1) Representar gráficamente y expresar como intervalos los siguientes conjuntos (siempre que sea posible):

$A = \{x/x \in \mathbb{R} \ \land x < 3\}$	$B = \{x/x \in \mathbb{R} \ \land x \ge 4\}$
$C = \{x/x \in \mathbb{R} \ \land x+1 \le 3\}$	$D = \{x/x \in \mathbb{R} \ \land x-2 > 0\}$
$E = \{x/x \in \mathbb{R} \ \land x < 2 \land x \ge -1\}$	$F = \{x/x \in \mathbb{R} \ \land x < 1 \lor x > 3\}$
$G = \{x/x \in \mathbb{R} \ \land 0 < x+2 \le 5\}$	$H = \{x/x \in \mathbb{R} \ \land 3 < x - 2 \le 5\}$
$I = \{x/x \in \mathbb{R} \ \land x^2 \le 9\}$	$J = \{x/x \in \mathbb{Q} \land x^2 \le 16\}$

- 2) Sea A un conjunto cualquiera de números reales, es decir A \subset R. Un número real c se dice cota superior de A si para todo $x \in$ A se cumple y un número real d se dice cota inferior de A si para todo $x \in$ A se cumple
- 3) Si existen, hallar conjuntos de cotas, supremos, ínfimos, máximos y mínimos, de los conjuntos del primer punto.
- **4)** Sea $a \in \mathbb{R}$. Se llama entorno de centro a y radio $\delta > 0$ y se indica: $E_{\delta}(a)$, al conjunto: $E_{\delta}(a) = (a \delta; a + \delta)$ o lo que es lo mismo:
- **6)** Escribir como intervalos, y, si es posible, como entornos, los siguientes conjuntos de números reales:

$$A = \{x/2 \le x \le 4\}$$

$$B = \{x/-7 \le x < -2\}$$

$$C = \{x/-1 < x \le 3\}$$

$$D = \{x/-1 < x < 3\}$$

$$E = \{x/-3 < x < 1\} - \{-1\}$$

$$F = \{x/-3 < x < -1\}$$

$$G = \{x/|x-2| < 5\}$$

$$H = \{x/|x+2| \le 3\}$$

$$I = \{x/0 < |x-3| < 1\}$$

$$J = \{x/0 < |x+4| < 2\}$$

- 7) Sea A \subset R, diremos que $x_0 \in$ R es un punto interior de A si
- 8) Dar el conjunto derivado de cada uno de los siguientes conjuntos:

$$A = (-2; 5] B = (1; 7] C = [0; 4]$$

$$D = \{x/x \in \mathbb{Z} \land |x - 2| < 5\} E = \{x/x \in \mathbb{Q} \land |x - 2| < 5\}$$

$$F = \{x/x \in \mathbb{R} \land |x - 2| < 5\} G = \{x/x \in \mathbb{R} \land |x - 1| \le 3\}$$

$$H = \{3, 4, 5\} L = \{x/x = \frac{1}{n} \land n \in \mathbb{N}\}$$

$$M = \{x/x \in \mathbb{R} \land 0 < |x-3| < 2\}$$
 $N = \{x/x \in \mathbb{Q} \land |x| > 1\}$

- 9) Se dice que un conjunto A es abierto si
- 10) Indicar cuáles de los conjuntos del punto 8 son abiertos.
- 11) Indicar cuáles de los conjuntos del punto 8 son cerrados.

Respuestas:

1)
$$A = (-\infty, 3), B = [4, \infty), C = [-4, 2], D = (-\infty, 2) \cup (2, \infty), E = [-1, 2),$$
 $F = (-\infty, 1) \cup (3, \infty), G = [-7, -2) \cup (-2, 3], H = [-3, -1) \cup (5, 7], I = [-3, 3],$ $J = \{x \in \mathbb{Q} \land -4 \le x \le 4\}$

2)

Conjunto	Cotas superiores	Supremo	Máximo	Cotas inferiores	Ínfimo	Mínimo
Α	[3,∞)	3	No posee	No posee	No posee	No posee
В	No posee	No posee	No posee	(-∞,4]	4	4
С	[2,∞)	2	2	$(-\infty, -4]$	-4	-4
D	No posee	No posee	No posee	No posee	No posee	No posee
Ε	[2,∞)	2	No posee	(-∞,-1]	-1	-1
F	No posee	No posee	No posee	No posee	No posee	No posee
G	[3,∞)	3	3	$(-\infty, -7]$	-7	-7
Н	[7,∞)	7	7	(-∞,-3]	-3	-3
1	[3,∞),	3	3	(-∞,-3]	-3	-3
J	[4,∞)	4	4	$(-\infty, -4]$	-4	-4

- 3) A = [2, 4] B = [-7, -2) C = (-1, 3] $D = (-1, 3) = E_2(1)$ $E = (-3, -1) \cup (-1, 1) = E_2'(-1)$ $E = (-3, -1) = E_1(-2)$ $E = (-3, 7) = E_2(1)$ $E = (-3, -1) \cup (-1, 1) = E_2'(-1)$ $E = (-3, -1) \cup (-1,$
- **4)** A' = [-2, 5] B' = [1, 7] C' = [0, 4] $D' = \emptyset$ E' = [-3, 7] F' = [-3, 7] G' = [-2, 4] $H' = \emptyset$, $L' = \{0\}$ M' = [1, 5] $N' = \{x \in \mathbb{R} \land |x| \ge 1\}$
- 5) Son conjuntos cerrados: C, D, G, H
- 6) Son conjuntos abiertos: F, M