

Welcome to:

Logical approach to Al and knowledge based systems

Unit objectives

After completing this unit, you should be able to:

- Understand the importance of knowledge representation
- Understand the use of formal logic as a knowledge representation language
- Gain knowledge on the concept of Tautologies and Logical Implication
- Learn about the resolution in normal forms
- Gain an insight into the concept of derivations using resolutions and resolution algorithm
- Learn about the Semantic Nets
- Understand frame data structure

Introduction to knowledge representation systems

IBM ICE (Innovation Centre for Education)

- To solve the complex problems encountered in Artificial Intelligence, large amount of knowledge and mechanisms for manipulating that knowledge are required.
- There are many ways of knowledge representation
- Properties of Knowledge Representation Systems
 - Representational adequacy
 - Inferential adequacy
 - Inferential efficiency
 - Acquisitional efficiency

- Formal Logic is the primary vehicle for representing & reasoning about knowledge.
- Formal logic is
 - Precise and Definite
 - Declarative
- Logic consists of two parts, a language and a method of reasoning.
- Language has syntax and semantics
- Logical systems with different syntax and semantics
 - Propositional logic
 - First order predicate logic
 - Temporal logic
 - Modal
 - Higher order logic
 - Non-monotonic

Propositional logic

- A proposition is a sentence that has a truth value.
- Propositional logics are the atomic formulas.
- Propositional logic studies the relationship two statements defined by a set of propositional symbols
- Propositional logics are of two forms: atomic propositions and compound propositions.

Atomic proposition

- Compound proposition is defined by values of elementary propositions and the meaning of connectives.
- The knowledge base is the set of all sentences where each sentence in Propositional Logic

Semantics of propositional logic

Semantics

- Semantics specifies the value true or false for each proposition symbol.
- An interpretation for a sentence or group of sentences is an assignment of vale true to every propositional symbol.
- For example, consider the statement (A ∧ ¬ B). Interpretation 1 assigns true to A and false to B.
 Interpretation 2 assign false to A and false to B. Hence, there are four distinct interpretations.
- Semantics for the Logical connectives:

Negation ¬					
A ¬A					
Т	F				
F	Т				

Conjunction ∧							
Α	В	$A \wedge B$					
Т	T	Т					
Т	F	F					
F	Т	F					
F	F	F					

Disjunction V							
Α	В	$A \lor B$					
Т	Т	Т					
Т	F	Т					
F	Т	Т					
F	F	F					

Implication →						
Α	$A \rightarrow B$					
Т	Т	T				
Т	F	F				
F	Т	T				
F	F	Т				

Biconditional ↔						
A	В	$A \leftrightarrow B$				
Т	Т	Т				
Т	F	F				
F	Т	F				
F	F	T				

Properties of propositional logic statements

IBM ICE (Innovation Centre for Education)

- Satisfiable
- Valid or Tautology
- Contradiction
- Contingent
- Equivalence

Tautologies and logical implication

IBM ICE (Innovation Centre for Education)

- A formula that is always T, independent of the interpretation of the propositions, is a tautology.
- Logical Implication: A formula M logically implies N if M → N is a tautology.
- Theorem:
 - An argument is valid if and only if the conjunction logically implies the conclusion.
- Logical Arguments
 - Logical arguments is known as a valid argument formed by the series of statements

Resolution

- Uniform
- Fewer Rules
- Heuristic Guide
- Algorithmic

Conjunctive normal form

IBM

- A literal is a variable or a negated variable.
- A clause is either a single literal or the disjunction of two or more literals.
 - P, $P \lor \neg P$, and $P \lor \neg Q \lor R \lor S$ are clauses. - $\neg (R \lor S)$ and $P \to \neg Q$ are not clauses.
- A wff is in conjunctive normal form iff it is either a single clause or the conjunction of two or more clauses.
 - $(P \lor \neg Q \lor R \lor S) \land (\neg P \lor \neg R)$ is in cnf $- (P \land \neg Q \land R \land S) \lor (\neg P \land \neg R)$ is not in cnf

Resolution is valid

P	A	В	$(P \vee A)$	٨	(¬P	∨ B)	\Rightarrow	$A \lor B$
T	T	T	T	T	F	T	T	Т
T	T	\mathbf{F}	T	F	F	F	T	Т
T	F	T	T	T	F	T	T	Т
T	F	\mathbf{F}	T	F	F	F	T	F
F	T	T	T	T	T	T	T	Т
\mathbf{F}	T	\mathbf{F}	T	T	T	T	T	Т
\mathbf{F}	\mathbf{F}	T	${f F}$	\mathbf{F}	T	T	T	Т
\mathbf{F}	F	\mathbf{F}	${f F}$	F	T	T	T	F

Resolution algorithm

- Resolution works by using the principle of proof by contradiction.
- Negate the conclusion so as to find the conclusion.
- Apply the resolution rule to the resulting clauses.
- Each clause contains complementary literals.
- They are resolved and produce 2 new clause and they are be added to the set of facts if they are not already exist.
- This process continues until any one of the following occur:
 - No more new clauses that can be added
 - An application of the resolution rule derives the empty clause
- An empty clause shows that the negation of the conclusion is a complete contradiction, hence the negation of the conclusion is invalid or false or the assertion is completely valid or true.

Knowledgebase systems

- A knowledgebase system is a program that uses AI to solve problems within a specialized domain that ordinarily requires human expertise.
- Typical tasks of expert systems include classification, diagnosis, monitoring, design, scheduling and planning for specialized tasks.
- Knowledgebase is a more general than expert system

Structure of a knowledge based system

Recap of artificial intelligence

Components of expert systems

Expert systems development

Wumpus world

- Performance measure
 - gold +1000,
 - death -1000 (falling into a pit or being eaten by the wumpus)
 - -1 per step, -10 for using the arrow
- Environment
 - Squares adjacent to wumpus are smelly
 - Squares adjacent to pit are breezy
 - Glitter iff gold is in the same square
 - Shooting kills wumpus if you are facing it
 - Shooting uses up the only arrow
 - Grabbing picks up gold if in same square
 - Releasing drops the gold in same square
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

4

3

2

Logic

- Knowledge bases consist of sentences in a formal language
- Syntax: Sentences are well formed
- Semantics
- The "meaning" of the sentence.
 - The truth of each sentence with respect to each possible world (model)

A simple knowledgebase

	7

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	α_1
false	true							
false	false	false	false	false	false	true	false	true
:	8	8	:		3	i i	:	1
false	true	false	false	false	false	false	false	true
false	true	false	false	false	false	true	\underline{true}	<u>true</u>
false	true	false	false	false	true	false	\underline{true}	\underline{true}
false	true	false	false	false	true	true	\underline{true}	\underline{true}
false	true	false	false	true	false	false	false	true
:		7	•					i
true	false	false						

Exploring the Wumpus world

IBM ICE (Innovation Centre for Education)

1,4	2,4	3,4	4,4	1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3	1,3	2,3	3,3	4,3
				1,2	2,2	3,2	4,2
1,2	2,2	3,2	4,2				
				OK	P?		
OK				4.4	0.4	2.4	4 4
4.4	2.1	2.1	1 1	1,1	2,1	3,1	4,1
1,1	2,1	3,1	4,1	V	A	D0	
A	OK			OK	В	P?	
OK	OK				OK		
1,4	2,4	3,4	4,4	1,4	2,4	3,4	4,4
				1,3	2,3	3,3	4,3
1,3	2,3	3,3	4,3	W!	OK		
W!				1,2	2,2	3,2	4,2
1,2	2,2	3,2	4,2	V	Α		
A	014			S	OK	OK	
S	OK			OK			
OK 1,1	2,1	3,1	4,1	1,1	2,1	3,1	4,1
V V	Z, 1 V	J, 1	¬r, ı	V	V		
OK	В	P?		OK	В	P!	
	OK				OK		
					<u> </u>		

Semantic net

- A semantic net is a labeled directed graph, where each node represents an object (a proposition), and each link represents a relationship between two objects.
- Semantic nets represent propositional information.
- Relations between propositions are of primary interest because they provide the basic structure for organizing knowledge.
- Some important relations are:
 - "IS-A" (is an instance of). Refers to a member of a class, where a class is a group of objects with one or more common attributes (properties). For example, "Tom IS-A bird".
 - "A-KIND-OF". Relates one class to another, for example "Birds are A-KIND-OF animals".
 - "HAS-A". Relates attributes to objects, for example "Mary HAS-A cat".
 - "CAUSE". Expresses a causal relationship, for example "Fire CAUSES smoke".

Inference in semantic networks

====

- Find relationships between pairs of words
 - Search graphs outward from each word in a breath-first fashion
 - Search for a common concept or intersection node
 - The path between the two given words passing by this intersection node is the relationship being looked for

Fig. Find the relationship (intersection path) between "cry" and "comfort"

IBM ICE (Innovation Centre for Education)

Semantic networks: Types and components

- Six types of semantic networks are:
 - Definitional network
 - Assertional network
 - Implicational network
 - Executable network
 - Learning network
 - Hybrid network
- Semantic network components
 - Lexical component
 - Structural components
 - Semantic component
 - Procedural part

IBM ICE (Innovation Centre for Education)

Types of relationships in semantic network

Frames

- Devised by Marvin Minsky, 1974.
- Incorporates certain valuable human thinking characteristics:
 - Expectations, assumptions, stereotypes. Exceptions. Fuzzy boundaries between classes.
- The essence of this form of knowledge representation is typicality, with exceptions, rather than definition.
- The idea of frame hierarchies is very similar to the idea of class hierarchies found in objectorientated programming.
- A frame system is a hierarchy of frames
- Each frame has:
 - a name.
 - slots: these are the properties of the entity that has the name, and they have values. A particular value may be:
 - a default value
 - an inherited value from a higher frame
 - a procedure, called a daemon, to find a value
 - a specific value, which might represent an exception.

- The three components of a frame include:
 - frame name; attributes (slots); values (fillers: list of values, range, string, etc.)

Non-monotonic logic

- Monotonic: if KB1|=α, then KB2|=α for any KB1⊆KB2.
- Meaning new facts can only add to early conclusions not contradict them.
- Non-monotonic: New facts can change our conclusions.
- If we know tweety is a bird –we conclude it flies.
- If we find out that tweety is an ostrich we conclude it don't flies.
- A logic is non-monotonic if some conclusions can be invalidated by adding more knowledge.
- The logic of definite clauses with negation as failure is non-monotonic.
- Non-monotonic reasoning is useful for representing defaults.
- A default is a rule that can be used unless it overridden by an exception.
 - For example, to say that b is normally true if c is true, a knowledge base designer can write a rule of the form
 - b ←c \wedge ~ aba.
- Non monotonic systems require more storage space as well as more processing time than monotonic systems.

Circumscription

- Circumscription is a powerful non-monotonic formalism created by John McCarthy(1977,1980), generalized (in1984)
- Independently explored by many researchers
- It is the most fascinating and the most controversial of all the formal approaches to non monotonic reasoning
- Extension: A predicate denoted by an expression U will be called extension of U.
- For example if U=Bird (unary constant predicate) and D=All individuals. Then the extension
 of U is a subset of D (intuitively D=All birds).
- Circumscription allows us to formalize non-monotonic reasoning directly in the language of classic logic.
- It is always the task of the user to specify which predicates to be minimized. Circumscription provides a general method for it.
- Circumscription is based on syntactic manipulations.

Default logic

- Default Logic is a Non-Monotonic Logic proposed by Raymond Reiter to formalize reasoning with default assumptions.
- Standard logic can only express that something is true or that something is false.
- This is a problem because reasoning often involves facts that are true in the majority of cases but not always.
- It mainly aims at formalizing default inference rules without stating all the exceptions.
 - Example: "Birds typically fly" vs "All birds fly"
 - Exceptions Penguins, Ostriches
- Syntax of Default Logic
- A default theory is a pair <D,W>
 - W is a set of logical formulae, called the background theory, that formalize the facts that are known for sure.