

YWEAG

Bayesian data analysis with TensorFlow Probability

www.tweag.io

Your hosts

Simeon will give the presentation

- background in computational biology
- Data Scientist at Tweag since 2019

Dorran will happily answer questions

- previous positions in geophysics
- Data Scientist at Tweag since 2019

Tweag I/O

TODO

Tweag I/O is a software innovation lab and consultancy based in Paris with employees all around the world.

We specialize in

- software engineering, with a focus on functional programming
- DevOps, with a focus on reproducible software systems and builds
- data science

What you're in for

This tutorial consists of alternating blocks of

- theory / example slides
- practical examples on either external websites or Google Colab notebooks. Links are provided at https://github.com/tweag/tutorial-dsc-2020/ TODO: provide new repo link

Requirements:

- a Google account (for the practical exercises)
- elementary knowledge in probability theory and statistics

Reminder: Probabilities

Probability distributions can be...

discrete: Ber(k; b) =
$$b^{k}(1 - b)^{1-k}$$

continuous:
$$\mathcal{N}(\mathbf{x};\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2\sigma^2}(\mathbf{x}-\mu)^2)$$

Important concepts:

Conditional probability

$$p(A|B)$$
: probability that A is true, given B is true

Joint probability

$$p(A, B)$$
: probability that both A and B are true

Conditional joint probability

$$p(A, B|C)$$
: probability that both A and B are true, given C is true

Bayesian vs frequentist probabilities

Example: fair coin flip with (bias $b = \frac{1}{2}$)

Frequentist probability

```
p("head"|b):

# of heads
# total flips for \infty many fair coin flips
```

Bayesian probability

```
p("head"|b): measure of belief in the statement "flip results in head" given single fair coin flip
```

Prior beliefs

Assume: unknown bias b

Prior probability

Encodes prior belief in b before flipping the coin

What is known about b?

- ▶ *b* is a probability: $0 \le b \le 1$
- most coins are fair
- ightarrow choose prior distribution defined between 0 and 1, with maximum at and symmetric around $b=\frac{1}{2}$

Example:

$$b \sim \text{Beta}(\alpha = 2, \beta = 2)$$

Posterior belief

Now: flip coin one time, result: head

Posterior belief

p(b|head): updated prior belief after obtaining new data

Update rule

Bayes' theorem

$$p(A|B) = \frac{p(B|A) \times p(A)}{p(B)}$$

(easily derived from rules for conditional probabilities)

In data analysis:

$$\underbrace{p(x|D,I)}_{\text{posterior}} = \underbrace{p(D|x,I)}_{\text{likelihood}} \times \underbrace{p(x|I)}_{\text{prior}} / \underbrace{p(D|I)}_{\text{evidence}}$$

x: model parameter

D: data

1: prior information (often not made explicit)

Likelihood

p(D|x): probability of the data given fixed model parameters \rightarrow models data-generating process

In our case:

$$p(k|b) = \operatorname{Ber}(k;b) \propto b^{k}(1-b)^{k-1}$$

with

$$k = \begin{cases} 0: & \text{tail} \\ 1: & \text{head} \end{cases}$$

Evidence

$$p(D) = \int dx \, p(D|x)p(x)$$
:
normalization constant (long story...)

In our case:

$$\begin{split} \rho(\textbf{\textit{k}} = 1) &= \int_0^1 \mathrm{d}\textbf{\textit{b}} \; L(\textbf{\textit{k}} = 1|\textbf{\textit{b}}) \rho(\textbf{\textit{b}}) \\ &= \int_0^1 \mathrm{d}\textbf{\textit{b}} \; \operatorname{Ber}(\textbf{\textit{k}};\textbf{\textit{b}}) \times \operatorname{Beta}(\textbf{\textit{k}};\alpha = 2,\beta = 2)|_{\textbf{\textit{k}} = 1} \\ &= \int_0^1 \mathrm{d}\textbf{\textit{b}} \; \left. \textbf{\textit{b}}^\textbf{\textit{k}} (1-\textbf{\textit{b}})^{\textbf{\textit{k}} - 1} \frac{\textbf{\textit{b}} (1-\textbf{\textit{b}})}{\frac{\Gamma(2)\Gamma(2)}{\Gamma(4)}} \right|_{\textbf{\textit{k}} = 1} \\ &\vdots \\ &= \frac{1}{2} \end{split}$$

Evidence

$$p(D) = \int dx \, p(D|x)p(x)$$
:
normalization constant (long story...)

In our case:

$$\begin{split} p(k=1) &= \int_0^1 \mathrm{d}b \; L(k=1|b) p(b) \\ &= \int_0^1 \mathrm{d}b \; \left. \mathrm{Ber}(k;b) \right. \left. \left. \mathrm{Betack} \right. \alpha = 2, \beta = 2) \right|_{k=1} \\ &= \int_0^1 \mathrm{d}b \; \left. b^{(k)} \right. \left. \left. \left. \right. \right) \right. \left. \left. \frac{b(1-b)}{\frac{\Gamma(2)\Gamma(2)}{\Gamma(4)}} \right|_{k=1} \\ &\vdots \\ &= \frac{1}{2} \end{split}$$

Update rule

In our coin flip example:

prior:
$$\begin{aligned} \textit{p}(\textit{b}) &= \mathsf{Beta}(\textit{b}; \alpha = 2, \beta = 2) \\ &\propto \textit{b}(1-\textit{b}) \end{aligned}$$

likelihood:
$$p(D|b) = Ber(k = 1; b)$$

= b

0.04

posterior:
$$p(b|D) \propto p(D|b) \times p(b)/p(D)$$

= $\mathrm{Beta}(b; \alpha=3, \beta=2)$
 $\propto b^2(1-b)$

no slides for interactive stuff –

Real-world-ish application: regression

Step 1: postulate likelihood p(D|x) or: think about and look at the data

Standard distributions generate certain types of data:

Poisson distribution: counts per interval Exponential distribution: interarrival times

•

Often: measured data = idealized data + noise

We guess:

idealized data: $\hat{\mathbf{f}}(\mathbf{x}; \vec{\beta}) = \beta_0 + \beta_1 \mathbf{x} + \beta_2 \mathbf{x}^2 + \beta_3 \mathbf{x}^3$

noise: normally distributed

Real-world-ish application: regression

Step 2: find sensible prior distributions

Incorporate all available information:

- ▶ noise σ is positive quantity \rightarrow choose $p(\sigma)$ with positive support
- eyeballing the data
- common sense
- **...**

Warning: avoid introducing strong bias! Principled methods are available to find good prior distributions.

In our case:

$$\sigma$$
: for example, $\sigma \sim \mathsf{Lognormal}(\mu = 2, \sigma = \frac{1}{2})$

 $\vec{\beta}$: broad, rather uninformative normal distributions, e.g., $\mathcal{N}(0,5)$

Real-world-ish application: regression

Step 3: specfiy model in probabilistic programming library

- programmatic formulation of statistical model
- powerful inference algorithms
- "debugging" functionality

Popular and easy-to-use choices are PyMC3, Stan, or TensorFlow Probability.

Step 4: perform inference with appropriate algorithm

Most popular and powerful class: Markov chain Monte Carlo

Continuous parameters: Hamiltonian Monte Carlo (HMC) very efficient

Discrete parameters: e.g., Metropolis-Hastings

Combination of both: Gibbs sampling

Another popular option: variational inference (VI)

Real-world issues

In reality, probability distributions often

- of non-standard form
- are multidimensional
- ► have highly correlated random variables
- are known only up to a normalization constant

Consequences:

- analytical evaluation of expectation values is impossible
- naïve sampling approaches are inefficient (curse of dimensionality)

Approximation workhorse: Metropolis-Hastings

Markov chain

Random process with

$$p(x_{i+1}|x_i,x_{i-1},\ldots,x_1)=p(x_{i+1}|x_i)$$

ightarrow a Markov chain has no "memory"

In some conditions: converges to a unique invariant distribution $\pi(x)$

Metropolis-Hastings algorithm

Construct Markov chain with invariant distribution $\pi(x) = p(x)$:

- 1. starting at state, x_i , propose a new state x_i^* from $q(x_i^*|x_i)$
- 2. calculate acceptance probability p_{acc}
- 3. draw $u \sim \mathcal{U}(0,1)$
- 4. if $u < p_{acc}$: $x_{i+1} = x_i^*$, else $x_{i+1} = x_i$

Initialize with any state x_0

Sequence of states: (x_0)

Initial state: x_0

1. calculate a proposal state x_0^* by randomly perturbing x_0

Initial state: x₀

- 1. calculate a proposal state x_0^* by randomly perturbing x_0
- 2. calculate acceptance probability

$$p_{\mathsf{acc}} = \mathsf{min}\left(1, \frac{p(x_0^*)}{p(x_0)}\right)$$

Initial state: x_0

- 1. calculate a proposal state x_0^* by randomly perturbing x_0
- 2. calculate acceptance probability

$$p_{\mathsf{acc}} = \mathsf{min}\left(1, rac{p(\mathbf{x}_0^*)}{p(\mathbf{x}_0)}
ight)$$

3. with probability p_{acc} , accept proposal state x_0^* as the next state x_1 , else copy x_0

Sequence of states:

$$(x_0, x_1)$$

Current state: x₁

1. calculate a proposal state x_1^* by randomly perturbing x_1

Current state: x₁

- 1. calculate a proposal state x_1^* by randomly perturbing x_1
- 2. calculate acceptance probability

$$p_{\mathsf{acc}} = \mathsf{min}\left(1, rac{oldsymbol{p}(oldsymbol{x}_1^*)}{oldsymbol{p}(oldsymbol{x}_1)}
ight)$$

Current state: x₁

- 1. calculate a proposal state x_1^* by randomly perturbing x_1
- 2. calculate acceptance probability

$$p_{\mathsf{acc}} = \mathsf{min}\left(1, \frac{p(x_1^*)}{p(x_1)}\right)$$

3. with probability p_{acc} , accept proposal state x_1^* as the next state x_2 , else copy x_1

Sequence of states:

$$(x_0, x_1, x_2)$$

Current state: x₁

- 1. calculate a proposal state x_1^* by randomly perturbing x_1
- 2. calculate acceptance probability

$$p_{\mathsf{acc}} = \mathsf{min}\left(1, \frac{p(\mathsf{x}_1^*)}{p(\mathsf{x}_1)}\right)$$

3. with probability p_{acc} , accept proposal state x_1^* as the next state x_2 , else copy x_1

Sequence of states:

$$(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$$

