Correction TD C7 - Oscillateurs linéaires en régime sinusoïdal forcé

- 1 Notation complexe
- 2 Filtre de Wien
- 3 Modélisation d'un haut-parleur
- 4 Résonance d'un circuit bouchon

Correction:

1. Diviseur de tension aux bornes de l'impédance équivalente de L et C (dérivation) $1/\underline{Z}_{\text{\'eq}}=jC\omega+1/L\omega$:

$$\underline{U} = \frac{\underline{Z}_{\text{\'eq}}}{R + \underline{Z}_{\text{\'eq}}} E_0 = \frac{E_0}{1 + R \frac{1}{\underline{Z}_{\text{\'eq}}}} = \frac{E_0}{1 + jR \left(C\omega - \frac{1}{L\omega}\right)}$$

2. l'amplitude réelle de u(t) s'exprime :

$$U = |\underline{U}| = \frac{E_0}{\sqrt{1 + R^2 \left(C\omega - \frac{1}{L\omega}\right)^2}}$$

U est maximale si le dénominateur est minimal donc si $\left(C\omega-\frac{1}{L\omega}\right)=0$, ce qui donne alors $\omega=1/\sqrt{LC}$.

- II y a résonance pour $\omega_0=1/\sqrt{LC}$. $U(\omega_0)=U_{\max}=\frac{E_0}{\sqrt{1+0}}=E_0$
- 3. on factorise pour faire apparaı̂tre $\omega_0=1/\sqrt{LC}$:

$$R\left(C\omega - \frac{1}{L\omega}\right) = R\sqrt{\frac{C}{L}}\left(\sqrt{LC}\omega - \frac{1}{\sqrt{LC}\omega}\right)$$

le facteur de qualité est donc $Q = R\sqrt{\frac{C}{L}}$

4. $\Delta\omega=|\omega_1-\omega_2|$ avec $\omega_{1,2}$ tels que $U(\omega_{1,2})=\frac{U_{\max}}{\sqrt{2}}=\frac{E_0}{\sqrt{2}}.$ Ainsi

$$\frac{E_0}{\sqrt{1+Q^2\left(\frac{\omega_{1,2}}{\omega_0}-\frac{\omega_0}{\omega_{1,2}}\right)^2}} = \frac{E_0}{\sqrt{2}} \quad \Rightarrow \quad Q^2\left(\frac{\omega_{1,2}}{\omega_0}-\frac{\omega_0}{\omega_{1,2}}\right)^2 = 1 \quad \Rightarrow \quad \frac{\omega_{1,2}}{\omega_0}-\frac{\omega_0}{\omega_{1,2}} \pm \frac{1}{Q}$$

on obtient 2 trinômes du second degré qui donnent 4 racines réelles mais seulement 2 sont positives :

$$\omega_1 = \frac{\omega_0}{2O} \left(\sqrt{1+4Q^2} - 1 \right) \qquad \omega_2 = \frac{\omega_0}{2O} \left(\sqrt{1+4Q^2} + 1 \right)$$

On en déduit la bande passante :

$$\Delta\omega = \omega_2 - \omega_1 = \frac{\omega_0}{O}$$

5. On lit sur le graphe $U_{\rm max}=5~{\rm V}$ donc $E_0=5~{\rm V}.$

On lit aussi $\Delta f \simeq 3k$ et $f_0=22,5$ kHz donc $Q=\frac{f_0}{\Lambda\,f}\simeq 7,5$

$$Q = R \sqrt{\frac{C}{L}} \quad \Rightarrow \quad C = \frac{Q^2 L}{R} \simeq 5, 6 \times 10^{-8} \ {\rm F}$$

5 Système à deux ressorts

Correction:

- 1. Le solide est soumis à son poids $m\vec{g} = -mg\vec{u}_z$, à la réaction normale $\vec{N} = N\vec{u}_z$, aux forces de rappel des ressorts $-k_1(l_1-l_{10})\vec{u}_x$ et $k_2(l_2-l_{20})\vec{u}_x$ et à la force de frottement $\vec{f}=-h\vec{v}$.
- 2. La loi de la quantité de mouvement appliquée à M dans le référentiel galiléen ${\mathscr R}$ conduit à : $m\vec{a}(M) = \vec{N} + m\vec{g} - k_1(l_1 - l_{10})\vec{u}_x + k_2(l_2 - l_{20})\vec{u}_x - h\dot{x}\vec{u}_x.$ À l'équilibre, lorsque la paroi de gauche est immobile en x = 0: $l_1 = x_{eq}$ et $l_2 = L - x_{eq} = l_{10} + l_{20} - x_{eq}$. En projection sur \vec{u}_x , on obtient alors : $-(k_1 + k_2)(x_{eq} - l_{10}) = 0$. D'où : $x_{eq} = l_{10}$.
- **3.** L'équation ci-dessus fournit, en projection sur $\vec{u}_x : m\ddot{x} + h\dot{x} + k_1(l_1 l_{10}) k_2(l_2 l_{20}) = 0$. Lorsque l'abscisse de la paroi est $x_0(t)$, il vient $l_1(t) = x(t) - x_0(t)$ et $l_2(t) = L - x(t) = l_{10} + l_{20} - x(t)$. En introduisant $x(t) = X(t) + x_{eq} = X(t) + l_{10}$, on obtient finalement : $m\ddot{X} + h\dot{X} + (k_1 + k_2)X = k_1x_0(t)$.
- **4.** Par définition des amplitudes complexes : $\underline{X}_0 = X_{0m}$, $\underline{X} = X_m \exp(j\varphi)$ et $\underline{V} = V_m \exp(j\phi)$.
- 5. En remplaçant X(t) et $x_0(t)$ par leurs amplitudes complexes dans l'équation du 3), on obtient :

5. En rempiaçant
$$X(t)$$
 et $x_0(t)$ par leurs amplitudes complexes dans l'equation du S), on obtient :
$$(j\omega)^2 m \underline{X} + j\omega h \underline{X} + (k_1 + k_2) \underline{X} = k_1 X_{0m} \implies \underline{X} = \frac{k_1 X_{0m}}{(j\omega)^2 m + j\omega h + (k_1 + k_2)}.$$
Puis : $\underline{V} = j\omega \underline{X} \implies \underline{V} = \frac{k_1 X_{0m}}{j\omega m + h + \frac{(k_1 + k_2)}{j\omega}} \implies \underline{V} = \frac{k_1/h}{1 + j\left(\frac{m\omega}{h} - \frac{(k_1 + k_2)}{h\omega}\right)} X_{0m}.$
D'où : $\underline{V} = \frac{\alpha}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)} \underline{X}_{0} \quad \text{avec} \quad \omega_0 = \sqrt{\frac{k_1 + k_2}{m}} \quad , \quad Q = \frac{\sqrt{(k_1 + k_2)m}}{h} \quad \text{et} \quad \alpha = \frac{k_1}{h}.$

6. $V_m(\omega) = \frac{\alpha}{\sqrt{1 + Q^2\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}} X_{0m} \quad \text{est maximale pour } \omega = \omega_0. \text{ On observe donc une résonance de }$

6 Résonance d'intensité dans un circuit RLC parallèle

Correction:

1 - On regroupe la résistance, la bobine et le condensateur, qui sont tous les trois en parallèles, en une impédance équivalente \underline{Z} donnée par :

$$\frac{1}{Z} = \frac{1}{R} + \frac{1}{\mathrm{j}L\omega} + \mathrm{j}C\omega = \frac{\mathrm{j}L\omega + R + (\mathrm{j}C\omega)R(\mathrm{j}L\omega)}{\mathrm{j}RL\omega}.$$

D'où

$$\boxed{\underline{Z} = \frac{\mathrm{j} R L \omega}{\mathrm{j} L \omega + R - R L C \omega^2}}.$$

2 - On a $\frac{\underline{U}_0}{I_0} = \underline{Z}$, donc $\underline{U}_0 = \underline{Z} \times \underline{I}_0 = \underline{Z} \times I_0$ (car $\underline{I}_0 = I_0$, il n'y a pas de phase à l'origine), donc :

$$\underline{U}_0 = \frac{I_0 jRL\omega}{jL\omega + R - RLC\omega^2}.$$

Pour la suite, il est plus futé de tout diviser par j $L\omega$ afin de retrouver une fonction du type de celle pour le RLC série:

$$\underline{U}_0 = \frac{RI_0}{1 + \frac{R}{\mathrm{j}L\omega} + \mathrm{j}RC\omega}$$

$$\underline{U}_0 = \frac{RI_0}{1 + \mathrm{j}R\left(C\omega - \frac{1}{L\omega}\right)}.$$

3 - On a
$$U=|\underline{U}_0|=\frac{RI_0}{\sqrt{1+R^2\left(C\omega-\frac{1}{L\omega}\right)^2}}.$$

Il faut chercher le maximum. Il est atteint lorsque le dénominateur est minimum (car pas de ω au numérateur). C'est ici assez simple : c'est lorsque $\left(C\omega - \frac{1}{L\omega}\right)^2 = 0$, donc pour $\omega = \frac{1}{\sqrt{LC}}$.

C'est donc cette pulsation là qu'il faut utiliser.

4 - On définit $\omega_0 = \frac{1}{\sqrt{LC}}$ et $x = \omega : \omega_0$. On a alors

$$\begin{split} C\omega - \frac{1}{L\omega} &= \frac{C\sqrt{L}\omega}{\sqrt{L}} - \frac{\sqrt{C}}{\sqrt{C}L\omega} \\ &= \frac{\sqrt{C}\sqrt{C}\sqrt{L}\omega}{\sqrt{L}} - \frac{\sqrt{C}}{\sqrt{C}\sqrt{L}\sqrt{L}\omega} \\ &= \frac{\sqrt{C}\omega}{\sqrt{L}\omega_0} - \frac{\sqrt{C}\omega_0}{\sqrt{L}\omega} \\ &= \frac{\sqrt{C}}{\sqrt{L}}\left(x - \frac{1}{x}\right) \end{split}$$

D'où

$$\underline{U}_{0} = \frac{RI_{0}}{1 + \mathrm{j}R\frac{\sqrt{C}}{\sqrt{L}}\left(x - \frac{1}{x}\right)}.$$

On pose $Q = R \frac{\sqrt{C}}{\sqrt{L}}$. On a

$$U = \frac{RI_0}{\sqrt{1 + Q^2 \left(x - \frac{1}{x}\right)^2}}.$$

5 - Il faut trouver l'expression des pulsations de coupures ω_{c1} et ω_{c2} .

On note $x_1 = \omega_{c1}/\omega_0$ et $x_2 = \omega_{c2}/\omega_0$ les pulsations réduites correspondantes.

Elles sont solutions de
$$U(x) = \frac{U_{\text{max}}}{\sqrt{2}} = \frac{RI_0}{\sqrt{2}}$$
.

Ceci est équivalent à $Q^2\left(x-\frac{1}{x}\right)^2=1$, soit tous calculs faits et en éliminant les solutions négatives, pour

$$x_1 = -\frac{1}{2Q} + \frac{1}{2}\sqrt{4 + \frac{1}{Q^2}}, \text{ et } x_2 = \frac{1}{2Q} + \frac{1}{2}\sqrt{4 + \frac{1}{Q^2}}.$$

La largeur de la bande passante est $\Delta x = x_2 - x_1 = \frac{1}{Q}$, soit encore $\Delta \omega = \frac{\omega_0}{Q}$.

6 - On a
$$A_c = Q = R \frac{\sqrt{C}}{\sqrt{L}} = 5.2.$$

L'acuité augmente avec la résistance. C'est normal car la résistance est en parallèle avec le reste du circuit, donc une absence de résistance signifie ici une résistance R infinie (pour qu'aucun courant ne la traverse).

3

7 Condition de résonance

Correction:

1) Soit \underline{Z} l'impédance équivalente à R et C: $\underline{Z} = \frac{R\frac{1}{jC\omega}}{R + \frac{1}{jC\omega}} = \frac{R}{1 + jRC\omega}$. L'impédance $jL\omega$

et
$$\underline{Z}$$
 forment un diviseur de tension donc :
$$\underline{u} = \underline{e} \frac{\underline{Z}}{jL\omega + \underline{Z}} = \underline{e} \frac{R}{jL\omega(1 + jRC\omega) + R} = \frac{\underline{e}}{1 + \frac{jL\omega}{R} - LC\omega^2} = \frac{\underline{e}}{1 + 2j\xi x - x^2}.$$

2) L'amplitude de
$$u(t)$$
 est : $U_0 = |\underline{u}| = \frac{E_0}{\sqrt{(1-x)^2 + (2\xi x)^2}} = \frac{E_0}{\sqrt{1 + 2(2\xi^2 - 1)x^2 + x^4}}$. Il y a résonance si U_0 passe par un maximum, c'est-à-dire si $f(x) = 1 + 2(2\xi^2 - 1)x^2 + x^4$ passe par un minimum. Or : $f'(x) = 4x(2\xi^2 - 1 + x^2)$ s'annule, pour $x = 0$ et pour $x = \sqrt{1 - 2\xi^2}$ si $\xi < \frac{1}{\sqrt{2}}$. Dans ce dernier cas $f'(\sqrt{1 - 2\xi^2}) = 8(1 - 2\xi^2) > 0$.

• si $\xi > \frac{1}{\sqrt{2}}$ il n'y a pas de résonance; • si $\xi < \frac{1}{\sqrt{2}}$ il a résonance pour la pulsation :

$$\omega_r = \omega_0 \sqrt{1 - 2\xi^2}.$$

On voit ci-contre l'allure de U_0 en fonction de ω pour $\xi < \frac{1}{\sqrt{2}}$ (en trait plein) et $\xi > \frac{1}{\sqrt{2}}$ (en pointillés).

