

Visión Computacional Presentación Final

Profesor: Analy Alfaro Alain Alejo

Integrantes

PUCP

Diego De Lama

Erika Tello

Tema:

Clasificación de Semillas de Maíz con Redes Neuronales Convolucionales

Agenda

- 1. Problemática
- 2. Propuesta de Solución con Visión Computacional
 - 2.1. Tratamiento del dataset
 - 2.2. Clasificación de imágenes
 - 2.3.. Detección de objetos
- 3. Conclusiones y Recomendaciones

1. Problemática

Contexto de la problemática

• Empresa dedicada a la producción de semillas de maíz y girasol.

¿Cómo se diferencian los haploides de los diploides?

Diferencia en la marcación del embrión y el endospermo del grano de maíz. Un grano haploide (útil para los próximos procesos), debe tener una marcación en el endospermo y no debe tener marcación en el embrión.

¿Cuál es el problema?

- Una población de 3 kilogramos puede tener cerca de 10,000 granos. De los cuales solo se desea seleccionar los granos haploides, ya que serán útiles para los próximos pasos del proceso.
- Los diploides son considerados descartes y están presentes en un 80%-88% del total de una población.

¿Cuál es el problema?

- Ese porcentaje de pureza del BIN3, ocasiona que en próximas etapas se siembre semilla que debe ser descartada, lo que ocasiona incremento de costos y desperdicios.
- ullet Las diferencias entre haploides y diploides son visuales ullet Se puede proponer un modelo de visión computacional.

2. Propuesta de Solución con Visión Computacional

¿Cómo procederemos?

2.1. Tratamiento del Dataset

Fuente de datos

- Haploid and Diploid Maize Seeds Dataset: incluye 3,000 imágenes etiquetadas.
 - 1,230 correspondientes a haploides
 - 1,770 correspondientes a diploides.

El dataset se dividió en train_dataset (80%) y test_dataset (20%).

Transformaciones a las imágenes

Se aplicaron transformaciones a las imágenes del dataset.

- Resize \rightarrow 255
- CenterCrop \rightarrow 224
- Normalización

2.2. Clasificación de imágenes

Redes neuronales evaluadas

Técnica utilizada - Transfer learning

- Se evalúa 5 modelos de clasificación preentrenados
- Se freezea los parámetros de 4 de los 5 modelos (no se realizan cambios en sus parámetros), excepto en la última capa.
- Se modifica la última capa
- Se entrenó 25 épocas

CNN con AlexNet

Cambios en el modelo

Modificación en la última capa, capa Linear de: in_features=4096 out_features=2 (correspondiente a las 2 categorías: haploide y diploide)

Gráfico de Precisión

CNN con Googlenet

Cambios en el modelo

Modificación en la última capa, capa Linear de: in_features=1024 out_features=2 (correspondiente a las 2 categorías: haploide y diploide)

Gráfico de Precisión

CNN con VGG Net

Cambios en el modelo

Modificación en la última capa, capa Linear de: in_features=4096 out_features=2 (correspondiente a las 2 categorías: haploide y diploide)

Arquitectura

Variación de residual network, es una red neuronal convolucional con 18 capas densas.

Cambios en el modelo

Modificación en la última capa, capa Linear de: in_features=512 out_features=2 (correspondiente a las 2 categorías: haploide y diploide)

Transfer Learning con ResNet 50

Arquitectura

Variación de residual network, es una red neuronal convolucional con 50 capas densas.

Cambios en el modelo

Modificación en la última capa, capa linear de: in_features=2048 out_features=2 (correspondiente a las 2 categorías: haploide y diploide

Resumen

Alexnet

Best Val Accuracy: 88.8% Val Loss: 1.29

Googlenet

Best Val Accuracy: 85.2% Val Loss: 0.36

VGGnet

predicted: haploid

Best Val Accuracy: 87.52% Val Loss: 0.87

Resnet 18

Best Val Accuracy: 95.0% Val Loss: 0.12

Resnet 50

Best Val Accuracy: 95.3%

Val Loss: 0.14

2.2. Detección de objetos

Detección de semillas de maíz con Detecto

Colección de imágenes

Etiquetado de las clases

Instalación de paquetes

Aumentación de imágenes

Entrenamiento

Guardado y predicción del Modelo

gdown

Train (20)

Test (20)

Validación (20)

<object>

MAKESENSE AL

Faster R-CNN ResNet-50 FPN

```
<name>haploid</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
           <xmin>440</xmin>
           <ymin>431
           <xmax>608</xmax>
           <ymax>631</ymax>
</bndbox>
```

```
model=core.Model(['diploid', 'haploid'])
losses = model.fit(loader, Val dataset,
epochs=25, lr step size=5,
learning rate=0.001, verbose=True)
```

Arquitectura del Faster RCN Resnet 50 FPN

Faster RCN

https://www.lablab.top/post/how-does-faster-r-cnn-work-part-i/

Resultados

Definimos el Threshold=0.62 para los bounding boxes

3. Conclusiones y recomendaciones

Conclusiones y recomendaciones

- Para mejorar el performance de los modelos preentrenados con redes convulocionales fue necesario 'freezear' las capas.
- En base a la experimentación con CNN y Transfer learning, podemos concluir que el mejor modelo, entre los cinco evaluados, es ResNet50, debido a que alcanza un mayor valor de accuracy (0.95) y un menor valor de pérdida.
- Como una solución al problema propuesto, se puede mejorar el algoritmo empleado por la máquina de selección de haploides. Este que permitirá una mejor clasificación de cada grano, siendo asignado a la categoría correcta: haploide o diploide.
- Para la detección de objetos usando el paquete *Detecto* es necesario tener el etiquetado de los objetos en formato XML cuidando el tamaño de los boxes.

Referencias web

- https://subscription.packtpub.com/book/data/9781789956177/5/ch05lvl1sec13/introducing-alexnet
- https://towardsdatascience.com/review-fpn-feature-pyramid-network-object-detection-262fc7482610
- https://towardsdatascience.com/deep-learning-googlenet-explained-de8861c82765
- https://www.kaggle.com/code/blurredmachine/vggnet-16-architecture-a-complete-guide
- https://debuggercafe.com/object-detection-using-pytorch-faster-rcnn-resnet50-fpn-v2/
- https://deepsense.ai/region-of-interest-pooling-explained/
- https://blog.paperspace.com/faster-r-cnn-explained-object-detection/
- https://www.lablab.top/post/how-does-faster-r-cnn-work-part-ii/
- https://www.analyticsvidhya.com/blog/2021/06/simplest-way-to-do-object-detection-on-custom-datasets/

¡GRACIAS!