Square Packing as Algorithmic Art

Krishnendu Saha 11CS30047

Under Guidance of Prof. Partha Bhowmick

Flow of Topics

- Introduction to Algorithmic Art
- Packing Algorithms
- Square Tiling
 - Clustering and segmentation
 - Distance Transform
 - Square Fitting
- Results
- Conclusion

Objectives:

o Design a square packing algorithm for irregular bounded region.

 Create tiled representation of any coloured image using the packing algorithm with monochromatic square tiles of different fixed denomination sets.

Introduction to Algorithmic Art

- Algorithmic Art: Aesthetically appealing design considered as algorithmic art, if the features of the design are only determined by an algorithm without or negligible human interference.
- o Historically manual algorithms or mathematical techniques are used to create art. For example, *Islamic geometric patterns*, *Italian Renaissance paintings* uses linear perspective and proportion.
- First computer-generated algorithmic art were created by Georg Nees, Frieder Nake, A. Michael Noll,
 Manfred Mohr and Vera Molnár in the early 1960s using computer driven plotter.
- With increasing accessability of computer more mathematically intensive complex form of art works are explored by algorithmic artist, also called algorist.
- o At SIGGRAPH in 1995, a panel called titled "Art and Algorithms", established identity of such algorists.
- Some popular form of visual algorithmic art are fractal art, cellular automata based art ,genetic or evolutionary art.

Packing Problem

- o Packing is covering a bounded region with non-overlapping elementary shapes.
- o Packing problems are *optimization problems*, where optimization criterion is fraction of area covered of the total bounded region, known as *packing density ratio*.
- o Perfect Packing is *NP-complete problem*. Perfect packing algorithms are known some simple cases where container regions are regular .
- An example of perfect packing problem is tessalation, i.e perfect tiling of Euclidean plane .
- Some practical packing problem examples are stock cutting, VLSI chip design, advertisement placement, scheduling.

Square Tiling Algorithm

- o Input: A coloured image, A set of denominations of square size
- Output: A set of squares each with size, position, axis alignment and colour information
- Objectives :
 - o Packing Density Ratio should be high.
 - o Number of square tiles used should be less.
 - o The tiled image should capture significant features of the actual image
- o Steps:
 - Clustering and Segmentation
 - o Distance Transform
 - Square Fitting

Clustering and Segmentation

- Objective: Group the image pixels based on their colour and position similarity so that a single coloured tile may be fitted within cluster.
- OClustering is done by meanshift, a discontunity preserving clustering algorithm.
- ○Clustering is applied on a d=p+2 dimensional space, p=3 for colour images, on a joint spatial-range domain.
- OSegmentation is done by separating two clusters with a line in between.
- To remove noisy spurs morphological cleaning and skeletonization is applied on the segmentation line image.

Meanshift

- This algorithm takes a radially symmetric kernel $K(x) = c_{k,d} k(\|x\|^2)$ where $c_{k,d}$ is a normalization function and k(x) is monotonically decreasing function.
- Normal distribution is used as a kernel function.
- For each pixel kernel density is obtained as $f(x) = \frac{1}{nh^d} \sum_{i=1}^n K(\frac{x-x_i}{h})$
- \circ The modes of the density function are located at the zeros of the gradient function $\nabla f(x) = 0$

$$\circ \nabla f(x) = \frac{2c_{k,d}}{nh^{d+2}} \left[\sum_{i=1}^{n} g(\left\| \frac{x - x_i}{h} \right\|^2) \right] \left[\frac{\sum_{i=1}^{n} x_i g(\left\| \frac{x - x_i}{h} \right\|^2)}{\sum_{i=1}^{n} g(\left\| \frac{x - x_i}{h} \right\|^2)} - x \right] \text{ ,where } g(x) = -k'(x)$$

- $\text{o The second term } m_{h,g}(x) = \frac{\sum_{i=1}^n x_i g\left(\left\|\frac{x-x_i}{h}\right\|^2\right)}{\sum_{i=1}^n g\left(\left\|\frac{x-x_i}{h}\right\|^2\right)} x \quad \text{, is the mean shift}$
- The mean shift procedure, obtained by successive
 - computation of the mean shift vector $m_h(x_t)$,
 - translation of the window $x_{t+1} = x_t + m_h(x_t)$
- The converging is slow as the gradient decays. Hence a threshold parameter is kept.

Mean Shift: Results with different threshold

- Mean shift convergence rate decays as every pixel moves closer to its cluster mean. Hence total convergence takes too much time.
- Number of clusters increase as the threshold decreased.

Thr =0.2 Clusters=20

Thr =0.1 Clusters=55

Segmentation and Morphological cleaning:

The segmentation process gives a lot of noisy spurs, to reduce those morphological cleaning and skeletonization are done.

Segmentation Outline

Morphologically Cleaned and skeletonized Segmentation Outline

Distance Transform:

- The distance transform map labels each pixel of a image with the nearest distance to the nearest boundary pixel or in our case segmentation outline.
- O Distance Transform Metrics:
 - (a) chessboard or 8 connected distance, $d_8((i,j),(h,k))=\max(|i-h|,|j-k|)$, (b) cityblock or 4 connected distance, $d_4((i,j),(h,k))=|i-h|+|j-k|$, (c) euclidean distance, calculated as $d_e((i,j),(h,k))=\sqrt[2]{(i-h)^2+(j-k)^2}$
- Distance Map contours:

 \circ This observation helps us hypothesize that d₈ metric distance calculation fits axes aligned squares better and likewise d₄ metric fits 45° rotated squares better and euclidean metric fits square of any alignment.

Distance Transform Methods:

- o Distance Transform methods are of two basic types:
 - o (a)Parallel and (b) Sequential
- o In parallel algorithms the mapping is done in a single pass starting from boundary points

$$S0 \rightarrow L'(S0) = S1 \rightarrow L'(S1) = S2 \rightarrow ... \rightarrow L'(Sn-1) = Sn = L(S).$$

- o In sequential algorithms the mapping is done in multiple passes. In the nth pass $L_n(i,j)$ is calculated from the previous mapping $L_{n-1}(i-1,j)$, $L_{n-1}(i,j-1)$ etc.
- Parallel algorithm is efficient in calculating 8 *connected distance* and 4 connected distance and sequential distance mapping is suitable for euclidean distance calculation.
- Per Erik Daniellsson's 8 SED distance mapping is an efficient euclidean distance transform having error bound of 0.076.
- o Parallel mapping have more memory requirement but takes one scan of the image compared to multiple scans in sequential mapping, hence faster.
- o Both are O(n) algorithm n being number of pixels.

Algorithm 1: 8 Sequential Euclidean Distance Transform

The picture L is a two-dimensional array with the elements

$$L(i,j)$$
 $0 \le i \le M-1, 0 \le j \le N-1.$

Each element is a two-element vector

$$\bar{L}$$
 (i,j) = (L_i, L_j), Li, Lj being positive integers, L(i,j) = (L_i (i,j), L_i (i,j)).

The size of a vector L(i,j) is defined by

$$|L(i,j)| = \sqrt{L_i^2 + L_j^2}$$

8SED:

Initially:

$$L(i,j) = (0, 0) \text{ for } (i,j) \in S$$

 $L(i,j) = (Z, Z) \text{ for } (i,j) \in S'$

S here denotes the background and S' the segmentation outline

First picture scan:

for
$$j = 1, 2 \dots N - 1$$
,
for $i = 0, 1, 2 \dots M - 1$
 $\overline{L}(i, j) = \min(\overline{L}(i, j), \overline{L}(i - 1, j - 1) + (1, 1), \overline{L}(i, j - 1) + (0, 1), \overline{L}(i + 1, j - 1) + (1, 1))$
for $i = 1, 2 \dots M - 1$
 $\overline{L}(i, j) = \min(\overline{L}(i, j), \overline{L}(i - 1, j) + (1, 0))$
for $i = M - 2, M - 3 \dots 1, 0$
 $\overline{L}(i, j) = \min(\overline{L}(i, j), \overline{L}(i + 1, j) + (1, 0))$

Second picture scan:

for
$$j = N-2, N-3, \ldots, 1, 0$$

for $i = 0, 1, 2, \ldots, M-1$
 $\overline{L}(i,j) = \min(\overline{L}(i,j), \overline{L}(i-1,j+1)+(1,1), \overline{L}(i,j+1)+(0,1), \overline{L}(i+1,j+1)+(1,1))$
for $i = 1, 2, \ldots, M-1$
 $\overline{L}(i,j) = \min(\overline{L}(i,j), \overline{L}(i-1,j)+(1,0))$
for $i = M-2, \ldots, 1, 0$
 $\overline{L}(i,j) = \min(\overline{L}(i,j), \overline{L}(i+1,j)+(1,0))$

The euclidean distance of any point may be calculated as $\sqrt{L_i^2 + L_j^2}$

Distance Mapping Image:

top left- Segmented Image, top right- d_8 distance transform, bottom left- d_4 distance transform, bottom right-Euclidean distance transform

Square Fitting

- The distance map gives an estimate of biggest square fitting possible at any pixel.
- \circ Distance mapping value at pixel (i,j) denoted by d and largest fitting square size r_l different relations in different metrics.

$$r_l(i,j) = d_4(i,j)$$
 or $r_l = d_e(i,j)$ but $r_l(i,j) = \sqrt{2} \times d_8(i,j)$

- \circ Based on distance mapping, different values to alignment angle α is given. 0° in d_4 ,45° in d_8 and it is chosen out of a set of angles (0°, 15°, 30°,45°, 60°, 75°) in case of d_e .
- \circ In case of d_e the alignment angle of square may be randomly assigned or based on best fit angle calculation heuristic.
- Overlapping square with segmentation outline or already drawn square are discarded.
- o The distance recalculation after fitting a square is done locally.
- This distance recalculation may be easily done with parallel distance mapping starting with the new square boundary points.

Local Distance recalculation

- After each square fitting, the distance map changes.
- \circ This may be easily handled by parallel distance mapping (d_4 or d_8) taking the square boundary points as the initial set of points in effectively O(1) time complexity.
- The stopping criterion is newly calculated distances being equal to previous distances

Algorithm_2 : Square Packing

```
Input: Image I, Image M, Set D
Output: Set S
begin
    for each d in D
           \alpha \leftarrow assign\_angle();
           r \leftarrow k * d
           \{\text{sq\_boundary}, \text{sq\_internal}\} \leftarrow \text{precalculate\_square}(r,\alpha)
           while M(d) is not null
                 P \leftarrow M(d).get_first();
                 bool f=false;
                 for p in sq_boundary
                     if (M(P+p) is 0)
                        f = true:
                     end_if
                 end_for
                 if(f is true or variation_abv_threshold(I,sq_internal,P,threshold))
                       continue;
                 end_if
                 bool f1=draw_square(P,sq_internal);
                  if(f1)
                         S \leftarrow S \cup Sq(P,I,r,\alpha);
                         M(\{sq\_internal\}) \leftarrow 0;
                  distance_recalculation(P,sq_boundary,M);
                  end_if
            end_while
    end_for
end
```

Time complexity: Square Fitting

- o The algorithm is run sequentially for each of the denomination in the set D and for each denomination d∈D there is a O(1) computation involved in precalculate_square() function.
- The inside while loop draws square for a particular denomination d_i and maximum $\alpha_i n/d_i^2$ squares are drawn.
 - n= number of pixels in image α_i = fraction of area covered by squares of denomination d_i .
- o Drawing a square of denomination d_i takes $O(d_i^2)$ and an additional O(1) for distance_recalculation().
- o Hence overall complexity formula is given as,

$$O(|D|).O(1) + \sum_{i} \alpha_{i} n / d_{i}^{2} (O(d_{i}^{2}) + O(1))$$

$$= O(|D|) + \sum_{i} \alpha_{i} n \le O(|D|) + O(n) , \text{ as } \sum_{i} \alpha_{i} \le 1$$

o In case of squares discarded due to failing variance check it adds an additional $O(\sum_i k_i d_i^2)$ time complexity where k_i number squares of size d_i are discarded.

Results: Comparison of three distance metric

Image	Size	DM	N_r	D	N_s	Thr	ρ	Cpu
Fig.								Time
No.								
Dog	800x600	d_4	17	D1	4210	∞*	0.849	8 m16
(a)							7	S
Dog	800x600	d ₈	17	D1	3900	8	0.920	4 m07
(b)							4	S
Dog	800x600	d _e	17	D1	6537	∞	0.902	4 m19
(c)							0	S

Results: Comparison of algorithm with or without variance check:

Image Fig. No.	Size	DM	N _r	D	N_s	Thr	ρ	Cpu Time
Salsa (a)	997x1132	d ₈	31	D1	5566	∞	0.9517	4 m 6 s
Salsa (b)	997x1132	d ₈	31	D1	6176	50	0.9126	9 m 59s

D1=(100,80,60,40,30,25, 20,15,12,10,8,5,3,2)

Results: Comparison of algorithm different sets denomination:

Image	Size	DM	N_r	D	N_s	Thr	ρ	Сри
Fig. No.								Time
Turban (a)	896x982	d ₈	20	D2	5413	100	0.8775	10m16s
Turban (b)	896x982	d ₈	20	D3	12082	100	0.8523	17m45s

D2=(30,25,20,16,12,10,5,3,2), D3=(10,8,7,5,3,2)

Results: Comparison of d₄ and d₈ as local distance recalculation metric:

Image	Size	DM	N _r	D	N _s	Thr	ρ	Сри
Fig. No.								Time
Dog	800x600	d ₈	17	D1	3900	∞	0.9204	4 m07 s
(a)		(DR=d ₄)						
Dog	800x600	d ₈	17	D1	2153	∞	0.7104	20m15s
(a)		(DR=d ₈)						

(a)

(b)

Conclusion:

- \circ From the results we see that d_8 distance mapping gives the best packing and d_4 as local distance recalculation metric.
- The packing algorithm gives as high as 95% packing in some case . The segmentation boundary points and their adjacent pixels are mostly left.
- oIf the cluster points are completely separated then square fitting may be done in parallel for each of the segment reducing time requirement.

Bibliography

- [1] R. Verostko, "http://www.verostko.com/algorithm.html".
- [2] "https://en.wikipedia.org/wiki/Algorithmic art".
- [3] "http://mathworld.wolfram.com/PenroseTiles.html".
- [4] "http://www2.stetson.edu/~efriedma/cirinsqu/".
- [5] R. Harren, "Approximating the orthogonal knapsack problem for hypercubes," in International Colloquium on Automata Languages and Programming (ICALP 2006), 2006.
- [6] K. Jansen and G. Zhang, "Maximizing the total profit of rectangles packed into a," in Algorithmica, 2007, pp. 47, 323–342.
- [7] D. Kleitman and M. Krieger, "An optimal bound for two dimensional bin packing," in 16th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1975).
- [8] K. Jansen and R. Solis-Oba, "13th International Conference, IPCO 2008 Bertinoro, Italy, May 26-28, 2008 Proceedings," in Integer Programming and Combinatorial Optimization, 2008, pp. 184-198.
- [9] M. M. Paulhus, "An Algorithm for Packing Squares," Journal of Combinatorial Theory, , no. Series A 82,, 1997.
- [10] S. De and P. Bhowmick, "Digital Circlism as Algorithmic Art," in 9th International Symposium on Visual Computing, Rethymnon, Crete, Greece, 2013.
- [11] D. Comaniciu and P. Meer, "Mean Shift: A Robust Approach Toward Feature Space Analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. Page 603-619, 2002.
- [12] P.-E. Danielsson, "Euclidean distance mapping," Computer Graphics and Image Processing, vol. 14, no. 3, pp. 227-248, 1980.

Thank You