Podstawy układów logicznych - rozwiązania

Igor Nowicki

28 listopada 2019

1 Caveat

Zadania zostały ściągnięte ze zdjęć kolokwium z Podstaw Układów Logicznych na uczelni WIT. Rozwiazania zostały przygotowane na podstawie analizy slajdów Tadeusza Łuby oraz zdawkowych opisów w internecie. W związku z tym opisy mogą zawierać błędy. Używać na własną odpowiedzialność.

2 Zadania

2.1 Zadanie 1

Zadanie 1. Wyliczyć dopełnienie wyrażenia $ac+\overline{a}b$. Rozwiązanie podać w postaci sumy minimalnej liczby składników iloczynowych.

Dowód. Dopełnienie wyrażenia oznacza negację całości:

$$\overline{(ac+\overline{a}b)}$$
.

Negacja sumy jest równa iloczynowi negacji:

$$\overline{ac} \cdot \overline{\overline{ab}}$$
.

Ponownie, negacja iloczynu jest równa sumie negacji:

$$(\overline{a} + \overline{c})(a + \overline{b}).$$

Wymnażamy obydwa wyrażenia:

$$\overline{a}a + \overline{a}\overline{b} + a\overline{c} + \overline{b}\overline{c}$$

Iloczyn wartości i jej negacji jest zawsze zerowy:

$$\overline{a}\overline{b} + a\overline{c} + \overline{b}\overline{c}$$

Mamy trzy argumenty, z których środkowy jest kombinacją dwóch skrajnych. Skorzystamy z tożsamości $\overline{c} + c = 1$ i zmienimy ostatni argument na:

$$\overline{a}\overline{b} + a\overline{c} + (a + \overline{a})\overline{b}\overline{c} = \overline{a}\overline{b} + a\overline{c} + a\overline{b}\overline{c} + \overline{a}\overline{b}\overline{c}$$

Połączymy pierwszy wyraz z czwartym i drugi z trzecim:

$$\overline{a}\overline{b} + \overline{a}\overline{b}\overline{c} + a\overline{c} + a\overline{b}\overline{c} = \overline{a}\overline{b}(1+\overline{c}) + a(1+\overline{b})\overline{c}$$

Cokolwiek dodane do 1 zwraca 1, zatem $1 + \bar{b} = 1$.

$$\overline{a}\overline{b}(1+\overline{c}) + a(1+\overline{b})\overline{c} = \overline{a}\overline{b} + a\overline{c}$$

2.2 Zadanie 2

Zadanie 2. Zminimalizować funkcję metodą Karnaugh'a.

$$y = \sum (3, 4, 10, 15, (1, 6, 8, 9, 11, 12, 14))$$

Dowód. Ponieważ mamy maksymalne pole równe 15, oznacza to że możemy funkcję zapisać za pomocą czterech zmiennych ($2^4=16$, wartości od 0 do 15). Nazwiemy je a,b,c,d. Minimalizacja funkcji metodą Karnaugha polega na stworzeniu tabeli z kolumnami i wierszami numerowanymi kodem Graya:

ab cd	00	01	11	10
00				
01				
11				
10				

Następnie ponumerujemy pola wewnątrz tabeli, używając wartości binarnych zbudowanych z oznaczeń binarnych kolumn i wierszy:

ab cd	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

Następnie wypełniamy pola wartościami z równania funkcji. Ponieważ mamy symbol \sum , oznacza to mamy numery pól o wartości 1. W wewnętrznym nawiasie mamy natomiast numery pól niezdefiniowanych, z wartościami –. Reszta pól przyjmuje wartość 0.

cd ab	00	01	11	10
00	0	-	1	0
01	1	0	0	-
11	-	0	1	-
10	_	_	-	1

Minimalizacja metodą Karnaugh'a polega teraz na stworzeniu jak największych prostokątnych zbiorów zawierajacych jedynki i kreski. Zbiory muszą mieć liczbę pól równą wielokrotnościom dwójki (1,2,4,8,16, etc.) i odpowiadają implikantom prostym funkcji logicznej.

cd ab	00	01	11	10
00	0	-	1	0
01	1	0	0	-
11	-	0	1	-
10	-	-	-	1
		<u> </u>		

Mamy trzy prostokąty - czerwony, zielony, niebieski - z których dwa byłyby prostokątami gdyby spiąć pierwszą i czwartą kolumnę oraz pierwszy i czwarty wiersz razem. Dla czerwonego prostokąta element a ma niezmienną wartość 1 (element b się zmienia), element c ma również wartość 1, zmienna d się zmienia. Oznacza to że czerwony prostokąt odpowiada wyrażeniu ac.

Wykonując podobne operacje dla zielonego "prostokąta" widzimy, że element b ma stałą wartość 0 oraz element d ma wartość 1. Odpowiada to wyrażeniu $\bar{b}d$.

Niebieski prostokąt będzie odpowiadał wyrażeniu $b\overline{d}$.

Łącząc te trzy wyrażenia w sumę, uzyskujemy rozwiązanie:

$$f = ac + \overline{b}d + b\overline{d}.$$

2.3 Zadanie 3

Zadanie 3. Dany jest wektor k_i ze zbioru F oraz zbiór R. Znaleźć wszystkie implikanty proste dla k_i .

$$k_i = [1, 1, 0, 1, 1]$$

$$R = \begin{vmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ - & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{vmatrix}$$

Dowód. Będziemy tu korzystali z części algorytmu ekspansji metody Espresso. Algorytm polega na podzieleniu tabeli funkcji logicznej na części odpowiadające f=1 (nazwaną dla zmyłki F) oraz f=0 (nazwaną R). Z części F bierzemy kolejne wiersze k_i i używamy ich do negowania tych kolumn macierzy R które odpowiadają wartosciom 1 z wiersza k_i . W ten sposób tworzymy macierz $B(k_i,R)$. Dla uproszczenia wszelkie – zastąpimy pod koniec wartościami 0:

$$B(k_i, R) = \begin{vmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{vmatrix}$$

Zanegowałem tutaj kolumny 1,2,4 i 5, ponieważ w wektorze k_i na tych polach miałem wartości 1. Teraz bierzemy dla każdego wiersza z macierzy B numery kolumn na których mamy wartość 1. Będą one odpowiadać wartościom x_1 do x_5 które zsumowane dadzą nam części iloczynu.

$$B(k_i, R) = \begin{vmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{vmatrix} \qquad \begin{aligned} x_2 + x_5 \\ x_1 + x_2 + x_5 \\ x_4 + x_5 \\ x_3 + x_4 \\ x_1 + x_2 + x_3 + x_4 \end{aligned}$$

Aby uprościć obliczenia, na samym początku skreślamy wiersze będące rozszerzeniem innego wiersza - w tym wypadku drugi wiersz jest pierwszym wierszem z dodanym elementem x_1 , natomiast wiersz piąty jest tożsamy z wierszem czwartym (+ $x_1 + x_2$). Pozostałe sumy z wierszy wymnażamy:

$$(x_2 + x_5)(x_4 + x_5)(x_3 + x_4) = (x_2x_4 + x_2x_5 + x_4x_5 + x_5)(x_3 + x_4),$$

$$= (x_2x_4 + x_5)(x_3 + x_4),$$

$$= x_2x_3x_4 + x_2x_4 + x_3x_5 + x_4x_5,$$

$$= x_2x_4 + x_3x_5 + x_4x_5.$$

Zatem implikanty proste to x_2x_4 , x_3x_5 oraz x_4x_5 .

2.4 Zadanie 4

Zadanie 4. Dla funkcji podanej w tablicy obliczyć wszystkie minimalne zbiory argumentów z najmniejszą liczbą argumentów. Zmienne niezbędne tej funkcji to x_5, x_{10} .

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	у
1	1	1	1	0	0	0	1	1	1	0	0
2	1	0	0	0	1	0	1	0	0	0	0
3	1	0	1	1	1	1	1	0	1	0	1
4	1	0	0	0	0	0	1	0	0	0	1
5	0	1	0	0	0	1	0	1	1	1	1
6	1	1	0	0	0	0	0	1	1	0	1
7	1	0	0	0	1	0	1	0	0	1	1

Dowód. Zadanie wymaga od nas użycia algorytmu redukcji argumentów. Szczęśliwie mamy podane zmienne niezbędne dla tej funkcji logicznej. Tworzymy wektory P_5 , P_{10} z kolumn x_5 , x_{10} .

$$P_5 = [0, 1, 1, 0, 0, 0, 1],$$

 $P_{10} = [0, 0, 0, 0, 1, 0, 1].$

Dodatkowo tworzymy wektor P_f na podstawie kolumny y, gdzie mamy rozdzielone pola 0 oraz 1:

$$P_f = (1, 2)(3, 4, 5, 6, 7).$$

Tworzymy iloczyn $P_N = P_5 \circ P_{10}$, rozdzielający na cztery zbiory numery kolumn w których wartości odpowiadają wartościom z kolum 00, 01, 10, 11.

$$P_N = (1,4,6)|(2,3)|(5)|(7)$$

(pierwszy zbiór to kolumny gdzie wartości były równe 00, drugi: 10, trzeci: 01, czwarty: 11). Rozdzielamy każdy ze zbiorów w P_N według P_F - na części należące do pierwszego i drugiego zbioru P_f :

$$P_N \circ P_f = (1)(4,6) \mid (2)(3) \mid (5) \mid (7)$$

Dla każdej pary zbiorów w jednym polu tworzymy kombinacje: 1|4, 1|6, 2|3. Dla tych wartości bierzemy pary wierszy o tych numerach z początkowej tabeli i podajemy numery kolumn na których są różne wartości elementów:

$$1|4 = x_2 + x_3 + x_8 + x_9$$
$$1|6 = x_3 + x_7$$
$$2|3 = x_3 + x_4 + x_6 + x_9$$

Sumy te wymnażamy ze sobą:

$$(x_2 + x_3 + x_8 + x_9)(x_3 + x_7)(x_3 + x_4 + x_6 + x_9) =$$

$$(x_2x_3 + x_3 + x_3x_8 + x_3x_9 + x_2x_7 + x_3x_7 + x_7x_8 + x_7x_9)(x_3 + x_4 + x_6 + x_9) =$$

$$(x_3 + x_2x_7 + x_3x_7 + x_7x_8 + x_7x_9)(x_3 + x_4 + x_6 + x_9) =$$

$$x_3 + x_3x_4 + x_3x_6 + x_3x_9 + x_2x_3x_7 + x_2x_4x_7 + x_2x_4x_7 + x_2x_6x_7 + x_2x_7x_9 + x_3x_7 + x_3x_4x_7 + x_3x_6x_7 + x_3x_7x_9 + x_3x_7x_8 + x_4x_7x_8x_9 + x_6x_7x_8 + x_7x_8x_9 + x_7x_9 + x$$

Ten koszmarek szczęśliwie można skrócić, korzystając z tożsamości a+ab=a(1+b)=a oraz a+a=a:

$$x_3 + x_7x_9 + x_2x_4x_7 + x_2x_6x_7 + x_4x_7x_8 + x_6x_7x_8$$

Bierzemy wyrażenia o najmniejszej liczbie argumentów- w tym wypadku będzie to zmienna x_3 . Mogliśmy do tego dojść również analizując wcześniejsze równania i zauważając że x_3 jest jedyną zmienną która pojawia się we wszystkich trzech wierszach. Ostateczny minimalny zbiór argumentów (po dodaniu zmiennych niezbędnych x_5, x_{10} to $\{x_3, x_5, x_{10}\}$.