Teoría de conjuntos

Myrian Sadith González Pedro José Molina Morales

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Departamento de Matemática Aplicada

- Conjuntos y subconjuntos
 - Conjuntos
 - Subconjuntos
 - Conjunto vacío
 - Conjunto potencia
- Operaciones con conjuntos
- Ejercicios de práctica

Definición

Un **conjunto** es una colección de objetos. Estos objetos se llaman **elementos** y se dice que son miembros del conjunto.

Usualmente se utilizan letras mayúsculas A, B, C,..., para representar los conjuntos, y letras minúsculas para representar los elementos. Para un conjunto A, escribiremos $x \in A$ si x es un elemento de A, y $z \notin A$ cuando z no es un miembro de A.

Definición

Un **conjunto** es una colección de objetos. Estos objetos se llaman **elementos** y se dice que son miembros del conjunto.

Usualmente se utilizan letras mayúsculas A, B, C,..., para representar los conjuntos, y letras minúsculas para representar los elementos. Para un conjunto A, escribiremos $x \in A$ si x es un elemento de A, y $z \notin A$ cuando z no es un miembro de A.

Ejemplos:

Definición

Un **conjunto** es una colección de objetos. Estos objetos se llaman **elementos** y se dice que son miembros del conjunto.

Usualmente se utilizan letras mayúsculas A, B, C,..., para representar los conjuntos, y letras minúsculas para representar los elementos. Para un conjunto A, escribiremos $x \in A$ si x es un elemento de A, y $z \notin A$ cuando z no es un miembro de A.

Ejemplos:

1. Un conjunto puede designarse enumerando sus elementos dentro de llaves.

Definición

Un **conjunto** es una colección de objetos. Estos objetos se llaman **elementos** y se dice que son miembros del conjunto.

Usualmente se utilizan letras mayúsculas A, B, C,..., para representar los conjuntos, y letras minúsculas para representar los elementos. Para un conjunto A, escribiremos $x \in A$ si x es un elemento de A, y $z \notin A$ cuando z no es un miembro de A.

Ejemplos:

1. Un conjunto puede designarse enumerando sus elementos dentro de llaves. $B = \{1, 2, 3, 4, 5\}$

Definición

Un **conjunto** es una colección de objetos. Estos objetos se llaman **elementos** y se dice que son miembros del conjunto.

Usualmente se utilizan letras mayúsculas A, B, C,..., para representar los conjuntos, y letras minúsculas para representar los elementos. Para un conjunto A, escribiremos $x \in A$ si x es un elemento de A, y $z \notin A$ cuando z no es un miembro de A.

Ejemplos:

1. Un conjunto puede designarse enumerando sus elementos dentro de llaves. $B = \{1, 2, 3, 4, 5\}$

En este caso, podemos decir que $4 \in B$, pero $7 \notin B$.

Definición

Un **conjunto** es una colección de objetos. Estos objetos se llaman **elementos** y se dice que son miembros del conjunto.

Usualmente se utilizan letras mayúsculas A, B, C,..., para representar los conjuntos, y letras minúsculas para representar los elementos. Para un conjunto A, escribiremos $x \in A$ si x es un elemento de A, y $z \notin A$ cuando z no es un miembro de A.

Ejemplos:

1. Un conjunto puede designarse enumerando sus elementos dentro de llaves. $B = \{1, 2, 3, 4, 5\}$

En este caso, podemos decir que $4 \in B$, pero $7 \notin B$.

Además, otra notación común es $B = \{x | x \text{ es un entero y } 1 \le x \le 5\}$, donde la línea vertical | se lee "tal que". Entonces el conjunto B se lee "el conjunto de todos los x tal que x es un entero y 1 < x < 5.

Definición

Un **conjunto** es una colección de objetos. Estos objetos se llaman **elementos** y se dice que son miembros del conjunto.

Usualmente se utilizan letras mayúsculas A, B, C,..., para representar los conjuntos, y letras minúsculas para representar los elementos. Para un conjunto A, escribiremos $x \in A$ si x es un elemento de A, y $z \notin A$ cuando z no es un miembro de A.

Ejemplos:

1. Un conjunto puede designarse enumerando sus elementos dentro de llaves. $B = \{1, 2, 3, 4, 5\}$

En este caso, podemos decir que $4 \in B$, pero $7 \notin B$.

Además, otra notación común es $B = \{x | x \text{ es un entero y } 1 \le x \le 5\}$, donde la línea vertical | se lee "tal que". Entonces el conjunto B se lee "el conjunto de todos los x tal que x es un entero y 1 < x < 5.

Podemos también denotar $B = \{x | 1 \le x \le 5\}$, pero con la condición que el universo $\mathscr U$ sean los enteros. Si $\mathscr U$ son todos los números reales, entonces el conjunto $\{x | 1 \le x \le 5\}$ contendría a todos los números reales entre 1 y 5, inclusive. Si $\mathscr U$ son los números enteros impares, entonces $\{x | 1 \le x \le 5\} = \{1, 3, 5\}$.

Conjuntos Subconjuntos Conjunto vacío Conjunto potencia

Conjuntos

Definición

Para cualquier conjunto finito A. Se define el **cardinal** de A como el número de sus elementos o el tamaño de A y se denota |A|.

Conjuntos Subconjuntos Conjunto vacío Conjunto potencia

Conjuntos

Definición

Para cualquier conjunto finito A. Se define el **cardinal** de A como el número de sus elementos o el tamaño de A y se denota |A|.

Definición

Para cualquier conjunto finito A. Se define el **cardinal** de A como el número de sus elementos o el tamaño de A y se denota |A|.

- 1. Si $\mathscr{U} = \{1, 2, 3, ...\}$ es el conjunto de todos los enteros positivos, sean
 - a. $A = \{x | x \in \mathcal{U} \land x < 10\}$

Definición

Para cualquier conjunto finito A. Se define el **cardinal** de A como el número de sus elementos o el tamaño de A y se denota |A|.

- 1. Si $\mathscr{U} = \{1, 2, 3, ...\}$ es el conjunto de todos los enteros positivos, sean
 - a. $A = \{x | x \in \mathcal{U} \land x < 10\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Definición

Para cualquier conjunto finito A. Se define el **cardinal** de A como el número de sus elementos o el tamaño de A y se denota |A|.

Ejemplo

a.
$$A = \{x | x \in \mathcal{U} \land x < 10\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} = \{x | x \in \mathcal{U} \land x \le 9\}$$

Definición

Para cualquier conjunto finito A. Se define el **cardinal** de A como el número de sus elementos o el tamaño de A y se denota |A|.

Ejemplo

a.
$$A = \{x \mid x \in \mathcal{U} \land x < 10\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} = \{x \mid x \in \mathcal{U} \land x \le 9\}$$

b.
$$B = \{x^2 | x \in \mathcal{U} \land x^2 < 100\}$$

Definición

Para cualquier conjunto finito A. Se define el **cardinal** de A como el número de sus elementos o el tamaño de A y se denota |A|.

Ejemplo

a.
$$A = \{x | x \in \mathcal{U} \land x < 10\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} = \{x | x \in \mathcal{U} \land x \le 9\}$$

b.
$$B = \{x^2 | x \in \mathcal{U} \land x^2 < 100\} = \{1, 4, 9, 16, 25, 36, 49, 64, 81\}$$

Definición

Para cualquier conjunto finito A. Se define el **cardinal** de A como el número de sus elementos o el tamaño de A y se denota |A|.

Ejemplo

a.
$$A = \{x | x \in \mathcal{U} \land x < 10\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} = \{x | x \in \mathcal{U} \land x \le 9\}$$

b.
$$B = \{x^2 | x \in \mathcal{U} \land x^2 < 100\} = \{1, 4, 9, 16, 25, 36, 49, 64, 81\} = \{x^2 | x \in \mathcal{U} \land x^2 < 95\}$$

Definición

Para cualquier conjunto finito A. Se define el **cardinal** de A como el número de sus elementos o el tamaño de A y se denota |A|.

Ejemplo

a.
$$A = \{x | x \in \mathcal{U} \land x < 10\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} = \{x | x \in \mathcal{U} \land x \le 9\}$$

b.
$$B = \{x^2 | x \in \mathcal{U} \land x^2 < 100\} = \{1, 4, 9, 16, 25, 36, 49, 64, 81\} = \{x^2 | x \in \mathcal{U} \land x^2 < 95\} = \{x^2 | x \in \mathcal{U} \land x^2 \le 81\}$$

Definición

Para cualquier conjunto finito A. Se define el **cardinal** de A como el número de sus elementos o el tamaño de A y se denota |A|.

- 1. Si $\mathcal{U} = \{1, 2, 3, ...\}$ es el conjunto de todos los enteros positivos, sean
 - a. $A = \{x | x \in \mathcal{U} \land x < 10\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} = \{x | x \in \mathcal{U} \land x \le 9\}$
 - b. $B = \{x^2 | x \in \mathcal{U} \land x^2 < 100\} = \{1, 4, 9, 16, 25, 36, 49, 64, 81\} = \{x^2 | x \in \mathcal{U} \land x^2 < 95\} = \{x^2 | x \in \mathcal{U} \land x^2 \le 81\}$
 - c. $C = \{2n | n \in \mathcal{U}\}$

Definición

Para cualquier conjunto finito A. Se define el **cardinal** de A como el número de sus elementos o el tamaño de A y se denota |A|.

Ejemplo

a.
$$A = \{x | x \in \mathcal{U} \land x < 10\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} = \{x | x \in \mathcal{U} \land x \le 9\}$$

b.
$$B = \{x^2 | x \in \mathcal{U} \land x^2 < 100\} = \{1, 4, 9, 16, 25, 36, 49, 64, 81\} = \{x^2 | x \in \mathcal{U} \land x^2 < 95\} = \{x^2 | x \in \mathcal{U} \land x^2 \le 81\}$$

c.
$$C = \{2n | n \in \mathcal{U}\} = \{2, 4, 6, ...\}$$

Definición

Para cualquier conjunto finito A. Se define el **cardinal** de A como el número de sus elementos o el tamaño de A y se denota |A|.

Ejemplo

- 1. Si $\mathscr{U} = \{1, 2, 3, ...\}$ es el conjunto de todos los enteros positivos, sean
 - a. $A = \{x | x \in \mathcal{U} \land x < 10\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} = \{x | x \in \mathcal{U} \land x \le 9\}$
 - b. $B = \{x^2 | x \in \mathcal{U} \land x^2 < 100\} = \{1, 4, 9, 16, 25, 36, 49, 64, 81\} = \{x^2 | x \in \mathcal{U} \land x^2 < 95\} = \{x^2 | x \in \mathcal{U} \land x^2 \le 81\}$
 - c. $C = \{2n | n \in \mathcal{U}\} = \{2, 4, 6, ...\}$

Los conjuntos A y B son ejemplos de conjuntos finitos, mientras que C es un conjunto infinito.

Definición

Para cualquier conjunto finito A. Se define el **cardinal** de A como el número de sus elementos o el tamaño de A y se denota |A|.

Ejemplo

- 1. Si $\mathcal{U} = \{1, 2, 3, ...\}$ es el conjunto de todos los enteros positivos, sean
 - a. $A = \{x \mid x \in \mathcal{U} \land x < 10\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} = \{x \mid x \in \mathcal{U} \land x \le 9\}$
 - b. $B = \{x^2 | x \in \mathcal{U} \land x^2 < 100\} = \{1, 4, 9, 16, 25, 36, 49, 64, 81\} = \{x^2 | x \in \mathcal{U} \land x^2 < 95\} = \{x^2 | x \in \mathcal{U} \land x^2 \le 81\}$
 - c. $C = \{2n | n \in \mathcal{U}\} = \{2, 4, 6, ...\}$

Los conjuntos A y B son ejemplos de conjuntos finitos, mientras que C es un conjunto infinito. Además, |A| = 9 y |B| = 9.

Conjuntos Subconjuntos Conjunto vacío Conjunto potencia

Subconjunto

Definición:

Si A, B son conjuntos del universo \mathscr{U} , decimos que A es un **subconjunto** de B y escribimos $A \subseteq B$ o $B \supseteq A$, si cada elemento de A es un elemento de B. Si, además, B contiene un elemento que no está en A, entonces A es un **subconjunto propio** y se denota $A \subset B$ o $B \supset A$

Subconjunto

Definición:

Si A, B son conjuntos del universo \mathscr{U} , decimos que A es un **subconjunto** de B y escribimos $A \subseteq B$ o $B \supseteq A$, si cada elemento de A es un elemento de B. Si, además, B contiene un elemento que no está en A, entonces A es un **subconjunto propio** y se denota $A \subset B$ o $B \supset A$

Observemos que para cualesquiera conjuntos A, B del universo. Si $A \subseteq B$ entonces

$$\forall x[x \in A \Rightarrow x \in B]$$

y si $\forall x[x \in A \Rightarrow x \in B]$, entonces $A \subseteq B$.

Subconjunto

Definición:

Si A, B son conjuntos del universo \mathscr{U} , decimos que A es un **subconjunto** de B y escribimos $A \subseteq B$ o $B \supseteq A$, si cada elemento de A es un elemento de B. Si, además, B contiene un elemento que no está en A, entonces A es un **subconjunto propio** y se denota $A \subset B$ o $B \supset A$

Observemos que para cualesquiera conjuntos A, B del universo. Si $A \subseteq B$ entonces

$$\forall x[x \in A \Rightarrow x \in B]$$

y si $\forall x[x \in A \Rightarrow x \in B]$, entonces $A \subseteq B$.

Además, para todos los conjuntos A, B de W

$$A \subset B \Rightarrow A \subseteq B$$

v cuando A,B son finitos

$$A \subseteq B \Rightarrow |A| \le |B|$$

$$A \subset B \Rightarrow |A| < |B|$$

1. Para el universo $\mathscr{U}=\{1,2,3,4,5\}$ consideremos a $A=\{2,3\}$ y $B=\{1,2,3\},$

- 1. Para el universo $\mathscr{U}=\{1,2,3,4,5\}$ consideremos a $A=\{2,3\}$ y $B=\{1,2,3\}$, entonces las siguientes proposiciones son verdaderas.
 - a. $A \subset B$

- 1. Para el universo $\mathscr{U}=\{1,2,3,4,5\}$ consideremos a $A=\{2,3\}$ y $B=\{1,2,3\}$, entonces las siguientes proposiciones son verdaderas.
 - a. $A \subset B$
 - b. $A \subseteq B$

- 1. Para el universo $\mathscr{U}=\{1,2,3,4,5\}$ consideremos a $A=\{2,3\}$ y $B=\{1,2,3\}$, entonces las siguientes proposiciones son verdaderas.
 - a. $A \subset B$
 - b. A ⊆ B
 - c. B ⊈ A

Conjuntos Subconjuntos Conjunto vacío Conjunto potencia

Igualdad de conjuntos

Definición

Para un universo \mathcal{U} , los conjuntos A y B son **iguales**, y esto se escribe A = B cuando $A \subseteq B$ y $B \subseteq A$.

Conjuntos Subconjuntos Conjunto vacío Conjunto potencia

Igualdad de conjuntos

Definición

Para un universo \mathcal{U} , los conjuntos A y B son **iguales**, y esto se escribe A = B cuando $A \subseteq B$ y $B \subseteq A$.

Ejemplos:

Definición

Para un universo \mathcal{U} , los conjuntos A y B son **iguales**, y esto se escribe A = B cuando $A \subseteq B$ y $B \subseteq A$.

Ejemplos:

1. Para el universo $\mathscr{U}=\{1,2,3,4,5\}$ consideremos a $A=\{1,2\}$ y $B=\{x|x^2\in\mathscr{U}\}.$

Definición

Para un universo \mathcal{U} , los conjuntos A y B son **iguales**, y esto se escribe A = B cuando $A \subseteq B$ y $B \subseteq A$.

Ejemplos:

1. Para el universo $\mathscr{U}=\{1,2,3,4,5\}$ consideremos a $A=\{1,2\}$ y $B=\{x|x^2\in\mathscr{U}\}.$ Observemos que $B=\{x|x^2\in\mathscr{U}\}=\{1,2\}$

Definición

Para un universo \mathcal{U} , los conjuntos A y B son **iguales**, y esto se escribe A = B cuando $A \subseteq B$ y $B \subseteq A$.

Ejemplos:

- 1. Para el universo $\mathscr{U}=\{1,2,3,4,5\}$ consideremos a $A=\{1,2\}$ y $B=\{x|x^2\in\mathscr{U}\}.$ Observemos que $B=\{x|x^2\in\mathscr{U}\}=\{1,2\}$, entonces podemos decir que
 - A ⊆ B
 - B ⊆ A

Definición

Para un universo \mathcal{U} , los conjuntos A y B son **iguales**, y esto se escribe A = B cuando $A \subseteq B$ y $B \subseteq A$.

Ejemplos:

- 1. Para el universo $\mathscr{U}=\{1,2,3,4,5\}$ consideremos a $A=\{1,2\}$ y $B=\{x|x^2\in\mathscr{U}\}.$ Observemos que $B=\{x|x^2\in\mathscr{U}\}=\{1,2\}$, entonces podemos decir que
 - A ⊂ B
 - B ⊆ A

Definición

Para un universo \mathcal{U} , los conjuntos A y B son **iguales**, y esto se escribe A = B cuando $A \subseteq B$ y $B \subseteq A$.

Ejemplos:

- 1. Para el universo $\mathscr{U}=\{1,2,3,4,5\}$ consideremos a $A=\{1,2\}$ y $B=\{x|x^2\in\mathscr{U}\}.$ Observemos que $B=\{x|x^2\in\mathscr{U}\}=\{1,2\}$, entonces podemos decir que
 - A ⊆ B
 - B ⊆ A

Observación: según la definición vemos que el orden o la repetición no son significativos para un conjunto en general. Por ejemplo:

$$\{1,2,3\} = \{3,1,2\} = \{1,2,3,2,1\}$$

Negación de la definición de subconjunto

Sabemos que para los conjuntos A, B de un universo dado, tenemos que

$$A \subseteq B \Leftrightarrow \forall x[x \in A \Rightarrow x \in B]$$

Negación de la definición de subconjunto

Sabemos que para los conjuntos A, B de un universo dado, tenemos que

$$A \subseteq B \Leftrightarrow \forall x[x \in A \Rightarrow x \in B]$$

Entonces la negación es

$$\begin{array}{ll}
A \nsubseteq B \\
\Leftrightarrow & \neg \forall x [x \in A \Rightarrow x \in B] \\
\Leftrightarrow & \exists x \neg [x \in A \Rightarrow x \in B] \\
\Leftrightarrow & \exists x \neg [\neg (x \in A) \lor (x \in B)] \\
\Leftrightarrow & \exists x [(x \in A) \land \neg (x \in B)] \\
\Leftrightarrow & \exists x [(x \in A) \land (x \notin B)]
\end{array}$$

Negación de la definición de subconjunto

Sabemos que para los conjuntos A, B de un universo dado, tenemos que

$$A \subseteq B \Leftrightarrow \forall x[x \in A \Rightarrow x \in B]$$

Entonces la negación es

$$\begin{array}{ll}
A \nsubseteq B \\
\Leftrightarrow & \neg \forall x[x \in A \Rightarrow x \in B] \\
\Leftrightarrow & \exists x \neg [x \in A \Rightarrow x \in B] \\
\Leftrightarrow & \exists x \neg [\neg (x \in A) \lor (x \in B)] \\
\Leftrightarrow & \exists x[(x \in A) \land \neg (x \in B)] \\
\Leftrightarrow & \exists x[(x \in A) \land (x \notin B)]
\end{array}$$

Es decir, A no es subconjunto de B si, y solo si existe al menos un elemento tal que x es miembro de A y no de B.

Sabemos que para los conjuntos A, B de un universo dado, tenemos que

$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$

Sabemos que para los conjuntos A, B de un universo dado, tenemos que

$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$

Entonces la negación es

$$A \neq B$$

$$\Leftrightarrow \neg (A \subseteq B \land B \subseteq A)$$

$$\Leftrightarrow A \nsubseteq B \lor B \nsubseteq A$$

Es decir, dos conjuntos no son iguales si, y solo si (1) existe al menos un elemento $x \in \mathcal{U}$ tal que $x \in A$ pero $x \notin B$,

Sabemos que para los conjuntos A, B de un universo dado, tenemos que

$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$

Entonces la negación es

$$A \neq B$$

$$\Leftrightarrow \neg (A \subseteq B \land B \subseteq A)$$

$$\Leftrightarrow A \nsubseteq B \lor B \nsubseteq A$$

Es decir, dos conjuntos no son iguales si, y solo si (1) existe al menos un elemento $x \in \mathcal{U}$ tal que $x \in A$ pero $x \notin B$, o (2) existe al menos un elemento $y \in \mathcal{U}$ tal que $y \in B$ pero $y \notin A$,

Sabemos que para los conjuntos A, B de un universo dado, tenemos que

$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$

Entonces la negación es

$$A \neq B$$

$$\Leftrightarrow \neg (A \subseteq B \land B \subseteq A)$$

$$\Leftrightarrow A \nsubseteq B \lor B \nsubseteq A$$

Es decir, dos conjuntos no son iguales si, y solo si (1) existe al menos un elemento $x \in \mathcal{U}$ tal que $x \in A$ pero $x \notin B$, o (2) existe al menos un elemento $y \in \mathcal{U}$ tal que $y \in B$ pero $y \notin A$, o pueden ocurrir (1) y (2).

Sabemos que para los conjuntos A, B de un universo dado, tenemos que

$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$

Entonces la negación es

$$A \neq B$$

$$\Leftrightarrow \neg (A \subseteq B \land B \subseteq A)$$

$$\Leftrightarrow A \nsubseteq B \lor B \nsubseteq A$$

Es decir, dos conjuntos no son iguales si, y solo si (1) existe al menos un elemento $x \in \mathcal{U}$ tal que $x \in A$ pero $x \notin B$, o (2) existe al menos un elemento $y \in \mathcal{U}$ tal que $y \in B$ pero $y \notin A$, o pueden ocurrir (1) y (2).

$$A \subset B \Leftrightarrow A \subseteq B \land A \neq B$$

1. Sea $\mathcal{U} = \{1, 2, 3, 4, 5, 6, x, y, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}$ (donde x, y representan letras del alfabeto y no representan nada más).

1. Sea $\mathscr{U}=\{1,2,3,4,5,6,x,y,\{1,2\},\{1,2,3\},\{1,2,3,4\}\}$ (donde x,y representan letras del alfabeto y no representan nada más). Entonces $|\mathscr{U}|=11$

- 1. Sea $\mathscr{U}=\{1,2,3,4,5,6,x,y,\{1,2\},\{1,2,3\},\{1,2,3,4\}\}$ (donde x,y representan letras del alfabeto y no representan nada más). Entonces $|\mathscr{U}|=11$
 - a. Si $A = \{1, 2, 3, 4\}$

- 1. Sea $\mathscr{U}=\{1,2,3,4,5,6,x,y,\{1,2\},\{1,2,3\},\{1,2,3,4\}\}$ (donde x,y representan letras del alfabeto y no representan nada más). Entonces $|\mathscr{U}|=11$
 - a. Si $A = \{1, 2, 3, 4\}$, entonces |A| = 4

- 1. Sea $\mathscr{U}=\{1,2,3,4,5,6,x,y,\{1,2\},\{1,2,3\},\{1,2,3,4\}\}$ (donde x,y representan letras del alfabeto y no representan nada más). Entonces $|\mathscr{U}|=11$
 - a. Si $A = \{1, 2, 3, 4\}$, entonces |A| = 4 y tenemos

i)
$$A\subseteq \mathscr{U}$$

- 1. Sea $\mathcal{U} = \{1, 2, 3, 4, 5, 6, x, y, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}\$ (donde x, yrepresentan letras del alfabeto y no representan nada más). Entonces $|\hat{\mathcal{U}}| = 11$
 - a. Si $A = \{1, 2, 3, 4\}$, entonces |A| = 4 y tenemos
 - i) $A \subseteq \mathscr{U}$ ii) $A \subset \mathscr{U}$

- 1. Sea $\mathcal{U} = \{1, 2, 3, 4, 5, 6, x, y, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}\$ (donde x, yrepresentan letras del alfabeto y no representan nada más). Entonces $|\hat{\mathcal{U}}| = 11$
 - a. Si $A = \{1, 2, 3, 4\}$, entonces |A| = 4 y tenemos

 - i) $A \subseteq \mathcal{U}$ ii) $A \subset \mathcal{U}$ iii) $A \in \mathcal{U}$

- 1. Sea $\mathcal{U} = \{1, 2, 3, 4, 5, 6, x, y, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}\$ (donde x, yrepresentan letras del alfabeto y no representan nada más). Entonces $|\hat{\mathcal{U}}| = 11$
 - a. Si $A = \{1, 2, 3, 4\}$, entonces |A| = 4 y tenemos
 - iv) $\{\overline{A}\} \subset \mathscr{U}$
 - i) $A \subseteq \mathscr{U}$ ii) $A \subset \mathscr{U}$ iii) $A \in \mathscr{U}$

- 1. Sea $\mathcal{U} = \{1, 2, 3, 4, 5, 6, x, y, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}\$ (donde x, yrepresentan letras del alfabeto y no representan nada más). Entonces $|\hat{\mathcal{U}}| = 11$
 - a. Si $A = \{1, 2, 3, 4\}$, entonces |A| = 4 y tenemos

i)
$$A \subseteq \mathcal{U}$$
 ii) $A \subset \mathcal{U}$ iii) $A \in \mathcal{U}$ iv) $\{A\} \subseteq \mathcal{U}$ v) $\{A\} \subset \mathcal{U}$

iv)
$$\{A\} \subseteq \mathscr{U}$$

$$\forall V) \{A\} \subset \mathscr{U}$$

- 1. Sea $\mathcal{U} = \{1, 2, 3, 4, 5, 6, x, y, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}\$ (donde x, yrepresentan letras del alfabeto y no representan nada más). Entonces $|\hat{\mathcal{U}}| = 11$
 - a. Si $A = \{1, 2, 3, 4\}$, entonces |A| = 4 y tenemos

- i) $A \subseteq \mathcal{U}$ ii) $A \subset \mathcal{U}$ iii) $A \in \mathcal{U}$ iv) $\{A\} \subseteq \mathcal{U}$ v) $\{A\} \subset \mathcal{U}$ vi) $\{A\} \notin \mathcal{U}$

- 1. Sea $\mathcal{U} = \{1, 2, 3, 4, 5, 6, x, y, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}\$ (donde x, yrepresentan letras del alfabeto y no representan nada más). Entonces $|\hat{\mathcal{U}}| = 11$
 - a. Si $A = \{1, 2, 3, 4\}$, entonces |A| = 4 y tenemos

ii)
$$A \subset \mathscr{U}$$

iv)
$$\{A\} \subseteq \mathscr{U}$$

$$\begin{array}{lll} \text{i) } A \subseteq \mathscr{U} & \text{ ii) } A \subset \mathscr{U} & \text{ iii) } A \in \mathscr{U} \\ \text{iv) } \{A\} \subseteq \mathscr{U} & \text{v) } \{A\} \subset \mathscr{U} & \text{vi) } \{A\} \notin \mathscr{U} \end{array}$$

b. Ahora sea, $B = \{5, 6, x, y, A\} = \{5, 6, x, y, \{1, 2, 3, 4\}\}.$

- 1. Sea $\mathcal{U} = \{1, 2, 3, 4, 5, 6, x, y, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}\$ (donde x, yrepresentan letras del alfabeto y no representan nada más). Entonces $|\hat{W}| = 11$
 - a. Si $A = \{1, 2, 3, 4\}$, entonces |A| = 4 y tenemos

ii)
$$A \subset \mathscr{U}$$

iii)
$$A \in \mathscr{U}$$

iv)
$$\{A\} \subseteq \mathscr{U}$$

$$\begin{array}{lll} \text{i) } A \subseteq \mathscr{U} & \text{ ii) } A \subset \mathscr{U} & \text{ iii) } A \in \mathscr{U} \\ \text{iv) } \{A\} \subseteq \mathscr{U} & \text{v) } \{A\} \subset \mathscr{U} & \text{vi) } \{A\} \notin \mathscr{U} \end{array}$$

b. Ahora sea, $B = \{5, 6, x, y, A\} = \{5, 6, x, y, \{1, 2, 3, 4\}\}$. Entonces |B| = 5,

- 1. Sea $\mathcal{U} = \{1, 2, 3, 4, 5, 6, x, y, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}\$ (donde x, yrepresentan letras del alfabeto y no representan nada más). Entonces $|\hat{\mathcal{U}}| = 11$
 - a. Si $A = \{1, 2, 3, 4\}$, entonces |A| = 4 y tenemos

ii)
$$A \subset \mathscr{U}$$

i)
$$A \subseteq \mathcal{U}$$
 ii) $A \subset \mathcal{U}$ iii) $A \in \mathcal{U}$ iv) $\{A\} \subseteq \mathcal{U}$ v) $\{A\} \subset \mathcal{U}$ vi) $\{A\} \notin \mathcal{U}$

$$\mathsf{v})\ \{\mathsf{A}\}\subset\mathscr{U}$$

- b. Ahora sea, $B = \{5, 6, x, y, A\} = \{5, 6, x, y, \{1, 2, 3, 4\}\}$. Entonces |B| = 5, yahora vemos que
 - i) *A* ∈ *B*

- 1. Sea $\mathcal{U} = \{1, 2, 3, 4, 5, 6, x, y, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}\$ (donde x, yrepresentan letras del alfabeto y no representan nada más). Entonces $|\hat{\mathcal{U}}| = 11$
 - a. Si $A = \{1, 2, 3, 4\}$, entonces |A| = 4 y tenemos

i)
$$A \subseteq \mathcal{U}$$
 ii) $A \subset \mathcal{U}$ iii) $A \in \mathcal{U}$ iv) $\{A\} \subseteq \mathcal{U}$ v) $\{A\} \subset \mathcal{U}$ vi) $\{A\} \notin \mathcal{U}$

$$\{A\} \subset \mathscr{U} \quad \text{vi) } \{A\} \notin$$

- b. Ahora sea, $B = \{5, 6, x, y, A\} = \{5, 6, x, y, \{1, 2, 3, 4\}\}$. Entonces |B| = 5, yahora vemos que

 - i) $A \in B$ ii) $\{A\} \subset B$

- 1. Sea $\mathcal{U} = \{1, 2, 3, 4, 5, 6, x, y, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}\$ (donde x, yrepresentan letras del alfabeto y no representan nada más). Entonces $|\hat{\mathcal{U}}| = 11$
 - a. Si $A = \{1, 2, 3, 4\}$, entonces |A| = 4 y tenemos

i)
$$A \subseteq \mathscr{U}$$
 ii) $A \subseteq \mathscr{U}$

ii)
$$A \subset \mathcal{U}$$

iii)
$$A \in \mathscr{U}$$

$$\begin{array}{ll} \text{i) } A \subseteq \mathscr{U} & \text{ii) } A \subset \mathscr{U} & \text{iii) } A \in \mathscr{U} \\ \text{iv) } \{A\} \subseteq \mathscr{U} & \text{v) } \{A\} \subset \mathscr{U} & \text{vi) } \{A\} \notin \mathscr{U} \end{array}$$

b. Ahora sea, $B = \{5, 6, x, y, A\} = \{5, 6, x, y, \{1, 2, 3, 4\}\}$. Entonces |B| = 5, yahora vemos que

i)
$$A \in B$$
 iv) $\{A\} \notin B$

ii)
$$\{A\} \subseteq E$$

i)
$$A \in B$$
 ii) $\{A\} \subseteq B$ iii) $\{A\} \subset B$

- 1. Sea $\mathcal{U} = \{1, 2, 3, 4, 5, 6, x, y, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}\$ (donde x, yrepresentan letras del alfabeto y no representan nada más). Entonces $|\hat{\mathcal{U}}| = 11$
 - a. Si $A = \{1, 2, 3, 4\}$, entonces |A| = 4 y tenemos

$$\begin{array}{ll} \text{i) } A \subseteq \mathscr{U} & \quad \text{ii) } A \subset \mathscr{U} & \quad \text{iii) } A \in \mathscr{U} \\ \text{iv) } \{A\} \subseteq \mathscr{U} & \quad \text{v) } \{A\} \subset \mathscr{U} & \quad \text{vi) } \{A\} \notin \mathscr{U} \end{array}$$

b. Ahora sea, $B = \{5, 6, x, y, A\} = \{5, 6, x, y, \{1, 2, 3, 4\}\}$. Entonces |B| = 5, yahora vemos que

i)
$$A \in E$$

$$\begin{array}{ll} \text{i) } A \in B & \text{ii) } \{A\} \subseteq B & \text{iii) } \{A\} \subset B \\ \text{iv) } \{A\} \notin B & \text{v) } A \nsubseteq \overline{B} \end{array}$$

- 1. Sea $\mathcal{U} = \{1, 2, 3, 4, 5, 6, x, y, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}\$ (donde x, yrepresentan letras del alfabeto y no representan nada más). Entonces $|\hat{\mathcal{U}}| = 11$
 - a. Si $A = \{1, 2, 3, 4\}$, entonces |A| = 4 y tenemos

i)
$$A \subseteq \mathcal{U}$$
 ii) $A \subset \mathcal{U}$ iii) $A \in \mathcal{U}$ iv) $\{A\} \subseteq \mathcal{U}$ v) $\{A\} \subset \mathcal{U}$ vi) $\{A\} \notin \mathcal{U}$

$$(A) \in \mathscr{U}$$

- b. Ahora sea, $B = \{5, 6, x, y, A\} = \{5, 6, x, y, \{1, 2, 3, 4\}\}$. Entonces |B| = 5, yahora vemos que

i)
$$A \in B$$
 ii) $\{A\} \subseteq B$ iii) $\{A\} \subset B$ iv) $\{A\} \notin B$ v) $A \nsubseteq B$ vi) $A \not\subset B$

Teorema

Sean $A, B, C \subseteq \mathcal{U}$

- a. Si $A \subseteq B$ y $B \subseteq C$, entonces $A \subseteq C$.
- b. Si $A \subseteq B$ y $B \subset C$, entonces $A \subset C$
- c. Si $A \subset B$ y $B \subseteq C$, entonces $A \subset C$
- d. Si $A \subset B$ y $B \subset C$, entonces $A \subset C$

Conjuntos
Subconjuntos
Conjunto vacío
Conjunto potencia

Propiedades

Demostración:

Demostración:

a. Para demostrar que $A \subseteq C$, necesitamos verificar que para todo $x \in \mathcal{U}$, si $x \in A$, entonces $x \in C$.

Demostración:

a. Para demostrar que $A \subseteq C$, necesitamos verificar que para todo $x \in \mathcal{U}$, si $x \in A$, entonces $x \in C$.

Sea $x \in A$ (tomado arbitrariamente), como $A \subseteq B$, entonces $x \in B$

Demostración:

a. Para demostrar que $A \subseteq C$, necesitamos verificar que para todo $x \in \mathcal{U}$, si $x \in A$, entonces $x \in C$. Sea $x \in A$ (tomado arbitrariamente), como $A \subseteq B$, entonces $x \in B$. Ahora bien, como $B \subseteq C$, se tiene que $x \in C$, dado que $x \in B$. Hemos probado que si $x \in A$, entonces $x \in C$, y como tomamos x arbitrariamente, por la regla de generalización universal tenemos que $\forall x [x \in A \Rightarrow x \in C]$

$$A \subseteq C$$

Demostración:

a. Para demostrar que $A \subseteq C$, necesitamos verificar que para todo $x \in \mathcal{U}$, si $x \in A$, entonces $x \in C$. Sea $x \in A$ (tomado arbitrariamente), como $A \subseteq B$, entonces $x \in B$. Ahora bien, como $B \subseteq C$, se tiene que $x \in C$, dado que $x \in B$. Hemos probado que si $x \in A$, entonces $x \in C$, y como tomamos x arbitrariamente, por la regla de generalización universal tenemos que $\forall x [x \in A \Rightarrow x \in C]$

$$A \subseteq C$$

b. Sea $x \in A$, como $A \subset B$, entonces $x \in B$

Demostración:

a. Para demostrar que $A \subseteq C$, necesitamos verificar que para todo $x \in \mathcal{U}$, si $x \in A$, entonces $x \in C$. Sea $x \in A$ (tomado arbitrariamente), como $A \subseteq B$, entonces $x \in B$. Ahora bien, como $B \subseteq C$, se tiene que $x \in C$, dado que $x \in B$. Hemos probado que si $x \in A$, entonces $x \in C$, y como tomamos x arbitrariamente, por la regla de generalización universal tenemos que $\forall x [x \in A \Rightarrow x \in C]$

$$A \subseteq C$$

b. Sea $x \in A$, como $A \subset B$, entonces $x \in B$. Además, $B \subseteq C$, entonces $x \in C$, por lo que $A \subseteq C$

Demostración:

a. Para demostrar que $A \subseteq C$, necesitamos verificar que para todo $x \in \mathcal{U}$, si $x \in A$, entonces $x \in C$. Sea $x \in A$ (tomado arbitrariamente), como $A \subseteq B$, entonces $x \in B$. Ahora bien, como $B \subseteq C$, se tiene que $x \in C$, dado que $x \in B$. Hemos probado que si $x \in A$, entonces $x \in C$, y como tomamos x arbitrariamente, por la regla de generalización universal tenemos que $\forall x [x \in A \Rightarrow x \in C]$

$$A \subseteq C$$

b. Sea $x \in A$, como $A \subset B$, entonces $x \in B$. Además, $B \subseteq C$, entonces $x \in C$, por lo que $A \subseteq C$. Sin embargo $A \subset B$, implica que existe $b \in B$ tal que $b \notin A$, pero como $B \subseteq C$, entonces $b \in C$

Demostración:

a. Para demostrar que $A \subseteq C$, necesitamos verificar que para todo $x \in \mathcal{U}$, si $x \in A$, entonces $x \in C$. Sea $x \in A$ (tomado arbitrariamente), como $A \subseteq B$, entonces $x \in B$. Ahora bien, como $B \subseteq C$, se tiene que $x \in C$, dado que $x \in B$. Hemos probado que si $x \in A$, entonces $x \in C$, y como tomamos x arbitrariamente, por la regla de generalización universal tenemos que $\forall x [x \in A \Rightarrow x \in C]$

$$A \subseteq C$$

b. Sea $x \in A$, como $A \subset B$, entonces $x \in B$. Además, $B \subseteq C$, entonces $x \in C$, por lo que $A \subseteq C$. Sin embargo $A \subset B$, implica que existe $b \in B$ tal que $b \notin A$, pero como $B \subseteq C$, entonces $b \in C$. Así existe $b \in C$ tal que $b \notin A$, entonces $A \neq C$.

Demostración:

a. Para demostrar que $A \subseteq C$, necesitamos verificar que para todo $x \in \mathcal{U}$, si $x \in A$, entonces $x \in C$. Sea $x \in A$ (tomado arbitrariamente), como $A \subseteq B$, entonces $x \in B$. Ahora bien, como $B \subseteq C$, se tiene que $x \in C$, dado que $x \in B$. Hemos probado que si $x \in A$, entonces $x \in C$, y como tomamos x arbitrariamente, por la regla de generalización universal tenemos que $\forall x [x \in A \Rightarrow x \in C]$

$$A \subseteq C$$

b. Sea $x \in A$, como $A \subset B$, entonces $x \in B$. Además, $B \subseteq C$, entonces $x \in C$, por lo que $A \subseteq C$. Sin embargo $A \subset B$, implica que existe $b \in B$ tal que $b \notin A$, pero como $B \subseteq C$, entonces $b \in C$. Así existe $b \in C$ tal que $b \notin A$, entonces $A \neq C$.

$$\therefore A \subset C$$

Conjunto vacío

Definición

El **conjunto vacío** o **nulo**, es el único conjunto que no contiene elementos. Se denota como \emptyset o $\{\}$.

Observaciones:

- 1. $|\emptyset| = 0$
- **2**. $\{0\} \neq \emptyset$
- 3. $\emptyset \neq \{\emptyset\}$

Conjuntos
Subconjuntos
Conjunto vacío
Conjunto potencia

Conjunto vacío

Teorema 2

Para cualquier universo \mathscr{U} , sea $A\subseteq\mathscr{U}$. Entonces $\emptyset\subseteq A$ y si $A\neq\emptyset$, entonces $\emptyset\subset A$

Conjuntos Subconjuntos Conjunto vacío Conjunto potencia

Conjunto vacío

Teorema 2

Para cualquier universo \mathscr{U} , sea $A\subseteq\mathscr{U}$. Entonces $\emptyset\subseteq A$ y si $A\neq\emptyset$, entonces $\emptyset\subset A$

Demostración: (por contradicción)

Conjunto vacío

Teorema 2

Para cualquier universo \mathscr{U} , sea $A\subseteq\mathscr{U}$. Entonces $\emptyset\subseteq A$ y si $A\neq\emptyset$, entonces $\emptyset\subset A$

Demostración: (por contradicción)

Supongamos que $\emptyset \not\subseteq A$, entonces por definición existe un elemento x tal que $x \in \emptyset$ pero $x \not\in A$

Conjunto vacío

Teorema 2

Para cualquier universo \mathscr{U} , sea $A\subseteq\mathscr{U}$. Entonces $\emptyset\subseteq A$ y si $A\neq\emptyset$, entonces $\emptyset\subset A$

Demostración: (por contradicción)

Supongamos que $\emptyset \nsubseteq A$, entonces por definición existe un elemento x tal que $x \in \emptyset$ pero $x \notin A$. Pero $x \in \emptyset$ es imposible dado que el conjunto vacío no tiene elementos, entonces $\emptyset \subseteq A$

Conjunto vacío

Teorema 2

Para cualquier universo \mathscr{U} , sea $A\subseteq\mathscr{U}$. Entonces $\emptyset\subseteq A$ y si $A\neq\emptyset$, entonces $\emptyset\subset A$

Demostración: (por contradicción)

Supongamos que $\emptyset \nsubseteq A$, entonces por definición existe un elemento x tal que $x \in \emptyset$ pero $x \notin A$. Pero $x \in \emptyset$ es imposible dado que el conjunto vacío no tiene elementos, entonces $\emptyset \subseteq A$. Ahora bien, si $A \neq \emptyset$, entonces existe $a \in A$ y $a \notin \emptyset$, entonces $\emptyset \subset A$

Conjunto potencia

Definición

Si A es un conjunto del universo \mathscr{U} . El **conjunto potencia**, que se denota por $\mathscr{P}(A)$ es la colección (o conjunto) de todos los subconjuntos A.

En general, para cualquier conjunto finito A con $n \ge 0$, A tiene 2^n subconjuntos y $|\mathscr{P}(A)| = 2^n$. Para cualquier k, $0 \le k \le n$, existen $\binom{n}{k}$ subconjuntos de tamaño k.

Si sumamos todos los subconjuntos de tama \tilde{n} o k de A, tenemos la identidad combinatoria

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1} + \binom{n}{n} = 2^n$$

1. Sea $A = \{a, b, c, d\}$ de un universo \mathscr{U} dado.

- 1. Sea $A = \{a, b, c, d\}$ de un universo \mathscr{U} dado.
 - a. Determine la cardinalidad del conjunto potencia de A.

Solución:

- 1. Sea $A = \{a, b, c, d\}$ de un universo \mathscr{U} dado.
 - a. Determine la cardinalidad del conjunto potencia de A.

Solución:

Tenemos que |A| = 4, entonces $|\mathscr{P}(A)| = 2^{|A|} = 2^4 = 16$.

- 1. Sea $A = \{a, b, c, d\}$ de un universo \mathscr{U} dado.
 - a. Determine la cardinalidad del conjunto potencia de A.

Solución:

Tenemos que |A| = 4, entonces $|\mathscr{P}(A)| = 2^{|A|} = 2^4 = 16$.

b. Determine el conjunto potencia de A.

- 1. Sea $A = \{a, b, c, d\}$ de un universo \mathscr{U} dado.
 - a. Determine la cardinalidad del conjunto potencia de A.

Solución:

Tenemos que |A| = 4, entonces $|\mathscr{P}(A)| = 2^{|A|} = 2^4 = 16$.

b. Determine el conjunto potencia de A.

Solución

- 1. Sea $A = \{a, b, c, d\}$ de un universo \mathscr{U} dado.
 - a. Determine la cardinalidad del conjunto potencia de *A*.

Solución:

Tenemos que |A| = 4, entonces $|\mathscr{P}(A)| = 2^{|A|} = 2^4 = 16$.

b. Determine el conjunto potencia de A.

- 1. Sea $A = \{a, b, c, d\}$ de un universo \mathscr{U} dado.
 - a. Determine la cardinalidad del conjunto potencia de *A*.

Solución:

Tenemos que |A| = 4, entonces $|\mathscr{P}(A)| = 2^{|A|} = 2^4 = 16$.

b. Determine el conjunto potencia de A.

$$\mathscr{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \cdots \}$$

$$= \cdots \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, A\}$$

c. Determine cuántos subconjuntos de tamaño 2 tiene el conjunto A.

- 1. Sea $A = \{a, b, c, d\}$ de un universo \mathscr{U} dado.
 - a. Determine la cardinalidad del conjunto potencia de A.

Solución:

Tenemos que |A| = 4, entonces $|\mathscr{P}(A)| = 2^{|A|} = 2^4 = 16$.

b. Determine el conjunto potencia de A.

Solución
$$\mathscr{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{c,d\}, \cdots \} \}$$

= $\cdots \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}, A\}$

c. Determine cuántos subconjuntos de tamaño 2 tiene el conjunto A.

Solución:

- 1. Sea $A = \{a, b, c, d\}$ de un universo \mathscr{U} dado.
 - a. Determine la cardinalidad del conjunto potencia de A.

Solución:

Tenemos que |A| = 4, entonces $|\mathscr{P}(A)| = 2^{|A|} = 2^4 = 16$.

b. Determine el conjunto potencia de A.

Solución

$$\mathscr{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \cdots \}$$
 $= \cdots \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, A\}$

c. Determine cuántos subconjuntos de tamaño 2 tiene el conjunto A.

Solución:

Tenemos que |A|=4, entonces hay $\binom{4}{2}=6$ subconjuntos de cardinalidad 2.

- 1. Sea $A = \{a, b, c, d\}$ de un universo \mathscr{U} dado.
 - a. Determine la cardinalidad del conjunto potencia de A.

Solución:

Tenemos que |A| = 4, entonces $|\mathscr{P}(A)| = 2^{|A|} = 2^4 = 16$.

b. Determine el conjunto potencia de A.

Solución

$$\mathscr{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \cdots \}$$
 $= \cdots \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, A\}$

c. Determine cuántos subconjuntos de tamaño 2 tiene el conjunto A.

Solución:

Tenemos que |A|=4, entonces hay $\binom{4}{2}=6$ subconjuntos de cardinalidad 2.

- 1. Sea $A = \{a, b, c, d\}$ de un universo \mathscr{U} dado.
 - d. Cuántos subconjuntos propios tiene A.

- 1. Sea $A = \{a, b, c, d\}$ de un universo \mathscr{U} dado.
 - d. Cuántos subconjuntos propios tiene A.

Solución:

- 1. Sea $A = \{a, b, c, d\}$ de un universo \mathscr{U} dado.
 - d. Cuántos subconjuntos propios tiene A.

Solución:

Hay 15 subconjuntos propios dado que $|\mathscr{P}(A)|=$ 16, y el único subconjunto que no es propio de A es A.

- 1. Sea $A = \{a, b, c, d\}$ de un universo \mathscr{U} dado.
 - d. Cuántos subconjuntos propios tiene A.

Solución:

Hay 15 subconjuntos propios dado que $|\mathscr{P}(A)|=$ 16, y el único subconjunto que no es propio de A es A.

e. Determine el número de subconjuntos propios de *A* que contengan a las letras *a* y *d*.

- 1. Sea $A = \{a, b, c, d\}$ de un universo \mathscr{U} dado.
 - d. Cuántos subconjuntos propios tiene A.

Solución:

Hay 15 subconjuntos propios dado que $|\mathscr{P}(A)|=$ 16, y el único subconjunto que no es propio de A es A.

e. Determine el número de subconjuntos propios de *A* que contengan a las letras *a* y *d*.

Solución:

- 1. Sea $A = \{a, b, c, d\}$ de un universo \mathscr{U} dado.
 - d. Cuántos subconjuntos propios tiene A.

Solución:

Hay 15 subconjuntos propios dado que $|\mathscr{P}(A)|=$ 16, y el único subconjunto que no es propio de A es A.

e. Determine el número de subconjuntos propios de *A* que contengan a las letras *a* y *d*.

Solución:

Observemos que tienen que ser subconjuntos con cardinalidad $2\,y\,3$ que contengan las letras $a\,y\,d$. Entonces hay 3.

Operaciones con conjuntos

Definición

Para $A, B \subseteq \mathcal{U}$ definimos lo siguiente

- a. La unión A y B como $A \cup B = \{x | x \in A \lor x \in B\}$
- b. La intersección de A y B como $A \cap B = \{x | x \in A \land x \in B\}$
- c. La diferencia de A y B como $A B = \{x | x \in A \land x \notin B\}$
- d. La diferencia simétrica de A y B como $A \triangle B = \{x | x \in A \cup B \land x \notin A \cap B\}$
- e. El complemento de A como $\mathscr{U} A = \overline{A} = A^c = \{x | x \in \mathscr{U} \land x \notin A\}$

1. Si
$$\mathscr{U} = \{1, 2, 3, 4, 5, 6, 7, a, b, c\}$$
, $A = \{1, 2, 3, 4, a\}$, $B = \{3, 4, 5, b\}$, y $C = \{7, 8, 9, c\}$

- 1. Si $\mathscr{U}=\{1,2,3,4,5,6,7,a,b,c\},\,A=\{1,2,3,4,a\},\,B=\{3,4,5,b\},\,$ y $C=\{7,8,9,c\}$
 - a. $A \cap B$

1. Si
$$\mathscr{U}=\{1,2,3,4,5,6,7,a,b,c\},\,A=\{1,2,3,4,a\},\,B=\{3,4,5,b\},\,$$
y $C=\{7,8,9,c\}$

a.
$$A \cap B = \{3, 4\}$$

1. Si
$$\mathscr{U} = \{1, 2, 3, 4, 5, 6, 7, a, b, c\}$$
, $A = \{1, 2, 3, 4, a\}$, $B = \{3, 4, 5, b\}$, y $C = \{7, 8, 9, c\}$

- a. $A \cap B = \{3, 4\}$
- b. $A \cup B$

1. Si
$$\mathscr{U} = \{1, 2, 3, 4, 5, 6, 7, a, b, c\}$$
, $A = \{1, 2, 3, 4, a\}$, $B = \{3, 4, 5, b\}$, y $C = \{7, 8, 9, c\}$

- a. $A \cap B = \{3, 4\}$
- b. $A \cup B = \{1, 2, 3, 4, a, 5, b\} = \{1, 2, 3, 4, 5, a, b\}$

1. Si
$$\mathscr{U}=\{1,2,3,4,5,6,7,a,b,c\}, A=\{1,2,3,4,a\}, B=\{3,4,5,b\},$$
 y $C=\{7,8,9,c\}$

- a. $A \cap B = \{3, 4\}$
- b. $A \cup B = \{1, 2, 3, 4, a, 5, b\} = \{1, 2, 3, 4, 5, a, b\}$
- c. $A \triangle B$

1. Si
$$\mathscr{U} = \{1, 2, 3, 4, 5, 6, 7, a, b, c\}$$
, $A = \{1, 2, 3, 4, a\}$, $B = \{3, 4, 5, b\}$, y $C = \{7, 8, 9, c\}$

- a. $A \cap B = \{3, 4\}$
- b. $A \cup B = \{1, 2, 3, 4, a, 5, b\} = \{1, 2, 3, 4, 5, a, b\}$
- c. $A \triangle B = \{1, 2, 5, a, b\}$

1. Si
$$\mathscr{U} = \{1, 2, 3, 4, 5, 6, 7, a, b, c\}$$
, $A = \{1, 2, 3, 4, a\}$, $B = \{3, 4, 5, b\}$, y $C = \{7, 8, 9, c\}$

- a. $A \cap B = \{3, 4\}$
- b. $A \cup B = \{1, 2, 3, 4, a, 5, b\} = \{1, 2, 3, 4, 5, a, b\}$
- c. $A \triangle B = \{1, 2, 5, a, b\}$
- d. A B

1. Si
$$\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7, a, b, c\}$$
, $A = \{1, 2, 3, 4, a\}$, $B = \{3, 4, 5, b\}$, y $C = \{7, 8, 9, c\}$

a.
$$A \cap B = \{3, 4\}$$

b.
$$A \cup B = \{1, 2, 3, 4, a, 5, b\} = \{1, 2, 3, 4, 5, a, b\}$$

c.
$$A \triangle B = \{1, 2, 5, a, b\}$$

d.
$$A - B = \{1, 2, a\}$$

1. Si
$$\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7, a, b, c\}$$
, $A = \{1, 2, 3, 4, a\}$, $B = \{3, 4, 5, b\}$, y $C = \{7, 8, 9, c\}$

a.
$$A \cap B = \{3, 4\}$$

b.
$$A \cup B = \{1, 2, 3, 4, a, 5, b\} = \{1, 2, 3, 4, 5, a, b\}$$

c.
$$A \triangle B = \{1, 2, 5, a, b\}$$

d.
$$A - B = \{1, 2, a\}$$

e.
$$A^c = \mathscr{U} - A$$

1. Si
$$\mathscr{U} = \{1, 2, 3, 4, 5, 6, 7, a, b, c\}$$
, $A = \{1, 2, 3, 4, a\}$, $B = \{3, 4, 5, b\}$, y $C = \{7, 8, 9, c\}$

a.
$$A \cap B = \{3, 4\}$$

b.
$$A \cup B = \{1, 2, 3, 4, a, 5, b\} = \{1, 2, 3, 4, 5, a, b\}$$

c.
$$A \triangle B = \{1, 2, 5, a, b\}$$

d.
$$A - B = \{1, 2, a\}$$

e.
$$A^c = \mathcal{U} - A = \{5, 6, 7, b, c\}$$

1. Si
$$\mathscr{U} = \{1, 2, 3, 4, 5, 6, 7, a, b, c\}$$
, $A = \{1, 2, 3, 4, a\}$, $B = \{3, 4, 5, b\}$, y $C = \{7, 8, 9, c\}$

a.
$$A \cap B = \{3, 4\}$$

b.
$$A \cup B = \{1, 2, 3, 4, a, 5, b\} = \{1, 2, 3, 4, 5, a, b\}$$

c.
$$A \triangle B = \{1, 2, 5, a, b\}$$

d.
$$A - B = \{1, 2, a\}$$

e.
$$A^c = \mathcal{U} - A = \{5, 6, 7, b, c\}$$

f.
$$A \cap C$$

1. Si
$$\mathscr{U} = \{1, 2, 3, 4, 5, 6, 7, a, b, c\}$$
, $A = \{1, 2, 3, 4, a\}$, $B = \{3, 4, 5, b\}$, y $C = \{7, 8, 9, c\}$

a.
$$A \cap B = \{3, 4\}$$

b.
$$A \cup B = \{1, 2, 3, 4, a, 5, b\} = \{1, 2, 3, 4, 5, a, b\}$$

c.
$$A \triangle B = \{1, 2, 5, a, b\}$$

d.
$$A - B = \{1, 2, a\}$$

e.
$$A^c = \mathcal{U} - A = \{5, 6, 7, b, c\}$$

f.
$$A \cap C = \emptyset$$

1. Si
$$\mathscr{U}=\{1,2,3,4,5,6,7,a,b,c\}, A=\{1,2,3,4,a\}, B=\{3,4,5,b\},$$
 y $C=\{7,8,9,c\}$

a.
$$A \cap B = \{3, 4\}$$

b.
$$A \cup B = \{1, 2, 3, 4, a, 5, b\} = \{1, 2, 3, 4, 5, a, b\}$$

c.
$$A \triangle B = \{1, 2, 5, a, b\}$$

d.
$$A - B = \{1, 2, a\}$$

e.
$$A^c = \mathcal{U} - A = \{5, 6, 7, b, c\}$$

f.
$$A \cap C = \emptyset$$

g.
$$A \cup C$$

1. Si
$$\mathscr{U} = \{1, 2, 3, 4, 5, 6, 7, a, b, c\}$$
, $A = \{1, 2, 3, 4, a\}$, $B = \{3, 4, 5, b\}$, y $C = \{7, 8, 9, c\}$

a.
$$A \cap B = \{3, 4\}$$

b.
$$A \cup B = \{1, 2, 3, 4, a, 5, b\} = \{1, 2, 3, 4, 5, a, b\}$$

c.
$$A \triangle B = \{1, 2, 5, a, b\}$$

d.
$$A - B = \{1, 2, a\}$$

e.
$$A^c = \mathcal{U} - A = \{5, 6, 7, b, c\}$$

f.
$$A \cap C = \emptyset$$

g.
$$A \cup C = \{1, 2, 3, 4, a, 7, 8, 9, c\} = \{1, 2, 3, 4, 7, 8, 9, a, c\}$$

1. Si
$$\mathscr{U} = \{1, 2, 3, 4, 5, 6, 7, a, b, c\}$$
, $A = \{1, 2, 3, 4, a\}$, $B = \{3, 4, 5, b\}$, y $C = \{7, 8, 9, c\}$

a.
$$A \cap B = \{3, 4\}$$

b.
$$A \cup B = \{1, 2, 3, 4, a, 5, b\} = \{1, 2, 3, 4, 5, a, b\}$$

c.
$$A \triangle B = \{1, 2, 5, a, b\}$$

d.
$$A - B = \{1, 2, a\}$$

e.
$$A^c = \mathcal{U} - A = \{5, 6, 7, b, c\}$$

f.
$$A \cap C = \emptyset$$

g.
$$A \cup C = \{1, 2, 3, 4, a, 7, 8, 9, c\} = \{1, 2, 3, 4, 7, 8, 9, a, c\}$$

1. Si
$$\mathscr{U} = \{1, 2, 3, 4, 5, 6, 7, a, b, c\}$$
, $A = \{1, 2, 3, 4, a\}$, $B = \{3, 4, 5, b\}$, y $C = \{7, 8, 9, c\}$

a.
$$A \cap B = \{3, 4\}$$

b.
$$A \cup B = \{1, 2, 3, 4, a, 5, b\} = \{1, 2, 3, 4, 5, a, b\}$$

c.
$$A \triangle B = \{1, 2, 5, a, b\}$$

d.
$$A - B = \{1, 2, a\}$$

e.
$$A^c = \mathcal{U} - A = \{5, 6, 7, b, c\}$$

f.
$$A \cap C = \emptyset$$

g.
$$A \cup C = \{1, 2, 3, 4, a, 7, 8, 9, c\} = \{1, 2, 3, 4, 7, 8, 9, a, c\}$$

h.
$$A \triangle C = \{1, 2, 3, 4, 7, 8, 9, a, c\}$$

Corolario

Sean $A, B \subseteq \mathcal{U}$. Se tiene que

$$A \cap B \subseteq A \subseteq A \cup B$$

Corolario

Sean $A, B \subseteq \mathcal{U}$. Se tiene que

$$A \cap B \subseteq A \subseteq A \cup B$$

Demostración

Corolario

Sean $A, B \subseteq \mathcal{U}$. Se tiene que

$$A \cap B \subseteq A \subseteq A \cup B$$

Demostración

Corolario

Sean $A, B \subseteq \mathcal{U}$. Se tiene que

$$A \cap B \subseteq A \subseteq A \cup B$$

Demostración

$$x \in A \cap B$$

Corolario

Sean $A, B \subseteq \mathcal{U}$. Se tiene que

$$A \cap B \subseteq A \subseteq A \cup B$$

Demostración

$$x \in A \cap B \Rightarrow x \in A \land x \in B$$

Corolario

Sean $A, B \subseteq \mathcal{U}$. Se tiene que

$$A \cap B \subseteq A \subseteq A \cup B$$

Demostración

$$x \in A \cap B \Rightarrow x \in A \land x \in B \Rightarrow x \in A$$

Corolario

Sean $A, B \subseteq \mathcal{U}$. Se tiene que

$$A \cap B \subseteq A \subseteq A \cup B$$

Demostración

i. Demostraremos que $A \cap B \subseteq A$.

$$x \in A \cap B \Rightarrow x \in A \land x \in B \Rightarrow x \in A$$

por la regla de simplificación conjuntiva

Corolario

Sean $A, B \subseteq \mathcal{U}$. Se tiene que

$$A \cap B \subseteq A \subseteq A \cup B$$

Demostración

i. Demostraremos que $A \cap B \subseteq A$.

$$x \in A \cap B \Rightarrow x \in A \land x \in B \Rightarrow x \in A$$

por la regla de simplificación conjuntiva

Corolario

Sean $A, B \subseteq \mathcal{U}$. Se tiene que

$$A \cap B \subseteq A \subseteq A \cup B$$

Demostración

i. Demostraremos que $A \cap B \subseteq A$.

$$x \in A \cap B \Rightarrow x \in A \land x \in B \Rightarrow x \in A$$

por la regla de simplificación conjuntiva

$$x \in A$$

Corolario

Sean $A, B \subseteq \mathcal{U}$. Se tiene que

$$A \cap B \subseteq A \subseteq A \cup B$$

Demostración

i. Demostraremos que $A \cap B \subseteq A$.

$$x \in A \cap B \Rightarrow x \in A \land x \in B \Rightarrow x \in A$$

por la regla de simplificación conjuntiva

$$x \in A \Rightarrow x \in A \lor x \in B$$

Corolario

Sean $A, B \subseteq \mathcal{U}$. Se tiene que

$$A \cap B \subseteq A \subseteq A \cup B$$

Demostración

i. Demostraremos que $A \cap B \subseteq A$.

$$x \in A \cap B \Rightarrow x \in A \land x \in B \Rightarrow x \in A$$

por la regla de simplificación conjuntiva

$$x \in A \Rightarrow x \in A \lor x \in B \Rightarrow x \in A \cup B$$

Corolario

Sean $A, B \subseteq \mathcal{U}$. Se tiene que

$$A \cap B \subseteq A \subseteq A \cup B$$

Demostración

i. Demostraremos que $A \cap B \subseteq A$.

$$x \in A \cap B \Rightarrow x \in A \land x \in B \Rightarrow x \in A$$

por la regla de simplificación conjuntiva

ii. Demostraremos que $A \subseteq A \cup B$.

$$x \in A \Rightarrow x \in A \lor x \in B \Rightarrow x \in A \cup B$$

por la regla de amplificación disyuntiva.

Corolario

Sean $A, B \subseteq \mathcal{U}$. Se tiene que

$$A \cap B \subseteq A \subseteq A \cup B$$

Demostración

i. Demostraremos que $A \cap B \subseteq A$.

$$x \in A \cap B \Rightarrow x \in A \land x \in B \Rightarrow x \in A$$

por la regla de simplificación conjuntiva

ii. Demostraremos que $A \subseteq A \cup B$.

$$x \in A \Rightarrow x \in A \lor x \in B \Rightarrow x \in A \cup B$$

por la regla de amplificación disyuntiva.

$$\therefore A \cap B \subseteq A \subseteq A \cup B$$

Conjuntos disjuntos

Definición

Sean $C, D \subseteq \mathcal{U}$. Los conjuntos C y D son disjuntos o mutuamente disjuntos si $C \cap D = \emptyset$.

Conjuntos disjuntos

Definición

Sean $C, D \subseteq \mathcal{U}$. Los conjuntos C y D son disjuntos o mutuamente disjuntos si $C \cap D = \emptyset$.

Teorema 3

Sean $C, D \subseteq \mathcal{U}$. C y D son disjuntos si, y solo si $C \cup D = C \triangle D$

Teorema 4

Para cualquier universo \mathscr{U} y cualesquiera conjuntos $A, B \subseteq \mathscr{U}$, las siguientes proposiciones son equivalentes.

a.
$$A \subseteq B$$

a.
$$A \subseteq B$$
 b. $A \cup B = B$

c.
$$A \cap B = A$$
 d. $B^c \subseteq A^c$

d.
$$B^c \subseteq A^c$$

Teorema 4

Para cualquier universo \mathscr{U} y cualesquiera conjuntos $A, B \subseteq \mathscr{U}$, las siguientes proposiciones son equivalentes.

a.
$$A \subseteq B$$
 b. $A \cup B = B$

c.
$$A \cap B = A$$
 d. $B^c \subseteq A^c$

Demostración:

Teorema 4

Para cualquier universo \mathscr{U} y cualesquiera conjuntos $A, B \subseteq \mathscr{U}$, las siguientes proposiciones son equivalentes.

a.
$$A \subseteq B$$
 b. $A \cup B = B$

c.
$$A \cap B = A$$
 d. $B^c \subset A^c$

$$B^c\subseteq A^c$$

Demostración:

Demostraremos que (a.) \Rightarrow (b.), (b.) \Rightarrow (c.), (c.) \Rightarrow (d.) y (d.) \Rightarrow (a.).

Teorema 4

Para cualquier universo \mathscr{U} y cualesquiera conjuntos $A, B \subseteq \mathscr{U}$, las siguientes proposiciones son equivalentes.

a.
$$A \subseteq B$$
 b. $A \cup B = B$

c.
$$A \cap B = A$$
 d. $B^c \subset A^c$

.
$$B^c \subseteq A^c$$

Demostración:

Demostraremos que (a.) \Rightarrow (b.), (b.) \Rightarrow (c.), (c.) \Rightarrow (d.) y (d.) \Rightarrow (a.). Esto se sigue dado que por las leyes de la lógica para p, q y r proposiciones tenemos que

$$[(p \leftrightarrow q) \land (q \leftrightarrow r) \land (r \leftrightarrow p)] \Leftrightarrow [(p \rightarrow q) \land (q \rightarrow r) \land (r \rightarrow p)]$$

i. (a.)
$$\Rightarrow$$
 (b.), Si $A \subseteq B$, entonces $A \cup B = B$.

i. (a.)⇒ (b.), Si A ⊆ B, entonces A ∪ B = B.
 Si A, B son conjuntos cualesquiera, entonces B ⊆ A ∪ B por corolario demostrado anteriormente

i. (a.)⇒ (b.), Si A ⊆ B, entonces A ∪ B = B.
Si A, B son conjuntos cualesquiera, entonces B ⊆ A ∪ B por corolario demostrado anteriormente. Ahora bien, sea x ∈ A ∪ B, entonces x ∈ A ∨ x ∈ B, pero A ⊆ B, entonces tenemos que x ∈ B ∨ x ∈ B. Así, A ∪ B ⊆ B, y por definición de igualdad concluimos A ∪ B = B.

- i. (a.) \Rightarrow (b.), Si $A \subseteq B$, entonces $A \cup B = B$. Si A, B son conjuntos cualesquiera, entonces $B \subseteq A \cup B$ por corolario demostrado anteriormente. Ahora bien, sea $x \in A \cup B$, entonces $x \in A \lor x \in B$, pero $A \subseteq B$, entonces tenemos que $x \in B \lor x \in B$. Así, $A \cup B \subseteq B$, y por definición de igualdad concluimos $A \cup B = B$.
- ii. (b.) \Rightarrow (c.), Si $A \cup B = B$, entonces $A \cap B = A$.

- i. (a.) \Rightarrow (b.), Si $A \subseteq B$, entonces $A \cup B = B$. Si A, B son conjuntos cualesquiera, entonces $B \subseteq A \cup B$ por corolario demostrado anteriormente. Ahora bien, sea $x \in A \cup B$, entonces $x \in A \lor x \in B$, pero $A \subseteq B$, entonces tenemos que $x \in B \lor x \in B$. Así, $A \cup B \subseteq B$, y por definición de igualdad concluimos $A \cup B = B$.
- ii. (b.) \Rightarrow (c.), Si $A \cup B = B$, entonces $A \cap B = A$. Si A, B son conjuntos cualesquiera, entonces $A \cap B \subseteq A$ por corolario

- i. (a.)⇒ (b.), Si A ⊆ B, entonces A ∪ B = B.
 Si A, B son conjuntos cualesquiera, entonces B ⊆ A ∪ B por corolario demostrado anteriormente. Ahora bien, sea x ∈ A ∪ B, entonces x ∈ A ∨ x ∈ B, pero A ⊆ B, entonces tenemos que x ∈ B ∨ x ∈ B. Así, A ∪ B ⊆ B, y por definición de igualdad concluimos A ∪ B = B.
- ii. (b.) \Rightarrow (c.), Si $A \cup B = B$, entonces $A \cap B = A$. Si A, B son conjuntos cualesquiera, entonces $A \cap B \subseteq A$ por corolario. Ahora bien, sea $x \in A$, como $A \cup B = B$, entonces tenemos que $x \in A \cup B \Rightarrow x \in B$. Por lo cúal se tiene que $x \in A \land x \in B \Rightarrow x \in A \cap B \Rightarrow A \subseteq A \cap B$.

$$A \cap B = A$$

 Demuestre una de las propiedades de la teoría de conjuntos llamada ley de De Morgan.

$$(A\cap B)^c=A^c\cup B^c$$

 Demuestre una de las propiedades de la teoría de conjuntos llamada ley de De Morgan.

$$(A\cap B)^c=A^c\cup B^c$$

Demostración:

 Demuestre una de las propiedades de la teoría de conjuntos llamada ley de De Morgan.

$$(A\cap B)^c=A^c\cup B^c$$

Demostración:

$$x \in (A \cap B)^c$$

 Demuestre una de las propiedades de la teoría de conjuntos llamada ley de De Morgan.

$$(A\cap B)^c=A^c\cup B^c$$

Demostración:

$$x \in (A \cap B)^c \Rightarrow x \notin A \cap B$$

 Demuestre una de las propiedades de la teoría de conjuntos llamada ley de De Morgan.

$$(A\cap B)^c=A^c\cup B^c$$

Demostración:

$$x \in (A \cap B)^c \Rightarrow x \notin A \cap B$$

 $\Rightarrow x \notin A \lor x \notin B$

 Demuestre una de las propiedades de la teoría de conjuntos llamada ley de De Morgan.

$$(A\cap B)^c=A^c\cup B^c$$

Demostración:

$$x \in (A \cap B)^{c} \Rightarrow x \notin A \cap B$$
$$\Rightarrow x \notin A \lor x \notin B$$
$$\Rightarrow x \in A^{c} \lor x \in B^{c}$$

 Demuestre una de las propiedades de la teoría de conjuntos llamada ley de De Morgan.

$$(A\cap B)^c=A^c\cup B^c$$

Demostración:

$$x \in (A \cap B)^{c} \Rightarrow x \notin A \cap B$$
$$\Rightarrow x \notin A \lor x \notin B$$
$$\Rightarrow x \in A^{c} \lor x \in B^{c}$$
$$\Rightarrow x \in A^{c} \cup B^{c}$$

 Demuestre una de las propiedades de la teoría de conjuntos llamada ley de De Morgan.

$$(A\cap B)^c=A^c\cup B^c$$

Demostración:

sea $x \in \mathcal{U}$. Entonces

$$x \in (A \cap B)^{c} \Rightarrow x \notin A \cap B$$

$$\Rightarrow x \notin A \lor x \notin B$$

$$\Rightarrow x \in A^{c} \lor x \in B^{c}$$

$$\Rightarrow x \in A^{c} \cup B^{c}$$

Entonces $(A \cap B)^c \subseteq A^c \cup B^c$.

$$x \in A^c \cup B^c$$

$$x \in A^c \cup B^c \quad \Rightarrow \quad x \in A^c \lor x \in B^c$$

$$\begin{array}{ll} x \in A^c \cup B^c & \Rightarrow & x \in A^c \lor x \in B^c \\ & \Rightarrow & x \notin A \lor x \notin B \end{array}$$

$$\begin{array}{ccc} x \in A^c \cup B^c & \Rightarrow & x \in A^c \lor x \in B^c \\ & \Rightarrow & x \notin A \lor x \notin B \\ & \Rightarrow & x \notin A \cap B \end{array}$$

$$x \in A^{c} \cup B^{c} \quad \Rightarrow \quad x \in A^{c} \lor x \in B^{c}$$

$$\Rightarrow \quad x \notin A \lor x \notin B$$

$$\Rightarrow \quad x \notin A \cap B$$

$$\Rightarrow \quad x \in (A \cap B)^{c}$$

Ahora bien, falta probar la inclusión opuesta. Tenemos

$$x \in A^{c} \cup B^{c} \quad \Rightarrow \quad x \in A^{c} \lor x \in B^{c}$$

$$\Rightarrow \quad x \notin A \lor x \notin B$$

$$\Rightarrow \quad x \notin A \cap B$$

$$\Rightarrow \quad x \in (A \cap B)^{c}$$

Entonces $A^c \cup B^c \subseteq (A \cap B)^c$.

Ahora bien, falta probar la inclusión opuesta. Tenemos

$$x \in A^{c} \cup B^{c} \quad \Rightarrow \quad x \in A^{c} \lor x \in B^{c}$$

$$\Rightarrow \quad x \notin A \lor x \notin B$$

$$\Rightarrow \quad x \notin A \cap B$$

$$\Rightarrow \quad x \in (A \cap B)^{c}$$

Entonces $A^c \cup B^c \subseteq (A \cap B)^c$.

$$\therefore (A \cap B)^c = A^c \cup B^c$$

Ejercicios de práctica

- 1. Sea $A = \{1, 2, \{1\}, \{1, 2\}\}$. ¿Cuáles de las siguientes proposiciones son verdaderas?
 - **a**. 1 ∈ *A*
 - b. $\{1\} \in A$
 - c. $\{1,2\} \in A$
 - d. $\{1,2\}\subseteq A$
 - e. $\{2\} \in A$
- Demuestre los incisos c. y d. del teorema 1.
- 3. Para $A = \{1, 2, 3, 4, 5\}$, determine el número de
 - a. subconjuntos de A
 - b. subconjuntos de *A* que contienen tres elementos.
- 4. Para $\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Sean $A = \{1, 2, 3, 4, 5\}$, $B = \{1, 2, 4, 8\}$, $C = \{1, 2, 3, 5, 7\}$. Determine lo siguiente
 - a. $(A \cup B) \cap C$
 - b. $(C \cap B)^c$
 - c. $A \cup (B C)$
- 5. Demuestre (c.) \Rightarrow (d.) y (d.) \Rightarrow (a.), del teorema 4.
- Demuestre todas las propiedades de los conjuntos. (El archivo de las propiedades está disponible en la plataforma).