

Aula 3

Tiago Lage Payne de Pádua

O protocolo HTTP define um conjunto de métodos de requisição responsáveis por indicar a ação a ser executada para um dado recurso.

Um método HTTP é denominado idempotente se:

- as requisições em algum momento causam danos ou efeitos colaterais irreversíveis no servidor;
- b) as requisições com cabeçalhos e parâmetros diferentes causam uma mesma mudança no estado do recurso;
- c) toda requisição estabelecer um túnel para o servidor identificado pelo recurso de destino;
- d) o código de status for o mesmo entre requisições que aplicam modificações parciais em um recurso;
- e) uma requisição idêntica puder ser feita uma ou mais vezes em sequência com o mesmo efeito enquanto deixa o servidor no mesmo estado.

- Entre o navegador Web e o servidor, vários computadores e máquinas transmitem as mensagens HTTP;
- Devido a estrutura em camadas da pilha Web, a maioria dessas máquinas operam em alguma das camadas: de transporte, de rede ou física, sendo transparente na camada da aplicação HTTP, e potencialmente exercendo um grande impacto na performance;
- Essas máquinas que operam na camada de aplicação são normalmente conhecidas como proxies (ou representantes, ou procuradores, etc);

GET /pageX HTTP/1.1 é idempotente. Chamado diversas vezes em sequência, ele vai retornar o mesmo resultado:

```
GET /pageX HTTP/1.1
GET /pageX HTTP/1.1
GET /pageX HTTP/1.1
GET /pageX HTTP/1.1
```


POST /add_row HTTP/1.1 não é idempotente. Se ele for chamado diversas vezes, ele adicionará novas entradas:

```
POST /add_row HTTP/1.1
POST /add_row HTTP/1.1 -> Adiciona a 2ª linha
POST /add_row HTTP/1.1 -> Adiciona a 3ª linha
```


DELETE /idX/delete HTTP/1.1 é idempotente, mesmo que o código de status mude entre requisições:

```
DELETE /idX/delete HTTP/1.1 -> Retorna 200 se idX existe

DELETE /idX/delete HTTP/1.1 -> Retorna 404 como ele acabou de ser deletado

DELETE /idX/delete HTTP/1.1 -> Retorna 404
```


- Um método HTTP é seguro se ele não altera o estado do servidor;
- Em outras palavras, um método é seguro se ele leva a uma operação de somente leitura;
- Diversos métodos de HTTP são seguros: GET, HEAD, ou OPTIONS;
- Todos os métodos seguros também são idempotentes, mas nem todos os métodos idempotentes são seguros;
- Por exemplo, PUT e DELETE são ambos idempotentes, entretanto são inseguros;

- Uma chamada a um método seguro, não alterando o estado do servidor:
 GET /pageX.html HTTP/1.1
- Uma chamada a um método não seguro, que pode alterar o estado do servidor:

POST /pageX.html HTTP/1.1

Uma chamada a um método idempotente, mas não seguro:

DELETE /idX/delete HTTP/1.1

O protocolo HTTP define um conjunto de métodos de requisição responsáveis por indicar a ação a ser executada para um dado recurso.

Um método HTTP é denominado idempotente se:

- as requisições em algum momento causam danos ou efeitos colaterais irreversíveis no servidor;
- b) as requisições com cabeçalhos e parâmetros diferentes causam uma mesma mudança no estado do recurso;
- c) toda requisição estabelecer um túnel para o servidor identificado pelo recurso de destino;
- d) o código de status for o mesmo entre requisições que aplicam modificações parciais em um recurso;
- e) uma requisição idêntica puder ser feita uma ou mais vezes em sequência com o mesmo efeito enquanto deixa o servidor no mesmo estado.

O protocolo HTTP define um conjunto de métodos de requisição responsáveis por indicar a ação a ser executada para um dado recurso.

Um método HTTP é denominado idempotente se:

- a) as requisições em algum momento causam danos ou efeitos colaterais irreversíveis no servidor;
- b) as requisições com cabeçalhos e parâmetros diferentes causam uma mesma mudança no estado do recurso;
- c) toda requisição estabelecer um túnel para o servidor identificado pelo recurso de destino;
- d) o código de status for o mesmo entre requisições que aplicam modificações parciais em um recurso;
- e) uma requisição idê<mark>ntica p</mark>uder ser feita u<mark>ma ou mais ve</mark>zes em sequência com o mesmo efeito enqu<mark>anto d</mark>eixa o servidor no mesmo estado.

No contexto dos métodos disponíveis pelo protocolo HTTP, a lista que contém apenas métodos válidos é:

- a) GET, POST, PUT;
- b) GET, PUT, SEND;
- c) POST, READ, WRITE;
- d) PUT, SET, WRITE;
- e) SEND, INPUT, OUTPUT.

- GET O método GET solicita a representação de um recurso específico. Requisições utilizando o método GET devem retornar apenas; dados.
- HEAD O método HEAD solicita uma resposta de forma idêntica ao método GET, porém sem conter o corpo da resposta;
- POST O método POST é utilizado para submeter uma entidade a um recurso específico, frequentemente causando uma mudança no estado do recurso ou efeitos colaterais no servidor/
- PUT O método PUT substitui todas as atuais representações do recurso de destino pela carga de dados da requisição;

- DELETE O método DELETE remove um recurso específico;
- CONNECT O método CONNECT estabelece um túnel para o servidor identificado pelo recurso de destino;
- OPTIONS O método OPTIONS é usado para descrever as opções de comunicação com o recurso de destino;
- TRACE O método TRACE executa um teste de chamada loop-back junto com o caminho para o recurso de destino;
- PATCH O método PATCH é utilizado para aplicar modificações parciais em um recurso;

No contexto dos métodos disponíveis pelo protocolo HTTP, a lista que contém apenas métodos válidos é:

- a) GET, POST, PUT;
- b) GET, PUT, SEND;
- c) POST, READ, WRITE;
- d) PUT, SET, WRITE;
- e) SEND, INPUT, OUTPUT.

A coluna da esquerda apresenta protocolos, e a da direita, a sua porta padrão conforme a IANA. Numere a coluna da direita de acordo com a da esquerda.

- 1- HTTP () 443
- 2- HTTPS () 80
- 3- SSH () 53
- 4- DNS () 22

Marque a sequência correta

- a) 2, 1, 4, 3
- b) 2, 1, 3, 4
- c) 3, 4, 1, 2
- d) 4, 3, 2, 1

A coluna da esquerda apresenta protocolos, e a da direita, a sua porta padrão conforme a IANA. Numere a coluna da direita de acordo com a da esquerda.

- 1- HTTP () 443
- 2- HTTPS () 80
- 3- SSH () 53
- 4- DNS () 22

Marque a sequência correta

- a) 2, 1, 4, 3
- b) 2, 1, 3, 4
- c) 3, 4, 1, 2
- d) 4, 3, 2, 1

A coluna da esquerda apresenta códigos de status de respostas do protocolo HTTP, e a da direita, as suas definições. Numere a coluna da direita de acordo com a da esquerda.

- 1-403 () Movido (Moved Permanently)
- 2-301 () Proibido (Forbidden)
- 3-404 () Erro interno do servidor (Internal Server Error)
- 4-500 () Não encontrado (Not Found)

Marque a sequência correta.

- a) 2, 1, 4, 3
- b) 1, 2, 3, 4
- c) 3, 4, 1, 2
- d) 2, 4, 1, 3

☐ Códigos de status de respostas HTTP

- Os códigos de status das respostas HTTP indicam se uma requisição HTTP foi corretamente concluída. As respostas são agrupadas em cinco classes:
 - Respostas de informação (100-199);
 - Respostas de sucesso (200-299);
 - Redirecionamentos (300-399);
 - Erros do cliente (400-499);
 - Erros do servidor (500-599);

1XX Information			4XX Client (Continue)	
100	Continue	407	Proxy Authentication Required	
101	Switching Protocols	408	Request Timeout	
102	Processing	409	Conflict	
103	Early Hints	410	Gone	
		411	Length Required	
2XX Success		412	Precondition Failed	
200	ОК	413	Payload Too Large	
201	Created	414	URI Too Large	
202	Accepted	415	Unsupported Media Type	
203	Non-Authoritative Information	416	Range Not Satisfiable	
205	Reset Content	417	Exception Failed	
206	Partial Content	418	I'm a teapot	
207	Multi-Status (WebDAV)	421	Misdirected Request	
208	Already Reported (WebDAV)	422	Unprocessable Entity (WebDAV)	
226	IM Used (HTTP Delta Encoding)	423	Locked (WebDAV)	
		424	Failed Dependency (WebDAV)	
3XX Redirection		425	Too Early	
300	Multiple Choices	426	Upgrade Required	
301	Moved Permanently	428	Precondition Required	
302	Found	429	Too Many Requests	
303	See Other	431	Request Header Fields Too Large	
304	Not Modified	451	Unavailable for Legal Reasons	
305	Use Proxy	499	Client Closed Request	
306	Unused			
307	Temporary Redirect	5XX S	(X Server Error Responses	
308	Permanent Redirect	500	Internal Server Error	
_		501	Not Implemented	
4XX Client Error		502	Bad Gateway	
400	Bad Request	503	Service Unavailable	
401	Unauthorized	504	Gateway Timeout	
402	Payment Required	505	HTTP Version Not Supported	
403	Forbidden	507	Insufficient Storage (WebDAV)	
404	Not Found	508	Loop Detected (WebDAV)	
405	Method Not Allowed	510	Not Extended	
406	Not Acceptable	511	Network Authentication Required	
Compiled by Ivan Tay.		599	Network Connect Timeout Error	

A coluna da esquerda apresenta códigos de status de respostas do protocolo HTTP, e a da direita, as suas definições. Numere a coluna da direita de acordo com a da esquerda.

- 1-403 () Movido (Moved Permanently)
- 2-301 () Proibido (Forbidden)
- 3-404 () Erro interno do servidor (Internal Server Error)
- 4-500 () Não encontrado (Not Found)

Marque a sequência correta.

- a) 2, 1, 4, 3
- b) 1, 2, 3, 4
- c) 3, 4, 1, 2
- d) 2, 4, 1, 3

Existem oito métodos definidos no protocolo HTTP que são: GET, HEAD, POST, PUT, DELETE, TRACE, OPTIONS e CONNECT. Esses métodos indicam a ação a ser realizada no recurso especificado. Analise as afirmações abaixo sobre os métodos GET e POST:

- I. GET deve ser usado para obter dados.
- II. POST deve ser usado para enviar dados para serem processados.
- III. As solicitações GET aceitam que os visitantes façam bookmark da página; as POST não.
- IV. Com o POST, o parâmetro é limitado ao que se pode colocar na linha de solicitação.

Estão corretas apenas as afirmativas

- a) le II, apenas.
- b) I, II, III e IV.
- c) I, II e III, apenas
- d) II, III e IV, apenas.

Existem oito métodos definidos no protocolo HTTP que são: GET, HEAD, POST, PUT, DELETE, TRACE, OPTIONS e CONNECT. Esses métodos indicam a ação a ser realizada no recurso especificado. Analise as afirmações abaixo sobre os métodos GET e POST:

- I. GET deve ser usado para obter dados.
- II. POST deve ser usado para enviar dados para serem processados.
- III. As solicitações GET aceitam que os visitantes façam bookmark da página; as POST não.
- IV. Com o POST, o parâmetro é limitado ao que se pode colocar na linha de solicitação.

Estão corretas apenas as afirmativas

- a) le II, apenas.
- b) I, II, III e IV.
- c) I, II e III, apenas
- d) II, III e IV, apenas.

A coluna da esquerda apresenta aplicações da internet, e a da direita, seus protocolos da camada de aplicação. Numere a coluna da direita de acordo com a da esquerda.

- () NFS
- () SMTP
- () HTTP
- () Telnet

- 1. Correio Eletrônico
- 2. Acesso a terminal remoto
- 3. Web
- 4. Servidor remoto de arquivos

Marque a sequência correta.

- a) 2, 1, 3, 4
- b) 3, 4, 1, 2
- c) 4, 1, 3, 2
- d) 2, 3, 1, 4

A coluna da esquerda apresenta aplicações da internet, e a da direita, seus protocolos da camada de aplicação. Numere a coluna da direita de acordo com a da esquerda.

- () NFS
- () SMTP
- () HTTP
- () Telnet

- 1. Correio Eletrônico
- 2. Acesso a terminal remoto
- 3. Web
- 4. Servidor remoto de arquivos

Marque a sequência correta.

- a) 2, 1, 3, 4
- b) 3, 4, 1, 2
- c) 4, 1, 3, 2
- d) 2, 3, 1, 4

O HTTP (HyperText Transfer Protocol) foi especificado na RF2616 e é um protocolo simples do tipo solicitação/ resposta. Tem um funcionamento básico de especificação de quais mensagens o cliente tem a possibilidade de enviar para o servidor e quais são as respostas que este recebe novamente. Com base no exposto, a qual camada do modelo OSI esse protocolo pertence?

- a) Apresentação.
- b) Sessão.
- c) Aplicação.
- d) Rede.
- e) Enlace.

- Hypertext Transfer Protocol (HTTP) é um protocolo de camada de aplicação para transmissão de documentos hipermídia, como o HTML.
- Foi desenvolvido para comunicação entre navegadores web e servidores web, porém pode ser utilizado para outros propósitos também.
- Segue um modelo cliente-servidor clássico, onde um cliente abre uma conexão, executa uma requisição e espera até receber uma resposta.
- É também um prot<mark>ocolo</mark> sem estado o<mark>u stateless p</mark>rotocol, que significa que o servidor não mantem nenhum dado entre duas requisições (state);

O HTTP (HyperText Transfer Protocol) foi especificado na RF2616 e é um protocolo simples do tipo solicitação/ resposta. Tem um funcionamento básico de especificação de quais mensagens o cliente tem a possibilidade de enviar para o servidor e quais são as respostas que este recebe novamente. Com base no exposto, a qual camada do modelo OSI esse protocolo pertence?

- a) Apresentação.
- b) Sessão.
- c) Aplicação.
- d) Rede.
- e) Enlace.

- Controle de aula

Data: 07/04/2022 Horário agendada: 22:00 Horário entrada: 22:00 Horário saída: 23:59

Professor: Tiago Lage Payne de Pádua

Disciplina: Desenvolvimento de Sistemas

Matriz: IDEF1X - TJDFT / Protocolo HTTP - TJCE

Estúdio: 2 PKS Observação: Coordenação: Suze

Bloco	Nome da aula	Código	Observação
13	Notação IDEF1X - Aula 1	220407(2)13	(sem observação)
14	Protocolo HTTP - Aula 3	220407(2)14	(sem observação)