

Cisco.com

OSPF

4

Routing Protocols and Concepts - Chapter 11

Objectives

- Describe the background and basic features of OSPF
- Identify and apply the basic OSPF configuration commands
- Describe, modify and calculate the metric used by OSPF
- Describe the Designated Router/Backup Designated Router (DR/BDR) election process in multiaccess networks
- Describe the uses of additional configuration commands in OSPF

Introduction to OSPF

Cisco.com

Hello Protocol

- OSPF Hello Packet
 - Purpose of Hello Packet
 - Discover OSPF neighbors & establish adjacencies
 - Advertise guidelines on which routers must agree to become neighbors
 - Used by multi-access networks to elect a designated router and a backup designated router

Introduction to OSPF

- Hello Packets continued
 - Contents of a Hello Packet
 - router ID of transmitting router
- · OSPF Hello Intervals
 - Usually multicast (224.0.0.5)
 - Sent every 30 seconds for NBMA segments
- OSPF Dead Intervals
 - This is the time that must transpire before the neighbor is considered down
 - Default time is 4 times the hello interval

Introduction to OSPF

Cisco.com

- Hello protocol packets contain information that is used in electing
 - Designated Router (DR)
 - DR is responsible for updating all other OSPF routers
 - Backup Designated Router (BDR)
 - This router takes over DR's responsibilities if DR fails

Introduction to OSPF

Cisco.com

OSPF Link-state Updates

- Purpose of a Link State Update (LSU)
 - Used to deliver link state advertisements
- Purpose of a Link State Advertisement (LSA)
 - Contains information about neighbors & path costs

Cisco.com

The router ospf command

- · To enable OSPF on a router use the following command
 - R1(config)#router ospf process-id
 - Process id
 - A locally significant number between 1 and 65535 this means it does not have to match other OSPF routers

Basic OSPF Configuration

- OSPF network command
 - Requires entering: network address wildcard mask the inverse of the subnet mask
 - area-id area-id refers to the OSPF area.
 OSPF area is a group of routers that share link state information
 - Example: Router(config-router)#network network-address wildcard-mask area area-id

```
R1 (config) #router ospf 1
R1 (config-router) #network 172.16.1.16 0.0.0.15 area 0
R1 (config-router) #network 192.168.10.0 0.0.0.3 area 0
R1 (config-router) #network 192.168.10.4 0.0.0.3 area 0

R2 (config) #router ospf 1
R2 (config-router) #network 10.10.10.0 0.0.0.255 area 0
R2 (config-router) #network 192.168.10.0 0.0.0.3 area 0
R2 (config-router) #network 192.168.10.0 0.0.0.3 area 0
```


Cisco.com

- Router ID
 - This is an IP address used to identify a router
 - 3 criteria for deriving the router ID
 - Use IP address configured with OSPF router-id command
 - Takes precedence over loopback and physical interface addresses
 - If router-id command not used then router chooses highest IP address of any loopback interfaces
 - If no loopback interfaces are configured then the highest IP address on any active interface is used

Basic OSPF Configuration

Cisco.com

OSPF Router ID

- · Commands used to verify current router ID
 - Show ip protocols
 - Show ip ospf
 - Show ip ospf interface

Cisco.com

OSPF Router ID

R1(config)#interface loopback 0
R1(config-if)#ip add 10.1.1.1 255.255.255.255

- Router ID & Loopback addresses
 - Highest loopback address will be used as router ID if router-id command isn't used
 - Advantage of using loopback address
 - the loopback interface cannot fail → OSPF stability
- · The OSPF router-id command
 - Introduced in IOS 12.0
 - Command syntax
 - Router(config)#router ospfprocess-id
 - Router(config-router)#router-id ip-address
- · Modifying the Router ID
 - Use the command Router#clear ip ospf process

Basic OSPF Configuration

Cisco.com

Verifying OSPF

- Use the show ip ospf command to verify & trouble shoot OSPF networks
 - Command will display the following:
 - Neighbor adjacency
 - No adjacency indicated by -
 - Neighboring router's Router ID is not displayed
 - A state of full is not displayed
 - Consequence of no adjacency-
 - No link state information exchanged
 - Inaccurate SPF trees & routing tables

Cisco.com

Verifying OSPF - Additional Commands

Command	Description
Show ip protocols	Displays OSPF process ID, router ID, networks router is advertising & administrative distance
Show ip ospf	Displays OSPF process ID, router ID, OSPF area information & the last time SPF algorithm calculated
Show ip ospf interface	Displays hello interval and dead interval

Basic OSPF Configuration

Cisco.com

Examining the routing table

- · Use the show ip route command to display the routing table
 - An "O' at the beginning of a route indicates that the router source is OSPF
 - Note OSPF does not automatically summarize at major network boundaries

OSPF Metric

Cisco.com

- OSPF uses **cost** as the metric for determining the best route
 - The best route will have the lowest cost
 - Cost is based on bandwidth of an interface
 - Cost is calculated using the formula
 - 10⁸ / bandwidth
 - Reference bandwidth
 - defaults to 100Mbps
 - can be modified using
 - auto-cost reference-bandwidth command

OSPF Metric

- · COST of an OSPF route
 - Is the accumulated value from one router to the next

Summary

Cisco.com

- · OSPF Characteristics
 - Metric = cost
 - Lowest cost = best path
- Configuration
 - Enable OSPF on a router using the following command
 - R1(config)#router ospf process-id
 - use the network command to define which interfaces will participate in a given OSPF process
 - Router(config-router)#network network-address wildcard-mask area area-id

Summary

- Verifying OSPF configuration
 - Use the following commands
 - show ip protocol
 - show ip route
 - show ip ospf interface
 - show ip ospf neighbor

