PROJECT ONE: MILESTONE 4 – COVER PAGE

Team Number:	TUES -24
--------------	----------

Please list full names and MacID's of all *present* Team Members

Full Name:	MacID:
Yasmine Elkhouly	Elkhouy
Taaha Atif	AtifT
Pritika Thevakanthan	thevakap
Borna Sadeghi	sadegb1

MILESTONE 4 (STAGE 1) – FINALIZED DESIGN: ESTIMATE THICKNESS REQUIREMENT

Document the results of your materials selection and ranking on the following page.

→ Each team member is required to complete this on the *INDIVIDUAL* worksheet document, and then copy-and-paste to this document

We are asking that you submit your work on both worksheets. It does seem redundant, but there are valid reasons for this:

- Each team member needs to submit their estimation of deflection with the
 Milestone Four Individual Worksheets document so that it can be graded
- Compiling your individual work into the Milestone Four Team Worksheets document allows you to readily access your team member's work
 - o This will be especially helpful when completing Stage 2 of the milestone

_	A I	
Loom	Number:	
184111	131111111111111111111111111111111111111	
IOGIII	1101110011	

Tues-24

Copy-and-paste from the INDIVIDUAL worksheet

Full Name:	MacID:
Yasmine Elkhouly	Elkhouy

1. The title of the scenario

Scenario 4: A Pioneer in Clean Energy

2. Chosen Material

	Material Name	Young's Modulus (GPa)	Yield Strength (MPa)
Chosen	CFRP, epoxy	109.5 GPa	800 MPa
Material	matrix		
	(isotropic)		

Assigned thickness, <i>t</i> from Table 1 (mm)	15-mm
Estimated deflection δ (mm)	26.87375087mm
8 = PbL" F = 0.003MPA E = 109.5 GPA b = 0.375m a = 0.189 m L = 8.5m I = II (0.189)3 (0.375) - (0.189 -	و کاری کی د ماری کی ا
(3000 Pa) (0. 375m) (8.5m)	
= 0.02687375087m	
= 2 6.8 7315 087mm	

Copy-and-paste from the INDIVIDUAL worksheet

Full Name:	MacID:
Taaha Atif	AtifT

1. The title of the scenario

Scenario 4: A Pioneer in Clean Energy

2. Chosen Material

	Material Name	Young's Modulus (GPa)	Yield Strength (MPa)
Chosen Material	CFRP, epoxy matrix (isotropic)	109.5 GPa	800 MPa

Assigned thickness, <i>t</i> from Table 1 (mm)	30-mm
Estimated deflection δ (mm)	14.9 mm

```
F = 0.003 \text{ MPa} - 3000 \text{ Pa}
E = 109.5 \text{ GPa} - 1.095 \times 10^{11} \text{ Pa}
b = 0.375 \text{ m} \quad a = 0.189 \text{ m} \quad L = 8.5 \text{ m}
t \text{ provided a. } 30 \text{ mm} \quad \text{i. } t = 0.03 \text{ m}
I = \frac{\pi}{4} \left( (0.189^3 (0.375 \text{ m}) - (0.189 - 0.05)^3 (0.375 - 0.05) \right)
I = 8.98 \times 10^{-4} \text{ m}^4
\delta = \frac{\text{PbL}^4}{4 \text{ EI}}
= \frac{(3000)(0.375)(8.5)^4}{4(1.095 \times 10^{11})(8.98 \times 10^{-4})}
\delta = 0.014931 \text{ m}
\delta = 14.93 \text{ mm}
```

Team Number:

Tues-24

Copy-and-paste from the INDIVIDUAL worksheet

Full Name:	MacID:
Borna Sadeghi	sadegb1

1. The title of the scenario

Scenario 4: A Pioneer in Clean Energy

2. Chosen Material

	Material Name	Young's Modulus (GPa)	Yield Strength (MPa)
Chosen Material	CFRP, epoxy matrix	109.5 GPa	800 MPa
	(isotropic)		

Assigned thickness, <i>t</i> from Table 1 (mm)	50-mm	
Estimated deflection δ (mm)	10.3 mm	
Insert calculation or photo of hand calculation.		
$\delta = \frac{\rho b L^{4}}{4EI} \qquad I = \frac{\pi}{4} \left(a^{3}b - (a-t)^{3}(b-t) \right)$ $I = \frac{\pi}{4} \left((0.189 \text{ m})^{3} (0.375 \text{ m}) - (0.189 - 0.050 \text{ m}) \left(p.375 - 0.050 \text{ m} \right) \right)$ $I = \frac{1.3029 \times 10^{-3} \text{ m}^{4}}{1.3029 \times 10^{-3} \text{ m}^{4}}$		
δ= (0.003 MPm) (0.375m) (8.5 4 (109.5 ×63 MPm) ((1.3029×03 +)	
F= 0.0103 m J= 10.3 mm		Ī

Team Number:

Tues-24

Copy-and-paste from the INDIVIDUAL worksheet

Full Name:	MacID:
Pritika Thevakanthan	thevakap

1. The title of the scenario

Scenario 4: A Pioneer in Clean Energy

2. Chosen Material

	Material Name	Young's Modulus (GPa)	Yield Strength (MPa)
Chosen	CFRP, epoxy matrix	109.5 GPa	800 MPa
Material	(isotropic)		

Assigned thickness, <i>t</i> from Table 1 (mm)	150-mm
stimated deflection δ (mm)	6.8 mm
	m (2) 0 - 0 - 1 - 7
CALCULATE MOMENT OF INERTIA $I = \frac{1}{4} \left[(a^3)(b) - (a-t)^3(b$	t)]
= 0.00197793031 m4	PLAN 24 24 24 24 24 24 24 24 24 24 24 24 24
8 = (3.0×103Pa) (0.375m) (8.5 (1.095×101Pa) (1.9779 ×10	sm)4 - m')(u)
0.00678m = 6.78mm	

^{*}If you are in a team of 5, please copy and paste the above on a new page

MILESTONE 4 (STAGE 2) – FINALIZED DESIGN: REFINE THICKNESS REQUIREMENT

Team Number:

Tues-24

1. Calculate Thickness Requirement Based on Deflection Simulation

Initial Thickness range, obtained from stage 1	50mm <t<150mm< th=""></t<150mm<>
(e.g. 30mm < t < 50 mm):	

For every iteration, include your thickness and observed deflection in the table below. Only include as many rows as needed until you get a deflection of 10 mm (Do not over-design the turbine blade. i.e., if your deflection is less than 8.5 mm, it is over-designed). Add more rows, if needed:

Thickness (mm)	Observed deflection (mm)
50	10.67
52	10.01
53	9.842

Final refined turbine blade thickness *t* (mm): 53 mm

Insert print screens of deflection simulation and provide evidence that the deflection satisfies the design constraint.

MILESTONE 4 (STAGE 3) – PEER INTERVIEW

Team Number:

Tues-24

Peer Interview Notes

1. Peer Interview Notes

Evaluation of Scenario 3: The Roof Generator Overall Objective:

- The group's overall objective was to design a suitable wind turbine that can be installed on roofs for homeowners
- Space Considerations must be made for residential areas

<u>Summarized Notes of Objective Tree of the Roof Top Turbine</u>

- Visually Appealing for homes
 - Colour
 - Compact Size
 - Short Height
- Easy Installation
 - Clear instructions for homeowners to install wind turbines
 - Lightweight; must be installed on the roofs of homes
- Must be inexpensive since it is being installed on the roofs of houses, costs should be minimized
 - Inexpensive material should be utilized
 - Material should last long as homeowners are installing wind turbines to minimize electricity costs for a long period of time

Summarized Notes of Objective Tree of the Roof Top Turbine Blade

- Low Cost
 - Turbine blade should be made of cost-efficient materials
 - Long lasting for homes
 - Low maintenance; low upkeep
 - Easy installed for homeowners to install wind turbines
- Lightweight since it is being installed on roofs of houses
 - Turbine blade should be made of durable materials
 - High yield strength to withstand high winds
- Maximize surface area in contact with wind
 - Maximize efficiency
 - To maximize conversion of kinetic energy into mechanical energy
 - Compact size for turbine blade
 - Small blade diameter

Summarized Notes of Material Selection

Objectives:

- Minimize Mass
 - The turbine must be lightweight since it is being installed on roofs of the houses
 - Must not damage the roof of the house
- Minimize Cost
 - Must be low costs since it is being installed on the roofs of houses; costs should be

minimized

 Homeowners are installing wind turbines to minimize electricity costs for a long period of time

Criteria Ranking for Roof Top Turbine:

- Cost Efficient
- Strong
- Lightweight
- Resistance to heat
- Minimize carbon footprint

Material Finalists:

- CFRP, epoxy matrix
- High Carbon Steel
- Medium Carbon Steel

The group narrowed their material finalists and decided to use **High Carbon Steel**

- CFRP, epoxy matrix is too costly for their overall objective; must be affordable as it must minimize energy costs for the average consumer
- High Carbon Steel had an overall better ranking for each MPI compared to Medium Carbon Steel

Note: Please be mindful that you are expected to write a short reflection on what you have learned from the other team in your final deliverable