

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Applied Mathematics <u>Model Answer</u> Subject Code: 22210

Important Instructions to Examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answers	Marking Scheme
1.		Attempt any <u>FIVE</u> of the following:	10
1.		Attempt any <u>FIVE</u> of the following.	
	a)	If $f(x) = 3x^2 - 5x + 7$ show that $f(-1) = 3f(1)$	02
	Ans	$f\left(-1\right) = 15$	1
		f(1) = 5	
		$\therefore 3f(1) = 15$	1
		$\therefore f(-1) = 3f(1)$	
	b)	State whether the function $f(x) = 3x^4 + x^2 + 5 - 3\cos x + 2\sin^2 x$ is even or odd	02
	Ans	$f(x) = 3x^4 + x^2 + 5 - 3\cos x + 2\sin^2 x$	
		$\therefore f(-x) = 3(-x)^4 + (-x)^2 + 5 - 3\cos(-x) + 2\sin^2(-x)$	1/2
		$\therefore f(-x) = 3x^4 + x^2 + 5 - 3\cos x + 2\sin^2 x$	1/2
		$\therefore f(-x) = f(x)$	1/2
		∴ function is an even function	1/2
	c)	Find $\frac{dy}{dx}$ if $y = e^x \cdot \sin^{-1} x$	02
	Ans	$y = e^x \cdot \sin^{-1} x$	
	7 1113	$\therefore \frac{dy}{dx} = e^x \cdot \frac{1}{\sqrt{1 - x^2}} + \sin^{-1} x \cdot e^x$	1+1

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

			210
Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	c)	$\therefore \frac{dy}{dx} = e^x \left(\frac{1}{\sqrt{1 - x^2}} + \sin^{-1} x \right)$	
	d)	Evaluate $e^{\int 2\log x dx}$	02
	Ans	$e^{\int 2\log x \ dx}$	
		$=e^{2\int \log x dx}$	1/2
		$=e^{2\int \log x.1 \ dx}$	
		$=e^{2\left(\log x.x-\int x.\frac{1}{x}dx\right)}$	1/2
		$=e^{2\left(x\log x-\int 1\ dx\right)}$	1/2
		$=e^{2(x\log x-x)+c}$	1/2
		$=e^{2x(\log x-1)+c}$	
	e)	Evaluate $\int \sin^2 x dx$	02
	Ans	$\int \sin^2 x \ dx$	
		$=\frac{1}{2}\int 2\sin^2 x \ dx$	
		$= \frac{1}{2} \int 2\sin^2 x dx$ $= \frac{1}{2} \int (1 - \cos 2x) dx$	1
		$=\frac{1}{2}\left(x-\frac{\sin 2x}{2}\right)+c$	1
	f)	Find the area under the curve $y = x^2$ from $x = 0$ to $x = 3$ with $x - axis$.	02
	Ans	h	02
	7 1113	Area $A = \int_{a}^{b} y dx$	
		$=\int_{0}^{3}x^{2}dx$	1/2
		$= \left[\frac{x^3}{3}\right]_0^3$	1/2

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Applied Mathematics

Model Answer

Subject Code: 22210

Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	f)	$=\left(\frac{3^3}{3}-0\right)$	1/2
		$\begin{pmatrix} 3 \end{pmatrix}$	1/2
		=9	, -
	g)	Express $z = 1 - i$ in Polar form.	02
	Ans	z = 1 - i	
		$\therefore x = 1, y = -1$ $\therefore r = z = \sqrt{x^2 + y^2} = \sqrt{(1)^2 + (-1)^2} = \sqrt{2}$	1/2
		$\theta = 2\pi - \tan^{-1}\left(\left \frac{y}{x}\right \right) = 2\pi - \tan^{-1}\left(\left \frac{-1}{1}\right \right) = 2\pi - \tan^{-1}\left(1\right)$	
		$\theta = 2\pi - \frac{\pi}{4} = \frac{7\pi}{4}$	1/2
		$\therefore \text{ Polar form is } z = r \left(\cos \theta + i \sin \theta \right)$	
		$1 - i = \sqrt{2} \left(\cos \left(\frac{7\pi}{4} \right) + i \sin \left(\frac{7\pi}{4} \right) \right)$	1
2.		Attempt any <u>THREE</u> of the following:	12
	a)	Find $\frac{dy}{dx}$ if $x^2 + y^2 = 4xy$	04
	Ans	$x^2 + y^2 = 4xy$	
		$\therefore 2x + 2y \frac{dy}{dx} = 4\left(x \frac{dy}{dx} + y.1\right)$	2
		$\therefore 2x + 2y \frac{dy}{dx} = 4x \frac{dy}{dx} + 4y$	
		$\therefore (2y - 4x) \frac{dy}{dx} = 4y - 2x$	1
		$\therefore \frac{dy}{dx} = \frac{4y - 2x}{2y - 4x}$	1
		$\therefore \frac{dy}{dx} = \frac{2y - x}{y - 2x}$	
		$u\lambda y - 2\lambda$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

			.210
Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
2.	b)	If $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$, find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{2}$	04
	Ans	$x = a(\theta + \sin \theta) \qquad \qquad y = a(1 - \cos \theta)$	
		$\frac{dx}{d\theta} = a(1 + \cos\theta) \qquad \frac{dy}{d\theta} = a(0 + \sin\theta) = a\sin\theta$ $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a\sin\theta}{a(1 + \cos\theta)}$	1+1
		$d\theta$	1
		$\frac{dy}{dx} = \frac{\sin \theta}{1 + \cos \theta}$ at $\theta = \frac{\pi}{2}$	1
		$\therefore \frac{dy}{dx} = \frac{\sin\frac{\pi}{2}}{1 + \cos\frac{\pi}{2}} = 1$	1
	c)	Find the radius of curvature of the curve $\sqrt{x} + \sqrt{y} = 1$ at $\left(\frac{1}{4}, \frac{1}{4}\right)$	04
	Ans	$\sqrt{x} + \sqrt{y} = 1$ $\therefore \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0$	1/2
		$2\sqrt{x} 2\sqrt{y} dx$ $\therefore \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}$	1/2
		$\therefore \frac{d^2 y}{dx^2} = -\frac{\sqrt{\sqrt{x} \frac{1}{2\sqrt{y}} \frac{dy}{dx}} - \sqrt{y} \frac{1}{2\sqrt{x}}}{x}}$	1/2
		$\therefore \frac{d^2 y}{dx^2} = -\frac{\left(\frac{\sqrt{x}}{2\sqrt{y}} \cdot \frac{-\sqrt{y}}{\sqrt{x}} - \frac{\sqrt{y}}{2\sqrt{x}}\right)}{x} = -\frac{\left(\frac{-1}{2} - \frac{\sqrt{y}}{2\sqrt{x}}\right)}{x}$	1/2
		at $\left(\frac{1}{4}, \frac{1}{4}\right)$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

		<u></u>	
Q. No.	Sub Q.N.	Answers	Marking Scheme
2.	d)	$\therefore \frac{dy}{dx} = -\frac{\sqrt{\frac{1}{4}}}{\sqrt{\frac{1}{4}}} = -1$	1/2
		$\therefore \frac{d^2 y}{dx^2} = -\frac{\left(\frac{-1}{2} - \frac{\sqrt{\frac{1}{4}}}{2\sqrt{\frac{1}{4}}}\right)}{\frac{1}{4}} = 4$	1/2
		$\therefore \text{ Radius of curvature } = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}} = \frac{\left[1 + \left(-1\right)^2\right]^{\frac{3}{2}}}{4}$	1/2
		= 0.707	1/2
		Find the maximum and minimum value of $x^3 - 9x^2 + 24y$ Let $y = x^3 - 9x^2 + 24x$	04
	d) Ans	$\therefore \frac{dy}{dx} = 3x^2 - 18x + 24$	1/2
		$\therefore \frac{d^2 y}{dx^2} = 6x - 18$	1/2
		Consider $\frac{dy}{dx} = 0$	
		$3x^2 - 18x + 24 = 0$ $\therefore x = 2 \text{ or } x = 4$	1
		at $x = 2$ $\therefore \frac{d^2 y}{dx^2} = 6(2) - 18 = -6 < 0$ $\therefore y$ is maximum at $x = 2$	1/2
		$y_{\text{max}} = (2)^3 - 9(2)^2 + 24(2) = 20$	1/2
		at $x = 4$ $\therefore \frac{d^2y}{dx^2} = 6(4) - 18 = 6 > 0$ $\therefore y$ is minimum at $x = 4$	1/2
		$y_{\min} = (4)^3 - 9(4)^2 + 24(4) = 16$	1/2
		Note: If students attempted to solve the question give appropriate marks.	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Code: 22210 **Subject Name: Applied Mathematics Model Answer**

Jubj		ine. Applied Mathematics <u>Model Allswei</u> Subject code.	210
Q. No.	Sub Q.N.	Answers	Marking Scheme
3.		Attempt any <u>THREE</u> of the following:	12
	a)	Find equation of tangent and normal to the curve $2x^2 - xy + 3y^2 = 18$ at (3,1)	04
	Ans	$2x^2 - xy + 3y^2 = 18$	
		$\therefore 4x - \left(x\frac{dy}{dx} + y.1\right) + 6y\frac{dy}{dx} = 0$	1/2
		$\therefore 4x - x\frac{dy}{dx} - y + 6y\frac{dy}{dx} = 0$	
		$\therefore (6y - x) \frac{dy}{dx} = y - 4x$	
		$\therefore \frac{dy}{dx} = \frac{y - 4x}{6y - x}$	1/2
		at (3,1)	
		$\therefore \frac{dy}{dx} = \frac{1 - 4(3)}{6(1) - 3}$	
		$\therefore \frac{dy}{dx} = \frac{-11}{3}$	
		\therefore slope of tangent, $m = \frac{-11}{3}$	1/2
		Equation of tangent at $(3,1)$ is	
		$y-1=\frac{-11}{3}(x-3)$	
		$\therefore 3y - 3 = -11x + 33$	
		$\therefore 11x + 3y - 36 = 0$	1
		\therefore slope of normal, $m' = \frac{-1}{m} = \frac{3}{11}$	1/2
		Equation of normal at (3,1) is	
		$y-1=\frac{3}{11}(x-3)$	
		$\therefore 11y - 11 = 3x - 9$	
		$\therefore 3x - 11y + 2 = 0$	1

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	b)	Find $\frac{dy}{dx}$ if $y = x^x + (\sin x)^x$	04
	Ans	Let $u = x^x$	
		Taking log on both sides,	
		$\therefore \log u = \log x^x$	1/2
		$\therefore \log u = x \log x$	1/
		$\therefore \frac{1}{u} \frac{du}{dx} = x \frac{1}{x} + \log x.1$	1/2
		$\therefore \frac{1}{u} \frac{du}{dx} = 1 + \log x$	
		$\therefore \frac{du}{dx} = u \left(1 + \log x \right)$	1/2
		Let $v = (\sin x)^x$	
		taking log on both sides,	1/
		$\therefore \log v = \log \left(\sin x\right)^x$	1/2
		$\therefore \log v = x \log \sin x$	
		$\therefore \frac{1}{v} \frac{dv}{dx} = x \frac{1}{\sin x} \cdot \cos x + \log \sin x \cdot 1$	1/2
		$\therefore \frac{1}{v} \frac{dv}{dx} = x \cot x + \log \sin x$	
		$\therefore \frac{dv}{dx} = v \left(x \cot x + \log \sin x \right)$	1/2
		$\therefore \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$	
		$\therefore \frac{dy}{dx} = x^x \left(1 + \log x\right) + \left(\sin x\right)^x \left(x \cot x + \log \sin x\right)$	1
	c)	If $y = e^{3\sec x + 4\tan x}$ find $\frac{dy}{dx}$	04
	Ans	dx $y = e^{3\sec x + 4\tan x}$	
		$\therefore \frac{dy}{dx} = e^{3\sec x + 4\tan x} \left(3\sec x \cdot \tan x + 4\sec^2 x \right)$	4

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Q.	Sub	Answers	Marking
No.	Q.N.	= ==== 9.2	Scheme
3.	d)	Evaluate $\int \frac{\sec^2 x}{(1+\tan x)(3+\tan x)} dx$	04
	Ans	$\int \frac{\sec^2 x}{(1+\tan x)(3+\tan x)} dx$	
		Put $\tan x = t$	
		$\therefore \sec^2 x dx = dt$	1
		$\therefore \int \frac{1}{(1+t)(3+t)} dt$	
		$\frac{1}{(1+t)(3+t)} = \frac{A}{1+t} + \frac{B}{3+t}$	1/2
		$\therefore 1 = A(3+t) + B(1+t)$	
		$\therefore \text{Put } t = -1 , A = \frac{1}{2}$	1/2
		Put $t = -3$, $B = \frac{-1}{2}$	1/2
		$\therefore \frac{1}{(1+t)(3+t)} = \frac{\frac{1}{2}}{1+t} - \frac{\frac{1}{2}}{3+t}$	
		$\therefore \frac{1}{(1+t)(3+t)} = \frac{\frac{1}{2}}{1+t} - \frac{\frac{1}{2}}{3+t}$ $\therefore \int \frac{1}{(1+t)(3+t)} dt = \int \left(\frac{\frac{1}{2}}{1+t} - \frac{\frac{1}{2}}{3+t}\right) dt$	
		$= \frac{1}{2} \log (1+t) - \frac{1}{2} \log (3+t) + c$	1
		$= \frac{1}{2} \log (1 + \tan x) - \frac{1}{2} \log (3 + \tan x) + c$	1/2
		<u>OR</u>	
		$\int \frac{\sec^2 x}{(1+\tan x)(3+\tan x)} dx$	
		Put $\tan x = t$	
		$\therefore \sec^2 x dx = dt$	1
		$\int \frac{1}{(1+t)(3+t)} dt$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	d)	$=\int \frac{1}{t^2 + 4t + 3} dt$	
			1/2
		Third Term = $\frac{4^2}{4} = 4$	
		$= \int \frac{1}{t^2 + 4t + 4 - 4 + 3} dt$	1
		$=\int \frac{1}{\left(t+2\right)^2-1} dt$	
		$= \frac{1}{2} \log \left \frac{t + 2 - 1}{t + 2 + 1} \right + c$	1
		$= \frac{1}{2} \log \left \frac{t+1}{t+3} \right + c$	
		$= \frac{1}{2} \log \left \frac{\tan x + 1}{\tan x + 3} \right + c$	1/2
4.		Attempt any <u>THREE</u> of the following:	12
	a)	Evaluate $\int x \tan^{-1} x dx$	04
	Ans	$\int \tan^{-1} x \cdot x dx$	
		$= \tan^{-1} x \int x dx - \int \left(\int x dx \frac{d}{dx} \left(\tan^{-1} x \right) \right) dx$	1
		$= \tan^{-1} x \frac{x^2}{2} - \int \frac{x^2}{2} \frac{1}{1+x^2} dx$	1/2
		$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \frac{x^2}{1+x^2} dx$	
		$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(\frac{1 + x^2 - 1}{1 + x^2} \right) dx$	1/2
		$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(\frac{1+x^2}{1+x^2} - \frac{1}{1+x^2} \right) dx$	1/2
		$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(1 - \frac{1}{1 + x^2} \right) dx$	1/2
		$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \left(x - \tan^{-1} x \right) + c$	1

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

			2210
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	b)	Evaluate $\int \frac{dx}{4 + 5\cos x}$	04
	Ans	$\int \frac{dx}{4 + 5\cos x}$	
		Put $\tan \frac{x}{2} = t$, $dx = \frac{2dt}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$	1
		$= \int \frac{\frac{2dt}{1+t^2}}{4+5\left(\frac{1-t^2}{1+t^2}\right)}$	
		$= \int \frac{2dt}{4(1+t^2)+5(1-t^2)}$ $= 2\int \frac{dt}{4+4t^2+5-5t^2}$	1/2
		$=2\int \frac{dt}{9-t^2}$	1/2
		$=2\int \frac{dt}{\left(3\right)^2-t^2}$	
		$=2\frac{1}{2(3)}\log\left \frac{3+t}{3-t}\right +c$	1
		$= \frac{1}{3} \log \left \frac{3 + \tan \frac{x}{2}}{3 - \tan \frac{x}{2}} \right + c$	1/2
		2.2.5	04
	c)	Evaluate $\int \frac{2x^2 + 5}{(x-1)(x+2)(x+3)} dx$	
	Ans	$\int \frac{2x^2 + 5}{\left(x - 1\right)\left(x + 2\right)\left(x + 3\right)} dx$	
		Consider $\frac{2x^2 + 5}{(x-1)(x+2)(x+3)} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{x+3}$	1/2
		$\therefore 2x^2 + 5 = A(x+2)(x+3) + B(x-1)(x+3) + C(x-1)(x+2)$ Put $x = 1$	
		$\therefore 7 = 12A$	

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

	Sub		Morking
Q. No.	Q.N.	Answers	Marking Scheme
4.	c)	$\therefore A = \frac{7}{12}$	1/2
		Put $x = -2$ $\Rightarrow 13 = -3B$ $\therefore B = \frac{-13}{3}$	1/2
		Put $x = -3$ $\Rightarrow 23 = 4C$ $\therefore C = \frac{23}{4}$	1/2
		$\therefore \int \frac{2x^2 + 5}{(x - 1)(x + 2)(x + 3)} dx = \int \left(\frac{\frac{7}{12}}{x - 1} + \frac{\frac{-13}{3}}{x + 2} + \frac{\frac{23}{4}}{x + 3}\right) dx$	1/2
		$= \frac{7}{12} \log(x-1) - \frac{13}{3} \log(x+2) + \frac{23}{4} \log(x+3) + c$	1/2+1/2+1/2
	d)	Evaluate $\int \frac{1}{\sqrt{16-6x-x^2}} dx$	04
	Ans	$\int \frac{1}{\sqrt{16 - 6x - x^2}} dx$ Third Term = $\frac{(6)^2}{4} = 9$	1
		Initial Term = $\frac{x}{4} = 9$ = $\int \frac{1}{\sqrt{16 + 9 - 9 - 6x - x^2}} dx$	1
		$= \int \frac{1}{\sqrt{25 - (9 + 6x + x^2)}} dx$	1
		$= \int \frac{1}{\sqrt{(5)^2 - (x+3)^2}} dx$	1
		$=\sin^{-1}\left(\frac{x+3}{5}\right)+c$	1
		<u>OR</u>	
		$\int \frac{1}{\sqrt{16-6x-x^2}} dx$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	d)	$=\int \frac{1}{\sqrt{-\left(x^2+6x-16\right)}} dx$	1/2
		Third Term = $\frac{(6)^2}{4} = 9$	1
		$= \int \frac{1}{\sqrt{-\left(x^2 + 6x + 9 - 9 - 16\right)}} dx$	1/2
		$= \int \frac{1}{\sqrt{-\left(x^2 + 6x + 9 - 25\right)}} dx$	
		$= \int \frac{1}{\sqrt{-\left[\left(x+3\right)^2 - \left(5\right)^2\right]}} dx$	
		$= \int \frac{1}{\sqrt{(5)^2 - (x+3)^2}} dx$	1
		$=\sin^{-1}\left(\frac{x+3}{5}\right)+c$	1
	e)	Evaluate $\int_{0}^{\pi/2} \frac{dx}{1 + \cot x}$	04
	Ans	$\int_{0}^{\pi/2} \frac{dx}{1+\cot x}$	
		$I = \int_{0}^{\pi/2} \frac{1}{1 + \frac{\cos x}{\sin x}} dx$	1/2
		$\therefore I = \int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx (1)$	
		$\therefore I = \int_0^{\pi/2} \frac{\sin\left(\pi/2 - x\right)}{\sin\left(\pi/2 - x\right) + \cos\left(\pi/2 - x\right)} dx$	1
		$\therefore I = \int_{0}^{\pi/2} \frac{\cos x}{\cos x + \sin x} dx \qquad (2)$	
		add (1) and (2)	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Applied Mathematics

Model Answer

Subject Code: 22210

	Sub		Morking
Q. No.	Q.N.	Answers	Marking Scheme
4.		$I + I = \int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx + \int_{0}^{\pi/2} \frac{\cos x}{\cos x + \sin x} dx$ $2I = \int_{0}^{\pi/2} \frac{\sin x + \cos x}{\sin x + \cos x} dx$ $2I = \int_{0}^{\pi/2} 1 dx$ $2I = \left[x\right]_{0}^{\pi/2}$ $2I = \left[x\right]_{0}^{\pi/2}$ $2I = \frac{\pi}{2} - 0$ $I = \frac{\pi}{4}$	1
		$\cdots 1 - \frac{1}{4}$	
5.		Attempt any <u>TWO</u> of the following:	04
	a)	Find the area between the curves $y = x$ and $y = x^2$	
	Ans	y = x	
		$y = x^2$ $\therefore x - x^2 = 0$	
		$\therefore x - x^2 = 0$ $\therefore x(1 - x) = 0$	2
		$\therefore x = 0,1$	1
		$\therefore A = \int_{0}^{1} \left(x - x^{2} \right)$	
		$A = \left(\frac{x^2}{2} - \frac{x^3}{3}\right)_0^1$	1
		$A = \left(\frac{1}{2} - \frac{1}{3}\right)$	1
		$\therefore A = \frac{1}{6} \text{or} 0.167$	1
5.		Attached the fellowing	12
	1 > 2 >	Attempt the following	12
	b)(i)	Find the order and degree of the differential equation	
	1		Dago 12 of 10

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

	Sub		Marking
Q. No.	Q.N.	Answers	Scheme
5.	b)	$\frac{d^2y}{dx^2} = \sqrt{1 + \frac{dy}{dx}}$	03
	(i)	$\frac{d^2y}{dx^2} = \sqrt{1 + \frac{dy}{dx}}$	
	Ans	Squaring both sides, we get	
		$\left(\frac{d^2y}{dx^2}\right)^2 = 1 + \frac{dy}{dx}$	1
		$\therefore \text{Order} = 2$	1
		Degree = 2	1
	b)(ii)	Solve	03
		$\frac{dy}{dx} + y \cot x = \cos ecx$	
	Ans	$\frac{dy}{dx} + y \cot x = \cos ecx$	
		Comparing with $\frac{dy}{dx} + Py = Q$	
		$P = \cot x$, $Q = \cos ecx$	
		Integrating factor $IF = e^{\int \cot x dx} = e^{\log(\sin x)} = \sin x$	1
		$y.IF = \int Q.IFdx + c$	
		$\therefore y \sin x = \int \cos ecx \cdot \sin x dx$	1
		$\therefore y \sin x = \int 1 dx$	1/2
		$\therefore y \sin x = x + c$	1/2
	c)	If $L\frac{di}{dt} = 30.\sin(10\pi t)$, find i in terms of t, given that $L = 2$ and $i = 0$ at $t = 0$	06
	Ans	$Ldi = 30\sin(10\pi t)dt$	
		$\int Ldi = \int 30\sin(10\pi t)dt$	1
		$Li = 30 \left(\frac{-\cos(10\pi t)}{10\pi} \right) + c$	2
	<u> </u>		1

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

			.210
Q. No.	Sub Q.N.	Answers	Marking Scheme
5.	c)	$Li = \frac{-3\cos(10\pi t)}{\pi} + c$ at $t = 0, i = 0$ $L(0) = \frac{-3\cos(0)}{\pi} + c$ $0 = \frac{-3}{\pi} + c$ $\therefore c = \frac{3}{\pi}$ $\therefore Li = \frac{-3\cos(10\pi t)}{\pi} + \frac{3}{\pi}$ at $L = 2$	1/2
		$\therefore 2i = \frac{-3\cos(10\pi t)}{\pi} + \frac{3}{\pi}$ $\therefore i = \frac{3}{2\pi} \left(-\cos(10\pi t) + 1 \right)$	1/2
6.	a)	Attempt any <u>TWO</u> of the following: Attempt the following	04
	(i) Ans	Express $\frac{2-\sqrt{3}i}{1+i}$ in $x+iy$ form. $\frac{2-\sqrt{3}i}{1+i}$	03
		$= \frac{2 - \sqrt{3}i}{1 + i} \times \frac{1 - i}{1 - i}$ $= \frac{2 - 2i - \sqrt{3}i + \sqrt{3}i^{2}}{1 - i^{2}}$ $= \frac{2 - \left(2 + \sqrt{3}\right)i + \sqrt{3}\left(-1\right)}{1 - i^{2}}$	1 1/2
		$= \frac{1 - i^{2}}{1 - i^{2}}$ $= \frac{2 - (2 + \sqrt{3})i - \sqrt{3}}{1 + 1}$	1/2

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

• • • • • • • • • • • • • • • • • • • •		Model Allswei	2210
Q. No.	Sub Q.N.	Answers	Marking Scheme
6.	a)(i)	$=\frac{\left(2-\sqrt{3}\right)-\left(2+\sqrt{3}\right)i}{2}$	
		$= \frac{(2-\sqrt{3})-(2+\sqrt{3})i}{2}$ $= \frac{(2-\sqrt{3})}{2} - \frac{(2+\sqrt{3})i}{2}$	1
	a)(ii)	Find L $\left\{e^{-4t}t^2\right\}$	03
	Ans	$L\left\{e^{-4t}t^2\right\}$	1
		$L\left\{e^{-4t}t^2\right\}$ $L\left\{t^2\right\} = \frac{2!}{s^3} = \frac{2}{s^3}$ $\therefore L\left\{e^{-4t}t^2\right\} = \frac{2}{\left(s+4\right)^3}$	
		$\therefore L\left\{e^{-4t}t^2\right\} = \frac{2}{\left(s+4\right)^3}$	2
	b)	Find $L^{-1} \left\{ \frac{2s^2 - 4}{(s+1)(s-2)(s-3)} \right\}$	04
	Ans	$L^{-1}\left\{\frac{2s^2-4}{(s+1)(s-2)(s-3)}\right\}$	
		Let	
		$\frac{2s^2 - 4}{(s+1)(s-2)(s-3)} = \frac{A}{s+1} + \frac{B}{s-2} + \frac{C}{s-3}$	
		$2s^{2}-4=(s-2)(s-3)A+(s+1)(s-3)B+(s+1)(s-2)C$	
		Put $s = -1$	
		$\therefore -2 = 12A$	
		$\therefore A = -\frac{1}{6}$	1
		Put $s = 2$	
		4 = -3B	
		$\therefore B = -\frac{4}{3}$	1
		Put $s = 3$	
		14 = 4C	

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Applied Mathematics

Model Answer

Subject Code: 22210

Q. No.	Sub Q.N.	Answers	Marking Scheme
6.		$\therefore C = \frac{7}{2}$ $\therefore \frac{2s^2 - 4}{(s+1)(s-2)(s-3)} = \frac{-\frac{1}{6}}{s+1} + \frac{-\frac{4}{3}}{s-2} + \frac{\frac{7}{2}}{s-3}$ $\therefore L^{-1} \left\{ \frac{2s^2 - 4}{(s+1)(s-2)(s-3)} \right\} = -\frac{1}{6}L^{-1} \left\{ \frac{1}{s+1} \right\} - \frac{4}{3}L^{-1} \left\{ \frac{1}{s-2} \right\} + \frac{7}{2}L^{-1} \left\{ \frac{1}{s-3} \right\}$ $= -\frac{1}{6}e^{-t} - \frac{4}{3}e^{2t} + \frac{7}{2}e^{3t}$	1+1+1
		6 3 2	
	c)	Solve using Laplace transform $\frac{dx}{dt} + 2x = e^{-t}, \text{ given that } x(0) = 2$	06
	Ans	$\frac{dx}{dt} + 2x = e^{-t}$ $\therefore L\left\{\frac{dx}{dt} + 2x\right\} = L\left\{e^{-t}\right\}$	
		$\therefore sL(x) - x(0) + 2L(x) = \frac{1}{s+1}$ $\therefore sL(x) - 2 + 2L(x) = \frac{1}{s+1}$	1
		$\therefore (s+2)L(x)-2=\frac{1}{s+1}$	
		$\therefore (s+2)L(x) = \frac{1}{s+1} + 2$ $\therefore (s+2)L(x) = \frac{2s+3}{s+1}$	
		$\therefore L(x) = \frac{2s+3}{(s+1)(s+2)}$	1
		$\therefore x = L^{-1} \left\{ \frac{2s+3}{(s+1)(s+2)} \right\}$	1/2
		$\therefore \frac{2s+3}{(s+1)(s+2)} = \frac{A}{s+1} + \frac{B}{s+2}$ $\therefore 2s+3 = A(s+2) + B(s+1)$	1/2

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
6.	c)	Put $s = -1$	
		$\therefore A = 1$	1/2
		Put $s = -2$	1/2
		$\therefore B = 1$	72
		$\therefore \frac{2s+3}{(s+1)(s+2)} = \frac{1}{s+1} + \frac{1}{s+2}$	
		$\therefore L^{-1}\left\{\frac{2s+3}{(s+1)(s+2)}\right\} = L^{-1}\left\{\frac{1}{s+1} + \frac{1}{s+2}\right\}$	
		$= L^{-1} \left\{ \frac{1}{s+1} \right\} + L^{-1} \left\{ \frac{1}{s+2} \right\}$	
		$=e^{-t}+e^{-2t}$	1+1
		<u>Important Note</u>	
		In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.	