Hidden Markov Model and Machine Learning

Dr. Syed Maaz Shahid

Outline

- Markov Chain
- Hidden Markov Model
 - Working of HMM
 - Example scenarios
 - Applications of HMM
 - Limitations of HMM
- Machine Learning (ML) Preliminaries
 - Types of machine learning
- Federated Learning (FL)

Markov Chain

- A Markov chain is a discrete-time and discrete-valued random process in which each new sample is only dependent on the previous sample.
- Let $\{X_n\}_{n=0}^N$ be a sequence of random variables taking values in the countable set Ω .
- **Def:** X_n is a Markov chain if for all values of X_k and all n

$$P\{X_n = x_n | X_k = x_k \text{ for all } k < n\} = P\{X_n = x_n | X_{n-1} = x_{k-1}\}$$

Markov Chain

 A Markov chain tells something about the probabilities of sequences of random variables (states)

• The basic idea behind a Markov chain is to assume that X_k captures all *the relevant information* for predicting the future.

Fig: state transition diagram for Markov chain

- A Markov chain is useful when we need to compute a probability for a sequence of observable events.
 - What if the events we are interested in are hidden?

 A hidden Markov model (HMM) allows us to talk about both observed events and hidden events.

- For example: How do you know your wife is happy or not?
 - Determine from observable external factors

- An HMM is specified by the following components:
 - states
 - transition probability matrix
 - observation likelihoods (emission probabilities)
 - initial probability distribution over states
- How do we obtain the HMM?

- Example Scenario: Umbrella World (Scenario from chapter 15 of Russell & Norvig)
 - Elspeth Dunsany is an Al researcher.
 - **Richard** Feynman is an Al, its workstation is not connected to the internet.
 - He has noticed that Elspeth sometimes brings an umbrella to work.
 - He correctly infers that she is more likely to carry an umbrella on days when it rains.

- Richard proposes a hidden Markov model:
 - Rain on day t 1, (R_{t-1}) , makes rain on day t, (R_t) , more likely.
 - Elspeth usually brings her umbrella (U_t) on days when it rains (R_t) , but not always.

- Richard learns that the weather changes on 3 out of 10 days, $P(R_t|R_{t-1})=0.7, \quad P(R_t|\sim R_{t-1})=0.3,$
- Also, Elspeth sometimes forgets umbrella when it's raining, and sometimes brings an umbrella when it's not raining.

$$P(U_t|R_t) = 0.9, \qquad P(U_t|\sim R_t) = 0.1,$$

- The HMM is characterized by three fundamental problems
 - **Likelihood:** Given an HMM $\lambda = (A, B)$ (parameters) and observation sequence O, determine the likelihood probability of observed sequence $(P(O|\lambda))$.
 - **Decoding:** Given observation sequence O and an HMM $\lambda = (A, B)$, discover the best hidden state sequence Q.
 - **Learning:** Given an observation sequence *O* and the set of states in the HMM, learn the HMM parameters *A* and *B*.

internal state {H, S} is not observable or hard to determine

• Example scenario-2

- 0.2 chance that I go to movie when I am happy.
- 0.4 chance that I go to movie when I am sad.

 π

A

 x_{t+1}

 \boldsymbol{B}

$$P(x_l)$$

$$P(x_l = happy) = 0.8$$

$$P(x_l = sad) = 0.2$$

		Нарру	Sad		
x _t	Нарру	0.99	0.01		
	Sad	0.1	0.9		

For example, $P(Happy_{t+1}|Happy_t) = 0.99$

 $P(y_t|x_t)$:

	movie	book	party	dinning
Given being happy	0.2	0.2	0.4	0.2
Given being sad	0.4	0.3	0.1	0.2

Observation likelihoods or Emission probabilities **B**

Initial state distribution

Transition probability matrix A in Markov Process

 π

 The next state and the current observation solely depend on the current state only.

$$P(x_i \mid x_1, x_2, ..., x_{i-1}) = P(x_i \mid x_{i-1})$$
 (Markov process)
 $O(o_i \mid x_1, x_2, ..., x_{i-1}) = P(o_i \mid x_i)$ (Output independence)
 $A + B = HMM \mod \lambda$

• Likelihood (likelihood of the observation)

Applications of Hidden Markov Model

- Speech Recognition
 - observations are acoustic signals, hidden states correspond to the different sounds
- Natural Language Processing
 - observations are the words in the text, hidden states are associated with the underlying grammar or structure of the text
- Bioinformatics
- Finance
 - observations are the stock prices, interest rates, or exchange rates, hidden states correspond to different economic states

Limitations of Hidden Markov Models

Limited Modeling Capabilities

Overfitting

Lack of Robustness

Computational Complexity

Assignment

 Find a paper that uses HMM to solve a problem in your relevant field.

Make a report and submit by 26 May, 20204.

What is Machine Learning

- Machine learning is a discipline of artificial intelligence (AI).
 - It provides machines with the ability to automatically learn from data and past experiences while identifying patterns to make predictions with minimal human intervention.
- Machine learning algorithms employ statistics to detect patterns in massive amounts of data.
 - Data could be anything: numbers, words, images, signals, or anything else.

How Does Machine Learning Work?

Categorization of Machine Learning

- · Labeled data
- Direct feedback
- · Predict outcome/future

- No labels
- · No feedback
- "Find hidden structure"

- Decision process
- · Reward system
- · Learn series of actions

Supervised vs Unsupervised Learning

supervised learning

Federated Learning (FL)

• Federated Learning addresses the **challenges** of privacy, security, and data decentralization.

Federated Learning-Training Mechanism

Issues and Challenges in FL

- Communication Efficiency
- Heterogeneity of Clients
- Non-Independent and Identically Distributed (IID) Data

FL in 5G Networks

Fig: Federated learning

Fig: Hierarchical FL

Fig: Proposed FL architecture in VTC- spring 2024