Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	ı :			
	(Les nu	uméros	s figure	ent sur	la con	vocatio	n.)			•							'	
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :			/			/												1.1

ÉVALUATIONS COMMUNES
CLASSE:
EC : □ EC1 □ EC2 ⊠ EC3
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Enseignement scientifique
DURÉE DE L'ÉPREUVE :2h
Niveaux visés (LV) : LVA LVB
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ : □Oui ⊠ Non
\Box Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
\Box Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 7

Exercice 1: Minimisation des pertes par effet Joule

Sur 10 points

Dans le sud de la France, un immeuble et une maison sont alimentés la journée par des éoliennes et des panneaux solaires distribuant respectivement des courants d'intensité I_1 et I_2 . On veut minimiser les pertes par effet Joule dans ce réseau de distribution électrique.

Partie 1 : Dissipation de l'énergie

Document 1 : transport de l'énergie électrique

L'électricité lors de son transport entre les lieux de production et les lieux de consommation subit des pertes en ligne dont le volume dépend de la distance de transport des caractéristiques du réseau. 80 % de ses pertes le sont par effet Joule dans les câbles électriques, soit pour la France, l'équivalent de deux unités de production nucléaires électriques.

Pertes sur le réseau de transport de l'électricité en France en 2019 :

Energie électrique transportée en France en 2019 : 495 × 109 kWh

2,22 % : taux de perte d'énergie en France en 2019 pendant le transport de l'électricité

Source: https://www.actu-environnement.com

- **1-** Calculer les pertes d'énergie en kWh en France en 2019 dues au transport de l'énergie électrique.
- **2-** Calculer en 2019 en France, l'énergie électrique en kWh à disposition des consommateurs.

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	scrip	otior	ı :			
Liberté Égalité Fraternité RÉPUBLIQUE FRANÇAISE NÉ(e) le :	(Les nu	uméro:	s figure	ent sur	la con	vocatio	on.)											1.1

Partie 2 : modélisation du réseau électrique

- **3-** Identifier les cibles destinatrices et les sources distributrices du réseau du document 2.
- **4-** La tension du réseau de distribution étant fixée, expliquer pourquoi les intensités I_3 et I_4 sont fixées.
- 5- Modéliser le réseau électrique du document 2 par un graphe orienté.
- **6-** Justifier que I_3 est environ égale à 36 A et I_4 à 94 A en sachant que les puissances par effet Joule correspondent à 5 % des puissances utiles.

On admet que les intensités vérifient la relation $I_1 + I_2 = I_3 + I_4$

7- Donner l'expression de la puissance dissipée par effet Joule P_J à minimiser en fonction de $I_{1,}$, I_2 , I_3 et I_4 . Exprimer la valeur de I_2 en ampères en fonction de I_1 .

Les intensités I_3 et I_4 étant connues et I_2 pouvant s'exprimer en fonction de I_1 , la puissance P_J peut s'exprimer en fonction de I_1 seulement. La représentation graphique de la fonction $P_J(I_1)$ est donnée dans le document 3.

8- La contrainte sur les intensités délivrées par les sources impose que I_1 peut prendre une valeur comprise dans l'intervalle [0; 70].

Déterminer les valeurs de I_1 et de I_2 pour lesquelles les pertes par effet Joule sont minimales.

Fin de l'exercice

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tion	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE NÉ(e) le :	(Les nu	uméros	s figure	ent sur	la con	vocatio	on.)											1.1

Exercice 2 : Forçage radiatif et conséquences

Sur 10 points

L'Agence de la transition écologique (ADEME) publie en octobre 2020 une prévision des impacts climatiques à venir d'ici 2050 en France. Ces impacts concernent principalement l'augmentation des températures et les risques d'inondation qui en découlent.

L'objectif de cet exercice est de comprendre quelques effets sur le climat de la variation du forçage radiatif.

<u>Document 1</u>: les scénarios RCP (pour *Representative Concentration Pathway*) sont quatre scénarios de trajectoire du forçage radiatif jusqu'à l'horizon 2100.

d'après https://www.climate-chance.org

Chaque scénario RCP est caractérisé par un nombre qui correspond à une valeur d'élévation du forçage radiatif par unité de temps et de surface, exprimé en $W \cdot m^{-2}$.

<u>Document 2</u>: composantes du forçage radiatif terrestre

Source: Wikimedias

- 1. 1.a Définir la notion de « forçage radiatif ».
 - **1.b** Justifier que, par unité de temps et de surface terrestre, ce forçage radiatif s'exprime en W·m⁻².
 - **1.c** Expliquer en quoi le forçage radiatif est lié à la variation de la température terrestre.
- **2.** Expliquer les causes de l'augmentation du forçage radiatif depuis la révolution industrielle (1850).

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° d	d'ins	scrip	otio	ı :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

3. On analyse l'effet du forçage radiatif sur le niveau des océans.

En tenant compte uniquement de la dilatation des océans, estimer la variation du niveau marin Δe à l'échelle du globe, en 2100, pour un RCP 4.5, qui correspond aux accords de Paris, à l'aide des données ci-dessous.

Données:

La variation ΔV d'un volume V_0 d'eau est proportionnelle à la variation de température ΔT : $\Delta V = \beta \cdot V_0 \cdot \Delta T$;

- coefficient de dilatation thermique de l'eau : $\beta = 2.6 \times 10^{-4} \, ^{\circ}\text{C}^{-1}$;
- Surface totale des océans : $S = 360 \times 10^6 \text{ km}^2$;

Épaisseur de la couche superficielle océanique concernée : e = 300 m.

4. À l'effet de la dilatation thermique, s'ajoutent d'autres causes qui pourraient conduire à une élévation du niveau des océans de l'ordre du mètre. Présenter les conséquences sur l'environnement et les activités humaines qu'aurait une telle élévation du niveau des océans.

Un des paramètres qui influe sur le forçage radiatif est l'albédo terrestre moyen. On rappelle que l'albédo d'une surface correspond au rapport de l'énergie lumineuse réfléchie sur l'énergie lumineuse incidente.

Le tableau suivant fournit quelques valeurs suivant la nature des surfaces.

Type de Surface	Albédo
Mer / Océan	0.26
Glace	0.6
Neige fraîche	0.85

Albédo de différentes surfaces (source : Météo France)

- **5.** Préciser si une augmentation de l'albedo terrestre produit une augmentation ou une diminution du forçage radiatif. En déduire que la fonte des glaces (terrestres et marines) se traduit par une augmentation du forçage radiatif.
- **6.** Expliquer pourquoi la fonte des glaces est un facteur de rétroaction positive de l'échauffement global du climat. Il est possible d'appuyer le raisonnement sur un schéma.

Fin de l'exercice