

TEST REPORT

Report Number: 100051433MPK-005 Project Number: G100051433 September 03, 2010

Testing performed on the VHF Radio
Model Numbers: HPT135, AW135, HPT135BT and AW135BT FCC ID: WJ4HPT135
IC ID: 3504A-HPT135
to

FCC Part 90, RSS-119 For

Javad GNSS, Inc.

Test Performed by:

Intertek Testing Services NA, Inc 1365 Adams Court Menlo Park, CA 94025 **Test Authorized by:**

Javad GNSS, Inc. 900 Rock Avenue San Jose, CA 95131, USA

Prepared by:	Krishna K Vemuri	Date:	September 03, 2010	
Reviewed by:	Ollie Moyrong	Date:	September 03, 2010	

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

File: 100051433MPK-005 Page 1 of 80

Report No. 100051433MPK-005

VHF Radio
Javad GNSS, Inc.
HPT135, AW135, HPT135BT and AW135BT
10001
WJ4HPT135
3504A-HPT135
Javad GNSS, Inc.
Mr. Vladimir Zhukov
900 Rock Avenue
San Jose, CA 95131
USA
(408) 770-1770
(408) 770-1799
v.zhukov@javad.com
FCC Part 90, RSS-119
ITS - Site 1
1365 Adams Drive
Menlo Park, CA 94025
March 25 to April 27, 2010
oll xx
Ollie Moyrong

EMC Senior Staff Engineer

3MPK-005 Page 2 of 80

Engineering Manager

TABLE OF CONTENTS

1.0	Intro	oduction	5
	1.1	Product Description	5
	1.2	Summary of Test Results	6
	1.3	Test Configuration	7
		1.3.1 Support Equipment	7
		1.3.2 Block diagram of Test Setup	
	1.4	Related Submittal(s) Grants	
2.0	RF F	Power Output	8
	2.1	Test Procedure	8
	2.2	Test Equipment	8
	2.3	Test Results	8
3.0	Radi	iated Power	12
	3.1	Requirement	
	3.2	Test Procedure	
	3.3	Test Equipment	
	3.4	Test Results	12
4.0	Occup	pied Bandwidth	
	4.1	Test Procedure	
	4.2	Test Equipment	
	4.3	Test Results	
5.0	Emiss	sion Mask	
	5.1	Requirement	
	5.2	Test Procedure	
	5.3	Test Equipment	
	5.4	Test Results	30
6.0	Spuri	ous Emissions at Antenna Terminals	
	6.1	Requirement	
	6.2	Test Procedure	
	6.3	Test Equipment	
	6.4	Test Results	47
7.0	Spur	rious Radiation	57
	7.1	Requirement	
	7.2	Test Procedure	
	7.3	Test Equipment	
	7.4	Test Results	58
8.0		nsient Frequency Behavior	
	8.1	Requirement	59

	8.2	Test Procedure	59
	8.3	Test results	60
9.0	Frequ	uency Stability vs Temperature and Voltage	67
	9.1	Requirement	
	9.2	Test Procedure	67
	9.3	Test Equipment	67
	9.4	Test Results	68
10.0	RF E	Exposure Evaluation	69
11.0	Emis	ssion from Digital Parts and Receiver	70
	11.1	Radiated emissions	70
		11.1.1 Test Limit	70
		11.1.2 Test Procedure	70
		11.1.3 Test Results	71
	11.2	Receiver antenna conducted emissions	
		11.2.1 Limit	
		11.2.2 Test Procedure	
		11.2.3 Test Results	
12.0	List	of Test Equipment	79
13.0	Docu	ıment History	80

1.0 Introduction

1.1 Product Description

Equipment Under Test – EUT is the model HPT135. As declared by the Applicant, the models HPT135 and AW135 are identical except for their housing color and brand name (HPT for Javad; AW for ArWest). HPT135 is also known as the model HPT135BT, for marketing purposes only. AW135 is also known as the model AW135BT, for marketing purposes only. HPT135, HPT135BT, AW135 and AW135BT consist of identical hardware with the only difference being the color of the units.

HPT135 is an external VHF Radio transceiver used for commercial, indoor and outdoor use.

The HPT135 provides real-time data transmission using spectrum efficient GMSK/BPSK/QPSK/8PSK/16QAM modulations.

The HPT135 provides half-duplex communication with transmitter output power of 35 W (\pm 45.4 dBm) in the frequency bands 150-174MHz for USA, 138-144MHz and 148-174MHz for Canada with channel spacing 25 / 12.5 / 6.25 kHz.

For more information about the radios, refer to the attached product description.

Specification of the radio module			
Type	VHF Radio		
Rated RF Output Power	35 W		
Frequency Ranges	150-174MHz for USA, 138-144MHz and 148-174MHz for Canada		
Type of modulation	BPSK, QPSK, 8PSK, 16QAM, GMSK		
Channel bandwidth and	25 kHz at 38.4 kbps		
maximum data rate	12.5 kHz at 19.2 kbps		
	6.25 kHz at 9.6 kbps		
Antenna & Gain	Whip, 2.4 dBi		
Detachable antenna	Yes		
External input	data		
Operating temperature	From -30° C to $+50^{\circ}$ C		

EUT receive date: March 22, 2010

EUT receive condition: The prototype version of the EUT was received in good condition with no

apparent damage. As declared by the Applicant it is identical to the production

units.

Test start date: March 25, 2010 **Test completion date:** April 27, 2010

File: 100051433MPK-005 Page 5 of 80

1.2 Summary of Test Results

FCC Rule	RSS-119 Rule	Description of Test	Result
2.1046	4.1	RF Power Output	Complies
90.205(d)	-	ERP	Complies
2.1047	-	Modulation Characteristics	Not Applicable
2.1049, 90.209	RSS-GEN	Occupied Bandwidth	Complies
90.210	5.8	Emission Masks	Complies
2.1051, 90.210	5.8	Out of Band Emissions at Antenna Terminals	Complies
2.1053, 90.210	5.8	Spurious Radiation	Complies
2.1055, 90.213	5.3	Frequency Stability vs. Temperature and Voltage	Complies
90.214	5.9	Transient Frequency Behavior	Complies
2.1091	RSS-102	RF Exposure evaluation	Complies
15.109, 15.111	RSS-GEN	Emissions from Digital Parts and Receiver	Complies

File: 100051433MPK-005 Page 6 of 80

1.3 Test Configuration

1.3.1 Support Equipment

Item	Description	Model No.	S/N	
#				
1	Compaq Laptop	Armada 7400	7933CY570119	
2	DC Power Supply	6030A	US38320722	

1.3.2 Block diagram of Test Setup

S = Shielded	F = With Ferrite
U = Unshielded	\mathbf{m} = Length in Meters

1.4 Related Submittal(s) Grants

None

2.0 RF Power Output

FCC 2.1046

2.1 Test Procedure

The EUT RF output was connected as shown on the diagram in sec.1.3.2. The EUT was setup to transmit continuously the maximum power.

The spectrum analyzer was setup to measure the Average power. The attenuation and cable loss were added to the spectrum analyzer reading by using OFFSET function.

Measurements were performed at three frequencies (low, middle, and high channels).

2.2 Test Equipment

Rohde & Schwarz FSP40 Spectrum Analyzer.

2.3 Test Results

Frequency (MHz)	Measured Output Power (dBm)	Measured Output Power (Watt)	Graph
138.0	45.45	35.08	2.1
150.0	45.31	33.96	2.2
174.0	45.30	33.88	2.3

For more details refer to the attached Graphs.

Power output

Date: 25.MAR.2010 09:59:32

Power output

Date: 25.MAR.2010 10:03:08

Power output

Date: 25.MAR.2010 10:04:19

3.0 Radiated Power

3.1 Requirement

FCC 90.205(d)

The maximum Effective Radiated Power (ERP) is 500 Watts.

3.2 Test Procedure

The ERP was calculated by adding the antenna gain to the output power in dBm.

$$ERP = P_{max} + G_{dBd}$$

3.3 Test Equipment

None

3.4 Test Results

According to the Installation Guide, a typical 2.4 dBi (0.3 dBd) gain antenna is used with the EUT. Therefore, the calculated peak radiated power is:

ERP =
$$45.5 + 0.3 = 45.8$$
 dBm (or 38.02 W);
EIRP= $45.5 + 2.4 = 47.9$ dBm (or 61.66 W).

EIRP= 45.5 +	2.4 = 47.9	dBm ((or 61	66 V

Result Complies

4.0 Occupied Bandwidth

FCC 2.1049, 90.209(b)(5)

4.1 Test Procedure

The EUT RF output was connected as shown on the diagram in sec.1.3.2. The EUT was setup to transmit the maximum power.

The spectrum analyzer was setup to measure the Occupied Bandwidth (defined as the 99% Power Bandwidth). The Occupied Bandwidth was measured at 150 MHz for all types of modulation and authorized bandwidths.

4.2 Test Equipment

Rohde & Schwarz FSP40 Spectrum Analyzer

4.3 Test Results

The test results are summarized in the following tables and presented on the Graphs 4.1 - 4.30.

The following Emission Designators were determined:

3K04G1D

3K11F1D

6K04G1D

6K17F1D

12K00G1D

11K80F1D

Page 13 of 80

Frequency	Modulation	Channel Bandwidth	Authorized Bandwidth	Measured Occupied Bandwidth	Graph
(MHz)		(kHz) (kHz)		(kHz)	
	BPSK			3.03	4.1
	QPSK			3.04	4.2
150	8PSK	6.25	6.0	3.04	4.3
	16QAM			3.03	4.4
	GMSK			3.11	4.5
	BPSK		12.5 11.25	6.04	4.6
	QPSK	12.5		6.04	4.7
150	8PSK			6.00	4.8
	16QAM			5.98	4.9
	GMSK			6.17	4.10
	BPSK			11.97	4.11
	QPSK			11.96	4.12
150	8PSK	25.0	20.0	11.80	4.13
	16QAM			12.00	4.14
	GMSK			11.80	4.15

For more details refer to the attached Graphs.

Occupied bandwidth, 6kHz authorized bandwidth, BPSK

Date: 24.MAR.2010 13:56:32

Occupied bandwidth, 6kHz authorized bandwidth, QPSK

Date: 24.MAR.2010 13:57:48

Occupied bandwidth, 6kHz authorized bandwidth, 8PSK

Date: 24.MAR.2010 13:58:38

Occupied bandwidth, 6kHz authorized bandwidth, 16QAM

Date: 24.MAR.2010 13:59:36

Occupied bandwidth, 6kHz authorized bandwidth, GMSK

Date: 24.MAR.2010 14:01:04

Occupied bandwidth, $11.25 \mathrm{kHz}$ authorized bandwidth, BPSK

Date: 24.MAR.2010 14:21:40

Occupied bandwidth, $11.25 \mathrm{kHz}$ authorized bandwidth, QPSK

Date: 24.MAR.2010 14:23:07

Occupied bandwidth, $11.25 \mathrm{kHz}$ authorized bandwidth, 8PSK

Date: 24.MAR.2010 14:24:03

Occupied bandwidth, $11.25 \mathrm{kHz}$ authorized bandwidth, $16\mathrm{QAM}$

Date: 24.MAR.2010 14:24:53

Occupied bandwidth, $11.25 \mathrm{kHz}$ authorized bandwidth, GMSK

Date: 24.MAR.2010 14:35:22

Occupied bandwidth, 20kHz authorized bandwidth, BPSK

Date: 24.MAR.2010 14:53:14

Occupied bandwidth, 20kHz authorized bandwidth, QPSK

Date: 24.MAR.2010 14:54:15

Occupied bandwidth, $20\,\mathrm{kHz}$ authorized bandwidth, $8\,\mathrm{PSK}$

Date: 24.MAR.2010 14:55:17

Occupied bandwidth, 20kHz authorized bandwidth, 16QAM

Date: 24.MAR.2010 14:55:58

Occupied bandwidth, $20\,\mathrm{kHz}$ authorized bandwidth, GMSK

Date: 24.MAR.2010 14:56:59

5.0 Emission Mask

FCC 90.210

5.1 Requirement

Equipment designed to operate with a 25 kHz channel bandwidth must meet the requirements of Emission Mask C (for equipment without audio low pass filter).

Equipment designed to operate with a 12.5 kHz channel bandwidth must meet the requirements of Emission Mask D.

Equipment designed to operate with a 6.25kHz channel bandwidth must meet the requirements of Emission Mask E

5.2 Test Procedure

The EUT RF output was connected as shown on the diagram in sec.1.3.2. The EUT was setup to transmit the maximum power.

The spectrum analyzer was setup to measure the Emission at frequencies \pm 100 kHz from the fundamental frequency – for Mask C, \pm 31.25 kHz – for Mask D, \pm 22.5 kHz – for Mask E. The peak detector is used for these measurements.

The Emission Mask was measured at 150 MHz for all five types of modulation.

5.3 Test Equipment

Rohde & Schwarz FSP40 Spectrum Analyzer

5.4 Test Results

Complies with Emission Mask Requirements. For more details refer to the attached Graphs: 5.1 - 5.15.

File: 100051433MPK-005 Page 30 of 80

Emission Mask, 25 kHz ch. spacing, BPSK

Date: 26.MAR.2010 10:58:45

Emission Mask, 25 kHz ch. spacing, QPSK

Date: 26.MAR.2010 10:55:58

Emission Mask, 25 kHz ch. spacing, 8PSK

Date: 26.MAR.2010 11:01:05

Emission Mask, 25 kHz ch. spacing, 16QAM

Date: 26.MAR.2010 11:04:58

Emission Mask, 25 kHz ch. spacing, GMSK

Date: 26.MAR.2010 11:09:10

Emission Mask, 12.5 kHz ch. spacing, BPSK

Date: 26.MAR.2010 16:09:02

Emission Mask, 12.5 kHz ch. spacing, QPSK

Date: 26.MAR.2010 16:10:58

Emission Mask, 12.5 kHz ch. spacing, 8PSK

Date: 26.MAR.2010 16:06:02

Emission Mask, 12.5 kHz ch. spacing, 16QAM

Date: 26.MAR.2010 16:12:49

Emission Mask, 12.5 kHz ch. spacing, GMSK

Date: 26.MAR.2010 16:14:47

Emission Mask, 6.25 kHz ch. spacing, BPSK

Date: 26.MAR.2010 16:21:37

Emission Mask, 6.25 kHz ch. spacing, QPSK

Date: 26.MAR.2010 16:27:23

Emission Mask, 6.25 kHz ch. spacing, 8PSK

Date: 26.MAR.2010 16:30:59

Emission Mask, 6.25 kHz ch. spacing, 16QAM

Date: 26.MAR.2010 16:35:40

Emission Mask, 6.25 kHz ch. spacing, GMSK

Date: 26.MAR.2010 16:37:55

6.0 Spurious Emissions at Antenna Terminals

FCC 2.1051, 90.210

6.1 Requirement

Emission Mask C

The power of any emissions must be attenuated below the unmodulated carrier output power (P) on any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: at least $(43 + 10 \log P)$ dB.

Note: That corresponds to the level of -13 dBm for any out-of-band and spurious emissions.

Emission Mask D

The power of any emissions must be attenuated below the unmodulated carrier output power (P) on any frequency removed from the center of the authorized bandwidth by more than 12.5 kHz: at least $(50 + 10 \log P)$ dB or 70 dB, whichever is lesser attenuation.

Note: Attenuation of $(50 + 10 \log P)$ dB corresponds to the level of -20 dBm for any out-of-band and spurious emissions.

Emission Mask E

The power of any emissions must be attenuated below the unmodulated carrier output power (P) on any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: at least $(55 + 10 \log P)$ dB or 65 dB, whichever is lesser attenuation.

Note: Attenuation of 65dB corresponds to the level of -19.6 dBm for any out-of-band and spurious emissions.

6.2 Test Procedure

The EUT RF output was connected as shown on the diagram in sec.1.3.2. The EUT was setup to transmit the maximum power.

For measurements at frequencies below 1 GHz, the spectrum analyzer resolution bandwidth was set to 10 kHz. For measurements at frequencies above 1 GHz, the spectrum analyzer resolution bandwidth was set to 1 MHz. Average detector is used for these measurements.

Sufficient scans were taken to show the spurious emissions up to 10th harmonic.

Measurements were performed at different modulations and channel bandwidths. The worst case data was reported.

6.3 Test Equipment

Rohde & Schwarz FSP40 Spectrum Analyzer

6.4 Test Results

Complies

05 Page 47 of 80

Conducted Spurious, $150 \, \mathrm{MHz}$, Unmodulated

Date: 25.MAR.2010 10:29:06

Conducted Spurious, 150MHz, BPSK Date: 25.MAR.2010 11:21:59

Conducted Spurious, 150MHz, QPSK Date: 25.MAR.2010 10:34:26

Conducted Spurious, 150MHz, 8PSK Date: 25.MAR.2010 10:35:34

Conducted Spurious, 150MHz, 16QAM

Date: 25.MAR.2010 10:37:02

Conducted Spurious, 150MHz, GMSK Date: 25.MAR.2010 10:39:03

Conducted Spurious, 150MHz, GMSK Date: 25.MAR.2010 10:47:45

84.5 MHz/

Conducted Spurious, 150MHz, GMSK Date: 25.MAR.2010 10:59:08

Start 155 MHz

Stop 1 GHz

Conducted Spurious, 150MHz, GMSK Date: 25.MAR.2010 11:05:48

7.0 Spurious Radiation

FCC 2.1053, 90.210

7.1 Requirement

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least (50 + 10 log P) dB or 70 dB, whichever is lesser attenuation.

Note: Attenuation of (50 + 10 log P) dB corresponds to the level of -20 dBm for any out-of-band and spurious emissions.

7.2 Test Procedure

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.

The frequency range up to 10th harmonic was investigated. The worst case of emissions was reported.

For spurious emissions attenuation, the substitution method was used. The EUT was substituted by a reference antenna (half-wave dipole - below 1 GHz, or Horn antenna - above 1GHz), connected to a signal generator. The signal generator output level (V_g in dBm) was adjusted to obtain the same reading as from EUT. The ERP at the spurious emissions frequency was calculated as follows.

$$ERP_{(dBm)} = V_g + G_{(dBd)}$$

The spurious emissions attenuation is the difference between ERP at the fundamental frequency (see section 3) and at the spurious emissions frequency.

7.3 Test Equipment

Roberts Antenna EMCO 3115 Horn Antennas Rohde & Schwarz FSP40 Spectrum Analyzer Low Pass Filter Preamplifiers

3MPK-005 Page 57 of 80

7.4 Test Results

Spurious Radiated Emissions

Frequency	SA Reading (from EUT)	Signal Generator Output required to have the same SA Reading	ERP*	ERP Limit	ERP Margin
	, ,	as from EUT			Ö
MHz	dB(µV)	$V_{\mathrm{g}}\mathrm{dBm}$	dBm	dBm	dB
Tx 150 MHz					
106.7	42.1	-64.1	-64.1	-20.0	-44.1
129.4	39.8	-66.6	-66.6	-20.0	-46.6
228.9	40.9	-64.6	-64.6	-20.0	-44.6
300	39.5	-63.6	-63.6	-20.0	-43.6
450	34.8	-64.9	-64.9	-20.0	-44.9
462	31.9	-67.3	-67.3	-20.0	-47.3
573	35.0	-62.9	-62.9	-20.0	-42.9
600	31.8	-65.4	-65.4	-20.0	-45.4
700	37.3	-58.9	-58.9	-20.0	-38.9
750	37.8	-57.4	-57.4	-20.0	-37.4
777	39.5	-55.5	-55.5	-20.0	-35.5
800	38.1	-56.8	-56.8	-20.0	-36.8
836	34.5	-59.7	-59.7	-20.0	-39.7
900	30.5	-62.4	-62.4	-20.0	-42.4
1310	37.7	-70.6	-65.1	-20.0	-45.1
1580	35.6	-72.4	-65.6	-20.0	-45.6
1720	36.9	-71.2	-64.6	-20.0	-44.6
1800	35.6	-71.7	-65.2	-20.0	-45.2

^{*} ERP is calculated as: $\text{ERP}_{(dBm)} = V_{g(dBm)} + G_{(dBd)}$

All other emissions not reported are more than 20 dB below the limit.

Result

8.0 Transient Frequency Behavior

FCC 90.214

8.1 Requirement

Time interval	Maximum frequency difference	Time					
Transient Frequency Behavior for equipment designed to operate on 25 kHz channels							
t1 *	t1 * ±25 kHz 10						
t 2	±12.5 kHz	25 ms					
t3 *	±25 kHz	10 ms					
Transient Frequency B	Transient Frequency Behavior for equipment designed to operate on 12.5 kHz channels						
t1 *	±12.5 kHz	10 ms					
t 2	±6.25 kHz	25 ms					
t3 *	±12.5 kHz	10 ms					

ton is the instant when a 1 kHz test signal is completely suppressed

t1 is time period immediately following ton

t2 is time period immediately following t1

t3 is time period from the instant when the transmitter is turned off until toff

toff is the instant when the 1 kHz test signal start to rise

8.2 Test Procedure

Test was performed according to the block diagram below.

File: 100051433MPK-005 Page 59 of 80

^{*} If the transmitter carrier output power rating is 6 Watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

8.3 Test results

For more details refer to the attached Graphs

Result	Complies

150 MHz, 25 kHz spacing

150 MHz, 25 kHz spacing

150 MHz, 12.5 kHz spacing

150 MHz, 12.5 kHz spacing

150 MHz, 6.25 kHz spacing

150 MHz, 6.25 kHz spacing

9.0 Frequency Stability vs Temperature and Voltage FCC 2.1055, 90.213

9.1 Requirement

In the 150–174 MHz band, mobile stations designed to operate with a 12.5 kHz channel bandwidth must have a frequency stability of 5.0 ppm. Mobile stations designed to operate with a 6.25 kHz channel bandwidth must have a frequency stability of 2.0 ppm.

Note: according to RSS-119, the frequency stability for mobile stations designed to operate with a 6.25 kHz Authorized Bandwidth must have a frequency stability of 2.0 ppm. Mobile stations designed to operate with a 20 kHz and 11.25 kHz Authorized Bandwidth must have a frequency stability of 5.0 ppm

9.2 Test Procedure

The EUT was placed inside the temperature chamber. The RF power output was connected to frequency counter. The EUT was setup to transmit the maximum power.

After the temperature stabilized for approximately 20 minutes, the transmitting frequency was measured by the frequency counter and recorded.

At the room temperature, the frequency was measured when the EUT was powered with the nominal voltage and with 85% and 115% of the nominal voltage.

9.3 Test Equipment

Temperature Chamber Frequency counter

File: 100051433MPK-005 Page 67 of 80

9.4 Test Results

Nominal frequency: 150 MHz

Temperature (°C)	Maximum deviation from nominal,	Maximum deviation from nominal,	Maximum deviation from frequency at 20°C,
	Hz	ppm	ppm
-30	-55	0.37	0.33
-20	-48	0.32	0.29
-10	25	0.16	0.20
0	33	0.22	0.25
10	32	0.21	0.25
20	-5	0.03	0.00
30	-36	0.24	0.21
40	-42	0.28	0.25
50	-52	0.35	0.31

DC Voltage,	Maximum deviation from nominal,	Maximum deviation from nominal,
V	Hz	ppm
11.2	-7	0.05
13.2	-5	0.03
15.2	-5	0.03

Res	ult	Complies	
-----	-----	----------	--

10.0 RF Exposure Evaluation

FCC 2.1091

The EUT is a wireless device used in a mobile application, at least 120 cm from any body part of the user or nearby persons.

The maximum calculated EIRP is 61.66 W, and ERP is 38.02 W.

As declared by the Applicant, the EUT transmits with the maximum source-based Duty Cycle of 50% - see the document "HPT135 VHF OEM Module Duty Cycle evaluation". Therefore, the average EIRP is 30.83~W

Using the formula for the Power Density $S = EIRP/4\pi D^2$, the distance D, where the Maximum Permissible Exposure (MPE) satisfies the FCC 1.1310 limit for General Population/Uncontrolled Exposure, can be calculated as:

$$D \ge \sqrt{(EIRP/4\pi S)}$$

According to FCC 1.1310, the MPE Limit in this band is 2.0 W/m^2 , therefore $D \ge 1.11 \text{ m}$.

The Statement that a minimum separation distance of at least 111 cm between the antenna and persons must be maintained is included in the User's manual.

11.0 Emission from Digital Parts and Receiver

11.1 Radiated emissions

FCC 15.109

11.1.1 Test Limit

Radiated Emission Limit for FCC Part 15 Subpart B and ICES 003

Radiate	Radiated Emission Limits for Class A at 10 meters						
Frequency (MHz)	Quasi-Peak limits, dB (μV/m)						
30 to 88	39.1						
88 to 216	43.5						
216 to 960	46.4						
960 and up	49.5						
Radiate	ed Emission Limits for Class B at 3 meters						
Frequency (MHz)	Quasi-Peak limits, dB (μV/m)						
30 to 88	40.0						
88 to 216	43.5						
216 to 960	46.0						
960 and up	54.0						

11.1.2 Test Procedure

Measurements are conducted with a quasi-peak detector instrument in the frequency range of 30 MHz to 1000 MHz and with the average detector instrument in the frequency range above 1000 MHz. The measuring receiver meets the requirements of Section One of CISPR 16 and the measuring antenna correlates to a balanced dipole.

Measurements of the radiated field are made with the antenna located at a distance of 10 meters from the EUT. If the field-strength measurements at 10m cannot be made because of high ambient noise level or for other reasons, measurements of Class B equipment may be made at a closer distance, for example 3m. An inverse proportionality factor of 20 dB per decade should be used to normalize the measured data to the specified distance for determining compliance.

The antenna is adjusted between 1m and 4m in height above the ground plane for maximum meter reading at each test frequency.

Page 70 of 80

The antenna-to-EUT azimuth is varied during the measurement to find the maximum field-strength readings.

The antenna-to-EUT polarization (horizontal and vertical) is varied during the measurements to find the maximum field-strength readings.

The EUT, where intended for tabletop use, is placed on a table whose top is 0.8m above the ground plane. The table is constructed of non-conductive materials. Its dimensions are 1m by 1.5m, but may be extended for a larger EUT.

Floor standing EUTs are placed on a horizontal metal ground plane and isolated from the ground plane by 3 to 12 mm of insulating material.

Equipment setup for radiated disturbance tests followed the guidelines of ANSI C63.4 (2003).

Example Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor. Then by subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - PA

Where $FS = Field Strength in dB (\mu V/m)$

 $RA = Receiver Amplitude (including preamplifier) in dB (<math>\mu V$)

CF = Cable Attenuation Factor in dB AF = Antenna Factor in dB (1/m) PA= Preamplifier Factor in dB

Assume a receiver reading of 52.0 dB (μ V) is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 dB (μ V/m).

 $RA = 52.0 \, dB \, (\mu V)$

AF = 7.4 dB (1/m)

CF = 1.6 dB

PA = 29.0 dB

FS = RF + AF + CF - PA

FS = 52.0 + 7.4 + 1.6 - 29.0

 $FS = 32 dB (\mu V/m)$

11.1.3 Test Results

Result	Complies by 7.1 dB
--------	--------------------

File: 100051433MPK-005 Page 71 of 80

Intertek Testing Services								
Radiated Emissions 30 MHz - 1000 MHz								
	FCC Part 15 Class B (Pk-Horizontal)							
Operator: KI	K			Model Nu	ımber: HP	Γ135		
April 16, 20	10			Company	: Javad GN	ISS, Inc.		
Frequency	Frequency Peak FS Limit@3m Margin RA CF AG DCF AF							
(Hz)	dB(uV/m)	dB(uV/m)	dB	dB(uV)	dB	dB	dB	dB(1/m)
3.73E+07	25.3	40.0	-14.7	28.5	0.7	32.1	10.5	17.7
9.14E+07	23.5	43.5	-20.0	35.2	1.1	32.0	10.5	8.7
1.07E+08	30.3	43.5	-13.2	39.1	1.2	32.0	10.5	11.5
1.50E+08	24.4	43.5	-19.1	35.9	1.4	32.0	10.5	8.6
5.74E+08	34.1	46.0	-11.9	34.6	2.8	32.2	10.5	18.4
8.03E+08	37.5	46.0	-8.5	34.8	3.4	32.2	10.5	21.0
9.01E+08	37.0	46.0	-9.0	32.4	3.6	31.6	10.5	22.1
Mode: Rx m	Mode: Rx mode							

Mode. Kx illode

Temp: 20 C, Humidity: 50%

Page 72 of 80

			Intertek Te	sting Service	ces			
		Radiated	d Emission	s 30 MHz -	1000 MH	Z		
		FCC	Part 15 Cl	ass B (Pk-V	ertical)			
Operator: KI	Operator: KK Model Number: HPT135							
April 16, 20	10			Company:	Javad GN	NSS, Inc.		
Frequency	Peak FS	Limit@3m	Margin	RA	CF	AG	DCF	AF
(Hz)	dB(uV/m)	dB(uV/m)	dB	dB(uV)	dB	dB	dB	dB(1/m)
4.05E+07	32.9	40.0	-7.1	37.2	0.7	32.1	10.5	16.6
1.07E+08	25.8	43.5	-17.7	35.3	1.2	32.0	10.5	10.8
1.53E+08	23.8	43.5	-19.7	35.6	1.4	32.0	10.5	8.3
1.88E+08	23.1	43.5	-20.4	33.1	1.6	32.0	10.5	9.9
5.74E+08	34.3	46.0	-11.7	34.4	2.8	32.2	10.5	18.8
6.03E+08	32.6	46.0	-13.4	32.4	2.9	32.3	10.5	19.1
8.03E+08	38.4	46.0	-7.6	35.2	3.4	32.2	10.5	21.5
9.01E+08	37.2	46.0	-8.8	32.2	3.6	31.6	10.5	22.5
9.01E+08 Mode: Rx m	37.2	46.0						

Page 73 of 80

11.2 Receiver antenna conducted emissions FCC 15.111(a)

11.2.1 Limit

The power at the antenna terminal shall not exceed 2.0 nanowatts (-57 dBm).

11.2.2 Test Procedure

The spectrum analyzer was connected to the RF output of the EUT. The EUT was setup in receiving mode. Test was performed at tuned frequencies of 150 MHz.

11.2.3 Test Results

The test results are presented on the following graphs.

Result

File: 100051433MPK-005 Page 75 of 80

Receiver spurious conducted, $150 \, \mathrm{MHz}$

Date: 25.MAR.2010 11:52:37

Receiver spurious conducted, 150MHz

Date: 25.MAR.2010 11:53:16

Receiver spurious conducted, $150 \, \mathrm{MHz}$

Date: 25.MAR.2010 11:56:23

12.0 List of Test Equipment

Measurement equipment used for compliance testing utilized the equipment on the following list:

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. INTERVAL	CAL. DUE
RF Filter Section	Hewlett Packard	85460A	3448A00267	12	12/04/10
EMI Receiver	Hewlett Packard	8546A	3710A00373	12	12/04/10
BI-Log Antenna	Antenna Research	LPB-2513/A	1154	12	06/23/10
Pre-Amplifier	Sonoma	310N	185634	12	11/19/10
Spectrum Analyzer	R & S	FSP40	100030	12	10/10/10
Spectrum Analyzer	R & S	FSU	200482	12	03/18/11
Pre-Amplifier	Miteq	AMF-4D-001180-24-10P	799159	12	07/28/10
Horn Antenna	EMCO	3115	9509-3712	12	11/03/10
Vector Signal	R & S	SMU200A	102499	12	04/28/11
Generator					
LISN	FCC	FCC-LISN-50-50-M-H	2011	12	09/25/10
Power meter	Agilent	E4416A	GB41292577	12	06/05/10

[#] No Calibration required

13.0 Document History

Revision/ Job Number	Writer Initials	Date	Change
1.0 / G100051433	KK	September 03, 2010	Original document

Page 80 of 80