Essential Partial Differential Equations - Analytical and Computational Aspects

Springer Undergraduate Mathematics Series

for access: DOI 10.1007/978-3-319-22569-2

David F. Griffiths John W. Dold David J. Silvester S

U

M

S

Essential Partial Differential Equations

Analytical and Computational Aspects

Springer Undergraduate Mathematics Series

Advisory Board

M.A.J. Chaplain, University of Dundee, Dundee, Scotland, UK

K. Erdmann, University of Oxford, Oxford, England, UK

A. MacIntyre, Queen Mary University of London, London, England, UK

E. Süli, University of Oxford, Oxford, England, UK

M.R. Tehranchi, University of Cambridge, Cambridge, England, UK

J.F. Toland, University of Cambridge, Cambridge, England, UK

More information about this series at http://www.springer.com/series/3423

David F. Griffiths · John W. Dold David J. Silvester

Essential Partial Differential Equations

Analytical and Computational Aspects

David F. Griffiths University of Dundee Fife UK

Manchester UK

John W. Dold School of Mathematics The University of Manchester David J. Silvester School of Mathematics The University of Manchester Manchester UK

ISSN 1615-2085 ISSN 2197-4144 (electronic) Springer Undergraduate Mathematics Series ISBN 978-3-319-22568-5 ISBN 978-3-319-22569-2 (eBook) DOI 10.1007/978-3-319-22569-2

Library of Congress Control Number: 2015948777

Mathematics Subject Classification (2010): 35-01, 65L10, 65L12, 65L20, 65M06, 65M12, 65N06, 65N12

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com)

In mathematics you don't understand things. You just get used to them.

John von Neumann

"Begin at the beginning", the King said, very gravely, "and go on till you come to the end: then stop".

Lewis Carroll, Alice in Wonderland

Preface

This textbook is a self-contained introduction to the mathematical aspects of partial differential equations. The book is aimed at undergraduate students studying for a mathematics degree. Selected chapters could also be of interest to engineers and scientists looking to develop an understanding of mathematical modelling and numerical analysis.

The material is organised into 13 chapters, with roughly equal emphasis placed on *analytical* and *numerical* solution techniques. The first four chapters provide a foundation for the study of partial differential equations. These chapters cover physical derivation, classification, and well-posedness. Classical solution techniques are discussed in Chaps. 8 and 9. Computational approximation aspects are developed in Chaps. 6 and 10–12. A clear indication is given in each of these chapters of where the basic material (suitable perhaps for a first course) ends and where we begin to probe more challenging areas that are of both a practical and theoretical interest. The final chapter defines a suite of projects, involving both theory and computation, that are intended to extend and test understanding of the material in earlier chapters.

Other than the final chapter, the book does not include programming exercises. We believe that this strategy is in keeping with the aims and objectives of the SUMS series. The availability of software environments like MATLAB (www.mathworks.com), Maple (www.maplesoft.com) and Mathematica (www.wolfram.com) means that there is little incentive for students to write low-level computer code. Nevertheless, we would encourage readers who are ambitious to try to reproduce the computational results in the book using whatever computational tools that they have available.

Most chapters conclude with an extensive set of exercises (almost 300 in all). These vary in difficulty so, as a guide, the more straightforward are indicated by while those at the more challenging end of the spectrum are indicated by. Full solutions to all the exercises as well as the MATLAB functions that were used to

viii Preface

generate the figures will be available to authorised instructors through the book's website (www.springer.com). Others will be able to gain access to the solutions to odd-numbered exercises though the same web site.

Distinctive features of the book include the following.

- The level of rigour is carefully limited—it is appropriate for second-year mathematics undergraduates studying in the UK (perhaps third or fourth year in the USA). The ordering of topics is logical and new concepts are illustrated by worked examples throughout.
- Analytical and numerical methods of solution are closely linked, setting both on an equal footing. We (the authors) take a contemporary view of scientific computing and believe in mixing rigorous mathematical analysis with informal computational examples.
- 3. The text is written in a lively and coherent style. Almost all of the content of the book is motivated by numerical experimentation. Working in the "computational laboratory" is what ultimately drives our research and makes our scientific lives such fun.
- 4. The book opens the door to a wide range of further areas of study in both applied mathematics and numerical analysis.

The material contained in the first nine chapters relies only on first-year calculus and could be taught as a conventional "introduction to partial differential equations" module in the second year of study. Advanced undergraduate level courses in mathematics, computing or engineering departments could be based on any combination of the early chapters. The material in the final four chapters is more specialised and, would almost certainly be taught separately as an advanced option (fourth-year or MSc) entitled "numerical methods for partial differential equations". Our personal view is that numerical approximation aspects are central to the understanding of properties of partial differential equations, and our hope is that the entire contents of the book might be taught in an integrated fashion. This would most probably be a double-semester (44 hours) second- (or third-) year module in a UK university. Having completed such an integrated (core) course, students would be perfectly prepared for a specialist applied mathematics option, say in continuum mechanics or electromagnetism, or for advanced numerical analysis options, say on finite element approximation techniques.

We should like to extend our thanks to Catherine Powell, Alison Durham, Des Higham and our colleagues at Manchester and Dundee, not to mention the many students who have trialled the material over many years, for their careful reading and frank opinions of earlier drafts of the book. It is also a pleasure to thank Joerg Sixt and his team at Springer UK.

May 2015

David F. Griffiths John W. Dold David J. Silvester

Contents

1	Setti	ing the Scene	1
	1.1	Some Classical PDEs	2
	1.2	and Some Classical Solutions	4
2	Bou	ndary and Initial Data	11
	2.1	Operator Notation	14
	2.2	Classification of Boundary Value Problems	16
		2.2.1 Linear Problems	16
		2.2.2 Nonlinear Problems	20
		2.2.3 Well-Posed Problems	21
3	The	Origin of PDEs	27
	3.1	Newton's Laws	27
		3.1.1 The Wave Equation for a String	27
	3.2	Conservation Laws	29
		3.2.1 The Heat Equation	29
		3.2.2 Laplace's Equation and the Poisson Equation	31
		3.2.3 The Wave Equation in Water	32
		3.2.4 Burgers' Equation	34
4	Classification of PDEs		
	4.1	Characteristics of First-Order PDEs	38
	4.2	Characteristics of Second-Order PDES	44
		4.2.1 Hyperbolic Equations	45
		4.2.2 Parabolic Equations	46
		4.2.3 Elliptic Equations	49
	4.3	Characteristics of Higher-Order PDEs	52
	4.4	Postscript	53
5	Bou	ndary Value Problems in \mathbb{R}^1	59
	5.1	Qualitative Behaviour of Solutions	61
	5.2	Comparison Principles and Well-Posedness	64

x Contents

	5.3	5.3.1 5.3.2	Products and Orthogonality	68 71 72
	5.4		mportant Eigenvalue Problems	74
6	Finite 6.1 6.2 6.3 6.4	The Approx	ence Methods in \mathbb{R}^1	85 86 90 95 103
		6.4.1 6.4.2	Boundary Conditions with Derivatives	103 109
7	Maxi 7.1 7.2	Maxim	rinciples and Energy Methods	119 119 124
8	Separ 8.1 8.2 8.3	The He 8.1.1 8.1.2 The Wa	f Variables	129 129 136 140 143 148
9	The 1 9.1 9.2 9.3	First-O	of Characteristics rder Systems of PDEs -Order Hyperbolic PDEs rder Nonlinear PDES Characteristics of Burgers' Equation Shock Waves Riemann Problems and Expansion Fans	161 161 166 171 174 179 184
10	Finite	e Differe	ence Methods for Elliptic PDEs	195
	10.1		Chlet Problem in a Square Domain	196 198 202 204
	10.2	Advance 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6	red Topics and Extensions Neumann and Robin Boundary Conditions Non-rectangular Domains Polar Coordinates Regularity of Solutions Anisotropic Diffusion. Advection—Diffusion	207 207 211 217 221 223 226
				0

Contents xi

11	Finite	Difference Methods for Parabolic PDEs	237
	11.1	Time Stepping Algorithms	238
		11.1.1 An Explicit Method (FTCS)	238
		11.1.2 An Implicit Method (BTCS)	247
		11.1.3 The θ -Method	251
	11.2	Von Neumann Stability	257
	11.3	Advanced Topics and Extensions	263
		11.3.1 Neumann and Robin Boundary Conditions	263
		11.3.2 Multiple Space Dimensions	264
		11.3.3 The Method of Lines	268
12	Finite	Difference Methods for Hyperbolic PDEs	275
	12.1	Explicit Methods	277
		12.1.1 Order Conditions	280
		12.1.2 Stability Conditions	282
		12.1.3 First-Order Schemes	284
		12.1.4 Second-Order Schemes	287
		12.1.5 A Third-Order Scheme	291
		12.1.6 Quasi-implicit Schemes	292
	12.2	The Two-Way Wave Equation	295
	12.3	Convergence Theory	296
	12.4	Advanced Topics and Extensions	299
		12.4.1 Dissipation and Dispersion	299
		12.4.2 Nonperiodic Boundary Conditions	304
		12.4.3 Nonlinear Approximation Schemes	308
13	Proje	cts	319
Apj	pendix	A: Glossary and Notation	333
A		D. Come I incom Alcohue	
Apj	penaix	B: Some Linear Algebra	335
Apj	pendix	C: Integral Theorems	347
Apj	pendix	D: Bessel Functions	351
Apı	pendix	E: Fourier Series	355
	•		555
Ref	erence	s	361
Ind	ex		363

References

- U.M. Ascher, Numerical Methods for Evolutionary Differential Equations (SIAM, Philadelphia, 2008)
- 2. W.L. Briggs, V.E. Henson, *The DFT: An Owners' Manual for the Discrete Fourier Transform* (SIAM, Philadelphia, 1987)
- 3. R. Fletcher, D.F. Griffiths, The generalized eigenvalue problem for certain unsymmetric band matrices. Linear Algebra Appl. **29**, 139–149 (1980)
- 4. B. Fornberg, A finite difference method for free boundary problems. J. Comput. Appl. Math. **233**, 2831–2840 (2010)
- 5. N.D. Fowkes, J.J. Mahon, An Introduction to Mathematical Modelling (Wiley, New York, 1996)
- G.H. Golub, C.F.V. Loan, *Matrix Computations*, 4th edn., Johns Hopkins Studies in the Mathematical Sciences (Johns Hopkins University Press, Maryland, 2012)
- 7. D.F. Griffiths, D.J. Higham, *Numerical Methods for Ordinary Differential Equations*, Springer Undergraduate Mathematics Series (Springer, London, 2010)
- 8. Iserles A, S.P. Nørsett, Order Stars (Chapman & Hall, London, 1991)
- R. Jeltsch, J.H. Smit, Accuracy barriers of difference schemes for hyperbolic equations. SIAM J. Numer. Anal. 24, 1–11 (1987)
- 10. M. Kac, Can one hear the shape of a drum? Am. Math. Mon. **73**, 1–23 (1966)
- 11. T.W. Körner, Fourier Analysis (Cambridge University Press, Cambridge, 1989)
- 12. E. Kreyszig, Advanced Engineering Mathematics: International Student Version, 10th edn. (Wiley, Hoboken, 2011)
- B.P. Leonard, A stable and accurate convection modelling procedure based on quadratic upstream differencing. Comput. Methods Appl. Mech. Eng. 19, 59–98 (1979)
- R.J. LeVeque, Finite difference methods for ordinary and partial differential equations (SIAM, Philadelphia, 2007)
- K.W. Morton, Numerical Solution of Convection-Diffusion Problems (Chapman & Hall, Philadelphia, 1996)
- 16. J.D. Pryce, Numerical Solution of Sturm-Liouville Problems, Monographs in Numerical Analysis (Oxford University Press, New York, 1993)
- 17. R. Rannacher, Discretization of the heat equation with singular initial data. ZAMM **62**, 346–348 (1982)
- R.D. Richtmyer, K.W. Morton, Difference Methods for Initial Value Problems (Wiley Interscience, New York, 1967)
- 19. H.-G. Roos, M. Stynes, L. Tobiska, *Numerical Methods for Singularly Perturbed Differential Equations, Convection Diffusion and Flow Problems*, vol. 24 (Springer Series in Computational Mathematics. Springer, Berlin, 1996)
- © Springer International Publishing Switzerland 2015 D.F. Griffiths et al., *Essential Partial Differential Equations*, Springer Undergraduate Mathematics Series, DOI 10.1007/978-3-319-22569-2

362 References

20. G. Strang, Introduction to Applied Mathematics (Wellesley-Cambridge Press, Wellesley, 1986)

- J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, 2nd edn. (SIAM, Philadelphia, 2004)
- 22. M. Stynes, Steady-State Convection-Diffusion Problems, in *Acta Numerica*, ed. by A. Iserles (Cambridge University Press, Cambridge, 2005), pp. 445–508
- E. Süli, D. Mayers, An Introduction to Numerical Analysis (Cambridge University Press, Cambridge, 2003)
- 24. P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)
- 25. L.N. Trefethen, Group velocity in finite difference schemes. SIAM Rev. 24, 113–136 (1982)
- 26. L.N. Trefethen, D. Bau III, *Numerical Linear Algebra* (SIAM, Philadelphia, 1997)
- 27. G.N. Watson, *A Treatise on the Theory of Bessel Functions*, 2nd edn. (Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1995)

A Advection dominated, 226, 262, 313 Advection equation, 2, 5, 285, 304	Dirichlet, 12, 13, 30, 60, 148, 196–198 for advection, 304–308, 316 mixed, 14
approximation, 275–294	Neumann, 13, 14, 30, 60, 123, 156, 196,
with nonlinear source term, 330	207–211, 220, 263–264, 273
Advection term, 59	operator, 15, 71, 74, 136
Advection–diffusion equation, 4, 31, 36, 48,	periodic, 286, 331
100, 126, 156, 226–230, 235, 261, 272, 286, 322, 326, 329	Robin, 13, 14, 31, 60, 67, 196, 207–211, 233, 263–264, 273
Aliases of Fourier modes, 358	Boundary layer, 226
Amplification factor, 258–262, 265, 267,	Boundary value problem, 12, 137
271–273, 285, 290, 293, 294, 296–	homogeneous, 18
303, 315, 329	linear, 17
Anisotropic diffusion, see diffusion,	nonlinear, 20
anisotropic	quasi-linear, 20
	semi-linear, 20
В	BTCS, see finite difference scheme, back-
_	ward time, centred space Burgers' equation, 2, 20, 34–35, 173–178,
B, 15, 17, 71, 74, 136, 140–142, 147, 196 B _h , 198, 215	187, 192
Backward difference, 87, 247	viscous, 9
Backward heat equation, <i>see</i> heat equation,	BVP, see boundary value problem
backward	2 v1, see countaily value proceeds
Banded matrix, see matrix, banded	
BC, see boundary condition	C
Bessel	Cauchy–Riemann equations, 56
equation, 79, 351–354	Cauchy-Schwarz inequality, 68, 79, 283,
function, 137, 159, 351–354	330, 336
Big O, 87	Centred difference, 88, 239, 247
Biharmonic equation, 32, 57	CFL condition, 242, 275, 278, 279, 285, 293,
Bilinear function, 152	329
Black–Scholes equation, 4, 18	Chain rule, 38, 45
Blow-up, 171	Characteristic
Boundary conditions, 11–19, 23, 41, 44, 51, 60, 164	equations, 38–39, 161–162, 167, 168, 171, 172, 174, 180
approximation, 207–211, 213, 218, 233, 263–264, 304–308, 316	speed, 41, 44, 46, 53, 180, 185, 316 infinite, 47

© Springer International Publishing Switzerland 2015 D.F. Griffiths et al., *Essential Partial Differential Equations*, Springer Undergraduate Mathematics Series, DOI 10.1007/978-3-319-22569-2

Characteristic curves, <i>see</i> characteristics	coupled equations, 323
Characteristic polynomial, 332, 340	equation, 47, 134
Characteristics, 38–46, 161–194, 226, 275,	operator, 227
277–279, 283, 304	term, 59, 226, 313
complex, 45, 49	Dirichlet boundary condition, see boundary
incoming, 42, 165, 226, 308	condition, Dirichlet
intersecting, 176, 180	Discontinuity, 16, 42, 43, 48, 52, 53, 129,
of Burgers' equation, 174–184	132, 134, 151, 161, 176, 178, 180,
outgoing, 165, 308	184–186, 221, 226, 276, 279, 289,
Cholesky decomposition, 248, 256, 266	294, 312, 356
Circulant matrix, see matrix, circulant	Discrete Fourier modes, 258, 359
Circular symmetry, 137, 156	Discriminant, 166
Classical solution, 180	Dispersion, 299–303
Cole–Hopf transformation, 9	error, 301
Compact difference scheme, 110	relation, 285, 297, 301
Comparison	Dissipation, 299–303
function, 64, 97, 99, 107, 109, 112, 117,	order, 300–301, 315
203, 215, 219, 243	Divergence theorem, 347
principle, 64–68, 98	Domain
Comparison function, 121, 245	circular, 126, 137, 147, 158
Condition number, 164, 189	
Congruence transformation, 341	L-shaped, 222
Conservation law, 29, 126, 179, 309	nonrectangular, 211–221
Conservative form, 31	of dependence, 170, 242, 279
Consistency, 86, 96, 100, 102, 113, 195, 202,	of influence, 170, 279, 304, 306
209, 219, 241, 243, 264, 282	quarter circle, 223
order of, 96, 105, 203, 229, 241, 280, 297,	re-entrant corner, 222
298, 309	rectangular, 232
Convection, see advection	spherical, 138, 147, 156
Convergence, 86, 97, 113, 195, 202, 204,	triangular, 233, 274
219, 243, 251, 275, 296–299	with symmetry, 210
estimating order of, 204–205	Downwind grid point, 278, 283
order of, 97, 100, 105, 110, 113, 202, 204,	Drum, shape of, 332
206, 214, 215, 219, 245, 251, 299, 308, 320	Du Fort-Frankel method, see finite differ-
Convergence rate, <i>see</i> convergence, order of	ence scheme, Du Fort-Frankel
Convergent approximation, 85	
Convex combination, 252	
Courant number, 277, 284	
Crank–Nicolson method, see finite differ-	${f E}$
ence scheme, Crank–Nicolson	Eigenfunction, 74–79, 130, 137
chee seneme, Crank Tyleolson	Eigenvalue, 50, 74, 130, 136, 162, 166, 189,
	193, 271, 307, 314, 316, 332, 336
D.	problem, 74–79, 129–155
D	Eigenvector, 50, 162, 193, 314, 316, 339
d'Alembert's solution, 46, 54, 124, 157, 170	elliptic PDE, see PDE, elliptic
Derivative discontinuous, 180	Energy inequality, 125
outward normal, 14	Energy methods, 124–128, 319
•	EOC, see experimental order of convergence
partial, 1 Differential operator, 15	erf, see error function
Differential operator, 15 Diffusion, 30, 157, 289, 309	Error function, 48, 256
anisotropic, 50, 223–225	Expansion fan, 184–188
coefficient, 286, 322	Experimental order of convergence, 205, 232
COCINCICII, 200, 322	Experimental order of convergence, 203, 232

F	Fisher's equation, 324
[mathscr]F, 14–19, 21–22, 64–68, 119–	Flux, 29
123, 201	anti-diffusive, 309
\mathcal{F} , 14–19	function, 126, 179, 184, 187, 193, 309
[mathscr]h, 91, 256	limiter, 309–312
(, 90, 198	Forward difference, 87, 239, 287
Fast Fourier Transform, 293, 360	Forward time backward space, see finite dif-
Fictitious grid point, 263	ference scheme, forward time, back-
Finite difference	ward space
approximations, 86–90	Forward time centred space, see finite differ-
operators $(\triangle^+, \triangle^-, \triangle, \delta)$, 87–90	ence scheme, forward time, centred
Finite difference scheme	space
Allen–Southwell–Il'in, 322	Fourier
backward time	coefficient, 355
centred space, 247-251, 328	discrete modes, 258
box, 294, 315	discrete series, 359
compact, 110	mode, 69, 296, 299, 301, 359
Crank–Nicolson, 252–256, 260, 267,	series, 355
271, 323	transform, 360
dissipative, 300	Fourier's law, 30
Du Fort–Frankel, 328	Frequency, 285, 296
explicit, 238–247, 264, 272, 273, 275,	Frobenius method, 351
277–296, 298, 328	FTBS, see finite difference scheme, forward
first-order upwind, 284, 309	time, backward space
flux-limited, 317	FTCS, see finite difference scheme, forward
forward time	time, centred space
backward space, 284, 293, 300	FTFS, see finite difference scheme, forward
centred space, 238–247, 256, 259–	time, forward space
262, 265, 287, 309, 324, 327, 328	Fundamental solution, 6
forward space, 285, 287, 317	
hopscotch, 328	
±	G
implicit, 247–256	Gaussian elimination, see L-U matrix
Lax-Friedrichs, 312, 317	decomposition
Lax-Wendroff, 288, 290, 291, 297, 301,	Gershgorin circle theorem, 343
305, 307, 309, 312–314, 317	Gibb's phenomenon, 146, 151, 357
leapfrog, 290–291, 305, 314	Global error, 93, 201, 216, 316
Leith, 262, 313, 326	estimate, 204–207
locally one-dimensional, 265, 273	Goursat solution, 57
MacCormack, 317, 330	Green's identity, 71
nondissipative, 290, 300	Grid function, 85, 197
nonlinear, 308–312	
Numerov, 110, 117, 207	
quasi-implicit, 292–294	Н
Saul'Yev, 322	Harmonic function, 7, 9, 213
semi-implicit, 272	Heat equation, 3, 6, 9, 47, 129–135, 155–157
θ -method, 251	approximation, 238–256, 263–269, 327
third-order upwind, 291, 292, 301, 314,	backward, 22, 24
326	boundary value problem, 12
upwind, 229, 234, 284, 291, 292	circular symmetry, 137
Warming–Beam, 306, 311, 313, 317	fundamental solution, 6
Finite-time singularity, 171	maximum principle, 119–121
First-order upwind method, see finite differ-	nonhomogeneous, 30
ence scheme, first-order upwind	origins, 29–31

with reaction term, 260	Laplacian, 3, 196
Hermitian transpose, 336, 337	eigenvalues, 153, 159
Hölder's inequality, 335	polar coordinates, 56, 77, 217, 219
Hopscotch method, see finite difference	Lax–Friedrichs method, see finite difference
scheme, hopscotch	scheme, Lax-Friedrichs
Hydrostatic pressure, 33	Lax-Wendroff method, see finite difference
hyperbolic PDE, see PDE, hyperbolic	scheme, Lax-Wendroff
Hyperbolic system, 162	Legendre's equation, 79
	Leibniz's rule, 169, 179
I	Leith's method, <i>see</i> finite difference scheme, Leith
Ill-posed, 21, 61	Linearly independent, 69
Incompressible flow, 36	Local truncation error, 87, 95–97, 203, 241,
Initial-boundary value problem, 12	254, 275, 280, 297
Initial condition, 12, 23	Locally one-dimensional method, 265
Initial value problem, 12	LTE, see local truncation error
Inner product, 68–72, 77, 80, 344	E12, see four transmissi effect
discrete, 337	
weighted, 77, 79, 83, 137	M
Integrating factor, 141	MacCormack's method, see also finite dif-
Interpolating polynomial, 281–282, 326	ference scheme, MacCormack, 317
Interval of dependence, 170, 242, 279	MacLaurin series, 302
Inverse monotone, 64–66, 97–123, 155, 203,	Matrices
215, 224, 225, 231, 243–245, 255,	congruent, 341
270, 271, 320, 343	isospectral, 331
Iterative refinement, 205	Matrix
	banded, 201
	bidiagonal, 248, 332
J	block tridiagonal, 200
Jury conditions, 324	circulant, 293, 314, 332
	condition number, 164, 189
	diagonally dominant, 343
K	inertia, 342
KdV equation, 4, 20	inverse monotone, 343
	irreducible, 337
_	M, 343
L	monotone, 343
[mathscr]L, 14–19, 21–22, 64–68, 119–	positive-definite, 93, 343
123, 201	sparse, 200
L, 14–19, 44–51, 136–137, 140–142, 147,	symmetric, 92, 337
237, 251	trace, 50, 166
L-U matrix decomposition, 200	tridiagonal, 92, 104, 248, 271, 337–338,
$[mathscr]L_h$, 102, 198, 203, 215, 245, 251,	344
255 [mathscr]h, 91	Vandermonde, 281
	Z, 343
\mathcal{L}_h , 90, 102, 198, 203, 214–216, 245, 251 Lagrange	Maximum norm, see norm, ℓ_{∞}
identity, 72, 75, 83	Maximum norm stability, see stability, ℓ_{∞}
	Maximum principle, $119-124$
interpolant, 281, 313 Laplace's equation, 2, 13, 15, 19, 22, 23, 49–	discrete, 203, 215, 219, 224, 254, 262,
51, 55, 56, 122, 148–155	272
approximation, 198, 213–223, 232	Mesh Peclet number, 228, 262, 322
harmonic function, 7, 213	Mesh ratio, 238
origins, 31	Method
○ <u>-</u>	1.100100

of Frobenius, 351 of characteristics, 161–194 of lines, 268 of modified equations, 287 of undetermined coefficients, 117 M-matrix, 343 Monotone matrix, see matrix, monotone	Parabolic smoothing, 319 Parseval's relation, 356 Partial derivative, 1 Partial difference equation, 239 Partial differential equation, see PDE PDE definition, 2
Mutually orthogonal, 69, 140, 359	elliptic, 45, 49–52, 148 first order system, 161–165
N	first order, nonlinear, 171–188 first-order system, 180
Nearest neighbours, 198 Neumann boundary condition, <i>see</i> boundary	homogeneous, 18
condition, Neumann	hyperbolic, 44–46, 161–194, 262 linear, 17
Newton backward difference formula, 313 Newton's second law of motion, 27, 33	nonlinear, 20 order, 2, 180
Nondissipative method, 290	parabolic, 45–48, 136–143
Nonsmooth solution, 180, 256	quasi-linear, 20, 172–173, 325
Norm, 22, 64, 67, 243, 283, 335	semi-linear, 20
ℓ_2 , 257, 264, 271, 360	Peclet number, 226
ℓ_{∞} , 94, 96, 97, 99, 101, 201, 203, 243,	Phase speed, 297
271, 283, 335	Piecewise
$\ell_p, 335$	continuous, 133, 134, 146, 180, 221, 222
weighted, 79	linear, 146, 175, 177
Normal derivative, 14, 30, 46, 123, 263	polynomial, 134
Numerov's method, <i>see</i> finite difference scheme. Numerov	Poisson equation, 154–155
scheme, Numerov	Poisson's equation, 49, 56, 57, 122–123, 154, 195, 231
0	approximation, 196–204, 206, 223
$\mathcal{O}(h^p)$, 87	maximum principle, 121 origins, 31
One-way wave equation, see advection equa-	Polar coordinates, 77, 156, 158, 217–222,
tion	273, 274
Operator (A=) 07	Positive type operator, see Operator, positive
backward difference (\triangle^-), 87	type
boundary, 15 centred difference (\triangle), 88	Positive-definite matrix, see matrix,
differential, 15	positive-definite
forward difference (\triangle^+), 87	Projection, 70
inverse monotone, 64	
Laplacian, 3	0
linear, 17	Quadratic form, 44, 50, 338
positive type, 97, 101, 107, 214, 224, 229,	QUICK scheme, see finite difference
234, 309	scheme, third-order upwind
self-adjoint, 72	
stable, 203	_
Sturm–Liouville, 71	R
Orthogonal functions, 69	[mathscr]R _h , 96–111, 209
mutually, 69, 359 Orthonormal functions, 70	Rankine–Hugoniot condition, 180
Orthonormal functions, /0	Re-entrant corner, <i>see</i> domain, re-entrant corner
P	Reaction term, 59
parabolic PDE, see PDE, parabolic	Reaction-advection-diffusion
-	

operator, 72	Trace of matrix, see matrix, trace
problem, 67	Traffic flow, 35, 183
Reduced equation, 226	Travelling
Richardson extrapolation, 204	coordinate, 324
Riemann problem, 184–188	wave, 2, 146, 169, 193, 296, 299, 301,
Robin boundary condition, see boundary	302, 324
condition, Robin	Tridiagonal matrix, see matrix, tridiagonal
Root mean square norm, see norm, ℓ_2	Tsunamis, 34
Ruled surface, 152	Two-point boundary value problem, 59, 71, 74, 85, 90–111
	Two-way wave equation, see wave equation
S	
Self-adjoint operator, 72	
Separation constant, 130, 144, 149, 153	U
Shallow-water approximation, 32	Uniqueness, 18, 64, 98, 101, 121, 123, 125,
Shock	155, 163, 181, 189, 204, 215, 248,
discontinuity, 179	335
speed, 179, 181, 185	Unit CFL property, 285, 286, 302, 315
wave, 161, 178-184, 187	Unstable, 114, 240
Smooth function, 86	Upwind, 291
Soliton, 4	difference scheme, <i>see</i> finite difference
Source term, 46, 49, 59	
Sparse matrix, see matrix, sparse	scheme, upwind
Spherical symmetry, 156	grid point, 277, 283
Square integrable, 68	
Stability, 86, 125, 195, 214, 229, 243, 256,	•••
275, 282–284	V
ℓ_2 , 257–262, 265–268, 271–273, 283,	Vandermonde matrix, 281
285, 288, 290, 293–294, 298, 314, 326,	Von Neumann amplification factor, see
327, 329	amplification factor
ℓ_{∞} , 96–97, 109, 113, 202, 203, 215, 219,	Von Neumann stability, see stability, ℓ_2
225, 243, 246, 268, 271–274	
barrier, 282	
constant, 96, 101, 245, 246, 256	\mathbf{W}
Stencil, 197, 208, 213, 218, 224, 227, 230,	Warming-Beam method, see finite differ-
284, 287, 288, 291	ence scheme, Warming-Beam
anchor point, 239, 247	Wave equation, 3, 28, 124, 143–147, 306
target point, 239, 247, 253, 283, 293	boundary value problem, 13
Sturm–Liouville, 71–79	d'Alembert's solution, 46, 54, 124, 157,
operator, 71	170
regular, 73	in water, 34
singular, 73	with circular symmetry, 147
	with spherical symmetry, 147
problem, 74, 129, 136	Wave speed, 276, 324
Superposition principle, 18, 140	Wavenumber, 258, 285, 296
Sylvester's law of inertia, 342	Weak solution, 180, 187
Symmetric matrix, see matrix, symmetric	Weight function, 74
Т	Weighted inner product, 77, see also inner
	product, weighted Well posed 21 23 37 38 44 47 52 61
θ -method, <i>see</i> finite difference scheme, θ - method	Well-posed, 21–23, 37, 38, 44, 47, 52, 61, 63–68, 78, 79, 95, 97, 119, 121, 122,
Third-order upwind method, see finite dif-	124, 125, 185, 207, 304 Wiggles, 228
ference scheme, third-order upwind	W188168, 220

Springer Undergraduate Mathematics Series

David F. Griffiths - John W. Dold - David J. Silvester

Essential Partial Differential Equations

Analytical and Computational Aspects

This volume provides an introduction to the analytical and numerical aspects of partial differential equations (PDEs). It unifies an analytical and computational approach for these; the qualitative behaviour of solutions being established using classical concepts: maximum principles and energy methods.

Notable inclusions are the treatment of irregularly shaped boundaries, polar coordinates and the use of flux-limiters when approximating hyperbolic conservation laws. The numerical analysis of difference schemes is rigorously developed using discrete maximum principles and discrete Fourier analysis. A novel feature is the inclusion of a chapter containing projects, intended for either individual or group study, that cover a range of topics such as parabolic smoothing, travelling waves, isospectral matrices, and the approximation of multidimensional advection—diffusion problems.

The underlying theory is illustrated by numerous examples and there are around 300 exercises, designed to promote and test understanding. They are starred according to level of difficulty. Solutions to odd-numbered exercises are available to all readers while even-numbered solutions are available to authorised instructors.

Written in an informal yet rigorous style, *Essential Partial Differential Equations* is designed for mathematics undergraduates in their final or penultimate year of university study, but will be equally useful for students following other scientific and engineering disciplines in which PDEs are of practical importance. The only prerequisite is a familiarity with the basic concepts of calculus and linear algebra.

for access: DOI 10.1007/978-3-319-22569-2

Mathematics

ISBN 978-3-319-22568-5

▶ springer.com

