AULA 2 – SISTEMAS DE NUMERAÇÃO

Em sistemas digitais o sistema de numeração binário é o mais importante, já fora do mundo digital o sistema decimal é o mais utilizado.

Em algumas situações existe a necessidade de conversão, por exemplo, em uma calculadora comum digita-se os valores em decimal e este valor é convertido em binário para o processamento.

Para a representação de números binários grandes utilizamos os sistemas de numeração octal e hexadecimal.

Muito embora podemos não utilizar em um primeiro momento alguns sistemas e/ou conversões, é muito importante que tenhamos habilidade nestas conversões para aplicações futuras como por exemplo a programação de microprocessadores.

CONVERSÃO DE BINÁRIO PARA DECIMAL:

Devemos considerar os valores posicionais na base 2 e fazer a soma das potências dos bits em "1":

$$11011_{(2)} = (1 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)$$

$$11011_{(2)} = 27_{(10)}$$

CONVERSÃO DE DECIMAL PARA BINÁRIO:

Há duas formas de converter o número decimal inteiro para o equivalente binário, fazer a soma das potências de 2, onde os bits "0" e "1" são colocados nos lugares apropriados (processo inverso):

$$45_{(10)} = 32 + 8 + 4 + 1 = 2^5 + 0 + 2^3 + 2^2 + 0 + 2^0$$

$$45_{(10)} = 101101_{(2)}$$

Outro método é utilizar as diversões sucessivas por 2, e a escrita de modo inverso dos restos de cada divisão até que o quociente 0 seja obtido

Usando "N" bits, podemos representar números decimais na faixa de 0 a $2^n - 1$, em um total de 2^n números diferentes.

SISTEMA DE NUMERAÇÃO OCTAL:

O sistema de numeração octal ou base 8 tem 8 dígitos possíveis 0, 1, 2, 3, 4, 5, 6, 7.

Os valores posicionais são:

$$8^4 - 8^3 - 8^2 - 8^1 - 8^0 - virgula - 8^{-1} - 8^{-2} - 8^{-3}$$

CONVERSÃO DE OCTAL PARA DECIMAL:

Assim como fizemos no sistema binário também utilizamos os valores posicionais:

$$372_{(8)} = (3 \times 8^{2}) + (7 \times 8^{1}) + (2 \times 8^{0})$$

$$372_{(8)} = 192 + 56 + 2$$

$$372_{(8)} = 250_{(10)}$$

$$24,6_{(8)} = (2 \times 8^{1}) + (4 \times 8^{0}) + (6 \times 8^{-1})$$

$$24,6_{(8)} = 16 + 4 + 0.75$$

CONVERSÃO DE DECIMAL PARA OCTAL:

Também utiliza-se o método das divisões sucessivas, só que agora a base é 8:

 $24,6_{(8)} = 20,75_{(10)}$

Quando o resultado é menor do que 8 utilizo o último quociente (MSD) e os restos anteriores.

CONVERSÃO DE OCTAL PARA BINÁRIO:

A principal vantagem do sistema octal é a transcrição de cada digito octal para binário, sem a necessidade de cálculos:

OCTAL	BINÁRIO		
0	000		
1	001		
2	010		
3	011		
4	100		
5	101		
6	110		
7	111		

Exemplos:

$$472_{(8)} = [100][111][010]$$
 $5431_{(8)}[101][100][011][001]$ $472_{(8)} = 100111010_{(2)}$ $5431_{(8)} = 101100011001_{(2)}$

CONVERSÃO DE BINÁRIO PARA OCTAL:

A conversão de números binários inteiros para octais inteiros se dá pelo processo inverso, substituindo o conjunto de cada 3 binários pelo octal equivalente, esta divisão deverá ser feita da direita (LSB) para esquerda (MSB) se faltar bits a esquerda preencher com zeros.

Exemplos:

$$100111010_{(2)} = [100][111][010]$$
 $11010110_{(2)} = [011][010][110]$ $100111010_{(2)} = 472_{(8)}$ $11010110_{(2)} = 326_{(8)}$

Atingindo o número 7, a contagem retorna a zero e a próxima casa mais significativa é incrementada, por exemplo 64, 65, 66, 67, 70, 71 ... ou 175, 176, 177, 200, 201

Com N dígitos octais, podemos contar de 0 a $8^n - 1$ em um total 8^n contagens diferentes, por exemplo com 3 dígitos octais podemos contar de $000_{(8)} - 777_{(8)}$ que equivale a $0_{(10)}$ a $511_{(10)}$ com $8^3 = 512_{(10)}$ números octais diferentes.

Exemplo: Converta 177(10) para binário, se achar mais fácil, utilize a conversão binária:

SISTEMA DE NUMERAÇÃO HEXADECIMAL

Este sistema possui 16 símbolos distintos em sua contagem, além dos 10 dígitos (0 a 9) utiliza as letras A, B, C, D, E e F

HEXADECIMAL	DECIMAL	BINÁRIO	
0	0	0000	
1	1	0001	
2	2	0010	
3	3	0011	
4	4	0100	
5	5	0101	
6	6	0110	
7	7	0111	
8	8	1000	
9	9	1001	
A	10	1010	
В	11	1011	
С	12	1100	
D	13	1101	
Е	14	1110	
F	15	1111	

CONVERSÃO DE HEXADECIMAL PARA DECIMAL:

Iremos utilizar as potências com base 16 (valores posicionais):

$$356_{(16)} = (3 \times 16^{2}) + (5 \times 16^{1}) + (6 \times 16^{0})$$
$$356_{(16)} = 768 + 80 + 6$$
$$356_{(16)} = 854_{(10)}$$

$$2AF_{(16)} = (2 \times 16^{2}) + (10 \times 16^{1}) + (15 \times 16^{0})$$
$$2AF_{(16)} = 512 + 160 + 15$$
$$2AF_{(16)} = 687_{(10)}$$

CONVERSÃO DE DECIMAL PARA HEXADECIMAL:

Da mesma forma utiliza-se o processo de divisões sucessivas até que o quociente seja inferior a 15

CONVERSÃO DE HEXADECIMAL PARA BINÁRIO

Assim como na conversão octal para binário, utilizamos a substituição de cada dígito hexadecimal para seu correspondente binário:

$$9F2_{(16)} = [1001][1111][0010]$$

 $9F2_{(16)} = 100111110010_{(2)}$

CONVERSÃO DE BINÁRIO PARA HEXADECIMAL

Aqui também aplicamos o processo inverso:

$$1110100110_{(2)} = [0011][1010][0110]$$
$$1110100110_{(2)} = 3A6_{(16)}$$

Nunca devemos esquecer de começar a dividir os campos da direita para esquerda, se faltarem dígitos no último campo da esquerda preencher com zeros a esquerda.

Conseguindo ter a habilidade de lembrar da tabela entre 4 bits e seus equivalentes hexadecimal fica fácil, não há necessidade de cálculos.

CONTAGEM HEXADECIMAL:

A contagem se dá de 0 a F o que significa que quando a contagem atingir F volta a zero sendo a casa mais significativa adjacente incrementada, por exemplo 39, 3ª, 3B, 3C, 3D, 3E, 3F, 40, 41

CONVERSÃO HEXADECIMAL PARA OCTAL

$$B2F_{(16)} = [1011][0010][1111]$$

$$B2F_{(16)} = 101100101111_{(2)}$$

$$B2F_{(16)} = [101][100][101][111]$$

$$B2F_{(16)} = 5467_{(8)}$$

Resumo:

- 1) Quando converter binário, octal ou hexadecimal para decimal, use o método da soma dos pesos de cada dígito (valor posicional).
- 2) Quando converter decimal para binário, octal ou hexadecimal, utilize o método das divisões sucessivas
- 3) Quando converter de binário para octal ou hexadecimal, agrupe os bits da direita para esquerda e converta cada grupo.
- 4) Quando converter de octal ou hexadecimal para binário converta cada dígito em 3 (octal) ou 4 (hexadecimal) bits equivalente.
- 5) Quando converter de octal para hexadecimal ou (vice-versa) utilize a conversão para binário, daí então faça a conversão desejada.

CÓDIGO BCD

Este é um código em que cada dígito de um número decimal é representado pelo seu equivalente binário como o próprio nome diz binary-coded-decimal (decimal codificado em binário). Como em decimal temos 0 a 9 utiliza-se 4 bits para representar os decimais o restante em binário não é utilizado. Exemplo:

 $874_{(10)} = [1000][0111][0010]$

 $874_{(10)} = 100001110010_{(RCD)}$

Se fosse binário puro teríamos:

 $874_{(10)} = 1101101010_{(2)}$

DECIMAL	BINÁRIO	OCTAL	HEXADECIMAL	BCD
0	0000	0	0	0000
1	0001	1	1	0001
2	0010	2	2	0010
3	0011	3	3	0011
4	0100	4	4	0100
5	0101	5	5	0101
6	0110	6	6	0110
7	0111	7	7	0111
8	1000	10	8	1000
9	1001	11	9	1001
10	1010	12	A	0001 0000
11	1011	13	В	0001 0001
12	1100	14	С	0001 0010
13	1101	15	D	0001 0011
14	1110	16	Е	0001 0100
15	1111	17	F	0001 0101

Além dos sistemas numéricos existem informações não numéricas que os sistemas devem reconhecer para isso são criados códigos alfanuméricos.

Um código alfanumérico completo inclui 26 letras minúsculas, 26 maiúsculas, 10 dígitos numéricos, 7 sinais de pontuação e 20 a 40 caracteres especiais.

Um código largamente utilizado é o ASC II (American Standard Code Information Interchange) ele utiliza 7 bits e portanto 128 diferentes símbolos diferentes, mais do que suficientes.

CARACTERE	ASCII	OCTAL	HEXA	CARACTERE	ASCII	OCTAL	HEXA
A	100 0001	101	41	Y	101 1001	131	59
В	100 0010	102	42	Z	101 1010	132	5A
С	100 0011	103	43	0	011 0000	060	30
D	100 0100	104	44	1	011 0001	061	31
E	100 0101	105	45	2	011 0010	062	32
F	100 0110	106	46	3	011 0011	063	33
G	100 0111	107	47	4	011 0100	064	34
Н	100 1000	110	48	5	011 0101	065	35
I	100 1001	111	49	6	011 0110	066	36
J	100 1010	112	4A	7	011 0111	067	37
K	100 1011	113	4B	8	011 1000	070	38
L	100 1100	114	4C	9	011 1001	071	39
M	100 1101	115	4D	BLANK	010 0000	040	20
N	100 1110	116	4E	•	010 1110	056	2E
О	100 1111	117	4F	(010 1000	050	28
P	101 0000	120	50	+	010 1011	053	2B
Q	101 0001	121	51	\$	010 0100	044	24
R	101 0010	122	52	*	010 1010	052	2A
S	101 0011	123	53)	010 1001	051	29
T	101 0100	124	54	_	010 1101	055	2D
U	101 0101	125	55	/	010 1111	057	2F
V	101 0110	126	56		010 1100	054	2C
W	101 0111	127	57	=	011 1101	075	3D
X	101 1000	130	58	RETURN	000 1101	015	0D
				LINEFEED	000 1010	012	0A