

"RNAseq Sample Prep"

Alfredo Mendoza Vargas

amendoza@inmegen.gob.mx
Unidad de Secuenciación
Instituto Nacional de Medicina Genómica

Genomeeting Octubre 2016

Aplicaciones de RNASeq

RNASeq vs. Arrays

NIH Funding for Gene Expression Studies - New Grants

Comparison of grant awards using gene expression arrays versus RNA sequencing from 2009-2015 in the NIH Research Portfolio. Data derived from an NIH Project Reporter database search (http://projectreporter.nih.gov) in October 2015.

Buyer's Guide: Simple, Customized RNA-Sequencing Workflows, Illumina 2015

RNASeq, las bases

Aislamiento de RNA

Control de Calidad del RNA

RNASeq Sample prep

Análisis

Secuenciación

Control de Calidad Biblioteca

Que tenemos que checar antes de iniciar

Proyecto

Réplicas Biológicas

Sample Prep

¿ ug, ng ó pg?

Secuenciación

Profundidad

Tamaño de lectura

Que tenemos que checar antes de iniciar

Que queremos	Nuestro modelo	Parametros muy importantes
Perfiles de expresión Cuantificación del transcriptoma codificante	Impacto de la investigación y definición de las imágenes para la publicación	Tamaño del estudio y réplicas biológicas Determinar el número de muestras y las réplicas para cada condición o población específica
Secuenciación del transcriptoma completo Análisis del transcriptoma codificante y no codificante	Tipo de muestra Humana, no humana, de planta o bacteria Definir el tipo de biblioteca para el tipo de muestra	Definir la plataforma de secuenciación ideal para el estudio.
Escaneo de alta resolución del transcriptoma completo Identificar nuevos transcritos Fusiones génicas Uniones por splicing Isoformas	Calidad de la muestra Definir el tipo de biblioteca para el tipo de muestra.	Profundidad de secuencia Cuantas secuencias por muestra son requeridas de acuerdo a lo que buscamos inicialmente.
Secuenciación de RNAs pequeños	Cantidad de muestra Cultivo celular, células individuales etc.	

Algunas guías

Profundidad óptima para análisis de expresión

Eucariontes= 20-30 M reads/sample

Procarionte= 10 M reads/sample

Configuración de corrida= 1X76

Profundidad para detección de isoformas y variantes

Eucariontes= >30M reads/sample

Configuración de corrida= 2X76

Incrementando de 10 a 30 M podemos obtener 25% más genes diferencialmente expresados

Algunas guías

Caso 1	Caso 2	Caso 3
Perfil de Expresión	Perfil de Expresión Variantes Isoformas	Perfil de Expresión Variantes Isoformas RNAs no codificantes
Kit: directional mRNA library prep	Kit: directional mRNA library prep	Kit: directional total RNA library prep
Configuración de corrida: 1X50	Configuración de corrida: 2X76	Configuración de corrida: 2X76
Profundidad: >20 Millones de reads por muestra	Profundidad: >30 Millones de reads por muestra	Profundidad: > 40 Millones de reads por muestra
Plataforma: NextSeq 500 MO, 10 Muestras	Plataforma: NextSeq 500 HO, 16 Muestras	Plataforma: NextSeq 500 HO, 9-12 Muestras

RNA-Seq

Feng et al Cancer Letters 2012

Análisis de Transcriptoma mRNA-Seq

Características

- ■100ng 1ug de RNA
- •RIN >7.0
- Sólo transcritos polyA
- Cadena específica

Transcripción antisentido

Yassour et al Genome Biology 2010

Análisis de Transcriptoma TotalRNA-Seq

Ribosomal RNA subtraction Total RNA Hybridize with Biotin-LNA probe set Capture RNA/probe Complexes Remove RNA/probe Complexes w/

Características

- ■100ng 5ug de RNA
- ■Para muestras provenientes de parafina
- Sólo hay compatibilidad con algunas especies
- Transcritos polyA y no polyA
- Cadena específica
- Se requiere mayor profundidad

Low imput RNA

Características

- >1- 500pg de RNA
- Sólo hay compatibilidad con algunas especies
- Transcritos polyA y no polyA
- Cadena específica
- No hay versiones para procariontes
- ■Se pierden los RNAs < 200pb

RNA-Seq de una célula

Smart-seq

Ramskold et al Nat. Biothechnol 2012

NuGEN

RNA-Seq de una célula

Smart-seq

NuGEN

	Source of Total RNA						
	Human Brain (MAQC B)		Human UHR (MAQC A)		DC A)		
Input of Total RNA	10 pg	100 pg	10 ng	10 pg	100 pg	10 ng	
% of Total Reads							
Not Aligned	13	5	3.1	21	7	3.4	
Aligned	87	95	96.9	79	93	96.6	
% of Mapped Reads by Category							
All Non-rRNA	74.9	70.8	81.6	80.9	75.4	79.5	
All rRNA	25.1	29.2	18.4	19.1	24.6	20.5	
Distribution of RefSeq Reads							
Exons	34.3	36.6	38.5	38.3	41.6	37.3	
Introns	46.7	47.4	46.1	41.9	42.6	45.2	
Intergenic	19.0	15.9	15.4	19.8	15.9	17.5	
RefSeq Strand Retention							
Exons	97.5	96.2	98.8	99.3	99.2	98.4	
5' UTR	94.3	93.3	96.5	98.1	98.2	97.9	
3' UTR	96.5	96.2	97.9	96.8	97.3	96.7	

Ramskold et al Nat. Biothechnol 2012

Análisis de Transcriptoma Small RNAs

Análisis de Transcriptoma Small RNAs

Método de captura

SureSelect RNA Capture

R Friedländer et al Genome Biol 2014

Características

- Captura de RNAs específicos
- RNA total y mRNA
- ■Diseños < 10 Mb</p>
- El diseño es sin costo

Centros de Secuenciación

SERVICIOS GENÓMICOS LANGEBIO

CINVESTAV-Campus Guanjuato

Unidad de Biología Molecular

LABORATORIO DE SECUENCIACIÓN GENÓMICA DE LA BIODIVERSIDAD Y DE LA SALUD

Laboratorio Nacional en Salud

Centros de Secuenciación

Korf Nature Methods 2013

www.inmegen.gob.mx

Síguenos en

http://on.fb.me/qaNj1Z http://bit.ly/pcl2Zo