Employee Attriton Prediction

Employee attrition prediction is a data-driven approach to identify factors that lead to employees leaving a company and forecasting which employees are at risk of attrition. By analyzing historical employee data, organizations can develop predictive models to improve retention strategies, reduce turnover costs, and enhance workplace satisfaction.

Import the necessary libraries

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.feature selection import SelectKBest, f classif
from sklearn.preprocessing import MinMaxScaler
from sklearn.model selection import train test split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.naive bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaB
from xgboost import XGBClassifier
from sklearn.metrics import classification report, Confusion Matrix Display, accuracy sco
from sklearn.model selection import train test split, RandomizedSearchCV
from sklearn.ensemble import RandomForestRegressor
import pickle
import warnings
warnings.filterwarnings('ignore')
Read the dataset
df=pd.read csv('/content/drive/MyDrive/train main.csv')
df
```


	Employee ID	Age	Gender	Years at Company	Job Role	Monthly Income	Work- Life Balance	Job Satisfaction	Perfor F
0	8410	31	Male	19	Education	5390	Excellent	Medium	А
1	64756	59	Female	4	Media	5534	Poor	High	
2	30257	24	Female	10	Healthcare	8159	Good	High	
3	65791	36	Female	7	Education	3989	Good	High	
4	65026	56	Male	41	Education	4821	Fair	Very High	Α
59593	37195	50	Female	12	Education	4414	Fair	High	Α
59594	6266	18	Male	4	Healthcare	8040	Fair	High	
59595	54887	22	Female	14	Technology	7944	Fair	High	
59596	861	23	Male	8	Education	2931	Fair	Very High	Α
59597	15796	56	Male	19	Technology	6660	Good	High	Α
59598 rd	ows × 24 col	umns							
4									

df.columns

Check for the missing values

```
df.isna().sum()
```


	0
Employee ID	0
Age	0
Gender	0
Years at Company	0
Job Role	0
Monthly Income	0
Work-Life Balance	0
Job Satisfaction	0
Performance Rating	0
Number of Promotions	0
Overtime	0
Distance from Home	0
Education Level	0
Marital Status	0
Number of Dependents	0
Job Level	0
Company Size	0
Company Tenure	0
Remote Work	0
Leadership Opportunities	0
Innovation Opportunities	0
Company Reputation	0
Employee Recognition	0
Attrition	0

dtype: int64

df.dtypes

0

	_
Employee ID	int64
Age	int64
Gender	object
Years at Company	int64
Job Role	object
Monthly Income	int64
Work-Life Balance	object
Job Satisfaction	object
Performance Rating	object
Number of Promotions	int64
Overtime	object
Distance from Home	int64
Education Level	object
Marital Status	object
Number of Dependents	int64
Job Level	object
Company Size	object
Company Tenure	int64
Remote Work	object
Leadership Opportunities	object
Innovation Opportunities	object
Company Reputation	object
Employee Recognition	object
Attrition	object

dtype: object

```
# 1. Line Plot - Example for Monthly Income over Years at Company
plt.figure(figsize=(10,6))
plt.plot(df['Years at Company'], df['Monthly Income'], marker='o', linestyle='-', color='blu
plt.title('Monthly Income over Years at Company')
plt.xlabel('Years at Company')
plt.ylabel('Monthly Income')
```

```
plt.grid(True)
plt.tight_layout()
plt.show()
```


Employees with more years at the company tend to have higher salaries, but growth is not always consistent. Some employees with fewer years may earn more, possibly due to job roles, promotions, or performance

```
# 2. Scatter Plot - Age vs. Monthly Income
plt.figure(figsize=(10,6))
plt.scatter(df['Age'], df['Monthly Income'], c='green', label='Age vs Monthly Income')
plt.title('Age vs. Monthly Income')
plt.xlabel('Age')
plt.ylabel('Monthly Income')
plt.legend()
plt.tight_layout()
plt.show()
```

 $\overline{\Rightarrow}$

Age vs. Monthly Income


```
# 3. Bar Plot (Seaborn) - Job Role vs. Monthly Income
plt.figure(figsize=(10,6))
sns.barplot(x='Job Role', y='Monthly Income', data=df, palette='coolwarm',hue='Gender')
plt.title('Monthly Income by Job Role')
plt.tight_layout()
plt.show()
```


Monthly Income by Job Role

Certain job roles (e.g., Technology, Healthcare) likely have higher average salaries than others (e.g., Education, Media)

```
# 4. Count Plot (Seaborn) - Count of Employees by Gender
plt.figure(figsize=(10,6))
sns.countplot(x='Gender', data=df, palette='Set1',hue='Gender',legend=False)
plt.title('Count of Employees by Gender')
plt.tight_layout()
plt.show()
```


Count of Employees by Gender

Shows the number of males and females present

```
# 5. Pair Plot - Relationship between multiple variables
sns.pairplot(df[['Age', 'Years at Company', 'Monthly Income']])
plt.suptitle('Pair Plot of Age, Years at Company, and Monthly Income', y=1.02)
plt.show()
```



```
#6.Shows if poor worklife balance leads to higher attrition
plt.figure(figsize=(8,5))
sns.countplot(x="Work-Life Balance", hue="Attrition", data=df, palette="Set2")
plt.title("Work-Life Balance vs. Attrition")
plt.xlabel("Work-Life Balance")
plt.ylabel("Count")
plt.show()
```


Drop Employee ID

df.drop(['Employee ID'],axis=1,inplace=True)

Label Encoding

features=df.select_dtypes(include=['object']).columns.tolist()
features

→

Show hidden output

```
encoder=LabelEncoder()
for col in features:
   df[col]=encoder.fit_transform(df[col])
df
```


	Age	Gender	Years at Company	Job Role	Monthly Income	Work- Life Balance	Job Satisfaction	Performance Rating	Number Promotio
0	31	1	19	0	5390	0	2	0	
1	59	0	4	3	5534	3	0	3	
2	24	0	10	2	8159	2	0	3	
3	36	0	7	0	3989	2	0	2	
4	56	1	41	0	4821	1	3	0	
59593	50	0	12	0	4414	1	0	0	
59594	18	1	4	2	8040	1	0	2	
59595	22	0	14	4	7944	1	0	2	
59596	23	1	8	0	2931	1	3	0	
59597	56	1	19	4	6660	2	0	0	

59598 rows × 23 columns


```
# Compute the correlation matrix
correlation_matrix=df.corr()
# Create a heatmap to visualize the correlation matrix
plt.figure(figsize=(12, 8)) # Adjust figure size
sns.heatmap(correlation_matrix,annot=True, cmap='coolwarm', fmt='.2f', linewidths=0.5)
# Customize the plot
plt.title('Correlation_Heatmap', fontsize=16)
plt.show()
```



```
X=df.iloc[:,:-1]
                              #Input
```

Χ

	Age	Gender	Years at Company	Job Role	Monthly Income	Work- Life Balance	Job Satisfaction	Performance Rating	Number Promotio
0	31	1	19	0	5390	0	2	0	
1	59	0	4	3	5534	3	0	3	
2	24	0	10	2	8159	2	0	3	
3	36	0	7	0	3989	2	0	2	
4	56	1	41	0	4821	1	3	0	
59593	50	0	12	0	4414	1	0	0	
59594	18	1	4	2	8040	1	0	2	
59595	22	0	14	4	7944	1	0	2	
59596	23	1	8	0	2931	1	3	0	
59597	56	1	19	4	6660	2	0	0	
59598 r	OWS X	22 column	ns						

59598 rows × 22 columns

y=df.iloc[:,-1]
v

	Attrition
0	1
1	1
2	1
3	1
4	1
59593	0
59594	0
59595	1
59596	0
59597	1

59598 rows × 1 columns

dtype: int64

Scaling

```
scaler=MinMaxScaler()
X_scaled=scaler.fit_transform(X)
```

Training and testing

X_train,X_test,y_train,y_test=train_test_split(X_scaled,y,test_size=.2,random_state=42)

Model Training

model.fit(X_train,y_train)
y_pred=model.predict(X_test)
print(classification_report(y_test,y_pred,digits=4))

→ ▼	******	KNeighborsCl	assifier() *****	***		
_		precision	recall	f1-score	support		
	0	0.6578	0.6524	0.6551	5667		
	1	0.6873	0.6925	0.6899	6253		
	accuracy			0.6734	11920		
	macro avg	0.6726	0.6724	0.6725	11920		
	weighted avg	0.6733	0.6734	0.6733	11920		
	******	SVC() *****	*****				
		precision	recall	f1-score	support		
	0	0.7176	0.7081	0.7129	5667		
	1	0.7386	0.7475	0.7430	6253		
	accuracy			0.7288	11920		
	macro avg	0.7281	0.7278	0.7279	11920		
	weighted avg	0.7286	0.7288	0.7287	11920		
	******	GaussianNB()	*****	****			
		precision	recall	f1-score	support		
	0	0.6642	0.7410	0.7005	5667		
	1	0.7378	0.6605	0.6970	6253		
	accuracy			0.6987	11920		
	macro avg	0.7010	0.7007	0.6987	11920		
	weighted avg	0.7028	0.6987	0.6986	11920		
	*******	DecisionTree	Classifie	r() *****	****		
		precision	recall	f1-score	support		
	0	0.6373	0.6391	0.6382	5667		
	1	0.6721	0.6704	0.6713	6253		
	accuracy			0.6555	11920		
	macro avg	0.6547	0.6548	0.6547	11920		
	weighted avg	0.6556	0.6555	0.6556	11920		
	******	** RandomForestClassifier() ********					
		precision	recall	f1-score	support		
	0	0.7243	0.7277	0.7260	5667		
	1	0.7522	0.7489	0.7505	6253		
	accuracy			0.7388	11920		
	macro avg	0.7382	0.7383	0.7383	11920		
	weighted avg	0.7389	0.7388	0.7389	11920		
	******	ifier() **	*****				
		precision	recall	f1-score	support		

```
0
              0.7402
                         0.7392
                                   0.7397
                                                5667
              0.7639
                         0.7649
                                   0.7644
                                                6253
 accuracy
                                   0.7527
                                               11920
macro avg
              0.7521
                         0.7521
                                   0.7521
                                               11920
```

'Job Satisfaction', 'Performance Rating', 'Number of Promotions',
'Overtime', 'Distance from Home', 'Education Level', 'Marital Status',
'Number of Dependents', 'Job Level', 'Remote Work',
'Company Reputation'],
dtype='object')

X_new=X[selected_features]
scaler=MinMaxScaler()
X_new_scaled=scaler.fit_transform(X_new)

y.value_counts()

₹

count

Attrition				
1	31260			
0	28338			

dtype: int64

Sampling

```
from imblearn.over_sampling import SMOTE
os=SMOTE()
X_os,y_os=os.fit_resample(X_new_scaled,y)
y_os.value_counts()
```


count

Attrition

X_scaled=scaler.fit_transform(X_os)