

Performance

Exercises Computer Architecture

1 | Processor Benchmark & Performance

1.1	Wh	aich of the following statements are correct?
	0 0 0	The wall clock time is the total elapsed time , including I/O, Operating system overhead etc. Multi-threading improves the throughput of a process The CPU time does not include the I/O time Multi-threading improves the execution time of a process *per/benchmark-01**
1.2	Wh	aat is the throughput?
	0 0 0	performance per Watt (the number of FLOPS per Watt) rate of processing work (n jobs/second) the time between start and completion of event/task/program (n seconds) the percentage of time a system is up and running per/benchmark-02
1.3	Wh	nat is the SPEC?
	0	is a benchmark suit developed to measure performance based on the latest Java application feature is a benchmark that evaluates the power and performance characteristics of volume server class computers is the wordwide standard for measuring graphics performance based on professional applications is a bechmark suit designed to provide performance measurements that can be used to compare computer-intensive workloads on different computer systems
		per/benchmark-03
1.4	Wh	aat is the goal of the EEMBC Benchmark?
	0	to evaluate performance of embedded microprocessors

HEI-Vs / ZaS, AmA / 2024

	 to evaluate integer computation performance to measure the energy efficiency of different computer systems 	
	 to evaluate floating point performance 	
		per/benchmark-04
1.5	Which of the following is an energy efficiency metric?	
	☐ flops	
	Performance per watt	
	O Power consumption	
		per/benchmark-05
1.6	Both power consumption and performance per watt matters	s for an embed-
ded	system.	
	O True	
	○ False	
		per/benchmark-06
1.7	Processor performance	
	A program consists of 5'000 floating point instructions and 25'000 integer instruhas a clock rate of 2.0GHz. Floating point instructions take 7 cycles and integer 1 cycle.	
	a) How long does it take for this processor to run the program?	
	b) What is the average CPI for this processor for the given program?	
	c) Processor A runs program 2 consisting of 100'000 floating point instructions instructions. What is the average CPI for this program?	s and 50′000 integer
	d) Processor B has an average CPI for program 2 of 3.5. It's clock rate is 1.8GI does it take to execute the program?	Hz. How much time
	e) Which processor is faster and by how much?	
	Processor is times faster than processor	
		per/performance-01

1.8 Processor performance

Consider the following two machine designs with their respective CPI's for various instruction types. Computer A and Computer B have the same instruction set:

Instruction Type	CPI_A	CPI_B	Compiler 1 Mix
Data Manipulation	1.5	1.0	25%
Arithmetic	1.0	1.5	30%
Shifting	1.0	1.2	10%
Branching	4.0	2.0	25%
Multiply	20	12	10%

- a) What is the average CPI for each of the computers using this program?
- b) Computer A has a clock cycle time of 0.5ns. Computer B is running at 1.8GHz. Write a quantitative statement comparing the two computers.
- c) What would the clock rate of the slower computer have to be to equal performaner of the faster computer?

per/performance-02

1.9 Processor performance

A CPU run on a base frequency of 2GHz. It executes a program with 5 million instructions with the given instruction mix. newline What is the execution time of the program?

Instruction	Frequency	$\mathrm{CPI}_{\mathrm{instr}}$
ALU	50%	3
Load	20%	5
Store	10%	4
Branch	20%	3

per/performance-03

1.10 Processor performance

A CPU is designed for an optimal performance on a given program with the following characteristics. 25% of all instructions are floating point instructions with an average CPI of 4.0, in addition the program contains 2% FPSQR instructions with an average CPI of 20. All other instructions have an average CPI or 1.33.

There are two design alternatives:

- 1. Decrease CPI of FPSQR instructions to 2.0
- 2. Decrease the average CPI of all floating point instructions to 2.5

Which choice is best?

per/performance-04

1.11 Processor performance

We want to buy a new computer. It will mostly run programs P_1 and P_2 . What weigth w_1 and w_2 need the programs to have so that:

- a) CPU A the best buy?
- b) CPU B the best buy?

c) CPU C the best buy?

Program	CPU_A	CPU_B	CPU_C
Program P_1 (sec)	1	10	100
Program P_2 (sec)	100	10	1

per/performance-05

1.12 Processor performance

Given the following performance of two programs on three CPU's, user the geometric mean to calculate which computer is the fastest:

- a) CPU A is the fastest?
- b) CPU B is the fastest?
- c) CPU C is the fastest?

Program	CPU_A	CPU_B	CPU_C
P_1 (sec)	40	15	20
P_2 (sec)	40	1000	150

per/performance-06

1.13 Processor performance

Calculate the average CPI and the execution time for 5million instructions of the following instruction frequencies:

Instruction	Frequency	$\mathrm{CPI}_{\mathrm{instr}}$
ALU	40%	4
Load	30%	6
Store	5%	5
Branch	25%	4

The clock frequency of the CPU is 2 GHz

per/performance-07

1.14	What is the	best metric	for compari	nc performance?
------	-------------	-------------	-------------	-----------------

\bigcirc	arithmetic mean
\bigcirc	geometric mean

median

maximum performance

O harmonic mean

per/performance-08

1.15 Processor performance

Calculate the execution time in ms, supposing to have CPU with the following instruction frequencies:

Instruction	Frequency	$\mathrm{CPI}_{\mathrm{instr}}$
ALU	45%	5
Load	25%	6
Store	10%	5
Branch	20%	3

For 2 Million instructions and a CPU frequency of 3GHz.

per/performance-09

1.16 Amdahl's Law

An improvement of the floating point execution unit resulted in 2x faster floating point instructions. In average 10% of all instructions are floating point instruction for this processor.

What will be the overall speedup?

per/amdahls-law-01

1.17 Amdahl's Law

We want an overall speedup of 2 and can accelerate the floating point instructions by 4 times.

What should be the fraction of floating point instructions?

per/amdahls-law-02

1.18 Amdahl's Law

A program consists of 2 different elements. Part A has a duration of 15 and part B a duration of 5 time units. There are two optimization variants:

- 1. optimization of the A part by two times
- 2. optimization of the B part by five times

Which optimization is more advantageous? What are the implications?

per/amdahls-law-03

HEI-Vs / ZaS, AmA / 2024