

照明智能照明系统 Modbus 通信协议

一、通讯传送方式:

序号	技术指针 / 规格	规定
1	物理界面	RS485 半双工/有线以太网
2	波特率	采用 RS485 通信时,波特率为 9600bps
3	传输方式	同时支持 MODBUS-RTU 和 MODBUS-TCP
4	数据流格式	地址码 功能码 数据区 CRC 高字节 CRC 低字节
5	地址	1-247 (网关地址)
6	功能代码	3, 6, 16
7	数据数量	<128
8	数据	0-255
9	CRC 校验和	CRC-16
10	字节格式	10 位格式: 1 起始位+8 数据位+1 停止位, 无校验
11	校验方式	CRC-16
12	0 地址	广播地址
13	接口定义	A (+),B(-),GND 三线制或有线以太网

Modbus 协议通讯接口形式

通讯传送分为独立的信息头,和发送的编码数据。通讯传送方式定义与 ModBusRTU 通讯规约相兼容:

初始结构 = ≥4字节的时间

地址码 = 1 字节

功能码 = 1 字节

数据区 = N 字节

错误校检 = 16 位 CRC 码

结束结构 = ≥4字节的时间

初始结构与结束结构 = \geq 4 字节的时间,就是要求每个命令帧**字节间要连续发送**,但是**通信命令帧** 之间发送时间间隔要大于 4 个字节数的时间,否则系统无法识别。

24 小时服务热线: 15813859623 黎工 网址: www.ulaide.cn

1、**地址码**: 地址码为通讯传送的第一个字节。该地址定义为优莱德智能网关拨码开关设置的地址。每个网关都有具有唯一的地址码,并且响应回送均以各自的地址码开始。

网关和模块地址的设置 网关和模块都有一个 8 位的拨码开关,其数值表示方法为二进制数表示。若开关拨向上,则该位位值有效,若开关拨向下,则该位位值为 0。其中第 8 位拨码与地址无关,用于设置特定功能用,其余低 7 位根据实际拨到需要的值。前 7 位拨码可标识的地址范围为 0~127。**拨码开关各位表示的值如表:**

位号	1	2	3	4	5	6	7	8
位值	1	2	4	8	16	32	64	X

- **2、功能码:** 通讯传送的第二个字节。ModBus 通讯规约定义功能号为1到127。优莱德智能照明系统只利用其中的一部分功能码。即功能码: 3,6,16。
- **3、数据区:**数据区是根据不同的功能码而不同。数据区可以是实际数值、设置点、主机发送给从机或从机发送给主机的地址。
- 4、CRC 码: 二字节的错误检测码。
- 二、寄存器定义
- 1、智能开关模块或调光模块回路状态寄存器

功能码	寄存器地址	功能	数据解释
03/06/16	0	0号模块回路1状态	
03/06/16	1	0号模块回路2状态	
03/06/16	2	0号模块回路3状态	
03/06/16	3	0号模块回路4状态	
03/06/16	4	0号模块回路5状态	
03/06/16	5	0号模块回路6状态	
03/06/16	6	0号模块回路7状态	
03/06/16	7	0号模块回路8状态	
03/06/16	8	0号模块回路9状态	
03/06/16	9	0 号模块回路 10 状态	
03/06/16	10	0 号模块回路 11 状态	
03/06/16	11	0 号模块回路 12 状态	
03/06/16	12	1号模块回路1状态	
03/06/16	13	1号模块回路2状态	
03/06/16	14	1号模块回路3状态	
03/06/16	15	1号模块回路4状态	
03/06/16	16	1号模块回路5状态	
03/06/16	17	1号模块回路6状态	
03/06/16	18	1号模块回路7状态	
03/06/16	19	1号模块回路8状态	
03/06/16	20	1号模块回路9状态	

网址: www.ulaide.cn

03/06/16	21	1号模块回路10状态	
03/06/16	22	1号模块回路 11 状态	
03/06/16	23	1号模块回路 12 状态	
•••••	•••••	•••••	•••••
03/06/16	1524	127 号模块回路 1 状态	
03/06/16	1525	127 号模块回路 2 状态	
03/06/16	1526	127号模块回路 3 状态	
03/06/16	1527	127号模块回路 4 状态	
03/06/16	1528	127号模块回路5状态	
03/06/16	1529	127号模块回路 6 状态	
03/06/16	1530	127号模块回路7状态	
03/06/16	1531	127号模块回路8状态	
03/06/16	1532	127号模块回路9状态	
03/06/16	1533	127 号模块回路 10 状态	
03/06/16	1534	127 号模块回路 11 状态	
03/06/16	1535	127 号模块回路 12 状态	

- (1)寄存器地址=模块地址*12+回路序号,回路序号从0起。
- (2)对于调光模块,回路状态寄存器的取值范围为: 0-250,取值为 0 时,表示该回路亮度最小,即关灯状态;取值为 250 时,表示回路亮度达到 100%。
- (3)对于开关模块,回路状态寄存器的取值范围为: 0 或 1 。 0 表示该回路状态为关灯; 1 表示该回路状态为开灯。

2、全开/全关寄存器

功能码	寄存器地址	功能	数据解释
03/06	1536	全开/全关	10-全开 11全开。给寄存器 1536 赋值为 10,则打 开该网关下所有模块的回路。赋值为 11,则关闭该网 关下所有模块的回路。

3、调用区域预设的场景模式寄存器(只写):

功能码	寄存器地址	功能	数据解释
03/06	1537	区域 1 场景寄存器	调用智能照明配置软件预设的区域1的场景模式。如
			给寄存器 1537 赋值 0,则触发区域 1 的 0 号场景模式。
03/06	1538	区域 2 场景寄存器	调用智能照明配置软件预设的区域2的场景模式。如
			给寄存器 1538 赋值 0,则触发区域 2 的 0 号场景模式。
•••••	•••••	•••••	同上
03/06	1636	区域 100 场景寄存	同上
		器	

1537-1636 共 100 个寄存器,对应 1-100 号区域的场景寄存器,每个寄存器取值为该区域的场景序号。

4、使能/禁止定时功能寄存器

功能码	寄存器地址	功能	数据解释
03/06	1638	使能/禁止定时	给寄存器 1638 赋值 1,启动网关定时功能。给寄存器
			1638 赋值 0, 关闭网关定时功能。

5、刷新回路状态寄存器

功能码	寄存器地址	功能	数据解释
03/06	1639	刷新回路状态	给寄存器 1639 赋值为 1,则网关读取一遍所有开关、
			调光模块的最新状态到网关。

6、模块在线状态寄存器:

功能码	寄存器地址	功能	数据解释
03	1700	0号模块在线状态	0-模块在线,通信正常;1-模块不在线,通信故障
03	1701	1号模块在线状态	0-模块在线,通信正常;1-模块不在线,通信故障
•••••	•••••	•••••	
03	1827	127 号模块在线状态	

7、温度、湿度、PM2.5 状态寄存器(只读)

功能码	寄存器地址	功能	数据解释
03	1890	温度	寄存器值/10 单位: ℃,如读到的值为 285,则需用 285/10
			转为28.5℃。负数采用补码算法,用 OXFFFF
			减去该数据后加 1,换算成十进制数据后÷10,然后
			取反。
03	1891	湿度	寄存器值/10 单位: %rh, 如读到的值为 387, 则需用 387/10
			转为 38.7%rh
03	1892	PM2. 5	PM2.5 浓度,单位 : μg/m ₃

8、电压、电流、功率、用电量寄存器(只读)

<u>от ладах</u>	- 100 10 10 10 10 10 10 10 10 10 10 10 10		
功能码	寄存器地址	功能	数据解释
03	1900	电压	0 号模块回路 1 电压值
03	1901	电流	0号模块回路1电流值
03	1902	功率	0号模块回路1功率值
03	1903	用电量	0号模块回路1用电量值
03	1904	电压	0 号模块回路 2 电压值
03	1905	电流	0 号模块回路 2 电流值
03	1906	功率	0号模块回路2功率值
03	1907	用电量	0号模块回路2用电量值
03	1908	电压	0 号模块回路 3 电压值
03	1909	电流	0 号模块回路 3 电流值
03	1910	功率	0号模块回路3功率值
03	1911	用电量	0号模块回路3用电量值
03	1912	电压	0号模块回路4电压值

24 小时服务热线: 15813859623 黎工 网址: <u>www.ulaide.cn</u>

03	1913	电流	0号模块回路4电流值
03	1914	功率	0号模块回路 4 功率值
03	1915	用电量	0号模块回路4用电量值
03	1916	电压	0号模块回路5电压值
03	1917	电流	0号模块回路5电流值
03	1918	功率	0号模块回路5功率值
03	1919	用电量	0号模块回路5用电量值
03	1920	电压	0号模块回路6电压值
03	1921	电流	0号模块回路6电流值
03	1922	功率	0号模块回路6功率值
03	1923	用电量	0号模块回路6用电量值
03	1924	电压	1号模块回路1电压值
03	1925	电流	1号模块回路1电流值
03	1926	功率	1号模块回路1功率值
03	1927	用电量	1号模块回路1用电量值
03	1928	电压	1号模块回路2电压值
03	1929	电流	1号模块回路2电流值
03	1930	功率	1号模块回路2功率值
03	1931	用电量	1号模块回路2用电量值
03	1932	电压	1号模块回路3电压值
03	1933	电流	1号模块回路3电流值
03	1934	功率	1号模块回路3功率值
03	1935	用电量	1号模块回路3用电量值
03	1936	电压	1号模块回路4电压值
03	1937	电流	1号模块回路4电流值
03	1938	功率	1号模块回路 4 功率值
03	1939	用电量	1号模块回路4用电量值
03	1940	电压	1号模块回路5电压值
03	1941	电流	1号模块回路5电流值
03	1942	功率	1号模块回路5功率值
03	1943	用电量	1号模块回路5用电量值
03	1944	电压	1号模块回路6电压值
03	1945	电流	1号模块回路6电流值
03	1946	功率	1号模块回路6功率值
03	1947	用电量	1号模块回路6用电量值
•••••	•••••	•••••	•••••
/1\ H.I		推址地址1.04 同财 🚖	

- (1) 电压寄存器地址=模块地址*24+回路序号*4,回路序号从0起。
- (2) 电流寄存器地址=模块地址*24+回路序号*4+1,回路序号从0起。
- (3) 功率寄存器地址=模块地址*24+回路序号*4+2,回路序号从0起。
- (4) 用电量寄存器地址=模块地址*24+回路序*4号+3,回路序号从0起。

三、modbus-rtu 功能码定义

1、03号命令:读寄存器的值

网关地址	1字节	网关拨码值
命令代码	1字节	0x03
寄存器起始地址	2字节	0x0000-0xFFFF
寄存器数量	2字节	
CRC 校验	2字节	

返回:

网关地址	1字节	网关拨码值
命令代码	1字节	0x03
字节数	1字节	2*N
寄存器值	N*2 字节	
CRC 校验	2字节	

N=寄存器数量

2、06号命令:写单个寄存器的值

网关地址	1字节	网关拨码值
命令代码	1字节	0x06
寄存器起始地址	2字节	0x0000-0xFFFF
写入值	2字节	0x0000-0xFFFF
CRC 校验	2字节	

返回:

网关地址	1字节	网关拨码值
命令代码	1字节	0x06
寄存器起始地址	2字节	0x0000-0xFFFF
写入值	2字节	0x0000-0xFFFF
CRC 校验	2字节	

3、16号命令:写多个寄存器的值

PC 或 PLC 发送命令:

网关地址	1字节	网关拨码值
命令代码	1字节	0x10
起始地址	2字节	0x0000-0xFFFF
写入寄存器个数	2字节	0x0001-0x007B
写入字节数	1字节	2*N
写入值	N*2 字节	
CRC 校验	2字节	

N=写入寄存器个数

返回:

网关地址	1字节	网关拨码值
命令代码	1字节	0x10
起始地址	2字节	0x0000-0xFFFF
写入寄存器个数	2字节	0x0001-0x007B
CRC 校验	2字节	

四、MODBUS-TCP 功能码定义

1、03号命令:读寄存器的值

4 1/1/ / 1/2/	4 14 MM MA MT	
事务处理标识	2字节	可以理解为报文的序列号,一般每次通信
		之后就要加1以区别不同的通信数据报文。
协议标识符	2字节	00 00 表示 ModbusTCP 协议。
长度	2字节	表示接下来的数据长度,单位为字节。
网关地址	1字节	网关拨码值
命令代码	1字节	0x03
寄存器起始地址	2字节	0x0000-0xFFFF
寄存器数量	2字节	

返回:

事务处理标识	2字节	可以理解为报文的序列号,一般每次通信
		之后就要加1以区别不同的通信数据报文。
协议标识符	2字节	00 00 表示 ModbusTCP 协议。
长度	2字节	表示接下来的数据长度,单位为字节。
网关地址	1字节	网关拨码值
命令代码	1字节	0x03
字节数	1字节	2*N
寄存器值	N*2 字节	

N=寄存器数量

2、06号命令:写单个寄存器的值

事务处理标识	2字节	可以理解为报文的序列号,一般每次通信之后
		就要加1以区别不同的通信数据报文。
协议标识符	2字节	00 00 表示 ModbusTCP 协议。
长度	2字节	表示接下来的数据长度,单位为字节。
网关地址	1字节	网关拨码值
命令代码	1字节	0x06
寄存器起始地址	2字节	0x0000-0xFFFF
写入值	2字节	0x0000-0xFFFF

返回:

事务处理标识	2字节	可以理解为报文的序列号,一般每次通信之后
		就要加1以区别不同的通信数据报文。
协议标识符	2字节	00 00 表示 ModbusTCP 协议。
长度	2字节	表示接下来的数据长度,单位为字节。
网关地址	1字节	网关拨码值
命令代码	1字节	0x06
寄存器起始地址	2字节	0x0000-0xFFFF
写入值	2字节	0x0000-0xFFFF

3、16号命令:写多个寄存器的值

PC 或 PLC 发送命令:

事务处理标识	2字节	可以理解为报文的序列号,一般每次通信之后
		就要加1以区别不同的通信数据报文。
协议标识符	2字节	00 00 表示 ModbusTCP 协议。
长度	2字节	表示接下来的数据长度,单位为字节。

网关地址	1字节	网关拨码值
命令代码	1字节	0x10
起始地址	2字节	0x0000-0xFFFF
写入寄存器个数	2字节	0x0001-0x007B
写入字节数	1字节	2*N
写入值	N*2 字节	

N=写入寄存器个数

返回:

事务处理标识	2字节	可以理解为报文的序列号,一般每次通信之后
		就要加1以区别不同的通信数据报文。
协议标识符	2字节	00 00 表示 ModbusTCP 协议。
长度	2字节	表示接下来的数据长度,单位为字节。
网关地址	1字节	网关拨码值
命令代码	1字节	0x10
起始地址	2字节	0x0000-0xFFFF
写入寄存器个数	2字节	0x0001-0x007B

五、举例