	1.47
1.)	MATHIAI Linear Apolysis 11NA 13 $ A-\lambda I = \lceil 1-\lambda 0 (1-\lambda)(4-\lambda)(2-\lambda)$
	$ O A-X O = (A-X-AX+X^2)(Z-X)$
	[12 2 2-1]=8-10x+2x2-1x+5x2/3-98
	-127
	$= -\lambda^{3} + 7\lambda^{2} - 2\lambda - 40 - 6(-\lambda - 2)(\lambda^{2} - 9\lambda + 20)$
	$= (-\lambda - 2) (\lambda - 4) (\lambda - 5) = [\lambda = -2, 4, 5]$
	$\lambda = -2 \int 3 \circ 1$
	$0 \ 0 \ R_3 - 4P_1 = P_3$
	12 2 4
	[3 0 1 7 [3 0 1] 0 7
	0 6 0 R3-1/3R2=R3 0 6 0 0
	0 20 0 0 0 0
	$\int 3x_1 + x_3 = 0$ $x_1 = -\frac{1}{3}x_3$
	$6 \% 2 = 0 \qquad \% 2 = 0$
0	$\chi_3 = \chi_3$
	eigenvector = $-\frac{1}{3}\pi = \frac{-\frac{1}{3}}{3}$
	[73]
	$\lambda = 4 $
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{cases} -3\chi_1 + \chi_3 = 0 & \chi_1 = \frac{1}{3}\chi_3 \\ 2\chi_1 + 2\chi_2 = 0 & \chi_3 = -\chi_3 \end{cases}$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	eigen Vector = $\begin{bmatrix} 1/3 \times 3 \end{bmatrix}$ $\begin{bmatrix} 1/3 \end{bmatrix}$
	eigen Vector = $\begin{vmatrix} 1/3 \times 3 \\ -2/3 \end{vmatrix}$ $= \begin{vmatrix} 1/3 \times 3 \\ -1 \end{vmatrix}$
	7.3
	$\lambda = 5 \begin{bmatrix} -4 & 0 & 1 \end{bmatrix}$
	0 -1 0 R3 +3R1 = R3
40	[12 2 -3]>
	[-40] R3+2R2 = P3 -40] 0
-	0-10-0
	020] [000]0]

4.) a.) False, [1 0 0] det=1-0-0

0 1 0 det=1

0 0 1) inverse exists b) True, Since The only eigenvalue is 1. there Can be a possibility that there are repeating eigen values as seen in the example above.

(.) True, since you need at wast IR, P# of eigen values, and we arry S) a.) linearly independent

b.) hull (A) = (A-OI) = Span & U &

(Ol (A) = Span & V, W & ron zero eigen $\frac{\text{value.}}{\text{C.) } Ax = V + \vec{\omega} = (\frac{1}{3}\vec{V} + \frac{1}{5}\vec{\omega}) A$ One soln = A (\(\frac{1}{3} \tau + \frac{1}{5} \tilde{\omega} \)

(Jeneral = \(\frac{1}{3} \tau \tilde{\omega} \)

d.) AZ= ū does not have a Soln becaus ū & Spon d V, w } = ∀ Col & V, w } e.) Not invertable because There Proof invertable because There exist an eigen value = 0

Anx Au = 2u & Av = 5v u & $\sqrt{7}$ $\neq 0$ O $\chi u + yv = 0$ $\chi = a$ h = y(au + hv = 0) A

a Au + hv = 02 au + hv = 0(a + hv = 02 au + hv = 0(a + hv = 02 au + hv = 0(a + hv = 0(b + hv = 0(a + hv = 0(b + hv = 0(a + hv = 0(b + hv = 0(b + hv = 0(c + 6.) Anxn

Since we know that to then

(atb) = 0 in order for the equation

to be true so The only value

where this can be true iadb=0 (b)a.) by making $\lambda = 0$ we get ever $\lambda_n = a$ positive integer which is

equal to doing $\lambda = \lambda$, you are just

left with The positive integer and

we get the det(A) if A is an

upper triangular form = to The product δ the light value.