Considere os seguintes quadros inicial e óptimo de um problema de programação linear.

		x_1	x_2	x_3	s_1	s_2	4	
•	s_1	1	2	4	1	0	3 8	
	s_2	3	2 4	3	0	1	8	
		-2	-3	-3	0	0	0	

	x_1	x_2	x_3	s_1	s_2	
x_1	1	0	-5	-2	1 -1/2	2
x_2	0	1	9/2	3/2	-1/2	1/2
	0	0	1/2	1/2	1/2	11/2

a) Determine as variações admissíveis para o coeficiente b_2 , igual a 8, sem haver alterações

nas variáveis básicas óptimas.

$$b_2 = ?$$
 $b' = \begin{bmatrix} 3 \\ 8 + \alpha \end{bmatrix}$ sem have alterages $\begin{bmatrix} 3'b > 0 \end{bmatrix}$

$$B^{-1}b = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 3 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} -6+8+\alpha \\ \frac{9}{2}-4-\frac{\alpha}{2} \end{bmatrix} = \begin{bmatrix} 2+\alpha \\ \frac{1}{2}-\frac{1}{2} \end{bmatrix} \geqslant 0$$

$$2 + 2 > 0 \land \frac{9}{2} - \frac{2}{2} > 0 = 2 > 0 \Rightarrow 2 < 1$$

$$b_2 \in [6,9] \rightarrow b_2 \in [8-2;8+1]$$

Considere os seguintes quadros inicial e óptimo de um problema de programação linear.

					•	
	x_1	x_2	x_3	s_1	s_2	
s_1	1	2	4	1	0	3
s_2			4 3		1	8
	-2	-3	-3	0	0	0

	x_1	x_2	x_3	s_1	s_2	
x_1	1	0	-5	-2	1	2
x_2	0	1	9/2	3/2	1 -1/2	1/2
	0				1/2	

b) Determine as variações admissíveis para o coeficiente c_1 , igual a 2, sem haver alterações nas variáveis básicas óptimas.

C1 básica -> altera também o Cb

Para não haver alterações, o produto das matrizes tem de ser não negativo

$$c_B B^{-1} A - c$$
 $c_B B^{-1}$ \geq

Considere os seguintes quadros inicial e óptimo de um problema de programação linear.

	1					ı
	x_1	x_2	x_3	s_1	s_2	
s_1	1	2	4	1	0	3 8
s_2	3	4	4 3	0	1	8
	-2	-3	-3	0	0	0

	x_1	x_2	x_3	s_1	s_2	
x_1	1	0	-5	-2	1	2
x_2	0	1	9/2	3/2	1 -1/2	1/2
	0	0	1/2	1/2	1/2	11/2

b) Determine as variações admissíveis para o coeficiente c_1 , igual a 2, sem haver alterações nas variáveis básicas óptimas.

Considere os seguintes quadros inicial e óptimo de um problema de programação linear.

					•	
	x_1	x_2	x_3	s_1	s_2	
s_1	1	2	4	1	0	3
s_2	3	4	4 3	0	1	8
	-2	-3	-3	0	0	0

	x_1	x_2	x_3	s_1	s_2	
x_1	1	0	-5	-2	1	2
x_2	0	1	9/2	3/2	1 -1/2	1/2
	0	0	1/2	1/2	1/2	11/2

b) Determine as variações admissíveis para o coeficiente c_1 , igual a 2, sem haver alterações nas variáveis básicas óptimas.

$$C_{8}B^{-1} = [2+x 3][-2 1] = [4-2x + \frac{9}{2} 2+x - \frac{3}{3}]$$

$$\begin{bmatrix} 3/2 & -1/3 \end{bmatrix}$$

$$\begin{cases} -2 \times + \frac{1}{3} & > 0 \\ \times + \frac{1}{3} & > 0 \end{cases} \begin{cases} -2 \times > -\frac{1}{2} \\ \times > -\frac{1}{2} \end{cases} \begin{cases} \times \leq \frac{1}{4} \\ \times > -\frac{1}{2} \end{cases}$$

Considere os seguintes quadros inicial e óptimo de um problema de programação linear.

	ı					1
	x_1	x_2	x_3	s_1	s_2	
s_1	1	2	4	1	0	3
s_2	3	4	4 3	0	1	8
	-2	-3	-3	0	0	0

	x_1	x_2	x_3	s_1	s_2	
x_1	1	0	-5	-2	1	2
x_2	0	1	9/2	3/2	1 -1/2	1/2
	0	0	1/2	1/2	1/2	11/2

c) Determine as variações admissíveis para o coeficiente c_3 , igual a 3, sem haver alterações nas variáveis básicas óptimas.

$$C_3 = ?$$

$$C = \begin{bmatrix} 2 & 3 & 3+1 \end{bmatrix}$$

$$\frac{1}{3} - \sqrt{30} = \sqrt{5} = \frac{1}{2}$$
 $(3 \in]-\infty, 3 + \frac{1}{2}]$ $(3 \in]-\infty, \frac{1}{2}]$