

Lógica para computação

Professor: Rennan Dantas

Universidade Federal do Ceará Campus de Crateús

11 e 15 de junho de 2021

⁰Slides baseados no livro Logic and structure¹.

¹VAN DALEN, Dirk et al. Logic and structure. Berlin: Springer, 1994.

Introdução

- Sabe-se que os sistemas dedutíveis são equivalentes
- Logo, não importa qual sistema dedutivo seja utilizado para realizar essa prova

Corretude e Completude de Sistemas Dedutivos

Introdução

- Abordaremos as questões mais da lógica dentro de um enfoque mais formal e provaremos a correção do método de Dedução Natural
- A escolha das regras do sistema de dedução não é feita por acaso
- O sistema deve ser compatível com a semântica, no sentido de que ele deve provar fórmulas apenas verdadeiras, e ser capaz de provar qualquer fórmula verdadeira
- Prova da corretude: se $\Gamma \vdash \varphi$ então $\Gamma \vDash \varphi$

Se $\Gamma \vdash \varphi$ então $\Gamma \vDash \varphi$

- Sabemos que $\Gamma \vdash \varphi$ se e somente se existe uma derivação D com todas as suas hipóteses em Γ , é suficiente provar que:
 - para cada derivação D com conclusão φ e hipóteses em Γ nós temos $\Gamma \vDash \varphi$
- Nós iremos mostrar por indução em D

Caso base

- ullet Se D tem um elemento, então sabemos que $arphi\in\Gamma$
- ullet φ foi uma conclusão obtida sem nenhuma aplicação de regra
- Então $\varphi \in \Gamma$
- Logo, $\Gamma \vDash \varphi$ (já que $\varphi \in \Gamma$)

Introdução do ∧ - Hipótese indutiva

• (\land I) Hipótese Indutiva: D e D' são derivações que concluem φ e φ' e para cada Γ contendo as hipóteses de D e para cada Γ' contendo as hipóteses de D'

$$\frac{\mathcal{D}}{\varphi}$$
 and $\frac{\mathcal{D}'}{\varphi'}$

• Temos que $\Gamma \vDash \varphi$ e $\Gamma' \vDash \varphi'$

Introdução do ∧ - Passo indutivo

• Passo Indutivo: Agora seja Γ" contendo as hipóteses de

- Escolhendo Γ e Γ' para serem precisamente o conjunto de hipóteses de D, D', nós vemos que $\Gamma'' \supset \Gamma \cup \Gamma'$
- Por H.I, temos que $\Gamma \vDash \varphi$ e $\Gamma' \vDash \varphi'$
- Então $\Gamma'' \vDash \varphi$ e $\Gamma'' \vDash \varphi'$
- Seja v uma valoração tal que $v(\psi)=1$ para todo $\psi\in\Gamma''$ ($v(\Gamma'')=1$)
- Logo, $v(\varphi) = v(\varphi') = 1$
- Portanto, $v(\varphi \wedge \varphi') = 1$
- Isso mostra que $\Gamma'' \vDash \varphi \wedge \varphi'$

Eliminação do A - Hipótese indutiva

 \bullet ($\land E$) Hipótese Indutiva: para qualquer Γ contendo as hipóteses de

$$\mathcal{I}$$

$$\varphi \wedge \psi$$

• Temos que $\Gamma \vDash \varphi \land \psi$

Eliminação do ∧ - Passo Indutivo

Considere um Γ contendo todas as hipóteses de

$$\frac{\mathcal{D}}{\varphi \wedge \psi}$$

$$rac{\mathcal{D}}{arphi \wedge \psi}$$

Eliminação do ∧ - Passo Indutivo

- Por HI, temos que $\Gamma \vDash \varphi \wedge \psi$
- Seja v uma valoração qualquer tal que $v(\chi)=1$ para todo $\chi\in\Gamma$ $(v(\Gamma)=1)$
- Como $\Gamma \vDash \varphi \land \psi$, então $v(\varphi \land \psi) = 1$
- Pela tabela verdade do \wedge , temos que $v(\varphi) = v(\psi) = 1$
- Assim, para todo v tal que $v(\chi) = 1$ para todo $\chi \in \Gamma$ ($v(\Gamma) = 1$), temos que $v(\varphi) = v(\psi) = 1$
- Portanto, $\Gamma \vDash \varphi$ e $\Gamma \vDash \psi$

Introdução da ightarrow - Hipótese indutiva

ullet (o I) Hipótese Indutiva: Para qualquer Γ contendo as hipóteses de

 φ

 \mathcal{D}

 ψ

$$\bullet$$
 $\Gamma \vDash \psi$

O que queremos mostrar?

Se $\Gamma' \vdash \varphi \rightarrow \psi$ então $\Gamma' \vDash \varphi \rightarrow \psi$

Introdução da ightarrow - Passo indutivo

Seja Γ' contendo as hipóteses de

$$\begin{array}{c}
[\varphi] \\
\mathcal{D} \\
\psi \\
\hline
\varphi \to \psi
\end{array}$$

- Note que $[\varphi]$ não é uma hipótese de Γ'
- Seja v uma valoração tal que $v(\chi)=1$ para todo $\chi\in\Gamma'$ $(v(\Gamma')=1)$
- Se $v(\varphi)=0$, então $v(\varphi o \psi)=1$ pela tabela verdade da o

Introdução da ightarrow - Passo indutivo

• $\Gamma' \cup \{\varphi\}$ contendo todas as hipóteses de

$$egin{array}{c} arphi \ \mathcal{D} \ \psi \end{array}$$

- Seja v uma valoração tal que $v(\varphi)=1$ e $v(\chi)=1$ para todo $\chi\in\Gamma'$ $(v(\Gamma')=1)$
- Por H.I, $v(\psi) = 1$
- Pela tabela verdade da implicação (\rightarrow) , temos que $v(\varphi \rightarrow \psi) = 1$
- Portanto, $\Gamma' \vDash \varphi \rightarrow \psi$

Eliminação da \rightarrow - Hipótese indutiva

• (\rightarrow E) Hipótese Indutiva: Sejam Γ e Γ' dois conjuntos que contém, respectivamente, as hipóteses de D e D'

$$\mathcal{D} \qquad \mathcal{D}' \\ \varphi' \quad \varphi \to \psi$$

• $\Gamma \vDash \varphi \in \Gamma' \vDash \varphi \to \psi$

Eliminação da ightarrow - Passo indutivo

• Passo da Indução: Sejam Γ e Γ' os conjuntos que contém, respectivamente, as hipóteses de D e D'

$$\frac{\mathcal{D}}{\varphi} \qquad \frac{\mathcal{D}'}{\psi}$$

- Pela H.I, temos que $\Gamma \vDash \varphi$ e $\Gamma' \vDash \varphi \rightarrow \psi$
- Seja $\Gamma'' \supseteq \Gamma \cup \Gamma'$

Eliminação da \rightarrow - Passo indutivo

- Dessa forma, $\Gamma'' \vdash \psi$
- Seja v uma valoração qualquer tal que $v(\chi)=1$ para todo $\chi\in\Gamma''$ ($v(\Gamma'')=1$)
- Como $\Gamma'' \supseteq \Gamma \cup \Gamma'$, $v(\chi') = 1$ para todo $\chi' \in \Gamma$ $(v(\Gamma) = 1)$ e $v(\chi'') = 1$ para todo $\chi'' \in \Gamma'$ $(v(\Gamma') = 1)$
- Como $\Gamma \vDash \varphi$ e $\Gamma' \vDash \varphi \rightarrow \psi$, então $v(\varphi) = v(\varphi \rightarrow \psi) = 1$
- ullet Pela tabela verdade da implicação, temos que $v(\psi)=1$
- Portanto, $\Gamma'' \models \psi$

Introdução do \perp - Hipótese indutiva

• (ΔI) Hipótese Indutiva: para todo Γ contendo todas as hipóteses de

 \perp

Γ ⊨ ⊥

Introdução do 🗆 - Passo da indução

Passo da Indução: Seja Γ' contendo todas as hipóteses de

$$\frac{\mathcal{D}}{\varphi}$$

- Se $\Gamma' \vdash \varphi$ então $\Gamma' \vDash \varphi$?
- Suponha, por absurdo, que $\Gamma' \nvDash \varphi$
- Então deve existir uma valoração v tal que $v(\psi)=1$ para todo $\psi\in\Gamma'$ ($v(\Gamma')=1$) e $v(\varphi)=0$
- Como Γ' contém todas as hipóteses da primeira derivação, temos que $\Gamma' \vDash \bot$ por H.I
- Como $v(\psi)=1$ para todo $\psi\in\Gamma'$ ($v(\Gamma')=1$), então $v(\bot)=1$
- Absurdo!

Eliminação da ¬ - Hipótese indutiva

• $(\neg E)$ Hipótese Indutiva: para todo Γ contendo todas as hipóteses de

• Temos que $\Gamma \vDash \bot$

Eliminação da ¬ - Passo da indução

ullet Seja Γ' contendo todas as hipóteses de

$$\begin{array}{c}
[\neg \varphi] \\
\mathcal{D} \\
\bot \\
\hline
\varphi
\end{array}$$

- Se $\Gamma' \vdash \varphi$ então $\Gamma' \vDash \varphi$?
- Suponha, por absurdo, que $\Gamma' \nvDash \varphi$

Eliminação da ¬ - Passo da indução

- Então existe uma valoração v tal que $v(\psi) = 1$ para todo $\psi \in \Gamma'$ ($v(\Gamma') = 1$) e $v(\varphi) = 0$, ou seja, $v(\neg \varphi) = 1$
- Contudo, $\Gamma'' = \Gamma' \cup \{\neg \varphi\}$ contém todas as hipóteses da primeira derivação e $v(\psi) = 1$ para todo $\psi \in \Gamma''$ ($v(\Gamma'') = 1$)
- Absurdo, pois $\Gamma'' \models \bot$
- Portanto $\Gamma' \vDash \varphi$

Próxima Aula

O que vem por aí?

- Revisão/Tira dúvidas
- Exercícios
- Lógica de Primeira Ordem

Lógica para computação

Professor: Rennan Dantas

Universidade Federal do Ceará Campus de Crateús

11 e 15 de junho de 2021

⁰Slides baseados no livro Logic and structure².

¹VAN DALEN, Dirk et al. Logic and structure. Berlin: Springer, 1994.