Efficient SAT-based Proof Search in Intuitionistic Propositional Logic

Camillo Fiorentini

Department of Computer Science University of Milan, Italy

CADE 2021

The 28th International Conference on Automated Deduction

https://www.cs.cmu.edu/~mheule/CADE28/

July, 12th, online

Motivations

- In 2015, Claessen and Rosén introduced intuit, an efficient decision procedure for IPL (Intuitionistic Propositional Logic) based on a Satisfiability Modulo Theories (SMT) approach.
 - K. Claessen and D. Rosén. SAT Modulo Intuitionistic Implications, LPAR 2015
 - The intuit decision procedure exploits an incremental SAT-solver.
- On the top of intuit, we have implemented intuitR (intuit with Restart), obtaining significant advantages.

intuit: specification

Input

A formula α

- Output
 - Valid if α is intuitionistically valid
 - CountSat (counter-satisfiable) if α is not intuitionistically valid Thus, there exists a countermodel for α , namely:
 - a Kripke model such that at its root α is not forced

intuit: architecture

Two main modules:

Clausification

Pre-processing of the input formula α :

- $\sqrt{}$ the validity of α is reduced to the validity of a sequents of the kind $R, X \Rightarrow g$, where R, X and g have a simple form.
- Prover

Decide the validity of $R, X \Rightarrow g$.

Most of the computation is performed by an incremental SAT-solver.

intuit: clausification

• R is a set of flat clauses φ of the form

$$\varphi \coloneqq \bigwedge A_1 \to \bigvee A_2$$
 A_1 , A_2 : sets of atoms

Flat clauses are actively used in classical reasoning (SAT-solver)

• X is a set of implication clauses λ of the form

$$\lambda := (a \rightarrow b) \rightarrow c$$
 a, b, c: atoms

g is an atom

We also assume that (R, X) is \rightarrow -closed:

$$(a \rightarrow b) \rightarrow c \in X \implies b \rightarrow c \in R$$

intuit: clausification

R: set of flat clauses φ X: set of impl. clauses λ $\varphi := \bigwedge A_1 \to \bigvee A_2$ $\lambda := (a \to b) \to c$ a, b, c, g: atoms A_1, A_2 : sets of atoms

- (1) $\alpha \in IPL$ iff $R, X \vdash_i g \qquad \vdash_i$: intuitionistic provability
- (2) Let \mathcal{K} be a countermodel for the sequent $R, X \Rightarrow g$, namely:
 - at the root r of K, all the formulas in R and X are forced and g is not forced.

Then, K is a countermodel for α .

Clausification is performed by applying standard rewriting steps.

intuit: prover

- Decision algorithm: a variant of the DPLL(\mathcal{T}) procedure.
- Most of the computation is performed by an incremental SAT-solver:
 - √ Learning mechanism:

During the computation, flat clauses φ of the form

$$\varphi := \bigwedge A \to b$$

(with A a set of atoms) are learned and permanently added to the solver (learned clauses)

intuit

- Implemented in Haskell
- ullet intuit outperforms the best state-of-the-art provers for IPL

But

- YES/NO procedure (no informative output)
- The procedure seems to be far away from the traditional techniques for deciding IPL validity.

Recent work (joint paper with S. Graham-Lengrand and R. Goré):

A Proof-Theoretic Perspective on SMT-Solving for Intuitionistic Propositional Logic, Tableaux 2019.

We unveil a close and surprising connection between the intuit decision procedure based on SMT and the known proof-theoretic methods.

ullet the decision procedure mimics a standard root-first proof search strategy for the sequent calculus LJT_{SAT} , a variant of Dyckhoff's calculus LJT

The calculus LJT_{SAT}

We consider r-sequents (reduced sequents) of the form:

$$R:$$
 set of fat clauses $\bigwedge A_1 \to \bigvee A_2$
 $X:$ set of impl. clauses $(a \to b) \to c$
 $g:$ atom

The calculus LJT_{SAT} is sound and complete w.r.t. IPL.

$$\vdash_{\mathrm{LJT}_{\mathtt{SAT}}} R, X \Rightarrow g \qquad \mathsf{iff} \qquad R, X \, \vdash_{\mathrm{i}} \, g$$

Axiom rule

$$\frac{R \vdash_{c} g}{R, X \Rightarrow g} \operatorname{cpl}_{0} \qquad \vdash_{c} : \text{classical provability}$$

The soundness follows by this well-known property:

•
$$R \vdash_{c} g \text{ iff } R \vdash_{i} g$$

To check the condition $R \vdash_{c} g$ we use the SAT-solver.

The calculus LJT_{SAT}

Rule for left \rightarrow

Let us consider Dyckhoff rule adapted to r-sequents:

$$\frac{R, X, b \to c, a \Rightarrow b \qquad R, X, c \Rightarrow g}{R, X, (a \to b) \to c \Rightarrow g}$$

We are assuming $b \rightarrow c \in R$, thus it can be rewritten as

$$\frac{R, X, a \Rightarrow b \qquad R, X, c \Rightarrow g}{R, X, (a \rightarrow b) \rightarrow c \Rightarrow g}$$

Generalization

- multiplicative contexts (split R into R_1 , R_2 and X into X_1 , X_2)
- Replace the atom a in the left premise with a set of atoms A

$$\frac{R_1, X_1, \mathbf{A} \Rightarrow \mathbf{b}}{R_1, R_2, X_1, X_2, (\mathbf{a} \rightarrow \mathbf{b}) \rightarrow \mathbf{c} \Rightarrow \mathbf{g}}$$

The calculus LJT_{SAT}

Rule ljt for left implication:

$$\frac{R_1, X_1, A \Rightarrow b \qquad \varphi, R_2, X_2, \underline{(a \rightarrow b) \rightarrow c} \Rightarrow g}{R_1, R_2, X_1, X_2, \underline{(a \rightarrow b) \rightarrow c} \Rightarrow g} \qquad \begin{array}{c} A \text{ is any set of atoms} \\ \varphi = \bigwedge (A \setminus \{a\}) \rightarrow c \end{array}$$

In the right premise:

- the main formula $(a \rightarrow b) \rightarrow c$ is kept
- ullet the flat clause φ is added

Intuitively:

- R_1 , R_2 are the clauses in the SAT-solver
- $\bullet \varphi$ is the learned clause to be added to the SAT-solver.

Proof of soundness

$$\lambda = (a \rightarrow b) \rightarrow c$$

$$\frac{R_{1}, X_{1}, A \vdash_{i} b}{R_{1}, X_{1}, A \setminus \{a\} \vdash_{i} a \rightarrow b} R \rightarrow \frac{\lambda, a \rightarrow b \vdash_{i} c}{\lambda, a \rightarrow b \vdash_{i} c} MP$$

$$cut$$

$$\frac{R_{1}, X_{1}, \lambda, A \setminus \{a\} \vdash_{i} c}{R_{1}, X_{1}, \lambda \vdash_{i} \varphi} R \rightarrow \frac{\varphi, R_{2}, X_{2}, \lambda \vdash_{i} g}{R_{1}, R_{2}, X_{1}, X_{2}, \lambda \vdash_{i} g} cut$$

The calculus $LJT_{\mathtt{SAT}}$

$$\frac{R \vdash_{\mathsf{c}} g}{R, X \Rightarrow g} \operatorname{cpl}_{0}$$

$$\frac{R_1, X_1, A \Rightarrow b \qquad \varphi, R_2, X_2, (a \rightarrow b) \rightarrow c \Rightarrow g}{R_1, R_2, X_1, X_2, (a \rightarrow b) \rightarrow c \Rightarrow g} \text{ ljt } \quad \varphi = \bigwedge (A \setminus \{a\}) \rightarrow c$$

We also need a cut rule

$$\frac{R_1, X_1 \vdash_i \varphi \qquad \varphi, R_2, X_2 \Rightarrow q}{R_1, R_2, X_1, X_2 \Rightarrow q} \text{ cut}$$

In [Tableuax 2019], we formalize the intuit decision procedure so that, given an r-sequent $\sigma=R,X\Rightarrow g$, it outputs either a derivation of σ in $\mathrm{LJT}_{\mathrm{SAT}}$ or a countermodel for σ .

The end of the story?

Beyond intuit

We have enhanced the Haskell intuit code by implementing the derivation/countermodel extraction procedures

We experimented some unexpected and weird phenomena:

- derivations are often convoluted and contain applications of the cut rule which cannot be trivially eliminated.
- countermodels have lots of redundancies.

To overcome these issues:

- we introduce the sequent calculus C^{\rightarrow} , a lightweight variant of ${\rm LJT_{SAT}}$
- we redesign the intuit decision procedure, using ${\cal C}^{\to}$ instead of ${\rm LJT_{SAT}}$

We call the new prover intuitR (intuit with Restart)

The calculus C^{\rightarrow}

The calculus C^{\rightarrow} only consists of two rules:

Axiom rule
 Same axiom rule as in LJT_{SAT}

$$\frac{R \vdash_{\rm c} g}{R, X \Rightarrow g} \operatorname{cpl}_0$$

Left implication

A simplified version of the rule ljt of ${\rm LJT_{SAT}}$ (rule ${cpl_1}$ in next slide).

There is no need for cut rule.

The calculus C^{\rightarrow} : rule for left \rightarrow

Let us consider the additive variant of rule ljt (A is any set of atoms):

$$\frac{R, X, A \Rightarrow b \qquad \varphi, R, X, (a \rightarrow b) \rightarrow c \Rightarrow g}{R, X, (a \rightarrow b) \rightarrow c \Rightarrow g} \qquad \varphi := \bigwedge (A \setminus \{a\}) \rightarrow c$$

We require that the left premise has a trivial proof:

$$\frac{R, A \vdash_{c} b}{R, X, A \Rightarrow b} \operatorname{cpl}_{0} \qquad \varphi, R, X, (a \to b) \to c \Rightarrow g$$

$$R, X, (a \to b) \to c \Rightarrow g$$

We get the rule cpl₁:

$$\frac{R, A \vdash_{c} b \qquad \varphi, R, X, (a \to b) \to c \Rightarrow g}{R, X, (a \to b) \to c \Rightarrow g} \operatorname{cpl}_{1} \qquad \varphi := \bigwedge (A \setminus \{a\}) \to c$$

Very simple rule: one premise, one side condition involving classical provability (thus it can be checked by a SAT-solver)

The calculus C^{\rightarrow} : derivations

Derivations of C^{\rightarrow} have a plain linear structure (one branch):

$$\frac{R_{m-1}, A_{m-1} \vdash_{c} b_{m-1}}{R_{m}, X \Rightarrow g} \xrightarrow{R_{m}, X \Rightarrow g} \lambda_{m-1}$$

$$\frac{R_{m-1}, A_{m-1} \vdash_{c} b_{m-1}}{R_{m-1}, X \Rightarrow g} \xrightarrow{R_{m-1}, X \Rightarrow g} \lambda_{1}$$

$$\frac{R_{1}, A_{1} \vdash_{c} b_{1} \qquad \varphi_{1}, R_{1}, X \Rightarrow g}{\varphi_{1}, R_{1}, X \Rightarrow g} \lambda_{1}$$

$$\frac{R_{0}, A_{0} \vdash_{c} b_{0} \qquad \varphi_{0}, R_{0}, X \Rightarrow g}{\varphi_{0}, R_{0}, X \Rightarrow g} \lambda_{0}$$

$$\lambda_{k} := (a_{k} \rightarrow b_{k}) \rightarrow c_{k} \in X$$

$$\varphi_{k} := \Lambda(A_{k} \setminus \{a_{k}\}) \rightarrow c_{k}$$

$$R_{k+1} := R_{k} \cup \{\varphi_{k}\}$$

Rule names are omitted, we display the main formulas λ_k of cpl_1 applications.

The calculus C^{\rightarrow} : derivations

$$\frac{R_{m-1}, A_{m-1} \vdash_{c} b_{m-1}}{R_{m}, X \Rightarrow g} \frac{R_{m} \vdash_{c} g}{R_{m}, X \Rightarrow g} \lambda_{m-1}}{R_{m-1}, X \Rightarrow g} \lambda_{m-1}$$

$$\vdots$$

$$R_{0}, A_{0} \vdash_{c} b_{0} \frac{R_{1}, A_{1} \vdash_{c} b_{1} \qquad R_{2}, X \Rightarrow g}{R_{1}, X \Rightarrow g} \lambda_{1}$$

$$R_{0}, X \Rightarrow g$$

Note that the sets R_k are increasing

$$R_0 \subseteq R_1 \subseteq R_2 \subseteq \cdots \subseteq R_m$$

Accordingly, to check the conditions

$$R_0, A_0 \vdash_{c} b_0, \quad R_1, A_2 \vdash_{c} b_1, \quad \dots \quad R_m \vdash_{c} g$$

we can use an incremental SAT-solver

- R_0 :, R_1 , ...: clauses stored in the SAT-solver
- A_0 , A_1 , ..., b_0 , b_1 , ...: local variables

Goal

Search for a derivation of R_0 , $X \Rightarrow g$ in C^{\rightarrow} .

Bottom-up proof search procedure by exploiting an incremental SAT-solver to check classical validity.

(1) Add the clauses R_0 to the SAT-solver and check:

$$R_0 \vdash_{\mathrm{c}} g ?$$

• If $R_0 \vdash_{c} g$, then build the derivation:

$$\frac{R_0 \vdash_{\rm c} g}{R_0, X \Rightarrow g} \operatorname{cpl}_0$$

• Otherwise, choose $\langle \lambda_0, A_0 \rangle$ such that:

$$\lambda_0 = (a_0 \to b_0) \to c_0 \in X \qquad \qquad R_0, A_0 \vdash_{c} b_0$$

and apply:

$$\frac{R_0, A_0 \vdash_{c} b_0 \qquad \overbrace{\varphi_0, R_0}^{R_1}, X \Rightarrow g}{R_0, X \Rightarrow g} \lambda_0 \qquad \varphi_0 = \bigwedge(A_0 \setminus \{a_0\}) \rightarrow c_0$$

(2) We continue with the sequent

$$R_1, X \Rightarrow g$$
 $R_1 = R_0 \cup \{\varphi_0\}$

Add φ_0 to the SAT-solver and check

$$R_1 \vdash_{\mathrm{c}} g$$
?

• If $R_1 \vdash_{c} g$, then:

$$\frac{R_1 \vdash_{c} g}{R_0, A_0 \vdash_{c} b_0} \frac{R_1 \vdash_{c} g}{R_1, X \Rightarrow g} \lambda_0$$

• Otherwise, choose $\langle \lambda_1, A_1 \rangle$ such that

$$\lambda_1 = (a_1 \rightarrow b_1) \rightarrow c_1 \in X$$
 $R_1, A_1 \vdash_c b_1$
$$R_2 \longrightarrow R_1, A_1 \vdash_c b_1 \longrightarrow R_1, X \Rightarrow g \longrightarrow \lambda_1$$

$$R_0, A_0 \vdash_c b_0 \longrightarrow R_1, X \Rightarrow g \longrightarrow \lambda_0$$

Input Assumptions

R: set of flat clauses $\varphi = \bigwedge A_1 \to \bigvee A_2$ X: set of impl. clauses $\lambda = (a \to b) \to c$

g: atom

Output Properties

 $\begin{array}{ll} \text{Valid} & \text{implies } R, X \vdash_{\mathrm{i}} g \\ \text{CountSat} & \text{implies } R, X \nvdash_{\mathrm{i}} g \end{array}$

Problem

A blind choice of $\langle \lambda, A \rangle$ might lead to non-termination

Example

Current sequent:

$$b \rightarrow c$$
, $(a \rightarrow b) \rightarrow c \Rightarrow g$

Selected $\langle \lambda, A \rangle$:

$$\lambda = (a \rightarrow b) \rightarrow c$$
 $A = \{b\}$

Application of rule cpl_1 :

$$\frac{b \to c, \overbrace{\{b\}}^{A} \vdash_{c} b \qquad \varphi, \ b \to c, \ (a \to b) \to c \Rightarrow g}{b \to c, \ (a \to b) \to c \Rightarrow g}$$

$$\varphi = \bigwedge (A \setminus \{a\}) \to c = b \to c$$

We get a non-terminating loop!

$$b \rightarrow c, \{b\} \vdash_{c} b$$

$$b \rightarrow c, \{a \rightarrow b) \rightarrow c \Rightarrow g$$

$$b \rightarrow c, \{b\} \vdash_{c} b$$

$$b \rightarrow c, (a \rightarrow b) \rightarrow c \Rightarrow g$$

$$b \rightarrow c, (a \rightarrow b) \rightarrow c \Rightarrow g$$

Can we get an informed choice of $\langle \lambda, A \rangle$?

Current goal: prove the sequent $\sigma_k = R_k$, $X \Rightarrow g$

$$\frac{R_{k-1}, A_{k-1} \vdash_{c} b_{k-1}}{R_{k-1}, X \Rightarrow g} \lambda_{k-1}$$

$$\vdots$$

$$\frac{R_{0}, A_{0} \vdash_{c} b_{0}}{R_{0}, X \Rightarrow g} \lambda_{0} \quad R_{0} \subseteq R_{1} \subseteq \cdots \subseteq R_{k}$$

We search for a countermodel K for σ_k .

- If we find K then: K is a countermodel for R_0 , $X \Rightarrow g$ (indeed, $R_0 \subseteq R_k$) We conclude CountSat (namely, R_0 , $X \nvdash_i g$)
- Othewise From the failure, we learn the proper choice of $\langle \lambda_k, A_k \rangle$

A Kripke model can be seen as a set of interpretations.

Let W be a finite set of interpretations with minimum M_0 (namely: $M_0 \subseteq M$, for every $M \in W$).

Then, $\mathcal{K}(W)$ is the Kripke model such that:

- The set of worlds is *W*;
- $M_1 \leq M_1$ (in $\mathcal{K}(W)$) iff $M_1 \subseteq M_2$;
- the root of $\mathcal{K}(W)$ is M_0 ;
- $M \Vdash p$ iff $p \in M$.

Example

$$W = \{ \emptyset, \{a\}, \{b\}, \{a,c\}, \{a,b\} \}$$

Let W be a finite set of interpretations.

We introduce the following realizability relation \triangleright_W ($M \in W$):

$$M \triangleright_W (a \to b) \to c$$
 iff $a \in M$ or $b \in M$ or $c \in M$ or $a \in M$ or $a \in M'$ and $a \in M'$ and $a \in M'$ and $a \in M'$ and $a \in M'$

Main property of \triangleright_W

Let W be a finite set of interpretations with minimum M_0 .

Then, $\mathcal{K}(W)$ is a countermodel for $R, X \Rightarrow g$ iff:

- g ∉ M₀;
- for every $M \in W$:

$$M \models R$$
 namely: $M \models \varphi, \ \forall \varphi \in R$
 $M \triangleright_W X$ namely: $M \triangleright_W \lambda, \ \forall \lambda \in X$

We use the property to build countermodels.

Let $R, X \Rightarrow g$ be the current sequent to be proved in the main loop.

- If $R \vdash_{c} g$, then there exists a derivation of $R, X \Rightarrow g$.
- Otherwise, the SAT-solver yields a model M s.t. $M \models R$ and $M \not\models g$. We set

$$W = \{M\}$$

We try to turn $\mathcal{K}(W)$ into a countermodel for $R, X \Rightarrow g$ by running a saturation process:

√ we add to W the worlds needed to fulfill the main property (inner loop).

Key point

• Suppose that there exists a pair $\langle w, \lambda \rangle$ such that

$$w \in W$$
 $\lambda = (a \rightarrow b) \rightarrow c \in X$ $w \triangleright_W \lambda$

Then, we search for an interpretation w' s.t.:

$$w \subseteq w'$$
 and $w' \models R$ and $a \in w'$ and $b \notin w'$

 $\sqrt{}$ If such a w' exists, we add w' to W and we continue to saturate $\sqrt{}$ Otherwise, there is no countermodel for $R,X\Rightarrow g$.

How can we search for an interpretation w' s.t.:

$$w \subseteq w'$$
 and $w' \models R$ and $a \in w'$ and $b \notin w'$?

Ask to the SAT-solver:

$$R, w, a \nvdash_{c} b$$
?

Possible outcomes

• Yes(*A*)

This means that

$$A \subseteq w \cup \{a\}$$
 and $R, A \vdash_{c} b$

Thus, $R, w, a \vdash_{c} b$ and such a w' does not exist.

Accordingly, the construction of the countermodel fails.

• No(M')

This means that

$$M' \models R \cup w \cup \{a\}$$
 and $M' \not\models b$

We set w' = M'.

Suppose that, after having chosen the pair $\langle w, \lambda \rangle$, the inner loop ends with Yes(A), meaning that R, $A \vdash_{c} b$ (R: flat clauses in the SAT-solver).

Then, λ and A are the main formula and the local assumptions to be used:

$$\frac{R, A \vdash_{c} b \qquad \varphi, R, X \Rightarrow g}{R, X \Rightarrow g} \lambda \quad \lambda \in X \\ \varphi = \bigwedge(A \setminus \{a\}) \to c$$

- The learned clause φ is added to the SAT-solver
- We empty the set W (namely, we discard the current countermodel) and we perform a new iteration of the main loop (Restart)
 - \checkmark At each restart, we execute the procedure from scratch. However, at each restart the SAT-solver is more powerful (we have added a new learned clause φ to it).

We call the obtained prover intuit (intuit with Restart).

intuitR

W:

φ:

Input Assumptions

R: set of flat clauses $\varphi = \bigwedge A_1 \rightarrow \bigvee A_2$ *X*: set of impl. clauses $\lambda = (a \rightarrow b) \rightarrow c$ *g*: atom Output Properties

Valid implies $R, X \vdash_i g$ CountSat implies $R, X \nvdash_i g$

intuitR implementation

- We have implemented intuitR in Haskell on the top of intuit; we have added some useful features (e.g., trace of computations, construction of derivations/countermodels).
- As in intuit, we exploit the module MiniSat, a Haskell bundle of the MiniSat SAT-solver (but in principle we can use any incremental SAT-solver).
- The intuitR implementation can be downloaded at

https://github.com/cfiorentini/intuitR.

intuitR vs intuit

- The proof search procedure of intuitR has a plain and intuitive presentation, consisting of two nested loops.
- Derivations have a linear structure, formalized by the calculus C^{\rightarrow} . Basically, a derivation in C^{\rightarrow} is a cut-free derivation in LJT_{SAT} (the calculus of intuit) having only one branch.
- The countermodels obtained by intuitR are in general smaller than the ones obtained by intuit, since at every restart the model is reset.
- We have replicated the experiments performed for intuit: intuitR outperforms intuit.

intuit vs intuitR: derivations

Example 1 (Valid formula)

$$\begin{array}{ll} \chi = & ((\eta_{12} \to \gamma) \land (\eta_{23} \to \gamma) \land (\eta_{31} \to \gamma)) \to \gamma \\ \\ \eta_{ij} = p_i \leftrightarrow p_j \quad \gamma = p_1 \land p_2 \land p_3 \\ \\ \text{first instance of problem class SYJ201 from the ILTP library} \end{array}$$

Clausification

 R_0 : 17 flat clauses, X: 6 implication clauses

intuitR

intuitR

14 call to the SAT-solver (6 Yes, 8 No), 6 Restart
$$\frac{R_{5}, p_{2} \vdash_{c} p_{3} \qquad \frac{R_{6} \vdash_{c} \tilde{g}}{R_{6}, X \Rightarrow \tilde{g}}}{R_{6}, X \Rightarrow \tilde{g}} \lambda_{2}$$

$$\frac{R_{4}, p_{1}, \tilde{p}_{1} \vdash_{c} p_{3} \qquad R_{5}, X \Rightarrow \tilde{g}}{R_{5}, X \Rightarrow \tilde{g}} \lambda_{4}$$

$$\frac{R_{2}, p_{1}, \tilde{p}_{10} \vdash_{c} p_{2} \qquad R_{4}, X \Rightarrow \tilde{g}}{R_{4}, X \Rightarrow \tilde{g}} \lambda_{5}$$

$$\frac{R_{1}, p_{3}, \tilde{p}_{1} \vdash_{c} p_{1} \qquad R_{2}, X \Rightarrow \tilde{g}}{R_{2}, p_{2}, \tilde{p}_{6} \vdash_{c} p_{1} \qquad R_{1}, X \Rightarrow \tilde{g}} \lambda_{3}$$

$$\frac{R_{0}, p_{2}, \tilde{p}_{6} \vdash_{c} p_{1} \qquad R_{1}, X \Rightarrow \tilde{g}}{R_{0}, X \Rightarrow \tilde{g}} \lambda_{3}$$

intuit vs intuitR: derivations

intuit

14 calls to the SAT-solver (7 Yes, 6 No)

$$\begin{array}{c} R_0, \dots \vdash_{c} \rho_1 \\ \hline R_0, \dots \Rightarrow \rho_1 \end{array} \begin{array}{c} R_1, \dots \vdash_{c} \rho_2 \\ \hline R_1, \dots \Rightarrow \rho_2 \end{array} \begin{array}{c} R_2, \dots \vdash_{c} \rho_2 \\ \hline R_2, \dots \Rightarrow \rho_2 \end{array} \begin{array}{c} R_2, \dots \vdash_{c} \rho_3 \\ \hline R_2, \dots \Rightarrow \rho_1 \end{array} \begin{array}{c} R_3, \dots \vdash_{c} \rho_3 \\ \hline R_3, \dots \vdash_{c} \rho_1 \\ \hline R_3, \dots \Rightarrow \rho_1 \end{array} \begin{array}{c} R_5, \dots \vdash_{c} \rho_3 \\ \hline R_3, \dots \mapsto_{\rho_1} \end{array} \begin{array}{c} R_5, \dots \mapsto_{\rho_3} \\ \hline R_3, \dots \mapsto_{\rho_1} \end{array} \begin{array}{c} R_4, \dots \Rightarrow \rho_3 \\ \hline R_3, \dots \mapsto_{\rho_1} \end{array} \begin{array}{c} R_5, \dots \Rightarrow \rho_3 \\ \hline R_3, \dots \Rightarrow \rho_1 \end{array} \begin{array}{c} R_5, \dots \Rightarrow \rho_3 \\ \hline R_3, \dots \Rightarrow \rho_1 \end{array} \begin{array}{c} R_5, \dots \Rightarrow \rho_3 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{c} \lambda_1 \\ \hline R_5, \dots \Rightarrow \rho_3 \end{array} \begin{array}{$$

Cuts are needed to drip out the extra learned clauses φ_0 , φ_1 , φ_4 .

Actually, one can prove that each learned clause φ_k satisfies

$$R_0, X \vdash_{\mathrm{i}} \varphi_k$$

intuit vs intuitR: countermodels

Example 2 (CountSat formula)

$$\psi = ((\eta_{12} \to \gamma) \land (\eta_{23} \to \gamma) \land (\eta_{34} \to \gamma) \land (\eta_{41} \to \gamma)) \to (p_0 \lor \neg p_0 \lor \gamma)$$
$$\eta_{ij} = p_i \leftrightarrow p_j \quad \gamma = p_1 \land p_2 \land p_3 \land p_4$$
first instance of problem class SYJ207 from the ILTP library

Clausification

 R_0 : 24 flat clauses, X: 9 implication clauses

intuitR

14 call to the SAT-solver (4 Yes, 10 No), 4 Restart

intuit vs intuitR: countermodels

intuit

31 calls to the SAT-solver (24 No, 7 Yes)

6 worlds

intuit vs intuitR: experiments

We compare intuitR with the state-of-the-art provers for IPL:

- intuit
- fCube [Ferrari et al. LPAR 2010]

Standard tableaux calculus with simplification rules

• intHistGC [Goré et al., IJCAR 2014]

Sequent calculus with histories, dependency directed backtracking for global caching

Benchmarks

- 1200 problems (498 Valid and 702 CountSat)
- timeout: 600 seconds.

Outcome

- intuitR solve more problems than its competitors
- In families SYJ201 (Valid formulas) and SYJ207 (CountSat formulas) of ILTP library, intuitR outperforms its rivals
- In all the other cases (except 3 families), intuitR is comparable to the best prover (which is intuit in most cases).

intuit vs intuitR: experiments

	l		ı	
Class (# problems)	intuitR	intuit	fCube	intHistGC
SYJ201(50)	50 (2.259)	50 (11.494)	50 (259.776)	50 (39.466)
SYJ202(38)	10* (49.265)	10* (50.658)	9* (176.984)	6* (324.673)
SYJ203(50)	50 (0.250)	50 (0.335)	50 (1.671)	50 (0.293)
SYJ204(50)	50 (0.442)	50 (0.477)	50 (0.972)	50 (0.203)
SYJ205(50)	50 (0.500)	50 (0.730)	50 (1.317)	50 (4.129)
SYJ206(50)	50 (0.303)	50 (0.348)	50 (0.759)	50 (0.112)
SYJ207(50)	50 (2.291)	50 (109.919)	50 (138.546)	50 (1014.476)
SYJ208(38)	38 (5.225)	38 (5.479)	29* (2.755)	38 (497.715)
SYJ209(50)	50 (0.226)	50 (0.278)	50 (1.690)	50 (0.254)
SYJ210(50)	50 (0.272)	50 (0.252)	50 (0.988)	50 (0.288)
SYJ211(50)	50 (0.462)	50 (1.251)	50 (1.073)	50 (63.686)
SYJ212(50)	50 (0.669)	42* (587.794)	50 (2.698)	50 (1.624)
EC(100)	100 (2.738)	100 (0.821)	100 (6.183)	100 (0.651)
negEC(100)	100 (3.614)	100 (1.116)	100 (13.733)	100 (5.807)
cross(4)	4 (0.100)	4 (0.097)	4 (3.417)	2* (0.005)
jm_cross(4)	4 (0.120)	4 (0.090)	4 (5.404)	3* (4.324)
jm_lift(3)	3 (0.170)	3 (0.133)	3 (6.847)	2* (0.028)
lift(3)	3 (0.119)	3 (0.102)	3 (6.494)	2* (0.012)
mapf(4)	4 (0.187)	4 (0.400)	4 (446.921)	3* (0.043)
portia(100)	100 (32.878)	100 (22.596)	100 (3255.818)	100 (3200.135)
negportia(100)	100 (7.956)	100 (8.309)	98*	100 (28.289)
			(3826.011)	
negportiav2(100)	100 (8.081)	100 (8.411)	98* (1264.103)	100 (3212.293)
nishimura2(28)	28 (9.784)	28 (12.285)	27* (141.326)	28 (7.616)
Unsolved	28	36	43	38

intuit vs intuitR: experiments

Comparison between intuitR and intuit (1172 problems, the 28 problems where both provers run out of time have been omitted); time axis are logarithmic, the 8 red squares indicates that intuit has exceeded the timeout

Conclusions

 intuitR can be extended to deal with some superintuitionistic logics.

Key idea:

- √ if the countermodel under construction is not a model of the logic, the inner loop fails, and we run a new iteration of the main loop.
- $\sqrt{\ }$ From the failure, we learn new clauses to add to the SAT-solver (corresponding to instances of the axiom schema of the logic).
- Other generalizations suggested in [Claessen&Rosen,LPAR 2015] (modal logics, fragments of first-order logic) seem to be more challenging.
- The intuitR implementation and other additional material (e.g., the omitted proofs, a detailed report on experiments) can be downloaded at

https://github.com/cfiorentini/intuitR.