Chapter 5

Norms

Contents (class version)

5.0 Introduction	5.2
5.1 Vector norms	5.3
Properties of norms	5.7
Norm notation	5.8
Unitarily invariant norms	5.9
Inner products	5.10
5.2 Matrix norms and operator norms	5.16
Induced matrix norms	5.20
Norms defined in terms of singular values	5.23
Properties of matrix norms	5.26
Spectral radius	5.28
5.3 Convergence of sequences of vectors and matrices	5.31
5.4 Generalized inverse of a matrix	5.33
5.5 Procrustes analysis	5.35
Generalizations: non-square, complex, with translation	5.42

5.6 Summary	© J. Fessler, October 9, 2019, 22:43 (class version)	5.2			
This chapter discusses vector norms and matrix norms (also known as operator norms) in more generality and applies them to the Procrustes problem . Source material for this chapter includes [1, §7.2-7.4].	5.6 Summary	,			
This chapter discusses vector norms and matrix norms (also known as operator norms) in more generality and applies them to the Procrustes problem . Source material for this chapter includes [1, §7.2-7.4].					
This chapter discusses vector norms and matrix norms (also known as operator norms) in more generality and applies them to the Procrustes problem . Source material for this chapter includes [1, §7.2-7.4].					
This chapter discusses vector norms and matrix norms (also known as operator norms) in more generality and applies them to the Procrustes problem . Source material for this chapter includes [1, §7.2-7.4].					
This chapter discusses vector norms and matrix norms (also known as operator norms) in more generality and applies them to the Procrustes problem . Source material for this chapter includes [1, §7.2-7.4].					
and applies them to the Procrustes problem . Source material for this chapter includes [1, §7.2-7.4].	5.0 Introduction				
	•				
The Tikhonov regularized least-squares problem in Ch. 4 illustrates the two primary uses of norms:	Source material for this chapter includes [1, §7.2-7.4].				
	The Tikhonov regularized least-squares problem in Ch. 4 illustrates the two primary uses of norms:				

5.1 Vector norms

L§7.3

So far the only **vector norm** discussed in these notes has been the common **Euclidean norm**. Many other vector norms are also important in signal processing.

Define. [1, p. 57] A norm on a vector space $\mathcal V$ defined over a field $\mathbb F$ is a function $\|\cdot\|$ from $\mathcal V$ to $[0,\infty)$ that satisfies the following properties $\forall \boldsymbol x, \boldsymbol y \in \mathcal V$:

•	(nonnegative)

- (positive)
- (homogeneous)
- (triangle inequality)

Examples of vector norms

• For $1 \le p < \infty$, the ℓ_p norm is

$$\|\boldsymbol{x}\|_{p} \triangleq \tag{5.1}$$

 $\|\boldsymbol{x}\|_{2} \triangleq \sqrt{\sum_{i} |x_{i}|^{2}}.$ $\|\boldsymbol{x}\|_{1} \triangleq \sum_{i} |x_{i}|.$

- The vector 2-norm or Euclidian norm is the case p = 2:
- The 1-norm or "Manhattan norm" is the case p = 1:
- The max norm or infinity norm or ℓ_{∞} norm is

$$\|\boldsymbol{x}\|_{\infty} \triangleq \sup\{|x_1|, |x_2|, \ldots\},$$
 (5.2)

where sup denotes the supremum (least upper bound) of a set. One can show [2, Prob. 2.12] that

$$\|\boldsymbol{x}\|_{\infty} = \lim_{p \to \infty} \|\boldsymbol{x}\|_{p}. \tag{5.3}$$

For the vector space \mathbb{F}^N , the supremum is simply a maximum:

$$\|\boldsymbol{x}\|_{\infty} \triangleq \max\left\{ |x_1|, \dots, |x_N| \right\},\tag{5.4}$$

• For quantifying sparsity, it is useful to note that

$$\lim_{p \to 0} \|\boldsymbol{x}\|_p^p = \tag{5.5}$$

where $\mathbb{I}_{\{\cdot\}}$ denotes the **indicator function** that is unity if the argument is true and zero if false. However, the "0-norm" $\|\boldsymbol{x}\|_0$ is *not* a vector norm because it does not satisfy the at least one of the conditions of the norm definition above. The proper name for $\|\boldsymbol{x}\|_0$ is **counting measure**.

• Sometimes we want a **weighted** norm, *e.g.*, the **weighted 2-norm** is

$$\|x\|_{\mathbf{W}} = \sqrt{(x'Wx)}.$$

Exercise. Show that the weighted Euclidean norm $\|x\|_{W}$ is a norm iff W is a positive definite matrix. In particular, if W is a $N \times N$ diagonal matrix with positive diagonal elements w_i , then

$$\|\boldsymbol{x}\|_{\boldsymbol{W}} = \left(\sum_{i=1}^{N} w_i |x_i|^2\right)^{1/2}.$$

Which of the four properties of a vector norm does the counting measure $\|\cdot\|_0$ satisfy?

A: 1,2

B: 1,3

C: 1,2,3

D: 1,2,4

E: 1,3,4

??

Practical implementation

??

```
For the preceding examples, in JULIA, first invoke
```

Caution. For p < 1, $\|\cdot\|_p$ is not a proper vector **norm**, though it is sometimes used in practical problems and norm (v, p) will evaluate (5.1) for any $-\infty \le p \le \infty$.


```
If W is <code>Diagonal(w)</code>, then which of these commands computes the weighted norm \|x\|_W?

A: <code>norm(x .* w)</code>

B: <code>norm(x .* w, 2)</code>

C: <code>norm(x .* w.^2)</code>

D: <code>norm(x .* sqrt.(w))</code>

E: None
```

Properties of norms

• Let $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ be any two vector norms on a *finite-dimensional* space. Then there exist finite positive constants C_m and C_M (that depend on α and β) such that:

$$C_m \left\| \cdot \right\|_{\alpha} \le \left\| \cdot \right\|_{\beta} \le C_M \left\| \cdot \right\|_{\alpha}. \tag{5.6}$$

In a sense then "all norms are equivalent" to within constant factors.

• For any vector norm, the reverse triangle inequality is:

$$\|\mathbf{x}\| - \|\mathbf{y}\|\| \le \|\mathbf{x} - \mathbf{y}\|, \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{V}.$$

Proof: $\|x\| = \|x - y + y\| \le \|x - y\| + \|y\| \Longrightarrow \|x\| - \|y\| \le \|x - y\|$. Similarly $\|y\| - \|x\| \le \|x - y\|$. Now combine these two inequalities.

• Any vector norm $\|\cdot\|$ on a vector space \mathcal{V} is a **convex function**:

This fact is easy to prove using the **triangle inequality** and the homogeneity property (HW).

• For p > 1, the function $f(x) \triangleq ||x||_p^p$ is strictly convex.

• For any norm, the ball of radius r > 0 $\{x : ||x|| \le r\}$ is convex.

(HW)

Example. $\{ \boldsymbol{x} \in \mathbb{R}^2 : \|\boldsymbol{x}\|_2 \le r \}$ $\{ \boldsymbol{x} \in \mathbb{R}^2 : \|\boldsymbol{x}\|_1 \le r \}$

$$\{oldsymbol{x} \in \mathbb{R}^2 : \|oldsymbol{x}\|_1 \leq r\}$$

$$\{oldsymbol{x} \in \mathbb{R}^2 : \|oldsymbol{x}\|_{\infty} \leq r\}$$

For $C = \{x \in \mathbb{R}^N : ||x||_{\infty} \le 5\}$, which of these is the **projection** of a point $z \in \mathbb{R}^N$ onto C?

A: min.(z,5) B: min.(abs.(z),5) C: min.(abs.(z),5).*sign(z) D: None of these

??

Norm notation

Some math literature uses |x| instead of |x| to denote a vector norm.

That notation should be avoided for matrices where |A| often denotes the determinant of A.

Sometimes one must determine from context what $|\cdot|$ means in such literature.

Unitarily invariant norms

Some vector norms have the following useful property.

Define. A vector norm $\|\cdot\|$ on \mathbb{F}^N is **unitarily invariant** iff for every unitary matrix $U \in \mathbb{F}^{N \times N}$:

Example. The Euclidean norm $\|\cdot\|_2$ on \mathbb{F}^N is unitarily invariant, because for any unitary U (see p. 1.54):

$$\|oldsymbol{U}oldsymbol{x}\|_2 = \sqrt{(oldsymbol{U}oldsymbol{x})'(oldsymbol{U}oldsymbol{x})} = \sqrt{oldsymbol{x}'oldsymbol{U}'oldsymbol{U}oldsymbol{x}} = \sqrt{oldsymbol{x}'oldsymbol{x}} = \|oldsymbol{x}\|_2\,,\;orall oldsymbol{x} \in \mathbb{F}^N.$$

As noted previously, this property is related to **Parseval's theorem**.

Example. $\|\cdot\|_1$ is not unitarily invariant.

$$\overline{\text{If } \boldsymbol{U} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}} \text{ and } \boldsymbol{x} = \boldsymbol{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ then } \|\boldsymbol{x}\|_1 = 1 \text{ but } \|\boldsymbol{U}\boldsymbol{x}\|_1 = \sqrt{2}.$$

Another unitary invariant norm on \mathbb{F}^N is $\|\cdot\|_{(\alpha)} \triangleq \alpha \|\cdot\|_2$ for any $\alpha > 0$.

Challenge. Find another unitarily invariant norm on \mathbb{F}^N or prove that no others exist.

Inner products

L§7.2

Most of the vector spaces used in this course are inner product spaces, meaning a vector space with an associated inner product operation.

Define. For a vector space V over the field \mathbb{F} , an **inner product** operation is a function $\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{F}$ that must satisfy the following axioms $\forall x, y \in \mathcal{V}, \ \alpha \in \mathbb{F}$.

$$\begin{array}{ll} \langle \boldsymbol{x},\,\boldsymbol{y}\rangle = \langle \boldsymbol{y},\,\boldsymbol{x}\rangle^* & \text{(Hermitian symmetry)} \\ \langle \boldsymbol{x}+\boldsymbol{y},\,\boldsymbol{z}\rangle = \langle \boldsymbol{x},\,\boldsymbol{z}\rangle + \langle \boldsymbol{y},\,\boldsymbol{z}\rangle & \text{(additivity)} \\ \langle \alpha\boldsymbol{x},\,\boldsymbol{y}\rangle = \alpha\,\langle \boldsymbol{x},\,\boldsymbol{y}\rangle & \text{(scaling)} \\ \langle \boldsymbol{x},\,\boldsymbol{x}\rangle \geq 0 \text{ and } \langle \boldsymbol{x},\,\boldsymbol{x}\rangle = 0 \text{ iff } \boldsymbol{x} = \boldsymbol{0}. & \text{(positive definite)} \end{array}$$

Examples of inner products .

Example. For vectors in \mathbb{F}^N , the usual inner product is

$$\langle \boldsymbol{x}, \, \boldsymbol{y} \rangle = \sum_{n=1}^{N} x_n y_n^*.$$

Example. For the (infinite dimensional) vector space of square integrable functions on the interval [a, b], the following integral is a valid inner product:

Example. For two matrices $A, B \in \mathbb{F}^{M \times N}$ (a vector space!), the Frobenius inner product, also called the Hilbert–Schmidt inner product, is defined as:

$$\langle A, B \rangle \triangleq$$
 (5.7)

<u>Exercise</u>. Verify the four properties above for these inner product examples.

Properties of inner products

• Bilinearity:

$$\left\langle \sum_{i} \alpha_{i} \boldsymbol{x}_{i}, \sum_{j} \beta_{j} \boldsymbol{y}_{j} \right\rangle = \sum_{i} \sum_{j} \alpha_{i} \beta_{j}^{*} \left\langle \boldsymbol{x}_{i}, \boldsymbol{y}_{j} \right\rangle, \quad \forall \left\{ \boldsymbol{x}_{i} \right\}, \left\{ \boldsymbol{y}_{j} \right\} \in \mathcal{V}.$$

• Any valid vector **inner product** induces a valid vector **norm**:

$$\|\boldsymbol{x}\| = \sqrt{\langle \boldsymbol{x}, \, \boldsymbol{x} \rangle}.\tag{5.8}$$

Exercise. Verify that such an **induced norm** satisfies the four conditions for a norm on p. 5.3.

• A vector norm satisfies the **parallelogram law**:

$$rac{1}{2}\left(\left\|oldsymbol{x}+oldsymbol{y}
ight\|^{2}+\left\|oldsymbol{x}-oldsymbol{y}
ight\|^{2}
ight)=\left\|oldsymbol{x}
ight\|^{2}+\left\|oldsymbol{y}
ight\|^{2},\quadorall oldsymbol{x},oldsymbol{y}\in\mathcal{V},$$

iff it is induced by an inner product via (5.8). The required inner product is

$$\langle \boldsymbol{x}, \, \boldsymbol{y} \rangle \triangleq \frac{1}{4} \left(\|\boldsymbol{x} + \boldsymbol{y}\|^2 - \|\boldsymbol{x} - \boldsymbol{y}\|^2 + i \|\boldsymbol{x} + i\boldsymbol{y}\|^2 - i \|\boldsymbol{x} - i\boldsymbol{y}\|^2 \right)$$

$$= \frac{\|\boldsymbol{x} + \boldsymbol{y}\|^2 - \|\boldsymbol{x}\|^2 - \|\boldsymbol{y}\|^2}{2} + i \frac{\|\boldsymbol{x} + i\boldsymbol{y}\|^2 - \|\boldsymbol{x}\|^2 - \|\boldsymbol{y}\|^2}{2}.$$

• The Cauchy-Schwarz inequality (or Schwarz or Cauchy-Bunyakovsky-Schwarz inequality) states:

for a norm $\|\cdot\|$ induced by an inner product $\langle\cdot,\cdot\rangle$ via (5.8), with equality iff x and y are linearly dependent. Example. Applying the inequality to the Frobenius inner product yields:

$$|\mathsf{trace}\{\boldsymbol{A}\boldsymbol{B}'\}| = |\langle \boldsymbol{A},\, \boldsymbol{B}\rangle| \leq |\!|\!|\boldsymbol{A}|\!|\!|_{\mathrm{F}}|\!|\!|\boldsymbol{B}|\!|\!|_{\mathrm{F}}.$$

In an inner product space on \mathbb{R}^N , is $\langle x, y \rangle \leq ||x|| ||y||$?

A: Yes, always B: Not always

C: Never

??

Proof of Cauchy-Schwarz inequality for \mathbb{F}^N

(Read)

For any
$$m{x}, m{y} \in \mathbb{F}^N$$
 let $m{A} = [m{x} \ m{y}]$, so $m{A}'m{A} = egin{bmatrix} m{x}' m{x} & m{x}' m{y} \\ m{y}' m{x} & m{y}' m{y} \end{bmatrix}$.

A'A is Hermitian symmetric \Longrightarrow its eigenvalues are all real and nonnegative.

$$\implies \det\{A'A\} \ge 0 \Longrightarrow (x'x)(y'y) - (y'x)(x'y) \ge 0 \Longrightarrow |x'y|^2 \le (x'x)(y'y) = ||x||_2^2 ||y||_2^2$$

Taking the square root of both sides yields the inequality.

We used the fact that $(y'x)(x'y) = \langle x, y \rangle \langle y, x \rangle = \langle x, y \rangle (\langle x, y \rangle)^* = |\langle x, y \rangle|^2$.

Angle between vectors _

Define. The **angle** θ between two nonzero vectors $x, y \in \mathcal{V}$ w.r.t. inner product $\langle \cdot, \cdot \rangle$ having induced norm $\| \cdot \|$ is defined by

For real vectors, we can omit the absolute value and obtain $\theta \in [0, \pi]$.

The Cauchy-Schwarz inequality is equivalent to the statement $|\cos \theta| \le 1$.

Angle between subspaces _____

(Read)

The angle between two subspaces S and T of a vector space V is the minimum angle between nonzero vectors in those subspaces [3]:

$$\cos \theta = \min_{\boldsymbol{s} \in \mathcal{S} - \{\boldsymbol{0}\}, \, \boldsymbol{t} \in \mathcal{T} - \{\boldsymbol{0}\}} \frac{|\langle \boldsymbol{s}, \, \boldsymbol{t} \rangle|}{\|\boldsymbol{s}\|_2 \|\boldsymbol{t}\|_2} = \min_{\boldsymbol{s} \in \mathcal{S}, \, \boldsymbol{t} \in \mathcal{T}} |\langle \boldsymbol{s}, \, \boldsymbol{t} \rangle| \text{ s.t. } \|\boldsymbol{s}\|_2 = \|\boldsymbol{t}\|_2 = 1.$$

If S and T denote orthonormal bases for S and T, then one can show [3] that $\cos \theta = \|S'T\|_2$.

If $S \cap T = \{0\}$, then there is a stronger **Cauchy-Schwarz** inequality [4]:

$$|\langle s, t \rangle| \le \gamma \|s\|_2 \|t\|_2$$
, $\forall s \in \mathcal{S}, t \in \mathcal{T}$, where $0 \le \gamma < 1$ depends on \mathcal{S} and \mathcal{T} .

One can generalize to examine angles between flats.

An inner product for random variables

(Read)

For two real, zero-mean random variables X,Y defined on a joint probability space, a natural inner product is $\mathsf{E}[XY]$. (Keep in mind that random variables are functions.) With this definition, the corresponding norm is $\|X\| \triangleq \sqrt{\langle X,X\rangle} = \sqrt{\mathsf{E}[X^2]} = \sigma_X$, the standard deviation of X. Here, the Cauchy-Schwarz inequality is equivalent to usual bound on the **correlation coefficient**: $\rho_{X,Y} \triangleq \frac{\mathsf{E}[XY]}{\sigma_X \sigma_Y} \Longrightarrow |\rho_{X,Y}| \leq 1$.

With this definition of inner product, what types of random variables are "orthogonal"? Pairs of random variables that are **uncorrelated**, *i.e.*, where E[XY] = 0.

More inner product inequalities

(Read)

For the usual **inner product** on \mathbb{F}^N :

$$|\langle \boldsymbol{x}, \, \boldsymbol{y} \rangle| \le \|\boldsymbol{x}\|_1 \, \|\boldsymbol{y}\|_{\infty} \,. \tag{5.10}$$

Proof: $|\langle \boldsymbol{x}, \, \boldsymbol{y} \rangle| = |\sum_{i} x_{i} y_{i}^{*}| \leq \sum_{i} |x_{i}| |y_{i}| \leq \sum_{i} |x_{i}| |\|\boldsymbol{y}\|_{\infty} = \|\boldsymbol{x}\|_{1} \|\boldsymbol{y}\|_{\infty}.$

More generally, if 1/p + 1/q = 1 and $1 < p, q < \infty$, then **Hölder's inequality** states that

$$|\langle \boldsymbol{x}, \, \boldsymbol{y} \rangle| \le \|\boldsymbol{x}\|_{p} \|\boldsymbol{y}\|_{q}, \tag{5.11}$$

again for the usual inner product on \mathbb{F}^N .

Using (5.10), the **Frobenius inner product** (5.7) for matrices in $\mathbb{F}^{M \times N}$ satisfies:

$$\operatorname{real}\{\langle \boldsymbol{A}, \boldsymbol{B} \rangle\} \le |\langle \boldsymbol{A}, \boldsymbol{B} \rangle| = |\langle \operatorname{vec}(\boldsymbol{A}), \operatorname{vec}(\boldsymbol{B}) \rangle| \le \|\operatorname{vec}(\boldsymbol{A})\|_1 \|\operatorname{vec}(\boldsymbol{B})\|_{\infty}. \tag{5.12}$$

Caution: in general, $\|\operatorname{vec}(\boldsymbol{A})\|_1 \neq \|\boldsymbol{A}\|_1$ and $\|\operatorname{vec}(\boldsymbol{B})\|_{\infty} \neq \|\boldsymbol{B}\|_{\infty}$.

Challenge: prove or disprove $|\langle \boldsymbol{A}, \boldsymbol{B} \rangle| \leq \|\boldsymbol{A}\|_1 \|\boldsymbol{B}\|_{\infty}$.

$$|\langle \boldsymbol{A},\,\boldsymbol{B}\rangle| = |\mathrm{trace}\{\boldsymbol{A}\boldsymbol{B}'\}| \leq \sum_{n=1}^{N} \sigma_{n}\gamma_{n} \leq \sqrt{\left(\sum \sigma_{n}^{2}\right)\left(\sum \gamma_{n}^{2}\right)} = \|\!|\boldsymbol{A}\|\!|_{\mathrm{F}} \|\!|\!|\boldsymbol{B}\|\!|_{\mathrm{F}}.$$

Challenge: generalize the first inequality to include rectangular matrices, or provide a counter-example.

5.2 Matrix norms and operator norms

L§7.4

Also important are **matrix norms** and **operator norms**; roughly speaking these functions quantify "how large" are the elements of a matrix, in different ways.

```
Define. [1, p. 59] A matrix norm on the vector space of matrices \mathbb{F}^{M \times N} is a function \|\cdot\| from \mathbb{F}^{M \times N} to [0, \infty) that satisfies the following properties \forall \boldsymbol{A}, \boldsymbol{B} \in \mathbb{F}^{M \times N}: \|\boldsymbol{A}\| \geq 0 \qquad \qquad \text{(nonnegative)} \|\boldsymbol{A}\| = 0 \text{ iff } \boldsymbol{A} = \mathbf{0}_{M \times N} \qquad \qquad \text{(positive)} \|\alpha \boldsymbol{A}\| = |\alpha| \, \|\boldsymbol{A}\| \text{ for all scalars } \alpha \in \mathbb{F} \text{ in the field} \qquad \text{(homogeneous)} \|\boldsymbol{A} + \boldsymbol{B}\| \leq \|\boldsymbol{A}\| + \|\boldsymbol{B}\| \qquad \qquad \text{(triangle inequality)}
```

Because the set of all $M \times N$ matrices $\mathbb{F}^{M \times N}$ is itself a **vector space**, matrix norms are simply vector norms for that space. So at first having a new definition might seem to have modest utility. However, many, *but* not all, matrix norms are **sub-multiplicative**, also called **consistent** [1, p. 61], meaning that they satisfy the following inequality:

(5.13)

These notes use the notation $\|\cdot\|$ to distinguish such **matrix norms** from the ordinary matrix norms $\|\cdot\|$ on the vector space $\mathbb{F}^{M\times N}$ that need not satisfy this extra condition.

Examples of matrix norms

• The max norm on $\mathbb{F}^{M\times N}$ is the element-wise maximum: $\|A\|_{\max} \triangleq \max_{i,j} |a_{ij}|$. This norm is somewhat like the infinity norm for vectors of length MN. One can compute it in JULIA using $\operatorname{norm}(A, \operatorname{Inf})$ after invoking using LinearAlgebra. Equivalently one may use $\operatorname{norm}(A[:], \operatorname{Inf})$ because the matrix shape is unimportant for this norm. (However, this differs completely from $\operatorname{opnorm}(A, \operatorname{Inf})$ that computes $\|A\|_{\infty}$ described below.) The max norm is a matrix norm on the vector space $\mathbb{F}^{M\times N}$ but it does not satisfy the sub-multiplicative condition (5.13) so it is of limited use. Most of the norms of interest in signal processing are sub-multiplicative, so such matrix norms are our primary focus hereafter.

• The Frobenius norm (aka Hilbert-Schmidt norm and trace norm) is defined on $\mathbb{F}^{M\times N}$ by

$$\|\mathbf{A}\|_{\mathrm{F}} \triangleq = \sqrt{\operatorname{trace}\{\mathbf{A}'\mathbf{A}\}} = \sqrt{\operatorname{trace}\{\mathbf{A}\mathbf{A}'\}} = \|\operatorname{vec}(\mathbf{A})\|_{2}, \qquad (5.14)$$

and is also called the Schur norm and Schatten 2-norm. It is a very easy norm to compute. The equalities related to trace are a HW problem.

Practical implementation: norm(A, 2) or norm(A) or norm(A[:], 2) or norm(A[:])Again, shape of A is unimportant for this norm.

To relate the Frobenius norm of a matrix to its singular values:

$$\|A\|_{\mathrm{F}} =$$

This norm is invariant to unitary transformations [6, p. 442], because of the trace property (1.28). This norm is induced by the **Frobenius inner product**. It is not induced by any vector norm on \mathbb{F}^N (see \spadesuit next page) [7], but nevertheless it is **compatible** with the Euclidean vector norm because

$$\|Ax\|_{2} \le \|A\|_{F} \|x\|_{2}.$$
 (5.15)

However, this upper bound is not tight in general. (It is tight for rank-1 matrices only.) By combining (5.15) with the definition of matrix multiplication, one can show easily that the Frobenius norm is **sub-multiplicative** [8, p. 291].

What is the Frobenius norm of the outer product $\|uv'\|_F$ for $u \in \mathbb{F}^M$, $v \in \mathbb{F}^N$?

A: $\|u\|_2 \|v\|_2$ B: $\sqrt{\|u\|_2 \|v\|_2}$ C: $|u'v|^2$ D: |u'v|E: None of these.

$\ell_{p,q}$ norms

(Read)

For certain signal processing problems involving **group sparsity** [9, 10], the following family of $\ell_{p,q}$ **matrix norms** is useful:

$$\|\mathbf{A}\|_{p,q} \triangleq \left(\sum_{n=1}^{N} \left(\|\mathbf{A}_{:,n}\|_{p}\right)^{q}\right)^{1/q} = \left(\sum_{n=1}^{N} \left(\sum_{m=1}^{M} |a_{m,n}|^{p}\right)^{q/p}\right)^{1/q}.$$

This family considers a $M \times N$ matrix A as a collection of N columns of length M.

A particularly popular special case for group sparsity problems is

$$\|m{A}\|_{1,2} = \left(\sum_{n=1}^{N} \left(\|m{A}_{:,n}\|_{1}\right)^{2}\right)^{1/2}.$$

Note that in general $\|\boldsymbol{A}\|_{p,p} = \|\text{vec}(\boldsymbol{A})\|_p$ and specifically $\|\boldsymbol{A}\|_{2,2} = \|\boldsymbol{A}\|_F$.

Challenge. Determine which of the $\ell_{p,q}$ norms are sub-multiplicative.

Induced matrix norms

If $\|\cdot\|$ is any vector norm that is suitable for both \mathbb{F}^N and \mathbb{F}^M , then a matrix norm for $\mathbb{F}^{M\times N}$ is:

$$||A|| \triangleq \tag{5.16}$$

which is called an **operator norm** (because now A acts as an operation). By construction:

(5.17)

We say such a matrix norm $\|\cdot\|$ is **induced** by the vector norm $\|\cdot\|$.

Importantly, the **sub-multiplicative** property (5.13) holds for any **induced norm** provided the number of columns of A matches the number of rows of B. This fact follows readily from the definition (5.16) and the property (5.17) because

$$|\!|\!|\!| \boldsymbol{A}\boldsymbol{B} |\!|\!| = \max_{\boldsymbol{x} \colon ||\boldsymbol{x}|| = 1} |\!|\!| \boldsymbol{A}\boldsymbol{B}\boldsymbol{x} |\!|\!| \leq \max_{\boldsymbol{x} \colon ||\boldsymbol{x}|| = 1} |\!|\!|\!| \boldsymbol{A} |\!|\!|\!| |\!|\!| \boldsymbol{B}\boldsymbol{x} |\!|\!| = |\!|\!|\!| \boldsymbol{A} |\!|\!|\!|\!|\!|\!| \boldsymbol{B} |\!|\!|\!|\!|.$$

Example. The most important matrix norms (operator norms) are induced by the vector norm $\|\cdot\|_p$, *i.e.*,

$$\|A\|_{p} = \max_{x \neq 0} \frac{\|Ax\|_{p}}{\|x\|_{p}}.$$
 (5.18)

• The spectral norm $\|\cdot\|_2$, often denoted simply $\|\cdot\|$, is defined on $\mathbb{F}^{M\times N}$ by (5.18) with p=2. This is the matrix norm induced by the Euclidean vector norm. As shown on p. 2.25:

$$\|oldsymbol{A}\|_2 = \max_{oldsymbol{x}
eq oldsymbol{0}} rac{\|oldsymbol{A}oldsymbol{x}\|_2}{\|oldsymbol{x}\|_2} = \max\left\{\sqrt{\lambda}~:~\lambda \in \mathsf{eig}\{oldsymbol{A}'oldsymbol{A}\}
ight\} =$$

• The maximum row sum matrix norm is defined on $\mathbb{F}^{M\times N}$ by

$$||A||_{\infty} \triangleq \max_{1 \le i \le M} \sum_{j=1}^{N} |a_{ij}|. \tag{5.19}$$

It is induced by the ℓ_{∞} vector norm. It differs from the max norm defined above! Here the shape matters! Proof:

$$\|\boldsymbol{A}\|_{\infty} = \max_{\boldsymbol{x} \neq \boldsymbol{0}} \frac{\|\boldsymbol{A}\boldsymbol{x}\|_{\infty}}{\|\boldsymbol{x}\|_{\infty}} = \max_{\boldsymbol{x} \neq \boldsymbol{0}} \frac{\max_{m=1,\dots,M} |[\boldsymbol{A}\boldsymbol{x}]_{m}|}{\|\boldsymbol{x}\|_{\infty}} = \max_{\boldsymbol{x} \neq \boldsymbol{0}} \frac{\max_{m=1,\dots,M} \left|\sum_{n=1}^{N} a_{mn} x_{n}\right|}{\|\boldsymbol{x}\|_{\infty}}$$

$$\leq \max_{\boldsymbol{x} \neq \boldsymbol{0}} \frac{\max_{m=1,\dots,M} \sum_{n=1}^{N} |a_{mn}| |x_{n}|}{\|\boldsymbol{x}\|_{\infty}} \leq \max_{\boldsymbol{x} \neq \boldsymbol{0}} \frac{\max_{m=1,\dots,M} \sum_{n=1}^{N} |a_{mn}| \|\boldsymbol{x}\|_{\infty}}{\|\boldsymbol{x}\|_{\infty}} = \max_{1 \leq m \leq M} \sum_{n=1}^{N} |a_{mn}|.$$

• The maximum column sum matrix norm is defined on $\mathbb{F}^{M\times N}$ by

$$\|A\|_{1} \triangleq \max_{x \neq 0} \frac{\|Ax\|_{1}}{\|x\|_{1}} = \max_{1 \leq j \leq N} \sum_{i=1}^{M} |a_{ij}|.$$
 (5.20)

It is induced by the ℓ_1 vector norm. Note that $||A||_1 = ||A'||_{\infty}$.

Norms defined in terms of singular values

Here are three important norms used in modern signal processing problems.

• The **nuclear norm**, sometimes called the **trace norm** [1, p. 60], is the sum of the singular values:

$$\|A\|_* \triangleq \sum_{k=1}^{\min(M,N)} \sigma_k.$$

• For $1 \le p \le \infty$, the **Schatten p-norm** of a $M \times N$ matrix is defined using the ℓ_p norm of its singular values:

$$\| \boldsymbol{A} \|_{S,p} = \left(\sum_{k=1}^{\min(M,N)} \sigma_k^p
ight)^{1/p} = \left(\sum_{k=1}^{\operatorname{rank}(\boldsymbol{A})} \sigma_k^p
ight)^{1/p}.$$

• The **Ky-Fan** K-norm is the sum of the first $1 \le K \le \min(M, N)$ singular values of a matrix:

$$\|\mathbf{A}\|_{\mathrm{Ky-Fan,K}} = \sum_{k=1}^{K} \sigma_k(\mathbf{A}).$$

For a PCA generalization that uses this norm see [11].

For a Schatten 4-norm used in a data science application see [12].

- For (complicated!) proofs that these are in fact norms (*i.e.*, satisfy the triangle inequality), see [13, p.91].
- All of these three norms (nuclear, Schatten, and Ky-Fan) are **sub-multiplicative** [13, p.94].

Relationships between these norms:

• Nuclear norm:

$$|\!|\!|\!| \boldsymbol{A} |\!|\!|_* = |\!|\!|\!| \boldsymbol{A} |\!|\!|_{S,1} = |\!|\!|\!| \boldsymbol{A} |\!|\!|_{\mathrm{Ky-Fan,min}(\mathrm{M,N})}$$

• Spectral norm:

$$|\!|\!|\!| \boldsymbol{A} |\!|\!|_2 = \sigma_1(\boldsymbol{A}) = |\!|\!|\!| \boldsymbol{A} |\!|\!|\!|_{S,\infty} = |\!|\!|\!| \boldsymbol{A} |\!|\!|\!|_{\mathrm{Ky-Fan},1}$$

• Frobenius norm:

$$|\!|\!| \boldsymbol{A} |\!|\!|_{\mathrm{F}} = |\!|\!| \boldsymbol{A} |\!|\!|_{S,2}$$

Exercise. Relate $||A||_F$ to a Ky-Fan norm and to a nuclear norm involving A.

??

Challenge. Prove whether the Schatten p-norm $\|\cdot\|_{S,p}$ is or is not an induced norm for $1 \le p < \infty$.

44

Exercise. Define a matrix norm that unifies all of the matrix norms defined here in terms of singular values.

??

E: None of these

Practical implementation

JULIA commands (after invoking using LinearAlgebra) for some of these norms are as follows:

- $||A||_1$ opnorm(A, 1)
- $||A||_2$ opnorm(A, 2) or just opnorm(A)
- ullet $\|A\|_{\infty}$ opnorm(A, Inf) ($\|A\|_{\max}$ is norm(A, Inf))
- $||A||_*$ sum(svdvals(A)) or sum(svd(A).S)

Examples _____

- For $A = [1 3]'[1 \ 1 \ 1]$, what is norm (A, Inf) ?
- A: 2 B: 3 C: 6 D: 9
- For $A = [1 3]' [1 \ 1 \ 1]$, what is opnorm (A, Inf) ?
- A: 2 B: 3 C: 6 D: 9 E: None of these ??
- For $A = [1 3]' [1 \ 1 \ 1]$, what is opnorm (A, 2) ?
- A: 2 B: 3 C: 6 D: 9 E: None of these ??

??

Properties of matrix norms

All matrix norms are also **equivalent** (to within constants that depend on the matrix dimensions). See [1, p. 61] for inequalities relating various matrix norms.

$$\boldsymbol{A} \in \mathbb{F}^{M \times N} \Longrightarrow \|\!|\!| \boldsymbol{A} \|\!|\!|_1 \leq \sqrt{M} \|\!|\!| \boldsymbol{A} \|\!|\!|_2.$$

Example. To relate the **spectral norm** and **nuclear norm** for a matrix A having rank r:

$$\left\| oldsymbol{A}
ight\|_* =$$

$$\left\| oldsymbol{A}
ight\|_2 =$$

Combining:

To express it in way that depends on the norm only (not r, which is a property of a specific matrix):

Unitarily invariant matrix norms

Define. A matrix norm $\|\cdot\|$ on $\mathbb{F}^{M\times N}$ is called **unitarily invariant** iff for all unitary matrices $U \in \mathbb{F}^{M\times M}$ and $V \in \mathbb{F}^{N\times N}$:

$$\|\boldsymbol{U}\boldsymbol{A}\boldsymbol{V}\| = \|\boldsymbol{A}\|, \quad \forall \boldsymbol{A} \in \mathbb{F}^{M \times N}.$$

Theorem.

- The spectral norm $||A||_2$ is unitarily invariant
- Any Schatten p-norm $||A||_{S,p}$ is unitarily invariant Proof sketch: unitary matrix rotations do not change singular values.
- The Frobenius norm $||A||_F$ is unitarily invariant Proof for Frobenius case:

$$egin{aligned} \|oldsymbol{U}oldsymbol{A}oldsymbol{V}\|_{ ext{F}}^2 = & = & = \|oldsymbol{A}\|_{ ext{F}}^2. \end{aligned}$$

(We could also prove it using singular values.)

The Frobenius norm has an even more general invariance. If U has M orthonormal columns and Q has N orthonormal rows, then by the same proof $||UAQ||_F = ||A||_F$ for any $A \in \mathbb{F}^{M \times N}$.

Fact. Every unitarily invariant norm is sub-multiplicative. (See [13, p.94] for complicated proof.)

Spectral radius

Define. For any square matrix, the **spectral radius** is the maximum absolute eigenvalue:

$$\mathbf{A} \in \mathbb{F}^{N \times N} \Longrightarrow \rho(\mathbf{A}) \triangleq$$

- By construction, $|\lambda_i(\mathbf{A})| \leq \rho(\mathbf{A})$ so all eigenvalues lie within a disk in the complex plane of radius $\rho(\mathbf{A})$, hence the name.
- In general, $\rho(A)$ is *not* a matrix norm and $||Ax|| \leq \rho(A) ||x||$.
- However, if A is **normal**, then recall from (2.6) that we if order its eigenvalues in decreasing order of their absolute values, then we can relate its unitary eigendecomposition to an SVD as follows:

$$oldsymbol{A} = oldsymbol{V}oldsymbol{\Lambda}oldsymbol{V}' = \sum_{n=1}^N \lambda_n oldsymbol{v}_n oldsymbol{v}'_n = \sum_{n=1}^N \underbrace{|\lambda_n|}_{oldsymbol{\sigma}_n} \underbrace{\operatorname{sign}(\lambda_n) oldsymbol{v}_n}_{oldsymbol{u}_n} oldsymbol{v}'_n.$$

- \circ Thus if A is normal (e.g., A = A') then $\rho(A) = \sigma_1(A) = ||A||_2$, so $||Ax||_2 \le \rho(A) ||x||_2$.
- \circ Furthermore, \boldsymbol{A} normal $\Longrightarrow |\boldsymbol{x}'\boldsymbol{A}\boldsymbol{x}| \leq \rho(\boldsymbol{A}) \|\boldsymbol{x}\|_2^2$ because

$$\max_{\boldsymbol{x}\neq\boldsymbol{0}}\frac{|\boldsymbol{x}'\boldsymbol{A}\boldsymbol{x}|}{\|\boldsymbol{x}\|_2^2}=\max_{\boldsymbol{z}\neq\boldsymbol{0}}\frac{|(\boldsymbol{V}\boldsymbol{z})'\boldsymbol{A}(\boldsymbol{V}\boldsymbol{z})|}{\|\boldsymbol{V}\boldsymbol{z}\|_2^2}=\max_{\boldsymbol{z}\neq\boldsymbol{0}}\frac{|\boldsymbol{z}'\boldsymbol{\Lambda}\boldsymbol{z}|}{\|\boldsymbol{z}\|_2^2}=\max_n|\lambda_n(\boldsymbol{A})|=\rho(\boldsymbol{A})=\sigma_1(\boldsymbol{A})=\|\boldsymbol{A}\|_2.$$

• If $\|\cdot\|$ is any induced matrix norm on $\mathbb{F}^{N\times N}$ and if $A\in\mathbb{F}^{N\times N}$, then

$$\rho(\mathbf{A}) \le ||\mathbf{A}||. \tag{5.21}$$

Proof. If $Av = \lambda v$, then $|\lambda| ||v|| = ||\lambda v|| = ||Av|| \le ||A|| ||v||$. Dividing by ||v||, which is fine because $v \ne 0$, yields $|\lambda| \le ||A||$. This inequality holds for all eigenvalues, including the one with maximum magnitude.

- If $A \in \mathbb{F}^{N \times N}$, then $\lim_{k \to \infty} A^k = 0$ if and only if $\rho(A) < 1$. This property is particularly important for analyzing the convergence of iterative algorithms, including training recurrent neural networks [14]. (cf. HW)
- For any $A \in \mathbb{F}^{N \times N}$, the spectral radius is an infimum of all induced matrix norms:

 $\rho(\mathbf{A}) = \inf \{ \|\mathbf{A}\| : \|\cdot\| \text{ is an induced matrix norm} \}.$

• Gelfand's formula for any induced matrix norm $||\cdot||$ for a square matrix A is:

44

$$\rho(\mathbf{A}) = \lim_{k \to \infty} \|\mathbf{A}^k\|^{1/k}.$$
 (5.22)

Which equality (if any) correctly relates a singular value and a spectral radius for any general matrix $A \in \mathbb{F}^{M \times N}$?

A: $\sigma_1(\mathbf{A}) \stackrel{?}{=} |\rho(\mathbf{A})|$

B: $\sigma_1(\mathbf{A}) \stackrel{?}{=} \rho^2(\mathbf{A})$

C: $\sigma_1(\mathbf{A}) \stackrel{?}{=} \rho(\mathbf{A}'\mathbf{A})$

D: $\sigma_1(\mathbf{A}) \stackrel{?}{=} \sqrt{\rho(\mathbf{A}'\mathbf{A})}$

E: None of these.

??

Practical step size for gradient descent

The gradient descent (GD) method $x_{k+1} = x_k - \mu A'(Ax_k - y)$ for solving a linear least-squares problem $\arg\min_{x} \frac{1}{2} \|Ax - y\|$ converges (for any x_0 ; see Ch. 8) iff $\rho(I - \mu A'A) < 1$, *i.e.*, iff the step size μ satisfies

$$0 < \mu < \frac{2}{\sigma_1^2(\boldsymbol{A})},$$

where, using the inequality (5.21):

$$\sigma_1^2(\boldsymbol{A})$$

Thus, choosing $\mu = \frac{1}{|A|_{\infty}|A|_{1}}$ is a valid step size that ensures GD converges (cf. lsgd and lsngd).

It is much easier to compute $||A||_{\infty}$ and $||A||_{1}$ than $||A||_{2}$.

5.3 Convergence of sequences of vectors and matrices

(Read)

In later chapters we will be discussing iterative optimization algorithms and analyzing when such algorithms converge. This is another topic involving **vector norms** and **matrix norms**.

Convergence of a sequence of numbers

Define. We say a sequence of (possibly complex) numbers $\{x_k\}$ converges to a limit x_* iff $|x_k - x_*| \to 0$ as $k \to \infty$, where $|\cdot|$ denotes absolute value (or complex magnitude more generally). Specifically,

$$\forall \epsilon > 0, \quad \exists N_{\epsilon} \in \mathbb{N} \text{ s.t. } |x_k - x_*| < \epsilon \quad \forall k \geq N_{\epsilon}$$

We now define convergence of a sequence of vectors or matrices by using a **norm** to quantify distance, relating to convergence of a sequence of scalars.

Define. We say a sequence of vectors $\{x_k\}$ in a vector space \mathcal{V} converges to a limit $x_* \in \mathcal{V}$ iff $\|x_k - x_*\| \to 0$ for some norm $\|\cdot\|$ as $k \to \infty$. Specifically,

$$\forall \epsilon > 0, \quad \exists N_{\epsilon} \in \mathbb{N} \text{ s.t. } \|\boldsymbol{x}_k - \boldsymbol{x}_*\| < \epsilon \quad \forall k \geq N_{\epsilon}$$

Often we write $x_k \to x_*$ as a shorthand for $||x_k - x_*|| \to 0$.

A matrix is simply a point in a vector space of matrices so we use essentially the same definition of convergence of a sequence of matrices:

Define. We say a sequence of matrices $\{X_k\}$ (in a vector space $\mathcal V$ of matrices) **converges** to a limit $X_* \in \mathcal V$ iff $\|X_k - X_*\| \to 0$ for some (matrix) norm $\|\cdot\|$ as $k \to \infty$. Specifically,

$$\forall \epsilon > 0, \quad \exists N_{\epsilon} \in \mathbb{N} \text{ s.t. } \|\boldsymbol{X}_{k} - \boldsymbol{X}_{*}\| < \epsilon \quad \forall k \geq N_{\epsilon}$$

Example. Consider (for simplicity) the sequence of **diagonal** matrices $\{D_k\}$ defined by

$$\boldsymbol{D}_k = \begin{bmatrix} 3 + 2^{-k} & 0\\ 0 & (-1)^k / k^2 \end{bmatrix}.$$

This sequence converges to the limit $m{D}_* = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}$ because

$$\|\mathbf{D}_k - \mathbf{D}_*\|_{\mathrm{F}} = \|\begin{bmatrix} 2^{-k} & 0 \\ 0 & (-1)^k/k^2 \end{bmatrix}\|_{\mathrm{F}} = \sqrt{4^{-k} + 1/k^4} \to 0.$$

Example. For a square matrix A, define the partial sum of powers $S_k \triangleq \sum_{j=0}^k A^j$. If $||A||_2 < 1$, then one can show that I - A is invertible and the matrix sequence $\{S_k\}$ converges to the Neumann series: $\sum_{j=0}^{\infty} A^j = (I - A)^{-1}$.

5.4 Generalized inverse of a matrix

(Read)

The **Moore-Penrose pseudoinverse** defined on p. 4.19 is just one (particularly important) type of **generalized inverse** of a matrix. This section uses the Frobenius norm to characterize the **Moore-Penrose pseudoinverse**.

Define. A matrix $G \in \mathbb{F}^{N \times M}$ is a generalized inverse of a matrix $A \in \mathbb{F}^{M \times N}$ iff AGA = A.

- If A has full column rank, then A'A is invertible, so multiplying both sizes of AGA = A on the left by $A^+ = (A'A)^{-1}A'$ yields that G is a generalized inverse of such an A iff $GA = I_N$, i.e., iff G is a left inverse of A.
- Conversely, if A has full row rank, then AA' is invertible and G is a generalized inverse of such an A iff $AG = I_M$, i.e., iff G is a **right inverse** of A.

Considering an SVD $A = U\Sigma V'$, one can verify from the definition that every generalized inverse of A has the form

$$oldsymbol{G} = oldsymbol{V} egin{bmatrix} oldsymbol{\Sigma}_r^{-1} & oldsymbol{S}_2 \ oldsymbol{S}_3 & oldsymbol{S}_4 \end{bmatrix} oldsymbol{U}',$$

where the matrices $S_2 \in \mathbb{F}^{r \times ?}$, $S_3 \in \mathbb{F}^{? \times r}$, and $S_4 \in \mathbb{F}^{? \times ?}$ have certain sizes (left as an Exercise for the reader) but otherwise have completely arbitrary values. In other words, the (very general!) set of generalized inverses \mathcal{G}_A of a $M \times N$ A is a linear variety in the vector space of $N \times M$ matrices.

One can devise many ways to choose a specific generalized inverse from the set \mathcal{G}_A .

Minimum Frobenius norm generalized inverse

A simple way is to choose the generalized inverse having the smallest **Frobenius norm**. This solution turns out to be simply the pseudo-inverse of A:

$$\underset{\boldsymbol{G} \in \mathcal{G}_{\boldsymbol{A}}}{\arg\min} \, \|\boldsymbol{G}\|_{\mathrm{F}} = \boldsymbol{A}^{+}.$$

Proof:
$$G \in \mathcal{G}_A \Longrightarrow G = V \begin{bmatrix} \Sigma_r^{-1} & S_2 \\ S_3 & S_4 \end{bmatrix} U' \Longrightarrow \|G\|_{\mathrm{F}} = \left\| \begin{bmatrix} \Sigma_r^{-1} & S_2 \\ S_3 & S_4 \end{bmatrix} \right\|_{\mathrm{F}}^2$$
 because the Frobenius norm is unitarily invariant. Because $\left\| \begin{bmatrix} \Sigma_r^{-1} & S_2 \\ S_3 & S_4 \end{bmatrix} \right\|_{\mathrm{F}}^2 = \left\| \Sigma_r^{-1} \right\|_{\mathrm{F}}^2 + \left\| S_2 \right\|_{\mathrm{F}}^2 + \left\| S_3 \right\|_{\mathrm{F}}^2 + \left\| S_4 \right\|_{\mathrm{F}}^2$, the minimum Frobenius norm solution is when each S_i is all zeros.

Thus that solution has the form
$$m{G} = m{V}egin{bmatrix} m{\Sigma}_r^{-1} & m{0} \\ m{0} & m{0} \end{bmatrix} m{U}' = m{V} m{\Sigma}^+ m{U}' = m{A}^+.$$

In words, the Moore-Penrose pseudo-inverse of A is the unique generalized inverse of A with minimal Frobenius norm.

See [15] for other choices.

5.5 Procrustes analysis

(A practical application of the **SVD** and the **Frobenius matrix norm**)

One use of matrix norms is quantifying the dissimilarity of two matrices by using a norm of their difference. We illustrate that use by solving the **orthogonal Procrustes problem** [16, 17].

The goal of the **Procrustes problem** is to find an orthogonal matrix Q in $\mathbb{R}^{M \times M}$ that makes two other matrices B and A in $\mathbb{R}^{M \times N}$ as similar as possible by "rotating" the columns of A:

$$\hat{\mathbf{Q}} = \underset{\mathbf{Q}: \mathbf{Q}'\mathbf{Q} = \mathbf{I}_{M}}{\operatorname{arg \, min}} f(\mathbf{Q}), \qquad \underbrace{f(\mathbf{Q})}_{\hookrightarrow} \triangleq \qquad (5.23)$$

$$\hookrightarrow \operatorname{cost \, function}$$

- One could use some other norm but the Frobenius is simple and natural here. (Think about why!)
- I put "rotating" in quotes because the condition Q'Q = I ensures that Q has orthonormal columns, but the class of matrices for which Q'Q = I also includes examples like $Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ that are not rotations.
- There are extensions that require $det{Q} = 1$ to ensure Q corresponds to a rotation [18].
- See p. 5.42 for several generalizations (non-square, complex, translation).

One of many motivating applications is performing **image registration** of two pictures of the same scene acquired with different sensor orientations, using a technique called **landmark registration**.

Example. Here the goal is to match (by rotation) two sets of landmark coordinates:

$$A = \begin{bmatrix} -59 & -25 & 49 \\ 6 & -33 & 20 \end{bmatrix}, \qquad B = \begin{bmatrix} -54.1 & -5.15 & 32.44 \\ -24.3 & -41.08 & 41.82 \end{bmatrix} \approx QA = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} A.$$

Here M=2 and N=3 and typically M< N in such problems.

Here we found the landmarks manually, but there are also automatic methods [19].

Analyze the cost function:

$$\begin{split} f(Q) &= \|B - QA\|_{\mathrm{F}}^2 = \operatorname{trace}\{(B - QA)'(B - QA)\} \\ &= \operatorname{trace}\{B'B - B'QA - A'Q'B + A'Q'QA\} & \text{expanding via FOIL} \\ &= \operatorname{trace}\{B'B - B'QA - A'Q'B + A'A\} & Q'Q = I \\ &= \operatorname{trace}\{B'B\} + \operatorname{trace}\{A'A\} - \operatorname{trace}\{A'Q'B\} - \operatorname{trace}\{B'QA\} & \text{linearity} \\ &= \operatorname{trace}\{B'B\} + \operatorname{trace}\{A'A\} - \operatorname{trace}\{A'Q'B\} - \operatorname{trace}\{(A'Q'B)'\} & \text{transpose} \\ &= \operatorname{trace}\{B'B\} + \operatorname{trace}\{A'A\} - 2\operatorname{trace}\{A'Q'B\} & \text{transpose inv.} \\ &= \operatorname{trace}\{B'B\} + \operatorname{trace}\{A'A\} - 2\operatorname{trace}\{Q'BA'\} & \text{comm. prop. of trace.} \end{split}$$

So minimizing f(Q) is equivalent to maximizing

$$g(\mathbf{Q}) \triangleq$$

Use an **SVD** (of course!) of the $M \times M$ matrix $C \triangleq BA' = U\Sigma V'$ so

$$\begin{split} g(\boldsymbol{Q}) &= \operatorname{trace}\{\boldsymbol{Q}'\boldsymbol{B}\boldsymbol{A}'\} = \operatorname{trace}\{\boldsymbol{Q}'\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}'\} = \operatorname{trace}\{\boldsymbol{V}'\boldsymbol{Q}'\boldsymbol{U}\boldsymbol{\Sigma}\} \\ &= \operatorname{trace}\{\boldsymbol{W}\boldsymbol{\Sigma}\}, \qquad \boldsymbol{W} = \boldsymbol{W}(\boldsymbol{Q}) \triangleq \boldsymbol{V}'\boldsymbol{Q}'\boldsymbol{U}. \end{split}$$

Using the orthogonality of U, V and Q, it is clear that the $M \times M$ matrix W is orthogonal (cf. HW):

$$W'W = U'QVV'Q'U = U'QI_MQ'U = U'U = I_M.$$

We must maximize trace $\{W\Sigma\}$ over Q orthogonal, where W depends on Q but Σ does not. Observe:

$$[oldsymbol{W}oldsymbol{\Sigma}]_{mm}=w_{mm}\sigma_{m}\Longrightarrow {\sf trace}\{oldsymbol{W}oldsymbol{\Sigma}\}=\sum_{m=1}^{M}w_{mm}\sigma_{m}.$$

To proceed, we look for an upper bound for this sum. Because W is an orthogonal matrix, each of its columns have unit norm, i.e., $\sum_{m=1}^{N} |w_{mn}|^2 = 1$ for all m, so $w_{mn} \leq 1$ for all m, n. This inequality yields the following upper bound:

$$\mathsf{trace}\{oldsymbol{W}oldsymbol{\Sigma}\} \leq \sum_{m=1}^{M} \sigma_m = \mathsf{trace}\{oldsymbol{I}oldsymbol{\Sigma}\}\,.$$

This upper bound is achieved when W = I. Now solve for Q:

$$W = V'Q'U = I \Longrightarrow VV'Q'UU' = VU' \Longrightarrow Q' = VU' \Longrightarrow \hat{Q} = UV'.$$

In summary, the solution to the **orthogonal Procrustes problem** is:

$$\hat{Q} = \underset{Q: Q'Q=I}{\text{arg min}} \|B - QA\|_{F}^{2} = UV', \text{ where } C = BA' = U\Sigma V'.$$
 (5.24)

A homework problem will express C = QP where P is positive semi-definite, using a **polar decomposition** or **polar factorization** of the square matrix BA' [1, p. 41].

??

The solution to the **orthogonal Procrustes problem** is unique. (?)

A: True B: False

?? See [20] for further discussion.

Sanity check (self consistency and scale invariance)

Suppose B is exactly a rotated version of the columns of A, along with an additional scale factor i.e., $B = \alpha \tilde{Q} A$ for some orthogonal matrix \tilde{Q} ; equivalently $A = \frac{1}{\alpha} \tilde{Q}' B$. We now verify that the Procrustes method finds the correct rotation, i.e., $\hat{Q} = \tilde{Q}$.

Let $B = \tilde{U}\tilde{\Sigma}\tilde{V}'$ denote an SVD of B. Then an SVD of C is evident by inspection:

$$C = BA' = \frac{1}{\alpha}BB'\tilde{Q} = \frac{1}{\alpha}\underbrace{\tilde{U}\tilde{\Sigma}\tilde{V}'}_{B}\underbrace{\tilde{V}\tilde{\Sigma}'\tilde{U}'}_{B'}\tilde{Q} = \underbrace{\tilde{U}}_{U}\underbrace{\frac{1}{\alpha}\tilde{\Sigma}\tilde{\Sigma}'}_{\Sigma}\underbrace{\tilde{U}'\tilde{Q}}_{V'}.$$

The Procrustes solution is indeed correct (self consistent), and **invariant** to the scale parameter α :

$$\hat{m{Q}} = m{U}m{V}' = (\tilde{m{U}})(\tilde{m{U}}'\tilde{m{Q}}) = \tilde{m{Q}}.$$

After finding \hat{Q} , if we also want to estimate the scale, then we can solve a **linear least-squares** problem:

$$\underset{\alpha}{\operatorname{arg\,min}} \left\| \boldsymbol{B} - \alpha \hat{\boldsymbol{Q}} \boldsymbol{A} \right\|_{F} = \frac{\operatorname{trace} \left\{ \boldsymbol{B} \boldsymbol{A}' \hat{\boldsymbol{Q}}' \right\}}{\operatorname{trace} \left\{ \boldsymbol{A} \boldsymbol{A}' \right\}} = \frac{\operatorname{trace} \left\{ \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}' \boldsymbol{V} \boldsymbol{U}' \right\}}{\operatorname{trace} \left\{ \boldsymbol{A} \boldsymbol{A}' \right\}} = \frac{\sum_{k=1}^{r} \sigma_{k}}{\left\| \boldsymbol{A} \right\|_{F}^{2}}, \tag{5.25}$$

where $\{\sigma_k\}$ are the singular values of C = BA'

A HW problem will explore a real-world image registration example. The next page provides a small concrete example.

Example. For determining 2D image rotation, even a single nonzero point in each image suffices! (Read) For example, suppose the first point is at (1,0) and the second point is at (x,y) where $x=5\cos\phi$ and $y=5\sin\phi$. (This example includes scaling by a factor of 5 just to illustrate the generality.)

Then
$$\mathbf{A} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} x \\ y \end{bmatrix}$ so
$$\mathbf{C} = \mathbf{B}\mathbf{A}' = \begin{bmatrix} 5\cos\phi \\ 5\sin\phi \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \underbrace{\begin{bmatrix} \cos\phi & -q_1\sin\phi \\ \sin\phi & q_1\cos\phi \end{bmatrix}}_{\mathbf{U}} \underbrace{\begin{bmatrix} 5 & 0 \\ 0 & 0 \end{bmatrix}}_{\mathbf{Y}} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & q_2 \end{bmatrix}}_{\mathbf{Y}}, \quad q_1, q_2 \in \{\pm 1\}.$$

Here C is a simple outer product so finding a (full!) SVD by hand was easy. In fact we found four SVDs, corresponding to different signs for u_2 and v_2 . For each of these SVDs, the optimal rotation matrix per (5.24) is

$$\hat{Q} = UV' = \begin{bmatrix} \cos \phi & -q_1 \sin \phi \\ \sin \phi & q_1 \cos \phi \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & q_2 \end{bmatrix} = \begin{bmatrix} \cos \phi & -q \sin \phi \\ \sin \phi & q \cos \phi \end{bmatrix},$$

where $q \triangleq q_1q_2 \in \{\pm 1\}$. The two Procrustes solutions here (for $q = \pm 1$) both have the correct $\cos \phi$ in the upper left and both exactly satisfy $\mathbf{B} = 5\mathbf{Q}\mathbf{A}$.

So there are two Procrustes solutions that fit the data exactly, one of which (for q=1) corresponds to a rotation matrix, and the other of which (for q=-1) has sign flip for the second coordinate. In 2D, any rotation matrix is a unitary matrix, but the converse is not true!

<u>Exercise</u>. Explore what happens with two points: colinear, symmetric around zero, non-colinear.

Generalizations: non-square, complex, with translation

(Read)

This section generalizes the Procrustes problem (5.23) in three ways: we consider complex data, we account for a possible translation, and we allow Q to be non-square, meaning that B and A can have different numbers of rows.

Here we assume $\boldsymbol{B} \in \mathbb{F}^{M \times N}$ but $\boldsymbol{A} \in \mathbb{F}^{K \times N}$ so $\boldsymbol{Q} \in \mathbb{F}^{M \times K}$.

We still want Q to have orthonormal columns, so we must have $1 \le K \le M$.

Define. The Stiefel manifold $\mathcal{V}_K(\mathbb{F}^M)$ is the set of $M \times K$ matrices having orthonormal columns

$$\mathcal{V}_K(\mathbb{F}^M) = \left\{ oldsymbol{Q} \in \mathbb{F}^{M imes K} : oldsymbol{Q}' oldsymbol{Q} = oldsymbol{I}_K
ight\}.$$

Special cases:

 \mathcal{V}_M (\mathbb{R}^M) is the set of $M \times M$ orthogonal matrices \mathcal{V}_M (\mathbb{C}^M) is the set of $M \times M$ unitary matrices

If $Q \in \mathcal{V}_K(\mathbb{C}^M)$ then Q is the first K columns of some $M \times M$ unitary matrix.

In many practical applications of the **Procrustes problem**, there can be both rotation and an unknown **translation** between the two sets of coordinates. Instead of the model $B_{:,n} \approx QA_{:,n}$ a more realistic model is $B_{:,n} \approx QA_{:,n} + d$ where $d \in \mathbb{F}^M$ is an unknown **displacement vector**. In matrix form:

$$m{B}pprox m{Q}m{A}+m{d}\mathbf{1}_N'.$$

Now we must determine both a matrix $Q \in \mathcal{V}_K(\mathbb{F}^M)$ in the Stiefel manifold, and the vector $d \in \mathbb{C}^M$ by a double minimization using a Frobenius norm:

$$(\hat{oldsymbol{Q}}, \hat{oldsymbol{d}}) riangleq rg \min_{oldsymbol{Q} \in \mathcal{V}_K(\mathbb{F}^M)} rg \min_{oldsymbol{d} \in \mathbb{F}^M} g(oldsymbol{d}, oldsymbol{Q}), \qquad g(oldsymbol{d}, oldsymbol{Q}) riangleq \|oldsymbol{B} - (oldsymbol{Q}oldsymbol{A} + oldsymbol{d}\mathbf{1}_N')\|_{\mathrm{F}}^2.$$

We first focus on the inner minimization over the displacement d for any given Q:

$$\begin{split} g(\boldsymbol{d},\boldsymbol{Q}) &= \|\boldsymbol{B} - (\boldsymbol{Q}\boldsymbol{A} + \boldsymbol{d}\boldsymbol{1}_N')\|_{\mathrm{F}}^2 = \operatorname{trace}\{(\boldsymbol{Z} - \boldsymbol{d}\boldsymbol{1}_N')'(\boldsymbol{Z}\boldsymbol{A} - \boldsymbol{d}\boldsymbol{1}_N')\}, \quad \boldsymbol{Z} \triangleq \boldsymbol{B} - \boldsymbol{Q}\boldsymbol{A} \\ &= \operatorname{trace}\{\boldsymbol{Z}'\boldsymbol{Z}\} - \operatorname{trace}\{\boldsymbol{Z}'\boldsymbol{d}\boldsymbol{1}_N'\} - \operatorname{trace}\{\boldsymbol{1}_N\boldsymbol{d}'\boldsymbol{Z}\} + \operatorname{trace}\{\boldsymbol{1}_N\boldsymbol{d}'\boldsymbol{d}\boldsymbol{1}_N'\} \\ &= \operatorname{trace}\{\boldsymbol{Z}'\boldsymbol{Z}\} - \operatorname{trace}\{\boldsymbol{1}_N'\boldsymbol{Z}'\boldsymbol{d}\} - \operatorname{trace}\{\boldsymbol{d}'\boldsymbol{Z}\boldsymbol{1}_N\} + \operatorname{trace}\{\boldsymbol{d}'\boldsymbol{d}\boldsymbol{1}_N'\boldsymbol{1}_N\} \\ &= \operatorname{trace}\{\boldsymbol{Z}'\boldsymbol{Z}\} - \boldsymbol{1}_N'\boldsymbol{Z}'\boldsymbol{d} - \boldsymbol{d}'\boldsymbol{Z}\boldsymbol{1}_N + N\boldsymbol{d}'\boldsymbol{d} \\ &= \operatorname{trace}\{\boldsymbol{Z}'\boldsymbol{Z}\} - \frac{1}{N}\left\|\boldsymbol{Z}\boldsymbol{1}_N\right\|_2^2 + N\left\|\boldsymbol{d} - \frac{1}{N}\boldsymbol{Z}\boldsymbol{1}_N\right\|_2^2. \end{split}$$

It is clear from this expression that the optimal estimate of the displacement d for any Q is:

$$\hat{m{d}}(m{Q}) = rac{1}{N} m{Z} m{1}_N = rac{1}{N} (m{B} - m{Q} m{A}) m{1}_N.$$

Now to find the optimal matrix Q we must solve the outer minimization:

$$\begin{split} \hat{\boldsymbol{Q}} &\triangleq \mathop{\arg\min}_{\boldsymbol{Q} \in \mathcal{V}_K(\mathbb{F}^M)} f(\boldsymbol{Q}), \qquad f(\boldsymbol{Q}) \triangleq g\Big(\hat{\boldsymbol{d}}(\boldsymbol{Q}), \boldsymbol{Q}\Big) \\ f(\boldsymbol{Q}) &= \operatorname{trace}\{(\boldsymbol{B} - \boldsymbol{Q}\boldsymbol{A})'(\boldsymbol{B} - \boldsymbol{A}\boldsymbol{Q})\} - \frac{1}{N} \left\| (\boldsymbol{B} - \boldsymbol{Q}\boldsymbol{A}) \mathbf{1}_N \right\|_2^2 \\ &\stackrel{c}{=} -2 \operatorname{real}\{\operatorname{trace}\{\boldsymbol{Q}'\boldsymbol{B}\boldsymbol{A}'\}\} + \frac{2}{N} \operatorname{real}\{\mathbf{1}'_N \boldsymbol{A}' \boldsymbol{Q}' \boldsymbol{B} \mathbf{1}_N\} \\ &= -2 \operatorname{real}\{\operatorname{trace}\{\boldsymbol{Q}'\boldsymbol{B}\boldsymbol{A}'\}\} + 2 \operatorname{real}\left\{\operatorname{trace}\left\{\boldsymbol{Q}'\boldsymbol{B}\frac{1}{N}\mathbf{1}_N \mathbf{1}'_N \boldsymbol{A}'\right\}\right\} \\ &= -2 \operatorname{real}\left\{\operatorname{trace}\left\{\boldsymbol{Q}'\tilde{\boldsymbol{C}}\right\}\right\}, \quad \tilde{\boldsymbol{C}} \triangleq \underbrace{\boldsymbol{B}\boldsymbol{M}\boldsymbol{A}'}_{M \times K}, \quad \boldsymbol{M} \triangleq \boldsymbol{I} - \frac{1}{N}\mathbf{1}_N \mathbf{1}'_N, \end{split}$$

where $\stackrel{c}{=}$ means "equal to within constant terms that are irrelevant for minimization."

After finding a (full) **SVD** $\tilde{C} = \underbrace{U}_{M \times M} \underbrace{\Sigma}_{M \times K} \underbrace{V'}_{K \times K}$, we want:

$$\hat{oldsymbol{Q}} = rg \max_{oldsymbol{Q} \in \mathcal{V}_K(\mathbb{F}^M)} \mathrm{real} \Big\{ \mathrm{trace} \Big\{ oldsymbol{Q}' ilde{oldsymbol{C}} \Big\} \Big\}$$

where using the Frobenius inner product inequality (5.12):

$$\begin{aligned} \operatorname{real} \Big\{ \operatorname{trace} \Big\{ \boldsymbol{Q}' \tilde{\boldsymbol{C}} \Big\} \Big\} &= \operatorname{real} \{ \operatorname{trace} \{ \boldsymbol{Q}' \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}' \} \} = \operatorname{real} \{ \operatorname{trace} \{ \boldsymbol{W}' \boldsymbol{\Sigma} \} \}, \quad \text{ where } \boldsymbol{W} \triangleq \boldsymbol{U}' \boldsymbol{Q} \boldsymbol{V} \in \mathcal{V}_K(\mathbb{F}^M) \\ &= \operatorname{real} \{ \langle \boldsymbol{\Sigma}, \, \boldsymbol{W} \rangle \} \leq |\langle \boldsymbol{\Sigma}, \, \boldsymbol{W} \rangle| \leq \|\operatorname{vec}(\boldsymbol{\Sigma})\|_1 \, \|\operatorname{vec}(\boldsymbol{W})\|_{\infty} = \|\boldsymbol{\Sigma}\|_* \, \|\operatorname{vec}(\boldsymbol{W})\|_{\infty} \, . \end{aligned}$$

Because $\Sigma = \begin{bmatrix} \Sigma_K \\ \mathbf{0}_{(M-K) \times K} \end{bmatrix}$ is rectangular diagonal, the matrix $\boldsymbol{W} = \begin{bmatrix} \boldsymbol{I}_K \\ \mathbf{0}_{(M-K) \times K} \end{bmatrix} \in \mathcal{V}_K(\mathbb{F}^M)$ achieves the upper bound. Solving for \boldsymbol{Q} yields

$$\hat{oldsymbol{Q}} = oldsymbol{U}oldsymbol{W}oldsymbol{V}' = oldsymbol{U}egin{bmatrix} oldsymbol{I}_K \ oldsymbol{0}_{(M-K) imes K} \end{bmatrix}oldsymbol{V}' = oldsymbol{U}_Koldsymbol{V}',$$

where U_K denotes the first K columns of the $M \times M$ matrix U.

In summary, the optimal Q is

$$oldsymbol{Q} = oldsymbol{U}_K oldsymbol{V}', ext{ where } ilde{oldsymbol{C}} riangleq oldsymbol{B} oldsymbol{M} oldsymbol{A}' = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}'.$$

The matrix M is called a "de-meaning" or "centering" operator because y = Mx subtracts the mean of x from each element of x. In code: y = x . — mean (x)

The de-meaning matrix M is a symmetric **idempotent matrix** so M = MM' and we can rewrite \tilde{C} above as $\tilde{C} = (BM)(AM)' = \tilde{B}\tilde{A}'$ where $\tilde{A} \triangleq AM$, $\tilde{B} \triangleq BM$ are versions of A and B where each column has its mean subtracted out.

In words, to find the optimal rotation matrix when there is possible translation, we first de-mean each column of A and B, and then compute the usual SVD of $\tilde{B}\tilde{A}'$ and use the left and right bases via $Q = U_K V'$.

Exercise. Do a sanity check in the case where $B = \alpha QA + d1'_N$.

Subspace / span comparisons

(Read)

Another application of the **orthogonal Procrustes problem** is quantifying the "alignment" between two subspace bases.

Suppose B_1 and B_2 are $M \times N$ matrices that we think span the same (or similar) subspace in \mathbb{F}^M . In general it does not make sense to use $d(B_1, B_2) = ||B_1 - B_2||_F$ as a measure if dissimilarity because we could have $\mathcal{R}(B_1) = \mathcal{R}(B_2)$ even if B_1 and B_2 are themselves different, e.g., if $B_1 = -B_2$.

A more useful measure of dissimilarity involves first rotating the basis for one subspace to be as similar to the other as possible, and then examining the difference, *i.e.*:

$$d(\boldsymbol{B}_1, \boldsymbol{B}_2) \triangleq \min_{\boldsymbol{Q} \in \mathcal{V}_N(\mathbb{F}^N)} \|\boldsymbol{B}_1 - \boldsymbol{B}_2 \boldsymbol{Q}'\|_{\mathrm{F}} = \min_{\boldsymbol{Q} \in \mathcal{V}_N(\mathbb{F}^N)} \|\boldsymbol{B}_1' - \boldsymbol{Q} \boldsymbol{B}_2'\|_{\mathrm{F}}.$$

The best Q is $\hat{Q} = UV'$ where $C = B'_1B_2 = U\Sigma V'$, so the simplified dissimilarity measure is

$$d(\mathbf{B}_1, \mathbf{B}_2) = ||\mathbf{B}_1 - \mathbf{B}_2 \mathbf{V} \mathbf{U}'||_{\mathrm{F}}.$$

If the B matrices are not in the **Stiefel manifold**, then one should include a scale factor like (5.25).

Practical implementation

The solution to the Procrustes problem requires just a couple JULIA statements. The key ingredient is simply the svd command. See the example notebook:

```
https://web.eecs.umich.edu/~fessler/course/551/julia/demo/05_procrustes1.html https://web.eecs.umich.edu/~fessler/course/551/julia/demo/05_procrustes1.ipynb
```

5.6 Summary

- We use vector norms and matrix norms are used to measure sizes and distances.
- Some matrix norms are essentially just vector norms in terms of vec(A), some matrix norms satisfy the important sub-multiplicative property, and operator norms are induced by vector norms.
- Many of the matrix norms can be expressed in terms of singular values, and those are unitarily invariant.
- Classical methods (like linear LS) use 2-norms, but many modern methods use other norms. One vector norm of recent interest is the **ordered weighted** ℓ_1 (**OWL**) norm [21].
- We assess **convergence** of a sequence of vectors or matrices using norms.
- The spectral radius is a related quantity for square matrices, where $\sigma_1(A) = \sqrt{\sigma_1(A'A)} = \sqrt{\rho(A'A)}$.
- The Moore-Penrose pseudo-inverse is the generalized inverse having minimum Frobenius norm.

The orthogonal Procrustes problem has an SVD-based solution:

$$\hat{oldsymbol{Q}} = rg \min_{oldsymbol{Q}: oldsymbol{Q}' oldsymbol{Q} = oldsymbol{I}_M} \left\lVert oldsymbol{B} - oldsymbol{Q} oldsymbol{A}
ight
Vert_{ ext{F}}^2 = oldsymbol{U} oldsymbol{V}', \qquad oldsymbol{C} = oldsymbol{B} oldsymbol{A}' = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}'.$$

- The solution is invariant to scaling factors αQA
- ullet Unknown displacement (translation) simply requires de-meaning $oldsymbol{A}$ and $oldsymbol{B}$ before doing SVD
- Displacement estimate (if needed) is $\frac{1}{N}\left(\boldsymbol{B}-\hat{\boldsymbol{Q}}\boldsymbol{A}\right)\mathbf{1}_{N}$.

Deriving the solution to this problem used *many* of the tools discussed so far: Frobenius norm, matrix trace and its properties, SVD, matrix/vector algebra.

Exercise. Suppose \boldsymbol{A} and \boldsymbol{B} are both real $1 \times N$ vectors (each with mean 0 for simplicity).

How can we interpret the orthogonal Procrustes solution in this case geometrically?

Hint: What is SVD of BA' here?

If
$$A=x'$$
 and $B=y'$ where $x,y\in\mathbb{R}^N$, then $BA'=y'x=\underbrace{\operatorname{sgn}(y'x)}_{U}\underbrace{|y'x|}_{\sigma_1}\underbrace{1}_{V}$

so $Q = UV' = \operatorname{sgn}(y'x) = \pm 1$. Here the "rotation" is just possibly negating the sign to match in 1D.

Exercise. What if
$$\boldsymbol{B} = \mathrm{e}^{\imath \phi} \, \boldsymbol{A}$$
 ?

(in class if possible)

??

Challenge (for much later in the course). The Frobenius norm is not robust to **outlier** data. Using something like an ℓ_1 norm instead would provide better robustness [22].

Bibliography

- [1] A. J. Laub. Matrix analysis for scientists and engineers. Soc. Indust. Appl. Math., 2005 (cit. on pp. 5.2, 5.3, 5.16, 5.23, 5.26, 5.38).
- [2] D. G. Luenberger. Optimization by vector space methods. New York: Wiley, 1969 (cit. on p. 5.4).
- [3] A. Bjorck and G. H. Golub. "Numerical methods for computing angles between linear subspaces". In: *Mathematics of Computation* 27.123 (July 1973), 579–94 (cit. on p. 5.13).
- [4] V. Eijkhout and P. Vassilevski. "The role of the strengthened Cauchy-Buniakowskii-Schwarz inequality in multilevel methods". In: *SIAM Review* 33.3 (Sept. 1991), 405–19 (cit. on p. 5.13).
- [5] L. Mirsky. "On the trace of matrix products". In: Mathematische Nachrichten 20.3-6 (1959), 171-4 (cit. on p. 5.15).
- [6] R. H. Chan and M. K. Ng. "Conjugate gradient methods for Toeplitz systems". In: SIAM Review 38.3 (Sept. 1996), 427–82 (cit. on p. 5.18).
- [7] V-S. Chellaboina and W. M. Haddad. "Is the Frobenius matrix norm induced?" In: IEEE Trans. Auto. Control 40.12 (Dec. 1995), 2137–9 (cit. on p. 5.18).
- [8] R. A. Horn and C. R. Johnson. *Matrix analysis*. Cambridge: Cambridge Univ. Press, 1985 (cit. on p. 5.18).
- [9] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado. "Sparse solutions to linear inverse problems with multiple measurement vectors". In: *IEEE Trans. Sig. Proc.* 53.7 (July 2005), 2477–88 (cit. on p. 5.19).
- [10] J. A. Tropp, A. C. Gilbert, and M. J. Strauss. "Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit". In: *Signal Processing* 86.3 (Mar. 2006), 572–88 (cit. on p. 5.19).
- [11] S. Feizi and D. Tse. Maximally correlated principal component analysis. 2017 (cit. on p. 5.23).
- [12] D. Cullina, P. Mittal, and N. Kiyavash. "Fundamental limits of database alignment". In: Intl. Symp. on Information Theory. 2018, 651–5 (cit. on p. 5.23).
- [13] R. Bhatia. *Matrix analysis*. New York: Springer, 1997 (cit. on pp. 5.24, 5.27).
- [14] R. Pascanu, T. Mikolov, and Y. Bengio. "On the difficulty of training recurrent neural networks". In: pmlr 28.3 (2013), 1310–8 (cit. on p. 5.29).
- [15] I. Dokmanic and Remi Gribonval. Beyond Moore-Penrose part I: Generalized inverses that minimize matrix norms. 2017 (cit. on p. 5.34).
- [16] P. H. Schonemann. "A generalized solution of the orthogonal Procrustes problem". In: Psychometrika 31.1 (Mar. 1966), 1–10 (cit. on p. 5.35).
- [17] J. C. Gower and G. B. Dijksterhuis. *Procrustes problems*. Oxford, 2004 (cit. on p. 5.35).

- [18] S. Ahmed and I. M. Jaimoukha. "A relaxation-based approach for the orthogonal Procrustes problem with data uncertainties". In: *Proc. UKACC Intl. Conf. Control.* 2012, 906–11 (cit. on p. 5.35).
- [19] F. C. Ghesu, B. Georgescu, S. Grbic, A. K. Maier, J. Hornegger, and D. Comaniciu. "Robust multi-scale anatomical landmark detection in incomplete 3D-CT data". In: *Medical Image Computing and Computer-Assisted Intervention*. 2017, 194–202 (cit. on p. 5.36).
- [20] S. Ravishankar and Y. Bresler. "l₀ sparsifying transform learning with efficient optimal updates and convergence guarantees". In: *IEEE Trans. Sig. Proc.* 63.9 (May 2015), 2389–404 (cit. on p. 5.39).
- [21] M. A. T. Figueiredo and R. D. Nowak. "Ordered weighted 11 regularized regression with strongly correlated covariates: Theoretical aspects". In: *aistats*. 2016, 930–8 (cit. on p. 5.47).
- [22] P. J. F. Groenen, P. Giaquinto, and H. A. L. Kiers. "An improved majorization algorithm for robust Procrustes analysis". In: New Developments in Classification and Data Analysis: Proceedings of the Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, University of Bologna. Berlin: Springer, 2005, pp. 151–8 (cit. on p. 5.48).