Breadth-First Search

H2 Graphs

- ullet G=(V,E) where V is a set of vertices and E is a set of edges (v_1,v_2) where $v_1,v_2\in V$
- typically, n=|V| and m=|E|
- ullet typically, elements of V are written as natural numbers

H₃ Types of graphs

- undirected
 - ullet edges are unordered, i.e. $(v_1,v_2)=(v_2,v_1)$
- directed
 - edges are ordered, i.e. $(v_1,v_2)=(v_2,v_1)$

H3 Representing graphs

H4 Adjacency lists

- use list of size n, each slot i is the head of a linked list containing nodes that the vertex i is adjacent to
- · works similarly for both directed and undirected graphs
- works for non-simple graphs
- size is $\Theta(n+m)$, small for sparse graphs
 - note that for simple graphs, $m \le n^2$
- slow $(\mathcal{O}(m))$ searching

H4 Adjacency matrices

- use matrix of size $n \times n$, where slot i,j stores a 1 if there is an edge from vertex i to vertex j
- works similarly for both directed and undirected graphs

- only works for simple graphs (though can store at most one self edge per vertex in slot i, i)
- size is $\Theta(n^2)$, necessarily big
- fast ($\mathcal{O}(1)$) searching

H₃ Graph search

- graph search is systematic exploration of a graph
- can reveal structural properties of a the graph
 - connectedness is there a path between every two vertices?
- recording explored vertices:
 - colour v:
 - white if
 - · grey if discovered but not yet explored
 - black if
 - set parent p[u] = v if u was discovered while exploring v
 - ullet records path from stov
 - store $d[v] = \ell$ where ℓ is the length of the discovery path from s to v
 - $\bullet \quad \text{if} \ p[u] = v \text{ , then } \ d[u] = d[v] + 1$

H2 Breadth First Search

 starting from a node, explore neighours of one depth before visiting next depth

```
def BFS(G, s):
    colour[s] = "grey"
    d[s] = 0
    p[s] = NIL
    for each v in V-{s}:
        colour[v] = "white"
        d[v] = infinity
        p[v] = NIL
    Q = EmptyQueue()
"..."
```

H3 Time complexity

BFS is $\mathcal{O}(|V|+|E|)$ since each node needs to be discovered, and for each node every edge needs to be checked

H₃ Discovery path

Let $\delta(s,v)$ be the minimum distance between s and v

Lemma 1. If u is added to the queue Q before v, is then $d[u] \leq d[v]$

Suppose for contradiction that u, v is the first pair of vertices where v comes after u and d[u] > d[v].

Theorem. After BFS(G, s), for every $v \in V$, $d[v] = \delta(s, v)$. Thus, BFS finds shortest paths.

Suppose there exists $x \in V$ so that $d[x] \neq \delta(s,x)$ (clearly $x \neq s$).

- let v be the closest node from s such that $d[v] \neq \delta(s,v)$
- by lemma 0, \$d[v]