

Fashion Feature Extraction Model

- Arjen GÖKDEMİR
- Azad AVŞAR
- Mehmet Umut ASLAN

LET'S START

Content

- → What is our Project?
- → What we use?
- → Coding
 - Methods
 - ◆ Testing
 - Results

Fashion Feature Extraction Model (Fashion Recommendation Model)

Our Purpose

Our aim was to design a learning model that could learn and make predictions about the features of images. In this learning model, we chose two columns as targets, that is, our model will predict two features of that image based on one image.

For example, if we select the "baseColour" and "articleType" columns like we do. What we expect from our model is to respond "Blue T-Shirt" when faced with the visual of a Blue T-shirt.

Let's Examine the Dataset

Fashion Product Images (Small)

https://www.kaggle.com/datasets/p aramaggarwal/fashion-product-imag es-small

- Images = 44.4k
- Styles = A csv file that contains the labels of images.

Dataset

Let's Look at the Details

productDisplayName	usage	year	season	baseColour	articleType	subCategory	masterCategory	gender	id	
Turtle Check Men Navy Blue Shirt	Casual	2011.0	Fall	Navy Blue	Shirts	Topwear	Apparel	Men	15970	0
Peter England Men Party Blue Jeans	Casual	2012.0	Summer	Blue	Jeans	Bottomwear	Apparel	Men	39386	1
Titan Women Silver Watch	Casual	2016.0	Winter	Silver	Watches	Watches	Accessories	Women	59263	2
Manchester United Men Solid Black Track Pants	Casual	2011.0	Fall	Black	Track Pants	Bottomwear	Apparel	Men	21379	3
Puma Men Grey T-shirt	Casual	2012.0	Summer	Grey	Tshirts	Topwear	Apparel	Men	53759	4

styles.csv

Images

What we Use?

Let's Examine Together

Libraries

Coding

Let's Examine the Codes

Data

```
import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 df = pd.read_csv('/kaggle/input/fashion-product-images-small/styles.csv',on_bad_lines = "skip")
 df.head()
      id gender masterCategory subCategory articleType baseColour season year usage
                                                                                                    productDisplayName
0 15970
            Men
                                                   Shirts Navy Blue
                                                                        Fall 2011.0 Casual Turtle Check Men Navy Blue Shirt
                         Apparel
                                      Topwear
                                                                                              Peter England Men Party Blue
1 39386
            Men
                         Apparel
                                  Bottomwear
                                                   Jeans
                                                               Blue Summer 2012.0 Casual
2 59263 Women
                                                Watches
                                                              Silver Winter 2016.0 Casual
                                                                                                 Titan Women Silver Watch
                       Accessories
                                     Watches
                                                                                              Manchester United Men Solid
3 21379
            Men
                                  Bottomwear Track Pants
                                                                        Fall 2011.0 Casual
                         Apparel
                                                                                                        Black Track Pants
4 53759
            Men
                         Apparel
                                     Topwear
                                                  Tshirts
                                                               Grey Summer 2012.0 Casual
                                                                                                   Puma Men Grey T-shirt
 df = df.dropna()
 df.nunique()
 df.columns
Index(['id', 'gender', 'masterCategory', 'subCategory', 'articleType',
       'baseColour', 'season', 'year', 'usage', 'productDisplayName'],
      dtype='object')
 len(df)
44077
```

The columns that we chose

	id	gender	masterCategory	subCategory	articleType	baseColour	season	year	usage	productDisplayName
0	15970	Men	Apparel	Topwear	Shirts	Navy Blue	Fall	2011.0	Casual	Turtle Check Men Navy Blue Shirt
1	39386	Men	Apparel	Bottomwear	Jeans	Blue	Summer	2012.0	Casual	Peter England Men Party Blue Jeans
2	59263	Women	Accessories	Watches	Watches	Silver	Winter	2016.0	Casual	Titan Women Silver Watch
3	21379	Men	Apparel	Bottomwear	Track Pants	Black	Fall	2011.0	Casual	Manchester United Men Solid Black Track Pants
4	53759	Men	Apparel	Topwear	Tshirts	Grey	Summer	2012.0	Casual	Puma Men Grey T-shirt

Article Type

Base Color

Data Filtering

```
value counts = df['articleType'].value counts()
  indexes = value_counts.index
  values = value_counts.values
  for i in range(len(value counts)):
      if values[i] <500:
          break
  types_used = indexes[:i]
  print('Article types used: ',types used)
Article types used: Index(['Tshirts', 'Shirts', 'Casual Shoes', 'Watches', 'Sports Shoes',
       'Kurtas', 'Tops', 'Handbags', 'Heels', 'Sunglasses', 'Wallets',
       'Flip Flops', 'Sandals', 'Briefs', 'Belts', 'Backpacks', 'Socks',
      'Formal Shoes', 'Perfume and Body Mist', 'Jeans', 'Shorts', 'Trousers',
      dtype='object', name='articleType')
  value_counts = df['baseColour'].value_counts()
  indexes = value counts.index
  values = value_counts.values
  for i in range(len(value counts)):
      if values[i] <500:
          break
  colours_used = indexes[:i]
  print('Base Colours used: ',colours_used)
Base Colours used: Index(['Black', 'White', 'Blue', 'Brown', 'Grey', 'Red', 'Green', 'Pink',
       'Navy Blue', 'Purple', 'Silver', 'Yellow', 'Beige', 'Gold', 'Maroon',
       'Orange'],
      dtype='object', name='baseColour')
```

Filtered Article Type

Filtered Base Color

Preparing the Images List

- Create a list named ''data''
- Set the initial images shape to the 80,60
- IX = 80, IY = 60
- Reshape the images with respect to IX and IY. If encounter any id's that doesn't exist, print their id's.
- Convert images to array and add them to the list
- The funcs. that we use: "cv2.imread", "cv2.resize",
 "img_to_array"

Let's Continue with Normalization

Normalization

This normalization converts pixel values between 0 and 255 to between 0 and 1...In this way, the learning process will be more consistent. Also we convert the labels list to the np. array list.

```
import numpy as np

data = np.array(data, dtype="float") / 255.0
labels = np.array(labels)

print(labels)

[['Shirts' 'Navy Blue']
['Jeans' 'Blue']
['Watches' 'Silver']
...
['Tshirts' 'Blue']
['Perfume and Body Mist' 'Blue']
['Watches' 'Pink']]
```

Multi Label Binarizer

MultiLabelBinarizer (MLB) is a preprocessing tool used especially for multilabel classification problems.

MultiLabelBinarizer places each label in a separate column and converts these columns to binary format.

The two I values are the equivalent of the first two elements in our label list.

We can check this from the class list we call with mlb.classes.

One indexes = 20,27 / Labels[0] = Shirts, Navy Blue

CNN

Since we are working on images, we need to design a CNN model before moving on to the learning phase.

What Does the Structure of CNN Consist of?

Convolutional Layer — Used to detect features

```
model.add(Conv2D(32, (3, 3), padding="same", input_shape=inputShape))
model.add(Activation("relu"))
```

 $Pooling\,Layer\,-\,Reduces\,the\,number\,of\,weights\,and\,checks\,compliance$

```
model.add(MaxPooling2D(pool_size=(2, 2)))
```

Flattening Layer — Prepares data for Classic Neural Network

```
model.add(Flatten())
```

Fully-Connected Layer — Standard Neural Network used in classification

```
model.add(Dense(128))
model.add(Activation('relu'))

out = len(mlb.classes_)
model.add(Dense(out))
model.add(Activation('sigmoid'))
```

Determining the CNN Model We Will Use

- Here are the steps we took to determine the model we will use.
- Designing models with different convolution layers.(2,3,4)
- Testing different variations on these models by playing with dropout and optimizer.
- Finally, finding the most successful model, dropout and optimizer depending on the accuracy value.

Models We Created

2 Layer Model

3 Layer Model

Combinations

- Adam + 0.2 Dropout
- Adam + 0.5 Dropout
- SGD+0.2 Dropout
- SGD+0.5 Dropout

Combinations

- Adam + 0.2 Dropout
- Adam + 0.5 Dropout
- SGD+0.2 Dropout
- SGD+0.5 Dropout

Combinations

- Adam + 0.2 Dropout
- Adam + 0.5 Dropout
- SGD+0.2 Dropout
- SGD+0.5 Dropout

Result

The Highest Accuracy Value was
Obtained in the 3-Layer Model
Created Using Adam Optimizer
and 0.5 Dropout.

Comparing Models

Our Best CNN Model

```
from tensorflow.keras.layers import Flatten, Dropout, Dense, Activation, Conv2D, MaxPooling2D
from tensorflow.keras.models import Sequential
inputShape = (IY, IX, 3)
model = Sequential()
model.add(Conv2D(32, (3, 3), padding="same", input_shape=inputShape))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.5))
model.add(Conv2D(128, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.summary()
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
out = len(mlb.classes )
model.add(Dense(out))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
             optimizer='adam',
             metrics=['mse'])
```

(None,				
(110116)	60,	80,	32)	896
(None,	60,	80,	32)	0
(None,	30,	40,	32)	0
(None,	30,	40,	32)	0
(None,	28,	38,	64)	18496
(None,	28,	38,	64)	0
(None,	14,	19,	64)	0
(None,	14,	19,	64)	0
(None,	12,	17,	128)	73856
(None,	12,	17,	128)	0
(None,	6,	3, 12	28)	0
(None,	6,	8, 12	28)	0
	(None,	(None, 30, (None, 28, (None, 28, (None, 14, (None, 12, (None, 12, (None, 12, (None, 6, 14) (None, 6, 14) (None, 6, 14) (None, 6, 14)	(None, 30, 40, (None, 30, 40, (None, 28, 38, (None, 28, 38, (None, 14, 19, (None, 14, 19, (None, 12, 17, (None, 12, 17, (None, 6, 8, 13)	(None, 60, 80, 32) (None, 30, 40, 32) (None, 30, 40, 32) (None, 28, 38, 64) (None, 28, 38, 64) (None, 14, 19, 64) (None, 14, 19, 64) (None, 12, 17, 128) (None, 12, 17, 128) (None, 6, 8, 128)

Let's Test the Model

Testing

Split Data

(trainX, testX, trainY, testY) = train_test_split(data,labels, test_size=0.2, random_state=42)

- We defined test size as 0.2
- Length of test = 6449
- Length of train = 25792

Prediction of the Model

Models Prediction After Training


```
True labels: ("Black', 'Sports Shoes') Predicted labels: ("Sports Shoes')
True labels: ("Kurtas', 'Orange') Predicted labels: ("Kurtas', 'Marcon', 'Red')
True labels: ("Bluck', 'Perfume and Body Mist') Predicted labels: ("Bluck', 'Natches')
True labels: ("Black', 'Waltaches') Predicted labels: ("Black', Natches')
True labels: ("Black', 'Trousers') Predicted labels: ("Black', 'Many Sluc', 'Trousers')
True labels: ("Black', 'Trousers') Predicted labels: ("Black', 'Many Sluc', 'Trousers')
True labels: ("Rarcon', 'Shirts') Predicted labels: ("Rarcon', 'Shirts')
True labels: ("Rarcon', 'Shirts') Predicted labels: ("Black', 'Marcon')
True labels: ("Black', 'Marcon') Predicted labels: ("Black', 'Marcon')
True labels: ("Black', 'Warcon') Predicted labels: ("Black', 'Marches')
```


Results

202/202 [===========] - 1s 3ms/step

correct: 9923

missing/wrong: 2975

Accuracy: 0.7693440843541635

Detection of Errors

- After viewing the initial prediction process of the model, we noticed that in some
 predictions, the positions of the columns shifted both in the correct part and in the
 prediction part.
- We also saw that some predictions included one or three predictions instead of two.
- For this reason, we made the model's predictions visually beautiful by applying a filter.

```
True labels: ('Black', 'Sports Shoes') Predicted labels: ('Sports Shoes',)
True labels: ('Kurtas', 'Orange') Predicted labels: ('Kurtas', 'Maroon', 'Red')
True labels: ('Blue', 'Perfume and Body Mist') Predicted labels: ('Blue', 'Perfume and Body Mist')
True labels: ('Black', 'Watches') Predicted labels: ('Black', 'Watches')
True labels: ('Black', 'Wallets') Predicted labels: ('Black', 'Wallets')
True labels: ('Black', 'Trousers') Predicted labels: ('Black', 'Navy Blue', 'Trousers')
True labels: ('Black', 'Sunglasses') Predicted labels: ('Black', 'Sunglasses')
True labels: ('Maroon', 'Shirts') Predicted labels: ('Maroon', 'Shirts')
True labels: ('Briefs', 'Maroon') Predicted labels: ('Briefs',)
True labels: ('Black', 'Watches') Predicted labels: ('Black', 'Watches')
```

Filtering Process

Detection, Filtration and Revision of Incorrect Pairs

Let's Filter

Deletion of Estimates with Missing Values::

- Prediction Sets were
 Checked One by One
- Prediction Tags
 Containing Less Than 2
 Elements Were
 Detected
- Detected Tags Deleted from Prediction and Test Sets

Filtering Process-2

Correcting the Order of Incorrectly Sorted Predictions:

- Prediction and Test
 Sets were Checked
 One by One
- Labels Without Color In The First Row Were
 Detected
- Detected Labels were Rewritten in the Correct Order in the Prediction and Test Sets

Results After Filtering

Models Prediction After Filtering

True labels: ('Blue', 'Perfume and Body Mist') Predicted labels: ('Blue', 'Perfume and Body Mist')
True labels: ('Black', 'Natches') Predicted labels: ('Black', Natches')
True labels: ('Black', Natles')
True labels: ('Black', Natles')
True labels: ('Black', Natles')
True labels: ('Marcon', 'Shirs') Predicted labels: ('Marcon', 'Shirs')
True labels: ('Black', 'Natches')
True labels: ('Black', 'Natches')
True labels: ('Black', 'Natches')
True labels: ('Black', 'Natches')
True labels: ('White', 'Tops')
True labels: ('White', 'Tops')
True labels: ('Red', 'Tshirts')

Results

correct: 8258

missing/wrong: 1402

Accuracy: 0.8548654244306418

Fashion Feature Extraction Model

Thank You

mlp.lptn.name.tr