STANISLAS Exercices

Endomorphismes euclidiens Chapitre XIV

PSI

2019 - 2020

I. Réduction des matrices symétriques

Indications pour l'exercice 1. La diagonalisabilité est simple à établir. Commencer ensuite par déterminer la dimension puis une base de $Ker(A - I_n)$.

La trace et le déterminant permettent de déterminer les deux valeurs propres restantes avec leurs sous-espaces propres associés.

Indications pour l'exercice 2. La diagonalisabilité est simple à obtenir. Pour obtenir les racines du polynôme caractéristique de M, on pourra calculer $\chi_M(a+2b\cos(\theta))$.

Indications pour l'exercice 3. Justifier que les valeurs propres peuvent être notées $\lambda_1 \leqslant \cdots \leqslant \lambda_n$.

- **1.** Étudier $f(tX_1)$.
- **2.** Étudier f(tY) pour $Y = \sqrt{-\lambda_1}X_n + \sqrt{\lambda_n}X_1$.
- **3.** Si $X = \sum_{i=1}^{n} \mu_i X_i$, faire apparaître $\left(\sum_{i=1}^{n} \lambda_i \mu_i^2 \frac{\lambda}{2}\right)^2$ puis montrer que la valeur maximale est atteinte pour un vecteur colinéaire à X_n .d

Indications pour l'exercice 4.

- 1. Utiliser la symétrie de B puis écrire B = DAD.
- **2.** On pourra utiliser sans démonstration l'inégalité arithmético-géométrique.
- 3. Montrer que $\det(B) \leqslant 1$ en utilisant la question précédente puis conclure. \Box

Indications pour l'exercice 5.

- **1.** Diagonaliser A dans une base orthonormée et montrer en utilisant la matrice C que, si $X \neq 0$, alors ${}^t\!XAX \neq 0$.
- **2.** Montrer que $J(X + X_0) J(X_0) > 0$.

Indications pour l'exercice 6.

- **1.** Calculer f(u) et f(v).
- **2.** Déterminer la restriction de f à P^{\perp} puis la matrice de la restriction de f à P.

II. Endomorphismes orthogonaux

Indications pour l'exercice 7.

- 1. On peut utiliser le déterminant.
- 2. B est symétrique réelle.
- 3. Pour 0, utiliser la non inversibilité.

Pour la positivité des racines, calculer ${}^t\!XBX$ où X est un vecteur propre de A.

- 4. On peut utiliser la non-inversibilité.
- **5.** Remarquer que B est un polynôme en A.
- **6.** On pourra utiliser que $Sp(A) = Sp(^tA)$.

Indications pour l'exercice 8. Pn pourra écrire la matrice de $f = p + q - 2p \circ q$ dans une base de \mathbb{R}^2 bien choisie. On montrera alors que cette matrice est le produit d'une matrice scalaire et d'une matrice de rotation.

Indications pour l'exercice 9. On distinguera les cas où g est une rotation ou une réflexion.

On pourra alors distinguer des sous-cas en fonction de la parité de n. \square

Indications pour l'exercice 10. On commencera par exploiter la relation $\sum_{i=1}^{n} a_{i,j}^2 = 1$ en montrant qu'il y a un unique terme qui est non nul. On s'attachera ensuite à montrer que le cardinal vaut $2^n \cdot n!$.

Indications pour l'exercice 11. Commencer par comparer $E_1(f)$ et $E_1(g)$.

Indications pour l'exercice 12. Remarquer que ces matrices sont diagonalisables. Préciser la formule de changement de bases ainsi que les valeurs propres. □

Chapitre 14 PSI

Indications pour l'exercice 13.

1. On pourra faire intervenir le produit mixte.

2. On pourra calculer f^3 . On cherchera ensuite les valeurs propres réelles possibles pour f.

3. On pourra considérer les matrices de ces endomorphismes dans une base orthonormée adaptée... \Box

Indications pour l'exercice 14.

1. Travailler avec les matrices de P et Q dans une base orthonormée et justifier que $PQ = {}^t(PQ)$.

2. On pourra réduire P et Q dans une base commune.

Indications pour l'exercice 15.

1. Le sens direct est simple.

Pour la réciproque, on remarque que M et S ont même spectre. On les orthodiagonalise alors avec une même matrice diagonale D puis on choisit convenablement Ω .

2. En décomposant $D = \text{Diag}(\lambda_1 I_{n_1}, \dots, \lambda_p I_{n_p})$ par blocs, on montrera que les matrices Ω ont des blocs diagonaux formés de matrices orthogonales.

III. Avec Python

Indications pour l'exercice 16.

- 1. Utiliser la norme canonique puis les fonctions transpose et trace de numpy.
- **2.** Raisonner par double implication.
- 3. a) On crée une liste de liste.
 - **b)** Utiliser la syntaxe précédente avec des -1 et des 1.
- c) On peut tester l'égalité de deux matrices avec array_equal du module numpy.
- 4. On obtient un ensemble à 3 éléments.

On peut remarquer que, si $A \in SH_4$, alors $\frac{1}{2}A$ est une symétrie orthogonale donc on pourra étudier le spectre.