

Explicit convergence bounds for Metropolis Markov chains

Isoperimetry, Spectral Gaps and Profiles

Sam Power

University of Bristol

10 February, 2023

Links & Acknowledgements

- ✓ Main paper today: arXiv 2211.08959;
- ✓ All joint work with
 - Christophe Andrieu (Bristol)
 - Anthony Lee (Bristol)
 - ► Andi Q. Wang (Bristol ~> Warwick)

Setting: Task

- Motivating task: understanding structured probability distributions in high-dimensional spaces
 - posterior inference in Bayesian statistics
 - latent variable models, hidden Markov models
 - generative modeling
 - non-convex optimisation
 - **...**

Markov Chain Monte Carlo (MCMC)

- κ Task: Generate approximate samples from a probability distribution π to which we have *limited access*.
- MCMC: An iterative approach to this task.
 - Simulate a time-homogeneous Markov chain $(X_n)_{n\geq 0}$ such that

$$\text{Law}(X_n) \to \pi \text{ as } n \to \infty.$$

(and hopefully, quickly)

- Current status:
 - Mature algorithmic field, many 'correct' solutions are known and practical.
 - Quantitative convergence theory is challenging; important.
 - ► 'Is (this algorithm) { performant, reliable, preferable, ... } ?'
 - Given π , which algorithm do I choose?'

Random Walk Metropolis

- ▼ Today: Study the Random Walk Metropolis (RWM) algorithm
 - \triangleright Only requires access to density of π , up to a multiplicative constant (typical).
 - ► Widely-used, simple, 'representative'
- 1. At x.
 - 1.1 Propose $x' \sim \mathcal{N}(x, \sigma^2 \cdot I_d)$.
 - 1.2 Evaluate $r(x, x') = \frac{\pi(x')}{\pi(x)}$.
 - 1.3 With probability min $\{1, r(x, x')\}$, move to x'; otherwise, remain at x.
- \checkmark Leaves π invariant, ergodic under mild conditions, exponentially so under tail conditions.

Some Notation

$$\swarrow Q(x, dx') = \mathcal{N}(dx'; x, \sigma^2 \cdot I_d).$$

$$\mathbf{k} \ \alpha(x, x') := \min \left\{ 1, r\left(x, x'\right) \right\}.$$

$$\mathbf{k} \ \alpha(x) = \int Q\left(x, \mathrm{d}x'\right) \alpha(x, x').$$

★ The RWM kernel P is given by

$$P(x, \mathrm{d}x^{'}) = Q\left(x, \mathrm{d}x^{'}
ight) \cdot lpha(x, x^{'}) \ + (1 - lpha(x)) \cdot \delta(x, \mathrm{d}x^{'})$$

Convergence Analysis of RWM

- k 'Soft' analysis: Exponential convergence $\stackrel{\approx}{\Longleftrightarrow}$ Lighter-than-Exponential Tails.
- - (and variations on this)
- ★ Today: synthesis of the above.

Some Comments on Results

- Lespite ubiquity, sharp complexity analysis of RWM has long been open.
 - ▶ Preferable to rejection sampling, quadrature, · · · ?
- We obtain a convincing complexity analysis with
 - sharp dependence on the dimension of the problem
 - conjecturally sharp dependence on the conditioning of the problem
- Our proof techniques are remarkably robust, and largely new to this area

Main Results

- - ► Target is $\pi(x) \propto \exp(-U(x))$,
 - ightharpoonup U is m-strongly convex, L-smooth,
 - Write $\kappa = L/m$ ('condition number').
- \bowtie Run RWM with $\sigma = \upsilon \cdot (L \cdot d)^{-1/2}$.
- ★ Then,
 - 1. Acceptance rate satisfies $\alpha(x) \geqslant \alpha_0 := \frac{1}{2} \cdot \exp\left(-\frac{1}{2}v^2\right)$.
 - 2. Spectral gap satisfies $\gamma_P \geqslant c(\upsilon) \cdot (\kappa \cdot d)^{-1}$.
 - 3. L² mixing time satisfies $T_*(\varepsilon) \lesssim \kappa \cdot d \cdot \log\left(\frac{\kappa \cdot d}{\varepsilon}\right)$
- ▶ Paper contains tools which imply simple bounds for much wider class of targets.
- Today: demystify those tools.

Proof Overview

- Roughly:
 - 1. Large-Scale Properties of Target
 - 2. + Small-Scale Properties of Sampler
 - 3. → Good Mixing.
- Precisely:
 - 'Isoperimetric' Profile of Target
 - + 'Close Coupling' of Kernels
 - ► ~ Isoperimetric Profile of Markov Chain
 - ightharpoonup ightharpoonup Good Mixing (in L²).
- True for fairly general Markov chains on metric spaces.
- - 'Metropolis-type' + Acceptance Control → Close Coupling.
- ✓ I will explain all of these terms.

Isoperimetry, Conductance, and Escapes

- ✓ For 'local' Markov chains, a powerful tool of analysis is the 'conductance' method.
- ★ The core idea is that if a chain cannot get stuck badly in a set of small mass, then the chain must be mixing well.
- \mathcal{L} Quantitatively: for any (small) set A, [the flow of the chain out of A and into A^{\complement}] is comparable to [the mass of A].
- If this condition holds, then the chain is mixing well.
 - Under some conditions, this is a theorem.
 - Weaker and stronger versions of this property are also useful.
 - These each lead to their own theorems.

Conductance Methods for Markov Chains

 κ Consider for $A \subseteq \mathbb{R}^d$

$$\pi(A) \coloneqq \int_{x \in A} \pi(x) \, \mathrm{d}x \ \pi \otimes P(A imes A^\complement) \coloneqq \int_{x \in A, y \in A^\complement} \pi(x) P(x,y) \, \mathrm{d}x \mathrm{d}y.$$

- $\mathbf{k} \text{ If } \pi \otimes P(A \times A^{\complement}) \geqslant c \cdot \pi(A), \text{ then } P(X_1 \notin A \mid X_0 \in A) \geqslant c,$
 - ▶ so if $c \gg 0$, then the set A is easy for P to escape.
- k If every set A is easy for P to escape, then P cannot get stuck ...
 - ... and hence must converge quickly.

Isoperimetric Profiles of Markov Chains

$$I_{\pi,P}(p) := \mathsf{inf}\left\{\pi \otimes P\left(A imes A^{\complement}
ight) : \pi(A) = p
ight\}$$

- 'How hard is it for this chain to leave sets of a given size?'
- \mathcal{L} Good lower bounds on $I_{\pi,P}$ translate into mixing time bounds for P.

$$T_*\left(arepsilonsymp 1
ight)\lesssim \int_{Y^2\left(\operatorname{Lip},\pi
ight)^{-1}}^{1/2}rac{p\,\mathrm{d}p}{I_{\pi,P}(p)^2}.$$

- I will not go into the technical details of how this is achieved today.
 - ► (...but ∃ bonus slides).

Estimating the profile $I_{\pi,P}$

- \swarrow Directly computing $I_{\pi,P}$ involves a difficult infimum over measurable sets.
- \swarrow Our route will be to show that under verifiable conditions, we can estimate $I_{\pi P}$.
- \checkmark These conditions are nicely decoupled as \approx :
 - 1. A global condition about the target measure π .
 - 2. A local condition about the kernel P.

Isoperimetric Profiles of Probability Measures

- k For $A \subseteq E$ and $r \geqslant 0$, let $A_r := \{x \in E : d(x, A) \leqslant r\}$.

$$\pi^{+}\left(A
ight)=\lim\inf_{r
ightarrow0^{+}}rac{\pi\left(A_{r}
ight)-\pi\left(A
ight)}{r}.$$

- ightharpoonup pprox 'boundary mass' of A under π
- \checkmark The *isoperimetric profile* of π with respect to the metric d is

$$I_{\pi}\left(p
ight):=\inf\left\{ \pi^{+}\left(A
ight):A\subseteq E,\pi\left(A
ight)=p
ight\} ,\qquad p\in\left(0,1
ight) .$$

- \swarrow (usually) increasing on $\left[0,\frac{1}{2}\right]$, symmetric about 1/2.
- \mathbf{k} For experts: This is (basically) $I_{\pi,P}$ for the Langevin diffusion.

Isoperimetric Profiles: Interpretation

- ✓ Isoperimetry relates the mass of sets to the mass of their boundaries.
- ✓ For Markov chains: isoperimetry captures how difficult it is to escape a given set.
- \checkmark Escaping small sets $(p \rightarrow 0^+)$ happens to be the relevant limit.
- \mathbb{K} If you escape all sets equally easily $(I_{\pi}(p) \geqslant c \cdot p)$,
 - then you mix exponentially quickly.
- \mathbf{k} If you also escape small sets particularly well $(I_{\pi}(p) \gg c \cdot p)$,
 - then things can be even better at the start.
- \mathbf{k} If small sets are hard to escape $(I_{\pi}(p) \ll c \cdot p)$,
 - then things can be much worse.

Isoperimetric Profiles: Examples

- $\mathbf{k} \pi(\mathrm{d}x) \propto \exp\left(-|x|\right) \mathrm{d}x \text{ has } I_{\pi}(p) = \min\{p, 1-p\}.$
- ₭ For log-concave measures,
 - ightharpoonup pprox preserved under products.
 - functional inequalities (PI, LSI, \cdots) imply bounds on I_{π} .
- Profiles transfer nicely under Lipschitz transport, bounded change of measure.
- Can be hard to obtain good bounds in some cases.
- Typically very informative.

'Close Coupling' of Markov Kernels

 \swarrow Say that P is (d, δ, τ) -close coupling if for some **fixed** $\delta, \tau > 0$, it holds that

$$d(x, y) \leq \delta \implies TV(P_x, P_y) \leq 1 - \tau.$$

- When two chains get close enough, anywhere in the space,
 - there is a decent chance to make them coalesce.
- In our experience,
 - weaker assumption than e.g. global contractivity of dynamics ,
 - typically holds with better constants than minorisation conditions.
- $\bowtie \delta$ is often small (but not tiny).
- $\not\sim$ τ can be of constant order (e.g. 1/4).
- k Remark: this condition can hold, with good (δ, τ) , for chains which mix **badly**.

Obtaining $I_{\pi,P}$

 \mathbb{K} Suppose that π has profile I_{π} , and P is $(\mathsf{d}, \delta, \tau)$ -close coupling. Then

$$I_{\pi,P}(p) \gtrsim \tau \cdot \min\{p, \delta \cdot I_{\pi}(p)\}$$

- Interpretation:
 - If P is 'nice' at small scales,
 - \blacktriangleright and if π is 'nice' at large scales,
 - ▶ then P will mix well!
- \checkmark For algorithms: no point in making τ too big; think of it as a constant.
 - ► \leadsto Tune algorithm to find a good δ which gives a desired τ .

Isoperimetry: from π to P, to mixing

$$T_*\left(arepsilonsymp 1
ight)\lesssim au^{-2}\cdot \delta^{-2}\cdot \int_{Y^2(ext{tio},\pi)^{-1}}^{1/2}rac{p\,\mathrm{d}p}{I_\pi(p)^2}.$$

(overlooking an additional annoying term related to the min)

 \checkmark Corollary 2: for log-concave π , it holds that

$$\gamma_P \gtrsim au^2 \cdot \delta^2 \cdot I_{\pi} \left(rac{1}{2}
ight)^2.$$

 \swarrow Our target is fixed, now: look at the kernel P, and control (τ, δ) .

Close Coupling for RWM

For MH algorithms, natural to try

$$\text{TV}\left(P_{x}, P_{y}\right) \leqslant \text{TV}\left(P_{x}, Q_{x}\right) + \text{TV}\left(Q_{x}, Q_{y}\right) + \text{TV}\left(Q_{y}, P_{y}\right).$$

This appears to have some limitations.

- Roughly: tail behaviour ruins two of the three terms.
- ▶ Being 'Metropolis-type' (not just 'Metropolis-Hastings-type') lets us do better.
 - $\triangleright \alpha(x, x') = \text{Monotone}(f(x')/f(x)).$
 - No 'cross terms', as in general MH.
- We will see that it suffices for us to control the acceptance rates.
 - ightharpoonup ightharpoonup need to control the regularity of π .

Total Variation Bound between Metropolis Kernels

$$\mathrm{TV}\left(P_{x},P_{y}\right)\leqslant\mathrm{TV}\left(Q_{x},Q_{y}\right)+\left(1-\alpha_{0}\right).$$

Proof: Explicitly construct a coupling (next slide).

Proof Sketch

- \bigvee WLOG, assume that $\pi(x) \geqslant \pi(y)$.
- \checkmark If both chains propose moving to z, then $\alpha(x,z) \leqslant \alpha(y,z)$.
- ★ Thus, can couple the acceptance steps so that almost surely,

x accepts move $\implies y$ accepts move

 \bigvee Use $P(A \cap B) \geqslant P(A) + P(B) - 1$ to see that

$$egin{split} P\left(X^{'}=Y^{'}
ight) &\geqslant P\left(ilde{X}= ilde{Y}
ight) + P\left(X^{'}= ilde{X}
ight) - 1 \ &\geqslant \left(1 - \operatorname{TV}\left(Q_{x},Q_{y}
ight)
ight) + lpha_{0} - 1 \ &= lpha_{0} - \operatorname{TV}\left(Q_{x},Q_{y}
ight). \end{split}$$

Conclude by coupling inequality.

Acceptance Rate Bounds for RWM

- \mathbf{k} Recall that $\alpha(x, x') = \min \left\{ 1, \frac{\pi(x')}{\pi(x)} \right\}$.
- \mathbb{K} Natural to control growth of $U = -\log \pi$.
- Assumption: for some ψ, it holds that

$$U\left(x+h\right)-U\left(x\right)-\left\langle \nabla U\left(x\right),h\right\rangle \leqslant\psi\left(\left|h\right|\right)$$

Lemma: The acceptance rate satisfies

$$lpha(x)\geqslantrac{1}{2}\cdot\exp\left(-\int\mathcal{N}\left(\mathrm{d}z;0,I_{d}
ight)\cdot\psi\left(\sigma\cdot|z|
ight)
ight),$$

and taking $\sigma = v \cdot d^{-1/2}$ gives that

$$lpha(x)\geqslantrac{1}{2}\cdot\exp\left(-\psi\left(\upsilon
ight)+\mathfrak{O}\left(d^{-1}
ight)
ight).$$

Close Coupling for RWM

- **L** Taking $\sigma = \upsilon \cdot d^{-1/2}$ allows for $\alpha_0 \geqslant \frac{1}{2} \cdot \exp\left(-\psi(\upsilon) + O\left(d^{-1}\right)\right)$.
- κ Taking $\delta = \sigma \cdot \alpha_0$ allows for

$$\mathsf{d}(x,y) \leqslant \delta \implies \mathrm{TV}\left(Q_x,Q_y
ight) \leqslant rac{1}{2} \cdot lpha_0.$$

- (compute KL between Gaussians; apply Csiszar-Kullback-Pinsker)
- Using the coupling result,

$$ext{TV}\left(P_{x},P_{y}
ight)\leqslant ext{TV}\left(Q_{x},Q_{y}
ight)+\left(1-lpha_{0}
ight) \ \leqslant 1-rac{1}{2}lpha_{0},$$

i.e. one may take $\tau = \frac{1}{2} \cdot \alpha_0$.

Isoperimetric Profile and Mixing of RWM

Recalling that

$$I_{\pi,P}(p) \gtrsim \tau \cdot \min\{p, \delta \cdot I_{\pi}(p)\}$$

and taking v so that $\alpha_0 \approx 1$, obtain that

$$egin{align} I_{\pi,P}(p) &\gtrsim \min\{p,\sigma \cdot I_{\pi}(p)\}, \ &\gamma_{P} &\gtrsim \sigma^{2} \cdot I_{\pi}\left(rac{1}{2}
ight)^{2} \ &T_{st}\left(arepsilon top 1
ight) &\lesssim \sigma^{-2} \cdot igg|_{Y^{2}\left(arphi_{\pi},\pi
ight)^{-1}}^{1/2} rac{p\,\mathrm{d}p}{I_{\pi}(p)^{2}}. \end{aligned}$$

Still very general at this stage.

Deducing main results (1)

⊌ Under m-strong log-concavity, can bound isoperimetric profile as

$$I_{\pi}(p) \geqslant c \cdot m^{1/2} \cdot p \cdot \left(\log rac{1}{p}
ight)^{1/2}$$

u Under L-smoothness, take $\sigma = v \cdot (L \cdot d)^{-1/2}$ and control acceptance ratio as

$$lpha_0\geqslantrac{1}{2}\cdot\exp\left(-rac{1}{2}arphi^2
ight).$$

- - Remark: Failure of these conditions corresponds to known failure modes for RWM.

Deducing main results (2)

$$egin{aligned} \gamma_P &\gtrsim 1/\left(\kappa \cdot d
ight) \ T_*\left(arepsilon top 1
ight) &\lesssim \sigma^{-2} \cdot m^{-1} \cdot \int_{\chi^2\left(\mu_0,\pi
ight)^{-1}}^{1/2} rac{\mathrm{d} p}{p \cdot \log\left(rac{1}{p}
ight)} \ &\lesssim \kappa \cdot d \cdot \log\log\chi^2(\mu_0,\pi). \end{aligned}$$

- Same strategy works well for other targets:
 - Characterise the isoperimetric profile (out of your hands).
 - Control the acceptance rates.

Not discussed in detail

- & Sharpness of bounds w.r.t. d.
- 'Multi-phase convergence', initialisation.
- RWM on targets 'between exponential and Gaussian'.
- RWM on rougher targets.

Ongoing and future work

- RWM on Heavy-tailed targets.
- Other Metropolis algorithms.
- Other non-Metropolis algorithms.
- ✓ New algorithms inspired by proof techniques.

Recap

- RWM for MCMC sampling.
- - Isoperimetry (of target), and
 - Close Coupling (of kernels).
- Explicit control of RWM acceptance rates.
- ✓ Estimates of spectral gap, L² mixing times, asymptotic variance, etc.

Bonus Slides 1: Technical Details

$$\Phi_P(v) := \inf \left\{ \frac{I_{\pi,P}(v)}{v} : 0 < v \leqslant \frac{1}{2} \right\}. \tag{1}$$

$$\Lambda_P(v) \geqslant \frac{1}{2} \Phi_P(v)^2. \tag{2}$$

$$\frac{\mathcal{E}\left(P,f\right)}{\operatorname{Var}_{\pi}\left(f\right)} \geqslant \frac{1}{2} \cdot \Lambda_{P}\left(4 \cdot \frac{\pi\left(f\right)^{2}}{\operatorname{Var}_{\pi}\left(f\right)}\right). \tag{3}$$

 \checkmark Functional Inequality to Mixing Time: consider $||P^n f||_2^2$ with $f = \frac{d\mu}{d\pi}$.

Bonus Slides 2 : Super-Poincaré Inequalities

✓ Spectral Profile to Super-Poincaré Inequality

$$\operatorname{Var}_{\pi}(f) \leqslant s \cdot \mathcal{E}(P, f) + \beta_{P}(s) \cdot \pi(|f|)^{2}; \tag{4}$$

can express β_P in terms of Λ_P .