- **1. Fonctions de martingales.** Soit $(X_n)_{n\in\mathbb{N}}$ une martingale, et $f:\mathbb{R}\to\mathbb{R}_+$ une fonction convexe positive. Montrer que $(f(X_n))_{n\in\mathbb{N}}$ est une sous-martingale. Montrer que c'est aussi le cas lorsque $(X_n)_{n\in\mathbb{N}}$ est une sous-martingale et f est convexe positive croissante.
- **2. Un problème d'urnes.** On considére une urne contenant initialement au temps n=1 une boule noire et une boule blanche. À chaque temps n, on prend au hasard une boule dans l'urne, et on la remplace par deux boules de même couleur. On note X_n la proportion de boules noires dans l'urne au temps n; ainsi, $X_1=\frac{1}{2}$. Montrer que $(X_n)_{n\in\mathbb{N}^*}$ est une martingale par rapport à la filtration qu'elle engendre, et qui converge p.s. et dans L^1 vers une variable $Z\in[0,1]$. Montrer que plus généralement, tous les moments de X_n convergent vers les moments de Z:

$$\forall k \geq 1, \lim_{n \to \infty} \mathbb{E}[(X_n)^k] = \mathbb{E}[Z^k].$$

On fixe $k \ge 1$ et on note

$$Y_{n,k} = \frac{N_n(N_n+1)\cdots(N_n+k-1)}{(n+1)(n+2)\cdots(n+k)},$$

où $N_n = (n+1)X_n$ est le nombre de cartes noires dans l'urne au temps n. Montrer que $(Y_{n,k})_{n \in \mathbb{N}}$ est une martingale, et en déduire la limite de $\mathbb{E}[(X_n)^k]$ pour tout k. Conclure quant à la loi de Z.

3. Intégrale stochastique discrète. Soit $(X_n)_{n\in\mathbb{N}}$ une sur-martingale, et $(P_n)_{n\in\mathbb{N}}$ un processus à valeurs positives, prévisible et dans $L^{\infty}(\Omega, \mathcal{B}, \mathbb{P})$. On rappelle que "prévisible" signifie que P_n est \mathcal{F}_{n-1} -mesurable. Montrer que

$$(P \cdot X)_n = \sum_{k=1}^n P_k(X_k - X_{k-1})$$

est une sur-martingale. Soit $S \leq T$ deux temps d'arrêt bornés p.s. par une constante K. En posant $P_n = \mathbb{1}_{S < n \leq T}$, montrer que $\mathbb{E}[X_S] \geq \mathbb{E}[X_T]$.

4. Une martingale sur [0,1]. Soit $(X_n)_{n\in\mathbb{N}}$ un processus à valeurs dans [0,1], $\mathcal{F}_n = \sigma(X_0,X_1,\ldots,X_n)$ la filtration engendré par ce processus. On suppose que $X_0 = a \in (0,1)$ est constante p.s., et pour tout $n \geq 1$,

$$\mathbb{P}\left[X_{n} = \frac{X_{n-1}}{2} \, \middle| \, \mathcal{F}_{n-1}\right] = 1 - X_{n-1} \qquad ; \qquad \mathbb{P}\left[X_{n} = \frac{1 + X_{n-1}}{2} \, \middle| \, \mathcal{F}_{n-1}\right] = X_{n-1}.$$

Montrer que $(X_n)_{n\in\mathbb{N}}$ est une martingale, et qu'elle converge p.s. et dans l'espace $L^2(\Omega, \mathcal{B}, \mathbb{P})$ vers une variable aléatoire Z à valeurs dans [0,1]. Montrer que $\mathbb{E}[(X_n - X_{n-1})^2] = \frac{1}{4} \mathbb{E}[X_{n-1}(1 - X_{n-1})]$, et en déduire la valeur de $\mathbb{E}[Z(1 - Z)]$. Conclure quant à la loi de Z.

5. Identité de Wald. Soit $(Y_n)_{n\in\mathbb{N}}$ une suite de variables i.i.d., intégrables, et $X_n = \sum_{k=1}^n Y_k$. Si $m = \mathbb{E}[Y_1]$, on rappelle que $(X_n - nm)_{n\in\mathbb{N}}$ est une martingale par rapport à la filtration qu'elle engendre. Soit T un temps d'arrêt intégrable. Montrer que pour tout n, $\mathbb{E}[S_{n\wedge T}] = m\mathbb{E}[n\wedge T]$. Si T est intégrable, montrer que S_T est intégrable et que

$$\mathbb{E}[S_T] = m \mathbb{E}[T].$$

- **6. Supremum d'une marche aléatoire.** Soit $(Y_n)_{n\in\mathbb{N}}$ une suite de variables i.i.d. à valeurs dans \mathbb{Z} , telles que $\mathbb{E}[Y_1] = m < 0$. On suppose aussi $\mathbb{P}[Y_1 > 1] = 0$ et $\mathbb{P}[Y_1 = 1] > 0$. On s'intéresse à la loi de $M = \sup_{n \in \mathbb{N}} X_n$, où $X_n = \sum_{k=1}^n Y_k$.
 - 1. Montrer que *M* est fini presque sûrement.
 - 2. On introduit la transformée log-Laplace $\Lambda(t) = \log \mathbb{E}[\mathrm{e}^{tY_1}]$. Montrer que Λ est bien définie sur \mathbb{R}_+ , convexe et avec $\Lambda(0) = 0$ et $\Lambda(+\infty) = +\infty$. Calculer $\Lambda'(0)$ et montrer qu'il existe un unique réel h > 0 tel que $\Lambda(h) = 0$.
 - 3. Soit μ la loi de Y, et $\widetilde{\mu}$ la mesure sur \mathbb{Z} donnée par $\widetilde{\mu}(k) = \mathrm{e}^{hk} \mu(k)$. Montrer que $\widetilde{\mu}$ est une nouvelle mesure de probabilité sur \mathbb{Z} . On notera $\widetilde{Y}_1, \widetilde{Y}_2, \ldots$ des variables aléatoires i.i.d. de loi $\widetilde{\mu}$; et $\widetilde{X}_n = \sum_{k=1}^n \widetilde{Y}_k$. Montrer que $(\mathrm{e}^{hX_n})_{n \in \mathbb{N}}$ et $(\mathrm{e}^{-h\widetilde{X}_n})_{n \in \mathbb{N}}$ sont des martingales par rapport aux filtrations qu'elles engendrent.
 - 4. Soit τ_k et $\widetilde{\tau}_k$ les temps aléatoires

$$\tau_k = \inf\{n \in \mathbb{N}, \ X_n \ge k\} \quad ; \quad \widetilde{\tau}_k = \inf\{n \in \mathbb{N}, \ \widetilde{X}_n \ge k\}.$$

Montrer qu'il s'agit en fait des temps d'atteinte de $k \geq 0$ par les marches aléatoires X_n et \widetilde{X}_n :

$$\tau_k = \inf\{n \in \mathbb{N}, X_n = k\}$$
 ; $\widetilde{\tau}_k = \inf\{n \in \mathbb{N}, \widetilde{X}_n = k\}.$

Montrer ensuite que pour tout k et tout n,

$$\mathbb{P}[\tau_k \le n] = \mathbb{E}\left[\mathbb{1}_{\widetilde{\tau}_k \le n} e^{-h\widetilde{X}_n}\right] = e^{-hk} \, \mathbb{P}[\widetilde{\tau}_k \le n].$$

En déduire la valeur de $\mathbb{P}[\tau_k < \infty]$.

5. Conclure quand à la loi de M.

1. Si $(X_n)_{n\in\mathbb{N}}$ est une martingale et f est convexe positive, alors les fonctions $f(X_n)$ sont positives, donc on peut considérer sans ambiguïté leurs espérances ou espérances conditionnelles. Par l'inégalité de Jensen, on a alors

$$\mathbb{E}[f(X_{n+1})|\mathcal{F}_n] \ge f(\mathbb{E}[X_{n+1}|\mathcal{F}_n]) = f(X_n).$$

Ainsi, $(f(X_n))_{n \in \mathbb{N}}$ est une sous-martingale. Dans le cas d'une fonction convexe positive croissante d'une sous-martingale, on a de même :

$$\mathbb{E}[f(X_{n+1})|\mathcal{F}_n] \ge f(\mathbb{E}[X_{n+1}|\mathcal{F}_n]) \ge f(X_n)$$

car $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \geq X_n$ et f est croissante.

2. Comme $X_n \in [0,1]$ pour tout n, toutes les variables manipulées seront intégrables, et si $(X_n)_{n \in \mathbb{N}^*}$ est une martingale, alors elle sera bornée dans tout espace L^k , donc convergera p.s. et dans tout espace L^k . Montrons que $(X_n)_{n \in \mathbb{N}^*}$ est bien une martingale. Si $X_{n-1} = \frac{m}{n}$, alors $X_n = \frac{m+1}{n+1}$ avec probabilité $\frac{m}{n}$, et $X_n = \frac{m}{n+1}$ avec probabilité $\frac{n-m}{n}$. Ainsi,

$$\mathbb{E}[X_n|\mathcal{F}_{n-1}] = \frac{(m+1)m + m(n-m)}{n(n+1)} = \frac{m(n+1)}{n(n+1)} = \frac{m}{n} = X_n.$$

D'après ce qui précède, on a convergence en moments de X_n vers une variable aléatoire Z.

Pour calculer les moments de la limite Z, on étudie les variables $Y_{n,k}$. Notons qu'il s'agit également de variables aléatoires dans [0,1], donc s'il s'agit de martingales, elles convergent toutes p.s. et en moments, car elles sont bornées dans L^{∞} . De nouveau, si $N_{n-1} = m$, alors

$$\mathbb{E}[Y_{n,k}|\mathcal{F}_{n-1}] = \frac{m}{n} \frac{(m+1)\cdots(m+k)}{(n+1)\cdots(n+k)} + \left(1 - \frac{m}{n}\right) \frac{m\cdots(m+k-1)}{(n+1)\cdots(n+k)}$$

$$= \frac{(m+1)\cdots(m+k-1)}{n(n+1)\cdots(n+k)} (m(m+k) + (n-m)m)$$

$$= \frac{m(m+1)\cdots(m+k-1)}{n(n+1)\cdots(n+k-1)} = Y_{n-1,k}.$$

On en déduit la convergence de chaque $Y_{n,k}$ vers un limite Z_k , qui n'est autre que Z^k , car $Y_{n,k} \simeq (X_n)^k$. Or, $\mathbb{E}[Y_{1,k}] = \frac{k!}{(k+1)!} = \frac{1}{k+1}$, donc

$$\lim_{n\to\infty} \mathbb{E}[(X_n)^k] = \mathbb{E}[Z^k] = \frac{1}{k+1}$$

pour tout $k \ge 1$. Il s'agit des moments d'une loi uniforme sur [0,1], donc $Z \sim \mathcal{U}([0,1])$.

3. Comme chaque P_n est borné (dans L^{∞}) par une constante K_n , chaque incrément $P_n(X_n - X_n - 1)$ est intégrable :

$$\mathbb{E}[|P_n(X_n-X_n-1)|] \leq K_n(\mathbb{E}[|X_n-X_n-1|]) < \infty.$$

On en déduit que le processus $((P \cdot X)_n)_{n \in \mathbb{N}}$ est intégrable. On calcule alors :

$$\mathbb{E}[(P \cdot X)_{n} | \mathcal{F}_{n-1}] = \mathbb{E}[(P \cdot X)_{n-1} | \mathcal{F}_{n-1}] + \mathbb{E}[P_{n}(X_{n} - X_{n-1}) | \mathcal{F}_{n-1}]$$

$$= (P \cdot X)_{n-1} + P_{n}(\mathbb{E}[X_{n} | \mathcal{F}_{n-1}] - X_{n-1})$$

$$\leq (P \cdot X)_{n-1}$$

car $P_n \ge 0$, et $\mathbb{E}[X_n | \mathcal{F}_{n-1}] - X_{n-1} \le 0$ par la propriété de sur-martingale. On obtient donc bien une sur-martingale.

Si $S \leq T$ sont des temps d'arrêt, alors $P_n = \mathbb{1}_{S < n \leq T} = \mathbb{1}_{S \leq n-1} - \mathbb{1}_{T \leq n-1}$ est bien prévisible, donc $(P \cdot X)_{n \in \mathbb{N}}$ est une sur-martingale. Évaluons alors $\mathbb{E}[(P \cdot X)_K] \leq 0$ pour K constante majorant T. Il s'agit aussi de

$$\mathbb{E}\left[\sum_{n=S+1}^{T}(X_n-X_{n-1})\right]=\mathbb{E}[X_T-X_S].$$

Ainsi, on a bien $\mathbb{E}[X_T] \leq \mathbb{E}[X_S]$.

4. Si $x \in [0,1]$, alors x/2 et (1+x)/2 sont tous les deux dans [0,1], donc toutes les variables aléatoires X_n prennent leurs valeurs dans [0,1], et sont intégrables. On calcule ensuite

$$\mathbb{E}[X_n|\mathcal{F}_{n-1}] = \frac{X_{n-1}}{2}(1 - X_{n-1}) + \frac{1 + X_{n-1}}{2}X_{n-1} = X_{n-1}.$$

On a donc bien une martingale, et comme elle est bornée dans $L^2(\Omega, \mathcal{B}, \mathbb{P})$, elle converge p.s. et dans L^2 vers une variable Z. Pour calculer $\mathbb{E}[(X_n - X_{n-1})^2]$, on procède par conditionnement :

$$\mathbb{E}[(X_n - X_{n-1})^2] = \mathbb{E}[\mathbb{E}[(X_n)^2 - 2X_{n-1}X_n + (X_{n-1})^2 | \mathcal{F}_{n-1}]]$$

$$= \mathbb{E}[\mathbb{E}[(X_n)^2 | \mathcal{F}_{n-1}] - (X_{n-1})^2]$$

$$= \mathbb{E}\left[(1 - X_{n-1})\frac{(X_{n-1})^2}{4} + X_{n-1}\frac{(1 + X_{n-1})^2}{4} - (X_{n-1})^2\right]$$

$$= \frac{1}{4}\mathbb{E}[X_{n-1}(1 - X_{n-1})].$$

Comme $(X_n)_{n\in\mathbb{N}}$ converge dans L^2 , le terme de gauche de la précédente égalité tend vers 0, donc il en va de même pour le terme de droite, qui tend vers $\frac{1}{4}\mathbb{E}[Z(1-Z)]$. On en déduit que $\mathbb{E}[Z(1-Z)]=0$ et que $Z\in\{0,1\}$ presque sûrement. La convergence L^2 impliquant la convergence dans L^1 , on a aussi $\mathbb{E}[Z]=\mathbb{E}[X_0]=a$, donc Z est une variable de Bernoulli de paramètre a.

5. Par le théorème d'arrêt, $(S_{n \wedge T} - m(n \wedge T))_{n \in \mathbb{N}}$, qui est la version arrêtée au temps T de $(S_n - mn)_{n \in \mathbb{N}}$, est de nouveau une martingale. En particulier, pour tout temps n,

$$\mathbb{E}[S_{n\wedge T}-m(n\wedge T)]=\mathbb{E}[S_{0\wedge T}-m(0\wedge T)]=0.$$

Supposons *T* intégrable. Alors, on peut écrire :

$$\mathbb{E}[|S_T|] = \sum_{n=0}^{\infty} \mathbb{E}[|S_n| \, \mathbb{1}_{T=n}] \le \sum_{n=0}^{\infty} \sum_{k=1}^{n} \mathbb{E}[|Y_k| \, \mathbb{1}_{T=n}]$$

$$\le \sum_{k=1}^{\infty} \mathbb{E}[|Y_k| \, \mathbb{1}_{T \ge k}].$$

Notons maintenant que $\mathbb{1}_{T \geq k} = 1 - \mathbb{1}_{T < k}$ est indépendant de Y_k , car \mathcal{F}_{k-1} -mesurable. Par conséquent, on peut réécrire la borne précédente sous la forme :

$$\mathbb{E}[|S_T|] \leq \sum_{k=1}^{\infty} \mathbb{E}[|Y_k|] \, \mathbb{E}[\mathbb{1}_{T \geq k}] = \mathbb{E}[|Y_1|] \left(\sum_{k=1}^{\infty} \mathbb{E}[\mathbb{1}_{T \geq k}] \right) = \mathbb{E}[|Y_1|] \, \mathbb{E}[T] < \infty.$$

La variable S_T est donc intégrable. De plus, en adaptant la preuve qui précède, on voit que les variables $S_{n \wedge T} - m(n \wedge T)$ sont dominées par $\sum_{k=1}^{T} |Y_k| + mT$, qui est intégrable :

$$|S_{n\wedge T} - m(n\wedge T)| \leq \sum_{k=1}^{n\wedge T} |Y_k| + |m|(n\wedge T) \leq \sum_{k=1}^{T} |Y_k| + |m|T$$

$$\mathbb{E}\left[\sum_{k=1}^{T} |Y_k| + mT\right] \leq (\mathbb{E}[|Y_1|] + m)\mathbb{E}[T] \leq 2\mathbb{E}[|Y_1|]\mathbb{E}[T] < \infty.$$

Par convergence dominée, on en déduit que $\mathbb{E}[S_T - mT] = 0$.

6. Comme $m = \mathbb{E}[Y_1] < 0$, par la loi des grands nombres, $X_n/n \to m$ p.s. et en particulier, $X_n \to -\infty$ presque sûrement. La suite $(X_n)_{n \in \mathbb{N}}$ admet donc une borne supérieure finie $M \in \mathbb{N}$. La transformée de log-Laplace est bien définie, car

$$\mathbb{E}[e^{tY_1}] \le \mathbb{P}[Y_1 = 1] e^t + (1 - \mathbb{P}[Y_1 = 1]) < \infty.$$

Par l'inégalité de Hölder,

$$\mathbb{E}[e^{psY_1 + (1-p)tY_1}] \le \mathbb{E}[e^{sY_1}]^p \, \mathbb{E}[e^{tY_1}]^{1-p}$$

pour 0 et <math>0 < s < t. En prenant les logarithmes, on en déduit que

$$\Lambda(ps + (1-p)t) \le p\Lambda(s) + (1-p)\Lambda(t),$$

c'est-à-dire que Λ est convexe. Comme $\Lambda(t) \geq \mathbb{P}[Y_1 = 1] \operatorname{e}^t$,

$$\lim_{t\to +\infty}\Lambda(t)=+\infty,$$

et d'autre part, $\Lambda(0) = \log \mathbb{E}[\mathrm{e}^0] = \log 1 = 0$. Comme $\Lambda'(0) = m < 0$, la courbe $t \to \Lambda(t)$ part donc de 0 en 0, est négative pendant un certain temps, puis repasse par 0 en un unique point h > 0, avant de tendre vers l'infini. Cette valeur h donne bien une nouvelle mesure de probabilité $\widetilde{\mu}$, car

$$\sum_{k\in\mathbb{Z}}\widetilde{\mu}(k) = \sum_{k\in\mathbb{Z}}\mu(k)\,\mathrm{e}^{hk} = \mathbb{E}[\mathrm{e}^{hY_1}] = \exp\Lambda(h) = \exp(0) = 1.$$

On montre que $(e^{hX_n})_{n\in\mathbb{N}}$ est une martingale :

$$\mathbb{E}[e^{hX_n}|\mathcal{F}_{n-1}] = \mathbb{E}[e^{hY_n}]e^{hX_{n-1}} = e^{hX_{n-1}} \exp \Lambda(h) = e^{hX_{n-1}}.$$

De même, $(e^{-h\widetilde{X}_n})_{n\in\mathbb{N}}$ est bien une martingale :

$$\mathbb{E}\!\left[e^{-h\widetilde{X}_n}|\widetilde{\mathcal{F}}_{n-1}\right] = \mathbb{E}[e^{-h\widetilde{Y}_n}]\,e^{-h\widetilde{X}_{n-1}}$$

et
$$\mathbb{E}[e^{-h\widetilde{Y}_n}] = \sum_{k \in \mathbb{Z}} \widetilde{\mu}(k) e^{-hk} = \sum_{k \in \mathbb{Z}} \mu(k) = 1.$$

Comme Y_1 et \widetilde{Y}_1 ne charge que 1 parmi les entiers positifs, les temps τ_k et $\widetilde{\tau}_k$ sont effectivement les temps d'atteinte de l'entier $k \geq 0$ (pour atteindre un niveau plus grand que k, il faut effectivement d'abord passer exactement par k). Notons maintenant que

$$\mathbb{P}[\tau_k \leq n] = \sum_{j_1, \dots, j_n} \mu^{\otimes n}(j_1, \dots, j_n) \, \mathbb{1}_{\sup_{m \leq n} (j_1 + \dots + j_m) \geq k} \\
= \sum_{j_1, \dots, j_n} \widetilde{\mu}^{\otimes n}(j_1, \dots, j_n) \, \mathbb{1}_{\sup_{m \leq n} (j_1 + \dots + j_m) \geq k} e^{-h(j_1 + \dots + j_n)} \\
= \mathbb{E} \left[\mathbb{1}_{\widetilde{\tau}_k \leq n} e^{-h\widetilde{X}_n} \right].$$

Ceci constitue la première partie de la suite d'égalités annoncée dans l'énoncé. Pour la seconde partie, on peut décomposer l'espérance en fonction de la valeur de $\tilde{\tau}_k$:

$$\mathbb{E}\left[\mathbb{1}_{\widetilde{\tau}_k \leq n} e^{-h\widetilde{X}_n}\right] = \sum_{m=0}^n \mathbb{E}\left[\mathbb{1}_{\widetilde{\tau}_k = m} e^{-h\widetilde{X}_n}\right] = e^{-hk} \sum_{m=0}^n \mathbb{E}\left[\mathbb{1}_{\widetilde{\tau}_k = m} e^{-h(\widetilde{Y}_{m+1} + \dots + \widetilde{Y}_n)}\right]$$

Notons alors que pour m fixé, la variable $\mathbb{1}_{\widetilde{\tau}_k=m}$ est $\widetilde{\mathcal{F}}_m$ -mesurable, tandis que $\widetilde{Y}_{m+1},\ldots,\widetilde{Y}_n$ sont indépendantes de cette tribu. On peut donc décomposer ce qui précède en

$$e^{-hk}\sum_{m=0}^n \mathbb{E}[\mathbb{1}_{\widetilde{\tau}_k=m}] \left(\mathbb{E}[e^{-h\widetilde{Y}_1}]\right)^{n-m} = e^{-hk}\sum_{m=0}^n \mathbb{E}[\mathbb{1}_{\widetilde{\tau}_k=m}] = e^{-hk}\mathbb{P}[\widetilde{\tau}_k \leq n].$$

En effet, $\mathbb{E}[\mathrm{e}^{-h\widetilde{Y}_1}] = \sum_{k \in \mathbb{Z}} \widetilde{\mu}(k) \, \mathrm{e}^{-hk} = \sum_{k \in \mathbb{Z}} \mu(k) = 1$. On remarque alors que $\mathbb{E}[\widetilde{Y}_1] = \sum_{k \in \mathbb{Z}} \mu(k) \, k \, \mathrm{e}^{hk} = \Lambda'(h) > 0$, car h est l'endroit où la transformée log-Laplace repasse au-dessus de 0. Donc, par la loi des grands nombres, \widetilde{X}_n tend vers l'infini p.s., donc $\widetilde{\tau}_k$ est fini presque sûrement. Il s'ensuit, par passage à la limite dans l'expression précédente, que

$$\mathbb{P}[\tau_k < \infty] = e^{-hk} \, \mathbb{P}[\widetilde{\tau}_k < \infty] = e^{hk}.$$

Comme $\mathbb{P}[\tau_k < \infty] = \mathbb{P}[M \ge k]$, on conclut que M suit une loi géométrique :

$$\mathbb{P}[M = k] = (1 - e^{-h})e^{-hk}.$$