

PREMIUM 1.5T MRI SYSTEM MRT-1550

Product Data
No. MPDMR0449EAA

Vantage Orian

APPLICATION

Vantage Orian is a premium 1.5T MRI system. With migrated high end technology, you can be sure you are offering your referring physicians and your patients better MRI services today. Designed to enhance productivity and reduce costs every day, take care of patient comfort and deliver outstanding clinical performance, you can be sure that you are purchasing the complete 1.5T MRI package.

ADVANTAGES

Achieve high SNR images with intelligence

Utilizing deep learning reconstruction technology, Vantage Orian's advanced MRI technology offers your referring physicians and patients the best 1.5T MRI services available. Advanced intelligent Clear-IQ Engine (AiCE) is the world's first Deep Learning Reconstruction technology for MRI. Producing stunning MR images that are exceptionally detailed and with the low-noise properties you expect of a high SNR image.

Productivity focused technology that improves workflow and image consistency

Reducing scan time improves the patient experience and increases throughput. With intelligent new technology that underpins our rapid scan technology, Vantage Orian is focused on delivering on a productivity promise that goes beyond expectations. With the complexity of scan planning, achieving scan plane reproducibility can be quite challenging and time-consuming. EasyTech takes away the variability, and helps workflow improvement with automatic slice alignment for neuro, spine, cardiac and knee exams, standardizing your workflow with automatic positioning.

Patient friendly features putting your patients first

A relaxed patient is key in MRI, and you can be assured that Vantage Orian takes care of this with industry leading whisper quiet sequences with Pianissimo and Pianissimo Zen, 71¹⁾ cm open bore aperture and MR Theater all designed to put patients at ease. A range of features to ensure easier examinations for even the most challenging patients. With pre-scan, free breathing, contrast free and pediatric applications, you can deliver a better patient experience which improves your facilities MRI reputation, and expands your patient population.

Clinical confidence and consistent imaging mean better diagnosis

With advanced new hardware delivering stable and reliable imaging, Vantage Orian enhances confidence in diagnosis for the most accurate diagnosis. Vantage Orian redefines clinical confidence with outstanding image consistency imaging across all procedures. Achieve excellent MRI diagnostic services with high quality and stable output, improving outcomes for your patients and your business. Our PURERF and Saturn Technology means that stable and consistent imaging performance is ensured, increasing diagnostic confidence and shortening scan times.

COMPOSITION

Standard composition (Model: MRT-1550)

- Gantry
 - 1.5-Tesla Magnet
 - Active Shield Gradient Coil
 - Whole Body Coil
- Patient Table
- Filter Panel
- Control Cabinet and Gradient Power Supply
- Cooling Cabinet 1)
- Blower Box
- Console
 - Wide LCD Color Monitor
 - Keyboard and Mouse
 - Control Pad
 - Interface-Box (IF-Box)
 - Microphone
- Software
 - System Software (V7.0)
 - DICOM Software (Standard)
 - · Storage SCU
 - · Print SCU
 - · DICOM Media
 - · MWM SCU
- Full Set of Accessories
 - Operation Manuals
 - Service Manuals
 - Phantoms
 - Patient Call
 - Patient Observation Camera
 - Support Devices for Scanning
 (Tabletop Mats, Wedge Mats, Pads, Belts)
 - Safety Training Video
 - Warning Plates
 - Oxygen Monitor
 - Speakers

Note: Heat exchanger, transformation installation and desk for console are not included in the standard composition.

Optional software²⁾

• DTI Application	MSSW-DTI2
DTT Application	MSSW-DTT
Single Voxel MRS Application	MSSW-MRSS2
 Multi Voxel MRS Application 	MSSW-MRSM2
 NeuroLine+ Application 	MSSW-LOCNU2
 Contrast Free MRA Application 	MSSW-CFMRA3
 k-t SPEEDER Application 	MSSW-KTS1
 SpineLine+ Application 	MSSW-LOCSP1
UTE Application	MSSW-UTE
 Olea Nova™+ Sequence 	MSSW-CNV
 Pianissimo Zen Application 	MSSW-ZEN
 MultiBand SPEEDER Application 	MSSW-SMS1
 Quick Star Application 	MSSW-SOS1
• Fast 3D for mVox	MSSW-FST3D
• Fast 3D for TOF	MSSW-FST3D2
• Fast 3D for SSFP	MSSW-FST3D3
GAIN Algorithm	MSSW-GA01
 Compressed SPEEDER Application 	MSSW-CS01
• Compressed SPEEDER Application - 3D	MSSW-CS3D1
• Fat Fraction Quantification Application	MSSW-FIQ1
- Advanced intelligent Clear-IQ Engine for MR $$	MSSW-DLR1

Optional software package

 Basic Package 	
– mNeuro Package	MSSW-NEURO2
– mVascular Package	MSSW-VASCU
– mCardiac Package	MSSW-CFA3
– mBody Package	MSSW-BODY3
– mBreast Package	MSSW-BRST3
– mOrtho Package	MSSW-ORTHO

Advanced Package

mCardiac Plus PackageFast 3D PackageMSSW-CPP1MSSW-F3DP

• EasyTech Package

– EasyTech Cardiac Package– EasyTech Knee PackageMSSW-LOCKP

DICOM

 Storage Commitment Kit 	MSSW-DCCOU1
MPPS SCU Kit	MSSW-DCPPU1
• Q/R SCP Kit	MSSW-DCQRP1
• O/R SCU Kit	MSSW-DCORU1

Second Console

Second Console	MKDN-013B/S2 ³⁾
 mNeuro Package for Second Console 	MSSW-NEURO2
• MRS Application for Second Console	MSSW-MRSS2
 DTT Application for Second Console 	MSSW-DTT
GAIN Algorithm for Second Console	MSSW-GA01

¹⁾ The model of cooling cabinet varies depending on whether a site has external chilling water system or not.

For sites where the external chilling water system has not been installed, additional chiller should be locally purchased.

²⁾ The requirements for each package are listed in the product data sheet.

³⁾ Additional software is required to use optional applications for the Second Console.

Ontional RF Coils

Optional RF Coils	
Atlas SPEEDER Head/Neck	MJAH-177A/S1
 Atlas SPEEDER Spine 	MJAS-147A/E1
 Atlas SPEEDER Body 	MJAB-167A/P1
• Extra Large Knee Array Coil	MJAJ-187A/S1
• 16ch Tx/Rx Knee SPEEDER	MJAJ-237A/S1
• 4ch Flex SPEEDER	MJAJ-197A/J1
• φ70 Flex Coil	MJLC-077G/S1 4)
• φ100 Flex Coil	MJLC-107G/S1 4)
• φ150 Flex Coil	MJLC-157G/S1 4)
• φ200 Flex Coil	MJLC-207G/S1 4)
• QD Head Coil	MJQH-147A/J1
• 16ch Flex SPEEDER Medium	MJAJ-217A/S1
• 16ch Flex SPEEDER Large	MJAJ-227A/S1
Pediatric SPEEDER	MJAB-197A/S1
• 32ch Cardiac SPEEDER	MJAB-187A/J1
Octave SPEEDER Head	MJAH-167A/S1
Octave SPEEDER Spine	MJAS-167A/S1
Breast SPEEDER	MJAM-127A/S1 ⁵⁾
– Breast Riser Kit	MJCA-187A/S1 5)
– Breast Loop kit	MJKM-107A/S1 5)
– Breast Grid	MJCA-197A/S1 5)
Breast SPEEDER CX	MJAM-147A/S1
– Breast Riser CX	MJCA-247A/S1
Wrist SPEEDER coil	MJAJ-167B/J2
Shoulder SPEEDER	MJAJ-177A/S1
Knee/Foot SPEEDER	MJAJ-257A/S1

Optional equipment	
Receiving Circuit Extension Kit	MKPA-1508/S1
Wireless Cardiac Gating System	MKSU-ECGU13/S1 ⁷⁾
• Wireless Peripheral Pulse and	
Respiratory Gating System	MKSU-PRGK13/S1 ⁷⁾
Additional Patient CAMERA Package	MMPM-GP3001/S1
Foot Switch Unit	MKFS-003A/S1 ⁸⁾
• Gantry Ambient Lighting / Original Blue	MZGL-1502/S1
Gantry Ambient Lighting / Green	MZGL-GN01/S1
 Gantry Ambient Lighting / Pink 	MZGL-PK01/S1
Gantry Ambient Lighting / Yellow	MZGL-YE01/S1
Gantry Ambient Lighting / White	MZGL-WT01/S1
MR Theater	MZTH-4001/S1
 Extended Table Travel Option 	MZPT-1550/S1
Dockable Table	MZPT-1560/S2 ⁹⁾
Trench Routing Kit	MZTR-1501/S1
 Advanced Image Reconstruction Unit 	MZDL-010B/S1

Optional coil holder & pad

 Coil Holder for TMJ Imaging 	MJCA-147A/S2
Flex Breast SPEEDER	MJCA-177A/S1 ⁶⁾
• 16ch Flex SPEEDER Pad Kit	MJCA-207A/S1
• Patient Pads for Spine and Extremities	MBPP-1503/S1
Patient Adaptable Tilting Device	MJCA-227A/S1

Optional RF coil package

• MSK SPEEDER Package MJCG-307A/S1

⁴⁾ In the application for approval under relevant national regulations, the coil name "Phi 'XXX' Flex coil" is used.

⁵⁾ Model number may vary depending on sales area.

⁶⁾ This is a mat that holds two Flex coils and is used for breast imaging.

⁷⁾ This option may not be available in all countries. Please consult your local Canon Medical Systems sales representative.

⁸⁾ For fixed couch exclusive use.

⁹⁾ This is an additional dockable table for the MRI system with dockable table.

HARDWARE SPECIFICATIONS

Magnet

The Vantage Orian uses the industry's shortest self-shielded superconducting magnet. The system combines slim and compact design with a wide patient aperture of 71 cm¹⁾. This minimizes patient anxiety, ensuring a comfortable examination environment for all patients.

Magnet type	Superconducting magnet		
Field strength	1.5T		
Magnet length	140 cm		
Magnet weight	Approx. 3,810 kg (incl. 95% liquid helium)		
Cryogen	Zero helium boil-off		
Magnetic field stability (bare magnet)	0.1 ppm/hr or better		
Fringe Field	The magnet employs active shielding. The fringe field line at 0.5 mT (5 gauss) is at 3.0 m in radial distance and at 5.0 m in the axial direction from the center of the magnet.		
Shimming method	the magnet bore du	imized on site by the addition of ferromag ring installation using a computerized pro method that does not require regular main	cedure. This is a very
		aced in the magnet, the patient's body wi	_
	uniformity for each p High Order Shimmir This function improve	ves the static field homogeneity over the f	SAT, PASTA, and EPI.
	uniformity for each p High Order Shimmir This function improve	patient and/or pulse sequence such as Fating (Active Shimming) yes the static field homogeneity over the found on of extremely high quality to be obtained	SAT, PASTA, and EPI. ield of view, enabling ed.
	uniformity for each p High Order Shimmir This function improve	patient and/or pulse sequence such as Fating (Active Shimming) wes the static field homogeneity over the fon of extremely high quality to be obtained Number of additional shim channe	SAT, PASTA, and EPI. ield of view, enabling ed. 5
	uniformity for each p High Order Shimmir This function improve	patient and/or pulse sequence such as Fating (Active Shimming) yes the static field homogeneity over the fon of extremely high quality to be obtained Number of additional shim channed Components:	SAT, PASTA, and EPI. ield of view, enabling ed.
Homogeneity with passive shimming	uniformity for each p High Order Shimmir This function improve	patient and/or pulse sequence such as Fating (Active Shimming) wes the static field homogeneity over the fon of extremely high quality to be obtained Number of additional shim channe	SAT, PASTA, and EPI. ield of view, enabling ed. i: 5 ZX/XY/ZY/Z2/X2Y2
Homogeneity with passive shimming (24 plane plot method)	uniformity for each p High Order Shimmir This function improved diagnostic information	patient and/or pulse sequence such as Fating (Active Shimming) yes the static field homogeneity over the form of extremely high quality to be obtained Number of additional shim channed Components: Total shim channels of the system:	SAT, PASTA, and EPI. ield of view, enabling ed. i: 5 ZX/XY/ZY/Z2/X2Y2 8 0.04 ppm
	uniformity for each p High Order Shimmir This function improved diagnostic information	patient and/or pulse sequence such as Fating (Active Shimming) wes the static field homogeneity over the fon of extremely high quality to be obtained Number of additional shim channed Components: Total shim channels of the system: Guaranteed:	SAT, PASTA, and EPI. ield of view, enabling ed. l: 5 ZX/XY/ZY/Z2/X2Y2 8
	uniformity for each p High Order Shimmir This function improved diagnostic information at 100 mm DSV	patient and/or pulse sequence such as Fating (Active Shimming) yes the static field homogeneity over the form of extremely high quality to be obtained Number of additional shim channed Components: Total shim channels of the system: Guaranteed: Typical:	SAT, PASTA, and EPI. ield of view, enabling ed. l: 5 ZX/XY/ZY/Z2/X2Y2 8 0.04 ppm 0.002 ppm
	uniformity for each p High Order Shimmir This function improved diagnostic information at 100 mm DSV	patient and/or pulse sequence such as Fating (Active Shimming) wes the static field homogeneity over the fon of extremely high quality to be obtained Number of additional shim channed Components: Total shim channels of the system: Guaranteed: Typical: Guaranteed:	SAT, PASTA, and EPI. ield of view, enabling ed. i: 5 ZX/XY/ZY/Z2/X2Y2 8 0.04 ppm 0.002 ppm 0.15 ppm
	uniformity for each p · High Order Shimmir This function improved diagnostic information at 100 mm DSV at 200 mm DSV	patient and/or pulse sequence such as Fating (Active Shimming) yes the static field homogeneity over the foon of extremely high quality to be obtained Number of additional shim channed Components: Total shim channels of the system: Guaranteed: Typical: Guaranteed: Typical:	SAT, PASTA, and EPI. ield of view, enabling ed. i: 5 ZX/XY/ZY/Z2/X2Y2 8 0.04 ppm 0.002 ppm 0.15 ppm 0.01 ppm
	uniformity for each p · High Order Shimmir This function improved diagnostic information at 100 mm DSV at 200 mm DSV	patient and/or pulse sequence such as Fating (Active Shimming) wes the static field homogeneity over the fon of extremely high quality to be obtained Number of additional shim channed Components: Total shim channels of the system: Guaranteed: Typical: Guaranteed: Typical: Guaranteed: Typical: Guaranteed:	SAT, PASTA, and EPI. ield of view, enabling ed. i: 5 ZX/XY/ZY/Z2/X2Y2 8 0.04 ppm 0.002 ppm 0.15 ppm 0.01 ppm 0.4 ppm
	uniformity for each p · High Order Shimmir This function improved diagnostic information at 100 mm DSV at 200 mm DSV	patient and/or pulse sequence such as Fating (Active Shimming) yes the static field homogeneity over the foon of extremely high quality to be obtained Number of additional shim channed Components: Total shim channels of the system: Guaranteed: Typical: Guaranteed: Typical: Guaranteed: Typical: Guaranteed: Typical:	SAT, PASTA, and EPI. ield of view, enabling ed. i: 5 ZX/XY/ZY/Z2/X2Y2 8 0.04 ppm 0.002 ppm 0.15 ppm 0.01 ppm 0.4 ppm 0.05 ppm
	uniformity for each p · High Order Shimmir This function improved diagnostic information at 100 mm DSV at 200 mm DSV	patient and/or pulse sequence such as Fating (Active Shimming) wes the static field homogeneity over the fon of extremely high quality to be obtained Number of additional shim channed Components: Total shim channels of the system: Guaranteed: Typical: Guaranteed: Typical: Guaranteed: Typical: Guaranteed: Typical: Guaranteed: Typical: Guaranteed: Typical: Guaranteed:	SAT, PASTA, and EPI. ield of view, enabling ed. i: 5 ZX/XY/ZY/Z2/X2Y2 8 0.04 ppm 0.002 ppm 0.15 ppm 0.01 ppm 0.4 ppm 0.05 ppm 1.0 ppm

¹⁾ The diameter where cylindrical tunnel meets the front cover.

Operation panel on the magnet	The operating panel supports the following operations to facilitate patient set-up and scanning. - Scan start/abort and pause/resume - Emergency stop - Laser light localizer ON/OFF - Ventilation adjustment - Lighting adjustment - Patient table operation incl. Auto-in/Auto-home
	The panel is also provided with a table position display.
Intelligent monitor on the magnet	The gantry monitor provides the following information. - Patient table information - Patient information - Connecting RF coils status - ECG information The gantry monitor features approximate 12" LCD color monitor. The display matrix is 1,280 × 800.

RF coils

Atlas SPEEDER COMPASS

This is an automatic receive coil setting function that determines the position of the connected Atlas SPEEDER coil and automatically ON the coil sections that are positioned near the magnetic field center. This function is useful for spine imaging and body imaging in which the coil sections to be selected differ depending on the coil setting and target region and for scanning in which data is acquired at multiple tabletop positions.

Standard RF coils

QD whole-body coil

Type of coil Transmit RF, Receive signals

The Vantage Orian features a full range of RF array coils to cover a wide range of clinical requirements.

This coil is integrated into the magnet cover. It provides a uniform RF field with QD transmission and a high SNR with QD reception.

Optional RF coils

Atlas SPEEDER Head/Neck

Model number

MJAH-177A/S1

Type of coil

Receive signals

Applicable Regions

Head, Neck and Feet

Number of elements 16

A detachable mirror is provided to minimize patient anxiety.

Atlas SPEEDER Spine

Model number MJAS-147A/E1

Type of coil Receive signals

Applicable Regions Thoracolumbar spine, Trunk

Number of elements 32

This integrated coil design features the unique ability to slide up to 380 mm to permit routine feet-first imaging of the lumbar and thoracic spine.

Atlas SPEEDER Body

Model number MJAB-167A/P1
Type of coil Receive signals

Applicable Regions Trunk

Number of elements 16

Extra Large Knee Array Coil

Model number MJAJ-187A/S1

Type of coil Transmit RF, Receive signals

Applicable Regions Knee

Number of elements 7

Its large internal diameter improves patient comfort, especially for large patients.

16ch Tx/Rx Knee SPEEDER

Model number MJAJ-237A/S1

Type of coil Transmit RF, Receive signals
Applicable Regions Knee, Wrist, Hand, Forefoot

Number of elements 16

4ch Flex SPEEDER

Model number MJAJ-197A/J1
Type of coil Receive signals

Applicable Regions Extremities, Joints, Trunk

Number of elements 4

φ70 Flex Coil

Model number MJLC-077G/S1
Type of coil Receive signals
Applicable Regions Extremities, Joints

Number of elements 1

The diameter of the coil loop is 70 mm. The circular loop section is cushioned and flexible.

φ100 Flex Coil

Model number MJLC-107G/S1

Type of coil Receive signals

Applicable Regions Extremities, Joints

Number of elements

The diameter of the coil loop is 100 mm. The circular loop section is cushioned and flexible.

φ150 Flex Coil

Model number MJLC-157G/S1

Type of coil Receive signals

Applicable Regions Extremities, Joints

Number of elements

The diameter of the coil loop is 150 mm. The circular loop section is cushioned and flexible.

φ200 Flex Coil

Model number MJLC-207G/S1

Type of coil Receive signals

Applicable Regions Extremities, Joints

Number of elements

The diameter of the coil loop is 200 mm. The circular loop section is cushioned and flexible.

QD Head Coil

Model number MJQH-147A/J1

Type of coil Transmit RF, Receive signals

Applicable Regions Head

Number of elements 1

Its large internal diameter improves patient comfort, especially for large patients.

 $Provides\ a\ uniform\ RF\ field\ with\ QD\ transmission\ and\ optimizes\ SNR\ with\ QD\ reception.\ A\ detachable\ mirror\ is\ provided\ to$

minimize patient anxiety.

16ch Flex SPEEDER Medium

Model number MJAJ-217A/S1
Type of coil Receive signals

Applicable Regions Shoulder, Hip, Upper and Lower extremities

(Elbow, Wrist, Knee, Foot, Ankle, Thigh), Head, Spine, Torso, Cardiac applications.

Number of elements 16

Model number MJAJ-227A/S1
Type of coil Receive signals

Applicable Regions Shoulder, Hip, Upper and Lower extremities

(Elbow, Wrist, Knee, Foot, Ankle, Thigh), Head, Spine, Torso, Cardiac applications.

Number of elements 16

Pediatric SPEEDER

Model number MJAB-197A/S1
Type of coil Receive signals

Applicable Regions Head and neck of pediatric patients

Number of elements 16

Whole body imaging becomes available by combining additional 16ch Flex SPEEDER Medium.

32ch Cardiac SPEEDER

Model number MJAB-187A/J1
Type of coil Receive signals

Applicable Regions Cardiac

Number of elements 32

To use this product, Receiving Circuit Extension Kit (MKPA-1508/S1) is required.

Model number	MJAH-167A/S1
Type of coil	Receive signals
Applicable Regions	Head and Neck
Number of elements	11

Octave SPEEDER Spine

Model number	MJAS-167A/S1
Type of coil	Receive signals
Applicable Regions	Spine
Number of elements	12

Breast SPEEDER

Model number	MJAM-127A/S1
Type of coil	Receive signals
Applicable Regions	Breast
Number of elements	8

Breast SPEEDER CX

Model number	MJAM-147A/S1
Type of coil	Receive signals
Applicable Regions	Breast
Number of elements	8

MSK SPEEDER Package

Model number		MJCG-307A/S1		

This coil package consists of dedicated Shoulder SPEEDER coil and Knee/Foot SPEEDER coil.

JELDLIN COII.	
Shoulder SPEEDER	
Model number	MJAJ-177A/S1
Type of coil	Receive signals
Applicable Regions	Shoulder
Number of elements	6
Knee/Foot SPEEDER	
Model number	MJAJ-257A/S1
Type of coil	Receive signals
Applicable Regions	Knee, Wrist, Hand, Foot and Ankle

8

Wrist SPEEDER

Number of elements

Model number	MJAJ-167B/J2
Type of coil	Receive signals
Applicable Regions	Wrist, Hand
Number of elements	6

Console

The console features a widescreen LCD color monitor, permitting multiple windows to be clearly displayed for true multitasking operation. It is ergonomically designed to allow operation by a single technician, either standing or seated.

Display Monitor	The console features a high-resolution 24" LCD color monitor. The display matrix is $1,920 \times 1,200$ with 256 B/W gradation levels.
Control Pad and IF-Box	The following operations can be performed using the hardware controls at the console: • System power ON • Emergency stop • Scan start • Scan abort • Scan pause/resume • Tabletop movement • Intercom talk and volume.
Mouse	Optical two-button scroll mouse. All interfaces can be accessed by simple point-and-click operation except for registration of patient information and comments for image annotation.
Keyboard	The keyboard is used to register patient information and comments for image annotation.

Computer system

The computer system is designed to provide outstanding multitasking performance, permitting image reconstruction and advanced image processing to be performed simultaneously with scanning.

This helps to increase examination productivity. In addition, the computer system is provided with network connectivity for expandability.

Host computer	Operating system	Windows® 10 IoT Enterprise		
	CPU	8-core dual-processor system (16 CPUs)		
	Clock speed	2.1 GHz		
	Main memory capacity	32 GB		
	Solid state drive	For system use: 240 GB		
	(unformatted)	For image data: 960 GB		
	Image capacity	Approximately 1,120,000	3	
		$(256 \times 256 \text{ images, raw})$	data not saved)	
Hardware control system	Real-time manager (RM) CPU	32 bit		
	Memory capacity	256 MB		
	System control method	Distributed control		
Reconstruction system	CPU	6-core dual-processor sy	rstem (12 CPUs)	
	Clock speed	2.6 GHz		
	Main memory capacity	128 GB		
	Maximum reconstruction speed	32,000 images/second or more (256 x 256, FFT, potential)		
	Hard disk drive capacity	7 TB (unformatted) 2.7 TB (RAID 10)		
	Reconstruction matrix	1,024 x 1,024 (maximum	n)	
	Simultaneous image reconstruction during scanning	Possible		
DVD and Blu-ray [™] drive unit		Storage capacity (unformatted)	Saved image capacity (Approx. 256 × 256 images, raw data not saved)	
	DVD (single side)	4.7 GB	22,000 images	
	DVD-RAM (single side)	4.7 GB	22,000 images	
	DVD-RAM (both side)	9.4 GB	44,000 images	
	Blu-ray (Single layer)	25 GB	110,000 images	
	Blu-ray (Double layer)	50 GB 220,000 images		
Connection with external devices	Interface	Ethernet (100BASE-TX/1	000Base-T)	
	DICOM 3.0			

RF system

The Vantage Orian has digital RF design which improves SNR and achieves high RF stability.

RF Transmit system

Frequency stability	± 3.8 × 10 ⁻⁶ Hz/min
Frequency control	32 bit, 0.64 Hz
Phase control	16 bit, 0.0055 degree
Amplitude resolution	15 bit, 1μs
Gain stability	<0.2 dB (10 min)
Optical signal transmission	Possible
Transmit peak power	30 kW (15 kW x 2)
Transmit bandwidth	550 kHz

RF Receiver system

PURERF RX	Enhanced SNR by unique noise-suppression technology which reduces the electrical noise received with MR signal. High- performance amplifier and digitizer for each receiver makes faster sampling which results in higher SNR.
Atlas SPEEDER technology	Atlas SPEEDER technology easily handles multiple studies by allowing you to position and utilize the coils you need in one easy step. Maximum 7 coils is combinable at same time.
Receiver bandwidth	1 MHz (for each channel)
Sampling rate of ADC	100 MHz
Receiver signal resolution (ADC resolution in bits)	16 bit
Receiver signal resolution	32 bit
Pre-amplifier noise figure	<0.5 dB (typical 0.5)
Pre-amplifier total gain	25 dB
Dynamic range	157 dB/Hz
Number of independent receiver channels	128 ²⁾

²⁾ The number of channels for simultaneous image reconstruction is selectable at sales. It may vary depending on sales area. Please consult your local sales representative.

Gradient subsystem

The combination of a powerful gradient power supply unit and a high-precision active shield gradient coil ensures stable image quality with all sequences, eliminating eddy currents.

Maximum Gradient amplitude (Each axis)	45 mT/m
Maximum Slew rate	200 T/m/s
Gradient duty cycle	100%
Maximum Output voltage (Each axis)	1,925 V
Maximum Output current (Each axis)	900 A

Patient table (Selectable)

The patient table is ergonomically designed to maximize both patient comfort and patient throughput. Hydraulic drive ensures smooth and quiet vertical tabletop movement.

		Fixed table	Dockable table
Minimum table height from floor		430 mm	550 mm (Dock)
			535 mm (Undock)
Maximum table height		845 mm	845 mm (Dock)
			875 mm (Undock)
Maximum patient load		250 kg	250 kg
Scanning range		145 cm [‡]	145 cm [‡]
Positional accuracy of patient table		0.5 mm or less	0.5 mm or less
Vertical Table speed	Up:	16 sec	12 sec
	Down (typical):	15.5 sec	12.5 sec
Horizontal Table speed	Normal (selectable):	250/200/150 mm/s	300/200/150 mm/s
	Slow:	20 mm/s	20 mm/s

[‡] Extended table travel option (MZPT-1550/S1) increases the usable scanning range to 205 cm.

• Dockable table

Vantage Orian can apply dockable table. It allows seamless patient handling as preparation can be achieved in advance outside the scan room, enhancing workflow and allowing medical staff to respond to any patient requirements quickly and easily.

Patient comfort and safety

Open bore	The industry's shortest open gantry (1.4 m magnet) with the large clinical FOV and wide patient aperture of 71 cm significantly reduce patient anxiety and ensures comfort during examination.
Pianissimo	Pianissimo technology dramatically reduces the level of acoustic gradient noise, thus substantially enhancing patient comfort, especially during scanning with fast sequences.
Pianissimo Zen [‡]	The Pianissimo Zen silent sequence package reduces noise by up to 99%, down to as little as 2 dB above ambient noise. The combination of Pianissimo and Pianissimo Zen make our Vantage series the quietest MR system in its class, providing comfortable examination for your patients.
MR Theater [‡]	In-bore immersive virtual experience enhances patient comfort. The MR Theater encourages patients to relax and stay still, enabling clinicians to produce stable.
Lighting/Ventilation of the patient bore	Adjustable lighting/ventilation improves patient comfort in the magnet during scanning.
SAR calculation	The system always calculates SAR before scanning. If the calculation result indicates that the preset limit will be exceeded, scanning cannot be started.
Patient call system	The patient call system allows the patient to signal an emergency during scanning. The system includes a hand- switch that is actuated by the patient.
Intercom system	The integrated intercom system allows two-way communication between the patient and the operator.
Patient observation system	A CCD camera is used to observe the patient during scanning.
Oxygen monitor	The oxygen monitor automatically activates the customer-supplied ventilation system if the oxygen level falls in the scan room.
Emergency rundown unit	This safety switch allows automatic ramp-down of the magnetic field in the event of an emergency.

SCAN SPECIFICATIONS

Acquisition parameters

The Vantage Orian digital architecture offers extremely flexible acquisition parameters for optimizing image quality and scan times.

Imaging method ¹⁾	2DFT, 3DFT
Imaging nucleus	Proton (hydrogen nucleus)
Slice orientations ¹⁾	Axial, sagittal, coronal, oblique (single and double) Refer to the scan parameter table.

Sequences²⁾

			64 Matrix	128 Matrix	256 Matrix	512 Matrix
2D Spin Echo	min. TR	[ms]	4	4	4	18
	min. TE	[ms]	1.7	1.7	1.7	8
2D Fast Spin Echo	min. TR	[ms]	4	4	5	27
	min. TE	[ms]	1.5	1.5	1.8	4
	min. ETS	[ms]	1.5	1.5	1.8	4
	max. ETL	_	1,024	1,024	1,024	1,024
3D Fast Spin Echo	min. TR	[ms]	27	32	47	55
	min. TE	[ms]	5	5	5	5
	min. ETS	[ms]	4.5	4.5	4.5	4.5
	max. ETL	_	1,024	1,024	1,024	1,024
2D Fast Field Echo	min. TR	[ms]	0.8	2.8	3.3	5.2
	min. TE	[ms]	0.24	1.2	1.3	2.3
3D Fast Field Echo	min. TR	[ms]	0.8	2.2	2.3	2.9
	min. TE	[ms]	0.24	0.9	0.9	1.3
True SSFP	min. TR	[ms]	1.5	2.8	2.8	_
	min. TE	[ms]	0.75	1.4	1.4	-
Inversion Recovery	min. Tl	[ms]	9	9	9	9
Echo Planar Imaging	min. TR	[ms]	3.9	3.9	3.9	23
	min. TE	[ms]	1.8	1.8	1.8	10
	min. ETS	[ms]	0.28	0.28	0.70	3
	min. acquisition time	[ms]	11	52	106	5,000
	max. EPI Factor	_	296	296	296	296
Diffusion Imaging	max. b-value	[s/mm²]	10,000	10,000	10,000	_
	min. TE with b=1000	[ms]	38	38	50	_
Diffusion Tensor Imaging	max. diffusion tensor directions	-	256	256	256	256

¹⁾ Specifications vary depending on the pulse sequence.

²⁾ Some parameters may require an optional package.

Resolution

FOV ³⁾	min.	[mm]	5
*Adjustable in increments of 1 mm.	max.	[mm]	550
Slice thickness 2D	min.	[mm]	0.1
*Adjustable in increments of 0.1 mm.	max.	[mm]	100
Slice thickness 3D	min.	[mm]	0.05
*Adjustable in increments of 0.1 mm.	max.	[mm]	50
Slab thickness 3D	min.	[mm]	5.4
	max.	[mm]	400
Matrix size	min. ⁴⁾	-	32 (Phase encoding)
	min. ⁴⁾	-	64 (Frequency encoding)
	max.	_	1,024
Highest in plane resolution		[µm]	5
Number of slices 2D	max.	-	128
Number of slices 3D	max.	_	256
Flip angle		[deg]	1 to 180
Flop angle		[deg]	30 to 180
Number of acquisitions (NAQ)	Integer NAQ		From 1 to 64
			*Adjustable in increments of one (1, 2, 3, 4, 5, 6, and 7, etc.)
	Variable NAQ		Available
			*Adjustable increments of 0.1 from NAQ=1
	-		(NAQ = 1.1, 1.2, etc)
	AFI (Advanced Fourier	lmaging)	Available
			*Scan time reduced by approximately NAQ=0.5

³⁾ The 550-mm FOV (550 mm in the X and Y directions) is used for purposes such as locator scanning.

⁴⁾ Independently adjustable in 16 or 32 steps in both the frequency and phase encoding directions.

Imaging techniques and parameters

A wide range of imaging techniques are provided to complement the Vantage Orian's precise and powerful digital RF system, computer platform, and high-performance gradient subsystem.

Conventional pulse sequences

- SE (Spin Echo)
- FE (Field Echo)

Fast scan techniques

SPEEDER	SPEEDER is Canon Medical's image domain parallel imaging method for increased acquisition speed.		
	SPEEDER factor	Max. 6 ⁵⁾	
	Number of acceleration factor combining SPEEDER with DRKS	Max. 16	
	Number of acceleration factor combining SPEEDER with MultiBand	Max. 4	
FastSE	The flop angle for 180° RF pulses can be varied to reduce saturation transfer contrast (STC) effects and the specific absorption rate (SAR) to ensure patient safety. FastSE is compatible with both 2DFT and 3DFT. Flow compensation and presaturation are available.		
FastIR	An inversion pulse is added to the 2DFT FastSE technique to enhance T1 contrast. This results in a much shorter scan time than in conventional IR. Multislice is available.		
FastFLAIR (FLuid-Attenuated IR)	Increases contrast between fluids, such as CSF, and lesions to improve specificity using FastIR with a long TI, TE, and TR. This results in a much shorter scan time than in conventional IR. Multislice is available.		
FastFE	A pre-pulse is applied prior to FE pulse sequences to enhance T1 contrast with short scan times. Segmentation of scans is available to increase spatial resolution. FastFE is applicable to both 2DFT and 3DFT.		
FASE (Fast Advanced Spin Echo)	This pulse sequence, which is based on FastSE with a large number of echoes (max. 276 ETL), is combined with advanced Fourier imaging (AFI) to reduce the scan time significantly with an echo factor of 512 (scan time reduction factor) in the standard configuration or 1,024 with optional software. A single shot is sufficient to generate an image in a few seconds. A pre-pulse is available for fat suppression. This technique is compatible with both 2DFT and 3DFT. T2-weighted images with short scan times can be used to clearly depict the gallbladder, hepatic ducts, and pancreatic duct without contrast agent. FASE expands the range of clinical applications of MRI, supporting magnetic resonance cholangiopancreatography (MRCP), MR urography, and MR myelography.		
Contrast Free MRA [‡]	This application supports an expanded range of clinical applications such as fresh blood imaging (FBI) or swap phase encode extended data acquisition (SPEED).		
Multi-Shot EPI	Utilizes gradient echoes for SE-EPI, which are divided by up to 15 echo factors for one acquisition. Multislice is available.		
Single-Shot EPI	Both SE type and FE type are available. FE-type Single-Shot EPI requires the optional mNeuro package.		
TrueSSFP [‡]	T2/T1-contrast images can be obtained quickly using the steady-state free precession technique. This is suitable for scanning relatively longer T2 tissues such as CSF, synovial fluid, and vascular structures during breath-holding. Fat saturation is possible by dividing scans into multiple segments. The slice thickness can be reduced by 3DFT scanning.		
FSE/FASE T2 Plus			

Advanced fast scan techniques

UTE (Ultra short TE) [‡]	This technique depicts short T2* tissues by radially acquiring k-space data. It can be applied to FFE3D sequences. This application is also available acquisition of different TE data for T2* mapping of tissues with short T2*.		
mUTE (minimized acoustic noise utilizing UTE) [‡]	The mUTE applications suppress high-speed gradient field switching, making it possible to provide even quieter scanning.		
FASE3D mVox [‡]	Enables acquisition of clear images with reduced SAR by changing the refocusing flip angle for each echo.		
FFE3D MP2RAGE [‡]	This sequence uses FFE3D and images at two different TI values, and FA values are acquired for the same slab at the same time. The image data is acquired at each TI value, and one T1W image is obtained in the last result. T1W images acquired with this sequence are not affected by nonuniformity of B1 or coil sensitivity. T1W images acquired with this sequence are not affected by nonuniformity of B1 or coil sensitivity T1map can also be calculated at the console using T1calcmp2.		
FSE2D mEcho [‡]	This sequence uses FSE2D and images at four different TE values are acquired for the same position at the same time. T2map is then calculated on the workstation using these images. T2map can also be calculated at the console using T2calc.		
MultiBand SPEEDER [‡]	This application allows reducing the scan time for diffusion imaging, expanding the range of its clinical applications. Scan time reduction is achieved by simultaneously exciting and acquiring multiple slices using multiband RF pulses. As the results, scan time for diffusion imaging can be reduced to less than half. With this technique, a whole liver diffusion weighted scan can be acquired in a single breath holding of 15 seconds or less. It can be applied to SEEPI2D sequences.		
k-t SPEEDER [‡]	This sequence enables scanning with a higher acceleration factor than the conventional SPEEDER scan by changing the sampling pattern in the time direction during data acquisition. Up to x8 accelerated k-t SPEEDER allows high frame rate cardiac cine and perfusion imaging in free breathing without training scan required. It can be applied in cine imaging with SSFP2D sequences (3 phases or more).		
Fast 3D mode [‡]	This application allows reducing the scan time while maintaining image quality by up to half for T1, PD, T2, FLAIR, STIR weighted images by adjusting data acquisition ratio. It can be applied to FASE3D, 3D-TOF and 3D-SSFP.		
Compressed SPEEDER [‡]	This application allows acceleration factors for based in FSE2D, FASE3D and FFE3D imaging u sensing in combination with parallel imaging.	<u> </u>	
	Number of acceleration factor in 2D imaging	Max. 4	
	Number of acceleration factor in 3D imaging	Max. 16 (PExSE: 4 × 4)	
		Combination with Compressed SPEEDER and Fast 3D application provides about 18 times acceleration.	
Exsper (Expanded SPEEDER)	This application allows reducing scan time for scans center of k-space data and surrounding coefficient from the data of center of k-space aby using surrounding data and the coefficient.	area data is undersampled. It finds the and synthesize the undersampled data	

Vascular imaging techniques

2D-TOF (Time of Flight)	The time of flight effect is induced by the in-flow of fresh spins into the imaging slice to differentiate blood flow from tissue. Slices are acquired sequentially through the imaging volume. This technique functions optimally when the vessels are perpendicular to the acquired slices. It depicts relatively slower blood flow and is suitable for cervical, abdominal, and extremity applications. Maximum intensity projection (MIP) images can be displayed from multiple viewing angles. An overlapping scanning technique improves the visualization of vessels. A moving presaturation band can also be applied to differentiate between arterial and venous flow in certain body areas. ECG gating is applicable for 2D-TOF [‡] .
3D-TOF (Time of Flight)	3DFT with TOF is used to depict multidirectional vascular structures and faster blood flow. MIP images can be displayed from multiple viewing angles. SORS-STC and ISCE RF pulses can be combined with 3D-TOF to improve vessel detail.
3D-CE (Contrast Enhanced)	Contrast agent is injected in order to enhance blood signals, followed by a 3D-FE or 3D-FastFE sequence.
SORS-STC (Slice-selective Off-Resonance Sinc pulse Saturation Transfer Contrast)	Enhances blood flow and suppresses background signals by using a slice-selective off-resonance pulse. SORS-STC is more effective than conventional spatially nonselective STC (or MTC) because it suppresses background tissues without reducing the signals from blood flow.
ISCE (Inclined Slab for Contrast Enhancement)	Provides increased vessel detail by using an RF pulse with a different flip angle in combination with 3D-TOF to enhance signals from blood flow throughout the imaging volume.
Multi coverage	Separates the data acquisition area of 3D TOF MRA into a few regions in order to limit signal reduction due to saturation effects.
2D-PS (Phase Shift)	The phase shift effect is generated by applying a flow encoding gradient pulse. The phase shift is proportional to the flow velocity. 2D-PS can be used with a volume slice to increase coverage of vessels and shorten scan times. Selecting the flow velocity allows specific vessels to be depicted.
Cine 2D-PS (Phase Shift)	2D-PS can be used with an optional cardiac-gating unit for cine imaging.
Flow Quantification	Blood flow velocity can be measured using cine 2D-PS with an optional cardiac-gating unit.
3D-PS (Phase Shift)	The phase shift effect, when used with 3DFT, is suitable for showing multidirectional vascular structures. Selecting the flow velocity allows specific vessels to be visualized. MIP images can be displayed from multiple viewing angles.
BEST (Blood vessel Enhancement by Selective suppression Technique)	A postprocessing algorithm that selectively enhances small vessel detail and suppresses background tissue signals.
Cardiac tagging [‡]	Allows myocardial movement to be visualized by applying several presaturation bands. Optional ECG gating is required. The number and positions of tags can be selected.
Flow imaging	Various flow dynamics can be observed by sequentially acquiring images with tagging pulses.

Fat suppression techniques

CTID (Chart Thinyarsian Dasayary)	A short TI 100° are pulse with ID suppresses for signals to enhance water proton
STIR (Short TI inversion Recovery)	A short TI 180° pre-pulse with IR suppresses fat signals to enhance water-proton images. It can be applied to FastSE and FASE sequences.
FastSTIR	STIR with FastIR to reduce scan times.
WFOP (Water/Fat Opposed Phase)	An asymmetric SE technique in which image acquisition is performed at the instant. The signals from water and fat go out of phase.
FatSAT (Fat Saturation)	Fat saturation pulses are applied to presaturate fat only. The multislice off-resonance fat suppression technique (MSOFT), an innovative our technology, ensures uniform fat suppression over all slices by using an offset RF pulse for each slice. Offset values are determined based on data acquired by auto-active shimming.
PASTA (Polarity Altered Spectral and spaTial selective Acquisition)	Another innovative technique for suppressing fat signals in SE and FastSE sequences to obtain uniform water images over all slices. It consists of a narrow-bandwidth 90° RF pulse to separate water from fat. Opposing slice gradient polarity is used for 90° and 180° RF pulses to refocus water signals.
DIET (Dual Interval Echo Train)	A drawback of FastSE is the high rightness levels from fat tissue signals. DIET is a new technique that reduces fat signals in FastSE by utilizing a pulse sequence with irregular echo intervals to achieve contrast near SE levels.
SPAIR (SPectral Attenuated Inversion Recovery)	A 180° adiabatic pulse is used to invert the fat signals inside the imaging plane uniformly regardless of B1 inhomogeneity and imaging is started at the null point of fat after TI in order to obtain fat-suppressed images with minimal fat suppression nonuniformity.
Enhanced fat Free	Multiple fat suppression pulses are applied in order to obtain a more stable fat suppression effect.
WET (Water Excitation Technique)	WET enables the spatial-position-selective and frequency-selective excitation of water. This technique can be applied to many types of sequences.
WFS (Water Fat Separation) DIXON	WFS DIXON provides water based images and fat based images by calculating images acquired with two different echo time. It can be applied to FSE2D and FE3D sequences.

Imaging modes

Multislice	Multiple slices can be acquired during a scan.
Multi-echo	Multiple echo data can be acquired within a single TR.
Multi-coverage	If the specified number of slices cannot be acquired within the designated TR, the system automatically repeats the scan to cover the required area.
Interleaved scan	Excites odd slices first and even slices second to eliminate interslice interference.
Excitation order for multislice	The user can select the order of excitation in multislices as follows. • Forward (from small to large numbers) • Reverse (from large to small numbers) • Concentric (from center to outside)
Dynamic scan	Sets up to five continuous dynamic scans in one study. Each dynamic scan is specified independently according to the delay time, scan interval, and number of scans. The minimum scan interval is zero.
Gating	 Cardiac gating: Multislice/single-phase and single-slice/multiphase imaging techniques are available. Cardiac images can be displayed in cine mode. Retrospective gating is also available as an option. Peripheral pulse gating[‡]: Reduces CSF pulsation artifacts. Respiratory gating[‡]: Reduces respiratory motion artifacts. Retrospective gating[‡]

Artifact suppression techniques

Presaturation Up to seven presaturation bands can be set to reduce motion, flow, and wrap-ar artifacts. The Vantage Orian's graphical user interface allows multiple bands in the orthogonal and oblique directions to be set with ease. The following preset presaturation bands are available. • Anti-phase aliasing • Anti-frequency aliasing • Flow suppression • Leading or following slices Skipping SAT Reduces the number of presaturation pulses in order to increase the number of 2D: frequency and phase directions 3D: frequency, phase, and slice directions Eliminates wrap-around artifacts by increasing the sampling data points in frequency or encoding steps in phase. The no wrap function is applicable up to a 512 × 512 matrix with 3DFT.
No wrap (frequency and phase directions) 3D: frequency, phase, and slice directions Eliminates wrap-around artifacts by increasing the sampling data points in frequency or encoding steps in phase. The no wrap function is applicable up to a 512 × 512 matrix with 3DFT.
(frequency and phase directions) 3D: frequency, phase, and slice directions Eliminates wrap-around artifacts by increasing the sampling data points in frequency or encoding steps in phase. The no wrap function is applicable up to a 512 × 512 matrix with 3DFT.
Phase swap The phase and frequency encoding directions can be swapped to minimize flow respiratory motion artifacts.
Breath-hold imaging An optional Auto-Voice function instructs patients when to hold their breath.
JET acquires the data for the k-space in non-Cartesian mode and suppresses mode artifacts by detecting and correcting for in-plane motion using the data for the compart of the k-space, which is acquired repeatedly. This application can suppress no only image artifacts in patients who are unable to remain still during scanning, be also artifacts due to involuntary motion such as CSF flow. This technique is based FastSE 2D, and uses T2W and FLAIR contrast enhancement.
2D-RMC An image with reduced respiratory motion artifacts can be obtained by following scanning cross section and acquisition timing relative to diaphragm motion. FAS and FFE3D are applied.
VAT (View Angle Tilting) [‡] VAT technique reduces metal related artifact caused by high off-resonance frequent applies extra slice direction gradient during readout to cancel the readout direst shift.
Quick Star [‡] Quick Star allows high resolution image for liver examination with free breathing

USER INTERFACE

Basic operations		
System startup	System startup	Possible
	The initial screen display	Possible
	*	e time of system startup. If the system status is sition is disabled or the system is shutdown.
	The system check is executed at the time detected, system operation is disabled.	e of system startup. If an abnormality is
	Registration and control of authorized users	Possible
Page control	A processing switching function that allows multiple processing tasks to be performed simultaneously	Possible
	Display of errors and warnings	Possible
System shutdown	System shutdown	Possible

Patient scheduling and registration

Patient information and scanning conditions for examinations can be scheduled and registered. The scanning conditions can be registered simply by selecting a set of conditions preregistered in the database for individual anatomies (PAS function).

Patient Registration

Scheduling and registration items	Patient ID, patient name, height, weight, sex, birth date (automatic age calculation), date of scanning (selection from calendar is possible), time of scanning, ordering department, name of ordering physician, name of radiologist, name of radiographic technologist
Search function	Provided (patient name, date and time of scanning, etc.)
Sorting function	Provided (by patient name, by date and time of scanning, etc.)
DICOM MWM	IHE is supported as the standard.
Adaptive Scan Mode	Scanning conditions are preset available (Patient Orientation, SAR operating mode, B1+RMS limit, CP mode).

Scanning condition selection and registration: PAS (Programmable Anatomical Scan)

Preset items	PAS name (name of a set of scans)
	Scanning region (graphic icon), etc.
	Type of RF coil
	Scan name (names of individual scans)
	Scanning conditions (imaging parameters), etc.

Scanning

A pilot scan (initial scan) is performed, scans are planned using the acquired data, and the scans are run. Progress of the scans is controlled using the scan list displayed in the Sequence Queue window.

Sequence Queue operations

Queuing	Scans can be copied, added, or deleted, and acquisition order can be changed.	
Scan start control	Auto	Multiple specified scans can be run in succession automatically.
	Breath hold	Each scan is started by pressing the Scan Start button. Combination with the AutoVoice function is possible.
	Pause/resume function, abort function	
Automatic tabletop movement	Possible	

Pilot scan

Prescan	Automatic (manual control is possible for some types of prescan)	
Simultaneous multiplane scan	Maximum three planes (axial, sagittal, coronal)	
	Combination with multislice scan is possible.	

Scan planning

Multiplane scan planning	Three-plane scan planning is possible.
Image switching during planning	Possible
Oblique plan	Possible (sequential, multiangle)
Graphical plan	Plan items
	Slice position and angle, slice thickness, slice gap, FOV, phase encode direction/readout direction, presaturation area, etc.
Multiple scan planning	Possible (multiple scans can be planned during scanning)
Plan duplication	A set of planned scanning conditions can be applied to the other scan by a simple operation (scan plan condition history function).
Autopositioning assistance	Autopositioning assistance is available [‡] . (CardioLine+, NeuroLine+, SpineLine+, KneeLine+)
MPR/MIP display for locating	ForeSee View can display MPR or MIP on ForeSee View window in real-time.
IDC image planning	Intelligent Distortion Correction image is available for scan planning.
Coil selection	It visualizes the coil selection on locator display.

Scanning

Safety functions	SAR limitation function, dB/dt limitation function	
Wide-area scanning function	The center of the target region can be moved to the magnetic field center automatically for each scan.	
Move table function	The tabletop can be moved so that the slice center is positioned at the magnetic field center.	
Remaining scan time display function	Provided	
SAR display	The estimated SAR value is displayed before scanning.	
Gating signal display	The ECG gating, peripheral pulse gating, and respiratory gating waveforms can be displayed.	

Reconstruction and AutoView

AutoView function	Provided (all images are displayed in the Image Matrix)	
Auto windowing function	Provided	
Automatic postprocessing	Automatic dynamic subtraction (absolute value)	Possible
	Automatic dynamic subtraction (complex value)	Possible
	Automatic MIP preview (three directions)	Possible
	Automatic Diffusion postprocessing (ADC image, Isotropic image)	Possible

Image display and processing

Images acquired in scanning are displayed, various processing is applied to these images as required, and the images are printed onto film. Image Matrix, which displays thumbnails of actually acquired images, allows the user to quickly search for and select the desired images. A variety of image processing functions are provided to serve different purposes. The excellent parallel processing capability of Vantage Orian allows image processing to be performed in parallel with scanning.

Image display

Image selection	Selection from Image Matrix		
	Skipped selection function	Provided	
Display template	Multiframe display is possible.		
	Images for two different patients can	be switched easily.	
Automatic display function	Provided (multiple images selected in	the Image Matrix are displayed in sequence)	
Window adjustment	WW/WL adjustment by mouse opera-	tion	
	Auto windowing	Possible	
	Apply Contrast function	Provided	
Image-related information	Patient information, imaging paramet	Patient information, imaging parameters, RF coil type, etc.	
	Graphics & annotation function	Provided	
	Image-related information display ON	I/OFF Possible	
Reference display	All positioning ROIs can be displayed on the image used for scan planning. ROI corresponding to an arbitrary image slice can be displayed on an arbitrary image.		
Inset display	Possible		
	Size change	Possible in three levels or more	
	Display position selection	Possible	
Cine display	Possible		
	Multiframe display	Possible	
	Playback/switching speed	Variable	
	Storage of moving images	Possible	
Various display functions	Black/white reversal, rotation, flipping, grid, zooming (interactive enlargement and reduction), scrolling (interactive scroll), Apply View function		

ROI calculation

Calculation functions Distance, angle, area, pixel value, profile, histogram, TIC (Time Intensity Curve)	Calculation functions	Distance, angle, area, pixel value, profile, histogram, TIC (Time Intensity Curve)
--	-----------------------	--

Post processing

Image filters	Smoothing, edge enhancement, etc.	
MIP (Maximum Intensity Projection, Minimum Intensity Projection)	Projection direction	Specified using ROI (specification of multiple projection directions is possible)
	Target MIP	MIP target region can be specified in three directions.
MPR	Interactive MPR, batch MPR	
	Double oblique	Possible
	Slice thickness change function	Available
	Image storage function	Available
Image calculation	Addition, subtraction, multiplication, division, and other functions	
	Automatic dynamic subtraction	Subtraction image is generated automatically after dynamic scan.
Intensity correction	Provided as standard for both 2D and 3D.	
Distortion correction	Provided as standard for both 2D and 3D.	
3D post-process	Provided as standard.	
Fusion processing	Provided as standard.	
Temporal Filter	For images acquired with cine mode or re	d-space (real space) in image reconstruction. etrospective mode, minor intensity variation while maintaining the myocardial motion and ge, improving visibility.

Filming

Virtual filming	The dedicated Virtual film window is provided.
Support of multiple imagers	Possible

Data management

Temporary storage of patient data	Solid state drive
Long-term storage of patient data	DVD-R, DVD-RAM, and Blu-ray Disc™
Patient data search	Possible

Security Settings

Meets the requirements of Risk Management Framework (RMF), governed by the Defense Health Agency (DHA)	Provided as a standard. RMF tested and verified.
HIPPA compliance	Provided as a standard. The requirements of US Health Insurance Portability and Accountability Act are met.
White list type antivirus software	Utilizing the highly secure White List security software embedded control security solution that provides a high level of protection against malicious attacks, advanced persistent threats, viruses, and malware.

Utilities

LHe level indication	The LHe level data is read from the supervisory unit.
	Logging is possible.
Quality control	Daily QA(absolute value)
	Logging is possible.
Errors	Logging is possible.

Image processing

Reconstruction	The maximum reconstruction matrix	1,024 x 1,024
	FINE	Doubles the reconstruction matrix to improve the inplane spatial resolution without increasing scan times for both 2D and 3D images. This technique can also be applied to the slice encoding direction for 3D images.
	Refine filter	User-selectable reconstruction filter to enhance image quality.
	Advanced intelligent Clear-IQ Engine (AiCE) [‡]	AiCE intelligently removes noise from images which results in high SNR and leads to enhanced anatomical and spatial resolution utilizing the power of Deep Learning.
Batch multiplanar reconstruction	Provides oblique as well as interactive M	IPR.

Networking

DICOM 3.0	Storage SCU, Print SCU, DICOM Media, and MWM SCU	Available	
	Storage Commitment, Q/R SCU, Q/R SCP, and MPPS SCU	Available [‡]	
	IHE profiles	SWF, CPI, PDI and CT are Supported. Only DVD media is supported for PDI.	
	Two more DICOM service classes	Available	
Laser Imager	DICOM print	Available	
Second Console [‡]	This console includes an independent computer platform and supports all of the functions of the main system console except for scanning and reconstruction.		
	This console is connected to the system console by Ethernet. The use condependent platform means that the main and second consoles can be simultaneously for different tasks.		
	DICOM Supported		
Remote Service Maintenance	The InnerVision remote service system permits system diagnosis over a digital connection to the Canon Medical systems Technical Support Center. Please cons your Canon Medical systems representative for details.		

SPECIFICATIONS OF CLINICAL APPLICATIONS

TOF MRA metho	od
----------------------	----

Blood vessels can be visualized without contrast medium using the time of flight effect.

2D TOF method	Artery/vein simultaneous acquisition:	Available	
	Artery/vein separate:	MovingSAT available	
	Fat saturation method:	Can be used in combination	
	Presaturation method:	Can be used in combination	
	Quiet Scan:	Standard	
3D TOF method	Fat saturation method:	Can be used in combination	
	Presaturation method:	Can be used in combination	
	Quiet Scan:	Standard	
	Multicoverage method:	This is a wide-range imaging method taking advantage of the TOF effect using a thin slab.	
		Coverage joint suppression Available method:	
	SORS-STC method:	The imaging capabilities for blood vessels are improved by selectively suppressing the signals from tissues.	
		Flip angle of SORS-STC Available pulse:	
	ISCE method:	Degradation in peripheral blood vessel images is suppressed.	
		Selection of flip angle Available distribution in slab:	
		Combined use of SORS-STC Available (inclined slab for method: contrast enhancement)	

Non-contrast MRA

FSBB (Flow Sensitive Black Blood)	FSBB depicts more details of arteries and veins by utilizing the flow dephasing effect. Weak MPG pulses are applied to FE sequence, clearly depicting small vessels with slow blood flow that is difficult to depict by TOF.		
FBI (Fresh Blood Imaging) method	This is a vascular imaging method in which new blood ejected from the heart is visualized by setting an appropriate delay time from the R wave using ECG gating and peripheral pulse gating and performing data acquisition synchronized for each shot.		
	ECG-Prep method [‡] :	ECG-gated scanning or peripheral-pulse- gated scanning is performed with multiple delay times set in order to acquire images of the same plane in different cardiac phases so that the optimal delay time for visualizing the target vessels in FBI can be determined.	
	Intermittent breath-hold method in ECG-gated scanning:	ECG-gated scanning is performed during breath-holding, with the patient permitted to breathe at regular intervals corresponding to a certain number of slice-encoding steps.	
	Sequential FASE method:	Images for different slices are acquired sequentially to provide multislice images in the same cardiac phase.	
	FlowSpoiled FBI method:	The optimal dephase pulse is applied in the readout direction in order to permit the arteries and veins to be visualized separately for low-velocity blood vessels such as peripheral vessels and collateral vessels, which is difficult with standard FBI.	
SPEED (Swap Phase Encode Extended Data) method	Blood vessels that run through multiple or acquiring two images in which the phase		
Time-SLIP (Time-Spatial Labeling Inversion Pulse)	The inversion pulse is applied space-selectively and after an appropriate wait time to permit the blood or cerebrospinal fluid flowing into or out of the slice to be visualized. This method can be used in combination with FASE or TrueSSFP.		
mASTAR	Non-contrast MRA is performed using ASTAR pulses. After uniform Tag pulses applied, sequential acquisition is performed at different TI timings to acquire Normages at the different TI timings, allowing hemodynamics to be observed. UTE sequences allow for less dephasing and more homogeneous vessel signal same time, the use of multiple inversion times (TIs) allows generation of dynamics (4D) visualizing the blood flow without the need for contrast agents.		
mUTE 4D MRA			

Contrast-enhanced MRA

Blood vessels can be visualized at high temporal resolution with a short TR/TE using contrast medium.

Dynamic scan	Scanning is performed au	Scanning is performed automatically according to the specified time sequence.			
	Application:	FE (2DFT/3DFT)			
		FastFE (2DFT/3DFT)			
	FastFE data acquisition	2DFT:	Interleave,		
	method:		Sequential		
		3DFT:	Interleave,		
			Slice Centric,		
			Sequential,		
			Swirl,		
			Reverse Centric		
Dynamic subtraction	Subtraction images between substraction images are generated.	Subtraction images between the image in the specified base phase and subsequent images are generated.			
	Automatic processing after dynamic scan:	er Available (absolute a	and complex)		
VisualPrep method	Data acquisition, image reconstruction, and display are performed repeatedly for the same plane.				
	Fat suppression:	Can be used in combination			
	Complex subtraction:	Available			
MovingBed	The tabletop is moved be acquired.	tween scans to allow a	wide range of the patient to be		
	Specification of tabletop movement distance:	Available			
Advanced MovingBed	Individual scan setting ca	n be set for each scan i	n MovingBed.		
	Specification of tabletop movement distance:	Available			
	Scan setting:	Available			

PS MRA method

The PS (Phase Shift) method performs visualization based on the phase differences between moving parts and stationary parts.

2D PS method	IVisualizes the blood vessels in a	IVisualizes the blood vessels in a short time.			
	Scan cross section:	Scan cross section: Arbitrary planes			
3D PS method	Covers the slice range continuo	Covers the slice range continuously without slice gaps.			
	Scan cross section:	Arbitrary planes			

Flow velocity measurement method

Scan for flow velocity measurement	Method:	2D cine PS method
	Cross section:	Arbitrary planes
	Direction:	Slice/readout/phase encode

Diffusion Imaging

Isotropic diffusion-weighted images and ADC images can be obtained using the EPI and the FASE method.

EPI Diffusion	Single-Shot EPI:	Available	
	Three-axis continuous acquisition:	Available [‡]	
	Multi b-value:	Available	
FASE Diffusion [‡]	Three-axis continuous acquisition:	Available [‡]	
Diffusion postprocessing [‡]	Diffusion ADC image (apparent diffusion coefficient image)		
	Diffusion isotropic image (isotropic diff	usion-weighted image)	
	Dynamic averaging function:	Available	
	Automatic postprocessing:	Available (ADC, isotropic)	

Diffusion Tensor Imaging (DTI)[‡]

Continuous white matter tracts running in various directions in the head can be visualized using the EPI method.

EPI Diffusion	Single-Shot EPI:	Available	
Diffusion postprocessing	Isotropic image (Isotropic diffu	Isotropic image (Isotropic diffusion weighted image)	
	ADC image		
	Fractional anisotropy image (in	dicating the degree of diffusion anisotropy)	
	Lambda image (characteristic v	value image)	
	Lambda image (vector image o	of characteristic value)	
	MAP image (scalar and vector l	MAP image)	
	Fusion image (Anatomical (T1, T2, FLAIR etc.) and MAP image)		
	MPR image		
	3D image (SVR + Plan cut + MA	AP image + Fiber or Cross section + MAP image + Fiber)	

Perfusion Imaging

Various types of perfusion imaging are supported.

EPI Diffusion	Single-Shot EPI:	Available
Perfusion postprocessing	ΔR2* image	
	Curve fitting:	Available
	Functional parameters:	Peak Height, Peak Time, Area under Curve, 1st Moment,
		etc
		Map and color display: Available
ASL (Arterial Spin Labeling)	The ASTAR method is used to cancel out the MTC effect by setting the IR pulse application position for the control image and that for the tag image asymmetric with respect to the imaging slice, while the blood flow signal on one side of the imaging slice is suppressed. As a result, images in which the MR signals from stat tissues are suppressed can be obtained. This technique can be applied to both 2 3D. (ASTAR: Modified Signal Targeting Alternating Radiofrequency using Asymmetric Inversion Slabs) (MTC: Magnetization Transfer Contrast) Control IR position: Variable	

Cardiac ImagingVarious types of cardiac imaging can be performed by the combined use of the ECG-gating method.

Cine imaging	Application: FE2D, FFE2D (support for TrueSSFP)			
	Sequential multislice multiphase			
	Number of phases:	Variable (depending on th	e R-R interval)	
	ECG-gating:	Prospective, retrospective [‡]		
		Viewshare reconstruction:	Available	
	Tagging scan:	Freehand tag:	Tag thickness can be set.	
		Parallel tag:	Tag pitch can be set.	
		Radial tag:	Number of tags and tag angle can be set.	
Gate-free Cine imaging	Application:	FFE2D (support for TrueSSI	FP)	
	Taking images without	gating in the breath-hold state.		
BB (Black Blood) method [‡]	Application:	FASE and FFE		
	Sequential multislice			
	Number of slices per br	eath-hold can be specified.		
		ne can be changed sequentially		
	Fat saturation pulse can	be used in combination.		
Retrospective gating mode [‡]	Application:	FFE2D (support for TrueSS)	FP)	
, 5 5	Acquires continuous cir		·	
	An image of the entire cardiac cycle, including diastole, can be obtained.			
Tissue characterization imaging [‡]	Application: FFE2D, FFE3D			
g	A T1-weighted image obtained using the inversion recovery method.			
		ocardial enhancement is availab		
Time course imaging [‡]	Application:	FFE2D		
	Multi-slice ECG-gated d	ynamic scan to acquire images	of first pass of contrast.	
	Temporal change of signal intensity can be analyzed			
RMC (Real-time Motion Correction) [‡]	Application:	FFE3D, FASE3D, SEEPI2D		
	9	I respiratory motion artifacts car relative to diaphragm motion.	n be obtained by following the	
R-wave monitoring [‡]	Application:	SSFP2D, SSFP3D		
J.	-	aveform when RR interval offed	a preset threshold during	
MOLLI (MOdified Look-Locker Inversion recovery) [‡]	In ECG-gated scanning we recovery method is used for the next IR pulse are	with the FFE2D sequence, MOdifi d for image acquisition. In this mo specified based on the cardiac co I number of acquisitions, and ima	ode, the TI timing and delay time ycle, in addition to setting of the	
PSIR (Phase Sensitive Inversion Recovery) [‡]	are acquired in this mod two different TI timings. affected by T1 contrast,	with the FFE2D sequence, T1 code. After single IR pulse is applie. Using the image data with a lophase correction is performed for to enhance T1 contrast.	d, acquisition is performed with nger TI value which is less	
T2 map [‡]	different Pre-contrast p	al pulse gating is used in scanni ulses are used to obtain multipl is then applied to the obtained	e TE _{eff} images. The	

Imaging Processing for BOLD Imaging[‡]

Friendly user interface for BOLD Image (functional MRI) processing Alignment process using 3-dimensional motion correction Statistically processed images (t-value, correlation coefficient)

UTE Imaging[‡]

Data is acquired with a very short TE by starting radial scan (in which data is acquired in a radial pattern from the center of the k-space) immediately after the RF excitation pulse is applied, without using a phase encode gradient pulse. Because UTE enables observation of signals with short T2* values and acquires the data starting from the center of the k-space for each TR, this technique is less susceptible to motion.

This application is also available acquisition of different TE data for T2* mapping of tissues with short T2*.

Pediatric Imaging *

Various types of technology can be performed for pediatric imaging.

Pianissimo Zen Application MSSW-ZENUTE Application MSSW-UTE

Selection of surface coils are below

Pediatric SPEEDER
 4ch Flex SPEEDER
 16ch Flex SPEEDER Medium
 16ch Flex SPEEDER Large
 MJAJ-227A/S1
 MJAJ-227A/S1

Fat Fraction Quantification[‡]

Data is acquired with several different TE and provides PDFF image, R2* image, water image, fat image, in phase image and out of phase image (total 6 kind of images). Proton Density Fat Fraction data is supporting fat content ratio of liver.

INSTALLATION CONDITIONS

Power requirements

A continuous and stable power supply is required for reliable operation of the system.

Frequent power failures may damage the system.

The power line shall be free of rapid variations and must not be shared by other equipment.

Line voltage	380/400/415/440/480 V
Phase	Three-phase
Voltage fluctuation	±10%
Frequency	50/60 Hz±1Hz
Power requirements	80 kVA ¹⁾

Grounding

Independent grounding is required. Grounding must be provided in accordance with all applicable legal requirements for medically used electrical equipment.

Power consumption and heat dissipation²⁾

-	•		
Power consumption		50 Hz	60 Hz
(Average)	During scan	27.0 kW	no data
	Low-power mode	10.5 kW	no data
	System power off	5.8 kW	no data
Max. System heat dissipation		2.0 kW	2.2 kW

Air conditioning

An appropriate air conditioning system is required to maintain the specified temperature and humidity. Continuous air conditioning (day and night) is required for some equipment.

¹⁾ An additional 40-50 kVA cooling is required. Continuous power (day and night) is required for some equipment.

²⁾ Power consumption is calculated based on COCIR Self-Regulatory Initiative for medical imaging equipment (2011). The heat dissipation value does not include the external heat exchanger.

Environmental requirements

Temperature and humidity:	Scan room	16°C to 24°C	40% to 60% R.H.	
No condensation	Operator's room	16°C to 28°C	40% to 75% R.H.	
	Computer room	16°C to 28°C with	40% to 75% R.H.	
	fluctuation +/-3°C/day or less			
Magnetic field	Less than 1.0 μT peak-to-peak			
Electric field	Less than - 5 dB μV/m (0.56 μV/m) from 62.0 MHz to 64.0 MHz			
	An RF shield room with more than 90-dB shielding is required.			
Emergency ventilation	30 m ³ /min or more for the scan room			
Ventilation pipe	A ventilation pipe must be provided in the scan room for emergency quenching of			
	the magnet.			
Minimum rigging clearance	2.0 m (W) x 2.5 m (H) or more			
Minimum installation area ³⁾	24.8 m ²			
	Scan room	$5.13 \text{ m} \times 3.20 \text{ m} = 16.4 \text{ m}^2$		
	Operator's room	$1.60 \text{ m} \times 1.30 \text{ m} = 2.08 \text{ m}^2$		
	Computer room	$3.85 \text{ m} \times 1.65 \text{ m} = 6.3 \text{ m}^2$		
Ceiling height	2.4 m for the scan room, except for the maintenance space for the refrigerator (2.8 m)			
Maximum floor loading	7.0 tons for the scan room			
Installation altitude	2,000 m or less above sea level			
Cooling water	Flow rate	95 L/min or more		
	(Single-loop cooling system)			
	Flow rate	100 L/min or more		
	(Dual-loop cooling system)			
	Temperature	20°C to 24°C		

Packaging materials

	Mass	
	kg (Average)	
Wood	461	
Cardboard	20	
Plastic	3.2	
Metals	2	

³⁾ Minimum room inside clear space dimensions. These dimensions may not be applied to some cases depending on each site situation.

COMPATIBILITY WITH INTERNATIONAL STANDARDS

IEC 60601-1: 2005 + Amd.1:2012

IEC 60601-1-2: 2014

IEC 60601-1-6: 2010 + Amd.1: 2013 IEC 60601-1-9: 2007 + Amd.1: 2013

IEC 60601-2-33: 2010 + Amd.1: 2013 + Amd.2: 2015

IEC 60825-1: 2007

IEC 62304: 2006 + Amd.1: 2015 IEC 62366: 2007 + Amd.1: 2014

DIMENSIONS AND MASS

Unit	Dimensions W x D x H mm	Mass kg	Recycling rate %
Magnet assembly			
For fixed couch	$2,400 \times 1,900 \times 2,320$	5,500	86
For dockable table	$2,400 \times 2,287 \times 2,320$	5,500	86
Entire bore length (including covers)	1,690	_	
Patient bore length	1,495	_	
Patient Table			
Fixed couch	660 × 2,420 × 430 to 845	235	80
Dockable table	$660 \times 2,470 \times 550 \text{ to } 845 \text{ (Dock)}$	257	80
	$660 \times 2,470 \times 535$ to 875 (Undock)		
Console			
Monitor	575 × 245 × 423 to 553	8.7	60
IF-Box	$180 \times 295 \times 140$	4	no data
Control pad	293 × 95 × 82	1.2	71
Main Cabinet and Gradient Power Supply	2,000 × 800 × 1,990	1,360	87
Cooling Cabinet	Single-loop cooling system:		
	$750 \times 800 \times 1,920$	355	97
	Dual-loop cooling system:		
	750 × 800 × 1,920	400	97
Blower Box	650 × 505 × 435	40	95
Filter Panel	1,150 × 770 × 650	67	85
	$390 \times 750 \times 400$	30	85
Accessories		90	9

STANDARD LAYOUT EXAMPLE

CANON MEDICAL SYSTEMS CORPORATION

1385, Shimoishigami, Otawara-shi, Tochigi 324-8550, Japan

https://global.medical.canon

©Canon Medical Systems Corporation 2020. All rights reserved. Design and specifications are subject to change without notice. MPDMR0449EAA 2020-12 CMSC/Produced in Japan

 $Can on Medical Systems Corporation meets internationally recognized standards for Quality Management System ISO 9001, ISO 13485. \\ Can on Medical Systems Corporation meets the Environmental Management System standard ISO 14001. \\$

Vantage Orian, Atlas SPEEDER, Octave SPEEDER, JET, Pianissimo and Made for Life are trademarks of Canon Medical Systems Corporation. Olea Nova is a trademark of Olea Medical S.A.S.

 $Windows\ is\ a\ registered\ trademark\ of\ Microsoft\ Corporation\ in\ the\ United\ States\ and/or\ other\ countries.$

Blu-ray and Blu-ray Disc are trademarks of Blu-ray Disc Association.

 $This \ document \ may \ include \ trademarks \ or \ registered \ trademarks \ of \ their \ respective \ owners.$