Probability: OR

Objectives

Calculate probabilities using the Addition Rule

2 Calculate the complement of an event

3 Calculate "at least one" probabilities

Calculate the odds of an event

AND vs. OR

In the last section, we examined probabilities that focused on the word *and*.

AND vs. OR

In the last section, we examined probabilities that focused on the word *and*.

The word and meant that we multiplied the probabilities.

AND vs. OR

In the last section, we examined probabilities that focused on the word *and*.

The word and meant that we multiplied the probabilities.

In this section, we will focus on the word *or*, which will mean adding probabilities.

A fair die is rolled. What is the probability of rolling a 4 or a 5.

A fair die is rolled. What is the probability of rolling a 4 or a 5.

Number of outcomes in the sample space: 6

A fair die is rolled. What is the probability of rolling a 4 or a 5.

Number of outcomes in the sample space: 6

What we want to happen: roll a 4 or a 5. This can happen in 2 ways.

A fair die is rolled. What is the probability of rolling a 4 or a 5.

Number of outcomes in the sample space: 6

What we want to happen: roll a 4 or a 5. This can happen in 2 ways.

$$P(4 \text{ or } 5) = \frac{2}{6}$$

A fair die is rolled. What is the probability of rolling a 4 or a 5.

Number of outcomes in the sample space: 6

What we want to happen: roll a 4 or a 5. This can happen in 2 ways.

$$P(4 \text{ or } 5) = \frac{2}{6}$$

$$= \frac{1}{3}$$

The Addition Rule

In the previous example, the events "rolling a 4" and "rolling a 5" were *mutually exclusive*.

The Addition Rule

In the previous example, the events "rolling a 4" and "rolling a 5" were *mutually exclusive*.

To find the OR probability of two mutually exclusive events, use the Addition Rule:

The Addition Rule

In the previous example, the events "rolling a 4" and "rolling a 5" were *mutually exclusive*.

To find the OR probability of two mutually exclusive events, use the Addition Rule:

$$P(A \text{ or } B) = P(A) + P(B)$$

Venn Diagram – OR

P(A or B)

The table below lists the types and numbers of cars sold at Lemon Autos along with their ages. Find each probability.

	0–2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

The table below lists the types and numbers of cars sold at Lemon Autos along with their ages. Find each probability.

	0–2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

$$P(0-2 \text{ or over } 10) = P(0-2) + P(\text{over } 10)$$

The table below lists the types and numbers of cars sold at Lemon Autos along with their ages. Find each probability.

	0–2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

$$P(0-2 \text{ or over } 10) = P(0-2) + P(\text{over } 10)$$

= $\frac{72}{200} + \frac{61}{200}$

The table below lists the types and numbers of cars sold at Lemon Autos along with their ages. Find each probability.

	0–2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

$$P(0-2 \text{ or over } 10) = P(0-2) + P(\text{over } 10)$$

$$= \frac{72}{200} + \frac{61}{200}$$

$$= \frac{133}{200}$$

	0–2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

	0–2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

$$P(3-5 \text{ or domestic}) = P(3-5) + P(\text{domestic})$$

	0–2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

$$P(3-5 \text{ or domestic}) = P(3-5) + P(\text{domestic})$$
$$= \frac{44}{200} + \frac{100}{200}$$

	0–2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

$$P(3-5 \text{ or domestic}) = P(3-5) + P(\text{domestic})$$

$$= \frac{44}{200} + \frac{100}{200}$$

$$= \frac{144}{200}$$

	0–2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

$$P(3-5 \text{ or domestic}) = P(3-5) + P(\text{domestic})$$

$$= \frac{44}{200} + \frac{100}{200}$$

$$= \frac{144}{200}$$

$$= \frac{18}{25}$$

	0–2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

$$P(3-5 \text{ or domestic}) = P(3-5) + P(\text{domestic})$$

$$= \frac{44}{200} + \frac{100}{200}$$

$$= \frac{144}{200}$$

$$= \frac{18}{25} \dots \text{ or is it?}$$

	0–2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

	0-2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

There are 23 cars that are counted twice: once as a 3–5 year old car and again as a domestic car.

	0–2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

There are 23 cars that are counted twice: once as a 3–5 year old car and again as a domestic car.

So, we need to subtract 23 cars from our original total of 144

	0–2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

There are 23 cars that are counted twice: once as a 3–5 year old car and again as a domestic car.

So, we need to subtract 23 cars from our original total of 144

$$P(3-5 \text{ years old or domestic}) = \frac{121}{200}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Venn Diagram of Example 2b

	0–2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

Venn Diagram of Example 2b

	0–2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

Venn Diagram of Example 2b

	0–2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

Venn Diagram of Example 2b

	0–2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

Venn Diagram of Example 2b

	0–2	3–5	6–10	Over 10	Total
Import	37	21	12	30	100
Domestic	35	23	11	31	100
Total	72	44	23	61	200

$$23 + 21 + 77 = 121$$

(a) If a single card is drawn from a standard deck, what is the probability of selecting a 3 or a club?

(a) If a single card is drawn from a standard deck, what is the probability of selecting a 3 or a club?

Number of 3s: 4

(a) If a single card is drawn from a standard deck, what is the probability of selecting a 3 or a club?

Number of 3s: 4

Number of clubs: 13

(a) If a single card is drawn from a standard deck, what is the probability of selecting a 3 or a club?

Number of 3s: 4

Number of clubs: 13

(a) If a single card is drawn from a standard deck, what is the probability of selecting a 3 or a club?

Number of 3s: 4

Number of clubs: 13

$$P(3 \text{ or club}) = P(3) + P(\text{club}) - P(3 \text{ and club})$$

(a) If a single card is drawn from a standard deck, what is the probability of selecting a 3 or a club?

Number of 3s: 4

Number of clubs: 13

$$P(3 \text{ or club}) = P(3) + P(\text{club}) - P(3 \text{ and club})$$

= $\frac{4}{52} + \frac{13}{52} - \frac{1}{52}$

(a) If a single card is drawn from a standard deck, what is the probability of selecting a 3 or a club?

Number of 3s: 4

Number of clubs: 13

$$P(3 ext{ or club}) = P(3) + P(ext{club}) - P(3 ext{ and club})$$

$$= \frac{4}{52} + \frac{13}{52} - \frac{1}{52}$$

$$= \frac{16}{52}$$

(a) If a single card is drawn from a standard deck, what is the probability of selecting a 3 or a club?

Number of 3s: 4

Number of clubs: 13

$$P(3 ext{ or club}) = P(3) + P(ext{club}) - P(3 ext{ and club})$$

$$= \frac{4}{52} + \frac{13}{52} - \frac{1}{52}$$

$$= \frac{16}{52}$$

$$= \frac{4}{13}$$

(b) What is the probability of drawing a face card or a red card?

(b) What is the probability of drawing a face card or a red card?

Number of face cards: 12

(b) What is the probability of drawing a face card or a red card?

Number of face cards: 12 Number of red cards: 26

(b) What is the probability of drawing a face card or a red card?

Number of face cards: 12 Number of red cards: 26

(b) What is the probability of drawing a face card or a red card?

Number of face cards: 12 Number of red cards: 26

Number of face cards that are also red: 6

P(face or red) = P(face card) + P(red card) - P(face card and red)

(b) What is the probability of drawing a face card or a red card?

Number of face cards: 12

Number of red cards: 26

$$P(\text{face or red}) = P(\text{face card}) + P(\text{red card}) - P(\text{face card and red})$$

$$=\frac{12}{52}+\frac{26}{52}-\frac{6}{52}$$

(b) What is the probability of drawing a face card or a red card?

Number of face cards: 12

Number of red cards: 26

$$P(\text{face or red}) = P(\text{face card}) + P(\text{red card}) - P(\text{face card and red})$$
$$= \frac{12}{52} + \frac{26}{52} - \frac{6}{52}$$
$$= \frac{32}{52}$$

(b) What is the probability of drawing a face card or a red card?

Number of face cards: 12

Number of red cards: 26

$$P(\text{face or red}) = P(\text{face card}) + P(\text{red card}) - P(\text{face card and red})$$

$$= \frac{12}{52} + \frac{26}{52} - \frac{6}{52}$$

$$= \frac{32}{52}$$
8

Objectives

Calculate probabilities using the Addition Rule

2 Calculate the complement of an event

3 Calculate "at least one" probabilities

Calculate the odds of an event

Complements

The **complement** of an event is the probability the event does *not* happen.

Complements

The **complement** of an event is the probability the event does *not* happen.

Event: P(A)

Complement: P(A')

Complements

The **complement** of an event is the probability the event does *not* happen.

Event: P(A)

Complement: P(A')

$$P(A) + P(A') = 1$$

Complements

The **complement** of an event is the probability the event does *not* happen.

Event: P(A)

Complement: P(A')

$$P(A) + P(A') = 1$$

 $P(A') = 1 - P(A)$

Objectives

Calculate probabilities using the Addition Rule

2 Calculate the complement of an event

3 Calculate "at least one" probabilities

4 Calculate the odds of an event

At least 1 is 1,

At least 1 is 1, or 2,

At least 1 is 1, or 2, or 3,

At least 1 is 1, or 2, or 3, \dots or more.

At least 1 is 1, or 2, or 3, \dots or more.

The complement of at least one is none.

	1	2	3	5 6 7 8 9 10	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

1	2	3	4	5	6
2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9	10	11
7	8	9	10	11	12
	2 3 4 5 6 7	1 2 2 3 3 4 4 5 5 6 6 7 7 8	1 2 3 2 3 4 3 4 5 4 5 6 5 6 7 6 7 8 7 8 9	1 2 3 4 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8 6 7 8 9 7 8 9 10	1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 5 6 7 8 9 6 7 8 9 10 7 8 9 10 11

$$P(\text{at least 4}) = 1 - P(\text{less than 4})$$

$$P(\text{at least 4}) = 1 - P(\text{less than 4})$$
$$= 1 - P(2 \text{ or 3})$$

$$P(\text{at least 4}) = 1 - P(\text{less than 4})$$
$$= 1 - P(2 \text{ or 3})$$
$$= 1 - \frac{3}{36}$$

$$P(\text{at least 4}) = 1 - P(\text{less than 4})$$

= 1 - P(2 or 3)
= 1 - $\frac{3}{36} = \frac{33}{36}$

$$P(\text{at least 4}) = 1 - P(\text{less than 4})$$

= $1 - P(2 \text{ or 3})$
= $1 - \frac{3}{36} = \frac{33}{36} = \frac{11}{12}$

A certain blood test can determine the presence of a bloodborne pathogen 97% of the time (that is, if 100 people have the pathogen, the test will confirm true for 97 of them). If 4 people with the pathogen are given the test, find the probability that the test is accurate for at least one of them.

P(at least 1 accurate) = 1 - P(none are accurate)

$$P(\text{at least 1 accurate}) = 1 - P(\text{none are accurate})$$

= $1 - P(\text{1st inaccurate}) \times P(\text{2nd inaccurate}) \cdots$

$$P(ext{at least 1 accurate}) = 1 - P(ext{none are accurate})$$

$$= 1 - P(ext{1st inaccurate}) imes P(ext{2nd inaccurate}) \cdots$$

$$= 1 - (0.03)^4$$

$$P(\text{at least 1 accurate}) = 1 - P(\text{none are accurate})$$

$$= 1 - P(\text{1st inaccurate}) \times P(\text{2nd inaccurate}) \cdots$$

$$= 1 - (0.03)^4$$

$$= 0.99999919$$

Objectives

1 Calculate probabilities using the Addition Rule

2 Calculate the complement of an event

3 Calculate "at least one" probabilities

Calculate the odds of an event

For events A and A':

For events A and A':

Odds in Favor

The **odds in favor** of event A to happen are $\frac{A}{A'}$, or A : A'

For events A and A':

Odds in Favor

The **odds in favor** of event A to happen are $\frac{A}{A'}$, or A:A'

Odds Against

The **odds against** event A to happen are $\frac{A'}{A}$, or A': A

For events A and A':

Odds in Favor

The **odds in favor** of event A to happen are $\frac{A}{A'}$, or A: A'

Odds Against

The **odds against** event A to happen are $\frac{A'}{A}$, or A': A

Note: Typically when odds are listed, they are the odds against.

$$P(win) = 0.2$$

$$P(win) = 0.2$$

 $P(don't win) = 0.8$

$$P(win) = 0.2$$
 $P(don't win) = 0.8$
odds for $= \frac{0.2}{0.8}$

$$P({
m win})=0.2$$
 $P({
m don't\ win})=0.8$ odds for $=rac{0.2}{0.8}$ odds for $=rac{1}{4}$

$$P(\mathsf{win}) = 0.2$$
 $P(\mathsf{don't\ win}) = 0.8$ odds for $= \frac{0.2}{0.8}$ odds for $= \frac{1}{4}$ odds against $= \frac{4}{1}$

A jar contains red and yellow marbles. The odds against selecting a red marble are 5 to 3. What is the probability of selecting a red marble?

A jar contains red and yellow marbles. The odds against selecting a red marble are 5 to 3. What is the probability of selecting a red marble?

$$\frac{\text{yellow}}{\text{red}} = \frac{5}{3}$$

A jar contains red and yellow marbles. The odds against selecting a red marble are 5 to 3. What is the probability of selecting a red marble?

$$rac{ ext{yellow}}{ ext{red}} = rac{5}{3} \longrightarrow ext{total marbles} = 8$$

$$P(ext{red marble}) = rac{3}{8}$$