Sensorimotor Learning (Spring'23)

Pulkit Agrawal

Lecture 3: Bandits and Policy Gradients

Feb 14 2023

Course Logistics

Updated Assignment Release Schedule

Signup for Project Presentations

Weekly Status Report

Everyone getting Piazza E-mails?

From Course Status Reports

"I'm a bit confused about the term "model-based RL", I thought RL methods are by its nature model-free, or maybe it's not?"

"I am also unsure about the differences between RL, intuitive models and physics models."

"I thought the question about whether the objective function for RL vs SL was harder .. was kind of confusing, because usually discussing "hardness" in algorithms / optimization is asking whether one problem can reduce to the other problem."

Lecture Outline

Wrap up Bandits / Contextual Bandits

Understand Policy Gradients

Credit Assignment Problem

Variance Reduction Techniques

- Causality
- Discounting
- Baselines

CONTINUING

MULTI ARM BANDITS

Which arm to choose?

$$a_2, a_3, a_3, a_1, a_3, a_2, a_1, a_1, a_3 \dots$$
Explore phase Exploit phase $r(a_2), r(a_3), r(a_3), r(a_1), r(a_3)$ Exploit phase $r(a_2), r(a_3), r(a_3), r(a_1), r(a_3)$ Exploit phase

$$\sum_{t=1}^{T} r(a_i^t) \ i \in [1,N]$$

$$t=1$$
(total reward)

$$\mu_i = \frac{1}{k_i} \sum_{k_i} r(a_i)$$

(mean reward of action i)

time K
One Strategy: Explore-First

Sample each arm equally $\approx \frac{K}{N}$

After K rounds, choose arm with highest average reward μ_i

Only take the highest rewarding action for remaining T-K rounds

Is this the best we can do?

(slide co-designed with Cathy Wu)

$$a_2, a_3, a_3, a_1, a_3, a_2, a_1, a_1, a_3 \dots$$

$$r(a_2), r(a_3), r(a_3), r(a_1), r(a_3), r(a_2), r(a_2), r(a_1), r(a_1), r(a_3) \dots$$

(total reward of selected actions)

$$R = \sum_{t=1}^{T} r(a_i^t)$$

(total reward of best actions)

$$R = \sum_{t=1}^{I} r(a_i^t) \qquad R^* = \sum_{t=1}^{I} r(a^*) \quad \text{oracle}$$

time T

Why is this called oracle?

Assume $r \in [0, 1]$

regret
$$||R^* - R||$$

As in life, goal is to minimize regret

How bad can the agent possibly do? (i.e., what is the worst possible regret?) A. log(T) $(\mathbf{B}_2)_{\mathbf{T}/2}(a_3), r(a_3), r(a_1), r(a_3), r(a_2), r(a_1), r(a_1), r(a_3) \dots$ D. None of the above Poll time!

$$a_2, a_3, a_3, a_1, a_3, a_2, a_1, a_1, a_3 \dots$$

$$r(a_2), r(a_3), r(a_3), r(a_1), r(a_3), r(a_2), r(a_2), r(a_1), r(a_1), r(a_3) \dots$$

(total reward of selected actions)

$$R = \sum_{t=1}^{T} r(a_i^t)$$

(total reward of best actions)

$$R = \sum_{t=1}^{I} r(a_i^t) \qquad \qquad R^* = \sum_{t=1}^{I} r(a^*) \quad \text{oracle}$$

time T

Why is this called oracle?

regret
$$\|R^* - R\|$$

As in life, goal is to minimize regret

Assume $r \in [0, 1]$

Worst that we can do: T

Explore-First: T^{2/3} x O(N log T)^{1/3}

$$a_2, a_3, a_3, a_1, a_3, a_2, a_1, a_1, a_3 \dots$$
 $r(a_2), r(a_3), r(a_3), r(a_1), r(a_3), r(a_2), r(a_1), r(a_1), r(a_3) \dots$
Does there exist an optimal algorithm?

$$R = \sum_{i=1}^{T} r(a_i^t)$$
 time T $R^* = \sum_{i=1}^{T} r(a_i^{t^*})$ oracle

regret
$$\|R^*-R\|$$

Using a sub-optimal algorithm decreases profit

$$a_2, a_3, a_3, a_1, a_3, a_2, a_1, a_1, a_3 \dots$$
 $r(a_2), r(a_3), r(a_3), r(a_1), r(a_3), r(a_2), r(a_1), r(a_1), r(a_3) \dots$
Does there exist an optimal algorithm?

Upper Confidence Bound (UCB) Algorithm

regret
$$||R^*-R||$$

Whats the notion of optimality?

Does there exist an optimal algorithm?

Upper Confidence Bound (UCB) Algorithm

regret
$$||R^* - R||$$

Explore-First

Non-adaptive exploration

Explore + exploit separately

VS

Adaptive exploration

Explore + Exploit <u>simultaneously</u>

Upper Confidence Bound (UCB) Algorithm

Initial confidence intervals:

$$a_2$$
 a_3

$$\mu_i = \frac{1}{k_i} \sum_{k_i} r(a_i)$$

(mean reward of action i)

Exploitation

Optimism in face of uncertainty

 $a_{t+1} = \arg\max_{i} \mu_i(t)$

Exploration bonus for rare actions (optimism)

time T

 $4 \log t$

(slide co-designed with Cathy Wu)

How good is UCB?

$$a_2, a_3, a_3, a_1, a_3, a_2, a_1, a_1, a_3 \dots$$

$$r(a_2), r(a_3), r(a_3), r(a_1), r(a_3), r(a_2), r(a_2), r(a_1), r(a_1), r(a_3) \dots$$

(total reward of selected actions)

$$R = \sum_{t=1}^{T} r(a_i^t)$$

(total reward of best actions)

$$R = \sum_{t=1}^{I} r(a_i^t)$$

$$R^* = \sum_{t=1}^{I} r(a^*)$$
 oracle

Assume $r \in [0, 1]$

Worst that we can do: T

Explore-First: T^{2/3} x (N log T)^{1/3}

UCB: (NT log T)^{1/2}

regret $||R^* - R||$

As in life, goal is to minimize regret

Optimal! (up to log factors)

time T

Assume Payoffs are Sub-Gaussian

Upper Confidence Bound (UCB) Algorithm

We want

 $\underset{:}{\operatorname{arg max}} \mu_i \qquad \underset{:}{\operatorname{arg max}} \hat{\mu_i}$

We have

Construct

 $arg max \hat{\mu}'_i$

Principle of optimism: find $\hat{\mu}'_i \geq \mu_i$

If $r(a_i)$ are 1-subgaussian and if

Empirical estimate of μ_i (unknown)

Initially (with few samples) This estimate is going to be bad

$$p\left(\mu_{i} \geq \hat{\mu}_{i}'\right) \leq \delta$$

$$\hat{\mu}_{i}': \hat{\mu}_{i} + \sqrt{\frac{2\log\frac{1}{\delta}}{k_{i}}} \qquad \text{Is true!}$$

Upper Confidence Bound (UCB) Algorithm

$$\arg\max_{i} \mu_{i}(t) + \sqrt{\frac{4\log t}{k_{i}}} \qquad \mu_{i} = \frac{1}{k_{i}} \sum_{k_{i}} r(a_{i})$$

Upper Bound on average number of sub-optimal actions

$$\frac{16|A|\log T}{\Delta^2} + O(1)$$

$$\Delta = \mu_{best} - \mu_{second_best}$$

|A|: number of actions

(female, 20s, computer-savvy)

(male, 30s, computer-savvy)

How to use these "features" in decision making?

Contextual Bandits

~3

(female, 20s, computer-savvy)

 \mathcal{X}_2 (male, 30s, computer-savvy)

Example:
Podcast
recommendations

(female, 20s, computer-savvy)

(male, 30s, computer-savvy)

Example types of contexts

- User demographics
 - Discrete vs continuous

Switzerland

VS

(lat, long) coordinates

(slide co-designed with Cathy Wu)

 λ_3

(female, 20s, computer-savvy)

(male, 30s, computer-savvy)

Example types of contexts

- User demographics
- Time of day/year
- User mental state

Happy 2023! New years resolutions?

(male, 30s, computer-savvy)

Naïve approach:

independent bandit problems (one for each context)

for every user solve a separate bandit problem

Challenge:

may not handle continuous contexts well

(male, 30s, computer-savvy)

Better than context-free UCB: LinUCB

Assume:

expected rewards are linear in context

$$\mu(a \mid s) = x_a^T \theta_a$$

Optimal! (up to log factors)

Dis-Joint LinUCB

Ridge Regression

$$\theta_t^a = \left(X_{0:t}^T X_{0:t} + \lambda I \right)^{-1} X_{0:t}^T R_{0:t}^a$$

$$A_a \qquad b_a$$

Estimate reward for each action

$$\hat{r}_t^a = x_t \theta_t^a$$

Choose the best one (or sample)

$$a_t \leftarrow \max_{a} \hat{r}_t^a$$

All time steps until t

$$\hat{R}^{a}_{0:t} = X_{0:t}\theta^{a}$$

Solve for the parameters

$$\min_{\theta_a} \|R_{0:t}^a - \hat{R}_{0:t}^a\|_2^2$$

Need to solve Online!

$$\theta_t^a = (X_{0:t}^T X_{0:t} + \lambda I)^{-1} X_{0:t}^T R_{0:t}^a$$

$$A_a \qquad b_a$$

Algorithm 1 LinUCB with disjoint linear models.

```
0: Inputs: \alpha \in \mathbb{R}_+
 1: for t = 1, 2, 3, \ldots, T do
         Observe features of all arms a \in \mathcal{A}_t: \mathbf{x}_{t,a} \in \mathbb{R}^d
         for all a \in \mathcal{A}_t do
 3:
 4:
 5:
 6:
            \boldsymbol{\theta}_a \leftarrow \mathbf{A}_a^{-1} \mathbf{b}_a
                                                                      Exploration Bonus
 9:
10:
         end for
11:
12:
                                                        Online Update
13:
14: end for
```

$$\theta_{t}^{a} = \left(X_{0:t}^{T} X_{0:t} + \lambda I\right)^{-1} X_{0:t}^{T} R_{0:t}^{a}
A_{a} b_{a}$$

Algorithm 1 LinUCB with disjoint linear models.

```
0: Inputs: \alpha \in \mathbb{R}_+
 1: for t = 1, 2, 3, \ldots, T do
           Observe features of all arms a \in \mathcal{A}_t: \mathbf{x}_{t,a} \in \mathbb{R}^d
 3:
           for all a \in \mathcal{A}_t do
 4:
 5:
 6:
          m{	heta}_a \leftarrow \mathbf{A}_a^{-1} \mathbf{b}_a
p_{t,a} \leftarrow \hat{m{	heta}}_a^{\top} \mathbf{x}_{t,a} + \alpha \sqrt{\mathbf{x}_{t,a}^{\top} \mathbf{A}_a^{-1} \mathbf{x}_{t,a}} Exploration Bonus
 9:
10:
            end for
11:
            Choose arm a_t = \arg \max_{a \in A_t} p_{t,a} with ties broken arbi-
           trarily, and observe a real-valued payoff r_t
        \mathbf{A}_{a_t} \leftarrow \mathbf{A}_{a_t} + \mathbf{x}_{t,a_t} \mathbf{x}_{t,a_t}^{\mathsf{T}}
                                                                    Online Update
           \mathbf{b}_{a_t} \leftarrow \mathbf{b}_{a_t} + r_t \mathbf{x}_{t,a_t}
14: end for
```

Pros and Cons of "disjoint models" (separate θ_a for each action)?

$$\theta_{t}^{a} = \left(X_{0:t}^{T} X_{0:t} + \lambda I\right)^{-1} X_{0:t}^{T} R_{0:t}^{a}$$

$$A_{a} \qquad b_{a}$$

Algorithm 1 LinUCB with disjoint linear models.

```
0: Inputs: \alpha \in \mathbb{R}_+
 1: for t = 1, 2, 3, \ldots, T do
           Observe features of all arms a \in \mathcal{A}_t: \mathbf{x}_{t,a} \in \mathbb{R}^d
 3:
           for all a \in \mathcal{A}_t do
 4:
 5:
 6:
          m{	heta}_a \leftarrow \mathbf{A}_a^{-1} \mathbf{b}_a
p_{t,a} \leftarrow \hat{m{	heta}}_a^{\top} \mathbf{x}_{t,a} + \alpha \sqrt{\mathbf{x}_{t,a}^{\top} \mathbf{A}_a^{-1} \mathbf{x}_{t,a}} Exploration Bonus
 9:
10:
            end for
            Choose arm a_t = \arg \max_{a \in A_t} p_{t,a} with ties broken arbi-
11:
           trarily, and observe a real-valued payoff r_t
        \mathbf{A}_{a_t} \leftarrow \mathbf{A}_{a_t} + \mathbf{x}_{t,a_t} \mathbf{x}_{t,a_t}^{\mathsf{T}}
                                                                    Online Update
          \mathbf{b}_{a_t} \leftarrow \mathbf{b}_{a_t} + r_t \mathbf{x}_{t,a_t}
14: end for
```

What if there are new news articles?

Dis-Joint LinUCB

Hybrid LinUCB

Going beyond the linear assumption

Beyond UCB: Optimal and Efficient Contextual Bandits with Regression Oracles, Foster & Rakhlin, 2020

(female, 20s, computer-savvy)

(male, 30s, computer-savvy)

How to use these "features" in decision making?

Contextual Bandits

Optimal Exploration-Exploitation Tradeoff?

(Square CB Algorithm)

 a_1 a_2 a_3

(female, 20s, computer-savvy)

(male, 30s, computer-savvy)

How to use these "features" in decision making?

Contextual Bandits

BUT, Actions don't change future state

Model Free Reinforcement Learning

Layout 1

state: x_t user features

action: a_1

state: x_t

action: a_1

 a_2

 X_t state:

 a_3 action: a_1

State of the system evolves with actions

The problem

 $s_1, a_1, r_1, s_2, a_2, r_2, s_3, a_3, \dots$

(State-action-reward trajectory)

(trajectory or rollout)

The problem

 $s_1, a_1, r_1, s_2, a_2, r_2, s_3, a_3, \dots$

Goal
$$a_t = \pi_{\theta}(s_{0:t}) \qquad s.t. \max \sum r_t$$

$$a_t = \pi_{\theta}(s_{0:t})$$

$$a_t = \pi_{\theta}(s_{0:t}) \qquad s.t. \max_t \sum_t r_t$$

Infinite Time Horizon

$$\sum_{t} r_{t}$$

Finite Time Horizon

$$\sum_{t=1}^{T} r_t$$

observation, reward

r: +1

time t

Goal

$$a_t = \pi_{\theta}(s_{0:t})$$

$$a_t = \pi_{\theta}(s_{0:t}) \qquad s.t. \max_t \sum_t r_t$$

Finite Time Horizon

$$\sum_{t=1}^{T} r_t$$

$$a_t = \pi_{\theta}(s_{0:t}, T - t)$$

Infinite Time Horizon

$$\sum_{t} r_{t}$$

$$0 < \gamma < 1$$
 discount factor

Commonly Used

Maximizing Rewards

$$a_t = \pi_{\theta}(s_{1:t})$$

$$\vdots$$

$$\tau = (s_1, a_1, r_1, s_2, a_2, r_2, \dots) \longrightarrow p_{\theta}(\tau)$$

Why do we need probability of a rollout?

Rollouts from the same state can be different

Stochastic Environment

Stochastic Rewards

Stochastic Policy

Need for stochastic policy

- Two-player game of rock-paper-scissors
 - Scissors beats paper
 - Rock beats scissors
 - Paper beats rock
- Consider policies for iterated rock—paper—scissors
 - A deterministic policy is easily exploited
 - A uniform random policy is optimal (i.e., Nash equilibrium)

Policy Optimization

$$a_{t} = \pi_{\theta}(s_{1:t})$$

$$\tau = (s_{1}, a_{1}, r_{1}, s_{2}, a_{2}, r_{2}, \dots) \longrightarrow p_{\theta}(\tau)$$

$$R(\tau) = \sum_{t} r_{t}$$

Average reward

$$\sum p_{\theta}(\tau)R(\tau) = E_{\tau}[R(\tau)]$$

Maximize Reward

Policy Gradients!

$$\max_{\theta} E_{\tau}[R(\tau)] \qquad \blacktriangleright \quad E_{\tau}[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

POLICY GRADIENTS

$$\max_{\theta} E\tau[R(\tau)]$$

$$\max_{\theta} E\tau[R(\tau)]$$

$$\nabla_{\theta} E \tau [R(\tau)]$$

$$\max_{\theta} E\tau[R(\tau)]$$

$$\nabla_{\theta} E\tau[R(\tau)]$$

$$\nabla_{\theta} \int p_{\theta}(\tau) R(\tau) d\tau$$

$$\max_{\theta} E\tau[R(\tau)]$$

$$\nabla_{\theta} E\tau[R(\tau)]$$

$$\nabla_{\theta} \int p_{\theta}(\tau)R(\tau)d\tau$$

$$\int \nabla_{\theta}(p_{\theta}(\tau))R(\tau)d\tau \qquad \text{(Leibniz Integral Rule)}$$

$$\max_{\theta} E\tau[R(\tau)]$$

$$\nabla_{\theta} E\tau[R(\tau)]$$

$$\nabla_{\theta} \int p_{\theta}(\tau)R(\tau)d\tau$$

$$\int \nabla_{\theta}(p_{\theta}(\tau))R(\tau)d\tau$$

$$\int p_{\theta}(\tau)\frac{\nabla_{\theta}(p_{\theta}(\tau))}{p_{\theta}(\tau)}R(\tau)d\tau$$

$$\max_{\theta} E\tau[R(\tau)]$$

$$\nabla_{\theta} E\tau[R(\tau)]$$

$$\nabla_{\theta} \int p_{\theta}(\tau)R(\tau)d\tau$$

$$\int \nabla_{\theta} (p_{\theta}(\tau))R(\tau)d\tau$$

$$\int p_{\theta}(\tau) \frac{\nabla_{\theta} (p_{\theta}(\tau))}{p_{\theta}(\tau)}R(\tau)d\tau$$

$$\max_{\theta} E\tau[R(\tau)]$$

$$\nabla_{\theta} E\tau[R(\tau)]$$

$$\nabla_{\theta} \int p_{\theta}(\tau)R(\tau)d\tau$$

$$\int \nabla_{\theta}(p_{\theta}(\tau))R(\tau)d\tau$$

$$\int p_{\theta}(\tau) \frac{\nabla_{\theta}(p_{\theta}(\tau))}{p_{\theta}(\tau)}R(\tau)d\tau$$

$$\int p_{\theta}(\tau)\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)d\tau$$

$$\max_{\theta} E\tau[R(\tau)]$$

$$\nabla_{\theta} E\tau[R(\tau)]$$

$$\nabla_{\theta} \int p_{\theta}(\tau)R(\tau)d\tau$$

$$\int \nabla_{\theta}(p_{\theta}(\tau))R(\tau)d\tau$$

$$\int p_{\theta}(\tau)\frac{\nabla_{\theta}(p_{\theta}(\tau))}{p_{\theta}(\tau)}R(\tau)d\tau$$

$$\int p_{\theta}(\tau)\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)d\tau$$

$$E\tau[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

$$E\tau[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

Intuitive Interpretation

Roll out multiple trajectories

$$E\tau[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

Intuitive Interpretation

Roll out multiple trajectories

Increase the log-prob of trajectories that result in high rewards!

$$E\tau[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

Intuitive Interpretation

Roll out multiple trajectories

Increase the log-prob of trajectories that result in high rewards!

$$E\tau[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

Intuitive Interpretation

Roll out multiple trajectories

Increase the log-prob of trajectories that result in high rewards!

$$E\tau[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

Intuitive Interpretation

Roll out multiple trajectories

Increase the log-prob of trajectories that result in high rewards!

Increase
log-prob by
smaller
amount

Expanding on Policy Gradients

$$E_{\tau}[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

$$E_{\tau} \left[\sum_{t} \left(\nabla_{\theta} \log p_{\theta}(a_{t} | s_{1:t}, a_{1:t-1}) \right) R(\tau) \right]$$

$$E_{\tau} \left[\sum_{t} \left(\nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{1:t}, a_{1:t-1}) \right) R(\tau) \right]$$

Does something feel off?

NO dependence on $p(s_t | s_{1:t-1}, a_{1:t-1})$

Expanding on Policy Gradients

$$E_{\tau}[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

$$E_{\tau} \left[\sum_{t=1}^{T} \left(\nabla_{\theta} \log p_{\theta}(a_{t} | s_{1:t}, a_{1:t-1}) \right) R(\tau) \right]$$

$$Model Free!$$

$$E_{\tau} \left[\sum_{t=1}^{T} \left(\nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{1:t}, a_{1:t-1}; \theta) \right) R(\tau) \right]$$

Does something feel off?

NO dependence on $p(s_t | s_{1:t-1}, a_{1:t-1})$

Expanding on Policy Gradients

$$E_{\tau} \left[\sum_{t=1}^{\infty} \left(\nabla_{\theta} \log \pi_{\theta}(a_t | s_{1:t}, a_{1:t-1}) \right) R(\tau) \right]$$

Markov assumption not necessary!

With Markov Assumption (discuss this later in detail)

$$E_{\tau} \left[\sum_{t=1}^{\infty} \left(\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right) R(\tau) \right]$$

Location/rotation of joints

- desired joint position
- Speed of the Cheetah

- Or, the image
- Or, both

$$\sum_{t=1}^{\infty} \left(\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right) R(\tau)$$

$$E_{\tau} \left[\sum_{t=1}^{\infty} \left(\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right) R(\tau) \right]$$

$$\frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \left(\nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{i} | s_{t}^{i} \right) \right) R(\tau) \right)$$

in practice can't roll out until infinity

Treat **finite** horizon as **infinite** horizon with discount

This is also called the REINFORCE Algorithm

Discrete Action Space Multinomial Policy

$$\frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \left(\nabla_{\theta} \log \pi_{\theta} (a_t^i | s_t^i) \right) R^{\gamma}(\tau) \right)$$

Continuous Action Space Gaussian Policy

Comparing with Supervised Learning

RL

Supervised Learning

$$\sum_{t} r_{t}$$

$$\tau^{gt} = (s_1, a_1^{gt}, s_2, a_2^{gt}, \dots)$$

$$E_{\tau}[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

$$E_{\tau^{gt}}[\nabla_{\theta}(\log p_{\theta}(\tau^{gt}))]$$

Policy Gradients

Maximum Likelihood

Iteration 0

High-Dimensional Continuous Control Using Generalized Advantage Estimation, Schulman et al., 2015

$$E_{\tau}[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

$$\frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \left(\nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{i} | s_{t}^{i} \right) \right) R(\tau) \right)$$

$$\frac{1}{N} \left(\sum_{t=1}^{NT} \left(\nabla_{\theta} \log \pi_{\theta} (a_t | s_t) \right) R(\tau) \right)$$

One Episode

Why define episodes?

One Episode

$$\frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \left(\nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{i} | s_{t}^{i} \right) \right) R(\tau) \right)$$

Why define episodes?

Iteration 0

Agent can enter bad parts of state-space

"reset" to good initial state

One Episode

$$\frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \left(\nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{i} \mid s_{t}^{i} \right) \right) R(\tau) \right)$$

Why define episodes?

One Episode

$$\frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \left(\nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{i} \mid s_{t}^{i} \right) \right) R(\tau) \right)$$

Why define episodes?

Some Tasks are Episodic

THE CREDIT ASSIGNMENT CHALLENGE

$$E\tau[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

$$E\tau[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

$$E\tau[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

log-prob of each action is increased

$$E\tau[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

What about in this case?

$$E\tau[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

Does this also happen In supervised learning?

$$E\tau[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

Delayed reward \rightarrow Ambiguity in which action should be credited

$$E\tau[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

High Variance in gradient estimates

Variance in Policy Gradients

$$E_{\tau}[\nabla_{\theta}(\log p_{\theta}(\tau))R(\tau)]$$

Same action — different trajectory rewards

conflicting gradients: variance

$$Var \left[\nabla_{\theta} \log p_{\theta}(\tau) R(\tau) \right]$$

Variance Reduction Idea -- Discounts

Variance Reduction Idea -- Discounts

$$\gamma < 1$$

Variance Reduction Idea -- Discounts

$$\gamma < 1$$

Variance Reduction with Discount

$$E_{\tau}[\nabla_{\theta} (\log p_{\theta}(\tau)) R(\tau)]$$

$$\vdots$$

$$E_{\tau}[\nabla_{\theta} (\log p_{\theta}(\tau)) R^{\gamma}(\tau)]$$

$$R^{\gamma}(\tau) = \sum_{t} \gamma^{t} r_{t}$$

Faster Convergence

Bias

Makes infinite time horizon work

Bias resulting from discount

If gamma is small, what might happen?

This is the BIAS!!

Expanding on Policy Gradients

$$E_{\tau} \left[\sum_{t=1}^{T} \left(\nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{t}) \right) R(\tau) \right]$$

$$\frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) \left(\sum_{t=1}^{T} r(s_{t}^{i}, a_{t}^{i}) \right) \right)$$

Expanding on Policy Gradients

$$E_{\tau} \left[\sum_{t=1}^{T} \left(\nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{t}) \right) R(\tau) \right]$$

$$\frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} (a_t^i | s_t^i) \left(\sum_{t=1}^{T} r(s_t^i, a_t^i) \right) \right)$$

Can we reduce variance?

$$\frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} (a_t^i | s_t^i) \left(\sum_{t'=t}^{T} r(s_{t'}^i, a_{t'}^i) \right) \right)$$

current actions don't effect past rewards!

PROOF OF WHY POLICY GRADIENT IS MODEL FREE

$$E\tau[\nabla_{\theta}\log p_{\theta}(\tau)(R(\tau)-b)]$$

where,

b: baseline

$$b = E\tau[R(\tau)]$$

$$E\tau[\nabla_{\theta}\log p_{\theta}(\tau)(R(\tau)-b)]$$

$$p_{\theta}(\tau) = p_{\theta}(s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_{t-1}, a_{t-1}, r_{t-1}, s_t)$$

$$E\tau[\nabla_{\theta}\log p_{\theta}(\tau)(R(\tau)-b)]$$

$$p_{\theta}(\tau) = p_{\theta}(s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_{t-1}, a_{t-1}, r_{t-1}, s_t)$$

$$= p_{\theta}(r_{t-1}, s_t | s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_{t-1}, a_{t-1}) p_{\theta}(s_1, a_1, r_1, \dots, s_{t-1}, a_{t-1})$$

$$E\tau[\nabla_{\theta}\log p_{\theta}(\tau)(R(\tau)-b)]$$

$$p_{\theta}(\tau) = p_{\theta}(s_{1}, a_{1}, r_{1}, s_{2}, a_{2}, r_{2}, \dots, s_{t-1}, a_{t-1}, r_{t-1}, s_{t})$$

$$= p_{\theta}(r_{t-1}, s_{t}|s_{1}, a_{1}, r_{1}, s_{2}, a_{2}, r_{2}, \dots, s_{t-1}, a_{t-1}) p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1}, a_{t-1})$$

$$= p_{\theta}(r_{t-1}, s_{t}|s_{t-1}, a_{t-1}) p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1}, a_{t-1})$$

$$E\tau[\nabla_{\theta}\log p_{\theta}(\tau)(R(\tau)-b)]$$

$$p_{\theta}(\tau) = p_{\theta}(s_{1}, a_{1}, r_{1}, s_{2}, a_{2}, r_{2}, \dots, s_{t-1}, a_{t-1}, r_{t-1}, s_{t})$$

$$= p_{\theta}(r_{t-1}, s_{t}|s_{1}, a_{1}, r_{1}, s_{2}, a_{2}, r_{2}, \dots, s_{t-1}, a_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1}, a_{t-1})$$

$$= p_{\theta}(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1}, a_{t-1})$$

$$= p(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1}, a_{t-1})$$

$$E\tau[\nabla_{\theta}\log p_{\theta}(\tau)(R(\tau)-b)]$$

$$p_{\theta}(\tau) = p_{\theta}(s_{1}, a_{1}, r_{1}, s_{2}, a_{2}, r_{2}, \dots, s_{t-1}, a_{t-1}, r_{t-1}, s_{t})$$

$$= p_{\theta}(r_{t-1}, s_{t}|s_{1}, a_{1}, r_{1}, s_{2}, a_{2}, r_{2}, \dots, s_{t-1}, a_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1}, a_{t-1})$$

$$= p_{\theta}(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1}, a_{t-1})$$

$$= p(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1}, a_{t-1})$$

$$= p(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})p_{\theta}(a_{t-1}|s_{1}, a_{1}, r_{1}, \dots, s_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1})$$

$$E\tau[\nabla_{\theta}\log p_{\theta}(\tau)(R(\tau)-b)]$$

$$p_{\theta}(\tau) = p_{\theta}(s_{1}, a_{1}, r_{1}, s_{2}, a_{2}, r_{2}, \dots, s_{t-1}, a_{t-1}, r_{t-1}, s_{t})$$

$$= p_{\theta}(r_{t-1}, s_{t}|s_{1}, a_{1}, r_{1}, s_{2}, a_{2}, r_{2}, \dots, s_{t-1}, a_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1}, a_{t-1})$$

$$= p_{\theta}(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1}, a_{t-1})$$

$$= p(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1}, a_{t-1})$$

$$= p(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})p_{\theta}(a_{t-1}|s_{1}, a_{1}, r_{1}, \dots, s_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1})$$

$$= p(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})p_{\theta}(a_{t-1}|s_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1})$$

$$E\tau[\nabla_{\theta}\log p_{\theta}(\tau)(R(\tau)-b)]$$

$$p_{\theta}(\tau) = p_{\theta}(s_{1}, a_{1}, r_{1}, s_{2}, a_{2}, r_{2}, \dots, s_{t-1}, a_{t-1}, r_{t-1}, s_{t})$$

$$= p_{\theta}(r_{t-1}, s_{t}|s_{1}, a_{1}, r_{1}, s_{2}, a_{2}, r_{2}, \dots, s_{t-1}, a_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1}, a_{t-1})$$

$$= p_{\theta}(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1}, a_{t-1})$$

$$= p(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1}, a_{t-1})$$

$$= p(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})p_{\theta}(a_{t-1}|s_{1}, a_{1}, r_{1}, \dots, s_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1})$$

$$= p(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})p_{\theta}(a_{t-1}|s_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1})$$

$$= p(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})\pi_{\theta}(a_{t-1}|s_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1})$$

$$E\tau[\nabla_{\theta}\log p_{\theta}(\tau)(R(\tau)-b)]$$

$$p_{\theta}(\tau) = p_{\theta}(s_{1}, a_{1}, r_{1}, s_{2}, a_{2}, r_{2}, \dots, s_{t-1}, a_{t-1}, r_{t-1}, s_{t})$$

$$= p_{\theta}(r_{t-1}, s_{t}|s_{1}, a_{1}, r_{1}, s_{2}, a_{2}, r_{2}, \dots, s_{t-1}, a_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1}, a_{t-1})$$

$$= p_{\theta}(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1}, a_{t-1})$$

$$= p(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1}, a_{t-1})$$

$$= p(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})p_{\theta}(a_{t-1}|s_{1}, a_{1}, r_{1}, \dots, s_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1})$$

$$= p(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})p_{\theta}(a_{t-1}|s_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1})$$

$$= p(r_{t-1}, s_{t}|s_{t-1}, a_{t-1})\pi_{\theta}(a_{t-1}|s_{t-1})p_{\theta}(s_{1}, a_{1}, r_{1}, \dots, s_{t-1})$$

$$= \prod_{i=1}^{t} p(r_{t-i}, s_{t-i+1}|s_{t-i}, a_{t-i})\pi_{\theta}(a_{t-i}|s_{t-i})$$

$$E\tau \left[\nabla_{\theta} \log p_{\theta}(\tau) (R(\tau) - b)\right]$$

$$p_{\theta}(\tau) = \prod_{i=1}^{t} p(r_{t-i}, s_{t-i+1} | s_{t-i}, a_{t-i}) \pi_{\theta}(a_{t-i} | s_{t-i})$$

.

$$E\tau \left[\nabla_{\theta} \log p_{\theta}(\tau)(R(\tau)-b)\right]$$

$$p_{\theta}(\tau) = \prod_{i=1}^{t} p(r_{t-i}, s_{t-i+1} | s_{t-i}, a_{t-i}) \pi_{\theta}(a_{t-i} | s_{t-i})$$

$$\Rightarrow \log p_{\theta}(\tau) = \sum_{i=1}^{t} \log p(r_{t-i}, s_{t-i+1} | s_{t-i}, a_{t-i}) + \sum_{i=1}^{t} \log \pi_{\theta}(a_{t-i} | s_{t-i})$$

$$E\tau \left[\nabla_{\theta} \log p_{\theta}(\tau) (R(\tau) - b)\right]$$

$$p_{\theta}(\tau) = \prod_{i=1}^{t} p(r_{t-i}, s_{t-i+1} | s_{t-i}, a_{t-i}) \pi_{\theta}(a_{t-i} | s_{t-i})$$

$$\Rightarrow \log p_{\theta}(\tau) = \sum_{i=1}^{t} \log p(r_{t-i}, s_{t-i+1} | s_{t-i}, a_{t-i}) + \sum_{i=1}^{t} \log \pi_{\theta}(a_{t-i} | s_{t-i})$$

$$\Rightarrow \nabla_{\theta} \log p_{\theta}(\tau) = \sum_{i=1}^{t} \nabla_{\theta} \log p(r_{t-i}, s_{t-i+1} | s_{t-i}, a_{t-i}) + \sum_{i=1}^{t} \nabla_{\theta} \log \pi_{\theta}(a_{t-i} | s_{t-i})$$

$$E\tau \left[\nabla_{\theta} \log p_{\theta}(\tau)(R(\tau)-b)\right]$$

$$p_{\theta}(\tau) = \prod_{i=1}^{t} p(r_{t-i}, s_{t-i+1} | s_{t-i}, a_{t-i}) \pi_{\theta}(a_{t-i} | s_{t-i})$$

$$\Rightarrow \log p_{\theta}(\tau) = \sum_{i=1}^{t} \log p(r_{t-i}, s_{t-i+1} | s_{t-i}, a_{t-i}) + \sum_{i=1}^{t} \log \pi_{\theta}(a_{t-i} | s_{t-i})$$

$$\Rightarrow \nabla_{\theta} \log p_{\theta}(\tau) = \sum_{i=1}^{t} \nabla_{\theta} \log p(r_{t-i}, s_{t-i+1} | s_{t-i}, a_{t-i}) + \sum_{i=1}^{t} \nabla_{\theta} \log \pi_{\theta}(a_{t-i} | s_{t-i})$$

$$E\tau \left[\nabla_{\theta} \log p_{\theta}(\tau)(R(\tau)-b)\right]$$

$$p_{\theta}(\tau) = \prod_{i=1}^{t} p(r_{t-i}, s_{t-i+1} | s_{t-i}, a_{t-i}) \pi_{\theta}(a_{t-i} | s_{t-i})$$

$$\Rightarrow \log p_{\theta}(\tau) = \sum_{i=1}^{t} \log p(r_{t-i}, s_{t-i+1} | s_{t-i}, a_{t-i}) + \sum_{i=1}^{t} \log \pi_{\theta}(a_{t-i} | s_{t-i})$$

$$\Rightarrow \nabla_{\theta} \log p_{\theta}(\tau) = \sum_{i=1}^{t} \nabla_{\theta} \log p(r_{t-i}, s_{t-i+1} | s_{t-i}, a_{t-i}) + \sum_{i=1}^{t} \nabla_{\theta} \log \pi_{\theta}(a_{t-i} | s_{t-i})$$

$$E\tau \left[\nabla_{\theta} \log p_{\theta}(\tau) (R(\tau) - b)\right]$$

$$p_{\theta}(\tau) = \prod_{i=1}^{t} p(r_{t-i}, s_{t-i+1} | s_{t-i}, a_{t-i}) \pi_{\theta}(a_{t-i} | s_{t-i})$$

$$\Rightarrow \log p_{\theta}(\tau) = \sum_{i=1}^{t} \log p(r_{t-i}, s_{t-i+1} | s_{t-i}, a_{t-i}) + \sum_{i=1}^{t} \log \pi_{\theta}(a_{t-i} | s_{t-i})$$

$$\Rightarrow \nabla_{\theta} \log p_{\theta}(\tau) = \sum_{i=1}^{t} \nabla_{\theta} \log p(r_{t-i}, s_{t-i+1} | s_{t-i}, a_{t-i}) + \sum_{i=1}^{t} \nabla_{\theta} \log \pi_{\theta}(a_{t-i} | s_{t-i})$$

$$= \sum_{i=1}^{t} \nabla_{\theta} \log \pi_{\theta}(a_{t-i} | s_{t-i})$$
Independent of the environment dynamics !!

$$E\tau \left[\nabla_{\theta} \log p_{\theta}(\tau) (R(\tau) - b)\right]$$

$$p_{\theta}(\tau) = \prod_{i=1}^{t} p(r_{t-i}, s_{t-i+1}|s_{t-i}, a_{t-i}) \pi_{\theta}(a_{t-i}|s_{t-i})$$

$$\Rightarrow \log p_{\theta}(\tau) = \sum_{i=1}^{t} \log p(r_{t-i}, s_{t-i+1}|s_{t-i}, a_{t-i}) + \sum_{i=1}^{t} \log \pi_{\theta}(a_{t-i}|s_{t-i})$$

$$\Rightarrow \nabla_{\theta} \log p_{\theta}(\tau) = \sum_{i=1}^{t} \nabla_{\theta} \log p(r_{t-i}, s_{t-i+1}|s_{t-i}, a_{t-i}) + \sum_{i=1}^{t} \nabla_{\theta} \log \pi_{\theta}(a_{t-i}|s_{t-i})$$

$$= \sum_{i=1}^{t} \nabla_{\theta} \log \pi_{\theta}(a_{t-i}|s_{t-i}) \quad \text{Independent of the environment}$$

$$= \sum_{i=0}^{t-1} \nabla_{\theta} \log \pi_{\theta}(a_{i}|s_{i}) \quad \text{dynamics } !!$$