Übungsblatt 3 zur Kommutativen Algebra

Abgabe bis zum ???

Aufgabe 1. (2+2) Der formale Potenzreihenring über dem Grundring Sei A ein Ring.

- a) Ist \mathfrak{m} ein maximales Ideal in $A[\![X]\!]$, so gilt $X \in \mathfrak{m}$, die Kontraktion $\mathfrak{m}_0 := A \cap m$ ist ein maximales Ideal in A und \mathfrak{m} ist das von \mathfrak{m}_0 und X in $A[\![X]\!]$ erzeugte Ideal.
- b) Jedes Primideal von A ist Kontraktion eines Primideals von A[X].

Aufgabe 2. (2+m+m+2) Rechnungen mit Idealen

- a) Sei \mathfrak{a} ein Ideal eines Rings A. Finde einen kanonischen Ringhomomorphismus $A[X]/\mathfrak{a}[X] \to (A/\mathfrak{a})[X]$ und zeige, dass er ein Isomorphismus ist.
- b) Sei \mathfrak{p} ein Primideal eines Rings A. Zeige, dass dann auch $\mathfrak{p}[X]$ in A[X] prim ist.
- c) Gilt die analoge Behauptung von b) auch für maximale Ideale?
- d) Untersuche folgende Ideale auf Primalität und Maximalität: (2, X) in $\mathbb{Z}[X]$ und ([2], [X]) in $\mathbb{Z}[X]/(X^2 X + 6)$.

Aufgabe 3. (2+1) Nichtbeispiele für Hauptidealbereiche

- a) Sei A ein Ring derart, dass jedes endlich erzeugte Ideal von A[X] ein Hauptideal ist. Zeige, dass jedes reguläre Element von A schon invertierbar ist.
- b) Folgere: $\mathbb{Z}[X]$ und $\mathbb{Q}[X,Y]$ sind keine Hauptidealbereiche.

Aufgabe 4. (m+2) Ein radikales Distributivgesetz

- a) Zeige anhand eines Gegenbeispiels, dass die Rechenregel " $\mathfrak{a} \cap \sum_i \mathfrak{b}_i = \sum_i (\mathfrak{a} \cap \mathfrak{b}_i)$ " für Ideale in einem Ring im Allgemeinen *nicht* gilt. *Hinweis*. In den Ringen \mathbb{Z} und $\mathbb{Q}[X]$ wirst du keinen Erfolg haben.
- b) Zeige, dass folgende Regel durchaus stets gilt: $\sqrt{\mathfrak{a}} \cap \sqrt{\sum_i \mathfrak{b}_i} = \sqrt{\sum_i (\mathfrak{a} \cap \mathfrak{b}_i)}$.

Aufgabe 5. (2+1) Der Darstellungssatz von Stone

Sei A ein boolscher Ring. Sei Spec A die Menge der Primideale von A. Die Potenzmenge von Spec A bildet mit der symmetrischen Differenz als Addition und dem Schnitt als Multiplikation ebenfalls einen boolschen Ring.

- a) Gib explizit einen Ringhomomorphismus $A \to \mathcal{P}(\operatorname{Spec} A)$ an.
- b) Zeige, dass dieser injektiv ist.