

MICROCOPY RESOLUTION TEST CHART NATIONAL BUILDING AS TAN ARE REST O LOU VOY

BR77046/ TR 80124/

ROYAL AIRCRAFT ESTABLISHMENT

MATERIALS QUALITY ASSURANCE DIRECTORATE

Report 306
Oct 286

12 33

ABRASION AND HYDROSTATIC HEAD OF WEATHERED BUBBER-COATED FABRICS.

14) RAE-TR-80124 by

J.E./Swallow A.R./Wakefield

SELECTE APR 1 3 1981

FILE COPY

Procurement Executive, Ministry of Defence Farnborough, Hants

3104581 4

9 044

by

UDC 677.55 : 620.193.1/.2 : 539.378.6 : 532.111

ROYAL AIRCRAFT ESTABLISHMENT

Technical Report 80124

and

MATERIALS QUALITY ASSURANCE DIRECTORATE

Report 306

Received for printing 17 October 1980

ABRASION AND HYDROSTATIC HEAD OF WEATHERED RUBBER-COATED FABRICS

Ъу

J. E. Swallow
A. R. Wakefield*

SUMMARY

The abrasion mass loss and hydrostatic head of a nylon and of a cotton fabric, each coated with natural rubber, neoprene, polyurethane (PU) or chlorosulphonated polyethylene (CSPE) and exposed to various weathering conditions, were determined.

Correlations between hydrostatic head and abrasion mass loss were generally low.

During abrasion, coated nylon fabrics lost more mass than coated cotton fabrics. CSPE was most susceptible to abrasion, particularly on nylon, though with little dependence on conditions of exposure. Neoprene was worse on cotton. PU had the lowest mass loss and least susceptibility to exposure conditions, except at Innisfail. Natural rubber lost more mass on abrasion than neoprene or PU, especially at PERME. Load during exposure had a negligible effect.

Departmental Reference: Mat 411

Copyright
©
Controller HMSO London
1980

1

^{*} QAD Mats, Chorley, Lancs

LIST OF CONTENTS

		Page
1	INTRODUCTION	3
2	DETERMINATION OF ABRASION AND HYDROSTATIC HEAD	3
3	ARRANGEMENT OF RESULTS	4
4	CORRELATION OF ABRASION AND HYDROSTATIC HEAD	5
5	TEST FOR EQUALITY OF ABRASION ERROR VARIANCES	5
6	ANALYSIS OF VARIANCE AND MEANS OF ABRASION MASS LOSS	6
7	CONCLUSIONS	9
Table	es 1-8	10
Kefer	rences	31
Repor	rt documentation page	inside back cover

Acces	sion For	
NTIS	GRA&I	X
DTIC '	TAB	
Unann	ounced	
Justi	ficat ion	
	ibution/ lability (
	'Avail and	/or
Dist	Special	•
10		
111		
	<u> </u>	

I INTRODUCTION

The exposure of rubber-coated fabrics for up to 1 year of weathering, and the effects of this on their flexibilities, strengths and breaking extensions, and tearing strengths have previously been reported $^{1-3}$.

In a collaborative trial involving several Establishments of MOD(PE) and JTRU, nylon and cotton base fabrics of similar mass per unit area were coated with natural, neoprene, polyurethane (PU) or chlorosulphonated polyethylene (CSPE) rubber. These coated fabrics were exposed for 3, 6 or 12 months, and a second period of 6 months ('6 months stepped' or '6S') commencing at the end of the first, under loads of 1% or 10% of the nominal breaking strengths. Pieces of fabric were positioned at 45° to the horizontal and facing the equator at a site in the UK (PERME, Waltham Abbey) and at two sites in Queensland (hot, dry at Cloncurry, and hot, wet, cleared jungle at Innisfail).

The coated nylon fabrics were found to be thicker, heavier and less flexible than the coated cotton fabrics; PU rubber, particularly on nylon, stiffened more than the other rubbers during exposure. The coated nylon fabrics were stronger and more extensible than the cotton ones, but those coated with natural-rubber lost strength and extensibility at a faster rate when exposed under load. Nylon coated with PU was initially stronger and more extensible than when coated with the other rubbers, but lost these properties faster at Innisfail. Extension was more severely affected than strength by load during exposure. The coated nylon fabrics had higher tear strengths than the cotton ones, but were more variable. PU-coated nylon increased in tear strength in Australia due to coating failure, but natural-rubber coated cotton decreased on exposure in UK. Load during exposure increased the loss of tear strength of the natural-rubber coated fabrics.

To complete the experimental work envisaged when the trial was set up, mass losses on abrasion and the subsequent hydrostatic heads of the fabrics were determined. The present Report gives the results and their analyses.

2 DETERMINATION OF ABRASION AND HYDROGTATIC HEAD

(a) Abrasion

The abrasion of each specimen was measured using a Martindale abrasion tester situated in an atmosphere of 65% relative humidity at 20°C. The abradant was 180C silicon carbide paper acting under a pressure of 8.19 kN/m² over a working abradant head area of 6.45 cm². The specimen and abradant were, however, reversed in position compared with the standard because wear was more uniform and the abraded area was larger, allowing sufficient area for subsequent hydrostatic head tests. Abrasion was continued until a degree of wear judged by visual appearance had been attained, the number of cycles being noted. Specimens were weighed before and after abrasion. The test was repeated on the other face of the fabric. Two replicates were available for most of the exposure conditions.

(b) Hydrostatic head

After abrasion the specimens were subjected under standard⁵ conditions to steadily increasing water pressure on one face until penetration occurred. The pressures at which the first, third and multiple bubbles were observed were measured by water manometer or, for pressures between about 100cm and 300cm head of water, by mercury manometer.

3 ARRANGEMENT OF RESULTS

The sums of the losses of mass from both faces over the area abraded during the (variable) numbers of cycles of abrasion actually applied are given in Table I (tests a), together with the hydrostatic head in cm water pressure after these cycles (tests b). The first bubble was used as the criterion for the hydrostatic head since more results were available within the capacity of the instrument. Tests a and b were subjected to correlation analysis by fabric and by site, analysis of variance of the hydrostatic head results not being possible because of the different numbers of cycles applied to the specimens.

These correlations are described in section 4 before dealing with the effects of exposure on abrasion. This was because the actual results in Table 1 were used for the correlations, whereas derived values were used for the abrasion effects.

To analyse the abrasion, the mass losses were normalised to g/m² per 1000 cycles assuming that the losses were linear with number of cycles over the range considered. The results for each face were then summed and are given in Table 2. It was thought necessary to adopt this procedure rather than to analyse each face separately because, although the trial schedule stipulated that the face carrying identifying markings should be exposed down-facing, there was doubt as to whether this was so in all cases. The reason for this doubt was that, assuming that the exposed face would be more susceptible to abrasion, the difference between the mass loss from the unmarked and marked faces should be positive. However, 39% of all 395 differences, 27% of the 99 differences greater than 10 g/m² per 1000 cycles, and 16% of the 49 differences greater than 20 g/m² per 1000 cycles were negative.

The abrasion results were divided into the same nine sets as for breaking ${\rm strength}^2$ and tear strength³, it not being possible to consider the results as a whole because of specimen losses. The 342 usable abrasion values were analysed by computer, using as the sets the following columns from Table 2:

Set	No. of columns in set	No. of results in set	Columns from Table 2 used	Brief description
(a)	2	32	A,B	Controls
(b)	6	96	C,D,K,L,S,T	3 months
(c)	12	192	C,E,G,I,K,M,O,Q,S,U,W,Y	1%
(d)	24	96	C-Z	Natural-rubber
(e)	8	128	C-J	PERME
(f)	6	96	A, B, C, E, G, I	PERME, 1%, with controls
(g)	6	96	A,B,K,M,O,Q	Cloncurry, 1%, with controls
(h)	6	96	A,B,S,U,W,Y	Innisfail, 1%, with controls
(i)	24	144	C-Z	Nylon with three rubbers

4 CORRELATION OF ABRASION AND HYDROSTATIC HEAD

The linear and quadratic correlations between the abrasion mass losses and the corresponding hydrostatic heads, by fabric and by site, are given in Table 3, together with the variance ratios for the significance of these correlations. It was not possible to subdivide the data further, eg by time, because of too few degrees of freedom. By comparing means, however, it appears that for a given amount of abrasion, the hydrostatic head of PU on nylon was low, whilst for CSPE it was high.

It might be expected that a greater loss of coating would be associated with a lower hydrostatic head, ie the linear correlations should be negative. Inspection of Table 3 shows that this was so for 24 of the linear 32 correlations calculated. However, the significance of only 12 of the 32 was above the 95% probability level, and, of these 12, three, all at PERME and including the only correlation significant at the 99.9% level of probability, were positive. Addition of the quadratic components into the correlations did not alter any of the conclusions relating to the linear correlations, although the significance of a few of the quadratic components indicated that curvature might play a part in some instances. Since high hydrostatic head would also be expected to occur with low abrasions on unexposed fabrics, a U-shaped curve is implied in some instances. High hydrostatic heads tended to be associated with high abrasion after exposures of 3 months, suggesting that time might be an influencing factor, but there was no means of confirming this from the recorded data. However, it could mean that in some circumstances the coating may have degraded to an extent such that on abrasion the amount or type of detritus produced improved coating integrity.

5 TEST FOR EQUALITY OF ABRASION ERROR VARIANCES

The values of χ^2 based on cell ranges (in Table 2) in each set are given in Table 4. Also given are the numbers of omissions of the highest of the ranges needed to reduce χ^2 so that the probability was above the 5% level. The omissions needed were as follows:

Set	Omissions needed
(a), (d), (g), (h), (i) (b)	None Nylon/CSPE Column C; Cotton/natural Column C
(c)	Nylon/CSPE Column E; Nylon/PU Column U
(e)	Nylon/CSPE Columns F, J, E, C; Cotton/natural Column J; Cotton/neoprene Column H
(f)	Nylon/CSPE Columns E, C; Cotton/natural Column C

There was a preponderance here of nylon/CSPE at PERME. Analysis of variance was performed on all the sets, but circumspection needed to be exercised in respect of conclusions relating to the fabrics and conditions having high error particularly in the higher order interactions.

6 ANALYSIS OF VARIANCE AND MEANS OF ABRASION MASS LOSS

6.1 General

The analysis of errors is given in Table 5. The error variance was lowest in the controls and highest at Cloncurry. Except at Cloncurry, coefficients of variation were around 10%. The lowest overall abrasion loss was in the controls, and the highest in nylon and in natural rubber.

Variance ratios derived from analysis of variance within each set are given in Table 6. The effects are discussed in order of occurrence in Table 6 rather than in order of importance since the latter could differ in the various sets. Only those effects which had better than 99.9% probability of being correct were considered.

The mean mass losses on abrasion, where they were significantly dependent on factors, are given in Table 7, and the associated differences required between means in Table 8.

6.2 Effect of fabric (F)

The variance ratios for F in Table 6 were upwards of 100 in all the sets, indicating that the base fabric was important in affecting abrasion mass loss. The losses from $\frac{1}{2}$ nylon were greater than those from cotton, generally by about $\frac{40\%}{2}$ (Table 7).

6.3 Effect of rubber (R)

In all the sets the variance ratios for rubber were upwards of 200 and the highest of all the factors, indicating that the rubber was the most important factor determining abrasion. The order was generally CSPE · natural > neoprene > PU, though in the controls the differences between natural and neoprene, or between neoprene and PU were not significant, nor were those between natural and neoprene in sets (g) or (h). An experimental observation on the PU-coated fabrics, however, was that the coating softened during abrasion and tended to spread out under load, rather than be removed; this was most noticeable after exposure.

6.4 Effect of time (T)

Time was significant in all the sets except (a). The latter indicated that the final control determinations did not differ from the originals. In the other sets, the exposed specimens had greater abrasion losses than the unexposed, and generally the 12 months losses were highest, though not always significantly so. The high loss in set (h) at 6 months is anomalous (see also the TS, FT and FRT interactions).

6.5 Effect of load (L)

Load during exposure played a negligible part in determining abrasion losses. The effect is not listed in Table 7.

6.6 Effect of site (S)

Site was significant in all sets. The abrasion losses at PERME were greater than at the other sites, though in set (b) not significantly more than at Cloncurry.

Cloncurry was worse than Innisfail in sets (b) and (i), but there was no demonstrated difference between them in sets (c) or (d).

6.7 Fabric × rubber interaction (FR)

The variance ratios for the FR interaction were upwards of 100 in all sets, indicating the importance of the effect of the base fabric on the rubber type. In particular, CSPE on nylon, whether exposed or unexposed, lost more on abrasion than when on cotton, whereas neoprene on cotton tended to lose more than neoprene on nylon.

6.8 Fabric × time interaction (FT)

Only in set (h) was this interaction significant, and even there it was at a lower level of probability than most other effects. Since set (h) contained the anomalous 6-month results noted in the discussion on the T effect, it is doubtful whether a time effect which is different for the two base fabrics has been demonstrated. The interaction is therefore not listed in Table 7.

6.9 Fabric × load interaction (TL)

The effect of fabric was not dependent on the load during exposure, and is not listed in Table 7.

6.10 Fabric × site interaction (FS)

The poorer abrasion performance of nylon was less marked after exposure at Innisfail than at the other sites.

6.11 Rubber × time interaction (RT)

Time affected the abrasion losses of the various rubbers to differing extents, though it is not clear to what this should be ascribed. CSPE occasionally appeared to be anomalously high, though not at any consistent time. The doubtful columns in section 5 did not seem to play a part in modifying the results.

6.12 Rubber × load interaction (RL)

The abrasion of the various rubbers was not affected by the load during exposure. The interaction is therefore not listed in Table 7.

6.13 Rubber × site interaction (RS)

The abrasion of the rubbers was affected by the site. The natural-rubber at PERME and PU at Innisfail in set (c) had the poorest results (see FRS and FRTS interactions).

6.14 Time × load interaction (TL)

Time of exposure did not increase the effect of load on abrasion.

6.15 Time × site interaction (TS)

The sites differed at different times of exposure. In sets (d) and (i), 12 months at PERME gave high abrasion, as did 6 months at Innisfail, though the latter result is anomalous.

6.16 Load × site interaction (LS)

The effect of site was not dependent on load during exposure. The interaction is therefore not listed in Table 7.

6.17 FRT interaction

This interaction was significant in sets (c), (e), (f) and (h), but not in (a) or (g). Natural-rubber on nylon at 12 months and, more particularly, PU on nylon at 6 and 12 months in sets (c) and (h) gave abnormally high abrasion losses (see FRTS interaction).

6.18 FRL interaction

The FR interaction was not dependent on load during exposure, and is therefore not listed in Table 7.

6.19 FRS interaction

Natural-rubber on nylon did rather badly at PERME. In addition, CSPE on nylon was similarly poorer at Cloncurry in set (b), and PU on nylon at Innisfail in set (c).

6.20 FTL interaction

The FT interaction was not dependent on load during exposure, and is therefore not listed in Table 7.

6.21 F1S interaction

In set (c), the significance of this interaction seems to have been due to the somewhat poorer abrasion performance of nylon and cotton fabrics at Innisfail after 6 months, whilst in set (d) it was due to the nylon and cotton at PERME after 12 months.

6.22 FLS and RTL interactions

The FS and RT interactions were not dependent on load during exposure, and are therefore not listed in Table 7.

6.23 RTS interaction

The significance of this interaction seems to have been due to the greater abrasion loss in natural-rubber after being at PERME for 12 months.

6.24 TLS, LSR and FRTL interactions

The TS, RS and FRT interactions were not dependent on load during exposure, and are not listed in Table 7.

6.25 FRTS interaction

The significance of this interaction appears to have been largely due to the poorer performance in abrasion of PU on nylon at Innisfail after 6 months, though the result is anomalous in that it is higher than either the 6S results or the average of the 3 and 12 month results.

6.26 FTLS, FLSR and RTLS interactions

The FTS, FRS and RTS interactions were not dependent on load, and are not listed in Table 7.

7 CONCLUSIONS

- (1) The hydrostatic head and mass loss on abrasion of nylon and cotton fabrics of similar mass per unit area, and coated with natural, neoprene, PU or CSPE rubbers, have been determined after exposure to weathering in UK or Australia for up to 1 year under a load of 1% or 10% of the nominal breaking load.
- (2) The expected decrease in hydrostatic head with abrasion was not generally confirmed; correlations between them were low.
- (3) For a given amount of abrasion on nylon, the hydrostatic head of PU coating was low, whilst for neoprene it was high.
- (4) Abrasion losses from nylon were about 40% higher than from cotton.
- (5) CSPE suffered more abrasion losses than the other rubbers, especially on nylon, but were less affected by weathering.
- (6) Natural-rubber lost more in abrasion than did neoprene or PU, especially at PERME.
- (7) PU had the lowest abrasion loss and least susceptibility to weathering, except at Innisfail, though the coating softened and tended to spread out rather than be removed.
- (8) Neoprene lost more in abrasion when on cotton than when on nylon.
- (9) The effect of load during exposure, whether as a main factor or in an interaction, had a negligible effect on abrasion.

[able |

ABRASION AND CORRESPONDING HYDROSTATIC HEAD OF WEATHERED COATED FABRICS

Site		Cont	Controls							PERME	ME			!	:	
Time, months	Original	inal	Final	al		3				9				12	2	
E4					_		10		_		10		_		01	
	B	q	В	q	æ	q	B	q	в	q	rg .	q	В	ą	В	þ
Rubber																
Natural	0.21	245	0.237	691 881	0.28	95	0.28	95	0.210	32	0.186	22 15	0.167	42 36	0.167	22 28
Nylon Neoprene	0.28	272	0.273	268	0.30	.272	0.39	258 272	0.364	>322 268	0.370	308	0.332	·268 ·268	0.300	191
n. L	0.23	281	0.177	7.7	0.20	7 7 7 7 1 7 1	0.19	27	0.181	30	0.132	12	0.135	9 20	0.092	~! <u>E</u>
CSPE	0.78	95	0.590	32	0.77	177	0.65	150	0.362	241	0.417	265 222	0.519	121	0.496	134
Natural	0.13	190	0.201	76 214	0.33	41	0.28	163	0.241	27	0.287	4:24	0.283	19 25	0.224	<u>7</u> 0
Cotton Neoprene	0.19	82	0.333	59 74	0.25 0.26	272 245	0.27	177	0.258	221	0.221	228 245	0.374	100	0.309	53 127
P.C.	0.29	177	0.246	134	0.33	204	0.29	41	0.128	÷ 308	0.138	70	0.228	50	0.195	* 50
CSPE	0.23	231 231	0.540	197	0.49	218 272	0.52	272 272	0.404	230	0.435	>322	0.598	51 82	0.511	88 25

Table 1 (continued)

		T			20	കമ		C) 05:				
		01		1	30	86	<u> </u>	32	75 87			
	12		в		0.337	0.423	; ;	0.626 0.603	0.390	i 1	l 1	1 1
	_		q		36	241	27	28	69	93	41	134
			ष		0.328	0.488	0.143	0.555	0.379	0.365	0.171	0.591
		0	p,		10	>268	1 1	14	53	1 1	·268 29	1 1
urry	9	01	В		0.277	0.405	1 1	0.590	0.325	1 1	0.219	1 1
Cloncurry			ф		150	>268	45	63	38 ·268	65 174	>268	181
			в		0.259	0.421	0.101	0.549	0.331	0.328	0.245	0.503
			þ		70 70	255 >268	208	214	214	65	>268	194 95
	3	01	а		0.207	0.329	0.080	0.476	0.227	0.295	0.183	0.432
			q		08 07	261 >268	15	60 75	26 163	94 70	45	45 82
		_	B		0.191	0.350	0.111	0.461	0.261	0.268	0.182	0.463
)	q		16 28	×268 ×268	16	70 78	56 72	93	62 54	60 134
ERME	89	01	a		0.200	0.297	0.154	0.511	0.258	0.293	0.191	0.486
PEI	9		q		45	>268	28	118	161	85	30	134
		1	B		0.194	0.350	0.132	0.577	0.317	0.342	0.255	0.514
Site	Time, months	evel, Z	Test	Rubber	Natural	Neoprene	H	CSFE	Natural	Cotton Neoprene	JA	CSPE
Si	Time,	Load level,	Te	Fabric	Nylon	Nylon	Nylon	Nylon	Cotton	Cotton	Cotton	Cotton

Table 1 (continued)

Site			Cloncurry	urry					Innis	Innisfail			
Time, months	ıths		89					3			9		
Load level,	1, %	_		10		_		10		_		10	
Test		а	q	æ	q	В	q	а	q	a	q	а	q
Fabric Ru	Rubber												
Nylon Nat	Natural	0.290	92	0.301	16	0.195	84	0.213	268	0.278	47	0.236	19 28
Nylon Neo	Neoprene	0.484	268 >268	0.372	221 134	0.252	287	0.268	>268	0.334	>268	0.321	>268
Nylon	PU	0.055	60	1 1	1 1	0.089	30	0.078	*	0.402	7	0.303	9
Nylon C	CSPE	0.610	126 80	0.550	26 80	0.379	244	0.425	94	0.417	21 87	0.347	72 80
Cotton Nat	Natural	0.358	20 52	0.303	58	0.275	121	0.208	80	0.316	21 70	0.298	75 52
Cotton Neo	Neoprene	0.326 0.289	8 *	0.292	121 134	0.290	85 75	0.270	181 90	0.283	90	0.228	48 39
Cotton	PU	0.212	·268 ·268	0.250	150 241	0.119	85	0.130	45	0.392	10	1 1	1 1
Cotton C	CSPE	0.589	52 126	0.561	116 50	0.450	>268	0.463	55 87	0.491	127	0.512	83

Table 1 (concluded)

2.2

					Inni	Innisfail			
Time, months	S		_	12				9	
Load level,	2 .	-		01		-		01	
Test		а	Р	а	q	в	q	а	q
Fabric Rub	Rubber								
Nylon Natu	Natural	0.344	18	0.435	8 6	0.333	55 72	0.337	13
Nylon Neop	Neoprene	0.432	67 93	0.385	43	0.491	273	0.437	126
Nylon P	PU	0.303	6 80	l i	1 1	0.081	45	1 1	1 1
Nylon CS	CSPE	0.774	42	0.647	19	0.805	20	0.625	20
Cotton Natu	Natural	0.351	88 137	0.343	89 90	0.351	88	0.270	89
Cotton Neop	Neoprene	0.367	62 57	1 1	1 1	0.332	85	0.345	47
Cotton	PU	0.516	12	* 0.259	* 0	0.264	23	0.211	22 34
Cotton CS	CSPE	0.569	41	0.541	55	0.626	134 >268	0.496	59

NOTES Test a Abrasion, total mass loss from both sides, g, for number of cycles used in test

Test b Hydrostatic head, cm head of water to produce first bubble, on abraded specimen

Duplicate results refer to replication

- Specimen lost or damaged during exposure

No test made

Beyond range of apparatus to measure

Table 2

ABRASION OF WEATHERED COATED FABRICS, g/m2 PER 1000 CYCLES

27 77 79 77 75 77 79		T IV.II					Cloncurry	ry	
Natural 1 1 1 1 1 1 1 1 1		9	12	S9		3		4	
Rubber 35.80 34.70 74.97 Natural 29.08 25.41 74.97 Neoprene 14.72 14.86 53.54 PU 18.44 16.74 21.04 CSPE 99.07 109.46 121.04 Natural 15.80 16.95 66.94 Neoprene 21.68 27.88 44.62 18.74 25.73 40.16	1 10 1	1 01	10		01	_	10	_	91
Rubber 35.80 34.70 74.97 Natural 29.08 25.41 74.97 Neoprene 14.72 14.86 53.54 PU 20.53 19.42 21.04 CSPE 104.42 109.46 121.04 Natural 15.80 16.95 66.94 Neoprene 21.68 27.88 44.62 Neoprene 18.74 25.73 40.16		() E	H	1	-r	×	1	У.	z
Natural 35.80 34.70 74.97 Neoprene 14.72 14.86 53.54 Neoprene 17.41 13.96 51.76 PU 20.53 19.42 21.04 CSPE 104.42 109.46 121.04 Watural 15.80 16.95 66.94 Neoprene 21.68 27.88 44.62 18.74 25.73 40.16									
Neoprene 14.72 14.86 53.54 PU 20.53 19.42 21.04 PU 18.44 16.74 21.04 CSPE 104.42 109.46 121.04 99.07 109.79 99.95 Natural 15.80 16.95 66.94 Neoprene 21.68 27.88 44.62 18.74 25.73 40.16		73.58 129.40 78.64 125.17	.40 111.78	80.75	93.82	43.91	49.39	62.07 55.71	82.41
PU 18.44 16.74 21.04 16.74 21.04 16.74 21.04 21.04 29.07 109.76 121.04 39.07 109.79 99.95 11.78 15.19 50.87 Neoprene 21.68 27.88 44.62 18.74 25.73 40.16		39.12	54.65 50.53 42.61 46.75	42.38	38.34	48.40	43.87	51.84	46.95
CSPE 104.42 109.46 121.04 99.07 109.79 99.95 Natural 15.80 16.95 66.94 15.19 50.87 Neoprene 21.68 27.88 44.62 18.74 25.73 40.16		19.61	13.10 7.84 12.43 10.49	14.73	27.71	13.96	9.94	10.51	1 +
Natural 15.80 16.95 66.94 11.78 15.19 50.87 Neoprene 21.68 27.88 44.62 18.74 25.73 40.16		117.17 107.25 149.63 108.83	.25 103.17 .83 104.33	133.79	149.48	138.56 138.29	142.17	101.36	108.97 101.06
Neoprene 21.68 27.88 44.62 18.74 25.73 40.16		59.60 95.89 - 82.40	.89 103.57 .40 85.53	48.15	65.38	45.62	37.38	43.89	51.72
	44.62 41.50 71.14 40.16 51.76 73.33	59.06 60.97	87.68 93.55 79.68 77.21	69.54 56.96	61.26	53.90	52.65	67.76 62.57	i i
Cotton PU 15.93 11.53 25.24 22.18 15.68 10.87 18.35 22.18	- 2	15.24	14.15 16.07 17.38 15.25	14.70	11.34	16.60 16.70	16.64 16.94	19.80	18.65
Cotton CSPE 31.14 51.41 49.96 52.70 34.01 44.81 41.39 45.78		31.92	46.12 42.20 42.94 37.07	57.18	40.04	47.17	40.81 36.12	53.80 54.20	1 1

table reconcluded)

site Cloncurry d level, 1 10 1 10 1 d level, 1 10 1 10 1 column c. 3 6 8 8 8 ic Subber c. 3 6 8 8 8 3	Tipistail					43.09 54.86 62.38 57.40 53.10 39.72 31.03	28.80 38.07 37.19 47.80 57.43 36.94 57.17 33.59 39.50 40.03 46.56 57.07 29.59 52.70	7.25 145.87 119.31 53.80 - 13.37 - 8.23 125.03 130.84 54.32 - 10.55 -	88.35 116.87 113.98 85.75 74.68 80.76 74.42	33.31 61.70 71.45 52.68 51.30 40.35 38 35.07 60.55 64.v2 48.47 49.58 35.39 35.6.	52,33 59,92 69,54 80,32 - 55,50 52,67 48,80 57,81 69,79 76,54 - 50,13 43,87	14.50 64.20 - 33.06 - 18.08 19.82 10.44 60.25 - 22.03 24.19 16.32 19.33	69.22
Function Construction Function Funct	Innistail	٤	=	-		60.58	37.19 40.03	119.31	115.81	71.45	69.54	1 1	56.44
Tevel,	1	3	2	-		41.17	28.80	8.23	45.85 88.35	33.31 35.07	52.33 48.80	14.50	45.03
Transport Tran													
12 12 12 13 14 15 15 15 15 15 15 15	onentre	Ê	-	¢.				\$.7 .0 .0 .0			48.30	14.00	46.38
nonths level, ' lumn Rubber Matural Meogrene RE Natural Newprene RE CSPE (SPE		2	2										
	Site	lime, cuantus	Load level,	Column	abric Rubber	Nylon Satural	Sylon Seeprene	Nyton : C			Cotton Neoprene	Cotton FT	Cotton (SPE

Table 3

CORRELATION OF ABRASION AND HYDROSTATIC HEAD

Multiple correlation Mean Moan	abrasion hyc	Linear Quadratic of g cm water a a freedom	1.9 49 0.251	6.0 13 0.212	1.0 1.6 13 0.265 64	1.3 13 0.288	24 0.374	0.1 4 0.337	0.7 3.5 5 0.416 193	15.2	0.1 37 0.168	2.6 13 0.156	0.6 0.1 7 0.105 6.3	0.3 7 0.233	, ,	1.2 6.6 13 0.540 124	0.7 13 0.542	7.0	2,000	11 0.277		57.0 11 0.0
Я.	Coeffi-	cient b	0.29	58.0	0.41	79.0	0.33	0.68	0.67	£8.0	0.15	0.72	0.30	0.75	0,40	19.0	77.0	0.67	: : : : : : : : : : : : : : : : : : :	09.0	9.66	J
ıtion	Error	of freedom	50	71	<u>-7</u>	4	25	ı,	ټ	ဆ	38	<u>-7</u>	эc	œ	30	-2	<u>.1</u>	<u>-†</u>	[\ T ·		<u> </u>	7
Linear correlation	Variance	ratio	2.6	32.5	0.1	7.3	7.	4.0	0.5	0.5	8.0	10.2	0.8	9.6	7.3	8°C	6	9.01	∞; •1	, ,	8. 7	0.5
Line	-ijjecj	cient	-0.22	+0.84	-0.25	-0.59	-0.22	+0.67	-0.27	-0.25	-0.14	+0.65	-0.31	-0.74	-0.36	-0.23	-0.39	99.0-	-0.30	+0.58	-0.52	-0.13
	No. of	en Theor	52	16	91	16	27	7	80	01	07	91	10	0	52	16	91	91	67	71	1.5	16
	Site		A11	PERME	Cloncurry	Innisfail	л11	PERME	Cloncurry	Innisfail	A11	PERME	Cloncurry	Innisfail	A11	PERME	Cloncurry	Innisfail	A11	PERME	Cloncurry	Innisfail
	Rubber		Natural		•		Neoprene				PU:		-		CSPE		-		Natural		•	
	Fabric		Nylon				Nylon				Ny.lon				Nylon				Cotton			

lable i concluded)

				_	_				_					
:	Sectable	Bead, Cm water		1.7.1	30	7.7	£	- 3c		8.7	7	- 3 - 4 - 1	77	27
Mean	abrasien		0.145	0.246	0.304	0.243	0.234	0.234	0.203	0.248	(57.0	0.483	0.526	0.506
	l rrer	degrees of Treedom	-		œ	=	33	3	`1	10	^: *1	! ~!	5	=
Multiple correlation	Variance ratio	ouadratic a	8.1	9.0	~ · · ·	တ္	~1 ()	0.8	8.0	2.3	α Ξ	-	0.0	0.3
Multiple	Varian	Lincar	2.6	7.5	1.0		0.1	2.0	~:	4.3	α;	. T	0.1	0.1
	Coeffi-	o p	0.31	0.62	0.23	6,47	0.26	65.0	0.58	0.73	0.34	0.52	0.10	0.18
tion	Error	of freedom	(1)	13	7	7	34	10	5	=	7,3	13	01	2
Linear correlation	Variance	ratio	9.5	~. œ	7.0	€.°	0.0	0.7	~:	7.8	8.7	3.2	0.1	7.0
Line	- interest	ient	\$7 . 0−	-0.62	-0.12	-0.14	-0.04	+0.42	+0.44	-0.66	-0.32	-0.46	+0.10	+0.10
	No. of		ব	15	=	7	36	7	7	13	45	1.5	12	7_
	Site		A11	FERME	Cloneurry	Innisfail	A11	PERME	Cloncurry	Innisfail	A11	PERME	Cloncurry	Innisfail
	Rubber		Neoprene				.14				CSPE			
	Fabric		Cotton	-			Cotton				Cotton			

NOTES a One degree of freedom b Sign not defined

Table 4

101	ונוע הלרעדיון נון		
Set	No, of highest ranges omitted	No. of degrees of freedom	-1 -
(a)	9	51	16.2
(p)	0	95	70.8
(a)	۲,	77	61.2
(c))	66	132.2
(c)	۲,	93	118.8
(p)	0	57	9.87
(e)	Э	61	103.4
(5)	7	54	75.9
(f)	S	7.5	76.5
(£)	~	77	59.4
(8)	•	7.5	9.65
(h)	a	7.7	58.0
(i)	÷	7.1	85.5

Table 5

AMALYSTS OF ERRORS

									1
					Set				
Lioberty	(F)	(4)	(a) (b) (c) (c) (d) (b)	(g)	(e)	(1)	(3)	(3)	
Error variance	8.303	21.349	8.303 21.399 24.400 30.654 47.391 27.262 63.122 21.175 34.523	30.654	47.391	47,391 27,262	63.122	21,175	36.523
Standard deviation	2.882	4.6.26	2.882 4.626 4.946 5.537 6.884 5.221 7.945 4.602 6.043	5.537	6.884	5.221	7.945	7.600	b.(%.3
Coefficient of variation, 7	8.8	1.,	8.8 7.7 4.3 9.3 12.2 10.7 18.1 9.9 8.4	4.3	7.2	10.7	18.1	5.5	.† &
Set mean, g/m per 1000 cycles	32,91	85.75	32.91 77.48 53.43 59.47 56.59 48.92 43.86 46.40 72.32	54.47	56.59	78.43	43.86	07.97	72.32
Number degrees of freedom in error 16 48	16	z,	ŧ	.7 æ	· <u>†</u>	87 72 87	20	œ,	- 1

Table 6

TABLE OF VARIANCE RATIOS

7,7,1	No. of	No. of	No. of					Set				
Lilect	degrees of freedom	levels	per level	(a)	(b)	(c)	(P)	(3)	(f)	(μ)	(h)	(i)
ثقب لقب ثقب ثقب		0000	16 48 96 64	372.3	327.2	640.7	157.4	287.0	375.1	124.7	273.8	
~~~~~		444 TE	8 24 48 32 48	696.5	726.3	851.1		560.6	588.9	238.1	340.4	1389.6
		044444	16 48 24 32 16 36	7.4		88.5	84.7	22.0	105.8	20.5	201.3	16.8
	<b>-</b>	010131	48 64 72		2.2		5.	0.3				0.3
s s s	222		32 64 48		41.1	27.3	166.2			_		156.2

Table 6 (continued)

	(i)					26.4	0.1
	(h)	239.1	13.7			48.5	
	(g)	6.601	1.6			5.6	
	(J)	308.6	1.5			38.3	
Set	(e)	280.5	7.4	0.2		20.9	0.7
	(p)		1.3	1.5	34.8		
	(c)	552.4	3.0		10.6	30.6	
	(b)	348.6		1.3	19.0		0.5
	(3)	247.9	4.5			9.7	
No. of	per level	+ C 52	8 24 12 16 8	24 32	16 32	77.8 4.2	12 16 24
No. of	levels	∞ ∞ ∞ ∞	4 ∞ ∞ ∞ <u>∵</u>	44	9	8 16 16 24 12	ထာထင္
No. of	of freedom	. m m m m	- m m m m		C1 (1	ღთა <u>გ</u> •	3
1000	דוובנו	# # # # #		FL	FS	RT RT RT RT	교교교

Table 6 (continued)

	(E)	56.5	2.2	17.5	2.9		T	1	T
	-	in in		+ ==	-		+	<del> </del>	
	(£					14.0			
	(g)					2.3			
	(£)					6.4			
Set	(e)		1.0			8.0	2.2		2.5
	(p)		2.7	25.6	4.1				1.2
	(c)	91.9		64.0		18.4		24.0	
	(e)	33.7			0.5		2.6	68.1	
	(a)					1.7			
No. of results	per level	8 16 16	12 16 18	16 8 12	16 24	040	9	4 8	9 8
No. of	revers	12 9	∞ ∞ ∞	12 12 12	9	16 32 32 48	16 16	24 24	16 16
No. of degrees	of freedom	9 7	r r r	9 9	2.5	3 9 9	3	9	3.3
Effect		RS RS	111	TS TS TS	LS LS	FRT FRT FRT FRT	FRL FRL	FRS	FTL

Table 6 (concluded)

	(i)			2.0	17.7	1.7	2.1					2.2
	(h)											
	(g)											
	(f)											
Set	(e)			1.3				1.7				
	(P)	11.5	4.2			1.8				1.2		
	(c)	14.4			29.5				15.5			
	(b)		3.6				2.5				1.3	
	(a)											
No. of	per level	80 4	8	7	7	7	8	2	2	2	2	2
No. of	levels	24 24	12	32 24	9£ 36	24 24	24 18	79	96	87	87	72
No. of	of freedom	9	2	6.9	18	9	9	6	18	9	9	12
200	בוופנו	FTS FTS	FLS	RTL RTL	RTS RTS	71.S 71.S	LSR LSR	FRTL	FRTS	FTLS	FLSR	RTLS

Table 7

MEAN ABRASION MASS LOSSES, 1/m2 PER 1000 CYCLES

3000						Set				
נפרחו	T-0.61	(a)	(b)	(5)	(P)	(e)	(J)	(8)	(h)	(i.)
4	Nylon Cotton	42.74 23.08	56.02 38.93	62.48 44.38	66.56 52.38	66.90 46.28	59.24 38.59	52.92 34.81	54.17 38.62	
Ж	Natural Neoprene PU CSPE	23.09 19.40 16.14 73.01	51.41 46.25 15.12 77.12	58.79 52.30 26.18 76.45		77.32 53.31 17.06 78.67	59.20 43.03 16.25 77.18	39.62 41.65 16.80 77.38	41.84 39.29 32.71 71.74	66.56 43.07 107.33
T	Original Final 3 months 6 months 12 months	31.51		48.17 58.54 59.92 47.08	51.41 62.35 72.97 51.16	52.54 52.76 64.76 56.30	31.51 34.29 53.47 51.48 66.23 56.50	31.51 34.29 49.65 49.52 53.56 44.63	31.51 34.29 41.36 74.62 56.49 40.09	70.23 74.83 76.60 67.62
S	PERME Cloncurry Innisfail		52.54 49.63 40.25	56.93 50.37 52.99	77.32 50.77 50.33					83.15 72.46 61.35
FR	Nylon/Natural Nylon/Neoprene Nylon/PU Nylon/CSPE Cotton/Natural Cotton/Neoprene Cotton/Neoprene Cotton/CSPE	31.25 15.24 18.78 105.68 14.93 23.55 13.50 40.34	56.54 42.65 13.37 111.50 46.28 49.84 16.87	66.58 43.25 32.14 107.96 51.01 61.35 20.22 44.93		90.43 43.03 18.14 115.99 64.21 63.59 15.98	72.61 34.63 17.51 112.19 45.79 51.43 14.99	46.09 35.92 18.87 110.79 33.14 47.38 14.73	45.67 31.18 41.20 98.62 38.01 47.40 24.22 44.87	
F.S	Nylon/PERME Nylon/Cloncurry Nylon/Innisfail Cotton/PERME Cotton/Cloncurry Cotton/Innisfail		61.76 61.35 44.94 43.33 37.91 35.57	67.49 60.06 59.90 46.36 40.68 46.09	90.43 57.33 51.94 64.21 44.22					

Table 7 (continued)

							Set						
Factor	Level		(a)				(c)				(a)		
		Natural	Neoprene	Лd	CSPE	Natural	Natural Neoprene	ан	CSPE	Natural	Natural Neoprene	Лd	CSPE
RT	Original Final 3 6 12 65	23,12 23,06	18.14	17.64 67.16	67.16	53.09 55.71 72.76 49.61	46.81 53.05 62.31 47.01	15.27 77.50 42.79 78.60 33.00 71.61 13.64 78.06	77.50 78.60 71.61 78.06	68.16 67.80 105.13 68.18	46.28 51.31 66.58 49.06	21.27 16.32 13.34 17.32	21.27 74.44 16.32 75.61 13.34 73.99 17.32 90.64

						Set			
Factor	Level		(f)				(g)		
		Natural	Natural Neoprene	Лd	CSPE	Natural	Neoprene	PU	CSPE
RI	Original Final 3 6 12 6S	23.12 23.06 66.94 67.74 108.22 66.14	18.14 20.61 47.52 53.73 66.16	17.64 14.64 21.42 14.90 14.26	67.16 78.87 78.02 69.33 78.28 93.22	23.12 23.06 42.94 50.26 54.50 43.81	18.14 20.61 50.32 56.60 58.02 46.20	17.64 14.64 14.65 14.65 27.49 11.73	67.16 78.87 90.70 70.58 74.21 76.80

					Set			
Factor	Level		(h)				(i)	
		Natural	Natural Neoprene	Лd	CSPE	Natural	Natural Neoprene	Haiso
KT	Original Final 3 6 12 6S	23.12 23.06 49.38 61.14 55.56 38.77	18.14 20.61 42.60 48.82 62.76 42.82	17.64 14.64 9.76 98.84 40.80 14.58	67.16 78.87 63.71 89.69 66.85 64.18	56.54 70.19 80.65 58.87	42.65 40.52 51.57 37.52	111.50 113.78 97.59 106.46

Table 7 (continued)

		CSpE	1	115 00	113 61	92.40
	(i)	CSPE Natural Neoprene		43.03	46.46	39.71
		Natural		90.42	57.33	40.99 70.48 51.94
		CSPE		79.28	79.57	70.48
		PU		16.30	21.24	40.99
Set	(c)	Natural Neoprene PU			52.79	
		Natural				51.24
		CSPE		74.44	91.35	9.93 65.57
		ЫI		21.27 74.44	14.16 91.35	9.93
	(b)	Natural Neoprene	Т	46.28		41./4
		Natural		98.16	42.30	43.1/
	Level			PERME	Loncurry	TIPISIUIT
	Factor			00		

		89	86.31 64.95 51.60
	( <u>i</u>	12	90.98 74.60 64.95
		9	78.92 72.37 72.31
		3	75.49 77.94 57.26
		89	68.18 45.65 39.66
Set	(p)	6 12 65 3	53.49         51.48         66.23         56.50         68.16         67.80         105.13         68.18         75.49         78.92         90.98         86.31           49.65         49.52         57.67         44.63         42.30         56.26         58.88         45.65         77.94         72.37         74.60         64.95           41.36         74.62         55.87         40.11         43.77         62.99         54.91         39.66         57.26         72.31         64.95         51.60
Š	J J	9	67.80 56.26 62.99
		2	68.16 42.30 43.77
		6 12 6S	56.50 44.63 40.11
	(c)	12	66.23 57.67 55.87
	Ů	9	51.48 49.52 74.62
		3	53.49 49.65 41.36
	Factor Level		PERME 53.49 51.48 66.23 56.50 68.16 67.80 105.13 68.18 75.49 78.92 90.98 86.31 Cloncurry 49.65 49.52 57.67 44.63 42.30 56.26 58.88 45.65 77.94 72.37 74.60 64.95 Innisfail 41.36 74.62 55.87 40.11 43.77 62.99 54.91 39.66 57.26 72.31 64.95 51.60
	Factor		TS

Table 7 (continued)

Factor Level (f)  Natural Neoprene PU Final 32.44 16.06 19.48 1 30.66 14.41 18.08 1 3 74.97 52.65 21.04 1 6 85.12 35.22 17.95 1 12 127.28 48.63 12.76 1 65 85.81 40.81 15.73 1 Fix!  Coriginal 13.79 20.21 15.80 Final 16.07 26.80 11.20 Final 58.90 42.39 21.80 5 50.37 72.24 11.86							S	Set			
Original 32.44   16.06   19.48   15.104   18.08   30.66   14.41   18.08   30.66   14.41   18.08   12   127.28   12.75   127.28   12.75   15.73   15.73   16.07   26.80   11.20   15.80   11.20   12   15.80   11.20   12   15.80   11.20   12   12   12   12   12   12   12	Factor	i	evel		(£)				(h)		
(Original 32.44 16.06 19.48 Final 30.66 14.41 18.08 3 .66 14.41 18.08 3 .65 21.04 6 85.12 35.22 17.95 127.28 48.63 12.76 6S 85.81 40.81 15.73 (Original 13.79 20.21 15.80 Final 16.07 26.80 11.20 3 58.90 42.39 21.80 5 50.37 72.24 11.86				Natural	Neoprene	Ωd	CSPE	Natural	Neoprene	îы	CSPE
Final   30.66   14.41   18.08   3.4.97   52.65   21.04   6   85.12   35.22   17.95   12   127.28   48.63   12.76   65   85.81   40.81   15.73   15.73   16.07   26.80   11.20   3   58.90   42.39   21.80   50.37   72.24   11.86   12.76   12.80   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00   12.00			(Original	32.44	16.06	19.48	101.74	32,44	16.06	19.48	101.74
Mylen 3 74.97 52.65 21.04 85.12 35.22 17.95 12 127.28 48.63 12.76 6S 85.81 40.81 15.73 (Original 13.79 20.21 15.80 Final 16.07 26.80 11.20 3 58.90 42.39 21.80 65 50.37 72.24 11.86 12.76 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80			Final	30.66	14.41	18.08	109.62	30.06	14.41	18.08	109.62
Original 13.79 20.21 15.73 (Original 15.07 26.80 11.20 15.80		1	3	74.97	52.65	21.04	110.50	50.16	37.94	8.16	90.06
(Original 13.79 20.21 15.73 (Original 15.07 26.80 11.20 3 58.90 42.39 21.80 50.37 72.24 11.86 12.76 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12		ayten	9	85.12	35.22	17.95	111.30	61.16	38.78	135.45	118.92
(Original 13.79 20.21 15.73 Final 16.07 26.80 11.20 3 58.90 42.39 21.80 5 50.37 72.24 11.86 12 89.14 83.68 15.76	_		12	127.28	48.63	12.76	108.04	60.55	47.08	54.06	86.10
Cotton (Original 13.79 20.21 Final 16.07 26.80 42.39 42.39 50.37 72.24 12 89.14 83.68	** :		S9	85.81	40.81	15.73	131.96	39,66	32.82	11.96	85.24
Final 16.07 26.80 3 58.90 42.39 5 50.37 72.24 12 89.14 83.68	¥		(Original	13.79	20.21	15.80	32.58	13.79	20.21	15.80	32.58
3 58.90 42.39 5 50.37 72.24 12 89.14 83.68			Final	16.07	26.80	11.20	48.11	16.07	26.80	11.20	48.11
6 50.37 72.24 12 89.14 83.68		*****	3	58.90	42.39	21.80	45.54	48.60	47.26	11.34	37.36
89.14 83.68		201101	9	50.37	72.24	11.86	28.70	61.12	58.86	62.22	60.47
10 0			12	89.14	83.68	15.76	44.53	50.58	78.43	27.54	47.60
45.48 53.25			S9	46.48	63.25	13.49	24.48	37.87	52.82	17.20	43.12

Table 7 (continued)

					Set	ب			
Factor	Level		(b)				(c)		
		Natural	Natural Neoprene	лd	CSPE	Satural	CSPE Matural Neoprene	Pť	CSPE
	Nylon Cloncurry Innisfail	76.98 46.50 46.14	48.02 45.34 34.56	20.36 11.60 7.95	20.36 101.43 9 11.60 141.99 5 7.95 91.08	93.30 53.51 52.94	44.33 46.26 39.15	16.78 27.14 52.41	16.78 115.45 27.14 113.34 52.41 95.08
FRS	PERME Cotton Cloncurry Innisfail	59.35 38.10 41.40	44.51 56.16 48.91	21.99 16.72 11.91	47.46	61.22 42.25 49.54	65.39 59.31 59.34	15.73 15.34 29.58	43.12 45.79 45.89

(b) (d)	6 12 6S 3 6 12 6S	PERME 64.79 62.40 74.18 68.58 76.98 80.61 118.42 85.71 Cloncurry 60.35 54.08 73.08 52.74 46.50 68.64 64.24 49.93 Innisfail 46.58 88.58 61.95 42.48 46.14 61.32 59.31 40.98 FERME 42.19 40.56 58.28 44.42 59.35 54.99 91.85 50.66 Cloncurry 38.96 44.96 42.25 36.53 38.10 43.88 53.53 41.38 Innisfail 36.14 60.67 49.78 37.75 41.40 64.66 50.51 38.33
	3 6	
Level		Nylon Cloncurry 60 Innisfail 46 TeRME 42 Cotton Cloncurry 38 Innisfail 36
Factor		FTS

Table 7 (continued)

							Set			
Factor	Level	el		٦	(c)			(i)		
			3	9	12	89	3	9	12	99
	awasa	a1 ene	66.94	66.94 67.74 47.52 53.73		66.14 52.03	76.98 48.06	80.61 36.49	118.42	85.71 38.93
	T. F. K.	PU CSPE	21.42 78.08	14.90 69.54	14.26 76.28	14.61 93.22	101.43	122.35	105.90	134.28
Ø E		Natural Neoprene	42.94 50.32	50.26 56.60	54.50		46.50	68.64 46.38	64.24 53.90	49.93
2		PU CSPE	14.65 90.70	14.64 76.58	43.94	76.80	141.99	102.08	105.67	104.68
	Inniefail	Natural   Neoprene	49.38		55.56 62.76	38.88	46.14 34.56	61.32	59.31 52.16	40.98
	1101611111	PU CSPE	9.76	98.84	40.80		91.08	116.90	81.21	80.41

Table 7 (concluded)

. S					Set	(c)	
1.46 [6]		13631		3	9	12	89
		PERME	Natural Neoprene PU CSPE	74.97 52.65 21.04 110.50	85.12 35.22 17.95 111.30	127.28 48.63 12.76 108.04	85.81 40.81 15.73 131.96
	Nylon	Cloncurry	Natural Neoprene PU CSPE	44.99 45.33 12.66 138.42	58.89 48.04 10.22 99.15	59.98 48.71 76.07	50.18 42.96 9.60 108.22
DTC		Innisfail	Natural Neoprene PU CSPE	50.16 37.94 8.16 90.06	61.16 38.78 135.45 118.92	60.55 47.08 54.06 86.10	39.89 32.82 11.96 85.24
		PERME	Neoprene PU CSPE	58.90 42.39 21.80 45.68	50.37 72.24 11.86 27.80	89.14 83.68 15.76 44.53	46.48 63.25 13.49 54.48
	Cotton	Cloncurry	Natural Neoprene PU CSPE	40.90 55.32 16.65 42.96	41.63 65.16 19.06 54.00	49.04 67.34 11.80 40.84	37.44 49.44 13.86 45.38
		Innisfail	Natural Neoprene PU CSPE	48.60 47.26 11.34 37.36	61.12 58.86 62.22 60.47	50.58 78.43 27.54 42.60	37.87 52.81 17.20 43.12

Table 8

DIFFERENCES BETWEEN ABRASION MEANS, g/m² PER 1000 CYCLES, AT 99.9% PROBABILITY

Effect					Set	<del></del>			
Effect	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)
F R T L	4.10 5.79 4.10	3.30 4.67 3.30 4.05	2.43 3.43 3.43 2.97	3.96 5.59 3.96 4.84	4.20 5.94 5.94 4.20	3.73 5.28 6.46	5.68 8.03 9.83	3.29 4.65 5.69	4.24 4.90 3.46 4.24
FR FT FL FS RT RL RS TL TS LS	11.58 8.19 11.58	9.35 6.61 8.10 9.35 11.45	6.86 6.86 5.94 9.71 8.41	11.19 7.91 9.69 11.19 13.70 9.69	11.88 11.88 8.40 16.79 11.88	10.55 12.92 18.27	16.05 19.66 27.81	9.30 11.39	12.00 8.49 10.39 9.80 12.00 8.49
FRT FRL FRS FTL FTS FLS RTL RTS TLS LSR	23.17	18.70 22.90 16.19	19.42 16.82 16.82 23.78	22.38 27.40 19.38	33.59 23.75 23.75 33.59	36.55	55.61	32.21	24.01 29.40 24.01 20.79
FRTL FRTS FTLS FLSR RTLS		45.79	47.56	54.81	67.18				58.80

### REFERENCES

No.	Author	Title, etc
1	J.E. Swallow	The flexibility of weathered rubber-coated fabrics.
	M. Webb	RAE Technical Report 77016 (1977)
2	J.E. Swallow	The breaking strength and extension of weathered rubber-coated
	M. Webb	fabrics.
		RAE Technical Report 77031 (1977)
3	J.E. Swallow	The tearing of weathered rubber-coated fabrics.
	A.R. Wakefield	RAE Technical Report 78005, MQAD Report R264 (1978)
4	British Standards	Methods of test for coated fabrics. Method 27 : determination
	Institution	of abrasion resistance.
		BS 3424 (1973)
5	British Standards	Resistance of fabrics to penetration by water (hydrostatic
	Institutation	head test).
		BS 2823 (1968)



### **REPORT DOCUMENTATION PAGE**

Overall security classification of this page

## HALSIMHTED

As far as possible this page should contain only unclassified information. If it is necessary to enter classified information, the box above must be marked to indicate the classification, e.g. Restricted, Confidential or Secret.

	<u> </u>						
1. DRIC Reference (to be added by DRIC)	4. Report Security Classification/Marking						
	RAE TR 80124	N/A	Machania D				
5. DRIC Code for Originator	6. Originator (Corpor	ate Author) Name	e and Location				
7673000W	Royal Aircraft	Establishmen	nt, Farnborough, Hants, UK				
5a. Sponsoring Agency's Co	de 6a. Sponsoring Agenc	y (Contract Auth	ority) Name and Location				
N/A		N	/A				
7. Title Abrasion	and hydrostatic head	l of weather	ed rubber-coated fabrics				
7a. (For Translations) Title	in Foreign Language						
	<b></b>						
7b. (For Conference Papers)	Title, Place and Date of Confe	erence					
3. Author 1. Surname, Initials 9a. Author 2 9b. Authors 3, 4 10. Date Pages R							
Swallow, J.E. Wakefield, A.R. October 31 5							
11. Contract Number 12. Period 13. Project 14. Other Reference Nos.							
N/A N/A Mat 411							
15. Distribution statement (a) Controlled by - DRIC							
(b) Special limitations (if any) —							
16. Descriptors (Keywords) (Descriptors marked * are selected from TEST)							
Abrasion. Hydrostatic head. Coated fabrics. Weathering.							
cach coated with nat polyethylene (CSPE)  Correlations blow.  During abrasic fabrics. CSPE was a	erral rubber, neoprend and exposed to various etween hydrostatic ho on, coated nylon fabrous wost susceptible to a	e, polyureth us weatherin ead and abra ics lost mor brasion, par	a nylon and of a cotton fabric, ane (PU) or chlorosulphonated g conditions, were determined.  sion mass loss were generally  e mass than coated cotton ticularly on nylon, though with				
the lowest mass loss Innisfail. Natural	and least susceptib	ility to exp s on abrasio	ne was worse on cotton. PU had osure conditions, except at n than neoprene or PU, especime effect.				

## END

# 

DTIC