题目:数学分析整理

作者: uuku

摘 要

关键词:

目 录

É	要符号表	ŧ]	IV
1	绪论		1
	1.1 第一		1
	1.1.1	三级标题	1
	1.2 第二	二个二级标题	1
2	定义		2
	2.1 特征	正函数	2
	2.2 狄利	刘克雷函数	2
3	导数的	应用	3
	3.1 微分	分中值定理	3
	3.1.1	费马定理	3
4	定积分		4
	4.1 定义	¥	4
	4.2 定利	只分存在的条件	4
	4.2.1	达布和	4
	4.2.2	达布上下积分	4
	4.2.3	达布定理	5
	4.2.4	振幅	5
	4.2.5	黎曼定理	5
	4.3 勒见	贝格定理	6
	4.3.1	零测集	6
	4.3.2	定理	6
	4.4 性质	贡	6
	4.4.1	微积分学基本定理	6
	4.4.2	积分第一中值定理	6
	4.4.3	积分第二中值定理	6
5	反常积2	分	8
	5.1 无领	育积分	8
	5.1.1	定义	8
		柯西收敛准则	
	5.1.3	单调数列	8
	5.1.4	单调数列	8

目 录

	5.1.5	5 无穷积分的 Abel 引理	8			
	5.1.6	6 阿贝尔判别法	8			
	5.1.7	7 狄利克雷判别法	8			
	5.2 耳	段积分	9			
	5.2.1	1 定义	9			
5.3 求和与积分之间的联系			9			
	5.3.1	1 推论1	9			
	5.3.2	2 欧拉求和公式	9			
	5.3.3	3 示例	9			
6	多元i	函数极限1	1			
	6.1 R	Rⁿ 中的点集 1	1			
	6.1.1	1 邻域、开集1	1			
	6.1.2	2 聚点、闭集1	1			
	6.1.3	3 连通集1	3			
	6.2	多元函数的极限1	3			
	6.3 E	车续映射1	4			
7	多元	函数的微分1	5			
	7.1 得	数分的定义1	5			
	7.2 ブ	方向导数与偏导数1	5			
	7.3 孝	有限增量定理与泰勒公式1	6			
	7.4 万	反函数定理1	6			
	7.5	急函数定理1	6			
8	结论-	与展望1	8			
参	参考文献					
잛	计值	1	0			

主要符号表

符号1解释1符号2解释2

1 绪论

- 1.1 第一个二级标题
 - 1.1.1 三级标题
 - 1) 四级标题
- 1.2 第二个二级标题

2 定义

2.1 特征函数

设X是全集,对X的子集A,我们记

$$\chi_A(x) = \begin{cases} 1, & x \in A, \\ 0, & x \in X \backslash A, \end{cases}$$

并称 χ_A 为 A 的特征函数。

2.2 狄利克雷函数

$$D(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q} \end{cases}$$

3 导数的应用

- 3.1 微分中值定理
 - 3.1.1 费马定理

4 定积分

4.1 定义

设函数 f(x) 在有界闭区间 [a,b] 有定义. 若存在实数 I 使得对任意的 $\varepsilon>0$,均存在 $\delta>0$,其对满足 $\max \Delta x_i<\delta$ 的任意分点

$$a = x_0 < x_1 < \dots < x_n = b$$

及任意的 $\xi_i \in [x_{i-1}, x_i]$ 均有

$$\left| \sum_{i=1}^{n} f(\xi_i) \Delta x_i - I \right| < \varepsilon$$

那么就称 f(x) 在 [a,b] 上黎曼可积。 并称 $\sum_{i=1}^{n} f(\xi_i) \Delta x_i$ 为黎曼和。

4.2 定积分存在的条件

4.2.1 达布和

设函数 f(x) 在区间 [a,b] 上有界,在 [a,b] 中插入分点

$$\alpha: a = x_0 < x_1 < \dots < x_n = b,$$

并对 $1 \le i \le n$ 记

$$M_i = \sup_{x \in [x_{i-1}, x_i]} f(x), \quad m_i = \inf_{x \in [x_{i-1}, x_i]} f(x).$$

再考虑和式

$$\overline{S}(\alpha) = \sum_{i=1}^{n} M_i \Delta x_i, \quad \underline{S}(\alpha) = \sum_{i=1}^{n} m_i \Delta x_i.$$

其中 $\Delta x_i = x_i - x_{i-1}$ 。 我们称 $\overline{S}(\alpha)$ 为达布上和,其余同理。

4.2.2 达布上下积分

由 $\underline{S}(\alpha) \leq \underline{S}(\alpha \cup \beta) \leq \overline{S}(\alpha \cup \beta) \leq \overline{S}(\beta)$ 知集合 $\{\overline{S}(\alpha)\}$ 有下界,从而有下确界,我们记

$$\overline{\int_{a}^{b}} f(x) dx = \inf_{\alpha} \overline{S}(\alpha),$$

并称之为达布上积分,同理我们称

$$\int_{a}^{b} f(x) dx = \sup_{\alpha} \underline{S}(\alpha),$$

为达布下积分。

4.2.3 达布定理

(1) 设 f(x) 在 [a,b] 上有界,则对任意的 $\varepsilon>0$,均存在 $\delta>0$,使得对于满足 $\max \Delta x_i < \delta$ 的任意分点

$$a = x_0 < x_1 < \dots < x_n = b$$

均有
$$\left| \overline{S}(\alpha) - \overline{\int_a^b} f(x) dx \right| < \varepsilon, \quad \left| \underline{S}(\alpha) - \underline{\int_a^b} f(x) dx \right| < \varepsilon$$

(2) 设 f(x) 在 [a,b] 上有界,则 f(x) 在 [a,b] 上黎曼可积的充要条件是

$$\overline{\int_{a}^{b}} f(x) dx = \int_{a}^{b} f(x) dx$$

并且当 f(x) 在 [a,b] 上黎曼可积时有

$$\int_{a}^{b} f(x) dx = \overline{\int_{a}^{b}} f(x) dx = \underline{\int_{a}^{b}} f(x) dx$$

4.2.4 振幅

 $\omega_i = M_i - m_i$ 为 f(x) 在 [a,b] 上的振幅,那么

$$\overline{S}(\alpha) - \underline{S}(\alpha) = \sum_{i=1}^{n} \omega_i \Delta x_i$$

4.2.5 黎曼定理

在 [a,b] 上有界的函数 f(x) 则 f(x) 在 [a,b] 上黎曼可积的充要条件是:对任意的 $\varepsilon>0$,均存在 $\delta>0$ 使得对于满足 $\max_i \Delta x_i<\delta$ 的任意一组分点

$$a = x_0 < x_1 < \dots < x_n = b$$

均有

$$\sum_{i=1}^{n} \omega_i \Delta x_i < \varepsilon$$

上述定理可以弱化成,黎曼可积的充要条件为,对任意的 $\varepsilon > 0$ 存在一组分点 $a = x_0 < x_1 < \cdots < x_n = b$ 使得

$$\sum_{i=1}^{n} \omega_i \Delta x_i < \varepsilon$$

4.3 勒贝格定理

4.3.1 零测集

设 $A \subset \mathbb{R}$, 若对任意的 $\varepsilon > 0$, 均存在至多可数个开区间 I_n 使得

$$A \subset \bigcup_n I_n$$
 \mathbb{H} $\sum_n |I_n| < \varepsilon$

那么就称 A 是勒贝格零测集,其中 $|I_n|$ 表示区间 I_n 的长度。

4.3.2 定理

设 f(x) 在区间 [a,b] 上有界,则 f(x) 在 [a,b] 上黎曼可积的充要条件是 f(x) 在该区间上的全部间断点构成勒贝格零测集。

我们记 D_f 表示 f(x) 在 [a,b] 上的全体间断点所成之集。

4.4 性质

4.4.1 微积分学基本定理

设 f(x) 在 [a,b] 上可积,并对任意的 $x \in [a,b]$ 记

$$F(x) = \int_{a}^{x} f(t) dt$$

那么

- (1) F(x) 在 [a, b] 上连续
- (2) 设 $x_0 \in [a,b]$ 且 f(x) 在 x_0 处连续,则 F(x) 在 x_0 处可导且 $F'(x_0) = f(x_0)$

4.4.2 积分第一中值定理

设 f(x) 在 [a,b] 上连续, g(x) 在 [a,b] 上可积且不变号,则存在 $\xi \in [a,b]$ 使得,

$$\int_{a}^{b} f(x)g(x) dx = f(\xi) \int_{a}^{b} g(x) dx$$

4.4.3 积分第二中值定理

设 f(x) 在 [a,b] 上可积,g(x) 在 [a,b] 上单调且非负,

(1) 若 g(x) 单调递减,则存在 $\xi \in [a,b]$ 使得,

$$\int_{a}^{b} f(x)g(x)dx = g(a) \int_{a}^{\xi} f(x)dx$$

(2) 若 g(x) 单调递增,则存在 $\xi \in [a,b]$ 使得,

$$\int_{a}^{b} f(x)g(x)dx = g(b) \int_{\xi}^{b} f(x)dx$$

设 f(x) 在 [a,b] 上可积, g(x) 在 [a,b] 上单调,则存在 $\xi \in [a,b]$ 使得

$$\int_a^b f(x)g(x)\mathrm{d}x = g(a)\int_a^\xi f(x)\mathrm{d}x + g(b)\int_\xi^b f(x)\mathrm{d}x$$

5 反常积分

5.1 无穷积分

5.1.1 定义

$$\int_{a}^{+\infty} f(x) \ dx = \lim_{A \to +\infty} \int_{a}^{A} f(x) \ dx$$

5.1.2 柯西收敛准则

 $\int_a^{+\infty} f(x) dx$ 收敛的充要条件是:对任意的 $\varepsilon > 0$,均存在 A > 0,使得对任意的 $A_1, A_2 > A$ 有

$$\left| \int_{A_1}^{A_2} f(x) \mathrm{d}x \right| < \varepsilon$$

5.1.3 单调数列

设 f(x) 是定义在 $[a, +\infty)$ 上的函数,则 $\int_a^{+\infty} f(x) dx$ 收敛的充要条件是: 任意一个趋于 $+\infty$ 且满足 $A_1 \geq a$ 的单调递增数列 $\{A_n\}$ 使级数 $\sum_{n=1}^{\infty} \int_{A_{n-1}}^{A_n} f(x) dx$ 收敛

5.1.4 单调数列

设 f(x) 是定义在 $[a, +\infty)$ 上的非负函数,则 $\int_a^{+\infty} f(x) dx$ 收敛的充要条件是:存在一个趋于 $+\infty$ 且满足 $A_1 \geq a$ 的单调递增数列 $\{A_n\}$ 使级数 $\sum_{n=1}^{\infty} \int_{A_{n-1}}^{A_n} f(x) dx$ 收敛

5.1.5 无穷积分的 Abel 引理

设 f(x) 在 [a,b] 上可积,g(x) 在 [a,b] 上单调。若对任一 $x \in [a,b]$ 都存在 M>0 使得

$$\left| \int_{a}^{x} f(t) \mathrm{d}t \right| \leq M$$

则

$$\left| \int_a^b f(x)g(x)\mathrm{d}x \right| \leq M(|g(a)| + 2|g(b)|)$$

5.1.6 阿贝尔判别法

设 $\int_a^{+\infty}$ 收敛, g(x) 在 $[a, +\infty)$ 上单调且有界,则 $\int_a^{+\infty} f(x)g(x)dx$ 收敛.

5.1.7 狄利克雷判别法

假设函数 $F(A) = \int_a^A f(x) dx$ 在 $[a, +\infty)$ 上有界,g(x) 在 $[a, +\infty)$ 上单调且 $\lim_{x \to +\infty} g(x) = 0$,那么反常积分 $\int_a^{+\infty} f(x)g(x) dx$ 收敛.

5.2 瑕积分

5.2.1 定义

设 f(x) 在区间 (a,b] 上有定义,a 是 f(x) 唯一的奇点 (瑕点),且对任意的 $c \in (a,b]$, f(x) 在 [c,b] 上可积. 若极限

$$\lim_{c \to a^+} \int_c^b f(x) \mathrm{d}x$$

存在,则称反常积分 $\int_a^b f(x) dx$ 收敛.

5.3 求和与积分之间的联系

定义 5.3.1. a

设 $(a_n)_{n\in\mathbb{Z}}$ 是 \mathbb{R} 的一个元素族。又设 a < b,并对任意的 $t \in [a,b]$ 记 $S(t) = \sum_{a < n \le t} a_n$,则对任意的 $f \in C'([a,b])$ 有

$$\sum_{a \le n \le b} a_n f(n) = S(b)f(b) - \int_a^b S(t)f'(t) dt$$

5.3.1 推论 1

假设 $\{a_n\}$ 是一个数列,并记 $S(t)=\sum\limits_{n\leq t}a_n$. 又设 $x\geq 1$,那么对任意的 $f\in C'([0,x])$ 有

$$\sum_{n \le x} a_n f(n) = S(x) f(x) - \int_1^x S(t) f'(t) dt$$

5.3.2 欧拉求和公式

设 a < b,则对任意的 $f \in C'([a,b])$ 有

$$\sum_{a \le n \le b} f(n) = \int_{a}^{b} f(t) \, dt + \int_{a}^{b} f'(t)\psi(t) \, dt + f(a)\psi(a) - f(b)\psi(b)$$

其中 $\psi(x) = x - [x] - \frac{1}{2}$,且 [x]表示不超过x的最大整数。

5.3.3 示例

(1)

$$\gamma = \frac{1}{2} - \int_{1}^{\infty} \frac{\psi(t)}{t^2} \, \mathrm{d}t,$$

$$\sum_{n \le x} \frac{1}{n} = \log x + \gamma + O(\frac{1}{x})$$

(2) 斯特林 (Stirling) 公式

$$n! = e^{n\log n - n} \sqrt{2\pi n} \left(1 + O\left(\frac{1}{n}\right) \right)$$

6 多元函数极限

6.1 \mathbb{R}^n 中的点集

6.1.1 邻域、开集

定义 6.1.1 (ε -邻域、去心邻域). 设 $a \in \mathbb{R}^n$, ε 是一个正实数, 我们称集合

$$\{x \in \mathbb{R}^n : |\boldsymbol{x} - \boldsymbol{a}| < \varepsilon\}$$

为 a 的 ε -邻域, 记作 $B(a, \varepsilon)$.

称 $B(\boldsymbol{a}, \varepsilon) \setminus \{\boldsymbol{a}\} = \{\boldsymbol{x} \in \mathbb{R}^n : 0 < |\boldsymbol{x} - \boldsymbol{a}| < \varepsilon\}$ 为 \boldsymbol{a} 的去心邻域.

定义 6.1.2 (内点、内部). 设 $E \subseteq \mathbb{R}^n$ 且 $\mathbf{a} \in E$. 若存在 $\varepsilon > 0$ 使得 $B(\mathbf{a}, \varepsilon) \subseteq E$, 则 称 \mathbf{a} 是 E 的内点. E 的全体内点所成之集被称作 E 的内部,记作 E° .

定义 6.1.3 (外点、外部). 设 $E \subseteq \mathbb{R}^n$. 若 a 是 E^c 的内点,则称 a 为 E 的外点. E 的全体外点所成之集被称作 E 的外部.

定义 6.1.4 (边界点、边界). 设 $E \subseteq \mathbb{R}^n$. 若 a 既不是 E 的内点, 也不是 E 的外点, 则称 a 为 E 的边界点. E 的全体边界点所成之集被称作 E 的边界, 记作 ∂E .

定义 6.1.5 (开集). 设 $D \subseteq \mathbb{R}^n$, 若 G 中每个点均为内点, 则称 G 是 \mathbb{R}^n 中的开集. 即 G 是开集, 当且仅当 $G = G^\circ$.

命题 6.1.1. 设 $E \subset \mathbb{R}^n$, 则 E° 是开集.

命题 6.1.2. 我们有

- (1) \varnothing 和 \mathbb{R}^n 都是开集.
- (2) 设 $(G_{\lambda})_{\lambda \in L}$ 是一族开集,则 $\bigcup_{\lambda \in L} G_{\lambda}$ 也是开集.
- (3) 设 G_1, \cdots, G_m 是开集,则 $\bigcap_{i=1}^m G_i$ 也是开集.

定义 6.1.6 (邻域). 设 $E \subseteq \mathbb{R}^n$, 若开集 G 满足 $E \subseteq G$, 则称 G 是 E 的一个邻域. 特别的, 当 $E = \{a\}$ 时我们称 G 是 a 的一个邻域.

6.1.2 聚点、闭集

定义 6.1.7 (闭集). 设 $F \subset \mathbb{R}^n$, 若 F^c 是 \mathbb{R}^n 中的开集, 则称 F 是 \mathbb{R}^n 中的闭集.

命题 6.1.3. 我们有

(1) \emptyset 和 \mathbb{R}^n 都是闭集.

- (2) 设 $(G_{\lambda})_{\lambda \in L}$ 是一族闭集,则 $\bigcap_{\lambda \in L} G_{\lambda}$ 也是闭集.
- (3) 设 G_1, \dots, G_m 是开集,则 $\bigcup_{j=1}^m G_j$ 也是闭集.

定义 6.1.8 (聚点、导集). 设 $E \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$. 若对任意的 $\varepsilon > 0$ 均有

$$(B(\boldsymbol{a},\varepsilon)\backslash\{\boldsymbol{a}\})\cap E\neq\emptyset,$$

则称 $a \in E$ 的聚点. 称 E 的全体聚点所成之集为 E 的导集,记作 E'/

定义 6.1.9 (孤立点). 设 $E \subset \mathbb{R}^n$, 如果 $a \in E \setminus E'$, 则称 $a \in E$ 的孤立点.

定义 6.1.10 (闭包). 设 $E \subseteq \mathbb{R}^n$, 称 $E \cup E'$ 为 E 的闭包, 记作 \overline{E} .

命题 6.1.4. 设 $E \subset \mathbb{R}^n$, 则 \overline{E} 是闭集.

命题 6.1.5. 设 $E \subset \mathbb{R}^n$, 则 E 是闭集当且仅当 $E = \overline{E}$.

命题 6.1.6. 设 $E \subseteq \mathbb{R}^n$, 则 $\overline{E} = E^\circ \cup \partial E$.

定义 6.1.11 (极限、收敛). 设 $\{x_m\}$ 是 \mathbb{R}^n 中的一个点列, 如果存在 $a \in \mathbb{R}^n$, 使得对任意的 $\varepsilon > 0$, 均存在正整数 N 满足

$$|\boldsymbol{x_m} - \boldsymbol{a}| < \varepsilon, \quad \forall m > N.$$

则称 \boldsymbol{a} 为 $\{x_m\}$ 的极限, 并称 $\{x_m\}$ 收敛于 \boldsymbol{a} .

定义 6.1.12 (柯西列). 若 \mathbb{R}^n 中的点列 $\{x_m\}$ 满足: 对任意的 $\varepsilon > 0$, 均存在正整数 N 使得

$$|x_l - x_m| < \varepsilon, \quad \forall l, m > N,$$

则称 $\{x_m\}$ 是柯西列.

定理 6.1.7 (柯西收敛准则). \mathbb{R}^n 中的点列 $\{x_m\}$ 收敛当且仅当它是柯西列.

定理 6.1.8 (压缩映像原理). 设 $E \in \mathbb{R}^n$ 中的闭集, $f: E \to E$. 如果存在 $\theta \in (0,1)$ 使得

$$|f(\boldsymbol{x}) - f(\boldsymbol{y})| \le \theta |\boldsymbol{x} - \boldsymbol{y}|, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in E,$$

那么存在唯一的 $\mathbf{a} \in E$ 使得 $f(\mathbf{a}) = \mathbf{a}$. 我们称 $\mathbf{a} \to f$ 的不动点.

定义 6.1.13 (闭矩形). 形如 $[a_1,b_1] \times [a_2,.b_2] \times \cdots \times [a_n,b_n]$ 的集合为 \mathbb{R}^n 中的闭矩形.

定义 6.1.14 (直径). 对 \mathbb{R}^n 的任意非空子集 E 记

$$diam(E) = \sup_{\boldsymbol{x}.\boldsymbol{y} \in E} |\boldsymbol{x} - \boldsymbol{y}|,$$

并称之为 E 的直径.

定理 6.1.9 (闭矩形套定理). 设闭矩形列 $\{I_m\}$ 满足 $I_{m+1} \subseteq I_m(\forall m \in \mathbb{Z}_{>0})$ 以及 $\lim_{m \to \infty} \operatorname{diam}(I_m) = 0$, 那么存在唯一的 $\boldsymbol{a} \in \mathbb{R}^n$ 使得

$$\bigcap_{m=1}^{\infty} I_m = \{a\}.$$

定义 6.1.15 (紧集). 设 $K \subseteq \mathbb{R}^n$, 如果 K 的每个开覆盖均有有限子覆盖, 那么我们称 K 是一个紧集,

命题 6.1.10. \mathbb{R}^n 中的闭矩形是紧集.

定义 6.1.16 (有界). 设 $E \subseteq \mathbb{R}^n$. 若存在 M > 0, 使得对任意的 $\mathbf{x} \in E$ 均有 $|\mathbf{x}| \leq M$, 则称 E 是有界的.

定理 6.1.11. 设 $K \subseteq \mathbb{R}^n$, 则 K 是紧集当且仅当它是有界闭集.

定理 6.1.12. (波尔查诺-魏尔斯特拉斯定理) \mathbb{R}^n 的任意一个有界无限子集必有聚点.

6.1.3 连通集

定义 6.1.17 (开 (闭) 子集). 设 $A \subseteq E \subseteq \mathbb{R}^n$. 若存在 \mathbb{R}^n 中的开集 (相应的, 闭集) S 使得 $A = E \cap S$, 则称 $A \notin E$ 上的开子集 (相应的, 闭子集).

命题 6.1.13. 设 $E \subseteq \mathbb{R}^n$, $A, B \subseteq E$, 那么

- (1) $A \in E$ 的开子集当且仅当对任意的 $a \in A$, 存在 a 的邻域 U 使得 $E \cap U \subset A$.
- (2) $B \notin E$ 的闭子集当且仅当 $E \setminus B \notin E$ 的开子集.

定义 6.1.18 (连通集). 设 $E \subseteq \mathbb{R}^n$. 若不存在 E 的两个非空开子集 A 和 B 使得 $A \cup B = E$ 且 $A \cap B = \emptyset$, 则称 E 是 \mathbb{R}^n 中的连通集.

定义 6.1.19 (区域、闭区域). \mathbb{R}^n 中的连通开集被称作区域. 如果 E 是区域,那么也将 E 称作闭区域. 要注意的是, 闭区域不是区域.

命题 6.1.14. 设 $E \in \mathbb{R}$ 的非空子集, 那么 $E \in \mathbb{R}$ 中的连通集当且仅当 $E \in \mathbb{R}$ 是区间.

命题 6.1.15. 设 $E \in \mathbb{R}^n$ 中的连通集, 且 $E \subseteq S \subseteq \overline{E}$, 那么 S 也是 \mathbb{R}^n 中的连通集. 特别的 $\overline{E} \in \mathbb{R}^n$ 中的连通集.

6.2 多元函数的极限

定义 6.2.1 (极限). 设 $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}^m$, a 是 E 的聚点. 若存在 $b \in \mathbb{R}^m$, 使得对任意的 $\varepsilon > 0$, 均存在 $\delta > 0$ 满足

$$|f(\boldsymbol{x}) - \boldsymbol{b}| < \varepsilon, \quad \forall \boldsymbol{x} \in (B(\boldsymbol{a}, \delta) \setminus \{\boldsymbol{a}\}) \cap E,$$

则称 b 为 f 沿 E 中元素趋于 a 的极限.

命题 6.2.1 (极限的唯一性). 设 $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}^m$, $a \in E$ 的聚点. 如果 $b \vdash c \in E$ f 沿 E 中元素趋于 a 的极限, 则 b = c.

定理 6.2.2 (海涅归结原理). $\lim_{\substack{x \to a \\ x \in E}} f(x) = b$ 的充要条件是: 对于 E 中满足 $\lim_{k \to \infty} x_k = a$ 且 $x_k \neq a$ ($\forall k$) 的任一序列 $\{x_k\}$ 均有 $\lim_{k \to \infty} f(x_k) = b$.

定理 6.2.3 (柯西收敛准则). $\lim_{\substack{x \to a \\ E}} f(x)$ 存在的重要条件是: 对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 使得对于任意的 $x, y \in (B(a, \delta) \setminus \{a\}) \cap E$ 有

$$|f(\boldsymbol{x}) - f(\boldsymbol{y})| < \varepsilon.$$

定理 6.2.4 (夹逼定理). 设 $E \subseteq \mathbb{R}^n$, $a \in E$ 的聚点, f, g, h 均是定义在 E 上的函数, 并且存在 $\delta > 0$, 使得存在 $(B(a, \delta) \setminus \{a\}) \cap E$ 内有 $f(x) \leq g(x) \leq h(x)$. 如果

$$\lim_{\substack{\boldsymbol{x} \to \boldsymbol{a} \\ \boldsymbol{x} \in E}} f(\boldsymbol{x}) = \lim_{\substack{\boldsymbol{x} \to \boldsymbol{a} \\ \boldsymbol{x} \in E}} h(\boldsymbol{x}) = A,$$

那么 $\lim_{\substack{\boldsymbol{x} \to \boldsymbol{a} \\ \boldsymbol{x} \in E}} g(\boldsymbol{x}) = A.$

6.3 连续映射

定义 6.3.1 (连续). 设 $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}^m$. 又设 $\mathbf{a} \in E$. 若对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 使得对任意的 $\mathbf{x} \in E \cap B(\mathbf{a}, \delta)$ 均有

$$|f(\boldsymbol{x}) - f(\boldsymbol{a})| < \varepsilon,$$

则称 f 在 a 处连续. 若 f 在 E 的每一点处均连续, 则称 f 在 E 上连续.

注 6.3.1. 按照上述定义, E 上的任一映射 f 在 E

定理 6.3.1. 设 $E \subset \mathbb{R}^n$ 且 $f: E \to \mathbb{R}^m$, 则下列命题等价:

- (1) f 在 E 上连续.
- (2) 对 \mathbb{R}^m 中任意的开集 G, $f^{-1}(G)$ 均是 E 的开子集.
- (3) 对 \mathbb{R}^m 中任意的闭集 F, $f^{-1}(F)$ 均是 E 的闭子集.

命题 6.3.2. 设 $E \subseteq \mathbb{R}^n$ 且 $f = (f_1, \dots, f_m)^T : E \to \mathbb{R}^m$, 那么 $f \in E$ 上的连续函数 当且仅当每个 f_j $(1 \le j \le m)$ 均是 E 上的连续函数.

定理 6.3.3. 设 $f: \mathbb{R}^n \to \mathbb{R}^m$ 是连续映射. 若 $K \in \mathbb{R}^n$ 中的紧集, 则 f(K) 是 \mathbb{R}^m 中的紧集.

定义 6.3.2 (凸集). \mathbb{R}^n 的子集 S 被称为凸集当且仅当对任意的 $x, y \in S$ 均有

$$\{(1-\lambda)\boldsymbol{x} + \lambda\boldsymbol{y} : \lambda \in [0,1]\} \subseteq S.$$

7 多元函数的微分

7.1 微分的定义

定义 7.1.1 (可微). 设 $E \subseteq \mathbb{R}^m$, $f: E \to \mathbb{R}^m$. 又设 $a \in E$ 的一个内点. 若存在线性 映射 $L: \mathbb{R}^n \to \mathbb{R}^m$ 使得

$$\lim_{\boldsymbol{h}\to 0}\frac{f(\boldsymbol{a}+\boldsymbol{h})-f(\boldsymbol{a})-L\boldsymbol{h}}{|\boldsymbol{h}|}=\boldsymbol{0},$$

则称 f 在 a 处可微. 若 f 在 E 中每个点处均可微, 我们就称 f 在 E 上可微.

7.2 方向导数与偏导数

定义 7.2.1 (方向导数). 设 $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}^m$, 且 a 是 E 的一个内点. 对 \mathbb{R}^n 中给定的非零向量 u, 若极限

$$\lim_{t\to 0} \frac{f(\boldsymbol{a}+t\boldsymbol{u})-f(\boldsymbol{a})}{t}$$

存在, 我们就称 f 在 a 处沿方向 u 是可微的, 并将上述极限称为 f 在 a 处沿方向 u 的方向导数, 记作 $\frac{\partial f}{\partial u}(a)$.

命题 7.2.1. 设 $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}^m$, 且 a 是 E 的一个内点. 若 f 在 a 处可微, 则 f 在 a 处的所有方向导数均存在, 并且对于 \mathbb{R}^n 中的任意非零向量 a 有

$$\frac{\partial f}{\partial \boldsymbol{u}}(\boldsymbol{a}) = f'(\boldsymbol{a})\boldsymbol{u}.$$

定义 7.2.2 (雅可比矩阵).

$$f'(\boldsymbol{a}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\boldsymbol{a}) & \frac{\partial f_1}{\partial x_2}(\boldsymbol{a}) & \cdots & \frac{\partial f_1}{\partial x_n}(\boldsymbol{a}) \\ \frac{\partial f_2}{\partial x_1}(\boldsymbol{a}) & \frac{\partial f_2}{\partial x_2}(\boldsymbol{a}) & \cdots & \frac{\partial f_2}{\partial x_n}(\boldsymbol{a}) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(\boldsymbol{a}) & \frac{\partial f_m}{\partial x_2}(\boldsymbol{a}) & \cdots & \frac{\partial f_m}{\partial x_n}(\boldsymbol{a}) \end{bmatrix}$$

定义 7.2.3 (中值定理). 1

7.3 有限增量定理与泰勒公式

定义 7.3.1 (范数). 设 $L \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, 定义 L 的范数 ||L|| 为

$$||L|| = \sup_{|\boldsymbol{h}|=1} |L\boldsymbol{h}|.$$

并且我们有 $|Lx| \leq ||L|| \cdot |x|$, $\forall x \in \mathbb{R}^n$.

定理 7.3.1 (有限增量定理). 设 $E \in \mathbb{R}^n$ 中的凸开集, $f: E \to \mathbb{R}^m$ 在 E 上可微, 且存在 M > 0 使得对任意的 $\mathbf{x} \in E$ 均有 $\|f'(\mathbf{x})\| \leq M$. 那么对任意的 $\mathbf{a}, \mathbf{b} \in E$ 有

$$|f(\boldsymbol{b}) - f(\boldsymbol{a})| \leqslant M|\boldsymbol{b} - \boldsymbol{a}|.$$

7.4 反函数定理

定理 7.4.1 (反函数定理). 设 $E \in \mathbb{R}^n$ 中的开集, $f: E \to \mathbb{R}^n$ 且 $f \in C^1(E)$. 又设 $a \in E$. 若 f'(a) 非奇异, 那么必存在 a 的邻域 U 使得 V = f(U) 是 \mathbb{R}^n 中的开集, 且 $f|_U: U \to V$ 是双射. 此外, g 表示 $f|_U$ 的逆映射, 则 $g \in C^1(V)$, 并且对任意的 $y \in V$ 有

$$g'(y) = f'(g(y))^{-1}.$$

换种说法,如果有

- $E \in \mathbb{R}^n$ 中的开集.
- $f: E \to \mathbb{R}^n \perp f \in C^1(E)$
- $a \in E$, f'(a) 非奇异, 即 $\det f'(a) \neq 0$

那么

- 存在 a 的邻域 U 使得 V = f(U) 是 \mathbb{R}^n 中的开集
- $f|_U:U\to V$ 是双射.
- 若设 $q = f|_{U}^{-1}$ 则 $q \in C^{1}(E)$, 并且对任意的 $y \in V$ 有

$$g'(y) = f'(g(y))^{-1}.$$

7.5 隐函数定理

定理 7.5.1 (隐函数定理). 设 $E \in \mathbb{R}^{n+m}$ 中的开集, $f = (f_1, f_2, \dots, f_m)^T : E \to \mathbb{R}^m$ 连续可微. 又设 $\mathbf{a} \in \mathbb{R}^n$ 及 $\mathbf{b} \in \mathbb{R}^m$, 使得 $(\mathbf{a}, \mathbf{b}) \in E \perp f(\mathbf{a}, \mathbf{b}) = \mathbf{0}$. 现将 f 的雅可比矩阵写成如下分块矩阵

$$egin{bmatrix} rac{\partial f}{\partial oldsymbol{x}} & rac{\partial f}{\partial oldsymbol{y}} \end{bmatrix}$$

的形式, 其中

$$\frac{\partial f}{\partial \boldsymbol{x}} = \left(\frac{\partial f_i}{\partial x_j}\right)_{1 \le i \le m, 1 \le j \le n}, \qquad \frac{\partial f}{\partial \boldsymbol{y}} = \left(\frac{\partial f_i}{\partial x_{n+j}}\right)_{1 \le i, j \le m}.$$

那么当

$$\det \frac{\partial f}{\partial \boldsymbol{u}}(\boldsymbol{a}, \boldsymbol{b}) \neq 0$$

时, 存在 \boldsymbol{a} 的邻域 U, \boldsymbol{b} 的邻域 V 以及唯一的连续可微映射 $g:U\to V$, 使得

- $(1) \ g(\boldsymbol{a}) = \boldsymbol{b}.$
- (2) 对任意的 $x \in U$ 有 f(x, g(x)) = 0.
- (3) 对任意的 $\mathbf{x} \in U$ 有 $\det \frac{\partial f}{\partial \mathbf{y}}(\mathbf{x}, g(\mathbf{x})) \neq 0$, 并且

$$g'(m{x}) = -\left(rac{\partial f}{\partial m{y}}(m{x},g(m{x}))
ight)^{-1}rac{\partial f}{\partial m{x}}(m{x},g(m{x})).$$

定义 7.5.1. 在上述定理中, y = g(x)

8 结论与展望

致 谢