Particle spectrograph

Wave operator and propagator

Quadratic (free) action $S = \int_{1}^{\infty} \int_{1}^{\infty} \int_{0}^{\infty} \int_{0}^$	$2\mathcal{A}_{\alpha\theta_I}\left((t_1\!-\!2t_2)\mathcal{A}^{\alpha\prime\theta}\!+\!2(2t_1\!-\!t_2)\partial^\theta f^{\alpha\prime}\right) + \\ 8r_2\partial_\beta \mathcal{A}_{\alpha\prime\theta}\partial^\theta \mathcal{A}^{\alpha\beta\prime}\!-\!4r_2\partial_\beta \mathcal{A}_{\alpha\theta_I}\partial^\theta \mathcal{A}^{\alpha\beta\prime} + 4r_2\partial_\beta \mathcal{A}_{\prime\theta\alpha} \\ \partial^\theta \mathcal{A}^{\alpha\beta\prime}\!-\!2r_2\partial_\iota \mathcal{A}_{\alpha\beta\theta}\partial^\theta \mathcal{A}^{\alpha\beta\prime} + 2r_2\partial_\theta \mathcal{A}_{\alpha\beta_I}\partial^\theta \mathcal{A}^{\alpha\beta\prime} - \\ 4r_2\partial_\theta \mathcal{A}_{\alpha\prime\beta}\partial^\theta \mathcal{A}^{\alpha\beta\prime}))[t,x,y,z]dzdydxdt$
---	--

					1.0	<i>t</i> ₁		<i>t</i> ₁	
	$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	$\frac{2 k^2}{(1+2 k^2)^2 t_1}$	
	$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0	<i>‡</i> 2
)	$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{1}{(1+2k^2)^2t_1}$	0	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	A #1 A #2 <i>t</i> #1 <i>t</i> #2
.	$\sigma_{1}^{\#1}{}_{lpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$	i.1 Ø
	Q					t ₁₊ ;		- 	#
	$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{i\sqrt{2} k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0	<i>f</i> #1
dia 2 2	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{ik(t_1+4t_2)}{3(1+k^2)^2t_1t_2}$	0	0	0	0	4 #5
	$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2) t_1 t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0	$\mathcal{A}^{\#1}$
	'	$\sigma_1^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#_1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$	

			I	,		<u> </u>		+α/	+α/	$\alpha\beta$)		<u> </u>
$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$i k (t_1 + t_2)$	$k^2 \left(t_1 + t_2 \right)$	0	0	0	0	,	$\sigma_2^{\#1} +^{\alpha \prime}$	$\tau_2^{\#1} + ^{\alpha\prime}$	$\sigma_{2}^{\#1} +^{lphaeta)}$		$\mathcal{A}^{\#1}_{0}$
- "k	$\frac{1}{3}$ \vec{l} k	3 1					$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$	
$\frac{t_1-2t_2}{3\sqrt{2}}$	-t <u>2</u>	$i k (t_1 + t_2)$					$ au_0^{\#2}$	0	0	0	0	ι αβχ
~i	$\frac{t_1+t_2}{3}$	$\left -\frac{1}{3}\bar{l}k(t\right $	0	0	0	0	$ au_0^{\#1}$	$i\sqrt{2} k$ $(1+2k^2)^2 t_1$	$\frac{2k^2}{(1+2k^2)^2t_1}$	0	0	$\mathcal{A}_2^\#$
$\frac{1}{6}(t_1+4t_2)$	$\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0			i			$\mathcal{A}_{2}^{\#1}_{+lphaeta}f_{2}^{\#1}_{lphaeta}$
$\frac{1}{6}(t_1 -$	•						$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_1}$	$\frac{i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	0	0	${\mathscr A}_{2}^{\#1}{}_{lpha_{}}$
$\mathcal{A}_1^{\#1} \dagger^{\alpha\beta}$	$\mathcal{A}_{1}^{\#2} + \alpha^{\beta}$	$f_{1}^{\#1} \dagger^{\alpha\beta}$	$\mathcal{A}_{1}^{\#_{1}} +^{\alpha}$	$\mathcal{A}_{1}^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$		<u> </u>	+	+	+	
$\overset{\#}{\mathcal{R}}_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$\overset{\#}{\mathcal{R}}_{1}$	$f_1^{\#}$	R	R	f	f		$\sigma_{0}^{\#1}$.	${\mathfrak r}_0^{\#1}$	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$	

 ikt_1

 $\mathcal{A}_{0}^{\#1}$

 $\frac{i\,k\,t_1}{\sqrt{2}}$

<u>t</u>1

 $f_{2}^{\#1} + \alpha^{\beta}$ $\mathcal{A}_{2}^{\#1} + \alpha^{\beta\chi}$

Massive and massless spectra

(No massless particles)

Unitarity conditions