- Lecture 2
 - Linear Regression Models
 - Cat Hearts example:
 - Experience \$E\$
 - Learning Task, \$T\$
 - Linear Regression Model
 - Performance Measure, \$P\$
 - Unconstrained Optimisation (Minimisation)
 - Differentiation Rules
 - Approach 1: Ordinary least squares
 - Approach 2: Gradient descent
 - Attempt 1 (failed)
 - Attempt 2: Gradient Descent (1D)

Lecture 2

Linear Regression Models

Cat Hearts example:

Experience \$E\$

- The dataset consists of \$n\$ data points
 - \$((x_1,y_1),...,(x_n,y_n)\in \R^d\times \R)\$
 - \$x_i \in \R^d\$ is the "input" for the \$i^{th}\$ data point as a feature vector with \$d\$ elements, \$d\$ being the # of dimensions in the feature space, in this case 1.
 - \$y_i \in \R\$ is the "output" for the \$i^{th}\$ data point, in this case the weight of the corresponding cat heart.

Learning Task, \$T\$

• In this example, our task is: Linear Regression

- Find a "model", i.e. a function:
 - \$f: \R^d \rightarrow \R\$
- s.t. our future observations produce output "close to" the true output.

Linear Regression Model

- A linear regression model has the form:
 - $f(x) = (\sum_{i=1}^{d} w_i \cdot d_x_i) + b$
 - where:
 - \$x \in \R^d\$ is the input vector (feature)
 - \$w \in \R^d\$ is the weight vector (parameters)
 - \$b \in \R\$ is a bias (parameter)
 - \$f(x) \in \R\$ is the predicted output
- In our cat example we have:
 - \$d=1\$ as "body weight" is our only feature
 - \$b=0\$ as from intuition we expect a cat of 0 weight to have a heart of 0 weight.
 - Our model has one parameter: \$w\$

Performance Measure, \$P\$

• Want a function, \$J(w)\$ which quantifies the error in the predictions for a given parameter \$w\$

- The following empirical loss function, \$J\$ takes into account the errors \$\forall n\$ data points.
 - $J(w) = (1/2N)\sum_{i=1}^N(y_i-wx_i)^2$
 - where the summation term is squared so that:
 - we ignore the sign
 - we penalise large errors more
- To find the optimum weight, solve:
 - $\frac{d}{delta J}{\det w} = 0$

Unconstrained Optimisation (Minimisation)

Given a continuous function:

- \$f: \R^d \rightarrow \R\$, as our loss function
- an element \$x \in \R^d\$ is called:
 - A global minimum of \$f\$ iff:
 - \$\forall y \in \R^d, f(x) \leq f(y) \$
 - A local minimum of \$f\$ iff:
 - $\ensuremath{\$}$ \exists \epsilon > 0, \forall y \in \R^d\$ if \$\forall i \in {1,...,d} , | x_i y_i | < \epsilon \implies f(x) \leq f(y)\$

Theorem: For any continous function, $f: \R \cdot R$, if x is a local optimum, f'(x) = 0

Definition: The $1^{st}\$ derivative of a function $f: \R \rightarrow \R$ is $f'(x) = \lim_{\Delta x \rightarrow \R}$

Differentiation Rules

- 1. (cf(x))' = cf'(x)
- 2. $(x^k)'$ = kx^{k-1} , if $k \neq 0$
- 3. f(x)+g(x)' = f'(x) + g'(x)
- 4. (f(g(x))' = f'(g(x))g'(x)) \$\leftarrow\$ chain rule

Approach 1: Ordinary least squares

- Optimise \$J\$ by solving \$J'(w) = 0\$
 - \$J(w) = \frac{1}{2N}\sum_{i=1}^N(y_i wx_i)^2\$
 - $J'(w) = \frac{1}{N}\sum_{i=1}^{N}(wx_i y_i)x_i$
 - \circ \$J'(w) = 0\$
 - $\frac{1}{N}\sum_{i=1}^{N}(wx_i y_i)x_i = 0$
 - $w\sum_{i=1}^{N}(x_i)^2 = \sum_{i=1}^{N}x_{iy_i}$
 - \$w = \frac{\sum_{i=1}^{N}x_iy_i}{\sum_{i=1}^{N}x_i^2}\$
 - This only has one solution \$\therefore\$ a global minimum.

Approach 2: Gradient descent

• Often difficult / impossible to solve \$J'(w) = 0\$ for non-linear models with many parameters

Idea:

- · Start with an initial guess
- While \$J'(w) \neq 0\$:
 - move slightly in the right direction
- To make this viable we need to define:

- "what is the right direction?"
- "what is slightly?"

Attempt 1 (failed)

• where \$\epsilon\$ is the learning rate set manually. (hyper-parameter)

Issue with this attempt:

- w may oscillate in the interval \$[w_{opt} \epsilon, w_{opt}+ \epsilon]\$
- · w fails to converge

Attempt 2: Gradient Descent (1D)