

HybridSVD

When Collaborative Information is Not Enough

Evgeny Frolov, Ivan Oseledets

State of the Art: revisited

Proper tuning of baseline models vs. modern SOTA shows surprising results.

- DL vs. MF in standard CF task, J. Basilico talk at ICML 2019
- In session-based recommendations [Ludewig/Jannach 2018]
- On the difficulty of evaluating baselines [Rendle/Zhang/Koren 2019]
- In other disciplines, e.g., NLP [Levy/Goldberg/Dagan 2015]

Are we really making much progress? [Dacrema/Cremonesi/Jannach 2019]

Best paper award

+ "hot" discussion in twitter.

Part of the reason – tuning can be hard and cumbersome.

Tuning is an Art

Grid search is a non-trivial problem.

Many techniques exist, e.g., Bayesian estimators, TPE, spectral approach. Complexity grows exponentially with the number of hyper-parameters.

Example: tuning the number of latent features (rank) in MF. Have to consider:

- wide range of values,
- varying training time,
- interdependencies with other hyper-parameters, like regularization, number of iterations, etc.

Can we reduce tuning hassles at least for the baselines?

Quick recap on SVD

on-the-fly predictions (encoder-decoder like):

$$p=VV^{\top}a$$
 predicted item scores (any) user preferences valid for both existing and new users (folding-in)

PureSVD model, [Cremonesi/Koren/Turrin 2010], unknowns are replaced with zeros in A:

$$||A - U\Sigma V^{\top}||_{\mathrm{F}}^2 \to \min$$

Advantages:

- ✓ simple tuning via rank truncation (train once!)
- ✓ minimal storage requirements
- ✓ supports online and session-based predictions
- ✓ stable, deterministic output
- ✓ highly optimized implementations
- ✓ scales to ~billion-size problems, e.g., https://github.com/criteo/Spark-RSVD.

PureSVD vs. Weighted Matrix Factorization

Recommendations' quality of the most popular collaborative filtering techniques on

Image from: [Cremonesi/Koren/Turrin 2010].

Remarks:

- we are solving a surrogate problem (not a ranking problem)
- not (strictly) a matrix completion
- yet good enough for top-n recommendations

Interesting fact: the 3rd most cited work (via Scopus) in ACM RecSys conference proceedings!

Improving SVD further

Input data balancing exists in other MF approaches.

- ALS-based: Weighted Regularized Matrix Factorization (e.g., iALS [Hu/Koren/Volinsky 2008]);
- SGD-based: implicitly via negative sampling + custom objectives.

Simple data-debiasing trick for PureSVD:

from EigenRec model, [Nikolakopoulos et al. 2019]

$$A \leftarrow AD^{d-1}, \quad D = \text{diag}\{\|a_1\|, \dots, \|a_N\|\}$$

- \uparrow d emphasizes the significance of popular items;
- $\downarrow d$ improves sensitivity to rare/niche items;
- often increases diversity along with accuracy;
- optimal values of d typically lay in (0, 1) interval.

Experiment on Movielens-10M data, more details at: http://eigentheories.com/blog/to-svd-or-not-to-svd/

"Hybridization" of PureSVD

"Similarity" of users i and j depends on co-occurrence of items in their preferences.

$$G = AA^\top = U\Sigma^2U^\top \quad \leftrightarrow \quad g_{ij} = a_i^\top a_j$$

Key idea: replace scalar products with a bilinear form.

$$sim(i,j) \sim a_i^{\top} S a_j$$

Creates "virtual" links based on side features.

Similarity matrix S

1			
	1	0.5	
	0.5	1	
			1

HybridSVD model

$$\begin{cases} AA^\top = U\Sigma^2U^\top \\ A^\top A = V\Sigma^2V^\top \end{cases} \longrightarrow \begin{cases} ASA^\top = U\Sigma^2U^\top & \text{Matrix "roots":} \\ A^\top KA = V\Sigma^2V^\top & K = L_KL_K^\top, S = L_SL_S^\top \end{cases}$$

Solution:

via SVD of an auxiliary matrix:

[Abdi 2007; Allen/Grosenick/Taylor 2014]

$$L_K^\top A L_S = U \Sigma V^\top$$

link to the original latent space:

$$L_K^{-\top}U = U, \qquad L_S^{-\top}V = V$$

Properties:

$$p = L_S^{-T} V V^T L_S^T a$$

latent space structure:

$$U^{\top}KU = I, \qquad V^{\top}SV = I$$

+ everything from standard SVD (e.g., simplified rank tuning)

HybridSVD parameters

$$\begin{cases} S = (1 - \alpha)I + \alpha Z, \\ K = (1 - \beta)I + \beta W. \end{cases}$$

 $0 \le \alpha, \beta \le 1$ control how sensitive the model is to side features.

Z, W are real symmetric matrices, $-1 \leq z_{ij}, w_{ij} \leq 1 \ \forall i, j$.

- single hyper-parameter per entity type (user / item),
- straightforward impact on model behavior.
- freedom to choose similarity measure;
- efficient computations for different feature representations:
 - sparse Cholesky for sparse features,
 - fast symmetric factorization ([Ambikasaran et al. 2014]) for dense features;
- overall computational complexity is adjustable, data-dependent.

Addressing cold start with SVD

We hope that special structure of the HybridSVD's latent space will make it easier to recover a "good" mapping.

Feature mapping computation is decoupled from training:

$$VW = F \rightarrow W = V^{\top}SF$$

← analytic solution

Given any feature vector f, we find the corresponding embedding v from:

$$W^\top v = f$$

← quick to solve

Relevance scores prediction:

$$p = U\Sigma v = AVv$$

Works for PureSVD as well by setting S = I and K = I.

Evaluation in standard scenario

Evaluation in standard scenario

Evaluation in cold start scenario

Surprisingly, in some cases even PureSVD performs better then more sophisticated hybrid models.

Polara + S binder = Reproducibility in browser

Play with it on your own (no setup required), visit the link below for further instructions: https://github.com/evfro/recsys19_hybridsvd

Polara – open-source recsys framework for quick and reproducible experimentation. Disclaimer: I'm the author. https://github.com/evfro/polara

More examples on reproducing others work (and not only) can be found in Polara repository.

Conclusions

HybridSVD is simple, efficient and very competitive.

- ✓ Allows generating structured latent feature space.
- \checkmark Has a *small number* of hyper-parameters with *intuitive effects*.
- ✓ Enables quick tuning on a grid via rank truncation.
- ✓ Supports dynamic online and session-based recommendations.
- ✓ Effective in standard, warm start, and cold start regimes.

May not be the best in all cases; however, definitely is a strong baseline!

- □ Requires a bit more work at the data preprocessing step (Cholesky|Square root).
- ☐ In the case of non-binary rating data may lead to spurious correlations, fixed by tensor formulation, see [Frolov/Oseledets 2018] (work in progress).

Some references

- HybridSVD paper:
 - Frolov E, Oseledets I. *HybridSVD: when collaborative information is not enough*. InProceedings of the 13th ACM Conference on Recommender Systems 2019 Sep 10 (pp. 331-339). ACM.
- Improving PureSVD results with EigenRec model:
 Nikolakopoulos, A. N., Kalantzis, V., Gallopoulos, E., & Garofalakis, J. D. (2019). EigenRec: generalizing
 PureSVD for effective and efficient top-N recommendations. Knowledge and Information Systems, 58(1),
 59-81.
- Fast matrix square root computation for "identity + low rank" matrices: Ambikasaran, S., O'Neil, M., & Singh, K. R. (2014). Fast symmetric factorization of hierarchical matrices with applications. arXiv preprint arXiv:1405.0223.
- A structural view on generalized SVD: Allen, G. I., Grosenick, L., & Taylor, J. (2014). A generalized least-square matrix decomposition. Journal of the American Statistical Association, 109(505), 145-159.

Thank you!

evgeny.frolov@skoltech.ru https://www.eigentheories.com