Si A y B son independientes, entonces tengo que: 
$$P(A \cap B) = P(A) \cdot P(B)$$

a) 
$$P(A) = 1 - 7(A) = 1 - 0.75 = 0.25$$

$$P(A \cup B) = 0.90 \text{ y } P(\bar{A}) = 0.40.$$









5.- Dados dos sucesos cualesquiera se tiene 
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P(A-B) + P(B-A) + P(A \cap B)$$

$$P(A \cup B) = P(A-B) + P(A-B) + P(A \cap B)$$

$$P(B) = P(B-A) + P(A \cap B)$$

$$P(A-B) = P(A) + P(B) + P(A \cap B)$$

$$P(A \cup B) = P(A \cap B) + P(A \cap B)$$

 $P(A \cup B) = P(A-B) + P(B-A) + P(A \cap B)$ Por otro lado  $P(A) = P(A-B) + P(A \cap B) y$  $P(B) = P(B-A) + P(A \cap B)$  $P(A-B)=P(A) - P(A \cap B) y P(B-A)=P(B) - P(A \cap B)$ y sustituyendo se obtine el resultado deseado  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 

Sea la función de distribución acumulada de una variable aleatoria X dada por:  $0 \quad six < -1$  $F(x) = \begin{cases} 0.6 & si - 1 \le x < 2 \\ & donde 0.6 < b \text{ es una constante.} \end{cases}$  $\begin{cases} O_1 \in X = 1 \\ O_1 \in X = 2 \\ O_2 = 1 \end{cases}$  $T(x) = \begin{cases} 0 & \text{si } x < -1 \\ 0 & \text{si } x = 1 \end{cases}$ a) " b" es 1. b) el conjunto de valores con prob. Positiva, es: {-1,2} c) E(x)= [ X: P(xi) @, -1.P(-1) + 0.P(0) + 1.P(1) + 2.P(2), -1.(0,6) + 0.(0) + 1.(0) + 2.(0,4), 012 = E(x) b)  $V(x) \doteq E(X - \mu)^2$  con  $\mu = E(x)$  o  $E(x^2) - \mu^2$ , elegins la segunda ques se comple que  $E(x^2) < \infty$ : \*  $E(x^2) = \sum_{i=1}^{n} X_i^2 \cdot P(x_i)$ , luego  $E(x^2) = (-1)^2 \cdot O_16 + Z^2 \cdot (o_14) = 0_16 + 1_16 = 2.2 - 0.04 = 2.16 1$ e) w = -3 x + -6, luego V(ax +b) = 2. V(x), luego: \* E(x) = ) h(xi) · p(xi) = -3(-1) +6 · (016) + -3(2)+6 · (014) = 5141  $(-3)^2 \cdot V(x) = 9 \cdot 2116 = 19144$ 

| Un sistema para detectar incendios está compuesto por tres dispositivos sensibles a la temperatura que actúan independientemente uno de otro y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tales que uno o más de ellos puede activar la alarma. Cada dispositivo tiene una probabilidad de 0,8 de activar la alarma al alcanzar una                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| temperatura de por lo menos 100°C. Sea Y el número de dispositivos que activan la alarma cuando la temperatura alcanza por lo menos 100°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| a) La probabilidad de que a lo sumo uno de los dispositivos active la atarma cuando la temperatura alcanza por lo menos 100°C es igual a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Veamos que la prob. de que un dispositvio encienda la alarma es de 0.8. Entonces, para saber la probabilidad de que al menos un dispositivo se encienda, tengo que tener en cuenta de escenarios:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a_ningún dispositivo activo b_ un dispositivo activo Per los demas no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6_ Un dipositivo activo Per los demas no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $+ a = 0.2 \cdot 0.2 \cdot 0.2 = 0.008$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| * $a = 0.12 \cdot 0.12 \cdot 0.12 = 0.008$ * $b = 0.12 \cdot 0.18 (\frac{3}{3}) = 0.0096$ * $b = 0.12 \cdot 0.18 (\frac{3}{3}) = 0.0096$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| + L - 0,2 · 0,8 (3) = 0,096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| b) La probabilidad de que la alarma se active cuando la temperatura alcanza por lo menos 100°C es igual a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| . Veamos que tenemos 3 casos: a_"1 disp. activos"  b_"2 disp. activos"  c_"3 disp. activos"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| b_ \ 2 disp. autivos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| c_"3 disp. extivos"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| a_ 018 - (3) . 012 = 01096 , b_ 018 . (3) . 012 = 01384 , c_ 018 = 01512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| * La suma de a,b,c: 0,992 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| c) E(x) = \( \text{X}; (Px;) = 0 \cdot (P_0) + 1 \cdot (P_1) + 2 \cdot (P_2) + 3 \cdot (P_3) = 0 + 0 \cdot 0 \cdot 6 + 2 \cdot 0 \cdot 84 + 3 \cdot 0 \cdot 1 \cdot 1 \cdot 2 \cdot 2 \cdot 4 \delta \cdot 1 \cdot 2 \cdot 1 \cdot 2 \cdot 1 \cdot 2 \    |
| i=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $1) = (12) = \frac{3}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| d) $E(x^2) = \sum_{i=0}^{3} x_i^2(Px_i) = 0.96 + 1.96 + 1.96 + 1.96 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 + 1.01384 $ |
| <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Los siguientes datos corresponden a la concentración del receptor de transferrina en una muestra de mujeres embarazadas: 7.6 7.2 15.2 10.9 9.4 9.4 12.8 7,8 9,7 11,5 11,9 9,3 22,5 a\_ x (media mvestrol) = i ∈ (0,13) 1/2 x; x; = dato", n = # datos (13), 1/13 · [xi = 1/13·(14512) = 11,1692, luego 11,17 √ \* 92 = h+1/2 = 19/2 = 7 / X = = 9, T J 6- RIC = \* Q1 = 44/2 = 8/2 = X4 = 913 J \* Q3 = 1119 V . lugo BIC = Q3 - Q1 = 11,9 - 9,3 = 2,6 √ . Ramo = 22,5 - 7,2 = 15,3 V . Varianza =  $\ln \sum_{i=1}^{3} (x_i - \overline{x})^2 = \frac{1}{13} \cdot \sum_{i=1}^{3} (x_i - \overline{x})^2 = 16,65$ . devio estardar (V(x) = 116.65 = 4.08 √ . Dates atipicor: < Q1 - RIC(115) 4 > O3 + RIC(115), < 519 4 > 15,8, por tanto, tengo un solo deto estípico 4 CS 22,5/ . Coeficiente de variación: 5"/x 100% = 9,08/11,17 · 100% = 36,526% = 36,53% / \* Bigote inferior: 7.2 \* Bigute Superior: 15,2

Un fabricante de aparatos celulares afirma que aproximadamente el 10% de sus unidades necesitan reparación durante el período de garantía. Los técnicos de laboratorio de pruebas compran 15 celulares y las usan durante el período de garantía. . 110 necesita reportación (0,10) no necesitan . n = 15 +eletoms a. Probabilidad de que 4 necesiten reparación: (0,10) . (15). (0,90)" = 0,04283 c\_ El valor esperado "W" es: E(x) = n.p, 15 - 0,10 = 1,5 V d- La varianza en una Binomial, np(1-p), V(x) = 15.0110 (0190) = 1135 J e\_ 80% de 15 = 12, [ (15) · (0,10) · (0,90) = 0,9444

Ejercicio 6.

El diámetro de los árboles de determinado tipo, a cierta altura, se distribuye normalmente con  $\mu = 8, 8$  pulg. y  $\sigma = 2, 8$  pulg. según sugiere el artículo "Simulating a Harvester-Forwarder Softwood Thinning".

- a) ¿Cuál es la probabilidad de que el diámetro de un árbol, seleccionado al axar, sea a lo sumo 10 pulg.? ¿Y que sea mayor que 10 pulg.?
- b) ¿Cuál es la probabilidad de que el diámetro de un árbol, seleccionado al azar, esté entre 5 y 10 pulg.?
- c) ¿Qué valor de c es tal que el intervalo (8,8-c;8,8+c) incluye el 98% de todos los valores de diámetro?
- d) ¿Cuál es la probabilidad de que al menos 1 de 5 árboles elegidos al azar tenga diámetro entre 5 y 10 pulg.?

$$a_1 = 8.8 \text{ y } = e_18 \text{ luego } P(x \neq 10 \text{ pulg}) \Rightarrow Z = \frac{x - \mu}{z_18}, |uego Z \neq \frac{1,2}{2,8}, Z \neq 0.428571$$
  
 $\Rightarrow P(Z \neq 0.428571) \sim N(0,1) = 0.16664 \text{ (redonded on 0.43)} \sqrt{}$ 

$$P(8,8-c \le X \le 8,8+c) = 0.198$$
,  $10e_{90}$   $Z = \frac{x-8.8}{2.8} = \frac{8.8-c}{2.8} \le \frac{c+8.8}{2.8} = \frac{-c}{2.8} \le Z \le \frac{c}{2.8} = \frac{1}{2.8}$ 

# Deperto de .., 
$$z \phi(\frac{c}{z_18}) = 1 + 0.198$$
,  $\phi(\frac{c}{z_18}) = \frac{1.98}{2.8}$ ,  $\phi(\frac{c}{z_18}) = 0.99$ ,  $\phi(\frac{c}{z_18}) = 2.33$ ,  $c/2.8 = 2.33$ 

$$\sum_{i=1}^{S} {\binom{S}{x_i}} {\binom{P}{x_i}} {\binom{P}{x_i}} {\binom{P}{x_i}}^{X_i^*} {\binom{P}{x_i}}^{S-X_i^*} \stackrel{=}{=} \sum_{i=1}^{S} {\binom{S}{x_i}} {\binom{P}{x_i}}^{X_i^*} {\binom{P}{x_i}}^{X_i^*} {\binom{P}{x_i}}^{X_i^*} {\binom{P}{x_i}}^{X_i^*} {\binom{P}{x_i}}^{X_i^*} \stackrel{=}{=} \binom{S}{x_i}^{X_i^*} {\binom{P}{x_i}}^{X_i^*} {\binom{P}{x_i}}^{X_i$$

Anotaciones importantes para tener en cuenta

| Variables Aleatorias Discretas (1 → N)                                                                                                                                                                | Variables Alectorias continuas (II → TR)                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                       |                                                                                             |
| * Esperanza de x : E(x) = [x: P(xi) (se denota h)                                                                                                                                                     | * fdp= F(x)= _ f(+) d+ = 1 , f: TB - TR                                                     |
| # Esperanza de $V=h(x)$ : $E(x) = \sum_{i=1}^{n} h(x) \cdot P(x_i)$                                                                                                                                   | $x + da = f(x) = \int f'(x) + x dorde \in F'(x)$                                            |
| $*E(\alpha X+b)=\alpha-E(X)+b$                                                                                                                                                                        | ( O c.c h(p)                                                                                |
| * Varian=a = V(x) = E(X-K), V(x) = E(x)-K2                                                                                                                                                            | * cuantil $p = P = F(\eta(p)) = \int f(t)dt$                                                |
| $*V(\alpha X+b)=\alpha^2\cdot V(X)$                                                                                                                                                                   | $\star E(x) = \int x \cdot f(x) dx$                                                         |
| * Desvio Estandar = VV(X)                                                                                                                                                                             | $\longrightarrow E(h(x)) = \int h(x) \cdot f(x) dx$                                         |
| 7 1 - (N) V 1 - N- X                                                                                                                                                                                  | * V(x) = 5 (x-H)2 f(x) dx 5 E(x2) - H2                                                      |
| *Distr. Binomial = $P(x) = {n \choose x} \cdot P^{x} \cdot (1-p)^{n-x}$                                                                                                                               | $* E(\bullet X + P) = \bullet - E(X) + P$                                                   |
| E(x) = hp                                                                                                                                                                                             | $ \star V(aX+b) = a^2 \cdot V(x) $                                                          |
| V(x) = NP(I-P)                                                                                                                                                                                        | ( 1/6-0-                                                                                    |
| - 2. 2 K                                                                                                                                                                                              | * Distr. Unitorme = +(x) =                                                                  |
| * Dist, Poisson = P(k) = e 2. 2k                                                                                                                                                                      | $F(x) = \begin{cases} 0 & x < \infty \\ x - \alpha / 0 - \alpha, & 0 \le x < b \end{cases}$ |
| $E(x) = V(x) = \lambda  x \stackrel{\circ}{=} \Lambda_{D}$                                                                                                                                            | 1 6 6 6                                                                                     |
| $\binom{\kappa}{\kappa}\binom{N-m}{n-k}$                                                                                                                                                              |                                                                                             |
| * Distr. Hipergrametrica = P(K) = (M)                                                                                                                                                                 | *Dist. Normal = - (x-N)2 - (x-N)2 - (x-N)2                                                  |
| N(POb), M(Oxitoi), n(MUC)tra)                                                                                                                                                                         | - t q b = f(x) = λ15μος - 6                                                                 |
| $E(K) = O(\frac{K}{2})$                                                                                                                                                                               |                                                                                             |
| $\bigvee_{X} V(X) = n(\frac{\pi}{N}) \cdot (1 - \frac{M}{N}) \cdot (\frac{N-n}{N-1})$                                                                                                                 | Normal Estandar: Z~N(O11)                                                                   |
| /r+k-1\2', k                                                                                                                                                                                          | * Z = X-M (o- /b-W ) / a-W                                                                  |
| * Distr. Binomial Negativa = P(K) = ( (-1 ) 1/(1-P)                                                                                                                                                   | $*P(a \le X \le b) = \emptyset(\frac{a}{a}) - \emptyset(\frac{a}{a})$                       |
| E(x)=((-P)/P                                                                                                                                                                                          |                                                                                             |
| $V(X) = n(\frac{\pi}{N}) \cdot (1 - \frac{M}{N}) \cdot (\frac{N-n}{N-1})$ * Distr. Binomial Megativa = $P(K) = \binom{r+k-1}{r-1} \cdot P(1-p)$ $E(X) = \frac{r(1-p)}{p}$ $V(X) = \frac{r(1-p)}{p^2}$ |                                                                                             |
|                                                                                                                                                                                                       |                                                                                             |
|                                                                                                                                                                                                       |                                                                                             |



Suponga que X= número de tornados observados, en una región particular, durante un período de un año tiene distribución de Poisson con  $\lambda - 8$ .

- a) Calcular:  $P(X \le 5)$ ,  $P(6 \le X \le 9)$ ,  $P(10 \le X)$  y  $P(X \ge 1)$ .
- b) ¿Cuántos tornados se puede esperar que se observen durante un período de un año? ¿Cuál es la desviación estándar de X?

Si X tiene distr de Poisson, luego 
$$P(k) = e^{-\lambda \cdot \frac{\lambda^{n}}{k!}}$$
 y teniendo  $\lambda = 8$ :

 $A = P(X \le 5) = \sum_{i=0}^{5} e^{8 \cdot \frac{8^{i}}{k!}} = 0.1912$ 
 $A = E(X) = \lambda = 8$ ,  $V(Y) = \sqrt{8} = 2.82$ 

## Ejercicio 12:

Cada uno de 12 refrigeradores de cierto tipo ha sido devuelto a un distribuidor debido a la presencia de un ruido oscilante agudo cuando está funcionando. Supongamos que 4 de esos 12 tienen compresores defectuosos y los otros 8 tienen problemas menos serios. Si se examinan 6 refrigeradores al azar, sea X=número de refrigeradores que tienen el compresor defectuoso entre los 6 examinados.

- a) Calcular: i) P(X=1) ii)  $P(X \ge 4)$ b) ¿Cuánto vale E(X) y V(X)?
- iii)  $P(1 \le X \le 3)$

$$+ P(1 \le X \le 3) = \int_{|x|}^{2} f(x) = \left( 0_{12424} \right) + \left( \frac{\binom{4}{2} \cdot \binom{8}{1}}{\binom{12}{5}} \right) + \left( \frac{\binom{1}{4} \cdot \binom{8}{4}}{\binom{12}{5}} \right) = 0_{1}9343$$

b). 
$$E(x) = n(\frac{M}{N}) = 6 \cdot 9/12 = 2$$
  
 $V(x) = n(M/N)(1 - M/N) \cdot (N-N) = 2 \cdot (1 - 9/12) \cdot (6/5) = 1,6$ 

$$f(k) = \frac{M}{k} \cdot \binom{N-M}{n-k} \quad N = 12, \quad n = 6, \quad M = 4$$



## Problem

Se determinaron 9 mediciones de concentraciones de fósforo en suelo de un campo y los datos obtenidos fueron:

522,8 | 499,1 | 510,2 | 508,6 | 473,3 | 501,2 | 495,4 | 507,3 | 519,9

- a) Dar cuatro medidos de posición para estos datos.
- b) Dar cuatro medidas de dispersión para estos datos.
- c) Determinar si hay datos atípicos para estas mediciones. Justifique su respuesta.
- d) Realizar un gráfico de caja o box plot para estos datos.
- e) Si a los datos originales les multiplicamos por (-2) y le restamos 1200 écuánto vale el promedio y desvío estándar para los datos transformados?

$$x \le x^2 = \frac{1}{h^2} (x - x^2 = 191,63)$$

$$\int_{x} = \int_{x}^{2} (x - x^2 = 191,63)$$

b) Rango muestral: 49,5 M

-1,5. RIC = 16165, Q1-16,85 C

Datos atipicos: 473,3

y = -2x - 1200 y = -2x - 1200

a) x = 504,2 /, -2, 204,4 } x (-2) -1200

501,2

507.3

x= x = 507,3 √

495,4 499,1

473,3

Q1 = Xm1 = X3 = 409,1

Q3 = Xn1 = X2 = 510,2

 $\frac{\sum x - 12ac}{n} = \frac{-2}{n} \sum x + 6aa$ 

25 = 32 03+18192

 $\frac{-2}{n}$   $\frac{2}{2}$  +1200 n

510,2

519,9

503.6

2552

-2 x +12002

 $\frac{1}{n} \leq (-2 \times 1200 n + 2 = 1200 n)$ 

7= (-2x +2=)=-2 r(x)



La función de distribución acumulada (f.d.a.) de X es como sigue:

$$F(x) = P[X \le x] = \begin{cases} 0 & \text{si } x < -1\\ 0.30 & \text{si } -1 \le x < 2\\ a & \text{si } 2 \le x < 4\\ 1 & \text{si } x \ge 4 \end{cases}$$

siendo 0.30 < a < 1, una constante a determinar.

- a) ¿Cuáles son los valores posibles que puede tomar X con probabilidad positiva?
- b) Si se sabe que la E(X)=3/2, hallar el valor de la constante a tal que F sea f.d.a.
- c) Graficar la función probabilidad de masa y la función distribución acumulada de X.
- d) Calcular la varianza de X.
- e) Determinar cuánto vale la esperanza y varianza de W=-5 X+ 18.