

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA B - 2019/2

Plano Aula 26

Markus Stein
13 November 2019

... continuação TRV considerações finais

Distribuições discretas

- Exemplo 1: (Equilíbrio de Hardy-Weinberg) Seja $X = (X_1, ..., X_n)$ uma a. a. de $X \sim Multinomial(N, \pi_1, \pi_2, \pi_3)$. Use o TRV para testar $H_0 : \pi_1 = \pi_2 = \pi_3$.
- Exemplo 2: (Tabelas $r \times c$) Suponha que temos uma tabela de contingência $r \times c$ com n indivíduos independentemente selecionados, sendo n_{ij} o número de unidades classificadas na linha i e na coluna j, para todo $i = 1, \ldots, r$ e $j = 1, \ldots, c$. Seja π_{ij} a probabilidade de um indivíduo ser classificado na linha i e coluna j, tal que $\pi_{ij} \geq 0$ e $\sum_{i=1}^{r} \sum_{j=1}^{c} \pi_{ij} = 1$.
- a. Encontre o TRV para testar $H_0: \pi_{ij} = a_i b_j$, para algum $a_i > 0$ e $b_j > 0$ tais que $\sum_{i=1}^r a_i = 1$ e $\sum_{j=1}^c b_j = 1$, contra a alternativa $H_1: \pi_{ij} \neq a_i b_j$ para pelo meno
- b. Compare o teste do ítem (a) com o teste qui quadrado de independência, para tesar se a variável da linha e da coluna são independentes.

Teste Exato de Fisher

- Exemplo 3: (Tabela 2×2 restrita) Seja $S_1 \sim Binomial(n_1, \pi_1)$ independente de $S_2 \sim Binomial(n_2, \pi_2)$. Para testar as hipóteses $H_0: \pi_1 = \pi_2$ contra $H_1: \pi_1 > \pi_2$:
- a. Mostre que sob H_0 temos que $S = S_1 + S_2$ é estatística suficiente e $S_1|S = s \sim Hipergeométrica(n_1 + n_2, n_1, s)$.
- b. Calcule o valor p (condicional) para esse teste?
- c. Compare com os valores p do TRV e do teste qui quadrado do exercício 5.

Testes Qui Quadrado

- Pearson e o teste Goodness-of-fit
- \bullet ajustamento (momogeneidade) \times independência

Testes Bayesianos

Leitura:	Ler	seções	8.2.2	\mathbf{e}	8.3.5	do	livro	Casella	\mathbf{e}	Berger.

Tarefa: Fazer lista 5 para entregar.