都バスのリアルタイム運行データを用いた渋滞検知

青柳 宏紀[†] 岡田 一洸[‡] 山名 早人[§]

E-mail: † ‡ § {aoyagih, k-okada, yamana}@yama.info.waseda.ac.jp

あらまし 交通渋滞は、われわれの日常生活に悪影響をもたらしており、車が渋滞を回避し走行できるよう、渋滞検知が必要とされている。従来の渋滞検知手法は、車の走行位置情報や道路上のセンサーに依存しており、実現コストが大きい。本稿では、公共交通機関からオープンデータとして公開されるデータをもとに渋滞検知する手法に取り組む。オープンデータからの渋滞検知が可能となれば実現コストを下げることができる。具体的には、バスの運行データと機械学習を組み合わせた渋滞の自動検知手法を提案する。提案手法では、バスの各停留所の発車時刻データを特徴量とし渋滞検知を行う。評価実験では、都バスの運行データを用い、明治通り(渋谷~池袋間)における渋滞検知を行った。全停留所に対して学習器を一つ用意した場合、F1 スコアは 0.306 となり、停留所区間毎に個別の学習器で学習をした場合、F1 スコアは平均 0.399、特定の区間においては F1 スコア 0.675 を得た。また、単一バスの運行データのみで渋滞検知する場合を除くと、特定の区間において F1 スコアを 0.742 へ向上することができた。

キーワード 渋滞,オープンデータ,バス,公共交通機関,機械学習

1. はじめに

交通渋滞は、われわれの日常生活に対し悪影響をもたらしている。国土交通省によると、日本国内における渋滞による経済的損失は年間 12 兆円と試算され、1人あたり年間 30 時間の時間損失がある¹. 他にも、渋滞による悪影響として、渋滞中の車両から排出される排気ガスによる環境被害や、救急車や消防車のような緊急車両の遅延がある。そこで、運転手が渋滞を回避できるように、渋滞をリアルタイムで検知することが求められる。しかし、従来の渋滞検知の方法は、車の走行位置情報や道路上のセンサーに依存しており、実現コストが大きい。

一方,近年では、公共交通機関に関するオープンデータの利活用が進んでおり、発着時刻やロケーション情報といった動的データが公開されている.

そこで、本研究では、従来の渋滞検知の方法にかかるコストの削減を目的として、バスの運行データと機械学習を組み合わせた自動渋滞検知の手法を考える、バスは、渋滞が深刻な都市部に多く走っている上、規則的なダイヤで運行しているため、渋滞を検知しやすい。しかし、乗客の乗降やダイヤ調整などの停車により、バスの動きと実際の交通の流れには差異が生じ、渋滞検知における精度の低さが課題となっている[1].本稿では、オープンデータである都バスの運行データを用い、バスが定期的に走行する渋谷から池袋までの明治通りの区間を対象に、一定の時間間隔毎に「渋滞」

「非渋滞」の2値分類を行い, 渋滞検知の精度向上を 目指す.

従来の研究としては、交通状況の調査を目的として 走行する車(プローブ車両)を用いた交通予測に関す る研究があり、交通速度の推定に関する研究[2][3][4] と渋滞検知に関する研究[5][6][7]に分類できる.これ らの研究では、主に車両の GPS 軌道データを用いてい る.これらの従来研究に対して、本稿ではオープンデ ータとして公開されているバスの停留所発車時刻から の渋滞検知を試みる.筆者が調べた限り、発車時刻の データを利用した渋滞検知の研究は存在せず、初めて の試みとなる.

以下,2節で関連研究を紹介し,3節で提案手法について説明し,4節で評価実験を行い,5節でまとめる.

2. 関連研究

本節では、関連研究について述べる.

2.1 プローブ車両を用いた交通速度推定

Samal ら[2]は、2017年、バスのリアルタイム GPS 軌道データを利用した交通速度を推定する手法を提案した.一般的にバスの運行が少ない時間帯は推定精度が低くなるため、Samal らは、従来注目されていなかったバスの運転手情報や気象データなどの外部要因に着目し、k-means 法を用いた類似の運行データのクラスタリングを行い、予測精度を改善した. 交通速度のRMSE(平均二乗偏差)は、クラスタリングを適用しない場合は 4.0~4.5 マイル/時であったのに対し、適用後は、

¹ https://www.mlit.go.jp/road/ir/ir-perform/h18/07.pdf

2.9~3.3 マイル/時となることを示した.

Kyaw 6[3]は、2018年、バスの GPS 軌道データに加え、道路上にあるレストラン、学校、病院などのPOI(Place of Interest)の数を特徴量として追加し、交通速度を推定する手法を提案した。ただし、論文内で、交通速度推定の精度の定量的な評価はされていない。

Guら[4]は、2020年、バスの軌道データと交通 IC カードから得られるデータを利用した交通速度を推定する手法を提案した。Guらは、(i)バスの停留所での停車時間、(ii)バスの平均速度、(iii)乗客がバス停間を移動するのに経過した時間の3つを入力としたニューラルネットワークを構築し、交通速度を推定した。本手法により推定した交通速度と、実際の交通速度に近いタクシーの平均速度を比較した結果、相関係数0.94の強い相関が得られたことを示した。

2.2 プローブ車両を用いた渋滞検知

Xuら[5]は、2012年、複数台のバスの平均移動時間を用いた渋滞検知の手法を提案した. Xuらは、渋滞検知の対象となる道路区間に対して「T分以内に通過した全てのバスの平均移動時間(T-window average)」と「道路区間を最も直近に通過したN台のバスの平均移動時間(N-window average)」を定義し、T-window averageとN-window aver

Wang ら[6]は,2013 年,機械学習を用い,1 台のプローブ車両から渋滞を検知する手法を提案した.Wang らは,プローブ車両の平均速度を位置毎に離散化し,特徴ベクトルとして利用した.ランダムフォレスト,AdaBoost,サポートベクターマシンを用い,それぞれ91.59%,89.43%,87.86%のAccuracyを達成し,閾値で判別する従来手法より優れていることを示した.

Carli ら[7]は、2015年、バスの GPS 軌跡データを用いた交通渋滞の自動検知手法を提案した。Carli らは、バスの平均速度、バスの加速度の分散の2乗、バスが関値以上の速度で走行している時間の割合などの指標に注目し、これらの指標の異常を検知することにより、信号機故障による交通渋滞を検知できることを示した。

2.3 関連研究のまとめ

本節では、プローブ車両データを用いた交通予測に関する研究を紹介した.これらの関連研究では、車両の GPS 軌道データを交通予測に用いている.しかし、一般に公開されるオープンデータには、リアルタイムの GPS 軌道データは存在せず、オープンデータを用いた渋滞検知を行うためには、より簡便なリアルタイムデータを用いた手法の研究が必要となる.

3. 提案手法

3.1 概要

本節では、バスの各停留所の発車時刻のデータを用いた渋滞検知の手法を提案する.通常の渋滞検知では、渋滞の定義に基づき、渋滞検知対象区間を走行する車両が「時速 10km 以下で継続的に走行している状態」であるかどうかで渋滞を判断する. 提案手法においのも、連続する2つの停留所の発車時刻の差をがススの移動時間をよめることができる. しかし、個々のバスに教の速度を求めることができる. しかし、個々のバスの平均速度に差があり、同じ道路を走行してもバスの平均速度に差があり、単純にバスの速度を計算するだけでは、精度が低くなる[1]. そこで、速度だけでなく、平停留所でのデータも検知に用いることで、分類精度の向上を目指す.

3.2 特徵量抽出

提案手法の説明で用いる記号を表 3.1 と図 3.1 に示す.

表 3.1 特徴量抽出に用いる記号の定義表

記号	定義
b_i	i番目の停留所
s_i	i 番目の停留所区間($b_i \sim b_{(i+1)}$ 間)
l_i	s_i の距離
$N_{t,i}$	時間帯 t に s_i を走行するバスの台数
$B_{t,i,j}$	時間帯 t に s_i を走行する j 台目のバス
$td_{t,i,j}$	時間帯 t に b_i を $B_{t,i,j}$ が出発した時刻

図 3.1 特徴量抽出に用いる記号の図解

渋滞検知は,一定時間間隔で分割した時間帯毎に,2 つの隣接する停留所区間単位で行うとする.今,時間帯の総数をTとし,時間帯 $t(1 \le t \le T)$ における,2 つの隣接する停留所 $b_i, b_{(i+1)}$ 間の渋滞検知を考える.停留所 $b_i, b_{(i+1)}$ 間を停留所区間 s_i と定義する.時間帯tにおいて,停留所区間 s_i を走行するバスの総数を $N_{t,i}$ 台としたとき,そのうちのj番目のバス $B_{t,i,j}$ (ただし, $1 \le j \le N_{t,i}$)が停留所 b_i を発車した時刻を $td_{t,i,j}$ とおく.このとき,バス $B_{t,i,j}$ が時間帯tに停留所区間 s_i を走行するのに要した時間を $\Delta td_{t,i,j}$ とおくと, $\Delta td_{t,i,j} = td_{t,(i+1),j} - td_{t,i,j}$ である.ここで, $N_{t,i}$ 台のバス

が時間帯tに停留所区間 s_i を走行するのに要した平均時間を $\Delta td_{t,i}$ とおくと、 $\Delta td_{t,i}$ は式(1)で表される.

$$\Delta t d_{t,i} = \frac{\sum_{j=1}^{N_{t,i}} \Delta t d_{t,i,j}}{N_{t,i}}$$
 (1)

ここで、停留所区間 s_i の距離を l_i とおく、 $N_{t,i}$ 台のバスが時間帯 t に停留所区間 s_i を走行するのに要した平均速度を $v_{t,i}$ とおくと、 $v_{t,i}$ は式(2)で表される.

$$v_{t,i} = \frac{\Delta t d_{t,i}}{l_i} \tag{2}$$

また、 $\Delta td_{t,i}$ の Z スコアを $z_{t,i}$ とすると、 $z_{t,i}$ は式(3)~(5)で計算される. まず、式(3)で s_i における $\Delta td_{t,i}$ の平均値 μ_i を計算する. 次に、式(4)で s_i における $\Delta td_{t,i}$ の標準偏差 σ_i を計算する. 最後に、式(5)で μ_i , σ_i を用いて $z_{t,i}$ を計算する.

$$\mu_i = \frac{\sum_{t=1}^{T} \Delta t d_{t,i}}{T} \tag{3}$$

$$\sigma_i = \sqrt{\frac{\sum_{t=1}^{T} \left(\Delta t d_{t,i} - \mu_i\right)^2}{T}}$$
 (4)

$$z_{t,i} = \frac{\Delta t d_{t,i} - \mu_i}{\sigma_i} \tag{5}$$

最後に、 $\Delta t d_{t,i} - \mu_i$ を l_i で正規化した値を $d_{t,i}$ とする. $d_{t,i}$ は式(6)で計算される.

$$d_{t,i} = \frac{\Delta t d_{t,i} - \mu_i}{l_i} \tag{6}$$

本手法で用いる特徴量を表 3.2 に示す.

表 3.2 本手法で用いる特徴量

① $v_{t,i}$, $z_{t,i}$, $d_{t,i}$ そのもの	$v_{t,i}$	$z_{t,i}$	$d_{t,i}$
②過去 2 つの時間区	$v_{(t-1),i}$,	$Z_{(t-1),i}$,	$d_{(t-1),i}$,
分での $v_{t,i}$, $z_{t,i}$, $d_{t,i}$	$v_{(t-2),i}$	$Z_{(t-2),i}$	$d_{(t-2),i}$
③前,前々停留所区間	$v_{t,(i-1)}$,	$Z_{t,(i-1)}$,	$d_{t,(i-1)}$,
における $v_{t,i}, z_{t,i}, d_{t,i}$	$v_{t,(i-2)}$	$Z_{t,(i-2)}$	$d_{t,(i-2)}$

まず、上記で計算した $v_{t,i}$, $z_{t,i}$, $d_{t,i}$ の 3 つの変数を特 徴量として用いる. $v_{t,i}$ は、バスの速度である. 速度は、 渋滞の定義にも用いられていることから、 渋滞検知に 有用であると考えられる. また、 $z_{t,i}$, $d_{t,i}$ は、 どちらも 当該区間の移動に平時と比べて時間がかかるかを表しており、 $z_{t,i}$, $d_{t,i}$ の値が大きければ、 渋滞の可能性が高いと考えられる.

また、渋滞は、時間的または空間的に連続して発生する可能性が高いと考えられる。そこで、 $v_{t,i}, z_{t,i}, d_{t,i}$ そのもの以外に、表 3.2 の②、③に示す変数も特徴量として用いることで、精度の向上を目指す.

3.3 分類手法

収集したバスの発車時刻データから 3.2 で示した 15 個の特徴量を抽出し,ランダムフォレスト, AdaBoost, XGBoost, サポートベクターマシン(SVM)を用い, 各時

間帯のバス停留所区間において「渋滞」「非渋滞」の2値分類を行う.ここで、「渋滞」とは、車が時速10km以下で継続的に走行している状態と定義する.学習器は、全ての停留所区間に対して1つだけおく方法と、各停留所区間に1つずつおく方法の2つの方法を考える.学習器は何れもPythonのライブラリであるscikitlearnを用いて実装を行う.

4. 評価実験

本節では、「全ての停留所区間に対し 1 つの分類器で渋滞検知を行った場合」と「各停留所区間に対し個別の分類器で渋滞検知を行った場合」の実験結果を示す。また、最後にデータの前処理と限定の有効性を示す。

4.1 渋滞検知の対象区間

本実験で渋滞検知を行う対象区間を図 4.1 に示す.

図 4.1 渋滞検知対象区間 (OpenStreetMap より)

図 4.1 で示した区間には、東京都交通局が運行する都営バス池 86 系統が、1 時間に 3~5 本の頻度で走行している. 本実験の渋滞検知の対象区間は、池 86 系統の停留所のうち、明治通り沿いの「池袋駅東口」~「渋谷駅東口」間とし、それ以外の明治通り沿いに無い停留所区間は渋滞検知の対象から除外する.

また、都営バスには平日、土曜、休日の3種類の ダイヤが存在するが、本実験では平日ダイヤの運行デ ータのみを使用する.

4.2 データセット

4.2.1 バスの運行データの取得方法

バスの運行データは、公共交通オープンデータ協議会が主催する「東京公共交通オープンデータチャレンジ」²の API から取得した.本 API は、指定の URL にアクセスすると、公共交通機関に関する JSON 形式の

² https://tokyochallenge.odpt.org/index.html

データを返す. 表 4.1 に,本研究でアクセスした URL と,返されるデータの内容を示す.

表 4.1 アクセスした URL とデータの内容

URL	データの内容
https://api-tokyochallenge.odpt.org/	都バス池 86 系統
api/v4/odpt:Bus?odpt:busroute=odp	の各停留所の発
t.Busroute:Toei.Ike86&acl:consumer	車時刻データ
Key={MY CONSUMER KEY}	中州 刻 /

※表中の URL の $\{MY_CONSUMER_KEY\}$ には、本 API のアクセストークンが入る. ただし、API の利用ガイドラインに従い非開示としている.

本実験では、表 4.1 の URL に定期的にリクエストを行い、継続的にデータを取得した. なお、API は直近のバス通過時間のみを返すため、30 秒毎に API にアクセスを行い、バス通過を見過ごすことがないようにした. 取得したデータは整形したのち、CSV ファイルに書き込み保存した. 表 4.2 に保存された CSV ファイルの一部を示す.

表 4.2 バスの運行データの CSV ファイル(一部)

		, , . == , , .	(FI-)
Date	BusNu	PassPole	PassTime
	mber		
2021-11-07	D360	Omotesando.297.4	09:09:57
2021-11-07	D304	SodaiRiko.1051.1	09:09:15
2021-11-07	D360	JingumaeItchome.75	09:10:48
		8.1	
2021-11-07	D304	GakushuinJoshiDaig	09:10:33
		aku.856.3	
2021-11-07	D304	TakadanobabaNicho	09:11:28
		me.857.1	

表 $4.2\,$ の「Date」は日付,「BusNumber」はバスの車両番号,「PassPole」は停留所名,「PassTime」は停留所の発車時刻をそれぞれ表す.例えば,表 $4.2\,$ の最初のレコードでは,車両番号 $D360\,$ のバスが,「表参道」の停留所を $2021\,$ 年 $11\,$ 月 $7\,$ 日午前 $9\,$ 時 $9\,$ 分 $57\,$ 秒に発車したことを示す.

次に、表 4.2 のデータを用い、2 つのバス停留所間の 移動時間をまとめたデータベースを作成した(表 4.3).

表 4.3 2 バス停間の移動時間のデータベース(一部)

	.5 2	> 11 H1 45	15 30 m 1 H1 v2	, ,	/ . (пр
Date	BusN	From	To	From	To	Dif
	umber	Pole	Pole	Time	Time	Sec
2021-	D360	Omotes	Jinguma	09:09	09:10	51
11-07		ando.2	eItchom	:57	:48	
		97.4	e.758.1			
2021-	D304	SodaiR	Gakushu	09:09	09:10	78
11-07		iko.105	inJoshiD	:15	:33	
		1.1	aigaku.8			
			56.3			
2021-	D304	Gakush	Takadan	09:10	09:11	55
11-07		uinJosh	obabaNi	:33	:28	
		iDaiga	chome.8			
		ku.856.	57.1			
		3				

表 4.3 の「FromPole」は 1 つ目の停留所の名前を表し、「ToPole」は 2 つ目の停留所の名前を表す。また、

「FromTime」は 1 つ目の停留所を出発した時刻,「ToTime」は 2 つ目の停留所を出発した時刻をそれぞれ表す.「DifSec」の単位は秒であり,「FromTime」と「ToTime」の時刻の差を表す.

4.2.2 渋滞ラベル(正解データ)の取得方法

渋滞ラベルの正解データは、NAVITIME³の Web ページからスクレイピングすることにより取得した. NAVITIMEでは、駅やバス停、地名などのスポットの周辺の渋滞情報を表示するサービスを提供しており、本研究では、池 86 系統のすべてのバス停付近の渋滞情報を自動取得し、CSVファイルに保存した(表 4.4).

表 4.4 スクレイピングした渋滞情報(一部)

					. ,
Date	Tim	From	From	ToLat	ToLon
	e	Lat	Lon		
2021-	09:0	35.656	139.704	35.658	139.702
11-07	0:00	833	624	99	670
2021-	09:0	35.658	139.702	35.657	139.704
11-07	0:00	481	886	101	283

表 4.4 の「Date」と「Time」は渋滞が観測された日 付と時刻をそれぞれ表す.「FromLat」と「FromLon」は、 渋滞の始点の緯度と経度をそれぞれ表し、「ToLat」と「ToLon」は、渋滞の終点の緯度と経度をそれぞれ表す. 表 4.4 のデータと、池 86 系統のバス停の緯度・経度を照らし合わせることで、渋滞が発生した停留所区間と時間帯を把握することができる.

4.2.3 データセットの作成

渋滞検知に必要なデータセット(表 4.5)の作成方法 を以下に示す.

表 4.5 作成したデータセット(一部)

				*		
Date	From	То	From	То	Dif	Is
	Time	Time	Pole	Pole	Sec	Jam
2021	09:00	09:19	Omotes	Jinguma	51	0
-11-	:00	:59	ando.2	eItchome		
07			97.4	.758.1		
2021	09:00	09:19	SodaiR	Gakushu	78	1
-11-	:00	:59	iko.105	inJoshiD		
07			1.1	aigaku.8		
				56.3		

本実験では、時間区間を20分毎に分割し、各停留所区間で「渋滞」「非渋滞」の2値分類を行う。表4.5の「Date」、「FromTime」、「ToTime」は20分毎の時間区間を、「FromPole」「ToPole」は停留所区間を示す。「DifSec」は、バスが停留所間を走行するのに経過した秒数であり、4.2.1のデータから取得される。同一時間区間内に複数の「DifSec」のデータが存在する場合は、複数の「DifSec」のデータの平均値が選ばれる。「IsJam」は、渋滞が発生したかどうかを示す正解ラベルを表しており、4.2.2のデータから取得される。「IsJam」の値が「0」の場合、渋滞が発生したことを表し、「1」の場合、渋滞が発生したことを表す。

データの収集は、2021年11月7日~2021年12月

³ https://www.navitime.co.jp/

10日の約1ヶ月間にわたって行われた.表 4.6 に,最終的に得られたデータの個数を,停留所区間別の渋滞・非渋滞データの内訳と共に示す.

表 4.6 収集したデータ数

	4.6 収集したデ	ータ数		
始点	終点	渋	非 渋	計
		滞	滞	
渋谷駅東口	宮下公園	3	810	813
宮下公園	神宮前六丁目	16	772	788
神宮前六丁目	表参道	8	867	875
表参道	神宮前一丁目	0	910	910
神宮前一丁目	千駄ヶ谷小学校	0	980	980
	前			
千駄ヶ谷小学校	北参道	2	986	988
前				
北参道	千駄ヶ谷五丁目	0	967	967
千駄ヶ谷五丁目		143	792	935
新宿四丁目	新宿伊勢丹前	359		927
	日清食品前	12	897	909
日清食品前	東新宿駅前	126	807	933
東新宿駅前	大久保通り	35	897	932
大久保通り	新宿コズミック	29	844	873
八八休旭り		23	044	0/3
が空っずる。カ	センター前	50	012	863
新宿コズミック	早大理工前	30	813	803
センター前	››› 되지 II→ / → 1 . ›››	1.40	754	0.0.4
早大理工前	学習院女子大学	140	754	894
W 77 PL (1 W	前		- 00	000
学習院女子大学	高田馬場二丁目	124	799	923
前				
高田馬場二丁目	学習院下	0	936	936
学習院下 千登世橋	千登世橋	0	912	912
	東京音楽大学前	9	881	890
	南池袋三丁目	16	184	200
南池袋三丁目	池袋駅東口	19	198	217
池袋駅東口	南池袋三丁目	5	474	479
南池袋三丁目	東京音楽大学前	7	486	493
東京音楽大学前	千登世橋	3	899	902
千登世橋	学習院下	2	945	947
学習院下	高田馬場二丁目	3	958	961
高田馬場二丁目	学習院女子大学	14	870	884
	前			
学習院女子大学	早大理工前	22	799	821
前				
早大理工前	新宿コズミック	28	832	860
1 / 1 = 1.1	センター前			
新宿コズミック	大久保通り	34	892	926
センター前)			
大久保通り	東新宿駅前	4	946	950
東新宿駅前	日清食品前	12	963	975
日清食品前	新宿伊勢丹前	4	977	981
新宿伊勢丹前	新宿四丁目	109	792	901
新宿四丁目	千駄ヶ谷五丁目	9	925	934
	北参道	0	943	943
千駄ヶ谷五丁目 北参道		1		
	千駄ヶ谷五丁目		961	962
千駄ヶ谷五丁目	神宮前一丁目	12	944	956
神宮前一丁目	表参道	178	767	945
表参道	神宮前六丁目	5	951	956
神宮前六丁目	神南一丁目	11	936	947
神南一丁目	渋谷駅西口	46	913	959
渋谷駅西口	渋谷駅東口	213	747	960
全区間合計		1,81	35,49	37,3
		3	4	07

4.3 実験 1: 全ての停留所区間での分類

実験1では、全ての停留所区間に対し1つの分類 器を用いた分類を行う.用いるデータ数は、表 4.6 の 全区間合計で示すように、37,307 個(渋滞 1,813 個, 非渋滞 35,494 個)である. また、学習データとテスト データの分け方は、時系列順で前半 80%を学習デー タ、後半 20%をテストデータとする.

4.3.1 ベースライン手法

ベースライン手法として、渋滞の定義で用いられる速度の閾値のみで渋滞検知を行う.速度の閾値は、速度を 0.1[km/h]ごとに変化させ、学習データで渋滞検知をした場合に F1 スコアが最も高くなる値にチューニングする.表 4.7 に本実験の結果の混同行列を、表 4.8 に accuracy、precision、recall、F1 スコアと、その際の速度の閾値を示す.

表 4.7 実験 1 の混同行列 (ベースライン手法)

			予測		
			Positive	Neg	ative
	実際	Positive	TP: 147	FN:	226
		Negative	FP: 392	TN:	6,697
	表 4.8	実験1の結	果(ベース	ライン	手法)
速	度の閾	accuracy	precision	recall	F1 スコ
値[km/h]				ア
5.3		0.917	0.273	0.394	0.322
	422 #	安工法		•	<u> </u>

4.3.2 提案手法

提案手法では、全ての特徴量を使用して学習した状態を基準とし、ある 1 つの特徴量を除いて学習した状態の F1 スコアと比べることで、各特徴量の重要度を算出し、F1 スコアが最も高くなるように特徴量の選択を行う、特徴量選択後の accuracy、precision、recall、F1 スコアを表 4.9 に、特徴量の順位を表 4.10 に示す.

表 4.9 実験 1 の結果 (提案手法)

アルゴリズ	accuracy	precision	recall	F1 ス
4				コア
ランダムフ	0.953	0.623	0.177	0.276
ォレスト				
AdaBoost	0.953	0.606	0.177	0.274
XGBoost	0.953	0.588	0.206	0.306
SVM	0.954	0.716	0.129	0.218

表 4.10 実験 1 の特徴量順位 (提案手法)

10		グ付は単川	貝位 (1)定条-	ナ仏)
順位	ランダムフ	AdaBo	XGBoost	SVM
	ォレスト	ost		
1	$v_{(t-2),i}$	$d_{t,i}$	$d_{(t-2),i}$	$v_{t,(i-2)}$
2	$v_{t,(i-1)}$	$Z_{t,(i-1)}$	$v_{t,(i-2)}$	$Z_{t,(i-2)}$
3	$Z_{t,(i-1)}$	$v_{(t-1),i}$	$v_{(t-2),i}$	$Z_{t,(i-1)}$
4	$Z_{t,(i-2)}$	$d_{(t-1),i}$	$z_{t,i}$	$d_{t,(i-2)}$
5	$v_{t,(i-2)}$	$d_{(t-2),i}$	$Z_{t,(i-1)}$	$d_{t,(i-1)}$
6	$v_{(t-1),i}$	$Z_{t,(i-2)}$	$d_{(t-1),i}$	$d_{(t-2),i}$
7	$d_{(t-1),i}$	$v_{t,i}$	$d_{t,(i-1)}$	$d_{(t-1),i}$
8	$Z_{(t-1),i}$	$v_{t,(i-2)}$	$v_{(t-1),i}$	$d_{t,i}$
9	$z_{t,i}$	$v_{(t-2),i}$	$Z_{t,(i-2)}$	$v_{t,(i-1)}$
10	$v_{t,i}$	$Z_{(t-1),i}$	$d_{t,(i-2)}$	$v_{(t-2),i}$
11	$Z_{(t-2),i}$	$d_{t,(i-2)}$	$Z_{(t-2),i}$	$v_{(t-1),i}$
12	$d_{t,(i-2)}$	$v_{t,(i-1)}$	$Z_{(t-1),i}$	$v_{t,i}$
13	$d_{t,(i-1)}$	$d_{t,(i-1)}$	$v_{t,i}$	$Z_{(t-2),i}$
14	$d_{t,i}$	$Z_{(t-2),i}$	$v_{t,(i-1)}$	$Z_{(t-1),i}$
15	$d_{(t-2),i}$	$z_{t,i}$	$d_{t,i}$	$z_{t,i}$

特徴量選択の結果、F1 スコアが最も高くなったのは、 ランダムフォレスト、AdaBoost、XGBoost では上位 14 個、サポートベクターマシンでは上位 12 個の特徴量 を使用したときであった。

また、表 4.9 で得られた結果のうち、F1 スコアが最も高かったアルゴリズムである XGBoost の混同行列を表 4.11 に示す.

表 4.11 XGBoost を用いた提案手法の混同行列

20	Tropect C	/13 . 10 1/2 //2	1 12 - 12 1 1 1 1 7
		予測	
		Positive	Negative
実際	Positive	TP: 77	FN: 296
	Negative	FP: 54	TN: 7,035

表 4.8(ベースライン手法)と表 4.9(提案手法)を比較すると、提案手法の全てのアルゴリズムについて、recall、F1 スコアはベースライン手法が提案手法を上回り、accuracy、precision は提案手法がベースライン手法を上回った.

4.4 実験 2: 各停留所区間での分類

停留所区間毎に1つの分類器を用いた分類を考える.本実験で対象とする停留所区間は、渋滞データ数が学習を行う上で十分な数(100以上とする)存在する区間とする.実験2の対象となる停留所区間と、各停留所区間における渋滞データ数,非渋滞データ数を表4.12に示す.また、学習データとテストデータの分け方は、4.3と同様に、時系列順で前半80%を学習データ、後半20%をテストデータとする.

表 4.12 実験 2 の対象区間とデータ数

停留所区間	渋滞	非渋滞
学習院女子大学~高田馬場二丁目	124	799
神宮前一丁目~表参道	178	767
日清食品前~東新宿駅	126	807
千駄ヶ谷五丁目~新宿四丁目	143	792
渋谷駅西口~渋谷駅東口	213	747
新宿伊勢丹前~新宿四丁目	109	792
新宿四丁目~新宿伊勢丹前	359	568
早大理工前~学習院女子大学	140	754

4.4.1 ベースライン手法

4.3.1 と同様に、ベースライン手法として、速度の閾値のみで渋滞検知を行う. 表 4.13 にベースライン手法を用いた際の accuracy, precision, recall, F1 スコアと、その際の速度の閾値を示す.

表 4.13 実験 2 の結果 (ベースライン手法)

停留所区間	速度の	accur	preci	recall	F1 ス
	閾値	acy	sion		コア
	[km/h]				
学習院女子大学	8.7	0.827	0.571	0.343	0.429
~高田馬場二丁					
目					
神宮前一丁目~	10.7	0.550	0.581	0.272	0.370
表参道					
日清食品前~東	12.3	0.711	0.217	0.122	0.156
新宿駅					
千駄ヶ谷五丁目	8.7	0.775	0.778	0.368	0.500
~ 新宿四丁目					

渋谷駅西口~渋 谷駅東口	3.0	0.609	0.796	0.375	0.510
新宿伊勢丹前~	6.0	0.641	0.407	0.183	0.253
新宿四丁目 新宿四丁目~新	4.5	0.602	0.667	0.563	0.611
宿伊勢丹前 早大理工前~学	12.0	0.821	0.630	0.436	0.515
習院女子大学					
平均	8.2	0.692	0.581	0.333	0.418

4.4.2 提案手法

4.3.2 と同様の方法で特徴量選択を行い、特徴量選択後の F1 スコアが最も高かったアルゴリズムであるランダムフォレストの結果について、特徴量選択後のaccuracy, precision, recall, F1 スコアを表 4.14 に示す.

表 4.14 実験 2 の結果(提案手法)

<u> </u>	0/C Z *> //I	1 /K (1/E	未 1 四 /	
停留所区間	accur	preci	recall	F1 ス
	acy	sion		コア
学習院女子大学~	0.897	0.583	0.333	0.424
高田馬場二丁目				
神宮前一丁目~表	0.772	0.500	0.163	0.246
参道				
日清食品前~東新	0.882	0.571	0.174	0.267
宿駅				
千駄ヶ谷五丁目~	0.877	0.571	0.593	0.582
新宿四丁目				
渋谷駅西口~渋谷	0.740	0.474	0.184	0.265
駅東口				
新宿伊勢丹前~新	0.851	0.500	0.111	0.182
宿四丁目				
新宿四丁目~新宿	0.715	0.724	0.632	0.675
伊勢丹前				
早大理工前~学習	0.899	0.846	0.407	0.550
院女子大学				
平均	0.829	0.596	0.325	0.399

表 4.13(ベースライン手法)と表 4.14(提案手法)の区間平均を比較すると, recall, F1 スコアはベースライン手法が提案手法を上回り, accuracy, precision は提案手法がベースライン手法を上回った. これは実験 1 と同様の傾向である. また, F1 スコアの最高値は提案手法の「新宿四丁目~新宿伊勢丹前」間で 0.675 であった.

4.5 追加実験 1: データの前処理の適用

精度向上のため、学習前にデータの前処理を行った 場合の結果を示す.

4.5.1 データの前処理の方法

データの前処理は、以下の2つである.

渋滞検知の対象となるバス路線上でバス専用レーンが設定されている場合,的確に渋滞を判断できないため,専用レーンが設定されている時間帯のデータを削除する. 渋滞検知の対象となっている区間(明治通り)では,午前7時30分から午前9時の間,バス専用レーンが設定されており,当該時間帯のデータを削除する.

② 停留所区間特有のノイズの削除

提案手法では、2つの連続する停留所 b_i , $b_{(i+1)}$ の発車時刻の差分から区間内のバスの移動時間を計算しているが、この移動時間に含まれるノイズの削除を考える。ここで、ノイズとは、信号待ちや乗客の乗降などの要因により、バスが停止している時間を意味し、その時間の長さは停留所区間で特有の値であると考えられる.

また、渋滞とは、「車が10km/h以下で継続的に走行している状態」と定義されるが、実際のバス運行データには、計算上のバスの速度が10km/h以下であるにも関わらず、上記のノイズが原因で「非渋滞」と判定されているデータが存在する。そこで、「渋滞時の当該区間を走るバスの速度は必ず10km/h以下」という前提のもと、時系列順で前半20%のデータから、「計算上の速度が10km/h以下となっている非渋滞データーで、上記で抽出したデータに対して、速度を10km/hにするために移動時間から減算すべき時間を求める。そして、この値の平均値を区間毎に計算し、区間特有のノイズと移動時間から減算することで、ノイズの影響を排除したデータセットを得る。

4.5.2 全ての停留所区間での分類

全ての停留所区間に対し1つの分類器を用いた分類結果を示す. 学習データとテストデータの分け方は,前処理で用いなかった時系列順で後半80%のデータのうち,前半80%を学習データ,後半20%をテストデータとする. 4.3.2 と同様の方法で特徴量選択を行い,特徴量選択後の accuracy, precision, recall, F1 スコアを表 4.15 に示す.

表 4.15 追加実験 1 の結果(全区間)

アルゴリズ	accuracy	precision	recall	F1 ス
厶				コア
ランダムフ	0.948	0.560	0.140	0.224
オレスト				
AdaBoost	0.949	0.571	0.167	0.258
XGBoost	0.950	0.610	0.190	0.290
SVM	0.949	0.689	0.092	0.163

表 4.9(前処理無し)と表 4.15(前処理あり)を比較すると、最も F1 スコアが高いアルゴリズムの F1 スコアは 0.306 から 0.290 に低下した.全ての停留所区間に対し 1 つの分類器を用いた分類を行う場合は、前処理がモデルの精度向上に寄与していないことがわかる.

4.5.3 各停留所区間での分類

次に、停留所区間毎に1つの分類器を用いた分類結果を示す。対象とする停留所区間は、実験2と同様の区間とする。学習データとテストデータの分け方は、4.5.2 と同様とする。4.3.2 と同様の方法で特徴量選択を行い、特徴量選択後のF1 スコアが最も高かったアルゴリズムであるXGBoost の結果について、accuracy、

precision, recall, F1 スコアを表 4.16 に示す.

表 4.16 追加実験 1 の結果(各区間)

衣 4.10 担加夫被1の箱米(台区間)				
停留所区間	accur	preci	recall	F1 ス
	acy	sion		コア
学習院女子大学~	0.909	0.692	0.474	0.562
高田馬場二丁目				
神宮前一丁目~表	0.733	0.435	0.270	0.333
参道				
日清食品前~東新	0.895	0.455	0.333	0.385
宿駅				
千駄ヶ谷五丁目~	0.867	0.593	0.640	0.615
新宿四丁目				
渋谷駅西口~渋谷	0.773	0.833	0.238	0.370
駅東口				
新宿伊勢丹前~新	0.801	0.455	0.179	0.256
宿四丁目				
新宿四丁目~新宿	0.727	0.718	0.699	0.708
伊勢丹前				
早大理工前~学習	0.889	0.714	0.435	0.541
院女子大学				
平均	0.824	0.612	0.409	0.471

表 4.14(前処理無し)と表 4.16(前処理あり)を比較すると, 平均 F1 スコアが 0.399 から 0.471 に向上した. 停留所区間毎に 1 つの分類器を用いた分類を行う場合, 前処理がモデルの精度向上に寄与したことがわかる.

4.6 追加実験 2: データ限定の適用

同一時間帯に 1 台分のバスのデータしかない場合, 4.5.1 で述べたノイズの影響が大きく, 渋滞の推定が困難であると考えられる. そこで, 精度向上のため, 同一時間帯内に複数台のバスのデータがある場合のみのデータに限定し, 学習を行った場合の結果を示す.

4.6.1 全ての停留所区間での分類

全ての停留所区間に対し1つの分類器を用いた分類結果を示す.使用したデータ数は,4.3で使用した全データ37,307個(渋滞1,813個,非渋滞35,494個)のうち,18,321個(渋滞1,017個,非渋滞17,304個)である.学習データとテストデータの分け方は,4.3と同様,時系列順で前半80%を学習データ,後半20%をテストデータとする.4.3.2と同様の方法で特徴量選択を行い,特徴量選択後のaccuracy, precision, recall, F1スコアを表4.17に示す.

表 4.17 追加実験 2 の結果(全区間)

アルゴリズ	accuracy	precision	recall	F1 ス
Δ				コア
ランダムフ	0.947	0.698	0.202	0.313
ォレスト				
AdaBoost	0.943	0.560	0.193	0.287
XGBoost	0.946	0.602	0.257	0.360
SVM	0.943	0.667	0.092	0.161

表 4.9(限定無し)と表 4.17(限定あり)を比較すると, 最も F1 スコアが高いアルゴリズムの F1 スコアは 0.306 から 0.360 に向上した. 全ての停留所区間に対し 1 つの分類器を用いた分類を行う場合, データの限定 がモデルの精度向上に寄与したことがわかる.

4.6.2 各停留所区間での分類

次に、停留所区間毎に1つの分類器を用いた分類結果を示す.対象とする停留所区間は、実験2と同様の区間とし、使用したデータ数を表4.18に示す.

表 4.18 追加実験 2 のデータ数(各区間)

24	/ //(11	L 114)
停留所区間	渋滞	非渋滞
学習院女子大学~高田馬場二丁	78	388
目		
神宮前一丁目~表参道	97	366
日清食品前~東新宿駅	62	392
千駄ヶ谷五丁目~新宿四丁目	74	385
渋谷駅西口~渋谷駅東口	118	356
新宿伊勢丹前~新宿四丁目	62	396
新宿四丁目~新宿伊勢丹前	195	254
早大理工前~学習院女子大学	93	366

学習データとテストデータの分け方は、4.3 と同様、 時系列順で前半 80%を学習データ、後半 20%をテスト データとする。4.3.2 と同様の方法で特徴量選択を行い、 特徴量選択後の F1 スコアが最も高かったアルゴリズ ム(ランダムフォレスト)の結果について、accuracy、 precision、recall、F1 スコアを表 4.19 に示す。

表 4.19 追加実験 2 の結果(各区間)

				/
停留所区間	accur	preci	recall	F1 ス
	acy	sion		コア
学習院女子大学~	0.904	0.818	0.562	0.667
高田馬場二丁目				
神宮前一丁目~表	0.710	0.286	0.190	0.229
参道				
日清食品前~東新	0.879	0.600	0.250	0.353
宿駅				
千駄ヶ谷五丁目~	0.837	0.462	0.429	0.444
新宿四丁目				
渋谷駅西口~渋谷	0.768	0.692	0.333	0.450
駅東口				
新宿伊勢丹前~新	0.772	0.222	0.125	0.160
宿四丁目				
新宿四丁目~新宿	0.722	0.766	0.710	0.742
伊勢丹前				
早大理工前~学習	0.826	0.611	0.550	0.579
院女子大学				
平均	0.802	0.557	0.394	0.453

表 4.14(限定無し)と表 4.19(限定あり)を比較すると, 平均 F1 スコアが 0.399 から 0.453 に向上した. 停留所 区間毎に 1 つの分類器を用いた分類を行う場合におい ても, データの限定がモデルの精度向上に寄与したこ とがわかる.

5. まとめ

本稿では、バスの各停留所の発車時刻データのみを 利用した渋滞検知の手法を提案した。本手法を用いて 明治通り沿いの交通状況に対して「渋滞」「非渋滞」の 2 値分類を行った結果、全停留所に対して学習器を一 つ用意した場合、F1 スコアは 0.306 となり、停留所区 間毎に個別の学習器で学習をした場合, F1 スコアは平均 0.399, 特定の区間においては F1 スコア 0.675 を得た. また, 単一バスの運行データのみで渋滞検知する場合を除くと, 特定の区間において F1 スコアを 0.742 へ向上することができた.

今後の課題としては、一部の停留所区間において高い F1 スコアが得られなかった原因を解明する必要がある. 例えば、停留所におけるダイヤ調整の影響を排除すること等が考えられる.

参考文献

- [1] R. Hall, et al. "Buses as a traffic probe: Demonstration project", Transportation Research Record: Journal of the Transportation Research Board, no. 1731, pp. 96-103, 2000.
- [2] C. Samal, F. Sun and A. Dubey, "SpeedPro: A Predictive Multi-Model Approach for Urban Traffic Speed Estimation," 2017 IEEE International Conference on Smart Computing (SMARTCOMP), 2017, pp. 1-6, doi: 10.1109/SMARTCOMP.2017. 7947048.
- [3] T. Kyaw, N. N. Oo and W. Zaw, "Estimating Travel Speed of Yangon Road Network Using GPS Data and Machine Learning Techniques," 2018 15th International Conference on Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2018, pp. 102-105, doi: 10.1109/ECTICon.2018.8619908.
- [4] Y. Gu, Y. Wang, and S. Dong, "Public Traffic Congestion Estimation Using an Artificial Neural Network," ISPRS International Journal of Geo-Information, vol. 9, no. 3, p. 152, 2020.
- [5] Y. Xu, Y. Wu, J. Xu and L. Sun, "Efficient Detection Scheme for Urban Traffic Congestion Using Buses," 2012 26th International Conference on Advanced Information Networking and Applications Workshops, 2012, pp. 287-293, doi: 10.1109/WAINA.2012.62.
- [6] C. Wang and H. Tsai, "Detecting urban traffic congestion with single vehicle," 2013 International Conference on Connected Vehicles and Expo (ICCVE), 2013, pp. 233-240, doi: 10.1109/ICCVE.2013.6799799.
- [7] R. Carli, M. Dotoli, N. Epicoco, B. Angelico and A. Vinciullo, "Automated evaluation of urban traffic congestion using bus as a probe," 2015 IEEE International Conference on Automation Science and Engineering (CASE), 2015, pp. 967-972, doi: 10.1109/CoASE.2015.7294224.