خلاصهای از مباحث کلاس حل تمرین

استاد درس: دکتر کریمیپور

جلسهی اول: بهدست آوردن گروه همولوژی فضاهای مختلف و بحثهای درسی دستیار درس: حسین محمدی گردآوری: حانیه ملکی ۱۴۰۲ اسفند ۱۴۰۲

در این جلسه به سوالات زیر پاسخ دادیم:

- $H_n(S^k)$ عمی دو بعدی : ساختار بحث طوری است که میتوانیم روند بدست آوردن : در در بعدی : simplical complex را به هر
 - : $H_n(S^k)$ بررسی کردن مفاهیم روند بدست آوردن .۲
 - گروههای آبلی آزاد و مقید
 - گروه خارج قسمتی
 - عملگر مرز ∂_r عملگرخطی است روی فضای برداری r-chain ها.
 - ۳. بحث در مورد «تنها پنج چندوجهی منتظم وجود دارند.»

همچنین در مورد موارد زیر بحث کردیم:

- قضیه هوروویچ ۱
- ۲. راههای به دست آوردن گروههای همولوژی و هموتویی
 - ۳. آبلی بودن گروههای هموتوپی با مرتبه بالا.

منابعی که در حین جلسه به آنها اشاره شد:

- ۱. تنها پنج چندوجهی منتظم داریم: منبع ۲ ، منبع ۳.
 - ۲. گروه هموتوپیهای مختلف کرهها
 - ۳. گروه همولوژیهای مختلف کره
 - ۴. قضیه هوروویچ: منبع اول ، منبع دوم
 - ۵. آبلی بودن گروههای هموتوپی بالا ^۲: منبع

¹Hurewicz theorem

 $[\]pi_n(X,x_0)$ منظورمان n>1 است در گروه

به طور خلاصه، دقیقا این سوالات را بررسی کردیم:

۱. گروههای H_1 ، H_0 و H_2 فضای S^2 را بررسی کردیم. همچنین همانندسازی زیر را به عنوان روشی آسان تر برای محاسبه بررسی کردیم:

free abelian group + manipulations \longleftrightarrow vector space + linear operator

- ۲. محاسبهی گروه هومولوژی اول فضای $\mathbb{R}P^2$
- ۳. نکته ای خارج از درس در مورد گروه هومولوژی چنبره تصویر بازشده ی یک چنبره در صفحه ی مختلط ($^{\text{TUHP}}$) و با متریک پوانکاره که انحنای منفی دارد قرار دارد. نمی توان از صفحه ی حقیقی، چنبره با 2 < q به دست آورد.

۴. قضیه ی هوروویچ را تا حد پایین بررسی کردیم. قضیه ی هوروویچ، تحت شرایط خاصی قضیه ی هوروویچ، تحت شرایط خاصی گروههای هوموتوپی و هومولوژی را به یکدیگر ربط می دهد. قضیه: برای هر فضای X که همبند مسیری باشد، همواره می توان هومومورفیسمی بین $\pi_n(X)$ و $\pi_n(X)$ که بیدا کرد که π بیک عدد طبیعی است.

 $h_{\star}:\pi_n(X) \to H_n(X)$

برای n=1 نگاشت هوروویچ را میتوان به صورت یک ایزومورفیسم تعریف کرد. برای این کار کافی است بدانیم که آبلی شده می $\pi_1(X)$ همان $\pi_1(X)$ است.

$$\tilde{h_{\star}} = \frac{\pi_1(X)}{[\pi_1(X), \pi_1(X)]} \to H_1(X)$$

فرایند آبلی کردن به این صورت است که یک جابه جاگر تعریف کنیم که به جای آنکه ab ساخته شده باشد، از $aba^{-1}b^{-1}$ ساخته شده است.

برای گروههای مرتبه ی بالاتر، اگر فضا n-1)-connected باشد، نگاشت هوروویچ ایزومورفیسم خواهد بود. به صورت نادقیق، (n-1)-connected) به این معناست که بتوان از تمام نقاط آن (n-1)-dimensional hyper-surface رد کرد. می دانیم فضای T^n اینگونه نیست. یک مثال دیگر:

$$H_k(S^n, \mathbb{Z}) = \begin{cases} \mathbb{Z} & k = 0, 2 \\ \{e\} & \text{else} \end{cases}$$

³Upper half plane