例 设 $3(\alpha_1 - \alpha) + 2(\alpha_2 + \alpha) = 5(\alpha_3 + \alpha)$,其中 $\alpha_1 = (2,5,1,3)$, $\alpha_2 = (10,1,5,10)$, $\alpha_3 = (4,1,-1,1)$ 求 α 。

解 去括号 $3\alpha_1 - 3\alpha + 2\alpha_2 + 2\alpha = 5\alpha_3 + 5\alpha$ 移项、合并同类项 $6\alpha = 3\alpha_1 + 2\alpha_2 - 5\alpha_3$ 同除未知量前面的系数

$$\alpha = \frac{1}{6}(3\alpha_1 + 2\alpha_2 - 5\alpha_3) = (1,2,3,4)$$

例 n维向量 $\varepsilon_1 = (1,0,\dots,0)$, $\varepsilon_2 = (0,1,\dots,0)$,

$$\cdots$$
, $\varepsilon_n = (0,0,\cdots,1)$ 是一组两两正交的单位向量。

例
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 是两两正交的

向量, 但它们不是单位向量。

(1) 求 α 与 β 的夹角 φ_1 及 α 与 γ 的夹角 φ_2 ; (2) 求与 α , β , γ 都正交的向量。 **解** (1) 因为[α , β]=1-2+1=0, 所以 $\varphi_1 = \frac{\pi}{2}$; 又有[α , γ]=1+1+1=3, $\|\alpha\| = \sqrt{4} = 2$, $\|\gamma\| = \sqrt{3}$,

例 设 $\alpha = (-1,1,1,1)$, $\beta = (-1,-2,1,0)$, $\gamma = (-1,1,1,0)$

所以 $\cos \varphi_2 = \frac{[\alpha, \gamma]}{\|\alpha\| \|\gamma\|} = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2}$, 故 $\varphi_2 = \frac{\pi}{6}$ 。

(2) 设与 α, β, γ 都正交的向量是 $\mathbf{x} = (x_1, x_2, x_3, x_4)$,

$$\begin{cases} [\alpha, \mathbf{x}] = -x_1 + x_2 + x_3 + x_4 = 0 \\ [\beta, \mathbf{x}] = -x_1 - 2x_2 + x_3 = 0 \\ [\gamma, \mathbf{x}] = -x_1 + x_2 + x_3 = 0 \end{cases}$$

 $\int x_1 = x_3$ 同解方程组为 $\begin{cases} x_2 = 0, \text{ 通解为} \\ x_2 = 0 \end{cases}$ $\begin{cases} x_2 = 0 \\ x_3 = t \end{cases}$

例 n维零向量 $\mathbf{0}$ 可由任一组n维向量线性表示: $\mathbf{0} = 0\alpha_1 + 0\alpha_2 + \cdots + 0\alpha_m$

例 任一n维向量 $\alpha = (a_1, a_2, \dots, a_n)$ 可由n维向量 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 线性表示:

$$\boldsymbol{\alpha} = a_1 \boldsymbol{\varepsilon}_1 + a_2 \boldsymbol{\varepsilon}_2 + \dots + a_n \boldsymbol{\varepsilon}_n$$

称 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 为n维单位坐标向量。

问题: ε_1 可否由 ε_2 ,…, ε_n 线性表示?

分析: 若有 $\varepsilon_1 = k_2 \varepsilon_2 + \dots + k_n \varepsilon_n$, 即 $(1,0,\dots,0) = (0,k_2,\dots,k_n)$

这不可能成立。故 ε_1 不能由 $\varepsilon_2, \dots, \varepsilon_n$ 线性表示。

例 已知 $\alpha_1 = (1,2,-1)$, $\alpha_2 = (2,5,3)$, $\alpha_3 = (1,3,4)$, $\alpha_4 = (3,7,2)$,问 $\beta = (3,8,7)$ 可否由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$

线性表示?

解 设 $\beta = k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 + k_4\alpha_4$,比较分量得:

$$\begin{cases} k_1 + 2k_2 + k_3 + 3k_4 = 3 \\ 2k_1 + 5k_2 + 3k_3 + 7k_4 = 8 \\ -k_1 + 3k_2 + 4k_3 + 2k_4 = 7 \end{cases}$$

增广矩阵

$$\hat{A} = \begin{pmatrix} 1 & 2 & 1 & 3 & 3 \\ 2 & 5 & 3 & 7 & 8 \\ -1 & 3 & 4 & 2 & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 3 & 3 \\ 0 & 1 & 1 & 1 & 2 \\ 0 & 5 & 5 & 5 & 10 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & -1 & 1 & | & -1 \\ 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$
法1 由于 rank \hat{A} = rank \hat{A} = 2, 方程组有解, 故 $\hat{\beta}$ 可由 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性表示。
法2 同解方程组为
$$\begin{cases} k_1 = -1 + k_3 - k_4 \\ k_2 = 2 - k_3 - k_4 \end{cases}$$
,取 $k_3 = k_4 = 0$

得 $k_1 = -1$, $k_2 = 2$, 故 $\beta = -\alpha_1 + 2\alpha_2 + 0\alpha_3 + 0\alpha_4$ 。

证 设 $k_1\varepsilon_1 + k_2\varepsilon_2 + \dots + k_n\varepsilon_n = \mathbf{0}$,即 $(k_1, k_2, \dots, k_n) = (0, 0, \dots, 0)$ 这只有 $k_1 = k_2 = \dots = k_n = 0$,故 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 线性无关 **例** 判断向量组 $\alpha_1 = (1, 1, 0, 0)$, $\alpha_2 = (1, 1, 1, 2)$,

证明n维单位坐标向量 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 线性无关。

$$\alpha_3 = (2,2,3,6)$$
 的线性相关性。
解 设 $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = \mathbf{0}$,即

 $\begin{cases} k_1 + k_2 + 2k_3 = 0 \\ k_1 + k_2 + 2k_3 = 0 \end{cases}$ $k_2 + 3k_3 = 0$ $2k_2 + 6k_3 = 0$

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 2 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

法1 由于 rank A = 2 < 3, 齐次方程组有非零解, 故 $\alpha_1,\alpha_2,\alpha_3$ 线性相关。

法2 同解方程组为:
$$\begin{cases} k_1 = k_3 \\ k_2 = -3k_3 \end{cases}$$
, 取 $k_3 = 1$ 得 $k_1 = 1$, $k_2 = -3$, 即 $\alpha_1 - 3\alpha_2 + \alpha_3 = \mathbf{0}$, 故 $\alpha_1, \alpha_2, \alpha_3$ 线性相关。

例 已知向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关。设

$$eta_1 = lpha_1$$
, $eta_2 = lpha_1 + lpha_2$,…, $eta_m = lpha_1 + lpha_2 + \dots + lpha_m$
问 eta_1 , eta_2 ,…, eta_m 是线性相关还是线性无关?
解 设 $k_1eta_1 + k_2eta_2 + \dots + k_meta_m = \mathbf{0}$,即

解 设
$$k_1\beta_1 + k_2\beta_2 + \dots + k_m\beta_m = \mathbf{0}$$
,即 $k_1\alpha_1 + k_2(\alpha_1 + \alpha_2) + \dots + k_m(\alpha_1 + \alpha_2 + \dots + \alpha_m) = \mathbf{0}$

 $(k_1 + k_2 + \dots + k_m)\alpha_1 + (k_2 + \dots + k_m)\alpha_2 + \dots + k_m\alpha_m = \mathbf{0}$

由 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关,知

$$\begin{cases} k_1 + k_2 + \dots + k_m = 0 \\ k_2 + \dots + k_m = 0 \\ \dots \\ k_m = 0 \end{cases}$$

系数行列式 $D = \begin{bmatrix} 1 & \cdots & 1 \\ & \ddots & \vdots \\ & & 1 \end{bmatrix} = 1$,故齐次线性方程组 只有零解 $k_1 = k_2 = \cdots = k_m = 0$,即 $\beta_1, \beta_2, \cdots, \beta_m$ 线性无关。

例 已知向量组
$$\alpha_1, \alpha_2, \alpha_3, \alpha_4$$
,设 $\beta_1 = \alpha_1 + \alpha_2$, $\beta_2 = \alpha_2 + \alpha_3$, $\beta_3 = \alpha_3 + \alpha_4$, $\beta_4 = \alpha_4 + \alpha_1$ 讨论向量组 $\beta_1, \beta_2, \beta_3, \beta_4$ 的线性相关性。

解 法1 因为
$$\beta_1 - \beta_2 + \beta_3 - \beta_4 = \mathbf{0}$$
,

所以 $\beta_1,\beta_2,\beta_3,\beta_4$ 线性相关。

法2 设 $k_1\beta_1 + k_2\beta_2 + k_3\beta_3 + k_4\beta_4 = \mathbf{0}$, 即 $(k_1 + k_4)\alpha_1 + (k_1 + k_2)\alpha_2 + (k_2 + k_3)\alpha_3 + (k_3 + k_4)\alpha_4 = \mathbf{0}$ 为使上式成立,令 $\begin{cases} k_1 & + k_4 = 0 \\ k_1 + k_2 & = 0 \end{cases}$ $k_2 + k_3 & = 0$

 $k_3 + k_4 = 0$

解 1)
$$A = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 3 & 2 & 4 \\ 2 & 1 & 4 & 1 & 0 \\ 0 & 2 & -1 & 4 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1}$$

$$\begin{pmatrix} 1 & 0 & 3 & 2 & 4 \\ 0 & 1 & -2 & -3 & -8 \\ 0 & 2 & -1 & 4 & 2 \end{pmatrix} \xrightarrow{r_3 - 2r_2}$$

$$\begin{pmatrix} 1 & 0 & 3 & 2 & 4 \\ 0 & 3 & 2 & 4 \end{pmatrix}$$

 $\operatorname{rank} A = 3$, 故 $\alpha_1, \alpha_2, \alpha_3$ 线性无关。

试讨论下列向量组的线性相关性:

1) $\alpha_1 = (1,0,3,2,4), \ \alpha_2 = (2,1,4,1,0), \ \alpha_3 = (0,2,-1,4,2)$

上面下面

解 2)
$$\mathbf{B} = (\beta_1, \beta_2, \beta_3) = \begin{bmatrix} 3 & 2 & 0 \\ -2 & -1 & 1 \\ 2 & 3 & 5 \end{bmatrix} \xrightarrow{\begin{array}{c} r_3 + 2 r_1 \\ r_4 - 2 r_1 \end{array}}$$

$$\begin{pmatrix} 1 & 0 & -2 \\ 0 & 2 & 6 \\ \end{array} \quad \begin{array}{c} r_2 \times \frac{1}{2} \\ r_4 - 3 r_2 \end{array} \quad \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ \end{array}$$

rank $\mathbf{B} = 2$, 故 $\beta_1, \beta_2, \beta_3$ 线性相关。

例 求向量组T: $\alpha_1 = (1,2)$, $\alpha_2 = (2,4)$, $\alpha_3 = (-1,-2)$, $\alpha_4 = (0,0)$ 的秩和一个极大无关组。 解 因为 $\alpha_1 \neq 0$,它线性无关。显然T中任意两个 向量线性相关,故T的秩为1,且 α_1 是T的一个极大 无关组。同理 α ,或 α 、都是T的极大无关组。 例 记全体实n维行(或列)向量的集合为 \mathbf{R}^n ,求 \mathbf{R}^n 的秩与极大无关组。 解 已知 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n \in \mathbb{R}^n$,且它们线性无关,又 任意n+1个n维向量线性相关,故 \mathbb{R}^n 的秩为n,且 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 是 \mathbf{R}^n 的一个极大无关组。可知,任意 n个线性无关的实n维向量都是 \mathbf{R}^n 的极大无关组。

例 求向量组 $\alpha_1 = (2,0,-1,3)$, $\alpha_2 = (3,-2,1,-1)$, $\alpha_3 = (-5,6,-5,9)$, $\alpha_4 = (4,-4,3,-5)$ 的秩和一个极大 无关组。

解
$$A = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{pmatrix} = \begin{pmatrix} 2 & 0 & -1 & 3 \\ 3 & -2 & 1 & -1 \\ -5 & 6 & -5 & 9 \\ 4 & -4 & 3 & -5 \end{pmatrix} \xrightarrow{\substack{r_2 - r_1 \\ r_4 - 2r_1 \\ r_4 - 2r_1}}$$

$$\begin{pmatrix} 2 & 0 & -1 & 3 \\ 1 & -2 & 2 & -4 \\ -5 & 6 & -5 & 9 \\ 0 & -4 & 5 & -11 \end{pmatrix} \xrightarrow{\substack{r_1 - 2r_2 \\ r_3 + 5r_2 \\ \hline}} \xrightarrow{r_1 - 2r_2 \\ r_3 + 5r_2}$$

上页

下页

返回

$$\begin{pmatrix}
0 & 4 & -5 & 11 \\
1 & -2 & 2 & -4 \\
0 & -4 & 5 & -11 \\
0 & -4 & 5 & -11
\end{pmatrix}
\xrightarrow{\begin{array}{c} r_3 + r_1 \\ r_4 + r_1 \\ r_1 \leftrightarrow r_2 \end{array}}
\begin{pmatrix}
1 & -2 & 2 & -4 \\
0 & 4 & -5 & 11 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$rank A = 2$$
,故向量组的秩为2。
 A 中位于1,2行的二阶子式
 $D_2 = \begin{vmatrix} 2 & 0 \\ 3 & -2 \end{vmatrix} = -4 \neq 0$

故 α_1, α_2 是一个极大无关组。

例 求向量组 $\alpha_1 = (2,0,-1,3)$, $\alpha_2 = (3,-2,1,-1)$, $\alpha_3 = (-5,6,-5,9)$, $\alpha_4 = (4,-4,3,-5)$ 的秩和一个极大 无关组。

解
$$A = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{pmatrix} = \begin{pmatrix} 2 & 0 & -1 & 3 \\ 3 & -2 & 1 & -1 \\ -5 & 6 & -5 & 9 \\ 4 & -4 & 3 & -5 \end{pmatrix} \xrightarrow{\substack{c_1 + 2c_3 \\ c_4 + 3c_3}} \xrightarrow{\substack{c_1 + 2c_3 \\ c_4 + 3c_3}}$$

$$\begin{pmatrix} 0 & 0 & -1 & 0 \\ 5 & -2 & 1 & 2 \\ -15 & 6 & -5 & -6 \\ 10 & -4 & -3 & 4 \end{pmatrix} \xrightarrow{\substack{c_1 + 2c_3 \\ c_4 + 3c_3 \\ c_3 \times (-1)}} \xrightarrow{\substack{c_1 + 2c_3 \\ c_4 + 3c_3 \\ c_3 \times (-1)}} \xrightarrow{\substack{c_1 + 2c_3 \\ c_4 + 3c_3 \\ c_3 \times (-1)}} \xrightarrow{\substack{c_1 + 2c_3 \\ c_4 + 3c_3 \\ c_3 \times (-1)}}$$

上页

下页

$$\begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & -3 & 5 & 0 \\
0 & 2 & 3 & 0
\end{pmatrix}
\xrightarrow{c_1 \leftrightarrow c_3}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
5 & -3 & 0 & 0 \\
3 & 2 & 0 & 0
\end{pmatrix} = \mathbf{B}$$

由于 rank B = 2,故向量组的秩为2;又B的第1,2个行向量线性无关,从而 α_1,α_2 是一个极大无关组。

例 求向量组

个极大无关组。 $r_2 - r_1$ 解 $A = (\beta_1, \beta_2, \beta_3, \beta_4) =$

$$\begin{pmatrix}
1 & 0 & 2 & 1 \\
0 & 2 & -2 & 0 \\
0 & 1 & -1 & -2 \\
0 & 5 & -5 & 2 \\
0 & -1 & 1 & -2
\end{pmatrix}
\xrightarrow{r_4 + r_3}
\begin{pmatrix}
1 & 0 & 2 & 1 \\
r_3 - r_2 \\
r_4 - 5 r_2 \\
r_5 + r_2
\end{pmatrix}
\xrightarrow{r_5 + r_2}
\begin{pmatrix}
1 & 0 & 2 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & -2 \\
0 & 0 & 0 & -2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 2 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & -2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 2 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & -2
\end{pmatrix}$$

 $\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$ rank A = 3,故向量组的秩为3,且 β_1 , β_2 , β_4 是一个极大无关组。

0

例 讨论向量组

 T_1 : $\alpha_1 = (1,0)$, $\alpha_2 = (0,1)$; T_2 : $\beta = (1,1)$ 的线性关系。

解 因为 $\beta = \alpha_1 + \alpha_2$,所以 T_2 可由 T_1 线性表示;但 $\alpha_1 \neq k_1\beta$,故 T_1 不能由 T_2 线性表示。

例 讨论向量组

$$T_1$$
: $\alpha_1 = (1,0)$, $\alpha_2 = (0,1)$, $\alpha_3 = (1,1)$;
 T_2 : $\beta_1 = (3,4)$, $\beta_2 = (4,3)$.

的线性关系。

解 因为
$$\beta_1 = 3\alpha_1 + 4\alpha_2 + 0\alpha_3$$
, $\beta_2 = 4\alpha_1 + 3\alpha_2 + 0\alpha_3$, 所以 T_2 可由 T_1 线性表示。 又因为
$$\alpha_1 = -\frac{3}{7}\beta_1 + \frac{4}{7}\beta_2$$
, $\alpha_2 = \frac{4}{7}\beta_1 - \frac{3}{7}\beta_2$, $\alpha_3 = \frac{1}{7}\beta_1 + \frac{1}{7}\beta_2$ 从而 T_1 对此 线性表示。 故下与T 等价

从而 T_1 可由 T_2 线性表示,故 T_1 与 T_2 等价。

例 证明:
$$\operatorname{rank}(AB) \leq \min \{ \operatorname{rank} A, \operatorname{rank} B \}$$
。
证 设 $A = (a_{ij})_{m \times r}$, $B = (b_{ij})_{r \times n}$, $C = (c_{ij})_{m \times n} = AB$

将
$$A$$
和 C 分块为 $A = (\alpha_1, \alpha_2, \dots, \alpha_r)$, $C = (\gamma_1, \gamma_2, \dots, \gamma_n)$

则由
$$C = (\gamma_1, \gamma_2, \dots, \gamma_n) = AB$$

$$= (\alpha_1, \alpha_2, \dots, \alpha_r) \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{r1} & b_{r2} & \dots & b_{rn} \end{pmatrix}$$

 $\begin{cases} \gamma_1 = b_{11}\alpha_1 + b_{21}\alpha_2 + \dots + b_{r1}\alpha_r \\ \gamma_2 = b_{12}\alpha_1 + b_{22}\alpha_2 + \dots + b_{r2}\alpha_r \\ \gamma_n = b_{1n}\alpha_1 + b_{2n}\alpha_2 + \dots + b_{rn}\alpha_r \end{cases}$

即 $\gamma_1, \gamma_2, \dots, \gamma_n$ 可由 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性表示。由性质9知,

秩 $\{\gamma_1, \gamma_2, \dots, \gamma_n\} \le$ 秩 $\{\alpha_1, \alpha_2, \dots, \alpha_r\}$ 也即 rank $(AB) \le \text{rank } A$ 。 又有 rank $(AB) = \text{rank}(AB)^{\mathrm{T}} = \text{rank}(B^{\mathrm{T}}A^{\mathrm{T}})$ $\le \text{rank } B^{\mathrm{T}} = \text{rank } B$ 从而 rank $(AB) \le \min\{\text{rank } A, \text{rank } B\}$ 。

上页

下页

例 设A是m阶可逆矩阵,B是m×n矩阵,证明: rank(AB) = rank B
证 由上例得 rank(AB) \leq rank B。 又有 rank B = rank($A^{-1}AB$) \leq rank(AB)

例 $V_0 = \{(0,0,\dots,0)\}$, 即只含一个零向量的集合, 是向量空间。 例 n维实的行(或列)向量的全体 \mathbb{R}^n 是向量空间。 解 因为 $0 \in \mathbb{R}^n$, 即非空, 且对 $\forall \alpha, \beta \in \mathbb{R}^n$ 有 $\alpha + \beta \in \mathbf{R}^n$;又对 $\forall \alpha \in \mathbf{R}^n$ 和 $k \in \mathbf{R}$ 有 $k\alpha \in \mathbf{R}^n$, 故Rn是向量空间。 例 $V_1 = \{(0, \dots, 0, x_n) | x_n \in \mathbb{R} \}$ 是向量空间。 解 因为 $0 \in V_1$,即 V_1 非空。又对 $\forall \alpha = (0, \dots, 0, a_n) \in V_1, \forall \beta = (0, \dots, 0, b_n) \in V_1, k \in \mathbb{R}$ $\alpha + \beta = (0, \dots, 0, a_n + b_n) \in V_1$ 有 $k\alpha = (0, \dots, 0, ka_n) \in V_1$ 故V」是向量空间。

例 $V_2 = \{(0, x_2, \dots, x_n) | x_2, \dots, x_n \in \mathbf{R}\}$ 是向量空间。

例 $V_3 = \{(-1, x_2, \dots, x_n) | x_2, \dots, x_n \in \mathbf{R}\}$ 不是向量空间 解 非空条件满足 $(-1, 0, \dots, 0) \in V_2$ 。但对

解 非空条件满足 (-1,0,···,0) ∈ V₃。但对

 $\alpha = (-1, a_2, \dots, a_n) \in V_3, \quad \beta = (-1, b_2, \dots, b_n) \in V_3$

有 $\alpha + \beta = (-2, a_2 + b_2, \dots, a_n + b_n) \notin V_3$ 故 V_3 不是向量空间。

例 $V_4 = \{(x_1, x_2, \dots, x_n) \mid x_1, \dots, x_n \in \mathbf{R} \mid x_1 + \dots + x_n = 0\}$

是向量空间;

 $V_5 = \{(x_1, x_2, \dots, x_n) | x_1, \dots, x_n \in \mathbf{R} \mid x_1 + \dots + x_n = 1\}$ 不是向量空间。

解 因为 $0 \in V_4$,即 V_4 非空。又对任意 $\alpha = (a_1, a_2, \dots, a_n) \in V_4, \ \beta = (b_1, b_2, \dots, b_n) \in V_4$ 其中 $a_1 + a_2 + \dots + a_n = 0$, $b_1 + b_2 + \dots + b_n = 0$ $\alpha + \beta = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$ $= (a_1 + a_2 + \dots + a_n) + (b_1 + b_2 + \dots + b_n) = 0$ 所以 $\alpha + \beta \in V_4$; 而对 $\forall k \in \mathbb{R}$, 由于 $k\alpha = (ka_1, ka_2, \dots, ka_n)$ $(ka_1) + (ka_2) + \dots + (ka_n) = k(a_1 + a_2 + \dots + a_n) = 0$ 即 $k\alpha \in V_4$,故 V_4 是向量空间。 如取 $\alpha = (1,0,\dots,0) \in V_5$, 因为 $2\alpha = (2,0,\dots,0) \notin V_5$ 故V、不是向量空间。

例 给定n维实的行(或列)向量 $\alpha_1,\alpha_2,\cdots,\alpha_m$,集合 $V_6 = \{k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m \mid k_1,k_2,\cdots,k_m \in \mathbf{R}\}$ 是向量空间。

解 因为 $\alpha_1 \in V_6$,即 V_6 非空。又对 $\forall \alpha, \beta \in V_6$,有 $\alpha = k_1\alpha_1 + \cdots + k_m\alpha_m$, $\beta = l_1\alpha_1 + \cdots + l_m\alpha_m$

其中 $k_i, l_i \in \mathbf{R}$,且

$$\alpha + \beta = (k_1 + l_1)\alpha_1 + \dots + (k_m + l_m)\alpha_m \in V_6$$

而对 $\forall k \in \mathbf{R}$,有

$$k\alpha = kk_1\alpha_1 + \dots + kk_m\alpha_m \in V_6$$

故V₆是向量空间。

例 在 \mathbf{R}^n 中,已知 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 线性无关,而任意 n维向量 $\alpha = (a_1, a_2, \dots, a_n)$ 均可表为 $\alpha = a_1 \varepsilon_1 + a_2 \varepsilon_2 + \dots + a_n \varepsilon_n$

故 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 是**R**ⁿ的一个基,且dim **R**ⁿ = n。

 \mathbf{R}^n 中任意n个线性无关的向量都是基。

例 在向量空间 $V_1 = \{(0, \dots, 0, x_n) | x_n \in \mathbf{R}\}$ 中,取 $\varepsilon_n = (0, \dots, 0, 1) \in V_1$,则 ε_n 线性无关,且对任一 $\alpha = (0, \dots, 0, a_n) \in V_1$,有 $\alpha = a_n \varepsilon_n$ 。故 ε_n 是 V_1 的一个 基,且 $\dim V_1 = 1$ 。

例 求向量空间

$$V_2 = \{(0, x_2, \dots, x_n) \mid x_2, \dots, x_n \in \mathbf{R}\}$$

的基与维数。

 \mathbf{k} 在 V_2 中取向量组 $\varepsilon_2, \varepsilon_3, \dots, \varepsilon_n$,则它线性无关,

且对任一向量 $\alpha = (0, a_2, \dots, a_n) \in V_2$,有

$$\alpha = a_2 \varepsilon_2 + \dots + a_n \varepsilon_n$$

故 $\varepsilon_2, \varepsilon_3, \dots, \varepsilon_n$ 是 V_2 的一个基,且 $\dim V_2 = n-1_\circ$

例 求向量空间

 $V_4 = \{(x_1, x_2, \dots, x_n) | x_1, \dots, x_n \in \mathbf{R} \perp x_1 + \dots + x_n = 0\}$ 的基与维数。

 \mathbf{a} 在 V_4 中取向量组 $\alpha_1 = (-1,1,0,\cdots,0),$ $\alpha_2 = (-1,0,1,0,\cdots,0), \cdots, \alpha_{n-1} = (-1,0,\cdots,0,1)$

先证 $\alpha_1,\alpha_2,\cdots,\alpha_{n-1}$ 线性无关。由于矩阵

$$A = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_{n-1} \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 & \cdots & 0 \\ -1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ -1 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

的秩 rank A = n-1,所以 $\alpha_1, \alpha_2, \dots, \alpha_{n-1}$ 线性无关。

又取
$$\forall \alpha = (a_1, a_2, \dots, a_n) \in V_4$$
,其中
$$a_1 + a_2 + \dots + a_n = 0$$

下证 α 可由 $\alpha_1,\alpha_2,\cdots,\alpha_{n-1}$ 线性表示。

$$k_2$$
 = a_3 $k_{n-1} = a_n$
増广矩阵 $\begin{pmatrix} -1 & -1 & \cdots & -1 & a_1 \\ 1 & 0 & \cdots & 0 & a_2 \\ 0 & 1 & \cdots & 0 & a_3 \end{pmatrix}$ $\xrightarrow{r_1 + r_2}$ $\begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & \cdots & 0 & a_3 \end{pmatrix}$ $\xrightarrow{r_1 + r_n}$ $\begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & a_2 \\ 0 & 1 & \cdots & 0 & a_3 \end{pmatrix}$

方程组的解为

$$k_1 = a_2, \quad k_2 = a_3, \dots, \quad k_{n-1} = a_n$$

即 α 可由 $\alpha_1,\alpha_2,\cdots,\alpha_{n-1}$ 线性表示。

法2 构造矩阵

$$\mathbf{B} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_{n-1} \\ \alpha \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 & \cdots & 0 \\ -1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ -1 & 0 & 0 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_n \end{pmatrix}$$

由于

$$\det \boldsymbol{B} = \begin{bmatrix} c_1 + c_i \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & a_2 & a_3 & \cdots & a_n \end{bmatrix} = 0$$

所以 rank B < n,即 $\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \alpha$ 线性相关。但 $\alpha_1, \alpha_2, \dots, \alpha_{n-1}$ 线性无关,故 α 可由 $\alpha_1, \alpha_2, \dots, \alpha_{n-1}$ 线性表示。从而 $\dim V_4 = n-1$,且 $\alpha_1, \alpha_2, \dots, \alpha_{n-1}$ 是 V_4 的一个基。

例 求由向量
$$\alpha_1 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}, \quad \alpha_3 = \begin{pmatrix} 0 \\ 2 \\ -4 \end{pmatrix}, \quad \alpha_4 = \begin{pmatrix} 0 \\ 2 \\ -4 \end{pmatrix}$$

f生成的向量空间的基与维数。

$$A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \begin{pmatrix} 3 & 1 & 0 & 2 \\ 1 & -1 & 2 & -1 \\ 1 & 3 & -4 & 4 \end{pmatrix} \xrightarrow{r_1 - 3r_2} \xrightarrow{r_3 - r_2}$$

$$\begin{pmatrix}
1 & 3 & -4 & 4 \\
4 & -6 & 5 \\
-1 & 2 & -1 \\
4 & -6 & 5
\end{pmatrix}
\xrightarrow{r_3-r_1}
\xrightarrow{r_1\leftrightarrow r_2}
\begin{pmatrix}
1 & -1 & 2 & -1 \\
0 & 4 & -6 & 5 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

rank A=2,故 dimL($\alpha_1,\alpha_2,\alpha_3,\alpha_4$) = 2,且 α_1,α_2 是它的一个基。

例 Rⁿ中的向量 $\alpha = (a_1, a_2, \dots, a_n)$ 在基 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 下的坐标为 $(a_1, a_2, \dots, a_n)^T$,这是因为 $\alpha = a_1 \varepsilon_1 + a_2 \varepsilon_2 + \dots + a_n \varepsilon_n$

例 在向量空间 $V_1 = \{(0, \dots, 0, x_n) | x_n \in \mathbf{R}\}$ 中,向量 $\alpha = (0, \dots, 0, a_n)$ 在基 ε_n 下的坐标为 (a_n) 。

在 \mathbf{R}^4 中,求向量 $\alpha = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 在基

$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 2 \\ 1 \\ 3 \\ 1 \end{pmatrix}, \quad \alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \alpha_4 = \begin{pmatrix} 0 \\ 1 \\ -1 \\ -1 \end{pmatrix}$$

下的坐标。

例

解 设 $\alpha = x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 + x_4\alpha_4$ 。比较分量得

$$\begin{cases} x_1 + 2x_2 + x_3 = 0 \\ x_1 + 2x_2 + x_3 + x_4 = 0 \\ 3x_2 - x_4 = 0 \\ x_1 + x_2 - x_4 = 1 \end{cases}$$

解得 $x_1 = 1$, $x_2 = 0$, $x_3 = -1$, $x_4 = 0$ 故 α 在基 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 下的坐标为 $(1,0,-1,0)^T$ 。

$$\beta_{1} = \frac{1}{\parallel \alpha_{1} \parallel} \alpha_{1} = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}, \quad \beta_{2} = \frac{1}{\parallel \alpha_{2} \parallel} \alpha_{2} = \begin{bmatrix} \frac{1}{\sqrt{6}} \\ -2 \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix},$$

$$\beta_{3} = \frac{1}{\parallel \alpha_{3} \parallel} \alpha_{3} = \begin{bmatrix} \frac{-1}{\sqrt{2}} \\ 0 \\ 1 \end{bmatrix}$$

在 \mathbf{R}^3 中, $\alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ 是一个

但不是标准正交基。如果将其单位化

即得R3的一个标准正交基。

例 在 \mathbf{R}^n 中, $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 是一个标准正交基。

例 已知线性无关向量组

$$\alpha_{1} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \alpha_{2} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad \alpha_{3} = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad \alpha_{4} = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$$

试将其正交化。

采用Schmidt正交化方法:

$$\beta_{1} = \alpha_{1} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \beta_{2} = \alpha_{2} - \frac{[\alpha_{2}, \beta_{1}]}{[\beta_{1}, \beta_{1}]} \beta_{1} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ 1 \\ 0 \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{[\alpha_{3}, \beta_{1}]}{[\beta_{1}, \beta_{1}]} \beta_{1} - \frac{[\alpha_{3}, \beta_{2}]}{[\beta_{2}, \beta_{2}]} \beta_{2}$$

$$= \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix} - \frac{-1}{2} \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} - \frac{-\frac{1}{2}}{\frac{3}{2}} \begin{pmatrix} \frac{1}{2}\\-\frac{1}{2}\\1\\0 \end{pmatrix} = \begin{pmatrix} -\frac{1}{3}\\\frac{1}{3}\\\frac{1}{3}\\1 \end{pmatrix}, \quad \beta_{4} = \alpha_{4} = \begin{pmatrix} 1\\-1\\-1\\1 \end{pmatrix}$$

例 已知 \mathbb{R}^3 的两个基 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 2 \\ 3 \\ 3 \end{pmatrix}, \quad \alpha_3 = \begin{pmatrix} 3 \\ 7 \\ 1 \end{pmatrix}$

$$\alpha_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$

$$\beta_1 = \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix}$$
, $\beta_2 = \begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix}$, $\beta_3 = \begin{bmatrix} 1 \\ 1 \\ -6 \end{bmatrix}$

$$\begin{pmatrix} 1 \end{pmatrix}$$
 $\begin{pmatrix} 1 \end{pmatrix}$ $\begin{pmatrix} -6 \end{pmatrix}$ 试求由基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵。

深 法1 直接法(待定法)。设
$$\begin{cases} \beta_1 = c_{11}\alpha_1 + c_{21}\alpha_2 + c_{31}\alpha_3 \\ \beta_2 = c_{12}\alpha_1 + c_{22}\alpha_2 + c_{32}\alpha_3 \\ \beta_3 = c_{13}\alpha_1 + c_{23}\alpha_2 + c_{33}\alpha_3 \end{cases}$$

解三个线性方程组得

$$\begin{cases} c_{11} = -27 \\ c_{21} = 9 \\ c_{31} = 4 \end{cases} \begin{cases} c_{12} = -71 \\ c_{22} = 20 \\ c_{32} = 12 \end{cases} \begin{cases} c_{13} = -41 \\ c_{23} = 9 \\ c_{33} = 8 \end{cases}$$

故由基 $\alpha_1,\alpha_2,\alpha_3$ 到基 β_1,β_2,β_3 的过渡矩阵为

$$C = \begin{pmatrix} -27 & -71 & -41 \\ 9 & 20 & 9 \\ 4 & 12 & 8 \end{pmatrix}$$

法2 间接法(中间基法)。取R³的基

$$\boldsymbol{\varepsilon}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \boldsymbol{\varepsilon}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \boldsymbol{\varepsilon}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

下页

则由 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 分别到基 $\alpha_1, \alpha_2, \alpha_3$ 和 $\beta_1, \beta_2, \beta_3$ 的基变换 公式为 $(\alpha_1, \alpha_2, \alpha_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3) A_1 (\beta_1, \beta_2, \beta_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3) B_1$

は中
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 7 \\ 1 & 3 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 5 & 1 \\ 1 & 2 & 1 \\ 3 & 1 & -6 \end{pmatrix}$

(1 3 1) (3 1 是

$$(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3) A^{-1} \mathbf{B}$$

$$= (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} -27 & -71 & -41 \\ 9 & 20 & 9 \\ 4 & 12 & 8 \end{pmatrix}$$

己知R4的两个基 例

$$\begin{cases} \alpha_1 = (1,2,-1,0) \\ \alpha_2 = (1,-1,1,-1) \\ \alpha_3 = (-1,2,1,1) \end{cases}$$

试求由基 $\beta_1,\beta_2,\beta_3,\beta_4$ 到基 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的过渡矩阵。 取**R**⁴的基 $\varepsilon_1 = (1,0,0,0), \varepsilon_2 = (0,1,0,0),$

$$\varepsilon_3 = (0,0,1,0), \ \varepsilon_4 = (0,0,0,1), \ \text{则由 } \varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$$
分别到基 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 和 $\beta_1, \beta_2, \beta_3, \beta_4$ 的基变换公式为 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)A$

$$(\beta_1, \beta_2, \beta_3, \beta_4) = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4) \mathbf{B}$$

 $\beta_1 = (3,1,0,0)$

 $\beta_2 = (5,2,0,0)$

 $(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4) = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3, \boldsymbol{\beta}_4) \boldsymbol{B}^{-1} \boldsymbol{A}$ 故由基 $\beta_1, \beta_2, \beta_3, \beta_4$ 到基 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的过渡矩阵为 $\mathbf{C} = \mathbf{B}^{-1} \mathbf{A} = \begin{pmatrix} 2 & -5 & 0 & 0 \\ -1 & 3 & 0 & 0 \\ 0 & 0 & 8 & 3 \\ 0 & 0 & 5 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 & -1 \\ 2 & -1 & 2 & -1 \\ -1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$

$$= \begin{pmatrix} -8 & 7 & -12 & 3 \\ 5 & -4 & 7 & -2 \\ -8 & 11 & 11 & 3 \\ -5 & 7 & 7 & 2 \end{pmatrix}$$

设4维向量空间V的两个基 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 和 $\beta_1,\beta_2,\beta_3,\beta_4$ 满足

$$\begin{cases} \alpha_1 + 2\alpha_2 = \beta_3 \\ \alpha_2 + 2\alpha_3 = \beta_4 \end{cases} \begin{cases} \beta_1 + 2\beta_2 = \alpha_3 \\ \beta_2 + 2\beta_3 = \alpha_4 \end{cases}$$
(1) 求由基 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 到 $\beta_1, \beta_2, \beta_3, \beta_4$ 的过渡矩阵;

(2) 求向量 $\alpha = \beta_1 + 2\beta_2 + 3\beta_3 + 4\beta_4$ 在基 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$

下的坐标。

解(1)由所给等式解得

$$\beta_{1} = \alpha_{3} - 2\beta_{2} = \alpha_{3} - 2(\alpha_{4} - 2\beta_{3})$$

$$= \alpha_{3} - 2\alpha_{4} + 4\beta_{3} = 4\alpha_{1} + 8\alpha_{2} + \alpha_{3} - 2\alpha_{4}$$

$$\beta_{2} = \alpha_{4} - 2\beta_{3} = \alpha_{4} - 2(\alpha_{1} + 2\alpha_{2}) = -2\alpha_{1} - 4\alpha_{2} + \alpha_{4}$$

$$\beta_{3} = \alpha_{1} + 2\alpha_{2}$$

$$\beta_4 = \alpha_2 + 2\alpha_3$$

$$(\beta_1, \beta_2, \beta_3, \beta_4) = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \begin{pmatrix} 4 & -2 & 1 & 0 \\ 8 & -4 & 2 & 1 \\ 1 & 0 & 0 & 2 \\ -2 & 1 & 0 & 0 \end{pmatrix}$$

故过渡矩阵为

$$C = \begin{bmatrix} 8 & -4 & 2 & 1 \\ 1 & 0 & 0 & 2 \\ -2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \end{bmatrix}$$

(2)
$$\alpha = (\beta_1, \beta_2, \beta_3, \beta_4) \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) C$$

 $=(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$

坐标为 (3,10,9,0)^T。

例 设 $(x_1, x_2, x_3, x_4)^T$ 是向量 α 在基

$$\alpha_1 = (1,3,4,4),$$
 $\alpha_2 = (2,5,7,7),$ $\alpha_3 = (-3,-3,-5,2),$ $\alpha_4 = (5,5,8,-3)$

下的坐标, $(y_1, y_2, y_3, y_4)^T$ 是向量 α 在基 $\beta_1, \beta_2, \beta_3, \beta_4$ 下的坐标,且 $y_1 = 3x_1 + 5x_2$, $y_2 = x_1 + 2x_2$,

$$y_3 = 2x_3 - 3x_4$$
, $y_4 = -5x_3 + 8x_4$
(1) 求由基 β_1 , β_2 , β_3 , β_4 到 α_1 , α_2 , α_3 , α_4 的过渡矩阵;

- (2) 求基 $\beta_1, \beta_2, \beta_3, \beta_4$ 。
- 解(1)将坐标之间的关系式写成

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 3 & 5 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & -3 \\ 0 & 0 & -5 & 8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

其中 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = (\beta_1, \beta_2, \beta_3, \beta_4)C$ $C = \begin{pmatrix} 3 & 5 & 0 & 0 \\ 1 & 2 & 0 & 0 \end{pmatrix}$

则相应的基变换公式为

是从基 $\beta_1,\beta_2,\beta_3,\beta_4$ 到 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的过渡矩阵;

(2) 因为

$$(\beta_1, \beta_2, \beta_3, \beta_4) = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)C^{-1}$$

$$\begin{pmatrix} 2 & -5 & 0 & 0 \\ -1 & 3 & 0 & 0 \end{pmatrix}$$

所以
$$\beta_1 = 2\alpha_1 - \alpha_2 = (0,1,1,1)$$

$$\beta_2 = -5\alpha_1 + 3\alpha_2 = (1,0,1,1)$$

所以
$$\beta_1 = 2\alpha_1 - \alpha_2 = (0,1,1,1)$$

$$\beta_2 = -5\alpha_1 + 3\alpha_2 = (1,0,1,1)$$

$$\beta_3 = 8\alpha_3 + 5\alpha_4 = (1,1,0,1)$$

$$\beta_4 = 3\alpha_3 + 2\alpha_4 = (1,1,1,0)$$

例 求齐次线性方程组

$$\begin{cases} x_1 + 2x_2 + 5x_3 = 0 \\ x_1 + 3x_2 - 2x_3 = 0 \\ 3x_1 + 7x_2 + 8x_3 = 0 \\ x_1 + 4x_2 - 9x_3 = 0 \end{cases}$$

的基础解系与通解。

解对系数矩阵A作初等行变换化为行最简形

$$A = \begin{pmatrix} 1 & 2 & 5 \\ 1 & 3 & -2 \\ 3 & 7 & 8 \\ 1 & 4 & -9 \end{pmatrix} \xrightarrow{\begin{array}{c} r_2 - r_1 \\ r_3 - 3 r_1 \\ r_4 - r_1 \end{array}} \begin{pmatrix} 1 & 2 & 5 \\ 0 & 1 & -7 \\ 0 & 1 & -7 \\ 0 & 2 & -14 \end{pmatrix} \xrightarrow{\begin{array}{c} r_1 - 2 r_2 \\ r_3 - r_2 \\ r_4 - 2 r_2 \end{array}}$$

$$\begin{pmatrix}
1 & 0 & 19 \\
0 & 1 & -7 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

rank A = 2, 基础解系含3-2=1个解向量。同解方程组为

$$\begin{cases} x_1 = -19x_3 \\ x_2 = 7x_3 \end{cases}$$

$$(x_1 = -19t_1)$$

通解为 $\begin{cases} x_1 = -19t \\ x_2 = 7t , \quad \text{即} \begin{pmatrix} x_1 \\ x_2 \\ x_3 = t \end{pmatrix} = t \begin{pmatrix} -19 \\ 7 \\ 1 \end{pmatrix} (t 任意)$

$$\begin{cases} x_2 - t \\ x_3 = t \end{cases} \quad \begin{cases} x_2 - t \\ x_3 \end{cases} = t \quad \begin{cases} t \\ t \end{cases}$$

基础解系为

$$\boldsymbol{\xi} = \begin{pmatrix} -19 \\ 7 \\ 1 \end{pmatrix}$$

法2 在同解方程组 $\begin{cases} x_1 = -19x_3 \\ x_2 = 7x_3 \end{cases}$ 中取 $x_3 = 1$ 得

 $x_1 = -19$, $x_2 = 7$, 故基础解系为

$$\boldsymbol{\xi} = \begin{pmatrix} -19 \\ 7 \\ 1 \end{pmatrix}$$

通解为

 $x = t\xi$ (t任意)

例 求齐次线性方程组

$$\begin{cases} x_1 - x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - 3x_4 = 0 \\ x_1 - x_2 - 2x_3 + 3x_4 = 0 \end{cases}$$

的基础解系与通解。

解对系数矩阵A作初等行变换化为行最简形

$$A = \begin{pmatrix} 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -3 \\ 1 & -1 & -2 & 3 \end{pmatrix} \xrightarrow{\begin{array}{c} r_2 - r_1 \\ r_3 - r_1 \end{array}} \begin{pmatrix} 1 & -1 & -1 & 1 \\ 0 & 0 & 2 & -4 \\ 0 & 0 & -1 & 2 \end{pmatrix}$$

其中t1, t2为任意常数。基础解系为

$$\xi_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \xi_2 = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}$$

法2 在同解方程组
$$\begin{cases} x_1 = x_2 + x_4 \\ x_3 = 2x_4 \end{cases}$$
中取

$$x_2 = 1$$
, $x_4 = 0$ 得 $x_1 = 1$, $x_3 = 0$; 再取 $x_2 = 0$, $x_4 = 1$ 得 $x_1 = 1$, $x_3 = 2$;

故基础解系为

$$\xi_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \xi_2 = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}$$
新解光
$$\mathbf{x} = t \cdot \xi_1 + t \cdot \xi_2 \quad (t \cdot t \cdot t)$$

通解为
$$x = t_1 \xi_1 + t_2 \xi_2$$
 $(t_1, t_2$ 为任意常数)

例 求解线性方程组

$$\begin{cases} x_1 + x_2 - 2x_3 - x_4 + x_5 = 1 \\ 3x_1 - x_2 + x_3 + 4x_4 + 3x_5 = 4 \\ x_1 + 5x_2 - 9x_3 - 8x_4 + x_5 = 0 \end{cases}$$

解 对增广矩阵 Â施行初等行变换:

$$\hat{A} = \begin{pmatrix} 1 & 1 & -2 & -1 & 1 & 1 \\ 3 & -1 & 1 & 4 & 3 & 4 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \xrightarrow{r_3 - r_1}$$

$$\begin{pmatrix} 1 & 5 & -9 & -8 & 1 & 0 \\ 1 & 5 & -9 & -8 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 + \frac{1}{4}r_2} \xrightarrow{r_3 + r_2} \xrightarrow{r_2 \times (-\frac{1}{4})} \xrightarrow{r_2 \times (-\frac{1}{4})} \xrightarrow{r_1 + \frac{1}{4}r_2} \xrightarrow{r_2 \times (-\frac{1}{4})} \xrightarrow{r_2 \times$$

$$\begin{pmatrix}
1 & 0 & -\frac{1}{4} & \frac{3}{4} & 1 & \frac{5}{4} \\
0 & 1 & -\frac{7}{4} & -\frac{7}{4} & 0 & -\frac{1}{4} \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\operatorname{rank} \hat{A} = \operatorname{rank} A = 2 < 5, 有无穷多解。 同解方程组为$$

$$\begin{cases}
x_1 = \frac{5}{4} + \frac{1}{4}x_3 - \frac{3}{4}x_4 - x_5
\end{cases}$$

$$\begin{cases} x_1 = \frac{5}{4} + \frac{1}{4}t_1 - \frac{3}{4}t_2 \\ x_2 = -\frac{1}{4} + \frac{7}{4}t_1 + \frac{7}{4}t_2 \end{cases}$$

通解为 $\langle x_3 =$

 $x_2 = -\frac{1}{4} + \frac{7}{4}x_3 + \frac{7}{4}x_4$ $x_1 = \frac{5}{4} + \frac{1}{4}t_1 - \frac{3}{4}t_2 - t_3$

$$+\frac{7}{4}$$

 t_2

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} \frac{5}{4} \\ -\frac{1}{4} \\ 0 \\ 0 \\ 0 \end{pmatrix} + t_1 \begin{pmatrix} \frac{1}{4} \\ \frac{7}{4} \\ 1 \\ 0 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} -\frac{3}{4} \\ \frac{7}{4} \\ 0 \\ 1 \\ 0 \end{pmatrix} + t_3 \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 其中 t_1, t_2, t_3 为任意常数。

 $x_3 = x_4 = x_5 = 0$ 得 $x_1 = \frac{5}{4}$, $x_2 = -\frac{1}{4}$,故特解为

 $\eta^* = (\frac{5}{4}, -\frac{1}{4}, 0, 0, 0)^{\mathrm{T}}$

在同解方程组 $\begin{cases} x_1 = \frac{5}{4} + \frac{1}{4}x_3 - \frac{3}{4}x_4 - x_5 \\ x_2 = -\frac{1}{4} + \frac{7}{4}x_3 + \frac{7}{4}x_4 \end{cases}$

$$\begin{cases} x_1 = \frac{1}{4}x_3 - \frac{3}{4}x_4 - x_5 \\ x_2 = \frac{7}{4}x_3 + \frac{7}{4}x_4 \end{cases}$$

基础解系为
$$\xi_1 = \begin{bmatrix} \frac{4}{7} \\ \frac{7}{4} \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\xi_2 = \begin{bmatrix} \frac{7}{4} \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\xi_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

故通解为
$$x = \eta^* + t_1 \xi_1 + t_2 \xi_2 + t_3 \xi_3$$

其中 t₁,t₂,t₃ 为任意常数。

例 设四元非齐次线性方程组Ax=b的系数矩阵A的秩为3,已知 η_1,η_2,η_3 是它的三个解向量,且

$$\eta_1 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, \quad \eta_2 + \eta_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$

试求Ax=b的通解。

分析 已知Ax=b的一个特解 η_1 ,需求出Ax=0的基础解系。

因为 $A\eta_1 = b$, $A(\eta_2 + \eta_3) = 2b$, 所以 $A[2\eta_1 - (\eta_2 + \eta_3)] = 2b - 2b = 0$

$$\mathfrak{P} \qquad 2\eta_1 - (\eta_2 + \eta_3) = \begin{pmatrix} 4 \\ 6 \\ 8 \\ 10 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}$$

解

是Ax=**0**的解向量。又因为 rank A = 3,所以Ax=**0**的基础解系含4-3=1个解向量,从而 $2\eta_1 - (\eta_2 + \eta_3)$ 是Ax=**0**的基础解系,故Ax=b的通解为 $x = (2,3,4,5)^T + t(3,4,5,6)^T$ (t为任意常数)

例 设 $\xi_1, \xi_2, \dots, \xi_t$ 是齐次线性方程组Ax=0的线性 无关解向量, η 是非齐次线性方程组Ax=b的特解。 试证明向量组 $\eta, \eta + \xi_1, \eta + \xi_2, \dots, \eta + \xi_t$ 线性无关。 证 设 $k\eta + k_1(\eta + \xi_1) + \dots + k_t(\eta + \xi_t) = 0$,整理得 $(k+k_1+\dots+k_t)\eta + k_1\xi_1 + \dots + k_t\xi_t = 0$ (*) 用A左乘上式,并利用 $A\eta = b$ 和 $A\xi_i = 0$ $(i=1,2,\dots,t)$

 $k + k_1 + \dots + k_t = 0$

得 $(k + k_1 + \cdots + k_t) \mathbf{b} = \mathbf{0}$ 。 由 $\mathbf{b} \neq \mathbf{0}$ 得

代入式(*)得 $k_1\xi_1 + \cdots + k_t\xi_t = \mathbf{0}$ 又由 $\xi_1, \xi_2, \cdots, \xi_t$ 线性无关得 $k_1 = \cdots = k_t = 0$,代入式

(**)

例 设A, B均为n阶方阵,且AB = O,证明 rank $A + \text{rank } B \le n$

证 设 $\mathbf{B} = (\beta_1, \beta_2, \dots, \beta_n)$,由 $A\mathbf{B} = \mathbf{O}$ 可得 $A\beta_i = \mathbf{0}$ $(i = 1, 2, \dots, n)$

即 $\beta_1, \beta_2, \dots, \beta_n$ 是 $Ax = \mathbf{0}$ 的解向量,于是 $\beta_1, \beta_2, \dots, \beta_n$ 可由 $Ax = \mathbf{0}$ 的基础解系线性表出,故 秩 $\{\beta_1, \beta_2, \dots, \beta_n\} \le n - \operatorname{rank} A$

即 $\operatorname{rank} \boldsymbol{B} \leq n - \operatorname{rank} \boldsymbol{A}$,从而 $\operatorname{rank} \boldsymbol{A} + \operatorname{rank} \boldsymbol{B} \leq n$ 。

例 设A为n阶方阵,证明

$$\operatorname{rank} A^* = \begin{cases} n, & \operatorname{rank} A = n \\ 1, & \operatorname{rank} A = n-1 \\ 0, & \operatorname{rank} A < n-1 \end{cases}$$

证 当 $\operatorname{rank} A = n$ 时, $\det A \neq 0$,由 $AA^* = (\det A)E$ 得 $(\det A)(\det A^*) = (\det A)^n$,即

$$\det A^* = (\det A)^{n-1} \neq 0,$$

于是 $\operatorname{rank} A^* = n$ 。

当rank A < n-1时,A的所有n-1阶子式全为零,由 A^* 的定义知 $A^* = \mathbf{O}$,于是 $rank A^* = 0$ 。

当rankA = n-1时,A中至少有n-1阶子式不为零, 此时 $A^* \neq 0$,于是 $\operatorname{rank} A^* \geq 1$;又由 $AA^* = (\det A)E = 0$ 和上例结果知 $\operatorname{rank} A + \operatorname{rank} A^* \leq n$ 从而 故有 $rank A^* = 1$ 。 $\operatorname{rank} A^* \le n - \operatorname{rank} A = 1$

例 设 A为 $m \times n$ 实矩阵, 证明

$$rank(A^{T}A) = rank(AA^{T}) = rank A;$$

证 由 Ax = 0 得 $A^{T}Ax = 0$ 。 反之,由

$$A^{T}Ax = \mathbf{0} \implies x^{T}A^{T}Ax = 0$$
$$\Rightarrow ||Ax||_{2}^{2} = 0 \Rightarrow Ax = \mathbf{0}$$

从而 Ax = 0与 $A^{T}Ax = 0$ 同解,故它们的基础解系 所含线性无关的向量个数相同,于是

$$n - \operatorname{rank} A = n - \operatorname{rank}(A^{\mathrm{T}}A)$$

即 $\operatorname{rank}(A^{\mathrm{T}}A) = \operatorname{rank} A$

$$\overline{\Pi}$$
 rank (AA^{T}) = rank A^{T} = rank A

某齐次线性方程组(II)的基础解系为 $\eta_1 = (0,1,1,0)^T$, $\eta_2 = (-1,2,2,1)^T$ (1) 求线性方程组(I)的基础解系; (2) 求线性方程组(I)与(II)的公共解。 解(1) 将(I)的系数矩阵化为行最简形

例 设齐次线性方程组(I)为 $\begin{cases} x_1 + x_2 = 0 \\ x_2 - x_4 = 0 \end{cases}$, 又已知

 $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \end{pmatrix}$ 同解方程组为 $\begin{cases} x_1 = 0x_3 - x_4 \\ x_2 = 0x_3 + x_4 \end{cases}$, 故基础解系为 $\xi_1 = (0,0,1,0)^T$, $\xi_2 = (-1,1,0,1)^T$

(2) 法1 线性方程组(II)的通解为

$$x = k_1 \eta_1 + k_2 \eta_2 = (-k_2, k_1 + 2k_2, k_1 + 2k_2, k_2)^{\mathrm{T}}$$

 $\exists p \quad x_1 = -k_2, \, x_2 = k_1 + 2k_2, \, x_3 = k_1 + 2k_2, \, x_4 = k_2$

代入线性方程组(I)并整理得 $\begin{cases} k_1 + k_2 = 0 \\ k_1 + k_2 = 0 \end{cases}$, 通解为

$$k_1 = -t$$
, $k_2 = t$ (t任意)
劫线处方程组(I)与(II)的公共辍力

故线性方程组(I)与(II)的公共解为

$$\mathbf{x} = -t\eta_1 + t\eta_2 = t(-1,1,1,1)^{\mathrm{T}} \quad (t \in \mathbb{R})$$

法2 令线性方程组(I)与(II)的通解相等

$$l_1 \xi_1 + l_2 \xi_2 = k_1 \eta_1 + k_2 \eta_2$$

即 $l_1\xi_1 + l_2\xi_2 - k_1\eta_1 - k_2\eta_2 = \mathbf{0}$

 $-l_2 + k_2 = 0$ $l_2 - k_1 - 2k_2 = 0$ 比较分量得 $l_1 - k_1 - 2k_2 = 0$ $l_2 \qquad -k_2 = 0$ 对系数矩阵A作初等行变换化为行最简形

$$A = \begin{pmatrix} 0 & -1 & 0 & 1 \\ 0 & 1 & -1 & -2 \\ 1 & 0 & -1 & -2 \\ 0 & 1 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
通解为 $l_1 = t, \ l_2 = t, \ k_1 = -t, \ k_2 = t \ (t 任意)$

故(I)与(II)的公共解为 $x = t\xi_1 + t\xi_2 = t(-1,1,1,1)^{\mathrm{T}}$ (t任意)

