Complex Analysis Homework 5

Colin Williams

October 7, 2020

Question 2

(a) Consider $z_1 = -1 - i$ and $z_2 = -1$. Show that if all powers involved are principal values, then

$$(z_1 z_2)^i \neq z_1^i z_2^i$$

(b) Let c_1, c_2 and $z \neq 0$ be complex numbers. Prove that if all powers involved are principal values, then

$$z^{c_1}z^{c_2} = z^{c_1 + c_2}$$

First, note the definition of the power function for c, w complex numbers with $w \neq 0$:

$$w^c = e^{c \log(w)}$$

If we are using principal values, then we replace $\log(w)$ with $\log(w) = \ln(r) + i\theta$ for $w = re^{i\theta}$ and r > 0 and $-\pi < \theta \le \pi$.

Answer. (a)

On the one hand, we can calculate $(z_1z_2)^i$ in the following manner:

$$(z_1 z_2)^i = [(-1 - i)(-i)]^i$$

$$= [i + i^2]^i$$

$$= [-1 + i]^i$$

$$= e^{i \operatorname{Log}(-1 + i)}$$

$$= e^{i \left(\ln(\sqrt{2}) + i\left(\frac{3\pi}{4}\right)\right)}$$

$$= e^{i \ln(\sqrt{2})} e^{-\frac{3\pi}{4}}$$

$$= e^{-\frac{3\pi}{4}} \left(\cos(\ln(\sqrt{2})) + i\sin(\ln(\sqrt{2}))\right)$$

On the other hand, when we calculate $z_1^i z_2^i$, we get:

$$\begin{split} z_1^i z_2^i &= (-1-i)^i (-i)^i \\ &= e^{i \text{Log} \left(-1-i\right)} e^{i \text{Log} \left(-i\right)} \\ &= e^{i \left(\ln(\sqrt{2}) + i \left(-\frac{3\pi}{4}\right)\right)} e^{i \left(\ln(1) + i \left(-\frac{\pi}{2}\right)\right)} \\ &= e^{i \ln(\sqrt{2})} e^{\left(\frac{3\pi}{4} + \frac{\pi}{2}\right)} \\ &= e^{i \ln(\sqrt{2})} e^{\left(\frac{3\pi}{4} + \frac{\pi}{2}\right)} \\ &= e^{\frac{5\pi}{4}} \left(\cos(\ln(\sqrt{2})) + i \sin(\ln(\sqrt{2}))\right) \end{split}$$
 since $-1 - i = \sqrt{2}e^{-i\frac{3\pi}{4}}$ and $-i = e^{-i\frac{\pi}{2}}$

However, since $e^{5\pi/4} \neq e^{-3\pi/4}$ these two numbers do not have the same magnitude, so they obviously cannot be equal to one another.

Proof. (b)

Let $c_1, c_2, z \in \mathbb{C}$ and let $z \neq 0$. Therefore, we have

$$\begin{split} z^{c_1} z^{c_2} &= e^{c_1 \text{Log}(z)} e^{c_2 \text{Log}(z)} \\ &= e^{c_1 \text{Log}(z) + c_2 \text{Log}(z)} \\ &= e^{(c_1 + c_2) \text{Log}(z)} \\ &= z^{c_1 + c_2} \end{split}$$

Thus, the statement is proven