

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI

A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr. IPLCO
 JEE ADVANCED
 DATE : 08-11-15

 TIME : 02:00 AM TO 05: 00 PM
 2013_P2 MODEL
 MAX MARKS : 180

KEY & SOLUTIONS

PHYSICS

1	В	2	AB	3	BCD	4	ABC	5	ABC
6	ABD	7	ACD	8	BCD	9	В	10	A
11	В	12	В	13	С	14	В	15	A
16	D	17	D	18	В	19	C	20	A

CHEMISTRY

21	ABC	22	BCD	23	ABCD	24	BCD	25	ABCD
26	ABC	27	ABCD	28	ABCD	29	В	30	С
31	С	32	C	33	С	34	В	35	A
36	С	37	С	38	A	39	D	40	В

MATHEMATICS

41	AC	42	ABC	43	ABD	44	ВС	45	ABD
46	ABCD	47	ABCD	48	ABD	49	С	50	В
51	В	52	С	53	A	54	В	55	A
56	D	57	D	58	A	59	D	60	С

Sec: Sr.IPLCO Page 1

MATHS

41.
$$I = \int_{-\infty}^{a} \frac{\left(\sin^{-1} e^{x} + \cos^{-1} e^{x}\right)}{\left(\tan^{-1} e^{a} + \tan^{-1} e^{x}\right)} \frac{e^{x}}{e^{2x} + 1} dx = \frac{\pi}{2} \int_{-\infty}^{a} \frac{1}{\left(\tan^{-1} e^{a} + \tan^{-1} e^{x}\right)} \frac{e^{x}}{e^{2x} + 1} dx$$

Put
$$\tan^{-1} e^x = t$$
, $\tan^{-1} e^a \left| \int_0^{\tan^{-1} e^a} e^{at} dt \right| = \frac{\pi}{2} \ln 2$

42.
$$I_n = \int_0^1 (1+x+x^2+....x^{n-1})(1+3x+5x^2+....+(2n-3)x^{n-2}+(2n-1)x^{n-1})dx$$

Put
$$x = t^2$$
 then $I_n = 2 \int_0^1 (t + t^3 + t^5 + \dots + t^{2n-1}) (1 + 3t^2 + 5t^4 + \dots + (2n-1)t^{2n-2}) dt$

Now put
$$t + t^3 + t^5 + \dots + t^{2n-1} = u$$

Then
$$I_n = 2 \int_0^n u du = n^2$$

$$\therefore I_n = n^2 \quad \forall n \in N$$

43.
$$L = \frac{\left(\int_{0}^{2} \sqrt{x} dx\right) \left(\int_{0}^{3} \frac{1}{\sqrt{x}} dx\right)}{\int_{0}^{5} x dx} = \frac{16\sqrt{2}}{25\sqrt{3}}$$

44.
$$f(x) = e^{x} \int_{0}^{x} e^{-t} \sin t \ dt$$

$$f'(x) = e^x e^{-x} \sin x + f(x)$$

$$f'(x) - f(x) = \sin x$$

$$f''(x) - f'(x) = \cos x$$

$$f''(x) - f(x) = \sin x + \cos x$$

45. Given integrand is derivative of $x.x^{\sin x}$

1)
$$\left(\frac{\pi}{4}\right)^{1+\frac{1}{\sqrt{2}}} > \left(\frac{\pi}{4}\right)^2$$
 2) $f\left(\frac{\pi}{6}\right) = \left(\frac{\pi}{6}\right)^{1/2+1}$ 4) $f(\pi) = \pi$, $f(2\pi) = 2\pi$

46.
$$I = \int \frac{(f(x) - f'(x)e^{x})}{(e^{x} + f(x))^{2}} dx = \int \frac{e^{-x}(f(x) - f'(x))}{(1 + e^{-x}f(x))^{2}} dx$$

Sec: Sr.IPLCO Page 7

Put
$$\frac{1}{1+e^{-x}f(x)} = t$$

Then
$$I = \frac{1}{1 + e^{-x} f(x)} + c$$

$$\therefore g(x) = \frac{1}{1 + e^{-x} f(x)}$$

1)
$$g(x) = \frac{1}{1 + e^x}$$
 if $f(x) = e^{2x}$

2)
$$g(\pi) = g(2\pi) if f(x) = \sin x \text{ as } g(x) = \frac{1}{1 + e^{-x} \sin x}$$

3)
$$g(x) = \frac{1}{1 + e^{-x} \cos x}$$

$$\therefore g\left(\frac{\pi}{2}\right) = g\left(\frac{3\pi}{2}\right) \text{ by Rolles theorem } g'(c) = 0 \text{ for some } c \text{ such that } \frac{\pi}{2} < c < \frac{3\pi}{2}$$

4) g (x) s bounded when
$$f(x) = e^x \sin ce \ g(x) = \frac{1}{2}$$

47.
$$I = \int_{0}^{\infty} \frac{\ell nx}{x^2 + 2x + 4} dx = \frac{\pi \ell n2}{3\sqrt{3}}$$

48.
$$\int \frac{\left(\frac{2}{x^2} + \frac{1}{x\sqrt{x}}\right)}{\left(1 + \frac{1}{\sqrt{x}} + \frac{1}{x}\right)^2} dx, \quad \text{put } 1 + \frac{1}{\sqrt{x}} + \frac{1}{x} = t$$

Then
$$f(x) = \frac{2x}{x + \sqrt{x} + 1}$$

$$g(x) = 2x$$

$$f(x) = x^2 + \int_0^x e^{-t} f(x-t) dt$$

$$=x^2+e^{-x}\int e^t f\left(t\right)\,dt$$

$$\Rightarrow f^{1}(x) = 2x + x^{2}$$

$$\Rightarrow f(x) = \frac{x^3}{3} + x^2$$

f (x) is onto but not one-one

$$\int_{0}^{1} f(x) dx = \frac{1}{12} + \frac{1}{3} = \frac{5}{12}$$

51 - 52

Differentiations both sides

$$\frac{x^3 - 6x^2 + 11x - 6}{\sqrt{x^2 + 4x + 3}} = \left(\ell x^2 + mx + n\right) \frac{x + 2}{\sqrt{x^2 + 4x + 3}} + \left(2\ell x + m\right) \sqrt{x^2 + 4x + 3} + \frac{\lambda}{\sqrt{x^2 + 4x + 3}}$$

$$\Rightarrow x^3 - 6x^2 + 11x - 6 = \left(\ell x^2 + mx + x\right)(x + 2) + \left(2\ell x + m\right)(x^2 + 4x + 3) + \lambda$$

Comparing like terms, gives $\ell = \frac{1}{3}$, $m = \frac{-14}{3}$ n = 37 $\lambda = -66$

51.
$$3\ell - 6m + \lambda + n = 1 + 28 - 66 + 37 = 0$$

52.
$$3\ell x^2 + 3mx - \lambda - 17 = x^2 - 14x + 49 = (x - 7)^2$$

53-54

$$I_2 = \int_{1}^{2} \left(\frac{\pi}{2} - tan^{-1}x^2 + tan^{-1}1 - tan^{-1}x^2 \right) dx = \frac{3\pi}{4} - 2I_1 \Rightarrow a = 2, b = 1$$

Again,
$$I_1 = \int_{1}^{2} tan^{-1}x^2 dx = x \tan^{-1} x^2 \Big|_{1}^{2} - \int_{1}^{2} \frac{2x^2}{x^4 + 1} dx$$

$$2\tan^{-1} 4 - \frac{\pi}{4} - \int_{1}^{2} \frac{x^{2} + 1 + (x^{2} - 1)}{x^{4} + 1} dx$$

Now use
$$\int \frac{x^2 + 1}{x^4 + 1} dx = \int \frac{1 + \frac{1}{x^2}}{\left(x - \frac{1}{x}\right)^2 + 2} dx$$

$$\int \frac{x^2 - 1}{x^4 + 1} dx = \int \frac{1 - \frac{1}{x^2}}{\left(x + \frac{1}{x}\right)^2 - 2} dx$$

55-56

$$(\sin ax \cdot \cos x + \cos ax \cdot \sin x)(\sin x)^{a-1}$$

$$= \sin ax.(\sin x)^{a-1}\cos x + \cos ax.(\sin x)^a = \frac{1}{a}\frac{d}{dx}(\sin ax.(\sin x)^a)$$

$$\therefore f(x) = \frac{\sin ax (\sin x)^a}{a}$$

Sec: Sr.IPLCO

Sri Chaitanya IIT Academy

08-11-15 Sr.IPLCO_Jee-Adv_2013-P2_Key Solutions

When
$$a = 50$$
, $f(x) = \frac{\sin 50x \cdot (\sin x)^{50}}{50}$

When
$$a = 100$$
, $f(x) = \frac{\sin 100x \cdot (\sin x)^{100}}{100}$

57. (P)
$$f(x) = \frac{\tan^{-1} x}{x}$$

$$(R) f^2(9) f'(9) = -1$$

(S) use
$$\sin^{-1}(-x) = -\sin^{-1}x$$
 and $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$

58. P)
$$3 \int_{0}^{1} \sin(2\pi + 3\pi x) dx = 3 \int_{0}^{1} \sin 3\pi x dx = \frac{2}{\pi}$$

Q)
$$I = \int_{0}^{\infty} [x] e^{-x} dx = \int_{0}^{1} 0 + \int_{1}^{2} e^{-x} dx + \int_{2}^{3} 2e^{-x} dx + \dots$$

$$= e^{-1} + e^{-2} + e^{-3} + \dots = \frac{1}{e-1}$$

R)
$$\underset{n\to\infty}{Lt} \frac{1}{n} \sum_{i=1}^{n} \ell n \left(\frac{2i}{n} \right) = \int_{0}^{1} (\ell n 2 + \ell n x) dx = \ell n \frac{2}{e} \Rightarrow k = \frac{2}{e}$$

S)
$$\int_{0}^{1} x \sin \pi x^{2} dx = \frac{1}{\pi}$$

60. P) put
$$x = t^6 then I = \int_0^1 \frac{6t^5}{t^3 + t^2} = 5 - 6 \log 2$$

Q)
$$I = \int_{0}^{100} \frac{e^{x} \sqrt{e^{x} - 1}}{e^{x} + 8} dx$$
 put $e^{x} - 1 = t^{2}$

Then
$$I = 6 - \frac{3\pi}{2}$$
, $\frac{a}{b} = 4$

R)
$$I_1 = \int_{0}^{\pi/2} (\cos x)^{\sqrt{2}+1} dx$$
, $I_2 = \int_{0}^{\pi/2} (\cos x)^{\sqrt{2}-1} dx$,

Now $I_1 = \int_0^{\pi/2} (\cos x)^{\sqrt{2}} \cos x \, dx$ use integration by parts

$$I_1 = \sqrt{2} \ I_2 - \sqrt{2} \ I_1 \Rightarrow \frac{I_1}{I_2} = 2 - \sqrt{2}$$

S)
$$I = \int_{0}^{a} \frac{\ell n (1 + ax)}{1 + x^{2}} dx = (\tan^{-1} a) (\ell n \sqrt{1 + a^{2}})$$

Sec: Sr.IPLCO