Stock Market Prediction & Web Scraping Analysis

Jatin Batta, Ramone Andrade, Kelly Tsai, Samuel Edwards,

Manaar Salama, Eduardo Hinojosa

Table of Contents

01 Introduction to the Project

Our Data

03 Methods

04 Results & Conclusions

Research Questions

1. Can we fit various machine learning models to perform stock predictions on prices?

2. How will these models be affected by sentiment analysis? Specifically, by adding sentiment analysis, will we be able to achieve more accurate predictions?

Stakeholders

Morgan Stanley

EVERCORE

BANK OF AMERICA

CENTER VIEW PARTNERS

Rothschild & Co

CENTER CONTROL

Rothschild & Co

Hedge Funds

Investment Firms

02

Our Data

Data, Cleaning, Feature Engineering

Yahoo Finance: AAPL

Features

Experiments

Whoa.

ML Models

SENTIMENT ANALYSIS

Prediction

03

Methods

Methods

- 1. PCA
- 2. Linear Regression
- 3. XGBoost
- 4. GLMs
- 5. Neural Networks (particularly LSTMs and RNNs)
- 6. Transformers and NLP (for sentiment analysis)

Note: Prior to all of this we ran a principal component analysis, which we will discuss as our first step.

PCA

Elbow Method

2: 0.5139806559946883
3: 0.4144772076915389
4: 0.4230831963738426
5: 0.4002375679256944
6: 0.38984205558518775
7: 0.35254208291891487
8: 0.34182953044441144
The best choice for k is:2

Silhouette Score + Cumulative Explained Variance Plot

PCA

PCA Models

PCA

```
1 print("Principal Components:\n", pca.components_)
```


Principal Components:

```
[[-0.44484027 -0.44720319 -0.44804396 -0.44682494 -0.44679314 0.0458957 ]
[ 0.02233369 0.05848245 -0.02166819 0.02464018 0.01876218 0.99732259]]
```

- For the first principal component:
 - All features had negative influence on it except for last one, Volume
- For the second principal component:
 - Only the third feature, Low, had negative influence
 - Volume had the highest magnitude => strongest influence on the principal component
- Conclusion: Volume would be the best feature to use for the predictions

Linear Regression

- Using Previous Adjusted Close to predict the Current Adjusted Close
 - o MSE: 11.35
- More so this was because we were using the AAPL stock

Mean Squared Error: 11.357412138981157

XGBoost

- Trained XGBoost model on one year of Apple Stock data
- Target variable: Closing Stock Price
- MSE: 20.356

GLMs – Introduction and Motivation

- Prediction method most of our group learned this semester in Data 102.
- Essentially, just a more generalized form of linear regression, but allows for more flexibility with the distributions our data takes.
 - Predicting a continuous unknown variable as a linear combination of observed variables.
 - Using statsmodels package in Python to create these models.

Regression	Inverse link function	Likelihood	
Linear	identity	Gaussian	
Logistic	sigmoid	Bernoulli	
Poisson	exponential	Poisson	
Negative binomial	exponential	Negative binomial	

GLMs

Dep. Variable:	Adj Close		No. Observations:		250	
Model:	GLM		Df Residuals:		248	
Model Family:	NegativeBinomial		Df Model:		1	
Link Function:	n: Log IRLS		Scale:		1.0000	
Method:			Log-Likelihood		-1508.3 0.12398 0.124	
Date:	Tue, 05 De	c 2023	Deviance:			
Time:	02:39:13		Pearson chi2:			
No. Iterations:	3		Pseudo R-squ. (CS):		0.006299	
Covariance Type:		robust				
			z			
const	4.0625	0.77	L 5.267	0.000	2.551	5.574
Previous Adj Close	0.0063	0.00	1,259	0.208	-0.004	0.016

Negative Binomial MSE: 11.365

const	4.0652	0.06	3 65.014	0.000	3.943	4.188
	coef	std er	r z	P> z	[0.025	0.975]
Covariance Type:	non	robust				
No. Iterations:	Log IRLS Tue, 05 Dec 2023 02:37:58 3		Pseudo R-squ.	(CS):	0.6219	
Time:			Pearson chi2:		248 1 1.0000 -867.98 18.776 18.8	
Date:			Deviance:			
Method:			Log-Likelihood			
Link Function:			Scale:			
odel Family: Poisson		oisson	Df Model:			
Model:	GLM		Df Residuals:			
Dep. Variable:	Adj Close		No. Observatio	ns:	250	

Poisson MSE: 11.362

GLMs

Negative Binomial MSE: 11.365

Poisson MSE: 11.362

Where GLMs Go Wrong

- These models performed well on our Apple stock data, which stayed consistent from 2022 - halfway through 2023.
- However, does not do nearly as well for more volatile stocks:
 - Right is Poisson model trained on NVIDIA's stock data from 2022-2023 tested on May 2023 data (stock went way up due to AI GPU market).
- Not entirely practical for stock prediction only does well when change is consistent!

Poisson MSE: 2179.252

LSTMs, RNNs, and Ensemble Learning

MSE: 18.32

RNN

MSE: 41.68

MSE: 15.26

Ensemble Learning

Experiment: Article Analysis Effects on Prediction

Article Analysis: Transformers and NLP

- Used NLTK library to tokenize and analyze sentiment of headlines, and use the BERT transformer to get the sentiment of the articles
- Retrieved sentiment scores and set thresholds for positive, neutral, and negative
 - ≥0.05 for positive, ≤-0.05 for negative, otherwise neutral
- Used new data frame to train models (LSTM, RNN)

	Headline	Date	Sentimen Label	Sentiment Score
3668	Tech Stocks And FAANGS Strong Again To Start D	2020-06-10	Positive	0.5574
3669	10 Biggest Price Target Changes For Wednesday	2020-06-10	Neutral	0.0000
3670	Benzinga Pro's Top 5 Stocks To Watch For Wed.,	2020-06-10	Positive	0.2023
3671	Deutsche Bank Maintains Buy on Apple, Raises P	2020-06-10	Neutral	0.0000
3672	Apple To Let Users Trade In Their Mac Computer	2020-06-10	Positive	0.3818

Results & Conclusions

MSE Champs

Pseudo R-squ. (CS):

0.6219

0.005

Generalized Linear Model Regression Results

coef std err z P>|z| [0.025 const 4.0652 0.063 65.014 0.000 3.943

0.0063

MSE: 11.362

MSE: 18.32

MSE: 15.26

Sentiment Analysis Results

Conclusions & Future Iterations

- Conclusions
 - Minor difference between headline and sampling sentences from articles
 - Semantic analysis improved overall models
 - Probably not ready for real-world usage yet; would need to fine tune incorporation of semantic analysis aspect to increase accuracy first
- If we had more time, or in future iterations, we could have:
 - Integrated more text data and properly integrated dates
 - Tested out additional data and arguments to increase accuracy
 - Account for overfitting with K-fold cross validation

Thank You

Questions?

