

Математическая статистика (ФБМФ, ФЭФМ)

Проверка гипотез

План занятия

Ô

- Проверка гипотез
 - Гипотезы
 - Критерии
 - ▶ Типы ошибок
 - Мощность

Проверка статистических гипотез

Ê

Дизайн эксперимента

Картинки: https://ru.wikipedia.org/wiki/Коронавирусы, https://static.ngs.ru/news/2021/99/preview/982868ecec8f52e984781677e00b3ae70616830c_764_509.jpg

Делим пользователей на две независимые группы:

- 1. Исследуемая привитые;
- 2. Контрольная плацебо.

Делим пользователей на две независимые группы:

- 1. Исследуемая привитые;
- 2. Контрольная плацебо.

По результатам испытаний получаем, что в случае введения вакцины титр нейтрализующих антител выше в 40 раз. Или, например, среди привитых на 1.5% меньше заболевших.

Делим пользователей на две независимые группы:

- 1. Исследуемая привитые;
- 2. Контрольная плацебо.

По результатам испытаний получаем, что в случае введения вакцины титр нейтрализующих антител выше в 40 раз. Или, например, среди привитых на 1.5% меньше заболевших.

Насколько это сопоставимо с погрешностями?

Делим пользователей на две независимые группы:

- 1. Исследуемая привитые;
- 2. Контрольная плацебо.

По результатам испытаний получаем, что в случае введения вакцины титр нейтрализующих антител выше в 40 раз. Или, например, среди привитых на 1.5% меньше заболевших.

Насколько это сопоставимо с погрешностями?

Ответ дают статистические тесты.

Делим пользователей на две независимые группы:

- 1. Исследуемая привитые;
- 2. Контрольная плацебо.

По результатам испытаний получаем, что в случае введения вакцины титр нейтрализующих антител выше в 40 раз. Или, например, среди привитых на 1.5% меньше заболевших.

Насколько это сопоставимо с погрешностями?

Ответ дают статистические тесты.

Основная гипотеза:

Возможность заболеть одинакова в обеих группах.

Делим пользователей на две независимые группы:

- 1. Исследуемая привитые;
- 2. Контрольная плацебо.

По результатам испытаний получаем, что в случае введения вакцины титр нейтрализующих антител выше в 40 раз. Или, например, среди привитых на 1.5% меньше заболевших.

Насколько это сопоставимо с погрешностями?

Ответ дают статистические тесты.

Основная гипотеза:

Возможность заболеть одинакова в обеих группах.

Альтернативная гипотеза:

Привитые заболевают реже.

Делим пользователей на две независимые группы:

- 1. Исследуемая привитые;
- Контрольная плацебо.

По результатам испытаний получаем, что в случае введения вакцины титр нейтрализующих антител выше в 40 раз. Или, например, среди привитых на 1.5% меньше заболевших.

Насколько это сопоставимо с погрешностями?

Ответ дают статистические тесты.

Основная гипотеза:

Возможность заболеть одинакова в обеих группах.

Альтернативная гипотеза:

Привитые заболевают реже.

Если доля заболевших в первой группе сильно меньше, то основную гипотезу следует отвергнуть.

Гипотезы

- $X = (X_1, ..., X_n)$ выборка.
- \mathscr{X} множество возможных значений эл-тов выборки
- \mathscr{P} множество распределений на \mathscr{X}

Гипотезы

$$X = (X_1, ..., X_n)$$
 — выборка.

 \mathscr{X} — множество возможных значений эл-тов выборки

 \mathscr{P} — множество распределений на \mathscr{X}

 $\mathsf{H}_0\colon \mathsf{P}\in\mathscr{P}_0$ — основная (нулевая) гипотеза;

 $\mathsf{H}_1\colon\,\mathsf{P}\in\mathscr{P}_1$ — альтернативная гипотеза,

где $\mathscr{P}_0,\mathscr{P}_1\subset\mathscr{P}$ и $\mathscr{P}_0\cap\mathscr{P}_1=\emptyset.$

Гипотезы

$$X = (X_1, ..., X_n)$$
 — выборка.

$$\mathscr{X}$$
 — множество возможных значений эл-тов выборки \mathscr{P} — множество распределений на \mathscr{X}

$$H_0 \colon \mathsf{P} \in \mathscr{P}_0$$
 — основная (нулевая) гипотеза;

$$\mathsf{H}_1\colon \mathsf{P}\in\mathscr{P}_1$$
 — альтернативная гипотеза,

где
$$\mathscr{P}_0,\mathscr{P}_1\subset\mathscr{P}$$
 и $\mathscr{P}_0\cap\mathscr{P}_1=\emptyset.$

B параметрическом подходе при
$$\mathscr{P} = \{\mathsf{P}_\theta \ | \ \theta \in \Theta\}$$
:

$$H_0$$
: $\theta \in \Theta_0$;

$$H_1: \theta \in \Theta_1$$
,

где
$$\Theta_0, \Theta_1 \subset \Theta$$
 и $\Theta_0 \cap \Theta_1 = \emptyset$.

Пример (вакцина)

$$X = (X_1, ..., X_n)$$
 — результаты у тех, кому ввели вакцину.

$$Y = (Y_1, ..., Y_m)$$
 — результаты у тех, кому ввели плацебо.

Пример (вакцина)

 $X = (X_1, ..., X_n)$ — результаты у тех, кому ввели вакцину.

 $Y = (Y_1, ..., Y_m)$ — результаты у тех, кому ввели плацебо.

 H_0 : вакцина не отличается от плацебо;

Н₁: вакцина эффективнее плацебо.

$$X = (X_1, ..., X_n)$$
 — выборка.

 \mathscr{X} — множество возможных значений эл-тов выборки.

$$X = (X_1, ..., X_n)$$
 — выборка.

 \mathscr{X} — множество возможных значений эл-тов выборки.

Множество $S\subset \mathscr{X}$ называется критерием для проверки H_0 vs. H_1 , если правило отвержения H_0 выглядит следующим образом

 H_0 отвергается $\iff X \in \mathcal{S}.$

Ô

$$X = (X_1, ..., X_n)$$
 — выборка.

 \mathscr{X} — множество возможных значений эл-тов выборки.

Множество $S\subset \mathscr{X}$ называется критерием для проверки H_0 vs. H_1 , если правило отвержения H_0 выглядит следующим образом

$$\mathsf{H}_0$$
 отвергается $\iff X \in \mathcal{S}.$

Пример:

$$S = \{x \in \mathscr{X} \mid T(x) \geqslant c\}$$
 — критерий.

Тогда
$$H_0$$
 отвергается $\iff T(X) \geqslant c$,

$$T(X)$$
 — статистика критерия;

$$c$$
 — критическое значение.

Ô

$$X = (X_1, ..., X_n)$$
 — выборка.

$$\mathscr{X}$$
 — множество возможных значений эл-тов выборки.

Множество $S\subset \mathscr{X}$ называется критерием для проверки H_0 vs. H_1 , если правило отвержения H_0 выглядит следующим образом

$$\mathsf{H}_0$$
 отвергается $\iff X \in \mathcal{S}.$

Пример:

$$S = \{x \in \mathscr{X} \mid T(x) \geqslant c\}$$
 — критерий. Тогда H_0 отвергается $\iff T(X) \geqslant c$, $T(X)$ — статистика критерия; c — критическое значение.

$$T(X)=\overline{X}-\overline{Y},$$

Вакцина эффективнее плацебо $\iff \overline{X} - \overline{Y} \geqslant 10.$

$$X = (X_1, ..., X_n)$$
 — выборка.

$$\mathscr{X}$$
 — множество возможных значений эл-тов выборки.

Множество $S\subset \mathscr{X}$ называется критерием для проверки H_0 vs. H_1 , если правило отвержения H_0 выглядит следующим образом

$$\mathsf{H}_0$$
 отвергается $\iff X \in \mathcal{S}.$

Пример:

$$S = \{x \in \mathscr{X} \mid T(x) \geqslant c\}$$
 — критерий. Тогда H_0 отвергается $\iff T(X) \geqslant c$, $T(X)$ — статистика критерия; c — критическое значение.

$$T(X) = \overline{X} - \overline{Y}$$
,
Вакцина эффективнее плацебо
 $\iff \overline{X} - \overline{Y} \geqslant 10$.

В парам. подходе критерий н-ся двусторонним, если H_0 : $\theta=\theta_0$ vs. H_1 : $\theta\neq\theta_0$, и односторонним если H_0 : $\theta=\theta_0$ vs. H_1 : $\theta>\theta_0$ и H_0 : $\theta=\theta_0$ vs. H_1 : $\theta<\theta_0$.

Ô

Критерии (продолжение)

Часто критерий имеет вид $S=\{T(x)\geqslant c_{lpha}\}$, где T(X) — статистика критерия.

Ô

Критерии (продолжение)

Часто критерий имеет вид $S=\{T(x)\geqslant c_{lpha}\}$, где T(X) — статистика критерия.

lpha выбирается ДО эксперимента, c_lpha вычисляется из условия $\mathsf{P}_0(T(X)>c_lpha)\leqslantlpha$.

Критерии (продолжение)

Часто критерий имеет вид $S = \{T(x) \geqslant c_{\alpha}\}$, где T(X) — статистика критерия.

lpha выбирается $oldsymbol{\mathsf{HO}}$ эксперимента,

 c_{lpha} вычисляется из условия $\mathsf{P}_0(\mathit{T}(X) > c_{lpha}) \leqslant lpha.$

$$S = \{T(x) > c_{\alpha}\}$$
 $S = \{T(x) < c_{\alpha}\}$ $S = \{|T(x)| > c_{\alpha}\}$ $p_{T}(t)$ $p_{T}(t)$ $p_{T}(t)$ c_{α}

 $\it 3$ амечание. Выбирать $\it lpha$ после эксперимента неправильно.

Так можно подогнать результат под желаемый.

"Статистика может доказать что угодно, даже истину."

При тестировании гипотез может быть два результата:

При тестировании гипотез может быть два результата:

1. $X \in S \Longrightarrow \mathsf{H}_0$ отвергается.

Ô

Результаты тестирования

При тестировании гипотез может быть два результата:

1. $X \in S \Longrightarrow H_0$ отвергается.

 $\overline{X} - \overline{Y} \geqslant 10 \Longrightarrow$ вакцина эффективнее плацебо.

Ô

Результаты тестирования

При тестировании гипотез может быть два результата:

1. $X \in S \Longrightarrow \mathsf{H}_0$ отвергается.

 $\overline{X} - \overline{Y} \geqslant 10 \Longrightarrow$ вакцина эффективнее плацебо.

Результат проверки гипотез является статистически значимым.

При тестировании гипотез может быть два результата:

1. $X \in S \Longrightarrow H_0$ отвергается.

$$\overline{X} - \overline{Y} \geqslant 10 \Longrightarrow$$
 вакцина эффективнее плацебо.

Результат проверки гипотез является статистически значимым.

2. $X \notin S \Longrightarrow \mathsf{H}_0$ не отвергается.

При тестировании гипотез может быть два результата:

1. $X \in S \Longrightarrow \mathsf{H}_0$ отвергается.

$$\overline{X} - \overline{Y} \geqslant 10 \Longrightarrow$$
 вакцина эффективнее плацебо.

Результат проверки гипотез является статистически значимым.

2. $X \notin S \Longrightarrow \mathsf{H}_0$ не отвергается.

$$\overline{X}-\overline{Y}<10$$
 \Longrightarrow нельзя сказать, что вакцина эффект. плацебо

При тестировании гипотез может быть два результата:

1. $X \in S \Longrightarrow H_0$ отвергается.

 $\overline{X} - \overline{Y} \geqslant 10 \Longrightarrow$ вакцина эффективнее плацебо.

Результат проверки гипотез является статистически значимым.

2. $X \notin S \Longrightarrow \mathsf{H}_0$ не отвергается.

 $\overline{X}-\overline{Y}<10\Longrightarrow$ нельзя сказать, что вакцина эффект. плацебо

Результат проверки гипотез является стат. не значимым.

При тестировании гипотез может быть два результата:

1. $X \in S \Longrightarrow \mathsf{H}_0$ отвергается.

 $\overline{X} - \overline{Y} \geqslant 10 \Longrightarrow$ вакцина эффективнее плацебо.

Результат проверки гипотез является статистически значимым.

2. $X \notin S \Longrightarrow \mathsf{H}_0$ не отвергается.

 $\overline{X} - \overline{Y} < 10 \Longrightarrow$ нельзя сказать, что вакцина эффект. плацебо Результат проверки гипотез является стат. не значимым.

Внимание!!! Неправильно говорить " H_0 принимается" — отсутствие доказательств несправедливости H_0 не есть доказательство ее справедливости.

Презумпция невиновности

Реализация выборки — конечный объем информации.

Распределение – бесконечномерный объект.

Мы имеем какой-то набор "фактов" о распределении.

Презумпция невиновности

Реализация выборки — конечный объем информации.

Распределение – бесконечномерный объект.

Мы имеем какой-то набор "фактов" о распределении.

Обвиняемый считается невиновным до тех пор, пока его вина в совершенном преступлении не будет доказана в установленном законом порядке.

Ô

Презумпция невиновности

Реализация выборки — конечный объем информации.

Распределение – бесконечномерный объект.

Мы имеем какой-то набор "фактов" о распределении.

Обвиняемый считается невиновным до тех пор, пока его вина в совершенном преступлении не будет доказана в установленном законом порядке.

	Обвиняемый	Р — неизвестное распределение	
	Невиновность	$P \in \mathscr{P}_0$ — основная гипотеза	
	Виновность	$P \in \mathscr{P}_1$ — альтернативная гипотеза	
	Совершенные действия	$X=(X_1,,X_n)$ — выборка	
Факты Доказательство		T(X) — статистика критерия	
		Справедливость утверждения $X \in S$	

Ê

Типы ошибок

	H ₀ верна	H ₀ не верна
Н ₀ не отвергается	ОК	ошибка II рода
Н ₀ отвергается	ошибка I рода	OK

	H ₀ верна	H ₀ не верна
H ₀ не отвергается	ОК	ошибка II рода
H ₀ отвергается	ошибка I рода	OK

Ошибка I рода: признали эффективной плохую вакцину.

Ошибка II рода: признали неэффективной хорошую вакцину.

•		3	١
	•	•	
	٨.		
		9	

	H ₀ верна	Н ₀ не верна
H ₀ не отвергается	ОК	ошибка II рода
H ₀ отвергается	ошибка I рода	OK

Ошибка I рода: признали эффективной плохую вакцину.

Ошибка II рода: признали неэффективной хорошую вакцину.

$$\mathsf{P}(I_S) = \sup_{\mathsf{P} \in \mathscr{P}_{\mathbf{0}}} \mathsf{P}(X \in S)$$
 — вероятность ошибки I рода $\mathsf{P}(II_S) = \sup_{\mathsf{P} \in \mathscr{P}_{\mathbf{1}}} \mathsf{P}(X \notin S)$ — вероятность ошибки II рода

^	ı
	١
	۱
	ı
_	•

	H ₀ верна	Н ₀ не верна
H ₀ не отвергается	ОК	ошибка II рода
H ₀ отвергается	ошибка I рода	OK

Ошибка I рода: признали эффективной плохую вакцину.

Ошибка II рода: признали неэффективной хорошую вакцину.

$$\mathsf{P}(I_S) = \sup_{\mathsf{P} \in \mathscr{P}_{\mathbf{0}}} \mathsf{P}(X \in S)$$
 — вероятность ошибки I рода $\mathsf{P}(II_S) = \sup_{\mathsf{P} \in \mathscr{P}_{\mathbf{1}}} \mathsf{P}(X \notin S)$ — вероятность ошибки II рода

Решается задача

$$\begin{cases} \mathsf{P}(\mathit{I}_{\mathcal{S}}) \leqslant \alpha \\ \mathsf{P}(\mathit{II}_{\mathcal{S}}) \to \min_{\mathcal{S}} \end{cases}$$

	H ₀ верна	H ₀ не верна
H ₀ не отвергается	ОК	ошибка II рода
H ₀ отвергается	ошибка I рода	OK

Ошибка I рода: признали эффективной плохую вакцину.

Ошибка II рода: признали неэффективной хорошую вакцину.

$$\mathsf{P}(I_S) = \sup_{\mathsf{P} \in \mathscr{P}_0} \mathsf{P}(X \in S)$$
 — вероятность ошибки I рода $\mathsf{P}(II_S) = \sup_{\mathsf{P} \in \mathscr{P}_0} \mathsf{P}(X \notin S)$ — вероятность ошибки II рода

Решается задача

В наихудшем случае плохая вакцина
$$P(I_S) \leqslant \alpha$$
 будет признана эффективной $P(I_S) \to \min$ с вер-тью не более α .

	H ₀ верна	H ₀ не верна
H_0 не отвергается	ОК	ошибка II рода
H ₀ отвергается	ошибка I рода	OK

Ошибка І рода: признали эффективной плохую вакцину.

Ошибка II рода: признали неэффективной хорошую вакцину.

$$\mathsf{P}(I_S) = \sup_{\mathsf{P} \in \mathscr{P}_\mathbf{0}} \mathsf{P}(X \in S)$$
 — вероятность ошибки I рода $\mathsf{P}(II_S) = \sup_{\mathsf{P} \in \mathscr{P}_\mathbf{0}} \mathsf{P}(X \notin S)$ — вероятность ошибки II рода

Решается задача

$$P(I_S) \leqslant lpha$$
 В наихудшем случае плохая вакцина будет признана эффективной $P(I_S)
ightarrow \min_S$ с вер-тью не более $lpha$.

Критерий S имеет уровень значимости α , если $\mathsf{P}(I_S) \leqslant \alpha$. Обычно $\alpha = 0.05$

	H ₀ верна	H ₀ не верна
H ₀ не отвергается	ОК	ошибка II рода
H ₀ отвергается	ошибка I рода	OK

Ошибка І рода: признали эффективной плохую вакцину.

Ошибка II рода: признали неэффективной хорошую вакцину.

$$\mathsf{P}(I_S) = \sup_{\mathsf{P} \in \mathscr{P}_{\mathbf{0}}} \mathsf{P}(X \in S)$$
 — вероятность ошибки I рода $\mathsf{P}(II_S) = \sup_{\mathsf{P} \in \mathscr{P}_{\mathbf{1}}} \mathsf{P}(X \notin S)$ — вероятность ошибки II рода

Решается задача

В наихудшем случае плохая вакцина
$$P(I_S) \leqslant \alpha$$
 будет признана эффективной $P(I_S) \to \min_S$ с вер-тью не более α .

Критерий S имеет уровень значимости α , если $P(I_S) \leqslant \alpha$. Обычно $\alpha = 0.05$

Замечание. Выбирать α после эксперимента неправильно.

Так можно подогнать результат под желаемый.

Мощность

Обычно альтернатива сложная:

 H_0 : $\theta = \theta_0$ vs. H_1 : $\theta > \theta_0$

 H_0 : X_i имеет норм. распр. $vs.\ \mathsf{H}_1$: распр. X_i отличается от норм.

Мощность

Обычно альтернатива сложная:

 H_0 : $\theta = \theta_0$ vs. H_1 : $\theta > \theta_0$

 H_0 : X_i имеет норм. распр. vs. H_1 : распр. X_i отличается от норм.

Для сравнения критериев на распределениях, соответствующих альтернативной гипотезе, вводится функция *мощности*:

$$\beta_{\mathcal{S}}(\mathsf{P}) = \mathsf{P}(X \in \mathcal{S})$$
, где $\mathsf{P} \in \mathscr{P}_1$.

