

Roll No: Subject Code: BAS203

BTECH (SEM II) THEORY EXAMINATION 2023-24 ENGINEERING MATHEMATICS-II

TIME: 3 HRS M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

Printed Page: 1 of 2

Q no.	Question	Marks	СО
a.	Find Particular integral of $\frac{d^2y}{dx^2} + 4y = \sin 2x$.	2	1
b.	Find the complementary function of $(D^2+a^2)y = 0$	2	1
c.	Find the Laplace transform of $f(t) = t^4 e^{2t}$.	2	2
d.	Find the constant term if the function $f(x) = x+x^2$ is expanded in Fourier series defined in (-1, 1).	2	3
e.	Find the Residue of $\frac{z^2}{(z-1)(z-2)^2}$ at $z=2$.	2	4
f.	$\int_{c} \frac{e^{2z}}{(z+1)^5} dz \text{ where c is the circle } z = 2$	2	5
g.	Define Laurent's series.	2	5

SECTION B

2. Attempt any *three* of the following:

 $7 \times 3 = 21$

Q no.	Question	Marks	СО
a.	Using variation of parameter method, solve $x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} - 12y = 0$.	7	1
b.	Use convolution theorem to find the inverse Laplace transform of $\frac{1}{(s^2+a^2)^2}$.	7	2
c.	Test the convergence of the series $1+\frac{2}{5}x+\frac{6}{9}x^2+\frac{14}{17}x^3+\dots$	7	3
d.	Show that the function $u = \frac{1}{2} \log (x^2 + y^2)$ is harmonic .Find its harmonic conjugate.	7	4
e.	Evaluate the following integral using Cauchy Integral formula	7	5
	$\int_C \frac{4-3z}{z(z-1)(z-2)} dz, \text{ where C is circle } z = \frac{3}{2}$		

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

Q no.	Question	Marks	CO
a.	Solve the following differential equation	7	1
	$(D^2 - 4D + 4)y = 8x^2 e^{2x} \sin 2x.$		
b.	Solve simultaneous differential equation:	7	1
	$D^2x-4Dx+4x = y$, $D^2y+4Dy+4y=25x+16e^t$, where $D = \frac{d}{dt}$.		

Roll No: Subject Code: BAS203

BTECH (SEM II) THEORY EXAMINATION 2023-24 ENGINEERING MATHEMATICS-II

TIME: 3 HRS M.MARKS: 70

4. Attempt any *one* part of the following:

7	X	1	=	7

Printed Page: 2 of 2

Q no.	Question	Marks	CO	à
a.	Find the Laplace transform of $f(t) = \frac{1-cost}{t^2}$.	7	2	
b.	Using Laplace transformation solve the following differential	7	2	
	equation			
	$y'' + 4y' + 4y = 6e^{-t}$, if $y(0) = -2$, $y'(0) = 8$			6

5. Attempt any *one* part of the following:

$7 \times 1 = 7$

Q no.	Question	Marks	CO
a.	Find the half range Fourier sine series $f(x)$ defined over the range $0 < x < 4$		3
	as $f(x) = \begin{cases} x, 0 < x < 2 \\ 4 - x, 2 < x < 4 \end{cases}$		
b.	Test for the convergence of the series	7	3
	$1 + \frac{x}{2} + \frac{1.3}{2.4} x^2 + \frac{1.3.5}{2.4.6} x^3 + \dots, x > 0$		

6. Attempt any *one* part of the following:

7		1	7	
/	X	1	= /	

Q no.	Question	Marks	CO
a.	Show that e^x (x cosy – y siny) is a harmonic function. Find the	70	4
	analytic function for which e^x (x cosy – y siny) is imaginary part.		
b.	Define analytic function and show that $f(z) = z z $ is not analytic	7	4
	anywhere.		

7. Attempt any *one* part of the following:

$7 \times 1 = 7$

Q no.	Question	Marks	CO
a.	Expand $f(z) = \frac{z}{(z-1)(2-z)}$ is Laurent series valid for	7	5
	a z-1 > 1 and $ b 0 < z-2 < 1$		
b.	Evaluate $\int \frac{e^z}{(z-1)(z-4)} dz$ where C is the circle $ z = 2$ by using Cauchy's	7	5
	integral formula.		