6. 1.0 puntos Dada la siguiente gramática:

funciones main programa main funciones funciones funcion funcion funcion 'function' ident '()' bloque main 'main' bloque bloque '{' sentencias '}' sentencias sentencias sentencia sentencia sentencia ident '=' expresion ';' bloque expresion '[' ident ']' ident expresion expresion '?' ident ':' ident expresion '+' const '*' expresion '&' expresion ident '[' ident ']' const ident ident letra letra letra 'a' | 'b' | · · · | 'z' num '.' num const '0' | '1' | · · · | '9' num

Obtener la tabla de tokens con el máximo nivel de abstracción suponiendo que se va a realizar:

(a) 0.7 puntos Traducción.

Solución:

La tabla de tokens con el máximo nivel de abstracción cuando se realiza el proceso completo de traducción sería la siguiente:

Nº	Token	Patrón
1	CONST	[0-9]+"."[0-9]+
2	IDENT	"[a-z]+"
3	CORI	# ["
4	CORD	"]"
5	AMPAST	"&"l"*"
6	MAS	"+"
7	INTER	"?"
8	DOSP	" * "
9	ASIGN	11
10	PYC	H . H
11	LLAVEI	"{"
12	LLAVED	m } m
13	MAIN	"main"
14	FUNCTION	"function"
15	PARENT	"()"

(b) 0.3 puntos Análisis sintáctico.

Solución:

Cuando únicamente se va a realizar análisis sintáctico, primero se observa que la gramática abstracta resultante del proceso anterior es libre de contexto debido a una producción en la forma de construcción de una sentencia:

sentencia -> bloque

Por lo tanto, sería posible realizar una abstracción mayor hasta el símbolo no terminal expresion, cuyas formas de producción obedecen a una gramática regular. De esta forma, la tabla de tokens con máximo nivel de abstracción quedaría así:

Nº	Token	Patrón
1	SENTASIG	[a-b]+"="{expresion}";"
2	LLAVEI	"{"
3	LLAVED	"}"
4	MAIN	"main"
5	CABFUNCTION	"function()"

Donde {expresion} representa el patrón de construcción de las formas de producción de una expresion.

7. 0.5 puntos Dada la gramática siguiente:

$$\begin{array}{ccc}
A & \rightarrow & A b B Z \\
& \mid & \varepsilon \\
B & \rightarrow & c d \\
& \mid & B d b \\
& \mid & \varepsilon \\
Z & \rightarrow & g Z \\
& \mid & \varepsilon
\end{array}$$

Realizar los cambios que se estimen oportunos sobre la misma y construir la tabla de análisis LL(1).

Solución:

Se observan varias producciones con recursividad a la izquierda. Los símbolos no terminales que aparecen con recursividad a la izquierda son *A* y *B*. Tras eliminar la recursividad a la izquierda nos queda la siguiente gramática equivalente:

$$\begin{array}{cccc} A & \rightarrow & A' \\ A' & \rightarrow & b \, B \, Z \, A \\ & \mid & \epsilon \\ B & \rightarrow & c \, d \, B' \\ & \mid & B' \\ B' & \rightarrow & d \, b \, B' \\ & \mid & \epsilon \\ Z & \rightarrow & g \, Z \\ & \mid & \epsilon \end{array}$$

No es necesario factorizar la gramática anterior. Para la construcción de la tabla de análisis LL(1) calculamos los iniciales y seguidores.

Iniciales(A)	=	{b, ε}	Seguidores(A)	=	{\$ }
Iniciales(B)	=	$\{c, d, \epsilon\}$	Seguidores(B)	=	$\{g, b, \$\}$
Iniciales(Z)	=	$\{g, \varepsilon\}$	Seguidores(Z)	=	{b, \$}
Iniciales(A')	=	$\{b, \varepsilon\}$	Seguidores(A')	=	{\$}
Iniciales(B')	=	$\{d, \epsilon\}$	Seguidores(B')	=	$\{g, b, \$\}$

Por lo que la tabla de análisis LL(1) quedaría así:

b c d g \$									
A	$A \rightarrow A'$				$A \rightarrow A'$				
B	$B \rightarrow B'$	$B \rightarrow cdB'$	$B \rightarrow B'$	$B \longrightarrow B'$	$B \rightarrow B'$				
Z	$Z \rightarrow \varepsilon$			$Z \rightarrow gZ$	$Z \rightarrow \varepsilon$				
A'	$A' \rightarrow bBZA'$				$A' \rightarrow \varepsilon$				
B'	$B' \to \varepsilon$		$B' \rightarrow dbB'$	$B' \rightarrow \varepsilon$	$B' \to \varepsilon$				

No presenta conflictos la tabla de análisis, por lo tanto, se trata de una gramática LL(1).

8. $\boxed{0.2 \text{ puntos}}$ Dada la gramática del problema 7, completar las acciones que debe aparecer en el estado inicial I_0 de la tabla de análisis LR(1).

Estado	b	c	d	g	\$ A	В	Z
I_0							

Solución:

Los items del estado I_0 son los siguientes:

$$I_0 = \{ [A' \rightarrow \cdot A, \$], [A \rightarrow \cdot AbBZ, \$/b], [A \rightarrow \varepsilon \cdot, \$/b] \}$$

A partir de dicho estado la única transición constituiría el siguiente estado:

$$I_1 = goto(I_0, A) = \{ [A' \rightarrow A \cdot \$], [A \rightarrow A \cdot bBZ, \$/b] \}$$

Por lo tanto, el estado I_0 de la tabla de análisis LR(1) quedaría así:

Estado	b l	c d	g	\$	A	В	Z
I_0	<i>r</i> ₂			r_2	1		