Optimizing Large Scale Imaging Surveys for Relative Photometric Calibration,

the Euclid Dark Energy Mission as an Example

R. Holmes 1 and H.-W. Rix 1

Max-Planck-Institut für Astronomie, Königstuhl 17, Heidelberg, 69117, Germany.

and

D. W. $Hogg^2$

2 Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003, USA.

Received	: acc	epted	
	,		

ABSTRACT

In this paper we show that, with due care given to the observing strategy, it will be possible to accurately constrain the relative photometric calibration of instruments used in large imaging surveys with their science data alone. We create end-to-end simulations of an imaging survey, which produces simulated datasets from mock observations of a synthetic sky according to a defined survey strategy. These catalog based simulations include realistic measurement uncertainties and a complex, position dependent instrument response. We then use a self-calibration technique to recover the relative instrument response by fitting an model that best explains the survey dataset, based on the multiple observations of (non-varying) sources at different focal plane positions. By considering four simple survey strategies we find that, with a correct redundancy built into the survey strategy, it is possible to accurately constrain the relative photometric response of an imaging instrument, and therefore the relative calibration of the resulting dataset. The majority of the remaining post self-calibration errors are due to the limitations in the basis used to model the relative instrument response. We find that returning the same sources to very different focal plane positions is the key property of a survey strategy that is required for an accurate calibration. From the results of this work, we are able to highlight an important point for those considering the design of large scale imaging surveys: depart from a regular tiling of the sky and return the same sources to very different focal plane positions.

Subject headings: Relative Photometric Calibration: Imaging Survey: Euclid

1. Introduction

Astronomers tend to think in terms of taking science data and calibration data separately. The former is used for science and the latter is used to constrain instrument parameters like the flat-field, the dark currents and so-on. But typically far more photons are collected during science exposures; are these not incredibly constraining on the calibration themselves? Indeed, in the retrospective photometric calibration of the Sloan Digital Sky Survey data (SDSS) (Padmanabhan et al. 2008) much more calibration information was obtained from the science data than the calibration data. But, of course, the SDSS imaging strategy had to be adjusted to make this calibration work: good redundancy is required in the data stream, and a redundancy of a very specific kind.

In this paper, we argue that the next generation of large surveys should have their observation strategies optimized from the very start with calibration in mind.

The question then just becomes: what makes a survey strategy good for the retrospective self-calibration of the dataset? In this paper, we focus on the relative photometric calibration of a typical imaging instrument only. For instrument parameters, we consider an instrument similar to the near-infrared photometric channel proposed for the European Space Agency's Euclid Dark Energy Mission.

and not just as an afterthought (as with SDSS), it will be possible to constrain calibration parameters to a high degree of accuracy.

turn to the planning of large imaging surveys, and not the retrospective

We feel, an

Why survey mission is unique etc

In this paper we summarize the end-to-end simulation used

In this paper we will show that this distinction between science and calibration data no longer applies in the large survey mission, both ground and space based, currently being planned and developed. We show that, as long as the survey strategy is designed appropriately, the calibration information within the science data can be used to accurately constrain the relative photometric response of an imaging instrument. This retrospective, cross-calibration of the dataset is a very powerful calibration method; future large scale imaging surveys should be optimized with this in mind.

We concentrate on catalog level simulations of different survey strategies and assess how well the resultant dataset can be used to constrain the relative response of the imaging instrument it came from. Although we do not model the imaging instrument on a pixel scale, we do include realistic measurement uncertainties within the simulations.

2. Discussion

In this paper, we have considered the optimization of survey strategies for calibrating the relative photometric response of an instrument, but we feel there are many more calibration parameters that can be constrained for this method. For example, the optical distortion of an instrument could also be constrained with such a method, although we concede that the properties of a survey strategy that makes them good for one calibration, may not be the same as that for another; ultimately a trade-off would need to be performed.

3. Acknowledgments

We are grateful to

REFERENCES

Padmanabhan, N., Schlegel, D. J., Finkbeiner, D. P., Barentine, J. C., Blanton, M. R.,
Brewington, H. J., Gunn, J. E., Harvanek, M., Hogg, D. W., Ivezić, Ž., Johnston,
D., Kent, S. M., Kleinman, S. J., Knapp, G. R., Krzesinski, J., Long, D., Neilsen,
Jr., E. H., Nitta, A., Loomis, C., Lupton, R. H., Roweis, S., Snedden, S. A., Strauss,
M. A., & Tucker, D. L. 2008, ApJ, 674, 1217

This manuscript was prepared with the AAS $\mbox{\sc IAT}_{\mbox{\sc E}}\mbox{X}$ macros v5.2.

Table 1. Sample table taken from ?

0 2 1 1370.99 57.35 6.651120 17.131149 21.344±0.006 24.385±0.016 23.528±0.013 0.0 0 2 2 1476.62 8.03 6.651480 17.129572 21.641±0.005 23.141±0.007 22.007±0.004 0.0 0 2 3 1079.62 28.92 6.652430 17.135000 23.953±0.030 24.890±0.023 24.240±0.023 0.0 0 2 4 114.58 21.22 6.65550 17.148020 23.801±0.025 25.039±0.026 24.112±0.021 0.0 0 2 4 114.58 19.46 6.655800 17.148932 23.012±0.012 25.039±0.026 23.282±0.011 0.0 0 2 6 1441.84 16.16 6.651480 17.13072 24.393±0.032 25.028±0.025 25.119±0.049 0.0 0 2 7 205.43 3.96 6.655520 17.146742 24.424±0.032 25.028±0.025 24.597±0.027 0.0 0	POS	chip	E	×	Y	RA	DEC	$\mathrm{IAU} \pm \delta \; \mathrm{IAU}$		IAP1 \pm δ IAP1 IAP2 \pm δ IAP2	star	田	Comment
52 8.03 6.651480 17.129572 21.641±0.005 23.141±0.007 22.007±0.004 52 28.92 6.652430 17.135000 23.953±0.030 24.890±0.023 24.240±0.023 58 21.22 6.655560 17.148020 23.801±0.025 25.039±0.026 24.112±0.021 78 19.46 6.655800 17.148932 23.012±0.012 23.924±0.012 23.282±0.011 84 16.16 6.651480 17.130072 24.393±0.045 26.099±0.062 25.119±0.049 43 3.96 6.655520 17.146742 24.424±0.032 25.028±0.025 24.597±0.027 53 9.76 6.651950 17.131672 22.189±0.011 24.743±0.021 23.298±0.011	0	2	П	1370.99	57.35		17.131149	21.344 ± 0.006	24.385 ± 0.016	23.528 ± 0.013	0.0	6	1
62 28.92 6.652430 17.135000 23.953±0.030 24.890±0.023 24.240±0.023 58 21.22 6.655560 17.148020 23.801±0.025 25.039±0.026 24.112±0.021 78 19.46 6.655800 17.148932 23.012±0.012 23.924±0.012 23.282±0.011 84 16.16 6.651480 17.130072 24.393±0.045 26.099±0.062 25.119±0.049 43 3.96 6.655520 17.146742 24.424±0.032 25.028±0.025 24.597±0.027 63 9.76 6.651950 17.131672 22.189±0.011 24.743±0.021 23.298±0.011	0	2	2	1476.62	8.03	6.651480		$21.641{\pm}0.005$	23.141 ± 0.007	22.007 ± 0.004	0.0	6	
21.22 6.655560 17.148020 23.801±0.025 2 5.039±0.026 24.112±0.021 19.46 6.655800 17.148932 23.012±0.012 2 3.924±0.012 23.282±0.011 16.16 6.651480 17.130072 24.393±0.045 2 6.099±0.062 25.119±0.049 3.96 6.655520 17.146742 24.424±0.032 2 5.028±0.025 24.597±0.027 9.76 6.651950 17.131672 22.189±0.011 2 4.743±0.021 23.298±0.011	0	2	က		28.92	6.652430	17.135000	23.953 ± 0.030	24.890 ± 0.023	24.240 ± 0.023	0.0	1	
19.46 6.655800 17.148932 23.012±0.012 2 3.924±0.012 23.282±0.011 16.16 6.651480 17.130072 24.393±0.045 2 6.099±0.062 25.119±0.049 3.96 6.655520 17.146742 24.424±0.032 2 5.028±0.025 24.597±0.027 9.76 6.651950 17.131672 22.189±0.011 2 4.743±0.021 23.298±0.011	0	2	4	114.58	21.22	6.655560	17.148020	$23.801 {\pm} 0.025$	25.039 ± 0.026	24.112 ± 0.021	0.0	1	
16.16 6.651480 17.130072 24.393±0.045 2 6.099±0.062 25.119±0.049 3.96 6.655520 17.146742 24.424±0.032 2 5.028±0.025 24.597±0.027 9.76 6.651950 17.131672 22.189±0.011 2 4.743±0.021 23.298±0.011	0	2	ю	46.78	19.46	6.655800	17.148932	$23.012{\pm}0.012$	$2\ 3.924\pm0.012$	23.282 ± 0.011	0.0	1	
3.96 6.655520 17.146742 24.424±0.032 2 5.028±0.025 24.597±0.027 9.76 6.651950 17.131672 22.189±0.011 2 4.743±0.021 23.298±0.011	0	2	9	1441.84	16.16	6.651480	17.130072	24.393 ± 0.045	26.099 ± 0.062	25.119 ± 0.049	0.0	1	1
$9.76 6.651950 17.131672 22.189\pm0.011 2.4.743\pm0.021 23.298\pm0.011$	0	2	7	205.43	3.96	6.655520	17.146742	24.424 ± 0.032	25.028 ± 0.025	24.597 ± 0.027	0.0	ı	
	0	2	[∞]	1321.63	9.76	6.651950	17.131672	22.189 ± 0.011	24.743 ± 0.021	23.298 ± 0.011	0.0	4	edge

Note. — Table 1 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown here for guidance regarding its form and content.

^aSample footnote for table 1 that was generated with the deluxetable environment

 $^{\rm b}{\rm Another}$ sample footnote for table 1

Table 2. Literature Data for Program Stars

Star	V	b-y	m_1	c_1	ref	$T_{ m eff}$	log g	$v_{ m turb}$	[Fe/H]	ref
IID 07	0.7	0 51	0.15	0.25	9				1.50	2
HD 97	9.7	0.51	0.15	0.35	2		•••	•••	-1.50	2
						5015	• • •	• • •	-1.50	10
HD 2665	7.7	0.54	0.09	0.34	2	• • •	• • •	• • •	-2.30	2
						5000	2.50	2.4	-1.99	5
						5120	3.00	2.0	-1.69	7
						4980			-2.05	10
HD 4306	9.0	0.52	0.05	0.35	20, 2				-2.70	2
						5000	1.75	2.0	-2.70	13
						5000	1.50	1.8	-2.65	14
						4950	2.10	2.0	-2.92	8
						5000	2.25	2.0	-2.83	18
									-2.80	21
						4930			-2.45	10
HD 5426	9.6	0.50	0.08	0.34	2				-2.30	2
HD 6755	7.7	0.49	0.12	0.28	20, 2				-1.70	2
						5200	2.50	2.4	-1.56	5
						5260	3.00	2.7	-1.67	7
									-1.58	21
						5200			-1.80	10
						4600			-2.75	10
HD 94028	8.2	0.34	0.08	0.25	20	5795	4.00		-1.70	22

Table 2—Continued

Star	V	b-y	m_1	c_1	ref	T_{eff}	log g	$ m V_{turb}$	[Fe/H]	ref
						5860			-1.70	4
						5910	3.80		-1.76	15
						5800			-1.67	17
						5902			-1.50	11
						5900			-1.57	3
									-1.32	21
HD 97916	9.2	0.29	0.10	0.41	20	6125	4.00		-1.10	22
						6160			-1.39	3
						6240	3.70		-1.28	15
						5950			-1.50	17
						6204			-1.36	11
This is a cut-in head										
+26°2606	9.7	0.34	0.05	0.28	20,11	5980			< -2.20	19
						5950			-2.89	24
$+26^{\circ}3578$	9.4	0.31	0.05	0.37	20,11	5830			-2.60	4
						5800			-2.62	17
						6177			-2.51	11
						6000	3.25		-2.20	22
						6140	3.50		-2.57	15

Table 2—Continued

Star	V	b-y	m_1	c_1	ref	$T_{ m eff}$	log g	$ m v_{turb}$	[Fe/H]	ref
+30°2611	9.2	0.82	0.33	0.55	2				-1.70	2
						4400	1.80		-1.70	12
						4400	0.90	1.7	-1.20	14
						4260	• • •	• • •	-1.55	10
$+37^{\circ}1458$	8.9	0.44	0.07	0.22	20,11	5296	• • •	• • •	-2.39	11
						5420	• • •	• • •	-2.43	3
$+58^{\circ}1218$	10.0	0.51	0.03	0.36	2				-2.80	2
						5000	1.10	2.2	-2.71	14
						5000	2.20	1.8	-2.46	5
						4980			-2.55	10
$+72^{\circ}0094$	10.2	0.31	0.09	0.26	12	6160			-1.80	19
I'm a side h	ead:									
G5–36	10.8	0.40	0.07	0.28	20				-1.19	21
G18-54	10.7	0.37	0.08	0.28	20				-1.34	21
G20-08	9.9	0.36	0.05	0.25	20,11	5849			-2.59	11
									-2.03	21
G20-15	10.6	0.45	0.03	0.27	20,11	5657			-2.00	11
						6020			-1.56	3
						• • •	• • •		-1.58	21
G21-22	10.7	0.38	0.07	0.27	20,11		• • •		-1.23	21
G24-03	10.5	0.36	0.06	0.27	20,11	5866	• • •	• • •	-1.78	11

Table 2—Continued

Star	V	b-y	m_1	c_1	ref	$T_{ m eff}$	log g	$ m v_{turb}$	[Fe/H]	ref
									-1.70	21
G30-52	8.6	0.50	0.25	0.27	11	4757			-2.12	11
						4880			-2.14	3
G33-09	10.6	0.41	0.10	0.28	20	5575			-1.48	11
G66-22	10.5	0.46	0.16	0.28	11	5060			-1.77	3
									-1.04	21
G90-03	10.4	0.37	0.04	0.29	20				-2.01	21
LP 608–62 ^a	10.5	0.30	0.07	0.35	11	6250	• • •		-2.70	4

^aStar LP 608–62 is also known as BD+1°2341p. We will make this footnote extra long so that it extends over two lines.

References. — (1) Barbuy, Spite, & Spite 1985; (2) Bond 1980; (3) Carbon et al. 1987; (4) Hobbs & Duncan 1987; (5) Gilroy et al. 1988: (6) Gratton & Ortolani 1986; (7) Gratton & Sneden 1987; (8) Gratton & Sneden (1988); (9) Gratton & Sneden 1991; (10) Kraft et al. 1982; (11) LCL, or Laird, 1990; (12) Leep & Wallerstein 1981; (13) Luck & Bond 1981; (14) Luck & Bond 1985; (15) Magain 1987; (16) Magain 1989; (17) Peterson 1981; (18) Peterson, Kurucz, & Carney 1990; (19) RMB; (20) Schuster & Nissen 1988; (21) Schuster & Nissen 1989b; (22)

Spite et al. 1984; (23) Spite & Spite 1986; (24) Hobbs & Thorburn 1991; (25) Hobbs et al. 1991; (26) Olsen 1983.