New interactive sheet

import pandas as pd

Read the data into a pandas dataframe
data = pd.read_csv("/content/insurance.csv")

Display the first few rows to check the data
data.head()

_		age	sex	bmi	children	smoker	region	charges	
	0	19	female	27.900	0	yes	southwest	16884.92400	ılı
	1	18	male	33.770	1	no	southeast	1725.55230	
	2	28	male	33.000	3	no	southeast	4449.46200	
	3	33	male	22.705	0	no	northwest	21984.47061	
	4	32	male	28.880	0	no	northwest	3866.85520	

View recommended plots

Check the summary of the dataframe

data.info()

Next steps: (Generate code with data)

Get descriptive statistics for numerical columns
data.describe()

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
Column Non-Null Count Dtype

-------------0 1338 non-null int64 age 1338 non-null object sex 2 1338 non-null float64 bmi children 1338 non-null int64 3 smoker 1338 non-null region 1338 non-null object charges 1338 non-null float64 dtypes: float64(2), int64(2), object(3) memory usage: 73.3+ KB

	age	bmi	children	charges	
count	1338.000000	1338.000000	1338.000000	1338.000000	11.
mean	39.207025	30.663397	1.094918	13270.422265	
std	14.049960	6.098187	1.205493	12110.011237	
min	18.000000	15.960000	0.000000	1121.873900	
25%	27.000000	26.296250	0.000000	4740.287150	
50%	39.000000	30.400000	1.000000	9382.033000	
75%	51.000000	34.693750	2.000000	16639.912515	
max	64.000000	53.130000	5.000000	63770.428010	

import matplotlib.pyplot as plt

Plot histograms for all numerical features
data.hist(bins=20, figsize=(15, 10))
plt.tight_layout()
plt.show()


```
import seaborn as sns
# Boxplot to detect outliers for numerical features
sns.boxplot(data=data[['age', 'bmi', 'children', 'charges']])
plt.show()
<del>_</del>
                                                                         88
      60000
      50000
       40000
      30000
      20000
      10000
            0
                                                     children
                                      bmi
                                                                      charges
                     age
import pandas as pd
from scipy import stats
import numpy as np # Import numpy library
# Z-score method to identify outliers
z_scores = stats.zscore(data[['age', 'bmi', 'children', 'charges']])
abs_zscores = np.abs(z_scores) # Now np is defined and can be used
outliers = (abs_z_scores > 3).all(axis=1)
outliers_data = data[outliers]
# Display rows with outliers
outliers_data
\overline{\Sigma}
        age sex bmi children smoker region charges
                                                             \blacksquare
                                                              1
# Check for missing values
missing_values = data.isnull().sum()
# Display missing values count per column
print(missing_values)
<del>_</del>_
     age
                  0
                  0
     sex
     bmi
                  0
     children
                  0
     smoker
     region
                  0
     charges
                  0
     dtype: int64
```

Start coding or generate with AI.