

관계 중심의 사고법

# 쉽게 배우는 알고리즘

2장. 알고리즘 설계와 분석의 기초

# 2장. 알고리즘 설계와 분석의 기초

전혀 새로운 아이디어를 갑자기 착상하는 일이 자주 있다. 하지만 그것을 착상하기까지 오랫동안 끊임없이 문제를 생각한다. 오랫동안 생각한 끝에 갑자기 답을 착상하게 되는 것이다.

- 라이너스 폴링

# 알고리즘이란 무엇인가?

- 문제 해결 절차를 체계적으로 기술한 것
- 문제의 요구조건
  - 입력과 출력으로 명시할 수 있다
  - 알고리즘은 입력으로부터 출력을 만드는 과정을 기술

# 바람직한 알고리즘

- 명확해야한다
  - 이해하기 쉽고 가능하면 간명하도록
  - 지나친 기호적 표현은 오히려 명확성을 떨어뜨림
  - 명확성을 해치지 않으면 일반언어의 사용도 무방
- 효율적이어야 한다
  - 같은 문제를 해결하는 알고리즘들의 수행 시간이 수백만 배 이상 차이날 수 있다





|                        |                 |                 |                 | n      |           |                  |
|------------------------|-----------------|-----------------|-----------------|--------|-----------|------------------|
|                        |                 |                 |                 |        |           |                  |
| Function               | 10              | 100             | 1,000           | 10,000 | 100,000   | 1,000,000        |
| 1                      | 1               | 1               | 1               | 1      | 1         | 1                |
| log <sub>2</sub> n     | 3               | 6               | 9               | 13     | 16        | 19               |
| n                      | 10              | 10 <sup>2</sup> | 10 <sup>3</sup> | 104    | 105       | 10 <sup>6</sup>  |
| n * log <sub>2</sub> n | 30              | 664             | 9,965           | 105    | 106       | 10 <sup>7</sup>  |
| n²                     | 10 <sup>2</sup> | 104             | 106             | 108    | 10 10     | 10 <sup>12</sup> |
| n <sup>3</sup>         | 10³             | 10 <sup>6</sup> | 10 <sup>9</sup> | 1012   | 10 15     | 10 <sup>18</sup> |
| 2 <sup>n</sup>         | 10 <sup>3</sup> | 1030            | 1030            | 103,0  | 10 10 30, | 103 10 301,030   |

- 알고리즘의 수행 시간을 좌우하는 기준은 다양하게 잡을 수 있다
  - 예: for 루프의 반복횟수, 특정한 행이 수행되는 횟수, 함수의 호출횟수,...
- 몇 가지 간단한 경우의 예를 통해 알고리즘의 수행 시간을 살펴본다

```
sample1(A[], n)
{
k = \lfloor n/2 \rfloor;
return A[k];
}
```

✔ n에 관계없이 상수 시간이 소요된다.

```
sample2(A[], n)
{

sum \leftarrow 0;

for i \leftarrow 1 to n

sum \leftarrow sum \leftarrow sum \leftarrow A[i];

return sum;
}
```

✓ n에 비례하는 시간이 소요된다.

```
sample3(A[], n)

{

sum \leftarrow 0;

for i \leftarrow 1 to n

for j \leftarrow 1 to n

sum \leftarrow sum \leftarrow A[i]*A[j];

return sum;
}
```

✔  $n^2$ 에 비례하는 시간이 소요된다.

```
sample4(A[], n) {
    sum \leftarrow 0;
    for i \leftarrow 1 to n
        for j \leftarrow 1 to n {
        k \leftarrow A[1 ... n]에서 임의로 \lfloor n/2 \rfloor개를 뽑을 때 이들 중 최댓값;
        sum \leftarrow sum + k;
    }
    return sum;
}
```

 $\checkmark n^3$ 에 비례하는 시간이 소요된다.

```
sample5(A[], n)

{

sum \leftarrow 0;

for i \leftarrow 1 to n-1

for j \leftarrow i+1 to n

sum \leftarrow sum \leftarrow sum \leftarrow A[i]*A[j];

return sum;
}
```

✓  $n^2$ 에 비례하는 시간이 소요된다.

```
factorial(n)
{
    if (n=1) return 1;
    return n*factorial(n-1);
}
```

 $\checkmark$  n에 비례하는 시간이 소요된다.

필기 참조,

# 재귀와 귀납적 사고

- 재귀=자기호출(recursion)
- 재귀적 구조
  - 어떤 문제 안에 크기만 다를 뿐 성격이 똑같은 작은 문제(들)가 포함되어 있는 것
  - वा: factorial
    - $N! = N \times (N-1)!$
  - 예2: 수열의 점화식
    - $\bullet \quad \mathbf{a}_n = \mathbf{a}_{n-1} + 2$



#### 재귀의 예: 병합 정렬

```
mergeSort(A[], p, r) \triangleright A[p ... r]을 정렬한다.
   if (p < r) then {
      q ← [(p + q)/2]; ------ ① ▷ p, q의 중간 지점 계산
      merge(A, p, q, r); ------ ④ ▷ 병합
merge(A[], p, q, r)
   정렬되어 있는 두 배열 A[p \dots q]와 A[q+1 \dots r]을 합쳐
   정렬된 하나의 배열 A[p ... r]을 만든다.
```

- ✓ ②, ③은 재귀호출
- ✔ ①, ④는 재귀적 관계를 드러내기 위한 오버헤드

# 다양한 알고리즘의 적용 주제들

- 카네비게이션
- 스케쥴링
  - TSP, 차량 라우팅, 작업공정,...
- Human Genome Project
  - 매칭,계통도,functional analyses,...
- 검색
  - 데이터베이스,웹페이지들,...
- 자원의 배치
- 반도체 설계
  - Partitioning, placement, routing, ...
- ...

# 알고리즘을 왜 분석하는가

- 무결성 확인
- 자원 사용의 효율성 파악
  - \_ 자원
    - 시간
    - 메모리,통신대역,...

#### 알고리즘의 분석

- 크기가 작은 문제
  - 알고리즘의 효율성이 중요하지 않다
  - 비효율적인 알고리즘도 무방
- 크기가 충분히 큰 문제
  - 알고리즘의 효율성이 중요하다
  - 비효율적인 알고리즘은 치명적
- 입력의 크기가 충분히 큰 경우에 대한 분석을 점근적 분석이라 한다

# 점근적 분석Asymptotic Analysis

- 입력의 크기가 충분히 큰 경우에 대한 분석
- 이미 알고있는 점근적 개념의 예

$$\lim_{n\to\infty}f(n)$$

• O, Ω, Θ, ω, o 표기법

# 점근법 표기법Asymptotic Notations

#### O(g(n))

- 기껏해야 g(n)의 비율로 증가하는 함수
- $\text{ e.g., } O(n), O(n \log n), O(n^2), O(2^n), \dots$

#### Formal definition

- $O(g(n)) = \{ f(n) \mid \exists c > 0, n_0 \ge 0 \text{ s.t.} \forall n \ge n_0, c g(n) \ge f(n) \}$
- $-f(n) \in O(g(n))$ 을 관행적으로 f(n) = O(g(n))이라고 쓴다.
- 직관적 의미
  - $-f(n) = O(g(n)) \Rightarrow f = g$ 보다 빠르게 증가하지 않는다
  - 상수 비율의 차이는 무시

- $\Theta$ ,  $O(n^2)$ 
  - $-3n^2 + 2n$
  - $-7n^2-100n$
  - $-n\log n + 5n$
  - -3n
- 알 수 있는 한 최대한 tight 하게
  - $n\log n + 5n = O(n\log n)$  인데 굳이  $O(n^2)$ 으로 쓸 필요없다
  - 엄밀하지 않은 만큼 정보의 손실이 일어난다

 $\Omega(g(n))$ 

- 적어도 g(n)의 비율로 증가하는 함수
- O(g(n))과 대칭적
- Formal definition
  - $\Omega(g(n)) = \{ f(n) \mid \exists c > 0, n_0 \ge 0 \text{ s.t.} \forall n \ge n_0, c g(n) \le f(n) \}$
- 직관적 의미
  - $-f(n) = \Omega(g(n)) \Rightarrow f = g$ 보다 느리게 증가하지 않는다

$$\Theta(g(n))$$

- -g(n)의 비율로 증가하는 함수
- Formal definition
  - $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$
- 직관적 의미
  - $f(n) = \Theta(g(n)) \Rightarrow f = g$ 와 같은 정도로 증가한다

$$o(g(n))$$
  $- g(n)$ 보다 느린 비율로 증가하는 함수

• Formal definition

$$- o(g(n)) = \{ f(n) \mid \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \}$$

- 직관적 의미
  - $-f(n) = \Omega(g(n)) \Rightarrow f = g$ 보다 느리게 증가한다

$$\omega(g(n))$$

- g(n)보다 빠른 비율로 증가하는 함수
- Formal definition

$$- \omega(g(n)) = \{ f(n) \mid \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \}$$

- 직관적 의미
  - $-f(n) = \Omega(g(n)) \Rightarrow f = g$ 보다 빠르게 증가한다

# 각 점근적 표기법의 직관적 의미

- O(g(n))
  - Tight or loose upper bound
- $\Omega(g(n))$ 
  - Tight or loose lower bound
- $\Theta(g(n))$ 
  - Tight bound
- o(g(n))
  - Loose upper bound
- $\omega(g(n))$ 
  - Loose lower bound







#### 점근적 복잡도의 예

- 정렬 알고리즘들의 복잡도 표현 예 (4장에서 공부함)
  - 선택정렬
    - $\Theta(n^2)$
  - \_ 힙정렬
    - *O*(*n*log*n*)
  - \_ 퀵정렬
    - $O(n^2)$
    - 평균  $\Theta(n\log n)$

# 시간 복잡도 분석의 종류

- Worst-case
  - Analysis for the worst-case input(s)
- Average-case
  - Analysis for all inputs
  - More difficult to analyze
- Best-case
  - Analysis for the best-case input(s)
  - 별로 유용하지 않음

#### 저장/검색의 복잡도

- 배열
  - -O(n)
- Binary search trees
  - 최악의 경우  $\Theta(n)$
  - 평균  $\Theta(\log n)$
- Balanced binary search trees
  - 최악의 경우  $\Theta(\log n)$
- B-trees
  - 최악의 경우  $\Theta(\log n)$
- Hash table
  - 평균 Θ(1)

# 크기 n인 배열에서 원소 찾기

#### Sequential search

- 배열이 아무렇게나 저장되어 있을 때
- Worst case:  $\Theta(n)$
- Average case:  $\Theta(n)$

#### • Binary search

- 배열이 정렬되어 있을 때
- Worst case:  $\Theta(\log n)$
- Average case:  $\Theta(\log n)$