Seminari 1: Processos de Ramificació

Processos Estocàstics

Grau en Matemàtiques Universitat Autònoma de Barcelona

Considereu un procés de ramificació de Galton-Watson $\{X_n, n \geq 0\}$, on X_n denota el nombre d'individus d'una certa població a la generació n. Se suposa que $X_0 = 1$. L'individu k de la generació n dóna lloc a $Z_{n+1}^{(k)}$ individus a la generació n+1. Les variables $Z_{n+1}^{(k)}$ són independents entre elles, totes idènticament distribuïdes i independents de $\{X_n\}$,. En aquest seminari es tractarà el comportament del nombre mitjà d'individus a les diferents generacions i s'introduirà el procés de Galton-Watson amb immigració.

Exercici 1. Demostreu que si $\{X_n\}$ és un procés de Galton-Watson i $E(Z_n^{(k)}) \le 1$ aleshores tenim que $X_n \longrightarrow 0$ quasi segurament. (Recordeu que una successió de nombres enters convergeix si i només si a partir d'un cert lloc és constant).

Exercici 2.

Denotem $m := \mathbb{E}(Z_{n+1}^{(k)})$, que suposem finita. Demostreu que

$$E(X_n) = m^n$$
.

Deduïu el comportament límit del nombre mitjà d'individus. Observeu que, en particular, en el cas crític (m=1) tenim que $E(X_n)=1$ per a tot n i en canvi $X_n\to 0$ quasi segurament.

Exercici 3. Calculeu el número esperat del total de descendents d'un individu.

Exercici 4. Suposem ara que les v.a.'s $Z_n^{(k)}$ tenen moment de segon ordre finit i sigui $\sigma^2 = \text{Var}(Z_n^{(k)})$. Proveu que

$$\operatorname{Var}(X_n) = \sigma^2 n, \quad \text{si } m = 1,$$

$$\operatorname{Var}(X_n) = \sigma^2 m^{n-1} \left(\frac{1 - m^n}{1 - m} \right), \quad \text{si } m \neq 1.$$

Procés de Galton-Watson amb immigració

Considerem ara un procés de Galton-Watson $\{X_n, n \geq 0\}$ amb un nombre aleatori Y_n d'immigrants que arriben a cada generació n, amb $n \in \mathbb{N}$. Llavors, el nombre d'individus a la generació (n+1)-èsima vindrà donat per

$$X_{n+1} = \sum_{k=1}^{X_n} Z_{n+1}^{(k)} + Y_{n+1}.$$

Com és habitual, en cas que $X_n = 0$ considerem que el sumatori anterior és també zero i, per tant, el nombre d'individus en la generació (n+1)-èsima ve donat per $X_{n+1} = Y_{n+1}$. D'altra banda, igual que en el cas sense immigració, suposem que $X_0 = 1$ i que les variables $Z_{n+1}^{(k)}$ són independents entre

elles, totes idènticament distribuïdes i independents de X_n . A més a més, se suposa que les variables Y_n són independents de les $Z_n^{(k)}$.

La diferència principal respecte al procés de Galton-Watson sense immigració és que, el fet que en una certa generació no hi hagi cap individu (és a dir hi hagi extinció momentània), no implica que en generacions futures no hi puguin haver individus. En termes probabilístics, en general es compleix

$$P(X_{n+k} > 0 | X_n = 0) \ge 0, \quad \forall \ n, k \in \mathbb{N}.$$

Un dels aspectes interessants en aquest context és estudiar el comportament del nombre mitjà d'individus en cada generació i el seu límit quan $n \to +\infty$.

Exercici 5. Se suposa que el nombre mitjà d'immigrants que arriben en cada generació és constant, és a dir $\mathbb{E}(Y_n) = \lambda$, per a tot $n \in \mathbb{N}$, per un cert $\lambda > 0$. Com abans $m := \mathbb{E}(Z_n^{(k)})$. Demostreu que es compleix el següent:

(a) Si $m \neq 1$, aleshores

$$\mathbb{E}(X_n) = m^n + \lambda \frac{1 - m^n}{1 - m}.$$

(b) Si m = 1, aleshores

$$\mathbb{E}(X_n) = 1 + \lambda n.$$

Deduïu el comportament de $\mathbb{E}(X_n)$ quan $n \to +\infty$.

El següent exercici ens diu (hem de suposar certes condicions addicionals que són raonables) que, per a aquest tipus de processos, la probabilitat d'extinció definitiva és 0.

Exercici 6. Suposem que les Y_n són variables aleatòries independents amb la mateixa distribució i que $P\{Y_n \ge 1\} > 0$, aleshores la probabilitat d'extinció definitiva és 0.

Indicació: L'esdeveniment del que ens interessa la probabilitat és $\{\exists k \in \mathbb{N} : X_n = 0 \text{ per a tot } n \geq k\}$ que està contingut en $\{\exists k \in \mathbb{N} : Y_n = 0 \text{ per a tot } n \geq k\}$. Intuïtivament és clar que aquest darrer esdeveniment té probabilitat 0, però es tracta de justificar-ho.

Nota: Per saber-ne més sobre processos de ramificació amb immigració, podeu consultar la referència: P. Haccou, P. Jagers and V. Vatutin. Branching processes: Variation, growth, and extinction of populations. New York: Cambridge University Press. 2005.