TRAJECTORIES with COSMOGRAVITY TUTORIAL

J.P. CORDONI 2022/08/08

Geometric frame

Relativity has merged space and time, two notions that were completely distinct in Galilean mechanics. Four numbers are needed to determine an event in the space-time continuum: three for its spatial location (e.g. its Cartesian coordinates $\{x, y, z\}$ or its spherical coordinates $\{r, \theta, \phi\}$) and one for its date (t). The mathematical structure corresponding to this four-dimensional "continuum" is that of **variety**.

Variety: seen closely, a variety looks like R^n (n = 2 on the figure), but this is not necessarily true at the global level.

It should be emphasized that the local similarity with R⁴ stops at the labeling of the points and does not extend to the Euclidean space structure of R⁴. In particular, the choice of coordinate system is completely free.

These notes are from Gourgoulhon-Relativité Générale

In the **Cosmogravity** software the "trajectories" are the geodesics followed by the different particles (baryonic, non-baryonic, photons) represented by their coordinates (r, ϕ) in R^2 as a function of the proper time (τ) of the particles or the time of the distant observer (t).

The distance that would be measured (using the scale of the simulation) between two positions of a particle is obviously not equal to the metric distance between these two positions.

Trajectory of a massive projectile with Schwarzschild metric

Trajectory of a photon with Schwarzschild metric

Example: Photons trajectories

Trajectory of a massive projectile with Schwarzschild metric (non baryonic case)

