Bonus Problems

AU17

Week 1

Exercise 1. Give an example of a countable infinite abelian group which doesn not have proper infinite subgroups.

Exercise 2. Prove that $\sqrt{2}$ is irrational using the fact that $(\sqrt{2}-1)^n \to 0$.

Exercise 3. Suppose you know $\exists c_1, c_1 \text{ s.t. } c_1 < \frac{p_n}{n \log n} < c_n \ \forall n > 1.$ Prove from this that $\sum \frac{1}{p_n} = \infty$.

Exercise 4. Prove that $\pi(n) \sim \frac{n}{n \log n} \Leftrightarrow p_n \sim n \log n$, where $\pi(n)$ is the number of primes $\leq n$.

Exercise 5. Prove that any real number x > 0 is a limit of the form $x = \lim_{n\to\infty} \frac{k_n^2}{m_n^2}$, where $k_n, m_n \in \mathbb{N}$.

Exercise 6. Prove that the set of algebraic numbers is countable.

Exercise 7. Prove that if $x \in (0,1) \subset \mathbb{Q}$, then its simple continued fraction expansion is finite.

Exercise 8. Find the simple continued fraction expansions for $\sqrt{2}$, $\sqrt{3}$.

Exercise 9. Is there some $k \in \mathbb{N}$ s.t. every $n \in \mathbb{N}$ is a sum of k cubes?

Exercise 10. The Waring Problem: Is it true that for any $k \in \mathbb{N}$, $k \geq 2$, there exists C(k) s.t. any $n \in \mathbb{N}$ is a sum of C(k) k-th powers of non-negative integers?

Exercise 11. Prove that the set of non-normal integers is uncountable.

Exercise 12. Prove that Champernowne is normal.

Exercise 13. If you replace the first index of each square in the Champernowne number with 17, is it still normal?

Exercise 14. If you replace each square in the Champernowne number with 17, is it still normal?

Exercise 15. Wall's Theorem: If (x_n) is normal, then $\forall a, b \in \mathbb{N}$ $(x_{an+b} \text{ is also normal.})$

Exercise 16. Prove that every real number x > 0 is a limit of the form $x = \lim_{n \to \infty} \frac{p_n}{q_n}$, where $p_n, q_n \in \mathbb{P}$.

Exercise 17. Find the simple continued fraction expansions for $\sqrt{n^2+1} \ \forall n \in \mathbb{N}$.