Daniel Culliver

35-Z2-4 Supervěž

Čtení šachovnice samotné už je N^2 operací, takže to je základní časová komplexita

První možnost, která člověku napadne, je převést šachovnici na 2D array 1 a 0. Poté sečíst řádek a sloupec pro každé místo. Toto vyjde na $N^2 * 2N$ operací, což dohromady se čtením šachovnice vyjde na $2N^2 * 2N$, nebo-li $4N^3$, což odpovídá časové komplexity $O(N^3)$.

Existuje ale optimalizace. Místo sečtení řádku a sloupce pro každý čtereček, sečteme jenom každý řádek a sloupec a uložím ho do array. Poté stačí projet Každý čtereček, ale místo 2N operací, to bude jenom 2 operace. Toto vyjde na $2N^2*2$ operací, nebo-li časová komplexita $O(N^2)$. Vzhledem k tomu, že to je stejná komplexita jako čtení vstupu, pravděpodobně se nedá dál optimalizovat časová složitost.

Druhá část komplexity je paměťová. Uložení array šachovnice zabírá N^2 místa a součty rádků a sloupců je dalších 2N. Toto vychází na paměťová komplexita $\mathcal{O}(N^2)$. Ale my nepotřebujeme array šachovnice potom, co jsme sečetli řádky a sloucpe, tudíž můžeme ukládání arraye zanedbat a rovnou sečíst řádky a sloucpe při čtení vstupu. Toto zabírá 2N místa a uložení čísla N pro for loopy můžeme zanedbat. To vychýzí na paměťovou komplexitu $\mathcal{O}(\mathcal{N})$.

Jako závěr jsme došli k časové komplexitě $\mathcal{O}(N^2)$ a paměťová komplexita $\mathcal{O}(\mathcal{N})$.