

子午线

学习笔记

作者: leekarry

组织:果壳

时间: May 10, 2019

版本: 0.1

我很快,快到时间都会变慢。而我一慢,时间就会过得飞快。

目 录

I	分材	行学	1
1	初等	· 分析	3
	1.1	实数	3
	1.2	复数	3
	1.3	在振荡上的应用	3
	1.4	对等式的运算	3
	1.5	对不等式的运算	3
2	序列	们的极限	4
	2.1	基本思想	4
	2.2	实数的希尔伯特 (Hilbert) 公理	4
	2.3	实数序列	4
	2.4	序列收敛准则	4
3	函数	的极限	5
	3.1	一个实变量的函数	5
	3.2	度量空间和点集	5
	3.3	多变量函数	5
4	一个	实变函数的微分法	6
	4.1	导数	6
	4.2	链式法则	6
	4.3	递增函数和递减函数	6
	4.4	反函数	6
	4.5	泰勒定理和函数的局部行为	6
	4.6	复值函数	6
5	多元	上实变函数的导数	7
	5.1	偏导数	7
	5.2	弗雷歇导数	7
	5.3	链式法则	7
	5.4	对微分算子的变换的应用	7
	5.5	对函数相关性的应用	7
	5.6	隐函数 完理	7

目 录 —2/95—

	5.7	逆映射	7
	5.8	n 阶变分与泰勒定理	7
	5.9	在误差估计上的应用	7
	5.10	弗雷歇微分	7
6	单字	变函数的积分	8
	6.1		8
	6.2		8
	6.3		8
	6.4		8
	6.5		8
	6.6		8
	6.7		8
	6.8		8
	6.9		8
			8
		M-7/1/XH4 M-10-12-11-11-11-11-11-11-11-11-11-11-11-11-	
7	多实	~= M-11/1/	9
	7.1	基本思想	9
	7.2	积分的存在性	9
	7.3	积分计算	9
	7.4	1 20/3 12/4/12 (3/0/1/3/)	9
	7.5	代换	9
	7.6	100 100 100 100 100 100 100 100 100 100	9
	7.7	黎曼曲面测度	9
	7.8	分部积分	9
	7.9	曲线坐标	9
	7.10	应用到质心和惯性中点	9
	7.11	依赖于参数的积分	9
8	向量	代数 1	0
Ū	8.1	向量的线性组合	
	8.2	坐标系	
	8.3	向量的乘法	
	0.5	阿里印木仏 · · · · · · · · · · · · · · · · · · ·	U
9	向量	分析与物理学领域 1	1
	9.1	速度和加速度 1	
	9.2	梯度、散度和旋度 1	1
	9.3	在形变上的应用	1
	9.4	哈密顿算子的运算	1

∞∞∞∞

目 录 -3/95-

	9.5	功、势能和积分曲线	11
	9.6	对力学的守恒律的应用	11
	9.7	流、守恒律与高斯积分定理	11
	9.8	环量、闭积分曲线与斯托克斯积分定理	11
	9.9	根据源与涡确定向量场(向量分析的主要定理)	11
	9.10	对电磁学中麦克斯韦方程的应用	11
	9.11	经典向量分析与嘉当微分学的关系	11
10	无穷	级数	12
	10.1	收敛准则	12
	10.2	无穷级数的运算	12
	10.3	幂级数	12
	10.4	傅里叶级数	12
	10.5	发散级数求和	12
	10.6	无穷乘积	12
11	积分	冰桥	13
11		拉普拉斯变换	13
		傅里叶变换	13
		Z 变换	13
	11.3		-13
12	常微	分方程	14
12	常微 12.1	分方程 引导性的例子	14
12	常微 12.1 12.2	分方程 引导性的例子 基本概念 基本概念	14 14
12	常微 12.1 12.2	分方程 引导性的例子	14
	常微 12.1 12.2 12.3 12.4	分方程 引导性的例子 基本概念 微分方程的分类 初等解法	14 14 14 14
	常微 12.1 12.2 12.3 12.4 12.5	分方程 引导性的例子 基本概念 微分方程的分类 初等解法 应用	14 14 14 14 14
	常微 12.1 12.2 12.3 12.4 12.5 12.6	分方程 引导性的例子 基本概念 微分方程的分类 初等解法 应用 线性微分方程组和传播子	14 14 14 14 14
	常微 12.1 12.2 12.3 12.4 12.5 12.6 12.7	分方程 引导性的例子 基本概念 微分方程的分类 初等解法 应用 线性微分方程组和传播子 稳定性	14 14 14 14 14
	常微 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8	分方程 引导性的例子 基本概念 微分方程的分类 初等解法 应用 线性微分方程组和传播子 稳定性 边值问题和格林函数	14 14 14 14 14 14
	常微 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8	分方程 引导性的例子 基本概念 微分方程的分类 初等解法 应用 线性微分方程组和传播子 稳定性	14 14 14 14 14 14 14
	常微 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9	分方程 引导性的例子 基本概念 微分方程的分类 初等解法 应用 线性微分方程组和传播子 稳定性 边值问题和格林函数	14 14 14 14 14 14 14 14 14
	常微 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9	分方程 引导性的例子 基本概念 初等解法 应用 线性微分方程组和传播子 稳定性 边值问题和格林函数 一般理论	14 14 14 14 14 14 14 14 14 15
	常微 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 偏微 13.1	分方程 引导性的例子 基本概念 微分方程的分类 初等解法 应用 线性微分方程组和传播子 稳定性 边值问题和格林函数 一般理论	14 14 14 14 14 14 14 14
	常微 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 偏微 13.1 13.2	分方程 引导性的例子 基本概念 微分方程的分类 初等解法 应用 线性微分方程组和传播子 稳定性 边值问题和格林函数 一般理论 分方程 数学物理中的一阶方程	14 14 14 14 14 14 14 14 15
	常微 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 偏微 13.1 13.2 13.3	分方程 引导性的例子 基本概念 微分方程的分类 初等解法 应用 线性微分方程组和传播子 稳定性 边值问题和格林函数 一般理论 分方程 数学物理中的一阶方程 二阶数学物理方程	14 14 14 14 14 14 14 14 15 15

目 录 —4/95—

14	复变函数	16
	14.1 基本思想	18
	14.2 复数列	18
	14.3 微分	18
	14.4 积分	18
		18
	14.6 函数的表示	18
	14.7 留数计算与积分计算	18
	14.8 映射度	18
	14.9 在代数基本定理上的应用	18
	14.10双全纯映射和黎曼映射定理	18
	14.11共形映射的例子	18
	14.12对调和函数的应用	18
	14.13在静电学和静磁学上的应用	18
		18
	14.15在欧拉伽马函数上的应用	18
	14.16椭圆函数和椭圆积分	18
	14.17模形式与 P 函数的反演问题	18
	14.18椭圆积分	18
		18
	14.20在高斯超几何微分问题上的应用	18
	14.21在贝塞尔微分方程上的应用	18
	14.22多复变函数	18
II	代数学	19
	1732 1	-/
15	初等代数	21
	15.1 组合学	21
	15.2 行列式	21
	15.3 矩阵	21
	15.4 线性方程组	21
	15.5 多项式的计算	21
	15.6 代数学基本定理(根据高斯的观点)	21
	15.7 部分分式分解	21
16	矩阵	22
10		22
		22
	16.3 矩阵函数	

-5/95-

17	线性代数	23
	17.1 基本思想	23
	17.2 线性空间	23
	17.3 线性算子	23
	17.4 线性空间的计算	23
	17.5 对偶性	23
10	多线性代数	24
10	92 18.1 代数	
	18.2 多线性型的计算	24
	18.3 泛积	24
	18.4 李代数	24
	18.5 超代数	24
	10.5 程刊 (数	24
19	代数结构	25
	19.1 群	25
	19.2 环	25
	19.3 域	25
20	伽罗瓦理论和代数方程	26
	20.1 三个著名古代问题	
	20.2 伽罗瓦理论的主要定理	26
	20.3 广义代数学基本定理	26
	20.4 域扩张的分类	26
	20.5 根式可解方程的主定理	26
	20.6 尺规作图	26
21	数论	27
	21.1 基本思想	27
	21.2 欧几里德算法	27
	21.3 素数分布	27
	21.4 加性分解	27
	21.5 用有理数及连分数逼近无理数	27
	21.6 超越数	27
	21.7 对数 π 的应用	27
	21.8 高斯同余式	27
	21.9 闵可夫斯基数的几何	27
	21.10数论中局部-整体基本原理	27
	21.11理想和因子理论	27
	21.12对二次数域的应用	27

目	录	-6/95-

	21.13解析类数公式	27
	21.14一般数域的希尔伯特类域论	27
III	几何学	28
22	由克莱因的埃尔兰根纲领所概括的几何学的基本思想	29
23	初等几何学	30
	23.1 平面三角学	30
	23.2 对大地测量学的应用	30
	23.3 球面几何学	30
	23.4 对于海上和空中旅行的应用	30
	23.5 几何的希尔伯特公理	30
	23.6 欧几里德平行公理	30
	23.7 非欧椭圆几何学	30
	23.8 非欧双曲几何学	30
24	向量代数在解析几何学中的应用	31
	24.1 平面中的直线	31
	24.2 空间中的直线和平面	31
	24.3 体积	31
25	欧氏几何学 (运动的几何学)	32
	25.1 欧几里德运动群	
	25.2 圆锥截线	
	25.3 二次曲面	32
26	射影几何学	33
	26.1 基本思想	33
	26.2 射影映射	33
	26.3 n 维实射影空间	33
	26.4 n 维复射影空间	33
	26.5 平面几何学的分类	33
27	微分几何学	34
	27.1 平面曲线	34
	27.2 空间曲线	34
	27.3 高斯的曲线局部理论	34
	27.4 高斯的曲线整体理论	34

月 录 __7/95__

28	平面	曲线的例子	35
		包络线和焦散线	
		渐屈线	35
	28.3		35
		惠更斯的曳物线和悬链线	35
		伯努利双纽线和卡西尼卵形线	35
		利萨如图形	35
	28.7	螺线	35
		射线曲线 (蚌线)	35
		旋轮线	35
	20.9	从七 线	33
29	代数	几何学	36
	29.1	基本思想	36
	29.2	平面曲线的例子	36
	29.3	对积分计算的应用	36
	29.4	平面代数曲线的射影复形式	36
	29.5	曲线的亏格	36
	29.6	丢番图几何	36
	29.7	解析集和魏尔斯特拉斯预备定理	36
	29.8	奇点分解	36
	29.9	现代代数几何的代数代	36
20	यात होत	Martingle 11 let	37
30		物理的几何	
		基本思想	37
		西几何、希尔伯特空间和基本粒子	37
		伪酉几何	
		闵可夫斯基几何	37
		对狭义相对论的应用	37
		旋量几何和费米子	37
		近复结构	37
	30.8	辛几何	37
IV	数	学基础	38
31	数学	的语言	39
	31.1	真命题和假命题	39
	31.2	蕴涵	39
	31.3	重言律和逻辑定律	39

目 录 —8/95—

32	证明的方法	40
	32.1 间接证明	40
	32.2 归纳法证明	40
	32.3 唯一性证明	40
	32.4 存在性证明	40
	32.5 计算机时代证明的必要性	40
	32.6 不正确的证明	40
33	朴素集合论	41
	33.1 基本概念	
	33.2 集合的运算	
	33.3 映射	
	33.4 集合的等势	41
	33.5 关系	41
	33.6 集系	41
24	#6-7m vpr4-c	42
34	数理逻辑 34.1 命题逻辑	42
	34.2 谓词逻辑	42
	34.3 集合论的公理	42
	34.4 康托尔的无穷结构	42
35	公理方法及其与手掌认识论之关系的历史	43
	35.1 公理方法及其与手掌认识论之关系的历史	43
\mathbf{V}	变分法与最优化	44
•	ZAIA JAMILI	
36	单变量函数的变分法	45
	36.1 欧拉-伯努利方程	45
	36.2 应用	45
	36.3 哈密顿方程	45
	36.4 应用	45
	36.5 局部极小值的充分条件	45
	36.6 带约束问题和拉格朗日乘子	45
	36.7 应用	45
	36.8 自然边界条件	45
37	多变量函数的变分法	46
	37.1 欧拉-拉格朗日方程	46
	37.2 应用	46

目 录 —9/95—

	37.3	带约束的问题和拉格朗日乘子 46
38	控制	 问题
		应用
		庞特里亚金极大值原理
		应用
39	经典	非线性最优化 48
	39.1	局部极小化问题 48
	39.2	全局极小化问题和凸性 48
	39.3	对于高斯最小二乘法的应用 48
	39.4	对于伪逆的应用 48
	39.5	带约束的问题和拉格朗日乘子 48
	39.6	对熵的应用
	39.7	次微分 48
	39.8	对偶理论和鞍点
40	线性	最优化 49
	40.1	基本思想
	40.2	一般线性最优化问题 49
	40.3	最优化问题的标准形式和最小试验 49
	40.4	单形法 49
	40.5	最小试验
	40.6	标准形式的获得
	40.7	线性最优化中的对偶性
	40.8	单形法的修改 49
41	线性	最优化的应用 50
	41.1	容量利用问题 50
	41.2	混合问题
	41.3	资源或产品的分配问题 50
	41.4	设计问题和轮班计划 50
	41.5	线性运输问题 50
VI	隨	机演算——机会的数学 51
42	-	的随机性 52
		古典概型
	42.2	伯努利大数定律 52

∞∞∞

目	录	-10/95
---	---	--------

	42.3	棣莫弗极限定理	52
		高斯正态分布	52
		相关系数	52
		在经典统计物理学中的应用	52
43		莫戈罗夫的概率论公理化基础	53
	43.1	事件与概率的计算	53
	43.2	随机变量	53
	43.3	随机向量	53
	43.4	极限定理	53
	43.5	应用于独立重复试验的伯努利模型	53
44	数理		54
	44.1	基本思想	54
	44.2	重要的估计量	54
	44.3	正态分布测量值的研究	54
	44.4	经验分布函数	54
	44.5	参数估计的最大似然方法	54
	44.6	多元分析	54
45	随机	过程	55
45		过程 时间序列	55
45	45.1		
45	45.1 45.2	时间序列	55
45	45.1 45.2 45.3	时间序列	55 55
45	45.1 45.2 45.3 45.4	时间序列	555555
	45.1 45.2 45.3 45.4 45.5	时间序列	55 55 55 55 55
VI	45.1 45.2 45.3 45.4 45.5	时间序列	55 55 55 55 55 55
VI	45.1 45.2 45.3 45.4 45.5 I 讨	时间序列	55555555
VI	45.1 45.2 45.3 45.4 45.5 I 讨 数值 46.1	时间序列	55 55 55 55 55 56 56
VI	45.1 45.2 45.3 45.4 45.5 I 讨 数值 46.1 46.2	时间序列	55 55 55 55 55 56 57
VI 46	45.1 45.2 45.3 45.4 45.5 I 讨 数值 46.1 46.2	时间序列 马尔可夫链与随机矩阵 泊松过程 布朗运动与扩散 关于一般随机过程的科尔莫夫主定理 一算数学与科学计算 计算和误差分析 算法的概念 在计算机上表示数 误差来源,发现误差,条件和稳定性	55 55 55 55 55 57 57 57
VI 46	45.1 45.2 45.3 45.4 45.5 I 讨 数值 46.1 46.2 46.3	时间序列 马尔可夫链与随机矩阵 泊松过程 布朗运动与扩散 关于一般随机过程的科尔莫夫主定理 一算数学与科学计算 计算和误差分析 算法的概念 在计算机上表示数 误差来源,发现误差,条件和稳定性	55 55 55 55 55 57 57 57 57
VI 46	45.1 45.2 45.3 45.4 45.5 I 讨 数值 46.1 46.2 46.3 线性 47.1	时间序列	55 55 55 55 55 56 57 57
VI 46	45.1 45.2 45.3 45.4 45.5 I 讨 数值 46.1 46.2 46.3 线性 47.1 47.2	时间序列	55 55 55 55 55 56 57 57 57 57

∞∞∞∞

目 录 —11/95—

48	插值	,数值微分和积分	5 9			
	48.1	插值多项式	59			
	48.2	数值微分	59			
	48.3	数值积分	59			
49	非线	性问题	6 0			
	49.1	非线性问题	60			
	49.2	非线性方程组	60			
	49.3	确定多项式零点	60			
50	数值	逼近	61			
	50.1	二次平均逼近	61			
			61			
	50.3	近似一致逼近	61			
51	常微	分方程	62			
	51.1	初值问题	62			
			62			
52	偏微分方程与科学计算 63					
	52.1	基本思想	63			
			63			
	52.3	椭圆型微分方程	63			
	52.4	抛物微分方程	63			
	52.5	双曲微分方程	63			
	52.6	自适应离散方法	63			
	52.7	方程组的迭代解	63			
	52.8	边界元方法	63			
	52.9	调和分析	63			
	52.10	0反问题	63			
VI	IJ∤	机器学习	64			
53		3 - 3 2	65			
		35.1, 4	65			
			65			
			65			
	53.4	正则化与交叉验证	65			
	53.5	生成模型与判别模型	65			

∞∞∞∞

目 录 —12/95—

54	नाव	的线性模型	66		
J -T		线性基函数模型	66		
		偏置-方差分解			
			66		
		贝叶斯线性回归	66		
		贝叶斯模型比较	66		
		证据近似	66		
	54.6	固定基函数的局限性	66		
55	分类的线性模型 6				
		判别函数	67		
		概率生成式模型	67		
		概率判别式模型	67		
		拉普拉斯近似	67		
		贝叶斯 logistic 回归	67		
56	集成	学习	68		
		贝叶斯模型平均	68		
	56.2	委员会	68		
	56.3	提升方法	68		
	56.4	基于树的模型	68		
	56.5	条件混合模型	68		
	56.6	logistic 模型的混合	68		
- -	አ ሐፊጀ	क्षान	6 0		
5/	神经		69		
		前馈神经网络	69		
		网络训练	69		
		误差反向传播	69		
		Hessian 矩阵	69		
		神经网络的正则化	69		
		混合密度网络	69		
	57.7	贝叶斯神经网络	69		
58	支持	向量机	70		
	58.1	间隔与支持向量	70		
		対偶问题	71		
		序列最小最优算法	73		
		核函数	76		
		软间隔与正则化	78		
		支持向量回归	78		
		核方法	78		
	20.7	MAIA	, 0		

目 录 —13/95—

5 0	भार च्ट्र	图模型
39		
		贝叶斯网络
		条件独立
		马尔科夫随机场
	59.4	图模型中的推断
60	采样	方法
	60.1	基本采样算法
	60.2	马尔科夫链蒙特卡罗
	60.3	吉布斯采样
	60.4	切片采样
		混合蒙特卡罗算法
	60.6	估计划分函数
61	强化	学习
IX	深	度学习
(2	31 2 -	
62	引言	
	62.1	深度学习的历史趋势
63	深度	前馈网络
	63.1	实例:学习 XOR
	63.2	基于梯度的学习
	63.3	隐藏单元
	63.4	架构设计
	63.5	反向传播和其他的微分算法
64		学习中的正则化
		参数范数惩罚
		作为约束的范数惩罚
		正则化和欠约束问题
	64.4	数据集增强
	64.5	噪声鲁棒性
	64.6	半监督学习
	64.7	多任务学习
	64.8	提前终止
	64.9	参数绑定和参数共享
	64.10)稀疏表示
	64.11	IBagging 和其他集成方法

∞∞∞

目 录 —14/95—

	64.12	2Dropout	85			
	64.13	3切面距离、正切传播和流形正切分类器	85			
65	深度模型中的优化 80					
	65.1	学习和纯优化有什么不同	86			
	65.2	神经网络优化中的挑战	86			
	65.3	基本算法	86			
	65.4	参数初始化策略	86			
	65.5	自适应学习率算法	86			
	65.6	二阶近似方法	86			
	65.7	优化策略和元算法	86			
66	卷积	网络	87			
	66.1	卷积运算	87			
	66.2	动机	87			
	66.3	池化	87			
	66.4	卷积与池化作为一种无限强的先验	87			
	66.5	基本卷积函数的变体	87			
	66.6	结构化输出	87			
	66.7	数据类型	87			
	66.8	高效的卷积算法	87			
	66.9	随机或无监督的特征	87			
	66.10	D卷积网络的神经科学基础	87			
	66.11	1卷积网络与深度学习的历史	87			
67	序列	建模:循环和递归网络	88			
	67.1	展开计算图	88			
	67.2	循环神经网络	88			
	67.3	双向 RNN	88			
	67.4	基于编码-解码的序列到序列架构	88			
	67.5	深度循环网络	88			
	67.6	递归神经网络	88			
	67.7	长期依赖的挑战	88			
	67.8	回声状态网络	88			
	67.9	渗漏单元和其他多时间尺度的策略	88			
	67.10)长短期记忆和其他门控 RNN	88			
	67.11	1优化长期依赖	88			
	67.12	2外显记忆	88			

目 录 —15/95—

68		方法论	39
		-	39
			39
			39
			39
			39
			39
	00.0	小四·夕匹数1 6/20 · · · · · · · · · · · · · · · · · · ·	,,
69	应用	9	90
	69.1	大规模深度学习 9	90
	69.2	计算机视觉	90
	69.3	语音识别	90
	69.4	自然语言处理 9	90
	69.5	其他应用 9	90
	45 IJ		
70	-		91
			91
			91
			91
		Trib Stockide & Communication	91
	70.5	PCA 的流形解释	91
71	自编	码器 9	92
			92
			92
			92
			92
			92
			92
			92
			92
			92
72	表示	学习	93
	72.1	贪心逐层无监督预训练 9	93
		贝心还宏儿皿自坝州场 • • • • • • • • • • • • • • • • • • •	
	72.2		93
		迁移学习和领域自适应	93 93
	72.3	迁移学习和领域自适应	
	72.3 72.4 72.5	迁移学习和领域自适应 9 半监督解释因果关系 9 分布式表示 9	93

∞∞∞∞

月 录 —16/95—

度学习中的结构化概率模型	94
1 非结构化建模的挑战	94
2 使用图描述模型结构	94
3 从图模型中采样	94
4 结构化建模的优势	94
5 学习依赖关系	94
6 推断和近似推断	94
7 结构化概率模型的深度学习方法	94
度生成模型	95
1 玻尔兹曼机	95
2 受限玻尔兹曼机	95
3 深度信念网络	95
4 深度玻尔兹曼机	95
5 实值数据上的玻尔兹曼机	95
6 卷积玻尔兹曼机	95
7 用于结构化或序列输出的玻尔兹曼机	95
8 其他玻尔兹曼机	95
9 通过随机操作的反向传播	95
10有向生成网络	95
11从自编码器采样	95
12生成随机网络	95
	95
14评估生成模型	95
73. 73. 73. 73. 73. 74. 74. 74. 74. 74. 74. 74. 74. 74.	73.7 结构化概率模型的深度学习方法 74.1 玻尔兹曼机 74.2 受限玻尔兹曼机 74.3 深度信念网络 74.4 深度玻尔兹曼机 74.5 实值数据上的玻尔兹曼机 74.6 卷积玻尔兹曼机 74.7 用于结构化或序列输出的玻尔兹曼机 74.8 其他玻尔兹曼机 74.9 通过随机操作的反向传播 74.10有向生成网络 74.11从自编码器采样 74.12生成随机网络 74.13其他生成方案

∞∞∞∞

第I部分I

分析学

分析学中最基本的概念是**极限**。数学和物理中的许多重要概念可以用极限定义,如速度、功、能量、功率、作用、物体的体积和表面积、曲线的长和曲率、曲面的曲率等。

分析的核心是**微积分**,它是由牛顿和莱布尼茨分别独立发现的。然而,只有当分析与 其他数学学科,如代数学、数论、几何、随机理论与数值理论相互作用时,它才能发挥其真 正的作用。

第1章 初等分析

- 1.1 实数
- 1.2 复数
- 1.3 在振荡上的应用
- 1.4 对等式的运算
- 1.5 对不等式的运算

第2章 序列的极限

- 2.1 基本思想
- 2.2 实数的希尔伯特 (Hilbert) 公理
- 2.3 实数序列
- 2.4 序列收敛准则

第3章 函数的极限

- 3.1 一个实变量的函数
- 3.2 度量空间和点集
- 3.3 多变量函数

第4章 一个实变函数的微分法

- 4.1 导数
- 4.2 链式法则
- 4.3 递增函数和递减函数
- 4.4 反函数
- 4.5 泰勒定理和函数的局部行为
- 4.6 复值函数

第5章 多元实变函数的导数

- 5.1 偏导数
- 5.2 弗雷歇导数
- 5.3 链式法则
- 5.4 对微分算子的变换的应用
- 5.5 对函数相关性的应用
- 5.6 隐函数定理
- 5.7 逆映射
- 5.8 n 阶变分与泰勒定理
- 5.9 在误差估计上的应用
- 5.10 弗雷歇微分

第6章 单实变函数的积分

- 6.1 基本思想
- 6.2 积分的存在性
- 6.3 微积分基本定理
- 6.4 分部积分法
- 6.5 代换
- 6.6 无界区间上的积分
- 6.7 无界函数的积分
- 6.8 柯西主值
- 6.9 对弧长的应用
- 6.10 物理角度的标准推理

第7章 多实变量函数的积分

- 7.1 基本思想
- 7.2 积分的存在性
- 7.3 积分计算
- 7.4 卡瓦列里原理(累次积分)
- 7.5 代换
- 7.6 微积分基本定理(高斯-斯托克斯定理)
- 7.7 黎曼曲面测度
- 7.8 分部积分
- 7.9 曲线坐标
- 7.10 应用到质心和惯性中点
- 7.11 依赖于参数的积分

第8章 向量代数

- 8.1 向量的线性组合
- 8.2 坐标系
- 8.3 向量的乘法

第9章 向量分析与物理学领域

- 9.1 速度和加速度
- 9.2 梯度、散度和旋度
- 9.3 在形变上的应用
- 9.4 哈密顿算子的运算
- 9.5 功、势能和积分曲线
- 9.6 对力学的守恒律的应用
- 9.7 流、守恒律与高斯积分定理
- 9.8 环量、闭积分曲线与斯托克斯积分定理
- 9.9 根据源与涡确定向量场(向量分析的主要定理)
- 9.10 对电磁学中麦克斯韦方程的应用
- 9.11 经典向量分析与嘉当微分学的关系

第10章 无穷级数

- 10.1 收敛准则
- 10.2 无穷级数的运算
- 10.3 幂级数
- 10.4 傅里叶级数
- 10.5 发散级数求和
- 10.6 无穷乘积

第11章 积分变换

- 11.1 拉普拉斯变换
- 11.2 傅里叶变换
- 11.3 Z 变换

第12章 常微分方程

- 12.1 引导性的例子
- 12.2 基本概念
- 12.3 微分方程的分类
- 12.4 初等解法
- 12.5 应用
- 12.6 线性微分方程组和传播子
- 12.7 稳定性
- 12.8 边值问题和格林函数
- 12.9 一般理论

第13章 偏微分方程

- 13.1 数学物理中的一阶方程
- 13.2 二阶数学物理方程
- 13.3 特征的作用
- 13.4 关于唯一性的一般原理
- 13.5 一般的存在性结果

第14章 复变函数

∞∞∞

14.1 基本思想 -18/95-

- 14.1 基本思想
- 14.2 复数列
- 14.3 微分
- 14.4 积分
- 14.5 微分式的语言
- 14.6 函数的表示
- 14.7 留数计算与积分计算
- 14.8 映射度
- 14.9 在代数基本定理上的应用
- 14.10 双全纯映射和黎曼映射定理
- 14.11 共形映射的例子
- 14.12 对调和函数的应用
- 14.13 在静电学和静磁学上的应用
- 14.14 解析自延拓与恒等原理
- 14.15 在欧拉伽马函数上的应用
- 14.16 椭圆函数和椭圆积分
- 14.17 模形式与 P 函数的反演问题
- 14.18 椭圆积分
- 14.19 奇异微分方程
- 14.20 在高斯超几何微分问题上的应用
- 14.21 在贝塞尔微分方程上的应用
- 14.22 多复变函数

第 II 部分 II

代数学

代数学思想发展的一个重要前提条件是由对于数的运算过渡到使用表示不定量的字母。数学中的这个革命是法国数学家 F. 韦达于 16 世纪后半叶完成的。

代数学的现代结构理论起源于 20 世纪 20 年代 E. 诺特在哥根廷以及 E. 阿廷在汉堡 讲授的课程。1930 年出版了 B.L. 范德瓦尔登的书 **Modern Algebra**《近世代数》,这个理论第一次以专著的形式呈现于世人。事实上,该书出版了多种版本,并且至今仍然是近世代数的标准参考读物。

然而,这个工作的基础是在 19 世纪奠定的。高斯 (分圆域)、阿贝尔 (代数函数)、伽罗瓦 (群论和代数方程)、黎曼 (代数函数的亏格和除子)、库默尔和戴德金 (理想论)、克罗内克 (数域)、若尔当 (群论)及希尔伯特 (数域和不变量理论)对此起了重要的推动作用。

第15章 初等代数

- 15.1 组合学
- 15.2 行列式
- 15.3 矩阵
- 15.4 线性方程组
- 15.5 多项式的计算
- 15.6 代数学基本定理(根据高斯的观点)
- 15.7 部分分式分解

第16章 矩阵

- 16.1 矩阵的谱
- 16.2 矩阵的正规形式
- 16.3 矩阵函数

第17章 线性代数

- 17.1 基本思想
- 17.2 线性空间
- 17.3 线性算子
- 17.4 线性空间的计算
- 17.5 对偶性

第 18 章 多线性代数

- 18.1 代数
- 18.2 多线性型的计算
- 18.3 泛积
- 18.4 李代数
- 18.5 超代数

第19章 代数结构

- 19.1 群
- 19.2 环
- 19.3 域

第20章 伽罗瓦理论和代数方程

- 20.1 三个著名古代问题
- 20.2 伽罗瓦理论的主要定理
- 20.3 广义代数学基本定理
- 20.4 域扩张的分类
- 20.5 根式可解方程的主定理
- 20.6 尺规作图

第21章 数论

- 21.1 基本思想
- 21.2 欧几里德算法
- 21.3 素数分布
- 21.4 加性分解
- 21.5 用有理数及连分数逼近无理数
- 21.6 超越数
- 21.7 对数 π 的应用
- 21.8 高斯同余式
- 21.9 闵可夫斯基数的几何
- 21.10 数论中局部-整体基本原理
- 21.11 理想和因子理论
- 21.12 对二次数域的应用
- 21.13 解析类数公式
- 21.14 一般数域的希尔伯特类域论

第 III 部分 III 几何学

第 22 章 由克莱因的埃尔兰根纲领所概括的几何学的 基本思想

第23章 初等几何学

- 23.1 平面三角学
- 23.2 对大地测量学的应用
- 23.3 球面几何学
- 23.4 对于海上和空中旅行的应用
- 23.5 几何的希尔伯特公理
- 23.6 欧几里德平行公理
- 23.7 非欧椭圆几何学
- 23.8 非欧双曲几何学

第 24 章 向量代数在解析几何学中的应用

- 24.1 平面中的直线
- 24.2 空间中的直线和平面
- 24.3 体积

第25章 欧氏几何学(运动的几何学)

- 25.1 欧几里德运动群
- 25.2 圆锥截线
- 25.3 二次曲面

第 26 章 射影几何学

- 26.1 基本思想
- 26.2 射影映射
- 26.3 n 维实射影空间
- 26.4 n 维复射影空间
- 26.5 平面几何学的分类

第27章 微分几何学

- 27.1 平面曲线
- 27.2 空间曲线
- 27.3 高斯的曲线局部理论
- 27.4 高斯的曲线整体理论

第28章 平面曲线的例子

- 28.1 包络线和焦散线
- 28.2 渐屈线
- 28.3 渐伸线
- 28.4 惠更斯的曳物线和悬链线
- 28.5 伯努利双纽线和卡西尼卵形线
- 28.6 利萨如图形
- 28.7 螺线
- 28.8 射线曲线 (蚌线)
- 28.9 旋轮线

第29章 代数几何学

- 29.1 基本思想
- 29.2 平面曲线的例子
- 29.3 对积分计算的应用
- 29.4 平面代数曲线的射影复形式
- 29.5 曲线的亏格
- 29.6 丢番图几何
- 29.7 解析集和魏尔斯特拉斯预备定理
- 29.8 奇点分解
- 29.9 现代代数几何的代数代

第30章 现代物理的几何

- 30.1 基本思想
- 30.2 酉几何、希尔伯特空间和基本粒子
- 30.3 伪酉几何
- 30.4 闵可夫斯基几何
- 30.5 对狭义相对论的应用
- 30.6 旋量几何和费米子
- 30.7 近复结构
- 30.8 辛几何

第 IV 部分 IV

数学基础

第31章 数学的语言

- 31.1 真命题和假命题
- 31.2 蕴涵
- 31.3 重言律和逻辑定律

第32章 证明的方法

- 32.1 间接证明
- 32.2 归纳法证明
- 32.3 唯一性证明
- 32.4 存在性证明
- 32.5 计算机时代证明的必要性
- 32.6 不正确的证明

第33章 朴素集合论

- 33.1 基本概念
- 33.2 集合的运算
- 33.3 映射
- 33.4 集合的等势
- 33.5 关系
- 33.6 集系

第34章 数理逻辑

- 34.1 命题逻辑
- 34.2 谓词逻辑
- 34.3 集合论的公理
- 34.4 康托尔的无穷结构

第 35 章 公理方法及其与手掌认识论之关系的历史

35.1 公理方法及其与手掌认识论之关系的历史

第V部分V 变分法与最优化

第 36 章 单变量函数的变分法

- 36.1 欧拉-伯努利方程
- 36.2 应用
- 36.3 哈密顿方程
- 36.4 应用
- 36.5 局部极小值的充分条件
- 36.6 带约束问题和拉格朗日乘子
- 36.7 应用
- 36.8 自然边界条件

第37章 多变量函数的变分法

- 37.1 欧拉-拉格朗日方程
- 37.2 应用
- 37.3 带约束的问题和拉格朗日乘子

第38章 控制问题

- 38.1 贝尔曼动态最优化
- 38.2 应用
- 38.3 庞特里亚金极大值原理
- 38.4 应用

第 39 章 经典非线性最优化

- 39.1 局部极小化问题
- 39.2 全局极小化问题和凸性
- 39.3 对于高斯最小二乘法的应用
- 39.4 对于伪逆的应用
- 39.5 带约束的问题和拉格朗日乘子
- 39.6 对熵的应用
- 39.7 次微分
- 39.8 对偶理论和鞍点

第40章 线性最优化

- 40.1 基本思想
- 40.2 一般线性最优化问题
- 40.3 最优化问题的标准形式和最小试验
- 40.4 单形法
- 40.5 最小试验
- 40.6 标准形式的获得
- 40.7 线性最优化中的对偶性
- 40.8 单形法的修改

第 41 章 线性最优化的应用

- 41.1 容量利用问题
- 41.2 混合问题
- 41.3 资源或产品的分配问题
- 41.4 设计问题和轮班计划
- 41.5 线性运输问题

第 VI 部分 VI 随机演算——机会的数学

第 42 章 基本的随机性

- 42.1 古典概型
- 42.2 伯努利大数定律
- 42.3 棣莫弗极限定理
- 42.4 高斯正态分布
- 42.5 相关系数
- 42.6 在经典统计物理学中的应用

第 43 章 科尔莫戈罗夫的概率论公理化基础

- 43.1 事件与概率的计算
- 43.2 随机变量
- 43.3 随机向量
- 43.4 极限定理
- 43.5 应用于独立重复试验的伯努利模型

第 44 章 数理统计

- 44.1 基本思想
- 44.2 重要的估计量
- 44.3 正态分布测量值的研究
- 44.4 经验分布函数
- 44.5 参数估计的最大似然方法
- 44.6 多元分析

第 45 章 随机过程

- 45.1 时间序列
- 45.2 马尔可夫链与随机矩阵
- 45.3 泊松过程
- 45.4 布朗运动与扩散
- 45.5 关于一般随机过程的科尔莫夫主定理

第 VII 部分 VII 计算数学与科学计算

第 46 章 数值计算和误差分析

- 46.1 算法的概念
- 46.2 在计算机上表示数
- 46.3 误差来源,发现误差,条件和稳定性

第47章 线性代数

- 47.1 线性方程组-直接法
- 47.2 线性方程组的迭代法
- 47.3 特征值问题
- 47.4 拟合和最小二乘法

第 48 章 插值,数值微分和积分

- 48.1 插值多项式
- 48.2 数值微分
- 48.3 数值积分

第49章 非线性问题

- 49.1 非线性问题
- 49.2 非线性方程组
- 49.3 确定多项式零点

第50章 数值逼近

- 50.1 二次平均逼近
- 50.2 一致逼近
- 50.3 近似一致逼近

第51章 常微分方程

- 51.1 初值问题
- 51.2 边值问题

第52章 偏微分方程与科学计算

- 52.1 基本思想
- 52.2 离散方法概述
- 52.3 椭圆型微分方程
- 52.4 抛物微分方程
- 52.5 双曲微分方程
- 52.6 自适应离散方法
- 52.7 方程组的迭代解
- 52.8 边界元方法
- 52.9 调和分析
- 52.10 反问题

第 VIII 部分 VIII 机器学习

第53章 机器学习概论

- 53.1 统计学习
- 53.2 统计学习三要素
- 53.3 模型评估与模型选择
- 53.4 正则化与交叉验证
- 53.5 生成模型与判别模型

第54章 回归的线性模型

54.1 线性基函数模型

回归问题的最简单模型是输入变量的线性组合

$$y(x, w) = w_0 + w_1 x_1 + \dots w_D x_D$$

其中 $x = (x_1, ..., x_D)^T$ 。这通常被简单地称为**线性回归 (linear regression)**。这个模型的关键性质是它是参数 $w_0, ..., w_D$ 的一个线性函数。但是,它也是输入变量 x_i 的一个线性函数,这给模型带来了极大的局限性。因此,我们扩展模型的类别:将输入变量的固定的非线性函数进行线性组合,形式为

$$y(x, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(x) = \sum_{j=0}^{M-1} w_j \phi_j(x) = \mathbf{w}^T \phi(x)$$

其中 $\phi_i(x)$ 被称为基函数 (basis function)。

1. 高斯基函数

$$\phi_j(x) = exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

2. sigmoid 基函数

$$\phi_j(x) = \frac{1}{1 + exp\left(\frac{x - \mu_j}{s}\right)}$$

3. 傅里叶基函数

- 54.2 偏置-方差分解
- 54.3 贝叶斯线性回归
- 54.4 贝叶斯模型比较
- 54.5 证据近似
- 54.6 固定基函数的局限性

第55章 分类的线性模型

- 55.1 判别函数
- 55.2 概率生成式模型
- 55.3 概率判别式模型
- 55.4 拉普拉斯近似
- 55.5 贝叶斯 logistic 回归

第 56 章 集成学习

- 56.1 贝叶斯模型平均
- 56.2 委员会
- 56.3 提升方法
- 56.4 基于树的模型
- 56.5 条件混合模型
- 56.6 logistic 模型的混合

第57章 神经网络

- 57.1 前馈神经网络
- 57.2 网络训练
- 57.3 误差反向传播
- 57.4 Hessian 矩阵
- 57.5 神经网络的正则化
- 57.6 混合密度网络
- 57.7 贝叶斯神经网络

第58章 支持向量机

支持向量机(support vector machines, SVM)是一种二类分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;支持向量机还包括核技巧,这使它成为实质上的非线性分类器。支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划(convex quadratic programming)的问题,也等价于正则化的合页损失函数的最小化问题。支持向量机的学习算法是求解凸二次规划的最优化算法。

支持向量机学习方法包含构建由简至繁的模型: 线性可分支持向量机 (linear support vector machine in linearly separable case)、线性支持向量机 (linear support vector machine) 及非线性支持向量机 (non-linear support vector machine)。简单模型是复杂模型的基础,也是复杂模型的特殊情况。当训练数据线性可分时,通过软件间隔最大化 (hard margin maximization),学习一个线性的分类器,即线性可分支持向量机,又称为硬间隔支持向量机;当训练数据近似线性可分时,通过软件间隔最大化 (soft margin maximization),也学习一个线性的分类器,即线性支持向量机,又称谓软间隔支持向量机;当训练数据线性不可分时,通过使用核技巧 (kernel trick) 及软间隔最大化,学习非线性支持向量机。

当输入空间为欧氏空间或离散集合、特征空间为希尔伯特空间时,核函数(kernel function)表示将输入从输入空间映射到特征空间得到的特征向量之间的内积。通过使用核函数可以学习非线性支持微量机,等价于隐式地在高维的特征空间中学习线性支持向量机。这样的方法称为核技巧。核方法(kernel method)是比支持向量机更为一般的机器学习方法。

Cortes 与 Vapnik 提出线性支持向量机, Boser、Guyon 与 Vapnik 又引入核技巧, 提出非 线性支持向量机。

58.1 间隔与支持向量

给定训练样本集 $D = \{(x_1, y_1), \dots, (x_m, y_m)\}, y_i \in \{-1, +1\}, 分类学习最基本的想法是基于训练集 D 在样本空间中找到一个划分超平面,将不同类别的样本分开。如图 58.1$

样本空间中任意点x到超平面(w,b)的距离可写为

$$\gamma = \frac{y(w^T x + b)}{\|w\|} = \frac{yf(x)}{\|w\|}$$

注:yf(x)相当于 |f(x)|。

假设超平面 (w, b) 能将训练样本正确分类,即对于 $(x_i, y_i) \in D$,若 $y_i = +1$,则有 $w^T x_i + b > 0$;若 $y_i = -1$,则有 $w^T x_i + b < 0$ 。令

$$\begin{cases} w^T x_i + b \ge +1, & y_i = +1; \\ w^T x_i + b \le -1, & y_i = -1. \end{cases}$$
 (58.1)

58.2 对偶问题 -71/95-

距离超平面最近的这几个训练样本点使式 58.1 的等号成立,它们被称为"**支持向量** (support vector)",两个异类支持向量到超平面的距离之和为

$$\gamma = \frac{2}{\|w\|},\tag{58.2}$$

它被称为"间隔"(margin)。

欲找到具有"最大间隔"的划分超平面,也就是要找到能满足式 58.1 中约束的参数 w 和 b,使得 γ 最大,即

min
$$\frac{1}{2} ||w||^2$$
,
s.t. $y_i(w^T x_i + b) \ge 1$, $i = 1, ..., m$. (58.3)

这就是支持向量机的基本型。

58.2 对偶问题

注意到式 58.3 本身是一个凸二次规划问题,能直接用现成的优化计算包求解,但我们可以有更高效的办法。由于这个问题的特殊结构,还可以通过拉格朗日对偶性变换到对偶变量的优化问题,即通过求解与原问题等价的对偶问题得到原始问题的最优解,这就是线性可分条件下支持向量机的对偶算法,这样做的优点在于:

- 1. 对偶问题往往更容易求解;
- 2. 可以自然的引入核函数,进而推广到非线性分类问题。

该问题的拉格朗日函数可写为

$$L(w, b, a) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{n} a_i (y_i (w^T x_i + b) - 1)$$
 (58.4)

然后令

$$\theta(\mathbf{w}) = \max_{a_i \ge 0} L(\mathbf{w}, b, a) \tag{58.5}$$

58.2 对偶问题 -72/95-

具体写出来,目标函数变成了

$$\min_{\mathbf{w},b} \ \theta(\mathbf{w}) = \min_{\mathbf{w},b} \max_{a_i \ge 0} L(\mathbf{w}, b, a) = p^*$$
 (58.6)

这里用 p^* 表示这个问题的最优值,且和最初的问题是等价的。如果直接求解,那么一上来便得面对 w 和 b 两个参数,而 a_i 以是不等式约束,这个求解过程不好做。考虑对偶问题

$$\min_{\mathbf{w},b} \ \theta(\mathbf{w}) = \max_{a_i \ge 0} \min_{\mathbf{w},b} \ L(\mathbf{w}, b, a) = d^*$$
 (58.7)

原始问题通过满足 KKT 条件,已经转化成了对偶问题。而求解这个对偶问题,分为 3 个步骤

1. 让 L(w, b, a) 关于 w 和 b 最小化

首先固定 a,要让 L 关于 w 和 b 最小化,分别对 w 和 b 求偏导,令其等于 0;

$$\frac{\partial L}{\partial \mathbf{w}} = \|\mathbf{w}\| - \sum_{i=1}^{n} a_i y_i x_i \mathbf{w}^T = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^{n} a_i y_i x_i$$

$$\frac{\partial L}{\partial b} = \sum_{i=1}^{n} a_i y_i = 0 \Rightarrow \sum_{i=1}^{n} a_i y_i = 0$$
(58.8)

将以上结果代入之前的 L,得到

$$L(w, b, a) = \frac{1}{2} \sum_{i,j=1}^{n} a_i a_j y_i y_j x_i^T x_j - \sum_{i,j=1}^{n} a_i a_j y_i y_j x_i^T x_j - b \sum_{i=1}^{n} a_i y_i + \sum_{i=1}^{n} a_i$$

$$= \sum_{i=1}^{n} a_i - \frac{1}{2} \sum_{i,j=1}^{n} a_i a_j y_i y_j x_i^T x_j$$
(58.9)

2. 求对 a 的极大

求对 a 的极大,即是关于对偶问题的最优化问题。经过上一个步骤的求解,得到的拉格朗日函数式子已经没有了变量 w 和 b,只有 a。从上面的式子得到

$$\max_{a} \sum_{i=1}^{n} a_{i} - \frac{1}{2} \sum_{i,j=1}^{n} a_{i} a_{j} y_{i} y_{j} x_{i}^{T} x_{j}$$

$$s.t. \quad a_{i} \ge 0, i = 1, \dots, n$$

$$\sum_{i=1}^{n} a_{i} y_{i} = 0$$
(58.10)

这样,求出了 a_i ,从而根据

$$w^* = \sum_{i=1}^{n} a_i y_i x_i$$

$$b^* = -\frac{max \ w^{*T} x_i + min \ w^{*T} x_i}{2}$$
(58.11)

即可求出 w, b, 最终得出分离超平面和分类决策函数。

3. 利用 SMO 算法求解对偶问题中的拉格朗日乘子

在求得 L(w,b,a) 关于 w 和 b 最小化和对 a 的极大之后,最后一步便是利用 SMO 算 法求解对偶问题中的拉格朗日乘子

58.3 序列最小最优算法

接上一小节,讨论支持向量机学习的实现问题。讲述其中的序列最小最优化 (sequential minimal optimization,SMO) 算法。

SMO 算法是一种启发式算法, 其基本思路是: 如果所有变量的解都满足此最优化问题的 KKT 条件, 那么这个最优化问题的解就得到了。因为 KKT 条件是该最优化问题的 充分必要条件。否则, 选择两个变量, 固定其他变量, 针对这两个变量构建一个二次规划问题。这个二次规划问题关于这两个变量的解应该更接近原始二次规划问题的解, 因为这会使得原始二次规划问题的目标函数值变得更小。重要的是, 这时子问题可以通过解析方法求解, 这样就可以大大提高整个算法的计算计算速度。子问题有两个变量, 一个是违反 KKT 条件最严重的那一个, 另一个由约束条件自动确定。如此, SMO 算法将原问题不断分解为子问题并对子问题求解, 进而达到求解原问题的目的。

SMO 算法要解如下凸二次规划的对偶问题:

$$\min_{a} \quad \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j y_i y_j K(x_i, x_j) - \sum_{i=1}^{N} a_i$$
 (58.12)

$$s.t. \quad C \ge a_i \ge 0, \quad i = 1, \dots, n$$
 (58.13)

$$\sum_{i=1}^{N} a_i y_i = 0 (58.14)$$

注意,子问题的两个变量中只有一个是自由变量。假设 a_1, a_2 为两个变量, a_3, a_4, \ldots, a_N 固定,那么由等式约束 58.14 可知

$$a_1 = -y_1 \sum_{i=2}^{N} a_i y_i \tag{58.15}$$

如果 a_2 确定,那么 a_1 也随之确定。所以子问题中同时更新两个变量。

整个 SMO 算法包括两个部分: **求解两个变量二次规划的解析方法和选择变量的启发 式方法**。 于是 SMO 的最优化问题 58.12 的子问题可以写成

$$\min_{a_1, a_2} W(a_1, a_2) = \frac{1}{2} K_{11} a_1^2 + \frac{1}{2} K_{22} a_2^2 + y_1 y_2 K_{12} a_1 a_2
- (a_1 + a_2) + y_1 a_1 \sum_{i=3}^{N} y_i a_i K_{i1} + y_2 a_2 \sum_{i=3}^{N} y_i a_i K_{i2}$$
(58.16)

$$s.t \ a_1y_1 + a_2y_2 = -\sum_{i=3}^{N} y_i a_i = \varsigma$$
 (58.17)

$$0 \le a_i \le C, \ i = 1, 2 \tag{58.18}$$

其中, $K_{ij} = K(x_i, x_j), i, j = 1, 2, ..., N, \varsigma$ 是常数。

为了求解两个变量的二次规划问题 58.16, 首先分析约束条件, 然后在此约束条件下求极小。由于只有两个变量 (*a*₁, *a*₂),约束可以用二维空间中的图形表示,如图所示

不等式约束使得 (a_1, a_2) 在盒子 $[0, C] \times [0, C]$ 内,等式约束使 (a_1, a_2) 在平行盒子的对角线的直线上。因此要求的是目标函数在一条平行于对角线线的线段上的最优值。这使得两个变量的最优化问题成为实质上的单变量的最优化问题,不妨考虑为变量 a_2 的最优化问题。

假设问题 58.16 的初始可行解为 a_1^{old} , a_2^{old} , 最优解为 a_1^{new} , a_2^{new} , 并且假设在沿着约束方向未经剪辑时 a_2 的最优解为 $a_2^{new,unc}$ 。

引进记号

$$g(x) = \sum_{i=1}^{N} a_i y_i K(x_i, x) + b$$
 (58.19)

$$v_i = \sum_{j=3}^{N} y_i a_i K(x_i, x_j) = g(x_i) - \sum_{j=1}^{2} a_j y_j K(x_i, x_j) - b, \ i = 1, 2$$
 (58.20)

目标函数可写成

$$W(a_1, a_2) = \frac{1}{2}K_{11}a_1^2 + \frac{1}{2}K_{22}a_2^2 + y_1y_2K_{12}a_1a_2 - (a_1 + a_2) + y_1a_1v_1 + y_2a_2v_2$$
 (58.21)

令

$$E_i = g(x_i) - y_i = \left(\sum_{j=1}^N a_j y_j K(x_j, x_i) + b\right) - y_i, \quad i = 1, 2$$
 (58.22)

当 i=1,2 时, E_i 为函数 g(x) 对输入 x_i 的预测值与真实输出 y_i 之差。由 $a_1y_1=\varsigma-a_2y_2$ 及 $y_i^2=1$, 可将 a_1 表示为

$$a_1 = (\varsigma - y_2 a_2) y_1 \tag{58.23}$$

代入式 58.21,得到只是 a_2 的函数的目标函数,对 a_2 求导数

$$\frac{\partial W}{\partial a_2} = K_{11}a_2 + K_{22}a_2 - 2K_{12}a_2 - K_{11}\varsigma y_2 + K_{12}\varsigma y_2 + y_1y_2 - 1 - v_1v_2 + y_2v_2$$
 (58.24)

令其为0,得到

$$(K_{11} + K_{22} - 2K_{12})a_2 = y_2(y_2 - y_1 + \varsigma K_{11} - \varsigma K_{12} + v_1 - v_2)$$

$$= y_2 \left[y_2 - y_1 + \varsigma K_{11} - \varsigma K_{12} + \left(g(x_1) - \sum_{j=1}^2 y_j a_j K_{1j} - b \right) \right]$$

$$\left(g(x_2) - \sum_{j=1}^2 y_j a_j K_{2j} - b \right)$$
(58.25)

将 $\varsigma = a_1^{old} y_1 + a_2^{old} y_2$ 代入,得到

$$(K_{11} + K_{22} - 2K_{12})a_2^{new,unc} = y_2((K_{11} + K_{22} - 2K_{12})a_2^{old}y_2 + y_2 - y_1 + g(x_1) - g(x_2))$$

$$= (K_{11} + K_{22} - 2K_{12})a_2^{old} + y_2(E_1 - E_2)$$
(58.26)

将 $\eta = K_{11} + K_{22} - 2K_{12}$ 代入,于是得到

$$a_2^{new,unc} = a_2^{old} + \frac{y_2(E_1 - E_2)}{\eta}$$
 (58.27)

要使其满足不等式的约束必须将其限制在区间 [L,H] 内,从而得到 a_2^{new} 的表达式

$$a_2^{new} = \begin{cases} H, & a_2^{new,unc} > H \\ a_2^{new,unc}, & L \le a_2^{new,unc} \le H \\ L, & a_2^{new,unc} < L \end{cases}$$
 (58.28)

58.4 核函数 -76/95-

如果 $y_1 \neq y_2$

$$L = max(0, a_2^{old} - a_1^{old}), \quad H = min(C, C + a_2^{old} - a_1^{old})$$

如果 $y_1 = y_2$

$$L = max(0, a_2^{old} + a_1^{old} - C), \quad H = min(C, a_2^{old} + a_1^{old})$$

变量的选择方法

SMO 算法在每个子问题中选择两个变量优化, 其中至少一个变量是违反 KKT 条件的。

1. 第1个变量的选择

SMO 称选择第 1 个变量的过程为外层循环。外层循环在训练样本中选取违反 KKT 条件最严重的样本点,并将其对应的变量作为第 1 个变量。具体地,检验训练样本点 (x_i, y_i) 是否满足 KKT 条件,即

$$a_i = 0 \Leftrightarrow y_i g(x_i) \ge 1 \tag{58.29}$$

$$C > a_i > 0 \Leftrightarrow y_i g(x_i) = 1 \tag{58.30}$$

$$a_i = C \Leftrightarrow y_i g(x_i) \le 1$$
 (58.31)

2. 第2个变量的选择

SMO 称选择第 2 个变量的过程为内层循环,假设在外层循环中已经找到第 1 个变量 a_1 ,现在要在内层循环中找到第 2 个变量 a_2 。第 2 个变量选择的标准是希望能使 a_2 有足够大的变化。由式 58.27 知, a_2^{new} 是依赖于 $|E_1 - E_2|$ 的,加了加快计算速度,一种简单的做法是选择 a_2 ,使其对应的 $|E_1 - E_2|$ 最大。

3. 计算阈值 *b* 和差值 *Ei*

58.4 核函数

SVM 处理线性可分的情况,而对于非线性的情况,SVM 的处理方法是选择一个核函数 $K < \cdot, \cdot >$,通过将数据映射到高维空间,来解决在原始空间中线性不可分的问题。

此外,用对偶形式表示学习器的优势在于该表示中可调参数的个数不依赖输入属性的个数,通过使用恰当的核函数来替代内积,可以隐式得将非线性的训练数据映射到高维空间,而不增加可调参数的个数。

在线性不可分的情况下,支持向量机首先在低维空间中完成计算,然后通过核函数将输入空间映射到高维牲空间,最终在高维特征空间中构造出最优分离超平面,从而把平面上本身不好分的非线性数据分开。

而在我们遇到核函数之前,如果用原始的方法,那么在用线性学习器学习一个非线性 关系,需要选择一个非线性特征集,并且将数据写成新的表达形式,这等价于应用一个固 定的非线性映射,将数据映射到特征空间,在特征空间中使用线性学习器,因此考虑的假 58.4 核函数 -77/95-

设集是这种类型的函数:

$$f(x) = \sum_{i=1}^{N} w_i \phi_i(x) + b$$
 (58.32)

这里 $\phi: X \to F$ 是从输入空间到某个特征空间的映射,这意味着建立非线性学习器分为 两步:

- 1. 首先使用一个非线性映射将数据变换到一个特征空间 F
- 2. 然后在特征空间使用线性学习器分类

而由于对偶形式就是线性学习器的一个重要性质,这意味着假设可以表达为训练点的线性组合,因此决策规则可以用测试点和训练点的内积来表示:

$$f(x) = \sum_{i=1}^{l} a_i y_i < \phi(x_i), \phi(x) > +b$$
 (58.33)

如果有一种方式可以在特征空间中直接计算内积 $< \phi(x_i), \phi(x) >$,就像在原始输入点的函数中一样,就有可能将两个步骤融合到一起建立一个非线性的学习器,这样直接计算法的方法称为**核函数方法**

定义:(Kernel)核是一个函数 K,对所有 $x,z \in X$,满足 $K(x,z) = <\phi(x),\phi(z)>$,这里 ϕ 是从 X 到内积特征空间 F 的映射。

下面举一个核函数把低维空间映射到高维空间的例子:

我们考虑核函数 $K(v_1, v_2) = \langle v_i, v_2 \rangle^2$, 即"内积平方", 这里 $v_1 = (x_1, y_1), v_2 = (x_2, y_2)$ 是二维空间中的两个点。这个核函数对应着一个二维空间到三维空间的映射,它的表达式是:

$$P(x, y) = (x^2, \sqrt{2}xy, y^2)$$

可以验证,

$$\langle P(v_1), p(v_2) \rangle = \langle (x_1^2, \sqrt{2}x_1y_1, y_1^2), (x_2^2, \sqrt{2}x_2y_2, y_2^2) \rangle$$

$$= x_1^2x_2^2 + 2x_1x_2y_1y_2 + y_1^2y_2^2$$

$$= (x_1x_2 + y_1y_2)^2$$

$$= \langle v_1, v_2 \rangle^2$$

$$= K(v_1, v_2)$$

上面的例子所说,核函数的作用就是隐含着一个从低维空间到高维空间的映射,而这个映射可以把低维空间中线性不可分的两类点变成线性可分的。

核函数的本质

- 1. 实际中,我们会经常遇到线性不可分的样例,此时,我们的常用做法是把特征映射到高维空间中去
- 2. 但进一步,如果凡是遇到线性不可分的样例,一律映射到高维空间,那么这个维度大小会高到可怕的。那咋办呢?
- 3. 此时,核函数就隆重登场了,核函数的价值在于它虽然也是讲特征进行从低维到高维的转换,但核函数绝就绝在它事先在低维上进行计算,而将实质上的分类效果表

现在了高维上,也就避免了直接在高维空间中的复杂计算。

几个核函数:

- 多项式核 $K(x_1, x_2) = (\langle x_1, x_2 \rangle + R)^d$
- 高斯核 $K(x_1, x_2) = exp(-\|x_1 x_2\|^2/2\sigma^2)$
- 线性核 K(x₁, x₂) =< x₁, x₂ >
- 58.5 软间隔与正则化
- 58.6 支持向量回归
- 58.7 核方法

第59章 概率图模型

- 59.1 贝叶斯网络
- 59.2 条件独立
- 59.3 马尔科夫随机场
- 59.4 图模型中的推断

第60章 采样方法

- 60.1 基本采样算法
- 60.2 马尔科夫链蒙特卡罗
- 60.3 吉布斯采样
- 60.4 切片采样
- 60.5 混合蒙特卡罗算法
- 60.6 估计划分函数

第61章 强化学习

第 IX 部分 IX

深度学习

第62章 引言

62.1 深度学习的历史趋势

第63章 深度前馈网络

- 63.1 实例:学习 XOR
- 63.2 基于梯度的学习
- 63.3 隐藏单元
- 63.4 架构设计
- 63.5 反向传播和其他的微分算法

第64章 深度学习中的正则化

- 64.1 参数范数惩罚
- 64.2 作为约束的范数惩罚
- 64.3 正则化和欠约束问题
- 64.4 数据集增强
- 64.5 噪声鲁棒性
- 64.6 半监督学习
- 64.7 多任务学习
- 64.8 提前终止
- 64.9 参数绑定和参数共享
- 64.10 稀疏表示
- 64.11 Bagging 和其他集成方法
- **64.12 Dropout**
- 64.13 切面距离、正切传播和流形正切分类器

第65章 深度模型中的优化

- 65.1 学习和纯优化有什么不同
- 65.2 神经网络优化中的挑战
- 65.3 基本算法
- 65.4 参数初始化策略
- 65.5 自适应学习率算法
- 65.6 二阶近似方法
- 65.7 优化策略和元算法

第66章 卷积网络

- 66.1 卷积运算
- 66.2 动机
- 66.3 池化
- 66.4 卷积与池化作为一种无限强的先验
- 66.5 基本卷积函数的变体
- 66.6 结构化输出
- 66.7 数据类型
- 66.8 高效的卷积算法
- 66.9 随机或无监督的特征
- 66.10 卷积网络的神经科学基础
- 66.11 卷积网络与深度学习的历史

第67章 序列建模:循环和递归网络

- 67.1 展开计算图
- 67.2 循环神经网络
- 67.3 双向 RNN
- 67.4 基于编码-解码的序列到序列架构
- 67.5 深度循环网络
- 67.6 递归神经网络
- 67.7 长期依赖的挑战
- 67.8 回声状态网络
- 67.9 渗漏单元和其他多时间尺度的策略
- 67.10 长短期记忆和其他门控 RNN
- 67.11 优化长期依赖
- 67.12 外显记忆

第68章 实践方法论

- 68.1 性能度量
- 68.2 默认的基准模型
- 68.3 决定是否收集更多数据
- 68.4 选择超参数
- 68.5 调试策略
- 68.6 示例:多位数字识别

第69章 应用

- 69.1 大规模深度学习
- 69.2 计算机视觉
- 69.3 语音识别
- 69.4 自然语言处理
- 69.5 其他应用

第70章 线性因子模型

- 70.1 概率 PCA 和因子分析
- 70.2 独立成分分析
- 70.3 慢特征分析
- 70.4 稀疏编码
- 70.5 PCA 的流形解释

第71章 自编码器

- 71.1 欠完备自编码器
- 71.2 正则自编码器
- 71.3 表示能力、层的大小和深度
- 71.4 随机编码器和解码器
- 71.5 去噪自编码器详解
- 71.6 使用自编码器学习流形
- 71.7 收缩自编码器
- 71.8 预测稀疏分解
- 71.9 自编译器的应用

第72章 表示学习

- 72.1 贪心逐层无监督预训练
- 72.2 迁移学习和领域自适应
- 72.3 半监督解释因果关系
- 72.4 分布式表示
- 72.5 得益于深度的指数增益
- 72.6 提供发现潜在原因的线索

第73章 深度学习中的结构化概率模型

- 73.1 非结构化建模的挑战
- 73.2 使用图描述模型结构
- 73.3 从图模型中采样
- 73.4 结构化建模的优势
- 73.5 学习依赖关系
- 73.6 推断和近似推断
- 73.7 结构化概率模型的深度学习方法

第74章 深度生成模型

- 74.1 玻尔兹曼机
- 74.2 受限玻尔兹曼机
- 74.3 深度信念网络
- 74.4 深度玻尔兹曼机
- 74.5 实值数据上的玻尔兹曼机
- 74.6 卷积玻尔兹曼机
- 74.7 用于结构化或序列输出的玻尔兹曼机
- 74.8 其他玻尔兹曼机
- 74.9 通过随机操作的反向传播
- 74.10 有向生成网络
- 74.11 从自编码器采样
- 74.12 生成随机网络
- 74.13 其他生成方案
- 74.14 评估生成模型
- 74.15 结论