

Genesys Logic, Inc.

GL811E USB 2.0 to ATA / ATAPI Bridge Controller

Datasheet Revision 1.25 May. 03, 2006

Copyright:

Copyright © 2006 Genesys Logic Incorporated. All rights reserved. No part of the materials may be reproduced in any form or by any means without prior written consent of Genesys Logic Inc..

Disclaimer:

ALL MATERIALS ARE PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. NO LICENSE OR RIGHT IS GRANTED UNDER ANY PATENT OR TRADEMARK OF GENESYS LOGIC INC.. GENESYS LOGIC HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS IN REGARD TO MATERIALS, INCLUDING ALL WARRANTIES, IMPLIED OR EXPRESS, OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY. IN NO EVENT SHALL GENESYS LOGIC BE LIABLE FOR ANY DAMAGES INCLUDING, WITHOUT LIMITATION, DAMAGES RESULTING FROM LOSS OF INFORMATION OR PROFITS. PLEASE BE ADVISED THAT THE MATERIALS MAY CONTAIN ERRORS OR OMMISIONS. GENESYS LOGIC MAY MAKE CHANGES TO THE MATERIALS OR TO THE PRODUCTS DESCRIBED THEREIN AT ANY TIME WITHOUT NOTICE. · com.cn

Trademarks:

is a registered trademark of Genesys Logic, Inc All trademarks are the properties of their respective owners.

Office:

Genesys Logic, Inc.

12F, No. 205, Sec. 3, Beishin Rd., Shindian City,

Taipei, Taiwan

Tel: (886-2) 8913-1888 Fax: (886-2) 6629-6168

http://www.genesyslogic.com

Revision History

Revision	Date	Description
1.00	06/13/2003	First formal release.
1.01	06/24/2003	Changed product name from GL811 to GL811E.
1.10	11/26/2003	 Added some features in Chapter 2. Added 64 pin LQFP data in pinouts, pin description and package dimension. Added Chapter 8 "Ordering Infromation".
1.11	11/27/2003	Changed pin# 38,39,21 name from IOADR0~2 to DA0~2.
1.20	05/05/2004	Removed PIO mode description. Changed package dimension
1.21	09/23/2004	 Added USB2.0 certified Test ID in Chapter 2 Features Updated IC Marking in package dimension diagram
1.22	12/29/2004	Added TQFP package information in Features, Package Dimension and Ordering Information.
1.23	02/02/2005	Changed IC marking in package dimension
1.24	10/14/2005	Add IDE Bus voltage tolerance information, table 3.1, p.11~12
1.25	05/03/2006	Delete 48 Pin TQFP and 64 Pin TQFP Pinout/Package
		Delete 48 Pin TQFP and 64 Pin TQFP Pinout/Package

TABLE OF CONTENTS

CHAPTER 1	GENERAL DESCRIPTION	7
CHAPTER 2	FEATURES	8
CHAPTER 3	PIN ASSIGNMENT	9
3.1 PINOUTS	••••••	9
3.2 PIN DESC	CRIPTIONS	11
CHAPTER 4	BLOCK DIAGRAM	13
CHAPTER 5	FUNCTION DESCRIPTION	14
CHAPTER 6	ELECTRICAL CHARACTERISTICS	15
6.1 ABSOLUT	TE MAXIMUM RATINGS	15
6.2 TEMPERA	ATURE CONDITIONS	15
6.3 DC CHAI	RACTERISTICS	15
	B Type digital pins (For pad type I/O 8 @ $ m V_{CC}$ =3.6V)	
6.3.2 I/O 1	16 Type digital pins (For pad type I/O 16 @ $ m V_{CC}$ =3.6V)	16
6.3.3 D +/]	D- (For pad type u20mia @ V _{CC} =3.6V)	16
6.3.4 Swite	ching Characteristics	16
6.4 AC CHAI	RACTERISTICS- ATA/ ATAPI	17
6.4.1 Regi	ster Transfers	18
6.4.2 Mult	tiword DMA data transfer	19
6.4.3 Ultra	a DMA data transfer	23
6.5 AC CHAI	RACTERISTICS - USB 2.0	30
CHAPTER 7	PACKAGE DIMENSION	31
CHAPTER 8	ORDERING INFORMATION	33

LIST OF FIGURES

FIGURE 3.1 - 48 PIN LQFP PINOUT DIAGRAM	9
FIGURE 3.2 - 64 PIN LQFP PINOUT DIAGRAM	10
FIGURE 4.1 - BLOCK DIAGRAM	13
FIGURE 6.1 - INITIATING A MULTIWORD DMA DATA BURST	20
FIGURE 6.2 - SUSTAINING A MULTIWORD DMA DATA BURST	21
FIGURE 6.3 - DEVICE TERMINATING A MULTIWORD DMA DATA BURST	21
FIGURE 6.4 - HOST TERMINATING A MULTIWORD DMA DATA BURST	22
FIGURE 6.5 - INITIATING AN ULTRA DMA DATA-IN BURST	24
FIGURE 6.6 - SUSTAINED ULTRA DMA DATA-IN BURST	24
FIGURE 6.7 - HOST PAUSING AN ULTRA DMA DATA-IN BURST	25
FIGURE 6.8 - DEVICE TERMINATING AN ULTRA DMA DATA-IN BURST	25
FIGURE 6.9 - HOST TERMINATING AN ULTRA DMA DATA-IN BURST	26
FIGURE 6.10 - INITIATING AN ULTRA DMA DATA-OUT BURST	27
FIGURE 6.11 - SUSTAINED ULTRA DMA DATA-OUT BURST	27
FIGURE 6.12 - DEVICE PAUSING AN ULTRA DMA DATA-OUT BURST	28
FIGURE 6.13 - HOST TERMINATING AN ULTRA DMA DATA-OUT BURST	29
FIGURE 6.14 - DEVICE TERMINATING AN ULTRA DMA DATA-OUT BURST	30
FIGURE 7.1 - GL811E 48 PIN LQFP PACKAGE	31
FIGURE 7.3 - GL811E 64 PIN LQFP PACKAGE	32

LIST OF TABLES

TABLE 3.1 - PIN DESCRIPTIONS	11
TABLE 6.1 - MAXIMUM RATINGS	15
TABLE 6.2 - TEMPERATURE CONDITIONS	15
TABLE 6.3 - I/O 8 TYPE DIGITAL PINS (FOR PAD TYPE I/O 8 @ V_{CC} =3.6 V)	15
TABLE 6.4 - I/O 16 TYPE DIGITAL PINS (FOR PAD TYPE I/O 16 @ V_{CC} =3.6V)	16
TABLE 6.5 - D+/ D- (FOR PAD TYPE U20MIA @ V _{CC} =3.6V)	16
TABLE 6.6 - SWITCHING CHARACTERISTICS	16
TABLE 6.7 - ULTRA DMA DATA BURST TIMING REQUIREMENTS	23
TARLE 8.1 - ODDEDING INFORMATION	33

CHAPTER 1 GENERAL DESCRIPTION

The GL811E is a highly-compatible, low cost USB 2.0 to ATA / ATAPI bridge controller, which integrates Genesys Logic own design high speed UTMI (USB 2.0 Transceiver Macrocell Interface) transceiver.

As a one-chip solution which complies with Universal Serial Bus specification rev. 2.0 and ATA / ATAPI-6 specification rev 1.0, the GL811E can support various kinds of ATA / ATAPI device. There are totally 4 endpoints in the GL811E controller, Control (0), Bulk In (1), Bulk Out (2), and Interrupt (3). By complies with the USB Storage Class specification ver.1.0 (Bulk only protocol), the GL811E can support not only plug and play but also Windows XP/ 2000/ ME default driver.

The GL811E uses 12MHz crystal and slew-rate controlled pads to reduce the EMI issue. With 48-pin LQFP (9mmX9mm) package, the GL811E is the best cost/ performance solution to fit different situations in the USB 2.0 high speed storage class applications such as Hard Disk, CD-ROM, CD-R / RW and DVD-ROM.

CHAPTER 2 FEATURES

- Complies with Universal Serial Bus specification rev. 2.0.
- Complies with ATA/ATAPI-6 specification rev 1.0.
- Complies with USB Storage Class specification ver.1.0. (Bulk only protocol)
- Operating system supported: Win XP / 2000 / Me / 98 / 98SE; Mac OS 9.X / X.
- Integrated USB 2.0 Transceiver Macrocell Interface (UTMI) transceiver and Serial Interface Engine (SIE).
- USB 2.0 certified (TestID=40380268)
- Supports 4 endpoints: Control (0) / Bulk Read (1) / Bulk Write (2) / Interrupt (3).
- 64 / 512 bytes Data Payload for full / high speed Bulk Endpoint.
- Supports 16-bit Multiword DMA mode and Ultra DMA mode interface (Ultra 33 / 66).
- Embedded 7.5 MIPS RISC CPU.
- ROM size: 4k words; RAM size: 128 bytes.
- Supports Power Down mode and USB suspend indicator.
- Supports USB 2.0 TEST mode features.
- Supports 2 GPIO (GPIO5 & 6) for programmable AP (only for 64 pin package).
- Supports device power control for power on/off when running suspend mode (only for 64 pin package).
- Supports 32 bit and 48 bit LBA hard disk.
- Provides LED indicator for Full Speed and High Speed (only for 64 pin package).
- 12 MHz external clock to provide better EMI.
- 3.3V power input; 5V tolerance pad for IDE interface.
- Supports Wakeup ability.
- Available in 48-pin LQFP and 64-pin LQFP package.

CHAPTER 3 PIN ASSIGNMENT

3.1 Pinouts

Figure 3.1 - 48 Pin LQFP Pinout Diagram

Figure 3.2 - 64 Pin LQFP Pinout Diagram

3.2 Pin Descriptions

Table 3.1 - Pin Descriptions

Pin Name 48Pin# 64 Pin# I/O Type Description				
48Pin#	64 Pin#		Description	
1	1	B (tri)	GPIO7 (**)	
-	3,4	О	AP programmable	
2~5	5~8	B (tri)	IDE data bus 8~11 (*****)	
6,43	56,9	P	Digital VCC	
7,42	55,10	P	Digital ground	
8~11	11~14	B (tri)	IDE data bus 12~15 (*****)	
12	15	I (tri)	Cable select input (*****)	
13	20	O (tri)	Chip select 1 (****)	
14	ı	O (tri)	IDE address 2 / Serial data clock for EEPROM (*****)	
15	22	I (pu)	Reset pin (***)	
16	23	A	3.3v output	
17,24	24,31	P	Analog VCC	
18	25	В	Full speed DP	
19	26	В	High speed DP	
20	27	В	Full speed DM	
21	28	В	High speed DM	
22,27	29,34	P	Analog ground	
23	30	A	Reference resister connect (****)	
25	32	В	Crystal output	
26	33	I	Crystal input, 12Mhz	
28	-	I (pd)	TEST mode input	
29	37	O (tri)	Chip select 0 (****)	
30,31	38,39	O (tri)	IDE address 0~1 (*****)	
-	21	O (tri)	IDE address 2 (****)	
32	44	I (tri)	IDE interrupt input (*****)	
33	45	O (tri)	IDE acknowledge (****)	
34	46	I (pu)	IDE ready (****)	
	- 2~5 6,43 7,42 8~11 12 13 14 15 16 17,24 18 19 20 21 22,27 23 25 26 28 29 30,31 - 32 33	1 1 - 3,4 2~5 5~8 6,43 56,9 7,42 55,10 8~11 11~14 12 15 13 20 14 - 15 22 16 23 17,24 24,31 18 25 19 26 20 27 21 28 22,27 29,34 23 30 25 32 26 33 28 - 29 37 30,31 38,39 - 21 32 44 33 45	1 1 1 B (tri) - 3,4 O 2~5 5~8 (tri) 6,43 56,9 P 7,42 55,10 P 8~11 11~14 B (tri) 12 15 I (tri) 13 20 O (tri) 14 - O (tri) 15 22 I (pu) 16 23 A 17,24 24,31 P 18 25 B 19 26 B 20 27 B 21 28 B 22,27 29,34 P 23 30 A 25 32 B 26 33 I 28 - I (pd) 29 37 O (tri) 30,31 38,39 O (tri) 31 32 44 I (tri) 33 45 O (tri) 34 46 I	

GL811E USB 2.0 to ATA/ATAPI Bridge Controller

DIOR_	35	47	O (tri)	IDE read signal (****)
DIOW_	36	48	O (tri)	IDE write signal (*****)
DMARQ	37	50	I (pd)	IDE request (****)
IODD[0:3]	38~41	51~54	B (tri)	IDE data bus 0~3 (*****)
IODD[4:7]	44~47	57~60	B (tri)	IDE data bus 4~7 (*****)
GPIO1	48	61	B (tri)	GPIO1
PWR_CTL	-	62	О	Power control
F_LED	-	63	О	Full speed LED
H_LED	-	64	О	High speed LED
NC	-	2,16~19, 35,49,	-	No connection

^(*) The different of I/O 8 type from I/O 16 type is the typical drive current. The typical drive current of I/O 8 type is 8 mA, and for I/O pad 16 is 16 mA.

Notation:

O	Output
I	Input
В	Bi-directional
B/I	Bi-directional, default input
B/O	Bi-directional, default output
P	Power / Ground
A	Analog
SO	Automatic output low when suspend
pu	Internal pull up
pd	Internal pull down
odpu	Open drain with internal pull up
tri	Tri-state
	B B/I B/O P A SO pu pd odpu

^(**) When operating in default mode: GPIO7 is the ATA/ ATAPI reset input, 5V tolerance.

^(***) When operating in default mode. OF 107 is the AFA AFA Fresch input, 3 v (***) When Reset pin is pulled low, the IDE bus will be in tri-state. (****) RREF must be connected with a 510 ohm resister to ground. (*****) 5V tolerance

CHAPTER 4 BLOCK DIAGRAM

Figure 4.1 - Block Diagram

CHAPTER 5 FUNCTION DESCRIPTION

1. USB 2.0 TXCVR

The USB 2.0 Transceiver is the analog circuitry to handle the USB HS/FS signaling.

2. UTMI (USB 2.0 Transceiver Macrocell Interface) Logic

The UTMI Logic is compliant to Intel's UTMI specification 1.01. This block handles the low level USB protocol and signaling. The major jobs of UTMI Logic is data and clock recovery, NRZI encoding/decoding, Bit Stuffing/De-stuffing, USB2.0 test modes supporting and serial / parallel conversion.

3. SIE (Serial Interface Engine)

The SIE contains the USB packet ID and address recognition logic, and other sequencing and state machine logic to handle USB packets and transactions.

4. PLL

10XPLL provides the 120MHz clock output for UTMI Logic block. UTMI operates in 120MHz for USB HS data processing. 40XPLL block will provide 480MHz for USB HS data transmission.

5. CLKGEN

CLKGEN is the clock generator block for the logic blocks. It generates 15MHz clock for micro controller, 48MHz for MDMA mode, 96MHz for UDMA mode, and 30MHz clock for UTMI, SIE, and FIFO.

6. CPU

The CPU is the control center of GL811E. It's an 8-bit micro controller operating in 15MHz, 7.5 MIPS. After receiving a USB command, it decodes the host command, then it re-assigns tasks to the IDE engine, GPIO, FIFO, and response proper data/status to USB host.

7. IDE Engine

The IDE engine is extended from standard ATA / ATAPI protocol. It supports multiword DMA mode, and ultra DMA mode data transfers.

8. FIFOs

Control FIFO is used as Control Read / Write FIFO. TXFIFO0 / TXFIFO1 are two sets of 512-byte ping-pong FIFO for Bulk Read endpoint. It buffers data from IDE engine, and re-direct to USB SIE logic. RXFIFO0 / RXFIFO1 are two sets of 512-byte ping-pong FIFO for Bulk Write endpoint. It buffers data from USB SIE logic, and re-direct to IDE engine.

9. Control Registers

Control Register configures GL811E to proper operation. For example, CPU can set register to generate wakeup event, enter suspend, transmits proper USB packet to host.

10. ATA/ATAPI

The GL811E complies with ATA/ATAPI-6 specification rev. 1.0. Please refer to the specifications for more information.

11. USB 2.0

The GL811E complies with Universal Serial Bus specification rev. 2.0, and it integrates Genesys Logic own design UTMI transceiver that fully complies with the USB 2.0 Transceiver Macercell Interface (UTMI) specification rev. 1.01. Please refer to the specifications for more information.

CHAPTER 6 ELECTRICAL CHARACTERISTICS

6.1 Absolute Maximum Ratings

Table 6.1 - Maximum Ratings

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	DC supply voltage	+3.0	+3.6	V
$V_{\rm I}$	DC input voltage	-0.3	$V_{CC} + 0.3$	V
V _{I/O}	DC input voltage range for I/O	-0.3	$V_{CC} + 0.3$	V
V _{AI/O}	DC input voltage for USB D+/D- pins	-0.3	$V_{CC} + 0.3$	V
V_{ESD}	Static discharge voltage	4000		V
T_{A}	Ambient Temperature	0	100	°C

6.2 Temperature Conditions

Table 6.2 - Temperature Conditions

Item	Value
Storage Temperature	-50°C ~ 150°C
Operating Temperature	0°C ~ 70°C

6.3 DC Characteristics

6.3.1 I/O 8 Type digital pins (For pad type I/O 8 @ V_{CC} =3.6V)

Table 6.3 - I/O 8 Type digital pins (For pad type I/O 8 @ V_{CC} =3.6V)

Parameter	Min.	Тур.	Max.	Unit
Current sink @ V _{OL} = 0.4V	7.79	10.83	14.09	mA
Current output @ V _{OH} = 2.4V (TTL high)	16.36	19.87	23.39	mA
Falling slew rate at 30 pF loading capacitance	0.26	0.50	0.80	V/ns
Rising slew rate at 30 pF loading capacitance	0.30	0.57	0.91	V/ns
Input high threshold voltage			1.64	V
Input low threshold voltage	1.36			V
Hysteresis voltage	-	0	-	V
Leakage current for pads with internal pull up or pull down resistor			46	μΑ
Pad internal pull down resister	51K	105K	152K	Ohms
Pad internal pull up resister	85K	168K	251K	Ohms
Supply current			109	mA

6.3.2 I/O 16 Type digital pins (For pad type I/O 16 @ $V_{\rm CC} \!\!=\!\! 3.6 V)$

Table 6.4 - I/O 16 Type digital pins (For pad type I/O 16 @ $V_{\rm CC}$ =3.6V)

Parameter	Min.	Тур.	Max.	Unit
Current sink @ $V_{OL} = 0.4V$	16.20	21.90	27.68	mA
Current output @ V _{OH} = 2.4V (TTL high)	24.13	29.46	34.80	mA
Falling slew rate at 30 pF loading capacitance	0.51	0.93	1.35	V/ns
Rising slew rate at 30 pF loading capacitance	0.46	0.83	1.27	V/ns
Input high threshold voltage			2.15	V
Input low threshold voltage	0.89			V
Pad internal pull down resister	51K	105K	152K	Ohms

6.3.3 D+/ D- (For pad type u20mia @ V_{CC} =3.6V)

Table 6.5 - D+/ D- (For pad type u20mia @ $V_{\rm CC}$ =3.6V

Parameter	Min.	Тур.	Max.	Unit
D+/D- static output LOW (R_L of 1.5K to V_{CC})	0		0.3	V
D+/D- static output HIGH (R _L of 15K to GND)	2.8		3.6	V
Differential input sensitivity	0.2			V
Single-ended receiver threshold	0.8		2.0	V
Transceiver capacitance			20	pF
Hi-Z state data line leakage	-10		+10	μΑ
Driver output resistance	28		43	Ohms

6.3.4 Switching Characteristics

Table 6.6 - Switching Characteristics

Parameter	Min.	Тур.	Max.	Unit
X1 crystal frequency	11.97	12	12.03	MHz
X1 cycle time		83.3		ns
D+/D- rise time with 50pF loading	4		20	ns
D+/D- fall time with 50pF loading	4		20	ns

6.4 AC Characteristics- ATA/ ATAPI

The GL811E complies with ATA / ATAPI-6 specification rev 1.0, which supports following data transfer modes:

- DMA (Direct Memory Access) data transfer:
 DMA data transfer means of data transfer between device and host memory without host processor intervention.
 - Multiword DMA: Multiword DMA is a data transfer protocol used with the READ DMA, WRITE DMA, READ DMA QUEUED, WRITE DMA QUEUED and PACKET commands. When a Multiword DMA transfer is enabled as indicated by IDENTIFY DEVICE or IDENTIFY PACKET DEVICE data, this data transfer protocol shall be used for the data transfers associated with these commends. (Please refer to the ATA / ATAPI-6 specification rev 1.0 for more information.)
 - Ultra DMA: Ultra DMA Is a data transfer protocol used with the READ DMA, WRITE DMA, READ DMA QUEUED, WRITE DMA QUEUED and PACKET commands. When this protocol is enabled, the Ultra DMA protocol shall be used instead of the Multiword DMA protocol when these commands are issued by the host. This protocol applies to the Ultra DMA data burst only. (Please refer to the ATA / ATAPI-6 specification rev 1.0 for more information.)

Following listed the symbols and their respective definitions that are used in the timing diagram:

All signals are shown with the asserted condition facing to the top of the page. The negated condition is shown towards the bottom of the page relative to the asserted condition.

The interface uses a mixture of negative and positive signals for control and data. The terms asserted and negated are used for consistency and are independent of electrical characteristics.

In all timing diagrams, the lower line indicates negated, and the upper line indicates asserted. The following illustrates the representation of a signal named Test going from negated to asserted and back to negated, based on the polarity of the signal.

6.4.1 Register Transfers

Notes:

- 1. Device address consists of signals CSO_, CS1_ and DA(2:0).
- 2. Data consists of IODD(7:0).
- 3. The negation of IORDY by the device is used to extend the register transfer cycle. The determination of whether the cycle is to be extended is made by the host after t_A from the assertion of DIOR_ or DIOW_. The assertion and negation of IORDY are described as following:
 - 3.1 Device never negates IORDY, devices keeps IORDY released: no wait is generated.
 - 3.2 Device negates IORDY before t_A , but causes IORDY to be asserted before t_A . IORDY is released prior to negation and may be asserted for no more than 5 ns before release: no wait generated.
 - 3.3 Device negates IORDY before t_A, IORDY is released prior to negation and may be asserted for no more than 5 ns before release: wait generated. The cycle completes after IORDY is released. For cycles where a wait is generated and DIOR_ is asserted, the device shall read data on IODD(0:7) for t_{RD} before asserting IORDY.
- 4.DMACK_ shall remain negated during a register transfer.

	Register transfer timing parameters	Timing (ns)
t_0	Cycle time	2000
t_1	Address valid to DIOR_/ DIOW_ setup	1000
t_2	DIOR_/ DIOW_ pulse width 8-bit	300
t_{2i}	DIOR_/ DIOW_ recovery time	900
t_3	DIOW_ data setup	80
t_4	DIOW_ data hold	40
t ₅	DIOR_ data setup	-
t ₆	DIOR_ data hold	-
t _{6Z}	DIOR_ data tristate	-
t ₉	DIOR_/ DIOW_ to address valid hold	900
t_{RD}	Read Data Valid to IORDY active (if IORDY initially low after t _A)	
t_A	IORDY Setup time	<u>-</u>
t _B	IORDY Pulse Width	
$t_{\rm C}$	IORDY assertion to release (max)	-

6.4.2 Multiword DMA data transfer

	Register transfer timing parameters	Timing (ns)
t_0	Cycle time	120
t_{D}	DIOR_/ DIOW_ asserted pulse width	80
$t_{\rm E}$	DIOR_ data access	-
$t_{\rm F}$	DIOR_ data hold	-
t_{G}	DIOR_/ DIOW_ data setup	40
t _H	DIOW_ data hold	18
$t_{\rm I}$	DMACK to DIOR_/ DIOW_ setup	18
$t_{\rm J}$	DIOR_/ DIOW_ to DMACK hold	20
t _{KR}	DIOR_ negated pulse width	36
t_{KW}	DIOW_ negated pulse width	36
t_{LR}	DIOR_ to DMARQ delay	-
t_{LW}	DIOW_ to DMARQ delay	-
t_{M}	CS(1:0) (max) valid to DIOR_/ DIOW_	36
t_N	CS(1:0) hold	18
t_Z	DMACK_ to read data released	-

The host shall not assert $DMACK_$ or negate both $CS0_$ and $CS1_$ until the assertion of DMARQ is detected. The maximum time from the assertion of DMARQ to the assertion of $DMACK_$ or the negation of both $CS0_$ and $CS1_$ is not defined.

Figure 6.1 - Initiating a Multiword DMA Data Burst

Figure 6.2 - Sustaining a Multiword DMA Data Burst

To terminate the data burst, the Device shall negate DMARQ within the t_L of the assertion of the current DIOR_ or DIOW_ pulse. The last data word for the burst shall then be transferred by the negation of the current DIOR_ or DIOW_ pulse. If all data for the command has not been transferred, the device shall reassert DMARQ again at any later time to resume the DMA operation.

Figure 6.3 - Device Terminating a Multiword DMA Data Burst

- 1. To terminate the transmission of a data burst, the Host shall negate DMACK_ within the specified time after a DIOR_ or DIOW_ pulse. No further DIOR_ or DIOW_ pulses shall be asserted for this burst.
- 2. If the device is able to continue the transfer of data, the device may leave DMARQ asserted and wait for the host to reassert DMACK_ or may negate DMARQ at any time after detecting that DMACK_ has been negated.

Figure 6.4 - Host terminating a Multiword DMA Data Burst

6.4.3 Ultra DMA data transfer

Table 6.7 - Ultra DMA data burst timing requirements

Name		de 0 ns)	Moo (in	de 1 ns)		de 2 ns)		de 3 ns)		de 4 ns)	Comment	
	min	max	min	max	min	max	min	max	Min	max		
t _{2CYCTYP}	240		160		120		90		60		Typical sustained average two cycle time	
t _{CYC}	112		73		54		39		25		Cycle time allowing for asymmetry and clock variations	
t_{2CYC}	230		154		115		86		57		Two cycle time allowing for clock variations	
t_{DS}	15		10		7		7		5		Data setup time at recipient	
t_{DH}	5		5		5		5		5		Data hold time at recipient	
$t_{\rm DVS}$	70		48		30		20		6	A	Data valid setup time at sender	
$t_{\rm DVH}$	6		6		6		6		6	157	Data valid hold time at sender	
t_{FS}	0	230	0	200	0	170	0	130	0	120	First STORBE time	
t_{LI}	0	150	0	150	0	150	0	100	0	100	Limited interlock time	
$t_{ m MLI}$	20		20		20		20	'C	20		Interlock time with minimum	
$t_{ m UI}$	0		0		0		0		0		Unlimited interlock time	
t_{AZ}		10	1	10		10		10		10	Maximum time allowed for output drivers to release	
t _{ZAH}	20		20		20		20		20		Minimum delay time required for output	
t_{ZAD}	0		0		0		0		0		Drivers to assert or negate	
$t_{\rm ENV}$	20	70	20	70	20	70	20	55	20	55	Envelope time	
t_{SR}		50		30		20		NA		NA	STROBE to DMARDY_ time	
t_{RFS}		75		70		60		60		60	Ready to final STROBE time	
t _{RP}	160		125		100		100		100		Minimum time to assert STOP or negate DMARQ	
t _{IORDYZ}		20		20		20		20		20	Maximum time before releasing IORDY	
t _{ZIORDY}	0		0		0		0		0		Minimum time before driving STROBE	
t _{ACK}	20		20		20		20		20		Setup and hold times for DMACK_	
t_{SS}	50		50		50		50		50		Time from STROBE edge to negation of DMARQ of assertion of STOP	

The definitions for the DIOW_:STOP, DIOR_:HDMARDY_:HSTROBE and IORDY:DDMARDY_:DSTROBE signal lines are not in efficient until DMARQ and DMACK are asserted.

 t_{CYC} t_{2CYC} **DSTROBE** at device t_{DVH} t_{DVH} <u>t_{DVH}</u> t_{DVS} t_{DVS} DD(15:0) at device **DSTROBE** at host t_{DH} t_{DS} t_{DS} DD(15:0)

Figure 6.5 - Initiating an Ultra DMA Data-In Burst

Notes:

at host

IODD(15:0) and DSTROBE signals are shown at both the host and the device to emphasize that cable settling time as well as cable propagation delay shall not allow the data signals to be considered stable at the host until some time after they are driven by the device.

Figure 6.6 - Sustained Ultra DMA Data-In Burst

- 1. The host may assert STOP to request termination of the Ultra DMA burst no sooner than t_{RP} after HDMARDY_ is negated.
- 2. If the t_{SR} timing is not satisfied, the host may receive zero, one, or two more data words from the device.

Figure 6.7 - Host Pausing an Ultra DMA Data-In Burst

Notes:

The definitions for the DIOW_:STOP, DIOR_:HDMARDY_:HSTROBE and IORDY:DDMARDY_:DSTROBE signal lines are no longer in effect after DMARQ and DMACK are negated.

Figure 6.8 - Device Terminating an Ultra DMA Data-In Burst

The definitions for the DIOW_:STOP, DIOR_:HDMARDY_:HSTROBE and IORDY:DDMARDY_:DSTROBE signal lines are no longer in effect after DMARQ and DMACK are negated.

Figure 6.9 - Host Terminating an Ultra DMA Data-In Burst

The definitions for the DIOW_:STOP, DIOR_:HDMARDY_:HSTROBE and IORDY:DDMARDY_:DSTROBE signal lines are not in effect until DMARQ and DMACK are asserted.

Figure 6.10 - Initiating an Ultra DMA Data-Out Burst

Notes:

IODD(15:0) and HSTROBE signals are shown at both the device and the host to emphasize that cable settling time as well as cable propagation delay shall not allow the data signals to be considered stable at the devicet until some time after they are driven by the host.

Figure 6.11 - Sustained Ultra DMA Data-Out Burst

- Notes: 1. The device may negate DMARQ to request termination of the Ultra DMA burst no sooner than t_{RP} after DDMARDY_ is negated.
- 2. If the t_{SR} timing is not satisfied, the device may receive zero, one, or two more data words from the host.

Figure 6.12 - Device Pausing an Ultra DMA Data-Out Burst

The definitions for the DIOW_;STOP, DIOR_:HDMARDY_:HSTROBE and IORDY:DDMARDY_:DSTROBE signal lines are no longer in effect after DMARQ and DMACK are negated.

Figure 6.13 - Host terminating an Ultra DMA data-out burst

The definitions for the DIOW_:STOP, DIOR_:HDMARDY_:HSTROBE and IORDY:DDMARDY_:DSTROBE signal lines are no longer in effect after DMARQ and DMACK are negated.

Figure 6.14 - Device Terminating an Ultra DMA Data-Out Burst

6.5 AC Characteristics - USB 2.0

The GL811E conforms to all timing diagrams and specifications for Universal Serial Bus specification rev. 2.0. Please refer to this specification for more information.

CHAPTER 7 PACKAGE DIMENSION

NOTES :

- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD
 PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm
 PER SIDE. D1 AND E1 ARE MAXIMUM PLASTIC BODY
 SIZE DIMENSIONS INCLUDING MOLD MISMATCH.
- 2. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM b DIMENSION BY MORE THAN 0.08mm. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD IS 0.07mm.

CONTROL DIMENSIONS ARE IN MILLIMETERS.								
SYMBOL	MI	LLIMET	ΈR	INCH				
SYMBOL	MIN.	NOM.	NOM. MAX.		NOM.	MAX.		
A	_	_	1.60	_	_	0.063		
A1	0.05	_	0.15	0.002	_	0.006		
A2	1.35	1.40	1.45	0.053	0.055	0.057		
D	9.	00 BAS	IC	0.3	354 BAS	IC		
E	9.	00 BAS	IC	0.3	354 BAS	IC		
D1	7.	00 BAS	IC	0.2	276 BAS	IC		
E1	7.	00 BAS	IC	0.2	276 BAS	IC		
D2	5.	50 BAS	IC	0.2	217 BAS	IC		
E2	5.	50 BAS	IC	0.217 BASIC				
R1	0.08	_	_	0.003	_	_		
R2	0.08	_	0.20	0.003	_	0.008		
θ	0°	3.5°	7°	0°	3.5°	7°		
θ1	0°	_	_	0°	_	_		
θ2	11°	12°	13°	11°	12°	13°		
θ3	11°	12°	13°	11°	12°	13°		
С	0.09	_	0.20	0.004	_	0.008		
L	0.45	0.60	0.75	0.018	0.024	0.030		
L1	1	1.00 REI	7	0.039 REF				
S	0.20	_	_	0.008	_	_		
b	0.17	0.20	0.27	0.007	0.008	0.011		
e		50 BAS		0.020 BASIC				
TO	TOLERANCES OF FORM					AND POSITION		
aaa	0.20			0.008				
bbb		0.20		0.008				
ccc		0.08		0.003				
ddd		0.08		0.003				

Figure 7.1 - GL811E 48 Pin LQFP Package

CONTROL DIMENSIONS ARE IN MILLIMETERS.

GYANDOL	MI	LLIMET	ER	INCH			
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
A	_	_	1.60		_	0.063	
A1	0.05	_	0.15	0.002	_	0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
D	12	.00 BAS	IC	0.472 BASIC			
E	12	.00 BAS	IC	0.472 BASIC			
D1	10	.00 BAS	IC	0.3	393 BAS	IC	
E1	10	.00 BAS	IC	0.393 BASIC			
D2	7.	50 BASI	[C	0.295 BASIC			
E2	7.	50 BASI	IC	0.2	295 BAS	IC	
R1	0.08	_	_	0.003	_	_	
R2	0.08	_	0.20	0.003	_	0.008	
θ	0	3.5	7	0	3.5	7	
θ1	0		_	0	_	_	
θ2	11	12	13	11	12	13	
θ3	11	12	13	11	12	13	
c	0.09	_	0.20	0.004	_	0.008	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1.00 REI	7	0.039 REF			
S	0.20	-	_	0.008	_	_	
b	0.17	0.20	0.27	0.007	0.008	0.011	
e	0.	50 BASI	[C	0.020 BASIC			
TO	AND POSITION						
aaa	0.20			0.008			
bbb	0.20			0.008			
ccc		0.08		0.003			

NOTES:

- 1. DIMENSIONS DI AND EI DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. DI AND EI ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.
- 2. DIMENSION b DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
 SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE
 MAXIMUM b DIMENSION BY MORE THAN 0.08mm.
 DAMBAR CAN NOT BE LOCATED ON THE LOWER
 RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN
 PROTRUSION AND AN ADJACENT LEAD IS 0.07mm.

Figure 7.3 - GL811E 64 Pin LQFP Package

CHAPTER 8 ORDERING INFORMATION

Table 8.1 - Ordering Information

Part Number	Package	Normal/Green	Version	Status
GL811E -MSNXX	64-pin LQFP	Normal Package	XX	Available
GL811E -MNNXX	48-pin LQFP	Normal Package	XX	Available
GL811E -MSGXX	64-pin LQFP	Green Package	XX	Available
GL811E -MNGXX	48-pin LQFP	Green Package	XX	Available

