Let's go cisco live! #CiscoLive

An Overview of Quantum Network Technologies

Hassan Shapourian, Senior Research Scientist @Hasan_Shap

BRKNWT-1301

/Cisco/ET&I/Research

-outshift

- Hassan Shapourian
- Ph.D. in Quantum Physics
- Technical Lead at Cisco Quantum Lab
 - Analyze, design, and simulate
 - o Quantum hardware
 - Architectures for quantum networks
 - Quantum network applications

Email: hshapour@cisco.com

twitter: @Hasan_Shap

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 9, 2023.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKNWT-1301

Quantum networks

Agenda

- Crash course on quantum physics
- Intro to quantum networks
- Challenges and opportunities
- Conclusion

BRKNWT-1301

Part I Quantum physics

Quantum Physics

- 1 Qubits in the lab
- 2 Qubits (probability, superposition)
- 3 Multi-qubit states (entanglement)
- 4 Quantum information processing
- 5 Quantum speedup

Qubits in the lab

- Photons
 - Small packets of electromagnetic wave (e.g., light)

Polarization encoding

0: horizontal1: vertical

Wikipedia

Qubits in the lab

- Photons
 - Small packets of electromagnetic wave (e.g., light)

- · Electron spin
 - Elementary charged particles

Polarization encoding

0: horizontal 1: vertical

#CiscoLive

Qubits and superposition principle

- Two possible states: $|0\rangle$ or $|1\rangle$
- Superposition: Linear combination of states

$$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

• 50-50 chance of being in 0 or 1.

Qubits and superposition principle

- Two possible states: $|0\rangle$ or $|1\rangle$
- Superposition: Linear combination of states

$$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

• 50-50 chance of being in 0 or 1.

Cat state!

Wikipedia

Measurement bases

• Z-measurement basis: $|0\rangle$, $|1\rangle$

• X-measurement basis: $|+\rangle$, $|-\rangle$

$$|\pm\rangle = \frac{1}{\sqrt{2}}|0\rangle \pm \frac{1}{\sqrt{2}}|1\rangle$$

Quantum random number generator (QRNG)

Random bit string 00111010101110010110...

Completely unpredictable

Quantum random number generator (QRNG)

Random bit string 00111010101110010110...

Completely unpredictable

Abstract representation

• Computational basis: $|0\rangle$, $|1\rangle$

Two angles to represent an arbitrary state

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$

Bloch vector

Multiple qubits

Two-qubit state

$$|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle$$

- For n qubits, we need 2ⁿ coefficients with the basis $|x_1x_2\cdots x_n\rangle$.
- Bell state (EPR pair)

$$|\psi\rangle = \frac{1}{\sqrt{2}}|01\rangle + \frac{1}{\sqrt{2}}|10\rangle$$

B. Podolsky

N. Rosen

Wikipedia

Quantum entanglement

Bell state (EPR pair)

$$|\psi\rangle = \frac{1}{\sqrt{2}}|\mathbf{01}\rangle + \frac{1}{\sqrt{2}}|\mathbf{10}\rangle$$

A. Einstein

B. Podolsky

sky N. Rosen

Wikipedia

Quantum entanglement

Bell state (EPR pair)

A. Einstein

B. Podolsky

N. Rosen

$$|\psi\rangle = \frac{1}{\sqrt{2}}|01\rangle + \frac{1}{\sqrt{2}}|10\rangle$$

Marble in box

Spinning wheels

Quantum entanglement

Bell state (EPR pair)

N. Rosen

A. Einstein

B. Podolsky

Wikipedia

Marble in box

Spinning wheels

Bell inequality

Bell state (EPR pair)

$$|\psi\rangle = \frac{1}{\sqrt{2}}|01\rangle + \frac{1}{\sqrt{2}}|10\rangle$$

John Bell (1982) Wikipedia

Marble in box

Spinning wheels

Experimental verification of Bell inequality

Bell state (EPR pair)

$$|\psi\rangle = \frac{1}{\sqrt{2}}|\mathbf{01}\rangle + \frac{1}{\sqrt{2}}|\mathbf{10}\rangle$$

Spinning wheels

Teleportation

• Transfer a state by making local measurement on a Bell-pair.

I. Prepare a Bell pair.

Teleportation

Transfer a state by making local measurement on a Bell-pair.

I. Prepare a Bell pair.

II. Bell-state measurement.

Teleportation

Transfer a state by making local measurement on a Bell-pair.

I. Prepare a Bell pair.

II. Bell-state measurement.

Device-independent secure communication

Entanglement swapping

Sewing short-range Bell pairs to make long-range Bell pairs!

I. Prepare a Bell pair.

II. Bell-state measurement.

Entanglement swapping

Sewing short-range Bell pairs to make long-range Bell pairs!

I. Prepare a Bell pair.

II. Bell-state measurement.

• Unknown quantum states cannot be perfectly cloned.

$$|s\rangle\otimes|\psi\rangle\rightarrow|\psi\rangle\otimes|\psi\rangle$$

BRKNWT-1301

Unknown quantum states cannot be perfectly cloned.

$$|s\rangle\otimes|\psi\rangle$$
 $|\psi\rangle\otimes|\psi\rangle$

Unknown quantum states cannot be perfectly cloned.

Proof:
 By contradiction
 Cloning Machine
 Cloning Machine

Unknown quantum states cannot be perfectly cloned.

Unknown quantum states cannot be perfectly cloned.

Quantum information processing

Quantum circuits

D. Ferrari, IEEE Trans. on Quantum (2021)

Quantum speedup

- Rough idea: Quantum parallelism
- Deutsch's algorithm:
 - Find the function $f(x):\{0,1\}\to\{0,1\}$ with least querries.
 - Quantum system can evaluate the function in one shot!
 - We implement a quantum circuit which does $|x,y\rangle \to |x,y\oplus f(x)\rangle$

Quantum speedup

- Rough idea: Quantum parallelism
- Deutsch's algorithm:
 - Find the function $f(x):\{0,1\}\to\{0,1\}$ with least querries.
 - Quantum system can evaluate the function in one shot!
 - We implement a quantum circuit which does $|x,y\rangle \to |x,y\oplus f(x)\rangle$

Quantum speedup

- Rough idea: Quantum parallelism
- Deutsch's algorithm:
 - Find the function $f(x):\{0,1\}\to\{0,1\}$ with least querries.
 - Quantum system can evaluate the function in one shot!
 - We implement a quantum circuit which does $|x,y\rangle \to |x,y\oplus f(x)\rangle$

Access to both outputs!

Quantum speedup

Rough idea: Quantum parallelism

Exponentially-fast compute

- Deutsch's algorithm:
 - Find the function $f(x):\{0,1\}\to\{0,1\}$ with least querries.
 - Quantum system can evaluate the function in one shot!
 - We implement a quantum circuit which does $|x,y\rangle \to |x,y\oplus f(x)\rangle$

$$\begin{array}{c|c}
 & x & x \\
\hline
 & U_f \\
 & |0\rangle & y & y \oplus f(x) \\
\hline
 & & |\psi\rangle = \frac{|0, f(0)\rangle + |1, f(1)\rangle}{\sqrt{2}}
\end{array}$$

Access to both outputs!

Part I: Summary

Part II Quantum networks

Quantum networks

- 1 What is a quantum network?
- 2 Applications of quantum networks
- 3 How to realize a quantum network?
- 4 Quantum networks building blocks

Quantum networks

- Cryptography
- Distributed sensing
- Clock synchronization
- Distributed quantum computing
- Privacy-preserving computing

Cryptography

Quantum Key Distribution (QKD)

Alice and Bob need a shared key

Cryptography

Quantum Key Distribution (QKD)

Alice and Bob need a shared key

Related sessions: BRKETI-1302 (on-demand) by Stephen DiAdamo

BRKSEC-3129 (Wed 3pm) by Frederic Detienne

BRKNWT-1301

Distributed sensing

Wikipedia

ATCA telescope (Australia)

Telescope arrays need to share the same phase.

Classical precision~ $1/\sqrt{N}$

Quantum precision~ 1/N

BRKNWT-1301

Coordination, clock synchronization

Dynamic coordination of senders/receivers

Distributed quantum computing

Superconducting quantum computer F. Lecocg/NIST

Sandia National Lab

Privacy-preserving computing

Performance of quantum networks

- Service to provide: end-to-end delivery of qubits
- How to measure the performance of quantum networks?

Classical networks

Rate, latency, jitter, BER

Quantum networks

Rate, fidelity

Rate-distance tradeoff

Why is quantum communication so hard?

Rate decays exponentially with distance

Can we amplify signal?

Rate-distance tradeoff

Why is quantum communication so hard?

Rate decays exponentially with distance

Can we amplify signal?

No, because of the no-cloning theorem: Quantum signals cannot be copied!

One-way

Quantum error correction is performed at each repeater:

Input state with a missing photon

'Corrected' output state

One-way

Two-way

Quantum error correction is performed at each repeater:

Input state with a missing photon

'Corrected' output state

Quantum network components

Quantum memory

Adrien Nicolas, PhD thesis (2014)

Two-way = Entanglement distribution network

Two-way = Entanglement distribution network

Elementary link entanglement

Two-way

Entanglement swapping

Two-way

End-to-end entanglement

Two-way

Two-way

Need for new routing protocols!

Quantum network components

Part II: Quantum networks

Application

Transport

Network

Link

Physical

Cryptography, privacy-preserving computing, enhanced sensing,...

End-to-end (logical) quantum information transmission

Switching, routing, scheduling

Transporting physical qubits, error correction, purification

Requirements: quantum memory, detector, source

Challenges: photon loss/channel noise/noisy quantum hardware

Challenges/ opportunities

Quantum technology road map

quantum computer Academic 10^6 + aubits. Materials science quantum simulation, Shor's advantage/ algorithm, etc. Hybrid ML 10⁴-10⁶ qubits. Small error-Many logical qubits. corrected chip Quantum error 10³-10⁴ qubits. correction Perform logical gate. (prototype) $10^2 - 10^3$ qubits. Proof-of-principle One logical qubit. 10-100 qubit. Noisy intermediate scale quantum (NISQ)

Fault-tolerant

Quantum technology road map

Fault-tolerant

Cisco Quantum Lab opens soon!

Announcing the Opening of the Cisco Quantum Lab

Cisco Quantum Lab

Tuesday, March 14th, 2023

(L) 1 min read

Conclusions

- Quantum networks coexist with classical networks and offer new applications.
- Quantum information is fragile (noisy hardware, photon loss).
- Need to design efficient and scalable quantum routers.
- A challenging piece is quantum memory.
- Need for optimal resource allocation and routing protocols.

Fill out your session surveys!

Attendees who fill out a minimum of four session surveys and the overall event survey will get **Cisco Live-branded socks** (while supplies last)!

Attendees will also earn 100 points in the **Cisco Live Challenge** for every survey completed.

These points help you get on the leaderboard and increase your chances of winning daily and grand prizes

Take a picture of this slide and bring it to the Outshift booth in the World of Solutions. (#3307)

Get your badge scanned to be entered into our daily drawing for an Apple iPad!

Explore outshift.com

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Thank you

Cisco Live Challenge

Gamify your Cisco Live experience! Get points for attending this session!

How:

- 1 Open the Cisco Events App.
- 2 Click on 'Cisco Live Challenge' in the side menu.
- 3 Click on View Your Badges at the top.
- 4 Click the + at the bottom of the screen and scan the QR code:

Let's go cisco live! #CiscoLive