

Algorithms and Applications of Data Mining

Yijun Lin yijunlin@usc.edu

About This Course

- Spring 2021, Friday, 6-8 PM PST
- Instructor: Yao-Yi Chiang
- TA: Yijun Lin
 - Office Hour Sat. 7-9 PM PST
- Syllabus:

	Topic	Readings and Assignments	Deliverables/Due Dates
Week 1	Introduction to Data Mining	Ch1: Data Mining and	
Week 2	MapReduce	Ch2: Large-Scale File Systems and Map-Reduce	Homework 1 assigned
Week 3	Frequent itemsets and Association rules	Ch6: Frequent itemsets,	Homework 2 assigned
Week 4	Clustering	Ch7: Clustering	Homework 1 due
Week 5	Recommendation Systems: Content- based	Ch9: Recommendation systems	Homework 2 due, Homework 3 assigned
Week 6	Recommendation Systems: Collaborative Filtering	Ch9: Recommendation systems	Homework 3 due

Assignments

- Theoretical and programming questions
 - Real-world datasets
- Homework 1 basic spark operations
- Homework 2 mining frequent itemset
- Homework 3 recommender system
- Optional clustering

Config Environment

- Python is required for all the assignments
- Implementing with Apache Spark Framework
 - python=3.7
 - pyspark=3.0.1
 - git clone https://github.com/linyijun/spark-tutorial.git
- Install miniconda/anaconda
 - conda env create -f spark-env.yml python=3.7
- Install PyCharm

Introduction to Spark

What is Spark?

Apache Spark is a unified analytics engine for Spark large-scale data processing

- **Application areas**
 - Interactive Data Query
 - Real-time Data Analysis
 - Streaming Data Processing

Spark Stack

- An RDD is an immutable, in-memory collection of objects
- Each RDD can be split into multiple partitions, which in turn are computed on different nodes of the cluster
- RDDs seem a lot like Scala collections
 - RDD[T] and List[T]

How to create an RDD

- RDDs can be created in two ways:
 - Creating from a SparkContext object
 - Transforming from an existing RDD

- Creating from a SparkContext object
 - Can be thought as your handle to the Spark cluster
 - Represents the connection to a Spark cluster

- Creating from a SparkContext object
 - parallelize: convert a local Scala collection to an RDD

```
a_list = ['you', 'jump', 'I', 'jump', '']
a_rdd = sc.parallelize(a_list) # RDD[String]
```


- Creating from a SparkContext object
 - parallelize: convert a local Scala collection to an RDD

```
a_list = ['you', 'jump', 'I', 'jump', '']
a_rdd = sc.parallelize(a_list) # RDD[String]
```

textFile: read a file from HDFS or local file system

```
input_file = 'work-count-sample-doc.txt'
text_rdd = sc.textFile(input_file)
```


- Transforming from an existing RDD
 - E.g., calling a map operation on an existing RDD,
 it will return a new RDD

```
# call a map operation on an RDD
length_rdd = word_rdd.map(lambda x: len(x)) # RDD[Int]
```

RDD Operations

- Transformations
 - E.g., map, filter, ...

```
# call a map operation on an RDD
length_rdd = word_rdd.map(lambda x: len(x)) # RDD[Int]
```

- Actions
 - E.g., collect, reduce ...

```
a_coll = a_rdd.collect() # RDD -> collection
print(a_coll) # ['you', 'jump', 'I', 'jump', '']
```

Transformations VS Actions

Transformations

- Return new RDDs as results
- They are lazy, the result RDD is not immediately computed

Actions

- Compute a result based on an RDD, and returned
- They are eager, the result is immediately computed

Transformations VS Actions

Transformations

- Return new RDDs as results
- They are lazy, the result RDD is not immediately computed

```
# call a map operation on an RDD
length_rdd = word_rdd.map(lambda x: len(x)) # RDD[Int]
```

Actions

- Compute a result based on an RDD, and returned
- They are eager, the result is immediately computed

```
a_coll = a_rdd.collect() # RDD -> collection
print(a_coll) # ['you', 'jump', 'I', 'jump', '']
```

Transformations VS Actions

Transformations

- Return new RDDs as results
- They are lazy, the result RDD is not immediately computed

Actions

- Compute a result based on an RDD, and returned
- They are eager, the result is immediately computed

Laziness / Eagerness is how we can limit network communication using the programming model

Example

Consider the following example:

```
a_list = ['you', 'jump', 'I', 'jump', '']
# create an RDD from a list
a_rdd = sc.parallelize(a_list) # RDD[String]
# call a map operation RDD
a_len_rdd = a_rdd.map(lambda x: len(x)) # RDD[Int]
```

What has happened on the cluster at this point?

Example (Cont.)

Consider the following example:

```
a_list = ['you', 'jump', 'I', 'jump', '']
# create an RDD from a list
a_rdd = sc.parallelize(a_list) # RDD[String]
# call a map operation RDD
a_len_rdd = a_rdd.map(lambda x: len(x)) # RDD[Int]
```

What has happened on the cluster at this point?

Nothing. Execution of map (a transformation) is deferred.

Example (Cont.)

Consider the following example:

```
a_list = ['you', 'jump', 'I', 'jump', '']
# create an RDD from a list
a_rdd = sc.parallelize(a_list) # RDD[String]
# call a map operation RDD
a_len_rdd = a_rdd.map(lambda x: len(x)) # RDD[Int]
```

What has happened on the cluster at this point? **Nothing**. Execution of *map* (a transformation) is deferred.

How to ensure this computation is done on the cluster?

Example (Cont.)

Consider the following example:

```
a_list = ['you', 'jump', 'I', 'jump', '']
# create an RDD from a list
a_rdd = sc.parallelize(a_list) # RDD[String]
# call a map operation RDD
a_len_rdd = a_rdd.map(lambda x: len(x)) # RDD[Int]

total_len = a_len_rdd.reduce(lambda a, b: a + b) # 12
```

add an action, reduce

Spark starts the execution when an action is called

Return the total number of characters in the entire RDD of strings

Benefits of Laziness

Another example:

```
input_file = 'work-count-sample-doc.txt'
text_rdd = sc.textFile(input_file)
word_rdd = text_rdd.flatMap(lambda x: x.split(' ')).take(10)
```

Benefits of Laziness

Another example:

```
input_file = 'work-count-sample-doc.txt'
text_rdd = sc.textFile(input_file)
word_rdd = text_rdd.flatMap(lambda x: x.split(' ')).take(10)
```

- The execution of filter is deferred until the take action happens
 - Spark will not compute intermediate RDDs. As soon as 10 elements of the filtered RDD have been computed, logsWithErrors is done.

Benefits of Laziness

Another example:

```
input_file = 'work-count-sample-doc.txt'
text_rdd = sc.textFile(input_file)
word_rdd = text_rdd.flatMap(lambda x: x.split(' ')).take(10)
```

- The execution of filter is deferred until the take action happens
 - Spark will not compute intermediate RDDs. As soon as 10 elements of the filtered RDD have been computed, logsWithErrors is done
- Spark leverages this by analyzing and optimizing the chain of operations before executing it
 - Spark saves time and space to compute elements of the unused result of the *filter operation*

Common Transformations

map map[T](f: A=>B): RDD[T]

Apply function to each element in the RDD and return an RDD of the result.

flatmap flatmap[T](f: A=>B): RDD[T]

Apply function to each element in the RDD and return an RDD of the result, but output is flattened.

filter filter[T](pred: A=>Boolean): RDD[T]

Apply predicate function, pred, to each element in the RDD and return an RDD of elements that passed the condition.

distinct distinct():RDD[T]

Return an RDD with duplicates removed

Common Transformations

flatmap

flatmap[T](f: A=>B): RDD[T]

Apply function to each element in the RDD and return an RDD of the result, but output is flattened.

Common Transformations

distinct distinct():RDD[T]

Return an RDD with duplicates removed

Common Actions

collect collect: Array[T]

Return all elements from RDD.

count count(): Long

Return the number of elements in the RDD.

take take(num: Int): Array[T]

Return the first num elements of the RDD.

reduce reduce(op: (A, A) => A): A

Combine the elements in the RDD together using

op function and return result.

foreach foreach(f: A => Unit): Unit

Apply function to each element in the RDD, and

return Unit.

Common Actions

count count(): Long

Return the number of elements in the RDD.

Common Actions

foreach foreach(f: A => Unit): Unit

Apply function to each element in the RDD, and return Unit.

```
case class Person(name: String, age: Int)

val people: RDD[Person]
people.foreach(println)
```

Cluster Topology

A simple example with println

```
case class Person(name: String, age: Int)

val people: RDD[Person]
people.foreach(println)
```

What happens?

Master-Worker Master
Topology

This is the node you're interacting with when you're writing Spark programs!

Driver Program

Spark Context

In the context of a Spark program

These are the nodes actually executing the jobs!

Worker Node

Executor

How do they communicate?

How Spark jobs are Executed

How Spark jobs are Executed

Cluster Topology

A simple example with println

```
case class Person(name: String, age: Int)

val people: RDD[Person]
people.foreach(println)
```

What happens?

Cluster Toplogy

A simple example with println

```
case class Person(name: String, age: Int)

val people: RDD[Person]
people.foreach(println)
```

On the driver: Nothing.

Why? Recall that foreach is **an action**, with **return type Unit**. Therefore, it will be eagerly executed on the executors. Thus, any calls to *println* are happening on the worker nodes and are not visible in the drive node.

Cluster Topology

Another simple example with take

```
case class Person(name: String, age: Int)

val people: RDD[Person]
people.foreach(println)

val first10 = people.take(10)
```

Where will first10 end up?

Cluster Topology

Another simple example with take

```
case class Person(name: String, age: Int)

val people: RDD[Person]
people.foreach(println)

val first10 = people.take(10)
```

Where will *first10* end up? The driver program.

In general, executing an action involves communication between worker nodes and the node running the driver program.

Why Spark is Good for Data Sci

In-memory computation

Transformations: Lazy, deferred

Actions: Eager, kick off staged transformations

- Why Spark is good for data science?
 - Machine learning algorithms

• Most data science problems involve iterations

Iteration in Hadoop:

Most data science problems involve iteration

Iteration in Hadoop:

Iteration in Spark:

Example: Logistic Regression

• Logistic regression is **an iterative algorithm** typically used for classification. Like most classification algorithms, it **updates** weights iteratively base on the training data.

Example: Logistic Regression

 Logistic regression is an iterative algorithm typically used for classification. Like most classification algorithms, it updates weights iteratively base on the training data.

$$w \leftarrow w - \alpha \cdot \sum_{i=1}^{n} g(w; x_i, y_i)$$

Logistic regression sample code:

Logistic regression sample code:

```
val points = sc.textFile(...).map(parsePoint) // case class Point(x: Double, y: Double)
var w = Vector.zero(d)
for(i <- 1 to numIterations) {
    val gradient = points.map {p =>
        g(p) // Apply the function of logistic regression
    }.reduce(_+_)
    w -= alpha * gradient
    w \leftarrow w - \alpha \cdot \sum_{i=1}^{n} g(w; x_i, y_i)
}
```

What is the weakness for this code?

Logistic regression sample code:

```
val points = sc.textFile(...).map(parsePoint) // case class Point(x: Double, y: Double)
var w = Vector.zero(d)
for(i <- 1 to numIterations) {
   val gradient = points.map {p =>
      g(p) // Apply the function of logistic regression
   }.reduce(_+_)
   w -= alpha * gradient
}
```

Spark starts the execution when the action reduce is applied

Logistic regression sample code:

```
val points = sc.textFile(...) map parsePoint) // case class Point(x: Double, y: Double)
var w = Vector.zero(d)
for(i <- 1 to numIterations) {
   val gradient = points map {p =>
        g(p) // Apply the function of logistic regression
   }.reduce(_+_)
   w -= alpha * gradient
}
```

points is being re-evaluated upon every iteration!
Unnecessary!

Caching and Persistence

 By default, RDDs are recomputed each time you run an action on them. This can be expensive (time-consuming) if you need to use a dataset more than once.

Spark allows you to control what is cached in memory use *persist()* or *cache()*

```
cache(): using the default storage level
```

persist(): can pass the storage level as a parameter,

e.g., "MEMORY_ONLY", "MEMORY_AND_DISK"

Logistic regression sample code:

```
val points = sc.textFile(...).map(parsePoint).persist()
var w = Vector.zero(d)
for(i <- 1 to numIterations) {
   val gradient = points.map {p =>
        g(p) // Apply the function of logistic regression
   }.reduce(_+_)
   w -= alpha * gradient
}
```

points is evaluated once and is cached in memory.

It can be re-used on each iteration.

Why Spark is Good for Data Sci

- The lazy semantics of RDD transformation operations help improve the performance.
- One of the most common performance bottlenecks for newcomers to Spark arises from unknowingly re-evaluating several transformations when caching could be used.

Spark vs. Hadoop

Spark is Faster

- When the output of an operation needs to be fed into another operation, Spark passes the data directly without writing to persistent storage
- Better for some iterative algorithms
 e.g. machine learning algorithms

Spark runs programs up to 100x faster than Hadoop MapReduce in memory. [1]

Logistic regression in Hadoop and Spark

Other advantages

Easy to use

Write applications quickly in Java, Scala, Python

Runs Everywhere

- Spark runs on Hadoop, standalone, or in the cloud
- It can access diverse data sources including HDFS, Cassandra,
 HBase, and S3

Generality

Combine SQL, streaming, and complex analytics

Word Count

```
word_count.py ×
                text.txt ×
       from pyspark import SparkContext
       import os
2
3
4
5
6
       sc = SparkContext('local[*]', 'wordCount')
7
8
       input_file_path = './text.txt'
9
       textRDD = sc.textFile(input_file_path)
10
11
       counts = textRDD.flatMap(lambda line: line.split(' ')) \
12
           .map(lambda word: (word, 1)).reduceByKey(lambda a, b: a+b).collect()
13
14
15
       for each_word in counts:
           print(each_word)
16
17
```

If you want to learn more...

- Official documentation
 - http://spark.apache.org/docs/latest/
- Online course
 - Coursera: Big Data Analysis with Scala and Spark
- Books
 - Learning Spark, O' Reilly
 - Advanced Analytics with Spark: Patterns for Learning from Data at Scale, O' Reilly
 - Machine Learning with Spark, Packt