

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 15 SEP 2004
WIPO PCT

MAGYAR KÖZTÁRSASÁG

ELSŐBBSÉGI TANÚSÍTVÁNY

Ügyszám: P0302704

A Magyar Szabadalmi Hivatal tanúsítja, hogy

Lindmayer S. István, Döbrököz,

Magyarországon

2003. 08. 21. napján 30959/03 iktatószám alatt,

Tú nélküli injekciós berendezés és az ahoz tartozó oltóanyaggal töltött patronok
című találmányt jelentett be szabadalmazásra.

Az idefűzött másolat a bejelentéssel egyidejűleg benyújtott melléklettel mindenben
megegyezik.

Budapest, 2004. év 09. hó 03. napján

Szabó Emilia!
A kiadmány hiteléül: Szabó Emilia osztályvezető-helyettes

The Hungarian Patent Office certifies in this priority certificate that the said
applicant(s) filed a patent application at the specified date under the indicated
title, application number and registration number. The attached photocopy is a
true copy of specification filed with the application.

Best Available Copy

**TŰ NÉLKÜLI INJEKCIÓS BERENDEZÉS ÉS AZ AHHOZ TARTOZÓ
OLTÓANYAGGAL TÖLTÖTT PATRONOK**

A találmány tárgya olyan tü nélküli injekciós berendezés, melynek a hatóanyagot tartalmazó patron befogadó alsó része, és a belövéshez szükséges energiát szolgáltató felső része van, mely felsőrészben az energiatároló szerkezetrészek rugalmas alakváltozásra képes egységek, és az alsórész a felsőrészhez képest elforgathatóan, és elforgatáskor a felsőrészhez képest a készülék hossztengelye irányában kényszermozgást végzően, mégpedig a felsőrészhez közelítő irányú kényszermozgása esetén az energiatároló szerkezetrészek feszített állapotát eredményezően van, önmagában ismert módon, a felső részhez csatlakoztatva, továbbá a berendezés az energiatároló szerkezetrészek feszített állapotát megtartó reteszelő szerkezettel, és a reteszelést feloldó kioldó szerkezettel van ellátva, tárgya továbbá a bejelentésnek az oltóanyagot tartalmazó patron.

A humán orvoslásban és az állatgyógyászatban egyaránt régóta használatosak az olyan folyadék illetve oldat alakban előkészített gyógyszerek vagy más hatóanyagok, melyeket közvetlenül a bőrbe, bőr alá, izomba vagy a vénába injektálnak. Az injektáló eszközök egyes újabb változatai nem tartalmaznak tűt. A hatóanyagot a testfelületre helyezett injektáló készülékkel, egy szűk nyíláson át nagy nyomással juttatják a bőrbe, bőr alá, ill. izomba. Bőr alá történő injektálás esetén a hatóanyag a bőrön áthatolva a szövetekbe jut és ott a hajszálerek keresztül felszívódik. A tűnélküli megoldások egyik előnye, hogy nem fordulhat elő többszöri tűhasználat vagy hiányos sterilizálás miatti fertőzés. További előny, hogy a tü nélküli készülékekkel végezhető hatóanyag bevitel mintegy hétszer kisebb roncsolást (kb. 0,008 ezred négyzetmilliméter beviteli nyílást) okoz a felhámon, mint az eddig használt legkisebb átmérőjű injekciós tü. Következésképpen a tü nélküli megoldás kevésbé fájdalmas a páciens számára. A hatóanyag steril patronban van előkészítve, mely pontosan illeszkedik az injektáló szerkezethez. A hatóanyag belövéséhez szükséges tolóerőt szolgáltathatja komprimált gáz expanziója, mint az US 4,913.699 szabadalomnál, vagy mechanikai rugó szerkezet, mint az US 5,190.523 szabadalom szerinti megoldásnál. Ismert olyan megoldás is, ahol a célnak megfelelő robbanótöltet berobbantása adja az injektáláshoz szükséges energiát. Az ismert tü nélküli injekciós készülékek általában két részből állnak. Az egyik rész a hatóanyagot tartalmazó patronnak betétként történő befogadására szolgál, a másik rész az energiatároló egység, ahol a kilövéshez a rugó vagy a komprimált gáz tartálya, netán a robbanó töltetes kapszula van elhelyezve. Az ilyen készülékek úgy működnek, hogy rugó esetén a rugót feszített állapotba hozzák, és ebben az állapotában reteszelik. A készülék hatóanyag tároló részébe behelyezik a

gyógyszert tartalmazó patron, mely tartalmazza a hatóanyag kilövését szolgáló dugattyút. Ezután a berendezést a patron kilövő nyílásával a bőrfelületre helyezve kioldják az energia tároló egységen tárolt energiát. Rugó esetén megszüntetik annak reteszélését, más megoldásoknál megnyitják a gáztartályt, illetve berobbantják a töltetet. Mindegyik esetben a felszabaduló energia nagy erővel tolja a patron dugattyúját a kilövő nyílás felé, és a patronban tárolt hatóanyagot a bőrbe vagy a bőrön áthatolva a bőr alatti szövetekbe esetleg az izomba juttatja. Amint az köztudott, a hagyományos injekció beadáskor az orvos hirtelen mozdulattal döfi a tü a kívánt helyre, megnyitva ezzel a hatóanyag bejuttatás útját. Ezután a fecskendő dugattyújának mérsékelt nyomásával a hatóanyag viszonylag lassú behatolását idézi elő. Ellenkező esetben az injekciót fájdalmas lenne és egyben további szövetroncsolódást is okozna. A tü nélküli injekció készüléknek a hatóanyag belövésekor ugyanazokat a követelményeket kell teljesítenie, amit a manuális eljárás esetén az orvostól vagy az ápolótól megkívánunk. A kívánt eredményhez az injektáló készüléknek könnyen kezelhetőnek kell lennie, ami alatt azt kell érteni, hogy rugó esetén az egyszerűen megfeszíthető legyen, kellő energiát tároljon, és az energiát kioldáskor a megfelelő sebességgel adja le. Az injektálás ne legyen fájdalmas, és minimális roncsolást okozzon a szövetekben. Ennek a korszerű eszköznek a kívánatos elterjedéséhez elengedhetetlenül szükséges az, hogy a megfelelő minőségű készülék a felhasználók számára, beleértve az egészségbiztosítási szerveket is, elérhető áron kerüljön forgalomba. Az ismert megoldások esetében ezek a követelmények nem teljesülnek maradéktalanul. Az ismert változatok, melyek a fenti szabadalmakban, továbbá más piaci termékek megoldásaiban fellehetők, olyan energiatároló szerkezeteket alkalmaznak, melyek a hatóanyagokat a követelmények szerinti sebességgel juttatják a bőrbe, bőr alá, ill. izomba, azonban a felhám átlyukasztásához szükséges indító lépést, mely tehát a klasszikus eljárásnál a tü bedöfésének felel meg, úgy érik el, hogy kioldáskor az energialökés ütés-szerűen hat a hatóanyagot tartalmazó patron dugattyújára. A felszabaduló energia ugyanis ezekben a berendezésekben előbb felgyorsítja az energia tároló egység dugattyúrúdját, mely ütközéssel éri el az oltóanyag tároló patron dugattyút, és csak az ütközés után történik a dugattyú folyamatos tolása. Az energia tároló egység dugattyúrúdjának az oltóanyag tároló patron dugattyúra gyakorolt ütése átadódik a készülékkel érintkező testfelületre, és ott sérülést, véraláfutást, elszíneződést és ezzel járó fájdalmat okoz. A fejlesztési törekvések olyan energiatároló és energiát leadó szerkezet irányába mutatnak, mely optimális energiamennyiséget tud tárolni, és azt mindig a feladat elvégzéséhez szükséges optimális időben és sebességgel képes leadni. Alkalmatlan a túl alacsony erőhatás, melynek következménye, hogy a hatóanyag nem jut át, vagy nem tökéletesen jut át a felhám rétegen. Esetleg, az energiakészlet elfogyása vagy túl alacsony szintre süllye-

dése miatt, nem sikerül a patron teljes kiürítése. Egyes megoldások kombinált rugószerkezettel próbálkoznak. Bár nem küszöbölik ki a ráütést, de a ráütésből eredő sérülések csökkentése érdekében bizonyos lengéscsillapítás elérésére törekszenek., mint az USP 4,722.728 szabdalomból megismerhető megoldás. Ezek azon az elképzelésen alapszanak, hogy a rugóegyüttet, mint minden fémből készült rugó, nagy kezdeti energiával indul, mely fokozatosan lecseng. A kioldás pillanatában előállítja a felhámot átlyukasztó ütést, majd lineárisan csökkenő energiával üríti ki a hatóanyag tárolására kialakított teret és juttatja a hatóanyagot a testbe. A káros ütő hatást azonban ezzel a megoldással nem lehet kiküszöbölni, és valójában nincs megoldva a leírás szerinti lengéscsillapítás sem.

A hatékony energiafelhasználás elengedhetetlen feltétele többek között, hogy a patron szilárdan és hézagmentesen illeszkedjen a berendezés patron tartó alsó részébe. Ezt a feladatot eddig műanyag patronnal nem sikerült megoldani. Ezért anyaghelyettesítéssel törekednek kiküszöbölni a hiányosságokat. A hatóanyagot tartalmazó patront üvegből, egyes esetekben fémből készítik, hogy biztos alaktartást és tökéletes illeszkedést érjenek el. Az üvegpatron azonban költségesebb, és drágítja az új megoldás alkalmazását. A készülék egyik nagyon fontos része a patron kilővő nyílása, amelynek pontos méretezése és ideális profilkialakítása üvegből vagy fémből nem oldható meg kielégítően. Ezért az üvegpatronba jelenleg fémbetétként, a fémből készült patronokba üvegből vagy féldrága kövekből (pl. zafir, rubin stb.) kell kialakítani a kilővő nyílást, melyeknek a patronba illesztése azonban szilárdsági és a patron belvilágában a fém és üveg illesztési, érintkezési zónában a fellépő turbulencia miatt áramlástan problémákat vet fel. Az ilyen megoldás továbbá azt a veszélyt hordozza magában, hogy a beragasztott betétek nem megfelelő kötés esetén kilazulhatnak, és sérülést okozhatnak a felhasználónak. Jóllehet a szabadalmakból megismerhető és a forgalomban beszerezhető berendezések eleget tesznek a legfontosabb egészségügyi, és műszaki követelményeknek, de nem oldják meg az elmondott igényesebb feladatokat. Nem tudják továbbá biztosítani az egyszerhasználatos készülékeknel elfogadható gazdaságos forgalmi árszínvonalat.

A találmány célja az elmondott hátrányokat kiküszöböltő tú nélküli injekciós készülék és a hozzá való hatóanyag tároló patron kifejlesztése megbízható műszaki színvonalon, egyszerű gyártási technológiával és a jelenleginél kedvezőbb, egyszer-használhatóságot biztosító gazdaságos árszínvonalon.

A találmányt megalapozó felismerés, hogy a hatóanyag bőrbe, bőr alá, ill. izomba juttatása akkor oldható meg ütés nélkül, ha az első néhány tized másodpercben felszabadított energiának akkora lökőereje van, hogy azonnal kialakítja a felhám rétegben a béhatolási csatornát. Ilyen megoldásnál a hatóanyag tároló patronban lévő dugattyú állandó érintkezésben van az

energiát közlő dugattyúszárral, és szemben az eddig ismert szerkezetekkel, nincs szükség arra, hogy a dugattyúszár előbb a felszabaduló energiától gyorsulást kapjon, és e gyorsulással csapódjon a hatóanyag tároló patron dugattyújára.

Az elmondott feltalálói felismeréshez kapcsolódik az a találmányi gondolat is, hogy a felszabaduló energia legalább 60%-a, de célszerűen 80-90%-a a teljes dugattyú elmozdulás első 15-20% útszakaszára essen. Ez a követelmény a találmány szerint olyan összetett rugó szerkezzel valósítható meg, melyben az egyik szerkezeti összetevő egy rövid relaxációs elmozduláson már nagy energiat ad le, mig a második vagy további összetevők a kezdeti nagy energiat biztosító egység kiiktatásával a kellő mértéktartó sebességgel biztosítják a dugattyú teljes végigfutását a patronban a kilövő nyílásig. Ennek megfelelően a találmány szerinti rugó szerkezetnek egy „kemény”, viszonylag kis méretváltozásnál is nagy energiatároló kapacitású komponensből, és ehhez képest lágyabb további komponens(ek)ből kell állnia.

Az energiatároló szerkezetként több-, és ezen belül többféle különböző rugót alkalmazó, de a dugattyú indításánál még mindig ráütést igénylő, megoldással szemben felismertük, hogy a többféle rugó csak akkor hatékony, és csak akkor adja az energia-leadás szükséges idő-karakteristikáját, mely ráütés nélkül képes a feladat elvégzésére, ha az energiatároló szerkezetben a mondott „kemény” indító egység az indítás pillanatában a kisebb energiat biztosító (lágyabb) rugóval egységes, de a dugattyú 15-20% elmozdulása után már leválasztott, és független a többi kiegészítő egységtől, a működésnek mind a megfeszítési (energiatárolási), mind a kioldási (relaxációs) szakaszában. Az elmondottakhoz kapcsolódik az a további feltalálói felismerés, hogy nem elég a rugók kiválasztása és beépítése, hanem ezen felül azokat a lineáris működési szakaszuknak csak azon a részén szabad alkalmazni, ahol az igénybevétele nem okoz maradandó alakváltozást. Ennek érdekében a készüléket el kell látni külön-külön az indító- és a kiegészítő energiatároló egységek megfeszítését és relaxációját behatároló szerkezeti egységekkel.

További, a találmányt megalapozó felismerés, hogy a tárolt energia hatékony felhasználásának, különösen a kioldás utáni első pillanatokban, elsőrendű feltétele, hogy a patron a lehető legnagyobb tökéletességgel illeszkedjen a berendezés patron befogadó részébe, és abban szílárdan rögzítve legyen. A találmányi megoldás szerint gazdaságosan ilyen tökéletes illeszkedés azonos kúpszögű kónuszos befogadóba illő kúpos alakú patronnal oldható meg. E felismerés gyakorlati következménye, hogy elkerülhető a drága üveg vagy fém patronok használata, melyekbe külön fém vagy drágakő betétként kellene behelyezni a folyadék kiáramlást biztosító fűvökát. Helyette jól alkalmazható a vegyszerálló, és jól gyártható műanyag patron,

melynél a kúpos illesztés miatt, már 0,5-0,8 mm falvastagság is kellő szilárdságot biztosít, és a kilövő nyílás nagy precizitással alakítható ki a patron saját anyagából.

A találmanyi felismerés szerinti hatóanyag tároló patron így sikeresen és gazdaságosan el-készíthető műanyagból, tekintettel arra, hogy csak egyszeri felhasználásra kerül sor, és felismerésünk szerint más idegen anyag használata nélkül, saját anyagából kialakítható a fém kilövő nyílással méretben és profilban és pontosságban teljesen egyenértékű kilövő nyílás. Ez utóbbi azzal az előnnyel is jár, hogy sehol sincs a patron belső felülete kétféle anyag összeillesztésével megtörve. Így elkerülhető a folyadékáramlásból keletkező turbulencia, mely végső soron energia megtakarításhoz, ezáltal a készülék méreteinek és nem utolsó sorban az árának jelentős csökkenésével jár. Nem áll fenn továbbá a fémbetét kisszakadás veszélye, és a patron lényegesen olcsóbb, mint a fémbetéttel kialakított kilövő nyílású változata.

Az elmondott találmanyi felismerések alapján a kitűzött célt elérő megoldás tü nélküli injekciós berendezés, melynek a hatóanyagot tartalmazó patront befogadó alsó része, és a belövés-hez szükséges energiát szolgáltató felső része van, mely felsőrészben az energiatároló szerkezetek rugalmas alakváltozásra képes egységek, és az alsórész a felsőrészhez képest elforgathatóan, és elforgatáskor a felsőrészhez képest a berendezés hossztengelye irányában kényezermozgást végzően, mégpedig a felsőrészhez közelítő irányú kényszermozgása esetén az energiatároló szerkezetrészek feszített állapotát eredményezően van, önmagában ismert módon, a felsőrészhez csatlakoztatva, továbbá a berendezés az energiatároló szerkezetrészek feszített állapotát megtartó reteszelő szerkezettel, és a reteszelést feloldó kioldó szerkezettel van ellátva. A berendezés azzal jellemezhető, hogy az energiatároló szerkezetrészek között legalább egy, a hatóanyag tároló patron belvilág hosszának legfeljebb 25%-át, előnyösen 15-20%-át kifejű mértékű reverzibilis rugalmas alaktorzulás mellett, a teljes kilövési energia (nyomás) minimálisan 60%-át, célszerűen 80-90%-át tárolni képes indító egység, ahol a berendezés az indító egység megfeszítésére, továbbá relaxációjának behatárolására elkülönített szerkezetrészekkel van ellátva.

A berendezés előnyösen azzal jellemezhető, hogy az indító egység poliuretan rugó vagy fém rugó köteg, mely a berendezésen belül külön tokban van elhelyezve, és megfeszítéskor a többi energiatároló szerkezetrészt nem érintő térköztartó köti össze a feszítőerőt közlő szerkezeti résszel, adott esetben a reteszelő szerkezettel.

A berendezés előnyösen azzal is jellemezhető, hogy az indító egység mellett kiegészítő egység energiatároló szerkezetrészekkel van ellátva, mint lemez- és/vagy spirál-rugók.

A berendezés előnyösen még azzal jellemezhető, hogy a kiegészítő egység koaxiálisan egymásba helyezett 2-8, adott esetben 4-5 spirálrugóból áll és körbeveszi a felső rész geomet-

riai tengelyét, vagy több kiegészítő egység esetén ezek szimmetrikusan helyezkednek el a geometriai tengely körül.

A berendezés előnyösen még azzal is jellemzhető, hogy a kioldó szerkezet a felső rész tejjén elhelyezett kioldógomb, mely a felső rész tengelyében a reteszelő szerkezetig lenyúló kioldó rúddal van összekötve.

Tárgya továbbá a találmanyi bejelentésnek tü nélküli injekciós berendezés energiatároló egységgel vagy egységekkel, energia felszabadító kioldó szerkezettel, hatóanyag tároló patronr befogadó résszel, és ahoz tartozó hatóanyag patron, mely pontosan illeszkedik a készülék hatóanyag-tartalmazó patron befogadó alsó részébe. A berendezés és a patron azzal jellemzhető, hogy a készülék alsó részének a patron befogadó belseje a kilövő nyílás felé kúposan tágul és a patron a befogadó alsó részbe pontosan beleillő csonka kúp alakú, azaz borító pálástjának hajlásszöge nagy pontossággal megegyezik, a befogadó alsó rész kónusznak a hajlási szögével.

A találmany szerinti berendezés és patron előnyös kiviteli alakja előnyösen azzal jellemzhető, hogy a patron befogadó alsó rész belső kúpszöge $1,2 - 1,8^\circ$, pontosabban $1,5^\circ$, és a patron külső kúpszöge mindenkor pontosan megegyezik a befogadó hüvely mindenkor aktuális kúpszögével.

A berendezés előnyös kiviteli alakja azzal jellemzhető, hogy az energiatároló egységek között az összes energia nagyobb részét önmagában tartalmazó indító egysége van, mely megfeszítésére, továbbá relaxációjának behatárolására elkülönített szerkezetrészekkel van ellátva.

A berendezés egy további előnyös kiviteli alakja azzal jellemzhető, hogy a hatóanyag tároló patron kilövő nyílása a patron saját anyagából van kialakítva.

A berendezés előnyös kiviteli alakja azzal is jellemzhető, hogy a hatóanyag patron kilövő nyílása pontosan a patron szimmetria tengelyében helyezkedik el.

Ugyancsak tárgya a jelenlegi találmánynak a patron, tü nélküli injekciós berendezéshez, a hatóanyag tárolása céljára, egészségügyileg engedélyezett és fröccsöntési technológiával állítható műanyagból elkészítve, hatóanyag injektálására szolgáló kilövő nyílással, szabályos henger belvilággal, melyben dugattyú helyezkedik el. A találmany szerinti patron azzal jellemzhető, hogy a patron falvastagsága legfeljebb 1,5 mm, a kilövő nyílás átmérője legfeljebb 0,2 célszerűen 0,1 mm, és a kilövő nyílás a patron saját anyagából van kialakítva.

A patron előnyösen azzal jellemzhető, hogy az előállításához alkalmazott műanyag a polikarbonát, poli-propilén, poli-etilén anyagok valamelyike vagy azok valamely kombinációja.

A patron előnyösen azzal is jellemzhető, hogy a patron belvilága a kilővő nyílástól evolvens profilú szegmenssel van átvezetve a patron hengeres szakaszába.

A patron előnyösen még azzal jellemzhető, hogy külső felülete, az injekciós berendezés kónuszosan kialakított, patront befogadó, alsó részébe pontosan beleillő csonkakúp alakú, aholis a patron külső felületének kúpszöge azonos a berendezés alsó részének befogadó rész belvilág kúpszögével.

A találmányt részletesen a csatolt rajzok segítségével kiviteli példákon mutatjuk be, nem korlátozva azonban a találmány alkalmazhatóságát, sem az igényelt oltalmi kört a bemutatott kiviteli példákra.

Ábrák

- 1.ábra A találmány szerinti berendezés hosszmetszete teleszkóposan zárt (előfeszített) állapotban, patron nélkül.
- 2.ábra A berendezés hosszmetszete teleszkóposan nyitott, hatóanyaggal feltöltött patron tartalmazó állapotban.
- 3.ábra A berendezés hosszmetszete teleszkóposan nyitott (relaxált), és kiürített patront tartalmazó állapotban.
- 4.ábra A berendezés indító egysége vázlatos rajza előfeszített állapotban.
- 5.ábra A készülék indító egysége vázlatos rajza relaxált állapotban.
- 6.ábra A berendezés reteszelő szerkezete vázlatos rajza reteszelt állapotban.
- 7.ábra A berendezés reteszelő szerkezete vázlatos rajza kioldott állapotban.
- 8.ábra A berendezés keresztmetszete a 2.ábra A-A metszete szerint.
- 9.ábra A berendezés keresztmetszete a 3.ábra B-B metszete szerint.

A tű nélküli injekciós 20 berendezés egy lényegében henger alakú tubus, mely 2 felső részből, és ahhoz csatlakozó 1 alsó részből áll, ahol a „felső” és „alsó” kifejezéseket a 20 berendezés injektáláskor a felhátra kerülő végétől távolabbi és közeli berendezrészekre értjük. (1.ábra) A 2 felső rész felülről lefelé haladva a következő részeket tartalmazza: 5 kioldó szerkezet, 3 energiatároló szerkezetrészek, 4 reteszelő szerkezet, és az 1 alsó részhez csatlakozó belsőmenetes rész. Az 1 alsó rész egy olyan egybefüggő egység, melynek középső része egy, a 2 felső részbe benyülő cső, és az ezzel egybefüggő külső része hüvelyként kívülről körül fogja a 2 felső rész csatlakozó részét. Az 1 alsó rész cső részének a 2 felső részbe benyülő szakasza olyan külső menettel van ellátva, mely illeszkedik a csatlakozást biztosító belső menetbe. Az

1 alsó rész külső felületén szárnyak vannak kialakítva a jobb fogás biztosítására az 1 alsó rész forgatásakor. A 2 felső rész itt elmondott csatlakozó része belül üres hüvely, és csak a legalján szükül az 1 alsó rész cső részének méretére, ahol a megfelelő számú belső menet van. A belső menet meneteinek száma annyi, amennyi ahhoz szükséges, hogy az 1 alsó részt a kül-sőmenetes csőrésznel fogva biztonsággal megtartsa. Az 1 alsó rész elforgatáskor a 2 felső rész csatlakozó részének belső menetébe kapaszkodva a csőrész behatol a 2 felső részbe, a külső rész pedig feltolódik rá. (1.ábra) Ellenkező irányú forgatáskor kitolódik belőle, lehúzódik róla. (2.ábra) Ily módon a csavarmenetes kapcsolódásban lévő 1 alsó rész és 2 felső rész teleszkóposan tolódik egymásba vagy nyílik szét. A 2 felső rész csatlakozó részének belsejében van a 4 reteszél szerkezet. (6.ábra) A 4 reteszél szerkezet egy, a 2 felső részbe pontosan beleilő, felül, alul zárt henger alakú 41 rugós csésze, amelyben dugattyúszerűen egy persely mozog, amit egy retesrugó a 41 rugós csésze fedőlapja felé nyom. A persely hengerfelületén, körben egyenletesen elosztva, három vagy négy fészek van, és a 41 rugós csésze hengeres falában a fészekkel azonos számban és körkiosztásban áttörések vannak. minden fészek és azai fedésben levő áttörésben egy-egy retesgolyó van. A retesrugó összenyomott állapotában a persely fészkei a 41 rugós csésze áttöréseivel fedésben vannak. Mivel a retesrugó a perselyt felfelé nyomja, a persely, célszerűen evolvens profilú, fészkei a retesgolyókat a 2 felső rész belső felületére szorítják, de a golyók megakadályozzák, hogy a persely a 41 rugós csészében utóbbi tetejéig felmenjen. Ha a 41 rugós csésze a 2 felső rész csatlakozó részének belsejében felfelé mozog, elér egy olyan keresztmetszetbe, ahol a 2 felső rész falának belső felületén, a 41 rugós csésze áttöréseinek megfelelő számú és körkiosztású, reteszfészek van. (8.ábra) Amint a 41 rugós csésze ezt eléri, a retesgolyók bepattannak a reteszfészekbe, és ezzel megszűnik a 41 rugós csésze szabad mozgása. Retesrugó hatására a persely nekinyomódik a 41 rugós csésze tetejének, és a retesgolyók számára megszűnik a lehetőség, hogy a reteszfészekből kilépjenek. Így a 41 rugós csésze helyzete rögzítődik. (7.ábra) A 41 rugós csésze retesz fenéklapjához merev kapcsolódásban 42 dugattyúrúd van rögzítve. A 42 dugattyúrúd pontosan a 20 berendezés hossztengelyében áll. Az injektálandó hatóanyag egy külön 8 patronban van. A 8 patron mérete és alakja olyan, hogy pontosan, hézagmentesen illeszkedjen az 1 alsó rész cső részébe. (2.ábra) A 8 patron behelyezése után az 1 alsó rész alul lezárható egy becsavarozható záráelemmel. Célszerűbb azonban a 8 patron menetes felületrésszel ellátni, mely illeszkedik az 1 alsó rész alján kialakított csavarmenetbe. A 8 patron alsó, menetes részén van kialakítva a hatóanyag injektálására szolgáló 82 kilovő nyílás, a 8 patron belsejében 81 dugattyú van. A 8 patron belseje pontos henger, melyben a 81 dugattyú szabadon, de mindenhol tökéletes tömítettséget nyújtva, mozoghat. A 41 rugós csésze retesz fenéklapjához

kapcsolódó 42 dugattyúrúd hossza olyan, hogy a 4 reteszelő szerkezet reteszelő állásában a 42 dugattyúrúd, benyülva az 1 alsó rész csőrészébe, pontosan és éppen érinti a hatóanyaggal tele 8 patron 81 dugattyúját.

A 20 berendezés 2 felső részében, a 4 reteszelő szerkezet felett, az 3 energiatároló szerkezet-rések helyezkednek el. Magasabban, azaz a 5 kioldó szerkezet alatt, van az energiatároló 31 indító egység, melynek az a feladata, hogy a 35 kiegészítő egységgel együtt az injekciózáskor, a hatóanyag bejuttatásához átüssse a felhám réteget, és kialakítsa a hatóanyag bejuttatásához a beviteli csatornát. A feladat megoldásához csak kevés hatóanyagot szabad felhasználni, de azt nagyon erős sugárral kell a bőrre löni. Ebből következik, hogy a 8 patronban csak nagyon rövid dugattyú elmozdulás engedhető meg, de az elmozdulásnak rendkívül gyorsnak kell lennie. Jelen kiviteli példánkban ezért a 31 indító egység poliuretan rugó egy 32 tokba zárva. (4.ábra) A 32 tok rögzítve van a 2 felső részhez, így utóbbiban a 32 tok nem mozoghat. A 32 tok tetejéhez támaszkodik a 31 indító egység, míg fenéklapja a 20 berendezés tengelyében áttört, és az áttörésen 33 térköztartó van átvezetve. A 33 térköztartó a 20 berendezés tengelyében elhelyezkedő, kellő szilárdságú, teherbírású és alaktartó, összefüggő belső hosszanti csatornával rendelkező profilos téridom. A 33 térköztartó felső vége egy 34 indító talplaphoz van rögzítve, mely szabadon mozoghat a 32 tokban a 20 berendezés tengelye irányában. (5.ábra) Az 34 indító talplap nekifeszül a 31 indító egység aljának. A 2 felső résznek a 32 tok alatti belső terében további energiatároló 35 kiegészítő egységek vannak. Egy-egy 35 kiegészítő egység több, célszerűen 4-6, spirálrugóból áll, melyek koaxiálisan vannak egymásba helyezve. A 3 – 5 db, egymással azonos, 35 kiegészítő egység egyenletesen elosztva veszi körül a 20 berendezés tengelyét, és így az ott elhelyezkedő 33 térköztartót. A 33 térköztartó profilja úgy van kialakítva, hogy külső oldalán körben, annyi konkáv körives csatorna fusson végig, ahány 35 kiegészítő egység veszi körbe. (9.ábra) A konkáv felületek közötti bordák egyben merevítőként is szolgálnak. Elképzelhető olyan kiviteli alak is, melynél egy 35 kiegészítő egységet alkalmazunk, és a koaxiális spirálrugók közös közepén áll a 33 térköztartó. E megoldás a tapasztalatok szerint korlátoltabb szabályozási lehetőséget ad a rugók célszerű kiválasztása és kombinálása tekintetében. A 41 rugós csésze lehetséges mozgási határai a 2 felső rész csatlakozó részében közel a csatlakozó rész belsőmenetes alsó részétől, a 41 rugós csésze reteszelt állásáig. A 41 rugós csésze e két végállása (Pontosabban: a 41 rugós csésze fedőlapjának két helyzete) közötti különbség határozza meg az energiatároló 35 kiegészítő egységek feszített és relaxált állapotához a 2 felső rész belséjében rendelkezésre álló teret. (2 és 3.ábrák) A 33 térköztartó hosszúságának megválasztásához meg kell határozni, hogy a 32 tokban lévő 31 indító egységet a feszített állapothoz milyen mértékben, azaz hány mm-rel kell összenyomni. A

33 térköztartó hosszát úgy kell megválasztani, hogy a 41 rugós csésze ennyit emeljen rajta, mielőtt eléri a reteszelt állapotot, azaz ennyivel kell mélyebbre nyúlnia, mint a 41 rugós csésze reteszelt végállása. A 5 kioldó szerkezet feladata a reteszelés megszüntetése, és a felhalmozott energia felszabadítása. A 2 felső rész legtetején helyezkedik el a 5 kioldó szerkezet, mely egy enyhe biztosító rugónyomás ellenében lenyomható 51 kioldógomb, és ahoz csatlapoztatott 52 kioldó rúd. A 52 kioldó rúd számára a 41 rugós csészében lévő perselyig csatorna van kialakítva. A 32 tok tetején és a 41 rugós csésze fedőlapján áttörések vannak. 52 kioldó rúd ezeken, továbbá a gyűrű alakú 31 indító egység közepén, és a 33 térköztartó üregén halad végig. 51 kioldógomb megnyomásakor a persely lenyomódik a reteszmolyóig, melyek így a reteszfészkekkel a persely fészkeibe tolódnak át, és ezáltal a reteszelés megszűnik. A 51 kioldógomb kemény védőgallérrel van körülvéve az akaratlan lenyomás ellen. Más megoldás szerint a 51 kioldógomb valamelyen irányú 30-60°-nyi félre fordításával olyan ütközöbe akad, mely megakadályozza a lenyomhatóságot.

A 20 berendezés működése és alkalmazása a következő: A 8 patronot még nem tartalmazó 20 berendezést előkészítjük a használathoz. Az utolsó injekciótási esemény kiürült 8 patronja már el lett távolítva az 1 alsó részből, de ekkor még a 42 dugattyúrúd az 1 alsó rész cső részében van, és a 41 rugós csésze alja rajt ül az 1 alsó rész csőrészén. (1.ábra) Az 1 alsó részt a szárnyaknál fogva elforgatva becsavarjuk a 2 felső részbe. Ezzel a művelettel a '41 rugós csészét a csatlakozó részben fokozatosan emeljük a reteszelő kerestmetszetig. A további emelést megakadályozza, hogy az 1 alsó rész szárnyai ütköznek a 2 felső rész külső felületén kialakított ütközökön, pl. peremen. 41 rugós csésze emelésével az energiatároló 35 kiegészítő egységeket relaxált állapotból feszített állapotba hozzuk, és a folyamat utolsó szakaszában, a 33 térköztartó és 34 indító talplap közvetítésével, 31 indító egységet is megfeszítjük. Az 1 alsó rész forgatásával tehát manuálisan energiát közlünk a 20 berendezéssel, mely azt a 3 energiatároló szerkezetrészekben tárolja. Mikor a 41 rugós csésze eléri a reteszelt pozíciót, az 1 alsó rész energiamegtartó szerepe megszűnik. Ezt a szerepkört a 4 reteszelő szerkezet veszi át, mivel a megfeszített rugók nyomóerejével szemben a reteszmolyók viselik a terhelést. Ezután az 1 alsó részt ellenkező irányba forgatva a teleszkópos szétnyitáskor a cső rész kihúzódik a csatlakozó rész üregéből, visszahagyva ott a 42 dugattyúrudat. (2.ábra) Ezzel az 1 alsó rész cső része kiürült, és bele helyezhető a 8 patron. A hatóanyaggal teli 8 patronot a cső részbe helyezzük a 82 kilovő nyílással kifelé (t.i. lefelé), és a 8 patronon lévő csavarmenettel az 1 alsó rész aljában lévő patronfogadó menetbe erősítjük. A pontos méretezésnek, és a 20 berendezéshez gyártott 8 patronok méretegységességének köszönhetően, a cső részbe erősített 8 patron 81 dugattyúja pontosan érintkezik a 42 dugattyúrúd alsó végével. Ezután a 20 berendezést

82 kilövő nyílással a kezelendő testrészre helyezve, és az 5 kioldó szerkezettel a reteszelést megszüntetve, az 3 energiatároló szerkezetek a 41 rugós csészét ésazzal együtt a 42 dugattyúrudat nagy erővel lökik a 8 patron felé, melyből a lefelé nyomott 81 dugattyú a hatóanyagot a 82 kilövő nyiláson át a kezelendő testben a szükséges mélyre lövi. A találmány lényege a kioldást követő energia-leadási folyamat részletes elemzésével érhető meg. A reteszelés kioldásakor az 31 indító egység és a 35 kiegészítő egységek egyszerre szabadulnak fel a gátló erőtől, így együttesen állítják elő a belövő csatorna kialakításához szükséges 600 bar nyomást a hatóanyag tároló patronban. Ezzel a nagyerejű 31 indító egység szerepe be is fejeződött. Nem azért, mert leadta volna a teljes energiáját, hanem azért, mert a 34 indító talplap eléri a 32 tok fenéklapját, és fizikailag korlátozva van további relaxáló alakváltozásban. (5.ábra) A 41 rugós csésze folyamatos lefelé mozgása következtében fedőlapja elválik a 33 térköztartótól. Így megszűnik a 31 indító egység további energia átadási lehetősége. Ezzel a szerkezeti felépítéssel és elrendezéssel biztosítható, hogy az 31 indító egység csak lineáris szakaszon, 20-60% megnyúlási értékek között dolgozzon, mely jól tervezhető és méretezhető. A tapasztalatok szerint a rugók erősebb összenyomása vagy megnyújtása a rugó maradandó alakváltozását okozza. Biztosítható továbbá, hogy az első 0,2 sec-ban fellépjen az az erő, mely ütés nélkül kialakítja a felhámon a bevezetési csatornát, anélkül, hogy utána, kényelmetlenül gyorsítaná a beinjektálást. Példánkban a 8 patron teljes hossza 20 mm melyből a bevezetési csatorna kialakításához szükséges 3-5 mm-t használunk fel. A továbbiakban csak, az ugyancsak méretezett nyomóerejű, 35 kiegészítő egységek dolgoznak. Ezzel a megoldással szinte tökéletesen követhető az egészségügyi szakember által manuálisan végrehajtott injekció beadás menete, üteme.

Hangsúlyozni kell, hogy jelen találmányi megoldás elvileg és gyakorlatilag alapvetően különbözik az ismert megoldásoktól, beleértve a többféle rugó kombinációját alkalmazó ismert megoldásokat is. Pusztán azzal, hogy eltérő karakterisztikájú rugókat együtt használnak, nincs megoldva a feladat, mert nincsenek időbelileg megfelelően szétválasztva az indító és a további folyamatos szakaszok. Ezknél a régebbi megoldásoknál az indító szakasz nyomásértéke nem emelhető kellő nagyra, mert később zavarná a fékezett sebességű beadagolást. Ezért a behatolási csatorna kialakításához nem hagyható el a dugattyúra irányuló indító ütés. Ez találmányi megoldásunkban teljesen ki van küszöbölve. Másrészt, az eddigi megoldásoknál, mivel megfeszítéskor az energiatárolás az egész energiatároló rendszerben együtt, egyszerre történik, a bevitt energiamennyisége nem differenciálható az összetett rendszerben az eltérő energiatároló összetevőkre. Jelen találmánynál, mint ez a leírásból és a rajzokból nyilvánvaló,

nemcsak az energia-leadás mértéke és ideje van szétválasztva az 31 indító egység és a 35 ki-egészítő egységek tekintetében, hanem az energia-bevitel, a megfeszítés is.

A jelen találmány szerinti 20 berendezés előnyös kiviteli alakjánál az 1 alsó rész 8 patron be-fogadó cső rész belvilága, és a 8 patron külső alakja egymással összehangoltan úgy van kiala-kítva, hogy közöttük az illeszkedés tökéletes legyen. Ennek érdekében az 1 alsó rész cső ré-szének belseje hengerpalást helyett csonkakúp-palást alakú, ahol a csonkakúp-palást széle-sebb része alul, keskenyebb része felül van. A palást dőlésszöge a függőlegeshez, azaz 20 be-rendezés geometriai tengelyéhez képest $1,5^\circ$. A dőlésszög megválasztható $1,2\text{--}1,8^\circ$ között, az $1,5^\circ$ a jelen példa szerinti érték. A 8 patron külső felülete ugyancsak csonkakúp, melynek dőlésszöge különleges pontossággal megegyezik a cső rész belvilág kúposágával, azaz szin-tén $1,5^\circ$. E kialakítás, hasonlóan a „Morse-kúp”-hoz, nagyobb üzembiztonsággal szavatolja az 1 alsó részbe helyezett 8 patron tökéletes felfekvését a cső rész belvilágában, a teljes érintke-zési felületen. A hatóanyag kilövésekor a 81 dugattyúra, annak útján a hatóanyagra és a 8 pat-ron aljára, a 82 kilővő nyílás körüli területre nagyon nagy nyomás nehezedik. Lényeges, hogy ezt a nyomást ne egyedül a 8 patron rögzítő csavar-menet viselje, hanem a 8 patron és az 1 al-só rész cső rész fala közötti tapadó/súrlódó erő is. Ez kellően szoros érintkezést követel meg, ami a tapasztalatok szerint, hengeres felületek illesztésénél nem valósítható meg a kellő biz-tosággal. Az 1 alsó rész külső része ütésálló műanyagból, a vele egybefüggő, egy darabot képező, külső-menetes cső rész félnből készül. Az általunk legyártott és többszörösen kipró-bált terméknél a műanyagból gyártott 8 patron, mintegy 0,5-1,0 mm, falvastagsággal, az el-mondott csonkakúp illesztéssel, rendkívül szorosan tapad és zár az 1 alsó rész cső rész belvi-lágában. A 8 patron kialakítható bármely egézségügyileg engedélyezett olyan műanyagból, mely használható a fröccsöntési technológia alkalmazásakor. Általában hőre lágyuló műanya-gokat használhatunk, mint pl. a poli-karbonátok, poli-propilének, vagy a poli-etylén. A 20 be-rendezés többszöri használatra szolgál, a 8 patron egyszeri használatra. A találmányi megoldás gyakorlati hasznosításánál lényeges, hogy a 8 patron anyagtakarékos és így olcsó termék.

A 8 patron egy célszerű kiviteli alakja a jelen találmányi megoldás szerint hőre lágyuló műanyagból, fröccsöntési technológiával készül, mintegy 1 mm falvastagsággal. A 82 kilővő nyílás kialakítása is a fröccsöntési technológia során történik. A kész termék 8 patronban a 82 kilővő nyílás pontosan a 8 patron hosszanti szimmetria tengelyében fekszik, és legfeljebb 0,1 mm átmérőjű. A 82 kilővő nyílástól a 8 patron belső fala evolvens vonalban megy át, tágul szét a 8 patron belső terének hengeres szakaszába. Az ismert korábbi megoldásoktól eltérően, a 82 kilővő nyíláshoz nincs szükség idegen anyag, pl. fém alkalmazásához, ami többlet a-nyagként és gyártási eljárásként is nagyon drágítaná a 8 patronat. Az ismert korábbi megoldá-

soknál nem sikerült a patron saját anyagából a szükséges kis átmérőjű kilövő nyílást létrehozni, de különösen nem a pontos elhelyezkedés és iránytartás biztosításával. Mint a találmány szerinti termék bizonyítja, melyről egyértelmű, hogy műanyagból fröccsöntéssel készült, a feladat sikeresen megvalósítható. Így az ismert technikához képest teljesen új, műszakilag előnyösebb és olcsóbb termékhez jutottunk.

A szabadalmi leírás egyértelműen bizonyítja, hogy jelen találmány újdonság, eredeti megoldás, mely teljes mértékben megoldotta az összes kitűzött célt. Tökéletesen követi a tűs injekciók ideálisan végrehajtott manuális menetét. Szemben a korábban ismert, összetett rugós energiatárolót alkalmazó berendezésekkel, jelen megoldásban megbízhatóan van szétválasztva az első pillanatbeli hámréteg lyukasztás művelete, majd a hatóanyag ütemes, nyugodt be-injektálása. Mindezt a találmány egyszerű szerkezzel, megbízható működésű berendezéssel valósítja meg. A berendezés mellett a berendezéshez használandó hatóanyag patron is korszerűbb, előnyösebb, új megoldás. A patron és a patron-befogadó egybehangolt kónuszos alakja egyszerű módszerrel biztosítja a két eszköz pontos, biztos záródását. A patron kilövő nyílás kialakítása fröccsöntött műanyag patron esetén a patron saját anyagából, műszakilag és költségek szempontjából egyaránt rendkívül előnyös, és mint találmány teljesen új. Az igénypontokban összefoglalt találmányok külön-külön is jelentős haladást jelentenek e szakterületen. Együtt különösen sikeresen erősítik egymás előnyeit, eredményeit.

Szabadalmi igénypontok

- 1.) Tű nélküli injekciós berendezés, melynek a hatóanyagot tartalmazó patront befogadó alsó része, és a belövéshez szükséges energiát szolgáltató felső része van, mely felsőrészben az energiatároló szerkezetrészek rugalmas alakváltozásra képes egységek, és az alsórész a felsőrészhez képest elforgathatóan, és elforgatáskor a felsőrészhez képest a berendezés hossztengelye irányában kényszermozgást végzően, mégpedig a felsőrészhez közelítő irányú kényszermozgása esetén az energiatároló szerkezetrészek feszített állapotát eredményezően van, önmagában ismert módon, a felsőrészhez csatlakoztatva, továbbá a berendezés az energiatároló szerkezetrészek feszített állapotát megtartó reteszelő szerkezettel, és a reteszelést feloldó kioldó szerkezettel van ellátva, azzal jellemezve, hogy az energiatároló szerkezetrészek (3) között legalább egy, a hatóanyag tároló patron (8) belvilág hoszszának legfeljebb 25%-át, célszerűen 15-20%-át kitevő mértékű reverzibilis rugalmas alaktorzulás mellett, a teljes kilövési energia (nyomás) minimálisan 60%-át, adott esetben 80-90%-át tárolni képes indító egység (31), ahol a berendezés az indító egység (31) megfeszítésére, továbbá relaxációjának behatárolására elkülönített szerkezetrészekkel van ellátva.
- 2.) Az 1.igénypont szerinti berendezés azzal jellemezve, hogy az indító egység (31) poliuretan rugó vagy fém tányérrugó köteg, mely a berendezésen belül külön tokban (32) van elhelyezve, és megfeszítéskor, a többi energiatároló szerkezetrészt (3) nem érintő térkötőtartó (33) köti össze a feszítőerőt közlő szerkezeti résszel, adott esetben a reteszelő szerkezettel (4).
- 3.) Az 1 vagy 2.igénypont szerinti berendezés azzal jellemezve, hogy az indító egység (31) mellett kiegészítő egység (35) energiatároló szerkezetrészekkel (3) van ellátva, mint lemez- és/vagy spirál-rugók.
- 4.) Az 1.-3.igénypontok bármelyike szerinti berendezés előnyösen azzal jellemezve, hogy a kiegészítő egység (35) koaxiálisan egymásba helyezett 2-8, adott esetben 4-5 spirálrugóból áll és körbeveszi a felső rész (2) geometriai tengelyét, vagy több kiegészítő egység (35) esetén ezek szimmetrikusan helyezkednek el a geometriai tengely körül.
- 5.) Az 1.-4.igénypontok bármelyike szerinti berendezés előnyösen azzal jellemezve, hogy a kioldó szerkezet (5) a felső rész (2) tetején elhelyezett kioldógomb (51), mely a felső rész (2) tengelyében a reteszelő szerkezetig (4) lenyúló kioldó rúddal (52) van összekötve.

- 6.) Tű nélküli injekciós berendezés energiatároló egységgel vagy egységekkel, energia fel-szabadító kioldó szerkezettel, hatóanyag patront befogadó résszel, és ahoz tartozó ható-anyag patron, mely pontosan illeszkedik a berendezés hatóanyagot tartalmazó patront be-fogadó alsó részébe, azzal jellemezve, hogy a berendezés (20) alsó részének (1) a patron (8) befogadó belseje a kilövő nyílás (82) felé kúposan tágul és a patron (8) a befogadó al-só részbe (1) pontosan beleillő csonka kúp alakú, azaz borító palástjának hajlásszöge nagy pontossággal megegyezik a befogadó alsó rész (1) kónusznak a hajlási szögével.
- 7.) A 6.igénypont szerinti berendezés és a hatóanyagot tároló patron azzal jellemezve, hogy a patron (8) befogadó alsó rész (1) belső kúpszöge $1,2 - 1,8^\circ$, pontosabban $1,5^\circ$, és a patron (8) külső kúpszöge mindenkor pontosan megegyezik a befogadó mindenkor aktuális kúp-szögével.
- 8.) A 6 vagy 7 igénypont szerinti berendezés azzal jellemezve, hogy az energiatároló egysé-gek (3) között az összes energia nagyobb részét önmagában tartalmazó indító egysége (31) van, mely megfeszítésére, továbbá relaxációjának behatárolására elkülönített szerkezetré-székkel, adott esetben térköztartóval (33) és tokkal (32), van ellátva.
- 9.) A 6 - 8.igénypontok bármelyike szerinti berendezés azzal jellemezve, hogy a hatóanyag patron (8) kilövő nyílása (82) a patron (8) saját anyagából van kialakítva.
- 10.) A 6 – 9 igénypontok bármelyike szerinti berendezés azzal jellemezve, hogy a hatóanyag patron (8) kilövő nyílása (82) pontosan a patron (8) szimmetria tengelyében helyezkedik el.

- 11.) Patron, tű nélküli injekciós berendezéshez, a hatóanyag tárolása céljára, egészségügyileg engedélyezett, fröccsöntési technológiához alkalmazható műanyagból elkészítve, ható-nyag injektálására szolgáló kilövő nyílással, szabályos henger belvilággal, melyben du-gattyú helyezkedik el, azzal jellemezve, hogy a patron (8) falvastagsága legfeljebb 1,5 mm, a kilövő nyílás (82) átmérője legfeljebb 0,2 célszerűen 0,1 mm, és a kilövő nyílás (82) a patron (8) saját anyagából van kialakítva.
- 12.) A 11.igénypont szerinti patron azzal jellemezve, hogy az előállításához alkalmazott mű-anyag a poli-karbonát, poli-propilén, poli-etilén anyagok valamelyike vagy azok valamely kombinációja.
- 13.) A 11 vagy 12.igénypont szerinti patron azzal jellemezve, hogy a patron (8) belvilága a kilövő nyílástól (82) evolvens profilú szegmenssel van átvezetve a patron (8) hengeres szakaszába.

14.) A 10 - 13.igénypontok bármelyike szerinti patron azzal jellemzőve, hogy külső felülete, az injekciós berendezés (20) kónuszosan kialakított, patron (8) befogadó, alsó részébe (1) pontosan beleillő csonkakúp alakú, aholis a patron (8) külső felületének kúpszöge azonos a berendezés alsó részének (1) befogadó rész belválg kúpszögével.

Dr.
Szabadalmi és Védjegy Iroda
dr. Polgár Iván
szabadalmi ügyvivő
1400 Budapest, Pf.: 21. Tel.: 311-4955

1 ábra

2 ábra

3 ábra

LINDMAYER S. ISTVÁN

D.D.
Szerzői jogosítvány
W. Polgári Ivan
Magyarországi Ügyvivő
1400 Budapest VI. Pl. 21. Tel.: 311-4955

4 ábra

5 ábra

6 ábra

7 ábra

8 ábra

9 ábra

LINDMAYER S. ISTVÁN

 Magyarország
 Szabadalmi és Védjegy Iroda
 dr. Polgár Iván
 szabadalmi ügyvivő
 1400 Budapest, Pl.: 21. Tel.: 311-4955

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.