

Comparing the Decompositions Produced by Software Clustering Algorithms using Similarity Measurements

2001 IEEE International Conference on Software Maintenance (ICSM'01).

Brian S. Mitchell & Spiros Mancoridis

Math & Computer Science, Drexel University

Motivation

Using module dependencies when determining the similarity between two decompositions is a good idea...

Clustering the Structure of a System (1)

Given the structure of a system...

Clustering the Structure of a System (2)

The goal is to partition the system structure graph into clusters...

The clusters should represent the subsystems

Clustering the Structure of a System (3)

But how do we know that the clustering result is good?

Ways to Evaluate Software Clustering Results...

Given a software clustering result, we can:

- Assess it against a mental model
- Assess it against a benchmark standard
- Techniques:
 - Subjective Opinions
 - Similarity Measurements

Example: How "Similar" are these Decompositions?

P_B M5 M6 M8

Blue Edges:

Similarity still the same...

Green Edges:

Similarity still the same...

Red Edges:

Not as similar...

Conclusions:

Once we add the red edges the similarity between P_A and P_B decreases

Observations

- Edges are important for determining the similarity between decompositions
- Existing measurements don't consider edges:
 - Precision / Recall (similarity)
 - MoJo (distance)
- Our idea: Use the edges to determine similarity

Research Objectives

- Create new similarity measurements that use dependencies (edges)
 - EdgeSim (similarity)
 - MeCI (distance)
- Evaluate the new similarity measurements against MoJo & Precision/Recall
- Use similarity measurements to support evaluation of software clustering results (see our WCRE'01 paper)

Example: How "Similar" are these Decompositions?

Add
Blue Edges:
PR, MoJo, MeCl &
EdgeSim unchanged.

Add Green Edges:

PR, MoJo, MeCl & EdgeSim unchanged.

Add
Red Edges:
PR, MoJo unchanged.
EdgeSim, MeCl
reduced.

Definitions

Internal/Intra-Edge: Edge within a cluster

External/Inter-Edge: Edge between two clusters

EdgeSim Example

Step 1: Find Common Interand Intra-Edges

http://serg.mcs.drexel.edu

MeCI Example

MeCl Example (A→B)

MeCl Example $(A_1 \cap B_1)$

MeCl Example $(A_2 \cap B_1)$

MeCl Example (A→B)

B₁

Newly Introduced Inter-Edges

 B_2

MeCl Example (B→A)

MeCl Calculation

P_B

Inter-Edges Introduced

MeCI($A \rightarrow B$): ($\{b,e\},\{e,c\},\{g,h\},\{f,h\}$)

MeCl($B \rightarrow A$): ({e,i},{h,j},{b,f},{c,f},{h,e})

$$\mathbf{MeCI} = \begin{bmatrix} 1 - \frac{\max_{W}(M_{A \to B}, M_{B \to A})}{\text{Total Edge Weight}} \end{bmatrix}$$

$$MeCI = \left[1 - \frac{5}{19}\right] = 73.7\%$$

Similarity Measurement Recap

 P_1

F 9/

 $MoJo(P_1) = MoJo(P_2) = 87.5\%$

 $PR(P_1) = PR(P_2) = P:84.6\%, R:68.7\%, AVG_{PR} = 76.7\%$

Conclusion... P1 is equally similar to P2

Similarity Measurement Recap

 P_1

EdgeSim(P_1)=77.8%

EdgeSim(P_2)=58.3%

 $MeCI(P_1) = 88.9\%$

 $MeCI(P_2) = 66.7\%$

29

Summary: EdgeSim & MeCl

EdgeSim:

- Rewards clustering algorithms for preserving the edge types
- Penalizes clustering algorithms for changing the edge types

♦ MeCI:

 Rewards the clustering algorithm for creating cohesive "subclusters"

Special Modules

Omnipresent Modules:

"Strong" Connection to other Modules

Library Modules:

Always used by other modules, never use other modules

Isomorphic Modules:

Modules equally connected to other subsystems

Special Modules

Special Treatment of Special Modules helps to determine the Similarity

Omnipresent Modules:

Removed

Library Modules:

Removed

Isomorphic Modules:

Replicated

Case Study Overview

Similarity Analysis

Average, Variance, etc. based on 100 clustering runs... (4950 Evaluations)

Case Study Observations

 All similarity measurements exhibit consistent behavior for the systems studied

For all systems examined:

If $MeCl(S_A) < MeCl(S_B)$ then $MoJo(S_A) < MoJo(S_B)$, $PR(S_A) < PR(S_B)$, and $EdgeSim(S_A) < EdgeSim(S_B)$

- Removal of "special" modules improved all similarity measurements
- Treating isomorphic modules specially only improved similarity slightly
- EdgeSim and MeCl produced higher and less variable similarity values then Precision/Recall and MoJo

Questions

- Special Thanks To:
 - AT&T Research
 - Sun Microsystems
 - DARPA
 - NSF
 - US Army

