Proyecto Raspberry Pi: Estación Meteorológica

David Fernández Torres

Master de Ingeniería Industrial

Introducción

Una estación meteorológica es un aparato electrónico que es capaz de medir diferentes variables relacionadas con la climatología.

Temperatura, Humedad

Viento, Presión, Predicción del tiempo

Objetivos

- Conseguir realizar una estación con los siguientes requisitos básicos:
 - Variables a medir:

Temperatura

Presión

Humedad

- Mostrar los datos por pantalla en la Raspberry.
- Esperar cada cierto tiempo para tomar muestras
- Almacenar los datos en formato tabla Excel.

Sense Hat

Humedad

Presión

Temperatura

LED 8x8

Flujo esquemático

Establecemos un tiempo de muestreo

Subimos los valores a Google Drive

Iniciamos variables

Realizamos login con Google Drive

Leemos valores de los sensores

Mostramos por ambas pantallas los valores

Escribimos en la tabla nuestras mediciones y la hora

Solución implementada. Paquetes

Si queremos que todo funciones necesitamos instalar los siguientes paquetes:

- Pycrypto
- Python_openss
- pyopenssl
- Oauth2client (versión 1.5.2)
- gspread

Solución implementada. Medidas

Para medir las magnitudes usaremos las funciones vistas en las prácticas:

- Temperatura: sense.get_temperatura()
- Presión: sense.get_pressure()
- Humedad: sense.get_humidity()
- Usaremos la función round() para redondear estos valores y no tener tantos decimales.

Solución implementada. Pantalla

- Para la pantalla usaremos la función sense.show_mesage. Cada variable la pondremos de un color para reconocerla mejor.
- También mostraremos en el Shell del programa los valores que obtenemos con la función Print.
- La espera entre mediciones la ejecutaremos con time.sleep()

Solución implementada. Datos

Almacenaremos los datos en forma de tabla de Excel. Para ello usaremos Google Drive.

Crear un protocolo de conexión entre la Raspberry y G. Drive, esto lo hacemos con la herramienta G. Developers.

Resultados

- Hemos conseguido lo que buscábamos:
 - Somos capaces de medir Temperatura, Presión y Humedad.
 - Mostramos los valores por pantalla de manera clara.
 - Controlamos el tiempo de muestreo.

```
La Temperatura ambiente (C) es de: 31.2

La Humedad es de: 41.6

La Presión es de: 1020.1

Se introdujo una nueva fila con los datos en el archivo raspberry

La Temperatura ambiente (C) es de: 31.2

La Humedad es de: 40.9

La Presión es de: 1020.0

Se introdujo una nueva fila con los datos en el archivo raspberry
```

Resultados

Guardamos la información en Internet y lo podemos consultar estemos dónde estemos.

JX					
	A	В	С	D	E
1	Hora	Temperatura	Humedad	Presión	
2		31.00	35.30	1023.8	Máximo
3		29.00	32.40	1023.5	Minimo
4		30.07	33.24	1023.6	Media
5	2017-01-25 21:20:40.591555	29.00	35.00	1023.7	
6	2017-01-25 21:21:44.677746	30	35.00	1023.8	
7	2017-01-25 21:22:48.610268	29.20	35.30	1023.7	
8	2017-01-25 22:25:25.369479	31.00	32.60	1023.7	
9	2017-01-25 22:35:54.438830	30.00	33.10	1023.6	
10	2017-01-25 22:37:59.151104	30.00	32.40	1023.6	
11	2017-01-25 22:39:01.580094	30.40	32.70	1023.6	
12	2017-01-25 22:42:08.186793	30.30	33.20	1023.5	

Conclusiones

- Se ha podido crear una aplicación de utilidad real en la Raspberry Pi.
- Posibles campos de utilización: asegurarse de que un lugar esté siempre en unas condiciones concretas como neveras industriales, o en procesos donde las condiciones ambientales no deben cambiar.
- Puntos a mejorar: Utilización de sensores aún mas precisos. Comprar otros tipos de sensores como de velocidad y dirección del viento, luminosidad...

i GRACIAS POR SU ATENCIÓN!