1 Cheat Sheet Algebra 1

Was	Definition	Beschreibung
Homomorphismus	$\varphi:G o G'$	$\varphi(e) = e' \text{ und } \forall a, b \in G : \varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$
Monomorphismus	φ injektiver Homomorphismus	$\ker(\varphi) = \{e\}$
Epimorphismus	φ surjektiver Homomorphismus	$im(\varphi) = G'$
Isomorphismus	φ bijektiver Homomorphismus	injektiv und surjektiv
Endomorphismus	$\varphi:G o G$	bleibt in derselben Gruppe
Automorphismus	φ bijektiver Endomorphismus	
Linksnebenklasse	$gH \subseteq G$	Weiter ist äquivalent: $gH = g'H, gH \cap g'H = \emptyset,$
		$g \in g'H, g'^{-1}g \in H$
G/H	$gH g \in G$	analog für Rechtsnebenklassen.
		Bijektion zwischen LNK und RNK.
G:H	$ G/H = H \backslash G $	Index von H in G
Satz von Lagrange	$ G = H \cdot G:H $	nur für endliche G
Normalteiler	$\forall g \in G : gH = Hg$	gH ist die von g bestimmte Nebenklasse von H in G .
$N \triangleleft G$	$mit H \leq G$	G abelsch \Rightarrow Jede Untergruppe ist Normalteiler.