CS5691: Pattern recognition and machine learning Final Exam

Name: Roll No:

Answer any 5 out of the 6 questions below. You may use any result proved in class (not tutorials) without proof. All figures must be neatly drawn using a ruler. No striking. All reference materials allowed. No seeking help from others. Write, scan, convert to pdf, insert the question pages appropriately and submit. Deadline is 03 August, 2020, 09:00 AM. Submit on Moodle. If you cannot, then email the pdf to hariguru@cse.iitm.ac.in. As a general hint, plots are a very useful tool, use them whenever you can.

(1) **(PCA.)** Let P be the distribution $\mathcal{N}\left(\begin{bmatrix}0\\1\\2\end{bmatrix},\begin{bmatrix}12&0&-4\\0&1&0\\-4&0&12\end{bmatrix}\right)$. Let $\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n\in\mathbb{R}^3$

be i.i.d. samples from P. Assume n is arbitrarily large

i. Let $\mathbf{v}_1^{\top} = [1, 0, 0], \, \mathbf{v}_2^{\top} = [0, 1, 0] \text{ and } \mathbf{v}_3^{\top} = [0, 0, 1].$ Evaluate the expression:

$$\min_{z_1,\dots,z_n\in\mathbb{R},b_2\in\mathbb{R},b_3\in\mathbb{R}} \frac{1}{n} \sum_{i=1}^n ||\mathbf{x}_i - z_i \mathbf{v}_1 - b_2 \mathbf{v}_2 - b_3 \mathbf{v}_3||^2$$

ii. Let $\mathbf{v}_1^{\top} = [1, 0, 0], \, \mathbf{v}_2^{\top} = [0, 1, 0] \text{ and } \mathbf{v}_3^{\top} = [0, 0, 1].$ Evaluate the expression:

$$\min_{\mathbf{z}_1, \dots, \mathbf{z}_n \in \mathbb{R}^2, b_3 \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n ||\mathbf{x}_i - z_{i,1} \mathbf{v}_1 - z_{i,2} \mathbf{v}_2 - b_3 \mathbf{v}_3||^2$$

- iii. Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ be the principal components of the data $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$. What are u_1, u_2, u_3 ?
- iv. Evaluate the expression:

$$\min_{z_1, \dots, z_n \in \mathbb{R}, b_2 \in \mathbb{R}, b_3 \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n ||\mathbf{x}_i - z_i \mathbf{u}_1 - b_2 \mathbf{u}_2 - b_3 \mathbf{u}_3||^2$$

v. Evaluate the expression:

$$\min_{\mathbf{z}_1, \dots, \mathbf{z}_n \in \mathbb{R}^2, b_3 \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n ||\mathbf{x}_i - z_{i,1} \mathbf{u}_1 - z_{i,2} \mathbf{u}_2 - b_3 \mathbf{u}_3||^2$$

- vi. Let a_1, a_2, a_4, a_5 be the result of parts (i),(ii),(iv) and (v) above. Answer the following and give an argument for why that should be so.
 - A. Which is greater: a_1 or a_2 ?
 - B. Which is greater: a_4 or a_5 ?
 - C. Which is greater: a_1 or a_4 ?
 - D. Which is greater: a_2 or a_5 ?

(0.5+0.5+1+0.5+0.5+2 points)

(2) **(EM algorithm.)** Consider the following crowd-sourcing problem. Each data-point $1 \le i \le n$ has a true-label $Z_i \in \{0,1\}$, and $P(Z_i = 1) = \alpha$. Each data point also has crowd-sourced labels X_{i1}, \ldots, X_{id} given by d annotators, where $X_{ij} \in \{0,1\}$. Each annotator j, is assumed to have an independent error μ_j , i.e.

$$P(X_{ij} = 1|Z_i = 0) = \mu_j$$

 $P(X_{ij} = 0|Z_i = 1) = \mu_j$

The joint distribution of all the random variables involved is given by:

$$P(X_{11}, \dots, X_{1d}, \dots, X_{n1}, \dots, X_{nd}, Z_1, \dots, Z_n) = \prod_{i=1}^n \left(P(Z_i) \prod_{j=1}^d P(X_{ij}|Z_i) \right)$$

You have access to the dataset of n points annotated by d annotators, i.e. $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$, where $\mathbf{x}_i \in \{0,1\}^d$. But the true labels $z_1, z_2, \dots, z_n \in \{0,1\}$ are hidden. Use the EM algorithm to estimate the error rates of the annotators μ_j and the prior probability parameter α .

- i. For a given current value of the parameters α and $\mu_1, \dots \mu_d$, give the E-step where you will compute $\gamma_i = P(Z_i = 1 | X_i = \mathbf{x}_i)$.
- ii. Consider the estimation problem for annotator j. Given the complete data $(z_1, x_{1j}), \ldots, (z_n, x_{nj})$, with $z_i \in \{0, 1\}$ and $x_{ij} \in \{0, 1\}$, give the ML estimate of the probability of error μ_j .
- iii. Use the γ_i from part (a), along with the solution to the maximum likelihood problem above to give an expression for the update of the parameters $\alpha, \mu_1, \dots, \mu_d$ in the M-step.

(Hint: It might be helpful to use γ_i to hallucinate complete data.)

iv. Consider the annnotation data below with 20 points and 4 labellers. Apply the E-step and M-step derived above for 2 iterations. In particular, give the result of the E-step $\gamma_1, \ldots, \gamma_{20}$ at the end of each of the two iterations. Also give the result of the M-step $\alpha, \mu_1, \mu_2, \mu_3, \mu_4$ at the end of each of the two iterations. Initialize with $\alpha = 0.5, \mu_1 = \mu_2 = \mu_3 = \mu_4 = 0.1$. Interpret the likely true labels Z for the 20 points, and the quality of the 4 labellers based on the final γ and μ values. How does the final γ_i differ from a simple majority vote of the annotator labels?

Instructions: Feel free to write and use a computer code to get these answers. If you are using a computer code, you can run 10 steps of EM algorithm, instead of 2, for a much easier interpretation of the final answer. Give answers only upto 3 significant digits. Give the numerical results for the E-step and M-step in two tables of size 20*2 and 5*2 respectively.

$x_{:,1}$	1	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	1	1
$x_{:,2}$	0	0	1	0	0	0	0	0	0	0	1	1	1	1	0	1	1	1	1	1
$x_{:,3}$	1	0	0	1	1	1	0	1	0	0	1	0	1	0	1	1	0	0	1	0
$x_{:,4}$	1	1	1	1	1	0	1	1	1	1	0	0	0	1	0	0	0	0	0	0

(1+1+2+(1+2)) points, including 2 bonus points.)

(3) (Collaborative filtering.) Consider the three movie, three user rating dataset below, represented by the ratings matrix R.

,	-		
	M1	M2	М3
U1	4	2	1
U2	2	4	1
U3	5	5	3

Consider the baseline model where $R_{u,i} = \mu + a_u + b_i + \epsilon_{u,i}$ for some parameters $\mathbf{a} \in \mathbb{R}^3$ and $\mathbf{b} \in \mathbb{R}^3$ and $\mu \in \mathbb{R}$ and $\epsilon_{u,i}$ is noise.

- i. Set μ to an appropriate value. What would that be?
- ii. Solve for **a** and **b** by solving the following optimisation problem:

$$\min_{\mathbf{a} \in \mathbb{R}^3, \mathbf{b} \in \mathbb{R}^3} \frac{1}{2} \sum_{u=1}^3 \sum_{i=1}^3 (R_{u,i} - \mu - a_u - b_i)^2$$

using full gradient descent till convergence. (Hint: Initialise **a** and **b** to the zero vector, and use step size $\eta = \frac{1}{3}$)

- iii. Interpret the values ${\bf a}$ and ${\bf b}$ got above.
- iv. Let $\widehat{R}_{u,i} = \mu + a_u + b_i$ be the estimate of the ratings from the baseline model. Give $\widehat{R}_{u,i}$ for all u, i in the form of a matrix.
- v. What property does the difference matrix $R \hat{R}$ satisfy?
- vi. What aspect of the data R does the baseline prediction \hat{R} capture?
- vii. What aspect of the data R does the baseline prediction \widehat{R} fail to capture?
- viii. Give scalars p_1, p_2, p_3 for the users, and scalars q_1, q_2, q_3 for the movies such that $R_{u,i} = \mu + a_u + b_i + p_u q_i$. Interpret the p values and q values.

$$(0.5+1+0.5+0.5+0.5+0.5+0.5+1 \text{ points})$$

(4) (Multiclass Logistic Regression.)

- i. Let X|Y=i be distributed as the multivariate normal given by $\mathcal{N}(\boldsymbol{\mu}_i, \sigma^2 I)$ for all $i \in [K]$. Let π_i be equal to P(Y=i). What is the posterior probability $P(Y=i|X=\mathbf{x})$?
- ii. Consider the three class, 1-dimensional dataset, with 6 data points. With feature given by x and class label given by y.

The multinomial logistic loss is given as:

$$L = \sum_{i=1}^{6} -\log\left(\left[SM\left(w_{1}x_{i} + b_{1}, w_{2}x_{i} + b_{2}, w_{3}x_{i} + b_{3}\right)\right]_{y_{i}}\right)$$

where SM is the softmax function from $\mathbb{R}^3 \to \mathbb{R}^3_+$ and the parameters are w_j, b_j for $j \in \{1, 2, 3\}$. Give a setting for the parameters so that L < 0.1. Argue that the loss can be made arbitrarily close to zero for some setting of the parameters.

iii. Consider the same dataset as above. The loss minimised in one-vs-all logistic regression is:

$$L = \sum_{i=1}^{6} \sum_{j=1}^{3} -\log (\sigma(y_{ij}(w_j x_i + b_j)))$$

where σ is the sigmoid function. $y_{ij} = +1$ if $y_i = j$ and -1 otherwise. Show that for any setting of $w_1, w_2, w_3, b_1, b_2, b_3$ the loss L is greater than $2\log(2)$.

iv. Repeat the two sub-problems above, with the 2-dimensional 4-class dataset with 8 points given below as well. Note that the parameters are $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4$ and b_1, b_2, b_3 and b_4 , with $\mathbf{w}_j \in \mathbb{R}^2$ and $b_j \in \mathbb{R}$. The multinomial logistic and one-vs-all loss expressions also change appropriately.

	_		_						
	x_1	1	2	3	4	3	4	7	7
	x_2	1	0	4	3	6	6	2	3
Ì	\overline{y}	1	1	2	2	3	3	4	4

(1+1+1+2 points)

(5) (Support vector regression.)

i. Consider a regression problem with training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$. The Support Vector Regression algorithm, essentially solves the below problem:

$$\min_{\mathbf{w},b} ||\mathbf{w}||^2$$
s.t.
$$\mathbf{w}^{\top} \mathbf{x}_i + b \le y_i + \epsilon$$

$$\mathbf{w}^{\top} \mathbf{x}_i + b \ge y_i - \epsilon$$

for some constant $\epsilon > 0$. Derive the Lagrangian dual optimisation problem to the above problem.

ii. Solve the SVR problem for the 4 point 1-dimensional dataset below. Use $\epsilon=1$.

Give both the primal and dual solution. Argue how you got the solution, and show that the solution you have got is optimal.

(Hint: Put some thought into how will the Lagrange multipliers will look like, and which constraints in the primal will be active for this problem for getting a jump-start.)

(**3+2 points**)

- (6) **(Kernels.)** Let K_1 and K_2 be valid kernel functions, with feature mappings ϕ_1 : $\mathbb{R}^d \to \mathbb{R}^{d_1}$ and $\phi_2 : \mathbb{R}^d \to \mathbb{R}^{d_2}$.
 - i. Show that $K_3 = K_1 + K_2$ is also a valid kernel function. Give the feature mapping ϕ_3 corresponding to K_3 in terms of ϕ_1 and ϕ_2 .
 - ii. Show that $K_4 = K_1 \cdot K_2$ is also a valid kernel function. Give the feature mapping ϕ_4 corresponding to K_4 in terms of ϕ_1 and ϕ_2 .
 - iii. Show that kernel defined as $K_5(\mathbf{u}, \mathbf{v}) = f(\mathbf{u})K_1(\mathbf{u}, \mathbf{v})f(\mathbf{v})$ is also a valid kernel for any function $f : \mathbb{R}^d \to \mathbb{R}$. Give the feature mapping ϕ_5 corresponding to K_5 in terms of ϕ_1, f
 - iv. Show that the kernel given by $K(\mathbf{u}, \mathbf{v}) = \exp(2\mathbf{u}^{\mathsf{T}}\mathbf{v})$ is a valid kernel.
 - v. Show that the kernel given by $K(\mathbf{u}, \mathbf{v}) = \exp(-||\mathbf{u} \mathbf{v}||^2)$ is a valid kernel.

(1+1+1+1+1 points)

(Hint: Express $\exp(t)$ as a polynomial expansion and use previous results.