The Structure of Mathematical Expressions

An ARXIV Case Study

Deyan Ginev and Bruce R. Miller

National Institute of Standards and Techonology

March 26, 2012

Contents

C	Contents					
1 Introduction						
	1.1	Motivation	3			
	1.2	Related Resources	3			
	1.3	Experimental Setup	4			
2	A S	tudy of Mathematical Syntax	5			
	2.1	Basics	5			
	2.2	Discrete math	5			
	2.3	Continuous math	6			
	2.4	Other fields	8			
3	Dis	cussion	15			
4	Cor	nclusion	17			

Chapter 1

Introduction

In this study, we survey the notational diversity of present-day mathematical expressions, in order to uncover their linguistic phenomena. A practical motivation for this study is to provide a foundation for determining the boundary between syntactic and semantic phenomena in said expressions, from the perspective of language modeling. The ultimate goal of this project is to construct a grammar of mathematical expressions, which captures all relevant syntactic properties established in this study, and allows for the semantic analysis necessary to model and observe the semantic relationships.

1.1 Motivation

We want to enable machine-reading of formulas, in order to provide a variety of user-assistance services, such as semantic search, text-to-speech synthesis, semantic interactions (definition lookup), as well as computer algebra support ("evaluate subexpressions on demand") and ultimately computer verification ("does that proof step really hold?").¹

EdN:1

EdN:2

1.2 Related Resources

Notation census, beginnings of study are in Deyan's thesis, Naproche and FMathL have examples, but no real systematic study.²

 $^{1}\mathrm{EdNote}$: expand

²EDNOTE: expand

Train1	Differential Geometry
	http://arxmliv.kwarc.info/files/9609/dg-ga.9609012
Train2	Quantum Physics
	http://arxmliv.kwarc.info/files/0910/0910.5733/
Train3	High Energy Physics - Theory
	http://arxmliv.kwarc.info/files/9407/hep-th.9407125/
Train4	Commutative Algebra
	http://arxmliv.kwarc.info/files/0809/0809.4873/
Train5	Statistics Theory
	http://arxmliv.kwarc.info/files/0905/0905.1486/
Train6	General Relativity and Quantum Cosmology
	http://arxmliv.kwarc.info/files/0807/0807.2507/
Train7	Cosmology and Extragalactic Astrophysics
	http://arxmliv.kwarc.info/files/0908/0908.2548
Train8	Exactly Solvable and Integrable Systems
	http://arxmliv.kwarc.info/files/0905/0905.2033
Train9	Geometric Topology
	http://arxmliv.kwarc.info/files/0809/0809.4477
Train10	Algebraic Geometry
	http://arxmliv.kwarc.info/files/0704/0704.0537

Table 1.1: Sandbox of Ten Random ARXIV Papers from Diverse Scientific Subfields

1.3 Experimental Setup

The primary corpus on which we base this investigation is the Cornel pre-print archive "ARXIV"³, consisting of over 700,000 articles in 37 scientific subfields.

arXiv Sandbox

EdN:4

EdN:3

EdN:5

As a secondary resource, we we will also consult entry-level literature on high-school mathematics, in order to exhibit basic phenomena, as well as to demonstrate phenomena apriori known to the authors.⁵

 $^{^3\}mathrm{EdNote}$: cite here

 $^{^4\}mathrm{EdNote}$: Say that, on the ArXIV front, we first start with the train sandbox from Deyan's

⁵EDNOTE: Wikipedia? PEMDAS?

Chapter 2

A Study of Mathematical Syntax

2.1 Basics

Foundations

6 7 8 EdN:6 EdN:7 EdN:8

High School

9 10 EdN:9 EdN:10

2.2 Discrete math

Set Theoretic Notations

EdN:11 EdN:12

Logical Operators

13 EdN:13

 $^{^6\}mathrm{EdNote}\colon$ arithmetic, grouping fences and equality

⁷EDNOTE: basic relations and orderings

⁸EdNote: arithmetic and algebraic sequences?

 $^{^9\}mathrm{EdNote}\colon$ geometry here, otherwise a separate geometry subsection

 $^{^{10}\}mathrm{Ed}\mathrm{Note}\colon$ trigonometry, complex and rational numbers

 $^{^{11}\}mathrm{EdNote}\colon$ elementhood, inclusions, set constructors, overloaded arith ops

 $^{^{12}\}mathrm{EdNote}\colon$ also maps : domains -¿ codomains, xRy notations

 $^{^{13}\}mathrm{EdNote}$: classic logic, HOL, type theories

Combinatorics

EdN:14

14 15

EdN:15

Number Theory

EdN:16

16 17 18 19

EdN:17

EdN:18

EdN:19

Graph Theory

20 21 22

EdN:20

EdN:21

EdN:22

Algebra

 $23\ 24\ 25\ 26$

EdN:23

EdN:24

EdN:25

EdN:26

Functions Theory

EdN:27

27

2.3 Continuous math

Calculus

EdN:28

28

¹⁴EDNOTE: Infinite sums

 $^{{\}rm ^{15}EDNote}:$ binomials, combinations, permutations,

 $^{^{16}\}mathrm{EdNote}$: modulo modifiers

 $^{^{17}\}mathrm{EdNote}$: tuples

 $^{^{18}{}m EdNote}$: divisibility notations $a\mid b$ and b/a

 $^{^{19}\}mathrm{EdNote}$: DLMF sneaky notations

 $^{^{20}\}mathrm{EdNote}$ edge and vertex notations

 $^{^{21}\}mathrm{EdNote}$: incidence and adjacency notations

²²EDNOTE: Wiki is very nice: http://en.wikipedia.org/wiki/Glossary_of_graph_theory

 $^{^{23}\}mathrm{EdNote}$: vectors

 $^{^{24}\}mathrm{EdNote}\colon$ maps and complements

 $^{^{25}\}mathrm{EdNote}$: groups

²⁶EdNote: lattices

 $^{^{27}{\}rm EDNote}$: talk about associativity of application and composition, ";" and "o" as notation variants, discuss complex examples

 $^{^{28}\}mathrm{EdNote}$: differentials, integrals, limits, remember brownian motion integral notations!

Probability

29 30 EdN:29 EdN:30

Interval Notation and Arithmetic

31 EdN:31

Topology

32 EdN:32

Differential Geometry

Some intro text?

33 EdN:33 EdN:34

 $^{^{29}\}mathrm{EdNote}$ Bayes formula with multiple denotations of P

 $^{^{30}\}mathrm{EdNote}$: Various conditional and joint probability notations

 $^{^{31}\}mathrm{EdNote}$ introduce interval notations, then move to interval arithmetic

 $^{^{32}\}mathrm{EdNote}$: manifold constructors and notations

 $^{^{33}{}m EdNote}$: more on \pmod{x} notations

 $^{^{34}\}mathrm{EdNote}$: Complex named enttity: "U(1) Chern-Simons gauge theory."

EdN:35EdN:36 35 36

Other fields 2.4

Quantum Physics

EdN:37EdN:38 37 38 :

 $^{^{35}{\}rm EDNOTE}$: Scripts give you new names or new objects $^{36}{\rm EDNOTE}$: Prime scripts can be used for both naming and operating $^{37}{\rm EDNOTE}$: Bra-ket notation $^{38}{\rm EDNOTE}$: computer science, biology, chemistry...

	Expression	Meaning	Syntax		
1.	$W \in \mathcal{P} \cap \mathcal{Z}$	set membership	infix relation		
	Discussion: set ops precede set relations, [Tra	ain1]			
2.	$\nu: \overset{n}{\times} \mathbb{V} \to \mathbb{R}$	a map	typed modifier		
	$\textbf{Discussion:} \ \textit{n-} \text{ary cross-product, [Train1]}$				
3.	$\mathcal{Z}^* = \{ X \in \mathcal{V} \mid \omega(X, W) \in \mathbb{Z}, \text{ for all } W \in \mathcal{Z} \}$	definition to set	typed modifier		
	Discussion: NL mixins, quantified relation, [Γ rain1]			
4.	$\operatorname{span}_{\mathbb{R}}\{W_1,\ldots,W_g\}$	span of a set	application		
	Discussion: set operators can take fenced yet not simply grouped arguments, [Train1]				
5.	$\mathcal{BS}_{\mathcal{P}} = igcup_{\mathbf{q} \in (\mathbb{Z}/k\mathbb{Z})^g} \Lambda_{\mathbf{q}}$	definitional assignment	infix relation		
	Discussion: n-ary union, ranges over subscript, [Train1]				
6.	$L_{12} = L_{\mathcal{P}_1} \cap L_{\mathcal{P}_2} \neq 0$	non-transversal intersection	modified relation		
	Discussion: acts as relation, is it modified or chained?, [Train1]				
7.	$\alpha \in GL(g, \mathbb{Z}) \subset Sp(2g, \mathbb{Z})$	statement	infix relation		
	Discussion: membership comes after set inclusion, due to well-typedness!, [Train1]				

Table 2.1: Set Theory Notations, Part 1

	Expression	Meaning	Syntax
1.	$(\mathcal{V}/\mathcal{Z},k\omega)$	symplectic torus	circumfix constructor
	Discussion: [Train1]		
2.	\mathcal{Z}	self-dual lattice	atom abbreviation
	Discussion: [Train1]		
3.	(\mathcal{V},ω)	symplectic vector space	circumfix constructor
	Discussion: [Train1]		
4.	$Lag(\mathcal{V})$	Lagrangian Grassmannian	circumfix constructor
	Discussion: [Train1]		
5.	$Lag_4(\mathcal{V})$	4-fold covering space	applicative constructor
	Discussion: [Train1]		
6.	\mathcal{M}_{Σ}	moduli space	scripted constructor
	Discussion: [Train1]		
7.	Σ	Riemann surface	atom variable
	Discussion: [Train1]		
8.	$H^1(\Sigma;\mathbb{R})$	chomology space	applicative constructor
	Discussion: [Train1]		
9.	$H^1(\Sigma;\mathbb{R})/H^1(\Sigma;\mathbb{Z})$	torus	applicative constructor
	Discussion: [Train1]		
10.	(M,ω)	symplectic manifold	circumfix constructor
	Discussion: [Train1]		
11.	$f \in \mathcal{C}^{\infty}(M)$	smooth function	modified atom
	Discussion: [Train1]		
12.	X_f	field	scripted constructor
	Discussion: [Train1]		
13.		interior product	complex infix operator
	Discussion: Formed via	a \mathop in TEX, [Train1]	
14.	$[\omega] \in H^2(M;\mathbb{R})$	cohomology class	modified complex object
	Discussion: [Train1]		
15.	(\cdot,\cdot)	notation patter, hermitian metric	tuple
	Discussion: [Train1]		

Table 2.2: Differential Geometry Notations, Part $\boldsymbol{1}$

	Expression	Meaning	Syntax
16.	$-2\pi\mathrm{i}\omega$	complex number	arithmetic expression
	Discussion: [Train1]		
17.	$(\mathcal{L}, abla)$	prequantum line bundle	circumfix constructor
	Discussion: [Train1]		
18.	$U \subset M$	open subset	modified atom
	Discussion: [Train1]		
19.	$\mathcal{L} _{U}$	restricted line bundle	modified atom
	Discussion: postfix restriction via " $ _{U}$	", [Train1]	
20.	$s \in \Gamma(U; \mathcal{L})$	nonzero section	modified atom
	Discussion: [Train1]		
21.	$\nabla s = -2\pi \mathrm{i}\thetas$	equation	relation
	Discussion: [Train1]		
22.	$\omega _U = d\theta$	equation	relation
	Discussion: [Train1]		
23.	T_xM	bundle	applicative constructor
	Discussion: invisible infix bundle-form	ning operator, [Train1]	
24.	$\omega _{\mathcal{P}_x} \equiv 0$	equivalence	relation
	Discussion: [Train1]		
25.	$\dim \mathcal{P}_x = \frac{1}{2} \dim T_x M$	equality	relation
	Discussion: dim has lower precedence	than invisible bundle-formation,	[Train1]
26.	$[X,Y] \in \mathcal{X}_{\mathcal{P}}(M)$	commutator is in set	relation
	Discussion: used as verb phrase in ser	ntence, [Train1]	
27.	$ abla^{\mathcal{P}}$	covariant differentiation	scripted prefix op
	Discussion: big op?, [Train1]		
28.	$\nabla^{\mathcal{P}}: \mathcal{X}_{\mathcal{P}}(M) \times \mathcal{X}_{\mathcal{P}}(M) \longrightarrow \mathcal{X}_{\mathcal{P}}(M)$ $(X, Y) \longmapsto \nabla_X^{\mathcal{P}} Y,$	domain specification	typing modifier
	Discussion: alignment splits type stat	ement, trailing comma [Train1]	
29.	$(\nabla_X^{\mathcal{P}} Y) \perp \omega = X \perp d(Y \perp \omega).$	definitional assignment	infix relation
	Discussion: trailing dot, [Train1]		
30.	$\Pi_{\mathcal{P}}:M\to M/\mathcal{P}$	canonical projection map	typed modifier
	Discussion: [Train1]		

Table 2.3: Differential Geometry Notations, Part 2 $\,$

	Expression	Meaning	Syntax			
31.	T^g	g-dimensional torus	complex object			
	$\textbf{Discussion:} \ \operatorname{script} \ \operatorname{means} \ \operatorname{dimensionality}[\operatorname{Train} 1]$					
32.	q_1,\ldots,q_g	coordinate functions	enumerative sequence			
	Discussion: [Train1]					
33.	X_{q_1},\ldots,X_{q_g}	Hamiltonian vector fields	enumerative sequence			
	Discussion: [Train1]					
34.	$q_1 \circ \Pi_{\mathcal{P}}, \dots, q_g \circ \Pi_{\mathcal{P}}$	functions	enumerative sequence			
	Discussion: sequence elements are applicative of	bjects, [Train1]				
35.	$\gamma_1(\Lambda),\ldots,\gamma_g(\Lambda)$	basis for a homology group	enumerative sequence			
	Discussion: [Train1]					
36.	$j_i(y) = \int_{\Omega} \theta$, where $y = \Pi_{\mathcal{P}}(\Lambda)$,	definitional assignment	infix relation			
	$\gamma_i(\Lambda)$ Discussion: integral has no binder, nat. lang. m	nodifier, punctuation, [Train1]				
37.	$\operatorname{Det} \mathbb{V} = \bigwedge^{n} \mathbb{V}$	definitional assignment	infix relation			
		ussion: n -ary wedge?, hidden binder on \mathbb{V} , [Train1]				
38.	$\kappa\left(X_{j_1}\big _{\Lambda},\ldots,X_{j_g}\big _{\Lambda}\right)=1.$	canonically defined density	infix relation			
	Discussion: bars as postfix, within a sequence [Train1]					
39.	$(\nabla_W^{\mathcal{P}} \nu)(X_1^*, \dots, X_g^*) = W(\nu(X_1^*, \dots, X_g^*)),$	definitional assignment ¹	infix relation			
	Discussion: applied function is fenced, [Train1]	O				
40.	$0 \longrightarrow \Omega^0_{\mathcal{P}}(\mathcal{L}_{\mathcal{P}}) \stackrel{\nabla^{\mathcal{P}}}{\longrightarrow} \Omega^1_{\mathcal{P}}(\mathcal{L}_{\mathcal{P}}) \stackrel{\nabla^{\mathcal{P}}}{\longrightarrow} \cdots \stackrel{\nabla^{\mathcal{P}}}{\longrightarrow} \Omega^g_{\mathcal{P}}(\mathcal{L}_{\mathcal{P}}) \longrightarrow 0$	complex	type?			
	Discussion: arrows as transitions, ellipsis, [Train1]					
41	$\stackrel{k}{\wedge} \mathcal{P}^* \otimes \mathcal{L}_{\mathcal{P}}$		annlicative constructor?			
41.						
49	Discussion: which operator binds first?,[Train1]	definitional aggierment	infix relation			
42.						
43.	Discussion: bound variable in integral subscript	natural isomorphism	infix relation			
40.	$H^g(M; \mathcal{P}, \mathcal{L}_{\mathcal{P}}) \cong \bigoplus_{\Lambda \subset \mathcal{BS}_{\mathcal{P}}} S_{\Lambda}$ Discussions as well as a representation of the state of the stat	naturai isomorphism	IIIIX Telation			
4.4	Discussion: n -ary \oplus , congruence [Train1]	C				
44.	(s,s')	function on Λ circumfix constructor				
45	Discussion: shorthand constructor for a function					
45.	$\int\limits_{\Lambda}(s,s')\mu*\mu'$	integral application	prefix application			
	Discussion: binder in subscript, infix operator "*" binds stronger than invisible apply [Train1]					

Table 2.4: Differential Geometry Notations, Part 3 $\,$

	Expression	Meaning	Syntax		
46.	$\langle\langle\cdot,\cdot angle angle:\mathcal{H}_{\mathcal{P}_2} imes\mathcal{H}_{\mathcal{P}_1} o\mathbb{C}$	sesquilinear pairing pattern	type modifier		
	Discussion: operator pattern, along with operator type [Train1]				
47.	$\omega = \sum_{i=1}^{g} dp^i \wedge dq^i$	symplectic form	infix relation		
	Discussion: sum over wedge applications, [Train1]				
48.	$p^i = \text{constant}$				
	Discussion: bad text/math modality, RHS outside	e of math[Train1]			
49.	$W \cdot (X, \lambda) = (X + W, \epsilon(W) e^{\pi i k \omega(W, X)} \lambda),$	\mathcal{Z} -action definition	infix relation		
	Discussion: defines operator \cdot , arguments quantified	ed via NL following the math express	sion,[Train1]		
50.	$l (l \leq g)$	dimension	modified object		
	Discussion: invisible modifier, using fenced relation	n,[Train1]			
51.	$(W_1,\ldots,W_g;W_1^{\perp},\ldots,W_g^{\perp})$	symplectic basis	circumfix constructor		
	Discussion: distinction between commas and semi	colon, [Train1]			
52.	$i=1,\ldots,g$	definitional range	infix relation		
	Discussion: defined to be a sequence? or modifying	g restriction over a range?, [Train1]			
53.	$X \in \mathcal{V}, W \in \mathcal{P}$	conjunction of statements	sequence of relations		
	Discussion: comma denotes NL "and" between two relational statements,[Train1]				
54.	$k \omega(W_i, X) \in \mathbb{Z}, \qquad i = 1, \dots, g,$	statement	modified relation		
	Discussion: four scopes of commas, also hinted by	spacing, [Train1]			
55.	$q_i \pmod{k}$	modulo	invisible modifier		
	Discussion: fenced modifier argument, prefix mod	?,[Train1]			
56.	$\Lambda_{\mathbf{q}=(q_1,\ldots,q_g)}: k\omega(W_i,X) = q_i \pmod{k}, i = 1,\ldots,g.$	orbit description	infix relation		
	Discussion: complex expression, rich in phenomen	a,[Train1]			
57.	$\hat{\Lambda}_{\mathbf{q},1} = \{ X \in \mathcal{V} \mid k \omega(W_i, X) = q_i + kl_i, \ i = 1, \dots, g \}.$	definitional assignment	infix relation		
	Discussion: modified relation!,[Train1]				
58.	$\{\sigma_{\mathbf{q}} = s_{\mathbf{q}} \otimes \delta_{\mathbf{q}}\}_{\mathbf{q} \in (\mathbb{Z}/k\mathbb{Z})^g}$	standard unitary basis if $\mathcal{H}_{\mathcal{P}}$	set constructor		
	Discussion: relational modifier to set constructor	argument, subscripted set range, [Tra	in1]		
59.	$k\omega(W_i, T_j) = \delta_{ij}$ $i, j = h + 1, \dots, g$	statement	infix relation		
	Discussion: spaces determine equality scopes, act as conjunctions; equality on sequence and range[Train1]				
60.	$[\mathbf{l}] = [(l_1, \dots, l_g)] \in \mathbb{Z}^g / \omega(2, 1)\mathbb{Z}^g$	equivalence class	doubly modified object		
	Discussion: two relations modify [1], chained modify	fying? or nested modifying?[Train1]			

Table 2.5: Differential Geometry Notations, Part 4 $\,$

	Expression	Meaning	Syntax
61.	$^t\mathbf{q}_1$?	scripted atom
	Discussion: prescript t , but what does it mean?	, [Train1]	
62.	\sum \sum	nested summation	prefix operator apply
	$0 \leq q_{2i} \leq k \det \omega(2,1) - 1 [1], [1']$		
	Discussion: stacked subscripts, and subscript se		
63.	$\bigoplus_{i=1}^g \mathbb{Z} W_{1i} \oplus \bigoplus_{i=1}^g \mathbb{Z} W_{1i}^{\perp}$?	infix apply
	Discussion: mixing prefix n -ary \oplus with infix bin	nary ⊕.[Train1]	
64.	$\tau: Lag(\mathcal{V}) \times Lag(\mathcal{V}) \times Lag(\mathcal{V}) \to \mathbb{Z}$	function declaration	typed modifier
	Discussion: \times is weaker than invisible application	on, when in a typing context?, [Tra	ain1]
65.	$L_1, L_2, L_3, L_4 \in Lag(\mathcal{V})$	set membership	infix relation
	Discussion: multirelation? membership holds for	or each of the sequence entries on I	HS, [Train1]
66.	$r \equiv \pmod{q}$	equivalence	infix relation
	Discussion: second-order relation, r is used as a	a superscript notation for modulo a	pply, [Train1]
67.	$U_{\mathcal{P}}(b) = F_{\mathcal{P},b\mathcal{P}} \circ b : \mathcal{H}_{\mathcal{P}} o \mathcal{H}_{\mathcal{P}}$	unitary operator definition	typed modifier
	Discussion: modifier for assignment, followed by	y modifier for type, [Train1]	
68.	$(W_i' = bW_i; W_i'^{\perp} = bW_i^{\perp})$	symplectic basis	circumfix constructor
	Discussion: two modified arguments to the main	n constructor, [Train1]	
69.	$(x,c) \in \mathcal{T} \times Sp(2g,\mathbb{R}) \xrightarrow{b} (b(x),bc) \in \mathcal{T} \times Sp(2g,\mathbb{R})$	left action	arrow transition
	Discussion: \times is not used in a typing sense, but	in a cross-product sense, inducing	a different arrow interplay [Train1]
70.			
	Discussion: [Train1]		
71.			
	Discussion: [Train1]		
72.			
	Discussion: [Train1]		
73.			
	Discussion: [Train1]		
74.			
	Discussion: [Train1]		
75.	The state of the s		
	Discussion: [Train1]		
	Discussion. [11am1]		

Table 2.6: Differential Geometry Notations, Part 5 $\,$

Chapter ${\mathcal Z}$

Discussion

Chapter 4

Conclusion