Monte Carlo and Quasi-Monte Carlo

Want to estimate

$$\mu = \mu(f) = \int_{[0,1)^s} f(\mathbf{u}) d\mathbf{u} = \mathbb{E}[f(\mathbf{U})]$$

where $f:[0,1)^s \to \mathbb{R}$ and \mathbf{U} is a uniform r.v. over $[0,1)^s$.

Standard Monte Carlo:

- ▶ Generate *n* independent copies of \mathbf{U} , say $\mathbf{U}_1, \ldots, \mathbf{U}_n$;
- estimate μ by $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$ where $X_i = f(\mathbf{U}_i)$.

Monte Carlo and Quasi-Monte Carlo

Want to estimate

$$\mu = \mu(f) = \int_{[0,1)^s} f(\mathbf{u}) d\mathbf{u} = \mathbb{E}[f(\mathbf{U})]$$

where $f:[0,1)^s \to \mathbb{R}$ and **U** is a uniform r.v. over $[0,1)^s$.

Standard Monte Carlo:

- ▶ Generate *n* independent copies of \mathbf{U} , say $\mathbf{U}_1, \dots, \mathbf{U}_n$;
- estimate μ by $\hat{\boldsymbol{\mu}}_n = \frac{1}{n} \sum_{i=1}^n X_i$ where $X_i = f(\mathbf{U}_i)$.

Variance:
$$\operatorname{Var}[\hat{\mu}_n] = \sigma^2/n$$
 where $\sigma^2 = \operatorname{Var}[f(\mathbf{U})] = \int_{[0,1)^s} f^2(\mathbf{u}) d\mathbf{u} - \mu$.

Central limit theorem: $\sqrt{n}(\hat{\mu}_n - \mu)/S_n \Rightarrow \sqrt{n}(\hat{\mu}_n - \mu)/\sigma \Rightarrow N(0, 1)$ when $n \to \infty$, where S_n^2 is any consistent estimator of $\sigma^2 = \operatorname{Var}[f(\mathbf{U})]$.

Quasi-Monte Carlo (QMC)

Replace the random points \mathbf{U}_i by a set of deterministic points $P_n = \{\mathbf{u}_0, \dots, \mathbf{u}_{n-1}\}$ that cover $[0,1)^s$ more evenly. This P_n is called a low-discrepancy point set if some measure of discrepancy between the empirical distribution of P_n and the uniform distribution $\to 0$ faster than for independent random points.

Quasi-Monte Carlo (QMC)

Replace the random points \mathbf{U}_i by a set of deterministic points $P_n = \{\mathbf{u}_0, \dots, \mathbf{u}_{n-1}\}$ that cover $[0,1)^s$ more evenly. This P_n is called a low-discrepancy point set if some measure of discrepancy between the empirical distribution of P_n and the uniform distribution $\to 0$ faster than for independent random points.

Main construction methods: lattice rules and digital nets (Korobov, Hammersley, Halton, Sobol', Faure, Niederreiter, etc.)

Obvious solutions:

$$P_n = \mathbb{Z}_n/n = \{0, 1/n, \dots, (n-1)/n\}$$
:

which gives

$$\bar{\mu}_n = \frac{1}{n} \sum_{i=0}^{n-1} f(i/n),$$

3

Simple case: one dimension (s = 1)

Obvious solutions:

$$P_n = \mathbb{Z}_n/n = \{0, 1/n, \dots, (n-1)/n\}$$
:

which gives

$$\bar{\mu}_n = \frac{1}{n} \sum_{i=0}^{n-1} f(i/n),$$

or
$$P'_n = \{1/(2n), 3/(2n), \dots, (2n-1)/(2n)\}$$
:

3

If we allow different weights on the $f(\mathbf{u}_i)$, we have the trapezoidal rule:

$$\frac{1}{n}\left[\frac{f(0)+f(1)}{2}+\sum_{i=1}^{n-1}f(i/n)\right],$$

for which $|E_n| = O(n^{-2})$ if f'' is bounded,

$$\frac{1}{n}\left[\frac{f(0)+f(1)}{2}+\sum_{i=1}^{n-1}f(i/n)\right],$$

for which $|E_n| = O(n^{-2})$ if f'' is bounded,

If we allow different weights on the $f(\mathbf{u}_i)$, we have the trapezoidal rule:

$$\frac{1}{n}\left[\frac{f(0)+f(1)}{2}+\sum_{i=1}^{n-1}f(i/n)\right],\,$$

for which $|E_n| = O(n^{-2})$ if f'' is bounded, or the Simpson rule,

$$\frac{f(0)+4f(1/n)+2f(2/n)+\cdots+2f((n-2)/n)+4f((n-1)/n)+f(1)}{3n},$$

which gives $|E_n| = O(n^{-4})$ if $f^{(4)}$ is bounded, etc.

If we allow different weights on the $f(\mathbf{u}_i)$, we have the trapezoidal rule:

$$\frac{1}{n}\left[\frac{f(0)+f(1)}{2}+\sum_{i=1}^{n-1}f(i/n)\right],\,$$

for which $|E_n| = O(n^{-2})$ if f'' is bounded, or the Simpson rule,

$$\frac{f(0)+4f(1/n)+2f(2/n)+\cdots+2f((n-2)/n)+4f((n-1)/n)+f(1)}{3n},$$

which gives $|E_n| = O(n^{-4})$ if $f^{(4)}$ is bounded, etc.

Here, for QMC and RQMC, we restrict ourselves to equal weight rules. For the RQMC points that we will examine, one can prove that equal weights are optimal.

Simplistic solution for s > 1: rectangular grid

 $P_n = \{(i_1/d, \dots, i_s/d) \text{ such that } 0 \le i_i < d \ \forall j\} \text{ where } n = d^s.$

Simplistic solution for s > 1: rectangular grid

 $P_n = \{(i_1/d, \dots, i_s/d) \text{ such that } 0 \le i_j < d \ \forall j\} \text{ where } n = d^s.$

Quickly becomes impractical when *s* increases.

And each one-dimensional projection has only d distinct points, each two-dimensional projections has only d^2 distinct points, etc.

$$P_n = \{(x/m, (ax/m) \bmod 1) : x = 0, ..., m-1\}$$

= \{(0,0), (1/101, 12/101), (2/101, 43/101), ...\}.

$$P_n = \{(x/m, (ax/m) \bmod 1) : x = 0, \dots, m-1\}$$

= \{(0,0), (1/101, 12/101), (2/101, 43/101), \dots\}.

$$P_n = \{(x/m, (ax/m) \bmod 1) : x = 0, ..., m-1\}$$

= \{(0,0), (1/101, 12/101), (2/101, 43/101), ...\}.

$$P_n = \{(x/m, (ax/m) \bmod 1) : x = 0, ..., m-1\}$$

= \{(0,0), (1/101, 12/101), (2/101, 43/101), ...\}.

$$P_n = \{(x/m, (ax/m) \bmod 1) : x = 0, ..., m-1\}$$

= \{(0,0), (1/101, 12/101), (2/101, 43/101), ...\}.

Another example: s = 2, n = 1021, a = 90

$$P_n = \{(x/m, (ax/m) \bmod 1) : x = 0, ..., m-1\}$$

= \{(x/1021, (90x/1021) \text{ mod } 1) : x = 0, ..., 1020\}.

7

Good uniformity in one dimension, but not in two!

Koksma-Hlawka-type inequalities (worst-case error):

$$|\hat{\mu}_{n,\text{rqmc}} - \mu| \leq V(f) \cdot D(P_n)$$

for all f in some Hilbert space or Banach space \mathcal{H} , where $V(f) = ||f - \mu||_{\mathcal{H}}$ is the variation of f, and $D(P_n)$ is the discrepancy of P_n .

Koksma-Hlawka-type inequalities (worst-case error):

$$|\hat{\mu}_{n,\text{rqmc}} - \mu| \leq V(f) \cdot D(P_n)$$

for all f in some Hilbert space or Banach space \mathcal{H} , where $V(f) = \|f - \mu\|_{\mathcal{H}}$ is the variation of f, and $D(P_n)$ is the discrepancy of P_n .

"Classical" Koksma-Hlawka (worst-case) inequality for QMC: f must have finite variation in the sense of Hardy and Krause (implies no discontinuity not aligned with the axes), and several known constructions achieve $D(P_n) = O(n^{-1}(\ln n)^s) = O(n^{-1+\delta})$.

For certain Hilbert spaces of smooth functions f with square-integrable partial derivatives of order up to α : $D(P_n) = O(n^{-\alpha+\delta})$.

Randomized quasi-Monte Carlo (RQMC) An RQMC estimator of μ has the form

 $\hat{\boldsymbol{\mu}}_{n,\text{rqmc}} = \frac{1}{n} \sum_{i=0}^{n-1} f(\mathbf{U}_i),$

with
$$P_n = \{\mathbf{U}_0, \dots, \mathbf{U}_{n-1}\} \subset (0,1)^s$$
 an RQMC point set:

- (i) each point U_i has the uniform distribution over $(0,1)^s$;
- (ii) P_n as a whole is a low-discrepancy point set.

$$\mathbb{E}[\hat{\mu}_{n,\text{rqmc}}] = \mu$$
 (unbiased).

$$\operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}] = \frac{\operatorname{Var}[f(\mathbf{U}_i)]}{n} + \frac{2}{n^2} \sum_{i < j} \operatorname{Cov}[f(\mathbf{U}_i), f(\mathbf{U}_j)].$$

We want to make the last sum as negative as possible.

Randomized quasi-Monte Carlo (RQMC) An RQMC estimator of μ has the form

$$\hat{\boldsymbol{\mu}}_{n,\text{rqmc}} = \frac{1}{n} \sum_{i=0}^{n-1} f(\mathbf{U}_i),$$

with $P_n = \{\mathbf{U}_0, \dots, \mathbf{U}_{n-1}\} \subset (0,1)^s$ an RQMC point set:

- (i) each point U_i has the uniform distribution over $(0,1)^s$;
- (ii) P_n as a whole is a low-discrepancy point set.

$$\mathbb{E}[\hat{\mu}_{n,\text{rqmc}}] = \mu$$
 (unbiased).

$$\operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}] = \frac{\operatorname{Var}[f(\mathbf{U}_i)]}{n} + \frac{2}{n^2} \sum_{i < j} \operatorname{Cov}[f(\mathbf{U}_i), f(\mathbf{U}_j)].$$

We want to make the last sum as negative as possible. Special cases: antithetic variates (n = 2), Latin hypercube sampling (LHS), randomized quasi-Monte Carlo (RQMC).

Can compute \underline{m} independent realizations X_1,\ldots,X_m of $\hat{\mu}_{n,\mathrm{rqmc}}$, then estimate μ and $\mathrm{Var}[\hat{\mu}_{n,\mathrm{rqmc}}]$ by their sample mean \overline{X}_m and sample variance S_m^2 . Could be used to compute a confidence interval.

Temptation: assume that \bar{X}_m has the normal distribution. Beware.

Baby Example: Pricing An Asian Option

Price of a single asset evolves as $\{S(t), t \ge 0\}$, and is observed at times $t_1, \ldots, t_d = T$. Discounted payoff:

$$f(\mathbf{U}) = e^{-rT} \max \left[0, \ \frac{1}{d} \sum_{j=1}^{d} S(t_j) - K \right]$$

with discount rate r and strike price K. $S(t_1), \ldots, S(t_d)$ are simulated from a vector $\mathbf{U} \sim \text{Uniform}(0,1)^s$ (under risk-neutral measure).

Baby Example: Pricing An Asian Option

Price of a single asset evolves as $\{S(t), t \geq 0\}$, and is observed at times $t_1, \ldots, t_d = T$. Discounted payoff:

$$f(\mathbf{U}) = e^{-rT} \max \left[0, \ \frac{1}{d} \sum_{j=1}^{d} S(t_j) - K \right]$$

with discount rate r and strike price K. $S(t_1), \ldots, S(t_d)$ are simulated from a vector $\mathbf{U} \sim \text{Uniform}(0,1)^s$ (under risk-neutral measure).

For a simple illustration, if S obeys a geometric Brownian motion, the expected discounted payoff (the option price) is

$$\mu = e^{-rT} \int_{[0,1)^d} \max \left(0, \frac{1}{d} \sum_{i=1}^d S(0) \cdot e^{-rT} \int_{[0,1)^d} \max \left((r - \sigma^2/2) t_i + \sigma \sum_{i=1}^i \sqrt{t_j - t_{j-1}} \Phi^{-1}(u_j) \right) - K \right) du_1 \dots du_d.$$

 $s_0 = 100, r = 0.05, \sigma = 0.5.$

Exact value: $\mu \approx 17.0958$. Variance with MC: $Var[f(\mathbf{U})] \approx 934.0$.

Exact value: $\mu \approx 17.0958$. Variance with MC: $Var[f(\mathbf{U})] \approx 934.0$.

RQMC (lattice + random shift), n points, m = 1000 randomizations.

Asian option with d=2. MC Variance: **934.0**.

For n = 101 and a = 12: $\bar{X}_m = 17.076$ and $nS_m^2 = 77.9$. For n = 65521 and a = 944: $\bar{X}_m = 17.095$ and $nS_m^2 = 4.03$.

Variance reduction (or efficiency improvement) factors: 12 and 232.

Numerical illustration: s = d = 2, T = 1 (year), $t_j = j/d$, K = 100, $s_0 = 100$, r = 0.05, $\sigma = 0.5$.

Exact value: $\mu \approx 17.0958$. Variance with MC: $Var[f(\mathbf{U})] \approx 934.0$.

RQMC (lattice + random shift), n points, m = 1000 randomizations.

Asian option with d = 2. MC Variance: **934.0**.

For n = 101 and a = 12: $\bar{X}_m = 17.076$ and $nS_m^2 = 77.9$.

For n = 65521 and a = 944: $\bar{X}_m = 17.095$ and $nS_m^2 = 4.03$.

Variance reduction (or efficiency improvement) factors: 12 and 232.

In s dimensions, we can take

$$P_n = \{ \mathbf{u}_i = (i\mathbf{a} \mod n) / n : i = 0, \dots, n-1 \},$$

where $\mathbf{a} = (1, a, a^2 \mod n, ..., a^{s-1} \mod n)$.

Exact value: $\mu \approx 17.0958$. Variance with MC: $Var[f(\mathbf{U})] \approx 934.0$.

RQMC (lattice + random shift), n points, m=1000 randomizations.

Asian option with d = 2. MC Variance: **934.0**.

For n = 101 and a = 12: $\bar{X}_m = 17.076$ and $nS_m^2 = 77.9$. For n = 65521 and a = 944: $\bar{X}_m = 17.095$ and $nS_m^2 = 4.03$.

Variance reduction (or efficiency improvement) factors: 12 and 232.

In s dimensions, we can take

$$P_n = \{ \mathbf{u}_i = (i\mathbf{a} \mod n) / n : i = 0, \dots, n-1 \},$$

where $a = (1, a, a^2 \mod n, ..., a^{s-1} \mod n)$.

Asian option with d=12. $\mu\approx 13.122$. MC variance: **516.3**.

For n = 101: $\bar{X}_m = 13.089$ and $nS_m^2 = 94.9$.

For n = 65521: $\bar{X}_m = 13.122$ and $nS_m^2 = 23.0$. Variance reduction factors: 5 and 22.

Lattice rules

Integration lattice:

$$oldsymbol{\mathcal{L}_s} = \left\{ oldsymbol{v} = \sum_{j=1}^s z_j oldsymbol{v}_j \; ext{such that each} \; z_j \in \mathbb{Z}
ight\},$$

where $\mathbf{v}_1, \dots, \mathbf{v}_s \in \mathbb{R}^s$ are linearly independent over \mathbb{R} and where L_s contains \mathbb{Z}^s . Lattice rule: Take $P_n = \{\mathbf{u}_0, \dots, \mathbf{u}_{n-1}\} = L_s \cap [0,1)^s$.

Lattice rules

Integration lattice:

$$oldsymbol{\mathcal{L}_s} = \left\{ oldsymbol{v} = \sum_{j=1}^s z_j oldsymbol{v}_j \; ext{such that each} \; z_j \in \mathbb{Z}
ight\},$$

where $\mathbf{v}_1,\ldots,\mathbf{v}_s\in\mathbb{R}^s$ are linearly independent over \mathbb{R} and where L_s contains \mathbb{Z}^s . Lattice rule: Take $P_n=\{\mathbf{u}_0,\ldots,\mathbf{u}_{n-1}\}=L_s\cap[0,1)^s$.

Lattice rule of rank 1: $\mathbf{u}_i = i\mathbf{v}_1 \mod 1$ for $i = 0, \dots, n-1$, where $n\mathbf{v}_1 = \mathbf{a} = (a_1, \dots, a_s) \in \{0, 1, \dots, n-1\}^s$.

Korobov rule: $\mathbf{a} = (1, a, a^2 \mod n, \dots)$.

Lattice rules

Integration lattice:

$$oldsymbol{\mathcal{L}_s} = \left\{ oldsymbol{v} = \sum_{j=1}^s z_j oldsymbol{v}_j \; ext{such that each} \; z_j \in \mathbb{Z}
ight\},$$

where $\mathbf{v}_1,\ldots,\mathbf{v}_s\in\mathbb{R}^s$ are linearly independent over \mathbb{R} and where L_s contains \mathbb{Z}^s . Lattice rule: Take $P_n=\{\mathbf{u}_0,\ldots,\mathbf{u}_{n-1}\}=L_s\cap[0,1)^s$.

Lattice rule of rank 1: $\mathbf{u}_i = i\mathbf{v}_1 \mod 1$ for $i = 0, \dots, n-1$, where $n\mathbf{v}_1 = \mathbf{a} = (a_1, \dots, a_s) \in \{0, 1, \dots, n-1\}^s$. Korobov rule: $\mathbf{a} = (1, a, a^2 \mod n, \dots)$.

For any $\mathfrak{u} \subset \{1, \ldots, s\}$, the projection $L_s(\mathfrak{u})$ of L_s is also a lattice.

Lattice rules

Integration lattice:

$$oldsymbol{\mathcal{L}_{s}} = \left\{ oldsymbol{v} = \sum_{j=1}^{s} z_{j} oldsymbol{v}_{j} ext{ such that each } z_{j} \in \mathbb{Z}
ight\},$$

where $\mathbf{v}_1,\ldots,\mathbf{v}_s\in\mathbb{R}^s$ are linearly independent over \mathbb{R} and where L_s contains \mathbb{Z}^s . Lattice rule: Take $P_n=\{\mathbf{u}_0,\ldots,\mathbf{u}_{n-1}\}=L_s\cap[0,1)^s$.

Lattice rule of rank 1: $\mathbf{u}_i = i\mathbf{v}_1 \mod 1$ for $i = 0, \dots, n-1$, where $n\mathbf{v}_1 = \mathbf{a} = (a_1, \dots, a_s) \in \{0, 1, \dots, n-1\}^s$. Korobov rule: $\mathbf{a} = (1, a, a^2 \mod n, \dots)$.

For any $\mathfrak{u} \subset \{1,\ldots,s\}$, the projection $L_s(\mathfrak{u})$ of L_s is also a lattice.

Random shift modulo 1: generate a single point U uniformly over $(0,1)^s$ and add it to each point of P_n , modulo 1, coordinate-wise: $U_i = (\mathbf{u}_i + \mathbf{U}) \mod 1$. Each U_i is uniformly distributed over $[0,1)^s$.

Variance expression

Suppose f has Fourier expansion

$$f(\mathbf{u}) = \sum_{\mathbf{h} \in \mathbb{Z}^s} \hat{f}(\mathbf{h}) e^{2\pi\sqrt{-1}\mathbf{h}^t\mathbf{u}}.$$

For a randomly shifted lattice, the exact variance is always (see L and Lemieux 2000)

$$\underline{\mathrm{Var}[\hat{\mu}_{n,\mathrm{rqmc}}]} = \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} |\hat{f}(\mathbf{h})|^2,$$

where $L_s^* = \{\mathbf{h} \in \mathbb{R}^s : \mathbf{h}^t \mathbf{v} \in \mathbb{Z} \text{ for all } \mathbf{v} \in L_s\} \subseteq \mathbb{Z}^s \text{ is the dual lattice.}$

From the viewpoint of variance reduction, an optimal lattice for f minimizes the square "discrepancy" $D^2(P_n) = \text{Var}[\hat{\mu}_{n,\text{rqmc}}].$

$$\mathrm{Var}[\hat{\mu}_{n,\mathrm{rqmc}}] = \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} |\hat{f}(\mathbf{h})|^2.$$

Let $\alpha>0$ be an even integer. If f has square-integrable mixed partial derivatives up to order $\alpha/2>0$, and the periodic continuation of its derivatives up to order $\alpha/2-1$ is continuous across the unit cube boundaries, then

$$|\hat{f}(\mathbf{h})|^2 = \mathcal{O}((\max(1, h_1), \dots, \max(1, h_s))^{-\alpha}).$$

Moreover, there is a vector $\mathbf{v}_1 = \mathbf{v}_1(n)$ such that

$$\mathcal{P}_{\alpha} \stackrel{\text{def}}{=} \sum_{\mathbf{0} \neq \mathbf{h} \in L_{s}^{*}} (\max(1, h_{1}), \dots, \max(1, h_{s}))^{-\alpha} = \mathcal{O}(n^{-\alpha+\delta}).$$

This \mathcal{P}_{α} has been proposed long ago as a figure of merit, often with $\alpha=2$. It is the variance for a worst-case f having

$$|\hat{f}(\mathbf{h})|^2 = (\max(1,|h_1|)\cdots\max(1,|h_s|))^{-\alpha}.$$

A larger α means a smoother f and a faster convergence rate.

This worst-case f is

$$f^*(\mathbf{u}) = \sum_{\mathfrak{u} \subseteq \{1,\ldots,s\}} \prod_{j \in \mathfrak{u}} \frac{(2\pi)^{\alpha/2}}{(\alpha/2)!} B_{\alpha/2}(u_j).$$

where $B_{\alpha/2}$ is the Bernoulli polynomial of degree $\alpha/2$. In particular, $B_1(u) = u - 1/2$ and $B_2(u) = u^2 - u + 1/6$.

This worst-case function is not necessarily representative of what happens in applications.

Moreover, the hidden factor in \mathcal{O} increases quickly with s, so this result is not very useful for large s.

To get a bound that is uniform in s, the Fourier coefficients must decrease faster with the dimension and "size" of vectors \mathbf{h} ; that is, f must be "smoother" in high-dimensional projections. This is typically what happens in applications where RQMC is really effective!

To make the periodic continuation of f continuous.

If $f(0) \neq f(1)$, define \tilde{f} by $\tilde{f}(1-u) = \tilde{f}(u) = f(2u)$ for $0 \leq u \leq 1/2$. This \tilde{f} has the same integral as f and $\tilde{f}(0) = \tilde{f}(1)$.

٠

To make the periodic continuation of f continuous.

If $f(0) \neq f(1)$, define \tilde{f} by $\tilde{f}(1-u) = \tilde{f}(u) = f(2u)$ for $0 \leq u \leq 1/2$. This \tilde{f} has the same integral as f and $\tilde{f}(0) = \tilde{f}(1)$.

٠

To make the periodic continuation of f continuous.

If $f(0) \neq f(1)$, define \tilde{f} by $\tilde{f}(1-u) = \tilde{f}(u) = f(2u)$ for $0 \leq u \leq 1/2$. This \tilde{f} has the same integral as f and $\tilde{f}(0) = \tilde{f}(1)$.

.

To make the periodic continuation of f continuous.

If $f(0) \neq f(1)$, define \tilde{f} by $\tilde{f}(1-u) = \tilde{f}(u) = f(2u)$ for $0 \leq u \leq 1/2$. This \tilde{f} has the same integral as f and $\tilde{f}(0) = \tilde{f}(1)$.

For smooth f, can reduce the variance to $O(n^{-4+\delta})$ (Hickernell 2002). The resulting \tilde{f} is symmetric with respect to u=1/2.

In practice, we transform the points U_i instead of f.

Random shift followed by baker's transformation. Along each coordinate, stretch everything by a factor of 2 and fold. Same as replacing U_i by min $[2U_i, 2(1 - U_i)]$.

Random shift followed by baker's transformation. Along each coordinate, stretch everything by a factor of 2 and fold. Same as replacing U_j by min $[2U_j, 2(1 - U_j)]$.

Random shift followed by baker's transformation. Along each coordinate, stretch everything by a factor of 2 and fold.

Same as replacing U_i by min[2 U_i , 2(1 – U_i)].

Random shift followed by baker's transformation.

Along each coordinate, stretch everything by a factor of 2 and fold. Same as replacing U_j by min $[2U_j, 2(1 - U_j)]$.

Gives locally antithetic points in intervals of size 2/n.

This implies that linear pieces over these intervals are integrated exactly. Intuition: when f is smooth, it is well-approximated by a piecewise linear function, which is integrated exactly, so the error is small.

Searching for a lattice that minimizes

$$\operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}] = \sum_{\mathbf{0} \neq \mathbf{h} \in L_{\epsilon}^*} |\hat{f}(\mathbf{h})|^2$$

is unpractical, because:

- the Fourier coefficients are usually unknown,
- there are infinitely many,
- must do it for each f.

ANOVA decomposition

The Fourier expansion has too many terms to handle. As a cruder expansion, we can write $f(\mathbf{u}) = f(u_1, \dots, u_s)$ as:

$$f(\mathbf{u}) = \sum_{\mathbf{u} \subseteq \{1, \dots, s\}} f_{\mathbf{u}}(\mathbf{u}) = \mu + \sum_{i=1}^{s} f_{\{i\}}(u_i) + \sum_{i,j=1}^{s} f_{\{i,j\}}(u_i, u_j) + \cdots$$

where

$$f_{\mathfrak{u}}(\mathbf{u}) = \int_{[0,1)^{|\overline{\mathfrak{u}}|}} f(\mathbf{u}) d\mathbf{u}_{\overline{\mathfrak{u}}} - \sum_{\mathfrak{v} \subset \mathfrak{u}} f_{\mathfrak{v}}(\mathbf{u}_{\mathfrak{v}}),$$

and the Monte Carlo variance decomposes as

$$\sigma^2 = \sum_{\mathfrak{u} \subset \{1,\ldots,s\}} \sigma_{\mathfrak{u}}^2, \quad \text{where } \sigma_{\mathfrak{u}}^2 = \operatorname{Var}[f_{\mathfrak{u}}(\mathbf{U})].$$

The $\sigma_{\mathfrak{u}}^2$'s can be estimated by MC or RQMC.

Heuristic intuition: Make sure the projections $P_n(\mathfrak{u})$ are very uniform for the important subsets \mathfrak{u} (i.e., with larger $\sigma_{\mathfrak{u}}^2$).

Weighted $\mathcal{P}_{\gamma,lpha}$ with projection-dependent weights $\hat{\gamma_{\mathfrak{u}}}$

Denote $\mathfrak{u}(\mathbf{h}) = \mathfrak{u}(h_1, \ldots, h_s)$ the set of indices j for which $h_j \neq 0$.

$$\underset{\mathbf{0} \neq \mathbf{h} \in L_s^*}{\mathcal{P}_{\gamma,\alpha}} \quad = \quad \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} \gamma_{\mathfrak{u}(\mathbf{h})}(\max(1,|h_1|) \cdots \max(1,|h_s|))^{-\alpha}$$

where $\mathbf{u}_i = (u_{i,1}, \dots, u_{i,s}) = i\mathbf{v}_1 \mod 1$. For $\alpha/2$ integer > 0,

$$\mathcal{P}_{\gamma,\alpha} = \sum_{\emptyset \neq \mathfrak{u} \subset \{1,\ldots,s\}} \frac{1}{n} \sum_{i=0}^{n-1} \gamma_{\mathfrak{u}} \left[\frac{-(-4\pi^2)^{\alpha/2}}{(\alpha)!} \right]^{|\mathfrak{u}|} \prod_{i \in \mathfrak{u}} B_{\alpha}(u_{i,j})$$

(finite sum) and the corresponding variation is

$$\frac{\mathsf{V}_{\gamma}^2(f)}{\mathsf{V}_{\gamma}^2(f)} = \sum_{\emptyset \neq \mathfrak{u} \subseteq \{1, \dots, s\}} \frac{1}{\gamma_{\mathfrak{u}}(4\pi^2)^{\alpha|\mathfrak{u}|/2}} \int_{[0,1]^{|\mathfrak{u}|}} \left| \frac{\partial^{\alpha|\mathfrak{u}|/2}}{\partial \mathbf{u}^{\alpha/2}} f_{\mathfrak{u}}(\mathbf{u}) \right|^2 d\mathbf{u},$$

for $f:[0,1)^s\to\mathbb{R}$ smooth enough. Then,

$$\operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}] = \sum_{\mathfrak{u} \subset \{1,\ldots,n\}} \operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}(f_{\mathfrak{u}})] \leq V_{\gamma}^{2}(f) \mathcal{P}_{\gamma,\alpha}.$$

This $\mathcal{P}_{\gamma,\alpha}$ is the RQMC variance for the worst-case function

$$f^*(\mathbf{u}) = \sum_{\mathfrak{u} \subseteq \{1, \dots, s\}} \sqrt{\gamma_{\mathfrak{u}}} \prod_{j \in \mathfrak{u}} \frac{(2\pi)^{\alpha/2}}{(\alpha/2)!} B_{\alpha/2}(u_j),$$

(with variation 1), whose square Fourier coefficients are

$$|\hat{f}^*(\mathbf{h})|^2 = \gamma_{\mathfrak{u}(\mathbf{h})}(\max(1,|h_1|)\cdots\max(1,|h_s|))^{-lpha}.$$

For this function, we have

$$\sigma_{\mathfrak{u}}^{2} = \gamma_{\mathfrak{u}} \left[\operatorname{Var}[B_{\alpha/2}(U)] \frac{(4\pi^{2})^{\alpha/2}}{((\alpha/2)!)^{2}} \right]^{|\mathfrak{u}|} = \gamma_{\mathfrak{u}} \left[|B_{\alpha}(0)| \frac{(4\pi^{2})^{\alpha/2}}{(\alpha)!} \right]^{|\mathfrak{u}|}.$$

For $\alpha=2$, this gives $\gamma_{\mathfrak{u}}=(3/\pi^2)^{|\mathfrak{u}|}\sigma_{\mathfrak{u}}^2\approx (0.30396)^{|\mathfrak{u}|}\sigma_{\mathfrak{u}}^2$. For $\alpha=4$, this gives $\gamma_{\mathfrak{u}}=[45/\pi^4]^{|\mathfrak{u}|}\sigma_{\mathfrak{u}}^2\approx (0.46197)^{|\mathfrak{u}|}\sigma_{\mathfrak{u}}^2$. For $\alpha\to\infty$, we have $\gamma_{\mathfrak{u}}\to (0.5)^{|\mathfrak{u}|}\sigma_{\mathfrak{u}}^2$.

Note: The correct weights are not proportional to the variances $\sigma_{\mathfrak{u}}^2$.

Heuristics for choosing the weights

Would like to have $\gamma_{\mathfrak{u}}$ (approx.) proportional to $V^2(f_{\mathfrak{u}})$ for each \mathfrak{u} . For f^* , this gives $\gamma_{\mathfrak{u}} = \rho^{|\mathfrak{u}|} \sigma_{\mathfrak{u}}^2$ for a constant ρ .

One could define a simple parametric model for the square variations and then estimate the parameters by matching the ANOVA variances (e.g., Wang and Sloan 2006, L and Munger 2010).

For example, product weights: $\gamma_{\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_j$ for some constants $\gamma_j \geq 0$.

Order-dependent weights: $\gamma_{\mathfrak{u}}$ depends only on $|\mathfrak{u}|$.

Example: $\gamma_{\mathfrak{u}}=1$ for $|\mathfrak{u}|\leq d$ and $\gamma_{\mathfrak{u}}=0$ otherwise.

Wang (2007) suggests this with d = 2.

Note that all one-dimensional projections (before random shift) are the same. So the weights $\gamma_{\mathfrak{u}}$ for $|\mathfrak{u}|=1$ are irrelevant.

More general weighted discrepancy

$$\mathcal{D}_q(P_n) = \left(\sum_{\emptyset \neq \mathfrak{u} \subseteq \{1, \dots, s\}} \left[\gamma_{\mathfrak{u}} \, \mathcal{D}_{\mathfrak{u}}(P_n)\right]^q\right)^{1/q},$$

for any q > 0, where $\mathcal{D}_{\mathfrak{u}}(P_n)$ depends only on the projection $P_n(\mathfrak{u})$.

Example: to get $\mathcal{P}_{\gamma, lpha}$, one would take q=2 and

$$\mathcal{D}^2_{\mathfrak{u}}(P_n) = \sum_{\mathbf{h} \in L_s^* \ : \ \mathfrak{u}(\mathbf{h}) = \mathfrak{u}} (\mathsf{max}(1,|h_1|) \cdots \mathsf{max}(1,|h_s|))^{-\alpha}.$$

Usually, we take q = 2.

Weighted $\mathcal{R}_{\gamma, \alpha}$

Take

$$\mathcal{D}_{\mathfrak{u}}^{2}(P_{n}) = \frac{1}{n} \sum_{i=0}^{n-1} \prod_{j \in \mathfrak{u}} \left(\sum_{h=-\lfloor (n-1)/2 \rfloor}^{\lfloor n/2 \rfloor} \max(1,|h|)^{-\alpha} e^{2\pi \iota h u_{i,j}} - 1 \right).$$

Upper bounds on \mathcal{P}_{α} can be computed in terms of \mathcal{R}_{α} .

In contrast to \mathcal{P}_{α} , this one can be computed for any $\alpha > 0$, because the sum is truncated.

We compute it using fast Fourier transforms (FFT).

Figure of merit based on the spectral test

Compute the shortest vector $\ell_{\mathfrak{u}}(P_n)$ in dual lattice for each projection \mathfrak{u} and normalize by an upper bound $\ell_{\mathfrak{u}\mathfrak{l}}^*(n)$:

$$\mathcal{D}_{\mathfrak{u}}(P_n) = \frac{\ell_{|\mathfrak{u}|}^*(n)}{\ell_{\mathfrak{u}}(P_n)} \geq 1.$$

 $1/\ell_{\mathfrak{u}}(P_n)$ is the distance between hyperplanes that contain all lattice points. We want $\ell_{\mathfrak{u}}(P_n)$ as large as possible.

Computing time of $\ell_{\mathfrak{u}}(P_n)$ is almost independent of n, but exponential in $|\mathfrak{u}|$.

L. and Lemieux (2000), etc., maximize

$$\min_{2\leq r\leq t_1}\frac{\ell_{\{1,\ldots,r\}}(P_n)}{\ell_r^*(n)}$$

Figure of merit based on the spectral test

Compute the shortest vector $\ell_{\mathfrak{u}}(P_n)$ in dual lattice for each projection \mathfrak{u} and normalize by an upper bound $\ell_{\mathfrak{u}\mathfrak{l}}^*(n)$:

$$\mathcal{D}_{\mathfrak{u}}(P_n) = rac{\ell_{|\mathfrak{u}|}^*(n)}{\ell_{\mathfrak{u}}(P_n)} \geq 1.$$

 $1/\ell_{\mathfrak{u}}(P_n)$ is the distance between hyperplanes that contain all lattice points. We want $\ell_{\mathfrak{u}}(P_n)$ as large as possible.

Computing time of $\ell_{\mathfrak{u}}(P_n)$ is almost independent of n, but exponential in $|\mathfrak{u}|$.

L. and Lemieux (2000), etc., maximize

$$M_{t_1,...,t_d} = \min \left[\min_{2 \le r \le t_1} \frac{\ell_{\{1,...,r\}}(P_n)}{\ell_r^*(n)}, \min_{\substack{2 \le r \le d \\ 1 = j_1,...,j_r \} \subset \{1,...,s\} \\ 1 = j_1 < \cdots < j_r \le t_r}} \min_{\substack{\ell_{\mathfrak{u}}(P_n) \\ \ell_r^*(n)}} \frac{\ell_{\mathfrak{u}}(P_n)}{\ell_r^*(n)} \right].$$

Korobov lattices. Search over all admissible a, for $\mathbf{a} = (1, a, a^2, \dots, \dots)$. Random Korobov. Try r random values of a.

Korobov lattices. Search over all admissible a, for $\mathbf{a} = (1, a, a^2, \dots, \dots)$. Random Korobov. Try r random values of a.

Rank 1, exhaustive search.

Pure random search. Try admissible vectors **a** at random.

Korobov lattices. Search over all admissible a, for $\mathbf{a} = (1, a, a^2, \dots, \dots)$. Random Korobov. Try r random values of a.

Rank 1, exhaustive search.

Pure random search. Try admissible vectors **a** at random.

Component by component (CBC) construction. (Sloan, Kuo, etc.).

Let $a_1 = 1$;

For j = 2, 3, ..., s, find $z \in \{1, ..., n-1\}$, gcd(z, n) = 1, such that $(a_1, a_2, ..., a_j = z)$ minimizes $\mathcal{D}_q(P_n(\{1, ..., j\}))$.

Fast CBC construction for $\mathcal{P}_{\gamma,\alpha}$: use FFT. (Nuyens, Cools).

Korobov lattices. Search over all admissible a, for $\mathbf{a} = (1, a, a^2, \dots, \dots)$. Random Korobov. Try r random values of a.

Rank 1, exhaustive search.

Pure random search. Try admissible vectors **a** at random.

Component by component (CBC) construction. (Sloan, Kuo, etc.).

Let $a_1 = 1$;

For $j=2,3,\ldots,s$, find $z\in\{1,\ldots,n-1\}$, $\gcd(z,n)=1$, such that $(a_1,a_2,\ldots,a_j=z)$ minimizes $\mathcal{D}_q(P_n(\{1,\ldots,j\}))$.

Fast CBC construction for $\mathcal{P}_{\gamma,\alpha}$: use FFT. (Nuyens, Cools).

Randomized CBC construction.

Let $a_1 = 1$;

For $j=2,\ldots,s$, try r random $z\in\{1,\ldots,n-1\}$, $\gcd(z,n)=1$, and retain $(a_1,a_2,\ldots,a_j=z)$ that minimizes $\mathcal{D}_q(P_n(\{1,\ldots,j\}))$.

Can add filters to eliminate poor lattices more quickly.

Embedded lattices $P_{n_1} \subset P_{n_2} \subset \dots P_{n_m}$ with $n_1 < n_2 < \dots < n_m$, for some m > 0. Usually: $n_k = b^{c+k}$ for integers $c \ge 0$ and $b \ge 2$, typically with b = 2, $\mathbf{a}_k = \mathbf{a}_{k+1} \mod n_k$ for all k < m, and the same random shift.

We need a measure that accounts for the quality of all m lattices. We standardize the merit at all levels k so they have a comparable scale:

$$\mathcal{E}_q(P_n) = \mathcal{D}_q(P_n)/\mathcal{D}_q(n),$$

where $D_q(n)$ is a normalization factor, e.g., a bound on $\mathcal{D}_q(P_n)$ or a bound on its average over all (a_1, \ldots, a_s) under consideration. For CBC, we do this for each coordinate i = 1, ..., s (replace s by i). Also used as filters.

Then we can take as a global measure (with sum or max):

$$\left[\bar{\mathcal{E}}_{q,m}(P_{n_1},\ldots,P_{n_m})\right]^q = \sum_{k=1}^m \mathbf{w_k} \left[\mathcal{E}_q(P_{n_k})\right]^q.$$

For $\mathcal{P}_{\gamma,\alpha}$, bounds by Sinescu and L'Ecuyer (2012) and Dick et al. (2008).

Existing tools

Construction: Precomputed tables for fixed criteria: Maisonneuve (1972), Sloan and Joe (1994), L. and Lemieux (2000), Kuo (2012), etc.

Nuyens (2012) provides Matlab code for fast-CBC construction of lattice rules based on $\mathcal{P}_{\gamma,\alpha}$, with product and order-dependent weights.

L and Munger [2012] propose Lattice Builder, a general software tool for constructing good lattices.

Use: Software for using (randomized) lattice rules in simulations is also available in many places, including SSJ.

Lattice Builder

Implemented as C++ library, modular object-oriented design, accessible from a program via API.

Various choices of figures of merit, arbitrary weights, construction methods, etc. Easily extensible.

For better run-time efficiency, uses static polymorphism, via templates, rather than dynamic polymorphism.

Several other techniques to reduce computations and improve speed.

One pre-compiled program with Unix-like command line interface. Also graphical interface.

Available for download on GitHub, with source code, documentation, and precompiled executable codes for Linux or Windows, in 32-bit and 64-bit versions.

Show graphical interface

Quantiles of figure of merit

We computed $\mathcal{P}_{\gamma,2}$ with product weights with $\gamma_j^2=0.3$ for all j, for all admissible vectors $\mathbf{a}\in\{1\}\times U_n^{s-1}$, for $n=2^e,...,2^{19}$.

For s=2, a linear regression of $\log \mathcal{P}_{\gamma,2}$ vs $\log n$ for $2^{12} \leq n \leq 2^{19}$ gives decreasing rates of $n^{-1.92}$ for the best, and $n^{-1.87}$ and $n^{-1.77}$ for the 10% and 90% quantiles. The mean decreases as n^{-1} an the worst-case as n^{0} (it is near 0.1948 for all n, obtained with $\mathbf{a}=(1,1)$).

For s=3, a linear regression $\log \mathcal{P}_{\gamma,2}$ vs $\log n$ for $2^{10} \leq n \leq 2^{15}$ gives decreasing rates of $n^{-1.76}$ for the best, and $n^{-1.64}$ and $n^{-1.39}$ for the 10 % and 90 % quantiles.

The mean decreases as n^{-1} and the worst-case as n^0 (it is near 0.6393).

Example: a stochastic activity network

Each arc j has random length $Y_j = F_j^{-1}(U_j)$. Let $T = f(U_1, \ldots, U_{13}) = \text{length of longest path from node } 1 \text{ to node } 9$. Want to estimate $q(x) = \mathbb{P}[T > x]$ for a given constant x.

To estimate q(x) by **MC**, we generate n independent realizations of T, say T_1, \ldots, T_n , and $(1/n) \sum_{i=1}^n \mathbb{I}[T_i > x]$.

For **RQMC**, we replace the n realizations of (U_1, \ldots, U_{13}) by the n points of a randomly-shifted lattice.

To estimate q(x) by MC, we generate n independent realizations of T, say T_1, \ldots, T_n , and $(1/n) \sum_{i=1}^n \mathbb{I}[T_i > x]$.

For **RQMC**, we replace the n realizations of (U_1, \ldots, U_{13}) by the n points of a randomly-shifted lattice.

Illustration: $Y_j \sim \text{Normal}(\mu_j, \sigma_j^2)$ for j = 1, 2, 4, 11, 12, and $Y_j \sim \text{Exponential}(1/\mu_j)$ otherwise.

The μ_j : 13.0, 5.5, 7.0, 5.2, 16.5, 14.7, 10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5.

Conditional Monte Carlo estimator. Generate the Y_j 's only for the 8 ³⁸ arcs that do not belong to the cut $\mathcal{L} = \{5, 6, 7, 9, 10\}$, and replace $\mathbb{I}[T > x]$ by its conditional expectation given those Y_i 's,

$$X_{e} = \mathbb{P}[T > x \mid \{Y_{j}, j \notin \mathcal{L}\}].$$

This makes the integrand continuous in the U_i 's.

Conditional Monte Carlo estimator. Generate the Y_j 's only for the 8 38 arcs that do not belong to the cut $\mathcal{L}=\{5,6,7,9,10\}$, and replace $\mathbb{I}[T>x]$ by its conditional expectation given those Y_j 's,

$$X_{e} = \mathbb{P}[T > x \mid \{Y_{j}, j \notin \mathcal{L}\}].$$

This makes the integrand continuous in the U_i 's.

To compute X_e : for each $I \in \mathcal{L}$, say from a_I to b_I , compute the length α_I of the longest path from 1 to a_I , and the length β_I of the longest path from b_I to the destination.

The longest path that passes through link I does not exceed x iff $\alpha_I + Y_I + \beta_I \leq x$, which occurs with probability $\mathbb{P}[Y_I \leq x - \alpha_I - \beta_I] = F_I[x - \alpha_I - \beta_I]$.

Conditional Monte Carlo estimator. Generate the Y_j 's only for the 8 38 arcs that do not belong to the cut $\mathcal{L}=\{5,6,7,9,10\}$, and replace $\mathbb{I}[T>x]$ by its conditional expectation given those Y_j 's,

$$X_{e} = \mathbb{P}[T > x \mid \{Y_{j}, j \notin \mathcal{L}\}].$$

This makes the integrand continuous in the U_i 's.

To compute X_e : for each $I \in \mathcal{L}$, say from a_I to b_I , compute the length α_I of the longest path from 1 to a_I , and the length β_I of the longest path from b_I to the destination.

The longest path that passes through link I does not exceed x iff $\alpha_I + Y_I + \beta_I \leq x$, which occurs with probability $\mathbb{P}[Y_I \leq x - \alpha_I - \beta_I] = F_I[x - \alpha_I - \beta_I]$.

Since the Y_i are independent, we obtain

$$\frac{\mathbf{X}_{\mathbf{e}}}{\mathbf{X}_{\mathbf{e}}} = 1 - \prod_{l \in \mathcal{L}} F_{l}[\mathbf{x} - \alpha_{l} - \beta_{l}].$$

This X_e can be faster to compute than X_e , and it always has less variance.

ANOVA Variances for the Stochastic Activity Network

Random vs. Full CBC

Random vs. Full CBC

Random vs. Full CBC

Prime vs. Power-of-2 Number of Points

Prime vs. Power-of-2 Number of Points

Prime vs. Power-of-2 Number of Points

Histograms

Histograms

Other classes of constructions

Digital nets (Sobol', Faure, Niederreiter, etc.).

Halton sequence, Hammersley point sets.

Etc.

Baby example: Hammersley in two dimensions Let $n = 2^8 = 256$ and s = 2. Take the points (in binary):

i	$u_{1,i}$	$u_{2,i}$
0	.00000000	.0
1	.0000001	.1
2	.00000010	.01
3	.00000011	.11
4	.00000100	.001
5	.00000101	.101
6	.00000110	.011
:	:	:
254	.11111110	.01111111
255	.11111111	.11111111

Right side: van der Corput sequence in base 2.

In general, can take $n = 2^k$ points.

If we partition $[0,1)^2$ in rectangles of sizes 2^{-k_1} by 2^{-k_2} where $k_1+k_2\leq k$, each rectangle will contain exactly the same number of points. We say that the points are equidistributed for this partition.

In general, can take $n = 2^k$ points.

If we partition $[0,1)^2$ in rectangles of sizes 2^{-k_1} by 2^{-k_2} where $k_1 + k_2 \le k$, each rectangle will contain exactly the same number of points. We say that the points are equidistributed for this partition.

This is a special case of a digital net in base 2.

Generalizes to base b > 2.

For a digital net in base b in s dimensions, we choose s permutations of $\{0,1,\ldots,2^b-1\}$, then divide each coordinate by b^k .

Can also have $s = \infty$ and/or $n = \infty$ (infinite sequence of points).

Digital net in base b

Gives $n = b^k$ points. For $i = 0, ..., b^k - 1$, define:

$$i = a_{i,0} + a_{i,1}b + \dots + a_{i,k-1}b^{k-1},$$

$$\begin{pmatrix} u_{i,j,1} \\ u_{i,j,2} \\ \vdots \end{pmatrix} = \mathbf{C}_j \begin{pmatrix} a_{i,0} \\ \vdots \\ a_{i,k-1} \end{pmatrix} \mod b,$$

$$\mathbf{u}_{i,j} = \sum_{\ell=1}^{\infty} u_{i,j,\ell}b^{-\ell}, \qquad \mathbf{u}_i = (u_{i,1}, \dots, u_{i,s}),$$

where the generating matrices C_j are $w \times k$ with elements in \mathbb{Z}_b .

In practice, w and k are finite, but there is no limit.

Digital sequence: infinite sequence. Can stop at $n = b^k$ for any k.

Digital net in base b

Gives $n = b^k$ points. For $i = 0, ..., b^k - 1$, define:

$$i = a_{i,0} + a_{i,1}b + \dots + a_{i,k-1}b^{k-1},$$

$$\begin{pmatrix} u_{i,j,1} \\ u_{i,j,2} \\ \vdots \end{pmatrix} = \mathbf{C}_j \begin{pmatrix} a_{i,0} \\ \vdots \\ a_{i,k-1} \end{pmatrix} \mod b,$$

$$\mathbf{u}_{i,j} = \sum_{\ell=1}^{\infty} u_{i,j,\ell}b^{-\ell}, \quad \mathbf{u}_i = (u_{i,1}, \dots, u_{i,s}),$$

where the generating matrices C_j are $w \times k$ with elements in \mathbb{Z}_b .

In practice, w and k are finite, but there is no limit.

Digital sequence: infinite sequence. Can stop at $n = b^k$ for any k.

Can also multiply in some ring R, with bijections between \mathbb{Z}_b and R.

Each one-dim projection truncated to first k digits is $\mathbb{Z}_n/n = \{0, 1/n, \dots, (n-1)/n\}$. Each \mathbf{C}_j defines a permutation of \mathbb{Z}_n/n .

Suppose we divide axis j in b^{q_j} equal parts, for each j. This determines a partition of $[0,1)^s$ into $2^{q_1+\cdots+q_s}$ rectangles of equal sizes. If each rectangle contains exactly the same number of points, we say that the point set P_n is (q_1,\ldots,q_s) -equidistributed in base b.

This occurs iff the matrix formed by the first q_1 rows of C_1 , the first q_2 rows of C_2 , ..., the first q_s rows of C_s , is of full rank (mod b). To verify equidistribution, we can construct these matrices and compute their rank.

 P_n is a (q, k, s)-net iff it is (q_1, \ldots, q_s) -equidistributed whenever $q_1 + \cdots + q_s = k - q$. This is possible only if $b \ge s - 1$.

Suppose we divide axis j in b^{q_j} equal parts, for each j. This determines a partition of $[0,1)^s$ into $2^{q_1+\cdots+q_s}$ rectangles of equal sizes. If each rectangle contains exactly the same number of points, we say that the point set P_n is (q_1,\ldots,q_s) -equidistributed in base b.

This occurs iff the matrix formed by the first q_1 rows of C_1 , the first q_2 rows of C_2 , ..., the first q_s rows of C_s , is of full rank (mod b). To verify equidistribution, we can construct these matrices and compute their rank.

 P_n is a (q, k, s)-net iff it is (q_1, \ldots, q_s) -equidistributed whenever $q_1 + \cdots + q_s = k - q$. This is possible only if $b \ge s - 1$.

An infinite sequence $\{\mathbf{u}_0, \mathbf{u}_1, \dots, \}$ in $[0,1)^s$ is a (q,s)-sequence in base b if for all k > 0 and $\nu \ge 0$, $Q(k,\nu) = \{\mathbf{u}_i : i = \nu b^k, \dots, (\nu+1)b^k-1\}$, is a (q,k,s)-net in base b.

Suppose we divide axis j in b^{q_j} equal parts, for each j. This determines a partition of $[0,1)^s$ into $2^{q_1+\cdots+q_s}$ rectangles of equal sizes. If each rectangle contains exactly the same number of points, we say that the point set P_n is (q_1,\ldots,q_s) -equidistributed in base b.

This occurs iff the matrix formed by the first q_1 rows of \mathbf{C}_1 , the first q_2 rows of \mathbf{C}_2 , ..., the first q_s rows of \mathbf{C}_s , is of full rank (mod b). To verify equidistribution, we can construct these matrices and compute their rank.

 P_n is a (q, k, s)-net iff it is (q_1, \ldots, q_s) -equidistributed whenever $q_1 + \cdots + q_s = k - q$. This is possible only if $b \ge s - 1$.

An infinite sequence $\{\mathbf{u}_0, \mathbf{u}_1, \ldots, \}$ in $[0,1)^s$ is a (q,s)-sequence in base b if for all k>0 and $\nu\geq 0$, $Q(k,\nu)=\{\mathbf{u}_i: i=\nu b^k,\ldots,(\nu+1)b^k-1\}$, is a (q,k,s)-net in base b. This is possible only if $b\geq s$.

Faure nets and sequences in base b

Faure (1982) proposed the matrices

$$\mathbf{C}_j = \mathbf{P}^j \mod b = \mathbf{PC}_{j-1} \mod b$$

with $C_0 = I$ and $P = (p_{l,c})$ upper triangular where

$$p_{l,c} = \binom{c}{l} = \frac{c!}{l!(c-l)!}$$

for $1 \le c$.

Faure nets and sequences in base b

Faure (1982) proposed the matrices

$$\mathbf{C}_j = \mathbf{P}^j \mod b = \mathbf{PC}_{j-1} \mod \mathbf{b}$$

with $C_0 = I$ and $P = (p_{I,c})$ upper triangular where

$$p_{l,c} = \binom{c}{l} = \frac{c!}{l!(c-l)!}$$

for $1 \le c$.

Faure proved that if b is prime and $b \ge s$, this gives a (0, s)-sequence in base b.

Thus, for all k > 0 and $\nu \ge 0$, $Q(k, \nu) = \{\mathbf{u}_i : i = \nu b^k, \dots, (\nu+1)b^k - 1\}$ (which contains $n = b^k$ points) is a (0, k, s)-net in base b.

In this set, each coordinate j visits all values in $\{0, 1/n, \dots, (n-1)/n\}$ once and only once.

If we fix $n = b^k$, we can gain one dimension: \mathbf{C}_j becomes \mathbf{C}_{j+1} for all $j \geq 0$ and we take the reflected identity for \mathbf{C}_0 (the first coordinate of each point i is i/n). This point set in s+1 dimensions is still a (0,k,s)-net in base b.

Sobol' nets and sequences

Sobol' (1967) proposed a digital net in base b = 2 where

$$\mathbf{C}_j = \left(egin{array}{cccc} 1 & v_{j,2,1} & \dots & v_{j,c,1} & \dots \ 0 & 1 & \dots & v_{j,c,2} & \dots \ dots & 0 & \ddots & dots & dots \ dots & dots & 1 \end{array}
ight).$$

Sobol' nets and sequences

Sobol' (1967) proposed a digital net in base b = 2 where

$$\mathbf{C}_{j} = \left(egin{array}{cccc} 1 & v_{j,2,1} & \dots & v_{j,c,1} & \dots \\ 0 & 1 & \dots & v_{j,c,2} & \dots \\ \vdots & 0 & \ddots & \vdots & & \\ & \vdots & & 1 & & \end{array}
ight).$$

Column c of \mathbf{C}_j is represented by an odd integer

$$m_{j,c} = \sum_{l=1}^{c} v_{j,c,l} 2^{c-l} = v_{j,c,1} 2^{c-1} + \cdots + v_{j,c,c-1} 2 + 1 < 2^{c}.$$

The integers $m_{j,c}$ are selected as follows.

For each j, we choose a primitive polynomial over \mathbb{F}_2 ,

$$f_j(z)=z^{d_j}+a_{j,1}z^{d_j-1}+\cdots+a_{j,d_j},$$

and we choose d_j integers $m_{j,0},\ldots,m_{j,d_j-1}$ (the first d_j columns).

For each j, we choose a primitive polynomial over \mathbb{F}_2 ,

$$f_j(z) = z^{d_j} + a_{j,1}z^{d_j-1} + \cdots + a_{j,d_j},$$

and we choose d_j integers $m_{j,0}, \ldots, m_{j,d_i-1}$ (the first d_j columns).

Then, $m_{i,d_i}, m_{i,d_i+1}, \ldots$ are determined by the recurrence

$$m_{j,c} = 2a_{j,1}m_{j,c-1} \oplus \cdots \oplus 2^{d_j-1}a_{j,d_j-1}m_{j,c-d_j+1} \oplus 2^{d_j}m_{j,c-d_j} \oplus m_{j,c-d_j}$$

Proposition. If the polynomials $f_j(z)$ are all distinct, we obtain a (q, s)-sequence with $q \le d_0 + \cdots + d_{s-1} + 1 - s$.

For each j, we choose a primitive polynomial over \mathbb{F}_2 ,

$$f_j(z) = z^{d_j} + a_{j,1}z^{d_j-1} + \cdots + a_{j,d_j},$$

and we choose d_j integers $m_{j,0}, \ldots, m_{j,d_j-1}$ (the first d_j columns).

Then, $m_{i,d_i}, m_{i,d_i+1}, \ldots$ are determined by the recurrence

$$m_{j,c} = 2 a_{j,1} m_{j,c-1} \oplus \cdots \oplus 2^{d_j-1} a_{j,d_j-1} m_{j,c-d_j+1} \oplus 2^{d_j} m_{j,c-d_j} \oplus m_{j,c-d_j}$$

Proposition. If the polynomials $f_j(z)$ are all distinct, we obtain a (q,s)-sequence with $q \le d_0 + \cdots + d_{s-1} + 1 - s$.

Sobol' suggests to list all primitive polynomials over \mathbb{F}_2 by increasing order of degree, starting with $f_0(z) \equiv 1$ (which gives $\mathbf{C}_0 = \mathbf{I}$), and to take $f_j(z)$ as the (j+1)-th polynomial in the list.

There are many ways of selecting the first $m_{j,c}$'s, which are called the direction numbers. They can be selected to minimize some discrepancy (or figure of merit). The values proposed by Sobol' give an (s,ℓ) -equidistribution for $\ell=1$ and $\ell=2$ (only the first two bits).

For $n = 2^k$ fixed, we can gain one dimension as for the Faure sequence.

Joe and Kuo (2008) tabulated direction numbers giving the best t-value for the two-dimensional projections, for given s and k.

Random digital shift

Equidistribution in digital boxes is lost with random shift modulo 1, but can be kept with a random digital shift in base 2: Generate one point $\mathbf{U} \sim U(0,1)^s$ and XOR it bitwise with each \mathbf{u}_i .

Example for s = 2:

```
\mathbf{u}_i = (0.01100100..., 0.10011000...)
\mathbf{U} = (0.01001010..., 0.11101001...)
\mathbf{u}_i \oplus \mathbf{U} = (0.00101110..., 0.01110001...)
```

Preservation of the equidistribution:

$$\mathbf{u}_{i} = (0.***, 0.*****)$$
 $\mathbf{U} = (0.010, 0.11101)$
 $\mathbf{u}_{i} \oplus \mathbf{U} = (0.***, 0.*****)$

 $\mathbf{U} = (0.1270111220, 0.3185275653)$ = $(0.00100000100000111100, 0.01010001100010110000)_2$.

Changes the bits 3, 9, 15, 16, 17, 18 of $u_{i,1}$ and the bits 2, 4, 8, 9, 13, 15, 16 of $u_{i,2}$.

Random digital shift in base b

We have $u_{i,j} = \sum_{\ell=1}^w u_{i,j,\ell} b^{-\ell}$. Let $\mathbf{U} = (U_1, \dots, U_s) \sim U[0,1)^s$ where $U_j = \sum_{\ell=1}^w U_{j,\ell} b^{-\ell}$. We replace each $u_{i,j}$ by $\tilde{U}_{i,j} = \sum_{\ell=1}^w [(u_{i,i,\ell} + U_{i,\ell}) \bmod b] b^{-\ell}$.

For b = 2, this is a bitwise XOR.

Proposition. \tilde{P}_n is (q_1, \dots, q_s) -equidistributed in base b iff P_n is. For $w = \infty$, each point $\tilde{\mathbf{U}}_i$ has the uniform distribution over $(0,1)^s$.

Other permutations that preserve equidistribution and may help reduce the variance further:

Linear matrix scrambling (Matoušek, Hickernell et Hong, Tezuka, Owen): We left-multiply each matrix \mathbf{C}_j by a random $w \times w$ matrix \mathbf{M}_j , non-singular and lower triangular, mod b. Several variants of this.

Then we apply a random digital shift in base b.

Other permutations that preserve equidistribution and may help reduce the variance further:

Linear matrix scrambling (Matoušek, Hickernell et Hong, Tezuka, Owen): We left-multiply each matrix \mathbf{C}_j by a random $w \times w$ matrix \mathbf{M}_j , non-singular and lower triangular, mod b. Several variants of this.

Then we apply a random digital shift in base b.

Nested uniform scrambling (Owen 1995).

More costly. But provably reduces the variance to $O(n^{-3}(\log n)^s)$ when f is sufficiently smooth!

Example: Same experiment as for the lattice, but with Hammersley points in base 2, with random matrix scramble + random digital shift.

Example: Same experiment as for the lattice, but with Hammersley points in base 2, with random matrix scramble + random digital shift.

Asian option with s = 2.

For $n = 2^{10} = 1024$: $\bar{X}_m = 17.096$ and $nS_m^2 = 1.815$.

For $n = 2^{16} = 65536$: $\bar{X}_m = 17.096$ and $n\tilde{S}_m^2 = 0.034$.

MC Variance: 934.0.

With RQMC, work-normalized variance is divided by 515 and 27,120.

Example: Same experiment as for the lattice, but with Hammersley points in base 2, with random matrix scramble + random digital shift.

Asian option with s = 2.

For $n = 2^{10} = 1024$: $\bar{X}_m = 17.096$ and $nS_m^2 = 1.815$.

For $n = 2^{16} = 65536$: $\bar{X}_m = 17.096$ and $nS_m^2 = 0.034$.

MC Variance: 934.0.

With RQMC, work-normalized variance is divided by 515 and 27,120.

Asian option with s = 12. Sobol' points in 12 dimensions.

For $n = 2^{10} = 1024$: $\bar{X}_r = 13.122$ and $nS_r^2 = 6.2$.

For $n = 2^{16} = 65536$: $\bar{X}_r = 13.122$ and $nS_r^2 = 1.7$.

MC variance: 516.3.

RQMC divides the variance by: 84 and 304.

Effective dimension

A function f has effective dimension d in proportion ρ in the superposition sense (Owen 1998) if

$$\sum_{|\mathfrak{u}| \leq \frac{d}{d}} \sigma_{\mathfrak{u}}^2 \geq \rho \sigma^2.$$

It has effective dimension d in the truncation sense (Caflisch, Morokoff, and Owen 1997) if

$$\sum_{\mathfrak{u}\subseteq\{1,\ldots,d\}}\sigma_{\mathfrak{u}}^2\geq \rho\sigma^2.$$

High-dimensional functions with low effective dimension are frequent. One may change f to make this happen.

Let
$$\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]$$
 where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

Let
$$\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]$$
 where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

For example, if the payoff of a financial derivative is a function of the values taken by a c-dimensional geometric Brownian motions (GMB) at d observations times $0 < t_1 < \cdots < t_d = T$, then we have s = cd.

Let
$$\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]$$
 where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

For example, if the payoff of a financial derivative is a function of the values taken by a c-dimensional geometric Brownian motions (GMB) at d observations times $0 < t_1 < \cdots < t_d = T$, then we have s = cd.

To generate **Y**: Decompose $\Sigma = AA^t$, generate $\mathbf{Z} = (Z_1, \dots, Z_s) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ where the (independent) Z_j 's are generated by inversion: $Z_i = \Phi^{-1}(U_i)$, and return $\mathbf{Y} = A\mathbf{Z}$.

Let
$$\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]$$
 where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

For example, if the payoff of a financial derivative is a function of the values taken by a c-dimensional geometric Brownian motions (GMB) at d observations times $0 < t_1 < \cdots < t_d = T$, then we have s = cd.

To generate \mathbf{Y} : Decompose $\mathbf{\Sigma} = \mathbf{A}\mathbf{A}^{\mathsf{t}}$, generate $\mathbf{Z} = (Z_1, \dots, Z_s) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ where the (independent) Z_j 's are generated by inversion: $Z_j = \Phi^{-1}(U_j)$, and return $\mathbf{Y} = \mathbf{A}\mathbf{Z}$.

Choice of A?

Let
$$\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]$$
 where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

For example, if the payoff of a financial derivative is a function of the values taken by a c-dimensional geometric Brownian motions (GMB) at d observations times $0 < t_1 < \cdots < t_d = T$, then we have s = cd.

To generate \mathbf{Y} : Decompose $\mathbf{\Sigma} = \mathbf{A}\mathbf{A}^{t}$, generate

 $\mathbf{Z} = (Z_1, \dots, Z_s) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ where the (independent) Z_j 's are generated by inversion: $Z_j = \Phi^{-1}(U_j)$, and return $\mathbf{Y} = \mathbf{AZ}$.

Choice of A?

Cholesky factorization: A is lower triangular.

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \mathrm{diag}(\lambda_s, \dots, \lambda_1)$ (eigenvalues of $\mathbf{\Sigma}$ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors.

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \mathrm{diag}(\lambda_s,\ldots,\lambda_1)$ (eigenvalues of $\mathbf{\Sigma}$ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors. With this \mathbf{A} , Z_1 accounts for the max amount of variance of \mathbf{Y} , then Z_2 the max amount of variance cond. on Z_1 , etc.

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \mathrm{diag}(\lambda_s, \ldots, \lambda_1)$ (eigenvalues of Σ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors. With this \mathbf{A} , Z_1 accounts for the max amount of variance of \mathbf{Y} , then Z_2 the max amount of variance cond. on Z_1 , etc.

Function of a Brownian motion:

Payoff depends on *c*-dimensional Brownian motion $\{\mathbf{X}(t), t \geq 0\}$ observed at times $0 = t_0 < t_1 < \cdots < t_d = T$.

 $\mathbf{A}=\mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D}=\mathrm{diag}(\lambda_s,\ldots,\lambda_1)$ (eigenvalues of $\mathbf{\Sigma}$ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors. With this \mathbf{A} , Z_1 accounts for the max amount of variance of \mathbf{Y} , then Z_2 the max amount of variance cond. on Z_1 , etc.

Function of a Brownian motion:

Payoff depends on c-dimensional Brownian motion $\{\mathbf{X}(t), t \geq 0\}$ observed at times $0 = t_0 < t_1 < \cdots < t_d = T$.

Sequential (or random walk) method: generate $\mathbf{X}(t_1)$, then $\mathbf{X}(t_2) - \mathbf{X}(t_1)$, then $\mathbf{X}(t_3) - \mathbf{X}(t_2)$, etc.

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \mathrm{diag}(\lambda_s,\ldots,\lambda_1)$ (eigenvalues of $\mathbf{\Sigma}$ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors. With this \mathbf{A} , Z_1 accounts for the max amount of variance of \mathbf{Y} , then Z_2 the max amount of variance cond. on Z_1 , etc.

Function of a Brownian motion:

Payoff depends on c-dimensional Brownian motion $\{\mathbf{X}(t),\ t \geq 0\}$ observed at times $0 = t_0 < t_1 < \cdots < t_d = T$.

Sequential (or random walk) method: generate $\mathbf{X}(t_1)$, then $\mathbf{X}(t_2) - \mathbf{X}(t_1)$, then $\mathbf{X}(t_3) - \mathbf{X}(t_2)$, etc.

Bridge sampling (Moskowitz and Caflisch 1996). Suppose $d=2^m$. generate $\mathbf{X}(t_d)$, then $\mathbf{X}(t_{d/2})$ conditional on $(\mathbf{X}(0),\mathbf{X}(t_d))$,

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \mathrm{diag}(\lambda_s,\ldots,\lambda_1)$ (eigenvalues of $\mathbf{\Sigma}$ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors. With this \mathbf{A} , Z_1 accounts for the max amount of variance of \mathbf{Y} , then Z_2 the max amount of variance cond. on Z_1 , etc.

Function of a Brownian motion:

Payoff depends on c-dimensional Brownian motion $\{\mathbf{X}(t),\ t \geq 0\}$ observed at times $0 = t_0 < t_1 < \cdots < t_d = T$.

Sequential (or random walk) method: generate $\mathbf{X}(t_1)$, then $\mathbf{X}(t_2) - \mathbf{X}(t_1)$, then $\mathbf{X}(t_3) - \mathbf{X}(t_2)$, etc.

Bridge sampling (Moskowitz and Caflisch 1996). Suppose $d=2^m$. generate $\mathbf{X}(t_d)$, then $\mathbf{X}(t_{d/2})$ conditional on $(\mathbf{X}(0),\mathbf{X}(t_d))$, then $\mathbf{X}(t_{d/4})$ conditional on $(\mathbf{X}(0),\mathbf{X}(t_{d/2}))$, and so on.

The first few N(0,1) r.v.'s already sketch the path trajectory.

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \mathrm{diag}(\lambda_s,\ldots,\lambda_1)$ (eigenvalues of $\mathbf{\Sigma}$ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors. With this \mathbf{A} , Z_1 accounts for the max amount of variance of \mathbf{Y} , then Z_2 the max amount of variance cond. on Z_1 , etc.

Function of a Brownian motion:

Payoff depends on c-dimensional Brownian motion $\{\mathbf{X}(t),\ t \geq 0\}$ observed at times $0 = t_0 < t_1 < \cdots < t_d = T$.

Sequential (or random walk) method: generate $\mathbf{X}(t_1)$, then $\mathbf{X}(t_2) - \mathbf{X}(t_1)$, then $\mathbf{X}(t_3) - \mathbf{X}(t_2)$, etc.

Bridge sampling (Moskowitz and Caflisch 1996). Suppose $d=2^m$. generate $\mathbf{X}(t_d)$, then $\mathbf{X}(t_{d/2})$ conditional on $(\mathbf{X}(0),\mathbf{X}(t_d))$, then $\mathbf{X}(t_{d/4})$ conditional on $(\mathbf{X}(0),\mathbf{X}(t_{d/2}))$, and so on.

The first few N(0,1) r.v.'s already sketch the path trajectory.

Each of these methods corresponds to some matrix $\bf A$. Choice has a large impact on the ANOVA decomposition of f.

Example: Pricing an Asian basket option

We have c assets, d observation times. Want to estimate $\mathbb{E}[f(\mathbf{U})]$, where

$$f(\mathbf{U}) = e^{-rT} \max \left[0, \ \frac{1}{cd} \sum_{i=1}^{c} \sum_{j=1}^{d} S_i(t_j) - K \right]$$

is the net discounted payoff and $S_i(t_j)$ is the price of asset i at time t_j .

Example: Pricing an Asian basket option

We have c assets, d observation times. Want to estimate $\mathbb{E}[f(\mathbf{U})]$, where

$$f(\mathbf{U}) = e^{-rT} \max \left[0, \ rac{1}{cd} \sum_{i=1}^c \sum_{j=1}^d S_i(t_j) - K
ight]$$

is the net discounted payoff and $S_i(t_j)$ is the price of asset i at time t_j .

Suppose $(S_1(t), \ldots, S_c(t))$ obeys a geometric Brownian motion.

Then, $f(\mathbf{U}) = g(\mathbf{Y})$ where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$ and s = cd.

Example: Pricing an Asian basket option

We have c assets, d observation times. Want to estimate $\mathbb{E}[f(\mathbf{U})]$, where

$$f(\mathbf{U}) = e^{-rT} \max \left[0, \ \frac{1}{cd} \sum_{i=1}^{c} \sum_{j=1}^{d} S_i(t_j) - K
ight]$$

is the net discounted payoff and $S_i(t_j)$ is the price of asset i at time t_j .

Suppose $(S_1(t), \ldots, S_c(t))$ obeys a geometric Brownian motion.

Then,
$$f(\mathbf{U}) = g(\mathbf{Y})$$
 where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$ and $\mathbf{s} = cd$.

Even with Cholesky decompositions of Σ , the two-dimensional projections often account for more than 99% of the variance: low effective dimension in the superposition sense.

With PCA or bridge sampling, we get low effective dimension in the truncation sense. In realistic examples, the first two coordinates Z_1 and Z_2 often account for more than 99.99% of the variance!

Numerical experiment with c = 10 and d = 25

This gives a 250-dimensional integration problem.

Let
$$\rho_{i,j} = 0.4$$
 for all $i \neq j$, $T = 1$, $\sigma_i = 0.1 + 0.4(i - 1)/9$ for all i , $r = 0.04$, $S(0) = 100$, and $K = 100$.

Numerical experiment with c = 10 and d = 25

This gives a 250-dimensional integration problem.

Let $\rho_{i,j} = 0.4$ for all $i \neq j$, T = 1, $\sigma_i = 0.1 + 0.4(i - 1)/9$ for all i, r = 0.04, S(0) = 100, and K = 100.

Variance reduction factors for Cholesky (left) and PCA (right):

Korobov Lattice Rules

	n =	16381	n = 65521		n = 262139		
	a = 5693		a = 944		a = 21876		
Kor+S	18	878	18	1504	9	2643	
Kor+S+B	50	4553	46	3657	43	7553	

Sobol' Nets

	$n = 2^{14}$		$n = 2^{16}$		$n = 2^{18}$	
Sob+S	10	1299	17	3184	32	6046
Sob+LMS+S	6	4232	4	9219	35	16557

An Asian Option on a Single Asset

Let c=1, S(0)=100, $r=\ln(1.09)$, $\sigma_i=0.2$, T=120/365, $t_j=D_1/365+(T-D_1/365)(j-1)/(d-1)$ for $j=1,\ldots,d$,

An Asian Option on a Single Asset

Let
$$c=1$$
, $S(0)=100$, $r=\ln(1.09)$, $\sigma_i=0.2$, $T=120/365$, $t_j=D_1/365+(T-D_1/365)(j-1)/(d-1)$ for $j=1,\ldots,d$,

Kemna and Vorst (1990) suggested using the payoff based on the geometric average as a control variate (CV).

We estimated the optimal CV coefficient by pilot runs for MC and for each combination of sampling scheme and RQMC method.

An Asian Option on a Single Asset

Let
$$c = 1$$
, $S(0) = 100$, $r = \ln(1.09)$, $\sigma_i = 0.2$, $T = 120/365$, $t_j = D_1/365 + (T - D_1/365)(j-1)/(d-1)$ for $j = 1, ..., d$,

Kemna and Vorst (1990) suggested using the payoff based on the geometric average as a control variate (CV).

We estimated the optimal CV coefficient by pilot runs for MC and for each combination of sampling scheme and RQMC method.

d	D_1	K	μ	σ^2	VRF of CV
10	111	90	13.008	105	$1.53 imes 10^6$
10	111	100	5.863	61	$1.07 imes 10^6$
10	12	90	11.367	46	5400
10	12	100	3.617	23	3950
120	1	90	11.207	41	5050
120	1	100	3.367	20	4100

VRFs (per run) for RQMC vs MC, with $n \approx 2^{16}$. Sequential sampling (left), bridge sampling (middle), and PCA (right).

d	D_1	K	Pn	without CV			with CV		
				SEQ	BBS	PCA	SEQ	BBS	PCA
10	111	90	Kor + S	5943	6014	13751	18	29	291
10	111	90	Kor + S + B	88927	256355	563665	90	177	668
10	111	90	Sob + DS	9572	12549	14279	63	183	4436
10	12	90	Kor + S	442	1720	13790	13	50	71
10	12	90	Kor + S + B	1394	26883	446423	31	66	200
10	12	90	Sob + DS	2205	9053	12175	27	67	434
120	1	90	Kor + S	192	2025	984	5	47	75
120	1	90	Kor + S + B	394	15575	474314	13	55	280
120	1	90	Sob + DS	325	7079	15101	3	48	483

For d=10, Sobol' with PCA combined with CV reduces the variance approximately by a factor of 6.8×10^9 , without increasing the CPU time.

For d=120, PCA is slower than SEQ by a factor of 2 or 3, but worth it.

Asian Option Under a Variance Gamma Process

S(t) = value of a given asset at time t.VG model (e.g., Madan, Carr, and Chang 1998):

$$S(t) = S(0) \exp\{rt + B(G(t; 1, \nu), \theta, \sigma) + \omega t\},\$$

where $\omega = \ln(1 - \theta \nu - \sigma^2 \nu/2)/\nu$,

B is a Brownian process with drift and variance parameters θ and σ , G is a gamma process with mean and variance parameters 1 and ν , B and G are independent.

Asian Option Under a Variance Gamma Process

S(t) = value of a given asset at time t.VG model (e.g., Madan, Carr, and Chang 1998):

$$S(t) = S(0) \exp\{rt + B(G(t; 1, \nu), \theta, \sigma) + \omega t\},\$$

where $\omega = \ln(1 - \theta \nu - \sigma^2 \nu/2)/\nu$,

B is a Brownian process with drift and variance parameters θ and σ , G is a gamma process with mean and variance parameters 1 and ν , B and G are independent.

Asian call option has discounted payoff:

$$e^{-rt} \max \left(0, \ \frac{1}{d} \sum_{j=1}^d S(t_j) - K\right).$$

This is an integration problem in s = 2d dimensions.

Sequential sampling (BGSS): Generate $\tau_1 = G(t_1)$,

Sequential sampling (BGSS): Generate $\sigma = C(t_1) P(\sigma_1)$

$$\tau_1 = G(t_1), B(\tau_1),$$

$$\tau_1 = G(t_1), \ B(\tau_1), \ \tau_2 = G(t_2),$$

Sequential sampling (BGSS): Generate $\tau_1 = G(t_1), B(\tau_1), \tau_2 = G(t_2), B(\tau_2), \ldots$

Can be done with either MC or QMC.

$$\tau_1 = G(t_1), B(\tau_1), \tau_2 = G(t_2), B(\tau_2), \ldots$$

Can be done with either MC or QMC.

Bridge sampling (BGBS) (Avramidis, L'Ecuyer, Tremblay 2003): Generate $\tau_d = G(t_d)$,

$$\tau_1 = G(t_1), \ B(\tau_1), \ \tau_2 = G(t_2), \ B(\tau_2), \ \ldots$$

Can be done with either MC or QMC.

Bridge sampling (BGBS) (Avramidis, L'Ecuyer, Tremblay 2003): Generate $\tau_d = G(t_d)$, $B(\tau_d)$,

$$\tau_1 = G(t_1), B(\tau_1), \tau_2 = G(t_2), B(\tau_2), \ldots$$

Can be done with either MC or QMC.

Bridge sampling (BGBS) (Avramidis, L'Ecuyer, Tremblay 2003): Generate $\tau_d = G(t_d)$, $B(\tau_d)$, $\tau_{d/2} = G(t_{d/2})$, $B(\tau_{d/2})$,

$$\tau_1 = G(t_1), \ B(\tau_1), \ \tau_2 = G(t_2), \ B(\tau_2), \ \ldots$$

Can be done with either MC or QMC.

Bridge sampling (BGBS) (Avramidis, L'Ecuyer, Tremblay 2003): Generate $\tau_d = G(t_d)$, $B(\tau_d)$, $\tau_{d/2} = G(t_{d/2})$, $B(\tau_{d/2})$, $\tau_{d/4} = G(t_{d/4})$, $B(\tau_{d/4})$, and so on.

For $t_a < t < t_b$ and $\tau_a < \tau < \tau_b$, the distribution of G(t) conditional on $G(t_a)$, $G(t_b)$ is known (beta) and the distribution of $B(\tau)$ conditional on $B(\tau_a)$, $B(\tau_b)$ is known (normal).

$$\tau_1 = G(t_1), \ B(\tau_1), \ \tau_2 = G(t_2), \ B(\tau_2), \ \ldots$$

Can be done with either MC or QMC.

Bridge sampling (BGBS) (Avramidis, L'Ecuyer, Tremblay 2003): Generate $\tau_d = G(t_d)$, $B(\tau_d)$, $\tau_{d/2} = G(t_{d/2})$, $B(\tau_{d/2})$, $\tau_{d/4} = G(t_{d/4})$, $B(\tau_{d/4})$, and so on.

For $t_a < t < t_b$ and $\tau_a < \tau < \tau_b$, the distribution of G(t) conditional on $G(t_a)$, $G(t_b)$ is known (beta) and the distribution of $B(\tau)$ conditional on $B(\tau_a)$, $B(\tau_b)$ is known (normal).

Difference of gammas bridge sampling (DGBS) (Avramidis, L'Ecuyer, Tremblay 2003): Write S as a difference of two gamma processes and use bridge sampling for each.

Let $\theta = -0.1436$, $\sigma = 0.12136$, $\nu = 0.3$, r = 0.1, T = 1, d = 32,

K = 101, and S(0) = 100.

Let $\theta=-0.1436$, $\sigma=0.12136$, $\nu=0.3$, r=0.1, T=1, d=32, K=101, and S(0)=100.

Variance reduction factors with:

BGSS (left), BGBS (middle), and DGBS (right):

Korobov Lattice Rules

	n = 16381 a = 5693			n = 65521 a = 944			n = 262139				
							a = 21876				
Kor+S	17	54	119	24	138	263	22	285	557		
Kor+S+B	52	53	57	44	44	433	92	93	1688		
·											

Sobol' Nets

	$n=2^{14}$			$n=2^{16}$			$n=2^{18}$		
						1077			
Sob+LMS+S	29	530	557	49	565	995	77	735	1642

Example: Pricing an Asian option

Single asset, s observation times t_1, \ldots, t_s . Want to estimate $\mathbb{E}[f(\mathbf{U})]$, where

$$f(\mathbf{U}) = e^{-rt_s} \max \left[0, \ \frac{1}{s} \sum_{j=1}^s S(t_j) - K\right]$$

and $\{S(t), t \geq 0\}$ is a geometric Brownian motion. We have $f(\mathbf{U}) = g(\mathbf{Y})$ where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$.

Example: Pricing an Asian option

Single asset, s observation times t_1, \ldots, t_s . Want to estimate $\mathbb{E}[f(\mathbf{U})]$, where

$$f(\mathbf{U}) = e^{-rt_s} \max \left[0, \ \frac{1}{s} \sum_{j=1}^s S(t_j) - K\right]$$

and $\{S(t), t \ge 0\}$ is a geometric Brownian motion.

We have
$$f(\mathbf{U}) = g(\mathbf{Y})$$
 where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

Let S(0) = 100, K = 100, r = 0.05, $t_s = 1$, and $t_j = jT/s$ for $1 \le j \le s$. We consider $\sigma = 0.2$, 0.5 and s = 3, 6, 12.

ANOVA Variances for the Asian Option

Total Variance per Coordinate for the Asian Option

Random vs. Full CBC

Random vs. Full CBC

Random vs. Full CBC

Prime vs. Power-of-2 Number of Points

Prime vs. Power-of-2 Number of Points

Prime vs. Power-of-2 Number of Points

Solid: CBC. Dashe

Dashed: Korobov.

Histograms for the Asian option, s = 6, PCA

A down-and-in Asian option with barrier B

Same as for Asian option, except that payoff is zero unless

$$\min_{1\leq j\leq s}S(t_j)\leq 80.$$

ANOVA Variances for the down-and-in Asian Option

Total Variance per Coordinate for the down-and-in Asian Option

Conclusion and Comments on RQMC

- RQMC can improve the accuracy of estimators considerably in some applications.
- ► Cleverly modifying the function *f* can often bring huge statistical efficiency improvements in simulations with RQMC.
- ▶ There are often many possibilities for how to change *f* to make it smoother, periodic, and reduce its effective dimension.
- Point set constructions should be based on discrepancies that take that into account. Can take a weighted average (or worst-case) of uniformity measures over a selected set of projections.
- Nonlinear functions of expectations: RQMC also reduces the bias.
- RQMC for optimization.
- Array-RQMC for Markov chains.
- Still a lot to learn in that area...