BỘ GIÁO DỰC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỨC

ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2014

Môn: TOÁN; Khối A và Khối A1

(Đáp án - Thang điểm gồm 03 trang)

Câu	Đáp án	Điểm
1	a) (1,0 điểm)	
(2,0đ)	• Tập xác định $D=\mathbb{R}\setminus\{1\}$. • Sự biến thiên: - Chiều biến thiên: $y'=-\frac{3}{(x-1)^2};\ y'<0, \forall x\in D.$ Hàm số nghịch biến trên từng khoảng $(-\infty;1)$ và $(1;+\infty)$.	0,25
	- Giới hạn và tiệm cận: $\lim_{x\to -\infty}y=\lim_{x\to +\infty}y=1$; tiệm cận ngang: $y=1$. $\lim_{x\to 1^-}y=-\infty; \lim_{x\to 1^+}y=+\infty; \text{ tiệm cận đứng: }x=1.$	0,25
	- Bảng biến thiên: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25
	• Đổ thị: y 1 -2 0 1 x -2 1 1 x	0,25
	$M \in (C) \Rightarrow M\left(a; \frac{a+2}{a-1}\right), a \neq 1.$	0,25
	Khoảng cách từ M đến đường thẳng $y=-x$ là $d=\dfrac{\left a+\dfrac{a+2}{a-1}\right }{\sqrt{2}}.$	0,25
	$d = \sqrt{2} \Leftrightarrow a^2 + 2 = 2 a - 1 \Leftrightarrow \begin{bmatrix} a^2 - 2a + 4 = 0 \\ a^2 + 2a = 0. \end{bmatrix}$	0,25
	• $a^2-2a+4=0$: phương trình vô nghiệm. • $a^2+2a=0 \Leftrightarrow \left[\begin{array}{c} a=0 \\ a=-2. \end{array} \right]$ Suy ra tọa độ điểm M cần tìm là: $M(0;-2)$ hoặc $M(-2;0)$.	0,25

Câu	Đáp án	Điểm
2	Phương trình đã cho tương đương với $\sin x + 4\cos x = 2 + 2\sin x\cos x$	0,25
(1,0đ)		0,25
	$\bullet \sin x - 2 = 0$: phương trình vô nghiệm.	0,25
	• $2\cos x - 1 = 0 \Leftrightarrow x = \pm \frac{\pi}{3} + k2\pi (k \in \mathbb{Z}).$ Nghiệm của phương trình đã cho là: $x = \pm \frac{\pi}{3} + k2\pi (k \in \mathbb{Z}).$	0,25
3 (1,0đ)	Phương trình hoành độ giao điểm của đường cong $y=x^2-x+3$ và đường thẳng $y=2x+1 \text{ là } x^2-x+3=2x+1 \Leftrightarrow \left[\begin{array}{c} x=1\\ x=2. \end{array}\right]$	0,25
	Diện tích hình phẳng cần tìm là $S=\int\limits_{1}^{2} x^{2}-3x+2 dx$	0,25
	$ = \left \int_{1}^{2} (x^2 - 3x + 2) dx \right = \left \left(\frac{x^3}{3} - \frac{3x^2}{2} + 2x \right) \right _{1}^{2} $	0,25
	$=\frac{1}{6}$.	0,25
4 (1,0đ)	a) Đặt $z=a+bi$ $(a,b\in\mathbb{R}).$ Từ giả thiết suy ra $\left\{ egin{array}{l} 3a+b=3 \\ a-b=5 \end{array} ight.$	0,25
	$\Leftrightarrow a=2, b=-3.$ Do đó số phức z có phần thực bằng 2 , phần ảo bằng -3 .	0,25
	b) Số phần tử của không gian mẫu là: $\mathrm{C}_{16}^4=1820.$	0,25
	Số kết quả thuận lợi cho biến cố "4 thẻ được đánh số chắn" là: $C_8^4 = 70$. Xác suất cần tính là $p = \frac{70}{1820} = \frac{1}{26}$.	0,25
5	Gọi M là giao điểm của d và (P) , suy ra $M(2+t;-2t;-3+3t)$.	0,25
(1,0đ)	$M \in (P)$ suy ra $2(2+t) + (-2t) - 2(-3+3t) - 1 = 0 \Leftrightarrow t = \frac{3}{2}$. Do đó $M(\frac{7}{2}; -3; \frac{3}{2})$.	0,25
	d có vectơ chỉ phương $\overrightarrow{u}=(1;-2;3),$ (P) có vectơ pháp tuyến $\overrightarrow{n}=(2;1;-2).$ Mặt phẳng (α) cần viết phương trình có vectơ pháp tuyến $[\overrightarrow{u},\overrightarrow{n}]=(1;8;5).$	0,25
	Ta có $A(2;0;-3) \in d$ nên $A \in (\alpha)$. Do đó $(\alpha):(x-2)+8(y-0)+5(z+3)=0$, nghĩa là $(\alpha):x+8y+5z+13=0$.	0,25
6 (1,0đ)	Gọi H là trung điểm của AB , suy ra $SH \perp (ABCD)$. Do đó $SH \perp HD$. Ta có $SH = \sqrt{SD^2 - DH^2}$ $= \sqrt{SD^2 - (AH^2 + AD^2)} = a.$	0,25
	Suy ra $V_{S.ABCD} = \frac{1}{3}.SH.S_{ABCD} = \frac{a^3}{3}.$	0,25
	Gọi K là hình chiếu vuông góc của H trên BD và E là hình chiếu vuông góc của H trên SK . Ta có $BD \perp HK$ và $BD \perp SH$, nên $BD \perp (SHK)$. Suy ra $BD \perp HE$. Mà $HE \perp SK$, do đó $HE \perp (SBD)$.	0,25
	Ta có $HK = HB$. $\sin \widehat{KBH} = \frac{a\sqrt{2}}{4}$. Suy ra $HE = \frac{HS.HK}{\sqrt{HS^2 + HK^2}} = \frac{a}{3}$. Do đó $d(A, (SBD)) = 2d(H, (SBD)) = 2HE = \frac{2a}{3}$.	0,25

Câu	Đáp án	Điểm
7	Ta có $MN = \sqrt{10}$. Gọi a là độ dài cạnh của hình vuông $ABCD$,	
(1,0đ)	$a > 0. \text{ Ta có } AM = \frac{a}{2} \text{ và } AN = \frac{3AC}{4} = \frac{3a\sqrt{2}}{4},$	
	nên $MN^2 = AM^2 + AN^2 - 2AM.AN. \cos \widehat{MAN} = \frac{5a^2}{8}.$	0,25
	Do đó $\frac{5a^2}{8} = 10$, nghĩa là $a = 4$.	
	Gọi $I(x;y)$ là trung điểm của CD . Ta có $IM = AD = 4$	
	A B và $IN = \frac{BD}{4} = \sqrt{2}$, nên ta có hệ phương trình	0,25
	$\begin{cases} (x-1)^2 + (y-2)^2 = 16 \\ (x-2)^2 + (y+1)^2 = 2 \end{cases} \Leftrightarrow \begin{bmatrix} x=1; y=-2 \\ x=\frac{17}{5}; y=-\frac{6}{5}. \end{cases}$	
	• Với $x=1; y=-2$ ta có $I(1;-2)$ và $\overrightarrow{IM}=(0;4)$. Đường thẳng CD đi qua I và có vectơ pháp tuyến là \overrightarrow{IM} , nên có phương trình $y+2=0$.	0,25
	• Với $x = \frac{17}{5}$; $y = -\frac{6}{5}$ ta có $I(\frac{17}{5}; -\frac{6}{5})$ và $\overrightarrow{IM} = (-\frac{12}{5}; \frac{16}{5})$.	0,25
	Đường thẳng CD đi qua I và có vectơ pháp tuyến là \overrightarrow{IM} , nên có phương trình $3x-4y-15=0$.	0,23
8 (1,0đ)	$\begin{cases} x\sqrt{12-y} + \sqrt{y(12-x^2)} = 12 & (1) \\ x^3 - 8x - 1 = 2\sqrt{y-2} & (2). \end{cases}$ Điều kiện: $-2\sqrt{3} \le x \le 2\sqrt{3}$; $2 \le y \le 12$.	
	Ta có $x\sqrt{12-y} \le \frac{x^2+12-y}{2}$ và $\sqrt{y(12-x^2)} \le \frac{y+12-x^2}{2}$	0,25
	nên $x\sqrt{12-y} + \sqrt{y(12-x^2)} \le 12$. Do đó $(1) \Leftrightarrow \begin{cases} x \ge 0 \\ y = 12 - x^2 \end{cases}$.	
	Thay vào (2) ta được $x^3 - 8x - 1 = 2\sqrt{10 - x^2} \Leftrightarrow x^3 - 8x - 3 + 2(1 - \sqrt{10 - x^2}) = 0$ $\Leftrightarrow (x - 3)\left(x^2 + 3x + 1 + \frac{2(x + 3)}{1 + \sqrt{10 - x^2}}\right) = 0$ (3).	0,25
	Do $x \ge 0$ nên $x^2 + 3x + 1 + \frac{2(x+3)}{1 + \sqrt{10 - x^2}} > 0$.	0,25
	Do đó $(3) \Leftrightarrow x=3$. Thay vào hệ và đối chiếu điều kiện ta được nghiệm: $(x;y)=(3;3)$.	0,25
9 (1,0đ)	Ta có $0 \le (x - y - z)^2 = x^2 + y^2 + z^2 - 2xy - 2xz + 2yz = 2(1 - xy - xz + yz),$ nên $x^2 + yz + x + 1 = x(x + y + z + 1) + (1 - xy - xz + yz) \ge x(x + y + z + 1).$ Suy ra $\frac{x^2}{x^2 + yz + x + 1} \le \frac{x}{x + y + z + 1}.$	0,25
	Mặc khác, $(x+y+z)^2 = x^2 + y^2 + z^2 + 2x(y+z) + 2yz = 2 + 2yz + 2x(y+z)$ $\leq 2 + 2yz + [x^2 + (y+z)^2] = 4(1+yz)$. Do đó $P \leq \frac{x+y+z}{x+y+z+1} - \frac{(x+y+z)^2}{36}$.	0,25
	Đặt $t = x + y + z$, suy ra $t \ge 0$ và $t^2 = (x + y + z)^2 = (x^2 + y^2 + z^2) + 2xy + 2yz + 2zx$ $\le 2 + (x^2 + y^2) + (y^2 + z^2) + (z^2 + x^2) = 6$. Do đó $0 \le t \le \sqrt{6}$.	
	Xét $f(t) = \frac{t}{t+1} - \frac{t^2}{36}$, với $0 \le t \le \sqrt{6}$.	0,25
	Ta có $f'(t) = \frac{1}{(t+1)^2} - \frac{t}{18} = -\frac{(t-2)(t^2+4t+9)}{18(t+1)^2}$, nên $f'(t) = 0 \Leftrightarrow t = 2$.	
	Ta có $f(0) = 0$; $f(2) = \frac{5}{9}$ và $f(\sqrt{6}) = \frac{31}{30} - \frac{\sqrt{6}}{5}$, nên $f(t) \le \frac{5}{9}$ khi $0 \le t \le \sqrt{6}$. Do đó $P \le \frac{5}{9}$. Khi $x = y = 1$ và $z = 0$ thì $P = \frac{5}{9}$. Do đó giá trị lớn nhất của P là $\frac{5}{9}$.	0,25
	9 9	

—Hết——