AM3C - Series

Felipe B. Pinto 71951 – EQB

14 de novembro de 2024

Conteúdo

1 Notas:

Inicialmente queremos saber se as series convergem ou divergem, aprender os diversos casos espeçificos que nos provam limites espeçificos

Critérios	Teste	Casos	
		Divergente	Convergente
Comparação	$\lim_{n\to\infty} \frac{b_n}{a_n}$	> 1	< 1
A'lamberk	$\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$	> 1	< 1
Raiz	$\limsup_{n\to\infty} \sqrt[n]{a_n}$	> 1	< 1
Integral	$\int_1^\infty f(x) \mathrm{d}x : f(n) = a_n$	> 1	< 1

Critério do Integral

$$\int_1^\infty f(x) \; \mathrm{d}x : f(n) = n$$

- f(x) é continua em $[1, \infty[$
- Testar f para saber se converge ou diverge, a_n segue o mesmo comportamento
- $\frac{\mathrm{d}f(x)}{\mathrm{d}x}$ Aponta con/divergencia de f