§4.1 Extreme Values of Functions on Closed Intervals

Definition. Let f be a function with domain D. Then f has an absolute maximum value on D at a point c if $f(x) \leq f(c)$ for all x in D, and an **absolute minimum** value on D at c if f(x) > f(c) for all x in D. Absolute maxima or minima are also referred to as global maxima or minima.

Example 1. Consider the defining equation $y = x^2$ on various domains:

(a)
$$D = (-\infty, \infty)$$

(b)
$$D = [0, 2]$$
 (c) $D = (0, 2]$

(c)
$$D = (0, 2]$$

(d)
$$D = (0, 2)$$

Instructor: Dr. S. Zheng

Theorem 1 (The Extreme Value Theorem). If f is continuous on a closed interval [a,b], then f attains both an absolute maximum value M and an absolute minimum value m in [a, b]. That is, there are numbers x_1 and x_2 in [a, b] with $f(x_1) = m$, $f(x_2) = M$, and $m \leq f(x) \leq M$ for every other x in [a, b].

Definition. A function f has a local maximum value at a point c within its domain D if $f(x) \leq f(c)$ for all x in D lying in some open interval containing c. A function f has a **local minimum** value at a point c within its domain D if $f(x) \geq f(c)$ for all x in D lying in some open interval containing c. Local extrema are also called **relative extrema**.

FIGURE 1. local extrema for y = f(x) on its domain (courtesy: Math is fun)

Theorem 2 (The First Derivative Theorem for Local Extreme Values). If f has a local maximum or minimum value at an interior point c of its domain, and if f' is defined at c, then f'(c) = 0.

FIGURE 2. local extrema and saddle point for f(x) on an interval (courtesy: Math is fun)

 \mathbf{MML}