Lecture No 3

4.1 ANALYSIS OF FUNCTIONS I: INCREASE, DECREASE, AND CONCAVITY

■ INCREASING AND DECREASING FUNCTIONS

► Figure 4.1.1

The following definition, which is illustrated in Figure 4.1.2, expresses these intuitive ideas precisely.

- **4.1.1 DEFINITION** Let f be defined on an interval, and let x_1 and x_2 denote points in that interval.
- (a) f is *increasing* on the interval if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$.
- (b) f is *decreasing* on the interval if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$.
- (c) f is *constant* on the interval if $f(x_1) = f(x_2)$ for all points x_1 and x_2 .

4.1.2 THEOREM Let f be a function that is continuous on a closed interval [a, b] and differentiable on the open interval (a, b).

- (a) If f'(x) > 0 for every value of x in (a, b), then f is increasing on [a, b].
- (b) If f'(x) < 0 for every value of x in (a, b), then f is decreasing on [a, b].
- (c) If f'(x) = 0 for every value of x in (a, b), then f is constant on [a, b].

Example 1 Find the intervals on which $f(x) = x^2 - 4x + 3$ is increasing and the intervals on which it is decreasing.

► Figure 4.1.4

Example 2 Find the intervals on which $f(x) = x^3$ is increasing and the intervals on which it is decreasing.

► Figure 4.1.5

► Example 3

- (a) Use the graph of $f(x) = 3x^4 + 4x^3 12x^2 + 2$ in Figuabout the intervals on which f is increasing or decreasing
- (b) Use Theorem 4.1.2 to determine whether your conjectur

$$f(x) = 3x^4 + 4x^3 - 12x^2 + 2$$

➤ Figure 4.1.6

CONCAVITY

4.1.3 DEFINITION If f is differentiable on an open interval, then f is said to be *concave up* on the open interval if f' is increasing on that interval, and f is said to be *concave down* on the open interval if f' is decreasing on that interval.

- **4.1.4 THEOREM** Let f be twice differentiable on an open interval.
- (a) If f''(x) > 0 for every value of x in the open interval, then f is concave up on that interval.
- (b) If f''(x) < 0 for every value of x in the open interval, then f is concave down on that interval.

▶ **Example 4** Figure 4.1.4 suggests that the function $f(x) = x^2 - 4x + 3$ is concave up on the interval $(-\infty, +\infty)$. This is consistent with Theorem 4.1.4, since f'(x) = 2x - 4 and f''(x) = 2, so f''(x) > 0 on the interval $(-\infty, +\infty)$

■ INFLECTION POINTS

4.1.5 DEFINITION If f is continuous on an open interval containing a value x_0 , and if f changes the direction of its concavity at the point $(x_0, f(x_0))$, then we say that f has an *inflection point at* x_0 , and we call the point $(x_0, f(x_0))$ on the graph of f an *inflection point* of f (Figure 4.1.9).

Example 5 Figure 4.1.10 shows the graph of the function $f(x) = x^3 - 3x^2 + 1$. Use the first and second derivatives of f to determine the

decreasing, concave up, and concave down. Locate a

your conclusions are consistent with the graph.

$$f(x) = x^3 - 3x^2 + 1$$

Figure 4.1.10

INTERVAL	(3x)(x-2)	f'(x)	CONCLUSION
<i>x</i> < 0	(-)(-)	+	f is increasing on $(-\infty, 0]$
0 < x < 2	(+)(-)	_	f is decreasing on [0, 2]
<i>x</i> > 2	(+)(+)	+	f is increasing on $[2, +\infty)$

INTERVAL	6(x-1)	f''(x)	CONCLUSION
x < 1	(-)	-	f is concave down on $(-\infty, 1)$
x > 1	(+)	+	f is concave up on $(1, +\infty)$

Example 6 Figure 4.1.11 suggests that the function $f(x) = xe^{-x}$ has an inflection point but its exact location is not evident from the graph in this figure. Use the first and second derivatives of f to determine the intervals on which f is increasing, decreasing, concave up, and concave down. Locate all inflection points.

INTERVAL $(1-x)(e^{-x})$ f'(x) CONCLUSION $x < 1 \qquad (+)(+) \qquad + \qquad f \text{ is increasing on } (-\infty, 1]$ $x > 1 \qquad (-)(+) \qquad - \qquad f \text{ is decreasing on } [1, +\infty)$

INTERVAL	$(x-2)(e^{-x})$	f''(x)	CONCLUSION
x < 2	(-)(+)	-	f is concave down on $(-\infty, 2)$
x > 2	(+)(+)	+	f is concave up on $(2, +\infty)$

Practice Questions: 4.1 Pg no 242 Qno15-30