Mathematical Logic and Computability

Lecture 3: Semantics of First-Order Logic

Yunpyo An

Ulsan National Institute of Science and Technology

Mathematical Logic and Computability Sep 17, 2023 Mathematical Logic and Computability

Yunpyo An

Outline

Review

emantics of irst-Order Logic

nterpretations

Concoguone

oincidence

Relation

Formalization of First-order Logic

ubstitution

Semantics of First-Order Logic
Structures and Interpretations
Connectives

Consequence Coincidence

Satisfication Relation

Formalization of First-order Logic

Substitution

Outline

Review

emantics of rst-Order Logic

nterpretations

onnectives

oincidence

Satisfication Relation

ormalization of

ubstitution

In previous lecture, we learned the syntax of first-order logic.

- Alphabet of First-order logic
 - Terms
 - Formulas
 - Free and bound variables
 - Substitution

Now, we assign the Mathematical object to each symbol in first-order language.

Before define the semantics of first-order logic, we need to consider our language domain.

Definition

An S-structure is a pair $\mathcal{A} = (A, \mathfrak{a})$ with the following properties:

- \triangleright A is a non-empty set, called the *domain* or *universe* of I
- α is a function that assigns from symbols to following:
 - for every *n*-ary relation symbol R in S, $\alpha(R)$ is an *n*-ary relation on A
 - for every *n*-ary function symbol f in S, a(f) is an n-ary function on A
 - for every constant c in S, a(c) is an element of A

From Ebbinghaus textbook, for convenience, we denote a(R), a(f), a(c) by $R^{\mathcal{A}}$, $f^{\mathcal{A}}$, $c^{\mathcal{A}}$ or $R^{\mathcal{A}}$, $f^{\mathcal{A}}$, $c^{\mathcal{A}}$ respectively.

We write $S = \{R, f\}$, where R is a n-ary relation symbol, f is a n-ary function symbol. The structure of *S* is denote as $\mathcal{A} = (A, R^{\mathcal{A}}, f^{\mathcal{A}})$.

We consider symbol set of arithmetic as follows:

$$S_{ar} := \{+, \cdot, 0, 1\} \text{ and } S_{ar}^{<} := \{+, \cdot, 0, 1, <\}$$
 (1)

We will use N as the structure of natural number arithmetic with S_{ar} (equation 1).

$$\mathcal{N}:=(\mathbb{N},+^{\mathbb{N}},\cdot^{\mathbb{N}},0^{\mathbb{N}},1^{\mathbb{N}})$$

where, our domain is \mathbb{N} , + and · are addition and multiplication, 0 and 1 are zero and one respectively.

We remain the variable symbols for semantics of first-order logic. We assign a value in our domain A to each variable.

Definition

An assignment in S-structure \mathcal{A} is a function $\beta: \{v_n | n \in \mathbb{N}\} \to A$ from the set of variables into the domain A.

Now, we combine structure and interpretations together.

Definition

An *S*-interpretation *I* is a pair (\mathcal{A}, β) , where \mathcal{A} is an *S*-structure and β is an assignment in \mathcal{A} .

Mathematical Logic and Computability

Yunpyo An

Outline

Review

Semantics of First-Order Logi

Structures and Interpretations

Connective

Consequence

Catiofication

Satisfication Relation

Formalization of First-order Logic

Substitution

Connectives

Consequence

Satisfication

Formalization of

Substitution

We might consider assignment is a subtitution of variables to values in domain. We can write as follows:

$$\beta \frac{a}{x}(y) := \begin{cases} \beta(y) & \text{otherwise} \\ a & \text{if } y = x \end{cases}$$

Connectives

Coincidence

Satisfication Relation

ormalization of

Substitution

Let's define interpretation $I = (\mathcal{A}, I)$ is given by

$$I = (\mathbb{N}, +, \cdot, 0, 1, <)$$
 and $\beta(v_n) = 2n$ for $n \ge 0$

Example

The formula $v_2 \cdot (v_1 + v_2) \equiv v_4$ reads as $4 \cdot (2 + 4) \equiv 8$.

(2)

Let's define interpretation $I = (\mathcal{A}, I)$ is given by

$$I = (\mathbb{N}, +, \cdot, 0, 1, <)$$
 and $\beta(v_n) = 2n$ for $n \ge 0$

Example

The formula $v_2 \cdot (v_1 + v_2) \equiv v_4$ reads as $4 \cdot (2 + 4) \equiv 8$.

Question: Interprete the following formulas by I.

$$\exists v_0 v_0 + v_0 \equiv v_1$$

$$\forall v_0 \forall v_1 \exists v_2 (v_0 < v_2 \land v_2 < v_1) \tag{3}$$

Outline

Review

Semantics of First-Order Logic

Structures and interpretations

Connectives

onsequence

Satisfication

Relation Formalization c

ormalization of irst-order Logic

Substitution

As we learned in propositional logic, we need to define the semantics of connectives with truth-table.

		Ÿ	À		$\stackrel{\cdot}{\longleftrightarrow}$		
	Т	Т	Т	Т	Т		$\dot{\neg}$
Τ	F	Т	F	F	F	Т	F
F	Т	Т	F	Т	F	F	Τ
F	F	F	F	Т	F F T		

Connectives

onsequence

Satisfication

Formalization o

formalization of first-order Logic

Substitution

Now, we define interprete of our S-formula. Let's given S-formula φ and S-interpretation $I=(\mathcal{A},\beta)$. Interpreted result is denoted by $I(\varphi)$. We define $I(\varphi)$ by induction on terms

Definition

- For a variable x let $I(x) = \beta(x)$
- For a constant $c \in S$ let $I(c) = c^{\mathcal{A}}$
- For *n*-ary function symbol $f \in S$ and terms t_1, \ldots, t_n let $I(f(t_1, \ldots, t_n)) = f^{\mathcal{H}}(I(t_1), \cdots, I(t_n))$

For all interpretations $I = (\mathcal{A}, \beta)$ we define following interpretations

- $I \models (t_1 \equiv t_2) \text{ iff. } I(t_1) = I(t_2)$
- $ightharpoonup I \models (Rt_1 \dots t_n) \text{ iff. } R^{\mathcal{A}}(I(t_1), \dots, I(t_n))$
- $ightharpoonup I \models (\neg \varphi) \text{ iff. not } I \models \varphi$
- $I \models (\varphi \land \psi)$ iff. $I \models \varphi$ and $I \models \psi$
- $I \models (\varphi \lor \psi)$ iff. $I \models \varphi$ or $I \models \psi$
- $I \models (\varphi \rightarrow \psi)$ iff. $I \models \varphi$ implies $I \models \psi$
- $I \models (\varphi \leftrightarrow \psi) \text{ iff. } I \models \varphi \text{ iff. } I \models \psi$
- $I \models (\forall x \varphi)$ iff. for all $a \in A$, $I \stackrel{a}{\vee} \models \varphi$
- $I \models (\exists x \varphi)$ iff. there exists $a \in A$, $I \stackrel{a}{\downarrow} \models \varphi$

Let Φ be a set of S-formulas and φ be an S-formula. We say that ϕ is a consequence of Φ (written $\Phi \models \varphi$) iff. for every S-interpretation I if $I \models \psi$ for all $\psi \in \Phi$, then $I \models \varphi$.

Definition

A formula φ is valid (written $\models \varphi$) iff. $\emptyset \models \varphi$.

Definition

A formula φ is satisfiable (written $Sat\varphi$) if and only if there is interpretation which is a model of φ . A set of formula Φ is satisfiable if and only if there is interpretation which is a model of Φ .

Note. The satisfiability of formula is called SAT problem. It is one of the most important problem in computer science and its complexity is NP-hard.

Dutline

Review

. .

rst-Order Logi

Interpretation: Connectives

Consequence

Coincidence

atisfication

ormalization of

ubstitution

emantics of irst-Order Logi

Interpretations
Connectives

Consequence

Joincidence

Satisfication Relation

Formalization of First-order Logic

Substitution

In previous lecture, we consider about left inverse of group. Let's the set of axiom of group formula as $\Phi_{\rm gr}$.

Now we can formulate the left inverse of group as follows:

$$\Phi_{\rm gr} \models \{ \forall v_0 \exists v_1 (v_1 \cdot v_0 \equiv e) \} \tag{4}$$

where the axiom of group as follows:

$$\Phi_{gr} = \{ \forall v_0 \forall v_1 \forall v_2 (v_0 \cdot (v_1 \cdot v_2) \equiv (v_0 \cdot v_1) \cdot v_2), \\ \forall v_0 (v_0 \cdot e \equiv v_0), \forall v_0 \exists v_1 (v_1 \cdot v_0 \equiv e) \}$$

Satisfiability and Validity

Lemma

For all Φ and φ ,

$$\Phi \models \varphi \quad \textit{iff.} \quad \textit{not Sat} \Phi \cup \{\neg \varphi\}$$

Question: Prove it.

Mathematical Logic and Computability

Yunpyo An

Consequence

Semantics of First-Order Logic

Connectives

Coincidence

Coincidence

Satisfication Relation

Formalization of

Substitution

runpyo An

The satisfication relation between S-formula φ and an S-interpretation I depends only on interpretation of the symols of S occurring in φ , and on the variable occurring free in φ .

Definition

Two interpretation I_1 and I_2 agree on $k \in S$ on x if $k^{\mathcal{H}_1} = k^{\mathcal{H}_2}$ or $\beta_1(x) = \beta_2(x)$.

Lemma

Let's $I_1=(\mathcal{A}_1,\beta)$ be an S_1 -interpretation and $I_2=(\mathcal{A}_2,\beta)$ be an S_2 -interpretation. both with the same domain $A_1=A_2$. Put $S:=S_1\cap S_2$.

- Let t be an S-term. If I_1 and I_2 agree on the S-symbols occurring in t and on the variables occurring in t, then $I_1(t) = I_2(t)$.
- Let φ be an S-formula. If I_1 and I_2 agree on the S-symbols and the variables occurring free in φ , then $(I_1 \models \varphi \text{ iff. } I_2 \models \varphi)$.

Outline

Review

Semantics of First-Order Logic

Structures ar Interpretatior Connectives

Consequenc

Coincidence

atisfication elation

Formalization o

. In maller of land

Me when proving literally anything in mathematical logic, automata theory, or computability

Coincidence

Coincidence lemma says that, for an S-formula φ and an S-interpretation $I = (\mathcal{A}, \beta)$, the validity of φ under I depends only on the assignments for the *finitely many* variables occurring free in φ .

If these variables among $v_0, v_1, \ldots, v_{n-1}$, the β -values $a_i = \beta(v_i)$ for $i=0,\ldots,n-1$ which are significant. Thus instead of $(\mathcal{A},\beta)\models\varphi$, we shall often use the more suggestive notation

$$\mathcal{A} \models \varphi[a_0, \dots, a_{n-1}] \tag{5}$$

If φ is a sentence, we can choose n=0 and write $\mathcal{A} \models \varphi$ without even mentioning an assignment. We say that \mathcal{A} is a model of φ .

Coincidence

Definition

Let S and S' be a symbol sets such that $S \subseteq S'$. Let $\mathcal{A} = (A, \mathfrak{a})$ be an S-structure, and $\mathcal{A}' = (A', \mathfrak{a})$ be an S'-structure. we call \mathcal{A} a reduct (or the S-reduct) of \mathcal{A}' and write $\mathcal{A} = \mathcal{A}'|_{S}$ iff A = A' and α and α' agrees on S. We say that \mathcal{A}' is an expansion of \mathcal{A} .

Satisfiability on Reduct and Expansion

 Φ is satisfiable with respect to S iff Φ is satisfiable with respect to S'.

Let \mathcal{A} and \mathcal{B} be S-Structures.

- ▶ A map $\pi: A \to B$ is called an *isomorphism* of \mathcal{A} onto \mathcal{B} ($\pi: \mathcal{A} \simeq \mathcal{B}$) iff
 - \blacktriangleright π is a bijection of A onto B.
 - For *n*-ary $R \in S$ and $a_1, \ldots, a_n \in A$,

$$R^{\mathcal{A}}(a_1,\ldots,a_n)$$
 iff $R^{\mathcal{B}}(\pi(a_1),\ldots,\pi(a_n))$

For *n*-ary $f \in S$ and $a_1, \ldots, a_n \in A$.

$$\pi(f^{\mathcal{A}}(a_1,\ldots,a_n))=f^{\mathcal{B}}(\pi(a_1),\ldots,\pi(a_n))$$

▶ For $c \in S$.

$$\mathit{pi}(\mathit{c}^{\mathcal{A}}) = \mathit{c}^{\mathcal{B}}$$

Structure \mathcal{A} and \mathcal{B} are said to be isomorphic $(\mathcal{A} \simeq \mathcal{B})$ iff. there is an isomorphism $\pi: \mathcal{A} \simeq \mathcal{B}$.

$$\mathcal{A} \models \varphi$$
 iff. $\mathcal{B} \models \varphi$

Corollary

If $\pi : \mathcal{A} \simeq \mathcal{B}$, then for $\varphi \in L_n^{\mathcal{S}}$ and $a_0, \ldots, a_{n-1} \in A$,

$$\mathcal{A} \models \varphi[a_0,\ldots,a_{n-1}]$$
 iff. $\mathcal{B} \models \varphi[\pi(a_0),\ldots,\pi(a_{n-1})]$

Note that, isomorphic structures cannot be distinguished in L_0^S . For example, there are structures not isomorphic to the S_{ar} -structure $\mathcal N$ of natural numbers in which are the same first-order sentences hold.

Dutline

Review

Semantics of First-Order Logic

Structures and Interpretations
Connectives

onsequence

Satisfication Relation

Formalization of First-order Logic

Substitution

Interpretations

Consequence

Satisfication Relation

Relation

Formalization of First-order Logic

Substitution

Definition

Let $\mathcal A$ and $\mathcal B$ be S-structures. Then $\mathcal A$ is called a *substructure* of $\mathcal B$ ($\mathcal A\subseteq\mathcal B$) iff.

- A ⊂ B
- ▶ for *n*-ary $R \in S$, $R^{\mathcal{A}} = R^{\mathcal{B}} \cap A^n$
 - ▶ for *n*-ary $f \in S$, $f^{\mathcal{A}}$ is the restriction of $f^{\mathcal{B}}$ to A^n
 - ▶ for $c \in S$, $c^{\mathcal{A}} = c^{\mathcal{B}}$

For example the $(\mathbb{Z},+,0)$ is a substructure of $(\mathbb{Q},+,0)$

Satisfication Relation

Lemma

Let \mathcal{A} and \mathcal{B} be S-structures with $\mathcal{A} \subseteq \mathcal{B}$ and let $\beta : \{v_n | n \in \mathbb{N}\} \to A$ be an assignment in \mathcal{A} . Then the following holds for every S-term t

$$(\mathcal{A},\beta)(t)=(\mathcal{B},\beta)(t)$$

and for every quantifier-free S-formula φ :

$$(\mathcal{A},\beta) \models \varphi \quad \textit{iff.} \quad (\mathcal{B},\beta) \models \varphi$$

Satisfication Relation

Definition

The formulas which are derivable by means of the following calculus are called universal formulas.

$$\frac{\varphi}{\varphi} \text{ is quantifier-free}$$

$$\frac{\varphi, \psi}{(\varphi \star \psi)} \text{ for } \star \in \{\land, \lor\}$$

$$\frac{\varphi}{\forall \mathsf{x} \varphi}$$

Relation

Satisfication

Lemma

Let \mathcal{A} and \mathcal{B} be S-structures with $\mathcal{A} \subseteq \mathcal{B}$ and let $\varphi \in L_n^S$ be a universal. Then the following holds for all $a_0, \ldots, a_{n-1} \in A$:

If
$$\mathcal{B} \models \varphi[a_0,\ldots,a_{n-1}]$$
, then $\mathcal{A} \models \varphi[a_0,\ldots,a_{n-1}]$

Corollary

If $\mathcal{A} \subseteq \mathcal{B}$, then the following holds for every universal sentence φ :

If
$$\mathcal{B} \models \varphi$$
, then $\mathcal{A} \models \varphi$

Definition

The axioms of group are the following formulas in Φ_{gr} :

$$\forall v_0 \forall v_1 \forall v_2 (v_0 \cdot (v_1 \cdot v_2) \equiv (v_0 \cdot v_1) \cdot v_2)$$
$$\forall v_0 (v_0 \cdot e \equiv v_0)$$
$$\forall v_0 \exists v_1 (v_1 \cdot v_0 \equiv e)$$

We can assign the set of mathematical objects to our structure, then we have interpretation of group G.

Definition

The axioms of group are the following formulas in Φ_{gr} :

$$\forall v_0 \forall v_1 \forall v_2 (v_0 \cdot (v_1 \cdot v_2) \equiv (v_0 \cdot v_1) \cdot v_2)$$
$$\forall v_0 (v_0 \cdot e \equiv v_0)$$
$$\forall v_0 \exists v_1 (v_1 \cdot v_0 \equiv e)$$

We can assign the set of mathematical objects to our structure, then we have interpretation of group G.

Question: Formulate following sentences in first-order logic. "There is no element of order two in a group." (order two means that $a \circ a \equiv e$)

Formalization of First-order Logic

The axioms of group are the following formulas in $\Phi_{\rm gr}$:

$$\forall v_0 \forall v_1 \forall v_2 (v_0 \cdot (v_1 \cdot v_2) \equiv (v_0 \cdot v_1) \cdot v_2)$$
$$\forall v_0 (v_0 \cdot e \equiv v_0)$$
$$\forall v_0 \exists v_1 (v_1 \cdot v_0 \equiv e)$$

We can assign the set of mathematical objects to our structure, then we have interpretation of group G.

Question: Formulate following sentences in first-order logic. "There is no element of order two in a group." (order two means that $a \circ a \equiv e$)

$$\varphi := \neg \exists v_0 (\neg v_0 \equiv e \land v_0 \circ v_0 \equiv e)$$

Outline

Review

Semantics of First-Order Logic

Interpretations

Consequer

Satisfication

Relation

Formalization of First-order Logic

Substitution

When the tree defining properties of an equivalence relation can be formalized with the aid of a single binary relation symbol *R* as follows:

$$\forall x Rxx$$

$$\forall x \forall y (Rxy \rightarrow Ryx)$$

$$\forall x \forall y \forall z ((Rxy \land Ryz) \rightarrow Rxz)$$

Question Formalize following example

Example

If x and y are both equivalent to a third element, then they are equivalent to the same elements.

The axioms of field are the following formulas in the symbol set $S_{ar} = + ... 0.1$:

$$\forall v_{0} \forall v_{1} \forall v_{2} (v_{0} + (v_{1} + v_{2}) \equiv (v_{0} + v_{1}) + v_{2})$$

$$\forall v_{0} (v_{0} + 0 \equiv v_{0})$$

$$\forall v_{0} \exists v_{1} (v_{0} + v_{1} \equiv 0)$$

$$\forall v_{0} \forall v_{1} (v_{0} \cdot (v_{1} \cdot v_{2}) \equiv (v_{0} \cdot v_{1}) \cdot v_{2})$$

$$\forall v_{0} (v_{0} \cdot 1 \equiv v_{0})$$

$$\forall v_{0} (\neg x \equiv 0 \rightarrow \exists yx \cdot y \equiv 1)$$

$$\forall v_{0} \forall v_{1} (v_{0} + v_{1} \equiv v_{1} + v_{0})$$

$$\forall v_{0} \forall v_{1} (v_{0} \cdot v_{1} \equiv v_{1} \cdot v_{0})$$

$$\forall v_{0} \forall v_{1} \forall v_{2} ((v_{0} + v_{1}) \cdot v_{2} \equiv (v_{0} \cdot v_{2}) + (v_{1} \cdot v_{2}))$$

$$\neg 0 = 1$$

Limitation of First-order Logic: Torsion Group

A group \mathcal{G} is called a *torsion group* if every element of \mathcal{G} has finite order. If for every $a \in G$ there is an $n \ge 1$ such that $a^n = e^G$.

Question: Can we add axioms of torsion group to our first-order logic?

Mathematical Logic and Computability

Yunpyo An

Outline

Review

Semantics of First-Order Logic

Interpretations
Connectives

onsequence

Coincidence

atisfication telation

Formalization of First-order Logic

Substitution

Formalization of

First-order Logic

A group G is called a *torsion group* if every element of G has finite order. If for every $a \in G$ there is an $n \ge 1$ such that $a^n = e^G$.

Question: Can we add axioms of torsion group to our first-order logic? Answer: No. We may "ad hoc" formulation of above statement as follow.

$$\forall x(x \equiv e \lor x \circ x \equiv e \lor x \circ x \circ x \equiv e \lor \ldots)$$

But our first-order logic cannot express the infinite disjunction.

Structures and Interpretations
Connectives

Consequence

Satisfication

Relation

Formalization of First-order Logic

Substitution

as $\mathcal{N}_{\sigma}=(\mathbb{N},\sigma,0)$, where σ is a unary successor function. Later, we may extend this structure to $\mathcal{N}=(\mathbb{N},+,\cdot,0,1,<)$.

We discuss with the structure of natural number arithmetic system with addition

Definition

 N_{σ} satisfies the so-called Peano axiom system:

- \triangleright 0 is not a value of the succesor function σ .
- $ightharpoonup \sigma$ is injective.
- ▶ For every subset *X* of \mathbb{N} , if $0 \in X$ and $\sigma(X) \subseteq X$, then $X = \mathbb{N}$.

Question: Can we formalize the Peano's axioms in first-order logic?

Consequence

Satisfication

Relation

Formalization of First-order Logic

Substitution

We discuss with the structure of natural number arithmetic system with addition as $\mathcal{N}_{\sigma}=(\mathbb{N},\sigma,0)$, where σ is a unary successor function. Later, we may extend this structure to $\mathcal{N}=(\mathbb{N},+,\cdot,0,1,<)$.

Definition

 N_{σ} satisfies the so-called Peano axiom system:

- \triangleright 0 is not a value of the succesor function σ .
- $ightharpoonup \sigma$ is injective.
- ▶ For every subset *X* of \mathbb{N} , if $0 \in X$ and $\sigma(X) \subseteq X$, then $X = \mathbb{N}$.

Question: Can we formalize the Peano's axioms in first-order logic?

Answer: No. We may "ad hoc" formulation of above statement as next slide.

Limitation of First-order Logic: Peano's axioms

$$\forall x \neg \sigma x \equiv 0$$
$$\forall x \forall y (\sigma x \equiv \sigma y \rightarrow x \equiv y)$$

How about third axiom?

Mathematical Logic and Computability

Yunpyo An

Dutline

eview

Semantics of First-Order Logic

Interpretations

onsequence

atisfication

lation

Formalization of First-order Logic

ubstitution

Limitation of First-order Logic: Peano's axioms

$$\forall x \neg \sigma x \equiv 0$$
$$\forall x \forall y (\sigma x \equiv \sigma y \rightarrow x \equiv y)$$

How about third axiom?

$$\forall X (X0 \land \forall x (Xx \rightarrow X\sigma x) \rightarrow \forall y Xy)$$

In third axiom, we need quantifier in set and quantifier on set which is not in first-order logic.

Mathematical Logic and Computability

Yunpyo An

Dutline

eview

Semantics of First-Order Logic

Interpretations
Connectives

Consequence

atisfication

Relation

Formalization of First-order Logic

Substitution

Theorem

Every structure $\mathcal{A} = (A, \sigma^A, 0^A)$ which satisfies three Peano's axioms is isomorphic to \mathcal{N}_{σ} .

In order to show that every element of the domain A has a certain property P. one verifies that 0^A has the property P and that if an element a has the property P, then $\sigma^A(a)$ also has the property P. Suppose $\mathcal{A} = (A, \sigma^A, 0^A)$ is a structure which satisfies the Peano's axioms.

The isomorphism $\pi: \mathcal{N}_{\sigma} \simeq \mathcal{A}$ is defined by induction on terms.

$$\pi(0) := 0^A$$
 $\pi(\sigma^{\mathbb{N}}(n)) := \sigma^A(\pi(n)) \text{ for all } n \in \mathbb{N}$

that is

$$\pi(0) = 0^A \tag{6}$$

$$\pi(n+1) = \sigma^{A}(\pi(n)) \text{ for all } n \in \mathbb{N}$$
 (7)

And we want to show that π is a bijective map from \mathbb{N} onto our domain A.

Surjectivity By induction in \mathcal{A} we prove that every element A lies in the range of π . By the equation 6 0^A in the range of π . If a is the range of π , $a = \pi(n)$, then $\sigma^{A}(a) = \sigma^{A}(\pi(n))$. By the equation 7, $\sigma^{A}(a)$ is the range of π . **Injectivity** By induction on n we want to prove "For all $m \in \mathbb{N}$, if $m \neq n$, then $\pi(m) \neq \pi(n)$." If n = 0, if $m \neq 0$, then m = k + 1, then $\pi(m) = \pi(k+1) = \sigma^{A}(\pi(k))$, and since \mathcal{A} satisfies the first Peano's axiom, $\sigma^A(\pi(k)) \neq 0^A$. Then by the equation 6, $\pi(m) \neq \pi(0)$. Suppose that proved for n and suppose that $m \neq n + 1$. If m = 0 $\pi(m) = 0^A \neq \pi(n+1)$. If $m \neq 0$, there exists m = k+1, then $k \neq n$, by induction hypothesis $\pi(k) \neq \pi(n)$ By injectivity of σ^A , the second axiom of Peano's axioms, $\sigma^A(\pi(k)) \neq \sigma^A(\pi(n))$. Then by the equation 7, $\pi(m) \neq \pi(n+1)$.

Substitution

In this section, we may wonder about how to define subtitute a term t for a variable x in a formula φ at the places where x occurs free.

Definition

$$x \frac{t_0 \dots t_r}{x_0 \dots x_r} := \begin{cases} x & \text{if } x \neq x_0, \dots, x \neq x_r \\ t_i & \text{if } x = x_i \end{cases}$$

$$c \frac{t_0 \dots t_r}{x_0 \dots x_r} := c$$

$$[ft'_1 \dots t'_n] \frac{t_0 \dots t_r}{x_0 \dots x_r} := f \left(t'_1 \frac{t_0 \dots t_r}{x_0 \dots x_r}, \dots, t'_n \frac{t_0 \dots t_r}{x_0 \dots x_r} \right)$$

Structures and Interpretations Connectives

onsequence

atisfication

Formalization o

First-order Log

Substitution

Definition

$$[t'_{1} \equiv t'_{2}] \frac{t_{0} \dots t_{r}}{x_{0} \dots x_{r}} := t'_{1} \frac{t_{0} \dots t_{r}}{x_{0} \dots x_{r}} \equiv t'_{2} \frac{t_{0} \dots t_{r}}{x_{0} \dots x_{r}}$$

$$[Rt'_{1} \dots t'_{r}] \frac{t_{0} \dots t_{r}}{x_{0} \dots x_{r}} := Rt'_{1} \frac{t_{0} \dots t_{r}}{x_{0} \dots x_{r}} \dots t'_{r} \frac{t_{0} \dots t_{r}}{x_{0} \dots x_{r}}$$

$$[\neg \varphi] \frac{t_{0} \dots t_{r}}{x_{0} \dots x_{r}} := \neg \left[\varphi \frac{t_{0} \dots t_{r}}{x_{0} \dots x_{r}} \right]$$

$$(\varphi \lor \psi) \frac{t_{0} \dots t_{r}}{x_{0} \dots x_{r}} := \left(\varphi \frac{t_{0} \dots t_{r}}{x_{0} \dots x_{r}} \lor \psi \frac{t_{0} \dots t_{r}}{x_{0} \dots x_{r}} \right)$$

How about quantifier?

Substitution

Definition

Suppose x_i, \ldots, x_i ($i_1 < \cdots < i_s$) are exactly the variables x_i among the x_0, \ldots, x_r such that

$$x_i \in \text{free}(\exists x \varphi) \quad \text{and} \quad x_i \neq t_i$$

In particular, $x \neq x_{i_1}, \dots, x \neq x_{i_n}$. Then set

$$[\exists x \varphi] \frac{t_0 \dots t_r}{x_0 \dots x_r} := \exists u \left[\varphi \frac{t_{i_1} \dots t_{i_s} u}{x_{i_1} \dots x_{i_s} x} \right]$$

where u is the variable x if x does not occur in t_i, \ldots, t_k , otherwise u is the first variable in the list v_0, v_1, v_2, \dots which does not occur in φ, t_i, \dots, t_i .

Substitution

Lemma

For every term t

$$I(t\frac{t_0\ldots t_r}{x_0\ldots x_r})=I\frac{I(t_0),\ldots,I(t_r)}{x_0,\ldots,x_r}(t)$$

And for every formula φ

$$I \models \varphi \frac{t_0 \dots t_r}{\mathsf{x}_0 \dots \mathsf{x}_r} \quad \textit{iff} \quad I \frac{I(t_0), \dots, I(t_r)}{\mathsf{x}_0, \dots, \mathsf{x}_r} \models \varphi$$

Rank of Formula

The number of connectives and quantifiers occurring in a formula φ the rank of φ , written rk(φ).

Question: How can we define it?

Mathematical Logic and Computability

Yunpvo An

Substitution

Rank of Formula

The number of connectives and quantifiers occurring in a formula φ the rank of φ , written rk(φ).

Question: How can we define it?

Question: After substitution, the rank of formula is changed?

Mathematical Logic and Computability

Yunpvo An

Substitution