INFORMATION RETRIEVAL (CS F469) ASSIGNMENT 3

Implementation of Recommender System Algorithms

- -Tarun Raheja
- -2015A7PS0106H

This assignment attempts to compare various techniques used in implementing Recommender Systems on the basis of their errors using Root Mean Square Error, Precision on top K and Spearman Rank Correlation.

DATASET:

The MovieLens dataset which has 100k reviews is used.

MAJOR DATA STRUCTURES USED

- The code is for the most part written in the main recom.py file. It is clearly partitioned into three sections for CF, SVD and CUR for ease of readablilty.
- The main data structures used are numpy and sparse matrices.

PACKAGES USED

• Numpy, Scipy, SciKitlearn and pandas were used.

BRIEF NOTES ON CODE EXECUTION:

- The main python file supplied is to be executed.
- It sequentially executes CF, SVD and CUR.
- After each execution, it computes the RMSE, Top K error and Spearman Rank Correlation values and displays them.

DOCUMENTATION

The code is written without classes, and most of the functionality is implemented within functions. For more clarification all the functions are listed below:

• For CF:

- o Predict(): This function returns a matrix of predicted values based on user input and existing ratings. It is central to the calculations of CF.
- o Rmse(): It calculates the Root Mean Square Error.
- o Sper(): It calculates the Spearman Correlation Coefficient.

• For SVD:

- Svd(): This fairly large method takes the training matrix as input and decomposes it.
- o Svd_90(): This method takes training matrix as input and decomposes it following the correct rules which 90%decomp requires.

• For CUR:

- Cur(): This is a function that helps calculate Cur decomposition.
- Cur_2: This function helps calculate Cur decomposition with no replacement.

TABLE

TECHNIQUE	RMSE	SPEARMAN	TOP K	TIME(s)
UU CF	3.1639	0.9999	3.3580	0.1693
UU-BF CF	3.3993	0.9999	3.3723	0.0946
II CF	2.9736	0.9999	2.9826	0.1708
II-BF CF	2.9521	0.9999	2.9703	0.2702
SVD	3.9563e-14	1.0000	2.3160e-14	2.2287
SVD(90)	1.4831	0.9999	1.7115	0.2702
CUR	144.1115	0.7393	154.8609	12.4240
CUR(90)	1149.701	0.9873	1214.7182	12.4311

