SECTION A-46 MARKS ATTEMPT <u>ALL</u> QUESTIONS IN THIS SECTION..

1.	(a)	Complete the following equations for nuclear reactions.	
		(i) $^{27}_{14}Si \longrightarrow ^{27}_{13}Al + \dots$	(01 mark)
		(ii) ${}^{236}_{92}U + {}^{1}_{0}n \longrightarrow 2{}^{1}_{0}n + \gamma + {}^{147}_{60}Nd + \dots$	(01 mark)
	(b)	When a radioactive isotope was left to stand, it decayed by original value in 45 days . Calculate the half-life of the radisotope.	
	••••		
	••••		
	• • • • •		
2.	(a)	State three factors that can affect electron affinity.	(01½ marks)
	•••••		
	•••••		
	•••••		
	•••••		
	(b)	Write equation for the first electron affinity of sulphur.	(01 mark)

(c)	The first and second electron affinities of sulphur are -200 and $+649 kJ mol^{-1}$ respectively. Explain the difference in the electron				
		ities of sulphur.	(04 marks)		
•••••	• • • • • • •				
	• • • • • • •				
• • • • • •					
• • • • • •					
••••					
	• • • • • • •				
Poly	styrene	e is formed by polymerization of phenylethene.			
(a)	(i)	Write the structural formula of polystyrene.	(01 mark)		
	(ii)	Name the type of polymerization involved in th polystyrene.	e formation of (0½ mark)		
(b)		osmotic pressure of a solution containing 5.5 g of of benzene is 1.0 x 10 ⁻³ atmospheres at 20 0 C.	polystyrene in 1		
	(i)	Calculate the relative molecular mass of polysty	rene.		
		$(R = 0.082 \ atm \ dm^3 K^{-1} mol^{-1})$	(02 marks)		

		• • • • • • • • • • • • • • • • • • • •
	(ii) Determine the number of monomers that formed the	e polystyrene. (01½ marks)
4. (a)	The figure below shows the energy diagram for the read nitrogen monoxide and oxygen.	ction between
	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
	Reaction co-ordinate	
	(i) Identify K and L . K	(0½ mark)
	L	(0½ mark)
	(ii) State whether the reaction is endothermic or exc	othermic.
		$(0\frac{1}{2} mark)$

	(iii)	Give a reas	on for your ans	wer in (a) (ii).	(0½ mark)
(b)		experimental ion in (a).	results in the ta	ble below were obtai	ned for the
		Initial con (mol a		Rate of reaction $(mol \ dm^{-3} s^{-1})$	
		NO	O_2		
		0.03	0.03	2.7×10^{-5}	
		0.03	0.06	5.4×10^{-5}	
		0.06	0.03	10.8×10^{-5}	
	(i)	Deduce the	order of the re	action with respect to).]
	(1)	nitrogen me		action with respect to	(01 mark)
		Oxygen.			(01 mark)
•••••		•••••			
	(ii)	Write the r	ate equation fo	or the reaction.	(01 mark)
(c)	Calcı	ılate the			
` ,	(i)	rate consta	ant (k) for the r	eaction and state its u	nits. (01½ marks)
• • • • • •					
conta	ined 7	7.1% by mas		at 95°C and at 760m te the molecular for is 526mmHg]	_

5.

••••••			••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••					
•••••			• • • • • • • • • • • • • • • • • • • •		
On cooling the residua volume red	f a hydrocarbon to room temper Il gases were pa luced to 40.0cm	rature, the r ssed throug 1 3.	esidual gase h potassium	s occupied 70 hydroxide so	0.0cm³ , when lution, the
(a) Determ	ine the molecu	lar formula	of hydroca	bon P.	(03 marks)
•••		•••••			
				•••••	
•••				•••••	

(D)	propan	quations to snow now nydrocarbon P can be pi 1-2-ol .	reparea from (01½ marks)
	rogen re monia ga a) Writ		
	(i)	Equation for the reaction that takes	(0½ mark)
	(ii)	The expression for the equilibrium con	nstant,Kc. (0½ mark)
	-	percentage of ammonia in the equilibriun s was found to be 15% at 600°C.Calcula	n mixture of
	equil	ibrium constant (K_c) for the reaction at	600°C.
			(03½ marks)
	••••••		••••••
	••••••		
	•••••		
	•••••		

		••••••		
8.	State	what	would be observed and write equation(s)	for the reaction(s) that
	woul	ld take	e place when sodium hydroxide solution is	added drop-wise until in
	exce	ss to;		
	(a)	Lead	d nitrate solution.	(03 marks)
		Obs	ervation.	
	••••			
	• • • • •			
		Equ	ation(s).	
	• • • • •			
	• • • • •			
	(b)	Iron	(II) chloride solution.	(02 marks)
	(0)		ervation.	(02 marks)
			ervation.	
		Equ	ation.	
	• • • • •	• • • • • • • •		
9.	(a)	(i)	State the conditions for the reaction be	tween benzene and
			sulphuric acid.	(01 mark)

	(ii)	Outlin	ne a me o			action in (a		(03marks)
(b)		-	on(s) to enzene.					be converted (01½ marks
• • • • •	•••••	•••••	• • • • • • • • •	••••••	•••••	•••••	•••••	
• • • • •			•••••	••••••	•••••	•••••	•••••	
	A	TTEN	IPT <u>Al</u>			4 MARI IONS IN		SECTION.
		what is	s meant	by the term	m enthal	py of solu	tion.	(01 marks)
(a)	State	wnat n		<i>J</i>		•		(or memos)
(a)	State	what is		•				
(a)	State	what is		•				
(a) (b)	The t	able be	low sho		ats of hyc			
	The t	able be	low sho	ws the heasodium collipy of hyd	ats of hyo hloride.	lration and	l lattice e	
	The t	able be	low sho	ws the hea	ats of hyo hloride.	lration and	l lattice e	

(01½ marks)

Lithium chloride

(i)

••••••			•••
•••••			
(ii)	Sodium chloride.	(01 marks)	
(iii)	with temperature and give r	the solubility of the two salts to vareasons for your answers. (02½ marks	s)
••••••			
			• • •
			• • •
(c) Expl	ain how hydration energy aff	Fects the solubility of salts in water.	
		(03 marks)	
•••••			
Complete the mechanism	he following equations and in .	each case write the accepted	

11.

	O -	NH_2NH_2/H^+	→	
(a)				(04 marks)
•••••	• • • • • • • • • • • • • • • • • • • •			
	SH_CH.			
(b)	CH=CH ₂	<i>HI</i> →		(03 marks)
•••••				
(c) (CH_3)	Cl 2 <i>CCH</i> ₂ <i>CH</i> ₃ -	NaOH(aq) Heat		(02 marks)

12. (a) State how the following anhydrous chlorides can be prepared.

		(i)	Aluminium chloride.	(01mark)
		(ii)	Phosphorous (III) chloride.	(01 mark)
	(b)	Write	e equations for the reaction between water and the chlo	orides in (a).
		(i)	Aluminium chloride.	(01½ marks)
		(ii)	Phosphorous (III) chloride.	(01½ marks)
	(c)		e sodium hydroxide solution was added drop-wise untuition of aluminium chloride in water.	til in excess to
		(i)	State what was observed.	(01½ mark)
		(ii)	Write equation(s) for the reaction (s) that took place	. (2½ marks)
	•••••			
	•••••	•••••		
13.	A hy	drocarl	oon Y contains 85.7% carbon and has a density of 2.5	$5gl^{-1}$ at s.t.p.
	(a)	Calcu	ulate the empirical formula of Y .	(02 marks)

• • • • •			
••••			
••••	• • • • • • •		
• • • • •			
••••			
• • • • •			
••••			
(b)		rmine the molecular formula of Y .	(02 marks)
••••	• • • • • • •		
••••			
••••			
(c)	Writ	e the structural formulae of all the possible open	chain isomers of \mathbf{Y} . (1½ marks)
••••			
••••			
(d)	(i)	Ozonolysis of Y and subsequent work-up gave	one compound
(u)	(1)	Identify Y.	$(0^{1/2} mark)$
•••••	,,,,,		
	(ii)	Write an equation to show how Y can be synt 2-ol and indicate a mechanism for the reaction	

•••••		
•••••		
•••••		•••••
•••••	••••••	
	an equation for dissolution of each of the follow State whether the resultant solution is neutral Sodium Sulphide.	
b)	Ammonium Methanoate.	(02 marks)
c)	Phenyl Ammonium Chloride.	(03 marks
d)	Sodium Benzoate.	(02 marks)

15.	Name the reagent(s) that can be used to distinguish between the following
	compounds. In each case state what would be observed when each compound is
	separately treated with the reagent.

(a) and C\equiv C\equiv C\equiv C	(03 marks)
Reagent(s)	
Observation:	
(b) CH_3 and CH_2Br	(03 marks)
Reagent(s)	
Observation:	
(c) \bigcap^{OH} and \bigcap^{OH}	(03 marks)

Observation:												
						• • • • • • • • •						
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •	• • • • • • • • • •		• • • • • • • • •						
			1.1	.								
The table below shows					nization	energy	O.					
some elements in perio	oa (III) o	t the Per	1001C 1 a	ble.								
Element	Na	Mg	Al	Si	P	S						
Atom radius (nm)	0.186	0.160	0.143	0.117	0.110	0.104	0					
First ionization	496	738	577	787	1060	1000						
energy												
$(kj \ mol^{-1})$												
(a) (i) State how	v <mark>atomic</mark>	radius	of the el	ements v	v aries ac	cross the	ľ					
						(01 m)	11					
						(OI III	•					
						(01 11						
			•••••			(01 m						
				•••••	•••••							
(ii) Explain y	your ansv	wers in (a) (i).			(03 m						
(ii) Explain y	our ansv	wers in (a) (i).				•••					
(ii) Explain y	our ansv	wers in (a) (i).									
(ii) Explain y	our ansv	wers in (a) (i).				•					
(ii) Explain y	your ansv	wers in (a) (i).				•••					
(ii) Explain y	your ansv	wers in (a) (i).									
(ii) Explain y	your ansv	wers in (a) (i).									
(ii) Explain y	our ansv	wers in (a) (i).									

(b)	(i)	Explain how atomic radius affects	(02marks)
	• • • • • • • • • • • • • • • • • • • •		
	ii)	Why is the first ionization energy of a magnesium?	(03 marks)
••••			

THE PERIODIC TABLE

. 1	1	T				-						T		1	T		T
1	2	<u> </u>										3	4	5	6	7	8
1.0 H 1																1.0 H	4.0 H
6.9 Li 3	9.0 Be 4	1										10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 No 10
	24.3 Mg 12											27.0 Al 13	1	31.0 P 15	32.1 S 16	35.4 Cl 17	1
39.1 K 19	40.1 Ca 20			50.9 V 23	52.0 Cr 24	54.9 Mn 25	55.8 Fe 26	58.9 Co 27	58.7 Ni 28					74.9 As 33		79.9 Br 35	83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40	92.9 Nb 41			101 Ru 44	1	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56			1	184 W 74	186 Re 75	190 Os 76	1	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89	-	A TY	L L S	2 13 2 13 19 135	4	19 - 45 Th				3 D C D C D C D					2 3
		78		140 Ce 58	141 Pr 59	144 Nd 60	147 Pm 61	150 Sm 62	152 Eu 63	157 Gd 64	159 Tb 65	162 Dy 66	165 Ho 67	167 Er 68	169 Tm 69	173 Yb 70	175 Lu 71
		17.	227 Ac 89		231 Pa 91	238 U 92	237 Np 93				247 Bk 97		Es	Fm	256 Md 101	No	Lw

===END===

WELCOME TO SENIOR SIX, YEAR 2023
This is the last page of the printed paper, Page 17