Interpretable Machine Learning

Pitfalls and Best Practices

Learning goals

- General pitfalls of interpretation methods.
- Practices to avoid pitfalls

SOURCES OF PITFALLS (Moinar et. al (2021))

ISSUES OF ML MODEL (Moinar et. al (2021))

Proper training and evaluation: Togain insights into DGP, deployed models, cshould generalize well to unseen data (garbage in, garbage out) arbage in, garbage out)

ISSUES OF ML MODEL (Moinar et. al (2021)

Proper training and evaluation: Trogain insights into DGP, deployed models, should generalize well to unseem data! (garbage in, garbage i

ISSUES OF ML MODEL (** Moinar et.: at (2021)

Proper training and evaluation: Togain insights into DGP, deployed models, should generalize well to unseen datal (garbage in, garbage lout) arbage in, garbage of example: $X_1, X_2, X_3 \sim Unif(-3,3)$ with $Y = X_1^2 + X_2 - 5X_1X_2 + \epsilon$, $\epsilon \sim \mathcal{N}(0,5)$ (Figure: PDP of DGP, (true effect), linear regression model (underfitted), random gorest (overfitted), and SVM with radial basis kernel (good fit) gure: PDPs for the DGP and for a linear regression model (underfitted) a random for est (overfitted) and a

support vector machine with radial basis kernel (good fit).

Avoid unnecessary complexity: Prefer simple interpretable models and use them as baseline, move to more complex models if performance not sufficient

ISSUES OF IML METHOD (*Moinarel.al (2021))

 Consider dependencies: Some interpretation methods have issues in lease of dependent features

Check presence of dependencies and use suitable interpretation methods

ISSUES OF IML METHOD (*Moinaret. al (2021))

- Consider dependencies: Some interpretation methods have issues in lease of dependent features
 - Check presence of dependencies and use suitable interpretation methods

 Example: Explanations may rely on unreliable pred. where model extrapolated

ISSUES OF IML METHOD (* Moinaret. al (2021)

 Consider dependencies: Some interpretation methods have issues in case of dependent features

Check presence of dependencies and use suitable interpretation methods Example: Explanations may rely on unreliable pred. where model extrapolated

Beware of simplifications: Mapping of complex roomplex models to low-dimit explanations
 Information loss, e.g., some interpretation rmethods hide interactions or heterogeneous CE (effects) (Figure: PDP and ICE Curves)

ture-effects/figure/pdp_

Interpretable Machine Learning - 4 / ??

INTERPRETATIONS WITH DEPENDENT FEATURES

METHOD • Moinar et. al (2021)

- Highly correlated features contain similar information
- GedModel_might(pick_only)d_feata(regularization), even if it is causally irrelevant
 - Produced explanations can be misleading (true to model, but not to data)
 - --- E.g., different interpretable models produce different results

INTERPRETATIONS WITH DEPENDENT FEATURES

METHOD ... Molnar et. al (2021)

- Highly correlated features contain similar information
- Get Model might pick only defeat a (regularization), even if it is causally irrelevant
 Produced explanations can be misleading (true to model, but not to data)
 ExaEgedifferent interpretable models produce different results fitted models in right
- **Example:** Simulate 100 obs. from DGP $Y = 0.2(X_1 + \cdots + X_5) + \epsilon, \epsilon \sim N(0, 1)$

- $X_5 = X_4 + \delta, \delta \sim N(0, 0.3) \Rightarrow \rho(X_4, X_5) = 0.98$ (highly correlated)
- LASSO: Shrinks coef. of X₅ to zero, coef. of X₄ about 1.5 × higher
- Ridge: Similar coef. for X₄ and X₅ for higher lambda

EXTRAPOLATION DUE TO DEPENDENCIES

- Many interpretation methods are based on artificially created data points
 - --- Many points lie in low-density regions if features are dependent
 - --- Predictions in such regions have high uncertainty
- Car Explanations can be biased if they rely on pred! where model extrapolated DGP?
 - --- Your goal should guide the choice of interpretation method