Synthetic turbulence generation using statistical methods

Samy Braik

Supervisor: Aurélien Larcher¹, Jonathan Viquerat¹, Fabien Duval² and Aubin Brunel²

¹CEMEF, Mines Paris–PSL

²ASNR

September 22, 2025

Outline

- Introduction
- 2 Model
 - Random Fourier model
 - Energy spectrum
- Metrics & Limitations
- Method
 - Preliminary experiments
 - First approach
 - Optimizing $(\varphi, \theta, \alpha)$
- Conclusion

What is turbulence?

- Turbulence: complex, aperiodic fluid motion with strong vortical structures.
- We study *Homogeneous and Isotropic Turbulence (HIT)*: statistics invariant under space translations and rotations.

Figure: Slice through scalar dissipation (CNRS UMR 6614 CORIA and JSC).

Random Fourier model

- Build a synthetic velocity field by summing random Fourier modes.
- Frozen-turbulence assumption (no time dependence):

$$u^{s}(x) = 2\sum_{n=1}^{N} \hat{u}_{n} \cos(\kappa^{n} \cdot x + \psi_{n}) \sigma^{n}$$
 (1)

 κ^n wave vector (random on a half-sphere to preserve isotropy)

 σ^n direction (divergence-free: $\kappa^n \cdot \sigma^n = 0$)

 ψ_n random phase (uniform $\mathcal{U}[0,2\pi]$)

 \hat{u}_n amplitude linked to prescribed energy spectrum $E(\kappa_n)$

Coefficient sampling

Wave vector components (spherical coordinates):

$$\kappa_1 = \sin(\theta)\cos(\varphi) \tag{2}$$

$$\kappa_2 = \sin(\theta)\sin(\varphi) \tag{3}$$

$$\kappa_2 = \cos(\theta) \tag{4}$$

- Sampling densities: $f_{\theta}(\theta) = \frac{\sin \theta}{2}$, $f_{\varphi}(\varphi) = \frac{1}{2\pi}$.
- Direction vector σ obtained by fixing an angle $\alpha \sim \mathcal{U}[0, 2\pi]$ and ensuring $\kappa \cdot \sigma = 0$.

$$\sigma_1 = \cos(\varphi)\cos(\theta)\cos(\alpha) - \sin(\varphi)\sin(\alpha) \tag{5}$$

$$\sigma_2 = \sin(\varphi)\cos(\theta)\cos(\alpha) + \cos(\theta)\sin(\alpha) \tag{6}$$

$$\sigma_3 = -\sin(\theta)\cos(\alpha) \tag{7}$$

Figure: Wave vector geometry

Energy spectrum

• Kolmogorov inertial-range law: $E(\kappa) = C_k \, \varepsilon^{2/3} \, \kappa^{-5/3}$ (valid in the inertial range).

Figure: Energy spectrum of a turbulent flow

 To capture large- and small-scale behavior use a full model such as von Kármán–Pao (VKP):

$$E_{\text{VKP}}(\kappa) = \frac{2}{3} \alpha_e \,\kappa L_e \frac{(\kappa L_e)^4}{[(\kappa L_e)^2 + 1]^{17/6}} \exp\left(-2(\kappa L_\eta)^2\right) \tag{8}$$

• Mode amplitudes: $\hat{u}_n = \sqrt{E(\kappa_n) \Delta \kappa_n}$ (log-spacing used for κ_n).

Samy Braik (CEMEF, Mines Paris–PSL

Metrics to assess synthetic field

- Energy spectrum reconstruction: match between theoretical and reconstructed $E(\kappa)$.
- Component means close to zero (homogeneity).
- RMS speed must match prescribed value.
- Velocity increments statistics (non-Gaussian heavy tails expected at small scales).

Parameters used

Parameter	Value	Unit
Number of points	100 ³	_
Length of box	$\frac{\pi}{6}$	m
Number of modes	1000	_
RMS speed	0.222	${ m ms^{-1}}$
Integral length scale	0.024	m
Viscosity	1.8×10^{-5}	m^2/s
Minimum wave number	$\frac{2\pi}{1.0}$	m^{-1}
Maximum wave number	$\frac{2\pi}{0.01}$	m^{-1}

Empirical base metrics

Direction	Mean	Direction	RMS (expected: 0.222)
Х	-0.00269	X	0.19583
у	-0.00010	у	0.17599
Z	-0.00126	Z	0.19307

Table: Velocity mean and RMS

Velocity increments & heavy tails

- Velocity increments: $\delta_r u = u(x+r) u(x)$.
- In random Fourier base model increments are typically Gaussian (kurtosis = 3).
- Real turbulence: increments show heavy tails (increasing kurtosis when $r \to 0$).

Figure: Transverse and longitudinal increments (model vs Gaussian)

Goal and strategy

- Goal: produce heavy-tailed velocity increments while preserving energy spectrum and isotropy.
- Strategy: parameterize coefficients (angles, phases, amplitudes) as learnable parameters (nn.Parameter in PyTorch) and optimize a loss using AdamW(lr=1e-3).

Losses

Flatness (excess kurtosis) objective

• Use flatness (= kurtosis - 3) of velocity increments as a loss term to encourage heavy tails.

$$\mathcal{L}_F = \frac{1}{n} \sum_{i=1}^{n} (kurt - 3 - F_{\text{target}})$$
 (9)

Energy-spectrum objective

 MSE between reconstructed and target spectrum, optionally with a smoothness regulariser (penalize high-frequency oscillations in $E(\kappa)$).

$$L_{ES} = \frac{1}{n} \sum_{i=1}^{n} (E_{\text{rec},i} - E_{\text{theory},i})^{2}$$
 (10)

Combined loss: $\mathcal{L} = \mathcal{L}_F + 10^3 \mathcal{L}_{FS}$

Preliminary experiments

- Tested optimization toward Gaussian target flatness (flatness = 0) from different initialization.
- Starting from Gaussian increments: parameters remain close to initial Janin et al. choice.
- ullet Starting from heavy-tailed increments: heta adapt to a flatter distribution.

Figure: Angle distributions starting from Gaussian increments

First approach

• Work on (ψ, κ, σ)

Figure: Velocity increments after learning on (ψ, κ, σ)

Figure: Energy spectrum reconstructed with the learned (ψ, κ, σ)

Direction	Mean	Direction	RMS (expected: 0.222)
X	7.7879 <i>E</i> – 5	X	0.00174
у	5.7016 <i>E</i> - 5	у	0.00066
Z	-0.0306	Z	0.88966

Angles

- Shift the focus solely on the angles $(\varphi, \theta, \alpha)$.
- Ensure the condition $\kappa \cdot \sigma = 0$.

Figure: Velocity increments after learning on $(\varphi, \theta, \alpha)$

Figure: Energy spectrum reconstructed with the learned $(\varphi, \theta, \alpha)$

Direction	Mean	Direction	RMS (expected: 0.222)
X	0.002564	 Х	0.12904
у	-0.00652	у	0.31651
Z	-0.00093	Z	0.11406

Table: Velocity mean and RMS

Distribution shift

Figure: Learned angles distributions

Angles with loss on RMS

Loss function on the RMS values

Figure: Velocity increments after learning on $(\varphi, \theta, \alpha)$

Figure: Energy spectrum reconstructed with the learned $(\varphi, \theta, \alpha)$

Direction	Mean	Direction	RMS (expected: 0.22
X	0.0000066	×	0.2229
у	0.0001098	у	0.2163
z	-0.0065687	Z	0.2099

Table: Velocity mean and RMS

Conclusion

- The Random Fourier model can be steered (via angles) to modify increment statistics while preserving spectral fidelity.
- Trade-offs observed: stronger heavy tails sometimes perturb RMS.

Future work:

- Incorporate time dependence (non-frozen turbulence).
- Change the turbulence hypothesis.