POLYNUCLEOTIDES AND AMINOACID SEQUENCES FROM STAPHYLOCOCCUS AUREUS

Publication number: WO9731114

Publication date:

1997-08-28

Inventor:

BURNHAM MARTIN KARL RUSSELL (US); HODGSON

JOHN EDWARD (US)

Applicant:

SMITHKLINE BEECHAM PLC (GB); BURNHAM MARTIN KARL RUSSELL (US); HODGSON JOHN

EDWARD (US)

Classification:

- International:

G01N33/50; A61K38/00; A61K39/085; A61K39/395; A61K48/00; A61P31/04; C07K14/31; C07K16/12; C12N1/19; C12N1/21; C12N15/00; C12N15/09;

C12N1/19; C12N1/21; C12N1/3/00, C12N1/3/03; C12N15/31; C12P21/02; C12P21/08; G01N33/15; A61K39/00; C12R1/445; G01N33/50; A61K38/00; A61K39/085; A61K39/395; A61K48/00; A61P31/00; C07K14/195; C07K16/12; C12N1/19; C12N1/21; C12N15/00; C12N15/09; C12N15/31; C12P21/02; C12P21/08; G01N33/15; A61K39/00; (IPC1-7): C12N15/31; A61K39/085; A61K48/00; C07K14/31; C07K16/12; C12Q1/68; G01N33/569; G01N33/68

- European:

C07K14/31

Application number: WO1997GB00524 19970225 Priority number(s): GB19960004045 19960226

Also published as:

WO9731114 (A3) EP0822987 (A3) EP0822987 (A2)

EP0822987 (A0)

Cited documents:

WO9422895 WO9400493 XP002034046 XP002034047 XP000676708 XP002034045

less <<

Report a data error here

Abstract of WO9731114

This invention relates to Staphylococcal polynucleotides, polypeptides encoded by such polynucleotides, the uses of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides and recombinant host cells transformed with the polynucleotides. This invention also relates to inhibiting the biosynthesis or action of such polynucleotides or polypeptides and to the use of such inhibitors in therapy.

Data supplied from the esp@cenet database - Worldwide

S. Backto W0978

Family list

3>

(ia.

11 family members for: WO9731114

Derived from 9 applications

NOVEL SPO-REL

Inventor: BURNHAM MARTIN KARL RUSSEL (US); Applicant: SMITHKLINE BEECHAM PLC (GB);

GENTRY DANIEL ROBERT (US); (+2)

EC: C07K14/31

IPC: G01N33/53; A61K38/00; A61K39/00 (+53)

SMITHKLINE BEECHAM CORP (US)

Publication info: CA2214866 A1 - 1998-04-29

POLYNUCLEOTIDES AND AMINOACID SEQUENCES FROM

STAPHYLOCOCCUS AUREUS

Inventor: BURNHAM MARTIN K R (US); HODGSON Applicant: SMITHKLINE BEECHAM PLC (GB)

JOHN EDWARD (US)

EC: C07K14/31

Publication info: EP0822987 A2 - 1998-02-11

Spo-rel, a Staphylococcus relA/spot homologue

Inventor: HODGSON JOHN EDWARD (US);

Applicant: SMITHKLINE BEECHAM CORP (US);

Publication info: EP0839910 A2 - 1998-05-06

BURNHAM MARTIN K R (US); (+2)

SMITHKLINE BEECHAM PLC (GB) IPC: G01N33/53; A61K38/00; A61K39/00 (+48)

IPC: G01N33/50; A61K38/00; A61K39/085

EC: C07K14/31

EP0839910 A3 - 2000-01-19

No title available

Inventor:

Applicant:

EC:

IPC:

Publication info: GB9604045D D0 - 1996-04-24

NEW SPO-REL

Inventor: HODGSON JOHN EDWARD; BURNHAM

MARTIN KARL R; (+2)

Applicant: SMITHKLINE BEECHAM CORP;

SMITHKLINE BEECHAM PLC

IPC: G01N33/53; A61K38/00; A61K39/00 (+61) EC: C07K14/31

Publication info: JP10225296 A - 1998-08-25

POLYNUCLEOTIDES AND AMINOACID SEQUENCES FROM

STAPHYLOCOCCUS AUREUS

Inventor:

Applicant:

EC: C07K14/31

IPC: G01N33/50; A61K38/00; A61K39/085

(+47)

Publication info: JP11506022T T - 1999-06-02

DNA encoding spo-rel polypeptides

Inventor: BURNHAM MARTIN KARL RUSSEL (US);

GENTRY DANIEL ROBERT (US); (+2)

Applicant: SMITHKLINE BEECHAM CORP (US);

SMITHKLINE BEECHAM PLC (GB)

IPC: G01N33/53; A61K38/00; A61K39/00 (+47) EC: C07K14/31 Publication info: US5989864 A - 1999-11-23

Spo-rel

Inventor: BURNHAM MARTIN KARL RUSSEL (US); Applicant:

GENTRY DANIEL ROBERT (US); (+2)

EC: C07K14/31

IPC: A61P31/04; C07K14/31; A61K38/00 (+10)

Publication info: US6365159 B1 - 2002-04-02

POLYNUCLEOTIDES AND AMINOACID SEQUENCES FROM

STAPHYLOCOCCUS AUREUS

Inventor: BURNHAM MARTIN KARL RUSSELL (US); Applicant: SMITHKLINE BEECHAM PLC (GB);

HODGSON JOHN EDWARD (US)

BURNHAM MARTIN KARL RUSSELL (US); (+1)

EC: C07K14/31

IPC: G01N33/50; A61K38/00; A61K39/085

(+40)

Publication info: W09731114 A2 - 1997-08-28 **W09731114 A3** - 1997-10-23

Data supplied from the **esp@cenet** database - Worldwide

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 97/31114 (11) International Publication Number: C12N 15/31, C07K 14/31, 16/12, A61K A2 (43) International Publication Date: 28 August 1997 (28.08.97) 39/085, 48/00, G01N 33/68, 33/569, C12Q 1/68 PCT/GB97/00524 (81) Designated States: JP, US, European patent (AT, BE, CH, DE, (21) International Application Number: DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). 25 February 1997 (25.02.97) (22) International Filing Date: Published (30) Priority Data: Without international search report and to be republished GB 26 February 1996 (26.02.96) 9604045.6 upon receipt of that report. (71) Applicant (for all designated States except US): SMITHKLINE BEECHAM PLC [GB/GB]; New Horizons Court, Brentford, Middlesex TW8 9EP (GB). (72) Inventors; and (75) Inventors/Applicants (for US only): BURNHAM, Martin, Karl, Russell [GB/US]; SmithKline Beecham Pharmaceuticals, 1250 South Collegeville Road, P.O. Box 5089, Collegeville, PA 19426-0989 (US). HODGSON, John, Edward [GB/US]; SmithKline Beecham Pharmaceuticals, 1250 South Collegeville Road, P.O. Box 5089, Collegeville, PA 19426-0989 (US). (74) Agent: GIDDINGS, Peter, John; SmithKline Beecham, Corporate Intellectual Property, Two New Horizons Court, Brentford, Middlesex TW8 9EP (GB).

(54) Title: POLYNUCLEOTIDES AND AMINOACID SEQUENCES FROM STAPHYLOCOCCUS AUREUS

(57) Abstract

This invention relates to Staphylococcal polynucleotides, polypeptides encoded by such polynucleotides, the uses of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides and recombinant host cells transformed with the polynucleotides. This invention also relates to inhibiting the biosynthesis or action of such polynucleotides or polypeptides and to the use of such inhibitors in therapy.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑŪ	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	ĦU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	л	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

POLYNUCLEOTIDES AND AMINOACID SEQUENCES FROM STAPHYLOCOCCUS AUREUS FIELD OF THE INVENTION

This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides and recombinant host cells transformed with the polynucleotides. This invention also relates to inhibiting the biosynthesis or action of such polypeptides and to the use of inhibitors in therapy.

BACKGROUND OF THE INVENTION

5

10

15

20

25

30

The Staphylococci make up a medically important genera of microbes. They are known to produce two types of disease, invasive and toxigenic. Invasive infections are characterized generally by abscess formation effecting both skin surfaces and deep tissues. Staphlococcus aureus is the second leading cause of bacteremia in cancer patients.

Osteomyelitis, septic arthritis, septic thrombophlebitis and acute bacterial endocarditis are also relatively common. There are at least three clinical conditions resulting from the toxigenic properties of Staphylococci. The manifestation of these diseases result from the actions of exotoxins as opposed to tissue invasion and bacteremia. These conditions include: Staphylococcal food poisoning, scalded skin syndrome and toxic shock syndrome.

While certain Staphylococcal proteins associated with pathogenicity have been identified, e.g., coagulase, hemolysins, leucocidins and exo and enterotoxins, very little is known concerning the temporal expression of genes of bacterial pathogens during infection and disease progression in a mammalian host. Discovering the sets of genes the bacterium is likely to be expressing at the different stages of infection, particularly when an infection is established, provides critical information for the screening and characterization of novel antibacterials which can interrupt pathogenesis, by identifying possible previously unrecognised targets.

Recently several novel approaches have been described which purport to follow global gene expression during infection (Chuang, S. et al. [1993] Global Regulation of Gene Expression in *Escherichia coli* J. Bacteriol. 175, 2026-2036, Mahan, M.J. et al. [1993] Selection of Bacterial Virulence Genes That Are Specifically Induced in Host Tissues SCIENCE 259, 686-688, Hensel, M. et al. [1995] Simultaneous Identification of Bacterial Virulence Genes by Negative Selection SCIENCE 269, 400-403). These new techniques have so far been demonstrated with gram negative pathogen infections and not with infections with gram positives presumably due to the much slower development of

global transposon mutagenesis and suitable vectors needed for these strategies in these organisms, and in the case of that process described by Chuang, S. et al. [1993] the difficulty of isolating suitable quantities of bacterial RNA free of mammalian RNA derived from the infected tissue to furnish bacterial RNA labelled to sufficiently high specific activity. The present invention employs a novel technology to determine gene expression in the pathogen at different stages of infection of the mammalian host.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

A novel aspect of this invention is the use of a suitably labelled oligonucleotide probe which anneals specifically to the bacterial ribosomal RNA in Northern blots of bacterial RNA preparations from infected tissue. Using the more abundant ribosomal RNA as a hybridisation target greatly facilitates the optimisation of a protocol to purify bacterial RNA of a suitable size and quantity for RT-PCR from infected tissue. Techniques reported in the scientific literature which are of use in purifying Staphylococcus aureus RNA from bacteria grown in vitro are unsuccessful when applied to infected tissue.

In a first aspect therefore, the invention provides a method of identifying genes transcribed in an organism in infected host tissue by identifying mRNA present using RT-PCR, characterised in that a bacterial mRNA preparation is obtained from total RNA from infected tissue by enriching for bacterial RNA by a suitable bacterial disruption technique in order to selectively damage mammalian RNA and at the same time give sufficient quantities of bacterial RNA for RT-PCR, and wherein the conditions for selectively enriching for bacterial RNA are determined by probing with an oligonucleotide probe specific to bacterial ribosomal RNA.

This process of optimisation preferably uses a unique labelled oligonucleotide probe to bacterial ribosomal RNA which is used in Northern experiments against the experimental RNA preparations to determine those conditions which give optimal levels of bacterial RNA. As bacterial ribosomal RNA is present at 2-4 orders of magnitude in amount to bacterial mRNA species this detection procedure provides a suitably sensitive indication to the existence and quantity of bacterial RNA in the presence of the vastly greater levels of mammalian RNA from the infected tissue. This detection system may be used in conjunction with the visualisation of total RNA by ethidium bromide staining of 1% agarose gels on which it has been run out. On these gels mammalian ribosomal RNA migrates at a different rate to bacterial ribosomal RNA and so can be identified.

Surprisingly, those disruption conditions which were found to just lead to the loss of

mammalian RNA gave the best preparations of bacterial RNA as judged by the Northern experiment. A suitable oligonucleotide useful for applying this method to genes expressed in Staphylococcus aureus is 5'-getectaaaaggttactecacegge-3' [SEQ ID NO:91].

Use of the technology of the present invention enables identification of bacterial genes transcribed during infection, inhibitors of which would have utility in anti-bacterial therapy. Specific inhibitors of such gene transcription or of the subsequent translation of the resultant mRNA or of the function of the corresponding expressed proteins would have utility in anti-bacterial therapy

5

25

30

any of sequences set forth in, or selected from the group consisting essentially of, SEQUENCE I [SEQ ID Nos:1,4,7,10,13,16,19,22,25,28, 31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76] of Table 1, or any combination of the sequences thereof. The invention further provides a polynucleotide encoding a protein from S. aureus WCUH 29 and characterized in that it comprises the DNA sequence given in any of sequences set forth in SEQUENCE I [SEQ ID Nos: 1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64, 67,70,73,76] of Table 1. The polynucleotides having the DNA sequence given in each sequence set forth in SEQUENCE I [SEQ ID Nos: 1,4,7,10,13,16,19,22,25,28, 31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76] of Table 1 were obtained from the sequencing of a library of clones of chromosomal DNA of S. aureus WCUH 29 in E. coli.

S. aureus WCUH 29 has been deposited at the National Collection of Industrial and Marine Bacteria Ltd. (NCIMB), Aberdeen, Scotland under number NCIMB 40771 on 11 September 1995.

The present invention also provides a novel protein from Staphylococcus. aureus WCUH29 obtainable by expression of a gene characterised in that it comprises the DNA sequence given in any of sequences set forth in SEQUENCE 1 [SEQ ID Nos: 1,4,7,10, 13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76] of Table 1, or a fragment, analogue or derivative thereof.

The present invention further relates to a novel protein from Staphylococcus.

aureus WCUH29, characterised in that it comprises the amino acid sequence given in any
of the sequences set forth in, or selected from the group consisting essentially of,

ė)

5

15

20

25

30

SEQUENCE 2 [SEQ ID Nos: 79,80,81,82,83,84,85,86,87,88,89,90] of Table 1, or a fragment, analogue or derivative thereof.

The invention also relates to a polypeptide fragment of the protein, having the amino acid sequence given in any of the sequences set forth in SEQUENCE 2 [SEQ ID Nos: 79,80,81,82,83,84,85,86,87,88,89,90] of Table 1, or a derivative thereof.

Hereinaster the term polypeptide(s) will be used to refer to the protein and its fragments, analogues or derivatives.

In accordance with another aspect of the present invention, there are provided polynucleotides (DNA or RNA) which encode such polypeptides.

10 The invention also relates to novel oligonucleotides, including the sequences set forth in SEQUENCE 3 [SEQ ID Nos: 2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47, 50,53,56,59,62,65,68,71,74,77] and 4 [SEQ ID Nos: 3,6,9,12,15,18,21,24,27,30, 33,36,39,42,45,48,51,54,57,60.63,66,69,72,75,78] of Table 1, derived from the sequences set forth in SEQUENCE 1 [SEQ ID Nos: 1,4,7,10,13,16,19,22,25,28,31,34, 37,40,43,46,49,52,55,58,61,64,67,70,73,76] of Table I which can act as PCR primers in the process herein described to determine whether or not the Staphylococcus aureus genes identified herein in whole or in part are transcribed in infected tissue. It is recognised that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.

Each of the DNA sequences provided herein may be used in the discovery and development of antibacterial compounds. The encoded protein upon expression can be used as a target for the screening of antibacterial drugs. Additionally, the DNA sequences encoding regions of the encoded protein or Shine-Delgarno or other translation facilitating sequences of the respective mRNA can be used to construct antisense sequences to control the expression of the coding sequence of interest. Furthermore, many of the sequences disclosed herein also provide regions upstream and downstream from the encoding sequence. These sequences are useful as a source of regulatory elements for the control of bacterial gene expression. Such sequences are conveniently isolated by restriction enzyme action or synthesized chemically and introduced, for example, into promoter identification strains. These strains contain a reporter structural gene sequence located downstream from a restriction site such that if an active promoter is inserted, the reporter gene will be expressed.

Although each of the sequences may be employed as described above, this invention also provides several means for identifying particularly useful target genes. The first of these approaches entails searching appropriate databases for sequence matches. Thus, if a homologue exists, the Staphylococcal-like form of this gene would likely play an analogous role. For example, a Staphylococcal protein identified as homologous to a cell surface protein in another organism would be useful as a vaccine candidate. To the extent such homologies have been identified for the sequences disclosed herein they are reported along with the encoding sequence.

5

10

15

20

25

30

To obtain the polynucleotide encoding the protein using any DNA sequence given in a SEQ ID NO 1 typically a library of clones of chromosomal DNA of *S. aureus* WCUH 29 in *E.coli* or some other suitable host is probed with a radiolabelled oligonucleotide, preferably a 17mer or longer, derived from the partial sequence. Clones carrying DNA identical to that of the probe can then be distinguished using high stringency washes. By sequencing the individual clones thus identified with sequencing primers designed from the original sequence it is then possible to extend the sequence in both directions to determine the full gene sequence. Conveniently such sequencing is performed using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by Maniatis, T., Fritsch, E.F. and Sambrook, J. in MOLECULAR CLONING, A Laboratory Manual [2nd edition 1989 Cold Spring Harbor Laboratory. see Screening By Hybridization 1.90 and Sequencing Denatured Double-Stranded DNA Templates 13.70].

A polynucleotide of the present invention may be in the form of RNA or in the form of DNA, which DNA includes cDNA, genomic DNA, and synthetic DNA. The DNA may be double-stranded or single-stranded, and if single stranded may be the coding strand or non-coding (anti-sense) strand. The coding sequence which encodes the polypeptide may be identical to the coding sequence of any of the sequences of SEQUENCE I [SEQ ID Nos:1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76] of Table 1 or may be a different coding sequence which coding sequence, as a result of the redundancy or degeneracy of the genetic code, encodes the same polypeptide.

The present invention includes variants of the hereinabove described polynucleotides which encode fragments, analogues and derivatives of the polypeptides of the invention, and in particular polypeptides characterized by the deduced amino acid sequences set forth in each SEQUENCE 2 [SEQ ID Nos: 79,80,81,82,83,84,

4)

5

10

15

20

25

30

85,86,87,88.89,90] of Table 1. The variant of the polynucleotide may be a naturally occurring allelic variant of the polynucleotide or a non-naturally occurring variant of the polynucleotide.

Thus, the present invention includes polynucleotides encoding the same polypeptides of the invention, and in particular characterized by the deduced amino acid sequences set forth in each SEQUENCE 2 [SEQ ID Nos: 79,80,81,82,83,84,85,86,87, 88,89,90] of Table 1 as well as variants of such polynucleotides which variants encode for a fragment, derivative or analogue of the polypeptide. Such nucleotide variants include deletion variants, substitution variants and addition or insertion variants.

The polynucleotide may have a coding sequence which is a naturally occurring allelic variant of the coding sequence characterized by the DNA sequence of any of the sequences set forth in Table 1 as SEQUENCE 1 [SEQ ID Nos:1,4,7,10,13,16,19,22,25, 28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76]. As known in the art, an allelic variant is an alternate form of a polynucleotide sequence which may have a substitution, deletion or addition of one or more nucleotides, which does not substantially alter the function of the encoded polypeptide.

The polynucleotide which encodes for the mature polypeptide may include only the coding sequence for the mature polypeptide or the coding sequence for the mature polypeptide and additional coding sequence such as a leader or secretory sequence or a proprotein sequence.

Thus, the term "polynucleotide encoding a polypeptide" encompasses a polynucleotide which includes only coding sequence for the polypeptide as well as a polynucleotide which includes additional coding and/or non-coding sequence.

The present invention therefore includes polynucleotides, wherein the coding sequence for the mature polypeptide may be fused in the same reading frame to a polynucleotide sequence which aids in expression and secretion of a polypeptide from a host cell, for example, a leader sequence which functions as a secretory sequence for controlling transport of a polypeptide from the cell. The polypeptide having a leader sequence is a preprotein and may have the leader sequence cleaved by the host cell to form the mature form of the polypeptide. The polynucleotides may also encode for a proprotein which is the mature protein plus additional 5' amino acid residues. A mature protein having a prosequence is a proprotein and is an inactive form of the protein. Once the prosequence is cleaved an active mature protein remains.

4

5

10

15

20

25

30

Thus, for example, the polynucleotide of the present invention may encode for a mature protein, or for a protein having a prosequence or for a protein having both a prosequence and a presequence (leader sequence). Further, the amino acid sequences provided herein show a methionine residue at the NH₂-terminus. It is appreciated, however, that during post-translational modification of the peptide, this residue may be deleted. Accordingly, this invention contemplates the use of both the sequences.

An expression vector is constructed so that the particular coding sequence is located in the vector with the appropriate regulatory sequences, the positioning and orientation of the coding sequence with respect to the control sequences being such that the coding sequence is transcribed under the "control" of the control sequences (i.e., RNA polymerase which binds to the DNA molecule at the control sequences transcribes the coding sequence). Modification of the coding sequences may be desirable to achieve this end. For example, in some cases it may be necessary to modify the sequence so that it may be attached to the control sequences with the appropriate orientation; i.e., to maintain the reading frame. The control sequences and other regulatory sequences may be ligated to the coding sequence prior to insertion into a vector, such as the cloning vectors described above. Alternatively, the coding sequence can be cloned directly into an expression vector which already contains the control sequences and an appropriate restriction site.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of *E. coli* and *S. cerevisiae* TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

The vector containing the appropriate DNA sequence as hereinabove described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein.

More particularly, the present invention also includes recombinant constructs comprising one or more of the sequences as broadly described above. The constructs

4)

5

10

15

20

25

30

comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available. The following vectors are provided by way of example. Bacterial: pET-3 vectors (Stratagene), pQE70, pQE60, pQE-9 (Qiagen), pbs, pD10, phagescript, psiX174, pbluescript SK, pbsks, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pBlueBacIII (Invitrogen), pWLNEO, pSV2CAT, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia). However, any other plasmid or vector may be used as long as they are replicable and viable in the host.

Examples of recombinant DNA vectors for cloning and host cells which they can transform include the bacteriophage λ (E. coli), pBR322 (E. coli), pACYC177 (E. coli), pKT230 (gram-negative bacteria), pGV1106 (gram-negative bacteria), pLAFR1 (gram-negative bacteria), pME290 (non-E. coli gram-negative bacteria), pHV14 (E. coli and Bacillus subtilis), pBD9 (Bacillus), pIJ61 (Streptomyces), pUC6 (Streptomyces), YIp5 (Saccharomyces), a baculovirus insect cell system, YCp19 (Saccharomyces). See, generally, "DNA Cloning": Vols. I & II, Glover et al. ed. IRL Press Oxford (1985) (1987) and; T. Maniatis et al. ("Molecular Cloning" Cold Spring Harbor Laboratory (1982). methionine-containing and the methionineless amino terminal variants of each protein disclosed herein.

The polynucleotides of the present invention may also have the coding sequence fused in frame to a marker sequence at either the 5' or 3' terminus of the gene which allows for purification of the polypeptide of the present invention. The marker sequence may be a hexa-histidine tag supplied by the pQE series of vectors (supplied commercially by Quiagen Inc.) to provide for purification of the polypeptide fused to the marker in the case of a bacterial host.

The present invention further relates to polynucleotides which hybridize to the hereinabove-described sequences if there is at least 50% and preferably at least 70% identity between the sequences. The present invention particularly relates to Staphylococcal polynucleotides which hybridize under stringent conditions to the hereinabove-described polynucleotides. As herein used, the term "stringent conditions"

means hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences. The polynucleotides which hybridize to the hereinabove described polynucleotides in a preferred embodiment encode polypeptides which retain substantially the same biological function or activity as the polypeptide of the invention. A preferred embodiment of the invention is a polynucleotide having at least a 70%, 80%, 90% or 95% identity to a polynucleotide encoding a polypeptide comprising an amino acid sequence selected from the group consisting essentially of SEQ ID Nos:

79,80,81,82,83,84,85,86,87,88 and 89, or any combination of these amino acid sequences.

The deposit referred to herein will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Micro-organisms for purposes of Patent Procedure. These deposits are provided merely as convenience to those of skill in the art and are not an admission that a deposit is required under 35 U.S.C. §112. The sequence of the polynucleotides contained in the deposited material, as well as the amino acid sequence of the polypeptides encoded thereby, are incorporated herein by reference and are controlling in the event of any conflict with any description of sequences herein. A license may be required to make, use or sell the deposited material, and no such license is hereby granted.

10

15

20

25

30

The terms "fragment," "derivative" and "analogue" when referring to the polypeptide of the invention, means a polypeptide which retains essentially the same biological function or activity as such polypeptide. Thus, an analogue includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide.

The polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide or a synthetic polypeptide, preferably a recombinant polypeptide.

The fragment, derivative or analogue of the polypeptide of the invention may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the polypeptide, such as a leader or secretory sequence or a sequence which is employed for purification of the polypeptide or a

proprotein sequence. Such fragments, derivatives and analogues are deemed to be within the scope of those skilled in the art from the teachings herein.

The polypeptides and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity.

5

10

15

20

25

30

The term "isolated" means that the material is removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of its natural environment.

The present invention also relates to vectors which include polynucleotides of the present invention, host cells which are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.

In accordance with yet a further aspect of the present invention, there is therefore provided a process for producing the polypeptide of the invention by recombinant techniques by expressing a polynucleotide encoding said polypeptide in a host and recovering the expressed product. Alternatively, the polypeptides of the invention can be synthetically produced by conventional peptide synthesizers.

Host cells are genetically engineered (transduced or transformed or transfected) with the vectors of this invention which may be, for example, a cloning vector or an expression vector. The vector may be, for example, in the form of a plasmid, a cosmid, a phage, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the genes. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

Suitable expression vectors include chromosomal, nonchromosomal and synthetic DNA sequences, e.g., bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA. However, any other vector may be used as long as it is replicable and viable in the host.

The appropriate DNA sequence may be inserted into the vector by a variety of procedures. In general, the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art.

5

10

15

20

25

30

The DNA sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. As representative examples of such promoters, there may be mentioned: LTR or SV40 promoter, the *E. coli. lac* or *trp*, the phage lambda P_L promoter and other promoters known to control expression of genes in eukaryotic or prokaryotic cells or their viruses. The expression vector also contains a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression.

In addition, the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in *E. coli*.

The gene can be placed under the control of a promoter, ribosome binding site (for bacterial expression) and, optionally, an operator (collectively referred to herein as "control" elements), so that the DNA sequence encoding the desired protein is transcribed into RNA in the host cell transformed by a vector containing this expression construction. The coding sequence may or may not contain a signal peptide or leader sequence. The polypeptides of the present invention can be expressed using, for example, the *E. coli* tac promoter or the protein A gene (spa) promoter and signal sequence. Leader sequences can be removed by the bacterial host in post-translational processing. See, e.g., U.S. Patent Nos. 4,431,739; 4,425,437; 4,338,397. Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are PKK232-8 and PCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, PL and trp. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

In addition to control sequences, it may be desirable to add regulatory sequences which allow for regulation of the expression of the protein sequences relative to the growth of the host cell. Regulatory sequences are known to those of skill in the art, and examples include those which cause the expression of a gene to be turned on or off in response to a

chemical or physical stimulus, including the presence of a regulatory compound. Other types of regulatory elements may also be present in the vector, for example, enhancer

In some cases, it may be desirable to add sequences which cause the secretion of the polypeptide from the host organism, with subsequent cleavage of the secretory signal.

5

10

15

20

25

30

Polypeptides can be expressed in host cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), the disclosure of which is hereby incorporated by reference.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period.

Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, such methods are well known to those skilled in the art.

Depending on the expression system and host selected, the polypeptide of the present invention may be produced by growing host cells transformed by an expression vector described above under conditions whereby the polypeptide of interest is expressed. The polypeptide is then isolated from the host cells and purified. If the expression system secretes the polypeptide into growth media, the polypeptide can be purified directly from the media. If the polypeptide is not secreted, it is isolated from cell lysates or recovered from the cell membrane fraction. Where the polypeptide is localized to the cell surface, whole cells or isolated membranes can be used as an assayable source of the desired gene product. Polypeptide expressed in bacterial hosts such as *E. coli* may require isolation from inclusion bodies and refolding. Where the mature protein has a very hydrophobic region which leads to an insoluble product of overexpression, it may be desirable to express a truncated protein in which the hydrophobic region has been deleted. The selection of the appropriate growth conditions and recovery methods are within the skill of the art.

The polypeptide can be recovered and purified from recombinant cell cultures by methods including ammonium sulphate or ethanol precipitation, acid extraction, anion or

cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. Polypeptides of the invention may also include an initial methionine amino acid residue.

5

10

15

20

25

30

A "replicon" is any genetic element (e.g., plasmid, chromosome, virus) that functions as an autonomous unit of DNA replication *in vivo*; i.e., capable of replication under its own control.

A "vector" is a replicon, such as a plasmid, phage, or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.

A "double-stranded DNA molecule" refers to the polymeric form of deoxyribonucleotides (bases adenine, guanine, thymine, or cytosine) in a double-stranded helix, both relaxed and supercoiled. This term refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, *inter alia*, in linear DNA molecules (e.g., restriction fragments), viruses, plasmids, and chromosomes. In discussing the structure of particular double-stranded DNA molecules, sequences may be described herein according to the normal convention of giving only the sequence in the 5' to 3' direction along the nontranscribed strand of DNA (i.e., the strand having the sequence homologous to the mRNA).

A DNA "coding sequence of" or a "nucleotide sequence encoding" a particular protein, is a DNA sequence which is transcribed and translated into a polypeptide when placed under the control of appropriate regulatory sequences.

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bound at the 3' terminus by a translation start codon (e.g., ATG) of a coding sequence and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence will be found a transcription initiation site (conveniently defined by mapping with nuclease

S1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes. Prokaryotic promoters contain Shine-Dalgarno sequences in addition to the -10 and -35 consensus sequences.

DNA "control sequences" refers collectively to promoter sequences, ribosome binding sites, polyadenylation signals, transcription termination sequences, upstream regulatory domains, enhancers, and the like, which collectively provide for the expression (i.e., the transcription and translation) of a coding sequence in a host cell.

5

10

15

20

25

30

A control sequence "directs the expression" of a coding sequence in a cell when RNA polymerase will bind the promoter sequence and transcribe the coding sequence into mRNA, which is then translated into the polypeptide encoded by the coding sequence.

A "host cell" is a cell which has been transformed or transfected, or is capable of transformation or transfection by an exogenous DNA sequence.

A cell has been "transformed" by exogenous DNA when such exogenous DNA has been introduced inside the cell membrane. Exogenous DNA may or may not be integrated (covalently linked) into chromosomal DNA making up the genome of the cell. In prokaryotes and yeasts, for example, the exogenous DNA may be maintained on an episomal element, such as a plasmid. With respect to eukaryotic cells, a stably transformed or transfected cell is one in which the exogenous DNA has become integrated into the chromosome so that it is inherited by daughter cells through chromosome replication. This stability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones comprised of a population of daughter cell containing the exogenous DNA.

A "clone" is a population of cells derived from a single cell or common ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth *in vitro* for many generations.

A "heterologous" region of a DNA construct is an identifiable segment of DNA within or attached to another DNA molecule that is not found in association with the other molecule in nature.

In accordance with yet a further aspect of the present invention, there is provided the use of a polypeptide of the invention for therapeutic or prophylactic purposes, for example, as an antibacterial agent or a vaccine.

In accordance with another aspect of the present invention, there is provided the use of a polynucleotide of the invention for therapeutic or prophylactic purposes, in particular genetic immunisation.

In accordance with yet another aspect of the present invention, there are provided inhibitors to such polypeptides, useful as antibacterial agents. In particular, there are provided antibodies against such polypeptides.

5

25

30

Another aspect of the invention is a pharmaceutical composition comprising the above polypeptide, polynucleotide or inhibitor of the invention and a pharmaceutically acceptable carrier.

In a particular aspect the invention provides the use of an inhibitor of the invention as an antibacterial agent.

The invention further relates to the manufacture of a medicament for such uses.

The polypeptide may be used as an antigen for vaccination of a host to produce specific antibodies which have anti-bacterial action.

The polypeptides or cells expressing them can be used as an immunogen to produce antibodies thereto. These antibodies can be, for example, polyclonal or monoclonal antibodies. The term antibodies also includes chimeric, single chain, and humanized antibodies, as well as Fab fragments, or the product of an Fab expression library. Various procedures known in the art may be used for the production of such antibodies and fragments.

Antibodies generated against the polypeptides of the present invention can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to an animal, preferably a nonhuman. The antibody so obtained will then bind the polypeptides itself. In this manner, even a sequence encoding only a fragment of the polypeptides can be used to generate antibodies binding the whole native polypeptides. Such antibodies can then be used to isolate the polypeptide from tissue expressing that polypeptide.

Polypeptide derivatives include antigenically or immunologically equivalent derivatives which form a particular aspect of this invention.

The term 'antigenically equivalent derivative' as used herein encompasses a polypeptide or its equivalent which will be specifically recognised by certain antibodies which, when raised to the protein or polypeptide according to the present invention, interfere with the interaction between pathogen and mammalian host.

The term 'immunologically equivalent derivative' as used herein encompasses a peptide or its equivalent which when used in a suitable formulation to raise antibodies in a vertebrate, the antibodies act to interfere with the interaction between pathogen and mammalian host.

5

10

15

20

25

30

In particular derivatives which are slightly longer or slightly shorter than the native protein or polypeptide fragment of the present invention may be used. In addition, polypeptides in which one or more of the amino acid residues are modified may be used. Such peptides may, for example, be prepared by substitution, addition, or rearrangement of amino acids or by chemical modification thereof. All such substitutions and modifications are generally well known to those skilled in the art of peptide chemistry.

The polypeptide, such as an antigenically or immunologically equivalent derivative or a fusion protein thereof is used as an antigen to immunize a mouse or other animal such as a rat or chicken. The fusion protein may provide stability to the polypeptide. The antigen may be associated, for example by conjugation, with an immunogenic carrier protein for example bovine serum albumin (BSA) or keyhole limpet haemocyanin (KLH). Alternatively a multiple antigenic peptide comprising multiple copies of the the protein or polypeptide, or an antigenically or immunologically equivalent polypeptide thereof may be sufficiently antigenic to improve immunogenicity so as to obviate the use of a carrier.

For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler and Milstein, 1975, Nature, 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., 1983, Immunology Today 4:72), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole, et al., 1985, in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96).

Techniques described for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce single chain antibodies to immunogenic polypeptide products of this invention.

Using the procedure of Kohler and Milstein (supra (1975), antibody-containing cells from the immunised mammal are fused with myeloma cells to create hybridoma cells secreting monoclonal antibodies.

The hybridomas are screened to select a cell line with high binding affinity and favorable cross reaction with other staphylococcal species using one or more of the original

polypeptide and/or the fusion protein. The selected cell line is cultured to obtain the desired Mab.

5

10

15

20

25

30

Hybridoma cell lines secreting the monoclonal antibody are another aspect of this invention.

Alternatively phage display technology could be utilised to select antibody genes with binding activities towards the polypeptide either from repertoires of PCR amplified vegenes of lymphocytes from humans screened for possessing anti-Fbp or from naive libraries (McCafferty, J. et al., (1990), Nature 348, 552-554; Marks, J. et al., (1992) Biotechnology 10, 779-783). The affinity of these antibodies can also be improved by chain shuffling (Clackson, T. et al., (1991) Nature 352, 624-628).

The antibody should be screened again for high affinity to the polypeptide and/or fusion protein.

As mentioned above, a fragment of the final antibody may be prepared.

The antibody may be either intact antibody of M_r approx 150,000 or a derivative of it, for example a Fab fragment or a Fv fragment as described in Skerra, A and Pluckthun, A (1988) Science 240 1038-1040. If two antigen binding domains are present each domain may be directed against a different epitope - termed 'bispecific' antibodies.

The antibody of the invention may be prepared by conventional means for example by established monoclonal antibody technology (Kohler, G. and Milstein, C. supra (1975)) or using recombinant means e.g. combinatorial libraries, for example as described in Huse, W.D. et al., (1989) Science 246,1275- 1281.

Preferably the antibody is prepared by expression of a DNA polymer encoding said antibody in an appropriate expression system such as described above for the expression of polypeptides of the invention. The choice of vector for the expression system will be determined in part by the host, which may be a prokaryotic cell, such as *E. coli* (preferably strain B) or *Streptomyces sp.* or a eukaryotic cell, such as a mouse C127, mouse myeloma, human HeLa, Chinese hamster ovary, filamentous or unicellular fungi or insect cell. The host may also be a transgenic animal or a transgenic plant [for example as described in Hiatt, A et al., (1989) Nature 34, 76-78]. Suitable vectors include plasmids, bacteriophages, cosmids and recombinant viruses, derived from, for example, baculoviruses and vaccinia.

The Fab fragment may also be prepared from its parent monoclonal antibody by enzyme treatment, for example using papain to cleave the Fab portion from the Fc portion.

Preferably the antibody or derivative thereof is modified to make it less immunogenic in the patient. For example, if the patient is human the antibody may most preferably be 'humanised'; where the complimentarity determining region(s) of the hybridoma-derived antibody has been transplanted into a human monoclonal antibody, for example as described in Jones, P. et al (1986), Nature 321, 522-525 or Tempest et al., (1991) Biotechnology 9, 266-273.

5

10

15

20

25

30

The modification need not be restricted to one of 'humanisation'; other primate sequences (for example Newman, R. et al. 1992, Biotechnology, 10, 1455-1460) may also be used.

The humanised monoclonal antibody, or its fragment having binding activity, form a particular aspect of this invention.

This invention provides a method of screening drugs to identify those which interfere with the proteins herein, which method comprises measuring the interference of the protein activity by test drug. For example, if the protein has enzymatic activity, after suitable purification and formulation the activity of the enzyme can be followed by its ability to convert its natural substrates. By incorporating different chemically synthesised test compounds or natural products into such an assay of enzymatic activity one is able to detect those additives which compete with the natural substrate or otherwise inhibit enzymatic activity.

The invention also relates to inhibitors identified thereby.

The use of a polynucleotide of the invention in genetic immunisation will preferably employ a suitable delivery method such as direct injection of plasmid DNA into muscles (Wolff et al., Hum Mol Genet 1992, 1:363, Manthorpe et al., Hum. Gene Ther. 1963:4, 419), delivery of DNA complexed with specific protein carriers (Wu et al., J Biol Chem 1989:264,16985), coprecipitation of DNA with calcium phosphate (Benvenisty & Reshef, PNAS,1986:83,9551), encapsulation of DNA in various forms of liposomes (Kaneda et al., Science 1989:243,375), particle bombardment (Tang et al., Nature 1992, 356:152, Eisenbraun et al., DNA Cell Biol 1993, 12:791) and in vivo infection using cloned retroviral vectors (Seeger et al, PNAS 1984:81,5849). Suitable promoters for muscle transfection include CMV, RSV, SRa, actin, MCK, alpha globin, adenovirus and dihydrofolate reductase.

In therapy or as a prophylactic, the active agent i.e the polypeptide, polynucleotide or inhibitor of the invention, may be administered to a patient as an injectable composition, for example as a sterile aqueous dispersion, preferably isotonic.

Alternatively the composition may be formulated for topical application for example in the form of ointments, creams, lotions, eye ointments, eye drops, ear drops, mouthwash, impregnated dressings and sutures and aerosols, and may contain appropriate conventional additives, including, for example, preservatives, solvents to assist drug penetration, and emollients in ointments and creams. Such topical formulations may also contain compatible conventional carriers, for example cream or ointment bases, and ethanol or oleyl alcohol for lotions. Such carriers may constitute from about 1% to about 98% by weight of the formulation; more usually they will constitute up to about 80% by weight of the formulation.

For administration to human patients, it is expected that the daily dosage level of the active agent will be from 0.01 to 10 mg/kg, typically around 1 mg/kg. The physician in any event will determine the actual dosage which will be most suitable for an individual patient and will vary with the age, weight and response of the particular patient. The above dosages are exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.

A vaccine composition is conveniently in injectable form. Conventional adjuvants may be employed to enhance the immune response.

A suitable unit dose for vaccination is 0.5-5ug/kg of antigen, and such dose is preferably administered 1-3 times and with an interval of 1-3 weeks.

Within the indicated dosage range, no adverse toxicologicals effects are expected with the compounds of the invention which would preclude their administration to suitable patients.

EXAMPLES

5

10

15

20

25

30

In order to facilitate understanding of the following examples certain frequently occurring methods and/or terms will be described.

"Plasmids" are designated by a lower case p preceded and/or followed by capital letters and/or numbers. The starting plasmids herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids in

accord with published procedures. In addition, equivalent plasmids to those described are known in the art and will be apparent to the ordinarily skilled artisan.

"Digestion" of DNA refers to catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA. The various restriction enzymes used herein are commercially available and their reaction conditions, cofactors and other requirements were used as would be known to the ordinarily skilled artisan. For analytical purposes, typically I µg of plasmid or DNA fragment is used with about 2 units of enzyme in about 20 µl of buffer solution. For the purpose of isolating DNA fragments for plasmid construction, typically 5 to 50 µg of DNA are digested with 20 to 250 units of enzyme in a larger volume. Appropriate buffers and substrate amounts for particular restriction enzymes are specified by the manufacturer. Incubation times of about 1 hour at 37 C are ordinarily used, but may vary in accordance with the supplier's instructions. After digestion the reaction is electrophoresed directly on a polyacrylamide gel to isolate the desired fragment.

Size separation of the cleaved fragments is performed using 8 percent polyacrylamide gel described by Goeddel, D. et al., (1980) Nucleic Acids Res., 8:4057.

"Oligonucleotides" refers to either a single stranded polydeoxynucleotide or two complementary polydeoxynucleotide strands which may be chemically synthesized. Such synthetic oligonucleotides have no 5' phosphate and thus will not ligate to another oligonucleotide without adding a phosphate with an ATP in the presence of a kinase. A synthetic oligonucleotide will ligate to a fragment that has not been dephosphorylated.

"Ligation" refers to the process of forming phosphodiester bonds between two double stranded nucleic acid fragments (Maniatis, T., et al., Id., p. 146). Unless otherwise provided, ligation may be accomplished using known buffers and conditions with 10 units to T4 DNA ligase ("ligase") per 0.5 µg of approximately equimolar amounts of the DNA fragments to be ligated.

Example 1

5

10

15

20

25

30

Isolation of DNA from S. Aureus WCUH 29

The polynucleotide having the DNA sequence given in SEQ ID NO 1 was obtained from a library of clones of chromosomal DNA of *S.aureus* WCUH 29 in *E.coli*. In some cases the sequencing data from two or more clones containing overlapping *S.aureus* WCUH 29 DNA was used to construct the contiguous DNA sequence in Sequences set forth in SEQUENCE 1 [SEQ ID Nos:1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,

49,52,55,58,61,64,67,70,73,76] of Table 1. Libraries may be prepared by routine methods, for example:

Methods 1 and 2

Total cellular DNA is isolated from *Staphylococcus aureus* strain WCUH29 (NCIMB 40771) according to standard procedures and size-fractionated by either of two methods.

Method I.

5

10

Total cellular DNA is mechanically sheared by passage through a needle in order to size-fractionate according to standard procedures. DNA fragments of up to 11kbp in size are rendered blunt by treatment with exonuclease and DNA polymerase, and EcoRI linkers added. Fragments are ligated into the vector Lambda ZapII that has been cut with EcoRI, the library packaged by standard procedures and E.coli infected with the packaged library. The library is amplified by standard procedures.

Method 2.

Total cellular DNA is partially hydrolysed with a combination of four restriction enzymes (RsaI, Pall, AluI and Bsh1235I) and size-fractionated according to standard procedures. EcoRI linkers are ligated to the DNA and the fragments then ligated into the vector Lambda ZapII that have been cut with EcoRI, the library packaged by standard procedures, and E.coli infected with the packaged library. The library is amplified by standard procedures.

Example 2

The determination of expression during infection of a gene from Staphylococcus aureus WCUH29

Necrotic fatty tissue from a four day groin infection of Staphylococcus aureus

WCUH29 in the mouse is efficiently disrupted and processed in the presence of chaotropic agents and RNAase inhibitor to provide a mixture of animal and bacterial RNA. The optimal conditions for disruption and processing to give stable preparations and high yields of bacterial RNA are followed by the use of hybridisation to a radiolabelled oligonucleotide specific to Staphylococcus aureus 16S RNA on Northern blots. The RNAase free, DNAase free, DNA and protein free preparations of RNA obtained are suitable for Reverse Transcription PCR (RT-PCR) using unique primer pairs designed from the sequence of each gene of Staphylococcus aureus WCUH29.

a) Isolation of tissue infected with Staphylococcus aureus WCUH29 from a mouse animal model of infection

5

10

15

20

25

30

10 ml. volumes of sterile nutrient broth (No.2 Oxoid) are seeded with isolated, individual colonies of Staphylococcus aureus WCUH29 from an agar culture plate. The cultures are incubated aerobically (static culture) at 37 degrees C for 16-20 hours. 4 week old mice (female, 18g-22g, strain MF1) are each infected by subcutaneous injection of 0.5ml. of this broth culture of Staphylococcus aureus WCUH29 (diluted in broth to approximately 10⁸ cfu/ml.) into the anterior, right lower quadrant (groin area). Mice should be monitored regularly during the first 24 hours after infection, then daily until termination of study. Animals with signs of systemic infection, i.e. lethargy, ruffled appearance, isolation from group, should be monitored closely and if signs progress to moribundancy, the animal should be culled immediately.

Visible external signs of lesion development will be seen 24-48h after infection. Examination of the abdomen of the animal will show the raised outline of the abscess beneath the skin. The localised lesion should remain in the right lower quadrant, but may occasionally spread to the left lower quadrant, and superiorly to the thorax. On occasions, the abscess may rupture through the overlying skin layers. In such cases the affected animal should be culled immediately and the tissues sampled if possible. Failure to cull the animal may result in the necrotic skin tissue overlying the abscess being sloughed off, exposing the abdominal muscle wall.

Approximately 96h after infection, animals are killed using carbon dioxide asphyxiation. To minimise delay between death and tissue processing /storage, mice should be killed individually rather than in groups. The dead animal is placed onto its back and the fur swabbed liberally with 70% alcohol. An initial incision using scissors is made through the skin of the abdominal left lower quadrant, travelling superiorly up to, then across the thorax. The incision is completed by cutting inferiorly to the abdominal lower right quadrant. Care should be taken not to penetrate the abdominal wall. Holding the skin flap with forceps, the skin is gently pulled way from the abdomen. The exposed abscess, which covers the peritoneal wall but generally does not penetrate the muscle sheet completely, is excised, taking care not to puncture the viscera

The abscess/muscle sheet and other infected tissue may require cutting in sections, prior to flash-freezing in liquid nitrogen, thereby allowing easier storage in plastic collecting vials.

b) Isolation of Staphylococcus aureus WCUH29 RNA from infected tissue samples

4-6 infected tissue samples(each approx 0.5-0.7g) in 2ml screw-cap tubes are removed from -80°C.storage into a dry ice ethanol bath In a microbiological safety cabinet the samples are disrupted individually whilst the remaining samples are kept cold in the dry ice ethanol bath. To disrupt the bacteria within the tissue sample 1ml of TRIzol Reagent (Gibco BRL, Life Technologies) is added followed by enough 0.1mm zirconia/silica beads to almost fill the tube, the lid is replaced taking care not to get any beads into the screw thread so as to ensure a good seal and eliminate aerosol generation. The sample is then homogenised in a Mini-BeadBeater Type BX-4 (Biospec Products). Necrotic fatty tissue is treated for 100 seconds at 5000 rpm in order to achieve bacterial lysis. *In vivo* grown bacteria require longer treatment than *in vitro* grown *S.aureus* WCUH29 which are disrupted by a 30 second bead-beat.

5

10

15

20

25

30

After bead-beating the tubes are chilled on ice before opening in a fume-hood as heat generated during disruption may degrade the TRIzol and release cyanide.

200 microlitres of chloroform is then added and the tubes shaken by hand for 15 seconds to ensure complete mixing. After 2-3 minutes at room temperature the tubes are spun down at 12,000 x g, 4°C for 15minutes and RNA extraction is then continued according to the method given by the manufacturers of TRIzol Reagent i.e.:- The aqueous phase, approx 0.6 ml, is transferred to a sterile eppendorf tube and 0.5 ml of isopropanol is added. After 10 minutes at room temperature the samples are spun at 12,000 x g, 4°C for 10 minutes. The supernatant is removed and discarded then the RNA pellet is washed with 1 ml 75% ethanol. A brief vortex is used to mix the sample before centrifuging at 7,500 x g, 4°C for 5 minutes. The ethanol is removed and the RNA pellet dried under vacuum for no more than 5 minutes. Samples are then resuspended by repeated pipetting in 100 microlitres of DEPC treated water, followed by 5-10 minutes at 55°C. Finally, after at least 1 minute on ice, 200 units of Rnasin (Promega) is added.

RNA preparations are stored at -80 °C for up to one month. For longer term storage the RNA precipitate can be stored at the wash stage of the protocol in 75% ethanol for at least one year at -20 °C.

Quality of the RNA isolated is assessed by running samples on 1% agarose gels. I x TBE gels stained with ethidium bromide are used to visualise total RNA yields. To demonstrate the isolation of bacterial RNA from the infected tissue 1 x MOPS, 2.2M formaldehyde gels are run and vacuum blotted to Hybond-N (Amersham). The blot is then

hybridised with a ³² P labelled oligonucletide probe specific to 16s rRNA of *S. aureus* (K.Greisen, M. Loeffelholz, A. Purohit and D. Leong. J.Clin. (1994) Microbiol. 32 335-351). An oligonucleotide of the sequence:-

5'-gctcctaaaaggttactccaceggc-3' [SEQ ID NO:91]

is used as a probe. The size of the hybridising band is compared to that of control RNA isolated from *in vitro* grown *S.aureus* WCUH29 in the Northern blot. Correct sized bacterial 16s rRNA bands can be detected in total RNA samples which show extensive degradation of the mammalian RNA when visualised on TBE gels.

c) The removal of DNA from Staphylococcus aureus WCUH29 derived RNA

10

30

DNA was removed from 73 microlitre samples of RNA by a 15 minute treatment on ice with 3 units of DNAasel, amplification grade (Gibco BRL, Life Technologies) in the buffer supplied with the addition of 200 units of Rnasin (Promega) in a final volume of 90 microlitres.

The DNAase was inactivated and removed by treatment with TRIzol LS Reagent

(Gibco BRL, Life Technologies) according to the manufacturers protocol.

DNAase treated RNA was resuspended in 73 microlitres of DEPC treated water with the addition of Rnasin as described in Method 1.

d) The preparation of cDNA from RNA samples derived from infected tissue

10 microlitre samples of DNAase treated RNA are reverse transcribed using.a

20 SuperScript Preamplification System for First Strand cDNA Synthesis kit (Gibco BRL, Life Technologies) according to the manufacturers instructions. I nanogram of random hexamers is used to prime each reaction. Controls without the addition of SuperScriptII reverse transcriptase are also run. Both +/-RT samples are treated with RNaseH before proceeding to the PCR reaction

25 e) The use of PCR to determine the presence of a bacterial cDNA species

PCR reactions are set up on ice in 0.2ml tubes by adding the following components:

45 microlitres PCR SUPERMIX (Gibco BRL, Life Technologies).

1 microlitre 50mM MgCl₂, to adjust final concentration to 2.5mM.

1 microlitre PCR primers(optimally 18-25 basepairs in length and designed to possess similar annealing temperatures), each primer at 10mM initial concentration.

2 microlitres cDNA.

PCR reactions are run on a Perkin Elmer GeneAmp PCR System 9600 as follows:

5 minutes at 95 °C, then 50 cycles of 30 seconds each at 94 °C, 42 °C and

72 °C followed by 3 minutes at 72 °C and then a hold temperature
of 4 °C. (the number of cycles is optimally 30-50 to determine the appearance or lack of a
PCR product and optimally 8-30 cycles if an estimation of the starting quantity of cDNA
from the RT reaction is to be made).

5

10

15

25

30

10 microlitre aliquots are then run out on 1% 1 x TBE gels stained with ethidium bromide with PCR product, if present, sizes estimated by comparison to a 100 bp DNA Ladder (Gibco BRL, Life Technologies). Alternatively if the PCR products are conveniently labelled by the use of a labelled PCR primer (e.g. labelled at the 5'end with a dye) a suitable aliquot of the PCR product is run out on a polyacrylamide sequencing gel and its presence and quantity detected using a suitable gel scanning system (e.g. ABI Prism TM 377 Sequencer using GeneScan Software as supplied by Perkin Elmer)

RT/PCR controls may include +/- reverse transcriptase reactions, 16s rRNA primers or DNA specific primer pairs designed to produce PCR products from non-transcribed S.aureus WCUH29 genomic sequences.

To test the efficiency of the primer pairs they are used in DNA PCR with WCUH29 total DNA. PCR reactions are set up and run as described above using approx. I microgram of DNA in place of the cDNA and 35 cycles of PCR.

Primer pairs which fail to give the predicted sized product in either DNA PCR or RT/PCR are PCR failures and as such are uninformative. Of those which give the correct size product with DNA PCR two classes are distinguished in RT/PCR:

1.Genes which are not transcribed in vivo reproducibly fail to give a product in RT/PCR.

2.Genes which are transcribed in vivo reproducibly give the correct size product in RT/PCR and show a stronger signal in the +RT samples than the signal (if at all present) in -RT controls.

The following nucleotide sequences (sequences set forth in SEQUENCE I [SEQ ID Nos:1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76] of Table 1) were identified in the above test as transcribed *in vivo*. Each set of sequences relates to a separate gene (Gene #). Deduced amino acid sequences are given where available as the sequences set forth in each SEQUENCE 2 [SEQ ID Nos: 79,80,81,82,83,84,85,86,87,88,89,90] of Table 1. The pair of PCR primers used to

identify the gene are given as the sequences set forth in SEQUENCE 3 [SEQ ID Nos: 2,5,8,11,14,

17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77] and 4 [SEQ ID Nos: 3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60.63,66,69,72,75,78]

of Table 1. Homologies to known genes are given where determined and represent the putative identification of gene function for each gene in Table 1.

TABLE 1

Gene #1 E.coli pts system 5'end ptfB 10 SEQUENCE 1 [SEQ ID NO:1] 1 CTAGGAGTAG TATTTGGTTC ATGATTGCCT AATTCAATCA CATCTTTACT TTGCTCTAAG TGCAAATCAC GCAATTGACC ATNTGGATCT CGTCTATCAT 15 101 AGTCATAAAT ACGGTATGTC GTATCGGATG ATTGTTGTGT CTCTAAAATT 151 AAAATACCCG AACCAATGGC ATGGACAGTG CCAGCAGGAA CATAATAAAA 20 201 GTCACCGGGC TTAACAGGTA TACGTTTGAA AAGACTGCCA AATTCATGAT 251 TATCAATCAT GTCGATTAAC GCCTGTTTAT TATGTGCATG GACGCCATAA 301 TATAATTTCA GCACCTGGGC TGCATCTAAA TATACCAACA TTCTGTTTTA 25 CCTAGTTCGC CTTCGTGTTT TAAAGCGTAG TCATCATCTG GATGAACTTG 401 AACAGATAAT TTATCATTGG CATCTAATAC TTTAGTTAGC AGAGGGAAAC 30 TATCTCGTGA ATCATTATCG AATAATTCAC GATGTTGTGA CCAAAGTTGA 451 501 TCTAGGGTCA TATCCTTGTA TGGACCATTG ATAATTGTAT TAGGACCATT 551 TGGATGTGCA GAAATTGCCC AGCATTCACC AGTTGTTTCA TTAGGGATAT 35 601 CATAGTTAAA TGCTTTTAAT GCATGACCGC CCCAAATTCT GTCTTTAAAA 651 ACGGGTTGTA AAAATAATGC CATAGTTAAA ACTCCTCTAT ATTTTCATTA 40 701 ATAAGTTATA AATTTCTGTA GTACTGTTGG CATTAATTAG TGATTGGCGT 751 GTCTCATCAT TCATTAACGC TTTAGATAAG CGCTGAAGTA TTTTTAAATG TGTATCCTGA CTGTTGTTTG GTACGGCAAT TAAGAATATC AATTGAGGTA 801 45 851 GACTACCATC TAGACTGTCC CATTTAACAC CATGATTATT TTTCATAACA GCTACAATCG GTTGTTTTAC AACATCAGAC TTTGCATGTG GAATGGCCAC 901 50 951 GTTCATGCCA ATAGCTGTCG TAGACTCCAT TTCACGTTCT AGTATTGCAT

	100	1 TTTTTAAATG CGATGTGTGC TCTACATAAC GGCAAATTTT AAGTTTATGA
5	105	
	110	
	1151	
10	1201	
	1251	
15	1301	
	1351	
20	1401	CTGCAATGAC TGATGCAATC ATTGCACCAA TGATGTTTGC AGGTATAATG
	1451	CGCAATGGAT CTTGGGCTGC GAAAGGAATA GCACCTTCAG TAATNCCAAA
25	1501	TAGTCCCATA GTGAAGGNAG CCTTACCCAT TTCTCTTTCG GAATGATTGA
	1551	ATTTATACTT NTGAACANAC GTTGCTAAAC CTAAACCGAT TGGTGGTGTA
	1601	CATACANCAA CTGCGACCAT ACCCATAACG GCGTAATTAC CTTCAGCAAT
	1651	THE TOTAL CONTRACT ALGCTACCTT GTTTAATTGG ACCGCCCATA
30	1701	TCGAAGGCGA TCATCGCACC TATAATCATC GACAAGTATA ATAATATTAG
	1751	CACCTTGCAT ACTTTTTAAC CAGGGTTGTT AGGAATGCCG CAAAAATATT
35	1801	AGAAATCGTG CACCGATTAA AAATATAAAT ATCAATCCTA ACAACGACCG
	1851	ATGAAATAAT GGGAATAATA ATGATAGGCA TAATTGGTGC CATTGCTTTT
40	1901	GGAACTTTAA TATCTTTAAT CCACTTTGCG ATATAACCTG CTAAGAAACC
	1951	AGCAACAATA CCACCTAAAA ATCCTGCGCC TGCATCACTG CCATAAAAAC
45	2001	TACCGTCAGC AGCGATAGCG CCGCCAATCA TACCAGGAAC AAGACCGGGC
	2051	TTGTCAGCGA TACTAACAGC GATATATCCA GCTCGTGCCG AATTCGGCAC
		GAGCTCGTGC C
50	SEQUENCE 2	? (STOPS SHORT) [SEQ ID NO:79] MGMVAVXVCT PPIGLGLATX VXKYKFNHSE REMGKAXFTM GLFGITEGAI
		PFAAQDPLRI IPANIIGAMI ASVIAXIGGV GDRVAHGGPI VAVLGGIDHV
		LWFIFGXIVG SLVTMPTVLL LXRNTPVIAV DAPAQHTQLH DTDITQHDTE
55		VDNVDGTSET FTSQ*

SEQUENCE 3 [SEQ ID NO:2] accetetgta teatgttg

5 SEQUENCE 4 [SEQ ID NO:3] gtgcgatgat cgccttgg

Gene #2 E.coli RelA

10 SEQUENCE 1 [SEQ ID NO:4] 1 CGGCTCTTCG TAATATTGAT AATGTGCAAT ATTTNAAGAA TAATCAATTT 51 ATTGAAGAAG AAACCGTAGT GACCGTGAGC GAATATCGAA NCGGCTATTG 15 101 ATAGAATACG TACTGAAATG GACCCGAATG AATATCGAAG NCGATATAAA 151 TGGTAGACCT AAACATATTT ACAGTATTTA TCGGNAAATG ATGAAGCAGA 20 201 AAAAACAATT TGATCAAATT TTTGATTTGT TGGCGATACG TGTTATTGTC 251 AATTCTATTA ATGATTGTTA TGCGATACTT GGGTTGGTGC ATACGTTATG 301 GAAACCGATG CCAGGACGTT TTAAAGATTA TATTGCAATG CCTAAACAAA 25 351 ATTTGTATCA GTCATTGCAT ACTACAGTAG TAGGTCCAAA TGGAGACCCG 401 CTCGAAATCC AAATACGAAC GTTTGATATG CACGAAATTG CTGAGCATGG TGTTGCAGCA CACTGGGCTT ACAAAGAAGG TAAAAAAGTA AGTGAAAAAG 30 451 501 ATCAAACTTA TCAAAATAAG TTAAATTGGT TAAAAGAATT AGCTGAAGCG 551 GATCATACAT CGTCTGACGC TCAAGAATTT ATGGAAACCT TATAATATGA 35 601 CTTACAGAGT GACAAAGTAT ACGCATTTAC CCCAGGGAGT GATGTTATTG 651 AGTNGGCATA TGGTGCTGTG CCGATTGGAT TTTGGCTTAT GCGAATCACA 40 701 GGGAANGTAG GTAATAAGAT GATTGGCGCC CAGGTGGAAT GGCAAAATTG 751 TACCANATTG ACTTATNTTT TCACAAAACA GGCGGATATT GTTGGAAATA 801 CCGTTCTAG 45 SEQUENCE 2 [SEQ ID NO:80] 1 MNIEXDINGR PKHIYSIYRX MMKOKKOFDO IFDLLAIRVI VNSINDCYAI 51 LGLVHTLWKP MPGRFKDYIA MPKONLYQSL HTTVVGPNGD PLEIQIRTFD 50 101 MHEIAEHGVA AHWAYKEGKK VSEKDQTYQN KLNWLKELAE ADHTSSDAQE 151 FMETL*

SEQUENCE 3 [SEQ ID NO:5] agatacgtac tgaaatgg

SEQUENCE 4 [SEQ ID NO:6]
5 cctgtgattc gcataagc

Gene #3 Staph FemB

10 SEQUENCE 1 [SEQ ID NO:7] 1 GTGATGTGGC TAAACGCTTA AATGCAAATA TATATGTGTC TGGCGAAGGT 51 GAAGATGCAT TAGGGTATAA AAATATGCCA TCAAAAACAC AATTTGTTAA 15 101 ACATGGAGAT ATCATTCAAG TAGGCAATGT TAAATTAGAA GTTCTGCATA 151 CTCCAGGACA CACGCCTGAA AGTATTAGCT TTTTACTCAC TGATTTAGGT 201 GGTGGNTCAN GTGTTCCGAT GGGATTATTT AGTGGTGACT TTATTTNTGN 20 TGGTGATATA GGTAGACCTG ATTTATTAGA AAAATCTTGT TCAAATAAAG 251 GGTTCGGCAC GAAATTAGCG CGAAACAAAT GTATGAGTCC GATCAAAATA 301 25 351 TTAAAAATTT ACCAGACTAT GTTCAAATCT GGCCGGGTCA TGGTGCTGGA 401 AGCCCTTGTG GTAAAGCATT AGGTGCCATA CCTATATCTA CAATAGGTTA TGAGAAAATT AATAACTGGG CATTTAATGA AATTGATGAG ACTAAATTTA 451 30 501 TTGNNTCATT AACATCAAAT CAACCAGCAC CACCNCATCA TTGTGCACAA ATGAAACAAG TTANTCAGTG TGGCATGAAT TTATNTCAAT CATATGATGT 551 35 601 TTATCCNAGC TTAGATNATA AGAGAGTAGC ATTTGATCTT CGCGTAGCAA AGAGGGCTTT CACGGGTGGC CACACAAAAG GAACAATCAA TATACCATAC 651 AACAAAAACT TTATTANTCA ANTTGGGTGG GTACTTAGAT TNTGAAAAAG 701 40 ATATAGATTT AATTGGAGAT AAATCTACTG TTGAGAAAAG CGAAACACAC 751 801 TTTACAATTA ATTGGGTTTG ATAAGGTAGC AGGCTATCGT NTGCCAAAAT 45 CAGGCATTTC ACCCCAGTCC GNTCATAGCG CTGATATGAC AGGTAAAGAA 851 GAACATGTAT TAGACGTACG TAATGATGAA GAGTGGAATA ATGGACACTT 901 AGNTCAAGCA GTTAATATTC CACATGGTAA ATTATTAAAT GAAAATATTC 951 50 CTTTTAATAA AGAGGATAAA ATATATGTAC ATTGTCAGTC AGGTGTTAGA 1001 AGNTCAATTG CAGTGGGGTA TATTGGGAAA GCAAAGGCTT 1051

SEQUENCE 2 [SEQ ID NO:81]

1 DVAKRLNANI YVSGEGEDAL GYKNMPSKTQ FVKHGDIIQV GNVKLEVLHT

51 PGHTPESISF LLTDLGGGSX VPMGLFSGDF IXXGDIGRPD LLEKSCSNKG

101 FGTKLARNKC MSPIKILKIY QTMFKSGRVM VLEALVVKH*

SEQUENCE 3 [SEQ ID NO:8] ttcgggtgtt ttaccttc

10

5

SEQUENCE 4 [SEQ ID NO:9] tgcagcaagc cttttctc

15 Gene #4
 DiCitrate Binding Protein

SEQUENCE 1 [SEQ ID NO:10]

1 AGCAGAATCT TTTTTAGCAT GATCTGTCAT AATGATCATA CGCTCTGGAT 20 TTAAATCAGC TAAATGTTCA GTGTCTAATT GTAAGTAAGG TCCTTTCAAA 101 TATTTACTTA AACCTTGTGT TACATCGTCA CTTAATGCAT TTTTAAATCC 25 151 TAGNTCGTTT AAAAATTGTC CAACATATGA ATAGTGTGGA TGTGCTAATA 201 AACCAGCTTT AGCAACTACT GCTGGAAGCA CTTTGTGATT TCTATCAAAT TTAATTTCAT CTTTATACTT ATTGATTAAT TTATCATGCT CAGCAAGACG 251 30 301 TTTNNCGCCT TCTTTNTCTT TATTTAAAGC TTTAGCAATT GTTGTTGAAC 351 GAATTAATAT TGTGGGTGTA GTCTCCATCA AAACTCTTTA ATGATAATGT 35 401 GGTGCAATGT GGGCTAATTC TTTATTAATA CCCTTATGTC TACTGCTATC 451 AGNGATAATT AATCCCGGNT TTAATTTACT AATNTCTCTT AAGTTNGCTT 501 GTTACGTGTA CCTACAGAAG TATTACCCCC AATTTTTCTC TTACTGGGTT 40 551 ATGATACGTT TTTTCTTACC ATCATCAGCA ATACCAACTT GGTNTAACGG 601 CTATATGCTG NTAATGCAAC CTTGCAAATG AGTACTCTAA TACAACGATA 45 CGTTGTGCAT CTTTAGGTAC TTTTACTGTA CCATTTTCAT CTTTTACCCG 651 701 AAATAGTATC TTTAGTTGAT GATTCTTCTT TTACTTGAAT TATCCGTATT ACCACAAGCT GCAACTAAAA GTAAGGCAAC TATTAATCCC AATATACTAA 751 50 801 AAGTTTTTAG ACCTCTCATC NGTCCCACTC CTTAATATGT ATANCTTCAT 851 TTATTATTTT ATTGATAACA ATTATCATTG TCAAGTAGCG TTCAATCTTT 55 901 TTTATATTTC TAAAATGTAT GACTATATAT TTCCTCTAAT AATTATGACT

	951	ACAATTAGCA CATTTCCTTA GACAAAATAC TGATAATGTA TCATTGCTAT
5	1001	ATCATCTTTG CATTAATACA ATTGACACCA CTTAGCATGA CCGNTATCCC
,	1051	TGTAATTCAG CTGATATTAT CTGTTGCAAT TTTATGTGAC GAACTGTTGC
	1101	ACTTAATTTG ATAANTCAAC AANTACAANA NATCTAAGTT GAACAATTAT
10	1151	GATACAACCG TGCAAACGAT ATGTAGTATA ACTTGTCAAC TTAGAATTAT
	1201	TGATAAATAT ATTAATATTG GTTTACCATA GCAGGAGATT TCACATCAAA
15	1251	ATTTTGAAGT AGCGTATCAA TCTTTGAATC ATCAATATAT ACCTTATGTA
	1301	AATTTTTCAT ATACATCGAA TGAGAAAGTG CTTCATAATT TAATGAAAAA
	1351	GATATATGAT CTCCAACTTG ATAGTGTCCT TGACCATTTA AATCAAGCAT
20	1401	TAAATGATCA CTCGAAGCGC CTAAAATATT GATATGCTGA TCCATAGGTG
	1451	AAATATTATC GACTTGTGTA TCTNAAATAA CCAATATCTA CAATAGCTTG
25	1501	TAAGAATGAT TCATGCGTGT GTGTATTAAC TCGAGGTTTA ATTTCTAAAA
	1551	TCTCAGCCTC CAATGTAATC GCATCTTGAT ATAACATAGC GAATCGCTTG
	1601	ATTTGCGTTG TTTCAACAAC TCTAAACAAC GTNTCANCTA TTCGGAANTC
30	1651	AATTTATTTT TACCCAAATC AATATATAAA AGGTGGGGGG NAACATGCTC
	1701	CGAATTACCA CCCGGAAATA ATTTNCANTC GATATCCTAT TTCTCTTNCA
35	1751	ACAGCTGAGA CGAATCGATT AATCATAAAG ATATCANCAC CACTTGGCGC
	1801	ATCAGATTTA AAACACATAA AATTGAATGC TAAACCTACA AAATGGATAT
	1851	TTTNCAAGTG AATAATCTCT TTANTATAAT CTAAAACATC ATAAGTCAGA
40	1901	ACACCTTCAC GGACATCTTT CCAATCTACC ATTAATAAAA TCTTATGTTT
	1951	TTTTCCTAAA ACTTCTGCTA CTTCATTTAT NTGATGTATG GTAGATAATT
45	2001	CTGTGTGGAT ACTCATATCA ACTTTCCTCT ATCATATCTG AAATCTCTTT
	2051	TGNGGGAGGC GTACGCAATA ACGTATATGT TAAATCCTGA TCTGCAATAC
	2101	TAATTATGTT ATCCAATCTG GATTCTGCAA CATGATTGAT ACCTAACGCT
50	2151	TTTAAGCTTN CTACAATGGT ACGGGCANCA GCTATACACT TAATTACTGG
	2201	TGTGANTNGN ATATTTTTAC TTTGAAAACT NNGTGGAGGT ACTTGGG

SEQUENCE 3 [SEQ ID NO:11] tgtaagtaag gtcctttc

SEQUENCE 4 [SEQ ID NO:12] taatacttct gtaggtac

5

Gene #5 Staph enterotoxin etxA

10	SEQUENCE 1	1 [SEQ ID No		GTTGTATCAA	GATTTTGTAG	GCAGTTTTAC
	51	AACGTCCGAT	TCAGCAAGTT	ATGCACAAGA	TTTTAAATCT	GAGGAAAACG
15	101	CTAAAAAGAT	TGCTGAAACT	TTAAATCTTT	TATATCAATT	AACAGGCAAT
	151	CAAAACGGTG	TGAAAGTTGT	GAAAGAAGTT	GTGGATAGAA	CTGACTTGTC
	201	ATCTGATAAA	TCAGTTGATA	GCGAAACAAT	GTAACTATAC	TAAGTTATGA
20	251	GCATTACGCT	CATAGCTTTC	TTAGAAAGTA	GGTGTAGTTT	TGGATGATAT
	301	TCAGAAAATA	AAAAAAGAGC	TTTCTGAATT	AGTTGAACGT	GTTGATGATG
25	351	TTGAAATACT	AGCAAACGAA	ACAGCTGATC	ATGTGCTTGA	ACTTAGAGAG
23	401	GAACATAAGC	AACATCATAA	TGAACTAAGA	GAATCTCATA	AAGAACTTAA
	451	AGATAAGCAA	GATAAAGTTG	TAGATGAGAA	TTTAGAGCAA	ACAAAGATAT
30	501	TAAACAGAAT	TGAAGAAAGA	TATCANACGC	AAGTAGNTGT	TGNGCAAAAA
	551	AATGAAGAAA	AGACACTCGC	ССААААТААА	TGGCTCGTAG	GTGCCATATG
35	601	GGCGCTTGTA	ACAATTGTTA	TGATTGCAGT	CATTACTGCA	TCAATTNCTG
<i>JJ</i>	651	CGTTATTACC	TTAAGGGAGG	TGGACATAAT	GAGTTGGGCA	AGATGGTTAT
	701	CATGTTATTT	GTNTGGTCGT	AAATGTAAAT	AATGTTTTTG	GTCAGTGCAT
40	751	CGGCACTGGC	TTTTTATTTT	GATTGAAAAG	AGGTACGTAC	ATGGTATTAC
	801	ACAGCTCACA	AGACAGGAAG	CATACTCCAA	GTGAAGTTGG	GAAGTGTTGT
45	851	TAATACCAAG	TAAGTAGGAT	ATCTGANATG	TATAATAGAG	TAAAAATGAA
43	901	ATCTTTTTAT	TATAGACACA	TATAAAAAGT	GTATAGTAAT	ATATGTATGT
	951	ATAATTAAAT	GATAATCATT	TCATAATTAT	TGTATATAAC	тааатааста
50	1001	CTTAACANAA	ATAATTATGC	TTTAGAGNTG	ACCANNATGA	NNNANNCCAG
	1051	CATTTACATT	ACTTTTATTC	ATTGCCCTNA	CGTTGACNAC	AAGTCCCANT
55	1101	TGTAAATGGT	AGCGAGAAAA	GCGNAGNAAT	AAATGCGAAA	GATTTGCGAA

	1151	AAAAGTCTGA	ATTCCAGGGI	N ACAGCTTTAG	NCAATCTTAN	NCANATCTAT
	1201	TATTACNATG	NNANAGCTAI	N AACTGAAAA1	AAAGAGAGTC	CNCGACCACA
5	1251	TTTTTACAGC	ATACTATAT	r gtttanaggo	TTTTTTACAG	ATCATTCGTG
	1301	GTATANCGAT	TTATTAGTAG	ATTNTGATTC	NNAGGATATT	GTTNATAAAA
10	1351	ATAAAGGGNA	AANAGTAGAC	TTGTATGGTG	CTTATTATGG	TTATCAATGT
	1401	GCGGGTGGTA	CACCACACA	A AACAGCTTGT	ATGTATGGTG	GTGTAACGTT
	1451	ACATGATAAT	AATCGATTGA	CCGAAGAGAA	AAAAGTGCCG	ATCAATTTAT
15	1501	GGCTAGACGG	TAAACANAAT	ACAGTACCTT	TGGAAACGGT	TAAAACGAAT
	1551	AAGAAAAATG	TAACTGTTCA	GGAGTTGGAT	CTTCAAGCAA	GACGTTATTT
20	1601	ACAGGAAAAA	TATAATTTAT	ATAACTCTGA	TGTTTTTGAT	GGGAAGGTTC
	1651	AGAGGGGATT	AATCGTGTTT	CATACTTCTA	CAGAACCTTC	GGTTAATTAC
	1701	GATTAATTTG	GTGCTCAAGG	ACAGTATTCA	NATACACTAT	TAAGAATNTA
25	1751	TAGAGATAAT	AAAACGATTA	ACTCTGAAAA	CNTGCGTAG	
	SEQUENCE 1	2 (Short) [S MYGGVTLHDN	SEQ ID NO:8.	2] INLWLDGKXN	TVPLETVKTN	KKNVTVQELD
30	51	LQARRYLQEK	YNLYNSDVFD	GKVQRGLIVF	HTSTEPSVNY	D*
	SEQUENCE atcccctct	3 [SEQ ID NO):14]			
35		4 (SEQ ID NO	:15]			
40	Gene #6 Staph Lip	ase Precurso	r			
	SEQUENCE 1	1 [SEQ ID NO TCAAATGCAG		AATAGGACGA	TATGCATAAA	GGAGATGGTA
45	51	AAGTGGAACA (GTGACAGAAG	GTAAAGACAC	GCTTCAATCA	TCGGAGNCAT
	101	CAATCAANCA (CAAAATAGTA	AAACAATCAG	GAACGCAAAA	TGATAATCAA
50	151	GTAAAGCAAG	ATTCTGGAAC	GACAAGGTTC	TAAACAGTCA	CACCAAAATA
	201	ATGCGACTAA	FAATACTGAA	CGTCAAAATG	ATCAGGTTCA A	AAATACCCAT
	251	CATGCTGAAC (GTAATGGATC	ACAATCGACA	ACGTCACAAT (CGAATGATGT
55	301	TGATAAATCA (CAACCATCCA	TTCCGGCACA	AAAGGTATTA (CCCAATCATG

	351	ATAAAGCAGC	ACCAACTTC	A ACTACACCC	CGTCTAATGA	TAAAACTGCA
5	401	CCTAAATCAA	CAAAAGCACA	AGATGCAACC	ACGGACAAAC	ATCCAAATCA
	451	ACAAGATACA	CATCAACCC	G CGTGCCTCAA	ATCATAGATG	CAAAGCAAGA
	501	TGATACTGTT	CGCCAAAGTG	AACAGAAACC	ACAAGTTGGC	GATTTAAGTA
10	551	AACATATCGA	TGGTCAAAAT	TCCCCAGAGA	AACCGACAGA	TAAAAATACT
	601	GATAATAAAC	AACTAATCAA	AGATGCGCTT	CAAGCGCCTA	AAACACGTTC
15	651	GACTACAAAT	GCAGCAGCAG	ATGCTAAAAA	GGTTCGACCA	CTTAAAGCGA
	701	ATCAAGTACA	ACCACTTAAC	AAATATCCAG	TTGTTTTTGT	ACATGGATTT
	751	TTAGGATTAG	TAGGCGATAA	TGCACCTGCT	TTATATCCAA	ATTATTGGGG
20	801	TGGAAATAAA	TTTAAAGTTA	TCGAGGGAAT	TGAGAAAGCA	AGGCTATAAT
	851	GTACATCAAG	CAAGTGTAAG	TGCATTTGGT	AGTAACTATG	ATCGCGCTGT
25	901	AGAACTTTAT	TATTACATTA	AAGGTGGTCA	CGAGCGTAGA	TTATGGCGCA
	951	GCACATGCAG	CTAAATACGG	ACATGAGCGC	TATGGTAAGA	CTTATAAAGG
	1001	AATCATGCCT	AATTGGGAAC	CTGGTAAAAA	GGTACATCTT	GTAGGGCATA
30	1051	GTATGGGTGG	TCAAACAATT	CGTTTAATGG	AAGAGTTTTT	AAGAAATGGT
	1101	AACAAAGAAG	AAATTGCCTA	TCATAAAGCG	CATGGTGGAG	AAATATCACC
35	1151	ATTATTCACT	GGTGGTCATA	ACAATATGGT	TGCATCAATC	ACAACATTAG
	1201	CAACACCACA	TAATGGTTCA	CAAGCAGCTG	ATAAGTTTGG	AAATACAGAA
	1251	GCTGTTAGAA	AAATCATGTT	CGCTTTAAAT	CGATTTATGG	GTAACAAGTA
40	1301	TTCCGAATAT	CGATTTAGGA	TTAACGCAAT	GGGGCTTTAA	ACAATTACCA
	1351	AATGAGAGTT	ACATTGACTA	TATTAAAACG	CGTTAGTAAA	AGCAAAATTT
45	1401	GGACATCAGA	CGATAATGCT	GCCTATGATT	TAACGTTAGA	TGGCTCTGCA
	1451	AAATTGAACA	ACATGACAAG	TATGAATCCT	AATATTACGT	ATACGACTTA
	1501	TACAGGTGTG	TCTTCACATA	CTGGTCCATT	AGGGCACGAA	AATCCTGCCG
50	1551	AATTAGGCAC	GAGACATTTT	TCTTAATGGA	TACAACGAGT	AGAATTATTG
	1601	GTCATGATGC	AAGAGAAGAA	TGGCGTAAAA	ATGATGGTGT	CGTACCAGTG
55	1651	ATTTCGTCGT	TACATCCATC	CAATCAACCA	TTTATTAATG	TTACGAATGA

	170	I TGAACCTGCC ACACGCAGAG GTATCTGGCA AGTTAAACCA ATCATACAAG
	1751	GATGGGATCA TGTCGATTTT ATCGGTGTGG ACTTCCTGGA TTTCAACACC
5	1801	GTAAGGTGCA GAACTTGCCA ACTTCTATAC AGGTATAATA AATGACTTGT
	1851	TGCGTGTGGA AGCGNCTGAA AGTAAAGGAA CACAATTGAA AGCAAGTTAA
10	1901	ATTCATCTTC TGAATTTAAT AGGCTATGTA AATCGTGCTG TTATCATGGC
.0	1951	ACATCAGATA TAAGTAGCAT CACAGTGTTG AATCTCAAAA TAGTAAAGTG
	2001	AAATAAAGCG CCTGTCTCAT TAGCGAAAAC TAAAGGGACA GGCGTATCTG
15	2051	TTTATGAGCT TAATAAATTG TATGAATAAT ATGGTTGATC GAATAACTGT
	2101	TTATCATTGA TGATAAATTT GAGTTTTTTA AAAATAATTG ATATATTACA
20	2151	CCATTGTTAT AGCGTTTAAA GAAATCAACC CAACTTTACG ATAAATAGTG
20	2201	ATTGCTTCGT CATTAGGTCT ACGATCAAAA TCATGCTCGT TTTTATTCAC
	2251	GCGTTCAAAT GTTGAATGTG GAACATGATT CATGATATGT TCGCTTTCCT
25	2301	CAACGGGAAC ATCATAATCG CCATTACAAT GCGCAATGAA AACAGGTGGA
	2351	AGTGTTTTAA GNTCATCTGG TGCAATATTA TATTTTGAAT CAGTATAATC
30	2401	ANCAATGTTA ATCATATTTA TCCATTTACC TGTGCCACGT GCATAAACGT
50	2451	AGAGTAAAAA ACGTGTGCGA TTTGATCTTG ANCAACCGGT GTTGGTGAAG
	2501	TGAGTTGTCC AATCATTGTT TCGTTTATGC TTTGAGCTAT TTTTGCGTAA
35	2551	TACCTATTAG TTGTTTTAAA AGGGTTCAGT GTTGATGCGA CTATAACCAT
	2601	AAAAATCAAT AACACCATCA ATATCTCTGT CTCGTGCAAT TAATAAGACT
40	2651	TAAATATGCA CCTGATGATC TGCCAAAGGT AAAAATAGGG CAATTAGAAT
	2701	ATTGTGATTG AATCGCATCG AATGATGCGT AGACATCCTC AATAATGCAA
	2751	TCGAGACTTA CTTCTGGTAA TAAACGATAA CTTAGTTGAA TTAAATCGTA
45	2801	ATGTTCCGTA AGGATATCGA TATACTGTGG GGATAAATCG TTAGCTTTAC
	2851	CGAACATTAA TCCACCACCG TGGATGTAGA CAATAACGCC TTTTGTTGGT
50	2901	TGATTTTTTG CTTTAATAAT TGTGTAAGGT AATGCAAATG CATCTTTAGT
-	2951	AATTACTTTA TATTTAATTT CAGTCACGAT TTAATAGGCT CCTTAGGAAT
	3001	CCGATATTGA TGTCATTATA ACACTGTCNT NAATTTCCAT GNAAAATAGT
55		CTTAAGACGA TGAGTCATGA TAATTCTGTT CCAATTGACG TAAAGCGTCN

	3101	CGGGTATGCT	TCTTTAGACC	TTCCCCATA	TCCATCATTT	TAACAATATC
5	3151	TTTAAAAGCA	GCATGTGGNA	TGGCTAAATC	TTCTAAATCT	GCCATAGAAA
	3201	ATTCAAGATT	GATATCATGT	GGTCGCTGTT	CAGCAAGTTT	ATGCACAAAG
	3251	TCAGGTTCTG	TGACCAAAGG	CGAAGACATG	CCGACCATAT	CTGCATGTTG
10	3301	TAAAGCATCT	AAAGCAGACT	CTGGAGAATT	AATCCCGCCA	CTTGCAATTA
	3351	AAGGGATACG	ACCTGCTAAA	TGTTCATAGA	CAATTTGGTT	AACTGGTCGA
15	3401	CCGAAATGAT	CACCTGGTGT	ACGAGACGTA	TTTTGATAAA	TATGTCGACC
	3451	CCAGCTAGCG	ATTGCTAAGT	ATTGGATGTT	TGAAACGTCC	ATGACCCAAT
	3501	CGATTAATTG	GTTGAACTCG	TCAATGGTAT	ATCCTAAATC	ACTGCCTCTG
20	3551	GTTTCTTCTG	GCGTTGCTCG	AAATCCTAAA	ATAAAATTGT	CAGGTGCTTC
	3601	TTTATCAATC	ACTTCTTGTA	CCGCACGCAT	AACTTCTAAA	CATAATCTTG
25	3651	CACGATTTTT	TAATGAGTCG	GCACCGTAAT	GGTCTGTACG	TCTATTTGAA
	3701	AAAGTTGAGA	AAAATGTTTG	AATCAGCAAA	CGTTGTGCAA	TCGAAATTTC
	3751	CACACCATCA	AAACCTGCTT	TAATCGCGCG	TGCATCGAGC	TCGTGCC
30	SEQUENCE 3 gactaataat	[SEQ ID NO actgaacg):17]			
35	SEQUENCE 4 tctgtcggtt	[SEQ ID NO tctctggg	9:18]			
	Gene #7 Fatty Acid	Oxidation	Complex Sub	punit		
40		(SEQ ID NO CAGGCGTTTC		TGTTGCNNGC	CTTTAATTAC	CGACNCTGCA
	51	ATANCCAAAC	CGACCAGGTC	GGATAGGGNA	TATGTACCTG	TTTTAGGACG
15	101	ACCAATCGCT	TGCCCAGTTA	AAGCATCCAC	ATCTACNATG	CTTANCTTGT
	151	GTTGCTCGGC	GCGATACAGA	ATATCATTCA	TTGTGTGCGT	GCCGACTCTA
50	201	TTTGCGACAA	AGCCAGGCAC	ATCATTGACG	ACAATGACAC	CTTTACCTAA
,,,	251	TACATTGTGC	GCGAAATTTT	TTACATCTAA	TATGATAGAT	TCCTTCGTGT
	301 (GTGACGTAGG '	TATTAACTCC	ACTAATTNCA	TAATACGTGG	TGGGTTAAAG
55	351 /	AAATGTAGAC	CAAAGAATCG	CTCTTGATCC	TTCTCGTTAA	ATGCTTGAGC

	401	AATCGCATTA ATTGGGATTA CCTGATGTAT TTGTAGCAAA TAAAGCATCI
	5 451	
	501	
	. 551	
10	0 601	AGTAGCGGCC GTTTCTTATC TGTAATTTTA TCGTAAGATT TTTTCGCAAT
	651	GAGATTTGGA TCGTTTGTGT CCACTACAAT ATCTAATAGT TTTACTTTAA
15	701	GTCCAGCATN CACAAAGAGT GCTGCCAGTT GAGCGCCCAT CGTGCCTGCG
	751	CCAAGAACGG TTACTTTATT AATTGTCATA GTGATTCCTC CAATTTAGGT
	801	GAGGATAAGA TAACCATTAA GATAATTGGA ATAACGNTGC TATTTTATNA
20	851	AATTAATTAA GTATCTTTGA CAAGACATCT CAGNCTCTTT ATTTTAAGGA
	901	AAAAGCTTTA TGCTTAAAAT AAGTCTTTTT TAGTGAAATT AATGCATCTC
25	951	ATATAATTAT TTGCTATTTA TACGAAAGCA GAATCTCCAG TCAAAGCGCG
	1001	TCCAATTACT AAGGCATTAA TTTCATGTGT ACCTTCGTAC GTGTAAATCG
		CTTCTGCATC AGAGAAGAAA CGTGCAATAT CATAATCGTC AGCTAGTATG
30		CCATTACCAC CTGTAATACC GCGGCCCATA GCTACTGTCT CACGCAAACG
		TAAGGCATTC ATCATCTTCG CCGGTGAAGT TGCAACCTCG TCATATTCAC
35		CATGTGCTTG CATATTAGCT AATTGAGCAC ATGTTGCCAT TGCTTGAGCT
		AAATTACCTT GCATCATTGC TAGCTTNTCT TGTATTAACT GATATTTACT
40		AATTGGGTNT GCCGAATTGC TTACGCTCAA GTGACATAAT CTAATGTGGC
40		ACGTAAAGCG CCAGCCATAC CACCTGTAGC CATATAAGCA ACGCCTGCTC
		CCGGTGGAA TAAAGAATTT TG
45	SEQUENCE 2	[SEQ ID NO:83] LXKMLYLLQ IHQVIPINAI AQAFNEKDQE RFFGLHFFNP PRIMXLVELI
	51 P	TSHTKESII LDVKNFAHNV LGKGVIVVND VPGFVANRVG THTMNDILYR
50	101 A	EQHKXSXVD VDALTGQAIG RPKTGTYXLS DLVGLXIAXS VIKGXQXVPE
		TP DEVGENTANS VINGXQXVPE
55	SEQUENCE 3 atgtacctgt :	[SEQ ID NO:20]

37

SEQUENCE 4 [SEQ ID NO:21] gagtcattta acatatgg

5 Gene #8 ATP DEPENDENT RNA HELICASE DEAD SEQUENCE 1 [SEQ ID NO:22] 1 ATACTTTGAT TTTAGATGAA GCTGATGAAA TGATGAATAT GGGATTCATC 10 51 GATGATATGA GATTTATTAT GGATAAAATT CCAGCAGTAC AACGTCAAAC 101 AATGTTGTTC TCAGCTACAA TGCCTAAAGC AATCCAAGCT TTAGTACAAC 15 151 AATTTATGAA ATCACCAAAA ATCATTAAGA CAATGAATAA TGAAATGTCT 201 GATCCACAAA TCGAAGAATT CTATACAATT GTTAAAGAAT TAGAGAAATT TGATACATTT ACAAATTTCC TAGATGTTCA TCAACCTGAA TTAGCAATCG 20 301 TATTCGGACG TACAAAACGT CGTGTTGATG AATTAACAAG TGCTTTGATT 351 TCTAAAGGAT ATAAAGCTGA AGGCTTACAT GGTGATATTA CACAAGCGAA 25 401 ACGTTTAGAA GTATTAAAGA AATTTAAAAA TGACCAAATT AATATTTTAG TCGCTACTGA TGTAGCAGCA AGAGGACTAG ATATTTCTGG TGTGAGTCAT 451 501 GTTTATAACT TTGATATACC TCAAGATACT GAAAGCTATA CACACCGTAT 30 TGGTCGTACG GGTCGGTGCT GGTAAAGAAG GTATCGCTTG TAACGTTTGG 551 TTAATCCAAT CGAAATGGAT TATATCAAGA CAAATTGAAG ATGCAAACGG 601 35 651 GTAGAAAAT GAGTGACTCC GCCACCTCAT CGGTAAGAAG TACTTCCAAG 701 CACGTGAGGA TGACATCAAA GGAAAAGGTG GAAACTGGAT GTCTTTAAGA 751 GTCAAGAATC ACGCTGGAAA CGCATTCTTC AGAGGTGGGT AAATTGAATT

SEQUENCE 3 [SEQ ID NO:23] gatgaagctg atgaaatg

801 TTACGATGTG G

SEQUENCE 4 [SEQ ID NO:24] tatctagtcc tcttgctg

40

50 Gene #9
PHOSPHORIBOSYLAMINE GLYCINE LIGASE

SEQUENCE 1 [SEQ ID NO: 25]

1 TAATTCGCAA TAGGAGTGAT GAATATCATA AATTTTACCC TCCAAATGAA
55

	51	GCTAATGAAG	rcctggacc(GAGTAAGAC	CATGTAGCCA	AGCTAAAATA
	101	ATCCACTCTA (CCTTATCTT	AGTTAATAA1	GTTACTAAAT	GTTGTTCATA
5	151	CGCTGCTTTT 6	SAATCAAATT	GTTTTGGTTC	ATTAATATAA	ACAGGAATAT
	201	CGTGCTTGTT T	GCTCTATCT	' ATACAAAACG	CATTTTGATG	ATCCGTATAT
10	251	AGCNCCGTAA C	TTCAATATT	TTCAAGTTTT	CCTGATTCAA	CATGCTCAAC
	301	TATATTTTCA A	AGTTACTTC	CTGAACCTGA	TGCAAAAATC	GCAATTTTAA
	351	CCATTGTTAT A	CCCCAACA	ATTCAATTGC	AGTTGACTCA	TTTTTCACAA
15	401	TATGACCAAT T	TGATAAGCT	TCCACATTTT	GTTCTGCTAA	AATCTTCAAA
	451	GCGCGTCGAT G	CATCTTTTT	CATCAACGAT	AACCGTATAG	CCAATACCCA
20	501	TGTTAAAAAT G	TTATACATT	TCATTTGTGT	CTATATTGCC	TTGTTGTTGT
	551	AACCAATCAA A	PATTTTTGG	CGTTGGAAAT	GATGTAGTAT	CAATTCTAGC
	601	AGCATATCCG GO	CTGGCAATG	CACGTGGAAT	ATTTTCATAA	AAACCTCCAC
25	651	CAGTAATATG AT	TTCATTGCC	TTAATAGAAA	CTTCTTTTTT	TAAAGCAAGT
	701	ACAGGINIGA CA	TTAATTT	AGTTGGCTCT	AAAAAGACAT	CTATAAATGG
30	751	ACGATTATCG NA	GGGTGATG	CCAAATCAAT	GNCTGATTCA	NTAATTAATN
		TGCGCACTAA AC	TGTNTCCA	TTNGANTGAA	TGNCACTTGG	ACGCAAGTCC
<u></u>	851	TATAACAACT TG	GCCCTCTT	NCAATTCTTG	AACCATCTTA	CAATAGNCAA
35	901	CCTTTTTCAA CT	GCTCCAAC	AGCAAATCCG	GCTACATCAT	ATTCACCTTC
	951	GTGATACATT				
40	SEQUENCE 3 ataagcttcc	[SEQ ID NO:]	26]			
	SEQUENCE 4 gataatcgtc	[SEQ ID NO: : catttata	27]			
45						
	Gene #10 Methanobact	eria formate	dehydroge	enase		
	SEQUENCE 1	[SEQ ID NO: 2	28]			
50		GCACGAGCG CTA				
	51 A	GGGATATTA ATT	TTAAAAG A	AGCAGACAA A	ATGGTGTTT G	CTTCTTTTT

101 TATGTCGTAT AAGTAATAAA TAAAACAGTT TGATTTTAAA ATGAAAGCGT

	3 5 1	222222				
	131	AAAAATGGTA	AAATATCCCA	AAATTGATTG	TGATATAATT	ATAAGGAAAA
	201	TGAGCAATTT	ATGAAAAAG	TTTACGNACA	AATCGGAGAA	TTAAAACTAA
5	251	ATAATTATCA	AAACAACGTC	AATATTTAGT	TGAATACTCA	GACTTTAGCC
	301	CATGGCCAAG	TGGGGAAGAC	AGCATATATT	AGTAAAGGTG	AATGATTTGT
10	351	TATTACTCAC	TCGAAAATAG	AAAGACAAGA	TTTTAACGAT	ТААААТАААС
	401	TATTTTACAA	ATAAAGTAAA	ATTAATTTAT	TANGCTAATA	АТССАААААА
	451	TTAAAAAGTA	ATGGACAAAG	AGATAATGAT	ATGGCTCAAG	AGGTAATAAA
15	501	ATAGAGGTGG	ACGCACACTA	AATGGGGAAG	TTAATACAAG	G
	SEQUENCE 3 gcacgagcgc	[SEQ ID NO taaatttg	: 29]			
20	SEQUENCE 4	[SEQ ID NO	: 30]			

Gene #11

25 E.coli Nitrate Reductase

SEQUENCE 1 [SEQ ID NO: 31] 1 CCACCCANCT GATTATATG TTTTAGCANG AGCTAGACTT GGTTGGTTAC 30 51 CATCATATCC ACAATTTAAT AAAAATAGTT TGTTGTTTGC AGAAGAAGCT 101 AAAGATGAAG GCATTGAGTC GAATGAGGCA ATTTTAAAAC GAGCGATAAA 151 TGGAAGTTAA GTCAAAACAA ACGCAATTTG CGATAGAAGA TCCGGATTTG 35 251 CAAGTTCTGC AAAAGGTCAA GAATACTTTA TGAAGCATTT ACTTGGCACA 40 301 AAATCAGGGT TATTAGCTAC ACCAAATGAA GATGAAAAGC CAGAAGAAAT 351 TACGTGGCGT GAGGAAACAA CAGGGAAATT AGATTTAGTC GTTTCTTTAG ATTTCAGAAT GACAGCAACA CCTTTATATT CTGACATTGT TTTGCCAGCA 401 45 GCGACTTGGT ATGAGAAGCA TGATTTGTCA TCTACAGATA TGCATCCATA 451 TGTACATCCT TTTAATCCAG CTATTGATCC ATTATGGGAA TCGCGTTCAG 501 50 ACTGGGATAT TTATAAAACG TTGGCAAAAG CATTTTCAGA AATGGCAAAA 551 GACTATTTAC CTGGAACGTT TAAAGATGTT GTGACAACTC CACTTAGTCA 601 651 TGATACAAAG CAAGAAATTT CAACACCATA CGGCGTAGTG AAAGATTGGT 55

	70	1 CGAAGGGTGA AATTGAAGCG GTACCTGGAC GTACAATGCC TAACTTTGCA
	75	1 ATTGTAGAAC GCGACTACAC TAAAATTTAC GACAAATATG TCACGCTTGG
5	80:	1 TCCTGTACTT GAAAAAGGGA AAGTTGGAGC ACATGGTGTA AGTTTCGGTG
	851	TCAGTGAACA ATATGAAGAA TTAAAAAGTA TGTTAGGTAC GTGGAGTGAT
10	901	ACAAATGATG ATTCTGTGAG AGCGAATCGT CCGCGTATTG ATACAGCACG
	951	TAATGTAGCA GATGCAATAC TAAGTATTTC ATCTGCTACG AATGGTAAAT
	1001	TATCACAAAA ATCATATGAA GATCTTGAAG AACAAACTGG AATGCCGTTA
15	1051	AAAGATATTT CTAGCGAACG TGCTGCTGAG AAAATTCGTT TTTAAATATA
	1101	ACTTCACAAC CACGAGAAGT AATACCGACA GCAGTATTCC CAGGTTCAAA
20	1151	TAAACAAGGT CGACGATATT CACCATTTAC AACGAATATA GAACGTCTAG
	1201	TACCTTTTAG AACATTAACA GGACGTCAAA GTTATTATGT GGATCACGAA
	1251	GTTTTCCAAC AATTTGGGGA GAGCTTACCA GTATATAAAC CGACATTGCC
25	1301	GCCAATGGTA TTTGGGAATA GAGATAAGAA AATTAANGGT GGTACAGATG
	1351	CTTTGGTACT GCGTTATTTA ACGCCTCATG GANAATGGAA TATACACTCA
30	1401	ATGTATCAAG ATAATAAGCA TATGTTGACA CTATTTAGAG GTGTCCACCG
	1451	GTTTGGATAT CANATGAAGA TGCTGNAAAA CACGATATCC AAGATAATGA
	1501	TTGGCTAGAA GTGTATANCC GTAATGGTGT TGTAACGGCA AGAGCAGTTA
35	1551	TTTCGCATCG TATGCCTAAA GGTACAATGT TTATGTATCA TGCACAAGAT
	1601	AAACATATTC AAACGCCTGG GTCAGAAATT ACAGATACAC GTGGTGGTTC
40	1651	ACACAACGCG CCGACTAGAA TCCATTTGAA ACCAACACAA CTAGTCGGAG
	1701	GATACGCACA AATTAGTTAT CACTTTAATT ATTATGGACC AATTGGGAAC
	1751	CAAAGGGATT TATATGTAGC AGTTAGAAAG ATGAAGGAGG TTAATTGGCT
45	1801	TGAAGATTAA AGCGCAAGTT GCGATGGTAT TAAATTTAGA TAAATGCATA
	1851	GGATGCCATA CGTGTAGTGT GACATGTAAA AACACTTGGA CAAATCGTCC
50	1901	AGGTGCTGAG TAACATGTGG TTCAATAACG TAGAAACGAA GCCAGGTGTA
	1951	GGGTATCCGA AACGTTGGGA AGACCAAGAA CACTACAAAG GTGGTTGGGT
	2001	ACTAAANTCG TAAAGGGAAA CTTGAATTAA AATCTGGAAG TAGAATTTCA
55	2051	CAAATTGCTT TAGGTAAAAT TTTTTATAAC CCAGATATNC CATTAATAAA

	210.	1 AGATTATTAT	GANCCATGG	A NCTATAATT	A TGAACATTI	A ACAACTGCGA
5	2151	l aatcagggaa	GCATTCGCC	A GTTGCTAGA	G CGTATTCAG	A AATTACAGGG
	2201	GATAACATTG	AAATTGAAT	G GGGACCTAA	C TGGGAAGAT	G ACTTAGCAGG
	2251	TGGTCATGTT	ACAGGCCCA	A AAGATCCTA	A CATACACAA	A ATAGAAGAAG
10	2301	AGATTAAATT	CCAATTTGA	C GAAACTTTT	TGAG	
	SEQUENCE 1	2 (SEQ ID NO MKHLLGTKSG):84] LLATPNEDEI	K PEEITWREET	TGKLDLVVS	L DFRMTATPLY
15	51	SDIVLPAATW	YEKHDLSST	MHPYVHPFNP	AIDPLWESRS	S DWDIYKTLAK
	101	AFSEMAKDYL	PGTFKDVVTT	PLSHDTKQEI	STPYGVVKD	V SKGEIEAVPG
20	151	RTMPNFAIVE	RDYTKIYDKY	'VTLGPVLEKG	KVGAHGVSFO	VSEQYEELKS
	201	MLGTWSDTND	DSVRANRPRI	DTARNVADAI	LSISSATNGE	K LSQKSYEDLE
	251	EQTGMPLKDI	SSERAAEKIR	F*		
25	SEQUENCE attgatcca	3 [SEQ ID NO	: 32]			
30	SEQUENCE catattgtt	4 [SEQ ID NO:	: 33]			
35	Gene #12 E.coli ft	sE (abc trans	sporter)			
	SEQUENCE 1	l (SEQ ID NO: AGTTATTGTA T	34] TTAAAAATG	TTTCATTTCA	ATATCAAAGT	GATGCATCCT
40	51	TCACATTGAA A	GATGTTTCT	TTTAATATAC	CTAAAGGTCA	GTGGACATCT
	101	ATTGTTGGTC A	TAACGGTTC	TGGAAAATCT	ACAATTGNCA	AGTTAATGAT
	151	TGGCATAGAG A	AAGTTAAAT	CTGGAGAAAT	TTTTTATAAT	AATCAAGCTA
45	201	TAACTGATGA T.	AATTNTGAA	AAGTTAAGAA	AAGACATAGG	AATTGTATNT
	251	CAGAATCCGG A	TAATCAATN	TGTTGGNTCA	ATTGTAAAAT	ACGATGTGGC
50	301	ATTTGGACTC G	AAAATCATG	CGGNTCCACA	TGACGAAATG	CATAGAAGAG
	351	TCAGCGAAGC A	CTTAAACAA	GTTGATATGT	ragaacgtgc	AGATTATGAC
	401	CCTAATGCAT T	ATCGGGGGG	ACAGAAGCAG (CGTGTGGCTA	TAGCAAGTGT
55	451	ATTAGCACTT A	ACCCTCTGT	CATTATATAG	ATGAGGCGAC	TCTATGTTAG

501 GATCCCTGAT GCACGTCAAA TTTATGGGAT TTAGNGAGAA AGTAANTCAG
551 ACATTATATA CAATCATTCT ATACGCATGA TTTATCTGAG GCGATGAGNA
601 GATCAAGTAT CCGTATGATA AGGACTTNCT TTTAAGGC

SEQUENCE 3 [SEQ ID NO: 35] gtttcatttc aatatcaa

10

5

SEQUENCE 4 [SEQ ID NO: 36] atctatataa tgacagag

15 Gene #13
 B.subtilis secA

SEQUENCE 1 [SEQ ID NO: 37] 1 GTTAATCAAG TATCGAAGCG GAACAATCAT ACTTTAATGT TGAAGATTTA 20 TATNGCGAAC AAGCGATGGT CCTAGTGCGT AATATTAATT TAGCACTGCG CGCACAATAT TTGTTNGNAT CTNATGTCGA TTACTTTGTA TATNNTGGTG 101 25 ATATTGTTTT AACTGACCNC ATTACAGGTC GTNTGTTACC GGNAACTAAG 151 TTGCAAGCTG GACTTCACCA NGCTATTGAA GCGAAAGAAG GTATGGAGGT 201 TTCAACAGAT AAAAGTGTTA TGCCAACCAA TTACCCTTCC AGAATTTATT 251 30 TAAACTTTTT GAATCAATTT TCAGGTATGA CAAGCTACAG GAAAATTAGG 301 CGAATCAGAG TTCTTTGATT TGTATTCANA AATAGTCGTA CAAGCACCCA 351 35 ACTGATAAAG CGATTCAACG TATCGATGAA CCAGATAAAG TGTTTCGTTC 401 AGTTGATGAG AAAAACATCG CGATGATTCA TTGATATAGT TGAACTTCAT 451 GANNCGGGGC CGACCGGTTT TACCTCATAA CCGAGNACTG CTGAAGCGGC 501 40 TTGAATACTT TTCNGAAGTA TTATTCCAAA TGGATATTCC TAATAATTTA 551 CTCATTGCGC AAAATGTTCC AAAAGAAGCG CAGATGATAG CTGAAGCAGG 601 45 CCAAATTGGT TCCATGACTG TTGCGACTAG TATGGCAGGT CGAGGCACAG 651 701 ATATTAAACT TGGTGAAGGT GTCGAAGCAT TAGCTGGATT AGCTGTTATT ATTCATGAAC ATATGGAAAA TAGCCGTGTA GACAGGCAAT TACGTGGTCG 751 50 TTCTGGTAGA CAAGGGGATC CGGGATCATC TTGTATATAT ATTTCACTAG 801 ATGATTATTT AGNTAAGCGA TGGAGCGATA GTAATTTAGC GGAAAATAAT 851 55 901 CAATTATATT CANTAGATGC ACAACGATTA TCGCAAAGTA ATTTGTTTAA

	951	TCGNAAAGTT	AAGCAAATTG	TAGTTAAAGC	GCAGCGTATC	TCGGAAAGAA
5	1001	CAAGGGGTTA	AAGCTCGGTG	AAATGGCTTA	ATTGAATTTG	NNAAAAAGCA
,	1051	TNAGTATTCA	GCGAAGATCT	TNGTATTTAC	GANGGAACGC	AAATCCGAGT
	1101	TTTTAGAAAT	TAGATTGATG	CTGAGAATCC	NAGATTTTTA	ANGCGGTTAG
10	1151	CTTAAAGATT	GTATTTGAAA	TNGTTTGGGG	NAATGANGGA	AANGGTGCTA
	1201	ACAAAATCGC	GNGTTGGGCG	AGTATATTT	ATCAAAAATT	TAAGTTNCCA
15	1251	ATTTAATAAA	GATGTGGCTT	GTGTTAATTT	TAAAGATAAG	CAAGCAGNAG
••	1301	TGACATTTTT	ATTAGAGCAA	TTTGAAAAGC	AATTAGCTTT	GGANTCCGTA
	1351	AAAACATGCA	ANGNGCATAT	TATTATAATA	TTNCCGGCCA	AAANGTCTTT
20	1401	NGGGAAAGCA	ATTGATNCAA	GTTGGGGTTA	GGAACAAGTC	GGCTTTTNAC
	1451	AACAANTTAA	NAGCAAGCGN	TAATCAAACG	ACAAAANTGG	CAACCT
25	SEQUENCE 1	2 (SEQ ID NO MDIPNNLLIA		AEAGQIGSMT	VATSMAGRGT	DIKLGEGVEA
	51	LAGLAVIIHE	HMENSRVDRQ	LRGRSGRQGD	PGSSCIYISL	DDYLXKRWSD
30	101	SNLAENNQLY	SXDAQRLSQS	NLFNRKVKQI	VVKAQRISER	TRG*
		3 (SEQ ID NO t actatogo): 38]			
35		4 [SEQ ID NO c ttgaatac	9: 39]			
40	Gene #14 E.coli ch	oline dehydr	ogenase			
40		l [SEQ ID NO ATATAAATTA		TGGTTTTACT	TCGATTGCAC	CCTTCATTTT
45	51	CATCATTGAA	CACCATGCTT	AATATAATCC	ATATATTTGT	GGCTCTAAAG
	101	NCTTTCCTCC	CACCGTATAA	TGTCTGCTGC	TTTTTCAGCT	AACATTAAAA
	151	CAGGTGCGTG	TATATTGCCA	TTTGTCGTAC	GTGGCATAGC	GGATGCATCA
50	201	ACTACACGTA	AATTTTCCAT	ACCGTGGACT	TTCATTGTTA	ACGGGTCAAC
	251	TACTGCCATT	GGATNCTGAA	GCAGGACCCA	TTTTAGCACN	ACAAGATGGG
55	301	TGTAATNCTG	TTTCACCATC	TCNACGGAAN	NCAATCAAGN	ATTTCTTCGT

	351 CTGTTTGCAC TTCTGGGTCC TGGGTGAAAT TTCTCCACCA TTGAATGGAT
	401 CCATTGCTTT TTGAGATAAG ATATTTCTTG CTACACGAAT TGCTTCTACC
5	451 CATTCTNTTT TATCTTCTTC TGTTGATAAA TAATTAAAGC GGATACTTGG
	501 TTTTTCGAAT GGATCTTTAG ATTTGATTGG CACGAGCTAC CACGAGAGTT
10	551 TGAATACATT GGTCCTACGT GAACTTGATA ACCATGTGCG ACCGCTGCCT
10	601 TTTGACCATC ATATCTTACA NCTATTGGTA AGAAATGGAA CATTAAGTTA
	651 GGATAATCAA CTTCGTTATT TGAACGTACA AATCCGCCAC CTTCAAAATG
15	701 GTTAGATGCT GCTGCACCTG TACGTGTGAA AATCCAGTGG TAAACCAATT
	751 AAATGGCATG CGCCTTGATA TCTAAGCTTG GCTGTAATGA TACAGGTTTC
20	801 CTTACATTTA TGTTGAATGT ATACCTCTAA GTGATCTTCC AAAGTTTTCA
20	851 CCCACACCTG GTAAATGAAC ACGTGGCTCA ATGCCTTTTG ATTTTAGGAA
	901 CTCTGAATCA CCGATACCAG ATAATTGTAG TAATTGTGGC GTTATTGAAT
25	951 GCCCC GTTATTGAAT
	SEQUENCE 3 [SEQ ID NO: 41] gaagcaggac ccatttta
30	
30	SEQUENCE 4 [SEQ ID NO: 42] gattttcaca cgtacagg
25	Gene #15
35	S.aureus DNA Gyrase
	SEQUENCE 1 [SEQ ID NO: 43] 1 GAATTCCTAC ATAATACTTT TGTTTACCTT GTGTCAGTTT ATACAACGGT
40	51 GGCTGTGCAA TATACACATA GCCTGCTTCA ATTAACGGTC TCATAAATCG
	101 ATAGAAGAAT GTTAATAACA ATGTTCTAAT ATGCGCTCCA TCCACATCGG
45	151 CATCAGTCAT AATGACGATT TTGTGATATC TTGCTTTCGC TAGATCAAAG
	201 TCGCCACCGA TTCCTGTACC AAATGCTGTG ATCATTTGAC GAATTTCATT
	251 GTTATTCAAA ATTCTATCTA ATCGTGCTTT NTCAACATTT AATATCTTAC
50	301 CTCGTAATGG TAAAATCGCC TGCGTTCTAG AGTCACGACA GATTTTGGTG
	351 GACCCCCNGC AGAGTCCCCT TCGACTAAGA AAATCTCACA TTCTTCAGGA
55	401 CTTTTACTAG AGCAATCGGC TAATTTACTG GAAGACTGCT ACATCTACGC

451 TGATTTACGA GGTGTTACTT CAGGGCTTTN TCGAGACACG TGCANGT

SEQUENCE 3 [SEQ ID NO: 44] cataatactt ttgtttacc

SEQUENCE 4 [SEQ ID NO: 45] agtaacact cgtaaatc

10 Gene #16
 E.coli pts system ptkC

55

SEQUENCE 1 [SEQ ID NO: 46] 1 CTANCNAANG GAANTTCAGC ATCCTTAAAA ATACCTATTT GACTGTAGAA 15 ACCTTTTGNT GCGTACAATA TCTAAACCTT GTCGTGCTGC TGGAACTGCA CCTGAACATT CAACAACAAC ATCTGCACCG TAACCGTCTG TAATTCCATT 101 20 GATATACGTT TTTAAGTCTG TGTGTTGTAA ATTGACTACA TAATCCATGT 151 201 GCAATGCTTC TGCTTTATCT AATCTGACTT NGTGGCANTG TCCAATCCAG 251 TTACCACAAC AGGTGCGCCT TTACTTTTCA ACACTTGTGC TACAAGTAAT 25 CCGATTGGCC CAGGTCCCAT TACAACTGCT ACATCGCCAG AGTTCACTTG 301 351 AATCTTAGAA ACGCCATGAT GTGCACATGC TAATGGTTCT TGTCATAGCT 30 401 GCAGACTGAT ACGATACTTC CGCTTCTGGA ATATGATNCA AACTTTCTTC 451 ACGTGCAATG ACATAATTAG TAAATGCGCC ATCAACTTGT GTTCCAATAC 501 CTTTTCGATG GTTGCATAAA TGATAGTTTT TTGATTTACA GGAATCACAC 35 551 TCATTACANA CCATAGAATG TAGTTTCAGA AGTGACNCGG TCACCAACTT 601 TAAAATCNTT AACGTCTGCT CCCAACTTCA ACGATNTCAC CAGAAAATTC 40 651 ATGACCTAAT GTCACTGGAA AATTAACTTN ATAATGCCCT TCATAAGTAT 701 TCATCTAGCG GTGTTGCAAC TTCTTTATCA AGAAGTTCTA AGTTGCCATG 751 45 TCCTTCTCTT GTTTTTACTA AAGCTTCCAC CACAAACACN TCGANTTTTT 801 ANTIGNAATA GACTNNATAG NITNAAGATA AGATAGITAN CGATATINCC 851 50 901 ACCTTGATCA ATACTTGANA TTTCAGATGA ACCTTTTGNC ATTTGTACAT 951 TCGTACCTTT CGCCATATCT GTGAAAATGG GTGCTACGTC TGTTGCAATA 1001 TATAATGAAA TTGCAATCAT AATCGTACCC ACAATGACAG AATGAATAAT

	105	1 GTTTCCTCTT GCTGCACCAA CAATAAACGC GACAACAAAT GGTATAGTTG
	110	1 CTAAGTCACC AAAAGGTAGT ACTTGGTTTC CTGGTAAAAT AACGGCTAAT
5	115	
	120	
10	. 125	
.0	1301	
	1351	
15	1401	
	SEQUENCE	2 [SEQ ID NO:86]
	. 1	
20	51	MPVSESARTW LNKRFGEREI YIGLDAAVAL GHPAVISTAL ILVPITVLLA
	101	VILPGNQVLP FGDLATIPFV VAFIVGAARG NIIHSVIVGT IMIAISLYIA
25	151	TDVAPIFTDM AKGTNVQMXK GSSEXSSIDQ GGNIXNYLIX XLXSLXQXKX
	201	RXVCGGSFSK NKRRTWQLRT S*
30	SEQUENCE gttctaagt	3 [SEQ ID NO: 47] tt gccatgtc
	SEQUENCE cctagaato	4 [SEQ ID NO: 48] 19 taaaaatc
35	Gene #17	
	– .	rium adenine glycosylase
40	SEQUENCE	1 [SEQ ID NO: 49]
		CCATTTAAAA GTATTGTAAA ATCATCCACN TTNTATAAAC CAACCACNTT
	51	TOTAL TOTAL TOUGHTGAGA TTAAAAGATA TCAATNAATA
45	101	CAATTTTTAN AATTAATGTC ACTATGTTTT CCGATAATAT NACCCAATCA
	151	TCGNAATGTT ACCCATTTAT AAAATGANAA ATCNTTGACA TAGGTANAGG
	201	GAATGTATAT TGGTCNCGGA TCACTTAAAT TAAACCCANA TCATGTCATC
50	251	TGGTAATGTN TCAATGTTAA TTGCTCCTGA AGCGGCGTAN ACTTTAATCT
	301	TCCATGTTAA ATGAGTAAAT TGATGCGTCA ACTCNAAAAT AGGTGTTTCT
55	351	NCTGGNTGAA TGTCATGACC GATTTTTTCA NTCATTTTAC GTCTANCATG

	401	CTCACTATC	AACATAGGAI	N ATTGCCACAT	ACCATACNAT	AATTNTTCCC
	451	TACGCTTTTC	CAACAGATA	TGACCTTGAT	TATTTCTAAT	TAANAAGACG
5	501	GATTGCTCAA	TTACNTTTTT	C ACTTACATTT	TTAGATTTAA	CAGGTAACTT
	551	TTCAAATGGA	CCTTTATCA	ATGCCTCACA	GTTTTCTTGN	ACTGGACNAA
10	601	ATAAGCATAA	TGGATTTTT	GGTGNACAAA	TTAATGCCCC	TAATTCCATC
	651	ATAGCTTGAT	TAAACGTTCC	AGCTTCTGTA	GTAACATACG	GTAACAATTC
	701	TTGTTCGTAC	GATTTCCTCG	TCGATTGTAA	TTTAATATCT	CGATAGTCAT
15	751	CATTCAATCT	AGACCATACG	CGAAAAACAT	TTCCGTCTAC	AGTTGCTAGT
	801	GGTACATTAT	ATGCAATGCT	CATTACTGCA	GCTTGTGTGT	ATGGGCCAAC
20	851	ACCTTTTAAC	GCTTTAAATT	GATCAGGATC	TTTGGGAACT	AAGCCTTCAT
	901	ATTTATCANA	AACTTCTTTA	ATCGCCGTAT	GAAAATTTCG	AGCTCTACTA
	951	TAATATCCTA	AGCCTTCCCA	ATACTTTAAC	ACTTCATCTT	CCGAAGCTTG
25	1001			GAAATCGGNC		
	1051			GTCTGTTGTA		
30	1101			TTGTCGCCAT		
	1151			TTTCTTTAAA		
25	1201			AAATTAATTG		
35	1251			TTAGTATGTA		
	1301			ATATAATATT		
40	1351			GCAATTGGGG		
	1401	ACTCAAGATC				
45	1451			CTGATGGGGA		
40		ACANTGCAAC				
		CTCCCACAAN				
50		CACTNTNGCT		CCNCCTCACG	TATGGCTTGT	GG
		SEQ ID NO		EMPWRQTTNP	YYIWLSEVML	QQTQVKTVID
55	51	YYHRFGXRFP	TVEVLSQASE	DEVLKYWEGL	GYYSRARNFH	TAIKEVXDKY
55						

	101 EGLVPKDPDQ FKALKGVGPY TQAAVMSIAY NVPLATVDGN VFRVWSRLNI
	151 DYRDIKLQST RKSYEQELLP YVTTEAGTFN QAMMELGALI CXPKNPLCLE
5	
	251 EXLXYGMWQX PMXDSEHXRR KMXEKIGHDI XPXETPIXEL THQFTHLTWK
10	301 IKVYAASGAT NIXTLEDDMY WU+
	SEQUENCE 3 [SEQ ID NO: 50] tcctgaagcg gcgtatac
15	SEQUENCE 4 [SEQ ID NO: 51] tatgaagget tagtteec
20	Gene #18 S.aureus femA
	SEQUENCE 1 [SEQ ID NO: 52] 1 GGGAAAAAA GAAAACCTTC CAAAATACGG GAAATTGAAA TTAATTANCC
25	51 GGAGAGACCA NATAGGAAGT AATTGATAAT GGAAGTTTCC CCANAATTTA
	101 ACAAGCTAAA AGAGTTTGGG TGCCTTTTAC AAGATAAGCA TGCCAATACA
	151 GTCATTTCAC GCACACTGTT GNCCACTATG AGTTAAAGCT TGCTGAAGGT
30	201 TATGAAACAC ATTTAGTGGG AATAAAAAAC AATAATAACG AGGTCATTGC
	251 AGCTTGCTTA CTTACTGCTG TACCTGTTAT GAAAGTGTTC AAGTATTTTT
35	301 ATTCAAATCG CGGTCCAGTG ATCGATTATG AAAATCAAGA ACTCGTACAC
	351 TTTTTCTTTA ATGAATTATC ANAATATGTT AAAAAACATC GTTGTCTATA
	401 CCTACATATC GATCCATATT TACCATATCA ATACTTGAAT CATGATGGCG
40	451 AGATTACAGG TAAGGCTGGT AATGATTGGT TCTTTGATAA AATGAGTAAC
	501 TTAGGATTTG AACG
45	SEQUENCE 3 [SEQ ID NO: 53] gaggtcattg cagcttgc
	SEQUENCE 4 [SEQ ID NO: 54] CAAATCCTAA GTTACTCATT
50	Gene #19 Parsley S-adenosyl methionine synthetase
55	SEQUENCE 1 [SEQ ID NO: 55] 1 CGCACATAAC GTGCAGCATA TGCAGCTGAG CGGTCTACTT TTTGTAGGAT

50

55

	5	1 CCTTACCACT GAAGCATCCG CCACCATGAC GTGCATAGCC ACCATACGTA
_	10:	
5	151	
	201	GATTACAAAG CGTCCTGTAG GATTGATGTA GAATTTAGTT TGTTCATTAA
10		GATAAATGA CATGCGCTTT GATGTCTTCT
10	251	STATES OF THE STATES AND STATES A
	301	TATCATTTTC ATCATATTCA ACAGTGACCT
15	351	GAACTTTACC GTCTGGTCGT AAATAATTCA ACGTCTCGNG CCATCTTTTA
	401	CGCACATCAG ATTAAACGTT TGGGGCAATT GGGTGTGATA AATTAAATTG
	451	CTAGAGGGAT GTACGTTTCT TGTTTCAAT
20		3 (SEQ ID NO: 56) ag ccaccata
25	SEQUENCE acaagaaa	4 [SEQ ID NO: 57] cg tacatccc
	Gene #20 E.coli di	ipeptide permease
30	Sequence 1	1 [SEQ ID NO:58] ACAACCCTNC AGTGCTTGGC CAATTAGGTA GAGAATTTNA CCTAGGTAAN
	51	TTAATGCGAT AAAGCCCAAG TTTGTAAAAT GTCCNTTGTG CGCCAATTTG
35	101	TTCCTGTACN TANTGGGANC TATTTTAGGA TTCTTATCAG GGATATTTCC
	151	CAAGGGTTTT GTTGACNCCT TAATCATGCG TGCGTGTGAT GTTATGTTGG
40	201	CAATTCCCCA AGTTATGTTG TAACGTTAGC ATTAATTTGC ATTGTTTGGA
40	251	ATGGGTGCCG AAAATATTAT CATGGCATTT ATTTTGACGC GTTGGGCATG
	301	GTTCTGTCGT GTTATACGTA CAAGTGTTAT GCAGTACACT GCTTCTGACC
45	351	ATGTCAGATT TGCTAAAACA ATCGGTATGA ATGATATGAA AATTATTCAC
	401	AAACATATTA TGCCGTTAAC ATTAGCAGAT ATTGCTATCA TCTCTAGTAG
	451	•
50	501	TTCGATGTGT TCAATGATCT TGCAAATATC TGGCTTTTCA TTTTTAGGAT
	551	TAGGTGTCAA AGCGCCTACT GCAGAGTGGG GCATGATGCT TAACGAAGCT
55		TOTAL TOTAL ATTITUDE CAGGIATIC
در	601	CATAGGGATT ATAGTGATGG CATTTACTT CTTATCCCAT CCTTATCA

	651	ATTGNTATTG GATCCCCGC ATCTCTTTCT TAAAGATAAA CTTCCGCNCC
5	701	TTGTGAAAAA AGGGAGTGGN GCAATCATGA CATTGTTAAC AAGCTAAGCA
	751	
	801	
10	851	
	SEQUENCE 1	2 [SEQ ID NO:88] MGAENIIMAF ILTRWAWFCR VIRTSVMQYT ASDHVRFAKT IGMNDMKIIH
15	51	
	101	RKVMFTHPEM MFXPGIAIGI IVMAFNFLSD ALQNXYWIPR ISFLKINFRX
20	151	L*
	SEQUENCE atattatca	3 [SEQ ID NO: 59] at ggcattta
25	SEQUENCE atctttaag	4 [SEQ ID NO: 60] ra aagagatg
30	Gene #21 S.carnosu	s pts mannitol permease
	SEQUENCE 1	1 [SEQ ID NO: 61] GAATTCTTGC ACATGTTGCT CGGTGTCTTC CTTGCTGCAC TTGTATCATT
35	51	CGTTGTAGCT GCTTTAATTA TGAAGTTCAC TAGAGAACCA AAGCAGGATT
	101	TAGAAGCTGC GACAGCTCAA ATGGAAAATA CTAAAGGGAA AAAATCAAGC
	151	GTTGCTTCTA AGTTAGTATC TTCTGATAAA AATGTTAATA CAGAAGAAAA
40	201	TGCTAGTGGT AATGTTAGTG AAACATCTTC ATCAGATGAT GATCCTGAAG
	251	CGCTATTGGA TAATTACAAC ACTGAAGATG TTGATGCACA CAATTACAAT
45	301	AATATAAATC ATGTTATTTT TGGCTGCGAT GCGGGTATGG GTTCTTNGGT
	351	GCAAATGGGG TGCAAGCATT GTTACNGTNA TTAAATTTTA AAAAGGCGGC
	401	AATTAATGAT ATTACAAGGG TACAAATTAC TGCGAATTAA TCAAATTGCC
50	451	AAAAGATGCT CCAATTANGN TATCAACTCC AGAAAAACTA CTTGATCCGG
		GCTATTAACA AACACAATGC CATCCATATT CNAAGGGGNT TAATTTCCTA
55		ATCACCAAGA TATGNAGGAC TTTTAATTAT CTTAAAAAGG TGG

PCT/GB97/00524 WO 97/31114

	SEQUENCE 1	2 [SEQ ID N MIFGKGTAKA		LGGIHEIYFE	YVLMRPLLFI	AVILGGMTG
5	51	ATYQATGFGF	KSPASPGSFI	VYCLNAPRGE	FLHMLLGVFL	AALVSFVVA
J	101	LIMKFTREPK	QDLEAATAQM	ENTKGKKSSV	ASKLVSSDKN	VNTEENASGN
	151	VSETSSSDDD	PEALLDNYNT	EDVDAHNYNN	INHVIFGCDA	GMGSSAMGAS
10	201	MLRNKFKKAG	INDITGYKYC	D*		
		3 [SEQ ID No. t gctcggtg	0: 62]			
15		4 [SEQ ID NO T TAGTGAAAC	0: 63]			
20	Gene #22 Mycobacte	rium phospha	ate sensor	?hoR		
	SEQUENCE 1	1 [SEQ ID NO GGCACGAGCG		СТАТАТАТАА	GCCTAATCCA	GAACCACCCG
25	51	TTTTTGTATT	ACGAGAGTTT	TCTACTCTGA	ATGTACGTTC	GAATATACGT
	101	TCTTGTAGTT	CTGGTATAAT	GCCAATACCT	CNATCGCTAA	TAGCAATGTC
30	151	GATAGTATCT	TGATCTTTGT	TTTCACTAAT	ATTAATATCA	ATGCGACTAC
	201	CAACATTTGA	AAATTTTAGC	GCATTATCAA	GTAAGTTTGT	TAAAATACGC
	251	TCAAGTGGCG	TTCGATATTG	ATAAAATGCA	TCAATTTCGC	TACAGAAATT
35	301	CACTTCTAAT	GTGCGGTTTT	CATGTTTGAT	ACGTTGCTCC	ATATGGTTGC
	351	AATATTGATA	CAAGTAATTG	GTCTAGTTGT	ATTAATTCTG	GGGGATATGT
40	401	TTTACCTGTA	TTTAAAGTTG	ATAAT		
		3 [SEQ ID NO aatccagaacc): 65]			
45		4 [SEQ ID NO aacatgaaaac	e: 66]			
50	Gene #23 UNKNOWN					
J 0		[SEQ ID NO GTACGAGCTC		GAGCGATTGG	TGCAGTGAGT	TATGTTTTAG
6.6	51	AACAATTAGA	TGCACCAGTA	TATGGATCTA	AATTGACAAT	AGCGTTAATT

55

	101 AAAGAAAATA TGAAAGCCCG TAATATTGAT AAAAAAGTTC GCTACTACAC
	151 AGTTAACAAT GATTCAATTA TGAGATTCAA AAACGTGAAT ATTAGTTTCT
5	201 TTAATACGAC ACACAGTATT CCTGATAGTT TAGGTGTCTG TATTCACCCT
	251 TCATATGGTG CCATTGTGTA TACAGGTGAA TTTAAGTTTG ACCAAAGTTT
10	301 ACATGGACAT TATGCACCAG ATATTAAACG TATGGCAGAG ATTGGTGAAG
	351 AAGGCGTATT TGTCTTAATC AGTGATTCTA CTGAGGCAGA GAAACCTGGA
	401 TATAATACTC CCGGAAAATG TAATTGAACA TCATATGTAT GATGCCTTTG
15	451 CCAAAGTGCG AGGTC
	SEQUENCE 3 [SEQ ID NO: 68] tttagaacaattagatgcacc
20	SEQUENCE 4 [SEQ ID NO: 69] tccgggagtattatatccag
25	Gene #24 Anabaena nitrogen fixation gene
	SEQUENCE 1 [SEQ ID NO: 70] 1 GGCCCAAACC CATCCAAGTC CTTTTTAATT GACTTATTTA CATTATTTCT
30	51 TTAATTTGGA TTAACAAATT TTTTTCTATT TGANCCCTTT AATGTTNACT
	101 CCCCGTATCT AACAAGCAAG TGATCATACT TCATTATTTT AGCAACTCCT
ءَ د	151 TAATTTCCTC ATAAATGATG ATAAATATTT CTTTAAACCT TGCTATATCT
35	201 TCTTTAGTTG TAGTAGCCCC AAATGATAAT CTTATACTAC CTTCAATAGA
	251 TTTGTCTGAT AATCCCATTG CAGCCAATAC TTCATTTAAT TTATTACGTT
40	301 TAGATGAACA AGCACTCGTC GTAGATATCA TAATGTCATA TTTTGAAAAA
	351 GCATTAACTA ATACTTCACC TTTTACGCCA GGAAAACTAA GATTTAAAAC
45	401 GAATGGTGAA CCTGAAGTTG AAGAATTAAT ATAAACTCCA TGATATTTAT
	451 TTAAAAATTG ACGGACGTCA TTATTTAACT CAGTAACAAA TGCATTCAAT
	501 GCTTCAAAGT TTTCATTAGC TCGTGCC
50	SEQUENCE 3 [SEQ ID NO: 71] ttttagcaactccttaatttcctc
55	SEQUENCE 4 [SEQ ID NO: 72] gcacgagctaatgaaaactttg

Gene #25 UNKNOWN

55

5		1 [SEQ ID NO: 73]
	1	GACAACTTGC TAAAGCACGT GATGAAAAAG TAAGTGAATA TGGAATTGAA
	51	CAAGCTGATG GTACATTAAT TCAATATGAT AGTGAAGCCA AGATATATGA
10	101	ACATTTTAAT GTGAATTTTA TACCACCTGC TATGCGAGAA GATGGTAGCG
	151	AATTTGATAA AGATCTAAGT AATATCATTA CATTAGATGA TATTAATGGT
15	201	GATATTCATA TGCATACAAC GTATAGTGAT GGTGCGTTTT CTATTCGAGA
13	251	CATGGTAGAA GCAAATATCG CAAAAGGTTA TAAATTCATG GTAATTACTG
	301	ATCATTCACA AAGTTTACGT GTTGCTAATG GCTTACAAGT GGAAAGACTT
20	351	TTTANGACAA AAACGAAGGA AATTAAGGCT TTAGATAAAG AATATAGTGA
	401	AATTGGATAT TTATTCAGGT ACAAGAAATG GATATATTAA CCTGATGGCT
	451	CGCTGGATTA TGATGATGAA ATTTNAGCAC AACTTGGATA TGTNATTGGA
25	501	GCTATTCAAC AAAGCTTNAN CCAATCAGAA GAACAAATNA TGGAACGGAT
	551	
30		TAGCTAATGC ATGTCGCAAT CCATACGTGC GACATATAGC GCATCCAACA
30	601	GGGCGTATTA TAGGTAGAAG AGATGGTTAT AAACCGAATA TTGAACAATT
	651	AATGGCATTA GCTGAAGAAA CGAATACAGT ATTAGAAATT AATGCCAATC
35	701	CACATCGACT GGATCTTGAA CGCTGAAATC GNTCGNNAAT ATCCAAATGT
	751	GAAATTAACT NTTAACACTG ATGGGCATCA TNCAAATCAA TTNGATTTTN
	801	TGGAATTATG G
40	SEQUENCE 3 acgtgatgaa	[SEQ ID NO: 74] aaagtaagtg
45	SEQUENCE 4 tcttgtacct	[SEQ ID NO: 75] gaataaatatcc
	Gene #26 periplasmi	c binding protein
50	SEQUENCE 1	[SEQ ID NO: 76] AGATCGTTCG CTAATTGACA ATTGATTAAA TCCCCTATTA CAAAATTGGA

51 TATTACCTGT TATATCTAAA AATCCACAAA TTGCTTTAGC AAGTGTTGAT

101 NTGNCGGCAC CATTGTGACC AACTATACTA AGCATTTCTC TTCTATAAAC

	151	ATTTAATTGA	ACATTATTA	A GTACACTATT	ACTATAGTCA	CTATATTGAA
5	201					CTTATTATCA
	251	TTATGTGCAG	ATGTNTCATO	TATCCATTTN	NNCACTTTAA	NTTTAACATG
	301	TTCACTCATA	CAAACGACAC	GTAANTTCGC	TAAGTTATCA	ATGGATTCGA
10	351			AGCGCTGNAC		
	401	CCTGCTTCTT				
15	451	AGCGATGATT				
	501	CTAATGANTC '				
	551	TCTTCATGAA				
20	601	ATCTAAATTG (
	651	TTAATATACC A				
25	SEQUENCE 1	2 (SEQ ID NO: GTSVSLGGIL I	90] HRTPILILD	EPLANLDPAT	GHETLRLLXN	IHEETKSTMI
	51	IVEHRLEXSL D				
30	101	CXALXYXEVD V				
	151	XPLLELNEVC V				
	201	ICGFLDITGN I				
35	SEQUENCE 3 aattgacaat	[SEQ ID NO:	77] =			
	SEQUENCE 4 gccaatttag	[SEQ ID NO: atcctgcgac	78]			

SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: Burnham, Martin Hodgson, John
- (ii) TITLE OF THE INVENTION: Novel Compounds
- (iii) NUMBER OF SEQUENCES: 91
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SmithKline Beecham Corporation
 - (B) STREET: 709 Swedeland Road
 - (C) CITY: King of Prussia
 - (D) STATE: PA
 - (E) COUNTRY: USA
 - (F) ZIP: 19406-0939
- (v) COMPUTER READABLE FORM:
- (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 25-FEB-1997
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 9604045.6
 - (B) FILING DATE: 26-FEB-1996
- (viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Gimmi, Edward R
- (B) REGISTRATION NUMBER: 38,891
- (C) REFERENCE/DOCKET NUMBER: GM50007

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: 610-270-4478
- (B) TELEFAX: 610-270-5090
- (C) TELEX:

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2111 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

	TATTTGGTTC					60
TGCAAATCAC	GCAATTGACC	ATNTGGATCT	CGTCTATCAT	AGTCATAAAT	ACGGTATGTC	120
GTATCGGATC	ATTGTTGTGT	CTCTAAAATT	AAAATACCCG	AACCAATGGC	ATGGACAGTG	180
CCAGCAGGAA	САТААТААА	GTCACCGGGC	TTAACAGGTA	TACGTTTGAA	AAGACTGCCA	240
AATTCATGAT	TATCAATCAT	GTCGATTAAC	GCCTGTTTAT	TATGTGCATG	GACGCCATAA	300
TATAATTTCA	GCACCTGGGC	TGCATCTAAA	TATACCAACA	TTCTGTTTTA	CCTAGTTCGC	360
CTTCGTGTTT	TAAAGCGTAG	TCATCATCTG	GATGAACTTG	AACAGATAAT	TTATCATTGG	420
CATCTAATAC	TTTAGTTAGC	AGAGGGAAAC	TATCTCGTGA	ATCATTATCG	AATAATTCAC	480
	CCAAAGTTGA					540
	TGGATGTGCA					600
	TGCTTTTAAT					660
	CATAGTTAAA					720
	CATTAATTAG					780
	TTTTTAAATG					840
AATTGAGGTA	GACTACCATC	TAGACTGTCC	CATTTAACAC	CATGATTATT	TTTCATAACA	900
GCTACAATCG	GTTGTTTTAC	AACATCAGAC	TTTGCATGTG	GAATGGCCAC	GTTCATGCCA	960

WO 97/31114 PCT/GB97/00524 :

B M B C C C C C C						
ATAGCTGT	CG TAGACTCCAT	TTCACGTTCT	' AGTATTGCAT	TTTTTAAATG	CGATGTGTGC	1020
TCTACATA	AC GGCAAATTTT	' AAGTTTATGA	ATCAACATAT	CAATTGCTTC	GTTTCGAGAC	1080
ATGTCGTG!	T CAGTAATTAT	CATAGTTTGT	TGATCAAAAA	CATGAGAAGG	TTTATTGAGA	1140
TGTGAATGI	T TCGCTCGTGC	CATCNACATT	GTCAACCTCT	GTATCATGTT	GTGTAATATC	1200
TGTATCATO	A AGTTGCGTGT	GTTGCGCTGG	TGCATCTACT	GCTATAACTG	GTGTATTGCC	1260
TNTTAATAA	T AGTACAGTAG	GCATTGTGAC	AAGACTACCT	ACTATCHOTO	CANACATA	
CCATAATAC	A TGATCAATAC	CACCTAATAC	7000000000	ACIAICNCIC	CAAAGATAAA	1320
ATCCCCCA	. concentre	CACCIANIAC	AGCCACGATT	GGACCTCCAT	GTGCGACTCT	1380
ATCGCCGAC	A CCACCAATGN	CTGCAATGAC	TGATGCAATC	ATTGCACCAA	TGATGTTTGC	1440
AGGTATAAT	G CGCAATGGAT	CTTGGGCTGC	GAAAGGAATA	GCACCTTCAG	TAATNCCAAA	1500
TAGTCCCAT.	A GTGAAGGNAG	CCTTACCCAT	TTCTCTTTCG	GAATGATTGA	ATTTATACTT	1560
NTGAACANA	C GTTGCTAAAC	CTAAACCGAT	TGGTGGTGTA	CATACANCAA	CTGCGACCAT	1620
ACCCATAAC	G GCGTAATTAC	CTTCAGCAAT	AAGTGCTGAG	ССАААТАААА	ATGCTACCTT	1680
	G ACCGCCCATA					1740
	G CACCTTGCAT					
AGAAATCCTC	CACCCAMMAA			AGGAATGCCG	CAAAAATATT	1800
	G CACCGATTAA					1860
	ATGATAGGCA					1920
CCACTTTGCC	ATATAACCTG	CTAAGAAACC	AGCAACAATA	CCACCTAAAA	ATCCTGCGCC	1980
	CCATAAAAAC					2040
	TTGTCAGCGA					2100
GAGCTCGTGC					0000AC	
						2111

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

ACCCTCTGTA TCATGTTG

18

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GTGCGATGAT CGCCTTGG

18

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 809 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

CGGCTC	TTCG	TAATATTGAT	AATGTGCAAT	ATTTNAAGAA	TAATCAATTT	ATTGAAGAAG	60
		GACCGTGAGC					120
		AATATCGAAG					180
		ATGAAGCAGA					240
		AATTCTATTA					300
		CCAGGACGTT					360
		ACTACAGTAG					420
		CACGAAATTG					480
		AGTGAAAAAG					540
		GATCATACAT					600
		GACAAAGTAT					660
TGGTGCT	rgtg	CCGATTGGAT	TTTGGCTTAT	GCGAATCACA	GGGAANGTAG	GTAATAAGAT	720
		CAGGTGGAAT					780

GGCGGATATT GTTGGAAATA CCGTTCTAG

809

- (2) INFORMATION FOR SEQ ID NO:5:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

AGATACGTAC TGAAATGG

18

- (2) INFORMATION FOR SEQ ID NO:6:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

CCTGTGATTC GCATAAGC

18

- (2) INFORMATION FOR SEQ ID NO:7:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1090 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GTGATGTGGC	TAAACGCTTA	AATGCAAATA	TATATGTGTC	TGGCGAAGGT	GAAGATGCAT	60
TAGGGTATAA	AAATATGCCA	TCAAAAACAC	AATTTGTTAA	ACATGGAGAT	ATCATTCAAG	120
TAGGCAATGT	TAAATTAGAA	GTTCTGCATA	CTCCAGGACA	CACGCCTGAA	AGTATTAGCT	180
TTTTACTCAC	TGATTTAGGT	GGTGGNTCAN	GTGTTCCGAT	GGGATTATTT	AGTGGTGACT	240
TTATTTNTGN	TGGTGATATA	GGTAGACCTG	ATTTATTAGA	AAAATCTTGT	TCAAATAAAG	300
GGTTCGGCAC	GAAATTAGCG	CGAAACAAAT	GTATGAGTCC	GATCAAAATA	TTAAAAATTT	360
ACCAGACTAT	GTTCAAATCT	GGCCGGGTCA	TGGTGCTGGA	AGCCCTTGTG	GTAAAGCATT	420
AGGTGCCATA	CCTATATCTA	CAATAGGTTA	TGAGAAAATT	AATAACTGGG	CATTTAATGA	480
AATTGATGAG	ACTAAATTTA	TTGNNTCATT	AACATCAAAT	CAACCAGCAC	CACCNCATCA	540
TTGTGCACAA	ATGAAACAAG	TTANTCAGTG	TGGCATGAAT	TTATNTCAAT	CATATGATGT	600
TTATCCNAGC	TTAGATNATA	AGAGAGTAGC	ATTTGATCTT	CGCGTAGCAA	AGAGGGCTTT	660
CACGGGTGGC	CACACAAAAG	GAACAATCAA	TATACCATAC	AACAAAAACT	TTATTANTCA	720
ANTTGGGTGG	GTACTTAGAT	TNTGAAAAAG	ATATAGATTT	AATTGGAGAT	AAATCTACTG	780
TTGAGAAAAG	CGAAACACAC	TTTACAATTA	ATTGGGTTTG	ATAAGGTAGC	AGGCTATCGT	840
NTGCCAAAAT	CAGGCATTTC	ACCCCAGTCC	GNTCATAGCG	CTGATATGAC	AGGTAAAGAA	900
GAACATGTAT	TAGACGTACG	TAATGATGAA	GAGTGGAATA	ATGGACACTT	AGNTCAAGCA	960
GTTAATATTC	CACATGGTAA	ATTATTAAAT	GAAAATATTC	CTTTTAATAA	AGAGGATAAA	1020
ATATATGTAC	ATTGTCAGTC	AGGTGTTAGA	AGNTCAATTG	CAGTGGGGTA	TATTGGGAAA	1080
GCAAAGGCTT						1090

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

	TI	'C	GG	GT	GTT	TTACCTTC
--	----	----	----	----	-----	----------

18

- (2) INFORMATION FOR SEQ ID NO:9:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

TGCAGCAAGC CTTTTCTC

18

- (2) INFORMATION FOR SEQ ID NO:10:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2247 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

AGCAGAATCT	TTTTTAGCAT	GATCTGTCAT	AATGATCATA	CGCTCTGGAT	TTAAATCAGC	60
TAAATGTTCA	GTGTCTAATT	GTAAGTAAGG	TCCTTTCAAA	TATTTACTTA	AACCTTGTGT	120
TACATCGTCA	CTTAATGCAT	TTTTAAATCC	TAGNTCGTTT	AAAAATTGTC	CAACATATGA	180
ATAGTGTGGA	TGTGCTAATA	AACCAGCTTT	AGCAACTACT	GCTGGAAGCA	CTTTGTGATT	240
TCTATCAAAT	TTAATTTCAT	CTTTATACTT	ATTGATTAAT	TTATCATGCT	CAGCAAGACG	300
TTTNNCGCCT	TCTTTNTCTT	TATTTAAAGC	TTTAGCAATT	GTTGTTGAAC	GAATTAATAT	360
TGTGGGTGTA	GTCTCCATCA	AAACTCTTTA	ATGATAATGT	GGTGCAATGT	GGGCTAATTC	420
TTTATTAATA	CCCTTATGTC	TACTGCTATC	AGNGATAATT	AATCCCGGNT	TTAATTTACT	480
AATNTCTCTT	AAGTTNGCTT	GTTACGTGTA	CCTACAGAAG	TATTACCCCC	AATTTTTCTC	540

TTACTGGGTT ATGATACGTT TTTTCTTACC ATCATCAGCA ATACCAACTT GGTNTAACGG	600
CTATATGCTG NTAATGCAAC CTTGCAAATG AGTACTCTAA TACAACGATA CGTTGTGCAT	660
CTTTAGGTAC TTTTACTGTA CCATTTTCAT CTTTTACCCG AAATAGTATC TTTAGTTGAT	720
GATTCTTCTT TTACTTGAAT TATCCGTATT ACCACAAGCT GCAACTAAAA GTAAGGCAAC	780
TATTAATCCC AATATACTAA AAGTTTTTAG ACCTCTCATC NGTCCCACTC CTTAATATGT	840
ATANCTICAT TTATTATTTT ATTGATAACA ATTATCATTG TCAAGTAGCG TTCAATCTTT	900
TTTATATTTC TAAAATGTAT GACTATATAT TTCCTCTAAT AATTATGACT ACAATTAGCA	960
CATTTCCTTA GACAAAATAC TGATAATGTA TCATTGCTAT ATCATCTTTG CATTAATACA	1020
ATTGACACCA CTTAGCATGA CCGNTATCCC TGTAATTCAG CTGATATTAT CTGTTGCAAT	1080
TTTATGTGAC GAACTGTTGC ACTTAATTTG ATAANTCAAC AANTACAANA NATCTAAGTT	1140
GAACAATTAT GATACAACCG TGCAAACGAT ATGTAGTATA ACTTGTCAAC TTAGAATTAT	1200
TGATAAATAT ATTAATATTG GTTTACCATA GCAGGAGATT TCACATCAAA ATTTTGAAGT	1260
AGCGTATCAA TCTTTGAATC ATCAATATAT ACCTTATGTA AATTTTTCAT ATACATCGAA	1320
TGAGAAAGTG CTTCATAATT TAATGAAAAA GATATATGAT CTCCAACTTG ATAGTGTCCT	1380
TGACCATTTA AATCAAGCAT TAAATGATCA CTCGAAGCGC CTAAAATATT GATATGCTGA	1440
TCCATAGGTG AAATATTATC GACTTGTGTA TCTNAAATAA CCAATATCTA CAATAGCTTG	1500
TAAGAATGAT TCATGCGTGT GTGTATTAAC TCGAGGTTTA ATTTCTAAAA TCTCAGCCTC	1560
CAATGTAATC GCATCTTGAT ATAACATAGC GAATCGCTTG ATTTGCGTTG TTTCAACAAC	1620
TCTAAACAAC GTNTCANCTA TTCGGAANTC AATTTATTTT TACCCAAATC AATATATAAA	1680
AGGTGGGGGG NAACATGCTC CGAATTACCA CCCGGAAATA ATTTNCANTC GATATCCTAT	1740
TTCTCTTNCA ACAGCTGAGA CGAATCGATT AATCATAAAG ATATCANCAC CACTTGGCGC	1800
ATCAGATTTA AAACACATAA AATTGAATGC TAAACCTACA AAATGGATAT TTTNCAAGTG	1860
AATAATCTCT TTANTATAAT CTAAAACATC ATAAGTCAGA ACACCTTCAC GGACATCTTT	1920
CCAATCTACC ATTAATAAAA TCTTATGTTT TTTTCCTAAA ACTTCTGCTA CTTCATTTAT	1980
NTGATGTATG GTAGATAATT CTGTGTGGAT ACTCATATCA ACTTTCCTCT ATCATATCTG	2040
AAATCTCTTT TGNGGGAGGC GTACGCAATA ACGTATATGT TAAATCCTGA TCTGCAATAC	2100
TAATTATGTT ATCCAATCTG GATTCTGCAA CATGATTGAT ACCTAACGCT TTTAAGCTTN	2160
	2220
TTTGAAAACT NNGTGGAGGT ACTTGGG	2247

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic cDNA

·	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
TGTAAGTAAG GTCCTTTC	18
(2) INFORMATION FOR SEQ ID NO:12:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 18 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
TAATACTTCT GTAGGTAC	18
(2) INFORMATION FOR SEQ ID NO:13:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 1789 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
GGCACGAGCG GCACGAGCGT GTTGTATCAA GATTTTGTAG GCAGTTTTAC AACGTCCGAT	60
TCAGCAAGTT ATGCACAAGA TTTTAAATCT GAGGAAAACG CTAAAAAGAT TGCTGAAACT	120
TTAAATCTTT TATATCAATT AACAGGCAAT CAAAACGGTG TGAAAGTTGT GAAAGAAGTT	180
GTGGATAGAA CTGACTTGTC ATCTGATAAA TCAGTTGATA GCGAAACAAT GTAACTATAC	240
64	

TAAGTTATGA GCATTACGCT CATAGCTTTC MARCANAGT	
TAAGTTATGA GCATTACGCT CATAGCTTTC TTAGAAAGTA GGTGTAGTTT TGGATGAT.	AT 300
TCAGAAAATA AAAAAAGAGC TTTCTGAATT AGTTGAACGT GTTGATGATG TTGAAATA	CT 360
AGCAAACGAA ACAGCTGATC ATGTGCTTGA ACTTAGAGAG GAACATAAGC AACATCATA	AA 420
TGAACTAAGA GAATCTCATA AAGAACTTAA AGATAAGCAA GATAAAGTTG TAGATGAGA	AA 480
TTTAGAGCAA ACAAAGATAT TAAACAGAAT TGAAGAAAGA TATCANACGC AAGTAGNTO	T 540
TGNGCAAAAA AATGAAGAAA AGACACTCGC CCAAAATAAA TGGCTCGTAG GTGCCATAT	G 600
GGCGCTTGTA ACAATTGTTA TGATTGCAGT CATTACTGCA TCAATTNCTG CGTTATTAC	C 660
TTAAGGGAGG TGGACATAAT GAGTTGGGCA AGATGGTTAT CATGTTATTT GTNTGGTCG	T 720
AAATGTAAAT AATGTTTTTG GTCAGTGCAT CGGCACTGGC TTTTTATTTT GATTGAAAA	720 C 700
AGGTACGTAC ATGGTATTAC ACAGCTCACA AGACAGGAAG CATACTCCAA GTGAAGTTG	G 780
GAAGTGTTGT TAATACCAAG TAAGTAGGAT ATCTGANATG TATAATAGAG TAAAAATGA	G 840
ATCTTTTAT TATAGACACA TATAAAAAGT GTATAGTAAT ATATGTATGT ATAATTAAA	A 900
GATAATCATT TCATAATTAT TGTATATAAC TAAATAACTA CTTAACANAA ATAATTATG	T 960
TTTAGAGNTG ACCANNATGA NNNANNCCAG CATTTACATT ACTTTTATTC ATTGCCCTN	C 1020
CGTTGACNAC AAGTCCCANT TGTAAATGGT AGCGAGAAAA GCGNAGNAAT AAATGCGAAA	A 1080
GATTTGCGAA AAAAGTCTGA ATTCCAGGGN ACAGCTTTAG NCAATCTTAN NCANATCTA	A 1140
TATTACNATE NUADACCTAN ACCESANT ACCESANT	1200
TATTACNATG NNANAGCTAN AACTGAAAAT AAAGAGAGTC CNCGACCACA TTTTTACAGG	1260
ATACTATATT GTTTANAGGC TTTTTTACAG ATCATTCGTG GTATANCGAT TTATTAGTAG	1320
ATTNTGATTC NNAGGATATT GTTNATAAAA ATAAAGGGNA AANAGTAGAC TTGTATGGTG	1380
CTTATTATGG TTATCAATGT GCGGGTGGTA CACCACACA AACAGCTTGT ATGTATGGTG	1440
GTGTAACGTT ACATGATAAT AATCGATTGA CCGAAGAGAA AAAAGTGCCG ATCAATTTAT	1500
GGCTAGACGG TAAACANAAT ACAGTACCTT TGGAAACGGT TAAAACGAAT AAGAAAAATG	1560
TAACTGTTCA GGAGTTGGAT CTTCAAGCAA GACGTTATTT ACAGGAAAAA TATAATTTAT	1620
ATAACTCTGA TGTTTTTGAT GGGAAGGTTC AGAGGGGATT AATCGTGTTT CATACTTCTA	1680
CAGAACCTTC GGTTAATTAC GATTAATTTG GTGCTCAAGG ACAGTATTCA NATACACTAT	1740
TAAGAATNTA TAGAGATAAT AAAACGATTA ACTCTGAAAA CNTGCGTAG	1789

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID	NO - 14 -
-----------------------------------	-----------

ATCCCCTCTG AACCTTCC

18

- (2) INFORMATION FOR SEQ ID NO:15:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

AAATGGTAGC GAGAAAAG

18

- (2) INFORMATION FOR SEQ ID NO:16:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3797 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

TCAAATGCAG	TCAGGGAAGC	AATAGGACGA	TATGCATAAA	GGAGATGGTA	AAGTGGAACA	60
					CAAAATAGTA	120
					GACAAGGTTC	180
					ATCAGGTTCA	240
	CATGCTGAAC					300
	CAACCATCCA					360
	ACTACACCCC					420

AGATGCAACC ACGGACAAAC ATCCAAATCA ACAAGATACA CATCAACCCG CGTGCCTCAA	480
ATCATAGATG CAAAGCAAGA TGATACTGTT CGCCAAAGTG AACAGAAACC ACAAGTTGGC	540
GATTTAAGTA AACATATCGA TGGTCAAAAT TCCCCAGAGA AACCGACAGA TAAAAATACT	600
GATAATAAAC AACTAATCAA AGATGCGCTT CAAGCGCCTA AAACACGTTC GACTACAAAT	660
GCAGCAGCAG ATGCTAAAAA GGTTCGACCA CTTAAAGCGA ATCAAGTACA ACCACTTAAC	720
AAATATCCAG TTGTTTTTGT ACATGGATTT TTAGGATTAG TAGGCGATAA TGCACCTGCT	780
TTATATCCAA ATTATTGGGG TGGAAATAAA TTTAAAGTTA TCGAGGGAAT TGAGAAAGCA	840
AGGCTATAAT GTACATCAAG CAAGTGTAAG TGCATTTGGT AGTAACTATG ATCGCGCTGT	900
AGAACTTTAT TATTACATTA AAGGTGGTCA CGAGCGTAGA TTATGGCGCA GCACATGCAG	960
CTAAATACGG ACATGAGCGC TATGGTAAGA CTTATAAAGG AATCATGCCT AATTGGGAAC	1020
CTGGTAAAAA GGTACATCTT GTAGGGCATA GTATGGGTGG TCAAACAATT CGTTTAATGG	1080
AAGAGTTTTT AAGAAATGGT AACAAAGAAG AAATTGCCTA TCATAAAGCG CATGGTGGAG	1140
AAATATCACC ATTATTCACT GGTGGTCATA ACAATATGGT TGCATCAATC ACAACATTAG	1200
CAACACCACA TAATGGTTCA CAAGCAGCTG ATAAGTTTGG AAATACAGAA GCTGTTAGAA	1260
AAATCATGTT CGCTTTAAAT CGATTTATGG GTAACAAGTA TTCCGAATAT CGATTTAGGA	1320
TTAACGCAAT GGGGCTTTAA ACAATTACCA AATGAGAGTT ACATTGACTA TATTAAAACG	1380
CGTTAGTAAA AGCAAAATTT GGACATCAGA CGATAATGCT GCCTATGATT TAACGTTAGA	1440
TGGCTCTGCA AAATTGAACA ACATGACAAG TATGAATCCT AATATTACGT ATACGACTTA	1500
TACAGGTGTG TCTTCACATA CTGGTCCATT AGGGCACGAA AATCCTGCCG AATTAGGCAC	1560
GAGACATTTT TCTTAATGGA TACAACGAGT AGAATTATTG GTCATGATGC AAGAGAAGAA	1620
TGGCGTAAAA ATGATGGTGT CGTACCAGTG ATTTCGTCGT TACATCCATC CAATCAACCA	1680
TTTATTAATG TTACGAATGA TGAACCTGCC ACACGCAGAG GTATCTGGCA AGTTAAACCA	1740
ATCATACAAG GATGGGATCA TGTCGATTTT ATCGGTGTGG ACTTCCTGGA TTTCAACACC	1800
GTAAGGTGCA GAACTTGCCA ACTTCTATAC AGGTATAATA AATGACTTGT TGCGTGTGGA	1860
AGCGNTGAA AGTAAAGGAA CACAATTGAA AGCAAGTTAA ATTCATCTTC TGAATTTAAT	1920
AGGCTATGTA AATCGTGCTG TTATCATGGC ACATCAGATA TAAGTAGCAT CACAGTGTTG	1980
AATCTCAAAA TAGTAAAGTG AAATAAAGCG CCTGTCTCAT TAGCGAAAAC TAAAGGGACA	2040
GGCGTATCTG TTTATGAGCT TAATAAATTG TATGAATAAT ATGGTTGATC GAATAACTGT	2100
	2160
	2220
	2280
	2340
	2400
	2460
	2520
TCGTTTATGC TTTGAGCTAT TTTTGCGTAA TACCTATTAG TTGTTTTAAA AGGGTTCAGT	2580
GTTGATGCGA CTATAACCAT AAAAATCAAT AACACCATCA ATATCTCTGT CTCGTGCAAT	2640

					CAATTAGAAT	2700
					TCGAGACTTA	2760
CTTCTGGTA	TAAACGATAA	CTTAGTTGAA	TTAAATCGTA	ATGTTCCGTA	AGGATATCGA	2820
TATACTGTGG	GGATAAATCG	TTAGCTTTAC	CGAACATTAA	TCCACCACCG	TGGATGTAGA	2880
CAATAACGCC	TTTTGTTGGT	TGATTTTTG	CTTTAATAAT	TGTGTAAGGT	AATGCAAATG	2940
CATCTTTAGT	AATTACTTTA	TATTTAATTT	CAGTCACGAT	TTAATAGGCT	CCTTAGGAAT	3000
CCGATATTGA	TGTCATTATA	ACACTGTCNT	NAATTTCCAT	GNAAAATAGT	CTTAAGACGA	3060
TGAGTCATGA	TAATTCTGTT	CCAATTGACG	TAAAGCGTCN	CGGGTATGCT	TCTTTAGACC	3120
TTCCCCATAA	TCCATCATTT	TAACAATATC	TTTAAAAGCA	GCATGTGGNA	TGGCTAAATC	3180
TTCTAAATCT	GCCATAGAAA	ATTCAAGATT	GATATCATGT	GGTCGCTGTT	CAGCAAGTTT	3240
ATGCACAAAG	TCAGGTTCTG	TGACCAAAGG	CGAAGACATG	CCGACCATAT	CTGCATGTTG	3300
TAAAGCATCT	AAAGCAGACT	CTGGAGAATT	ÄATCCCGCCA	CTTGCAATTA	AAGGGATACG	3360
ACCTGCTAAA	TGTTCATAGA	CAATTTGGTT	AACTGGTCGA	CCGAAATGAT	CACCTGGTGT	3420
ACGAGACGTA	TTTTGATAAA	TATGTCGACC	CCAGCTAGCG	ATTGCTAAGT	ATTGGATGTT	3480
TGAAACGTCC	ATGACCCAAT	CGATTAATTG	GTTGAACTCG	TCAATGGTAT	ATCCTAAATC	3540
ACTGCCTCTG	GTTTCTTCTG	GCGTTGCTCG	AAATCCTAAA	ATAAAATTGT	CAGGTGCTTC	3600
TTTATCAATC	ACTTCTTGTA	CCGCACGCAT	AACTTCTAAA	CATAATCTTG	CACGATTTTT	3660
TAATGAGTCG	GCACCGTAAT	GGTCTGTACG	TCTATTTGAA	AAAGTTGAGA	AAAATGTTTG	3720
AATCAGCAAA	CGTTGTGCAA	TCGAAATTTC	CACACCATCA	AAACCTGCTT	TAATCGCGCG	3780
rgcatcgagc	TCGTGCC					3797

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GACTAATAAT ACTGAACG

18

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

TCTGTCGGTT TCTCTGGG

18

- (2) INFORMATION FOR SEQ ID NO:19:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1422 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

CAGGCGTTTC CTCNGGTACN TGTTGCNNGC CTTTAATTAC CGACNCTGCA ATANCCAAAC 60 CGACCAGGTC GGATAGGGNA TATGTACCTG TTTTAGGACG ACCAATCGCT TGCCCAGTTA 120 AAGCATCCAC ATCTACNATG CTTANCTTGT GTTGCTCGGC GCGATACAGA ATATCATTCA 180 TTGTGTGCGT GCCGACTCTA TTTGCGACAA AGCCAGGCAC ATCATTGACG ACAATGACAC 240 CTTTACCTAA TACATTGTGC GCGAAATTTT TTACATCTAA TATGATAGAT TCCTTCGTGT 300 GTGACGTAGG TATTAACTCC ACTAATTNCA TAATACGTGG TGGGTTAAAG AAATGTAGAC 360 CAAAGAATCG CTCTTGATCC TTCTCGTTAA ATGCTTGAGC AATCGCATTA ATTGGGATTA 420 CCTGATGTAT TTGTAGCAAA TAAAGCATCT TCTNTAGCAT GTTGTAGAAC TTGTTGCCAA 480 ACAGCATGCT TAATTTCAAT ATCTTCTTTG ACTGCTTCGA TATATAAATC AGNATCATCA 540 TTTACCAAGT CATCATCAAA ATTACCATAT GTTAAATGAC TCACTAGATT TAAGTCGAAT 600 AGTAGCGGCC GTTTCTTATC TGTAATTTTA TCGTAAGATT TTTTCGCAAT GAGATTTGGA 660 TCGTTTGTGT CCACTACAAT ATCTAATAGT TTTACTTTAA GTCCAGCATN CACAAAGAGT 720 GCTGCCAGTT GAGCGCCCAT CGTGCCTGCG CCAAGAACGG TTACTTTATT AATTGTCATA 780

					ATAACGNTGC	840
					ATTTTAAGGA	900
			TAGTGAAATT			960
			TCAAAGCGCG			1020
TTTCATGTGT	ACCTTCGTAC	GTGTAAATCG	CTTCTGCATC	AGAGAAGAAA	CGTGCAATAT	1080
CATAATCGTC	AGCTAGTATG	CCATTACCAC	CTGTAATACC	GCGGCCCATA	GCTACTGTCT	1140
CACGCAAACG	TAAGGCATTC	ATCATCTTCG	CCGGTGAAGT	TGCAACCTCG	TCATATTCAC	1200
CATGTGCTTG	CATATTAGCT	AATTGAGCAC	ATGTTGCCAT	TGCTTGAGCT	AAATTACCTT	1260
GCATCATTGC	TAGCTTNTCT	TGTATTAACT	GATATTTACT	AATTGGGTNT	GCCGAATTGC	1320
TTACGCTCAA	GTGACATAAT	CTAATGTGGC	ACGTAAAGCG	CCAGCCATAC	CACCTGTAGC	1380
			TAAAGAATTT			1422

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

ATGTACCTGT TTTAGGAC

- (2) INFORMATION FOR SEQ ID NO:21:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

18

GAGTCATTTA ACATATGG

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 811 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

	ATACTTTGAT	TTTAGATGAA	GCTGATGAAA	TGATGAATAT	GGGATTCATC	GATGATATGA	60
	GATTTATTAT	GGATAAAATT	CCAGCAGTAC	AACGTCAAAC	AATGTTGTTC	TCAGCTACAA	120
	TGCCTAAAGC	AATCCAAGCT	TTAGTACAAC	AATTTATGAA	ATCACCAAAA	ATCATTAAGA	180
	CAATGAATAA	TGAAATGTCT	GATCCACAAA	TCGAAGAATT	CTATACAATT	GTTAAAGAAT	240
	TAGAGAAATT	TGATACATTT	ACAAATTTCC	TAGATGTTCA	TCAACCTGAA	TTAGCAATCG	300
	TATTCGGACG	TACAAAACGT	CGTGTTGATG	AATTAACAAG	TGCTTTGATT	TCTAAAGGAT	360
	ATAAAGCTGA	AGGCTTACAT	GGTGATATTA	CACAAGCGAA	ACGTTTAGAA	GTATTAAAGA	420
	AATTTAAAAA	TGACCAAATT	AATATTTTAG	TCGCTACTGA	TGTAGCAGCA	AGAGGACTAG	480
	ATATTTCTGG	TGTGAGTCAT	GTTTATAACT	TTGATATACC	TCAAGATACT	GAAAGCTATA	540
	CACACCGTAT	TGGTCGTACG	GGTCGGTGCT	GGTAAAGAAG	GTATCGCTTG	TAACGTTTGG	600
	TTAATCCAAT	CGAAATGGAT	TATATCAAGA	CAAATTGAAG	ATGCAAACGG	GTAGAAAAAT	660
	GAGTGACTCC	GCCACCTCAT	CGGTAAGAAG	TACTTCCAAG	CACGTGAGGA	TGACATCAAA	720
	GGAAAAGGTG	GAAACTGGAT	GTCTTTAAGA	GTCAAGAATC	ACGCTGGAAA	CGCATTCTTC	780
,	AGAGGTGGGT	AAATTGAATT	TTACGATGTG	G			811

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
GATGAAGCTG ATGAAATG	18
(2) INFORMATION FOR SEQ ID NO:24:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 18 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
TATCTAGTCC TCTTGCTG	18
(2) INFORMATION FOR SEQ ID NO:25:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 960 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
TAATTCGCAA TAGGAGTGAT GAATATCATA AATTTTACCC TCCAAATGAA GCTAATGAAG	60
TCCTGGACCC GAGTAAGACG CATGTAGCCA AGCTAAAATA ATCCACTCTA CCTTATCTTT	120
AGTTAATAAT GTTACTAAAT GTTGTTCATA CGCTGCTTTT GAATCAAATT GTTTTGGTTC	180
ATTAATATAA ACAGGAATAT CGTGCTTGTT TGCTCTATCT ATACAAAACG CATTTTGATG	240

ለ ጥር/ ርር መስ መስ መ	1 100000000-					
AICCGIAIAI	AGCNCCGTAA	CTTCAATATI	TTCAAGTTTT	CCTGATTCAA	CATGCTCAAC	300
TATATTTTCA	AAGTTACTTC	CTGAACCTGA	TGCAAAAATC	GCAATTTTAA	CCATTGTTAT	360
ACCCCCAACA	ATTCAATTGC	AGTTGACTCA	TTTTTCACAA	TATGACCAAT	TTGATAAGCT	420
TCCACATTTT	GTTCTGCTAA	AATCTTCAAA	GCGCGTCGAT	GCATCTTTTT	CATCAACGAT	480
AACCGTATAG	CCAATACCCA	TGTTAAAAAT	GTTATACATT	TCATTTGTGT	CTATATTGCC	540
TTGTTGTTGT	AACCAATCAA	ATATTTTTGG	CGTTGGAAAT	GATGTAGTAT	CAATTCTAGC	600
AGCATATCCG	GCTGGCAATG	CACGTGGAAT	ATTTTCATAA	AAACCTCCAC	CAGTAATATG	660
ATTCATTGCC	TTAATAGAAA	CTTCTTTTTT	TAAAGCAAGT	ACAGGTNTGA	CATATAATTT	720
AGTTGGCTCT	AAAAAGACAT	CTATAAATGG	ACGATTATCG	NAGGGTGATG	CCAAATCAAT	780
GNCTGATTCA	NTAATTAATN	TGCGCACTAA	ACTGTNTCCA	TTNGANTGAA	TGNCACTTGG	840
ACGCAAGTCC	TATAACAACT	TGGCCCTCTT	NCAATTCTTG	AACCATCTTA	CAATAGNCAA	
CCTTTTTCAA	CTGCTCCAAC	AGCAAATCCG	GCTACATCAT	ATTCACCTTC	GTGDTACATT	900 960
					O T OUST WORK I	200

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

ATAAGCTTCC ACATTTTG

18

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

GATAATCGTC CATTTATA 18

- (2) INFORMATION FOR SEQ ID NO:28:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 541 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

GGCACGAGCG CTAAATAATT AATATTTAGT TTTTAAGTTA TTAATAACGT AGGGATATTA 60 ATTTTAAAAG AAGCAGACAA AATGGTGTTT GCTTCTTTTT TATGTCGTAT AAGTAATAAA 120 TAAAACAGTT TGATTTTAAA ATGAAAGCGT AAAAATGGTA AAATATCCCA AAATTGATTG 180 TGATATAATT ATAAGGAAAA TGAGCAATTT ATGAAAAAAG TTTACGNACA AATCGGAGAA 240 TTAAAACTAA ATAATTATCA AAACAACGTC AATATTTAGT TGAATACTCA GACTTTAGCC 300 CATGGCCAAG TGGGGAAGAC AGCATATATT AGTAAAGGTG AATGATTTGT TATTACTCAC 360 TCGAAAATAG AAAGACAAGA TTTTAACGAT TAAAATAAAC TATTTTACAA ATAAAGTAAA 420 ATTAATTTAT TANGCTAATA ATGCAAAAAA TTAAAAAGTA ATGGACAAAG AGATAATGAT 480 ATGGCTCAAG AGGTAATAAA ATAGAGGTGG ACGCACACTA AATGGGGAAG TTAATACAAG 540 G 541

- (2) INFORMATION FOR SEQ ID NO:29:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GCACGAGCGC TAAATTTG

18

- (2) INFORMATION FOR SEQ ID NO:30:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

CTTCCCCATT TAGTGTGC

- (2) INFORMATION FOR SEQ ID NO:31:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2334 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

CCACCCANCT	GATTATAATC	TTTTT >				
3033555	OHITAIAAIG	TTTTAGCANG	AGCTAGACTT	GGTTGGTTAC	CATCATATCC	-
	ARMYTHGIT.	TGTTGTTTGC	AGAAGAAGCT	777777		60
GAATGAGGCA	ATTTTAAAAC	CACCCAMA	- I JOHN GC I	MAAGATGAAG	GCATTGAGTC ACGCAATTTG	120
CCAMAGAAA	- Transfer	GAGCGATAAA	TGGAAGTTAA	GTCAAAACAA	ACGCAATTTC	180
	TOCOGNITIO	MAMAAGAATC	ATCCGGAAAT	CROMORTO -		180
AATCTAATCT AAATCAGGGT	CAAGTTCTGC	NA NA COMON	- COCOMMI	CACTGTTTAT	ATGGCGCTCA	240
7.7.7.max.a	o.z.orrerge	MANAGGTCAA	GAATACTTTA	TGAAGCATTT	ACTTGGCACA	200
	ANTINGCIAC	ACCAAATGAA	GATGAAAACC	C2C22C2		300
GAGGAAACAA	CAGGGAAATT	1010000	our ourself C	CAGAAGAAAT	TACGTGGCGT	360
GAGGAAACAA		AGATTTAGTC	GTTTCTTTAG	ATTTCAGAAT	GACAGCAACA	420
					- COLUMN	420

CCTTTATATT CTGACATTGT TTTGCCAGCA GCGACTTGGT ATGAGAAGCA TGATTTGTC	
TCTACAGATA TGCATCCATA TGTACATCCT TTTAATCCAG CTATTGATCC ATTATGGGA	
TCGCGTTCAG ACTGGGATAT TTATAAAACG TTGGCAAAAG CATTTTCAGA AATGGCAAAA	540
GACTATTTAC CTGGAACGTT TAAAGATGTT GTGACAACTC CACTTAGTCA TGATACAAAG	600
CAAGAAATTT CAACACCATA CGGCGTAGTG AAAGATTGGT CGAAGGGTGA AATTGAAGCG	660
GTACCTGGAC GTACAATGCC TAACTTTGCA ATTGTAGAAC GCGACTACAC TAAAATTTAC	720
GACAAATATG TCACGCTTGG TCCTGTACTT GAAAAAGGGA AAGTTGGAGC ACATGGTGTA	780
AGTTTCGGTG TCAGTGAACA ATATGAAGAA TTAAAAAGTA TGTTAGGTAC GTGGAGTGAT	
ACAAATGATG ATTCTGTGAG AGCGAATCGT CCGCGTATTG ATACAGCACG TAATGTAGCA	900
GATGCAATAC TAAGTATTTC ATCTGCTACG AATGGTAAAT TATCACAAAA ATCATATGAA	960
GATCTTGAAG AACAAACTGG AATGCCGTTA AAAGATATTT CTAGCGAACG TGCTGCTGAG	
AAAATTCGTT TTTAAATATA ACTTCACAAC CACGAGAAGT AATACCGACA GCAGTATTCC	1080
CAGGTTCAAA TAAACAAGGT CGACGATATT CACCATTTAC AACGAATATA GAACGTCTAG	1140
TACCTTTTAG AACATTAACA GGACGTCAAA GTTATTATGT GGATCACGAA GTTTTCCAAC	1200
AATTIGGGA GAGCTTACCA GTATATAAAC CGACATTGCC GCCAATGGTA TTTCCGAATA	1260
GAGATAAGAA AATTAANGGT GGTACAGATG CTTTGGTACT GCGTTATTTA ACCCCTOATT	1320
GANAATGGAA TATACACTCA ATGTATCAAG ATAATAAGCA TATGTTGACA CTATTAAGAC	1380
GIGICACCG GITTGGATAT CANATGAAGA TGCTGNAAAA CACGATATCC AACATAATGA	1440
11GGC1AGAA GTGTATANCC GTAATGGTGT TGTAACGGCA AGAGCAGTTA TTTCCCATGG	1500 1560
TATGCCTAAA GGTACAATGT TTATGTATCA TGCACAAGAT AAACATATTC AAACGCCTCC	1620
GICAGAAAIT ACAGATACAC GTGGTGGTTC ACACAACGCG CCGACTAGAA TCCATTTCAR	1680
ACCAACACA CTAGTCGGAG GATACGCACA AATTAGTTAT CACTTTAATT ATTATCCACG	1740
ANTIGGGAAC CAAAGGGATT TATATGTAGC AGTTAGAAAG ATGAAGGAGG TTAATTCCCT	1800
TOAAGATTAA AGCGCAAGTT GCGATGGTAT TAAATTTAGA TAAATGCATA GCATGCCATA	1860
CGIGIAGIGI GACATGIAAA AACACIIGGA CAAAICGICC AGGIGCIGAG IAACAICIIG	1920
TICAATAACG TAGAAACGAA GCCAGGTGTA GGGTATCCGA AACGTTGGGA AGACCAACAA	1980
CACIACAAAG GTGGTTGGGT ACTAAANTCG TAAAGGGAAA CTTGAATTAA AATCTCGAAG	2040
TAGAATTCA CAAATTGCTT TAGGTAAAAT TTTTTATAAC CCAGATATNC CATTAATAA	2100
TOTALIAL GANCCATGGA NCTATAATTA TGAACATTTA ACAACTGCGA AATGAGGGA	2160
GUATICGCCA GTTGCTAGAG CGTATTCAGA AATTACAGGG GATAACATTC AAATTCAATC	2220
GGGACCIAAC TGGGAAGATG ACTTAGCAGG TGGTCATGTT ACAGGCCCAA AACATCCTAA	2280
CATACACAAA ATAGAAGAAG AGATTAAATT CCAATTTGAC GAAACTTTTA TGAG	2334

- (2) INFORMATION FOR SEQ ID NO: 32:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

ATTGATCCAT TATGGGAA

18

- (2) INFORMATION FOR SEQ ID NO:33:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

CATATTGTTC ACTGACAC

18

- (2) INFORMATION FOR SEQ ID NO:34:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 638 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

AGTTATTGTA TTTAAAAATG TTTCATTTCA ATATCAAAGT GATGCATCCT TCACATTGAA

እ <i>ር እ ሞር</i> ሞሞሞር ም	MMM3.3.03.03.0					
AGAIGITICI	TTTAATATAC	CTAAAGGTCA	GTGGACATCT	ATTGTTGGTC	ATAACGGTTC	120
TGGAAAATCT	ACAATTGNCA	AGTTAATGAT	TGGCATAGAG	AAAGTTAAAT	CTGGAGAAAT	180
TTTTTATAAT	AATCAAGCTA	TAACTGATGA	TAATTNTGAA	AACTTAACAA	77630350	
				MADITIMAGAA	MAGACATAGG	240
AATTGTATNT	CAGAATCCGG	ATAATCAATN	TGTTGGNTCA	ATTGTAAAAT	ACGATGTGGC	300
ATTTGGACTC	GAAAATCATG	CGGNTCCACA	TGACCAAATC	Charan		
			TONCOMMIC	CATAGAAGAG	TCAGCGAAGC	360
ACTTAAACAA	GTTGATATGT	TAGAACGTGC	AGATTATCAC	CCTIANCCIA		- • •
				CCIMAIGCAT	TATCGGGGGG	420
ACAGAAGCAG	CGTGTGGCTA	TAGCAAGTGT	ATTAGCACTT	AACCCTCTCT	Campana	
				MCCCICIGI	CATTATATAG	480
ATGAGGCGAC	TCTATGTTAG	GATCCCTGAT	GCACGTCAAA	TTTATCCCAT	TTD CNCB CB =	-
A C				TTTATGGGAT	TTAGNGAGAA	540
AGTAANTCAG	ACATTATATA	CAATCATTCT	ATACGCATGA	TTTATCTGAG	GCGATCACNA	600
ころかこ ひんかみか	CCCMAMOAMA				CONTGRONA	600
GUI CWAGIAI.	CCGTATGATA	AGGACTINCT	TTTAAGGC			638
						035

- (2) INFORMATION FOR SEQ ID NO:35:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

GTTTCATTTC AATATCAA

- (2) INFORMATION FOR SEQ ID NO: 36:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

ATCTATATAA TGACAGAG

18

(2) INFORMATION FOR SEQ ID NO:37:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1496 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GTTAATCAAG TATCGAAGCG GAACAATCAT ACTTTAATGT TGAAGATTTA TATNGCGAAC	
AAGCGATGGT CCTAGTGCGT AATATTAATGT TGAAGATTTA TATNGCGAAC	60
AAGCGATGGT CCTAGTGCGT AATATTAATT TAGCACTGCG CGCACAATAT TTGTTNGNAT	120
CTNATGTCGA TTACTTTGTA TATNNTGGTG ATATTGTTTT AACTGACCNC ATTACAGGTC	180
GTATGGACCT TECHNOLOGY TECHNOLOGY GACTTCACCA NGCTATTGAA GCGAAAGAAG	240
THIS GAGGI TICAACAGAT AAAAGTGTTA TGCCAACCAA TTACCCTTCC ACAACTAG	300
TIMESTITI GAALCAATTT TCAGGTATGA CAAGCTACAG GAAAATTACC CCAATTACA	360
TOTAL TGTATTCANA AATAGTCGTA CAAGCACCCA ACTGATAAAC CCATTONAG	420
THE CANADA CONGATANA TOTTTCGTTC AGTTGATGAG ADADACATCC CONGATANA	480
TOWN THE THE TOWN THE TAKE THE CONTRACT OF THE	
OTHERSESS TEGRATACTT TTCNGAAGTA TTATTCCAAA TGGATATTCC TAATTATTC	540
TOTAL GEOGRAPHIC AAAAGAAGCG CAGATGATAG CTCAAGCACG CCAAAGAAGCG	600
TCCATGACTG TTGCGACTAG TATGGCAGGT CGAGGCACAG ATATTAAACT TGGTGAAGGT	660
GTCGAAGCAT TAGCTGGATT AGCTGTTATT ATTCATGAAC ATATGGAAAA TAGCCGTGTA	720
GACAGGCAAT TACGTGGTCG TTCTGGTAGA CAAGGGGATC CGGGATCATC TTGTATATAT	780
ATTTCACTAG ATGATTATTT AGNTAAGCGA TGGAGCGATA GTAATTTAGC GGAAAATAAT	840
CAATTATATT CANTAGATGC ACAACCATTA TOOLAGATA GTAATTTAGC GGAAAATAAT	900
CAATTATATT CANTAGATGC ACAACGATTA TCGCAAAGTA ATTTGTTTAA TCGNAAAGTT	960
AAGCAAATTG TAGTTAAAGC GCAGCGTATC TCGGAAAGAA CAAGGGGTTA AAGCTCGGTG	1020
AAATGGCTTA ATTGAATTTG NNAAAAAGCA TNAGTATTCA GCGAAGATCT TNGTATTTAC	1080
GANGGAACGC AAATCCGAGT TTTTAGAAAT TAGATTGATG CTGAGAATCC NAGATTTTA	1140
THE CITAMAGATI GTATTIGAAA INGITTIGGG NAATCANGO AND THE CONTRACTOR OF THE CONTRACTOR	1200
GNGIIGGGCG AGTATATTT ATCAAAAATT TAACTTUGG	1260
GIGITAATTI TAAAGATAAG CAAGCAGNAG TCACATTTTTT	
TTTGAAAAGC AATTAGCTTT GGANTCCGTA AAAACATGCA ANGNGCATAT TATTATAATA	1320
THE THE TATTATATA	1380

TTNCCGGCCA AAANGTCTTT	NGGGAAAGCA	ATTGATNCAA	GTTGGGGTTA	GGAACAAGTC	1440
GGCTTTTNAC AACAANTTAA	NAGCAAGCGN	TAATCAAACG	ACAAAANTGG	CAACCT	1496

- (2) INFORMATION FOR SEQ ID NO:38:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

CCGCTAAATT ACTATCGC

18

- (2) INFORMATION FOR SEQ ID NO:39:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

CTGAAGCGGC TTGAATAC

- (2) INFORMATION FOR SEQ ID NO:40:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 955 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

ATATAAATT	A TTTAAGCGT.	A TGGTTTTAC	T TCGATTGCA	C CCTTCATTT	T CATCATTGAA	60
CACCATGCT	T AATATAATC	C ATATATTTG	T GGCTCTAAA	NCTTTCCTC	C CACCGTATA	
TGTCTGCTG	C TTTTTCAGC	r aacattaaa	A CAGGTGCGT	TATATTCCC	A TTTGTCGTAC	120
GTGGCATAG	C GGATGCATCA	A ACTACACGTA	AATTTTCCA	ב ארכיניים איני	TTCATTGTTA	180
ACGGGTCAA	C TACTGCCAT1	GGATNCTGAR	CACCACCA	ACCGIGGAC	ACAAGATGGG	240
TGTAATNCT	TTTCACCATO	TCNACGGAAN	NCARRORS CO	TTTTAGCAC	ACAAGATGGG CTGTTTGCAC	300
TTCTGGGTC	TGGGTGAAAT	TTCTCCACCA	NCAATCAAGN	ATTTCTTCGT	CTGTTTGCAC	360
ATATTTCTTC	CTACACCAAT	TICICIACIA	TTGAATGGAT	CCATTGCTTT	TTGAGATAAG	420
TAATTAAAGG	CIACACGAAI	IGCTTCTACC	CATTCTNTTT	TATCTTCTTC	TGTTGATAAA	480
CACCACACAC	GGATACTTGG	TTTTTCGAAT	GGATCTTTAG	ATTTGATTGG	CACGAGCTAC	540
CACGAGAGTT	TGAATACATT	GGTCCTACGT	GAACTTGATA	ACCATGTGCG	ACCGCTGCCT	600
TTTGACCATC	ATATCTTACA	NCTATTGGTA	AGAAATGGAA	CATTAAGTTA	GGATAATCAA	660
CTTCGTTATT	TGAACGTACA	AATCCGCCAC	CTTCAAAATG	GTTAGATGCT	GCTGCACCTC	720
TACGTGTGAA	AATCCAGTGG	TAAACCAATT	AAATGGCATG	CGCCTTGATA	ፐር ፐል አርርምምር	780
GCTGTAATGA	TACAGGTTTC	CTTACATTTA	TGTTGAATGT	ATACCTCTAA	GTGATCTTCC	840
AAAGTTTTCA	CCCACACCTG	GTAAATGAAC	ACGTGGCTCA	ATGCCTTTTC	ATTTTACCAR	
CTCTGAATCA	CCGATACCAG	ATAATTGTAG	TAATTGTGGC	CTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	COOC	900
				GITATIGAAT	GCCCC	955

(2) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

GAAGCAGGAC CCATTTTA

(2) INFORMATION FOR SEQ ID NO: 42:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

GATTTTCACA CGTACAGG

18

- (2) INFORMATION FOR SEQ ID NO:43:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 497 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

GAATTCCTAC	ATAATACTTT	TGTTTACCTT	GTGTCAGTTT	ATACAACGGT	GGCTGTGCAA	60
TATACACATA	GCCTGCTTCA	ATTAACGGTC	TCATAAATCG	ATAGAAGAAT	GTTAATAACA	120
ATGTTCTAAT	ATGCGCTCCA	TCCACATCGG	CATCAGTCAT	AATGACGATT	TTGTGATATC	180
TTGCTTTCGC	TAGATCAAAG	TCGCCACCGA	TTCCTGTACC	AAATGCTGTG	ATCATTTGAC	240
GAATTTCATT	GTTATTCAAA	ATTCTATCTA	ATCGTGCTTT	NTCAACATTT	AATATCTTAC	300
CTCGTAATGG	TAAAATCGCC	TGCGTTCTAG	AGTCACGACA	GATTTTGGTG	GACCCCCNGC	360
AGAGTCCCCT	TCGACTAAGA	AAATCTCACA	TTCTTCAGGA	CTTTTACTAG	AGCAATCGGC	420
TAATTTACTG	GAAGACTGCT	ACATCTACGC	TGATTTACGA	GGTGTTACTT	CAGGGCTTTN	480
TCGAGACACG	TGCANGT					497

(2) INFORMATION FOR SEQ ID NO: 44:

WO 97/31114 PCT/GB97/00524 :

(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 19 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	
CATAATACTT TTGTTTACC	19
(2) INFORMATION FOR SEQ ID NO:45:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 18 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	
AGTAACACCT CGTAAATC	18
(2) INFORMATION FOR SEQ ID NO:46:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 1443 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: Genomic cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

CTANCNAAN	G GAANTTCAG	C ATCCTTAAA	A ATACCTATTT	GACTGTAGAA	ACCTTTTGNT	60
GCGTACAATA	A TCTAAACCT	r grcgrgcrg	TGGAACTGCA	CCTGAACATT	CAACAACAAC	120
ATCTGCACCO	TAACCGTCT	G TAATTCCATT	GATATACGTT	TTTAAGTCTG	TGTGTTGTAA	180
ATTGACTACA	A TAATCCATG	GCAATGCTTC	TGCTTTATCT	AATCTGACTT	NGTGGCANTG	240
TCCAATCCAC	TTACCACAA	AGGTGCGCCT	TTACTTTTCA	ACACTTGTGC	TACAAGTAAT	300
CCGATTGGCC	CAGGTCCCAT	TACAACTGCT	ACATCGCCAG	AGTTCACTTG	AATCTTAGAA	360
ACGCCATGAT	GTGCACATGC	TAATGGTTCT	TGTCATAGCT	GCAGACTGAT	ACGATACTTC	420
CGCTTCTGGA	ATATGATNCA	AACTTTCTTC	ACGTGCAATG	ACATAATTAG	TAAATGCGCC	480
ATCAACTTGT	GTTCCAATAC	CTTTTCGATG	GTTGCATAAA	TGATAGTTTT	TTGATTTACA	540
			TAGTTTCAGA			600
			ACGATNTCAC			660
			TCATAAGTAT			720
			TCATCTAGCG			780
			GTTTTTACTA			840
			NTTNAAGATA			900
ACCTTGATCA	ATACTTGANA	TTTCAGATGA	ACCTTTTGNC	ATTTGTACAT	TCGTACCTTT	960
CGCCATATCT	GTGAAAATGG	GTGCTACGTC	TGTTGCAATA	TATAATGAAA	TTGCAATCAT	1020
AATCGTACCC	ACAATGACAG	AATGAATAAT	GTTTCCTCTT	GCTGCACCAA	CAATAAACGC	1080
GACAACAAAT	GGTATAGTTG	CTAAGTCACC	AAAAGGTAGT	ACTTGGTTTC	CTGGTAAAAT	1140
AACGGCTAAT	AAAACAGTGA	TAGGTACTAA	AATTAATGCT	GTCGAAATAA	CCGCTGGATG	1200
ACCTAATGCT	ACAGCCGCAT	CCAATCCAAT	ATAAATTTCA	CGTTCGCCAA	AACGTTTATT	1260
AGCCATGTT	CTTGCAGACT	CTGAAACTGG	CATTAAACCT	TCCATTAAGA	TTTTTACCAT	1320
CTAGGCATT	AAGACCATTA	CTGCAGCCAT	TGACATTCCT	AAATTAATGA	TGTCTCCAGG	1380
TTGTAACCT	GCTAACACAC	CAATACCTAA	ACCTAAAATT .	AAGCCGACAA	ATATAGACTC	1440
CC						1443

(2) INFORMATION FOR SEQ ID NO:47:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic cDNA

PCT/GB97/00524 WO 97/31114

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
GTTCTAAGTT GCCATGTC	18
(2) INFORMATION FOR SEQ ID NO:48:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(b) ToPoLoGY: Tinear	
(ii) MOLECULE TYPE: Genomic cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:	
CCTAGAATGG TAAAAATC	18
(2) INFORMATION FOR SEQ ID NO:49:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 1642 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:	
CCATTTAAAA GTATTGTAAA ATCATCCACN TTNTATAAAC CAACCACNTT AACNTTTTTG	
ACATTTGTTA TCCGATGAGA TTAAAAGATA TCAATNAATA CAATTTTTAN AATTAATGTC	60
ACTATGTTTT CCGATAATAT NACCCAATCA TCGNAATGTT ACCCATTTAT AAAATGANAA	120
ATCHTTGACA TAGGTANAGG GAATGTATAT TGGTCNCGGA TCACTTAAAT TAAACCCANA	
TOTAL TANACCCANA	240

TCATGTCATC TGGTAATGTN TCAATGTTAA TTGCTCCTGA AGCGGCGTAN ACTTTAATCT

TCCATGTTAA ATGAGTAAAT TGATGCGTCA ACTCNAAAAT AGGTGTTTCT NCTGGNTGAA

300

ずにずになずになる	C CATEMBER					
TOTCATGAC	C GATTTTTC	A NTCATTTA	C GTCTANCAT	G CTCACTATC	AACATAGGAN	420
ATTGCCACA	T ACCATACNA	T AATTNTTCC	C TACGCTTTT	G CAACAGATAT	TGACCTTGAT	480
TATTTCTAA	T TAANAAGAC	G GATTGCTCA	A TTACNTTTT	T ACTTACATTT	TTAGATTTAA	540
CAGGTAACT	T TTCAAATGG	A CCTTTATCA	A ATGCCTCACA	A GTTTTCTTGN	ACTGGACNAA	600
ATAAGCATA	A TGGATTTT	T GGTGNACAA	A TTAATGCCC	TAATTCCATC	ATACCTTCAT	
TAAACGTTC	AGCTTCTGT	A GTAACATACO	GTAACAATTO	TTGTTCGTAC	CATTTCCTCC	660
TCGATTGTA	TTTAATATC	r CGATAGTCA1	CATTCAATCT	AGACCATACG	CATTICCTCG	720
TTCCGTCTAC	AGTTGCTAGT	GGTACATTA1	* ATECNATECE	CATTACTGCA	CGAAAAACAT	780
ATGGGCCAAC	` ል ር ርተተተተልል	CCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	AIGCAAIGCI	CATTACTGCA	GCTTGTGTGT	840
A TIME TO SELECT	, ACCITITAN	CITTAAATT	GATCAGGATC	TTTGGGAACT	AAGCCTTCAT	900
ATTTATCANA	AACTTCTTTA	ATCGCCGTAT	' GAAAATTTCG	AGCTCTACTA	TAATATCCTA	960
AGCCTTCCCA	ATACTTTAAC	: ACTTCATCTT	CCGAAGCTTG	ACTCAAAACT	TCCACAGTTG	1020
GAAATCGGNC	ACCAAAACGA	TGATAATAGT	CAATAACTGT	TTTAACTTGT	GTCTGTTGTA	1080
ACATGACCTC	ACTTAACCAA	ATATAGTACG	GATTGGTCGT	TTGTCGCCAT	GGCATTTCTC	1140
TTTGATTTTC	ATCAAACCAG	TGTATCAAAT	ТТТСТТТААА	ACTAGACTGC	TGATACATTT	1200
ATAAAACCCT	TTCCTCACCA	AAATTAATTG	TCTTTACTCA	TAATGTTTTT	ATTGTACATT	1260
AAAATCATGG	TTAGTATGTA	AGTTAATTTA	GTTATNTGCG	AAATTGGATT	ATAATACTA	
ATATAATATT	ATGAAATGAG	TGAACTGATA	TGGACACTCC	AACACATATC	ATAATAGTAT	1320
TGGGCCTTAC	ACCACTTCCA	ACTORNAL	TGGACACTGC	AACACATATC	GCAATTGGGG	1380
	AGCACTIGCA	ACTCAAGATC	CAGCAATGGC	TTCTACGTTT	GGTGCAACAG	1440
CIACAACCCT	TATCGTTGGT	TCATTAATTC	CTGATGGGGA	TANTGTNCTT	AAATTANAGG	1500
ACANTGCAAC	ATATATTTCG	NATCATAGAG	GNATNACGTC	ATNCCATCCC (CTCCCACAAN	1560
NNTATGNCCA	GTCNCNTTTA	CANTTTNTAT	NTNTTCACGT	CACTNTNGCT (GTANGCATC	1620
CONCCTCACG	TATGGCTTGT	GG		•		1642

(2) INFORMATION FOR SEQ ID NO:50:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

TCCTGAAGCG GCGTATAC 18

(2) INFORMATION FOR SEQ ID NO:51:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

TATGAAGGCT TAGTTCCC

18

- (2) INFORMATION FOR SEQ ID NO:52:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 514 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

GGGAAAAAA	GAAAACCTTC	CAAAATACGG	GAAATTGAAA	ででなるでであいここ	GGAGAGACCA	
NATAGGAAGT	AATTGATAAT	GGAAGTTTCC	CCANAATTTA	ACAACCMAAA	GGAGAGACCA	60
TGCCTTTTAC	AAGATAAGCA	TGCCAATACA	GTCATTTCAG	ACAAGCTAAA	AGAGTTTGGG	120
AGTTAAAGCT	TGCTGAAGGT	TATGAAACAG	DECENTION	GCACACTGTT	GNCCACTATG	180
AGGTCATTGC	TGCTGAAGGT	CTTACTCCTC	ATTTAGTGGG	AATAAAAAAC	AATAATAACG	240
ATTCAAATCG	AGCTTGCTTA	AMERICA	TACCTGTTAT	GAAAGTGTTC	AAGTATTTTT	300
ATGAATTATC	CGGTCCAGTG	ATCGATTATG	AAAATCAAGA	ACTCGTACAC	TTTTTCTTTA	360
TACCAMANGA	ANAATATGTT	AAAAAACATC	GTTGTCTATA	CCTACATATC	GATCCATATT	420
TACCATATCA	ATACTTGAAT	CATGATGGCG	AGATTACAGG	TAAGGCTGGT	AATGATTGGT	480
ICTTTGATAA	AATGAGTAAC	TTAGGATTTG	AACG			514

(2) INFORMATION FOR SEQ ID NO:53:

(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 18 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:	
GAGGTCATTG CAGCTTGC	18
(2) INFORMATION FOR SEQ ID NO:54:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:	
CAAATCCTAA GTTACTCATT	20
(2) INFORMATION FOR SEQ ID NO:55:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 479 base pairs	
(B) TYPE: nucleic acid	

(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

CGCACATAAC	GTGCAGCATA	TGCAGCTGAG	CGGTCTACTT	TTTGTAGGAT	CCTTACCACT	60
GAAGCATCCG	CCACCATGAC	GTGCATAGCC	ACCATACGTA	TCAACAATGA	TTTTACGTCC	120
TGTTAATCCT	GCATCACCTT	GAGGTCCACC	GATTACAAAG	CGTCCTGTAG	GATTGATGTA	180
GAATTTAGTT	TGTTCATTAA	TCAAGTTTTC	TGGAACAGTT	GGATAAATGA	CATGCGCTTT	240
GATGTCTTCT	TGAATTTGTT	CAAGTGTCAC	ATCATCAGCA	TGTTGTGTTG	ATACGACAAT	300
CGTATCAATA	CGTACTGGGT	TATCATTTTC	ATCATATTCA	ACAGTGACCT	GAACTTTACC	360
GTCTGGTCGT	AAATAATTCA	ACGTCTCGNG	CCATCTTTTA	CGCACATCAG	ATTAAACGTT	420
TGGGGCAATT	GGGTGTGATA	AATTAAATTG	CTAGAGGGAT	GTACGTTTCT	TGTTTCAAT	479

(2) INFORMATION FOR SEQ ID NO:56:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

ACGTGCATAG CCACCATA

18

(2) INFORMATION FOR SEQ ID NO:57:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

ACAAGAAACG TACATCCC

18

(2) INFORMATION FOR SEQ ID NO:58:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 857 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

						60
						120
ATTTTAGGA	TTCTTATCAG	GGATATTTCC	CAAGGGTTTT	GTTGACNCCT	TAATCATGCG	180
GCGTGTGAT	GTTATGTTGG	CAATTCCCCA	AGTTATGTTG	TAACGTTAGC	ATTAATTTGC	240
TTGTTTGGA	ATGGGTGCCG	AAAATATTAT	CATGGCATTT	ATTTTGACGC	GTTGGGCATG	300
TTCTGTCGT	GTTATACGTA	CAAGTGTTAT	GCAGTACACT	GCTTCTGACC	ATGTCAGATT	360
GCTAAAACA	ATCGGTATGA	ATGATATGAA	AATTATTCAC	AAACATATTA	TGCCGTTAAC	420
TTAGCAGAT	ATTGCTATCA	TCTCTAGTAG	TTCGATGTGT	TCAATGATCT	TGCAAATATC	480
GGCTTTTCA	TTTTTAGGAT	TAGGTGTCAA	AGCGCCTACT	GCAGAGTGGG	GCATGATGCT	540
AACGAAGCT	AGAAAAGTGA	TGTTTACACA	TCCTGAAATG	ATGTTTGNGC	CAGGTATTGC	600
ATAGGGATT	ATAGTGATGG	CATTTAACTT	CTTATCCGAT	GCTTTACAAA	ATTGNTATTG	660
ATCCCCCGC	ATCTCTTTCT	TAAAGATAAA	CTTCCGCNCC	TTGTGAAAAA	AGGGAGTGGN	720
CAATCATGA	CATTGTTAAC	AAGCTAAGCA	TTTGGCGATT	ACAGATACCT	GGACAGATCA	780
CCACCGTGA	GTGATGTGAN	TTTNNCAATT	AACTAAGGGG	TGAAACTCTA	GGCNTTATTG	840
GGAAAGTGG	TAGCGGT					857
	AAGCCCAAG ATTTTAGGA GCGTGTGAT TTGTTTGGA TTCTGTCGT GCTAAAACA TTAGCAGAT GGCTTTTCA AACGAAGCT ATAGGGATT ATCCCCCGC CAATCATGA	AAGCCCAAG TTTGTAAAAT ATTTTAGGA TTCTTATCAG GCGTGTGAT GTTATGTTGG TTGTTTGGA ATGGGTGCCG TTCTGTCGT GTTATACGTA GCTAAAACA ATCGGTATGA TTAGCAGAT ATTGCTATCA GGCTTTTCA TTTTTAGGAT AACGAAGCT AGAAAAGTGA ATAGGGATT ATAGTGATGG ATCCCCCGC ATCTCTTCT CAATCATGA CATTGTTAAC	AAGCCCAAG TTTGTAAAAT GTCCNTTGTG ATTTTAGGA TTCTTATCAG GGATATTTCC GCGTGTGAT GTTATGTTGG CAATTCCCCA TTGTTTGGA ATGGGTGCCG AAAATATTAT TTCTGTCGT GTTATACGTA CAAGTGTTAT GCTAAAACA ATCGGTATGA ATGATATGAA TTAGCAGAT ATTGCTATCA TCTCTAGTAG GGCTTTTCA TTTTTAGGAT TAGGTGTCAA AACGAAGCT AGAAAAGTGA TGTTTACACA ATAGGGATT ATAGTGATGG CATTTAACTT ATCCCCCGC ATCTCTTTCT TAAAGATAAA CAATCATGA CATTGTTAAC AAGCTAAGCA CCACCGTGA GTGATGTGAN TTTNNCAATT	AAGCCCAAG TTTGTAAAAT GTCCNTTGTG CGCCAATTTG ATTTTAGGA TTCTTATCAG GGATATTTCC CAAGGGTTTT GCGTGTGAT GTTATGTTGG CAATTCCCCA AGTTATGTTG TTGTTTGGA ATGGGTGCCG AAAATATTAT CATGGCATTT TTCTGTCGT GTTATACGTA CAAGTGTTAT GCAGTACACT GCTAAAACA ATCGGTATGA ATGATATGAA AATTATTCAC TTAGCAGAT ATTGCTATCA TCTCTAGTAG TTCGATGTGT GGCTTTTCA TTTTTAGGAT TAGGTGTCAA AGCGCCTACT AACGAAGCT AGAAAAGTGA TGTTTACACA TCCTGAAATG ATAGGGATT ATAGTGATGG CATTTAACTT CTTATCCGAT ATCCCCCGC ATCTCTTTCT TAAAGATAAA CTTCCGCNCC CAATCATGA CATTGTTAAC AAGCTAAGCA TTTGGCGATT CCCACCGTGA GTGATGTGAN TTTNNCAATT AACTAAGGGG	AAGCCCAAG TTTGTAAAAT GTCCNTTGTG CGCCAATTTG TTCCTGTACN ATTTTAGGA TTCTTATCAG GGATATTTCC CAAGGGTTTT GTTGACNCCT GCGTGTGAT GTTATGTTGG CAATTCCCCA AGTTATGTTG TAACGTTAGC TTGTTTGGA ATGGGTGCCG AAAATATTAT CATGGCATTT ATTTTGACGC GCTAAAACA ATCGGTATGA ATGATATGAA AATTATTCAC AAACATATTA TTAGCAGAT ATTGCTATCA TCTCTAGTAG TTCGATGTGT TCAATGATCT GGCTTTTCA TTTTTAGGAT TAGGTGTCAA AGCGCCTACT GCAGAGTGGG AACGAAGCT AGAAAAGTGA TGTTTACACA TCCTGAAATG ATGTTTGNGC ATAGGGATT ATAGTGATGG CATTTAACTT CTTATCCGAT GCTTTACAAA ATCCCCCGC ATCTCTTTCT TAAAGATAAA CTTCCGCNCC TTGTGAAAAA CAATCATGA CATTGTTAAC AAGCTAAGCA TTTGGCGATT ACAGATACCT CCCCCCGG GTGATGTGAN TTTNNCAATT AACTAAGGGG TGAAACTCTA	CAACCCTNC AGTGCTTGGC CAATTAGGTA GAGAATTTNA CCTAGGTAAN TTAATGCGAT AAGCCCAAG TTTGTAAAAT GTCCNTTGTG CGCCAATTTG TTCCTGTACN TANTGGGANC ATTTTAGGA TTCTTATCAG GGATATTTCC CAAGGGTTTT GTTGACNCCT TAATCATGCG GCGTGTGAT GTTATGTTGG CAATTCCCCA AGTTATGTTG TAACGTTAGC ATTAATTTGC TTGTTTGGA ATGGGTGCCG AAAATATTAT CATGGCATTT ATTTTGACGC GTTGGGCATG TTCTGTCGT GTTATACGTA CAAGTGTTAT GCAGTACACT GCTTCTGACC ATGTCAGATT GCTAAAACA ATCGGTATGA ATGATATGAA AATTATTCAC AAACATATTA TGCCGTTAAC TTAGCAGAT ATTGCTATCA TCTCTAGTAG TTCGATGTGT TCAATGATCT TGCAAATATC GGCTTTTCA TTTTTAGGAT TAGGTGTCAA AGCGCCTACT GCAGAGTGGG GCATGATGCT AAACGAAGCT AGAAAAGTGA TGTTTACACA TCCTGAAATG ATGTTTGNCC CAGGTATTGC ATAGGGATT ATAGTGATGG CATTTAACTT CTTATCCGAT GCTTTACAAA ATTGNTATTG ATCCCCCCC ATCTCTTCT TAAAGATAAA CTTCCGCNCC TTGTGAAAAA AGGGAGTGGN CAATCATGA CATTGTTAAC AAGCTAAGCA TTTGGCGATT ACAGATACCT GGACAGATCA CCACCGTGA GTGATGTGAN TTTNNCAATT AACTAAGGGG TGAAACTCTA GGCNTTATTG GGAAAGTGG TAGCGGT

(2) INFORMATION FOR SEQ ID NO:59:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:	
ATATTATCAT GGCATTTA	. 18
(2) INFORMATION FOR SEQ ID NO:60:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 18 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic cONA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:	
ATCTTTAAGA AAGAGATG	18
(2) INFORMATION FOR SEQ ID NO:61:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 593 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:	
GAATTCTTGC ACATGTTGCT CGGTGTCTTC CTTGCTGCAC TTGTATCATT CGTTGTAGCT GCTTTAATTA TGAAGTTCAC TAGAGAACCA AAGCAGGATT TAGAAGCTGC GACAGCTCAA ATGGAAAATA CTAAAGGGAA AAAATCAAGC GTTGCTTCTA AGTTAGTATC TTCTGATAAA AATGTTAATA CAGAAGAAAA TGCTAGTGGT AATGTTAGTG AAACATCTTC ATCAGATGAT	120 180

GATCCTGAAG	CGCTATTGGA	TAATTACAAC	ACTGAAGATG	TTGATGCACA	CAATTACAAT	300
AATATAAATC	ATGTTATTTT	TGGCTGCGAT	GCGGGTATGG	GTTCTTNGGT	GCAAATGGGG	360
TGCAAGCATT	GTTACNGTNA	TTAAATTTTA	AAAAGGCGGC	AATTAATGAT	ATTACAAGGG	420
TACAAATTAC	TGCGAATTAA	TCAAATTGCC	AAAAGATGCT	CCAATTANGN	TATCAACTCC	480
AGAAAAACTA	CTTGATCCGG	GCTATTAACA	AACACAATGC	CATCCATATT	CNAAGGGGNT	540
TAATTTCCTA	ATCACCAAGA	TATGNAGGAC	TTTTAATTAT	CTTAAAAAGG	TGG	59 3

- (2) INFORMATION FOR SEQ ID NO:62:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

TGCACATGTT GCTCGGTG 18

- (2) INFORMATION FOR SEQ ID NO:63:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 19 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

GTGGTAATGT TAGTGAAAC 19

(2) INFORMATION FOR SEQ ID NO:64:

	(i)	SEQUENCE	CHARACTERISTICS
--	-----	----------	-----------------

(A) LENGTH: 425 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

GGCACGAGCG AGTTCATTAG CTATATATAA GCCTAATCCA GAACCACCCG TTTTTGTATT 60 ACGAGAGTTT TCTACTCTGA ATGTACGTTC GAATATACGT TCTTGTAGTT CTGGTATAAT 120 GCCAATACCT CNATCGCTAA TAGCAATGTC GATAGTATCT TGATCTTTGT TTTCACTAAT 180 ATTAATATCA ATGCGACTAC CAACATTTGA AAATTTTAGC GCATTATCAA GTAAGTTTGT 240 TARARTACGC TCAAGTGGCG TTCGATATTG ATARARTGCA TCAATTTCGC TACAGARATT 300 CACTTCTAAT GTGCGGTTTT CATGTTTGAT ACGTTGCTCC ATATGGTTGC AATATTGATA 360 CAAGTAATTG GTCTAGTTGT ATTAATTCTG GGGGATATGT TTTACCTGTA TTTAAAGTTG 420 ATAAT 425

- (2) INFORMATION FOR SEQ ID NO:65:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

TATAAGCCTA ATCCAGAACC

- (2) INFORMATION FOR SEQ ID NO:66:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

AACGTATCAA ACATGAAAAC

- (2) INFORMATION FOR SEQ ID NO:67:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 465 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

GTACGAGCTC	GTGCCGGCAC	GAGCGATTGG	TGCAGTGAGT	TATGTTTTAG	AACAATTAGA	60
TGCACCAGTA	TATGGATCTA	AATTGACAAT	AGCGTTAATT	AAAGAAAATA	TGAAAGCCCC	
TAATATTGAT	AAAAAAGTTC	GCTACTACAC	AGTTAACAAT	GATTCAATTA	TGAGATTGA	120
AAACGTGAAT	ATTAGTTTCT	TTAATACGAC	ACACAGTATT	ССТСАТАСТТ	TACCECECE	180
TATTCACCCT	TCATATGGTG	CCATTGTGTA	TACAGGTGAA	TTTANCTTC	TAGGTGTCTG	240
ACATGGACAT	TATGCACCAG	ATATTAAACG	TATECCACAC	TTTAAGTTTG	ACCAAAGTTT	300
TGTCTTAATC	AGTGATTCTA	CTGAGGCAGA	CARACCAGAG	ATTGGTGAAG	AAGGCGTATT	360
TAATTGAACA	TCATATCTAT	CATCCCTTTC	GAAACCTGGA	TATAATACTC	CCGGAAAATG	420
Connon	ICHINIGIAI	GAIGCLITTG	CCAAAGTGCG	AGGTC		465

- (2) INFORMATION FOR SEQ ID NO:68:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

٠,

(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:	
TTTAGAACAA TTAGATGCAC C	21
(2) INFORMATION FOR SEQ ID NO:69:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(b) Totoboot. Thidal	
(ii) MOLECULE TYPE: Genomic cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:	
TCCGGGAGTA TTATATCCAG	20
(2) INFORMATION FOR SEQ ID NO:70:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 527 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:	
GGCCCAAACC CATCCAAGTC CTTTTTAATT GACTTATTTA CATTATTTCT TTAATTTGGA	60

TTAACAAATT TTTTTCTATT TGANCCCTTT AATGTTNACT CCCCGTATCT AACAAGCAAG

TGATCATACT TCATTATTTT AGCAACTCCT TAATTTCCTC ATAAATGATG ATAAATATTT

60

120

CTTTAAACCT TGCTATATCT TCTTTAGTTG TAGTAGCCCC AAATGATAAT CTTATACTAC	240
CTTCAATAGA TTTGTCTGAT AATCCCATTG CAGCCAATAC TTCATTTAAT TTATTACGTT	
TAGATGAACA AGCACTCGTC GTAGATATCA TAATGTCATA TTTTGAAAAA GCATTAACTA	300
ATACTTCACC TTTTACGCCA GGAAAACTAA GATTTAAAAC GAATGGTGAA CCTGAAGTTG	
AAGAATTAAT ATAAACTCCA TGATATTTAT TTAAAAAATTG ACGGACGTCA TTATTTAACT	420
CAGTAACAAA TGCATTCAAT GCTTCAAAGT TTTCATTAGC TCGTGCC	480
	527
(2) INFORMATION FOR SEQ ID NO:71:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 24 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:	
TTTTAGCAAC TCCTTAATTT CCTC	24
(2) INFORMATION FOR SEQ ID NO:72:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 22 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic cDNA	
Genomic CONA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:	
GCACGAGCTA ATGAAAACTT TG	2.0
	22

96

(2) INFORMATION FOR SEQ ID NO:73:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 811 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

GACAACTTGC TAAAGCACGT GATGAAAAAG TAAGTGAATA TGGAATTGAA CAAGCTGATG GTACATTAAT TCAATATGAT AGTGAAGCCA AGATATATGA ACATTTTAAT GTGAATTTTA 60 TACCACCTGC TATGCGAGAA GATGGTAGCG AATTTGATAA AGATCTAAGT AATATCATTA 120 CATTAGATGA TATTAATGGT GATATTCATA TGCATACAAC GTATAGTGAT GGTGCGTTTT 180 CTATTCGAGA CATGGTAGAA GCAAATATCG CAAAAGGTTA TAAATTCATG GTAATTACTG 240 ATCATTCACA AAGTTTACGT GTTGCTAATG GCTTACAAGT GGAAAGACTT TTTANGACAA 300 AAACGAAGGA AATTAAGGCT TTAGATAAAG AATATAGTGA AATTGGATAT TTATTCAGGT 360 ACAAGAAATG GATATATTAA CCTGATGGCT CGCTGGATTA TGATGATGAA ATTTNAGCAC 420 AACTTGGATA TGTNATTGGA GCTATTCAAC AAAGCTTNAN CCAATCAGAA GAACAAATNA 480 TGGAACGGAT TAGCTAATGC ATGTCGCAAT CCATACGTGC GACATATAGC GCATCCAACA 540 GGGCGTATTA TAGGTAGAAG AGATGGTTAT AAACCGAATA TTGAACAATT AATGGCATTA 600 GCTGAAGAAA CGAATACAGT ATTAGAAATT AATGCCAATC CACATCGACT GGATCTTGAA 660 CGCTGAAATC GNTCGNNAAT ATCCAAATGT GAAATTAACT NTTAACACTG ATGGGCATCA TNCAAATCAA TTNGATTTTN TGGAATTATG G 780 811

- (2) INFORMATION FOR SEQ ID NO:74:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

ACGTGATGAA	AAAGTAAGTG
------------	------------

20

- (2) INFORMATION FOR SEQ ID NO:75:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

TCTTGTACCT GAATAAATAT CC

- (2) INFORMATION FOR SEQ ID NO:76:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 681 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

AGATCGTTCC	CTARTOR					
	CTAATTGACA	ATTGATTAAA	TCCCCTATTA	CAAAATTGGA	TATTACCHCH	
TATATCTAAA	AATCCACAAA	TTGCTTTACC	1100000		TATTACCIGI	60
A A C			AAGTGTTGAT	NTGNCGGCAC	CATTGTGACC	120
AACTATACTA	AGCATTTCTC	TTCTATAAAC	ATTTAATTCA	ል C ለ ጥጥ እ ጥጥ እ ካ	0======	
ACTATAGTCA	СТАТАТТОТ	Charman		ACATTATTAA	GTACACTATT	180
	CTATATTGAA	CACATACCTC	ATTTAATTCT	AATAGCGGCN	C ATCTCTA	240
CTTATTATCA	TTATGTGCAG	ATGTNTCATC	TATCCAMM		o. Mildidia	240
TTCXCTCXCX			TAICCATTTN	NNCACTITAA	NTTTAACATG	300
TICACTCATA	CAAACGACAC	GTAANTTCGC	TAAGTTATCA	ATGGATTCCA	Chromacono	
TGNATATTNA	AGCGCTGNAC	ACTATARACO	***	outlieda	CATCTACTTC	360
		MOINIMAIGG	NACACGTATG	CCTGCTTCTT	TAAGCTTAGA	420
TGATTTTAGC	AAATCACTAG	GCGTTGTATT	AGCGATCATT			720
ANCTOTATOR) 1 CCC		CGATGATT	TTTCCATCTT	TAAAAAGAAG	480
OICIAICA	AACGTATCAT	CTAATGANTC	TTCTAATCGA	TGTTCGACAA	Thamcamoon	
				CORCAA	INMICATOGT	540

ATCTAAATTG GCCAGCGGCT CATCCAATAT TAAAATAGGC GTNCGATGGA TTAATATACC ACCTAATGAA ACGCTCGTGC C (2) INFORMATION FOR SEQ ID NO:77: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77: AATTGACAAT TGATTAAATC CCC (2) INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids (B) TYPE: amino acid	TGACTTTGTT TCTTCATGAA TATTGTNTAA CAATCTCAGC GTTTCATGTC CTGTCGCAGG	500
ACCTAATGAA ACGCTCGTGC C (2) INFORMATION FOR SEQ ID NO:77: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77: AATTGACAAT TGATTAAATC CCC (2) INFORMATION FOR SEQ ID NO:78: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	ATCTAAATTG GCCAGCGGCT CATCCAATAT TAAAATAGGC GTNCGATGGA TTAATATAGGC	600
(2) INFORMATION FOR SEQ ID NO:77: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77: AATTGACAAT TGATTAAATC CCC 23 (2) INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	ACCTAATGAA ACGCTCGTGC C	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEONESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77: AAATTGACAAT TGATTAAATC CCC (2) INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEONESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids		681
(A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77: AATTGACAAT TGATTAAATC CCC (2) INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	(2) INFORMATION FOR SEQ ID NO:77:	
(A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77: AATTGACAAT TGATTAAATC CCC (2) INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids		
(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77: AATTGACAAT TGATTAAATC CCC (2) INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	(i) SEQUENCE CHARACTERISTICS:	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77: AATTGACAAT TGATTAAATC CCC (2) INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids		
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77: AAATTGACAAT TGATTAAATC CCC (2) INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	(B) TYPE: nucleic acid	
(ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77: AATTGACAAT TGATTAAATC CCC 23 (2) INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	·	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77: AATTGACAAT TGATTAAATC CCC (2) INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77: AATTGACAAT TGATTAAATC CCC (2) INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids		
AATTGACAAT TGATTAAATC CCC (2) INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	(ii) MOLECULE TYPE: Genomic cDNA	
AATTGACAAT TGATTAAATC CCC (2) INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	(wi) CROWNER PROPERTY	
(2) INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	(X1) SEQUENCE DESCRIPTION: SEQ ID NO:77:	
(2) INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	AATTGACAAT TGATTAAATG GGG	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	TONITAMIC CCC	23
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	(2) INFORMATION FOR SEC ID NO. 70	
(A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	10% 3EQ 1D NO: /8:	
(A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	(i) SEQUENCE CHARACTERISTICS:	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids		
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	(B) TYPE: nucleic acid	
(ii) MOLECULE TYPE: Genomic cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	(C) STRANDEDNESS: single	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids		
GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	(ii) MOLECULE TYPE: Genomic cDNA	
GCCAATTTAG ATCCTGCGAC (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids		
(2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:	
(2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	GCCAATTTAG ATCCTGCGAC	20
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids	/2) INFORMATON TOTAL	
(A) LENGTH: 164 amino acids	(2) INFORMATION FOR SEQ ID NO:79:	
(A) LENGTH: 164 amino acids	(i) SEQUENCE CHARACTERISTICS	
The second secon	1.72	
	The second secon	

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protien
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

Ala Ile Pro Phe Ala Ala Gln Asp Pro Leu Arg Ile Ile Pro Ala Asn 50 55 60

Ile Ile Gly Ala Met Ile Ala Ser Val Ile Ala Xaa Ile Gly Gly Val
65 70 75 80

Gly Asp Arg Val Ala His Gly Gly Pro Ile Val Ala Val Leu Gly Gly
85 90 95

Ile Asp His Val Leu Trp Phe Ile Phe Gly Xaa Ile Val Gly Ser Leu 100 105 110

Val Thr Met Pro Thr Val Leu Leu Xaa Arg Asn Thr Pro Val Ile

Ala Val Asp Ala Pro Ala Gln His Thr Gln Leu His Asp Thr Asp Ile
130 135 140

Thr Gln His Asp Thr Glu Val Asp Asn Val Asp Gly Thr Ser Glu Thr

145

150

155

160

- (2) INFORMATION FOR SEQ ID NO:80:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 155 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

Met Asn Ile Glu Xaa Asp Ile Asn Gly Arg Pro Lys His Ile Tyr Ser 10 Ile Tyr Arg Xaa Met Met Lys Gln Lys Lys Gln Phe Asp Gln Ile Phe 20 25 Asp Leu Leu Ala Ile Arg Val Ile Val Asn Ser Ile Asn Asp Cys Tyr Ala Ile Leu Gly Leu Val His Thr Leu Trp Lys Pro Met Pro Gly Arg 55 Phe Lys Asp Tyr Ile Ala Met Pro Lys Gln Asn Leu Tyr Gln Ser Leu 70 75 His Thr Thr Val Val Gly Pro Asn Gly Asp Pro Leu Glu Ile Gln Ile 85 90 Arg Thr Phe Asp Met His Glu Ile Ala Glu His Gly Val Ala Ala His 105 110 Trp Ala Tyr Lys Glu Gly Lys Lys Val Ser Glu Lys Asp Gln Thr Tyr 120 Gln Asn Lys Leu Asn Trp Leu Lys Glu Leu Ala Glu Ala Asp His Thr 125 135 140 Ser Ser Asp Ala Gln Glu Phe Met Glu Thr Leu

155

- (2) INFORMATION FOR SEQ ID NO:81:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 139 amino acids

150

(B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

Asp Val Ala Lys Arg Leu Asn Ala Asn Ile Tyr Val Ser Gly Glu Gly Glu Asp Ala Leu Gly Tyr Lys Asn Met Pro Ser Lys Thr Gln Phe Val 25 Lys His Gly Asp Ile Ile Gln Val Gly Asn Val Lys Leu Glu Val Leu His Thr Pro Gly His Thr Pro Glu Ser Ile Ser Phe Leu Leu Thr Asp 55 Leu Gly Gly Gly Ser Xaa Val Pro Met Gly Leu Phe Ser Gly Asp Phe 65 70 75 80 Ile Xaa Xaa Gly Asp Ile Gly Arg Pro Asp Leu Leu Glu Lys Ser Cys Ser Asn Lys Gly Phe Gly Thr Lys Leu Ala Arg Asn Lys Cys Met Ser 100 105 Pro Ile Lys Ile Leu Lys Ile Tyr Gln Thr Met Phe Lys Ser Gly Arg 120 . 125 Val Met Val Leu Glu Ala Leu Val Val Lys His 130 135

(2) INFORMATION FOR SEQ ID NO:82:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 91 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

 Met
 Tyr
 Gly
 Gly
 Val
 Thr
 Leu
 His
 Asp
 Asp
 Asp
 Leu
 Thr
 Glu
 G

35 40

Leu Asp Leu Gln Ala Arg Arg Tyr Leu Gln Glu Lys Tyr Asn Leu Tyr

Asn Ser Asp Val Phe Asp Gly Lys Val Gln Arg Gly Leu Ile Val Phe
65 70 75 80

His Thr Ser Thr Glu Pro Ser Val Asn Tyr Asp

(2) INFORMATION FOR SEQ ID NO:83:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 153 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

Met Leu Xaa Lys Met Leu Tyr Leu Leu Gln Ile His Gln Val Ile Pro

Ile Asn Ala Ile Ala Gln Ala Phe Asn Glu Lys Asp Gln Glu Arg Phe
20 25 30

Phe Gly Leu His Phe Phe Asn Pro Pro Arg Ile Met Xaa Leu Val Glu

Leu Ile Pro Thr Ser His Thr Lys Glu Ser Ile Ile Leu Asp Val Lys 50 55 60

Asn Phe Ala His Asn Val Leu Gly Lys Gly Val Ile Val Val Asn Asp
65 70 75 80

Val Pro Gly Phe Val Ala Asn Arg Val Gly Thr His Thr Met Asn Asp 85 90 95

Ile Leu Tyr Arg Ala Glu Gln His Lys Xaa Ser Xaa Val Asp Val Asp 100 105 110

Ala Leu Thr Gly Gln Ala Ile Gly Arg Pro Lys Thr Gly Thr Tyr Xaa 115 120 125

Leu Ser Asp Leu Val Gly Leu Xaa Ile Ala Xaa Ser Val Ile Lys Gly

130 135 140

Xaa Gln Xaa Val Pro Glu Glu Thr Pro 150

(2) INFORMATION FOR SEQ ID NO:84:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 271 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

Met Lys His Leu Leu Gly Thr Lys Ser Gly Leu Leu Ala Thr Pro Asn 1 10

Glu Asp Glu Lys Pro Glu Glu Ile Thr Trp Arg Glu Glu Thr Thr Gly 20

Lys Leu Asp Leu Val Val Ser Leu Asp Phe Arg Met Thr Ala Thr Pro 40

Leu Tyr Ser Asp Ile Val Leu Pro Ala Ala Thr Trp Tyr Glu Lys His 55 60

Asp Leu Ser Ser Thr Asp Met His Pro Tyr Val His Pro Phe Asn Pro 70

Ala Ile Asp Pro Leu Trp Glu Ser Arg Ser Asp Trp Asp Ile Tyr Lys 85 90

Thr Leu Ala Lys Ala Phe Ser Glu Met Ala Lys Asp Tyr Leu Pro Gly 100 105

Thr Phe Lys Asp Val Val Thr Thr Pro Leu Ser His Asp Thr Lys Gln 115 120

Glu Ile Ser Thr Pro Tyr Gly Val Val Lys Asp Trp Ser Lys Gly Glu 135

Ile Glu Ala Val Pro Gly Arg Thr Met Pro Asn Phe Ala Ile Val Glu 145 150 155

Arg Asp Tyr Thr Lys Ile Tyr Asp Lys Tyr Val Thr Leu Gly Pro Val

165 170 Leu Glu Lys Gly Lys Val Gly Ala His Gly Val Ser Phe Gly Val Ser 185 Glu Gln Tyr Glu Glu Leu Lys Ser Met Leu Gly Thr Trp Ser Asp Thr 195 200 Asn Asp Asp Ser Val Arg Ala Asn Arg Pro Arg Ile Asp Thr Ala Arg 215 220 Asn Val Ala Asp Ala Ile Leu Ser Ile Ser Ser Ala Thr Asn Gly Lys 230 235 Leu Ser Gln Lys Ser Tyr Glu Asp Leu Glu Glu Gln Thr Gly Met Pro 250 Leu Lys Asp Ile Ser Ser Glu Arg Ala Ala Glu Lys Ile Arg Phe 260 270

- (2) INFORMATION FOR SEQ ID NO:85:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 143 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

85 90 95
Arg Trp Ser Asp Ser Asn Leu Ala Glu Asn Asn Gln Leu Tyr Ser Xaa

100 105 110

Asp Ala Gln Arg Leu Ser Gln Ser Asn Leu Phe Asn Arg Lys Val Lys
115 120 125

Gln Ile Val Val Lys Ala Gln Arg Ile Ser Glu Arg Thr Arg Gly
130 135 140

(2) INFORMATION FOR SEQ ID NO:86:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 221 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

Gly Glu Ser Ile Phe Val Gly Leu Ile Leu Gly Leu Gly Ile Gly Val

1 5 10 15

Leu Ala Gly Tyr Lys Pro Gly Asp Ile Ile Asn Leu Gly Met Ser Met
20 25 30

Ala Ala Val Met Val Leu Met Pro Arg Met Val Lys Ile Leu Met Glu
35 40

Gly Leu Met Pro Val Ser Glu Ser Ala Arg Thr Trp Leu Asn Lys Arg 50 55 60

Phe Gly Glu Arg Glu Ile Tyr Ile Gly Leu Asp Ala Ala Val Ala Leu
65 70 75

Gly His Pro Ala Val Ile Ser Thr Ala Leu Ile Leu Val Pro Ile Thr

Val Leu Leu Ala Val Ile Leu Pro Gly Asn Gln Val Leu Pro Phe Gly
100 105 110

Asp Leu Ala Thr Ile Pro Phe Val Val Ala Phe Ile Val Gly Ala Ala 115 120 125

Arg Gly Asn Ile Ile His Ser Val Ile Val Gly Thr Ile Met Ile Ala

130 135 140 Ile Ser Leu Tyr Ile Ala Thr Asp Val Ala Pro Ile Phe Thr Asp Met 150 155 Ala Lys Gly Thr Asn Val Gln Met Xaa Lys Gly Ser Ser Glu Xaa Ser 165 170 Ser Ile Asp Gln Gly Gly Asn Ile Xaa Asn Tyr Leu Ile Xaa Xaa Leu 185 Xaa Ser Leu Xaa Gln Xaa Lys Xaa Arg Xaa Val Cys Gly Gly Ser Phe 195 200 Ser Lys Asn Lys Arg Arg Thr Trp Gln Leu Arg Thr Ser 210 215 220

- (2) INFORMATION FOR SEQ ID NO:87:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 322 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

			10	00	•			10)5				7.1	0	
Al	a Le	u Ly	/s G1	y Va	1 G1	v Pr	0 Tu			- NI	- 51		11		r Il
		11	15				12			.11 A1	a WI			t Se	r II
Al	а Ту	r As	n Va	1 Pro	o Lei	ı Ala			1 8-	- C1		12	>		g Va
	13	0				135		+ va	I AS	b er			1 Ph	e Ar	g Va
Tr	p Se	r Ar	a Le	u Asr	n Asr			- N-			14				
14	5		•		150	, vař	, ra	r ar	g As			s Le	u G1:	n Se	r Thi
Arc	a Lv:	s Se	r Tv	r Glo				_		15					160
	, -,·		J	165	. GIII	GIU	r rei	u Le			r Va	1 Thi	r Th	r Gl	u Ala
Gly	ረ ሞክነ	r Ph	e Ae,						170					17	5
			180	, 911	HIA	Met	Met			1 G1	/ Ala	Let	ı Ile	e Cys	s Xaa
Pro	Luc	. he-				_		185					190)	
	, Lys	195	i Pro	Leu	Cys	Leu			Pro	Val	Glr	Glu	ı Asr	Cys	6 Glu
חות	Dh.						200					205	'		
WIG	Phe	. Asp	р гуз	Gly	Pro		Glu	Lys	Leu	Pro	Val	Lys	Ser	Lys	Asn
11-1	210					215					220				
var	Ser	Lys	Хаа	Val	Ile	Glu	Gln	Ser	Val	Xaa	Leu	Ile	Arg	Asn	Asn
225					230					235					240
GIN	Gly	Gln	Tyr	Leu	Leu	Gln	Lys	Arg	Arg	Glu	Xaa	Leu	Xaa	Tyr	Gly
	_			245					250					255	
met	Trp	Gln	Xaa	Pro	Met	Xaa	Asp	Ser	Glu	His	Xaa	Arg	Arg	Lys	Met
			260					265					270		
Xaa	Glu	ĻŅS	Ile	Gly	His	Asp	Ile	Xaa	Pro	Xaa	Glu	Thr	Pro	Ile	Xaa
		275					280					285			
Glu	Leu	Thr	His	Gln	Phe	Thr	His	Leu	Thr	Trp	Lys	Ile	Lys	Val	Tyr
	290					295					300				
Ala	Ala	Ser	Gly	Ala	Ile i	Asn	Ile	Xaa	Thr	Leu	Pro	Asp	Asp	Met	Xaa
305					310					315			·		320
rp	Val														

`<u>.</u> ..

(2) INFORMATION FOR SEQ ID NO:88:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 151 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Protein

()

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

Met Gly Ala Glu Asn Ile Ile Met Ala Phe Ile Leu Thr Arg Trp Ala 10 Trp Phe Cys Arg Val Ile Arg Thr Ser Val Met Gln Tyr Thr Ala Ser 20 25 Asp His Val Arg Phe Ala Lys Thr Ile Gly Met Asn Asp Met Lys Ile 45 Ile His Lys His Ile Met Pro Leu Thr Leu Ala Asp Ile Ala Ile Ile 55 60 Ser Ser Ser Met Cys Ser Met Ile Leu Gln Ile Ser Gly Phe Ser 70 75 Phe Leu Gly Leu Gly Val Lys Ala Pro Thr Ala Glu Trp Gly Met Met 85 90 Leu Asn Glu Ala Arg Lys Val Met Phe Thr His Pro Glu Met Met Phe 105 110 Xaa Pro Gly Ile Ala Ile Gly Ile Ile Val Met Ala Phe Asn Phe Leu 115 120 125 Ser Asp Ala Leu Gln Asn Xaa Tyr Trp Ile Pro Arg Ile Ser Phe Leu 140 Lys Ile Asn Phe Arg Xaa Leu 145 150

- (2) INFORMATION FOR SEQ ID NO:89:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 221 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

Met Ile Phe Gly Lys Gly Thr Ala Lys Ala Thr Ser Tyr Gly Ala Gly 1 Ile Ile His Phe Leu Gly Gly Ile His Glu Ile Tyr Phe Pro Tyr Val Leu Met Arg Pro Leu Leu Phe Ile Ala Val Ile Leu Gly Gly Met Thr Gly Val Ala Thr Tyr Gln Ala Thr Gly Phe Gly Phe Lys Ser Pro Ala 60 Ser Pro Gly Ser Phe Ile Val Tyr Cys Leu Asn Ala Pro Arg Gly Glu 75 Phe Leu His Met Leu Leu Gly Val Phe Leu Ala Ala Leu Val Ser Phe Val Val Ala Ala Leu Ile Met Lys Phe Thr Arg Glu Pro Lys Gln Asp 105 Leu Glu Ala Ala Thr Ala Gln Met Glu Asn Thr Lys Gly Lys Lys Ser 115 120 Ser Val Ala Ser Lys Leu Val Ser Ser Asp Lys Asn Val Asn Thr Glu 135 Glu Asn Ala Ser Gly Asn Val Ser Glu Thr Ser Ser Ser Asp Asp 145 150 155 Pro Glu Ala Leu Leu Asp Asn Tyr Asn Thr Glu Asp Val Asp Ala His 165 170 Asn Tyr Asn Asn Ile Asn His Val Ile Phe Gly Cys Asp Ala Gly Met 180 185 Gly Ser Ser Ala Met Gly Ala Ser Met Leu Arg Asn Lys Phe Lys Lys 200 Ala Gly Ile Asn Asp Ile Thr Gly Tyr Lys Tyr Cys Asp 210 215 220

(2) INFORMATION FOR SEQ ID NO:90:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 227 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

Gly Thr Ser Val Ser Leu Gly Gly Ile Leu Ile His Arg Thr Pro Ile 1 5 Leu Ile Leu Asp Glu Pro Leu Ala Asn Leu Asp Pro Ala Thr Gly His 20 25 Glu Thr Leu Arg Leu Leu Xaa Asn Ile His Glu Glu Thr Lys Ser Thr 40 Met Ile Ile Val Glu His Arg Leu Glu Xaa Ser Leu Asp Asp Thr Phe 55 Asp Arg Xaa Leu Leu Phe Lys Asp Gly Lys Ile Ile Ala Asn Thr Thr 70 Pro Ser Asp Leu Lys Ser Ser Lys Leu Lys Glu Ala Gly Ile Arg 85 90 Val Pro Leu Tyr Cys Xaa Ala Leu Xaa Tyr Xaa Glu Val Asp Val Glu 105 Ser Ile Asp Asn Leu Ala Xaa Leu Arg Val Val Cys Met Ser Glu His 120 125 Val Lys Xaa Lys Val Xaa Lys Trp Ile Asp Xaa Thr Ser Ala His Asn 135 140 Asp Asn Lys Tyr Thr Ser Xaa Pro Leu Leu Glu Leu Asn Glu Val Cys 145 150 155 Val Gln Tyr Ser Asp Tyr Ser Asn Ser Val Leu Asn Asn Val Gln Leu 165 170 Asn Val Tyr Arg Arg Glu Met Leu Ser Ile Val Gly His Asn Gly Ala 180 185 Xaa Xaa Ser Thr Leu Ala Lys Ala Ile Cys Gly Phe Leu Asp Ile Thr 200 Gly Asn Ile Gln Phe Cys Asn Arg Gly Phe Asn Gln Leu Ser Ile Ser 210 215 220 Glu Arg Ser 225

(2) INFORMATION FOR SEQ ID NO:91:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 25 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

GCTCCTAAAA GGTTACTCCA CCGGC

25

What is claimed is:

- 1. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:
- (a) a polynucleotide having at least a 70% identity to a polynucleotide encoding
 5 a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ
 ID Nos: 1,4,7,10,13,16,19,22,25 and 28;
 - (b) a polynucleotide which is complementary to the polynucleotide of (a); and
 - (c) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a) or (b).
- 10 2. The polynucleotide of Claim 1 wherein the polynucleotide is DNA.
 - 3. The polynucleotide of Claim 1 wherein the polynucleotide is RNA.
 - 4. The polynucleotide of Claim 2 comprising the nucleotide sequence selected from the group consisting of SEQ ID Nos: 1,4,7,10,13,16,19,22,25 and 28.
- . 5. An isolated polynucleotide comprising a member selected from the group consisting of:
 - (a) a polynucleotide having at least a 70% identity to a polynucleotide encoding the polypeptide expressed contained in NCIMB Deposit No. 40771 and selected from the group consisting of SEQ ID NOs: 1,4,7,10,13,16,19,22,25 and 28;
 - (b) a polynucleotide complementary to the polynucleotide of (a); and
- 20 (c) a polynucleotide comprising at least 15 bases of the polynucleotide of (a) or (b).
 - 6. A vector comprising the DNA of Claim 2.
 - A host cell comprising the vector of Claim 6.
- 8. A process for producing a polypeptide comprising: expressing from the host cell of Claim 7 a polypeptide encoded by said DNA.
 - 9. A process for producing a cell which expresses a polypeptide comprising transforming or transfecting the cell with the vector of Claim 6 such that the cell expresses the polypeptide encoded by the cDNA contained in the vector.
- 10. A process for producing a polypeptide of the invention or fragment
 30 comprising culturing a host of claim 7 under conditions sufficient for the production of said polypeptide or fragment.
 - 11. A polypeptide comprising an amino acid sequence selected from the group consisting essentially of: 79,80,81,82,83,84,85,86,87 and 88.

12. An antibody against the polypeptide of claim 11.

5

20

25

- 13. An antagonist which inhibits the activity of the polypeptide of claim 11.
- 14. A method for the treatment of an individual having need of a polypeptide of the invention comprising: administering to the individual a therapeutically effective amount of the polypeptide of claim 11.
- 15. The method of Claim 14 wherein said therapeutically effective amount of the polypeptide is administered by providing to the individual DNA encoding said polypeptide and expressing said polypeptide in vivo.
- 16. A method for the treatment of an individual having need to inhibit a polypeptide of the invention comprising: administering to the individual a therapeutically effective amount of the antagonist of Claim 13.
 - 17. A process for diagnosing a disease related to expression of the polypeptide of claim 11 comprising:

determining a nucleic acid sequence encoding said polypeptide.

- 15 18. A diagnostic process comprising: analyzing for the presence of the polypeptide of claim 11 in a sample derived from a host.
 - 19. A method for identifying compounds which bind to and inhibit an activity of the polypeptide of claim 11 comprising:

contacting a cell expressing on the surface thereof a binding for the polypeptide, said binding being associated with a second component capable of providing a detectable signal in response to the binding of a compound to said binding, with a compound to be screened under conditions to permit binding to the binding; and

determining whether the compound binds to and activates or inhibits the binding by detecting the presence or absence of a signal generated from the interaction of the compound with the binding.

- 20. A method for inducing an immunological response in a mammal which comprises inoculating the mammal with a polypeptide of the invention, or a fragment or variant thereof, adequate to produce antibody to protect said animal from disease.
- 21. A method of inducing immunological response in a mammal which comprises, through gene therapy, delivering gene encoding a fragment of a polypeptide of the invention or a variant thereof, for expressing such polypeptide, or a fragment or a variant thereof in vivo in order to induce an immunological response to produce antibody to protect said animal from disease.

22. An immunological composition comprising a DNA which codes for and expresses a polynucleotide of the invention or protein coded therefrom which, when introduced into a mammal, induces an immunological response in the mammal to a given such polynucleotide or protein coded therefrom.

5 23. A polynucleotide consisting essentially of a DNA sequence obtainable by screening an appropriate library containing the complete gene for a polynucleotide sequence of the invention under stringent hybridization conditions with a probe having the sequence of said polynucleotide sequence or a fragment thereof; and isolating said DNA sequence.