## Item-Item Collaborative Filtering



- **■So far: User-user collaborative filtering**
- ■Another view: Item-item collaborative filtering
  - For item *i*, find other similar items
  - Estimate rating for item *i* based on ratings for similar items
  - ➤ Can use same similarity metrics and prediction functions as in useruser model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

s<sub>ij</sub>... similarity of items *i* and *j*r<sub>xi</sub>...rating of user *x* on item *i*N(i;x)... set items rated by *x* similar to *i*



| П | S | P | rs |
|---|---|---|----|
| ч | • | L |    |

| • | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |   |
|---|----|----|----|---|---|---|---|---|---|---|---|---|---|
|   |    | 4  |    | 5 |   |   | 5 |   |   | 3 |   | 1 | 1 |
| 3 | 3  | 1  | 2  |   |   | 4 |   |   | 4 | 5 |   |   | 2 |
|   |    | 5  | 3  | 4 |   | 3 |   | 2 | 1 |   | 4 | 2 | 3 |
|   |    | 2  |    |   | 4 |   |   | 5 |   | 4 | 2 |   | 4 |
| Ę | 5  | 2  |    |   |   |   | 2 | 4 | 3 | 4 |   |   | 5 |
|   |    | 4  |    |   | 2 |   |   | 3 |   | 3 |   | 1 | 6 |

- unknown rating

- rating between 1 to 5



| U | S | 6 | rs |
|---|---|---|----|
| • |   |   |    |

| 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |   |
|----|----|----|---|---|---|---|---|---|---|---|---|---|
|    | 4  |    | 5 |   |   | 5 | ? |   | 3 |   | 1 | 1 |
| 3  | 1  | 2  |   |   | 4 |   |   | 4 | 5 |   |   | 2 |
|    | 5  | 3  | 4 |   | 3 |   | 2 | 1 |   | 4 | 2 | 3 |
|    | 2  |    |   | 4 |   |   | 5 |   | 4 | 2 |   | 4 |
| 5  | 2  |    |   |   |   | 2 | 4 | 3 | 4 |   |   | 5 |
|    | 4  |    |   | 2 |   |   | 3 |   | 3 |   | 1 | 6 |

- estimate rating of movie 1 by user 5



| 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |          | sim(1,m)    |
|----|----|----|---|---|---|---|---|---|---|---|---|----------|-------------|
|    | 4  |    | 5 |   |   | 5 | ? |   | 3 |   | 1 | 1        | 1.00        |
| 3  | 1  | 2  |   |   | 4 |   |   | 4 | 5 |   |   | 2        | -0.18       |
|    | 5  | 3  | 4 |   | 3 |   | 2 | 1 |   | 4 | 2 | <u>3</u> | <u>0.41</u> |
|    | 2  |    |   | 4 |   |   | 5 |   | 4 | 2 |   | 4        | -0.1        |
| 5  | 2  |    |   |   |   | 2 | 4 | 3 | 4 |   |   | 5        | -0.31       |
|    | 4  |    |   | 2 |   |   | 3 |   | 3 |   | 1 | <u>6</u> | 0.59        |

#### **Neighbor selection:**

Identify movies (N=2, so 2 movies) similar to movie 1, rated by user 5

#### Here we use Pearson correlation as similarity

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}}$$



| U | S | 6 | rs |
|---|---|---|----|
| • |   |   |    |

|             |          | 1 | 2 | 3 | 4        | 5 | 6 | 7 | 8 | 9 | 10 | 11  | 12 |
|-------------|----------|---|---|---|----------|---|---|---|---|---|----|-----|----|
| sim(1,m)    |          | • |   |   | <b>_</b> |   |   | , |   | 3 | 10 | ' ' |    |
| 1.00        | 1        | 1 |   | 3 |          | ? | 5 |   |   | 5 |    | 4   |    |
| -0.18       | 2        |   |   | 5 | 4        |   |   | 4 |   |   | 2  | 1   | 3  |
| <u>0.41</u> | <u>3</u> | 2 | 4 |   | 1        | 2 |   | 3 |   | 4 | 3  | 5   |    |
| -0.1        | 4        |   | 2 | 4 |          | 5 |   |   | 4 |   |    | 2   |    |
| -0.31       | 5        |   |   | 4 | 3        | 4 | 2 |   |   |   |    | 2   | 5  |
| 0.59        | <u>6</u> | 1 |   | 3 |          | 3 |   |   | 2 |   |    | 4   |    |

**Compute similarity weights:** 

$$s_{1,3}$$
=0.41,  $s_{1,6}$ =0.59



| u | S | e | rs |
|---|---|---|----|
|   |   |   |    |

| 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5   | 4 | 3 | 2 | 1 |          |
|----|----|----|---|---|---|---|-----|---|---|---|---|----------|
|    | 4  |    | 5 |   |   | 5 | 2.6 |   | 3 |   | 1 | 1        |
| 3  | 1  | 2  |   |   | 4 |   |     | 4 | 5 |   |   | 2        |
|    | 5  | 3  | 4 |   | 3 |   | 2   | 1 |   | 4 | 2 | <u>3</u> |
|    | 2  |    |   | 4 |   |   | 5   |   | 4 | 2 |   | 4        |
| 5  | 2  |    |   |   |   | 2 | 4   | 3 | 4 |   |   | 5        |
|    | 4  |    |   | 2 |   |   | 3   |   | 3 |   | 1 | <u>6</u> |

Predict by taking weighted average:

 $r_{1.5} = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6$ 

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

### Item-Item vs. User-User



| Alice | Avatar<br>(阿凡达)<br>1 | LOTR<br>(指环王) | Matrix<br>(黑客帝国)<br>0.8 | Pirates<br>(加勒比海盗) |
|-------|----------------------|---------------|-------------------------|--------------------|
| Bob   |                      | 0.5           |                         | 0.3                |
| Carol | 0.9                  |               | 1                       | 0.8                |
| David |                      |               | 1                       | 0.4                |

- In practice, it has been observed that <u>item-item</u> often works better than user-user
- Why? Items are simpler, users have multiple tastes

# Pros/Cons of Collaborative Filtering



### + Works for any kind of item

➤ No feature selection needed

#### □- Cold Start:

➤ Need enough users in the system to find a match

### **□**- Sparsity:

- ➤ The user/ratings matrix is sparse
- > Hard to find users that have rated the same items

#### **□**- First rater:

- Cannot recommend an item that has not been previously rated
- > New items, Esoteric items

### **□**- Popularity bias:

- > Cannot recommend items to someone with unique taste
- > Tends to recommend popular items

# **Hybrid Methods**



- Implement two or more different recommenders and combine predictions
  - Perhaps using a linear model
- ■Add content-based methods to collaborative filtering
  - ➤ Item profiles for new item problem
  - ➤ Demographics (人口统计学特征) to deal with new user problem

## **Key Problems**



- □(1) Gathering "known" ratings for matrix
  - >How to collect the data in the utility matrix
- □(2) Extrapolate unknown ratings from the known ones
  - ➤ Mainly interested in high unknown ratings
    - We are not interested in knowing what you don't like but what you like
- **□(3)** Evaluating extrapolation methods
  - >How to measure success/performance of recommendation methods

## **Evaluation**



|       | • | m | ovie | S |   | <b></b> |
|-------|---|---|------|---|---|---------|
| 1     | 1 | 3 | 4    |   |   |         |
|       |   | 3 | 5    |   |   | 5       |
|       |   |   | 4    | 5 |   | 5       |
| users |   |   | 3    |   |   |         |
| users |   |   | 3    |   |   |         |
|       | 2 |   |      | 2 |   | 2       |
|       |   |   |      |   | 5 |         |
|       |   | 2 | 1    |   |   | 1       |
|       |   | 3 |      |   | 3 |         |
|       | 1 |   |      |   |   |         |

## **Evaluation**





# **Evaluating Predictions**



### Compare predictions with known ratings

- ➤ Root-mean-square error (RMSE, 均方根误差)
  - $\sqrt{\sum_{xi} (r_{xi} r_{xi}^*)^2}$  where  $r_{xi}$  is predicted,  $r_{xi}^*$  is the true rating of user x on item i
- ▶Sum of square error (SSE, 误差平方和)
  - $\sum_{xi} (r_{xi} r_{xi}^*)^2$  where  $r_{xi}$  is predicted,  $r_{xi}^*$  is the true rating of user x on item i
- **▶** Precision at top 10:
  - % of those in top 10
- > Rank Correlation:
  - Spearman's correlation (斯皮尔曼等级相关系数) between system's and user's complete rankings

 $ho=1-rac{6\sum d_i^2}{n(n^2-1)}$ 

# **Evaluating Predictions**



### **■**Another approach: 0/1 model

- ➤ Coverage (覆盖率):
  - Number of items/users for which system can make predictions
  - 推荐系统能够推荐的物品占总物品的比例. 覆盖率高, 那么模型能够针对更多项产生推荐, 促进长尾效应的挖掘
- ➤ Precision (精准度):
  - Accuracy of predictions
  - 推荐中的准确性, 越高那么推荐系统越好
- ▶ Receiver operating characteristic (ROC,受试者工作特征曲线)
  - Tradeoff curve between false positives and false negatives
  - false positives预测值为1,真实值为0
  - false negatives预测值为0, 真实值为1

### **Problems with Error Measures**



## ■Narrow focus on accuracy sometimes misses the point

- ▶ Prediction Diversity. e.g., HP1(哈利波特), then HP2, HP3
- ➤ Prediction Context. e.g., car, but after buying car, no need to recommend
- ➤Order of predictions. e.g., MCU(漫威电影), Iron Man(钢铁侠) before Avengers(复仇者联盟)

### □In practice, we care only to predict high ratings:

▶RMSE(均方根误差) might penalize a method that does well for high ratings and badly for others

## Tip: Add Data



### **□**Leverage all the data

- ➤Don't try to reduce data size in an effort to make fancy algorithms work
- ➤ Simple methods on large data do best

### ■Add more data

▶e.g., add IMDB data on genres

### **■More data beats better algorithms**

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

# Collaborative Filtering: Complexity



- $\square$  Expensive step is finding k most similar customers: O(|X|)
- ■Too expensive to do at runtime
  - Could pre-compute
- $\square$  Naïve pre-computation takes time  $O(k \cdot |X|)$ 
  - X ... set of customers

#### ■How to do this?

- ➤ Clustering
- ➤ Dimensionality reduction
- ➤ Near-neighbor search in high dimensions (e.g., locality-sensitive hashing, LSH, 局部性敏感哈希)