Intro to Bio-inspired Al

Wat.ai Cybersecurity Team

Wat.ai Cybersecurity Team

Archive

About

Sparse Data and Spurious Correlations

Dashboard

A Chonky Problem As mentioned in a previous post, we have a CHONKY 14 GB dataset. This is too large to even load into the memory we have available, so...

OCT 10 · MADHAV MALHOTRA

New

Wat.ai Cybersecurity Team

We're a student design team at the University of
Waterloo! We apply AI to cybersecurity challenges, like
lightweight intrusion detection for IoT.

Checkpoint 1

We finished the about us narcissism

How to minimise the function?

How to minimise the function?

"Gradient-based" (calculus magic)

"Gradient-based" (calculus magic)

"Gradient-based" (calculus magic)

Checkpoint 2

So is this CALC 101 or what?

Number particles: $\{1, 2, \ldots, i, \ldots, P\}$

Number particles: $\{1, 2, \ldots, i, \ldots, P\}$

Objective function: f(x, y)

Position

$$X^{i}(t) = (x^{i}(t), y^{i}(t))$$

Position

$$X^{l}(t) = (x^{l}(t), y^{l}(t))$$

Velocity

$$V^{i}(t) = (v^{i}_{x}(t), v^{i}_{y}(t))$$

$X^{i}(t + 1) = X^{i}(t) + V^{i}(t + 1)$

$$V^i(t+1) =$$

 $wV^{i}(t)$

Inertia

$$V^i(t+1) =$$

$$wV^{l}(t)$$

Inertia

$$+ c_1 r_1(pbest^i - X^i(t))$$

Cognitive

$$V^{i}(t+1) =$$

$$V(t+1) = wV^{i}(t)$$

Inertia

$$+ c_1 r_1(pbest^i - X^i(t))$$

Cognitive

$$+ c_2 r_2(gbest - X^i(t))$$

Social

$$X^{i}(t + 1) = X^{i}(t) + V^{i}(t + 1)$$

Velocity
$$V^{i}(t+1) =$$

 $wV^{l}(t)$

Cognitive

 $+ c_1 r_1 (pbest^i - X^i(t))$

 $+ c_2 r_2 (gbest - X^l(t))$ Social

Inertia

c1=c2=0.1

W=0.8

Checkpoint 3

No more swimming with the fishies

Animation by Quasar, Stack Overflow, 2021.

Position

Leaders

Motion

Position

Number wolves:

$$\{1, 2, \dots, i, \dots, W\}$$

Position

Number wolves:

$$\{1, 2, \ldots, i, \ldots, W\}$$

Position:

$$\vec{x}_i = [5, 10, 1]$$

Position

Number wolves:

es:
$$\{1, 2, \dots, i, \dots, W\}$$

Position:

n:
$$\vec{x}_i = [5, 10, 1]$$

Specifically:

$$\vec{x}_i = [0, 0, 1, 0, 0, 0, 1, 1, 0, 1]$$

Selector:

$$D = \{l, w, h\}. \vec{x} = [1 \ 0 \ 1].$$

Selector:

$$D = \{l, w, h\}. \vec{x} = [1\ 0\ 1]. S(\vec{x}) = \{l, h\}$$

$$N_{tot}$$
 N_{feat}

Selector:

$$D = \{l, w, h\}. \ \vec{x} = [1\ 0\ 1]. \ S(\vec{x}) = \{l, h\}$$

$$N_{tot}$$
 N_{feat}

Selector:

$$D = \{l, w, h\}. \ \vec{x} = [1\ 0\ 1]. \ S(\vec{x}) = \{l, h\}$$

Error:

$$E(S(\vec{x})) = E(\{l, h\}) = 0.23$$

 N_{tot} N_{feat}

 $D = \{l, w, h\}. \vec{x} = [1\ 0\ 1]. S(\vec{x}) = \{l, h\}$ Selector:

 $E(S(\vec{x})) = E(\{l, h\}) = 0.23$

Error:

 $f(\vec{x}) = k \cdot E(S(\vec{x}))$ Output:

 N_{tot}

 $D = \{l, w, h\}. \vec{x} = [1\ 0\ 1]. S(\vec{x}) = \{l, h\}$

 N_{feat}

Selector:

Error:

 $E(S(\vec{x})) = E(\{l, h\}) = 0.23$

 $f(\vec{x}) = k \cdot E(S(\vec{x})) + (1 - k) \cdot \frac{N_{feat}}{N_{tot}}$

Output:

Following:

$$\vec{x}_{\alpha,i}(t+1) = \vec{x}_{\alpha}(t)$$

Following:

$$\vec{x}_{\alpha,i}(t+1) = \vec{x}_{\alpha}(t) - c$$

$$\vec{x}_{\alpha,i}(t+1) = \vec{x}_{\alpha}(t) - c$$

$$c(t) = 2\left(1 - \frac{t}{M}\right)$$

$$\vec{x}_{\alpha,i}(t+1) = \vec{x}_{\alpha}(t) - c(2\vec{r}_1 - 1)$$

$$c(t) = 2\left(1 - \frac{t}{M}\right)$$

$$\vec{x}_{\alpha,i}(t+1) = \vec{x}_{\alpha}(t) - c(2\vec{r}_1 - 1) |2\vec{r}_2\vec{x}_{\alpha}(t) - \vec{x}_i(t)|$$

$$c(t) = 2\left(1 - \frac{t}{M}\right)$$

Following:

$$\vec{x}_{\alpha,i}(t+1) = \vec{x}_{\alpha}(t) - c(2\vec{r}_1 - 1) |2\vec{r}_2\vec{x}_{\alpha}(t) - \vec{x}_i(t)|$$

Enclosing:

$$c(t) = 2\left(1 - \frac{t}{M}\right)$$

G:
$$\vec{x}_{\alpha,i}(t+1) = \vec{x}_{\alpha}(t) - c(2\vec{r}_1 - 1) |2\vec{r}_2\vec{x}_{\alpha}(t) - \vec{x}_i(t)|$$

$$c(t) = 2\left(1 - \frac{t}{M}\right)$$

$$\vec{r} \cdot (t+1) - \frac{1}{2}(\vec{r}_{1} \cdot + \vec{r}_{2} \cdot + \vec{r}_{3} \cdot + \vec{r}_{$$

$$\vec{x}_i(t+1) = \frac{1}{3} (\vec{x}_{\alpha,i} + \vec{x}_{\beta,i} + \vec{x}_{\delta,i})$$

No

Animation by Quasar, Stack Overflow, 2021.

	duration	srate	fin_flag_number	syn_flag_number	psh_flag_number	ack_fl
11813	-0.165953	0.314758	-0.308658	-0.512099	-0.310367	-0.37
35509	-0.165953	-0.084583	3.239836	-0.512099	-0.310367	-0.37
40311	-0.211256	-0.088756	-0.308658	-0.512099	-0.310367	-0.37
5057	-0.165953	-0.088677	3.239836	-0.512099	-0.310367	-0.37
15973	-0.165953	-0.088736	-0.308658	1.952748	-0.310367	-0.37

Checkpoint 4

NO MORE CHECKPOINTS!!! 😤

Math slides

Demo (code screenshot, graphs)

What are some applications of NSA?

Checkpoint 3

Begone with itsy-bitsy microbe stuff