

ICAI - MII

Planificación de

INGENIERÍA ENERGÉTICA

Curso 2022-23

Profesores de la asignatura (TEORÍA)

José Ignacio Linares Hurtado Yolanda Moratilla Soria Francisco González Hierro Luis López Álvarez Luis Yagüe Muñoz José Rubén Pérez Domínguez

comillas.edu

Coordinador: José Ignacio Linares Hurtado

Entender la crisis energética actual

- La centrales ofertan por coste marginal (OPEX). ¿Cómo recuperan el CAPEX?
- ¿existen los "windfall profits"? Una central antigua, pero dentro de su vida útil, ¿está amortizada? ¿no ha de recuperar la inversión?

- Canibalización de las renovables, curva "de pato"
- ¿Serviría el mercado marginalista con 100% renovables no gestionables?
- Cuando el almacenamiento juegue un papel relevante, ¿servirá el mercado marginalista? (analizar hidro embalsable y coste de oportunidad en verano 2021)

La capacidad de exportación de GNL de USA será la mayor del mundo a finales de 2022

Figura 1. Capacidad máxima de exportación trimestral de gas natural licuado de Estados Unidos (2016-2022)

$$\left(\frac{14\ Bcf}{d\text{i}a}\right)\cdot\left(\frac{0,3048\ m}{f\ oot}\right)^3\cdot\left(\frac{365\ d\text{i}as}{a\tilde{\text{n}}o}\right)\cdot\left(\frac{10\cdot 1,17\ kWh}{Nm^3}\right)\cdot\left(\frac{10^9\ Nm^3}{1\ bcm}\right)\cdot\left(\frac{1\ TWh}{10^9\ kWh}\right)\approx 1693\ TWh/a\tilde{\text{n}}o$$

- Consumo gas natural de España en 2021 ≈ 380 TWh/año
- ¿cómo puede exportar USA tanto gas?
- ¿cómo es la infraestructura de abastecimiento de España para GNL?

- Francia impulsa los SMRs
- La CE incluye la nuclear en la taxonomía verde (2045)
- La CE incluye el gas en la taxonomía verde (2030) con emisiones menores de 270 g CO2/kWhe, capacidad de inclusión de gases renovables
- Las subastas de cogeneración exigen usar biomasa o plantas de muy alta eficiencia preparadas para quemar hidrógeno y otros gases renovables
- ¿El hidrógeno verde sólo se produce con electrólisis?
- ¿Qué son los sectores con emisiones de CO2 "hard to abate"
- ¿Descarbonización = Electrificación?

- ¿Qué son los gases renovables? ¿Se produce mucho bimetano en España? ¿Es lo mismo biogás que biometano?
- Colores del hidrógeno: gris, azul, verde, amarillo, rosa, marrón, turquesa, dorado
- ¿es eléctrico un vehículo con pila de combustible?
- FCEV vs. BEV
- ¿Qué son los e-fuels?
- ¿Pueden producir por la noche la energía solar?
- Cita 3 sistemas de almacenamiento además de las baterías
- Cita 3 renovables térmicas para producir calefacción y ACS
- ¿qué papel jugará la energía nuclear en la descarbonización?

¿electrificación = descarbonización?

¿electrificación = descarbonización?

Mix eléctrico:

Polonia: 684 g CO2/kWhe

Alemania: 385 g CO2/kWhe

España: 200 g CO2/kWhe

Francia: 90 g CO2/kWhe

¿Emite más CO2eq un FCEV que un BEV?

© Michael Sura

¿Emite más CO2eq un FCEV que un BEV?

© Michael Sura

5 kg * 33,6 kWht/kg * 0,5 kWhe/kWht = 85 kWhe 5000/84 = **59,5 kg CO2eq/kWhe**

- Hasta S. XVIII:
 - renovables:
 - usos térmicos: biomasa, solar, geotermia
 - energía mecánica: eólica, hidráulica
 - fósiles:
 - usos térmicos: carbón, petróleo
- Siglo XVIII:
 - Surge la máquina de vapor: carbón para energía mecánica
- Siglo XIX:
 - Se perfecciona la máquina de vapor
 - Surge la electricidad
 - Surge el motor de combustión interna alternativo
 - Surgen las máquinas de refrigeración

Edison

Westinghouse 11

- Siglo XX:
 - Centrales eléctricas
 - Petróleo en transporte
 - Surge la energía nuclear de fisión
 - Modernización de las energías renovables
 - Cogeneración
 - Nuevos ciclos termodinámicos de potencia y refrigeración

Rockefeller

Einstein

• Siglo XXI:

- Nuevos vectores energéticos: electricidad, hidrógeno, gas renovable
- Vehículos híbridos
- Vehículos eléctricos (batería y pila de combustible)
- Captura y almacenamiento de CO₂
- Hidrocarburos no convencionales (Fracking)
- Gen III, III+ y IV de fisión nuclear
- Fusión nuclear
- Competitividad de renovables
- Economía del hidrógeno, hidrógeno verde, sector coupling
- Almacenamiento de energía para renovables

- Conocimientos previos:
 - Fundamentalmente Termodinámica
 - Importante: Mecánica de Fluidos; Transferencia de Calor

Aspectos tecnológicos de las aplicaciones prácticas:

FUENTES ENERGÉTICAS

- Combustión (fósiles, renovables e hidrógeno)
- Combustibles Fósiles vs. combustibles sostenibles:
 - Recursos, explotación, logística
 - Oleoductos, gasoductos, CO₂, H₂, licuefacción/regasificación
 - petróleo, gas natural, carbón, HC no convencionales, almacenamiento de CO₂
 - hidrógeno, e-fuels, gases renovables
- Nuclear
 - Física, tecnología, residuos
 - Fisión Gen II, III, III+, IV
 - Fusión
- Cogeneración y Renovables
 - Cogeneración (gas natural, gas renovable, biomasa)
 - Solar, biomasa, hidráulica, eólica y geotermia, sector coupling
- Hidrógeno
 - Producción (hidrógeno verde, azul y gris)
 - Pilas de combustible

CONVERSIÓN ENERGÉTICA AVANZADA

- Ciclos de potencia
 - Tecnología de ciclos de vapor, gas y combinados, Repowering
 - Ciclos de cola, ORC, S-CO₂, Kalina
 - Cogeneración
 - Captura y almacenamiento CO₂
- Ciclos de refrigeración
 - Baja temperatura
 - CO₂ transcritico
 - Otros: tubo vórtice, eyector, híbridos potencia/refrigeración
 - · Absorción, adsorción
 - Bombas de calor aerotérmicas y geotérmicas; energía renovable

SISTEMAS

- Viabilidad económica de proyectos energéticos
- Modelado de sistemas térmicos
 - Diseño / Operación
 - Intercambiadores, turbomáquinas, máquinas alternativas

PRÁCTICAS

- Simulación de sistemas energéticos (EES): todos, 1 sesión
- Ensayo A: aleatoriamente uno de estos tres equipos:
 - Ensayo de un aerogenerador en un túnel de viento
 - Simulación de las prestaciones de una turbina de gas
 - Prestaciones de una pila de combustible PEM (pila 2)
- •Ensayo B: aleatoriamente uno de estos tres equipos:
 - Ensayo de una bomba de calor aerotérmica
 - Comparación de una bomba de calor aerotérmica frente a hidrotérmica
 - Ensayo de un refrigerador de doble etapa
- •Ensayo C: aleatoriamente uno de estos tres equipos:
 - Medida del poder calorífico del bioetanol
 - Ensayo de un motor de micro-cogeneración
 - Prestaciones de una pila de combustible PEM (pila 1)

Material: ¿cómo vamos?

- Texto
 - Desarrollo de los temas de la asignatura (disponbles en Moodle)
- Transparencias de la clase
 - disponibles en MOODLE
 - no demostraciones
 - casos estudio: poco desarrollo, hincapié en resultado

Material: ¿cómo vamos?

- Problemas resueltos
 - Disponibles en MOODLE
 - Hoja de enunciados
 - Resolución completa escaneada
 - Se realizan la mitad de los disponibles, alternándolos cada año
 - Algunos vídeos
- Exámenes de cursos anteriores
 - Disponibles en MOODLE, totalmente resueltos (problemas)
 - Los del curso presente se suben con la solución (problemas) a MOODLE

Planificación

Ingeniería energética				
lunes	Práctica	Examen	Trabajo	
16-ene				
23-ene				
30-ene				
06-feb			H0	
13-feb				
20-feb				
27-feb				
06-mar		INTER		
13-mar			H1	
20-mar	LAB			
27-mar	LAB			
03-abr	SEMANA SANTA			
10-abr	LAB		H2/H3	
17-abr	LAB		H3	
24-abr				

Prácticas: hay 4 prácticas diferentes en la asignatura. Se indica la semana de realización. El informe se entrega a la semana siguiente.

Trabajo:

H0: asignación del trabajo

H1: entrega de un índice/memoria descriptiva

H2: entrega del trabajo

H3: Presentación oral del trabajo (3 trabajos/hora)

Sistema de evaluación

EVALUACIÓN				
Rendimiento				
Trabajo				
Prácticas				
Exámenes				
Intersemestral (1,5 horas)				
Final (3 horas)				
ORDINARIA				
Trabajo	15%	Rendimiento		
Prácticas	15%			
Examen Intermedio	20% Exámenes			
Examen Final	50%	Lxamenes		
Participación Foro (adicional)	≤ 0,5			
EXTRAORDINARIA				
Media de Rendimiento	20%	Rendimiento		
Examen Final	80%	Exámenes		
Participación Foro (adicional)	≤ 0,5			