

Regularization to Reduce Overfitting

Cost Function with Regularization

Intuition

$$w_1x + w_2x^2 + b$$
 $w_1x + w_2x^2 + w_3x^3 + w_4x^4 + b$ ≈ 0 ≈ 0

make w_3 , w_4 really small (≈ 0)

$$\min_{\vec{\mathbf{w}},b} \frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) - y^{(i)})^2 + |0000|^2 + |0000|^2 + |0000|^2$$

Regularization

small values w_1, w_2, \dots, w_n, b

 $W_1, W_1, W_2, \cdots, W_{100}, b$

simpler model $W_3 \stackrel{>}{\sim} O$ less likely to overfit $W_4 \stackrel{>}{\sim} O$

size X ₁	bedrooms X ₂	floors X ₃	age X ₄	avg income X ₅		distance to coffee shop	•
				n featur	es	u = 100	

regularization term

$$J(\vec{\mathbf{w}},b) = \frac{1}{2m} \left[\sum_{i=1}^{m} (f_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) - y^{(i)})^2 + \sum_{i=1}^{n} \omega_j^2 + \sum_{j=1}^{n} \omega_j^2 \right]$$
regularization parameter $\lambda > 0$

Regularization

regularization term

mean squared error

$$\frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2$$
fit data

Keep wj small

choose
$$\lambda = 10^{10}$$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \underbrace{w_1x + w_2x^2 + w_3x^3 + w_4x^4 + b}_{\approx 0}$$

$$f(x) = b$$

$$choose \lambda$$

$$f(x) = p$$