

Batch: C-1 Roll No: 16010121031

Experiment / assignment / tutorial No: 5

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date

TITLE: To implement temporal difference approach

AIM: TD learning and prediction

Expected OUTCOME of Experiment:

CO-3: Apply different temporal difference learning policies.

Books/Journals/Websites referred:

Richard S. Sutton and Andrew G. Barto, "Reinforcement Learning: An Introduction", The MIT Press, Second Edition, 2018

Pre-Lab/ Prior Concepts:

TD methods learn directly from episodes of experience. TD is model-free: no knowledge of MDP transitions / rewards is required. TD learns from incomplete episodes, by bootstrapping. TD updates a guess towards a guess. TD can learn before knowing the final outcome. TD can learn online after every step.

Chosen Problem Statement: Driving Home

Explain following concepts w.r.t. chosen problem statement:

Policy:

The policy defines how the driver (agent) selects actions at each decision point, such as choosing routes or adjusting speed. In an epsilon-greedy policy:

- a) *Exploitation (1 \varepsilon):* The driver chooses the route that minimizes expected travel time based on current knowledge.
- b) *Exploration* (ε): The driver explores alternative routes to potentially discover faster or more efficient paths.

Reward Function:

The reward function provides feedback based on travel time or cost:

- a) *Negative Reward:* The agent receives a negative reward proportional to the time taken for each route segment. Longer routes incur larger penalties (negative rewards).
- b) *Positive Reward:* Reaching home within a specific time frame may yield a positive reward, incentivizing the agent to optimize driving time.

Page No. 1 RL Sem VII/ July 2024

Value

Function:

The value function estimates the expected total reward, typically minimizing travel time, starting from a specific state:

- a) State Value Function (V(s)): The expected remaining travel time starting from state s.
- b) Action Value Function (Q(s, a)): The expected remaining travel time when taking action a in state s.

Model of the Environment:

The environment consists of external factors that influence driving decisions, such as:

- a) Road Network: The routes available between the starting point and home.
- b) *Traffic Conditions:* Varying traffic that can delay or speed up travel on different routes.
- c) Weather: External conditions like rain or snow that may affect driving speeds.
- d) *Signals and Rules:* Traffic lights, stop signs, and speed limits that impact the time taken at intersections.

Implementation

Code:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Define states
states = ['A', 'B', 'C', 'D', 'E', 'F']
num_states = len(states)
# Define initial elapsed times with a 5 min gap
initial_elapsed_times = [0, 5, 10, 20, 30, 40]
# Add noise to the elapsed times
np.random.seed(42)
noise_elapsed = np.random.normal(0, 1, num_states)
final elapsed times = np.maximum(np.array(initial elapsed times) +
noise elapsed, 0)
# Define fixed predicted times from each state to the final state
predicted times to go = [30, 25, 20, 15, 10, 0]
# Add noise to the predicted times
noise predicted = np.random.normal(0, 2, num states)
final predicted times to go =
np.maximum(np.array(predicted_times_to_go) + noise_predicted, 0)
```

Page No. 2 RL Sem VII/ July 2024


```
# Calculate total predicted times
total_predicted_times = final_elapsed_times +
final_predicted_times_to_go
# Round the times to two decimal places
final_elapsed_times = np.round(final_elapsed_times, 2)
final predicted times to go = np.round(final predicted times to go,
2)
total_predicted_times = np.round(total_predicted_times, 2)
# Initialize value function
V = {state: 0 for state in states}
# Parameters
alpha = 0.1 # Learning rate
gamma = 1.0 # Discount factor
num episodes = 1000
# TD(0) Learning
for episode in range(num episodes):
    state idx = 0
    while state_idx < num_states - 1:</pre>
        state = states[state idx]
        next state = states[state idx + 1]
        reward = -total_predicted_times[state_idx] # Negative to
minimize time
        if next_state == 'F':
            V[state] += alpha * (reward - V[state])
            V[state] += alpha * (reward + gamma * V[next state] -
V[state])
        state idx += 1
# Create a DataFrame for tabular output
data = {
    'State': states,
    'Elapsed Time (minutes)': final elapsed times,
    'Predicted Time to Go (minutes)': final_predicted_times_to_go,
    'Predicted Total Time (minutes)': total_predicted_times
df = pd.DataFrame(data)
# Print the DataFrame
print(df)
# Plot the graph
plt.figure(figsize=(10, 6))
plt.plot(states, total_predicted_times, marker='o')
```



```
plt.xlabel('State')
plt.ylabel('Total Predicted Time (minutes)')
plt.title('Total Predicted Time vs. State using TD(0) RL')
plt.grid(True)
plt.show()
```

Output:

Conclusion:

Successfully implemented the Driving Home problem using Temporal difference learning.

Post Lab Descriptive Questions:

Q - List advantages and disadvantages of MC and TD approach.

Aspect	Monte Carlo (MC)	Temporal Difference (TD)
Learning Style	Learn from complete episodes	Learn from each step
	(episodic).	(online/bootstrapping).
Exploration	Requires exploration across	Learns with each step, can adapt
	episodes.	faster to exploration changes.
Convergence	Converges slowly, only after	Typically converges faster since
	complete episodes.	updates happen more frequently.

Page No. 4 RL Sem VII/ July 2024

Computation	Requires the entire episode to	Updates incrementally, lower
	be stored and computed, which	memory requirements.
	can be memory-intensive.	
Variance	High variance due to reliance	Lower variance as it updates after
	on complete episodes.	each step.
Bias	Unbiased estimates of the	Can introduce bias due to
	return since it's based on full	bootstrapping from estimates.
	episodes.	
Applicability	Only works for episodic tasks.	Works for both episodic and
		continuous tasks.
Handling of Non-	Performs poorly in non-	Handles non-Markovian
Markovian	Markovian environments as it	environments better with step-by-
Environments	waits until the end of an	step updates.
	episode.	

~ .	
Date:	Signature of faculty in-charge

Page No. 5 RL Sem VII/ July 2024