Задачи 5

26 марта 2022 г.

Задача 1. Пусть $R=15~{\rm бит/c}$ - пропускная способность одного соединения, $L_0=200, L_1=10^5$ - размеры пакетов, a=10м - длина провода, $v=3\cdot 10^8~{\rm m/c}$ - скорость света.

Для получения первого пакета необходимо совершить тройное рукопожатие, послать запрос и получить ответ. Если HTTP соединения непостоянные, то для получения 10 пакетов, на которые ссылался исходный, необходимо параллельно в каждом из 10 соединений совершить те же самые действия. Время в таком случае будет вычисляться как

$$t_1 = 2\left(3\frac{L_0}{R} + \frac{L_1}{R} + \frac{L_1}{R} + 5\frac{a}{v}\right) \approx 3.71 \ hours$$

Если же HTTP соединения постоянные, то тройное рукопожатие достаточно совершить один раз, и время будет вычисляться как

$$t_2 = 3\frac{L_0}{R} + 2\left(\frac{L_1}{R} + \frac{L_1}{R} + 5\frac{a}{v}\right) \approx 3.70 \ hours$$

Выигранная разница во времени не существенна

$$t_1 - t_2 = 3\frac{L_0}{R} = 40 \ seconds$$

Задача 2.

```
d = 2 * 10**6

us = 30 * 10**6

N = [10, 100, 1000]

plt.figure(figsize=(20, 5))
for i, u in enumerate([3 * 10**5, 7 * 10**5, 2 * 10**6]):

DCs = [max(n*f/us, F/d) for n in N]

DD2p = [max(F/us, F/d, n*F/(us + n*u)) for n in N]

plt.subplot(1, 3, i+1)

plt.title(f'u = {u/1000} M6uT/c')

plt.ylabel('N')

plt.ylabel('Bpeмя раздачи')

plt.plot(N, Dcs, marker='o', label='κлиент-серверная')

plt.plot(N, Dp2p, marker='o', label='одноранговая')

plt.lecend()
```

- **Задача 3.** а) Время $\frac{NF}{u_s}$ будет достигаться при равномерном разделении пропускной способности сервера межу N пирами (действительно, поскольку $\frac{u_s}{N} \leq d_{min}$ все пиры будут успевать принимать данные). Заметим также, что быстрее раздать данные сервер не сможет, поскольку ему необходим отправить NFбит при пропускной способности u_s .
- **б**) Тут серверу достаточно выделить каждому клиенту хотя бы d_{min} пропускной способности (это можно сделать, например, выделив каждому $\frac{u_s}{N} \geq$ d_{min}). Тогда, поскольку каждый клиент принимает со скоростью $\geq d_{min}$, за время $\frac{F}{d_{min}}$ все клиенты получат файл, и быстрее раздать его не получиться, поскольку самый медленный клиент должен загрузить F бит со скростью d_{min} .
- в) Если $\frac{u_s}{N} \leq d_{min}$, то по первому пункту оптимальное время раздачи будет $\frac{NF}{u_s} \geq \frac{F}{d_{min}}$. Если же $\frac{u_s}{N} \geq d_{min}$, то по второму пункту оптимальное время раздачи будет $\frac{F}{d_{min}} \geq \frac{NF}{u_s}$. То есть оптимальное время раздачи $\max(\frac{F}{d_{min}}, \frac{NF}{u_s})$.