everything is included Midterm exam: in-class on March 26 up to and including ·N() alternative exam next week; the material brom exam week is not included) · NO one can take exam before the class does · if you have exceptional circumstances (e.g. medical) then with 5° approval we can drop your exam altograther · il you have another class at the · if it's the middle of the night for you, you may start the exam "at first light" Same time, please ask that instructor to allow you to take exam live _. contact Jeremy ASAP (if not, then you may start the 18.06 exam do not access Convos/Gradescope/Piazza as soon as your other class ends, if your between the class exam stort time and your exams stort time (I user access logs) present in that class all along)

mxn matrix A > A is full now nonk if n=m, i.e. C(A)=p m ~~~ Av=b has ≥1 solution L. A is full column rank if r=n, i.e. N(A)=0 ms Av=b has <1 solution if Air square, i.e. m=n, when n=n we say that A is full mank Av=b has exactly 1 solution faalls
That solution is V= A'.b if A is not full mank ~>> < n privats ~>> its (R)REF-S A is invertible square A is not invertible (=> A is singular

the n columns of A are linear independent, and a basis

(-) $v \cdot w = v^T w = 0$ VLW Perpendicularity: vectors in R number 1×1 matrix (Onthogonality) Pythagoras: $\|v+w\|^2 = \|v\|^2 + \|w\|^2$ if $v \perp w$, where $\|v\|^2 = v \cdot v$ Det: two subspaces V, W = R are orthogonal if vIw for any weW (1) $C(A) \perp N(A^T) \subset \mathbb{R}^m$ V \(\text{W if any} \)

vector in \(V \) is perpendicular to any vector in \(W \)

V \(\text{W} \) \(\text{V} \)

V \(\text{W} \) VIW if any vector in any vector in any basis of W basis of V is perpendicular to any vector in any basis of W A is a mxn matrix

of A is on mxn matrix, why is $C(A) \perp N(A^T)$? proof: b & C(A), Z & N(AT); we need to show that b] Z 2 >=0 b=A.v for some v ATZ=0 ZTAV=0 (2TA=0) Qv=0 (true) if V,W C R are orthogonal, then $\dim(V) + \dim(W) \leq n$ Del: y VIW and dim (v) + dim(W)= n why? if dim(v)+dim(w)>n, there two subspaces would intersect in a non-zero vector a +0 then V, W one called orthogonal complements a e V and a e W => a 1 a => ||a|| = 0 => a = 0

Thm: if V, W one orthogonal complements, then W = V := { veR such that v I V}

(Obs: any salespece V has a unique orthogonal complement) V=W:= { weR'}

st.ww. The: for any matrix A, C(A) and N(AT) one orthogonal complements N(A) and C(AT) $C(A^{T}) = a \text{ basis given by } v_1 = \begin{bmatrix} 1 \\ 0 \\ 3 \\ -1 \end{bmatrix} \quad v_2 = \begin{bmatrix} 0 \\ 1 \\ -2 \\ 1 \end{bmatrix}$ $A = \begin{bmatrix} \Box & 0 & 3 & -1 \\ 0 & \Box & -2 & 1 \end{bmatrix}$

$$N(A) = \begin{cases} x & \text{pivot von} \\ y & \text{s.t.} \end{cases} \begin{cases} 1 & \text{o} & 3 & -1 \\ 0 & \text{II} & -2 & 1 \end{cases} \begin{cases} x & \text{given by} \\ y & \text{extons who have} \end{cases} \begin{cases} x = -3z + t \\ y = 2z - t \end{cases}$$

$$1 \text{ for one of the free voriables, } O \text{ for all the atten free} \end{cases} \begin{cases} x = -3z + t \\ x = 2z - t \end{cases}$$

$$1 \text{ voriables, and the pivot voriables determined by } \begin{cases} x & \text{one complements} \end{cases} \begin{cases} x = -3z + t \end{cases}$$

$$2 + 2 = 4 = x \cdot C(A^T) \text{ and } N(A) \end{cases} \begin{cases} x = -3z + t \end{cases}$$

$$x = -3z + t$$

$$x =$$

Why are orthogonal complements V, W important? dim V+ din W=17 . if V, W are just complementary subspaces of R" . $\bigvee \cap W = 0$ any vector $a \in \mathbb{R}^n$ can be uniquely witten as a = v + w for some $v \in V$, $w \in W$ · if V, W are orthogonal complements, the v and w from here are the projections of a onto the two subspaces: a=v+w where v= projva } learn about time