Регулярни езици

- → (He)детерминистични крайни автомати
- → Регулярни изрази
- □ Нерегулярни езици
- □ Минимален автомат
- □ Разрешими проблеми

1.1.1 (Детерминистични) крайни автомати

Един детерминистичен краен автомат $A = (Q, \Sigma, \delta, s, F)$ се състои от:

(детерминистичен краен автомат=DFA)

- $\square \ Q$, крайно множество от състояния;
- \square Σ , крайно множество от (входни) символи, (азбука);
- \square $\delta: Q \times \Sigma \to Q$, функция на прехода;
- \square $s \in Q$, начално състояние;
- \square $F \subseteq Q$, множество от крайни състояния.

Как работи един краен автомат?

Разширяваме функцията δ върху думи:

$$egin{aligned} oldsymbol{\hat{\delta}}(q,oldsymbol{arepsilon}) &= q \ oldsymbol{\hat{\delta}}(q,aw) &= oldsymbol{\hat{\delta}}(\delta(q,a),w) \ A &= (Q,\Sigma,\delta,s,F) ext{ разпознава езика} \ L(A) &:= \left\{ w \in \Sigma^* : oldsymbol{\hat{\delta}}(s,w) \in F
ight\} \end{aligned}$$

Еквивалентна дефиниция:

$$\hat{\boldsymbol{\delta}}(q, \boldsymbol{\varepsilon}) = q$$
 $\hat{\boldsymbol{\delta}}(q, wa) = \boldsymbol{\delta}(\hat{\boldsymbol{\delta}}(q, w), a)$

Свойство: $\forall q, u, v : \hat{\boldsymbol{\delta}}(q, uv) = \hat{\boldsymbol{\delta}}(\hat{\boldsymbol{\delta}}(q, u), v).$

Д-во: индукция по u.

1. $u = \varepsilon$.

$$\hat{\boldsymbol{\delta}}(q,uv) = \hat{\boldsymbol{\delta}}(q,v).$$

$$\hat{\delta}(\hat{\delta}(q,u),v) = \hat{\delta}(\hat{\delta}(q,\varepsilon),v) = \hat{\delta}(q,v).$$

2. u = au'.

$$\hat{\boldsymbol{\delta}}(q,au'v) \stackrel{\text{Деф}}{=} \hat{\boldsymbol{\delta}}(\boldsymbol{\delta}(q,a),u'v) \stackrel{\text{ИП}}{=} \hat{\boldsymbol{\delta}}(\hat{\boldsymbol{\delta}}(\boldsymbol{\delta}(q,a),u'),v) \stackrel{\text{Деф}}{=} \hat{\boldsymbol{\delta}}(\hat{\boldsymbol{\delta}}(q,au'),v).$$

Интерпретация с ориентиран граф

$$A = (Q, \Sigma, \delta, s, F)$$

$$G_A = (Q, E),$$

всяка дъга $e=(q,q')\in E$ има етикет $\ell(e)=a$ ако $q'=\delta(q,a)$

Мулти-граф!

Лема:

$$orall w \in \Sigma^*: w \in L(A) \Leftrightarrow$$
 \exists път $P = sq_1q_2\cdots f = s \stackrel{a_1}{\to} q_1 \stackrel{a_2}{\to} \cdots \stackrel{a_k}{\to} f$, за някое $f \in F, w = a_1a_2\cdots a_k$.

Терминология:

Под път в A разбираме път в G_A .

Означения за път

 $P = sq_1q_2 \cdots f$ редица от върхове (състояния) $P = s \stackrel{a_1}{\to} q_1 \stackrel{a_2}{\to} \cdots \stackrel{a_k}{\to} f$ редица от (директни) преходи $P = s \stackrel{w}{\Rightarrow} f$, където $w = a_1 \cdots a_k$, P е с етикет w $q \stackrel{*}{\Rightarrow} r$ има път от q до r, т.е. r е достижим от q По дефиниция $s \stackrel{*}{\Rightarrow} s$ (рефлексивност) Свойство: $\hat{\delta}(q, w) = r \iff q \stackrel{w}{\Rightarrow} r$.

Крайни автомати: Основни примери

Пример: Билетен автомат

Конфигурация $(q, w) \in \Sigma^* \times Q$.

Дефиниция: $(q,w) \vdash_A (p,u) \iff w = au \& \delta(q,a) = p.$

Дефиниция: $(q,w)\vdash_A^* (p,u)$

(рефлексивно и транзитивно затваряне на \vdash_A)

 $(q, \varepsilon) \vdash_A^* (q, \varepsilon)$.

$$(q,aw)\vdash_A^* (p,u) \iff (q,aw)\vdash_A (r,w) \& (r,w)\vdash_A^* (p,u).$$

Проверете, че: $(q, w) \vdash_A^* (p, u) \iff (\exists v \in \Sigma^*)(w = vu \& \hat{\delta}(q, v) = p) \iff \hat{\delta}(q, w) = \hat{\delta}(p, u).$

Твърдение: $w \in L(A) \iff (\exists f \in F)(\hat{\delta}(s, w) = f \in F) \iff (\exists f \in F)(s \stackrel{w}{\Rightarrow} f) \iff (\exists f \in F)((s, w) \vdash_{A}^{*} (f, \varepsilon)).$

Тоталност

Един автомат е тотален, ако от всяко състояние има преход с всяка буква от Σ .

Често не даваме всички стойности на δ , т.е. автоматът може да не е тотален.

Конвенция: Има винаги error състояние e такова, че $\delta(q,c)=e$ когато не може да разпознаваме повече символи.

$$\delta(e,c) = e \ (\forall c \in \Sigma)$$

Пример: $\{a^n b^m : n \ge 1, m \ge 1\}$

 $G = (\{S, A, B\}, \{a, b\}, P, S)$

q	C	$\delta(q,c)$	
S	a	A	
\boldsymbol{A}	a	A	
\boldsymbol{A}	\boldsymbol{b}	\boldsymbol{B}	
В	\boldsymbol{b}	\boldsymbol{B}	

 $\delta(S, b)$?

1.1.2 **Недетерминистични** крайни автомати NFA

 допускат се повече от един преход от дадено състояние с един символ

- \square Q, множество от състояния
- \square Σ , азбука
- \square $\delta: Q \times \Sigma \to 2^Q$, функция на прехода
- \square $s \in Q$, начално състояние
- \square $F \subseteq Q$, крайни състояния

Преходът от q до q' при вход a: $q' \in \delta(q,a)$ повече възможности!

Разширяване на δ

Подмножества от състояния: $\bar{\delta}: 2^Q \times \Sigma \to 2^Q$

$$ar{\delta}(M,a) := \bigcup_{p \in M} \delta(p,a)$$

Подмножества от състояния и входна дума:

$$\hat{\boldsymbol{\delta}}: 2^{\mathcal{Q}} \times \Sigma^* \to 2^{\mathcal{Q}}$$

$$egin{aligned} oldsymbol{\hat{\delta}}(M,oldsymbol{arepsilon}) &:= M \ oldsymbol{\hat{\delta}}(M,aw) &:= oldsymbol{\hat{\delta}}(oldsymbol{\delta}(M,a),w) \end{aligned}$$

$$L(A) := \left\{ w \in \Sigma^* : \hat{\delta}(\left\{s\right\}, w) \cap F \neq \emptyset \right\}$$

Интерпретация с (мулти) граф за L(A)

$$A = (Q, \Sigma, \delta, s, F)$$

$$G_A = (Q, E)$$

всяка $e=(q,q')\in E$ е с етикет $\ell(e)=a$ ако $q'\in \delta(q,a)$

"'Мулти"'= паралени дъги са разрешени(различни етикети)

$$w \in L(A) \Leftrightarrow \exists \text{ път } P = s \stackrel{a_1}{\Rightarrow} q_1 \stackrel{a_2}{\Rightarrow} \cdots \stackrel{a_k}{\Rightarrow} f \text{ in } A \text{ (в G(A))}:$$
 $f \in F \land w = a_1 a_2 \cdots a_k$

Пътят $P = s \stackrel{w}{\Rightarrow} f$ от s до крайно състояние f, с етикет w наричаме приемащ за w.

Лема:
$$\hat{\delta}(M, w) = \left\{ q \in Q : \exists p \in M : p \stackrel{w}{\Rightarrow} q \right\}.$$

Д-во с индукция по |w|:

$$\hat{\boldsymbol{\delta}}(M,\boldsymbol{\varepsilon}) = M$$

 $n \rightsquigarrow n+1$:

$$\begin{split} &\hat{\boldsymbol{\delta}}(M,aw) = \hat{\boldsymbol{\delta}}(\bar{\boldsymbol{\delta}}(M,a),w) \\ &= \left\{ r \in Q : (\exists q \in \bar{\boldsymbol{\delta}}(M,a)) : q \overset{w}{\Rightarrow} r \right\} \\ &= \left\{ r \in Q : (\exists p \in M) (\exists q \in \boldsymbol{\delta}(p,a)) : q \overset{w}{\Rightarrow} r \right\} \\ &= \left\{ r \in Q : (\exists p \in M) : p \overset{aw}{\Rightarrow} r \right\} \end{split}$$
 (Интерпретация с граф.)

Следствие:
$$L(A) = \left\{ w \in \Sigma^* : \exists f \in F : s \stackrel{w}{\Rightarrow} f \right\}$$

Свойство: $\hat{\boldsymbol{\delta}}(M,uw) = \hat{\boldsymbol{\delta}}(\hat{\boldsymbol{\delta}}(M,u),w).$

Дефиниция: $(q,w) \vdash_A (p,u) \iff w = au \& p \in \delta(q,a)$.

Означение:

 $(\vdash_A^*$ е рефлексивното и транзитивно затваряне на $\vdash_A)$

$$(q, \varepsilon) \vdash_{A}^{*} (q, \varepsilon).$$

$$(q,aw)\vdash_A^* (p,u) \iff (q,aw)\vdash_A (r,w) \& (r,w)\vdash_A^* (p,u).$$

Свойства

- 1. Ако $r \in \delta(q,a)$ и $(r,w) \vdash_A^* (p,\varepsilon)$, то $(q,aw) \vdash_A^* (p,\varepsilon)$.
- $2. \ \hat{\boldsymbol{\delta}}(\{q\}, w) = \left\{ p \in Q : q \stackrel{w}{\Rightarrow} p \right\} = \left\{ p \in Q : (q, w) \vdash_A^* (p, \varepsilon) \right\}.$
- 3. $\hat{\boldsymbol{\delta}}(\{q\}, uv) = \hat{\boldsymbol{\delta}}(\hat{\boldsymbol{\delta}}(\{q\}, u), v)$.
- 4. $w \in L(A) \iff \hat{\delta}(\{s\}, w) \cap F \neq \emptyset \iff (\exists f \in F : s \stackrel{w}{\Rightarrow} f) \iff (\exists f \in F)(q, w) \vdash_{A}^{*} (f, \varepsilon).$

$NFA \rightarrow DFA$

Даден: NFA $A=(Q,\Sigma,\delta,s,F)$

Теорема: (Детерминизация на NFA)[Рабин, Скот 1959] DFA $A':=(2^Q, \Sigma, \bar{\delta}, \{s\}, \{M\subseteq Q: M\cap F\neq\emptyset\})$ разпознава L(A).

Упражнение: Дайте алгоритъм, който по даден NFA A и дума w да изчислява $\hat{\delta}(\{s\}, w)$ за време $\mathcal{O}(|w| \cdot |\delta|)$. Тук $|\delta|$ е броят на преходите от вида $p \in \delta(q, a)$, достатъчни да дефинираме δ .

Детерминизация на NFA

$$A=(Q,\Sigma,oldsymbol{\delta},s,F)$$
 $A':=(2^Q,\Sigma,oldsymbol{\delta},\{s\}\,,F'),\,F':=\{M\subseteq Q:M\cap F
eq\emptyset\},\,$ където $oldsymbol{\delta}(M,a):=igcup_{p\in M}\delta(p,a)$

Твърдим: L(A') = L(A)

Д-во: Първо да отбележим, че $\hat{\overline{\delta}}(\{s\},w) = \hat{\delta}(\{s\},w).$ Тогава

$$L(A) = \left\{ w \in \Sigma^* : \hat{\boldsymbol{\delta}}(\{s\}, w) \cap F \neq \emptyset \right\}$$
 Деф. L(A)
$$= \left\{ w \in \Sigma^* : \hat{\boldsymbol{\delta}}(\{s\}, w) \in F' \right\}$$
 Деф. F'
$$= L(A')$$
 Деф. L(A')

 $(\hat{\delta}$ играе двойна роля!)

Пример

1 1	l _	_	0 1
$\underline{}q$	$ar{oldsymbol{\delta}}(q,0)$	$ar{\delta}(q,1)$	_ 0,1
S	s, 1	S	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
s, 1	s, 1, 2	s, 2	
s, 2	s, 1, 3	s,3	
s,3	s, 1	S	1 0
s, 1, 2	s, 1, 2, 3	s, 2, 3	$s \rightarrow s $
s, 1, 3	s,1,2	s, 2	s 2 0 1 s 3
s, 2, 3	s, 1, 3	s, 3	s12 0 1 0 s1 3
s, 1, 2, 3	s, 1, 2, 3	s, 2, 3	1 0 0
			s 23 s 123

По-общ пример

Твърдение:

$$\exists \text{DFA } A' = (Q, \Sigma, \delta, s, F) : L(A') = L(A) \land (|Q| < 2^k)$$

Д-во: Да предположим, че: $\exists A'$ и $|Q| < 2^k$

$$\longrightarrow \exists x \neq y \in \{0,1\}^k : \hat{\boldsymbol{\delta}}(s,x) = \hat{\boldsymbol{\delta}}(s,y) (Принцип на Дирихле)$$

където i: $x[i] \neq y[i]$,

Нека
$$x[i] = 0$$
, $y[i] = 1$.

Тогава $x0^{i-1} \in L(A)$

и
$$y0^{i-1} \not\in L(A)$$
.

Ho,
$$\hat{\delta}(s, x0^{i-1}) = \hat{\delta}(\hat{\delta}(s, x), 0^{i-1})$$

= $\hat{\delta}(\hat{\delta}(s, y), 0^{i-1}) = \hat{\delta}(s, y0^{i-1}).$

Така или и двете думи $x0^{i-1}$ и $y0^{i-1}$ се приемат, или и двете не се приемат. Противоречие.

// състояния на A'

Прилагане на алгоритъма за детерминизация

Разглеждаме само подмножествата достижими от $\{s\}$:

```
Q' := \{\{s\}\}
Queue todo:= Q'
while \exists M \in \text{todo do}
      todo:=todo \ M
      for each a \in \Sigma do
            if M' = \overline{\delta}(M, a) \notin Q' then
                  insert M' into Q'
                  insert M' into todo
Често |Q'| \ll 2^{|Q|}!
```


Регулярни езици

- \square \emptyset , $\{\varepsilon\}$ и $\{a\}$ за всяко $a \in \Sigma$ са основни регулярни езици;
- \square Ако L_1 и L_2 са регулярни, то и $L_1 \cup L_2$ е регулярен;
- \square Ако L_1 и L_2 са регулярни, то и $L_1.L_2$ е регулярен;
- \square Ако L е регулярен, то и L^* е регулярен.

Един език е регулярен, ако се получава от основните с помощта на операциите обединение, конкатенация и звезда, приложени краен брой пъти.

1.1.3 Регулярни изрази

Всеки регулярен израз описва един регулярен език.

-		
израз	описва	забележка
Ø	Ø	
ε	$\{oldsymbol{arepsilon}\}$	
a	{ <i>a</i> }	$a\in \Sigma$
$\alpha \cup \beta$	$L(\alpha) \cup L(\beta)$	$oldsymbol{lpha}$ описва $L(oldsymbol{lpha})$ (синоним: $oldsymbol{lpha} oldsymbol{eta})$
$\alpha \cdot \beta$	$L(\alpha) \cdot L(\beta)$	$oldsymbol{eta}$ описва $L(oldsymbol{eta})$
(α)	$L(\alpha)$	
$lpha^*$	$L(\pmb{lpha})^*$	
$lpha^+$	$L(lpha)^+$	

Конвенции: пропускаме \cdot , пропускаме $L(\cdot)$

Синтаксис (рег. израз) versus

Семантика (рег. езици)

Компютърните програми боравят със синтактични обекти.

Програмна верификация

Ние доказваме от семантична гледна точка, че обектът ще се обаработи коректно.

Пример

- \square предпоследната цифра е 0: $(0 \cup 1)^*0(0 \cup 1)$
- \square съдържа 10: $(0 \cup 1)^*10(0 \cup 1)^*$
- не съдържа 10: 0*1*
- \square съдържа 101: $(0 \cup 1)^*101(0 \cup 1)^*$
- \square не съдържа 101: $0*1* \cup (0*1*100)*0*1*10(\varepsilon \cup 00*1*)$
- 🗆 всички цели числа:

$$(\varepsilon \cup + \cup -)(1 \cup \cdots \cup 9)(0 \cup \cdots \cup 9)^* \cup 0$$

Затвореност относно регулярните операции

Един език L се нарича автоматен, ако има краен автомат A такъв, че L(A) = L.

Теорема Всеки регулярен език е автоматен.

Д-во идея:

ще построим автомати, разпознаващи основните езици (основните езици са автоматни)

ще покажем, че регулярните операции запазват автоматността

Базов случай

$L_1 \cup L_2$

$$A_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$$
 и $L(A_1)=L_1$ $A_2=(Q_2,\Sigma,\delta_2,s_2,F_2)$ и $L(A_2)=L_2$ и БОО $Q_1\cap Q_2=\emptyset$

$$A:=(\{s\}\cup Q_1\cup Q_2,\Sigma,\delta,s,F)$$

 δ е дефинирана като $\delta_{1/2}$ за $Q_{1/2}$

 $\forall a \in \Sigma : \delta(s,a) := \delta(s_1,a) \cup \delta(s_2,a).$

$$F \! := egin{cases} F_1 \cup F_2 \cup \{s\} & ext{ako } s_1 \in F_1 \lor s_2 \in F_2 \ F_1 \cup F_2 & ext{иначе} \end{cases}$$

Нека $w \in L_1 = L(A_1)$ (произволна).

Ako $w = \varepsilon$

$$\longrightarrow s_1 \in F_1 \longrightarrow s \in F \longrightarrow w \in L(A).$$

Ako w = ax:

$$\longrightarrow \exists$$
 път $P_1 = s_1 \stackrel{a}{\Rightarrow} q_1 \stackrel{x}{\Rightarrow} f_1 \in F_1 \subseteq F$

 $\longrightarrow \exists$ път $P = s \stackrel{a}{\Rightarrow} q_1 \stackrel{x}{\Rightarrow} f_1 \in F$

 $\longrightarrow w \in L(A)$.

$$w \in L_2 = L(A_2)$$

 $\longrightarrow \cdots \longrightarrow w \in L(A)$.

Д-во на $L(A) \subseteq L_1 \cup L_2$

Нека w е произволна дума $w \in L(A)$.

Ако $w = \varepsilon \longrightarrow s \in F \longrightarrow s_1 \in F_1 \lor s_2 \in F_2$

 $\longrightarrow \varepsilon \in L_1 \vee \varepsilon \in L_2 \longrightarrow \varepsilon \in L_1 \cup L_2$

Ako w = ax:

 $\longrightarrow \exists$ път $P = s \stackrel{a}{\Longrightarrow} q \stackrel{x}{\Longrightarrow} f \in F$.

Ако $q = q_1 \in Q_1$:

 $\longrightarrow \exists$ път $P_1 = s_1 \stackrel{a}{\Longrightarrow} q_1 \stackrel{x}{\Longrightarrow} f \in F_1$.

(само състояния,

достижими от q_1 са в Q_1 .)

$$\longrightarrow ax = w \in L_1 \subseteq L_1 \cup L_2$$

В противен случай: $\longrightarrow q = q_2 \in Q_2$

$$\longrightarrow \exists$$
 път $P_2 = s_2 \stackrel{a}{\Longrightarrow} q_2 \stackrel{x}{\Longrightarrow} f \in F_2$.

$$\longrightarrow ax = w \in L_2 \subseteq L_1 \cup L_2$$

$$A_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$$
 и $L(A_1)=L_1$ $A_2=(Q_2,\Sigma,\delta_2,s_2,F_2)$ и $L(A_2)=L_2$ и $Q_1\cap Q_2=\emptyset$

$$A:=(Q_1\cup Q_2,\Sigma,\boldsymbol{\delta},\boldsymbol{s_1},\boldsymbol{F}), \forall a\in\Sigma:$$

$$\delta(q,a) := egin{cases} \delta_1(q,a) & ext{ako } q \in Q_1 \setminus F_1 \ \delta_1(q,a) \cup \delta_2(s_2,a) & ext{ako } q \in F_1 \ \delta_2(q,a) & ext{иначе} \end{cases}$$
 $F := egin{cases} F_1 \cup F_2 & ext{ako } s_2 \in F_2 \ F_2 & ext{иначе} \end{cases}$

$$F\!:=egin{cases} F_1\cup F_2 & ext{ako } s_2\in F_2\ F_2 & ext{иначe} \end{cases}$$

Позитивна обвивка
$$L^+ = \bigcup_{i > 1} L^i$$

$$A = (Q, \Sigma, \delta, s, F)$$
 и $L(A) = L$

$$A^{+} = (Q, \Sigma, \delta^{+}, s, F) \ \forall a \in \Sigma$$

$$A^+ := (Q, \Sigma, \delta^+, s, F), orall a \in \Sigma:$$
 $\delta^+(q, a) := egin{cases} \delta(q, a) & ext{ako } q \in Q \setminus F \ \delta(q, a) \cup \delta(s, a) & ext{ako } q \in F \end{cases}$
 $A^+ := (Q, \Sigma, \delta^+, s, F), orall a \in \Sigma:$
 $\delta^+(q, a) := egin{cases} \delta(q, a) & ext{ako } q \in F \end{cases}$
 $A^+ := (Q, \Sigma, \delta^+, s, F), orall a \in \Sigma:$

Д-во на
$$L(A^+) \subseteq L^+$$

Нека $w \in L(A^+)$ е произволна и $w \neq \varepsilon$ Нека $P = s \stackrel{a_0}{\Rightarrow} q_0 \stackrel{*}{\Rightarrow} f$ е приемащ път за w.

Декомпозираме P на преходи от вида $f_j \stackrel{a_j}{\Rightarrow} q_j$ by $q_j \notin \delta(f_j, a_j), j \in 1...i, i \geq 0$. $\longrightarrow f_i \in F, q_i \in \delta(s, a_i)$.

$$P = s \xrightarrow{a_0 x_0 a_1 x_1 \cdots a_i x_i = w} f_1 \xrightarrow{a_0} q_1 \xrightarrow{x_1} f_2 \xrightarrow{*} f_i \xrightarrow{a_i} q_i \xrightarrow{x_i} f$$

Дефинираме $P_j := s \stackrel{a_j}{\Rightarrow} q_j \stackrel{x_j}{\Rightarrow} f_{j+1}$ (с $f_{i+1} := f$). $\longrightarrow \forall j \in 0...i : P_j$ е един приемащ път A. $\longrightarrow w \in L^+$

Д-во на
$$L^i \subseteq L(A^+)$$
 за $i \ge 1$

Нека $w = w_1 \cdots w_i \in L^i$ ($\varepsilon \neq w_i \in L$). Да разгледаме $P_i = s \stackrel{a_j}{\Rightarrow} q_i \stackrel{x_j}{\Rightarrow} f_i, \ j \in 1..i, \ f_i \in F$,

които свидетелстват за

$$w_1 \in L, \ldots, w_i \in L.$$

 L^st -звезда на Клини

Построяваме автомат за $\varepsilon \cup L^+ = L^*$.

Пример

(0u1)*0 (0u1)(0u1)

Приложение за търсене в текст

Unix-Tool grep:grep REGULAR-EXPRESSION FILE

- \square Търсим във всички стрингове във FILE, които са в L(REGULAR-EXPRESSION)
- □ Много синтаксис: a-g, :alnum:,...
- 🔲 По-лесно е, ако го транслираме в регулярен израз.
- Бързо приложение превръщаме в детерминистичен автомат.

Приложение при scanner-(generator), lex, flex

Input: регулярен израз

Output: краен автомат (C code),

Runtime-input: програмата като стрингове

Runtime-output: Програма за token (Пакети) като числа, идентификатори, ключови думи.

- □ time-critical всеки символ ще се сканира, коментарите се изпускат, десетичните числа се превръщат в двоични ,...
- шпациите ,...
- □ опростява по-нататък синтактичния анализ

Други приложения

- □ Редактори, например emacs
- □ Script-езици като Perl
- ☐ java.util.regex Library
- □ C++ Boost.Regex Library
- .net framework
- □ Parsing за xml документи

г-преходи

Разрешени са **директни** (ε преходи) без да се чете символ.

ε NFA

- \square Q, множество от състояния
- \square Σ , азбука
- \square $\delta: Q \times (\Sigma \cup \varepsilon) \to 2^Q$, функция на прехода
- \square $s \in Q$, начално състояние
- \square $F \subseteq Q$, крайни състояния

Примери: $0^* \cup 1^*$

$$A_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$$
и $L(A_2) = L_2$

и
$$Q_1 \cap Q_2 = \emptyset$$

$$A:=(\{s\}\cup Q_1\cup Q_2,\Sigma,\delta,s,F_1\cup F_2)$$

 δ е дефинирана като $\delta_{1/2}$ on $Q_{1/2}$

 $oldsymbol{arepsilon}$ преходи от s до s_1 и s_2 .

$L_1 \cdot L_2$

$$A_1=(Q_1,\Sigma,\delta_1,s_1,F_1),$$
 където $L(A_1)=L_1$ $A_2=(Q_2,\Sigma,\delta_2,s_2,F_2),$ където $L(A_2)=L_2$ и $Q_1\cap Q_2=\emptyset$ $A:=(Q_1\cup Q_2,\Sigma,\delta,s_1,F_2)$

 δ е дефинирена като $\delta_{1/2}$ on $Q_{1/2}$

 ε преходи от F_1 до s_2 .

$$A=(Q,\Sigma,\delta,s,F)$$
и $L(A)=L$ $A^+{:=}(Q,\Sigma,\delta^+,s,F)$ δ^+ е дефинирана като δ $arepsilon$ преходи $f o s orall f \in F$.

Д-во (идея):

Заместваме всеки ε преход и преход към следващ символ в A с директен преход към следващия символ в \bar{A} .

Трябва да внимаваме с крайните състояния.

ε NFA $A \leadsto$ NFA \bar{A}

Нека $A = (Q, \Sigma, \delta, s, F)$ е с ε преходи.

$$E(M) = \{ p \mid \exists (q \in M)((q, \varepsilon) \vdash_A^* (p, \varepsilon)) \}$$

$$\hat{\delta}(M,\varepsilon) = E(M)$$

$$\hat{\delta}(M, aw) = E(\hat{\delta}(E(\delta(M, a)), w))$$

$$w \in L(A) \Leftrightarrow \hat{\delta}(\{s\}, w) \cap F \neq \emptyset$$

Еквивалентен автомат без $\boldsymbol{\varepsilon}$ преходи:

$$A' = (Q, \Sigma, \delta', s, F'),$$

$$\delta'(q,a) = \hat{\delta}(\{q\},a) = \bigcup_{p \in E(\{q\})} E(\delta(p,a)),$$

$$F' := egin{cases} F \cup \{s\} & ext{ako } F \cap E(\{s\})
eq \emptyset \ F' := \begin{cases} F \cup \{s\} & ext{ako } F \cap E(\{s\})
eq \emptyset \ F' := \begin{cases} F \cup \{s\} & ext{ako } F \cap E(\{s\})
eq \emptyset \end{cases} \end{cases}$$

Теорема на Клини

Теорема Всеки автоматен език е регулярен.

Д-во: Даден: DFA $A = (\{1,\ldots,n\}, \Sigma, \delta, s, F)$

Резултат: регулярен израз α такъв, че $L(A) = L(\alpha)$.

За всяко $f \in F$ нека $L_f = \left\{ w \in \Sigma^* : \hat{\delta}(s, w) = f \right\}.$

Ще намерим RegExp за L_f . Тъй като $L(A) = \bigcup_{f \in F} L_f$,

теоремата ще е доказана, защото F е крайно.

Даден: DFA $A_f = (\{1, \dots, n\}, \Sigma, \delta, s, \{f\})$

Резултат: регулярен израз α и $L_f = L(A_f) = L(\alpha)$.

Нека $L_{ij} := L((\{1,\ldots,n\},\Sigma,\delta,i,\{j\}))$

В частност $L_{sf} = L_f$.

Ако $i \neq j$: $L_{ii}^0 := \{a \in \Sigma : j \in \delta(i,a)\}$

Ако i=j: L^0_{ij} := $\{a \in \Sigma : j \in \delta(i,a)\} \cup \{\varepsilon\}$

 $m{L}^m_{ij} \! := \; \left\{ w \in \Sigma^* : \exists ext{pаботен път} \;\; i \stackrel{w}{\Rightarrow} j = i P j \; \text{и} \; P \in \{1, \dots, m\}^*
ight\}$

Тук преход iPj озаначава преход от i до j, с междинни състояния с номера $\leq m$.

Забележете, че $L_{ij} = L_{ij}^n$.

Ще построим реулярен израз за L^m_{ij} индуктивно, използвайки регулярните изрази за по-малките m.

Даден: регулярен израз $oldsymbol{lpha}_{ij}^k,\, k < m$ и $L(oldsymbol{lpha}_{ij}^k) = L_{ij}^k$

Резултат: $\boldsymbol{\alpha}_{ij}^{m}$ и $L(\boldsymbol{\alpha}_{ij}^{m}) = L_{ij}^{m}$

Ако
$$m=0, i=j$$
: $\alpha_{ii}^0=\bigcup_{a\in\Sigma:\delta(i,a)=i}a\cup\varepsilon$
Ако $m=0, i\neq j$: $\alpha_{ij}^0=\bigcup_{a\in\Sigma:\delta(i,a)=j}a$

Ako $m \rightsquigarrow m+1$:

$$\alpha_{ij}^{m+1} = \alpha_{ij}^m \cup \alpha_{i,m+1}^m \cdot (\alpha_{m+1,m+1}^m)^* \cdot \alpha_{m+1,j}^m$$

= 1*0

Пример

$$egin{aligned} lpha_{11}^0 &= 1 \cup arepsilon & lpha_{22}^0 &= 0 \cup arepsilon \ & lpha_{12}^1 &= lpha_{12}^0 \cup lpha_{11}^0 \cdot (lpha_{11}^0)^* \cdot lpha_{12}^0 \ &= 0 \cup (1 \cup arepsilon) \cdot (1 \cup arepsilon)^* \cdot 0 \end{aligned}$$

$$\alpha_{12}^{2} = \alpha_{12}^{1} \cup \alpha_{12}^{1} \cdot (\alpha_{22}^{1})^{*} \cdot \alpha_{22}^{1}$$

$$= 1^{*}0 \cup 1^{*}0 \cdot (1^{*}0 \cup \varepsilon)^{*} \cdot (1^{*}0 \cup \varepsilon)$$

$$= 1^{*}0(1^{*}0)^{*}$$

$$L(\alpha_{12}^2) = L_{12}^2 = L_{12} = L_2$$
, където $F = \{2\}$.

$$\alpha_{12}^0 = 0$$
 $\alpha_{21}^0 = 1$

$$\alpha_{22}^1 = \alpha_{22}^0 \cup \alpha_{21}^0 \cdot (\alpha_{11}^0)^* \cdot \alpha_{12}^0$$

$$= 0 \cup \varepsilon \cup 1 \cdot (1 \cup \varepsilon)^* \cdot 0$$

$$=1^*0\cup\varepsilon$$

1.1.4 Pumping лема (лема за покачването)

Aко L регулярен език

$$\longrightarrow \exists n \in \mathbb{N} : \forall w \in L : |w| > n$$
$$\longrightarrow \exists u, v, x : w = uvx \land$$

- 1. $|v| \geq 1 \wedge$
- $|uv| \leq n \wedge$
- 3. $\forall k \in \mathbb{N}_0 : uv^k x \in L$

С думи:

Достатъчно дългите думи на един регулярен език имат непразна поддума която можем да "pump"ваме (итерираме) без да напускаме езика.

Д-во на Pumping лемата

L регулярен $\longrightarrow \exists n \in \mathbb{N} : \forall w \in L : |w| > n \longrightarrow \exists u, v, x :$

 $w = uvx \land |v| \ge 1 \land |uv| \le n \land \forall k \in \mathbb{N}_0 : uv^k x \in L$

Д-во: Нека $A = (Q, \Sigma, \delta, q_0, F)$ DFA и L(A) = L.

Нека n = |Q| и $w \in L$ с $|w| = m \ge n$ (произволна).

Нека q_0, \ldots, q_m състояния.

 $(\exists i < j \le n : q_i = q_j) \longrightarrow |v| \ge 1, \ |uv| \le n, \ uv^k x$ са също в езика

Д-во на Pumping лемата

 $w = w_{1} \dots w_{m}; \ u = w_{1} \dots w_{i}; \ v = w_{i+1} \dots w_{j}; \ x = w_{j+1} \dots w_{m}$ $(q_{0}, w) \vdash^{*} (q_{i}, w_{i+1} \dots w_{j} \dots w_{m}) \vdash^{*} (q_{j}, w_{j+1} \dots w_{m}) \Rightarrow$ $(q_{0}, w_{1} \dots w_{i}) \vdash^{*} (q_{i}, \varepsilon) \& (q_{i}, w_{i+1} \dots w_{j}) \vdash^{*} (q_{j}, \varepsilon) \& q_{i} = q_{j}$ $\Rightarrow (q_{0}, w_{1} \dots w_{i} w_{j+1} \dots w_{m}) \vdash^{*} (q_{m}, \varepsilon) \Rightarrow (q_{0}, ux) \vdash^{*} (q_{m}, \varepsilon)$ $\& (q_{0}, uv^{k}x) \vdash^{*} (q_{i}, v^{k}x) \vdash^{*} (q_{j}, v^{k-1}x) \vdash^{*} \dots \vdash^{*} (q_{j}, vx) \vdash^{*} (q_{m}, \varepsilon).$

Пример:
$$L = \{a^k b^k : k \in \mathbb{N}\}$$

Да допуснем, че L е регулярен.

Нека n е числото от Pumping лемата и нека $w=a^nb^n=uvx$ в съответствие с Pumping лемата, тогава $ux\in L.$

$$|uv| \le n, |v| \ge 1 \longrightarrow v = a^{\ell}$$
 sa $\ell \ge 1$.
 $ux = a^{n-\ell}b^n \in L$.

Противоречие.

Пример: Балансирани скоби $L_{()}$

Да допуснем, че L е регулярен.

Нека n е числото от Pumping лемата за L и да разгледаме $w=\binom{n}{n}=uvx$ съгласно Pumping лемата $ux\in L_{()}$ и |v|>1 и $|uv|\leq n$.

Тогава $\mathbf{v} = (i, i \neq 0)$

и $ux = \binom{n-i}{n} \notin L_{()}$ Противоречие.

$L = \{0^p : p \text{ is a prime number}\}$

Да допуснем, че L е регулярен.

Нека n е числото от Pumping лемата за L.

Нека $p \ge n+2$ е просто число.(\exists безкрайно много прости числа) $\longrightarrow 0^p \in L = uvw, \ |v| \ge 1, \ |uw| \ge 2.$

Pumping-лема: $uv^{|uw|}w \in L$.

 $\longrightarrow |uw| + |uw| \cdot |v| = |uw|(1+|v|)$ е просто число.

Два нетривиални делителя $|uw| \ge 2$ и $(1+|v|) \ge 2$.

Противоречие.

Да допуснем, че L е регулярен.

Нека n е числото от Pumping лемата за L.

Нека
$$\longrightarrow 0^{n^2} \in L = uvw, |v| \ge 1, |uv| \le n.$$

Pumping-лема: $uv^2w \in L$.

$$\longrightarrow n^2 < |uv^2w| \le n^2 + n < (n+1)^2.$$

Противоречие.

Pumping-лемата

не е достатъчно условие за регулярност

Пример: $L = \{c^m a^\ell b^\ell : m, \ell \ge 0\} \cup \{a,b\}^*$ не е регулярен, но

ако $n \ge 1$ е произволно и $x \in L$ с $|x| \ge n$.

1. $x \in a^*b^*$:

$$x = \underbrace{\varepsilon}_{u} \underbrace{a}_{v} \underbrace{a^{m}b^{n-m-1}}_{w}$$

1.
$$|v| = 1 \ge 1$$

2.
$$|uv| = 1 \le n$$

3.
$$uv^i w = a^i a^m b^{n-m-1} \in a^* b^* \subseteq L$$

Pumping-лемата

не е достатъчно условие за регулярност

Пример: $L = \{c^m a^\ell b^\ell : m, \ell \ge 0\} \cup \{a,b\}^*$ не е регулярен, Нека n е произволно, $w \in L$ произволно с $|w| \ge n$.

- 1. Ако $w \in a^*b^*$: го видяхме.
- 2. Ako $w = c^m a^{\ell} b^{\ell}, m \ge 1$:

Разгледайте
$$w = \underbrace{\varepsilon}_{u} \underbrace{c}_{v} \underbrace{c^{m-1}a^{\ell}b^{\ell}}_{x}$$

1.
$$|v| = 1 \ge 1$$

2.
$$|uv| = 1 \le n$$

3.
$$uv^i x = c^{m-1+i} a^{\ell} b^{\ell} \in L$$

1.1.5 Релации на еквивалентност и минимален автомат

Идея: работим директно с L, без да разглеждаме конкретен автомат.

Припомняне: Релация на еквивалентност

Една релация $R \subseteq Y \times Y$ се нарича релация на еквивалентност, ако R е:

	рефлексивна
--	-------------

 $\forall x : xRx$

🔲 транзитивна

 $\forall xyz : xRy \land yRz \longrightarrow xRz$

□ симетрична.

 $\forall xy : xRy \longrightarrow yRx$

Клас на еквивалентност: $[x] = \{y : xRy\}$. Класовете на еквивалентност са непразни и непресичащи се, т.е. всеки елемент на Y принадлежи точно

на един клас на еквививалентност

Индекс: индекс|R|:= |Клас на еквив.| = |{ $[x]: x \in Y$ }|

Прецизиране: R прецизира R' ($R \subseteq R'$)

Лема: R прецизира $R' \longrightarrow \forall$ класове на еквивалентност

 $[x]_{R}:[x]_{R}\subseteq[x]_{R'}$

Д-во:

$$y \in [x]_R \Leftrightarrow (y, x) \in R$$

$$\xrightarrow{R \subseteq R'} (y, x) \in R'$$

$$\Leftrightarrow y \in [x]_{R'}$$

Следствие: R прецизира $R' \longrightarrow |R| \ge |R'|$ Д-во: Разгледайте $\rho([x]_R) = [x]_{R'}$. Проверете, че е добре дефинирана функция, която е върху (сюрективна).

Релация на Нероуд

За езика L релацията на Нероуд е дефинирана като $R_L := \{(x,y) \in \Sigma^* \times \Sigma^* : \forall z \in \Sigma^* : xz \in L \Leftrightarrow yz \in L\}$

Идея: класовете на еквивалентност съответстват на състоянията.

Защо?

DFA пораждат релация на еквивалентност

Нека $M = (Q, \Sigma, \delta, s, F)$ е DFA и L(M) = L.

$$R_M:=\left\{(x,y)\in\Sigma^*\times\Sigma^*:\hat{\boldsymbol{\delta}}(s,x)=\hat{\boldsymbol{\delta}}(s,y)\right\}.$$

релация на еквивалентност! по един клас на еквивалентност (за достижимо от s) състояние.

Лема 1: R_M прецизира релацията на Нероуд $R_L =$

$$\{(x,y) \in \Sigma^* \times \Sigma^* : \forall z \in \Sigma^* : xz \in L \Leftrightarrow yz \in L\}$$

Д-во:
$$\forall (x,y) \in \Sigma^* \times \Sigma^* : \hat{\boldsymbol{\delta}}(s,x) = \hat{\boldsymbol{\delta}}(s,y) \longrightarrow$$

$$\forall z : \hat{\delta}(s, xz) = \hat{\delta}(s, yz) \longrightarrow \forall z : xz \in L \Leftrightarrow yz \in L$$

Безкраен индекс на релацията на Нероуд

Наблюдение: индексът $|R_L| = \infty \longrightarrow L$ не е регулярен.

Д-во: Да допуснем, че L е регулярен.

$$\longrightarrow \exists \text{ DFA } M = (Q, \Sigma, \delta, s, F) : L(M) = L.$$

 $\longrightarrow R_M$ прецизира R_L .

$$\longrightarrow |Q| \ge |R_M| \ge |R_L| = \infty.$$

Противоречие.

Следователно: Ако L е регулярен, то индексът $|R_L| < \infty$.

Автомат от класовете на еквивалентност

$$R_L := \{(x,y) \in \Sigma^* \times \Sigma^* : \forall z \in \Sigma^* : xz \in L \Leftrightarrow yz \in L\}$$

Идея: когато класовете на еквивалентност $[w_1], \ldots, [w_k]$ на R_L съответстват на състоянията на един DFA $M_{\equiv},$ тогава по лемата по-долу минималният автомат за L е:

$$egin{aligned} & oldsymbol{M}_{\equiv} := \left\{ \left[w_1 \right], \ldots, \left[w_k \right]
ight\}, oldsymbol{\Sigma}, oldsymbol{\delta}_{\equiv}, \left[oldsymbol{arepsilon}
ight], F_{\equiv}
ight) \ \mathrm{c} \ & F_{\equiv} := \left\{ \left[w \right] : w \in L
ight\} \ \mathrm{m} \ & oldsymbol{\delta}_{\equiv}(\left[w \right], a) := \left[wa \right]. \end{aligned}$$

Лема: δ_{\equiv} е добре дефинирана

Лема: $\hat{\boldsymbol{\delta}}_{\equiv}([\boldsymbol{\varepsilon}], w) = [w]$

Лема: $L(M_{\equiv}) = L$

Минимален автомат

$$egin{aligned} & R_L := \; \{(x,y) \in \Sigma^* imes \Sigma^* : orall z \in \Sigma^* : xz \in L \Leftrightarrow yz \in L \} \ & M_{\equiv} := \; (\{[w_1], \dots, [w_k]\} \,, \Sigma, \delta_{\equiv}, [oldsymbol{arepsilon}], F_{\equiv}), \; ext{където} \ & F_{\equiv} := \; \{[w] : w \in L \} \; ext{ и} \ & \delta_{\equiv}([w], a) := [wa]. \end{aligned}$$

Лема: δ_{\equiv} е добре дефинирана $xR_Ly \longrightarrow \forall a \in \Sigma : xaR_Lya$ дясно инвариантна $xR_Ly \longrightarrow \forall z \in \Sigma^* : xz \in L \Leftrightarrow yz \in L$ $\longrightarrow \forall az \in \Sigma^* : x(az) \in L \Leftrightarrow y(az) \in L$ $\Leftrightarrow \forall a \in \Sigma : \forall z \in \Sigma^* : (xa)z \in L \Leftrightarrow (ya)z \in L$ $\longrightarrow \forall a \in \Sigma : xaR_Lya$

Минимален автомат

Минималният автомат: разпознава L

$$R_L := \{(x,y) \in \Sigma^* \times \Sigma^* : \forall z \in \Sigma^* : xz \in L \Leftrightarrow yz \in L\}$$
 $M_{\equiv} := (\{[w_1], \dots, [w_k]\}, \Sigma, \delta_{\equiv}, [\varepsilon], F_{\equiv}) \text{ с}$
 $F_{\equiv} := \{[w] : w \in L\} \text{ и}$
 $\delta_{\equiv}([w], a) := [wa].$
Лема: $L(M_{\equiv}) = L.$
 $w \in L(M_{\equiv})$
 $\Leftrightarrow \hat{\delta}_{\equiv}([\varepsilon], w) \in \{[w] : w \in L\}$ деф. M_{\equiv}
 $\Leftrightarrow [w] \in \{[w] : w \in L\}$ предишната лема
 $\Leftrightarrow w \in L$ кл. на еквив. са или изцяло в, или извън L
 $([w] \in \{[w] : w \in L\} \longrightarrow \exists x \in L : [x] = [w] \longrightarrow xR_Ly \longrightarrow \forall z : xz \in L \Leftrightarrow wz \in L \longrightarrow x\varepsilon \in L \Leftrightarrow w\varepsilon \in L)$

Пример

 $L \subseteq \{0,1\}^*$ език, всички думи с четен брой единици и четен брой нули

Класовете на еквивалентност?

Пример

 $L \subseteq \{0,1\}^*$ език, всички думи с четен брой единици и четен брой нули

Класовете на еквивалентност:

 $[\varepsilon], [0], [1], [01]$

Пример

 $L \subseteq \{0,1\}^*$ език, всички думи с четен брой единици и четен брой нули

Теорема на Майхил-Нероуд

Нека

$$\mathbf{R_L} := \{(x,y) \in \Sigma^* \times \Sigma^* : \forall z \in \Sigma^* : xz \in L \Leftrightarrow yz \in L\}.$$

L не е регулярен $\longrightarrow |R_L| = \infty$

Теорема на Майхил-Нероуд: L регулярен $\iff |R_L| < \infty$.

Нека
$$|R_L| = k < ∞$$

$$\mathbf{M}_{\equiv} := (\{[w_1], \dots, [w_k]\}, \Sigma, \delta_{\equiv}, [\varepsilon], F_{\equiv})$$

Тогава $L(M_{\equiv}) = L$

Ако L е реулярен и $M=(Q,\Sigma,\delta,s,F)$ произволен DFA с L(M)=L, то R_M прецизира R_L . Следователно $|R_L|\leq |Q|$, т.е. M_{\equiv} е минимален автомат (с най-малък брой състояния), разпознаващ L.

Един автомат се нарича свързан, ако всяко състоятие е достижимо от началното.

Следствие: Всички минимални автомати за L са изоморфии на M_{\equiv} .

Д-во: Нека $M=(Q,\Sigma,\delta,s,F)$ е свързан DFA, L(M)=L и $|Q|=|R_L|$. Ще покажем, че $M\cong M_{\equiv}$, т.е. M е изоморфен на M_{\equiv} .

За всяко $q \in Q$ има дума w, такава че $\hat{\delta}(s,w) = q$. Дефинираме $\kappa(q) = [w]$.

Первина κ е коректна

т.е. $\hat{\delta}(s, w_1) = \hat{\delta}(s, w) \longrightarrow w_1 R_L w \longrightarrow [w_1] = [w].$ $w_1 z \in L \iff \hat{\delta}(s, w_1 z) \in F \iff \hat{\delta}(\hat{\delta}(s, w_1), z) \in F \iff \hat{\delta}(\hat{\delta}(s, w), z) \in F \iff \hat{\delta}(s, w_2) \in F \iff w_2 \in L$

\square κ е биекция

(еднозначна) Нека
$$q \neq q_1$$
 и $\hat{\delta}(s, w_1) = q_1$.

Допускаме, че

$$\kappa(q) = \kappa(q_1) \longrightarrow [w] = [w_1] \& w \neg R_M w_1 \longrightarrow |R_M| > |R_L|.$$

Противоречие.

(върху)
$$\forall w(q = \hat{\delta}(s, w) \longrightarrow \kappa(q) = [w]).$$

- $\square \ \kappa(s) = [\varepsilon] \ (\hat{\delta}(s, \varepsilon) = s)$
- $\square \quad \kappa(\delta(q,a)) = \delta_{\equiv}(\kappa(q),a)$ $q = \hat{\delta}(s,w) \longrightarrow \delta(q,a) = \hat{\delta}(s,wa) \longrightarrow \kappa(\delta(q,a)) =$ $[wa] = \delta_{\equiv}([w],a) = \delta_{\equiv}(\kappa(q),a)$
- $\square f \in F \iff \kappa(f) \in F_{\equiv}.$

Един контрапример NFA

Има структурно различни минимални NFAs за $(0 \cup 1)^*1$.

Упражнение: Напишете функцията на прехода.

Конструкция

на минималния автомат

Махаме състоянията, **недостижими** от s.

Алгоритъм: Търсене в дълбочина в графа G_A за s.

Маркираме всички достижими състояния.

Махаме недостижимите състояния.

Изпълнение — Примери

Еквивалентни състояния

Идея: разгледайте DFA $M=(Q,\Sigma,\delta,s,F)$ (без недостижими състояния)

M не е минимален \longrightarrow

 R_M прецизира $R_L \longrightarrow \exists q \neq r \in Q$:

$$[w]_M \stackrel{\cdot}{\cup} [w']_M \subseteq K, \ \hat{\delta}(s,w) = q, \hat{\delta}(s,w') = r$$

за някой клас на екв. K за R_L

q,r се наричат еквивалентни ($q \equiv r$),

т.е.:

$$q \equiv r \Leftrightarrow \forall w \in \Sigma^* : \hat{\delta}(q, w) \in F \Leftrightarrow \hat{\delta}(r, w) \in F$$

Махане на еквивалентните състояния

Да разгледаме $q \neq r \in Q : q \equiv r$ и $r \neq s$

Maxame r:

$$\mathit{M}' := (\mathit{Q} \setminus \{r\}\,, \Sigma, \delta', s, \mathit{F} \setminus \{r\}))$$
 където

$$\delta'(t,a) := egin{cases} q & ext{ако } \delta(t,a) = r & ext{q} \\ \delta(t,a) & ext{иначе} \end{cases}$$

Лема: L(M') = L

Д-во:Упражнение

Минимизация на състоянията

Първа стъпка:

Function $\min DFA(M)$

махаме състоянията недостижими от s

while $\exists q, r \in Q : q \equiv r \land q \neq r \land r \neq s$ do

maxame r of M

return M

Проблем: Как да намерим еквиваленните състояния?

 $q \equiv r \text{ iff } \forall z \in \Sigma^* : \hat{\delta}(q, z) \in F \Leftrightarrow \hat{\delta}(r, z) \in F$

Кванторът е по не крайно множество!

Нееквивалентни състояния

 $q \equiv r ext{ iff } \forall z \in \Sigma^* : \hat{\boldsymbol{\delta}}(q,z) \in F \Leftrightarrow \hat{\boldsymbol{\delta}}(r,z) \in F$ $q \not\equiv r ext{ iff } \exists z \in \Sigma^* : \hat{\boldsymbol{\delta}}(q,z) \in F \not\Leftrightarrow \hat{\boldsymbol{\delta}}(r,z) \in F$ $z ext{ e } c$ видетел за нееквивалентност.

Проблем: да се намерят свидетели за нееквивалентност

Най-къси свидетели за нееквивалентност

 $\forall q \in F, r \notin F : \varepsilon$ е свидетел за $q \not\equiv r$.

Нека w = aw' е най-къс свидетел за $q \not\equiv r$.

Наблюдение: w' е свидетел за $q' := \delta(q, a) \not\equiv \delta(r, a) =: r'$

Лема: w' е най-къс свидетел за $q' \not\equiv r'$

Доказателство с допускане на противното: Да допуснем:

w'' е по-къс свидетел за $q'\not\equiv r'$

$$\longrightarrow \hat{\delta}(q', w'') \in F \land \hat{\delta}(r', w'') \not\in F$$

 $\longrightarrow \hat{\delta}(\delta(q,a),w'') \in F \land \hat{\delta}(\delta(r,a),w'') \not\in F$

 $\longrightarrow \hat{\delta}(q, aw'') \in F \land \hat{\delta}(r, aw'') \notin F$

 $\longrightarrow aw''$ е по-къс свидетел за $q \not\equiv r$

Противоречие.

Най-къси свидетели за нееквивалентност

 ${m \epsilon}$ свидетелства $q \not\equiv r$, ако $q \in F, r \not\in F$ или $r \in F, q \not\in F$.

Ако w = aw' е най-къс свидетел за $q \not\equiv r$, то w' е най-къс свидетел за $q' := \delta(q,a) \not\equiv \delta(r,a) =: r'$

Обратно: ако $q' \not\equiv r'$ и

$$\exists a \in \Sigma(q' := \delta(q, a) \& \delta(r, a) = r'), \text{ to } q \not\equiv r$$

Пример

 $L \subseteq \{0,1\}^*$ език, всички думи с четен брой нули и четен брой нули

 $0=0 \mathcal{E}$ е най-къс свидетел за $t \not\equiv r$.

 $ightarrow \mathcal{E}$ е най-късият свидетел за $s = \delta(t,0) \not\equiv \delta(r,0) = q$.

Тест с една буква

Нека N_k е множеството от всички нееквивалентни двойки от състояния със свидетелите с дължина $\leq k$.

$$N_0 = \{\{q, r\} : q \in F \not\Leftrightarrow r \in F\}$$

$$N_{k+1} = \{ \{q, r\} : \exists a \in \Sigma(\{\delta(q, a), \delta(r, a)\} \in N_k) \} \cup N_k$$

Нека r е първото, за което $N_r = N_{r+1}$. Тогава:

Лема: $\{q,r\} \in N_r \iff q \not\equiv r$.

 $\Longrightarrow \{q,r\} \in N_k$ за първи път. Индукция по k:

k = 0. $q \not\equiv r$.

$$k > 0. \{\delta(q, a), \delta(r, a)\} \in N_{k-1} \longrightarrow \delta(q, a) \not\equiv \delta(r, a) \longrightarrow q \not\equiv r$$

Предишната лема и индукционната хипотеза.

Нека $E = Q \times Q \setminus N_r$ - всички двойки еквив. състояния.

Един лесен алгоритъм

```
N:=\emptyset // маркирани двойки N':=\{\{q,r\}\subseteq Q:q\in F\not\Leftrightarrow r\in F\}// следващите маркирани двойки while N'\neq\emptyset do N:=N\cup N' N':=\{\{q,r\}\subseteq Q:\exists a\in\Sigma:\{\delta(q,a),\delta(r,a)\}\in N\}\setminus N
```

Общо време: $\mathscr{O}(|\Sigma|\cdot|Q|^3)$

Инициализация: $\mathcal{O}(|Q|^2)$

Време за цикъла: $\mathscr{O}(|\Sigma|\cdot |Q|^2)$

Колко цикъла? Сигурно $\leq |Q|^2$.

По-точно наблюдение: $\leq |Q|$ цикли

Минимален автомат

$$q \equiv r \Leftrightarrow \forall z \in \Sigma^* : \hat{\delta}(q, z) \in F \Leftrightarrow \hat{\delta}(r, z) \in F$$

релация на евивалентност

Нека [q] е класът на еквивалентност съдържащ q.

$$extbf{ extit{M}'}:=(Q',\Sigma,\delta',[s],F'),$$
 където

$$Q' =: \{[q] : q \in Q\}$$

$$F' := \{ [q] : [q] \cap F \neq \emptyset \}$$
 и

$$\delta'([q],a) := [\delta(q,a)].$$

Лема 1: δ' е добре дефинирана

Лема 2: $\hat{\boldsymbol{\delta}}'([s],w)=[\hat{\boldsymbol{\delta}}(s,w)]$, следователно L(M')=L(M)

Лема 3: M' е с минимален брой състояния.

Минимален автомат

$$q \equiv r \Leftrightarrow \forall z \in \Sigma^* : \hat{\delta}(q, z) \in F \Leftrightarrow \hat{\delta}(r, z) \in F$$

Лема 1: δ' е добре дефинирана т.е.

ако
$$q \equiv p \longrightarrow \forall a \in \Sigma : \delta(q, a) \equiv \delta(p, a)$$

Ако
$$\exists a \in \Sigma : \delta(q, a) \not\equiv \delta(p, a)$$
, то $q \not\equiv p$.

Лема 2.:
$$\hat{\boldsymbol{\delta}}'([q], w) = [\hat{\boldsymbol{\delta}}(q, w)], q \in Q, w \in \Sigma^*.$$

Индукция по |w|:

$$\hat{\boldsymbol{\delta}}'([q], \boldsymbol{\varepsilon}) = [q] = [\hat{\boldsymbol{\delta}}(q, \boldsymbol{\varepsilon})].$$

$$\hat{\boldsymbol{\delta}}'([q], aw) \stackrel{\text{деф.}\hat{\boldsymbol{\delta}}'}{=} \hat{\boldsymbol{\delta}}'(\boldsymbol{\delta}'([q], a), w) \stackrel{\text{деф.}\boldsymbol{\delta}'}{=} \hat{\boldsymbol{\delta}}'([\boldsymbol{\delta}(q, a)], w) \stackrel{\text{ИП}}{=} [\hat{\boldsymbol{\delta}}(q, aw)].$$

$$w \in L(M') \longrightarrow \hat{\delta}'([s], w) \in F' \longrightarrow$$

$$[\hat{\boldsymbol{\delta}}(s,w)] \in F' \longrightarrow$$

$$\hat{\delta}(s,w) \equiv f \& f \in F \longrightarrow$$

$$\hat{\boldsymbol{\delta}}(\hat{\boldsymbol{\delta}}(s,w),\boldsymbol{\varepsilon}) \in F \longrightarrow$$

$$\hat{\delta}(s, w) \in F \longrightarrow w \in L(M)$$
.

$$w \in L(M) \longrightarrow \hat{\delta}(s, w) \in F \longrightarrow$$

$$[\hat{\boldsymbol{\delta}}(s,w)] \in F' \longrightarrow$$

$$\hat{\delta}'([s], w) \in F' \longrightarrow w \in L(M').$$

Така L(M') = L(M).

Лема 2

деф на F'

деф на ≡

деф на F'

Лема 2

Лема 3: M' е с минимален брой състояния.

M' е свързан (без недостижими състояния от s) и детерминиран автомат:

$$\forall q \in Q \exists w \in \Sigma^*(\hat{\boldsymbol{\delta}}(s,w) = q \longrightarrow \hat{\boldsymbol{\delta}}'([s],w) = [q])$$
 по Лема 2.

Нека L = L(M). Знаем, че $R_{M'}$ прецизира R_L .

Следовтелно $|R_{M'}| \geq |R_L|$.

Ще покажем, че R_L прецизира $R_{M'}$ т.е. $|R_{M'}| \leq |R_L|$.

Нека uR_Lv , $u,v\in\Sigma^*$. Да допуснем, че $u\neg R_{M'}v$.

$$\hat{\boldsymbol{\delta}}'([s],u) \neq \hat{\boldsymbol{\delta}}'([s],v) \longrightarrow [\hat{\boldsymbol{\delta}}(s,u)] \neq [\hat{\boldsymbol{\delta}}(s,v)]$$
 (по Лема 2) \longrightarrow $\hat{\boldsymbol{\delta}}(s,u) \not\equiv \hat{\boldsymbol{\delta}}(s,v)$

Тогава съществува дума w, такава че:

$$\hat{\delta}(s,uw) \in F \Leftrightarrow \hat{\delta}(s,vw) \in F \longrightarrow uw \in L \Leftrightarrow vw \in L$$
. Противоречие.

Минимизация на състоянията за време

$$\mathcal{O}(|\Sigma| \cdot |Q| \log |Q|)$$

[Hopcroft 1971]. Data structures.

Леко опростяване:

[Blum, Minimization of finite automata in $O(n \log n)$ time, Inf. Proc. Hexaters, 1996.]

Защо минимизация на състоянията

- минимално място за таблицата на преходите между състояния
- минимален автомат очевидно → ние научаваме нещо за самия език.

Но, когато δ е представена като списък от преходи или програма, искаме да оптимизираме дължината й и времето за изпълнение.

Изобщо

 \rightsquigarrow

активна научна област.

$$L = \{0,1\}^* \, 1 \, \{0,1\}^{k-1}$$

Минималният автомат има 2^k състояния.

$$(\{0,\ldots,2^k-1\},\{0,1\},\delta,0,F)$$

$$\delta(q, a) = 2q + a, \ q \in F \Leftrightarrow q[k-1] = 1$$

Верификация за нерегулярност

- Pumping Лема:
 - +: Лесно се прилага
 - -: Само необходимо условие
- □ Релацията на Нероуд
 - +: Необходимо и достатъчно условие $(R_L) = \infty$
 - -: Малко трудно се проверява

Релация на Нероуд

Пример: $L = \{a^n b^n : n \ge 1\}$

Твърдение: $\forall k > 1, j \neq k > 1 : [a^k b] \neq [a^j b]$

$$[a^k b] = \{a^k b, a^{k+1} b b, \ldots\} = \{a^{k+i} b^{i+1}\}$$

така винаги k-1 повече а-та от b-та.

Следователно $[a^kb]$ и $[a^jb]$ са непресичащи.

Релация на Нероуд

Пример:
$$L = \{c^m a^{\ell} b^{\ell} : m, \ell \ge 0\} \cup \{a, b\}^*$$

Твърдение: $\forall k > 1, j \neq k > 1 : [ca^k b] \neq [ca^j b]$

$$[ca^kb] = \{c^ma^{k+i}b^{1+i} : m \ge 0, i \ge 1\}$$

така винаги k-1 повече а-та от b-та.

Следователно $[ca^kb]$ и $[ca^jb]$ са непресичащи се.

1.1.6 Свойства на затвореност

Нека L, L' са регулярни езици.

Тогава и следните езици са регулярни:

 $L \cup L'$, L^* , $L \cdot L'$: по дефиниция на рег. израз.

 $ar{L}:=oldsymbol{\Sigma}^*ackslash L$: Да разгледаме DFA $A=(Q,\Sigma,\delta,s,F)$ с L(A)=L.

Нека $\bar{A}:=(Q,\Sigma,\delta,s,Q\setminus F)$. Тогава $L(\bar{A})=\bar{L}$.

 $L \cap L' = \overline{\bar{L} \cup \bar{L'}}$ (Де Морган)

 $L \setminus L' = L \cap \bar{L}'$

L^R: Упражнение. Упътване: Индукция по регулярен израз.

(Product abtomat)

Конструкции на DFA за

теоретико-мнжествените операции

L и L' са регулярни езици, дефинирани с DFAs

$$A = (Q, \Sigma, \delta, s, F),$$

$$A' = (Q', \Sigma, \delta', s', F').$$

Идея: Автоматът A_{\times} симулира поведението на A и A'.

Product abtomat: $A_{\times} := (Q \times Q', \Sigma, \delta_{\times}, (s, s'), F_{\times})$ c

$$\delta_{\times}((q,q'),a) = (\delta(q,a),\delta(q',a))$$

Дефинираме F в съответствие с операциите:

$$L \cup L'$$
: $F_{\times} := Q \times F' \cup F \times Q'$

$$L \cap L'$$
 $F_{\times} := F \times F'$

1.1.7 Разрешимост

на прости свойства на един краен автомат

Word problem

 $w \in L$?

Изброждаме DFA A.

Симулираме A с вход w.

Дали има крайно състояние, което е достижимо?

Линейно време, ако DFA ако е даден автоматът!

Проблемът за празнотата на езика

$$L = \emptyset$$
?

Представяне на DFA или NFA A:

$$L = \emptyset \Leftrightarrow \neg \exists f \in F : f \text{ е от } s \text{ достижимо}$$

→ търсене в дълбочина, линейно време, както и за NFA.

Пример

Проблемът за крайност на езика I-c Pumping Лемата

Нека n е числото от Pumping-Лемата за L - регулярен Твърдение: $|L(G)| = \infty \Leftrightarrow \exists z \in L(G) : n \leq |z| < 2n$ Д-во:

 $z \in L(G), n \leq |z| < 2n$ — Ритріпд лемата осигурява $|L| = \infty$.

Ако $|L(G)|=\infty$ да разгледаме $z\in L(G)$ с минимална дължина $|z|\geq n.$

Да допуснем, че $|z| \ge 2n$.

 $\stackrel{\text{Pumping }\Pi\text{ema}}{\longrightarrow} z = uvw,$

 $1 \le |v| \le |uv| \le n, uw \in L(G) \longrightarrow |uw| \ge n.$

Противоречие с минималността на |z|.

Проблемът за крайност на езика II — намиране на цикли

 $|L(A)|=\infty$? $\Leftrightarrow \exists$ приемащ път, съдържащ цикъл. Нека NFA има $F=\{f\}$. Нека $G_A=(Q,E),$ $E=\{(q,r):\exists a\in\Sigma\cup\{\varepsilon\}:r\in\delta(q,a)\}$

- 1. Махаме състоянията, от които f не е достижимо. Търсене в дълбочина в $\bar{G}_A = (Q, \{(q,r): (r,q) \in E\})$ за f.
- 2. Можем ли да достигнем цикъл от s? \Leftrightarrow Дали търсенето в дълбочина от s в G_A среща вече посетен възел?

Rückwärtskante im Tiefensuchbaum

Проблемът за пълнота

$$L(A) = \Sigma^*$$
?

 $\Leftrightarrow \neg \exists q \in Q \setminus F : q$ е достижимо от s?

→ търсене в дълбочина, линейно време, само за DFA!

(Еквивалентно: празнота на \bar{L})

Пълнота на NFA:

Трансформираме в DFA. Не е известен по-добър алгоритъм.

Проблемът за еквивалентност

L и L' са регулярни езици разпознавани от DFAs A, A'.

Въпрос L = L'?

 $\Leftrightarrow \neg \exists w : (w \in L \land w \not\in L') \lor (w \not\in L \land w \in L')$

 $\Leftrightarrow \neg \exists w : (w \in L \land w \in \bar{L}') \lor (w \in \bar{L} \land w \in L')$

 $\Leftrightarrow (L \cap \bar{L}') \cup (\bar{L} \cap L') = \emptyset$

за пример с product автомат

Проблем: бавно

Еквивалентност на DFA

L и L' са регулярни езици дефинирани от DFAs $A=(Q,\Sigma,\delta,s,F),\,A'=(Q',\Sigma,\delta',s',F').$

Идея: Минималният автомат е "'единствен"'.

→ минимизирайте двата автомата и дикажете, че са "'равни"'.

Проблем: Възможно е да са преименувани състоянията. Сложността на изоморфизъм между по-общи графи е отрит въпрос.

Еквиванетност на DFA

L и L' са регулярни езици дефинирани с DFA

 $A = (Q, \Sigma, \delta, s, F), A' = (Q', \Sigma, \delta', s', F')$. Нека $Q \cap Q' = \emptyset$.

Въпрос: L = L'?

Да разгледаме
$$A_{\cup} := (Q \cup Q', \Sigma, \delta_{\cup}, s, F \cup F'),$$
 $\delta_{\cup}(q,a) = \begin{cases} \delta(q,a) & \text{ако } q \in Q \\ \delta'(q,a) & \text{ако } q \in Q' \end{cases}$

Намерете класовете на еквивалентност от състояния за A_{\sqcup} . $L = L' \Leftrightarrow s \equiv s'$.

Пример

 $L \subseteq \{0,1\}^*$ език, всички думи с поне една нула

Алгоритъмът за маркиране на нееквивалентните двойки състояния ни дава:

$$\{q,r\},\{q,t\},\{s,r\},\{s,t\},\{u,r\},\{u,t\}$$

$$\rightsquigarrow q \equiv s$$

Обобщение на крайни автомати и регулярни езици

- □ Най-простият машинен модел
- Алгоритмични правила (минимизация на състоянията, трансформиране в регулярен израз,...)
- 🔲 Разпознаваният език е напълно разбираем
- □ Полезни приложения: обработка на текст, компилатори, . . .
- □ Концепцията за недетерминизъм