ชื่อเลขที่นั่งสอบเลขที่นั่งสอบ		. รหัสนักศึกษา	เลขที่นั่งสอบ
--------------------------------	--	----------------	---------------

KING MONGKUT'S UNIVERSITY OF TECHNOLOGY THONBURI

MEE 221 Thermodynamics

20 July 2010

Instructions:

- 1. There are 5 problems in this exam.
- 2. Write your answers clearly in the provided spaces.
- 3. Books and other documents including dictionaries are not allowed.
- 4. An authorized calculator is necessary to complete these exam questions

Assoc. Prof. Somchai Chanchaona, Ph.D.

Asst. Prof. Wishsanuruk Wechsatol, Ph.D.

Atikorn Wongsatanawarid, D.Eng

Time: 13:00-16:00 pm

4	യ യ ക്	4 4
ช่อ	รห์สนักศึกษา	เลขที่นั่งสอบ

1. จากตารางที่กำหนดให้ข้างล่าง แสดงค่าอุณหภูมิและปริมาตรจำเพาะของไอน้ำ ที่ความดันต่างกัน 2 ค่า:

P = 1	.0 MPa	P = 1.5 MPa				
T (°C)	v (m³/kg)	T (°C)	v (m³/kg)			
200	0.2060	200	0.1325			
240	0.2275	240	0.1483			
280	280 0.2480		0.1627			

ในการแก้ปัญหาโจทย์ ที่ต้องใช้ตารางคุณสมบัติ มักจะต้องมีการประมาณค่าที่ไม่ปรากฏในตาราง จากค่าที่ใกล้เคียงใน ตารางโดยการใช้วิธีเทียบบัญญัติไตรยางศ์ (linear interpolation)

จากตารางที่กำหนดให้ข้างบน จงแสดงวิธีประมาณค่าต่อไปนี้

- ก) ค่าปริมาตรจำเพาะที่ T = 240 °C, P = 1.25 MPa หน่วยเป็น m³/kg
- ข) ค่าอุณหภูมิที่ P = 1.5 MPa, v = 0.1555 m3/kg หน่วยเป็น °C
- ค) ค่าปริมาตรจำเพาะที่ T = 220 °C, P = 1.4 MPa หน่วยเป็น m³/kg
- ง) ค่าอุณหภูมิที่ P = 1.2 MPa, v = 0.2000 m3/kg หน่วยเป็น $^{\circ}$ C

(20 คะแนน)

ظ	ച ച ഷ	d v
¥0	รห์สนักศักษา	เลขที่นั่งสอบ

2. เครื่องบินขณะที่บินอยู่ที่ความสูง 3,000 m นักบินอ่านค่าความดันสัมบูรณ์อากาศนอกเครื่องบินได้ 58 kPa จง คำนวณค่าความดันสัมบูรณ์บรรยากาศที่ระดับพื้นดิน ในหน่วย kPa และ mm. Hg โดยกำหนดให้ความหนาแน่นของ อากาศและปรอทเป็น 1.15 kg/m³ และ 13,600 kg/m³ ตามลำดับ (20 คะแนน) 3. อุปกรณ์ทดลองแบบลูกสูบและกระบอกสูบบรรจุก๊าซในโตรเจนที่สภาวะเริ่มต้น 100°C และ 600kPa ขยายตัวภายใต้ Polytropic process โดยมีค่า n=1.2 จงหางานและการถ่ายเทความร้อนที่ต้องกระทำ ต่อระบบที่ทำให้สภาวะสุดท้ายมีความดันเท่ากับ 100kPa

ทำหนดให้ คุณสมบัติของในโตรเจน R = 0.297 kJ/kg.K , C_v = 0.745 kJ/kg.K และความสัมพันธ์ของ

อุณหภูมิ-ความดันของ การขยายตัวแบบ polytropic คือ $\frac{T_2}{T_1}=\left(\frac{P_2}{P_1}\right)^{\left(\frac{n-1}{n}\right)}$

4	ય ય લ	d &
ชอ	รหัสนักศึกษา	เลขที่นั่งสอบ

4. ระบบประกอบด้วยลูกสูบและกระบอกสูบที่มีขนาดพื้นที่หน้าตัดคงที่เท่ากับ 0.1 m² บรรจุมวลของน้ำ ทั้งสิ้น 50 kg. ที่ความดัน 150 kPa และมีปริมาตรภายในกระบอกสูบเริ่มต้น 0.2 m³ ที่สภาวะเริ่มต้น ลูกสูบดิดอยู่กับสปริงโดยไม่มีการกดหรือทำให้สปริงหดดัวแต่อย่างใด จากนั้นเริ่มให้ความร้อนแก่ระบบ โดยไม่มีการสูญเสียความร้อนแต่อย่างใด ซึ่งจะทำให้ลูกสูบเกิดการขยายตัวไปกดสปริงและก่อให้เกิด ระยะหดตัวของสปริงที่มีค่าคงที่ของสปริงเท่ากับ 100 kN/m โดยระยะหดตัวทั้งสิ้นเท่ากับ 20 cm จงคำนวณหาปริมาณความร้อนที่จ่ายให้กับระบบดังกล่าว

À	v v 4	dé
ชัก	รหัสนักศึกษา	เลขทันงสอบ
DOI	3 11 61 76 JIII 1 12 1	

5. จงพิจารณาการใหลมาผสมกันของน้ำร้อนที่ 60 °C กับน้ำเย็นที่ 10°C เพื่อให้ได้น้ำอุ่นที่อุณหภูมิ 45 °C จงพิจารณาอัตราส่วนของอัตราการใหลโดยมวลของน้ำร้อนและน้ำเย็นดังกล่าว เมื่อการใหลมาผสม กันของน้ำทั้งสองเกิดขึ้นภายใน mixing chamber ที่ความดัน 150 kPa โดยไม่มีการสูญเสียความร้อน แก่ภายนอกระบบ

TABLE A-4
Saturated water: temperature table

Set.		Specifi m³/kg	c volume	intern kJ/kg	al energ	ıy		Enthalpy cJ/kg			intropy J/(kg · K	
Temp. T		Sat. liquid v,	Sat. vapor	Sat. liquid	Evap.	Sat. vapor	Sat. Hquid	Evap.	Sat. vapor h,	Sat. Hquid	Evap.	Sat.
0.01	0.6113	0.001000	206.14	0.0	2375.3	2375.3	0.01	2501.3	2501.4	0.000	9.1562	9.1562
5	0.8721	0.001000	147.12	20.97	2361.3	2382.3	20.98	2489.6	2510.6	0.0761	8.9496	9.0257
10	1.2276	0.001000	106.38	42.00	2347.2	2389.2	42.01	2477.7	2519.8	0.1510	8.7498	8.9008
15	1.7051	0.001001	77.93	62.99	2333.1	2396.1	62.99	2465.9	2528.9	0.2245	8.5569	8.7814
20	2.339	0.001002	57.7 9	83.95	2319.0	2402.9	83.96	2454.1	2538.1	0.2966	8.3706	8.667
25	3.169	0.001003	43.36	104.88	2304.9	2409.8	104.89	2442.3	2547.2	0.3674	8.1905	8.558
30	4.246	0.001003	32.89	125.78	2290.8	2416.6	125.79	2430.5	2556.3	0.4369	8.0164	8.453
35	5.628	0.001004	25.22	146.67	2276.7	2423.4	146.68	2418.6	2565.3	0.5053	7.8478	8.353
40	7.384	0.001008	19.52	167.56	2262.6	2430.1	167.57	2406.7	2574.3	0.5725	7.6845	8.2570
45	9.593	0.001008	15.26	188.44	2248.4	2436.8	188.45	2394.8	2583.2	0.6387	7.5261	8.164
50	12.349	0.001010	12.03	209.32	2234.2	2443.5	209.33	2382.7	2592.1	0.7038	7.3725	8.076
55	15.758	0.001012	9.568	230.21	2219.9	2450.1	230.23	2370.7	2600.9	0.7679	7.2234	7.991
60	19.940	0.001013	7.671	251.11	2205.5	2456.6	251.13	2358.5	2609.6	0.8312	7 0784	7.909
65	25.03	0.001017	6.197	272.02	2191.1	2463.1	272.06	2346.2	2618.3	0.8935	6.9375	7.831
70	31.19		5.042	292.95	2176.6	2469.6	292.98	2333.8	2626.8	0.9549	6.8004	7.755
		0.001023										7.682
75	38.58	0.001026	4.131	313.90	2162.0	2475.9	313.93	2321.4	2635.3	1.0155	6.6669	
80	47.39	0.001029	3.407	334.86	2147.4	2482 2	334.91	2308.8	2643.7	1.0753	6.5369	7.612
85	57.83	0.001033	2.828	355.84	2132.6	2488.4	355.90	2296.0	2651.9	1.1343	6.4102	7.544
90 95	70.14	0.001036	2.361	376.85	2117.7	2494.5	376.92	2283.2	2660.1	1.1925	6.2866	7.479
90	84.55 Sat.	0.001040	1.982	397.88	2102.7	2500.6	397.96	2270.2	2668.1	1.2500	6.1659	7.415
	press. MPa											
100	0.10133	0.001044	1.6729	418.94	2087.6	2506.5	419.04	2257.0	2676.1	1.3069	6.0480	7.354
105	0.12082	0.001048	1.4194	440.02	2072.3	2512.4	440.15	2243.7	2683.8	1.3630	5.9328	7.295
110	0.14327	0.001052	1.2102	461.14	2057.0	2518.1	461.30	2230.2	2691.5	1.4185	5.8202	7.238
115	0.16906	0.001056	1.0366	482.30	2041.4	2523.7	482.48	2216.5	2699.0	1.4734	5.7100	7.183
120	0.19853	0.001060	0.8919	503.50	2025.8	2529.3	503 71	2202.6	2706.3	1.5276	5.6020	7.129
125	0.2321	0.001065	0.7706	524.74	2009.9	2534.6	524.99	2188.5	2713.5	1.5813	5.4962	7.077
130	0.2701	0.001070	0.6685	546.02	1993.9	2539.9	546.31	2174.2	2720.5	1.6344	5.3925	7.026
135	0.3130	0.001075	0.5822	567.35	1977 7	2545.0	567.69	2159.6	2727.3	1.6870	5.2907	6.977
140	0.3613	0.001080	0.5089	588.74	1961.3	2550.0	589.13	2144.7	2733.9	1.7391	5.1908	6.929
145	0.4154	0.001085	0.4463	610.18	1944.7	2554.9	610.63	2129.6	2740.3	1.7907	5.0926	6.883
150	0.4758	0.001091	0.3928	631.68	1927.9	2559.5	632.20	2114.3	2746.5	1.8418	4.9960	6.837
155	0.5431	0.001096	0.3468	653.24	1910.8	2564.1	653.84	2098.6	2752.4	1.8925	4.9010	6.793
160	0.6178	0.001102	0.3071	674.87	1893.5	2568.4	675.55	2082.6	2758.1	1.9427	4.8075	6.750
165	0.7005	0.001108	0.2727	696.56	1876.0	2572.5	697.34	2066.2	2763.5	1.9925	4.7153	6.707
170	0.7917	0.001114	0.2428	718.33	1858.1	2576.5	719.21	2049.5	2768.7	2.0419	4.6244	6.666
175	0.8920	0.001114	0.2168	740.17	1840.0	2580.2	741.17	2032.4	2773.6	2.0909	4.5347	6.625
180	1.0021	0.001127	0.19405	762.09	1821.6	2583.7	763.22	2015.0	2778.2	2.1396	4.4461	6.585
185	1.1227	0.001127	0.17409	784.10	1802.9	2587.0	785.37	1997.1	2782.4	2.1879	4.3586	6.546
190	1.2544	0.001134	0.15654	806.19	1783.8	2590.0	807.62	1978.8	2786.4	2.2359	4.2720	6.507
195	1.3978	0.001149	0.13034	828.37	1764.4	2592.8	829.98	1960.0	2790.0	2.2835	4.1863	6.469

TABLE A-5
Saturated water: pressure table

	Sat.	Specific m³/kg	volume	inte kJ/I	rnal ene rg	rgy	Enthalpy kJ/kg			Entropy kJ/(kg·K)		
Press.	temp.	Sat. liquid	Sat. vapor	Sat. iiquid	Evap.	Sat. vapor	Sat. liquid	Evap.	Sat. vapor	Sat. Ilquid	Evap.	Sat.
kPa	°C	v_f	U _F	uj	u _{fx}	ug	h	hfs	hg	51	Sfg	58
0.6113	0.01	0.001000	206.14	0.00	2375.3	2375.3	0.01	2501.3	2501.4	0.0000	9.1562	9.1562
10	6.98	0.001000	129.21	29.30	2355.7	2385.0	29.30	2484.9	2514.2	0.1059	8.8697	8.9756
1.5	13.03	0.001001	87.98	54.71	2338.6	2393.3	54.71	2470.6	2525.3	0.1957	8.6322	8.8279
2.0	17.50	0.001001	67.00	73.48	2326.0	2399.5	73.48	2460.0	2533.5	0.2607	8.4629	8.7237
25	21.08	0.001002	54.25	88.48	2315.9	2404.4	88.49	2451.6	2540.0	0.3120	8.3311	8.6432
3.0	24.08	0.001003	45 67	101 04	2307.5	2408.5	101.05	2444.5	2545.5	0.3545	8.2231	8.5776
4.0	28.96	0.001004	34 80	121.45	2293.7	2415.2	121.46	2432.9	2554 4	0.4226	8.0520	8.4746
5.0	32.88	0.001005	28.19	137.81	2282.7	2420.5	137.82	2423.7	2561.5	0.4764	7.9187	8.395
7.5	40 29	0.001008	19.24	168.78	2261.7	2430.5	168.79	2406.0	2574.8	0.5764	7.6750	8.2515
10	45.81	0.001010	14 67	191 82	2246 1	2437.9	191.83	2392.8	2584.7	0.6493	7.5009	8.1502
15	53.97	0 001014	10.02	225.92	2222.8	2448.7	225.94	2373.1	2599.1	0.7549	7.2536	8.0085
20	60.06	0.001017	7.649	251.38	2205.4	2456.7	251.40	2358.3	2609.7	0.8320	7.0766	7.9085
25	64.97	0.001020	6.204	271.90	2191.2	2463.1	271.93	2346.3	2618.2	0.8931	6.9383	7.8314
30	69.10	0.001022	5.229	289.20	2179.2	2468.4	289.23	2336.1	2625.3	0.9439	6.8247	7.7686
40	75.87	0.001027	3.993	317 53	2159.5	2477.0	317.58	2319.2	2636.8	1.0259	6.6441	7.6700
50	81.33	0.001030	3.240	340.44	2143.4	2483.9	340.49	2305.4	2645.9	1.0910	6.5029	7.5939
75	91.78	0.001037	2.217	384.31	2112.4	2496.7	384.39	2278.6	2663.0	1.2130	6.2434	7.4564
Press. MPa												
0.100	99.63	0.001043	1.6940	417.36	2088.7	2506.1	417.46	2258.0	2675.5	1.3026	6.0568	7.3594
0.125	105.99	0.001048	1.3749	444.19	2069.3	2513.5	444.32	2241.0	2685.4	1.3740	5.9104	7.284
0.150	111.37	0.001053	1,1593	466.94	2052.7	2519.7	467.11	2226.5	2693.6	1.4336	5.7897	7.2233
0.175	116.06	0.001057	1.0036	486.80	2038.1	2524.9	486.99	2213.6	2700.6	1.4849	5.6868	7.171
0.200	120.23	0.001061	0.8857	504.49	2025.0	2529.5	504.70	2201.9	2706.7	1.5301	5.5970	7.127
0.225	124.00	0.001064	0.7933	520.47	2013.1	2533.6	520.72	2191.3	2712.1	1.5706	5.5173	7.0878
0.250	127.44	0.001067	0.7187	535.10	2002.1	2537.2	535.37	2181.5	2716.9	1.6072	5.4455	7.052
0.275	130.60	0.001070	0.6573	548.59	1991.9	2540.5	548.89	2172.4	2721.3	1.6408	5.3801	7.020
0.300	133.55	0.001073	0.6058	561.15	1982.4	2543.6	561.47	2163.8	2725.3	1.6718	5.3201	6.9919
0.325	136.30	0.001076	0.5620	572.90	1973.5	2546.4	573.25	2155.8	2729.0	1.7006	5.2646	6.965
0.350	138.88	0.001079	0.5243	583.95	1965.0	2548.9	584.33	2148.1	2732.4	1.7275	5.2130	6.940
0.375	141.32	0.001081	0.4914	594.40	1956.9	2551.3	594.81	2140.8	2735.6	1.7528	5.1647	6.917
0.40	143.63	0.001084	0.4625	604.31	1949.3	2553.6	604.74	2133.8	2738.6	1.7766	5.1193	6.895
0.45	147.93	0.001088	0.4140	622.77	1934.9	2557.6	623.25	2120.7	2743.9	1.8207	5.0359	6.856
0.50	151.86	0.001093	0.3749	639.68	1921.6	2561.2	640.23	2108.5	2748.7	1.8607	4.9606	6.821
0.55	155.48	0.001097	0.3427	655.32	1909.2	2564.5	665.93	2097.0	2753.0	1.8973	4.8920	6.789
0.60	158.85	0.001101	0.3157	669.90	1897.5	2567.4	670.56	2086.3	2756.8	1.9312	4.8288	6.760
0.65	162.01	0.001104	0.2927	683.56	1886.5	2570.1	684.28	2076.0	2760.3	1.9627	4.7703	6.733
0.70	164.97	0.001108	0.2729	696.44	1876.1	2572.5	697.22	2066.3	2763.5	1.9922	4.7158	6.708
0.75	167.78	0.001112	0.2556	708.64	1866.1	2574.7	709.47	2057.0	2766.4	2.0200	4.6647	6.684
0.80	170.43	0.001115	0.2404	720.22	1856 6	2576.8	721.11	2048.0	2769.1	2.0462	4.6166	6.662
0.85	172.96	0.001118	0.2270	731.27	1847.4	2578.7	732.22	2039.4	2771.6	2.0402	4.5711	6.642
0.90	175.38	0.001118	0.2150	741.83	1838.6	2580.5	742.83	2033.4	2773.9	2.0946	4.5280	6.622
0.95	177.69	0.001121	0.2042	751.95	1830.2	2582.1	753.02	2023.1	2776.1	2.1172	4.4869	6.604
1.00	179.91	0.001124	0.2042	761.68	1822.0	2583.6	762.81	2015.3	2778.1	2.1172	4.4478	6.586
1.10	184.09	0.001127	0.17753	780.09	1806.3	2586.4	781.34	2000.4	2781.7	2.1792	4.3744	6.553
1.20	187.99	0.001139	0.17733	797.29	1791.5	2588.8	798.65	1986.2	2784.8	2.2166	4.3067	6.523
1.30	191.64	0.001139	0.15125	813.44	1777.5	2591.0	814.93	1972.7	2787.6	2.2515	4.2438	6.495