代数学の基本定理

Masato Nakata

Faculty of Science, Kyoto University

Cont	ents						
1.1	代数学の基本定理 .	 	 	 	 	 	1

§ 1.1 代数学の基本定理

次の定理は代数学の基本定理と呼ばれ、とても重要なものである。この証明には、主に複素関数論によるものが知られているが、ここでは Galois 理論による代数的なものを紹介する。

THEOREM 1.1.1

複素数体は代数閉体である.

以下, 実数体を R, 複素数体を C で表す. C が代数閉体であることを言うには, 定義より, 次を示せば良い:

 \cdot C 上代数的な任意の元 α に対して、 $\alpha \in \mathbb{C}$ である.

ただし、 α は \mathbb{C} の十分大きな拡大体(たとえば \mathbb{C} の代数閉包)の中で考えている. $\mathbb{C}(\alpha)$ で \mathbb{C} に α を添加した体を表すとき、 $\alpha \in \mathbb{C}$ は $\mathbb{C}(\alpha) = \mathbb{C}$ と同値である. さらに、 $\mathbb{C}(\alpha)$ を含むような、 \mathbb{R} の有限次 Galois 拡大体 K を一つ取る*1. $K = \mathbb{C}$ を示せば、自動的に $\mathbb{C}(\alpha) = \mathbb{C}$ も従う. よって、次を示せば良い:

THEOREM 1.1.2

 $\mathbb C$ を中間体として持つような, $\mathbb R$ の任意の有限次 Galois 拡大 $K/\mathbb C/\mathbb R$ について,その拡大次数 $[K:\mathbb R]$ は 2 である.

実際, \mathbb{C} の \mathbb{R} 上拡大次数は $[\mathbb{C}:\mathbb{R}]=2$ であり,さらに $[K:\mathbb{R}]=[K:\mathbb{C}]\cdot[\mathbb{C}:\mathbb{R}]$ が成り立つから,もし上を示すことができれば $[K:\mathbb{C}]=1$,すなわち $K=\mathbb{C}$ となる.

さて、THEOREM 1.1.2 の証明に一つだけ解析的な道具を使う.

LEMMA 1.1.1

奇数次の R 上多項式は1次式または可約である.

Proof. $f(X) \in \mathbb{R}[X]$ を奇数次の多項式とすると、十分大きな実数 $x \in \mathbb{R}$ について f(-x) < 0 < f(x) が成り立っ. よって、中間値の定理により f の零点 $x_0 \in \mathbb{R}$ が存在する. このとき f(X) は $X - x_0$ を因子に持つから、f(X) の次数が ≥ 3 ならば可約である.

COROLLARY 1.1.3

Rの奇数次拡大体は R 自身のみである.

 $^{^{*1}}$ このような K は, $f(X) \in \mathbb{C}[X]$ を lpha の(\mathbb{C} 上)最小多項式としたときに f(X) の(\mathbb{R} 上)最小分解体として取れば良い.

 $Proof.\ L \neq \mathbb{R}$ を \mathbb{R} の奇数次拡大体として、元 $a \in L \setminus \mathbb{R}$ を任意に取る. a の \mathbb{R} 上最小多項式を $f(X) \in \mathbb{R}[X]$ とすれば、その次数は \mathbb{R} に a を添加した体 $\mathbb{R}(a)$ の拡大次数 $[\mathbb{R}(a):\mathbb{R}]$ と一致する.一方 $[\mathbb{R}(a):\mathbb{R}] = [L:\mathbb{R}]/[L:\mathbb{R}(a)]$ が成り立ち、また $[L:\mathbb{R}]$ は奇数であると仮定したから、 $[\mathbb{R}(a):\mathbb{R}]$ も奇数となる.よって **LEMMA 1.1.1** より f(X) は 1 次式または可約となるが、いずれの場合も仮定に矛盾する.従って $L=\mathbb{R}$.

以下、特に断らない限り、群はすべて有限群を指すものとする.

THEOREM 1.1.2 の証明のために、次の二つの事実は一旦認めることにする(これらは次節で証明する):

- i) (Sylow の定理) 群 G の位数の素因子 p を任意に取り、 $|G|=p^er$ ($\gcd(p,r)=1$)とする.このとき,位数が p^e であるような G の部分群(p-Sylow 部分群と呼ぶ)が存在する.
- ii) p 群(位数が素数 p の冪であるような群)は指数 p の部分群を持つ.

Proof of **THEOREM 1.1.2**. 有限次 Galois 拡大 K/\mathbb{R} の Galois 群を $G = \operatorname{Gal}(K/\mathbb{R})$ と置く. G の位数は拡大次数 $[K:\mathbb{R}]$ と等しく,また $[K:\mathbb{R}] = [K:\mathbb{C}] \cdot [\mathbb{C}:\mathbb{R}]$ は $[\mathbb{C}:\mathbb{R}] = 2$ の倍数であるから,|G| は 2 を素因子に持つ.よって i) より 2-Sylow 部分群 $S \leq G$ が存在して,|G|/|S| は |S| と互いに素,すなわち奇数となる.

S に対応する中間体 $K/L/\mathbb{R}$ を取る(Galois の基本定理)と、拡大次数について

$$[L:\mathbb{R}] = \frac{[K:\mathbb{R}]}{[K:L]} = \frac{|G|}{|S|}$$

が成り立つ. 特に L は \mathbb{R} の奇数次の拡大体であるが,**COROLLARY 1.1.3** より,これは $[L:\mathbb{R}]=1$,すなわち $L=\mathbb{R}$ でしかあり得ない.従って S=G となり,G は 2 群(位数が 2 の冪 $|G|=2^n$)である.

 $n \le 1$ ならば良い. $n \ge 2$ として矛盾を導こう. 中間体 $K/\mathbb{C}/\mathbb{R}$ に対応する G の部分群を $H_0 \le G$ とする. G が 2 群だから H_0 もまた 2 群であり,ii)より指数 2 の部分群 $H \le H_0$ を持つ. これに対応する中間体を $K/C/\mathbb{R}$ とすると, $H \le H_0$ であるから C は \mathbb{C} の拡大体であり,その拡大次数は $[C:\mathbb{C}] = [L:\mathbb{C}]/[L:C] = |H_0|/|H| = 2$ となる. しかし \mathbb{C} の 2 次拡大体は存在しない(**LEMMA 1.1.2**)から矛盾する. よって $n \le 1$.

LEMMA 1.1.2

€の2次拡大体は存在しない.

Proof. K/\mathbb{C} を 2 次拡大体とすると,ある 2 次既約多項式 $f(X) \in \mathbb{C}[X]$ が存在して $K \cong \mathbb{C}[X]/(f(X))$ となる. 一方, \mathbb{C} 上の 2 次方程式については解の公式が知られていて, 2 次式は常に可約である.よって \mathbb{C} の 2 次拡大体は存在しない. □