

o Pennsylvania Avenue, NW Washington, DC 20037-3213 T 202.293.7060

> F 202.293.7860 1010 El Camino Real

Menio Park, CA 94025-4345

T 650.325.5800 F 650.325.6606

Toei Nishi Shimbashi Bldg. 4F 13-5 Nishi Shimbashi 1-Chome Minato-Ku, Tokyo 105-0003 Japan

> T 03.3503.3760 F 03.3503.3756

www.sughrue.com

J. Frank Osha, Esq. T (202) 663-7915 fosha@sughrue.com

October 16, 2001

BOX PATENT APPLICATION Commissioner for Patents Washington, D.C. 20231

Re:

Application of Shinichiro IWATA

RADIO COMMUNICATION CONNECTION DESTINATION SPECIFYING

METHOD

Assignee: NEC CORPORATION

Our Ref. Q66666

Dear Sir:

Attached hereto is the application identified above including 22 sheets of the specification, including the claims and abstract, 6 sheets of drawings, the executed Assignment and PTO 1595 form, and the executed Declaration and Power of Attorney. Also enclosed is an Information Disclosure Statement with Form PTO-1449 and 3 references.

The Government filing fee is calculated as follows:

Total claims Independent claims Base Fee	10 - 20 1 - 3	=	x x	\$18.00 = _ \$84.00 = _	\$740.00
TOTAL FILING FEE Recordation of Assignm TOTAL FEE				_	\$740.00 \$40.00 \$780.00

Checks for the statutory filing fee of \$740.00 and Assignment recordation fee of \$40.00 are attached. You are also directed and authorized to charge or credit any difference or overpayment to Deposit Account No. 19-4880. The Commissioner is hereby authorized to charge any fees under 37 C.F.R. §§ 1.16 and 1.17 and any petitions for extension of time under 37 C.F.R. § 1.136 which may be required during the entire pendency of the application to Deposit Account No. 19-4880. A duplicate copy of this transmittal letter is attached.

Priority is claimed from October 17, 2000 based on Japanese Application No. 316201/2000. The priority document is enclosed herewith.

> Respectfully submitted, SUGHRUE, MION, ZINN, MACPEAK & SEAS, PLLC

Attorneys for Applicant

Registration No. 24,625

S. Iwata
Filed 10/16/01

Q66666
10f1

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年10月17日

出 願 番 号 Application Number:

特願2000-316201

出 願 人 Applicant(s):

日本電気株式会社

2001年 8月31日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

53209461

【提出日】

平成12年10月17日

【あて先】

特許庁長官殿

【国際特許分類】

H04B 7/103

H04B 10/02

【発明者】

【住所又は居所】

東京都港区芝五丁目7番1号 日本電気株式会社内

【氏名】

岩田 慎一郎

【特許出願人】

【識別番号】

000004237

【氏名又は名称】

日本電気株式会社

【代理人】

【識別番号】

100071272

【弁理士】

【氏名又は名称】

後藤 洋介

【選任した代理人】

【識別番号】

100077838

【弁理士】

【氏名又は名称】

池田 憲保

【手数料の表示】

【予納台帳番号】

012416

【納付金額】

21,000円

1

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9001591

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】

無線通信接続先特定方法

【特許請求の範囲】

【請求項1】 電波を利用して無線通信が可能な無線通信システムにおける電子情報通信機器間でのリンク確立に際し、該無線通信として赤外線通信により接続を希望する電子情報通信機器の機器識別情報を接続要求側に転送し、該接続要求側では該機器識別情報に基づいて接続先となる該電子情報通信機器を特定した上で該リンク確立を行うことを特徴とする無線通信接続先特定方法。

【請求項2】 請求項1記載の無線通信接続先特定方法において、前記無線通信システムとして近距離無線データ通信システムを利用したことを特徴とする無線通信接続先特定方法。

【請求項3】 請求項1又は2記載の無線通信接続先特定方法において、前 記赤外線通信として赤外線通信方式を利用したことを特徴とする無線通信接続先 特定方法。

【請求項4】 請求項3記載の無線通信接続先特定方法において、前記赤外線通信方式のコネクションレス型通信を使用したことを特徴とする無線通信接続 先特定方法。

【請求項5】 請求項3記載の無線通信接続先特定方法において、前記赤外線通信方式のコネクション型通信を使用したことを特徴とする無線通信接続先特定方法。

【請求項6】 請求項1~5の何れか一つに記載の無線通信接続先特定方法 において、前記機器識別情報として近距離無線データ通信デバイスアドレスを使 用したことを特徴とする無線通信接続先特定方法。

【請求項7】 請求項1~5の何れか一つに記載の無線通信接続先特定方法において、前記機器識別情報として近距離無線データ通信デバイス名を使用したことを特徴とする無線通信接続先特定方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

1

本発明は、主として指向性が弱い電波を利用した無線通信システムに好適な無 線通信接続先特定方法であって、詳しくは無線通信システムにおける電子情報通 信機器間の無線通信に指向性の強い赤外線を利用することで接続先を容易に特定 可能にした無線通信接続先特定方法に関する。

[0002]

【従来の技術】

従来、電子情報通信機器間を通信接続する場合、有線方式で行うのが一般的であるが、最近ではこれに変えて無線方式を適用することでユーザビリティを高める試みが活発に行われている。

[0003]

既に実用化されて広く普及している電波を利用した無線通信システムとしては、電子情報通信機器間の無線通信に指向性の強い赤外線方式(以下、IrDAとする)を利用した赤外線通信システムが挙げられる。但し、この赤外線通信システムの場合、赤外線自体の光特性から対向する電子情報通信機器間を遮蔽物等で遮蔽することなく発光面(送信面)と受光面(受信面)とを対面させる必要がある等、使用環境上において或る程度の制限がある。

[0004]

そこで、このような使用環境上の制限を改善し得る無線通信システムも提案されており、例えば指向性が弱い電波を利用した近距離無線データ通信(以下、Bluetoothとする)システムの場合、半径10m程度の領域内の電子情報通信機器間を電波により無線接続できるものであり、IrDAと比べて使用環境上に制限がないため、将来的に広く普及することが期待されている。

[0005]

因みに、このような無線通信システムにあっての電子情報通信機器間の無線通信に関連する一般的な周知技術としては、例えば特開平10-135910号公報に開示されたマイコン搭載型制御盤及びこの制御盤を備えた駐車場管理システム、特開平11-112643号公報に開示されたハンドフリー型通話装置、特開平11-261738号公報に開示された携帯電話における通話システム等が挙げられる。

[0006]

【発明が解決しようとする課題】

上述したBluetoothシステムの場合、電子情報通信機器間の通信接続時に接続先を特定しようとすると、有線方式の場合のようにケーブルで接続したり、或いはIrDAの場合のように電子情報通信機器同士を向かい合わせることによる物理的手段の適用で達成できる構成とは異なり、物理的手段を用いて達成することが不可能であり、論理的な識別子による特定が必要となっているため、接続方式が煩雑になって簡単に接続先を特定できないという問題がある。

[0007]

図6は、従来のBluetoothシステムにおいて接続先を特定しようとする場合の手順を説明したもので、同図(a)は初期段階に関するもの,同図(b)は中期段階に関するものである。

[0008]

このBluetoothシステムにより接続先を特定しようとする場合、先ず初期段階では図6(a)に示されるように主電子情報通信機器である携帯電話機3が周辺電子情報通信機器であるワイヤレスヘッドセット1,2に対して質問要求を送信し、ワイヤレスヘッドセット1,2からは質問応答が返信される。そこで、ユーザは中期段階として図6(b)に示されるように携帯電話機3の表示画面3a上で表示された質問応答のあったワイヤレスヘッドセット1,2の識別情報に基づいて希望する接続先として例えばワイヤレスヘッドセット1をキー操作して選択する。こうして、後期段階では図6(c)に示されるように携帯電話機3が選択した接続先のワイヤレスヘッドセット1に対してBluetoothリンク確立する。

[0009]

又、このBluetoothシステムの場合、ワイヤレスヘッドセット1,2の機器識別情報として識別子であるBluetoothデバイスアドレスを用いているが、Bluetoothデバイスアドレスが所定の桁数による数字及び文字による羅列となっているため、接続可能な機器リストがユーザ側の携帯電話機3に通知されたとしても、ユーザがその機器リストから実際に希望する接続先を

特定するのが困難となっているという問題もある。これは通常の電話を相手先にかける場合に予め相手先の電話番号を知っていなければ電話をかけられないのと同じ理由により、それぞれの電子情報通信機器(携帯電話機3)で識別子(ワイヤレスヘッドセット1,2の機器識別情報)を表示する等の方法を適用したとしてもユーザが予め希望する接続先の電子情報通信機器の識別子(ワイヤレスヘッドセット1,2の機器識別情報)を知っておく必要があるためである。

[0010]

本発明は、このような問題点を解決すべくなされたもので、その技術的課題は、無線通信システムにおける電子情報通信機器間の無線通信でユーザにより簡単に接続先を特定し得る無線通信接続先特定方法を提供することにある。

[0011]

【課題を解決するための手段】

本発明によれば、電波を利用して無線通信が可能な無線通信システムにおける電子情報通信機器間でのリンク確立に際し、該無線通信として赤外線通信により接続を希望する電子情報通信機器の機器識別情報を接続要求側に転送し、該接続要求側では該機器識別情報に基づいて接続先となる該電子情報通信機器を特定した上で該リンク確立を行う無線通信接続先特定方法が得られる。

[0012]

又、本発明によれば、上記無線通信接続先特定方法において、無線通信システムとしてBluetoothシステムを利用した無線通信接続先特定方法が得られる。

[0013]

更に、本発明によれば、上記何れかの無線通信接続先特定方法において、赤外線通信としてIrDAを利用した無線通信接続先特定方法が得られる。

[0014]

加えて、本発明によれば、上記無線通信接続先特定方法において、IrDAのコネクションレス型通信を使用した無線通信接続先特定方法か、或いはIrDAのコネクション型通信を使用した無線通信接続先特定方法が得られる。

[0015]

一方、本発明によれば、上記何れか一つの無線通信接続先特定方法において、 機器識別情報としてBluetoothデバイスアドレスを使用した無線通信接 続先特定方法が得られる。

[001.6]

他方、本発明によれば、上記何れか一つの無線通信接続先特定方法において、機器識別情報としてBluetoothデバイス名を使用した無線通信接続先特定方法が得られる。

[0017]

【発明の実施の形態】

以下に実施例を挙げ、本発明の無線通信接続先特定方法について、図面を参照 して詳細に説明する。

[0018]

最初に、本発明の無線通信接続先特定方法の技術的概要を説明する。この無線通信接続先特定方法は、指向性が弱い電波を利用したBluetoothシステム等の無線通信システムにおける電子情報通信機器間でのリンク確立に際し、無線通信として指向性の強いIrDA等の赤外線通信により接続を希望する電子情報通信機器の機器識別情報を接続要求側に転送し、接続要求側ではその機器識別情報に基づいて接続先となる電子情報通信機器を特定した上でリンク確立を行うものである。但し、IrDAではコネクションレス型通信やコネクション型通信を使用することが可能であり、機器識別情報にはBluetoothデバイスアドレスやBluetoothデバイス名を使用することができる。

[0019]

図1は、本発明の無線通信接続先特定方法を適用した一例に係るBluetoothシステムにおいて接続先を特定しようとする場合の手順を説明したもので、同図(a)は初期段階に関するもの,同図(b)は中期段階に関するもの,同図(c)は後期段階に関するものである。

[0020]

但し、このBluetoothシステムにおいて、ワイヤレスヘッドセット1 1,12は送話及び受話音声データを携帯電話機31との間でBluetoot hにより携帯電話機31を持たずして通話できることが可能なものであり、携帯電話機31はBluetoothインターフェース及びIrDAインターフェースを搭載している。ここでのBluetoothインターフェースは、ワイヤレスヘッドセット11,12との間での音声データ伝送や図示されないパソコン(PC)との間でのデータ通信等、比較的通信時間が長くなる用途に用いられ、IrDAインターフェースの方は、他の携帯電話機やPDA間での電子名刺交換等の比較的通信時間が短い用途に用いられる。

[0021]

又、ワイヤレスへッドセット11,12は、両者を識別できるよう互い異なる Bluetooth機器識別情報を保有していると共に、携帯電話機31と同様 にBluetoothインターフェース及びIrDAインターフェースを搭載しているが、IrDAインターフェースの方は送信のみに対応している。即ち、ここでのIrDAインターフェースは、後述するように常に同一なフレームフォーマットを一方的に送信するだけなので、IrDAプロトコルを処理させるような複雑なハードウェア及びソフトウェアは必要なく、簡易な構成で構築されており、しかも接続機器を特定する目的で使用しているため、光の指向性や通信到達距離に関してはその目的に添った構成が要求され、具体的には指向性としてIrDAで規定される±15°程度、通信到達距離として20~30cm程度とすることが望ましい。

[0022]

このBluetoothシステムにより接続先を特定しようとする場合、先ず初期段階では図1(a)に示されるように接続を希望する周辺電子情報通信機器であるワイヤレスヘッドセット11と主電子情報通信機器である携帯電話機31とを対向させ、ワイヤレスヘッドセット11が主電子情報通信機器である携帯電話機31に対してIrDAの赤外線通信によりBluetooth接続に必要となる機器識別情報としてBluetoothデバイスアドレスを送信し、これを携帯電話機31が受信する。

[0023]

そこで、携帯電話機31は、中期段階として図1(b)に示されるようにワイ

ヤレスヘッドセット11,12に対してBluetoothリンク確立のための質問要求を送信し、ワイヤレスヘッドセット11,12からは質問応答が返信されるが、この質問応答には機器識別情報としてのBluetoothデバイスアドレスが含まれている。

[0024]

更に、携帯電話機31は、後期段階として図1(c)に示されるように赤外線通信により受信した機器識別情報と質問応答により受信した機器識別情報とを比較し、一致したワイヤレスヘッドセット11に対してBluetooth接続を行うことにより接続先のワイヤレスヘッドセット11に対してBluetoothリンク確立する。

[0025]

即ち、このような手順に従えば、例えBluetoothエリア内に接続を希望しない機器(ワイヤレスヘッドセット)が存在していたとしても、接続を希望する機器間を対向させれば自動的に接続を希望する機器に対してBluetooth接続が行われることになる。

[0026]

図2は、上述したBluetoothシステムに備えられるワイヤレスヘッド セット11,12側の処理動作の状態遷移を示したフローチャートである。

[0027]

ワイヤレスヘッドセット11,12では、先ず[電源OFF状態](ステップS1)からユーザによる電源ON操作により電源ONとなり、[未接続状態](ステップS2)に移行する。この[未接続状態](ステップS2)では、一定時間毎にBluetooth識別情報としてBluetoothデバイスアドレスをIrDAで規定されているUltra仕様(Infrared Data Association Guidelines for Ultra Protocols :October 15,1997)に沿った形式のフレームフォーマット(詳細は後述する)に基づいて赤外線通信により送信出力した後、Bluetooth接続待ち状態となる。このBluetooth接続待ち状態は、携帯電話機31からBluetooth接続されて正常にBluetoothリ

ンク確立するまで維持される。そこで、Bluetoothリンク確立すると、 [接続状態] (ステップS3) に移行する。

[0028]

この [接続状態] (ステップS3) では、携帯電話機31とB1 u e t o o t h 接続状態にあり、ワイヤレスヘッドセット11,12が動作している状態にある。この状態では機器識別情報を赤外線通信により送信する必要がないので、I r D A インターフェースデバイスは機能停止している。しかし、ここでユーザによる電源〇FF操作が行われると、 [電源〇FF状態] (ステップS1) に遷移し、何らかの障害でB1 u e t o o t h リンク切断に至ると [未接続状態] (ステップS2) に戻り、再び一定時間毎にB1 u e t o o t h 識別情報(装置識別情報)を赤外線通信により送信出力するようになる。

[0029]

図3は、上述したBluetoothシステムに備えられる携帯電話機31側の処理動作の状態遷移を示したフローチャートである。

[0030]

携帯電話機31では、先ず[通常状態] (ステップS1)からユーザ操作によるヘッドセット接続要求を受けると、[未接続状態] (ステップS2)に移行する。但し、ここでの[通常状態] (ステップS1)とは携帯電話機31の電源ONでBluetoothリンク確立されていない状態を示す。

[0031]

[未接続状態](ステップS2)では赤外線受信状態となる。ここでワイヤレスヘッドセット11,12から機器識別情報が正常に受信されてヘッドセットから識別情報受信状態の場合には[Bluetoothリンク確立中1](ステップS3)に移行するが、一定時間を経過しても機器識別情報が受信されないタイプアウト状態の場合には[Bluetoothリンク確立中2](ステップS4)に移行する。

[0032]

[Bluetoothリンク確立中1] (ステップS3) では、先ずBlue tooth仕様 (Specification of the Bluetoo th Systems, Profiles, Generic Access Profile:December1, 1999)で規定されるインクワイアリ動作(質問要求)を行い、Bluetoothエリア内のアクティブな機器からのレスポンス(質問応答)を待つ。レスポンス受信後にレスポンス含まれる機器識別情報(Bluetoothデバイスアドレス)と赤外線受信した機器識別情報(Bluetoothデバイスアドレス)とを比較し、一致した機器(ワイヤレスへッドセット)に対してBluetooth接続によりBluetoothリンク確立を試みる。この結果、リンク確立成功であれば[接続状態](ステップS5)に移行するが、一致する機器が検知されずに一致無しの場合にはユーザによる接続先の選択が必要なために[Bluetoothリンク確立中2](ステップS4)に移行し、何らかの障害でリンク確立できずにリンク確立失敗となった場合には「通常状態」(ステップS1)に移行する。

[0033]

[Bluetoothリンク確立中2] (ステップS4)では、先ずBluetooth仕様で規定されるインクワイアリ動作(質問要求)を行い、Bluetoothエリア内のアクティブな機器からのレスポンス(質問応答)を待つ。レスポンス受信後にレスポンスに含まれる機器識別情報をユーザに通知し、この中からユーザが選択した機器に対してBluetooth接続によりBluetoothリンク確立を試みる。この結果、リンク確立成功であれば[接続状態](ステップS5)に移行するが、何らかの障害でリンク確立できずにリンク確立失敗となった場合には[通常状態](ステップS1)に移行する。

[0034]

[接続状態] (ステップS5) では、ワイヤレスヘッドセット11, 12と接続状態にあり、携帯電話機31側の送話デバイス (マイク) 及び受話デバイス (スピーカ) は停止する。この状態でユーザ操作があるか、或いは何らかの障害でリンク切断となると [通常状態] (ステップS1) に移行する。

[0035]

図4は、ワイヤレスヘッドセット11,12が赤外線通信により送信出力する フレームフォーマット形式を示した模式図である。但し、ここで適用されるU1

tra仕様はIrDAにおいて非コネクション状態、即ち、コネクション手順を 踏まない状態で相手に一方的にデータを送信する方式であり、転送手順として確 認用ACKを必要としないことが特徴となっている。

[0036]

具体的に言えば、UltraレイヤのPayloadは、その下位レイヤであるIrLMP, IrLAPのPayloadにカプセル化されて格納されている。UltraレイヤのPayloadは、プロトコル識別子(PID)と、実際に転送されるデータ(Protocol Data)とによる2つの部分で構成される。ここではプロトコル識別子にBluetooth接続用の専用コードを定義し、実際に転送するBluetooth機器識別情報(Bluetoothデバイスアドレス)はProtocol Dataに配置する。

[0037]

携帯電話機31は、Ultraフレームを受信するとPID部に格納されたプロトコル識別子から受信したUltraフレームがBluetooth接続用フレームか否かを判断し、Bluetooth接続用フレームと判断された場合にのみProtocol Data部から機器識別情報(Bluetoothデバイスアドレス)を抽出する。このようにプロトコル識別子に本発明の用途専用コードを定義することにより、Ultra仕様を使用した他のアプリケーションが出力するフレームを誤って受信することが無くなる。

[0038]

図5は、本発明の無線通信接続先特定方法を適用した他例に係るBluetoothシステムにおいて接続先を特定しようとする場合の手順を説明したもので、同図(a)は初期段階に関するもの、同図(b)は中期段階に関するもの、同図(c)は後期段階に関するものである。

[0039]

このBluetoothシステムでは、先の一実施例で使用した機器識別情報 としてのBluetoothデバイスアドレスに代え、Bluetoothデバイス名を使用するようにした点が相違している。

[0040]

このBluetoothシステムにより接続先を特定しようとする場合、先ず初期段階では図5(a)に示されるように接続を希望する周辺電子情報通信機器である内イヤレスヘッドセット21と主電子情報通信機器である携帯電話機32とを対向させ、ワイヤレスヘッドセット21が主電子情報通信機器である携帯電話機32に対してIrDAの赤外線通信によりBluetooth接続に必要となる機器識別情報としてBluetoothデバイス名を送信し、これを携帯電話機32が受信する。

[0041]

そこで、携帯電話機32は、中期段階として図5(b)に示されるようにワイヤレスヘッドセット21,22に対してBluetoothリンク確立のための名称要求を送信し、ワイヤレスヘッドセット11,12からは名称応答が返信されるが、この名称応答には機器識別情報としてのBluetoothデバイス名が含まれている。

[0042]

更に、携帯電話機32は、後期段階として図5(c)に示されるように赤外線通信により受信した機器識別情報と名称応答により受信した機器識別情報とを比較し、一致したワイヤレスヘッドセット21に対してBluetooth投続を行うことにより接続先のワイヤレスヘッドセット21に対してBluetoothリンク確立する。

[0043]

即ち、このような手順に従えば、一実施例の場合と同様に例えBluetoothエリア内に接続を希望しない機器(ワイヤレスヘッドセット)が存在していたとしても、接続を希望する機器間を対向させれば自動的に接続を希望する機器に対してBluetooth接続が行われることになる。

[0044]

尚、上述した各実施例のBluetoothシステムでは、何れも電子情報通信機器として携帯電話機31及びワイヤレスヘッドセット11,12の間か、或いは携帯電話機32及びワイヤレスヘッドセット21,22の間をBluetooth接続する場合を説明したが、この他の電子情報通信機器として例えばパソ

コン (PC) 及びワイヤレスキーボードの間をBluetooth接続する構成に適用する等、本発明は同様な条件下に置かれる他の電子情報通信機器を用いた構成のBluetoothシステムにおいても適用可能である。

[0045]

又、上述した各実施例のBluetoothシステムの場合、IrDA通信プロトコル、フレームフォーマットとしてUltra仕様を適用した場合を説明したが、転送手順として確認用ACKを必要としない手順(コネクションレス型通信)、具体的にはIrLAP仕様で準備されるUIフレームを使用する手順であればUltra仕様に限らず適用可能であるし、確認用ACKを必要とする手順(コネクション型通信)を適用することも可能である。但し、後者の場合、各実施例で説明したワイヤレスヘッドセット11,12,21,22側のIrDAインターフェースも送受信に対応するタイプとする必要があるため、携帯電話機31,32側と同様のIrDAインターフェースが必要となる。

[0046]

更に、上述した各実施例のBluetoothシステムの場合、指向性が弱い電波を利用した無線通信システムの一例とし、更に指向性の強い赤外線通信を利用した通信システムとしてIrDA通信を行う場合を想定したが、本発明は何れの通信システムにも限定されない。即ち、本発明は、指向性が弱い電波を利用した無線通信システムの接続先の特定に際し、指向性が強い赤外線通信を利用した無線通信システムを併用するという組み合わせであれば、その他のシステムでも適用可能である。

[0047]

【発明の効果】

以上に述べた通り、本発明の無線通信接続先特定方法によれば、指向性が弱い電波を利用した無線通信システムにおける電子情報通信機器間でのリンク確立に際し、無線通信として指向性の強い赤外線通信により接続を希望する電子情報通信機器の機器識別情報を接続要求側に転送し、接続要求側ではその機器識別情報に基づいて接続先となる電子情報通信機器を特定した上でリンク確立を行うようにしているので、接続を希望する機器同士を対向させるだけでリンク確立が終了

するため、指向性が弱い電波を利用した無線通信システムでの接続方法が簡易になり、しかも接続先の特定が容易になり、結果として無線通信システムにおける電子情報通信機器間の無線通信でユーザにより簡単に接続先を特定し得るようになる。

【図面の簡単な説明】

【図1】

本発明の無線通信接続先特定方法を適用した一例に係るBluetoothシステムにおいて接続先を特定しようとする場合の手順を説明したもので、(a)は初期段階に関するもの、(b)は中期段階に関するもの、(c)は後期段階に関するものである。

【図2】

図1に示すBluetoothシステムに備えられるワイヤレスヘッドセット側の処理動作の状態遷移を示したフローチャートである。

【図3】

図1に示すBluetoothシステムに備えられる携帯電話機側の処理動作の状態遷移を示したフローチャートである。

【図4】

図1に示すBluetoothシステムに備えられるワイヤレスヘッドセットが赤外線通信により送信出力するフレームフォーマット形式を示した模式図である。

【図5】

本発明の無線通信接続先特定方法を適用した他例に係るBluetoothシステムにおいて接続先を特定しようとする場合の手順を説明したもので、(a)は初期段階に関するもの,(b)は中期段階に関するもの,(c)は後期段階に関するものである。

【図6】

従来のBluetoothシステムにおいて接続先を特定しようとする場合の 手順を説明したもので、(a)は初期段階に関するもの,(b)は中期段階に関 するもの,(c)は後期段階に関するものである。

【符号の説明】

1, 2, 11, 12, 21, 22 ワイヤレスヘッドセット

3, 31, 32 携帯電話機

3 a 表示画面

【書類名】

図面

【図1】

【図2】

【図4】

争	BOF		IrLA	P Frame	IrLAP Frame Payload Data	Data		FCS	EO.
		¥	ပ						
irLAP Payload	ad	OxFF "UI"	"M".	[4]	IrLMP Frame Payload Data	ne Paylo	ad Data		
	•			DLSAF	DLSAPSLSAP				
IrLMP Payload	ad			0xx0	0x70 0xx0	Ser	Service Data		
ULTLA Payload	load					Old	PID Protocol Data		

【図5】

【図6】

【書類名】 要約書

【要約】

【課題】 無線通信システムにおける電子情報通信機器間の無線通信でユーザにより簡単に接続先を特定し得る無線通信接続先特定方法を提供すること。

【解決手段】 本発明の方法を適用したBluetoothシステムの場合、接続を希望するワイヤレスヘッドセット11と携帯電話機31とを対向させ、ヘッドセット11が携帯電話機31に対してIrDAの赤外線通信によりBluetooth接続に必要となるBluetoothデバイスアドレスを送信し、これを受信した携帯電話機31はヘッドセット11,12に対して質問要求を送信し、ヘッドセット11,12からは質問応答(機器識別情報としてのBluetoothデバイスアドレスが含まれる)が返信される。携帯電話機31は、赤外線通信により受信した機器識別情報と質問応答により受信した機器識別情報とを比較し、一致したヘッドセット11に対してBluetoothリンク確立する。

【選択図】 図1

認定・付加情報

特許出願の番号

特願2000-316201

受付番号

50001338521

書類名

特許願

担当官

塩崎 博子

1606

作成日

平成12年10月23日

<認定情報・付加情報>

【特許出願人】

【識別番号】

000004237

【住所又は居所】

東京都港区芝五丁目7番1号

【氏名又は名称】

日本電気株式会社

【代理人】

申請人

【識別番号】

100071272

【住所又は居所】

東京都港区西新橋1-4-10 第3森ビル 後

藤池田特許事務所

【氏名又は名称】

後藤 洋介

【選任した代理人】

【識別番号】

100077838

【住所又は居所】

東京都港区西新橋1-4-10 第3森ビル 後

藤池田特許事務所

【氏名又は名称】

池田 憲保

【書類名】

手続補正書

【整理番号】

53209461

【提出日】

平成12年10月27日

【あて先】

特許庁長官殿

【事件の表示】

【出願番号】

特願2000-316201

【補正をする者】

【識別番号】

000004237

【氏名又は名称】

日本電気株式会社

【代理人】

【識別番号】

100071272

【弁理士】

【氏名又は名称】

後藤 洋介

【手続補正 1】

【補正対象書類名】

特許願

【補正対象項目名】 提出物件の目録

【補正方法】

変更

【補正の内容】

【提出物件の目録】

【包括委任状番号】

9001569

【プルーフの要否】

要

出願人履歴情報

識別番号

[000004237]

1. 変更年月日

1990年 8月29日

[変更理由]

新規登録

住 所

東京都港区芝五丁目7番1号

氏 名

日本電気株式会社