

Analysis of the USRP2 Firmware: system architecture overview

J. Johansen, S. Enevoldsen, V. Pucci, O. Tonelli, A.F. Cattoni, Y. Le Moullec - *Aalborg University, Denmark*

Context

- Ettus Research Universal Software Radio Peripheral (USRP) is one of the most popular Software Defined Radio motherboards
 - Affordable costs
 - Compatibility with the GNU Radio software platform
 - Support for a wide range of inter-changeable RF daughterboards
 - USB/Gigabit Ethernet connection with host computers
- Several models have been developed
 - USRP first release, USB connection
 - USRP2 introduced GbEth connection
 - USRP N-series increased FPGA resource
 - USRP E-series standalone SDR device

Motivation

- The USRPs in their factory configuration feature a firmware which enables basic capabilities on the hardware
 - Up/down-sampling of the RF signal
 - Filtering
 - Management of data timestamp
 - Management of UDP packets on the GbE connection to the host
- Considerable hardware resources (especially on the new N-series) are left unused
- Implementation of processing features on the FPGA may be a valuable improvement to specific SDR systems
- An hardware implementation compatible with the provided firmware is preferable
- Lack of documentation about the USRP firmware architecture

Contribution

- Analysis of the existing USRP2 firmware
 - Architecture overview and schemes
 - Analysis of Verilog components

Notes:

Firmware analysis relates to the release 3 Same architecture applies to USRP2 and N-series

General architecture

Main firmware components

- GMII Gigabit Media Independent Interface
- GE-MAC Gigabit Ethernet Media Access Controller
- Softcore Processor: 32-bit GPP ZPU

DSP TX Chain

- DSP TX Core
 - Upsampling CIC (cascaded integrator-comb)

Filtering

Upsampling

Oscillator

CPU/ZPU

Start	Stop	Description
0x0000	0x3FFF	16384 word addressable blockram
0x8000	0xBFFF	Packet router
0xC000	0xC3FF	SPI
0xC400	0xC7FF	I^2C
0xC800	0xCBFF	GPIO
0xCC00	0xCFFF	Buffer Pool Status
0xD000	0xD3FF	Ethernet MAC
0xD400	0xD7FF	Settings Bus
0xD800	0xDBFF	Interrupt Controller
0xDC00	0xDFFF	Master Timer
0xE000	0xE3FF	UART
0xE400	0xE7FF	ATR
0xE800	0xEBFF	Time Sync - Not used
0xEC00	0xEFFF	SD Card interface
0xF000	0xF3FF	Not used
0xF400	0xF7FF	Not used

- The on-board CPU controls the functioning of the DSP chains, packet routing and other peripherals
- It has access to the board devices through I²C and SPI buses but it does not have direct access to the DSP chain datapath
- The CPU communicates to the host through UDP packets.
- The CPU can directly access 512 bytes of packet space in the CPU FIFO

- The RX packet router inspects packets coming from the Ethernet connection
- Ensures that only packet that match the IP address of the board, will be processed
- Sends UDP packets to the ZPU and VITA packets to the DSP TX chain

- The RX packet router inspects packets coming from the Ethernet connection
- Ensures that only packet that match the IP address of the board, will be processed
- Sends UDP packets to the ZPU and VITA packets to the DSP TX chain

Conclusions and future work

- Deeper understanding of the USRP2 firmware architecture
- The firmware modularity allows to implement additional features
 - Create new blocks in Verilog
 - Manage input/output connections of existing blocks
- The system architecture needs to deal with the presence of the VITA protocol
- Unexploited resources on the USRP2 FPGA
- 1 MB RAM can be used by the softcore CPU
- New N2XX series provide increased FPGA resources and DSP capabilities

Resources	Utilization	
Slice Flip-Flops	45%	
4-input Look-Up-Tables	64%	
Occupied Slices	86%	
RAM Blocks	15 available	
MULT 18x18	13 available	

Reference

J.Johansen, S. Enevoldsen, V.Pucci, "Analysis and Architectural Mapping of an FFT Algorithm into an Already Existing FPGA Firmware of a Low-cost COTS SDR Peripheral", 2nd Semester Master Project, Spring 2011, Aalborg University, Denmark.

Boot-up process

- Configuration data for the FPGA is typically loaded either from an onboard ROM chip or a FLASH ROM
- In the USRP2 the boot-up process is controlled by a CPLD (Complex Programmable Logic Device) that performs the initialization process of the SPI interface for a SD card
- Bits from address 0 on the card are loaded into the FPGA configuration interfacet
- The following bits are the firmware image for the softcore processor if enabled on the FPGA.

VITA Radio Transport Protocol

- The USRP2 components communicate with the host PC through the Vita Radio Transport (VRT) standard data transport protocol
- The purpose of the standard is to provide interoperability for SDR radio applications independent of physical link, and the internal architecture of the radio
- USRP Firmware implements a standard IF data

	Functionality	Bits
Header	Packet type description	32
Stream Identifier	Identifies multiple data streams in the DSP chains	32
Integer-second timestamp	Precise timing information about the payload	32
Fractional-second timestamp	Precise timing information about the payload	64
Data Payload	Header+data	Word size is 32 bits