- Símbolos e Cadeias
- Linguagens
- Gramáticas

### **Símbolos**

- Os símbolos são representações gráficas, indivisíveis, empregadas na construção de cadeias
  - São exemplos de símbolos: a, abc, begin, if , 5, 1024, 2.017e4.
  - Não há uma definição formal para "símbolo".
    - Entidade abstrata
    - Pode-se dizer que se trata de um conceito primitivo.

### Cadeia

- String, palavra ou cadeia
  - Seqüência finita de símbolos do alfabeto
- Comprimento
  - O comprimento de uma cadeia é um número natural que designa a quantidade de símbolos que a compõem. O comprimento de uma cadeia α é denotado por |α|.

Considerem-se as cadeias  $\alpha = 1$ ,  $\beta = 469$ ,  $\chi = bce60$  e  $\phi = df$  Então,  $|\alpha| = 1$ ,  $|\beta| = 3$ ,  $|\chi| = 5$  e  $|\phi| = 2$ .

### **Alfabeto**

- Alfabeto
  - Conjunto de símbolos (finito e não-vazio)
  - $\Sigma = \{0,1\}$ , o alfabeto binário
  - $\Sigma = \{a,b,c,...,z\}$ , conjunto de letras minúsculas
  - Conjunto de caracteres ASCII
- $\Sigma^*$  é o conjunto de todas as cadeias possíveis de serem construídas sobre  $\Sigma$

# Linguagem

 Uma linguagem formal é um conjunto, finito ou infinito, de cadeias de comprimento finito, formadas pela concatenação de elementos de um alfabeto finito e não-vazio.



#### Exemplo:



- Linguagens formais de interesse, em sua maioria, contêm, se não uma quantidade infinita, ao menos um número finito, porém muito grande, de cadeias.
- Há um interesse muito grande em relação a métodos que permitam especificar linguagens, sejam elas finitas ou não, através de representações finitas.

# Linguagens Regulares

# Introdução

• Hierarquia de Chomsky



## Introdução

- Conjuntos e expressões regulares são notações alternativas utilizadas para representar essa classe de linguagens
- A classe mais restrita dentro da Hierarquia de Chomsky

### **Expressões regulares**

- Visa obter maior concisão e facilidade de manipulação
  - Desenvolvido por Kleene na década 1950
  - eliminação do uso dos símbolos "{" e "}", bem como a substituição do símbolo de união ("∪") por um símbolo "+" ou "|"

| Precedência   | Operador     | Representação                |
|---------------|--------------|------------------------------|
| Mais alta     | Fechamento   | $x^*$                        |
| Intermediária | Concatenação | $x \cdot y$ ou $xy$          |
| Mais baixa    | União        | $x \mid y \text{ ou } x + y$ |

### **Expressões Regulares**

#### Exemplos

- $(ab | c^*) = ((ab) | c^*) = ((ab) | (c^*))$ 
  - representa o conjunto {ab, ε, c, cc, ccc...}
- a(b | c) \*
  - representa o conjunto {a, ab, ac, abc, abb, acc, ...}
- (ab | c) \*
  - representa o conjunto { ε , ab, c, abc, cab, abab, cc, ...}

# **Expressões Regulares**

- Abreviação
  - Uma abreviação muito comum consiste na substituição da expressão regular xx\* por x\*
- L = {0<sup>m</sup> 1<sup>n</sup> | m ≥ 0, n ≥ 0} pode ser reescrita como ((0) \* (1) \*), ou simplesmente, 0 \* 1 \*
- Para m ≥ 0 e n ≥ 1, a expressão seria 0 \* 11 \*
- 0 \* 11 \* = 0 \* 1 \* 1 = 0 \* 1 +

### **Exercícios**

 Obter expressões regulares que representam as linguagens cujas sentenças estão descritas a seguir

### **Exercícios**

- 1. Começam com aa;
- 2. Não começam com aa;
- 3. Terminam com bbb;
- 4. Não terminam com bbb;
- 5. Contém a subcadeia aabbb;
- 6. Possuem comprimento maior ou igual a 3;
- 7. Possuem comprimento menor ou igual a 3;
- 8. Possuem comprimento par;
- 9. Possuem comprimento ímpar;
- 10. Possuem quantidade par de símbolos a;
- 11. Possuem quantidade ímpar de símbolos b.