Mining State-Space Graphs to Build Value-Function Representations

Bryan Silverthorn Craig Corcoran

9 December 2011

Department of Computer Science The University of Texas at Austin

Problem Description

- Model board game as an MDP
- We want a linear estimate of the value function:

$$V^*(x) = \max_{a \in \mathcal{A}_x} [R(x) + \gamma V(T(x, a))]$$
$$V(s) = w^T \phi(s)$$

- Good estimate of $V(s) \to \text{good greedy policy}$
- Generate $\phi(s)$ automatically

But how do we generate features?

 \dots mine the state-space graph:

What to do with the graph?

- ullet Build the weighted adjacency matrix W
- Form the graph Laplacian: L = D W
- Take k "smallest" eigenvectors: $Lv_i = \lambda_i v_i, \lambda_i \le \lambda_{i+1}$
 - (as in spectral clustering)
 - Good basis for smooth functions on graph \rightarrow features

Eigenvectors of Tic-Tac-Toe

Affinity Graph for Large Domains

In large games, using full state-space graph is intractable.

- Sample from recorded expert games
 - Reveals relevant region of state space
- Form k-NN graph in board space $\rightarrow W$
- Interpolate to new states (off-graph)

$$W_{ij} = \exp(-\frac{||x_i - x_j||^2}{2\sigma^2})$$

TTT Value-Function Prediction Error

Results in Go

Demo!

http://www.cs.utexas.edu/~bsilvert/ttt.html

Future Work

Obstacles to scaling

- Large number of samples
 - \bullet Constructing k-NN graph
 - Eigenvalue computation

Work in Progress

- Using k-means to cluster samples
 - Perform feature generation on subgraphs
- Use a better affinity space representation
 - Use hand-crafted, symmetry-invariant features
 - Feature amplification
 - Learning