各 10 分,第 3 小题 15 分,总计 35 分)

1.图示为偏置曲柄滑块机构 ABC, 偏距为 e。 试在图上标出滑块的压力角 α_C 和传动角 γ_C , 画出最小传动角 γ_{\min} 及极位夹角 θ 。并求出该机构有曲柄的条件。

2. 如图所示,有一对心直动尖顶从动件偏心圆凸轮机构,0为凸轮几何中

心, O_1 为凸轮转动中心,直线 $AC \perp BD$, $O_1O=2$ OA,圆盘半径 R=60 mm。 试根据上述条件确定基圆半径 r_0 、行程 h ,C 点压力角 a_0 和 D 点接触时的位移 h_0 、压力角 a_0 。(要求在图中画出并同时计算出)

3. 一对按标准中心距安装的外啮合渐开线直齿圆柱标准齿轮,主动轮 I 作顺时针转动。已知 $z_1=22$, $z_2=34$, $\alpha=20^\circ$, $h_a^*=1$, $c^*=0.25$; 中心距 $a=140\,\mathrm{mm}$ 。 试求: 两轮的分度圆、齿顶圆、齿根圆和基圆半径; 并按 $\mu_l=0.001\,\mathrm{m/mm}$ 作图, 画出实际啮合线 $\overline{B_2B_1}$, 计算其重合度 ϵ 。

第四套

2010~2011 学年 第三学期 机械制造及自动化专业 机械原理课程期末试卷 (答案)

	专业	<u>-</u>				姓名		学号						
	大	题	_	=	三	四		五		五成		į		
	成	绩												
H JL	H / IT		±	7. 44 NT 99	± - 44 10	1 4 + 1	E -L 2	. L. Jer 1	- - - \			1		
				i, "N"		現	巡 术上	Ŋ哲 ⁻	庁 円)	0				
				. 分,总计		т н в	$=$ Γ 、	0			(\		
				动的条件					田石工タ	ਤੇ ਮੀਮ ਤੋ	(,	١	
				独立运动							-			工业区部
				若取曲柄	內原幼件	口, 介	11. 149 1			7月7	V _{min} -() ; 川年	又守作	T內原切
件时,则			•		2英目 不利	l 6/- 1	耳心	(ਛੇ: ਮਾ-	•	<i>t</i> . :	あ ナ :	古 日 沢 江	L n-∔	to 電 m
				对运动传	*	1日77, 1	凶 吒,		法 題	兄;	川仕	光 只 以 订	「則,	却而安
利用机构				.П. <i>‡</i> Д Ы 甘	回业公址	: 	तत्ता . च . ३	() #人 #田 ·	l/a 6/a 1	压 去。	在 計 :	14 J. 4d	1 1/2 /-	上十岁田
a. i 越好。	コ 共 ヒ	余件/	个发的,	凸轮的基	四干任赵	《人,》	则 [二 :	ቸይ <i>የ</i> ሃし [,] (14) [14] <i>(</i> 1	玉刀)	用机片	巡小, //	山竹竹	夏月双未
•	ᆂᆑ	工 仕 売		干的升角	竺 工 祀 <i>松</i>	. hh h男 ·	诰 舟	(ルロ ★エ /	F: #F	「	地 佐 化	货占	1 40 🖂
()	1工 料7 7	1 12 4)	十, 购 不		守 1 购化		ル 円	,	郑7 个1	一一颗	1 76 0.	」	ルド] 171 111 0
, ,	新丑矣	古	副维告轮	的标准参	粉取在士	· 淀 卜)		
				,在机器				☆后	司 D	上标石	乙抽咯	<i>)</i> 3.任 扣 哭	的油	度波动
()	\J 1 \h	(1) (1)	を 口3 / く 3	, 1工 77 L 有 产	11 16 75 14	工女才	X (11	ъ /µ ,	ŊV	N + X X	1 15 14	-	11.VC	又似幼。
, ,	扣 哭 刍	车游 动一	力学精刑	中的等效	· 质 畳 / 武 t	钻动性	(昌)	是一.	个個;	相 乕・	島 (武	转动槽	昰)	它不是
原机器中		•					, ,	_			, .			_ ,
()	1 6	90 19 11	11次里、	· 女 ヤ 幼 以	生ノンル	, 1111 /4	E 1K 1/	白 49.7 1:	16/11/7	4 HJ //	4V XV 4	4 km/m vi	开下	1 ПП П10
, ,	不论[加性同	转休上者	了多少个 不	「平衡 质 旨	計. 也	不论	它们	加何	分布	. 貝:	悪 要 在 作	千音 岩	
平面内,								()	VI 13	/ J 1 4	, , ,	m > E	L 10. ~	= / = /
二、填空								\ /						
(本大题:						14 /0/	·							
	-			只能应用			的名	子点,	而不	能应	用于	机构的		的
各点。		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•			,,,,,	,,,,	V - 1 • 11 • _		
	机械口	中三角 [。]	带(即Vi	带)传动出	2.平型带有	专动用	得更	为广	泛,	从摩 扌	察角月	度来看,	其主	三要原因
是:												o		
3. 桂	E四杆	机构中	AB = 40	0, BC = 40	0, CD = 6	0, AD	= 60	, AD	为机	架,该	亥机核]是:		o
				动件盘形										
从动件作														的复合
运动。														

5. 渐开线直齿圆柱齿轮齿廓上任一点的曲率半径等于_____

渐开线齿廓在基圆上的曲率半径等于_____;渐开线齿条齿廓上任一点的曲率半径等于

三、选择题(将正确的代码 A、B、C、D 填入横线上方的空格处)。

(本大题共5小题,每小题2分,总计10分)

- 1. 三角螺纹的摩擦_____矩形螺纹的摩擦,因此,前者多用于____。
- (A) 小于; (B) 等于; (C) 大于; (D) 传动; (E) 紧固联接。

- 2. 凸轮机构中从动件作等加速等减速运动时将产生 冲击。它适用于 场合。
- (A) 刚性: (B) 柔性: (C) 无刚性也无柔性: (D) 低速: (E) 中速: (F) 高速。
- 3. 一对渐开线斜齿圆柱齿轮在啮合传动过程中,一对齿廓上的接触线长度是 变化的。
- (A) 由小到大逐渐:
- (C)由大到小逐渐;
- (C)由小到大再到小逐渐;
- (D) 始终保持定值。
- 4. 设机器的等效转动惯量为常数,其等效驱动力矩和等效阻抗力矩的变化如图示,可判断 该机器的运转情况应是____。
 - (A)匀速稳定运转;
 - (B)变速稳定运转;
 - (C)加速过程;
 - (D)减速过程。
 - 5. 机械平衡研究的内容是____
 - (A) 驱动力与阻力间的平衡 (B) 各构件作用力间的平衡

 - (C) 惯性力系间的平衡 (D) 输入功率与输出功率间的平衡
- 四、计算题(列出计算公式,计算出题目所要求解的有关参数)。

(本大题共 3 小题,每小题 10 分,总计 30 分)

1. 计算图示机构的自由度。如有复合铰链、局部自由度 和虚约束, 需明确指出。并指出该机构是否具有确定的 相对运动。

- 2. 已知图示机构的尺寸(可从图中量取尺寸, μ_1 =0. 001m/mm)及原件 1 的角速度 ω_1 =48. 78rad/s。
 - (1)标出所有瞬心位置;
 - (2) 用瞬心法计算构件 2 的角速度 ω_2 ,并确定出其方向。
 - (3) 构件 $2 \perp M$ 点的速度 V_{M} ,并确定出其方向。

3. 图示为里程表中的齿轮传动,已知各轮的齿数为 $z_1 = 17$, $z_2 = 68$, $z_3 = 23$, $z_4 = 19$, $z_{4'} = 20$, $z_5 = 24$ 。试求传动比 i_{15} 。

五、图解题(通过图解求解题目所要求的有关参数)。

(本大题共 3 小题, 前一小题 10 分, 后两小题各 15 分, 总计 40 分)

- 1. 如图示曲柄滑块机构的运动简图,试确定当曲柄 1等速转动时,
- (1) 机构的行程速度变化系数 K ;
- (2)最小传动角 γ_{\min} 的大小;
- (3) 滑块 3 往复运动时向左的平均速度大还是向右的平均速度大
- (4) 当滑块 3 为主动时, 机构是否出现死点, 为什么? (在图中用作图法求解)

2. 如图所示,有一对心直动滚子从动件偏心圆凸轮机构,O为凸轮几何中心,O为凸轮转动中心,直线 ACLBD , $O_1O = OA/2$,圆盘半径 R = 60mm,滚子半径 $r_r = 10$ mm。试根据上述条件确定基圆半径 r_0 、行程 h ,C点压力角 a_0 和 D点接触时的位移 h_0 、压力角 a_0 。(要求在图中画出并同时计算出)

- 3. 直齿圆柱齿轮与齿条无侧隙啮合如图所示,已知 $m=10\,\mathrm{mm}$, $\alpha=20^\circ$, $h_a^{'}=1$, $c^*=0.25$ 。
- (1) 由图量取分度圆半径, 求齿轮齿数;
- (2) 计算基圆半径、基圆齿距 p_b ;
- (3)作图求实际啮合线段长,并用以求重合度;
- (4)作图表示齿条和齿轮的实际工作段;
- (5)由图量取齿条分度线与节线的距离,求齿轮的变位系数,并回答是正变位还是负变位;
- (6)说明齿轮有无根切。

