ADATSZERKEZETEK ÉS ALGORITMUSOK

- Az összefésüléses rendezés külső tárakon
 - Adott egy S szekvenciális input fájl, amely n blokkból áll, minden blokkban adott számú rekorddal.
 - Pl. 1 blokk = 1024 byte és ezen 4 rekord foglal helyet.
 - A blokkok tartalma rendezetlen.
 - Az összefésülést iteratív módon végezzük, úgy, hogy az egyes "menetek" végén egyre nagyobb darabok, vagyis egyre több szomszédos blokk lesz rendezett.
 - Az összefésülést menetenként váltakozva az A, B, illetve a C,D fájlokba végezzük, végül a teljesen rendezett eredményt S-be írjuk. A közbülső menetekben azért lesz 2 output fájl, mert az összefuttatás eredményét az "egyet ide, egyet oda" elv alapján írjuk ki.

- 1. menet
 - Beolvassuk S rendezetlen blokkjait, valamilyen belső rendezővel rendezzük, majd kiírjuk felváltva A-ba, illetve B-be.
 - Itt még nem volt összefésülés.

S: rendezetlen blokkok

S: rendezetlen blokkok

Önmagában rendezett blokkokat tartalmaznak

S: rendezetlen blokkok

Önmagában rendezett blokkokat tartalmaznak

• 2. menet

- Sorban beolvassuk A és B 1-1 blokkját. Ezek rendezettek. Összefésüljük őket és a rendezett két blokk hosszú adatot felváltva C-be, illetve D-be írjuk.
- Az A utolsó blokkjának nincs párja, így azt kiírjuk C-be. A C és D fájlban a rendezett részek hossza 2 blokk, illetve a maradék esetében 1 blokk.

A Rendezett: 1 blokk B

A Rendezett: 1 blokk B

A Rendezett: 1 blokk B

- 3. menet
 - C-ből és D-ből olvasunk 2-2 rendezett blokkot, összefésüljük őket és felváltva A-ba és B-be írjuk a rendezett 4 blokkot
 - A C-beli utolsó töredék blokk változatlanul A végére kerül

A Rendezett: 4 blokk B

Rendezett: 2 blokk

A Rendezett: 4 blokk B

Rendezett: 2 blokk

A Rendezett: 4 blokk B

Rendezett: 2 blokk

- 4. menet
 - C-be kerül A és B 4-4 rendezett blokkja összefésülésének a 8 blokk hosszú rendezett eredménye, D-be pedig a maradék egy blokk.

A Rendezett: 4 blokk B

Rendezett: 8 blokk

- 5. menet
 - C 8 blokkját és D 1 blokkját összefésüljük S-be.
 - Elnevezés: egy k blokkból álló összefüggő rendezett részt k hosszú futam-nak nevezünk.

S – Rendezett

Rendezett: 8 blokk

- Két kiegészítő megjegyzés:
 - 1. Ebben a példában az S 9. blokkja csaknem végig nem került kapcsolatba más rendezett részekkel, csak az utolsó menetben került összefésülésre.
 - Ha végrehajtjuk a fenti eljárást n=15-re, akkor a páratlan töredék maradék rész mérete így alakul: 1, 3, 7, vagyis a fenti jelenség nem törvényszerű.
 - 2. Ha a központi memória mérete korlátozott és nem képes befogadni az egyre növekvő méretű rendezett részeket (futamokat), akkor ezek összefésülését lehet "pufferelve", akár blokkonként végezni.
 - Ez azért lehetséges, mert az összefuttatás egysége a rekord.

Általában

- 1. menet eredménye: 1 hosszú futamok
- 2. menet eredménye: 2 hosszú futamok
- 3. menet eredménye: 4 hosszú futamok
-
- (k-1). menet eredménye: 2^{k-2} hosszú futamok
- k. (utolsó) menet eredménye: $\leq 2^{k-1}$ hosszú egyetlen futam = S
 - előtte maradék mindig lehet

- Az utolsó előtti (k-1). menetben még volt 2 futam
 - $2^{k-2} < n$
- A k. (utolsó) menetben már előáll a teljes rendezett fájl
 - n $\leq 2^{k-1}$
- Áttérve logaritmusra:
 - $k-2 < \log_2 n \le k-1 \Rightarrow k-1 = \lceil \log_2 n \rceil$
 - A menetek k száma: $k = \lceil \log_2 n \rceil + 1$
 - Az összes blokk-I/O száma: $2 * n * (\lceil \log_2 n \rceil + 1)$
 - minden menetben beolvastuk és kiírtuk mind az n blokkot

- Gyorsítási lehetőségek:
 - Nagyobb kezdő futamok létrehozása
 - Ha a központi memória lehetővé teszi, akkor az 1. menetben megtehetjük, hogy S-ből m>1 blokkot olvasunk be, ezt rendezzük és az így keletkezett m hosszú kezdőfutamokat írjuk ki A-ba és B-be.
 - Ezután úgy megy tovább, hogy először két m hosszú futamokat fésülünk össze, majd két 2m hosszút, stb.

Számítások

- 1. menet eredménye: *m* hosszú futamok
- 2. menet eredménye: 2 * m hosszú futamok
- 3. menet eredménye: 4*m hosszú futamok
- •
- (k-1). menet eredménye: $2^{k-2} * m$ hosszú futamok
- k. (utolsó) menet eredménye: $\leq 2^{k-1} * m$ hosszú egyetlen futam = S
- Innen $2^{k-2} * m < n \le 2^{k-1} * m$
- A menetek k száma: $k = \left[\log_2 \frac{n}{m}\right] + 1$
- Az összes blokk-I/O száma: $2*n*\left(\left\lceil\log_2\frac{n}{m}\right\rceil+1\right)$

- Lehet azt is, hogy több, mint kétfelé fésülünk:
 - Ha az S fájl mellett nem 2*2, hanem általában 2*m fájllal dolgozunk, akkor ezzel a ráfordítással hatékonyabb eljárás nyerhető.
 - Legyen például $m=3,\,n=13$ és térjünk vissza az 1 hosszú kezdő futamokhoz:
 - Ekkor az 1. menetben felváltva A, B, C-be írjuk ki a rendezett kezdőfutamokat.
 - Ezután mindig három futamot fésülünk össze (a maradékoktól eltekintve) és az új futamokat felváltva A, B, C-be ill. D, E, F-be írjuk ki.
 - Az utolsó menetben S-be írjuk az eredményt.

A számolás

- 1. menet eredménye: 1 hosszú futamok
- 2. menet eredménye: m hosszú futamok
- •
- (k-1)-edik menet eredménye: m^{k-2} hosszú futamok
- k-adik utolsó menet eredménye: $\leq m^{k-1}$ hosszú egyetlen futam=S
- Innen: $m^{k-2} < n$

$$k = \lceil \log_m n \rceil + 1 = \left\lceil \frac{\log_2 n}{\log_2 m} \right\rceil + 1$$

$$m^{k-1} > n$$

• Az összes blokk I/O művelet: $2n * \left(\left\lceil \frac{\log_2 n}{\log_2 m} \right\rceil + 1 \right)$

- Három fájlos külső rendező
 - Érdekes algoritmushoz jutunk, ha az m-felé fésülésnél nem 2m db fájl-t használunk, hanem csak m+1 db-t
 - Ezt m=2 esetére nézzük meg, ami az eredeti eset. Ekkor tehát 3 fájl-t használunk: A, B, C-t
 - Az első menetben szétosztjuk S immár rendezett blokkjait A-ba és B-be.
 - A második menetben elkezdjük A és B blokkjainak az összefésülését, de most csak 1 fájl tudja fogadni az eredményt, a C fájl. Ezért C-be fésülünk össze egészen addig, amíg A és B egyike ki nem ürül
 - Ekkor új menetet kezdünk a két nem üres fájllal
 - És így tovább

• Példa: S n = 13 blokk

• A táblázatban az első szám a futamok számát jelenti, zárójelben pedig a futamok hossza áll

	1.	2.	3.	4.	5.	6.	7.	8.
Α	7(1)	1(1)	0	1(5)	0	1(9)	0	1(13)
В	6(1)	0	1(3)	0	1(7)	0	1(11)	0
С		6(2)	5(2)	4(2)	3(2)	2(2)	1(2)	0

- Látjuk, hogy a második menet végén képződött 6 db 2 hosszú futam csak egyesével tud elfogyni – érezhetően sok lépésben
- Ennek oka az, hogy az 1. menet végi két futamszámnak 1 a különbsége
 - 7 6 = 1
 - Hogy tudnánk ezen javítani?

- Eszünkbe jut a Fibonacci sorozat: 0,1,1,2,3,5,8,13,....
 - Ahol két szomszédos elem különbsége az első néhány tag kivételével 1-től különböző
 - Innen jön a gondolat, hogy az első menetben írjunk annyi futamot A-ba és Bbe, mint a Fibonacci sorozat két (alkalmas) szomszédos eleme, és lépkedjünk visszafelé a sorozaton az egyes menetekben

	1.	2.	3.	4.	5.	6.
Α	8(1)	3(1)	0	2(5)	1(5)	0
В	5(1)	0	3(3)	1(3)	0	1(13)
С		5(2)	2(2)	0	1(8)	0

- Belátható, hogy a 3 fájlos rendező éppen akkor fut le leggyorsabban, ha így járunk el, azaz A-ban és B-ben két szomszédos Fibonacci számnak megfelelő számú kezdő futamot hozunk létre.
 - Ha N nem Fibonacci szám, akkor vagy levágjuk és félretesszük a felesleget, és a végén még összefésüljük a kialakult eredménnyel, vagy pedig éppen fordítva: (virtuális) kiegészítéssel alkalmasan megnöveljük az input állomány méretét.

• Nézzük meg, hány lépésben érjük el F_k és F_{k-1} -ből az 1, 0 számokat úgy, hogy minden menetben egy újabb számot tudunk lefelé lépni

$$|S| \approx F_{k+1}$$
 F_k F_{k-1} ... $(k-1)$. k . 1 1 F_{k-1} F_{k-2} ... 1 0

- Látható, hogy a menetek száma ekkor k, hiszen F_k -től F_1 -ig vezet az út a táblázatban.
- Ki kell fejezni n-et F_{k+1} -gyel, ami az input fájl (közelítő) mérete blokkokban. Jelöljük $N=F_{k+1}$

- Számítás menete
 - $N = F_{k+1}$

•
$$F_0 = 0, F_1 = 1, (F_2 = 1, F_3 = 2, F_4 = 3, ...)$$
 $F_{k+1} = F_k + F_{k-1} (k \ge 1)$

•
$$F_k = \frac{1}{\sqrt{5}} * \left[\left(\frac{(1+\sqrt{5})}{2} \right)^k - \left(\frac{(1-\sqrt{5})}{2} \right)^k \right]$$
 $\Rightarrow F_k \approx \frac{1}{\sqrt{5}} * \left(\frac{(1+\sqrt{5})}{2} \right)^k$

$$1.6180 - 0.6180$$

- Az $A = \frac{(1+\sqrt{2})}{2}$ az aranymetszés aránya, amely kielégíti az $A^2 A 1 = 0$ egyenletet.
- Ezt átrendezve: $A^2 = A + 1$, amiből teljes indukcióval megmutatható, hogy $k \ge 2$ esetén
 - $A^{k-2} \le F_k \le A^{k-1}$
 - Ha $N = F_{k+1}$, akkor $A^{k-1} \le N$,
 - $k 1 \le \log_A N = \frac{\log_2 N}{\log_2 A} \approx 1.44 * \log_2 N$
 - $k \le 1,44 * \log_2 N + 1$

2-3 fa / B-fa

Következő téma