Classifying Animal Images

Matt Zuk

Overview of Project/Objectives

- Classifying images of animals
- Generating captions based on these classifications
- Employ CNNs and transformers
- Combine computer vision with natural language processing
 - Range of applications beyond this project

About the Data

- Original data: 2017 COCO dataset
 - 118,287 images originally in training data
 - Each with its own annotations
- Data Cleaning
 - Used 23,989 images containing animals
 - Resized and normalized
- FiftyOne library
- 2014 COCO dataset used for testing later on

Part One: CNN to Classify Animal Images

ML Model Used: YOLO

YOLOv8

Two different approaches:

- To start:
 - Using CPU, second smallest variant of YOLO
- ★ Second approach:
 - Using GPU, largest variant of YOLO
 - 20 epochs

Train & Validation Loss Graphs

Performance Metrics (Train/Val)

In attempt to improve the model, we tried to train it even more → overfitting! Returned back to original model.

Test Results

	Class	Images	Instances	Precision	Recall	mAP@50	mAP@50-95
	all	8265	21806	0.903	0.833	0.904	0.754
	cow	666	2841	0.877	0.764	0.867	0.68
	zebra	677	1886	0.923	0.878	0.95	0.808
	horse	1001	2194	0.931	0.834	0.918	0.753
	sheep	489	3216	0.817	0.722	0.814	0.623
	cat	1480	1669	0.941	0.934	0.968	0.846
	bear	341	462	0.936	0.944	0.971	0.875
	bird	1121	3956	0.829	0.569	0.702	0.49
el	ephant	714	1863	0.906	0.899	0.946	0.812
g	iraffe	849	1767	0.945	0.908	0.958	0.837
	dog	1521	1952	0.924	0.877	0.941	0.813

Confusion **Matrix**

-0.4

Part Two: Caption Generating

ML Model Used for Generating Captions

- BlipForConditionalGeneration and BlipProcessor
- Vision Language Model

Two different approaches:

- To start:
 - Feeding only images into Blip
- ★ Second approach:
 - Feed images into Blip
 - Also feed in filtered output from YOLO model

Examples

YOLO + Blip Generated Caption: 4 sheep in a pen

Blip Generated Caption: the sheep are white

YOLO + Blip Generated Caption: dogs are sitting in a col of photos

Blip Generated Caption: a col of dogs

YOLO + Blip Generated Caption: horses are standing in a circle

Blip Generated Caption: a group of people dressed in medieval costumes

Demo

Limitations

- Amount of data → add more data
- Amount of animals trained on → train on other types of animals
- Hardware/Lack of Processing Power Blip Model
- Overlap between 2014 and 2017 Dataset

Areas for Improvement/Next Steps

- Investigate what is strongly contributing to errors
 - Background noise vs overlapping features
- Reduce misclassifications
 - Augment the training dataset
 - Balance the dataset
 - Class-specific loss tuning