

Volume: 04 Issue: 05 | Sep-Oct 2023 ISSN: 2660-4159

<http://cajmns.centralasianstudies.org>

Иммунологические Аспекты Перехода Стенокардии Напряжения В Острый Коронарный Синдром

1. Камилова Шахзода Рахматовна
2. Наврузова Шакар Истамовна

Received 2nd Aug 2023,
Accepted 19th Sep 2023,
Online 12th Oct 2023

Аннотация: Введение: Нестабильная стенокардия и инфаркт миокарда, несмотря на различия в их клинических проявлениях, являются следствиями одного и того же патофизиологического процесса, а именно разрыва или эрозии атеросклеротической бляшки в сочетании с присоединяющимся тромбозом и эмболизацией более дистально расположенных участков сосудистого русла. В связи с этим нестабильная стенокардия и развивающийся инфаркт миокарда в настоящее время объединенные термином острый коронарный синдром (ОКС) требуют четкой дифференциальной диагностики в связи с необходимостью выбора терапевтической тактики.

Цель исследования: Изучение цитокинового профиля у больных с острым коронарным синдромом.

Материалы и методы: В исследование были включены 86 пациентов с ОКС (ОКС с трансформацией в острый инфаркт миокарда без подъема сегмента ST и нестабильной стенокардией). Критериями включения являлись больные в возрасте от 46 до 65 лет с диагнозом ИБС, подтвержденным коронароангиографией, изменениями на электрокардиограмме и/или динамикой кардиоспецифических ферментов, госпитализированные по поводу ОКС.

Результаты: В нашем исследовании показатели ИЛ-1 β во 2-группе ($52,8 \pm 1,55$ пг/мл) и в 3-группе ($50,1 \pm 1,23$ пг/мл), были достоверно в 1,4 раза выше контрольных значений ($36,2 \pm 1,19$ пг/мл), а ФНО α во 2-группе ($55,6 \pm 1,16$ пг/мл) и в 3-группе ($54,3 \pm 1,09$ пг/мл), были в 2,2 раза выше чем у здоровых ($24,5 \pm 0,86$ пг/мл). Это свидетельствует об индукции эндогенной реакции, направленной на продукцию

проводительных цитокинов в ответ на ишемическое поражение миокарда при ОКС.

Выводы: Таким образом, высокий уровень сывороточных ИЛ-1 β и ФНО α отражают более выраженную системную воспалительную реакцию в группе пациентов с нестабильной стенокардией. Также установлено достоверное двухкратное повышение концентрации цитокинов ИЛ-6 и VEGF-A у больных, перенесших инфаркт миокарда, что свидетельствует о более высоком процессе постишемического неоангиогенеза и воспалительной инфильтрации эндотелия коронарных сосудов.

Ключевые слова: острый коронарный синдром, ишемическая болезнь сердца, цитокины, инфаркт миокарда.

Введение. В последние годы было показано, что нестабильная стенокардия и инфаркт миокарда, несмотря на различия в их клинических проявлениях, являются следствиями одного и того же патофизиологического процесса, а именно разрыва или эрозии атеросклеротической бляшки в сочетании с присоединяющимся тромбозом и эмболизацией более дистально расположенных участков сосудистого русла. Данное обстоятельство требует четкой дифференциальной диагностики в связи с необходимостью выбора терапевтической тактики. В связи с этим нестабильная стенокардия и развивающийся инфаркт миокарда в настоящее время объединены термином острый коронарный синдром (ОКС) [2,4].

Особое внимание привлекают иммунологические аспекты патогенеза ОКС. Обнаружена аутосенсибилизация в отношении собственных атерогенных липопротеинов с выявлением в крови иммунных комплексов, а также признаков аутоиммунного воспаления интимы в зонах атеросклеротического повреждения [3,8].

Цитокины, являющиеся медиаторами иммунного воспаления, локально продуцируются клетками в атеросклеротических бляшках. Они координируют межклеточные взаимодействия и модулируют функции клеток сосудистой стенки. Получены данные о том, что цитокины являются маркерами атеросклеротического риска и эндотелиальной дисфункции. Поэтому внимание исследователей в последние годы привлекает изучение цитокинового статуса при сердечно-сосудистых заболеваниях [7,9].

Провоспалительные свойства системы CD40/CD40L обусловлены способностью увеличивать синтез молекул клеточной адгезии и различных хемокинов, усиливать экспрессию тканевого фактора, а также матриксных металлопротеаз, ведущих к нестабильности атеросклеротической бляшки (АБ). Эти результаты совместно с данными о высоком содержании CD40L в атеросклеротической бляшке подтверждают концепцию о том, что взаимодействие CD40L со своим рецептором может способствовать развитию нестабильности АБ, вызывая острые тромботические осложнения атеросклероза [1,5,6].

Цель исследования: изучение цитокинового профиля у больных с острым коронарным синдромом

Материалы и методы исследования: В исследование были включены 86 пациентов с ОКС (ОКС с трансформацией в острый инфаркт миокарда без подъема сегмента ST и нестабильной стенокардией).

Критериями включения являлись больные в возрасте от 46 до 65 лет с диагнозом ИБС, подтвержденным коронароангиографией, изменениями на электрокардиограмме и/или динамикой кардиоспецифических ферментов, госпитализированные по поводу ОКС. Распределение групп больных осуществляли следующим образом: 1-контрольная группа, в которую вошли 30 человек без сердечно-сосудистой патологии, практически здоровые, 2-группа 44 пациента с ОКС, с трансформацией в острый инфаркт миокарда без подъема сегмента ST, 3-группа — 42 пациента с ОКС с нестабильной стенокардией.

Пациенты исследуемых групп были сопоставимы по возрасту, полу, наличию факторов риска ССЗ, таких как артериальная гипертензия, курение, гиподинамия, дислипидемия, инфаркт миокарда в анамнезе.

Клиническими проявлениями ОКС считали наличие не менее одного признака из следующих: развитие ангинозного приступа в покое и/или длительность ангинозного приступа >20 мин и/или впервые возникшая стенокардия напряжения II-III функционального класса (ФК) или прогрессирующая стенокардия (появление ангинозных приступов при нагрузках в пределах III-IV ФК).

Результаты и их обсуждение

Анализ факторов риска ССЗ среди поступивших не выявил гендерных различий в двух группах пациентов. Сравнение данных анамнеза выявило, что у пациентов 2-группы развитие заболевания произошло в более молодом возрасте $56,4 \pm 1,3$ года в сравнении с пациентами 3-группы $63,2 \pm 1,6$ года.

Таблица 1. Основные клинические параметры сердечно-сосудистой системы

Показатели	Контрольная 1-группа (n=30)	2-группа (n=44)	3-группа (n=42)
ЧСС (в мин.)	$74,5 \pm 0,97^*$	$75,4 \pm 1,0^*$	$72,0 \pm 0,88$
САД (мм рт.ст.)	$127,0 \pm 2,01^{**}$	$161,4 \pm 1,14^{***}$	$173,5 \pm 2,24$
ДАД (мм рт. ст.)	$74,6 \pm 1,36^{**}$	$104,7 \pm 0,48^{***}$	$112,3 \pm 1,55$

Примечание: * - различия относительно данных контрольной группы значимы

(* - $P < 0,05$, ** - $P < 0,01$, *** - $P < 0,001$)

В ходе исследования пациентов 2- и 3-группы выявили скрытую легочную гипертензию по значениям СрДЛА $-20,88 \pm 0,28$ мм.рт.ст и $21,64 \pm 0,72$, что имеет статистическую значимость по отношению контрольной группы $-19,71 \pm 0,22$ мм рт.ст. А показатели КДР и КСР ЛЖ были на уровне контрольных значений, что послужило основанием заключению о том, что ЛГ у пациентов формируется независимо от коморбидности АГ с ИБС.

Следовательно, для ранней диагностики легочной гипертензии у больных АГ необходимо регулярное прохождение ЭхоКГ (табл.2).

Таблица 2. Гемодинамические параметры больных с ОКС

Показатели ЭхоКГ	Контрольная 1- группа (n=30)		2-группа (n=44)		3-группа (n=42)	
	M	m	M	m	M	M
ЧСС (уд/мин)	70,5	1,48	82,4**	1,22	77,3*	1,85
Диаметр аорты на уровне клапанов (см)	3,45	0,04	3,12**	0,02	3,25*	0,01
КДР левого предсердия (см)	3,98	0,05	4,24**	0,08	4,09*	0,06
КДР правого желудочка (см)	2,54	0,03	2,94	0,07	2,73*	0,03
МЖП (см)	1,07	0,01	1,14	0,01	1,11	0,01
ЗС левого желудочка (см)	1,02	0,01	1,16	0,01	1,11	0,02
ММ левого желудочка (гр)	207,15	1,96	246,29**	2,13	222,33**	2,05
КДО левого желудочка (мл)	136,68	2,87	151,46**	3,78	140,37*	3,59
КСО левого желудочка (мл)			76,35**	2,76	70,23*	3,10
УО левого желудочка (мл)	78,1	1,02	62,3**	0,82	67,7*	0,98
ФВ левого желудочка (%)	68,4	1,06	45,3***	0,97	49,1***	1,03
СрДЛА (мм рт.ст.)	19,71	0,22	20,88	0,28	21,64	0,72

Примечание: * Значения достоверны по отношению к контрольной группе (*P<0,05; **P<0,01;
***P<0,001)

На эхокардиограмме больных 3-группы наблюдался незначительный стеноз аорты на уровне клапанов $3,12 \pm 0,02$ по сравнению со здоровыми $3,45 \pm 0,04$ см, у всех больных 2- и 3-групп, мышечная масса левого желудочка была больше чем у здоровых и достоверное снижение фракции выброса левого желудочка также наблюдалось независимо от перенесенного инфаркта миокарда $45,3 \pm 0,97\%$ и $49,1 \pm 1,03\%$ против $68,4 \pm 1,06\%$ в контрольной группе (табл.2).

Изучение липидограммы крови у больных с ОКС свидетельствовало о повышении уровня общего холестерина до $6,90 \pm 0,14$ ммоль/л при ОКС с ИМ и до $6,42 \pm 0,12$ ммоль/л при ОКС с нестабильной стенокардией по сравнению с контрольной группой - $5,31 \pm 0,13$ ммоль/л. Достоверное понижение уровня липопротеинов высокой плотности (ЛПВП) на фоне повышения концентрации липопротеинов низкой плотности (ЛПНП) у больных ОКС в обеих группах свидетельствуют о высоком коэффициенте атерогенности (табл.3)

Таблица 3. Параметры липидного спектра при остром коронарном синдроме (M±m)

Показатели	1-контрольная группа (n=30)	2-группа (n=44)	3-группа (n=42)
Общий холестерин (ммоль/л)	5,31±0,13	6,90±0,14*	6,42±0,12**
ЛПВП (мг/дл)	51,8±0,72	38,1±0,29**	40,2±0,66*
ЛПНП (мг/дл)	118,7±2,37	144,3±2,04**	135,8±1,42*
ТГ (ммоль/л)	2,04±0,04	2,97±0,88	2,71±0,08*

Примечание: * Значения достоверны по отношению к контрольной группе (*P<0,05; **P<0,01; ***P<0,001)

С целью оценки активности воспалительного процесса при ОКС были изучены цитокины (ИЛ-1β, ИЛ-6, ФНО-α) CD-40L, VEGF, С-реактивный белок (табл.4).

Таблица 4. Показатели цитокинов сыворотки крови при остром коронарном синдроме (M±m)

Показатели	1-контрольная группа (n=30)	2-группа (n=44)	3-группа (n=42)
ИЛ-1β (пг/мл)	36,2±1,19	52,8±1,55*	50,1±1,23*
ИЛ-6 (пг/мл)	34,3±1,52	72,7±1,71**	46,2±1,64*
ФНОα (пг/мл)	24,5±0,86	55,6±1,16***	54,3±1,09***
VEGF-A (пг/мл)	192,7±4,55	281,7±6,08**	236,5±4,77**
CD40L (нг/мл)	8,9±0,45	12,8±0,41**	19,2±0,29***

Примечание: * Значения достоверны по отношению к контрольной группе (*P<0,05; **P<0,01; ***P<0,001)

Таким образом, высокий уровень сывороточных ИЛ-1β и ФНОα отражают более выраженную системную воспалительную реакцию в группе пациентов с нестабильной стенокардией. В нашем исследовании показатели ИЛ-1β во 2-группе (52,8±1,55 пг/мл) и в 3-группе (50,1±1,23 пг/мл), были достоверно в 1,4 раза выше контрольных значений (36,2±1,19 пг/мл), а ФНОα во 2-группе (55,6±1,16 пг/мл) и в 3-группе (54,3±1,09 пг/мл), были в 2,2 раза выше чем у здоровых (24,5±0,86 пг/мл). Это свидетельствует об индукции эндогенной реакции, направленной на продукцию провоспалительных цитокинов в ответ на ишемическое поражение миокарда при ОКС.

Показатели ИЛ-6 и VEGF-A явились наиболее информативными, в качестве маркеров ОКС у больных с ИБС, с достоверно высокими значениями во 2-основной группе. ИЛ-6 при ОКС с ИМ был (72,7±1,71 пг/мл) в 2 раза выше чем в контрольной группе (34,3±1,52 пг/мл) и в 1,6 раза выше, чем в группе с нестабильной стенокардией (46,2±1,64 пг/мл). Уровень VEGF-A повторял схожие с ИЛ-6 тенденции и был достоверно высоким во 2-группе (281,7±6,08 пг/мл), что в 1,5 раза выше, чем в контрольной группе (192,7±4,55 пг/мл) (табл.4).

Повышенная концентрация указанного цитокина в крови больных ОКС, перенесших ИМ, свидетельствует о процессе постишемического неоангиогенеза и воспалительной инфильтрации эндотелия коронарных сосудов.

Заключение. Таким образом, было установлено достоверное понижение уровня липопротеинов высокой плотности (ЛПВП) на фоне повышения концентрации липопротеинов низкой плотности (ЛПНП) у больных ОКС в обеих группах, что свидетельствуют о высоком коэффициенте атерогенности. Также установлено достоверное двухкратное повышение концентрации цитокинов ИЛ-6 и VEGF-A у больных, перенесших инфаркт миокарда, что свидетельствует о

более высоком процессе постишемического неоангиогенеза и воспалительной инфильтрации эндотелия коронарных сосудов.

Литература

1. Барбара Ольга Леонидовна, Осокина Анастасия Вячеславовна Роль маркеров системы CD40/CD40L в прогнозировании сердечно-сосудистых событий при коронарном атеросклерозе // ПКиК. 2011. №3. URL: <https://cyberleninka.ru/article/n/rol-markerov-sistemy-cd40-cd40l-v-prognozirovaniyu-serdechno-sosudistykh-sobytiy-pri-koronarnom-ateroskleroze>
2. Ганиева Ш.Ш., & Яхъяева Ф.О. (2022). СОВРЕМЕННЫЕ ПАТОГЕНЕТИЧЕСКИЕ АСПЕКТЫ КАРДИОРЕНАЛЬНОГО СИНДРОМА. Eurasian Journal of Medical and Natural Sciences, 2(6), 167–173. извлечено от <https://in-academy.uz/index.php/EJMNS/article/view/2494>
3. Давыдов С. И., Тарасов А. А., Емельянова А. Л., Киселева М. А., Бабаева А. Р. Новые возможности иммунологической диагностики обострений ишемической болезни сердца // КВТиП. 2012. №1. URL: <https://cyberleninka.ru/article/n/novye-vozmozhnosti-immunologicheskoy-diagnostiki-obostreniy-ischemicheskoy-bolezni-serdtsa-1>
4. Маханова Б.И., Г.Т. Токсанбаева, А.С. Чумбалова, Г.Ж. Асанова Кардиомаркеры у больных ИБС // Вестник КазНМУ. 2013. №4-1. URL: <https://cyberleninka.ru/article/n/kardiomarkery-u-bolnyh-ibs> (дата обращения: 07.01.2023).
5. Мухамедова М. М., & Ганиева Ш.Ш. (2022). Клинические Особенности Острого Коронарного Синдрома У Больных, Перенесших Коронавирусную Инфекцию. AMALIY VA TIBBIYOT FANLARI ILMUY JURNALI, 209–213. Retrieved from <https://www.sciencebox.uz/index.php/amaltibbiyot/article/view/4262>
6. Наврузова Ш.И. (2022). Диагностическое Значение Показателей Клеточного Иммунитета При Артериальной Гипертензии. Central Asian Journal of Medical and Natural Science, 3(2), 421-426. <https://doi.org/10.17605/OSF.IO/4FXQ9>
7. Прасолов А. В., Князева Л. А., Князева Л. И., Жукова Л. А. Изменение показателей цитокинового статуса у больных ИБС: стабильной стенокардией напряжения II-III функционального класса в зависимости от терапии // ВНМТ. 2009. №2. URL: <https://cyberleninka.ru/article/n/izmenenie-pokazateley-tsitokinovogo-statusa-u-bolnyh-ibs-stabilnoy-stenokardiey-napryazheniya-p-sh-funktionalnogo-klassa-v-zavisimosti>
8. Muhamedova M.M., & Ganieva Sh.Sh. (2022). Pathogenetic Features of Acute Coronary Syndrome in Patients with Covid-19. INTERNATIONAL JOURNAL OF HEALTH SYSTEMS AND MEDICAL SCIENCES, 1(5), 238–246. Retrieved from <http://interpublishing.com/index.php/IJHSMS/article/view/448>
9. Navruzova Sh.I. (2022). HUMORAL IMMUNITY AND MARKERS OF INFLAMMATION IN THE PROGNOSIS OF COMPLICATIONS OF HYPERTENSION. World Bulletin of Public Health, 9, 139-141. Retrieved from <https://scholarexpress.net/index.php/wbph/article/view/852>