Action Selection for MDPs: Anytime AO* vs. UCT

Blai Bonet¹ and Hector Geffner²

 1 Universidad Simón Bolívar 2 ICREA & Universitat Pompeu Fabra

AAAI, Toronto, Canada, July 2012

Online MDP Planning and UCT

Offline infinite-horizon MDP planning is unlikely to scale up to very large spaces

Online planning is more promising; it's just the selection of action to do in current state \boldsymbol{s}

Selection can be done by solving **finite-horizon** version of MDP, rooted at s, with horizon H

Due to time constraints, such methods use **anytime optimal** finite-horizon MDP algorithms

UCT is one method, popular after success in Go [Gelly & Silver, 2007]

Why is UCT Successful?

UCT is a Monte-Carlo Tree Search method [Kocsis & Szepesvári, 2006]

Success of UCT is typically attributed to:

- adaptive Monte-Carlo sampling; i.e. Monte-Carlo simulations that become more and more focused as time goes by
- yet, RTDP [Barto et al., 1995] is also adaptive and anytime optimal, but not as popular or successful apparently
- another possible explanation is that UCT is anytime optimal with arbitraty base policies; RTDP needs admissible heuristics

Question: Can we develop a heuristic search algorithm for finite-horizon MDPs that is **anytime optimal** using **base policies** rather than **admissible heuristics**?

Anytime AO*

Anytime AO* is simple variant of AO* that is **anytime optimal** even with **non-admissible** heuristics, such as **rollouts** of base policies

Anytime A* [Hansen & Zhou, 2007] is variant of A* that is anytime optimal for OR graphs even with non-admissible heuristic

Main trick in Anytime A* is to **not stop** after first solution, but return best solution so far and continue search with nodes in OPEN

This trick doesn't work for AO*, but another one does:

- select tip node to expand that is not part of best partial solution graph with some probability (exploration)
- terminate when no tip is left to expand (in best partial graph or not)

Anytime AO* seems competitive with UCT in challenging tasks

Rest of the Talk

- MDPs: finite and infinite horizon, and action selection
- Finite-horizon MDPs as Acyclic AND/OR Graphs
- AO*
- UCT
- Anytime AO*
- Experiments
- Summary and Future Work

Markov Decision Processes

Fully observable, stochastic models, characterized by:

- state space S and actions A; A(s) is set of applicable actions at s
- initial state s_0 and goal states G
- transition probabilities P(s'|s,a) for every $s,s'\in S$ and $a\in A(s)$
- positive costs c(s,a) for $s\in S$ and $a\in A(s)$, except goals where P(s|s,a)=1 and c(s,a)=0 for every $s\in G, a\in A$

Finite-Horizon MDP (FH-MDP) characterized by:

- same elements for MDPs
- time horizon H
- policies for FH-MDP are non-stationary (i.e. depend on time)

Action Selection in MDPs

Main Task: given state s and horizon H, select action to apply at s by only looking at most H steps into the future

- Given s and H, the MDP is converted into a Finite-Horizon MDP with initial state $s_0=s$ and horizon H
- FH-MDP corresponds to an implicit AND/OR tree

FH-MDPs as Acyclic AND/OR Graphs

For initial state s_0 and lookahead H, implicit graph given by:

- root node is (s_0, H)
- terminal nodes are (s, d) where d = 0 or s is terminal in MDP
- children of non-terminal (s,d) are AND-nodes (a,s,d) for $a \in A(s)$
- children of (a, s, d) are nodes (s', d 1) such that P(s'|s, a) > 0

Solutions are subgraphs T such that

- the root (s_0, H) belongs to T
- for each non-terminal (s,d) in T, **exactly** one child (a,s,d) is in T
- ullet for each AND-node (a,s,d), all its children (s',d-1) belong to T

The cost of T is computed by **backward induction**, propagating the values at the leaves upwards to the root which gives the cost of T

Best Lookahead Action

Definition

Given state s_0 and lookahead H, a **best action** for s (wrt H) is the action that leads to the unique child of the root (s_0, H) in an **optimal solution** T^* of the **implicit** AND/OR graph

Thus, need to solve the implicit AND/OR graph:

- 1. AO* [Nilsson, 1980]
- 2. UCT [Kocsis & Szepesvári, 2006]
- 3. Anytime AO*

AO* for Implicit AND/OR Graphs

AO* explicates implicit graph incrementally, one node at a time:

- G is **explicit graph**, initially contains just root node
- G* is best partial solution graph:
 - ▶ G* is optimal solution of G on the assumption that tips of G are terminal nodes whose value is given by heuristic h

Algorithm

- 1. Initially, $G = G^*$ and consists only of root node
- 2. Iteratively, a non-terminal leaf is **selected** from G^* :
 - the leaf is expanded
 - \blacktriangleright values of the children are set with $h(\cdot)$,
 - ightharpoonup values are propagated upwards while recomputing G^*
- 3. Terminate as soon as G^* becomes a **complete graph**; i.e., it has no non-terminal leaves

UCT

UCT also maintains explicit graph G that expands incrementally

But, node selection procedure follows path in explicit graph with UCB criteria which balances exploration and exploitation, sampling next state after an action stochastically

First node generated that is not in explicit graph G, added to graph with value obtained by **rollout of best policy** from node

Values propagated upwards in G by **Monte-Carlo updates** (averages), rather than DP updates as in AO* or RTDP

No termination conditition

Anytime AO*

Two small changes to AO* algorithm for:

- 1 handling non-admissible heuristics
- 2 handling random (sampled) heuristics as rollouts of base policies

First change:

- select with prob. p non-terminal tip node IN best partial graph G*;
 else, select non-terminal tip in explicit graph G that is OUT of G*
- Anytime AO* terminates when no such tip exists in either graph

Second change:

• when using random heuristics, such as rollouts, re-sample h(s,d) value every time that the value of tip (s,d) is needed to make a **DP update**, and use average over sampled values

Anytime AO*: Properties

Theorem (Optimality)

Given enough time, Anytime AO* selects best action **independently** of admissibility of heuristic because it terminates when the implicit AND/OR tree has been fully explicated

Theorem (Complexity)

The complexity of Anytime AO* is no worse than the complexity of AO* because in the worst case, AO* expands (explicates) the whole implicit tree

Choice of Tip Nodes

Intuition: select tip that has **biggest potential** to cause a change in best partial graph

Discriminant: $\Delta(n) =$ "change in the value of n for causing a change in best partial graph"

Theorem

 $\Delta(n)$ can be computed for every node by a complete graph traversal on G (see paper for details)

Choose tip n that **minimizes** $|\Delta(n)|$: tips in IN have positive Δ -value; tips in OUT have negative Δ -value

Anytime AO* with this choice of tips is called AOT

Experiments

Experiments over several domains, comparing:

- UCT
- AOT with base policies and heuristics
- RTDP

Domains:

- Canadian Traveller Problem (CTP)
 - compared w/ state-of-the-art domain-specific UCT
 - compared w/ own implementation of UCT and RTDP
- Sailing and Racetracks
 - compared w/ own implementation of UCT
 - compared w/ own implementation of RTDP

Focus: quality vs. average time per decision (ATD)

CTP: AOT vs. State-of-the-Art UCT

		br. factor		UCT-CTP		optimistic base policy		
prob.	P(bad)	avg i	max	UCTB	UCTO	direct	UCT	AOT
20-1	17.9	13.5	128	210.7 ± 7	169.0 ± 6	191.8 ± 0	180.7 ± 3	$\textbf{163.8} \pm \textbf{2}$
20-2	9.5	15.7	64	176.4 ± 4	148.9 ± 3	202.7 ± 0	160.8 ± 2	156.4 ± 1
20-3	14.3	15.2	128	150.7 ± 7	$\textbf{132.5} \pm \textbf{6}$	142.1 ± 0	144.3 ± 3	133.8 ± 2
20-4	78.6	11.4	64	264.8 ± 9	235.2 ± 7	267.9 ± 0	238.3 ± 3	$\textbf{233.4} \pm \textbf{3}$
20-5	20.4	15.0	64	123.2 ± 7	111.3 ± 5	163.1 ± 0	123.9 ± 3	$\textbf{109.4} \pm \textbf{2}$
20-6	14.4	13.9	64	165.4 ± 6	133.1 ± 3	193.5 ± 0	167.8 ± 2	135.5 ± 1
20-7	8.4	14.3	128	191.6 ± 6	148.2 ± 4	171.3 ± 0	174.1 ± 2	145.1 ± 1
20-8	23.3	15.0	64	160.1 ± 7	134.5 ± 5	167.9 ± 0	152.3 ± 3	135.9 ± 2
20-9	33.0	14.6	128	235.2 ± 6	173.9 ± 4	212.8 ± 0	185.2 ± 2	173.3 ± 1
20-10	12.1	15.3	64	180.8 ± 7	167.0 ± 5	173.2 ± 0	178.5 ± 3	$\textbf{166.4} \pm \textbf{2}$
Total				1858.9	1553.6	1886.3	1705.9	1553.0

- data for UCT-CTP taken from [Eyerich, Keller & Helmert, 2010]
- each figure is average over 1,000 runs
- UCT run for 10,000 iterations, AOT for 1,000 iterations

CTP: Quality Profile

20-7 with optimistic base policy

- each point is average over 1,000 runs
- UCT iterations: 10, 50, 100, 500, 1K, 5K, 10K and 50K
- AOT iterations: 10, 50, 100, 500, 1K, 5K and 10K
- ATD calculated globally: total time / total # decisions

CTP: Heuristics vs. Policies vs. RTDP

- two heuristics: zero and min-min, and policies greedy wrt heuristic
- algorithms: AOT(h), AOT(π_h), LRTDP(h)
- each figure is average over 1,000 runs

Sailing and Racetracks: Quality Profile

• each point is average over 1,000 runs

UCT iterations: 10, 50, 100, 500, 1K, 5K and 10K

AOT iterations: 10, 50, 100, 500, 1K, and 5K

Racetracks: Heuristics vs. Policies vs. RTDP

- heuristics: $h = d \times h_{\min}$ for d = 2, 1, and 0.5
- algorithms: AOT(h), AOT(π_h), LRTDP(h)
- each figure is average over 1,000 runs

Summary and Future Work

- UCT success seems to follow from combination of non-exhaustive search methods with ability to use informed base policies
- Anytime AO*, aimed at capturing both of these features in standard heuristic search model-based framework, compares well with UCT
- Results help to bridge the gap between MCTS methods and anytime heuristic search methods
- RTDP does better than expected in these domains;
 [see AAAI-12 paper by Kolobov, Mausam & Weld]