Question Number	Answer		Mark
18(a)	Weight/W/mg labelled	(1)	
	• (Normal) reaction/contact force (accept <i>R/N/C</i>)	(1)	
	• Friction/F	(1)	
	• Lengths $R < W$ and $F < W$	(1)	4
	(-1 off total for each additional arrowed line and MP4 conditional on MP1, 2 and 3)		
	(do not accept components of forces, even if both given and accept correct		
	direction/size by eye)		
	F W		
18(b)(i)	Initially friction/drag negligible/small/less (as the velocity is low)	(1)	
	• See $mg\sin\theta$ Or $W\sin\theta$	(1)	
	• $mg\sin\theta = ma$ and the masses cancel (so a independent of m)	(1)	3
18(b)(ii)	As velocity increases, air resistance increases	(1)	
	• Until frictional forces = component of weight down slope	(1)	
	• Resultant force = 0 and there is no more acceleration (at max velocity)	(1)	3
	(MP2 allow frictional forces = $mg \sin \theta$)		
18(b)(iii)	A larger person would have a greater area/volume	(1)	
	The air resistance would be greater (accept drag)	(1)	2

18(c)(i)	See $\theta = \tan^{-1} 0.2$ and $\theta = 11.3^{\circ}$		
	Or see $\tan \theta = 0.2$ and $\theta = 11.3^{\circ}$	(1)	1
18(c)(ii)	Either (Energy)		
	Use of $E_k = \frac{1}{2} mv^2$	(1)	
	Use of trig to determine the component of weight along the slope or the vertical	(1)	
	height in terms of L	(1)	
	Use of $E_{\text{grav}} = mg\Delta h$ (to determine E_{grav}) Or use of $W = F\Delta s$	(1)	
	Use of of $E_k = E_{grav} + W$ (to determine	(1)	
	L = 120 m	(1)	
	Or (forces)		
	Use of trig to determine the component of weight along the slope or the vertical height in terms of L	(1)	
	Use of resultant force = $mg\sin 11.3^{\circ} + 240 \text{ N}$	(1)	
	Use of $\Sigma F = ma$ to determine a	(1)	
	Use of $v^2 = u^2 + 2as$ with their a (not 9.81) to determine s	(1)	
	L = 120 m	(1)	5
	Example of calculation		
	$E_{\rm k} = \frac{1}{2} \times 95 \text{ kg} \times (33 \text{ m s}^{-1})^2 = 51728 \text{ J}$		
	$51728 \text{ J} = (95 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times \sin 11.3^{\circ} \times L) + (240 \text{ N} \times L)$		
	L = 122 m		

18

Total for question 18