P = Yy F(x,y) < him you, do fei(t) x

P = Tx Yy F(x,y) < Jak, do frei (4)= \$

Hausaufgabe 3

8+4+12+8 = 32 Punkte

B

Hen

Sei $\sigma = \{E\}$ eine Signatur mit einem zweistelligen Relationssymbol E. Wir fassen in dieser Aufgabe Graphen als σ -Strukturen auf, wobei wir E als die Kantenrelation interpretieren.

Sei B eine Menge und $v \notin B$. Ein Stern ist ein Graph G mit Knotenmenge $B \cup \{v\}$ und Kantenmenge $\{\{v,b\} \mid b \in B\}$.

(i) Zeigen Sie: Die Klasse der endlichen Sterne ist nicht in $FO[\sigma]$ definierbar.

Es gilt heine endliche Menge & von Latzen,

Definition 5.32 Sei σ eine Signatur und $\Phi \subseteq FO[\sigma]$ eine Menge von σ -Sätzen.

(1) Die Modellklasse von Φ, geschrieben Mod(Φ), ist die Klasse aller σ-Strukturen A mit A |= Φ. Falls Φ := {φ} nur einen Satz enthält, schreiben wir kurz Mod(φ).

(3) Eine Klasse C von σ-Strukturen ist axiomatisierbar (in der Prädikatenlogik), oder FO-axiomatisierbar, wenn C = Mod(Φ) für eine Menge Φ ⊆ FO[σ]. Wenn es eine endliche Menge Φ mit C = Mod(Φ) gibt, so heißt C endlich axiomatisierbar (in der Prädikatenlogik) oder definierbar (in der Prädikatenlogik).

P = Es gilt Morter der Fridikatenbegik)

Nerbruder it restriction om her historie

Nerbruder it restriction om Herne

Ward (a) = Wasse aller Sterne #

Whole (b) = Wasse aller Sterne #

Whole (c) = Wasse aller Sterne #

Whole (d) = Wasse aller S

Jede Kante hut x als Endpunkt

Definierbarkeit in der Prädikatenlogik. m-Äquivalenz eignet sich besser als elementare Äquivalenz zum Beweis der Nicht-Definierbarkeit bestimmter Aussagen. Wenn wir zeigen wollen, dass Erreichbarkeit nicht in der Prädikatenlogik definierbar ist, reicht es, für alle m zwei σ -Strukturen A_m , B_m zu finden, sodass

- es in A_m einen Weg von s nach t gibt, in B_m aber nicht und
- $A_m \equiv_m B_m$.

Allgemeiner können wir Folgendes zeigen.

Lemma 6.14 Sei σ eine Signatur und C eine Klasse von σ -Strukturen. Falls es für alle $m \ge 1$ zwei σ -Strukturen A_m und B_m gibt, sodass

- A_m ∈ C, B_m ∉ C und
- A_m ≡_m B_m,

dann gibt es keinen Satz $\varphi \in FO[\sigma]$, der C definiert, d.h. es gibt kein $\varphi \in FO[\sigma]$ mit $Mod(\varphi) = C$.

Reviewen. Falls es für Q= Klone der endlichen Henre