A is symmetric and $\lambda = a + bi$. Conjugate complex number $\lambda^* = a - bi$

real number means $\lambda = \lambda^*$

$$\frac{1}{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\frac{1}{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
Chiusete every element.

 $(x*)^T \hat{x}$ is real number! $(a+bi) \cdot (a-bi) = a^2 - b^2$

$$A \times = \lambda \times$$
, $A^* \times X^* = \lambda^* \times X^*$

$$\langle Ax, A^*x^* \rangle = \langle Ax, X^*x^* \rangle = \lambda \lambda^* \langle x, x^* \rangle$$

$$A \times = \lambda \times , \qquad A^{+} \times^{+} = \lambda^{+} \times^{+} \times^{+} \times^{+} = \lambda^{+} \times^{+} \times^{+$$

For A is Complex, "Symmetric" means $A^* = A^7$