Stress testing the Standard Model via vector-boson scattering at the LHC

Mathieu PELLEN

University of Freiburg

Invited Topical Talk

DPG - Dortmund 2021, Germany

18th of March 2021

→ Illustration of Giordano Bruno's philosophical ideas (XVIthcentury)

<u>LHC</u>: Great tool to probe fundamental interactions at high energies

→ Cross talk between **experiment** and **theory**

VBS: smallest cross sections at the LHC!

Vector-Boson Scattering (VBS) at the LHC

→ Scattering of vector bosons!

Vector-Boson Scattering (VBS) at the LHC

→ Scattering of vector bosons!

Leptonic signature: $2j + 4\ell$

- pp $\rightarrow \ell^{\pm} \nu_{\ell} \ell'^{\pm} \nu_{\ell'}$ jj (ss-WW)
- pp $\rightarrow \ell^{\pm} \nu_{\ell} \ell'^{+} \ell'^{-}$ ji (WZ)
- pp $\rightarrow \ell^+\ell^-\ell'^+\ell'^-$ jj (ZZ)
- pp $ightarrow \ell^{\pm}
 u_{\ell} \ell'^{\mp}
 u_{\ell'} jj ext{ (os-WW)}$

Semi-leptonic signature: $4j + 2\ell$

- pp $\rightarrow \ell^{\pm} \nu_{\ell} 4j$ (ss-WW, os-WW, WZ)
- pp $\rightarrow \ell^+\ell^-$ 4j (WZ, ZZ)

Fully hadronic signature: 6j

• pp \rightarrow 6j (ss-WW, os-WW, WZ, ZZ)

Why this is interesting

- Electroweak symmetry breaking
- Unitarisation due to Higgs boson
- Polarisation measurements
- Measurements of SM parameters
 - → Higgs width
- Triple/quartic gauge coupling
 - \rightarrow EFT
- ..

[Denner, Hahn, 1997] Cross section for longitudinal W⁺W⁻ scattering.

source: Stefanie Todt,

https://indico.cern.ch/event/777988/contributions/3410603

Underlying idea

Delicate structure in the Standard Model:

→ Is it modified/disturbed by new phenomena?

Underlying idea

Delicate structure in the Standard Model:

- → Is it modified/disturbed by new phenomena?
- → To help in this quest: HL-HE LHC programme

→ Great jump in precision

Precision physics for VBS

Assume scaling of uncertainties with 1/VL

▶ dedicated studies with detector simulation for example in CMS-PAS-SMP-14-008

Integrated Luminosity	36 fb	150 fb	300 fb	3000 fb-
Year	2016	2019	2022	2038
EW(VBS) W±W±	20%	10%	7%	2%
EW (VBS) ZZ	35%	18%	13%	6%
EW (VBS) WZ	35% personally anticipated	18%	13%	6%

source: Jakob Salfeld-Nebgen, https://indico.cern.ch/event/711256

Precision physics for VBS

Assume scaling of uncertainties with 1/√L

▶ dedicated studies with detector simulation for example in CMS-PAS-SMP-14-008

Integrated Luminosity	36 fb	150 fb	300 fb	3000 fb-
Year	2016	2019	2022	2038
EW(VBS) W±W±	20%	10%	7%	2%
EW (VBS) ZZ	35%	18%	13%	6%
EW (VBS) WZ	35% personally anticipated	18%	13%	6%

source: Jakob Salfeld-Nebgen, https://indico.cern.ch/event/711256

This talk

- How to get to per-cent uncertainties from the theory side
- Importance of interplay between experiment and theory
- (Some) Pitfalls to avoid
- → Focused on Standard Model physics

Outline:

- Vector-boson scattering at the LHC
 - → Theory definition and how to measure it
- The devil is in the detail
 - → Kinematics and theory approximations
- Going beyond current work
 - \rightarrow an outlook

Example: pp $\rightarrow \mu^+ \nu_{\mu} e^+ \nu_{e} jj$ (aka same-sign WW VBS)

Example: pp $\rightarrow \mu^+ \nu_{\mu} e^+ \nu_{e} jj$ (aka same-sign WW VBS)

VBS diagrams

More diagrams contribute ...

VBS signatures possess more than VBS contributions:

→ All contributions are experimentally measured

(VBS, tri-boson, decay chains, etc.)

Even more (QCD) diagrams ...

Even more (QCD) diagrams ...

With 2 different amplitudes \rightarrow 3 different contributions:

- $\mathcal{O}(\alpha^6)$: EW contribution/signal
- $\mathcal{O}\left(\alpha_{\rm s}\alpha^{5}\right)$: interference
- $\mathcal{O}(\alpha_s^2 \alpha^4)$: QCD contribution/background

→ How to measure the EW component (including VBS) then?

- The contributions have different kinematic
- Use of exclusive cuts to enhance the EW contribution
 - \rightarrow typical cuts are $m_{\rm ii} > 500 \, {\rm GeV}$ and $|\Delta y_{\rm ii}| > 2.5$
 - → typical kinematic:

back-to-back jets at large rapidities + central gauge bosons

- The contributions have different kinematic
- Use of exclusive cuts to enhance the EW contribution
 - \rightarrow typical cuts are $m_{\rm ii} > 500 \, {\rm GeV}$ and $|\Delta y_{\rm ii}| > 2.5$
 - → typical kinematic:

back-to-back jets at large rapidities + central gauge bosons

- → Solution: Exclusive phase-space with ...
- ... irreducible background (interference+QCD) subtracted

- The contributions have different kinematic
- Use of exclusive cuts to enhance the EW contribution
 - \rightarrow typical cuts are $m_{\rm ii} > 500 \, {\rm GeV}$ and $|\Delta y_{\rm ii}| > 2.5$
 - → typical kinematic:

back-to-back jets at large rapidities + central gauge bosons

- → Solution: Exclusive phase-space with ...
- ... irreducible background (interference+QCD) subtracted
- ∧ VBS contributions appear also in the interference
- ↑ Theory dependent measurement

Moving on to NLO

ightarrow Order $\mathcal{O}\left(\alpha_{\rm s}\alpha^6\right)$ and $\mathcal{O}\left(\alpha_{\rm s}^2\alpha^5\right)$: QCD and EW corrections mix

At NLO

Meaningless distinction between EW and QCD component

Moving on to NLO

ightarrow Order $\mathcal{O}\left(\alpha_{\rm s}\alpha^6\right)$ and $\mathcal{O}\left(\alpha_{\rm s}^{\;2}\alpha^5\right)$: QCD and EW corrections mix

At NLO

Meaningless distinction between EW and QCD component

Solution: Combined measurement of all the contributions

→ clear physical interpretation

$pp \rightarrow W^{\pm}W^{\pm}jj$ of full NLO

[Biedermann, Denner, MP; 1708.00268]

- Different LO and NLO behaviours
 A Large EW corrections: intrinsic feature of VBS at the LHC
 - \rightarrow Now available in Powheg [Chiesa, Denner, Lang, MP; 1906.01863]

Comparison with data

\rightarrow Recent ss-WW and WZ analysis of CMS with 137 fb⁻¹ [2005.01173]

Process	$\sigma~\mathcal{B}~(fb)$	Th. pred. LO (fb)	Th. pred. NLO (fb)
EW WW	3.98 ± 0.45 $0.37 \mathrm{stat} \pm 0.25 \mathrm{syst}$	3.93 ± 0.57	3.31 ± 0.47
EW+QCD WW	4.42 ± 0.47 $0.39 \text{ stat} \pm 0.25 \text{ syst}$	$\textbf{4.34} \pm \textbf{0.69}$	3.72 ± 0.59
EW WZ	1.81 ± 0.41 $0.39 \text{ stat} \pm 0.14 \text{ syst}$	$\textbf{1.41} \pm \textbf{0.21}$	1.24 ± 0.18
EW+QCD WZ	4.97 ± 0.46 0.40 stat ± 0.23 syst	4.54 ± 0.90	4.36 ± 0.88
QCD WZ	3.15 ± 0.49 $0.45 \text{ stat} \pm 0.18 \text{ syst}$	3.12 ± 0.70	3.12 ± 0.70

[→] LO: MADGRAPH5_AMC@NLO+PYTHIA

NB: Uncertainty for the NLO numbers are from the LO 7-scales variation.

→ Set basis of future precision measurements

[→] NLO: MadGraph5_aMC@NLO+PYTHIA + NLO corr. from [Biedermann, Denner, MP; 1708.00268] or [Denner, Dittmaier, Maierhöfer, MP, Schwan; 1904.00882] but only to EW signal

- The devil is in the detail
 - → Kinematics and theory approximations

Kinematics and approximations

- Typically cuts $m_{\rm ij} > 500 \, {\rm GeV}$
 - \rightarrow Relaxed for rarest processes
 - $ightarrow m_{
 m ij} > 100\,{
 m GeV}$ (ZZ analysis of [arXiv:1708.02812])

♠ EW component possesses VBS+tri-boson+other contributions

Example of ZZ VBS at NLO

[Denner, Franken, MP, Schmidt; 2009.00411]

ightarrow Effects of tri-boson (at NLO) even when using $m_{
m jj} > 100\,{
m GeV}$

Quality of the VBS approximation (neglecting tri-boson contributions)

- [Ballestrero, MP et al.; 1803.07943]
 - The approximations are worse at NLO
 - Approximation can fail by up to 20% even in fiducial regions

Lessons learnt

- For inclusive phase spaces, use full computations (including tri-bosons)
- For exclusive phase spaces, approximate computations OK
- Subtracting tri-boson in measurements is dangerous

Lessons learnt

- For inclusive phase spaces, use full computations (including tri-bosons)
- For exclusive phase spaces, approximate computations OK
- Subtracting tri-boson in measurements is dangerous

Solution:

- Different phase spaces
 - → Sensitive to different effects
 - \rightarrow Great for exp./th. comparisons
- CMS ZZ measurement with $137 \, \mathrm{fb}^{-1}_{[2008.07013]}$
- → Disentangles all physical effects

Particle type	Selection			
ZZjj inclusive				
Leptons	$p_{ m T}(\ell_1) > 20{ m GeV} \ p_{ m T}(\ell_2) > 10{ m GeV} \ p_{ m T}(\ell) > 5{ m GeV} \ \eta(\ell) < 2.5$			
Z and ZZ	$60 < m(\ell\ell) < 120 \text{GeV}$ $m(4\ell) > 180 \text{GeV}$			
Jets	at least 2 $p_{\mathrm{T}}(\mathbf{j}) > 30\mathrm{GeV}$ $ \eta(\mathbf{j}) < 4.7$ $m_{\mathbf{jj}} > 100\mathrm{GeV}$ $\Delta R(\ell,\mathbf{j}) > 0.4$ for each ℓ,\mathbf{j}			
VBS-enriched (loose)				
Jets	ZZjj inclusive + $ \Delta \eta_{\rm jj} > 2.4$ $m_{\rm jj} > 400{\rm GeV}$			
VBS-enriched (tight)				
Jets	ZZjj inclusive + $ \Delta \eta_{ m jj} > 2.4$ $m_{ m jj} > 1{ m TeV}$			

- Going beyond current work
 - \rightarrow an outlook

Going beyond current work (I)

→ Full use of NLO+PS simulations (example ss-WW)

ightarrow NLO+PS accuracy not yet fully used in experimental analyses

Going beyond current work (I)

→ Full use of NLO+PS simulations (example ss-WW)

 \rightarrow NLO+PS accuracy not yet fully used in experimental analyses

Order	$\mathcal{O}\left(\alpha^{7}\right)$	$\mathcal{O}\left(\frac{\alpha_{s}\alpha^{6}}{}\right)$	$\mathcal{O}\left(\alpha_{\rm s}^2\alpha^5\right)$	$\mathcal{O}\left(\alpha_{s}^{3}\alpha^{4}\right)$
NLO	✓	✓	✓	√
NLO+PS	✓	√ *	X	√

- $\mathcal{O}\left(\alpha^7\right)$ [Biedermann, Denner, MP; 1611.02951, 1708.00268] \rightarrow +PS: [Chiesa, Denner, Lang, MP; 1906.01863]
- $\mathcal{O}\left(\alpha_s\alpha^6\right)$ [Biedermann, Denner, MP; 1708.00268] [Jäger, Oleari, Zeppenfeld; 0907.0580]* [Denner, Hošeková, Kallweit; 1209.2389]* \rightarrow +PS: [Jäger, Zanderighi; 1108.0864]*
- $\mathcal{O}\left(\alpha_s^2\alpha^5\right)$ [Biedermann, Denner, MP; 1708.00268]
- $\mathcal{O}\left(\alpha_s^3\alpha^4\right)$ [Biedermann, Denner, MP; 1708.00268] [Melia et al.; 1007.5313, 1104.2327], [Campanario et al.; 1311.6738] \rightarrow +PS: [Melia et al.; 1102.4846], [Melia et al.; 1102.4846]
- (*) Computations in the VBS-approximation i.e. t-u interferences and tri-boson contributions neglected

Soon similar accuracy for other channels

→ Precise comparison against experimental measurements

Going beyond current work (II)

→ Large EW corrections: intrinsic feature of VBS at the LHC

[Biedermann, Denner, MP; 1611.02951] (error band: statistically uncertainty at $3000 \, \mathrm{fb}^{-1}$)

Sensitive to EW corrections at High-Luminosity LHC

→ Homework for theorists: compute them in new-physics models

Going beyond current work (III)

→ Exploit theory understanding in parton shower

Large differences for third-jet observables (only at NLO)

→ Understood now (recoil scheme) [Jäger, Karlberg, Plätzer, Scheller, Zaro; 2003.12435]

Allows for the use of jet veto in experimental analyses

 \rightarrow Homework for theorists: compute VBS+1j at NLO QCD

Going beyond current work (IV)

→ Semi-leptonic signatures

Next step after leptonic measurements of VBS:

- \rightarrow measuring the EW production of $\ell\nu_{\ell} + 4j$ and $\ell^{+}\ell^{-} + 4j$
 - Large cross sections
 - Great potential for new physics studies
 - Huge and complicated backgrounds
- → Challenge for both theory and experiment!
 - Limit of current (LO/NLO) predictions (very CPU intensive)
 - Difficult experimental analyses

Summary

Vector-boson scattering at the LHC

- Physical definition
- Comparisons between theory and experiment
 - Full measurement vs. full predictions
 - Subtracted measurements vs. approximate predictions
 - Use of different phase-space regions
 - \rightarrow Best way to get most of VBS physics in a transparent way
- Possible directions to go beyond current work
 - → Precision programme at the LHC
- Potential for exciting studies in Standard Model and beyond
 - → Polarisation, concrete new-physics models, EFT, ...
- ∧ Cross talk between theory and experiment is crucial

Going even beyond ...

Review

Vector-Boson Scattering at the LHC: unravelling the Electroweak sector

[arXiv:2102.10991]

Roberto Covarelli, MP, Marco Zaro

Thank you

Back-up slides

BACK-UP