DRN: Ukázková semestrální písemka

1. Najděte řešení úlohy

$$y' = -3\frac{y-3}{x}, \quad y(-1) = 5.$$

2. a) Najděte obecné řešení rovnice

$$y'' + 2y' + 5y = 0.$$

- b) Diskutujte jeho typické chování v nekonečnu.
- c) Najděte řešení pro počáteční podmínky y(0) = 0, y'(0) = 2.
- 3. Uvažujte rovnici $y''-2y'=13e^{3x}+23$. Odhadněte obecný tvar partikulárního řešení y_p .
- 4. Najděte obecné řešení soustavy

$$y_1' = 7y_1 - 6y_2$$

$$y_2' = 6y_1 - 6y_2.$$

Řešení

1. Z rovnice $x \neq 0$.

Separace:
$$\int \frac{dy}{y-3} = -3 \int \frac{dx}{x}$$
. Stac. řeš. $y(x) = 3$.

Integrace: $\ln |y-3| = -3 \ln |x| + c = \ln \left| \frac{1}{x^3} \right| + c$, trik s $C = \pm e^c \neq 0$, proto $y(x) = \frac{C}{x^3} + 3$. Existence: $x \neq 0$. Z postupu chceme $y \neq 3$, to je pro $C \neq 0$ pravda. Volba C = 0 zahrne stac. řeš.

Proto obecné řešení $y(x) = \frac{C}{x^3} + 3$, $x \neq 0$. P.p.: $\frac{C}{(-1)^3} + 3 = 5$ dá C = -2. Chceme interval s $x_0 = -1$, proto

řešení $y(x) = 3 - \frac{2}{x^3}, x \in (-\infty, 0).$

2. a) $\lambda^2 + 2\lambda + 5 = 0 \implies \lambda = -1 \pm 2i$.

 $y(x) = a e^{-x} \sin(2x) + b e^{-x} \cos(2x), x \in \mathbb{R}$

b) Pro $x \sim \infty$ je $y(x) \to 0$.

c) $y'(x) = -ae^{-x}\sin(2x) + 2ae^{-x}\cos(2x) - be^{-x}\cos(2x) - 2be^{-x}\sin(2x)$.

P.p.:

$$0 + b = 0 \\
-0 + 2a - b - 0 = 2 \implies a = 1, b = 0.$$

Řešení: $y(x) = e^{-x} \sin(2x), x \in \mathbb{R}$.

3. Napravo dva různé typy, exponenciála s $\alpha = 3$ a polynom. První nástřel je tedy $Ae^{3x} + B$. Korekce? Levá strana (hom. rovnice) má charakteristická čísla

$$\lambda^2 - 2\lambda = 0 \implies \lambda = 0, 2.$$

Pravá strana: Exponenciální část je popsána parametrem $\lambda = 3$, není korekce. Polynomiální část nemá exponenciálu ani sinus/kosinus, proto je popsána parametrem $\lambda = 0$, jednonásobný překryv s charakteristickými čísly, bude korekce.

Závěr: Odhad je $y_p = Ae^{3x} + Bx$.

4. Pracujeme s maticí

$$\begin{pmatrix} 7 & -6 \\ 6 & -6 \end{pmatrix}$$
.

Najdeme vlastní čísla:

$$\det \begin{pmatrix} 7 - \lambda & -6 \\ 6 & -6 - \lambda \end{pmatrix} = -(7 - \lambda)(6 + \lambda) + 36 = \lambda^2 - \lambda - 6 = (\lambda - 3)(\lambda + 2) = 0.$$

Našli jsme
$$\lambda = -2, 3$$
. Najdeme vlastní vektory a řešení pro fundamentální systém:
$$\lambda = -2: \begin{pmatrix} 9 & -6 \\ 6 & -4 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, 3v_1 - 2v_2 = 0, \text{ volba } v_2 = 3 \text{ dá } v_1 = 2, \ \vec{y}_a(x) = \begin{pmatrix} 2 \\ 3 \end{pmatrix} e^{-2x}.$$

$$\lambda = 3$$
: $\begin{pmatrix} 4 & -6 \\ 6 & -9 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $2v_1 - 3v_2 = 0$, volba $v_2 = 2$ dá $v_1 = 3$, $\vec{y}_b(x) = \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^{3x}$.

Obecné řešení $\vec{y}(x) = a \begin{pmatrix} 2 \\ 3 \end{pmatrix} e^{-2x} + b \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^{3x}$ neboli

$$y_1(x) = 2a e^{-2x} + 3b e^{3x},$$

 $y_2(x) = 3a e^{-2x} + 2b e^{3x}, x \in \mathbb{R}.$

2