

Graphen II

Morris Kurz, Moritz Grauer, Michael Schrempp, Frederic Tausch | 1. Juni 2016

Gliederung

- Bellman-Ford
 - Wiederholung: Graphen
 - Bellman-Ford-Algorithmus
- Dijkstra
 - Dijkstra-Algorithmus
- Algorithmus von Prim
 - Ungerichtete Bäume
 - Problemstellung
 - Algorithmus von Prim
 - Animation
- Union Find Struktur
 - Operationen auf disjunkte Mengen
 - Implementieren der Union Find Struktur
 - Pfadkompression
 - Pfadkompression
- Minimale Spannbäume

- Graph G = (V,E) mit Knotenmenge V und Kantenmenge E
- wichtig heute: Gewichtete, gerichtete und zusammenhängende Graphen (Weigthed, directed and connected graph)
- negativer Zyklus: Es existiert ein Zyklus, wobei die Summe der Kantengewichte negativ ist
- Shortest Path: Minimale Distanz bzgl. der Gewichtung zwischen zwei Knoten
- Beispiel: Navigationssystem

- Graph G = (V,E) mit Knotenmenge V und Kantenmenge E
- wichtig heute: Gewichtete, gerichtete und zusammenhängende Graphen (Weigthed, directed and connected graph)
- negativer Zyklus: Es existiert ein Zyklus, wobei die Summe der Kantengewichte negativ ist
- Shortest Path: Minimale Distanz bzgl. der Gewichtung zwischen zwei Knoten
- Beispiel: Navigationssystem

- Graph G = (V,E) mit Knotenmenge V und Kantenmenge E
- wichtig heute: Gewichtete, gerichtete und zusammenhängende Graphen (Weigthed, directed and connected graph)
- negativer Zyklus: Es existiert ein Zyklus, wobei die Summe der Kantengewichte negativ ist
- Shortest Path: Minimale Distanz bzgl. der Gewichtung zwischen zwei Knoten
- Beispiel: Navigationssystem

- Graph G = (V,E) mit Knotenmenge V und Kantenmenge E
- wichtig heute: Gewichtete, gerichtete und zusammenhängende Graphen (Weigthed, directed and connected graph)
- negativer Zyklus: Es existiert ein Zyklus, wobei die Summe der Kantengewichte negativ ist
- Shortest Path: Minimale Distanz bzgl. der Gewichtung zwischen zwei Knoten
- Beispiel: Navigationssystem

Bellman-Ford-Algorithmus

- Gegeben: Gerichteter und gewichteter Graph G=(V,E) mit |V| = n und |E| = m
- Ziel: Berechnung des kürzesten Weges von einem Startknoten s zu allen anderen Knoten

Bellman-Ford-Algorithmus

- Gegeben: Gerichteter und gewichteter Graph G=(V,E) mit |V|=n und |E|=m
- Ziel: Berechnung des kürzesten Weges von einem Startknoten s zu allen anderen Knoten

• Weise Startknoten S Distanz 0 zu, den anderen Knoten Distanz ∞ und keinen Vorgänger

- Wiederhole n-1 mal:
 - Gehe alle Kanten (u,v) aus E durch, Reihenfolge beliebig
 - wenn Distanz(u) + Gewicht(u,v) < Distanz(v) dann setze Distanz(v) auf den größeren Wert und Vorgänger(v) auf u

- Wiederhole n-1 mal:
 - Gehe alle Kanten (u,v) aus E durch, Reihenfolge beliebig
 - wenn Distanz(u) + Gewicht(u,v) < Distanz(v) dann setze Distanz(v) auf den größeren Wert und Vorgänger(v) auf u

- Wiederhole n-1 mal:
 - Gehe alle Kanten (u,v) aus E durch, Reihenfolge beliebig
 - wenn Distanz(u) + Gewicht(u,v) < Distanz(v) dann setze Distanz(v) auf den größeren Wert und Vorgänger(v) auf u

- Wiederhole n-1 mal:
 - Gehe alle Kanten (u,v) aus E durch, Reihenfolge beliebig
 - wenn Distanz(u) + Gewicht(u,v) < Distanz(v) dann setze Distanz(v) auf den größeren Wert und Vorgänger(v) auf u

- Wiederhole n-1 mal:
 - Gehe alle Kanten (u,v) aus E durch, Reihenfolge beliebig
 - wenn Distanz(u) + Gewicht(u,v) < Distanz(v) dann setze Distanz(v) auf den größeren Wert und Vorgänger(v) auf u

Bellman-Ford-Algorithmus

- Zum Schluss wird jede Kante noch einmal durchgegangen
 - Bei Veränderung: Negativer Zyklus vorhanden
- Laufzeit: O(n*m)

Schneller: Dijkstra-Algorithmus

- Gleiche Vorbedingungen und Zielsetzung wie bei Bellman-Ford
- Vorbemerkung: Negative Kantengewichte nicht erlaubt

 \blacksquare Weise Startknoten S Distanz 0 zu, den anderen Knoten Distanz ∞ und keinen Vorgänger

- Wiederhole solange es unbesuchte Knoten gibt:
 - Betrachte den Knoten mit minimaler Distanz als n\u00e4chstes
 - Setze Besucht Flag auf true (hier blau)
 - Berechne für alle unbesuchten Nachbarsknoten u: Distanz(v) + Gewicht(u,v)
 - Relaxieren Falls Distanz(v) + Gewicht(u,v) i Distanz(u) setze die Distanz von u auf das kleinere und Vorgänger(u) = v

- Wiederhole solange es unbesuchte Knoten gibt:
 - Betrachte den Knoten mit minimaler Distanz als n\u00e4chstes
 - Setze Besucht Flag auf true (hier blau)
 - Berechne für alle unbesuchten Nachbarsknoten u: Distanz(v) + Gewicht(u,v)
 - Relaxieren Falls Distanz(v) + Gewicht(u,v) ¡ Distanz(u) setze die Distanz von u auf das kleinere und Vorgänger(u) = v

- Wiederhole solange es unbesuchte Knoten gibt:
 - Betrachte den Knoten mit minimaler Distanz als n\u00e4chstes
 - Setze Besucht Flag auf true (hier blau)
 - Berechne für alle unbesuchten Nachbarsknoten u: Distanz(v) + Gewicht(u,v)
 - Relaxieren Falls Distanz(v) + Gewicht(u,v) i Distanz(u) setze die Distanz von u auf das kleinere und Vorgänger(u) = v

- Wiederhole solange es unbesuchte Knoten gibt:
 - Betrachte den Knoten mit minimaler Distanz als n\u00e4chstes
 - Setze Besucht Flag auf true (hier blau)
 - Berechne für alle unbesuchten Nachbarsknoten u: Distanz(v) + Gewicht(u,v)
 - Relaxieren Falls Distanz(v) + Gewicht(u,v) i Distanz(u) setze die Distanz von u auf das kleinere und Vorgänger(u) = v

Schneller: Dijkstra-Algorithmus

- Problem: negative Kantengewichte sind nicht erlaubt
- Laufzeit: optimiert O(m + n log n)

Schneller: Dijkstra-Algorithmus

- Problem: negative Kantengewichte sind nicht erlaubt
- Laufzeit: optimiert O(m + n log n)

Ungerichtete Bäume

- Ungerichteter Baum
 - Ungerichteter Graph
 - Zusammenhängend
 - Zyklenfrei
- Spannbaum
 - Teilgraph
 - Enthält alle Knoter
- Minimaler Spannbaum
 - Betrachte ungerichteten Baum mit Kantengewichten
 - Spannbaum mit minimalem Gewicht

Ungerichtete Bäume

- Ungerichteter Baum
 - Ungerichteter Graph
 - Zusammenhängend
 - Zyklenfrei
- Spannbaum
 - Teilgraph
 - Enthält alle Knoten

Ungerichtete Bäume

- Ungerichteter Baum
 - Ungerichteter Graph
 - Zusammenhängend
 - Zyklenfrei
- Spannbaum
 - Teilgraph
 - Enthält alle Knoten
- Minimaler Spannbaum
 - Betrachte ungerichteten Baum mit Kantengewichten
 - Spannbaum mit minimalem Gewicht

Problemstellung

- Gegeben:
 - Zusammenhängender, ungerichteter, kantengewichteter Graph
- Gesucht
 - Minimaler Spannbaum
- Lösung
 - Algorithmus von Prim

Problemstellung

- Gegeben:
 - Zusammenhängender, ungerichteter, kantengewichteter Graph
- Gesucht:
 - Minimaler Spannbaum
- Lösung
 - Algorithmus von Prim

Problemstellung

- Gegeben:
 - Zusammenhängender, ungerichteter, kantengewichteter Graph
- Gesucht:
 - Minimaler Spannbaum
- Lösung:
 - Algorithmus von Prim

Algorithmus von Prim

Beschreibung

- Ermittelt minimalen Spannbaum

Algorithmus von Prim

Beschreibung

- Ermittelt minimalen Spannbaum
- Idee:
- Versuche, möglichst "billige" Kanten zu wählen und "teure" zu umgehen
 - ightarrow Greedy
- Algorithmus:
 - Gegeben: Ungerichteter Baum B = (V,E)
 - Wähle beliebigen Startknoten als Startgraph T
 - Solange T nicht alle Knoten aus V enthält:
 - Wähle Kante e mit minimalem Gewicht von T nach V \ T
 - Füge e und Knoten zum Graph T hinzu

Algorithmus von Prim

Beschreibung

- Ermittelt minimalen Spannbaum
- Idee:
- Versuche, möglichst "billige" Kanten zu wählen und "teure" zu umgehen
 - \rightarrow Greedy
- Algorithmus:
 - Gegeben: Ungerichteter Baum B = (V,E)
 - Wähle beliebigen Startknoten als Startgraph T
 - Solange T nicht alle Knoten aus V enthält:
 - Wähle Kante e mit minimalem Gewicht von T nach V \ T
 - Füge e und Knoten zum Graph T hinzu

Bellman-Ford

Dijkstra

Algorithmus von Prim

Union Find Struktur

Minima

Minimale Spannbäume

Bellman-Ford

Dijkstra

Algorithmus von Prim 00000000000

Union Find Struktur

1. Juni 2016

Minimale Spannbäume

Bellman-Ford

Dijkstra Algorithmus von Prim

Union Find Struktur

Minimale Spannbäume

00000000000000000

Operationen auf disjunkte Mengen

- makeSet(Object) Erstelle ein neue Menge A := {Object}
- union(Object1, Object2) Sei Object1 \in A, Object2 \in B \Rightarrow A \cup B.
- findSet(Object) Für Object \in A, gib Repräsentanten von A zurück.

Operationen auf disjunkte Mengen

- makeSet(i) für $1 \le i \le 6$
- union(1,2)

Dijkstra Algorithmus von Prim Morris Kurz, Moritz Grauer, Michael Schrempp, Frederic Tausch - Graphen II

Union Find Struktur

Minimale Spannbäume

- union(1,2)
- union(2,3)

- union(2,3)
- union(4,5)

- union(4,5)
- union(5,6)

- union(5,6)
- union(5,3)

Operationen auf disjunkte Mengen

union(5,3)

Dijkstra

Implementieren der Union Find Struktur

Idee:

- Jede Menge wird durch ein Baum beschrieben
- Der Repräsentanten ist die Wurzel des Baumes

Node:

- Object data;
- Node parent;

Implementieren der Union Find Struktur

Idee:

- Jede Menge wird durch ein Baum beschrieben
- Der Repräsentanten ist die Wurzel des Baumes

Node:

- Object data;
- Node parent;

Implementieren der Union Find Struktur

- makeSet(i) für $1 \le i \le 6$
- union(1,4)

Implementieren der Union Find Struktur

- union(1,4)
- union(1,5)

Implementieren der Union Find Struktur

- union(1,5)
- union(1,6)

Morris Kurz, Moritz Grauer, Michael Schrempp, Frederic Tausch - Graphen II

- union(1,6)
- union(1,3)

- union(1,3)
- findSet(a) für a \in [1,6] braucht konstante Zeit

- makeSet(i) für $1 \le i \le 6$
- union(1,4)

Implementieren der Union Find Struktur

- union(1,4)
- union(4,5)

Morris Kurz, Moritz Grauer, Michael Schrempp, Frederic Tausch - Graphen II

Implementieren der Union Find Struktur

- union(4,5)
- union(5,6)

- union(5,6)
- union(6,3)

Implementieren der Union Find Struktur

- union(6,3)
- findSet(a) für a ∈ [1,6] ist langsam

Morris Kurz, Moritz Grauer, Michael Schrempp, Frederic Tausch - Graphen II

Pfadkompression

Ohne Optimierung

- makeSet(Object) in O(1)
- union(Object1, Object2) in O(1)
- findSet(Object) in O(n)

Pfadkompression

Ohne Optimierung

- makeSet(Object) in O(1)
- union(Object1, Object2) in O(1)
- findSet(Object) in O(n)

Pfadkompression

- Pfade werden nach dem findSet() Aufruf auf die Länge 1 reduziert
- Worst case:
 - makeSet(Object) in O(1)
 - union(Object1, Object2) in O(1)
 - findSet(Object) in O(n log n)
- Amortisiert:
- Bei einer Folge von m findeSet()- und n-1 Union()-Operationen in $O(n + m * \alpha(n)) \approx O(n + m*4)$

Implementieren der Union Find Struktur

- makeSet(i) für $1 \le i \le 6$
- union(1,4)

Implementieren der Union Find Struktur

- union(1,4)
- union(4,5)

Implementieren der Union Find Struktur

- union(4,5)
- union(5,6)

Morris Kurz, Moritz Grauer, Michael Schrempp, Frederic Tausch - Graphen II

Implementieren der Union Find Struktur

- union(5,6)
- union(6,3)

Implementieren der Union Find Struktur

- union(6,3)
- findSet(a) für a \in [1,6] ist schnell

1. Juni 2016

Morris Kurz, Moritz Grauer, Michael Schrempp, Frederic Tausch - Graphen II

54/75

Implementieren der Union Find Struktur

- makeSet(i) für $1 \le i \le 6$
- union(1,2)...union(1,3)
- findSet(6)

Morris Kurz, Moritz Grauer, Michael Schrempp, Frederic Tausch - Graphen II

Implementieren der Union Find Struktur

- findSet(6)
- findSet(3)

Morris Kurz, Moritz Grauer, Michael Schrempp, Frederic Tausch - Graphen II

- findSet(3)
- findSet(7)

Implementieren der Union Find Struktur

findSet(7)

Morris Kurz, Moritz Grauer, Michael Schrempp, Frederic Tausch - Graphen II

Pfadkompression

Pfadkompression

- Pfade werden nach dem findSet() Aufruf auf die Länge 1 reduziert
- Worst case:
 - makeSet(Object) in O(1)
 - union(Object1, Object2) in O(1)
 - findSet(Object) in O(n log n)
- Amortisiert:
- Bei einer Folge von m findeSet()- und n-1 Union()-Operationen in $O(n + m * \alpha(n)) \approx O(n+m^4)$

Minimale Spannbäume

Kruskals Algorithmus

- Berechnet ebenfalls einen MST des gegebenen Graphen
- Aber: Arbeitet auf einer sortierten Kantenliste

Vorgehen

Wähle in jedem Schritt die leichteste Kante aus, die mit den bisher gewählten Kanten keinen Kreis bildet.

Minimale Spannbäume

Kruskals Algorithmus

- Berechnet ebenfalls einen MST des gegebenen Graphen
- Aber: Arbeitet auf einer sortierten Kantenliste

Vorgehen

Wähle in jedem Schritt die leichteste Kante aus, die mit den bisher gewählten Kanten keinen Kreis bildet.

Morris Kurz, Moritz Grauer, Michael Schrempp, Frederic Tausch - Graphen II

Beispiel

Berechne einen minimalen Spannbaum T zum Graphen G. G sei gegeben durch die folgende Grafik:

Morris Kurz, Moritz Grauer, Michael Schrempp, Frederic Tausch - Graphen II

Morris Kurz, Moritz Grauer, Michael Schrempp, Frederic Tausch - Graphen II

Lösung

Die Grün eingefärbten Kanten ergeben nun einen minimalen Spannbaum von G.

《다》《문》 《문》 설문》 설문》 설문》 설문 수 있다. Bellman-Ford Dijkstra Algorithmus von Prim Union Find Struktur **Minimale Spannbäume**

Morris Kurz, Moritz Grauer, Michael Schrempp, Frederic Tausch – Graphen II

1. Juni 2016

0000000000000000

Laufzeit

Bestimmt durch Kanten

Die Laufzeit des Algorithmus wird zunächst durch das sortieren der Kanten beschränkt, das Überprüfen auf Kreisfreiheit geht i.A. schneller. Dementsprechend liegt die Laufzeit in O(|E| * log(|E|)).

Laufzeit

Bestimmt durch Kanten

Die Laufzeit des Algorithmus wird zunächst durch das sortieren der Kanten beschränkt, das Überprüfen auf Kreisfreiheit geht i.A. schneller. Dementsprechend liegt die Laufzeit in O(|E| * log(|E|)).

Schneller mit vorsortierter Kantenliste

Bei bereits Vorsortierter Kantenliste und unter Verwendung der sog. Union-Find-Datenstruktur liegt die Laufzeit des Algorithmus in $O(|V| + |E| * \varphi^{-1}(|V|)).$

Dabei ist φ^{-1} die inverse Ackermannfunktion und für alle 'praktischen' Eingaben kleiner als 5.

