

Pauta Interrogación 1

Problema 1

(a) (1pt) Sea t > e. Muestre que

$$\int_{e}^{t} \frac{1}{x \ln(x)} \, \mathrm{d}x = \ln(\ln(t)).$$

(b) (3pts) Determine si la integral

$$\int_{e}^{\infty} \frac{1}{x(2 + \ln(x^{5/2})) + \ln(x^{x})} \, \mathrm{d}x$$

converge o no. De hacerlo, calcule su valor.

Sugerencia: utilice la parte anterior.

(c) (2pts) Calcule, si existe,

$$\int_4^8 \frac{3y}{\sqrt{y-4}} \, \mathrm{d}y.$$

Solución

(a) Realizando el cambio de variable $u = \ln(x)$, $du = \frac{1}{x}dx$, obtenemos

$$\int_{e}^{t} \frac{1}{x \ln(x)} dx = \int_{1}^{\ln(t)} \frac{1}{u} du = \ln(u) \Big|_{1}^{\ln(t)} = \ln(\ln(t)).$$

(b) Sea $f:[e,\infty)\to\mathbb{R}$ el integrando del enunciado. Comenzamos notando que

$$\frac{1}{f(x)} = 2x + x\ln(x^{5/2}) + \ln(x^x) = 2x + \frac{5}{2}x\ln(x) + x\ln(x) = 2x + \frac{7}{2}x\ln(x).$$

Por otro lado, definiendo $g(x) = \frac{1}{\frac{7}{2}x\ln(x)}$, tenemos

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} \ = \ \lim_{x \to +\infty} \frac{\frac{7}{2}x \ln(x)}{2x + \frac{7}{2}x \ln(x)} \ = \ \lim_{x \to +\infty} \frac{2x + \frac{7}{2}x \ln(x)}{2x + \frac{7}{2}x \ln(x)} - \frac{2x}{2x + \frac{7}{2}x \ln(x)}.$$

Por lo tanto,

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} \; = \; \lim_{x \to +\infty} 1 - \frac{2x}{x(2 + \frac{7}{2}\ln(x))} \; = \; \lim_{x \to +\infty} 1 - \frac{2}{2 + \frac{7}{2}\ln(x)} \; = \; 1 \; .$$

Con esto, deducimos que $\int_e^{\infty} f(x) dx$ converge si y sólo si la integral de $\int_e^{\infty} g(x) dx$ converge. Finalmente, por la parte (a) deducimos directamente que $\int_e^{\infty} g(x) dx$ diverge a $+\infty$, por lo que $\int_e^{\infty} f(x) dx$ diverge a $+\infty$.

(c) Realizando el cambio de variable u = y - 4, du = dy, obtenemos

$$\int_{4}^{8} \frac{3y}{\sqrt{y-4}} \, \mathrm{d}y = 3 \int_{0}^{4} \frac{u+4}{\sqrt{u}} \mathrm{d}u = 3 \int_{0}^{4} \left(u^{\frac{1}{2}} + 4u^{-\frac{1}{2}} \right) \mathrm{d}u = \lim_{t \to 0^{+}} 3 \left(\frac{2}{3} u^{\frac{3}{2}} + 4 \cdot 2u^{\frac{1}{2}} \right) \Big|_{t}^{4} = 64.$$

En particular, la integral impropia converge.

Problema 2

Considere la sucesión $(s_n)_{n\in\mathbb{N}}$ definida mediante la recurrencia

$$s_1 = 0$$
, $s_{n+1} = \frac{3}{4} - \frac{(1 - s_n)^2}{2} \quad \forall n \in \mathbb{N}$.

(a) (3pts) Demuestre que $0 \le s_n \le \frac{1}{\sqrt{2}}$ para todo $n \in \mathbb{N}$.

Sugerencia: utilice inducción matemática.

(b) (1.5pts) Demuestre que $(s_n)_{n\in\mathbb{N}}$ es creciente.

Sugerencia: utilice la parte anterior.

(c) (1.5pts) Deduzca que $(s_n)_{n\in\mathbb{N}}$ converge y calcule su límite.

Solución

(a) Procedemos por inducción. El caso base se satisface trivialmente, dado que $s_1 = 0$. Resta entonces mostrar que si $0 \le s_n \le \frac{1}{\sqrt{2}}$ se satisface para algún $n \in \mathbb{N}$, entonces $0 \le s_{n+1} \le \frac{1}{\sqrt{2}}$. Por definición,

$$s_{n+1} = \frac{3}{4} - \frac{(1-s_n)^2}{2} = \frac{3-2(1-2s_n+s_n^2)}{4} = \frac{1+4s_n-2s_n^2}{4}.$$
 (1)

Dado que $4s_n \ge 0$ y que $-2s_n^2 \ge -1$, deducimos que $s_{n+1} \ge 0$.

Por otro lado, notemos que $1-s_n \ge 1-\frac{1}{\sqrt{2}}=\frac{\sqrt{2}-1}{\sqrt{2}}>0$ y por lo tanto

$$(1-s_n)^2 \ge \frac{(\sqrt{2}-1)^2}{2},$$

de donde deducimos que

$$s_{n+1} = \frac{3}{4} - \frac{(1-s_n)^2}{2} \le \frac{3}{4} - \frac{(\sqrt{2}-1)^2}{4} = \frac{3-(2-2\sqrt{2}+1)}{4} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}.$$

(b) Mostremos que $s_{n+1} - s_n \ge 0$. En efecto, usando (1), tenemos

$$s_{n+1} - s_n = \frac{1 + 4s_n - 2s_n^2}{4} - s_n = \frac{1}{4} - \frac{s_n^2}{2}.$$

Por la parte (a) sabemos que $0 \le s_n \le \frac{1}{\sqrt{2}}$, y que por ende $-\frac{s_n^2}{2} \ge -\frac{1}{4}$, lo que combinado con lo anterior implica el resultado.

(c) De la parte (a) sabemos que $(s_n)_{n\in\mathbb{N}}$ es acotada y de la parte (b) sabemos que $(s_n)_{n\in\mathbb{N}}$ es monótona. Luego, $(s_n)_{n\in\mathbb{N}}$ converge a un real $L\in\left[0,\frac{1}{\sqrt{2}}\right]$. Pasando al límite $n\to\infty$ en la relación

$$s_{n+1} = \frac{3}{4} - \frac{(1-s_n)^2}{2},$$

deducimos que $L=\frac{3}{4}-\frac{(1-L)^2}{2}$. Desarrollando, obtenemos la relación $L^2=\frac{1}{2}$, y como $L\in\left[0,\frac{1}{\sqrt{2}}\right]$, concluimos que $L=\frac{1}{\sqrt{2}}$.

Problema 3

(a) (1.5pts) Calcule, si existe,

$$\sum_{n=0}^{\infty} 2^n \left(\frac{1}{2^{2n+2}} \right).$$

(b) (1.5pts) Considere la sucesión $(s_n)_{n\in\mathbb{N}}$ definida mediante la recurrencia

$$s_1 = 0$$
, $s_{n+1} = (\ln(n) - n^2) s_n \quad \forall n \in \mathbb{N}$.

Calcule, si existe, $\sum_{n=1}^{\infty} s_n$.

(c) (3pts) Para $x \ge 0$, considere la función

$$f(x) := \sum_{n=1}^{\infty} \frac{1}{n^x}.$$

Determine el dominio de f, es decir, $\{x \ge 0 : f(x) < +\infty\}$.

Comentario de cultura matemática: esta función se denomina zeta de Riemann y se utiliza para estudiar la distribución de los números primos.

Solución

(a) Tenemos que

$$\sum_{n=0}^{\infty} 2^n \left(\frac{1}{2^{2n+2}} \right) = \sum_{n=0}^{\infty} \frac{1}{4} \left(\frac{1}{2} \right)^n,$$

que corresponde a una serie geométrica convergente y cuyo valor es igual a $\frac{1}{4}\frac{1}{1-\frac{1}{2}}=\frac{1}{2}$.

- (b) Afirmamos que $s_n = 0$ para todo $n \in \mathbb{N}$, lo cual probaremos por inducción. El caso base se tiene trivialmente, dado que $s_1 = 0$. Por otro lado, si $s_n = 0$ para algún $n \in \mathbb{N}$, entonces $s_{n+1} = (\ln(n) n^2)s_n = 0$, lo que prueba el paso inductivo. De esto, se deduce directamente que $\sum_{n=1}^{\infty} s_n = 0$.
- (c) Afirmamos que $\text{Dom}(f) = (1, \infty)$, lo cual se desprende directamente del comportimiento de la serie p vista en clases. En efecto, para $x \in (1, \infty)$ (fijo), tenemos que

$$\sum_{n=1}^{\infty} \frac{1}{n^x}$$

es convergente, mientras que si $x \in [0,1]$ (fijo) la serie es divergente.

Asignación de puntajes

Problema 1

- (a) (i) (0.5pts) Realiza un cambio de variables que permita el cálculo de la integral.
 - (ii) (0.5pts) Obtiene correctamente el valor de la integral.
- (b) (i) (0.5pts) Simplifica correctamente el integrando utilizando propiedades de la función logaritmo natural.
 - (ii) (0.5pts) Identifica una función de comparación adecuada para el problema.
 - (iii) (1pt) Calcula correctamente el límite, cuando $x \to \infty$, del cociente entre el integrando y la función de comparación.
 - (iv) (0.5pts) Deduce a partir del valor del límite anterior que la integral impropia converge si y sólo si la integral de la función de comparación converge.
 - (v) (0.5pts) Deduce a partir del resultado de la parte (a) que la integral de la función de comparación diverge.
- (c) (i) (0.5pts) Realiza un cambio de variables que permita el cálculo de la integral.
 - (ii) (0.5pts) Calcula correctamente la integral resultante entre t y 4, donde t > 0.
 - (ii) (1pt) Calcula correctamente el límite cuando $t \to 0^+$, deduciendo la convergencia de la integral impropia y obtiendo su valor.

Problema 2

- (a) (i) (0.5pts) Realiza correctamente el paso base inductivo.
 - (ii) $(0.5 \mathrm{pts})$ Escribe correctamente la hipótesis y la tesis de inducción.
 - (iii) (0.8pts) Muestra que $s_{n+1} \ge 0$ (sin puntaje parcial).
 - (iv) (1.2pts) Muestra que $s_{n+1} \leq \frac{1}{\sqrt{2}}$ (sin puntaje parcial).
- (b) (i) (0.5pts) Expresa $s_{n+1} s_n$ de una manera que permita el uso de la parte (a).
 - (ii) (1pt) Deduce correctamente a partir de (a) que la sucesión es creciente.

- (c) (i) (0.3pts) Deduce a partir de (a) y (b) que la sucesión es convergente.
 - (ii) (0.2pts) Deduce a partir de (a) y (b) que el límite pertenece al intervalo $\left[0, \frac{1}{\sqrt{2}}\right]$.
 - (iii) (0.7pts) Utiliza correctamente las propiedades de los límites para obtener la relación $L^2 = \frac{1}{2}$.
 - (iv) (0.3pts) Deduce a partir de lo anterior el valor del límite.

Problema 3

- (a) (i) (0.5pts) Escribe la serie como una serie geométrica.
 - (ii) (1pt) Calcula correctamente el valor de la serie geométrica, obteniendo el valor de la serie pedida.
- (b) (i) (0.5pts) Identifica que la sucesión $(s_n)_{n\in\mathbb{N}}$ es la sucesión nula.
 - (ii) (0.5pts) Demuestra lo anterior utilizando inducción.
 - (iii) (0.5pts) Deduce correctamente el valor de la serie.
- (c) (i) (1pt) Argumenta que la serie converge para x > 1 (fijo).
 - (ii) (1pt) Argumenta que la serie diverge para $x \le 1$ (fijo).
 - (iii) (1pt) Deduce correctamente el dominio de la función.