Assignment 3

1. Efficient portfolios (20 points).

Consider an investor who wants to invest in N risky assets with return $R_i \, \forall i = 1, ..., N$ with expected return $E[R_i] = \mu_i$ and variance $V[R_i] = \sigma_i^2$, and in a risk-free asset with return R_f . The investor seeks a N-risky asset portfolio weight vector w (and a weight $1 - w^{\mathsf{T}}\mathbf{1}$ in the risk-free asset), such that her portfolio return $R_p = R_f + w^{\mathsf{T}}(R - R_f\mathbf{1})$ maximizes her mean-variance objective function $U(w) = E[R_p] - \frac{\gamma}{2}V[R_p]$.

• Show that an optimal portfolio weight vector w is such that for the corresponding mean-variance efficient portfolio return R_p we have

$$\mu_i - R_f = \gamma \operatorname{cov}[R_i, R_p] \quad \forall i = 1, \dots N$$

• Show that for any such mean-variance efficient portfolio, we have

$$\mu_i - R_f = \beta_{i,P}(\mu_P - R_f)$$

where $\beta_{i,P} = \frac{cov(R_i,R_P)}{\sigma_P^2}$ is the linear regression coefficient of return R_i on the mean-variance efficient portfolio return R_P .

• In turn, show that this implies that, if R_p is the return to a mean-variance efficient portfolio, then for any return i we have

$$R_i = R_f + \beta_i (R_P - R_f) + \epsilon_i$$

where $cov(R_P, \epsilon_i) = 0$ and $E(\epsilon_i) = 0$.

Hint: use the definition of a linear regression

• Show that all mean-variance efficient portfolios have the same Sharpe ratio where we define its Sharpe ratio as $SR_p = \frac{\mu_p - R_f}{\sigma_p}$.

Solution

(a) Denoting the risk-free rate R_f by R_0 , the investor's optimization problem is due to the mean-variance preferences given by

$$\max_{\omega_0, \dots, \omega_N} \left\{ \mathbb{E}\left(\sum_{i=0}^N \omega_i R_i\right) - \frac{\gamma}{2} \mathbb{V}\left(\sum_{i=0}^N \omega_i R_i\right) \right\},\tag{1}$$

s.t.
$$\sum_{i=0}^{N} \omega_i = 1.$$
 (2)

Since the risk-free asset has a constant return, one has

$$\mathbb{V}\left(\sum_{i=0}^{N}\omega_{i}R_{i}\right)=\mathbb{V}\left(\sum_{i=1}^{N}\omega_{i}R_{i}\right).$$

Now, we can plug in the constraint (2) into the term to be maximized in (1) to rewrite the investor's maximization problem as

$$\max_{\omega_1,\dots,\omega_N} \left\{ R_f + \mathbb{E}\left(\sum_{i=1}^N \omega_i (R_i - R_f)\right) - \frac{\gamma}{2} \mathbb{V}\left(\sum_{i=1}^N \omega_i R_i\right) \right\}$$
(3)

or (due to the linearity of the expectations operator and the normality of $R_1, ..., R_N$)

$$\max_{\omega_1,\dots,\omega_N} \left\{ R_f + \sum_{i=1}^N \omega_i (\mu_i - R_f) - \frac{\gamma}{2} \sum_{i=1}^N \sum_{j=1}^N \omega_i \omega_j \Omega_{ij} \right\},\tag{4}$$

where Ω_{ij} denotes the (i,j)-th element of the covariance matrix Ω .

The first-order conditions for the problem in (4) are

$$\mu_i - R_f - \gamma \omega_i^* \Omega_{ii} - \frac{\gamma}{2} \sum_{i \neq i} \omega_j^* \Omega_{ij} - \frac{\gamma}{2} \sum_{i \neq i} \omega_j^* \Omega_{ji} = 0 \qquad (i = 1, ..., N).$$

Since Ω is symmetric $(\Omega_{ij} = \Omega_{ji})$, the last line is equivalent to

$$\mu_i - R_f - \gamma \sum_{j=1}^{N} \omega_j^* \Omega_{ij} = 0$$
 $(i = 1, ..., N).$

The claim now follows from realizing that

$$Cov(R_i, R_p) = Cov\left(R_i, \sum_{j=1}^N \omega_i^* R_j\right) = \sum_{j=1}^N \omega_j^* \Omega_{ij}.$$

(b) Let $\omega := (\omega_1, ..., \omega_N)'$, where $\omega_i = \omega_i^*$ from above. Similarly, let $\mu := (\mu_1, ..., \mu_N)'$.

Let $\mathbb{1}$ denote the $N \times 1$ vector of ones. From the previous bullet point we have

$$\mu - R_f \mathbb{1} = \gamma \Omega \omega. \tag{5}$$

Using $\omega'\Omega\omega = \sigma_P^2$, premultiplying both sides of (5) by ω gives

$$\mu_P - R_f = \gamma \sigma_P^2. \tag{6}$$

Dividing both sides of (5) by the respective sides of (6) gives

$$(\mu - R_f \mathbb{1}) \frac{1}{\mu_P - R_f} = \frac{\gamma}{\gamma \sigma_P^2} \Omega \omega.$$

The claim now follows from rearranging the last equation.

Note: For any return $\mu_P > R_f$, one can find a unique value of $\gamma > 0$, such that a mean-variance investor with risk-aversion γ wants to hold the mean-variance efficient portfolio with mean μ_P . This can be seen as follows: From (5) one gets

$$w = \frac{1}{\gamma} \Omega^{-1} (\mu - R_f \mathbb{1}).$$

Thus, the mean return of the investor's optimal portfolio is given by

$$\mu_P := R_f + (\mu' - R_f \mathbb{1}')\omega = R_f + \frac{1}{\gamma}(\mu' - R_f \mathbb{1}')\Omega^{-1}(\mu - R_f \mathbb{1}).$$

The last line defines a bijective map $\Psi:(0,\infty)\to(R_f,\infty)$ with $\Psi(\gamma)=\mu_P$ whenever Ω is positive definite, i.e. Ω^{-1} is positive definite and therefore

$$(\mu' - R_f \mathbb{1}')\Omega^{-1}(\mu - R_f \mathbb{1}) > 0.$$

(c) A linear OLS regression of R_i on R_P decomposes the return of asset i as follows:

$$R_i = \beta_0 + \beta_1 (R_P - R_f) + \epsilon_i, \tag{7}$$

where $\mathbb{E}(\epsilon_i) = 0$ and $Cov(R_P - R_f, \epsilon_i) = Cov(R_P, \epsilon_i) = 0$. The regression coefficient β_1 is given by

$$\beta_1 = \frac{Cov(R_i, R_p - R_f)}{Var(R_P - R_f)} = \frac{Cov(R_i, R_p)}{\sigma_P^2}.$$

It is left to show that $\beta_0 = R_f$. Taking expectations of (7) and subtracting R_f gives

$$\mu_i - R_f = \beta_0 - R_f + \frac{Cov(R_i, R_p)}{\sigma_P^2} (\mu_P - R_f).$$
 (8)

As shown in the previous bullet point, we also have

$$\mu_i - R_f = \frac{Cov(R_i, R_p)}{\sigma_P^2} \left(\mu_P - R_f\right). \tag{9}$$

Together, (8) and (9) imply that

$$\beta_0 - R_f + \frac{Cov(R_i, R_p)}{\sigma_P^2} (\mu_P - R_f) = \frac{Cov(R_i, R_p)}{\sigma_P^2} (\mu_P - R_f).$$

The last line implies $\beta_0 = R_f$ and the claim follows.

(d) By the fund separation theorem (see e.g. slide 37 in lecture 2), all mean-variance efficient portfolios are a linear combination of the risk-free asset and the tangency portfolio. Thus, the correlation between two efficient portfolios (with a mean return greater than R_f) have a correlation of $\rho = 1$.

With the second bullet point, one now gets for two mean-variance efficient portfolios ω_P and ω_Q (with the usual notation) that

$$\frac{\mu_P - R_f}{\sigma_P} = \frac{\frac{Cov(R_P, R_Q)}{\sigma_Q^2}(\mu_Q - R_f)}{\sigma_P} = \frac{\mu_Q - R_f}{\sigma_Q} \frac{Cov(R_P, R_Q)}{\sigma_P \sigma_Q} = \frac{\mu_Q - R_f}{\sigma_Q} \rho = \frac{\mu_Q - R_f}{\sigma_Q}.$$

Thus all mean-variance efficient portfolios (those portfolios that maximize the mean return for a given variance) have the same Sharpe ratio.

2. Portfolio math (10 points).

• Show that any risky-asset only minimum variance frontier portfolio w can be rewritten as a convex combination of any two arbitrary minimum variance frontier portfolios w_a, w_b in the sense that $w = \alpha w_a + (1 - \alpha)w_b$.

• Let R_{min} denote the return on the global minimum-variance portfolio of risky assets. Let R be the return on any risky asset or portfolio of risky assets, efficient or not. Show that $Cov(R, R_{min}) = Var(R_{min})$. Hint: Consider a portfolio consisting of a fraction w in this risky asset. and a fraction (1 - w) in the global minimum-variance portfolio. Compute the variance of the return on this portfolio and realize that the variance has to be minimized for w = 0.

Solution

(a) We know that the minimum variance frontier consists of affine combinations of the global minimum variance portfolio w_{min} and the tangency portfolio w_{tan} . It needs to be shown that any portfolio $w = \alpha w_a + (1 - \alpha)w_b$ can be expressed as $w = \beta w_{min} + (1-\beta)w_{tan}$ and vice versa. We know that w_a and w_b are combinations of w_{min} and w_{tan} . Now, we have

$$w = \alpha w_a + (1 - \alpha)w_b$$

$$= \alpha(\beta^a w_{min} + (1 - \beta^a)w_{tan}) + (1 - \alpha)(\beta^b w_{min} + (1 - \beta^b)w_{tan}))$$

$$= (\alpha\beta^a + (1 - \alpha)\beta^b)w_{min} + (\alpha(1 - \beta^a) + (1 - \alpha)(1 - \beta^b))w_{tan}$$

$$= \beta w_{min} + (1 - \beta)w_{tan}$$

where

$$\beta = \alpha \beta^a w_{min} + (1 - \alpha)\beta^b,$$

since one can verify that indeed

$$(\alpha \beta^{a} + (1 - \alpha)\beta^{b}) + (\alpha(1 - \beta^{a}) + (1 - \alpha)(1 - \beta^{b}))$$

$$= \alpha(\beta^{a} - \beta^{a} - \beta^{b} + \beta^{b} + 1 - 1) + \beta^{b} - \beta^{b} + 1$$

$$= 1.$$

Thus, w is indeed an affine combination of w_a and w_b .

(b) Following the hint, we have

$$Var(wR + (1-w)R_{min}) = w^{2}Var(R) + 2w(1-w)Cov(R, R_{min}) + (1-w)^{2}Var(R_{min}).$$

For the global minimum variance portfolio, we must have

$$\frac{\partial}{\partial w} Var(wR + (1 - w)R_{min}) \big|_{w=0} = 0,$$

i.e.

$$(2wVar(R) + 2(1 - 2w))Cov(R, R_{min}) - 2(1 - w)Var(R_{min})) \Big|_{w=0}$$

$$= 2Cov(R, R_{min}) - 2Var(R_{min})$$

$$= 0.$$

It follows that $Cov(R, R_{min}) = Var(R_{min})$.