Blue Team ivan notes 2022

1. Fundamentals

- ▼ Storytelling
 - ▼ defense is all about stories
 - what questions to ask?
 - when to ask those questions?
 - how do we answer those questions?
 - what story is the evidence telling?
 - who needs to hear this story?
 - what story do i tell this person?
- ▼ NIST CSF
 - **▼ IPDRR**
 - ▼ Identify
 - develop org understanding to manage cyber risk to systems, people,
 assets, data, and capabilities
 - what is inside/outside your org?
 - who are the actors?
 - what assets do you have?
 - how do you model your threats?
 - ▼ Protect
 - develop and implement appropriate safeguards to ensure delivery of
 critical services
 - how do you secure systems?
 - how do you configure and read logging?
 - what tools and tech can you leverage?
 - how do you lock down networks, access controls, mobile, and cloud?
 - ▼ Detect

- develop and implement appropriate activates to identify the occurrence
 of a cyber event
 - now that defense is breached, how do you catch attacker?
 - what do these logs mean, whats normal vs anomalous?
 - what are the IOCs and TTPs?
 - what is the timeline of events
 - how do you link different types of logs together?

▼ Respond

- develop and implement appropriate activities to take action regarding a detected cyber incident
 - how do you manage a security incident?
 - how do you react to live attackers?
 - who needs to be notified and when?
 - how do you collect forensic evidence that's admissible?
 - how do you build a legal case?
 - what goes into an IR report?

▼ Recover

- develop and implement appropriate activities to maintain plans for resilience and to restore any capabilities or services that were impaired due to a cyber incident
 - how do you recovery from an incident?
 - whats a postmortem?
 - how do you secure your systems for next attack?

▼ CIA

- ▼ confidentiality
 - is this private?
- ▼ integrity
 - is this real?
- ▼ availability
 - is this usable?

AAA

- ▼ Authentication
 - who are you?
- ▼ Authorization
 - what can you do?
- ▼ Accounting
 - did you do this?
- ▼ Risk
 - ▼ vulnerability
 - a weakness, something we control
 - ▼ threat
 - can exploit the vulnerability, something we cant control
 - ▼ risk
 - ▼ combo of vulns and threats
 - Threat likelihood * Vuln Impact

▼ 2. Threat Modeling

- ▼ Threat Categories
 - ▼ Adversarial
 - deliberate undermining of orgs security
 - ▼ Accidental
 - mistakes, especially during routine work
 - ▼ Structural
 - something fails because of resource exhaustion, capacity, age, etc.
 - ▼ Environmental
 - natural or man-made disasters
- ▼ Threat actors
 - disgruntled employees
 - corp spies
 - thieves, vandals, etc.
 - ▼ Cyber
 - script-kiddie

- hacking groups
 - hactivists
 - black hat pros
- organized criminals
- nation states
- ▼ Threat models
 - ▼ define your scenario
 - what are your business reqs
 - ▼ what are your assets
 - what do you care about
 - what might attackers value
 - ▼ list out as many threats as you can
 - how does each threat target an asset
 - how does each threat attack CIA or AA
 - ▼ narrow your list of threats
 - what are you afraid of
 - categorize and prioritize threats
 - ▼ vulnerability-first
 - enumerate vulns, possible with scanners
 - create a threat model based on relevant threats
 - ▼ tool-based
 - ▼ Microsoft threat modeling tool
 - Define > diagram > identify > mitigate > validate
 - create data flow diagram, tool suggests common threats
- ▼ Summary
 - ▼ we use categories to label threats
 - categorizing threats will help with assessing severity and likelihood
 - ▼ threat models help define what's in scope
 - you'll defend against what's in the threat model

3. Asset Mgmt

- ▼ Identify 1
 - ▼ who/what are you protecting?
 - why are you protecting that?
 - what threats are you afraid of?
 - what vulns do your systems have?
 - what are your risks?
 - who needs to know these answers?
 - ▼ who do you need to inform?
 - why?
- ▼ Identify 2
 - people
 - ▼ asset inventory
 - ▼ network maps
 - dependencies
 - vulns
 - ▼ threats
 - risk
- ▼ Mgmt
 - ▼ track assets and associate identifiers from all sources
 - many vendors and solutions
 - link identifiers across different layers and different sources
 - given some info (hostname, IP, etc.) can we find all associated devices?
 - ▼ time is a key aspect for many fields
 - computer may be wiped and re-issued
 - DHCP leases may change on renewal
 - record any changes with timestamps
- ▼ Identifiers
 - ▼ asset unique ID
 - we create this
 - ▼ device/hardware info

- asset tags
- ▼ people and authorized users
 - who was this device issued to? connect to org chart
- ▼ physical location
 - which dept or office was this device issued to?
- ▼ OS and installed software
 - what is running on this machine?
 - what software licenses are active?
- network identifiers
 - ▼ MAC address
 - ▼ hostname
 - security log status
 - ▼ IP address
 - certificates (user and device)
 - ▼ authenticated users
 - backup or patch status
- ▼ Recon
 - ▼ active
 - ▼ activity that can be seen or logged
 - port scanners: nmap, angry, IP, other tools
 - ▼ external vs internal
 - vulnerability scanners
 - ▼ passive
 - ▼ packet analysis
 - netflow
 - ▼ log analysis
 - routers, switches, DHCP, DNS, firewalls
 - ▼ config files
 - network devices
 - ▼ host config

- apps (installed/running)
- ▼ domains, IP blocks, certificates
 - org data

▼ 4. Vulnerability Mgmt

- ▼ Servers & Apps
 - missing patches
 - outdated, unsupported systems or apps
 - ▼ buffer overflows
 - ▼ priv esc
 - arbitrary code exec
 - ▼ insecure protocols
 - ▼ debug info
 - injection
- Networks
 - ▼ firmware updates
 - ▼ outdated ciphers (SSL/TLS)
 - dont use TLS.12
 - ▼ cert issues
 - mismatched names, expiration, unknown CA
 - ▼ DNS
 - zone transfers, open resolvers, amplification
 - NAT IP exposure
 - VPN, SSH, RDP
- ▼ VMs
 - ▼ VM sandbox escape
 - patches
 - mgmt interfaces
 - virtual guests, virtual networks
- ▼ IoT and other
 - firmware never gets udpates
 Presented with XMind

- hardcoded passwords
- smart power gris
- microphones and cameras
- ▼ indicators of home presence
 - smart locks/bulbs/alarms
- ▼ Scanning
 - ▼ scanners
 - nessus, nikto, openVAS, WpScan, etc.
 - vulnerability reports
 - credentials and agents
 - CVSS score
- ▼ Why?
 - ▼ regulations
 - PCI DSS, FISMA, HIPAA
 - ▼ business impacts
 - CIA: limited, serious, severe/catastrophic
 - ▼ security and privacy
 - GDPR
 - internal & external policies
- ▼ How?
 - detection > testing > remediation
 - ▼ prioritization
 - criticality, difficulty, severity, exposure
 - ▼ documentation
 - exceptions, false positives, processes
 - SLO's and SLA's

▼ 5. Firewalls

- ▼ Prevent Recon
 - ▼ limit services/attack surface
 - block ping

- ▼ IDS/IPS
 - snort, bro
- ▼ harden DNS servers
 - dont allow zone transfers to just anyone
- whois privacy services
- social media policies
- ▼ Firewalls
 - ▼ device or software designed to filter network traffic
 - allow, block, other
 - ▼ packet filtering
 - stateful inspection
 - ▼ app specific firewalls
 - NGFW
- ▼ Placement
 - ▼ on your host
 - between your apps and the network
 - ▼ at network segment boundaries
 - between 1 network segment (LAN) and another (DMZ)
 - ▼ on your home router
 - between your LAN and the internet (WAN)
- ▼ Host based
 - ▼ Windows
 - defender
 - group policy
 - ▼ Mac
 - security preferences
 - Lulu
 - ▼ Linux
 - iptables
 - ufw

→ 6. IDS/IPS

- ▼ IDS/IPS almost interchangeable
 - ▼ actions
 - allow, deny, alert
 - network vs host based
 - ▼ deeper packet inspection
 - trade-offs with resource usage
 - ▼ Detections
 - signatures
 - anomalies
 - IPS= active, can preventIDS = passive, only detect & alert
- ▼ Snort
 - NIDS
 - ▼ inspects packets over a network and make decisions; signature based
 - alert
 - ▼ rule vs heuristics
 - threshold can still be rule-based
 - ▼ rules
 - ▼ rule header
 - Action, 5-Tuple, (direction)
 - ▼ always start with the 5-Tuple
 - src IP, src port, dest IP, dest port, protocol
 - the direction will generally be src -> dest
 - may be "any"
 - ▼ rule options
 - option keyword, protocol arguments, ...
 - SID = unique identifier, user large numbers (>1,000,000)
 - msg = human-readable msg
 - others: flags, thresholds, packet bytes, etc

- ▼ Example rule
 - ▼ Alert when the word "hacked" appears in the contents of a packet"
 - sudo vi ~/snort/example.rule # make a new rule file
 - i # enter insert mode

alert tcp 192.168.56.100 any -> 192.168.56.200 any (msg:"'hacked' detected!!!"; content:'hacked'; sid: 1000001)

:wq # save and close

▼ 7. Defense in Depth

- ▼ Security layers
 - ▼ Data
 - ▼ App
 - ▼ Endpoint/System
 - ▼ Network
 - Perimeter
 - ▼ physical
 - gates, manned roadblocks, lobby reception, badging, guards, biometrics
 - ▼ network
 - firewalls, segmentation, DMZ, jump boxes, NIDS/NIPS, web proxy, VPN,
 NAC, logging
 - ▼ host
 - firewalls, HIDS/HIPS, TPM, passwords, MFA, logging
 - ▼ software
 - secure code, code reviews, security assessments, SAST, DAST
- ▼ controls
 - ▼ types
 - administrative
 - physical
 - technical
 - ▼ internal types

- preventative
- detective
- corrective
- Assess
 - ▼ single points of failure
 - cascading failures
 - ▼ views of architectures
 - operational
 - technical
 - logical
 - Human elements

▼ 8. Logs

- ▼ Detection stories
 - ▼ start with an alert, or single IOC
 - create hypothesis about what could explain it
 - gather additional context and evidence
 - ▼ revise hypothesis
 - document everything
 - write conclusions and cite supporting evidence
 - Hypotheses > evidence > revise > conclusions
- ▼ what are they?
 - ▼ an official record of events
 - contain semi structured data about what happened
 - ▼ timestamp & message
 - actors, actions, errors
 - ▼ types
 - network, host, app, physical
- ▼ why collect them?
 - ▼ CIA, AAA
 - tracking who, when, and what resource Presented with XMind

- ▼ nonrepudiation
 - actors cannot refute actions taken
- ▼ laws
 - ▼ data retention laws and policies
 - presidential records
- historical records we may get new info
- ▼ how to read them?
 - ▼ determine what sort of system created these logs
 - network, host, app, physical, access, etc
 - narrow this down as much as possible use context clues
 - ▼ map out the structure
 - timestamp, message, delimeters, fields
 - is each line separate, or are groups of lines for a single log message
 - ▼ identify additional related info
 - network models, OS, types of apps
 - ▼ parse content
 - what is the story that the logs are telling?
 - make sure TIMESTAMPS are config'd properly
- ▼ IOCs
 - ▼ evidence left behind by attacks
 - ▼ logs
 - requests made, errors, actions taken
 - ▼ artifacts
 - user accounts, services, machines
 - ▼ metrics
 - service degradation, strange activity upticks, failure rates
 - MITRE ATT&CK industry standard language
- ▼ detecting attacks
 - ▼ how do we know we've been breached?
 - alerts, anomaly detection, reports, service issues

- ▼ get report > investigate issue
 - hypotheses > evidence'
 - conclusion with reasoning and supporting evidence
- ▼ network detection
 - ▼ routers
 - Netflow, RMON, SNMP
 - ▼ scanners
 - ping, iPerf, network mapping
 - ▼ network taps
 - pcap, other analyses
 - ▼ firewalls
 - dropped vs allowed packets
 - issues and attacks
- ▼ host detection
 - ▼ host device/machine
 - system resources, software/apps, access/privilege
 - ▼ monitoring tools
 - Win perfmon, resmon, sysinternalsLin ps, top, df, w
 - ▼ where are alerts coming from?
 - SCCM central logging tools
 AC, authentication/access logs
- ▼ app detection
 - service status, failures, actions
 - ▼ what type of errors to catch?
 - ▼ anomalous activity
 - new accounts AAA
 - ▼ unexpected output
 - unexpected outbound comms (networks)
 - ▼ service interruptions

- memory overflows
- ▼ Triage
 - ▼ example: network issues and attacks
 - scans/probes, DOS, rogue devices, link failures, beaconing
 - ▼ how do we triage and deal with these issues?
 - use tools, help identify and prioritize alerts
 - IPS block/drop traffic
 - 3p providers, sinkhole traffic from DOS
 - use network maps to identify what is working
 - think about CIA is it even a security issue?
- ▼ SIEM
 - ▼ Splunk
 - ▼ investigations that correlate logs from different sources
 - type of tool defenders use to correlate logs across time and other dimensions

▼ 9. File Systems

- ▼ what?
 - ▼ ways to store and organize info on a disk
 - has a structure and a filing system
- ▼ data categories
 - ▼ file system
 - general file system information a map
 - ▼ content
 - actual data that it stored data units
 - deletion will sometimes not actually delete the content, just the pointers to
 the content
 - ▼ metadata
 - ▼ data that describes data
 - localization, size, timestamps, etc
 - slack space: commonly used to hide information

- ▼ file name
 - human interface/names for files
- ▼ application
 - other, special features
- ▼ Forensics
 - handling evidence chain of custody
 - ▼ SIFT toolkit of forensic software
 - classes of toolswrite blocker, memory analyzer, etc.

▼ 10. Incident Response

- ▼ What is an incident?
 - ▼ event
 - any observable occurrence in a system or network
 - ▼ adverse event
 - any event that has negative consequences
 - ▼ security/privacy event
 - any event that relates to a security/privacy function (CIA, AAA, etc)
 - ▼ security/privacy incident
 - a violation of security/privacy policies or practices
- ▼ Phases
 - 1. prep > 2. detection & analysis <> 3. containment eradication & recovery >
 4. post-incident activity > (loop)
 - ▼ Prep
 - encompasses identify & protect
 - ▼ creating org policies
 - staff members & authority
 - partner teams (legal, PR, etc)
 - ▼ hardware, software, info required
 - forensics (hardware, bootable images, backup/cloning device)
 - logging/monitoring and alerting systems

- procedures and playbooks training
- continuous improvement
- ▼ baseline normal behaviors
 - understand expected behaviors
- ▼ establish logging policies
 - synchronize clocks
- ▼ maintain org knowledge base
 - asset inventories
- ▼ Detection & Analysis
 - ▼ encompasses Detect
 - validate event -> incident
 - ▼ where do we get detection indicators?
 - alerts, logs, public info, people
 - ▼ start finding context and stories
 - perform event correlation to combine sources SIEM
 - ▼ capture network traffic or other evidence
 - consider storage and bandwidth
 - filter info/noise
 - escalate seek assistance from internal/external resources
- ▼ Containment, Eradication, Recovery
 - encompasses respond & recover
 - escalated a detection into an incident
 - ▼ choose and implement a containment strategy
 - trafeoffs between CIA, acting too early vs acting too late
 - ▼ gather more (legal) evidence
 - know all of the things that happened
 - identify attackers
 - actos, systems, infra
 - ▼ eradicate indicent
 - recover normal business operations Presented with XMind

- evidence preservation
- ▼ consider SLA and other business proccess
 - this is what makes money
- ▼ costs and effectiveness of the strategy
 - time, money, degradations of the business process how much can you stop the attack?
- ▼ segmentation proactive
 - ▼ isolation
 - removal
- ▼ re-imaging is the only way to be certain about sanitizing
 - ▼ patch vulns
 - restore system from backups
- ▼ audit accounts and permissions
 - verify logging systems
- ▼ conduct vuln scanning
 - continuous, tack changes over time
- verify business processes
- ▼ Post-incident Activity
 - ▼ lessons learned review
 - ▼ reports and meetings
 - ▼ timeline of events
 - evidence retention
 - root cause, evidence details, actions taken in IR, impact of incident,
 validation efforts
 - ▼ blameless culture
 - ▼ dont attach shame to the errors
 - encourage learning and growing
 - ▼ engage humans to fix issues
 - accountability, empowerment
 - ▼ postmortems

- ▼ whenever there is impact above a certain threshold
 - larger security incidents (data loss, prolonged efforts, actions were taken)
- ▼ state facts, dont point fingers
 - gather learnings and share them for the future
- ▼ action items to change stuff that went wrong
 - focus on fixes on processes
- ▼ root cause
 - how did this incident start
- ▼ detections
 - how did we catch the incident
- ▼ action items
 - how can we improve defenses or processes