Exercise 7.1. Let $K = \mathbb{Q}$, $M = \mathbb{Q}(2^{1/3})$ and $L = \mathbb{Q}(2^{1/3}, \sqrt{3}, i)$. Prove that L : K and L : M are normal but M : K is not normal.

Solution. We know that a field extension $F_1: F_2$ is normal iff it is a splitting field extension for some $f \in F_2[t]$. Consider the polynomial $f(t) = (t^2 - 3)(t^2 + 1)$. Then,

$$f(t) = (t + \sqrt{3})(t - \sqrt{3})(t + i)(t - i),$$

whence L: M is a splitting field extension for f.

Next, consider $g(t) = (t^2 - 3)(t^2 + 1)(t^3 - 2)$. Then,

$$f(t) = (t + \sqrt{3})(t - \sqrt{3})(t + i)(t - i)(t - \sqrt[3]{2})(t - \varepsilon_3\sqrt[3]{2})(t - \varepsilon_3\sqrt[3]{2}),$$

where $\varepsilon_3 = \exp\left(\frac{2\pi}{3}i\right)$. Notice,

$$\varepsilon_{3} = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)
= -\frac{1}{2} + i\frac{\sqrt{3}}{2}
= \frac{1}{2}\left(-1 + i\sqrt{3}\right) \in \mathbb{Q}(3^{1/3}, i, \sqrt{3})
= \frac{1}{2}\left(-1 - i\sqrt{3}\right) \in \mathbb{Q}(2^{1/3}, i, \sqrt{3})
= \frac{1}{2}\left(-1 - i\sqrt{3}\right) \in \mathbb{Q}(2^{1/3}, i, \sqrt{3}).$$

Thus L: K is a splitting field extension for f, hence it is normal.

By definition, an extension M: K is normal if $\forall \alpha \in M$, the minimum polynomial of α over K, $\mu_{\alpha}^{K}(t)$, splits over M[t]. Obviously, $\sqrt[3]{2} \in \mathbb{Q}(2^{1/3})$ by construction. However, notice that for $\alpha = \sqrt[3]{2}$,

$$\mu_{\alpha}^{K}(t) = t^{3} - 2$$

= $(t - \sqrt[3]{2})(t - \varepsilon_{3}\sqrt[3]{2})(t - \varepsilon_{3}^{2}\sqrt[3]{2}),$

where $\varepsilon_3 = \exp\left(\frac{2\pi}{3}i\right)$. However, we just showed that ε_3 and ε_3^2 are complex numbers and thus the linear factors $(t - \varepsilon_3\sqrt[3]{2})$ and $(t - \varepsilon_3\sqrt[3]{2})$ do not lie in M[t]. Thus M: K is not a normal extension by definition. \square

Exercise 7.2.1. Let K-L be algebraic, $\alpha \in L$ and $\sigma : K \to \overline{K}$ be a homomorphism. Prove that μ_{α}^{K} is separable over K iff $\sigma(\mu_{\alpha}^{K})$ is separable over $\sigma(K)$.

Solution. Since we have a homomorphism from $K \to \overline{K}$, we know that the extension $\overline{K}: K$ exists. Moreover, it is obviously algebraic by definition of \overline{K} . Thus there exists some isomorphism $\overline{\sigma}: \overline{K} \to \overline{K}$ extending σ , and we note that $\overline{\sigma}|_K = \sigma$. Since K - L is algebraic we know that μ_{α}^K exists. Further, since all coefficients of μ_{α}^K are in K and $K \subseteq \overline{K}$, we can say $\mu_{\alpha}^K(t) \in \overline{K}[t]$. By definition of algebraic closure, observe that we can split μ_{α}^K over $\overline{K}[t]$ in the following form:

$$\mu_{\alpha}^{K}(t) = \prod_{i=1}^{d} (t - \alpha_{i})^{r_{i}}, \quad r \in \mathbb{N}$$

Since $\overline{\sigma}|_K = \sigma$, we have that $\overline{\sigma}(\mu_\alpha^K) = \sigma(\mu_\alpha^K)$ and $\overline{\sigma}(K) = \sigma(K)$. We know homomorphisms preserve operations, whence

$$\overline{\sigma}\left(\mu_{\alpha}^{K}(t)\right) = \prod_{i=1}^{d} (t - \overline{\sigma}(\alpha_{i}))^{r_{i}} = \prod_{i=1}^{d} (t - \sigma(\alpha_{i}))^{r_{i}}.$$

Furthermore, any field homomorphism must be injective, so each $\overline{\sigma}(\alpha_i)$ is necessarily distinct. Hence μ_{α}^K has multiple roots $\iff \overline{\sigma}(\mu_{\alpha}^K) = \sigma(\mu_{\alpha}^K)$ has multiple roots. Moreover by irreducibility of μ_{α}^K over K, we have that $\overline{\sigma}(\mu_{\alpha}^K) = \sigma(\mu_{\alpha}^K)$ is irreducible over the image of K. Thus μ_{α}^K is separable over $K \iff \sigma(\mu_{\alpha}^K)$ is separable over $\sigma(K)$.

Exercise 7.2.2. Let L: K be a splitting field for $f \in K[t]$. Prove that if f is separable, then L: K is separable.

Solution. We are given that L: K is a splitting field extension for f, and by theorem we know $L = K(\alpha_1, \ldots, \alpha_n)$ where $\alpha_j \in L$ is a root of f for $1 \leq j \leq n$. Then for each j the minimum polynomial of α_j must divide f, and thus $\mu_{\alpha_j}^K$ is separable over K by separability of f and the definition of separable. Then α_j is separable over K for each f and hence f is separable by theorem.

Exercise 7.3. Let L: K be a splitting field extension for a polynomial $f \in K[t]$. Then L: K is separable iff f is separable over K.

Solution. We saw in 7.2.2 that separability of f implies separability of L:K. Hence it is enough to show that the separability of L:K implies the separability of f. Similarly to the previous problem, we have that $L = K(\alpha_1, \ldots, \alpha_n)$ where $\alpha_j \in L$ is a root of f for $1 \leq j \leq n$. By theorem, the separability of L:K implies that each α_j is separable over K. Thus by definition of separability of α_j , we have that $\mu_{\alpha_j}^K$ is separable. Then since α_j is a root of f, we know $\mu_{\alpha_j}^K \mid f$ for all j. Assume ad absurdum that f is not separable. Then upon splitting over L, there must be some linear factor $(t-\alpha_k)$ raised to the power of at least 2. By uniqueness of $\mu_{\alpha_k}^K$ this tells us that $\mu_{\alpha_k}^K$ must also have a repeated root, contradicting the separability of $\mu_{\alpha_k}^K$. Hence f must be separable over K.

Exercise 7.4. Let K - M - L be an algebraic extension. Prove that K - L is separable iff K - M and M - L are separable.

Solution. (\Longrightarrow) Suppose K-L is separable. Then α is separable (i.e. algebraic and μ_{α}^{K} separable) over K for all $\alpha \in L$. Since $M \subseteq L$, we have that β is separable over K for all $\beta \in M$, whence K-M is separable. It remains to show that M-L is separable. Suppose $\gamma \in M$. Since $\gamma \in L$, we have that μ_{γ}^{K} is separable. Consider μ_{γ}^{M} . We have by lemma that $\mu_{\gamma}^{M} \mid \mu_{\gamma}^{K}$ in M[t]. Since μ_{γ}^{K} splits into distinct linear factors, this means μ_{γ}^{M} must have distinct roots as well. So μ_{γ}^{M} is separable and thus γ is separable for all $\gamma \in L$. Thus by definition L:M is separable.

 (\longleftarrow) Assume that both K-M and M-L are separable. We wish to show that L is separable over K. Let $\alpha \in L$. By separability of L:M, we have that $\mu_{\alpha}^{M}(t)$ is separable. Since α is algebraic over K, its minimal polynomial over K, $\mu_{\alpha}^{K}(t) \in K[t]$, exists. Moreover, because $K \subset M$, we can view $\mu_{\alpha}^{K}(t)$ as a polynomial in M[t]. Since μ_{α}^{K} and μ_{α}^{M} share a root, we have that $\mu_{\alpha}^{M}(t) \mid \mu_{\alpha}^{K}(t)$ in M[t]. That is, there exists some $h(t) \in M[t]$ such that $\mu_{\alpha}^{K}(t) = \mu_{\alpha}^{M}(t)h(t)$.

Now, assume ad absurdum that $\mu_{\alpha}^{K}(t)$ is not separable. Then in its factorization over an algebraic closure some linear factor appears with multiplicity ≥ 2 . That is, there exists some γ such that $(t-\gamma)^n$ divides $\mu_{\alpha}^{K}(t)$ with $n \geq 2$. We know $\mu_{\alpha}^{M}(t)$ has distinct roots, so $(t-\gamma)$ must be a factor of h(t) with multiplicity ≥ 1 . Notice that

$$D(\mu_{\alpha}^{K}(t)) = D(\mu_{\alpha}^{M}(t))h(t) + \mu_{\alpha}^{M}(t)D(h(t)), \tag{1}$$

and if we let $t = \gamma$,

$$D(\mu_{\alpha}^{K}(\gamma)) = D(\mu_{\alpha}^{M}(\gamma))h(\gamma) + \mu_{\alpha}^{M}(\gamma)D(h(\gamma)). \tag{2}$$

Josh Park Prof. Shkredov

MA 45401-H01 – Galois Theory Honors Homework 7 (Mar 14)

Spring 2025 Page 3

Since γ is a repeated root of μ_{α}^{K} , we have that $D(\mu_{\alpha}^{K}(\gamma)) = 0$. Also since $\mu_{\alpha}^{K}(\gamma) = \mu_{\alpha}^{M}(\gamma)h(\gamma) = 0$, either $\mu_{\alpha}^{M}(\gamma) = 0$ or $h(\gamma) = 0$ must be true.

Case 1 $(\mu_{\alpha}^{M}(\gamma) = 0)$. In this case, equation (2) simplifies to $0 = D(\mu_{\alpha}^{M}(\gamma))h(\gamma)$. If $h(\gamma) \neq 0$ then γ must be a repeated root of μ_{α}^{M} , contradicting its separability.

Case 2 $(h(\gamma) = 0)$. In this case, equation (2) simplifies to $0 = \mu_{\alpha}^{M}(\gamma)D(h(\gamma))$. We know $\mu_{\alpha}^{M}(\gamma) \neq 0$ otherwise we return to case 1 and reach a contradiction. Thus $D(h(\gamma)) = 0$ must be true, whence γ is a repeated root of h(t).

Thus a repeated root in μ_{α}^{K} forces one of its factors with coefficients in M to have a repeated root and thus be inseparable. But then γ would become inseparable since the minimum polynomial of γ over M must divide h, which contradicts the fact that L:M is separable. Thus μ_{α}^{K} must be separable over L for arbitrary α , whence L:K is separable.