Федеральное агентство по образованию Центральный оргкомитет Всероссийских олимпиад

XL Всероссийская олимпиада школьников по физике

Заключительный этап

Теоретический тур

Методическое пособие

Снежинск, 2006 г.

Комплект задач подготовлен методической комиссией по физике Центрального оргкомитета Всероссийских олимпиад школьников Министерства образования и науки Российской Федерации Телефоны: (095) 408-80-77, 408-86-95.

E-mail: fizolimp@mail.ru (с припиской antispam к теме письма)

Авторы задач

9 класс	10 класс	11 класс
1. Грибов В.	1. Мельниковский Л.	1. Чудновский А.
2. Слободянин В.	2. Воробьёв И.	2. Бутиков Е.
3. Шведов О.	3. Слободянин В.	3. Ко́зел С.
4. Соболев М.	4. Воробьёв И.	4. Огарков М.
	5. Ко́зел С.	5. Ко́зел С.

Общая редакция — Ко́зел С.

Оформление и вёрстка — Гусихин П.

При подготовке оригинал-макета использовалась издательская система \LaTeX $2_{\mathcal{E}}$. C Авторский коллектив

Подписано в печать 21 июня 2006 г. в 17:58.

141700, Московская область, г. Долгопрудный Московский физико-технический институт

Задача 1. Максимальная амплитуда

Брусок массой M, покоящийся на горизонтальном столе, и пружинный маятник, состоящий из груза массой m и лёгкой длинной пружины, связаны лёгкой нерастяжимой нитью, перекинутой через идеальный неподвижный блок (рис. 1). Коэффициент трения между основанием бруска и поверхностью стола $\mu=0,3$. Отношение массы бруска к массе груза M/m=8. Груз совершает вертикальные колебания с периодом T=0,5 с. Какова максимально возможная амплитуда A_m таких колебаний, при которых они остаются гармоническими?

Задача 2. Курсирующий катер

По реке, скорость течения которой u, навстречу друг другу плывут два однотипных теплохода. В некоторый момент времени, когда один из теплоходов проплывал мимо пункта A, а другой — мимо пункта B, из A в B отплыл быстроходный катер, который стал курсировать между теплоходами вплоть до их встречи. Какой путь L_x относительно берега реки проплыл катер? Расстояние от A до B вдоль фарватера реки L. В стоячей воде скорость теплоходов равна v, а катера V. Пункт A находится выше пункта B по течению реки. Как изменится ответ, если катер стартует из пункта B?

Задача 3. Терморезистор

На дне калориметра закреплён тон- R, Ом кий плоский нагревательный элемент, а на некотором уровне над ним — терморезистор, сопротивление R которого зависит от температуры t, выраженной в °C, по закону $R=R_0(1+\alpha t)$, где R_0 и α не зависят от температуры. Параметр α называется температурным коэффициентом сопротивления. В калориметре находится лёд. Его удельная теплота плавления $\lambda=340~\mathrm{kДж/kr}$. Удельная теплоёмкость во-

ды c=4,2 кДж/(кг · °С). Если через нагревательный элемент пустить ток силой I_0 , сопротивление R будет изменяться со временем так, как показано на графике (рис. 2). Найдите α . Изобразите график зависимости $R(\tau)$, если бы через терморезистор пропускали ток силой $I=1,41I_0$.

ХІ Всероссийская олимпиада школьников по физике

Задача 4. Цепь с двумя ключами

На рисунке 3 изображена цепь, содержащая идеальный амперметр A, резисторы сопротивлением R и 2R, ключи K_1 и K_2 . Цепь подключена к источнику постоянного напряжения U. Какую силу тока будет показывать амперметр при различных комбинациях ключей K_1 и K_2 (замкнуто — разомкнуто)? Какими будут направления тока на участке BD в различных случаях? В каком случае показания амперметра окажутся максимальными?

Рис. 3

Задача 1. Эшелон

На горизонтальном столе один на другом лежат N=42 длинных бруска массами $m, 2m, 3m, \ldots, 42m$ (рис. 4). Они смазаны вязким маслом, так что сила трения между брусками и между нижним бруском и столом пропорциональна относительной скорости u соприкасающихся брусков: $\vec{F}_{\rm Tp}=-\alpha \vec{u}$, где α — некоторая константа. Сначала все бруски неподвижны, затем верхнему бруску сообщают горизонтальную скорость \vec{v} . Определите смещение n-го бруска относительно (n+1)-го бруска после

n-го бруска относительно (n+1)-го бруска после остановки брусков. Какой вид примет стопа брусков после остановки?

Задача 2. Неустойчивое равновесие

В горизонтальном колене запаянной теплоизолированной П-образной трубки небольшого постоянного поперечного сечения S с длиной колена L расположена жидкость плотностью ρ . Теплоёмкость всей жидкости в трубке равна C (рис. 5). В вертикальных коленах находится по ν молей гелия под давлением p_0 . Из-за слабого толчка равновесие нарушилось. Пренебрегая теплообменом с окружающей средой, найдите расстояние x, на которое сместится столбик жидкости к моменту установления термодинамического равновесия. Поперечное сече-

ние трубки столь мало, что пузырьки газа не «пробулькивают» сквозь жидкость, сместившуюся в вертикальное колено.

Задача 3. Наибольший КПД

Рассмотрите два цикла (рис. 6), совершаремых над идеальным газом. В первом из них газ адиабатически сжимают из состояния 1 до состояния 2, затем изотермически расширяют до состояния 3 и наконец изохорически возвращают в исходное состояние 1. КПД такого цикла обозначим η_V . Во втором цикле газ адиабатически сжимают из состояния 1 до состояния 2, затем изотермически расши-

ряют до состояния 4 и наконец изобарически возвращают в исходное состояние 1. КПД такого цикла обозначим η_p . Сравните η_V и η_p .

Примечание. В адиабатическом процессе $pV^{\gamma}=\mathrm{const}$, где $\gamma=C_p/C_V$. При изотермическом расширении идеального газа от объёма V_a до объёма V_b им совершается работа $A_{ab}=\nu RT\ln{(V_b/V_a)}$.

ХІ Всероссийская олимпиада школьников по физике

Задача 4. Притяжение одноимённых зарядов

Распространено мнение, что тела с одноимёнными зарядами всегда отталкиваются друг от друга. Вовсе нет! Такой эффект наблюдается далеко не всегда. Представьте себе, что сплошной металлический шар радиуса R распилили пополам, а получившиеся половины сблизили плоскими сторонами так, что зазор d между ними оказался предельно мал ($d \ll R$). Найдите силу электростатического взаимодействия полушарий с одноимёнными зарядами q_1 и q_2 (рис. 7). При каком отношении зарядов они будут притягиваться?

Рис. 7

Примечание. Сила, действующая на единицу поверхности заряженного проводника произвольной формы, связана с напряжённостью электрического поля вблизи поверхности тем же соотношением, что и в плоском конденсаторе.

Задача 5. Полубесконечная цепочка

На рисунке 8 изображена полубесконечная цепочка, состоящая из одинаковых источников постоянного тока с ЭДС $\mathscr E=1,2$ В и внутренним сопротивлением r=2,0 Ом. К входным клеммам цепочки с помощью перекидного ключа K могут быть подключены либо идеальный вольтметр V, либо идеальный амперметр A. Определите показания этих приборов.

Задача 1. Разорвавшийся снаряд

Пушечный снаряд массой M=100 кг разорвался в некоторой точке траектории на два осколка, разлетевшихся с импульсами $p_1=3.6\cdot 10^4$ кг · м/с и $p_2=2.4\cdot 10^4$ кг · м/с. Импульсы осколков направлены под углом $\alpha=60^\circ$ друг к другу. Определите, при каком отношении масс осколков выделившаяся при взрыве кинетическая энергия будет минимальной. Найдите эту энергию.

Задача 2. Шайба на привязи

Круглый вертикальный цилиндр радиусом R прикреплён к горизонтальной плоскости (рис. 9). Внизу с боковой поверхностью цилиндра соединена нерастяжимая нить длиной L, направленная по касательной к поверхности цилиндра.

На другом конце нити закреплена маленькая шайба. Шайбе сообщают горизонтальную скорость v_0 , направленную перпендикулярно нити, и шайба начинает скользить по плоскости.

- 1. Сколько времени будет продолжаться движение шайбы (наматывание нити на цилиндр) в отсутствие трения?
- 2. Сколько времени будет продолжаться движение шайбы при наличии трения между шайбой и плоскостью? Коэффициент трения равен μ .

Задача 3. Два термодинамических процесса

На рисунке 10 изображена система, состоящая из баллона объёмом $V_0=0.2~\mathrm{m}^3$ и цилиндра с поршнем. Начальный объём баллона и цилиндра $V_1=kV_0$, где k=2.72. В системе находится воздух под давлением $p_0=10^5~\mathrm{\Pi a}$ и при темпе-

ратуре $T_0 = 300$ K, равной температуре наружного воздуха. Передвигая поршень, весь воздух из цилиндра закачивают в баллон. Определите количество теплоты, которое передаётся окружающей среде в следующих двух случаях.

- 1. Поршень передвигается медленно, так что в каждый момент времени вся система находится в тепловом равновесии с окружающей средой.
- 2. Поршень передвигается достаточно быстро, так что за время его перемещения можно пренебречь теплообменом с окружающей средой, но воздух внутри системы в каждый момент времени находится в равновесном состоянии. После завершения процесса перекачки температура воздуха в баллоне постепенно сравнивается с температурой окружающего воздуха.

 $\Pi pumeчanue$. Адиабатический процесс описывается уравнением $pV^{\gamma}=\mathrm{const},$ где параметр $\gamma=C_p/C_V.$

Задача 4. Исследование конденсатора

Для определения ёмкости C_2 и сопротивления утечки r_2 конденсатора собрана мостовая схема (рис. 11), которая сбалансирована при подключении гармонического переменного напряжения. Оказалось, что баланс моста не нарушается при любом изменении частоты напряжения. Чему равны параметры C_2 и r_2 , если известно, что $r_1=2500~{\rm Om}$, $r_3=10~{\rm Om}$, $r_3=1~{\rm Fh}$, $r_4=800~{\rm Om}$. Гальванометр измеряет действующее значение силы тока.

Рис. 11

Задача 5. У торца соленоида

У торца вертикально расположенного длинного соленоида на тонком немагнитном листе лежит соосно с соленоидом круглое тонкое кольцо из сверхпроводника (рис. 12). В начальном состоянии сила тока в витках соленоида и сила тока в кольце равны нулю. При протекании тока по виткам соленоида вблизи торца возникает неоднородное магнитное поле. Вертикальную B_z и радиальную B_r составляющие вектора магнитной индукции \vec{B} можно в некоторой ближней области задать с помощью соотношений $B_z \approx B_0(1-\alpha z)$, $B_r \approx B_0 \beta r$, где α и β — некоторые константы, а B_0 определяется силой тока в соленоиде. По виткам соленоида начинают пропускать ток силой I, постепенно увеличивая его значение. Определите:

- 1. критическое значение силы тока I_0 в соленоиде, при котором кольцо начинает подниматься над опорой;
 - 2. высоту кольца над опорой при $I=2I_0;$
- 3. частоту малых колебаний колебаний сверхпроводящего кольца при $I=2I_0$.

Числовые данные: $\alpha=36~\mathrm{m}^{-1},~\beta=18~\mathrm{m}^{-1},$ масса кольца $m=100~\mathrm{mr},$ коэффициент самоиндукции кольца $L=1.8\cdot 10^{-8}~\mathrm{\Gamma h},$ площадь кольца $S=1~\mathrm{cm}^2,$ магнитная постоянная $\mu_0=1.257\cdot 10^{-6}~\mathrm{\Gamma h/m},$ плотность намотки соленоида $n=10^3~\mathrm{m}^{-1}.$

Возможные решения

9 класс

Задача 1. Максимальная амплитуда

Из условия равновесия маятника $kx_0=mg$, где k — жёсткость пружины, находим её удлинение при равновесии $x_0=mg/k$. Из формулы для периода гармонических колебаний маятника

$$T=2\pi\sqrt{rac{m}{k}}$$
 выражаем $rac{m}{k}=rac{T^2}{4\pi^2},$ откуда $x_0=rac{gT^2}{4\pi^2}.$

Колебания груза остаются гармоническими, если совместно выполнены два условия:

- 1. в процессе колебаний груза брусок остаётся неподвижным;
- 2. нить всё время натянута, поэтому груз нигде не переходит в режим свободного падения.

Из первого условия следует, что в крайнем нижнем положении груза, когда удлинение пружины $x_1 = x_0 + A$, сила натяжения нити, равная по модулю упругой силе пружины, недостаточна для того, чтобы сдвинуть брусок:

$$kx_1 = kx_0 + kA \leqslant mq + kA_1 = \mu Mq$$

откуда

$$A \leqslant A_1 = \left(\mu \frac{M}{m} - 1\right) g \frac{T^2}{4\pi^2} = 8.8 \text{ cm}.$$

Из второго условия следует, что в крайнем верхнем положении груза, когда удлинение пружины $x_1 = x_0 - A$, нить не провисает, откуда

$$A \leqslant A_2 = x_0 = \frac{gT^2}{4\pi^2} = 6.3 \text{ cm}.$$

Второе условие более сильное, следовательно,

$$A_m = 6.3 \text{ cm}.$$

XL Всероссийская олимпиада школьников по физике

Задача 2. Курсирующий катер

Средняя скорость катера $v_{\rm cp}$ на участке реки от одного теплохода до другого и обратно — величина постоянная. Поэтому искомый путь, пройденный катером, равен произведению этой скорости на общее время его курсирования: $t_0 = L/2v$. Найдём $v_{\rm cp}$. Время, затраченное катером на путь до первой встречи с теплоходом B, равно

$$t_1 = \frac{L}{v + V}.$$

Пусть катер стартует по течению реки, тогда за время t_1 он преодолеет расстояние

$$L_1 = t_1(V + u) = L \frac{V + u}{v + V},$$

а вышедший вместе с ним теплоход A проплыл расстояние

$$L_T = t_1(v+u) = L\frac{v+u}{v+V}.$$

Когда катер повернул обратно, расстояние между ним и теплоходом A составляло

$$L_{KT} = L_1 - L_T = t_1 \left((V + u) - (v + u) \right) = L \frac{V - v}{v + V}.$$

На путь до встречи с теплоходом A потребовалось время

$$t_2 = \frac{L_{KT}}{v+V} = L\frac{V-v}{(v+V)^2}.$$

За это время катер покрыл расстояние

$$L_2 = t_2(V - u) = L \frac{(V - u)(V - v)}{(v + V)^2}.$$

Средняя скорость катера

$$v_{\rm cp} = \frac{L_1 + L_2}{t_1 + t_2} = \frac{V^2 + uv}{V}.$$

Из этой формулы видно, что средняя скорость катера относительно берегов не зависит от расстояния между теплоходами. Отсюда находим искомый путь

$$L_x = v_{\rm cp} t_0 = L \frac{V^2 + uv}{2vV}.$$

Если бы катер стартовал против течения реки, то во всех формулах следовало бы заменить u на (-u). В этом случае

$$L_x = v_{\rm cp} t_0 = L \frac{V^2 - uv}{2vV}.$$

Горизонтальный участок графика соответствует процессу плавления льда, наклонный — нагреванию воды. Согласно приведённой формуле мы можем записать:

$$\alpha = \frac{\Delta R}{R_0} \frac{1}{\Delta t}.$$

Отношение

$$\frac{\Delta R}{R_0} = 0.068$$

для заданного интервала времени $\Delta \tau = \tau - \tau_{\rm пл} = 24~{\rm c}$ найдём из графика (здесь $\tau_{\rm пл} = 600~{\rm c}$ — время плавления льда, $\tau = 624~{\rm c}$ — время окончания эксперимента). Произошедшее за это время изменение температуры воды определим из следующих соображений.

Как видно из графика, начальная температура льда равна 0° С, потому что на начальном участке сопротивление терморезистора, а значит и температура, не меняется. Теплообмен калориметра с окружающей средой отсутствует, так как при нагреве воды сопротивление терморезистора, а значит и температура возрастает со временем полинейному закону. Поэтому

$$Q_{\text{пл}} = \lambda m, \qquad Q_{\text{нагр}} = cm\Delta t.$$

Поскольку мощность нагревательного элемента постоянна, мы можем записать:

$$P_{\scriptscriptstyle \Pi \Pi} = rac{Q_{\scriptscriptstyle \Pi \Pi}}{ au_{\scriptscriptstyle \Pi \Pi}}, \qquad P_{\scriptscriptstyle
m Harp} = rac{Q_{\scriptscriptstyle
m Harp}}{ au - au_{\scriptscriptstyle
m H \Pi}}, \qquad P_{\scriptscriptstyle
m \Pi \Pi} = P_{\scriptscriptstyle
m Harp}.$$

Из этих формул следует

$$\frac{m\lambda}{\tau_{\text{п.п.}}} = \frac{mc\Delta t}{\tau - \tau_{\text{п.п.}}},$$

откуда

$$\Delta t = \frac{\lambda}{c} \cdot \frac{\tau - \tau_{\text{пл}}}{\tau_{\text{пл}}}.$$

Следовательно, искомая величина

$$\alpha = \frac{\Delta R}{R_0 \Delta t} = \frac{\Delta R}{R_0} \cdot \frac{c}{\lambda} \cdot \frac{\tau_{\text{пл}}}{\tau - \tau_{\text{пл}}} = 0.021^{\circ} \text{C}^{-1}.$$

При силе тока нагревателя $I=1,41I_0$ его мощность возрастает в 2 раза. Следовательно, лёд расплавится за время $\tau_{\text{пл}2}=300$ с. Относительное изменение сопротивления терморезистора $\Delta R/R_0=0,068$ произойдёт за время $\tau_2=12$ с. Искомый график представлен на рисунке 13.

Задача 4. Цепь с двумя ключами

Комбинация 1. Ключ K_1 замкнут, K_2 — разомкнут.

В этом случае в плечо GB включён резистор 2R и схема симметрична относительно участка GC. Следовательно $I_1=0$.

Комбинация 2. Ключи K_1 и K_2 — разомкнуты.

Эквивалентная схема изображена на рисунке 14. Сопротивление участка цепи, обведённого пунктирной линией, найдём из условия

$$\frac{1}{r} = \frac{1}{R} + \frac{1}{2R} = \frac{3}{2R},$$
 откуда $r = \frac{2}{3}R.$

На участке DC напряжение

$$U_{DC} = \frac{U}{2R+r}r = \frac{U}{4}.$$

Показания амперметра

$$I_2 = \frac{U_{DC}}{2R} = \frac{U}{8R}.$$

Рис. 14

Направление тока от узла D к узлу B.

Комбинация 3. Ключ K_2 — замкнут (положение ключа K_1 — произвольное).

Эквивалентная схема изображена на рисунке 15. Сопротивление участка цепи, обведённого пунктирной линией, равно

$$r = \frac{2}{3}R$$

На участке BD напряжение

$$U_{BD} = \frac{U}{R+r}r = \frac{2}{5}U.$$

Показания амперметра

$$I_3 = \frac{U_{BD}}{R} = \frac{2U}{5R}.$$

Направление тока от узла B к узлу D. Также легко видеть, что $I_3 > I_2$.

Задача 1. Эшелон

Рассмотрим систему, состоящую из n верхних брусков (рис. 16). На эту систему в горизонтальном направлении действует только одна сила — сила трения F_n между n-м и (n+1)-м брусками:

$$F_n = -\alpha(v_n - v_{n+1}),$$

где v_n и v_{n+1} — скорости n-го и (n+1)-го брусков соответственно. Рассмотрим малый промежуток времени Δt . Из закона изменения импульса системы находим изменение импульса системы за время Δt

$$\Delta p_n = F_n \Delta t = -\alpha (v_n - v_{n+1}) \Delta t = -\alpha (\Delta x_n - \Delta x_{n+1}),$$

где Δx_n и Δx_{n+1} — расстояния, пройденные соответственно n-м и (n+1)-м брусками за время Δt . Поскольку начальный импульс системы из n рассматриваемых брусков был p=mv, то

$$-mv = -\alpha \Delta l_n$$
.

где $\Delta l_n = \Delta x_n - \Delta x_{n+1}$ — сдвиг n-го бруска относительно (n+1)-го после остановки системы. Следовательно,

$$\Delta l_n = \frac{mv}{\alpha},$$

то есть величина Δl_n одинакова для всех n. Таким образом, после остановки система будет иметь вид «лесенки» с шагом $\Delta l = mv/\alpha$ (рис. 17).

Задача 2. Неустойчивое равновесие

Пусть p — давление расширившегося газа, тогда давление газа в другом колене $p_1 = p + \rho gx$. Поскольку установившаяся температура во всей трубке одинакова, то (рис. 18):

$$p(L+x) = (p + \rho gx)(L-x),$$

или после преобразований:

$$p = \frac{1}{2}\rho g(L - x). \tag{1}$$

ХІ Всероссийская олимпиада школьников по физике

Потенциальная энергия части жидкости, перетёкшей в вертикальное колено, перейдёт во внутреннюю энергию гелия и самой этой жидкости:

$$\rho x S g \frac{x}{2} = (2\nu C_V + C)\Delta T. \tag{2}$$

Изменение температуры системы можно найти из уравнения состояния:

$$\nu R\Delta T = p(L+x)S - p_0 LS.$$

Рис. 18 (3)

Решая систему уравнений (1), (2) и (3), получим:

$$\rho g S \frac{x^2}{2} = \frac{(2\nu C_V + C) \left(\frac{1}{2}\rho g(L^2 - x^2) - p_0 L\right)}{\nu B} S,$$

откуда

$$x = \sqrt{\left(\frac{3\nu R + C}{4\nu R + C}\right)\left(L - \frac{2p_0}{\rho g}\right)L}.$$
 (4)

Примечание. Из (4) видно, что при $\rho gL < 2p_0$ под корнем будет стоять отрицательное число. Это означает, что исходное положение жидкости в трубке устойчиво.

Задача 3. Наибольший КПД

Будем обозначать физические величины, соответствующие определённым состояниям, подстрочными индексами. По определению,

$$\eta_V = 1 - \frac{Q_{31}}{Q_{23}}, \qquad \eta_p = 1 - \frac{Q_{41}}{Q_{24}},$$

где Q_{31} — теплота, выделившаяся на участке 3-1, Q_{23} — теплота, выделившаяся на участке 2-3, Q_{41} — теплота, выделившаяся на участке 4-1, Q_{24} — теплота, выделившаяся на участке 2-4. Здесь

$$Q_{31} = \nu C_V (T_2 - T_1), \qquad Q_{23} = A_{23} + U_{23} = \nu R T_2 \ln \left(\frac{V_3}{V_2}\right),$$

где A_{23} — работа газа на участке $2-3,\ U_{23}$ — изменение внутренней энергии газа на участке $2-3,\$ причём $U_{23}=0,\$ так как 2-3 — изотерма. С учётом равенства $V_3=V_1,\$ запишем

$$Q_{23} = \nu R T_2 \ln \left(\frac{V_1}{V_2} \right).$$

Теперь воспользуемся уравнением адиабаты: $p_1V_1^{\gamma} = p_2V_2^{\gamma}$, откуда

$$\frac{V_1}{V_2} = \left(\frac{p_2}{p_1}\right)^{1/\gamma}.$$

$$Q_{23} = \nu R T_2 \frac{1}{\gamma} \ln \left(\frac{p_2}{p_1} \right) = \nu R T_2 \frac{C_V}{C_p} \ln \left(\frac{p_2}{p_1} \right).$$

Коэффициент полезного действия

$$\eta_V = 1 - \frac{C_p(T_2 - T_1)}{RT_2 \ln(p_2/p_1)}. (5)$$

Аналогичным образом находим

$$Q_{41} = \nu C_p(T_2 - T_1), \qquad Q_{24} = \nu RT \ln \left(\frac{V_4}{V_2}\right).$$

Точки (2) и (4) лежат на одной изотерме, следовательно $\nu RT_2 = p_2V_2 = p_4V_4$, откуда

$$\frac{V_4}{V_2} = \frac{p_2}{p_4}.$$

С учётом равенства $p_4 = p_1$ для η_p окончательно запишем:

$$\eta_p = 1 - \frac{C_p(T_2 - T_1)}{RT_2 \ln(p_2/p_1)}. (6)$$

Из (5) и (6) видно, что $\eta_p = \eta_V$.

Задача 4. Притяжение одноимённых зарядов

В пределе при малом зазоре суммарный заряд полушарий $Q=q_1+q_2$ равномерно распределён по сферической поверхности. Заряды же на плоских поверхностях полушарий равны q и -q, причём

$$q = q_1 - \frac{Q}{2} = \frac{q_1 - q_2}{2}.$$

Можно считать, что эти поверхности образуют плоский конденсатор. В этом приближении напряжённость электрического поля в зазоре между гранями

$$E_C = \frac{q}{\varepsilon_0 \cdot \pi R^2},$$

а вблизи (снаружи) сферической поверхности

$$E_R = \frac{Q}{4\pi\varepsilon_0 R^2}.$$

Заметные отклонения напряжённости поля от приведённых выше величин будут наблюдаться только в малой окрестности у краёв плоских поверхностей,

ХІ Всероссийская олимпиада школьников по физике

но в пределе «нулевого» зазора они не скажутся на искомой силе взаимодействия.

Поле, создаваемое каждой из плоских поверхностей,

$$E_{C1} = \frac{q}{2\pi\varepsilon_0 R^2},$$

а сила, с которой они притягиваются,

$$F_C = qE_{C1} = \frac{q^2}{2\pi\varepsilon_0 R^2}.$$

Взаимодействие между зарядами на внешних поверхностях полусфер можно заменить эффективным давлением p, действующим на них. Сила взаимодействия между зарядами, находящимися на внешних поверхностях полусфер, $F_R = Sp$, где $S = \pi R^2$, а давление

$$p = \sigma \frac{E_R}{2}.$$

Отсюда

$$F_R = \pi R^2 \left(\frac{Q}{4\pi R^2} \frac{E_0}{2} \right) = \frac{Q^2}{32\pi\varepsilon_0 R^2}.$$

Результирующая сила

$$F_R = \frac{Q^2}{32\pi\varepsilon_0 R^2} - \frac{q^2}{2\varepsilon_0 \pi R^2} = \frac{Q^2 - (4q)^2}{32\pi\varepsilon_0 R^2} = \frac{(Q - 4q)(Q + 4q)}{32\pi\varepsilon_0 R^2}.$$

После подстановки значений Q и q окончательно получим

$$F_R = \frac{(3q_2 - q_1)(3q_1 - q_2)}{32\pi\varepsilon_0 R^2}.$$

Притяжение полусфер будет возникать при одноимённых зарядах на них в случае, когда заряды отличаются больше чем втрое.

Задача 5. Полубесконечная цепочка

Решение сводится к определению ЭДС \mathscr{E}_0 эквивалентной батареи и её внутреннего сопротивления r_0 . Тогда показания вольтметра $U = \mathscr{E}_0$, показания амперметра $I_0 = \mathscr{E}_0/r_0$ (короткое замыкание).

1. Пусть сначала к цепочке подсоединён вольтметр V. Заменим полубесконечную цепочку, начиная со второго звена, эквивалентной батареей (рис. 19).

Через идеальный вольтметр ток не течёт. По закону Ома

$$I = \frac{\mathscr{E} - \mathscr{E}_0}{r + r_0}.$$

16

15

Показание вольтметра

$$U = \mathcal{E}_0 = U_{AB} - \mathcal{E}$$
,

где напряжение между точками A и B

$$U_{AB} = \mathscr{E} - Ir$$
.

Следовательно,

$$U = -Ir = -\frac{\mathscr{E} - \mathscr{E}_0}{r + r_0} \cdot r = \mathscr{E}_0,$$

откуда

$$\mathscr{E}_0 = -\frac{r}{r_0}\mathscr{E}.\tag{7}$$

2. Теперь к входу цепочки вместо вольтметра подключим амперметр. Подключение идеального амперметра соответствует короткому замыканию. Пусть I_0 , I_1 и I_2 — силы тока в ветвях цепи (рис. 20), тогда

$$U_{AB} = \mathcal{E} + I_0 r = \mathcal{E} - I_1 r = \mathcal{E}_0 - I_2 r_0. \tag{8}$$

По первому правилу Кирхгофа для точки A имеем:

$$I_0 = I_1 + I_2. (9$$

Из (8) и (9) следует:

$$I_1 = -I_0, \qquad I_2 = 2I_0.$$

Используя (7), запишем (8) в виде:

Для определения r_0 получим уравнение:

$$r_0^2 - rr_0 - r^2 = 0.$$

Положительный корень этого уравнения

$$r_0 = \frac{1 + \sqrt{5}}{2} r \approx 3,26 \text{ Om}.$$

Из (7) находим

$$\mathscr{E}_0 = -\frac{r}{r_0}\mathscr{E} = -\frac{2}{1+\sqrt{5}}\mathscr{E} \approx -0.74 \text{ B},$$

откуда

$$I_0 = \frac{\mathcal{E}_0}{r_0} \approx -0.23 \text{ A}.$$

ХІ Всероссийская олимпиада школьников по физике

11 класс

Задача 1. Разорвавшийся снаряд

Пусть m_1 и m_2 — массы осколков, $M=m_1+m_2$ — первоначальная масса снаряда. По закону сохранения импульса

$$\vec{p_0} = \vec{p_1} + \vec{p_2}$$
 или $p_0^2 = p_1^2 + p_2^2 + 2p_1p_2\cos\alpha$.

Кинетическая энергия до и после взрыва соответственно равны:

$$E_{\text{\tiny HAY}} = rac{p_0^2}{2M} = rac{p_1^2 + p_2^2 + 2p_1p_2\coslpha}{2(m_1 + m_2)}, \qquad E_{\text{\tiny KOH}} = rac{p_1^2}{2m_1} + rac{p_2^2}{2m_2}.$$

Выделившаяся при взрыве кинетическая энергия

$$E = E_{\text{\tiny KOH}} - E_{\text{\tiny HAY}} = \left(\frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2}\right) - \frac{p_1^2 + p_2^2 + 2p_1p_2\cos\alpha}{2(m_1 + m_2)}.$$

После преобразования будем иметь

$$E = \frac{p_1^2 k + p_2^2 \frac{1}{k} - 2p_1 p_2 \cos \alpha}{2M},$$
 где $k = \frac{m_2}{m_1}.$

Для нахождения E_{\min} приравняем нулю производную:

$$\frac{dE}{dk} = \frac{1}{2M} \left(p_1^2 - p_2^2 \frac{1}{k^2} \right) = 0.$$

Отсюда

$$k = \frac{p_2}{p_1} = \frac{2}{3}.$$

Подставляя найденное значение k в выражение для E, получим

$$E_{\min} = \frac{p_1 p_2 (1 - \cos \alpha)}{M} = 4.32 \cdot 10^6 \text{ Дж.}$$

XL Всероссийская олимпиада школьников по физике

Задача 2. Шайба на привязи

1. Пусть нить отклонилась на некоторый малый угол $d\varphi$ (рис. 21). Тогда свободная часть нити укоротилась на $dl=Rd\varphi$, шайба прошла путь $dS=ld\varphi\approx ldl/R$, а путь, пройденный шайбой до столкновения с цилиндром

$$S = \int_{0}^{L} \frac{ldl}{R} = \frac{L^2}{2R}.$$

 $\int\limits_0^{\cdot} R = 2R$

Поскольку трения нет, то кинетическая энергия шайбы, а значит, и её скорость останется неизменной. Поэтому искомое время

$$t = \frac{L^2}{2Rv_0}.$$

- 2. При наличии трения шайба движется по дуге с тангенциальным ускорением $a = -\mu g$. Двигаясь с таким ускорением, свободная шайба прошла бы путь $S_1 = v_0^2/\mu g$. Поэтому здесь возможны два случая:
- а. Если $S\geqslant S_1$, или $v_0\leqslant L\sqrt{\mu g/R}$, то шайба до цилиндра не дойдёт или соприкоснётся с ним без удара. Время её движения в этом случае

$$t_a = \frac{v_0}{\mu g};$$

б. Если $S \leqslant S_1$, то шайба, пройдя путь S, столкнётся с цилиндром или соприкоснётся с ним без удара. Время движения шайбы найдём из формулы для пути при равнозамедленном движении:

$$S = rac{L^2}{2R} = v_0 t - rac{\mu g t^2}{2}$$
 откуда $t^2 - 2 rac{v_0}{\mu g} t + rac{L^2}{\mu g R} = 0.$

Квадратное уравнение имеет корни:

$$t_{1,2} = \frac{v_0}{\mu g} \pm \sqrt{\left(\frac{v_0}{\mu g}\right)^2 - \frac{L^2}{\mu g R}}.$$

Искомое время t_6 должно быть меньше времени $t_a=v_0/\mu g$, необходимого для полной остановки шайбы. Поэтому

$$t_6 = \frac{v_0}{\mu g} - \sqrt{\left(\frac{v_0}{\mu g}\right)^2 - \frac{L^2}{\mu g R}} = \frac{v_0}{\mu g} \left(1 - \sqrt{1 - \frac{\mu g L^2}{v_0^2 R}}\right).$$

При $S = S_1$ времена t_a и t_6 одинаковы.

Задача 3. Два термодинамических процесса

В обоих случаях конечная температура воздуха в баллоне равна T_0 , следовательно, его внутренние энергии в начальном и конечном состоянии одинаковы. Поэтому окружающей среде в каждом случае будет передано количество теплоты, равное работе внешних сил по перемещению поршня.

Начальное состояние: $T_0=300$ K, $p_0=10^5$ Па, $V_1=kV_0=0.544$ м³, $C_V=\frac{5}{2}R$. Конечное состояние: $T_0=300$ K, $p_1,~V_0=0.2$ м³. Показатель адиабаты $\gamma=\frac{7}{5}=1.4$.

Первый случай (квазистатическое перемещение поршня): происходит изотермическое сжатие, следовательно $pV = \nu R T_0$, откуда $p_0 V_1 = p_1 V_0$. Поскольку внутренняя энергия не меняется, то по первому закону термодинамики количество теплоты, полученное газом,

$$Q_1 = \Delta A_1 = \int\limits_{V_1}^{V_0} p dV = \nu R T_0 \int\limits_{V_1}^{V_0} \frac{dV}{V} = -\nu R T_0 \ln \frac{V_1}{V_0} = -0.544 \cdot 10^5$$
 Дж.

Знак «-» означает, что тепло отдаётся окружающим телам.

Второй случай (быстрое перемещение поршня): происходит адиабатическое сжатие, следовательно, $pV^{\gamma}=\mathrm{const}$, или $TV^{\gamma-1}=\mathrm{const}$. Из уравнения адиабаты $T_2V_0^{\gamma-1}=T_0V_1^{\gamma-1}$ следует, что $T_2=T_0k^{\gamma-1}\approx 447,7$ К. Работа газа при адиабатическом сжатии

$$\Delta A_2 = -\Delta U_2 = -(\nu C_V T_2 - \nu C_V T_0) = -\frac{5}{2} p_0 k V_0 \left(\frac{T_2}{T_0} - 1\right) = -6.69 \cdot 10^4 \text{ Дж.}$$

Внутренняя энергия газа возросла. Далее происходит охлаждение газа за счёт теплообмена с окружающей средой. Количество теплоты, переданное внешним телам, равно $6.69 \cdot 10^4$ Дж.

Условие балансировки моста имеет вид:

$$\frac{r_1}{Z_3} = \frac{Z_2}{r_4},\tag{10}$$

где
$$Z_3 = \sqrt{r_3^2 + (L_3\omega)^2}, \qquad \frac{1}{Z_2} = \sqrt{\left(\frac{1}{r_2}\right)^2 + (C_2\omega)^2},$$
 (11)

 ω — круговая частота переменного тока. Подставляя (11) в (10), после арифметических преобразований получим:

$$\left(\frac{r_1 r_4}{r_2}\right)^2 - r_3^2 = \omega^2 \left(L_3^2 - (C_2 r_1 r_4)^2\right).$$
(12)

По условию равенство (12) справедливо при любой частоте ω . Следовательно, (12) эквивалентно системе уравнений:

$$\left(\frac{r_1r_4}{r_2}\right)^2 - r_3^2 = 0, \qquad L_3^2 - (C_2r_1r_4)^2 = 0.$$

Решая эту систему уравнений, получим:

$$r_2 = \frac{r_1 r_4}{r_3} = 200 \text{ кОм}, \qquad C_2 = \frac{L_3}{r_1 r_4} = 0,5 \text{ мк}\Phi.$$

Задача 5. У торца соленоида

Магнитное поле B_0 (при z=0) у торца длинного соленоида равно половине значения поля магнитной индукции внутри соленоида вдали от торцов

$$B_0 = \frac{1}{2}\mu_0 I_c n.$$

Пусть кольцо расположено на некотором расстоянии z от торца. Результирующий магнитный поток $\Phi=B_zS+LI=B_0(1-\alpha z)S+LI$, где I— сила тока в кольце. Сверхпроводящее кольцо сохраняет магнитный поток. Из начальных условий $\Phi=0$. Следовательно,

$$I(z) = -\frac{B_0(1 - \alpha z)S}{L}.$$

Знак «—» указывает на то, что ток в кольце протекает в направлении, противоположном току в витках соленоида. Следовательно, кольцо будет отталкиваться от соленоида. Сила Ампера, действующая на кольцо, направлена вверх:

$$F_z = F_A - mg = |I(z)|B_r 2\pi r_0 - mg = \frac{B_0^2 (1 - \alpha z)S^2}{L} 2\beta - mg.$$

Условие равновесия кольца: $F_z = 0$, то есть

$$B_0^2(1-\alpha z)=rac{mgL}{2eta S^2},$$
 или $\left(rac{1}{2}\mu_0I_cn
ight)^2(1-\alpha z)=rac{mgL}{2eta S^2}.$

1. При z=0 критическое значение индукции магнитного поля равно B_0 и, следовательно,

$$I_c = I_0 = \sqrt{\frac{mgL}{2\beta}} \frac{2}{S\mu_0 n} = 11,1 \text{ A}.$$

При таком токе кольцо начинает подниматься над опорой.

2. При $I_c > I_0$ кольцо висит над опорой (левитирует) на некотором расстоянии $z = z_0$ (без нарушения осевой симметрии). В этом случае

$$(1 - \alpha z_0) = \left(\frac{I_0}{I_c}\right)^2,$$

откуда

$$z_0 = \frac{1}{\alpha} \left(1 - \left(\frac{I_0}{I_c} \right)^2 \right).$$

При условии $I_c = 2I_0$ расстояние

$$z_0 = \frac{3}{4\alpha} = 2{,}08 \text{ cm}.$$

3. В этом случае $I_c=2I_0={
m const},$ а магнитная индукция $B_0=\mu_0I_0n.$ При малом смещении Δz кольца из положения равновесия

$$F_z = \frac{B_0^2 (1 - \alpha z_0) S^2}{L} 2\beta - \frac{B_0^2 \alpha \Delta z S^2}{L} 2\beta - mg = -\frac{2\alpha \beta B_0^2 S^2}{L} \Delta z.$$

Таким образом, на кольцо действует квазиупругая сила, коэффициент жёст-кости которой равен

$$k = \frac{2\alpha\beta B_0^2 S^2}{L} = \frac{2\alpha\beta(\mu_0 I_0 n)^2 S^2}{L} = 0.14 \text{ H/m}.$$

Частота колебаний кольца около положения равновесия равна

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = 6,0$$
 Гц.

Для заметок

Потенциал

В июне 2006 года выходит семнадцатый номер научно-популярного физико-математического журнала «Потенциал» для старшеклассников и учителей. Журнал ежемесячный.

Учредителями журнала являются заочная физико-техническая школа при МФТИ и издательство «Азбука».

Рубрики журнала:

Приглашаются все желающие принять участие в работе журнала. Стоимость годовой подписки: 720 руб.

Координаты для связи с редакцией

г. Москва, ул. Рабочая, 84 (095) 768 2548, 787 2494

azbuka@nm.ru www.potential.org.ru