测定介质中的声速 实验报告

蔡丹杨

(北京大学化学与分子工程学院 1700011774)

1 数据分析、处理和结论

首先按照实验要求,调节两个换能器的平行性。随后,适当拉开两个换能器,调节信号发生器的振幅和频率,找到换能器的共振频率为 f=41.224 kHz。读取实验室室温为 $\theta=21.6$ °C。

(1) 极值法测定空气中声速

取定合适距离,不断增大换能器间距,连续记下接收正弦波振幅极大值时的位置 x_i 和峰峰电压 $U_{pp,i}$,然后再沿反方向旋转手轮,不断减小换能器间距,连续记下接收正弦波振幅极大值时的换能器位置 x_i' 和峰峰电压 $U_{pp,i}$ 。分别用逐差法处理数据,结果如表 1、表 2 所示。

编号 <i>y</i>	1	2	3	4	5				
正向位移 x_i/mm	13.202	17.898	22.690	26.878	31.003				
$U_{pp,i}/{ m V}$	13.4	12.9	11.6	9.36	9.08				
编号 <i>y</i>	6	7	8	9	10				
正向位移 $x_i/{ m mm}$	35.232	39.570	43.821	48.170	52.298				
$U_{pp,i}/{ m V}$	8.52	7.64	6.60	5.56	4.44				
逐差序号	1	2	3	4	5				
$1/5(x_{i+5}-x_i)=\Delta x_i/\text{mm}$	4.4060	4.3344	4.2262	4.2584	4.2590				
表 1 正向极值法声速测定结果									
编号 <i>y</i>	1	2	3	4	5				
反向位移 x_i'/mm	14.122	18.360	22.421	26.537	30.868				
$U_{pp,i}^{\prime}/\mathrm{V}$	14.4	13.1	11.6	9.52	9.20				
编号 <i>y</i>	6	7	8	9	10				
反向位移 x_i'/mm	35.301	39.410	43.992	48.241	52.654				
$U_{pp,i}^{\prime}/\mathrm{V}$	8.56	7.12	6.28	5.00	4.64				
逐差序号	1	2	3	4	5				

表 2 反向极值法声速测定结果

对于正向极值法,算得 $\overline{\Delta x}=1/5\sum_{i=1}^5 \Delta x_i=4.2968$ mm, $\sigma_{\overline{\Delta x}}=\sqrt{\frac{\left(\sum_{i=1}^5 (\Delta x_i-\overline{\Delta x})^2}{5\cdot (5-1)}}\approx 0.033$ mm。又仪器使用的手轮的允差为 ± 0.005 mm,故声速的测量结果及不确定度为

$$v_{+} = 2\overline{\Delta x}f = 2 \times 0.0042968 \times 41224 \approx 354.36 \text{m/s}$$

$$\sigma_{\Delta x} = \sqrt{\sigma_{\Delta x}^{2} + \left(\frac{1}{5}\left(5 \times \left(\frac{1}{5} \times 2e/\sqrt{3}\right)\right)\right)^{2}} = \sqrt{0.033^{2} + 0.001^{2}} \approx 0.03 \text{mm}$$

$$\sigma_{v_{+}} = v_{+} \sqrt{\left(\frac{\sigma_{\Delta x}}{\Delta x}\right)^{2} + \left(\frac{\sigma_{f}}{f}\right)^{2}} = 354.36 \sqrt{\left(\frac{0.03}{4.2968}\right)^{2} + \left(\frac{1}{41224}\right)^{2}} \approx 3 \text{m/s}$$

$$v_{+} \pm \sigma_{v_{+}} = (354 \pm 3) \text{m/s}$$

对于反向极值法,算得 $\overline{\Delta x'}=1/5\sum_{i=1}^5\Delta x'_i=4.2916$ mm, $\sigma_{\overline{\Delta x'}}=\sqrt{\frac{\left(\sum_{i=1}^5(\Delta x'_i-\overline{\Delta x'})^2}{5\cdot(5-1)}}\approx 0.029$ mm。又仪器使用的手轮的允差为 ± 0.005 mm,故声速的测量结果及不确定度为

$$\begin{split} v_{-} &= 2\overline{\Delta x'}f = 2\times0.0042916\times41224 \approx 353.83\text{m/s} \\ \sigma_{\Delta x'} &= \sqrt{\sigma_{\overline{\Delta x'}}^2 + \left(\frac{1}{5}\left(5\times\left(\frac{1}{5}\times2e/\sqrt{3}\right)\right)\right)^2} = \sqrt{0.029^2 + 0.001^2} \approx 0.03\text{mm} \\ \sigma_{v_{-}} &= v_{-}\sqrt{\left(\frac{\sigma_{\Delta x'}}{\overline{\Delta x'}}\right)^2 + \left(\frac{\sigma_f}{f}\right)^2} = 353.83\sqrt{\left(\frac{0.03}{4.2916}\right)^2 + \left(\frac{1}{41224}\right)^2} \approx 2\text{m/s} \\ v_{-} &\pm \sigma_{v_{-}} &= (354\pm2)\text{m/s} \end{split}$$

取二者平均值,算得 $v=(v_++v_-)/2=354$ m/s, $\sigma_v=1/2\sqrt{\sigma_{v_+}^2+\sigma_{v_-}^2}=2$ m/s, $v\pm\sigma_v=(354\pm2)$ m/s。

结论:极值法对探测驻波的换能器检测到强度极值时的位置进行测量,利用逐差法处理正反两组测量数据,求得的逐差作为半波长,结合频率可以求得声速。本实验测得声速为 $v + \sigma_v = (354 + 2)$ m/s。

(2) 相位法测定空气中声速

将示波器更换为 X - Y 显示模式,显示屏出现稳定的李萨如图形。正向测量,取定换能器间距合适,不断增大换能器间隔,连续记录下李萨如图形为相同正斜率直线时换能器的位置坐标;随后反向测量,不断减小换能器间距,连续记录下李萨如图形为相同正斜率直线时换能器的位置坐标。作最小二乘法拟合。结果分别如表 3、图 1 所示。

编号 <i>y</i>	1	2	3	4	5	6	7	8	9	10
正向位移 x_i /mm	8.456	18.621	26.312	35.057	43.700	51.984	60.352	68.878	77.202	85.627
反向位移 $x_i'/$ mm	8.879	17.872	26.610	35.194	43.704	51.822	60.464	68.845	77.151	85.649

表 3 相位法声速测定结果

图 1 相位法测量的最小二乘拟合直线

拟合直线的斜率即为波长,故声速的测量结果分别为

$$v_{+} = \lambda_{+}f = 8.4946 \times 41.224 \text{m/s} \approx 350.18 \text{m/s}$$

$$v_{-} = \lambda_{-}f = 8.4908 \times 41.224 \text{m/s} \approx 350.02 \text{m/s}$$

$$\sigma_{\lambda_{+}} = \sqrt{\sigma_{k_{+}}^{2} + \left(\frac{e}{\sqrt{3}}\right)^{2}} = \sqrt{0.05^{2} + \frac{0.005^{2}}{3}} \approx 0.05 \text{mm}$$

$$\sigma_{\lambda_{-}} = \sqrt{\sigma_{k_{-}}^{2} + \left(\frac{e}{\sqrt{3}}\right)^{2}} = \sqrt{0.05^{2} + \frac{0.005^{2}}{3}} \approx 0.05 \text{mm}$$

$$\sigma_{v_{+}} = v_{+} \sqrt{\left(\frac{\sigma_{\lambda_{+}}}{\lambda_{+}}\right)^{2} + \left(\frac{\sigma_{f}}{f}\right)^{2}} \approx 2 \text{m/s}$$

$$\sigma_{v_{-}} = v_{-} \sqrt{\left(\frac{\sigma_{\lambda_{-}}}{\lambda_{-}}\right)^{2} + \left(\frac{\sigma_{f}}{f}\right)^{2}} \approx 2 \text{m/s}$$

$$v_{-} \pm \sigma_{v_{-}} = (350 \pm 2) \text{m/s}$$

取二者平均值,算得
$$v=(v_++v_-)/2=354$$
m/s, $\sigma_v=1/2\sqrt{\sigma_{v_+}^2+\sigma_{v_-}^2}=2$ m/s, $v\pm\sigma_v=(350\pm2)$ m/s。

结论:通过对不同刚性平面处声波和原始信号形成的李萨如图形的观察,可以用相位法测定空气中的声速。本实验用最小二乘法处理数据,测得声速为 $\underline{v} + \sigma_n = (350 + 2) \text{m/s}$ 。

(3) 气体参量法计算空气中的声速

读取实验室室温为 θ = 21.6℃,气压计示数为 <u>769.65mmHg</u>,环境湿度为 32%。查询资料得本地加速度为 9.81621N/kg。则:

$$\begin{split} p &= \frac{g}{g_0} p_1 (1 - (0.000182 - \beta)t) = \frac{9.81621}{9.80665} (769.65 \times 133.3224) (1 - 0.000172 \times 21.6) \approx 102.33 \text{kPa} \\ p_w &= \varphi p_s = 0.32 \times 2573.5 = 8.2 \times 10^2 \text{Pa} \\ v &= 331.45 \sqrt{\left(1 + \frac{\theta}{T_0}\right) \left(1 + \frac{0.3192 p_w}{p}\right)} = 331.45 \sqrt{\left(1 + \frac{21.6}{273.15}\right) \left(1 + 0.3192 \times \frac{8.2 \times 10^2}{102.33 \times 10^3}\right)} \approx 344.75 \text{m/s} \end{split}$$

虽然 θ/T_0 和 $0.3192p_w/p$ 分别只有三位和两位有效数字,但由于分数约去后最后一位在万分位上,故加上 1后取到 5 位有效数字,最终运算结果也取 5 位有效数字。

结论: 通过气体参量的相关测量,可算出21.6℃下声速为v = 344.75m/s。

(4) 声光效应法测定水中声速

仔细调节光路使各元件尽可能共轴,调节换能器的信号频率至在墙壁上得到最清晰的干涉条纹,记录此时换能器的工作频率为 $f = 9.624 \mathrm{MHz}$ 。用毫米坐标纸测量墙上的干涉条纹,结果如表 4 所示。

级数 k	-4	-3	-2	-1	0	1	2	3	4
坐标 x _i /mm	21.3	39.2	57.0	74.8	92.7	110.6	128.8	146.6	164.4
相对坐标 x_i /mm	-71.4	-53.5	-35.7	-17.9	0	17.9	36.1	53.9	71.7

表 4 声光效应法测量结果

由于有奇数组数据,为进行逐差法处理弃用了-4 级干涉条纹的数据。则 $\overline{\Delta x}=1/16\sum_{i=1}^4 x_i-x_{i-4}=17.92$ mm。又测得墙壁到水槽后壁距离z=436cm,由实验原理 $\frac{\overline{\Delta x}}{z}=\frac{\lambda_{He}}{\lambda}(\lambda_{He}=632.8$ nm),得 $\lambda=\frac{z\lambda_{He}}{\overline{\Delta x}}=4.36\times0.6328/17.92=0.1540$ mm。估计坐标纸的允差为 ±0.1 mm,钢卷尺的允差为 ±0.5 cm,则

$$\sigma_{\Delta x} = \sqrt{\left(e/\sqrt{3}\right)^2 + \left(e/\sqrt{3}\right)^2 + \frac{\sum_{i=1}^4 (\Delta x_i - \overline{\Delta x})^2}{4 \cdot (4-1)}} = \sqrt{\frac{0.02}{3} + \frac{1}{12}} \times 0.006719 \approx 0.09mm$$

$$\sigma_{\lambda} = \lambda \sqrt{\left(\frac{\sigma_z}{z}\right)^2 + \left(\frac{\sigma_{\Delta x}}{\overline{\Delta x}}\right)^2} = 0.1540 \sqrt{\frac{1}{3} \left(\frac{0.5}{436}\right)^2 + \left(\frac{0.09}{17.92}\right)^2} \approx 0.0008mm$$

$$v = \lambda f = 0.1540 \times 9.624 \times 10^3 \text{m/s} \approx 1482 \text{m/s}$$

$$\sigma_v = v \sqrt{\left(\frac{\sigma_{\lambda}}{\lambda}\right)^2 + \left(\frac{\sigma_f}{f}\right)^2} = 1482 \sqrt{\left(\frac{0.0008}{0.1540}\right)^2 + \left(\frac{0.001}{9.624}\right)^2} \approx 8\text{m/s}$$

$$v \pm \sigma_v = (1482 \pm 8) \text{m/s}$$

结论: 利用超声波在介质中传播使介质发生弹性应变产生的衍射现象,可以用类似研究光栅衍射的方法测量声速,本实验测得声速为 $\mathbf{v} + \mathbf{\sigma}_n = (\mathbf{1482} + \mathbf{8})\mathbf{m}/\mathbf{s}$. 与理论值 $1480\mathbf{m}/\mathbf{s}$ 接近。

(5) 探究峰-峰值电压随距离的衰减

使用表 1、表 2 数据,可作峰-峰值电压与换能器间距关系曲线,如图 2 所示。

图 2 峰 - 峰值电压随换能器间距的衰减曲线

结论: 从图中可以看到,峰-峰值电压随换能器间距的增大而减小,在一定距离之内基本上呈线性衰减,在远距离衰减速率减慢。这是因为此时测得的主要是行波部分,而驻波带来的峰-峰值电压起伏已经很小了。位移约 25mm 处有一"凹槽",推测是该处仪器螺纹不均匀,造成测得位移与实际位移有系统误差导致。

2 收获与感想

本次实验使我理解了声速测量的相关方法,了解了声速测定仪、干湿球温度计、水银气压计等仪器装置的使用。

通过实验,我更进一步理解了预习题"水中声速测定的特殊考虑"。如需要考虑共振频率的变化,水中的共振频率远高于空气,若在没有达到共振的条件下测量,测量效率会变低,发热也会变多,影响实验的测定; 又例如共振频率的测定方法取最大极大值法、避免螺距差的目的可以通过同向旋转来达到,等等。

感谢李峰老师对实验过程和理论知识的指导,以及孙思原同学在仪器测量过程中的帮助。