perpendicular lines multiply to give -1.) Example 2 has m = 12, so the normal line has slope -1/12:

tangent line:
$$y - 6 = 12(x - 2)$$
 normal line: $y - 6 = -\frac{1}{12}(x - 2)$.

Light rays travel in the normal direction. So do brush fires—they move perpendicular to the fire line. Use the point-slope form! The tangent is y = 12x - 18, the normal is not $y = -\frac{1}{12}x - 18$.

EXAMPLE 3 You are on a roller-coaster whose track follows $y = x^2 + 4$. You see a friend at (0, 0) and want to get there quickly. Where do you step off?

Solution Your path will be the tangent line (at high speed). The problem is **to choose** x = a so the tangent line passes through x = 0, y = 0. When you step off at x = a,

the height is $y = a^2 + 4$ and the slope is 2a

the equation of the tangent line is $y - (a^2 + 4) = 2a(x - a)$

this line goes through (0, 0) if $-(a^2 + 4) = -2a^2$ or $a = \pm 2$.

The same problem is solved by spacecraft controllers and baseball pitchers. Releasing a ball at the right time to hit a target 60 feet away is an amazing display of calculus. Quarterbacks with a moving target should read Chapter 4 on related rates.

Here is a better example than a roller-coaster. Stopping at a red light wastes gas. It is smarter to slow down early, and then accelerate. When a car is waiting in front of you, the timing needs calculus:

EXAMPLE 4 How much must you slow down when a red light is 72 meters away? In 4 seconds it will be green. The waiting car will accelerate at 3 meters/sec². You cannot pass the car.

Strategy Slow down immediately to the speed V at which you will just catch that car. (If you wait and brake later, your speed will have to go below V.) At the catchup time T, the cars have the same speed and same distance. *Two conditions*, so the distance functions in Figure 2.6d are tangent.

Solution At time T, the other car's speed is 3(T-4). That shows the delay of 4 seconds. Speeds are equal when 3(T-4) = V or $T = \frac{1}{3}V + 4$. Now require equal distances. Your distance is V times T. The other car's distance is $72 + \frac{1}{2}at^2$:

$$72 + \frac{1}{2} \cdot 3(T-4)^2 = VT$$
 becomes $72 + \frac{1}{2} \cdot \frac{1}{3}V^2 = V(\frac{1}{3}V + 4)$.

The solution is V = 12 meters/second. This is 43 km/hr or 27 miles per hour.

Without the other car, you only slow down to V = 72/4 = 18 meters/second. As the light turns green, you go through at 65 km/hr or 40 miles per hour. Try it.

THE SECANT LINE CONNECTING TWO POINTS ON A CURVE

Instead of the tangent line through one point, consider the secant line through two points. For the tangent line the points came together. Now spread them apart. The point-slope form of a linear equation is replaced by the two-point form.

The equation of the curve is still y = f(x). The first point remains at x = a, y = f(a). The other point is at x = c, y = f(c). The secant line goes between them, and we want its equation. This time we don't start with the slope—but m is easy to find.