

Troubleshooting BEAST2 analyses

Joëlle Barido-Sottani Slides adapted from Jūlija Pečerska

Possible scenarios

Beast analysis

Initialisation failed

Start likelihood: -Infinity after
1000 initialisation attempts

Fatal exception: Could not find a proper state to initialise.
Perhaps try another seed.

P(posterior) = -Infinity (was
-Infinity)

Nothing mixed

Everything mixed

One parameter did not mix

kappa.noncoding	13.143	191
kappa.1stpos	6.28	376
kappa.2ndpos	8.643	372
kappa.3rdpos	27.988	92
mutationRate.noncodi	0.347	273
mutationRate.1stpos	0.459	238
mutationRate.2ndpos	0.185	237

Failed initialisation

```
Start likelihood: -Infinity after 1000 initialisation attempts
Fatal exception: Could not find a proper state to initialise. Perhaps try another seed.
P(posterior) = -Infinity (was -Infinity)
  P(prior) = -Infinity (was -Infinity)
    P(BDMM) = -Infinity (was -Infinity)
    P(ROPrior) = -0.5586849541070393 (was -0.5586849541070393)
    P(rPrior) = -11.46042136866474 (was -11.46042136866474)
    P(\text{rateMatrixPrior}) = -0.14088025499381485 \text{ (was } -0.14088025499381485)
    P(\text{samplingProportionPrior}) = -10.049507225748343 \text{ (was } -10.049507225748343)
    P(becomeUninfectiousRatePrior) = -0.7811241751317991  (was -0.7811241751317991)
java.lang.RuntimeException: Could not find a proper state to initialise. Perhaps try another
seed.
at beast.core.MCMC.run(Unknown Source)
at beast.app.BeastMCMC.run(Unknown Source)
at beast.app.beastapp.BeastMain.<init>(Unknown Source)
at beast.app.beastapp.BeastMain.main(Unknown Source)
at beast.app.beastapp.BeastLauncher.main(Unknown Source)
Fatal exception: Could not find a proper state to initialise. Perhaps try another seed.
BEAST has terminated with an error. Please select QUIT from the menu.
```

Parameter prior is -Infinity

Example: P(rateMatrixPrior) = -Infinity (was -Infinity)

Possible solutions:

- ✓ Increase initialization attempt number
- ✓ Check for incompatible priors
- ✓ Adjust initial conditions
- ✓ Talk to the BEAST2 support group!

Model prior is -Infinity

Example: P(BDMM) = -Infinity (was -Infinity)

Possible solutions:

- ✓ Increase initialization attempt number
- ✓ Check for incompatible priors
- ✓ Adjust initial conditions
- Talk to the BEAST2 support group
- ✓ Talk to the model developers

Including the dependent parameters

Possible scenarios

Beast analysis

Initialisation failed

Start likelihood: -Infinity after
1000 initialisation attempts

Fatal exception: Could not find a proper state to initialise.
Perhaps try another seed.

P(posterior) = -Infinity (was
-Infinity)

Nothing mixed

Everything mixed

One parameter did not mix

kappa.noncoding	13.143	191
kappa.1stpos	6.28	376
kappa.2ndpos	8.643	372
kappa.3rdpos	27.988	92
mutationRate.noncodi	0.347	273
mutationRate.1stpos	0.459	238
mutationRate.2ndpos	0.185	237

Nothing mixed

Possible solutions:

- ✓ Increase chain length
- ✓ Run multiple independent chains
- ✓ Increase sampling frequency (if ACT permits)
- ✓ Check for conflicts in the data / priors
- ✓ Check if the model is misspecified or too complex for the data

Possible scenarios

Beast analysis

Initialisation failed

Start likelihood: -Infinity after
1000 initialisation attempts

Fatal exception: Could not find a proper state to initialise.
Perhaps try another seed.

P(posterior) = -Infinity (was
-Infinity)

Nothing mixed

Everything mixed

One parameter did not mix

kappa.noncoding	13.143	191
kappa.1stpos	6.28	376
kappa.2ndpos	8.643	372
kappa.3rdpos	27.988	92
mutationRate.noncodi	0.347	273
mutationRate.1stpos	0.459	238
mutationRate.2ndpos	0.185	237

One parameter not mixed

kappa.noncoding	13.143	191
kappa.1stpos	6.28	376
kappa.2ndpos	8.643	372
kappa.3rdpos	27.988	92
mutationRate.noncodi	0.347	273
mutationRate.1stpos	0.459	238
mutationRate.2ndpos	0.185	237

First: CHECK THE TREE

Possible solutions:

- ✓ Tweak the operator weights:
 - ✓ Increase the weight for low ESS parameters
 - Use an UpDown operator for correlated parameters
- ✓ Run longer (or combine several independent chains)
- ✓ Change the starting value
- ✓ Use a more informative prior

Tree space mixing

Bad news:

Tracer can not directly examine the ESS of the trees

Good news:

- Good mixing of the other parameters, posterior and likelihood is indicative
- Other tools are available:
 - RWTY (R package) to check the topology ESS
 - Convenience (R package) to check the ESS of clade splits

Tree not mixing

Possible solutions:

- ✓ Tweak the tree operator weights
- ✓ Run longer (or combine several independent chains)
- ✓ Use a good starting tree
- ✓ Add topological constraints and/or time calibration information
- ✓ Add data or simplify the analysis

Possible scenarios

Beast analysis

Initialisation failed

Start likelihood: -Infinity after
1000 initialisation attempts

Fatal exception: Could not find a proper state to initialise.
Perhaps try another seed.

P(posterior) = -Infinity (was
-Infinity)

Nothing mixed

Everything mixed

One parameter did not mix

kappa.noncoding	13.143	191
kappa.1stpos	6.28	376
kappa.2ndpos	8.643	372
kappa.3rdpos	27.988	92
mutationRate.noncodi	0.347	273
mutationRate.1stpos	0.459	238
mutationRate.2ndpos	0.185	237

Everything mixed

Final checks:

Comparison between chains Multi-modal distributions

Are my results driven by the data?

Sampling from prior

Keep in mind:

- The uncertainty is part of the result!
- The result is conditioned on the model!

Good places to look for help

- Taming the BEAST tutorials
- BEAST2 website (BEAST2 and some packages)
 - Additional tutorials http://www.beast2.org/tutorials/
 - Blog posts http://www.beast2.org/blogindex.html
- Users google group (BEAST2 and some packages) https://groups.google.com/g/beast-users
- File an issue (BEAST2 and packages)
- · Last resort email developers directly

Best practices when asking for help

- Use the latest version of everything
- Describe the problem (what you were trying to do, what should have happened, what happened)
- · Give all information needed to debug....
 - XML file for the analysis
 - Output files if you have them
 - Screenshots for BEAUti issues
- ·but not more than that !!
 - Reduce the file size if possible
 - Narrow down the issue

Going further

Taming the BEAST tutorials (of course!)

METHOD ARTICLE 3

Practical guidelines for Bayesian phylogenetic inference using Markov Chain Monte Carlo (MCMC)

[version 1; peer review: 2 approved, 1 approved with reservations]

Joëlle Barido-Sottani 🖾 📵, Orlando Schwery, Rachel C. M. Warnock, Chi Zhang, April Marie Wright

https://open-research-europe.ec.europa.eu/articles/3-204

BEAST2 XML files

Joëlle Barido-Sottani Slides adapted from Tim Vaughan

What is a BEAST2 XML file?

- Precise description of a BEAST2 analysis :
 - Data (alignment, sampling times, ...)
 - Model (substitution model, tree prior, ...)
 - Parameter priors
- Usually produced by BEAUti.
- · Read by BEAST2 when the analysis is run.
- Makes BEAST2 results reproducible
 => should be included in any research data archive

Why should I learn about BEAST2 XML?

- Every BEAST2 analysis can be described using BEAST2 XML
 => but... many analyses cannot be set up using BEAUti!
- · Some analyses best done by modifying the XML file:
 - Fixing parameters or the trees in the analysis.
 - Linking certain models (beyond the usual substitution, clock, or tree priors)
 - Adjusting initial values (e.g. for troubleshooting)
 - Modifying analyses that were not produced using BEAUti.

BEAST2 XML: A first look

```
<parameter id="clockRate morph" spec="parameter.RealParameter" name="stateNode">1.0</parameter>
   <parameter id="clockRate" spec="parameter.RealParameter" name="stateNode">0.01</parameter>
   <parameter id="gammaShape" spec="parameter.RealParameter" name="stateNode">1.0</parameter>
   <parameter id="kappa" spec="parameter.RealParameter" lower="0.0" name="stateNode">2.0</parameter>
   <parameter id="birthRateFBD" spec="parameter.RealParameter" lower="0.0" name="stateNode">1.0</parameter>
  <parameter id="deathRateFBD" spec="parameter.RealParameter" lower="0.0" name="stateNode">0.5</parameter>
  <parameter id="samplingRateFBD" spec="parameter.RealParameter" lower="0.0" name="stateNode">0.5</parameter>
  <parameter id="originFBD" spec="parameter.RealParameter" lower="0.0" name="stateNode">130.0</parameter>
  <parameter id="freqParameter" spec="parameter.RealParameter" dimension="4" lower="0.0" name="stateNode" upper="1.0">0.25</parameter>
</state>
<init id="RandomTree" spec="beast.evolution.tree.RandomTree" estimate="false" initial="%Tree" taxa="%simdata">
  <parameter id="randomPopSize" spec="parameter.RealParameter" name="popSize">1.0</parameter>
  </populationModel>
</init>
<distribution id="posterior" spec="util.CompoundDistribution">
  <distribution id="prior" spec="util.CompoundDistribution">
     <distribution id="FBD" spec="beast.evolution.speciation.SABirthDeathModel" conditionOnRhoSampling="true" birthRate=FBD" origin="@birthRate=FBD" samplingRate=BB="@samplingRate=BB="conditionOnRhoSampling="true" birthRate=BB="conditionOnRhoSampling="true" birthRate=BB="conditionOnRho
        <parameter id="rFBD" spec="parameter.RealParameter" lower="0.0" name="removalProbability" upper="1.0">0.0</parameter>
        <parameter id="rhoFBD" spec="parameter.RealParameter" estimate="false" lower="0.0" name="rho" upper="1.0">1.0</parameter>
      </distribution>
      <prior id="birthRatePriorFBD" name="distribution" x="@birthRateFBD">
        <Exponential id="Exponential.1" name="distr">
            <parameter id="RealParameter.9" spec="parameter.RealParameter" estimate="false" name="mean">1.0</parameter>
        </Exponential>
      <prior id="ClockPrior" name="distribution" x="@clockRate">
        <Exponential id="Exponential.6" name="distr">
           <parameter id="RealParameter.7" spec="parameter.RealParameter" estimate="false" name="mean">0.1</parameter>
        </Exponential>
      </prior>
      <prior id="ClockPrior morph" name="distribution" x="@clockRate morph">
        <Exponential id="Exponential.7" name="distr">
           <parameter id="RealParameter.8" spec="parameter.RealParameter" estimate="false" name="mean">0.1</parameter>
        </Exponential>
      </prior>
      <prior id="KappaPrior" name="distribution" x="@kappa">
        <LogNormal id="LogNormalDistributionModel.0" name="distr">
           <parameter id="RealParameter.4" spec="parameter.RealParameter" estimate="false" name="M">1.0</parameter>
           <parameter id="RealParameter.5" spec="parameter.RealParameter" estimate="false" name="S">1.25</parameter>
        </LogNormal>
      </prior>
      <prior id="originPriorFBD" name="distribution" x="@originFBD">
        <Uniform id="Uniform.5" name="distr" lower="80" upper="300"/>
      <prior id="samplingRatePriorFBD" name="distribution" x="@samplingRateFBD">
        <Exponential id="Exponential.3" name="distr">
           <parameter id="RealParameter.11" spec="parameter.RealParameter" estimate="false" name="mean">1.0</parameter>
        </Exponential>
      </prior>
      <prior id="deathRatePriorFBD" name="distribution" x="%deathRateFBD">
        <Exponential id="Exponential.2" name="distr">
           <parameter id="RealParameter.10" spec="parameter.RealParameter" estimate="false" name="mean">1.0</parameter>
        </Exponential>
      </prior>
   </distribution>
```

What is XML?

- XML is a standard way of representing hierarchically structured data
- XML files are plain text files containing XMLformatted data
- * XML file components :

A simple example model

The BEAST2 model graph

Relationships in the model graph

- Objects are connected through inputs
- 'There is a "has a" relationship between objects and their inputs
 - => E.g. the NormalDistribution object **has a** RealParameter input with the name "mean"

Relationships in the XML


```
<parentInput spec="BEASTObject">
     <input1 .../>
     <input2 .../>
        ...
</parentInput>
```

```
<distr spec="Normal" id="NormalDistribution">
        <mean spec="RealParameter" estimate="false" value="1.0"/>
</distr>
```

Simple inputs

- Some BEASTObjects take inputs with primitive types such as strings (i.e. text), boolean values (true/false) or numbers.
- · These values are specified using attributes.

Connecting complex objects


```
<parentInput spec="Normal">
        <mean spec="RealParameter" value="1.0" lower="0.0" upper="5.0"/>
        <sigma spec="RealParameter" value="0.5" lower="0.0" upper="5.0"/>
</parentInput>
```

Referencing objects


```
<state>
    <stateNode spec="RealParameter" value="1.0" id="clockRate"/>
</state>
...
<logger logEvery="1000" fileName="logfile.log">
    <log idref="clockRate"/>
</logger>
```

Referencing objects – part 2


```
<state>
     <stateNode spec="RealParameter" value="1.0" id="clockRate"/>
</state>
...
<operator spec="ScaleOperator" parameter="@clockRate" weight="1">
</operator>
```

Final comments

· These are <u>equivalent</u> forms of BEASTObject representation:

```
<parentInput spec="RealParameter" value="1.0"/>
<parentInput spec="RealParameter" value="1.0"/>
```

 Object class names are in general prefixed by their location in the package, e.g. beast.core.parameter.RealParameter is equivalent to RealParameter

Troubleshooting time!

https://taming-the-beast.org/tutorials/Troubleshooting-initialization-issues/ https://taming-the-beast.org/tutorials/Troubleshooting/