

Functional Analysis I

Tutorial Assignment 5

Martin Genzel, Mones Raslan

Summer Term 2019

Exercise 1: Let E and F be normed spaces and $T \in L(E,F)$. Prove that $||T^*|| = ||T||$. Hint: According to Corollary 4.8: $||x|| = \sup\{|\ell(x)| : \ell \in E^*, ||\ell|| \le 1\}$.

Exercise 2: Let E and F be normed spaces and let $T \in L(E, F)$. Show that

$$\overline{\operatorname{ran} T} = F \implies \ker T^* = \{0\}.$$

Now put $G = \overline{\operatorname{ran} T}$ and define $S \in L(E, G)$ by Sx := Tx for $x \in E$. Prove that

$$\operatorname{ran} T^* = \operatorname{ran} S^*.$$

Exercise 3: The following statement is seemingly trivial, but in fact – without Hahn-Banach – it is not. It says: If $E \neq \{0\}$ and $F \neq \{0\}$ are normed spaces then $L(E, F) \neq \{0\}$. Prove it!

Exercise 4: Let E be a normed space. Show that E^* separates points, this means: for each pair $x, y \in E$, $x \neq y$, there exists $\ell \in E^*$ such that $\ell(x) \neq \ell(y)$.

The statements of the following exercises are needed to prove the strict separation theorem, which is shown in the big exercise.

Exercise 5: Let X be a vector space. For $A, B \subset X$ we define

$$A \pm B := \{a \pm b : a \in A, b \in B\}.$$

Show that if A and B are convex, then $A \pm B$ is also convex.

Exercise 6: Let E be a normed space, let $F \subset E$ be a linear subspace and let $f \in F^*$. Prove that

$$\mathcal{L} := \{ \ell \in E^* : \ell|_F = f \text{ and } \|\ell\| = \|f\| \}$$

is convex.

Exercise 7: Let (X,d) be a metric space and $A,B\subset X$ non-empty and disjoint. Prove the following fact: If A is compact and B is closed, then

$${\rm dist}(A,B) := \inf \{ d(a,b) \ : \ a \in A, \, b \in B \} > 0.$$