Process Mining: Data Science in Action

Alpha Algorithm: A Process Discovery Algorithm

prof.dr.ir. Wil van der Aalst www.processmining.org

Where innovation starts

Process discovery = Play-In

event log

event log

process model

extended model showing times, frequencies, etc. diagnostics predictions

recommendations

process model

Simplifying event logs when focusing on control-flow

order number	activity	timestamp	user	product	quantity
9901	register order	22-1-2014@09.15	Sara Jones	iPhone5S	
9902	register order	22-1-2014@09.18	San Jones	iPhone5S	2
9903	register order	22-1-2014@09.27	Sara Jones	iPhone4S	1
9901	check stock	22-1-2014@09.49	Pete Scott	iPhon SS	1
9901	ship order	22-1-2014@10.11	Sue Fox	iP'ione5S	1
9903	check stock	22-1-2014@10.34	Pete Scott	iPhone4S	1
9901	handle payment	22-1-2014@10.41	Carol Hop	iPhonesS	1
9902	check stock	22-1-2014@10.57	Pete Scott	iPhone5S	2

[\(\text{register_order, check_stock, ship_order, handle_payment \), \(\text{register_order, check_stock, cancel_order \), \(\text{register_order, check_stock} \) , \(\text{...} \)]

Simple event log

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

- An event log is a multiset of traces (same trace may appear multiple times).
- A trace is a sequence of activity names (we abstract from all other attributes, but events are ordered).

Goal of Alpha algorithm

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

Another example

$$L_2 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^4, \langle a, b, c, e, f, b, c, d \rangle^2, \langle a, b, c, e, f, c, b, d \rangle, \langle a, c, b, e, f, b, c, d \rangle^2, \langle a, c, b, e, f, b, c, e, f, c, b, d \rangle]$$

Notation is less relevant (e.g. BPMN)

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

Another BPMN example

$$L_2 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^4, \langle a, b, c, e, f, b, c, d \rangle^2, \langle a, b, c, e, f, c, b, d \rangle, \langle a, c, b, e, f, b, c, d \rangle^2, \langle a, c, b, e, f, b, c, e, f, c, b, d \rangle]$$

>,→,||,# relations

- Direct succession: x>y iff for some case x is directly followed by y.
- Causality: x→y iff x>y and not y>x.
- Parallel: x||y iff x>y and y>x
- Choice: x#y iff not x>y and not y>x.

Basic Idea Used by Alpha Algorithm (1)

(a) sequence pattern: a→b

Basic Idea Used by Alpha Algorithm (2)

Basic Idea Used by Alpha Algorithm (3)

Example Revisited

 $L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$

Footprint of L₁

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

One of the following:

$ o$, \leftarrow	#,	
---------------------	----	--

	а	b	c	d	e
а	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}
b	\leftarrow_{L_1}	$\#_{L_1}$	$\ _{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
\boldsymbol{c}	\leftarrow_{L_1}	$\ _{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$

Discovered model has the same footprint

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

	а	b	$\boldsymbol{\mathcal{C}}$	d	e
а	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}
b	\leftarrow_{L_1}	$\#_{L_1}$	\parallel_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$
c	\leftarrow_{L_1}	$\ _{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$

Log and model agree on footprint

Footprint of L₂

$$L_{2} = [\langle a,b,c,d \rangle^{3}, \langle a,c,b,d \rangle^{4}, \langle a,b,c,e,f,b,c,d \rangle^{2}, \langle a,b,c,e,f,c,b,d \rangle, \langle a,c,b,e,f,b,c,d \rangle^{2}, \langle a,c,b,e,f,b,c,e,f,c,b,d \rangle]$$

Log and model agree on footprint

Summary: Simple process patterns can be discovered from event logs

Let L be an event log over T. $\alpha(L)$ is defined as follows.

$$1.T_{L} = \{ t \in T \mid \exists_{\sigma \in L} t \in \sigma \},\$$

$$2.T_{l} = \{ t \in T \mid \exists_{\sigma \in L} t = \mathit{first}(\sigma) \},\$$

$$3.T_{O} = \{ t \in T \mid \exists_{\sigma \in L} t = last(\sigma) \},\$$

$$4. X_{L} = \{ (A,B) \mid A \subseteq T_{L} \land A \neq \emptyset \land B \subseteq T_{L} \land B \neq \emptyset \land \\ \forall_{a \in A} \forall_{b \in B} a \rightarrow_{L} b \land \forall_{a1,a2 \in A} a_{1} \#_{L} a_{2} \land \forall_{b1,b2 \in B} b_{1} \#_{L} b_{2} \},$$

5.
$$Y_L = \{ (A,B) \in X_L \mid \forall_{(A',B') \in X_L} A \subseteq A' \land B \subseteq B' \Longrightarrow (A,B) = (A',B') \},$$

6.
$$P_L = \{ p_{(A,B)} \mid (A,B) \in Y_L \} \cup \{ \bar{i}_L, o_L \},$$

$$7.\,F_L = \{\,(a,p_{(A,B)}) \mid (A,B) \in Y_L \land a \in A \,\} \, \cup \{\,(p_{(A,B)},b) \mid (A,B) \in Y_L \land b \in B \,\} \, \cup \{\,(i_L,t) \mid t \in T_I\} \, \cup \{\,(t,o_L) \mid t \in T_O\}, \text{ and }$$

8.
$$\alpha(L) = (P_L, T_L, F_L)$$
.

The α -algorithm

Let L be an event log over T. Then, $\alpha(L)$ is defined as follows:

- T_L = { t ∈ T | ∃_{σ∈L} t ∈ σ},
 Each activity in L corresponds to a transition in α(L).
- 2. $T_1 = \{ t \in T \mid \exists_{\sigma \in L} t = \textit{first}(\sigma) \}$ Fix the set of start activities – that is, the first elements of each trace: $\langle t_1, ..., t_n \rangle, ..., \langle t'_1, ..., t'_m \rangle$
- 3. $T_O = \{ t \in T \mid \exists_{\sigma \in L} t = last(\sigma) \}$ Fix the set of end activities – that is, elements that appear last in a trace : $\langle t_1, ..., t_n \rangle, ..., \langle t'_1, ..., t'_m \rangle$

Next steps aim at finding places

Step 4: Calculate pairs (A, B)

Step 5: Delete non-maximal pairs (A, B)

Step 6: Determine places p_(A, B) from pairs (A, B)

4.
$$X_{L} = \{ (A,B) \mid A \subseteq T_{L} \land A \neq \emptyset \land B \subseteq T_{L} \land B \neq \emptyset \}$$

$$\land \forall_{a \in A} \forall_{b \in B} a \rightarrow_{L} b$$

$$\land \forall_{a1,a2 \in A} a_{1} \#_{L} a_{2}$$

$$\land \forall_{b1,b2 \in B} b_{1} \#_{L} b_{2} \},$$

Find pairs (A, B) of sets of activities such that every element $a \in A$ and every element $b \in B$ are causally related (i.e., $a \rightarrow_L b$), all elements in A are independent $(a_1\#_L a_2)$, and all elements in B are independent $(b_1\#_L b_2)$.

Places as footprints

	a_1	a_2		a_m	b_1	b_2		b_n
a_1	#	#		#	\rightarrow	\rightarrow		\rightarrow
a_2	#	#	• • •	#	\rightarrow	\rightarrow		\rightarrow
			• • •					
a_m	#	#		#	\rightarrow	\rightarrow		\rightarrow
b_1	\leftarrow	\leftarrow		\leftarrow	#	#		#
b_2	\leftarrow	\leftarrow	• • •	\leftarrow	#	#		#
		• • •	• • •				• • •	
b_n	\leftarrow	\leftarrow		\leftarrow	#	#		#

©Wil van der Aalst & TU/e (use only with permis

5.
$$Y_L = \{ (A,B) \in X_L \mid \forall_{(A',B') \in X_L} A \subseteq A' \land B \subseteq B' \Rightarrow (A,B) = (A',B') \}$$

Delete from set X_L all pairs (A, B) that are not maximal!

6.
$$P_L = \{ p_{(A,B)} \mid (A,B) \in Y_L \} \cup \{i_L,o_L\},\$$

 a_2 b_2 $p_{(A,B)}$ b_n a_{m} $B=\{b_1,b_2, ... b_n\}$ $A = \{a_1, a_2, \dots a_m\}$

Determine the place set: Each element (A, B) of Y_L is a place. To ensure the workflow structure, add a source place i_L and a target place o_L

7.
$$F_L = \{ (a,p_{(A,B)}) \mid (A,B) \in Y_L \land a \in A \}$$

 $\cup \{ (p_{(A,B)},b) \mid (A,B) \in Y_L \land b \in B \}$
 $\cup \{ (i_L,t) \mid t \in T_I \} \cup \{ (t,o_L) \mid t \in T_O \}$

Determine the flow relation: Connect each place $p_{(A,B)}$ with each element a of its set A of source transitions and with each element of its set B of target transitions. In addition, draw an arc from the source place i_L to each start transition $t \in T_I$ and an arc from each end transition $t \in T_O$ to the sink place o_L .

8.
$$\alpha(L) = (P_L, T_L, F_L)$$

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

$$X_{L_1} = \{(\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{c\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\})\}\}$$

$$Y_{L_1} = \{(\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\})\}$$

ProM's output for event log L₁

Question: Give footprint matrix for event log L₃

$$L_{3} = [\langle a, b, c, d, e, f, b, d, c, e, g \rangle,$$
$$\langle a, b, d, c, e, g \rangle^{2},$$
$$\langle a, b, c, d, e, f, b, c, d, e, f, b, d, c, e, g \rangle]$$

Answer: Footprint matrix for event log L₃

	a	b	С	d	e	f	g
а	#	\rightarrow	#	#	#	#	#
b	\leftarrow	#	\rightarrow	\rightarrow	#	\leftarrow	#
c	#	\leftarrow	#		\rightarrow	#	#
d	#	\leftarrow		#	\rightarrow	#	#
e	#	#	\leftarrow	\leftarrow	#	\rightarrow	\rightarrow
f	#	\rightarrow	#	#	\leftarrow	#	#
g	#	#	#	#	\leftarrow	#	#

$$\langle a,b,d,c,e,g \rangle^2,$$

 $\langle a,b,c,d,e,f,b,c,d,e,f,b,d,c,e,g \rangle]$

 $L_3 = [\langle a, b, c, d, e, f, b, d, c, e, g \rangle,$

Question:

Apply the 8 steps of the Alpha algorithm.

$$L_{3} = [\langle a, b, c, d, e, f, b, d, c, e, g \rangle,$$

$$\langle a, b, d, c, e, g \rangle^{2},$$

$$\langle a, b, c, d, e, f, b, c, d, e, f, b, d, c, e, g \rangle]$$

Let L be an event log over T. $\alpha(L)$ is defined as follows.
$1. T_{L} = \{ t \in T \mid \exists_{\sigma \in L} t \in \sigma \},$
2. $T_1 = \{ t \in T \mid \exists_{\sigma \in L} t = first(\sigma) \},$
$3. T_{O} = \{ t \in T \mid \exists_{\sigma \in L} t = last(\sigma) \},$
4. $X_L = \{ (A,B) \mid A \subseteq T_L \land A \neq \emptyset \land B \subseteq T_L \land B \neq \emptyset \land A \in A$
$\forall_{a \in A} \forall_{b \in B} a \to_{L} b \land \forall_{a1,a2 \in A} a_1\#_L a_2 \land \forall_{b1,b2 \in B} b_1\#_L b_2 \},$
$5. Y_{L} = \{ (A,B) \in X_{L} \mid \forall_{(A',B') \in X_{L}} A \subseteq A' \land B \subseteq B' \Rightarrow (A,B) = (A',B') \},$
6. $P_L = \{ p_{(A,B)} \mid (A,B) \in Y_L \} \cup \{i_L,o_L\},$
7. $F_L = \{ (a, p_{(A,B)}) \mid (A,B) \in Y_L \land a \in A \} \cup \{ (p_{(A,B)},b) \mid (A,B) \in A \} $
$Y_{L} \wedge b \in B$ $\bigcirc \{ (i_{L},t) \mid t \in T_{I} \} \cup \{ (t,o_{L}) \mid t \in T_{O} \}, \text{ and } $
$ 8. \alpha(L) = (P_1, T_1, F_1).$

	а	b	С	d	e	f	g
а	#	\rightarrow	#	#	#	#	#
b	(#	\rightarrow	\rightarrow	#	\leftarrow	#
c	#	\leftarrow	#		\rightarrow	#	#
d	#	\leftarrow		#	\rightarrow	#	#
e	#	#	\leftarrow	\leftarrow	#	\rightarrow	\rightarrow
f	#	\rightarrow	#	#	\leftarrow	#	#
g	#	#	#	#	\leftarrow	#	#

Model for L₃ discovered by the Alpha algorithm

$$L_{3} = [\langle a, b, c, d, e, f, b, d, c, e, g \rangle,$$

$$\langle a, b, d, c, e, g \rangle^{2},$$

$$\langle a, b, c, d, e, f, b, c, d, e, f, b, d, c, e, g \rangle]$$

	а	b	С	d	e	f	g
а	#	\rightarrow	#	#	#	#	#
b	\leftarrow	#	\rightarrow	\rightarrow	#	\leftarrow	#
c	#	\leftarrow	#		\rightarrow	#	#
d	#	\leftarrow		#	\rightarrow	#	#
e	#	#	\leftarrow	\leftarrow	#	\rightarrow	\rightarrow
f	#	\rightarrow	#	#	\leftarrow	#	#
g	#	#	#	#	\leftarrow	#	#

ProM's output for event log L₃

Another event log L₄

$$L_4 = [\langle a, c, d \rangle^{45}, \langle b, c, d \rangle^{42}, \langle a, c, e \rangle^{38}, \langle b, c, e \rangle^{22}]$$

Event log L₅

$$L_5 = [\langle a, b, e, f \rangle^2, \langle a, b, e, c, d, b, f \rangle^3, \langle a, b, c, e, d, b, f \rangle^2, \\ \langle a, b, c, d, e, b, f \rangle^4, \langle a, e, b, c, d, b, f \rangle^3]$$

	а	b	С	d	e	f
a	#	\rightarrow	#	#	\rightarrow	#
b	\leftarrow	#	\rightarrow	\leftarrow		\rightarrow
c	#	\leftarrow	#	\rightarrow		#
d	#	\rightarrow	\leftarrow	#		#
e	\leftarrow				#	\rightarrow
f	#	\leftarrow	#	#	\leftarrow	#


```
T_L = \{a, b, c, d, e, f\}
     T_I = \{a\}
     T_I = \{f\}
  (\{d\},\{b\}),(\{e\},\{f\}),(\{a,d\},\{b\}),(\{b\},\{c,f\})\}
    Y_L = \{(\{a\}, \{e\}), (\{c\}, \{d\}), (\{e\}, \{f\}), (\{a,d\}, \{b\}), (\{b\}, \{c,f\})\}\}
  P_L = \{p_{(\{a\},\{e\})}, p_{(\{c\},\{d\})}, p_{(\{e\},\{f\})}, p_{(\{a,d\},\{b\})}, p_{(\{b\},\{c,f\})}, i_L, o_L\}\}
  F_L = \{(a, p_{(\{a\}, \{e\})}), (p_{(\{a\}, \{e\})}, e), (c, p_{(\{c\}, \{d\})}), (p_{(\{c\}, \{d\})}, d), (c, p_{(\{c\}, \{d\})}), 
                                            (p_{(\{a,d\},\{b\})},b),(b,p_{(\{b\},\{c,f\})}),(p_{(\{b\},\{c,f\})},c),(p_{(\{b\},\{c,f\})},f),
                                            (i_L,a),(f,o_L)
\alpha(L) = (P_L, T_L, F_L)
```

Discovered model

 $L_5 = [\langle a, b, e, f \rangle^2, \langle a, b, e, c, d, b, f \rangle^3, \langle a, b, c, e, d, b, f \rangle^2, \\ \langle a, b, c, d, e, b, f \rangle^4, \langle a, e, b, c, d, b, f \rangle^3]$

$$X_{L} = \{(\{a\}, \{b\}), (\{a\}, \{e\}), (\{b\}, \{c\}), (\{b\}, \{f\}), (\{c\}, \{d\}), (\{d\}, \{b\}), (\{e\}, \{f\}), (\{a, d\}, \{b\}), (\{b\}, \{c, f\})\}\}$$

$$Y_{L} = \{(\{a\}, \{e\}), (\{c\}, \{d\}), (\{e\}, \{f\}), (\{a, d\}, \{b\}), (\{b\}, \{c, f\})\}$$

 $b\}, \{c,f\})\}$

Summary

- The Alpha algorithm provides a basic process discovery approach.
- It has many limitations. These will be discussed later.
- However, it nicely illustrates the key ingredients of process discovery.
- Hence, it is important to understand the algorithm and practice using concrete examples.

TU/e

Part I: Introduction

Chapter 1 Data Science in Action

Chapter 2 Process Mining: The Missing Link

Part II: Preliminaries

Chapter 3 Process Modeling and Analysis

Chapter 4 **Data Mining**

Part III: From Event Logs to Process Models

Chapter 5 Getting the Data

Chapter 6 Process Discovery: An Introduction

Chapter 7

Advanced Process Discovery Techniques

Part IV: Beyond Process Discovery

Chapter 8 Conformance Checking

Chapter 9 Mining Additional Perspectives

Chapter 10 **Operational Support**

Part V: Putting Process Mining to Work

Process Mining Software

Chapter 12

Process Mining in the Large

Chapter 13 Analyzing "Lasagna Processes"

Chapter 14 Analyzing "Spaghetti Processes"

Part VI: Reflection

Chapter 15 Cartography and

Navigation

Chapter 16 **Epilogue**

Process

Mining

Wil van der Aalst

