Automata and Language Theory Chapter 3(Context Free Grammar)

Dr. Doaa Shebl
Faculty of Computers and Artificial Intelligence
Beni-Suef University

Definition 3.1.1

A context-free grammar is a quadruple (V, Σ, P, S) where V is a finite set of variables, Σ (the alphabet) is a finite set of terminal symbols, P is a finite set of rules, and S is a distinguished element of V called the start symbol. The sets V and Σ are assumed to be disjoint.

A rule, often called a production,

G:
$$S \rightarrow a S b /ab / A$$

 $A \rightarrow a A / a$
 $\Sigma = \{ a, b \}$
 $N = V = \{ S, A \}$
 $P = \{ S \rightarrow a S b, S \rightarrow a b, S \rightarrow A, A \rightarrow a A, A \rightarrow a \}$
 $S = S$: Start Symbol

Derivation

 $G: S \rightarrow a S b / SS / ab$

$$S \Rightarrow ab$$

$$S \Rightarrow aSb$$
$$\Rightarrow aabb$$

$$S \Rightarrow aSb$$

$$\Rightarrow aaSbb$$

$$\Rightarrow \cdots aa...bb$$

Let G be the grammar : $S \rightarrow AA$

 $A \rightarrow AAA/bA/Ab/a$

Construct the left most and right most derivation of the string <u>baba</u>

Left most derivation

 $S \Rightarrow AA$

 \Rightarrow bAA

 \Rightarrow b a A

⇒b a bA

⇒ba ba

Right most derivation

 $S \Rightarrow AA$

 \Rightarrow A a

 \Rightarrow Ab a

 \Rightarrow b A ba

⇒ba ba

G = (V,
$$\Sigma$$
, P, S)
V = {S, A}
 $\Sigma = \{a, b\}$
P: $S \rightarrow AA$
 $A \rightarrow AAA \mid bA \mid Ab \mid a$

$$S \Rightarrow AA$$
 $S \Rightarrow AA$ $S \Rightarrow AA$ $\Rightarrow AA$ \Rightarrow

 $\Rightarrow ababaA$

⇒ ababaa

For the $S \rightarrow S + S \mid SS \mid (S) \mid S^* \mid a$ with string $(a + a)^* a$:

- i) Give a leftmost derivation for the string.
- ii) Give a rightmost derivation for the string.
- iii) Give a parse tree for the string.

i)
$$S => S S => S * S => (S) * S => (S+S) * S$$

 $=> (a+S) * S => (a+a) * S => (a+a) * a$.
ii) $S => S S => S a => S * a => (S) * a => (S+S) * a$
 $=> (S+a) * a => (a+a) * a$.

iii)

Parse tree