作者: 张陈成

学号: 023071910029

K-理论笔记

Sylvester 理论

1 Sylvester 秩函数

命题 1 (有限展示模). 给定模正合列 $0 \to K \to Y \to Z \to 0$, 试回顾以下关于有限展示模之论断.

- 1. 若 K 有限生成, Z 有限生成, 则 Y 有限生成.
- 1'. 若 Y 有限生成,则 Z 有限生成,但 K 未必.
- 2. 若 Y 有限生成, Z 有限展示, 则 K 有限生成.
- 3. 若 K 有限生成, Y 有限展示, 则 Z 有限展示.
- 4. 若 K 有限展示, Z 有限展示, 则 Y 有限展示.

定义 1 (Sylvester 秩函数). 定义环 R 上的 Sylvester 函数为 ρ : 有限展示 R-模 $\to \mathbb{R}_{>0}$, 满足如下条件.

- 1. 归一化条件: $\rho(R) = 1$.
- 2. ρ 可加, 即, $\rho(X \oplus Y) = \rho(X) + \rho(Y)$ 对一切有限展示模成立.
- 3. 对正合列 $X \to Y \to Z \to 0$, 总有 $\rho(Z) \le \rho(Y) \le \rho(X) + \rho(Z)$.
- 注 1. Sylvester 秩函数衡量有限生成模正合列间的有限展示程度. 置 $X = \ker(Y \to Z)$, 则
 - 1. $\rho(X) + \rho(Z) \ge \rho(Y)$ 对应论断: 若 $X \ni Z$ 有限展示, 则 Y 亦然.
 - 2. $\rho(Y) \geq \rho(Z)$ 对应论断: 若 Y 有限展示, 则 Z 亦然.

命题 2 (Sylvester 秩函数的等价定义). 环 R 的 Sylvester 秩函数等价定义亦可由

 ρ' :有限生成投射 R 模间态射 $\to \mathbb{R}_{\geq 0}$

以及以下四条法则等价地给出.

- 1. 归一化条件 $\rho'(id_R) = 1$.
- 2. $\rho'(\text{diag}(f,g)) = \rho'(f) + \rho'(g)$.

3.
$$\rho'\begin{pmatrix} f & h \\ 0 & g \end{pmatrix} \ge \rho'\begin{pmatrix} f & 0 \\ 0 & g \end{pmatrix} = \rho'(f) + \rho'(g).$$

4. $\rho'(fg) \leq \min(\rho'(f), \rho'(g))$. 特别地, $\rho'(f) = \rho'(f\varphi) = \rho'(\psi f)$ 若 φ 与 ψ 为同构.

其转换关系如下. 对正合列 $\bullet \stackrel{f}{\to} Q \stackrel{c}{\to} C \to 0$, 有

$$\rho(C) + \rho'(f) = \rho(Q) = \rho'(\mathrm{id}_Q)$$

注 2. 今后不区分 ρ 与 ρ' . 换言之, ρ 同时定义在有限展示模与投射模间态射上.

命题 3 (Sylvester 定理). 对任意域上同阶数的方阵 A 与 B, 总有 $\operatorname{rank}(AB) \ge \operatorname{rank}(A) + \operatorname{rank}(B) - n$.

命题 4 (Sylvester 定理). 对任意映射链 $P'' \stackrel{f}{\to} P \stackrel{g}{\to} P'$, 总有 $\rho(gf) \geq \rho(f) + \rho(g) - \rho(\mathrm{id}_P)$.

证明. 显然 $\rho(f)+\rho(g)=\rho\begin{pmatrix}f&\\g\end{pmatrix}\leq\rho\begin{pmatrix}f&\mathrm{id}_P\\g\end{pmatrix}$. 依照 $\rho(-)$ 的同构不变性, 以及列初等变换

$$\begin{pmatrix} f & \mathrm{id}_P \\ & g \end{pmatrix} \sim \begin{pmatrix} & \mathrm{id}_P \\ -gf & g \end{pmatrix} \sim \begin{pmatrix} & \mathrm{id}_P \\ -gf & g \end{pmatrix} \sim \begin{pmatrix} \mathrm{id}_P & \\ & gf \end{pmatrix}$$

从而 $\rho(f) + \rho(g) \le \rho(fg) + \rho(\mathrm{id}_P)$.

例 1. 给定单 Artin 环 $M_n(D)^2$, 则 $\rho(P) = \frac{l(P)}{n}$. 因此单 Artin 环上的秩函数即长度单位化.

- 2 (广义) 局部化
- 3 R-代数到单 Artin 代数的态射类
- 4 三角范畴及更多

¹线性代数中常用定理.

 $^{^2}$ 依照 Artin-Wedderbrun 定理, 半单 Artin 代数形如除环之矩阵环代数之积.