Modelowanie i analiza systemów informatycznych

dokumentacja projektu: System wspomagania decyzji

inż. Bartosz Ociepka inż. Beniamin Stecuła 23 listopada 2020

Podział pracy

Podział pracy był płynny, lecz z większym naciskiem na:

- inż. Bartosz Ociepka backend, praktyka,
- inż. Beniamin Stecuła frontend, teoria, dokumentacja.

Udokumentowanie pracy

Dokumentowanie pracy odbyło się na kilka sposobów:

- utworzenie niniejszej dokumentacji,
- zarządzanie podziałem i wykonaniem zadań w serwisie Trello,
- przechowywanie kopii poprzednich wersji programu.

W ramach repozytorium każdy z nas wrzucał commity do swoim zadań

Całe repozytorium jest dostępne pod adresem

https://github.com/BartoszOciepka/DiabetesNeuralNetwork

Instrukcja obsługi

Niezalogowany użytkownik na start widzi menu, z którego może się zalogować, zarejestrować, sprawdzić próbkę lub wyjść.

```
Hello patient 1
Role: patient
MENU
1. Test data
2. Log out
3. Register
4. Exit program
```

Po zalogowaniu jako doktor do menu dochodzi opcja dodania próbki, trenowania zbioru lub uruchomienia programu testującego, który sprawdza i pokazuje wyniki uczenia dla różnych konfiguracji sieci.

```
Hello doctor 1
Role: doctor

MENU
1. Test data
2. Log out
3. Register
4. Exit program
5. Train dataset
6. Add data to dataset
7. Compare training parameters
```

Wchodząc w każdą opcję użytkownik jest prowadzony za rękę przez cały proces. W razie błędu lub podania niepoprawnych danych wyświetlany jest komunikat błędu.

Instrukcja wdrożenia

Aby wdrożyć projekt należy wykonać poniższą listę kroków:

- 1. zaimportowanie projektu w Visual Studio 2015,
- 2. import danych do bazy danych MySql (dołączono plik dump.sql zawierający potrzebne tabele),
- 3. zmiana connectionString w kodzie na odpowiadające używanej bazie, danych (dokonanie zmiany klas gdy używana jest inna baza niż MySql),
- 4. uruchomienie projektu.

Część testowa

Baza danych

Łączenie z bazą danych ma na stałe ustawione własności, które mogą być w razie potrzeby edytowane w klasie LingToDbSettings.cs we fragmencie:

```
new ConnectionStringSettings

Name = "DiabetesDatabase",
ProviderName = "MySql",
ConnectionString = @"Server=localhost;Database=diabetes;Uid=;Pwd=;"
};
```

Diagram UML bazy danych został przedstawiony na rysunku 1.

Rysunek 1: Diagram klas.

Komponenty systemu

W naszym programie komponenty systemu uporządkowane są w odpowienich folderach o nazwach pokazujących jakie pliki tam znajdziemy. I tak mamy:

- Core z głównymi elementami systemu, w naszym wypadku sieć neuronowa
- Authorization pliki do logowania/rejestracji oraz trzymania ich stanu

- Controllers tutaj są kontrolery używane jako most między bazą danych a modelami
- Helpers klasy pomocnicze do walidacji i szyfrowania
- Models modele używane w programie
- ORM konfiguracja ORMa, którego używamy do komunikacji z bazą

Użyliśmy wzorca projektowego Singleton, dzięki temu nie musimy tworzyć obiektu gdy chcemy zwalidować dane lub je zaszyfrować. Można też uznać, że w ramach używania biblioteki AForge do sieci neuronowej używamy wzorca Fasada.

Nasza sieć neuronowa jest utworzona przy wykorzystaniu biblioteki AForge (http://www.aforgenet.com/framework/docs/). Nie jest to zbyt znana biblioteka, ale do jej wykorzystania przekonała nas bardzo dokładna dokumentacja.

Biblioteka udostępnia nam obiekt ActivationNetwork, który w konstruktorze bierze funkcję aktywacyjną, ilość wejsć sieci oraz tablicę neuronów w poszczególnych warstwach. W naszym wypadku za funkcję aktywacyjną wzieliśmy funkcję sygmoidalną z alfą równą 1.8 (taką wartość uznaliśmy za najlepszą w ramach testowania). Gdy już mamy utworzony obiekt sieci musimy ją nauczyc. Służy do tego klasa BackPropagationLearning (jak i inne, ale my będziemy uczyć sieć używając propagacji wstecznej).

Algorytm szyfrowania

W naszym programie do rejestracji i logowania użyliśmy stworzonej przez siebie klasy AuthorizationManager, która zawiera metody LogIn(), Register(), LogOut(). Szyfrowanie zaimplementowane zostało w klasie RSAHelper, w której znajduje się cała logika szyfrowania opierająca się na klasie RSACryptoServiceProvider. Do szyfrowania użyty został algorytm RSA (definicja oraz dwa wywołania):

Algorytm Rivesta-Shamira-Adlemana (RSA) to jeden z pierwszych i najpopularniejszych asymetrycznych algorytmów kryptograficznych o kluczu publicznym. Może być stosowany i do szyfrowania, i cyfrowego podpisywania plików.

Polega on na liczeniu funkcji Eulera dla dużych liczb pierwszych, a jego bezpieczeństwo opiera się na trudności faktoryzacji dużych liczb złożonych.

Każdy z rozmówców posiada parę kluczy: prywatny i publiczny. Pierwszy z nich służy do deszyfrowania wiadomości przychodzącej, a drugi do szyfrowania wychodzącej. Aby nawiązać komunikację rozmówcy muszą wymienić się swoimi kluczami publicznymi. Klucze prywatne nigdy nie są ujawniane.

System ekspercki

W dziale sztucznej inteligencji systemem eksperckim (Expert System – ES) nazywa się system komputerowy, który emuluje podejmowanie decyzji przez ludzkiego specjalistę z danej dziedziny. Odzwierciedla procesy myślowe na zasadzie działania ludzkiego mózgu.

Do rozwiązań wykorzystujących ES zaliczamy:

- systemy agentowe,
- agenty programowe,
- eksplorację danych,
- wspomaganie twórczego myślenia,
- ontologie systematyzujące wiedzę.

ES powinien zawierać trzy charakterystyczne, podstawowe cechy:

- bazy wiedzy schematycznie zapisane informacje uzyskane od ludzkich ekspertów w danej dziedzinie,
- procedury wnioskujące odzwierciedlające wnioskowanie symboliczne, które jest charakterystyczne dla funkcjonowania ludzkiego mózgu,
- zdolność do poszerzania wiedzy umożliwienie ciągłego rozwoju systemu w przypadku stale napływających nowych informacji koniecznych do uwzględnienia aby otrzymywać stale aktualne wyniki zgodne z nowym stanem wiedzy w dziedzinie.

Struktura ES składa się z sześciu podstawowych elementów:

- baza wiedzy składająca się ze zbioru reguł,
- baza danych zawierająca dane obiektów, wartości, przypadki i hipotezy,
- procedury wnioskowania jest to maszyna wnioskująca,
- procedury objaśniania tłumaczą strategię wnioskowania,
- procedury sterowania dialogiem funkcje wejścia/wyjścia sterujące programem i wyznaczające zadania, które ma wykonać
- procedury zarządzania wiedzą pozwalają na modyfikację oraz rozszerzanie, pozyskiwanie wiedzy.

Przykładowy kod z aplikacji z testami

Tutaj wklejamy pelen kod.