Corner Polyhedra

Let us consider an integer programming problem and its set of feasible solutions of the following form

$$P_I = \operatorname{conv} \{ x \in \mathbb{Z}^n_+ \mid Ax = b, \ x \ge 0 \}$$

where $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^m$ for some $m \leq n$. We can assume without any loss of generality that A is of full row rank, and write A = [B, N] for a basic subset B of its columns. Then we can write $x = (x_B, x_N)$ by grouping the components of x according to the above partitioning of the columns of A. For such a basic-nonbasic partitioning of the columns, we can write

$$x_B = B^{-1}b - B^{-1}Nx_N.$$

Let us denote by $f = B^{-1}b$, and introduce the notation $[-B^{-1}N] = [r_1, ..., r_{n-m}]$ for the coefficient columns of the nonbasic variables in the above equalities. Furthermore, we simplify our notation by introducing $z = x_B \in \mathbb{R}^m$ and $y = x_N \in \mathbb{R}^{n-m}$.

Following Gomory (1969) we relax now the integrality of the nonbasic variables $y = x_N$ and the nonnegativity of the basic variables $z = x_B$, and define the so called *corner polyhedron* as

$$P_C = \operatorname{conv}\left\{ \left(\begin{array}{c} z \\ y \end{array} \right) \in \mathbb{Z}^m \times \mathbb{R}^{n-m}_+ \; \middle| \; z = f + \sum_{j=1}^{n-m} r_j y_j \right\}$$

Lemma 1 If $(z,y) \in P_C$, $z \in \mathbb{Z}^m$, then for all j = 1,...,n-m and for infinitely many unbounded values of $\lambda > 0$ we have

$$(z + \lambda r_j, y_1, ..., y_{j-1}, y_j + \lambda, y_{j+1}, ..., y_{n-m}) \in P_C.$$

Proof. The vectors r_j are rational for all j=1,...,n-m, and thus for infinitely many (integer) values of $\lambda > 0$ we have that λr_j is an integer vector for all j=1,...,n-m.

Lemma 2 Assume that $f \in \mathbb{Q}^m \setminus \mathbb{Z}^m$ and $P_C \neq \emptyset$. Then tight valid inequalities for P_C that are violated by (f,0) can be written as

$$\sum_{j=1}^{n-m} \alpha_j y_j \geq 1$$

for some $\alpha_j \geq 0, j = 1, ..., n - m$.

Proof. An arbitrary valid inequality can be written as

$$\sum_{i=1}^{m} \mu_i z_i + \sum_{j=1}^{n-m} \nu_j y_j \ge \xi.$$

Substituting in $z = f + \sum_{j=1}^{n-m} r_j y_j$ we get

$$\sum_{j=1}^{n-m} \left(\nu_j + \sum_{i=1}^{m} \mu_i r_{ij} \right) y_j \ge \xi - \sum_{i=1}^{m} \mu_i f_i.$$

Since we assume that (f,0) is violating this inequality we get

$$\xi - \sum_{i=1}^{m} \mu_i f_i > 0.$$

By the previous lemma we get that for infinitely many unbounded nonnegative λ values and for all j = 1, ..., n - m we have

$$\left(\nu_j + \sum_{i=1}^m \mu_i r_{ij}\right) (y_j + \lambda) \ge \xi - \sum_{i=1}^m \mu_i f_i,$$

from which it follows that $\alpha_j := \nu_j + \sum_{i=1}^m \mu_i r_{ij} \ge 0$ for all j = 1, ..., n - m.

Intersection Cuts

Let us consider a closed convex set $S \subseteq \mathbb{R}^m$ such that $f \in int(S)$ and that S has no integer point in its interior. To such a *lattice-free* convex set we associate a real valued function $\Phi_S : \mathbb{R}^m \to \mathbb{R}_+$ by defining

$$\Phi_S(r) = \inf\{t > 0 \mid f + \frac{r}{t} \in S\}.$$

Note that we have $\Phi_S(r) = 0$ if and only if $f + \lambda r \in S$ for all $\lambda \geq 0$.

Lemma 3 (Balas (1971)) If S is a lattice free closed convex set such that $f \in int(S)$, then

$$\sum_{j=1}^{n-m} \Phi_S(r_j) y_j \geq 1$$

is a valid inequality for P_C (that cuts off the corner (f,0)).

Any lattice free closed convex polyhedron can be written as

$$S = \{ z \in \mathbb{R}^m \mid a_i^T(z - f) \le 1, \ i = 1, ..., \ell \}$$

for some vectors $a_i \in \mathbb{R}^m$, $i = 1, ..., \ell$.

Lemma 4 For all $r \in \mathbb{R}^m$ we have

$$\Phi_S(r) = \max_{i=1,\dots\ell} a_i^T r.$$

Lemma 5 Φ_S is subadditive and positively homogenous:

$$\Phi_S(r+r') \le \Phi_S(r) + \Phi_S(r')$$
 and $\Phi_S(\lambda r) = \lambda \Phi_S(r)$

for all $r, r' \in \mathbb{R}^m$ and $\lambda \in \mathbb{R}_+$.

Corollary 1 If S is a lattice free closed and convex polyhedron (of the above form), and $(z, y) \in P_C$, $z \in \mathbb{Z}^m$, then we have

$$\sum_{j=1}^{n-m} \Phi_S(r_j) y_j = \sum_{j=1}^{n-m} \Phi_S(r_j y_j) \ge \Phi_S(\sum_{j=1}^{n-m} r_j y_j) = \Phi_S(z - f) \ge 1.$$

Theorem 1 (Conforti, Cornuejols, Zambelli (2010)) If $P_C \neq \emptyset$, then every minimal valid inequality for P_C is an intersection cut.