

Vector Congress 2018

Attack Surface and Attack History

Automotive megatrends

~470 million connected vehicles by 2025^[1]

~80 million level 4/5 autonomous vehicles by 2030^[1]

>100 million lines of code per vehicle
Facebook: ~60 million lines of code by 2015[2]

Increasing potential for safety-critical cyber-attacks!

Attacks with safety-critical effects

2010 ♦ *local*: CAN access

2011 ♦ *local*: MP3; *remote*: Bluetooth, GSM

2012

2013 ♦ *local*: OBD-II

2014 ♦ remote: OBD-II dongle

remote: GSM, OBD-II dongle
1. cybersecurity recall (1.4M vehicles)

2016 ♦ local: OBD-II; remote: details not published

2017 ♦ local: OBD-II; remote: details not published

2018 ♦ *local*: OBD-II, USB; *remote*: Bluetooth, GSM

^[1] pwc, and strategy&. 2017. "The 2017 Strategy& Digital Auto Report: Fast and furious: Why making money in the "roboconomy" is getting harder." Accessed March 04, 2018. https://www.strategyand.pwc.com/media/file/2017-Strategyand-Digital-Auto-Report.pdf.

^{[2] &}quot;McCandless, David, Pearl Doughty-White, and Miriam Quick. 2015. "Codebases: Millions of lines of code." https://informationisbeautiful.net/visualizations/million-lines-of-code/."

Five Steps to Compromise an ECU

Securing the E/E Architecture – Defense in Depth (1.)

Prevent/restrict remote access

Secure vehicle-external interfaces

▶ TLS, IPsec

Firewalling

White-listing (inbound/outbound traffic)

Securing the E/E Architecture – Defense in Depth (2.)

Prevent/restrict access to in-vehicle networks

Isolation of execution context

▶ OS, Hypervisor

Policing

Minimum rights

Firewalling

White-listing

Securing the E/E Architecture – Defense in Depth (3.)

Domain isolation

E/E architecture design

Security development process

Message forwarding/routing

► Ethernet: VLANs

Securing the E/E Architecture – Defense in Depth (4.)

Restrict/limit access to single ECUs

Firewalling

Secure time

▶ Time synchronization

Secure messaging

▶ SecOC, TLS, IPsec

Securing the E/E Architecture – Defense in Depth (5.)

Secure ECU hardware and software

Secure firmware

Secure diagnostics

▶ Policing, SEM

Key management

Root of trust

Crypto, HSM

Applicability and Availability on AUTOSAR Classic

	Mechanism	4.4	AUTOSAR Classic 4 MICROSAR (<i>Vector-specific)</i>		
	Secure vehicle-external interfaces	3/4	TLS, IPsec		
野	Firewalling	1/2	Static configuration, EthFW, CanFW		
	Policing	n/a	(Hard-coded and compiled)		
	Isolation of execution context	1/2	OS, Hypervisor (PikeOS)		
X	Message forwarding/routing	✓	VLAN, switch configuration, static routing		
	Secure time	3/4	Time synchronization		
	Secure messaging	✓	SecOC, TLS, IPsec		
Ţ.	Secure firmware	×	Secure boot/secure update		
	Secure diagnostics	✓	Security access, policing, SEM		
	Key management	1/2	Crypto stack, customer specific		
	Root of trust	1/2	Crypto stack, veHsm		

Applicability and Availability on AUTOSAR Adaptive

	Mechanism	AUTOSAR Adaptive		
	i recitatiisiii	18.10	Library	MICROSAR (<i>Vector-specific)</i>
	Secure vehicle-external interfaces	✓	TLS, DTLS, IPsec	
野	Firewalling	n/a	(netfilter/iptables)	
	Policing	1/4	OS	EM, IAM
	Isolation of execution context	1/2	OS	Hypervisor (PikeOS)
X	Message forwarding/routing	1/2	VLAN	IAM
	Secure time	×		
	Secure messaging	✓	TLS, DTLS, IPsec	Communication (SecOC)
Î	Secure firmware	1/2		O UCM, secure boot
	Secure diagnostics	1/4		Diagnostics (sec. access)
	Key management	1/2		Cryptography, cust. spec.
	Root of trust	1/2		Cryptography, veHsm

Securing the E/E Architecture – Extended Defense in Depth

Besides prevention, intrusion detection is required to identify cyber-attacks

Automotive observer/intrusion detection system with backend connection for fleet analytics

- Multi-instance
 - > Only one instance depicted
- Network- and host-based anomaly detection
 - > Static checks and machine learning
- Additional challenges for dynamic systems like AUTOSAR Adaptive
 - The system behavior may change during operation and due to user interaction
 - 1. possibility: Intrusion detection based on application-independent information only
 - > 2. possibility: Intrusion detection has to be adapted as well or adapts itself

Summary and Outlook

Various security mechanisms are available and standardized in AUTOSAR Classic and AUTOSAR Adaptive

- Continuous improvement and extension
- ► A summary for both platforms is included in the handout

Besides preventive measures, intrusion detection is required

- ▶ All defense barriers will eventually be broken
- Provide insights to develop countermeasures

Modern E/E architectures are already much more secure than in the past ...

... but there are still security topics and mechanisms to be addressed!

Your questions are welcome!

Author: Weber, Marc Vector Germany