Part 1:

```
1) Bottom up version:
   int** bottomupSW(char* X, char* Y, int n, int m, int** H, int** P)
      int i, j;
      int p1, p2, p3;
      for(i=0; i<n; i++)
        H[i][0] = P[i][0] = 0;
      for(j=0; j<m; j++)
        H[0][i] = P[0][i] = 0;
      for(i=0; i<n; i++)
        for(j=0; j<m; j++)
           if(X[i] == Y[j])
              p1 = H[i][j] + 2;
              else
                p1 = H[i][j] -1;
           p2 = H[i][j+1] -1;
           p3 = H[i+1][j] -1;
           //H[i+1][j+1] = max(p1,p2,p3);
           if(p1 \ge p2 \&\& p1 \ge p3)
                                  H[i][j]=p1;
                           else if(p2>=p1 && p2>=p3)
                                  H[i][j]=p2;
                           else if(p3 \ge p1 \&\& p3 \ge p2)
                                  H[i][j]=p3;
           if(H[i+1][j+1] == p1)
              P[i+1][j+1] = '@';
              else
                if(H[i+1][j+1] == p2)
                   P[i+1][j+1] = '|';
                   else
                     P[i+1][j+1] = '#';
              }
```

```
}
     return H;
2) Top down with memorization:
   int topdownSW(char* X, char* Y, int m, int n, int** ops)
     if (m == 0 || n == 0)
        return 0;
     if (ops[m-1][n-1] != INT MIN)
        return ops[m-1][n-1];
     if (X[m-1] == Y[n-1]) {
        ops[m-1][n-1] = 2 + topdownSW(X, Y, m - 1, n - 1, ops);
        return ops[m-1][n-1];
      }
     else {
       int t = max((topdownSW(X, Y, m, n - 1, ops)-1),
                      (topdownSW(X, Y, m - 1, n, ops)-1));
       ops[m-1][n-1]=max(t,topdownSW(X, Y, m-1, n-1,ops)-1);
        return ops[m-1][n-1];
   }
3) Print-Seq-Align-X and Print-Seq-Align-Y:
   void printSeqAlignX(char* X,int** P,int n,int m)
   {
     if(P[n][m] == '@')
     printSeqAlignX(X,P,n-1,m-1);
     cout \ll X[n-1];
        else
          if(P[n][m] == '#')
             printSeqAlignX(X,P,n,m-1);
             cout << "-";
             else
               printSeqAlignX(X,P,n-1,m);
```

```
cout \ll X[n-1];
         }
    }
}
void printSeqAlignY(char* Y,int** P,int n,int m)
  if(P[n][m] == '@')
  printSeqAlignY(Y,P,n-1,m-1);
  cout \ll Y[n];
    else
       if(P[n][m] == '#')
       printSeqAlignY(Y,P,n,m-1);
       cout << "-";
         else
           printSeqAlignY(Y,P,n-1,m);
            cout \ll Y[n];
    }
}
```

4) Find the maximum alignment for **X=dcdcbacbbb and Y=acdccabdbb** by using Smith-Waterman algorithm. Execute the pseudocode algorithm and fill the necessary tables H and P in a bottom-up fashion. Reconstruct the strings X' and Y' using the tables H and P.

X/Y		A	C	D	C	C	A	В	D	В	В
	0	0	0	0	0	0	0	0	0	0	0
D	0	-1	-1	2	1	0	-1	-1	2	1	0
C	0	-1	1	1	4	3	2	1	1	1	0
D	0	-1	0	3	3	3	2	1	3	2	1
C	0	-1	1	2	5	5	4	3	2	2	1
В	0	-1	0	1	4	4	4	6	5	4	4
A	0	2	1	0	3	3	6	5	5	4	3
C	0	1	4	3	2	5	5	5	4	4	3
В	0	0	3	3	2	4	4	7	6	6	6
В	0	-1	2	2	2	3	3	6	6	8	8
В	0	-1	1	1	1	2	2	5	5	8	10
			C	D	C	C		В		В	В

Solution: <CDCCBBB>.

Part 2:

1) Show, by means of a counter example, that the following "greedy" strategy does not always determine an optimal way to cut rods. Define the **density** of a rod of length *i* to be *pi/i*, that is, its value per inch. The greedy strategy for a rod of length *n* cuts off a first piece of length *i*, where $1 \le I \le I$, having maximum density. It then continues by applying the greedy strategy to be remaining piece of length *n-i*.

Counter example for greedy strategy; Let n be 5 which will be the length of the rod.

i → number	1	2	3	4	5
of cuts					
pi → price	2	20	33	36	40
per inch					
pi/i →	2	10	11	9	8
density					
Solution	5(1) * 2 – 10	2(2) +1 – 42	3(1) + 1+1 -	4(1)+1-38	5 – 40
		42	37		4+1-38
			3(1) + 2(1)		3+2-53
			- 53		2+2+1-42
Optimal					3+2=53
Solution					

According to greedy strategy, without cutting the rod, the total value would be 40. If we cut the rod into two, 4 inch and 1 inch, the value would be 38. If we cut the rod, 3 inch and 2 inches, the value would be 53. If it is cut into 3, 2-inch, 2 inch and 1 inch, value would be 42. **Hence the optimal solution is 53.**

2) The Fibonacci numbers are defined by recurrence(3.22). Give an O(n) time dynamic-programming algorithm to compute the n-th Fibonacci number. Draw the subproblem graph. How many vertices and edges are in the graph?

Fibonacci(n)

Let
$$fib(0...n)$$
 be a new array
 $fib(0) = fib(1) = 1$
For $i = 2$ to n
 $fib(i) = fib(i-1) + fib(i-2)$
Return $fib(n)$

The number of vertices in the tree will follow the recurrences. Each number in the sequence is sum of two previous numbers in the sequence.

$$V(n) = 1 + v(n-2) + v(n-1).$$

The initial conditions are v(0) = v(1) = 1.

The above graph shows that

$$V(n) = 1 + (2 * fib(n-2) - 1) + (2 * fib(n-1)-1) = 2 * fib(n) -1$$

Thus, subproblem graph consists of n+1 vertex.

The number of edges will satisfy the recurrence;

$$E(n) = 2 + E(n-1) + E(n-2)$$

And the base cases are E(0) = E(1) = 0.

By induction,

$$E(n) = 2*fib(n) - 2$$

Thus, the subproblem graph has 2n - 2 edges.

3) Determine an LCS of (1,0,0,1,0,1,0,1) and (0,1,0,1,1,0,1,1,0).

The selected cell is shaded with grey colour. The LCS is <010101>.

S		0	1	0	1	1	0	1	1	0
	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1	1	1	1
0	0	1	1	2	2	2	2	2	2	2
0	0	1	1	2	2	2	3	3	3	3
1	0	1	2	2	3	3	3	4	4	4
0	0	1	2	3	3	3	4	4	4	5
1	0	1	2	3	4	4	4	5	5	5
0	0	1	2	3	4	4	5	5	5	6
1	0	1	2	3	4	5	5	6	6	6
LCS		0	1	0		1	0		1	