Instituto de Informática - UFRGS

tuto de Informática - UFRG

Redes de Computadores

Circuitos virtuais, frame relay,ATM e MPLS (redes WAN)

Aula 14

Introdução

- □ Comunicação entre dois dispositivos exige um meio
 - Enlaces ponto-a-ponto ou multiponto (controle de acesso ao meio)
 - ...mas e se eles estiverem em locais (meios) diferentes?
- □ Virtualização da camada de enlace
 - Empregar uma rede como camada de enlace
 - Criação de um 'fio virtual'
 - Extensão do que já foi visto com enlaces wireless e com switches
 - É o que tipicamente acontece com as redes WAN (Wide Area Networks)

Redes de computadores

Como criar um "fio virtual"?

- □ fio virtual = caminho entre duas entidades
 - Composto por vários enlaces e nós intermediários
- Duas possibilidades:
 - Rede orientada a datagrama
 - Tipicamente empregada na camada de rede (nível 3)
 - Conceito de roteamento
 - Rede orientada a circuitos virtuais
 - Tipicamente empregada na camada de enlace
 - Conceito de comutação

Roteamento

- □ Tarefa da camada de rede (estudaremos mais tarde)
 - Não define um caminho pré-estabelecido
 - Há sub-caminhos alternativos
 - Nós armazenam e consultam uma tabela de roteamento
 - Mecanismo stateless e connectionless
- □ Rede orientada a datagrama
 - Caminho = conjunto n\u00e3o fixo de enlaces para chegar ao destino + n\u00f3s intermedi\u00e1rios
- □ Nós intermediários são roteadores
 - Tabelas são construídas com auxílio de protocolos de roteamento
 - Encaminhamento é feito analisando o endereço da rede de destino
 - Necessário "isolar" a informação da rede a partir do endereço de destino

Instituto de Informática - UFRGS A. Carissimi-24/10/2011

Instituto de Informática - UFRGS A. Carissimi -24/10/2011

Redes de computadores 3 Redes de

Redes de computadores

Comutação

Características

- Nós intermediários estabelecem um caminho sem sub-caminhos alternativos
- Nós armazenam e consultam uma tabela de comutação
- Mecanismo statefull e connection oriented
- Rede orientada a caminhos virtuais
 - Caminho virtual = enlace + nós intermediários
 - Possui um identificador
- □ Nós intermediários são comutadores
 - Tabela de comutação é construída por protocolos de sinalização
 - Encaminhamento de pacotes é realizado com base no identificador
 - Custo computacional da comutação é menor que o do roteamento

Redes de computadores

Circuito virtual em redes WAN

□ Circuito virtual é um caminho (isto é, uma série de enlaces e comutadores de pacotes) entre sistemas finais origem e destino

Instituto de Informática - UFRGS A. Carissimi - 24/10/2011

- Estabelecimento (setup)

- Transferência de dados

- Encerramento (teardown)

Redes de computadores

Redes de circuitos virtuais

- □ Circuito virtual = enlaces + comutadores + tabelas
 - Possui um identificador para cada enlace, então um circuito virtual é um conjunto de identificadores
 - Exemplos: MPLS, ATM e frame relay

Interface entrada	Número CV (entrada)	Interface de saída	Número CV (saída)
1	12	2	22
2	63	1	18
3	7	2	17
2	22	3	7

Redes de computadores

Estabelecimento de circuito virtual

- □ Como definir um circuito virtual?
 - Tabela de redirecionamento identificando o fluxo de quadros entre A e B
- □ Duas abordagens:
 - Permanent Virtual Circuit (PVC)
 - Switched Virtual Circuit (SVC)
- □ PVC
 - A definição é feita pelo administrador do sistema e gravado e todos comutadores
 - Estabelece um circuito entre A e B, mesmo se não é usado
 - Representa custo (leasing do caminho) e desperdício
 - Envolve exatamente um par de sistemas finais (identifica fonte e destino!!)
 - Havendo n destinos é necessário n PVCs
- □ Solução: uso de SVCs

Instituto de Informática - UFRGS A. Carissimi - 24/10/2011

Redes de computadores

Instituto de Informática - UFRGS A. Carissimi - 24/10/2011

Plano de controle e plano de dados

- □ Em redes de comutação de pacotes há dois tipos de pacotes
 - Controle: mensagens que informam aos nós como transferir os dados
 - Dados: mensagens dos usuários e/ou aplicações
- □ Conjunto de operações para tratar/manipular
 - Pacotes de dados: plano de dados
 - Pacotes de controle: plano de controle

Redes de computadores

Plano de dados

- □ Executa em foreground
- □ Processar e encaminhar pacotes de dados e de controle
- □ Objetivo é desempenho
 - Quanto mais rápido encaminhar pacotes, melhor é
- □ Composto por um software de encaminhamento e suas tabelas
 - Faz apenas consulta e encaminhamento

Plano de controle

- □ Executa em background
- □ Possui um "tempo de vida" longo faz um processamento mais elaborado
- □ Objetivo é prover boas instruções para o plano de dados encaminhar os dados
 - Funções:
 - Error reporting
 - Configuração do sistema
 - Gerenciamento
 - Alocação de recursos
- □ Composto por protocolos e suas tabelas (e.g. protocolo de sinalização)

Redes de computadores

Switched Virtual Circuit

- □ Definição de um circuito virtual por demanda
- □ Necessário uma negociação entre os comutadores
 - Protocolo de sinalização
 - Estabelecimento → Requisição de setup/Reponse (ack)
 - Encerramento → teardown request teardown ack

Redes de computadores

10

Instituto de Informática - UFRGS A. Carissimi - 24/10/2011

Instituto de Informática - UFRGS A. Carissimi - 24/10/2011

11

Transferência de dados

□ Encaminhamento de um quadro até o destino é feito com base na tabela de redirecionamento (posicionamento do circuito virtual)

Redes de computadores

Estudo de casos

- □ Asynchronous Transfer Mode (ATM)
- □ Redes Frame relay
- □ Redes MPLS

Instituto de Informática - UFRGS A. Carissimi -24/10/2011

13

15

Redes de computadores

14

Asynchronous Transfer Mode (ATM)

- □ Protocolo orientado a comutação de células
- □ Projetado pela ATM-forum e adotado pela ITU-T
- □ Arquitetura baseada em três camadas: AAL, ATM e PHY
- □ Uso típico em redes de telefonia e IP

Camadas ATM

Instituto de Informática - UFRGS A. Carissimi-24/10/2011

Instituto de Informática - UFRGS A. Carissimi - 24/10/2011

Redes de computadores

Redes de computadores

- Instituto de Informática UFRGS A. Carissimi 24/10/2011
- □ Projetado para flexibilizar o uso do ATM para diferentes perfis de tráfego e uso.
 - Quatro tipos diferentes: AAL1, AAL2, AAL3/4 e AAL5
- □ Dividido em duas subcamadas:
 - Convergence sublayer (CS)
 - Aceita dados das camadas superiores e prepara-os para serem fragmentados pelo SAR
 - Funcionalidade depende do nível de AAL
 - Segmentation e Reassembly (SAR)
 - Responsável pela fragmentação na origem e pela remontagem no destino

Redes de computadores

17

Arquitetura ATM

- □ Dispositivos de usuários e comutadores ATM
 - User to Network Interface (UNI) → dispositivo a comutador
 - Network to Network Interface (NNI) → comutador a comutador
- □ Elementos
 - Transmission Path (TP)
 - Virtual Paths (VP)
 - Virtual Circuit (VC)
- Conexão virtual

Instituto de Informática - UFRGS A. Carissimi - 24/10/2011

Instituto de Informática - UFRGS A. Carissimi - 24/10/2011

Redes de computadores

- Identificada por um VPI (Virtual Path Identifier) e VCI (Virtual Circuit identifier)
 - Permite um roteamento hierárquico

Redes de computadores

Célula ATM

- □ Cabeçalho da célula (*header*):
 - ▶ 28 bits para determinação de VPI/VCI (modificado de enlace a enlace)
 - ▶ 3 bits para tipo do payload
 - ▶ 1 bit para determinar tráfego de alta ou baixa prioridade
 - ▶ 8 bits para código de detecção de erro

Princípio de funcionamento

- □ Antes de enviar células é necessário criar um canal virtual
 - Canal virtual é uma següência de enlaces ATM
 - Pode ser permanente ou dinâmico
- □ Protocolo de sinalização Q.2931
 - Executado por comutadores ATM e por sistemas finais

Redes de computadores 19 20

ΤP

Arquitetura de frame relay

Formato do quadro frame relay

□ DLCI: identificador do circuito virtual (10 bits)

□ C/R: indicação se o quadro é comando ou resposta

- Não é usado pelo frame relay em si, é disponibilizado para os níveis
- □ EA (extended address): define formatos em 2, 3 ou 4 bytes para o campo de endereços (EA=1, indica último byte)

Redes de computadores 22

Formato do quadro frame relay (cont.)

- □ Forward Explicit Congestion Notification (FECN):
 - Informa o destino da ocorrência de congestionamento na rede
- □ Backward Explicit Congestion Notification (BECN):
 - Informa a origem da ocorrência de congestionamento na rede
- □ Discard Eligibility (DE)
 - Prioridade do quadro frame relay → utilizada como critério para descartar quadros em caso de congestionamento

MultiProtocol Label Switching (MPLS)

- □ Introduz um cabeçalho (shim*) entre o cabeçalho da camada de enlace e o cabeçalho da camada de rede
- □ Para uma rede IEEE 802.3

Instituto de Informática - UFRGS A. Carissimi-24/10/2011

23

Instituto de Informática - UFRGS A. Carissimi - 24/10/2011

* Material colocado entre partes para nivelar ou completar (preencher) espaços

Instituto de Informática - UFRGS A. Carissimi-24/10/2011

Leituras complementares

- □ Stallings, W. <u>Data and Computer Communications</u> (6th edition), Prentice Hall 1999.
 - Capítulo 11
- □ Tanenbaum, A. Redes de Computadores (4ª edição), Campus, 2003.
 - Capítulo 1, seção 1.5
 - Capítulo 2, seção 2.5.5

Redes de computadores

Comutação de circuitos, de pacotes e de mensagens

- □ Comutação de circuitos
 - Em nível físico: usa TDM ou FDM (originalmente projetado para telefonia)
 - Criação de um caminho "real" entre fonte e destino
 - Recurso está alocado havendo ou não informação sendo enviada
- □ Comutação de pacotes
 - Apropriado para o envio de dados
 - Informação é dividida e enviada em unidades de tamanho fixo (pacotes)
 - Duas abordagens: circuito virtual e datagrama
- □ Comutação de mensagens
 - Similar a comutação de pacotes porém, agora, pacotes possuem tamanho variável (mensagem)

Tipos de infraestrutura de rede

- □ Três paradigmas para conectar fonte ao destino:
 - Comutação de circuitos (Circuit switching)
 - Comutação de pacotes (Packet switching)
 - Comutação de mensagens (Message switching)
- □ Diferença é a reserva ou não de recursos da rede (buffers, largura de banda dos enlaces, etc) e o uso compartilhado do meio ou não

Redes de computadores

Instituto de Informática - UFRGS A. Carissimi - 24/10/2011

Comparação entre os tipos de comutação

- □ Retardos variáveis e imprevisíveis (circuito/mensagem) contra fixos e previsíveis (pacote)
- □ Adaptação de velocidades (pacote/mensagem) versus velocidade fixa
- Melhor aproveitamento da capacidade dos enlaces (pacote) versus desperdícios temporais

Instituto de Informática - UFRGS A. Carissimi - 24/10/2011

Redes de computadores

27

25

Redes de computadores

28

Redes de comutação de pacotes

- □ Redes de circuitos virtuais
 - Define um caminho os sistemas finais origem e destino
 - Composto por uma série de enlaces entre comutadores de pacotes
 - Dados entre sistemas finais "fluem" sempre pelo mesmo caminho (isto é, passam pelos mesmos enlaces e comutadores)
- □ Redes datagramas
 - Não há caminho pré-estabelecido entre os sistemas finais origem e destino
 - Dados entre sistemas finais podem usar caminhos diferentes para chegar ao seu destino

Redes de computadores 29

Características do frame relay

- □ Oferece taxas maiores que o X.25 (1.544 Mpbs 44.376 Mbps)
- □ Opera nos níveis físico e de enlace
 - Funciona como backbone para qualquer nível de rede
- □ Permite tráfego por demanda (*bursty*)
- □ Faz detecção de erro mas não faz controle de fluxo, nem de erro
 - Quadros frame relay com erros são "silenciosamente" descartados
- □ Oferece suporte para circuitos PVC e SVC

Frame relay

Instituto de Informática - UFRGS A. Carissimi - 24/10/2011

- □ Rede WAN baseada em circuitos virtuais
- □ Alternativa para substituir protocolo X.25
 - X.25 envolve controle em niveis de enlace e de rede
 - Oferece taxas de transmissão de até 64 kbps
 - Define uma camada de rede (X.25) sobre outra camada de rede (Internet)
 - Implica em custos de gerenciamento e processamento
- □ Alternativa a *leasing* de linhas telefônicas
 - $n \log n + (n-1)/2 \ln n$ (full-duplex)
 - Linhas = troncos T1 e T3
 - Linhas T1 possui taxa fixa (1.544 Mpbs)
 - Perfil de tráfego não é esse

Redes de computadores 30

nstituto de Informática - UFRGS

Instituto de Informática - UFRGS A. Carissimi - 24/10/2011