Lossless join - Execises

Example 1

Given the following schema

$$R = (A, B, C, D, E)$$

and the following set of functional dependencies

$$F = \{ C \rightarrow D, AB \rightarrow E, D \rightarrow B \}$$

say whether decomposition

$$\rho = \{AC, ADE, CDE, AD, B\}$$

has a lossless join

let's start building the table:

otal t sall	Α	В	С	D	E
AC	a1	b12	a3	b14	b15
ADE	a1	b22	b23	a4	a5
CDE	b31	b32	a3	a4	a5
AD	a1	b42	b43	a4	b45
В	b51	a2	b53	b54	b55

	А	В	С	D	Е
AC	$a_{\scriptscriptstyle 1}$	b ₁₂	a_3	$b_{14} \rightarrow a_4^{(1)}$	b ₁₅
ADE	a ₁	$b_{22} \rightarrow b_{12}^{(2)}$	b ₂₃	a ₄	a ₅
CDE	b ₃₁	$b_{32} \rightarrow b_{12}^{(2)}$	a_3	a ₄	a ₅
AD	$a_{\scriptscriptstyle 1}$	$b_{42} \rightarrow b_{12}^{(2)}$	b ₄₃	a ₄	b ₄₅
В	b ₅₁	a ₂	b ₅₃	b ₅₄	b ₅₅

 $F = \{C \rightarrow D, \\ AB \rightarrow E, \\ D \rightarrow B \}$

 $C \rightarrow D$: the first and third rows coincide on the attribute $C=a_3$, so we change b_{14} into a_4 so that the functional dependency is satisfied (if the rows are equal on C, they must be equal on D)

 $AB \rightarrow E$: the functional dependency is already satisfied, as there are not (yet) tuples equal on AB and different on E

 $D \rightarrow B$: in the first four lines $D=a_4$, so we change b_{22} into b_{12} , b_{32} into b_{12} , b_{42} into b_{12} (we could choose different b's, as long as we made them all the same)

we have completed the first execution of the for and the table <u>has been modified</u>, so we iterate the for another time

	А	В	С	D	Е
AC	a1	b12	a3	a4	b15→a5
ADE	a1	b12	b23	a4	a5
CDE	b31	b12	a3	a4	a5
AD	a1	b12	b43	a4	b45→a5
В	b51	a2	b53	b54	b55

F = {C→D, AB→E, D→B }

 $C \rightarrow D$: the dependency is already satisfied

AB \rightarrow E: the first, second and fourth rows coincide on the attributes AB = <a1, b12>, so we change b15 into a5 and b45 into a5, so that the functional dependency is satisfied (if the rows are equal on AB, they must be equal on E)

 $D \rightarrow B$: the functional dependency is already satisfied

we have completed the first execution of the for and the table <u>has been modified</u>, so we iterate the for another time

	А	В	С	D	Е
AC	a1	b12	a3	a4	a5
ADE	a1	b12	b23	a4	a5
CDE	b31	b12	a3	a4	a5
AD	a1	b12	b43	a4	a5
В	b51	a2	b53	b54	b55

 $C \rightarrow D$: no changes are necessary

 $AB \rightarrow E$: no changes are necessary

 $D \rightarrow B$: no changes are necessary

the table did not change, so the algorithm **ends**

since there is no row with all a's, the join <u>IS NOT</u> lossless.

Example 2

 Given the relation scheme R = ABCDEHI and the set of functional dependencies:

$$F = \{A \rightarrow B, B \rightarrow AE, DI \rightarrow B, D \rightarrow HI, HI \rightarrow C, C \rightarrow A\}$$

- say whether decomposition:
- ρ = { ACD, BDEH, CHI} has a lossless join

$F = \{ A \rightarrow B, B \rightarrow AE, DI \rightarrow B, D \rightarrow HI, HI \rightarrow C, C \rightarrow A \}$

	A	В	С	D	E	Н	I
ACD	a1	b12	a3	a4	b15	b16	b17
BDEH	b21	a2	b23	a4	a5	a6	b27
WHO	b31	b32	a3	b34	b35	a6	a7

$F = {$	$A \rightarrow B$	$B \rightarrow AE$	$DI \rightarrow B$	$D \rightarrow HI$, $HI \rightarrow C$,	$C \rightarrow A$
- (,	,		, —	, ,	

	Α	В	С	D	E	Н	I
ACD	a1	b12	a3	a4	b15	b16→a6 ⁽¹⁾	b17
BDEH	b21→a1 ⁽³⁾	a2	b23→a3	a4	a5	а6	b27→b17 ⁽¹⁾
WHO	b31→a1 ⁽³⁾	b32	a3	b34	b35	a6	a7
Λ . D.	the depend	longy is alrea	dy satisfia	1			

A → B: the dependency is already satisfied

 $B \rightarrow AE$: the dependency is already satisfied

 $DI \rightarrow B$: the dependency is already satisfied

D \rightarrow HI: the first and second row coincide on the attribute D=a4, so we **separately** change H and I (b16 \rightarrow a6 and b27 \rightarrow b17)

HI \rightarrow C: there are two tuples equal on HI (the first and second one, both with values <a6, b17>), so we change the value of C (b23 \rightarrow a3)

C \rightarrow A: the tuples are all equal on C, so we make them equal on A, and since we have the first one with value a, they all become a (b21 \rightarrow a1, b31 \rightarrow a1)

we have completed the first execution of the for and the table <u>has been</u> <u>modified</u>, so we iterate the for another time

$F = \{ A \rightarrow B, B \rightarrow AE, DI \rightarrow B, D \rightarrow HI, HI \rightarrow C, C \rightarrow A \}$

	Α	В	С	D	E	Н	I
ACD	a1	b12→a2 ⁽¹⁾	a3	a4	b15→a5	a6	b17
BDEH	a1	a2	a3	a4	a5	a6	b17
WHO	a1	b32→a2 ⁽¹⁾	a3	b34	b35→a5	a6	a7

A \rightarrow B: all the tuples are equal on A, so we make them equal on B, and since the second one is a, they all become a (b12 \rightarrow a2, b32 \rightarrow a2)

B → AE: all the tuples are equal on B, so they must be equal on AE; on A they are already equal, in the second tuple attribute E is a, so they all become a (b15→a5, b35→a5)

 $DI \rightarrow B$: the dependency is already satisfied

 $D \rightarrow HI$: the dependency is already satisfied

 $HI \rightarrow C$: the dependency is already satisfied

 $C \rightarrow A$: the dependency is already satisfied

we have completed the second execution of the for and the table <u>has been</u> <u>modified</u>, so we iterate the for another time

$F = \{ A \}$	$A \rightarrow B$	$B \rightarrow AE$,	$DI \rightarrow B$	$D \rightarrow HI$,	$HI \rightarrow C$	$C \rightarrow A$	
---------------	-------------------	----------------------	--------------------	----------------------	--------------------	-------------------	--

	A	В	С	D	E	Н	I
ACD	a1	a2	a3	a4	a5	a6	b17
BDEH	a1	a2	a3	a4	a5	a6	b17
WHO	a1	a2	a3	b34	a5	a6	a7

 $A \rightarrow B$: the dependency is already satisfied

 $B \rightarrow AE$: the dependency is already satisfied

 $DI \rightarrow B$: the dependency is already satisfied

 $D \rightarrow HI$: the dependency is already satisfied

HI → C: the dependency is already satisfied

 $C \rightarrow A$: the dependency is already satisfied

the table did not change, so the algorithm ends

since there is no row with all a's, the join IS NOT lossless

Example 3

given the following schema:

$$R = (A, B, C, D, E, G)$$

and the following set of functional dependencies:

$$F = \{AB \rightarrow C, DG \rightarrow B, G \rightarrow D, E \rightarrow G\}$$

say whether the decomposition:

$$\rho = \{ ABD, AEG, BCE \}$$

has a lossless join

	Α	В	С	D	E	G
ABD	a1	a2	b13	a4	b15	b16
AEG	a1	b22	b23	b24	a5	a6
ECB	b31	a2	a3	b34	a5	b36

$$F = \{ AB \rightarrow C, DG \rightarrow B, G \rightarrow D, E \rightarrow G \}$$

	Α	В	С	D	E	G
ABD	a1	a2	b13	a4	b15	b16
AEG	a1	b22	b23	b24	a5	a6
ECB	b31	a2	a3	b34	a5	b36→a6

AB → C: the dependency is already satisfied

DG → B: the dependency is already satisfied

 $G \rightarrow D$: the dependency is already satisfied

 $E \rightarrow G$: the second and third rows coincide on the attribute E=a5, so we change G (b36 \rightarrow a6)

we have completed the first execution of the for and the table <u>has been</u> <u>modified</u>, so we iterate the for another time

$$F = \{ AB \rightarrow C, DG \rightarrow B, G \rightarrow D, E \rightarrow G \}$$

	A	В	С	D	E	G
ABD	a1	a2	b13	a4	b15	b16
AEG	a1	b22	b23	b24	a5	a6
ECB	b31	a2	a3	b34→b24 ⁽¹⁾	a5	a6

 $AB \rightarrow C$: the dependency is already satisfied

DG → B: the dependency is already satisfied

 $G \rightarrow D$: the second and third rows coincide on the attribute G=a6, so we modify D (b34 \rightarrow b24)

 $E \rightarrow G$: the dependency is already satisfied

we have completed the second execution of the for and the table <u>has</u> <u>been modified</u>, so we iterate the for another time

$$F = \{ AB \rightarrow C, DG \rightarrow B, G \rightarrow D, E \rightarrow G \}$$

	Α	В	С	D	E	G
ABD	a1	a2	b13	a4	b15	b16
AEG	a1	b22→a2 ⁽¹⁾	b23	b24	a5	a6
ECB	b31	a2	a3	b24	a5	a6

AB → C: the dependency is already satisfied

DG \rightarrow B: the second and third rows are equal <b24, a6>, so we modify B (b22 \rightarrow a2)

 $G \rightarrow D$: the dependency is already satisfied

 $E \rightarrow G$: the dependency is already satisfied

we have completed the third execution of the for and the table <u>has been</u> <u>modified</u>, so we iterate the for another time

$$F = \{ AB \rightarrow C, DG \rightarrow B, G \rightarrow D, E \rightarrow G \}$$

	A	В	С	D	E	G
ABD	a1	a2	b13	a4	b15	b16
AEG	a1	a2	b23 b13 ⁽¹⁾	b24	a5	a6
ECB	b31	a2	a3	b24	a5	a6

AB \rightarrow C: the first and second row are equal on AB <a1, a2>, so we modify C (b23 \rightarrow b13)

DG → B: the dependency is already satisfied

 $G \rightarrow D$: the dependency is already satisfied

 $E \rightarrow G$: the dependency is already satisfied

we have completed the third execution of the for and the table <u>has been</u> <u>modified</u>, so we iterate the for another time

$$\textbf{F} = \{\, \textbf{A}\textbf{B} \rightarrow \textbf{C},\, \textbf{D}\textbf{G} \rightarrow \textbf{B},\, \textbf{G} \rightarrow \textbf{D},\, \textbf{E} \rightarrow \textbf{G}\,\}$$

	Α	В	С	D	E	G
ABD	a1	a2	b13	a4	b15	b16
AEG	a1	a2	b13	b24	a5	a6
ECB	b31	a2	a3	b24	a5	a6

 $AB \rightarrow C$: the dependency is already satisfied

DG → B: the dependency is already satisfied

 $G \rightarrow D$: the dependency is already satisfied

 $E \rightarrow G$: the dependency is already satisfied

the table did not change, so the algorithm **ends**

since there is no row with all a's, the join IS NOT lossless

Example 4

- given the schema:
- R = ABCDEHI
- and the set of functional dependencies:

$$F = \{ H \rightarrow B, DI \rightarrow H, D \rightarrow I, B \rightarrow E, E \rightarrow C \}$$

- say whether decomposition:
- $\rho = \{ ABDE, CDH, AHI \}$
- has a lossless join

	A	В	С	D	E	Н	I
ABDE	a1	a2	b13	a4	a5	b16	b17
CDH	b21	b22	a3	a4	b25	a6	b27
AHI	a1	b32	b33	b34	b35	a6	a7

$$F = \{ H \rightarrow B, DI \rightarrow H, D \rightarrow I, B \rightarrow E, E \rightarrow C \}$$

	A	В	С	D	E	Н	I
ABDE	a1	a2	b13	a4	a5	b16	b17→a7 ⁽³⁾
CDH	b21	b22	a3	a4	b25	a6	b27→b17 ⁽²⁾ b17→a7 ⁽³⁾
AHI	a1	b32→b22 ⁽¹⁾	b33→a3 ⁽⁵⁾	b34	b35→b25 ⁽⁴⁾	a6	a7

 $H \rightarrow B$: the second and third row are equal on H, so we modify B (b32 \rightarrow b22)

 $DI \rightarrow H$: the dependency is already satisfied

 $D \rightarrow I$: the first and second row are equal on D, so we modify I (b27 \rightarrow b17)

 $B \rightarrow I$: the second and third row are now equal (b22), so we modify I (b17⁽²⁾ \rightarrow a7; note that at the next iteration, by reapplying D \rightarrow I also on the first tuple, we can transform b17 \rightarrow a7, so we can already change all the values that are equal)

 $B \rightarrow E$: the second and third row are equal on B (b22), so we modify E (b35 \rightarrow b25)

 $E \rightarrow C$: the second and third row are equal on E (b25), so we modify C (b33 \rightarrow a3)

we have completed the first execution of the for and the table <u>has been</u> <u>modified</u>, so we iterate the for another time

$F = \{ H \rightarrow B, DI \rightarrow H, D \rightarrow I, B \rightarrow E, E \rightarrow C \}$

	Α	В	С	D	E	Н	I
ABDE	a1	a2	b13	a4	a5	b16→a6 ⁽¹⁾	a7
CDH	b21	b22	a3	a4	b25	a6	a7
AHI	a1	b22	a3	b34	b25	a6	a7

 $H \rightarrow B$: the dependency is already satisfied

DI \rightarrow H: the first and second row are equal on DI <a4, a7>; we modify H (b16 \rightarrow a6)

 $D \rightarrow I$: the dependency is already satisfied

 $B \rightarrow I$: the dependency is already satisfied

 $B \rightarrow E$: the dependency is already satisfied

 $E \rightarrow C$: the dependency is already satisfied

we have completed the second execution of the for and the table <u>has been</u> modified, so we iterate the for another time

$$F = \{ H \rightarrow B, DI \rightarrow H, D \rightarrow I, B \rightarrow E, E \rightarrow C \}$$

	Α	В	С	D	E	Н	I
ABDE	a1	a2	b13→a3 ⁽³⁾	a4	a5	a6	a7
CDH	b21	b22→a2 ⁽¹⁾	a3	a4	b25→a5 ⁽²⁾	a6	a7
AHI	a1	b22→a2 ⁽¹⁾	a3	b34	b25→a5 ⁽²⁾	a6	a7

 $H \rightarrow B$: all tuples are equal on H, so they should become equal on B (b22 \rightarrow a2)

 $DI \rightarrow H$: the dependency is already satisfied

 $D \rightarrow I$: the dependency is already satisfied

 $B \rightarrow I$: the dependency is already satisfied

 $B \rightarrow E$: all tuples are equal on B, so they should become equal on E (b25 \rightarrow a5)

 $E \rightarrow C$: all tuples are equal on E, so they should become equal on C (b13 \rightarrow a3)

we have completed the third for iteration and the table <u>has been modified</u>, so we should continue but ...

...since there is a row with all a's (the first one), we can stop and the join <u>IS</u> lossless

Older example

let's reconsider the schema:

R = (Matriculation, Province, Municipality)

with the set of functional dependencies:

 $F = \{Matriculation \rightarrow Province, Town \rightarrow Province\}$

the schema is not in 3NF due to the presence in F^+ of the partial dependencies $Matriculation \rightarrow Province$ and $Town \rightarrow Province$, as the key is (Matriculation, Town)

let us reconsider the decomposition:

R1 = (Matriculation, Province) with $Matriculation \rightarrow Province$ and

R2 = (Province, Town) with $Town \rightarrow Province$.

we remember that the schema, **while preserving all dependencies in** *F***,** is not satisfactory

Older example

let us consider the **legal instance** of *R*:

R	Matriculation	Province	Town
	501	Rome	Tivoli
	502	Rome	Mandela

the two facts (501, Rome, Tivoli) and (501, Rome, Mandela) are true, and **no other**

based on the given decomposition, this instance decomposes into:

R1

Matriculation	Province
501	Rome
502	Rome

R2

Province	Town
Rome	Tivoli
Rome	Mandela

Remember our example

•if we join the two legal instances resulting from the decomposition we get:

R	Matriculation	Town	Province		
	501	Rome	Tivoli	-	
	502	Rome	Mandela		
	501	Rome	Mandela	 	tuples unrelated to the reality of
	502	Rome	Tivoli		interest SO
					loss of information

Let's check

•we rename the attributes A = Matriculation, B = Town, C = Province and we consider the schema R=ABC with the dependencies $F=\{A\rightarrow C, B\rightarrow C\}$ •we check if the decomposition $\rho = \{AC, BC\}$ has a lossless join

	Α	В	С
AC	a1	b12	a3
ВС	b21	a2	a3

 $\cdot A \rightarrow C$: the dependency is already satisfied

•B → C: the dependency is already satisfied

•in practice, the table is never modified and does not have a row with all a, so we obtain the same result that we verified empirically, that is, the decomposition does not have a lossless join