MAT 380 REAL ANALYSIS

Exercise 33. (Resubmission,)

Prove that subsequences of a convergent sequence converge to the same limit as the original sequence.

Proof. Let (a_n) be a convergence sequence with L as the limit. Then suppose that (a_{n_j}) is a subsequence of (a_n) . Let $\epsilon > 0$. Since $a_n \to L$ when $n \to \infty$, there exists a $N \in \mathbb{N}$ such that for all $n \geq N$, $|a_n - L| < \epsilon$. Then, by definition of subsequence, $n_J \geq N$ implies that for all $j \geq J$, $|a_{n_j} - L| < \epsilon$. Thus, by definition of convergence, the subsequence convergences to the same limit.

Exercise 36. (Resubmission,)

Prove that Cauchy sequences are bounded.

Proof. Let (a_n) be a cauchy sequence. Let $\epsilon = 1$, by definition of cauchy, there exists N such that for every m, n > N, $|a_n - a_m| < \epsilon = 1$. Let m be some Mth term in the sequence. Then by triangle inequality,

$$|a_n| = |a_n - a_m + a_m| \le |a_n - a_m| + |a_m| < 1 + |a_M|$$

Then, $|a_n| \leq max\{|a_1|, |a_2|,, |a_{M-1}|, 1+|a_M|\}$ for all n. Thus, we can find a constant c in $max\{|a_1|, |a_2|,, |a_{M-1}|, 1+|a_M|\}$ such that $|a_n| \leq c$, and therefore, the cauchy sequences are bounded.

- 1. A function f is **continuous** at the point x = c if for every sequence $(a_n)_{n=1}^{\infty}$ that converges to c, the sequence $(f(a_n))_{n=1}^{\infty}$ converges to f(c). If a function is continuous at every point of some set S, we say f is continuous on S.
- 2. A function f is **continuous** at a point x if for every $\epsilon > 0$ there exists $\delta > 0$ such that $|f(y) f(x)| < \epsilon$ for all y such that $|x y| < \delta$.

Exercise 47. (Resubmission,)

Use the second definition of continuity to prove that $f(x) = x^2 + 2$ is continuous at x = 2.

Proof. Let $\epsilon > 0$. Choose $\delta = min\epsilon/5, 1$. Suppose $|x - 2| < \delta$, then, by triangle inequality, $|x| - |2| \le |x - 2| < 1$ implies |x| + 2 < 5. Then,

$$|f(x) - f(2)| = |x^2 + 2 - (2^2 + 2)| = |x^2 - 4| = |x + 2||x - 2| \le (|x| + 2)|x - 2| < 5\frac{\epsilon}{5} = \epsilon$$

Since $f(x)$ converges to $f(2)$ for $x \in \mathbb{R}$, $f(x)$ is continuous at $x = 2$.

Exercise 50. (Resubmission,)

Given $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$, assume that the range $f(A) = f(x): x \in A$ is contained in the domain B so that the composition $(g \circ f)(x) = g(f(x))$ is well defined on A. Prove the following: If f is continuous at $c \in A$ and if g is continuous at $f(c) \in B$, then $(g \circ f)$ is continuous at c.

Proof. Let $\epsilon > 0$. By definition of continuity, there exists $\delta_1 > 0$ such that $|f(x) - f(c)| < \delta_1$ implies $|g(f(x)) - g(f(c))| < \epsilon$. Similarly, there exists $\delta_2 > 0$ such that $|x - c| < \delta_2$ implies $|f(x) - f(c)| < \delta_1$. Thus, for all $\epsilon > 0$, $|x - c| < \delta_2$ implies |g(f(x)) - g(f(c))|, and therefore, $g(f(x)) = (g \circ f)(x)$ is continuous at c.

Exercise 51(d). (Resubmission,)

Let f be a function defined on all of \mathbb{R} and assume there is a constant c such that 0 < c < 1 and $|f(x) - f(y)| \le c|x - y|$ for all $x, y \in \mathbb{R}$. Prove that if x is any arbitrary point in \mathbb{R} the the sequence $x, f(x), f(f(x)), \ldots$ converges to the y defined in (b).

Proof. By (b), $y_{n+1} = f^n(y)$, then

$$|f^n(y) - x| = |f(f^{n-1}(y)) - f(x)| \le C|f^{n-1}(y) - x| \le \dots \le C^n|y - x|$$

Since $n \to 0$ implies that $|C^n| \to 0$, $f^n(y) \to x$; therefore, the sequence converges.

• A function $f: \mathbb{R} \to \mathbb{R}$ is **uniformly continuous** on a set A if for every $\epsilon > 0$ there exists $\delta > 0$ such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$.

Exercise 93. (Homework 18, 2021/02/08)

Prove that f(x) = 4x + 2 is uniformly continuous on \mathbb{R} .

Proof. Let $\epsilon > 0$. There exists $\delta = \epsilon/4 > 0$ such that for every $x, y \in \mathbb{R}$, $|x - y| < \delta = \epsilon/4$.

$$|f(x) - f(y)| = |4x + 2 - 4y - 2| = 4|x - y| < 4\epsilon/4 = \epsilon$$

Thus, by definition, since for every $x, y \in \mathbb{R}$, $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$, the function is uniformly continuous on \mathbb{R} .

Exercise 94. (Homework 18, 2021/02/08)

Prove that $f(x) = x^2 + 2$ is uniformly continuous on [a, b]. (not uniformly continuous on \mathbb{R})

Proof. Let $\epsilon > 0$. There exists $\delta > 0$ such that for every $x, y \in \mathbb{R}$, $|x - y| < \delta$. Since $x, y \in [a, b]$, without loss of generality, assume that a < b. Then $a \leqslant x \leqslant b$ and $a \leqslant y \leqslant b$ implies $2a \leqslant x + y \leqslant 2b$. Let $c = max\{|2a|, |2b|\}$, then $|x + y| \leqslant c$. Choose $\delta = \frac{\epsilon}{c}$, then

$$|f(x) - f(y)| = |x^2 + 2 - y^2 - 2| = |x^2 - y^2| = |x + y||x - y| \le c|x - y| < c\delta = c\frac{\epsilon}{c} = \epsilon$$

Thus, by definition, since for every $x, y \in [a, b], |x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$, the function is uniformly continuous on [a, b].

• A function $f : \mathbb{R} \to \mathbb{R}$ is **uniformly continuous** on a set A if for every $\epsilon > 0$ there exists $\delta > 0$ such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$.

Exercise 95. (Homework 18, 2021/02/08)

Prove that f(x) = 4x + 2 is uniformly continuous on \mathbb{R} .

Proof. Let $\epsilon > 0$. There exists $\delta = \epsilon/4 > 0$ such that for every $x, y \in \mathbb{R}$, $|x - y| < \delta = \epsilon/4$.

$$|f(x) - f(y)| = |4x + 2 - 4y - 2| = 4|x - y| < 4\epsilon/4 = \epsilon$$

Thus, by definition, since for every $x, y \in \mathbb{R}$, $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$, the function is uniformly continuous on \mathbb{R} .

Exercise 96. (Homework 18, 2021/02/08)

Prove that $f(x) = 1/x^2$ is uniformly continuous on $[1, \infty)$.

Proof. Let $\epsilon > 0$. There exists $\delta > 0$ such that for every $x, y \in \mathbb{R}$, $|x - y| < \delta$. Since $x, y \in [1, \infty)$, $1 \leqslant x$ and $1 \leqslant y$ implies $\frac{1}{(xy)^2} \leqslant 1$ and $|x + y| \geqslant 2$. Choose $\delta = \frac{\epsilon}{2}$, then

$$|f(x) - f(y)| = |1/x^2 - 1/y^2| = \frac{|x^2 - y^2|}{x^2 y^2} \leqslant \frac{|x + y||x - y|}{(xy)^2} \leqslant 2|x - y| < 2\delta = 2\frac{\epsilon}{2} = \epsilon$$

Thus, by definition, since for every $x, y \in [1, \infty)$, $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$, the function is uniformly continuous on $[1, \infty)$.

• A function $A \to \mathbb{R}$ is called **Lipschitz** if there exists a bound M > 0 such that $|\frac{f(x) - f(y)}{x - y}| \le M$ for all $x, y \in A$ (and $x \ne y$).

Exercise 97. (Homework 18, 2021/02/08)

Show that if $f: A \to \mathbb{R}$ is Lipschitz, then it is uniformly continuous on A.

Proof. Let $\epsilon > 0$. There exists $\delta > 0$ such that for every $x, y \in A$, $|x - y| < \delta$. Since f is Lipschitz, $|\frac{f(x) - f(y)}{x - y}| \leq M$ implies $|f(x) - f(y)| \leq M|x - y|$. Choose $\delta = \frac{\epsilon}{M}$, then

$$|f(x) - f(y)| \le M|x - y| < M\delta = M\frac{\epsilon}{M} = \epsilon$$

Thus, by definition, since for every $x, y \in A$ and $x \neq y$, $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$, the function is uniformly continuous on A.

Exercise 60. (Resubmission,)

Let $f(x) = x^2 + 2$. Use the definition to prove that f'(-3) = -6.

Proof. Let $(a_n) \in D$ be a sequence and $-3 \in D$ such that $(a_n)_{n=1}^{\infty} \to -3$ and $(a_n)_{n=1}^{\infty} \neq -3$. Then,

$$f'(c) = \left(\frac{f(a_n) - f(c)}{a_n - c}\right)_{n=1}^{\infty} = \left(\frac{((a_n)^2 + 2) - (3^2 + 2)}{a_n + 3}\right)_{n=1}^{\infty} = \left(\frac{((a_n)^2 - 9)_{n=1}^{\infty}}{a_n + 3}\right)_{n=1}^{\infty} = (a_n - 3)_{n=1}^{\infty}$$

Since $(a_n)_{n=1}^{\infty} \to -3$, $(a_n)_{n=1}^{\infty} - 3 \to -3 - 3 = -6$. Thus, $f'(c) \to -6$.

Exercise 61. (Resubmission,)

Let $f(x) = x^2$. Use the definition to prove that f'(x) = 2x, for all $x \in \mathbb{R}$.

Proof. Let $(a_n) \in \mathbb{R}$ be a sequence and $c \in \mathbb{R}$ such that $(a_n)_{n=1}^{\infty} \to c$ and $(a_n)_{n=1}^{\infty} \neq c$. Then,

$$f'(c) = \left(\frac{f(a_n) - f(c)}{a_n - c}\right)_{n=1}^{\infty} = \left(\frac{((a_n)^2) - (c^2)}{a_n - c}\right)_{n=1}^{\infty} = (a_n + c)_{n=1}^{\infty}$$

Since $(a_n)_{n=1}^{\infty} \to c$, $(a_n)_{n=1}^{\infty} + c \to c + c = 2c$ for all $c \in \mathbb{R}$. Thus, $f'(c) \to 2c$ and f'(x) = 2x for all $x \in \mathbb{R}$.

Exercise 69. (Resubmission,)

Determine appropriate hypotheses and then state and prove the Chain Rule for derivatives. $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$ satisfy $f(A) \subseteq B$ so that the composition $g \circ f(x) = g(f(x))$ is well defined. If f is differentiable at $c \in A$, and g is differentiable at $f(c) \in B$, then, $g \circ f$ is differentiable with $(g \circ f)'(c) = g'((f(c)))f'(c)$.

Proof. Let $(a_n)toc$ with $a_n \neq c$. Since g(c) is differentiable at the point f(c), as long as $f(a_n) \neq f(c)$,

$$(\frac{g(f(a_n)) - g(f(c))}{f(a_n) - f(c)})_{n=1}^{\infty} \to g'(f(c))$$

Let (b_n) be a sequence such that $(b_n) = 0$ if $f(a_n) = f(c)$, otherwise, let

$$b_n = (\frac{g(f(a_n)) - g(f(c))}{f(a_n) - f(c)})_{n=1}^{\infty} - g'(f(c))$$

then, $(d_n) \to 0$.

$$(g(f(a_n)) - g(f(c))_{n=1}^{\infty} = (g'(f(c) + d_n))_{n=1}^{\infty} (f(a_n) - f(c))_{n=1}^{\infty}$$

Consequently,

$$\left(\frac{g(f(a_n)) - g(f(c))}{a_n - c}\right)_{n=1}^{\infty} = \left(\left(g'(f(c)) + d_n\right)_{n=1}^{\infty} \frac{f(a_n) - f(c)}{a_n - c}\right)_{n=1}^{\infty} \to g'(f(c))f'(c)$$

Thus, g(f(x)) is differentiable and converges to g'(f(c))f'(c).

Exercise 70. (Resubmission,)

Let $f:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). If f(a)=f(b), prove there exists a point $c\in(a,b)$ such that f'(c)=0.

Proof. By extreme value theorem, since f is continuous, f has both max and min on [a, b]. If either max or min is at a or b, then since f(a) = f(b), the function is a constant function with f'(c) = 0 for any $c \in (a, b)$. Else, if max and min are not at a or b, by Ex65, the derivative at the max or min is 0. Thus, there exists $c \in (a, b)$ which is max or min such that f'(c) = 0.

Exercise 71. (Resubmission,)

Mean Value Theorem. Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Prove there exists a point $c \in (a,b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Proof. Define the secant line function $d(x) = f(x) - (\frac{f(b) - f(a)}{b - a}(x - a) + f(a))$. Since f is continuous and differentiable, by continuous and differentiable function properties, their sum and linear functions are still continuous and differentiable. Thus, d(x) is continuous on [a, b] and differentiable on (a, b). Since d(a) = d(b) = 0, by Ex70, there exists a point c such that d'(c) = 0.

Exercise 72. (Resubmission,)

Let f(x) = 0 for each number in [0, 1] except x = 0, and let f(0) = 1. Show that if P is any partition of [0, 1], then $0 < U_P f$, and if $\epsilon > 0$, then there exists a partition P of [0, 1] such that $U_P f < \epsilon$.

Proof. Let *P* be a partition over [0, 1] such that $P = t_0, t_1, t_2, ..., t_n$ for i = 1, 2, 3, ..., n. Then, by how the function *f* is defined, $Y_1 = \sup\{f(x) : x \in [t_0, t_1]\} = \sup\{0, 1 = 1, \text{ and if } i \neq 1, \text{ then } Y_i = \sup\{f(x) : x \in [t_i, t_{i-1}]\} = \sup\{0, 1 = 1, \text{ and if } i \neq 1, \text{ then } Y_i = \sup\{0, 1 = 1, \text{ and if } i \neq 1, \text{ then } Y_i = \sup\{0, 1 = 1, \text{ and if } i \neq 1, \text{ then } Y_i = \sup\{0, 1 = 1, \text{ and if } i \neq 1, \text{ then } Y_i = \sup\{0, 1 = 1, \text{ then } Y_i = \max\{0, 1 = 1, \text{ then } Y_$

$$U_P f = \sum_{i=1}^n Y_i(t_i - t_{i-1}) = 1 * (t_1 - t_0) = t_1 - t_0 = t_1 > 0$$

Thus, $0 < U_P f$.

Let $\epsilon > 0$. If $t_1 \ge \epsilon$. Let $P_1 = P \cup \{\frac{\epsilon}{2}\}$, otherwise, let $P_1 = P$ and use the work above. Then,

$$U_P f = t_1$$
 (which is the first partition point beyond $t_0 = 0$) = $\frac{\epsilon}{2} < \epsilon$

Thus,
$$U_P f < \epsilon$$
.

Exercise 73. (Resubmission,)

Using f as in the previous problem, show that $L_P f = 0$ for all partitions P.

Proof. Let P be a partition over [0,1] such that $P = t_0, t_1, t_2, ..., t_n$ for i = 1, 2, 3, ..., n. By Ex8, $y_i = \inf\{f(x) : x \in [t_{i-1}, t_i]\} = 0$. Then, $L_P f = \sum_{i=1}^n y_i (t_i - t_{i-1}) = \sum_{i=1}^n 0(t_i - t_{i-1}) = 1 * (t_1 - t_0) = 0$. Thus, $L_P f = 0$ for all partitions P.

Exercise 74. (Resubmission,)

Prove that if f is a bounded function with domain that includes [a, b], and P is a partition of [a, b] then $LPf \leq UPf$

Proof. Since $y_i = \inf\{f(x) : x \in [t_{i-1}, t_i]\} \le \sup\{f(x) : x \in [t_{i-1}, t_i]\} = Y_i$,

$$L_P f = \sum_{i=1}^n y_i (t_i - t_{i-1}) \le \sum_{i=1}^n Y_i (t_i - t_{i-1}) = UPf$$

Thus, $LPf \leq UPf$.

Exercise 75. (Resubmission,)

Assume that P and Q are partitions of the interval [a,b] and that f is a bounded function on [a,b]. Further assume that Q is a refinement of P. Determine whether $U_Q f \leq U_P f$, or $U_Q f \geq U_P f$. Then prove your assertion. $[U_Q f \leq U_P f]$

Proof. Let P be a partition over [0,1] such that $P = t_0, t_1, t_2, ..., t_n$ for i = 1, 2, 3, ..., n. Let $Q = P \cup t^*$. Suppose that $t_{i-1} < t^* < t_i$ for some $i \le n$. Let $Y_1 = \sup\{f(x) : x \in [t_{i-1}, t^*]\}$,

 $Y_2 = \sup\{f(x) : x \in [t^*, t_i]\}$, and $Y_0 = \sup\{f(x) : x \in [t_{i-1}, t_i]\}$. Then, by property of supremum, $Y_0 \ge Y_1$ and $Y_0 \ge Y_2$. Then,

$$U_Q f - U_P f = Y_1(t^* - t_{i-1}) + Y_2(t_i - t^*) - Y_0(t_i - t_{i-1}) \le 0$$

Thus, $U_Q f \leq U_P f$.

Exercise 76. (Resubmission,)

Assume that P and Q are partitions of the interval [a,b] and that f is a bounded function on [a,b]. Further assume that Q is a refinement of P. Determine whether $L_Q f \leq L_P f$, or $L_Q f \geq L_P f$. Then prove your assertion. $[L_Q f \geq L_P f]$

Proof. Let *P* be a partition of [a,b] such that $P = \{p_1, p_2, ..., p_n\}$ for i = 1, 2, 3, ..., n, and f be a bounded function on [a,b]. Let *Q* be a partition of [a,b] such that $Q = P \cap [p_{i-1}, p_i] = q_0 = p_{i-1}, q_1, q_2, ..., q_{m-1}, q_m = p_i$ for j = 1, 2, 3, ..., m. Then, by infinmum properties, $\inf\{f(x) : x \in [q_{j-1}, q_j]\} \ge \inf\{f(x) : x \in [p_{i-1}, p_i]\}$. Also, since $\sum_{q=1}^{n} (q_i - q_{i-1}) = |a - b| = \sum_{p=1}^{n} (p_i - p_{i-1})$,

$$L_Q f = \sum_{j=1}^m \inf\{f(x) : x \in [q_{j-1}, q_j]\}(q_j - q_{j-1}) \ge \sum_{q=1}^m \inf\{f(x) : x \in [p_{i-1}, p_i]\}(q_j - q_{j-1})$$

$$= \inf\{f(x) : x \in [p_{i-1}, p_i]\} \sum_{j=1}^{m} (q_j - q_{j-1}) = \inf\{f(x) : x \in [p_{i-1}, p_i]\} (p_i - p_{i-1})$$

$$\geq \sum_{i=1}^{n} \inf\{f(x) : x \in [p_{i-1}, p_i]\}(p_i - p_{i-1}) = L_P f$$

Thus, $L_Q f \geq L_P f$ if Q is a refinement of P.

Exercise 78. (Resubmission,)

Prove the following statement: If f is a bounded function with domain [a, b] and for every $\epsilon > 0$, there exists a partition P of [a, b] such that $U_P f - L_P f < \epsilon$, then f is Riemann Integrable on [a, b]. (Note: This condition is known as Riemann's condition.).

Proof. Let P be a partition of [a,b]. By Ex 1(b), Since $U_P f - L_P f < \epsilon$ for every $\epsilon > 0$, $U_P f - L_P f = 0$. Then, $U \int_a^b f \le L \int_a^b f$. If $U \int_a^b f - L \int_a^b f \ge 0$, Let P be a partition. Then, for any partition Q, since $L_Q f \le U_P f$, $L_P f$ is a lowerbound for the set of upper Riemann sums. By definition of infinmum, $L_P f$ has to be less than the greatest lowerbound. Thus, $L_P f \le U \int_a^b f$. Since $L \int_a^b f$ is the least upperbound, $L \int_a^b f \le U \int_a^b f$. Thus, since

 $U \int_a^b f \le L \int_a^b f$ and $L \int_a^b f \le U \int_a^b f$, $L \int_a^b f = U \int_a^b f$ and by definition, f is Riemann Integrable on [a, b].

Exercise 79. (Resubmission,)

Prove the following statement: If f is Riemann integrable on [a,b] then for every $\epsilon > 0$ there exists a partition P such that $U_P f - L_P f < \epsilon$

Proof. Let $\epsilon > 0$. For some partition R, Q on [a, b], by Ex13 (sup/inf property with epsilon)

$$U\int_{a}^{b} f + \frac{\epsilon}{2} > U_{R}f$$

$$L\int_{a}^{b} f - \frac{\epsilon}{2} < L_{Q}f \text{ implies } -L\int_{a}^{b} f + \frac{\epsilon}{2} > L_{R}f$$

Since f is Riemann integrable, $U \int_a^b f = L \int_a^b f$. Adding together, we get

$$U\int_{a}^{b} f + \frac{\epsilon}{2} - L\int_{a}^{b} f + \frac{\epsilon}{2} > U_{R}f - L_{Q}f \text{ implies } U_{R}f - L_{Q}f < \epsilon$$

Let P be a partition such that $P = R \cup Q$, then, P is a refinement of R and Q. Thus, by Ex75 and 76,

$$U_P f - L_P f \le U_R f - L_Q f < \epsilon$$

Thus, such partition exists.

Exercise 81. (Resubmission,)

Prove the following: If f and g are differentiable functions on the interval (a, b) and satisfy f'(x) = g'(x) for all $x \in (a, b)$, then f(x) = g(x) + k for some constant $k \in \mathbb{R}$.

Proof. Let h(x) = f(x) - g(x). Since f'(x) = g'(x), h'(x) = 0. By Mean Value Theorem (Quiz2 last question), h(x) has to be a constant function. Thus, f(x) - g(x) = k which implies f(x) = g(x) + k for some constant $k \in \mathbb{R}$.

Exercise 83. (Resubmission,)

Prove that a bounded function f is integrable on [a, b] if and only if there exists a sequence of partitions $(P_n)_{n=1}^{\infty}$ satisfying $\lim_{n\to\infty} [U_{P_n}f - L_{P_n}f] = 0$.

Proof. \Rightarrow Since f is Riemann integrable, by Ex78, for any ϵ there exists a partition P such that $U_P f - L_P f < \epsilon$. Choose $\epsilon = \frac{1}{n}$, then $U_P f - L_P f < \frac{1}{n}$. By squeeze theorem proved in the homework, $\lim_{n \to \infty} [U_{P_n} f - L_{P_n} f] = 0$.

 \Leftarrow Let $\epsilon > 0$. Since $\lim_{n \to \infty} [U_{P_n} f - L_{P_n} f] = 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$,

 $|U_{P_n}f - L_{P_n}f - 0| < \epsilon$. Since $U_{P_n}f - L_{P_n}f > 0$, $U_{P_n}f - L_{P_n}f < \epsilon$. Thus, by Ex78, f is integrable.

Exercise 87. (Resubmission,)

Suppose f is a Riemann integrable function on the interval [a,b] and $m \leq f(x) \leq M$. Prove that $m(b-a) \leq \int_b^a f(x) dx \leq M(b-a)$.

Proof. Let $P = \{a, b\}$, then, by integral properties,

$$m(b-a) \le L_P f < \int_a^b f(x) dx \le U_P f \le M(b-a)$$

Thus, $m(b-a) \le \int_b^a f(x)dx \le M(b-a)$.

Exercise 88. (Resubmission,)

Prove if f and g are Riemann integrable on [a,b], and $f(x) \leq g(x)$ for all $x \in [a,b]$. Then $\int_a^b f(x)dx \leq \int_a^b g(x)dx$.

Proof. Let $P = \{t_0, t_1, ..., t_n\}$ be a partition over [a, b]. Then, because $\int_a^b f(x) dx \le \int_a^b g(x) dx$, $\inf\{f(x): x \in [t_{i-1}, t_i]\} \le \inf\{g(x): x \in [t_{i-1}, t_i]\}$. Then,

$$L_P f = \sum_{i=1}^n \sup\{f(x) : x \in [t_{i-1}, t_i]\}(t_i - t_{i-1}) \le \sum_{i=1}^n \inf\{g(x) : x \in [t_{i-1}, t_i]\}(t_i - t_{i-1})$$

Thus, since f, g are integrable on $[a, b], L_P f \leq L_P g$.