

Figura 30.: Las funciones x^3 y sen(x) tiene un punto de inflexión en el origen

2) La dos primeras derivadas de f son

$$\begin{split} f'(x) &= \begin{cases} 6x^5 \operatorname{sen}\left(\frac{1}{x}\right) - x^4 \cos\left(\frac{1}{x}\right), & \operatorname{si} \ x \neq 0, \\ 0, & \operatorname{si} \ x = 0, \end{cases} \\ f''(x) &= \begin{cases} 30x^4 \operatorname{sen}\left(\frac{1}{x}\right) - 10x^3 \cos\left(\frac{1}{x}\right) + x^2 \operatorname{sen}\left(\frac{1}{x}\right), & \operatorname{si} \ x \neq 0, \\ 0, & \operatorname{si} \ x = 0. \end{cases} \end{split}$$

Como f $\left(\frac{1}{n\pi}\right)=\frac{(-1)^{n+1}10}{(n\pi)^3}$, se cumple que no hay ningún entorno de cero donde la segunda derivada tengo signo constante y, por tanto, la función no tiene un punto de inflexión en cero.

EJERCICIOS 11.4

Ejercicio 11.1. Sea $f: I \to \mathbb{R}$ una función convexa.

- 1) Si f tiene un mínimo relativo en un punto, entonces dicho mínimo es absoluto.
- 2) Supongamos que f es derivable. Si x_0 es un punto crítico de f, entonces f alcanza su mínimo absoluto en x₀. ¿Es cierto el mismo resultado si sólo suponemos que f es derivable en el punto crítico?

Ejercicio 11.2. Encuentra los intervalos de concavidad y convexidad de las siguientes funciones:

1)
$$f(x) = x^5 - 5x^4 + 5x^3 + 10$$
, 3) $f(x) = \frac{x^2 + 3x + 1}{x^2 + 1}$,

3)
$$f(x) = \frac{x^2 + 3x + 1}{x^2 + 1}$$

2)
$$f(x) = log(1 + x^2)$$
,

4)
$$f(x) = sen^2(x)$$
.

Ejercicio 11.3. Si I es un intervalo no trivial y $f: I \to \mathbb{R}$ es una función convexa, entonces la función $g: I \to \mathbb{R}$ definida por $g(x) = e^{f(x)}$ para todo $x \in I$, también es convexa.

Ejercicio 11.4. Sean I, J intervalos no triviales, $f: I \rightarrow J$ una función convexa y g: J $\rightarrow \mathbb{R}$ una función convexa y creciente. Prueba que g \circ f es

Da un ejemplo que pruebe que la composición de funciones convexas no tiene que ser una función convexa.

Ejercicio 11.5. Recordemos que una función $f: I \to \mathbb{R}$ es *afín* si es de la forma f(x) = mx + n, esto es, un polinomio de orden 1. Demuestra las siguientes afirmaciones:

- 1) f es afín en $\mathbb R$ si, y sólo si, f((1-t)a+tb)=(1-t)f(a)+tf(b) para cualesquiera t, a, $b\in\mathbb R$.
- 2) f es afín si, y sólo si, f es cóncava y convexa.
- 3) Si f: $[a,b] \to \mathbb{R}$ es convexa y existe $t \in]0,1[$ tal que f((1-t)a+tb)=(1-t)f(a)+tf(b), entonces f es afín en [a,b].

Ejercicio 11.6. Sea I un intervalo abierto, $f\colon I\to\mathbb{R}$ una función convexa y $[\mathfrak{a},\mathfrak{b}]\subset I$. Demuestra que existe $K\in\mathbb{R}$ tal que

$$|f(x) - f(y)| \le K|x - y|, \quad \forall x, y \in [a, b].$$

Ejercicio 11.7. Sea I un intervalo y $f: I \to \mathbb{R}$ una función convexa.

- 1) Demuestra que f es monótona o que existe $c \in I$ tal que f es decreciente en $I \cap]-\infty,c]$ y creciente en $I \cap [c,+\infty[$.
- 2) Si $g: [a,b] \to \mathbb{R}$ es una función convexa, entonces existen $\lim_{x \to a} g(x)$ y $\lim_{x \to b} g(x)$.

Ejercicio 11.8. Sea $f\colon \mathbb{R} \to \mathbb{R}$ convexa y acotada. Demuestra que f es constante.

Ejercicio 11.9. Sean $a,b\in\mathbb{R}^+$ y p, $q\in\mathbb{R}^+$ tales que $\frac{1}{p}+\frac{1}{q}=1.$ Prueba que se verifica

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}.$$

Indicación: usa que el logaritmo neperiano es una función cóncava.

Ejercicio 11.10. Sea $f: [a,b] \to [a,b]$ una función verificando que $|f(x)-f(y)| \le |x-y|$ para cualesquiera $x,y\in [a,b].$ Dado $x_1\in [a,b],$ definimos $x_{n+1}=\frac{1}{2}(x_n+f(x_n)).$ Demuestra que la sucesión $\{x_n\}_{n\in\mathbb{N}}$ converge a un punto fijo de f.