

Example Cheat Sheet

1. Temporal Tests

Unicode Tests:

2. Mathematik

	2.1. Sinus, Cosinus Abstandtest								
x φ	0 0°	π/6 30°	$\pi/4$ 45°	$\pi/3$ 60°	$\frac{1}{2}\pi$ 90°	π 180°	$1\frac{1}{2}\pi$ 270°	2π 360°	
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0	
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1	
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	±∞	0	∓∞	0	

2.2. 2×2 Matrix

$$\underline{\mathbf{A}} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \underline{\mathbf{A}}^{-1} = \frac{1}{\det \underline{\mathbf{A}}} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \qquad \det(\underline{\mathbf{A}}) = ad - bc$$

$$\text{Eigenwerte } \lambda_{1/2} = \frac{\operatorname{Sp} \tilde{\boldsymbol{\mathcal{A}}}}{2} \pm \sqrt{\left(\frac{\operatorname{Sp} \tilde{\boldsymbol{\mathcal{A}}}}{2}\right)^2 - \det \tilde{\boldsymbol{\mathcal{A}}}}$$

Eigenwertzerlegung

- 1. Schritt 1
- 2. Schritt 2

2.3. Fouriertransformation

$$f(t) \underset{\text{Zeitbereich}}{\circ} \circ^{\begin{subarray}{c} \mathcal{F} \end{subarray}} \circ F(\omega) := \int\limits_{-\infty}^{\infty} f(t) \exp(-\imath \omega t) \, \mathrm{d}t$$

Anmerkung: Es gibt unterschiedliche Normungen $(1, \frac{1}{\sqrt{2\pi}})$

3. Physik

Naturkonstanten	
Lichtgeschwindigkeit	$c_0 \equiv \frac{1}{\sqrt{\varepsilon_0 \mu_0}} := 299792458 \frac{m}{s}$
Elementarladung	$e \approx 1.602177 \times 10^{-19} \mathrm{C}$
Planck-Konst.	$h \approx 6.62606957 \times 10^{-34}\mathrm{Js}$
	$\hbar \equiv \frac{h}{2\pi} \approx 1.05457 \times 10^{-34}\mathrm{J}\mathrm{s}$
Elektr. Feldkonst.	$\varepsilon_0 = 8.854188 \times 10^{-12} \frac{F}{m}$
Magn. Feldkonst.	$\mu_0 := 4\pi \times 10^{-7} \frac{\text{H}}{\text{m}}$
Avogadro-Konst.	$N_A \approx 6.022141 \times 10^{23} \frac{1}{\text{mol}}$
Atomare Masse	$u \approx 1.660539 \times 10^{-27} \mathrm{kg}$
Elektronenmasse	$m_{\rm e} \approx 9.109383 \times 10^{-31} {\rm kg}$
Protonenmasse	$m_{\rm p} \approx 1.674927 \times 10^{-27}{\rm kg}$
Neutronenmasse	$m_{\rm n} \approx 1.672622 \times 10^{-27}{\rm kg}$
Gravitationskonst.	$G \approx 6.67384 \times 10^{-11} \frac{\text{kg}}{\text{s}^2}$
BOLTZMANN-Konst.	$k_{\rm B} \approx 1.380655 \times 10^{-23}\frac{\rm J}{\rm K}$

3.1. Einheitpräfixe 21 18 15 12

3.2. Maxwellsche Gleichungen (Naturgesetze)

```
Faradaysches ind. Gesetz
Gaußsches Gesetz:
                                                        rot \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0
\operatorname{div} \vec{D} = \rho
Quellfreiheit des magn. Feldes Ampèrsches Gesetz
                                                        \operatorname{rot} \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t}
\operatorname{div} \vec{B} = 0
```

4. Informatik

4.1. c Programming Language

```
#include <stdio.h>
int main(int argc, char *argv[]){
   // global variables
   float percent = 0.0f;
// custom functions
int readIntFromFile(path){
   FILE *fp;
   int i;
   fp=fopen(path,"rb");
   fscanf(fp, "%d\n", &i);
   return i
```

5. Chemie

5.1. Bleibatterie

5.1.1. Reaktion an der positiven Elektrode

$$\mathsf{PbO}_2 + 3\,\mathsf{H}^+ + \mathsf{HSO}_4^- + 2\,\mathsf{e}^- \xrightarrow[\mathsf{charge}]{\mathsf{disch.}} \mathsf{PbSO}_4 + 2\,\mathsf{H}_2\mathsf{O}$$

 ${
m O_2}$ Entwicklung (Selbstentladung): ${
m H_2O} \longrightarrow \frac{1}{2}~{
m O_2} + 2~{
m H^+} + 2~{
m e^-}$ Korrosion Pb (Alterung): Pb + $2 H_2 O \longrightarrow PbO_2 + 4 H^+ + 4 e^-$