Statistical Methods in Artificial Intelligence CSE471 - Monsoon 2015 : Lecture 04

Avinash Sharma CVIT, IIIT Hyderabad

Lecture 04: Plan

- Recap
- Learning LDF: Basic Gradient Descend
- Perceptron Criterion Function
- Batch Perceptron
- Single Sample Perceptron
- Relaxation Procedures
- Non Separable Behavior
- Minimum Squared Error Procedures
- LMS and Ho-Kashyap Procedures

Two-Category Linearly Separable Case

$$g(\mathbf{X}) = \mathbf{a}^T \mathbf{Y} = \sum_{i=1}^{\hat{d}} a_i y_i = \begin{cases} > 0 & (+ve) & class A \\ < 0 & (-ve) & class B \\ = 0 & Decision Boundary \end{cases}$$

Two-Category Linearly Separable Case

Two-Category Linearly Separable Case

Learning LDF: Basic Gradient Descend

- Define a scalar function J(a) which captures classification error for specific boundary plane described by parameter a
- Minimize J(a) using **gradient descent**.
 - Start with arbitrary value of a(1) for k = 1.
 - Iteratively refine estimate of a: $a(k+1) = a(k) \eta(k)\nabla J(a(k))$
- η is the positive scale factor known as *learning rate*
 - A too small η makes the convergence very slow
 - A too large η can diverge due to overshooting correct.

Basic Gradient Descend Algorithm

1. Initialize $\boldsymbol{a}, \boldsymbol{\theta}$ (threshold), $\eta(.), k = 0$

2. do
$$k = k + 1$$

$$\mathbf{a}(k+1) = \mathbf{a}(k) - \eta(k)\nabla J(\mathbf{a}(k))$$

- 3. untill $|\eta(k)\nabla J(\boldsymbol{a}(k))| < \theta$
- 4. return a

Perceptron Criterion Function

Discrete v/s continuous function

Perceptron Criterion Function

- Discrete v/s continuous function
- $J_p(a) = \sum_{y \in \mathcal{Y}} (-a^T y)$ where \mathcal{Y} is the set of misclassified samples
- $J_p(a)$ is proportional to to the sum of the distances from all the miss classified samples to the decision boundary.
- Derivative of $J_p(a)$

$$\nabla J_p(a) = \sum_{\mathbf{y} \in \mathcal{Y}} (-\mathbf{y})$$

•
$$a(k+1) = a(k) + \eta(k) \sum_{y \in \mathcal{Y}_k} y$$

Batch Perceptron

- 1. Initialize $\boldsymbol{a}, \boldsymbol{\theta}$ (threshold), $\eta(.), k = 0$
- 2. do k = k + 1

$$a(k+1) = a(k) + \eta(k) \sum_{\mathbf{y} \in \mathcal{Y}_k} \mathbf{y}$$

- 3. untill $|\eta(k)\sum_{y\in\mathcal{Y}_k}(-y)| < \theta$
- 4. return a

Single Sample Perceptron

- 1. Initialize a, k = 0
- 2. do k = mod(k + 1, n)

$$a = a + y^k$$

- 3. untill all patterns are correctly classified
- 4. return a

Single Sample Perceptron

Relaxation Procedures

 These are broader class of criterion functions and associated minimization methods.

•
$$J_q(\boldsymbol{a}) = \sum_{\boldsymbol{y} \in \mathcal{Y}} (\boldsymbol{a}^T \boldsymbol{y})^2$$

- Problems:
 - convergence to boundary
 - dominated by the longest sample vector

•
$$J_r(a) = \frac{1}{2} \sum_{y \in \mathcal{Y}} \frac{(a^T y - b)^2}{\|y\|^2}$$
 and $\nabla J_r(a) = \sum_{y \in \mathcal{Y}} \frac{a^T y - b}{\|y\|^2} y$

Relaxation Procedures

Single Sample Relaxation with Margin

- Single Sample relaxation with margin
- 1. Initialize $\boldsymbol{a}, \eta(\cdot), k = 0$
- $2. \quad do k = mod(k+1, n)$

if
$$a^T y^k \le b$$
 then $a = a + \eta(k) \frac{(b - a^T y^k)^2}{\|y^k\|^2} y^k$

- 3. untill $a^T y^k > b$ for all y^k
- 4. return a

Over/Under-Relaxation

•
$$r(k) = \frac{(b-a^Ty^k)^2}{\|y^k\|^2} y^k$$

Non Separable Behavior

- Error Correcting Procedures
- Generalization to unseen test data not guaranteed
- Fails to handle non-separable case
- Many Heuristic exists to handle non-separable cases:
 - Forced termination of loop
 - Annealing of η with increasing k

 MSE consider all samples instead of just missclassified ones.

• Moved from problem of finding solution to a set of linear inequalities to a set of linear equations, i.e., $\boldsymbol{a}^T \boldsymbol{y}_i = b_i$ instead of $\boldsymbol{a}^T \boldsymbol{y}_i > 0$

• MSE consider all samples instead of just missclassified ones. y_i

 $\boldsymbol{a}^T \boldsymbol{y}_i > 0$ for all samples \boldsymbol{y}_i

- $Y = [y_1 \quad \cdots \quad y_n]^T$ be the set of all data points where $y_i = [y_{i0} \quad \cdots \quad y_{id}]^T \in \mathbb{R}^{\widehat{d}=(d+1)}$
- Let $\boldsymbol{a} = [a_0 \quad \cdots \quad a_d]^T$ and $\boldsymbol{b} = [b_1 \quad \cdots \quad b_n]^T$
- Ya = b (over-determined problem as $n \gg \hat{d}$)
- $a = Y^{-1}b$ not possible (Y is rectangular and possibly singular)
- No exact solution! We look for approximate solution.

• e = Ya - b (Error definition)

•
$$J(a) = ||e||^2 = ||Ya - b||^2$$

•
$$\nabla J(\boldsymbol{a}) = 2\boldsymbol{Y}^T(\boldsymbol{Y}\boldsymbol{a} - \boldsymbol{b}) = 0$$

•
$$Y^TYa = Y^Tb$$

•
$$\boldsymbol{a} = (\boldsymbol{Y}^T \boldsymbol{Y})^{-1} \boldsymbol{Y}^T \boldsymbol{b} = \boldsymbol{Y}^{\dagger} \boldsymbol{b}$$

- $(\mathbf{Y}^T\mathbf{Y})$ is a square matrix and often non-singular and hence invertible.
- There could be many solutions for weight vector a based on choice of vector b.
- A separating hyperplane is guaranteed if (Ya > 0), i.e., $\forall i \ (a^T y_i) > 0$
- However, we have $Ya \approx b$, i.e., $Ya = b + \varepsilon$.
- In practice, some entries of ${\pmb b}$ can be negative if $|b_i|<|\varepsilon_i|$ and $\varepsilon_i<0$.

- Thus, even in linearly separable case, least square solution α might not yield a separating hyperplane but a reasonable one.
- An arbitrary scaling of b to overcome the $-\varepsilon$ values is **not helpful** as it translates to scaling up the a vector.
- However, relative difference in elements of b can help in improving the classification, especially to handle the case of outlier data points.

Example Walkthrough

- Class A: (8,5), (4,3)
- Class B: (2,6), (6,8)

•
$$\mathbf{Y}^T = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 8 & 4 & -2 & -6 \\ 5 & 3 & -6 & -8 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

•
$$a = Y^{\dagger}b = \begin{bmatrix} 1.5 \\ 0.25 \\ -0.5 \end{bmatrix}$$

•
$$Ya = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Example Walkthrough

- Class A: (6,9), (5,7)
- Class B: (5,9), (0,4)

•
$$\mathbf{Y}^T = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 6 & 5 & -5 & 0 \\ 9 & 7 & -9 & -4 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

•
$$\boldsymbol{a} = \boldsymbol{Y}^{\dagger} \boldsymbol{b} = \begin{bmatrix} 2.66 \\ 1.04 \\ -0.94 \end{bmatrix}$$

•
$$Ya = \begin{bmatrix} 0.43 \\ 1.28 \\ 0.60 \\ 1.11 \end{bmatrix}$$

Example Walkthrough

- Class A: (6,9), (5,7)
- Class B: (5,9),(0,10)

•
$$\mathbf{Y}^T = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 6 & 5 & -5 & 0 \\ 9 & 7 & -9 & -10 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

•
$$\boldsymbol{a} = \boldsymbol{Y}^{\dagger} \boldsymbol{b} = \begin{bmatrix} 3.21 \\ 0.15 \\ -0.43 \end{bmatrix}$$

•
$$Ya = \begin{bmatrix} 0.19 \\ 0.91 \\ -0.04 \\ 1.16 \end{bmatrix}$$

