Self grades are due at 11 PM one week after the homework.

1. Symmetric Matrices

Recall that $\mathbb{R}^{n \times n}$ can be thought of as the vector space of all $n \times n$ matrices. As a vector space, $\mathbb{R}^{n \times n}$ has dimension n^2 . Let $\mathbb{S}^n \subseteq \mathbb{R}^{n \times n}$ denote the set of symmetric matrices $n \times n$ matrices. Let $\mathbb{S}^n_+ \subseteq \mathbb{S}^n$ denote the set of positive semidefinite $n \times n$ matrices. Let $\mathbb{S}^n_{++} \subseteq \mathbb{S}^n_+$ denote the set of positive definite $n \times n$ matrices.

(a) Show that \mathbb{S}^n is a subspace of $\mathbb{R}^{n \times n}$ of dimension $\binom{n+1}{2}$.

Solution:

If $A, B \in \mathbb{S}^n$, i.e. A and B are symmetric $n \times n$ matrices, and α, β are arbitrary real numbers, then $\alpha A + \beta B$ is an $n \times n$ symmetric matrix, i.e. $\alpha A + \beta B \in \mathbb{S}^n$. This shows that \mathbb{S}^n is a subspace of $\mathbb{R}^{n \times n}$.

For $1 \le i \le n$, let $E_{ii} \in \mathbb{R}^{n \times n}$ have all entries 0 except for the (i,i) entry, which is 1. For $1 \le i < j \le n$, let E_{ij} have entries 0 except for the (i,j) and (j,i) entries, each of which equals $\frac{1}{\sqrt{2}}$. Then one can check that

$${E_{ii}, 1 \le i \le n} \cup {E_{ij}, 1 \le i < j \le n}$$

is an orthonormal basis for \mathbb{S}^n . (Here the inner product of two matrices $C, D \in \mathbb{R}^{n \times n}$ is defined to be $\sum_{i=1}^n \sum_{j=1}^n c_{ij} d_{ij}$.) This shows that the dimension of the vector space \mathbb{S}^n is

$$n + \binom{n}{2} = \binom{n+1}{2}.$$

(b) Show that \mathbb{S}^n_+ is a convex subset of $\mathbb{R}^{n \times n}$.

Solution:

Let $A, B \in \mathbb{S}^n_+$. Then $A, B \in \mathbb{S}^n$, and we have $\vec{x}^T A \vec{x} \geq 0$ and $\vec{x}^T B \vec{x} \geq 0$ for all $\vec{x} \in \mathbb{R}^n$. Hence, for every $\theta \in [0, 1]$, we have $\vec{x}^T (\theta A + (1 - \theta)B)\vec{x} \geq 0$, and also $\theta A + (1 - \theta)B \in \mathbb{S}^n_+$.

Since this holds for all $A, B \in \mathbb{S}^n_+$ and for every $\theta \in [0, 1]$, we have verified that \mathbb{S}^n_+ is a convex subset of $\mathbb{R}^{n \times n}$.

(c) Show that the affine hull of \mathbb{S}^n_+ is \mathbb{S}^n .

Recall that the affine hull of a subset A of a vector space V is the smallest subspace of V that contains A. It can be characterized as the set of all linear combinations of the form $\sum_{i=1}^k \theta_i \vec{x}_i$, where $k \geq 1$ is arbitrary, $\vec{x}_1, \ldots, \vec{x}_k$ are vectors in A, and $\theta_1, \ldots, \theta_k$ are arbitrary real numbers satisfying $\sum_{i=1}^k \theta_i = 1$. Note that, in contrast to the definition of the convex hull of A, the θ_i are allowed to be negative.

HINT: Every symmetric matrix is conjugate to a diagonal matrix by an orthogonal change of basis.

Solution:

We have already shown that \mathbb{S}^n is a subspace of $\mathbb{R}^{n \times n}$ that contains \mathbb{S}^n_+ . This implies that $\mathrm{aff}(\mathbb{S}^n_+) \subseteq \mathbb{S}^n$. To show that \mathbb{S} is the smallest such subspace, and hence $\mathbb{S}^n = \mathrm{aff}(\mathbb{S}^n_+) \subseteq \mathbb{S}^n$, we need to show that every $A \in \mathbb{S}^n$ can be written as a linear combination of matrices in \mathbb{S}^n_+ , with coefficients that sum to 1.

Let $A \in \mathbb{S}^n$. We write $A = U^T \Sigma U$, where U is an orthogonal matrix and Σ is a diagonal matrix. We then write $\Sigma = \Sigma_1 - \Sigma_2$, where Σ_1 and Σ_2 are diagonal matrices, each having only nonnnegative diagonal entries. We can then write

$$A = U^T \Sigma U$$

$$= U^T \Sigma_1 U - U^T \Sigma_2 U$$
$$= 2A_1 - A_2,$$

where A_1 is defined to be $\frac{1}{2}U^T\Sigma_1U$ and A_2 is defined to be $U^T\Sigma_2U$. Note that $A_1, A_2 \in \mathbb{S}^n_+$, and that in the representation of A as $2A_1 - A_2$ the coefficients sum to 1.

Since this procedure can be carried out for all $A \in \mathbb{S}^n$, we have shown that \mathbb{S}^n is the affine hull of \mathbb{S}^n_+ .

(d) Show that \mathbb{S}_{++}^n is a convex subset of $\mathbb{R}^{n \times n}$.

Solution:

Let $A, B \in \mathbb{S}^n_{++}$. Then $A, B \in \mathbb{S}^n$, and we have $\vec{x}^T A \vec{x} > 0$ and $\vec{x}^T B \vec{x} > 0$ for all nonzero $\vec{x} \in \mathbb{R}^n$. Hence, for every $\theta \in [0,1]$, we have $\vec{x}^T (\theta A + (1-\theta)B)\vec{x} \geq 0$ for all nonzero $\vec{x} \in \mathbb{R}^n$, and also $\theta A + (1-\theta)B \in \mathbb{S}^n$. This implies that $\theta A + (1-\theta)B \in \mathbb{S}^n_{++}$.

Since this holds for all $A, B \in \mathbb{S}_{++}^n$ and for every $\theta \in [0, 1]$, we have verified that \mathbb{S}_{++}^n is a convex subset of $\mathbb{R}^{n \times n}$.

(e) Show that \mathbb{S}^n_{++} is the relative interior of \mathbb{S}^n_+ . For this problem, to define distances in $\mathbb{R}^{n\times n}$, it does not matter whether you use the Frobenius norm or the induced 2-norm, but use the induced 2-norm.

Recall that the relative interior of a subset A of a vector space V is the interior of A when A is viewed as a subset of its affine hull.

Solution:

First, we need to show that for every $A \in \mathbb{S}^n_{++}$ there is some r>0 such that for every $B \in \mathbb{S}^n$ with $\|B\|_2 < r$ we have $A+B \in \mathbb{S}^n_{++}$. The reason it suffices to do this only for $B \in \mathbb{S}^n$ is that we have already shown that \mathbb{S}^n is the affine hull of \mathbb{S}^n_+ . Let λ_{\min} denote the smallest eigenvalue of A. Then, since $A \in \mathbb{S}^n_{++}$, we have $\lambda_{\min} > 0$. Let us choose $0 < r < \lambda_{\min}$. For every $B \in \mathbb{S}^n$ with $\|B\|_2 < r$ we have $A+B \in \mathbb{S}^n$. Further, for every $\vec{x} \in \mathbb{R}^n$, we have

$$\vec{x}^T (A+B) \vec{x} = \vec{x}^T A \vec{x} + \vec{x}^T B \vec{x}$$

 $\geq \lambda_{\min} ||\vec{x}||_2^2 - r ||\vec{x}||_2^2$
 $= (\lambda_{\min} - r) ||\vec{x}||_2,$

where the inequality follows, using the Cauchy-Schwarz inequality, because

$$|\vec{x}^T B \vec{x}| \le ||\vec{x}||_2 ||B \vec{x}||_2 \le ||\vec{x}||_2 (r ||\vec{x}||_2) = r ||\vec{x}||_2^2.$$

Since $\lambda_{\min} - r > 0$ we have shown that $\vec{x}^T(A+B)\vec{x} > 0$ for all nonzero $\vec{x} \in \mathbb{R}^n$. This establishes that $A+B \in \mathbb{S}^n_{++}$, which is what we wanted to show.

Second, we need to show that for every $A \in \operatorname{relint}(\mathbb{S}^n_+)$, we have $A \in \mathbb{S}^n_{++}$. We proceed by contradiction: Suppose $A \notin \mathbb{S}^n_{++}$. If $A \notin \mathbb{S}^n_+$, then we automatically have $A \notin \operatorname{relint}(\mathbb{S}^n_+)$, as desired. Otherwise, $A \in \mathbb{S}^n_+$, or in words, A is symmetric positive semi-definite but not symmetric positive definite. In particular, there exists some vector $\vec{v} \in N(A)$ with $\|\vec{v}\|_2 = 1$. We now claim that for each r > 0, there exists some matrix $B \in \mathbb{S}^n = \operatorname{aff}(\mathbb{S}^n_+)$, with $\|B\|_2 < r$, such that $A + B \notin \mathbb{S}^n_+$; this claim would establish that $A \notin \operatorname{relint}(\mathbb{S}^n_+)$, as desired. To show this, fix r > 0 arbitrarily, and set $B = -\frac{1}{2}r\vec{v}\vec{v}^\top$. Then $B \in \mathbb{S}^n$ with $\|B\|_2 = \frac{1}{2}r$, but $A + B \notin \mathbb{S}^n_+$, because $(A + B)\vec{v} = 0 - \frac{1}{2}r\vec{v} = -\frac{1}{2}r\vec{v}$, i.e., $-\frac{1}{2}r$ is an eigenvalue of A + B.

(f) Show that if n > 1 then the interior of \mathbb{S}^n_+ is empty. Here again, to define distances in $\mathbb{R}^{n \times n}$, it does not matter whether you use the Frobenius norm or the induced 2-norm, but use the induced 2-norm.

Solution:

Let n > 1 be given, and let $A \in \mathbb{S}_+^n$. No matter how small we make r > 0, we can find $B \in \mathbb{R}^{n \times n}$ with $\|B\|_2 < r$ such that $A + B \notin \mathbb{S}_+^n$. To see this, it suffices to define B such that its (1,2)-entry is $\frac{r}{2}$, and its other entries are all 0. Indeed, with this choice we have $\|B\|_2 = \frac{r}{2}$ and A + B will not be symmetric, so it will not be in \mathbb{S}_+^n .

2. Distance between polytopes as a quadratic program

Let $\vec{p}^{(1)},\ldots,\vec{p}^{(r)}$ and $\vec{q}^{(1)},\ldots,\vec{q}^{(s)}$ be vectors in \mathbb{R}^d , where $r,s\geq 1$. Let \mathcal{P} denote the polytope defined as the convex hull of $\{\vec{p}^{(1)},\ldots,\vec{p}^{(r)}\}$, and \mathcal{Q} the polytope defined as the convex hull of $\{\vec{q}^{(1)},\ldots,\vec{q}^{(s)}\}$. Thus every point in \mathcal{P} can be written as $\sum_{i=1}^r x_i \vec{p}^{(i)}$ for some $x_i\geq 0, 1\leq i\leq r$ such that $\sum_{i=1}^r x_i=1$, and every point in \mathcal{Q} can be written as $\sum_{j=1}^s x_{r+j} \vec{q}^{(j)}$ for some $x_j\geq 0, r+1\leq j\leq r+s$ such that $\sum_{j=r+1}^{r+s} x_j=1$. Let us define n=r+s.

Define the matrix $C \in \mathbb{R}^{d \times n}$ whose i-th column is $\vec{p}^{(i)}$, $1 \le i \le r$ and whose r + j-th column is $-\vec{q}^{(j)}$, $1 \le j \le s$.

Pose the problem of finding the minimum squared ℓ_2 distance between points in \mathcal{P} and points in \mathcal{Q} as a quadratic program with objective function $\|C\vec{x}\|_2^2$, viewed as a function on \mathbb{R}^n .

NOTE: A quadratic program is a convex optimization problem where the objective function is a quadratic function and the constraints are linear equalities and inequalities. Recall that a quadratic convex function on \mathbb{R}^n is one of the form $\vec{x}^T H \vec{x} + \vec{a}^T \vec{x} + \vec{b}$ where $b \in \mathbb{R}$, $\vec{a} \in \mathbb{R}^n$, and H is a positive semidefinite matrix in $\mathbb{R}^{n \times n}$ (i.e. $H \in \mathbb{S}^n_+$).

Solution:

$$\min_{ec{x}}$$
 $ec{x}^T C^T C ec{x}$ subject to: $\sum_{i=1}^r x_i = 1,$ $\sum_{j=1}^s x_{r+j} = 1,$ $x_i \geq 0, \ i = 1, \dots, n,$

where we recall that n := r + s. To see this, note that the objective is

$$\| \sum_{i=1}^{r} x_i \bar{p}^{(i)} - \sum_{j=1}^{s} x_{r+j} \bar{q}^{(j)} \|_2^2,$$

which is the squared ℓ_2 distance between the points $\sum_{i=1}^r x_i \vec{p}^{(i)}$ and $\sum_{j=1}^s x_{r+j} \vec{q}^{(j)}$, which lie in \mathcal{P} and \mathcal{Q} respectively, because of the constraints on \vec{x} . Further, as \vec{x} ranges over the feasible set, the pair $(\sum_{i=1}^r x_i \vec{p}^{(i)}, \sum_{j=1}^s x_{r+j} \vec{q}^{(j)})$ ranges over all possible pairs of point in $\mathcal{P} \times \mathcal{Q}$ (possibly with redundancy).