Ядерная оценка плотности

Виктор Китов

victorkitov.github.io

Победитель конкурса VK среди курсов по IT

Курс поддержан фондом 'Интеллект'

Содержание

- ① Одномерный случай
- 2 Многомерный случай
- ③ Правило максимальной апостериорной вероятности

Непараметрическая оценка плотности

• Нужна непараметрическая оценка плотности.

Непараметрическая оценка плотности

- Нужна непараметрическая оценка плотности.
- Гистограмма решение, но она
 - кусочно-постоянная
 - выбор диапазона ячеек влияет на результат:

$$p(x) = \lim_{h \to 0} \frac{1}{2h} P(\xi \in [x - h, x + h])$$

$$p(x) = \lim_{h \to 0} \frac{1}{2h} P(\xi \in [x - h, x + h])$$

Частотная оценка:

$$\widehat{p}(x) = \frac{1}{2h} \frac{1}{N} \sum_{n=1}^{N} \mathbb{I} \{x_n \in [x - h, x + h]\}$$

$$p(x) = \lim_{h \to 0} \frac{1}{2h} P(\xi \in [x - h, x + h])$$

Частотная оценка:

$$\widehat{p}(x) = \frac{1}{2h} \frac{1}{N} \sum_{n=1}^{N} \mathbb{I} \{x_n \in [x - h, x + h]\}$$

$$= \frac{1}{Nh} \sum_{n=1}^{N} \frac{1}{2} \mathbb{I}[|x - x_n| \le h] = \frac{1}{Nh} \sum_{n=1}^{N} \frac{1}{2} \mathbb{I}\left[\frac{|x - x_n|}{h} \le 1\right]$$

$$p(x) = \lim_{h \to 0} \frac{1}{2h} P(\xi \in [x - h, x + h])$$

Частотная оценка:

$$\widehat{p}(x) = \frac{1}{2h} \frac{1}{N} \sum_{n=1}^{N} \mathbb{I} \left\{ x_n \in [x - h, x + h] \right\}$$

$$= \frac{1}{Nh} \sum_{n=1}^{N} \frac{1}{2} \mathbb{I} \left[|x - x_n| \le h \right] = \frac{1}{Nh} \sum_{n=1}^{N} \frac{1}{2} \mathbb{I} \left[\frac{|x - x_n|}{h} \le 1 \right]$$

$$= \frac{1}{Nh} \sum_{n=1}^{N} K\left(\frac{x - x_n}{h}\right), \quad K(u) = \frac{1}{2} \mathbb{I}[|u| \le 1]$$

Ядерная оценка плотности

Ядерная оценка плотности

Англ. Kernel density estimation (KDE)

$$\widehat{p}(x) = \frac{1}{Nh} \sum_{n=1}^{N} K\left(\frac{x - x_n}{h}\right)$$

Для ф-ции ядра (kernel), удовлетворяющей

$$K(u) \ge 0, \quad \int_{-\infty}^{+\infty} K(u) du = 1$$

- ullet пример: $K(u)=rac{1}{2}\mathbb{I}[|u|\leq 1]$ прямоугольное (tophat) ядро
- h параметр ширины окна (bandwidth)
- h контролирует гладкость¹

¹каким образом?

Другие функции ядра

Проблемы top-hat ядра:

- Результирующая оценка $\widehat{p}(x) = \frac{1}{Nh} \sum_{i=1}^{N} K\left(\frac{x-x_i}{h}\right)$ кусочно-постоянна.
- ullet Влияние точки x_i не изменяется с $ho(x,x_i)$ вблизи x.

Другие функции ядра

Проблемы top-hat ядра:

- Результирующая оценка $\widehat{p}(x)=rac{1}{Nh}\sum_{i=1}^{N}K\left(rac{x-x_i}{h}
 ight)$ кусочно-постоянна.
- ullet Влияние точки x_i не изменяется с $ho(x,x_i)$ вблизи x.

Можем использовать гладкие унимодальные ядра²:

²Picture source.

Формулы основных ядер

название	формула $K(u)$
top-hat (прямоугольное)	$\frac{1}{2}\mathbb{I}[u \le 1]$
треугольное	$[1 - u]_+$
Епанечникова	$\propto \left[1-u^2\right]_+$
квартическое	$\propto \left[(1 - u^2) \right]_+^2$
Гауссово	$\frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}$

³Как его выбрать?

Формулы основных ядер

название	ϕ ормула $K(u)$
top-hat (прямоугольное)	$\frac{1}{2}\mathbb{I}[u \le 1]$
треугольное	$[1- u]_{+}$
Епанечникова	$\propto \left[1 - u^2\right]_+$
квартическое	$\propto \left[(1 - u^2) \right]_+^2$
Гауссово	$\frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}$

Комментарии:

- тип ядра влияет на гладкость, но не на точность аппроксимации.
- ___ для точности важен правильный выбор ширины окна³.

³Как его выбрать?

Условия сходимости оценки

Условия сходимости оценки

Ядерная оценка плотности $\widehat{p}(x)$ сходится

$$\mathbb{E}[(\widehat{p}(x)-p(x))^2] \stackrel{N o \infty}{\longrightarrow} 0$$
 для $\forall x$ при выполнении условий ниже.

Условия сходимости оценки

Условия сходимости оценки

Ядерная оценка плотности $\widehat{p}(x)$ сходится

$$\mathbb{E}[(\widehat{p}(x)-p(x))^2] \stackrel{N o \infty}{\longrightarrow} 0$$
 для $\forall x$ при выполнении условий ниже.

Достаточные условия сходимости:

- Сходимость ширины окна:
- $\bullet \lim_{N \to \infty} h(N) = 0$
- $\lim_{N\to\infty} Nh(N) = \infty$

Условия сходимости оценки

Условия сходимости оценки

Ядерная оценка плотности $\widehat{p}(x)$ сходится

$$\mathbb{E}[(\widehat{p}(x)-p(x))^2] \stackrel{N o \infty}{\longrightarrow} 0$$
 для $\forall x$ при выполнении условий ниже.

Достаточные условия сходимости:

- Сходимость ширины окна:
- $\bullet \lim_{N \to \infty} h(N) = 0$
- $\lim_{N\to\infty} Nh(N) = \infty$
- Регулярность ядра:
 - $\int |K(u)|du < \infty$
 - $\int K(u)du = 1$
 - $\sup_{u} K(u) < \infty$
 - $\lim_{u\to\infty} |uK(u)| = 0$

Содержание

- 1 Одномерный случай
- 2 Многомерный случай
- ③ Правило максимальной апостериорной вероятности

Расширение на многомерный случай

Многомерные ядра:

$$\widehat{p}(\mathbf{x}) = \frac{1}{Nh^D} \sum_{i=1}^{N} K\left(\frac{1}{h}(\mathbf{x} - \mathbf{x_i})\right)$$

Для ядра д. быть выполнено: $\int_{-\infty}^{+\infty}...\int_{-\infty}^{+\infty}K(\mathbf{u})du_1...du_D=1$

название	формула $K(\mathbf{u})$
Гауссово	$\frac{1}{(2\pi)^{D/2}}e^{-\frac{\mathbf{u}^T\mathbf{u}}{2}}$
Епанечникова	$\propto \left[1 - \mathbf{u}^T \mathbf{u}\right]_+$
произведение одномерных	$\prod_{d=1}^{D} K_{1D} \left(\frac{\mathbf{x}^d - \mathbf{x}_n^d}{h} \right)$

Ядра, зависящие от расстояния

Ядра, основанные на расстоянии:

$$\widehat{p}(\mathbf{x}) = \frac{1}{Nh^D} \sum_{i=1}^{N} K\left(\frac{\rho\left(\mathbf{x}, \mathbf{x}_i\right)}{h}\right)$$

Для ядра д. быть выполнено условие нормировки.

название	формула $K(ho(x,x_i))$
Гауссово	$\frac{1}{(2\pi)^{D/2}}e^{-\frac{\rho^2(x,x_i)}{2}}$
Епанечникова	$\propto \left[1 - \rho^2(x, x_i)\right]_+$

Ядерная оценка плотности - Виктор Китов

Многомерный случай

Выбор ширины окна

Выбор ширины окна

Чем чаще лежат точки, тем меньше должна быть ширина окна h.

 $^{^{4}}$ Чему будет равна оценка h на обучающей выборке?

Выбор ширины окна

Выбор ширины окна

Чем чаще лежат точки, тем меньше должна быть ширина окна h.

Постоянная ширина окна:

- $h = \frac{1}{N} \sum_{i=1}^N d_{iK}$, d_{iK} -расстояние от x_i до K-го ближайшего соседа
- Можно оценить h максимизацией правдоподобия на валидационной выборке 4

Переменная ширина окна (для изменяющейся частоты точек):

• h(x) = расстояние до K-го ближайшего соседа x

 $^{^4}$ Чему будет равна оценка h на обучающей выборке?

Содержание

- Одномерный случай
- 3 Правило максимальной апостериорной вероятности

Оценим p(x|y) ядерной оценкой плотности:

$$p(x|y) = \frac{1}{N_y h^D} \sum_{i: y_i = y} K\left(\frac{\rho(x, x_i)}{h}\right)$$

Оценим p(x|y) ядерной оценкой плотности:

$$p(x|y) = \frac{1}{N_y h^D} \sum_{i:y_i = y} K\left(\frac{\rho(x, x_i)}{h}\right)$$

Байесовское решающее мин. ошибки правило дает метод Парзеновского окна:

$$\widehat{y} = \arg\max_{y} p(y|x) = \arg\max_{y} p(y) p(x|y)$$

Оценим p(x|y) ядерной оценкой плотности:

$$p(x|y) = \frac{1}{N_y h^D} \sum_{i:y_i = y} K\left(\frac{\rho(x, x_i)}{h}\right)$$

Байесовское решающее мин. ошибки правило дает **метод Парзеновского окна**:

$$\begin{split} \widehat{y} &= \arg\max_{y} p(y|x) = \arg\max_{y} p(y) p(x|y) \\ &= \arg\max_{y} \frac{N_{y}}{N} \frac{1}{N_{y} h^{D}} \sum_{i: y_{i} = y} K\left(\frac{\rho(x, x_{i})}{h}\right) \end{split}$$

Оценим p(x|y) ядерной оценкой плотности:

$$p(x|y) = \frac{1}{N_y h^D} \sum_{i:y:=y} K\left(\frac{\rho(x, x_i)}{h}\right)$$

Байесовское решающее мин. ошибки правило дает **метод Парзеновского окна**:

$$\widehat{y} = \arg\max_{y} p(y|x) = \arg\max_{y} p(y)p(x|y)$$

$$= \arg\max_{y} \frac{N_{y}}{N} \frac{1}{N_{y}h^{D}} \sum_{i:y_{i}=y} K\left(\frac{\rho(x, x_{i})}{h}\right)$$

$$\widehat{y}(x) = \arg\max_{y} \sum_{i:y_{i}=y} K\left(\frac{\rho(x, x_{i})}{h}\right)$$

Метод К-ближайших соседей

- Строим прогноз для x:
 - $\bullet \ K(u) = \mathbb{I}[|u| \le 1]$
 - h(x) =расстояние от x до K-го ближайшего соседа.
- Тогда метод Парзеновского окна дает метод K-ближайших соседей:

$$\widehat{y}(x) = \arg\max_{y} \sum_{i:y_i = y} K\left(\frac{\rho(x, x_i)}{h(x)}\right)$$
$$= \arg\max_{y} \sum_{i:\rho(x, x_i) \le h(x)} \mathbb{I}[y_i = y]$$

- Сравнение подходов выбора h:
 - фиксированный h: усредняем по фиксированной окрестности вокруг x
 - адаптивный h (К ближайших соседей): всегда усредняем по > K ближайшим точкам

Заключение

- Ядерная оценка плотности непараметрический метод оценки плотности.
- Выбор ф-ции ядра контролирует непрерывность и дифференцируемость плотности.
- Ширина окна контролирует сложность (гибкость) модели.
- Ширина окна должна быть
 - больше для разреженных областей
 - меньше для густо наполненных областей
- Метод Парзеновского окна и К ближайших соседей частные случаи правила минимальной ошибки и ядерной оценки плотности.