

School of CSEE

Sorting Revisited

- So far we've talked about two algorithms to sort an array of numbers
 - What is the advantage of merge sort? → faster
 - What is the advantage of insertion sort? → sort in place
- Next on the agenda: Heapsort
 - Combines advantages of both previous algorithms

Sort in place: Only a constant number of array elements are stored outside the input array at any time.

Heaps

 A heap can be seen as a nearly complete binary tree:

- We can think of unfilled slots as null pointers

Heaps

• In practice, heaps are usually implemented as arrays:

Heaps

- To represent a nearly complete binary tree as an array:
 - The root node is A[1]
 - Node *i* is A[*i*]
 - The parent of node i is A[i/2] (note: integer divide)
 - The left child of node i is A[2i]

- The right child of node i is A[2i + 1]

Heap

- A max tree is a tree in which the key value in each node is no smaller than the key values in its children.
- A min tree is a tree in which the key value in each node is no larger than the key values in its children.
- A max-heap is a nearly complete binary tree that is also a max tree.
- A min-heap is a nearly complete binary tree that is also a min tree.

The Heap Property

Heaps satisfy the *heap property*:

 $A[Parent(i)] \ge A[i]$ for all nodes i > 1

- In other words, the value of a node is at most the value of its parent
- Where is the largest element in a heap stored?

Definitions:

- The height of a node in the tree = the number of edges on the longest downward path to a leaf
- The *height* of a tree = the height of its root = $\Theta(\lg n)$.

Maintaining the heap property

- MAX-HEAPIFY maintains the max-heap property.
 - Before MAX-HEAPIFY, A[i] may be smaller than its children.
 - Assume left and right subtrees of i are max-heaps.
 - After MAX-HEAPIFY, subtree rooted at i is a maxheap.

MAX-HEAPIFY lets the value at A[i] "float down" in the max-heap so that the subtree rooted at index i becomes a max-heap.

initially

After Max-Heapify

Maintaining the Max-Heap


```
Max-Heapify(A, i)
    \models left(i)
   r=right(i)
   if l \le heap-size[A] and A[l] > A[i]
     then largest =
     else largest =
    if r \le heap-size[A] and A[r] > A[largest]
6
     then largest =
8
    if largest≠ i
     then exchange A[i] with A[largest]
9
10
           Max-Heapify(A, largest)
```

Algorithm Analysis Chapter 6

Max-Heapify() Example

Max-Heapify() Example

Algorithm Analysis Chapter 6 14

Max-Heapify() Example

Analyzing Heapify(): Formal

- Fixing up relationships between i, I, and r takes $\Theta(1)$ time.
- If the heap at i has n elements, how many elements can the subtrees at I or r have?
- Worst case = Most unbalanced case 2n/3 on left subtree and n/3 on right subtree (bottom row 1/2 full)
- So time taken by Max-Heapify() is given by

$$T(n) \leq T(2n/3) + \Theta(1)$$

By case 2 of the Master Theorem,

$$T(n) = O(\lg n)$$

- We can build a heap in a bottom-up manner by running Max-Heapify() on successive subarrays
 - Fact: for array of length n, all elements in range $A[\lfloor n/2 \rfloor + 1 .. n]$ are heaps (Why?)
 - So:
 - Walk backwards through the array from n/2 to 1, calling Max-Heapify() on each node.
 - Order of processing guarantees that the children of node *i* are heaps when *i* is processed

Algorithm Analysis Chapter 6 17

How to create a heap?

Algorithm Analysis Chapter 6 18

Building a Heap

19

- 1 heap-size[A]=length[A]
- 2 for $i = \left| \frac{length[A]}{2} \right|$ downto 1
- 3 do Max-Heapify(A, i)

At the start of each iteration of the "**for**" loop of lines 2-3, each node *i*+1, *i*+2, ..., *n* is the root of a maxheap.

Build-Max-Heap() Example

Work through example

$$A = \{8, 2, 6, 3, 27, 16, 19, 21, 15, 11\}$$

Analyzing Build-Max-Heap()

- Each call to Max-Heapify() takes O(lg n) time
- There are O(n) such calls (specifically, \[\ln/2 \])
- Thus the running time is O(n lg n)
 - Is this a correct asymptotic upper bound?
 - Is this an asymptotically tight bound?
- A tighter bound is O(n)
 - How can this be? Is there a flaw in the above reasoning?

통대학교 Analyzing Build-Max-Heap(): Tight

- To Max-Heapify() a
 subtree takes O(h) time where
 h is the height of the subtree
 - $h = O(\lg n), n = \# \text{ nodes in}$ subtree
 - The height of most subtrees is small
- Fact: an *n*-element heap has at most \[n/2^{h+1} \] nodes of height \(h. \)

$$T(n) = \sum_{h=0}^{\lfloor \lg n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h)$$

$$= O(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h})$$

$$= O(n \sum_{h=0}^{\infty} \frac{h}{2^h})$$

$$= O(n)$$
Page 1148 (A.8)

Algorithm Analysis Chapter 6 22

- Given Build-Max-Heap(), an in-place sorting algorithm is easily constructed:
 - Maximum element is at A[1]
 - Discard by swapping with element at A[n]
 - Decrement heap_size[A]
 - A[n] now contains correct value
 - Restore heap property at A[1] by calling Max-Heapify()
 - Repeat, always swapping A[1] for A[heap_size(A)]

Pass	1
Pass	

Record 5 will be pushed down to make heap.

Pass 2

Record 1 will be pushed down to make heap.

59	48	26	15	19	11	1	5	61	77
----	----	----	----	----	----	---	---	----	----

Heapsort(A) Build-Max-Heap(A) for i = length[A] downto 2 3 do exchange A[1] with A[i] heap-size[A]=heap-size[A]-1 4 5 Max-Heapify(A,1)

Steps 1 :
$$O(n)$$

Step
$$3-5$$
: $O(\lg n)$

$$T(n) = O(n) + (n-1)O(\lg n) = O(n\lg n)$$


```
Heapsort(A)

1 Build-Max-Heap(A)

2 for i = length(A) downto 2

3 do exchange A[1] with A[i]

4 heap-size(A)=heap-size(A)-1

5 Max-Heapify(A,1)
```

```
Build-Max-Heap(A)

1 heap-size[A]=length[A]

2 for i = \left\lfloor \frac{length[A]}{2} \right\rfloor downto 1

3 do Max-Heapify(A, i)
```

```
Max-Heapify(A, i)
    = left (i)
   r=right(i)
   if I \le heap-size[A] and A[I] > A[I]
     then largest = 1
     else largest = i
6
    if r \le heap-size[A] and
         A[r]>A[largest]
     then largest = 1
    if largest ≠ i
     then exchange A[i] /A[largest]
           Max-Heapify(A, largest)
10
```


Priority Queues

- A well-implemented quicksort usually beats heapsort in practice.
- But the heap data structure is incredibly useful for implementing *priority queues*. The element to be deleted is the one with highest (or lowest) priority.

Algorithm Analysis Chapter 6 27

Priority Queues

Priority queue

- Maintains a dynamic set S of elements.
- Each set element has a key.
- Example of max-priority queue : schedule jobs on shared computers.
- Example of min-priority queue : Utilizing the service machine time. Job with smallest service time is selected.

Dynamic Set: The set that can grow, shrink, or otherwise change over time.

Algorithm Analysis Chapter 6 28

Priority Queue - Insertion

(B,3) (A,1)

(B,3) (A,1) (C,2)

(B,3) (A,1) (C,2) (D,1)

(B,3) (E,3) (C,2) (D,1) (A,1)

Insert (B,3)

Insert (C,2)

Insert (D,1)

Insert (E,3)

Priority Queue - Deletion

(B,3) (E,3)	(C,2)	(D,1)	(A,1)	
-------------	-------	-------	-------	--

Delete (B,3)

Delete (E,3)

Delete (C,2)

Delete(A,1)

Priority queues

- Max-priority queue supports dynamic-set operations:
 - INSERT(S, x): inserts element x into set S.
 - MAXIMUM(S): returns element of S with largest key.
 - EXTRACT-MAX(S): removes and returns element of S with largest key.
 - INCREASE-KEY(S, x, k): increases value of element \vec{x} 's key to \vec{k} . (Assume $\vec{k} \ge \vec{x}$'s current key value).
 - Min-priority queue supports similar operations.

Algorithm Analysis Chapter 6 31

Maximum operation

Heap-Maximum(A)

1 Return A(1)

O(1) running time

Extracting the maximum

Heap-Extract-Max(A)

- if heap-size[A]<1
- then error "heap underflow"
- max=A[1]
- 4 A[1]=A[heapsize[A]]
- Heapsize [A] = Heapsize [A] -1
- Max-Heapify(A,1)
- return max

O(lg n) running time

Increase-Key operation


```
Heap-Increase-Key(A, i, key)
  if key < A[i]
     then error "new key is smaller than current key"
3 A[i] = key
  while i > 1 and A[parent(i)] < A[i]
     do exchange A[i] with A[parent(i)]
5
         i = parent(i)
6
```

 $O(\lg n)$ running time

Algorithm Analysis Chapter 6 34

Insert operation

Max-Heap-Insert(A, key)

- 1 heapsize[A]=heapsize[A]+1
- 2 $A[heapsize[A]] = -\infty$
- 3 Heap-Increase-Key(A, heapsize[A], key)

O(lg n) running time