EE6367: Topics in Data Storage and Communications

2023

Lecture 4: 13 September 2023

Instructor: Shashank Vatedka Scribe: Gautam Singh

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

4.1 Lossy Compression, Quantization

We require to communicate $X^d \in \mathbb{R}^d$. To do so, it is encoded as $c^k \in \{0,1\}^k$. Suppose the decoded quantity is $\hat{X}^d \in \mathbb{R}^d$. Here, we have k = dR, that is, k is linearly dependent on d. The average distortion is given by

$$L = \sum_{i=1}^{k} \mathbb{E}\left[l\left(X_{i}, \hat{X}_{i}\right)\right] \tag{4.1}$$

and the mean-squared-error is given by

$$MSE(=) \sum_{i=1}^{n} \mathbb{E}\left[\left(X_i - \hat{X}_i\right)^2\right]. \tag{4.2}$$

4.1.1 Quantization of Real Numbers

Consider the case when d=1. Let $X \sim f_X$. A possible encoding function could be

$$c = \operatorname{Enc}(X) = \begin{cases} 1 & X \ge \mathbb{E}[X] \\ 0 & X < \mathbb{E}[X] \end{cases}. \tag{4.3}$$

The best decoding function is

$$\operatorname{Dec}(X) = \begin{cases} \mathbb{E}[X|X \geqslant \mathbb{E}[X]] & c = 1\\ \mathbb{E}[X|X < \mathbb{E}[X]] & c = 0 \end{cases}$$
 (4.4)

Theorem 4.1. For any $\alpha \in \mathbb{R}$ and random variable X,

$$\mathbb{E}\left[\left(X-\alpha\right)^{2}\right] \geqslant \operatorname{Var}\left(X\right) \tag{4.5}$$

with equality iff $\alpha = \mathbb{E}[X]$.

Proof. We have,

$$\mathbb{E}\left[\left(X - \alpha\right)^{2}\right] = \mathbb{E}\left[\left[\left(X - \mathbb{E}\left[X\right]\right) + \left(\mathbb{E}\left[X\right] - \alpha\right)\right]^{2}\right] \tag{4.6}$$

$$= \operatorname{Var}(X) + (\mathbb{E}[X] - \alpha)^{2} \geqslant \operatorname{Var}(X) \tag{4.7}$$

with equality iff $\alpha = \mathbb{E}[X]$.

Using Theorem 4.1, we see that (4.4) is indeed the minimum mean-squared error (MMSE) estimator of X. This gives us the following.

Theorem 4.2. Given intervals $I_i, 1 \le i \le k$, the optimal decoder is

$$\hat{X} = \hat{x}_i = \mathbb{E}\left[X|X \in I_i\right]. \tag{4.8}$$

The points \hat{x}_i are called **reconstruction points**.

4.1.2 Optimal Encoder Given Reconstruction Points

Suppose the reconstruction points $\{\hat{x}_i\}_{i=1}^{2^k}$ are given. We require to design an encoder that minimizes the MSE.

Theorem 4.3. Given the reconstruction points $\{\hat{x}_i\}$, the encoder

$$g^* \triangleq \arg\min_{i} \left(x - \hat{x}_i \right)^2 \tag{4.9}$$

is optimal in the MSE sense.

Proof. Consider any encoder g. Then, by the definition (4.9),

$$MSE(g) - MSE(g^*) = \int_{-\infty}^{\infty} f_X(x) \left[(x - g(x))^2 - (x - g^*(x))^2 \right] \ge 0$$
 (4.10)

which implies $MSE(g) \ge MSE(g^*)$. Additionally, the intervals are

$$I_j \triangleq \left(\frac{\hat{x}_{j-1} + \hat{x}_j}{2}, \frac{\hat{x}_j + \hat{x}_{j+1}}{2}\right)$$
 (4.11)

where we define $\hat{x}_{-1} = -\infty$ and $\hat{x}_{2^k+1} = \infty$.

4.2 Lloyd-Max Algorithm

Using Theorem 4.2 and Theorem 4.3, we obtain the Lloyd-Max Algorithm as follows.

- 1. Choose $I_i, 1 \leq i \leq 2^k$.
- 2. Choose the best \hat{x}_i for the I_i .
- 3. Choose the best I_i for the \hat{x}_i .
- 4. Repeat until the decrease in MSE is small enough.