Overparameterization of Realistic Quantum Systems

Matthew Duschenes*, Juan Carrasquilla, Raymond Laflamme University of Waterloo, Institute for Quantum Computing, & Vector Institute

May 29, 2023

Vector Quantum Workshop

What Are Parameterized Quantum Systems?

What Are Parameterized Quantum Systems?

i.e)
$$D = 2$$
 Qubits

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle : \langle \psi | \psi \rangle = |\alpha|^2 + |\beta|^2 = 1$$
 (1)

What Are Parameterized Quantum Systems?

i.e) Pauli operations on D basis vectors $\sigma \in \{0, 1, \dots, D-1\}$

$$Z |\sigma\rangle = e^{-i\sigma 2\pi/D} |\sigma\rangle$$
 $X |\sigma\rangle = |\sigma \oplus 1\rangle$ $Y |\sigma\rangle = e^{-i\sigma 2\pi/D} |\sigma \oplus 1\rangle$ (2)

How Do We Evolve Quantum Systems?

Experiments and dynamics are specified by a *Hamiltonian* $H_{\theta}^{(t)}$ that dictates the instantaneous *energy* of a system, and drives its *unitary* evolution

$$U_{\theta}^{(t)} = \mathcal{T}e^{-i\int_0^t d\tau \ H_{\theta}^{(\tau)}} \quad : \quad U_{\theta}^{\dagger}U_{\theta} = I \ . \tag{3}$$

How Do We Evolve Quantum Systems?

Experiments and dynamics are specified by a *Hamiltonian* $H_{\theta}^{(t)}$ that dictates the instantaneous *energy* of a system, and drives its *unitary* evolution

$$U_{\theta}^{(t)} = \mathcal{T}e^{-i\int_0^t d\tau \ H_{\theta}^{(\tau)}} \quad : \quad U_{\theta}^{\dagger}U_{\theta} = I \ . \tag{3}$$

For classical simulation, evolution is discretized, or trotterized into M time steps $\delta = T/M$

$$U_{\theta}^{(T)} \approx \prod_{m=1}^{M} U_{\theta}^{(m)} + O(\delta^{2}) \tag{4}$$

$$U_{\theta}^{(m)} = e^{-i\delta H_{\theta}^{(m)}} . \tag{5}$$

How Do We Evolve Quantum Systems?

Experiments and dynamics are specified by a $Hamiltonian\ H_{\theta}^{(t)}$ that dictates the instantaneous energy of a system, and drives its unitary evolution

$$U_{\theta}^{(t)} = \mathcal{T}e^{-i\int_0^t d\tau \ H_{\theta}^{(\tau)}} \quad : \quad U_{\theta}^{\dagger}U_{\theta} = I \ . \tag{3}$$

For classical simulation, evolution is discretized, or trotterized into M time steps $\delta = T/M$

$$U_{\theta}^{(T)} \approx \prod_{m=1}^{M} U_{\theta}^{(m)} + O(\delta^{2}) \tag{4}$$

$$U_{\theta}^{(m)} = e^{-i\delta H_{\theta}^{(m)}} . \tag{5}$$

i.e) Nuclear Magnetic Resonance

$$H_{\theta}^{(t)} = \sum_{i} \theta_{i}^{x(t)} X_{i} + \sum_{i} \theta_{i}^{y(t)} Y_{i} + \sum_{i} h_{i} Z_{i} + \sum_{i \leq i} J_{ij} Z_{i} Z_{j}$$
 (6)

What Are We Able To Do With Current Quantum Systems?

- Experimental feasibility affects our ability to perform useful tasks
 - Unitary compilation: $U_{\theta} \approx U$
 - State preparation: $|\psi_{\theta}\rangle = U_{\theta} |\phi\rangle \approx |\psi\rangle$
 - Task performance described by infidelities: $\mathcal{L}_{\theta} \sim 1 \left| \operatorname{tr} \left(U^{\dagger} U_{\theta} \right) \right|^2 / D^{2N}$.

What Are We Able To Do With Current Quantum Systems?

- Experimental feasibility affects our ability to perform useful tasks
 - Unitary compilation: $U_{\theta} \approx U$
 - State preparation : $|\psi_{\theta}\rangle = U_{\theta} |\phi\rangle \approx |\psi\rangle$
 - Task performance described by infidelities: $\mathcal{L}_{\theta} \sim 1 \left| \operatorname{tr} \left(U^{\dagger} U_{\theta} \right) \right|^2 / D^{2N}$.
- ullet These systems are also severely constrained
 - i.e) Bounds on the fields, and imposing Uniformity or Boundary-conditions

What Are We Able To Do With Current Quantum Systems?

- Experimental feasibility affects our ability to perform useful tasks
 - Unitary compilation: $U_{\theta} \approx U$
 - State preparation: $|\psi_{\theta}\rangle = U_{\theta} |\phi\rangle \approx |\psi\rangle$
 - Task performance described by infidelities: $\mathcal{L}_{\theta} \sim 1 \left| \operatorname{tr} \left(U^{\dagger} U_{\theta} \right) \right|^2 / D^{2N}$.
- These systems are also severely *constrained*i.e) Bounds on the fields, and imposing Uniformity or Boundary-conditions
- Systems detrimentally interact with their environment, resulting in noise γ i.e) Dephasing $\mathcal{K}_{\gamma} = \{\sqrt{1-\gamma} I, \sqrt{\gamma} Z\}$

$$|\phi\rangle \rightarrow \phi = |\phi\rangle\langle\phi| \stackrel{U_{\theta},\mathcal{K}_{\gamma}}{\rightarrow} \rho_{\theta\gamma} = \sum_{K_{\gamma} \in \mathcal{K}_{\gamma}} K_{\gamma} U_{\theta} \phi U_{\theta}^{\dagger} K_{\gamma}^{\dagger}$$
 (7)

Learning Optimal Quantum Systems

How does the amount of noise γ and the evolution depth M of a constrained system affect its classical simulation and optimization, and resulting infidelities

$$\mathcal{L}_{\theta^*\gamma}$$
?

Learning Optimal Quantum Systems

How can we leverage approaches from quantum optimal control and learning theory to describe these relationships?

Learning Phenomena

• How do optimization algorithms *learn*, and traverse the *objective landscape*?

- ullet Learning can converge exponentially quickly in the $\it overparameterized$ regime
- Dimensionality of dynamical Lie algebra spanned by Hamiltonian, determines expressivity (Larocca et al. arXiv:2109.11676 (2021))
- Optimal control pulses must evolve according to a quantum speed limit (Deffner et al. J. Phys. A, **50** (2017))

Unconstrained vs. Constrained Optimization

• Haar random unitary compilation for N=4 qubits, with bounded fields shared across all qubits, and Dirichlet boundary conditions

Overparameterization Phenomena

• Overparameterized regime is reached with constraints for sufficient depth M > O(G) (For universal \mathcal{G}_{NMR} , $G = 2^{2N} - 1 = 255$)

(c) Negligible Relative Change of Parameters from Initialization

(d) Fisher Information Rank Saturation at G

Noisy Optimization

• Haar random state preparation for N=4 qubits, with independent dephasing

(e) Trained Noisy Infidelity, and Tested Infidelity of Noisy Parameters in Noiseless Ansatz

(f) Critical Depth for Noisy Infidelity

Universal Effects of Noise

• Effects of infidelities on noise for Haar random targets in $n = D^N$ dimensions

(g) Classical floating point noise for unitary compilation $|\mathcal{L}_{\theta\gamma} - \mathcal{L}_{\theta}| \leq n^{O(NM)} |(1+\gamma)^{O(NM)} - 1|$

(h) Quantum dephasing noise for state preparation $|\mathcal{L}_{\theta\gamma} - \mathcal{L}_{\theta}| \leq 2 \left| (1 - \gamma)^{NM} - 1 \right|$

Noise Induced Critical Depth

(i) Piecewise Fit of Noisy Infidelity

(j) Linear-Log Fit of Critical Depth

Noise Induced Critical Depth

Noise induces a critical depth (Fontana et al. PRA 104 (2021))

$$M_{\gamma} \sim \log 1/\gamma$$
 (8)

meaning the minimum infidelity is linear-quadratic ($1 \le \alpha \le 2$) in noise

$$\mathcal{L}_{\theta^*\gamma|M_{\gamma}} \sim \gamma^{\alpha} , \qquad (9)$$

and parameterized noise channels can therefore mitigate approximately

$$\bar{M}_{\gamma} \sim \gamma \log 1/\gamma \quad \text{errors} \ . \tag{10}$$

Noise Induced Critical Depth

Noise induces a critical depth (Fontana et al. PRA 104 (2021))

$$M_{\gamma} \sim \log 1/\gamma$$
 (8)

meaning the minimum infidelity is linear-quadratic ($1 \le \alpha \le 2$) in noise

$$\mathcal{L}_{\theta^*\gamma|M_{\gamma}} \sim \gamma^{\alpha} , \qquad (9)$$

and parameterized noise channels can therefore *mitigate* approximately

$$\bar{M}_{\gamma} \sim \gamma \log 1/\gamma \quad \text{errors} \ . \tag{10}$$

Is it possible to derive the M, γ scaling of the optimal $\mathcal{L}_{\theta^*\gamma}$ analytically?

What Have We Learned About Noisy Overparameterization?

- Overparameterization is robust to constraints; requires $\sim O(N)$ greater depth
- Accumulation of noise induces a *critical* depth M_{γ} that prevents convergence
- Non-trivial compromises between numerical and experimental feasibility
- Channel fidelities, entanglement measures, and mitigation interpretations, will further quantify the abilities of noisy variational ansatz

Appendix

How May We Control Quantum Systems?

- Represented as channels $\Lambda_{\theta\gamma} = \mathcal{N}_{\gamma} \circ \mathcal{U}_{\theta}$ with unitary evolution \mathcal{U}_{θ} , and noise \mathcal{N}_{γ}
- Evolution generated by Hamiltonians with localized generators $\{G_{\mu}\}$

$$H_{\theta}^{(t)} = \sum_{\mu} \theta_{\mu}^{(t)} G_{\mu} \rightarrow U_{\theta} \approx \prod_{t}^{M} U_{\theta}^{(t)} : U_{\theta}^{(t)} = e^{-i\delta H_{\theta}^{(t)}} \approx \prod_{\mu} e^{-i\delta\theta_{\mu}^{(t)} G_{\mu}}$$
(11)

i.e) NMR with variable transverse fields and constant longitudinal fields (Peterson *et al.*, PRA **13** (2020)) (Coloured in circuit \searrow)

$$H_{\theta}^{(t)} = \sum_{i} \theta_{i}^{x(t)} X_{i} + \sum_{i} \theta_{i}^{y(t)} Y_{i} + \sum_{i} h_{i} Z_{i} + \sum_{i < j} J_{ij} Z_{i} Z_{j} \tag{12}$$

• Noise generated by constant *Kraus* operators $\{\mathcal{K}_{\gamma_{\alpha}}\}$ i.e) Dephasing $\{\sqrt{1-\gamma} I, \sqrt{\gamma} Z\}$

$$\rho \to \rho_{\Lambda_{\theta\gamma}} = \prod_{t}^{M} \mathcal{N}_{\gamma} \circ \mathcal{U}_{\theta}^{(t)}(\rho) = \prod_{t}^{M} \left[\sum_{\alpha} \mathcal{K}_{\gamma_{\alpha}} U_{\theta}^{(t)} \rho U_{\theta}^{(t)^{\dagger}} \mathcal{K}_{\gamma_{\alpha}^{\dagger}} \right]$$
(13)

How Do We Optimize Quantum Systems?

- Systems must be efficiently simulated *classically* i.e) Just-in-time compilation
- Parameters are optimized with gradient methods i.e) Automatic differentiation
- Desired tasks are represented as *objectives* to be minimized i.e) (In)Fidelities

$$\mathcal{L}_{\theta\gamma} \sim \operatorname{tr}\left(\rho_{\Lambda_{\theta\gamma}}\rho_U\right) \tag{14}$$

• Analogous forms of gradients of objectives in noiseless and noisy system i.e) Exact parameter-shift rules, for some generator-dependent angle ζ

$$\partial \mathcal{L}_{\theta\gamma} \sim \mathcal{L}_{\theta+\zeta \gamma} - \mathcal{L}_{\theta-\zeta \gamma} \tag{15}$$