# Reverse Engineering of Al Models

28 Sept. 2020

Mr. Jingli SHI

PhD at Auckland University of Technology

- Speaker: Mr. Jingli SHI
  - PhD @ Auckland University of Technology, New Zealand
  - Research: natural language processing
- Session 1 NLP Models
  - Time: 15:00 16:00
  - Course Aims: Understand low-level theory of AI model using XOR use case.
- Break
  - Time: 16:00 16:05
- Session 2 Demo
  - Time: 16:05 16:35
  - Course Aims: Learn to implement AI model.

#### Outline

- Background
- Al Model Training Routine (XOR use case)
- Classic Al Models

#### Outline

- Background
  - Al Milestones
  - Who is Smarter?
  - Course goal
  - Al vs ML vs DL vs NLP
- Al Model Training Routine (XOR use case)
- Classic Al Models

#### Al Advance Milestones



2016



2018





2020



Neuralink by Elon Musk

#### Who is Smatter?

#### Estimation:

Robot surpass the capability of human brains around 2040.

How about now?





#### Al vs Human







## AI (Blackbox)



## Blackbox Inspection





Background (AI vs ML vs DL vs NLP)

#### Machine Learning vs Deep Learning



#### Outline

- Background
- Al Model Training Routine (XOR use case)
  - Initialization
  - Forward Propagation
  - Backward Propagation
  - Optimization
- Classic Al Models

#### Explore Blackbox



#### Al Model Training Routine

For an Al model, the typical training routine is performing the following 4 steps **iteratively**.

#### **Initialization**

1. Initialize or update weights vector

#### **Forward Propagation**

- 2a. Multiply the weights vector with the inputs, sum the products.
- 2b. Put the sum through the activation function, e.g. sigmoid, tanh, ReLU, etc.

#### Al Model Training Routine

#### **Back Propagation**

- 3a. Compute the errors, i.e. difference between expected output and predictions
- 3b. Multiply the error with the derivatives to get the delta
- 3c. Multiply the delta vector with the inputs, sum the product

#### Optimizer takes a step

4. Multiply the learning rate with the output of step 3c

Repeat 1-4 until desired

#### Al Model Training Routine



#### Stop criteria:

- 1. Loop end
- 2. No accuracy improvement

## Simple Model Inspection





#### Initialization



#### XOR - Initialization

| <b>x1</b> | x2 | x1 XOR x2 |
|-----------|----|-----------|
| 0         | 0  | 0         |
| 0         | 1  | 1         |
| 1         | 0  | 1         |
| 1         | 1  | 0         |



| <b>x1</b> | x2 | b0 | W1_11 | W1_12 | W1_21 | W1_22 | b1 | W2_21 | W2_22 |
|-----------|----|----|-------|-------|-------|-------|----|-------|-------|
| 0         | 1  | 1  | -1    | 1     | 1     | -1    | -1 | 1     | 1     |



## Forward Propagation



#### XOR - Forward Propagation



**Preactivation Function** 

$$s = \sum w_i * x_i + b$$

**Activation Function** 

$$f(s) = \frac{1}{1 + e^{-s}}$$

#### **XOR - Activation Function**



**Activation function** of a node defines the output of that node given an input or set of inputs. They help in keeping the value of the output from the neuron restricted to a certain limit as per our requirement.

#### XOR - Neuron Calculation



### XOR - Output Calculation



$$s_1 = \sum w_{1i}^{(1)} * x_i + b_0$$
  
$$h_1 = f(s_1) = sigmoid(s_1) = \frac{1}{1 + e^{-s_1}}$$

$$s_2 = \sum w_{2i}^{(1)} * x_i + b_0$$
  
 $h_2 = f(s_2) = sigmoid(s_2) = \frac{1}{1 + e^{-s_2}}$ 

$$S_3 = \sum w_{2i}^2 * h_i + b_1$$
  
 $\hat{y} = f(s_3) = sigmoid(s_3) = \frac{1}{1 + e^{-s_3}}$ 

#### XOR – Forward Propagation



| X <sub>1</sub> | X <sub>2</sub> | S <sub>1</sub> | h1=f(s1) |
|----------------|----------------|----------------|----------|
| 0              | 1              | 2              | 0.88     |

| b0 | W1_11 | W1_12 |
|----|-------|-------|
| 1  | -1    | 1     |

$$s_{1} = \sum w_{1i}^{(1)} * x_{i} + b_{0}$$

$$s_{1} = w_{11}^{(1)} * x_{1} + w_{12}^{(1)} * x_{2} + b_{0}$$

$$s_{1} = (-1) * 0 + 1 * 1 + 1$$

$$s_{1} = 2$$

$$h_1 = f(s_1) = sigmoid(s_1) = \frac{1}{1 + e^{-s_1}}$$
  
 $h_1 = 0.88$ 

## XOR – Forward Propagation



| b0 | W1_21 | W1_22 |
|----|-------|-------|
| 1  | 1     | -1    |

$$s_2 = w_{21}^{(2)} * x_1 + w_{22}^{(2)} * x_2 + b_0$$

$$h_2 = f(s_2) = sigmoid(s_2) = \frac{1}{1 + e^{-s_2}}$$

| <b>X</b> <sub>1</sub> | X <sub>2</sub> | <b>s</b> <sub>1</sub> | h1=f(s1) | s2 | h2=f(s2) |
|-----------------------|----------------|-----------------------|----------|----|----------|
| 0                     | 1              | 2                     | 0.88     | 0  | 0.5      |

## XOR – Forward Propagation



| b1 | W2_21 | W2_22 |
|----|-------|-------|
| -1 | 1     | 1     |

$$S_3 = \sum w_{2i}^{(2)} * h_i + b_1$$

$$S_3 = w_{21}^{(2)} * h_1 + w_{22}^{(2)} * h_2 + b_1$$

$$\hat{y} = f(s_3) = sigmoid(s_3) = \frac{1}{1 + e^{-s_3}}$$

| <b>X</b> <sub>1</sub> | X <sub>2</sub> | s <sub>1</sub> | h1=f(s1) | s2 | h2=f(s2) | s3   | y^=f(s3) |
|-----------------------|----------------|----------------|----------|----|----------|------|----------|
| 0                     | 1              | 2              | 0.88     | 0  | 0.5      | 0.38 | 0.59     |

## XOR - Forward Propagation



## **Backward Propagation**



#### XOR – Backward Propagation

**Cost Function** 

MAE: 
$$L(\hat{y}, y) = \frac{1}{n} |\hat{y} - y|$$
MSE:  $L(\hat{y}, y) = \frac{1}{n} (\hat{y} - y)^2$ 



#### XOR – Loss/Cost Function



$$L(\hat{y}, y) = (\hat{y} - y)^2 = F(s, h, w) = F(W)$$

#### Minimum

- f'(x) negative on the left
- f'(x) positive on the right



#### XOR - Gradient Descent



## Optimization



## XOR - Optimization

#### **Loss Gradient**



$$L(\hat{y}, y) = \frac{1}{n}(\hat{y} - y)^2 = F(w)$$
Gradient  $\frac{\partial L}{\partial w}$ 

## Updating Weight

$$W_{t+1} = W_t - \alpha \frac{\partial L}{\partial w}$$

- W<sub>t+1</sub> is new weights matrix
- W<sub>t</sub> is old weights matrix
- $\alpha$  is learning rate



#### Conclusion



#### Outline

- Background
- Al Model Training Routine (XOR use case)
- Classic Al Models

## Complicated Al Models

| Layers | <b>Activation Function</b> | Cost/Loss Function          | NN Type     |
|--------|----------------------------|-----------------------------|-------------|
| 1      | Tanh                       | Mean Absolute (MA)          | Convolution |
| 10     | Sigmoid                    | Mean Squared Error<br>(MSE) | Recurrent   |
| 100    | Softmax                    | Cross Entropy (CE)          | Transformer |



#### Classica Al Models

- CNN (Convolutional Neural Network)
- RNN (Recurrent Neural Network)
- GNN (Graph Neural Network)
- Transformer
- GAN (Generative Adversarial Network)

• ...

## CV: CNN (Convolutional Neural Network)

- Input: image
- Application: CV (object classification, object detection, ...)



#### NLP: RNN & LSTM

- Input: text sequence
- Application: NLP (machine translation, classification, sentiment analysis, ...)





#### **GNN**

Input: graph structure (map data, nano-scale molecules)

Application: drug discovery, route optimization



## CV&NLP - Transformer

- Input: image or text
- Application: transfer learning



#### CV- GAN

- Input: photos, paintings ...
- Application:
   generating image,
   constructing 3D
   models from images,
   ...



## Demo

## Q & A