

Declaration

THIS DOCUMENTATION IS THE ORIGINAL WORK AND COPYRIGHTED PROPERTY OF ALLWINNER TECHNOLOGY ("ALLWINNER"). REPRODUCTION IN WHOLE OR IN PART MUST OBTAIN THE WRITTEN APPROVAL OF ALLWINNER AND GIVE CLEAR ACKNOWLEDGMENT TO THE COPYRIGHT OWNER.

THE INFORMATION FURNISHED BY ALLWINNER IS BELIEVED TO BE ACCURATE AND RELIABLE. ALLWINNER RESERVES THE RIGHT TO MAKE CHANGES IN CIRCUIT DESIGN AND/OR SPECIFICATIONS AT ANY TIME WITHOUT NOTICE. ALLWINNER DOES NOT ASSUME ANY RESPONSIBILITY AND LIABILITY FOR ITS USE. NOR FOR ANY INFRINGEMENTS OF PATENTS OR OTHER RIGHTS OF THE THIRD PARTIES WHICH MAY RESULT FROM ITS USE. NO LICENSE IS GRANTED BY IMPLICATION OR OTHERWISE UNDER ANY PATENT OR PATENT RIGHTS OF ALLWINNER. THIS DOCUMENTATION NEITHER STATES NOR IMPLIES WARRANTY OF ANY KIND, INCLUDING FITNESS FOR ANY PARTICULAR APPLICATION.

THIRD PARTY LICENSES MAY BE REQUIRED TO IMPLEMENT THE SOLUTION/PRODUCT. CUSTOMERS SHALL BE SOLELY RESPONSIBLE TO OBTAIN ALL APPROPRIATELY REQUIRED THIRD PARTY LICENSES. ALLWINNER SHALL NOT BE LIABLE FOR ANY LICENSE FEE OR ROYALTY DUE IN RESPECT OF ANY REQUIRED THIRD PARTY LICENSE. ALLWINNER SHALL HAVE NO WARRANTY, INDEMNITY OR OTHER OBLIGATIONS WITH RESPECT TO MATTERS COVERED UNDER ANY REQUIRED THIRD PARTY LICENSE.

Revision History

Revision	Date	Description
1.0	Apr.18,2017	Initial Release Version.
1.1	Dec.25,2017	Update video decoding features in Section 2.5.
1.2	Jul.22,2019	Update EP numbers in Section 7.7.
Or All	winner	Update EP numbers in Section 7.7.

Table of Contents

Declaration	2
Revision History	3
Table of Contents	4
Chapter 1. About This Documentation	36
1.1. Documentation Overview	36
Chapter 2. Overview	
	38
	38
2.2. Memory Subsystem	
2.2.1. Boot ROM	
2.2.2. SDRAM	
2.2.3. SD/MMC Interface	38
2.3. System Peripheral	38
2.3.1. Timer	38
2.3.2. INTC	39
2.3.3. CCU	39
2.3.4. DMA	39
2.3.5. PWM	39
2.4. Display Subsystem	39
2.4.1. Display Engine	39
2.4.2. Display Output	39

2.5. Video Engine	40
2.6. Image Subsystem	40
2.6.1. CSI	40
2.6.2. CVBS Input	40
2.7. Audio Subsystem	40
2.7.1. Audio Codec	40
2.8. Interfaces	40
2.8.1. USB 2.0 OTG	41
2.8.2. KEYADC	41
2.8.3. TP	41
2.8.4. Digital Audio Interface	41
2.8.5. UART	41
2.8.6. SPI	41
2.8.7. TWI	42
2.8.8. CIR	42
2.8.9. RSB [™]	42
2.8.10. OWA	42
2.9. Package	42
2.10. System Block Diagram	43
Chapter 3. System	44
3.1. Memory Mapping	45
3.2. CCU	46
3.2.1. Overview	46
3.2.2. Feature	46

3.2	.3. Functionalities Description	46
	3.2.3.1. System Bus	46
	3.2.3.2. Bus clock tree	47
3.2	.4. CCU Register List	47
3.2	.5. CCU Register Description	48
J. _		
	3.2.5.1. PLL_CPU Control Register	48
	3.2.5.2. PLL_AUDIO Control Register	49
	3.2.5.3. PLL_VIDEO Control Register	50
	3.2.5.4. PLL_VE Control Register	51
	3.2.5.5. PLL_DDR Control Register	52
	3.2.5.6. PLL_PERIPH Control Register	52
	3.2.5.7. CPU Clock Source Register	53
	789	
	3.2.5.8. AHB/APB/HCLKC Configuration Register	54
	3.2.5.9. Bus Clock Gating Register 0	55
	3.2.5.10. Bus Clock Gating Register 1	55
	3.2.3.10. Dus Clock Gatting Register 1	55
	3.2.5.11. Bus Clock Gating Register 2	56
	3.2.5.12. SDMMC0 Clock Register	58
	3.2.5.13. SDMMC1 Clock Register	58
	2.2.5.4.4. DAUDIO Clark Paristan	F.0
	3.2.5.14. DAUDIO Clock Register	55
	3.2.5.15. OWA Clock Register	59
	3.2.5.16. CIR Clock Register	60
	3.2.5.17. USBPHY Clock Register	60
	3.2.5.18. DRAM Gating Register	
	3.2.5.19. BE Clock Register	61

3.2.5.20. FE Clock Register	62
3.2.5.21. TCON Clock Register	62
3.2.5.22. De-interlacer Clock Register	62
3.2.5.23. TVE Clock Register	63
3.2.5.24. TVD Clock Register	64
3.2.5.25. CSI Clock Register	64
3.2.5.26. VE Clock Register	65
3.2.5.27. AUDIO CODEC Clock Register	65
3.2.5.28. AVS Clock Register	
3.2.5.29. PLL Stable Time Register 0	65
3.2.5.30. PLL Stable Time Register 1	
3.2.5.31. PLL_CPU Bias Register	66
3.2.5.32. PLL_AUDIO Bias Register	66
3.2.5.33. PLL_VIDEO Bias Register	66
3.2.5.34. PLL_VE Bias Register	
3.2.5.35. PLL_DDR Bias Register	67
3.2.5.36. PLL_PERIPH Bias Register	67
3.2.5.37. PLL_CPU Tuning Register	68
3.2.5.38. PLL_DDR Tuning Register	68
3.2.5.39. PLL_AUDIO Pattern Control Register	69
3.2.5.40. PLL_VIDEO Pattern Control Register	69
3.2.5.41. PLL_DDR Pattern Control Register	70
3.2.5.42. Bus Software Reset Register 0	70
3.2.5.43. Bus Software Reset Register 1	71

	3.2.5.44. Bus Software Reset Register 2	72
	3.2.6. Programming Guidelines	7 3
	3.2.6.1. PLL	73
	3.2.6.2. BUS	73
3.3.	. Timer	74
	3.3.1. Overview	74
	3.3.2. Feature	74
	3.3.3. Functionalities Description	74
	3.3.3.1. Typical Applications	74
	3.3.3.2. Functional Block Diagram	75
	3.3.4. Timer Register List	
	3.3.5. Timer Register Description	76
	3.3.5.1. Timer IRQ Enable Register	76
	3.3.5.2. Timer IRQ Status Register	76
	3.3.5.3. Timer 0 Control Register	
	3.3.5.4. Timer 0 Interval Value Register	78
1	3.3.5.5. Timer 0 Current Value Register	78
	3.3.5.6. Timer 1 Control Register	78
	3.3.5.7. Timer 1 Interval Value Register	79
	3.3.5.8. Timer 1 Current Value Register	79
	3.3.5.9. Timer 2 Control Register	79
	3.3.5.10. Timer 2 Interval Value Register	80
	3.3.5.11. Timer 2 Current Value Register	80
	3.3.5.12. AVS Counter Control Register	81

3.3.5.13. AVS Counter 0 Register	81
3.3.5.14. AVS Counter 1 Register	81
3.3.5.15. AVS Counter Divisor Register	82
3.3.5.16. Watchdog IRQ Enable Register	82
3.3.5.17. Watchdog Status Register	82
3.3.5.18. Watchdog Control Register	83
3.3.5.19. Watchdog Configuration Register	83
3.3.5.20. Watchdog Mode Register	83
3.3.6. Programming Guidelines	84
3.3.6.1. Timer	84
3.3.6.2. Watchdog	84
3.4. PWM	85
3.4.1. Overview	85
3.4.2. Feature	85
3.4.3. Functionalities Description	85
3.4.3.1. Functional Block Diagram	85
3.4.4. Operation Principle	86
3.4.4.1. PWM output pins	86
3.4.5. PWM Register List	86
3.4.6. PWM Register Description	86
3.4.6.1. PWM Control Register	86
3.4.6.2. PWM Channel 0 Period Register	88
3.4.6.3. PWM Channel 1 Period Register	89
3.5. INTC	90

3.5.1. Overview	90
3.5.2. Feature	90
3.5.3. Functionalities Description	90
3.5.3.1. Functional Block Diagram	90
3.5.4. Interrupt Source	91
3.5.5. INTC Register List	92
3.5.6. INTC Register Description	92
3.5.6.1. Interrupt Vector Register	92
3.5.6.2. Interrupt Base Address Register	93
3.5.6.3. NMI Interrupt Control Register	93
3.5.6.4. Interrupt IRQ Pending Register 0	
3.5.6.5. Interrupt IRQ Pending Register 1	93
3.5.6.6. Interrupt Enable Register 0	93
3.5.6.7. Interrupt Enable Register 1	93
3.5.6.8. Interrupt Mask Register 0	
3.5.6.9. Interrupt Mask Register 1	94
3.5.6.10. Interrupt Response Register 0	94
3.5.6.11. Interrupt Response Register 1	94
3.5.6.12. Interrupt Fast Forcing Register 0	94
3.5.6.13. Interrupt Fast Forcing Register 1	95
3.5.6.14. Interrupt Source Priority Register 0	95
3.5.6.15. Interrupt Source Priority Register 1	97
3.5.6.16. Interrupt Source Priority Register 2	100
3.5.6.17. Interrupt Source Priority Register 3	102

3.6. D	DMA	106
3	3.6.1. Overview	106
3	3.6.2. Feature	106
3	3.6.3. Functionalities Description	106
3	3.6.4. Block diagram	107
3	3.6.5. Operation Principle	107
	3.6.5.1. Address aligned and unaligned	107
	3.6.5.2. Clock gating and reset	108
3	3.6.6. DMA Register List	108
3	3.6.7. DMA Register Description	108
	3.6.7.1. DMA Interrupt Control Register	
	3.6.7.2. DMA Interrupt Status Register	109
	3.6.7.3. DMA Priority Configure Register	109
	3.6.7.4. Normal DMA Configure Register	110
	3.6.7.5. Normal DMA Source Address Register	112
	3.6.7.6. Normal DMA Destination Address Register	112
11	3.6.7.7. Normal DMA Byte Counter Register	112
	3.6.7.8. Dedicated DMA Configure Register	112
	3.6.7.9. Dedicated DMA Source Address Register	114
	3.6.7.10. Dedicated DMA Destination Address Register	114
	3.6.7.11. Dedicated DMA Byte Counter Register	115
	3.6.7.12. Dedicated DMA Parameter Register	115
	3.6.7.13. Dedicated DMA General Data Register	115
3.7. Po	ort Controller	116

3.7	7.1. Overview	116
3.7	7.2. Port Register List	116
3.7	7.3. Port Register Description	117
	3.7.3.1. PA Configure Register 0	117
	3.7.3.2. PA Configure Register 1	117
	3.7.3.3. PA Configure Register 2	117
	3.7.3.4. PA Configure Register 3	117
	3.7.3.5. PA Data Register	118
	3.7.3.6. PA Multi-Driving Register 0	
	3.7.3.7. PA Multi-Driving Register 1	118
	3.7.3.8. PA Pull Register 0	
	3.7.3.9. PA Pull Register 1	118
	3.7.3.10. PB Configure Register 0	118
	3.7.3.11. PB Configure Register 1	119
	3.7.3.12. PB Configure Register 2	119
	3.7.3.13. PB Configure Register 3	119
	3.7.3.14. PB Data Register	119
	3.7.3.15. PB Multi-Driving Register 0	119
	3.7.3.16. PB Multi-Driving Register 1	119
	3.7.3.17. PB Pull Register 0	120
	3.7.3.18. PB Pull Register 1	120
	3.7.3.19. PC Configure Register 0	120
	3.7.3.20. PC Configure Register 1	120
	3.7.3.21. PC Configure Register 2	121

3.7.3.22. PC Configure Register 3	121
3.7.3.23. PC Data Register	121
3.7.3.24. PC Multi-Driving Register 0	121
3.7.3.25. PC Multi-Driving Register 1	121
3.7.3.26. PC Pull Register 0	121
3.7.3.27. PC Pull Register 1	121
3.7.3.28. PD Configure Register 0	122
3.7.3.29. PD Configure Register 1	123
3.7.3.30. PD Configure Register 2	
3.7.3.31. PD Configure Register 3	125
3.7.3.32. PD Data Register	
3.7.3.33. PD Multi-Driving Register 0	125
3.7.3.34. PD Multi-Driving Register 1	125
3.7.3.35. PD Pull Register 0	125
3.7.3.36. PD Pull Register 1	126
3.7.3.37. PE Configure Register 0	126
3.7.3.38. PE Configure Register 1	127
3.7.3.39. PE Configure Register 2	128
3.7.3.40. PE Configure Register 3	128
3.7.3.41. PE Data Register	128
3.7.3.42. PE Multi-Driving Register 0	128
3.7.3.43. PE Multi-Driving Register 1	128
3.7.3.44. PE Pull Register 0	128
3.7.3.45. PE Pull Register 1	129

3.7.3.46. PF Configure Register 0	129
3.7.3.47. PF Configure Register 1	130
3.7.3.48. PF Configure Register 2	130
3.7.3.49. PF Configure Register 3	130
3.7.3.50. PF Data Register	130
3.7.3.51. PF Multi-Driving Register 0	130
3.7.3.52. PF Multi-Driving Register 1	130
3.7.3.53. PF Pull Register 0	130
3.7.3.54. PD External Interrupt Configure Register 0	131
3.7.3.55. PD External Interrupt Configure Register 1	
3.7.3.56. PD External Interrupt Configure Register 2	131
3.7.3.57. PD External Interrupt Configure Register 3	132
3.7.3.58. PD External Interrupt Control Register	132
3.7.3.59. PD External Interrupt Status Register	132
3.7.3.60. PD External Interrupt Debounce Register	132
3.7.3.61. PE External Interrupt Configure Register 0	133
3.7.3.62. PE External Interrupt Configure Register 1	133
3.7.3.63. PE External Interrupt Configure Register 2	134
3.7.3.64. PE External Interrupt Configure Register 3	134
3.7.3.65. PE External Interrupt Control Register	134
3.7.3.66. PE External Interrupt Status Register	134
3.7.3.67. PE External Interrupt Debounce Register	134
3.7.3.68. PF External Interrupt Configure Register 0	135
3.7.3.69. PF External Interrupt Configure Register 1	135

	3.7.3.70. PF External Interrupt Configure Register 2	135
	3.7.3.71. PF External Interrupt Configure Register 3	136
	3.7.3.72. PF External Interrupt Control Register	136
	3.7.3.73. PF External Interrupt Status Register	136
	3.7.3.74. PF External Interrupt Debounce Register	136
	3.7.3.75. SDRAM Pad Multi-Driving Register	137
	3.7.3.76. SDRAM Pad Pull Register	137
Chapter	4. ADC	139
4.1.	. KEYADC	140
	4.1.1. Overview	140
	4.1.2. Feature	140
	4.1.3. Principle of operation	140
	4.1.4. Block diagram	140
	4.1.5. KEYADC Register List	141
	4.1.6. KEYADC Register Description	141
	4.1.6.1. KEYADC Control Register	141
	4.1.6.2. KEYADC Interrupt Control Register	142
O	4.1.6.3. KEYADC Interrupt Status Register	142
	4.1.6.4. KEYADC Data Register	143
4.2.	. TP	144
	4.2.1. Overview	144
	4.2.2. Feature	144
	4.2.3. A/D conversion time	144
	4.2.4. Work timing in different mode	

4.2.5. Operation Mode	146
4.2.5.1. Basic principle	146
4.2.5.2. Single-ended mode	146
4.2.5.3. Differential mode	147
4.2.5.4. Single touch detection	147
4.2.5.5. Dual touch detection	148
4.2.5.6. Touch pressure measurement	148
4.2.5.7. Pen down detection, with programmable sensitivity	149
4.2.5.8. Median and averaging filter	150
4.2.6. TP Register List	151
4.2.7. TP Register Description	151
4.2.7.1. TP Control Register 0	151
4.2.7.2. TP Control Register 1	152
4.2.7.3. TP Control Register 2	153
4.2.7.4. TP Control Register 3	154
4.2.7.5. TP Interrupt FIFO Control Register	154
4.2.7.6. TP Interrupt FIFO Status Register	155
4.2.7.7. TP Common Data Register	156
4.2.7.8. TP Data Register	156
4.3. Audio Codec	157
4.3.1. Overview	157
4.3.2. Feature	157
4.3.3. Block diagram	157
4.3.4. Signal Description	157

4.3.5. Power Description	158
4.3.6. Function Description	158
4.3.6.1. ADC	158
4.3.6.2. Stereo ADC	158
4.3.6.3. Mixer	158
4.3.6.4. Headphone Mixer	158
4.3.6.5. ADC Record Mixer	158
4.3.6.6. Analog Audio Input Path	159
4.3.6.7. FM Input	159
4.3.7. Audio Codec Register List	160
	160
4.3.8.1. DAC Digital Part Control Register	160
4.3.8.2. DAC FIFO Control Register	162
4.3.8.3. DAC FIFO Status Register	164
4.3.8.4. DAC TX DATA Register	164
4.3.8.5. ADC FIFO Control Register	165
4.3.8.6. ADC FIFO Status Register	166
4.3.8.7. ADC RX DATA Register	167
4.3.8.8. DAC Analog & Output MIXER Control Register	167
4.3.8.9. ADC Analog and Input mixer Control Register	169
4.3.8.10. ADC&DAC performance tuning Register	170
4.3.8.11. Bias & DA16 Calibration Control Register 0	171
4.3.8.12. Bias & DA16 Calibration Control Register 1	172
4.3.8.13. DAC TX Counter Register	172

4.3.8.14. ADC RX Counter Register	1/2
4.3.8.15. DAC Debug Register	172
4.3.8.16. ADC Debug Register	173
4.3.8.17. ADC DAP Control Register	173
4.3.8.18. ADC DAP Left Control Register	174
4.3.8.19. ADC DAP Right Control Register	175
4.3.8.20. ADC DAP Parameter Register	176
4.3.8.21. ADC DAP Left Average Coef Register	177
4.3.8.22. ADC DAP Left Decay & Attack Time Register	177
4.3.8.23. ADC DAP Right Average Coef Register	177
4.3.8.24. ADC DAP Right Decay & Attack Time Register	178
4.3.8.25. ADC DAP HPF Coef Register	178
4.3.8.26. ADC DAP Left Input Signal Low Average Coef Register	178
4.3.8.27. ADC DAP Right Input Signal Low Average Coef Register	178
4.3.8.28. ADC DAP Optimum Register	179
Chapter 5. Display	180
5.1. TCON	181
5.1.1. Overview	181
5.1.2. Feature	181
5.1.3. Block Diagram	181
5.1.3.1. LCD Timing Controller	181
5.1.4. TCON Register List	182
5.1.5. TCON Register Description	183
5.1.5.1. TCON Control Register	183

5.1.5.2. TCON Interrupt Register 0	183
5.1.5.3. TCON Interrupt Register 1	184
5.1.5.4. TCON FRM Control Register	184
5.1.5.5. TCON FRM Seed0 Red Register	184
5.1.5.6. TCON FRM Seed0 Green Register	184
5.1.5.7. TCON FRM Seed0 Blue Register	185
5.1.5.8. TCON FRM Seed1 Red Register	185
5.1.5.9. TCON FRM Seed1 Green Register	185
5.1.5.10. TCON FRM Seed1 Blue Register	185
5.1.5.11. TCON FRM Table Register 0	185
5.1.5.12. TCON FRM Table Register 1	185
5.1.5.13. TCON FRM Table Register 2	186
5.1.5.14. TCON FRM Table Register 3	186
5.1.5.15. TCONO Control Register	186
5.1.5.16. TCON Clock Control Register	187
5.1.5.17. TCONO Basic Timing Register 0	187
5.1.5.18. TCONO Basic Timing Register 1	187
5.1.5.19. TCONO Basic Timing Register 2	188
5.1.5.20. TCONO Basic Timing Register 3	188
5.1.5.21. TCON0 HV Timing Register	188
5.1.5.22. TCONO CPU Interface Control Register	189
5.1.5.23. TCONO CPU Write Register	190
5.1.5.24. TCONO CPU Read Register	190
5.1.5.25. TCONO CPU Read NX Register	190

5.1.5.26. TCONO IO Control Register 0	190
5.1.5.27. TCON0 IO Control Register 1	191
5.1.5.28. TCON1 Control Register	191
5.1.5.29. TCON1 Basic Timing Register 0	192
5.1.5.30. TCON1 Basic Timing Register 1	192
5.1.5.31. TCON1 Basic Timing Register 2	192
5.1.5.32. TCON1 Basic Timing Register 3	193
5.1.5.33. TCON1 Basic Timing Register 4	193
5.1.5.34. TCON1 Basic Timing Register 5	193
5.1.5.35. TCON1 IO Control Register 0	193
5.1.5.36. TCON1 IO Control Register 1	194
5.1.5.37. TCON Debug Information Register	194
5.2. Display Engine Front-End	196
5.2.1. Overview	196
5.2.2. Feature	196
5.2.3. Block Diagram	196
5.2.4. DEFE Register List	196
5.2.5. DEFE Register Description	198
5.2.5.1. DEFE Module Enable Register	198
5.2.5.2. DEFE Frame Process Control Register	198
5.2.5.3. DEFE CSC Bypass Register	199
5.2.5.4. DEFE Algorithm Selection Register	200
5.2.5.5. DEFE Line Interrupt Conrtol Register	200
5.2.5.6. DEFE Input Channel 0 Buffer Address Register	200

5.2.5.7. DEFE Input Channel 1 Buffer Address Register	200
5.2.5.8. DEFE Input Channel 2 Buffer Address Register	201
5.2.5.9. DEFE Field Sequence Register	201
5.2.5.10. DEFE Channel 0 Tile Based Offset Register	201
5.2.5.11. DEFE Channel 1 Tile Based Offset Register	201
5.2.5.12. DEFE Channel 2 Tile Based Offset Register	202
5.2.5.13. DEFE Channel 0 Line Stride Register	202
5.2.5.14. DEFE Channel 1 Line Stride Register	202
5.2.5.15. DEFE Channel 2 Line Stride Register	202
5.2.5.16. DEFE Input Format Register	203
5.2.5.17. DEFE Write Back Address Register	204
5.2.5.18. DEFE Output Format Register	204
5.2.5.19. DEFE Interrupt Enable Register	205
5.2.5.20. DEFE Interrupt Status Register	206
5.2.5.21. DEFE Status Register	206
5.2.5.22. DEFE CSC Coefficient 00 Register	207
5.2.5.23. DEFE CSC Coefficient 01 Register	207
5.2.5.24. DEFE CSC Coefficient 02 Register	207
5.2.5.25. DEFE CSC Coefficient 03 Register	207
5.2.5.26. DEFE CSC Coefficient 10 Register	208
5.2.5.27. DEFE CSC Coefficient 11 Register	208
5.2.5.28. DEFE CSC Coefficient 12 Register	208
5.2.5.29. DEFE CSC Coefficient 13 Register	208
5.2.5.30. DEFE CSC Coefficient 20 Register	208

5.2.5.31. DEFE CSC Coefficient 21 Register	209
5.2.5.32. DEFE CSC Coefficient 22 Register	209
5.2.5.33. DEFE CSC Coefficient 23 Register	209
5.2.5.34. DEFE Input Size Register	209
5.2.5.35. DEFE Output Size Register	209
5.2.5.36. DEFE Horizontal Factor Register	210
5.2.5.37. DEFE Vertical Register	210
5.2.5.38. DEFE Channel 0 Horizontal Filter Coefficient Register	210
5.2.5.39. DEFE Channel 0 Vertical Filter Coefficient Register	210
5.2.5.40. DEFE Channel 1 Horizontal Filter Coefficient Register	211
5.2.5.41. DEFE Channel 1 Vertical Filter Coefficient Register	211
5.3. Display Engine Back-End	212
5.3.1. Overview	212
5.3.2. Feature	212
5.3.3. Block Diagram	212
5.3.4. DEBE Register List	213
5.3.5. DEBE Register Description	214
5.3.5.1. DEBE Mode Control Register	214
5.3.5.2. DEBE Color Control Register	215
5.3.5.3. DEBE Layer 0 Size Register	215
5.3.5.4. DEBE Layer 1 Size Register	215
5.3.5.5. DEBE Layer 2 Size Register	215
5.3.5.6. DEBE Layer 3 Size Register	216
5.3.5.7. DEBE Layer 0 Coordinate Control Register	216

5.3.5.8. DEBE Layer 1 Coordinate Control Register	216
5.3.5.9. DEBE Layer 2 Coordinate Control Register	216
5.3.5.10. DEBE Layer 3 Coordinate Control Register	217
5.3.5.11. DEBE Layer 0 Frame Buffer Line Width Register	217
5.3.5.12. DEBE Layer 1 Frame Buffer Line Width Register	217
5.3.5.13. DEBE Layer 2 Frame Buffer Line Width Register	217
5.3.5.14. DEBE Layer 3 Frame Buffer Line Width Register	217
5.3.5.15. DEBE Layer 0 Frame Buffer Address Register	217
5.3.5.16. DEBE Layer 1 Frame Buffer Address Register	218
5.3.5.17. DEBE Layer 2 Frame Buffer Address Register	218
5.3.5.18. DEBE Layer 3 Frame Buffer Address Register	218
5.3.5.19. DEBE Register Buffer Control Register	218
5.3.5.20. DEBE Color Key Max Register	218
5.3.5.21. DEBE Color Key Min Register	219
5.3.5.22. DEBE Color Key Configuration Register	219
5.3.5.23. DEBE Layer 0 Attribute Control Register 0	219
5.3.5.24. DEBE Layer 1 Attribute Control Register 0	220
5.3.5.25. DEBE Layer 2 Attribute Control Register 0	221
5.3.5.26. DEBE Layer 3 Attribute Control Register 0	223
5.3.5.27. DEBE Layer 0 Attribute Control Register 1	224
5.3.5.28. DEBE Layer 1 Attribute Control Register 1	224
5.3.5.29. DEBE Layer 2 Attribute Control Register 1	225
5.3.5.30. DEBE Layer 3 Attribute Control Register 1	226
5.3.5.31. DEBE HWC Coordinate Control Register	230

5.3.5.32. DEBE HWC Frame Buffer Format Register	230
5.3.5.33. DEBE Write Back Control Register	230
5.3.5.34. DEBE Write Back Address Register	231
5.3.5.35. DEBE Write Back Buffer Line Width Register	231
5.3.5.36. DEBE Input YUV Channel Control Register	231
5.3.5.37. DEBE YUV Channel 0 Frame Buffer Address Register	232
5.3.5.38. DEBE YUV Channel 1 Frame Buffer Address Register	232
5.3.5.39. DEBE YUV Channel 2 Frame Buffer Address Register	
5.3.5.40. DEBE YUV Channel 0 Buffer Line Width Register	233
5.3.5.41. DEBE YUV Channel 1 Buffer Line Width Register	
5.3.5.42. DEBE YUV Channel 2 Buffer Line Width Register	
5.3.5.43. DEBE Coefficient 00 Register	233
5.3.5.44. DEBE Coefficient 01 Register	233
5.3.5.45. DEBE Coefficient 02 Register	234
5.3.5.46. DEBE Coefficient 03 Register	234
5.3.5.47. DEBE Coefficient 10 Register	234
5.3.5.48. DEBE Coefficient 11 Register	234
5.3.5.49. DEBE Coefficient 12 Register	235
5.3.5.50. DEBE Coefficient 13 Register	235
5.3.5.51. DEBE Coefficient 20 Register	235
5.3.5.52. DEBE Coefficient 21 Register	235
5.3.5.53. DEBE Coefficient 22 Register	235
5.3.5.54. DEBE Coefficient 23 Register	236
5.3.5.55. DEBE HWC Pattern Memory Block	236

	5.3.5.56. DEBE HWC Palette Table	236
	5.3.5.57. Palette Mode	237
5.4.	. De-interlacer	239
	5.4.1. Overview	239
	5.4.2. Feature	239
	5.4.3. De-interlacer Register List	239
	5.4.4. De-interlacer Register Description	239
	5.4.4.1. DI Control Register	239
	5.4.4.2. DI Interrupt Control Register	240
	5.4.4.3. DI Status Register	240
	5.4.4.4. DI Size Setting Register	241
	5.4.4.5. DI Format Setting Register	241
	5.4.4.6. DI Input Line Stride 0 Setting Register	241
	5.4.4.7. DI Input Line Stride 1 Setting Register	242
	5.4.4.8. DI Output Line Stride 0 Setting Register	242
	5.4.4.9. DI Output Line Stride 1 Setting Register	242
Y	5.4.4.10. DI Flag Line Stride Setting Register	242
	5.4.4.11. DI Current Frame Address 0 Register	242
	5.4.4.12. DI Current Frame Address 1 Register	243
	5.4.4.13. DI Pre-frame Address 0 Register	24 3
	5.4.4.14. DI Pre-frame Address 1 Register	24 3
	5.4.4.15. DI Output Frame Address 0 Register	24 3
	5.4.4.16. DI Output Frame Address 1 Register	24 3
	5.4.4.17. DI Flag Address Register	243

	5.4.4.18. DI Parameters Register	244
Chapter 6.	Image Subsystem	245
6.1. C	SI	245
6	5.1.1. Overview	245
6	5.1.2. Feature	245
6	5.1.3. Block Diagram	245
6	5.1.4. CSI Data Port	246
6	5.1.5. Timing	246
6	5.1.6. CSI Register List	247
6	5.1.7. CSI Register Description	247
	6.1.7.1. CSI Enable Register	247
	6.1.7.2. CSI Configuration Register	247
	6.1.7.3. CSI Capture Control Register	249
	6.1.7.4. CSI Scale Register	249
	6.1.7.5. CSI FIFO 0 Output Buffer A Address Register	250
	6.1.7.6. CSI FIFO 0 Output Buffer B Address Register	250
20	6.1.7.7. CSI FIFO 1 Output Buffer A Address Register	250
	6.1.7.8. CSI FIFO 1 Output Buffer B Address Register	250
	6.1.7.9. CSI FIFO 2 Output Buffer A Address Register	250
	6.1.7.10. CSI FIFO 2 Output Buffer B Address Register	250
	6.1.7.11. CSI Output Buffer Control Register	250
	6.1.7.12. CSI Status Register	251
	6.1.7.13. CSI Interrupt Enable Register	251
	6.1.7.14. CSI Interrupt Status Register	252

6.1.7.15. CSI Horizontal Size Register	253
6.1.7.16. CSI Vertical Size Register	253
6.1.7.17. CSI Buffer Length Register	253
Chapter 7. Interfaces	254
7.1. SD/MMC Interface	255
7.1.1. Overview	255
7.1.2. Feature	255
7.1.3. SD/MMC Timing	255
7.1.4. SD/MMC Pin List	255
7.1.5. SD/MMC DMA Controller Description	256
7.1.5.1. IDMAC Descriptor Structure	256
7.1.5.2. DESO Definition	257
7.1.5.3. DES1 Definition	257
7.1.5.4. DES2 Definition	258
7.1.5.5. DES3 Definition	258
7.1.6. SD/MMC Register List	258
7.1.7. SD/MMC Register Description	
7.1.7.1. SD Global Control Register	
7.1.7.2. SD Clock Control Register	
7.1.7.3. SD Timeout Register	
7.1.7.4. SD Bus Width Register	
7.1.7.5. SD Block Size Register	
7.1.7.6. SD Byte Count Register	
7.1.7.7. SD Command Register	261

7.1.7.8. SD Command Argument Register	263
7.1.7.9. SD Response Register 0	263
7.1.7.10. SD Response Register 1	263
7.1.7.11. SD Response Register 2	263
7.1.7.12. SD Response Register 3	263
7.1.7.13. SD Interrupt Mask Register	264
7.1.7.14. SD Masked Interrupt Status Register	264
7.1.7.15. SD Raw Interrupt Status Register	265
7.1.7.16. SD Status Register	265
7.1.7.17. SD FIFO Water Level Register	267
7.1.7.18. SD Function Select Register	268
7.1.7.19. SD Transferred CIU Card Byte Count Register	268
7.1.7.20. SD Transferred Host to BIU-FIFO Byte Count Register	269
7.1.7.21. SD Debug Control Register	269
7.1.7.22. SD Auto Command 12 Argument Register	269
7.1.7.23. SD Hardware Reset Register	269
7.1.7.24. SD DMAC Control Register	269
7.1.7.25. SD Descriptor List Base Address Register	270
7.1.7.26. SD DMAC Status Register	271
7.1.7.26. SD DMAC Status Register	
	272
7.1.7.27. SD DMAC Interrupt Enable Register	272 273
7.1.7.27. SD DMAC Interrupt Enable Register	272 273 273

7.1.7.32. SD FIFO Register	274
7.2. TWI	275
7.2.1. Overview	275
7.2.2. Feature	275
7.2.3. Pin List	275
7.2.4. Timing Diagram	275
7.2.5. TWI Controller Operation	276
7.2.6. TWI Controller Register List	276
7.2.7. TWI Controller Register Description	277
7.2.7.1. TWI Slave Address Register	277
7.2.7.2. TWI Extend Address Register	277
7.2.7.3. TWI Data Register	277
7.2.7.4. TWI Control Register	277
7.2.7.5. TWI Status Register	279
7.2.7.6. TWI Clock Register	280
7.2.7.7. TWI Soft Reset Register	280
7.2.7.8. TWI Enhance Feature Register	280
7.2.7.9. TWI Line Control Register	280
7.3. SPI	282
7.3.1. Overview	282
7.3.2. Feature	282
7.3.3. SPI Timing Diagram	282
7.3.4. SPI Pin List	
7.3.5. SPI Module Clock Source and Frequency	283

7.3.6. SPI Register List	284
7.3.7. SPI Register Description	284
7.3.7.1. SPI Global Control Register	284
7.3.7.2. SPI Transfer Control Register	285
7.3.7.3. SPI Interrupt Control Register	287
7.3.7.4. SPI Interrupt Status Register	288
7.3.7.5. SPI FIFO Control Register	290
7.3.7.6. SPI FIFO Status Register	291
7.3.7.7. SPI Wait Clock Register	292
7.3.7.8. SPI Clock Control Register	292
7.3.7.9. SPI Master Burst Counter Register	293
7.3.7.10. SPI Master Transmit Counter Register	293
7.3.7.11. SPI Master Burst Control Counter Register	293
7.3.7.12. SPI TX Data Register	294
7.3.7.13. SPI RX Data Register	294
4. UART	295
7.4.1. Overview	295
7.4.2. Feature	295
7.4.3. UART Timing Diagram	295
7.4.4. UART Pin List	296
7.4.5. IrDA Inverted Signals	296
7.4.6. UART Register List	296
7.4.7. UART Register Description	297
7.4.7.1. UART Receiver Buffer Register	297

7.4.7.2. UART Transmit Holding Register	297
7.4.7.3. UART Divisor Latch Low Register	298
7.4.7.4. UART Divisor Latch High Register	298
7.4.7.5. UART Interrupt Enable Register	298
7.4.7.6. UART Interrupt Identity Register	299
7.4.7.7. UART FIFO Control Register	300
7.4.7.8. UART Line Control Register	301
7.4.7.9. UART Modem Control Register	303
7.4.7.10. UART Line Status Register	304
7.4.7.11. UART Modem Status Register	306
7.4.7.12. UART Scratch Register	308
7.4.7.13. UART Status Register	308
7.4.7.14. UART Transmit FIFO Level Register	309
7.4.7.15. UART Receive FIFO Level Register	309
7.4.7.16. UART Halt TX Register	309
7.4.7.17. UART DBG DLL Register	310
7.4.7.18. UART DBG DLH Register	310
RSB	311
7.5.1. Overview	311
7.5.2. Feature	311
7.5.3. Terminology Definition	311
7.5.4. RSB Command Set	311
7.5.5. Software Operation Flow	312
7.5.6. RSB General Specification	314

7.5. RSB

7.5.7. RSB Controller Register List	316
7.5.8. RSB Register Description	316
7.5.8.1. RSB Control Register	316
7.5.8.2. RSB Clock Control Register	317
7.5.8.3. RSB Interrupt Enable Register	317
7.5.8.4. RSB Status Register	317
7.5.8.5. RSB Address Register	318
7.5.8.6. RSB Data Buffer Register	318
7.5.8.7. RSB Line Control Register	318
7.5.8.8. RSB Device Mode Control Register	319
7.5.8.9. RSB Command Register	
7.5.8.10. RSB Device Address Register	320
7.6. CIR Receiver	321
7.6.1. Overview	321
7.6.2. Feature	321
7.6.3. Timing	321
7.6.4. CIR Receiver Register List	322
7.6.5. CIR Receiver Register Description	322
7.6.5.1. CIR Control Register	322
7.6.5.2. CIR Receiver Configure Register	322
7.6.5.3. CIR Receiver FIFO Register	323
7.6.5.4. CIR Receiver Interrupt Control Register	323
7.6.5.5. CIR Receiver Status Register	323
7.6.5.6. CIR Configure Register	324

7.7. USB-OTG		326
7.7.1. Overview		326
7.7.2. Feature		326
7.7.3. Functionalit	ties Description	326
7.7.3.1. DMA	A Support	326
7.7.3.2. RAM	l Sharing	327
7.7.3.3. Powe	er Save	328
7.7.3.4. Clock	k Source and Frequency	328
7.8. Digital Audio Interf	face	329
7.8.1. Overview		329
7.8.2. Feature		329
	ription	329
7.8.3.1. Digita	al Audio Interface Pin List	329
7.8.3.2. Digita	al Audio Interface MCLK and BCLK	329
7.8.3.3. Digita	al Audio Interface Clock Source and Frequency	330
7.8.4. Functionalit	ties Description	330
7.8.4.1. Typic	cal Applications	330
7.8.4.2. Func	tional Block Diagram	331
7.8.4.3. Open	ration Principle	331
7.8.5. Operation N	Modes	332
7.8.5.1. Syste	em setup and I2S/PCM initialization	332
7.8.5.2. The c	channel setup and DMA setup	332
	ole and disable the I2S/PCM	
	o Interface Register List	
-		

7.8.7. Digital Audio Interface Register Description	333
7.8.7.1. Digital Audio Control Register	333
7.8.7.2. Digital Audio Format Register 0	334
7.8.7.3. Digital Audio Format Register 1	335
7.8.7.4. Digital Audio TX FIFO Register	336
7.8.7.5. Digital Audio RX FIFO Register	336
7.8.7.6. Digital Audio FIFO Control Register	336
7.8.7.7. Digital Audio FIFO Status Register	337
7.8.7.8. Digital Audio DMA & Interrupt Control Register	338
7.8.7.9. Digital Audio Interrupt Status Register	339
7.8.7.10. Digital Audio Clock Divide Register	340
7.8.7.11. Digital Audio TX Counter Register	340
7.8.7.12. Digital Audio RX Counter Register	341
7.8.7.13. Digital Audio TX Channel Select Register	341
7.8.7.14. Digital Audio TX Channel Mapping Register	341
7.8.7.15. Digital Audio RX Channel Select Register	342
7.8.7.16. Digital Audio RX Channel Mapping Register	342
OWA Interface	344
7.9.1. Overview	344
7.9.2. Feature	344
7.9.3. Signal Description	344
7.9.3.1. OWA Interface Pin List	344
7.9.3.2. OWA Interface Clock Requirement	344
7.9.4. Functionalities Description	344

7.9.4.1.	. Typical Applications	344
7.9.4.2.	Functional Block Diagram	344
7.9.4.3.	Operation Principle	345
7.9.5. Operat	tion Modes	345
7.9.5.1.	. System setup and OWA initialization	346
7.9.5.2.	. The channel setup and DMA setup	346
7.9.5.3.	Enable and disable the OWA	346
7.9.6. OWA II	Interface Register List	346
7.9.7. OWA R	Register Description	346
7.9.7.1.	OWA General Control Register	346
7.9.7.2.	OWA TX Configure Register	347
7.9.7.3.	OWA TX FIFO Register	348
7.9.7.4.	OWA FIFO Control Register	348
7.9.7.5.	OWA FIFO Status Register	348
7.9.7.6.	OWA Interrupt Control Register	349
7.9.7.7.	OWA Interrupt Status Register	349
7.9.7.8.	OWA TX Counter Register	350
7.9.7.9.	OWA TX Channel Status Register 0	350
7.9.7.10	0. OWA TX Channel Status Register 1	351

Chapter 1. About This Documentation

1.1. Documentation Overview

This documentation provides an overall description of the Allwinner F1C200s application processor, which will provide instructions to programmers from several sections, including system, ADC, display, image, and interfaces.

Chapter 2. Overview

The F1C200s processor represents Allwinner's latest achievement in mobile applications processors. The processor targets the needs of video boombox markets.

The F1C200s is based on the ARM9 CPU architecture with a high degree of functional integration, and supports Full HD video playback, including H.264,H.263,MPEG1/2/4 decoder. Integrated audio codec and I2S/PCM interface provide end users with a good audio experience. TV-IN interface enables video input by connecting to video devices such as camera, and TV-OUT interface enables video output by connecting to TV devices.

To reduce the BOM costs, the F1C200s built-in DDR1 memory, and it is packed with general-purpose peripherals such as USB OTG, UART, SPI, TWI, TP, SD/MMC, CSI, etc. The F1C200s outperforms competitors in terms of its powerful or Allwinner Tech Entl performance, low power consumption, and flexible scalability.

2.1. Processor Features

2.1.1. CPU Architecture

The F1C200s platform is based on ARM9 CPU architecture.

- Five-stage pipeline architecture
- Support 16KByte D-Cache
- Support 32KByte I-Cache

2.2. Memory Subsystem

This section consists of:

- Boot ROM
- SDRAM
- SD/MMC Interface

2.2.1. Boot ROM

- On-Chip ROM boot loader
- ech Enthusiasts • Support system boot from SPI Nor/Nand Flash, and SD/TF card
- Support system code download through USB OTG

2.2.2. SDRAM

SIP DDR1

2.2.3. SD/MMC Interface

- Support secure digital memory protocol commands (up to SD2.0)
- Support secure digital I/O protocol commands (up to SDIO2.0)
- Support multimedia card protocol commands (up to eMMC4.41)
- Support one SD (Verson1.0 to 2.0) or MMC (version 3.3 to eMMC4.41)
- Support hardware CRC generation and error detection
- Support host pull-up control
- Support SDIO interrupts in 1-bit and 4-bit modes
- Support SDIO suspend and resume operation
- Support SDIO read wait
- Support block size of 1 to 65535 bytes
- Support descriptor-based internal DMA controller
- Internal 128 bytes FIFO for data transfer
- Support 3.3V IO pad

2.3. System Peripheral

This section includes:

- Timer
- INTC
- CCU
- DMA
- **PWM**

2.3.1. Timer

Three timers

- Support watchdog reset
- Support audio and video synchronize counter

2.3.2. INTC

- Support up to 64 interrupts
- Support 4-level priority
- Support interrupt mask
- Support interrupt fast forcing
- Support one external interrupt

2.3.3. CCU

- Support 6 PLLs
- Control of clock generation, division, distribution and gating zech Enthusiasts
- Control of device software reset

2.3.4. DMA

- Support Normal DMA and Dedicated DMA
- Support two kinds of interrupt
- Support hardware continuous transfer mode

2.3.5. PWM

- Support two PWM outputs
- Support cycle mode and pulse mode
- Support 24MHz maximum output frequency

2.4. Display Subsystem

This section includes:

- Display Engine
- **Display Output**

2.4.1. Display Engine

- Support four layers overlay, each layer size up to 2048x2048 pixels
- Support Alpha blending/color key
- Support multi-format input formats
 - 1/2/4/8/16/32 bpp color
 - YUV444/YUV422/YUV420/YUV411
- Support hardware cursor
- Ultra-Scaling engine
 - 4-tap scale filter in horizontal and vertical direction
 - Input and output size up to 1280x720 pixels
 - Support write-back to memory function
- Support de-interlacing function for Standard-definition video

2.4.2. Display Output

- LCD RGB interface, TTL interface, up to 1280x720@60fps
- LCD Serial RGB interface, CCIR656 interface, up to 720x576@60fps
- LCD i8080 interface with 18/16/9/8 bit, up to 800x480@60fps
- LCD Dither function, supports RGB666/RGB565 interface
- TV CVBS output, supports NTSC/PAL, with auto plug detecting

rech Enthusiasts

2.5. Video Engine

- Support H.264 BP/MP/HP up to 1920x1080@30fps decoding
- Support MPEG1 and MPEG2 up to 1920x1080@30fps decoding
- Support MPEG4 SP/ASP GMC and H.263 including Sorenson Spark up to 1920x1080@30fps decoding
- Support MJPEG encode up to 1280x720@30fps
- Support JPEG encode size up to 8192 x 8192
- Support JPEG decode size up to 16384 x 16384

2.6. Image Subsystem

This section includes:

- CSI
- CVBS Input

2.6.1. CSI

- Support 8-bit CMOS-sensor interface
- Support YUV camera up to 5Mega pixel
- Support CCIR656 protocol for NTSC and PAL

2.6.2. CVBS Input

- Support NTSC/PAL
- Support 3D comb filter
- Support two TV CVBS channels:TVIN0,TVIN1

2.7. Audio Subsystem

2.7.1. Audio Codec

- Two audio digital-to-analog(DAC) channels
- Stereo capless headphone drivers:
 - Up to 100dB DR
 - Supports DAC Sample Rates from 8kHz to 192kHz
- Support analog/ digital volume control
- Analog low-power loop from FM/ line-in /microphone to headphone outputs
- Three audio inputs:
 - One microphone input
 - Stereo FM left/right input
 - One Line-in input
- One audio analog-to-digital(ADC) channel
 - 96dB SNR@A-weight
 - Supports ADC Sample Rates from 8KHz to 48KHz
 - Support AGC (Auto Gain Control)

2.8. Interfaces

This section includes:

- USB 2.0 OTG
- KEYADC
- TP
- Digital Audio Interface
- UART

- SPI
- TWI
- CIR
- RSB^{TM}
- OWA

2.8.1. USB 2.0 OTG

- Support up to 6 User-Configurable Endpoints(TX Endpoint 1/2/3 and RX Endpoint 1/2/3) for Bulk, Isochronous, Control and Interrupt bi-directional transfer
- Support High-Bandwidth Isochronous & Interrupt transfers
- 64-Byte Endpoint 0 for Control Transfer (Endpoint0)
- Support industry-standard single port SRAM for USB Configurable Data FIFO. The size is 2048 byte with 32-bit word width. The RAM can be used by other modules when USB OTG disable
- Support point-to-point and point-to-multipoint transfer in Host mode henthusiasts
- Perform all transaction scheduling in hardware
- Power Optimization and Power Management capabilities

2.8.2. KEYADC

- 6-bit resolution
- Support hold key and general key
- Support single key and continuous key
- Sample rate up to 250Hz

2.8.3. TP

- 12-bit SAR type A/D converter
- 4-wire I/F
- Dual Touch Detect
- Touch-pressure measurement
- Sampling frequency: 2MHz
- Single-Ended conversion of touch screen inputs and ratio metric conversion of touch screen inputs
- TACQ up to 262ms
- Median and averaging filter to reduce noise
- Pen down detection, with programmable sensitivity
- Support X, Y change function

2.8.4. Digital Audio Interface

- I2S or PCM configured by software
- Master / Slave Mode operation configured by software
- I2S Audio data sample rate from 8kHz to 192kHz
- I2S Data format for standard I2S, Left Justified and Right Justified
- PCM supports linear sample (8-bit or 16-bit), 8-bit u-law and A-law commanded sample

2.8.5. UART

- Three UART controllers
- Compatible with industry-standard 16550 UARTs
- Support IRDA version 1.0 SIR protocol with maximum baud rate to 115200bps for all UARTs
- Support for word length from 5 to 8 bits, an optional parity bit, and 1,1.5 or 2 stop bits
- Programmable parity(even,odd and no parity)
- 32-Bytes Transmit and receive data FIFOs
- Support DMA controller interface
- Software/ Hardware Flow Control
- Interrupt support for FIFOs, Status Change

2.8.6. SPI

- Two SPI controllers
- Full-duplex synchronous serial interface
- Master/Slave configurable

- 8-bit wide by 64-entry FIFO for both transmit and receive data
- Polarity and phase of the chip select (SPI SS) and SPI Clock (SPI SCLK) are configurable

2.8.7. TWI

- Three TWI controllers
- Software-programmable for Slave or Master
- Support repeated START signal
- Multi-master systems supported
- Allow 10-bit addressing with TWI bus
- Performs arbitration and clock synchronization
- Own address and general call address detection
- Interrupt on address detection
- Support speeds up to 400Kbits/s ('fast mode')
- Allow operation from a wide range of input clock frequencies ch Enthusiasts

2.8.8. CIR

- Full physical layer implementation
- Support CIR for remote control
- 64x8bits FIFO for data buffer
- Programmable FIFO thresholds

2.8.9. RSBTM

- Support speed up to 20MHz with ultra low power
- Support push-pull bus
- Support host mode
- Support programmable output delay of CD signal
- Support parity check for address and data transmission
- Support multi-devices

2.8.10. OWA

- EC-60958 transmitter functionality
- Support S/PDIF Interface
- Support channel status insertion for the transmitter
- Support Parity generation on the transmitter
- One 32×24bits FIFO (TX) for audio data transfer
- Programmable FIFO thresholds
- Interrupt and DMA support

2.9. Package

QFN88,10mm x 10mm

2.10. System Block Diagram

The block diagram of F1C200s processor is as follows:

The typical application diagram of F1C200s is as follows:

Chapter 3. System

The chapter describes the F1C200s system from following sections:

- **Memory Mapping**
- CCU
- Timer
- **PWM**

- For Allwinner Tech Enthusiasts

3.1. Memory Mapping

Module	Address (It is for Cluster CPU)	Size (byte)
BROM	0x0000 00000x0000 7FFF	32K
SRAM A	0x0001 00000x0001 9FFF	40K
System Controller	0x01C0 00000x01C0 0FFF	4K
DRAMC	0x01C0 10000x01C0 1FFF	4K
DMA	0x01C0 20000x01C0 2FFF	4K
SPI0	0x01C0 50000x01C0 5FFF	4K
SPI1	0x01C0 60000x01C0 6FFF	4K
TVE	0x01C0 A0000x01C0 AFFF	4K
TVD	0x01C0 B0000x01C0 BFFF	4K
TCON	0x01C0 C0000x01C0 CFFF	4K
VE	0x01C0 E0000x01C0 EFFF	4K
SD/MMC 0	0x01C0 F0000x01C0 FFFF	4K
SD/MMC 1	0x01C1 00000x01C1 0FFF	4K
USB-OTG	0x01C1 30000x01C1 3FFF	4K
CCU	0x01C2 00000x01C2 03FF	1K
INTC	0x01C2 04000x01C2 07FF	1K
PIO	0x01C2 08000x01C2 0BFF	1K
TIMER	0x01C2 0C000x01C2 0FFF	1K
PWM	0x01C2 10000x01C2 13FF	1K
OWA	0x01C2 14000x01C2 17FF	1K
RSB	0x01C2 18000x01C2 1BFF	1K
DAUDIO	0x01C2 20000x01C2 23FF	1K
CIR	0x01C2 2C000x01C2 2FFF	1K
KEYADC	0x01C2 34000x01C2 37FF	1K
Audio Codec	0x01C2 3C000x01C2 3FFF	1K
TP	0x01C2 48000x01C2 4BFF	1K
UART 0	0x01C2 50000x01C2 53FF	1K
UART 1	0x01C2 54000x01C2 57FF	1K
UART 2	0x01C2 58000x01C2 5BFF	1K
TWI 0	0x01C2 70000x01C2 73FF	1K
TWI 1	0x01C2 74000x01C2 77FF	1K
TWI 2	0x01C2 78000x01C2 7BFF	1K
CSI	0x01CB 00000x01CB 0FFF	4K
DEFE	0x01E0 00000x01E1 FFFF	128K
DEBE	0x01E6 00000x01E6 FFFF	64K
DE Interlace	0x01E7 00000x01E7 FFFF	64K
DDR1 Space	0x8000 00000xBFFF FFFF	1G

ech Enthusiasts ech

3.2. CCU

3.2.1. Overview

The CCU provides the registers to program the PLLs and the controls most of the clock generation, division, distribution, synchronization and gating. CCU input signal is the external clock for the reference frequency (24MHz). The outputs from CCU are mostly clocks to the other blocks in the system.

3.2.2. Feature

The CCU includes the following features:

- 6 PLLs, Main Oscillator and an on-chip RC Oscillator
- Bus Divisions
- Clock Output Control
- PLLs Bias Control
- PLLs Tunning Control
- PLLs Pattern Control
- Configuring Modules Clock
- Bus Clock Gating
- Bus Software Reset

3.2.3. Functionalities Description

3.2.3.1. System Bus

3.2.3.2. Bus clock tree

3.2.4. CCU Register List

PLL_PERIPH	AHB_PER_DIV 1/(1~4)	iasts
3.2.4. CCU Register List		
Module Name		Base Address
CCU		0x01C20000

Register Name	Offset	Description
PLL_CPU_CTRL_REG	0x0000	PLL_CPU Control Register
PLL_AUDIO_CTRL_REG	0x0008	PLL_AUDIO Control Register
PLL_VIDEO_CTRL_REG	0x0010	PLL_VIDEO Control Register
PLL_VE_CTRL_REG	0x0018	PLL_VE Control Register
PLL_DDR_CTRL_REG	0x0020	PLL_DDR Control Register
PLL_PERIPH_CTRL_REG	0x0028	PLL_PERIPH Control Register
CPU_CLK_SRC_REG	0x0050	CPU Clock Source Register
AHB_APB_HCLKC_CFG_REG	0x0054	AHB/APB/HCLKC Configuration Register
BUS_CLK_GATING_REG0	0x0060	Bus Clock Gating Register 0
BUS_CLK_GATING_REG1	0x0064	Bus Clock Gating Register 1
BUS_CLK_GATING_REG2	0x0068	Bus Clock Gating Register 2
SDMMC0_CLK_REG	0x0088	SDMMC0 Clock Register
SDMMC1_CLK_REG	0x008C	SDMMC1 Clock Register
DAUDIO_CLK_REG	0x00B0	DAUDIO Clock Register
OWA_CLK_REG	0x00B4	OWA Clock Register
CIR_CLK_REG	0x00B8	CIR Clock Register
USBPHY_CLK_REG	0x00CC	USBPHY Clock Register
DRAM_GATING_REG	0x0100	DRAM GATING Register
BE_CLK_REG	0x0104	BE Clock Register
FE_CLK_REG	0x010C	FE Clock Register
TCON_CLK_REG	0x0118	TCON Clock Register
DI_CLK_REG	0x011C	De-interlacer Clock Register
TVE_CLK_REG	0x0120	TVE Clock Register

TVD_CLK_REG 0:	x0124	TVD Clock Register
CSI_CLK_REG 0:	x0134	CSI Clock Register
VE_CLK_REG 0:	x013C	VE Clock Register
AUDIO_CODEC_CLK_REG 0:	x0140	Audio Codec Clock Register
AVS_CLK_REG 0:	x0144	AVS Clock Register
PLL_STABLE_TIME_REGO 0:	x0200	PLL Stable Time Register 0
PLL_STABLE_TIME_REG1 0:	x0204	PLL Stable Time Register 1
PLL_CPU_BIAS_REG 0:	x0220	PLL_CPU Bias Register
PLL_AUDIO_BIAS_REG 0:	x0224	PLL_AUDIO Bias Register
PLL_VIDEO_BIAS_REG 0:	x0228	PLL_VIDEO Bias Register
PLL_VE_BIAS_REG 0:	x022C	PLL_VE Bias Register
PLL_DDR_BIAS_REG 0:	x0230	PLL_DDR Bias Register
PLL_PERIPH_BIAS_REG 0:	x0234	PLL_PERIPH Bias Register
PLL_CPU_TUN_REG 0:	x0250	PLL_CPU Tuning Register
PLL_DDR_TUN_REG 0:	x0260	PLL_DDR Tuning Register
PLL_AUDIO_PAT_CTRL_REG 0:	x0284	PLL_AUDIO Pattern Control Register
PLL_VIDEO_PAT_CTRL_REG 0:	x0288	PLL_VIDEO Pattern Control Register
PLL_DDR_PAT_CTRL_REG 0:	x0290	PLL_DDR Pattern Control Register
BUS_SOFT_RST_REGO 0:	x02C0	Bus Software Reset Register 0
BUS_SOFT_RST_REG1 0:	x02C4	Bus Software Reset Register 1
BUS_SOFT_RST_REG2 0:	x02D0	Bus Software Reset Register 2

3.2.5. CCU Register Description

3.2.5.1. PLL_CPU Control Register

Offset: 0:	Offset: 0x000		Register Name: PLL_CPU_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	PLL_ENABLE.
			0: Disable
			1: Enable
			The PLL output= (24MHz*N*K) / (M*P).
			The PLL output is for the CPU Clock.
			Note: The PLL output clock must be in the range of 200MHz~2.6GHz.
			Its default is 408MHz.
30:29	/	/	1
28	R	0x0	LOCK
			0: Unlocked
			1: Locked (It indicates that the PLL has been stable.)
27:18	/	/	1
17:16	R/W	0x0	PLL_OUT_EXT_DIV_P
			PLL Output External Divider P
			00: /1
			01: /2
			10: /4

			11: /	
15:13	/	/	/	
12:8	R/W	0x10	PLL_FACTOR_N	
			PLL Factor N.	
			Factor=0, N=1	
			Factor=1, N=2	
			Factor=2, N=3	
			Factor=31,N=32	
7:6	/	/	/	
5:4	R/W	0x0	PLL_FACTOR_K.	
			PLL Factor K.(K=Factor + 1)	
			The range is from 1 to 4.	3 -1
3:2	/	/	/	-61
1:0	R/W	0x0	PLL_FACTOR_M.	:33
			PLL Factor M. (M=Factor + 1)	1810
			The range is from 1 to 4.	1011

3.2.5.2. PLL_AUDIO Control Register

Offset: 0	x008		Register Name: PLL_AUDIO_CTRL_REG
Bit	Read/Write	Default/Hex	Description
31	R/W	0x0	PLL_ENABLE.
			0: Disable
			1: Enable
			The PLL is for Audio.
		\	The PLL_AUDIO(8X) Output = 24MHz*N*2/M.
		. 1111	The PLL output clock must be in the range of 20MHz~200MHz.
			Its default is 24.571MHz.
30:29	/	1	/
28	R	0x0	LOCK.
			0: Unlocked
			1: Locked (It indicates that the PLL has been stable.)
27:25	1	/	/
24	R/W	0x0	PLL_SDM_EN.
			0: Disable
			1: Enable
			In this case, the PLL_FACTOR_N only low 4 bits are valid (N: The range is
			from 1 to 16).
23:15	/	/	/
14:8	R/W	0x55	PLL_FACTOR_N.
			PLL Factor N.
			Factor=0, N=1
			Factor=1, N=2
			Factor=127, N=128

7:5	/	/	/
4:0	R/W	0x14	PLL_PREDIV_M.
			PLL Pre-div Factor(M = Factor+1).
			The range is from 1 to 32

3.2.5.3. PLL_VIDEO Control Register

Offset: (0x010		Register Name: PLL_VIDEO_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	PLL_ENABLE.
			0: Disable
			1: Enable
			In the integer mode, the PLL output = (24MHz*N)/M.
			In the fractional mode, the PLL output is select by bit 25.
			Note: In the Clock Control Module, PLL(1X) Output=PLL while PLL(2X)
			Output=PLL * 2.
			The PLL output clock must be in the range of 30MHz~600MHz.
			Its default is 297MHz.
30	R/W	0x0	PLL_MODE.
			0: Manual Mode
			1: Auto Mode (Controlled by DE)
29	/	/	1
28	R	0x0	LOCK.
			0: Unlocked
			1: Locked (It indicates that the PLL has been stable.)
27:26	/	/	1
25	R/W	0x1	FRAC_CLK_OUT.
			PLL clock output when PLL_MODE_SEL=0(PLL_PREDIV_M factor must be set
	111	N	to 0); No meaning when PLL_MODE_SEL =1.
	111		0: PLLOUT=270MHz
			1: PLLOUT=297MHz
24	R/W	0x1	PLL_MODE_SEL.
			0: Fractional mode
			1: Integer mode
			Note: When in Fractional mode, the pre-divider M should be set to 0.
23:21	/	/	/
20	R/W	0x0	PLL_SDM_EN.
			0: Disable
			1: Enable
19:15	/	/	/
14:8	R/W	0x62	PLL_FACTOR_N.
			PLL Factor N.
			Factor=0, N=1
			Factor=1, N=2
			Factor=2, N=3

			Factor=127,N=128
7:4	/	/	/
3:0	R/W	0x7	PLL_PREDIV_M.
			PLL Pre-div Factor(M = Factor+1).
			The range is from 1 to 16.

3.2.5.4. PLL_VE Control Register

Offset: 0)x018		Register Name: PLL_VE_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	PLL_ENABLE.
			0: Disable
			1: Enable
			In the integer mode, The PLL output = (24MHz*N)/M.
			In the fractional mode, the PLL output is select by bit 25.
			Note: The PLL output clock must be in the range of 30MHz~600MHz.
			Its default is 210MHz.
30:29	/	/	
28	R	0x0	LOCK
			0: Unlocked
			1: Locked (It indicates that the PLL has been stable.)
27:26	/	/	1
25	R/W	0x1	FRAC_CLK_OUT.
			PLL clock output when PLL_MODE_SEL=0(PLL_PREDIV_M factor must be set
			to 0); No meaning when PLL_MODE_SEL =1.
			0: PLLOUT=270MHz
			1: PLLOUT=297MHz
24	R/W	0x1	PLL_MODE_SEL.
	1/1	N	0: Fractional mode
	V//		1: Integer mode
•			Note: When in Fractional mode, the pre-divider M should be set to 0.
23:15	1	/	1
14:8	R/W	0x45	PLL_FACTOR_N.
			PLL Factor N.
			Factor=0, N=1
			Factor=1, N=2
			Factor=2, N=3
			Factor=31, N=32
			Factor=127, N=128
7:4	1	/	1
3:0	R/W	0x7	PLL_PREDIV_M.
			PLL Pre-div Factor (M = Factor+1).
			The range is from 1 to 16.

3.2.5.5. PLL_DDR Control Register

	EE_BBIX COINT		
Offset: 0	x020	1	Register Name: PLL_DDR_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	PLL_ENABLE.
			0: Disable
			1: Enable
			This PLL is for DRAM.
			Set bit20 to validate the PLL after this bit is set to 1.
			The PLL Output = (24MHz*N*K)/M.
30:29	/	/	/
28	R	0x0	LOCK
			0: Unlocked
			1: Locked (It indicates that the PLL has been stable.)
27:25	/	/	
24	R/W	0x0	SDRAM_SIGMA_DELTA_EN.
			0: Disable
			1: Enable
23:21	/	/	
20	R/W	0x0	PLL_DDR_CFG_UPDATE.
	·		PLL_DDR Configuration Update.
			When PLL_DDR has been changed, this bit should be set to 1 to validate the
			PLL, otherwise the change would be invalid. And this bit would be cleared
			automatically after the PLL change is valid.
			0: No effect.
			1: Validating the PLL_DDR.
19:13	/	/	7
12:8	R/W	0xC	PLL FACTOR N.
		M_{II}	PLL Factor N.
	V ///		Factor=0, N=1
			Factor=1, N=2
			Factor=2, N=3
· () ·			
			Factor=31,N=32
7:6	/	/	
5:4	R/W	0x1	PLL_FACTOR_K.
	,		PLL Factor K.(K=Factor + 1)
			The range is from 1 to 4.
3:2	/	/	/
1:0	R/W	0x1	PLL_FACTOR_M.
	.,,.,		PLL Factor M.(M = Factor + 1)
			The range is from 1 to 4.

3.2.5.6. PLL_PERIPH Control Register

Offset: 0	Offset: 0x028		Register Name: PLL_PERIPH_CTRL_REG
Bit	R/W	Default/Hex	Description

31	R/W	0x0	PLL_ENABLE.
31	IX/ VV	OXO	
			0: Disable
			1: Enable
			The PLL Output = 24MHz*N*K.
			Note: The PLL Output should be fixed to 600MHz, it is not recommended to
			vary this value arbitrarily.
			The PLL output clock must be in the range of 200MHz~1.8GHz.
			Its default is 600MHz.
30:29	/	/	/
28	R	0x0	LOCK.
			0: Unlocked
			1: Locked (It indicates that the PLL has been stable.)
27:19	/	/	
18	R/W	0x1	PLL_24M_OUT_EN.
			PLL 24MHz Output Enable.
			0: Disable
			1: Enable
			When 25MHz crystal used, this PLL can output 24MHz.
17:16	R/W	0x0	PLL_24M_POST_DIV.
			PLL 24M Output Clock Post Divider (When 25MHz crystal used).
			1/2/3/4.
15:13	/	/	
12:8	R/W	0x18	PLL_FACTOR_N.
			PLL Factor N.
			Factor=0, N=1
			Factor=1, N=2
			Factor=2, N=3
	. 1 .	N_{II}	
		1	Factor=31,N=32
7:6	1	/	/
5:4	R/W	0x0	PLL_FACTOR_K.
O'	,		PLL Factor K.(K=Factor + 1)
			The range is from 1 to 4.
3:2	/	/	/
1:0	R/W	0x1	PLL_FACTOR_M.
	7		PLL Factor M (M = Factor + 1) is only valid in plltest debug.
			The PLL_PERIPH back door clock output =24MHz*N*K/M.
			The range is from 1 to 4.
			THE TAILEC IS HOTH I to 4.

3.2.5.7. CPU Clock Source Register

Offset: 0x050			Register Name: CPU_CLK_SRC_REG
Bit	R/W	Default/Hex	Description
31:18	/	/	/
17:16	R/W	0x1	CPU_CLK_SRC_SEL.
			CPU Clock Source Select.

			CPUCLK = CLK Source
			00: LOSC
			01: OSC24M
			1X: PLL_CPU
			If the clock source is changed, at most to wait for 8 present running clock
			cycles.
15:0	/	/	/

3.2.5.8. AHB/APB/HCLKC Configuration Register

Offset: 0x054			Register Name: AHB_APB_HCLKC_CFG_REG
Bit	R/W	Default/Hex	Description
31:18	/	/	/
17:16	R/W	0x1	HCLKC_DIV
			HCLKC Clock Divide Ratio.
			The clock source is the CPUCLK
			The clock source is the CPUCLK 00: /1 01: /2 10: /3
			01: /2
			10: /3
			11: /4
15:14	/	/	1
13:12	R/W	0x1	AHB_CLK_SRC_SEL.
			AHB_CLK = AHB_CLK_SRC_SEL/ AHB_CLK_DIV_RATIO
			00: LOSC
			01: OSC24M
			10: CPUCLK
		• •	11: PLL_PERIPH/AHB_PRE_DIV
11:10	/	1	/
9:8	R/W	0x0	APB_CLK_RATIO.
	V/V		APB Clock Divide Ratio.
			APB clock source is AHB clock.
			APB_CLK = AHB_CLK/ APB_CLK_RATIO
U'			0X: /2
			10: /4
			11: /8
7:6	R/W	0x0	AHB_PRE_DIV
			AHB Clock Pre-divide Ratio
			00: /1
			01: /2
			10: /3
			11: /4
5:4	R/W	0x1	AHB_CLK_DIV_RATIO.
			AHB Clock Divide Ratio.
			00: /1
			01: /2
		i l	10: /4

			11: /8
3:0	/	/	/

3.2.5.9. Bus Clock Gating Register 0

Offset: 0x060		<u> </u>	Register Name: BUS_CLK_GATING_REG0
Bit	R/W	Default/Hex	Description
31:25	/	/	/
24	R/W	0x0	USB_OTG_GATING.
	1,700	OXO .	Gating Clock For USB-OTG
			0: Mask
			1: Pass
23:22	/	/	/
21	R/W	0x0	SPI1_GATING.
	11,00	OXO	Gating Clock For SPI1
			0: Mask
			1: Pass
20	R/W	0x0	SPIO_GATING.
20	l ty vv	OXO	Gating Clock For SPI0
			0: Mask
			1: Pass
19:15	/	/	/
14	R/W	0x0	SDRAM_GATING.
1 -	ity vv	OXO	Gating Clock For SDRAM
			0: Mask
			1: Pass
13:10	/	/	/
9	R/W	0x0	SD1_GATING.
	1911	O.O.O	Gating Clock For SD1
		9 -	0: Mask
			1: Pass
8	R/W	0x0	SD0_GATING.
'U'	1.7		Gating Clock For SD0
			0: Mask
			1: Pass
7	/	/	/
6	R/W	0x0	DMA_GATING.
			Gating Clock For DMA
			0: Mask
			1: Pass
5:0	/	/	/
	1 *	1 '	1'

3.2.5.10. Bus Clock Gating Register 1

Offset: 0	Offset: 0x064		Register Name: BUS_CLK_GATING_REG1
Bit	Bit R/W Default/Hex		Description
31:15	/	/	/

14	R/W	0x0	DEFE_GATING.
			Gating Clock For DEFE
			0: Mask
			1: Pass
13			
12	R/W	0x0	DEBE_GATING.
			Gating Clock For DEBE
			0: Mask
			1: Pass
11	/	/	/
10	R/W	0x0	TVE_GATING.
			Gating Clock For TVE
			0: Mask
			1: Pass
9	R/W	0x0	TVD_GATING.
			Gating Clock For TVD
			0: Mask
			1: Pass
8	R/W	0x0	CSI_GATING.
			Gating Clock For CSI
			0: Mask
			1: Pass
7:6	/	/	
5	R/W	0x0	DEINTERLACE_GATING.
			Gating Clock For DE Interlacer
			0: Mask
			1: Pass
4	R/W	0x0	LCD_GATING.
	V///		Gating Clock For LCD
			0: Mask
			1: Pass
3:1	/	/	/
0	R/W	0x0	VE_GATING.
			Gating Clock For VE
			0: Mask
			1: Pass

3.2.5.11. Bus Clock Gating Register 2

Offset: 0	x068		Register Name: BUS_CLK_GATING_REG2
Bit	R/W	Default/Hex	Description
31:23	/	/	/
22	R/W	0x0	UART2_GATING.
			Gating Clock For UART2
			0: Mask
			1: Pass

	5.444		
21	R/W	0x0	UART1_GATING.
			Gating Clock For UART1
			0: Mask
			1: Pass
20	R/W	0x0	UARTO_GATING.
			Gating Clock For UARTO
			0: Mask
			1: Pass
19	/	/	/
18	R/W	0x0	TWI2_GATING.
			Gating Clock For TWI2
			0: Mask
			1: Pass
17	R/W	0x0	TWI1_GATING.
			Gating Clock For TWI1
			0: Mask
			1: Pass
16	R/W	0x0	TWI0_GATING.
	•		Gating Clock For TWI0
			0: Mask
			1: Pass
15:13	/	/	
12	R/W	0x0	DAUDIO_GATING.
	.,		Gating Clock For DAUDIO
			0: Mask
			1: Pass
11:4	/	1	/
3	R/W	0x0	RSB_GATING.
	11,700	OXO	Gating Clock For RSB
			0: Mask
-1			1: Pass
2	R/W	0x0	CIR_GATING.
2	IX) VV	OXO	Gating Clock For CIR
			0: Mask
1	D/M	0.0	1: Pass
1	R/W	0x0	OWA_GATING.
			Gating Clock For OWA
			0: Mask
	,		1: Pass
0	R/W	0x0	AUDIO_CODEC_GATING.
			Gating Clock For AUDIO_CODEC
			0: Mask
			1: Pass

3.2.5.12. SDMMC0 Clock Register

Offset: 0x088			Register Name: SDMMC0_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
			Gating Special Clock(Max Clock = 200MHz)
			0: Clock is OFF
			1: Clock is ON
			SCLK = Clock Source/Divider N/Divider M.
30:26	/	/	/
25:24	R/W	0x0	CLK_SRC_SEL.
			Clock Source Select
			00: OSC24M
			01: PLL_PERIPH
			1X: /
23	/	/	
22:20	R/W	0x0	SAMPLE_CLK_PHASE_CTR.
			Sample Clock Phase Control.
			The sample clock phase delay is based on the number of source clock that is
			from 0 to 7.
19:18	/	/	1
17:16	R/W	0x0	CLK_DIV_RATIO_N.
			Clock Pre-Divide Ratio (n)
			The select clock source is pre-divided by 2^n. The divider is 1/2/4/8.
15:11	/	/	1
10:8	R/W	0x0	OUTPUT_CLK_PHASE_CTR.
		: 0	Output Clock Phase Control.
		.1///	The output clock phase delay is based on the number of source clock that is
		D,	from 0 to 7.
7:4	/	7	/
3:0	R/W	0x0	CLK_DIV_RATIO_M.
			Clock Divide Ratio (m)
			The pre-divided clock is divided by (m+1). The divider is from 1 to 16.

3.2.5.13. SDMMC1 Clock Register

Offset: 0	0x08C		Register Name: SDMMC1_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
			Gating Special Clock(Max Clock = 200MHz)
			0: Clock is OFF
			1: Clock is ON
			SCLK= Clock Source/Divider N/Divider M.
30:26	/	/	/
25:24	R/W	0x0	CLK_SRC_SEL.
			Clock Source Select
			00: OSC24M

			01: PLL_PERIPH
			1X: /
23	/	/	/
22:20	R/W	0x0	SAMPLE_CLK_PHASE_CTR.
			Sample Clock Phase Control.
			The sample clock phase delay is based on the number of source clock that is
			from 0 to 7.
19:18	/	/	/
17:16	R/W	0x0	CLK_DIV_RATIO_N.
			Clock Pre-Divide Ratio (n)
			The select clock source is pre-divided by 2^n. The divider is 1/2/4/8.
15:11	/	/	/
10:8	R/W	0x0	OUTPUT_CLK_PHASE_CTR.
			Output Clock Phase Control.
			The output clock phase delay is based on the number of source clock that is
			from 0 to 7.
7:4	/	/	
3:0	R/W	0x0	CLK_DIV_RATIO_M.
			Clock Divide Ratio (m)
			The pre-divided clock is divided by (m+1). The divider is from 1 to 16.

3.2.5.14. DAUDIO Clock Register

Offset: 0:	кОВО		Register Name: DAUDIO_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
			Gating Special Clock(Max Clock = 200MHz)
		. 1111	0: Clock is OFF
			1: Clock is ON
30:18	1	1	/
17:16	R/W	0x0	CLK_SRC_SEL.
			00: PLL_AUDIO (8X)
			01: PLL_AUDIO(8X)/2
			10: PLL_AUDIO(8X)/4
			11: PLL_AUDIO(8X)/8
15:0	/	/	/.

3.2.5.15. OWA Clock Register

Offset: 0	x0B4		Register Name: OWA_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
			Gating Special Clock(Max Clock = 200MHz)
			0: Clock is OFF
			1: Clock is ON
30:18	/	/	/
17:16	R/W	0x1	CLK_SRC_SEL.

			00: PLL2 (8X)
			01: PLL2(8X)/2
			10: PLL2(8X)/4
			11: PLL2(8X)/8
15:0	/	/	/

3.2.5.16. CIR Clock Register

Offset: 0)x0B8		Register Name: CIR_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
			Gating Special Clock(Max Clock = 100MHz)
			0: Clock is OFF
			1: Clock is ON
			SCLK = Clock Source/Divider N/Divider M.
30:26	/	/	1
25:24	R/W	0x0	CLK_SRC_SEL.
			Clock Source Select
			00: LOSC
			01: OSC24M
			1X: /
23:18	/	/	1
17:16	R/W	0x0	CLK_DIV_RATIO_N.
			Clock Pre-divide ratio (n)
			The select clock source is pre-divided by 2 ⁿ . The divider is 1/2/4/8.
15:4	/	1	
3:0	R/W	0x0	CLK_DIV_RATIO_M.
		-1//	Clock divide ratio (m)
		N,	The pre-divided clock is divided by (m+1). The divider is from 1 to 16.

3.2.5.17. USBPHY Clock Register

Offset:	0x0CC		Register Name: USBPHY_CLK_REG
Bit	R/W	Default/Hex	Description
31:2	/	/	/
1	R/W	0x0	SCLK_GATING.
			USBPHY 24MHZ Clock Gating
			0: Clock is OFF
			1: Clock is ON
0	R/W	0x0	USBPHY_RST.
			USB PHY Reset Control
			0: Assert
			1: DEBE assert

3.2.5.18. DRAM Gating Register

Offset: 0x100			Register Name: DRAM_GATING_REG
Bit	R/W	Default/Hex	Description

31:27	/	/	/
26	R/W	0x0	BE_DCLK_GATING.
			Gating DRAM SCLK(1X) For BE
			0: Mask
			1: Pass
25	/	/	/
24	R/W	0x0	FE_DCLK_GATING.
			Gating DRAM SCLK(1X) For FE
			0: Mask
			1: Pass
23:4	/	/	/.
3	R/W	0x0	TVD_DCLK_GATING.
			Gating DRAM SCLK(1X) For TVD
			0: Mask
			1: Pass
2	R/W	0x0	DEINTERLACE_DCLK_GATING.
			Gating DRAM SCLK(1X) For DEINTERLACE
			0: Mask
			1: Pass
1	R/W	0x0	CSI_DCLK_GATING.
			Gating DRAM SCLK(1X) For CSI
			0: Mask
			1: Pass
0	R/W	0x0	VE_DCLK_GATING.
			Gating DRAM SCLK(1X) For VE
		\	0: Mask
			1: Pass

3.2.5.19. BE Clock Register

Offset: 0	Offset: 0x104		Register Name: BE_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
			Gating Special Clock
			0: Clock is OFF
			1: Clock is ON
			SCLK= Clock Source/Divider M.
30:27	/	/	/
26:24	R/W	0x0	CLK_SRC_SEL.
			Clock Source Select
			000: PLL_VIDEO
			001: /
			010: PLL_PERIPH
			011~111:/
23:4	/	/	
3:0	R/W	0x0	CLK_DIV_RATIO_M.

	Clock divide ratio (m)
	The pre-divided clock is divided by (m+1). The divider is from 1 to 16.

3.2.5.20. FE Clock Register

Offset:	0x10C		Register Name: FE_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
			Gating Special Clock
			0: Clock is OFF
			1: Clock is ON
			SCLK= Clock Source/Divider M.
30:27	/	/	/
26:24	R/W	0x0	CLK_SRC_SEL.
			Clock Source Select
			000: PLL_VIDEO
			001: /
			010: PLL_PERIPH
			011~111: /
23:4	/	/	
3:0	R/W	0x0	CLK_DIV_RATIO_M.
			Clock divide ratio (m)
			The pre-divided clock is divided by (m+1). The divider is from 1 to 16.

3.2.5.21. TCON Clock Register

Offset: 0	Offset: 0x118		Register Name: TCON_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
	1//	M,	Gating Special Clock
	ΛII		0: Clock is OFF
~			1: Clock is ON
			SCLK = Clock Source
30:27	/	/	/
26:24	R/W	0x0	CLK_SRC_SEL.
			Clock Source Select
			000: PLL_VIDEO(1X)
			001: /
			010: PLL_VIDEO(2X)
			011~111:/
23:0	/	/	/

3.2.5.22. De-interlacer Clock Register

Offset: 0x11C			Register Name: DI_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
			Gating Special Clock

			0: Clock is OFF
			1: Clock is ON
			SCLK = Clock Source/ Divider M
30:27	/	/	/
26:24	R/W	0x0	CLK_SRC_SEL.
			Clock Source Select
			000: PLL_VIDEO(1X)
			001: /
			010: PLL_VIDEO(2X)
			011~111: /
23:4	/	/	/
3:0	R/W	0x0	CLK_DIV_RATIO_M.
			Clock divide ratio (m)
			The pre-divided clock is divided by (m+1). The divider is from 1 to 16.

3.2.5.23. TVE Clock Register

Offset: 0x120			Register Name: TVE_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK2_GATING.
			Gating Special Clock 2
			0: Clock is OFF
			1: Clock is ON
			SCLK2= Clock Source/ Divider M
30:27	/	/	1
26:24	R/W	0x0	SCLK2_SRC_SEL.
		• 0	SClock2 Source Select
		. 1111	000: PLL_VIDEO(1X)
		N,	001: /
			010: PLL_VIDEO(2X)
			011~111:/
23:4	/	/	/
15	R/W	0x0	SCLK1_GATING.
			Gating Special Clock 1
			0: Clock is OFF
			1: Clock is ON
			SCLK = Clock Source
14:10	/	/	/
8	R/W	0x0	SCLK1_SRC_SEL.
			SClock1 Source Select
			0: TVE_SCLK2
			1: TVE_SCLK2 divide by 2
3:0	R/W	0x0	CLK_DIV_RATIO_M.
			Clock divide ratio (m)
			The pre-divided clock is divided by (m+1). The divider is from 1 to 16.

3.2.5.24. TVD Clock Register

Offset: 0x124			Register Name: TVD_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
			Gating Special Clock
			0: Clock is OFF
			1: Clock is ON
			SCLK = Clock Source/ Divider M
30:27	/	/	/
26:24	R/W	0x0	CLK_SRC_SEL.
			Clock Source Select
			000: PLL_VIDEO(1X)
			001: OSC24M
			010: PLL_VIDEO(2X)
			011~111:/
23:4	/	/	
3:0	R/W	0x0	CLK_DIV_RATIO_M.
			Clock divide ratio (m)
			The pre-divided clock is divided by (m+1). The divider is from 1 to 16.

3.2.5.25. CSI Clock Register

Offset: 0	Offset: 0x134		Register Name: CSI_CLK_REG
Bit	R/W	Default/Hex	Description
31:16	/	/	
15	R/W	0x0	CSI_MCLK_GATING.
		. ~	Gating Master Clock
		.111	0: Clock is OFF
	1//	N,	1: Clock is ON
			SCLK =Master Clock Source/ CSI_MCLK_DIV_M.
14:11	1	/	/
10:8	R/W	0x0	MCLK_SRC_SEL.
			Master Clock Source Select
			000: PLL_VIDEO(1X)
			001: /
			010:/
			011:/
			100: /
			101: OSC24M
			110~111:/
7:4	/	/	/
3:0	R/W	0x0	CSI_MCLK_DIV_M.
			CSI Master Clock divide ratio (m)
			The pre-divided clock is divided by (m+1). The divider is from 1 to 16.

3.2.5.26. VE Clock Register

Offset: 0	Offset: 0x13C		Register Name: VE_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
			0: Clock is OFF
			1: Clock is ON
			SCLK = PLL_VE output.
30:0	/	/	/

3.2.5.27. AUDIO CODEC Clock Register

Offset:	0x140		Register Name: AUDIO_CODEC _CLK_	_REG
Bit	R/W	Default/Hex	Description	
31	R/W	0x0	SCLK_GATING.	*
			Gating Special Clock	S
			0: Clock is OFF	:33
			1: Clock is ON	1510
			SCLK = PLL_AUDIO output.	
30:0	/	/	/	

3.2.5.28. AVS Clock Register

Offset: 0x144			Register Name: AVS_CLK_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SCLK_GATING.
			Gating Special Clock
			0: Clock is OFF
		. ~	1: Clock is ON
		. 1111	SCLK = OSC24M.
30:0	/		/

3.2.5.29. PLL Stable Time Register 0

Offset: 0)x200		Register Name: PLL_STABLE_TIME_REG0
Bit R/W Default/Hex		Default/Hex	Description
31:16	/	/	/
15:0	R/W	0x00FF	PLL_LOCK_TIME
			PLL Lock Time (Unit: us).
			Note: When any PLL (except PLL_CPU) is enabled or changed, the
			corresponding PLL lock bit will be set after the PLL Lock Time.

3.2.5.30. PLL Stable Time Register 1

Offset: 0x204			Register Name: PLL_STABLE_TIME_REG1	
Bit	R/W	Default/Hex	Description	
31:16	/	/	1	
15:0	R/W	0x00FF	PLL_CPU_LOCK_TIME	
			PLL_CPU Lock Time (Unit: us).	
			Note: When PLL_CPU is enabled or changed, the PLL_CPU lock bit will be set	

		after the PLL_CPU Lock Time.
--	--	------------------------------

3.2.5.31. PLL_CPU Bias Register

Offset: 0x220			Register Name: PLL_CPU_BIAS_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	VCO_RST.
			VCO reset In.
30:28	/	/	/
27:24	R/W	0x8	PLL_VCO_BIAS_CTRL.
			PLL VCO Bias Control[3:0].
23:21	/	/	/
20:16	R/W	0x10	PLL_BIAS_CUR_CTRL.
			PLL Bias Current Control[4:0].
15:11	/	/	
10:8	R/W	0x2	PLL_LOCK_CTRL.
			PLL Lock Time Control[2:0].
7:4	/	/	
3:0	R/W	0x0	PLL_DAMP_FACT_CTRL.
			PLL Damping Factor Control[3:0].

3.2.5.32. PLL_AUDIO Bias Register

Offset: 0:	x224		Register Name: PLL_AUDIO_BIAS_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	
28:24	R/W	0x10	PLL_VCO_BIAS.
		:01	PLL VCO Bias Current[4:0].
23:21	/	/	/
20:16	R/W	0x10	PLL_BIAS_CUR.
			PLL Bias Current[4:0].
15:0	/	/	/

3.2.5.33. PLL_VIDEO Bias Register

Offset: 0	x228		Register Name: PLL_VIDEO_BIAS_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	/
28:24	R/W	0x10	PLL_VCO_BIAS_CTRL.
			PLL VCO Bias Control[4:0].
23:21	/	/	/
20:16	R/W	0x10	PLL_BIAS_CTRL.
			PLL Bias Control[4:0].
15:3	/	/	/
2:0	R/W	0x0	PLL_DAMP_FACTOR_CTRL.
			PLL Damping Factor Control[2:0].

3.2.5.34. PLL_VE Bias Register

Offset: 0x22C			Register Name: PLL_VE_BIAS_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	/
28:24	R/W	0x10	PLL_VCO_BIAS_CTRL.
			PLL VCO Bias Control[4:0].
23:21	/	/	/
20:16	R/W	0x10	PLL_BIAS_CTRL.
			PLL Bias Control[4:0].
15:3	/	/	/
2:0	R/W	0x0	PLL_DAMP_FACTOR_CTRL.
			PLL Damping Factor Control[2:0].

3.2.5.35. PLL_DDR Bias Register

Offset: 0	Offset: 0x230		Register Name: PLL_DDR_BIAS_REG
Bit	R/W	Default/Hex	Description
31:28	R/W	0x8	PLL_VCO_BIAS.
			PLL VCO Bias[3:0].
27:26	/	/	1.
25	R/W	0x0	PLL_VCO_GAIN_CTRL_EN.
			PLL VCO Gain Control Enable.
			0: Disable
			1: Enable
24	R/W	0x1	PLL_BANDW_CTRL.
			PLL Band Width Control.
		:01	0: Narrow
			1: Wide
23:21	1		/
20:16	R/W	0x10	PLL_BIAS_CUR_CTRL.
			PLL Bias Current Control.
15	1	/	/
14:12	R/W	0x4	PLL_VCO_GAIN_CTRL.
			PLL VCO Gain Control Bit[2:0].
11:4	/	/	
3:0	R/W	0x0	PLL_DAMP_FACTOR_CTRL.
			PLL Damping Factor Control[3:0].

3.2.5.36. PLL_PERIPH Bias Register

Offset: 0)x234		Register Name: PLL_PERH_BIAS_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	1
28:24	R/W	0x10	PLL_VCO_BIAS.
			PLL VCO Bias[4:0].
23:21	/	/	1
20:16	R/W	0x10	PLL_BIAS_CUR_CTRL.

			PLL Bias Current Control.
15:5	/	/	/
4	R/W	0x1	PLL_BANDW_CTRL.
			PLL Band Width Control.
			0: Narrow
			1: Wide.
3:2	/	/	/
1:0	R/W	0x0	PLL_DAMP_FACTOR_CTRL.
			PLL Damping Factor Control[1:0].

3.2.5.37. PLL_CPU Tuning Register

Offset: 0:	Offset: 0x250		Register Name: PLL_CPU_TUN_REG
Bit	R/W	Default/Hex	Description
31:28	/	/	1
27	R/W	0x1	PLL_BAND_WID_CTRL.
			PLL Band Width Control.
			0: Narrow
			1: Wide
26	R/W	0x0	VCO_GAIN_CTRL_EN.
			VCO Gain Control Enable.
			0: Disable
			1: Enable
25:23	R/W	0x4	VCO_GAIN_CTRL.
			VCO Gain Control Bits[2:0].
22:16	R/W	0x10	PLL_INIT_FREQ_CTRL.
		• 0	PLL Initial Frequency Control[6:0].
15	R/W	0x0	C_OD.
			C-Reg-Od For Verify.
14:8	R/W	0x10	C_B_IN.
			C-B-In[6:0] For Verify.
7	R/W	0x0	C_OD1.
			C-Reg-Od1 For Verify.
6:0	R	0x0	C_B_OUT.
			C-B-Out[6:0] For Verify.

3.2.5.38. PLL_DDR Tuning Register

Offset: 0)x260		Register Name: PLL_DDR_TUN_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	/
28	R/W	0x1	VREG1_OUT_EN.
			Vreg1 Out Enable.
			0: Disable
			1: Enable
27	/	/	/
26:24	R/W	0x4	PLL_LTIME_CTRL.

			PLL Lock Time Control[2:0].
23	R/W	0x0	VCO_RST.
			VCO Reset In.
22:16	R/W	0x10	PLL_INIT_FREQ_CTRL.
			PLL Initial Frequency Control[6:0].
15	R/W	0x0	OD1.
			Reg-Od1 For Verify.
14:8	R/W	0x10	B_IN.
			B-In[6:0] For Verify.
7	R/W	0x0	OD.
			Reg-Od For Verify.
6:0	R	0x0	B_OUT.
			B-Out[6:0] For Verify.

3.2.5.39. PLL_AUDIO Pattern Control Register

Offset: 0x284			Register Name: PLL_AUDIO_PAT_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SIG_DELT_PAT_EN.
			Sigma-Delta Pattern Enable.
30:29	R/W	0x0	SPR_FREQ_MODE.
			Spread Frequency Mode.
			00: DC=0
			01: DC=1
			1X: Triangular
28:20	R/W	0x0	WAVE_STEP.
		• •	Wave Step.
19	1	1	/
18:17	R/W	0x0	FREQ.
	V/V		Frequency.
~			00: 31.5KHz
			01: 32KHz
			10: 32.5KHz
			11: 33KHz
16:0	R/W	0x0	WAVE_BOT.
			Wave Bottom.

3.2.5.40. PLL_VIDEO Pattern Control Register

Offset: 0x288			Register Name: PLLVIDEO_PAT_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SIG_DELT_PAT_EN.
			Sigma-Delta Pattern Enable.
30:29	R/W	0x0	SPR_FREQ_MODE.
			Spread Frequency Mode.
			00: DC=0
			01: DC=1

			1X: Triangular
28:20	R/W	0x0	WAVE_STEP.
			Wave Step.
19	/	/	/
18:17	R/W	0x0	FREQ.
			Frequency.
			00: 31.5KHz
			01: 32KHz
			10: 32.5KHz
			11: 33KHz
16:0	R/W	0x0	WAVE_BOT.
			Wave Bottom.

3.2.5.41. PLL_DDR Pattern Control Register

Offset: 0x290			Register Name: PLLDDR_PAT_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	SIG_DELT_PAT_EN.
			Sigma-Delta Pattern Enable.
30:29	R/W	0x0	SPR_FREQ_MODE.
			Spread Frequency Mode.
			00: DC=0
			01: DC=1
			1X: Triangular
28:20	R/W	0x0	WAVE_STEP.
			Wave Step.
19	1	1	
18:17	R/W	0x0	FREQ.
	. 1/1	M	Frequency.
	VIII		00: 31.5KHz
~			01: 32KHz
			10: 32.5KHz
V			11: 33KHz
16:0	R/W	0x0	WAVE_BOT.
			Wave Bottom.

3.2.5.42. Bus Software Reset Register 0

Offset: 0x02C0			Register Name: BUS_SOFT_RST_REG0
Bit	R/W	Default/Hex	Description
31:25	/	/	/
24	R/W	0x0	USBOTG_RST.
			USBOTG Reset.
			0: Assert
			1: De-assert
23:22		_	
21	R/W	0x0	SPI1_RST.

		1	
			SPI1 Reset.
			0: Assert
			1: De-assert
20	R/W	0x0	SPIO_RST.
			SPIO Reset.
			0: Assert
			1: De-assert
19:15	/	/	/
14	R/W	0x0	SDRAM_RST.
			SDRAM Reset.
			0: Assert
			1: De-assert
13:10	/	/	
9	R/W	0x0	SD1_RST.
			SD/MMC 1 Reset.
			0: Assert
			1: De-assert
8	R/W	0x0	SDO_RST.
			SD/MMC 0 Reset.
			0: Assert
			1: De-assert
7	/	/	/ / 000
6	R/W	0x0	DMA_RST.
			DMA Reset.
			0: Assert
		Y	1: De-assert
5:0	/	1	/
	•		·

3.2.5.43. Bus Software Reset Register 1

Offset: 0x2C4			Register Name: BUS_SOFT_RST_REG1
Bit	R/W	Default/Hex	Description
31:15	/	/	/
14	R/W	0x0	DEFE_RST.
			DEFE Reset.
			0: Assert
			1: De-assert
13	/	/	/
12	R/W	0x0	DEBE_RST.
			DEBE Reset.
			0: Assert
			1: De-assert
11	/	/	/
10	R/W	0x0	TVE_RST.
			TVE Reset.
			0: Assert

			1: De-assert
9	R/W	0x0	TVD_RST.
			TVD Reset.
			0: Assert
			1: De-assert
8	R/W	0x0	CSI_RST.
			CSI Reset.
			0: Assert
			1: De-assert
7:6	/	/	
5	R/W	0x0	DEINTERLACE_RST.
			DEINTERLACE Reset.
			0: Assert
			1: De-assert
4	R/W	0x0	LCD_RST.
			LCD Reset.
			0: Assert
			1: De-assert
3:1	/	/	1
0	R/W	0x0	VE_RST.
			VE Reset.
			0: Assert
			1: De-assert

3.2.5.44. Bus Software Reset Register 2

Offset: 0x2D0			Register Name: BUS_SOFT_RST_REG2
Bit	R/W	Default/Hex	Description
31:23	/		/
22	R/W	0x0	UART2_RST.
~			UART2 Reset.
			0: Assert
			1: De-assert
21	R/W	0x0	UART1_RST.
			UART1 Reset.
			0: Assert
			1: De-assert
20	R/W	0x0	UARTO_RST.
			UARTO Reset.
			0: Assert
			1: De-assert
19	/	/	/
18	R/W	0x0	TWI2_RST.
			TWI2 Reset.
			0: Assert
			1: De-assert

17	R/W	0x0	TWI1_RST.
1,	, ••	O.O.	TWI1 Reset.
			0: Assert
			1: De-assert
16	D/M	0x0	
16	R/W	UXU	TWIO_RST.
			TWIO Reset.
			0: Assert
	,	,	1: De-assert
15:13	/	/	
12	R/W	0x0	DAUDIO_RST.
			DAUDIO Reset.
			0: Assert
			1: De-assert
11:4	/	/	
3	R/W	0x0	RSB_RST.
			RSB Reset.
			0: Assert
			1: De-assert
2	R/W	0x0	CIR_RST.
			CIR Reset.
			0: Assert
			1: De-assert
1	R/W	0x0	OWA_RST.
			OWA Reset.
			0: Assert
			1: De-assert
0	R/W	0x0	AUDIO_CODEC_RST.
	. 1 .	N_{II}	AUDIO_CODEC Reset.
		7	0: Assert
			1: De-assert
		l	1

3.2.6. Programming Guidelines

3.2.6.1. PLL

- 1) In practice, other PLLs doesn't support dynamic frequency scaling except for CPU
- 2) After the PLL_DDR frequency changes, the 20-bit of PLL_DDR Control Register should be written 1 to make it valid;

3.2.6.2. BUS

- 1) When setting the BUS clock, you should set the division factor first, and after the division factor becomes valid, switch the clock source. The clock source will be switched after at least three clock cycles;
- 2) The BUS clock should not be dynamically changed in most applications.

3.3. Timer

3.3.1. Overview

Timer 0/1/2 can take their inputs from LOSC or OSC24M. They provide the operating system's scheduler interrupt. It is designed to offer maximum accuracy and efficient management, even for systems with long or short response time. They provide 32-bit programmable down-counter and work in auto-reload mode or no-reload mode. When the current value in Current Value Register is counting down to zero, the timer will generate interrupt if set interrupt enable bit. The watchdog is used to resume the controller operation when it had been disturbed by malfunctions such as noise and system errors. It features a down counter that allows a watchdog period of up to 16 seconds (512000 cycles). It can generate a general reset or interrupt request.

AVS counter is used to synchronize video and audio in the player.

3.3.2. Feature

The Timer module includes the following features:

- 3 timers for system scheduler counting using 24MHz or LOSC clock
- Each Timer could general individual interrupt
- 1 Watchdog for resetting whole system or interrupt
- 2 AVS counters used for synchronize video and audio in the player

3.3.3. Functionalities Description

3.3.3.1. Typical Applications

- Timer provides scheduler interrupt and delay or calculates external devices' frequency
- The watchdog supports reset function for system operation' malfunction
- AVS is used to synchronize video and audio in the player

3.3.3.2. Functional Block Diagram

Timer function structure and work flow

Timer counter' clock input comes from one of the three clock sources that could be pre-scaled up to 128 division. In single mode, when current value is counted down to 0, enable bit would be cleared automatically and Timer stops working. But in continuous mode, Interval Value will be auto-reloaded into *Current Value Register* and then counter counts from the new interval value again when current value is counted down to 0. Every time current value is counted down to 0, a pending will be generated. Pending could be sent to INTC only if IRQ enable bit is set.

Generally watchdog could not count down to 0 because it would be restart inside Interval Value. Otherwise the malfunction makes the watchdog counts down to 0 and a pending will be generated, which causes a reset (*Watchdog Configuration Register* is configured to whole system) or an interrupt (*Watchdog Configuration Register* is configured to only interrupt).

AVS has two counters which are both up-counted. The counter' clock source comes from 24MHz/Divisor_N and Divisor N is set in AVS Counter Divisor Register. AVS counter could be changed to pause or enable at any time.

3.3.4. Timer Register List

Module Name	Base Address
TIMER	0x01C20C00

Register Name	Offset	Description
TMR_IRQ_EN_REG	0x00	Timer IRQ Enable Register
TMR_IRQ_STA_REG	0x04	Timer Status Register
TMR0_CTRL_REG	0x10	Timer 0 Control Register
TMR0_INTV_VALUE_REG	0x14	Timer 0 Interval Value Register
TMR0_CUR_VALUE_REG	0x18	Timer 0 Current Value Register
TMR1_CTRL_REG	0x20	Timer 1 Control Register

TMR1_INTV_VALUE_REG	0x24	Timer 1 Interval Value Register
TMR1_CUR_VALUE_REG	0x28	Timer 1 Current Value Register
TMR2_CTRL_REG	0x30	Timer 2 Control Register
TMR2_INTV_VALUE_REG	0x34	Timer 2 Interval Value Register
TMR2_CUR_VALUE_REG	0x38	Timer 2 Current Value Register
AVS_CNT_CTL_REG	0x80	AVS Counter Control Register
AVS_CNT0_REG	0x84	AVS Counter 0 Register
AVS_CNT1_REG	0x88	AVS Counter 1 Register
AVS_CNT_DIV_REG	0x8C	AVS Counter Divisor Register
WDOG_IRQ_EN_REG	0xA0	Watchdog IRQ Enable Register
WDOG_IRQ_STA_REG	0xA4	Watchdog Status Register
WDOG_CTRL_REG	0xB0	Watchdog Control Register
WDOG_CFG_REG	0xB4	Watchdog Configuration Register
WDOG_MODE_REG	0xB8	Watchdog Mode Register

3.3.5. Timer Register Description

3.3.5.1. Timer IRQ Enable Register

WDOG_CIG_KEG				ONDT	Waterland Cormigaration Register
WDOG_I	WDOG_MODE_REG			0xB8	Watchdog Mode Register
	_	er Description			cnthusia
Offset:0>	(0		Regist	er Name: TMR_IRQ_EN_R	EG
Bit	R/W	Default/Hex	Descr	iption	
31:3	/	/	/	100°	
2	R/W	0x0	TMR2	_IRQ_EN.	
			Timer	2 Interrupt Enable.	
			0: No	effect,	
		• •	1: Tim	ner 2 Interval Value reached	d interrupt enable.
1	R/W	0x0	TMR1	_IRQ_EN.	
		M_{A} .	Timer	1 Interrupt Enable.	
			0: No	effect,	
~			1: Tin	ner 1 Interval Value reached	d interrupt enable.
0	R/W	0x0	TMR0	_IRQ_EN.	
			Timer	0 Interrupt Enable.	
			0: No	effect,	
			1: Tim	ner 0 Interval Value reache	d interrupt enable.

3.3.5.2. Timer IRQ Status Register

Offset:0x	Offset:0x04		Register Name: TMR_IRQ_STA_REG
Bit	R/W	Default/Hex	Description
31:3	/	/	/
2	R/W	0x0	TMR2_IRQ_PEND.
			Timer 2 IRQ Pending. Set 1 to the bit will clear it.
			0: No effect,
			1: Pending, timer 2 interval value is reached.
1	R/W	0x0	TMR1_IRQ_PEND.
			Timer 1 IRQ Pending. Set 1 to the bit will clear it.

			0: No effect,
			1: Pending, timer 1 interval value is reached.
0	R/W	0x0	TMR0_IRQ_PEND.
			Timer 0 IRQ Pending. Set 1 to the bit will clear it.
			0: No effect,
			1: Pending, timer 0 interval value is reached.

3.3.5.3. Timer 0 Control Register

Offset:0	x10		Register Name: TMR0_CTRL_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	/
7	R/W	0x0	TMR0_MODE.
			Timer 0 mode.
			0: Continuous mode. When interval value reached, the timer will not disable
			automatically.
			1: Single mode. When interval value reached, the timer will disable
			automatically.
6:4	R/W	0x0	TMRO_CLK_PRES.
			Select the pre-scale of timer 0 clock source.
			000: /1
			001: /2
			010: /4
			011: /8
			100: /16
			101: /32
		• • •	110: /64
			111: /128
3:2	R/W	0x1	TMRO_CLK_SRC.
			Timer 0 Clock Source.
	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		00: LOSC
			01: OSC24M
U			10: /
			11: /
1	R/W	0x0	TMR0_RELOAD.
			Timer 0 Reload.
			0: No effect
			1: Reload timer 0 Interval value
			After the bit is set, it can not be written again before it's cleared automatically.
0	R/W	0x0	TMR0_EN.
			Timer 0 Enable.
			0: Stop/Pause, 1: Start.
			If the timer is started, it will reload the interval value to internal register, and
			the current counter will count from interval value to 0.
			If the current counter does not reach the zero, the timer enable bit is set to
			"0", the current value counter will pause. At least wait for 2 cycles, the start bit

	can be set to 1. In timer pause state, the interval value register can be modified. If the timer is
	started again, and the Software hope the current value register to down-count
	from the new interval value, the reload bit and the enable bit should be set to
	1 at the same time.

3.3.5.4. Timer 0 Interval Value Register

Offset:0x14			Register Name: TMR0_INTV_VALUE_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	TMR0_INTV_VALUE.
			Timer 0 Interval Value.

Note:

1) The value setting should consider the system clock and the timer clock source.

3.3.5.5. Timer 0 Current Value Register

Offset:0x18			Register Name: TMR0_CUR_VALUE_REG	1510
Bit	R/W	Default/Hex	Description	. 100
31:0	R/W	0x0	TMR0_CUR_VALUE.	_
			Timer 0 Current Value.	

Note:

1) Timer 0 current value is a 32-bit down-counter (from interval value to 0).

3.3.5.6. Timer 1 Control Register

Offset:0x	20		Register Name: TMR1_CTRL_REG
Bit	R/W	Default/Hex	Description
31:8	/	1	/
7	R/W	0x0	TMR1_MODE.
		///	Timer 1 mode.
			0: Continuous mode. When interval value reached, the timer will not disable
~			automatically.
			1: Single mode. When interval value reached, the timer will disable
			automatically.
6:4	R/W	0x0	TMR1_CLK_PRES.
			Select the pre-scale of timer 1 clock source.
			000: /1
			001: /2
			010: /4
			011: /8
			100: /16
			101: /32
			110: /64
			111: /128
3:2	R/W	0x1	TMR1_CLK_SRC.
			Timer 1 Clock Source.
			00: LOSC

			01: OSC24M.
			10: /
			11:/
1	R/W	0x0	TMR1_RELOAD.
			Timer 1 Reload.
			0: No effect
			1: Reload timer 1 Interval value
			After the bit is set, it can not be written again before it's cleared automatically.
0	R/W	0x0	TMR1_EN.
			Timer 1 Enable.
			0: Stop/Pause, 1: Start.
			If the timer is started, it will reload the interval value to internal register, and
			the current counter will count from interval value to 0.
			If the current counter does not reach the zero, the timer enable bit is set to
			"0", the current value counter will pause. At least wait for 2 cycles, the start bit
			can be set to 1.
			In timer pause state, the interval value register can be modified. If the timer is
			started again, and the Software hope the current value register to down-count
			from the new interval value, the reload bit and the enable bit should be set to
			1 at the same time.

3.3.5.7. Timer 1 Interval Value Register

Offset:0x24			Register Name: TMR1_INTV_VALUE_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	TMR1_INTV_VALUE.
		• •	Timer 1 Interval Value.

Note:

1) The value setting should consider the system clock and the timer clock source.

3.3.5.8. Timer 1 Current Value Register

Offset:0x28			Register Name: TMR1_CUR_VALUE_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	TMR1_CUR_VALUE.
			Timer 1 Current Value.

3.3.5.9. Timer 2 Control Register

Offset:0	x30		Register Name: TMR2_CTRL_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	/
7	R/W	0x0	TMR2_MODE.
			Timer 2 mode.
			0: Continuous mode. When interval value reached, the timer will not disable
			automatically.
			1: Single mode. When interval value reached, the timer will disable
			automatically.

		T	
6:4	R/W	0x0	TMR2_CLK_PRES.
			Select the pre-scale of timer 2 clock source.
			000: /1
			001: /2
			010: /4
			011: /8
			100: /16
			101: /32
			110: /64
			111: /128
3:2	R/W	0x1	TMR2_CLK_SRC.
			Timer 2 Clock Source.
			00: LOSC
			01: OSC24M
			10: /
			11: /.
1	R/W	0x0	TMR2_RELOAD.
			Timer 2 Reload.
			0: No effect
			1: Reload timer 1 Interval value
			After the bit is set, it can not be written again before it's cleared automatically.
0	R/W	0x0	TMR2_EN.
			Timer 2 Enable.
			0: Stop/Pause, 1: Start.
			If the timer is started, it will reload the interval value to internal register, and
		• •	the current counter will count from interval value to 0.
			If the current counter does not reach the zero, the timer enable bit is set to
	1	M_{II}	"0", the current value counter will pause. At least wait for 2 cycles, the start bit
		12	can be set to 1.
	1		In timer pause state, the interval value register can be modified. If the timer is
			started again, and the Software hope the current value register to down-count
YU,			from the new interval value, the reload bit and the enable bit should be set to
			1 at the same time.

3.3.5.10. Timer 2 Interval Value Register

Offset:0x34			Register Name: TMR2_INTV_VALUE_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	TMR2_INTV_VALUE.
			Timer 2 Interval Value.

Note:

1) The value setting should consider the system clock and the timer clock source.

3.3.5.11. Timer 2 Current Value Register

Offset:0x38			Register Name: TMR2_CUR_VALUE_REG
Bit	R/W	Default/Hex	Description

31:0	R/W	0x0	TMR2_CUR_VALUE.
			Timer 2 Current Value.

Note:

1) Timer 2 current value is a 32-bit down-counter (from interval value to 0).

3.3.5.12. AVS Counter Control Register

Offset:0	0x80		Register Name: AVS_CNT_CTL_REG
Bit	R/W	Default/Hex	Description
31:10	/	/	/
9	R/W	0x0	AVS_CNT1_PS.
			Audio/Video Sync Counter 1 Pause Control
			0: Not pause
			1: Pause Counter 1
8	R/W	0x0	AVS_CNT0_PS.
			Audio/Video Sync Counter 0 Pause Control
			0: Not pause
			1: Pause Counter 0
7:2	/	/	1
1	R/W	0x0	AVS_CNT1_EN.
			Audio/Video Sync Counter 1 Enable/ Disable. The counter source is OSC24M.
			0: Disable
			1: Enable
0	R/W	0x0	AVS_CNTO_EN.
			Audio/Video Sync Counter 1 Enable/ Disable. The counter source is OSC24M.
			0: Disable
		• •	1: Enable

3.3.5.13. AVS Counter 0 Register

Offset:0	Offset:0x84		Register Name: AVS_CNT0_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	AVS_CNTO.
			Counter 0 for Audio/ Video Sync Application
			The high 32 bits of the internal 33-bits counter register. The initial value of the
			internal 33-bits counter register can be set by software. The LSB bit of the
			33-bits counter register should be zero when the initial value is updated. It will
			count from the initial value. The initial value can be updated at any time. It can
			also be paused by setting AVS_CNTO_PS to '1'. When it is paused, the counter
			won't increase.

3.3.5.14. AVS Counter 1 Register

Offset:0x88			Register Name: AVS_CNT1_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	AVS_CNT1.
			Counter 1 for Audio/ Video Sync Application
			The high 32 bits of the internal 33-bits counter register. The initial value of the

	internal 33-bits counter register can be set by software. The LSB bit of the
	33-bits counter register should be zero when the initial value is updated. It will
	count from the initial value. The initial value can be updated at any time. It can
	also be paused by setting AVS_CNT1_PS to '1'. When it is paused, the counter
	won't increase.

3.3.5.15. AVS Counter Divisor Register

Offset:0	x8C		Register Name: AVS_CNT_DIV_REG		
Bit	R/W	Default/Hex	Description		
31:28	/	/	/		
27:16	R/W	0x5DB	AVS_CNT1_D.		
			Divisor N for AVS Counter 1		
			AVS CN1 CLK=24MHz/Divisor_N1.		
			Divisor N1 = Bit [27:16] + 1.		
			The number N is from 1 to 0x7ff. The zero value is reserved.		
			The internal 33-bits counter engine will maintain another 12-bits counter. The		
			12-bits counter is used for counting the cycle number of one 24Mhz clock.		
			When the 12-bits counter reaches (>= N) the divisor value, the internal 33-bits		
			counter register will increase 1 and the 12-bits counter will reset to zero and		
			restart again.		
			Note: It can be configured by software at any time.		
15:12	/	/			
11:0	R/W	0x5DB	AVS_CNTO_D.		
			Divisor N for AVS Counter 0		
			AVS CN0 CLK=24MHz/Divisor_N0.		
		• •	Divisor N0 = Bit [11:0] + 1		
		. 1111	The number N is from 1 to 0x7ff. The zero value is reserved.		
		M_{i}	The internal 33-bits counter engine will maintain another 12-bits counter. The		
			12-bits counter is used for counting the cycle number of one 24Mhz clock.		
	I IV		When the 12-bits counter reaches (>= N) the divisor value, the internal 33-bits		
			counter register will increase 1 and the 12-bits counter will reset to zero and		
			restart again.		
			Note: It can be configured by software at any time.		

3.3.5.16. Watchdog IRQ Enable Register

Offset:0xA0			Register Name: WDOG_IRQ_EN_REG
Bit	R/W	Default/Hex	Description
31:1	/	/	/
0	R/W	0x0	WDOG_IRQ_EN.
			Watchdog Interrupt Enable.
			0: No effect, 1: Watchdog interrupt enable.

3.3.5.17. Watchdog Status Register

Offset:0xA4			Register Name: WDOG_IRQ_STA_REG
Bit	R/W	Default/Hex	Description

31:1	/	/	/
0	R/W	0x0	WDOG_IRQ_PEND.
			Watchdog IRQ Pending. Set 1 to the bit will clear it.
			0: No effect, 1: Pending, Watchdog interval value is reached.

3.3.5.18. Watchdog Control Register

Offset:0	Offset:0xB0		Register Name: WDOG_CTRL_REG	
Bit	R/W	Default/Hex	Description	
31:13	/	/	/	
12:1	R/W	0x0	WDOG_KEY_FIELD.	
			Watchdog Key Field.	
			Should be written at value 0xA57. Writing any other value in this field aborts	
			the write operation.	
0	R/W	0x0	WDOG_RSTART.	
			Watchdog Restart.	
			0: No effect, 1: Restart the Watchdog.	

3.3.5.19. Watchdog Configuration Register

Offset:0	Offset:0xB4		Register Name: WDOG_CFG_REG	
Bit	R/W	Default/Hex	Description	
31:2	/	/	/	
1:0	R/W	0x1	WDOG_CONFIG. 00: / 01: to whole system 10: only interrupt 11: /	

3.3.5.20. Watchdog Mode Register

Offset:0x	(B8		Register Name: WDOG_MODE_REG		
Bit	R/W	Default/Hex	Description		
31:8	/	/	/		
7:4	R/W	0x0	WDOG_INTV_VALUE.		
			Watchdog Interval Value.		
			Watchdog clock source is LOSC. If the clock source is turned off, Watchdog will		
			not work.		
			0000: 16000 cycles (0.5s)		
			0001: 32000 cycles (1s)		
			0010: 64000 cycles (2s)		
			0011: 96000 cycles (3s)		
			0100: 128000 cycles (4s)		
			0101: 160000 cycles (5s)		
			0110: 192000 cycles (6s)		
			0111: 256000 cycles (8s)		
			1000: 320000 cycles (10s)		
			1001: 384000 cycles (12s)		

			1010: 448000 cycles (14s)
			1011: 512000 cycles (16s)
			others: /
3:1	/	/	/
0	R/W	0x0	WDOG_EN.
			Watchdog Enable.
			0: No effect
			1: Enable the Watchdog.

3.3.6. Programming Guidelines

3.3.6.1. Timer

Here takes Timer 0 for an example: 1ms delay, 24MHz clock source, Single mode, 2 prescale:

3.3.6.2. Watchdog

Here is an example: 24M/750 as clock source, interval value is 1s, watchdog configuration to whole system, 500ms delay from watchdog enable to watchdog restart.

3.4. PWM

3.4.1. Overview

The output of the PWM is a toggling signal whose frequency and duty cycle can be modulated by its programmable registers. Each channel has a dedicated internal 16-bit up counter. If the counter reaches the value stored in the channel period register, it resets. At the beginning of a count period cycle, the PWMOUT is set to active state and count from 0x0000.

The PWM divider divides the clock (24MHz) by 1~4096 according to the pre-scalar bits in the PWM control register. In PWM cycle mode, the output will be a square waveform; the frequency is set to the period register. In PWM pulse mode, the output will be a positive pulse or a negative pulse. JSiasts

3.4.2. Feature

The PWM includes the following features:

- 2 PWM channels supported and 1 output pin for PWM1/2 channel each
- Support outputting 2 kinds of waveform: square waveform and pulse waveform
- Support 0% to 100% adjustable duty cycle
- Support 0Hz minimum output frequency and 24MHz maximum output frequency

3.4.3. Functionalities Description

3.4.3.1. Functional Block Diagram

PWM output waveform

When PWM is enabled, the PWM can output two signals from corresponding pins. PWM clock comes from the clock pre-scaled form 24MHz. In cycle mode, PWM outputs square waveform whose entire cycles length and active cycles length are decided by period register. And in pulse mode, PWM output a pulse waveform and the pulse length(active cycles length) is just decide by active cycles on period register. Entire cycles length and active cycles length could be counted out from the following formulas:

> Entire cycles length = entire cycles / PWM CLK Active cycles length = active cycles / PWM CLK

3.4.4. Operation Principle

3.4.4.1. PWM output pins

Before using PWM, it is necessary to configure PWM output at the corresponding pin. There are several pins which could be configured for PWM output for each PWM channel. Take configuring PWM1 output for an example, both PE6 pin and PF5 pin could be configured for PWM output.

3.4.5. PWM Register List

Module Name	Base Address
PWM	0x01C21000

Register Name	Offset	Description	
PWM_CTRL_REG	0x00	PWM Control Register	67
PWM_CH0_PERIOD	0x04	PWM Channel 0 Period Register	:27
PWM_CH1_PERIOD	0x08	PWM Channel 1 Period Register	1210.

3.4.6. PWM Register Description

3.4.6.1. PWM Control Register

Offset: 0	OxO		Register Name: PWM_CTRL_REG
Bit	R/W	Default/Hex	Description
31:30	/	/	
29	RO	0x0	PWM1_RDY.
		• 4	PWM1 period register ready.
			0: PWM1 period register is ready to write
		1/1/1	1: PWM1 period register is busy
28	RO	0x0	PWM0_RDY.
			PWM0 period register ready.
			0: PWM0 period register is ready to write
			1: PWM0 period register is busy
27:25	/	/	/
24	R/W	0x0	PWM1_BYPASS.
			PWM CH1 bypass enable.
			If the bit is set to 1, PWM1's output is OSC24MHz.
			0: Disable
			1: Enable
23	R/W	0x0	PWM_CH1_PULSE_OUT_START.
			PWM Channel 1 pulse output start.
			0: No effect
			1: Output 1 pulse
			The pulse width should be according to the period 1 register [15:0], and the pulse
			state should be according to the active state.
			After the pulse is finished, the bit will be cleared automatically.

22	R/W	0x0	PWM_CH1_MODE.
			PWM Channel 1 mode.
			0: Cycle mode
			1: Pulse mode
21	R/W	0x0	PWM_CH1_CLK_GATING
			Gating the Special Clock for PWM1 (0: mask, 1: pass).
20	R/W	0x0	PWM_CH1_ACT_STATE.
			PWM Channel 1 Active State.
			0: Low Level
			1: High Level
19	R/W	0x0	PWM_CH1_EN.
			PWM Channel 1 Enable.
			0: Disable
			1: Enable
18:15	R/W	0x0	PWM_CH1_PRESCAL.
			PWM Channel 1 Pre-scalar.
			These bits should be setting before the PWM Channel 1 clock gate on.
			0000: /120
			0001: /180
			0010: /240
			0011: /360
			0100: /480
			0101: /
			0110: /
			0111:/
			1000: /12k
			1001: /24k
		$I \cdot N \cdot I$	1010: /36k
		112	1011: /48k
			1100: /72k
			1101: /
\cdot			1110: /
			1111: /1
14:10	/	/	/
9	R/W	0x0	PWM0_BYPASS.
			PWM CH0 bypass enable.
			If the bit is set to 1, PWM0's output is OSC24MHz.
			0: Disable
			1: Enable
8	R/W	0x0	PWM_CH0_PUL_START.
			PWM Channel 0 pulse output start.
			0: No effect,
			1: Output 1 pulse.
			The pulse width should be according to the period 0 register [15:0], and the pulse
			state should be according to the active state.

			After the pulse is finished, the bit will be cleared automatically.	
7	D /\A/	0.0		
7	R/W	0x0	PWM_CHANNELO_MODE.	
			0: Cycle mode,	
			1: Pulse mode.	
6	R/W	0x0	SCLK_CH0_GATING.	
			Gating the Special Clock for PWM0 (0: mask, 1: pass).	
5	R/W	0x0	PWM_CH0_ACT_STA.	
			PWM Channel 0 Active State.	
			0: Low Level	
			1: High Level	
4	R/W	0x0	PWM_CHO_EN.	
			PWM Channel 0 Enable.	
			0: Disable	
			1: Enable	
3:0	R/W	0x0	PWM_CH0_PRESCAL.	
			PWM Channel 0 Pre-scalar.	
			These bits should be setting before the PWM Channel 0 clock gate on.	
			0000: /120	
			0001: /180	
			0010: /240	
			0011: /360	
			0100: /480 0101: /	
			0101: /	
			0110: /	
			0111: /	
			1000: /12k	
			1001: /24k	
		1-11	1010: /36k	
		112.	1011: /48k	
			1100: /72k	
			1101: /	
			1110: /	
			1111: /1	

3.4.6.2. PWM Channel 0 Period Register

			<u> </u>
Offset: (Offset: 0x04		Register Name: PWM_CH0_PERIOD
Bit	R/W	Default/Hex	Description
31:16	R/W	х	PWM_CHO_ENTIRE_CYS
			Number of the entire cycles in the PWM clock.
			0 = 1 cycle
			1 = 2 cycles
			N = N+1 cycles
			If the register need to be modified dynamically, the PCLK should be faster than the
			PWM CLK (PWM CLK = 24MHz/pre-scale).

15:0	R/W	х	PWM_CH0_ACT_CYS
			Number of the active cycles in the PWM clock.
			0 = 0 cycle
			1 = 1 cycles
			N = N cycles

Note:

• The active cycles should be no larger than the entire cycles.

3.4.6.3. PWM Channel 1 Period Register

Offset:	0x08		Register Name: PWM_CH1_PERIOD
Bit	R/W	Default/Hex	Description
31:16	R/W	х	PWM_CH1_ENTIRE_CYS
			Number of the entire cycles in the PWM clock.
			0 = 1 cycle
			1 = 2 cycles
			N = N+1
			If the register need to be modified dynamically, the PCLK should be faster than the
			PWM CLK (PWM CLK = 24MHz/pre-scale).
15:0	R/W	х	PWM_CH1_ACT_CYS
			Number of the active cycles in the PWM clock.
			0 = 0 cycle
			1 = 1 cycles
			N = N cycles

Note:

• The active cycles should be no larger than the entire cycles.

3.5. INTC

3.5.1. Overview

Interrupt controller (INTC) handles all interrupt sources connected to it. It has a set of registers for managing interrupt sources and interrupt behavior. It provides a priority controller for serving higher interrupt even if a lower interrupt is serving. It also provides a fast forcing way for these interrupt sources which desire to have a fast interrupt request to CPU though they don't generate pending.

3.5.2. Feature

The INTC includes the following features:

- Controls the nIRQ Processor
- Sixty-four individually maskable interrupt sources
- One external NMI interrupt source
- 4-Level Priority Controller
- h Enthusiasts Thirteen External Sources of Edge-sensitive or Level-sensitive
- **Fast Forcing**

3.5.3. Functionalities Description

Handling all interrupt sources for processor connected to INTC

3.5.3.1. Functional Block Diagram

It provides handling of up to sixty-three interrupt sources. The 4-level Priority Controller allows the user to define the priority for each interrupt source, thus permitting higher priority interrupts to be serviced even if a lower priority interrupt is being treated. The fast forcing feature redirects any internal or external source to provide a fast interrupt

rather than a normal interrupt.

For an interrupt pending, it becomes 1 when both interrupt source and relevant interrupt enable bit are high level, and if interrupt source or relevant interrupt enable is 0, the pending would become 0. Since NMI is a external interrupt, and it has four interrupt source type, so, after changing the type of interrupt source, its pending should be cleared by set 1 at the end of interrupt service progress.

3.5.4. Interrupt Source

3.5.4. Interrupt So	urce	1	
Name	Number	Vector	Description
NMI	0	0x0000	NMI interrupt
UARTO	1	0x0004	UARTO interrupt
UART1	2	0x0008	UART1 interrupt
UART2	3	0x000C	UART2 interrupt
/	4	0x0010	1
OWA	5	0x0014	OWA interrupt
CIR	6	0x0018	CIR interrupt
TWI0	7	0x001C	TWI0 interrupt
TWI1	8	0x0020	TWI1 interrupt
TWI2	9	0x0024	TWI2 interrupt
SPI0	10	0x0028	SPIO interrupt
SPI1	11	0x002C	SPI1 interrupt
/	12	0x0030	
Timer0	13	0x0034	Timer0 interrupt
Timer1	14	0x0038	Timer1 interrupt
Timer2	15	0x003C	Timer2 interrupt
Watchdog	16	0x0040	Watchdog interrupt
RSB	17	0x0044	RSB interrupt
DMA	18	0x0048	DMA interrupt
	19	0x004C	
Touch Panel	20	0x0050	Touch Panel interrupt
Audio Codec	21	0x0054	Audio Codec interrupt
KEYADC	22	0x0058	KEYADC interrupt
SDC0	23	0x005C	SDC0 interrupt
SDC1	24	0x0060	SDC1 interrupt
/	25	0x0064	/
USB-OTG	26	0x0068	USB-OTG interrupt
TVD	27	0x006C	TVD interrupt
TVE	28	0x0070	TVE interrupt
TCON	29	0x0074	LCD interrupt
DE_FE	30	0x0078	DE_FE interrupt
DE_BE	31	0x007C	DE_BE interrupt
CSI	32	0x0080	CSI interrupt
DE-interlacer	33	0x0084	DE-interlacer interrupt
VE	34	0x0088	VE interrupt

Name	Number	Vector	Description
DAUDIO	35	0x008C	DAUDIO interrupt
/	36	0x0090	
/	37	0x0094	1
PIOD	38	0x0098	PIOD interrupt
PIOE	39	0x009C	PIOE interrupt
PIOF	40	0x00A0	PIOF interrupt

3.5.5. INTC Register List

Module Name	Base Address
INTC	0x01C20400

Register Name	Offset	Description
INTC_VECTOR_REG	0x00	Interrupt Vector Register
INTC_BASE_ADDR_REG	0x04	Interrupt Base Address Register
NMI_INT_CTRL_REG	0x0C	NMI Interrupt Control Register
INTC_PEND_REG0	0x10	Interrupt Pending Register 0
INTC_PEND_REG1	0x14	Interrupt Pending Register 1
INTC_EN_REG0	0x20	Interrupt Enable Register 0
INTC_EN_REG1	0x24	Interrupt Enable Register 1
INTC_MASK_REG0	0x30	Interrupt Mask Register 0
INTC_MASK_REG1	0x34	Interrupt Mask Register 1
INTC_RESP_REG0	0x40	Interrupt Response Register 0
INTC_RESP_REG1	0x44	Interrupt Response Register 1
INTC_FF_REG0	0x50	Interrupt Fast Forcing Register 0
INTC_FF_REG1	0x54	Interrupt Fast Forcing Register 1
INTC_PRIO_REGO	0x60	Interrupt Source Priority Register 0
INTC_PRIO_REG1	0x64	Interrupt Source Priority Register 1
INTC_PRIO_REG2	0x68	Interrupt Source Priority Register 2
INTC_PRIO_REG3	0x6C	Interrupt Source Priority Register 3

3.5.6. INTC Register Description

3.5.6.1. Interrupt Vector Register

Offset:0x0			Register Name: INTC_VECTOR_REG	
Bit	R/W	Default/Hex	Description	
31:2	RO	0x0	INTC_VECTOR_ADDR.	
			This register present the vector address for the interrupt currently active on the	
			CPU IRQ input.	
1:0	RO	0x0	Always return zero to this field.	

3.5.6.2. Interrupt Base Address Register

Offset:0x4			Register Name: INTC_BASE_ADDR_REG
Bit R/W Default/Hex Description		Description	
31:2	R/W	0x0	INTC_BASE_ADDR.
			This bit-field holds the upper 30 bits of the base address of the vector table.
1:0	RO	0x0	Always write zero to this bit-field.

3.5.6.3. NMI Interrupt Control Register

Offset:0	Dx0C		Register Name: NMI_INT_CTRL_REG	
Bit	R/W	Default/Hex	Description	
31:2	/	/	/	
1:0	R/W	0x0	NMI_SRC_TYPE.	
			External NMI Interrupt Source Type.	3
			00: Low level sensitive	S
			01: Negative edge trigged	:33
			10: High level sensitive	1510
			11: Positive edge sensitive	· MV

3.5.6.4. Interrupt IRQ Pending Register 0

Offset:0	Offset:0x10		Register Name: INTC_PEND_REG0
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	INTC_PENDO.
			Interrupt Source [31:0] Pending/Clear Bit.
			0: Corresponding interrupt is not pending.
			1: Corresponding interrupt is pending

3.5.6.5. Interrupt IRQ Pending Register 1

Offset:0	x14	IIA,	Register Name: INTC_PEND_REG1
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	INTC_PEND1.
			Interrupt Source [63:32] Pending/Clear Bit.
			0: Corresponding interrupt is not pending.
			1: Corresponding interrupt is pending

3.5.6.6. Interrupt Enable Register 0

Offset:0x20			Register Name: INTC_EN_REG0
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	INTC_ENO.
			Interrupt Source [31:0] Enable Bits.
			0: Corresponding interrupt is disabled.
			1: Corresponding interrupt is enabled.

3.5.6.7. Interrupt Enable Register 1

Offset:0	Offset:0x24		Register Name: INTC_EN_REG1
Bit	R/W	Default/Hex	Description

31:0	R/W	0x0	INTC_EN1.
			Interrupt Source [63:32] Enable Bits.
			0: Corresponding interrupt is disabled.
			1: Corresponding interrupt is enabled.

3.5.6.8. Interrupt Mask Register 0

Offset:0x30			Register Name: INTC_MASK_REG0
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	INTC_MASKO.
			Interrupt Source [31:0] Mask Bits.
			0: No effect.
			1: interrupt is masked.
			If interrupt is enabled and the interrupt occurred, the interrupt pending bit will
			be set whether the corresponding interrupt mask bit is set.

3.5.6.9. Interrupt Mask Register 1

Offset:0	0x34		Register Name: INTC_MASK_REG1
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	INTC_MASK1.
			Interrupt Source [63:32] Mask Bits.
			0: No effect.
			1: interrupt is masked.
			If interrupt is enabled and the interrupt occurred, the interrupt pending bit will
			be set whether the corresponding interrupt mask bit is set.

3.5.6.10. Interrupt Response Register 0

Offs	Offset:0x40			Register Name: INTC_RESP_REG0
Bit		R/W	Default/Hex	Description
31:0	0	R/W	0x0	INTC_RESPO.
	~			Interrupt Response Bits.
				If the corresponding bit is set, the interrupt with the lower or the same priority
)			level is masked.

3.5.6.11. Interrupt Response Register 1

Offset:0	Offset:0x44		Register Name: INTC_RESP_REG1
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	INTC_RESP1.
			Interrupt Response Bits.
			If the corresponding bit is set, the interrupt with the lower or the same priority
			level is masked.

3.5.6.12. Interrupt Fast Forcing Register 0

Offset:0	Offset:0x50		Register Name: INTC_FF_REG0
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	INTC_FF0.

	Enables the fast forcing feature on the corresponding interrupt source [31:0].
	0: No effect.
	1: Forcing the corresponding interrupt.
	Setting this bit can be valid only when the corresponding interrupt enable bit is
	set.

3.5.6.13. Interrupt Fast Forcing Register 1

Offset:0x54			Register Name: INTC_FF_REG1
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	INTC_FF1.
			Enables the fast forcing feature on the corresponding interrupt source [63:32].
			0: No effect.
			1: Forcing the corresponding interrupt.
			Setting this bit can be valid only when the corresponding interrupt enable bit is
			set.

3.5.6.14. Interrupt Source Priority Register 0

Offset:0x	Offset:0x60		Register Name: INTC_PRIO_REG0
Bit	R/W	Default/Hex	Description
31:30	R/W	0x0	IRQ15_PRIO.
			IRQ 15 Priority.
			Set priority level for IRQ 15
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
		• 4	Level3 = 0x3 level 3, highest priority
29:28	R/W	0x0	IRQ14_PRIO.
		$I \cap I \cap I$	IRQ 14 Priority.
		/// "	Set priority level for IRQ 14
~			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
27:26	R/W	0x0	IRQ13_PRIO.
			IRQ 13 Priority.
			Set priority level for IRQ 13
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
25:24	R/W	0x0	IRQ12_PRIO.
			IRQ 12 Priority.
			Set priority level for IRQ 12
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1

		T	
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
23:22	R/W	0x0	IRQ11_PRIO.
			IRQ 11 Priority.
			Set priority level for IRQ 11
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
21:20	R/W	0x0	IRQ10_PRIO.
			IRQ 10 Priority.
			Set priority level for IRQ 10
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
19:18	R/W	0x0	IRQ9_PRIO.
			IRQ 9 Priority.
			Set priority level for IRQ 9
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
17:16	R/W	0x0	IRQ8_PRIO.
			IRQ 8 Priority.
			Set priority level for IRQ 8
		1	Level0 = 0x0 level 0, lowest priority
		1-11	Level1 = 0x1 level 1
		1100	Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
15:14	R/W	0x0	IRQ7_PRIO.
, (O) \			IRQ 7 Priority.
			Set priority level for IRQ 7
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
13:12	R/W	0x0	IRQ6_PRIO.
			IRQ 6 Priority.
			Set priority level for IRQ 6
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
11:10	R/W	0x0	IRQ5_PRIO.
	,	JA0	

		ı	
			IRQ 5 Priority.
			Set priority level for IRQ 5
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
9:8	R/W	0x0	IRQ4_PRIO.
			IRQ 4 Priority.
			Set priority level for IRQ 4
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
7:6	R/W	0x0	IRQ3_PRIO.
			IRQ 3 Priority. Set priority level for IRQ 3 Level0 = 0x0 level 0, lowest priority Level1 = 0x1 level 1 Level2 = 0x2 level 2
			Set priority level for IRQ 3
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
5:4	R/W	0x0	IRQ2_PRIO.
			IRQ 2 Priority.
			Set priority level for IRQ 2
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
		77	Level3 = 0x3 level 3, highest priority
3:2	R/W	0x0	IRQ1_PRIO.
		112	IRQ 1 Priority.
			Set priority level for IRQ 1
Y	1		Level0 = 0x0 level 0, lowest priority
(()			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
1:0	/	/	/
		1	

3.5.6.15. Interrupt Source Priority Register 1

Offset:0x64			Register Name: INTC_PRIO_REG1
Bit	R/W	Default/Hex	Description
31:30	R/W	0x0	IRQ31_PRIO.
			IRQ 31 Priority.
			Set priority level for IRQ 31
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2

			Level3 = 0x3 level 3, highest priority
29:28	R/W	0x0	IRQ30_PRIO.
25.20	11, 11	ONO	IRQ 30 Priority.
			Set priority level for IRQ 30
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level 2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
27:26	R/W	0x0	IRQ29_PRIO.
27.20	IX/ VV	0.00	IRQ 29 Priority.
			Set priority level for IRQ 29
			Level 0 = 0x0 level 0, lowest priority
			Level 1 = 0x1 level 1
			Level 2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
25:24	R/W	0x0	
25.24	N/ VV	OXO	IRQ28_PRIO. IRQ 28 Priority.
			Set priority level for IRQ 28
			Level 0 = 0x0 level 0, lowest priority
			Level 1 = 0x1 level 1
			Level 2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
23:22	R/W	0x0	IRQ27_PRIO.
25.22	11,700	OXO	IRQ 27 Priority.
			Set priority level for IRQ 27
			Level0 = 0x0 level 0, lowest priority
		(Level1 = 0x1 level 1
			Level2 = 0x2 level 2
		1112	Level3 = 0x3 level 3, highest priority
21:20	R/W	0x0	IRQ26_PRIO.
			IRQ 26 Priority.
()			Set priority level for IRQ 26
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
19:18	R/W	0x0	IRQ25_PRIO.
			IRQ 25 Priority.
			Set priority level for IRQ 25
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
17:16	R/W	0x0	IRQ24_PRIO.
			IRQ 24 Priority.

			Set priority level for IRQ 24
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
15:14	R/W	0x0	IRQ23_PRIO.
			IRQ 23 Priority.
			Set priority level for IRQ 23
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
13:12	R/W	0x0	IRQ22_PRIO.
			IRQ 22 Priority.
			Set priority level for IRQ 22
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			IRQ 22 Priority. Set priority level for IRQ 22 Level0 = 0x0 level 0, lowest priority Level1 = 0x1 level 1 Level2 = 0x2 level 2 Level3 = 0x3 level 3, highest priority
			Level3 = 0x3 level 3, highest priority
11:10	R/W	0x0	IRQ21_PRIO.
			IRQ 21 Priority.
			Set priority level for IRQ 21
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
9:8	R/W	0x0	IRQ20_PRIO.
		$I \cap M$	IRQ 20 Priority.
			Set priority level for IRQ 20
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
, O '			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
7:6	R/W	0x0	IRQ19_PRIO.
			IRQ 19 Priority.
			Set priority level for IRQ 19
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
5:4	R/W	0x0	IRQ18_PRIO.
			IRQ 18 Priority.
			Set priority level for IRQ 18
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1

			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
3:2	R/W	0x0	IRQ17_PRIO.
			IRQ 17 Priority.
			Set priority level for IRQ 17
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
1:0	R/W	0x0	IRQ16_PRIO.
			IRQ 16 Priority.
			Set priority level for IRQ 16
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority

3.5.6.16. Interrupt Source Priority Register 2

Offset:0	ĸ68		Register Name: INTC_PRIO_REG2
Bit	R/W	Default/Hex	Description
31:30	R/W	0x0	IRQ47_PRIO.
			IRQ 47 Priority.
			Set priority level for IRQ 47
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
29:28	R/W	0x0	IRQ46_PRIO.
		110	IRQ 46 Priority.
			Set priority level for IRQ 46
			Level0 = 0x0 level 0, lowest priority
1 O ,			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
27:26	R/W	0x0	IRQ45_PRIO.
			IRQ 45 Priority.
			Set priority level for IRQ 45
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
25:24	R/W	0x0	IRQ44_PRIO.
			IRQ 44 Priority.
			Set priority level for IRQ 44
			Level0 = 0x0 level 0, lowest priority

11:10	R/W	0x0	IRQ37_PRIO.
11.10	11/ VV	0.00	IRQ 37 Priority.
			Set priority level for IRQ 37
			Level 0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
0.0	5/14/	0.0	Level3 = 0x3 level 3, highest priority
9:8	R/W	0x0	IRQ36_PRIO.
			IRQ 36 Priority.
			Set priority level for 36
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
	- 6		Level3 = 0x3 level 3, highest priority
7:6	R/W	0x0	IRQ35_PRIO.
			IRQ 35 Priority.
			Set priority level for IRQ 35
			IRQ 35 Priority. Set priority level for IRQ 35 Level0 = 0x0 level 0, lowest priority Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
5:4	R/W	0x0	IRQ34_PRIO.
			IRQ 34 Priority.
			Set priority level for IRQ 34
			Level0 = 0x0 level 0, lowest priority
		• 4	Level1 = 0x1 level 1
			Level2 = 0x2 level 2
		1/1/	Level3 = 0x3 level 3, highest priority
3:2	R/W	0x0	IRQ33_PRIO.
			IRQ 33 Priority.
			Set priority level for IRQ 33
	•		Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
1:0	R/W	0x0	IRQ32_PRIO.
			IRQ 32 Priority.
			Set priority level for IRQ 32
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority

3.5.6.17. Interrupt Source Priority Register 3

Offset:0x6C	Register Name: INTC_PRIO_REG3
-------------	-------------------------------

Bit	R/W	Default/Hex	Description
31:30	R/W	0x0	IRQ63_PRIO.
			IRQ 63 Priority.
			Set priority level for IRQ 63
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
29:28	R/W	0x0	IRQ62_PRIO.
			IRQ 62 Priority.
			Set priority level for IRQ 62
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
27:26	R/W	0x0	IRQ61_PRIO.
			IRQ 61 Priority.
			Set priority level for IRQ 61
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
25:24	R/W	0x0	IRQ60_PRIO.
			IRQ 60 Priority.
			Set priority level for IRQ 60
			Level0 = 0x0 level 0, lowest priority
		11.	Level1 = 0x1 level 1
		$I \sim N I I$	Level2 = 0x2 level 2
		110.	Level3 = 0x3 level 3, highest priority
23:22	R/W	0x0	IRQ59_PRIO.
			IRQ 59 Priority.
· () ·			Set priority level for IRQ 59
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
21:20	R/W	0x0	IRQ58_PRIO.
			IRQ 58 Priority.
			Set priority level for IRQ 58
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
19:18	R/W	0x0	IRQ57_PRIO.
			IRQ 57 Priority.

			Set priority level for IRQ 57
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
17:16	R/W	0x0	IRQ56_PRIO.
			IRQ 56 Priority.
			Set priority level for IRQ 56
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
15:14	R/W	0x0	IRQ55_PRIO.
			IRQ 55 Priority.
			Set priority level for IRQ 55
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			IRQ 55 Priority. Set priority level for IRQ 55 Level0 = 0x0 level 0, lowest priority Level1 = 0x1 level 1 Level2 = 0x2 level 2 Level3 = 0x3 level 3, highest priority
			Level3 = 0x3 level 3, highest priority
13:12	R/W	0x0	IRQ54_PRIO.
			IRQ 54 Priority.
			Set priority level for IRQ 54
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
11:10	R/W	0x0	IRQ53_PRIO.
		$I \cdot N$	IRQ 53 Priority.
		110	Set priority level for IRQ 53
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
· O '			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
9:8	R/W	0x0	IRQ52_PRIO.
			IRQ 52 Priority.
			Set priority level for IRQ 52
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
7:6	R/W	0x0	IRQ51_PRIO.
			IRQ 51 Priority.
			Set priority level for IRQ 51
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1

	_	1	
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
5:4	R/W	0x0	IRQ50_PRIO.
			IRQ 50 Priority.
			Set priority level for IRQ 50
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
3:2	R/W	0x0	IRQ49_PRIO.
			IRQ 49 Priority.
			Set priority level for IRQ 49
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
1:0	R/W	0x0	IRQ48_PRIO.
			IRQ 48 Priority.
			Set priority level for IRQ 48
			Level0 = 0x0 level 0, lowest priority
			Level1 = 0x1 level 1
			Level2 = 0x2 level 2
			Level3 = 0x3 level 3, highest priority
	P	llvi,	nne
0			

3.6. DMA

3.6.1. Overview

There are two kinds of system DMA in the Soc. One is Normal DMA (NDMA) with 4 channels; the other is Dedicated DMA (DDMA) with 4 channels.

Normal DMA master interface support single and INCR4 operation (may be early terminated), and will treat any response from AHB bus as OK response. Dedicated DMA master interface supports Single and INCR4 operation (may be early terminated), and will treat any response from DMA bus as OK response.

- , neral PCA FINISIAS IS

3.6.4. Block diagram

DDMA Process NDMA Process Choose a idle DMA Channel Choose a idle DMA Channel Fill in SRC Address Reg Fill in SRC Address Reg Fill in DST Address Reg Fill in DST Address Reg Fill in BCNT Reg Fill in BCNT Reg Fill in PARAM Reg Continuous . Continuous Mode? No Mode? No Yes Yes Config Reg 29-bit is 1 Config Reg 29-bit is 1 Fill in Config Reg Fill in Config Reg **Enable DMA Channel Enable DMA Channel** No No Config Reg Config Reg 29-bit is 1? 29-bit is 1? Yes Yes DMA Finish **DMA** Finish

3.6.5. Operation Principle

3.6.5.1. Address aligned and unaligned

DMA can support 8-bit/16-bit/32-bit data width. The data width of Source and Destination can be different, but the address should be aligned.

NDMA: SRC and DST are both work in INC mode (increase mode).

The address aligned includes source address word-aligned and destination address word-aligned.

DDMA: SRC and DST are both work in linear mode.

DMA Channel 0~3 are the Normal DMA, Channel 4~7 are the Dedicated DMA. NDMA and DDMA have some different working modes. Only some modes of the DDMA support the address not aligned:

	Mode	Address aligned
NDNAA	Increase	Should
NDMA	10	Should
DDMA	Linear	Not should

IO	Should
----	--------

Although the increase mode of NDMA should be address aligned, but its byte counter should not be multiple. The DDMA forth channel has 8x64-bit FIFO; the other DDMA channels have 8x32-bit FIFO.

3.6.5.2. Clock gating and reset

By default the DMA clock gating is mask. When it is necessary to use DMA, its clock gating should be open in *AHB1 Module Clock Gating Register* and then de-assert the software reset in *AHB1 Module Software Reset Register* on CCU module. If it is no need to use DMA, both the gating bit and software reset bit should be wrote 0.

3.6.6. DMA Register List

Module Name	Base Address	
DMA	0x01C02000	: 25

Register Name	Offset	Description
DMA_INT_CTRL_REG	0x00	DMA Interrupt Control Register
DMA_INT_STA_REG	0x04	DMA Interrupt Status Register
DMA_PTY_CFG_REG	0x08	DMA Priority Configure Register
NDMA_CFG_REG	0x100+n*0x20+0x0	Normal DMA Configure Register n (n=0~3)
NDMA_SRC_ADR_REG	0x100+n*0x20+0x4	Normal DMA Source Address Register n (n=0~3)
NDMA_DES_ADR_REG	0x100+n*0x20+0x8	Normal DMA Destination Address Register n (n=0~3)
NDMA_BYTE_CNT_REG	0x100+n*0x20+0xC	Normal DMA Byte Counter Register n (n=0~3)
DDMA_CFG_REG	0x300+n*0x20+0x0	Dedicated DMA Configure Register n (n=0~3)
DDMA_SRC_ADR_REG	0x300+n*0x20+0x4	Dedicated DMA Source Address Register n (n=0~3)
DDMA_DES_ADR_REG	0x300+n*0x20+0x8	Dedicated DMA Destination Address Register n (n=0~3)
DDMA_BYTE_CNT_REG	0x300+n*0x20+0xC	Dedicated DMA Byte Counter Register n (n=0~3)
DDMA_PAR_REG	0x300+n*0x20+0x18	Dedicated DMA Parameter Register n (n=0~3)
DDMA_GEN_DATA	0x300+n*0x20+0x1c	Dedicated DMA General DATA Register 3

3.6.7. DMA Register Description

3.6.7.1. DMA Interrupt Control Register

Offset: 0x00			Register Name: DMA_INT_CTRL_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	Reserved.
[16 + 2*n + 1]	R/W	0x0	Dedicated DMA n Full Transfer Interrupt Enable (n=0~3)
			0: Disable
			1: Enable
[16 + 2*n + 0]	R/W	0x0	Dedicated DMA n Half Transfer Interrupt Enable (n=0~3)
			0: Disable
			1: Enable

15:8	/	/	Reserved.
[2*n + 1]	R/W	0x0	Normal DMA n Full Transfer Interrupt Enable (n=0~3)
			0: Disable
			1: Enable
[2*n + 0]	R/W	0x0	Normal DMA n Half Transfer Interrupt Enable (n=0~3)
			0: Disable
			1: Enable

3.6.7.2. DMA Interrupt Status Register

Offset: 0x04			Register Name: DMA_INT_STA_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	Reserved.
[16+2*n+1]	R/W	0x0	Dedicated DMA n Full Transfer Interrupt Pending (n=0~3)
			0: No interrupt
			1: Interrupt pending
			Set 1 to clear it.
[16+2*n+0]	R/W	0x0	Dedicated DMA n Half Transfer Interrupt Pending (n=0~3)
			0: No interrupt
			1: Interrupt pending
			Set 1 to clear it.
15:8	/	/	Reserved.
[2*n+1]	R/W	0x0	Normal DMA n Full Transfer Interrupt Pending (n=0~3)
			0: No interrupt
			1: Interrupt pending
			Set 1 to clear it.
[2*n+0]	R/W	0x0	Normal DMA n Half Transfer Interrupt Pending (n=0~3)
		1///	0: No interrupt
		1,	1: Interrupt pending
-		}	Set 1 to clear it.

3.6.7.3. DMA Priority Configure Register

Officety OvOS	•		Posister Name: DMA DTV CEC DEC
Offset: 0x08		T	Register Name: DMA_PTY_CFG_REG
Bit	R/W	Default/Hex	Description
31:17	/	/	Reserved.
16	R/W	0x0	DMA Auto Clock Gating bit
			0: DMA auto clock gating enable
			1: DMA auto clock gating disable
			If DMA works in continuous mode, this bit should be set to 1.
15:10	/	/	Reserved.
9:7	R/W	0x3	NDMA Priority Counter.
			If NDMA grant the AHB Bus, it can continuously access AHB with burst or
			single operation for N+1 times without interrupt by other AHB masters.
6:4	R/W	0x1	AC320 Priority Counter.
			If AC320 grant the AHB Bus, it can continuously access AHB with burst or
			single operation for N+1 times without interrupt by other AHB masters.

3:2	/	/	Reserved.
1:0	R/W	0x0	NDMA/CPU Priority Configure Bit
			00: CPU>NDMA
			01: NDMA>CPU
			10: Reserved
			11: Reserved

Note:

- 1) For DDMA, the priority order is: 0>1>2>3;
- 2) For NDMA, the priority order is: 0>1>2>3;
- 3) The number is DMA index.

3.6.7.4. Normal DMA Configure Register

Offset: 0x100+r	1*0x20 + 0	x0 (N=0~3)	Register Name: NDMA_CFG_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	DMA Loading. If set to 1, DMA will start and load the DMA registers to the shadow registers. The bit will hold on until the DMA finished. It will be cleared automatically. Set 0 to the bit will reset the corresponding DMA channel.
30	RO	0x0	DMA Busy Status. 0: DMA idle, 1: DMA busy.
29	R/W	0x0	DMA Continuous Mode Enable. 0: Disable, 1: Enable.
28:26	R/W	0x0 0x0	DMA Wait State. 0: 1 1: 2 2: 4 3: 8 4: 16 5: 32 6: 64 7: 128 Normal DMA Destination Data Width. 00: 8-bit 01: 16-bit 10: 32-bit 11: /
23	R/W	0x0	DMA Destination Burst Length. 0: 1 1: 4
22:21	R/W	0x0	Normal DMA Destination Address Type. 00: Linear Mode 01: IO Mode 1x: /
20:16	R/W	0x0	Normal DMA Destination DRQ Type.

	1	T	
			0x00 : /
			0x01 : OWA Tx
			0x02 : /
			0x03:/
			0x04 : SPI0 Tx
			0x05 : SPI1 Tx
			0x06 : /
			0x07 : /
			0x08 : UART0 Tx
			0x09 : UART1 Tx
			0x0A : UART2 Tx
			0x0B:/
			0x0C : Audio Codec DAC (headphone)
			0x0D · /
			0x0E : Daudio
			0x0F:/
			0x0E: Daudio 0x0F: / 0x10: SRAM Memory 0x11: SDRAM Memory
			0x11 : SDRAM Memory
			0x12:/
			0x13:/
			0x14 : USB
			0x15 : USB-EP1
			0x16 : USB-EP2
			0x17 : USB-EP3
			Others:/
15	R/W	0x0	Normal DMA remain byte counter read enable
	,		If this bit is set, the remain byte counter can read out from
	. 1 . 1		NDMA_BYTE_CNT_REG register
14:10	1	1	Reserved.
9:8	R/W	0x0	Normal DMA Source Data Width.
7 7			00: 8-bit
(0)			01: 16-bit
			10: 32-bit
			11: /
7	R/W	0x0	DMA Source Burst Length.
	.,		0: 1
			1: 4
6:5	R/W	0x0	Normal DMA Source Address Type.
	',''		00: Linear Mode
			01: IO Mode
			1x: /
4:0	R/W	0x0	Normal DMA Source DRQ Type.
	','		0x00 : IR Rx
			0x01:/
			0x01:/ 0x02:/
			0.02.7

T T		
		0x03:/
		0x04 : SPI0 Rx
		0x05 : SPI1 Rx
		0x06 : /
		0x07 : /
		0x08 : UARTO Rx
		0x09 : UART1 Rx
		0x0A : UART2 Rx
		0x0B:/
		0x0C : Audio Codec
		0x0D : TP ADC
		0x0E : Daudio
		0x0F:/
		0x10 : SRAM memory
		0x11 : SDRAM memory
		0x12:/ 0x13:/
		0x13:/
		0x14 : USB
		0x15 : USB-EP1
		0x16 : USB-EP2
		0x17 : USB-EP3
		Others:/
-		

3.6.7.5. Normal DMA Source Address Register

Offset: 0x100+n*0x20+0x4 (N=0~3)			Register Name: NDMA_SRC_ADR_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	Normal DMA Source Address.

3.6.7.6. Normal DMA Destination Address Register

Offset: 0x100+n*0x20+0x8 (N=0~3)			Register Name: NDMA_DES_ADR_REG
Bit R/W Default/Hex		Default/Hex	Description
31:0	R/W	0x0	Normal DMA Destination Address.

3.6.7.7. Normal DMA Byte Counter Register

Offset: 0x100+n*0x20+0xC (N=0~3)		C (N=0~3)	Register Name: NDMA_BYTE_CNT_REG
Bit	R/W	Default/Hex	Description
31:18	/	/	Reserved.
17:0	R/W	0x0	Normal DMA Byte Counter.
			If NDMA_CFG_REGn bit 15 is set, the remain byte counter can read out
			from this register

Note:

1) If ByteCounter=0, DMA will transfer no byte. The maximum value is 128k.

3.6.7.8. Dedicated DMA Configure Register

Offset: 0x300+n*0x20+0x0 (N=0~3)	Register Name: DDMA_CFG_REG
----------------------------------	-----------------------------

ow ared et its
ared
ared
et its
et its
CI
77
to

			0x8: /
			0x9: AHB Memory
			Others: /
15	R/W	0x0	DMA remain byte counter read enable
	1.,	o no	If this bit is set, the remain byte counter can read out from
			DDMA_BYTE_CNT_REG register
14:11	/	/	Reserved.
10	R/W	0x0	DMA Source INCR8 enable
	11,700	0.00	0: Single or INCR4 (determine by bit 7), 1: INCR8.
			This bit is only valid for DDMA3(n = 3)
9:8	R/W	0x0	DMA Source Data Width.
9.8	117 00	0.00	00: 8-bit
			01: 16-bit
			10: 32-bit
			11:/
7	R/W	0x0	DMA Source Burst Length.
/	N/ VV	OXO	0: 1
			1: 4
6:5	R/W	0x0	DMA Source Address Mode
0.5	117 00	0.00	00: Linear Mode
			01: IO Mode
			1x: /
4:0	R/W	0x0	Dedicated DMA Source DRQ Type
4.0	117 00	0.00	0x0: SRAM
			0x1: SDRAM memory
			0x2: /
			0x3: /
	. 1 . 1		0x4: USB
			0x5: /
			0x6: /
7 1			0x7: /
()			0x8: /
			0x9: AHB Memory
			Others: /

3.6.7.9. Dedicated DMA Source Address Register

Offset: 0x300+n*0x20+0x4 (N=0~3)			Register Name: DDMA_SRC_ADR_REG
Bit	Bit R/W Default/Hex		Description
31:0	R/W	0x0	Dedicated DMA Source Start Address.

3.6.7.10. Dedicated DMA Destination Address Register

Offset: 0x300+n*0x20+0x8 (N=0~3)			Register Name: DDMA_DES_ADR_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	Dedicated DMA Destination Start Address.

3.6.7.11. Dedicated DMA Byte Counter Register

Offset: 0x300+n*0x20+0x0C (N=0~3)		xOC (N=0~3)	Register Name: DDMA_BYTE_CNT_REG
Bit	R/W	Default/Hex	Description
31:25	/	/	Reserved.
24:0	R/W	0x0	Dedicated DMA Byte Counter.
			If DDMA_CFG_REGn bit 15 is set, the remain byte counter can read out
			from this register

Note:

1) If Byte Counter=0, DMA will transfer no byte. The maximum value is 0x1000000.

3.6.7.12. Dedicated DMA Parameter Register

Offset: 0x300+i	n*0x20+0	x18 (N=0~3)	Register Name: DDMA_PAR_REG	
Bit	R/W	Default/Hex	Description	*
31:24	R/W	0x0	Destination block counter.	6
23:16	R/W	0x0	Destination Comity Counter	133
15:8	R/W	0x0	Source block counter.	1510
7:0	R/W	0x0	Source Comity Counter	

Note:

1) If the counter=N, the value is N+1.

3.6.7.13. Dedicated DMA General Data Register

Offset: 0x3	Offset: 0x300+3*0x20+0x1C		Register Name: DDMA_GEN_DATA
Bit	Bit R/W Default/Hex		Description
31:0	R/W	0x0	Dedicated DMA general data
			This register is only valid for DDMA3(n = 3)
FOL			

3.7. Port Controller

3.7.1. Overview

The chip has 6 ports for multi-functional input/out pins. They are shown below:

- Port A(PA): 4 input/output port
- Port B(PB): 4 input/output port
- Port C(PC): 4 input/output port
- Port D(PD): 22 input/output port
- Port E(PE): 13 input/output port
- Port F(PF): 6 input/output port

For various system configurations, these ports can be easily configured by software. All these ports can be configured as GPIO if multiplexed functions are not used. The total 4 group external PIO interrupt sources are supported and interrupt mode can be configured by software.

3.7.2. Port Register List

Module Name	Base Address	
PIO	0x01C20800	

Register Name	Offset	Description
Pn_CFG0	n*0x24+0x00	Port n Configure Register 0 (n=0~5)
Pn_CFG1	n*0x24+0x04	Port n Configure Register 1 (n=0~5)
Pn_CFG2	n*0x24+0x08	Port n Configure Register 2 (n=0~5)
Pn_CFG3	n*0x24+0x0C	Port n Configure Register 3 (n=0~5)
Pn_DATA	n*0x24+0x10	Port n Data Register (n=0~5)
Pn_DRV0	n*0x24+0x14	Port n Multi-Driving Register 0 (n=0~5)
Pn_DRV1	n*0x24+0x18	Port n Multi-Driving Register 1 (n=0~5)
Pn_PUL0	n*0x24+0x1C	Port n Pull Register 0 (n=0~5)
Pn_PUL1	n*0x24+0x20	Port n Pull Register 1 (n=0~5)
PIO_INT_CFG0	0x200+n*0x20+0x0	PIO Interrupt Configure Register 0 (n=0~2)
PIO_INT_CFG1	0x200+n*0x20+0x4	PIO Interrupt Configure Register 1 (n=0~2)
PIO_INT_CFG2	0x200+n*0x20+0x8	PIO Interrupt Configure Register 2 (n=0~2)
PIO_INT_CFG3	0x200+n*0x20+0xC	PIO Interrupt Configure Register 3 (n=0~2)
PIO_INT_CTRL	0x200+n*0x20+0x10	PIO Interrupt Control Register (n=0~2)
PIO_INT_STA	0x200+n*0x20+0x14	PIO Interrupt Status Register (n=0~2)
PIO_INT_DEB	0x200+n*0x20+0x18	PIO Interrupt Debounce Register (n=0~2)
SDR_PAD_DRV	0x2C0	SDRAM Pad Multi-Driving Register
SDR_PAD_PUL	0x2C4	SDRAM Pad Pull Register

3.7.3. Port Register Description

3.7.3.1. PA Configure Register 0

Offset: 0	Offset: 0x00		Register Name: PA_CFG0	
Bit	R/W	Default/Hex	Description	
31:15	/	/	Reserved	
			PA3 Select	
			000: Input	001: Output
			010: TP_Y2	011: IR_RX
			100: DA_OUT	101: UART1_TX
14:12	R/W	7	110: SPI1_MISO	111: Disabled
11	/	/	Reserved	c\
			PA2 Select	: 22
			000: Input	001: Output
			010: TP_Y1	011: PWM0
			100: DA_IN	101: UART1_RX
10:8	R/W	7	110: SPI1_CLK	111: Disabled
7	/	/	Reserved	
			PA1 Select	
			000: Input	001: Output
			010: TP_X2	011: Reserved
			100: DA_LRCK	101: UART1_CTS
6:4	R/W	7	110: SPI1_MOSI	111: Disabled
3	/	/	Reserved	
			PA0 Select	
	1/1/	7,,	000: Input	001: Output
	1110		010: TP_X1	011: Reserved
			100: DA_BCLK	101: UART1_RTS
2:0	R/W	7	110: SPI1_CS	111: Disabled

3.7.3.2. PA Configure Register 1

Offset: 0x	Offset: 0x04		Register Name: PA_CFG1
Bit	Bit R/W Default/Hex		Description
31:0	/	/	Reserved

3.7.3.3. PA Configure Register 2

Offset: 0x	Offset: 0x08		Register Name: PA_CFG2
Bit	R/W Default/Hex		Description
31:0	/	/	Reserved

3.7.3.4. PA Configure Register 3

Offset: 0x0C			Register Name: PA_CFG3
Bit	R/W	Default/Hex	Description

31:0	/	/	Reserved	
------	---	---	----------	--

3.7.3.5. PA Data Register

Offset:	0x10		Register Name: PA_DAT	
Bit	R/W	Default/Hex	Description	
31:4	/	/	Reserved	
			If the port is configured as input, the corresponding bit is the pin state.	
			If the port is configured as output, the pin state is the same as the	
			corresponding bit. The read bit value is the value setup by software. If	
			the port is configured as functional pin, the undefined value will be	
3:0	R/W	0	read.	

3.7.3.6. PA Multi-Driving Register 0

Offset: 0x14			Register Name: PA_DRV0	6
Bit	R/W	Default/Hex	Description	(2)
31:0	/	/	Reserved	151

3.7.3.7. PA Multi-Driving Register 1

Offset: 0x18			Register Name: PA_DRV1
Bit	R/W	Default/Hex	Description
31:0	/	/	Reserved

3.7.3.8. PA Pull Register 0

Offset: 0x1C			Register Name: PA_PULLO
Bit R/W Default/Hex		Default/Hex	Description
31:0	/	/	Reserved

3.7.3.9. PA Pull Register 1

Off	Offset: 0x20			Register Name: PA_PULL1
Bit	Bit R/W Default/Hex		Default/Hex	Description
31:	0	/	/	Reserved

3.7.3.10. PB Configure Register 0

Offset: 0x	(24		Register Name: PB_CFG0	
Bit	R/W	Default/Hex	Description	
31:15	/	/	Reserved	
			PB3 Select	
			000: Input	001: Output
			010: DDR_REF_D	011: IR_RX
			100: Reserved	101: Reserved
14:12	R/W	7	110: Reserved	111: Disabled
11	/	/	Reserved	
10:8	R/W	2	Reserved	
7	/	/	Reserved	

6	:4	R/W	2	Reserved
3		/	/	Reserved
2	:0	R/W	2	Reserved

3.7.3.11. PB Configure Register 1

Offset: 0x28			Register Name: PB_CFG1
Bit	Bit R/W Default/Hex		Description
31:0	/	/	Reserved

3.7.3.12. PB Configure Register 2

Offset: 0x2C			Register Name: PB_CFG2	
Bit	R/W	Default/Hex	Description	30
31:0	/	/	Reserved	251

3.7.3.13. PB Configure Register 3

Offset: 0x	Offset: 0x30		Register Name: PB_CFG3	
Bit	R/W	Default/Hex	Description	
31:0	/	0x7	Reserved	

3.7.3.14. PB Data Register

Offset: (0x34		Register Name: PB_DAT
Bit	R/W	Default/Hex	Description
31:4	/	/	Reserved
	. 1/1/	iinn	If the port is configured as input, the corresponding bit is the pin state. If the port is configured as output, the pin state is the same as the corresponding bit. The read bit value is the value setup by software. If the port is configured as functional pin, the undefined value will be
3:0	R/W	0	read.

3.7.3.15. PB Multi-Driving Register 0

Offset: 0x38		Register Name: PB_DRV0		
Bit	R/W	Default/Hex	Description	
31:8	/	/	Reserved	
		PB[n] Multi-Driving Select (n = 0~3)		
[2i+1:2i]			00: Level 0	01: Level 1
(i=0~3)	R/W	1	10: Level 2	11: Level 3

3.7.3.16. PB Multi-Driving Register 1

Offset: 0x3	С		Register Name: PB_DRV1
Bit	Bit R/W Default/Hex		Description
31:0	/	/	Reserved

3.7.3.17. PB Pull Register 0

Offset: 0x40		Register Name: PB_PULL0		
Bit R/W Default/Hex		Description		
31:8	/	/	Reserved	
		PB[n] Pull-up/down Select (n = 0~3)	
[2i+1:2i]			00: Pull-up/down disable	01: Pull-up
(i=0~3)	R/W	0x0	10: Pull-down	11: Reserved

3.7.3.18. PB Pull Register 1

Offset: 0x44			Register Name: PB_PULL1	
Bit R/W Default/Hex		Default/Hex	Description	
31:0	/	/	Reserved	

3.7.3.19. PC Configure Register 0

Offset: 0x	Offset: 0x48		Register Name: PC_CFG0	133
Bit	R/W	Default/Hex	Description	.151
31:15	/	/	Reserved	
			PC3 Select	
			000: Input	001: Output
			010: SPI0_MOSI	011: UARTO_TX
			100: Reserved	101: Reserved
14:12	R/W	7	110: Reserved	111: Disabled
11	/	/	Reserved	
			PC2 Select	
			000: Input	001: Output
		: 01	010: SPI0_MISO	011: SDC1_D0
			100: Reserved	101: Reserved
10:8	R/W	7	110: Reserved	111: Disabled
7	/	/	Reserved	
V			PC1 Select	
0)			000: Input	001: Output
			010: SPI0_CS	011: SDC1_CMD
).			100: Reserved	101: Reserved
6:4	R/W	7	110: Reserved	111: Disabled
3	/	/	Reserved	
			PC0 Select	
			000: Reserved	001: Output
			010: SPI0_CLK	011: SDC1_CLK
			100: Reserved	101: Reserved
2:0	R/W	7	110: Reserved	111: Disabled

3.7.3.20. PC Configure Register 1

Offset: 0x4C			Register Name: PC_CFG1
Bit	Bit R/W Default/Hex		Description
31:0	/	/	Reserved

3.7.3.21. PC Configure Register 2

Offset: 0x	Offset: 0x50		Register Name: PC_CFG2
Bit	Bit R/W Default/Hex		Description
31:0	/	/	Reserved

3.7.3.22. PC Configure Register 3

Offset: 0x54			Register Name: PC_CFG3
Bit	Bit R/W Default/Hex		Description
31:0	/	/	Reserved

3.7.3.23. PC Data Register

Offset: 0x58			Register Name: PC_DATA
Bit	R/W	Default/Hex	Description
31:4	/	/	Reserved
			If the port is configured as input, the corresponding bit is the pin state.
			If the port is configured as output, the pin state is the same as the
			corresponding bit. The read bit value is the value setup by software. If
			the port is configured as functional pin, the undefined value will be
3:0	R/W	0	read.

3.7.3.24. PC Multi-Driving Register 0

Offset: 0x5C		Register Name: PC_DRV0		
Bit	R/W	Default/Hex	Description	
31:8	/	/	Reserved	
			PC[n] Multi-Driving Select (n = 0~3)	
[2i+1:2i]		$\cdot \cdot \cdot \cdot \cdot \cdot$	00: Level 0	01: Level 1
(i=0~3)	R/W	1	10: Level 2	11: Level 3

3.7.3.25. PC Multi-Driving Register 1

01	Offset: 0x60			Register Name: PC_DRV1
Bi	Bit R/W Default/Hex		Default/Hex	Description
31	L:0	/	/	Reserved

3.7.3.26. PC Pull Register 0

Offset: 0x64		Register Name: PC_PULL0		
Bit R/W Default/Hex		Description		
		PC[n] Pull-up/down Select (r	n = 0~3)	
[2i+1:2i]		00: Pull-up/down disable	01: Pull-up	
(i=0~3)	R/W	0x0(PC1: 1)	10: Pull-down	11: Reserved

3.7.3.27. PC Pull Register 1

Offset: 0x68			Register Name: PC_PULL1
Bit	R/W	Default/Hex	Description
31:0	/	/	Reserved

3.7.3.28. PD Configure Register 0

Offset: 0x6C		Register Name: PD_CFG0		
Bit	Bit R/W Default/Hex		Description	
31	/	/	Reserved	
		•	PD7 Select	
			000: Input	001: Output
			010: LCD_D11	011: DA_MCLK
			100: Reserved	101: Reserved
30:28	R/W	7	110: EINTD7	111: Disabled
27	/	/	Reserved	
			PD6 Select	
			000: Input	001: Output
			010: LCD_D10	011: TWI1_SDA
			100: Reserved	101: Reserved
26:24	R/W	7	110: EINTD6	111: Disabled
23	/	/	Reserved	1510
			PD5 Select	, WU
			000: Input	001: Output
			010: LCD_D7	011: TWI1_SCK
			100: Reserved	101: Reserved
22:20	R/W	7	110: EINTD5	111: Disabled
19	/	/	Reserved	
			PD4 Select	
			000: Input	001: Output
			010: LCD_D6	011: UART1_TX
		:011	100: Reserved	101: Reserved
18:16	R/W	7	110: EINTD4	111: Disabled
15	1	/	Reserved	
			PD3 Select	
- V			000: Input	001: Output
0			010: LCD_D5	011: UART1_RX
			100: Reserved	101: Reserved
14:12	R/W	7	110: EINTD3	111: Disabled
11	/	/	Reserved	
			PD2 Select	
			000: Input	001: Output
			010: LCD_D4	011: UART1_CTS
10.0	D ()44	_	100: Reserved	101: Reserved
10:8	R/W	7	110: EINTD2	111: Disabled
7	/	/	Reserved	
			PD1 Select	004 October
			000: Input	001: Output
			010: LCD_D3	011: UART1_RTS
6.4	D ///	_	100: Reserved	101: Reserved
6:4	R/W	7	110: EINTD1	111: Disabled

3	/	/	Reserved	
			PD0 Select	
			000: Input	001: Output
			010: LCD_D2	011: TWI0_SDA
			100: RSB_SDA	101: Reserved
2:0	R/W	7	110: EINTD0	111: Disabled

3.7.3.29. PD Configure Register 1

	3.7.3.29. PD Configure Register 1 Offset: 0x70		Register Name: PD_CFG1	
Bit			Description	
31	/	/	Reserved	
31	/	/	PD15 Select	
			000: Input	001: Output
			010: LCD_D21	011: UART2_RTS
			100: TWI2_SCK	101: Reserved
30:28	R/W	7	110: EINTD15	111: Disabled
27	/	/	Reserved	10/13
	,	,	PD14 Select	**
			000: Input	001: Output
			010: LCD_D20	011: UART2_RX
			100: Reserved	101: Reserved
26:24	R/W	7	110: EINTD14	111: Disabled
23	/	/	Reserved	
			PD13 Select	
			000: Input	001: Output
			010: LCD_D19	011: UART2_TX
		11/1,	100: Reserved	101: Reserved
22:20	R/W	7	110: EINTD13	111: Disabled
19	1	/	Reserved	
•			PD12 Select	
\cap	•		000: Input	001: Output
			010: LCD_D18	011: TWI0_SCK
			100: RSB_SCK	101: Reserved
18:16	R/W	7	110: EINTD12	111: Disabled
15	/	/	Reserved	
			PD11 Select	
			000: Input	001: Output
			010: LCD_D15	011: DA_OUT
			100: Reserved	101: Reserved
14:12	R/W	7	110: EINTD11	111: Disabled
11	/	/	Reserved	
			PD10 Select	
			000: Input	001: Output
			010: LCD_D14	011: DA_IN
10:8	R/W	7	100: Reserved	101: Reserved

			110: EINTD10	111: Disabled
7	/	/	Reserved	
			PD9 Select	
			000: Input	001: Output
			010: LCD_D13	011: DA_LRCK
			100: Reserved	101: Reserved
6:4	R/W	7	110: EINTD9	111: Disabled
3	/	/	Reserved	
			PD8 Select	
			000: Input	001: Output
			010: LCD_D12	011: DA_BCLK
			100: Reserved	101: Reserved
2:0	R/W	7	110: EINTD8	111: Disabled

3.7.3.30. PD Configure Register 2

Offset: 0x	Offset: 0x74		Register Name: PD_CFG2	1510
Bit	R/W	Default/Hex	Description	. 10 013
31:23	/	/	Reserved	
			PD21 Select	. ()
			000: Input	001: Output
			010: LCD_VSYNC	011: SPI0_MISO
			100: Reserved	101: Reserved
22:20	R/W	7	110: EINTD21	111: Disabled
19	/	/	Reserved	
		-01	PD20 Select	
			000: Input	001: Output
		11111	010: LCD_HSYNC	011: SPIO_CLK
	1/1/	1	100: Reserved	101: Reserved
18:16	R/W	7	110: EINTD20	111: Disabled
15	1	/	Reserved	
			PD19 Select	
			000: Input	001: Output
			010: LCD_DE	011: SPI0_MOSI
			100: Reserved	101: Reserved
14:12	R/W	7	110: EINTD19	111: Disabled
11	/	/	Reserved	
			PD18 Select	
			000: Input	001: Output
			010: LCD_CLK	011: SPIO_CS
			100: Reserved	101: Reserved
10:8	R/W	7	110: EINTD18	111: Disabled
7	/	/	Reserved	
			PD17 Select	
			000: Input	001: Output
6:4	R/W	7	010: LCD_D23	011: OWA_OUT

			100: Reserved	101: Reserved
			110: EINTD17	111: Disabled
3	/	/	Reserved	
			PD16 Select	
			000: Input	001: Output
			010: LCD_D22	011: UART2_CTS
			100: TWI2_SDA	101: Reserved
2:0	R/W	7	110: EINTD16	111: Disabled

3.7.3.31. PD Configure Register 3

Offset: 0x78			Register Name: PD_CFG3	
Bit	R/W	Default/Hex	Description	
31:0	/	/	Reserved	

3.7.3.32. PD Data Register

Offset: 0x7C			Register Name: PD_DAT
Bit	R/W	Default/Hex	Description
31:22	/	/	Reserved
			If the port is configured as input, the corresponding bit is the pin state.
			If the port is configured as output, the pin state is the same as the
			corresponding bit. The read bit value is the value setup by software. If
			the port is configured as functional pin, the undefined value will be
21:0	R/W	0	read.

3.7.3.33. PD Multi-Driving Register 0

Offset: 0x80		Register Name: PD_DRV0		
Bit	R/W	Default/Hex	Description	
			PD[n] Multi-Driving Select (n = 0~15)	
[2i+1:2i]			00: Level 0	01: Level 1
(i=0~15)	R/W	1	10: Level 2	11: Level 3

3.7.3.34. PD Multi-Driving Register 1

Offset: 0x84		Register Name: PD_DRV1		
Bit	R/W	Default/Hex	Description	
31:12	/	/	Reserved	
			PD[n] Multi-Driving Select (n = 16~21)	
[2i+1:2i]			00: Level 0	01: Level 1
(i=0~5)	R/W	1	10: Level 2	11: Level 3

3.7.3.35. PD Pull Register 0

Offset: 0x88		Register Name: PD_PULL0		
Bit R/W Default/Hex		Description		
			PD[n] Pull-up/down Select (n = 0~15)	
[2i+1:2i]			00: Pull-up/down disable	01: Pull-up
(i=0~15)	R/W	0x0	10: Pull-down	11: Reserved

3.7.3.36. PD Pull Register 1

Offset: 0x8	С		Register Name: PD_PULL1	
Bit	R/W	Default/Hex	Description	
31:12	/	/	Reserved	
			PD[n] Pull-up/down Select (n = 16~21)	
[2i+1:2i]			00: Pull-up/down disable	01: Pull-up enable
(i=0~5)	R/W	0x0	10: Pull-down	11: Reserved

3.7.3.37. PE Configure Register 0

Offset: 0x	(90		Register Name: PE_CFG0	
Bit	R/W	Default/Hex	Description	
31	/	/	Reserved	
			PE7 Select	*
			000: Input	001: Output
			010: CSI_D4	011: UART2_TX
			100: SPI1_CS	101: Reserved
30:28	R/W	7	110: EINTE7	111: Disabled
27	/	/	Reserved	
			PE6 Select	. ()
			000: Input	001: Output
			010:CSI_D3	011: PWM1
			100: DA_OUT	101: OWA_OUT
26:24	R/W	7	110: EINTE6	111: Disabled
23	/	/	Reserved	
		-0	PE5 Select	
			000: Input	001: Output
		11111	010: CSI_D2	011: LCD_D17
	1/1/	1	100: DA_IN	101: Reserved
22:20	R/W	7	110: EINTE5	111: Disabled
19	1	/	Reserved	
			PE4 Select	
			000: Input	001: Output
			010: CSI_D1	011: LCD_D16
			100: DA_LRCK	101: RSB_SDA
18:16	R/W	7	110: EINTE4	111: Disabled
15	/	/	Reserved	
			PE3 Select	
			000: Input	001: Output
			010: CSI_D0	011: LCD_D9
			100: DA_BCLK	101: RSB_SCK
14:12	R/W	7	110: EINTE3	111: Disabled
11	/	/	Reserved	
			PE2 Select	
			000: Input	001: Output
10:8	R/W	7	010: CSI_PCLK	011: LCD_D8

			100: CLK_OUT	101: Reserved	
			110: EINTE2	111: Disabled	
7	/	/	Reserved		
			PE1 Select		
			000: Input	001: Output	
			010: CSI_VSYNC	011: LCD_D1	
			100: TWI2_SDA	101: UART0_TX	
6:4	R/W	7	110: EINTE1	111: Disabled	
3	/	/	Reserved		
			PE0 Select		
			000: Input	001: Output	
			010: CSI_HSYNC	011: LCD_D0	
			100: TWI2_SCK	101: UARTO_RX	2
2:0	R/W	7	110: EINTE0	111: Disabled	c1

3.7.3.38. PE Configure Register 1

Offset: 0x	Offset: 0x94		Register Name: PE_CFG1	
Bit	R/W	Default/Hex	Description	
31:19	/	/	Reserved	
			PE12 Select	
			000: Input	001: Output
			010: DA_MCLK	011: TWI0_SDA
			100: PWM0	101: Reserved
18:16	R/W	7	110: EINTE12	111: Disabled
15	/	1	Reserved	
		: 011	PE11 Select	
			000: Input	001: Output
		4	010: CLK_OUT	011: TWI0_SCK
			100: IR_RX	101: Reserved
14:12	R/W	7	110: EINTE11	111: Disabled
11	1	/	Reserved	
			PE10 Select	
			000: Input	001: Output
			010: CSI_D7	011: UART2_CTS
			100: SPI1_MISO	101: Reserved
10:8	R/W	7	110: EINTE10	111: Disabled
7	/	/	Reserved	
			PE9 Select	
			000: Input	001: Output
			010: CSI_D6	011: UART2_RTS
			100: SPI1_CLK	101: Reserved
6:4	R/W	7	110: EINTE9	111: Disabled
3	/	/	Reserved	
			PE8 Select	
2:0	R/W	7	000: Input	001: Output

010: CSI_D5	011: UART2_RX
100: SPI1_MOSI	101: Reserved
110: EINTE8	111: Disabled

3.7.3.39. PE Configure Register 2

Offset: 0x	Offset: 0x98		Register Name: PE_CFG2
Bit	R/W	Default/Hex	Description
31:0	/	/	Reserved

3.7.3.40. PE Configure Register 3

Offset: 0x9C			Register Name: PE_CFG3	
Bit	R/W	Default/Hex	Description	Ì
31:0	/	/	Reserved	

3.7.3.41. PE Data Register

Offset: (0xA0		Register Name: PE_DAT
Bit	R/W	Default/Hex	Description
31:13	/	/	Reserved
			If the port is configured as input, the corresponding bit is the pin state.
			If the port is configured as output, the pin state is the same as the
			corresponding bit. The read bit value is the value setup by software. If
			the port is configured as functional pin, the undefined value will be
12:0	R/W	0	read.

3.7.3.42. PE Multi-Driving Register 0

Offset: 0xA4		Register Name: PE_DRV0		
Bit	R/W	Default/Hex	Description	
31:26	1	/	Reserved	
			PD[n] Multi-Driving Select (n = 0~12)	
[2i+1:2i]			00: Level 0	01: Level 1
(i=0~12)	R/W	1	10: Level 2	11: Level 3

3.7.3.43. PE Multi-Driving Register 1

Offset: 0xA	Offset: 0xA8		Register Name: PE_DRV1
Bit	R/W	Default/Hex	Description
31:0	/	/	Reserved

3.7.3.44. PE Pull Register 0

Offset: 0xA	AC .		Register Name: PE_PULL0	
Bit	R/W	Default/Hex	Description	
31:26	/	/	Reserved	
			PD[n] Pull-up/down Select (n = 0~12)	
[2i+1:2i]			00: Pull-up/down disable	01: Pull-up
(i=0~12)	R/W	0x0	10: Pull-down	11: Reserved

3.7.3.45. PE Pull Register 1

Offset: 0xB0			Register Name: PE_PULL1
Bit	R/W	Default/Hex	Description
31:0	/	/	Reserved

3.7.3.46. PF Configure Register 0

Offset: 0x	kB4		Register Name: PF_CFG0	
Bit	R/W	Default/Hex	Description	
31:23	/	/	Reserved	
			PF5 Select	
			000: Input	001: Output
			010: SDC0_D2	011: DBG_CK
			100: PWM1	101: Reserved
22:20	R/W	3	110: EINTF5	111: Disabled
19	/	/	Reserved	
			PF4 Select	1151
			000: Input	001: Output
			010: SDC0_D3	011: UARTO_TX
			100: Reserved	101: Reserved
18:16	R/W	7	110: EINTF4	111: Disabled
15	/	/	Reserved	
			PF3 Select	
			000: Input	001: Output
			010: SDC0_CMD	011: DBG_DO
			100: Reserved	101: Reserved
14:12	R/W	3	110: EINTF3	111: Disabled
11	/	1	Reserved	
		4.	PF2 Select	
	V// .		000: Input	001: Output
~			010: SDC0_CLK	011: UARTO_TX
			100: Reserved	101: Reserved
10:8	R/W	7	110: EINTF2	111: Disabled
7	/	/	Reserved	
			PF1 Select	
			000: Input	001: Output
			010: SDC0_D0	011: DBG_DI
			100: Reserved	101: Reserved
6:4	R/W	3	110: EINTF1	111: Disabled
3	/	/	Reserved	
			PF0 Select	
			000: Input	001: Output
			010: SDC0_D1	011: DBG_MS
			100: IR_RX	101: Reserved
2:0	R/W	3	110: EINTFO	111: Disabled

3.7.3.47. PF Configure Register 1

Offset: 0xB8			Register Name: PF_CFG1
Bit	Bit R/W Default/Hex		Description
31:0	/	/	Reserved

3.7.3.48. PF Configure Register 2

Offset: 0xBC			Register Name: PF_CFG2
Bit	R/W	Default/Hex	Description
31:0	/	/	Reserved

3.7.3.49. PF Configure Register 3

Offset: 0xC0			Register Name: PF_CFG3	
Bit	R/W	Default/Hex	Description	2
31:0	/	/	Reserved	, , 5

3.7.3.50. PF Data Register

Offset:	0xC4		Register Name: PF_DAT
Bit	R/W	Default/Hex	Description
31:6	/	/	Reserved
			If the port is configured as input, the corresponding bit is the pin state.
			If the port is configured as output, the pin state is the same as the
			corresponding bit. The read bit value is the value setup by software. If
			the port is configured as functional pin, the undefined value will be
5:0	R/W	0	read.

3.7.3.51. PF Multi-Driving Register 0

Offset: 0xC8			Register Name: PF_DRV0	
Bit	R/W	Default/Hex	Description	
31:12	/	/	Reserved	
- 1			PD[n] Multi-Driving Select (n	= 0~5)
[2i+1:2i]			00: Level 0	01: Level 1
(i=0~5)	R/W	1	10: Level 2	11: Level 3

3.7.3.52. PF Multi-Driving Register 1

Offset: 0xCC			Register Name: PF_DRV1
Bit	R/W	Default/Hex	Description
31:0	/	/	Reserved

3.7.3.53. PF Pull Register 0

Offset: 0xD0			Register Name: PF_PULL0
Bit	R/W	Default/Hex	Description
31:0	/	/	Reserved

3.7.3.54. PD External Interrupt Configure Register 0

Offset: 0x200			Register Name:PD_EINT_CFG0	
Bit	R/W	Default/Hex	Description	
			EINT_CFG	
			External INTn Mode (n = 0~7)	
			0x0: Positive Edge	
			0x1: Negative Edge	
			0x2: High Level	
			0x3: Low Level	c [*]
[4i+3:4i]			0x4: Double Edge (Positive/ Negative)	:6133
(i=0~7)	R/W	0	Others: Reserved	.hU3

3.7.3.55. PD External Interrupt Configure Register 1

Offset: 0x20			Register Name: PD_EINT_CFG1
Bit	R/W	Default/Hex	Description
[4i+3:4i]			EINT_CFG External INTn Mode (n = 8~15) 0x0: Positive Edge 0x1: Negative Edge 0x2: High Level 0x3: Low Level 0x4: Double Edge (Positive/ Negative)
(i=0~7)	R/W	0	Others: Reserved

3.7.3.56. PD External Interrupt Configure Register 2

			<u> </u>
Offset: 0x2	208		Register Name: PD_EINT_CFG2
Bit	R/W	Default/Hex	Description
31:24	/	/	Reserved
			EINT_CFG
[4i+3:4i]			
			External INTn Mode (n = 16~21)
(i=0~5)	R/W	0	

	0x0: Positive Edge
	0x1: Negative Edge
	0x2: High Level
	0x3: Low Level
	0x4: Double Edge (Positive/ Negative)
	Others: Reserved

3.7.3.57. PD External Interrupt Configure Register 3

Offset: 0x20C			Register Name: PD_EINT_CFG3	- *
Bit	R/W	Default/Hex	Description	. 05
31:0	/	/	Reserved	C10

3.7.3.58. PD External Interrupt Control Register

		•	
Offset: 0x210			Register Name: PD_EINT_CTRL
Bit	R/W	Default/Hex	Description
31:22	/	/	Reserved
			EINT_CTL External INTn Enable (n = 0~21)
[n]			0: Disable
(n=0~21)	R/W	0	1: Enable

3.7.3.59. PD External Interrupt Status Register

Offset: 0x214			Register Name: PD_EINT_STATUS
Bit	R/W	Default/Hex	Description
31:22	/	/	Reserved
			EINT_STATUS
			External INTn Pending Bit (n = 0~21)
			0: No IRQ pending
[n]			1: IRQ pending
(n=0~21)	R/W	0	Write '1' to clear

3.7.3.60. PD External Interrupt Debounce Register

Offset: 0x218			Register Name: PD_EINT_DEB
Bit	R/W	Default/Hex	Description

31:7	/	/	Reserved
			DEB_CLK_PRE_SCALE
			Debounce Clock Pre-scale n
6:4	R/W	0	The selected clock source is prescaled by 2^n.
3:1	/	/	/
			PIO_INT_CLK_SELECT
			PIO Interrupt Clock Select
			0: LOSC 32Khz
0	R/W	0	1: HOSC 24Mhz

3.7.3.61. PE External Interrupt Configure Register 0

Offset: 0x22	20		Register Name:PE_EINT_CFG0
Bit	R/W	Default/Hex	Description
			EINT_CFG
			External INTn Mode (n = 0~7)
			0x0: Positive Edge
			0x1: Negative Edge
		inn	0x2: High Level
	. 1/1/	1111	0x3: Low Level
[4i+3:4i]			0x4: Double Edge (Positive/ Negative)
(i=0~7)	R/W	0	Others: Reserved

3.7.3.62. PE External Interrupt Configure Register 1

Offset: 0x2	24		Register Name: PE_EINT_CFG1
Bit	R/W	Default/Hex	Description
31:20	/	/	Reserved
			EINT_CFG
			External INTn Mode (n = 8~12)
			0x0: Positive Edge
[4i+3:4i]			
			0x1: Negative Edge
(i=0~4)	R/W	0	

	0x2: High Level
	0x3: Low Level
	0x4: Double Edge (Positive/ Negative)
	Others: Reserved

3.7.3.63. PE External Interrupt Configure Register 2

Offset: 0x228			Register Name: PE_EINT_CFG2
Bit	Bit R/W Default/Hex		Description
31:0	/	/	/

3.7.3.64. PE External Interrupt Configure Register 3

Offset: 0x22C			Register Name: PE_EINT_CFG3	: 22
Bit	R/W	Default/Hex	Description	.610
31:0	/	/	/	12113

3.7.3.65. PE External Interrupt Control Register

Offset: 0x230			Register Name: PE_EINT_CTRL
Bit	R/W	Default/Hex	Description
31:13	/	/	Reserved
			EINT_CTL
			External INTn Enable (n = 0^12)
[n]		in,	0: Disable
(n=0~12)	R/W	0	1: Enable

3.7.3.66. PE External Interrupt Status Register

Offset: 0x2	234		Register Name: PE_EINT_STATUS
Bit	R/W	Default/Hex	Description
31:12	/	/	Reserved
			EINT_STATUS
			External INTn Pending Bit (n = 0~12)
			0: No IRQ pending
[n]			1: IRQ pending
(n=0~12)	R/W	0	Write '1' to clear

3.7.3.67. PE External Interrupt Debounce Register

Offset: 0x238	Register Name: PE_EINT_DEB
---------------	----------------------------

Bit	R/W	Default/Hex	Description
31:7	/	/	/
			DEB_CLK_PRE_SCALE
			Debounce Clock Pre-scale n
6:4	R/W	0	The selected clock source is prescaled by 2^n.
3:1	/	/	/
			PIO_INT_CLK_SELECT
			PIO Interrupt Clock Select
			0: LOSC 32Khz
0	R/W	0	1: HOSC 24Mhz

3.7.3.68. PF External Interrupt Configure Register 0

<u> </u>	277 101001 11 External interrupt comigure register o			
Offset: 0x240			Register Name:PF_EINT_CFG0	
Bit	R/W	Default/Hex	Description	
31:24	/	/	Reserved	
		, inn	EINT_CFG External INTn Mode (n = 0~5) 0x0: Positive Edge 0x1: Negative Edge 0x2: High Level	
- 1			0x3: Low Level	
[4i+3:4i]			0x4: Double Edge (Positive/ Negative)	
(i=0~5)	R/W	0	Others: Reserved	

3.7.3.69. PF External Interrupt Configure Register 1

Offset: 0x244			Register Name: PF_EINT_CFG1
Bit R/W Default/Hex		Default/Hex	Description
31:0	/	/	Reserved

3.7.3.70. PF External Interrupt Configure Register 2

Offset: 0x248			Register Name: PF_EINT_CFG2
Bit R/W Default/Hex		Default/Hex	Description
31:0	/	/	/

3.7.3.71. PF External Interrupt Configure Register 3

Offset: 0x24C			Register Name: PF_EINT_CFG3
Bit	Bit R/W Default/Hex		Description
31:0	/	/	/

3.7.3.72. PF External Interrupt Control Register

Offset: 0x250			Register Name: PF_EINT_CTRL
Bit	R/W	Default/Hex	Description
31:6	/	/	/
			EINT_CTL
			External INTn Enable (n = 0~5)
[n]			0: Disable
(n=0~5)	R/W	0	1: Enable

3.7.3.73. PF External Interrupt Status Register

Offset: 0x254			Register Name: PF_EINT_STATUS
Bit	R/W	Default/Hex	Description
31:6	/	/	/
			EINT_STATUS External INTn Pending Bit (n = 0~5)
			0: No IRQ pending
[n]		111,,	1: IRQ pending
(n=0~5)	R/W	0	Write '1' to clear

3.7.3.74. PF External Interrupt Debounce Register

	And the External interrupt Descende inspire				
Offset: 0	0x258		Register Name: PF_EINT_DEB		
Bit	R/W	Default/Hex	Description		
31:7 / /		/	/		
			DEB_CLK_PRE_SCALE		
			Debounce Clock Pre-scale n		
6:4	R/W	0	The selected clock source is prescaled by 2^n.		
3:1	/	/	/		
			PIO_INT_CLK_SELECT		
0	R/W	0	PIO Interrupt Clock Select		
U	11/7 44	0			

	0: LOSC 32Khz
	1: HOSC 24Mhz

3.7.3.75. SDRAM Pad Multi-Driving Register

Offset: 0x2C0			Register Name: SDR_PAD_DF	RV
Bit	R/W	Default/Hex	Description	
31:14	/	/	Reserved	
			ODT Multi-Driving Select	
			00: Level 0	01: Level 1
13:12	R/W	0x1	10: Level 2	11: Level 3
			RAS#, CAS#, SWE#, SCS#, CKI	E Multi-Driving Select
			00: Level 0	01: Level 1
11:10	R/W	0x1	10: Level 2	11: Level 3
			DQS[3:0] Multi-Driving Selec	t
			00: Level 0	01: Level 1
9:8	R/W	0x1	10: Level 2	11: Level 3
			DQM[3:0] Multi-Driving Sele	ct
			00: Level 0	01: Level 1
7:6	R/W	0x1	10: Level 2	11: Level 3
			DA[n], BA2,BA1, BA0 Multi-D	Priving Select (n=0~14)
V	1		00: Level 0	01: Level 1
5:4	R/W	0x1	10: Level 2	11: Level 3
			CK, CK# Multi-Driving Select	
			00: Level 0	01: Level 1
3:2	R/W	0x1	10: Level 2	11: Level 3
			$DQ[n]$ Multi-Driving Select (n = 0^{31})	
			00: Level 0	01: Level 1
1:0	R/W	0x1	10: Level 2	11: Level 3

3.7.3.76. SDRAM Pad Pull Register

Offset: 0x2C4	Register Name: SDR_PAD_PULL	
---------------	-----------------------------	--

Bit	R/W	Default/Hex	Description	
31:24	/	/	Reserved	
			Internal Reference Enable	
			0: disable	
23	R/W	0x0	1: enable	
			Reference Configuration Fac	tor
22:17	R/W	0x0	((64 + Factor) / 192) * VDI	DQ
			SDRAM Pad Type	
			0: LVCMOS	
			4. CCTL 2	C 1
			1: SSTL-2	: 27
			Notes: SSTL2 pad type is onl	y used for normal 2.5v DDR. For other dram,
16	R/W	0x1	LVCMOS pad should be selec	ct.
15:10	/	/	Reserved	
			DQS[1:0] Pull-up Select	
			00: Pull-up disable	01: Pull-up
9:8	R/W	0x1	10: Reserved	11: Reserved
	,		DQM[1:0] Pull-up Select	
			00: Pull-up disable	01: Pull-up
		11/1/1		
7:6	R/W	0x0	10: Reserved	11: Reserved
5:4	R/W	0x0	Reserved	
~			CK, CK# Pull-up Select	
			OO: Dull diaabla	O4. Bull or
			00: Pull-up disable	01: Pull-up
3:2	R/W	0x0	10: Reserved	11: Reserved
			DQ[n] Pull-up Select (n = 0~3	31)
			00: Pull-up disable	01: Pull-up
1.0	D/M	0.1	10. Decembed	11. Decembed
1:0	R/W	0x1	10: Reserved	11: Reserved

Chapter 4. ADC

This section describes the F1C200s memory from two aspects:

- **KEYADC**
- ΤP
- **Audio Codec**

4.1. KEYADC

4.1.1. Overview

KEYADC is 6-bit resolution ADC for key application. The KEYADC can work up to 250Hz conversion rate.

4.1.2. Feature

- Supports APB 32-bits bus width
- Interrupt Support
- Support Hold Key and General Key
- Support Single Key and continue key mode
- 6-bits Resolution
- Voltage input range between 0 to 2V
- Sample Rate up to 250Hz

4.1.3. Principle of operation

The KEYADC converted data can accessed by interrupt and polling method. If software can't access the last converted data instantly, the new converted data would update the old one at new sampling data.

4.1.4. Block diagram

4.1.5. KEYADC Register List

Module Name	Base Address
KEYADC	0x01C23400

Register Name	Offset	Description
KEYADC_CTRL_REG	0x00	KEYADC Control Register
KEYADC_INTC_REG	0x04	KEYADC Interrupt Control Register
KEYADC_INTS_REG	0x08	KEYADC Interrupt Status Register
KEYADC_DATA_REG	0x0C	KEYADC Data Register

4.1.6. KEYADC Register Description

4.1.6.1. KEYADC Control Register

LIADC_DAIA_REG	NETABE But Register
.1.6. KEYADC Register Descr	iption
1.6.1. KEYADC Control Register	
Offset: 0x00	Register Name: KEYADC_CTRL_REG
Bit R/W Default/H	
31:24 R/W 0x1	FIRST_CONCERT_DLY
	ADC First Convert Delay setting, ADC conversion is delayed by n samples
23:22 R/W 0x0	Reserved to 0
21:20 / /	
19:16 R/W 0x0	CONTINUE_TIME_SELECT.
	Continue Mode time select, one of 8*(N+1) sample as a valuable sample
	data
15:14 / /	/
13:12 R/W 0x0	KEY_MODE_SELECT.
1/1/2	Key Mode Select:
	00: Normal Mode
	01: Single Mode
O'	10: Continue Mode
11:8 R/W 0x1	LEVELA_B_CNT.
	Level A to Level B time threshold select, judge ADC convert value in level A
	to level B in n+1 samples
7 R/W 0X0	KEY_ADC_HOLD_KEY_EN
	KEY_ADC Hold Key Enable
	0: Disable
	1: Enable
6 R/W 0x1	KEYADC_HOLD_EN.
	KEYADC Sample hold Enable
	0: Disable
	1: Enable
5: 4 R/W 0x2	LEVELB_VOL.
	Level B Corresponding Data Value setting (the real voltage value)

			00: 0x3C (~1.9v)
			01: 0x39 (~1.8v)
			10: 0x36 (~1.7v)
			11: 0x33 (~1.6v)
3: 2	R/W	0x2	KEYADC_SAMPLE_RATE.
			KEYADC Sample Rate
			00: 250 Hz
			01: 125 Hz
			10: 62.5 Hz
			11: 32.25 Hz
1	/	/	/
0	R/W	0x0	KEYADC_EN.
			KEYADC enable
			0: Disable
			1: Enable

4.1.6.2. KEYADC Interrupt Control Register

Offset: 0x04			Register Name: KEYADC_INTC_REG
Bit	R/W	Default/Hex	Description
31:5	/	/	1
4	R/W	0x0	ADCO_KEYUP_IRQ_EN.
			ADC 0 Key Up IRQ Enable
			0: Disable
			1: Enable
3	R/W	0x0	ADCO_ALRDY_HOLD_IRQ_EN.
		\	ADC 0 Already Hold IRQ Enable
			0: Disable
			1: Enable
2	R/W	0x0	ADCO_HOLD_IRQ_EN.
	1		ADC 0 Hold Key IRQ Enable
			0: Disable
· U ·			1: Enable
1	R/W	0x0	ADC0_KEYDOWN_EN
			ADC 0 Key Down Enable
			0: Disable
			1: Enable
0	R/W	0x0	ADCO_DATA_IRQ_EN.
			ADC 0 Data IRQ Enable
			0: Disable
			1: Enable

4.1.6.3. KEYADC Interrupt Status Register

Offset: 0x08			Register Name: KEYADC_INTS_REG
Bit R/W Default/Hex		Default/Hex	Description
31:5	/	/	/

	- /		
4	R/W	0x0	ADCO_KEYUP_PENDING.
			ADC 0 Key up pending Bit
			When general key pull up, it the corresponding interrupt is enabled.
			0: No IRQ
			1: IRQ Pending
			Notes: Writing 1 to the bit will clear it and its corresponding interrupt if the
			interrupt is enable
3	R/W	0x0	ADCO_ALRDY_HOLD_PENDING.
			ADC 0 Already Hold Pending Bit
			When hold key pull down and pull the general key down, if the
			corresponding interrupt is enabled.
			0: No IRQ
			1: IRQ Pending
			Notes: Writing 1 to the bit will clear it and its corresponding interrupt if the
			interrupt is enable
2	R/W	0x0	ADCO_HOLDKEY_PENDING.
			ADC 0 Hold Key pending Bit
			When Hold key pull down, the status bit is set and the interrupt line is set if
			the corresponding interrupt is enabled.
			0: No IRQ
			1: IRQ Pending
			Notes: Writing 1 to the bit will clear it and its corresponding interrupt if the
			interrupt is enable.
1	R/W	0x0	ADCO_KEYDOWN_PENDING.
			ADC 0 Key Down IRQ Pending Bit
			When General key pull down, the status bit is set and the interrupt line is set
			if the corresponding interrupt is enabled.
	. 1 .		0: No IRQ
	~ \ \ \ \	11.	1: IRQ Pending
			Notes: Writing 1 to the bit will clear it and its corresponding interrupt if the
-1			interrupt is enable.
0	R/W	0x0	ADCO_DATA_PENDING.
	.,		ADC 0 Data IRQ Pending Bit
			0: No IRQ
			1: IRQ Pending
			Notes: Writing 1 to the bit will clear it and its corresponding interrupt if the
			interrupt is enable.
			interrupt is chasic.

4.1.6.4. KEYADC Data Register

Offset: 0x0C			Register Name: KEYADC_DATA_REG
Bit	R/W	Default/Hex	Description
31:6	/	/	1
5:0	R	0x0	KEYADC_DATA.
			KEYADC Data

4.2. TP

4.2.1. Overview

The controller is a 4-wire resistive touch screen controller, includes 12-bit resolution A/D converter. Especially, it provides the ability of dual touch detection. The controller through the implementation of the two A/D conversion has been identified by the location of the screen of single touch, in addition to measurable increase in pressure on the touch screen.

4.2.2. Feature

- 12 bit SAR type A/D converter
- 4-wire I/F
- Dual Touch Detect
- Touch-pressure measurement (Support programmable threshold)
- Sampling frequency: 2MHz (max)
- Single-Ended Conversion of Touch Screen Inputs and Ratio Metric Conversion of Touch Screen Inputs
- TACQ up to 262ms
- Median and averaging filter to reduce noise
- Pen down detection, with programmable sensitivity
- Support X, Y change function

4.2.3. A/D conversion time

When the clock source is 24MHz and the prescalar value is 6, total 12-bit conversion time is as follows:

CLK
$$IN = 24MHz/6 = 4MHz$$

Conversion Time = 1 / (4MHz/13Cycles) = 3.25us

4.2.4. Work timing in different mode

FS TIME (Frequency Scan Time) bases on TACQ and Touch Mode, they must meet the following in equation:

For example, if touch acquire time divider is 15, then TACQ = 4MHz/(16*(15+1)) = 64us.

When TP mode is dual and pressure measurement mode, then M=6, and the FS_TIME must be great or equal 6*(64 + 3.25) us.

Dual Touch and Pressure Measurement

Dual Touch No Pressure Measurement

Single Touch and Pressure Measurement Mode

Single Touch No Pressure Measurement Mode

General ADC Mode

4.2.5. Operation Mode

4.2.5.1. Basic principle

The controller is a typical type of successive approximation ADC (SAR ADC), contains a sample/hold, analog-to-digital conversion, serial data output functions. The analog inputs (X+, X-, Y+, Y-) via control register enter the ADC, ADC can work in single-ended or differential mode. Selecting Aux ADC should work in single-ended mode; as a touch screen application, it works in a differential mode, which can effectively eliminate the impact on conversion accuracy caused by the parasitic resistance of the driver switch and external interference.

4.2.5.2. Single-ended mode

When the TP controller is in the measurement mode of AUX, the internal ADC is in single-ended mode, using the 3V reference source as the ADC reference voltage, application of the principle of single-ended mode shown in following figure.

Simplified Diagram of Single-Ended Reference

usiasts

4.2.5.3. Differential mode

When the TP the controller is in the measurement mode of X/Y/Z, the internal ADC is in differential mode, shown in the following Figure. The advantage of differential mode: +REF and -REF input directly to the Y+, Y-, which can eliminate measurement error because of the switch on-resistance. The disadvantage is that: both the sample or conversion process, the driver will need to be on. So relative to single-ended mode, the power consumption increased.

Simplified Diagram of Differential Reference

4.2.5.4. Single touch detection

The principle of operation is illustrated below, For an X coordinate measurement; the X+ pin is internally switched to VCC_REF and X- to GND. The X plate becomes a potential divider, and the voltage at the point of contact is proportional to its X co-ordinate. This voltage is measured on the Y+, which carry no current (hence there is no voltage drop in R_Y + or R_Y -). Due to the ratio metric measurement method, the supply voltage does not affect measurement accuracy. The voltage references VREF+ and VREF- are taken from after the matrix switches, so that any voltage drop in these switches has no effect on the ADC measurement. Y coordinate measurements are similar to X coordinate measurements, with the X and Y plates interchanged. In Single Touch mode, only need to test X+, Y+ signal. But In Dual Touch mode, it need to test X+, X-,Y+,Y- signal.

Single Touch X-Position Measurement

4.2.5.5. Dual touch detection

The principle of operation is illustrated below, For an X coordinate measurement; the X+ pin is internally switched to 3V and X- to GND. The X plate becomes a potential divider, and the voltage at the point of contact is proportional to its X coordinate. This voltage is measured on the Y+ and Y-, which carry no current (hence there is no voltage drop in R_Y + or R_Y -). Due to the ratio metric measurement method, the supply voltage does not affect measurement accuracy. The voltage references VREF+ and VREF- are taken from after the matrix switches, so that any voltage drop in these switches has no effect on the ADC measurement. the controller will need to test X+,X-,Y+,Y-, and record Δ X=|X+ - X-|, Δ Y= | Y+ - Y-|. In practice, we can set a threshold. If Δ X or Δ Y greater than the threshold, we consider it as a dual touch, otherwise as a single touch.

Dual Touch X-Position Measurements

4.2.5.6. Touch pressure measurement

The pressure applied to the touch screen by a pen or finger to filter unavailable can also be measured by the controller using some simple calculations. The contact resistance between the X and Y plates is measured, which provides a good indication of the size of the depressed area and the applied pressure. The area of the touch spot t is proportional to the size of the object touching it. And the value of this resistance (R_{touch}) can be calculated using two different methods.

First Method:

The first method requires the user to know the total resistance of the X plate tablet (R_{XPLATE}). Three touch screen conversions are required: measurement of the X position, $X_{POSITION}(Y+ input)$; measurement of the X+ input with the excitation voltage applied to Y+ and X- (Z1 measurement); and measurement of the Y- input with the excitation voltage applied to Y+ and X- (Z2 measurement). These three measurements are illustrated in following Figure. The controller have two special ADC channel settings to configure the X and Y switches for the Z1 and Z2 measurements and store the results in the Z1 and Z2 result registers. The touch resistance (R_{TOUCH}) can then be calculated using the following equation.

$$R_{TOUCH} = (R_{XPLATE}) \times (X_{POSITION} / 4096) \times [(Z2/Z1) - 1]$$

Pressure Measurement

Second Method:

The second method requires the user to know the resistance of the X-plate and Y-plate tablets. Three touch screen conversions are required: a measurement of the X position ($X_{POSITION}$), the Y position ($Y_{POSITION}$), and the Z1 position. The following equation also calculates the touch resistance (R_{TOUCH}).

$$R_{TOUCH} = R_{XPLATE} \times (X_{POSITION}/4096) \times [(4096/Z1) - 1] - R_{YPLATE} \times [1 - (Y_{POSITION}/4096)]$$

4.2.5.7. Pen down detection, with programmable sensitivity

Pen down detection is used as an interrupt to the host. R_{IRQ} is an internal pull-up resistor with a programmable value of $6^{\circ}96 \text{ k}\Omega$ (default $48\text{k}\Omega$). The pen down IRQ output is pulled high by an internal pull-up. In the pen down detection, the Y- driver is on and connected to GND, and the pen down IRQ output is connected to the X+ input. When the panel is touched, the X+ input is pulled to ground through the touch screen, and the pen down IRQ output goes low because of the current path through the panel to GND, initiating an interrupt to the processor. During the measurement cycle for X-, Y-, and Z-position, the X+ input is disconnected from the pen down IRQ pull-down transistor to eliminate any pull-up resistor leakage current from flowing through the touch screen, thus causing no errors.

Example of pen touch Interrupt via pen down IRQ

4.2.5.8. Median and averaging filter

As explained in the Touch Screen Principles section, touch screens are composed of two resistive layers, normally placed over an LCD screen. Because these layers are in close proximity to the LCD screen, noise can be coupled from the screen onto these resistive layers, causing errors in the touch screen positional measurements. The controller contain a filtering block to process the data and discard the spurious noise before sending the information to the host. The purpose of this block is not only the suppression of noise; the on-chip filtering also greatly reduces the host processing loading. The processing function consists of two filters that are applied to the converted results: the median filter and the averaging filter. The median filter suppresses the isolated out-of-range noise and sets the number of measurements to be taken. These measurements are arranged in a temporary array, where the first value is the smallest measurement and the last value is the largest measurement. Then the averaging filter size determines the number of values to average. There are four choices which is configured by TP_CTRL3 register (bit 1 and bit 0) to filtrate the ADC sampling data. It is showed in following table.

Median	and averaging	Filter Size	TΡ	CTRL3)
IVICAIGII	und uvcluging	1 11101 3120		CINESI

			/
bit1	bit0	Averaging Filter Size	Median Filter Size
0	0	2	4
0	1	3	5
1	0	4	8
1	1	8	16

Example: In this example, the TP_CTRL3 register bit 1 and bit 0 is configured as 2'b11. So the median filter has a window size of 16. This means that 16 measurements are taken and arranged in descending order in a temporary array. The averaging window size in this example is 8. The output is the average of the middle eight values of the 16 measurements taken with the median filter.

Median and Averaging Filter Example

4.2.6. TP Register List

Module Name	Base Address	
TP	0x01C24800	

Register Name	Offset	Description
TP_CTRL_REG0	0x00	TP Control Register 0
TP_CTRL_REG1	0x04	TP Control Register 1
TP_CTRL_REG2	0x08	TP Control Register 2
TP_CTRL_REG3	0x0C	TP Control Register 3
TP_INT_FIFO_CTRL_REG	0x10	TP Interrupt FIFO Control Register
TP_INT_FIFO_STAT_REG	0x14	TP Interrupt FIFO Status Register
TP_COM_DATA_REG	0x1C	TP Common Data Register
TP_DATA_REG	0x24	TP Data Register

4.2.7. TP Register Description

4.2.7.1. TP Control Register 0

Offset: 0x00			Register Name: TP_CTRL_REG0
Bit	R/W	Default/Hex	Description
			ADC_FIRST_DLY.
31:24 R/W	0.45	ADC First Convert Delay Time(T_FCDT)setting	
	0xF	Based on ADC First Convert Delay Mode select (Bit 23)	
			T_FCDT = ADC_FIRST_DLY * ADC_FIRST_DLY_MODE
23	R/W	0x1	ADC_FIRST_DLY_MODE.
			ADC First Convert Delay Mode Select

			0: CLK_IN/16
			1: CLK_IN/16*256
22	R/W	0x0	ADC_CLK_SELECT.
			ADC Clock Source Select:
			0: OSC24M
			1: Audio PLL
21:20	R/W	0x0	ADC_CLK_DIVIDER.
			ADC Clock Divider(CLK_IN)
			00: CLK/2
			01: CLK/3
			10: CLK/6
			11: CLK/1
19:16	R/W	0x0	FS_DIV.
			ADC Sample Frequency Divider
			0000: CLK_IN/2(20-n)
			0001: CLK_IN/2(20-n)
			0000: CLK_IN/2(20-n) 0001: CLK_IN/2(20-n) 0010: CLK_IN/2(20-n)
			1111: CLK_IN/32
15:0	R/W	0x0	TACQ.
			Touch panel ADC acquire time
			CLK_IN/(16*(N+1))

4.2.7.2. TP Control Register 1

Offset: 0x0	4		Register Name: TP_CTRL_REG1
Bit	R/W	Default/Hex	Description
31:20	/	1	1
19:12	R/W	0x0	STYLUS_UP_DEBOUNCE.
	$\langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$		Stylus Up De-bounce Time setting
	N.		0x00: 0
· O ·			0xff: 2N*(CLK_IN/16*256)
11:10	/	/	/
9	R/W	0x0	STYLUS_UP_DEBOUCE_EN.
			Stylus Up De-bounce Function Select
			0: Disable
			1: Enable
8	/	/	/
	R/W	0x0	TOUCH_PAN_CALI_EN.
7			Touch Panel Calibration
			1: start Calibration, it is clear to 0 after calibration
	R/W	0x0	TP_DUAL_EN.
6			Touch Panel Double Point Enable
			0: Disable
			1: Enable

5	R/W	0x0	TP_EN.
			TP Function Enable
			0: Disable
			1: Enable
4	R/W	0x0	TP_MODE_SELECT.
			Touch Panel Mode and Auxiliary ADC Mode Select
			0: TP
			1: Auxiliary ADC
3	R/W	0x0	ADC_CHAN3_SELECT.
			Analog input channel 3 Select
			0: Disable
			1: Enable
2	R/W	0x0	ADC_CHAN2_SELECT.
			Analog input channel 2 Select
			0: Disable
			1: Enable
1	R/W	0x0	ADC_CHAN1_SELECT.
			Analog input channel 1 Select
			0: Disable
			1: Enable
0	R/W	0x1	ADC_CHANO_SELECT.
			Analog input channel 0 Select
			0: Disable
			1: Enable

Note:

1) Channel 0~3 can be selected at the same time, but N channel selected, each channel has 1/N full speed of the ADC. When there is only one channel selected, it has the full conversion rate. CHANO~3 correspond to TP_YN, TP_YP, TP_XN, TP_XP.

4.2.7.3. TP Control Register 2

Offset: 0x08			Register Name: TP_CTRL_REG2
Bit	R/W	Default/Hex	Description
31:28	R/W	0x8	TP_SENSITIVE_ADJUST.
			Internal Pull-up Resistor Control
			0000 least sensitive
			0011
			1111 most sensitive
			Notes: Used to adjust sensitivity of pen down detection
27:26	R/W	0x0	TP_FIFO_MODE_SELECT.
			TP FIFO Access Data Mode Select
			00: FIFO store X1,Y1 data for single touch no pressure mode
			01: FIFO store X1,Y1, \triangle X, \triangle Y data for dual touch no pressure mode
			10: FIFO store X1,Y1, X2,Y2 data for dual touch no pressure mode
			11: FIFO store X1,Y1, X2,Y2,Z1,Z2 data for dual touch and pressure mode

			Notes: The ADC output data in single touch mode can store in FIFO with
			TP_FIFO_MODE_SELECT configured as 01,10,11. But the data \triangle X, \triangle Y is
			theoretically equal to zero and X2,Y2 is equal to X1,Y1.
25	/	/	/
24	R/W	0x0	PRE_MEA_EN.
			TP Pressure Measurement Enable Control
			0: Disable
			1: Enable
23:0	R/W	0xFFF	PRE_MEA_THRE_CNT.
			TP Pressure Measurement threshold Control
			Notes:
			0x000000: least sensitive
			OxFFFFFF: most sensitive
			Notes: used to adjust sensitivity of touch

4.2.7.4. TP Control Register 3

Offset: 0x0C			Register Name: TP_CTRL_REG3
Bit	R/W	Default/Hex	Description
31:3	/	/	1
2	R/W	0x0	FILTER_EN.
			Filter Enable
			0: Disable
			1: Enable
1:0	R/W	0x1	FILTER_TYPE.
			Filter Type
		• •	00: 4/2
			01: 5/3
		$\langle N \rangle$	10: 8/4
	V//	7	11: 16/8

4.2.7.5. TP Interrupt FIFO Control Register

Offset: 0x	Offset: 0x10		Register Name: TP_INT_FIFO_CTRL_REG
Bit	R/W	Default/Hex	Description
31:18	/	/	/
17	R/W	0x0	TP_OVERRUN_IRQ_EN.
			TP FIFO Over Run IRQ Enable
			0: Disable
			1: Enable
16	R/W	0x0	TP_DATA_IRQ_EN.
			TP FIFO Data Available IRQ Enable
			0: Disable
			1: Enable
15:14	/	/	/
13	R/W	0x0	TP_DATA_XY_CHANGE.
			TP FIFO X,Y Data interchange Function Select

			0: Disable	
			1: Enable	
12:8	R/W	0xF	TP_FIFO_TRIG_LEVEL.	
			TP FIFO Data Available Trigger Level	
			Interrupt and DMA request trigger level for TP or Auxiliary ADC	
			Trigger Level = TXTL + 1	
7	R/W	0x0	TP_DATA_DRQ_EN.	
			TP FIFO Data Available DRQ Enable	
			0: Disable	
			1: Enable	
6:5	/	/	/	
4	R/W	0x0	TP_FIFO_FLUSH.	
			TP FIFO Flush	
			Write '1' to flush TX FIFO, self clear to '0'	
3:2	/	/	1	
1	R/W	0x0	TP_UP_IRQ_EN.	
			Touch Panel Last Touch (Stylus Up) IRQ Enable	
			0: Disable	
			1: Enable	
0	R/W	0x0	TP_DOWN_IRQ_EN.	
			Touch Panel First Touch (Stylus Down) IRQ Enable	
			0: Disable	
			1: Enable	

4.2.7.6. TP Interrupt FIFO Status Register

Offset: 0x14			Register Name: TP_INT_FIFO_STAT_REG
Bit	R/W	Default/Hex	Description
31:18	/		/
17	R/W	0x0	FIFO_OVERRUN_PENDING.
•	W.		TP FIFO Over Run IRQ pending
			0: No Pending IRQ
10'			1: FIFO Overrun Pending IRQ
			Write '1' to clear this interrupt or automatic clear if interrupt condition fails
16	R/W	0x0	FIFO_DATA_PENDING.
			TP FIFO Data Available pending Bit
			0: NO Pending IRQ
			1: FIFO Available Pending IRQ
			Write '1' to clear this interrupt or automatic clear if interrupt condition fails
15:13	/	/	/
12:8	R	0x0	RXA_CNT.
			TP FIFO available Sample Word Counter
7:3	/	/	/
2	R	0x0	TP_IDLE_FLG.
			Touch Panel Idle Flag
			0: idle

			1: not idle	
1	R/W	0x0	TP_UP_PENDING.	
			Touch Panel Last Touch (Stylus Up) IRQ Pending bit	
			0: No IRQ	
			1: IRQ	
			Notes: Writing 1 to the bit will clear it and its corresponding interrupt if the	
			interrupt is enable.	
0	R/W	0x0	TP_DOWN_PENDING.	
			Touch Panel First Touch (Stylus Down) IRQ Pending bit	
			0: No IRQ	
			1: IRQ	
			Notes: Writing 1 to the bit will clear it and its corresponding interrupt if the	
			interrupt is enable.	

4.2.7.7. TP Common Data Register

Offset: 0x1C			Register Name: TP_COM_DATA_REG
Bit	R/W	Default/Hex	Description
31:12	/	/	
11:0	R/W	0x0	TP_CDAT.
			TP Common Data
			Notes: used to adjust the tolerance of the internal ADC

4.2.7.8. TP Data Register

Offset: 0x24			Register Name: TP_DATA_REG
Bit	R/W Default/Hex		Description
31:12	/	/	
11:0	R	0x0	TP_DATA.
		111.	Touch Panel X ,Y data or Auxiliary analogy input data converted by the internal ADC

Note:

In touch panel mode, the data stored in this register bases on TP_FIFO_MODE_SELECT. In Auxiliary ADC mode, the data stored in this register bases on ADC_CHAN_SELECT. If four channels are all enable, FIFO will access the input data in successive turn, first is ADC_CHAN0 data, then ADC_CHAN1, ADC_CHAN2, ADC_CHAN3 data. If there are only two or three channels selected, such as ADC_CHAN0 and ADC_CHAN3, firstly ADC_CHAN0 input data is accessed, then ADC_CHAN3 input data.

Enthusiasts

4.3. Audio Codec

4.3.1. Overview

The embedded Audio Codec is a high-quality stereo audio codec designed for embed device. It provides a stereo DAC for playback, and a single ADC for recording.

4.3.2. Feature

- Two audio digital-to-analog (DAC) channels
- Stereo capless headphone drivers
 - Up to 100dB DR
 - Supports DAC Sample Rates from 8KHz to 192KHz
- Support analog/ digital volume control
- Analog low-power loop from line-in /microphone to lineout outputs
- Four audio inputs:
 - One microphone inputs
 - Stereo FM input
 - One line-in input
- One audio analog-to-digital(ADC) channel
 - 96dB SNR@A-weight
 - Supports ADC Sample Rates from 8KHz to 48KHz
 - Supports AGC
- Interrupt and DMA Support

4.3.3. Block diagram

The embedded Audio Codec

4.3.4. Signal Description

Signal Name	Туре	Description

MICIN	1	Microphone input
FMINL	I	FM in left input
FMINR	I	FM in right input
LINEIN	I	Line in input
HPCOMFB	I	Headphone common reference feedback
НРСОМ	0	Headphone common reference
HPOUTL	0	Headphone Left output
HPOUTR	0	Headphone Right output

4.3.5. Power Description

VRA1	0	Reference	
VRA2	0	Reference	2.0
AVCC	I	Analog Power	SC.
HPVCC	0	Headphone Amplifier Power	(8)
AGND	GND	Analog Ground	.151

4.3.6. Function Description

4.3.6.1. ADC

The ADC is used for recording sound. The sample rate of the ADC is independent of DAC sample rate. In order to save power, The volume control of the stereo ADC is set via register ADC_MIXER_CTRL Bit 18:16.

4.3.6.2. Stereo ADC

The stereo DAC can be configured to different sample rate by setting the register DAC_FIFOC Bit31:29. In order to save power, the left and right DAC can be powered down separately by setting register DAC_MIXER_CTRL Bit 31:30.

4.3.6.3. Mixer

The Codec supports two mixers for all function requirements:

- 1) Headphone mixer for dual channels
- 2) ADC record mixer for single channel

4.3.6.4. Headphone Mixer

The headphone mixer is used to drive stereo output, including HPOUTL/R, HPOUTL/R_N.

The following signals can be mixed into the headphone mixer:

- 1) FMINL/R
- 2) LINEIN
- 3) MICIN
- 4) Stereo DAC output

4.3.6.5. ADC Record Mixer

The ADC record mixer is used to mix analog signals as input to the ADC for recording.

- 1) FMINL/R
- 2) LINEIN

- 3) MICIN
- 4) Stereo DAC output

4.3.6.6. Analog Audio Input Path

The codec support four analog audio input paths:

- 1) FMINL
- 2) FMINR
- 3) LINEIN
- 4) MICIN

4.3.6.7. FM Input

FMINL and FMINR provide 2-channel stereo single-ended input that can be mixed into the Headphone mixer and ADC record mixer. The inputs are high impedance and low capacitance, thus ideally suited to receiving line level signals from external hi-fi or audio equipment or audio module FM.

Both line inputs include programmable volume level adjustments and ADC input mute. Passive RF and active Anti_Alias filters are also incorporated within the FM inputs. These prevent high frequencies aliasing into the audio band or otherwise degrading performance.

4.3.7. Audio Codec Register List

Module Name	Base Address
Audio Codec	0x01C23C00

Register Name	Offset	Description
AC_DAC_DPC_REG	0x00	DAC Digital Part Control Register
AC_DAC_FIFOC_REG	0x04	DAC FIFO Control Register
AC_DAC_FIFOS_REG	0x08	DAC FIFO Status Register
AC_DAC_TXDATA_REG	0x0c	DAC TX Data Register
AC_ADC_FIFOC_REG	0x10	ADC FIFO Control Register
AC_ADC_FIFOS_REG	0x14	ADC FIFO Status Register
AC_ADC_RXDATA_REG	0x18	ADC RX Data Register
DAC_MIXER_CTRL_REG	0x20	DAC&MIXER Control Register
ADC_MIXER_CTRL_REG	0x24	ADC Analog and Input mixer Control Register
ADDA_TUNE_REG	0x28	ADC&DAC performance tuning Register
BIAS_DA16_CAL_CTRL_REG0	0x2C	Bias&DA16 Calibration Control Register 0
BIAS_DA16_CAL_CTRL_REG1	0x34	Bias&DA16 Calibration Control Register 1
AC_DAC_CNT_REG	0x40	DAC TX FIFO Counter Register
AC_ADC_CNT_REG	0x44	ADC RX FIFO Counter Register
AC_DAC_DG_REG	0x48	DAC Debug Register
AC_ADC_DG_REG	0x4c	ADC Debug Register
AC_ADC_DAP_CTR_REG	0x70	ADC DAP Control Register
AC_ADC_DAP_LCTR_REG	0x74	ADC DAP Left Control Register
AC_ADC_DAP_RCTR_REG	0x78	ADC DAP Right Control Register
AC_ADC_DAP_PARA_REG	0x7C	ADC DAP Parameter Register
AC_ADC_DAP_LAC_REG	0x80	ADC DAP Left Average Coef Register
AC_ADC_DAP_LDAT_REG	0x84	ADC DAP Left Decay and Attack Time Register
AC_ADC_DAP_RAC_REG	0x88	ADC DAP Right Average Coef Register
AC_ADC_DAP_RDAT_REG	0x8C	ADC DAP Right Decay and Attack Time Register
ADC_DAP_HPFC_REG	0x90	ADC DAP HPF Coef Register
ADC_DAP_LINAC_REG	0x94	ADC DAP Left Input Signal Low Average Coef Register
ADC_DAP_RINAC_REG	0x98	ADC DAP Right Input Signal Low Average Coef Register
ADC_DAP_ORT_REG	0x9c	ADC DAP Optimum Register

4.3.8. Audio Codec Register Description

4.3.8.1. DAC Digital Part Control Register

Offset: 0x00			Register Name: AC_DAC_DPC_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	EN_DA.
			DAC Digital Part Enable

	1		O. Disable
			0: Disable
20.20	,	,	1: Enable
30:29	/ D/M/	/	MODOLL
28:25	R/W	0x0	MODQU.
			Internal DAC Quantization Levels
			Levels=[7*(21+MODQU[3:0])]/128
2.4	5/14/	0.0	Default levels=7*21/128=1.15
24	R/W	0x0	DWA.
			DWA Function Disable
			0: Enable
23	,	1	1: Disable
22:21	/ D/\A/	0x0	HDVI SOFT MOD
22.21	R/W	UXU	HPVL_SOFT_MOD Headphone volume soft tuning mode
			OX: Normal mode
			10: Soft volume mode
			11: DAC Soft disable or enable mode
20	R	0x0	DACA_CHND_ENA
20	, n	OXO	Internal status of DAC Analog channel enable control
			0: Disable; 1: Enable
19	R/W	0x0	HPPA_MXRD_ENA
	10, 00	OXO	Internal status of headphone PA mixer all-input mute control
			0: Mute; 1: On
18	R/W	0x0	HPF_EN.
	1,7,00	o no	High Pass Filter Enable
			0: Disable
			1: Enable
17:12	R/W	0x0	DVOL.
		10.	Digital volume control: dvc, ATT=DVC[5:0]*(-1.16dB)
			64 steps, -1.16dB/step
11:6	R/W	0x0	HPVL_STEP_CTRL
· O ,			Headphone volume soft tuning step control
			0: 10us
			1: 20us
			7: 80us
			8: 90us
			9: 100us
			10: 200us
			16: 800us
			17: 900us
			18: 1ms
			19: 2ms

1	i	1	
			25: 8ms
			26: 9ms
			27: 10ms
			28: 20ms
			34: 80ms
			35: 90ms
			36: 100ms
			37: 200ms
			43: 800ms
			44: 900ms
			45: 1s
			52: 8s
			53: 9s
			54-63: 9s
5:0	R/W	0x10	HPVL_CTRL_OUT
			Internal status of headphone PA volume control
			Total 64 level, from -63dB to 0dB, 1dB/step,
			min when 000000(-63dB), max when 111111(0dB)

4.3.8.2. DAC FIFO Control Register

Offset: 0x0	Offset: 0x04		Register Name: AC_DAC_FIFOC_REG
Bit	R/W	Default/Hex	Description
			DAC_FS.
			Sample Rate of DAC
		$I \cdot M$	000: 48KHz
		// // /	010: 24KHz
			100: 12KHz
31:29	R/W	0x0	110: 192KHz
· O ,			001: 32KHz
			011: 16KHz
			101: 8KHz
			111: 96KHz
			44.1KHz/22.05KHz/11.025KHz can be supported by Audio PLL Configure Bit
			FIR_VER.
28	R/W	0	FIR Version
			0: 64-Tap FIR; 1: 32-Tap FIR
27	/	/	/
			SEND_LASAT.
26	R/W	0x0	Audio sample select when TX FIFO under run
			0: Sending zero
			1: Sending last audio sample
25:24	R/W	0x0	FIFO_MODE.

Ī	l	I	For 24 hits transmitted and a complet
			For 24-bits transmitted audio sample:
			00/10: FIFO_I[23:0] = {TXDATA[31:8]}
			01/11: Reserved
			For 16-bits transmitted audio sample:
			00/10: FIFO_I[23:0] = {TXDATA[31:16], 8'b0}
			01/11: FIFO_I[23:0] = {TXDATA[15:0], 8'b0}
23	/	/	/
			DAC_DRQ_CLR_CNT.
			When TX FIFO available room less than or equal N, DRQ Request will be
			De-asserted. N is defined here:
22:21	R/W	0x0	00: IRQ/DRQ Deasserted when WLEVEL > TXTL
			01: 4
			10: 8
			11: 16
20:15	/	/	1
			TX_TRIG_LEVEL.
			TX FIFO Empty Trigger Level (TXTL[12:0])
			Interrupt and DMA request trigger level for TX FIFO normal condition.
14:8	R/W	0xF	IRQ/DRQ Generated when WLEVEL ≤ TXTL
			Notes:
			WLEVEL represents the number of valid samples in the TX FIFO
			Only TXTL[6:0] valid when TXMODE = 0
			ADDA_LOOP_EN.
7	R/W	0x0	ADDA loop Enable, adda
	.,	o no	0: Disable 1: Enable
			DAC_MONO_EN.
			DAC Mono Enable
6	R/W	0x0	0: Stereo, 64 levels FIFO
	.,	100	1: mono, 128 levels FIFO
			When enabled, L & R channel send same data
			TX_SAMPLE_BITS.
			Transmitting Audio Sample Resolution
5	R/W	0x0	0: 16 bits
			1: 24 bits
			DAC_DRQ_EN.
4	R/W	0x0	DAC FIFO Empty DRQ Enable 0: Disable
			1: Enable
			DAC_IRQ_EN.
3	R/W	0x0	DAC FIFO Empty IRQ Enable
			0: Disable
			1: Enable
			FIFO_UNDERRUN_IRQ_EN.
2	R/W	0x0	DAC FIFO Under Run IRQ Enable
			0: Disable

			1: Enable
		0x0	FIFO_OVERRUN_IRQ_EN.
1	D ()A/		DAC FIFO Over Run IRQ Enable
1	R/W		0: Disable
			1: Enable
	R/W	R/W 0x0	FIFO_FLUSH.
0			DAC FIFO Flush
			Write '1' to flush TX FIFO, self clear to '0'

4.3.8.3. DAC FIFO Status Register

Offset: 0	x08		Register Name: AC_DAC_FIFOS_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	/
23	R	0x1	TX_EMPTY.
			TX FIFO Empty
			0: No room for new sample in TX FIFO
			1: More than one room for new sample in TX FIFO (>= 1 word)
22:8	R	0x80	TXE_CNT.
			TX FIFO Empty Space Word Counter
7:4	/	/	1
3	R/W	0x1	TXE_INT.
			TX FIFO Empty Pending Interrupt
			0: No Pending IRQ
			1: FIFO Empty Pending Interrupt
			Write '1' to clear this interrupt or automatic clear if interrupt condition fails.
2	R/W	0x0	TXU_INT.
			TX FIFO Under run Pending Interrupt
		M_{ij}	0: No Pending Interrupt
		// "	1: FIFO Under run Pending Interrupt
			Write '1' to clear this interrupt
1	R/W	0x0	TXO_INT.
.0			TX FIFO Overrun Pending Interrupt
			0: No Pending Interrupt
			1: FIFO Overrun Pending Interrupt
			Write '1' to clear this interrupt
0	/	/	/

4.3.8.4. DAC TX DATA Register

Offset: 0x0C			Register Name: AC_DAC_TXDATA_REG
Bit	R/W	Default/Hex	Description
31:0	W	0x0	TX_DATA.
			Transmitting left, right channel sample data should be written this register
			one by one. The left channel sample data is first and then the right channel
			sample.

4.3.8.5. ADC FIFO Control Register

Offset: 0x:	10	ontroi Register	Register Name: AC_ADC_FIFOC_REG
Bit	R/W	Default/Hex	Description
31:29	R/W	0x0	ADFS.
31.23	10,00	OXO .	Sample Rate of ADC
			000: 48KHz
			010: 24KHz
			100: 12KHz
			110: Reserved
			001: 32KHz
			011: 16KHz
			101: 8KHz
			111: Reserved
			44.1KHz/22.05KHz/11.025KHz can be supported by Audio PLL Configure Bit
28	R/W	0x0	EN_AD.
20	11,7 VV	0.00	ADC Digital Part Enable, en_ad
			0: Disable
			1: Enable
27	,	/	1. Ellable
26:25	/	/	
	7	7	DV FIFO MODE
24	R/W	0x0	RX_FIFO_MODE.
			RX FIFO Output Mode (Mode 0, 1)
			0: Expanding '0' at LSB of TX FIFO register
			1: Expanding received sample sign bit at MSB of TX FIFO register
			For 24-bits received audio sample:
		: (1)	Mode 0: RXDATA[31:0] = {FIFO_O[23:0], 8'h0}
			Mode 1: Reserved
		$///_A$.	For 16-bits received audio sample:
			Mode 0: RXDATA[31:0] = {FIFO_0[23:8], 16'h0}
22.10		,	Mode 1: RXDATA[31:0] = {16{FIFO_O[23]}, FIFO_O[23:8]}
23:19	/	/	
18:17	R/W	0x0	ADCFDT.
			ADC FIFO Delay Time For writing Data after ADC digital part enable
			00:5ms
			01:10ms
			10:20ms
			11:30ms
16	R/W	0x0	ADCDFEN.
			ADC FIFO Delay Function For writing Data after ADC digital part enable
			0: Disable
			1: Enable
15:13	/	/	/
12:8	R/W	0xF	RX_FIFO_TRG_LEVEL.
			RX FIFO Trigger Level (RXTL[4:0])
			Interrupt and DMA request trigger level for TX FIFO normal condition

	1		IRQ/DRQ Generated when WLEVEL > RXTL[4:0]
			Notes:
			WLEVEL represents the number of valid samples in the RX FIFO
7	R/W	0x0	ADC_MONO_EN.
			ADC Mono Enable.
			0: Stereo, 16 levels FIFO
			1: mono, 32 levels FIFO
			When set to '1', Only left channel samples are recorded
6	R/W	0x0	RX_SAMPLE_BITS.
			Receiving Audio Sample Resolution
			0: 16 bits
			1: 24 bits
5	/	/	
4	R/W	0x0	ADC_DRQ_EN.
			ADC FIFO Data Available DRQ Enable.
			0: Disable
			1: Enable
3	R/W	0x0	ADC_IRQ_EN.
			ADC FIFO Data Available IRQ Enable.
			0: Disable
			1: Enable
2	/	/	
1	R/W	0x0	ADC_OVERRUN_IRQ_EN.
			ADC FIFO Over Run IRQ Enable
			0: Disable
			1: Enable
0	R/W	0x0	ADC_FIFO_FLUSH.
		W	ADC FIFO Flush.
			Write '1' to flush TX FIFO, self clear to '0'.

4.3.8.6. ADC FIFO Status Register

Offset: 0x	Offset: 0x14		Register Name: AC_ADC_FIFOS_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	/
23	R	0x0	RXA.
			RX FIFO Available
			0: No available data in RX FIFO
			1: More than one sample in RX FIFO (>= 1 word)
22:14	/	/	/
13:8	R	0x0	RXA_CNT.
			RX FIFO Available Sample Word Counter
7:4	/	/	/
3	R/W	0x0	RXA_INT.
			RX FIFO Data Available Pending Interrupt
			0: No Pending IRQ

			1: Data Available Pending IRQ
			Write '1' to clear this interrupt or automatic clear if interrupt condition fails.
2	/	/	1
1	R/W	0x0	RXO_INT.
			RX FIFO Overrun Pending Interrupt
			0: No Pending IRQ
			1: FIFO Overrun Pending IRQ
			Write '1' to clear this interrupt
0	/	/	

4.3.8.7. ADC RX DATA Register

Offset: 0x18			Register Name: AC_ADC_RXDATA_REG
Bit	R/W	Default/Hex	Description
31:0	R	0x0	RX_DATA.
			RX Sample
			Host can get one sample by reading this register. The left channel sample
			data is first and then the right channel sample.

4.3.8.8. DAC Analog & Output MIXER Control Register

Offset:20			Register Name: DAC_MIXER_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	DACAREN.
			Internal Analog Right channel DAC Enable
			0:Disable; 1:Enable
30	R/W	0x0	DACALEN.
		• •	Internal Analog Left channel DAC Enable
			0:Disable; 1:Enable
29	R/W	0x0	RMIXEN.
			Right Analog Output Mixer Enable
			0:Disable; 1:Enable
28	R/W	0x0	LMIXEN.
			Left Analog Output Mixer Enable
			0:Disable; 1:Enable
27	R/W	0x0	RHPPAMUTE.
			All input source to Right Headphone PA mute, including Right Output mixer
			and Internal Right channel DAC:
			0:Mute, 1: Not mute
26	R/W	0x0	LHPPAMUTE.
			All input source to Left Headphone PA mute, including Left Output mixer and
			Internal Left channel DAC:
			0:Mute, 1: Not mute
25	R/W	0x0	RHPIS.
			Right Headphone Power Amplifier (PA) Input Source Select
			0: Right channel DAC
			1: Right Analog Mixer

24	R/W	0x0	LHPIS.
			Left Headphone Power Amplifier (PA) Input Source Select
			0: Left channel DAC
			1: Left Analog Mixer
23:22	R/W	0x0	HPCOM_FC.
	,		HPCOM function control
			00: HPCOM off & output is floating
			01: HPL inverting output
			10: HPR inverting output
			11: Direct driver for HPL & HPR
21	R/W	0x1	COMPTEN.
21	IX/ VV	OXI	HPCOM output protection enable when it is set as Direct driver for HPL/R
			0: protection disable
20.46	5/14/	0.0	1: protection enable
20:16	R/W	0x0	RMIXMUTE.
			Right Output Mixer Mute Control
			Mute, 1-Not mute
			Right Output Mixer Mute Control Mute, 1-Not mute Bit 4: MICIN Boost stage Bit 3: LINEIN Bit 2: EMINE
			Bit 3: LINEIN
			Bit 2: FMINR
			Bit 1: Right channel DAC
			Bit 0: Left channel DAC
15	R/W	0x0	HPPAEN
			Right & Left Headphone Power Amplifier Enable
			0-disable
		1 A	1-enable
14:13	/	1	/
12:8	R/W	0x0	LMIXMUTE.
		10.	Left Output Mixer Mute Control
			0-Mute, 1-Not mute
			Bit 4: MICIN Boost stage
. ()			Bit 3: LINEIN
			Bit 2: FMINL
			Bit 1: Left channel DAC
			Bit 0: Right channel DAC
7	R/W	0x0	LTRNMUTE.
	,		Left HPOUT Negative To Right HPOUT Mute
			0: Mute
			1: Not mute
6	R/W	0x0	RTLNMUTE.
	11, 44		Right HPOUT Negative To Left HPOUT Mute
			0: Mute
F.C	D //4/	0.0	1: Not mute
5:0	R/W	0x0	HPVOL.
			Headphone Volume Control, (HPVOL): Total 64 level, from 0dB to -62dB,

		1dB/step, mute when 000000
--	--	----------------------------

4.3.8.9. ADC Analog and Input mixer Control Register

Offset: 0x24			Register Name: ADC_MIXER_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	ADCEN.
31	117 VV	0.00	ADC Analog Enable
			0-Disable
			1-Enable
20.27	,	,	1-Enable
30:27	/	/	1
26:24	R/W	0x3	MICG.
			MICIN BOOST stage to L or R output mixer Gain Control
			From -4.5dB to 6dB, 1.5dB/step, default is 0dB
23:21	R/W	0x0	LINEINVOL.
			LINEIN to L/R output mixer Gain Control
			From 0dB to 14dB, 2dB/step, default is 0dB
20:19	/	/	
18:16	R/W	0x3	ADCG.
			ADC Input Gain Control
			From -4.5dB to 6dB, 1.5dB/step default is 0dB
15:14	R/W	0x1	COSSLOPECTRL.
			COS slop time control for Anti-pop
			000: 131ms;
			001: 262ms;
			010: 393ms;
			011: 524ms;
13:8	R/W	0x0	ADCMIXMUTE.
		$\langle N \rangle$	ADC Mixer Mute Control:
	1		0-Mute, 1-Not mute
			Bit 5: MICIN Boost stage
			Bit 4:FMINL
\cdot \bigcirc \cdot			Bit 3: FMINR
			Bit 2: LINEIN
			Bit 1: Left output mixer
			Bit 0: Right output mixer
7	R/W	0x0	PASPEEDSELECT.
	,		PA Speed Select;
			0: Normal
			1: Fast
6:4	R/W	0x0	FMINLVOL.
J. T	11,700	0,0	FMINL/R to L/R output mixer Gain Control
			From OdB to 14dB, 2dB/step, default is OdB
2	D /\A/	0.0	
3	R/W	0x0	MIC AMPEN.
			MIC Boost AMP Enable
			0:Disable

			1:Enable
2:0	R/W	0x4	MICBOOST.
			MIC Boost AMP Gain Control
			0dB when 000, 24dB to 42dB when 001 to 111, 3dB/step, default is 33dB

4.3.8.10. ADC&DAC performance tuning Register

Offset:0x2	Offset:0x28		Register Name: ADDA_TUNE_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	ZERO_CROSS_EN.
			function enable for master volume change at zero cross over
			0: disable
			1: enable
30	R/W	0x0	ZERO_CROSS_TIME_SEL.
			Timeout control for master volume change at zero cross over
			0: 32ms
			1: 64ms
29:28	R/W	0x0	PTDBS
			HPCOM protect debounce time setting
			00: 2-3ms; 01: 4-6ms; 10: 8-12ms; 11: 16-24ms
			at the same time, bit 17 is used to control the AVCCPORFLAG, write 1 to this
			bit, flag will be clear, and the calibration is done again
27	R/W	0x0	PA_SLOPE_SELECT
			PA slope select cosine or ramp
			0: select cosine
			1: select ramp
26:24	R/W	0x0	PA_ANTI_POP_CTRL.
		. 1111	PA Anti-pop time Control
		$\langle N \rangle$	000:131ms
			001:262ms
			010:395ms
			011:524ms
. U			100:655ms
			101:789ms
			110:789ms
			111:1048ms
23:22	R/W	0x0	OPMIC_BIAS_CUR
			OPMIC Bias Current Control
21:20	R/W	0x0	OPVR_BIAS_CUR.
			OPVR Bias Current Control
19:18	R/W	0x0	OPDAC_BIAS_CUR.
			OPDAC Bias Current Control
17:16	R/W	0x0	OPMIX_BIAS_CUR.
			OPMIX/OPLPF/OPDRV/OPCOM Bias Current Control
15:14	R/W	0x0	OPDRV_OPCOM_CUR.
			OPDRV/OPCOM output stage current setting

13:12	R/W	0x0	OPADC1_BIAS_CUR.
			OPADC1 Bias Current Select
11:10	R/W	0x0	OPADC2_BIAS_CUR.
			OPADC2 Bias Current Select
9:8	R/W	0x0	OPAAF_BIAS_CUR.
			OPAAF in ADC Bias Current Select
7:5	R/W	0x0	USB_BIAS_CUR.
			USB bias current tuning
			From 23uA to 30uA, Default is 25uA
4	R/W	0x0	DITHER
			ADC dither on/off control
			0: dither off; 1: dither on
3:2	R/W	0x0	DITHER_CLK_SELECT
			ADC dither clock select
			00: ADC FS * (8/9), about 43KHz when FS=48KHz
			01: ADC FS * (16/15), about 51KHz when FS=48KHz
			10: ADC FS * (4/3), about 64KHz when FS=48KHz
			11: ADC FS * (16/9), about 85KHz when FS=48KHz
1:0	R/W	0x0	BIHE_CTRL, BIHE control
			00: no BIHE
			01: BIHE=7.5 HOSC
			10: BIHE=11.5 HOSC
			11: BIHE=15.5 HOSC

Note: This register must write 0x44555556 at the time of power on

4.3.8.11. Bias & DA16 Calibration Control Register 0

Offset:0x2	.C		Register Name: BIAS_DA16_CAL_CTRL0_REG
Bit	R/W	Default/Hex	Description
31:7	1		/
6	R/W	0x1	CURRENT_TEST_SELECT.
			Internal current sink test enable (from LINEIN pin)
1 0 1			0:Normal;
			1: For Debug
5	/	/	/
4	R/W	0x1	BIAS and DA16 calibration clock select
			0: 1KHz;
			1: 500Hz
3	R/W	0x0	BIAS calibration mode select
			0: average;
			1: single
2	R/W	0x1	BIAS and DA16 calibration control
			Write 1 to this bit, the calibration will be doing again. Then this bit will be
			reset to zero automatically
1	R/W	0x1	BIASCALIVERIFY
			Bias Calibration Verify

			0: Calibration;
			1: Register setting
0	R/W	0x0	DA16CALIVERIFY
			DA16 Calibration Verify
			0: Calibration;
			1: Register setting

Note: This register must write 0x00000004 at the time of power on

4.3.8.12. Bias & DA16 Calibration Control Register 1

Offset:0x34			Register Name: Bias_DA16_CAL_CTRL1_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	/
28:23	R/W	0X0	BIASVERIFY
			Bias Register Setting Data, 6bit
22:0	/	/	1

Note: This register must write 0x10000000 at the time of power on

4.3.8.13. DAC TX Counter Register

Offset: 0)x40		Register Name: AC_DAC_CNT_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	TX_CNT.
			TX Sample Counter
			The audio sample number of sending into TXFIFO. When one sample is put
			into TXFIFO by DMA or by host IO, the TX sample counter register increases by
		4	one. The TX sample counter register can be set to any initial valve at any time.
		• •	After been updated by the initial value, the counter register should count on
		1111	base of this initial value.
		$I \cap I \cap I$	Notes: It is used for Audio/ Video Synchronization

4.3.8.14. ADC RX Counter Register

Offset: 0		Journel Register	Register Name: AC ADC CNT REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	RX CNT.
			RX Sample Counter
			The audio sample number of writing into RXFIFO. When one sample is written
			by Digital Audio Engine, the RX sample counter register increases by one. The
			RX sample counter register can be set to any initial valve at any time. After
			been updated by the initial value, the counter register should count on base of
			this initial value.
			Notes: It is used for Audio/ Video Synchronization

4.3.8.15. DAC Debug Register

Offset: 0x4	Offset: 0x48		Register Name: AC_DAC_DG
Bit	R/W	Default/Hex	Description
31:12	/	/	1

11	R/W	0x0	DAC_MODU_SELECT.
			DAC Modulator Debug
			0: DAC Modulator Normal Mode
			1: DAC Modulator Debug Mode
10:9	R/W	0x0	DAC_PATTERN_SELECT.
			DAC Pattern Select
			00: Normal (Audio Sample from TX FIFO)
			01: -6 dB Sin wave
			10: -60 dB Sin wave
			11: silent wave
8	R/W	0x0	CODEC_CLK_SELECT.
			CODEC Clock Source Select: cksel
			0: CODEC Clock from PLL
			1: CODEC Clock from OSC (For Debug)
7	/	/	
6	R/W	0x0	DA_SWP.
			DAC output channel swap enable, da_swp
			0:Disable
			1:Enable
5:0	/	/	1

4.3.8.16. ADC Debug Register

Offset: 0x4C			Register Name: AC_ADC_DG_REG
Bit	R/W	Default/Hex	Description
31:25	/	1	1
24	R/W	0x0	AD_SWP.
			ADC output channel swap enable (for digital filter)
		$I \setminus N$	0: disable
			1: enable
23:0	/	1	/

4.3.8.17. ADC DAP Control Register

Offset: 0x70			Register Name: AC_ADC_DAP_CTR_REG
Bit	R/W	Default/Hex	Description
31	R/W	0X0	DAP_EN
			DAP for ADC enable
			0 : bypass 1: enable
30	R/W	0x0	ADAP_START.
			DAP for ADC start up
			0 : disable
			1: start up
29:22	/	/	/
21	R	0x0	ADAP_LSATU_FLAG.
			Left channel AGC saturation flag
			0 : no saturation

			1: saturation
20	R	0x0	ADAP_LNOI_FLAG.
			Left channel AGC noise-threshold flag
			0:
			1:
19:12	R	0x0	ADAP_LCHAN_GAIN
			Left channel Gain applied by AGC
			(7.1format 2s component(-20dB – 40dB), 0.5dB/ step)
			0x50 : 40dB
			0x4F : 39.5dB
			0x00 : 00dB
			OxFF: -0.5dB
11:10	/	/	
9	R	0x0	ADAP_RSATU_FLAG.
			Right AGC saturation flag
			0 : no saturation
			1: saturation
8	R	0x0	ADAP_RNOI_FLAG.
			Right channel AGC noise-threshold flag
			0:
			1:
7:0	R	0x0	ADAP_LCHAN_GAIN.
			Right Channel Gain applied by AGC (7.1format 2s component)(0.5dB step)
			0x50 : 40dB
			0x4F: 39.5dB
		. 1111	
		N_{I}	0x00 : 00dB
			0xFF:-0.5dB

4.3.8.18. ADC DAP Left Control Register

$\overline{}$					
Offset: 0:	Offset: 0x74		Register Name: AC_ADC_DAP_LCTR_REG		
Bit	R/W	Default/Hex	Description		
31:24	/	/	/		
23:16	R/W	0x1F	ADAP_LNOI_SET.		
		(-86dB)	Left channel noise threshold setting		
			0x00 : -24dB		
			0x01:-26dB		
			0x02 : -28dB		
			0x1D: -82dB		
			0x1E: -84dB		
			0x1F: -86dB		
15	/	/	/		
14	R/W	0x1	AAGC_LCHAN_EN.		

			Left AGC function enable
			0:disable
			1: enable
13	R/W	0x1	ADAP_LHPF_EN.
			Left HPF enable
			0: disable
			1: enable
12	R/W	0x1	ADAP_LNOI_DET.
			Left Noise detect enable
			0: disable
			1: enable
11:10	/	/	/
9:8	R/W	0x0	ADAP_LCHAN_HYS.
			Left Hysteresis setting
			00:1dB
			00:1dB 01:2dB 10:4dB
			10:4dB
			11 : disable
7:4	R/W	0x0	ADAP_LNOI_DEB.
			Left Noise debounce time
			0000:0/fs
			0001:4/fs
			0010:8/fs
			1111 :16*4096/fs
		_ <	$T=2^{(N+1)}/fs$, except N=0
3:0	R/W	0x0	ADAP_LSIG_DEB.
	.,		Left Signal debounce time
		10	0000:0/fs
			0001:4/fs
~ (1		0010:8/fs
			1111 :16*4096/fs
			$T=2^{(N+1)}/fs$, except N=0
	İ		1-2

4.3.8.19. ADC DAP Right Control Register

Offset: 0x78			Register Name: AC_ADC_DAP_RCTR_REG
Bit	R/W	Default/Hex	Description
31:21	/	/	/
20:16	R/W	0x1F	ADAP_RNOI_SET.
		(-86dB)	Right channel noise threshold setting
			0x00 : -24dB
			0x01 : -26dB
			0x02 : -28dB

		1	0.4D. 034D
			0x1D: -82dB
			0x1E: -84dB
	_		0x1F: -86dB
15	/	/	/
14	R/W	0x1	AAGC_RCHAN_EN.
			Right AGC enable
			0:disable
			1:enable
13	R/W	0x1	ADAP_RHPF_EN.
			Right HPF enable
			0: disable
			1: enable
12	R/W	0x1	ADAP_RNOI_DET.
			Right Noise detect enable
			0: disable
			1:enable
11:10	/	/	1
9:8	R/W	0x0	ADAP_RCHAN_HYS.
			Right Hysteresis setting
			00:1dB
			01:2dB
			10:4dB
			11 : disable;
7:4	R/W	0x0	ADAP_RNOI_DEB.
			Right Noise debounce time
			0000:0/fs
			0001:4/fs
		V_{IJ}	0010:8/fs
		11.	
			1111: 16*4096/fs
			$T=2^{(N+1)}/fs$, except N=0
3:0	R/W	0x0	ADAP_RSIG_DEB.
3.0	ity vv	OXO	Right Signal debounce time
			0000:0/fs
			0001:4/fs
			001:4/15 0010:8/fs
			0010.915
			4444 45*4005/F
			1111: 16*4096/fs
]	$T=2^{(N+1)}/fs$,except N=0

4.3.8.20. ADC DAP Parameter Register

Offset: 0x7C			Register Name: AC_ADC_DAP_PARA_REG
Bit	R/W	Default/Hex	Description
31:30	/	/	/
29:24	R/W	0x2C	ADAP_LTARG_SET.

			Left channel target level setting (-1dB30dB). (6.0format 2s component)
23:22	/	/	/
21:16	R/W	0x2C	ADAP_RTARG_SET.
			Right channel target level setting (-1dB30dB). (6.0format 2s component)
15:8	R/W	0x28	ADAP_LGAIN_MAX.
			Left channel max gain setting (0-40dB). (7.1format 2s component)
7:0	R/W	0x28	ADAP_RGAIN_MAX.
			Right channel max gain setting (0-40dB). (7.1format 2s component)

4.3.8.21. ADC DAP Left Average Coef Register

Offset: 0x80			Register Name: AC_ADC_DAP_LAC_REG
Bit	R/W	Default/Hex	Description
31:27	/	/	
26:0	R/W	0x0051EB8	ADAP_LAC.
			Average level coefficient setting(3.24format 2s component)

4.3.8.22. ADC DAP Left Decay & Attack Time Register

Offset: 0x8	4		Register Name: AC_ADC_DAP_LDAT_REG
Bit	R/W	Default/Hex	Description
31	/	/	1
30:16	R/W	0x0000	ADAP_LATT_SET
			Left attack time coefficient setting
			0000 : 1x32/fs
			0001 : 2x32/fs
		:.01	7FFF : 2 ¹⁵ x32/fs
		11/1	T=(n+1)*32*fs
	. 111	A_{A} .	When the gain decreases, the actual gain will decrease 0.5dB at every attack
			time.
15	1	/	/
14:0	R/W	0x001F	ADAP_LDEC_SET
		(32x32fs)	Left decay time coefficient setting
			0000 : 1x32/fs
			0001 : 2x32/fs
			7FFF : 2 ¹⁵ x32/fs
			T=(n+1)*32/fs
			When the gain increases, the actual gain will increase 0.5dB at every decay
			time.

4.3.8.23. ADC DAP Right Average Coef Register

			<u> </u>
Offset: 0x88			Register Name: AC_ADC_DAP_RAC_REG
Bit	R/W	Default/Hex	Description
31:27	/	/	/
26:0	R/W	0x0051EB8	ADAP_RAC.

		Average level coefficient setting(3.24fomat)
--	--	--

4.3.8.24. ADC DAP Right Decay & Attack Time Register

Offset: 0x8C			Register Name: AC_ADC_DAP_RDAT_REG
Bit	R/W	Default/Hex	Description
31	/	/	/
30:16	R/W	0x0000	ADAP_RATT_SET.
			Right attack time coefficient setting
			0000 : 1x32/fs
			0001 : 2x32/fs
			7FFF : 2 ¹⁵ x32/fs
			T=(n+1)*32/fs
			When the gain decreases, the actual gain will decrease 0.5dB at every attack
			time.
15	/	1	1
14:0	R/W	0x001F	ADAP_RDEC_SET
			Right decay time coefficient setting
			0000 : 1x32/fs
			0001 : 2x32/fs
			7FFF : 2 ¹⁵ x32/fs
			T=(n+1)*32/fs
			When the gain increases, the actual gain will increase 0.5dB at every decay
			time.

4.3.8.25. ADC DAP HPF Coef Register

Offset: 0x90			Register Name: AC_ADC_DAP_HPFC_REG
Bit	R/W	Default/Hex	Description
31:27	1	/	/
26:0	R/W	0x0FFFAC1	ADAP_HPFC.
			HPF coefficient setting (3.24fomat)

4.3.8.26. ADC DAP Left Input Signal Low Average Coef Register

Offset: 0x94			Register Name: AC_ADC_DAP_LINAC_REG
Bit	R/W	Default/Hex	Description
31:27	/	/	/
26:0	R/W	0x0051EB8	ADAP_LINAC Left input signal average filter coefficient to check noise or not (the coefficients 3.24 format 2s complement) always the same as the left output signal average filter's

4.3.8.27. ADC DAP Right Input Signal Low Average Coef Register

Offset: 0x98			Register Name: AC_ADC_DAP_RNAC_REG
Bit	R/W	Default/Hex	Description

31:27	/	/	/
26:0	R/W	0x0051EB8	ADAP_RINAC
			Right input signal average filter coefficient to check noise or not (the
			coefficients 3.24 format 2s complement) always the same as the left output
			signal average filter's

4.3.8.28. ADC DAP Optimum Register

Offset: 0x9C			Register Name: AC_ADC_DAP_OPT_REG
Bit	R/W	Default/Hex	Description
31:11	/	/	/
10	R/W	0	Left energy default value setting(include the input and output)
			0 : min
			1 : max
9 :8	R/W	00	Left channel gain hysteresis setting.
			The different between target level and the signal level must larger than the
			hysteresis when the gain change.
			00 : 0.4375db
			01:0.9375db
			10:1.9375db
			11:3db
7:6	/	/	
5	R/W	0	The input signal average filter coefficient setting
			0 : is the reg94/reg98
			1: is the reg80/reg88;
4	R/W	0	AGC output when the channel in noise state
		• •	0 : output is zero
		. 1	1 : output is the input data
3	1		/
2	R/W	0	Right energy default value setting(include the input and output)
•			0 : min; 1 : max
1:0	R/W	00	Right channel gain hysteresis setting.
			The different between target level and the signal level must larger than the
			hysteresis when the gain changes.
			00 : 0.4375db
			01:0.9375db
			10:1.9375db
			11:3db

Chapter 5. Display

This chapter describes the F1C200s display system from following perspectives:

- **TCON**
- **Display Engine Front-End**
- **Display Engine Back-End** For Allwinner Tech Enthusiasts
 - De-interlacer

5.1. TCON

5.1.1. Overview

The TCON module is timing controller of display output interface. TCON0 control LCD timing, output LCD signal and data to IO. TCON1 control TV timing, output TV control signal and data to TVE module.

5.1.2. Feature

- Support RGB interface with DE/SYNC mode, up to 1280x720@60fps
- Support serial RGB/CCIR656 interface, up to 720x576@60fps
- Support i80 interface with 18/16/9/8 bit, up to 800x480@60fps
- Support pixel format: RGB888, RGB666 and RGB565
- LCD dither function, support RGB666/RGB565 interface

5.1.3. Block Diagram

5.1.3.1. LCD Timing Controller

5.1.4. TCON Register List

Module Name	Base Address
TCON	0x01C0C000

Register Name	Offset	Description
TCON_CTRL_REG	0x000	TCON Control Register
TCON_INT_REG0	0x004	TCON Interrupt Register 0
TCON_INT_REG1	0x008	TCON Interrupt Register 1
TCON_FRM_CTRL_REG	0x010	TCON FRM Control Register
TCON_FRM_SEED0_R_REG	0x014	TCON FRM Seed0 Red Register
TCON_FRM_SEED0_G_REG	0x018	TCON FRM Seed0 Green Register
TCON_FRM_SEED0_B_REG	0x01C	TCON FRM Seed0 Blue Register
TCON_FRM_SEED1_R_REG	0x020	TCON FRM Seed1 Red Register
TCON_FRM_SEED1_G_REG	0x024	TCON FRM Seed1 Green Register
TCON_FRM_SEED1_B_REG	0x028	TCON FRM Seed1 Blue Register
TCON_FRM_TBL_REG0	0x02C	TCON FRM Table Register 0
TCON_FRM_TBL_REG1	0x030	TCON FRM Table Register 1
TCON_FRM_TBL_REG2	0x034	TCON FRM Table Register 2
TCON_FRM_TBL_REG3	0x038	TCON FRM Table Register 3
TCON0_CTRL_REG	0x040	TCON0 Control Register
TCON_CLK_CTRL_REG	0x044	TCON Clock Control Register
TCON0_BASIC_TIMING_REG0	0x048	TCONO Basic Timing Register 0
TCON0_BASIC_TIMING _REG1	0x04C	TCONO Basic Timing Register 1
TCON0_BASIC_TIMING _REG2	0x050	TCONO Basic Timing Register 2
TCON0_BASIC_TIMING _REG3	0x054	TCONO Basic Timing Register 3
TCON0_HV_TIMING_REG	0x058	TCON0 HV Timing Register
TCON0_ CPU_IF_REG	0X060	TCONO CPU Interface Control Register
TCON0_CPU_WR_REG	0x064	TCONO CPU Mode Write Register
TCON0_CPU_RD_REG	0x068	TCONO CPU Mode Read Register
TCON0_CPU_RD_NX_REG	0x06C	TCONO CPU Mode Read NX Register
TCON0_IO_CTRL_REG0	0x088	TCON0 IO Control Register 0
TCON0_IO_CTRL_REG1	0x08C	TCON0 IO Control Register 1
TCON1_CTRL_REG	0x090	TCON1 Control Register
TCON1_BASIC_REG0	0x094	TCON1 Basic Timing Register 0
TCON1_BASIC_REG1	0x098	TCON1 Basic Timing Register 1
TCON1_BASIC_REG2	0x09C	TCON1 Basic Timing Register 2
TCON1_BASIC_REG3	0x0A0	TCON1 Basic Timing Register 3
TCON1_BASIC_REG4	0x0A4	TCON1 Basic Timing Register 4
TCON1_BASIC_REG5	0x0A8	TCON1 Basic Timing Register 5
TCON1_IO_CTRL_REG0	0x0F0	TCON1 IO Control Register 0
TCON1_IO_CTRL_REG1	0x0F4	TCON1 IO Control Register 1
TCON_DEBUG_INFO_REG	0x0FC	TCON Debug Information Register

5.1.5. TCON Register Description

5.1.5.1. TCON Control Register

Offset:	Offset: 0x000		Register Name: TCON_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0	MODULE_EN: the whole module enable flag
			0: disable
			1: enable
			When it's disabled, the module will be reset to idle state.
30:1	/	/	/
0	R/W	0	IO_MAP_SEL:
			0: TCON0
			1: TCON1
			Note: this bit determined which IO_INV/IO_TRI is valid.
			This function has deleted in this version.
		•	1510
5.1.5.2.	TCON Inte	errupt Register 0	
Offset:	Offset: 0x004		Register Name: TCON_INT_REG0
D:+	D // //	D C 11/11	B iii

5.1.5.2. TCON Interrupt Register 0

Offset: 0x004			Register Name: TCON_INT_REG0
Bit	R/W	Default/Hex	Description
31	R/W	0	VBIE_TCON0: TCON0 vertical blanking interrupt Enable
			0: disable
			1: enable
30	R/W	0	VBIE_TCON1: TCON1 vertical blanking interrupt Enable
			0: disable
			1: enable
29	R/W	0	LINE_TRG0IE: TCON0 line trigger interrupt enable
		. 1111	0: disable
			1: enable
28	R/W	0	LINE_TRG1IE: TCON1 line trigger interrupt enable
1			0: disable
\triangle			1: enable
27:16	/	/	/
15	R/W	0	VBI_TCON0: TCON0 vertical blanking interrupt
			Asserted during vertical no-display period every frame.
			Write 0 to clear it.
14	R/W	0	VBI_TCON1: TCON1 vertical blanking interrupt
			Asserted during vertical no-display period every frame.
			Write 0 to clear it.
13	R/W	0	LINE_TRG0: trigger when SY0 match the current TCON0 scan line
			Write 0 to clear it.
12	R/W	0	LINE_TRG1: trigger when SY1 match the current TCON1 scan line
			Write 0 to clear it.
11:0	/	/	/

5.1.5.3. TCON Interrupt Register 1

Offset: (300xC		Register Name: TCON_INT_REG1
Bit	R/W	Default/Hex	Description
31:27	/	/	/
26:16	R/W	0	SYO: scan line for TCONO line trigger(including inactive lines)
			Setting it for the specified line for trigger0.
			Note: SY0 is writable only when LINE_TRG0 disable.
15:11	/	/	/
10:0	R/W	0	SY1: scan line for TCON1 line trigger(including inactive lines)
			Setting it for the specified line for trigger 1.
			Note: SY1 is writable only when LINE_TRG1 disable.

5.1.5.4. TCON FRM Control Register

Offset: 0	x010		Register Name: TCON_FRM_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0	TCON0_FRM_EN
			0:disable
			1:enable
30:7	/	/	
6	R/W	0	TCON0_FRM_MODE_r
			0: 6bit frm output
			1: 5bit frm output
5	R/W	0	TCON0_FRM_MODE_g
			0: 6bit frm output
			1: 5bit frm output
4	R/W	0	TCON0_FRM_MODE_b
			0: 6bit frm output
		///N .	1: 5bit frm output
1:0	R/W	0	FRM_TEST_MODE
~			00: FRM
\bigcirc			01: half 5/6bit, half FRM
			10: half 8bit, half FRM
)			11: half 8bit, half 5/6bit

5.1.5.5. TCON FRM Seed0 Red Register

Offset: 0	x014		Register Name: TCON_FRM_SEEDO_R_REG
Bit	R/W	Default/Hex	Description
31:25	/	/	1
24:0	R/W	0	SEED_R_VALUE0
			Note: avoid set it to 0

5.1.5.6. TCON FRM Seed0 Green Register

Offset: 0x018			Register Name: TCON_FRM_SEED0_G_REG
Bit	Bit R/W Default/Hex		Description
31:25	/	/	/

24:0	R/W	0	SEED_G_VALUE0
			Note: avoid set it to 0

5.1.5.7. TCON FRM Seed0 Blue Register

Offset: 0	x01C		Register Name: TCON_FRM_SEEDO_B_REG
Bit	R/W	Default/Hex	Description
31:25	/	/	1
24:0	R/W	0	SEED_B_VALUE0
			Note: avoid set it to 0

5.1.5.8. TCON FRM Seed1 Red Register

Offset: 0	x020		Register Name: TCON_FRM_SEED1_R_REG	
Bit	R/W	Default/Hex	Description	*
31:13	/	/	/	
12:0	R/W	0	SEED_R_VALUE1	
			Note: avoid set it to 0	1510

5.1.5.9. TCON FRM Seed1 Green Register

Offset: 0	x024		Register Name: TCON_FRM_SEED1_G_REG
Bit	R/W	Default/Hex	Description
31:13	/	/	
12:0	R/W	0	SEED_G_VALUE1
			Note: avoid set it to 0

5.1.5.10. TCON FRM Seed1 Blue Register

Offset: 0	x028	: 0	Register Name: TCON_FRM_SEED1_B_REG
Bit	R/W	Default/Hex	Description
31:13	1	V	/
12:0	R/W	0	SEED_B_VALUE1
			Note: avoid set it to 0

5.1.5.11. TCON FRM Table Register 0

Offset: 0	Offset: 0x02C		Register Name: TCON_FRM_TBL_REG0
Bit	R/W	Default/Hex	Description
31:0	R/W	0	FRM_TBL_VALUE0
			Note: Recommend set as 0x01010000

5.1.5.12. TCON FRM Table Register 1

Offset: 0	Offset: 0x030		Register Name: TCON_FRM_TBL_REG1
Bit	R/W	Default/Hex	Description
31:0	R/W	0	FRM_TBL_VALUE1
			Note: Recommend set as 0x15151111

5.1.5.13. TCON FRM Table Register 2

Offset: 0	Offset: 0x034		Register Name: TCON_FRM_TBL_REG2
Bit	R/W	Default/Hex	Description
31:0	R/W	0	FRM_TBL_VALUE2
			Note: Recommend set as 0x57575555

5.1.5.14. TCON FRM Table Register 3

Offset: 0	Offset: 0x038		Register Name: TCON_FRM_TBL_REG3
Bit	R/W	Default/Hex	Description
31:0	R/W	0	FRM_TBL_VALUE3
			Note: Recommend set as 0x7F7F7777

5.1.5.15. TCON0 Control Register

Offset: 0	x040		Register Name: TCON0_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0	TCON0_EN: TCON0 timing generator enable
			0: disable
			1: enable
			Note: It executes at the beginning of the first blank line of TCON0 timing.
30:27	/	/	
26:24	R/W	0	I/F: panel interface type select
			00: HV(Sync+DE)
			01: 8080 I/F
			1x: reserved
23	R/W	0	SWAP: TCON0 data manipulation
		: 0	0: default
			1: swap RED and BLUE data at FIFO1
22	R/W	0	WHITE_DATA: white data
			0:all 0s
~			1:all 1s
21	R/W	0	FIFO1_RST
			Write 1 and then 0 at this bit will reset FIFO 1
			Note: 1 holding time must more than 1 DCLK
20	R/W	0	Interlace_EN
			0:disable
			1:enable
			NOTE: this flag is valid only when TCON0_EN = 1
19:9	/	/	/
8:4	R/W	0	TCON0_STA_DLY
			STA delay
			NOTE: valid only when TCON0_EN = 1
3:2	/	/	/
1:0	R/W	0	TCON0_SRC_SEL: TCON0 data source select
			00: DE CH1(FIFO1 enable)
			01: reserved

10: DMA 565 input(FIFO1 enable)
11: white data(FIFO1 disable)
Note:
1) These bits are sampled only at the beginning of the first blank line of TCONO timing.
2) Generally, when input source is changed, it would change at the beginning of the first blank line of TCON0 timing.
3) When FIFO1 and FIFO2 select the same source and FIFO2 is enabled, it
executes at the beginning of the first blank line of TV timing. Also,
TCONO timing generator will reset to the beginning of the first blank line.

5.1.5.16. TCON Clock Control Register

Officet: 0	WO 1.1		Degister Names TCON CLV CTDL DEC
Offset: 0	XU44	1	Register Name: TCON_CLK_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0	LCLK_EN[3:0]: TCON0 clock enable
			4'h0, 4'h4,4'h6,4'ha7:dclk_en=0;dclk1_en=0;dclk2_en=0;dclkm2_en=0;
			4'h1: dclk_en = 1; dclk1_en = 0; dclk2_en = 0; dclkm2_en = 0;
			4'h2: dclk_en = 1; dclk1_en = 0; dclk2_en = 0; dclkm2_en = 1;
			4'h3: dclk_en = 1; dclk1_en = 1; dclk2_en = 0; dclkm2_en = 0;
			4'h5: dclk_en = 1; dclk1_en = 0; dclk2_en = 1; dclkm2_en = 0;
			4'h8,4'h9,4'ha,4'hb,4'hc,4'hd,4'he,4'hf:
			dclk_en = 1;
			dclk1_en = 1;
			dclk2_en = 1;
			dclkm2_en = 1;
30:8	/	/	
7:0	R/W	0	DCLKDIV: dot clock divider
		$I \cdot I \cap I$	Tdclk = Tsclk * DCLKDIV
		12	Note:
			1.if dclk1&dclk2 used,5 <dclkdiv <96<="" td=""></dclkdiv>
			2.if dclk only, DCLKDIV >=4 DCLKDIV=2

5.1.5.17. TCON0 Basic Timing Register 0

Offset: 0	Offset: 0x048		Register Name: TCON0_BASIC_TIMING_REG0
Bit	R/W	Default/Hex	Description
31:27	/	/	/
26:16	R/W	0	TCON0_X: screen width (in pixels)
			Panel width is X+1
15:11	/	/	/
10:0	R/W	0	TCONO_Y: screen height (in pixels)
			Panel height is Y+1

5.1.5.18. TCONO Basic Timing Register 1

Offset: 0x04C			Register Name: TCON0_BASIC_TIMING_REG1
Bit	R/W	Default/Hex	Description

31:28	/	/	/
27:16	R/W	0	HT: horizontal total time (in dclk)
			Thcycle = (HT+1) * Tdclk
			Note:1) parallel :HT >= (HBP +1) + (X+1) +2
			2) serial 1: HT >= (HBP +1) + (X+1) *3+2
			3) serial 2: HT >= (HBP +1) + (X+1) *3/2+2
15:10	/	/	/
9:0	R/W	0	HBP: horizontal back porch (in dclk)
			Thbp = (HBP +1) * Tdclk

5.1.5.19. TCON0 Basic Timing Register 2

Offset:	0x050		Register Name: TCON0_BASIC_TIMING_REG2
Bit	R/W	Default/Hex	Description
31:28	/	/	1
27:16	R/W	0	VT: vertical front porch (in lines)
			TVT = (VT)/2 * Thsync
			Note: $VT/2 \ge (VBP+1) + (Y+1) + 2$
15:10	/	/	/
9:0	R/W	0	VBP: vertical back porch (in lines)
			Tvbp = (VBP +1) * Thsync

5.1.5.20. TCON0 Basic Timing Register 3

Offset: 0	x054		Register Name: TCON0_BASIC_TIMING_REG3
Bit	R/W	Default/Hex	Description
31:22	/	/	
25:16	R/W	0	HSPW: horizontal Sync Pulse Width (in dclk)
			Thspw = (HSPW+1) * Tdclk
			Note: HT> (HSPW+1)
15:10	1		/
5:0	R/W	0	VSPW: vertical Sync Pulse Width (in lines)
			Tvspw = (VSPW+1) * Thsync
			Note: VT/2 > (VSPW+1)

Note: Thsync: horizontal sync signal cycle time.

5.1.5.21. TCONO HV Timing Register

Offset: 0	x058		Register Name: TCON0_HV_TIMING_REG
Bit	R/W	Default/Hex	Description
31	R/W	0	HV_MOD: HV I/F mode select
			0: 24bit parallel mode
			1: 8bit serial mode
30	R/W	0	SERIAL_MOD: SERIAL I/F mode select
			0: 8bit/3cycle RGB serial mode(RGB888)
			1: 8bit/2cycle YUV serial mode(CCIR656)
29:28	/	/	/
27:26	R/W	0	RGB888_SM0: serial RGB888 mode Output sequence at odd lines of the panel

			(line 1, 3, 5, 7)
			00: R→G→B
			01: B→R→G
			10: G→B→R
			11: R→G→B
25:24	R/W	0	RGB888_SM1: serial RGB888 mode Output sequence at even lines of the panel
			(line 2, 4, 6, 8)
			00: R→G→B
			01: B→R→G
			10: G→B→R
			11: R→G→B
23:22	R/W	0	YUV_SM: serial YUV mode Output sequence 2-pixel-pair of every scan line
			00: YUYV
			01: YVYU
			10: UYVY
			11: VYUY
21:20	R/W	0	YUV EAV/SAV F line delay
			0:F toggle right after active video line
			1:delay 2 line(CCIR NTSC)
			2:delay 3 line(CCIR PAL)
			3:reserved
19: 0	/	/	

5.1.5.22. TCONO CPU Interface Control Register

Offset: 0	Offset: 0x060		Register Name: TCON0_CPU_IF_CTRL_REG
Bit	R/W	Default/Hex	Description
31:29	R/W	0	CPU_MOD: CPU interface mode:
		11N , .	000: 18bit/256K mode
			001: 16bit mode0
			010: 16bit mode1
			011: 16bit mode2
10.			100: 16bit mode3
			101: 9bit mode
			110: 8bit 256K mode
			111: 8bit 65K mode
28	R/W	0	AUTO: auto Transfer Mode:
			If it's 1, all the valid data during this frame are write to panel.
			Note: This bit is sampled by Vsync
27	R/W	0	FLUSH: direct transfer mode:
			If it's enabled, FIFO1 is regardless of the HV timing, pixels data keep being
			transferred unless the input FIFO was empty.
			Data output rate control by DCLK.
26	R/W	0	DA: pin A1 value in 8080 mode auto/flash states
25	R/W	0	CA: pin A1 value in 8080 mode WR/RD execute
24	R/W	0	VSYNC_CS_SEL

			0:CS
			1:VSYNC
23	R	0	WR:
			0:write operation is finishing
			1:write operation is pending
22	R	0	RD:
			0:read operation is finishing
			1:read operation is pending
21:0	/	/	1

Note:

- 1. Write cycle = Tdclk
- 2. All bits except **CPU_MOD** can be real-time changed.
- 3. Software has to make sure **AUTO**, **FLUSH**, **WR** or **RD** won't happen at the same time, If they do, priority is **AUTO** > **FLUSH**> **WR**> **RD**.
- 4. Priority: CA > DA

5.1.5.23. TCONO CPU Write Register

Offset: 0x064			Register Name: TCONO_CPU_WR_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	1
23:0	W	/	Write data on 8080 bus

5.1.5.24. TCONO CPU Read Register

Offset: 0x068			Register Name: TCON0_CPU_RD_REG
Bit	R/W Default/Hex		Description
31:24	/	/	
23:0	W	/	Read back data and launch a new read operation on 8080 bus.

5.1.5.25. TCONO CPU Read NX Register

Offset: 0x068			Register Name: TCON0_CPU_RD_NX_REG
Bit	R/W Default/Hex		Description
31:24	/	/	/
23:0	W	/	Read back data without a read operation on 8080 bus.

5.1.5.26. TCON0 IO Control Register 0

Offset: 0	Offset: 0x088		Register Name: TCON0_IO_CTRL_REG0
Bit	R/W	Default/Hex	Description
31:28	R/W	0	DCLK_SEL[1:0]
			00: used DCLK0(normal phase offset)
			01: used DCLK1(1/3 phase offset)
			10: used DCLK2(2/3 phase offset)
			11: reserved
27	R/W	0	IO3_INV
			0: not invert
			1: invert

26	R/W	0	IO2 INV
			0: not invert
			1: invert
25	R/W	0	IO1_INV
			0: not invert
			1: invert
24	R/W	0	100_INV
			0: not invert
			1: invert
23:0	R/W	0	D[23:0]_INV:TCON0 output port D[23:0] polarity control, with independent bit
			control:
			Os: normal polarity
			1s: invert the specify output

Note: This register can be real-time changed, and work immediately.

5.1.5.27. TCONO IO Control Register 1

	13.27. Techto to control negister 1				
Offset: 0	x08C		Register Name: TCON0_IO_CTRL_REG1		
Bit	R/W	Default/Hex	Description		
31:28	/	/	1		
27	R/W	1	IO3_OUTPUT_TRI_EN		
			1: disable		
			0: enable		
26	R/W	1	IO2 OUTPUT_ TRI_EN		
			1: disable		
			0: enable		
25	R/W	1	IO1_OUTPUT_TRI_EN		
		. 1111	1: disable		
			0: enable		
24	R/W	1	IOO_ OUTPUT_ TRI_EN		
			1: disable		
			0: enable		
27:0	R/W	0xFFFFFF	D[23:0]_OUTPUT_ TRI_EN: TCON0 output port D[23:0] output enable, with		
			independent bit control:		
			1s: disable		
			0s: enable		

Note: This register can be real-time changed, and work immediately.

5.1.5.28. TCON1 Control Register

Offset: 0	Offset: 0x090		Register Name: TCON1_CTRL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0	TCON1_EN:TCON1 mode enable
			0: disable
			1: enable
30:21	/	/	/
20	R/W	0	Interlace_EN

			0:disable
			1:enable
			NOTE: this flag is valid only when TCON1_EN == 1
19:9	/	/	/
8:4	R/W	0	STA_DLY[4:0](for DE1 and DE2)
			STA delay
			NOTE: this flag is valid only when TCON1_EN == 1
3:2	/	/	/
1:0	R/W	0	TCON1_SRC_SEL: TCON1 data source select
			00: DE CH1(FIFO2 enable)
			01: reserved
			1x: BLUE data(FIFO2 disable, RGB=0000FF)

5.1.5.29. TCON1 Basic Timing Register 0

Offset: 0	0x094		Register Name: TCON1_BASIC_TIMING_REG0
Bit	R/W	Default/Hex	Description
31:29	/	/	
28:16	R/W	0	TCON1_XI: TCON1 source width (in pixels) source width is X+1
15:12	/	/	1
11:0	R/W	0	TCON1_YI: TCON1 source height (in pixels) source height is Y+1

5.1.5.30. TCON1 Basic Timing Register 1

Offset: 0	Offset: 0x098		Register Name: TCON1_BASIC_TIMING_REG1
Bit	R/W	Default/Hex	Description
31:28	/	1	1
27:16	R/W	0	LS_XO: line scale output size
			width is LS_XO+1
15:12	/	1	1
11:0	R/W	0	LS_YO: line scale output size
			width is LS_YO+1
			NOTE: this version LS_YO = TCON1_YI

5.1.5.31. TCON1 Basic Timing Register 2

Offset: 0x09C			Register Name: TCON1_BASIC_TIMING_REG2
Bit	R/W	Default/Hex	Description
31:28	/	/	/
27:16	R/W	0	TCON1_XO: TCON1 output width (in pixels)
			width is TCON1_XO+1
15:12	/	/	/
11:0	R/W	0	TCON1_YO: TCON1 output height (in pixels)
			height is TCON1_YO+1

5.1.5.32. TCON1 Basic Timing Register 3

Offset: 0x0A0			Register Name: TCON1_BASIC_TIMING_REG3
Bit	R/W	Default/Hex	Description
31:28	/	/	/
28:16	R/W	0	HT: horizontal total time
			Thcycle = (HT+1) * Thdclk
15:12	/	/	/
11:0	R/W	0	HBP: horizontal back porch
			Thbp = (HBP +1) * Thdclk

5.1.5.33. TCON1 Basic Timing Register 4

Offset: 0x0A4			Register Name: TCON1_BASIC_TIMING_REG4
Bit	R/W	Default/Hex	Description
31:28	/	/	1
28:16	R/W	0	VT: horizontal total time (in HD line)
			Tvt = VT/2 * Th
15:12	/	/	
11:0	R/W	0	VBP: horizontal back porch (in HD line)
			Tvbp = (VBP +1) * Th

5.1.5.34. TCON1 Basic Timing Register 5

Offset: 0x0A8			Register Name: TCON1_BASIC_TIMING_REG5
Bit	R/W	Default/Hex	Description
31:26	/	/	
25:16	R/W	0	HSPW: horizontal Sync Pulse Width (in dclk)
		: 0	Thspw = (HSPW+1) * Tdclk
			Note: HT> (HSPW+1)
15:10	1	X / / /	/
9:0	R/W	0	VSPW: vertical Sync Pulse Width (in lines)
~			Tvspw = (VSPW+1) * Th
			Note: VT/2 > (VSPW+1)

5.1.5.35. TCON1 IO Control Register 0

Offset: 0	Offset: 0x0F0		Register Name: TCON1_IO_CTRL_REG0
Bit	R/W	Default/Hex	Description
31:28	/	/	/
27	R/W	0	IO3_INV
			0: not invert
			1: invert
26	R/W	0	IO2 INV
			0: not invert
			1: invert
25	R/W	0	IO1_INV
			0: not invert
			1: invert

24	R/W	0	IO0_INV
			0: not invert
			1: invert
23:0	R/W	0	D[23:0]_INV:TCON1 output port D[23:0] polarity control, with independent bit
			control:
			0s: normal polarity
			1s: invert the specify output

Note: This register can be real-time changed, and work immediately.

5.1.5.36. TCON1 IO Control Register 1

Offset:	Offset: 0x0F4		Register Name: TCON1_IO_CTRL_REG1
Bit	R/W	Default/Hex	Description
31:28	/	/	
27	R/W	1	IO3_OUTPUT_TRI_EN
			1: disable
			0: enable
26	R/W	1	IO2 OUTPUT_TRI_EN
			1: disable
			0: enable
25	R/W	1	IO1_OUTPUT_TRI_EN
			1: disable
			0: enable
24	R/W	1	IOO_OUTPUT_TRI_EN
			1: disable
			0: enable
27:0	R/W	OxFFFFF	D[23:0]_OUTPUT_ TRI_EN: TCON1 output port D[23:0] output enable, with
			independent bit control:
		V_{N}	1s: disable
			Os: enable

Note: This register can be real-time changed, and work immediately.

5.1.5.37. TCON Debug Information Register

Offset: 0x0FC			Register Name: TCON_DEBUG_INFO_REG
Bit	R/W	Default/Hex	Description
31	R/W	/	TCONO_FIFO_UNDER_FLOW
30	R/W	/	TCON1_FIFO_UNDER_FLOW
29	R	1	TCON0_Field_POL
			0: second field
			1: first field
28	R	1	TCON1_Field_POL
			0: second field
			1: first field
27:26	/	/	
25:16	R	/	TCONO_CURRENT_LINE
15:13	/	/	

1320 D / TOONS CURRENT LINE	
12:0 R / TCON1_CURRENT_LINE	

For Allwinner Tech Enthusiasts

5.2. Display Engine Front-End

5.2.1. Overview

The display engine front-end (DEFE) provides image resizing function for display engine. It receives data from DRAM, performs the image resizing function, and outputs to DEBE module or DRAM.

The DEFE can receive ARGB/YUV420/YUV422/YUV411 data format, and then converts to ARGB8888 for display, or write-back other format to DRAM. Horizontal and vertical direction scaling are implemented independently.

5.2.2. Feature

The DEFE includes the following features:

- Support YUV444/ YUV422/ YUV420/ YUV411/ ARGB8888 data format
- Support 1/16× to 32× resize ratio
- usiasts Support 32-phase 4-tap horizontal anti-alias filter, 32-phase 4-tap vertical anti-alias filter
- Support input size up to 2048×2048
- Support output size up 1280x1280
- Support direct display or write back to memory

5.2.3. Block Diagram

DEFE block diagram

5.2.4. DEFE Register List

Module Name	Base Address
DEFE	0x01E00000

Register Name	Offset	Description
DEFE_EN_REG	0x0000	DEFE Module Enable Register

	<u> </u>	
DEFE_FRM_CTRL_REG	0x0004	DEFE Frame Process Control Register
DEFE_BYPASS_REG	0x0008	DEFE CSC Bypass Register
DEFE_AGTH_SEL_REG	0x000C	DEFE Algorithm Selection Register
DEFE_LINT_CTRL_REG	0x0010	DEFE Line Interrupt Control Register
DEFE_BUF_ADDR0_REG	0x0020	DEFE Input Channel 0 Buffer Address Register
DEFE_BUF_ADDR1_REG	0x0024	DEFE Input Channel 1 Buffer Address Register
DEFE_BUF_ADDR2_REG	0x0028	DEFE Input Channel 2 Buffer Address Register
DEFE_FIELD_CTRL_REG	0x002C	DEFE Field Sequence Register
DEFE_TB_OFF0_REG	0x0030	DEFE Channel 0 Tile Based Offset Register
DEFE_TB_OFF1_REG	0x0034	DEFE Channel 1 Tile Based Offset Register
DEFE_TB_OFF2_REG	0x0038	DEFE Channel 2 Tile Based Offset Register
DEFE_LINESTRDO_REG	0x0040	DEFE Channel 0 Line Stride Register
DEFE_LINESTRD1_REG	0x0044	DEFE Channel 1 Line Stride Register
DEFE_LINESTRD2_REG	0x0048	DEFE Channel 2 Line Stride Register
DEFE_INPUT_FMT_REG	0x004C	DEFE Input Format Register
DEFE_WB_ADDR_REG	0x0050	DEFE Write Back Address Register
DEFE_OUTPUT_FMT_REG	0x005C	DEFE Output Format Register
DEFE_INT_EN_REG	0x0060	DEFE Interrupt Enable Register
DEFE_INT_STATUS_REG	0x0064	DEFE Interrupt Status Register
DEFE_STATUS_REG	0x0068	DEFE Status Register
DEFE_CSC_COEF00_REG	0x0070	DEFE CSC Coefficient 00 Register
DEFE_CSC_COEF01_REG	0x0074	DEFE CSC Coefficient 01 Register
DEFE_CSC_COEF02_REG	0x0078	DEFE CSC Coefficient 02 Register
DEFE_CSC_COEF03_REG	0x007C	DEFE CSC Coefficient 03 Register
DEFE_CSC_COEF10_REG	0x0080	DEFE CSC Coefficient 10 Register
DEFE_CSC_COEF11_REG	0x0084	DEFE CSC Coefficient 11 Register
DEFE_CSC_COEF12_REG	0x0088	DEFE CSC Coefficient 12 Register
DEFE_CSC_COEF13_REG	0x008C	DEFE CSC Coefficient 13 Register
DEFE_CSC_COEF20_REG	0x0090	DEFE CSC Coefficient 20 Register
DEFE_CSC_COEF21_REG	0x0094	DEFE CSC Coefficient 21 Register
DEFE_CSC_COEF22_REG	0x0098	DEFE CSC Coefficient 22 Register
DEFE_CSC_COEF23_REG	0x009C	DEFE CSC Coefficient 23 Register
DEFE_INSIZE_REG	0x0100	DEFE Input Size Register
DEFE_OUTSIZE_REG	0x0104	DEFE Output Size Register
DEFE_HORZFACT_REG	0x0108	DEFE Horizontal Factor Register
DEFE_VERTFACT_REG	0x010C	DEFE Vertical factor Register
DEFE_CH0_HORZCOEF_REGN		DEFE Channel 0 Horizontal Filter Coefficient Register
	0x0400+N*4	N=0~31
DEFE_CH0_VERTCOEF_REGN		DEFE Channel 0 Vertical Filter Coefficient Register
	0x0500+N*4	N=0~31
DEFE_CH1_HORZCOEF_REGN		DEFE Channel 1 Horizontal Filter Coefficient Register
	0x0600+N*4	N=0~31
DEFE_CH1_VERTCOEF_REGN		DEFE Channel 1 Vertical Filter Coefficient Register
	0x0700+N*4	N=0~31

Note: Registers 0x0008~0x010F except status registers are double buffered. When a new frame process starts and the buffered register configuration ready bit in frame process control register is set, the value of corresponding internal configuration register will be refreshed by this register, the programmer always can't read the value of corresponding internal register.

5.2.5. DEFE Register Description

5.2.5.1. DEFE Module Enable Register

Offset: 0	x0000		Register Name: DEFE_EN_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x1	BIST_EN
			Bist enable for cpu
			0: Disable cpu accessing ram, mux ram to DEFE
			1: Enable cpu accessing ram, mux ram to cpu
			Normally, set to 0 when using DEFE
30:1	/	/	1
0	R/W	0x0	EN
			DEFE enable
			0: Disable
			1: Enable
			When DEFE enable bit is disabled, the clock of DEFE module will be disabled
			If this bit is transition from 0 to 1, the frame process control register and the
			interrupt enable register will be initialed to default value, and the state
			machine of the module is reset

5.2.5.2. DEFE Frame Process Control Register

Offset: 0:	Offset: 0x0004		Register Name: DEFE_FRM_CTRL_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	/
23	R/W	0x0	COEF_ACCESS_CTRL
			Fir coef ram access control
			0: cpu don't access fir coef ram
			1: cpu will access fir coef ram
			This bit will be set to 1 before cpu access fir coef ram
22:17	/	/	/
16	R/W	0x0	FRM_START
			Frame process start & reset control
			0: reset
			1: start
			If the bit is written to zero, the whole state machine and data paths of DEFE
			module will be reset.
			When the bit is written to 1, DEFE will start a new frame process.
15:12	/	/	

11	D /\A/	00	OUT CTDI
11	R/W	0x0	OUT_CTRL
			DEFE output control
			0: enable DEFE output to image
			1: disable DEFE output to image
			If DEFE write back function is enable, DEFE output to image isn't
			recommended.
10:3	/	/	/
2	R/W	0x0	WB_EN
			Write back enable
			0: Disable
			1: Enable
			If output to image is enable, the writing back process will start when write
			back enable bit is set and a new frame processing begins. The bit will be
			self-cleared when writing-back frame process starts.
1	/	/	1
0	R/W	0x0	REG_RDY_EN
			Register ready enable
			0: not ready
			1: registers configuration ready
			As same as filter coefficients configuration, in order to ensure the display be
			correct, the correlative display configuration registers are buffered too, the
			programmer also can change the value of correlative registers in any time.
			When the registers setting is finished, the programmer should set the bit if
			the programmer need the new configuration in next scaling frame.
			When the new frame start, the bit will also be self-cleared.

5.2.5.3. DEFE CSC Bypass Register

Offset: 0	x0008		Register Name: DEFE_BYPASS_REG
Bit	R/W	Default/Hex	Description
31:2	1	/	/
1	R/W	0x0	CSC_BYPASS_EN
10°			CSC by-pass enable
			0: CSC enable
			1: CSC will be by-passed
			Actually, in order ensure the module working be correct, This bit only can be
			set when input data format is the same as output data format (both YUV or
			both RGB)
0	R/W	0x0	DEFE_BYPASS_EN
			scale by-pass control
			0: scale enable
			1: scale will be by-passed
			Actually, in order ensure the module working be correct, This bit only can be
			set when the input size equals to the output size (including all components)

5.2.5.4. DEFE Algorithm Selection Register

Offset: 0xC			Register Name: DEFE_AGTH_SEL_REG
Bit	R/W	Default/Hex	Description
31:2	/	/	1
1:0	R/W	0x0	SCAL_AGTH
			Scaling algorithm selection
			00: 4x4
			01: 4x2
			10: 4x1
			11: reverved

5.2.5.5. DEFE Line Interrupt Conrtol Register

Offset: 0	Offset: 0x0010		Register Name: DEFE_LINT_CTRL_REG
Bit	R/W	Default/Hex	Description
31:28	/	/	1
27:16	R	0x0	CURRENT_LINE
15	R/W	0x0	FIELD_SEL
			Field select
			0: each field
			1: end field(field counter in reg0x2c)
14:13	/	/	
12:0	R/W	0x0	TRIG_LINE
			Trigger line number of line interrupt

5.2.5.6. DEFE Input Channel 0 Buffer Address Register

Offset: 0	x0020	• •	Register Name: DEFE_BUF_ADDRO_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	BUF_ADDR
			DEFE frame buffer address
~			In tile-based type:
			The address is the start address of the line in the first tile used to generating
			output frame.
			In non-tile-based type:
			The address is the start address of the first line.

5.2.5.7. DEFE Input Channel 1 Buffer Address Register

Offset: 0x0024			Register Name: DEFE_BUF_ADDR1_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	BUF_ADDR
			DEFE frame buffer address
			In tile-based type:
			The address is the start address of the line in the first tile used to generating
			output frame.
			In non-tile-based type:
			The address is the start address of the first line.

5.2.5.8. DEFE Input Channel 2 Buffer Address Register

Offset: 0x0028			Register Name: DEFE_BUF_ADDR2_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	BUF_ADDR
			DEFE frame buffer address
			In tile-based type:
			The address is the start address of the line in the first tile used to generating
			output frame.
			In non-tile-based type:
			The address is the start address of the first line.

5.2.5.9. DEFE Field Sequence Register

Offset: 0	0x002C		Register Name: DEFE_FIELD_CTRL_REG		
Bit	R/W	Default/Hex	Description		
31:13	/	/			
12	R/W	0x0	FIELD_LOOP_MOD		
			Field loop mode		
			0: the last field; 1: the full frame		
11	/	/			
10:8	R/W	0x0	VALID_FIELD_CNT		
			Valid field counter bit		
			the valid value = this value + 1;		
7:0	R/W	0x0	FIELD_CNT		
			Field counter		
			each bit specify a field to display, 0: top field, 1: bottom field		

5.2.5.10. DEFE Channel 0 Tile Based Offset Register

Offset: 0	x0030	///	Register Name: DEFE_TB_OFF0_REG
Bit	R/W	Default/Hex	Description
31:21	/	/	/
20:16	R/W	0x0	X_OFFSET1
			The x offset of the bottom-right point in the end tile
15:13	/	/	/
12:8	R/W	0x0	Y_OFFSET0
			The y offset of the top-left point in the first tile
7:5	/	/	/
4:0	R/W	0x0	X_OFFSET0
			The x offset of the top-left point in the first tile

5.2.5.11. DEFE Channel 1 Tile Based Offset Register

Offset: 0x0034			Register Name: DEFE_TB_OFF1_REG
Bit	R/W	Default/Hex	Description
31:21	/	/	/
20:16	R/W	0x0	X_OFFSET1
			The x offset of the bottom-right point in the end tile

15:13	/	/	/
12:8	R/W	0x0	Y_OFFSET0
			The y offset of the top-left point in the first tile
7:5	/	/	/
4:0	R/W	0x0	X_OFFSET0
			The x offset of the top-left point in the first tile

5.2.5.12. DEFE Channel 2 Tile Based Offset Register

Offset: 0	0x0038		Register Name: DEFE_TB_OFF2_REG
Bit	R/W	Default/Hex	Description
31:21	/	/	/
20:16	R/W	0x0	X_OFFSET1
			The x offset of the bottom-right point in the end tile
15:13	/	/	1
12:8	R/W	0x0	Y_OFFSET0
			The y offset of the top-left point in the first tile
7:5	/	/	
4:0	R/W	0x0	X_OFFSET0
			The x offset of the top-left point in the first tile

5.2.5.13. DEFE Channel 0 Line Stride Register

Offset: 0x0040			Register Name: DEFE_LINESTRDO_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	LINE_STRIDE
		4	In tile-based type
		• • • • • • • • • • • • • • • • • • • •	The stride length is the distance from the start of the end line in one tile to
		N_{II}	the start of the first line in next tile(here next tile is in vertical direction)
			In non-tile-base type
			The stride length is the distance from the start of one line to the start of the
~			next line.

5.2.5.14. DEFE Channel 1 Line Stride Register

Offset: 0)x0044		Register Name: DEFE_LINESTRD1_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	LINE_STRIDE
			In tile-based type
			The stride length is the distance from the start of the end line in one tile to
			the start of the first line in next tile(here next tile is in vertical direction)
			In non-tile-based type
			The stride length is the distance from the start of one line to the start of the
			next line.

5.2.5.15. DEFE Channel 2 Line Stride Register

Offset: 0x0048			Register Name: DEFE_LINESTRD2_REG
Bit	R/W	Default/Hex	Description

31:0	R/W	0x0	LINE_STRIDE
			In tile-based type
			The stride length is the distance from the start of the end line in one tile to
			the start of the first line in next tile(here next tile is in vertical direction)
			In non-tile-based type
			The stride length is the distance from the start of one line to the start of the
			next line.

5.2.5.16. DEFE Input Format Register

Offset: 0	x004C		Register Name: DEFE_INPUT_FMT_REG
Bit	R/W	Default/Hex	Description
31:17	/	/	/
16	R/W	0x0	BYTE_SEQ.
			Input data byte sequence selection
			0: P3P2P1P0(word)
			1: P0P1P2P3(word)
15:13	/	/	
12	R/W	0x0	SCAN_MOD
			Scanning Mode selection
			0: non-interlace
			1: interlace
11	/	/	
10:8	R/W	0x0	DATA_MOD
			Input data mode selection
			000: non-tile-based planar data
		• •	001: interleaved data
			010: non-tile-based UV combined data
	11	M,	100: tile-based planar data
			110: tile-based UV combined data
•			other: reserved
7	/	/	/
6:4	R/W	0x0	DATA_FMT
			Input component data format
			In non-tile-based planar data mode:
			000: YUV 4:4:4
			001: YUV 4:2:2
			010: YUV 4:2:0
			011: YUV 4:1:1
			100: CSI RGB data
			101: RGB888
			Other: Reserved
			In interleaved data mode:
			000: YUV 4:4:4
			001: YUV 4:2:2
			101: ARGB8888

			Other: reserved
			In non-tile-based UV combined data mode:
			001: YUV 4:2:2
			010: YUV 4:2:0
			011: YUV 4:1:1
			Other: reserve
			In tile-based planar data mode:
			001: YUV 4:2:2
			010: YUV 4:2:0
			011: YUV 4:1:1
			Other: Reserved
			In tile-based UV combined data mode:
			001: YUV 4:2:2
			010: YUV 4:2:0
			011: YUV 4:1:1
			Other: reserved
3:2	/	/	
1:0	R/W	0x0	DATA_PS
			Pixel sequence
			In interleaved YUV422 data mode:
			00: Y1V0Y0U0
			01: V0Y1U0Y0
			10: Y1U0Y0V0
			11: U0Y1V0Y0
			In interleaved YUV444 data mode:
		1 A 1 A 1	00: VUYA
			01: AYUV
		'VI,,	Other: reserved
		/// -	In UV combined data mode: (UV component)
			00: V1U1V0U0
			01: U1V1U0V0
, () '			Other: reserved
			In interleaved ARGB8888 data mode:
			00: BGRA
			01: ARGB
			Other: reserved

5.2.5.17. DEFE Write Back Address Register

Offset: 0x0050			Register Name: DEFE_WB_ADDR_REG
Bit	it R/W Default/Hex		Description
31:0	R/W	0x0	WB_ADDR
			Write-back address setting for scaled data.

5.2.5.18. DEFE Output Format Register

Offset: 0x005C	Register Name: DEFE_OUTPUT_FMT_REG
----------------	------------------------------------

Bit	R/W	Default/Hex	Description
31:18	/	/	/
17:16	R/W	0	WB_Ch_Sel
			Write back channel select(chsel)
			0/1: Ch3
			2: Ch4
			3: Ch5
			Other: reserved
15:9	/	/	/
8	R/W	0x0	BYTE_SEQ
			Output data byte sequence selection
			0: P3P2P1P0(word)
			1: P0P1P2P3(word)
			For ARGB, when this bit is 0, the byte sequence is BGRA, and when this bit is
			1, the byte sequence is ARGB;
7:5	/	/	1
4	R/W	0x0	SCAN_MOD
			Output interlace enable
			0: disable
			1: enable
			When output interlace enable, scaler selects YUV initial phase according to
			LCD field signal
3	/	/	
2:0	R/W	0x0	DATA_FMT
			Data format
		• • • •	000: planar RGB888 conversion data format
			001: interleaved BGRA8888 conversion data format(A component always be
		'N'	pad 0xff)
			010: interleaved ARGB8888 conversion data format(A component always be
			pad 0xff)
			100: planar YUV 444
· O .			101: planar YUV 420(only support YUV input and not interleaved mode)
			110: planar YUV 422(only support YUV input)
			111: planar YUV 411(only support YUV input)
			Other: reserved

5.2.5.19. DEFE Interrupt Enable Register

Offset: 0x0060			Register Name: DEFE_INT_EN_REG
Bit	R/W	Default/Hex	Description
31:11	/	/	/
10	R/W	0x0	REG_LOAD_EN
			Register ready load interrupt enable
9	R/W	0x0	LINE_EN
			Line interrupt enable
8	/	/	/

7	R/W	0x0	WB_EN
			Write-back end interrupt enable
			0: Disable
			1: Enable
6:0	/	/	/

5.2.5.20. DEFE Interrupt Status Register

Offset: 0	0x0064		Register Name: DEFE_INT_STATUS_REG
Bit	R/W	Default/Hex	Description
31:11	/	/	/
10	R/W	0x0	REG_LOAD_STATUS
			Register ready load interrupt status
9	R/W	0x0	LINE_STATUS
			Line interrupt status
8	/	/	1
7	R/W	0x0	WB_STATUS
			Write-back end interrupt status
6:0	/	/	1

5.2.5.21. DEFE Status Register

Offset: 0	x0068		Register Name: DEFE_STATUS_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	
28:16	R	0x0	LINE_ON_SYNC
			Line number(when sync reached)
15:6	/	1	
11	R	0x0	COEF_ACCESS_STATUS
		M_{A} .	Fir coef access status
	B_{i}		0: scaler module can access fir coef ram
~			1: cpu can access fir coef ram
			This bit must be 1 before cpu access fir coef ram. When this bit is 1, scaler
			module will fetch 0x00004000 from ram.
10:6	/	/	/
5	R	0x0	LCD_FIELD
			LCD field status
			0: top field
			1: bottom field
4	R	0x0	DRAM_STATUS
			Access dram status
			0: idle
			1: busy
			This flag indicates whether DEFE is accessing dram
3	/	/	/
2	R	0x0	CFG_PENDING
			Register configuration pending

			0: no pending
			1: configuration pending
			This bit indicates the registers for the next frame has been configured. This
			bit will be set when configuration ready bit is set and this bit will be cleared
			when a new frame process begin.
1	R	0x0	WB_STATUS
			Write-back process status
			0: write-back end or write-back disable
			1: write-back in process
			This flag indicates that a full frame has not been written back to memory.
			The bit will be set when write-back enable bit is set, and be cleared when
			write-back process end.
0	R	0x0	FRM_BUSY
			Frame busy.
			This flag indicates that the frame is being processed.
			The bit will be set when frame process reset & start is set, and be cleared
			when frame process reset or disabled.

5.2.5.22. DEFE CSC Coefficient 00 Register

Offset: 0x0070			Register Name: DEFE_CSC_COEF00_REG
Bit	R/W	Default/Hex	Description
31:13	/	/	
12:0	R/W	0x0	COEF
			the Y/G coefficient
			the value equals to coefficient*2 ¹⁰

5.2.5.23. DEFE CSC Coefficient 01 Register

Offset: 0	Offset: 0x0074		Register Name: DEFE_CSC_COEF01_REG
Bit	R/W	Default/Hex	Description
31:13	/	/	/
12:0	R/W	0x0	COEF
			the Y/G coefficient
			the value equals to coefficient*2 ¹⁰

5.2.5.24. DEFE CSC Coefficient 02 Register

Offset: 0x0078			Register Name: DEFE_CSC_COEF02_REG
Bit	R/W	Default/Hex	Description
31:13	/	/	/
12:0	R/W	0x0	COEF
			the Y/G coefficient
			the value equals to coefficient*2 ¹⁰

5.2.5.25. DEFE CSC Coefficient 03 Register

Offset: 0x007C			Register Name: DEFE_CSC_COEF03_REG
Bit	R/W	Default/Hex	Description

31:14	/	/	1
13:0	R/W	0x0	CONT
			the Y/G constant
			the value equals to coefficient*2 ⁴

5.2.5.26. DEFE CSC Coefficient 10 Register

Offset: 0	x0080		Register Name: DEFE_CSC_COEF10_REG
Bit	R/W	Default/Hex	Description
31:13	/	/	/
12:0	R/W	0x0	COEF
			the U/R coefficient
			the value equals to coefficient*2 ¹⁰

5.2.5.27. DEFE CSC Coefficient 11 Register

Offset: 0x0084			Register Name: DEFE_CSC_COEF11_REG
Bit	R/W	Default/Hex	Description
31:13	/	/	
12:0	R/W	0x0	COEF
			the U/R coefficient
			the value equals to coefficient*2 ¹⁰

5.2.5.28. DEFE CSC Coefficient 12 Register

Offset: 0x0088			Register Name: DEFE_CSC_COEF12_REG
Bit	R/W	Default/Hex	Description
31:13	/	1	1
12:0	R/W	0x0	COEF
		N_{II} ,	the U/R coefficient
			the value equals to coefficient*2 ¹⁰

5.2.5.29. DEFE CSC Coefficient 13 Register

Offset: 0x008C			Register Name: DEFE_CSC_COEF13_REG
Bit	R/W	Default/Hex	Description
31:14	/	/	/
13:00	R/W	0x0	CONT
			the U/R constant
			the value equals to coefficient*2 ⁴

5.2.5.30. DEFE CSC Coefficient 20 Register

Offset: 0	x0090		Register Name: DEFE_CSC_COEF20_REG
Bit	R/W	Default/Hex	Description
31:13	/	/	1
12:0	R/W	0x0	COEF
			the V/B coefficient
			the value equals to coefficient*2 ¹⁰

5.2.5.31. DEFE CSC Coefficient 21 Register

Offset: 0x0094			Register Name: DEFE_CSC_COEF21_REG
Bit	R/W	Default/Hex	Description
31:13	/	/	/
12:0	R/W	0x0	COEF
			the V/B coefficient
			the value equals to coefficient*2 ¹⁰

5.2.5.32. DEFE CSC Coefficient 22 Register

Offset: 0x0098			Register Name: DEFE_CSC_COEF22_REG
Bit	R/W	Default/Hex	Description
31:13	/	/	/
12:0	R/W	0x0	COEF
			the V/B coefficient
			the value equals to coefficient*2 ¹⁰

5.2.5.33. DEFE CSC Coefficient 23 Register

Offset: 0	x009C		Register Name: DEFE_CSC_COEF23_REG
Bit	R/W	Default/Hex	Description
31:14	/	/	
13:00	R/W	0x0	CONT
			the V/B constant
			the value equals to coefficient*2 ⁴

5.2.5.34. DEFE Input Size Register

Offset: 0	Offset: 0x0100		Register Name: DEFE_INSIZE_REG
Bit	R/W	Default/Hex	Description
31:29	1	7	/
28:16	R/W	0x0	IN_HEIGHT
~			Input image Y/G component height
			Input image height = The value of these bits add 1
15:13	/	/	/
12:0	R/W	0x0	IN_WIDTH
			Input image Y/G component width
			The image width = The value of these bits add 1
			The maximum width is 2048.

5.2.5.35. DEFE Output Size Register

Offset: 0	0x0104		Register Name: DEFE_OUTSIZE_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	/
28:16	R/W	0x0	OUT_HEIGHT
			Output layer Y/G component height
			The output layer height = The value of these bits add 1
15:13	/	/	/

12:0	R/W	0x0	OUT_WIDTH
			Output layer Y/G component width
			The output layer width = The value of these bits add 1
			The maximum width is 1280.

5.2.5.36. DEFE Horizontal Factor Register

Offset: 0x0108			Register Name: DEFE_HORZFACT_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	/
23:16	R/W	0x0	FACTOR_INT
			The integer part of the horizontal scaling ratio
			the horizontal scaling ratio = input width/output width
15:0	R/W	0x0	FACTOR_FRAC
			The fractional part of the horizontal scaling ratio
			the horizontal scaling ratio = input width/output width

5.2.5.37. DEFE Vertical Register

Offset: 0)x010C		Register Name: DEFE_VERTFACT_REG	
Bit	R/W	Default/Hex	Description	
31:24	/	/	/	
23:16	R/W	0x0	FACTOR_INT	
			The integer part of the vertical scaling ratio	
			the vertical scaling ratio = input height/output height	
15:0	R/W	0x0	FACTOR_FRAC	
			The fractional part of the vertical scaling ratio	
		• •	the vertical scaling ratio = input height /output height	

5.2.5.38. DEFE Channel 0 Horizontal Filter Coefficient Register

Offset: 0x0400+N*4 (N=0~31)		(N=0~31)	Register Name: DEFE_CH0_HORZCOEF0_REG		
Bit	R/W	Default/Hex	Description		
31:24	R/W	0x0	TAP3		
			Horizontal tap3 coefficient		
			The value equals to coefficient*2 ⁶		
23:16	R/W	0x0	TAP2		
			Horizontal tap2 coefficient		
			The value equals to coefficient*2 ⁶		
15:8	R/W	0x0	TAP1		
			Horizontal tap1 coefficient		
			The value equals to coefficient*2 ⁶		
7:0	R/W	0x0	TAPO		
			Horizontal tap0 coefficient		
			The value equals to coefficient*2 ⁶		

5.2.5.39. DEFE Channel 0 Vertical Filter Coefficient Register

Offset: 0x500+N*4 (N=0~31)	Register Name: DEFE_CH0_VERTCOEF_REG
----------------------------	--------------------------------------

Bit	R/W	Default/Hex	Description	
31:24	R/W	0x0	TAP3	
			Vertical tap3 coefficient	
			The value equals to coefficient*2 ⁶	
23:16	R/W	0x0	TAP2	
			Vertical tap2 coefficient	
			The value equals to coefficient*2 ⁶	
15:8	R/W	0x0	TAP1	
			Vertical tap1 coefficient	
			The value equals to coefficient*2 ⁶	
7:0	R/W	0x0	TAPO	
			Vertical tap0 coefficient	
			The value equals to coefficient*2 ⁶	

5.2.5.40. DEFE Channel 1 Horizontal Filter Coefficient Register

Offset: 0	x600+N*4 (I	N=0~31)	Register Name: DEFE_CH1_HORZCOEF0_REG	
Bit	R/W	Default/Hex	Description	
31:24	R/W	0x0	TAP3	
			Horizontal tap3 coefficient	
			The value equals to coefficient*2 ⁶	
23:16	R/W	0x0	TAP2	
			Horizontal tap2 coefficient	
			The value equals to coefficient*2 ⁶	
15:8	R/W	0x0	TAP1	
			Horizontal tap1 coefficient	
		• •	The value equals to coefficient*2 ⁶	
7:0	R/W	0x0	TAPO	
		N,	Horizontal tap0 coefficient	
		1 -	The value equals to coefficient*2 ⁶	

5.2.5.41. DEFE Channel 1 Vertical Filter Coefficient Register

Offset: 0	Offset: 0x700+N*4 (N=0~31)		Register Name: DEFE_CH1_VERTCOEF_REG	
Bit	R/W	Default/Hex	Description	
31:24	R/W	0x0	TAP3	
			Vertical tap3 coefficient	
			The value equals to coefficient*2 ⁶	
23:16	R/W	0x0	TAP2	
			Vertical tap2 coefficient	
			The value equals to coefficient*2 ⁶	
15:8	R/W	0x0	TAP1	
			Vertical tap1 coefficient	
			The value equals to coefficient*2 ⁶	
7:0	R/W	0x0	TAPO	
			Vertical tap0 coefficient	
			The value equals to coefficient*2 ⁶	

Enthusiasts

5.3. Display Engine Back-End

5.3.1. Overview

The display engine back-end (DEBE) has two pipes data path, and it can receive data from DEFE or data from SDRAM to do overlay, and then doing alpha blending in the Alpha Blender1 part. After blending, the data can do image enhancement in Color Correction or bypass to the flowing part LCD etc.

5.3.2. Feature

The DEBE includes the following features:

- Support four moveable and size-adjustable layers
- Support layer size up to 2048*2048 pixels
- Support alpha blending
- Support color key
- Support write back function
- Support multi-format input data
 - 1/2/4/8 bpp mono / palette
 - 16/24/32 bpp color support (external frame buffer)
 - YUV444/YUV422/YUV420/YUV411
- Support hardware cursor

5.3.3. Block Diagram

Display Engine Function Block

5.3.4. DEBE Register List

Module Name	Base Address
DEBE	0x01E60000

Register Name	Offset	Description
DEBE_MODE_CTRL_REG	0x800	DEBE Mode Control Register
DEBE_COLOR_CTRL_REG	0x804	DEBE Color Control Register
DEBE_LAYO_SIZE_REG	0x810	DEBE Layer 0 Size Register
DEBE_LAY1_SIZE_REG	0x814	DEBE Layer 1 Size Register
DEBE_LAY2_SIZE_REG	0x818	DEBE Layer 2 Size Register
DEBE_LAY3_SIZE_REG	0x81C	DEBE Layer 3 Size Register
DEBE_LAYO_CODNT_REG	0x820	DEBE layer 0 Coordinate Control Register
DEBE_LAY1_CODNT_REG	0x824	DEBE Layer 1 Coordinate Control Register
DEBE_LAY2_CODNT_REG	0x828	DEBE Layer 2 Coordinate Control Register
DEBE_LAY3_CODNT_REG	0x82C	DEBE Layer 3 Coordinate Control Register
DEBE_LAYO_LINEWIDTH_REG	0x840	DEBE Layer 0 Frame Buffer Line Width Register
DEBE_LAY1_LINEWIDTH_REG	0x844	DEBE Layer 1 Frame Buffer Line Width Register
DEBE_LAY2_LINEWIDTH_REG	0x848	DEBE Layer 2 Frame Buffer Line Width Register
DEBE_LAY3_LINEWIDTH_REG	0x84C	DEBE Layer 3 Frame Buffer Line Width Register
DEBE_LAYO_FB_ADDR_REG	0x850	DEBE Layer 0 Frame Buffer Address Register
DEBE_LAY1_FB_ADDR_REG	0x854	DEBE Layer 1 Frame Buffer Address Register
DEBE_LAY2_FB_ADDR_REG	0x858	DEBE Layer 2 Frame Buffer Address Register
DEBE_LAY3_FB_ADDR_REG	0x85C	DEBE Layer 3 Frame Buffer Address Register
DEBE_REGBUFF_CTRL_REG	0x870	DEBE Register Buffer Control Register
DEBE_CK_MAX_REG	0x880	DEBE Color Key Max Register
DEBE_CK_MIN_REG	0x884	DEBE Color Key Min register
DEBE_CK_CFG_REG	0x888	DEBE Color Key Configuration Register
DEBE_LAY0_ATT_CTRL_REG0	0x890	DEBE Layer 0 Attribute Control Register 0
DEBE_LAY1_ATT_CTRL_REG0	0x894	DEBE Layer 1 Attribute Control register 1
DEBE_LAY2_ATT_CTRL_REG0	0x898	DEBE Layer2 Attribute Control Register 0
DEBE_LAY3_ATT_CTRL_REG0	0x89C	DEBE Layer3 Attribute Control Register 0
DEBE_LAY0_ATT_CTRL_REG1	0x8A0	DEBE Layer0 Attribute Control Register 1
DEBE_LAY1_ATT_CTRL_REG1	0x8A4	DEBE Layer 1 Attribute Control Register 1
DEBE_LAY2_ATT_CTRL_REG1	0x8A8	DEBE Layer 2 Attribute Control Register 1
DEBE_LAY3_ATT_CTRL_REG1	0x8AC	DEBE Layer 3 Attribute Control Register 1
DEBE_HWC_CTRL_REG	0x8D8	DEBE HWC Coordinate Control Register
DEBE_HWCFB_CTRL_REG	0x8E0	DEBE HWC Frame Buffer Format Register
DEBE_WB_CTRL_REG	0x8F0	DEBE Write Back Control Register
DEBE_WB_ADDR_REG	0x8F4	DEBE Write Back Address Register
DEBE_WB_ LW _REG	0x8F8	DEBE Write Back Buffer Line Width Register
DEBE_IYUV_CH_CTRL_REG	0x920	DEBE Input YUV Channel Control Register
DEBE_CH0_YUV_FB_ADDR_REG	0x930	DEBE YUV Channel O Frame Buffer Address Register
DEBE_CH1_YUV_FB_ADDR_REG	0x934	DEBE YUV Channel 1 Frame Buffer Address Register

DEBE_CH2_YUV_FB_ADDR_REG	0x938	DEBE YUV Channel 2 Frame Buffer Address Register
DEBE_CH0_YUV_BLW_REG	0x940	DEBE YUV Channel 0 Buffer Line Width Register
DEBE_CH1_YUV_ BLW _REG	0x944	DEBE YUV Channel 1 Buffer Line Width Register
DEBE_CH2_YUV_ BLW _REG	0x948	DEBE YUV Channel 2 Buffer Line Width Register
DEBE_COEF00_REG	0x950	DEBE Coefficient 00 Register
DEBE_ COEF01_REG	0x954	DEBE Coefficient 01 Register
DEBE_ COEF02_REG	0x958	DEBE Coefficient 02 Register
DEBE_ COEF03_REG	0x95C	DEBE Coefficient 03 Register
DEBE_ COEF10_REG	0x960	DEBE Coefficient 10 Register
DEBE_ COEF11_REG	0x964	DEBE Coefficient 11 Register
DEBE_ COEF12_REG	0x968	DEBE Coefficient 12 Register
DEBE_ COEF13_REG	0x96C	DEBE Coefficient 13 Register
DEBE_ COEF20_REG	0x970	DEBE Coefficient 20 Register
DEBE_ COEF21_REG	0x974	DEBE Coefficient 21 Register
DEBE_ COEF22_REG	0x978	DEBE Coefficient 22 Register
DEBE_ COEF23_REG	0x97C	DEBE Coefficient 23 Register

5.3.5. DEBE Register Description

5.3.5.1. DEBE Mode Control Register

Offset: 0x800			Register Name: DEBE_MODE_CTRL_REG
Bit	R/W	Default/Hex	Description
31:17	/	/	
16	R/W	0	Hardware cursor enabled/disabled control
		:01	0: Disabled
			1: Enabled
		A_A .	Hardware cursor has the highest priority, in the alpha blender0, the alpha
			value of cursor will be selected
15:12	/	/	/
11	R/W	0	Layer3 Enable/Disable
			0: Disabled
			1: Enabled
10	R/W	0	Layer2 Enable/Disable
			0: Disabled
			1: Enabled
9	R/W	0	Layer1 Enable/Disable
			0: Disabled
			1: Enabled
8	R/W	0	Layer0 Enable/Disable
			0: Disabled
			1: Enabled
7:6	/	/	/
5	R/W	0	Output CSC enable
			0: disable

			1: enable	
4	R/W	0	De-flick enable	
			0: disable	
			1: enable	
3:2	/	/	/	
1	R/W	0	Normal output channel Start & Reset control	
			0: reset	
			1: start	
0	R/W	0	DE back-end enable/disable	
			0: disable	
			1: enable	

5.3.5.2. DEBE Color Control Register

Offset :	0x804		Register Name: DEBE_BACKCOLOR_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	/
23:16	R/W	0	Red
			Red screen background color value
15:08	R/W	0	Green
			Green screen background color value
07:00	R/W	0	Blue
			Blue screen background color value

5.3.5.3. DEBE Layer 0 Size Register

Offset: 0x810			Register Name: DEBE_LAY0_SIZE_REG
Bit	R/W	Default/Hex	Description
31:27	/	1	/
26:16	R/W	0	Layer Height
			The Layer Height = The value of these bits add 1
15:11	1	/	/
10:0	R/W	0	Layer Width
			The Layer Width = The value of these bits add 1

5.3.5.4. DEBE Layer 1 Size Register

Offset: 0x814			Register Name: DEBE_LAY1_SIZE_REG
Bit	R/W	Default/Hex	Description
31:27	/	/	/
26:16	R/W	0	Layer Height
			The Layer Height = The value of these bits add 1
15:11	/	/	/
10:0	R/W	0	Layer Width
			The Layer Width = The value of these bits add 1

5.3.5.5. DEBE Layer 2 Size Register

Offset: 0x818	Register Name: DEBE_LAY2_SIZE_REG
---------------	-----------------------------------

Bit	R/W	Default/Hex	Description
31:27	/	/	/
26:16	R/W	0	Layer Height
			The Layer Height = The value of these bits add 1
15:11	/	/	/
10:0	R/W	0	Layer Width
			The Layer Width = The value of these bits add 1

5.3.5.6. DEBE Layer 3 Size Register

Offset: 0	0x81C		Register Name: DEBE_LAY3_SIZE_REG
Bit	R/W	Default/Hex	Description
31:27	/	/	/
26:16	R/W	0	Layer Height
			The Layer Height = The value of these bits add 1
15:11	/	/	
10:0	R/W	0	Layer Width
			The Layer Width = The value of these bits add 1

5.3.5.7. DEBE Layer 0 Coordinate Control Register

Offset: 0	x820		Register Name: DEBE_LAY0_CODNT_REG
Bit	R/W	Default/Hex	Description
31:16	R/W	0	Y coordinate
			Y is the left-top y coordinate of layer on screen in pixels
			The Y represent the two's complement
15:0	R/W	0	X coordinate
		(nin	X is left-top x coordinate of the layer on screen in pixels
			The X represent the two's complement

5.3.5.8. DEBE Layer 1 Coordinate Control Register

Offset: 0x824			Register Name: DEBE_LAY1_CODNT_REG
Bit	R/W	Default/Hex	Description
31:16	R/W	0	Y coordinate
			Y is the left-top y coordinate of layer on screen in pixels
			The Y represent the two's complement
15:0	R/W	0	X coordinate
			X is left-top x coordinate of the layer on screen in pixels
			The X represent the two's complement

5.3.5.9. DEBE Layer 2 Coordinate Control Register

Offset: 0x828			Register Name: DEBE_LAY2_CODNT_REG
Bit	R/W	Default/Hex	Description
31:16	R/W	0	Y coordinate
			Y is the left-top y coordinate of layer on screen in pixels
			The Y represent the two's complement
15:0	R/W	0	X coordinate

	X is left-top x coordinate of the layer on screen in pixels
	The X represent the two's complement

5.3.5.10. DEBE Layer 3 Coordinate Control Register

Offset: 0x82C			Register Name: DEBE_LAY3_CODNT_REG
Bit	R/W	Default/Hex	Description
31:16	R/W	0	Y coordinate
			Y is the left-top y coordinate of layer on screen in pixels
			The Y represent the two's complement
15:0	R/W	0	X coordinate
			X is left-top x coordinate of the layer on screen in pixels
			The X represent the two's complement

5.3.5.11. DEBE Layer 0 Frame Buffer Line Width Register

Offset: 0x840			Register Name: DEBE_LAY0_LINEWIDTH_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	Layer frame buffer line width in bits.

Note: If the layer is selected by video channel or YUV channel, the setting of this register will be ignored.

5.3.5.12. DEBE Layer 1 Frame Buffer Line Width Register

Offset: 0x844			Register Name: DEBE_LAY1_LINEWIDTH_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	Layer frame buffer line width in bits.

Note: If the layer is selected by video channel or YUV channel, the setting of this register will be ignored.

5.3.5.13. DEBE Layer 2 Frame Buffer Line Width Register

Offset: 0	Offset: 0x848		Register Name: DEBE_LAY2_LINEWIDTH_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	Layer frame buffer line width in bits.

Note: If the layer is selected by video channel or YUV channel, the setting of this register will be ignored.

5.3.5.14. DEBE Layer 3 Frame Buffer Line Width Register

Offset: 0x84C			Register Name: DEBE_LAY3_LINEWIDTH_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	Layer frame buffer line width in bits.

Note: If the layer is selected by video channel or YUV channel, the setting of this register will be ignored.

5.3.5.15. DEBE Layer 0 Frame Buffer Address Register

Offset: 0x850			Register Name: DEBE_LAY0_FB_ADDR_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	Buffer Address
			Layer Frame Buffer Address in bit

Note: If the layer is selected by video channel or YUV channel, the setting of this register will be ignored.

5.3.5.16. DEBE Layer 1 Frame Buffer Address Register

Offset: 0x854			Register Name: DEBE_LAY1_FB_ADDR_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	Buffer Address
			Layer Frame Buffer Address in bit

Note: If the layer is selected by video channel or YUV channel, the setting of this register will be ignored.

5.3.5.17. DEBE Layer 2 Frame Buffer Address Register

Offset: 0x858			Register Name: DEBE_LAY2_FB_ADDR_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	Buffer Address
			Layer Frame Buffer Address in bit

Note: If the layer is selected by video channel or YUV channel, the setting of this register will be ignored.

5.3.5.18. DEBE Layer 3 Frame Buffer Address Register

Offset : 0	Offset: 0x85C		Register Name: DEBE_LAY3_FB_ADDR_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	Buffer Address
			Layer Frame Buffer Address in bit

Note: If the layer is selected by video channel or YUV channel, the setting of this register will be ignored.

5.3.5.19. DEBE Register Buffer Control Register

Offset: 0	Offset: 0x870		Register Name: DEBE_REGBUFF_CTRL_REG
Bit	R/W	Default/Hex	Description
31:2	/	/	
1	R/W	0	Module registers loading auto mode disable control
		NIII	0: registers auto loading mode
			1: disable registers auto loading mode, the registers will be loaded by write
			1 to bit0 of this register
0	R/W	0	Register load control
			When the Module registers loading auto mode disable control bit is set, the
			registers will be loaded by write 1 to the bit, and the bit will self clean when
			the registers is loading done

5.3.5.20. DEBE Color Key Max Register

Offset: 0x880			Register Name: DEBE_CK_MAX_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	/
23:16	R/W	0xFF	Red
			Red color key max
15:8	R/W	0xFF	Green
			Green color key max
7:0	R/W	0xFF	Blue
			Blue color key max

5.3.5.21. DEBE Color Key Min Register

	<u> </u>		
Offset: 0x884			Register Name: DEBE_CK_MIN_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	/
23:16	R/W	0	Red
			Red color key min
15:8	R/W	0	Green
			Green color key min
7:0	R/W	0	Blue
			Blue color key min

5.3.5.22. DEBE Color Key Configuration Register

Offset: 0	x888		Register Name: DEBE_CK_CFG_REG
Bit	R/W	Default/Hex	Description
31:6	/	/	1
5:4	R/W	0	Red Match Rule
			00: always match
			01: always match
			10: match if (Color Min= <color<=color max)<="" td=""></color<=color>
			11: match if (Color>Color Max or Color <color min)<="" td=""></color>
3:2	R/W	0	Green Match Rule
			00: always match
			01: always match
			10: match if (Color Min= <color<=color max)<="" td=""></color<=color>
			11: match if (Color>Color Max or Color <color min)<="" td=""></color>
1:0	R/W	0	Blue Match Rule
		.111	00: always match
		M	01: always match
		1 -	10: match if (Color Min= <color<=color max)<="" td=""></color<=color>
•			11: match if (Color>Color Max or Color <color min)<="" td=""></color>

5.3.5.23. DEBE Layer 0 Attribute Control Register 0

Offset: 0	x890		Register Name: DEBE_LAY0_ATT_CTRL_RGE0
Bit	R/W	Default/Hex	Description
31:24	R/W	0	Alpha value
			Alpha value is used for this layer
23:22	R/W	0	Layer working mode selection
			00: normal mode (Non-Index mode)
			01: palette mode (Index mode)
			Other: reserved
			Except the normal mode, if the palette working mode is selected, the on
			chip palette table SRAM will be enabled.
21:20	/	/	/
19:18	R/W	0	Color key Mode
			00: disabled color key

			01: The layer color key match another channel pixel data in Alpha Blender1.
			1x: Reserved
			Only 2 channels pixel data can get to Alpha Blender1 at the same screen
			coordinate.
17:16	1	1	/
	/ D/M/	0	Pine Coloct
15	R/W	U	Pipe Select
			0: select Pipe 0
	,	,	1: select Pipe 1
14:12	/	/	
11:10	R/W	0	Priority
			The rule is: 11>10>01>00
			When more than 2 layers are enabled, the priority value of each layer
			must be different, soft designer must keep the condition.
			If more than 1 layer selects the same pipe, in the overlapping area,
			only the pixel of highest priority layer can pass the pipe to blender1.
			If both 2 pipes are selected by layers, in the overlapping area, the
			alpha value will use the alpha value of higher priority layer in the
			blender1.
9:3	/	/	1
2	R/W	0	YUV channel selection
			0: disable
			1: enable
			Setting 2 or more layers YUV channel mode is illegal, programmer should
			confirm it.
1	R/W	0	Layer video channel selection
			0: disable
			1: enable
	. 1	'VI''	Normally, one layer cannot be set both video channel and YUV channel
			mode, if both 2 mode is set, the layer will work in video channel mode, YUV
			channel mode will be ignored, and programmer should confirm it.
	1		Setting 2 or more layers video channel mode is illegal, programmer should
()			confirm it.
0	R/W	0	Alpha Enable
	'', ''	-	0: Disabled the alpha value of this register
			1: Enabled the alpha value of this register for the layer
	L		1. Eliablea the alpha value of this register for the layer

5.3.5.24. DEBE Layer 1 Attribute Control Register 0

Offset: 0	Offset: 0x894		Register Name: DEBE_LAY1_ATT_CTRL_RGE0
Bit	R/W	Default/Hex	Description
31:24	R/W	0	Alpha value
			Alpha value is used for this layer
23:22	R/W	0	Layer working mode selection
			00: normal mode (Non-Index mode)
			01: palette mode (Index mode)
			Other: reserved

			Except the normal mode, if the palette working mode is selected, the on
21.20	1	,	chip palette table SRAM will be enabled.
21:20	7	/	
19:18	R/W	0	Color key Mode
			00: disabled color key
			01: The layer color key match another channel pixel data in Alpha Blender1.
			1x: Reserved
			Only 2 channels pixel data can get to Alpha Blender1 at the same screen
			coordinate.
17:16	/	/	
15	R/W	0	Pipe Select
			0: select Pipe 0
			1: select Pipe 1
14:12	/	1	
11:10	R/W	0	Priority
			The rule is: 11>10>01>00
			When more than 2 layers are enabled, the priority value of each layer
			must be different, soft designer must keep the condition.
			If more than 1 layer selects the same pipe, in the overlapping area,
			only the pixel of highest priority layer can pass the pipe to blender1.
			If both 2 pipes are selected by layers, in the overlapping area, the
			alpha value will use the alpha value of higher priority layer in the
			blender1.
9:3	/	/	1
2	R/W	0	YUV channel selection
			0: disable
			1: enable
	1	'N',	Setting 2 or more layers YUV channel mode is illegal, programmer should
			confirm it.
1	R/W	0	Layer video channel selection
			0: disable
.0			1: enable
			Normally, one layer cannot be set both video channel and YUV channel
			mode, if both 2 mode is set, the layer will work in video channel mode, YUV
			channel mode will be ignored, and programmer should confirm it.
			Setting 2 or more layers video channel mode is illegal, programmer should
			confirm it.
0	R/W	0	Alpha Enable
			0: Disabled the alpha value of this register
			1: Enabled the alpha value of this register for the layer

5.3.5.25. DEBE Layer 2 Attribute Control Register 0

Offset: 0	Offset: 0x898		Register Name: DEBE_LAY2_ATT_CTRL_RGE0
Bit	R/W Default/Hex		Description
31:24	R/W	0	Alpha value

			Alpha value is used for this layer
23:22	R/W	0	
23:22	K/VV	U	Layer working mode selection
			00: normal mode (Non-Index mode)
			01: palette mode (Index mode)
			Other: reserved
			Except the normal mode, if the palette working mode is selected, the on
			chip palette table SRAM will be enabled.
21:20	/	/	/
19:18	R/W	0	Color key Mode
			00: disabled color key
			01: The layer color key match another channel pixel data in Alpha Blender1.
			1x: Reserved
			Only 2 channels pixel data can get to Alpha Blender1 at the same screen
			coordinate.
17:16	/	/	1
15	R/W	0	Pipe Select
			0: select Pipe 0
			1: select Pipe 1
14:12	/	/	
11:10	R/W	0	Priority
			The rule is: 11>10>01>00
			When more than 2 layers are enabled, the priority value of each layer
			must be different, soft designer must keep the condition.
			If more than 1 layer selects the same pipe, in the overlapping area,
			only the pixel of highest priority layer can pass the pipe to blender1.
			If both 2 pipes are selected by layers, in the overlapping area, the
			alpha value will use the alpha value of higher priority layer in the
		'VI''	blender1.
9:3	/	/	/
2	R/W	0	YUV channel selection
			0: disable
, (O) '			1: enable
			Setting 2 or more layers YUV channel mode is illegal, programmer should
			confirm it.
1	R/W	0	Layer video channel selection
	1., 11		0: disable
			1: enable
			Normally, one layer cannot be set both video channel and YUV channel
			mode, if both 2 mode is set, the layer will work in video channel mode, YUV
			channel mode will be ignored, and programmer should confirm it.
			Setting 2 or more layers video channel mode is illegal, programmer should
			confirm it.
0	R/W	0	Alpha Enable
ا	r/ VV	U	
			0: Disabled the alpha value of this register
			1: Enabled the alpha value of this register for the layer

5.3.5.26. DEBE Layer 3 Attribute Control Register 0

Offset: 0	x89C		Register Name: DEBE_LAY3_ATT_CTRL_RGE0
Bit	R/W	Default/Hex	Description
31:24	R/W	0	Alpha value
			Alpha value is used for this layer
23:22	R/W	0	Layer working mode selection
			00: normal mode (Non-Index mode)
			01: palette mode (Index mode)
			Other: reserved
			Except the normal mode, if the palette working mode is selected, the on
			chip palette table SRAM will be enabled.
21:20	/	/	/
19:18	R/W	0	Color key Mode
			00: disabled color key
			01: The layer color key match another channel pixel data in Alpha Blender1.
			1x: Reserved
			Only 2 channels pixel data can get to Alpha Blender1 at the same screen
			coordinate.
17:16	/	1	
15	R/W	0	Pipe Select
			0: select Pipe 0
			1: select Pipe 1
14:12	/	1	
11:10	R/W	0	Priority
		<u></u>	The rule is: 11>10>01>00
		:01	• When more than 2 layers are enabled, the priority value of each layer
			must be different, soft designer must keep the condition.
		A_A .	If more than 1 layer selects the same pipe, in the overlapping area,
	D		only the pixel of highest priority layer can pass the pipe to blender1.
V			If both 2 pipes are selected by layers, in the overlapping area, the
			alpha value will use the alpha value of higher priority layer in the
0.0	,	,	blender1.
9:3	/ D/M/	/	// MIDV also and a classification
2	R/W	0	YUV channel selection
			0: disable 1: enable
			Setting 2 or more layers YUV channel mode is illegal, programmer should
			confirm it.
1	R/W	0	Layer video channel selection
1	11/ 11/		0: disable
			1: enable
			Normally, one layer cannot be set both video channel and YUV channel
			mode, if both 2 mode is set, the layer will work in video channel mode, YUV
			channel mode will be ignored, and programmer should confirm it.
			Setting 2 or more layers video channel mode is illegal, programmer should
			Jetting 2 of more tayers viaco chamiler mode is megal, programmer should

			confirm it.
0	R/W	0	Alpha Enable
			0: Disabled the alpha value of this register
			1: Enabled the alpha value of this register for the layer

5.3.5.27. DEBE Layer 0 Attribute Control Register 1

Offset : 0)x8A0		Register Name: DEBE_LAYO_ATT_CTRL_RGE1
Bit	R/W	Default/Hex	Description
31:12	/	/	/
11:8	R/W	0	Frame buffer format
			Normal mode data format
			0000: mono 1-bpp
			0001: mono 2-bpp
			0010: mono 4-bpp
			0011: mono 8-bpp
			0100: color 16-bpp (R:6/G:5/B:5)
			0101: color 16-bpp (R:5/G:6/B:5)
			0110: color 16-bpp (R:5/G:5/B:6)
			0111: color 16-bpp (Alpha:1/R:5/G:5/B:5)
			1000: color 16-bpp (R:5/G:5/B:5/Alpha:1)
			1001: color 32-bpp (Padding:8/R:8/G:8/B:8)
			1010: color 32-bpp (Alpha:8/R:8/G:8/B:8)
			1011: color 24-bpp (R/G/B/R)
			1100-0x1111: Reserved
			Palette Mode data format
		· \	In palette mode, the data of external frame buffer is regarded as pattern.
			0000: 1-bpp
	11	M_{II}	0001: 2-bpp
			0010: 4-bpp
-6			0011: 8-bpp
			other: Reserved
			Note: If the layer is selected by video channel or YUV channel, the setting
			of the bits will be ignored.
7:3	1	1	/
2	R/W	0	B R channel swap
			0: RGB. Follow the bit[11:8]RGB
			1: BGR. Swap the B R channel in the data format.
01:0	R/W	0	PS
			Pixels Sequence
			See the follow table "Pixels Sequence"
			Note: If the layer is selected by video channel or YUV channel, the setting
			of the bits will be ignored.

5.3.5.28. DEBE Layer 1 Attribute Control Register 1

Offset: 0x8A4	Register Name: DEBE_LAY1_ATT_CTRL_RGE1
---------------	--

Bit	R/W	Default/Hex	Description
31:12	/	/	/
11:8	R/W	0	Frame buffer format
			Normal mode data format
			0000: mono 1-bpp
			0001: mono 2-bpp
			0010: mono 4-bpp
			0011: mono 8-bpp
			0100: color 16-bpp (R:6/G:5/B:5)
			0101: color 16-bpp (R:5/G:6/B:5)
			0110: color 16-bpp (R:5/G:5/B:6)
			0111: color 16-bpp (Alpha:1/R:5/G:5/B:5)
			1000: color 16-bpp (R:5/G:5/B:5/Alpha:1)
			1001: color 32-bpp (Padding:8/R:8/G:8/B:8)
			1010: color 32-bpp (Alpha:8/R:8/G:8/B:8)
			1011: color 24-bpp (R/G/B/R)
			1100-0x1111: Reserved
			Palette Mode data format
			In palette mode, the data of external frame buffer is regarded as pattern.
			0000: 1-bpp
			0001: 2-bpp
			0010: 4-bpp
			0011: 8-bpp
			other: Reserved
			Note: If the layer is selected by video channel or YUV channel, the setting
			of the bits will be ignored.
7:3	/	1	/
2	R/W	0	B R channel swap
			0: RGB. Follow the bit[11:8]RGB
			1: BGR. Swap the B R channel in the data format.
01:0	R/W	0	PS
.0			Pixels Sequence
			See the follow table "Pixels Sequence"
			Note: If the layer is selected by video channel or YUV channel, the setting
			of the bits will be ignored.

5.3.5.29. DEBE Layer 2 Attribute Control Register 1

Offset :	0x8A8		Register Name: DEBE_LAY2_ATT_CTRL_RGE1						
Bit	R/W	Default/Hex	Description						
31:12	/	/	/						
11:8	R/W	0	Frame buffer format						
			Normal mode data format						
			0000: mono 1-bpp						
			0001: mono 2-bpp						
			0010: mono 4-bpp						

0011: mono 8-bpp 0100: color 16-bpp (R:6/G:5/B:5) 0101: color 16-bpp (R:5/G:6/B:5) 0110: color 16-bpp (R:5/G:5/B:6) 0111: color 16-bpp (Alpha:1/R:5/G:5/B:5) 1000: color 16-bpp (R:5/G:5/B:5/Alpha:1) 1001: color 32-bpp (Padding:8/R:8/G:8/B:8) 1010: color 32-bpp (Alpha:8/R:8/G:8/B:8) 1011: color 24-bpp (R/G/B/R) 1100-0x1111: Reserved Palette Mode data format In palette mode, the data of external frame buffer is regarded as pattern. 0000: 1-bpp 0001: 2-bpp 0010: 4-bpp 0011: 8-bpp 0011: 8-bpp other: Reserved Note: If the layer is selected by video channel or YUV channel, the setting
0101: color 16-bpp (R:5/G:6/B:5) 0110: color 16-bpp (R:5/G:5/B:6) 0111: color 16-bpp (Alpha:1/R:5/G:5/B:5) 1000: color 16-bpp (R:5/G:5/B:5/Alpha:1) 1001: color 32-bpp (Padding:8/R:8/G:8/B:8) 1010: color 32-bpp (Alpha:8/R:8/G:8/B:8) 1011: color 24-bpp (R/G/B/R) 1100-0x1111: Reserved Palette Mode data format In palette mode, the data of external frame buffer is regarded as pattern. 0000: 1-bpp 0001: 2-bpp 0010: 4-bpp 0011: 8-bpp 0011: 8-bpp other: Reserved Note: If the layer is selected by video channel or YUV channel, the setting
0110: color 16-bpp (R:5/G:5/B:6) 0111: color 16-bpp (Alpha:1/R:5/G:5/B:5) 1000: color 16-bpp (R:5/G:5/B:5/Alpha:1) 1001: color 32-bpp (Padding:8/R:8/G:8/B:8) 1010: color 32-bpp (Alpha:8/R:8/G:8/B:8) 1011: color 24-bpp (R/G/B/R) 1100-0x1111: Reserved Palette Mode data format In palette mode, the data of external frame buffer is regarded as pattern. 0000: 1-bpp 0001: 2-bpp 0010: 4-bpp 0011: 8-bpp 0011: 8-bpp other: Reserved Note: If the layer is selected by video channel or YUV channel, the setting
0111: color 16-bpp (Alpha:1/R:5/G:5/B:5) 1000: color 16-bpp (R:5/G:5/B:5/Alpha:1) 1001: color 32-bpp (Padding:8/R:8/G:8/B:8) 1010: color 32-bpp (Alpha:8/R:8/G:8/B:8) 1011: color 24-bpp (R/G/B/R) 1100-0x1111: Reserved Palette Mode data format In palette mode, the data of external frame buffer is regarded as pattern. 0000: 1-bpp 0001: 2-bpp 0010: 4-bpp 0011: 8-bpp 0011: 8-bpp other: Reserved Note: If the layer is selected by video channel or YUV channel, the setting
1000: color 16-bpp (R:5/G:5/B:5/Alpha:1) 1001: color 32-bpp (Padding:8/R:8/G:8/B:8) 1010: color 32-bpp (Alpha:8/R:8/G:8/B:8) 1011: color 24-bpp (R/G/B/R) 1100-0x1111: Reserved Palette Mode data format In palette mode, the data of external frame buffer is regarded as pattern. 0000: 1-bpp 0001: 2-bpp 0010: 4-bpp 0011: 8-bpp 0011: 8-bpp other: Reserved Note: If the layer is selected by video channel or YUV channel, the setting
1001: color 32-bpp (Padding:8/R:8/G:8/B:8) 1010: color 32-bpp (Alpha:8/R:8/G:8/B:8) 1011: color 24-bpp (R/G/B/R) 1100-0x1111: Reserved Palette Mode data format In palette mode, the data of external frame buffer is regarded as pattern. 0000: 1-bpp 0001: 2-bpp 0010: 4-bpp 0011: 8-bpp 0011: 8-bpp other: Reserved Note: If the layer is selected by video channel or YUV channel, the setting
1010: color 32-bpp (Alpha:8/R:8/G:8/B:8) 1011: color 24-bpp (R/G/B/R) 1100-0x1111: Reserved Palette Mode data format In palette mode, the data of external frame buffer is regarded as pattern. 0000: 1-bpp 0001: 2-bpp 0010: 4-bpp 0011: 8-bpp other: Reserved Note: If the layer is selected by video channel or YUV channel, the setting
1011: color 24-bpp (R/G/B/R) 1100-0x1111: Reserved Palette Mode data format In palette mode, the data of external frame buffer is regarded as pattern. 0000: 1-bpp 0001: 2-bpp 0010: 4-bpp 0011: 8-bpp other: Reserved Note: If the layer is selected by video channel or YUV channel, the setting
1100-0x1111: Reserved Palette Mode data format In palette mode, the data of external frame buffer is regarded as pattern. 0000: 1-bpp 0001: 2-bpp 0010: 4-bpp 0011: 8-bpp other: Reserved Note: If the layer is selected by video channel or YUV channel, the setting
Palette Mode data format In palette mode, the data of external frame buffer is regarded as pattern. 0000: 1-bpp 0001: 2-bpp 0010: 4-bpp 0011: 8-bpp other: Reserved Note: If the layer is selected by video channel or YUV channel, the setting
In palette mode, the data of external frame buffer is regarded as pattern. 0000: 1-bpp 0001: 2-bpp 0010: 4-bpp 0011: 8-bpp other: Reserved Note: If the layer is selected by video channel or YUV channel, the setting
0000: 1-bpp 0001: 2-bpp 0010: 4-bpp 0011: 8-bpp other: Reserved Note: If the layer is selected by video channel or YUV channel, the setting
0001: 2-bpp 0010: 4-bpp 0011: 8-bpp other: Reserved Note: If the layer is selected by video channel or YUV channel, the setting
0010: 4-bpp 0011: 8-bpp other: Reserved Note: If the layer is selected by video channel or YUV channel, the setting
0011: 8-bpp other: Reserved Note: If the layer is selected by video channel or YUV channel, the setting
other: Reserved Note: If the layer is selected by video channel or YUV channel, the setting
Note: If the layer is selected by video channel or YUV channel, the setting
of the bits will be ignored.
7:3 / / /
2 R/W 0 B R channel swap
0: RGB. Follow the bit[11:8]RGB
1: BGR. Swap the B R channel in the data format.
01:0 R/W 0 PS
Pixels Sequence
See the follow table "Pixels Sequence"
Note: If the layer is selected by video channel or YUV channel, the setting
of the bits will be ignored.

5.3.5.30. DEBE Layer 3 Attribute Control Register 1

Offset :	0x8AC		Register Name: DEBE_LAY3_ATT_CTRL_RGE1
Bit	R/W	Default/Hex	Description
31:12	/	/	/
11:8	R/W	0	Frame buffer format
			Normal mode data format
			0000: mono 1-bpp
			0001: mono 2-bpp
			0010: mono 4-bpp
			0011: mono 8-bpp
			0100: color 16-bpp (R:6/G:5/B:5)
			0101: color 16-bpp (R:5/G:6/B:5)
			0110: color 16-bpp (R:5/G:5/B:6)
			0111: color 16-bpp (Alpha:1/R:5/G:5/B:5)
			1000: color 16-bpp (R:5/G:5/B:5/Alpha:1)
			1001: color 32-bpp (Padding:8/R:8/G:8/B:8)

			1010: color 32-bpp (Alpha:8/R:8/G:8/B:8)
			1011: color 24-bpp (R/G/B/R)
			1100-0x1111: Reserved
			Palette Mode data format
			In palette mode, the data of external frame buffer is regarded as pattern.
			0000: 1-bpp
			0001: 2-bpp
			0010: 4-bpp
			0011: 8-bpp
			other: Reserved
			Note: If the layer is selected by video channel or YUV channel, the setting
			of the bits will be ignored.
7:3	/	/	/
2	R/W	0	B R channel swap
			0: RGB. Follow the bit[11:8]RGB
			1: BGR. Swap the B R channel in the data format.
01:0	R/W	0	PS
			Pixels Sequence
			See the follow table "Pixels Sequence"
			Note: If the layer is selected by video channel or YUV channel, the setting
			of the bits will be ignored.

Pixels sequence table

DE-layer attribute control register1 [11:8] = FBF (frame buffer format)

DE-layer attribute control register1 [1:0] = PS (pixels sequence

Mono or palette 1-bpp mode: FBF = 0000

PS=00

Bit

15

PS=11

30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
P30	P29	P28	P27	P26	P25	P24	P23	P22	P21	P20	P19	P18	P17	P16
P14	P13	P12	P11	P10	P09	P08	P07	P06	P05	P04	P03	P02	P01	P00
14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
P25	P26	P27	P28	P29	P30	P31	P16	P17	P18	P19	P20	P21	P22	P23
P09	P10	P11	P12	P13	P14	P15	P00	P01	P02	P03	P04	P05	P06	P07
14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
P06	P05	P04	P03	P02	P01	P00	P15	P14	P13	P12	P11	P10	P09	P08
P22	P21	P20	P19	P18	P17	P16	P31	P30	P29	P28	P27	P26	P25	P24
	P30 P14 14 30 P25 P09 14 30 P06	P30 P29 P14 P13 14 13 30 29 P25 P26 P09 P10 14 13 30 29 P06 P05	P30 P29 P28 P14 P13 P12 14 13 12 30 29 28 P25 P26 P27 P09 P10 P11 14 13 12 30 29 28 P06 P05 P04	P30 P29 P28 P27 P14 P13 P12 P11 14 13 12 11 30 29 28 27 P25 P26 P27 P28 P09 P10 P11 P12 14 13 12 11 30 29 28 27 P06 P05 P04 P03	P30 P29 P28 P27 P26 P14 P13 P12 P11 P10 14 13 12 11 10 30 29 28 27 26 P25 P26 P27 P28 P29 P09 P10 P11 P12 P13 14 13 12 11 10 30 29 28 27 26 P06 P05 P04 P03 P02	P30 P29 P28 P27 P26 P25 P14 P13 P12 P11 P10 P09 14 13 12 11 10 09 30 29 28 27 26 25 P25 P26 P27 P28 P29 P30 P09 P10 P11 P12 P13 P14 14 13 12 11 10 09 30 29 28 27 26 25 P06 P05 P04 P03 P02 P01	P30 P29 P28 P27 P26 P25 P24 P14 P13 P12 P11 P10 P09 P08 14 13 12 11 10 09 08 30 29 28 27 26 25 24 P25 P26 P27 P28 P29 P30 P31 P09 P10 P11 P12 P13 P14 P15 14 13 12 11 10 09 08 30 29 28 27 26 25 24 P06 P05 P04 P03 P02 P01 P00	P30 P29 P28 P27 P26 P25 P24 P23 P14 P13 P12 P11 P10 P09 P08 P07 14 13 12 11 10 09 08 07 30 29 28 27 26 25 24 23 P25 P26 P27 P28 P29 P30 P31 P16 P09 P10 P11 P12 P13 P14 P15 P00 14 13 12 11 10 09 08 07 30 29 28 27 26 25 24 23 P06 P05 P04 P03 P02 P01 P00 P15	P30 P29 P28 P27 P26 P25 P24 P23 P22 P14 P13 P12 P11 P10 P09 P08 P07 P06 14 13 12 11 10 09 08 07 06 30 29 28 27 26 25 24 23 22 P25 P26 P27 P28 P29 P30 P31 P16 P17 P09 P10 P11 P12 P13 P14 P15 P00 P01 14 13 12 11 10 09 08 07 06 30 29 28 27 26 25 24 23 22 P06 P05 P04 P03 P02 P01 P00 P15 P14	P30 P29 P28 P27 P26 P25 P24 P23 P22 P21 P14 P13 P12 P11 P10 P09 P08 P07 P06 P05 14 13 12 11 10 09 08 07 06 05 30 29 28 27 26 25 24 23 22 21 P25 P26 P27 P28 P29 P30 P31 P16 P17 P18 P09 P10 P11 P12 P13 P14 P15 P00 P01 P02 14 13 12 11 10 09 08 07 06 05 30 29 28 27 26 25 24 23 22 21 P06 P05 P04 P03 P02 P01 P00 P15 P14 P13	P30 P29 P28 P27 P26 P25 P24 P23 P22 P21 P20 P14 P13 P12 P11 P10 P09 P08 P07 P06 P05 P04 14 13 12 11 10 09 08 07 06 05 04 30 29 28 27 26 25 24 23 22 21 20 P25 P26 P27 P28 P29 P30 P31 P16 P17 P18 P19 P09 P10 P11 P12 P13 P14 P15 P00 P01 P02 P03 14 13 12 11 10 09 08 07 06 05 04 30 29 28 27 26 25 24 23 22 21 20 P06 P05 P04 P03<	P30 P29 P28 P27 P26 P25 P24 P23 P22 P21 P20 P19 P14 P13 P12 P11 P10 P09 P08 P07 P06 P05 P04 P03 14 13 12 11 10 09 08 07 06 05 04 03 30 29 28 27 26 25 24 23 22 21 20 19 P25 P26 P27 P28 P29 P30 P31 P16 P17 P18 P19 P20 P09 P10 P11 P12 P13 P14 P15 P00 P01 P02 P03 P04 14 13 12 11 10 09 08 07 06 05 04 03 30 29 28 27 26 25 24 23 22	P30 P29 P28 P27 P26 P25 P24 P23 P22 P21 P20 P19 P18 P14 P13 P12 P11 P10 P09 P08 P07 P06 P05 P04 P03 P02 14 13 12 11 10 09 08 07 06 05 04 03 02 30 29 28 27 26 25 24 23 22 21 20 19 18 P25 P26 P27 P28 P29 P30 P31 P16 P17 P18 P19 P20 P21 P09 P10 P11 P12 P13 P14 P15 P00 P01 P02 P03 P04 P05 14 13 12 11 10 09 08 07 06 05 04 03 02 30 <t< td=""><td>P30 P29 P28 P27 P26 P25 P24 P23 P22 P21 P20 P19 P18 P17 P14 P13 P12 P11 P10 P09 P08 P07 P06 P05 P04 P03 P02 P01 14 13 12 11 10 09 08 07 06 05 04 03 02 01 30 29 28 27 26 25 24 23 22 21 20 19 18 17 P25 P26 P27 P28 P29 P30 P31 P16 P17 P18 P19 P20 P21 P22 P09 P10 P11 P12 P13 P14 P15 P00 P01 P02 P03 P04 P05 P06 14 13 12 11 10 09 08 07 06</td></t<>	P30 P29 P28 P27 P26 P25 P24 P23 P22 P21 P20 P19 P18 P17 P14 P13 P12 P11 P10 P09 P08 P07 P06 P05 P04 P03 P02 P01 14 13 12 11 10 09 08 07 06 05 04 03 02 01 30 29 28 27 26 25 24 23 22 21 20 19 18 17 P25 P26 P27 P28 P29 P30 P31 P16 P17 P18 P19 P20 P21 P22 P09 P10 P11 P12 P13 P14 P15 P00 P01 P02 P03 P04 P05 P06 14 13 12 11 10 09 08 07 06

13

12

11

10

09

80

07

14

06

05

04

03

02

01

00

D:+															
Bit	20	20	20	27	20	25	24	22	22	21	20	10	10	17	16
31 P00	30 P01	29 P02	28 P03	27 P04	26 P05	25	1	23 P08	22	21	P11	19	18	17	
		1				P06	P07	-	P09	P10		P12	P13	P14	P15
P16	P17	P18	P19	P20	P21	P22	P23	P24	P25	P26	P27	P28	P29	P30	P31
15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
	or paiet	te 2-pp	p mode	: FBF =	0001										
PS =00															
Bit	20	20	20	27	26	25	2.4	22	22	24	20	40	40	47	4.5
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
P15		P14		P13		P12		P11		P10		P09		P08	
P07		P06		P05		P04		P03		P02		P01		P00	
15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
PS =01															-40
Bit															56
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
P12		P13		P14		P15		P08		P09		P10	15	P11	
P04		P05		P06		P07		P00		P01		P02	<u>Oy</u> .	P03	
15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
PS =10															
Bit									10						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
P03		P02		P01		P00		P07		P06		P05		P04	
P11		P10		P09		P08		P15		P14		P13		P12	
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
PS =11						0,									
Bit															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
P00		P01		P02		P03		P04		P05		P06		P07	
P08		P09		P10		P11		P12		P13		P14		P15	
15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
Mono	4-bpp o	r palett	e 4-bpp	mode:	FBF = 0	010									
PS =00															
Bit															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
P07				P06				P05				P04			
P03				P02				P01				P00			
15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
PS =01															
Bit															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
P06				P07				P04				P05			
P02				P03				P00				P01			
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
PS =10															
Bit															

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
P01				P00				P03				P02			
P05				P04				P07				P06			
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
PS =11															
Bit															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
P00				P01				P02				P03			
P04				P05				P06				P07			
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Mono 8	3-bpp m	node oi	palette	8-bpp	mode:	FBF = 0	011								
PS =00/2	11														
Bit															30
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Р3								P2						12	
P1								P0					10	2/10	
15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
PS =01/1	LO														
Bit											()				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
P0								P1	- (
P2								P3	<u>, , </u>						
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Color 1	6-bpp r	node:	FBF = (0100 or	0101 o	r 0110	or 0111	or 1000)						
PS =00						6									
Bit															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
P1															
P0															
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
PS=01															
Bit	20	20	20	27	26	25	24	22	22	24	20	10	10	47	1.0
31 P0	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
P0 P1															
15	14	13	12	11	10	09	08	07	06	ΩE	04	03	02	01	00
PS=10/:		13	12	11	10	09	08	07	06	05	04	03	02	01	00
Invalid	11														
Color 2	1-hnn c	or 22-hi	an mad	e ERE -	- 1001 c	or 1010									
PS=00/0), 32 D	рртпоа	C . I DI =	1001) 1010									
Bit	<i>,</i>														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
P0															
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
The byt					-0	0,5		0,			0 1		٠ <u>ـ</u>	01	

PS=10/11

Bit

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PO															
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00

The bytes sequence is **BGRA**

5.3.5.31. DEBE HWC Coordinate Control Register

Offset: 0	0x8D8		Register Name: DEBE_HWC_CTRL_REG
Bit	R/W	Default/Hex	Description
31:27	R/W	0	Y coordinate offset
			The hardware cursor is 32*32 2-bpp pattern, this value represent the start
			position of the cursor in Y coordinate
26:16	R/W	0	Hardware cursor Y coordinate
15:11	R/W	0	X coordinate offset
			The hardware cursor is 32*32 2-bpp pattern, this value represent the start
			position of the cursor in X coordinate
10:0	R/W	0	Hardware cursor X coordinate

5.3.5.32. DEBE HWC Frame Buffer Format Register

Offset: 0	x8E0		Register Name: DEBE_HWC_FB_CTRL_REG
Bit	R/W	Default/Hex	Description
31:6	/	/	
5:4	R/W	0	Y size control
			00: 32pixels per line
		• ~	01: 64pixels per line
		. 1111	Other: reserved
3:2	R/W	0	X size control
			00: 32pixels per row
~			01: 64pixels per row
			Other: reserved
1:0	R/W	0	Pixels format control
			00: 1bpp
			01: 2bpp
			10: 4bpp
			11: reserved

5.3.5.33. DEBE Write Back Control Register

Offset: 0	x8F0		Register Name: DEBE_WB_CTRL_REG
Bit	R/W	Default/Hex	Description
31:13	/	/	/
12	R/W	0	Write back data format setting
			0: ARGB (little endian syatem)
			1: BGRA (little endian syatem)
11:10	/	/	/

9	R/W	0	Error flag
	,		0:
			1: write back error
8	R/W	0	Write-back process status
			0: write-back end or write-back disable
			1: write-back in process
			This flag indicates that a full frame has not been written back to memory.
			The bit will be set when write-back enable bit is set, and be cleared when
			write-back process end.
7:2	/	/	/
1	R/W	0	Write back only control
			0: disable the write back only control, the normal channel data of back end
			will transfer to LCD/TV controller too.
			1: enable the write back only function, the all output data will bypass the
			LCD/TV controller.
0	R/W	0	Write back enable
			0: Disable
			1: Enable
			If normal channel of back-end is selected by LCD/TV controller (write)
			back only function is disabled), the writing back process will start
			when write back enable bit is set and a new frame processing begins.
			The bit will be cleared when the new writing-back frame start to process.

5.3.5.34. DEBE Write Back Address Register

Offset: 0x8F4			Register Name: DEBE_WB_ADDR_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	The start address of write back data in bits

5.3.5.35. DEBE Write Back Buffer Line Width Register

Offset: 0x8F8			Register Name: DEBE_WB_LINEWIDTH_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	Write back image buffer line width in bits

5.3.5.36. DEBE Input YUV Channel Control Register

Offset: 0x920			Register Name: DEBE_IYUV_CTRL_REG
Bit	R/W	Default/Hex	Description
31:15	/	/	1
14:12	R/W	0	Input data format
			000: planar YUV 411
			001: planar YUV 422
			010: planar YUV 444
			011: interleaved YUV 422
			100: interleaved YUV 444
			Other: illegal

11:10	/	/	/
9:8	R/W	0	Pixel sequence
			In planar data format mode:
			00: Y3Y2Y1Y0
			01: Y0Y1Y2Y3 (the other 2 components are same)
			Other: illegal
			In interleaved YUV 422 data format mode:
			00: UYVY
			01: YUYV
			10: VYUY
			11: YVYU
			In interleaved YUV 444 data format mode:
			00: AYUV
			01: VUYA
			Other: illegal
7:5	/	/	1
4	R/W	0	0:
			linner
			1:
3:1	/	/	1
0	R/W	0	YUV channel enable control
			0: disable
			1: enable

Source data input data ports:

Input buffer channel	Planar YUV	Interleaved YUV
Channel0	Υ	YUV
Channel1	U	-
Channel2	V	-

5.3.5.37. DEBE YUV Channel 0 Frame Buffer Address Register

C	Offset: 0x930			Register Name: DEBE_CH0_YUV_ADDR_REG
В	it	R/W	Default/Hex	Description
3	1:0	R/W	0	Buffer Address
				Frame buffer address in bits

5.3.5.38. DEBE YUV Channel 1 Frame Buffer Address Register

Offset: 0	Offset: 0x934		Register Name: DEBE_CH1_YUV_ADDR_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	Buffer Address
			Frame buffer address in bits

5.3.5.39. DEBE YUV Channel 2 Frame Buffer Address Register

Offset: 0	Offset: 0x938		Register Name: DEBE_CH2_YUV_ADDR_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	Buffer Address

			Frame buffer address in bits
--	--	--	------------------------------

5.3.5.40. DEBE YUV Channel 0 Buffer Line Width Register

Offset: 0	Offset: 0x940		Register Name: DEBE_CH0_YUV_BLW_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	Line width
			The width is the distance from the start of one line to the start of the next
			line.
			Description in bits

5.3.5.41. DEBE YUV Channel 1 Buffer Line Width Register

Offset: 0x944			Register Name: DEBE_CH1_YUV_BLW_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	Line width
			The width is the distance from the start of one line to the start of the next
			line.
			Description in bits

5.3.5.42. DEBE YUV Channel 2 Buffer Line Width Register

Offset: 0x948			Register Name: DEBE_CH2_YUV_BLW_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	Line width
			The width is the distance from the start of one line to the start of the next
			line.
			Description in bits

YUV to RGB conversion algorithm formula:

 $G = (GY \text{ component coefficient * Y}) + (GU \text{ component coefficient * U}) + (GV \text{ component coefficient * V}) + G \text{ constant } R = (RY \text{ component coefficient * Y}) + (RU \text{ component coefficient * U}) + (RV \text{ component coefficient * V}) + R \text{ constant } B = (BY \text{ component coefficient * Y}) + (BU \text{ component coefficient * V}) + B \text{ constant } B = (BY \text{ component coefficient * V}) + (BU \text{ component coefficient * V}) + B \text{ constant } B = (BY \text{ component coefficient * V}) + (BU \text{ component coefficient * V}) + B \text{ constant } B = (BY \text{ component coefficient * V}) + (BU \text{ component$

5.3.5.43. DEBE Coefficient 00 Register

Offset: 0x950			Register Name: DEBE_COEF00_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	/
28:16	R/W	UDF	the Y/G coefficient for de-flicker
			the value equals to coefficient*2 ¹⁰
15:13	/	/	/
12:0	R/W	UDF	the Y/G coefficient
			the value equals to coefficient*2 ¹⁰

5.3.5.44. DEBE Coefficient 01 Register

Offset: 0	Offset: 0x954		Register Name: DEBE_COEF01_REG
Bit	R/W Default/Hex		Description
31:29	/	/	/

28:16	R/W	UDF	the U/G coefficient for de-flicker
			the value equals to coefficient*2 ¹⁰
15:13	/	/	/
12:0	R/W	UDF	the U/G coefficient
			the value equals to coefficient*2 ¹⁰

5.3.5.45. DEBE Coefficient 02 Register

Offset: 0x958			Register Name: DEBE_COEF02_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	/
28:16	R/W	UDF	the V/G coefficient for de-flicker
			the value equals to coefficient*2 ¹⁰
15:13	/	/	
12:0	R/W	UDF	the V/G coefficient
			the value equals to coefficient*2 ¹⁰

5.3.5.46. DEBE Coefficient 03 Register

Offset: 0	0x95C		Register Name: DEBE_COEF03_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	
28:16	R/W	UDF	the Y/G constant for de-flicker
			the value equals to coefficient*2 ⁴
15:13	/	/	/
12:0	R/W	UDF	the Y/G constant
			the value equals to coefficient*2 ⁴

5.3.5.47. DEBE Coefficient 10 Register

Offset: 0	x960	II_A .	Register Name: DEBE_COEF10_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	/
28:16	R/W	UDF	The Y/R coefficient for de-flicker
			the value equals to coefficient*2 ¹⁰
15:13	/	/	/
12:0	R/W	UDF	the Y/R coefficient
			the value equals to coefficient*2 ¹⁰

5.3.5.48. DEBE Coefficient 11 Register

Offset: 0	x964		Register Name: DEBE_COEF11_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	/
28:16	R/W	UDF	the U/R coefficient for de-flicker
			the value equals to coefficient*2 ¹⁰
15:13	/	/	/
12:0	R/W	UDF	the U/R coefficient

			the value equals to coefficient*2 ¹⁰
--	--	--	---

5.3.5.49. DEBE Coefficient 12 Register

Offset: 0	x968		Register Name: DEBE_COEF12_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	/
28:16	R/W	UDF	the V/R coefficient for de-flicker
			the value equals to coefficient*2 ¹⁰
15:13	/	/	/
12:0	R/W	UDF	the V/R coefficient
			the value equals to coefficient*2 ¹⁰

5.3.5.50. DEBE Coefficient 13 Register

Offset: 0)x96C		Register Name: DEBE_COEF13_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	
28:16	R/W	UDF	the Y/R constant for de-flicker
			the value equals to coefficient*2 ⁴
15:13	/	/	1
12:0	R/W	UDF	the U/R constant
			the value equals to coefficient*2 ⁴

5.3.5.51. DEBE Coefficient 20 Register

Offset: 0	x970		Register Name: DEBE_COEF20_REG
Bit	R/W	Default/Hex	Description
31:29	/	/	
28:16	R/W	UDF	The Y/B coefficient for de-flicker
		A_A .	the value equals to coefficient*2 ¹⁰
15:13	/	<i>Y</i>	/
12:0	R/W	UDF	the Y/B coefficient
01	-		the value equals to coefficient*2 ¹⁰

5.3.5.52. DEBE Coefficient 21 Register

Offset: 0x974			Register Name: DEBE_COEF21_REG	
Bit	R/W	Default/Hex	Description	
31:29	/	/	/	
28:16	R/W	UDF	the U/B coefficient for de-flicker	
			the value equals to coefficient*2 ¹⁰	
15:13	/	/	/	
12:0	R/W	UDF	the U/B coefficient	
			the value equals to coefficient*2 ¹⁰	

5.3.5.53. DEBE Coefficient 22 Register

Offset: 0x978	Register Name: DEBE_COEF22_REG
---------------	--------------------------------

Bit	R/W	Default/Hex	Description	
31:29	/	/	1	
28:16	R/W	UDF	the V/B coefficient for de-flicker	
			the value equals to coefficient*2 ¹⁰	
15:13	/	/	/	
12:0	R/W	UDF	the V/B coefficient	
			the value equals to coefficient*2 ¹⁰	

5.3.5.54. DEBE Coefficient 23 Register

Offset: (Offset: 0x97C		Register Name: DEBE_COEF23_REG		
Bit	R/W	Default/Hex	Description	Description	
31:29	/	/	/		
28:16	R/W	UDF	the Y/B constant for de-flicker		
			the value equals to coefficient*2 ⁴	S	
15:13	/	/	/	133	
12:0	R/W	UDF	the Y/B constant		
			the value equals to coefficient*2 ⁴	W	

5.3.5.55. DEBE HWC Pattern Memory Block

Offset: 0x1400-0x15FF		FF	DEBE_HWC_ PAT_MEM_BLK	
Bit	R/W	Default/Hex	Description	
31:0	R/W	UDF	Hardware cursor pixel pattern	
			Specify the color displayed for each of the hardware cursor pixels.	

5.3.5.56. DEBE HWC Palette Table

Offset: 0x1600-0x163F		3F	DEBE_HWC_ PALETTE_TABLE
Bit	R/W	Default/Hex	Description
31:24	R/W	0	Alpha value
23:16	R/W	0	Red value
15:8	R/W	0	Green value
7:0	R/W	0	Blue value

The follow figure (only with 2bpp mode) shows the RAM array used for hardware cursor palette lookup and the corresponding colors output.

5.3.5.57. Palette Mode

Offset: 0x1000-0x13FF		FF	DEBE_SRAM_BLK	
Bit	R/W	Default/Hex	Description	
31:24	R/W	UDF	Alpha value	
23:16	R/W	UDF	Red value	
15:8	R/W	UDF	Green value	
7:0	R/W	UDF	Blue value	

In this mode, RAM array is used for palette lookup table; each pixel in the layer frame buffer is treated as an index into the RAM array to select the actual color.

The follow figure shows the RAM array used for palette lookup and the corresponding colors output.

Inputting external frame buffer data (8bpp)

		•	
5	38	133	28
•			

On chip SRAM array

α 0	R0	G0	B0	
α_1	R1	G1	B1	
		•		
		•		
		•		
αn	Rn	Gn	Bn	
•				
		•		
•				
0254	R254	G254	B254	
0255	R255	G255	B255	

Output color

:				
α 5	R5	G5	B5	
<i>α</i> 38	R38	G38	B38	
<i>0</i> 133	R133	G133	B133	
α 28	R28	G28	B28	
		•		
		•		

On chip SRAM for palette lookup

For Allwinner Lech

5.4. De-interlacer

5.4.1. Overview

The De-interlacer converts the interlaced input video frame to a progressive one. The frame base on top field will be processed.

5.4.2. Feature

The De-interlacer includes the following features:

- Support planar UV combined YUV420 and tile-based UV combined YUV420 input format
- Support planar UV combined YUV420 output format
- Support input size up to 720×576

5.4.3. De-interlacer Register List

Module Name	Base Address	1510
DI	0x01E70000	10/1/2

	1	
Register Name	Offset	Description
DI_CTRL_REG	0x000	DI Control Register
DI_INT_CTRL_REG	0x004	DI Interrupt Control Register
DI_STATUS_REG	0x008	DI Status Register
DI_SIZE_SET_REG	0x010	DI Size Setting Register
DI_FORMAT_SET _REG	0x014	DI Format Setting Register
DI_INPUT_LSO_SET_REG	0x020	DI input Line Stride 0 Setting Register
DI_INPUT_LS1_SET _REG	0x024	DI Input Line Stride 1 Setting Register
DI_OUTPUT_LS0_SET_REG	0x028	DI Output Line Stride 0 Setting Register
DI_OUTPUT_LS1_SET_REG	0x02C	DI Output Line Stride 1 Setting Register
DI_FLAG_LS_SET_REG	0x030	DI Flag Line Stride Setting Register
DI_CUR_FRAME_ADDR0_REG	0x040	DI Current Frame Address 0 Register
DI_CUR_FRAME_ADDR1_REG	0x044	DI Current Frame Address 1 Register
DI_PREFRAME_ADDR0_REG	0x050	DI Pre-frame Address 0 Register
DI_PREFRAME_ADDR1_REG	0x054	DI Pre-frame Address 1 Register
DI_OUTPUT_FRAME_ADDR0_REG	0x060	DI Output Frame Address 0 Register
DI_OUTPUT_FRAME_ADDR1_REG	0x064	DI Output Frame Address 1 Register
DI_FLAG_ADDR_REG	0x070	DI Motion Flag Address Register
DI_PARA_REG	0x080	DI Parameters Register

5.4.4. De-interlacer Register Description

5.4.4.1. DI Control Register

Offset: 0x000			Register Name: DI_CTRL_REG
Bit	R/W	Default/Hex	Description

31	R/W	0x0	RESET
			Module reset
			0: Do nothing or reset finished.
			1: Reset module.
			Module will reset when write 1 to this bit. The START bit and
			DI_INT_CTRL_REG will be initialed to default value, and the state machine
			of the module will reset. This bit would self clear when reset finished.
30:1	/	/	1
0	R/W	0x0	START
			Start de-interlacing function
			0: Start finish
			1: Start one frame de-interlacing
			Write 1 will start one frame de-interlacing process. The bit would self clear
			when one frame de-interlacing process starts.

5.4.4.2. DI Interrupt Control Register

Offset: 0)x004		Register Name: DI_INT_CTRL_REG
Bit	R/W	Default/Hex	Description
31:1	/	/	1
0	R/W	0x0	FINISH_INT_EN
			De-interlacing finish interrupt enable
			0: Disable
			1: Enable

5.4.4.3. DI Status Register

Offset: 0	Offset: 0x008		Register Name: DI_STATUS_REG
Bit	R/W	Default/Hex	Description
31	R	0x0	CUR_CHL
			De-interlacing current channel.
~			0: luma channel
			1: chroma channel
30:26	/	/	/
25:16	R	0x0	CUR_LINE
			De-interlacing line counter.
			Note: Start from zero. Counter for current processing line.
15:9	/	/	/
8	R	0x0	BUSY
			De-interlacing process status.
			The bit will become 1 when a frame de-interlacing process running and will
			clear when process stop.
7:1	/	/	/
0	R/W	0x0	FINISH_FLAG
			De-interlacing finish flag.
			0: Unfinished
			1: Finished

The bit will become 1 when a frame de-interlacing process finish. Write 1 to
clear it.

5.4.4.4. DI Size Setting Register

Offset: 0x10			Register Name: DI_SIZE_SET_REG	
Bit	R/W	Default/Hex	Description	
31:26	/	/	/	
25:16	R/W	0x0	HEIGHT	
			De-interlacing height.	
			The actual height is the register value + 1.	
			Note: The actual height must be 2 lines aligned.	
15:10	/	/	/	
9:0	R/W	0x0	WIDTH	2
			De-interlacing width.	G\
			The actual width is the register value + 1.	:33
			Note: The actual width must be 2 pixels aligned.	1510

5.4.4.5. DI Format Setting Register

Offset: 0	lv∩1/I		Register Name: DI_FORMAT_SET_REG
Oliset. C	7,7014		Register Name. Di_1 ONWAI_SET_REG
Bit	R/W	Default/Hex	Description
31:5	/	/	1
4	R/W	0x0	PS_REVERSION
			Pixel sequence reversion enable
			0: Disable.
			1: Enable.
3:1	/	1	
0	R/W	0x0	IN_FORMAT
		$I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I$	Input format
			0: Non-tile-based UV combined.
~			1: Tile-based UV combined. (32 x 32)

5.4.4.6. DI Input Line Stride 0 Setting Register

Offset: 0	Offset: 0x020		Register Name: DI_INPUT_LS0_REG
Bit	R/W	Default/Hex	Description
31:16	/	/	/
15:0	R/W	0x0	LS
			Input line stride of first plane in WORD.
			In tile-based type
			The stride length is the distance from the start of the end line in one tile to
			the start of the first line in vertical direction next tile.
			In non-tile-based type
			The stride length is the distance from the start of one line to the start of
			the next line.

5.4.4.7. DI Input Line Stride 1 Setting Register

Offset: 0x024			Register Name: DI_INPUT_LS1_SET_REG
Bit	R/W	Default/Hex	Description
31:16	/	/	/
15:0	R/W	0x0	LS
			Input line stride of second plane in WORD.
			In tile-based type
			The stride length is the distance from the start of the end line in one tile to
			the start of the first line in vertical direction next tile.
			In non-tile-based type
			The stride length is the distance from the start of one line to the start of
			the next line.

5.4.4.8. DI Output Line Stride 0 Setting Register

Offset:	Offset: 0x028		Register Name: DI_OUTPUT_LS0_SET_REG
Bit	R/W	Default/Hex	Description
31:16	/	/	
15:0	R/W	0x0	LS
			Output line stride of first plane in WORD.
			The stride length is the distance from the start of one line to the start of
			the next line.

5.4.4.9. DI Output Line Stride 1 Setting Register

Offset: 0x02C			Register Name: DI_OUTPUT_LS1_SET_REG
Bit	R/W	Default/Hex	Description
31:16	/	/	
15:0	R/W	0x0	LS
	1/1///		Output line stride of second plane in WORD.
			The stride length is the distance from the start of one line to the start of
	M.		the next line.

5.4.4.10. DI Flag Line Stride Setting Register

Offset: 0x030			Register Name: DI_FLAG_LS_SET_REG
Bit	R/W	Default/Hex	Description
31:16	/	/	/
15:0	R/W	0x0	LS
			Flag line stride in WORD.
			The stride length is the distance from the start of one line to the start of
			the next line.

5.4.4.11. DI Current Frame Address 0 Register

Offset: 0	Offset: 0x040		Register Name: DI_CUR_FRAME_ADDR0_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	ADDR
			Start address of first plane in BYTE.

Note: When input format is tile-based type, frame start address must be a
tile start address.

5.4.4.12. DI Current Frame Address 1 Register

Offset: 0	Offset: 0x044		Register Name: DI_CUR_FRAME_ADDR1_REG
Bit	R/W	Default/Hex	Description
31:0	R/W 0x0		ADDR
			Start address of second plane in BYTE.
			Note: When input format is tile-based type, frame start address must be a
			tile start address.

5.4.4.13. DI Pre-frame Address 0 Register

Offset: 0	Offset: 0x050		Register Name: DI_PREFRAME_ADDRO_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	ADDR
			Start address of first plane in BYTE.
			Note: When input format is tile-based type, frame start address must be a
			tile start address.

5.4.4.14. DI Pre-frame Address 1 Register

Offset: 0	Offset: 0x054		Register Name: DI_PREFRAME_ADDR1_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	ADDR
			Start address of second plane in BYTE.
			Note: When input format is tile-based type, frame start address must be a
			tile start address.

5.4.4.15. DI Output Frame Address 0 Register

Offset	Offset: 0x060			Register Name: DI_OUTPUT_FRAME_ADDR0_REG
Bit	2	R/W	Default/Hex	Description
31:0		R/W	0x0	ADDR
				Start address of first plane in BYTE.
				Note: Must word-aligned.

5.4.4.16. DI Output Frame Address 1 Register

Offset: 0	Offset: 0x064		Register Name: DI_OUTPUT_FRAME_ADDR1_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0x0	ADDR
			Start address of second plane in BYTE.
			Note: Must word-aligned.

5.4.4.17. DI Flag Address Register

Offset: 0x070			Register Name: DI_FLAG_ADDR_REG
Bit	R/W Default/Hex		Description
31:0	R/W	0x0	ADDR

	Start address in BYTE.
--	------------------------

5.4.4.18. DI Parameters Register

Offset: 0x080			Register Name: DI_PARA_REG
Bit	R/W	Default/Hex	Description
31:24	R/W	0x5	CHROMA_DIFF_TH
23:16	R/W	0xa	SPATIAL_TH2
15:8	R/W	0x6	AVG_LUMA_SHIFTER
7:0	R/W	0x9	MIN_LUMA_TH

Chapter 6. Image Subsystem

This chapter describes the F1C200s image subsystem:

CSI

6.1. CSI

6.1.1. Overview

The CSI is a parallel CMOS sensor interface that can receive data input from CMOS Sensor or the NTSC/PAL image system.

6.1.2. Feature

The CSI module includes the following features:

- 8 bits input data
- Support CCIR656 protocol for NTSC and PAL
- 3 parallel data paths for image stream parsing
- Support Received data double buffer
- Parsing bayer data into planar R, G, B output to memory
- Parsing interlaced data into planar or MB Y, Cb, Cr output to memory
- Pass raw data direct to memory
- All data transmit timing can be adjusted by software
- Luminance statistical value

6.1.3. Block Diagram

6.1.4. CSI Data Port

FIFO	Bayer	YCbCr (YUV)	Interlaced	Pass-through
FIFO0	Red pixel data	Y pixel data	All field 1 pixel data	All pixel data
FIFO1	Green pixel data	Cb (U) pixel data	All field 2 pixel data	-
FIFO2	Blue pixel data	Cr (V) pixel data	-	-

6.1.5. Timing

Vref= positive, Href= positive

Vertical size setting

horizontal active clocks length = m

Horizontal size setting and pixel clock timing (Href= positive)

6.1.6. CSI Register List

Module Name	Base Address
CSI	0x01CB0000

Register Name	Offset	Description	
CSI_EN_REG	0x000	CSI Enable Register	
CSI_CFG_REG	0x004	CSI Configuration Register	
CSI_CAP_REG	0x008	CSI Capture Control Register	
CSI_SCALE_REG	0x00C	CSI Scale Register	
CSI_FIFO0_BUFA_REG	0x010	CSI FIFO 0 Output Buffer A Address Register	
CSI_ FIFO0_BUFB_REG	0x014	CSI FIFO 0 Output Buffer B Address Register	
CSI_ FIFO1_BUFA_REG	0x018	CSI FIFO 1 Output Buffer A Address Register	
CSI_FIFO1_BUFB_REG	0x01C	CSI FIFO 1 Output Buffer B Address Register	
CSI_ FIFO2_BUFA_REG	0x020	CSI FIFO 2 Output Buffer A Address Register	
CSI_ FIFO2_BUFB_REG	0x024	CSI FIFO 2 Output Buffer B Address Register	
CSI_BUF_CTL_REG	0x028	CSI Output Buffer Control Register	
CSI_BUF_STA_REG	0x02C	CSI Status Register	
CSI_INT_EN_REG	0x030	CSI Interrupt Enable Register	
CSI_INT_STA_REG	0x034	CSI Interrupt Status Register	
CSI_HSIZE_REG	0x040	CSI Horizontal Size Register	
CSI_VSIZE_REG	0x044	CSI Vertical Size Register	
CSI_BUF_LEN_REG	0x048	CSI Line Buffer Length Register	

6.1.7. CSI Register Description

6.1.7.1. CSI Enable Register

Offset: 0x000			Register Name: CSI_EN_REG
Bit	R/W	Default/Hex	Description
31:1	/	/	1
0	R/W	0	CSI_EN
			Enable
			0: Reset and disable the CSI module
			1: Enable the CSI module

6.1.7.2. CSI Configuration Register

Offset: 0x004			Register Name: CSI_CFG_REG
Bit	R/W	Default/Hex	Description
31:23	/	/	1
22:20	R/W	3	INPUT_FMT
			Input data format
			000: RAW stream

	Π		<u> </u>
			001: reserved
			010: CCIR656 (one channel)
			011: YUV422
			others: reserved
19:16	R/W	0	OUTPUT_FMT
			Output data format
			When the input format is set RAW stream
			0000: pass-throug
			When the input format is set CCIR656 interface
			0000: field planar YCbCr 422
			0001: field planar YCbCr 420
			0010: frame planar YCbCr 420
			0011: frame planar YCbCr 422
			0100: field planar YCbCr 422 UV combined
			0101: field planar YCbCr 420 UV combined
			0110: frame planar YCbCr 420 UV combined
			0111: frame planar YCbCr 422 UV combined
			1111: interlaced interleaved YCbCr422. In this mode, capturing interlaced
			input and output the interlaced fields from individual ports. Field 1 data
			will be written to FIFO0 output buffer and field 2 data will be wrote to
			FIFO1 output buffer.
			1000: field MB YCbCr 422
			1001: field MB YCbCr 420
			1010: frame MB YCbCr 420
			1011: frame MB YCbCr 422
		(When the input format is set YUV422
		:01	0000: planar YUV 422
			0001: planar YUV 420
		114.	0100: planar YUV 422 UV combined
			0101: planar YUV 420 UV combined
1			1000: MB YUV 422
			1000: MB YUV 422
15:12	/	/	/
11:10	R/W	0	
11.10	N/ VV	U	FIELD_SEL Field selection. Applies to CCIDEE6 interface only.
			Field selection. Applies to CCIR656 interface only. O0: start capturing with field 1.
			01: start capturing with field 2.
			10: start capturing with either field.
0.0	D /\4/	2	11: reserved
9:8	R/W	2	INPUT_SEQ
			Input data sequence, only valid for Bayer mode and YUV422 mode.
			00: YUYV
			01: YVYU
			10: UYVY
			11: VYUY

7:3	/	/	/	
2	R/W	1	VREF_POL	
			Vref polarity	
			0: negative	
			1: positive	
			This register is not apply to CCIR656 interface.	
1	R/W	0	HERF_POL	
			Href polarity	
			0: negative	
			1: positive	
			This register is not applied to CCIR656 interface.	
0	R/W	1	CLK_POL	
			Data clock type	
			0: active in falling edge	c7
			1: active in rising edge	: 27

6.1.7.3. CSI Capture Control Register

Offset: 0	x008		Register Name: CSI_CAP_REG
Bit	R/W	Default/Hex	Description
31:2	/	/	1
1	R/W	0	VCAP_ON
			Video capture control: Capture the video image data stream.
			0: Disable video capture
			If video capture is in progress, the CSI stops capturing image data at the
			end of the current frame, and all of the current frame data is wrote to
			output FIFO.
			1: Enable video capture
			The CSI starts capturing image data at the start of the next frame.
0	W	0	SCAP_ON
	1		Still capture control: Capture a single still image frame.
			0: Disable still capture.
· O ·			1: Enable still capture
			The CSI module starts capturing image data at the start of the next frame.
			The CSI module captures only one frame of image data. This bit is self
			clearing and always reads as a 0.

6.1.7.4. CSI Scale Register

Offset: 0)x00C		Register Name: CSI_SCALE_REG
Bit	R/W	Default/Hex	Description
31:28	/	/	/
27:24	R/W	0xF	VER_MASK
			Vertical (line) mask. Every 4-line is a mask group. Bit 24 mask the first line,
			bit 25 mask the second line, and so on. Mask bit = 0 means discarding this
			line data.
23:16	/	/	/

15:0	R/W	0xFFFF	HOR_MASK
			Horizontal (data stream) mask. Every 16-byte is a mask group. Bit 0 mask
			the first byte; bit 1 mask the second byte, and so on. Mask bit = 0 means
			discarding this byte from the data stream.

6.1.7.5. CSI FIFO 0 Output Buffer A Address Register

Offset: 0	x010		Register Name: CSI_FIFOO_BUFA_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	FIFO0_BUFA
			FIFO 0 output buffer-A address

6.1.7.6. CSI FIFO 0 Output Buffer B Address Register

Offset: 0	Offset: 0x014		Register Name: CSI_FIFOO_BUFB_REG	2
Bit	R/W	Default/Hex	Description	6
31:0	R/W	0	FIFOO_BUFB	
			FIFO 0 output buffer-B address	.151

6.1.7.7. CSI FIFO 1 Output Buffer A Address Register

Offset: 0x018			Register Name: CSI_FIFO1_BUFA_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	FIFO1_BUFA
			FIFO 1 output buffer-A address

6.1.7.8. CSI FIFO 1 Output Buffer B Address Register

Offset: 0	x01C		Register Name: CSI_FIFO1_BUFB_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	FIFO1_BUFB
		$I_{I_{A}}$.	FIFO 1 output buffer-B address

6.1.7.9. CSI FIFO 2 Output Buffer A Address Register

	Offset: 0x020			Register Name: CSI_FIFO2_BUFA_REG
	Bit	R/W	Default/Hex	Description
6	31:0	R/W	0	FIFO2_BUFA
				FIFO 2 output buffer-A address

6.1.7.10. CSI FIFO 2 Output Buffer B Address Register

Offset: 0x024			Register Name: CSI_FIFO2_BUFB_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	FIFO2_BUFB
			FIFO 2 output buffer-B address

6.1.7.11. CSI Output Buffer Control Register

Offset: 0x028			Register Name: CSI_BUF_CTRL_REG
Bit	Bit R/W Default/Hex		Description
31:3	/	/	/

2	R/W	0	DBN
			Buffer selected at next storing for CSI
			0: Next buffer selection is buffer-A
			1: Next buffer selection is buffer-B
1	R	0	DBS
			output buffer selected status
			0: Selected output buffer-A
			1: Selected output buffer-B
0	R/W	0	DBE
			Double buffer mode enable
			0: disable
			1: enable
			If the double buffer mode is disabled, the buffer-A will be always selected
			by CSI module.

6.1.7.12. CSI Status Register

Offset: 0	x02C		Register Name: CSI_BUF_STA_REG
Bit	R/W	Default/Hex	Description
31:8	R	0	LUM_STATIS
			luminance statistical value
			When frame done interrupt flag come, value is ready and will last until next
			frame done.
			For raw data, value = (G>>1+R+G)>>8
			For yuv422, value = Y>>8
7:2	/	1	
1	R	0	VCAP_STA
		MIII.	Video capture in progress
			Indicates the CSI is capturing video image data (multiple frames). The bit is
			set at the start of the first frame after enabling video capture. When
			software disables video capture, it clears itself after the last pixel of the
			current frame is captured.
0	R	0	SCAP_STA
			Still capture in progress
			Indicates the CSI is capturing still image data (single frame). The bit is set at
			the start of the first frame after enabling still frame capture. It clears itself
			after the last pixel of the first frame is captured.
			For CCIR656 interface, if the output format is frame planar YCbCr 420
			mode, the frame end means the field2 end, the other frame end means
			filed end.

6.1.7.13. CSI Interrupt Enable Register

Offset: 0x030			Register Name: CSI_INT_EN_REG
Bit	R/W	Default/Hex	Description
31:08	/	/	/
7	R/W	0	VS_INT_EN

			vsync flag
			The bit is set when vsync come. And at this time load the buffer address for
			the coming frame. So after this irg come, change the buffer address could
			only effect next frame
6	R/W	0	HB_OF_INT_EN
			Hblank FIFO overflow
			The bit is set when 3 FIFOs still overflow after the hblank.
5	/	/	/
4	R/W	0	FIFO2_OF_INT_EN
			FIFO 2 overflow
			The bit is set when the FIFO 2 become overflow.
3	R/W	0	FIFO1_OF_INT_EN
			FIFO 1 overflow
			The bit is set when the FIFO 1 become overflow.
2	R/W	0	FIFOO_OF_INT_EN
			FIFO 0 overflow
			The bit is set when the FIFO 0 become overflow.
1	R/W	0	FD_INT_EN
			Frame done
			Indicates the CSI has finished capturing an image frame. Applies to video
			capture mode. The bit is set after each completed frame capturing data is
			written to buffer as long as video capture remains enabled.
0	R/W	0	CD_INT_EN
			Capture done
			Indicates the CSI has completed capturing the image data.
		• ~ \	For still capture, the bit is set when one frame data has been wrote to
		. 11111	buffer.
		M	For video capture, the bit is set when the last frame has been written to
		12	buffer after video capture has been disabled.
	W,		For CCIR656 interface, if the output format is frame planar YCbCr 420
			mode, the frame end means the field2 end, the other frame end means
			field end.

6.1.7.14. CSI Interrupt Status Register

Offset: 0x034			Register Name: CSI_INT_STA_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	/
7	R/W	0	VS_PD
			vsync flag
6	R/W	0	HB_OF_PD
			Hblank FIFO overflow
5	/	/	/
4	R/W	0	FIFO2_OF_PD
			FIFO 2 overflow
3	R/W	0	FIFO1_OF_PD

			FIFO 1 overflow	
2	R/W	0	FIFOO_OF_PD	
			FIFO 0 overflow	
1	R/W	0	FD_PD	
			Frame done	
0	R/W	0	CD_PD	
			Capture done	

6.1.7.15. CSI Horizontal Size Register

Offset: 0	0x040		Register Name: CSI_HSIZE_REG	
Bit	R/W	Default/Hex	Description	
31:29	/	/	/	
28:16	R/W	0x500	HOR_LEN	
			Horizontal pixel clock length. Valid pixel clocks of a line.	
15:13	/	/	1	
12:0	R/W	0	HOR_START	
			Horizontal pixel clock start. Pixel data is valid from this clock.	

6.1.7.16. CSI Vertical Size Register

Offset: 0x044			Register Name: CSI_VSIZE_REG	
Bit	R/W	Default/Hex	Description	
31:29	/	/		
28:16	R/W	0x1E0	VER_LEN	
			Vertical line length. Valid line number of a frame.	
15:13	/	1		
12:0	R/W	0 VER_START		
			Vertical line start. Data is valid from this line.	

6.1.7.17. CSI Buffer Length Register

Offset: 0x048			Register Name: CSI_BUF_LEN_REG
Bit	R/W	Default/Hex	Description
31:13	/	/	/
12:0	R/W	0x280	BUF_LEN
			Buffer length of a line. Unit is byte. It is the max of the 3 FIFOs.

Chapter 7. Interfaces

This chapter describes the F1C200s interfaces, including:

- SD/MMC Interface
- TWI
- SPI
- **UART**

- For Allwinner Tech Enthusiasts

7.1. SD/MMC Interface

7.1.1. Overview

The SD/MMC controller can be configured either as a Secure Digital Multimedia Card controller, which simultaneously supports Secure Digital memory (SD Memory), UHS-1 Card, Secure Digital I/O (SDIO), Multimedia Cards (MMC), eMMC Card.

7.1.2. Feature

The SD/MMC controller includes the following features:

- Support secure digital memory protocol commands (up to SD2.0)
- Support secure digital I/O protocol commands (up to SDIO2.0)
- Support multimedia card protocol commands (up to eMMC4.41)
- ech Enthusiasts Support one SD (Verson1.0 to 2.0) or MMC (version 3.3 to eMMC4.41)
- Support hardware CRC generation and error detection
- Support host pull-up control
- Support SDIO interrupts in 1-bit and 4-bit modes
- Support SDIO suspend and resume operation
- Support SDIO read wait
- Support block size of 1 to 65535 bytes
- Support descriptor-based internal DMA controller
- Internal 128 bytes FIFO for data transfer
- Support 3.3V IO pad

7.1.3. SD/MMC Timing

Please refer to relative specifications:

- Physical Layer Specification Ver2.00 Final
- SDIO Specification Ver2.00
- Multimedia Cards (MMC version 4.2)
- JEDEC Standard JESD84-44, EMBEDDED MULTI-MEDIA CARD (eMMC), ELECTRICAL STANDARD

7.1.4. SD/MMC Pin List

Port Name	Width	Direction	Description
SD_CCLK	1	OUT	Clock output for SD/SDIO/MMC card
SD_CCMD	1	IN/OUT	CMD line
SD_CDATA	4	IN/OUT	Data line

SD/MMC Pin Diagram

7.1.5. SD/MMC DMA Controller Description

SD2.0 controller has an internal DMA controller (IDMAC) to transfer data between host memory and SDMMC port. With a descriptor, IDMAC can efficiently move data from source to destination by automatically loading next DMA transfer arguments, which need less CPU intervention. Before transfer data in IDMAC, host driver should construct a descriptor list, configure arguments of every DMA transfer, then launch the descriptor and start the DMA. IDMAC has an interrupt controller, when enabled, it can interrupt the HOST CPU in situations such as data transmission completed or some errors happened.

7.1.5.1. IDMAC Descriptor Structure

The IDMAC uses a descriptor with a chain structure, and each descriptor points to a unique buffer and the next descriptor.

This figure illustrates the internal formats of a descriptor. The descriptor addresses must be aligned to the bus width used for 32-bit buses. Each descriptor contains 16 bytes of control and status information.

DESO is a notation used to denote the [31:0] bits, DES1 to denote [63:32] bits, DES2 to denote [95:64]bits, and DES3 to denote [127:96]bits in a descriptor.

7.1.5.2. DESO Definition

Bits	Name	Descriptor
		DES_OWN_FLAG
		When set, this bit indicates that the descriptor is owned by the
		IDMAC. When this bit is reset, it indicates that the descriptor is
31	HOLD	owned by the host. This bit is cleared when transfer is over.
		ERR_FLAG
30	ERROR	When some error happened in transfer, this bit will be set.
29:5	1	/
	7 / / / /	CHAIM_MOD
		When set, this bit indicates that the second address in descriptor is
4	Chain Flag	the next descriptor address. Must be set 1.
, O '		FIRST_FLAG
		When set, this bit indicates that this descriptor contains the first
3	First DES Flag	buffer of data. Must be set to 1 in first DES.
		LAST_FLAG
		When set, this bit indicates that the buffers pointed to by this
2	Last DES Flag	descriptor are the last data buffer
		CUR_TXRX_OVER_INT_DIS
		When set, this bit will prevent the setting of the TX/RX interrupt
		bit of the IDMAC status register for data that ends in the buffer
1	Disable Interrupt on completion	pointed to by this descriptor
0		

7.1.5.3. DES1 Definition

Bits Name	Descriptor
-----------	------------

31:13	/	/
		BUFF_SIZE
		These bits indicate the data buffer byte size, which must be a
		multiple of 4 bytes. If this filed is 0, the DMA ignores this buffer
12:0	Buffer size	and proceeds to the next descriptor.

7.1.5.4. DES2 Definition

Bits	Name	Descriptor
		BUFF_ADDR
		these bits indicate the physical address of data buffer. The IDMAC
31:0	Buffer address pointer	ignores DES2[1:0], corresponding to the bus width of 32.

7.1.5.5. DES3 Definition

Bits	Name	Descriptor
		NEXT_DESP_ADDR
		These bits indicate the pointer to the physical memory where the
31:0	Next descriptor address	next descriptor is present.

7.1.6. SD/MMC Register List

Module Name	Base Address	
SDC0	0x01C0F000	100
SDC1	0x01C10000	

Register Name	Offset	Description
SD_GCTL_REG	0x000	SD Control Register
SD_CKCR_REG	0x004	SD Clock Control Register
SD_TMOR_REG	0x008	SD Time Out Register
SD_BWDR_REG	0x00C	SD Bus Width Register
SD_BKSR_REG	0x010	SD Block size Register
SD_BYCR_REG	0x014	SD Byte Count Register
SD_CMDR_REG	0x018	SD Command Register
SD_CAGR_REG	0x01C	SD Command Argument Register
SD_RESPO_REG	0x020	SD Response Register 0
SD_RESP1_REG	0x024	SD Response Register 1
SD_RESP2_REG	0x028	SD Response Register 2
SD_RESP3_REG	0x02C	SD Response Register 3
SD_IMKR_REG	0x030	SD Interrupt Mask Register
SD_MISR_REG	0x034	SD Masked Interrupt Status Register
SD_RISR_REG	0x038	SD Raw Interrupt Status Register
SD_STAR_REG	0x03C	SD Status Register
SD_FWLR_REG	0x040	SD FIFO Water Level Register
SD_FUNS_REG	0x044	SD FIFO Function Select Register
SD_CBCR_REG	0x048	SD Transferred CIU Card Byte Count Register
F1C200s User Manual (Pavision 1.2)	0 11.0004	Allusianer Technology Co. Ltd. All Dights Decembed. Dogs 250

SD_BBCR_REG	0x04C	SD Transferred Host To BIU-FIFO Byte Count Register
SD_DBGC_REG	0x050	SD Current Debug Control Address Register
SD_A12A_REG	0x058	SD Auto Command 12 Argument Register
SD_HWRST_REG	0x078	SD Hardware Reset Register
SD_DMAC_REG	0x080	SD BUS Mode Control Register
SD_DLBA_REG	0x084	SD Descriptor List Base Address Register
SD_IDST_REG	0x088	SD DMAC Status Register
SD_IDIE_REG	0x08C	SD DMAC Interrupt Enable Register
SD_CHDA_REG	0x090	SD Current Host Descriptor Address Register
SD_CBDA_REG	0x094	SD Current Buffer Descriptor Address Register
CARD_THLDC_REG	0x100	Card Threshold Control Register
EMMC_DSBD_REG	0x10C	EMMC4.5 DDR Start Bit Detection Control Register
SD_FIFO_REG	0x200	SD FIFO Register

7.1.7. SD/MMC Register Description

7.1.7.1. SD Global Control Register

SD_FIFO_REG 0x200		0x200	SD FIFO Register	
7.1.7. SD/MMC Register Description 7.1.7.1. SD Global Control Register				
Offset: 0		ontion Regist		ame: SD_CTRL_REG
Bit	R/W	Default/Hex		
31	R/W	0	FIFO_AC_N FIFO Acces 1-AHB bus 0-DMA bus	MOD s Mode
30:11	/	/		
10	R/W	0	DDR_MOD DDR Mode 0 – SDR mo	Select ode
9	/	/	/	
8	R/W	1	CD_DBC_E Card Detec 0 - disable 1 – enable	t (Data[3] status) de-bounce Enable de-bounce
7:6	/	/	/	
5	R/W	0		al Enable DMA to transfer data, using AHB bus DMA to transfer data
4	R/W	0	INT_ENB Global Inte 0 – Disable 1 – Enable	·
3	/	/	/	
2	R/W	0	DMA_RST	

			DMA Reset
			FIFO_RST
			FIFO Reset
1	R/W	0	0 – No change
			1 – Reset FIFO
			This bit is auto-cleared after completion of reset operation.
			SOFT_RST
			Software Reset
0	R/W	0	0 – No change
			1 – Reset SD/MMC controller
			This bit is auto-cleared after completion of reset operation.

7.1.7.2. SD Clock Control Register

	- C.OC.	oner or redister	
Offset: (0x004		Register Name: SD_CLKDIV_REG
Bit	R/W	Default/Hex	Description
31:18	/	/	1
			CCLK_CTRL
17	R/W	0	Card Clock Output Control
17	K) VV	U	0 – Card clock always on
			1 – Turn off card clock when FSM in IDLE state
			CCLK_ENB
16	R/W	0	Card Clock Enable
10	I N/ VV		0 – Card Clock off
			1 – Card Clock on
15:8	/	1	
		• •	CCLK_DIV
7:0	R/W	0	Card clock divider
		$I \setminus N$	n – Source clock is divided by 2*n.(n=0~255)

7.1.7.3. SD Timeout Register

Offset: 0	x008		Register Name: SD_TMOUT_REG
Bit	R/W	Default/Hex	Description
21.0	24.0	O. ttttt	DTO_LMT
31:8 R/W	0xffffff	Data Timeout Limit	
7.0	7.0 0/14/	040	RTO_LMT
7:0 R/W	0x40	Response Timeout Limit	

7.1.7.4. SD Bus Width Register

Offset: 0	x00C		Register Name: SD_CTYPE_REG
Bit	R/W	Default/Hex	Description
31:2	/	/	/
		0	CARD_WID
1:0	R/W		Card width
1.0 Ky	N/ VV		2'b00 – 1-bit width
			2'b01 – 4-bit width

2'b1x – 8-bit width	
---------------------	--

7.1.7.5. SD Block Size Register

Offset: 0	x010		Register Name: SD_BLKSIZ_REG
Bit	R/W	Default/Hex	Description
31:16	/	/	/
15.0	D/M 0200	0×200	BLK_SZ
15:0 R/W	0x200	Block size	

7.1.7.6. SD Byte Count Register

Offset: 0	x014		Register Name: SD_BYTCNT_REG
Bit	R/W	Default/Hex	Description
	31:0 R/W 0x200	0x200	BYTE_CNT
21:0			Byte counter
31.0			Number of bytes to be transferred; should be integer multiple of Block Size
		for block transfers.	

7.1.7.7. SD Command Register

Offset: 0	Offset: 0x018		Register Name: SD_CMD_REG
Bit	R/W	Default/Hex	Description
			CMD_LOAD
			Start Command.
			This bit is auto cleared when current command is sent. If there is no any
31	R/W	0	response error happened, a command complete interrupt bit (CMD_OVER)
			will be set in interrupt register. You should not write any other command
			before this bit is cleared, or a command busy interrupt bit (CMD_BUSY) will
			be set in interrupt register.
30	/		/
			Use Hold Register
29	R/W	0	0 - CMD and DATA sent to card bypassing HOLD Register
			1 - CMD and DATA sent to card through the HOLD Register
			VOL_SW
28	R/W	0	Voltage Switch
20	IX/ VV	O	0 – normal command
			1 – Voltage switch command, set for CMD11 only
			BOOT_ABT
27	R/W	0	Boot Abort
			Setting this bit will terminate the boot operation.
			EXP_BOOT_ACK
26	R/W	0	Expect Boot Acknowledge.
20	IV, VV	O	When Software sets this bit along in mandatory boot operation, controller
			expects a boot acknowledge start pattern of 0-1-0 from the selected card.
			BOOT_MOD
25:24	R/W	0	Boot Mode
			2'b00 – normal command

			2'b01 - Mandatory Boot operation
			2'b10 - Alternate Boot operation
			2'b11 - reserved
23	R/W	0	/
22	R/W	0	
	,		PRG_CLK
			Change Clock
21	R/W	0	0 – Normal command
	,		1 – Change Card Clock; when this bit is set, controller will change clock
			domain and clock output. No command will be sent.
20:16	-	-	
			SEND_INIT_SEQ
	- 6	_	Send Initialization
15	R/W	0	0 – normal command sending
			1 – Send initialization sequence before sending this command.
			STOP_ABT_CMD
			Stop Abort Command
14	R/W	0	0 – normal command sending
			1 – send Stop or abort command to stop current data transfer in
			progress.(CMD12, CMD52 for writing "I/O Abort" in SDIO CCCR)
			WAIT_PRE_OVER
12	D // 4/		Wait Data Transfer Over
13	R/W	0	0 – Send command at once, do not care of data transferring
			1 – Wait for data transfer completion before sending current command
			STOP_CMD_FLAG
12	R/W	0	Send Stop CMD Automatically (CMD12)
12	N/ VV	0	0 – Do not send stop command at end of data transfer
			1 – Send stop command automatically at end of data transfer
			TRANS_MODE
11	R/W	0	Transfer Mode
	I I V VV	O	0 – Block data transfer command
			1 – Stream data transfer command
			TRANS_DIR
10	R/W	0	Transfer Direction
	.,, .,		0 – Read operation
			1 – Write operation
			DATA_TRANS
9	R/W	0	Data Transfer
	.,		0 – without data transfer
			1 – with data transfer
			CHK_RESP_CRC
8	R/W	0	Check Response CRC
	•		0 – Do not check response CRC
			1 – Check response CRC
7	R/W	0	LONG_RESP

			Response Type
			0 –Short Response (48 bits)
			1 –Long Response (136 bits)
	6 R/W	0	RESP_RCV
6			Response Receive
0			0 – Command without Response
			1 – Command with Response
		R/W 0	CMD_IDX
5:0	R/W		CMD Index
			Command index value

7.1.7.8. SD Command Argument Register

Offset: 0x01C			Register Name: SD_CMDARG_REG	V
Bit	R/W	Default/Hex	Description	
31:0	R/W	0	CMD_ARG	323
31.0	IN/ VV	U	Command argument	1510

7.1.7.9. SD Response Register 0

Offset: 0x020			Register Name: SD_RESP_REG0
Bit	R/W	Default/Hex	Description
31:0	R	0	CMD_RESP0 response 0 Bit[31:0] of response

7.1.7.10. SD Response Register 1

Offset: 0x024			Register Name: SD_RESP_REG1
Bit	R/W	Default/Hex	Description
		1111	CMD_RESP1
31:0	R	0	response 1
~			Bit[63:31] of response

7.1.7.11. SD Response Register 2

	Offset: 0x028			Register Name: SD_RESP_REG2
	Bit	R/W	Default/Hex	Description
				CMD_RESP2
:	31:0	R	0	response 2
				Bit[95:64] of response

7.1.7.12. SD Response Register 3

Offset: 0x02C			Register Name: SD_RESP_REG3
Bit	R/W	Default/Hex	Description
			CMD_RESP3
31:0	R	0	response 3
			Bit[127:96] of response

7.1.7.13. SD Interrupt Mask Register

Offset:	0x030		Register Name: SD_INTMASK_REG
Bit	R/W	Default/Hex	Description
			INT_MASK
			0 – interrupt masked
			1 – interrupt enabled
			Bit field defined as following:
			bit 31– card removed
			bit 30 – card inserted
			bit 17~29 - reserved
			bit 16 – SDIO interrupt
		0	bit 15 – Data End-bit error
			bit 14 – Auto Stop Command done
			bit 13 – Data Start Error
31:0	R/W		bit 12 – Command Busy and illegal write
31.0	11,7 VV		bit 11 – FIFO under run/overflow
			bit 10 – Data starvation timeout /V1.8 Switch Done
			bit 9 – Data timeout/Boot data start
			bit 8 – Response timeout/Boot ACK received
			bit 7 – Data CRC error
			bit 6 – Response CRC error
			bit 5 – Data Receive Request
			bit 4 –Data Transmit Request
			bit 3 – Data Transfer Complete
			bit 2 – Command Complete
			bit 1 – Response Error (no response or response CRC error)
			bit 0 – Reserved

7.1.7.14. SD Masked Interrupt Status Register

Offset: 0	x034		Register Name: SD_MINTSTS_REG
Bit	R/W	Default/Hex	Description
· U			MSKD_ISTA
			Interrupt status. Enabled only if corresponding bit in mask register is set.
			Bit field defined as following:
			bit 31 – card removed
		0	bit 30 – card inserted
			bit 17~29 - reserved
31:0	R		bit 16 – SDIO interrupt
31.0	, r		bit 15 – Data End-bit error
			bit 14 – Auto command done
			bit 13 – Data Start Error
			bit 12 – Command Busy and illegal write
			bit 11 – FIFO under run/overflow
			bit 10 – Data starvation timeout (HTO)/V1.8 Switch Done
			bit 9 – Data timeout/Boot data start

	bit 8 – Response timeout/Boot ACK received
	bit 7 – Data CRC error
	bit 6 – Response CRC error
	bit 5 – Data Receive Request
	bit 4 –Data Transmit Request
	bit 3 – Data Transfer Complete
	bit 2 – Command Complete
	bit 1 – Response Error (no response or response CRC error)
	bit 0 – Reserved

7.1.7.15. SD Raw Interrupt Status Register

Offset: 0	Offset: 0x038		Register Name: SD_RINTSTS_REG
Bit	R/W	Default/Hex	Description
			RAW_ISTA
			Raw Interrupt Status.
			This is write-1-to-clear bits.
			Bit field defined as following:
			bit 31 – card removed
			bit 30 – card inserted
			bit 17~29 - reserved
			bit 16 – SDIO interrupt
			bit 15 – Data End-bit error
			bit 14 – Auto command done
			bit 13 – Data Start Error
31:0	R/W	0	bit 12 – Command Busy and illegal write
31.0	11,7 VV		bit 11 – FIFO under run/overflow
			bit 10 – Data starvation timeout (HTO)/V1.8 Switch Done
		VVV	bit 9 – Data timeout/Boot data start
			bit 8 – Response timeout/Boot ACK received
			bit 7 – Data CRC error
			bit 6 – Response CRC error
.0,			bit 5 – Data Receive Request
			bit 4 –Data Transmit Request
			bit 3 – Data Transfer Complete
			bit 2 – Command Complete
			bit 1 – Response Error (no response or response CRC error)
			bit 0 – Reserved

7.1.7.16. SD Status Register

Offset: 0x3C			Register Name: SD_STATUS_REG
Bit	R/W	Default/Hex	Description
			DMA_REQ
31	R	0	dma_req
			DMA request signal state
30:22	/	/	/

			FIFO_LEVEL
21:17	R	0	FIFO Level
			Number of filled locations in FIFO
			RESP_IDX
16:11	R	0	Response Index
			Index of previous response, including any auto-stop sent by controller
			FSM_BUSY
10	R	0	Data FSM Busy
			Data transmit or receive state-machine is busy
			CARD_BUSY
			Card data busy
9	R	0	Inverted version of DATA[0]
			0 – card data not busy
			1 – card data busy
			CARD_PRESENT
			Data[3] status
8	R	0	level of DATA[3]; checks whether card is present
			0 – card not present
			1 – card present
			FSM_STA
			Command FSM states:
			0 – Idle
			1 – Send init sequence
			2 – Tx cmd start bit
			3 – Tx cmd tx bit
		(4 – Tx cmd index + arg
			5 – Tx cmd crc7
7.4			6 – Tx cmd end bit
7:4	R	0	7 – Rx resp start bit
			8 – Rx resp IRQ response
			9 – Rx resp tx bit
\cdot \bigcirc \cdot			10 – Rx resp cmd idx
			11 – Rx resp data
			12 – Rx resp crc7
			13 – Rx resp end bit
			14 – Cmd path wait NCC
			15 – Wait; CMD-to-response turnaround
			FIFO_FULL
3	R	0	FIFO full
5			1 – FIFO full
			0 – FIFO not full
			FIFO_EMPTY
2	R	1	FIFO Empty
۷	'`	_	1 - FIFO Empty
			0 - FIFO not Empty

1	R	1	FIFO_TX_LEVEL FIFO TX Water Level flag 0 – FIFO didn't reach transmit trigger level 1 - FIFO reached transmit trigger level
0	R	0	FIFO_RX_LEVEL FIFO TX Water Level flag 0 - FIFO didn't reach receive trigger level 1 - FIFO reached receive trigger level

7.1.7.17. SD FIFO Water Level Register

Offset: 0	x040		Register Name: SD_FIFOTH_REG
Bit	R/W	Default/Hex	Description
31	/	/	
30:28	R/W	0	BSIZE_OF_TRANS Burst size of multiple transaction 000 – 1 transfers 001 – 4 010 – 8 011 – 16 100 – 32 101 – 64 110 – 128 111 – 256 Should be programmed same as DMA controller multiple transaction size. The units for transfers are the DWORD. A single transfer would be signaled based on this value. Value should be sub-multiple of (RX_TL + 1) and (FIFO_DEPTH - TX_TL) Recommended:
		// / /	MSize = 8, TX_TL = 16, RX_TL = 15
27:21	R	0	/
20:16	R/W	ОхF	RX_TL Rx Trigger Level 0x0~0x1e - RX Trigger Level is 0~30 0x1f - reserved FIFO threshold when FIFO request host to receive data from FIFO. When FIFO data level is greater than this value, DMA is request is raised if DMA enabled, or RX interrupt bit is set if interrupt enabled. At the end of packet, if the last transfer is less than this level, the value is ignored and relative request will be raised as usual. Recommended: 15 (means greater than 15)
15:5	R	0	/
4:0	R/W	0	TX_TL TX Trigger Level $0x1^{\circ}0x1f - TX$ Trigger Level is $1^{\circ}31$ $0x0 - no$ trigger

FIFO threshold when FIFO requests host to transmit data to FIFO. When
FIFO data level is less than or equal to this value, DMA TX request is raised
if DMA enabled, or TX request interrupt bit is set if interrupt enabled. At
the end of packet, if the last transfer is less than this level, the value is
ignored and relative request will be raised as usual.
Recommended: 16 (means less than or equal to 16)

7.1.7.18. SD Function Select Register

Offset: (0x044		Register Name: SD_CTRL_REG
Bit	R/W	Default/Hex	Description
			CEATA_EN CEATA Support ON/OFF
31:16	R/W	0	Oxceaa – CEATA support on. All hidden CEATA relative bits are accessible normally and these 16 bits return value of 0x1 when be read.
			Other value – CEATA support off. All hidden CEATA relative bits cannot be access and these 16 bits return value of 0 when be read.
15:11	/	/	
10	R/W	0	
9	R/W	0	
8	R/W	0	
7:3	/	/	
			ABT_RDATA
2	R/W	0	Abort Read Data 0 – Ignored 1 –After suspend command is issued during read-transfer, software polls card to find when suspend happened. Once suspend occurs, software sets
		INII.	bit to reset data state-machine, which is waiting for next block of data. Used in SDIO card suspends sequence. This bit is auto-cleared once controller reset to idle state.
•			READ_WAIT
	R/W		Read Wait
	K/VV	0	0 – Clear SDIO read wait
			1 – Assert SDIO read wait
			HOST_SEND_MMC_IRQRESQ
			Host Send MMC IRQ Response
			0 – Ignored
0	R/W	0	1 – Send auto IRQ response
U	11/ VV		When host is waiting MMC card interrupt response, setting this bit will
			make controller cancel wait state and return to idle state, at which time,
			controller will receive IRQ response sent by itself.
			This bit is auto-cleared after response is sent.

7.1.7.19. SD Transferred CIU Card Byte Count Register

Offset: 0	Offset: 0x048		Register Name: SD_TCBCNT_REG		
Bit	R/W	Default/Hex	Description		

31:0	R	0	TRANS_BYTE_CNT_TO_CARD Number of bytes transferred by CIU unit to card. The register should be accessed in full to avoid read-coherency problems
			and read only after data transfer completes.

7.1.7.20. SD Transferred Host to BIU-FIFO Byte Count Register

Offset: 0x04C			Register Name: SD_TBBCNT_REG
Bit	R/W	Default/Hex	Description
31:0			TRANS_BYTE_CNT_ON_BUS
	D		Number of bytes transferred by Host/DMA memory and BIU FIFO.
	R	0	The register should be accessed in full to avoid read-coherency problems
			and read only after data transfer completes.

7.1.7.21. SD Debug Control Register

Offset: 0	0x050		Register Name: SD_FIFO_REG
Bit	R/W	Default/Hex	Description
31:12	-	-	
			DBG_ON
			0xdeb – Debug on. ALL hidden register bits will be accessible and these 12
11:0	R/W	0	bits return 0x1 when be read.
			Other values – Debug off. All hidden register bits will not be accessed and
			these 12 bits return 0 when be read.

7.1.7.22. SD Auto Command 12 Argument Register

Offset: 0	x058		Register Name: SD_A12A_REG
Bit	R/W	Default/Hex	Description
31:16	/	1	/
		$///_{A}$.	SD_A12A.
0:15	R/W	0xffff	SD_A12A set the argument of command 12 automatically send by
			controller

7.1.7.23. SD Hardware Reset Register

Offset: 0x078			Register Name: SD_FIFO_REG
Bit	R/W	Default/Hex	Description
31:1	/	/	/
			HW_RESET.
			1 – Active mode
0	R/W	1	0 – Reset
			These bits cause the cards to enter pre-idle state, which requires them to
			be re-initialized.

7.1.7.24. SD DMAC Control Register

Offset: 0	Offset: 0x080		Register Name: SD_BUS_MODE_REG
Bit	R/W	Default/Hex	Description
31	W	0	DES_LOAD_CTRL

			When DMAC fetches a descriptor, if the valid bit of a descriptor is not set,
			DMAC FSM will go to the suspend state. Setting this bit will make DMAC
			re-fetch descriptor again and do the transfer normally.
			PRG_BURST_LEN
			Programmable Burst Length.
			These bits indicate the maximum number of beats to be performed in one
			IDMAC transaction. The IDMAC will always attempt to burst as specified in
			PBL each time it starts a Burst transfer on the host bus. The permissible
			values are 1, 4, 8, 16, 32, 64, 128 and 256. This value is the mirror of MSIZE
			of FIFOTH register. In order to change this value, write the required value to
			FIFOTH register. This is an encode value as follows.
	_		000 – 1 transfers
10:8	R	0	001 – 4 transfers
			010 – 8 transfers
			011 – 16 transfers
			100 – 32 transfers
			011 – 16 transfers 100 – 32 transfers 101 – 64 transfers
			110 – 128 transfers
			111 – 256 transfers
			Transfer unit is either 16, 32, or 64 bits, based on HDATA_WIDTH. PBL is a
			read-only value.
			IDMAC_ENB
7	R/W	0	IDMAC Enable.
			When set, the IDMAC is enabled. DE is read/write.
			DES_SKIP_LEN
			Descriptor Skip Length.
6:2	R/W	0	Specifies the number of Word to skip between two unchained descriptors.
			This is applicable only for dual buffer structure.
			Default value is set to 4 DWORD.
			FIX_BUST_CTRL
, O '			Fixed Burst.
1	D ///		Controls whether the AHB Master interface performs fixed burst transfers
1	R/W	0	or not. When set, the AHB will use only SINGLE, INCR4, INCR8 during start
			of normal burst transfers. When reset, the AHB will use SINGLE and INCR
			burst transfer operations.
			IDMAC_RST
	D //4/		DMA Reset.
0	R/W	0	When set, the DMA Controller resets all its internal registers. SWR is
			read/write. It is automatically cleared after 1 clock cycle.

7.1.7.25. SD Descriptor List Base Address Register

Offset: 0x084			Register Name: SD_DLBA_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	DES_BASE_ADDR

		Start of Descriptor List.
Contain		Contains the base address of the First Descriptor. The LSB bits [1:0] are
		ignored and taken as all-zero by the IDMAC internally. Hence these LSB bits
		are read-only.

7.1.7.26. SD DMAC Status Register

		Status Register	
Offset: 0	Offset: 0x088		Register Name: SD_DLBA_REG
Bit	R/W	Default/Hex	Description
31:17	/	1	/
			DMAC_FSM_STA
			DMAC FSM present state.
			0 – DMA_IDLE
			1 – DMA_SUSPEND
			2 – DESC_RD
16:13	R	0	3 – DESC_CHK
10.15	N N	0	3 – DESC_CHK 4 – DMA_RD_REQ_WAIT 5 – DMA_RD_REQ_WAIT 6 – DMA_RD
			5 – DMA_WR_REQ_WAIT
			6 – DMA_RD
			7 – DMA_WR
			8 – DESC_CLOSE
			This bit is read-only.
			DMAC_ERR_STA
			Error Bits.
			Indicates the type of error that caused a Bus Error. Valid only with Fatal Bus
12:10	R	0	Error bit (IDSTS[2]) set. This field does not generate an interrupt.
			3'b001 – Host Abort received during transmission
			3'b010 – Host Abort received during reception
		$I \cdot M \cdot I$	Others: Reserved EB is read-only.
			ABN_INT_SUM
			Abnormal Interrupt Summary.
			Logical OR of the following:
· O .			IDSTS[2] – Fatal Bus Interrupt
9	R/W	0	IDSTS[4] – DU bit Interrupt
			IDSTS[5] – Card Error Summary Interrupt
			Only unmasked bits affect this bit.
			This is a sticky bit and must be cleared each time a corresponding bit that
			causes AIS to be set is cleared. Writing a 1 clears this bit.
			NOR_INT_SUM
			Normal Interrupt Summary.
			Logical OR of the following:
0	D ()A/	0	IDSTS[0] – Transmit Interrupt
8	R/W	0	IDSTS[1] – Receive Interrupt
			Only unmasked bits affect this bit.
			This is a sticky bit and must be cleared each time a corresponding bit that
			causes NIS to be set is cleared. Writing a 1 clears this bit.

7:6	/	/	/
			ERR_FLAG_SUM
			Card Error Summary.
			Indicates the status of the transaction to/from the card; also present in
			RINTSTS. Indicates the logical OR of the following bits:
			EBE – End Bit Error
5	R/W	0	RTO – Response Timeout/Boot Ack Timeout
5	K/VV	U	RCRC – Response CRC
			SBE – Start Bit Error
			DRTO – Data Read Timeout/BDS timeout
			DCRC – Data CRC for Receive
			RE – Response Error
			Writing a 1 clears this bit.
			DES_UNAVL_INT
4	R/W	0	Descriptor Unavailable Interrupt.
4	IN, VV		This bit is set when the descriptor is unavailable due to OWN bit = 0
			(DES0[31] =0). Writing a 1 clears this bit.
3	/	/	1
			FATAL_BERR_INT
2	R/W	0	Fatal Bus Error Interrupt.
2	IN, VV		Indicates that a Bus Error occurred (IDSTS[12:10]). When this bit is set, the
			DMA disables all its bus accesses. Writing a 1 clears this bit.
			RX_INT
1	R/W	0	Receive Interrupt.
1	IN, VV		Indicates the completion of data reception for a descriptor. Writing a 1
			clears this bit.
			TX_INT
0	R/W	0	Transmit Interrupt.
	INJ VV		Indicates that data transmission is finished for a descriptor. Writing a '1'
			clears this bit.

7.1.7.27. SD DMAC Interrupt Enable Register

Offset: 0x08C			Register Name: SD_IDIE_REG	
Bit	R/W	Default/Hex	Description	
31:10	/	/	/	
			ABN_INT_ENB	
			Abnormal Interrupt Summary Enable.	
	9 R/W 0		When set, an abnormal interrupt is enabled. This bit enables the following	
9			bits:	
			IDINTEN[2] – Fatal Bus Error Interrupt	
			IDINTEN[4] – DU Interrupt	
IDINTEN[5] – Card Error Summary In			IDINTEN[5] – Card Error Summary Interrupt	
	NOR_INT_ENB		NOR_INT_ENB	
8 R/W 0 Normal Interrupt Summary En		0	Normal Interrupt Summary Enable.	
			When set, a normal interrupt is enabled. When reset, a normal interrupt is	

			disabled. This bit enables the following bits:			
			IDINTEN[0] – Transmit Interrupt			
			IDINTEN[1] – Receive Interrupt			
7:6	/	/	/			
			ERR_SUM_INT_ENB			
5	R/W	0	Card Error summary Interrupt Enable.			
			When set, it enables the Card Interrupt summary.			
			DES_UNAVL_INT_ENB			
_	D /\A/		Descriptor Unavailable Interrupt.			
4	R/W	0	When set along with Abnormal Interrupt Summary Enable, the DU			
			interrupt is enabled.			
3	/	/	/			
			FERR_INT_ENB			
			Fatal Bus Error Enable.			
2	R/W	0	When set with Abnormal Interrupt Summary Enable, the Fatal Bus Error			
			Interrupt is enabled. When reset, Fatal Bus Error Enable Interrupt is			
			disabled.			
			RX_INT_ENB			
1	R/W	0	Receive Interrupt Enable.			
1	K/VV		When set with Normal Interrupt Summary Enable, Receive Interrupt is			
			enabled. When reset, Receive Interrupt is disabled.			
			TX_INT_ENB			
0	R/W		Transmit Interrupt Enable.			
0	K/ VV	0	When set with Normal Interrupt Summary Enable, Transmit Interrupt is			
			enabled. When reset, Transmit Interrupt is disabled.			

7.1.7.28. SD Current Host Descriptor Address Register

Offset: 0x090			Register Name: SD_CHDA_REG
Bit R/W Default/Hex		Default/Hex	Description
31:0	R	0	CUR_DES_ADDR
			Host Descriptor Address Pointer.
			Cleared on reset. Pointer updated by IDMAC during operation. This register
			points to the start address of the current descriptor read by the IDMAC.

7.1.7.29. SD Current Buffer Descriptor Address Register

Offset: 0x094			Register Name: SD_CBDA_REG
Bit	it R/W Default/Hex		Description
	R	0	CUR_BUFF_ADDR
21.0			Host Buffer Address Pointer.
31:0			Cleared on Reset. Pointer updated by IDMAC during operation. This register
			points to the current Data Buffer Address being accessed by the IDMAC.

7.1.7.30. Card Threshold Control Register

Offset: 0x100			Register Name: SD_THLD_CTLR_REG
Bit	R/W	Default/Hex	Description

31:28	/	/	/	
27.16	D // 4/	0	CARD_RD_THLD	
27:16	R/W	0	Card Read Threshold Size	
15:1	/	/	/	
	R/W	0	CARD_RD_THLD_ENB	
			Card Read Threshold Enable	
0			0: Card Read Threshold Disable	
U			1: Card Read Threshold Enable	
			Host controller initiates Read Transfer only if CARD_RD_THLD amount of	
			space is available in receive FIFO	

7.1.7.31. EMMC4.5 DDR Start Bit Detection Control Register

Offset:	Offset: 0x10C		Register Name: EMMC_DDR_SBIT_DET_REG
Bit	R/W	Default/Hex	Description
31:1	/	/	/
			HALF_START_BIT
		0	Control for start bit detection mechanism inside mstorage based on
			duration of start bit.
0	R/W		For eMMC 4.5, start bit can be:
0	K/W		0: Full cycle
			1: Less than one full cycle
			Set HALF_START_BIT=1 for eMMC 4.5 and above; set to 0 for SD
			applications.

7.1.7.32. SD FIFO Register

Offset: 0x200			Register Name: SD_FIFO_REG
Bit	R/W Default/Hex		Description
31:0	R/W	0	TX/RX_FIFO Data FIFO

Enthusiasts

7.2. TWI

7.2.1. Overview

This TWI Controller is designed to be used as an interface between CPU host and the serial TWI bus. It can supports all the standard TWI transfer, including Slave and Master. The communication to the TWI bus is carried out on a byte-wise basis using interrupt or polled handshaking. This TWI Controller can be operated in standard mode (100K bps) or fast-mode, supporting data rate up to 400K bps. Multiple Masters and 10-bit addressing Mode are supported for this specified application. General Call Addressing is also supported in Slave mode.

7.2.2. Feature

The TWI Controller includes the following features:

- Software-programmable for Slave or Master
- Support Repeated START signal
- Multi-master systems supported
- Allow 10-bit addressing with TWI bus
- Performs arbitration and clock synchronization
- Own address and General Call address detection
- Interrupt on address detection
- Support speeds up to 400Kbits/s ('fast mode')
- Allow operation from a wide range of input clock frequencies

7.2.3. Pin List

Port Name	Width	Direction	Description
TWI_SCL	1	IN/OUT	TWI Clock line
TWI_SDA	1	IN/OUT	TWI Serial Data line

7.2.4. Timing Diagram

Data transferred are always in a unit of 8-bit (byte), followed by an acknowledge bit. The number of bytes that can be transmitted per transfer is unrestricted. Data is transferred in serial with the MSB first. Between each byte of data transfer, a receiver device will hold the clock line SCL low to force the transmitter into a wait state while waiting the response from microprocessor.

Data transfer with acknowledge is obligatory. The clock line is driven by the master all the time, including the acknowledge-related clock cycle, except for the SCL holding between each byte. After sending each byte, the transmitter releases the SDA line to allow the receiver to pull down the SDA line and send an acknowledge signal (or leave it high to send a "not acknowledge") to the transmitter.

When a slave receiver doesn't acknowledge the slave address (unable to receive because of no resource available), the data line must be left high by the slave so that the master can then generate a STOP condition to abort the transfer. Slave receiver can also indicate not to want to send more data during a transfer by leave the acknowledge signal high. And the master should generate the STOP condition to abort the transfer.

Below diagram provides an illustration the relation of SDA signal line and SCL signal line on the TWI serial bus.

TWI Timing Diagram

7.2.5. TWI Controller Operation

There are four operation modes on the TWI bus which dictates the communications method. They are Master Transmit, Master Receive, Slave Transmit and Slave Receive. In general, CPU host controls TWI by writing commands and data to its registers. The TWI interrupts the CPU host for the attention each time a byte transfer is done or a START/STOP conditions is detected. The CPU host can also poll the status register for current status if the interrupt mechanism is not disabled by the CPU host.

When the CPU host wants to start a bus transfer, it initiates a bus START to enter the master mode by setting IM_STA bit in the 2WIRE_CNTR register to high (before it must be low). The TWI will assert INT line and INT_FLAG to indicate a completion for the START condition and each consequent byte transfer. At each interrupt, the micro-processor needs to check the 2WIRE_STAT register for current status. A transfer has to be concluded with STOP condition by setting M_STP bit high.

In Slave Mode, the TWI also constantly samples the bus and look for its own slave address during addressing cycles. Once a match is found, it is addressed and interrupts the CPU host with the corresponding status. Upon request, the CPU host should read the status, read/write 2WIRE_DATA data register, and set the 2WIRE_CNTR control register. After each byte transfer, a slave device always halt the operation of remote master by holding the next low pulse on SCL line until the microprocessor responds to the status of previous byte transfer or START condition.

7.2.6. TWI Controller Register List

Module Name	Base Address
TWI0	0x01C27000
TWI1	0x01C27400
TWI2	0x01C27800

Register Name	Offset	Description
TWI_ADDR_REG	0x00	TWI Slave Address
TWI_XADDR_REG	0x04	TWI Extended Slave Address Register
TWI_DATA_REG	0x08	TWI Data Byte Register
TWI_CNTR_REG	0x0C	TWI Control Register
TWI_STAT_REG	0x10	TWI Status Register
TWI_CCR_REG	0x14	TWI Clock Control Register
TWI_SRST_REG	0x18	TWI Software Reset Register
TWI_EFR_REG	0x1C	TWI Enhance Feature Register
TWI_LCR_REG	0x20	TWI Line Control Register

7.2.7. TWI Controller Register Description

7.2.7.1. TWI Slave Address Register

Offset:	0x00		Register Name: TWI_ADDR_REG	
Bit	R/W	Default/Hex	Description	
31:8	/	/	/	
			SLA	
			Slave address	
			7-bit addressing: SLA6, SLA5, SLA4, SLA3, SLA2, SLA1, SLA0	
7:1	R/W	0	10-bit addressing: 1, 1, 1, 1, 0, SLAX[9:8]	
			GCE	
			General call address enable	
			0: Disable	3-1
0	R/W	0	1: Enable	- C7

Note:

For 7-bit addressing:

SLA6 – SLA0 is the 7-bit address of the TWI when in slave mode. When the TWI receives this address after a START condition, it will generate an interrupt and enter slave mode. (SLA6 corresponds to the first bit received from the TWI bus.) If GCE is set to '1', the TWI will also recognize the general call address (00h).

For 10-bit addressing:

When the address received starts with 11110b, the TWI recognizes this as the first part of a 10-bit address and if the next two bits match ADDR[2:1] (i.e. SLAX9 and SLAX8 of the device's extended address), it sends an ACK. (The device does not generate an interrupt at this point.) If the next byte of the address matches the XADDR register (SLAX7 – SLAX0), the TWI generates an interrupt and goes into slave mode.

7.2.7.2. TWI Extend Address Register

Offset: 0x04			Register Name: TWI_XADDR_REG
Bit	R/W	Default/Hex	Description
31:8	1	/	/
U			SLAX
			Extend Slave Address
7:0	R/W	0	SLAX[7:0]

7.2.7.3. TWI Data Register

Offset: 0x	Offset: 0x08		Register Name: TWI_DATA_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	/
			TWI_DATA
7:0	R/W	0	Data byte for transmitting or received

7.2.7.4. TWI Control Register

Offset: 0x0C			Register Name: TWI_CNTR_REG
Bit	R/W	Default/Hex	Description

31:8	l <i>,</i>	1	
31.0	/	/	INT_EN
			Interrupt Enable
			1'b0: The interrupt line always low
7	R/W	0	1'b1: The interrupt line always low 1'b1: The interrupt line will go high when INT_FLAG is set.
,	11,7 44	0	BUS_EN
			TWI Bus Enable
			1'b0: The TWI bus inputs ISDA/ISCL are ignored and the TWI Controller
			will not respond to any address on the bus
			1'b1: The TWI will respond to calls to its slave address – and to the
			general call address if the GCE bit in the ADDR register is set.
6	R/W	0	Notes: In master operation mode, this bit should be set to '1'
	., .,		M_STA
			Master Mode Start
			When M_STA is set to '1', TWI Controller enters master mode and will
			transmit a START condition on the bus when the bus is free. If the M_STA
			bit is set to '1' when the TWI Controller is already in master mode and
			one or more bytes have been transmitted, then a repeated START condition will be sent. If the M_STA bit is set to '1' when the TWI is being
			accessed in slave mode, the TWI will complete the data transfer in slave
			mode then enter master mode when the bus has been released.
			The M_STA bit is cleared automatically after a START condition has been
5	R/W	0	sent: writing a '0' to this bit has no effect.
			M_STP
			Master Mode Stop
			If M_STP is set to '1' in master mode, a STOP condition is transmitted on
			the TWI bus. If the M_STP bit is set to '1' in slave mode, the TWI will behave as if a STOP condition has been received, but no STOP condition
			will be transmitted on the TWI bus. If both M_STA and M_STP bits are set,
	. 1	M_{II}	the TWI will first transmit the STOP condition (if in master mode) then
		/ / /	transmit the START condition.
		-	The M_STP bit is cleared automatically: writing a '0' to this bit has no
4	R/W	0	effect.
· O ·			INT_FLAG
			Interrupt Flag
			INT_FLAG is automatically set to '1' when any of 28 (out of the possible
			29) states is entered (see 'STAT Register' below). The only state that does
			not set INT_FLAG is state F8h. If the INT_EN bit is set, the interrupt line
			goes high when IFLG is set to '1'. If the TWI is operating in slave mode,
			data transfer is suspended when INT_FLAG is set and the low period of
3	R/W	0	the TWI bus clock line (SCL) is stretched until '0' is written to INT_FLAG.
3	IN VV	U	The TWI clock line is then released and the interrupt line goes low. A_ACK
			A_ACK Assert Acknowledge
			When A_ACK is set to '1', an Acknowledge (low level on SDA) will be sent
			during the acknowledge clock pulse on the TWI bus if:
	- 6	_	1) Either the whole of a matching 7-bit slave address or the first or the
2	R/W	0	second byte of a matching 10-bit slave address has been received.

			2) The general call address has been received and the GCE bit in the ADDR register is set to '1'. 3) A data byte has been received in master or slave mode. When A_ACK is '0', a Not Acknowledge (high level on SDA) will be sent when a data byte is received in master or slave mode. If A_ACK is cleared to '0' in slave transmitter mode, the byte in the DATA register is assumed to be the 'last byte'. After this byte has been transmitted, the TWI will enter state C8h then return to the idle state (status code F8h) when INT_FLAG is cleared. The TWI will not respond as a slave unless A_ACK is set.
1:0	R/W	0	/

7.2.7.5. TWI Status Register

Offset: 0x	Offset: 0x10		Register Name: TWI_STAT_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	1
·O ⁽			STA Status Information Byte Code Status 0x00: Bus error 0x08: START condition transmitted 0x10: Repeated START condition transmitted, ACK received 0x20: Address + Write bit transmitted, ACK not received 0x20: Address + Write bit transmitted, ACK not received 0x20: Data byte transmitted in master mode, ACK received 0x30: Data byte transmitted in master mode, ACK not received 0x38: Arbitration lost in address or data byte 0x40: Address + Read bit transmitted, ACK not received 0x50: Data byte received in master mode, ACK transmitted 0x50: Data byte received in master mode, ACK transmitted 0x50: Slave address + Write bit received, ACK transmitted 0x60: Slave address + Write bit received, ACK transmitted 0x68: Arbitration lost in address as master, slave address + Write bit received, ACK transmitted 0x70: General Call address received, ACK transmitted 0x70: General Call address received, ACK transmitted 0x78: Arbitration lost in address as master, General Call address received, ACK transmitted 0x80: Data byte received after slave address received, ACK transmitted 0x80: Data byte received after slave address received, ACK transmitted 0x90: Data byte received after General Call received, ACK transmitted 0x90: Data byte received after General Call received, not ACK transmitted 0x90: Data byte received after General Call received, not ACK transmitted 0x80: Slave address + Read bit received, ACK transmitted 0x80: Arbitration lost in address as master, slave address + Read bit received, ACK transmitted 0x80: Data byte transmitted in slave mode, ACK received 0x80: Data byte transmitted in slave mode, ACK received 0xC0: Data byte transmitted in slave mode, ACK received 0xC0: Data byte transmitted in slave mode, ACK received 0xC8: Last byte transmitted in slave mode, ACK received 0xC8: Last byte transmitted in slave mode, ACK received 0xC8: Second Address byte + Write bit transmitted, ACK not received 0xF8: No relevant status information, INT_FLAG=0
7:0	R	0xF8	Others: Reserved

7.2.7.6. TWI Clock Register

Offset: 0x14			Register Name: TWI_CCR_REG
Bit	R/W	Default/Hex	Description
31:7	/	/	
6:3	R/W	0	CLK_M
			CLK_N
			The TWI bus is sampled by the TWI at the frequency defined by F0:
			Fsamp = F 0 = Fin / 2^CLK_N
			The TWI OSCL output frequency, in master mode, is F1 / 10:
			F1 = F0 / (CLK_M + 1)
			Foscl = F1 / 10 = Fin / (2^CLK_N * (CLK_M + 1)*10)
			For Example:
			Fin = 48Mhz (APB clock input)
			For 400kHz full speed 2Wire, CLK_N = 2, CLK_M=2
			F0 = 48M/2^2=12Mhz, F1= F0/(10*(2+1)) = 0.4Mhz
			For 100Khz standard speed 2Wire, CLK_N=2, CLK_M=11
2:0	R/W	0	F0=48M/2^2=12Mhz, F1=F0/(10*(11+1)) = 0.1Mhz

7.2.7.7. TWI Soft Reset Register

Offset:	0x18		Register Name: TWI_SRST_REG
Bit	R/W	Default/Hex	Description
31:1	/	/	1 400
			SOFT_RST
			Soft Reset
			Write '1' to this bit to reset the TWI and clear to '0' when completing Soft
0	R/W	0	Reset operation.

7.2.7.8. TWI Enhance Feature Register

Of	Offset: 0x1C			Register Name: TWI_EFR_REG
Bi	t	R/W	Default/Hex	Description
31	L:2	/	/	/
				DBN
				Data Byte number follow Read Command Control
				0— No Data Byte to be wrote after read command
				1— Only 1 byte data to be wrote after read command
				2— 2 bytes data can be wrote after read command
1:	0	R/W	0	3— 3 bytes data can be wrote after read command

7.2.7.9. TWI Line Control Register

Offset: 0x20			Register Name: TWI_LCR_REG
Bit	R/W	Default/Hex	Description
31:6	/	/	1
			SCL_STATE
			Current state of TWI_SCL
5	R	1	0 – low

I	ı	İ	1
			1 - high
			SDA_STATE
			Current state of TWI_SDA
			0 – low
4	R	1	1 - high
			SCL_CTL
			TWI_SCL line state control bit
			When line control mode is enabled (bit[2] set), value of this bit decide the
			output level of TWI_SCL
			0 – output low level
3	R/W	1	1 – output high level
			SCL_CTL_EN
			TWI_SCL line state control enable
			When this bit is set, the state of TWI_SCL is control by the value of bit[3].
			0-disable TWI_SCL line control mode
2	R/W	0	1-enable TWI_SCL line control mode
			SDA_CTL
			TWI_SDA line state control bit
			When line control mode is enabled (bit[0] set), value of this bit decide the
			output level of TWI_SDA
			0 – output low level
1	R/W	1	1 – output high level
			SDA_CTL_EN
			TWI_SDA line state control enable
			When this bit is set, the state of TWI_SDA is control by the value of bit[1].
			0-disable TWI_SDA line control mode
0	R/W	0	1-enable TWI_SDA line control mode

usiasts

7.3. SPI

7.3.1. Overview

The SPI is the Serial Peripheral Interface which allows rapid data communication with less software interrupts. The SPI module contains one 64x8 receiver buffer (RXFIFO) and one 64x8 transmit buffer (TXFIFO). It can work at two modes: Master mode and Slave mode.

7.3.2. Feature

The SPI includes the following features:

- Full-duplex synchronous serial interface
- Master/Slave configurable
- Four chip selects to support multiple peripherals for SPIO,SPI1 has one chip select
- 8-bit wide by 64-entry FIFO for both transmit and receive data
- Polarity and phase of the Chip Select (SPI_SS) and SPI Clock (SPI_SCLK) are configurable

7.3.3. SPI Timing Diagram

The serial peripheral interface master uses the SPI_SCLK signal to transfer data in and out of the shift register. Data is clocked using any one of four programmable clock phase and polarity combinations.

During Phase 0, Polarity 0 and Phase 1, Polarity 1 operations, output data changes on the falling clock edge and input data is shifted in on the rising edge.

During Phase 1, Polarity 0 and Phase 0, Polarity 1 operations, output data changes on the rising edges of the clock and is shifted in on falling edges.

The POL defines the signal polarity when SPI_SCLK is in idle state. The SPI_SCLK is high level when POL is '1' and it is low level when POL is '0'. The PHA decides whether the leading edge of SPI_SCLK is used for setup or sample data. The leading edge is used for setup data when PHA is '1' and for sample data when PHA is '0'. The four kinds of modes are listed below:

SPI N	Node	POL	PHA	Leading Edge	Trailing Edge
0	Y	0	0	Rising, Sample	Falling, Setup
1		0	1	Rising, Setup	Falling, Sample
2		1	0	Falling, Sample	Rising, Setup
3		1	1	Failing, Setup	Rising, Sample

Phase 0

SPI Phase 0 Timing Diagram

Phase 1

SPI Phase 1 Timing Diagram

7.3.4. SPI Pin List

The direction of SPI pin is different in two work modes: Master Mode and Slave Mode.

Port Name	Width	Direction(M)	Direction(S)	Description
SPI_SCLK	1	OUT	IN	SPI Clock
SPI_MOSI	1	OUT	IN	SPI Master Output Slave Input Data Signal
SPI_MISO	1	IN	OUT	SPI Master Input Slave Output Data Signal
SPI_SS[3:0]	4	OUT	IN	SPI Chip Select Signal

7.3.5. SPI Module Clock Source and Frequency

The SPI module uses two clock sources: AHB_CLK and SPI_CLK. The SPI_SCLK can in the range from 3Khz to 100 MHZ and AHB_CLK >= 2xSPI_SCLK.

Clock Name	Description	Requirement
AHB_CLK	AHB bus clock, as the clock source of SPI module	AHB_CLK >= 2xSPI_SCLK
SPI_CLK	SPI serial input clock	

7.3.6. SPI Register List

Module Name	Base Address
SPI0	0x01C05000
SPI1	0x01C06000

Register Name	Offset	Description
Register Name	Offset	Description
SPI_GCR_REG	0x04	SPI Global Control Register
SPI_TCR_REG	0x08	SPI Transfer Control Register
SPI_IER_REG	0x10	SPI Interrupt Control Register
SPI_ISR_REG	0x14	SPI Interrupt Status Register
SPI_FCR_REG	0x18	SPI FIFO Control Register
SPI_FSR_REG	0x1C	SPI FIFO Status Register
SPI_WCR_REG	0x20	SPI Wait Clock Counter Register
SPI_CCR_REG	0x24	SPI Clock Rate Control Register
SPI_MBC_REG	0x30	SPI Burst Counter Register
SPI_MTC_REG	0x34	SPI Transmit Counter Register
SPI_BCC_REG	0x38	SPI Burst Control Register
SPI_TXD_REG	0x200	SPI TX Data Register
SPI_RXD_REG	0x300	SPI RX Data Register

7.3.7. SPI Register Description

7.3.7.1. SPI Global Control Register

Offset: 0	Offset: 0x04		Register Name: SPI_CTL_REG
Bit	R/W	Default/Hex	Description
			SRST
			Soft reset
31	R/W	0	Write '1' to this bit will clear the SPI controller, and auto clear to '0' when
			reset operation completes
			Write '0' has no effect.
30:8	/	/	/
			TP_EN
			Transmit Pause Enable
			In master mode, it is used to control transmit state machine to stop smart
7	R/W	1	burst sending when RX FIFO is full.
			1 – stop transmit data when RXFIFO full
			0 – normal operation, ignore RXFIFO status
			Note: Can't be written when XCH=1
6:2	/	/	/
			MODE
1	R/W	0	SPI Function Mode Select

			0: Slave Mode
			1: Master Mode
			Note: Can't be written when XCH=1
			EN
			SPI Module Enable Control
			0: Disable
0	R/W	0	1: Enable

7.3.7.2. SPI Transfer Control Register

Offset: (Offset: 0x08		Register Name: SPI_INTCTL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0x0	XCH Exchange Burst In master mode it is used to start SPI burst 0: Idle 1: Initiates exchange. Write "1" to this bit will start the SPI burst, and will auto clear after finishing the bursts transfer specified by BC. Write "1" to SRST will also clear this bit. Write '0' to this bit has no effect. Note: Can't be written when XCH=1.
30:14	/	/	1
13	R/W	0x0	Master Sample Data Mode 0 - Delay Sample Mode 1 - Normal Sample Mode In Normal Sample Mode, SPI master samples the data at the correct edge for each SPI mode; In Delay Sample Mode, SPI master samples data at the edge that is half cycle delayed by the correct edge defined in respective SPI mode.
12	R/W	0x0	FBS First Transmit Bit Select 0: MSB first 1: LSB first Note: Can't be written when XCH=1.
11	R/W	0x0	SDC Master Sample Data Control Set this bit to '1' to make the internal read sample point with a delay of half cycle of SPI_CLK. It is used in high speed read operation to reduce the error caused by the time delay of SPI_CLK propagating between master and slave. 0 – normal operation, do not delay internal read sample point 1 – delay internal read sample point Note: Can't be written when XCH=1.
10	R/W	0x0	RPSM Rapids mode select

		1	Select Rapids mode for high speed write.
			0: normal write mode
			1: rapids write mode
			Note: Can't be written when XCH=1.
			DDB
	5/14/		Dummy Burst Type
9	R/W	0x0	0: The bit value of dummy SPI burst is zero
			1: The bit value of dummy SPI burst is one
			Note: Can't be written when XCH=1.
			DHB
			Discard Hash Burst
			In master mode it controls whether discarding unused SPI bursts
8	R/W	0x0	0: Receiving all SPI bursts in BC period
			1: Discard unused SPI bursts, only fetching the SPI bursts during dummy
			burst period. The bursts number is specified by TC.
			Note: Can't be written when XCH=1.
			SS_LEVEL
			When control SS signal manually (SPI_CTRL_REG.SS_CTRL==1), set this bit
7	R/W	0x1	to '1' or '0' to control the level of SS signal.
'	N/ VV	OXI	0: set SS to low
			1: set SS to high
			Note: Can't be written when XCH=1.
			SS_OWNER
			SS Output Owner Select
			Usually, controller sends SS signal automatically with data together. When
	5/14/		this bit is set to 1, software must manually write SPI_CTL_REG.SS_LEVEL to
6	R/W	0x0	1 or 0 to control the level of SS signal.
		1 · VI) ,	0: SPI controller
		1112	1: Software
			Note: Can't be written when XCH=1.
Y			SS_SEL
$\cdot () $			SPI Chip Select
			Select one of four external SPI Master/Slave Devices
			00: SPI_SSO will be asserted
5:4	R/W	0x0	01: SPI_SS1 will be asserted
			10: SPI SS2 will be asserted
			11: SPI_SS3 will be asserted
			Note: Can't be written when XCH=1.
			SSCTL
			In master mode, this bit selects the output wave form for the SPI_SSx
			signal. Only valid when SS_OWNER = 0.
3	R/W	0x0	0: SPI_SSx remains asserted between SPI bursts
			1: Negate SPI_SSx between SPI bursts
			Note: Can't be written when XCH=1.
2	R/W	0x1	SPOL
	IN/ VV	OYT	3FUL

			SPI Chip Select Signal Polarity Control
			0: Active high polarity (0 = Idle)
			1: Active low polarity (1 = Idle)
			Note: Can't be written when XCH=1.
			CPOL
			SPI Clock Polarity Control
1	R/W	0x1	0: Active high polarity (0 = Idle)
			1: Active low polarity (1 = Idle)
			Note: Can't be written when XCH=1.
			СРНА
			SPI Clock/Data Phase Control
0	R/W	0x1	0: Phase 0 (Leading edge for sample data)
			1: Phase 1 (Leading edge for setup data)
			Note: Can't be written when XCH=1.

7.3.7.3. SPI Interrupt Control Register

Offset: 0x10			Register Name: SPI_IER_REG
Bit	R/W	Default/Hex	Description
31:14	R	0x0	Reserved.
13	R/W	0x0	SS_INT_EN SSI Interrupt Enable Chip Select Signal (SSx) from valid state to invalid state 0: Disable 1: Enable
12	R/W	0x0	TC_INT_EN Transfer Completed Interrupt Enable 0: Disable 1: Enable
11	R/W	0x0	TF_UDR_INT_EN TXFIFO under run Interrupt Enable 0: Disable 1: Enable
10	R/W	0x0	TF_OVF_INT_EN TX FIFO Overflow Interrupt Enable 0: Disable 1: Enable
9	R/W	0x0	RF_UDR_INT_EN RXFIFO under run Interrupt Enable 0: Disable 1: Enable
8	R/W	0x0	RF_OVF_INT_EN RX FIFO Overflow Interrupt Enable 0: Disable 1: Enable
7	R	0x0	Reserved.

6		0x0	TF_FUL_INT_EN
	D /\A/		TX FIFO Full Interrupt Enable
	R/W		0: Disable
			1: Enable
5		0x0	TX_EMP_INT_EN
	R/W		TX FIFO Empty Interrupt Enable
	K/ VV		0: Disable
			1: Enable
		0x0	TX_ERQ_INT_EN
4	R/W		TX FIFO Empty Request Interrupt Enable
	K/VV		0: Disable
			1: Enable
3	R	0x0	Reserved
2		0x0	RF_FUL_INT_EN
	R/W		RX FIFO Full Interrupt Enable
2	N/ VV		0: Disable
			1: Enable
		0x0	RX_EMP_INT_EN
1	R/W		RX FIFO Empty Interrupt Enable
1	117 VV		0: Disable
			1: Enable
0		0x0	RF_RDY_INT_EN
	R/W		RX FIFO Ready Request Interrupt Enable
	11, 00		0: Disable
			1: Enable

7.3.7.4. SPI Interrupt Status Register

Offset: 0x14		1/1/2	Register Name: SPI_INT_STA_REG
Bit	R/W	Default/Hex	Description
31:14	/	0	/
			SSI
			SS Invalid Interrupt
			When SSI is 1, it indicates that SS has changed from valid state to invalid
13	R/W	0	state. Writing 1 to this bit clears it.
			тс
			Transfer Completed
			In master mode, it indicates that all bursts specified by BC has been
			exchanged. In other condition, When set, this bit indicates that all the data
			in TXFIFO has been loaded in the Shift register, and the Shift register has
			shifted out all the bits. Writing 1 to this bit clears it.
			0: Busy
12	R/W	0	1: Transfer Completed
			TF_UDF
11	R/W	0	TXFIFO Underrun

			This bit is set when if the TXFIFO is underrun. Writing 1 to this bit clears it.
			0: TXFIFO is not underrun
			1: TXFIFO is underrun
			TF_OVF
			TXFIFO Overflow
			This bit is set when if the TXFIFO is overflow. Writing 1 to this bit clears it.
			0: TXFIFO is not overflow
10	R/W	0	1: TXFIFO is overflowed
10	11, 11	0	RX_UDF
			RXFIFO Underrun
	R/W	0	When set, this bit indicates that RXFIFO has underrun. Writing 1 to this bit clears it.
9	K/ VV	0	
			RX_OVF
			RXFIFO Overflow
			When set, this bit indicates that RXFIFO has overflowed. Writing 1 to this
			bit clears it.
	- 4	_	0: RXFIFO is available.
8	R/W	0	1: RXFIFO has overflowed.
7	/	/	
			TX_FULL
			TXFIFO Full
			This bit is set when if the TXFIFO is full. Writing 1 to this bit clears it.
			0: TXFIFO is not Full
6	R/W	0	1: TXFIFO is Full
			TX_EMP
		• ~ \	TXFIFO Empty
		. 1111	This bit is set if the TXFIFO is empty. Writing 1 to this bit clears it.
		11/1/	0: TXFIFO contains one or more words.
5	R/W	1	1: TXFIFO is empty
•			TX_READY
			TXFIFO Ready
			0: TX_WL > TX_TRIG_LEVEL
			1: TX_WL <= TX_TRIG_LEVEL
			This bit is set any time if TX_WL <= TX_TRIG_LEVEL. Writing "1" to this bit
4	R/W	0	clears it. Where TX_WL is the water level of RXFIFO
3	/	/	reserved
			RX_FULL
			RXFIFO Full
			This bit is set when the RXFIFO is full. Writing 1 to this bit clears it.
			0: Not Full
2	R/W	0	1: Full
			RX_EMP
			RXFIFO Empty
			This bit is set when the RXFIFO is empty. Writing 1 to this bit clears it.
1	R/W	1	0: Not empty

			1: empty
			RX_RDY
			RXFIFO Ready
			0: RX_WL < RX_TRIG_LEVEL
			1: RX_WL >= RX_TRIG_LEVEL
			This bit is set any time if RX_WL >= RX_TRIG_LEVEL. Writing "1" to this bit
0	R/W	0	clears it. Where RX_WL is the water level of RXFIFO.

7.3.7.5. SPI FIFO Control Register

Offset: 0	Offset: 0x18		Register Name: SPI_DMACTL_REG
Bit	R/W	Default/Hex	Description
			TX_FIFO_RST
			TX FIFO Reset
			Write '1' to this bit will reset the control portion of the TX FIFO and auto
31	R/W	0	clear to '0' when completing reset operation, write to '0' has no effect.
			TF_TEST_ENB
			TX Test Mode Enable
			0: disable
			1: enable
			Note: In normal mode, TX FIFO can only be read by SPI controller, write '1'
			to this bit will switch TX FIFO read and write function to AHB bus. This bit is
			used to test the TX FIFO, don't set in normal operation and don't set
30	R/W	0	RF_TEST and TF_TEST at the same time.
29:28	/	/	1
			TX_FIFO_ACCESS_SIZE
			00: TX FIFO access in byte
			01: TX FIFO access in word (4bytes)
		$\langle N \rangle$	10: Reserved
27:26	R/W	0x0	11: TX FIFO access size controlled by bus
25	/	1	/
			TF_ DRQ_EN
24	R/W	0x0	TX FIFO DMA Request Enable
24	IX/ VV	OXO	0: Disable
			1: Enable
23:16	R/W	0x40	TX_TRIG_LEVEL
25.10	117 00	0,40	TX FIFO Empty Request Trigger Level
			RF_RST
			RXFIFO Reset
15	R/W	0x0	Write '1' to this bit will reset the control portion of the receiver FIFO, and
			auto clear to '0' when completing reset operation, write '0' to this bit has
			no effect.
			RF_TEST
14	R/W	0x0	RX Test Mode Enable
14	K/W	W 0x0	0: Disable
			1: Enable

			Note: In normal mode, RX FIFO can only be written by SPI controller, write
			'1' to this bit will switch RX FIFO read and write function to AHB bus. This
			bit is used to test the RX FIFO, don't set in normal operation and don't set
			RF_TEST and TF_TEST at the same time.
13:12	R	0x0	Reserved
			RX_FIFO_ACCESS_SIZE
			00: RX FIFO access in byte
11:10	R/W	0x0	01: RX FIFO access in word (4bytes)
			10: Reserved
			11: RX FIFO access size controlled by bus
			RX_DMA_MODE
9	R/W	0x0	SPI RX DMA Mode Control
9	N/ VV		0: Normal DMA mode
			1: Dedicate DMA mode
			RF_ DRQ_EN
0	R/W	0x0	RX FIFO DMA Request Enable
8	K) VV	UXU	0: Disable
			1: Enable
7:0	D /\A/	0v1	RX_TRIG_LEVEL
7:0	R/W	W 0x1	RX FIFO Ready Request Trigger Level

7.3.7.6. SPI FIFO Status Register

Offset: 0x1C			Register Name: SPI_FSR_REG
Bit	R/W	Default/Hex	Description
24	0	0.0	TB_WR
31	R	0x0	TX FIFO Write Buffer Write Enable
			TB_CNT
30:28	R	0x0	TX FIFO Write Buffer Counter
			These bits indicate the number of words in TX FIFO Write Buffer
27:24	R	0x0	Reserved
			TF_CNT
			TX FIFO Counter
		0x0	These bits indicate the number of words in TX FIFO
23:16	R		0: 0 byte in TX FIFO
23.10			1: 1 byte in TX FIFO
			64: 64 bytes in TX FIFO
			Other: /
15	R	0x0	RB_WR
13	IX		RX FIFO Read Buffer Write Enable
			RB_CNT
14:12	R	0x0	RX FIFO Read Buffer Counter
			These bits indicate the number of words in RX FIFO Read Buffer
11:8	R	0x0	Reserved
7:0	R	0x0	RF_CNT

	RX FIFO Counter
	These bits indicate the number of words in RX FIFO
	0: 0 byte in RX FIFO
	1: 1 byte in RX FIFO
	64: 64 bytes in RX FIFO
	Others: /

7.3.7.7. SPI Wait Clock Register

Offset: 0	Offset: 0x20		Register Name: SPI_WAIT_REG
Bit	R/W	Default/Hex	Description
31:20	/	/	/
19:16	R/W	0x0	SWC Dual mode direction switch wait clock counter (for master mode only). 0: No wait states inserted n: n SPI_SCLK wait states inserted Note: These bits control the number of wait states to be inserted before start dual data transfer in dual SPI mode. The SPI module counts SPI_SCLK by SWC for delaying next word data transfer. Note: Can't be written when XCH=1.
15:0	R/W	0	WCC Wait Clock Counter (In Master mode) These bits control the number of wait states to be inserted in data transfers. The SPI module counts SPI_SCLK by WCC for delaying next word data transfer. 0: No wait states inserted N: N SPI_SCLK wait states inserted

7.3.7.8. SPI Clock Control Register

Offset: 0	Offset: 0x24		Register Name: SPI_CCTL_REG
Bit	R/W	Default/Hex	Description
31:13	1	/	/
			DRS
			Divide Rate Select (Master Mode Only)
			0: Select Clock Divide Rate 1
12	R/W	0	1: Select Clock Divide Rate 2
			CDR1
			Clock Divide Rate 1 (Master Mode Only)
			This field selects the baud rate of the SPI_SCLK based on a division of the
			AHB_CLK. These bits allow SPI to synchronize with different external SPI
			devices. The max frequency is one quarter of AHB_CLK. The divide ratio is
			determined according to the following table using the equation: 2^(n+1).
			The SPI_SCLK is determined according to the following equation: SPI_CLK =
11:8	R/W	0	AHB_CLK / 2^(n+1).
7:0	R/W	0x2	CDR2

	Clock Divide Rate 2 (Master Mode Only)
	The SPI_SCLK is determined according to the following equation: SPI_CLK =
	AHB_CLK / (2*(n + 1)).

7.3.7.9. SPI Master Burst Counter Register

Offset: 0	Offset: 0x30		Register Name: SPI_BC_REG
Bit	R/W	Default/Hex	Description
31:24	/	/	/
			MBC
			Master Burst Counter
			In master mode, this field specifies the total burst number.
			0: 0 burst
			1: 1 burst
23:0	R/W	0	N: N bursts

7.3.7.10. SPI Master Transmit Counter Register

Offset: 0x34			Register Name: SPI_TC_REG
Bit	R/W	Default/Hex	Description
31:24	/	1	1
23:0	R/W	0	MWTC Master Write Transmit Counter In master mode, this field specifies the burst number that should be sent to TXFIFO before automatically sending dummy burst. For saving bus bandwidth, the dummy burst (all zero bits or all one bits) is sent by SPI Controller automatically. 0: 0 burst 1: 1 burst N: N bursts

7.3.7.11. SPI Master Burst Control Counter Register

Offset: 0x38			Register Name: SPI_BCC_REG
Bit	R/W	Default/Hex	Description
31:29	R	0x0	Reserved
			DRM
			Master Dual Mode RX Enable
28	R/W	0x0	0: RX use single-bit mode
			1: RX use dual mode
			Note: Can't be written when XCH=1.
			DBC
			Master Dummy Burst Counter
27:24	R/W	0x0	In master mode, this field specifies the burst number that should be sent
			before receive in dual SPI mode. The data is don't care by the device.
			0: 0 burst

			1: 1 burst
			N: N bursts
			Note: Can't be written when XCH=1.
			STC
		0x0	Master Single Mode Transmit Counter
	R/W		In master mode, this field specifies the burst number that should be sent in
			single mode before automatically sending dummy burst. This is the first
22.0			transmit counter in all bursts.
23:0			0: 0 burst
			1: 1 burst
			N: N bursts
			Note: Can't be written when XCH=1.

7.3.7.12. SPI TX Data Register

<i>.</i>	J	ia riegistei	191
Offset: 0)x200		Register Name: SPI_TXD_REG
Bit	R/W	Default/Hex	Description
			TDATA
			Transmit Data
			This register can be accessed in byte, half-word or word unit by AHB. In
			byte accessing method, if there are rooms in RXFIFO, one burst data is
			written to RXFIFO and the depth is increased by 1. In half-word accessing
31:0	W/R	0x0	method, two SPI burst data are written and the TXFIFO depth is increase by
			2. In word accessing method, four SPI burst data are written and the
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TXFIFO depth is increased by 4.
			Note: This address is writing-only if TF_TEST is '0', and if TF_TEST is set to
		$I \cdot M_{II}$	'1', this address is readable and writable to test the TX FIFO through the
		10.	AHB bus.

7.3.7.13. SPI RX Data Register

Offset:	Offset: 0x300		Register Name: SPI_RXD_REG
Bit	R/W	Default/Hex	Description
			RDATA
			Receive Data
			This register can be accessed in byte, half-word or word unit by AHB. In
			byte accessing method, if there are data in RXFIFO, the top word is
			returned and the RXFIFO depth is decreased by 1. In half-word accessing
31:0	R	0	method, two SPI bursts are returned and the RXFIFO depth is decrease by
			2. In word accessing method, the four SPI bursts are returned and the
			RXFIFO depth is decreased by 4.
			Note: This address is read-only if RF_TEST is '0', and if RF_TEST is set to '1',
			this address is readable and writable to test the RX FIFO through the AHB
			bus.

7.4. UART

7.4.1. Overview

The UART is used for serial communication with a peripheral, modem (data carrier equipment, DCE) or data set. Data is written from a master (CPU) over the APB bus to the UART and it is converted to serial form and transmitted to the destination device. Serial data is also received by the UART and stored for the master (CPU) to read back.

The UART contains registers to control the character length, baud rate, parity generation/checking, and interrupt generation. Although there is only one interrupt output signal from the UART, there are several prioritized interrupt types that can be responsible for its assertion. Each of the interrupt types can be separately enabled/disabled with the control registers.

The UART has 16450 and 16550 modes of operation, which are compatible with a range of standard software drivers. In 16550 mode, transmit and receive operations are both buffered by FIFOs. In 16450 mode, these FIFOs are disabled. The UART supports data lengths from five to eight bits, an optional parity bit and 1, 1 ½ or 2 stop bits, and is fully programmable by an AMBA APB CPU interface. A 16-bit programmable baud rate generator and an 8-bit scratch register are included, together with separate transmit and receive FIFOs. Eight modem control lines and a diagnostic loop-back mode are provided.

Interrupts can be generated for a range of TX Buffer/FIFO, RX Buffer/FIFO, Modem Status and Line Status conditions.

7.4.2. Feature

The UART includes the following features:

- Compatible with industry-standard 16550 UARTs
- 64-Bytes Transmit and receive data FIFOs
- DMA controller interface
- Software/ Hardware Flow Control
- Programmable Transmit Holding Register Empty interrupt
- Interrupt support for FIFOs, Status Change

7.4.3. UART Timing Diagram

Serial IrDA Data Format

7.4.4. UART Pin List

Port Name	Width	Direction	Description
UARTO_TX	1	OUT	UART Serial Bit output
UARTO_RX	1	IN	UART Serial Bit input
UART1_TX	1	OUT	UART Serial Bit output
UART1_RX	1	IN	UART Serial Bit input
UART1_RTS	1	OUT	UART Request To Send
			This active low output signal informs Modem that the UART is ready to send
			data
UART1_CTS	1	IN	UART Clear To End
			This active low signal is an input showing when Modem is ready to accept
			data
UART2_TX	1	OUT	UART Serial Bit output
UART2_RX	1	IN	UART Serial Bit input
UART2_RTS	1	OUT	UART Request To Send
			This active low output signal informs Modem that the UART is ready to send
			data
UART2_CTS	1	IN	UART Clear To End
			This active low signal is an input showing when Modem is ready to accept
			data

7.4.5. IrDA Inverted Signals

When the UART is working in IrDA mode (MCR[6]='1'), if HALT[4] is set to '1', the signal is inverted before transferring to pin SOUT and if HALT[5] is set to '1', the signal is inverted after receiving from pin SIN.

7.4.6. UART Register List

There are 3 UART controllers. UART1 has full modem control signals, including RTS, CTS, DTR, DSR, DCD and RING signal.

Module Name	Base Address
UARTO	0x01C25000
UART1	0x01C25400
UART2	0x01C25800

Register Name	Offset	Description
UART_RBR_REG	0x00	UART Receive Buffer Register
UART_THR_REG	0x00	UART Transmit Holding Register
UART_DLL_REG	0x00	UART Divisor Latch Low Register
UART_DLH_REG	0x04	UART Divisor Latch High Register
UART_IER_REG	0x04	UART Interrupt Enable Register
UART_IIR_REG	0x08	UART Interrupt Identity Register
UART_FCR_REG	0x08	UART FIFO Control Register
UART_LCR_REG	0x0C	UART Line Control Register

UART_MCR_REG	0x10	UART Modem Control Register
UART_LSR_REG	0x14	UART Line Status Register
UART_MSR_REG	0x18	UART Modem Status Register
UART_SCH_REG	0x1C	UART Scratch Register
UART_USR_REG	0x7C	UART Status Register
UART_TFL_REG	0x80	UART Transmit FIFO Level Register
UART_RFL_REG	0x84	UART Receive FIFO Level Register
UART_HSK_REG	0x88	UART DMA Handshake Config Register
UART_HALT_REG	0xA4	UART Halt TX Register
UART_DBG_DLL_REG	0xB0	UART Debug DLL Register
UART_DBG_DLH_REG	0xB4	UART Debug DLH Register

7.4.7. UART Register Description

7.4.7.1. UART Receiver Buffer Register

Offset: 0)x00	-	Register Name: UART_RBR_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	1
			RBR
			Receiver Buffer Register
			Data byte received on the serial input port (sin) in UART mode, or the serial
			infrared input (sir_in) in infrared mode. The data in this register is valid
			only if the Data Ready (DR) bit in the Line Status Register (LCR) is set.
		(If in FIFO mode and FIFOs are enabled (FCR[0] set to one), this register
		: 01	accesses the head of the receive FIFO. If the receive FIFO is full and this
			register is not read before the next data character arrives, then the data
		M_{A} ,	already in the FIFO is preserved, but any incoming data are lost and an
7:0	R	0	overrun error occurs.

7.4.7.2. UART Transmit Holding Register

Offset: (Offset: 0x00		Register Name: UART_THR_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	/
			THR
			Transmit Holding Register
			Data to be transmitted on the serial output port (sout) in UART mode or
			the serial infrared output (sir_out_n) in infrared mode. Data should only be
			written to the THR when the THR Empty (THRE) bit (LSR[5]) is set.
			If in FIFO mode and FIFOs are enabled (FCR[0] = 1) and THRE is set, 16
			number of characters of data may be written to the THR before the FIFO is
			full. Any attempt to write data when the FIFO is full results in the write
7:0	W	0	data being lost.

7.4.7.3. UART Divisor Latch Low Register

Offset: 0	0x00		Register Name: UART_DLL_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	/
			DLL
			Divisor Latch Low
			Lower 8 bits of a 16-bit, read/write, Divisor Latch register that contains the
			baud rate divisor for the UART. This register may only be accessed when
			the DLAB bit (LCR[7]) is set and the UART is not busy (USR[0] is zero).
			The output baud rate is equal to the serial clock (sclk) frequency divided by
			sixteen times the value of the baud rate divisor, as follows: baud rate =
			(serial clock freq) / (16 * divisor).
			Note that with the Divisor Latch Registers (DLL and DLH) set to zero, the
			baud clock is disabled and no serial communications occur. Also, once the
			DLL is set, at least 8 clock cycles of the slowest UART clock should be
7:0	R/W	0	allowed to pass before transmitting or receiving data.

7.4.7.4. UART Divisor Latch High Register

7	2	Laten mgn Register	
Offset: 0x	c 04		Register Name: UART_DLH_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	1
. ОΥ		win	DLH Divisor Latch High Upper 8 bits of a 16-bit, read/write, Divisor Latch register that contains the baud rate divisor for the UART. This register may only be accessed when the DLAB bit (LCR[7]) is set and the UART is not busy (USR[0] is zero). The output baud rate is equal to the serial clock (sclk) frequency divided by sixteen times the value of the baud rate divisor, as follows: baud rate = (serial clock freq) / (16 * divisor). Note that with the Divisor Latch Registers (DLL and DLH) set to zero, the baud clock is disabled and no serial communications occur. Also, once the DLH is set, at least 8 clock cycles of the slowest UART clock should be
7:0	R/W	0	allowed to pass before transmitting or receiving data.

7.4.7.5. UART Interrupt Enable Register

Offset: 0x04			Register Name: UART_IER_REG		
Bit	R/W	Default/Hex	Description		
31:8	/	/	/		
			PTIME		
			Programmable THRE Interrupt Mode Enable		
			This is used to enable/disable the generation of THRE Interrupt.		
			0: Disable		
7	R/W		1: Enable		
6:4	/	/	/		
3	R/W	0	EDSSI		

			Enable Modem Status Interrupt
			This is used to enable/disable the generation of Modem Status Interrupt.
			This is the fourth highest priority interrupt.
			0: Disable
			1: Enable
			ELSI
			Enable Receiver Line Status Interrupt
			This is used to enable/disable the generation of Receiver Line Status
			Interrupt. This is the highest priority interrupt.
			0: Disable
2	R/W	0	1: Enable
			ЕТВЕІ
			Enable Transmit Holding Register Empty Interrupt
			This is used to enable/disable the generation of Transmitter Holding
			Register Empty Interrupt. This is the third highest priority interrupt.
			0: Disable
1	R/W	0	1: Enable
			ERBFI
			Enable Received Data Available Interrupt
			This is used to enable/disable the generation of Received Data Available
			Interrupt and the Character Timeout Interrupt (if in FIFO mode and FIFOs
			enabled). These are the second highest priority interrupts.
			0: Disable
0	R/W	0	1: Enable

7.4.7.6. UART Interrupt Identity Register

Offset: 0x	Offset: 0x08		Register Name: UART_IIR_REG
Bit	R/W	Default/Hex	Description
31:8	/	V	/
			FEFLAG
			FIFOs Enable Flag
1 O .			This is used to indicate whether the FIFOs are enabled or disabled.
			00: Disable
7:6	R	0	11: Enable
5:4	/	/	/
			IID
			Interrupt ID
			This indicates the highest priority pending interrupt which can be one of
			the following types:
			0000: modem status
			0001: no interrupt pending
			0010: THR empty
			0100: received data available
			0110: receiver line status
3:0	R	0x1	0111: busy detect

1100: character timeout

Bit 3 indicates an interrupt can only occur when the FIFOs are enabled and used to distinguish a Character Timeout condition interrupt.

Interrupt ID	Priority Level	Interrupt Type	Interrupt Source	Interrupt Reset
0001	-	None	None	-
0110	Highest	Receiver line status	Overrun/parity/ framing	Reading the line status
			errors or break interrupt	register
0100	Second	Received data available	Receiver data available (non-FIFO mode or FIFOs disabled) or RCVR	Reading the receiver buffer register (non-FIFO mode or FIFOs disabled) or the FIFO
			FIFO trigger level	drops below the trigger level
			reached (FIFO mode and	(FIFO mode and FIFOs
			FIFOs enabled)	enabled)
1100	Second	Character timeout	No characters in or out	Reading the receiver buffer
		indication	of the RCVR FIFO during	register
			the last 4 character	101)
			times and there is at	
			least 1character in it	
			during	
			This time	
0010	Third	Transmit holding	Transmitter holding	Reading the IIR register (if
		register empty	register empty (Program	source of interrupt); or,
			THRE Mode disabled) or	writing into THR (FIFOs or
		.06/	XMIT FIFO at or below	THRE Mode not selected or
	•		threshold (Program	disabled) or XMIT FIFO above
	. 11		THRE Mode enabled)	threshold (FIFOs and THRE
	N_{III}			Mode selected and enabled).
0000	Fourth	Modem status	Clear to send or data set	Reading the Modem status
			ready or ring indicator	Register
			or data carrier detect.	
0			Note that if auto flow	
			control mode is enabled,	
			a change in CTS (that is,	
			DCTS set) does not	
			cause an interrupt.	
0111	Fifth	Busy detect indication	UART_16550_COMPATI	Reading the UART status
			BLE = NO and master	register
			has tried to write to the	
			Line Control Register	
			while the UART is busy	
			(USR[0] is set to one).	

7.4.7.7. UART FIFO Control Register

Offset: 0x08	Register Name: UART_FCR_REG	
--------------	-----------------------------	--

Bit	R/W	Default/Hex	Description
31:8	/	/	/
			RT
			RCVR Trigger
			This is used to select the trigger level in the receiver FIFO at which the
			Received Data Available Interrupt is generated. In auto flow control mode
			it is used to determine when the rts_n signal is de-asserted. It also
			determines when the dma_rx_req_n signal is asserted in certain modes of
			operation.
			00: 1 character in the FIFO
			01: FIFO ¼ full
			10: FIFO ½ full
7:6	W	0	11: FIFO-2 less than full
			TFT
			TX Empty Trigger
			Writes have no effect when THRE_MODE_USER = Disabled. This is used to
			select the empty threshold level at which the THRE Interrupts are
			generated when the mode is active. It also determines when the
			dma_tx_req_n signal is asserted when in certain modes of operation.
			00: FIFO empty
			01: 2 characters in the FIFO
			10: FIFO ¼ full
5:4	W	0	11: FIFO ½ full
			DMAM
			DMA Mode
			0: Mode 0
3	W	0	1: Mode 1
		'N'	XFIFOR
			XMIT FIFO Reset
			This resets the control portion of the transmit FIFO and treats the FIFO as
			empty. This also De-asserts the DMA TX request.
2	W	0	It is 'self-clearing'. It is not necessary to clear this bit.
)			RFIFOR
			RCVR FIFO Reset
			This resets the control portion of the receive FIFO and treats the FIFO as
			empty. This also De-asserts the DMA RX request.
1	W	0	It is 'self-clearing'. It is not necessary to clear this bit.
			FIFOE
			Enable FIFOs
			This enables/disables the transmit (XMIT) and receive (RCVR) FIFOs.
			Whenever the value of this bit is changed both the XMIT and RCVR
0	W	0	controller portion of FIFOs is reset.

7.4.7.8. UART Line Control Register

Offset: 0x0C	Register Name: UART_LCR_REG

Bit	R/W	Default/Hex	Description
31:8	/	/	
			DLAB
			Divisor Latch Access Bit
			It is writeable only when UART is not busy (USR[0] is zero) and always
			readable. This bit is used to enable reading and writing of the Divisor Latch
			register (DLL and DLH) to set the baud rate of the UART. This bit must be
			cleared after initial baud rate setup in order to access other registers.
			0: Select RX Buffer Register (RBR) / TX Holding Register(THR) and Interrupt
			Enable Register (IER)
			1: Select Divisor Latch LS Register (DLL) and Divisor Latch MS Register
7	R/W	0	(DLM)
			BC
			Break Control Bit
			This is used to cause a break condition to be transmitted to the receiving
			device. If set to one the serial output is forced to the spacing (logic 0) state.
			When not in Loopback Mode, as determined by MCR[4], the sout line is
			forced low until the Break bit is cleared. If SIR_MODE = Enabled and active
			(MCR[6] set to one) the sir_out_n line is continuously pulsed. When in
			Loopback Mode, the break condition is internally looped back to the
6	R/W	0	receiver and the sir_out_n line is forced low.
			EPS
			Even Parity Select
			It is writeable only when UART is not busy (USR[0] is zero) and always
			writable readable. This is used to select between even and odd parity,
		• ~	when parity is enabled (PEN set to one). Setting the LCR[5] is uset to
		.111	reverse the LCR[4].
		M_{A} ,	00: Odd Parity
	. (). ()		01: Even Parity
5:4	R/W	0	1X: Reverse LCR[4]
\cap			PEN
			Parity Enable
			It is writeable only when UART is not busy (USR[0] is zero) and always
			readable. This bit is used to enable and disable parity generation and
			detection in transmitted and received serial character respectively.
2	D (\A)	0	0: parity disabled
3	R/W	0	1: parity enabled STOP
			Number of stop bits
			It is writeable only when UART is not busy (USR[0] is zero) and always
			readable. This is used to select the number of stop bits per character that
			the peripheral transmits and receives. If set to zero, one stop bit is
			transmitted in the serial data. If set to one and the data bits are set to 5
			(LCR[1:0] set to zero) one and a half stop bits is transmitted. Otherwise,
2	R/W	0	two stop bits are transmitted. Note that regardless of the number of stop
_	117 7 7	_ ~	two stop bits are transmitted. Note that regardless of the hamber of stop

1			bits selected, the receiver checks only the first stop bit.	ĺ
			, ,	
			0: 1 stop bit	
			1: 1.5 stop bits when DLS (LCR[1:0]) is zero, else 2 stop bit	
			DLS	
			Data Length Select	
			It is writeable only when UART is not busy (USR[0] is zero) and always	
			readable. This is used to select the number of data bits per character that	
			the peripheral transmits and receives. The number of bit that may be	
			selected areas follows:	
			00: 5 bits	
			01: 6 bits	
			10: 7 bits	
1:0	R/W	0	11: 8 bits	

7.4.7.9. UART Modem Control Register

Offset: 0	Offset: 0x10		Register Name: UART_MCR_REG
Bit	R/W	Default/Hex	Description
31:7	/	/	1
			SIRE
			SIR Mode Enable
			0: IrDA SIR Mode disabled
6	R/W	0	1: IrDA SIR Mode enabled
			AFCE
			Auto Flow Control Enable
			When FIFOs are enabled and the Auto Flow Control Enable (AFCE) bit is set,
		· \	Auto Flow Control features are enabled.
			0: Auto Flow Control Mode disabled
5	R/W	0	1: Auto Flow Control Mode enabled
	7		LOOP
			Loop Back Mode
			0: Normal Mode
.0.			1: Loop Back Mode
			This is used to put the UART into a diagnostic mode for test purposes. If
			operating in UART mode (SIR_MODE != Enabled or not active, MCR[6] set
			to zero), data on the sout line is held high, while serial data output is
			looped back to the sin line, internally. In this mode all the interrupts are
			fully functional. Also, in loopback mode, the modem control inputs (dsr_n,
			cts_n, ri_n, dcd_n) are disconnected and the modem control outputs
			(dtr_n, rts_n, out1_n, out2_n) are looped back to the inputs, internally. If
			operating in infrared mode (SIR_MODE == Enabled AND active, MCR[6] set
			to one), data on the sir_out_n line is held low, while serial data output is
4	R/W	0	inverted and looped back to the sir_in line.
3:2	/	1	/
			RTS
1	R/W	0	Request to Send

			This is used to directly control the Request to Send (rts_n) output. The
			Request To Send (rts_n) output is used to inform the modem or data set
			that the UART is ready to exchange data. When Auto RTS Flow Control is
			not enabled (MCR[5] set to zero), the rts_n signal is set low by
			programming MCR[1] (RTS) to a high.In Auto Flow Control, AFCE_MODE ==
			Enabled and active (MCR[5] set to one) and FIFOs enable (FCR[0] set to
			one), the rts_n output is controlled in the same
			way, but is also gated with the receiver FIFO threshold trigger (rts_n is
			inactive high when above the threshold). The rts_n signal is De-asserted
			when MCR[1] is set low.
			0: rts_n De-asserted (logic 1)
			1: rts_n asserted (logic 0)
			Note that in Loopback mode (MCR[4] set to one), the rts_n output is held
			inactive high while the value of this location is internally looped back to an
			input.
			DTR
			Data Terminal Ready
			This is used to directly control the Data Terminal Ready (dtr_n) output. The
			value written to this location is inverted and driven
			out on dtr_n.
			0: dtr_n De-asserted (logic 1)
			1: dtr_n asserted (logic 0)
			The Data Terminal Ready output is used to inform the modem or data set
			that the UART is ready to establish communications.
			Note that in Loopback mode (MCR[4] set to one), the dtr_n output is held
			inactive high while the value of this location is internally looped back to an
0	R/W	0	input.

7.4.7.10. UART Line Status Register

Offset: 0x14			Register Name: UART_LSR_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	/
			FIFOERR
			RX Data Error in FIFO
			When FIFOs are disabled, this bit is always 0. When FIFOs are enabled, this
			bit is set to 1 when there is at least one PE, FE, or BI in the RX FIFO. It is
			cleared by a read from the LSR register provided there are no subsequent
7	R	0	errors in the FIFO.
			TEMT
			Transmitter Empty
			If the FIFOs are disabled, this bit is set to "1" whenever the TX Holding
			Register and the TX Shift Register are empty. If the FIFOs are enabled, this
			bit is set whenever the TX FIFO and the TX Shift Register are empty. In both
6	R	1	cases, this bit is cleared when a byte is written to the TX data channel.
5	R	1	THRE

	I		TX Holding Register Empty
			If the FIFOs are disabled, this bit is set to "1" whenever the TX Holding
			Register is empty and ready to accept new data and it is cleared when the
			CPU writes to the TX Holding Register.
			If the FIFOs are enabled, this bit is set to "1" whenever the TX FIFO is empty
			and it is cleared when at least one byte is written
			to the TX FIFO.
			BI
			Break Interrupt
			This is used to indicate the detection of a break sequence on the serial
			input data.
			If in UART mode (SIR_MODE == Disabled), it is set whenever the serial
			input, sin, is held in a logic '0' state for longer than the sum of start time +
			data bits + parity + stop bits.
			If in infrared mode (SIR_MODE == Enabled), it is set whenever the serial
			input, sir_in, is continuously pulsed to logic '0' for longer than the sum of
			start time + data bits + parity + stop bits. A break condition on serial input
			causes one and only one character, consisting of all zeros, to be received by
			the UART.
			In the FIFO mode, the character associated with the break condition is
			carried through the FIFO and is revealed when the character is at the top of
			the FIFO. Reading the LSR clears the BI bit. In the non-FIFO mode, the BI
4	R	0	indication occurs immediately and persists until the LSR is read.
			FE .
			Framing Error
			This is used to indicate the occurrence of a framing error in the receiver. A
			framing error occurs when the receiver does not detect a valid
			STOP bit in the received data.
		A_{A} .	In the FIFO mode, since the framing error is associated with a character
			received, it is revealed when the character with the framing error is at the
1			top of the FIFO. When a framing error occurs, the UART tries to
\bigcirc			resynchronize. It does this by assuming that the error was due to the start
			bit of the next character and then continues receiving the other bit i.e.
			•
			data, and/or parity and stop. It should be noted that the Framing Error (FE)
			bit (LSR[3]) is set if a break interrupt has
			occurred, as indicated by Break Interrupt (BI) bit (LSR[4]).
			0: no framing error
			1:framing error
			Reading the LSR clears the FE bit.
3	R	0	
			PE
			Parity Error
			This is used to indicate the occurrence of a parity error in the receiver if the
			Parity Enable (PEN) bit (LCR[3]) is set. In the FIFO mode, since the parity
2	R	0	error is associated with a character received, it is revealed when the

			character with the parity error arrives at the top of the FIFO. It should be
			noted that the Parity Error (PE) bit (LSR[2]) is set if a break interrupt has
			occurred, as indicated by Break Interrupt (BI) bit (LSR[4]).
			0: no parity error
			1: parity error
			Reading the LSR clears the PE bit.
			OE
			Overrun Error
			This occurs if a new data character was received before the previous data
			was read. In the non-FIFO mode, the OE bit is set when a new character
			arrives in the receiver before the previous character was read from the
			RBR. When this happens, the data in the RBR is overwritten. In the FIFO
			mode, an overrun error occurs when the FIFO is full and a new character
			arrives at the receiver. The data in the FIFO is retained and the data in the
			receive shift register is lost.
			0: no overrun error
			1: overrun error
1	R	0	Reading the LSR clears the OE bit.
			DR
			Data Ready
			This is used to indicate that the receiver contains at least one character in
			the RBR or the receiver FIFO.
			0: no data ready
			1: data ready
			This bit is cleared when the RBR is read in non-FIFO mode, or when the
0	R	0	receiver FIFO is empty, in FIFO mode.

7.4.7.11. UART Modem Status Register

Offset: 0x	(18		Register Name: UART_MSR_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	/
· O .			DCD
			Line State of Data Carrier Detect
			This is used to indicate the current state of the modem control line dcd_n.
			This bit is the complement of dcd_n. When the Data Carrier Detect input
			(dcd_n) is asserted it is an indication that the carrier has been detected by
			the modem or data set.
			0: dcd_n input is De-asserted (logic 1)
7	R	0	1: dcd_n input is asserted (logic 0)
			RI
			Line State of Ring Indicator
			This is used to indicate the current state of the modem control line ri_n.
			This bit is the complement of ri_n. When the Ring Indicator input (ri_n) is
			asserted it is an indication that a telephone ringing signal has been
6	R	0	received by the modem or data set.

rol line dsr_n. dy input I set is ready to
dy input
dy input
dy input
dy input
i set is ready to
ACD[O] (DTD)
/ICR[0] (DTR).
*
rol line cts_n.
input (cts_n) is
dy to exchange
(DTC)
(RTS).
as shanged
as changed
ted (low) and a
et when the
when the
an active-low
an delive low
as changed
J
CR[4] = 1),

			DDSR reflects changes on MCR[0] (DTR).
			Note: If the DDSR bit is not set and the dsr_n signal is asserted (low) and a
			reset occurs (software or otherwise), then the DDSR bit is set when the
			reset is removed if the dsr_n signal remains asserted.
			DCTS
			Delta Clear to Send
			This is used to indicate that the modem control line cts_n has changed
			since the last time the MSR was read.
			0: no change on ctsdsr_n since last read of MSR
			1: change on ctsdsr_n since last read of MSR
			Reading the MSR clears the DCTS bit. In Loopback Mode (MCR[4] = 1), DCTS
			reflects changes on MCR[1] (RTS).
			Note: If the DCTS bit is not set and the cts_n signal is asserted (low) and a
			reset occurs (software or otherwise), then the DCTS bit is set when the
0	R	0	reset isremoved if the cts_n signal remains asserted.

7.4.7.12. UART Scratch Register

Offset: 0x1C			Register Name: UART_SCH_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	/
			SCRATCH_REG Scratch Register
			This register is for programmers to use as a temporary storage space. It has
7:0	R/W	0	no defined purpose in the UART.

7.4.7.13. UART Status Register

Offset: 0x	7C		Register Name: UART_USR_REG
Bit	R/W	Default/Hex	Description
31:5	/	/	/
			RFF
			Receive FIFO Full
			This is used to indicate that the receive FIFO is completely full.
			0: Receive FIFO not full
			1: Receive FIFO Full
4	R	0	This bit is cleared when the RX FIFO is no longer full.
			RFNE
			Receive FIFO Not Empty
			This is used to indicate that the receive FIFO contains one or more entries.
			0: Receive FIFO is empty
			1: Receive FIFO is not empty
3	R	0	This bit is cleared when the RX FIFO is empty.
			TFE
			Transmit FIFO Empty
			This is used to indicate that the transmit FIFO is completely empty.
2	R	1	0: Transmit FIFO is not empty

			1: Transmit FIFO is empty
			This bit is cleared when the TX FIFO is no longer empty.
			TFNF
			Transmit FIFO Not Full
			This is used to indicate that the transmit FIFO in not full.
			0: Transmit FIFO is full
			1: Transmit FIFO is not full
1	R	1	This bit is cleared when the TX FIFO is full.
			BUSY
			UART Busy Bit
			0: Idle or inactive
0	R	0	1: Busy

7.4.7.14. UART Transmit FIFO Level Register

Offset: 0	x80		Register Name: UART_TFL_REG
Bit	R/W	Default/Hex	Description
31:7	/	/	
			TFL
			Transmit FIFO Level
6:0	R	0	This is indicates the number of data entries in the transmit FIFO.

7.4.7.15. UART Receive FIFO Level Register

Offset: 0x84			Register Name: UART_RFL_REG
Bit	R/W	Default/Hex	Description
31:7	/	1	
		• •	RFL
		. 1/// "	Receive FIFO Level
6:0	R	0	This is indicates the number of data entries in the receive FIFO.

7.4.7.16. UART Halt TX Register

Offset: 0)xA4		Register Name: UART_HALT_REG
Bit	R/W	Default/Hex	Description
31:6	/	/	/
			SIR_RX_INVERT
			SIR Receiver Pulse Polarity Invert
			0: Not invert receiver signal
5	R/W	0	1: Invert receiver signal
			SIR_TX_INVERT
			SIR Transmit Pulse Polarity Invert
			0: Not invert transmit pulse
4	R/W	0	1: Invert transmit pulse
3	/	/	/
			CHANGE_UPDATE
			After the user using HALT[1] to change the baudrate or LCR configuration,
2	R/W	0	write 1 to update the configuration and waiting this bit self clear to 0 to

			finish update process. Write 0 to this bit has no effect.
			1: Update trigger, Self clear to 0 when finish update.
			CHCFG_AT_BUSY
			This is an enable bit for the user to change LCR register configuration
			(except for the DLAB bit) and baudrate register (DLH and DLL) when the
			UART is busy (USB[0] is 1).
1	R/W	0	1: Enable change when busy
			HALT_TX
			Halt TX
			This register is use to halt transmissions for testing, so that the transmit
			FIFO can be filled by the master when FIFOs are implemented and enabled.
			0 : Halt TX disabled
			1 : Halt TX enabled
			Note: If FIFOs are not enabled, the setting of the halt TX register has no
0	R/W	0	effect on operation.

7.4.7.17. UART DBG DLL Register

Offset: 0xB0			Register Name: UART_DBG_DLL_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	1
7:0	R/W	0	DEBUG DLL

7.4.7.18. UART DBG DLH Register

Offset: 0xB4			Register Name: UART_DBG_DLH_REG
Bit	R/W	Default/Hex	Description
31:8	/	1	1
7:0	R/W	0	DEBUG DLH

7.5. RSB

7.5.1. Overview

The reduced serial bus(RSB) Host Controller is designed to communicate with RSB Device using two push-pull wires. It supports a simplified two wire protocol (RSB) on a push-pull bus. The transfer speed can be up to 20MHz and the performance will be improved much.

7.5.2. Feature

The RSB includes the following features:

- Lufication Support industry-standard AMBA Peripheral Bus (APB) and it is fully compliant with the AMBA Specification,
- Support speed up to 20MHz with ultra low power
- Support Push-Pull bus
- Support Host mode
- Support programmable output delay of CD signal
- Support parity check for address and data transmission
- Support multi-devices

7.5.3. Terminology Definition

TERM	Description
CK	A line that is used to transmit clock from Host to Device
CD	A line that is used to transmit Command and Data between Host and Device
DA	Device Address is a 16bits address that is the ID of each type device.
RTA	Run-Time Address is an 8bits address that is used to address device during Read or Write transmission.
	The valid RTA is 0x17 0x2D 0x3A 0x4E 0x59 0x63 0x74 0x8B 0x9C 0xA6 0xB1 0xC5 0xD2 0xE8 and 0xFF.
HD	Host to Device Handshake is used to change the ownership of CD from Host to Device.
DH	Device to Host Handshake is used to change the ownership of CD from Device to Host.
SB	Start Bit: a HIGH to LOW transition on the CD while CK is high.

7.5.4. RSB Command Set

Command	Value	Description
SRTA	0xE8	Set Run-Time-Address
RD8	0x8B	Read one byte from Device
RD16	0x9C	Read two bytes from Device
RD32	0xA6	Read four bytes from Device
WR8	0x4E	Write one byte to Device
WR16	0x59	Write two bytes to Device
WR32	0x63	Write four bytes to Device

7.5.5. Software Operation Flow

RSB System Initialization

RSB Read from Device

FOr Allwin

thusiasts

RSB Write to Device

7.5.6. RSB General Specification

RSB uses push-pull bus, and supports multi-devices. It uses CK as clock and uses CD to transmit command and data. The Bus Topology is showed below:

RSB Bus Topology

The start bit marks the beginning of a transaction. The Start bit is defined as a HIGH to LOW transition on the CD while CK is high.

Start signal

RSB protocol uses parity bit to check the correction of address and data.

ACK bit is the acknowledgement from device to host, The ACK is low active. When device finds the parity bit is error, it will not send ACK to host, so host can know that an error happens in the transaction.

Both Host and Device can drive the CD, so there are two handshakes, HD (host to device) and DH (device to host), for Host and device to convert the direction of data transmission.

HD Handshake

DH Handshake

To improve transaction efficiency and to be flexible in device address assignment, RSB use Device Address (DA) and Run-Time Address (RTA). RTA is assigned dynamically by host. Host software shall ensure that different device has different RTA in the same system. Device's default RTA is 0 and 0 is the reserved address. If RTA is 0 when setting RTA, the setting is invalid.

There are three command types in RSB:

1) Set run-time address (RTA): It is used to set run time address (RTA) for different devices in the same system. There are 15 devices in a system at most. The RTA can be selected from the RTA code set and a device's RTA can be modified many times by using set run-time address command.

SRTA Timing

2) Read command: It is used to read data from device. It has byte, half word and word operation. When the device

receives the command, they shall check if the command's RTA matches their own RTA.

Read Timing

3) Write command: It is used to write data to the devices. It has byte, half word and word operation. When the device receives the command, they shall check if the command's RTA matches their own RTA.

Write Timing

7.5.7. RSB Controller Register List

Module Name	Base Address	
RSB	0x08003400	67

Register Name	Offset	Description
RSB_CTRL_REG	0x0000	RSB Control Register
RSB_CCR_REG	0x0004	RSB Clock Control Register
RSB_INTE_REG	0x0008	RSB Interrupt Enable Register
RSB_STAT_REG	0x000C	RSB Status Register
RSB_AR_REG	0x0010	RSB Address Register
RSB_DATA_REG	0x001C	RSB Data Buffer Register
RSB_LCR_REG	0x0024	RSB Line Control register
RSB_DMCR_REG	0x0028	RSB Device Mode Control register
RSB_CMD_REG	0x002C	RSB Command Register
RSB_DAR_REG	0x0030	RSB Device address Register

7.5.8. RSB Register Description

7.5.8.1. RSB Control Register

Offset:	0x00		Register Name: RSB_CTRL_REG
Bit	R/W	Default/Hex	Description
			START_TRANS
			Write '1' to this bit will start a new transmission with the configuration of other
			registers. It is cleared to '0' automatically when the transaction completes or an
7	R/W	0	error happens in the transmission.
			ABORT_TRANS
			Write '1' to this bit will abort the current transmission. It is cleared to '0'
6	R/W	0	automatically when the transmission has been aborted.
5:2	/	/	/
			GLOBAL_INT_ENB
			Global interrupt enable bit
1	R/W	0	1 – enable interrupt

			0 – disable interrupt
			Soft Reset
			Write '1' to this bit will reset the controller into default state. All of the status of
			controller will be cleared. And this bit will be cleared to '0' automatically when
0	R/W	0	reset operation completes.

7.5.8.2. RSB Clock Control Register

Offset: 0x04			Register Name: RSB_CCR_REG
Bit	R/W	Default/Hex	Description
31:11	/	/	/
			CD_ODLY
10:8	R/W	0	CD output delay Delay time of n source clock cycles before output CD signal.
			CK_DIV
7:0	R/W	0	$F_{ck} = F_{source} / 2*(divider+1)$

7.5.8.3. RSB Interrupt Enable Register

Offset: 0	0x08		Register Name: RSB_INTE_REG
Bit	R/W	Default/Hex	Description
31:3	/	/	1
			LOAD_BSY_ENB
			Loading Busy Interrupt Enable
			1 – enable
2	R/W	0	0 – disable
			TRANS_ERR_ENB
			Transfer Error Interrupt Enable
			1 – enable
1	R/W	0	0 – disable
		IIIA .	TRANS_OVER_ENB
			Transfer complete Interrupt Enable
•			1 – enable
0	R/W	0	0 – disable

7.5.8.4. RSB Status Register

Offset: 0x0C			Register Name: RSB_INTS_REG
Bit	R/W	Default/Hex	Description
31:17	/	/	/
			TRANS_ERR_ACK.
			If a negative ACK is received from Device, then this bit is set to '1' by hardware.
16	R	0	This bit is cleared when a new transmission is started.
15:12	/	/	/
			TRANS_ERR_DATA
			If the parity check of 1 st byte is negative, then bit8 is set to '1' by hardware.
			If the parity check of 2 nd byte is negative, then bit9 is set to '1' by hardware; and
			so on.
11:8	R	0	These bits are cleared when a new transmission is started.

7:3	/	/	/
			LOAD_BSY
			Loading Busy Flag
			If software writes any control registers during transmission, this bit will be set to
			'1' .
			If LOAD_BSY_ENB=1, an interrupt will be generated.
2	R/W	0	Software can clear this flag by writing '1' to this bit.
			TRANS_ERR
			Transfer Error Flag
			If an error happened during transmission, This bit will be set to '1'.
			If TRANS_ERR_ENB=1, an interrupt will be generated.
1	R/W	0	Software can clear this flag by writing '1' to this bit.
			TRANS_OVER
			Transfer Over Flag
			If the transmission has transferred over, this bit is set to '1'.
			If TRANS_OVER_ENB=1, an interrupt will be generated.
0	R/W	0	Software can clear this flag by writing '1' to this bit.

7.5.8.5. RSB Address Register

Offset: 0x10			Register Name: RSB_AR_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	
			ADDR
7:0	R/W	0	The ADDR is send to device during Read and Write command.

7.5.8.6. RSB Data Buffer Register

Offset: 0x1C			Register Name: RSB_DATA_REG
Bit	Bit R/W Default/Hex		Description
	1		RSB DATA
			If the command is configured as read, Software can read this register to get the
	da		data from device; If the command is configured as write, Software can write this
register to send the data to device. If the command is rd8 or wr8, then the low			register to send the data to device.
			If the command is rd8 or wr8, then the low byte is active;
			If the command is rd16 or wr16, then the low two byte is active;
31:0 R/W 0 If the command is rd3		0	If the command is rd32 or wr32, then the whole word is active

7.5.8.7. RSB Line Control Register

Offset: 0x24			Register Name: RSB_LCR_REG	
Bit	R/W	Default/Hex	Description	
31:6	/	/	/	
			CK_STATE	
			Current state of CK pin	
			0 – low	
5	R	1	1 - high	
4	R	1	CD_STATE	

İ		I		
			Current state of CD pin	
			0 – low	
			1 – high	
			CK_CTL	
			CK line state control bit	
			When line control mode is enabled (bit[2] set), value of this bit decide the	
			output level of CK	
			0 – output low level	
3	R/W	1	1 – output high level	
			CK_CTL_EN	
			CK line state control enable	
			When this bit is set, the state of CK is control by the value of bit[3].	
			0-disable CK line control mode	
2	R/W	0	1-enable CK line control mode	
			CD_CTL	
			CD line state control bit	
			When line control mode is enabled (bit[0] set), value of this bit decide the	
			output level of CD	
			0 – output low level	
1	R/W	1	1 – output high level	
			CD_CTL_EN	
			CD line state control enable	
			When this bit is set, the state of CD is control by the value of bit [1].	
			0-disable CD line control mode	
0	R/W	0	1-enable CD line control mode	

7.5.8.8. RSB Device Mode Control Register

Offset: 0x28		IN	Register Name: RSB_DMCR_REG
Bit	Bit R/W Default/Hex		Description
			DEVICE_MODE_START
			When set to '1', host will send DEVICE_MODE to device to switch the device's bus
-O'			mode from NTWI to RSB.
31	R/W	0	This bit will be self-cleared when DEVICE_MODE is sent onto the RSB bus.
30:24	30:24 / /		1
			DEVICE_MODE Data
23:0	R/W	0x3e3e00	The data send to device during DEVICE_MODE

7.5.8.9. RSB Command Register

Offset: 0x2C			Register Name: RSB_CMD_REG
Bit R/W Default/Hex		Default/Hex	Description
31:8	/	/	1
			CMD_IDX
7:0	R/W	0	command index

7.5.8.10. RSB Device Address Register

Offset: 0x30			Register Name: RSB_DAR_REG
Bit R/W Default/Hex		Default/Hex	Description
31:24	/	/	/
			RTA
23:16	R/W	0	Run-Time Address
			DA
15:0	R/W	0	Device Address

7.6. CIR Receiver

7.6.1. Overview

CIR receiver is implemented in hardware to save CPU resource. It samples the input signals on the programble frequency and records these samples into RX FIFO when one CIR signal is found on the air. The CIR receiver uses Run-Length Code (RLC) to encode pulse width, and the encoded data is buffered in a 64 levels and 8-bit width RX FIFO: the MSB bit is used to record the polarity of the receiving CIR signal (The high level is represented as 1 and the low level is represented as 0), and the rest 7 bits are used for the length of RLC. The maximum length is 128. If the duration of one level (high or low) is more than 128, another byte is used. Since there are always some noises in the air, a threshold thusiasts can be set to filter the noises to reduce system loading and improve system stability.

7.6.2. Feature

The CIR includes the following features:

- Support APB 16-bits bus width
- Full physical layer implementation
- Support CIR for remote control
- 64x8bits FIFO for data buffer
- Programmable FIFO threshold

7.6.3. Timing

CIR contains many protocols which designed by different manufacturers. Here to NEC protocol as an example: A message is started by a 9ms AGC burst, which was used to set the gain of the earlier IR receivers. This AGC burst is then followed by a 4.5ms space, which is then followed by the address and command.

sch,

Bit definition: the logical "1" takes 2.25ms to transmit, while a logical "0" is only 1.12ms.

Bit Definition

Timing for a message:

7.6.4. CIR Receiver Register List

Module Name	Base Address
CIR	0x01C22C00

Register Name	Offset	Description
CIR_CTRL_REG	0x00	CIR Control Register
CIR_RXCTL_REG	0x10	CIR Receiver Configure Register
CIR_RXFIFO_REG	0x20	CIR Receiver FIFO Register
CIR_RXINT_REG	0x2C	CIR Receiver Interrupt Control Register
CIR_RXSTA_REG	0x30	CIR Receiver Status Register
CIR_CONFIG_REG	0x34	CIR Configure Register

7.6.5. CIR Receiver Register Description

7.6.5.1. CIR Control Register

7.6.5. CIR Receiver Register Description 7.6.5.1. CIR Control Register			
Offset: 0:	k00		Register Name: CIR_CTRL_REG
Bit	R/W	Default/Hex	Description
31:9	/	/	1
8	R/W	0	CGPO General Program Output (GPO) Control in CIR mode for TX Pin 0: Low level 1: High level
7:6	/	/	1. High level
5:4	R/W	oNini	CIR ENABLE 00~10: Reserved 11: CIR mode enable
3:2	/	V	/.
O.			RXEN Receiver Block Enable 0: Disable
1	R/W	0	1: Enable
			GEN Global Enable A disable on this bit overrides any other block or channel enables and flushes all FIFOs. 0: Disable
0	R/W	0	1: Enable

7.6.5.2. CIR Receiver Configure Register

Offset: 0x10			Register Name: CIR_RXCTL_REG
Bit	R/W	Default/Hex	Description
31:3	/	/	/
2	R/W	1	RPPI

			Receiver Pulse Polarity Invert
			0: Not invert receiver signal
			1: Invert receiver signal
1:0	/	/	/

7.6.5.3. CIR Receiver FIFO Register

Offset: 0x20			Register Name: CIR_RXFIFO_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	/
7:0	R	0	Receiver Byte FIFO

7.6.5.4. CIR Receiver Interrupt Control Register

Offset: 0x2C			Register Name: CIR_RXINT_REG
Bit	R/W	Default/Hex	Description
31:14	/	/	1
			RAL
			RX FIFO Available Received Byte Level for interrupt and DMA request
13:8	R/W	0	TRIGGER_LEVEL = RAL + 1
			DRQ_EN
			RX FIFO DMA Enable
			0: Disable
			1: Enable
			When set to '1', the Receiver FIFO DRQ is asserted if reaching RAL. The
5	R/W	0	DRQ is De-asserted when condition fails.
			RAI_EN
		:01	RX FIFO Available Interrupt Enable
		.1111	0: Disable
		A_A .	1: Enable
			When set to '1', the Receiver FIFO IRQ is asserted if reaching RAL. The IRQ
4	R/W	0	is De-asserted when condition fails.
3:2	1	/	/
			RPEI_EN
			Receiver Packet End Interrupt Enable
			0: Disable
1	R/W	0	1: Enable
			ROI_EN
			Receiver FIFO Overrun Interrupt Enable
			0: Disable
0	R/W	0	1: Enable

7.6.5.5. CIR Receiver Status Register

Offset: 0x30			Register Name: CIR_RXSTA_REG
Bit	R/W	Default/Hex	Description
31:15	/	/	/
14:8	R	0	RAC

			RX FIFO Available Counter
			0: No available data in RX FIFO
			1: 1 byte available data in RX FIFO
			2: 2 byte available data in RX FIFO
			64: 64 byte available data in RX FIFO
			STAT
			Status of CIR
			0:Idle
7	R	0	1:busy
			RA
			RX FIFO Available
			0: RX FIFO not available according its level
			1: RX FIFO available according its level
4	R/W	0	This bit is cleared by writing a '1'.
3:2	/	/	1
			RPE
			Receiver Packet End Flag
			0: STO was not detected. In CIR mode, one CIR symbol is receiving or not
			detected.
			1: STO field or packet abort symbol (7'b0000,000 and 8'b0000,0000 for
			MIR and FIR) is detected. In CIR mode, one CIR symbol is received.
1	R/W	0	This bit is cleared by writing a '1'.
			ROI
			Receiver FIFO Overrun
		Ya	0: Receiver FIFO not overrun
			1: Receiver FIFO overrun
0	R/W	0	This bit is cleared by writing a '1'.

7.6.5.6. CIR Configure Register

Offset: 0x34			Register Name: CIR_CONFIG_REG
Bit	R/W	Default/Hex	Description
31:25	/	/	/
			SCS2
			Bit2 of Sample Clock Select for CIR
24	R/W	0x0	This bit is defined by SCS bits below.
			ATHC
			Active Threshold Control for CIR
			0x0 –ATHR in Unit of (Sample Clock)
23	R/W	0x0	0x1 –ATHR in Unit of (128*Sample Clocks)
			ATHR
			Active Threshold for CIR
			These bits control the duration of CIR from Idle to Active State. The
			duration can be calculated by ((ATHR + 1)*(ATHC? Sample Clock:
22:16	R/W	0x0	128*Sample Clock)).

			ITHR				
				eshold for	CIR		
						decide whether the CIR command has been	
			received. If there is no CIR signal on the air, the receiver is staying in IDLE				
						will bring the receiver from IDLE status to	
					•	CIR is end, the inputting signal will keep the	
				-		level) for a long time. The receiver can use this	
			-			de that it has received the CIR command. The	
			_			ted. If the corresponding interrupt is enableD,	
					is asserted		
						al keeps one status (high or low level) for the	
					_	+ 1)*128 sample_clk), this means that the	
15:8	R/W	0x18	-			been finished.	
	1		NTHR				
			Noise Th	nreshold f	or CIR	: 25	
			When the duration of signal pulse (high or low level) is less than NTHR, the				
			pulse is	taken as r	noise and s	should be discarded by hardware.	
			0: all sar	mples are	recorded	into RX FIFO	
			1: If th	e signal i	is only or	ne sample duration, it is taken as noise and	
			discarded.				
			2: If the	signal is le	ess than (<	<=) two sample duration, it is taken as noise and	
			discarde	ed.	\circ		
				1			
			61: if th	ie signal i	s less than	n (<=) sixty-one sample duration, it is taken as	
7:2	R/W	0xa		d discard	ed.		
			SCS				
				T .	ct for CIR		
		'N'	SCS2	SCS[1]	SCS[0]	Sample Clock	
			0	0	0	ir_clk/64	
			0	0	1	ir_clk/128	
			0	1	0	ir_clk/256	
			0	1	1	ir_clk/512	
			1	0	0	ir_clk	
			1	0	1	Reserved	
			1	1	0	Reserved	
			1	1	1	Reserved	
1:0	R/W	0					

7.7. USB-OTG

7.7.1. Overview

The USB OTG is dual-role USB controller supporting Host and device functions. It can also be configured as a Host-only or Device-only controller, full compliant with the USB 2.0 Specification. The USB OTG can support high-speed (HS, 480-Mbps), full-speed (FS, 12-Mbps), and low-speed (LS, 1.5-Mbps) transfers in Host mode, support high-speed (HS, 480-Mbps) and full-speed (FS, 12-Mbps) in Device mode.

7.7.2. Feature

The USB-OTG includes the following features:

- 64-Byte Endpoint 0 for Control Transfer
- Support up to 6 User-Configurable Endpoints(TX Endpoint 1/2/3 and RX Endpoint 1/2/3) for Bulk, Isochronous,
 Control and Interrupt bi-directional transfers
- Support High-Bandwidth Isochronous & Interrupt transfers
- Support point-to-point and point-to-multipoint transfer in both Host and Peripheral mode

7.7.3. Functionalities Description

7.7.3.1. DMA Support

The USB-OTG supports DMA access or IO method to the FIFO for TX Endpoints 1-3 and RX Endpoints 1-3. For saving AHB bus bandwidth, one dedicated DMA operation is recommended. The method can be selected by CPU host. When BUS_SEL is '0' in the register of USB_EFR, Endpoints' FIFO is accessed by CPU host through IO method on ABH bus. When BUS_SEL is '1' in the register of USB_EFR, Endpoints' FIFO is accessed by dedicated DMA engine. Any operation of FIFO ports by CPU host is unpredictable. But CPU host can access other registers by AHB bus.

USB-OTG DMA Block Diagram

USB-OTG DMA Request Line Select

Since there is only one usb_req signal connected to dedicated DMA engine, but separate DMA request line for each TX endpoint and each RX endpoint in internal of USB. A total of six DMA request lines are implemented. The lines of DMA_REQ[0], DMA_REQ[1], DMA_REQ[2] are associated with TX EP1, EP2, EP3. The lines of DMA_REQ[4], DMA_REQ[5], DMA_REQ[6] are associated with Rx EP1, EP2, EP3. CPU host can select the source of usb_req signal for DMA request.

7.7.3.2. RAM Sharing

USB-OTG RAM Sharing Diagram

For saving memory area, 2K byte Single Port RAM is shared with other engines. When USB-OTG function is disabled, the RAM can be used by other engines. The single 2K bytes RAM with 32-bit width are requested by USB-OTG. General RAM controller can decide whether USB-OTG can use this RAM. In default state, the RAM is used by other engine. And when USB USE bit is set to '1' in General RAM controller, the RAM is used by USB-OTG. The General RAM controller is in

charge of the 2K bytes RAM address space allocation.

7.7.3.3. Power Save

For power saving, after system is powered and USB SIE and its PHY are reset, the clocks to SIE and PHY are gating in default state. The signal POWERDWN which is output by SIE is used for active its clock. It is de-asserted (asynchronously) under the following conditions:

When no session is in progress: AVALID going high; D+/D- going high When in Host Suspend mode: VBUSVALID going low; K state on the bus When in Peripheral Suspend mode: AVALID going low; K state on the bus

USB-OTG Interrupt, Wakeup Diagram

This signal is outputted to System interrupt controller and System Clock Management Unit.

7.7.3.4. Clock Source and Frequency

There are two clocks for USB-OTG SIE module. One is from AHB bus and one is from UTMI Transceiver which is called USB-OTG PHY.

Name	Description
USB_CLK	System clock (provided by AHB bus clock). This clock needs to be >30MHz and up to 180MHz
USB_XCLK	Transceiver Macrocell clock. 60MHz

7.8. Digital Audio Interface

7.8.1. Overview

The Digital Audio Interface can be configured as I2S interface or PCM interface by software. When configured as I2S interface, it can support the industry standard format for I2S, left-justified, or right-justified. PCM is a standard method used to digital audio for transmission over digital communication channels. It supports linear 13 or 16-bits linear or 8-bit u-law or A-law commanded sample formats at 8K samples/s and can receive and transmit on any selection of four of the first four slots following PCM SYNC.

7.8.2. Feature

The Digital Audio includes the following features:

- Supports industry-standard AMBA Peripheral Bus (APB) and it is fully compliant with the AMBA Specification,
 Revision 2.0
- Supports APB 32-bits bus width
- I2S or PCM configured by software
- Full-duplex synchronous serial interface
- Master / Slave Mode operation configured by software
- Audio data resolutions of 16, 20, 24
- I2S Audio data sample rate from 8kHz to 192kHz
- I2S Data format for standard I2S, Left Justified and Right Justified
- I2S support 2 channel output and 2 channel input
- PCM supports linear sample (8-bits or 16-bits), 8-bits u-law and A-law companded sample
- One 128x24-bits FIFO for data transmit, one 64x24-bits FIFO for data receive
- Programmable FIFO thresholds
- Interrupt and DMA Support
- Two 32-bits Counters for AV sync application
- Loopback mode for test

7.8.3. Signal Description

7.8.3.1. Digital Audio Interface Pin List

Signal Name	Direction(M)	Description	Pin
DA_LRCK	1/0	Digital Audio Sample Rate Clock/Sync	PB1/PD9/PE4/PA1
DA_BCLK	1/0	Digital Audio Serial Clock	PBO/PD8/PE3/PA0
DA_SDO0	0	Digital Audio Serial Data Output	PB3/PD11/PE6/PA3
DA_SDI	1	Digital Audio Serial Data Output	PB2/PD10/PE5/PA2
DA_MCLK	0	Digital Audio MCLK Output	PD7

7.8.3.2. Digital Audio Interface MCLK and BCLK

The Digital Audio Interface can support sampling rates from 128fs to 768fs, where fs is the audio sampling frequency typically 32kHz, 44.1kHz, 48kHz or 96kHz. For different sampling frequency, the tables list the coefficient value of

MCLKDIV and BCLKDIV.

Sampling Rate	1225	1006	27.05	2016	7.06	
(kHz)	128fs	192fs	256fs	384fs	512fs	768fs
8	24	16	12	8	6	4
16	12	8	6	4	Х	2
32	6	4	Х	2	Х	1
64	Х	2	Х	1	Х	X
128	Х	1	Х	Х	Х	Х
12	16	Х	8	Х	4	X
24	8	Х	4	Х	2	X
48	4	Х	2	Х	1	Х
96	2	Х	1	Х	Х	X
192	1	Х	Х	Х	Х	Х

MCLKDIV value for 24.576MHz Audio Serial Frequency

Sampling Rate					151	
(kHz)	128fs	192fs	256fs	384fs	512fs	768fs
11.025	16	Х	8	X	4	Х
22.05	8	Х	4	X	2	Х
44.1	4	Х	2	Х	1	Х
88.2	2	Х	1	Х	Х	Х
176.4	1	Х	Х	Х	Х	Х

MCLKDIV value for 22.5792 MHz Audio Serial Frequency

Word Select						
Size	128fs	192fs	256fs	384fs	512fs	768fs
16	4	6	8	12	16	Х
24	Х	4	Х	8	Х	16
32	2	Х	4	6	8	12

BCLKDIV value for Different Word Select Size

7.8.3.3. Digital Audio Interface Clock Source and Frequency

There are two clocks for Digital Audio Interface. One is from APB bus and one is from Audio PLL.

Name	Description
Audio_PLL	24.576Mhz or 22.528Mhz generated by Audio PLL
APB_CLK	APB bus system clock. In I2S mode, it is requested >= 0.25 BCLK. In PCM mode, it is
	requested >= 0.5 BCLK.

7.8.4. Functionalities Description

7.8.4.1. Typical Applications

The I2S and PRCM provide a serial bus interface for stereo and multichannel audio data. This interface is most commonly used by consumer audio market, including compact disc, digital audio tape, digital sound processors, and digital TV-sound.

7.8.4.2. Functional Block Diagram

The digital audio interface block diagram is shown below:

Digital Audio Interface System Block Diagram

7.8.4.3. Operation Principle

Digital Audio Interface Timing Diagram:

7.8.5. Operation Modes

The software operation of the I2S/PCM is divided into five steps: system setup, I2S/PCM initialization, the channel setup, DMA setup and Enable/Disable module. These five setups are described in detail in the following sections.

7.8.5.1. System setup and I2S/PCM initialization

The first step in the System setup is properly programming the GPIO. Since the I2S/PCM port is a multiplex pin, you can find the function in the pin multiplex specification. The clock source for the I2S/PCM should be followed. At first you must reset the audio PLL through the PLL_ENABLE bit of PLL_AUDIO_CTRL_REG in the CCU. The second step, you must setup the frequency of the audio pll in the PLL_AUDIO_CTRL_REG. After that, you must open the I2S/PCM gating through the DAUDIO_CLK_REG when you checkout that the LOCK bit of PLL_AUDIO_CTRL_REG become 1. At last, you must reset the I2S/PCM in the APBO_RST_REG and open the IIS/PCM bus gating in the BUS_GATING_REG2.

After the system setup, the register of I2S/PCM can be setup. At first, you should initialization the I2S/PCM. You should close the globe enable bit(DA_CTL[0]), TX enable bit(DA_CTL[2]) and RX enable bit(DA_CTL[1]) by writing 0 to it. After that, you must clear the TX/RX FIFO by writing 0 to register DA_FCTL[25:24]. At last, you can clear the TX/RX FIFO counter by writing 0 to DA_TXCNT/DA_RXCNT.

7.8.5.2. The channel setup and DMA setup

Before the usage and control of I2S/PCM, you should setup the I2S/PCM of mater and slave. The configuration can be referred to the protocol of I2S/PCM. Then, you can set the translation mode, the sample precision, the wide of slot, the frame mode and the trigger level. The register set can be found in the spec.

The I2S/PCM supports three methods to transfer the data. The most common way is DMA, the set of DMA can be found in the DMA spec. In this module, you need to enable the DRQ.

7.8.5.3. Enable and disable the I2S/PCM

To enable the function, you can enable TX/RX by writing the DA_CTL[2:1]. After that, you must enable I2S/PCM by writing the Globe Enable bit to 1 in the DA_CTL. The disable process is to write the Globe Enable to 0.

7.8.6. Digital Audio Interface Register List

Module Name	Base Address
DA	0x01C22000

Register Name	Offset	Description
DA_CTRL_REG	0x00	Digital Audio Control Register
DA_FAT_REG0	0x04	Digital Audio Format Register 0
DA_FAT_REG1	0x08	Digital Audio Format Register 1
DA_TXFIFO_REG	0x0C	Digital Audio TX FIFO Register
DA_RXFIFO_REG	0x10	Digital Audio RX FIFO Register
DA_FCTL_REG	0x14	Digital Audio FIFO Control Register
DA_FSTA_REG	0x18	Digital Audio FIFO Status Register
DA_INT_REG	0x1C	Digital Audio Interrupt Control Register
DA_ISTA_REG	0x20	Digital Audio Interrupt Status Register
DA_CLKD_REG	0x24	Digital Audio Clock Divide Register
DA_TXCNT_REG	0x28	Digital Audio RX Sample Counter Register
DA_RXCNT_REG	0x2C	Digital Audio TX Sample Counter Register
DA_TXCHSEL_REG	0x30	Digital Audio TX Channel Select register
DA_TXCHMAP_REG	0x34	Digital Audio TX Channel Mapping Register
DA_RXCHSEL_REG	0x38	Digital Audio RX Channel Select register
DA_RXCHMAP_REG	0x3C	Digital Audio RX Channel Mapping Register

7.8.7. Digital Audio Interface Register Description

7.8.7.1. Digital Audio Control Register

Offset: 0	x00		Register Name: DA_CTRL_REG
Bit	R/W	Default/Hex	Description
31:9	/	/	/
			SDO0_EN
			0: Disable
8	R/W	0	1: Enable
7	/	/	/
			ASS
			Audio sample select when TX FIFO under run
			0: Sending zero
6	R/W	0	1: Sending last audio sample
			MS
			Master Slave Select
			0: Master
5	R/W	0	1: Slave
4	R/W	0	PCM

	1	1	0: I2S Interface
			1: PCM Interface
			LOOP
			Loop back test
			0: Normal mode
			1: Loop back test
3	R/W	0	When set '1', connecting the SDO with the SDI in Master mode.
			TXEN
			Transmitter Block Enable
			0: Disable
2	R/W	0	1: Enable
			RXEN
			Receiver Block Enable
			0: Disable
1	R/W	0	1: Enable
			GEN
			Globe Enable
			A disable on this bit overrides any other block or channel enables and flushes
			all FIFOs.
			0: Disable
0	R/W	0	1: Enable

7.8.7.2. Digital Audio Format Register 0

Offset: 0	x04	-	Register Name: DA_FAT_REG0
Bit	R/W	Default/Hex	Description
31:8	/	/	
			LRCP
		'N'	Left/ Right Clock Parity
			0: Normal
			1: Inverted
			In DSP/ PCM mode(only for short frame)
· O ·			0: MSB is available on 2nd BCLK rising edge after LRC rising edge
7	R/W	0	1: MSB is available on 1st BCLK rising edge after LRC rising edge
			BCP
			BCLK Parity
			0: Normal
6	R/W	0	1: Inverted
			SR
			Sample Resolution
			00: 16-bits
			01: 20-bits
			10: 24-bits
5:4	R/W	0	11: Reserved
			WSS
3:2	R/W	0x3	Word Select Size

			00: 16 BCLK
			01: 20 BCLK
			10: 24 BCLK
			11: 32 BCLK
			FMT
			Serial Data Format
			00: Standard I2S Format
			01: Left Justified Format
			10: Right Justified Format
1:0	R/W	0	11: Reserved

7.8.7.3. Digital Audio Format Register 1

Offset: 0	x08		Register Name: DA_FAT_REG1
Bit	R/W	Default/Hex	Description
31:15	/	/	1
			PCM_SYNC_PERIOD
			PCM SYNC Period Clock Number
			000: 16 BCLK period
			001: 32 BCLK period
			010: 64 BCLK period
			011: 128 BCLK period
			100: 256 BCLK period
14:12	R/W	0x4	Others : Reserved
			PCM_SYNC_OUT
			PCM Sync Out
		• •	0: Enable PCM_SYNC output in Master mode
			1: Suppress PCM_SYNC whilst keeping PCM_CLK running. Some Codec utilize
11	R/W	0	this to enter a low power state.
			PCM Out Mute
10	R/W	0	Write 1 force PCM_OUT to 0
\bigcirc			MLS
			MSB / LSB First Select
			0: MSB First
9	R/W	0	1: LSB First
			SEXT
			Sign Extend (only for 16 bits slot)
			0: Zeros or audio gain padding at LSB position
			1: Sign extension at MSB position
			When writing the bit is 0, the unused bits are audio gain for 13-bit linear
			sample and zeros padding for 8-bit companding sample.
8	R/W	0	When writing the bit is 1, the unused bits are both sign extension.
			SI
			Slot Index
			00: the 1st slot
7:6	R/W	0	01: the 2nd slot

1		1	, and the second
			10: the 3rd slot
			11: the 4th slot
			SW
			Slot Width
			0: 8 clocks width
			1: 16 clocks width
			Notes: For A-law or u-law PCM sample, if this bit is set to 1, eight zero bits
5	R/W	1	are following with PCM sample.
			SSYNC
			Short Sync Select
			0: Long Frame Sync
			1: Short Frame Sync
4	R/W	0	It should be set '1' for 8 clocks width slot.
			RX_PDM
			PCM Data Mode
			00: 16-bits Linear PCM
			01: 8-bits Linear PCM
			10: 8-bits u-law
3:2	R/W	0	11: 8-bits A-law
			TX_PDM
			PCM Data Mode
			00: 16-bits Linear PCM
			01: 8-bits Linear PCM
			10: 8-bits u-law
1:0	R/W	0	11: 8-bits A-law

7.8.7.4. Digital Audio TX FIFO Register

Offset: 0	x0C	$I_{N_{i}}$	Register Name: DA_TXFIFO_REG
Bit	R/W Default/Hex		Description
			TX_DATA
			TX Sample
\cdot \bigcirc .			Transmitting left, right channel sample data should be written this register
			one by one. The left channel sample data is first and then the right channel
31:0	W	0	sample.

7.8.7.5. Digital Audio RX FIFO Register

Offset: 0	Offset: 0x10		Register Name: DA_RXFIFO_REG
Bit	R/W Default/Hex		Description
			RX_DATA
			RX Sample
			Host can get one sample by reading this register. The left channel sample
31:0	R	0	data is first and then the right channel sample.

7.8.7.6. Digital Audio FIFO Control Register

Offset: 0x14	Register Name: DA_FCTL_REG
--------------	----------------------------

FIFOSRC	Bit	R/W	Default/Hex	Description
1. APB bus 1. Analog Audio CODEC 1. Analog Audio				FIFOSRC
31				TX FIFO source select
30:26				0: APB bus
FTX FTX Write '1' to flush TX FIFO, self clear to '0'. FFX Write '1' to flush RX FIFO, self clear to '0'. 7	31	R/W	0	1: Analog Audio CODEC
25 R/W 0 Write '1' to flush TX FIFO, self clear to '0'. FRX 24 R/W 0 Write '1' to flush RX FIFO, self clear to '0'. 23:19 / / / TXTL TX FIFO Empty Trigger Level Interrupt and DMA request trigger level for TXFIFO normal condition Trigger Level = TXTL 11:10 / / / RXTL RX FIFO Trigger Level Interrupt and DMA request trigger level for RXFIFO normal condition 9:4 R/W 0xF Trigger Level = RXTL + 1 3 / / TXIM TX FIFO Input Mode (Mode 0, 1) 0: Valid data at the MSB of TXFIFO register 1: Valid data at the LSB of TXFIFO register Example for 20-bits transmitted audio sample: Mode 1: FIFO_I [23:0] = {4'h0, TXFIFO register. 10: Truncating received samples at high half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-DXFIFO [23:0] = {FIFO_O[19:0], 12'h0} Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 15'h0} Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 15'h0} Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 15'h0} Mode 2: RXFIFO[31:0] = {FIFO_O[19:0], 15'h0}	30:26	/	/	/
FRX Write '1' to flush RX FIFO, self clear to '0'. TXTL				FTX
24 R/W 0 Write '1' to flush RX FIFO, self clear to '0'. 23:19 / / 18:12 R/W X40 TXTL 18:12 R/W 0x40 Trigger Level = TXTL 11:10 / / 11:10 / / RXTL RX FIFO Trigger Level Interrupt and DMA request trigger level for RXFIFO normal condition 9:4 R/W 0xF Trigger Level = RXTL + 1 3 / / / TXIM TX FIFO Input Mode (Mode 0, 1) 0: Valid data at the MSB of TXFIFO register 1: Valid data at the LSB of TXFIFO register Example for 20-bits transmitted audio sample: Mode 0: FIFO_[[23:0] = {4'h0, TXFIFO[31:12]} Mode 1: FIFO_0[123:0] = {4'h0, TXFIFO[31:0]} RXOM RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 0: Expanding 'received sample sign bit at MSB of DA_RXFIFO register and low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_0[19:0], 12'h0} Mode 0: RXFIFO[31:0] = {FIFO_0[19:0], 12'h0} Mode 0: RXF	25	R/W	0	Write '1' to flush TX FIFO, self clear to '0'.
23:19 / / / TXTL TX FIFO Empty Trigger Level Interrupt and DMA request trigger level for TXFIFO normal condition Trigger Level = TXTL 11:10 / / RXTL RX FIFO Trigger Level Interrupt and DMA request trigger level for RXFIFO normal condition Trigger Level Interrupt and DMA request trigger level for RXFIFO normal condition Trigger Level = RXTL + 1 3 / / TXIM TX FIFO Input Mode (Mode 0, 1) 0: Valid data at the MSB of TXFIFO register 1: Valid data at the LSB of TXFIFO register Example for 20-bits transmitted audio sample: Mode 0: FIFO_I[23:0] = {4'h0, TXFIFO[31:12]} Mode 1: FIFO_I[23:0] = {4'h0, TXFIFO[19:0]} RXOM RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 10: Truncating received samples at high half-word of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {FIFO_O[19:0], 15'h0} Mode 2: RXFIFO[31:0] = {FIFO_O[19:0], 15'h0} Mode 2: RXFIFO[31:0] = {FIFO_O[19:0], 15'h0}				FRX
TXTL TX FIFO Empty Trigger Level Interrupt and DMA request trigger level for TXFIFO normal condition Trigger Level = TXTL 11:10	24	R/W	0	Write '1' to flush RX FIFO, self clear to '0'.
TX FIFO Empty Trigger Level Interrupt and DMA request trigger level for TXFIFO normal condition Trigger Level = TXTL 11:10 / / / RXTL RX FIFO Trigger Level Interrupt and DMA request trigger level for RXFIFO normal condition 9:4 R/W 0xF Trigger Level = RXTL + 1 3 / / / TXIM TX FIFO Input Mode (Mode 0, 1) 0: Valid data at the MSB of TXFIFO register 1: Valid data at the LSB of TXFIFO register Example for 20-bits transmitted audio sample: Mode 0: FIFO_I[23:0] = {4'h0, TXFIFO[31:12]} Mode 1: FIFO_I[23:0] = {4'h0, TXFIFO[19:0]} RXOM RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 10: Truncating received samples at high half-word of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_0[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {FIFO_0[19:0], 16'h0} Mode 2: RXFIFO[31:0] = {FIFO_0[19:4], 16'h0}	23:19	/	/	/
Interrupt and DMA request trigger level for TXFIFO normal condition Trigger Level = TXTL 11:10 / / / RXTL RX FIFO Trigger Level Interrupt and DMA request trigger level for RXFIFO normal condition 9:4 R/W 0xF Trigger Level = RXTL + 1 3 / / / TXIM TX FIFO Input Mode (Mode 0, 1) 0: Valid data at the MSB of TXFIFO register 1: Valid data at the LSB of TXFIFO register Example for 20-bits transmitted audio sample: Mode 0: FIFO_I[23:0] = {4'h0, TXFIFO[31:12]} Mode 1: FIFO_I[23:0] = {4'h0, TXFIFO[19:0]} RXOM RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 01: Expanding received samples at high half-word of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at high half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_0[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {FIFO_0[19:4], 16'h0} Mode 2: RXFIFO[31:0] = {FIFO_0[19:4], 16'h0}				TXTL
18:12 R/W 0x40 Trigger Level = TXTL 11:10 / / / / RXTL RX FIFO Trigger Level Interrupt and DMA request trigger level for RXFIFO normal condition 9:4 R/W 0xF Trigger Level = RXTL + 1 3 / / / TXIM TX FIFO Input Mode (Mode 0, 1) 0: Valid data at the MSB of TXFIFO register 1: Valid data at the LSB of TXFIFO register Example for 20-bits transmitted audio sample: Mode 0: FIFO_I[23:0] = {4'h0, TXFIFO[31:12]} Mode 1: FIFO_I[23:0] = {4'h0, TXFIFO[19:0]} RXOM RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 01: Expanding received sample sign bit at MSB of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {FIFO_O[19:0], FIFO_O[19:0]} Mode 2: RXFIFO[31:0] = {FIFO_O[19:0], FIFO_O[19:0]}				TX FIFO Empty Trigger Level
11:10 / / / RXTL RX FIFO Trigger Level Interrupt and DMA request trigger level for RXFIFO normal condition 9:4 R/W 0xF Trigger Level = RXTL + 1 3 / / / TXIM TX FIFO Input Mode (Mode 0, 1) 0: Valid data at the MSB of TXFIFO register 1: Valid data at the LSB of TXFIFO register Example for 20-bits transmitted audio sample: Mode 0: FIFO_I[23:0] = {4'h0, TXFIFO[31:12]} Mode 1: FIFO_I[23:0] = {4'h0, TXFIFO[19:0]} RXOM RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 10: Truncating received samples at high half-word of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_O[19:0], 12'h0} Mode 2: RXFIFO[31:0] = {FIFO_O[19:0], FIFO_O[19:0]} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}				Interrupt and DMA request trigger level for TXFIFO normal condition
RXTL RX FIFO Trigger Level Interrupt and DMA request trigger level for RXFIFO normal condition Trigger Level = RXTL + 1 3 / / / TXIM TX FIFO Input Mode (Mode 0, 1) 0: Valid data at the MSB of TXFIFO register 1: Valid data at the LSB of TXFIFO register Example for 20-bits transmitted audio sample: Mode 0: FIFO_I[23:0] = {4'h0, TXFIFO[31:12]} Mode 1: FIFO_I[23:0] = {4'h0, TXFIFO[31:12]} RXOM RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 10: Truncating received samples at high half-word of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {FIFO_O[19:0], 15'h0} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}	18:12	R/W	0x40	Trigger Level = TXTL
RX FIFO Trigger Level Interrupt and DMA request trigger level for RXFIFO normal condition 7	11:10	/	/	1
Interrupt and DMA request trigger level for RXFIFO normal condition Trigger Level = RXTL + 1 TXIM TX FIFO Input Mode (Mode 0, 1) 0: Valid data at the MSB of TXFIFO register 1: Valid data at the LSB of TXFIFO register Example for 20-bits transmitted audio sample: Mode 0: FIFO_I[23:0] = {4'h0, TXFIFO[31:12]} Mode 1: FIFO_I[23:0] = {4'h0, TXFIFO[19:0]} RXOM RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 01: Expanding received samples at high half-word of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_0[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_0[19:0], 15'h0} Mode 2: RXFIFO[31:0] = {FIFO_0[19:4], 16'h0}				RXTL
9:4 R/W 0xF Trigger Level = RXTL + 1 3 / / TXIM TX FIFO Input Mode (Mode 0, 1) 0: Valid data at the MSB of TXFIFO register 1: Valid data at the LSB of TXFIFO register Example for 20-bits transmitted audio sample: Mode 0: FIFO_I[23:0] = {4'h0, TXFIFO[31:12]} Mode 1: FIFO_I[23:0] = {4'h0, TXFIFO[19:0]} RXOM RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 01: Expanding received sample sign bit at MSB of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_0[19:0], FIFO_0[19:0]} Mode 1: RXFIFO[31:0] = {FIFO_0[19:0], FIFO_0[19:0]} Mode 2: RXFIFO[31:0] = {FIFO_0[19:4], 16'h0}				RX FIFO Trigger Level
TXIM TX FIFO Input Mode (Mode 0, 1) 0: Valid data at the MSB of TXFIFO register 1: Valid data at the LSB of TXFIFO register Example for 20-bits transmitted audio sample: Mode 0: FIFO_[[23:0] = {4'h0, TXFIFO[31:12]} Mode 1: FIFO_[[23:0] = {4'h0, TXFIFO[19:0]} RXOM RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 01: Expanding received sample sign bit at MSB of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at high half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_0[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_0[19:4], 16'h0}} Mode 2: RXFIFO[31:0] = {FIFO_0[19:4], 16'h0}				Interrupt and DMA request trigger level for RXFIFO normal condition
TXIM TX FIFO Input Mode (Mode 0, 1) 0: Valid data at the MSB of TXFIFO register 1: Valid data at the LSB of TXFIFO register Example for 20-bits transmitted audio sample: Mode 0: FIFO_[23:0] = {4'h0, TXFIFO[31:12]} Mode 1: FIFO_[[23:0] = {4'h0, TXFIFO[19:0]} RXOM RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 01: Expanding received sample sign bit at MSB of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_0[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {FIFO_0[19:4], 16'h0}	9:4	R/W	0xF	Trigger Level = RXTL + 1
TX FIFO Input Mode (Mode 0, 1) 0: Valid data at the MSB of TXFIFO register 1: Valid data at the LSB of TXFIFO register Example for 20-bits transmitted audio sample: Mode 0: FIFO_[[23:0] = {4'h0, TXFIFO[31:12]} Mode 1: FIFO_[[23:0] = {4'h0, TXFIFO[19:0]} RXOM RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 01: Expanding received sample sign bit at MSB of DA_RXFIFO register. 10: Truncating received samples at high half-word of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_O[19:0], 15'h0}} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}	3	/	/	
0: Valid data at the MSB of TXFIFO register 1: Valid data at the LSB of TXFIFO register Example for 20-bits transmitted audio sample: Mode 0: FIFO_I[23:0] = {4'h0, TXFIFO[31:12]} Mode 1: FIFO_I[23:0] = {4'h0, TXFIFO[19:0]} RXOM RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 01: Expanding received sample sign bit at MSB of DA_RXFIFO register. 10: Truncating received samples at high half-word of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_0[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {FIFO_0[19:4], 16'h0} Mode 2: RXFIFO[31:0] = {FIFO_0[19:4], 16'h0}				TXIM
1: Valid data at the LSB of TXFIFO register Example for 20-bits transmitted audio sample: Mode 0: FIFO_I[23:0] = {4'h0, TXFIFO[31:12]} Mode 1: FIFO_I[23:0] = {4'h0, TXFIFO[19:0]} RXOM RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 01: Expanding received sample sign bit at MSB of DA_RXFIFO register. 10: Truncating received samples at high half-word of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_O[19:4], 16'h0}} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}				TX FIFO Input Mode (Mode 0, 1)
Example for 20-bits transmitted audio sample: Mode 0: FIFO_I[23:0] = {4'h0, TXFIFO[31:12]} Mode 1: FIFO_I[23:0] = {4'h0, TXFIFO[19:0]} RXOM RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 01: Expanding received sample sign bit at MSB of DA_RXFIFO register. 10: Truncating received samples at high half-word of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}				0: Valid data at the MSB of TXFIFO register
Mode 0: FIFO_I[23:0] = {4'h0, TXFIFO[31:12]} Mode 1: FIFO_I[23:0] = {4'h0, TXFIFO[19:0]} RXOM RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 01: Expanding received sample sign bit at MSB of DA_RXFIFO register. 10: Truncating received samples at high half-word of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_O[19:4], 16'h0}} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}				1: Valid data at the LSB of TXFIFO register
R/W 0 Mode 1: FIFO_I[23:0] = {4'h0, TXFIFO[19:0]} RXOM RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 01: Expanding received sample sign bit at MSB of DA_RXFIFO register. 10: Truncating received samples at high half-word of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_O[19:4], 16'h0}} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}			•	Example for 20-bits transmitted audio sample:
RXOM RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 01: Expanding received sample sign bit at MSB of DA_RXFIFO register. 10: Truncating received samples at high half-word of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_O[19:4], 16'h0}} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}				Mode 0: FIFO_I[23:0] = {4'h0, TXFIFO[31:12]}
RX FIFO Output Mode (Mode 0, 1, 2, 3) 00: Expanding '0' at LSB of DA_RXFIFO register. 01: Expanding received sample sign bit at MSB of DA_RXFIFO register. 10: Truncating received samples at high half-word of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_O[19:4], 16'h0}} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}	2	R/W	0	Mode 1: FIFO_I[23:0] = {4'h0, TXFIFO[19:0]}
00: Expanding '0' at LSB of DA_RXFIFO register. 01: Expanding received sample sign bit at MSB of DA_RXFIFO register. 10: Truncating received samples at high half-word of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_O[19:4], 16'h0}} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}				RXOM
01: Expanding received sample sign bit at MSB of DA_RXFIFO register. 10: Truncating received samples at high half-word of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_O[19:4], 16'h0}} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}				RX FIFO Output Mode (Mode 0, 1, 2, 3)
10: Truncating received samples at high half-word of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_O[19]}, FIFO_O[19:0]} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}				00: Expanding '0' at LSB of DA_RXFIFO register.
10: Truncating received samples at high half-word of DA_RXFIFO register and low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_O[19]}, FIFO_O[19:0]} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}	· O ,			01: Expanding received sample sign bit at MSB of DA RXFIFO register.
low half-word of DA_RXFIFO register is filled by '0'. 11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_O[19]}, FIFO_O[19:0]} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}				
11: Truncating received samples at low half-word of DA_RXFIFO register and high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_O[19]}, FIFO_O[19:0]} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}				
high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_O[19]}, FIFO_O[19:0]} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}				
Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_O[19]}, FIFO_O[19:0]} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}				
Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_O[19]}, FIFO_O[19:0]} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}				
Mode 1: RXFIFO[31:0] = {12{FIFO_O[19]}, FIFO_O[19:0]} Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}				· · · · · · · · · · · · · · · · · · ·
Mode 2: RXFIFO[31:0] = {FIFO_O[19:4], 16'h0}				
1:0 R/W 0 Mode 3: RXFIFO[31:0] = {16{FIFO O[19], FIFO O[19:4]}}	1:0	R/W	0	Mode 3: RXFIFO[31:0] = {16{FIFO_O[19], FIFO_O[19:4]}}
				high half-word of DA_RXFIFO register is expanded by its sign bit. Example for 20-bits received audio sample: Mode 0: RXFIFO[31:0] = {FIFO_O[19:0], 12'h0} Mode 1: RXFIFO[31:0] = {12{FIFO_O[19]}, FIFO_O[19:0]}
$1.0 - 1.0 \text{ M}_{\odot}$	1.0	D /\A/		

7.8.7.7. Digital Audio FIFO Status Register

	3		
Offset: 0	Offset: 0x18		Register Name: DA_FSTA_REG
Bit	R/W	Default/Hex	Description

31:29	/	/	/
			TXE
			TX FIFO Empty
			0: No room for new sample in TX FIFO
28	R	1	1: More than one room for new sample in TX FIFO (>= 1 word)
27:24	/	/	/
			TXE_CNT
23:16	R	0x80	TX FIFO Empty Space Word Counter
15:9	/	/	/
			RXA
			RX FIFO Available
			0: No available data in RX FIFO
8	R	0	1: More than one sample in RX FIFO (>= 1 word)
7	/	/	1
			RXA_CNT
6:0	R	0	RX FIFO Available Sample Word Counter

7.8.7.8. Digital Audio DMA & Interrupt Control Register

Offset: 0	x1C		Register Name: DA_INT_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	1
			TX_DRQ
			TX FIFO Empty DRQ Enable
			0: Disable
7	R/W	0	1: Enable
			TXUI_EN
			TX FIFO Under run Interrupt Enable
		M	0: Disable
6	R/W	0	1: Enable
~			TXOI_EN
			TX FIFO Overrun Interrupt Enable
			0: Disable
			1: Enable
			When set to '1', an interrupt happens when writing new audio data if TX
5	R/W	0	FIFO is full.
			TXEI_EN
			TX FIFO Empty Interrupt Enable
			0: Disable
4	R/W	0	1: Enable
			RX_DRQ
			RX FIFO Data Available DRQ Enable
			0: Disable
			1: Enable
			When set to '1', RXFIFO DMA Request line is asserted if Data is available in
3	R/W	0	RX FIFO.

			RXUI_EN
			RX FIFO Under run Interrupt Enable
			0: Disable
2	R/W	0	1: Enable
			RXOI_EN
			RX FIFO Overrun Interrupt Enable
			0: Disable
1	R/W	0	1: Enable
			RXAI_EN
			RX FIFO Data Available Interrupt Enable
			0: Disable
0	R/W	0	1: Enable

7.8.7.9. Digital Audio Interrupt Status Register

Offset: 0x20			Register Name: DA_ISTA_REG
Bit	R/W	Default/Hex	Description
31:7	/	/	
			TXU_INT
			TX FIFO Under run Pending Interrupt
			0: No Pending Interrupt
6	R/W	0	1: FIFO Under run Pending Interrupt
			TXO_INT
			TX FIFO Overrun Pending Interrupt
			0: No Pending Interrupt
			1: FIFO Overrun Pending Interrupt
5	R/W	0	Write '1' to clear this interrupt
		11/1/	TXE_INT
		M.	TX FIFO Empty Pending Interrupt
			0: No Pending IRQ
~			1: FIFO Empty Pending Interrupt
4	R/W	1	Write '1' to clear this interrupt or automatic clear if interrupt condition fails.
3:2	/	/	/
			RXU_INT
			RX FIFO Under run Pending Interrupt
			0: No Pending Interrupt
			1:FIFO Under run Pending Interrupt
2	R/W	0	Write 1 to clear this interrupt
			RXO_INT
			RX FIFO Overrun Pending Interrupt
			0: No Pending IRQ
			1: FIFO Overrun Pending IRQ
1	R/W	0	Write '1' to clear this interrupt
			RXA_INT
			RX FIFO Data Available Pending Interrupt
0	R/W	0	0: No Pending IRQ

1: Data Available Pending IRQ
Write '1' to clear this interrupt or automatic clear if interrupt condition fails.

7.8.7.10. Digital Audio Clock Divide Register

Offset: (Offset: 0x24		Register Name: DA_CLKD_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	/
			MCLKO_EN
			0: Disable MCLK Output
			1: Enable MCLK Output
			Notes: Whether in Slave or Master mode, when this bit is set to 1, MCLK
7	R/W	0	should be output.
			BCLKDIV
			BCLK Divide Ratio from MCLK
			000: Divide by 2 (BCLK = MCLK/2)
			001: Divide by 4
			010: Divide by 6
			011: Divide by 8
			100: Divide by 12
			101: Divide by 16
			110: Divide by 32
6:4	R/W	0	111: Divide by 64
			MCLKDIV
			MCLK Divide Ratio from Audio PLL Output
			0000: Divide by 1
		• •	0001: Divide by 2
		. 1111	0010: Divide by 4
		M	0011: Divide by 6
			0100: Divide by 8
0101: Divide by 12 0110: Divide by 16			0101: Divide by 12
			0111: Divide by 24
			1000: Divide by 32
			1001: Divide by 48
			1010: Divide by 64
3:0	R/W	0	Others : Reserved

7.8.7.11. Digital Audio TX Counter Register

Offset: 0	Offset: 0x28		Register Name: DA_TXCNT	
Bit	Sit R/W Default/Hex		Description	
			TX_CNT	
			TX Sample Counter	
			The audio sample number of sending into TXFIFO. When one sample is put	
			into TXFIFO by DMA or by host IO, the TX sample counter register increases	
31:0	R/W	0	by one. The TX sample counter register can be set to any initial valve at any	

	time. After been updated by the initial value, the counter register should
	count on base of this initial value.

7.8.7.12. Digital Audio RX Counter Register

Offset: 0x2C			Register Name: DA_RXCNT_REG	
Bit R/W Default/Hex		Default/Hex	Description	
			RX_CNT	
			RX Sample Counter	
			The audio sample number of writing into RXFIFO. When one sample is	
			written by Digital Audio Engine, the RX sample counter register increases by	
			one. The RX sample counter register can be set to any initial valve at any	
			time. After been updated by the initial value, the counter register should	
31:0	R/W	0	count on base of this initial value.	

7.8.7.13. Digital Audio TX Channel Select Register

Offset: 0x30			Register Name: DA_TXCHSEL_REG
Bit	R/W	Default/Hex	Description
31:3	/	/	
			TX_CHSEL TX Channel Select 0: 1-ch 1: 2-ch
2:0	R/W	1	2: 3-ch 3: 4-ch

7.8.7.14. Digital Audio TX Channel Mapping Register

Offset: 0x34			Register Name: DA_TXCHMAP_REG
Bit	R/W	Default/Hex	Description
31:15	/	/	/
14:12	R/W	3	TX_CH3_MAP
			TX Channel3 Mapping
			000: 1st sample
			001: 2nd sample
			010: 3rd sample
			011: 4th sample
			100: 5th sample
			101: 6th sample
			110: 7th sample
			111: 8th sample
11	/	/	/
10:8	R/W	2	TX_CH2_MAP
			TX Channel2 Mapping
			000: 1st sample
			001: 2nd sample
			010: 3rd sample

1
W (
6 \
:27
,610,
*
$U_{\mathcal{C}}$

7.8.7.15. Digital Audio RX Channel Select Register

	10771251 218 Maria Mania Maria			
Offset: 0x38			Register Name: DA_RXCHSEL_REG	
Bit	R/W	Default/Hex	Description	
31:3	/	/	/	
			RX_CHSEL	
			RX Channel Select	
			0: 1-ch	
			1: 2-ch	
			2: 3-ch	
			3: 4-ch	
2:0	R/W	1	Others: Reserved	

7.8.7.16. Digital Audio RX Channel Mapping Register

Offset: 0x3C			Register Name: DA_RXCHMAP_REG
Bit	R/W	Default/Hex	Description
31:15	/	/	/
14:12	R/W	3	RX_CH3_MAP

İ	I	1	
			RX Channel3 Mapping
			000: 1st sample
			001: 2nd sample
			010: 3rd sample
			011: 4th sample
			Others: Reserved
11	/	/	/
10:8	R/W	2	RX_CH2_MAP
			RX Channel2 Mapping
			000: 1st sample
			001: 2nd sample
			010: 3rd sample
			011: 4th sample
			Others: Reserved
7	/	/	1
6:4	R/W	1	RX_CH1_MAP
			RX Channel1 Mapping
			000: 1st sample
			001: 2nd sample
			010: 3rd sample
			011: 4th sample
			Others: Reserved
3	/	/	1
2:0	R/W	0	RX_CH0_MAP
			RX Channel0 Mapping
			000: 1st sample
			001: 2nd sample
	. 1	'VI,	010: 3rd sample
		17	011: 4th sample
			Others: Reserved

Enthusiasts

7.9. OWA Interface

7.9.1. Overview

The OWA interface is one wire audio interface.

7.9.2. Feature

The OWA includes the following features:

- IEC-60958 transmitter functionality
- Support S/PDIF Interface
- Support channel status insertion for the transmitter
- Hardware Parity generation on the transmitter
- One 32×24bits FIFO (TX) for audio data transfer
- Programmable FIFO thresholds
- Interrupt and DMA support

7.9.3. Signal Description

7.9.3.1. OWA Interface Pin List

Signal Name	Direction(M)	Description	Pin
OWA_DOUT	0	OWA output	PE6/PD17

7.9.3.2. OWA Interface Clock Requirement

Clock Name	Description	Requirement	
apb_clk	APB bus clock	>13 MHz	
s_clk	OWA serial access clock	4x24.576 MHz or 4x22.5792 MHz from CCU	

7.9.4. Functionalities Description

7.9.4.1. Typical Applications

The OWA provides a serial bus interface for audio data between system. This interface is widely used for consumer audio connect.

7.9.4.2. Functional Block Diagram

The OWA interface block diagram is shown below:

OWA Interface Block Diagram

7.9.4.3. Operation Principle

OWA Frame format:

Sub-frame format

Frame/block format

7.9.5. Operation Modes

The software operation of the OWA is divided into five steps: system setup, OWA initialization, the channel setup, DMA setup and Enable/Disable module. These five steps are described in detail in the following sections.

7.9.5.1. System setup and OWA initialization

The first step In the OWA initialization is properly programming the GPIO. Since the OWA port is a multiplex pin. You can find the function in the pin multiplex specification. The clock source for the OWA should be followed. At first you must reset the audio PLL through the PLL_ENABLE bit of PLL_AUDIO_CTRL_REG in the CCU. The second step, you must setup the frequency of the audio pll in the PLL_AUDIO_CTRL_REG. After that, you must open the OWA gating through the OWA_CLK_REG when you checkout that the LOCK bit of PLL_AUDIO_CTRL_REG becomes to 1. At last, you must reset APBO RST REG of the OWA and open the OWA bus gating in the APBO GATING REG.

After the system setup, the register of OWA can be setup. At first, you should reset the OWA by writing 1 to OWA_CTL[0] and clear the TX FIFO by writing 1 to register OWA_FCTL[17]. After that you should enable the globe enable bit by writing 1 to OWA_CTL[1] and clear the interrupt and TX counter through the OWA_ISTA and SP_TXCNT.

7.9.5.2. The channel setup and DMA setup

The OWA support three methods to transfer the data. The most common way is DMA, the set of DMA can be found in the DMA spec. In this module, you just to enable the DRQ.

7.9.5.3. Enable and disable the OWA

To enable the function, you can enable TX by writing the OWA_TX_CFIG[31]. After that, you must enable OWA by writing the Globe Enable bit to 1 in the OWA_CTL. Write the Globe Enable to 0 to disable process.

7.9.6. OWA Interface Register List

Module Name	Base Address
OWA	0x01C21400

Register Name	Offset	Description
OWA_GEN_CTRL_REG	0x00	OWA General Control Register
OWA_TX_CFG_REG	0x04	OWA TX Configuration Register
OWA_TX_FIFO_REG	0x0C	OWA TX FIFO Register
OWA_FCTL_REG	0x14	OWA FIFO Control Register
OWA_FSTA_REG	0x18	OWA FIFO Status Register
OWA_INT_REG	0x1C	OWA Interrupt Control Register
OWA_ISTA_REG	0x0C	OWA Interrupt Status Register
OWA_TX_CNT_REG	0x24	OWA TX Counter Register
OWA_TX_CHSTA_REG0	0x2C	OWA TX Channel Status Register 0
OWA_TX_CHSTA_REG1	0x30	OWA TX Channel Status Register 1

7.9.7. OWA Register Description

7.9.7.1. OWA General Control Register

Offset: 0x00			Register Name: OWA_CTRL_REG
Bit R/W Default/Hex		Default/Hex	Description
31:10	/	/	/

9:4	R/W	0x08	MCLK_DIV_RATIO
			Mclk divide Ratio
			Note: only support 2n divide ratio(n=1~31)
3	/	/	/
2	R/W	0	MCLK_OUT_EN
			Mclk Output Enable
			0: Disable
			1: Enable
1	R/W	0	GEN
			Globe Enable
			A disable on this bit overrides any other block or channel enables.
			0: Disable
			1: Enable
0	R/W	0	RST
			Reset
			0: Normal
			Reset 0: Normal 1: Reset
			Self clear to 0

7.9.7.2. OWA TX Configure Register

Offset: 0	x04		Register Name: OWA_TX_CFG_REG
Bit	R/W	Default/Hex	Description
31	R/W	0	TX_SINGLE_MODE
			Tx single channel mode
			0: Disable
			1: Eanble
30:18	/	/	/
17	R/W	0	ASS
			Audio sample select with TX FIFO under run
~			when
			0: sending 0
			1: sending the last audio
			Note: This bit is only valid in PCM mode
16	R/W	0	TX_AUDIO
			TX data type
			0: Linear PCM (Valid bit of both sub-frame set to 0)
			1: Non-audio(Valid bit of both sub-frame set to 1)
15:9	/	/	1
8:4	R/W	0xF	TX_RATIO
			TX clock divide Ratio
			Note: clock divide ratio = TX TATIO +1
3:2	R/W	0	TX_SF
			TX Sample format:
			00: 16bit
			01: 20bit

			10: 24bit
			11: Reserved
1	R/W	0	TX_CHM
			CHSTMODE
			0: Channel status A&B set to 0
			1: Channel status A&B generated form TX_CHSTA
0	R/W	0	TXEN
			0: disabled
			1: enabled

7.9.7.3. OWA TX FIFO Register

Offset: 0x0C			Register Name: OWA_TXFIFO_REG
Bit	R/W	Default/Hex	Description
31:0	W	0	TX_DATA
			Transmitting A, B channel data should be written this register one by one.
			The A channel data is first and then the B channel data.

7.9.7.4. OWA FIFO Control Register

Offset: 0	x14		Register Name: OWA_FCTL_REG
Bit	R/W	Default/Hex	Description
31	R/W	0	FIFOSRC
			TX FIFO source select
			0 : APB bus
			1: Analog Audio CODEC
30:18	/	/	
17	R/W	0	FTX
		. 1111	Write "1" to flush TX FIFO, self clear to "0"
16:13	/	X	1
12:8	R/W	0x10	TXTL
~			TX FIFO empty Trigger Level
			Interrupt and DMA request trigger level for TX FIFO normal condition
			Trigger Level = TXTL
7:3	R/W	0x0F	Reserved
2	R/W	0	TXIM
			TX FIFO Input Mode(Mode0, 1)
			0: Valid data at the MSB of OWA_TXFIFO register
			1: Valid data at the LSB of OWA_TXFIFO register
			Example for 20-bits transmitted audio sample:
			Mode 0: FIFO_I[23:0] = {TXFIFO[31:12], 4'h0}
			Mode 1: FIFO_I[23:0] = {TXFIFO[19:0], 4'h0}
1:0	R/W	0	Reserved

7.9.7.5. OWA FIFO Status Register

Offset: 0x18			Register Name: OWA_FSTA_REG
Bit	R/W	Default/Hex	Description

31:15	/	/	/
14	R	1	TXE
			TX FIFO Empty (indicate FIFO is not full)
			0: No room for new sample in TX FIFO
			1: More than one room for new sample in TX FIFO (>=1 word)
13:8	R	0x20	TXE_CNT
			TX FIFO Empty Space Word counter
7:0	/	/	/

7.9.7.6. OWA Interrupt Control Register

Offset: 0	Offset: 0x1C		Register Name: OWA_INT_REG
Bit	R/W	Default/Hex	Description
31:8	/	/	
7	R/W	0	TX_DRQ
			TX FIFO Empty DRQ Enable
			0: Disable
			1: Enable
6	R/W	0	TXUI_EN
			TX FIFO Under run Interrupt Enable
			0: Disable
			1: Enable
5	R/W	0	TXOI_EN
			TX FIFO Overrun Interrupt Enable
			0: Disable
			1: Enable
4	R/W	0	TXEI_EN
		. 1111	TX FIFO Empty Interrupt Enable
	1	N,	0: Disable
			1: Enable
3:0	1	/	

7.9.7.7. OWA Interrupt Status Register

Offset: 0x20			Register Name: OWA_ISTA_REG
Bit	R/W	Default/Hex	Description
31:7	/	/	/
6	R/W	0	TXU_INT
			TX FIFO Under run Pending Interrupt
			0: No pending IRQ
			1: FIFO Under run Pending Interrupt
			Write "1" to clear this interrupt
5	R/W	0	TXO_INT
			TX FIFO Overrun Pending Interrupt
			0: No Pending IRQ
			1: FIFO Overrun Pending Interrupt
			Write "1" to clear this interrupt

4	R/W	1	TXE_INT
			TX FIFO Empty Pending Interrupt
			0: No Pending IRQ
			1: FIFO Empty Pending Interrupt
			Write "1" to clear this interrupt or automatically clear if interrupt
			condition fails.
3:0	/	/	/

7.9.7.8. OWA TX Counter Register

Offset: 0x24			Register Name: OWA_TX_CNT_REG
Bit	R/W	Default/Hex	Description
31:0	R/W	0	TX_CNT
			TX Sample counter
			The audio sample number of writing into TX FIFO. When one sample is
			written by DMA or by host IO, the TX sample counter register increases by
			one. The TX Counter register can be set to any initial value at any time.
			After been updated by the initial value, the counter register should count
			on base of this value.

7.9.7.9. OWA TX Channel Status Register 0

Offset: 0x2C			Register Name: OWA_TX_CHSTA_REG0
Bit	R/W	Default/Hex	Description
31: 30	/	/	1
29:28	R/W		CA
			Clock Accuracy
		• • • • • • • • • • • • • • • • • • • •	00: Level 2
		. 1/// "	01: Level 1
			10: Level 3
			11: not matched
27:24	R/W		FREQ
			Sampling frequency
			0000: 44.1kHz 1000: Reserved
			0001: not indicated 1001: 768kHz
			0010: 48kHz 1010: 96kHz
			0011: 32kHz 1011: Reserved
			0100: 22.05kHz 1100:176.4kHz
			0101: Reserved 1101: Reserved
			0110: 24kHz 1110: 192kHz
			0111: Reserved 1111: Reserved
23:20	R/W	0	CN
			Channel Number
19:16	R/W	0	SN
			Source Number
15:8	R/W	0	СС
			Category code

			Indicates the kind of equipment that generates the digital audio
			interface signal.
7:6	R/W	0	MODE
7.0	1,7,00		Mode
			00: Default Mode
			01~11: Reserved
5:3	R/W	0	EMP
5.5	I N/ VV	U	
			Emphasis
			Additional format information
			For bit 1 = "0", Linear PCM audio mode:
			000: 2 audio channels without pre-emphasis
			001: 2 audio channels with 50 μs / 15 μs pre-emphasis
			010: Reserved (for 2 audio channels with pre-emphasis)
			011: Reserved (for 2 audio channels with pre-emphasis)
			100~111: Reserved
			For bit 1 = "1", other than Linear PCM applications:
			000: Default state
			001~111: Reserved
2	R/W	0	СР
			Copyright
			0: copyright is asserted
			1: no copyright is asserted
1	R/W	0	ТҮРЕ
			Audio Data Type
			0: Linear PCM Samples
			1: For none-linear PCM audio such as AC3, DTS, MPEG audio
0	R/W	0	PRO
	. 1	'VI	Application type
		/ / /	0: Consumer Application
			1: Professional Application
N	1		Note: This bit must be fixed to "0"

7.9.7.10. OWA TX Channel Status Register 1

Offset: 0x30			Register Name: OWA_TX_CHSTA_REG1
Bit	R/W	Default/Hex	Description
31:10	/	/	/
9:8	R/W	0	CGMS_A
			00: Copying is permitted without restriction
			01: One generation of copies may be made
			10: Condition not be used
			11: No copying is permitted
7:4	R/W	0	ORIG_FREQ
			Original sampling frequency
			0000: not indicated
			0001: 192kHz

			0010: 12kHz
			0011: 176.4kHz
			0100: Reserved
			0101: 96kHz
			0110: 8kHz
			0111: 88.2kHz
			1000: 16kHz
			1001: 24kHz
			1010: 11.025kHz
			1011: 22.05kHz
			1100: 32kHz
			1101: 48kHz
			1110: Reserved
			1111: 44.1kHz
3:1	R/W	0	WL
			Sample word length
			For bit 0 = "0":
			000: not indicated
			001: 16 bits
			010: 18 bits
			100: 19 bits
			101: 20 bits
			110: 17 bits
			111: Reserved
			For bit 0 = "1":
			000: not indicated
		'VI , ,	001: 20 bits
			010: 22 bits
			100: 23 bits
			101: 24 bits
, O ,			110: 21 bits
			111: Reserved
0	R/W	0	MWL
			Max Word length
			0: Maximum audio sample word length is 20 bits
			1: Maximum audio sample word length is 24 bits
		· · · · · · · · · · · · · · · · · · ·	