Klassifikationsverfahren	Logistic Regression, Decision Tree, Random Forest, Support Vector						
Klassiikaliolisvellalileli	Machine, K Nearest Neighbour, Naïve Bayes						
Die absolute Baseline	Einfache Methode Vorhersage ML						
(Constant)	Häufigste Wert (Modus) des Klassenattributs						
,							
	Beispiel:						
	Angenommen, du hast Trainingsdaten mit folgenden Klassenlabels:						
	• Ja, Ja, Nein, Ja, Ja						
	Hier ist die häufigste Klasse ("Modus") "Ja". Das "Constant"-Modell würd						
	also immer "Ja" vorhersagen, egal welche Eingabedaten gegeben werden.						
	Diese Methode dient oft als Baseline , um zu sehen, ob Angelengen Medelle überhaust begegen ehnehmeiden.						
	komplexere Modelle überhaupt besser abschneiden.						
Baseline: One Rule	In der Software Orange wird diese Methode als "Constant" bezeichnet Die One Rule -Baseline sucht das Attribut , das am besten mit dem						
baseline. One Rule	Klassenattribut korreliert.						
	Vorgehen:						
	1. Für jedes Attribut:						
	o Zähle, welcher Klassenwert am häufigsten mit einem						
	Attributwert auftritt.						
	Erstelle daraus eine Regel: "Wenn A = Wert, dann C =						
	häufigster Wert".						
	2. Berechne die Anzahl der Fehler dieser Regeln.						
	3. Wähle das Attribut mit den wenigsten Fehlern .						
	Beispiel:						
	 Kreditkartenbetrug: Wenn Kartentyp = Standard, dann kein Betrug. 						
	 Wenn Kartentyp - Standard, dann Rem Betrug. Wenn Kartentyp = Gold, dann Betrug. 						
	 Wenn Kartentyp = Premium, dann kein Betrug. 						
DT	Ein Entscheidungsbaum teilt die Daten schrittweise auf.						
	Bei jedem Knoten kommen bestimmte Datenpunkte an. Diese						
	Menge nennt man Dt .						
	Je nach Entscheidung (z.B. "mehr als 2 Reparaturen?") wird die						
	Menge in Teilgruppen zerlegt.						
Entscheidungsbäume	Man wählt das Attribut , das die Daten am besten in homogene						
Split Attribut wählen	Gruppen aufteilt.						
	 Homogen: Die Gruppe enthält fast nur eine Klasse (z.B. 9x "Ja", 1x "Nein") ☺ 						
	Heterogen: Die Gruppe enthält gemischte Klassen (z.B. 5x "Ja", 5x						
	"Nein") **						
	Ziel: Möglichst homogene Gruppen bilden, um die Vorhersage zu						
	verbessern.						
Entscheidungsbäume	Entscheidungsbäume werden oft "abgeschnitten" (Pruning), um						
Wichtige Parameter	Überanpassung (Overfitting) zu vermeiden.						
	Wichtige Parameter:						
	1. Mindestgrösse der Blätter Dt:o Ein Blattknoten (Endpunkt) muss mindestens eine						
	bestimmte Anzahl an Datenpunkten haben (<mark>z.B. 50</mark>).						
	2. Tiefe einschränken:						
	 Die maximale Tiefe des Baums wird begrenzt (z.B. 						
	maximal 2 Ebenen).						
	Ziel:						
	Den Baum einfacher und allgemeiner machen, damit er nicht zu stark auf						
	die Trainingsdaten angepasst ist.						
K Nearest Neighbour	KNN ist ein Algorithmus, der die <mark>nächsten Nachbarn</mark> verwendet, um eine						
(kNN)	Vorhersage zu treffen. Wie funktioniert KNN?						
	AAIG IMIIKUOHIGI (IVIAIA:						

	1 Findsham						
	1. Eingaben:						
	a. Trainingsmenge: Die bekannten Daten.						
	b. Ähnlichkeitsmass: Meist die Distanz (z.B. euklidisch).						
	c. k-Wert: Anzahl der nächsten Nachbarn, die berücksichtigt						
	werden.						
	Vorhersage:						
	a. Ähnlichkeit berechnen: Finde die k ähnlichsten Datenpunkte zur						
	neuen Instanz.						
	b. Mehrheitsentscheidung: Die häufigste Klasse unter den k Nachbarn						
	wird vorhergesagt.						
kNN-Nachteile	Zu klein:						
	a. Wenn k zu niedrig ist (z.B. k=1), kann ein Ausreisser (Noise Point) die						
	Vorhersage stark beeinflussen.						
	Beispiel: Ein einzelner falscher Wert kann die gesamte Entscheidung						
	ändern.						
	Zu gross:						
	Wenn k zu hoch ist (z.B. k=20), werden zu viele Nachbarn berücksichtigt.						
	Das kann dazu führen, dass die Entscheidungsgrenze verschwimmt und						
	die Vorhersage ungenau wird.						
	alo tomologo dilgorida midi						
	Vorteil: man kann Vorhersage trotzdem erklären indem man zeigt welche						
	=						
	Nächste Nachbarn entscheidung beeinflusst haben,						
Logistische Regression	Kombiniert alle Attribute zu einer gewichteten summe						
	$z = w_1 x_1 + \cdots w_n x_n + b$						
	wi: Gewicht des Attributs						
	xi: Wert des Attributs						
	• b: Bias (Verschiebung)						
	Um aus dieser Summe Wahrscheinlichkeit → Sigmoid Funktion						
	$\phi(z)=rac{1}{1+e^{-z}}$						
	 Wenn φ(z)>0.5φ(z)>0.5 → Ja (Beispiel) 						
	 Wenn φ(z) ≤ 0.5φ(z) ≤ 0.5 → Nein (Beispiel) 						
Lagisticales Dagrassian							
Logistische Regression	Nachteil:						
Nachteile	Die logistische Regression behandelt alle Attribute unabhängig						
	voneinander.						
	Das bedeutet: Sie erkennt keine Kombinationen von Attributen.						
	Beispiel:						
	O Angenommen, die Vorhersage lautet "Ja", wenn:						
	Region = Stadt und Monate < 8						
	Die logistische Regression kann diese Verknüpfung nicht						
	erkennen, weil sie die Attribute einzeln betrachtet.						
	Problem:						
	 Manchmal spielt ein Attribut nur in Kombination mit 						
	einem anderen eine Rolle.						
	 Beispiel: "Monate < 8" allein bedeutet nichts, 						
	·						
	aber zusammen mit "Stadt" schon.						

Gradient Boosting

Grundidee:

Gradient Boosting kombiniert mehrere schwache Modelle (z.B. einfache Entscheidungsbäume), um ein stärkeres, genaueres Modell zu bauen. Wie funktioniert Gradient Boosting?

1. Modell lernen:

• Starte mit einem einfachen Modell (z.B. ein kleiner Entscheidungsbaum).

2. Fehler identifizieren:

o Finde heraus, wo das Modell falsch liegt.

3. Weiteres Modell trainieren:

Trainiere ein neues Modell, das die Fehler des ersten Modells korrigiert.

4. Wiederholen:

 Mache das mehrmals, sodass jedes neue Modell die Fehler des vorherigen verbessert.

5. Vorhersagen kombinieren:

 Kombiniere die Vorhersagen aller Modelle (jüngere Modelle haben weniger Gewicht).

Vorteil:

• Sehr genaue Vorhersagen, da die Fehler schrittweise reduziert werden.

Nachteil:

• Schwer zu interpretieren, da viele Modelle miteinander kombiniert werden.

Kriterien	Entscheidungsbäume	Neuronale Netze	Naïve Bayes	kNN	SVM	Regelbasierte Lernverfahren
Allgemeine Genauigkeit	**	****	**	**	****	**
Lerngeschwindigkeit (Anzahl der Attribute & Instanzen)	***	*	***	***	*	**
Klassifikationsgeschwindigkeit	***	****	****	*	****	****
Toleranz gegenüber fehlenden Werten	***	*	**	*	**	**
Toleranz gegenüber irrelevanten Attributen (Feature Selection)	***	**	*	*	***	**
Toleranz gegenüber redundanten Attributen	**	**	**	*	**	**
Toleranz gegenüber stark abhängigen Attributen (z. B. Paritätsprobleme)	**	***	*	*	**	*
Umgang mit diskreten/binären/kontinuierlichen Attributen	***	*** (nicht diskret)	*** (nicht kontinuierlich)	*** (nicht direkt diskret)	** (nicht diskret)	*** (nicht direkt kontinuierlich)
Toleranz gegenüber Rauschen	**	**	**	*	**	**
Umgang mit Overfitting	**	**	***	**	****	**
Möglichkeiten für inkrementelles Lernen	**	***	***	***	**	***
Erklärbarkeit/Transparenz der Klassifikation	****	*	**	*	*	***
Modell-Parameter-Handhabung	**	*	***	**	**	**