

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS JOINVILLE

CENTRO TECNOLÓGICO DE JOINVILLE - CTJ CURSO BACHARELADO ENGENHARIA AEROESPACIAL SEMESTRE 2022/1

I. IDENTIFICAÇÃO DA DISCIPLINA

Código: EMB5413 **Nome:** Mecânica dos Fluidos Computacional

Carga horária: 72 horas-aula Créditos: 04

Turma(s): 08602

Professor(es): Ernane Silva

II. PRÉ-REQUISITOS

EMB5016 – Cálculo Numérico EMB5017 – Mecânica dos Fluidos

III. EMENTA

Introdução à mecânica dos fluidos computacional. Equações de transporte de massa, energia e quantidade de movimento. Equação genérica de transporte de escalar. Método dos volumes finitos - MVF. Solução de problemas difusivos pelo MVF. Solução de problemas convectivos e difusivos pelo MVF. Métodos de interpolação. Condições de contorno. Solução das Equações de Navier-Stokes. Acoplamento Pressão-velocidade. Validação e verificação de resultados numéricos. Análise de erro e incerteza numérica. Tópicos avançados: Malhas em coordenadas generalizadas e malhas não estruturadas. Introdução e modelagem da Turbulência.

IV. OBJETIVOS

Compreender os princípios básicos de Dinâmica dos Fluidos Computacional por meio do Método dos Volumes Finitos aplicado a problemas de Mecânica dos Fluidos e Transferência de Calor.

V. CONTEÚDO PROGRAMÁTICO

- 1. Introdução à mecânica dos fluidos computacional
- 2. Equações de transporte
- 3. MVF para problemas difusivos em regime permanente
- 4. MVF para problemas convectivos-difusivos em regime permanente
- 5. Acoplamento pressão-velocidade
- 6. Solução das equações discretizadas
- 7. MVF para problemas transientes
- 8. Implementação das condições de contorno
- 9. Erros e incertezas da modelagem
- 10. Tratamento de geometrias complexas

VI. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

O conteúdo será apresentado por meio de aulas expositivas. Porém, é esperado que os alunos realizem atividades de leitura dos conteúdos indicados. O desenvolvimento do curso também envolve a realização de exercícios fora de sala de aula.

VII. METODOLOGIA DE AVALIAÇÃO

As avaliações serão feitas através de 4 exercícios práticos. A média final (MF) será calculada com base na média dos exercícios práticos (E_1 , E_2 , E_3 e E_4):

$$MF = \frac{E_1 + E_2 + E_3 + E_4}{4}$$

VIII. AVALIAÇÃO FINAL

O(a) aluno(a) com frequência suficiente e média das notas entre três (3,0) e cinco vírgula cinco (5,5) terá direito a uma **nova avaliação** no final do semestre que **versará sobre todo o conteúdo da disciplina**, conforme o que dispõe o § 2º do Art. 70 e § 3º do Art. 71 da Resolução nº 17/Cun/97. Neste caso, a média final será calculada através da média aritmética simples entre a média das notas das avaliações feitas durante o semestre e a nota obtida na nova avaliação. A nota mínima de aprovação é seis (6,0).

Caso o(a) aluno(a) **não** compareça a **75% da carga horária da disciplina** estará automaticamente reprovado com nota **0,0(zero)**, independentemente da sua média nas avaliações individuais, conforme dispõem no **Art. 69 § 2º da Resolução 017/CUn/97.**

Os(as) alunos(as) que eventualmente faltarem em alguma avaliação que foram perdidas por motivos extremos, mediante justificativa; dentro do prazo de **3 (três) dias úteis** após a avaliação conforme o que dispõe o **Art. 74, da Resolução 017/CUn/97**, poderão solicitar na secretaria acadêmica do Centro de Engenharias da Mobilidade o pedido de segunda chamada. Após a análise do pedido e seu deferimento, os(as) alunos(as) poderão realizar a avaliação de segunda chamada na data, no local e horário definido no cronograma.

IX. CRONOGRAMA

Semana	Aula	Conteúdo	Aula	Conteúdo		
11 a 16/04: INTEGRAÇÃO ACADÊMICA DA GRADUAÇÃO (dias letivos para o semestre 2022-1)						
1	20/04	Equações de transporte	21/04	FERIADO		
2	27/04	Problemas difusivos permanentes	28/04	Problemas difusivos permanentes		
3	04/05	Problemas difusivos permanentes	05/05	Solução das equações discretizadas		
4	11/05	Solução das equações discretizadas	12/05	Solução das equações discretizadas		
5	18/05	Solução das equações discretizadas	19/05	Problemas difusivos transientes		
6	25/05	Problemas difusivos transientes	26/05	Problemas convectivos-difusivos		
7	01/06	Problemas convectivos-difusivos	02/06	Problemas convectivos-difusivos		

8	08/06	Problemas convectivos-difusivos	09/06	Problemas convectivos-difusivos
9	15/06	Problemas convectivos-difusivos	16/06	FERIADO
10	22/06	Acoplamento pressão-velocidade	23/06	Acoplamento pressão-velocidade
11	29/06	Acoplamento pressão-velocidade	30/06	Acoplamento pressão-velocidade
12	06/07	Acoplamento pressão-velocidade	07/07	Geometrias complexas
13	13/07	Geometrias complexas	14/07	Erros e incertezas na modelagem CFD
14	20/07	Introdução da turbulência	21/07	Introdução da turbulência
15	27/07	Introdução da turbulência	28/07	Introdução da turbulência
16	03/08	PROVA DE RECUPERAÇÃO		

Cronograma está sujeito a alterações.

X. COMPLEMENTAÇÃO DE CARGA HORÁRIA

Antecedentes: o Calendário Acadêmico aprovado para os exercícios de 2022-1 e 2022-2 (Resolução Normativa 157/2021/CUn), que retoma o ensino presencial como modalidade na UFSC, e coloca o período de 16 semanas como semestre letivo em ambos exercícios. A distribuição da carga horária das disciplinas da UFSC segue o padrão estabelecido de antes da vigência do Calendário Acadêmico Suplementar, necessitando complementação da carga horária equivalente a 2 semanas de período letivo, ou 12% da carga horária total.

Nesta disciplina serão propostos exercícios práticos como atividades complementares.

XI. BIBLIOGRAFIA BÁSICA

ÇENGEL, Y. A., CIMBALA, J. M. Mecânica dos fluidos: fundamentos e aplicações. São Paulo: McGraw-Hill, 2007. ISBN 978-85-868-4588-23.

FOX, R. W.; MCDONALD, A. T.; PRITCHARD, P. J. Introdução à Mecânica dos Fluidos. 7ª ed. Rio de Janeiro: LTC, 2010. ISBN 978-85-216-1757-0.

MUNSON, B. R.; YOUNG, D. F.; OKIISHI, T. H. Fundamentos da Mecânica dos Fluidos. 1ª ed. São Paulo: Blucher, 2004. ISBN 978-85-212-0343-8.

XII. BIBLIOGRAFIA COMPLEMENTAR

BATCHELOR, George, K. An Introduction to Fluid Dynamics. Cambridge University Press, 2000. ISBN 9780521663960.

KUNDU, Pijush K.; COHEN, Ira M.; DOWLING, David, R. Fluid Mechanics. 5^a edição. AcademicPress, 2011. ISBN 9780123821003.

STREET, R. L., Watters, G. Z., Vennard, J. K., Elementary fluid mechanics. 7^a ed. John Wiley & Sons, 1996. ISBN 9780471013105

WHITE, Frank M. Fluid Mechanics. 7^a edição. McGraw-Hill, 2010. ISBN 9780077422417.

WHITE, Frank W. Viscous Fluid Flow. 3ª edição. McGraw-Hill, 2005. ISBN 9780072402315.

Atualizado em: 11/03/2022