IN THE SPECIFICATION:

Please replace paragraph [0050] with the following.

[0050] FIG. 4 illustrates a schematic of another process of the present invention which is similar to the process of FIGs. 2 and 3. Elements common to FIGs. 2, 3 and 4 retain the same numeric designations. The only difference between the processes of FIGs. 2 and 3, and FIG. 4 is that the process of FIG. 4 employs an elevator mechanism 117 to move the adhesive reservoir 110 in an upward direction 120 to contact the lead fingers 104 rather than biasing the lead frame ribbon 100 downward to the adhesive reservoir 110. It is, of course, understood that the biasing and elevator mechanisms 116 and 117 shown in FIGS. 2, 3 and 4 are not required to bring the adhesive material 114 into contact with the lead fingers 104. Instead, the lead fingers 104 may be brought into close proximity to the adhesive reservoir 110 and additional adhesive material 114 may be delivered by a pump to the adhesive reservoir 110 to raise the level of the adhesive material 114 to contact the lead fingers 104, or to provide a moving wave or surge of adhesive material traveling across the adhesive reservoir 110.

Please replace paragraph [0058] with the following:

[0058] Furthermore, a variety of feed back and feed forward control schemes may be used to control the desired exposed surface height 134 of the exposed surface 122. One such control scheme is shown in FIG. 15. Elements common to FIG. 14 and FIG. 15 retain the same numeric designations. A height detection mechanism, shown as a light (preferably a laser) transmitter 140 and a light receiver 142, is used to determine the height of the exposed surface 122. The control signal 144 triggers the pump 132 to stop or a valve (not shown) to shut when the desired exposed surface height 134 is achieved. When a light beam (not shown) from the transmitter 140 is altered by the exposed surface 122, the receiver 142 detects the discontinuation of light transmission and generates the control signal 144. Additionally, the transmitter 140 and receiver 142 may be an ultrasonic transmitter and receiver. When an ultrasonic sound wave (not shown) from the transmitter 140 is altered by the exposed surface 122, the receiver 142 detects the

change in transit time or phase shifts of the ultrasonic sound wave and generates the control signal 144.