PHY PCIE/USB/SATA

Prof. Jorge Soto

IE-0523 Circuitos Digitales II

Figure 2-2 Partitioning PHY Layer for USB SuperSpeed

Enlace de dos capas físicas

Physical Layer Physical Layer Rx Rx Logical Logical Electrical Electrical Link Rx+ T_{Rx+}

Figure 11-2: Logical and Electrical Sub-Blocks of the Physical Layer

Capa física eléctrica

Figure 2-30: Electrical Physical Layer Showing Differential Transmitter and Receiver

Figure 3-1: PHY/MAC Interface

Figure 4-1: PHY Functional Block Diagram

4.5 Clocking

Figure 4-6: Clocking and Power Block Diagram

4.1 Transmitter Block Diagram (2.5 and 5.0 GT/s)

Data

Figure 4-2: Transmitter Block Diagram

Formatted: Font:

Figure 3.PCS reference diagram

Figure 1. 8B/10B encoding relationship

Algoritmo de codificación 8b/10b

RC23408 (W0411-032) November 3, 2004 Electrical Engineering

IBM Research Report

8B/10B Encoding and Decoding for High Speed Applications

Albert X. Widmer

IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

Table B-2: 8b/10b Special Character Symbol Codes

Data Byte Name	Data Byte Value	Bits HGF EDCBA	Current RD - abcdei fghj	Current RD + abcdei fghj
K28.0	1C	000 11100	001111 0100	110000 1011
K28.1	3C	001 11100	001111 1001	110000 0110
K28.2	5C	010 11100	001111 0101	110000 1010
K28.3	7C	011 11100	001111 0011	110000 1100
K28.4	9C	100 11100	001111 0010	110000 1101
K28.5	BC	101 11100	001111 1010	110000 0101
K28.6	DC	110 11100	001111 0110	110000 1001
K28.7	FC	111 11100	001111 1000	110000 0111
K23.7	F7	111 10111	111010 1000	000101 0111
K27.7	FB	111 11011	110110 1000	001001 0111
K29.7	FD	111 11101	101110 1000	010001 0111
K30.7	FE	111 11110	011110 1000	100001 0111

TxDataK = 1

Table B-1: 8b/10b Data Symbol Codes

Data Byte Name	Data Byte Value	Bits HGF EDCBA	Current RD - abcdei fghj	Current RD + abcdei fghj
D0.0	00	000 00000	100111 0100	011000 1011
D1.0	01	000 00001	011101 0100	100010 1011
D2.0	02	000 00010	101101 0100	010010 1011
D3.0	03	000 00011	110001 1011	110001 0100

TxDataK = 0

Símbolos de control

Table 11-5: Control Character Encoding and Definition

Character Name	8b Name	10b (CRD-)	10b (CRD+)	Description
COM	K28.5 (BCh)	001111 1010	110000 0101	First character in any Ordered-Set. Detected by receiver and used to achieve symbol lock dur- ing TS1/TS2 Ordered-Set reception at receiver
PAD	K23.7 (F7h)	111010 1000	000101 0111	Packet Padding character
SKP	K28.0 (1Ch)	001111 0100	110000 1011	Used in SKIP Ordered- Set. This Ordered-Set is used for Clock Tolerance Compensation
STP	K27.7 (FBh)	110110 1000	001001 0111	Start of TLP character
SDP	K28.2 (5Ch)	001111 0101	110000 1010	Start of DLLP character
END	K29.7 (FDh)	101110 1000	010001 0111	End of Good Packet character
EDB	K30.7 (FEh)	011110 1000	100001 0111	Character used to mark the end of a 'nullified' TLP.

TxCompliance (8b/10b)

Causa un retraso de 4 símbolos

Symbol	K28.5	D21.5	K28.5	D10.2
Current Disparity	0	1	1	0
Pattern	0011111010	1010101010	1100000101	0101010101

TxOnesZeros

TxOnesZeros	Input	High	USB SuperSpeed Mode: Used only when
			transmitting USB SuperSpeed compliance patterns CP7 or CP8. Causes the transmitter to transmit an alternating sequence of 50-250
			ones and 50-250 zeros – regardless of the
			state of the TxData interface.
			Implementation of this signal is only required
			for PHYs that support USB SuperSpeed
			mode.

4.3 Receiver Block Diagram (2.5 and 5.0 GT/s)

Figure 4-4: Receiver Block Diagram

Elastic buffer

Detalles de la capa física en TX y RX

From Data Link Layer To Data Link Layer Control Transmit Receive Throttle Řх Ťx Buffer Buffer IDLE/PAD START / END / IDLE / PAD Character Removal and Mux Packet Alignment Check D/K# D/K# Byte Un-StripingLane N (N=0,1,3,7,11,15,3 Byte Striping Lane N (N=0,1,3,7,11,15,31) Lane 0 De-Scrambler Lane 1, .., N-1 De-Scrambler Scrambler Scrambler Tx Local Error 8b/10b 8b/10b Decoder Detect Decoder Encoder Encoder Rx Local Tx Clk Serial-to-Parallel Serial-to-Parallel Parallel-to-Serial Parallel-to-Serial and Elastic Buffer and Elastic Buffer **∢**·····**≻** Lane 0 Lane 1, ..,N-1 Lane N Lane N Lane 0 Lane 1, .., N-1

Figure 11-3: Physical Layer Details

Lógica RX

Figure 11-21: Receiver Logic's Front End Per Lane

