

DNS Basics

BUPT/QMUL 2010-11-09

Related Information

- Basic function of DNS
- Host entry structure in Unix
- Two system calls for DNS database retrieving
 - gethostbyname ()
 - gethostbyaddr ()

Agenda

- Brief introduction to DNS
- Elements of the DNS
- DNS services
- DNS Protocols
- DNS tools

Refer to Chapter 23 of textbook

Brief Introduction to DNS

- Basic functions of DNS
- A short history of DNS

Basic Functions of DNS (1)

- Generally, applications refer to hosts/mailboxes and network resources by ASCII strings - such as
 - www.bupt.edu.cn
 - www.qmul.ac.uk
 - webmaster@company-a.com
- Nevertheless, the network itself only understands binary addresses, so some mechanism is required to convert the ASCII string to network addresses and vice versa.

Low-level name: IP address

High-level name: hostname

Basic Functions of DNS (2)

- Translating between addresses
 - Hostname (www.company-a.com)
 - Convert between Domain Name and IP
 - IP address (128.9.32.254)
 - Convert between IP and MAC
 - MAC address (C2-67-3E-95-C5-F1)

A Short History (1)

Hostnames growth trend, by Nov. 2010

A Short History (2)

from flat namespace to hierarchical namespace

Original status

 there was simple a file, hosts.txt, that listed all the hosts and their IP addresses

flat structure

 Every night all the hosts would collect this file from the host that maintained it

Centralized control

- Incurred problems
 - Each name had to be unique because the namespace was flat
 - Excessive access to the machine maintaining the list
 - Difficult to maintain when the network grew

Not scalable

A Short History (3)

- from flat namespace to hierarchical namespace
- Nowaday status
 - Hierarchical structure
 - Distributed database
 - Efficient, reliable, general purpose
 - It is primarily used for mapping host names and email destinations to IP addresses - but can be used for other purposes
 - It is a query / response protocol running on top of UDP/TCP, with default port number 53

Summary: What is DNS?

- Domain Name System
- A distributed database providing mapping between Domain name and IP address
 - Implemented in hierarchy of many name servers
- An application protocol
 - Used by hosts and name servers to communicate to resolve names

Elements Of The DNS

Elements Of DNS

- Domain namespace and resource records
- Name servers
- Name resolvers
- Protocol

Domain namespace and resource records

- Domain namespace is of a hierarchical structure like an upended tree
- RR (Resource Record) is the data associated with a particular name

Domain Namespace (1)

- the hierarchical structure

Domain Namespace (2)

- organization of domains
- Each element of the hierarchy is referred to as a domain
- At the top of the hierarchy is the root domain, known as simply "."
- Subdomains directly underneath the root domain are called top-level domains
- Domains directly underneath top-level domains are called second-level domains, and so on

Domain Namespace (3)

- the domain names
- The domain name of a node is the list of the labels on the path from the node to the root of the tree separated by dots(".")
- Conventionally printed or read left to right, from the most specific (lowest, farthest from the root) to the least specific (highest, closest to the root)
 - eg. www.bupt.edu.cn
- Case insensitive
- Components can be up to 63 characters long, the full pathname must not be more than 255 characters
- The full name of a domain is also called its Fully Qualified Domain Name (FQDN)

Domain Namespace (4)

- the domain names

Example of domain name

Resource Record

- Each domain in the DNS has one or more Resource Records (RRs), which are fields that contain information about that domain
- Each RR has the following information
 - Owner: the domain name where the RR is found
 - Type: specifies the type of the resource in this RR
 - A Host Address
 - MX Mail Exchanger
 -
 - Class: specifies the protocol family to use
 - IN the Internet system
 - TTL: specifies the Time To Live (in unit of second) of the cached RRs
 - RDATA: the resource data

Name Servers (1)

- Name servers are the repositories of information that make up the domain database.
- The database is divided up into sections called zones, which are distributed among the name servers. A zone may be one or more domains or even a sub-domain
- Each name server handles one or more zones. And the essential task of a name server is to answer queries using data in its zones.
- Name servers can answer queries in a simple manner. The response can always be generated using only local data, and either contains the answer to the question or a referral to other name servers "closer" to the desired information.
- A given zone will be available from several name servers to ensure its availability.

- A zone corresponds to an administrative authority that is responsible for that portion of the hierarchy
- Eg. bupt controls *x.bupt.edu.cn*

Example of Zone and domain

Name Servers (2)

- Primary server / Authoritative server
 - holds in its database the name-to-address mappings for the group of hosts it administers
 - knows the official answer
- Secondary server
 - maintains a copy of the Primary Server's database
- Caching server
 - asks DNS queries to other servers but maintains a cache of the responses together with a "time to live" value
 - non-authoritative data about other parts of the tree

Name Resolvers (1)

- The client side of DNS
- A resolver is the interface between the user program and the domain name servers
 - A resolver receives a request from a user program (e.g., mail programs, TELNET, FTP)
 - asks questions to the DNS system on behalf of the application
 - returns the desired information

Name Resolvers (2)

communication model

Name Resolvers (3)

an example

 DNS working together with HTTP application Browser

DNS Services

DNS Services

- Mapping domain name to addresses
- Inverse queries (optional)
- Pointer queries

Mapping Domain Names to Addresses (1)

- arrangement of name servers
- Conceptual arrangement of name servers in a tree that corresponding to the name hierarchy
- Each server knows the addresses of all lower-level servers for all subdomains within the domain it handles

Mapping Domain Names to Addresses (2)

arrangement of name servers

A more realistic organization of name servers

The tree is broad and flat and fewer servers need to be

contacted when resolving a name

Mapping Domain Names to Addresses (3)

name resolution process

- Two-step name resolution process
 - Beginning with the local name server (default name server)
 - If the local server can not resolve a name, the query must be sent to another server in the domain system
- It can improve the query efficiency because most queries to name servers refer to local name.

Mapping Domain Names to Addresses (4)

- two name resolution methods
- A query is made to a local name server. If local name server can not resolve the name, then it will query another server.
- Recursive resolution:
 - If the queried server does not have the information, it must make the appropriate query or queries to get the information
 - Generally, a server fulfills a recursive query either with data in its own memory or by making another recursive query
- Iterative resolution: If the queried server does not have the information, it may then respond with the address of another server; the local name server (on behalf of resolver)then queries that server (which might respond with the address of another server, and so on)
 - Commonly used by name servers on the Internet

Mapping Domain Names to Addresses (5) – example of recursive resolution

Mapping Domain Names to Addresses (6) – example of iterative resolution

Internet addressing: an example of DNS

Mapping Domain Names to Addresses (7)

- caching mechanism to improve efficiency
- Caching at the name servers
- Caching at the hosts
- TLD servers typically cached in local name servers
 - Name Thus root name servers not often visited Server Internet user User Name Resolver Program user response User Cache System Name Server Database 35

Cache

Inverse Queries

- Mapping a particular resource to a domain name or domain names that have that resource
 - Standard query: mapping a domain name to a resource
 - Inverse query: mapping a resource to a domain name
- Optional part of DNS
- Generally NOT used because there is often no way to find the server that can resolve the query without searching the entire set of servers
- NOT an acceptable method of mapping host addresses to host names, use the IN-ADDR.ARPA domain instead

Pointer Queries

- Using IN-ADDR.ARPA domain for address to host mapping
 - An IP address in dotted-decimal format is included in the query
 - The correct domain name for the machine with the specific IP address
- Note: Since the IN-ADDR.ARPA special domain and the normal domain for a particular host or gateway will be in different zones, the possibility exists that that the data may be inconsistent

DNS Protocols

Related RFCs

- RFC1034, DOMAIN NAMES CONCEPTS AND FACILITIES
- RFC1035, DOMAIN NAMES IMPLEMENTATION AND SPECIFICATION
- Over 137 DNS related RFCs
 - See webpage at http://www.dns.net/dnsrd/rfc/

DNS Message Format (from RFC 1035)

Query and Response messages, both with same message format

0	15 16							31	
	ID	QR	OPCODE	AA	TC	RD	RA	Z	Rcode
	Question count				Ans	wer	coun	t	
	Authority count			A	ddit	iona	l cou	nt	
		(var	Question iable numbe				ns)		
		(\	Answer ariable num)		
		(\	Authority variable num	Se ber	ctic of I	o <mark>n</mark> RRs))		
		(\	Additiona variable num)		

DNS Message Header Structure(1)

- ID: 16-bit field used to correlate queries and responses.
- QR: 1-bit field that identifies the message as a query (0) or response (1).
- OPCODE: 4-bit field that describes the type of query:
 - 0: Standard query (name to address). 1: Inverse query (address to name).
 2: Server status request.
- AA: Authoritative Answer. 1-bit field. When set to 1, identifies this response is made by an authoritative name server.
- TC: Truncation. 1-bit field. When set to 1, indicates the message has been truncated due to length greater than that permitted.
- RD: Recursion Desired. 1-bit field. Set to 1 by the resolver to request recursive service by the name server.
- RA: Recursion Available. 1-bit field. Set to 1 by name server to indicate recursive query support is available.
- Z: 3-bit field. Reserved for future use. Must be set to 0.

DNS Message Header Structure(2)

- RCODE: Response Code. 4-bit field that is set by the name server to identify the status of the query:
 - 0: No error condition. 1: Unable to interpret query due to format error.
 Unable to process due to server failure. 3: Name in query does not exist. 4:
 Type of query not supported. 5:Query refused for policy reasons.
- QDCOUNT(Question count): 16-bit field that defines the number of entries in the question section.
- ANCOUNT(Answer count): 16-bit field that defines the number of resource records in the answer section.
- NSCOUNT(Authority count): 16-bit field that defines the number of name server resource records in the authority section.
- ARCOUNT(Additional count): 16-bit field that defines the number of resource records in the additional records section.

Question Section Format

0 15 16 31

QEURY DOMAIN NAME

(variable number of domain names)

QUERY TYPE

QUERY CLASS

- QUERY TYPE: 16-bit field used to specify the type of the query
 - A Host address
 - MX Mail exchanger for the domain
 - ...
- QUERY CLASS: 16-bit field used to specify the class of the query
 - IN Internet system
 - **.** . . .

Resource Record Format (1)

15 16 31 **DOMAIN NAME TYPE CLASS** TTL **RESOURCE DATA LENGTH RESOURCE DATA**

- SOA
 - Start Of Authority--identifies the domain or zone and sets a number of parameters
- NS
 - Maps a domain name to the name of a computer that is authoritative for the domain
- A
 - Maps the name of a system to its address. If a system (e.g., a router) has several addresses, then there will be a separate record for each.
- CNAMF
 - Maps an alias name to the true, canonical name
- MX
 - Mail Exchanger. Identifies the systems that relay mail into the organization

Resource Record Format (3)

type field

TXT

 Provides a way to add text comments to the database. For example, a txt record could map abc.com to the company's name, address, and telephone number

WKS

 Well Known Services. Can list the application services available at the host. Used sparingly, if at all

HINFO

Host Information, such as computer type and model. Rarely used

PTR

Maps an IP address to a system name. Used in address-to-name files.

Example of Resource Records(1)

- Type=A
 - Name = Domain name , Value = IP Address

ns.bupt.edu.cn 86400 IN A 202.112.10.37

- Type=NS
 - Name= Domain, eg. bupt.edu.cn
 - value = Domain name of Authoritative Name Server

bupt.edu.cn 86400 IN NS ns.bupt.edu.cn

Example of Resource Records (2)

- Type=CNAME
 - Name= canonical name
 - Value = the name

dns.bupt.edu.cn 86400 IN CNAME ns.bupt.edu.cn

- Type=MX
 - Name = Domain name
 - Value= canonical name of mail server

bupt.edu.cn 86400 IN MX mail.bupt.edu.cn

DNS Tools

DNS Tools: nslookup

- Function: query Internet name servers interactively
- Examples:

```
[shiyan@localhost]$ nslookup mail.263.net
               202,106,0,20
Server:
Address:
              202.106.0.20#53
Non-authoritative answer:
       mail.263.net
Name:
Address: 211.150.96.52
Name: mail.263.net
Address: 211.150.96.51
[shiyan@localhost]$ nslookup 211.150.96.52
         202,106,0,20
Server:
Address:
               202,106,0,20#53
Non-authoritative answer:
52.96.150.211.in-addr.arpa
                                name = mail.263.net.
```


DNS Tools: dig

- Function: a flexible tool for interrogating DNS name servers
- Performs DNS lookups and displays the answers that are returned from the name server(s)

```
[shiyan@localhost]$ dig bupt.edu.cn
[shiyan@localhost]$ dig +norecurse bupt.edu.cn
[shiyan@localhost]$ dig +trace bupt.edu.cn
[shiyan@localhost]$ dig -x 211.68.71.130
```


Other Issues

- Dynamic DNS (DDNS)
 - RFC2136
- IDNS
 - Internationalized Domain Names (IDN)
- DNSSEC and other security issues
 - Security concern on DNS information exchange
- DNSv6
 - New frontier for next generation Internet
- ENUM
 - Convergence with telephony?
- More advanced topics
 - Digital Object Identifier, http://www.doi.org/faq.html
 - Handle System, http://www.handle.net/

Summary of Important Terms in DNS

- Domain / domain name
- Domain namespace
- Resource Record
- Name server
- Resolver
- Zone
- Query / response
- Standard query / inverse query / pointer query
- recursive resolution / iterative resolution
- Primary server/ secondary server / caching server

Some procedures should be understood

- How does DNS work together with the user programs (e.g. TELNET, FTP, HTTP) ?
- How is the recursive resolution and iterative resolution?
- What are the mechanisms in DNS that are possible to improve the querying efficiency?

Example of DNS Response(1) (RFC1034)

The query would look like:

(c)	
Header	OPCODE=SQUERY
Question	QNAME=SRI-NIC.ARPA., QCLASS=IN, QTYPE=A
Answer	<empty></empty>
Authority	<empty></empty>
Additional	<empty> </empty>

The response from C. ISI. EDU would be:

Header	OPCODE=SQUERY, RESPONSE, AA
Question	QNAME=SRI-NIC.ARPA., QCLASS=IN, QTYPE=A
Answer	SRI-NIC.ARPA. 86400 IN A 26.0.0.73 86400 IN A 10.0.0.51
Authority	<empty></empty>
Additional	<empty></empty>

Example of DNS Response(2)

6.2.3. QNAME=SRI-NIC. ARPA, QTYPE=MX

This type of query might be result from a mailer trying to look up routing information for the mail destination HOSTMASTER@SRI-NIC.ARPA. The response from C. ISI. EDU would be:

Header	OPCODE=SQUERY,	RESPO	NSE,	AA	
Question	QNAME=SRI-NIC.	ARPA.,	QCLA	SS=IN,	QTYPE=MX
Answer	SRI-NIC.ARPA.	86400	IN	MX	O SRI-NIC.ARPA.
Authority	<pre><empty></empty></pre>				
Additional	SRI-NIC.ARPA.	86400	IN	A	26.0.0.73
				A	10.0.0.51

Example of DNS Response(3)

6.2.6. QNAME=BRL.MIL, QTYPE=A

If this query is sent to C. ISI. EDU, the reply would be:

Header	OPCODE=SQUERY,	RESPONSE		
Question	QNAME=BRL.MIL,	QCLASS=IN,	QTYPE=A	
Answer	<pre><empty></empty></pre>			
Authority	MIL.	86400 IN 86400	NS NS	SRI-NIC. ARPA. A. ISI. EDU.
Additional	A. ISI. EDU.		A	26.3.0.103
	SRI-NIC. ARPA.		A	26.0.0.73
	Ì		A	10.0.0.51