

The Importance of this study

- Every day in 2017: 810 women die from preventable causes related to pregnancy and childbirth.
- Maternal mortality accounts for 295 000 deaths during and following pregnancy and childbirth
 - 94% in low-income countries

The Data

This dataset contains 2126 records of features extracted from Cardiotocogram (CTG) exams, which were then classified by three expert obstetricians into 3 classes:

- Normal (labeled as 1)
- Suspect (labeled as 2)
- Pathological (labeled as 3)

OBJECTIVE

Create a predictive model to classify CTG features into the three fetal health states to try and prevent child and maternal mortality.

Comparable Studies

Fetal health status
prediction based on
maternal clinical history
using machine learning
techniques ScienceDirect

Use of Machine Learning
Algorithms for Prediction
of Fetal Risk using
Cardiotocographic Data PubMed (nih.gov)

1

Methodology

The Features

- Fetal Heart Rate
- Accelerations per second
- Fetal movements per second
- Uterine contractions per second
- LDs, SDs and PDs per second
- % of time with abnormal short term/long term variability
- Mean short term/long term variability
- Histograms made using all values from a record

Data Cleaning and Preprocessing

- Dropping duplicates
- Dropping Variables with no variance
- Scaling
- Determining outliers
- Dummification

Classification Metrics

Feature Selection

Recursive Feature Elimination with Cross-Validation (RFECV) to assign feature importance to each feature and selected only the ones which were supported based on a Random Forest Classifier.

Features	Ranking	Support
baseline value	1	True
histogram_variance	1	True
histogram_median	1	True
histogram_mean	1	True
•••		
light_decelerations	2	False
histogram_tendency_1.0	3	False
histogram_number_of_zeroes	4	False
histogram_tendency_0.0	5	False
	baseline value histogram_variance histogram_median histogram_mean light_decelerations histogram_tendency_1.0 histogram_number_of_zeroes	histogram_variance 1 histogram_median 1 histogram_mean 1 light_decelerations 2 histogram_tendency_1.0 3 histogram_number_of_zeroes 4

SMOTE Up-Sampling

Fix severe class imbalance in the dataset. Improving recall of <u>pathological</u> <u>labels</u> from 0.86 to 0.97!

Models & Results

Baseline Modeling Approach

Logistic Regression

Different base models

KNN

Decision Tree

LDA / QDA

Pipeline

Gaussian NB

- To test different scaling methods / transformations
- With feature selection vs with PCA

Ensemble Methods

Bagging Models

Boosting Models

Other

Random Forest

Ada Boosting

Support Vector Machine

- XGBoost
- Gradient Boosting

Voting (Hard and Soft)

Recall for Pathological Class

Base Decision-Tree Model

Gradient Boosting Model

Confusion Matrix

O.986 Micro F-1 Score

on test set -

Clustering

- Hierarchical, KMeans, DBSCAN
- All showed that dividing the CTG scans into two clusters was best (based on internal validation)
 - These did not correspond much to the original labels
 - However, hard to interpret...

Conclusion

Study with similar data only reached 92% precision on test set while we reached 97%

Implementation in LICs:

- Lack of knowledge on the significance of the tool
- Lack of training in the acquisition and interpretation.
- Equipment and maintenance cost
- Requirement of a qualified specialists

Any questions?

References

Fetal Health Classification | Kaggle

Automated Software Analysis of Fetal Movement Recorded during a Pregnant Woman's Sleep at Home (nih.gov)

Interpretation of the Electronic Fetal Heart Rate During Labor - American Family Physician (aafp.org)

