TEOREMA

$$l: I \rightarrow \mathbb{R}$$

l: I→R I intervalls

xo p. to di mox o min relativo

DIMOSTRAZIONE

Sio X massins.

$$\forall l > 0 \text{ tale che } \times_0 + l \in I, \text{ ni ha} \quad f(x_0 + l u) \leq f(x_0),$$

quidi
$$\frac{f(x_0+l_1)-f(x_0)}{l_1} \le 0 \Longrightarrow f_+^1(x_0) \le 0$$

quindi

$$\frac{f(x_0+l_1)-f(x_0)}{l_1} \geq 0 \Longrightarrow f'(x_0) \geq 0$$

Siccome fa demodile in xo, si ha

$$2'(\times_0) = 2'(\times_0) = 2'(\times_0) = 0$$

TEOREMI VALOR MEDIO DEL

TEOREMA DI ROLLE

$$\begin{cases}
+ & \exists c \in (a, l) : f'(c) = 0
\end{cases}$$

TEOREMA DI LAGRANGE

(POTES)
$$\mathcal{D}$$
 for $f \Rightarrow \exists c \in (a, k)$:

TEOREMA DI CAUCHY

1POTESI (1) per 8,
$$g'(x) \neq 0$$
 $\forall x \in (a, b)$ $\Rightarrow \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$

$$\frac{f(b) - f(a)}{8(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

DIMOSTRAZIONI

