Boosting a decision stump

The goal of this notebook is to implement your own boosting module.

- Go through an implementation of decision trees.
- Implement Adaboost ensembling.
- Use your implementation of Adaboost to train a boosted decision stump ensemble.
- Evaluate the effect of boosting (adding more decision stumps) on performance of the model.
- Explore the robustness of Adaboost to overfitting.

This file is adapted from course material by Carlos Guestrin and Emily Fox.

Let's get started!

Import some libraries

```
## please make sure that the packages are updated to the newest version.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

Getting the data ready

Load the dataset.

```
In [2]:
loans = pd.read_csv('loan_small.csv')
```

Recoding the target column

We re-assign the target to have +1 as a safe (good) loan, and -1 as a risky (bad) loan. In the next cell, the features are also briefly explained.

Transform categorical data into binary features

In this assignment, we will work with **binary decision trees**. Since all of our features are currently categorical features, we want to turn them into binary features using 1-hot encoding.

We can do so with the following code block:

```
In [4]: loans = pd.get_dummies(loans)
```

```
Let's see what the feature columns look like now:
In [5]:
          features = list(loans.columns)
         features.remove('safe_loans') # Remove the response variable
          features
         ['term_ 36 months',
Out[5]:
          'term_ 60 months',
          'grade_A',
          'grade_B',
          'grade_C',
          'grade_D',
          'grade_E',
          'grade F',
          'grade_G',
          'home ownership MORTGAGE',
          'home_ownership_NONE',
          'home ownership OTHER',
          'home ownership OWN',
          'home ownership RENT',
          'emp length 1 year',
          'emp_length_10+ years',
          'emp_length_2 years',
          'emp length 3 years',
          'emp length 4 years',
          'emp_length_5 years',
          'emp length 6 years',
          'emp_length_7 years',
          'emp_length_8 years',
          'emp length 9 years',
          'emp length < 1 year']
```

Train-test split

We split the data into training and test sets with 80% of the data in the training set and 20% of the data in the test set. We use seed=1 so that everyone gets the same result.

```
from sklearn.model_selection import train_test_split
train_data, test_data = train_test_split(loans, test_size = 0.2, random_state=1)
```

Weighted decision trees

Since the data weights change as we build an AdaBoost model, we need to first code a decision tree that supports weighting of individual data points.

Weighted error definition

Consider a model with N data points with:

- Predictions $\hat{y}_1 \dots \hat{y}_n$
- Target $y_1 \dots y_n$
- Data point weights $\alpha_1 \dots \alpha_n$.

Then the **weighted error** is defined by:

$$\mathrm{E}(lpha,\mathbf{\hat{y}}) = rac{\sum_{i=1}^{n} lpha_i imes 1[y_i
eq \hat{y}_i]}{\sum_{i=1}^{n} lpha_i}$$

where $1[y_i \neq \hat{y}_i]$ is an indicator function that is set to 1 if $y_i \neq \hat{y}_i$.

Write a function to compute weight of mistakes

Write a function that calculates the weight of mistakes for making the "weighted-majority" predictions for a dataset. The function accepts two inputs:

- ullet labels_in_node : Targets $y_1 \ldots y_n$
- data_weights : Data point weights $\alpha_1 \ldots \alpha_n$

We are interested in computing the (total) weight of mistakes, i.e.

$$ext{WM}(lpha,\mathbf{\hat{y}}) = \sum_{i=1}^n lpha_i imes \mathbb{1}[y_i
eq \hat{y_i}].$$

This quantity is analogous to the number of mistakes, except that each mistake now carries different weight. It is related to the weighted error in the following way:

$$\mathrm{E}(\alpha, \mathbf{\hat{y}}) = \frac{\mathrm{WM}(\alpha, \mathbf{\hat{y}})}{\sum_{i=1}^{n} \alpha_i}$$

The function intermediate_node_weighted_mistakes should first compute two weights:

- ${
 m WM}_{-1}$: weight of mistakes when all predictions are $\hat{y}_i = -1$ i.e ${
 m WM}(\alpha, -1)$
- WM_{+1} : weight of mistakes when all predictions are $\hat{y}_i = +1$ i.e $\mathrm{WM}(\alpha, +1)$

where -1 and +1 are vectors where all values are -1 and +1 respectively.

After computing WM_{-1} and WM_{+1} , the function **intermediate_node_weighted_mistakes** should return the lower of the two weights of mistakes, along with the class associated with that weight. We have provided a skeleton for you with YOUR CODE HERE to be filled in several places.

```
def intermediate_node_weighted_mistakes(labels_in_node, data_weights):
    # Sum the weights of all entries with label +1
    total_weight_positive = sum(data_weights[labels_in_node == +1])

# Weight of mistakes for predicting all -1's is equal to the sum above
```

```
### YOUR CODE HERE
weight_mistake_all_negative = total_weight_positive

# Sum the weights of all entries with label -1
### YOUR CODE HERE
total_weight_negative = sum(data_weights[labels_in_node == -1])

# Weight of mistakes for predicting all +1's is equal to the sum above
### YOUR CODE HERE
weight_mistake_all_positive = total_weight_negative

# Return the tuple (weight, class_label) representing the lower of the two weights
# class_label should be an integer of value +1 or -1.
# If the two weights are identical, return (weighted_mistakes_all_positive,+1)
if weight_mistake_all_negative < weight_mistake_all_positive:
    return (weight_mistake_all_negative, -1)
else:
    return(weight_mistake_all_positive,+1)
...</pre>
```

Checkpoint: Test your intermediate_node_weighted_mistakes function, run the following cell:

Test passed!

Recall that the **classification error** is defined as follows:

```
classification error = \frac{\text{\# mistakes}}{\text{\# all data points}}
```

Function to pick best feature to split on

The next step is to pick the best feature to split on.

The **best_splitting_feature** function takes the data, the festures, the targetm and the data weights as input and returns the best feature to split on.

Complete the following function.

```
# If the data is identical in each feature, this function should return None

def best_splitting_feature(data, features, target, data_weights):

# These variables will keep track of the best feature and the corresponding error
best_feature = None
best_error = float('+inf')
num_points = float(len(data))

# Loop through each feature to consider splitting on that feature
for feature in features:
```

```
# The left split will have all data points where the feature value is 0
    # The right split will have all data points where the feature value is 1
    left split = data[data[feature] == 0]
    right_split = data[data[feature] == 1]
    # Apply the same filtering to data weights to create left data weights, right d
    ## YOUR CODE HERE
    left data weights = data weights[data[feature] == 0]
    right_data_weights = data_weights[data[feature] ==1]
    # Calculate the weight of mistakes for left and right sides
    ## YOUR CODE HERE
    left weight mistake = intermediate node weighted mistakes(left split[target], 1
    right_weight_mistake = intermediate_node_weighted_mistakes(right_split[target],
    # Compute weighted error by computing
   # ( [weight of mistakes (left)] + [weight of mistakes (right)] ) / [total weig
    ## YOUR CODE HERE
    error = (left weight mistake[0] + right weight mistake[0])/sum(data weights)
    # If this is the best error we have found so far, store the feature and the err
    if error < best error:</pre>
        best feature = feature
        best error = error
# Return the best feature we found
return best_feature
```

Checkpoint: Now, we have another checkpoint to make sure you are on the right track.

Test passed!

Aside. Relationship between weighted error and weight of mistakes:

By definition, the weighted error is the weight of mistakes divided by the weight of all data points, so

$$\mathrm{E}(lpha,\mathbf{\hat{y}}) = rac{\sum_{i=1}^{n} lpha_i imes 1[y_i
eq \hat{y}_i]}{\sum_{i=1}^{n} lpha_i} = rac{\mathrm{WM}(lpha,\mathbf{\hat{y}})}{\sum_{i=1}^{n} lpha_i}.$$

In the code above, we obtain $E(\alpha, \hat{\mathbf{y}})$ from the two weights of mistakes from both sides, $WM(\alpha_{left}, \hat{\mathbf{y}}_{left})$ and $WM(\alpha_{right}, \hat{\mathbf{y}}_{right})$. First, notice that the overall weight of mistakes $WM(\alpha, \hat{\mathbf{y}})$ can be broken into two weights of mistakes over either side of the split:

$$egin{aligned} ext{WM}(lpha, \mathbf{\hat{y}}) &= \sum_{i=1}^n lpha_i imes \mathbb{1}[y_i
eq \hat{y_i}] = \sum_{ ext{left}} lpha_i imes \mathbb{1}[y_i
eq \hat{y_i}] + \sum_{ ext{right}} lpha_i imes \mathbb{1}[y_i
eq \hat{y_i}] \ &= ext{WM}(lpha_{ ext{left}}, \mathbf{\hat{y}}_{ ext{left}}) + ext{WM}(lpha_{ ext{right}}, \mathbf{\hat{y}}_{ ext{right}}) \end{aligned}$$

We then divide through by the total weight of all data points to obtain $E(\alpha, \hat{y})$:

$$\mathrm{E}(lpha, \mathbf{\hat{y}}) = rac{\mathrm{WM}(lpha_{\mathrm{left}}, \mathbf{\hat{y}}_{\mathrm{left}}) + \mathrm{WM}(lpha_{\mathrm{right}}, \mathbf{\hat{y}}_{\mathrm{right}})}{\sum_{i=1}^{n} lpha_{i}}$$

Building the tree

With the above functions implemented correctly, we are now ready to build our decision tree. A decision tree will be represented as a dictionary which contains the following keys:

```
{
  'is_leaf' : True/False.
  'prediction' : Prediction at the leaf node.
  'left' : (dictionary corresponding to the left tree).
  'right' : (dictionary corresponding to the right tree).
  'features_remaining' : List of features that are posible splits.
}
```

Let us start with a function that creates a leaf node given a set of target values:

We provide a function that learns a weighted decision tree recursively and implements 3 stopping conditions:

- 1. All data points in a node are from the same class.
- 2. No more features to split on.
- 3. Stop growing the tree when the tree depth reaches **max_depth**.

```
return create leaf(target values, data weights)
# Additional stopping condition (limit tree depth)
if current depth > max depth:
    print("Reached maximum depth. Stopping for now.")
    return create leaf(target values, data weights)
# If all the datapoints are the same, splitting feature will be None. Create a leaf
splitting_feature = best_splitting_feature(data, features, target, data_weights)
remaining features.remove(splitting feature)
left split = data[data[splitting feature] == 0]
right split = data[data[splitting feature] == 1]
left data weights = data weights[data[splitting feature] == 0]
right_data_weights = data_weights[data[splitting_feature] == 1]
print("Split on feature %s. (%s, %s)" % (\
          splitting_feature, len(left_split), len(right_split)))
# Create a leaf node if the split is "perfect"
if len(left split) == len(data):
    print("Creating leaf node.")
    return create leaf(left split[target], data weights)
if len(right_split) == len(data):
    print("Creating leaf node.")
    return create_leaf(right_split[target], data_weights)
# Repeat (recurse) on Left and right subtrees
## YOUR CODE HERE
current depth+=1
left_tree = weighted_decision_tree_create(left_split,remaining_features,
                                          target, left data weights, current depth,
right_tree = weighted_decision_tree_create(right_split,remaining_features,
                                          target, right data weights, current depth
return {'is_leaf'
                          : False,
        'prediction' : None,
        'splitting_feature': splitting_feature,
        'left'
                          : left tree,
        'right'
                          : right tree}
```

Here is a recursive function to count the nodes in your tree:

```
def count_nodes(tree):
    if tree['is_leaf']:
        return 1
    return 1 + count_nodes(tree['left']) + count_nodes(tree['right'])
```

Run the following test code to check your implementation. Make sure you get '**Test passed'** before proceeding.

```
print('Number of nodes found:', count_nodes(small_data_decision_tree))
print('Number of nodes that should be there: 7')
```

```
maxdepth 2
Subtree, depth = 1 (32000 data points).
Split on feature term_ 36 months. (8850, 23150)
maxdepth 2
Subtree, depth = 2 (8850 data points).
Split on feature grade_A. (8775, 75)
maxdepth 2
Subtree, depth = 3 (8775 data points).
Reached maximum depth. Stopping for now.
maxdepth 2
______
Subtree, depth = 3 (75 data points).
Reached maximum depth. Stopping for now.
maxdepth 2
Subtree, depth = 2 (23150 data points).
Split on feature grade_D. (19331, 3819)
maxdepth 2
Subtree, depth = 3 (19331 data points).
Reached maximum depth. Stopping for now.
maxdepth 2
Subtree, depth = 3 (3819 data points).
Reached maximum depth. Stopping for now.
Test passed!
```

Let us take a quick look at what the trained tree is like. You should get something that looks like the following

```
{'is leaf': False,
    'left': {'is leaf': False,
        'left': {'is leaf': True, 'prediction': -1, 'splitting feature':
None},
        'prediction': None,
        'right': {'is leaf': True, 'prediction': 1, 'splitting feature':
None},
        'splitting feature': 'grade A'
     },
    'prediction': None,
    'right': {'is leaf': False,
        'left': {'is_leaf': True, 'prediction': 1, 'splitting_feature':
None},
        'prediction': None,
        'right': {'is_leaf': True, 'prediction': -1, 'splitting_feature':
None},
        'splitting feature': 'grade D'
     },
     'splitting feature': 'term. 36 months'
}
```

Making predictions with a weighted decision tree

We give you a function that classifies one data point. It can also return the probability if you want to play around with that as well.

```
In [49]:
          def classify(tree, x, annotate = False):
              # If the node is a leaf node.
              if tree['is_leaf']:
                  if annotate:
                      print("At leaf, predicting %s" % tree['prediction'])
                  return tree['prediction']
              else:
                   # Split on feature.
                   split_feature_value = x[tree['splitting_feature']]
                   if annotate:
                       print("Split on %s = %s" % (tree['splitting_feature'], split_feature_value)
                   if split feature value == 0:
                       return classify(tree['left'], x, annotate)
                   else:
                       return classify(tree['right'], x, annotate)
```

Evaluating the tree

Now, we will write a function to evaluate a decision tree by computing the classification error of the tree on the given dataset.

Again, recall that the **classification error** is defined as follows:

classification error =
$$\frac{\text{\# mistakes}}{\text{\# all data points}}$$

The function called **evaluate_classification_error** takes in as input:

- 1. tree (as described above)
- 2. data (a dataframe)

The function does not change because of adding data point weights.

```
In [65]: def evaluate_classification_error(tree, data):
```

```
# Apply the classify(tree, x) to each row in your data
prediction = data.apply(axis = 1, func = lambda x : classify(tree,x))

# Once you've made the predictions, calculate the classification error
return (prediction != data[target]).sum() / float(len(data))
In [66]:

evaluate_classification_error(small_data_decision_tree, test_data)

Out[66]:

0.390875
```

Example: Training a weighted decision tree

To build intuition on how weighted data points affect the tree being built, consider the following:

Suppose we only care about making good predictions for the **first 10 and last 10 items** in train_data , we assign weights:

- 1 to the last 10 items
- 1 to the first 10 items
- and 0 to the rest.

Let us fit a weighted decision tree with $\max depth = 2$.

```
In [67]:
          # Assign weights
          example_data_weights = np.array([1.] * 10 + [0.]*(len(train_data) - 20) + [1.] * 10)
          # Train a weighted decision tree model.
          small_data_decision_tree_subset_20 = weighted_decision_tree_create(train_data, features
                                    example data weights, max depth=2)
         maxdepth 2
         Subtree, depth = 1 (32000 data points).
         Split on feature emp_length_10+ years. (22413, 9587)
         maxdepth 2
         Subtree, depth = 2 (22413 data points).
         Split on feature grade A. (19673, 2740)
         maxdepth 2
         Subtree, depth = 3 (19673 data points).
         Reached maximum depth. Stopping for now.
         maxdepth 2
         Subtree, depth = 3 (2740 data points).
         Stopping condition 1 reached.
         maxdepth 2
         Subtree, depth = 2 (9587 data points).
         Stopping condition 1 reached.
```

Now, we will compute the classification error on the subset_20, i.e. the subset of data points whose weight is 1 (namely the first and last 10 data points).

```
In [70]:
```

subset_20 = train_data.head(10).append(train_data.tail(10))
evaluate_classification_error(small_data_decision_tree_subset_20, subset_20)

Out[70]: 0.15

Now, let us compare the classification error of the model small_data_decision_tree_subset_20 on the entire test set train_data:

In [71]: evaluate_classification_error(small_data_decision_tree_subset_20, train_data)

Out[71]: 0.445625

The model small_data_decision_tree_subset_20 performs **a lot** better on subset_20 than on train_data.

So, what does this mean?

- The points with higher weights are the ones that are more important during the training process of the weighted decision tree.
- The points with zero weights are basically ignored during training.

Implementing your own Adaboost (on decision stumps)

Now that we have a weighted decision tree working, it takes only a bit of work to implement Adaboost. For the sake of simplicity, let us stick with **decision tree stumps** by training trees with max_depth=1.

Recall from the lecture notes the procedure for Adaboost:

- 1. Start with unweighted data with $\alpha_i = 1$
- 2. For t = 1,...T:
 - Learn $f_t(x)$ with data weights α_i
 - Compute coefficient \hat{w}_t :

$$\hat{w}_t = rac{1}{2} \mathrm{ln} \left(rac{1 - \mathrm{E}(lpha, \mathbf{\hat{y}})}{\mathrm{E}(lpha, \mathbf{\hat{y}})}
ight)$$

• Re-compute weights α_i :

$$lpha_j \leftarrow egin{cases} lpha_j \exp\left(-\hat{w}_t
ight) & ext{if } f_t(x_j) = y_j \ lpha_j \exp\left(\hat{w}_t
ight) & ext{if } f_t(x_j)
eq y_j \end{cases}$$

• Normalize weights α_i :

$$lpha_j \leftarrow rac{lpha_j}{\sum_{i=1}^N lpha_i}$$

Complete the skeleton for the following code to implement **adaboost_with_tree_stumps**. Fill in the places with YOUR CODE HERE .

```
In [119...
         from math import log
         from math import exp
         def adaboost with tree stumps(data, features, target, num tree stumps):
             # start with unweighted data (uniformly weighted)
             alpha = np.array([1.]*len(data))
             weights = []
             tree stumps = []
             target values = data[target]
             for t in range(num tree stumps):
                 print('========')
                 print('Adaboost Iteration %d' % t)
                 print('======""")
                 # Learn a weighted decision tree stump. Use max depth=1
                 # YOUR CODE HERE
                 tree stump = weighted decision tree create(data, features, target, alpha, curre
                 tree_stumps.append(tree_stump)
                 # Make predictions
                 ## YOUR CODE HERE
                 predictions = data.apply(axis = 1, func = lambda x : classify(tree_stump,x))
                 # Produce a Boolean array indicating whether
                 # each data point was correctly classified
                 is correct = predictions == target values
                 is wrong
                          = predictions != target values
                 # Compute weighted error
                 ## YOUR CODE HERE
                 total mistake = sum(alpha[is wrong])
                 weighted error = total mistake/sum(alpha)
                 # Compute model coefficient using weighted error
                 ## YOUR CODE HERE
                 weight = 0.5*log((1-weighted error)/weighted error)
                 weights.append(weight)
                 # Adjust weights on data point
                 ## YOUR CODE HERE
                 adjustment = is_correct.apply(lambda is_correct : exp(-weight) if is_correct el
                 # Scale alpha by multiplying by adjustment
                 # Then normalize data points weights
                 ## YOUR CODE HERE
                 alpha = alpha*adjustment
                 alpha = alpha/sum(alpha)
             return weights, tree stumps
```

Checking your Adaboost code

Train an ensemble of **two** tree stumps and see which features those stumps split on. We will run the algorithm with the following parameters:

- train_data
- features
- target
- num_tree_stumps = 2

```
In [120...
         stump weights, tree stumps = adaboost with tree stumps(train data, features, target, nu
        _____
        Adaboost Iteration 0
        _____
        maxdepth 1
        Subtree, depth = 1 (32000 data points).
        Split on feature term 36 months. (8850, 23150)
        maxdepth 1
        -----
        Subtree, depth = 2 (8850 data points).
        Reached maximum depth. Stopping for now.
        maxdepth 1
        Subtree, depth = 2 (23150 data points).
        Reached maximum depth. Stopping for now.
        _____
        Adaboost Iteration 1
        ______
        maxdepth 1
        Subtree, depth = 1 (32000 data points).
        Split on feature grade A. (28081, 3919)
        maxdepth 1
        Subtree, depth = 2 (28081 data points).
        Reached maximum depth. Stopping for now.
        maxdepth 1
        Subtree, depth = 2 (3919 data points).
        Reached maximum depth. Stopping for now.
In [121...
         def print stump(tree):
            split_name = tree['splitting_feature'] # split_name is something like 'term. 36 mon
            if split name is None:
                print("(leaf, label: %s)" % tree['prediction'])
                return None
            print('
                                       root')
            print('
                                                         1')
            print('
                                                         1')
            print('
                                                        |')
            print('
            print('
                    [\{0\} == 0]\{1\}[\{0\} == 1]
                                             '.format(split name, ' '*(27-len(split name))))
                                                        1')
            print('
                                                        1')
            print('
            print('
                      (%s)
                                         (%s)'\
            print('
                % (('leaf, label: ' + str(tree['left']['prediction']) if tree['left']['is leaf'
                   ('leaf, label: ' + str(tree['right']['prediction']) if tree['right']['is lea
```

Here is what the first stump looks like:

In [122...

print_stump(tree_stumps[0])

Here is what the next stump looks like:

In [124...

print(stump_weights)

[0.17198848113764034, 0.1772878063726963]

If your Adaboost is correctly implemented, the following things should be true:

- tree_stumps[0] should split on term. 36 months with the prediction -1 on the left and +1
 on the right.
- tree_stumps[1] should split on grade.A with the prediction -1 on the left and +1 on the right.
- Weights should be approximately [0.17, 0.18]

Reminders

- Stump weights $(\hat{\mathbf{w}})$ and data point weights (α) are two different concepts.
- Stump weights $(\hat{\mathbf{w}})$ tell you how important each stump is while making predictions with the entire boosted ensemble.
- Data point weights (α) tell you how important each data point is while training a decision stump.

Training a boosted ensemble of 10 stumps

Let us train an ensemble of 10 decision tree stumps with Adaboost. We run the **adaboost_with_tree_stumps** function with the following parameters:

- train_data
- features

- target
- num_tree_stumps = 10

In [108...

```
_____
Adaboost Iteration 0
_____
maxdepth 1
______
Subtree, depth = 1 (32000 data points).
Split on feature term 36 months. (8850, 23150)
maxdepth 1
        -----
-------
Subtree, depth = 2 (8850 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
Subtree, depth = 2 (23150 data points).
Reached maximum depth. Stopping for now.
-----
Adaboost Iteration 1
_____
maxdepth 1
Subtree, depth = 1 (32000 data points).
Split on feature grade A. (28081, 3919)
maxdepth 1
Subtree, depth = 2 (28081 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
______
Subtree, depth = 2 (3919 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 2
______
maxdepth 1
Subtree, depth = 1 (32000 data points).
Split on feature grade D. (26027, 5973)
maxdepth 1
Subtree, depth = 2 (26027 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
                         -----
Subtree, depth = 2 (5973 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 3
_____
maxdepth 1
Subtree, depth = 1 (32000 data points).
Split on feature grade_B. (23457, 8543)
maxdepth 1
```

```
Subtree, depth = 2 (23457 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
Subtree, depth = 2 (8543 data points).
Reached maximum depth. Stopping for now.
______
Adaboost Iteration 4
_____
maxdepth 1
Subtree, depth = 1 (32000 data points).
Split on feature grade_E. (28766, 3234)
maxdepth 1
______
Subtree, depth = 2 (28766 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
______
Subtree, depth = 2 (3234 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 5
______
maxdepth 1
-----
Subtree, depth = 1 (32000 data points).
Split on feature home ownership MORTGAGE. (16870, 15130)
maxdepth 1
Subtree, depth = 2 (16870 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
-----
Subtree, depth = 2 (15130 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 6
_____
maxdepth 1
-----
Subtree, depth = 1 (32000 data points).
Split on feature grade A. (28081, 3919)
maxdepth 1
______
Subtree, depth = 2 (28081 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
      -----
Subtree, depth = 2 (3919 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 7
_____
maxdepth 1
-----
Subtree, depth = 1 (32000 data points).
Split on feature grade F. (30624, 1376)
maxdepth 1
------
```

```
Subtree, depth = 2 (30624 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
_____
Subtree, depth = 2 (1376 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 8
_____
maxdepth 1
______
Subtree, depth = 1 (32000 data points).
Split on feature grade A. (28081, 3919)
maxdepth 1
Subtree, depth = 2 (28081 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
Subtree, depth = 2 (3919 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 9
_____
maxdepth 1
Subtree, depth = 1 (32000 data points).
Split on feature grade E. (28766, 3234)
maxdepth 1
------
Subtree, depth = 2 (28766 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
Subtree, depth = 2 (3234 data points).
Reached maximum depth. Stopping for now.
```

Plot the boosted stumps in the additive model

The decision stumps picks a feature and a threshold, visualize them here.

The 2th stump is root -----|-----[grade_A == 0] [grade_A == 1] (leaf, label: -1) (leaf, label: 1) The 3th stump is root [grade_D == 0] [grade_D == 1] (leaf, label: 1) (leaf, label: -1) The 4th stump is root [grade_B == 0] $[grade_B == 1]$ (leaf, label: 1) (leaf, label: -1) The 5th stump is [grade_E == 0] [grade_E == 1] (leaf, label: 1) (leaf, label: -1) The 6th stump is [home_ownership_MORTGAGE == 0] [home_ownership_MORTGAGE == 1] (leaf, label: -1) (leaf, label: 1) The 7th stump is

Making predictions

Recall from the lecture that in order to make predictions, we use the following formula:

$$\hat{y} = sign\left(\sum_{t=1}^T \hat{w}_t f_t(x)
ight)$$

We need to do the following things:

- Compute the predictions $f_t(x)$ using the t-th decision tree
- Compute $\hat{w}_t f_t(x)$ by multiplying the stump_weights with the predictions $f_t(x)$ from the decision trees
- Sum the weighted predictions over each stump in the ensemble.

Complete the following skeleton for making predictions:

```
In [111... def predict_adaboost(stump_weights, tree_stumps, data):
```

```
scores = np.array([0.]*len(data))

for i, tree_stump in enumerate(tree_stumps):
    predictions = data.apply(lambda x: classify(tree_stump, x), axis = 1)

# Accumulate predictions on scores array
# YOUR CODE HERE
scores+= predictions*stump_weights[i]

return scores.apply(lambda score : +1 if score > 0 else -1)
```

```
predictions = predict_adaboost(stump_weights, tree_stumps, test_data)

from sklearn.metrics import accuracy_score
accuracy = accuracy_score(test_data[target], predictions)
print('Accuracy of 10-component ensemble = %s' % accuracy)
```

Accuracy of 10-component ensemble = 0.62825

Now, let us take a quick look what the stump_weights look like at the end of each iteration of the 10-stump ensemble:

Question i: Are the weights monotonically decreasing, monotonically increasing, or neither?

The weights are roughly monotonically decreasing

Reminder: Stump weights $(\hat{\mathbf{w}})$ tell you how important each stump is while making predictions with the entire boosted ensemble.

Performance plots

In this section, we will try to reproduce some performance plots.

How does accuracy change with adding stumps to the ensemble?

We will now train an ensemble with:

- train data
- features
- target

• num tree stumps = 30

Once we are done with this, we will then do the following:

- Compute the classification error at the end of each iteration.
- Plot a curve of classification error vs iteration.

First, lets train the model.

```
In [114...
```

```
_____
Adaboost Iteration 0
_____
maxdepth 1
Subtree, depth = 1 (32000 data points).
Split on feature term_ 36 months. (8850, 23150)
maxdepth 1
Subtree, depth = 2 (8850 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
______
Subtree, depth = 2 (23150 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 1
_____
maxdepth 1
Subtree, depth = 1 (32000 data points).
Split on feature grade_A. (28081, 3919)
maxdepth 1
______
Subtree, depth = 2 (28081 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
Subtree, depth = 2 (3919 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 2
______
maxdepth 1
Subtree, depth = 1 (32000 data points).
Split on feature grade D. (26027, 5973)
maxdepth 1
______
Subtree, depth = 2 (26027 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
______
Subtree, depth = 2 (5973 data points).
Reached maximum depth. Stopping for now.
```

```
______
Adaboost Iteration 3
_____
maxdepth 1
______
Subtree, depth = 1 (32000 data points).
Split on feature grade B. (23457, 8543)
______
Subtree, depth = 2 (23457 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
_____
Subtree, depth = 2 (8543 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 4
_____
maxdepth 1
______
Subtree, depth = 1 (32000 data points).
Split on feature grade E. (28766, 3234)
maxdepth 1
      -----
Subtree, depth = 2 (28766 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
-----
Subtree, depth = 2 (3234 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 5
_____
maxdepth 1
______
Subtree, depth = 1 (32000 data points).
Split on feature home ownership MORTGAGE. (16870, 15130)
maxdepth 1
______
Subtree, depth = 2 (16870 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
      _____
Subtree, depth = 2 (15130 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 6
_____
maxdepth 1
.-----
Subtree, depth = 1 (32000 data points).
Split on feature grade A. (28081, 3919)
maxdepth 1
Subtree, depth = 2 (28081 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
______
Subtree, depth = 2 (3919 data points).
Reached maximum depth. Stopping for now.
_____
```

```
Adaboost Iteration 7
_____
maxdepth 1
_____
Subtree, depth = 1 (32000 data points).
Split on feature grade F. (30624, 1376)
maxdepth 1
       _____
_____
Subtree, depth = 2 (30624 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
Subtree, depth = 2 (1376 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 8
_____
maxdepth 1
______
Subtree, depth = 1 (32000 data points).
Split on feature grade A. (28081, 3919)
maxdepth 1
-----
Subtree, depth = 2 (28081 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
-----
Subtree, depth = 2 (3919 data points).
Reached maximum depth. Stopping for now.
______
Adaboost Iteration 9
_____
maxdepth 1
______
Subtree, depth = 1 (32000 data points).
Split on feature grade_E. (28766, 3234)
maxdepth 1
Subtree, depth = 2 (28766 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
______
Subtree, depth = 2 (3234 data points).
Reached maximum depth. Stopping for now.
-----
Adaboost Iteration 10
_____
maxdepth 1
-----
Subtree, depth = 1 (32000 data points).
Split on feature term 36 months. (8850, 23150)
maxdepth 1
______
Subtree, depth = 2 (8850 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
_____
Subtree, depth = 2 (23150 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 11
```

```
______
maxdepth 1
Subtree, depth = 1 (32000 data points).
Split on feature grade_F. (30624, 1376)
maxdepth 1
Subtree, depth = 2 (30624 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
______
Subtree, depth = 2 (1376 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 12
_____
______
Subtree, depth = 1 (32000 data points).
Split on feature emp_length_10+ years. (22413, 9587)
maxdepth 1
       -----
Subtree, depth = 2 (22413 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
______
Subtree, depth = 2 (9587 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 13
_____
maxdepth 1
______
Subtree, depth = 1 (32000 data points).
Split on feature grade B. (23457, 8543)
maxdepth 1
______
Subtree, depth = 2 (23457 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
______
Subtree, depth = 2 (8543 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 14
_____
maxdepth 1
______
Subtree, depth = 1 (32000 data points).
Split on feature grade F. (30624, 1376)
maxdepth 1
       _____
Subtree, depth = 2 (30624 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
______
Subtree, depth = 2 (1376 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 15
_____
```

```
maxdepth 1
Subtree, depth = 1 (32000 data points).
Split on feature grade_D. (26027, 5973)
maxdepth 1
-----
Subtree, depth = 2 (26027 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
       ______
Subtree, depth = 2 (5973 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 16
_____
maxdepth 1
-----
Subtree, depth = 1 (32000 data points).
Split on feature grade F. (30624, 1376)
maxdepth 1
Subtree, depth = 2 (30624 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
______
Subtree, depth = 2 (1376 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 17
______
maxdepth 1
-----
Subtree, depth = 1 (32000 data points).
Split on feature grade A. (28081, 3919)
maxdepth 1
       Subtree, depth = 2 (28081 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
                      -----
Subtree, depth = 2 (3919 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 18
_____
maxdepth 1
Subtree, depth = 1 (32000 data points).
Split on feature grade_E. (28766, 3234)
maxdepth 1
______
Subtree, depth = 2 (28766 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
______
Subtree, depth = 2 (3234 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 19
_____
maxdepth 1
```

```
Subtree, depth = 1 (32000 data points).
Split on feature grade_C. (23388, 8612)
maxdepth 1
Subtree, depth = 2 (23388 data points).
Reached maximum depth. Stopping for now.
______
Subtree, depth = 2 (8612 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 20
_____
maxdepth 1
-----
Subtree, depth = 1 (32000 data points).
Split on feature home ownership MORTGAGE. (16870, 15130)
maxdepth 1
______
Subtree, depth = 2 (16870 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
      -----
Subtree, depth = 2 (15130 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 21
_____
maxdepth 1
Subtree, depth = 1 (32000 data points).
Split on feature term 36 months. (8850, 23150)
maxdepth 1
_____
Subtree, depth = 2 (8850 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
______
Subtree, depth = 2 (23150 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 22
_____
maxdepth 1
_____
Subtree, depth = 1 (32000 data points).
Split on feature grade F. (30624, 1376)
maxdepth 1
       ______
Subtree, depth = 2 (30624 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
Subtree, depth = 2 (1376 data points).
Reached maximum depth. Stopping for now.
-----
Adaboost Iteration 23
_____
maxdepth 1
```

```
Subtree, depth = 1 (32000 data points).
Split on feature grade B. (23457, 8543)
maxdepth 1
_____
Subtree, depth = 2 (23457 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
______
Subtree, depth = 2 (8543 data points).
Reached maximum depth. Stopping for now.
-----
Adaboost Iteration 24
_____
maxdepth 1
______
Subtree, depth = 1 (32000 data points).
Split on feature emp_length_2 years. (29104, 2896)
maxdepth 1
      _____
Subtree, depth = 2 (29104 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
-----
Subtree, depth = 2 (2896 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 25
_____
maxdepth 1
-----
Subtree, depth = 1 (32000 data points).
Split on feature grade_G. (31657, 343)
maxdepth 1
______
Subtree, depth = 2 (31657 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
Subtree, depth = 2 (343 data points).
Reached maximum depth. Stopping for now.
______
Adaboost Iteration 26
_____
maxdepth 1
Subtree, depth = 1 (32000 data points).
Split on feature grade_A. (28081, 3919)
maxdepth 1
-----
Subtree, depth = 2 (28081 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
______
Subtree, depth = 2 (3919 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 27
_____
-----
Subtree, depth = 1 (32000 data points).
```

```
Split on feature grade G. (31657, 343)
maxdepth 1
Subtree, depth = 2 (31657 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
Subtree, depth = 2 (343 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 28
_____
maxdepth 1
Subtree, depth = 1 (32000 data points).
Split on feature home_ownership_OWN. (29204, 2796)
_____
Subtree, depth = 2 (29204 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
Subtree, depth = 2 (2796 data points).
Reached maximum depth. Stopping for now.
_____
Adaboost Iteration 29
_____
maxdepth 1
Subtree, depth = 1 (32000 data points).
Split on feature grade_G. (31657, 343)
maxdepth 1
Subtree, depth = 2 (31657 data points).
Reached maximum depth. Stopping for now.
maxdepth 1
______
Subtree, depth = 2 (343 data points).
Reached maximum depth. Stopping for now.
```

Computing training error at the end of each iteration

Now, we will compute the classification error on the **train_data** and see how it is reduced as trees are added.

```
In [115...
    error_all = []
    for n in range(1, 31):
        predictions = predict_adaboost(stump_weights[:n], tree_stumps[:n], train_data)
        error = 1.0 - accuracy_score(train_data[target], predictions)
        error_all.append(error)
        print("Iteration %s, training error = %s" % (n, error_all[n-1]))

Iteration 1, training error = 0.41484374999999996
    Iteration 2, training error = 0.43281250000000004
    Iteration 3, training error = 0.39059374999999996
    Iteration 4, training error = 0.39059374999999996
    Iteration 5, training error = 0.37931250000000005
    Iteration 6, training error = 0.38228125
    Iteration 7, training error = 0.37253125
```

```
Iteration 8, training error = 0.3754999999999994
Iteration 9, training error = 0.37253125
Iteration 10, training error = 0.37253125
Iteration 11, training error = 0.37253125
Iteration 12, training error = 0.37150000000000005
Iteration 13, training error = 0.37253125
Iteration 14, training error = 0.37150000000000005
Iteration 15, training error = 0.37150000000000005
Iteration 16, training error = 0.37150000000000005
Iteration 17, training error = 0.37150000000000005
Iteration 18, training error = 0.37146875
Iteration 19, training error = 0.37150000000000005
Iteration 20, training error = 0.37146875
Iteration 21, training error = 0.37209375
Iteration 22, training error = 0.37146875
Iteration 23, training error = 0.37212500000000004
Iteration 24, training error = 0.37150000000000005
Iteration 25, training error = 0.37150000000000005
Iteration 26, training error = 0.37212500000000004
Iteration 27, training error = 0.37150000000000000
Iteration 28, training error = 0.37131250000000005
Iteration 29, training error = 0.37121875000000004
Iteration 30, training error = 0.3712499999999997
```

Visualizing training error vs number of iterations

We have provided you with a simple code snippet that plots classification error with the number of iterations.

```
In [116...
    plt.rcParams['figure.figsize'] = 7, 5
    plt.plot(list(range(1,31)), error_all, '-', linewidth=4.0, label='Training error')
    plt.title('Performance of Adaboost ensemble')
    plt.xlabel('# of iterations')
    plt.ylabel('Classification error')
    plt.legend(loc='best', prop={'size':15})

plt.rcParams.update({'font.size': 16})
```


Evaluation on the test data

Performing well on the training data is cheating, so lets make sure it works on the test_data as well. Here, we will compute the classification error on the test_data at the end of each iteration.

```
In [117...
          test error all = []
          for n in range(1, 31):
              predictions = predict adaboost(stump weights[:n], tree stumps[:n], test data)
              error = 1.0 - accuracy_score(test_data[target], predictions)
              test error all.append(error)
              print("Iteration %s, test error = %s" % (n, test error all[n-1]))
         Iteration 1, test error = 0.41037500000000005
         Iteration 2, test error = 0.4317499999999997
         Iteration 3, test error = 0.390875
         Iteration 4, test error = 0.390875
         Iteration 5, test error = 0.37825
         Iteration 6, test error = 0.382625
         Iteration 7, test error = 0.37175
         Iteration 8, test error = 0.37612500000000004
         Iteration 9, test error = 0.37175
         Iteration 10, test error = 0.37175
         Iteration 11, test error = 0.37175
         Iteration 12, test error = 0.369375
         Iteration 13, test error = 0.369375
         Iteration 14, test error = 0.369375
         Iteration 15, test error = 0.369375
         Iteration 16, test error = 0.369375
         Iteration 17, test error = 0.369375
         Iteration 18, test error = 0.371
         Iteration 19, test error = 0.369375
         Iteration 20, test error = 0.371
         Iteration 21, test error = 0.3692499999999997
         Iteration 22, test error = 0.371
         Iteration 23, test error = 0.367625
         Iteration 24, test error = 0.369375
         Iteration 25, test error = 0.369375
         Iteration 26, test error = 0.367625
         Iteration 27, test error = 0.369375
         Iteration 28, test error = 0.36950000000000005
         Iteration 29, test error = 0.369
         Iteration 30, test error = 0.369
```

Visualize both the training and test errors

Now, let us plot the training & test error with the number of iterations.

```
plt.rcParams['figure.figsize'] = 7, 5
plt.plot(list(range(1,31)), error_all, '-', linewidth=4.0, label='Training error')
plt.plot(list(range(1,31)), test_error_all, '-', linewidth=4.0, label='Test error')

plt.title('Performance of Adaboost ensemble')
plt.xlabel('# of iterations')
plt.ylabel('Classification error')
plt.rcParams.update({'font.size': 16})
plt.legend(loc='best', prop={'size':15})
plt.tight_layout()
```


Question ii: From this plot (with 30 trees), is there massive overfitting as the # of iterations increases?

I do not think there is a massive overfitting since both the training and testing error are decreasing. Overfitting happens when only the training error decreases.

In []: