Databases Structured Query Language(SQL)

Spring 2025

CS6.201 - Introduction to Software Systems

Donald D. Chamberlin

Raymond F. Boyce

Edgar F. Codd

Data

- What is data?
 - Collection of information
- Data is everywhere
- Huge amount of data is generated daily
- Personal, WWW, Organizational, Scientific
- Can we do something from this data?
 - Structured/Unstructured
 - Information and Knowledge mining

Data Explosion

- Walmart: 600+ terabytes of sales and inventory data
 - Adds a billions rows every day
 - "we know how many toothpastes are sold yesterday and what was sold along with them"
- A single astrophysics simulation of a galaxy formation can generate several PB of data, most of it thrown way
- Machine Generated data: Sensor, network devices, microphones/camera, web server logs, monitoring data etc.
- Online Services (old data)
 - X: 177M tweets sent on 3/1/2011 (nothing special about that day)
 - Dropbox: 1 M files saved every 15 minutes
 - Facebook: 135+ billion messages a month
 - Reddit: 270 million page views a month in May 2010
- Legacy Data
 - Banking & Financial transactions
 - News
 - Criminal and Motor Vehicle
 - Clinical History

More Data Explosion

- Much of this data is now stored in traditional RDMS
- A major challenge is to manage this data, answer queries over it, gather interesting and useful insights from it.
- "Big Data"
 - Everyone is either doing big data or wants to...
 - No one seems to agree on what it really means!
 - Not just about scale/volume of data
- "Data Scientist"
 - Goal: Extract meaning from data and creating data products
 - Need a board range of skills: programming, statistics, math....

Organized collection (large and related) of data.

Why database?

Analyze, manage and use data efficiently.

Data is accessed, manipulated and updated.

Schema

Physical level: describes how a record is stored

Logical level: describes data stored in database, and the relationships among the data

View level: application programs hide details of data types. Views can also hide information (such as an employee's salary) for security purposes.

Logical data independence: Protection from changes in logical structure of data.

If a user application operates on a subset of attributes of a relation, it should not affect when new attributes are added. Can make changes without affecting existing schemas.

Physical data independence: Protection from changes in physical structure of data.

Change in internal data using different file organization or devices should be possible without changing logical schema structure.

Atomicity: If any operation is performed on the data, either it should be performed or executed completely or should not be executed at all.

Consistency: Integrity of the data should be maintained, which means if a change in the database is made, it should remain preserved always.

Isolation: Transactions occur independently without interference. Changes should be visible only after they have been made to the main memory

Durability: Data after the successful execution of the operation becomes permanent in the database.

Entity Relationship Model

Network Model

Hierarchical Model

Relational Model

Data Definition Language – Define and Manage

CREATE, ALTER, DROP, TRUNCATE, RENAME, COMMENT

Data Manipulation Language – Manipulates data

SELECT, INSERT, UPDATE, DELETE, MERGE, CALL, EXPLAIN PLAN, LOCK TABLE

Insertion anomalies: It may be impossible to store certain information without storing some other, unrelated information.

Deletion anomalies: It may be impossible to delete certain information without losing some other, unrelated information.

Update anomalies: If one copy of such repeated data is updated, all copies need to be updated to prevent inconsistency.

- Process of organizing the data in the database.
- Reduces data redundancy and eliminates undesirable characteristics like Insertion, Update and Deletion Anomalies.
- Normalization rules divides larger tables into smaller tables and links them using relationships.
- Normal form is used to reduce redundancy from the database table.

1NF: Each Table cell should contain a single value, and each record should be unique

Student#	Advisor	Adv-Room	Class1	Class2	Class3
1022	Jones	412	101-07	143-01	159-02
4123	Smith	216	201-01	211-02	214-01

Student#	Advisor	Adv-Room	Class#
1022	Jones	412	101-07
1022	Jones	412	143-01
1022	Jones	412	159-02
4123	Smith	216	201-01
4123	Smith	216	211-02
4123	Smith	216	214-01

2NF: Stay in 1NF, all non-key attributes are fully functionally dependent on the primary key

Students:

Student#	Advisor	Adv-Room
1022	Jones	412
4123	Smith	216

Registration:

Student#	Class#
1022	101-07
1022	143-01
1022	159-02
4123	201-01
4123	211-02
4123	214-01

3NF: Stay in 2NF, Has no transitive functional dependencies (Changing a non-key column, might cause any of the other non-key columns to change)

Students:

Student#	Advisor
1022	Jones
4123	Smith

Faculty:

Name	Room	Dept
Jones	412	42
Smith	216	42