Golden Section Secret Metho てノ½ (ase-[f(C) L = b-a CB = T(b-a) A(a) CD = T(b-a) A(a) CD = T(b-a) A(b-a) CD = T(b-a)Me have two points e & D f(c) > f(D) then Ac is eleminated. $AC = (1-\tau)(6-\alpha)$

Total length
$$\Rightarrow$$
 $(b-a)$ = $\frac{\tau(b-a)}{(1-\tau)(b-a)} \leftarrow \frac{small}{small}$
 $\Rightarrow \tau^2 = (1-\tau)$ = $\frac{-1 \pm \sqrt{5}}{2}$
 $\Rightarrow \tau^2 + \tau - 1 = 0 \Rightarrow \tau = \frac{-1 \cdot 618}{2}$
 $\tau = \begin{cases} \frac{-1-\sqrt{5}}{2}, & \Rightarrow \tau = \begin{cases} -1.618 \\ 0.618 \end{cases} \text{ (accepted)}$

Then $(1-\tau) = 0.381$

Hence the eleminated park $A = (1-\tau)(b-a)$
 $\tau = \frac{38\cdot 27}{2}, \quad \text{of } (b-a)$

then T = 0.382 2 f 7 < 3 C and $-\underline{n}$ then for for = (b) A(a) C B f(c) > f(D)Then f(c) >38.27.0f (b-a).

After 1st elemination >

$$CA = T(b-a)$$

$$CA = T(b-a)$$

$$CD = (A - DA)$$

Again a New Point E of TCA require for this 2nd dteration. Hece we forme that the and iteration required only one function evaluation and uses one old function evaluation from zteration one. 13