Práctica 5: Ciclos hamiltonianos

1/9

Sea G[X,Y] un grafo bipartito conexo, con X e Y no vacíos.

a) Probar que si G tiene un ciclo hamiltoniano, entonces |X|=|Y|.

Sea G[X,Y] un grafo bipartito conexo, con X e Y no vacíos.

a) Probar que si G tiene un ciclo hamiltoniano, entonces |X|=|Y|.

Demostración.

Sea G[X,Y] un grafo bipartito conexo, con conjunto de vértices $V=\{v_1,\ldots,v_n\}$ y X e Y no vacíos.

Sea G[X,Y] un grafo bipartito conexo, con X e Y no vacíos.

a) Probar que si G tiene un ciclo hamiltoniano, entonces |X| = |Y|.

Demostración.

Sea G[X,Y] un grafo bipartito conexo, con conjunto de vértices $V=\{v_1,\ldots,v_n\}$ y X e Y no vacíos. Supongamos que G tiene un ciclo hamiltoniano C, sin pérdida de generalidad supongamos que es de la forma:

$$C: v_1, v_1v_2, v_2, \dots, v_{n-1}v_n, v_n$$

(UNR) 2/9

Sea G[X,Y] un grafo bipartito conexo, con X e Y no vacíos.

a) Probar que si G tiene un ciclo hamiltoniano, entonces |X|=|Y|.

Demostración.

Sea G[X,Y] un grafo bipartito conexo, con conjunto de vértices $V=\{v_1,\ldots,v_n\}$ y X e Y no vacíos. Supongamos que G tiene un ciclo hamiltoniano C, sin pérdida de generalidad supongamos que es de la forma:

$$C: v_1, v_1v_2, v_2, \ldots, v_{n-1}v_n, v_n$$

Como (X,Y) es una partición del conjunto V, podemos suponer que $v_1 \in X$. Luego, como v_2 es adyacente a v_1 resulta que $v_2 \in Y$ ya que cada arista en G tiene un extremo en cada conjunto por ser bipartito. Luego, al ser v_3 adyacente a v_2 , $v_3 \in X$. Siguiendo con este razonamiento tenemos que v_i si i es impar y $v_i \in Y$ si i es par.

(UNR) 2/9

Sea G[X,Y] un grafo bipartito conexo, con X e Y no vacíos.

a) Probar que si G tiene un ciclo hamiltoniano, entonces |X|=|Y|.

Demostración.

Sea G[X,Y] un grafo bipartito conexo, con conjunto de vértices $V=\{v_1,\ldots,v_n\}$ y X e Y no vacíos. Supongamos que G tiene un ciclo hamiltoniano C, sin pérdida de generalidad supongamos que es de la forma:

$$C: v_1, v_1v_2, v_2, \ldots, v_{n-1}v_n, v_n$$

Como (X,Y) es una partición del conjunto V, podemos suponer que $v_1 \in X$. Luego, como v_2 es adyacente a v_1 resulta que $v_2 \in Y$ ya que cada arista en G tiene un extremo en cada conjunto por ser bipartito. Luego, al ser v_3 adyacente a v_2 , $v_3 \in X$. Siguiendo con este razonamiento tenemos que v_i si i es impar y $v_i \in Y$ si i es par. Como v_n es adyacente a v_1 , entonces v_n debe pertenecer a Y. Por lo tanto, n es par.

∢□▶∢圖▶∢團▶∢團▶○團

2/9

Demostración.

Luego, como ${\cal C}$ es un ciclo hamiltoniano, pasa por todos los vértices de ${\cal G}$ entonces tenemos que

$$|X| = |\{v_i : 1 \le i \le n, i \text{ impar}\}| = \frac{n}{2}$$

$$|Y| = |\{v_i : 1 \le i \le n, i \text{ par}\}| = \frac{n}{2}$$

(UNR) 3/9

Demostración.

Luego, como ${\cal C}$ es un ciclo hamiltoniano, pasa por todos los vértices de ${\cal G}$ entonces tenemos que

$$|X|=|\{v_i:1\leq i\leq n, i \text{ impar}\}|=\frac{n}{2}$$

$$|Y| = |\{v_i : 1 \le i \le n, i \text{ par}\}| = \frac{n}{2}$$

Por lo tanto, resulta que |X| = |Y| como queríamos probar.

Sea G[X,Y] un grafo bipartito conexo, con X e Y no vacíos.

b) Probar que si G tiene un camino hamiltoniano, entonces $-1 \le |X| - |Y| \le 1$.

Probar que un grafo G tiene un camino hamiltoniano si solo si el grafo $G \vee K_1$ es hamiltoniano.

Probar que un grafo G tiene un camino hamiltoniano si solo si el grafo $G \vee K_1$ es hamiltoniano.

Demostración.

 \Rightarrow) Sea G un grafo que tiene un camino hamiltoniano $v_1, v_2, \dots v_n$.

Probar que un grafo G tiene un camino hamiltoniano si solo si el grafo $G \vee K_1$ es hamiltoniano.

Demostración.

 \Rightarrow) Sea G un grafo que tiene un camino hamiltoniano $v_1,v_2,\ldots v_n$. Consideremos el grafo $H=G\vee K_1$ con $V(H)=V(G)\cup V(K_1)=\{v_i:i\in[n]\}\cup\{w\}$ y $v_iw\in E(H)$ para todo $i\in[n]$. Luego, $w,v_1,v_2,\ldots v_n,w$ es un ciclo hamiltoniano en H. Por lo tanto. H es hamiltoniano.

Probar que un grafo G tiene un camino hamiltoniano si solo si el grafo $G \vee K_1$ es hamiltoniano.

Demostración.

 \Rightarrow) Sea G un grafo que tiene un camino hamiltoniano $v_1,v_2,\ldots v_n$. Consideremos el grafo $H=G\vee K_1$ con $V(H)=V(G)\cup V(K_1)=\{v_i:i\in[n]\}\cup\{w\}$ y $v_iw\in E(H)$ para todo $i\in[n]$. Luego, $w,v_1,v_2,\ldots v_n,w$ es un ciclo hamiltoniano en H. Por lo tanto, H es hamiltoniano. \Leftarrow) Sea G un grafo tal que $H=G\vee K_1$ es hamiltoniano. Sea G ciclo hamiltoniano de H.

Probar que un grafo G tiene un camino hamiltoniano si solo si el grafo $G \vee K_1$ es hamiltoniano.

Demostración.

 \Rightarrow) Sea G un grafo que tiene un camino hamiltoniano $v_1,v_2,\ldots v_n$. Consideremos el grafo $H=G\vee K_1$ con $V(H)=V(G)\cup V(K_1)=\{v_i:i\in[n]\}\cup\{w\}$ y $v_iw\in E(H)$ para todo $i\in[n]$. Luego, $w,v_1,v_2,\ldots v_n,w$ es un ciclo hamiltoniano en H. Por lo tanto, H es hamiltoniano. \Leftarrow) Sea G un grafo tal que $H=G\vee K_1$ es hamiltoniano. Sea G ciclo hamiltoniano de G0. Sin pérdida de generalidad podemos suponer que G1. Sin pérdida de generalidad podemos suponer que G2.

 $w, v_1, v_2, \ldots v_n, w$

6 v k

Probar que un grafo G tiene un camino hamiltoniano si solo si el grafo $G \vee K_1$ es hamiltoniano.

Demostración.

 \Rightarrow) Sea G un grafo que tiene un camino hamiltoniano $v_1,v_2,\ldots v_n$. Consideremos el grafo $H=G\vee K_1$ con $V(H)=V(G)\cup V(K_1)=\{v_i:i\in[n]\}\cup\{w\}$ y $v_iw\in E(H)$ para todo $i\in[n]$. Luego, $w,v_1,v_2,\ldots v_n,w$ es un ciclo hamiltoniano en H. Por lo tanto, H es hamiltoniano. \Leftarrow) Sea G un grafo tal que $H=G\vee K_1$ es hamiltoniano. Sea G ciclo hamiltoniano de G0. Sin pérdida de generalidad podemos suponer que G1 es de la forma

$$w, v_1, v_2, \ldots v_n, w$$

Luego, v_1, v_2, \ldots, v_n es un camino simple en G que pasa por todos sus vértices. Por lo tanto, G tiene un camino hamiltoniano.

4 D > 4 A > 4 B > 4 B > B = 900

Demostrar la siguiente condición necesaria para la existencia de caminos hamiltonianos: Si G es un grafo que tiene un camino hamiltoniano entonces para todo $\emptyset \neq S \subset V(G)$ vale que $\kappa(G-S) \leq |S|+1$.

Demostración.

Sea ${\cal G}$ un grafo que tiene un camino hamiltoniano.

(UNR) 6/9

Demostrar la siguiente condición necesaria para la existencia de caminos hamiltonianos: Si G es un grafo que tiene un camino hamiltoniano entonces para todo $\emptyset \neq S \subset V(G)$ vale que $\kappa(G-S) \leq |S|+1$.

Demostración.

Sea G un grafo que tiene un camino hamiltoniano. Luego, por el ejercicio 10, $H=G\vee K_1$ es hamiltoniano.

Por la condición necesaria para la existencia de ciclos hamiltonianos, tenemos que $\forall\,\emptyset \neq S \subseteq V(H)$ vale $\kappa(H-S) \leq |S|$.

Demostrar la siguiente condición necesaria para la existencia de caminos hamiltonianos: Si G es un grafo que tiene un camino hamiltoniano entonces para todo $\emptyset \neq S \subset V(G)$ vale que $\kappa(G-S) \leq |S|+1$.

Demostración.

Sea G un grafo que tiene un camino hamiltoniano. Luego, por el ejercicio 10, $H=G\vee K_1$ es hamiltoniano.

Por la condición necesaria para la existencia de ciclos hamiltonianos, tenemos que $\forall \, \emptyset \neq S \subseteq V(H)$ vale $\kappa(H-S) \leq |S|$. Consideremos un conjunto $S=S' \cup \{w\}$, donde $V(K_1)=\{w\}$. Luego, $\kappa(H-S) \leq |S|=|S'|+1$.

Demostrar la siguiente condición necesaria para la existencia de caminos hamiltonianos: Si G es un grafo que tiene un camino hamiltoniano entonces para todo $\emptyset \neq S \subset V(G)$ vale que $\kappa(G-S) \leq |S|+1$.

Demostración.

Sea G un grafo que tiene un camino hamiltoniano. Luego, por el ejercicio 10, $H=G\vee K_1$ es hamiltoniano.

Por la condición necesaria para la existencia de ciclos hamiltonianos, tenemos que $\forall\,\emptyset \neq S \subseteq V(H)$ vale $\kappa(H-S) \leq |S|$. Consideremos un conjunto $S=S'\cup\{w\}$,

donde $V(K_1) = \{w\}$. Luego, $\kappa(H - S) \le |S| = |S'| + 1$.

Observemos que H - S = G - S'.

Luego, $\kappa(H-S)=\kappa(G-S')$. Por lo tanto, $\kappa(G-S')\leq |S'|+1$.

4□ > 4個 > 4 厘 > 4 厘 > 厘 9 Q @

(UNR) 6/

Demostrar la siguiente condición suficiente para la existencia de caminos hamiltonianos: Si G es un grafo simple con $n=|V(G)|\geq 2$ tal que para todo par de vértices no adyacentes u y v se tiene $d(u)+d(v)\geq n-1$, entonces G tiene un camino hamiltoniano.

Demostrar la siguiente condición suficiente para la existencia de caminos hamiltonianos: Si G es un grafo simple con $n=|V(G)|\geq 2$ tal que para todo par de vértices no advacentes u y v se tiene $d(u)+d(v)\geq n$ 1, entonces G tiene un camino hamiltoniano.

Demostración.

Usar ejercicio 10 y condición suficiente de existencia de ciclos hamiltonianos.

Por teacher El es hamiltoniano. Entonces, por es lo 6 tiene un com M.

Demostrar la siguiente condición suficiente para la existencia de caminos hamiltonianos: Si G es un grafo simple con $n=|V(G)|\geq 2$ tal que para todo par de vértices no adyacentes u y v se tiene $d(u)+d(v)\geq n-1$, entonces G tiene un camino hamiltoniano.

Demostración.

Usar ejercicio 10 y condición suficiente de existencia de ciclos hamiltonianos.

(Ej 13:)

Sea G=(V,E) un grafo simple con $|V|=n\geq 2$. Demostrar que si $d(v)\geq \frac{n-1}{2}$ para todo $v\in V$, entonces G tiene un camino hamiltoniano.

Demostración.

Usar el anterior.

8/9

9/9