

EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at www.hestore.hu.

T-Bird 2

AVR fejlesztőpanel

Használati utasítás

Gyártja: BioDigit Kft

Forgalmazza: HEStore.hu webáruház

BioDigit Kft, 2012

Minden jog fenntartva

Főbb tulajdonságok

- ATMEL AVR Atmega128 típusú mikrovezérlő
- USB-soros interfész + adatforgalom jelző LED
- PCF8563 valós idejű óra (RTC)
- Piezo buzzer
- Analóg bementre kapcsolható potenciométer
- Interfész csatlakozók
- Külső táplálás lehetősége
- 5 db nyomógomb
- 8 db LED
- Integrált JTAG debugger (JTAG ICE)
- Rövidzár ellen védő biztosíték

A T-Bird 2 fejlesztői panel a korábbi T-Bird 1 teljes értékű helyettesítése. A fejlesztői panel korábbi verzióján megtalálható Timer IF, GPIOA és GPIOB csatlakozók pozíciója és lábkiosztása egyezik az új T-Bird 2-vel, így teljesértékű alternatívája a korábbinak.

A fejlesztői panel segítségével minden külön hardver eszköz nélkül betekintést nyerhetünk az ATMEL AVR 8-bites mikrovezérlők világába. Biztonságos és garantált a tanulás sikerélménye a fejlesztői panelre integrált JTAG debugger segítségével, melynek köszönhetően vásárlás után azonnal munkára kész a fejlesztői panel.

Csatlakozók ismertetése

A T-Bird fejlesztői panelhez minden külső eszközt, hagyományos szalagkábel csatlakozókon keresztül kapcsolhatunk.

Power: A teljes fejlesztői panel tápfeszültség bemenete, amennyiben külső táplálás módot választunk (lásd jumperek)

USB (serial): A mikrovezérlő USARTO moduljára csatlakozó USB interfész csatlakozó.

GPIO-IF: Különböző interfészeket egyesítő kiegészítő csatlakozó (SPI, I2C, USART1, Táp)

GPIO-B: Általános célú IO kivezetések (lábkiosztás: lásd kapcsolási rajz)

GPIO-A: Általános célú IO kivezetések (lábkiosztás: lásd kapcsolási rajz)

GPIO-T/A: Általános célú IO kivezetések, timer és analóg (lábkiosztás: lásd kapcsolási rajz)

uC-JTAG: A mikrovezérlő JTAG kivezetéseit tartalmazó csatlakozó. Alapesetben kapcsolódik a JTAG csatlakozóhoz, közvetlenül szalagkábel segítségével.

JTAG: Az integrált JTAG debugger csatlakozó felülete.

TCK	1 2	GND
TDO	$\frac{1}{3}$ $\frac{2}{4}$	VCC
TMS		/RST-J
VCC	5 6	
TDI	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GND
	JTAG	

USB (JTAG): Az integrált JTAG debugger számítógép csatlakozási pontja

KO-K4: Felhasználói nyomógombok (kiosztás: lásd kapcsolási rajz)

Reset: A mikrovezérlő újraindítására szolgáló nyomógomb.

Jumperek

A különböző működési módokat és kapcsolásokat jumperek segítségével tudjuk kiválasztani, melyről az alábbiakban láthatunk ismertetőt.

RST: A JTAG Reset és a mikrovezérlő Reset lábát összekötő jumper (alap esetben nyitott)

T-VCC: A JTAG debugger és a céláramkör ugyanazon tápfeszültségről üzemeltetése. Ebben az esetben a céláramkör a JTAG debuggeren keresztül van megtáplálva. (alap esetben nyitott)

LED: A mikrovezérlő portjaira kapcsolódó LED-ek közös pontja, LED-ek engedélyezése (alap esetben zárt)

BUZZ: A piezo buzzert a mikrovezérlő portjára kapcsoló jumper (alap esetben nyitott)

POT: A potenciométert a mikrovezérlő analóg bemenetére kapcsoló jumper (alap esetben nyitott)

BTN: A nyomógombok közvetlen kivezetései

USART1: A mikrovezérlő USART1 moduljának közvetlen kivezetése

USB/EXT: A mikrovezérlő és a teljes fejlesztői panel tápforrásának kiválasztó jumpere. (alap esetben USB)

Figyeljünk oda, hogy amennyiben a T-VCC zárt állapotban és az USB/EXT jumper EXT állapotban van, úgy abban az esetben a Power sorkapcson megjelenik a JTAG debugger céláramkör feszültsége.

Kivezetések egyeztetése (pin mapping)

GPIO-A

Lábszám	Megnevezés	Mikrovezérlő kivezetés
1	GPIO-0	PA0
2	GPIO-1	PA1
3	GPIO-2	PA2
4	GPIO-3	PA3
5	GPIO-4	PA4
6	GPIO-5	PA5
7	GPIO-6	PA6
8	GPIO-7	PA7
9	VCC	VCC
10	GND	GND

GPIO-B

Lábszám	Megnevezés	Mikrovezérlő kivezetés
1	GPIO-8	PC0
2	GPIO-9	PC1
3	GPIO-A	PC2
4	GPIO-B	PC3
5	GPIO-C	PC4
6	GPIO-D	PC5
7	GPIO-E	PC6
8	GPIO-F	PC7
9	VCC	VCC
10	GND	GND

Timer/Analog

Lábszám	Megnevezés	Mikrovezérlő kivezetés
1	AD-0	PF0 / ADC0
2	AD-1	PF1 / ADC1
3	AD-2	PF2 / ADC2
4	AD-3	PF3 / ADC3
5	Timer0	PE4 / OC3B / INT4
6	Timer1	PE5 / OC3C / INT5
7	Timer2	PE6 / T3 / INT6
8	Timer3	PE7 / IC3 / INT7
9	Ain0	PE2 / AINO
10	Ain1	PE3 / OC3A / AIN1
11	VCC	VCC
12	GND	GND
13	VCC	VCC
14	GND	GND

GPIO-IF

Lábszám	Megnevezés	Mikrovezérlő kivezetés
1	SPI-SCK	PB1 / SCK
2	SPI-MISO	PB3 / MISO
3	SPI-MOSI	PB2 / MOSI
4	SPI-SS	PBO / SS
5	SCL	PD0 / SCL / INTO
6	SDA	PD1 / SDA / INT1
7	E-RX	PD2 / RXD1 / INT2
8	E-TX	PD3 / TXD1 / INT3
9	VCC	VCC
10	GND	GND

JTAG debugger használata

Az USB (JTAG) csatlakozón keresztül csatlakoztassuk a számítógéphez a fejlesztői panelt. Ekkor a számítógép automatikusan eszközillesztő szoftvert keres, az előre beállított mappákban. Amennyiben az eszközillesztő szoftver telepítése sikertelen, a legfrissebb illesztőprogram letöltése ajánlott a www.ftdichip.com oldalról, az FT232RL típusú USB-Soros illesztő IC-hez.

Figyelem! Egyes AVR Studio verziók (pl. v 4) nem képesek kezelni a magasabb portszámokra kerülő virtuális sorosporti JTAG debuggereket. Így szükséges lehet az eszközillesztő szoftver telepítése után a portszámot módosítani, az alábbi módon:

Nyissuk meg a Számítógép > Eszközkezelő ablakot
 Válasszuk ki, a módosítani kívánt portot (jelen esetben COM26)

- 2. Jobb klikk, Tulajdonságok, majd a Port beállítása fülön kattintsunk a Speciális... gombra.
- 3. Állítsuk át a **COM-port száma** mezőt egy COM1-4-ig terjedő értékre (jelen példában COM4), majd az **OK** gomb megnyomásával térjünk vissza az eszközkezelőbe

4. Ezzel a virtuális sorosport mostantól COM4-en érhető el, ezt kell kiválasztani az AVR Studio programban.

A következő lépésként nyissuk meg az AVR Studio 4 programot.

Válasszuk ki a **Tools > Program AVR > Connect** menüpontot, majd a megjelenő listából válasszuk a JTAG ICE eszközt.

A Connect... gomb megnyomásával az AVR Studio csatlakozott is.

A fejlesztői panel bővebb használatáról további információk a http://www.hobbielektronika.hu/ oldalon találhatók.

Fontos tudnivalók

A programozásnál és a Fuse-bit beállításoknál fokozottan ügyeljünk a JTAG, ISP és Oszcillátor beállításokra. Amennyiben helytelen értékre állítjuk ezen biteket, a teljes fejlesztői panel működésképtelenné válhat, mely nem tartozik a garanciális meghibásodások körébe.

Amennyiben a JTAG és ISP fuse biteket kikapcsoljuk, úgy abban az esetben az ATmega128 mikrovezérlő minden további programozását letiltjuk, így használhatatlanná válik a teljes fejlesztői panel. Fokozottan ügyeljünk ezen bitek beállításaira!

Amennyiben a PWR LED világít, de a FUSE feliratú LED nem, úgy abban az esetben az olvadóbiztosíték szakadt meg rövidzár miatt. Távolítsuk el az áramkörből a fejlesztői panelt, és vizsgáljuk meg mivel okozhattuk a rövidzárat. Ezt követően az olvadóbiztosíték cseréje szükséges.

A fejlesztői panel nem rendelkezik túlfeszültség védelemmel, így fokozottan figyeljünk külső tápfeszültség forrás alkalmazása esetén.

Minden T-Bird 2 fejlesztői panel részletesen, minden funkcióját tesztelve kerül forgalomba.

A csomag tartalma

- 1 db T-Bird 2 fejlesztői panel
- 2 db USB-A/B kábel
- 2 db 10 pólusú mindkét végén szerelt szalagkábel csatlakozó
- 1 db 14 pólusú mindkét végén szerelt szalagkábel csatlakozó

P3 PWR

-20

13 14

9 10 JTAG