$\underline{Experiment-5}$

Title: Design and develop On/Off controller using microcontroller.

Aim: To Design and develop On/Off controller using PIC.

Objectives:

> To study concept of On/Off controller.

> To study MPLAB IDE software.

> To study use of ADC to interface sensors.

Software Used: MPLAB IDE

Block Diagram:

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON
it 7	5.		S	100	20 - 25		hit (

bit 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits

00 = Fosc/2

01 = Fosc/8

10 = Fosc/32

11 = FRc (clock derived from the internal A/D module RC oscillator)

bit 5-3 CHS2:CHS0: Analog Channel Select bits

000 = channel 0, (RA0/AN0)

001 = channel 1, (RA1/AN1)

010 = channel 2, (RA2/AN2)

011 = channel 3, (RA3/AN3)

100 = channel 4, (RA5/AN4)

101 = channel 5, (RE0/AN5)(1)

110 = channel 6, (RE1/AN6)(1)

111 = channel 7, (RE2/AN7)(1)

bit 2 GO/DONE: A/D Conversion Status bit

If ADON = 1:

1 = A/D conversion in progress (setting this bit starts the A/D conversion)

0 = A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D conversion is complete)

bit 1 Unimplemented: Read as '0'

bit 0 ADON: A/D On bit

1 = A/D converter module is operating

0 = A/D converter module is shut-off and consumes no operating current

Figure: ADCON0 REGISTER

U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	-	-	-	PCFG3	PCFG2	PCFG1	PCFG0
bit 7				-			bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. 6 Most Significant bits of ADRESH are read as '0'.

o = Left justified. 6 Least Significant bits of ADRESL are read as '0'.

bit 6-4 Unimplemented: Read as '0'

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits:

PCFG3: PCFG0	AN7 ⁽¹⁾ RE2	AN6 ⁽¹⁾ RE1	AN5 ⁽¹⁾ RE0	AN4 RA5	AN3 RA3	AN2 RA2	AN1 RA1	AN0 RA0	VREF+	VREF-	CHAN/ Refs ⁽²⁾
0000	Α	Α	А	Α	Α	Α	Α	A	VDD	Vss	8/0
0001	Α	Α	Α	Α	VREF+	Α	Α	Α	RA3	Vss	7/1
0010	D	D	D	Α	Α	А	Α	Α	VDD	Vss	5/0
0011	D	D	D	Α	VREF+	Α	Α	A	RA3	Vss	4/1
0100	D	D	D	D	Α	D	Α	Α	VDD	Vss	3/0
0101	D	D	D	D	VREF+	D	Α	Α	RA3	Vss	2/1
011x	D	D	D	D	D	D	D	D	VDD	Vss	0/0
1000	Α	Α	Α	Α	VREF+	VREF-	Α	Α	RA3	RA2	6/2
1001	D	D	Α	Α	Α	Α	Α	Α	VDD	Vss	6/0
1010	D	D	Α	Α	VREF+	Α	Α	Α	RA3	Vss	5/1
1011	D	D	Α	Α	VREF+	VREF-	Α	Α	RA3	RA2	4/2
1100	D	D	D	Α	VREF+	VREF-	Α	Α	RA3	RA2	3/2
1101	D	D	D	D	VREF+	VREF-	Α	Α	RA3	RA2	2/2
1110	D	D	D	D	D	D	D	Α	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	A	RA3	RA2	1/2

A = Analog input D = Digital I/O

Procedure:

- Make necessary connections to connect LDR Sensor and LED to PIC target board.
- Switch on the power.
- Start MPLAB IDE software PC and write a program for on / off controller.
- Perform the configuration settings and build it.
- Connect the PICKit3 programmer to the Target board.
- Program the .hex file into the PIC.
- Reset the microcontroller and observe the output.

Program:

```
#define XTAL FREQ 16000000
#include <xc.h>
void ADC init(void);
unsigned int ADC READ(void);
void main(void)
unsigned int ADC result;
ADC_init();
                      //RD0 as Output PIN
TRISD0 = 0;
while(1)
ADC result=ADC READ();
if(ADC result > 500)
{
                     // LED ON
RD0 = 0:
}
RD0 = 1;
                    // LED OFF
void ADC init(void)
TRISAbits.TRISA0=1;
                             // AN0 set as analog i/p
```

```
TRISAbits.TRISA1=1;
                            // AN1 set as analog i/p
ADRESH=0;
ADRESL=0;
PIR1bits.ADIF=0;
                           //ADC flag clear
ADCON1=0X8E;
                           //MAKE AN0 as analog port
                          //Select Chanel 0, conversion clock = FOSC / 8
ADCON0=0x40;
unsigned int ADC_READ()
{
ADCON0bits.ADON=1;
                                                            //ADC ON
delay ms(2);
                                                            //2ms delay
ADCON0bits.GO=1;
                                                            //start a/d conversion
__delay_us(1);
while(PIR1bits.ADIF==0);
delay us(1);
ADCON0bits.ADON=0;
                                                            //ADC Off
PIR1bits.ADIF=0;
return (((unsigned int)ADRESH)<<8)|(ADRESL);
```

Applications: (Write applications of On/Off controller here)

Result: Design and development of On/Off controller using PIC is studied and tested successfully.

Teacher's Sign

_____*******