Data Science.

Лекции. Неделя 3 - 4.

Волатильность Доходности и Корреляция.

Айвазова Кристина

23 октября 2022 г.

Contents

1	Измерение доходности	2
2	Волатильность и риск	2
3	Подразумеваемая волатильность	2
4	Распределение доходности	3
5	Корреляция и зависимость	3
6	Коэффициент корреляции Спирмена	3
7	Ранговая корреляция Кендалла	3

1 Измерение доходности

- Простая доходность активов: $R_t = \frac{(P_t + P_0)}{P_0}$
- Для нескольких периодов: $(1+R_t) = \prod_{t=1}^T (1+R_t)$
- Составная доходность (логарифмическая доходность): $r_t = \log(P_t) + \log(P_0)$
- Обратите внимание на то, что : $1 + R_t = e^{r_t}$
- Логарифмическая доходность менее интуитивная (например, 100% убытка соответствует тому же при простой доходности, но примерно 63% при логарифмической)

2 Волатильность и риск

- Волатильность финансового актива обычно измеряется стандартным отклонением его доходности
- Предположим, что $r_t = \mu + \sigma * \varepsilon_t$ с имеет нулевое среднее значение и дисперсию 1, часто обозначается (0,1)
- Поскольку логарифмическая доходность является аддитивной, для n периодов $r_n t = n \mu + \sigma \sum_{k=1}^n \varepsilon_k t$;предполагая, что среднее значение независимости и шкала дисперсии линейны
- Например,если среднее значение за день равно μ , а дисперсия σ^2 , то среднее значение за неделю равно 5μ и стандартное отклонение $\sqrt{5}\sigma$.

3 Подразумеваемая волатильность

- Подразумеваемая волатильность это альтернативный показатель, который рассчитывается с использованием цен опционов.
- Модель Блэка-Шоулза-Мертона связывает цену опциона "колл" с волатильностью как $C_t = f(r_t, T, P_t, K, \sigma^2)$, где r_t безрисковая процентная ставка, T срок погашения опциона (в годах), K цена исполнения.
- В модели наблюдаемы все значения, кроме волатильности; решение этого уравнения относительно σ^2 дает нам подразумеваемое значение волатильности.
- Полученная волатильность рассчитана на один год и считается постоянной до истечения срока действия.
- VIX это еще один показатель подразумеваемой волатильности.
- Он сочетает в себе опционы для SP500 с различными ценами исполнения на 30 дней
- Наиболее важным ограничением VIX является то, что он может быть рассчитан только для активов с крупными ликвидными рынками деривативов.
- VIX это прогнозный показатель волатильности по сравнению с оценками волатильности в обратном направлении, полученными с использованием (исторической) доходности активов

4 Распределение доходности

- Статистика теста Жарке-Бера используется для формальной проверки того, совместимы ли асимметрия выборки и эксцесс с предположением о нормальном распределении результатов.
- Общая черта многих рядов финансовой доходности доходности, рассчитанные за более длительные периоды, по-видимому, лучше аппроксимируются нормальным распределением
- Хвосты распределения определяются как поведение P(X>x) и P(X<-x) для больших x
- Хвост степенного закона P(X > x) = ax b, a > 0, b > 0
- Тяжелые хвосты (например, хвост степенного закона) приводят к тому, что большие потери появляются чаще, чем при нормальном распределении

5 Корреляция и зависимость

- Ковариация двух случайных величин определяется как Cov(X,Y) = EXY EXEY.
- Корреляция определяется как $Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}$.
- Две переменные определяются как статистически независимые, если знание об одной из них не влияет на распределение вероятности для другой f(Y|X=x) = f(Y), где f обозначает плотность.
- Если две случайные величины независимы, их корреляция равна нулю, однако обратное неверно (например, нулевая корреляция не всегда означает независимость).
- Обратите внимание, что корреляция описывает только линейную зависимость.

6 Коэффициент корреляции Спирмена

- Определяется как коэффициент корреляции Пирсона между ранжированными переменными.
- Ранг это индекс данных в упорядоченном наборе.
- Ранговая корреляция Спирмена не зависит от распределения данных и является надежной в отношении выбросов.
- Если все ранги являются различными целыми числами, то $r_s = 1 \frac{6\prod_{i=1}^n d_i^2}{n(n^2-1)}$, где $d_i = rg(X_i) rg(Y_i)$.
- Для линейной зависимости Корреляция Спирмена приблизительно равна корреляции Пирсона.
- Корреляция Спирмена инвариантна относительно нелинейных монотонных преобразований.

7 Ранговая корреляция Кендалла

- τ Кендалла это показатель ранговой корреляции: сходство порядка данных при ранжировании по каждой из величин.
- Предположим, что наблюдения X и Y уникальны. Пары наблюдений (X_i, X_j) и (Y_i, Y_j) согласуются, если $X_i > X_j$, $Y_i > Y_j$ или $X_i < X_j$, $Y_i < Y_j$.
- Определите $au = \frac{n_c n_d}{\frac{n(n-1)}{2}}$, где n_c количество согласующихся пар, n_d количество несогласованных пар.
- Альтернативно $au = \frac{1}{n(n-1)} \sum_{i=j} sgn(X_i X_j) sgn(Y_i Y_j).$
- Монотонные возрастающие преобразования также не влияют на au Кендалла.