CSE 190 – Lecture 6

Data Mining and Predictive Analytics

Community Detection

So far we have seen methods to reduce the dimension of points based on their **features**

Principal Component Analysis (Tuesday)

K-means Clustering (Tuesday)

1. Input is still a matrix of features:

$$X = \begin{pmatrix} 3 & 3 & \cdots & 1 \\ 4 & 2 & & 1 \\ 3 & 1 & & 3 \\ 2 & 2 & & 4 \\ 1 & 5 & & 2 \\ \vdots & & \ddots & \vdots \\ 1 & 2 & \cdots & 1 \end{pmatrix}$$

3. From this we can f = [0,0,0,1] describe each point in X Y = (1,2,4,3,4,2,4,2,2,3,3,2,1,1,3,...,2) by its cluster membership:

So far we have seen methods to reduce the dimension of points based on their **features**

What if points are not defined by features but by their relationships to each other?

Q: how can we compactly represent the set of relationships in a graph?

A: by representing the nodes in terms of the **communities** they belong to

Community detection

(from previous lecture)

e.g. from a PPI network; Yang, McAuley, & Leskovec (2014)

Part 1 – Clustering
Group sets of points based on their **features**

Part 2 – Community detection
Group sets of points based on
their connectivity

Warning: These are **rough** distinctions that don't cover all cases. E.g. if I treat a row of an adjacency matrix as a "feature" and run hierarchical clustering on it, am I doing clustering or community detection?

Community detection

How should a "community" be defined?

- Members should be connected
- 2. Few edges between communities
 - 3. "Cliqueishness"
- 4. Dense inside, few edges outside

Today

1. Connected components

(members should be connected)

2. Minimum cut

(few edges between communities)

3. Clique percolation

("cliqueishness")

4. Network modularity

(dense inside, few edges outside)

1. Connected components

Define communities in terms of sets of nodes which are reachable from each other

- If a and b belong to a **strongly connected component** then there must be a path from a \rightarrow b and a path from b \rightarrow a
 - A weakly connected component is a set of nodes that would be strongly connected, if the graph were undirected

1. Connected components

- Captures about the roughest notion of "community" that we could imagine
 - Not useful for (most) real graphs:
 there will usually be a "giant
 component" containing almost all
 nodes, which is not really a
 community in any reasonable sense

What if the separation between communities isn't so clear?

e.g. "Zachary's Karate Club" (1970)

Aside: Zachary's Karate Club Club

Cut the network into two partitions such that the number of edges crossed by the cut is minimal

Solution will be degenerate – we need additional constraints

We'd like a cut that favors **large** communities over small ones

#of edges that separate c from the rest of the network

Ratio
$$\operatorname{Cut}(C) = \frac{1}{|C|} \sum_{c \in C} \frac{\operatorname{cut}(c,\bar{c})}{|c|}$$
Proposed set of communities size of this community

What is the **Ratio Cut** cost of the following two cuts?

Ratio Cut(
$$\cdot$$
) = $\frac{1}{2}(\frac{3}{33} + \frac{3}{1}) = 1.54545$
Ratio Cut(\cdot) = $\frac{1}{2}(\frac{9}{16} + \frac{9}{18}) = 0.53125$

But what about...

Ratio Cut(
$$\cdot$$
) = $\frac{1}{2}(\frac{1}{33} + \frac{1}{1}) = 0.51515$

Maybe rather than counting all nodes equally in a community, we should give additional weight to "influential", or high-degree nodes

Normalized Cut(C) =
$$\frac{1}{|C|} \sum_{c \in C} \frac{cut(c,\bar{c})}{\sum_{c \in C} \frac{cu$$

nodes of high degree will have more influence in the denominator

What is the **Normalized Cut** cost of the following two cuts?

Norm. Cut(
$$\cdot$$
) = $\frac{1}{2}(\frac{1}{155} + \frac{1}{1}) = 0.50322$
Norm. Cut(\cdot) = $\frac{1}{2}(\frac{9}{76} + \frac{9}{80}) = 0.11546$

```
>>> Import networkx as nx

>>> G = nx.karate_club_graph()

>>> c1 = [1,2,3,4,5,6,7,8,11,12,13,14,17,18,20,22]

>>> c2 = [9,10,15,16,19,21,23,24,25,26,27,28,29,30,31,32,33,34]

>>> Sum([G.degree(v-1) for v in c1])

76

>>> sum([G.degree(v-1) for v in c2])
```

Nodes are indexed from 0 in the networkx dataset, 1 in the figure

So what actually happened?

- → = Optimal cut
- Red/blue = actual split

Disjoint communities

Separating networks into disjoint subsets seems to make sense when communities are somehow "adversarial"

E.g. links between democratic/republican political blogs (from Adamic, 2004)

Social communities

But what about communities in social networks (for example)?

e.g. the graph of my facebook friends:

http://jmcauley.ucsd.edu/cse190/data/facebook/egonet.txt

Social communities

Such graphs might have:

- Disjoint communities (i.e., groups of friends who don't know each other)
 e.g. my American friends and my Australian friends
- **Overlapping** communities (i.e., groups with **some** intersection) e.g. my friends and my girlfriend's friends
- Nested communities (i.e., one group within another)
 e.g. my UCSD friends and my CSE friends

3. Clique percolation

How can we define an algorithm that handles all three types of community (disjoint/overlapping/nested)?

Clique percolation is one such algorithm, that discovers communities based on their "cliqueishness"

3. Clique percolation

- Clique percolation searches for "cliques" in the network of a certain size (K). Initially each of these cliques is considered to be its own community
- If two communities share a (K-1) clique in common, they are merged into a single community
- This process repeats until no more communities can be merged

```
    Given a clique size K
    Initialize every K-clique as its own community
    While (two communities I and J have a (K-1)-clique in common):
    Merge I and J into a single community
```

Time for one more model?

What is a "good" community algorithm?

- So far we've just defined algorithms to match some (hopefully reasonable) intuition of what communities should "look like"
- But how do we know if one definition is better than another? I.e., how do we evaluate a community detection algorithm?
- Can we define a probabilistic model and evaluate the likelihood of observing a certain set of communities compared to some null model

Null model:
Edges are equally likely between any pair of nodes, regardless of community structure
("Erdos-Renyi random model")

Q: How much does a proposed set of communities **deviate** from this null model?

$$e_{kk} = \frac{\text{\# edges with both endpoints in community } k}{\text{\# edges}}$$

$$a_k = \frac{\text{\# edge endpoints in community } k}{\text{\# edge endpoints}}$$

$$Q = \sum_{k=1}^{K} (e_{kk} - a_k^2)$$

Fraction of community k

Fraction that we would edges in expect if edges were allocated randomly

$$e_{kk} = \frac{\text{\# edges with both endpoints in community } k}{\text{\# edges}}$$

$$a_k = \frac{\text{\# edge endpoints in community } k}{\text{\# edge endpoints}}$$

$$Q = \sum_{k=1}^{K} (e_{kk} - a_k^2)$$

$$-\frac{1}{2} \leq Q < 1$$
 Far fewer edges in Far m

expect at random

Far more edges in communities than we would communities than we would expect at random

Algorithm: Choose communities so that the deviation from the null model is maximized

$$Q = \sum_{k=1}^{K} (e_{kk} - a_k^2)$$

 $\operatorname{arg\,max}_{\operatorname{communities}} Q(\operatorname{communities})$

That is, choose communities such that **maximally** many edges are within communities and **minimally** many edges cross them (NP Hard, have to approximate)

Summary

Community detection aims to summarize the structure in networks

(as opposed to clustering which aims to summarize feature dimensions)

- Communities can be defined in various ways, depending on the type of network in question
 - 1. Members should be connected (connected components)
 - 2. Few edges between communities (minimum cut)
 - 3. "Cliqueishness" (clique percolation)
 - 4. Dense inside, few edges outside (network modularity)

Homework 2

Homework is **available** on the course webpage

http://cseweb.ucsd.edu/~jmcauley/cse190/homework2.pdf

Please submit it at the beginning of the week 5 lecture (Apr 28)

Questions?

Further reading:

• Spectral clustering tutorial:

http://www.informatik.uni-

hamburg.de/ML/contents/people/luxburg/publications/Luxburg07_tutorial.pdf

Some more detailed slides on these topics:

Just on modularity: http://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/modularity.pdf

Various community detection algorithms, includes spectral formulation of ratio and normalized cuts:

http://dmml.asu.edu/cdm/slides/chapter3.pptx