Linear Algebra Notes

Adapted From Freidberg's Linear Algebra

Hunter Smith

September 6, 2022

Contents

Contents

1 Vector Spaces

1.1 Vector Spaces

Definition 1.1.1. A vector space V over a field F consists of a set on which two operations are defined so that for each $x, y \in V$ there exists $x + y \in V$ and $ax \in V \ \forall a \in F$ such that the following hold:

$$\forall x, y \in V, \ x + y = y + x$$

$$\forall x, y, z \in V, \ (x + y) + z = x + (y + z)$$

$$\exists 0 \in V | x + 0 = x, \ \forall x \in V$$

$$\forall x \in V, \ \exists y \in V | x + y = 0$$

$$\forall x \in V, \ 1x = x$$

$$\forall a, b \in F, x \in V, \ (ab)x = a(bx)$$

$$\forall a \in F \text{ and } x, y \in V, \ a(x + y) = ax + ay$$

$$\forall a, b \in F, x \in V, \ (a + b)x = ax + bx$$

Example 1.1.1. The set of n-tuples from a field F is denoted F^n . This set is a vector space over F with the operations of vector addition and scalar multiplication. That is, if $u = (a_1, a_2, ..., a_n), v = (b_1, b_2, ..., b_n)$ and $c \in F$ then $u + v = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$ and $cu = (ca_1, ca_2, ..., ca_n)$.

Example 1.1.2. The set of $m \times n$ matrices with entries from a field F is a vector space, denoted $M_{m \times n}(F)$, with the operations of matrix addition and scalar multiplication. Let $A, B \in M_{m \times n}(F)$ and let $c \in F$. Then

$$(A+B)_{ij} = A_{ij} + B_{ij}, c(A_{ij}) = cA_{ij}$$

Example 1.1.3. Let

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ and $g(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$ be polynomials with coefficients from a field F. Define

$$f(x) + g(x) = (a_n + b_n)x^n + (a_{n-1} + b_{n-1})x^{n-1} + \dots + (a_1 + b_1)x + (a_0 + b_0)$$
and
$$cf(x) = ca_n x^n + ca_{n-1} x^{n-1} + \dots + ca_1 x + ca_0$$

Under this construction, the set of polynomials with coefficients from a field F is a vector space and is denoted P(F)

Example 1.1.4. Let $S = \{(a_1, a_2) | a_1, a_2\} \in \mathbb{R}$ and define the following two operations:

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 - b_2)$$

 $c(a_1, a_2) = (ca_1, ca_2)$

Notice that conditions 1,2 and 8 of a vector space fail to hold so S is not a vector space.

Theorem 1.1.1 (Cancellation Law of Vector Addition). if $x, y, z \in V$ and x + z = y + z, then x = y

Proof. By condition 4 of a vector space, there is a vector v such that z+v=0. Now,

$$x = x + 0 = x + (z + v) = (x + z) + v = (y + z) + v = y + (z + v) = y + 0 = y$$

by conditions 2 and 3 of a vector space

Theorem 1.1.2 (Zero Vector Properties). In any vector space V, the following hold:

$$forallx \in V, \ 0x = 0$$

$$foralla \in F, x \in V, \ (-a)x = -a(x) = a(-x)$$

$$foralla \in F, \ a0 = 0$$

Problems

Problem 1.1.1. Let $S = \{0, 1\}$ and F = R. Show that f = g and f + g = h where f(x) = st + 1, $g(x) = 1 + 4t + 2t^2$, $h(x) = 5^t + 1$.

Solution 1.1.1. Since the set S consists of only 0 and 1, the following is sufficient to show that f = g and f + g = h:

$$f(0) = 2(0) + 1 = 1 = 1 + 4(0) + 2(0)^{2} = g(0)$$

$$f(1) = 2(1) + 1 = 3 = 1 + 4(1) + 2(1)^{2} = g(1)$$

$$f(0) + g(0) = 1 + 1 = 5^{0} + 1 = h(0)$$

$$f(1) + g(1) = 3 + 3 = 6 = 5^{1} + 1 = h(1)$$

Problem 1.1.2. Show that

$$(a+b)(x+y) = ax + ay + bx + by)$$

for any $x, y \in V$ and $a, b \in F$

Solution 1.1.2. *Proof.* Let V be a vector space with $x, y \in V$. Then by condition 7 and 8 of a vector space,

$$(a + b)(x + y) = a(x + y) + b(x + y) = ax + ay + bx + by$$

1.2 Subspaces

Definition 1.2.1. A subset W of a vector space V over a field F is called a *subspace* of V if W is a vector space over F with the operations of addition and scalar multiplication defined on V.

Theorem 1.2.1 (Subspace of a Vector Space). Let V be a vector space and $W \subseteq V$. Then W is a subspace of V if and only if the following conditions hold:

$$0 \in V$$

$$\forall x, y \in W, \ x + y \in W$$

$$\forall c \in F, x \in W, \ cx \in W$$

Example 1.2.1. The set W of all symmetric matrices (matrices such that $A^t = A$) is a subspace of $M_{m \times n}(F)$. Since the zero matrix has all zero entries, clearly the zero matrix is in W. If $A, B \in W$, then $(A + B)^t = A^t + B^t = A + B$ so W is closed under addition. If $A \in W$ and $C \in F$, then $CA^t = C(A^t) = C(A) = CA$ so W is closed under scalar multiplication.

Example 1.2.2. The set W of diagonal matrices is a subspace of $M_{n\times n}(F)$. Clearly, the zero matrix is diagonal so it is in W. Further, if $A, B \in W$ then $(A+B)_{ij} = A_{ij} + B_{ij}$ and when $i \neq j$, $A_{ij} = B_{ij} = 0$. So $A_{ij} + B_{ij}$ is diagonal and in W. The same argument applies to closure under scalar multiplication.

Theorem 1.2.2 (Intersection of Subspaces). Any intersection of subspaces of a vector space V is a subspace.

Proof. Since every subspace contains the zero vector, the intersection of subspaces contains the zero vector. The closure of addition and multiplication follow from the definition of closure. \Box

Problems

Problem 1.2.1. Prove that $(A^t)^t = A$ for all $A \in M_{m \times n}(F)$

Solution 1.2.1. Let $A \in M_{m \times n}(F)$. Then by the definition of transpose,

$$(A^t)^t = (A^t)_{ij}^t = (A_{ji})^t = A_{ij} = A$$

Problem 1.2.2. Prove that diagonal matrices are symmetric matrices

Solution 1.2.2. Let A be a diagonal matrix. Then where $i \neq j$, $A_{ij} = 0$. Additionally, for all i = j, we have $A_{ij} = A_{ji}$. Then

$$A^{t} = (A^{t})_{ij} = A_{ji} = A_{ij} = A$$

and A is symmetric by definition.

Problem 1.2.3. Prove that the set $W_1 = \{(a_1, a_2, ..., a_n \in F^n | a_1 + a_2 + ... + a_n = 0\}$ is a subspace and the space $W_2 = \{(a_1, a_2, ..., a_n \in F^n | a_1 + a_2 + ... + a_n = 1\}$ is not.

Solution 1.2.3. Let W_1 be defined as above. Since $a_1+a_2+\ldots+a_n=0$, the zero vector is in W_1 . Let $\{a_n\},\{b_n\}\in W_1$. Then $\{a_n\}+\{b_n\}=(a_1+a_2+\ldots+a_n)+(b_1+b_2+\ldots+b_n)=0+0=0\in W_1$. For $c\in F$, $c\{a_n\}=c(a_1+a_2+\ldots+a_n)=c(0)=0\in W_1$. So W_1 is a subspace. Define W_2 as above, the zero vector is not in W_2 so it is not a subspace.

1.3 Linear Combinations and Systems of Equations

Definition 1.3.1. Let V be a vector space and S a nonempty subset of V. A vector $v \in V$ is called a *linear combination* of vectors of S if there exist a finite number of vectors $u_1, u_2, ..., u_n \in S$ and scalars $a_1, a_2, ..., a_n \in F$ such that $v = a_1u_1 + a_2u_2 + ... + a_nu_n$.

Example 1.3.1. The claim is that

$$2x^3 - 2x^2 + 12x - 6$$

is a linear combination of

$$x^3 - 2x^2 - 5x - 3$$
 and $3x^3 - 5x^2 - 4x - 9$

in $P_3(R)$, but

$$3x^3 - 2x^2 + 7x + 8$$

is not. For case 1, we need to find scalars a, b such that

$$2x^{3} - 2x^{2} + 12x - 6 = a(x^{3} - 2x^{2} - 5x - 3) + b(3x^{3} - 5x^{2} - 4x - 9)$$
$$= (a + 3b)x^{3} + (-2a - 5b)x^{2} + (-5a - 4b)x + (-3a - 9b)$$

Which results in the following

$$a+3b=2$$

$$-2a-5b=-2$$

$$-5a-4b=12$$

$$-3a-9b=-6$$

Now, we take a multiple of the first equation, and add it to the remaining equations to eliminate a (2, 5 and 3 respectively). This results in the following equations

$$a + 3b = 2$$

$$2(a+3b) + (-2a-5b) = b = 2(2) - 2 = 2$$

$$5(a+3b) + (-5a-4b) = 11b = 5(2) + 12$$

$$3(a+3b) + (-3a-9b) = 0b = 3(2) - 6 = 0$$

Solving this yields a = -4, b = 2 hence

$$2x^3 - 2x^2 + 12x - 6 = -4(x^3 - 2x^2 - 5x - 3) + 2(3x^3 - 5x^2 - 4x - 9)$$

For the case involving

$$3x^3 - 2x^2 + 7x + 8$$

, we need to show that there are no scalars a, b such that

$$3x^{3} - 2x^{2} + 7x + 8 = a(x^{3} - 2x^{2} - 5x - 3) + b(3x^{3} - 5x^{2} - 4x - 9)$$
$$= (a + 3b)x^{3} + (-2a - 5b)x^{2} + (-5a - 4b)x + (-3a - 9b)$$

Using the same technique as previous, we get the system of equations

$$a + 3b = 3$$
$$-2a - 5b = -2$$
$$-5a - 4b = 7$$

$$-3a - 9b = 8$$

then

$$a + 3b = 3$$

$$2(a+3b) + (-2a-5b) = b = 2(3) - 2 = 4$$

$$5(a+3b) + (-5a-4b) = 11b = 5(3) + 7 = 22$$

$$3(a+3b) + (-3a-9b) = 0b = 0 = 3(3) + 8 = 17$$

The inconsistency 0 = 17 means that his equation has no solutions. So

$$3x^3 - 2x^2 + 7x + 8$$

is not a linear combination of the two equations.

Definition 1.3.2. Let S be a nonempty subset of a vector space V. The span of S denoted by span(S), is the set consisting of all linear combinations of the vectors in S.

Observe that in \mathbb{R}^3 , the spanning set of $\{(1,0,0),(0,1,0)\}$ consists of all vectors in \mathbb{R}^3 of the form a(1,0,0)+b(0,1,0) (by the definition of linear combinations) which is equivalent to (a,b,0) or a point on the xy plane. Thus, this spanning set contains all points of the xy plane and is a subset of \mathbb{R} .

Theorem 1.3.1 (Span is a Subspace). The span of any subset S of a vector space V is a subspace of V that contains S. Moreover, any subspace of V that contains S must also contain the span of S.

Incomplete Proof. If $S = \emptyset$, the proof is immediate since the span(\emptyset) = {0} and {0} is a subspace of any subspace V (and in this case, {0} contains S since any set contains the empty set). Let S be a nonempty subset of V. Then S contains a vector, call it z. Then 0z = 0 so by the definition of span, $0 \in \text{span}(S)$. Let $x, y \in \text{span}(S)$. Then there exists vectors $u_1, u_2, ..., u_m, v_1, v_2, ..., v_n \in S$ and scalars $a_1, a_2, ..., a_m, b_1, b_2, ..., b_n \in V$ such that

$$x = a_1u_1 + a_2u_2 + ... + a_mu_m$$
 and $y = b_1v_1 + b_2v_2 + ... + b_nv_n$

Then

$$x + y = a_1u_1 + a_2u_2 + \dots + a_mu_m + b_1v_1 + b_2v_2 + \dots + b_nv_n$$

is a linear combination of vectors in S so $x + y \in \text{span}(S)$. Similarly,

$$cx = ca_1u_1 + ca_2u_2 + \dots + ca_mu_m$$

which is also in $\operatorname{span}(S)$. Thus $\operatorname{span}(S)$ contains the zero vector, is closed under addition and scalar multiplication, so it is a subspace of V.

Definition 1.3.3. A subset S of a vector space V generates or spans V if span(S) = V.

Example 1.3.2. The vectors

$$(1,1,0),(1,0,1)$$
 and $(0,1,1)$

span \mathbb{R}^3 since any arbitrary vector in \mathbb{R}^3 is a linear combination of these 3 vectors. It is possible to compute the scalars r, s, t which solve the equation

$$r(1,1,0) + s(1,0,1) + t(0,1,1) = (a_1, a_2, a_3)$$

by

$$r = \frac{1}{2}(a_1 + a_2 - a_3), s = \frac{1}{2}(a_1 - a_2 + a_3), t = \frac{1}{2}(-a_1 + a_2 + a_3)$$

Example 1.3.3. The polynomials

$$x^{2} + 3x - 2$$
, $2x^{2} + 5x - 3$ and $-x^{2} - 4x + 4$

span or generate $P_2(R)$ since each polynomial in $P_2(R)$ is a linear combination of these 3 polynomials, and they are all in $P_2(R)$.

Definitions

generates, 8
Linear combination, 5
Span, 7
spanning set, 8
subspace, 4
Vector Space, 2