inertia = []
k = list(range(1, 11))

Calculate the inertia for the range of k values
for i in k:
 km = KMeans(n_clusters=i, random_state=0)
 km.fit(df_shopping)
 inertia.append(km.inertia_)

Create the Elbow Curve using hvPlot
elbow_data = {"k": k, "inertia": inertia}
df_elbow = pd.DataFrame(elbow_data)

[3]:

3. Create a function called <code>get_clusters(k, data)</code> that finds the <code>k</code> clusters using K-Means on <code>data</code>. The function should return a DataFrame copy of <code>Data</code> that should include a new column containing the clusters found.

```
def get_clusters(k, data):
    # Initialize the K-Means model
    model = KMeans(n_clusters=k, random_state=0)

# Fit the model
    model.fit(data)

# Predict clusters
    predictions = model.predict(data)

# Create return DataFrame with predicted clusters
    data["class"] = model.labels_
    return data
```

- 4. Use the <code>get_clusters()</code> function with the two best values for <code>k</code> according to your personal opinion; plot the resulting clusters as follows and postulate your conclusions:
 - Create a 2D-Scatter plot using hvPlot to analyze the clusters using x="Annual Income" and y="Spending Score (1-100)".

Analyzing Clusters with the First Best Value of k

```
[5]: # Looking for clusters the first best value of k
five_clusters = get_clusters(5, df_shopping)
five_clusters.head()
```

[5]:		Gender	Age	Annual Income	Spending Score (1-100)	class
	0	1	19	15.0	39	0
	1	1	21	15.0	81	4
	2	0	20	16.0	6	0
	3	0	23	16.0	77	4
	4	0	31	17.0	40	0

```
[6]: # Plotting the 2D-Scatter with x="Annual Income" and y="Spending Score (1-100)"
five_clusters.hvplot.scatter(x="Annual Income", y="Spending Score (1-100)", by="class")
```

[6]:

Analyzing Clusters with the Second Best Value of k

```
[7]: # Looking for clusters the second best value of k
six_clusters = get_clusters(6, df_shopping)
six_clusters.head()
```

[7]:		Gender	Age	Annual Income	Spending Score (1-100)	class
	0	1	19	15.0	39	5
	1	1	21	15.0	81	3
	2	0	20	16.0	6	5
	3	0	23	16.0	77	3
	4	0	31	17.0	40	5

```
[8]: # Plotting the 2D-Scatter with x="Annual Income" and y="Spending Score (1-100)"
five_clusters.hvplot.scatter(x="Annual Income", y="Spending Score (1-100)", by="class")
```


Sample Conclusions

- The best two values for k are k=5 and k=6 since on those values of k the curve turns showing an elbow.
- After visually analyzing the clusters, the best value for k seems to be 6. Using k=6, a more meaningful segmentation of customers can be done as follows:
 - Cluster 1: Medium income, low annual spend
 - · Cluster 2: Low income, low annual spend
 - · Cluster 3: High income, high annual spend
 - · Cluster 4: Low income, high annual spend
 - · Cluster 5: Medium income, low annual spend
 - · Cluster 6: Very high income, high annual spend
- Having defined these clusters, we can formulate marketing strategies relevant to each cluster aimed to increase revenue.

0 🛐 3 🤃 Python 3 | Idle Saving completed Mode: Command 🔞 Ln 1, Col 1 k_means_in_action.ipynb