. Seal line.

WARNING: MISBEHAVIOR	AT	EXAM	TIME	WILL	LEAD	TO	SERIOUS
CONSEQUENCE							

Notice:

- 1. Make sure that you have filled the form on the left side of the seal line.
- 2. Write your answers on the exam paper.
- 3. This is a close-book exam.
- 4. The exam with full score of 100 points lasts 120 minutes.

Question No.	I	II	III	IV	V	VI	Sum
Score							

I. (20 points) Let

	1	2	2
A =	1	3	1
	2	5	4

- 1. Find the determinant of matrix *A*.
- 2. Give the inverse of matrix A.
- 3. Let *I* be a 3×3 Identity matrix and $B = \begin{bmatrix} A & 0 \\ I & -A \end{bmatrix}$, which is a partitioned matrix with four 3×3 blocks. Find the inverse of matrix *B*.

II. (15 points) For the vector space

$$H = \left\{ \begin{bmatrix} a+b+2c+5d \\ a+2b+3c+8d \\ b+2c+5d \\ a+2b+4c+10d \end{bmatrix} : a,b,c,d \in \mathbb{R} \right\},\,$$

- 1. If *H* is a subspace of \mathbb{R}^k , what is the number *k*?
- 2. Find a set of basis for H and the dimension of H
- 3. Find a set of basis for the orthogonal compliment H^{\perp} of H.

III (20 points) Let $\mathscr{E} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be the standard basis in \mathbb{R}^3 ,

$$P = \begin{pmatrix} 1 & 2 & -1 \\ -3 & -5 & 0 \\ 4 & 6 & 1 \end{pmatrix},$$

and

$$\mathbf{v}_1 = \begin{pmatrix} -2\\2\\3 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} -8\\5\\2 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} -7\\2\\6 \end{pmatrix}.$$

- 1. Show that $\mathscr{B} = \{v_1, v_2, v_3\}$ is a basis of \mathbb{R}^3 .
- 2. Show the change-of-coordinates matrix $P_{\mathscr{E} \leftarrow \mathscr{B}}$ from basis \mathscr{B} to the standard basis \mathscr{E} .
- 3. Find a basis $\mathscr{D} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ for \mathbb{R}^3 such that P is the change-of-coordinates matrix from $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ to the basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.[Hint: One can use the fact $P_{\mathscr{B} \leftarrow \mathscr{D}} = P_{\mathscr{B} \leftarrow \mathscr{E}} P_{\mathscr{E} \leftarrow \mathscr{D}}$.]

IV. (15 points) Consider

$$A = \begin{pmatrix} 0 & -4 & -6 \\ -1 & 0 & -3 \\ 1 & 2 & 5 \end{pmatrix}.$$

- 1. Find the eigenvalues of matrix A.
- 2. Diagonalize the matrix *A*, if possible and if not, explain the reason.

Score

V(15 points) Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $= \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ be two eigenvectors of a 2×2 matrix A related to eigenvalues $\lambda_1 = 3$ and $\lambda_2 = -2$ respectively.

- 1. Compute $A^2 \begin{bmatrix} 4 \\ 3 \end{bmatrix}$ without using the exact formula of A.
- 2. Find the exact formula of *A*

Score	
	VI (15 points) Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are vectors in \mathbb{R}^n . Suppose that vectors $\mathbf{u}_1, \mathbf{u}_2$ are orthogonal and the norm of \mathbf{u}_2 is 4 and $\mathbf{u}_2^T \mathbf{u}_3 = 7$. Find the value of the real
	number a in $\mathbf{u}_1 = \mathbf{u}_2 + a\mathbf{u}_3$.