Particle spectrograph

Wave operator and propagator

$\mathfrak{r}_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{2k^2(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{i\sqrt{2} k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2) t_1 t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0
	$r_1^{\#1} + \alpha \beta$	$r_{1}^{#2} + \alpha \beta$	$_{1}^{+1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} + ^{\alpha}$

$f_{1^{-}\alpha}^{\#2}$	0	0	0	$\bar{i} k t_1$	0	0	0
$f_{1^{-}lpha}^{\#1}$)	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ar{\imath} \ k \ t_1$
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	$\frac{1}{3}$ \bar{l} k $(t_1 + t_2)$	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0
$\omega_1^{\#_2}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}ik(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
·	$\omega_1^{\#1} + \alpha^{\beta}$	$\omega_{1}^{\#2} + \alpha^{eta}$	$f_{1+}^{\#1} \dagger^{\alpha\beta}$	$\omega_{1}^{\#1} \dagger^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} \dagger^{\alpha}$

$\sigma_{2^{-}}^{\#1} _{lphaeta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$		$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	$k^2 r_2 + t$	
$\sigma_2^{\#}$			2 k ²		$f_{0}^{#2}$	0	0	0	0	
$\tau_{2}^{\#1}_{+}\alpha\beta$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0		$f_0^{\#1}$	$ i\sqrt{2}kt_1 $	$-2 k^2 t_1$	0	0	
$\sigma_{2}^{\#1}_{+\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1} \bigg _{0}^{-1}$	0		$\omega_{0}^{\#1}$	-t ₁	$-i\sqrt{2}kt_1$	0	0	
	$\sigma_{2}^{\#1} + \alpha^{\beta}$	$\tau_2^{\#1} + \alpha \beta$	$1 + \alpha \beta \chi$	ı		$\omega_{0}^{\#1}$ †	$f_0^{#1}$ †	$f_{0}^{#2} \uparrow$	$\omega_{0^-}^{\#1} \dagger$	
	ρ,	, L	$\sigma_2^{\#1}$							_

Source constraints/gauge generators					
SO(3) irreps	Multiplicities				
$\tau_{0^{+}}^{\#2} == 0$	1				
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1				
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3				
$\tau_1^{\#1\alpha} == 0$	3				
$\tau_{1+}^{\#1\alpha\beta} + ik\sigma_{1+}^{\#2\alpha\beta} == 0$	3				
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5				
Total constraints:	16				

	į.			
$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
τ#2 τ ₀ +	0	0	0	0
7#1 1+1	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
O#1	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
	$\sigma_{0}^{\#1}$ \dagger	$\tau_{0}^{\#1}$ +	$\tau_{0}^{\#2} +$	$\sigma_{0}^{\#1}$ \dagger

Massive and massless spectra

,?
? $J^P = 0^-$
$\frac{1}{k^{\mu}}$?
?

Massive partic	e
Pole residue:	$-\frac{1}{r_2} > 0$
Polarisations:	1
Square mass:	$-\frac{t_2}{r_2} > 0$
Spin:	0
Parity:	Odd

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& r_2 < 0 \&\& t_1 > 0 \&\& t_2 > 0$