Tarea 5
Gonzalez Solis Diego Moises
5 de noviembre de 2019







# NOMBRE DEL ALUMNO:

Diego Moisés González Solís

CARRERA:

Ing. Mecatrónica

MATERIA:

Cinemática de Robots

**GRADO Y GRUPO:** 

7°-B

CUATRIMESTRE: Septiembre-Diciembre

NOMBRE DEL DOCENTE:

Carlos Enrique Moran Garabito





## **CONVENCION DENAVIT-HARTENBERG**

# Asignación de sistemas de referencia

· Seguir las reglas de D-H.

# Identificación de los parámetros D-H

Tabla: θi, di, ai, αi.

# Algoritmo Denavit-Hartenberg:

# Obtención de las matrices

Para cada fila de la tabla anterior.

$${}_{i}^{i-1}A = \begin{bmatrix} C \theta i & -C \alpha i S \theta i & S \alpha i S \theta i & ai C \theta i \\ S \theta i & C \alpha i C \theta i & -S \alpha i C \theta i & ai S \theta i \\ 0 & S \alpha i & C \alpha i & di \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

## Matrices de localización del....

...extremo del robot respecto a la base.

$$_{i}^{0}T = _{1}^{0}A_{2}^{1}A_{3}^{2}A....i_{i}^{i-1}A$$

Se trata de un procedimiento sistemático para describir la estructura cinemática una de cadena articulada constituida por articulaciones con. un solo grado de libertad. Para ello, a cada articulación se le asigna un Sistema de Referencia Local con origen en un punto  $Q_i$ ortonormales  $\{X_i, Y_i, Z_i, \}$ , comenzando con un primer S.R fijo e inmóvil los eies  $\{X_0, Y_0,$ por anclado a un punto fijo  $Q_0$  de la Base sobre la que está montada toda la estructura de la cadena. Este Sistema de Referencia no tiene por qué ser el Universal con origen en (0,0,0) y la Base canónica.





### **CINEMATICA DE ROBOTS**

#### TAREA 5

# Asignación de Sistemas de Referencia

Las articulaciones se numeran desde  ${\bf 1}$  hasta n. A la articulación i -ésima se le asocia su propio eje de rotación como Eje Zi-  ${\bf 1}$ , de forma que el eje de giro de la  $1^a$  articulación es  $Z{\bf 0}$   ${\bf y}$  el de la n-ésima articulación, Zn-  ${\bf 1}$ . En la Figura adjunta se muestra la estructura del Robot PUMA junto con sus articulaciones  ${\bf y}$  ejes de rotación.



Para la articulación -ésima (que es la aue gira alrededor de Zi-1 la ), elección del origen de coordenadas Qi y del Eje Xi sigue reglas muy precisas en función geometría de los brazos articulados. el Eje Yi por su parte, se escoge para que el sistema { X i, Y i, Ζ sea dextrógiro. La especificación de cada Eje Xi depende de la relación espacial entre Zi y Zi- 1, distinguiéndose 2 casos:

## 1-Zi y Zi-1 no son paralelos

**Entonces** existe única una recta perpendicular ambos. cuya intersección con los ejes proporciona su mínima distancia (que puede ser 0). Esta distancia, ai medida desde el eje Zi- 1 hacia el eje Zi (con su de los parámetros asociados a la articulación La distancia di desde Qi- 1 a la intersección perpendicular común entre Zi- 1 y Zi con Zi-1 es el de los parámetros. En este caso, el Eje Xi es esta recta, siendo el sentido





Up

#### **CINEMATICA DE ROBOTS**

#### TAREA 5

positivo el que va desde el Eje **Zi-** 1 al **Zi** si **ai >** 0. El origen de coordenadas **Qi** es la intersección de dicha recta con el Eje **Zi**.

## 2-Z<sub>i</sub> y Z<sub>i</sub>—1son paralelos

En esta situación Xi se el Eje toma en el plano conteniendo Zi-1 Zi perpendicular Ambos. а У У a. punto conveniente origen es cualquier eje Zi Qi del la perpendicular ΕI parámetro ai es. como antes, distancia ejes Zi- 1 y Zi , y di es la distancia desde Qi- 1 . entre los vez determinado el Eje Xi , a la articulación i -ésima se

le asocia un 3er parámetro fijo  $\alpha$  i que es el ángulo que forman los ejes **Zi-** 1 y **Zi** en relación al eje **Xi** 



Nótese que cuando el brazo i -ésimo (que une rígidamente las articulaciones i e i + 1 ) gira en torno al eje Zi- 1 (que es el de rotación de la articulación i ), los parámetros ai , di y α i permanecen constantes, pues dependen exclusivamente de las posiciones/orientaciones relativas entre los ejes Zi- 1 y Zi , que son invariables. Por

tanto, ai , di y  $\alpha$  i pueden calcularse a partir de cualquier configuración de la articulada. particular a partir de una configuración inicial estándar. Precisamente el ángulo  $\theta$  i giro que forman ejes Xi- 1 y Xi con respecto al eje Zi- 1 es el 4º parámetro asociado a la articulación el único de ellos У varía cuando el brazo Es importante observar que el conjunto de los 4 parámetros  $\mathbf{a}\mathbf{i}$ ,  $\mathbf{d}\mathbf{i}$ ,  $\boldsymbol{\alpha}$   $\mathbf{i}$  y  $\boldsymbol{\theta}$   $\mathbf{i}$ determina totalmente Sistema de Referencia de la articulación i + 1 en función del S.R de la articulación i.







## TAREA 5



