

Sistemas Operativos Avanzados

Trabajo Práctico Sistemas Embebidos Android

Control Remoto - RC

Año 2016 – 2 Cuatrimestre

Integrantes:

Bartellone, Matias Maulella, Pablo DNI 37.123.993 DNI 34.374.330

Índice

Objetivo	
Tareas realizadas	
Información técnica	
Sketch utilizado	
Armado de la Aplicación Android para la comunicación con Arduino	11
Botones Principales	

Objetivo

Realizar un auto con un sistema de control remoto, a partir de un sistema embebido compuesto por módulo de bluetooth, conectado a la placa Arduino y el mismo junto a un Puente H que controlar los motores del auto.

Hardware utilizado

- Placa Arduino UNO
- Modulo bluetooth HC-06 (Esclavo)
- Puente H
- LED's
- Cables macho macho/ Macho- Hembra
- Protoboard 400 puntos
- Baterías 9v
- Interruptor
- Conexión externa alimentación Arduino a 9v
- Carcasa Auto Tyco 6x6

Software utilizado

- Arduino 1.6.11
- Android Studio 2.2

Videos Youtube

Arduino LED - Android - Bluetooth HC-06

• https://www.youtube.com/watch?v=eqORIPH5X3E&feature=youtu.be

Prueba Control Remoto RC - Bluetooth - Android

• https://www.youtube.com/watch?v=X51dZgEqhoQ&feature=youtu.be

Código

https://drive.google.com/open?id=0BxyttFY4yEd-SU5MT0xYUzJkREU

Tareas realizadas

Armado de circuito y pruebas.

- 1. Iniciamos la conexión del Puente H con la placa Arduino.
- 2. Establecimos los circuitos que alimentan al puente H para poder controlar los motores.
- 3. Conectamos el módulo bluetooth para la recepción de los mensajes a la placa.

Auto Cerrado y Conectado.

Sketch utilizado

```
#include <SoftwareSerial.h>
#define IR 4
#define RE 12
#define ST 5
#define DE 3
#define DEBUG true
SoftwareSerial HC06(0,1);
int ENA=11;
int IN1=9;
int IN2=8;
int ENB=10;
int IN3=7;
int IN4=6;
int detection = HIGH;
void derecha(int val){
 digitalWrite(ENA,HIGH);
 digitalWrite(ENB,HIGH);
 digitalWrite(IN1,HIGH);
 digitalWrite(IN3,HIGH);
 digitalWrite(ST,LOW);
 analogWrite(ENA,val);
 analogWrite(ENB,val);
}
void izquierda(int val){
digitalWrite(ENA,HIGH);
digitalWrite(ENB,HIGH);
digitalWrite(IN2,HIGH);
digitalWrite(IN4,HIGH);
digitalWrite(ST,LOW);
analogWrite(ENA,val);
analogWrite(ENB,val);
```



```
}
void adelante(int val){
 digitalWrite(ENA,HIGH);
 digitalWrite(ENB,HIGH);
 digitalWrite(IN2,HIGH);
 digitalWrite(IN1,LOW);
 digitalWrite(IN3,HIGH);
 digitalWrite(IN4,LOW);
 digitalWrite(ST,LOW);
 analogWrite(ENA,val);
 analogWrite(ENB,val);
}
void parar(){
 analogWrite(ENA,0);
 analogWrite(ENB,0);
 digitalWrite(ENA,LOW);
 digitalWrite(ENB,LOW);
 digitalWrite(IN1,LOW);
 digitalWrite(IN2,LOW);
 digitalWrite(IN3,LOW);
 digitalWrite(IN4,LOW);
 digitalWrite(ST,HIGH);
 digitalWrite(RE,LOW);
}
boolean hayObstaculo(){
 detection = digitalRead(IR);
 if(detection == LOW){
  Serial.println("Hay un obstaculo!\n");
  return true;
 }
 else{
  Serial.println("No hay obstaculo!\n");
  return false;
 }
}
```

```
void atras(int val){
  digitalWrite(ENA,HIGH);
  digitalWrite(ENB,HIGH);
  digitalWrite(IN2,LOW);
  digitalWrite(IN1,HIGH);
  digitalWrite(IN3,LOW);
  digitalWrite(IN4,HIGH);
  digitalWrite(ST,LOW);
  digitalWrite(RE,HIGH);
  analogWrite(ENA,val);
  analogWrite(ENB,val);
}
void setup()
 Serial.begin(9600);
 HC06.begin(9600); // your esp's baud rate might be different
 pinMode(ENA,OUTPUT);//output
 pinMode(ENB,OUTPUT);
 pinMode(DE,OUTPUT);
 pinMode(ST,OUTPUT);
 pinMode(RE,OUTPUT);
 pinMode(IN1,OUTPUT);
 pinMode(IN2,OUTPUT);
 pinMode(IN3,OUTPUT);
 pinMode(IN4,OUTPUT);
 pinMode(IR,INPUT);
 pinMode(12,OUTPUT);
 pinMode(13,OUTPUT);
 digitalWrite(ENA,LOW);
 digitalWrite(ENB,LOW);//stop driving
 digitalWrite(IN1,LOW);
 digitalWrite(IN2,LOW);//setting motorA's directon
 digitalWrite(IN3,LOW);
 digitalWrite(IN4,LOW);//setting motorB's directon
 analogWrite(ENA,255);//start driving motorA
```

```
analogWrite(ENB,255);
}
char msg;
int vel=100;
boolean luz=false;
void loop()
 if(HC06.available()) // check if the esp is sending a message
  digitalWrite(13,HIGH);
   msg=(HC06.read());
   Serial.println("Mensaje recibido: "+msg);
   if(msg =='1'){
    Serial.println("Avanzando: "+vel);
    adelante(vel);
   if(msg == '2'){
    atras(vel);
    Serial.println("Retrocediendo: "+vel);
   }
   if(msg == '3'){}
    Serial.println("Detenido.");
    parar();
   }
   if(msg == '4'){}
    Serial.println("Doblando a la izquierda: "+vel);
    izquierda(vel);
   if(msg == '5'){}
    Serial.println("Doblando a la derecha: "+vel);
    derecha(vel);
   }
   if(msg == '6'){
    vel=100;
   }
```

```
if(msg == '7'){
    vel=150;
   }
   if(msg == '8'){
    vel=200;
   if(msg == '9'){
    vel=255;
   }
   if(msg == '0'){
    if (luz){
     digitalWrite(DE,LOW);
      luz = false;
     }else{
     digitalWrite(DE,HIGH);
     luz = true;
     }
   }
 }
}
```

Información técnica

Conexión Modulo Bluethood HC-06

El modelo HC-06 dispone de 4 pines y solo puede actuar como esclavo. En la imagen anterior se muestra la conexión básica para el funcionamiento del modulo

Conexión Puente H L298

Este módulo basado en el chip L298N te permite controlar dos motores de corriente continua o un motor paso a paso bipolar de hasta 2 amperios.

El módulo cuenta con todos los componentes necesarios para funcionar sin necesidad de elementos adicionales, entre ellos diodos de protección y un regulador LM7805 que suministra 5V a la parte lógica del integrado L298N. Cuenta con jumpers de selección para habilitar cada una de las salidas del módulo (A y B). La salida A está conformada por OUT1 y OUT2 y la salida B por OUT3 y OUT4.

<u>Importante</u>: Los pines de habilitación son ENA y ENB respectivamente. Se conectan a los pines PWM, de la placa para simular los cambios de velocidades del auto.

Armado de la Aplicación Android para la comunicación con Arduino

Activiy - Lista de Dispositivos

La siguiente Activity fue desarrollada para la selección de dispositivos bluetooth emparejados con el dispositivo Android.

Activity - Control Principal

Es la pantalla principal para controlar el auto de forma remota.

Botones Principales

Consta de 4 botones principales, los mismos fueron configurados con el evento *setOnTouchListener* que permite realizar una acción mientras se mantenga pulsado el botón.

- Adelante: Envía un mensaje al Arduino para que active los motores en dirección hacia adelante mientras se mantenga apretado, cuando suelta se libera el botón y se detiene.
- <u>Atrás</u>: Envía un mensaje al Arduino para que active los motores en dirección hacia atrás mientras se mantenga apretado, cuando suelta se libera el botón y se detiene.
- <u>Izquierda</u>: Envía un mensaje al Arduino para que active un motor con dirección hacia adelante y el otro en sentido opuesto para que gire a la izquierda mientras se mantenga apretado, cuando suelta se libera el botón y se detiene.
- <u>Derecha</u>: Envía un mensaje al Arduino para que active un motor con dirección hacia atrás y el otro en sentido opuesto para que gire a la derecha mientras se mantenga apretado, cuando suelta se libera el botón y se detiene.

Luz On/Off: Se configuro el evento *setOnClickListener* que permite encender los led delantero del auto y una vez presionado, cambia el estado a Led Off si esta encendido y viceversa en el caso contrario.

Velocidad: Se configuro el Componente *Seekbar* que modifica la velocidad que impulsa a los motores ya sea a la izquierda o derecha.

Desconectar: Este botón realiza la desconexión de la comunicación entre Arduino y la app Android.

