NUMERICAL ANALYSIS FOR PARTIAL DIFFERENTIAL EQUATIONS A.A. 2019/2020

LECTURER: Prof. A. Quarteroni TEACHING ASSISTANT AND TUTOR: Dr. F. Regazzoni

Lab 2

WEAK FORMULATION AND FINITE ELEMENT APPROXIMATION OF ELLIPTIC PROBLEMS

Exercise 1

Let $\Omega \subset \mathbb{R}^2$ be an open set having a regular enough boundary $\partial \Omega = \Gamma_D \cup \Gamma_N$ with $\overset{\circ}{\Gamma}_D \cap \overset{\circ}{\Gamma}_N = \emptyset$. Let us consider the following advection-diffusion problem: find $u: \Omega \to \mathbb{R}$ such that

$$\begin{cases}
-\nabla \cdot (\mu \nabla u) + \mathbf{b} \cdot \nabla u = f & \text{in } \Omega, \\
u = g_D & \text{on } \Gamma_D, \\
\mu \nabla u \cdot \mathbf{n} = g_N & \text{on } \Gamma_N,
\end{cases}$$
(1)

where $\mathbf{b}: \Omega \to \mathbb{R}^2$ and $\mu: \Omega \to \mathbb{R}$ are two continuous functions, $f: \Omega \to \mathbb{R}$ belongs to $L^2(\Omega)$ and $g_D: \Gamma_D \to \mathbb{R}$, $g_N: \Gamma_N \to \mathbb{R}$ are regular enough functions. Moreover, let us suppose

$$0 < \mu_0 \le \mu(\mathbf{x}) \le \mu_1$$
, $|\mathbf{b}(\mathbf{x})| \le b_1$, $\nabla \cdot \mathbf{b} = 0$, a.e. in Ω .

1. Write the weak formulation of problem (1) in the general form

find
$$u \in V$$
 such that $a(u, v) = F(v), \forall v \in V.$ (2)

In particular, define properly the functional space V and the forms $a(\cdot,\cdot)$ and $F(\cdot)$.

- 2. Define *conditions* on the coefficients under which the solution of problem (2) is unique.
- 3. Let V_h be a suitable finite dimensional subspace of V. Write the Galerkin formulation of problem (2).
- 4. Analyse the existence and uniqueness, stability and convergence of the solution.
- 5. Let now V_h , defined at point 3, be the space of *linear finite elements*. Show that the Galerkin formulation is equivalent to the solution of the linear system $A\mathbf{u} = \mathbf{f}$ with dimension n. Define precisely the value of n and give an explicit representation of the matrix A and the vectors \mathbf{u} and \mathbf{f} .