relative to relation instruction location · _ branches -jumps absolute location

Hardware for Set Less Than

SLT: if (A < B) then Out=1, Out=0

Hardware for Set Less Than

Hardware for Most Significant Bit

Hardware for Set Less Than

Key Points:

1. have the internal ALU's do a subtract

2. take sign bit and use that as the

2. take

Hardware for BNE and BEQ

Key Points

1. subtract the register values

2. check Zero bit.

Hardware for BNE and BEQ

Datapath and Control

Goal

 Build an architecture to support the following instructions:

Process

MIPS Instruction Trends

- 1. store where program where is (program counter)
- 2. some instructions real 1 or 2 registers
- 3. some instructions write 1 registers

Framework

Instruction Fetch Get Instruction Aldr. Instruction Memory of current instruction use ALU and other CPU stuff

Instruction Fetch

-Midterm next Friday -HW due today

beginning of lab

- Key Points:
 - 1. PC. is a register (clocked)
 - 2. instruction is read from I.M. and the

I.M. is indexed by the PC

3. add 4 to the PC each cycle

-Lab due tonight

-Makefile required

diff -w -B.

- make lab2

- Java: java lab2 file.asm

file.asm

-C/C++: .//ab2

2. Register File

32. registers x 32. bits.
(\$a01.
\$a1,....)

-Rend 2 registers -Write 1 registers

