Topic 15

Multi-channel Source Separation

Problem Classification

- Number of sources: N
- Number of channels: M

- Over-determined: N<M
 - Beamforming, ICA
- Determined: N=M
 - ICA
- Under-determined: N>M
 - DUET

Single-channel: M=1

Beamforming

Microphone array

Discussions

- Advantages
 - Simple, robust

- Disadvantages
 - Need many channels
 - Need to know the direction of the target source

Independent Component Analysis

- Instantaneous mixing model (ignoring delay)
- #sources = #channels $x_1(t) = a_{11}s_1(t) + a_{12}s_2(t)$ $x_2(t) = a_{21}s_1(t) + a_{22}s_2(t)$

Matrix notation of random variables

$$x = As$$
Channel
Source
signal
Mixing
matrix

 Problem: estimate s from x, where A is unknown

ICA Assumptions

- Source signals s are non-Gaussian
- Sources are independent to each other

Mixing process:
$$x = As$$

• Let demixing matrix $W = A^{-1}$, and w^T be one row, then a separated source is

$$y = \mathbf{w}^T \mathbf{x} = \mathbf{w}^T A \mathbf{s} = \mathbf{z}^T \mathbf{s}$$

• We hope that z^T has only one nonzero element whose value is 1.

Key Idea of ICA

$$y = \mathbf{w}^T \mathbf{x} = \mathbf{w}^T A \mathbf{s} = \mathbf{z}^T \mathbf{s}$$

- Central Limit Theorem: the sum of many independent random variables tends toward a Gaussian distribution.
- y is more Gaussian than s, unless z^T only has one nonzero element, which is what we want.
- Find w^T such that y is most non-Gaussian!
 - Various ways to define non-Gaussianity

Discussions

- Advantages
 - Elegant

- Disadvantages
 - Need more (or equal) channels than sources
 - The independence assumption is too strong sometimes

DUET

Degenerate Unmixing Estimation Technique

[Yilmaz, Rickard' 04]

- Separates N>2 sources from 2 mixtures
- Assumes that spectrograms of sources do not overlap much
- Binary time-frequency masking

Time-frequency Masking

- Multiply the mixture spectrogram with a mask (a matrix of the same size as the spectrogram) to get the source spectrogram
 - Soft mask: mask takes real values
 - Binary mask: mask takes binary values

W-disjoint orthogonal (W-DO)

- The support (non zero time-freq points) of different sources do not overlap w.r.t. window W
 - Sources are of different frequencies
 - Sources are active at different times
- Not realistic in practice
- Approximately W-DO: Only one source has strong energy at each time-freq point.
 - Binary masking would give pretty good separation

Speech signals are approximately W-DO

ECE 477 - Computer Audition - Zhiyao Duan 2019

Measuring W-Disjoint Orthogonality

- Ideal Binary Mask (IBM): takes 1 in the time-freq points where the target source is at least *x* dB louder than interferences, and 0 otherwise.
- WDO_IBM measures W-Disjoint orthogonality.

How large WDO do we need?

rating	meaning			
1	perfect			
2	minor artifacts or interference			
3	distorted but intelligible			
4	very distorted and barely intelligible			
5	not intelligible			

WDO = PSR - PSR/SIR

- PSR: preserved signal ratio
- SIR: signal to interference ratio

Speech signals are approximately W-DO

N: #sources; x: energy threshold to derive IBM

ECE 477 - Computer Audition - Zhiyao Duan 2019

Anechoic Mixing Model

$$x_k(t) = \sum_{j=1}^N a_{kj} s_j(t-\delta_{kj})\,, \qquad k=1,2$$
 Attenuation coefficients

- Without loss of generality, we can set $a_{1j} = 1$ and $\delta_{1j} = 0$ for all j = 1, ..., N. And rename a_{2j} as a_j and δ_{2j} as δ_j , which are relative attenuation and time delay.
- Take STFT:

$$\begin{bmatrix} \hat{x}_1(\tau,\omega) \\ \hat{x}_2(\tau,\omega) \end{bmatrix} = \begin{bmatrix} 1 & \dots & 1 \\ a_1 e^{-i\omega\delta_1} & \dots & a_N e^{-i\omega\delta_N} \end{bmatrix} \begin{bmatrix} \hat{s}_1(\tau,\omega) \\ \vdots \\ \hat{s}_N(\tau,\omega) \end{bmatrix}$$

How to derive the mask?

$$\begin{bmatrix} \hat{x}_1(\tau,\omega) \\ \hat{x}_2(\tau,\omega) \end{bmatrix} = \begin{bmatrix} 1 & \dots & 1 \\ a_1 e^{-i\omega\delta_1} & \dots & a_N e^{-i\omega\delta_N} \end{bmatrix} \begin{bmatrix} \hat{s}_1(\tau,\omega) \\ \vdots \\ \hat{s}_N(\tau,\omega) \end{bmatrix}$$

 When sources are W-DO, each t-f point contains only one source, and its relative attenuation and delay correspond to those of that source!

$$R_{21}(\tau,\omega) := \frac{\hat{x}_2(\tau,\omega)}{\hat{x}_1(\tau,\omega)} = a_j e^{-i\delta_j \omega}$$
If only source j is active at (τ,ω)

Group T-F Points

 T-F points dominated by the same source have very similar relative attenuation and delay

$$\tilde{a}(\tau,\omega) := |R_{21}(\tau,\omega)|$$

$$\tilde{\delta}(\tau,\omega) := -\frac{1}{\omega} \angle R_{21}(\tau,\omega)$$

- Plot a 2-D histogram
- Here we use symmetric attenuation for better numerical results

$$\tilde{\alpha}(\tau,\omega) \coloneqq \tilde{\alpha}(\tau,\omega) - \frac{1}{\tilde{\alpha}(\tau,\omega)}$$

DUET Algorithm

- 1) STFT on both channels
- 2) calculate DUET parameters (i.e. relative symmetric attenuation and delay) for each T-F point
- 3) construct a 2-D histogram and locate peaks, where each peak will correspond to a source
- 4) for each peak, construct a binary mask by collecting
 T-F points whose DUET parameters are close to the peak
- 5) apply the mask to the mixture and do inverse-STFT

Experiments

Artificial mixtures using anechoic mixing model

Separated by DUET

source	SIR in (dB)	SIR out (dB)	WDO DUET	WDO 0dB
81	-7.29	5.92	0. 57	0.80
82	-7.29	5. 24	0.55	0.78
83	-5.08	6.60	0.62	0.81
84	-9.29	5.35	0.56	0. 69
85	-5.03	7.06	0. 63	0. 81
86	-9.28	5.47	0.55	0. 66

ECE 477 - Computer Audition - Zhiyao Duan 2019

Experiments in Real Environments

Anechoic room

test	SIR in (dB)	SIR out (dB)	WDO DUET	WDO 0dB
M1 0°	-2.72	13.67	0.88	0.90
F1 90°	-2.05	7.96	0.80	0.93
M2 180°	-4.37	13 .32	0.84	0.87
F1 0°	- 9.77	7.97	0.62	0.76
M1 60°	-4.30	7.16	0.67	0.86
F2 90°	-3 .77	5.99	0. 68	0. 91
M2 120°	-5.60	7.05	0.65	0.85
F3 180°	-8.59	8.53	0.65	0.82

Echoic room (reverberation time ~500ms)

test	SIR in (dB)	SIR out (dB)	WDO DUET	WDO 0dB
M1 0°	-5.20	5.38	0.40	0.81
M2 90°	0. 07	4.33	0.56	0.91
F1 180°	-4.48	6.03	0.49	0.87

Histograms

ECE 477 - Computer Audition - Zhiyao Duan 2019

Discussions

- Advantages
 - Blind
 - Simple
 - Works pretty well for speech sources in anechoic rooms

- Disadvantages
 - Would fail if sources overlap much
 - Can't deal with reverberation well