

Datenstrukturen und Algorithmen 26.4.18

Binäre Suchbäume

- UNIVERSITÄT BERN
- Gegeben seien die Schlüssel {2,4,9,13,17,21,24}. Zeichnen Sie binäre Suchbäume der Höhe 2,3,4,5 und 6. 1 Punkt
- > Beinahe alle richtig gelöst
- Wichtig: Auch wenn die Übung trivial ist, binäre Suchbaum-Eigenschaften müssen erhalten bleiben.
- > Root gehört nicht zur Höhe!

UNIVERSITÄT BERN

- 2. Was ist der Unterschied zwischen der binären Suchbaum-Eigenschaft und der Min-Heap Eigenschaft? Kann die Min-Heap Eigenschaft benutzt werden, um Schlüssel in einem Baum mit n Knoten in sortierter Reihenfolge in O(n) Zeit auszugeben? Gibt es einen vergleichenden Algorithmus, der für beliebige Schlüsselfolgen einen binären Suchbaum in O(n) aufbaut? Erklären Sie Ihre Antwort. 1 Punkt
- Binärer Suchbaum: Für jeden Knoten x gilt, linker Teilbaum ist kleiner gleich x.key. Analog für rechter Teilbaum grösser gleich x.key.
- Min Heap: Parent < Child</p>
- Min Heap sagt nichts über die Ordnung aus! Daher kann er nicht verwendet werden.
- Vergleichende Algorithmen optimal O(n log n)

3. Angenommen, die Suche nach einem Schlüssel k in einem binären Suchbaum endet in einem Blatt. Wir unterscheiden drei Mengen: A, die Schlüssel links vom Suchpfad, B die Schlüssel auf dem Suchpfad, und C, die Schlüssel rechts vom Suchpfad. Die Vermutung ist, dass für jeweils drei Schlüssel a ∈ A, b ∈ B und c ∈ C gilt, dass a ≤ b ≤ c. Widerlegen Sie diese Vermutung mit einem Gegenbeispiel, das einen möglichst kleinen Baum verwendet. 1 Punkt

$$A = 5, 2, 9$$

 $B = 12, 18, 15, 13$
 $C = 19, 17$
 $a \le b \le c \to 18 \le 17$ (!) Widerspruch

UNIVERSITÄT BERN

 Schreiben Sie Pseudocode für eine rekursive Version des Einfügens eines Knotens in einen nicht leeren binären Suchbaum. Beschreiben Sie ihren Algorithmus in 1-2 Sätzen.
 Punkt

```
binInsert(Node n, Object x)
    if(n.key < x.key) // Rechter Teilbaum</pre>
        if(n.rightChild = NIL)
            n.rightChild = x
            x.parent = n
        else
            binInsert(n.rightChild, x)
                // Linker Teilbaum
    else
        if(n.leftChild = NIL)
            n.leftChild = x
            x.parent = n
        else
            binInsert(n.leftChild, x)
```


- UNIVERSITÄT BERN
- Ein Knoten x in einem binären Suchbaum habe zwei Kinder. Zeigen Sie, dass der Nachfolger von x kein linkes Kind und der Vorgänger von x kein rechtes Kind hat.
 Punkt
- Nachfolger von x := Minimum des rechten Teilbaumes
- Minimum des rechten Teilbaumes = Linkestes Kind des rechten Teilbaumes
- > Widerspruch

UNIVERSITĂ BERN

- Zwei zyklische, doppelt verkettete Listen a und b
- > CONCATENATE(nil[a], nil[b]) y ← nil[b].next
 - $z \leftarrow nil[b].prev$
 - if $(y \neq nil[b])$
 - nil[a].prev.next ← y
 - y.prev ← nil[a].prev
 - z.next ← nil[a]
 - nil[a].prev ← z

Zwei zyklische, doppelt verkettete Listen a und b

ub

Repetition: Aufgabe 1

> Zwei zyklische, doppelt verkettete Listen a und b

Zwei zyklische, doppelt verkettete Listen a und b

> Zwei zyklische, doppelt verkettete Listen a und b

> Zwei zyklische, doppelt verkettete Listen a und b

UNIVERSITÄT BERN

Zwei zyklische, doppelt verkettete Listen a und b

UNIVERSITÄT


```
y \leftarrow nil[b].next
z \leftarrow nil[b].prev
if (y \neq nil[b])
nil[a].prev.next \leftarrow y
y.prev \leftarrow nil[a].prev
z.next \leftarrow nil[a]
nil[a].prev \leftarrow z
```

Repetition: Aufgabe 1


```
y ← nil[b].next
z ← nil[b].prev
if (y ≠ nil[b])
nil[a].prev.next ← y
y.prev ← nil[a].prev
z.next ← nil[a]
nil[a].prev ← z
```

Repetition: Aufgabe 1


```
y ← nil[b].next
z ← nil[b].prev
if (y ≠ nil[b])
nil[a].prev.next ← y
y.prev ← nil[a].prev
z.next ← nil[a]
nil[a].prev ← z
```

Repetition: Aufgabe 1

UNIVERSITĂT BERN

Repetition: Aufgabe 1

UNIVERSITÄT BERN

Repetition: Aufgabe 1

UNIVERSITÄT BERN


```
y ← nil[b].next
z ← nil[b].prev
if (y ≠ nil[b])
nil[a].prev.next ← y
y.prev ← nil[a].prev
z.next ← nil[a]
nil[a].prev ← z
```

u^{b}

UNIVERSITĂ: BERN

Repetition: Aufgabe 2

1.
$$T(\frac{n!}{n^n}) = \Theta(\frac{1}{n})$$

2.
$$T(2^{12^8}) = \Theta(1)$$

3.
$$T(\log(\log(4n))) = \Theta(\log(\log(n)))$$

4.
$$T(5n-2) = \Theta(n) = T(2^{\log_3(n)})$$

5.
$$T(3n^2 + 2n + 1) = \Theta(n^2)$$

6.
$$T(n^3 \log(n)) = \Theta(n^3 \log(n))$$

7.
$$T(\sqrt{n^7}) = \Theta(n^{3.5})$$

8.
$$T(2^n) = \Theta(2^n)$$

UNIVERSITÄT BERN

 $\theta(n)$

 Geben Sie die asymptotische Laufzeit in Abhängigkeit von n für folgenden Algorithmus in Theta-Notation an:

```
\begin{array}{lll} 1 & i \leftarrow 1 \\ 2 & j \leftarrow 1 \\ 3 & \textbf{while } i <= n \\ 4 & \textbf{do} \\ 5 & \textbf{while } j <= i+5 \\ 6 & \textbf{do} \\ 7 & j \leftarrow j+1 \\ 8 & i \leftarrow i+1 \end{array}
```

- > j keine Wertzuweisung mehr nach erster Iteration
- > daher Laufzeit $\theta(n)$:

Datenstrukturen & Algorithmen

Fragen?