4.2 Properties of Determinants

Theorem

If A is a square matrix, then $det(A) = det(A^T)$.

If B is the matrix that results when a single row or single column of A is multiplied by a scalar k, then det(B) = k det(A).

If *B* is the matrix that results when two rows or two columns of *A* are interchanged, then det(B) = -det(A).

If B is the matrix that results when a multiple of one row of A is added to another row or when a multiple of one column is added to another column, then det(B) = det(A).

Theorem

Let A be an $n \times n$ matrix.

- (a) If A has two identical rows or columns, then det(A) = 0.
- (b) If A has two proportional rows or columns, then det(A) = 0.
- (c) $\det(kA) = k^n \det(A)$.

Simplifying cofactor expansions

Example

Use a cofactor expansion to find the determinant of

$$A = \begin{bmatrix} 3 & 5 & -2 & 6 \\ 1 & 2 & -1 & 1 \\ 2 & 4 & 1 & 5 \\ 3 & 7 & 5 & 3 \end{bmatrix}$$

Determinants by Gaussian elimination

Example

Use a cofactor expansion to find the determinant of
$$A = \begin{bmatrix} 0 & 1 & 5 \\ 3 & -6 & 9 \\ 2 & 6 & 1 \end{bmatrix}$$

A determinant test for invertibility

Theorem

A square matrix A is invertible if and only if $det(A) \neq 0$.

Determinant of a product

Theorem

If A and B are square matrices of the same size, then

det(AB) = det(A) det(B)

Determinant of the inverse

Theorem

If A is invertible, then

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

The unifying theorem

Theorem

If A is an $n \times n$ matrix, then the followings are equivalent.

- 1. The reduced row echelon form of A is I_n .
- 2. A is expressible as a product of elementary matrices.
- 3. A is invertible.
- **4**. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 5. $A\mathbf{x} = \mathbf{b}$ is consistent for every vector \mathbf{b} in \mathbb{R}^n .
- 6. $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every vector \mathbf{b} in \mathbb{R}^n .
- 7. The column vectors of A are linearly independent.
- 8. The row vectors of A are linearly independent.
- 9. $\det(A) = \neq 0$.