Mengen

Def (Mengenoperationen) Seien M und N Mengen. Wir definieren

$$M \cup N := \{x \colon x \in M \text{ oder } x \in N\}$$
 Vereinigungsmenge $M \cap N := \{x \colon x \in M \text{ und } x \in N\}$ Schnittmenge $M \setminus N := \{x \colon x \in M \text{ und } x \notin N\}$ Differenzmenge $M \times N := \{(x,y) \colon x \in M \text{ und } y \in N\}$ Produktmenge $\mathcal{P}(M) := \{N \colon N \subset M\}$ Potenzmenge

Def Sei I eine Menge und für jedes $i \in I$ eine Menge M_i gegeben. Dann definieren wir die *allgemeine Vereinigung* durch

$$\bigcup_{i \in I} M_i := \{x \colon x \in M_i \text{ für mindestens ein } i \in I\}$$

und den allgemeinen Durchschnitt durch

$$\bigcap_{i \in I} M_i := \{x \colon x \in M_i \text{ für alle } i \in I\}$$

Def Zwei Mengen M und N heißen disjunkt, falls $M \cap N = \emptyset$. Sind M und N disjunkt, so schreibt man statt $M \cup N$ auch $M \dot{\cup} N$ und nennt dies disjunkte Vereinigung.