MATHEMATICAL REASONING

ASESOR ÍA

ASESORÍA III BIMESTRE

Se tiene un tronco de pirámide de base cuadrada que ha sido formada con esferitas. Si en la base inferior y superior se cuentan 81 y 441 esferitas; respectivamente, ¿Cuántas esferitas se cuentan entre las dos bases?

Resolución:

$$S = 10^{2} + 11^{2} + 12^{2} + 13^{2} + \dots + 20^{2}$$

$$S = \frac{{}_{20}^{10}({}_{21}^{7})(41)}{{}_{32}^{7}} - \frac{{}_{32}^{7}({}_{10}^{10})(19)}{{}_{32}^{7}}$$

$$S = 2870 - 285$$

$$S = 2585$$

$$\therefore 2585$$

Halle el valor de la suma límite de la siguiente serie geométrica decreciente:

$$S = \frac{8}{27} + \frac{2}{9} + \frac{1}{6} + \frac{1}{8} + \frac{3}{32} + \frac{9}{128} + \dots \infty$$

Hallando la razón geométrica:

$$q = \frac{\frac{1}{8}}{\frac{1}{6}} \longrightarrow q = \frac{6}{8} \longrightarrow q = \frac{3}{4}$$

Recordemos:

$$S_{limite} = \frac{t_1}{1 - q}$$

Resolución:

$$S_{limite} = \frac{\frac{8}{27}}{1 - \frac{3}{4}} \longrightarrow S_{limite} = \frac{\frac{8}{27}}{\frac{1}{4}}$$

$$S_{limite} = \frac{32}{27}$$

En una oficina 1/3 de los trabajadores son mujeres, 1/2 de las mujeres son 1/3 casadas de casadas tienen hijos. Si los 3/4 de los hombres son casados y los 2/3 de los casados tienen hijos, ¿qué parte de los trabajadores son los varones que no tienen hijos?

 $\frac{VARONES\ QUE\ NO\ TIENEN\ HIJOS}{TOTAL\ TRABAJADORES} =$

Sea el total de trabajadores: 36

		CASADOS		
		SOLTEROS	SIN CON	
	VARONES	6	6 1812	24
	MUJERES	6	4 6 2	12

$$\frac{VARONES\ QUE\ NO\ TIENEN\ HIJOS}{TOTAL\ TRABAJADORES} = \frac{12}{36} = \frac{1}{3}$$

01

PROBLEMA 4

Dos caños, A y B, pueden llenar un tanque en 12 horas; B y C lo pueden llenar en 10 horas; A y C, en 15 horas. Si se abren los tres caños al mismo tiempo estando el tanque lleno en su octava parte, ¿en cuánto tiempo completaría el llenado del tanque?

Resolución:

Piden el tiempo del llenado de los 7/8 del tanque.

En 1h llenan:

$$\frac{1}{A} + \frac{1}{B} = \frac{1}{12}$$

$$\frac{1}{B} + \frac{1}{C} = \frac{1}{10}$$

$$\frac{1}{A} + \frac{1}{C} = \frac{1}{15}$$

$$\frac{1}{A} + \frac{1}{C} = \frac{1}{15}$$

$$2\left(\frac{1}{A} + \frac{1}{B} + \frac{1}{C}\right) = \frac{15}{60}$$

$$\frac{1}{A} + \frac{1}{C} = \frac{1}{10}$$

$$\frac{1}{A} + \frac{1}{C} = \frac{1}{15}$$

$$\rightarrow t_{llenado} = 8h$$

:
$$t_{llenado\ de\ los\ 7/8} = \frac{7}{8}(8) = \frac{7}{8}$$

recipiente hay una cantidad desconocida de canicas, de las cuales el 75% son de color rojo y las demás son blancas. Si se triplica las blancas y se disminuye en 20% a las rojas. Al final ¿cuál es el porcentaje de las rojas respecto del a las blancas?

Resolución:

01

Piden el % de rojas respecto a las blancas al final.

¿Qué tanto por ciento del hexágono regular está sombreado?

Resolución:

◎1

Piden el % sombreado del hexágono regular.

%Sombreado =
$$\frac{9}{24}(100\%) = 37,5\%$$

01

¿Ganar el 20% del precio de costo equivale a ganar el X % del precio de venta. ¿Cuánto vale X?

Un artículo se vendió previo descuento del 20 %, pero aún así se ganó el 20 % del costo. Si el costo hubiera sido el 30 % menos y se hubiera fijado para la venta al público el precio de lista anterior, ¿qué descuento se tendría que aplicar si se quisiera obtener el triple de la ganancia?

Resolución:

01

Piden el descuento a aplicar para obtener la misma ganancia.

ANÁLISIS DE GRÁFICOS Y TABLAS

PROBLEMA 9 De un grupo de 1440 estudiantes se tiene la siguiente información

¿Cuántos alumnos estudian en la facultad de administración de la **UNMSM?**

ALUMNOS
$$\frac{160^{\circ}}{360^{\circ}}(1440) = 640$$

ADMINISTRACIÓN:
$$\frac{72}{360}$$
 (640) $\frac{640}{5} = 128$

Se realizó una encuesta a los estudiantes que piensan postular a una de las tres universidades que se indican en el gráfico.

De cada 100 estudiantes, 32 son mujeres. ¿En cuánto excede el numero de varones que postulan a la UNI del numero de mujeres que postulan a la UNMSM?

Resolución:

De cada 100 estudiantes, 32 son mujeres.

$$\frac{Mujeres}{Varones} = \frac{32}{68} = \frac{8}{17}$$

Del dato planteamos:

$$\frac{88+40+2a-192}{192+a+192} = \frac{8}{17} \longrightarrow \frac{2a-64}{a+384} = \frac{8}{17}$$

$$34a - 1088 = 8a + 3072$$

 $26a = 4160 \rightarrow a = 160$

Piden:

varones que postulan a la UNI: 160

mujeres que postulan a la UNMSM: 128

$$160 - 128 = 32$$

MÁXIMOS Y MÍNIMOS

Calcule el máximo valor de M en:

$$M = \frac{40}{x^2 + 8x + 21}$$

NOTA:

Calculamos el mínimo valor de D completando cuadrados.

Resolución:

01

Para que M tenga el máximo valor el denominador $x^2 + 8x + 21$ debe ser mínimo :

Calculamos el mínimo valor del denominador(D)

$$D_{min} = x^{2} + 2x(4) + (4)^{2} + 5$$

$$D_{min} = (x + 4)^{2} + 5$$

$$D_{min} = 5$$

$$M_{max} = \frac{40}{5}$$

El gráfico muestra el plano de un futuro jardín de una casa con sus respectivas dimensiones. ¿ Cual sería el área máxima de dicho jardín?

