Homework 1

Question 1

A. Convert the following numbers to their decimal representation. Show your work.

$$1.10011011_2 = 1 \times 2^0 + 1 \times 2^1 + 1 \times 2^3 + 1 \times 2^4 + 1 \times 2^7 = 1 + 2 + 8 + 16 + 128 = 155_{10}$$

$$2.456_7 = 6 \times 7^0 + 5 \times 7^1 + 4 \times 7^2 = 6 + 35 + 196 = 237_{10}$$

$$3.38A_{16} = 10 \times 16^{0} + 8 \times 16^{1} + 3 \times 16^{2} = 10 + 128 + 768 = 906_{10}$$

$$4.2214_5 = 4 \times 5^0 + 1 \times 5^1 + 2 \times 5^2 + 2 \times 5^3 = 4 + 5 + 50 + 250 = 309_{10}$$

B. Convert the following numbers to their binary representation.

$$1.69_{10} = 64 + 4 + 1 = 1 \times 2^6 + 1 \times 2^2 + 1 \times 2^0 = 1000101_2$$

$$2.485_{10} = 256 + 128 + 64 + 32 + 4 + 1 = 1 \times 2^8 + 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^2 + 1 \times 2^0 = 111100101_2$$

$$3.\,6D1A_{16} = (0110)(1101)(0001)(1010) = 110110100011010_2$$

Hex Digit	4 bit binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
а	1010
b	1011
С	1100
d	1101
е	1110
f	1111

C. Convert the following numbers to their hexadecimal representation.

$$1.1101011_2 = (0110)(1011) = 6B_{16}$$

$$2.895_{10} = 3 \times 256 + 7 \times 16 + 15 = 3 \times 16^{2} + 7 \times 16^{1} + 15 \times 16^{0} = 37F_{16}$$

Solve the following, do all calculation in the given base. Show your work.

1.
$$7566_8 + 4515_8 = 14303_8$$

1111

 $7\ 5\ 6\ 6_8$

 $+4515_{8}$

143038

2.
$$10110011_2 + 1101_2 = 11000000_2$$

1 1 1 1 1 1

101100112

+ 1101₂

 $1\,1\,0\,0\,0\,0\,0\,0_2$

3.
$$7A66_{16} + 45C5_{16} = C02B_{16}$$

1 1

 $7 A 6 6_{16}$

+ 4 5 C 5₁₆

 $C \ 0 \ 2 \ B_{16}$

4.
$$3022_5 - 2433_5 = 34_5$$

3 0 2 2₅

 -2433_{5}

0 0 3 45

A. Convert the following numbers to their 8-bits two's complement representation. Show your work.

$$1.\,124_{10} = 64 + 32 + 16 + 8 + 4 = 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 = 1111100_2 = 01111100_{8\;bit\;2's\;comp}$$

$$2.-124_{10} = 10000100_{8 \ bit \ 2's \ comp}$$

1 1 1 1 1 1

 $0\,1\,1\,1\,1\,1\,0\,0_2$

 $+10000100_{2}$

 100000000_{2}

$$3.\,109_{10} = 64 + 32 + 8 + 4 + 1 = 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0 = 1101101_2 = 01101101_{8\ bit\ 2's\ comp}$$

$$4.-79_{10} = -(64 + 8 + 4 + 2 + 1) = -(1 \times 2^6 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0) = -1001111_2 = 10110001_{8 \ bit \ 2's \ comp}$$

11111111

 $0\;1\;0\;0\;1\;1\;1\;1_2$

 $+10110001_2$

 100000000_2

B. Convert the following numbers (represented as 8-bit two's complement) to their decimal representation. Show your work.

$$1.\,00011110_{8\,bit\,2's\,comp} = 1\times2^4 + 1\times2^3 + 1\times2^2 + 1\times2^1 = 30_{10}$$

2.
$$11100110_{8 \ bit \ 2's \ comp} = -11010_2 = -(1 \times 2^4 + 1 \times 2^3 + 1 \times 2^1)_{10} = -26_{10}$$

1111111

 111001110_{2}

 $+00011010_{2}$

 $1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0_2$

$$3.\,00101101_{8\,bit\,2's\,comp} = 1 \times 2^5 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0 = 45_{10}$$

$$4.\ 10011110_{8\ bit\ 2's\ comp} = -1100010_2 = -(1\times 2^6 + 1\times 2^5 + 1\times 2^1)_{10} = -98_{10}$$

1111111

 10011110_{2}

 $+01100010_{2}$

 $1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0_2$

Solve the following questions from the Discrete Math zyBook:

- 1. Exercise 1.2.4, sections b, c
- (b) Truth table for $\neg (p \lor q)$

p	q	$p \lor q$	$\neg(p \lor q)$
T	T	T	F
T	F	Т	F
F	Т	Т	F
F	F	F	T

(c) Truth table for $r \lor (p \land \neg q)$

р	q	r	¬q	$p \land \neg q$	$r \lor (p \land \neg q)$
T	T	T	F	F	T
T	T	F	F	F	F
T	F	T	T	T	T
T	F	F	T	T	T
F	Т	T	F	F	T
F	Т	F	F	F	F
F	F	T	T	F	T
F	F	F	T	F	F

- 2. Exercise 1.3.4, sections b, d
- (b) Truth table for $(p\rightarrow q)\rightarrow (q\rightarrow p)$

р	q	p→q	q→p	$(p\rightarrow q)\rightarrow (q\rightarrow p)$
T	T	T	T	Т
T	F	F	T	Т
F	Т	T	F	F
F	F	T	T	Т

(d) Truth table for $(p \leftrightarrow q) \oplus (p \leftrightarrow \neg q)$

р	q	¬q	$p \leftrightarrow q$	$p \leftrightarrow \neg q$	$(p \leftrightarrow q) \oplus (p \leftrightarrow \neg q)$
T	Т	F	T	F	Т
T	F	T	F	T	T
F	T	F	F	T	T
F	F	T	T	F	T

- 1. Exercise 1.2.7, sections b, ${\bf c}$
- (b) $(B \wedge D) \vee (B \wedge M) \vee (D \wedge M)$
- (c) $B \lor (D \land M)$
- 2. Exercise 1.3.7, sections b e
- (b) y→p
- (c) $p \rightarrow y$
- (d) $p \leftrightarrow y$
- (e) $p \rightarrow (s \lor y)$
- 3. Exercise 1.3.9, sections c, d
- (c) $c \rightarrow p$
- (d) c→p

Solve the following questions from the Discrete Math zyBook:

- 1. Exercise 1.3.6, sections b d
- (b) If Joe is eligible for the honors program, then Joe maintains a B average.
- (c) If Rajiv can go on the roller coaster, then Rajiv is at least four feet tall.
- (d) If Rajiv is at least four feet tall, then Rajiv can go on the roller coaster.

2. Exercise 1.3.10, sections c - f

The variable p is true, q is false, and the truth value for variable r is unknown. Indicate whether the truth value of each logical expression is true, false, or unknown.

(c)
$$(p \lor r) \leftrightarrow (q \land r)$$

$p \lor r$	T
$q \wedge r$	F
$(p \lor r) \leftrightarrow (q \land r)$	F

(d)
$$(p \land r) \leftrightarrow (q \land r)$$

$p \wedge r$	Unknown	
$q \wedge r$	F	
$(p \lor r) \leftrightarrow (q \land r)$	Unknown	

(e)
$$p \rightarrow (r \lor q)$$

r V q	Unknown	
$p \rightarrow (r \lor q)$	Unknown	

(f)
$$(p \land q) \rightarrow r$$

$p \wedge q$	F
$(p \land q) \longrightarrow r$	Т

Solve Exercise 1.4.5, sections b – d, from the Discrete Math zyBook:

(b) The first sentence can be expressed as $\neg j \rightarrow (l \lor \neg r)$

j	l	r	٦j	¬r	$l \vee \neg r$	$\neg j \rightarrow (l \lor \neg r)$
T	T	T	F	F	Т	T
T	T	F	F	Т	Т	T
T	F	T	F	F	F	T
T	F	F	F	T	Т	T
F	T	T	Т	F	Т	T
F	T	F	Т	Т	Т	T
F	F	T	T	F	F	F
F	F	F	T	Т	T	T

The second sentence can be expressed as $(r \land \neg l) \rightarrow j$

j	l	r	٦]	$r \wedge \neg l$	$(r \land \neg l) \rightarrow j$
T	Т	T	F	F	T
Т	Т	F	F	F	T
T	F	T	T	T	T
T	F	F	T	F	T
F	Т	T	F	F	T
F	Т	F	F	F	T
F	F	T	T	T	F
F	F	F	T	F	T

Thus these two expressions are logically equivalent.

(c) The first sentence can be expressed as $j \to \neg l$, while the second sentence can be expressed as $\neg j \to l$.

j	1	٦j	¬l	$j \rightarrow \neg l$	$\neg j \rightarrow l$
T	T	F	F	F	T
T	F	F	T	T	T
F	Т	T	F	T	T
F	F	T	T	T	F

Thus these two expressions are **NOT** logically equivalent.

(d) The first sentence can be expressed as $\ (r \lor \neg l) \to j$

j	l	r	٦l	$r \vee \neg l$	$(r \land \neg l) \rightarrow j$
T	Т	T	F	T	T
T	Т	F	F	F	T
T	F	T	T	T	T
T	F	F	T	T	T
F	Т	T	F	T	F
F	T	F	F	F	T
F	F	T	T	T	F
F	F	F	T	T	F

The second sentence can be expressed as $j \to (r \land \neg l)$

j	1	r	٦]	$r \wedge \neg l$	$j \to (r \land \neg l)$
T	Т	Т	F	F	F
T	Т	F	F	F	F
Т	F	Т	T	T	T
T	F	F	T	F	F
F	Т	Т	F	F	T
F	Т	F	F	F	T
F	F	Т	T	T	T
F	F	F	T	F	T

Thus these two expressions are $\underline{\textbf{NOT}}$ logically equivalent.

Solve the following questions from the Discrete Math zyBook:

1. Exercise 1.5.2, sections c, f, i

(c)
$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

$$LHS \equiv^{11a} (\neg p \lor q) \land (\neg p \lor r) \equiv^{4a} \neg p \lor (q \land r) \equiv^{11a} p \rightarrow (q \land r) \equiv RHS$$

$$(f) \neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg q$$

$$LHS \equiv^{9a} \neg p \land \neg (\neg p \land q) \equiv^{9b} \neg p \land (\neg \neg p \lor \neg q) \equiv^{7} \neg p \land (p \lor \neg q) \equiv^{4b} (\neg p \land p) \lor (\neg p \land \neg q) \equiv^{5a} \neg p \land \neg q \equiv RHS$$

(i)
$$(p \land q) \rightarrow r \equiv (p \land \neg r) \rightarrow \neg q$$

$$LHS \equiv^{11a} \neg (p \land q) \lor r \equiv^{9b} (\neg p \lor \neg q) \lor r \equiv^{2b} \neg p \lor (\neg q \lor r)$$

$$RHS \equiv^{11a} \neg (p \land \neg r) \lor \neg q \equiv^{9b} (\neg p \lor \neg \neg r) \lor \neg q \equiv^{7} (\neg p \lor r) \lor \neg q \equiv^{2b} \neg p \lor (r \lor \neg q) \equiv^{3a} \neg p \lor (\neg q \lor r)$$

Thus $LHS \equiv RHS$

Table 1.5.1: Laws of propositional logic.

1.	Idempotent laws:	$p \lor p = p$	p ^ p = p	
2.	Associative laws:	(p v q) v r = p v (q v r)	$(p \wedge q) \wedge r = p \wedge (q \wedge r)$	
3.	Commutative laws:	$p \vee q = q \vee p$	$p \wedge q = q \wedge p$	
4.	Distributive laws:	$p \lor (q \land r) = (p \lor q) \land (p \lor r)$	$p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$	
5.	Identity laws:	p v F = p	p ^ T = p	
6.	Domination laws:	p ^ F = F	p v T = T	
7.	Double negation law:	¬¬p = p		
8.	Complement laws:	p ^ ¬p = F ¬T = F	p v ¬p = T ¬F = T	
9.	De Morgan's laws:	$\neg(p \lor q) = \neg p \land \neg q$	$\neg(p \land q) = \neg p \lor \neg q$	
0.	Absorption laws:	$p \lor (p \land q) = p$	$p \wedge (p \vee q) = p$	
1.	Conditional identities:	$p \rightarrow q = \neg p \lor q$	$p \leftrightarrow q = (p \rightarrow q) \land (q \rightarrow p)$	

2. Exercise 1.5.3, sections c, d

(c)
$$\neg r \lor (\neg r \to p) \equiv \neg r \lor (r \lor p) \equiv (\neg r \lor r) \lor p \equiv p$$

$$\text{(d)} \neg (p \rightarrow q) \rightarrow \neg q \equiv \neg \neg (p \rightarrow q) \lor \neg q \equiv (p \rightarrow q) \lor \neg q \equiv (\neg p \lor q) \lor \neg q \equiv \neg p \lor (q \lor \neg q) \equiv \neg p$$

- 1. Exercise 1.6.3, sections c, d
- (c) $\exists x, x = x^2$
- (d) $\forall x, x \leq x^2$
- 2. Exercise 1.7.4, sections b d
- (b) $\forall x$, $\neg S(x) \land W(x)$
- (c) $\forall x, \ S(x) \rightarrow \neg W(x)$
- (d) $\exists x, S(x) \land W(x)$

- 1. Exercise 1.7.9, sections c i
- (c) F. Because P(c) = F.
- (d) T. Because Q(e) = R(e) = T.
- (e) T. Because Q(a) = P(d) = T.
- (f) T. Because this is true for all the cases, including x = a, c, d, e.
- (g) F. Because P(c) = R(c) = F.
- (h) T. Because this is true for all the cases, including x = a, b, c, d, e.
- (i) T. Because Q(a) = T.
- 2. Exercise 1.9.2, sections b i
- (b) F.
- (c) T. Because x=1 satisfies the statement.
- (d) F.
- (e) T. Because y=2 satisfies the statement.
- (f) F.
- (g) F.
- (h) T.
- (i) T. Because $\neg S(x, y)$ is always true.

- 1. Exercise 1.10.4, sections c g
- (c) $\exists x \exists y, (x + y = xy)$

(d)
$$\forall x \ \forall y, \left((x > 0) \land (y > 0) \rightarrow \left(\frac{x}{y} > 0 \right) \right)$$

(e)
$$\forall x$$
, $\left((0 < x < 1) \rightarrow \left(\frac{1}{x} > 1 \right) \right)$

- (f) $\forall x \exists y, (y < x)$
- (g) $\forall x \exists y, ((x \neq 0) \rightarrow (xy = 1))$
- 2. Exercise 1.10.7, sections c f
- (c) $\exists x, (N(x) \land D(x))$
- (d) $\forall x, (D(x) \rightarrow P(Sam, x))$
- (e) $\exists x \ \forall y, (N(x) \land P(x,y))$

(f)
$$\exists x, (N(x) \land D(x) \land \forall y ((x \neq y) \rightarrow \neg D(y)))$$

- 3. Exercise 1.10.10, sections c f
- (c) $\forall x, (T(x, Math\ 101) \land (\exists y(y \neq Math\ 101) \land T(x, y)))$
- (d) $\exists x \ \forall y, T(x,y)$
- (e) $\forall x \exists y \exists z, (T(x,y) \land T(x,z) \land (y \neq z))$
- $(f) \ \exists x \ \exists y, \Big(T(Sam, x) \land T(Sam, y) \land (x \neq y) \land \Big(\forall z(z \neq x) \land (z \neq y) \rightarrow \neg T(Sam, z) \Big) \Big)$

- 1. Exercise 1.8.2, sections b e
- (b) Every patient was given the medication or the placebo or both.
 - $\forall x$, $D(x) \lor P(x)$
 - Negation: $\neg \forall x, \ D(x) \lor P(x)$
 - Applying De Morgan's Law: $\exists x, \neg D(x) \land \neg P(x)$
 - English: Some patients was given neither the medication nor the placebo.
- (c) There is a patient who took the medication and had migraines.
 - $\exists x, D(x) \land M(x)$
 - Negation: $\neg \exists x, D(x) \land M(x)$
 - Applying De Morgan's Law: $\forall x, \neg D(x) \lor \neg M(x)$
 - English: All the patients, either did not take medication, or do not have migraines, or both.
- (d) Every patient who took the placebo had migraines. (Hint: you will need to apply the conditional identity, $p \rightarrow q \equiv \neg p \lor q$.)
 - $\forall x, P(x) \rightarrow M(x)$
 - Negation: $\neg \forall x, P(x) \rightarrow M(x)$
 - Applying De Morgan's Law: $\exists x, \neg(P(x) \to M(x)) \equiv \exists x, \neg(\neg P(x) \lor M(x)) \equiv \exists x, P(x) \land \neg M(x))$
 - English: There is a patient who took the placebo and did not have migraines.
- (e) There is a patient who had migraines and was given the placebo.
 - $\exists x, M(x) \land P(x)$
 - Negation: $\neg \exists x$, $M(x) \land P(x)$
 - Applying De Morgan's Law: $\forall x, \neg M(x) \lor \neg P(x)$
 - English: All the patients, either did not have migraines, or was not given the placebo, or both.

2. Exercise 1.9.4, sections c - e

$$(c) \neg \Big(\exists x \forall y \Big(P(x,y) \rightarrow Q(x,y) \Big) \Big) \equiv \forall x \exists y, \neg \Big(P(x,y) \rightarrow Q(x,y) \Big) \equiv \forall x \exists y, \neg \Big(\neg P(x,y) \lor Q(x,y) \Big) \equiv \forall x \exists y, \Big(P(x,y) \land \neg Q(x,y) \Big)$$

(d)
$$\neg (\exists x \, \forall y, (P(x,y) \leftrightarrow P(y,x))) \equiv \forall x \, \exists y, \neg (P(x,y) \leftrightarrow P(y,x))$$

Let P(x,y) = Q, P(y,x) = R, then

$$\neg \big(P(x,y) \longleftrightarrow P(y,x) \big) \equiv \neg \big(Q \longleftrightarrow R \big) \equiv \neg \big((Q \to R) \land (R \to Q) \big) \equiv \neg (Q \to R) \lor \neg (R \to Q)$$
$$\equiv \neg \big(\neg Q \lor R \big) \lor \neg \big(\neg R \lor Q \big) \equiv \big(Q \land \neg R \big) \lor \big(R \land \neg Q \big)$$

Thus
$$\neg (\exists x \, \forall y, (P(x,y) \leftrightarrow P(y,x))) \equiv \forall x \, \exists y, (P(x,y) \land \neg P(y,x)) \lor (P(y,x) \land \neg P(x,y))$$

(e)
$$\neg (\exists x \exists y, P(x,y) \land \forall x \forall y Q(x,y)) \equiv \forall x \forall y, \neg (P(x,y) \land \forall x \forall y Q(x,y)) \equiv \forall x \forall y, \neg P(x,y) \lor \neg (\forall x \forall y Q(x,y)) \equiv \forall x \forall y, \neg P(x,y) \lor (\exists x \exists y, \neg Q(x,y))$$