# Safe-Eye

HAI927I - Projet IMAGE

FLORENTIN DENIS KHÉLIAN LARVET



## Plan

L'obscurcissement des images

La sécurité visuelle des images

3 Avancement actuel

Tâches prévues

### Introduction

Objectif: Mesurer la sécurité visuelle d'une image obscurcie



### Introduction

Technologies utilisées



### L'obscurcissement des images

Plusieurs techniques possibles appartenant à diverses catégories :

La Déformation

Le Remplacement

La Suppression

Compromis "intimité-utilité"



### La sécurité visuelle des images

Double mesure de sécurité :

Reconnaissance par un CNN

Reconnaissance par un être humain

Plusieurs types contenus sensibles:

Biométriques

non Biométriques

### La sécurité visuelle des images

#### Mesures de distance :

#### **PSNR** (Peak Signal to Noise Ratio):

Si inférieur à 25dB, l'information est dégradée.

#### SSIM (Structural Similarity Index Measure):

Si proche de 0, l'information est dégradée.

#### HaarPSI (Haar Wavelet-based Perceptual Similarity Index):

Si proche de 0, l'information est dégradée.

### Avancement: Filtrages

Floutage Pixélisation Masquage Bruitage

### Avancement: Interface utilisateur



**Tkinter** 

Pillow ImageTK

Selection par drag and drop

Application et gestion de filtre

### Avancement: Classification



Questionnements sur les choix des paramètres pour avoir des classifications efficaces.

### Tâches prévues

Perfectionner notre interface avec plus de paramètres

Entraîner notre modèle sur plusieurs datasets

Ajouter davantage de filtres

Mettre en place des évaluations par des observateurs humains

Créer un GAN permettant d'attaquer nos images obscurcies

### Merci de votre attention!

#### References

[1] - Hanaa Abbas, Roberto Di Pietro (2022): Sanitization of Visual Multimedia Content: A Survey of Techniques, Attacks, and Future Directions.

