Transformée de Laplace

1 **Définitions**

Definition.

Soit $f: \mathbf{R} \to \mathbf{R}$

On dit que f est causale lorsque :

 $\forall t < 0, f(t) = 0$

Definition.

Soit $f: \mathbf{R} \to \mathbf{R}$

On dit que f est à croissance exponentielle lorsque :

 $\exists M > 0, a, c \in \mathbf{R} \text{ tels que } \forall t > M, |f(t)| < ce^{at}$

Definition.

Soit f une fonction causale, localement intégrable sur \mathbb{R}^+ et à croissance exponentielle :

 $\exists M > 0, a, c \in \mathbf{R} \text{ tels que } \forall t > M, |f(t)| \leq ce^{at}$

On définit la transformée de Laplace de f par : $\forall s \in \mathbf{C}$ telle que $Re(s) > a, \mathcal{L}(f)(s) = F(s) = \int_0^{+\infty} e^{-st} f(t) dt$

Remarque.

Justifions que F est bien définie :

Soit $s \in \mathbb{C}$ tel que Re(s) > a

$$\int_{0}^{+\infty} |e^{-st} f(t)| dt = \int_{0}^{+\infty} e^{-Re(s)t} |f(t)| dt$$

$$= \int_{0}^{M} e^{-Re(s)t} |f(t)| dt + \int_{M}^{+\infty} e^{-Re(s)t} |f(t)| dt$$

 $\int_0^M e^{-Re(s)t} |f(t)| dt \text{ converge } car f \text{ est localement } intégrable$ $Re(s) > a \text{ donc } \forall t \in \mathbf{R}^+, e^{-Re(s)t} |f(t)| \le ce^{-at} e^{-Re(s)t} \text{ donc } \int_0^{+\infty} e^{-Re(s)t} |f(t)| dt \text{ converge } e^{-Re(s)t} |f(t)| dt$

Proposition.

Toute fonction polynomiale, trigonométrique, de la forme $t \to e^{at}$ a une transformée de Laplace.

$\mathbf{2}$ Propriétés et théorèmes

Proposition.

- i) L est linéaire
- ii) $\mathcal{L}(f)$ est continue
- iii) Si $\mathcal{L}(f) = \mathcal{L}(g)$, alors f = g presque partout
- iv) $\lim_{s\to+\infty} \mathcal{L}(f)(s) = 0$

Proposition (Fonction de Heaviside).

On pose
$$h = \chi_{]0,+\infty[}$$

$$\mathcal{L}(h)(s) = \frac{1}{s}$$

Proposition (Retard).

Soit $a \in \mathbf{R}^+$

On pose
$$f_a: t \to f(t-a)$$
 si $t < a$ et 0 sinon $\mathcal{L}(f_a)(s) = e^{-as}\mathcal{L}(f)(s)$

Proposition (Amortissement).

Soit
$$a \in \mathbf{C}$$

$$g:t\to e^{at}f(t)$$

$$\mathcal{L}(g)(s) = \mathcal{L}(f)(s-a)$$

Proposition.

$$\mathcal{L}(h.cos)(s) = \frac{s}{s^2+1}$$

$$\mathcal{L}(h.sin)(s) = \frac{1}{s^2+1}$$

Proposition (Changement d'échelle).

Soit
$$a > 0$$

On pose $f_a : t \to f(at)$
 $\mathcal{L}(f_a)(s) = \frac{1}{a}\mathcal{L}(f)(\frac{s}{a})$

Proposition.

On suppose que $g_n: t \to t^n f(t)$ a une transformée de Laplace Alors $\mathcal{L}(f)$ est n fois dérivable et : $\forall s \in \mathbf{R}, \mathcal{L}(f)^{(n)}(s) = (-1)^n \mathcal{L}(g_n)(s)$

Proposition.

Soit f dérivable

On suppose que f admet une limite finie en 0 notée $f(0^+)$ f' admet une transformée de Laplace en 0 et $\mathcal{L}(f')(t) = s\mathcal{L}(f)(s) - f(0^+)$

Proposition.

Si f n'est pas continue en
$$a \in \mathbf{R}^+$$
:
 $\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0^+) - e^{-a}\sigma_a \text{ avec } \sigma_a = f(a^+) - f(a^-)$
Si f est discontinue sur un ensemble dénombrable $\{a_n/n \in \mathbf{N}\}$:
 $\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0^+) - \sum_{n=1}^{+\infty} \sigma_n e^{-a_n s}$

Proposition.

$$\lim_{n \to +\infty} s \mathcal{L}(f)(s) = 0$$

Proposition.

$$\mathcal{L}(f'')(s) = s^2 \mathcal{L}(f)(s) - sf(0^+) - f'(0^+)$$

$$\mathcal{L}(f^{(3)})(s) = s^3 \mathcal{L}(f)(s) - s^2 f(0^+) - sf'(0^+) - f''(0^+)$$

3 Produit de convolution

Proposition.

$$\mathcal{L}(f * g) = \mathcal{L}(f)\mathcal{L}(g)$$

4 Transformées de Laplace usuelles

Fonction	Transformée de Laplace
$t \to f(at)$	$\frac{1}{a}\mathcal{L}(f)(\frac{s}{a})$
$t \to f(t-a)$	$e^{-as}\mathcal{L}(f)(s)$
f'	$s\mathcal{L}(f)(s) - f(0^+)$
f"	$s^2 \mathcal{L}(f)(s) - sf(0^+) - f'(0^+)$
$f^{(n)}$	$s^n \mathcal{L}(f)(s)$ avec CI nulles
$t \to \int_0^t f(u)du$	$\frac{\mathcal{L}(f)(s)}{s}$ avec CI nulles
h	$\frac{1}{s}$
$t o rac{t^n}{n!} h(t)$	$\frac{1}{s^{n+1}}$
$t \to e^{-at}h(t)$	$\frac{1}{s+a}$
$t \to t e^{-at} h(t)$	$\frac{1}{(s+a)^2}$
$t \to \sin(\omega t) h(t)$	$\frac{\omega}{s^2 + \omega^2}$
$t \to \cos(\omega t) h(t)$	$\frac{s}{s^2+\omega^2}$

Table 1: Transformées de Laplace des fonctions usuelles