Module-I

Numerical Solutions of Algebraic and Transcendental equations:

Algebraic equation: If f(x) is a polynomial then the equation f(x) = 0 is called an algebraic equation.

 $x^3 - 3x + 1 = 0$, $x^2 + 6x + 8 = 0$ are some examples of algebraic equations.

Transcendental equation: Equations which involve transcendental functions like trigonometric functions, $\log x$, e^x etc. are called transcendental equations.

 $xe^{x}-3=0$, $x^{2}-\log_{10}x-12=0$, $x+\cos x-1=0$ are some examples of transcendental equations.

We can solve the given Algebraic or Transcendental equations numerically by using the following methods:

- 1. Secant Method
- 2. General Iteration Method (Successive approximation method)
- 3. Newton-Raphson Method

1. Secant Method:

Consider the function f(x) = 0 where f(x) is a continuous function. Choose two points a and b such that f(a) and f(b) are of opposite signs. Hence there exists root lying between a and b. In this method we approximate the curve of the function y = f(x) by a chord. Equation of the chord joining the points (a, f(a)) and (b, f(b)) is given by

$$y-f(a) = \frac{f(a)-f(b)}{b-a} (x-a)$$
 -----(1)

The point of intersection of the chord with the x-axis is taken as the first approximation x_1 to the root, which is obtained by taking y = 0 in (1).

Therefore,
$$0 - f(a) = \frac{f(a) - f(b)}{b - a} (x_1 - a)$$
 this gives $x_1 = \frac{a f(b) - b f(a)}{f(b) - f(a)}$ ----- (2)

Now, if f(a) and $f(x_1)$ are of opposite signs then the root lies between a and x_1 . So, we replace b by x_1 in (2) and we get the next approximation x_2 . But if f(a) and $f(x_1)$ are of same sign, then $f(x_1)$ and f(b) will be of opposite signs. Hence the root lies between x_1 and b. We replace a by x_1 in (2). We must repeat this process until the root is found to the desired accuracy.

Iterative formula is

$$x_{n+1} = \frac{x_n f(x_{n-1}) - x_{n-1} f(x_n)}{f(x_{n-1}) - f(x_n)} \quad (n = 1, 2, 3, ...)$$

1. Find a positive real root of the equation $x^3 - 3x - 5 = 0$ correct up to two decimal places using Secant method.

Solution: Let $f(x) = x^3 - 3x - 5$. Clearly f(2) = -3 < 0, f(3) = 13 > 0.

Therefore, required root lies between 2 and 3.

By the Secant method, we have $x_2 = \frac{x_1 f(x_0) - x_0 f(x_1)}{f(x_0) - f(x_1)}$

Taking $x_0 = 2$ and $x_1 = 3$.

Therefore, $x_2 = 2.1875$ and $f(x_2) = -1.095 < 0$. Hence required root lies between 2.1875 and 3.

We have
$$x_3 = \frac{x_2 f(x_1) - x_1 f(x_2)}{f(x_1) - f(x_2)}$$

Taking $x_1 = 2.1875$ and $x_2 = 3$. Therefore, $x_3 = 2.2506$ and $f(x_3) = -0.3521 < 0$. Hence required root lies between 2.2506 and 3.

We have
$$x_4 = \frac{x_3 f(x_2) - x_2 f(x_3)}{f(x_2) - f(x_3)}$$

Taking $x_2=2.2506$ and $x_3=3$. Therefore, $x_4=2.2704$ and $f(x_3)=-0.1079<0$. Hence required root lies between 2.2704 and 3.

We have
$$x_5 = \frac{x_4 f(x_3) - x_3 f(x_4)}{f(x_3) - f(x_4)}$$

Taking $x_3 = 2.2704$ and $x_4 = 3$. Therefore, $x_5 = 2.2764$.

Therefore required root is 2.2764 corrected up to two decimal places.

- 2. Find the positive root of the equation $x^2 \log_{10} x 12 = 0$ correct up to three decimal places in between 3 and 4 using Secant method
- 3. Find the smallest positive root of the equation $xe^x \cos x = 0$ using Secant method.
- 4. Find the negative root of the equation $x^3 4x + 1 = 0$ correct up to three decimal places using Secant method.
- 5. Find the positive root of the equation $x \log_{10} x = 1.2$ correct up to four decimal places using Secant method.
- 6. Find the positive root of the equation $x^3 3x + 1 = 0$ correct up to four decimal places using Secant method.

Note: i) It is guaranteed convergent method

ii) It is slowest convergent method (i.e., the rate of convergence is very low).

2. General Iteration Method:

Let
$$f(x) = 0$$
 -----(1)

be a given function.

Choose a and b such that f(a) < 0 and f(b) > 0. Therefore require root of (1) is lies between a and b. Let us take I = (a, b).

Suppose the equation (1) can be expressed as $x = \phi(x)$ where $\phi(x)$ is a continuous function.

Let x_0 be an approximate value of the desired root of (1).

Then, we define
$$x_1 = \phi(x_0)$$
, $x_2 = \phi(x_1)$, $x_3 = \phi(x_2)$, ..., $x_n = \phi(x_{n-1})$,...

Therefore,
$$x_n = \phi(x_{n-1}), n = 1, 2, 3, \dots$$
 (2)

is an iterative formula for solving the equation (1).

Note: The general iterative formula is converge if $|\phi'(x)| < 1$ for all $x \in I$.

1. Find a positive real root of the equation $x^3 - 3x + 1 = 0$ using Iteration method.

Solution: Let $f(x) = x^3 - 3x + 1$. Clearly f(1) = -1 < 0, f(2) = 3 > 0.

Therefore, required root lies between 1 and 2.

Now,
$$f(x) = 0$$
 gives $x^3 = 3x - 1$. Therefore, $x = (3x - 1)^{\frac{1}{3}} = \phi(x)$ and hence $\phi'(x) = \frac{1}{(3x - 1)^{\frac{2}{3}}}$. Clearly $|\phi'(x)| < 1$ for all $x \in (1, 2)$.

Let
$$x_0 = 2$$
. Then $x_1 = \phi(x_0) = 1.7100$, $x_2 = \phi(x_1) = 1.6044$, $x_3 = \phi(x_2) = 1.5623$, $x_4 = \phi(x_3) = 1.5449$, $x_5 = \phi(x_4) = 1.5375$, $x_6 = \phi(x_5) = 1.5344$, $x_7 = \phi(x_6) = 1.5331$, $x_8 = \phi(x_7) = 1.5325$, $x_9 = \phi(x_8) = 1.5323$.

Therefore, the required root is 1.5323 corrected up to three decimal places.

2. Find the real root of the equation $\cos x = 3x - 1$ using Successive approximation method.

Solution: Let
$$f(x) = 3x - 1 - \cos x$$
 Clearly $f(0) = -2 < 0$, $f\left(\frac{\pi}{2}\right) = 3.7143 > 0$.

Therefore, required root lies between and $\frac{\pi}{2}$.

Now,
$$f(x) = 0$$
 can be written as $x = \frac{1}{3}(\cos x + 1) = \phi(x)$ and hence $\phi'(x) = \frac{\sin x}{3}$.

Clearly
$$|\phi'(x)| < 1$$
 for all $x \in \left(0, \frac{\pi}{2}\right)$.

Let
$$x_0 = 0$$
. Then $x_1 = \phi(x_0) = 0.6667$, $x_2 = \phi(x_1) = 0.5953$, $x_3 = \phi(x_2) = 0.6093$, $x_4 = \phi(x_3) = 0.6067$, $x_5 = \phi(x_4) = 0.6072$, $x_6 = \phi(x_5) = 0.6071$, $x_7 = \phi(x_6) = 0.6071$. Therefore, approximate value of the required root is 0.6071

- 3. Find a positive real root of the equation $x^3 2x 5 = 0$ using General iteration method.
- 4. Solve the equation $3x + \sin x = e^x$ using General iteration method.

3. Newton-Raphson Method:

Let x_0 be an approximate root of the equation f(x) = 0.

Let $x_1 = x_0 + h$ be the exact root of f(x) = 0 where h is very small, positive or negative.

Therefore, $f(x_1) = 0$. By the Taylor's series expansion, we have

$$f(x_1) = f(x_0 + h) = f(x_0) + \frac{h}{1!}f'(x_0) + \frac{h^2}{2!}f''(x_0) + \dots$$

Since $f(x_1) = 0$ and h is very small, h^2 and higher powers of h terms can be neglected.

Hence
$$f(x_0) + \frac{h}{1!} f'(x_0) = 0$$
. Therefore $h = -\frac{f(x_0)}{f'(x_0)} if f'(x_0) \neq 0$.

Thus $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ is a first approximation to the root. Similarly starting with x_1 we get

the next approximation to the root given by $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$.

In general,
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
, $n = 0, 1, 2, ...$

and it is Known as Newton-Raphson's iteration formula or simply Newton-Raphson formula.

Note: i) It is a conditionally convergent method

- ii) It is a very fastest convergent method (i.e., the rate of convergence is very high) and the order of the convergent is two.
- 1. Find a positive real root of the equation $x^3 2x 5 = 0$ using Newton-Raphson method.

Solution: Let
$$f(x) = x^3 - 2x - 5$$
. Then $f'(x) = 3x^2 - 2$.

Clearly f(2) = -1 < 0, f(3) = 16 > 0. Therefore, required root lies between 2 and 3.

By the Newton-Raphson method, we have

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Taking
$$x_0 = 2$$
, we get $x_1 = 2 - \frac{(-1)}{10} = 2.1$.

Now,
$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2.1 - \frac{0.061}{11.23} = 2.0946$$
,

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 2.0946 - \frac{0.0005}{11.1619} = 2.09456.$$

Therefore the approximate value of a positive real root is 2.09456

2. Find the real root of the equation $x \log_{10} x - 1.2 = 0$ correct to four decimal places using Newton-Raphson method.

Solution: Let $f(x) = x \log_{10} x - 1.2$.

Then
$$f'(x) = x \left(\frac{1}{\log_e 10} \left(\frac{1}{x} \right) \right) + \log_{10} x = \log_{10} e + \log_{10} x = 0.4343 + \log_{10} x$$
.

Clearly
$$f(1) = -1.2 < 0$$
, $f(2) = -0.598 < 0$, $f(3) = 0.2313$

Therefore, required root lies between 2 and 3.

By the Newton-Raphson method, we have

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Taking
$$x_0 = 2$$
, we get $x_1 = 2 - \frac{(-0.598)}{0.7353} = 2.8133$.

Now,
$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2.8133 - \frac{0.0637}{0.8835} = 2.7412$$
,

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 2.7412 - \frac{0.0004}{0.8722} = 2.7407$$

$$x_4 = x_3 - \frac{f(x_2)}{f'(x_2)} = 2.7407.$$

Therefore the required root is 2.7407 correct up to four decimal places.

3. Derive an iterative formula to find $\sqrt[k]{N}$ (N > 0) using Newton-Raphson method and hence find $\sqrt[3]{24}$.

Solution: Let $x = \sqrt[k]{N}$ (N > 0). Then $x^k - N = 0$.

Let
$$f(x) = x^{k} - N$$
. Then $f'(x) = k x^{k-1}$.

By the Newton-Raphson formula, we have

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^k - N}{k x_n^{k-1}} = \frac{1}{k} \left(\frac{k x_n^k - x_n^k + N}{x_n^{k-1}} \right)$$

Therefore,
$$x_{n+1} = \frac{1}{k} \left((k-1)x_n + \frac{N}{x_n^{k-1}} \right) (n = 0, 1, 2, ...)$$

Now, to find $\sqrt[3]{24}$. Here k = 3 and N = 24.

By the above iterative formula, we have

$$x_1 = \frac{1}{k} \left((k-1)x_0 + \frac{N}{x_0^{k-1}} \right)$$

Taking $x_0 = 2.5$,

we get
$$x_1 = \frac{1}{k} \left((k-1)x_0 + \frac{N}{x_0^{k-1}} \right) = \frac{1}{3} \left(2(2.5) + \frac{24}{(2.5)^2} \right) = 2.9466$$
.

$$x_2 = \frac{1}{k} \left((k-1)x_1 + \frac{N}{x_1^{k-1}} \right) = \frac{1}{3} \left(2(2.9466) + \frac{24}{(2.9466)^2} \right) = 2.8857$$

$$x_3 = \frac{1}{k} \left((k-1)x_2 + \frac{N}{x_2^{k-1}} \right) = \frac{1}{3} \left(2(2.8857) + \frac{24}{(2.8857)^2} \right) = 2.8845$$

$$x_4 = \frac{1}{k} \left((k-1)x_3 + \frac{N}{x_3^{k-1}} \right) = \frac{1}{3} \left(2(2.8845) + \frac{24}{(2.8845)^2} \right) = 2.8844$$

Therefore the approximate value of $\sqrt[3]{24}$ is 2.8844

- 4. Derive an iterative formula to find $\frac{1}{N}$ using Newton-Raphson method and hence find $\frac{1}{18}$
- 5. Find the positive root of the equation $xe^x = 3$ using Newton-Raphson method.
- 6. Find a positive root of the equation $x^4 3x + 1 = 0$ using Newton-Raphson method.

Newton-Raphson method for Simultaneous Equations:

Consider the equations f(x, y) = 0 and g(x, y) = 0(1)

Let (x_0, y_0) be an initial approximate solution of (1). Let $x_1 = x_0 + h$ and $y_1 = y_0 + k$ be the next approximation. Expanding f and g by Taylor's series for a function of two variables around the point (x_1, y_1) , we have

$$f(x_1, y_1) = f(x_0 + h, y_0 + k) = f(x_0, y_0) + h f_x(x_0, y_0) + k f_y(x_0, y_0)$$

and
$$g(x_1, y_1) = g(x_0 + h, y_0 + k) = g(x_0, y_0) + h g_x(x_0, y_0) + k g_y(x_0, y_0)$$

(neglecting higher powers of h and k).

If (x_1, y_1) is a solution of (1), then $f(x_1, y_1) = 0$ and $g(x_1, y_1) = 0$.

Therefore,
$$f(x_0, y_0) + h f_x(x_0, y_0) + k f_y(x_0, y_0) = 0$$

and
$$g(x_0, y_0) + h g_x(x_0, y_0) + k g_y(x_0, y_0) = 0$$

$$h f_x(x_0, y_0) + k f_y(x_0, y_0) = -f(x_0, y_0)$$
(2)

and
$$hg_x(x_0, y_0) + kg_y(x_0, y_0) = -g(x_0, y_0)$$
(3)

If $\begin{vmatrix} f_x & f_y \\ g_x & g_y \end{vmatrix} \neq 0$, then the equations (2) and (3) having a unique solution of h and k.

Now $x_1 = x_0 + h$ and $y_1 = y_0 + k$ gives a new approximation to the solution.

By repeating this process we obtain the required solution of desired accuracy.

1. Find a root of system of non-linear equations $x^2 + y = 11$; $y^2 + x = 7$ with $x_0 = 3.5$ and $y_0 = -1.8$ by Newton-Raphson method.

Solution: Let $f(x, y) = x^2 + y - 11 = 0$ and $g(x, y) = y^2 + x - 7 = 0$ ----- (1). Given $x_0 = 3.5$ and $y_0 = -1.8$ as initial approximate solution of (1).

Let $x_1 = x_0 + h$ and $y_1 = y_0 + k$ be the next approximation.

Then we have

$$f(x_0, y_0) + h f_x(x_0, y_0) + k f_y(x_0, y_0) = 0 \qquad (2)$$
 and
$$g(x_0, y_0) + h g_x(x_0, y_0) + k g_y(x_0, y_0) = 0 \qquad (3)$$
 Now,
$$f(x_0, y_0) = -0.55, \ f_x(x_0, y_0) = 7, \ f_y(x_0, y_0) = 1, \ g(x_0, y_0) = -0.26,$$

$$g_x(x_0, y_0) = 1 \text{ and } g_y(x_0, y_0) = -3.6$$

Therefore, from the equations (2) and (3) we have,

$$7h+k=0.55$$
 ----- (4) and $h-3.6k=0.26$ ----- (5)

Solving the equations (4) and (5), we get h = 0.0855 and k = -0.0485.

Therefore,
$$x_1 = x_0 + h = 3.5855$$
 and $y_1 = y_0 + k = -1.8485$.

Let $x_2 = x_1 + h$ and $y_2 = y_1 + k$ be the next approximation.

Then we have

$$f(x_1, y_1) + h f_x(x_1, y_1) + k f_y(x_1, y_1) = 0 \qquad (6)$$
and
$$g(x_1, y_1) + h g_x(x_1, y_1) + k g_y(x_1, y_1) = 0 \qquad (7)$$

Now,
$$f(x_1, y_1) = 0.0073$$
, $f_x(x_1, y_1) = 7.171$, $f_y(x_1, y_1) = 1$, $g(x_1, y_1) = 0.0025$, $g_x(x_1, y_1) = 1$ and $g_y(x_1, y_1) = -3.697$.

Therefore, from the equations (6) and (7) we have,

$$7.171h + k = -0.0073$$
 (8)

and
$$h-3.697 k = -0.0025$$
 (9)

Solving the equations (8) and (9), we get h = -0.00106 and k = 0.00039.

Therefore,
$$x_2 = x_1 + h = 3.5844$$
 and $y_2 = y_1 + k = -1.8481$.

Thus x = 3.5844 and y = -1.8481 is an approximate solution to the given system of equations.

Solve the following system of non-linear equations using Newton-Raphson method.

1.
$$x^2 + y^2 = 1$$
; $xy = x + y$ with $x_0 = 0.5$ and $y_0 = -1$

2.
$$x^2 - y^2 = 4$$
; $x^2 + y^2 = 16$ with $x_0 = 2.828$ and $y_0 = 2.828$

3.
$$2x^2 - 4xy - y^2 = 0$$
, $2y^2 + 10x - x^2 - 4xy - 5 = 0$ with $x_0 = y_0 = 1$

4.
$$\sin x - y + 1.32 = 0$$
, $x - \cos y - 0.85 = 0$ with $x_0 = 0.6$ and $y_0 = 1.9$