## Deep Convolutional Models: Case Studies

#### LeNet-5

[LeCunet al., 1998.

Gradient-based learning applied to document recognition]



- 1. CONV-POOL-CONV-POOL-FC-FC
- 2.  $n_H$ ,  $n_W \downarrow$ ,  $n_C \uparrow$
- 3. 60k parameters
- 이 논문이 나왔을 때는 Max Pooling보다 Avg Pooling을 많이 사용했다. 그리고 Padding이
- 나 유용한 CONV를 사용하지 않았다. CONV layer를 적용할 때마다 장점이 많아졌기 때문이다.
- 요즘에는 마지막에 softmax를 output layer로 사용하지만, 당시에는 다른 분류기를 사용했다.

#### **AlexNet**

[Krizhevskyet al., 2012.

ImageNet classification with deep convolutional neural networks]



- 1.  $n_H$ ,  $n_W \downarrow$ ,  $n_C \uparrow$
- 2. 60m parameters
- 1. Similary to LeNet, but much bigger
- 2. ReLU
- 3. Multiple GPUs
- 4. Local Response Normalization

논문에서는 224x224x3의 이미지를 사용하지만 실제로는 227x227x3 경우에 더 잘 들어맞는다.

#### VGG-16

[Simonyan& Zisserman 2015.

Very deep convolutional networks for large-scale image recognition]



- 1.  $n_H$ ,  $n_W$   $\downarrow$  ,  $n_C$   $\uparrow$  : 높이와 너비는 2배씩 줄어드는 반면 채널의 수는 2배씩 늘어난다.
- 2, 138m parameters

[CONV 64]x2: 채널 개수가 64개인 CONV 연산 2번, 즉 CONV-CONV-POOL

장점: 신경망 아키텍처를 단순화

VGG-19가 VGG-16보다 큰 버전이긴 한데 실제로는 비슷하여 많은 사람은 16을 사용한다.

# ResNet(Residual Network)

[He et al., 2015. Deep residual networks for image recognition] 매우 깊은 심층 신경망은 Vanishing/Exploding gradient 문제 때문에 학습하기 어렵다. ResNet은 activation뿐만 아니라 input을 훨씬 깊은 layer로도 제공한다.

#### Residual block & its main path







#### ResNet의 특징

- 1. 만약 activation l+1:  $a^{[l+2]}=g^{[l+2]}(W^{[l+2]}a^{[l+1]}+b^{[l+2]}+a^{[l]})$ 에서  $W^{[l+2]}=0$ ,  $b^{[l+2]}=0$ 이라 면  $a^{[l+2]}=g^{[l+2]}(a^{[l]})=a^{[l]}$ 이고 항등함수는 residual block에서 학습하기 쉬우므로 residual block에서 두 layer가 없는 단순한 네트워크이든 두 layer를 더하든 신경망의 능력을 저하하지 않는다.
- 2.  $z^{[l+2]}$ 와  $a^{[l]}$ 이 같은 차원을 가질 것이라고 가정한다. 사이즈 유지를 위해 same convolution을 사용한다. 만약 다른 차원이라면  $a^{[l+2]}=g^{[l+2]}(z^{[l+2]}+W_sa^{[l]})$ 로 처리하여 차원을 맞춰준다.  $W_s$ 는 파라미터일수도 있고 고정된 매트릭스일 수도 있다.



중간에 직접 activation value가 들어가서 gradient vanishing/exploding와 같이 학습 능력에 대한 손상을 해결했다. 수행 시 눈에 띄는 손실 없이 신경망을 훨씬 깊게 훈련하도록 해준다.

## Network in Network: 1x1 convolutions

[Lin et al., 2013. Network in network]

: FC layer를  $n_H \times n_W$  개의 위치에 각각 적용해서  $n_H \times n_W$  개의 숫자를 입력값으로 받고 필터의 수 만큼 출력한다.



#### 1x1 convolution의 특징

- 1. 네트워크의 비선형성 더하기
- 2. 채널의 개수 조절

채널 개수를 유지해도 좋다. 1x1 Convolution의 효과는 비선형성을 더해주고 하나의 층을 더해 줘서 더 복잡한 함수를 학습할 수 있다는 것이다.

pooling을 사용하면 height와 width를 줄일 수 있다.

1x1 필터를 사용하면 채널의 개수를 줄일 수 있다.

## Inception network

motivation: 무엇을 할지 고민하는 대신 원하는 모든 filter와 pooling을 하고 모든 아웃풋을 연결한다. 원하는 파라미터가 무엇이든, 원하는 필터 사이즈가 무엇이든 다 학습한다.



문제는 계산 비용이다.

보라색 아웃풋을 보면 32 filters 5x5x192이므로 computation cost가 28x28x32 x5x5x192 = 120m이다.

그런데 여기에서 1x1 convolution을 사용하면 computation cost를 약 10배 감축할 수 있다. 약 1억 2천만에서 약 1/10배.

## Using 1x1 convolution

bottleneck layer: inception network에서 가장 작은 부분으로

크기를 다시 늘리기 전에 representation을 작게 만든다.



첫 번째 CONV의 computation cost:  $28x28x16 \times 1x1x192 = 2.4m$  두 번째 CONV의 computation cost:  $28x28x32 \times 5x5x16 = 10.0m$  inception network using 1x1 CONV의 computation cost: 12.4m 필요한 덧셈의 횟수는 수행해야 하는 곱셈의 수와 매우 유사하므로 곱셈의 횟수를 셌다.

120m(1x1 CONV X) vs. 12.4m(1x1 CONV O) 1x1 CONV와 bottleneck layer로 계산 비용을 줄였다.

## Inception module



Inception Network: GoogleNet



inception netwokr의 특징

side branch: 네트워크 중간에 Activation-CONV-FC-FC-Softmax로 ouput label을 예측하려고 시도한다. hidden unit이나 중간 layer에서 feature들에 대한 이미지의 아웃풋 예측을 도와준다. 그리고 inception network에 규칙적인 영향을 미치고 네트워크가 overfitting되는 것을 방지한다.

#### MobileNet

[Howard et al. 2017, MobileNets:

Efficient Convolutional Neural Networks for Mobile Vision Application]

#### motivation

- 1. Low computational cost at deployment.
- 2. Useful for mobile and embedded vision applications.
- 3. Key idea: Normal vs. depthwise separable comvolutions









cost of normal convolution

$$f \times f \times n_C \times n_{out W} \times n_{out H} \times n_C'$$

cost of depthwise separable convolution

depthwise + pointwise

$$= \ f \times f \ \mathbf{x} \ n_{out\_W} \times n_{out\_H} \ \mathbf{x} \ n_C' \ + \ 1 \times 1 \times n_C \ \mathbf{x} \ n_{out\_W} \times n_{out\_H} \ \mathbf{x} \ n_C'$$

cost of normal convolution과 cost of depthwise separable convolution의

비율 계산 = 
$$\frac{1}{n_C'} + \frac{1}{f^2}$$

cost of depthwise separable convolution가 10배 정도 싸다







## **EfficientNet**

[Tan and Le, 2019, EffientNet:

Rethinking Model Scaling for Convolutional Neural Networks] Baseline 기준으로 resolution과 depth, wide를 유동적으로 적용한다.











## Transfer learning



이미 학습되어있는 모델의 코드뿐만 아니라 가중치도 그대로 적용한다.

When: 새로 학습시킬 만큼 충분히 많은 데이터나 시간이 없다.

safety disk or the pre-compute method의 장점:

activation을 업데이트할 필요가 없다.

규칙: 새로 보려는 데이터와 레이블이 많을수록 더 적은 레이어를 고정(freeze)한다.

데이터가 충분하지 않으면 Softmax와 관련된 파라미터만 조정하고

나머지 layers의 파라미터는 고정하는 것을 권장한다.

데이터가 충분히 많으면 전체 layers를 다시 학습시키는 것도 좋다.

# Data augmentation



## 1. Mirroring



## 2. Random Cropping







- 3. Rotation
- 4. Shearing
- 5. Local warping

# Color shifting

색상 왜곡이나 색상 이동을 하면 학습 알고리즘이 이미지 색상 변화에 강해진다.







## Practical advice for using ConvNet

## Data vs. Hand-engineering



Two sources of knowledge

- 1. Labeled data
- 2. Hand engineered features/network architecture/other components

# Tips for doing well on benchmarks/winning competitions BUT 시간이 너무 오래 걸린다.

1. Ensembling

Train several networks independently and average their ouputs.

2. Multi-crop at test time

Run classifier on multiple versions of test images and average results.

#### Use open source code

- 1. Use architectures of networks published in the literature.
- 2. Use open source implementations if possible.
- 3. Use pretrained models and fine-tune on your dataset.