Diabetes
Detecting Diabetes Early

Daniel Kim

Detecting Diabetes Early

DIABETES SYMPTOMS

Problem Statement & Goal - How to Detect it?

Sudden Weight Loss

Data Wrangling

- 1. Detecting NaN & Redundancy
 - a. There were no NaN
 - b. Although there were redundancies, it is too early to decide to remove redundancies because the redundancies are not the same but different individuals having same symptoms.
 - c. Except for Age, all other features are binary, so it was needed to do one hot encoding to make a machine learning understand the data better.

2. One Hot Encoding

After one -hot encoding, all the other binary columns ending with such as '_Female', '_Negative', or '_No' were removed.

Exploratory Data Analysis - Histogram & Boxplot

'Age' is the only feature showing normal distribution with a little right-skewness because all other features are binary. By its Boxplot, 'Age' seems having 2 outliers.

Exploratory Data Analysis - Heat Map

Too many features seem correlated to each other, so it is needed to simplify their correlation by feature importance of several machine learning algorithms.

Machine Learning - Feature Importance

'Polyuria' showed the strongest feature when it comes to identifying 'class_positive'. So we can conclude that 'Polyuria' plays a key role in detect diabetes.

Besides 'Polyuria', there are the following common strong features to detect diabetes even if their importance rates vary: Age, Gender_Male, and Polydipsia.

	Algorithms	Decision Tree Classifier	Random Forest Classifier	Gradient Classifier
g es	Feature Importance %	Age: 12% Gender_Male: 10% Polyuria: 42% Polydipsia: 6% Irritability: 9% muscle stiffness: 8% Alopecia: 7%	Age: 10% Gender_Male: 9% Polyuria: 21% Polydipsia: 18% sudden weight loss: 6% partial paresis: 5%	Age: 8% Gender_Male: 11% Polyuria: 31% Polydipsia: 25% Irritability: 6% Alopecia: 7%

Machine Learning - Detection Accuracy

The Decision Tree Classifier showed the best score (97%). Other algorithms showed quite remarkable accuracy scores, but their scores are still lower than the Decision Tree Classifier. The reason for the difference seems due to 'max_depth' per each algorithm; the Decision Tree Classifier had more depths than others: 30 vs. 5.

Algorithms	Decision Tree Classifier	Random Forest Classifier	Gradient Boost Classifier
Accuracy (R-Squared)	97%	93%	95%
Best Parameters by Randomized Search CV	'splitter': 'random', 'random_state': 42, 'min_samples_split':	'n_estimators': 1200, 'min_samples_split':	'n_estimators': 500, 'min_samples_split':

Recommendation - For Better Detection of Diabetes

In order to identify diabetes, you may conduct either of the following testing methods on a trade-off basis for both efficiency and effectiveness.

Combinations of the above-mentioned features can give you optimal diabetes procedures. For example, a test of 'Polyuria' should be an independent variable for detecting diabetes. Such following features should be dependent variables with higher weights than others: 'Age', 'Gender_Male', and 'Polydipsia'. And then, the other else features should be optional test variables with lower weights.

You can just conduct a diabetes test by the Decision Tree Classifier method.

In-Depth Analysis - Decision Tree

In-Depth Analysis - Random Forest Classifier

In-Depth Analysis - Gradient Boost Classifier

