Week6_lab

Zaiwei 01/09/2019

Start R studio

Create a New Project

Install Package "ISLR" (If not installed earlier)

Upload following data sets "Carseats",

```
View the data sets
```

```
library(ISLR)
library(tree)
attach(Carseats)
dim(Carseats)
## [1] 400 11
names(Carseats)
## [1] "Sales"
                 "CompPrice" "Income"
                                         "Advertising" "Population"
## [6] "Price"
                "ShelveLoc" "Age"
                                        "Education" "Urban"
## [11] "US"
sapply(Carseats, class)
## Sales CompPrice
                         Income Advertising Population
## "numeric" "numeric" "numeric" "numeric" "numeric" "numeric"
## ShelveLoc
                 Age Education
                                    Urban
## "factor" "numeric" "numeric" "factor"
```

Decision Trees: Use "Carseats" data set with Sales as the Target Variable

Fit a Regression Tree for training data set

Construct the Cross validation plot

Select the best size of the tree

Obtain the best regression tree by pruning

Test the model accuracy

Describe the terminal nodes of the resulting decision tree

```
set.seed(1)
trainData<-sample(1:nrow(Carseats),200)
reg_tree<-tree(Sales~., Carseats,subset = trainData)
plot(reg_tree)
text(reg_tree, pretty = 0)</pre>
```


3.48.1008 8.19.46 9 4.45.37 16.340

```
summary(reg_tree)
##
## Regression tree:
## tree(formula = Sales \sim ., data = Carseats, subset = trainData)
## Variables actually used in tree construction:
## [1] "ShelveLoc" "Price"
                              "Age"
                                         "Advertising" "CompPrice"
## [6] "US"
## Number of terminal nodes: 18
## Residual mean deviance: 2.167 = 394.3 / 182
## Distribution of residuals:
     Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.88200 -0.88200 -0.08712 0.00000 0.89590 4.09900
cv_regtree <- cv.tree(reg_tree)</pre>
cv_regtree
## $size
## [1] 18 17 16 15 14 13 12 11 10 8 7 6 5 4 3 2 1
##
## $dev
## [1] 831.3437 852.3639 868.6815 862.3400 862.3400 893.4641 911.2580
## [8] 950.2691 955.2535 1039.1241 1066.6899 1125.0894 1205.5806 1273.2889
## [15] 1302.8607 1349.9273 1620.4687
##
## $k
         -Inf 16.99544 20.56322 25.01730 25.57104 28.01938 30.36962
## [1]
## [8] 31.56747 31.80816 40.75445 44.44673 52.57126 76.21881 99.59459
## [15] 116.69889 159.79501 337.60153
##
## $method
## [1] "deviance"
##
## attr(,"class")
## [1] "prune"
                  "tree.sequence"
plot(cv_regtree$size,cv_regtree$dev,type="b")
```



```
pruned_regtree <- prune.tree(reg_tree,best=10)
pruned_regtree
## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 200 1573.000 7.578</pre>
```

```
##
    2) ShelveLoc: Bad, Medium 158 964.600 6.908
##
     4) Price < 94.5 24 110.900 9.285
##
       8) Age < 39.5 6 9.117 11.640 *
       9) Age > 39.5 18 57.310 8.499 *
##
##
     5) Price > 94.5 134 694.000 6.483
      10) Advertising < 4 59 229.900 5.511
##
       20) Price < 130 37 135.300 6.136
##
        40) CompPrice < 123.5 16 45.860 4.905 *
##
        41) CompPrice > 123.5 21 46.760 7.074 *
##
##
       21) Price > 130 22 55.810 4.459 *
##
      11) Advertising > 4 75 364.400 7.247
##
       22) Age < 58.5 43 138.700 8.117
##
        44) Price < 127 25 55.660 9.055 *
##
        45) Price > 127 18 30.440 6.814 *
##
       23) Age > 58.5 32 149.500 6.079 *
##
    3) ShelveLoc: Good 42 270.500 10.100
##
     6) Price < 135 30 116.900 11.150 *
     7) Price > 135 12 36.890 7.462 *
##
plot(pruned_regtree)
text(pruned_regtree,pretty=0)
```



```
yhat <- predict(pruned_regtree,newdata = Carseats[-trainData])
Carseats_test <- Carseats[-trainData,"Sales"]
MSE <- mean((yhat-Carseats_test)^2)
MSE
## [1] 12.82276
```

Decision Trees: Use "Carseats" data set with Sales as the Target Variable

Transfer Sales Variable from a Continuous variable to a Categorical Variable

High<-ifelse(Sales<=8,"No","Yes")
Carseats_new<-data.frame(Carseats,High)
Carseats_New<-Carseats_new[,-1]

3.2 Fit a Classification Tree for the full data set

tree_carseats<-tree(High~.,Carseats_New)
plot(tree_carseats)
text(tree_carseats, pretty=0)</pre>

#

Test the model accuracy

```
summary(tree_carseats)
##
## Classification tree:
## tree(formula = High \sim ., data = Carseats_New)
## Variables actually used in tree construction:
## [1] "ShelveLoc" "Price"
                                "Income"
                                             "CompPrice" "Population"
## [6] "Advertising" "Age"
                                "US"
## Number of terminal nodes: 27
## Residual mean deviance: 0.4575 = 170.7 / 373
## Misclassification error rate: 0.09 = 36 / 400
#3.4 Fit a Classification Tree for training data set
set.seed(2)
train<-sample(1:nrow(Carseats_New),200)
test<-Carseats_New[-train,]
tree_carsets_train<-tree(High~.,Carseats_New, subset = train)
plot(tree_carsets_train)
text(tree_carsets_train, pretty=0)
```


#3.5 Test the model accuracy

```
tree_predicted<-predict(tree_carsets_train, test, type="class")
High_test<-High[-train]
table(tree_predicted,High_test)
## High_test
## tree_predicted No Yes
## No 104 33
```

```
## Yes 13 50
matrix<-table(tree_predicted,High_test)
misrate<-((matrix[1,2]+matrix[2,1])/sum(matrix))
paste("Misclassification error rate is ",misrate)
## [1] "Misclassification error rate is 0.23"
```

3.6 Construct the Cross validation plot

```
set.seed(3)
cv_Carseats<-cv.tree(tree_carsets_train, FUN = prune.misclass)</pre>
names(cv_Carseats)
              "dev"
                             "method"
## [1] "size"
cv_Carseats
## $size
## [1] 21 19 14 9 8 5 3 2 1
## $dev
## [1] 74 76 81 81 75 77 78 85 81
## $k
## [1] -Inf 0.0 1.0 1.4 2.0 3.0 4.0 9.0 18.0
## $method
## [1] "misclass"
## attr(,"class")
## [1] "prune"
                    "tree.sequence"
plot(cv_Carseats\$size, cv_Carseats\$dev, type = "b")
```


3.7 Select the best size of the tree model ### tree model is 9 # 3.8 Obtain the best classification tree by pruning

```
pruned_carseats<-prune.misclass(tree_carsets_train, best = 9)</pre>
pruned carseats
## node), split, n, deviance, yval, (yprob)
##
      * denotes terminal node
##
   1) root 200 270.000 No (0.59500 0.40500)
##
    2) Price < 96.5 40 47.050 Yes (0.27500 0.72500) *
     3) Price > 96.5 160 201.800 No ( 0.67500 0.32500 )
##
##
      6) ShelveLoc: Bad, Medium 135 154.500 No (0.74074 0.25926)
##
      12) Price < 124.5 82 107.700 No ( 0.63415 0.36585 )
##
        24) Age < 49.5 34 45.230 Yes ( 0.38235 0.61765 )
##
         48) CompPrice < 130.5 21 28.680 No (0.57143 0.42857)
##
          96) Population < 134.5 6 0.000 No (1.00000 0.00000) *
##
          97) Population > 134.5 15 20.190 Yes ( 0.40000 0.60000 )
##
           194) Population < 343 7 5.742 Yes (0.14286 0.85714) *
##
           195) Population > 343 8 10.590 No (0.62500 0.37500) *
         49) CompPrice > 130.5 13 7.051 Yes (0.07692 0.92308) *
##
```

```
## 25) Age > 49.5 48 46.330 No ( 0.81250 0.18750 ) *

## 13) Price > 124.5 53 33.120 No ( 0.90566 0.09434 ) *

## 7) ShelveLoc: Good 25 31.340 Yes ( 0.32000 0.68000 )

## 14) Income < 43 7 8.376 No ( 0.71429 0.28571 ) *

## 15) Income > 43 18 16.220 Yes ( 0.16667 0.83333 ) *

plot(pruned_carseats)

text(pruned_carseats, pretty=0)
```


3.9 Test the model accuracy

```
tree_predict<-predict(pruned_carseats, test,type="class")
matrix2<-table(tree_predict,High_test)
mis_rate<-((matrix2[1,2]+matrix2[2,1])/sum(matrix2))
paste("Misclassification error rate is ",mis_rate)
## [1] "Misclassification error rate is 0.225"
```

4. Repeat above using Advertising data set if you have finished early and upload via Turnitin link in vUWS.

```
Advertising <- read.csv('Advertising.csv')
attach(Advertising)
## The following object is masked from Carseats:
##
##
    Sales
names(Advertising)
## [1] "TV"
              "Radio"
                       "Newspaper" "Sales"
sapply(Advertising,class)
      TV Radio Newspaper Sales
## "numeric" "numeric" "numeric" "numeric"
High_Sales_adver <- ifelse(Sales<=14,"No","Yes")
High Sales adver
## [12] "Yes" "No" "No" "Yes" "Yes" "No" "Yes" "No" "Yes" "Yes" "No"
## [23] "No" "Yes" "No" "No" "Yes" "Yes" "Yes" "No" "Yes" "No" "No"
## [34] "Yes" "No" "No" "Yes" "Yes" "No" "Yes" "Yes" "Yes" "Yes" "No"
## [45] "No" "Yes" "No" "Yes" "Yes" "No" "No" "No" "Yes" "Yes" "Yes"
## [56] "Yes" "No" "No" "Yes" "Yes" "No" "Yes" "Yes" "No" "Yes" "No"
## [67] "No" "No" "Yes" "Yes" "Yes" "No" "No" "No" "Yes" "No" "No"
## [78] "Yes" "No" "No" "No" "No" "No" "Yes" "Yes" "Yes" "No" "Yes"
## [89] "No" "Yes" "No" "Yes" "Yes" "Yes" "No" "Yes" "Yes" "Yes"
## [100] "Yes" "No" "Yes" "Yes" "Yes" "Yes" "Yes" "No" "No" "No" "Yes"
## [111] "No" "Yes" "Yes" "Yes" "Yes" "No" "No" "No" "Yes" "No" "Yes"
## [122] "No" "No" "Yes" "Yes" "No" "No" "No" "Yes" "No" "No" "No"
## [133] "No" "Yes" "No" "No" "No" "Yes" "No" "Yes" "No" "Yes" "Yes"
## [144] "No" "No" "No" "No" "Yes" "No" "No" "Yes" "No" "Yes" "Yes"
## [155] "Yes" "No" "Yes" "No" "No" "Yes" "No" "Yes" "Yes" "Yes" "No"
## [166] "No" "No" "No" "Yes" "Yes" "No" "Yes" "No" "No" "No" "Yes"
## [177] "Yes" "No" "No" "No" "No" "No" "No" "Yes" "Yes" "Yes" "Yes" "No"
## [188] "Yes" "Yes" "No" "No" "No" "No" "Yes" "Yes" "No" "No" "No"
```

```
## [199] "Yes" "No"

Advertising_new <- data.frame(Advertising,High_Sales_adver)

Advertising_new <- Advertising_new[,-4]

tree_Advertising <- tree(High_Sales_adver~.,Advertising_new)

plot(tree_Advertising)

text(tree_Advertising,pretty=0)
```



```
summary(tree_Advertising)
##
## Classification tree:
## tree(formula = High_Sales_adver ~ ., data = Advertising_new)
## Variables actually used in tree construction:
## [1] "TV" "Radio"
## Number of terminal nodes: 7
## Residual mean deviance: 0.0434 = 8.376 / 193
## Misclassification error rate: 0.01 = 2 / 200

Fit a Classification Tree for training data set
set.seed(2)
train advert <- sample(1:nrow(Advertising new).100)</pre>
```

train_advert <- sample(1:nrow(Advertising_new),100) test_advert <- Advertising_new[-train_advert,] tree_advert_train <- tree(High_Sales_adver~.,Advertising_new,subset = train_advert) plot(tree_advert_train) text(tree_advert_train,pretty=0)


```
tree_predicted_advert <- predict(tree_advert_train,test_advert,type="class")
High_test_advert <- High_Sales_adver[-train_advert]
table(tree_predicted_advert,High_test_advert)
## High_test_advert
## tree_predicted_advert No Yes
## No 53 2
## Yes 4 41
matrix_advert<-table(tree_predicted_advert,High_test_advert)
misrate<-((matrix_advert[1,2]+matrix_advert[2,1])/sum(matrix_advert))
paste("Misclassification error rate is ",misrate)
## [1] "Misclassification error rate is 0.06"
```

Construct the Cross validation plo

```
set.seed(3)
cv_advert <- cv.tree(tree_advert_train,FUN = prune.misclass)</pre>
names(cv_advert)
## [1] "size" "dev"
                             "method"
cv advert
## $size
## [1] 5 3 2 1
## $dev
## [1] 12 12 21 46
## $k
## [1] -Inf 0 11 30
## $method
## [1] "misclass"
##
## attr(,"class")
## [1] "prune"
                    "tree.sequence"
```

plot(cv_advert\\$size,cv_advert\\$dev,type="b")

Select the best size of the tree model

```
print('the best size of the tree model is 3')
## [1] "the best size of the tree model is 3"
```

Obtain the best classification tree by pruning

```
pruned_advert <- prune.misclass(tree_advert_train,best=3)
pruned_advert
## node), split, n, deviance, yval, (yprob)
## * denotes terminal node</pre>
```

#

```
## ## 1) root 100 138.00 No ( 0.54000 0.46000 ) ## 2) TV < 120.35 44 21.90 No ( 0.93182 0.06818 ) * ## 3) TV > 120.35 56 60.69 Yes ( 0.23214 0.76786 ) ## 6) Radio < 9.95 11 0.00 No ( 1.00000 0.00000 ) * # 7) Radio > 9.95 45 16.36 Yes ( 0.04444 0.95556 ) * plot(pruned_advert) text(pruned_advert,pretty=0)
```


Test the model accuracy

```
tree_predicted_advert_pruned <- predict(pruned_advert,test_advert,type="class")

High_test_advert_pruned <- High_Sales_adver[-train_advert]

table(tree_predicted_advert_pruned,High_test_advert_pruned)

## High_test_advert_pruned

## tree_predicted_advert_pruned No Yes

## No 53 2

## Yes 4 41

matrix_advert_pruned <- table(tree_predicted_advert_pruned,High_test_advert_pruned)

mis_rate_pruned <- ((matrix_advert_pruned[1,2]+matrix_advert_pruned[2,1])/sum(matrix_advert_pruned))

paste("Misclassification error rate of Advertising is",mis_rate_pruned)

## [1] "Misclassification error rate of Advertising is 0.06"
```

Describe the terminal nodes of the resulting decision tree

if TV <120.35 then salse is low, but TV > 120.35 then the sales is higher

#