On estimating the structure factor of a point process, with applications to hyperuniformity

Diala Hawat Guillaume Gautier, Rémi Bardenet, and Raphaël Lachièze-Rey

Université de Lille, CNRS, Centrale Lille ; UMR 9189 – CRIStAL, F-59000 Lille, France. Université Paris Cité, Map5, Paris, France.

Contents

German Probability and Statistics Days (GPSD 2023)

- 1 Hyperuniformity
- 2 Hyperuniformity test
- 3 Numerical experiment
- 4 Code availability 😉

Hyperuniformity

Let \mathcal{X} be a stationary point process of \mathbb{R}^d of intensity ρ , \mathcal{X} is hyperuniform iff

Variance:

Hyperuniformity

$$\lim_{R\to\infty}\frac{\mathrm{Var}\left(\mathrm{Card}(\mathcal{X}\cap B(0,R))\right)}{|B(0,R)|}=0.$$

S. Torquato, Hyperuniform States of Matter, 2018.

S. Coste, Order, Fluctuations, Rigidities, 2021.

Hyperuniformity using the structure factor

Hyperuniformity

German Probability and Statistics Days (GPSD 2023)

$$\mathcal{X}$$
 is hyperuniform $\iff \lim_{R \to \infty} \frac{\operatorname{Var}(\operatorname{Card}(\mathcal{X} \cap B(0,R)))}{|B(0,R)|} = 0$

 \blacksquare Structure factor S of \mathcal{X}

$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$$

 \blacksquare \mathcal{X} is hyperuniform iff

$$S(\mathbf{0}) = 0$$

S. Coste. Order, Fluctuations, Rigidities, 2021.

S. Torquato. Hyperuniform States of Matter, 2018.

- $\rho_{\text{Ginibre}} = 1/\pi$
- $S_{Ginibre}(k) = 1 \exp(-k^2/4)$
- S(0) = 0

- Given: Realizations $\{\mathcal{X}_W\}$ of \mathcal{X} in the window W of lenghtside L (e.g., $W = [-L/2, L/2]^d$)
- Need: Check if $S(\mathbf{0}) = 0$ using $\{\mathcal{X}_W\}$
- Problem: We don't have an unbiased estimator of $S(\mathbf{0})$

- Given: Realizations $\{\mathcal{X}_W\}$ of \mathcal{X} in the window W of lenghtside L (e.g., $W = [-L/2, L/2]^d$)
- Need: Check if $S(\mathbf{0}) = 0$ using $\{\mathcal{X}_{\mathcal{W}}\}$
- Problem: We don't have an unbiased estimator of $S(\mathbf{0})$
- We have: $S(\mathbf{k}) = \lim_{L \to \infty} \mathbb{E} \left[\widehat{S}(\mathbf{k}) \right]$ for $\mathbf{k} \in \mathbb{A}_W$, with $\|\mathbf{k}_{min}\|_2 \sim \frac{C}{L}$

- Given: Realizations $\{\mathcal{X}_W\}$ of \mathcal{X} in the window W of lenghtside L (e.g., $W = [-L/2, L/2]^d$)
- Need: Check if $S(\mathbf{0}) = 0$ using $\{\mathcal{X}_W\}$
- Problem: We don't have an unbiased estimator of $S(\mathbf{0})$
- We have: $S(\mathbf{k}) = \lim_{L \to \infty} \mathbb{E} \left[\widehat{S}(\mathbf{k}) \right]$ for $\mathbf{k} \in \mathbb{A}_W$, with $\|\mathbf{k}_{min}\|_2 \sim \frac{C}{L}$
- How one can construct an unbiased estimator when only biased estimators are available?

- Need: estimate $\mathbb{E}[Y] := \bar{Y}$
- Able to generate a sequence of r.v. $(Y_m)_m$ s.t. $\bar{Y} = \lim_{m \to \infty} \mathbb{E}[Y_m]$

C. Rhee and P.W. Glynn. *Unbiased estimation with square root convergence for SDE models*. 2015.

- Need: estimate $\mathbb{E}[Y] := \overline{Y}$
- Able to generate a sequence of r.v. $(Y_m)_m$ s.t. $\bar{Y} = \lim_{m \to \infty} \mathbb{E}[Y_m]$
- Consider an \mathbb{N} -r.v. M s.t., $\mathbb{P}(M \ge j) > 0$ for all j, and let $Y_0 = 0$

$$Z_m = \sum_{j=1}^{m \wedge M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}, \quad m \ge 1$$

C. Rhee and P.W. Glynn. *Unbiased estimation with square root convergence for SDE models*, 2015.

- Need: estimate $\mathbb{E}[Y] := \bar{Y}$
- Able to generate a sequence of r.v. $(Y_m)_m$ s.t. $\bar{Y} = \lim_{m \to \infty} \mathbb{E}[Y_m]$
- Consider an N-r.v. M s.t., $\mathbb{P}(M \ge j) > 0$ for all j, and let $Y_0 = 0$

$$Z_m = \sum_{j=1}^{m \wedge M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}, \quad m \ge 1$$

- $\blacksquare \mathbb{E}[Z_m] = \mathbb{E}[Y_m] \quad \text{and} \quad Z_m \xrightarrow[m \to \infty]{\text{a.s.}} Z := \sum_{j=1}^M \frac{Y_j Y_{j-1}}{\mathbb{P}(M \ge j)}.$
- If $Y_m \xrightarrow{L^2} Y$ + some hypotheses, then $\mathbb{E}[Z] = \overline{Y}$

C. Rhee and P.W. Glynn. *Unbiased estimation with square root convergence for SDE models*, 2015.

- Consider an increasing sequence of sets $(\mathcal{X} \cap W_m)_{m \geq 1}$, with $\{W_m\}_m \uparrow$ and $W_\infty = \mathbb{R}^d$
- \mathbf{k}_m^{\min} minimum wavevector of \mathbb{A}_{W_m} , $\mathbf{k}_m^{\min} \xrightarrow[m \to \infty]{} \mathbf{0}$

- Consider an increasing sequence of sets $(\mathcal{X} \cap W_m)_{m \geq 1}$, with $\{W_m\}_m \uparrow$ and $W_\infty = \mathbb{R}^d$
- \mathbf{k}_m^{\min} minimum wavevector of \mathbb{A}_{W_m} , $\mathbf{k}_m^{\min} \xrightarrow[m \to \infty]{} \mathbf{0}$
- Take $Y_m = 1 \wedge \widehat{S}_m(\mathbf{k}_m^{\min})$
- $Z = \sum_{j=1}^{M} \frac{Y_j Y_{j-1}}{\mathbb{P}(M \ge j)}$ with M is an \mathbb{N} -r.v. such that $\mathbb{P}(M \ge j) > 0$ for all j, and $Y_0 = 0$

Hyperuniformity test

German Probability and Statistics Days (GPSD 2023)

- Consider an increasing sequence of sets $(\mathcal{X} \cap W_m)_{m\geq 1}$, with $\{W_m\}_m \uparrow$ and $W_\infty = \mathbb{R}^d$
- \mathbf{k}_m^{\min} minimum wavevector of \mathbb{A}_{W_m} , $\mathbf{k}_m^{\min} \xrightarrow[m \to \infty]{} \mathbf{0}$
- Take $Y_m = 1 \wedge \widehat{S}_m(\mathbf{k}_m^{\min})$
- $Z = \sum_{j=1}^{M} \frac{Y_j Y_{j-1}}{\mathbb{P}(M \ge j)}$ with M is an \mathbb{N} -r.v. such that $\mathbb{P}(M \ge j) > 0$ for all j, and $Y_0 = 0$

Proposition

Assume that $M \in L^p$ for some $p \ge 1$. Then $Z \in L^p$ and $Z_m \to Z$ in L^p . Moreover,

- 1 If \mathcal{X} is hyperuniform, then $\mathbb{E}[Z] = 0$.
- 2 If $\mathcal X$ is not hyperuniform and $\sup_m \mathbb E[\widehat{S}_m^2(\mathbf k_m^{\min})] < \infty$, then $\mathbb E[Z] \neq 0$.

Preprint: D. Hawat, G. Gautier, R. Bardenet, R. Lachièze-Rey. On estimating the structure factor of a point process, with applications to hyperuniformity, 2022.

Need: Check
$$\mathbb{E}[Z] = 0$$
, with $Z = \sum_{j=1}^{M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}$

Test:

- M a Poisson r.v. of parameter λ
- i.i.d. pairs $(\mathcal{X}_a, M_a)_{a=1}^A$ of realizations of (\mathcal{X}, M)
- lacksquare Asymptotic confidence interval $\mathit{CI}[\mathbb{E}[Z]]$ of level ζ

$$CI[\mathbb{E}[Z]] = \left[\bar{Z}_A - z\bar{\sigma}_A A^{-1/2}, \bar{Z}_A + z\bar{\sigma}_A A^{-1/2}\right]$$

with
$$\mathbb{P}(-z < \mathcal{N}(0,1) < z) = \zeta$$

■ Assessing whether 0 lies in $CI[\mathbb{E}[Z]]$

Numerical experiment

- lacktriangleright \mathcal{X} a stationary point process
- \mathcal{X}_p an independent *p*-thinning with $p \in (0,1)$
- Structure factor: $S_p(\mathbf{k}) = pS(\mathbf{k}) + 1 p$
- $\blacksquare \mathcal{X}$ is hyperuniform $\implies S_p(\mathbf{0}) = 1 p$

M. A. Klatt, G. Last, and N. Henze. A genuine test for hyperuniformity, 2022.

J. Kim and S. Torquato. *Effect of imperfections on the hyperuniformity of many-body systems*, 2018.

Numerical experiment

German Probability and Statistics Days (GPSD 2023)

Ginibre,
$$S(0) = 0$$

$$p = 0.9$$
, $S(0) = 0.1$

$$p = 0.5, S(0) = 0.5$$

$$p = 0.5$$
, $S(0) = 0.5$ $p = 0.1$, $S(0) = 0.9$

Structure factor

Numerical experiment

German Probability and Statistics Days (GPSD 2023)

Table: Multiscale hyperuniformity test obtained using $\widehat{S}_{\rm BI}$ on the thinned Ginibre process.

	\bar{Z}_A	$CI[\mathbb{E}[Z]]$
Ginibre	0.0057	[-0.0042, 0.0156]
Thinning $p = 0.9$, $S(0) = 0.1$	0.0865	[0.0411, 0.1318]
Thinning $p = 0.5$, $S(0) = 0.5$	0.5722	[0.4227, 0.7217]
Thinning $p = 0.1$, $S(0) = 0.9$	0.611	[0.2082, 1.0137]

- 1 Open-source ♣ Python toolbox called structure_factor¹
- 2 Available on G GitHub and PyPl ²
- 3 Detailed documentation ³
- 4 Jupyter notebook tutorial 4

¹https://github.com/For-a-few-DPPs-more/structure-factor

²https://pypi.org/project/structure-factor/

³https://for-a-few-dpps-more.github.io/structure-factor/

⁴https://github.com/For-a-few-DPPs-more/structure-factor/tree/main/notebooks

Conclusion

- Statistical test of hyperuniformity using biased estimators of the structure factor
- Python toolbox structure-factor

Preprint: D. Hawat, G. Gautier, R. Bardenet, R. Lachièze-Rey. On estimating the structure factor of a point process, with applications to hyperuniformity, 2022.

THANK YOU

German Probability and Statistics Days (GPSD 2023)

Documentation

Preprint

Github: https://github.com/For-a-few-DPPs-more/structure-factor
Documentation: https://for-a-few-dpps-more.github.io/structure-factor/
Preprint: D. Hawat, G. Gautier, R. Bardenet, R. Lachièze-Rey On estimating the structure factor of a point process, with applications to hyperuniformity, 2022.