

FACULTÉ DES SCIENCES ET TECHNIQUES ERRACHIDIA

Module: Méthodes numériques (M148)

S4, PARCOURS: MIP

Exercices de travaux dirigés avec correction

A.U. 2019/2020

Année U.: 2019/2020

Module: M148

Série n^01

Interpolation polynômiale

Exercice 1:

On considère (n+1) points distincts $\{x_0, x_1, \dots, x_n\}$.

- 1. Montrer que les polynômes $\{l_i\}_{i=0,\dots,n}$ de Lagrange forment une base de \mathcal{P}_n (l'espace vectoriel des polynômes de degré n), vérifient $l_i(x_k) = \delta_{i,k}$ où $\delta_{i,k} = \begin{cases} 1 & \text{si } i = k \\ 0 & \text{si } i \neq k \end{cases}$
- 2. Montrer que $\forall 0 \leq m \leq n$ on a : $\sum_{i=0}^{n} l_i(x) x_i^m = x^m.$

Exercice 2:

On considère une fonction $f \in C^{n+1}([a,b])$, (n+1) noeuds distincts $\{(x_i,y_i)\}_{i=0,\dots,n}$ avec $(y_i:=f(x_i))$, et on note $\omega_i(x)=\prod_{j=0}^{i-1}(x-x_j)$, le polynôme de degré i associés aux points $\{x_j\}_{j=0,\dots,i-1}$.

1. Montrer que le polynôme qui interpole f aux noeuds $\{(x_i,y_i)\}_{i=0,\dots,n}$, s'écrit

$$P_n(x) = \sum_{i=0}^{n} \frac{\omega_{n+1}(x)}{(x - x_i)\omega'_{n+1}(x_i)} y_i.$$

2. Montrer que : $\forall x \in [a, b], \exists \xi_x \in [a, b]$ tel que $E_n(x) := f(x) - P_n(x) = \frac{f^{(n+1)}(\xi_x) \prod_{i=0}^n (x - x_i)}{(n+1)!}$.

Exercice 3:

1. Déterminer le polynôme d'interpolation de Lagrange relatif au tableau suivant :

0	2	3	5
-1	2	9	87

2. Retrouver ce polynôme d'interpolation, en utilisant cette fois la méthode de Newton.

Exercice 4:

On veut interpoler $f(x) = \ln(x)$ par un polynôme aux points $x_0 = 1$, $x_1 = 2$, $x_2 = 3$, $x_3 = 4$ et $x_4 = 5$.

- 1. Trouver une expression algébrique de ce polynôme en utilisant la méthode de Newton.
- 2. Estimer la valeur de f(6.32) avec le polynôme trouvé en 1 puis calculer l'erreur absolue.

Exercice 5:

Soient $\epsilon \in]0,1[$ et f une fonction de classe $\mathcal{C}^3(0,1]$). On note a=f(0) et b=f(1).

- 1. Déterminer le polynôme de Newton P_{ϵ} qui interpole f aux points 0, ϵ et 1.
- 2. Montrer que pour tout x dans l'intervalle [0,1]

$$\lim_{\epsilon \to 1^{-}} P_{\epsilon}(x) = (a - b + f'(1))x^{2} + (2b - 2a - f'(1))x + a = P(x).$$

3. Vérifier que le polynôme P est l'unique polynôme de degré 2 qui vérifie

$$P(0) = f(0), P(1) = f(1) \text{ et } P'(1) = f'(1).$$

4. Pour $x \in]0,1[$ fixé, on considère la fonction Φ sur [0,1] définie par

$$\Phi(t) = f(t) - P(t) - \frac{f(x) - P(x)}{x(x-1)^2}t(t-1)^2.$$

Vérifier que $\Phi(0) = \Phi(1) = \Phi(x) = 0$ et que $\Phi'(1) = 0$.

5. En déduire qu'il existe $\xi_x \in]0,1[$ tel que $\Phi^{(3)}(\xi_x)=0$ et que

$$f(x) - P(x) = \frac{f^{(3)}(\xi_x)}{6}x(x-1)^2.$$

Interpolation polynômiale : Correction de la série 1

Exercice 1:

1. On considère (n+1) points distincts $\{x_0, x_1, \dots, x_n\}$. Montrons que les polynômes $\{l_i\}_{i=0,\dots,n}$ de Lagrange forment une base de \mathcal{P}_n (l'espace vectoriel des polynômes de degré n) et vérifient $l_i(x_k) = \delta_{i,k}$ où

$$\delta_{i,k} = \begin{cases} 1 & \text{si } i = k \\ 0 & \text{si } i \neq k \end{cases}$$

Comme $\dim(P_n) = n + 1 = card(\{l_i\})$, pour i = 0, 1, ..., n il suffit de montrer que la famille $\{l_i\}_{i=0,...,n}$ est libre. Soit $\alpha_i \in \mathbb{K}$ ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). Nous avons

$$\sum_{i=0}^{n} \alpha_{i} l_{i}(x) = 0 \iff \forall k = 0, 1, ..., n : \sum_{i=0}^{n} \alpha_{i} l_{i}(x_{k}) = 0$$

$$\implies \forall k = 0, 1, ..., n : \sum_{i=0}^{n} \alpha_{i} \delta_{i,k} = 0$$

$$\implies \forall k = 0, 1, ..., n : \alpha_{k} = 0.$$

Nous déduisons que la famille $\{l_i\}_{i=0,..,n}$ est libre et par conséquent est une base de P_n appelée base de Lagrange.

2. D'après le cours, pour toute fonction $f \in C^{n+1}([a,b])$ nous avons :

$$f(x) = P(x) + E_n(x) = \sum_{i=0}^{n} l_i(x)f(x_i) + \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^{n} (x - x_i).$$

Dans cet exercice la fonction est donnée par $f(x) = x^m$, qui est un polynôme (donc de classe C^{∞} sure \mathbb{R} ce qui donne

$$x^{m} = \sum_{i=0}^{n} l_{i}(x)x_{i}^{m} + \frac{f^{(n+1)}(\xi_{x})}{(n+1)!} \prod_{i=0}^{n} (x - x_{i}).$$

Or
$$f^{(n+1)} \equiv 0$$
 car $m \le n$, d'où $\sum_{i=0}^{n} l_i(x) x_i^m = x^m \quad \forall x \in \mathbb{R}$.

Exercice 2:

On considère (n+1) noeuds distincts $\{(x_i, y_i)\}_{i=0,\dots,n}$, et on note $\omega_i(x) = \prod_{j=0}^{i-1} (x - x_j)$, le polynôme de degré i associés aux points $\{x_j\}_{j=0,\dots,i-1}$.

1. Montrons que le polynôme d'interpolation aux noeuds $\{(x_i, y_i)\}_{i=0,\dots,n}$, s'écrit

$$P_n(x) = \sum_{i=0}^{n} \frac{\omega_{n+1}(x)}{(x - x_i)\omega'_{n+1}(x_i)} y_i$$

Il suffit de montrer que $\forall i = 0, ..., n$

$$l_i(x) = \frac{\omega_{n+1}(x)}{(x - x_i)\omega'_{n+1}(x_i)}$$

où l_i est le $i^{\mbox{\scriptsize ême}}$ polynôme de la base de Lagrange, i.e :

$$l_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{(x-x_j)}{(x_i-x_j)}$$

On a $\omega'_{n+1}(x_i) = \lim_{x \to x_i} \frac{\omega_{n+1}(x) - \omega_{n+1}(x_i)}{x - x_i}$, or $\omega_{n+1}(x_i) = 0$, après simplification par $(x - x_i)$, on obtient

$$\omega'_{n+1}(x_i) = \lim_{x \to x_i} \prod_{\substack{j=0 \ j \neq i}}^n (x - x_j) = \prod_{\substack{j=0 \ j \neq i}}^n (x_i - x_j)$$

puisque la fonction $x \to \prod (x - x_j)$ est continue (polynôme). En remplaçant $\omega'_{n+1}(x_i)$ par la valeur obtenue, on aura

$$\frac{\omega_{n+1}(x)}{(x-x_i)\omega'_{n+1}(x_i)} = l_i(x).$$

2. Si $x = x_i$ alors $E_n(x) = 0$ et l'égalité est vérifiée trivialement. Supposons que $x \neq x_i$ $\forall i = 0, 1, ..., n$ et considérons pour $x \in [a, b]$ fixé la fonction g définie par $g(t) = E_n(t) - \frac{R(t)}{R(x)} E_n(x)$, avec $R(x) = \prod_{i=0}^n (x - x_i)$. La fonction $g \in C^{n+1}([a, b])$ et s'annule en (n+2) points par construction (les points sont : x et x_i pour i = 0, 1, ..., n). Le théorème de Rolle montre que g' admet (n+1) racines dans [a, b]. En procédant par récurrence sur l'ordre de dérivation de g, la fonction $g^{(n+1)}$ admet au moins une racine dans [a, b]. Soit ξ_x cette racine. On a

$$0 = g^{(n+1)}(\xi_x) = f^{(n+1)}(\xi_x) - \frac{(n+1)!}{R(x)} E_n(x),$$

d'où
$$E_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!}R(x).$$

N.B: (n+1)! est la dérivée d'ordre (n+1) du polynôme unitaire R(t).

Exercice 3:

a) Déterminons le polynôme d'interpolation de Lagrange relatif au tableau suivant :

On a 4 noeuds, donc le polynôme p d'interpolation sera de degré 3

$$P_3(x) = \sum_{i=0}^{3} l_i(x)yi$$
 où $l_i(x) = \prod_{\substack{j=0 \ j \neq i}}^{3} \frac{(x-x_j)}{(x_i-x_j)}$

Le calcul des l_i donne : $l_0(x) = \frac{(x-2)(x-3)(x-5)}{-30}$, $l_1(x) = \frac{x(x-3)(x-5)}{6}$, $l_2(x) = \frac{x(x-2)(x-5)}{-6}$ et $l_3(x) = \frac{x(x-2)(x-3)}{30}$, d'où $P_3(x) = \frac{53}{30}x^3 - 7x^2 + \frac{253}{30}x - 1$ b) En utilisant la méthode de Newton, on a besoin de calculer les différences divisées :

 $f[x_0, x_1]$; $f[x_0, x_1, x_2]$, et $f[x_0, x_1, x_2, x_3]$

$$P_3(x) = f[x_0] + (x - x_0)f[x_0, x_1, x_2], (x - x_1)f[x_0, x_1, x_2] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x_3]$$

En reprenant les valeurs obtenues on a, $P_3(x) = -1 + x\frac{3}{2} + x(x-2)\frac{11}{6} + x(x-2)(x-3)\frac{53}{30}$, et en développant oo retrouve $P_3(x) = = \frac{53}{30}x^3 - 7x^2 + \frac{253}{30}x - 1$.

NB: Le polynôme d'interpolation est unique.

Exercice 4: On interpole $f(x) = \ln x$ par un polynôme, aux nœuds 1,2,3,4,5 (a) II y a 5 nœuds, donc le degré du polynôme est 4. Le polynôme de Newton est donné par :

$$p_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \dots (x - x_{n-1})$$

où $a_i = f[x_0, \cdots, x_i]$ est la i-ème différence divisées. Les premières différences divisées sont données par :

$$f[x_{i}, x_{i+1}] = \frac{f(x_{i+1}) - f(x_{i})}{x_{i+1} - x_{i}}$$

Les deuxièmes différences divisées sont données par :

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}$$

Et finalement, les n-ièmes divisées sont données par :

$$f[x_0, \dots, x_n] = \frac{f[x_1, \dots, x_n] - f[x_0, \dots, x_{n-1}]}{x_n - x_0}$$

On construit donc la table des différences divisées comme suit :

Notre polynôme de Newton de degré 4 est donc :

$$\begin{aligned} p_4(x) = & a_0 + a_1 \left(x - x_0 \right) + a_2 \left(x - x_0 \right) \left(x - x_1 \right) + a_3 \left(x - x_0 \right) \left(x - x_1 \right) \left(x - x_2 \right) \\ &+ a_4 \left(x - x_0 \right) \left(x - x_1 \right) \left(x - x_2 \right) \left(x - x_3 \right) \\ = & f \left(x_0 \right) + f \left[x_0, x_1 \right] \left(x - x_0 \right) + f \left[x_0, x_1, x_2 \right] \left(x - x_0 \right) \left(x - x_1 \right) \\ &+ \int \left[x_0, x_1, x_2, x_3 \right] \left(x - x_0 \right) \left(x - x_1 \right) \left(x - x_2 \right) \\ &+ f \left[x_0, x_1, x_2, x_3, x_4 \right] \left(x - x_0 \right) \left(x - x_1 \right) \left(x - x_2 \right) \left(x - x_3 \right) \\ = & 0,6931471806 \left(x - 1 \right) - 0,1438410361 \left(x - 1 \right) \left(x - 2 \right) \\ &+ 0,02831650597 \left(x - 1 \right) \left(x - 2 \right) \left(x - 3 \right) - 0,004860605018 \left(x - 1 \right) \left(x - 2 \right) \left(x - 3 \right) \left(x - 4 \right) \\ p_4(x) = & -1,267382809 + 1,679182105 x - 0,4838612475 x^2 + 0,07692255615 x^3 \\ &- 0,004860605018 x^4 \end{aligned}$$

(b) Pour l'estimation, il suffit d'évaluer le polynôme de degré 4 trouvé en a) en x = 6, 32 On obtient alors $p_f(6,32) = 1,681902033$. Or, $f(6,32) = \ln(6,32) = 1,843719208$ L'erreur absolue est donc $E = |1,681902033 - 1,843719208| \approx 0,161817$

Exercice 3:

1. Déterminons le polynôme P_{ε} qui interpole f aux points $0, \varepsilon$ et 1. En utilisant la méthode de Newton on écrit : $P_{\varepsilon}(x) = f(0) + xf[0, \varepsilon] + x(x - \varepsilon)f[0, \varepsilon, x]$.

$$\text{Avec } f(0) = a, \ f[0, \varepsilon] = \frac{f(\varepsilon) - f(0)}{\varepsilon} \text{ et } f[0, \varepsilon, 1] = \frac{\varepsilon f(1) - f(1) - (\varepsilon - 1) f(0)}{\varepsilon(\varepsilon - 1)}.$$

$$\text{D'où } : P_{\varepsilon}(x) = a + \left(\frac{f(\varepsilon) - f(0)}{\varepsilon} - \frac{\varepsilon f(1) - f(\varepsilon) + (1 - \varepsilon) f(0)}{1 - \varepsilon}\right) x + \left(\frac{\varepsilon f(1) - f(\varepsilon) + (1 - \varepsilon) f(0)}{\varepsilon(1 - \varepsilon)}\right) x^2$$

2. Calculons $\lim_{\varepsilon \to 1^-} P_{\varepsilon}(x)$

On a

$$\lim_{\varepsilon \to 1^{-}} P_{\varepsilon}(x) = x^{2} \lim_{\varepsilon \to 1^{-}} \left(\frac{\varepsilon f(1) - f(\varepsilon) + (1 - \varepsilon) f(0)}{\varepsilon (1 - \varepsilon)} \right) + x \lim_{\varepsilon \to 1^{-}} \left(\frac{f(\varepsilon) - f(0)}{\varepsilon} - \frac{\varepsilon f(1) - f(\varepsilon) + (1 - \varepsilon) f(0)}{1 - \varepsilon} \right) + a$$

Nous avons

$$\lim_{\varepsilon \to 1^{-}} \left(\frac{\varepsilon f(1) - f(\varepsilon) + (1 - \varepsilon)f(0)}{\varepsilon (1 - \varepsilon)} \right) = \lim_{\varepsilon \to 1^{-}} \frac{1}{\varepsilon} \cdot \left(\frac{(\varepsilon - 1)f(1) + f(1) - f(\varepsilon)}{1 - \varepsilon} \right) + a = a - b + f'(1).$$

De même

$$\lim_{\varepsilon \to 1^-} \left(\frac{f(\varepsilon) - f(0)}{\varepsilon} - \frac{\varepsilon f(1) + f(1) - f(1) - f(\varepsilon)}{1 - \varepsilon} \right) = b - a - \lim_{\varepsilon \to 1^-} \frac{(\varepsilon - 1) f(1) + f(1) - f(\varepsilon)}{1 - \varepsilon} - a$$

$$=2b-2a-f'(1).$$

D'où
$$\lim_{\varepsilon \to 1^{-}} P_{\varepsilon}(x) = a + (2b - 2a - f'(1))x + (a - b + f'(1))x^{2} := P(x).$$

3. On vérifie facilement que P(0) = a = f(0), P(1) = b = f(1). On a pour tout $x \in [0, 1] : P'(x) = 2x(a - b + f'(1)) + 2b - 2a - f'(1)$, donc P'(1) = f'(1). Montrons que P est unique.

Supposons qu'il existe $Q \in \mathcal{P}_2$ tel que Q(0) = f(0), Q(1) = f(1), et Q'(1) = f'(1), alors (P - Q) est un polynôme de degré 2 tel que (P - Q)(0) = 0, (P - Q)(1) = 0, et (P - Q)'(1) = 0

c.à.d. (P-Q) admet 1 comme racine double, et 0 comme racine simple d'où (P-Q) est de degré 3, donc $(P-Q) \equiv 0$ on conclut que P=Q, d'où l'unicité.

4. On considère $\Phi(t) = f(t) - P(t) - \frac{f(x) - P(x)}{x(x-1)^2} t(t-1)^2$ où $x \in]0,1[$ On vérifie que $\Phi(0) = \Phi(1) = \Phi(x) = 0$ et que $\Phi'(1) = 0$. (trivial).

5. Φ est une fonction de classe $\mathcal{C}^3([0,1])$.

$$\Phi(0) = \Phi(x) = 0 \Longrightarrow \exists \xi_1 \in]0, x[$$
 tel que $\Phi'(\xi_1) = 0$ (Th. de Rolle).

De même
$$\Phi(x) = \Phi(1) = 0 \Longrightarrow \exists \xi_2 \in]x, 1[$$
 tel que $\Phi'(\xi_2) = 0$.

De plus $\Phi'(1) = 0$ alors Φ' admet au moins 3 racines distinctes.

En appliquant le théorème de Rolle successivement Φ'' admet au moins 2 racines distinctes, et $\Phi^{(3)}$ admet au moins une racine ξ_x .

$$\Phi^{(3)}(t) = f^{(3)}(t) - 3! \frac{f(x) - P(x)}{x(x-1)^2}.$$

Car la dérivée troisième du polynôme P est nulle car $\deg(P) = 2$ et la dérivée troisième de $t(t-1)^2$ est 3! puisque c'est un polynôme unitaire de degré 3.

Puisque $\Phi^{(3)}(\xi_x) = 0$, alors l'erreur est donnée par :

$$E(x) := f(x) - P(x) = \frac{f^{(3)}(\xi_x)}{6} x(x-1)^2.$$

Année Universitaire : 2019/2020

Module: M148

Série n^02

Intégration numérique

Exercice 1:

A l'aide d'une certaine méthode d'intégration numérique, on a évalué $I = \int_0^{\pi/2} \sin(x) dx$, en utilisant trois valeurs différente de h. On a obtenu les résultats suivants :

h	\tilde{I}	
0.1	1.001325	
0.2	1.009872	
0.4	1.078979	

Compte tenu de la valeur exacte de I, déduire l'ordre de convergence de la méthode de quadrature employée.

Exercice 2:

On veut calculer $I = \int_{1.8}^{3.4} \exp(x) \, dx$, en utilisant la méthode des trapèzes composée.

Quel est le nombre minimum d'intervalles qui assure une approximation de I avec au moins 4 chiffres significatifs.

Exercice 3:

Déterminer les poids d'intégration ω_1 et ω_2 , ainsi que le point d'intégration t_2 de sorte que la formule de quadrature suivante :

$$\int_{-1}^{1} f(t) dt \simeq \omega_1 f\left(\frac{-1}{\sqrt{3}}\right) + \omega_2 f(t_2)$$

soit de précision le plus élevé possible.

Exercice 4:

Soit l'approximation

$$\int_{x_0}^{x_0+h} f(x) \, dx \simeq \frac{h}{4} \left(f(x_0) + 3f \left(x_0 + \frac{2h}{3} \right) \right)$$

- a) Obtenir un développement de Taylor de $f\left(x_0 + \frac{2h}{3}\right)$ jusqu'à l'ordre 4 et donner une nouvelle expression du terme de droite.
- b) Obtenir un développement de Taylor à l'ordre 4 du terme de gauche.
- c) Soustraire les expressions obtenues en a) et en b) pour obtenir le premier terme de l'erreur. En déduire l'ordre de la méthode proposée.
- d) Quel est le degré de précision de cette méthode.

Problème:

Soient $\epsilon \in]0,1[$ et f une fonction de classe $\mathcal{C}^3([0,1])$. On note a=f(0) et b=f(1).

- 1. Déterminer le polynôme P_{ϵ} qui interpole f aux points $0, \epsilon$ et 1.
- 2. Montrer que pour tout x dans l'intervalle [0,1]

$$\lim_{\epsilon \to 0^+} P_{\epsilon}(x) = (b - a - f'(0))x^2 + f'(0)x + a = P(x).$$

3. Vérifier que le polynôme P est l'unique polynôme de degré 2 qui vérifie

$$P(0) = f(0), P(1) = f(1) \text{ et } P'(0) = f'(0).$$

4. Pour $x \in]0,1[$ fixé, on considère la fonction Φ sur [0,1] définie par

$$\Phi(t) = f(t) - P(t) - \frac{f(x) - P(x)}{x^2(x-1)}t^2(t-1)$$

Vérifier que $\Phi(0) = \Phi(1) = \Phi(x) = 0$ et que $\Phi'(0) = 0$.

5. En déduire qu'il existe $\xi_x \in]0,1[$ tel que $\Phi^{(3)}(\xi_x)=0$ et que

$$f(x) - P(x) = \frac{f^{(3)}(\xi_x)}{6}x^2(x-1)$$

6. Montrer alors qu'il existe $c \in]0,1[$ tel que

$$\int_0^1 f(x) \, dx = \frac{2}{3}f(0) + \frac{1}{3}f(1) + \frac{1}{6}f'(0) - \frac{f^{(3)}(c)}{72}$$

7. En considérant la méthode d'intégration numérique élémentaire suivante

$$\int_0^1 f(x) \ dx \simeq \frac{2}{3}f(0) + \frac{1}{3}f(1) + \frac{1}{6}f'(0)$$

déduire la formule de quadrature sur un intervalle [a,b] quelconque . (considérer le changement de variable convenable).

Intégration numérique : Correction de la série 2

Exercice 1:

 $I = \int_0^{\pi/2} \sin x \, dx$, la valeur exacte de I = 1.

Pour $h_1 = 0.1$, la valeur approchée \tilde{I}_1 de I, par la méthode proposée est $\tilde{I}_1 = 1.001325$. Pour $h_2 = 0.2$, la valeur approchée \tilde{I}_2 de I, par la méthode proposée est $\tilde{I}_2 = 1.009872$. Pour $h_3 = 0.4$, la valeur approchée \tilde{I}_3 de I, par la méthode proposée est $\tilde{I}_3 = 1.078979$. $err_i = |I - \tilde{I}_i| \sim Ch_i^p$ i = 1, 2, 3, où p est l'ordre de convergence de la méthode de quadrature employée.

On a donc $\frac{err_2}{err_1} = 7.45 \sim 2^3 = \left(\frac{h_2}{h_1}\right)^p$

De même $\frac{err_3}{err_2} = 8.0019 \sim 2^3 = \left(\frac{h_3}{h_2}\right)^p$

On voit bien que l'ordre de convergence de la méthode est p=3.

Exercice 2:

Soit S une subdivision uniforme de l'intervalle [a, b] en n sous-intervalles

$$a = x_0 < x_1 = a + h < x_2 = a + 2h < \dots < x_n = a + nh = b$$

$$I = \int_{a}^{b} f(x) dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x) dx$$

On sait que dans la méthode du trapèze , pour une fonction de classe $\mathcal{C}^2[\alpha,\beta]$

$$\int_{\alpha}^{\beta} f(x) dx = \frac{f(\alpha) + f(\beta)}{2} \times (\beta - \alpha) - \frac{(\beta - \alpha)^3}{12} f''(\theta)$$

où $\theta \in [\alpha, \beta]$.

(Il suffit d'utiliser le polynôme d'interpolation de f aux points α et β). Donc

$$\int_{a}^{b} f(x) dx = \sum_{i=0}^{n-1} \frac{f(x_i) + f(x_{i+1})}{2} \times h - \sum_{i=0}^{n-1} \frac{h^3}{12} f''(\theta_i)$$

où $\theta_i \in [x_i, x_{i+1}]$. Puisque f est de classe $\mathcal{C}^2[a, b]$, il existe $\theta \in [a, b]$ tel que

$$\sum_{i=0}^{n-1} f''(\theta_i) = nf''(\theta)$$

(Application du théorème des valeurs intermédiaires).

$$I = \tilde{I} - n \frac{h^3}{12} f''(\theta)$$

$$\tilde{I} = \sum_{i=0}^{n-1} \frac{f(x_i) + f(x_{i+1})}{2} \times h \qquad : \text{ Formule de la méthode du trapèze composite}$$

La valeur de l'erreur est donc

$$err = |I - \tilde{I}| = n \frac{h^3}{12} |f''(\theta)| = \frac{(b-a)^3}{12n^2} |f''(\theta)| \le \frac{(b-a)^3}{12n^2} \max_{x \in [a,b]} |f''(x)|$$

Dans notre cas de figure, on désire une erreur inférieure ou égale à 10^{-4} , il suffit donc que

$$\frac{(b-a)^3}{12n^2} \max_{x \in [a,b]} |f''(x)| \le 10^{-4}$$

Pour $f(x) = \exp(x)$, a = 1.8 et b = 3.4,

$$n^2 \ge \frac{(3.4 - 1.8)^3}{12} 10^4 \exp(3.8)$$

Ce qui donne $n \ge 319.8084$, d'où n = 320.

Exercice 3:

Déterminons les poids d'intégration ω_1 et ω_2 , ainsi que le point d'intégration t_2 de sorte que la formule de quadrature suivante :

$$\int_{-1}^{1} f(t) dt \simeq \omega_1 f\left(\frac{-1}{\sqrt{3}}\right) + \omega_2 f(t_2)$$

soit de précision le plus élevé possible.

Pour
$$f(t) = 1$$
, $\int_{-1}^{1} f(t) dt = 2 = \omega_1 + \omega_2$ (1)
Pour $f(t) = t$, $\int_{-1}^{1} f(t) dt = 0 = -\frac{\sqrt{3}}{3}\omega_1 + t_2\omega_2$ (2)
Pour $f(t) = t^2$, $\int_{-1}^{1} f(t) dt = \frac{2}{3} = \frac{\omega_1}{3} + t_2^2\omega_2$ (3)
De (2), on tire que $t_2\omega_2 = \frac{\sqrt{3}}{3}\omega_1$ (2'), et de (3) $t_2^2\omega_2 = \frac{2}{3} - \frac{\omega_1}{3}$ (3')

De (2), on tire que $t_2\omega_2 = \frac{\sqrt{3}}{3}\omega_1$ (2'), et de (3) $t_2^2\omega_2 = \frac{2}{3} - \frac{\omega_1}{3}$ (3') En faisant le rapport (3')/(2'), on obtient $t_2 = \frac{2-\omega_1}{\sqrt{3}\omega_1}$ De (1) $\omega_2 = 2 - \omega_1$, en reportant dans (2), on obtient après simplification

$$(2-\omega_1)^2 = \omega_1^2$$

D'où $\omega_1=1$, par suite $\omega_2=1$ et $t_2=\frac{\sqrt{3}}{3}$ Par construction, pour $\omega_1=\omega_2=1$ et $t_2=\frac{\sqrt{3}}{3}$, la méthode est exacte pour tout polynôme de degré 2.

Regardons pour $f(t) = t^3$

$$\int_{-1}^{1} f(t) dt = 0, \text{ d'autre part } f(-\frac{\sqrt{3}}{3}) + f(\frac{\sqrt{3}}{3}) = 0.$$

Ce qui entraine que la méthode reste exacte pour les polynômes de degré 3. Pour $f(t) = t^4$

$$\int_{-1}^{1} f(t) dt = 2/5, \text{ alors que } f(-\frac{\sqrt{3}}{3}) + f(\frac{\sqrt{3}}{3}) = 2/9.$$

Exercice 4:

Soit l'approximation

$$\int_{x_0}^{x_0+h} f(x) \, dx \simeq \frac{h}{4} \left(f(x_0) + 3f \left(x_0 + \frac{2h}{3} \right) \right)$$

a) Après un développement de Taylor de $f\left(x_0 + \frac{2h}{3}\right)$ à l'ordre 4, le terme de droite devient

$$hf(x_0) + \frac{h^2}{2}f'(x_0) + \frac{h^3}{6}f''(x_0) + \frac{h^4}{27}f^{(3)}(x_0) + \frac{h^5}{162}f^{(4)}(x_0) + \mathcal{O}(h^6)$$

b) Le terme de gauche s'écrit :

$$hf(x_0) + \frac{h^2}{2}f'(x_0) + \frac{h^3}{6}f''(x_0) + \frac{h^4}{24}f^{(3)}(x_0) + \frac{h^5}{120}f^{(4)}(x_0) + \mathcal{O}(h^6)$$

- c) Le premier terme de l'erreur est $h^4 f^{(3)}(x_0) \left(\frac{1}{24} \frac{1}{27}\right)$, et la méthode est d'ordre 4.
- d) Le degré de précision est égale à 2. (Car l'erreur est nulle pour les polynômes de degré 2).

Problème:

1. Déterminons le polynôme P_{ϵ} qui interpole f aux points $0, \epsilon$ et 1.

$$P_{\epsilon}(x) = f(0)L_{0}(x) + f(\epsilon)L_{\epsilon}(x) + f(1)L_{1}(x)$$

$$= a\frac{(x-\epsilon)(x-1)}{(0-\epsilon)(0-1)} + f(\epsilon)\frac{(x-0)(x-1)}{(\epsilon-0)(\epsilon-1)} + b\frac{(x-0)(x-\epsilon)}{(1-0)(1-\epsilon)}$$

$$P_{\epsilon}(x) = \left(\frac{a}{\epsilon} + \frac{f(\epsilon)}{\epsilon(\epsilon-1)} + \frac{b}{1-\epsilon}\right)x^{2} - \left(a + \frac{a}{\epsilon} + \frac{f(\epsilon)}{\epsilon(\epsilon-1)} + \frac{b\epsilon}{1-\epsilon}\right)x + a$$

2. Calculons $\lim_{\epsilon \to 0^+} P_{\epsilon}(x)$

$$\lim_{\epsilon \to 0^{+}} P_{\epsilon}(x) = x^{2} \lim_{\epsilon \to 0^{+}} \left(\frac{a}{\epsilon} + \frac{f(\epsilon)}{\epsilon(\epsilon - 1)} + \frac{b}{1 - \epsilon} \right) - x \lim_{\epsilon \to 0^{+}} \left(a + \frac{a}{\epsilon} + \frac{f(\epsilon)}{\epsilon(\epsilon - 1)} + \frac{b\epsilon}{1 - \epsilon} \right) + a.$$
On pose $A_{\epsilon} = \left(\frac{a}{\epsilon} + \frac{f(\epsilon)}{\epsilon(\epsilon - 1)} + \frac{b}{1 - \epsilon} \right)$, et $B_{\epsilon} = \left(a + \frac{a}{\epsilon} + \frac{f(\epsilon)}{\epsilon(\epsilon - 1)} + \frac{b\epsilon}{1 - \epsilon} \right)$, alors
$$A_{\epsilon} = \frac{1}{(1 - \epsilon)} \left(b - f(0) - \frac{f(\epsilon) - f(0)}{\epsilon} \right), \text{ et } B_{\epsilon} = a - \frac{a}{1 - \epsilon} + \frac{f(\epsilon) - f(0)}{\epsilon} \frac{1}{\epsilon - 1} + \frac{b\epsilon}{1 - \epsilon}$$

$$\implies \lim_{\epsilon \to 0^{+}} A_{\epsilon} = (b - a - f'(0)), \text{ et } \lim_{\epsilon \to 0^{+}} B_{\epsilon} = -f'(0)$$
D'où
$$\lim_{\epsilon \to 0^{+}} P_{\epsilon}(x) = (b - a - f'(0))x^{2} + f'(0)x + a = P(x)$$

3. On vérifie facilement que P(0) = a = f(0), P(1) = b = f(1)

On a P'(x) = 2(b-a-f'(0))x + f'(0), donc P'(0) = f'(0). Montrons que P est unique. Supposons qu'il existe $Q \in \mathcal{P}_2 / Q(0) = f(0), Q(1) = f(1),$ et Q'(0) = f'(0),

alors (P-Q) est un polynôme de degré 2/(P-Q)(0)=0, (P-Q)(1)=0, et

$$(P-Q)'(0) = 0$$

c.à.d. (P-Q) admet 0 comme racine double, et 1 : racine simple $\Longrightarrow (P-Q)$ est de degré 3, donc $(P-Q) \equiv 0 \Longrightarrow P = Q$, d'où l'unicité.

4. On considère
$$\Phi(t) = f(t) - P(t) - \frac{f(x) - P(x)}{x^2(x-1)}t^2(t-1)$$
 où $x \in]0,1[$

On vérifie que $\Phi(0) = \Phi(1) = \Phi(x) = 0$ et que $\Phi'(0) = 0$. (trivial).

5. Φ est une fonction de classe $\mathcal{C}^3([0,1])$.

$$\Phi(0) = \Phi(x) = 0 \Longrightarrow \exists \xi_1 \in]0, x[/\Phi'(\xi_1) = 0]$$
 (Th. de Rolle).

De même
$$\Phi(x) = \Phi(1) = 0 \Longrightarrow \exists \xi_2 \in]x, 1[/ \Phi'(\xi_2) = 0.$$

De plus $\Phi'(0) = 0 \Longrightarrow \Phi'$ admet au moins 3 racines distinctes.

En appliquant le théorème de Rolle successivement Φ'' admet au moins 2 racines distinctes, et $\Phi^{(3)}$ admet au moins une racine ξ_x .

$$\Phi^{(3)}(t) = f^{(3)}(t) - 6\frac{f(x) - P(x)}{x^2(x-1)}.$$

$$\Phi^{(3)}(\xi_x) = 0 \Longrightarrow f(x) - P(x) = \frac{f^{(3)}(\xi_x)}{6} x^2 (x - 1).$$

$$\int_0^1 f(x) \, dx = \int_0^1 P(x) \, dx + \int_0^1 \frac{f^{(3)}(\xi_x)}{6} x^2(x-1) \, dx$$
$$\int_0^1 P(x) \, dx = (b-a-f'(0))\frac{1}{3} + f'(0)\frac{1}{2} + a = \frac{1}{3}f(1) + \frac{2}{3}f(0) + \frac{1}{6}f'(0)$$

$$x^2(x-1)$$
 garde un signe constant (négatif) sur $[0,1]$,
donc il existe $c\in[0,1]$
$$\int_0^1 \frac{f^{(3)}(\xi_x)}{6} x^2(x-1) \; dx = \frac{f^{(3)}(c)}{6} \int_0^1 x^2(x-1) \; dx \qquad \text{(Th. de la moyenne)}$$

D'où
$$\int_0^1 \frac{f^{(3)}(\xi_x)}{6} x^2(x-1) dx = -\frac{f^{(3)}(c)}{72}$$
, ce qui donne :

$$\int_0^1 f(x) \, dx = \frac{2}{3}f(0) + \frac{1}{3}f(1) + \frac{1}{6}f'(0) - \frac{f^{(3)}(c)}{72}$$

7. Considérons le changement de variable

$$\varphi: [0,1] \longrightarrow [a,b]$$

$$t \longmapsto (b-a)t + a$$

$$\int_{a}^{b} f(x) dx = (b-a) \int_{0}^{1} f((b-a)t + a) dt.$$

On pose g(t) = f((b-a)t + a), en utilisant la formule de quadrature précédente $\int_0^1 g(t) dt \simeq \frac{2}{3}g(0) + \frac{1}{3}g(1) + \frac{1}{6}g'(0), \text{ on obtient}$

$$\int_{a}^{b} f(x) dx \simeq (b-a) \left(\frac{2}{3} f(a) + \frac{1}{3} f(b) + \frac{(b-a)}{6} f'(a) \right).$$

Année U.: 2019/2020

Module: M148

Série n⁰3

Dérivation Numérique

Exercice 1:

À l'aide de la formule de différence centrée d'ordre 2:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2).$$

Montrer que

$$f''(x) \simeq \frac{f(x+2h) - 2f(x) + f(x-2h)}{4h^2}.$$

Exercice 2:

En vous servant des développements de Taylor appropriés, donner l'ordre de précision de l'approximation

$$f^{(3)}(x) \simeq \frac{f(x+3h) - 3f(x+2h) + 3f(x+h) - f(x)}{h^3}.$$

Exercice 3:

a) À l'aide des développements de Taylor appropriés, donner l'expression des deux premiers terme de l'erreur liée à la formule

$$\frac{f(x+ah) - f(x-bh)}{(a+b)h}.$$

permettant de calculer f'(x); a et b sont des constantes telles que $a + b \neq 0$.

b) Déterminer l'ordre de cette approximation en fonction de a et b.

Exercice 4:

On considère le θ -schéma

$$f'(x) \simeq (1 - \theta) \left(\frac{f(x+h) - f(x)}{h} \right) + \theta \left(\frac{f(x) - f(x-h)}{h} \right) = App_{\theta}(h).$$

Montrer que les deux premiers termes de l'erreur associée au θ -schéma $(App_{\theta}(h))$ sont donnés par :

$$\frac{(2\theta-1)}{2}hf''(x) - \frac{h^2}{6}f^{(3)}(x),$$

et en déduire l'ordre de précision du $\theta\text{-schéma}$ en fonction de $\theta.$

Dérivation numérique : Correction de la série 3

Exercice 1:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + \mathcal{O}(h^2)$$

Donc $f''(x) \simeq \frac{f'(x+h) - f'(x-h)}{2h}$, et $f'(x+h) \simeq \frac{f(x+2h) - f'(x)}{2h}$, de même $f'(x-h) \simeq \frac{f(x) - f'(x-2h)}{2h} \Rightarrow f''(x) \simeq \frac{f(x+2h) - 2f(x) + f(x-2h)}{4h^2}$

Exercice 2:

Le développement de Taylor de f au voisinage de x de f(x+3h) à l'ordre 5 donne

$$f(x+3h) = f(x) + 3hf'(x) + \frac{9}{2}h^2f''(x) + \frac{9}{2}h^3f^{(3)}(x) + \frac{27}{8}h^4f^{(4)}(x) + \frac{81}{40}h^5f^{(5)}(x) + \mathcal{O}\left(h^6\right)$$

De même

$$f(x+2h) = f(x) + 2hf'(x) + 2h^2f''(x) + \frac{4}{3}h^3f^{(3)}(x) + \frac{2}{3}h^4f^{(4)}(x) + \frac{4}{15}h^5f^{(5)}(x) + \mathcal{O}\left(h^6\right)$$

Puis

$$f(x+h) = f(x) + hf'(x) + \frac{1}{2}h^2f''(x) + \frac{1}{6}h^3f^{(3)}(x) + \frac{1}{24}h^4f^{(4)}(x) + \frac{1}{120}h^5f^{(5)}(x) + \mathcal{O}\left(h^6\right)$$

En calculant la combinaison linéaire f(x+3h) - 3f(x+2h) + 3f(x+h), on obtient

$$f(x+3h) - 3f(x+2h) + 3f(x+h) = f(x) + h^3 f^{(3)}(x) + \frac{-11}{24} h^4 f^{(4)}(x) + \mathcal{O}(h^5)$$
$$f^{(3)}(x) = \frac{f(x+3h) - 3f(x+2h) + 3f(x+h) - f(x)}{h^3} + \mathcal{O}(h)$$

Exercice 3:

a) L'expression des deux premiers termes de l'erreur :

$$f(x+ah) - f(x-ah) = (a+b)hf'(x) + \frac{a^2 - b^2}{2}h^2f''(x) + \frac{a^3 + b^3}{6}h^3f^{(3)} + \mathcal{O}\left(h^4\right)$$

Donc

$$\frac{f(x+ah) - f(x-ah)}{(a+b)h} = f'(x) + \frac{(a-b)}{2}hf''(x) + \frac{(a^2+b^2-ab)}{6}h^2f^{(3)} + \mathcal{O}\left(h^3\right)$$

b) Si $a \neq b$, l'approximation est d'ordre 1. Si a = b, l'approximation est d'ordre 2.

Exercice 4:

On pose

$$App_{\theta}(h) = (1 - \theta) \left(\frac{f(x+h) - f(x)}{h} \right) + \theta \left(\frac{f(x) - f(x-h)}{h} \right)$$

$$f(x+h) = f'(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f^{(3)}(x) + \cdots + f(x-h) = f'(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f^{(3)}(x) + \cdots$$
 D'où

$$App_{\theta}(h) = f'(x) + \frac{(1-2\theta)}{2}hf''(x) + \frac{1}{6}h^2f^{(3)}(x) + \mathcal{O}(h^3)$$

Par suite

$$f'(x) = App_{\theta}(h) - \frac{(1-2\theta)}{2}hf''(x) - \frac{1}{6}h^2f^{(3)}(x) + \mathcal{O}(h^3)$$

Si $\theta \neq 1/2,$ le θ -schéma est d'ordre 1 Si $\theta = 1/2,$ le θ -schéma est d'ordre 2

A.U.: 2019/2020

Module: M148

Série n^04

Résolution Numérique : f(x) = 0

Exercice 1:

En 1225, Léonardi di Pisa a donné une solution $\alpha=1.368808107$, pour l'équation $f(x)=x^3+2x^2+10x-20=0$, sans que personne à l'époque ne sache expliquer ce résultat.

a) Montrer que la fonction f admet une seule racine dans l'intervalle]1,2[.

b) Montrer que cette équation (f(x) = 0) peut se mettre sous la forme $x = F(x) = \frac{a}{x^2 + bx + c}$ où $F: [1,2] \longrightarrow [1,2]$.

c) Montrer que $\forall r \in [1, 2]; |F'(r)| \le 1/2.$

d) En déduire que la méthode itérative suivante est convergente.

 $x_0 = 1, \ x_{n+1} = F(x_n).$

e) Calculer $x_n, n = 1, \dots, 8$ et conclure.

Exercice 2:

On cherche à approcher la racine de la fonction $f(x) = \tan x - x$ pour $x \in \left[\pi, \frac{3\pi}{2}\right]$.

a) Montrer que f admet une seule racine $\alpha \in \left] \pi, \frac{3\pi}{2} \right[$.

b) Montrer que α est un point fixe de la fonction F définie par $F(x) = \pi + \arctan x$, $x \in \left[\pi, \frac{3\pi}{2}\right[$.

c) Construire une suite itérative qui converge vers α , et calculer x_i , $i=1,\cdots,6$, $(x_0=4)$. Conclure.

Exercice 3:

Soit $f \in \mathcal{C}^2(V_r)$, tel que f(r) = 0.

i) Donner la formule de Newton-Raphson pour résoudre f(x)=0, et établir que

$$f(x_{n-1}) + (x_n - x_{n-1})f'(x_{n-1}) = 0$$

ii) Montrer qu'il existe $\lambda \in V_r$ tel que

$$(x_{n-1} - r)f'(x_{n-1}) - f(x_{n-1}) = \frac{(x_{n-1} - r)^2}{2}f^{(2)}(\lambda)$$

On pose $e_n = r - x_n$, montrer que

$$e_n = -\frac{f^{(2)}(\lambda)}{2f'(x_{n-1})}e_{n-1}^2$$

On dit alors que la convergence de l'itération de Newton-Raphson est "quadratique".

Exercice 4:

On suppose que α est une racine de $f \in \mathcal{C}^2[a,b]$, de multiplicité $m \geq 2$, c.à.d. $f(x) = (x - \alpha)^m h(x)$, avec $h(x) \neq 0$.

- a) Montrer que l'ordre de la convergence de la méthode de Newton est seulement linéaire.
- b) On propose la méthode itérative suivante (Newton modifié)

$$x_{n+1} = x_n - m \frac{f(x_n)}{f'(x_n)}$$

Montrer alors que la convergence de cette méthode itérative est quadratique.

- c) Application : Considérer l'équation non linéaire $f(x) = \exp(x) \frac{x^2}{2} x 1$ sur l'intervalle [-1, 1].
- i) Montrer que f admet un zéro x^* dans [-1,1], et qu'il est unique.
- ii)Écrire la méthode de Newton pour résoudre f(x) = 0. Quel est l'ordre de convergence de cette méthode? Justifier votre réponse.
- iii) Proposer une méthode d'ordre 2 pour résoudre l'équation donnée.

Résolution numérique de f(x) = 0: Correction de la série 4

Exercice 1:

```
a) Soit f(x) = x^3 + 2x^2 + 10x - 20, montrons que f admet une racine unique dans l'inter-
valle [1,2]
```

on a f(1) = -7, et f(2) = 16, de plus f est continue, donc il existe au moins une racine dans [1, 2].

 $f'(x) = 3x^2 + 4x + 10$, dont le discriminant est négatif, ce qui implique que f'(x) > 0 et par suite f est strictement croissante, d'où l'unicité de la racine dans [1,2].

b)
$$f(x) = 0 \iff x(x^2 + 2x + 10) = 20 \iff x = \frac{20}{x^2 + 2x + 10}$$
. Montrons que $F([1, 2]) \subset [1, 2]$.

$$F'(x) = \frac{-40(x+1)}{(x^2+2x+10)^2} < 0 \Longrightarrow F \text{ est décroissante, donc } \forall x \in [1,2] \ F(2) \le F(x) \le F(1),$$

$$\frac{10}{9} = 1.11111 \le F(x) \le \frac{20}{13} = 1.5384.$$

$$\frac{10}{9} = 1.1111 \le F(x) \le \frac{20}{13} = 1.5384.$$

$$c)F''(x) = \frac{120(x^2 + 2x + 2)}{(x^2 + 2x + 2)^3} > 0, \text{ ce qui implique que } F' \text{ est croissante, donc } F'(1) \le F'(x) \le F'(2) \le 0, \text{ donc } |F'(x)| \le |F'(1)| = 0.473 \le 1/2$$

d) F continue de [1,2] dans lui-même, de plus F est contractante, car $|F'(x)| \leq k < 1$. Ce qui entraine que la méthode itérative $x_{n+1} = F(x_n)$ converge vers α le point fixe de F, racine de f.

e)
$$x_0 = 1$$
, $x_1 = 1.5384$, $x_2 = 1.295019$, $x_3 = 1.401825$, $\cdots x_8 = 1.368241$.

Après 8 itérations on voit bien qu'on est très proche de la valeur donnée par Léonardi di Pisa.

Exercice 2:

Soit
$$f(x) = \tan(x) - x$$
 pour $x \in]\pi, \frac{3\pi}{2}[$

Soit
$$f(x) = \tan(x) - x$$
 pour $x \in]\pi, \frac{3\pi}{2}[$
a) f est continue sur $]\pi, \frac{3\pi}{2}[$, $f(\pi) = -\pi$, et $\lim_{x \to (3\pi/2)^+} f(x) = +\infty$, de plus $f'(x) > 0$, donc

d'après le théorème des valeurs intermédiaires, il existe un unique $\alpha \in]\pi, \frac{3\pi}{2}[/f(\alpha) = 0.$ $b)f(x) = 0 \iff \tan(x) = x$, pour pouvoir composer avec la fonction arctan il faut que x soit dans l'intervalle $]-\pi/2,\pi/2[$. On a que $\tan(x)=\tan(x-\pi), \, \mathrm{donc} \, f(x)=0 \iff$ $\tan(x-\pi)=x$, puisque $(x-\pi)\in]0,\pi/2[$, on peut composer par la fonction arctan, ce qui donne $x - \pi = \arctan(x)$, d'où $x = \arctan(x) + \pi$, c.à.d x point fixe de la fonction $F(x) = \arctan(x) + \pi$.

Montrons que F admet un point fixe dans $]\pi, \frac{3\pi}{2}[$.

$$F'(x) = \frac{1}{1+x^2} > 0$$
, donc F est croissante,

$$\pi \le F(\pi) = 4.4042 \le F(x) \le F(3\pi/2) = 4.50 \le 3\pi/2.$$

 $F'(x) = \frac{1}{1+x^2} > 0$, donc F est croissante, $\pi \le F(\pi) = 4.4042 \le F(x) \le F(3\pi/2) = 4.50 \le 3\pi/2$. $F''(x) = \frac{-2x}{(1+x^2)^2} < 0$, $0 < F'(x) \le F'(\pi) = 0.091 < 0.1 \Longrightarrow F$ est contractante. La suite $(x_n)_n$ définie par $x_0 \in]\pi, \frac{3\pi}{2}[$ et $x_{n+1} = F(x_n)$ converge vers le point fixe de F.

$$(x_0)^2 = 4$$
, $x_1 = 4.46741$, $x_2 = 4.492175$, $x_3 = 4.493351$, $x_4 = 4.493406$, $x_5 = 4.493409$ et

 $x_6 = 4.493409.$

On remarque que la suite $(x_n)_n$ converge à partir de x_5 .

Exercice 3:

Soit $f \in \mathcal{C}^2(V_r)$, tel que f(r) = 0.

i) L'algorithme de Newton-Raphson donne :
$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$
, donc $x_n - x_{n-1} = -\frac{f(x_{n-1})}{f'(x_{n-1})}$, par suite $(x_n - x_{n-1})f'(x_{n-1}) + f(x_{n-1}) = 0$. (*)

ii) Il existe $\lambda \in V(r) / 0 = f(r) = f(x_{n-1}) + (r - x_{n-1})f'(x_{n-1}) + \frac{(r - x_{n-1})^2}{2}f''(\lambda)$

d'où $(x_{n-1} - r)f'(x_{n-1}) - f(x_{n-1}) = \frac{(r - x_{n-1})^2}{2}f''(\lambda)$ (**)

On pose $e_n = r - x_n$, de (**) $(x_{n-1} - x_n + x_n - r)f'(x_{n-1}) - f(x_{n-1}) = \frac{(r - x_{n-1})^2}{2}f''(\lambda)$, ce qui donne $(x_{n-1} - x_n)f'(x_{n-1}) + (x_n - r)f'(x_{n-1}) - f(x_{n-1}) = \frac{(r - x_{n-1})^2}{2}f''(\lambda)$, d'après

(*)
$$(x_{n-1} - x_n)f'(x_{n-1}) - f(x_{n-1}) = 0 \Longrightarrow (x_n - r)f'(x_{n-1}) = \frac{(r - x_{n-1})^2}{2}f''(\lambda)$$
, d'où

$$e_n = -\frac{f^{(2)}(\lambda)}{2f'(x_{n-1})}e_{n-1}^2$$

Exercice 4:

Soit α est une racine de $f \in C^2[a, b]$, de multiplicité $m \geq 2$, c.à.d. $f(x) = (x - \alpha)^m h(x)$, avec $h(x) \neq 0$.

a) Montrons que l'ordre de la convergence de la méthode de Newton est seulement linéaire.

L'algorithme de Newton-Raphson donne : $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = F(x_n)$.

Il existe
$$\lambda \in V(\alpha) / F(x_{n-1}) = F(\alpha) + (x_{n-1} - \alpha)F'(\alpha) + \frac{(x_{n-1} - \alpha)^2}{2}F''(\lambda)$$
, or $F(\alpha) = \alpha$ et $F(x_{n-1}) = x_n$, ce qui entraine $(x_n - \alpha) = (x_{n-1} - \alpha)F'(\alpha) + \frac{(x_{n-1} - \alpha)^2}{2}F''(\lambda)$ On a $F'(\alpha) = 1 - \frac{1}{m} \neq 0 \Longrightarrow e_n = (1 - \frac{1}{m})e_{n-1} + \frac{(e_{n-1})^2}{2}F''(\lambda)$, donc $e_n \sim e_{n-1}$, c.à.d. la vitesse de convergence est seulement linéaire.

b) Méthode de Newton-Raphson modifiée :

$$x_n = x_{n-1} - m \frac{f(x_{n-1})}{f'(x_{n-1})} = G(x_{n-1})$$

En reprenant le même procédé pour G, on trouve, il existe $\mu \in V(\alpha)$ /

$$(x_n - \alpha) = (x_{n-1} - \alpha)G'(\alpha) + \frac{(x_{n-1} - \alpha)^2}{2}G''(\mu)$$

On a $G'(\alpha) = 0$, ce qui implique $e_n = \frac{(e_{n-1})^2}{2}G''(\mu)$, c.à.d. la convergence de cette méthode itérative est quadratique.

- c) Application : $f(x) = \exp(x) \frac{x^2}{2} x 1$
- i) Il est évident que f admet un zéro $x^* = 0$ dans [-1, 1], et qu'il est unique.
- ii) On a f(0) = f'(0) = f''(0) = 0 et $f^{(3)}(0) = 1$. Donc 0 est une racine triple de f, une application de la méthode de Newton-Raphson à f est d'ordre 1. En effet, pour $x_0 = 0.5$, les termes de la suite (x_n) sont : $x_1 = 0.3404$, $x_2 = 0.2302$, $x_3 = 0.1550$, $x_4 = 0.104$,

 $x_5 = 0.0696, x_6 = 0.0465, \dots x_{10} = 0.00923.$

En utilisant la méthode de Newton-Raphson modifiée (m=3), pour la même valeur de $x_0=0.5$, les termes de la suite (x_n) sont : $x_1=0.0214953953$, $x_2=0.00003560528$. On voit bien que la méthode converge quadratiquement.