Definicja (Zdanie logiczne)

Zdaniem logicznym nazywamy dowolne stwierdzenie, któremu można przyporządkować wartość logiczną prawda lub fałsz.

Definicja (Zdanie logiczne)

Zdaniem logicznym nazywamy dowolne stwierdzenie, któremu można przyporządkować wartość logiczną prawda lub fałsz.

- → Wisła jest rzeką.

Definicja (Zdanie logiczne)

Zdaniem logicznym nazywamy dowolne stwierdzenie, któremu można przyporządkować wartość logiczną **prawda** lub **fałsz**.

- → Wisła jest rzeką. TAK

Definicja (Zdanie logiczne)

Zdaniem logicznym nazywamy dowolne stwierdzenie, któremu można przyporządkować wartość logiczną **prawda** lub **fałsz**.

- → Wisła jest rzeką. TAK

Definicja (Zdanie logiczne)

Zdaniem logicznym nazywamy dowolne stwierdzenie, któremu można przyporządkować wartość logiczną prawda lub fałsz.

- → Wisła jest rzeką. TAK

Wartości logiczne

prawda
$$\equiv 1 \equiv \bigcirc$$
 fałsz $\equiv 0 \equiv \bigcirc$ F

$$\mathsf{falsz} \equiv 0 \equiv \boxed{\mathsf{F}}$$

→ koniunkcja: ∧

 $p \wedge q$ czytamy: p i q

→ koniunkcja: ∧

 $p \wedge q$ czytamy: p i q

→ alternatywa: ∨

 $p \lor q$ czytamy: p lub q

```
\leadsto koniunkcja:\landp \land qczytamy:p \mid q\leadsto alternatywa:\lorp \lor qczytamy:p \mid \text{lub } q\leadsto implikacja:\Rightarrowp \Rightarrow qczytamy:jeżeli p, to q (lub: z p wynika q)\leadsto równoważność:\Leftrightarrowp \Leftrightarrow qczytamy:p jest równoważne q
```

```
p \wedge q czytamy: p i q

→ alternatywa: ∨

   p \lor q czytamy: p \text{ lub } q

→ implikacja: ⇒

   p \Rightarrow q czytamy: jeżeli p, to q (lub: z p wynika q)
p \Leftrightarrow q czytamy: p jest równoważne q
\neg p czytamy: nie p
```

```
p \wedge q czytamy: p \mid q

→ alternatywa: ∨

   p \lor q czytamy: p \text{ lub } q

→ implikacja: ⇒

   p \Rightarrow q czytamy: jeżeli p, to q (lub: z p wynika q)
p \Leftrightarrow q czytamy: p jest równoważne q
\neg p czytamy: nie p
```


→ alternatywa wykluczająca lub XOR: ⊕

$$p \oplus q \equiv \neg(p \Leftrightarrow q)$$

 \rightarrow alternatywa wykluczająca lub XOR: \oplus $p \oplus q \equiv \neg(p \Leftrightarrow q)$

 $ightharpoonup kreska Sheffera lub NAND: | <math>p \mid q \equiv \neg(p \land q)$

 \rightarrow alternatywa wykluczająca lub XOR: \oplus $p \oplus q \equiv \neg(p \Leftrightarrow q)$

 $ightharpoonup kreska Sheffera lub NAND: <math display="block">p \mid q \equiv \neg(p \land q)$

 \rightarrow strzałka Peirce'a lub NOR: \downarrow $p \downarrow q \equiv \neg(p \lor q)$

 \rightarrow alternatywa wykluczająca lub XOR: \oplus $p \oplus q \equiv \neg(p \Leftrightarrow q)$

 $ightharpoonup kreska Sheffera lub NAND: | <math>p \mid q \equiv \neg(p \land q)$

 \rightarrow strzałka Peirce'a lub NOR: \downarrow $p \downarrow q \equiv \neg(p \lor q)$

$$p \Rightarrow q$$

$$p \Rightarrow q$$

- \rightarrow p jest warunkiem **dostatecznym** (wystarczającym) dla q.
- \rightsquigarrow q jest warunkiem koniecznym dla p.

$$p \Rightarrow q$$

- \rightarrow p jest warunkiem **dostatecznym** (wystarczającym) dla q.
- \rightsquigarrow q jest warunkiem koniecznym dla p.

Przykład

Niech

$$p =$$
,,liczba n jest podzielna przez 3"

$$q =$$
,,liczba n jest podzielna przez 6 $^{"}$

$$p \Rightarrow q$$

- \rightarrow p jest warunkiem **dostatecznym** (wystarczającym) dla q.
- \rightsquigarrow q jest warunkiem koniecznym dla p.

Przykład

Niech

p =,,liczba n jest podzielna przez 3"

q =,,liczba n jest podzielna przez 6"

- \rightarrow p jest warunkiem koniecznym dla q.
- \rightsquigarrow q jest warunkiem wystarczającym dla p.

Definicja (Zmienna logiczna)

Zmienną logiczną nazywamy zmienną, zwykle oznaczaną p, q, r, . . . , która może przyjąć tylko dwie wartości: prawda lub fałsz.

Definicja (Zmienna logiczna)

Zmienną logiczną nazywamy zmienną, zwykle oznaczaną p, q, r, . . . , która może przyjąć tylko dwie wartości: prawda lub fałsz.

Definicja (Funkcja zdaniowa)

Funkcją zdaniową nazywamy wyrażenie złożone ze zmiennych logicznych połączonych w poprawny sposób funktorami i nawiasami.

Definicja (Zmienna logiczna)

Zmienną logiczną nazywamy zmienną, zwykle oznaczaną p, q, r, . . . , która może przyjąć tylko dwie wartości: prawda lub fałsz.

Definicja (Funkcja zdaniowa)

Funkcją zdaniową nazywamy wyrażenie złożone ze zmiennych logicznych połączonych w poprawny sposób funktorami i nawiasami.

$$\{[(p \Rightarrow s) \Rightarrow (q \land s)] \land \neg(q \land s)\} \Rightarrow \neg(p \Rightarrow s)$$

Definicja (Zmienna logiczna)

Zmienną logiczną nazywamy zmienną, zwykle oznaczaną p, q, r, . . . , która może przyjąć tylko dwie wartości: prawda lub fałsz.

Definicja (Funkcja zdaniowa)

Funkcją zdaniową nazywamy wyrażenie złożone ze zmiennych logicznych połączonych w poprawny sposób funktorami i nawiasami.

$$\{[(p \Rightarrow s) \Rightarrow (q \land s)] \land \neg(q \land s)\} \Rightarrow \neg(p \Rightarrow s)$$

Definicja (Tautologia, prawo rachunku zdań)

Tautologią nazywamy funkcję zdaniową, która dla dowolnego wartościowania zmiennych w niej występujących przyjmuje wartość **prawda**.

Zupełność

Definicja (Zupełny zbiór funktorów)

Powiemy, że zbiór funktorów A jest **zupełny**, jeżeli każda funkcja zdaniowa może być w sposób równoważny zapisana przy wykorzystaniu wyłącznie funktorów ze zbioru A.

Zupełność

Definicja (Zupełny zbiór funktorów)

Powiemy, że zbiór funktorów *A* jest **zupełny**, jeżeli każda funkcja zdaniowa może być w sposób równoważny zapisana przy wykorzystaniu wyłącznie funktorów ze zbioru *A*.

Twierdzenie

Zbiory

są zupełne.

→ Prawo podwójnego przeczenia

$$\neg(\neg p) \equiv p$$

→ Prawo podwójnego przeczenia

$$\neg(\neg p) \equiv p$$

→ Prawa przemienności

$$(p \lor q) \equiv (q \lor p)$$

$$(p \wedge q) \equiv (q \wedge p)$$

→ Prawo podwójnego przeczenia

$$\neg(\neg p) \equiv p$$

→ Prawa przemienności

$$(p \lor q) \equiv (q \lor p) \ (p \land q) \equiv (q \land p)$$

→ Prawa łączności

$$[(p \lor q) \lor r] \equiv [p \lor (q \lor r)]$$
$$[(p \land q) \land r] \equiv [p \land (q \land r)]$$

$$(a+b)+c = a+(b+c)$$

→ Prawo podwójnego przeczenia

$$\neg(\neg p) \equiv p$$

→ Prawa przemienności

$$(p \lor q) \equiv (q \lor p) \ (p \land q) \equiv (q \land p)$$

→ Prawa łączności

$$[(p \lor q) \lor r] \equiv [p \lor (q \lor r)]$$
$$[(p \land q) \land r] \equiv [p \land (q \land r)]$$

→ Prawa rozdzielności

$$[p \lor (q \land r)] \equiv [(p \lor q) \land (p \lor r)]$$
$$[p \land (q \lor r)] \equiv [(p \land q) \lor (p \land r)].$$

→ Prawo podwójnego przeczenia

$$\neg(\neg p) \equiv p$$

→ Prawa przemienności

$$(p \lor q) \equiv (q \lor p) \ (p \land q) \equiv (q \land p)$$

→ Prawa łączności

$$[(p \lor q) \lor r] \equiv [p \lor (q \lor r)]$$
$$[(p \land q) \land r] \equiv [p \land (q \land r)]$$

→ Prawa rozdzielności

$$[p \lor (q \land r)] \equiv [(p \lor q) \land (p \lor r)]$$
$$[p \land (q \lor r)] \equiv [(p \land q) \lor (p \land r)].$$

→ Prawa de Morgana

$$eg(p \lor q) \equiv (\neg p \land \neg q) \\
eg(p \land q) \equiv (\neg p \lor \neg q)$$

→ Prawo podwójnego przeczenia

$$\neg(\neg p) \equiv p$$

Prawa przemienności

$$(p \lor q) \equiv (q \lor p)$$

$$(p \wedge q) \equiv (q \wedge p)$$

→ Prawa łączności

$$[(p \lor q) \lor r] \equiv [p \lor (q \lor r)]$$

$$[(p \land q) \land r] \equiv [p \land (q \land r)]$$

→ Prawa rozdzielności

$$[p \lor (q \land r)] \equiv [(p \lor q) \land (p \lor r)]$$

$$[p \land (q \lor r)] \equiv [(p \land q) \lor (p \land r)].$$

→ Prawa de Morgana

$$\neg(p\lor q)\equiv (\neg p\land \neg q)$$

$$\lnot(p \land q) \equiv (\lnot p \lor \lnot q)$$

→ Prawo kontrapozycji

$$(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$$

$$\rightsquigarrow (p \Rightarrow q) \equiv (\neg p \lor q)$$

$$(p \Rightarrow q) \equiv \neg (p \land \neg q)$$

$$\longrightarrow (p \lor p) \equiv p$$

$$\rightarrow \sim (p \land p) \equiv p$$

$$(p \Rightarrow p) \equiv \mathsf{T}$$

$$\rightsquigarrow (p \not\cong p) \equiv \mathsf{T}$$

$$\longrightarrow$$
 $(p \lor \neg p) \equiv \mathsf{T}$

$$\rightsquigarrow$$
 $(p \land \neg p) \equiv \mathsf{F}$

$$\rightsquigarrow$$
 $(p \land F) \equiv F$

$$\rightsquigarrow$$
 $(p \land T) \equiv p$

$$\rightsquigarrow$$
 $(p \lor F) \equiv p$

$$\rightsquigarrow$$
 $(p \lor T) \equiv T$

$$(p \Rightarrow \mathsf{F}) \equiv \neg p$$

$$\rightsquigarrow (p \Rightarrow T) \equiv T$$

$$\rightsquigarrow$$
 $(F \Rightarrow p) \equiv T$

$$\rightsquigarrow$$
 $(T \Rightarrow p) \equiv p$.

Przykłady

Wykazać, że poniższe funkcje zdaniowe są tautologiami:

$$(\neg p \Rightarrow q) \Rightarrow [(\neg p \Rightarrow \neg q) \Rightarrow p],$$

$$\longrightarrow$$
 $[(p \land q) \Rightarrow r] \Leftrightarrow [(p \land \neg r) \Rightarrow \neg q],$

$$\qquad \big\{ [(p \Rightarrow s) \Rightarrow (q \land s)] \land \neg (q \land s) \big\} \Rightarrow \neg (p \Rightarrow s).$$

Przykłady

Wykazać, że poniższe funkcje zdaniowe są tautologiami:

$$(\neg p \Rightarrow q) \Rightarrow [(\neg p \Rightarrow \neg q) \Rightarrow p],$$

$$\longrightarrow$$
 $[(p \land q) \Rightarrow r] \Leftrightarrow [(p \land \neg r) \Rightarrow \neg q],$

$$\qquad \big\{ [(p \Rightarrow s) \Rightarrow (q \land s)] \land \neg (q \land s) \big\} \Rightarrow \neg (p \Rightarrow s).$$

Metody

- → Tabela prawdy (próby zero-jedynkowe, "brute-force").
- → Prawa rachunku zdań.
- → "Drzewko".

Przykłady

$(\lnot p \Rightarrow q) \Rightarrow [(\lnot p \Rightarrow \lnot q) \Rightarrow p]$							
P	9	¬ p	10 => Q	79	70 => 70	(70=) 10)=	PADB
T	\	F	+	F		7	T
7	F	F	T		T		
F	1	T	T	F	F		
F) F	T	F	T	T	F	
	1	1	I		L		
							J

Przykłady

$$[(p \land q) \Rightarrow r] \Leftrightarrow [(p \land \neg r) \Rightarrow \neg q]$$

$$(p \Rightarrow a) \equiv (\neg p \lor q) \qquad p. \text{ de Movpou a}$$

$$(p \land q) \Rightarrow r \equiv \neg (p \land q) \lor \neg r \equiv (\neg p \lor \neg q) \lor \neg q$$

$$(p \land \neg r) \Rightarrow \neg q \equiv \neg (p \land \neg r) \lor \neg q \equiv$$

$$\equiv (\neg p \lor \neg q) \lor \neg q \equiv$$

$$\equiv \neg p \lor \neg q \lor \neg q$$

$$\leq \neg p \lor \neg q \lor \neg q$$

Przykłady

$$\begin{cases}
[(p \Rightarrow s) \Rightarrow (q \land s)] \land \neg (q \land s)\} \Rightarrow \neg (p \Rightarrow s)
\end{cases}$$

$$\begin{cases}
s = f
\end{cases}$$

$$\begin{cases}
(\neg p \Rightarrow f) \land \neg (p \Rightarrow s)
\end{cases}$$

$$\begin{cases}
q \land \neg q
\end{cases}$$

$$\begin{cases}
p \land q
\end{cases}$$

$$\begin{cases}
p \land \neg q
\end{cases}$$

$$\end{cases}
\end{cases}$$

$$\begin{cases}
p \land \neg q
\end{cases}$$

$$\end{cases}
\end{cases}$$

$$\end{cases}$$

→ Im więcej zmiennych, tym (dużo) większa tabela prawdy.

Im więcej zmiennych, tym (dużo) większa tabela prawdy. Dla n zmiennych tabela ma 2^n wierszy!

- Im więcej zmiennych, tym (dużo) większa tabela prawdy. Dla n zmiennych tabela ma 2^n wierszy!
- → Podane metody można łączyć.

- Im więcej zmiennych, tym (dużo) większa tabela prawdy. Dla n zmiennych tabela ma 2^n wierszy!
- → Podane metody można łączyć.
- Aby sprawdzić, że funkcja zdaniowa nie jest tautologią, wystarczy podać **jedno** wartościowanie zmiennych, przy którym funkcja ta przyjmuje wartość F.

Postacie normalne

konsulação etterioly

Definicja (Koniunkcyjna postać normalna, CNF)

Powiemy, że funkcja zdaniowa jest zapisana w koniunkcyjnej postaci normalnej, jeżeli jest postaci

$$(p_1 \bigcirc \dots \bigcirc p_{n_p}) \bigcirc (q_1 \bigcirc \dots \bigcirc q_{n_q}) \bigcirc \dots \bigcirc (r_1 \bigcirc \dots \bigcirc r_{n_r}),$$

przy czym wszystkie wyrażenia występujące w nawiasach są **literałami** (zmienną logiczną bądź negacją zmiennej logicznej — p lub $\neg p$).

Postacie normalne

Definicja (Koniunkcyjna postać normalna, CNF)

Powiemy, że funkcja zdaniowa jest zapisana w koniunkcyjnej postaci normalnej, jeżeli jest postaci

$$(p_1 \vee \ldots \vee p_{n_p}) \wedge (q_1 \vee \ldots \vee q_{n_q}) \wedge \ldots \wedge (r_1 \vee \ldots \vee r_{n_r}),$$

przy czym wszystkie wyrażenia występujące w nawiasach są literałami (zmienną logiczną bądź negacją zmiennej logicznej — p lub $\neg p$).

Definicja (Dysjunkcyjna postać normalna, DNF)

Postacie normalne

Definicja (Koniunkcyjna postać normalna, CNF)

Powiemy, że funkcja zdaniowa jest zapisana w koniunkcyjnej postaci normalnej, jeżeli jest postaci

$$(p_1 \vee \ldots \vee p_{n_p}) \wedge (q_1 \vee \ldots \vee q_{n_q}) \wedge \ldots \wedge (r_1 \vee \ldots \vee r_{n_r}),$$

przy czym wszystkie wyrażenia występujące w nawiasach są **literałami** (zmienną logiczną bądź negacją zmiennej logicznej — p lub $\neg p$).

Definicja (Dysjunkcyjna postać normalna, DNF)

$$(p_1 \wedge \ldots \wedge p_{n_p}) \vee (q_1 \wedge \ldots \wedge q_{n_q}) \vee \ldots \vee (r_1 \wedge \ldots \wedge r_{n_r}).$$

Twierdzenie

Każdą funkcję zdaniową można zapisać w równoważnej jej postaci normalnej (CNF i DNF).

Definicja (Funkcja spełnialna)

Powiemy, że funkcja zdaniowa jest **spełnialna**, jeżeli **istnieje** takie wartościowanie zmiennych w niej występujących, przy którym funkcja przyjmie wartość T.

Definicja (Funkcja spełnialna)

Powiemy, że funkcja zdaniowa jest **spełnialna**, jeżeli **istnieje** takie wartościowanie zmiennych w niej występujących, przy którym funkcja przyjmie wartość T.

$$\{[(p \Rightarrow r) \Rightarrow (q \land s)] \land \neg (q \land s)\} \land (\neg p \Rightarrow s)$$

Definicja (Funkcja spełnialna)

Powiemy, że funkcja zdaniowa jest **spełnialna**, jeżeli **istnieje** takie wartościowanie zmiennych w niej występujących, przy którym funkcja przyjmie wartość T.

$$\{[(p \Rightarrow r) \Rightarrow (q \land s)] \land \neg (q \land s)\} \land (\neg p \Rightarrow s)$$

$$p = T$$
, $q = F$, $r = F$, $s = F$

Definicja (Funkcja spełnialna)

Powiemy, że funkcja zdaniowa jest **spełnialna**, jeżeli **istnieje** takie wartościowanie zmiennych w niej występujących, przy którym funkcja przyjmie wartość T.

$$\{[(p \Rightarrow r) \Rightarrow (q \land s)] \land \neg (q \land s)\} \land (\neg p \Rightarrow s)$$

$$p = T$$
, $q = F$, $r = F$, $s = F$

Twierdzenie

Jeżeli Φ jest funkcją zdaniową, to

Φ jest spełnialna wtedy i tylko wtedy, gdy ¬Φ nie jest tautologią.

Problem SAT i P = NP

Pytanie

Jak sprawdzić, czy funkcja zdaniowa jest spełnialna?

Problem SAT i P = NP

Pytanie

Jak sprawdzić, czy funkcja zdaniowa jest spełnialna?

Czy istnieje coś lepszego niż brute-force (czyli tabela prawdy)?

Problem SAT i
$$P = NP$$

Pytanie

Jak sprawdzić, czy funkcja zdaniowa jest spełnialna?

Czy istnieje coś lepszego niż brute-force (czyli tabela prawdy)?

Nie wiadomo!

Problem SAT i P = NP

Pytanie

Jak sprawdzić, czy funkcja zdaniowa jest spełnialna?

Czy istnieje coś lepszego niż brute-force (czyli tabela prawdy)?

Nie wiadomo!

Nagroda za rozwiązanie: \$1,000,000.

 $\left[\begin{array}{c|c} 1 & 5 & 2 & 1 & -10 & 100 \\ \hline \end{array}\right]$ 2º poolsbiarosu $\binom{n}{2^n}$ istnesse podubiou istuere Unte Problem rower dough rolliplete 11 crosse

P=NP?

NP

Problem SAT i P = NP

Pytanie

Jak sprawdzić, czy funkcja zdaniowa jest spełnialna?

Czy istnieje coś lepszego niż brute-force (czyli tabela prawdy)?

Nie wiadomo!

Nagroda za rozwiązanie: \$1,000,000.

Jeżeli da się to zrobić szybko, to da się również (szybko) złamać RSA.

Jak można dowieść twierdzenia postaci

$$p \Rightarrow q$$
?

Jak można dowieść twierdzenia postaci

$$p \Rightarrow q$$
?

Prawo kontrapozycji:

$$(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p).$$

Jak można dowieść twierdzenia postaci

$$p \Rightarrow q$$
?

Prawo kontrapozycji:

$$(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p).$$

Twierdzenie

Jeżeli dla liczb naturalnych m i n zachodzi $m+n\geqslant 33$, to $m\geqslant 17$ lub $n\geqslant 17$.

Jak można dowieść twierdzenia postaci

$$p \Rightarrow q$$
?

Prawo kontrapozycji:

$$(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p).$$

Twierdzenie

Jeżeli dla liczb naturalnych m i n zachodzi m + n \geqslant 33, to m \geqslant 17 lub n \geqslant 17.

Dowód

ightharpoonup Załóżmy, że $m \leqslant 16$ i $n \leqslant 16$.

Jak można dowieść twierdzenia postaci

$$p \Rightarrow q$$
?

Prawo kontrapozycji:

$$(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p).$$

Twierdzenie

Jeżeli dla liczb naturalnych m i n zachodzi m + n \geqslant 33, to m \geqslant 17 lub n \geqslant 17.

Dowód

- ightharpoonup Załóżmy, że $m \leqslant 16$ i $n \leqslant 16$.
- → Wtedy $m + n \le 16 + 16 \le 32 < 33$.

$$(p \Rightarrow q) \equiv [(p \land \neg q) \Rightarrow \mathsf{F}]$$

$$(p \Rightarrow q) \equiv [(p \land \neg q) \Rightarrow \mathsf{F}]$$

Twierdzenie

Jeżeli liczba naturalna n jest złożona, to ma dzielnik większy od 1, który jest mniejszy lub równy \sqrt{n} .

$$\begin{cases} p = n = ab \\ n = ab \end{cases} = ab > 2 \\ q = b > 2 \text{ pert dadalulue on } n = b = c > 2 \\ n = b > 2 \\ n = 2 \\$$

$$(p \Rightarrow q) \equiv [(p \land \neg q) \Rightarrow \mathsf{F}]$$

Twierdzenie

Jeżeli liczba naturalna n jest złożona, to ma dzielnik większy od 1, który jest mniejszy lub równy \sqrt{n} .

Dowód

$$(p \Rightarrow q) \equiv [(p \land \neg q) \Rightarrow \mathsf{F}]$$

Twierdzenie

Jeżeli liczba naturalna n jest złożona, to ma dzielnik większy od 1, który jest mniejszy lub równy \sqrt{n} .

Dowód

Istnieją takie liczby naturalne $a, b \ge 2$, że n = ab.

 \sim Załóżmy, że liczba n nie ma dzielnika, który jest mniejszy lub równy \sqrt{n} .

$$(p \Rightarrow q) \equiv [(p \land \neg q) \Rightarrow \mathsf{F}]$$

Twierdzenie

Jeżeli liczba naturalna n jest złożona, to ma dzielnik większy od 1, który jest mniejszy lub równy \sqrt{n} .

Dowód

- \sim Załóżmy, że liczba n nie ma dzielnika, który jest mniejszy lub równy \sqrt{n} .
- \rightsquigarrow Oznacza to, że $a > \sqrt{n}$ i $b > \sqrt{n}$.

$$(p \Rightarrow q) \equiv [(p \land \neg q) \Rightarrow \mathsf{F}]$$

Twierdzenie

Jeżeli liczba naturalna n jest złożona, to ma dzielnik większy od 1, który jest mniejszy lub równy \sqrt{n} .

Dowód

- \sim Załóżmy, że liczba *n* nie ma dzielnika, który jest mniejszy lub równy \sqrt{n} .
- \rightsquigarrow Oznacza to, że $a > \sqrt{n}$ i $b > \sqrt{n}$.
- \leadsto Stąd $n = ab > \sqrt{n}\sqrt{n} = n$.

$$(p \Rightarrow q) \equiv [(p \land \neg q) \Rightarrow \mathsf{F}]$$

Twierdzenie

Jeżeli liczba naturalna n jest złożona, to ma dzielnik większy od 1, który jest mniejszy lub równy \sqrt{n} .

Dowód

- \sim Załóżmy, że liczba n nie ma dzielnika, który jest mniejszy lub równy \sqrt{n} .
- \rightsquigarrow Oznacza to, że $a > \sqrt{n}$ i $b > \sqrt{n}$.
- \leadsto Stąd $n = ab > \sqrt{n}\sqrt{n} = n$.
- → Otrzymana sprzeczność kończy dowód.

$$(\neg p \Rightarrow \mathsf{F}) \Rightarrow p$$

$$(\neg p \Rightarrow \mathsf{F}) \Rightarrow p$$

Ćwiczenie

 \longrightarrow Dowieść, że liczba $\sqrt{2}$ jest niewymierna.

rp (=) (2 joil links unhvering

Funkcje zdaniowe

Definicja (Funkcja zdaniowa jednej zmiennej)

Funkcją zdaniową jednej zmiennej nazywamy wyrażenie postaci

Φ(x), zależne od zmiennej $x \in X$, które dla dowolnej wartości x staje się zdaniem logicznym.

Zbiór X nazywamy **zakresem zmienności** lub **dziedziną** funkcji zdaniowej Φ .

Definicja (Funkcja zdaniowa jednej zmiennej)

Funkcją zdaniową jednej zmiennej nazywamy wyrażenie postaci $\Phi(x)$, zależne od zmiennej $x \in X$, które dla dowolnej wartości x staje się zdaniem logicznym.

Zbiór X nazywamy zakresem zmienności lub dziedziną funkcji zdaniowej Φ.

Przykłady

$$\Phi(x) \equiv (x = x)(X = \mathbb{R})$$

$$\Phi(x) \equiv (x \neq x), X = \mathbb{R}$$

$$ightharpoonup \Phi(x) \equiv (x
eq x), \ X = \mathbb{R}$$

$$\rightarrow$$
 $\Phi(x) \equiv (x^2 \geqslant 2x), X = (0, +\infty)$

$$\rightarrow$$
 $\Phi(x) \equiv (x^2 < 2), X = \mathbb{N}$

$$\begin{array}{c}
x \in \mathbb{R} \\
f(x) = x + 1
\end{array}$$

Definicja (Wykres funkcji zdaniowej)

Wykresem funkcji zdaniowej Φ nazywamy zbiór

$$S(\Phi) := \{x \in X : \Phi(x)\},$$

to znaczy zbiór wszystkich elementów $x \in X$, dla których zdanie $\Phi(x)$ ma wartość logiczną T.

Definicja (Wykres funkcji zdaniowej)

 $N = \{1, 2, ..., \}$

Wykresem funkcji zdaniowej Φ nazywamy zbiór

$$S(\Phi) := \{x \in X : \Phi(x)\},\$$

to znaczy zbiór wszystkich elementów $x \in X$, dla których zdanie $\Phi(x)$ ma wartość logiczną T.

Przykłady $X = \mathbb{R}, \ \Phi(x) \equiv (x = x), \ S(\Phi) = \mathbb{R}$ $X = \mathbb{R}, \ \Phi(x) \equiv (x \neq x), \ S(\Phi) = \emptyset$ $X = \mathbb{R}, \ \Phi(x) \equiv (x \neq x), \ S(\Phi) = \emptyset$ $X = (0, +\infty), \ \Phi(x) \equiv (x^2 \ge 2x), \ S(\Phi) = \langle 2, +\infty \rangle$ $X = \mathbb{R}, \ \Phi(x) \equiv (x^2 < 2), \ S(\Phi) = \langle 1 \rangle$

Definicja (Funkcja zdaniowa wielu zmiennych)

Funkcją zdaniową n zmiennych nazywamy wyrażenie postaci $\Phi(x_1, \ldots, x_n)$, które dla dowolnych wartości $x_1 \in X_1, \ldots, x_n \in X_n$ staje się zdaniem logicznym.

Definicja (Funkcja zdaniowa wielu zmiennych)

Funkcją zdaniową n zmiennych nazywamy wyrażenie postaci $\Phi(x_1, \ldots, x_n)$, które dla dowolnych wartości $x_1 \in X_1, \ldots, x_n \in X_n$ staje się zdaniem logicznym.

Definicja (Wykres funkcji zdaniowej wielu zmiennych)

Wykresem funkcji zdaniowej $\Phi(x_1, \dots, x_n)$ nazywamy zbiór

$$S(\Phi) := \{x_1 \in X_1, \dots, x_n \in X_n : \Phi(x_1, \dots, x_n)\}.$$

Definicja (Kwantyfikator ogólny)

2dene

a symbol \(\lambda\) nazywamy kwantyfikatorem ogólnym.

Definicja (Kwantyfikator ogólny)

Zdanie

dla każdego x zachodzi $\Phi(x)$

zapisujemy w postaci

$$\bigwedge_{X} \Phi(X),$$

a symbol ∧ nazywamy kwantyfikatorem ogólnym.

Jeżeli X jest zakresem zmienności funkcji Φ , to możemy również pisać

$$\bigwedge_{x \in X} \Phi(x). \qquad \qquad \bigwedge_{x \in \mathbb{R}} \left(x = x \right)$$

Definicja (Kwantyfikator ogólny)

Zdanie

dla każdego x zachodzi $\Phi(x)$

zapisujemy w postaci

$$\bigwedge_{X} \Phi(X),$$

a symbol ∧ nazywamy **kwantyfikatorem ogólnym**.

Jeżeli X jest zakresem zmienności funkcji Φ , to możemy również pisać

$$\bigwedge_{x\in X}\Phi(x).$$

Definicja (Kwantyfikator szczegółowy)

Zdanie

istnieje taki
$$x$$
, że zachodzi $\Phi(x)$

zapisujemy w postaci

$$\bigvee_{x} \Phi(x),$$

a symbol V nazywamy kwantyfikatorem szczegółowym.

Definicja (Kwantyfikator szczegółowy)

Zdanie

istnieje taki
$$x$$
, że zachodzi $\Phi(x)$

zapisujemy w postaci

$$\bigvee_{X} \Phi(X),$$

a symbol V nazywamy kwantyfikatorem szczegółowym.

Jeżeli X jest zakresem zmienności funkcji Φ , to możemy również pisać

$$\bigvee_{x \in X} \Phi(x).$$

Definicja (Kwantyfikator szczegółowy)

Zdanie

istnieje taki
$$x$$
, że zachodzi $\Phi(x)$

zapisujemy w postaci

$$\bigvee_{X} \Phi(X),$$

a symbol V nazywamy kwantyfikatorem szczegółowym.

Jeżeli X jest zakresem zmienności funkcji Φ , to możemy również pisać

$$\bigvee_{x \in X} \Phi(x).$$
Czasami zamiast \bigvee piszem \bigvee \exists .

Kwantyfikatory ograniczone

Jeżeli A jest podzbiorem zakresu zmienności funkcji zdaniowej $\Phi(x)$, to

a

$$\bigvee_{x} [x \in A \Rightarrow \Phi(x)]$$
 zapisujemy w postaci

$$\bigvee_{x \in A} \Phi(x).$$

Zmienne wolne i związane

Niech $\Phi(x, y)$ będzie funkcją zdaniową dwóch zmiennych x i y.

Zmienne wolne i związane

Niech $\Phi(x, y)$ będzie funkcją zdaniową dwóch zmiennych x i y.

jest funkcją zdaniową jednej zmiennej y.

Zmienne wolne i związane

Niech $\Phi(x, y)$ będzie funkcją zdaniową dwóch zmiennych x i y.

Wyrażenie

$$\bigwedge_{x} \Phi(x,y) \qquad \text{lub} \qquad \bigvee_{x} \Phi(x,y)$$

jest funkcją zdaniową jednej zmiennej y.

Zmienną x nazywamy zmienną związaną, a y zmienną wolną.

$$\Phi(y) \equiv \left(\bigvee_{x \in \mathbb{R}} xy = 1\right), y \in \mathbb{R}$$

$$\Psi(x) \equiv \left(\bigvee_{x \in \mathbb{R}} y^2 > x\right), x \in \mathbb{R}$$

$$\Rightarrow \Phi(y) \equiv \left(\bigvee_{x \in \mathbb{R}} xy = 1\right), y \in \mathbb{R}$$

$$ightharpoonup \Psi(x) \equiv \left(igwedge_{y \in \mathbb{R}} y^2 > x
ight)$$
, $x \in \mathbb{R}$

Jakie są wykresy funkcji Φ i Ψ?

$$\begin{array}{c}
5(4) = (-\infty, 0) \\
\times > 0 \\
y \in \mathbb{R}
\end{array}$$

$$\begin{array}{c}
5 \times > 0 \\
y \in \mathbb{R}
\end{array}$$

$$\begin{array}{c}
5 \times > 0 \\
y = 0
\end{array}$$

$$S(\phi) = \mathbb{R} \setminus \{0\}$$

$$\phi(0) = \sqrt{x!0} = 1$$

$$x \in \mathbb{R}$$

$$0 \neq S(x)$$

$$ightharpoonup \Phi(y) \equiv \left(\bigvee_{x \in \mathbb{R}} xy = 1
ight)$$
, $y \in \mathbb{R}$

$$\Psi(x) \equiv \left(\bigwedge_{y \in \mathbb{R}} y^2 > x\right)$$
, $x \in \mathbb{R}$

Jakie są wykresy funkcji Φ i Ψ?

$$\longrightarrow$$
 $S(\Phi) = \mathbb{R} \setminus \{0\}$

$$ightharpoonup \Phi(y) \equiv \left(\bigvee_{x \in \mathbb{R}} xy = 1
ight)$$
, $y \in \mathbb{R}$

$$\Psi(x) \equiv \left(\bigwedge_{y \in \mathbb{R}} y^2 > x\right)$$
, $x \in \mathbb{R}$

Jakie są wykresy funkcji Φ i Ψ?

$$\longrightarrow$$
 $S(\Phi) = \mathbb{R} \setminus \{0\}$

$$\hookrightarrow$$
 $S(\Psi) = (-\infty, 0)$

Prawa rachunku kwantyfikatorów

→ Prawa de Morgana

$$\neg \left(\phi(x_1) \wedge \phi(x_2) \wedge \phi(x_3) \right) = \left(\neg \phi(x_1) \wedge \phi(x_2) \right) = \neg \phi(x_1) \wedge \phi(x_2) \wedge \phi(x_3) \wedge \phi(x_2) \wedge \phi(x_3) = \neg \phi(x_1) \wedge \phi(x_2) \wedge \phi(x_3) \wedge \phi(x_4) \wedge \phi(x_2) \wedge \phi(x_3) = \neg \phi(x_1) \wedge \phi(x_2) \wedge \phi(x_3) \wedge \phi(x_4) \wedge \phi(x_4)$$

$$\phi(x) = x \in \langle 0, 1 \rangle$$

$$\neg \bigwedge_{x \in \mathbb{R}} x \in \langle 0, 1 \rangle \equiv \bigvee_{x \in \mathbb{R}} x \notin \langle 0, 1 \rangle$$

Prawa rachunku kwantyfikatorów

→ Prawa de Morgana

$$\neg \left[\bigwedge_{x} \Phi(x) \right] \equiv \bigvee_{x} \neg \Phi(x),$$
$$\neg \left[\bigvee_{x} \Phi(x) \right] \equiv \bigwedge_{x} \neg \Phi(x).$$

→ Prawa przemienności

$$\bigwedge_{x} \bigwedge_{y} \Phi(x, y) \equiv \bigwedge_{y} \bigwedge_{x} \Phi(x, y) \equiv \bigvee_{x, y} \Phi(x, y),$$

$$\bigvee_{x} \bigvee_{y} \Phi(x, y) \equiv \bigvee_{y} \bigvee_{x} \Phi(x, y) \equiv \bigvee_{x, y} \Phi(x, y).$$

Prawa rachunku kwantyfikatorów

→ Prawa de Morgana

$$\neg \left[\bigwedge_{x} \Phi(x) \right] \equiv \bigvee_{x} \neg \Phi(x),$$
$$\neg \left[\bigvee_{x} \Phi(x) \right] \equiv \bigwedge_{x} \neg \Phi(x).$$

→ Prawa przemienności

 $\sim \rightarrow$

$$\bigwedge_{x} \Phi(x,y) \equiv \bigwedge_{y} \Phi(x,y) \equiv \bigwedge_{x,y} \Phi(x,y),$$

$$\bigvee_{x} \Psi(x,y) \equiv \bigvee_{y} \Psi(x,y) \equiv \bigvee_{x,y} \Psi(x,y).$$

$$\bigvee_{x} \Phi(x,y) \Rightarrow \bigwedge_{y} \Psi(x,y).$$
We obline on $\downarrow_{x} \Psi(x,y) \Rightarrow \bigvee_{y} \Psi(x,y).$

× moie roleier of h