Day 3 Lab Manual Part 2

BIVARIATEANALYSIS IN R -COVARIANCE, CORRELATION, CROSSTAB

Exercise: 8

	Reference	Status (Gender	TestNew(OrFollowUp
1	KRXH	Accepted	Female	Test1	New
2	KRPT	Accepted	Male	Test1	New
3	FHRA	Rejected	Male	Test2	New
4	CZKK	Accepted	Female	Test3	New
5	CQTN	Rejected	Female	Test1	New
6	PZXW	Accepted	Female	Test4	Follow-up
7	SZRZ	Rejected	Male	Test4	New
8	RMZE	Rejected	Female	Test2	New
9	STNX	Accepted	Female	Test3	New
10) TMDW	Accepted	Female	Test1	New

- i) Load the dataset and Create a data frame and name it as dataframe1
- ii) Load the function for crosstab

Note: Perform status+gender

Gender

Status Female Male Accepted 5 1 Rejected 2 2

Note: Reference+Status

Status

Reference	Accepted	Rejected
CQTN	0	1
CZKK	1	0
FHRA	0	1
KRPT	1	0
KRXH	1	0
PZXW	1	0
RMZE	0	1
STNX	1	0
SZRZ	0	1
TMDW	1	0

Exercise: 9

- Use Two Categorical Variables and Discover the relationships within a dataset
- ii) Next, using the xtabs() function, apply two variables from "dataframe1 ", to create a table delineating the relationship between the "Reference" category, and the "Status" category.
- iii) Save the file in the name of dataframe2

Exercise: 10

Use the same data frame using three Categorical Variables create a Multi-Dimensional Table Apply three variables from "dataframe1" to create a Multi-Dimensional Cross-Tabulation of "Status", "Gender", and "Test".

Exercise: 11

Row Percentages

The R package "tigerstats" is required for the next two exercises.

- 1) Create an xtabs() formula that cross-tabulates "Status", and "Test".
- 2) Enclose the xtabs() formula in the tigerstats function, "rowPerc()" to display row percentages for "Status" by "Test".

Exercise 12

Column Percentages

- 1) Create an xtabs() formula that cross-tabulates "Status", and "Test".
- 2) Enclose the xtabs() formula in the tigerstats function, "colPerc()" to display row percentages for "Status" by "Test".

VISUALIZATION IN R

13. Write a program for creating a pie-chart in R using the input vector(21,62,10,53). Provide labels for the chart as 'London', 'New York', 'Singapore', 'Mumbai'. Add a title to the chart as 'city pie-chart' and add a legend at the top right corner of the chart.

14. Create a 3D Pie Chart for the dataset "political Knowledge" with suitable labels, colours and a legend at the top right corner of the chart.

15. Write a program for creating a bar chart using the vectors H=c(7,12,28,3,41) and M=c("mar", "apr", "may", "jun", "jul"). Add a title to the chart as "Revenue chart".

16. Make a histogram for the "AirPassengers" dataset, start at 100 on the x-axis, and from values 200 to 700, make the bins 200 wide

17.Create a Boxplot graph for the relation between "mpg"(miles per galloon) and "cyl"(number of Cylinders) for the dataset "mtcars" available in R Environment.

RGui (32-bit)
File Edit View Misc Packages Windows Help - o × Error in hist.default(AirFassengers, breaks = seq(200, 700, by = 200), :
some 'x' not counted; maybe 'breaks' do not span range of 'x'
> # Load the AirFassengers dataset
> data(AirFassengers) Boxplot of MPG by Number of Cylinders 30 25 Miles per Gallon 20 > > \$ Create the boxplot > boxplot(mpg - cyl, data = mtcars, xlab = "Number of Cylinders", ylab = "Miles\$ + main = "Boxplot of MPG by Number of Cylinders") 5 9 Number of Cylinders