DOCUMENTS ET CALCULATRICES NON AUTORISÉS

La précision des raisonnements et le soin apporté à la rédaction seront pris en compte dans la notation

Exercice 1

Déterminer le rayon de convergence de la série entière $\sum_{n\geq 1} \frac{n}{3^n+1} z^{4n-1}$.

Exercice 2

On pose, pour $n \in \mathbb{N}$, $a_n = \frac{1}{n^2 + 5n + 6}$.

1. Déterminer le rayon de convergence de la série entière $\sum_{n>0} a_n x^n$.

2. On définit, pour $n \in \mathbb{N}$, $f_n : [-1,1] \longrightarrow \mathbb{R}$ $x \longmapsto a_n x^n$

Montrer que la série d'applications $\sum_{n\geq 0} f_n$ converge normalement sur [-1,1].

3. On pose $f = \sum_{n=0}^{+\infty} f_n$.

- (a) Justifier que f est continue sur [-1, 1].
- (b) Déterminer, pour $x \in]-1,1[, f(x)]$ en fonction de x.
- (c) Déterminer les sommes suivantes :

$$A = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n^2 + 5n + 6}$$
 et $B = \sum_{n=0}^{+\infty} \frac{1}{n^2 + 5n + 6}$.

Exercice 3

Soit g la fonction définie sur \mathbb{R} , 2π -périodique, paire, telle que :

$$\forall t \in [0, \pi], \ g(t) = \sin\left(\frac{t}{2}\right) \ .$$

- 1. Tracer le graphe de g sur l'intervalle $[-3\pi, 3\pi]$.
- 2. Montrer que la série de Fourier trigonométrique de g s'écrit : $\alpha + \sum_{n\geq 1} \frac{\beta}{4n^2 1} \cos(nt)$, où α et β sont des réels à déterminer.
- 3. On note S la somme de la série de Fourier de g. Justifier que S est définie sur \mathbb{R} puis exprimer, pour tout $t \in \mathbb{R}$, S(t) en fonction de t.

4. On pose
$$C = \sum_{n=1}^{+\infty} \frac{(-1)^n}{4n^2 - 1}$$
 et $D = \sum_{n=1}^{+\infty} \frac{1}{(4n^2 - 1)^2}$.

- (a) Exprimer C en fonction de α et β puis donner la valeur exacte de C.
- (b) Même question avec D.