*9.	Let A be the set of all points of \mathbb{R}^2_ℓ of the form $x \times (-x)$, for x rational; let B be
	the set of all points of this form for x irrational. If V is an open set of \mathbb{R}^2_ℓ con-
	taining B , show there exists no open set U containing A that is disjoint from V ,
	as follows:

- (a) Let K_n consist of all irrational numbers x in [0, 1] such that $[x, x + 1/n) \times [-x, -x + 1/n)$ is contained in V. Show [0, 1] is the union of the sets K_n and countably many one-point sets.
- (b) Use Exercise 5 of §27 to show that some set \bar{K}_n contains an open interval (a, b) of \mathbb{R} .
- (c) Show that *V* contains the open parallelogram consisting of all points of the form $x \times (-x + \epsilon)$ for which a < x < b and $0 < \epsilon < 1/n$.
- (d) Conclude that if q is a rational number with a < q < b, then the point $q \times (-q)$ of \mathbb{R}^2_ℓ is a limit point of V.

 $A = \{(x, -x) \mid x \in Q\}$ V open in \mathbb{R}^2 $B = \{(x, -x) \mid x \in IG\}$ BCV $\exists U$ open in \mathbb{R}^2 s.t $A \subset U$ and U disjoint from V.

(a) Let K_n consist of all irrational numbers x in [0, 1] such that $[x, x + 1/n) \times [-x, -x + 1/n)$ is contained in V. Show [0, 1] is the union of the sets K_n and countably many one-point sets.