Übungsblatt 11

Aufgabe 41 (0.5+2+2+0.5). Sei $f: [a, b] \to \mathbb{R}$ eine n-mal stetig differenzierbare Funktion, n > 1, derart, dass für ein $c \in (a, b)$ gilt:

$$f'(c) = f''(c) = f^{(3)}(c) = \dots = f^{(n-1)}(c) = 0, \quad f^{(n)}(c) \neq 0.$$

- (i) Bestimmen Sie das n.te Taylorpolynom von f um den Entwicklungspunkt c.
- (ii) Sei n ungerade. Zeigen Sie, dass dann c ein Sattelpunkt von f ist.
- (iii) Sei n gerade. Zeigen Sie, dass dann c ein lokales Maximum (für $f^{(n)}(a) < 0$) oder ein lokales Minimum (für $f^{(n)}(a) > 0$) ist.
- (iv) Sei $k \in \mathbb{N}_{>1}$. Wenden Sie (ii) bzw. (iii) für $f(x) = x^k$ an, um zu sehen, welche Art von Extremstelle x = 0 ist.

Aufgabe 42. Sei $f:[a,b] \to \mathbb{R}$ eine stetig differenzierbare Funktion mit f(a)=0. Es gebe ein $A \in \mathbb{R}$ mit $|f'(x)| \le A|f(x)|$ für alle $x \in [a,b]$. Zeigen Sie, dass dann f konstant Null ist.

Aufgabe 43 (1.5+2.5+1). (Asymptotik von Potenzen nahe Extremstellen) Sei $f: \mathbb{R} \to \mathbb{R}$ dreimal stetig differenzierbar mit f(0) = 1 und f'(0) = 0.

(i) Zeigen Sie

$$\ln f(x) = \frac{x^2}{2}f''(0) + o(x^2) \quad \text{für } x \to 0.$$

(ii) Zeigen Sie

$$\lim_{n\to\infty} \left(f\left(\frac{x}{\sqrt{n}}\right) \right)^n = e^{\frac{1}{2}f^{\prime\prime}(0)x^2}.$$

(iii) Folgern Sie

$$\lim_{n \to \infty} \cos^n \left(\frac{x}{\sqrt{n}} \right) = e^{-\frac{1}{2}x^2}.$$

Aufgabe 44 (1+3+1). (i) Berechnen Sie $\sum_{k=0}^{n} kx^k$ für $x \neq 1$. Hinweis: Betrachten Sie $f(x) = \sum_{k=1}^{n+1} x^k$.

- (ii) Wir betrachten den Logarithmus ln: $(0, \infty) \to \mathbb{R}$. Sei a > 1. Sei \mathcal{Z}_n die Zerlegung von [1, a] mit $x_k = a^{\frac{k}{n}}$, $k = 0, \ldots, n$. Berechnen Sie die Untersumme U_n von ln x auf dem Intervall [1, a] zur Zerlegung \mathcal{Z}_n . Vereinfachen Sie derart, dass am Ende kein Summenzeichen mehr dasteht.
- (iii) Berechnen Sie $\lim_{n\to\infty} U_n$.