A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification

Mounica Maddela and Wei Xu

THE OHIO STATE UNIVERSITY

Department of Computer Science and Engineering

INPUT: Applesauce is a puree made of apples.

OUTPUT: Applesauce is a **soft paste**. It is made of apples.

Text Simplification

INPUT: Applesauce is a puree made of apples.

OUTPUT: Applesauce is a **soft paste**. It is made of apples.

Applications

- Reading assistance for children, non-native speakers and disabled.
- Improve other NLP tasks (MT, summarization ...)

INPUT: Applesauce is a puree made of apples.

OUTPUT: Applesauce is a soft paste. It is made of apples.

INPUT: Applesauce is a <u>puree</u> made of apples.

OUTPUT: Applesauce is a soft paste. It is made of apples.

Complex Word Identification

INPUT: Applesauce is a <u>puree</u> made of apples.

OUTPUT: Applesauce is a soft paste. It is made of apples.

liquidized sauce

thick liquid

Complex Word Identification - Substitution Generation

```
INPUT: Applesauce is a puree made of apples.

OUTPUT: Applesauce is a soft paste. It is made of apples.

thick liquid

liquidized sauce

complex
```

Complex Word Identification - Substitution Generation - Substitution Ranking

A Large Word-complexity Lexicon

15,000 English words w/ human ratings

day	1.0	MIN 1 (simple)
convenient	2.4	
transmitted	3.2	
cohort	4.3	
assay	5.8	MAX 6 (complex

predict relative complexity for any given words or phrases

A Pairwise Neural Ranking Model

• improve the state-of-the-art significantly for all lexical simplification tasks

Complex Word Identification - Substitution Generation - Substitution Ranking

Previous Work

Rely on heuristics and corpus level features to measure word complexity

Word length

(Shardlow 2013, Biran et. al. 2011, and many others)

Word frequency in corpus

(Bott et. al. 2011, Kajiwara et. al. 2013, Horn et. al. 2014, and many others)

Language model probability

(Glavas & Stajner 2015, Paetzold & Special 2016/17, and many others)

Weakness of Previous Work

Assumption #1: shorter words are simpler

Wrong! (21% of time*)

```
duly > thoroughly
```

pundit > professional

alien > stranger

Weakness of Previous Work

Assumption #2: more frequent words are simpler


```
folly > foolishness
```

scheme > outline

distress > discomfort

- 15,000 most frequent English words from Google 1T ngram corpus
- Rated on a 6-point Likert scale

- 15,000 most frequent English words from Google 1T ngram corpus
- Rated on a 6-point Likert scale

- 11 annotators (non-native speakers)
- 5 ~ 7 ratings for each word
- 2.5 hours to rate 1000 words

hath
gnome
cohort
beacon
scrutiny
activism
stochastic
humanitarian
accountability

voyeur swivel claimant facsimile symposium

Very Complex

4%

Complex Very Simple 19%

eat
app
dude
moon
crash
summer
yesterday

ion
crisis
thrust
priority
splendid
perimeter
technology
inspirational
commissioner

Simple 41%

Intermediate

30%

knit
cell
adjust
escape
excited
disease
pleasure
celebration
government

- Inter-annotator agreement is 0.64 (Pearson correlation)
- One annotator rating vs. mean of the rest

Word	Score	A 1	A2	A 3	A4	A5
muscles	1.6	2	1	2	2	1
pattern	2.4	2	3	1	1	3
educational	3.2	3	3	3	3	4
cortex	4.2	4	4	4	4	5
assay	5.8	6	6	6	5	6

difference (one vs. rest) < 0.5 for 47% of annotations

< 1.0 for 78% of annotations

< 1.5 for 93% of annotations

Word-Complexity Lexicon Score 0/1 binary indicator

word length word frequency number of syllables ngram probabilities

Word-Complexity Lexicon Score 0/1 binary indicator

word length word frequency number of syllables ngram probabilities

PPDB paraphrase score word2vec cosine similarity

Input Word/Phrase Pair $\langle w_a : adversary, w_b : enemy \rangle$

$$\overrightarrow{f_1(w_a)} = [~0.0, ~0.44, ~0.54, ~0.02, ~0.0]$$

 $P > 0 \implies w_a$ is more complex than w_b

 $P < 0 \implies w_a$ is simpler than w_b

| P | indicates complexity difference

 $\langle w_a : adversary, w_b : enemy \rangle$

Neural Readability Ranking Model

Evaluation**

- English Lexical Simplification Shared Task SemEval 2012
- 300 training sentences, 1710 test sentences

Input	There were also pieces that would have been terrible in any environment.
(Paetzold & Specia 2017)	awful, very bad, dreadful
Our Model + Our Lexicon	very bad, awful, dreadful
Gold truth	very bad, awful, dreadful

^{**} see paper for full evaluation on 3 lexical simplification tasks and 5 benchmark datasets

Evaluation

- English Lexical Simplification Shared Task SemEval 2012
- 300 training sentences, 1710 test sentences

		Precision@1	Pearson
heuristics	(Biran et al. 2011)	51.3	0.505
SVM	(Jauhar & Specia 2012)	60.2	0.575
heuristics	(Kajiwara et al. 2013)	60.4	0.649
SVM	(Horn et al. 2014)	63.9	0.673
heuristics	(Glavaš & Štajner 2015)	63.2	0.644
SVM	(Paetzold & Specia 2015)	65.3 ▼ +0	.2 0.677 +0.002
neural	(Paetzold & Specia 2017)	65.6	0.679
)+1	.7)+0.035
neural Our Model + Lexicon + Gaussian		67.3*/	0.714*/

^{*} statistically significant (p < 0.05) based on the paired bootstrap test

Evaluation

- English Lexical Simplification Shared Task SemEval 2012
- 300 training sentences, 1710 test sentences

		Precision@1	Pearson
heuris	tics (Biran et al. 2011)	51.3	0.505
SVM	(Jauhar & Specia 2012)	60.2	0.575
heuris	tics (Kajiwara et al. 2013)	60.4	0.649
SVM	(Horn et al. 2014)	63.9	0.673
heuris	tics (Glavaš & Štajner 2015)	63.2	0.644
SVM	(Paetzold & Specia 2015)	65.3 <u>▼</u>+ 0	.2 0.677 +0.002
neural	(Paetzold & Specia 2017)	65.6	0.679
)+1	.7 +0.035
neural	Our Model + Gaussian	66.6	0.702^*
neural	Our Model + Lexicon + Gaussian	67.3 [*]	0.714*/

^{*} statistically significant (p < 0.05) based on the paired bootstrap test

Evaluation

- English Lexical Simplification Shared Task SemEval 2012
- 300 training sentences, 1710 test sentences

		Precision@1	Pearson
heuris	tics (Biran et al. 2011)	51.3	0.505
SVM	(Jauhar & Specia 2012)	60.2	0.575
heuris	tics (Kajiwara et al. 2013)	60.4	0.649
SVM	(Horn et al. 2014)	63.9	0.673
heuris	tics (Glavaš & Štajner 2015)	63.2	0.644
SVM	(Paetzold & Specia 2015)	65.3 ▼ +0	.2 0.677 🔨 +0.002
neural	(Paetzold & Specia 2017)	65.6	0.679
neural	Our Model		7 0.682
neural	Our Model + Gaussian	66.6	$0.702^* + 0.035$
neural	Our Model + Lexicon + Gaussian	67.3 ^{*/}	0.714*/

^{*} statistically significant (p < 0.05) based on the paired bootstrap test

Evaluation - Error Analysis

Input	The colonies of one <u>strain</u> appeared smooth.
(Paetzold & Specia 2017)	sort, type, breed, variety
Our Model + Our Lexicon	type, sort, breed, variety
Gold truth	type, sort, variety, breed

Input	No damage or <u>casualties</u> were reported.
(Paetzold & Specia 2017)	injuries, accidents, deaths, fatalities
Our Model + Our Lexicon	injuries, deaths, accidents, fatalities
Gold truth	deaths, injuries, accidents, fatalities

SimplePPDB++

14.1 million paraphrase rules w/ improved complexity ranking scores

Paraphrase Rule	Score
→ self-supporting	0.93
$self$ -reliant \rightarrow $self$ -sufficient	0.48
→ self-sustainable complex	-0.60
→ possible	0.94
viable → realistic	0.15
→ plausible	-0.91
→ in-depth review	0.89
detailed assessement → careful examination	0.28
→ comprehensive evaluation	-0.87

Thanks

• Word-Complexity Lexicon & SimplePPDB++ are available!

day	1.0	MIN 1 (simple)
convenient	2.4	
transmitted	3.2	
cohort	4.3	
assay	5.8	MAX 6 (complex)

PyTorch Code for the Neural Ranking model is also available!

https://github.com/mounicam/lexical_simplification

Contacts: Mounica Maddela & Wei Xu (Ohio State University)

t-SNE visualization of the complexity scores, ranging between 1.0 and 6.0

Word-Complexity Lexicon

Coverage over Penn Treebank (~1.1 million words)

Nestle armory McCarthy Thurmond referendum solicitation propaganda

> label silent organs millions available vegetable questions everything

Single feature value: f(w) = 0.41, $f(w) \in [0,1]$

Vectorized feature: f(w) = [~0.0, 0.44, 0.54, ~0.02, ~0.0]

Single feature value : f(w) = 0.41, $f(w) \in [0,1]$

Vectorized feature: f(w) = [~0.0, 0.44, 0.54, ~0.02, ~0.0]

Single feature value: f(w) = 0.41, $f(w) \in [0,1]$

Vectorized feature: $f(w) = [\sim 0.0,$

Single feature value : f(w) = 0.41, $f(w) \in [0,1]$

Vectorized feature: $f(w) = [\sim 0.0, 0.44,$

Single feature value: f(w) = 0.41, $f(w) \in [0,1]$

Vectorized feature: f(w) = [~0.0, 0.44, ~0.54,

Single feature value: f(w) = 0.41, $f(w) \in [0,1]$

Vectorized feature: f(w) = [~0.0, 0.44, 0.54, ~0.02, ~0.0]

Substitution Ranking - Correct Examples

Our Model predicts the correct output

Input	The <u>concept</u> of a "picture element" dates to the earliest days of television.
(Paetzold & Specia 2017)	theory, thought, idea
Our Model + Our Lexicon	idea, thought, theory
Gold truth	idea, thought, theory

Our Model handles phrases better than previous SOTA.

Input	There were also pieces that would have been terrible in any environment.
(Paetzold & Specia 2017)	awful, very bad, dreadful
Our Model + Our Lexicon	very bad, awful, dreadful
Gold truth	very bad, awful, dreadful