	296)
	4/16/03
······································	Let's return to the quadratic term before doing the
	Ermion integration
	(74 72) ST-2m-4 - XX /742 / 3
3	MA 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	mx - 2 37 + 2m tu (4+ 17/2c)
L	
	and go to a uniform system $\Delta_c(x) \rightarrow \Delta_c$ and Fairer transform: (also take $1 \rightarrow 1$ and $2 \rightarrow 1$)
	ZZ (21/k) 7/(-k)/-in+3/ - Dc (4/k) 1/0/3/
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1-5c -iw-5x (4th)
- ()	
	Now Think about diagonalizing the native = introduce a soluted
·	Now Think about diagonalizing the matrix => introduce a notated basis of Grassman Fulds:
	$ 2h(k) = \cos \chi_k + \sin \chi_k \alpha(k) $
	1 (2) (-k) - (-sin X) (05 X) (pt(k))
	and choose Xx so that we get a diagonal matrix.
	This is accomplished (surprise, surprise!) by
	COS 2/1 = 1 Sin 9/2 = 1 Act (decked with)
	$\cos 2\chi = \frac{1}{\sqrt{18^2+ \Delta ^2}}$ $\sin 9\chi = \frac{12c1}{\sqrt{18^2+ \Delta ^2}}$ (checked with
	Investing the transformation,
	(x(t)) (cos /k -s)n /k /24/(t)
	$\left \frac{\beta^{+}(-k)}{\beta^{+}(-k)} \right = \left \frac{\gamma^{+}(-k)}{\gamma^{+}(-k)} \right $
	[(L12) / 1211/K 2014)[M2)

	4/16/03	\mathcal{U}
	Which is precisely the Bogolyubor transformation from 670	
	when he make he same identifications of us ad h:	
		
	We = cos Ke and Vr = SIn Ke	
	Matternatica check:	
•		
 	$In[1]:= x1 = \{\{\cos[\chi], \sin[\chi]\}, \{-\sin[\chi], \cos[\chi]\}\};$	******
•	In[2]:= MatrixForm[r1] Out[2]//MatrixForm=	
	$\begin{pmatrix} \cos[\chi] & \sin[\chi] \\ -\sin[\chi] & \cos[\chi] \end{pmatrix}$	Maria Maria (P.P. V. 19)
	<pre>In{3}:= rlt = Transpose[rl];</pre>	ble v.re
	<pre>In(4):= MatrixForm(rit)</pre>	<u> </u>
	$Out[4]//MatrixForm= \begin{pmatrix} \cos[\chi] & -\sin[\chi] \\ \sin[\chi] & \cos[\chi] \end{pmatrix}$	
	$In(5) := \mathbf{mid} = \{\{-\mathbf{I}\omega + \xi, -\Delta\}, \{-\Delta, -\mathbf{I}\omega - \xi\}\};$	<u></u>
	In(6):= MatrixForm[mid]	Manager Landson
	$Out[6]//MatrixForm = \begin{pmatrix} \xi - \mathbf{i} \omega & -\Delta \\ -\Delta & -\xi - \mathbf{i} \omega \end{pmatrix}$	<u> </u>
	In[7]:= Ek = Sqrt [ξ^2+Δ^2]	<u>u </u>
	Out $\{7\} = \sqrt{\Delta^2 + \xi^2}$.
	$In\{8\}:= MatrixForm\{Simplify[rlt.mid.rl] /. \{Cos[2\chi] \rightarrow \xi/Ek, Sin[2\chi] \rightarrow \Delta/E$	(k)}
	Out[8]//MatrixForm= $\left(\frac{\Delta^2}{\sqrt{\Delta^2 + \xi^2}} + \frac{\xi^2}{\sqrt{\Delta^2 + \xi^2}} - \mathbf{i} \omega\right)$	
-	$\begin{pmatrix} \sqrt{\Delta^2 + \xi^2} & + \sqrt{\Delta^2 + \xi^2} & -1\omega \\ 0 & -\frac{\lambda^2}{\sqrt{\Delta^2 + \xi^2}} & -1\omega \end{pmatrix}$	Sort of the state
		The state of the s
- स्टब्स	We can simplify Plat last result a bit more to cut	<u> </u>
	we can simplify that last result a bit more to cut	1
	S=TLW+32 [0+10] 0 -iw-512+617 (0+12)	
[1 10 10 2 SS / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	=TL 127 + 22 (-int 1832) (atk)alk)+ B(K)B(K)	

4/16/03 So if we are going to put in both the particle-hole (ch) shusies stype ill and the particle-particle (pp) physics type ii) I, how do we do this in a finite nucleus? · For example, we want to know the ground state ereay and density distribution for a wide range & nuclei, including the offects of pairing. · For all but the lightest nuclei. a "first-principles" calculation based on a nucleon-nuclear potential notched to scottering phase shifts is not possible.

Here we'll consider an alternative: energy functional
methods (The most common are called Skyrme Hartree-Fack and Rolativistic Mem Feld approaches) · In PS#4, problem 1, we consider a simple energy function (not a functional, since the dursity p is for a winterm system ≥ independent of x). The form was motivated as kinetic + d + d Here to a) and to a B is the conventional Styring nationing. The energy per particle is . The full Skyrne tirritional has separate proton (p) and neutron (g.) densities, as well as additional forms proportional to gk; (Vg) [which vanishes here], and some dependence on spin-orbit terms.

	4/16/103
	a low were given the conditions that number matter los extravolated
	· low were given the conditions that nuclear matter las extrapolated from the interior of Leavy nuclei) is in equilibrium when
	Q= 0.16 fm3 (€(pa)=-16. MeV)
	i 1.) I "
	Epullbrum implies de g=g=0
	Din this case we have two equations that on linear in two
	whomas ([x,p] or [to,t3]).
-	· A comment about units and putting back the his. The usual
•	choice of units is
	Elgy -> MeV Elgy -> MeV-fm ⁻³
	$\frac{C(g) - m}{2} = \frac{C(g) + m}{2}$
	m -> 924 mer (averaged proton neutron)
	ke = fm² (also May some times) 1,3-1,4 fm² at equilibrium
,	
-	off (3= 112 = 3113) = (F(P) = (3120) in fm.)
	how do no get to men men from men?
	The choice of units implies he have taken h=c=1 (or, more pricisely, he are measuring argular momentum in units of th and speed in units of C).
	orcipaly, he are measuring argular mangatum in units of to and
	speak in units at c).
	To consect, use the = 197.33 MeV-fm
	12 12 12 (12 7) 23 (1927) (1927)
	In defail: 2m > 12th = (1xx) +2 = (1xx) (317) (317) (317) (317)
	"In practice: just tigure out how many powers of MeV-tim one
	"In practice: just figure out how many powers of MeV-fin one recorded and the details take care of themselves! Fin2/any -> need to kill two fin' -> (MeV-fin)? is the factor.
<u>, </u>	to Tail > read to kill two tim' -> (MeV-tim) is the Tactor.

4/16/03 Exercises: Use the = 200 MeV-fry for the estimates. a) What is Ke in May? Are nucleus in a nucleus norrelativistic? 5) What is the approximate range in find a an-plan exchange (m=770MeV)? Rho mean exchange (m=770MeV)? What about to and to units? · For Skyrme moduls, in is conventional to take the

to in vorts of Mev-(fm), where n cancels the

dimensions of p?, p? etc.

· Typically to = -1000 MeV-fm

to = 10000 MeV-fm · Question! Are Pase by an small numbers?

· The energy function looks like it could be an expansion in density -> can we justify omitting a p3 from. What is the expected error if we do?

· Units of MeV-(Fm)" don't tell us if we have an expansion parameter = we read to identify appropriate physics scales. Taim: low-energy effective field flearnes of QCD associate with 474 = g a scale 1/(Fig. 1x) where fire homes is the pion docary constant and 1x=1 GeV (closer to 600 MeV in practice) is the scale of the spontaneous breaking of chiral symmetry. => The expursion parameter is 12/1x Exercise: What is this roughly in the interior of a nucleus (take 1/2 = 60 My)?
Is it a good expansion. · Note: The pion is the Capproximate) Goldstone boson of spontaneously broken chiral symmetry (m=<m=), Approximate since my ma =0.

4/16/03 e existence of exponsion parameters motivates we gress Pu wellints finite density data rather than to e will justify this approach using density functiona Along or DFT, which is widely used in quantum chemistry at condensed matter physics 1, B using Matternation: . To solve the simultaneous equotions (the real ares have at least a Qo+ bq2 = eo another term!) Use. 1 ax rhop + bx rhop == eb, envations as a list + 2xb* rhod == 0 parametes to be solved Le arever will be in the Form: or in terms of thop and ex it you didn't assign numbers · You can plug this in by hand, but its better to use the Eq. (note that is no Kiretic energy!) command. [:= 0 * cho + p * cho v3 $dl = \phi o d \gamma$ DerivEoverAlcho_ = D[EoverAlcho], cho = Solve [[EoverA[rhop] == ep, Dern EoverA[rhop]==0] st the money equal Plot [[EoverA[rho]/. ans , Pressure [rho]/ , ans, Deriv Pressure Lithold [rho, b, 4], Plot Range ->[-90,30] where you roul to define Pressure and

