

DIGITAL DESIGN

ASSIGNMENTREPORT

ASSIGNMENT ID: II

Student Name: 郑鑫颖

Student ID: 11912039

PART 1: DIGITAL DESIGN THEORY

Provide your answers here:

```
Part 1:
    a: E=F1+F2 is struc when F.
  1. as assume that Fi = Min + Miz + Miz, mi denote the minterm of Fi
                 F2=Mi1+Mi2+Mi3, mi denote the mintern of F2
                 Q:E = Fi+F2 = (mi(+ mi2+ mis) + (mi1+ mi2+ mis)
                 b: B= G=F1. F2 = (Min+Min+Min) (Min+Min+ min)
                              = Z mixmiy
                    if mex = Miy then Maxmy = Max
                      if mix + miy then mix miy = 0
                    So G = Fi Fz = E Mix, when Mix is the common mintern of
2. a: F(x,y,3) = \(\begin{align*} \Gamma(0,2,4,6,6). \end{align*}
      F(A,B,C,D)=T(1,3,5,8,11,13,15)= \(\int(0,2,4,6,7,9,10,12,14)\)
3. a: (b'+d)(a'+b'+c)(a+c)
      =(a+b'+c+d)(a'+b'+c+d)(a+b'+c'+d)(a'+b'+c'+d)
        (a'+b'+c+d)(a'+b'+c+d')(a+b+c+d)(a+b'+c+d)
        (a+b+c+d')(a+b+c+d')
      = (a+b'+c+d)(a'+b'+c+d)(a+b'+c+d)(a'+b'+c'+d)
        (a+b'+c+d') (a+b+c+d) (a+b+c+d') (a+b'+c+d')
      =\pi 0 (4, 12, 6, 14, 13, 0, 1, 5)
      = T(0,1,4,5,6, 12,13,14) = \(\Sigma(2,3,7,8,9,10,11,16) + 0.8 A.
     = & a'b'cd' + a'b'cd + a'bcd + ab'c'd' + ab'c'd + ab'cd' + ab'cd
      +a'b'c'd' +abcd = cd+ab'+b'cd' = cd+ab'+b'C
                      S = F=ab+a'c'+bC
                            = T (M1, M4, M5) A
                            = (a+b+c')(a'+b+c)(a'+b+c')
                            = (a+b+c1)(a+b)
```


6. (a) F(A,B,c,D) = AD + BC'D + ABC + A'BC'D= (A+B)(c+D)(A+c')(B+D)

(b) F(A,B,C,D) = (A'+C')(C'+D')

b. F(A,B,C,D) = \(\) (\(\), \(\), \(\), \(\), \(\) (\(\), \(\), \(\), \(\) (\(\), \(\),

F(A,B,C,D)=A'BD+A'BC+BCD+ABD' = ≥ (5,6,7,12,14)

PART 2: DIGITAL DESIGN LAB (TASK1)(已完成检查)

DESIGN

Describe the design of your system by providing the following information:

- Verilog design (provide the Verilog code)
- Truth-table

SIMULATION

Describe how you build the test bench and do the simulation.

- Using Verilog (provide the Verilog code)
- Wave form of simulation result (provide screen shots)
- The description on whether the simulation result is same as the truth-table, is the function of the design meet the expectation.

CONSTRAINT FILE AND THE TESTING

Describe how you test your design on the Minisys Practice platform.

- Constraint file (provide the screen shots on the feature of a pin and the binding info between pins and the input /output ports)
- The testing result (provide the screen shots (at least 3 testing scene) to show state of inputs and outputs along with the related descriptions.

THE DESCRIPTION OF OPERATION

Describe the problem occurred while in the lab and your solution. Any suggestions are welcomed.

Problems and solutions

PART 2: DIGITAL DESIGN LAB (TASK2)

DESIGN

Describe the design of your system by providing the following information:

- Verilog design while using data flow (provide the Verilog code)
- Verilog design while using structured design (provide the Verilog code)
- Block design (provide screen shots)
- Truth-table

SIMULATION

Describe how you build the test bench and do the simulation.

- Using Verilog (provide the Verilog code)
- Wave form of simulation result (provide screen shots)
- The description on whether the simulation result is same as the truth-table, is the function of the design meet the expectation

CONSTRAINT FILE AND THE TESTING

Describe how you test your design on the Minisys Practice platform.

- Constraint file (provide the screen shots on the feature of a pin and the binding info between pins and the input /output ports)
- The testing result (provide the screen shots (at least 3 testing scene)) to show state of inputs and outputs along with the related descriptions.

THE DESCRIPTION OF OPERATION

Describe the problem occurred while in the lab and your solution. Any suggestions are welcomed.

Problems and solutions