VISUALIZING AND PREDICTING HEART DISEASE USING INTERACTIVE DASHBOARD

PROJECT REPORT

- 1. INTRODUCTION
 - 1.1. Project Overview
 - 1.2.Purpose
- 2. LITERATURE SURVEY
 - 2.1.Existing problem
 - 2.2.References
 - 2.3. Problem Statement Definition
- 3. IDEATION & PROPOSED SOLUTION
 - 3.1. Empathy Map Canvas
 - 3.2.Ideation & Brainstorming
 - 3.3. Proposed Solution
 - 3.4. Problem Solution fit
- 4. REQUIREMENT ANALYSIS
 - 4.1. Functional requirement
 - 4.2. Non-Functional requirements
- 5. PROJECT DESIGN
 - 5.1. Data Flow Diagrams
 - 5.2. Solution & Technical Architecture
 - 5.3.User Stories
- 6. PROJECT PLANNING & SCHEDULING
 - 6.1. Sprint Planning & Estimation
 - 6.2. Sprint Delivery Schedule
- 7. CODING & SOLUTIONING (Explain the features added in the project along withcode)
 - 7.1.Feature 1
 - 7.2.Feature 2
 - 7.3. Database Schema (if Applicable)
- 8. TESTING
 - 8.1.Test Cases
 - 8.2. User Acceptance Testing
- 9. RESULTS
 - 9.1.Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX
- Source Code
- GitHub & Project Demo Link

1. INTRODUCTION

1.1 PROJECT OVERVIEW

According to the World Health Organization, every year 12 million deaths occur worldwide due to heart disease. Heart disease is one of the biggest causes of morbidity and mortality among the population of the world. Prediction of cardiovascular disease is regarded as one of the most important subjects in the section of data analysis. The load of cardiovascular disease is rapidly increasing all over the world from the past few years.

Many researches have been conducted in attempt to pinpoint the most influential factors of heart disease as well as accurately predict the overall risk. Heart Disease is even highlighted as a silent killer which leads to the death of the person without obvious symptoms.

The early diagnosis of heart disease plays a vital role in making decisions on lifestyle changes in high-risk patients and in turn reduces the complications. Data analytics proves to be effective in assisting in making decisions and predictions from the large quantity of data produced by the health care industry. This project aims to predict future heart disease by analysing data of patients which classifies whether they have heart disease or not using machine-learning algorithm.

Data analytics techniques can be a boon in this regard. Even though heart disease can occur in different forms, there is a common set of core risk factors that influence whether someone will ultimately be at risk for heart disease or not.

By collecting the data from various sources, classifying them under suitable headings & finally analysing to extract the desired data we can say that this technique can be very well adapted to do the prediction of heart disease.

1.2 PURPOSE

The main objective of this project is to visualize heart disease prediction and create an interactive dashboard. The system can discover and extract hidden knowledge associated with disease from a historical heart dataset. Heart disease prediction system aims to exploit machine learning on medical dataset to assist in the prediction of the heart disease.

- Provides new approach to concealed patterns in the data.
- Helps avoid human biasness.
- Reduce the cost of medical tests

2. LITERATURE SURVEY

2.1 EXISTING SOLUTIONS

- Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques" proposed by Senthil Kumar Mohan, Chandrasegar Thirumalai et al. (2019) was efficient technique using hybrid machine learning methodology. The hybrid approach is combination of random forest and linear method. The dataset and subsets of attributes were collected for prediction. The subset of some attributes was chosen from the pre-processed knowledge (data) set of cardiovascular disease. After prep processing, the hybrid techniques were applied and diagnosis the cardiovascular disease.
- K. Prasanna Lakshmi, Dr. C.R.K. Reddy (2015) designed "Fast Rule Based Heart Disease Prediction using Associative Classification Mining". In the proposed Stream Associative Classification Heart Disease Prediction (SACHDP), we used associative classification mining over landmark window of data streams. This paper contains two phases: one is generating rules from associative classification mining and next one is pruning the rules using chi square testing and arranging the rules in an order to form a classifier. Using these phases to predict the heart disease easily.
- M.Satish, et al. (2015) used different Data Mining techniques like Rule based, Decision Tree, Naive Bayes, and Artificial Neural Network. An efficient approach called pruning classification association rule (PCAR) was used to generate association rules from cardiovascular disease warehouse for prediction of Heart Disease. Heart attack data warehouse was used for preprocessing for mining.
- Lokanath Sarangi, Mihir Narayan Mohanty, Srikanta Pattnaik (2015) "An Intelligent Decision Support System for Cardiac Disease Detection", designed a cost-efficient model by using genetic algorithm optimizer technique. The weights were optimized and fed as an input to the given network. The accuracy achieved was 90% by using the hybrid technique of GA and neural networks.
- "Prediction and Diagnosis of Heart Disease by Data Mining Techniques" designed by Boshra Bahrami, Mirsaeid Hosseini Shirvani. This paper uses various classification methodology for diagnosing cardiovascular disease. Classifiers like KNN, SVO classifier and Decision Tree are used to divide the datasets. Once the classification and performance evaluation the Decision tree is examined as the best one for cardiovascular disease prediction from the dataset

2.2 REFERENCES

- A study of predicting heart disease, https://www.irjet.net/archives/V7/i5/IRJET-V7I5579.
- K. Prasanna Lakshmi, Dr. C.R.K. Reddy, "Fast Rule-Based Heart Disease Prediction using Associative Classification Mining", IEEE International Conference on Computer, Communication and Control (IC4-2015)
- M. Satish, D Sridhar, "Prediction of Heart Disease in Data Mining Technique", International Journal of Computer Trends & Technology (IJCTT), 2015.
- Lokanath Sarangi, Mihir Narayan Mohanty, Srikanta Pattnaik, "An Intelligent Decision Support System for Cardiac Disease Detection", IJCTA, International Press 2015.
- Boshra Bahrami, Mirsaeid Hosseini Shirvani, "Prediction and Diagnosis of Heart Disease by Data Mining Techniques", Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 3159-0040 Vol. 2 Issue 2, February–2015.

2.3 PROBLEM STATEMENT

Heart disease can be managed effectively with a combination of lifestyle changes, medicine and, in some cases, surgery. With the right treatment, the symptoms of heart disease can be reduced and the functioning of the heart improved. The predicted results can be used to prevent and thus reduce cost for surgical treatment and other expensive. Objective of this project is to develop an interactive dashboard to predict the heart disease accurately with few tests and attributes the presence of heart disease.

- The healthcare environment is still "information rich" but "knowledge poor". There is a wealth of data available within the healthcare systems. However, there is a lack of effective analysis tools to discover hidden relationships and trends.
- Attributes considered form the primary basis for tests and give accurate results more or less. Many more input attributes can be taken but our goal is to predict with few attributes and faster efficiency the risk of having heart disease.
- Data analytics holds great potential for the healthcare industry to enable health systems to systematically use data and analytics to identify inefficiencies and best practices that improve care and reduce costs.

3. IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION & BRAINSTORMING

3.3 PROPOSED SOLUTION

S.No	Parameter	Description
1.	Problem Statement (Problem to besolved)	To develop an interactive dashboard to predict the heart disease accurately withfew tests and attributes the presence of heart disease.
2.	Idea / Solution description	 Analyzing data and identifying the heart disease using Cognos analysis.
3.	Novelty / Uniqueness	Hoping to achieve maximum accuracy toprovide prior treatment to the patients and reduce the fatality rate.
4.	Social Impact / Customer Satisfaction	 Saving lives, User friendlyinteractive dashboard. Reduces the exorbitant medical cost of the patients. Reduces the biases and mistakes caused by the decisions of doctors basedon their intuitions and experiences.
5.	Business Model (Revenue Model)	 Data security. Easy to use. Constant updates according tonecessity.
6.	Scalability of the Solution	 Can be used in any platform(Windows, mac, etc,.) Adding new feature doesn't affect the performance of the system. Scalable dataset.

3.4 PROBLEM SOLUTION FIT

4. REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENT

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through form, Gmail and LinkedIN
FR-2	User Login	Confirmation of Gmail/username Confirmation of password
FR-3	Cyber attack	Immediate system shutdown in case of any malware attack
FR-4	Backup and storage	Patient data can be backed up into cloud server. Backup can be scheduled for regularity.
FR-5	Prediction generation	The analysis and prediction can be downloaded in various formats.

4.2 NON-FUNCTIONAL REQUIREMENT

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Clear user interface for easy navigation which enables easy understanding of the contents of the product.
NFR-2	Security	Security of the patient data will be ensured by use of various measures like firewall, security questions and account locking in case of multiple incorrect passwords.
NFR-3	Reliability	Product will have same efficiency even after extensive use. Percentage of probability of failure will be less. Time between critical failures will be high.
NFR-4	Performance	Each page of the product will load within 2 secs. Prediction will take less than 5 secs and the generation of the analysis report will be less than 3 secs.
NFR-5	Availability	All product modules will be highly available and canbe accessed with PC and internet.
NFR-6	Scalability	The scalability will be to improve 10% of annual patient in the hospital

5. PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

5.2 SOLUTION & TECHNICAL ARCHITECTURE

S.No	Component	Description	Technology
1.	Importing data	Data Import lets you upload data from	Python,
		external sources and combine it with data	numpy
		you collect via	,pandas.
		Analytics	
2.	Data Cleaning	Data cleaning is a process by which	Python
		inaccurate, poorly formatted, or otherwise	
		messy data is organized and corrected	
3.	Data	Data preprocessing, a component of data	Python
	Preprocessing	preparation, describes any type of processing	
		performed on raw data to prepare it for another	
		data	
		processing procedure	
4.	Training data	Training data is the part of original data that is	python
		usedto train the machine learning model	
5.	Testing data	Test data is data which has been specifically	Python.
		usedfor testing the model	
6.	Machine learning	A machine learning model is a file that has	Python.
	model	been trained to recognize certain types of	
		patterns. Youtrain a model over a set of data,	
		providing it an algorithm that it can use to	
		reason over and learn	
		from those data	
7.	Improve model	Accuracy is one metric for evaluating classification	Python.
	performance	Models. Informally, accuracy is the fraction of	
		predictions our model got right.	

5.3 USER STORIES

User Type	Functional	User	User Story / Task	Acceptance	Priority	Release
	Requirem	Story		criteria	criteria	
	ent(Epic)	Number	A	Lagra	I II ada	Constant
Customer	Registration	USN-1	As a user, I can register for the application by	I can access my	High	Sprint- 1
(Mobile			entering my email,	account/		1
user)			password, and	dashboard		
			confirmingmy			
			password.			
		USN-2	As a user, I will	I can	High	Sprint-
			receive	receive		1
			confirmation email	confirm		
			once I have	ation		
			registered for the	email &		
			application	click		
				confirm		
		USN-3	As a user, I can	l can	Low	Sprint-
			register for the	register		2
			applicationthrough	& access		
			Facebook	the		
				dashboa		
				rd with		
				Facebook		
		USN-4	A	Login	Mediu	Sprint-
		0311-4	As a user, I can	Ican	m	3priiit-
			register for the	register & access	•••	_
			applicationthrough	the		
			Gmail	dashboa		
				rd with		
				Gmail		
				Login		
	Login	USN-5	As a user, I can log	I can	High	Sprint-
	0	30	into the application	register &		1
			byentering email &	access		
			password	the		
			Password	dashb		
				oard		
				with Gmail		
				Login		
	Dashboard	USN-6	Profile - view & update	I can see	High	Sprint-
			your profile	the profile.		1
		USN-7	Change	I can able	High	Sprint-
			Password - user	to change		1

	can change the	the		
	password	password		
		•		
USN-8	Home - Analyze your Heart	I can detect the health conditio n from where ever I want.	High	Sprint- 1
USN-9	The user will have to fill in the below 13 fields for the system to predict a disease -Age in Year -Gender -Chest Pain Type -Fasting Blood Sugar - Resting Electrographic Results(Restec g) -Exercise Induced	These are the categories available in that application .	High	Sprint- 2

6. PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING & ESTIMATION

Sprint	Functional Requireme nt (Epic)	User Story Numb er	User Story / Task	Story Point	Priority	Team Membe rs
Sprint-	Working with Dataset	USN-1	As a user, I can collect the details of the patients and store the data in a csv file. Uploading the csv file for heart disease prediction to IBM Cognos Analytics	5	Medium	Srinithi B, Aarthi M V

Sprint- 1		USN-2	As an analyst, I will check the dataset and clean it for null values and duplicates to get an efficient heart disease prediction model.	5	Medium	Alin Jeni C, Monika D
Sprint-1		USN-3	As an Analyst I will also correct the raw data and create a data module forthe dataset.	5	Medium	Alin Jeni C, Monika D
Sprint- 2	Exploring and Visualizing the dataset using Cognos	USN-4	As an analyst, I will explorethe dataset by visualizing in Cognos analytics.	5	Medium	Srinithi B, Aarthi M V
Sprint- 2		USN-5	As an analyst, I will get the inference of the visualization of the dataset.	5	Medium	Alin Jeni C, Monika D
Sprint- 3	Visualizing thedataset using story card, and python	USN-6	As an analyst, I will visualize the dataset using story card and python to get insights of the dataset.	5	Medium	Alin Jeni C, Monika D
Sprint-3	Creation of interactive Dashboard	USN-7	As an analyst, I can monitor the events and activities at a glance by providing key insights and analysis about the dataset.	5	Medium	Srinithi B, Aarthi M V

Sprint- 4	Web user interface creation	USN-8	As an analyst, I will use HTML, CSS to develop a login page and user interface to access the dashboard, story and reportfor analysis.	10	High	Alin Jeni C, Monika D
Sprint- 4	Report generation in Cognos Analytics	USN-9	As an analyst I will be developing a report on theused dataset for analysis and predicting heart disease.	10	High	Srinithi B, Aarthi M V

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total Story Point s	Duration	Sprint Start Date	Sprint EndDate (Planned)	Story Points Completed (as on Planned EndDate)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

7. CODING & SOLUTION

```
Content.html
<!DOCTYPE html>
<html>
      <head>
             <title>PNT2022TMID06878 VISUALIZING AND PREDICTING HEART
DISEASE USING INTERACTIVE DASHBOARD</title>
             k rel="stylesheet"
href="https://fonts.googleapis.com/css?family=Roboto">
      </head>
      <style>
             html,body{
             margin:0;
             width:100%;
             height:100%;
             font-family:Roboto;
             display: flex;
             flex-direction: column;
  background-repeat:no-repeat;
  background-position: center;
  background-size: cover;
             .header{
             position: fixed;
             top: 0px;
             width:100%;
             height:100px;
             display: flex;
             flex-direction: row;
             align-items: center;
             justify-content: space-between;
             #heading{
             padding:10px;
             color:white;
             font-size:25px;
             font-style: italic
             #option1{
             margin-right:2px;
             padding:10px;
             color:black;
```

```
font-size:20px;
           .options{
           display: flex;
margin-right:25px;
           a{
           text-decoration:none;
           color:black;
           .content{
margin-right: 1055px;
margin-left: 100px;
           }
           .frm{
           margin-top: 100px;
           border:2px solid black;
           padding:30px;
           border-radius:5px;
align:center;
           .inputs{
           padding:10px;
           border-radius:5px;
           outline:0;
           width:250px;
           .btn{
           cursor: pointer;
           width:250px;
           .si:hover{
                  color:white;
                  background-color:dimgrey;
           }
           img{
           height:60px;
           width:60px;
           border-radius:50%;
           </style>
```

```
<body background=
"https://api.parashospitals.com/uploads/2021/03/Prevention-of-Heart-
Disease.png">
            <div class="header">
                 <div class="options">
                       VISUALIZING AND PREDICTING HEART
DISEASE USING INTERACTIVE DASHBOARD</a>
                 </div>
           </div>
           <div class="content">
 <center></center><br>
                 <form class="frm">
                       <h3><center><img
src="https://domf5oio6qrcr.cloudfront.net/medialibrary/4563/silent-heart-
attacks.png"alt="loginimg"></center></h3>
   <button type="submit" class="inputs btn si" ><a
href="dashboard.html">DASHBOARD</a></button><br>
   <button type="submit" class="inputs btn si" ><a
href="story.html">STORY</a></button><br>
                       <button type="submit" class="inputs btn si" ><a
href="report.html">REPORT</a></button><br>
                             <br><br><
                 </form>
           </div>
     </body>
</html>
Dashboard.html
<!DOCTYPE html>
<html>
     <head>
            <title>PNT2022TMID06878 VISUALIZING AND PREDICTING HEART
DISEASE USING INTERACTIVE DASHBOARD</title>
           <link rel="stylesheet"</pre>
href="https://fonts.googleapis.com/css?family=Roboto">
     </head>
     <style>
 html,body{
           margin:0;
           width:100%;
           height:100%;
           font-family:Roboto;
```

```
display: flex;
           flex-direction: column;
           background-repeat:no-repeat;
background-position: center;
background-size: cover;
           .header{
           position: fixed;
           top: 0px;
           width:100%;
           height:100px;
           display: flex;
           flex-direction: row;
           align-items: center;
           justify-content: space-between;
           #heading{
           padding:10px;
           color:black;
           font-size:25px;
           font-style: italic
           #option1{
           margin-right:10px;
           padding:10px;
           color:white;
           font-size:20px;
           .options{
           display: flex;
           a{
           text-decoration:none;
           color:white;
#option1:hover{
           border:1px solid white;
           border-radius:10px;
           background-color:black;
           .container{
           display:flex;
           justify-content:center;
```

```
flex-direction:row;
            #imgs{
            margin-top:100px;
            height: 300px;
            width: 60vw;
            #subhead{
            font-size: 30px;
            color: black;
            text-align: center;
            th, td {
            width:40vw;
            padding: 15px;
            th{
            color:black;
            text-decoration-line: underline;
            td{
            color:black;
            text-align:justify;
            table
                   background-color: white;
                   opacity: 70%;
                   margin-left: 120px;
            #content
                   margin-top: 80px;
   margin-right: 200px;
             </style>
      <body background=
"https://api.parashospitals.com/uploads/2021/03/Prevention-of-Heart-
Disease.png">
             <div class="header">
                   DASHBOARD VISUALIZATION
```

align-items: center

```
<div class="options">
    <a href="content.html">EXIT</a>
                  </div>
            </div>
            <div id ="content">
   <iframe
src="https://us3.ca.analytics.ibm.com/bi/?perspective=dashboard&pathRef=.m
y folders%2FHeart%2Bdisease%2Bprediction&closeWindowOnLastView=true&
amp;ui appbar=false&ui navbar=false&shareMode=embedded&acti
on=view&mode=dashboard" width="1518" height="610" frameborder="0"
gesture="media" allow="encrypted-media" allowfullscreen=""></iframe>
  </div>
      </body>
</html>
Story.html
<!DOCTYPE html>
<html>
      <head>
            <title>PNT2022TMID06878 VISUALIZING AND PREDICTING HEART
DISEASE USING INTERACTIVE DASHBOARD</title>
           <link rel="stylesheet"</pre>
href="https://fonts.googleapis.com/css?family=Roboto">
      </head>
      <style>
  html,body{
            margin:0;
           width:100%;
           height:100%;
           font-family:Roboto;
            display: flex;
           flex-direction: column;
            background-repeat:no-repeat;
  background-position: center;
  background-size: cover;
            .header{
            position: fixed;
           top: 0px;
            width:100%;
            height:100px;
```

```
display: flex;
           flex-direction: row;
           align-items: center;
           justify-content: space-between;
           #heading{
           padding:10px;
           color:black;
           font-size:25px;
           font-style: italic
           #option1{
           margin-right:10px;
           padding:10px;
           color:white;
           font-size:20px;
           .options{
           display: flex;
           }
           a{
           text-decoration:none;
           color:white;
#option1:hover{
           border:1px solid white;
           border-radius:10px;
           background-color:black;
           .container{
           display:flex;
           justify-content:center;
           align-items: center
           flex-direction:row;
           #imgs{
           margin-top:100px;
           height: 300px;
           width: 60vw;
           #subhead{
           font-size: 30px;
           color: black;
```

```
text-align: center;
           th, td {
           width:40vw;
           padding: 15px;
           th{
           color:black;
           text-decoration-line: underline;
           td{
           color:black;
           text-align:justify;
           table
                 background-color: white;
                 opacity: 70%;
                 margin-left: 120px;
           #content
                 margin-top: 80px;
  margin-right: 200px;
           </style>
     <body background=
"https://api.parashospitals.com/uploads/2021/03/Prevention-of-Heart-
Disease.png">
           <div class="header">
                 STORY VISUALIZATION
                 <div class="options">
   <a href="content.html">EXIT</a>
                 </div>
           </div>
           <div id ="content">
  <iframe
src="https://us3.ca.analytics.ibm.com/bi/?perspective=story&pathRef=.my_fold
ers%2FHeart%2Bdisease%2Bprediction%2Bstory&closeWindowOnLastView=tru
e&ui_appbar=false&ui_navbar=false&shareMode=embedded&a
ction=view&sceneId=model000001847b557ecf_00000002&sceneTime=0"
```

```
width="1518" height="610" frameborder="0" gesture="media" allow="encrypted-
media" allowfullscreen=""></iframe>
  </div>
      </body>
</html>
Report.html
<!DOCTYPE html>
<html>
      <head>
             <title>PNT2022TMID06878 VISUALIZING AND PREDICTING HEART
DISEASE USING INTERACTIVE DASHBOARD</title>
             <link rel="stylesheet"</pre>
href="https://fonts.googleapis.com/css?family=Roboto">
      </head>
      <style>
  html,body{
             margin:0;
             width:100%;
             height:100%;
             font-family:Roboto;
             display: flex;
             flex-direction: column;
             background-repeat:no-repeat;
  background-position: center;
  background-size: cover;
             .header{
             position: fixed;
             top: 0px;
             width:100%;
             height:100px;
             display: flex;
             flex-direction: row;
             align-items: center;
             justify-content: space-between;
             #heading{
             padding:10px;
             color:black;
             font-size:25px;
             font-style: italic
```

```
}
           #option1{
           margin-right:10px;
           padding:10px;
           color:white;
           font-size:20px;
           .options{
           display: flex;
           a{
           text-decoration:none;
           color:white;
#option1:hover{
           border:1px solid white;
           border-radius:10px;
           background-color:black;
           }
           .container{
           display:flex;
           justify-content:center;
           align-items: center
           flex-direction:row;
           #imgs{
           margin-top:100px;
           height: 300px;
           width: 60vw;
           #subhead{
           font-size: 30px;
           color: black;
           text-align: center;
           th, td {
           width:40vw;
           padding: 15px;
           th{
           color:black;
           text-decoration-line: underline;
           }
```

```
td{
           color:black;
           text-align:justify;
           table
           {
                 background-color: white;
                 opacity: 70%;
                 margin-left: 120px;
           }
           #content
                 margin-top: 80px;
  margin-right: 200px;
           </style>
     <body background=
"https://api.parashospitals.com/uploads/2021/03/Prevention-of-Heart-
Disease.png">
           <div class="header">
                 REPORT VISUALIZATION
                 <div class="options">
   <a href="content.html">EXIT</a>
                 </div>
           </div>
           <div id ="content">
  <iframe
src="https://us3.ca.analytics.ibm.com/bi/?pathRef=.my_folders%2FHeart%2Bdisease
%2Breport&closeWindowOnLastView=true&ui_appbar=false&ui_nav
bar=false&shareMode=embedded&action=edit" width="1518"
height="610" frameborder="0" gesture="media" allow="encrypted-media"
allowfullscreen=""></iframe>
 </div>
     </body>
</html>
```

8. TESTING

8.1 TEST CASES

				Date	18-Nov-22								
1				Team ID	PNT2022TMID06878								
					Project – Visualizing and Predicting								
				Project Name	Heart Diseases with an Interactive								
				Project Name	Dash Board								
				Maximum Marks									
				Maximum Marks	4 marks						wa f	_	
Test case ID	Feature Type	Component	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status	Commnets	TC for Automation(Y/N)	BUG ID	Executed By
					Upload the dataset	https://github.com/IBM-	Accurate					ıı	
	Dashboard/Repor	Cognos	Verify the dataset		2. Explore the data	EPBL/IBM-Project-3802-	prediction	Working as		Cognos analytics to		ll	
BP	t/Story	Analytics	for accurate	A quality dataset	3. Create dashboard/Report/Story	1658639787/blob/main/Final		expected	Pass		Yes	High	Srinithi B
	Cystory	Allalytics	performance			%20Deliverables/Heart_Diseas		expected		of patients with BP		ll	
						e Prediction.csv							
					Upload the dataset	https://github.com/IBM-	Accurate			Cognos analytics to		ıı	
	Dashboard/Repor	Cognos	Verify the dataset		2. Explore the data	EPBL/IBM-Project-3802-	prediction	Working as		accurate prediction		ll	
Cholesterol	t/Story	Analytics	for accurate	A quality dataset	Create dashboard/Report/Story	1658639787/blob/main/Final		expected	Pass	Pass of patients with Cholesterol	vith Yes	High	Aarthi MV
	t/Story	Allalytics	performance			%20Deliverables/Heart_Diseas		expected				ll	
						e_Prediction.csv				Cholesteror			
					1. Upload the dataset	https://github.com/IBM-	Accurate						
	Dashboard/Repor	Cognos	Verify the dataset		2. Explore the data	EPBL/IBM-Project-3802-	prediction	Not working		Some data not		ll	
Thallium		Analytics	for accurate	A quality dataset	3. Create dashboard/Report/Story	1658639787/blob/main/Final			Fail		No	Low	Alin Jeni C
	t/Story	Analytics	performance			%20Deliverables/Heart Diseas		as expected		accurate		ıı	
						e Prediction.csv						ll	
					1. Upload the dataset	https://github.com/IBM-	Accurate			0			
			Verify the dataset		2. Explore the data	EPBL/IBM-Project-3802-	prediction			Cognos analytics to		ıı	
ECG	Dashboard/Repor	Cognos	for accurate	A quality dataset	3. Create dashboard/Report/Story	1658639787/blob/main/Final		Working as	Pass	accurate prediction	Yes	High	Monika D
	t/Story	Analytics	performance			%20Deliverables/Heart Diseas		expected		of patients based on			
						e Prediction.csv				ECG		ıı	
					1. Upload the dataset	https://github.com/IBM-	Accurate					П	
			Verify the dataset		2. Explore the data	EPBL/IBM-Project-3802-	prediction					l l	
Obesity	Dashboard/Repor	Cognos	for accurate	A quality dataset	3. Create dashboard/Report/Story	1658639787/blob/main/Final		Not working	Fail	Some data not	No	Mediu	Srinithi B
1 1	t/Story	Analytics	performance			%20Deliverables/Heart Diseas		as expected		accurate		m	
						e Prediction.csv						ıl	
					Upload the dataset	https://github.com/IBM-	Accurate						
			Verify the dataset		2. Explore the data	EPBL/IBM-Project-3802-	prediction			Cognos analytics to			
	Dashboard/Repor	Cognos	for accurate	A quality dataset	3. Create dashboard/Report/Story	1658639787/blob/main/Final		Working as	Pass	accurate prediction	Yes	High	Aarthi MV
Depression	t/Story	Analytics	performance	,,	, , , , , , , , , , , , , , , , , , , ,	%20Deliverables/Heart Diseas		expected		of patients with ST			
			,			e Prediction.csv				depressionYes			

8.2 USER ACCEPTANCE TESTING

Defect Analysis

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
BP	10	4	2	3	19
Cholesterol	10	7	3	4	24
Thallium	2	3	0	1	6
ECG	11	2	4	20	37
Obesity	9	6	1	0	16
St depression	3	4	1	1	9
Totals	45	21	11	29	111

Test case Analysis

Section	Total Cases	Not Tested	Fail	Pass
BP	22	0	0	22
Cholesterol	31	0	0	31
Thallium	4	0	0	4
ECG	51	0	0	51
Obesity	9	0	0	9
St depression	2	0	0	2

9. RESULTS

9.1 PERFORMANCE METRICS

The expected visualization of the heart disease dataset was successfully completed using IBM Cognos Analytics and the prediction was completed by creating an interactive dashboard.

The performance of the dashboard and is up to the level of expectation with the presence of active internet connection.

10. ADVANTAGES & DISADVANTAGES

10.1 ADVANTAGES

- 1. User can search for doctor's help at any point of time.
- 2. User can talk about their heart disease and get instant diagnosis.
- 3. Doctors get more clients online.
- 4. Very useful in case of emergency.

10.2 DISADVANTAGES

- 1. Prediction of cardiovascular disease results is not accurate.
- 2. Data mining techniques does not help to provide effective decision making.
- 3. Cannot handle enormous datasets for patient records.

11. CONCLUSION

Heart diseases are a major killer in India and throughout the world, application of promising technology like machine learning to the initial prediction of heart diseases will have a profound impact on society. The early prognosis of heart disease can aid in making decisions on lifestyle changes in high-risk patients and in turn reduce the complications, which can be a great milestone in the field of medicine. The number of people facing heart diseases is on a raise each year. This prompts for its early diagnosis and treatment. The utilization of suitable technology support in this regard can prove to be highly beneficial to the medical fraternity and patients.

12. FUTURE SCOPE

Future enhance of the HDPS is to predict a specific HD type such Heart attracts, CVD, CAD, etc. the potential of the HDPS in a different area are hospital, Clinic, smartphone, smart wear, hospital/police emergency system and integrate with fitness mobile application. We will integrate this model in hospital and clinic system to predict heart disease. We will implement this HDP Model into smart wears to detect essential attributes of HD and suggest to the precaution of HD. we will also apply this model into a mobile app to easily test ourselves HD. we will integrate smart wear to the hospital and police emergency system to save the life of the patient at the emergency condition.

13. APPENDIX

HTML

HTML is an acronym which stands for Hyper Text Markup Language which is used for creating web pages and web applications.

Hyper Text: Hypertext simply means "Text within Text." A text has a link within it, is a hypertext. Whenever you click on a link which brings you to a new webpage, you have clicked on a hypertext. Hypertext is a way to link two or more web pages (HTML documents) with each other.

Markup language: A markup language is a computer language that is used to apply layout and formatting conventions to a text document. Markup language makes text more interactive and dynamic. It can turn text into images, tables, links, etc.

Web Page: A web page is a document which is commonly written in HTML and translated by a web browser. A web page can be identified by entering an URL. A Web page can be of the static or dynamic type. With the help of HTML only, we can create static web pages

CSS

CSS stands for Cascading Style Sheets. It is a style sheet language which is used to describe the look and formatting of a document written in markup language. It provides an additional feature to HTML. It is generally used with HTML to change the style of web pages and user interfaces. It can also be used with any kind of XML documents including plain XML, SVG and XUL.

CSS is used along with HTML and JavaScript in most websites to create user interfaces for web applications and user interfaces for many mobile applications. CSS style definitions are saved in external CSS files so it is possible to change the entire website by changing just one file.

COGNOS ANALYTICS

IBM Cognos Analytics is a set of business intelligence tools available on cloud or onpremise. The primary focus is in the area of Descriptive Analytics, to help users see the information in your data through dashboards, professional reporting and self-service data exploration.

New exploration features in the program now highlight interesting relationships within the data, helping users to find insights they may not even be looking for, allowing users to not only see what has happened with Descriptive Analytics but allows them to understand why it happened with Diagnostic Analytics.

PYTHON

Python is an interpreted, high-level, general purpose programming language created by Guido Van Rossum and first released in 1991, Python's design philosophy emphasizes code Readability with its notable use of significant White space. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects. Python is dynamically typed and garbage collected. It supports multiple programming paradigms, including procedural, object-oriented, and functional programming.

NUMPY

NumPy is a library for the python programming language, adding support for large, multidimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. The ancestor of NumPy, Numeric, was originally created by Jim with contributions from several other developers. In 2005, Travis created NumPy by incorporating features of the competing Numarray into Numeric, with extensive modifications. NumPy is open-source software and has many contributors.

MATPLOTLIB

Matplotlib is a plotting library for the Python programming language and its numerical mathematics extension NumPy. It provides an object-oriented API for embedding plots into applications using general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK. There is also a procedural "pylab" interface based on a statemachine (like OpenGL), designed to closely resemble that of MATLAB, though its use is discouraged.

Source code:

```
Content.html
<!DOCTYPE html>
<html>
   <head>
         <title>PNT2022TMID06878 VISUALIZING AND PREDICTING HEART DISEASE
USING INTERACTIVE DASHBOARD</title>
         <link rel="stylesheet"</pre>
href="https://fonts.googleapis.com/css?family=Roboto">
   </head>
   <style>
         html,body{
         margin:0;
         width:100%;
         height:100%;
         font-family:Roboto;
         display: flex;
         flex-direction: column;
  background-repeat:no-repeat;
  background-position: center;
  background-size: cover;
         .header{
         position: fixed;
         top: 0px;
         width:100%;
         height:100px;
         display: flex;
         flex-direction: row;
         align-items: center;
         justify-content: space-between;
         #heading{
         padding:10px;
         color:white;
```

```
font-size:25px;
       font-style: italic
        }
       #option1{
       margin-right:2px;
       padding:10px;
       color:black;
       font-size:20px;
       .options{
       display: flex;
margin-right:25px;
       }
       a{
       text-decoration:none;
       color:black;
        .content{
margin-right: 1055px;
margin-left: 100px;
       }
       .frm{
       margin-top: 100px;
       border:2px solid black;
       padding:30px;
       border-radius:5px;
align:center;
       }
       .inputs{
       padding:10px;
       border-radius:5px;
        outline:0;
       width:250px;
```

```
.btn{
        cursor: pointer;
        width:250px;
        .si:hover{
              color:white;
              background-color:dimgrey;
        }
        img{
        height:60px;
        width:60px;
        border-radius:50%;
        </style>
  <body background= "https://api.parashospitals.com/uploads/2021/03/Prevention-
of-Heart-Disease.png">
        <div class="header">
              <div class="options">
                    VISUALIZING AND PREDICTING HEART DISEASE
USING INTERACTIVE DASHBOARD</a>
              </div>
        </div>
        <div class="content">
 <center></center><br>
              <form class="frm">
                    <h3><center><img
src="https://domf5oio6qrcr.cloudfront.net/medialibrary/4563/silent-heart-
attacks.png"alt="loginimg"></center></h3>
   <button type="submit" class="inputs btn si" ><a
href="dashboard.html">DASHBOARD</a></button><br>
   <button type="submit" class="inputs btn si" ><a
href="story.html">STORY</a></button><br>
                    <button type="submit" class="inputs btn si" ><a
href="report.html">REPORT</a></button><br>
                          <br>>
```

```
</form>
          </div>
   </body>
</html>
Dashboard.html
<!DOCTYPE html>
<html>
   <head>
          <title>PNT2022TMID06878 VISUALIZING AND PREDICTING HEART DISEASE
USING INTERACTIVE DASHBOARD</title>
          <link rel="stylesheet"</pre>
href="https://fonts.googleapis.com/css?family=Roboto">
   </head>
   <style>
  html,body{
          margin:0;
          width:100%;
          height:100%;
          font-family:Roboto;
          display: flex;
          flex-direction: column;
          background-repeat:no-repeat;
  background-position: center;
  background-size: cover;
          }
          .header{
          position: fixed;
         top: 0px;
          width:100%;
          height:100px;
          display: flex;
          flex-direction: row;
          align-items: center;
         justify-content: space-between;
```

```
}
       #heading{
       padding:10px;
        color:black;
       font-size:25px;
       font-style: italic
        }
       #option1{
        margin-right:10px;
        padding:10px;
        color:white;
       font-size:20px;
       .options{
       display: flex;
       }
       a{
        text-decoration:none;
        color:white;
        }
#option1:hover{
       border:1px solid white;
       border-radius:10px;
       background-color:black;
        .container{
       display:flex;
       justify-content:center;
       align-items: center
       flex-direction:row;
        #imgs{
        margin-top:100px;
        height: 300px;
        width: 60vw;
```

```
}
         #subhead{
         font-size: 30px;
         color: black;
         text-align: center;
         }
         th, td {
         width:40vw;
         padding: 15px;
         th{
         color:black;
         text-decoration-line: underline;
         }
         td{
         color:black;
         text-align:justify;
         table
         {
                background-color: white;
                opacity: 70%;
                margin-left: 120px;
         }
         #content
                margin-top: 80px;
   margin-right: 200px;
         }
         </style>
   <body background= "https://api.parashospitals.com/uploads/2021/03/Prevention-
of-Heart-Disease.png">
         <div class="header">
                DASHBOARD VISUALIZATION
                                                                            Page | 35
```

```
<div class="options">
   <a href="content.html">EXIT</a>
              </div>
        </div>
        <div id ="content">
  <iframe
src="https://us3.ca.analytics.ibm.com/bi/?perspective=dashboard&pathRef=.my f
olders%2FHeart%2Bdisease%2Bprediction&closeWindowOnLastView=true&ui
appbar=false&ui navbar=false&shareMode=embedded&action=view&
amp;mode=dashboard" width="1518" height="610" frameborder="0" gesture="media"
allow="encrypted-media" allowfullscreen=""></iframe>
 </div>
  </body>
</html>
Story.html
<!DOCTYPE html>
<html>
  <head>
        <title>PNT2022TMID06878 VISUALIZING AND PREDICTING HEART DISEASE
USING INTERACTIVE DASHBOARD</title>
        k rel="stylesheet"
href="https://fonts.googleapis.com/css?family=Roboto">
  </head>
  <style>
 html,body{
        margin:0;
        width:100%;
        height:100%;
        font-family:Roboto;
        display: flex;
        flex-direction: column;
        background-repeat:no-repeat;
 background-position: center;
```

```
background-size: cover;
        .header{
        position: fixed;
        top: 0px;
        width:100%;
        height:100px;
        display: flex;
        flex-direction: row;
        align-items: center;
       justify-content: space-between;
        }
        #heading{
        padding:10px;
        color:black;
        font-size:25px;
       font-style: italic
        #option1{
        margin-right:10px;
        padding:10px;
        color:white;
        font-size:20px;
        }
        .options{
        display: flex;
        }
        a{
        text-decoration:none;
        color:white;
#option1:hover{
        border:1px solid white;
        border-radius:10px;
        background-color:black;
```

```
}
. container \{\\
display:flex;
justify-content:center;
align-items: center
flex-direction:row;
}
#imgs{
margin-top:100px;
height: 300px;
width: 60vw;
}
#subhead{
font-size: 30px;
color: black;
text-align: center;
th, td {
width:40vw;
padding: 15px;
}
th{
color:black;
text-decoration-line: underline;
}
td{
color:black;
text-align:justify;
}
table
{
       background-color: white;
       opacity: 70%;
       margin-left: 120px;
}
```

```
#content
                 margin-top: 80px;
     margin-right: 200px;
           }
           </style>
     <body background= "https://api.parashospitals.com/uploads/2021/03/Prevention-
  of-Heart-Disease.png">
           <div class="header">
                 STORY VISUALIZATION
                 <div class="options">
      <a href="content.html">EXIT</a>
                 </div>
           </div>
           <div id ="content">
     <iframe
  src="https://us3.ca.analytics.ibm.com/bi/?perspective=story&pathRef=.my_folders
  %2FHeart%2Bdisease%2Bprediction%2Bstory&closeWindowOnLastView=true&am
  p;ui appbar=false&ui navbar=false&shareMode=embedded&action=vie
  w&sceneId=model000001847b557ecf 00000002&sceneTime=0"
  width="1518" height="610" frameborder="0" gesture="media" allow="encrypted-
  media" allowfullscreen=""></iframe>
    </div> </body>
  </html>
  Report.html
  <!DOCTYPE html>
  <html>
     <head>
           <title>PNT2022TMID06878 VISUALIZING AND PREDICTING HEART DISEASE
  USING INTERACTIVE DASHBOARD</title>
     k rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto">
</head><style>
    html,body{
           margin:0;
```

```
width:100%;
        height:100%;
        font-family:Roboto;
        display: flex;
        flex-direction: column;
        background\text{-}repeat\text{:}no\text{-}repeat;
background-position: center;
background-size: cover;
        .header{
        position: fixed;
        top: 0px;
        width:100%;
        height:100px;
        display: flex;
        flex-direction: row;
        align-items: center;
        justify-content: space-between;
        #heading{
        padding:10px;
        color:black;
        font-size:25px;
        font-style: italic
        }
        #option1{
        margin-right:10px;
        padding:10px;
        color:white;
        font-size:20px;
        .options{
        display: flex;
        }
        a{
```

```
text-decoration:none;
        color:white;
#option1:hover{
        border:1px solid white;
        border-radius:10px;
        background-color:black;
        .container{
        display:flex;
       justify-content:center;
        align-items: center
        flex-direction:row;
        #imgs{
        margin-top:100px;
        height: 300px;
        width: 60vw;
        #subhead{
        font-size: 30px;
        color: black;
       text-align: center;
        }
       th, td {
        width:40vw;
        padding: 15px;
       th{
        color:black;
       text-decoration-line: underline;
        }
        td{
        color:black;
        text-align:justify;
```

```
}
           table
           {
                 background-color: white;
                 opacity: 70%;
                 margin-left: 120px;
           }
           #content
                 margin-top: 80px;
     margin-right: 200px;
           }
           </style>
     <body background= "https://api.parashospitals.com/uploads/2021/03/Prevention-
  of-Heart-Disease.png">
           <div class="header">
                 REPORT VISUALIZATION
                 <div class="options">
      <a href="content.html">EXIT</a></div>
           </div>
           <div id ="content">
     <iframe
  src="https://us3.ca.analytics.ibm.com/bi/?pathRef=.my_folders%2FHeart%2Bdisease%2
  Breport&closeWindowOnLastView=true&ui_appbar=false&ui_navbar=fal
  se&shareMode=embedded&action=edit" width="1518" height="610"
  frameborder="0" gesture="media" allow="encrypted-media"
  allowfullscreen=""></iframe>
    </div>
</body>
</html>
```

GitHub link: https://github.com/IBM-EPBL/IBM-Project-3802-1658639787

Demo video link:

https://drive.google.com/file/d/1IG1k86u_pSmOOcvYjgEVeef8mtBKlwy3/view?usp=sharing