Table of Contents

- Universal Algebra
 - Preliminaries
 - Notation
- Ordered Sets
 - Def. Partial Order
 - o Def. Chains
 - Notation
 - Def. Maps on Orders
 - Example. Social Choice Function
 - Def. Cover Relation
 - Def. Hasse Diagrams
 - Thm. TFAE
 - Def. Dual
 - Def. Bottom and Top
 - Def. Min-Max(imal)
 - Def. Sums
 - Def. Linear Sum
 - o Def. Product
 - Example. '
 - Def. Ups and Downs
 - o Def. Ordered Set of Down-sets
 - Thm. '
- Lattices
 - o Def. Bounds
 - Notation. Join and Meet
 - Def. Lattice and Complete Lattice
 - Def. Axiomatic Definition

Universal Algebra

- Introduction to Lattices and Order, 2nd Ed. by B.A. Davey and H.A. Priestley.
- A Course in Universal Algebra, Millenium Ed. by Stanley Burris and H.P. Sankappanavar.

Preliminaries

Fundamental set-theoric notation.

Notation

- $x \nleq y$ means "not $x \leqslant y$ ".
- $\phi:P o Q$ denotes a map (function) ϕ from P to Q.
- $\phi:P\hookrightarrow Q$ denotes the injective (one-to-one) map ϕ from P into Q.
- $\phi:P woheadrightarrow Q$ denotes the *surjective* map ϕ from P onto Q.
- $\phi: P \stackrel{\sim}{\longrightarrow} Q$ denotes the *bijective* map ϕ from P into and onto Q.
- ullet $P \longrightarrow Q$ denotes the *set of all partial maps* from P to Q.

Ordered Sets

Def. Partial Order

A **partial order** (relation) or simply an **order** (relation) on some set P is a binary relation \leqslant on P such that, for all $x,y,z\in P$, it is

- 1. Reflexive: $x \leq x$.
- 2. **Antisymmetric:** $x \leqslant y$ and $y \leqslant x$ implies x = y.
- 3. **Transitive:** $x \leqslant y$ and $y \leqslant z$ implies $x \leqslant z$.

We say x and y are **comparable** if either $x \leqslant y$ or $y \leqslant x$.

The set P with such order relation \leq is said to be a (partially) **ordered set**, or simply a **poset** denoted $\langle P; \leq \rangle$.

On any set, = is an order called the **discrete order**.

A binary relation \leq that satisfies (1) and (3) but not necessarily (3) is called a **quasi-order** or **pre-order**.

Let $\langle P; \leqslant_P \rangle$ and $Q \subseteq P$. Then Q inherits an order relation \leqslant_Q from P such that for all $x, y \in Q$ we have $x \leqslant_Q y \iff x \leqslant_P y$ called the **induced order** or the **order inherited from** P.

Def. Chains

Let $\langle P; \leqslant \rangle$ be a poset. Then P is said to be a **chain** (or **linearly ordered set** or **totally ordered set**) if any two elements of P are comparable.

Similarly, P is said to be an **antichain** if, for all $x, y \in P$, we have $x \leq y$ implies x = y.

Notice that any subset of a chain (an antichain) is a chain (an antichain).

Notation

We will utilize the symbol $\bf n$ to denote the finite n-element linearly ordered set $\{0,1,...,n-1\}$ with the natural linear order. Similarly, $\bar{\bf n}$ will denote the n-element antichain.

Def. Maps on Orders

Let P and Q be two ordered sets. We say a map $\phi:P o Q$ is:

- order-preserving if $x \leqslant_P y$ implies $\phi(x) \leqslant_Q \phi(y)$.
- order-embedding if it is order-preserving and $\phi(x) \leqslant_Q \phi(y)$ implies $x \leqslant_P y$.

• order-isomorphism if it is order-embedding and ϕ is surjective.

Notice that:

- Order-embeddings are injective. Therefore, order-isomorphisms are bijective.
- ullet Not every bijective map between P and Q is an order-isomorphism.
- Finite composition of order-preserving maps is again order-preserving.

Example. Social Choice Function

See Wikipedia: Arrow's impossibility theorem.

Def. Cover Relation

TODO: Check if this definition is equivalent to the one in the main book.

Let P be an ordered set and $x,y\in P$. We say x is **covered by** y denoted with $x\prec y$ if $x\neq y$ and there is no $z\in P$ distinct from x and y such that

$$x \leqslant z \leqslant y$$

Def. Hasse Diagrams

See Wikipedia: Hasse Diagram.

Thm. TFAE

Let P and Q be finite ordered sets and $\phi:P o Q$ a bijective map. Then TFAE:

- ullet ϕ is an order-isomorphism
- $x <_P y$ if and only if $\phi(x) <_Q \phi(y)$.
- $x \prec_P y$ if and only if $\phi(x) \prec_Q \phi(y)$.
- They can be drawn with identical Hasse Diagrams.

Def. Dual

Let P be an ordered set with the order relation \leqslant . The **dual** of P denoted with P^{∂} is the set ordered with \leqslant_{∂} where, for all $x,y\in P$:

$$x \leqslant_{\partial} y \iff y \leqslant x$$

Def. Bottom and Top

For an ordered set P, we say P has a **bottom** $\bot \in P$ if for all $x \in P$ we have $\bot \leqslant x$. Similarly, we say P has a **top** $\top \in P$ if for all $x \in P$ we have $x \leqslant \top$.

Notice that \top and \bot are unique when they exist due to antisymmetry, and they are comparable with any element.

For example, for $\langle \mathcal{P}(X); \subseteq \rangle$, we have $\bot = \varnothing$ and $\top = X$.

A finite chain always has bottom and top element.

Def. Min-Max(imal)

Let P be an ordered set and $p \in P$. We say $a \in P$ is:

- maximal element of P if $a \leqslant x \implies a = x$. We denote the set of maximal elements with $\operatorname{Max} P$.
- minimal element of P if $x \leqslant a \implies a = x$. Similarly, we denote the set of minimal elements with $\min P$.
- **maximum** (or **greatest**) if *a* is the (unique) top element.
- minimum (or least) if a is the (unique) bottom element.

Notice that if P has a top element \top , then $\operatorname{Max} P = \{\top\}$.

Def. Sums

Suppose P and Q are two disjoint ordered sets. The **disjoint union** denoted $P \sqcup Q$ is the ordered set $P \cup Q$ ordered by \leqslant where $x \leqslant y$ if and only if either:

- For $x,y\in P$ we have $x\leqslant_P y$,
- For $x,y\in Q$ we have $x\leqslant_Q y$.

Def. Linear Sum

For two disjoint ordered sets P and Q, the **linear sum** denoted $P\oplus Q$ is the ordered set $P\cup Q$ ordered by \leqslant where $x\leqslant y$ if and only if either:

- For $x,y\in P$ we have $x\leqslant_P y$,
- For $x,y\in Q$ we have $x\leqslant_Q y$.
- $x \in \operatorname{Max} P$ and $y \in \operatorname{Min} Q$.

Obviously, \oplus is not necessarily commutative.

Note that both \sqcup and \oplus are associative (up to isomorphism).

For example, $\mathbf{2} \oplus \mathbf{3} = \mathbf{5}$.

Def. Product

Let $P_1,...,P_n$ be ordered sets. The (Cartesian) product $P_1 \times ... \times P_n$ can be (coordinatewise) ordered with \leq where $(x_1,...,x_n) \leq (y_1,...,y_n)$ if and only if, for all i, we have $x_i \leq_{P_i} y_i$. As a shorthand we will use P^n to denote the n-fold cartesian product ordered with such order.

Example. '

Let $X=\{1,2,...,n\}$ and $\phi:\mathcal{P}(X) o \mathbf{2}^n$ such that $\phi(A)=(arepsilon_1,...,arepsilon_n)$ where

$$arepsilon_i = \left\{ egin{array}{ll} 1 & ext{if} & i \in A \ 0 & ext{if} & i
otin A \end{array}
ight.$$

Then ϕ is an order-isomorphism.

Def. Ups and Downs

Let P be an ordered set and $Q \subseteq P$.

Then, we say Q is a **down-set** (or **order ideal**) if for all $x \in Q$ and $y \in P$:

$$y \leqslant x \implies y \in Q$$

Dually, we say Q is a **up-set** (or **order filter**) if for all $x \in Q$ and $y \in P$:

$$y \geqslant x \implies y \in Q$$

You may think of them as a subset "closed" under increase or decrase.

For an arbitrary subset Q of ordered P, define the unary operators \downarrow called **down** and \uparrow **up** on the subset as:

$$\downarrow Q := \{ \ y \in P \mid (\exists x \in Q) \ y \leqslant x \ \}$$

$$\uparrow Q := \{ \ y \in P \mid (\exists x \in Q) \ y \geqslant x \ \}$$

and for $x \in P$:

$$\downarrow x := \{ y \in P \mid y \leqslant x \}$$

$$\uparrow x := \{ y \in P \mid y \geqslant x \}$$

Notice that:

- $\downarrow Q$ is the smallest down-set that contains Q.
- Q is a **down-set** if and only if $Q = \downarrow Q$.
- $\downarrow \{x\} = \downarrow x$.
- ullet Q is a down-set of P if and only if $P\setminus Q$ is an up-set of P (or equivalently, a down-set of P^∂).

Down-sets (dually up-sets) of the form $\downarrow x$ (dually $\uparrow x$) are called **principal**.

Def. Ordered Set of Down-sets

The family of all down-sets of the ordered set P is denoted by $\mathcal{O}(P)$. Under the inclusion order, $\mathcal{O}(P)$ is an ordered set.

When P is finite, every non-empty down-set Q of P is expressible in the form

$$igcup_{i=1}^k\downarrow x_i$$

where $\{x_1,...,x_k\}=\operatorname{Max} Q$ is an antichain.

Notice that $\mathcal{O}(P)^\partial\cong\mathcal{O}(P^\partial)$ as $A\subseteq \mathsf{iff}\ P\setminus A\supseteq P\setminus B.$

Thm. '

Let P, P_1, P_2 be ordered sets. Then

- $\mathcal{O}(P \oplus \mathbf{1}) \cong \mathcal{O}(P) \oplus \mathbf{1}$
- $\mathcal{O}(\mathbf{1} \oplus P) \cong \mathbf{1} \oplus \mathcal{O}(P)$
- $\mathcal{O}(P_1 \sqcup P_2) \cong \mathcal{O}(P_1) imes \mathcal{O}(P_2)$

Lattices

Def. Bounds

Let P be an ordered set and $S \subseteq P$. Then, $x \in P$ is called an **upper bound of** S if $s \leqslant x$ for all $s \in S$. **Lower bound** is defined dually.

The set of all upper bounds of S is denoted by S^+ and the set of all lower bounds denoted by S^- .

The least element of S^+ , if exists, is called the **supremum** (or **least upper bound**) of S denoted $\sup S$. Dually, the greatest element of S^- is called **infimum** of S denoted $\inf S$.

Notice that:

• Since \leqslant is transitive, S^+ is always an up-set and S^- is a down-set.

Notation. Join and Meet

If exists, we will denote $\sup\{x,y\}$ with $x\vee y$ read as x join y. Similarly, we will denote $\inf\{x,y\}$ with $x\wedge y$ read as x meet y.

Similarly, we will also utilize $\bigvee S$ and $\bigwedge S$ for $\sup S$ and $\inf S$.

Def. Lattice and Complete Lattice

Let P be a non-empty (partially) ordered set.

- If join and meet exist for all $x,y\in P$, then P is called a **lattice**.
- If join of and meet of exist for all $S\subseteq P$, then P is called a **complete lattice**.

Def. Axiomatic Definition

From A Course in Universal Algebra.

A non-empty set L with two binary operations \vee and \wedge on L is called a **lattice** if it satisfies:

(commutative laws)

$$x \lor y \approx y \lor x$$

 $x \wedge y \approx y \wedge x$

• (associative laws)

$$xee (yee z)pprox xee (yee z) \ x\wedge (y\wedge z)pprox x\wedge (y\wedge z)$$

• (idempotent laws)

$$x\vee x\approx x$$

$$x \wedge x pprox x$$

• (absorption laws)

$$xpprox xee(x\wedge y)$$

$$xpprox x\wedge (xee y)$$