This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WHAT IS CLAIMED IS:

5

30

1. A compound represented by the formula:

$$A \xrightarrow{\lambda} A \xrightarrow{S_{2}} A \xrightarrow{\lambda} A \xrightarrow$$

or a pharmaceutically acceptable salt, prodrug or ester thereof, wherein

10 R² is an alkyl, aryl, cycloalkyl, cycloalkylalkyl or aralkyl radical, which radical is optionally substituted with a radical selected from the group consisting of alkyl, halo, nitro, cyano, CF₃, -OR⁹, and -SR⁹, wherein R⁹ is a radical selected from the group consisting of hydrogen and alkyl;

R³ is a hydrogen, alkyl, haloalkyl, alkenyl, alkynyl, hydroxyalkyl, alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, cycloalkyl, cycloalkylalkyl,

- heterocycloalkyl, heteroaryl, heterocycloalkylalkyl, aryl, aralkyl, heteroaralkyl, aminoalkyl or mono- or disubstituted aminoalkyl radicals, wherein said substituents are selected from the group consisting of alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl,
- heteroaryl, heteroaralkyl, heterocycloalkyl and heterocycloalkylalkyl radicals; or where said aminoalkyl radical is disubstituted, said substituents along with the nitrogen atom to which they are attached, form a heterocycloalkyl or a heteroaryl radical;

R4 is an alkyl, haloalkyl, alkenyl, alkynyl, hydroxyalkyl, alkoxyalkyl, cycloalkyl, cycloalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkyl, heterocycloalkyl, aralkenyl, heterocraikyl, aminoalkyl or

mono- or disubstituted aminoalkyl radical, wherein said substituents are selected from the group consisting of alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroaralkyl, heterocycloalkyl and heterocycloalkylalkyl radicals; or where said aminoalkyl radical is disubstituted, said substituents along with the nitrogen atom to which they are attached, form a heterocycloalkyl or a heteroaryl radical;

10 R6 is a hydrogen or alkyl radical;

x is 1 or 2;

t is 0 or 1; and

by the formula

15 ; ; ; Y is O or S; and

A is an alkoxy, alkenoxy, aralkoxy, alkyl, cycloalkyl, cycloalkylalkoxy, cycloalkylalkyl, aralkyl, aryl,

20 aryloxy, heterocycloalkyl, heterocycloalkoxy, heterocycloalkylalkyl, heterocycloalkylalkoxy, heteroaralkyl, heteroaralkoxy, heteroaryloxy, heteroaryl, alkenyl, aryloxyalkyl, heteroaryloxyalkyl, hydroxyalkyl, amino, or mono- or disubstituted amino radical, wherein the substituents are selected from the group consisting of alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroaralkyl, heterocycloalkyl and heterocycloalkyalkyl radicals; or where said amino radical is disubstituted, said substituents along with the nitrogen atom to which they are attached form a

heterocyclcalkyl or heteroaryl radical; or is represented

wherein R is a hydrogen, alkoxycarbonyl, aralkoxycarbonyl, alkylcarbonyl, cycloalkylcarbonyl, cycloalkylalkoxycarbonyl, cycloalkylalkancyl, carboxyalkancyl, alkancyl, aralkancyl, aroyl, aryloxycarbonyl, aryloxycarbonylalkyl, aryloxyalkancyl,

- aryloxycarbonyl, aryloxycarbonylalkyl, aryloxyalkanoyl, heterocyclylcarbonyl, heterocyclyloxycarbonyl, heterocyclylalkoxycarbonyl, heteroaralkanoyl, heteroaralkoxycarbonyl, heteroaryloxycarbonyl, heteroaroyl, alkyl, alkenyl, alkynyl,
- 10 cycloalkyl, aryl, aralkyl, arylcxyalkyl,
 heteroaryloxyalkyl, hydroxyalkyl, aminocarbonyl,
 aminoalkanoyl, or mono- or disubstituted aminocarbonyl or
 mono- or disubstituted aminoalkanoyl radical, wherein the
 substituents are selected from the group consisting of
- alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, hetercaralkyl, heterocycloalkyl and heterocycloalkyalkyl radicals; or wherein said aminocarbonyl or aminoalkanoyl radicals are disubstituted, said substituents along with the nitrogen
- 20 atom to which they are attached form a heterocycloalkyl or heteroaryl radical;

- R' is a radical as defined for \mathbb{R}^3 or \mathbb{R}^*SO_2- , wherein \mathbb{R}^* is a radical as defined for \mathbb{R}^3 ; or \mathbb{R} and \mathbb{R}^* together with the nitrogen to which they are attached form a heterocycloalkyl or heteroaryl radical;
- R1 is a hydrogen, -CO₂CH₃, -CH₂CO₂CH₃, -CO₂H, -CH₂CO₂H, -CH₂CONH₂, -CH₂CONH₂, -CH₂CONH₂, -CH₂CONH₃,
- -CH₂C(0)N(CH₃)₂, -CONHCH₃, -CONH(CH₃)₂, -CH₂SO₂NH₂, -CH₂CH₂SO₂NH₂, -CH₂S[0]CH₃, -CH₂S[0]₂CH₃, -C(CH₃)₂(SCH₃), -C(CH₃)₂(S[0]CH₃), -C(CH₃)₂(S[0]CH₃), alkyl, hydroxyalkyl, cyanoalkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, alkylthioalkyl, aralkyl,
- heteroaralkyl, aminoalkyl or mono- or disubstituted aminoalkyl radical, wherein said substituents are selected from the group consisting of alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl,

heteroaralkyl, heterocycloalkyl and heterocycloalkylalkyl radicals; or where said aminoalkyl radical is disubstituted, said substituents along with the nitrogen atom to which they are attached, form a heterocycloalkyl or a heteroaryl radical; and

each of R^1 ' and R^1 " are independently a radical as defined for R^1 ; or one of R^1 ' and R^1 " together with R^1 and the carbon atoms to which R^1 , R^1 ' and R^1 " are attached, form a cycloalkyl radical.

10

20

- 2. The compound of Claim 1 or a pharmaceutically acceptable salt, prodrug or ester thereof, wherein
- 15 R² is an alkyl, aryl, cycloalkyl, cycloalkylalkyl or aralkyl radical, which radical is optionally substituted with a radical selected from the group consisting of alkyl, halo and -OR⁹, wherein R⁹ is a radical selected from the group consisting of hydrogen and alkyl;

R³ is a hydrogen, alkyl, haloalkyl, alkenyl, alkynyl, hydroxyalkyl, alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkyl, heterocycloalkyl,

- aryl, aralkyl, heteroaralkyl, aminoalkyl or mono- or disubstituted aminoalkyl radicals, wherein said substituents are selected from the group consisting of alkyl, aralkyl, cycloalkyl and cycloalkylalkyl radicals; or where said aminoalkyl radical is disubstituted, said
- 30 substituents along with the nitrogen atom to which they are attached, form a heterocycloalkyl or a heteroaryl radical;

R⁴ is an alkyl, haloalkyl, alkenyl, alkynyl, hydroxyalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heteroaryl, heterocycloalkylalkyl, aryl, aralkyl, aralkenyl or heteroaralkyl radical; R6 is a hydrogen or alkyl radical;

x is 1 or 2;

Ξ

t is 0 or 1; and

Y is 0 or S; and

A is an alkoxy, alkenoxy, aralkoxy, alkyl, cycloalkyl, cycloalkylalkoxy, cycloalkylalkyl, aralkyl, aryl, aryloxy, heterocycloalkyl, heterocycloalkoxy, heterocycloalkylalkyl, heterocycloalkylalkoxy, heteroaralkyl, heteroaralkoxy, heteroaryloxy, heteroaryl,

hydroxyalkyl, amino, or mono- or disubstituted amino radical, wherein the substituents are selected from the group consisting of alkyl, aralkyl, heteroaryl, heteroaralkyl, heterocycloalkyl and heterocycloalkyalkyl radicals; or where said amino radical is disubstituted,

said substituents along with the nitrogen atom to which they are attached form a heterocycloalkyl radical; or is represented by the formula

25

wherein R is a hydrogen, alkoxycarbonyl, aralkoxycarbonyl, alkylcarbonyl, carboxyalkanoyl, alkanoyl, aralkanoyl, aroyl, heterocyclylcarbonyl, heterocyclyloxycarbonyl, heterocyclylalkanoyl,

- heterocyclylalkoxycarbonyl, heteroaralkanoyl, heteroaralkoxycarbonyl, heteroaryloxy-carbonyl, heteroaroyl, alkyl, cycloalkyl, aralkyl, hydroxyalkyl, aminocarbonyl, aminoalkanoyl, or mono- or disubstituted aminocarbonyl or mono- or disubstituted aminoalkanoyl
- 35 radical, wherein the substituents are selected from the

group consisting of alkyl, aralkyl, heteroaryl, heteroaralkyl, heterocycloalkyl and heterocycloalkyalkyl radicals; or wherein said aminocarbonyl or aminoalkancyl radicals are disubstituted, said substituents along with the nitrogen atom to which they are attached form a heterocycloalkyl or heteroaryl radical;

R' is a hydrogen, alkyl or aralkyl radical or R"SO₂-, wherein R" is a radical as defined for R³; or R and R' together with the nitrogen to which they are attached form a heterocyclealkyl or heteroaryl radical;

10

R1 is a hydrogen, -CO2CH3, -CH2CO2CH3, -CO2H, -CH2CO2H, -CH2CH2CONH2, -CH2CONH2, -CONH2, -CH2C(O)NHCH3,

- -CH₂C(O)N(CH₃)₂, -CONHCH₃, -CONH(CH₃)₂, -CH₂SO₂NH₂, -CH₂CH₂SO₂NH₂, -CH₂S[O]CH₃, -CH₂S[O]₂CH₃, -C(CH₃)₂(SCH₃), -C(CH₃)₂(S[O]CH₃), -C(CH₃)₂(S[O]₂CH₃), alkyl, hydroxyalkyl, cyanoalkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, alkylthioalkyl, aralkyl,
- heteroaralkyl, aminoalkyl or mono- or disubstituted aminoalkyl radical, wherein said substituents are selected from the group consisting of alkyl, aralkyl, heteroaryl, heteroaralkyl, heterocycloalkyl and heterocycloalkylalkyl radicals; or where said aminoalkyl
- radical is disubstituted, said substituents along with the nitrogen atom to which they are attached, form a heterocycloalkyl or a heteroaryl radical; and
- each of R^1 ' and R^1 " are independently a radical as defined for R^1 ; or one of R^1 ' and R^1 " together with R^1 and the carbon atoms to which R^1 , R^1 ' and R^1 " are attached, form a cycloalkyl radical.
- 3. The compound of Claim 2 or a pharmaceutically acceptable salt, prodrug or ester thereof, wherein

 \mathbb{R}^2 is an alkyl, aryl, cycloalkyl, cycloalkylalkyl or aralkyl radical, which radical is optionally substituted

with a radical selected from the group consisting of alkyl, halo and $-\mathrm{OR}^{9}$, wherein R^{9} is a radical selected from the group consisting of hydrogen and alkyl;

R3 is a hydrogen, alkyl, haloalkyl, alkenyl, alkynyl, hydroxyalkyl, alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkyl, heterocycloalkyl, aryl, aralkyl, heteroaralkyl, aminoalkyl or mono- or dialkyl substituted aminoalkyl radical;

R4 is an alkyl, haloalkyl, alkenyl, alkynyl, hydroxyalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkyl, heterocycloalkyl,

15 aryl, aralkyl, aralkenyl or heteroaralkyl radical;

R6 is a hydrogen or alkyl radical;

x is 1 or 2;

20

t is 0 or 1; and

Y is O or S; and

A is an alkoxy, alkenoxy, aralkoxy, alkyl, cycloalkyl, aryl, heterocycloalkyl, heterocycloalkoxy, heterocycloalkylalkyl, heteroaralkoxy, heteroaryl, amino, or mono- or disubstituted amino radical, wherein the substituents are selected from the group consisting of alkyl and aralkyl radicals; or is represented by the formula

wherein R is a hydrogen, alkoxycarbonyl, aralkoxycarbonyl, alkylcarbonyl, carboxyalkanoyl, alkanoyl, aroyl, heteroaroyl, alkyl, aralkyl, aminocarbonyl, aminoalkanoyl, or mono- or disubstituted aminocarbonyl or mono- or disubstituted aminoalkanoyl radical, wherein the substituents are selected from the group consisting of alkyl and aralkyl radicals;

R' is a hydrogen, alkyl or aralkyl radical or R"SO₂-,
wherein R" is a radical as defined for R³; or R and R'
together with the nitrogen to which they are attached
form a heterocycloalkyl or heteroaryl radical;

R1 is a hydrogen, -CO2CH3, -CH2CO2CH3, -CO2H, -CH2CO2H, -CH2CH2CONH2, -CH2CONH2, -CH2C(O)NHCH3, -CH2C(O)N(CH3)2, -CONHCH3, -CONH(CH3)2, -CH2SO2NH2, -CH2C(O)N(CH3)2, -CH2S[O]CH3, -CH2S[O]2CH3, -C(CH3)2(SCH3), -C(CH3)2(S[O]CH3), -C(CH3)2(S[O]CH3), alkyl, hydroxyalkyl, cyanoalkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, alkylthioalkyl, aralkyl, heteroaralkyl, aminoalkyl or mono- or disubstituted aminoalkyl radical, wherein said substituents are selected from the group consisting of alkyl and aralkyl radicals; and

 R^1 ' is a hydrogen, alkyl or aralkyl; and R^1 " is a hydrogen, alkyl, -CO₂CH₃ or -CONH₂; or one of R^1 ' and R^1 " together with R^1 and the carbon atoms to which R^1 , R^1 '

and R^{1} are attached, form a cycloalkyl radical.

30

4. The compound of Claim 3 or a pharmaceutically acceptable salt, prodrug or ester thereof, wherein

 R^2 is an alkyl, cycloalkylalkyl or aralkyl radical, which radical is optionally substituted with a radical selected from the group consisting of alkyl, halo and $-OR^9$, wherein R^9 is a radical selected from the group consisting of hydrogen and alkyl;

R3 is a hydrogen, alkyl, alkenyl, alkynyl, hydroxyalkyl, alkoxyalkyl, alkylthicalkyl alkylsulfonylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, aralkyl, heteroaralkyl, aminoalkyl or mono- or dialkyl substituted aminoalkyl radical;

R4 is an alkyl, haloalkyl, alkenyl, alkynyl, hydroxyalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heteroaryl, heterocycloalkylalkyl, aryl, aralkyl, aralkenyl or heteroaralkyl radical;

R6 is a hydrogen or alkyl radical;

15 x is 1 or 1; 1.

t is 0 or 1; and

Y is O or S; and

20

25

A is an alkoxy, alkenoxy, aralkoxy, alkyl, cycloalkyl, aryl, heterocycloalkyl, heterocycloalkoxy, heterocycloalkylalkyl, heteroaralkoxy, heteroaryl, amino, or mono- or disubstituted amino radical, wherein the substituents are selected from the group consisting of alkyl and aralkyl radicals; or is represented by the formula

3.0

3.5

wherein R is a hydrogen, alkoxycarbonyl, aralkoxycarbonyl, alkylcarbonyl, carboxyalkanoyl, alkanoyl, aroyl, heteroaroyl, alkyl, aralkyl, aminocarbonyl, aminoalkanoyl, or mono- or disubstituted aminocarbonyl or mono- or disubstituted aminoalkanoyl

radical, wherein the substituents are selected from the group consisting of alkyl and aralkyl radicals;

- R' is a hydrogen, alkyl or aralkyl radical or $R"SO_{2}-$, wherein R" is a radical as defined for R3; or R and R' together with the nitrogen to which they are attached form a heterocycloalkyl or heteroaryl radical;
- R^1 is a hydrogen, -CO₂H, -CH₂CO₂H, -CH̄₂CH₂CONH₂, 10 -CH₂CCNH₂, -CONH₂, -CH₂C(O)NHCH₃, -CH₂C(O)N(CH₃)₂,-CONHCH₃, -CONH(CH₃)₂, -CH₂SO₂NH₂, -CH₂CH₂SO₂NH₂, alkyl, hydroxyalkyl, cyanoalkyl, alkynyl, cycloalkylalkyl, alkylthicalkyl, aralkyl or heteroaralkyl radical; and
- R1' is a hydrogen, alkyl or aralkyl; and R1" is a 15 hydrogen, alkyl, -CO2CH3 or -CONH2; or one of Rl' and Rl" together with R^1 and the carbon atoms to which R^1 , R^1 and R^{1} " are attached, form a cycloalkyl radical;
- with the proviso that alkyl, alone or in combination, is 20 a straight-chain or branched-chain hydrocarbon radical containing from one to eight carbon atoms; alkenyl, alone or in combination, is a straight-chain or branched-chain hydrocarbon radical having at least one double bond and
- containing from two to eight carbon atoms; alkynyl, alone 25 or in combination, is a straight-chain or branched-chain hydrocarbon radical having at least one triple bond and containing from two to ten carbon atoms; and cycloalkyl, alone or in combination, is a hydrocarbon ring containing 30
- from three to eight carbon atoms.
 - 5. The compound of Claim 4 or a pharmaceutically acceptable salt, prodrug or ester thereof, wherein
- \mathbb{R}^2 is an alkyl, cycloalkylalkyl or aralkyl radical, which 35 radical is optionally substituted with a radical selected from the group consisting of alkyl, halo and $-OR^9$,

wherein \mathbb{R}^9 is a radical selected from the group consisting of hydrogen and alkyl;

R3 is a hydrogen, alkyl, alkenyl, alkynyl, hydroxyalkyl, alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, aralkyl, heteroaralkyl, aminoalkyl or mono- or dialkyl substituted aminoalkyl radical;

10 R4 is an alkyl, haloalkyl, alkenyl, alkynyl, hydroxyalkyl, alkoxyalkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heteroaryl, heterocycloalkylalkyl, aryl, aralkyl, aralkenyl or heteroaralkyl radical;

15 R6 is a hydrogen or alkyl radical;

x is 1 or 2;

t is 0 or 1; and

20

Y is O or S; and

A is an alkoxy, alkenoxy, aralkoxy, alkyl, cycloalkyl, aryl, heterocycloalkyl, heterocycloalkoxy,

heterocycloalkylalkyl, heteroaralkoxy, heteroaryl, amino, or mono- or disubstituted amino radical, wherein the substituents are selected from the group consisting of alkyl and aralkyl radicals; or is represented by the formula

30

$$\mathbb{R} \xrightarrow[R]{R^{1}} \mathbb{R}^{2}$$

wherein R is a hydrogen, alkoxycarbonyl,
aralkoxycarbonyl, alkylcarbonyl, carboxyalkanoyl,
alkanoyl, aroyl, heteroaroyl, alkyl, aralkyl,

aminocarbonyl, aminoalkanoyl, or mono- or disubstituted aminocarbonyl or mono- or disubstituted aminoalkanoyl radical, wherein the substituents are selected from the group consisting of alkyl and aralkyl radicals;

Ξ

R' is a hydrogen, alkyl or aralkyl radical or R"SO₂-, wherein R" is a radical as defined for R^3 ; or R and R' together with the nitrogen to which they are attached form a heterocycloalkyl or heteroaryl radical;

10

15

20

25

30

R1 is a hydrogen, -CO₂H, -CH₂CO₂H, -CH₂CH₂CONH₂, -CH₂CONH₂, -CH₂CONH₂, -CH₂C(O)NHCH₃, -CH₂C(O)N(CH₃)₂, -CONHCH₃, -CONH(CH₃)₂, -CH₂SO₂NH₂, -CH₂CH₂SO₂NH₂, alkyl, hydroxyalkyl, cyanoalkyl, alkynyl, cycloalkylalkyl, alkylthioalkyl, aralkyl or heteroaralkyl radical; and

 R^1 ' is a hydrogen, alkyl or aralkyl; and R^1 " is a hydrogen, alkyl, -CO₂CH₃ or -CONH₂; or one of R^1 ' and R^1 " together with R^1 and the carbon atoms to which R^1 , R^1 ' and R^1 " are attached, form a cycloalkyl radical;

with the proviso that alkyl, alone or in combination, is a straight-chain or branched-chain hydrocarbon radical containing from one to five carbon atoms; alkenyl, alone or in combination, is a straight-chain or branched-chain hydrocarbon radical having at least one double bond and containing from two to five carbon atoms; alkynyl, alone or in combination, is a straight-chain or branched-chain hydrocarbon radical having at least one triple bond and containing from two to five carbon atoms; and cycloalkyl, alone or in combination, is a hydrocarbon ring containing from three to eight carbon atoms; and

with the proviso that when R^2 is cycloalkylalkyl and t is 0, R' is a group other than alkoxycarbonyl.

6. The compound of Claim 5 or a pharmaceutically acceptable salt, prodrug or ester thereof, wherein

)

```
R2 is butyl, cyclohexylmethyl, benzyl, 4-fluorobenzyl or
    naphthylmethyl;
    R3 is methyl, ethyl, propyl, butyl, pentyl, hexyl, iso-
    butyl, iso-amyl, 3-methoxypropyl, 3-methylthiopropyl, 4-
    methylthiobutyl, 4-methylsulfonylbutyl, 2-
    dimethylaminoethyl, 2-(1-morpholino)ethyl, 4-
    hydroxybutyl, allyl, propargyl, cyclohexylmethyl,
10
    cyclopropylmethyl, phenyl, benzyl, 4-fluorobenzyl, 4-
    methoxybenzyl, 1-phenylethyl, 2-phenylethyl,
    naphthylmethyl, 3-pyridylmethyl or 4-pyridylmethyl;
    R^4 is methyl, ethyl, propyl, butyl, ethenyl,
15
    chloromethyl, cyclopropyl, cyclobutyl, cyclopentyl,
    cyclohexyl, phenyl, naphthyl, chlorophenyl, fluorophenyl,
    hydroxyphenyl, methylphenyl, methoxyphenyl, ethoxyphenyl,
    methylthiophenyl, methylsulfoxyphenyl,
    methylsulfonylphenyl, acetamidophenyl,
20
    methoxycarbonylphenyl, dimethylaminophenyl, nitrophenyl,
    trifluoromethylphenyl, benzyl, 2-phenylethenyl or
    thienyl;
    R6 is hydrogen;
25
    x is 2;
    t is 0 or 1; and
3.0
    Y is O; and
    A is methyl, cyclohexyl, cyclopentyl, cycloheptyl,
    1,2,3,4-tetrahydronaphthyl, naphthyl, quinolinyl,
    indolyl, pyridyl, methylpyridyl, furanyl, thiophenyl,
    oxazolyl, thiazolyl, phenyl, methylphenyl, ethylphenyl,
35
    dimethylphenyl, iso-propylphenyl, chlorophenyl,
    hydroxyphenyl, methoxyphenyl, methylsulfonylphenyl,
```

methylsulfonylmethylphenyl, carboxyphenyl,

aminocarbonylphenyl, methylhydroxyphenyl,
methylnitrophenyl, methylaminophenyl, methyl-N,Ndimethylaminophenyl, t-butoxy, benzyloxy, pyridylmethoxy,
3-propenoxy, hydroxypyridylmethoxy, aminopyridylmethoxy,
pyrimidinylmethoxy, N-oxo-pyrimidinylmethoxy,
thiazolylmethoxy, tetrahydrothiophenoxy, 1.1dioxotetrahydrothiophenoxy, tetrahydrofuranoxy,
methylamino, benzylamino or isopropylamino; or is
represented by the formula

R. R. R.

10

wherein R is hydrogen, acetyl, phenoxyacetyl,
methoxyacetyl, naphthaloxyacetyl, succinoyl, 2
methylpropionoyl, 2-hydroxypropionoyl, t-butoxycarbonyl,
benzyloxycarbonyl, methoxybenzyloxycarbonyl,
aminocarbonyl, quinolinylcarbonyl, N-methylglycinyl or
N,N-dimethylglycinyl;

20 R' is hydrogen, benzyl or methyl; or R and R' together with the nitrogen to which they are attached form pyrrolyl;

R1 is hydrogen, -CO₂H, -CH₂CO₂H, -CH₂CCNH₂, -CH₂CONH₂, -CONH₂, -CH₂C(O)NHCH₃, -CH₂C(O)N(CH₃)₂, -CONHCH₃, -CONH(CH₃)₂, -CH₂SO₂NH₂, -CH₂CH₂SO₂NH₂, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, 3-methylbutyl, cyclohexylmethyl, benzyl, hydroxybenzyl, imidazoyl, imidazcylmethyl, cyanomethyl, methylthiomethyl, propargyl or hydroxyethyl; and

R1' is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, benzyl, phenylethyl, phenylpropyl, phenylbutyl or 4,4-diphenylbutyl; and R1" is hydrogen, methyl,

35 -CO2CH3 or -CONH2; or one of R1' and R1" together with R1

```
and the carbon atoms to which R1, R1' and R1" are
    attached, form cyclobutyl, cyclopentyl or cyclohexyl;
    with the proviso that when \mathbb{R}^2 is cyclohexylmethyl and t
    is 0, R' is a group other than t-butoxycarbonyl.
          7.
              The compound of Claim 1 which is:
    Phenylmethyl[2R-hydroxy-3-[(3-
    methylbutyl)(methylsulfonyl) amino]-1S-
10
     (phenylmethyl)propyl]carbamate;
    Phenylmethyl[2R-hydroxy-3-]/3-
    methylbutyl) (phenylsulfonyl) amino]-1S-
    (phenylmat' 1) propyl]carbamate;
15
    N1-[2R-hydroxy-3-[(3-methylbutyl)(methylsulfonyl)amino]-
    1S-(phenylmethyl)propyl]-2S-((2-quinolinylcarbonyl)amino]
    butanediamide;
20
    N1-[2R-hydroxy-3-[(3-methylbutyl)(methylsulfonyl)amino]-
    1S-(phenylmethyl)propyl]-2S-
    [(phenylmethyloxycarbonyl)amino] butanediamide;
25
    N1-[2R-hydroxy-3[(3-methylbutyl)(phenylsulfonyl)amino]-
    1S-(phenylmethyl)propyl]-2S-[(2-quinolinylcarbonyl)amino]
    butanediamide:
    N1-[2R-hydroxy-3[(3-methylbutyl)(phenylsulfonyl)amino]-
30
    1S-(phenylmethyl)propyl]-2S-
    [(phenylmethyloxycarbonyl)amino] butanediamide;
    2S-[[(dimethylamino)acetyl]amino]-N-[2R-hydroxy-3-[(3-
    methyl- butyl) 'phenylsulfonyl)amino]-1S-
    (phenylmethyl)propyl]-3,3-dimethylbutaneamide;
35
```

```
2S-[[ methylamino)acetyl]amino]-N-[2R-hydroxy-3-[:3-
    methyl-butyl) 'phenylsulfonyl) amino] -15-
    (phenylmethyl)propyl; -3,3-dimethylbutaneamide;
    M1-[2R-hydroxy-3-[ 3-methylbutyl: phenyl-sulfonyl]amino]-
    N4-methyl-1S-(phenylmethyl)propyl]-2S-((2-
    quinolinylcarbonyl) amino]butanediamide;
    [3-[[2-hydroxy-3-[N-(3-methylbutyl)-N-
10
    (phenylsufonyl)amino]-1-(phenylmethyl)propyl]amino]-2-
    methy1-3-oxopropy1]-,
    (4-methoxyphenyl)methyl ester, [1S-[1R*(S*),2S*]]-:
    Carbamic acid, [2R-hydroxy-3-[(4-hydroxyphenylsulfonyl)
15
    (2-methylpropyl)amino]-1S-(phenylmethyl)propyl-, 3(S)-
    1,1-dioxotetrahydrothiophen-3-yl-ester;
    Carbamic acid, [2R-hydroxy-3-[(4-methoxyphenylsulfonyl)
    (2-methylpropyl)aminoj-1S-(phenylmethyl)propyl-, 3(S)-
20
    1,1-dioxotetrahydrothiophen-3-yl-ester;
    Carbamic acid, [2R-hydroxy-3-[(4-methoxyyphenylsulfonyl)
    (2-methylpropyl)amino]-1S-(phenylmethyl)propyl-, 3-S-
    tetrahydrothiophen-3-yl-ester;
25
    Carbamic acid, [2R-hydroxy-3-[(4-hydroxyphenylsulfonyl)
    (2-methylpropyl)amino]-1S-(phenylmethyl)propyl-, 3-S-
    tetrahydrothiophen-3-yl-ester;
    Carbamic acid, [2R-hydroxy-3-[(4-hydroxyphenylsulfonyl)
3.0
    (2-methylpropyl)amino]-1S-(phenylmethyl)propyl-, 3-S-
    tetrahydrofuran-3-yl-ester;
    Carbamic acid, [2R-nydroxy-3-[(4-methoxyphenylsulfonyl)
35
    (2-methylpropyl)amino)-1S-(phenylmethyl)propyl-, 3-S-
    tetrahydrofuran-3-yl-ester;
```

```
Carbamic acid, [2R-hydroxy-3-[[(4-
    methoxyphenyl)sulfonyl]/2-methylpropyl aminoj-15-
     phenylmethyl)propyl]-, 5- thiazolyl,methyl ester;
    Tarbamic acid, [2R-hydroxy-3-[[(4-
    hydroxyphenyl)sulfonyl;(2-methylpropyl)amino]-1S-
    (phenylmethyl)propyl]-, 5-(thiazolyl:methyl ester;
    Benzamide, N-[2R-hydroxy-3-[[(4-
    hydroxyphenyl)sulfonyl](2-methylpropyl;amino]-1S-
10
    (phenylmethyl)propyl]-2-methyl;
    Carbamic acid, [2R-hydroxy-3-][(4-
   methoxyphenyl)sulfonyl)(2-methylpropyl)amino]-15-
    phenylmethy1/propy1]-. 3-(6-aminopyridy1)methyl ester;
15
    Carbamic acid, [2R-hydroxy-3-[[(4-
    hydroxyphenyl)sulfonyl](2-methylpropyl)amino]-15-
    (phenylmethyl)propyl]-, 3-(6-aminopyridyl)methyl ester;
20
    Carbamic acid, [2R-hydroxy-3-[[(4-
    methoxyphenyl)sulfonyl[/2-methylpropyl)amino]-15-
     phenylmethyl)propyl]-, 3-(6-hydroxypyridyl)methyl ester;
    Carbamic acid, [2R-hydroxy-3-[[(4-
25
    hydroxyphenyl)sulfonyl](2-methylpropyl)amino]-1S-
    (phenylmethyl)propyl]-, 5-pyrimidylmethyl ester; or
    Benzamide, N-[2R-hydroxy-3-[[(4-
    methoxyphenyl)sulfonyl)(2-methylpropyl)amino]-1S-
30
    (phenylmethyl)propyl]-2-methyl.
```

8. A compound represented by the formula:

or a pharmaceutically acceptable salt, prodrug or ester thereof, wherein

- each of Pi and Pi independently represent hydrogen, alkoxycarbonyl, aralkoxycarbonyl, alkylcarbonyl, cycloalkylcarbonyl, cycloalkylalkoxycarbonyl, cycloalkylalkanoyl, alkanoyl, aralkanoyl, aroyl, aryloxycarbonyl, aryloxycarbonylalkyl, aryloxyalkanoyl,
- heterocyclylcarbonyl, heterocyclyloxycarbonyl, heterocyclylalkanoyl, heterocyclylalkoxycarbonyl, heteroaralkanoyl, heteroaralkoxycarbonyl, heteroaryloxycarbonyl, heteroarcyl, alkyl, alkenyl, cycloalkyl, aryl, aralkyl, aryloxyalkyl, heteroaryloxyalkyl, hydroxyalkyl,
- aminocarbonyl, aminoalkanoyl, or mono- or disubstituted aminocarbonyl or mono- or disubstituted aminoalkanoyl radical, wherein the substituents are selected from the group consisting of alkyl, aryl, aralkyl, cycloalkyl, cycloalkyl, heteroaryl, heteroaralkyl,
- heterocycloalkyl and heterocycloalkyalkyl radicals; or where said aminoalkanoyl radical is disubstituted, said substituents along with the nitrogen atom to which they are attached form a heterocycloalkyl or heteroaryl radical;

 R^2 is an alkyl, aryl, cycloalkyl, cycloalkylaikyl or aralkyl radical, which radicals are optionally substituted with a group selected from alkyl and halogen radicals, nitro, cyano, CF_3 , $-OR^9$, $-SR^9$, wherein R^9 is a

30 hydrogen or alkyl radical;

25

R3 is a hydrogen, alkyl, haloalkyl, alkenyl, alkynyl, hydroxyalkyl, alkoxyalkyl, cycloalkyl, cycloalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkyl,

aryl, aralkyl, hetercaralkyl, aminoalkyl or mono- or disubstituted aminoalkyl radical, wherein said substituents are selected from the group consisting of alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl,

heteroaryl, heteroaralkyl, heterocycloalkyl and heterocycloalkylalkyl radicals; or where the aminoalkyl radical is disubstituted, said substituents along with the nitrogen atom to which they are attached, form a heterocycloalkyl or a heteroaryl radical; and

 \mathbb{R}^4 is a radical as defined by \mathbb{R}^3 except for hydrogen.

9. The compound of Claim 8, wherein each of P¹ and 10 P² independently represent a hydrogen, alkoxycarbonyl, aralkyloxycarbonyl, heteroaralkoxycarbonyl, aroyl, heteroaroyl, alkanoyl or cycloalkanoyl radical;

 R^2 is a cyclcalkylalkyl, aralkyl or alkyl radical;

 \mathbb{R}^3 is an alkyl, cycloalkyl or cycloalkylalkyl radical; and

R4 is an aryl, alkyl, heteroaryl or aryl radical.

20

10. The compound of Claim 9, wherein P¹ and P²
independently represent,3-pyridylmethyloxycarbonyl, 3pyridylmethyloxycarbonyl N-cxide, 4pyridylmethyloxycarbonyl, 4-pyridylmethyloxycarbonyl Noxide, 5-pyrimidylmethyloxycarbonyl, tertbutyloxycarbonyl, allyloxycarbonyl, 2-propyloxycarbonyl,
benzyloxycarbonyl, cycloheptylcarbonyl,
cyclohexylcarbonyl, cyclopentylcarbonyl, benzoyl, 4pyridylcarbonyl, 2-methylbenzoyl, 3-methylbenzoyl, 4methylbenzoyl, 2-chlorobenzoyl, 2-ethylbenzoyl, 2,6dimethylbenzoyl, 2,3-dimethylbenzoyl;

R² is benzyl, cyclohexylmethyl, 2-naphthylmethyl, parafluorobenzyl, para-methoxybenzyl, isobutyl or n-butyl;

 \mathbb{R}^3 is isobutyl, isoamyl, cyclohexyl, cyclohexylmethyl, n-butyl or n-propyl; and

```
\mathbb{R}^4 is phenyl, para-methoxyphenyl, para-cyanophenyl, para-
chlorophenyl, para-hydroxyphenyl, para-nitrophenyl, para-
fluorophenyl, 2-naphthyl, 3-pyridyl, 3-pyridyl N-oxide,
4-pyridyl or 4-pyridyl N-oxide;
with the proviso that when \mathbb{R}^2 is cyclohexylmethyl, each
of P^1 and P^2 independently represent a group other than
tert-butyloxycarbonyl.
     11.
          A compound of Claim 8 which is:
Phenylmethyl[2R-hydroxy-3-[(2-
methylpropyl) (phenylsulfonyl) amino]-15-
(phenylmethyl)propyl]carbamate;
Phenylmethyl[2R-hydroxy-3-[(2-methylpropyl)(4-
methoxyphenyl sulfonyl)aminoj-15-
(phenylmethyl)propyl]carbamate;
Phenylmethyl[2R-hydroxy-3-[(2-methylpropyl)(4-
fluorophenyl sulfonyl)amino]-1S-
(phenylmethyl)propyl]carbamate;
Phenylmethyl[2R-hydroxy-3-[(2-methylpropyl)(4-
nitrophenylsulfonyl)amino]-1S-
(phenylmethyl)propyl]carbamate;
Phenylmethyl[2R-hydroxy-3-[(2-methylpropyl)(4-
chlorophenyl sulfonyl)amino]-1S-
(phenylmethyl)propyl]carbamate;
Phenylmethyl[2R-hydroxy-3-[(2-methylpropyl)(4-
acetamidophenyl sulfonyl)amino]-15-
(phenylmethyl)propyl]carbamate;
```

10

15

20

25

3.0

```
Phenylmethyl[2R-hydroxy-3-[,2-methylpropyl, 4-
    aminophenylsulfonyl; aminoj-15-
     'phenylmethyl)propyl]carbamate;
    Phenylmethyl[2R-hydroxy-3-[(3-methylbutyl)/4-
    methoxyphenyl sulfonyl)amino]-15-
     (phenylmethyl)propyl]carbamate;
    Phenylmethy1[2R-hydroxy-3-[(3-methylbuty1)(4-fluorophenyl
    sulfonyl)amino]-1S-(phenylmethyl)propyl]carbamate;
10
    Phenylmethyl[2R-hydroxy-3-[(3-methylbutyl)(4-
    nitrophenylsulfonyl)amino]-15-
    (phenylmethyl)propyl]carbamate;
15
    Phenylmethyl[2R-hydroxy-3-[(3-methylbutyl)(4-chlorophenyl
    sulfonyl)amino]-1S-(phenylmethyl)propyl]carbamate;
    Phenylmethyl[2R-nydroxy-3-[(2-methylpropyl)(4-
    methoxyphenyl sulfonyl)amino]-1S-(4-
20
    fluorophenylmethyl)propyl]carbamate;
    Phenylmethyl[2R-hydroxy-3-[(2-methylpropyl)(4-
    fluorophenyl sulfonyl)aminoj-1S-(4-
    fluorophenylmethyl)propyl]carbamate;
25
    Phenylmethyl[2R-hydroxy-3-[(butyl)(phenylsulfonyl)amino]-
    1S-/phenylmethyl)propyl]carbamate;
    Phenylmethyl[2R-hydroxy-3-[(cyclohexylmethyl)(phenyl
3.0
    sulfonyl)amino]-1S-(phenylmethyl)propyl]carbamate;
    Phenylmethyl[2R-hydroxy-3-[(cyclohexyl)(phenyl
    sulfonyl)amino]-1S-(phenylmethyl)propyl]carbamate;
35
    Phenylmethyl[2R-hydroxy-3-
    [(propyl)(phenylsulfonyl)amino]-1S-
    (phenylmethyl)propyl]carbamate;
```

```
Pentanamide, 2S-[[dimethylamino]acetyl]amino]-M-3R-
    hydroxy-3-[ 3-methylpropyl):(4-
    methoxyphenylsulfonyl;amino]-15--phenylmethyl.propyl]-35-
    methyl;
    Pentanamide, 2S-[[(methylamino)acetyl]amino]-N-2R-
    hydroxy-3-[(4-methylbutyl)(phenylsulfonyl)amino]-15-
     (phenylmethyl)propyl]-3S-methyl;
10
   Pentanamide, 2S-[[(dimethylamino)acetyl]amino]-N-2R-
    hydroxy-3-[(4-methylbutyl)(phenylsulfonyl)amino]-1s-
     (phenylmethyl)propyl]-3S-methyl;
15
    [2R-hydroxy-3-[[(4-methoxyphenyl)sulfonyl](2-
    methylpropyl)amino]-1S-(phenylmethyl)propylamine;
    2R-hydroxy-3-[(2-methylpropy1)(4-
    hydroxypnenyl)sulfonyl]amino-15-
20
    (phenylmethyl)propylamine;
    [2R-hydroxy-3-[(phenylsulfonyl)(3-methylbutyl)amino]-1S-
    (phenylmethyl)propylamine;
    [2R-hydroxy-3-[(phenylsulfonyl)(2-methylpropyl)amino]-1S-
25
    (phenylmethyl)propylamine;
    [2R-hydroxy-3-[(phenylsulfonyl)(cyclohexylmethyl)amino]-
    1S-(phenyimethyl)propylamine;
30
    [2R-hydroxy-3-[(phenylsulfonyl)(cyclohexyl)amino]-1S-
    (phenylmethyl)propylamine;
    4-Pyridinecarboxamide, M-[2R-hydroxy-3-[[(4-
    methoxyphenyl) sulfonyl](2-methylpropyl)amino;-15-
35
    (phenylmethyl)propyl];
```

```
Benzamide, N-[CR-hydroxy-3-][ 4-
    methoxyphenyl[sulfonyl](2-methylpropyl)aminc]-15-
     (phenylmethyl)propyl]-2.6-dimethyl;
 Ξ
    Benzamide, N-[2R-hydroxy-3-][/4-
    methoxyphenyl)sulfonyl](2-methylpropyl)amino]-1S-
     (phenylmethyl)propyl]-2-methyl;
    Benzamide, N-[2R-hydroxy-3-[[(4-
10
    methoxyphenyl)sulfonyl](2-methylpropyl)amino]-15-
     (phenylmethyl)propyl]-2-ethyl;
    Benzamide, N-[2R-hydroxy-3-[],4-
    methoxyphenyl;sulfonyl](2-methylpropyl)amino]-15-
     (phenylmethyl'propyl]-2-chloro;
15
    Carbamic acid, [2R-hydroxy-3-[[(4-
                                                                \}
    methoxyphenyl)sulfonyl](2-methylpropyl)amino]-1S-
    (phenylmethyl)propyl]-,
20
    3-pyridylmethyl ester;
    Carbamic acid, [2R-hydroxy-3-[[(4-
    methoxyphenyl)sulfonyl](2-methylpropyl)amino]-1S-
    (phenylmethyl:propyl]-,
25
    3-pyridylmethyl ester, N-oxide;
    Carbamic acid, [2R-hydroxy-3-[[phenylsulfonyl](2-
    methylpropy1)amino]-1S-(phenylmethyl)propy1]-,
    3-pyridylmethyl ester;
3.0
    Carbamic acid, [2R-hydroxy-3-[[(4-
    methoxyphenyl)sulfonyl](2-methylpropyl)amino]-1S-
    (phenylmethyl)propyl]-,
    4-pyridylmethyl ester;
35
    Carbamic acid, [2R-hydroxy-3-[[(4-
    methoxyphenyl)sulfonyl](2-methylpropyl)amino]-15-
     (phenylmethyl)propyl]-,
```

```
4-pyridylmethyl ester, N-oxide;
    Carbamic acid, [2R-hydroxy-3-[[(4-
    chlorophenyl)sulfcnyl; 2-methylpropyl;amino]-15-
   (phenylmethyl)propyl]-
    3-pyridylmethyl ester;
    Carbamic acid, [2R-hydroxy-3-[[(4-
    nitrophenyl)sulfonyl](2-methylpropyl)amino]-18-
10
   (phenylmethyl)propyl]-,
    3-pyridylmethyl ester;
    Carbamic acid, [2R-hydroxy-3-[[(4-
    fluorophenyl)sulfonyl],2-methylpropyl)amino]-15-
15
   (phenylmethyl)propyl]-,
    3-pyridylmethyl ester;
    Carbamic acid, [2R-hydroxy-3-[[(4-
    hydroxyphenyl)sulfonyl](2-methylpropyl)amino]-15-
20
   (phenylmethyl)propyl]-,
    3-pyridylmethyl ester; or
    Carbamic acid, [2R-hydroxy-3-][(4-
    methoxyphenyl)sulfonyl](2-methylpropyl)amino]-15-
25 (phenylmethyl)propylj-,
    5-pyrimidylmethyl ester.
              A pharmaceutical composition comprising a
3.0
```

- compound of Claim 1 and a pharmaceutically acceptable carrier.
 - 13. A pharmaceutical composition comprising a compound of Claim 8 and a pharmaceutically acceptable carrier.
 - 14. Method of inhibiting a retroviral protease comprising administering an effective amount of a compound of Claim 1.

15. Method of inhibiting a retroviral protease comprising administering an effective amount of a compound of Claim 8.

- 16. Method of treating a retroviral infection comprising administering an effective amount of a composition of Claim 12.
- 17. Method of treating a retroviral infection comprising administering an effective amount of a composition of Claim 13.
- 18. Method of preventing replication of a retrovirus suspected of being present in a solution comprising administering an effective amount of a compound of Claim 1.
- 19. Method of preventing replication of a 20 retrovirus suspected of being present in a solution comprising administering an effective amount of a compound of Claim 8.