## UNITRA

Podstawowe cechy charakterystyczne układu MCY 7880N /MCY 6880N/:

- 8-bitowe slowo danych; - Stala lista 78 instrukcji;

- Odrębne szyny danych i adresów;
- Odrębne szyny danych i adresów;
- 8-bitowa jednostka arytmetyczno-logiczna /ALU/ z
możliwością pracy w systemie BCD, w systemie binarnym na słowach podwójnej długości;
- Bezpośrednie adresowanie pamięci o pojemności do 64

kbajtów; - Sześć 8-bitowych rejestrów ogólnego przeznaczenia dostępnych dla programisty;

- 8-bitowy akumulator;

- 8-bitowy rejestr instrukcji;

- 16-bitowy licznik rozkazów;

- 16-bitowy wskaźnik stosu;

- Kanal bezpośredniego dostępu do pamięci /DMA/;

- 4 sposoby adresowania pamięci;

- Wieloposiomowy, wektorowy system przerwań;
- Programowe rozwiązanie stosu w pamięci RAM;
- Dwufazowy zegar o maksymalnej częstotliwości 3 MHz;
- Trzy napięcia zasilania +12 V; +5 V; -5 V;
- Współpraca z układami TTL /poza wejściami zegarowymi/.

### **MCY 7880N** MCY 6880N

8-bitowa równoległa iednostka centralna (CPU)

LSI NMOS Bramka krzemowa

Obudowa CE 76

#### Blokowy schemat wewnętrzny



#### Układ wyprowadzeń

#### Opis wyprowadzeń



READY

- wejście sygnału wskazującego jednostce centralnej dostępność danych na szynie. Sygnał jest używany do synchronizacji CPU z pamięcią lub urządzeniami We/Wy. Jeżeli po wysłaniu adresu jednostka centralna nie odbierze sygnału na wejściu READY, wejdzie w stan oczekiwania /WAIT/ i pozostanie w nim do momentu pojawienia się stanu wysokiego na linii READY.

WAIT

- wyjście sygnału potwierdzającego stan oczekiwania jednostki centralnej.

WR /WRITE/  wyjście sygnału zapisu do pamięci lub transmisji danych dourządzeń wyjścia. WR jest w stanie niskim, gdy dane wychodzące z jednostki centralnej są stabilne.

HOLD

- wejście sygnału żądającego od jednostki centralnej przejęcia kontroli nad zewnętrzną szyną adresową i szyną danych przes urządzenia zewnętrzne. W następstwie tego sygnału jednostka centralna zawiesza swoją pracę, wprowadza szynę adresową i szynę danych w stantrzeci i wysyła sygnał HLDA.

HLDA /HOLD ACKNOWLEDGE/ - wyjście sygnału potwierdzającego możliwość przejęcia kontroli nad szyną danych i szyną adresową przez urządzenia sewnętrzne /realizacja bezpośredniego dostępu do pamięci/.

INT /INTERRUPT REQUEST/ - wejście sygnalu przerwania. Sygnal ten określa żądanie przerwania wykonywanego programu. Sygnal nie jest akceptowany wówczas,gdy system jest w stanie HLDA lub przerzutnik stanu przerwania wyserowany.

INTE /INTERRUPT ENABLE/ - wyjście sygnalu określającego stan przerzutnika przerwania. Przerzutnik ten jest zerowany samoczynnie po otrzymaniu sygnalu RESET lub rozpoczęciu obsługi przerwania.

RESET

- wejście sygnału zerowania. Jednostka centralna po odebraniu tego sygnału zeruje licznik rozkazów i przerzutniki sygnałów INTE i HLDA. Nie zerowane są: akumulator, rejestr bitów warunkowych, rejestr wskaźników stosu, rejestry ogólnego przeznaczenia. Sygnał RESET musi być w stanie aktywnym przez minimum 3 cykle zegarowe.

 $g_1, g_2$ 

- wejścia sygnałów zegarowych. Są to jedyne wejścia niewspółpracujące z układami TTL.

 $\mathbf{u}_{\mathrm{SS}}$ ,  $\mathbf{u}_{\mathrm{DD}}$ ,  $\mathbf{u}_{\mathrm{CC}}$ , — wejścia zasilające.  $\mathbf{u}_{\mathrm{BB}}$ 

# Parametry dopuszczalne / v<sub>BB</sub> = 0 v/

| Oznaczenie                                          | Nazwa                                      |           | Jedn. | Wartość |      |
|-----------------------------------------------------|--------------------------------------------|-----------|-------|---------|------|
|                                                     |                                            |           |       | min     | 28 X |
| u <sub>cc</sub> , u <sub>dd</sub> , u <sub>ss</sub> | Napięcie zasilania                         |           | ▼     | -0,3    | 20   |
| u <sub>w</sub>                                      | Napięcie na pozostałych<br>wyprowadzeniach |           | ٧     | -0,3    | 20   |
| P <sub>D</sub>                                      | Moc rozpraszana                            |           | . •   |         | 1,5  |
| t <sub>amb</sub>                                    | Temperatura otoczenia i<br>pracy           | osasie    |       |         |      |
| ·                                                   |                                            | MCY 7880N | °c    | 0       | +70  |
|                                                     |                                            | MCY 6880N | °c    | -40     | +85  |
| <sup>t</sup> stg                                    | Temperatura przechowywa                    |           |       |         |      |
|                                                     |                                            | MCY 7880N | °c    | -40     | +125 |
|                                                     |                                            | MCY 6880N | °c    | -55     | +125 |

### Parametry charakterystyczne statyczne

 $/\mathtt{U}_{\mathrm{DD}}$  = 12 V  $\pm 5\%$ ;  $\mathtt{U}_{\mathrm{CC}}$  = 5 V  $\pm 5\%$ ;  $\mathtt{U}_{\mathrm{BB}}$  = -5 V  $\pm 5\%$ ;  $\mathtt{U}_{\mathrm{SS}}$  = 0 V;

tamb = tamb min + tamb max/

| Oznaczenie | Na swa                                            | Jedn. | Wartość            |                      | Warunki pomiaru |
|------------|---------------------------------------------------|-------|--------------------|----------------------|-----------------|
|            |                                                   |       | min                | MAX                  |                 |
| airc       | Napięcie wejścia zegaro-<br>wego w stanie niskim  | ٧     | Մ <sub>S8</sub> −1 | U <sub>SS</sub> +0,8 |                 |
| UIHC       | Napięcie wejścia zegaro-<br>wego w stanie wysokim | ٧     | 9                  | U <sub>DD</sub> +1   |                 |
| UIL        | Napięcie wejściowe<br>w stanie niskim             | ٧     | U <sub>SS</sub> -1 | U <sub>SS</sub> +0,8 |                 |

od. tabl.

| Oznaczenie               | Na zwa                                                   | Jedn.    | Wartość |                    | Warunki pomiaru                               |  |
|--------------------------|----------------------------------------------------------|----------|---------|--------------------|-----------------------------------------------|--|
|                          |                                                          |          | min max |                    | met during housest d                          |  |
| n <sup>IH</sup>          | Napięcie wejściowe<br>w stanie wysokim                   | <b>V</b> | 3,3     | U <sub>CC</sub> +1 |                                               |  |
| a <sup>OT</sup>          | Napięcie wyjściowe<br>w stanie niskim                    | V        | -       | 0,45               | I <sub>OL</sub> = 1,9 mA<br>wssystkie wyjścia |  |
| пон                      | Napięcie wyjściowe<br>w stanie wysokim                   | <b>V</b> | 3,7     |                    | I <sub>OH</sub> = -150 pA                     |  |
| I <sub>DDav</sub>        | Prąd sasilania podesas<br>pracy /wypr. U <sub>DD</sub> / | mA       |         | 70                 |                                               |  |
| ICCAY                    | Prąd zasilania podczas<br>pracy /wypr. U <sub>CC</sub> / | mA.      |         | 80                 | t <sub>CY</sub> = 480 ns                      |  |
| I <sub>BB<b>av</b></sub> | Prąd zasilania podosas<br>pracy /wypr. U <sub>BB</sub> / | mA       |         | 1                  |                                               |  |
| ILI                      | Wejściowy prąd upływu                                    | μA       |         | ±10                | $v_{SS} < v_{I} < v_{CC}$                     |  |
| ILC                      | Pręd upływu wejść<br>zegarowych                          | )A       |         | ±10                | $v_{SS} \leq v_{C} \leq v_{DD}$               |  |
| ILD                      | Prąd upływu wejść<br>danych                              | Acq      |         | -100               | $v_{SS} \leq v_{I} \leq v_{SS} + 0.8V$        |  |
|                          |                                                          | mA       |         | -2                 | $u_{SS} + 0.8  \leq u_{I} \leq u_{CC}$        |  |
| ILF                      | Prąd upływu wyjść<br>danych i adresowych                 | μA       |         | +10                | UADDR/DATA = UCC                              |  |
|                          | w stanie wysokiej<br>impedancji                          |          |         | -100               | UADDR/DATA = USS+0,45V                        |  |

## Parametry charakterystyczne dynamiczne

/
$$U_{\rm DD}$$
 = 12 V ±5%;  $U_{\rm CC}$  = 5 V ±5%;  $U_{\rm BB}$  = -5 V ±5%;  $U_{\rm SS}$  = 0 V;  $t_{\rm amb}$  =  $t_{\rm amb}$  min  $\div$   $t_{\rm amb}$  max/

|                                 | Na zwa                                                                            | Jedn. | Wartość |     |
|---------------------------------|-----------------------------------------------------------------------------------|-------|---------|-----|
| Osna osenie                     |                                                                                   |       | min     | max |
| <sup>t</sup> or                 | Okres zegara                                                                      | μs    | 0,48    | 2   |
| t <sub>r</sub> , t <sub>f</sub> | Czas narastania i opadania<br>impulsów zegarowych                                 | ns    | 0       | 50  |
| <sup>‡</sup> g <sub>1</sub>     | Szerokość impulsu fazy p <sub>1</sub>                                             | ns    | 60      |     |
| <sup>t</sup> #2                 | Szerokość impulsu fazy 2                                                          | ns    | 220     |     |
| <sup>‡</sup> D1                 | Opóźnienie narastającego zboosa<br>fazy 92 względem opadającego<br>zboosa fazy 94 | ns    | 0       |     |
| <sup>‡</sup> D2                 | Opóśnienie narastającego zbocza<br>fazy 9, względem cpadającego<br>zbocza fazy 9, | ns    | 70      |     |

| znaozenie        | Nazwa                                                                                                                           | Jedn. | Wartość |                 |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------|-------|---------|-----------------|--|
|                  | 1                                                                                                                               |       | min     | Pax             |  |
| t <sub>D3</sub>  | Opóźnienie narastającego zbocza fazy Ø względem narastającego zbocza fazy Ø 1                                                   | ns    | 80      |                 |  |
| <sup>t</sup> DA  | Opóźnienie sygnału adresowego<br>względem narastającego zbocza<br>fazy \$\mathcal{I}_2\$                                        | ns    |         | 200             |  |
| <sup>t</sup> DD  | Opóźnienie wyjścia danych wzglę-<br>dem narastającego zbocza 92                                                                 | ns    |         | 220             |  |
| <sup>t</sup> DC  | Opóźnienie wyjścia sygnałów SYNC,<br>WR, WAIT, HLDA względem narasta-<br>jącego zbocza faz 🛭 lub 🗓                              | ns    |         | 120             |  |
| <sup>t</sup> DP  | Opóźnienie wyjścia sygnału DBIN<br>względem narastającego zbocza<br>fazy 9 <sub>2</sub>                                         | ns    | 25      | 140             |  |
| <sup>t</sup> DI  | Opóźnienie wejścia szyny danych<br>w stan oczekiwania na przyjęcie<br>danych względem narastającego<br>zbocza \$\mathcal{J}_2\$ | ns    |         | <sup>t</sup> DF |  |
| t <sub>DS1</sub> | Czas podtrzymania danych wejścio-<br>wych względem opadającego zbocza<br>fazy 9 <sub>1</sub> przy DBIN = 1                      | ns    | 30      |                 |  |
| t <sub>DS2</sub> | Csas podtrzymania danych wejścio-<br>wych względem narastającego zbocza<br>fasy 9 <sub>2</sub> przy DBIN = 1                    | ns    | 150     |                 |  |
| <sup>t</sup> DH  | Csas podtrzymania danych wejścio-<br>wych wsględem narastającego zbocza<br>fazy \$2 przy DBIN = 1                               | ns    | uwaga 1 |                 |  |
| t <sub>IB</sub>  | Opóźnienie zmiany stanu sygnału<br>IMTE względem narastającego zbocza<br>fazy \$6_2                                             | ns    |         | 200             |  |
| <sup>t</sup> RS  | Czas podtrzymania sygnału READY<br>względem opadającego zbocza<br>fazy p                                                        | ns    | 120     |                 |  |
| t <sub>HS</sub>  | Czas podtrzymania sygnału HOLD<br>względem narastającego zbocza<br>fazy \$\mathcal{g}_2\$                                       | ns    | 140     | :               |  |
| <sup>t</sup> IS  | Czas podtrzymania sygnału INT<br>względem opadającego zbocza<br>fazy \$\mathcal{g}_2\$                                          | ns    | 120     |                 |  |
| <sup>t</sup> H   | Czas podtrzymania sygnałów READY,<br>INT, HOLD względem opadającego<br>zbocza fazy 02                                           | ns    | 0       |                 |  |
| t <sub>FD</sub>  | Opóźnienie wejścia wyjść adreso-<br>wych i danych w stan wysokiej<br>impedancji w stanie HOLD                                   | ns    |         | 120             |  |
| <sup>t</sup> A₩  | Czas podtrzymania adresów przed<br>sygnalem WR                                                                                  | ns    | uwaga 2 | ·               |  |

ou. tabl.

| Oznaczenie      | Na zwa                                                                                                                  | Jedn. | Wartość |     |
|-----------------|-------------------------------------------------------------------------------------------------------------------------|-------|---------|-----|
|                 |                                                                                                                         |       | min     | max |
| <sup>t</sup> DW | Csas podtrzymania danych wyjścio-<br>wych przed sygnalem WR                                                             | ns    | uwaga 3 |     |
| <sup>‡</sup> WD | Czas podtrzymania danych wyjścio-<br>wych po sygnale WR                                                                 | ns    | uwaga 4 |     |
| t <sub>wa</sub> | Csas pozostawania adresów po<br>sygnale WR                                                                              | ns    | uwaga 4 |     |
| t <sub>HF</sub> | Općánienie wejścia wyjść adreso-<br>wych i danych w stan wysokiej<br>impedancji względem narastające-<br>go sbocza HLDA | ns    | uwaga 5 |     |
| t <sub>wr</sub> | Opóźnienie wejścia wyjść adreso-<br>wych i danych w stan wysokiej<br>impedancji wsględem narastającego<br>sboosa WR     | ns    | uwaga 6 |     |
| <sup>t</sup> AH | Csas podtrzymania adresów po<br>sygnale DBIN podczas HLDA = 1                                                           | ns    | -20     |     |

U w a g a 1. Mniejszy spośród: 
$$t_{DF}$$
 lub 50 ns

U w a g a 2.  $t_{AW}$  = 2  $t_{CY}$  -  $t_{D3}$  -  $t_r$  - 140 ns

U w a g a 3.  $t_{DW}$  =  $t_{CY}$  -  $t_{D3}$  -  $t_r$  - 170 ns

U w a g a 4. Jeżeli HLDA = 0  $t_{WD}$  =  $t_{WA}$  =  $t_{D3}$  +  $t_r$  + 10 ns, jeżeli HLDA = 1  $t_{WD}$  =  $t_{WA}$  =  $t_{WF}$ 

U w a g a 5.  $t_{HF}$  =  $t_{D3}$  +  $t_r$  - 50 ns

U w a g a 6.  $t_{WF}$  =  $t_{D3}$  +  $t_r$  - 10 ns

### Parametry dynamiczne pojemności

$$/v_{BB} = -5 \text{ V}; v_{CC} = v_{DD} = v_{SS} = 0 \text{ V}; t_{amb} = t_{amb min} \div t_{amb max}/$$

| Oznaczenie     | Na zwa                     | Jedn. | Wartość |     | Warunki                                                     |
|----------------|----------------------------|-------|---------|-----|-------------------------------------------------------------|
|                |                            |       | min     | BAX | pomiaru                                                     |
| Сø             | Pojemność wejść zegarowych | ₽₽    | 17      | 25  | f = 1 MHz wyprowadzeni niemierzone swarte z U <sub>SS</sub> |
| c <sup>I</sup> | Pojemność wejściowa        | ₽₽    | 6       | 10  |                                                             |
| co             | Pojemność wyjściowa        | ₽₽    | 10      | 20  |                                                             |



finicje parametrów dynamicznych

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.