Homework 13 - MATH 791

Will Thomas

Problem 1:

Let R be a ring and $I \subseteq R$ a two-sided ideal. Show that there is a one-to-ono correspondence between the right (left, two-sided) ideals of R containing I and right (left, two-sided) ideals of R/I. Conclude that every right (left, two-sided) ideal of R/I is of the form J/I for some right (left, two-sided) ideal of R containing I.

Solution:

First, let's show that there is a one-to-one correspondence between the right ideals of R containing I and the right ideals of R/I:

Let J be a right ideal of R containing I. Then, we claim that the set $\overline{J} = x + I : x \in J$ is a well-defined right ideal of R/I.

To show that \overline{J} is a right ideal, let $\overline{x}, \overline{y} \in \overline{J}$, where $x, y \in J$. Then, $\overline{x} = \overline{x' + i}$ and $\overline{y} = \overline{y' + j}$ for some $x', y' \in R$ and $\underline{i, j \in I}$. Since \underline{J} is a right ideal of R, we have $x'y \in J$ and $\underline{ij} \in I \subseteq J$. Therefore, $[\overline{xy} = \overline{x'y} + i(y'x + yj) \in \overline{J}$.]

Moreover, for any $r \in R$, we have $\overline{rx} = \overline{rx + ri} \in \overline{J}$ since $rx \in J$. Thus, \overline{J} is a well-defined right ideal of R/I.

Conversely, suppose K is a right ideal of R/I. Then, we claim that the set

 $J = \{x \in R : x + I \in K\}$ is a well-defined right ideal of R containing I. To show that J is a right ideal, let $x, y \in J$ and $r \in R$. Then, we have

 $(x+I)(y+I)=(xy+I)\in K$ by the definition of K. Therefore, $xy\in J$. Moreover, we have $(rx+I)=(r+I)(x+I)\in K$, so $rx\in J$. Finally, since I is a two-sided ideal of R, we have $I\subseteq J$.

It is clear that these constructions give us one-to-one correspondences between the right ideals of R containing I and the right ideals of R/I. Similar arguments hold for left ideals and two-sided ideals.

Now, let L be a right ideal of R/I. Then, there exists a right ideal J of R containing I such that $L = \overline{J} = x + I : x \in J$. Conversely, for any right ideal J of R containing I, we have J/I is a right ideal of R/I, and we have $J/I = \overline{J}$. Therefore, every right ideal of R/I is of the form J/I for some right ideal J of R containing I. Similar arguments hold for left ideals and two-sided ideals.

Problem 2:

Suppose $J \subseteq I$ are two-sided ideals in the ring R. Prove that $(R/J)/(I/J) \cong R/I$ as rings.

Solution:

Let $\pi: R \to R/J$ and $\rho: R \to R/I$ be the natural surjective ring homomorphisms given by $\pi(x) = x + J$ and $\rho(x) = x + I$, for all $x \in R$. Then, by the first isomorphism theorem, we have $\ker(\pi) = J$ and $\ker(\rho) = I$. Moreover, we have $\rho(J) \subseteq I$, so ρ induces a well-defined ring homomorphism $\overline{\rho}: R/J \to R/I$ given by $\overline{\rho}(x + J) = x + I$, for all $x \in R$. Now, we claim that $\overline{\rho}$ is an isomorphism with inverse given by $\pi|_I:I\to J$.

First, let's show that $\overline{\rho}$ is well-defined. Suppose x+J=y+J for some $x,y\in R$. Then, $x-y\in J\subseteq I$, so $\rho(x-y)=x+I-(y+I)=x+I-y-I\in I$. Therefore, x+I=y+I and $\overline{\rho}$ is well-defined.

Next, let's show that $\overline{\rho}$ is a homomorphism. Let $x+J,y+J\in R/J$. Then, we have

$$\overline{\rho}((x+J)(y+J)) = \overline{\rho}(xy+J)$$

$$= xy+I$$

$$= (x+I)(y+I)$$

$$= \overline{\rho}(x+J)\overline{\rho}(y+J),$$

so $\overline{\rho}$ is a homomorphism.

Finally, we need to show that $\pi|_I: I \to J$ is the inverse of $\overline{\rho}$. Let $x \in I$. Then, we have $\overline{\rho}(\pi(x) + J) = \rho(x) + I = x + I$, so $\overline{\rho} \circ \pi|_I = \mathrm{id}_I$. Moreover, for any $y + J \in R/J$, we have $\pi(y) \in J \subseteq I$, so

$$\overline{\rho}(y+J) = y+I$$

$$= (\pi|_{I} \circ \pi)(y) + J$$

$$= \pi|_{I}(y+J),$$

so $\pi|I \circ \overline{\rho} = \operatorname{id} R/J$. Therefore, $\overline{\rho}$ is an isomorphism with inverse given by $\pi|_I$. Thus, we have shown that $(R/J)/(I/J) \cong R/I$ as rings.

Problem 3:

Supposed I, J are two-sided ideals in the ring R. Show that $I \cap J$ and $I + J := \{i + j \mid i \in I \text{ and } j \in J\}$ are two-sided ideals, and that there is an injective ring homomorphism $\phi: R/(I \cap J) \to R/I \times R/J$. Suppose R is commutative. Can you think of a sufficient condition on I and J that guarantees that ϕ is surjective? (Hint: If you know it, consider a ring version of the Chinese Remainder Theorem.)

Solution:

First, we will show that $I \cap J$ is a two-sided ideal. Given $x \in (I \cap J) \implies x \in I \land x \in J$, if we take any $r, s \in R$, $rxs \in I \land rxs \in J \implies rxs \in I \cap J$

 $\therefore I \cap J$ is a two-sided ideal

Now to show that I + J is a two-sided ideal:

Given $x \in (I+J) \implies x = (i_x+j_x)$ where $i_x \in I$ and $j_x \in J$ Take any $r, s \in R$, $rxs = r(i_x+j_x)s = (ri_x+rj_x)s = ri_xs + rj_xs$ and $ri_xs \in I \land rj_xs \in J$ which implies that $ri_xs + rj_xs \in I + J$

 $\therefore I + J$ is a two-sided ideal

Finally, we will show that $\phi: R/(I \cap J) \to R/I \times R/J$ is an injective ring homomorphism. Define $\phi(x+I \cap J) = (x+I,x+J)$. Injective:

$$\forall x_1 x_2 \in R, \ \phi(x_1 + I \cap J) = \phi(x_2 + I \cap J) \implies x_1 + I \cap J = x_2 + I \cap J$$

$$\phi(x_1 + I \cap J) = \phi(x_2 + I \cap J) \implies (x_1 + I, x_1 + J) = (x_2 + I, x_2 + J)$$

$$\implies x_1 + I = x_2 + I \wedge x_1 + J = x_2 + J$$

$$\implies (x_1 - x_2) \in I \wedge (x_1 - x_2) \in J \implies (x_1 - x_2) \in I \cap J$$

$$\implies x_1 + I \cap J = x_2 + I \cap J$$

Homomorphism:

Addition:

$$\forall x_1 x_2 \in R, \ \phi(x_1 + I \cap J + x_2 + I \cap J) = \phi(x_1 + I \cap J) + \phi(x_2 + I \cap J)$$
$$\phi(x_1 + I \cap J + x_2 + I \cap J) = \phi(x_1 + x_2 + I \cap J) = (x_1 + x_2 + I, x_1 + x_2 + J)$$
$$= (x_1 + I, x_1 + J) + (x_2 + I, x_2 + J) = \phi(x_1 + I \cap J) + \phi(x_2 + I \cap J)$$

Multiplication:

$$\forall x_1 x_2 \in R, \ \phi(x_1 + I \cap J \cdot x_2 + I \cap J) = \phi(x_1 + I \cap J) \cdot \phi(x_2 + I \cap J)$$
$$\phi(x_1 + I \cap J \cdot x_2 + I \cap J) = \phi(x_1 \cdot x_2 + I \cap J) = (x_1 \cdot x_2 + I, x_1 \cdot x_2 + J)$$
$$= (x_1 + I, x_1 + J) \cdot (x_2 + I, x_2 + J) = \phi(x_1 + I \cap J) \cdot \phi(x_2 + I \cap J)$$

In order for ϕ to be surjective, we need to map to all of $R/I \times R/J$, which mean that $\forall x+I \in R/I, y+J \in R/J$ we need a corresponding $z+(I\cap J)\in R/(I\cap J)$ such that $\phi(z+(I\cap J))=(x+I,y+J)$

This will happen if $z \in x + I$ and $z \in y + J$, which is to essentially say that $z \sim x \sim y \implies$ that ϕ is surjective. This is guaranteed to occur if any element $z \in R$ is also automatically in I + J, so R = I + J implies surjectivity.

Problem 4:

Let R be a ring and I, J, K be two-sided ideals. Define $IJ := \langle X \rangle$ where $X := \{ij \mid i \in I \text{ and } j \in J\}.$

- (i) Show that IJ is a two-sided ideal.
- (ii) Show that $I \cdot (J + K) = IJ + IK$
- (iii) Show that if, in addition, R is commutative, $I + J = R \implies I \cap J = IJ$

Solution:

- (i) To show that IJ is a two-sided ideal, we need to show that for any $r, s \in R$, $r(ij)s \in IJ$ Since I, J are two sided ideals, we know that $ri \in I$ and $js \in J$ which means that $(ri)(js) \in IJ$
- (ii) $I\cdot (J+K):=\langle\{i\cdot (j+k)\mid i\in I \text{ and } (j+k)\in (J+K)\}\rangle$ $=\langle\{i\cdot j+i\cdot k\mid i\in I, j\in J, \text{ and } k\in K\}\rangle=IJ+IK$
- (iii) If R is commutative, and we know that I+J=R, then that implies $I\cap J=IJ$ $I+J=R \implies \forall r\in R,\ r=i+j \text{ for some } i\in I,j\in J$ First, we will show that $I\cap J\subseteq IJ$:

Given $x \in I \cap J$ we know that $x \in I \wedge x \in J$, $IJ := \{ij \mid i \in I \text{ and } j \in J\}$, if we just trivially pick $x \in I$ and $e \in J$, then $xe = x \in IJ$ for any $x \in I \cap J$

$$: I \cap J \subseteq IJ$$

Next, we will show that $IJ \subseteq I \cap J$:

Given $x \in IJ \subseteq R$ we know that x = ij for some $i \in I$ and $j \in J$, yet we also know that $1 \in R, 1 = (i_1 + j_1)$ for some $i_1 \in I$ and $j_1 \in J$. Multiplying, we get $x = ij \cdot 1 = iji_1 + ijj_1$, yet $iji_1 \in I$ and $ijj_1 \in J$ so $x \in I \cap J$

$$: IJ \subseteq I \cap J$$

Thus $I + J = R \implies I \cap J = IJ$