Seneca

Introduction to Number Systems

Agenda

- Decimal Number System
- Binary Number System
- Octal Number System
- Hexadecimal Number System
- Conversions

Decimal Number System

- Also known as "Base 10"
- There are 10 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Used universally in mathematics

Binary Number System

- Also known as "Base 2"
- There are 2 symbols: 0 and 1
 - 0 represents "off"
 - 1 represents "on"
- This number system is used in computer instructions
- Video: <u>Basics of Binary</u>

Octal Number System

- Also known as "Base 8" or "Oct"
- There are 8 symbols: 0, 1, 2, 3, 4, 5, 6, 7
- Represented by grouping 3 binary digits together
 - Example: $010_2 = 2_8$
- This number system is used in computer instructions such as in Linux permissions (i.e. Read, Write, Execute)
- Video: <u>Understanding the octal numbering system</u>

Seneca

Hexadecimal Number System

- Also known as "Base 16" or "Hex"
- There are 16 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Represented by grouping 4 binary digits together
 - Example: $1110_2 = E_{16}$
- This number system is used to express large binary numbers
- Video: <u>Understanding hexadecimal numbers</u>

Conversions: Strategy

Convert all number systems to Binary

Seneca

Conversions: Strategy

Then convert Binary to other number systems

Seneca

Conversions: Decimal to Binary

Video: <u>Decimal to Binary conversion</u>

Conversions: Decimal to Binary Examples

- In groups, convert the following Decimal numbers to Binary:
 - 1) 192
 - 2) 168
 - 3) 255
 - 4) 248
 - 5) 200
 - 6) 127
 - 7) 1024

Conversions: Octal to Binary

- Each octal digit represents 3 binary digits
 - $0_8 = 000_2$
 - $1_8 = 001_2$
 - $2_8 = 010_2$
 - $3_8 = 011_2$
 - $4_8 = 100_2$
 - $5_8 = 101_2$
 - $6_8 = 110_2$
 - $7_8 = 111_2$
- Example: $72_8 = 111 \ 010_2$

Conversions: Octal to Binary Examples

- In groups, convert the following Octal numbers to Binary:
 - 1) 763
 - 2) 553
 - 3) 442
 - 4) 176
 - 5) 853
 - 6) 221
 - 7) 774

Conversions: Hexadecimal to Binary

- Each Hexadecimal digit represents 4 binary digits
 - $0_{16} = 0000_2$
 - $1_{16} = 0001_2$
 - •
 - $9_{16} = 1001_2$
 - $A_{16} = 1010_2$
 - $B_{16} = 1011_2$
 - $C_{16} = 1100_2$
 - $D_{16} = 1101_2$
 - $E_{16} = 1110_2$
 - $F_{16} = 1111_2$
- Example: $8F_{16} = 1000 \ 1111_2$

Conversions: Hexadecimal to Binary Examples

- In groups, convert the following Hexadecimal numbers to Binary:
 - 1) ABC
 - 2) 184
 - 3) E09
 - 4) D15
 - 5) 2F7
 - 6) 89A
 - 7) DEF

Conversions: Binary to Decimal

- Use positional notation to convert
- Example: **10101**₂
- $1 \times 2^4 = 16$
- $0 \times 2^3 = 0$
- $1 \times 2^2 = 4$
- $0 \times 2^1 = 0$
- $1 \times 2^0 = 1$
- Total = 21_{10}

Conversions: Binary to Decimal Examples

- In groups, convert the following Binary numbers to Decimal:
 - 1) 11111111
 - 2) 11001101
 - 3) 11100011
 - 4) 10011011
 - 5) 11110000
 - 6) 10001111
 - 7) 10101010

Conversions: Binary to Octal

- Group the binary bits into groups of 3
- Example: **110111**₂
- $110_2 = 6_8$
- $111_2 = 7_8$
- Result = 67_8

Conversions: Binary to Octal Examples

- In groups, convert the following Binary numbers to Octal:
 - 1) 11111111
 - 2) 11001101
 - 3) 11100011
 - 4) 10011011
 - 5) 11110000
 - 6) 10001111
 - 7) 10101010

Conversions: Binary to Hexadecimal

- Group the binary bits into groups of 4
- Example: **10011111**₂
- $1001_2 = 9_{16}$
- $1111_2 = F_{16}$
- Result = $9F_{16}$

Conversions: Binary to Hexadecimal Examples

- In groups, convert the following Binary numbers to Hexadecimal:
 - 1) 11111111
 - 2) 11001101
 - 3) 11100011
 - 4) 10011011
 - 5) 11110000
 - 6) 10001111
 - 7) 10101010

Conversions: Examples

- Convert to Octal: AE₁₆
- Convert to Binary: 176₈
- Convert to Hexadecimal: 752₈
- Convert to Decimal: 11011001₂

Questions

