Dr. G. Eichner Math. Inst. JLU Gießen

Übungen zu R1: Grundlagen der Datenanalyse mit R Blatt 11

SoSe 2024 11. 7. 2024 Abgabe: \leq 18. 7. 2024, 8:00 Uhr

Beachten Sie die einwöchige Bearbeitungsfrist und den außergewöhnlichen Abgabetermin!

1. Eine neue Sorte von Reagenzgläsern soll bezüglich ihrer Schmelztemperatur mit einer gebräuchlichen Sorte, bei der diese mittlere Temperatur $745^{\circ}C$ beträgt, verglichen werden. Bei einer Stichprobe von Reagenzgläsern der neuen Sorte wurden folgende Schmelztemperaturen in $^{\circ}C$ ermittelt:

Es wird angenommen, dass die Messwerte unabhängige und identisch $\mathcal{N}(\mu, \sigma^2)$ -verteilte Realisierungen sind. Sie finden die Daten in Stud.IP in der Datei Schmelztemperaturen. Lesen Sie sie mit scan ein und beurteilen Sie mittels Q-Q-Plots die Zulässigkeit der Normalverteilungsannahme! Überprüfen Sie sodann durch Anwendung eines geeigneten Tests zum Niveau $\alpha=0.05$ die Hypothese

- a) $H_0: \mu = 745$ gegen $H_1: \mu \neq 745$, wobei σ^2 unbekannt ist.
- b₁) $H_0: \mu \geq 745$ gegen $H_1: \mu < 745$, wobei σ^2 unbekannt ist. Welche Konsequenzen könnte hier ein Fehler 1. Art für Hersteller bzw. Kunde haben?
- b₂) $H_0: \mu \leq 745$ gegen $H_1: \mu > 745$, wobei σ^2 unbekannt ist. Welche Konsequenzen könnte hier ein Fehler 1. Art für Hersteller bzw. Kunde haben?
- c) $H_0: \mu = 745$ gegen $H_1: \mu \neq 745$, wobei $\sigma^2 = 4979.47$ bekannt ist.
- d) $H_0: \mu \ge 745$ gegen $H_1: \mu < 745$, wobei $\sigma^2 = 4979.47$ bekannt ist.
- 2. Folgendes Experiment beschäftigte sich mit (möglichen) Auswirkungen der Umwelt auf die Gehirnentwicklung: Aus 12 Würfen an Ratten wurden jeweils zwei männliche entnommen, von denen per Randomisierung die eine in eine Zelle **mit** Spielsachen, die andere in eine Zelle **ohne** Spielsachen gebracht wurde, wo sie beide isoliert lebten. Anschließend wurde innerhalb einer fest vorgegebenen Zeit jeweils die Gewichtszunahme des Gehirns gemessen. Mit X_i bzw. Y_i sei die Gewichtszunahme der Ratte des i-ten Wurfes ohne bzw. mit Spielsachen bezeichnet und mit $D_i := Y_i X_i$ ihre Differenz. Es wurden für D_i die folgenden Werte ermittelt:

Beurteilen Sie für diese Daten zunächst mittels EDA, ob eine Normalverteilungsannahme zulässig erscheint. Testen Sie dann (mit einem geeigneten Test) zum Niveau 1 % die Hypothese, dass die Umwelt die Gehirnanatomie nicht beeinflusst, gegen die Alternative, dass die Umwelt einen positiven Einfluss auf die Gehirngewichtsentwicklung hat.