Name Vorname Matrikelnummer Studiengang (Hauptfach) Unterschrift der Kandidatin/des Kandidaten TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Mathematik 4 für Physiker (Analysis 3)	1 2 3 4 5 6 7 7	I	
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) Unterschrift der Kandidatin/des Kandidaten TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Mathematik 4 für Physiker (Analysis 3)	3 3 4 5 6		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) Unterschrift der Kandidatin/des Kandidaten TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Mathematik 4 für Physiker (Analysis 3)	3 3 4 5 6		
Unterschrift der Kandidatin/des Kandidaten TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Mathematik 4 für Physiker (Analysis 3)	3 4 5 6		
Unterschrift der Kandidatin/des Kandidaten TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Mathematik 4 für Physiker (Analysis 3)	5 6		
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Mathematik 4 für Physiker (Analysis 3)	5 6		
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Mathematik 4 für Physiker (Analysis 3)	5 6		
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Mathematik 4 für Physiker (Analysis 3)	5 6		
Fakultät für Mathematik Klausur Mathematik 4 für Physiker (Analysis 3)	6		
Fakultät für Mathematik Klausur Mathematik 4 für Physiker (Analysis 3)	6		
Klausur Mathematik 4 für Physiker (Analysis 3)			
Mathematik 4 für Physiker (Analysis 3)	7		
Mathematik 4 für Physiker (Analysis 3)	7 _		
(Analysis 3)			
· · · · · · · · · · · · · · · · · · ·			
i de la companya de	8		
Prof. Dr. D. Castrigiano			
	$ \Sigma $		
18. Februar 2011, 08:30 – 10:00 Uhr			
Hörsaal: Platz:	I	rstkorrek	tur
Hinweise:	 II		
Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben	1	weitkorre	ektur
Bearbeitungszeit: 90 min			
Erlaubte Hilfsmittel: zwei selbsterstellte DIN A4 Blätter			
Erreichbare Gesamtpunktzahl: 80 Punkte			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Teilaufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.			

Vorzeitig abgegeben um

 $Be sondere\ Bemerkungen:$

1. Komplexe Wegintegrale

[8 Punkte]

Gegeben ist der geschlossene Weg $\gamma:[0,2\pi]\to\mathbb{C},$

$$\gamma(t) = 1 + \cos t + i \sin t.$$

Berechnen Sie (mit Begründung) $\int\limits_{\gamma}f(z)dz$ für

(a)
$$f(z) = \operatorname{Im}(z)$$
,

(b)
$$f(z) = \cos z$$
,

(c)
$$f(z) = \frac{z^7}{z^2 - 1}$$
.

2. Residuen [12 Punkte]

Sei
$$f(z) = \frac{z}{(e^z - 1)^2}$$
.

- (a) Zeigen Sie, dass faußer bei $2i\pi\mathbb{Z}$ keine weiteren Pole besitzt.
- (b) Bestimmen Sie (mit Begründung) die Ordnung aller Pole von f.
- (c) Berechnen Sie das Residuum von f bei z=0.
- (d) Welchen Konvergenzradius hat der Nebenteil der Laurent-Reihe von f um z=0?

4. σ -Subadditivität von Maßen

[6 Punkte]

Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum. Für die Mengen $A_n, B_n \in \mathcal{A}, n \in \mathbb{N}$, gelte $\mu(B_n \setminus A_n) = c_n$. Man zeige für $A = \bigcup_{n \in \mathbb{N}} A_n$ und $B = \bigcup_{n \in \mathbb{N}} B_n$, dass gilt

$$\mu(B \setminus A) \le \sum_{n=1}^{\infty} c_n.$$

_	Rildmaß		λ / Γ - Ω	• 1	T): -1-4 -
	Buaman	าเทก	IVI 211	TTIT	LUCHTE

Bildmaß und Maß mit Dichte [8 Punkte] Gegeben ist die Abbildung $h: \mathbb{R}^2 \to \overline{\mathbb{R}}, \ (x,y) \mapsto \ln(x^2+y^2)$ für $(x,y) \neq 0$ und $h(0) = -\infty$. $\mu = h(\lambda^2)$ sei das zugehörige Bildmass.

- (a) Warum ist h messbar?
- (b) Berechnen Sie $\mu([a,b])$ für $a,b\in\mathbb{R},\,a\leq b.$
- (c) Bestimmen Sie eine Dichte ρ , so dass $\rho \lambda^1([a,b]) = \mu([a,b])$ für alle $a,b \in \mathbb{R}, \ a < b$.

[8 Punkte]

6. Lebesgue-Integrierbarkeit Sei $f: \mathbb{R} \to \mathbb{C}, \ f(x) = \frac{e^{-ix}}{x+i\eta}, \ \eta \in \mathbb{R} \setminus \{0\}.$

- (a) Begründen Sie, warum die Funktion f nicht Lebesgue-integrierbar ist.
- (b) Wie ist $\int_{-\infty}^{\infty} \frac{e^{-ix}}{x+i\eta} dx$ definiert?

$$\int\limits_{-\infty}^{\infty} \frac{e^{-ix}}{x+i\eta} dx :=$$

7. Fluss durch eine Oberfläche

[20 Punkte]

Gegeben Sie die Menge $B=\{(x,y,z)\in\mathbb{R}^3: \sqrt{x^2+y^2}\leq z, 1\leq x^2+y^2+z^2\leq 4\}$ und das Vektorfeld F(x,y,z)=(-y,x,yz) mit $G(x,y,z)=\operatorname{rot} F(x,y,z)=(z,0,2).$

- (a) Bestimmen Sie den Fluss $g_{\partial B}$ von G durch den Rand von B.
- (b) Bestimmen Sie den Fluss g_S von ${\cal G}$ durch das Flächenstück

$$S = \{(x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} = z, 1 \le x^2 + y^2 + z^2 \le 4\}$$

mit von der z-Achse wegzeigender Flächennormale.

(c) Berechnen Sie $f_{\gamma} := \int_{\gamma} F \cdot d\vec{x}$ für $\gamma(t) = \frac{1}{\sqrt{2}} (\cos t, \sin t, 1), \quad t \in [0, 2\pi].$

$$f_{\gamma} =$$

(d) Geben Sie den Fluss g_{K_1} von G durch das Flächenstück

$$K_1 = \{(x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} \le z, x^2 + y^2 + z^2 = 1\}$$

an, wobei die Flächennormale vom Ursprung wegzeigt.

HINWEIS: Spur $\gamma = \text{Rand } K_1$.

$$g_{K_1} =$$

(e) Geben Sie den Fluss g_{K_2} von ${\cal G}$ durch das Flächenstück

$$K_2 = \{(x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} \le z, x^2 + y^2 + z^2 = 4\}$$

an, wobei die Flächennormale vom Ursprung wegzeigt.

$$g_{K_2} =$$

	bertraum (x_n) eine orthogonale Folge in einem Hill	pertraum H ,	d.h. $\langle x_n, x_m \rangle = 0$ für $n \neq m$.	[10 Punkte]			
(a)	Zeigen Sie: Ist die Folge (x_n) konvergent, so ist ihr Grenzwert 0.						
(b)) Zeigen Sie: Ist (x_n) orthonormal, so ist	(x_n) nicht k	convergent.				
(c)) Geben Sie ein konkretes Beispiel für eine orthogonale Folge (x_n) an mit $x_n \neq 0$ für alle $n \in \mathbb{N}$ und $x_n \to 0$.						
(d)	Gilt (a) in jedem Vektorraum V mit Skalarprodukt?						
		Ja [□ Nein				
(e)) Gilt (b) in jedem Vektorraum V mit Sl	kalarprodukt	?				
		Ja [□ Nein				