Part III Local Fields

Based on lectures by Dr C. Johansson

Michaelmas 2016 University of Cambridge

Contents

1	Basic Theory 2		
	1.1	The p-adic Numbers	3
	1.2	Valued Fields	4
	1.3	Newton Polygons	7
	1.4	*Witt Vectors*	11
2	Some p-adic Analysis		
	2.1	Mahler's Theorem	13
3	Ramification Theory for Local Fields		
	3.1	More on Finite Extensions	16
	3.2	Totally Ramified Extensions	21
	3.3	The Unit Group \mathcal{O}_K^{\times}	22
	3.4	The Inertia Group	22
	3.5	Higher Ramification Groups	23
	3.6	Quotients	25
4	Local Class Field Theory 28		
	4.1	Infinite Galois Theory	28
	4.2	Unramified Extensions and Weil Groups	30
	4.3	Main Theorems of Local Class Field Theory	32
	4.4	Formal Groups	36
	4.5	Lubin-Tate Extensions	39
	4.6	Ramification Groups of L_m/K	43

1 Basic Theory

Definition 1 (Absolute value). Let K be a field. An **absolute value** on K is a function $|\cdot|: K \to \mathbb{R}_{>0}$ s.t.

i.
$$|x| = 0 \iff x = 0$$

ii.
$$|xy| = |x| |y| \quad \forall x, y \in K$$

iii.
$$|x + y| \le |x| + |y|$$

Definition 2 (Valued field). A valued field is a field with an absolute value.

Definition 3 (Equivalence of absolute values). Let K be a field and let $|\cdot|$, $|\cdot|'$ be absolute values on K. We say that $|\cdot|$ and $|\cdot|'$ are **equivalent** if the associated metrics induce the same topology.

Definition 6 (Non-archimedean absolute value). An absolute value $|\cdot|$ on a field K is called **non-archimedean** if $|x+y| \leq \max(|x|,|y|)$ (the **strong triangle inequality**).

Metrics s.t. $d(x, z) \leq \max(d(x, y), d(y, z))$ are called **ultrametrics**.

Assumption: unless otherwise mentioned, all absolute values will be non-archimedean. These metrics are weird!

Proposition 7. Let K be a valued field. Then $\mathcal{O} = \{x \mid |x| \leq 1\}$ is an open subring of K, called the **valuation ring** of K. $\forall r \in (0,1], \{x \mid x < r\}$ and $\{x \mid x \leq r\}$ are open ideals of \mathcal{O} .

Moreover,
$$\mathcal{O}^x = \{x \mid |x| = 1\}.$$

Proposition 8. Let K be a valued field.

i. Let (x_n) be a sequence in K. If $x_n - x_{n+1} \to 0$ then (x_n) is Cauchy

Assume that K is complete

ii. Let (x_n) be a sequence in K. If $x_n - x_{n+1} \to 0$ then (x_n) converges

iii. Let
$$\sum_{n=0}^{\infty} y_n$$
 be a series in K. If $y_n \to 0$, then $\sum_{n=0}^{\infty} y_n$ converges

Definition 9. Let $R \subseteq S$ be rings. Then $s \in S$ is **integral over R** if \exists monic $f(x) \in R[x]$ s.t. f(s) = 0.

Proposition 10. Let $R \subseteq S$ be rings. Then $s_1, \ldots, s_n \in S$ are all integral over $R \iff R[s_1, \ldots, s_n] \subseteq S$ is a finitely generated R-module.

Corollary 11. let $R \subseteq S$ be rings. If $s_1, s_2 \in S$ are integral over R, then $s_1 + s_2$ and s_1s_2 are integral over R. In particular, the set $\tilde{R} \subseteq S$ of all elements in S integral over R is a ring, called the **integral closure** of R in S.

Definition 12. Let R be a ring. A topology on R is called a **ring topology** on R if addition and multiplication are continuous maps $R \times R \to R$. A ring with a ring topology is called a **topological ring**.

Definition 13. Let R be a ring, $I \subseteq R$ an ideal. A subset $U \subseteq R$ is called **I-adically open** if $\forall x \in U \exists n \geq 1 \text{ s.t. } x + I^n \subseteq U$.

Proposition 14. The set of all I-adically open sets form a topology on R, called the I-adic topology.

Definition 15. Let $R_1, R_2, ...$ be topological rings with continuous homomorphisms $f_n : R_{n+1} \to R_n \ \forall n \geq 1$. The **inverse limit** of the R_i is the ring

$$\varprojlim_{n} R_{n} = \left\{ (x_{n}) \in \prod_{n} R_{n} \mid f_{n}(x_{n+1}) = x_{n} \forall n \ge 1 \right\}$$

$$\subseteq \prod_{n} R_{n}$$

Proposition 16. The inverse limit topology is a ring topology.

Definition 17. Let R be a ring, I an ideal. The **I-adic completion** of R is the topological ring $\varprojlim_n R/I^n$ (R/I^n has the discrete topology, and $R/I^{n+1} \to R/I^n$ is the natural map).

There exists a map $\nu: R \to \varprojlim R/I^n$, $r \mapsto (r \mod I^n)_n$ This map is a continuous ring homomorphism when R is given the I-adic topology. We say that R is **I-adically complete** if ν is a bijection.

If I = xR then we often call the *I*-adic topology the **x-adic topology**.

1.1 The p-adic Numbers

Let p be a prime number throughout.

If $x \in \mathbb{Q} \setminus \{0\}$ then $\exists !$ representation $x = p^n \frac{a}{b}$, where $n \in \mathbb{Z}$, $a \in \mathbb{Z}$, $b \in \mathbb{Z}_{>0}$ and (a, p) = (b, p) = (a, b) = 1.

We define the **p-adic absolute value** on $\mathbb Q$ to be the function $|\cdot|_p:\mathbb Q\to\mathbb R_{\geq 0}$ given by

$$|x|_p = \begin{cases} 0 & \text{if } x = 0 \\ p^{-n} & \text{if } x = p^n \frac{a}{b} \ (\neq 0) \text{ as before} \end{cases}$$

Then $|\cdot|_p$ is an absolute value.

Definition 18. The **p-adic numbers** \mathbb{Q}_p are the completion of \mathbb{Q} w.r.t. $|\cdot|_p$. The valuation ring $\mathbb{Z}_p = \{x \in \mathbb{Q}_p \mid |x|_p \leq 1\}$ is called the **p-adic integers**.

Proposition 19. \mathbb{Z}_p is the closure of \mathbb{Z} inside \mathbb{Q}_p .

Proposition 20. The non-zero ideals of \mathbb{Z}_p are $p_n\mathbb{Z}_p$ for $n \geq 0$. Moreover, $\mathbb{Z}/p^n\mathbb{Z} \cong \mathbb{Z}_p/p^n\mathbb{Z}_p$

Corollary 21. \mathbb{Z}_p is a PID with a unique prime element p (up to units).

Proposition 22. The topology on \mathbb{Z} induced by $|\cdot|_p$ is the p-adic topology.

Proposition 23. \mathbb{Z}_p is p-adically complete and is (isomorphic to) the p-adic completion of \mathbb{Z} .

Corollary 24. Every $a \in \mathbb{Z}_p$ has a unique expansion

$$a = \sum_{i=0}^{\infty} a_i p^i$$

with $a_i \in \{0, 1, \dots, p-1\}$

Every $a \in \mathbb{Q}_p^{\times}$ has a unique expansion

$$a = \sum_{i=n} \infty a_i p^i$$

 $n \in \mathbb{Z}, n = -\log_p |a|_p, a_n \neq 0.$

1.2 Valued Fields

Definition 25. Let K be a field. A valuation on K is a function $v: K \to \mathbb{R} \cup \{\infty\}$ s.t.

i.
$$v(x) = \infty \iff x = 0$$

ii.
$$v(xy) = v(x) + v(y)$$

iii.
$$v(x+y) \ge \min(v(x), v(y))$$

 $\forall x, y \in K$.

Here we use the conventions $r + \infty = \infty$, $r \leq \infty \ \forall r \in \mathbb{R} \cup \{\infty\}$. v a valuation \implies if $|x| = c^{-v(x)}$, $c \in \mathbb{R}_{>1}$, then $|\cdot|$ is an absolute value. Conversely, if $|\cdot|$ is an absolute value then $v(x) = -\log_c |x|$.

Let K be a valued field.

• $\mathcal{O} = \mathcal{O}_K = \{x \in K \mid |x| \le 1\}$ is the valuation ring

- $\mathfrak{m} = \mathfrak{m}_K = \{x \in K \mid |x| < 1\}$ is the maximal ideal
- $k = k_K = \mathcal{O}/\mathfrak{m}$ is the **residue field**

If K is a valued field and $F(x) = a_0 + a_1 x + \cdots + a_n x^n \in K[x]$ is a polynomial, we say that F is **primitive** if $\max_i |a_i| = 1$ ($\Longrightarrow F \in \mathcal{O}[x]$).

Theorem 26 (Hensel's Lemma). Assume that K is complete and that $F \in K[x]$ is primitive. Put $f = F \mod \mathfrak{m} \in k[x]$. If \exists factorisation f(x) = g(x)h(x) with (g,h) = 1, then \exists factorisation F(x) = G(x)H(x) in $\mathcal{O}[x]$ with $g \equiv G$, $h \equiv H \mod \mathfrak{m}$ and $\deg g = \deg G$.

Proof. Put $d = \deg F$, $m = \deg g$, so $\deg h \leq d - m$. Pick lifts $G_0, H_0 \in \mathcal{O}[x]$ of g, h with $\deg G_0 = \deg g$, $\deg H_0 \leq d - m$.

$$(g,h) = 1 \implies \exists A, B \in \mathcal{O}[x] \text{ s.t. } AG_0 + BH_0 \equiv 1 \mod \mathfrak{m}.$$

Pick $\pi \in \mathfrak{m}$ s.t. $F - G_0 H_0 \equiv AG_0 + BH_0 - 1 \mod \pi$.

Want to find $G = G_0 + \pi P_1 + \pi^2 P_2 + \dots$, $H = H_0 + \pi Q_1 + \pi^2 Q_2 + \dots \in \mathcal{O}[x]$ with $P_i, Q_i \in \mathcal{O}[x]$, $\deg P_i < m$, $\deg Q_i \le d - m$.

Define

$$G_{n-1} = G_0 + \pi P_1 + \dots + \pi^{n-1} P_{n-1}$$

$$H_{n-1} = H_0 + \pi Q_1 + \dots + \pi^{n-1} Q_{n-1}$$

We want $F \equiv G_{n-1}H_{n-1} \mod \pi^n$, then take the limit.

Induction on n: n = 1

Assume we have $G_{n-1}, H_{n-1}, G_n = G_{n-1} + \pi^n P_n, H_n = H_{n-1} + \pi^n Q_n$. Expanding $F - H_n G_n$, we want

$$F - G_{n-1}H_{n-1} \equiv \pi^n (G_{n-1}Q_n + H_{n-1}P_n) \mod \pi^{n+1}$$

and divide by π^n

$$G_{n-1}Q_n + H_{n-1}P_n = \frac{1}{\pi^n} (F - G_{n-1}H_{n-1}) \mod \pi$$

Let $F_n := F - G_{n-1}H_{n-1}$. $AG_o + BH_0 \equiv 1 \mod \pi \implies F_n \equiv AG_0F_n + BH_0F_n \mod \pi$.

Write $BF_n = QG_0 + P_n$ with $\deg P_n < \deg G_0, P_n \in \mathcal{O}[x]$

$$\implies G_0(AF_n + H_0Q) + H_0P_n \equiv F_n \mod \pi$$

Now omit all coefficients from $AF_n + H_0Q$ divisible by π to get Q_n .

Corollary 27. Let $F(x) = a_0 + a_1 x + \dots + a_n x^n \in K[x]$, K complete, $a_0 a_n \neq 0$. If F is irreducible, then $|a_i| \leq \max(|a_0|, |a_n|) \ \forall i$.

Corollary 28. $F \in \mathcal{O}[x]$ monic, K complete. If $F \mod \mathfrak{m}$ has a simple root $\bar{\alpha} \in k$, then F has a (unique) simple root $\alpha \in \mathcal{O}$ lifting $\bar{\alpha}$.

Useful fact: let K be a valued field, $x, y \in K$. $|x| > |y| \implies |x + y| = |x|$. More generally, if we have a convergent series $\sum_{i=0}^{\infty} x_i$ and the non-zero $|x_i|$ are distinct, then $|x| = \max |x_i|$.

Theorem 29. Let K be a complete valued field and let L/K be a finite extension. Then the absolute value $|\cdot|$ on K has a unique extension to an absolute value $|\cdot|_L$ on L, given by

$$|\alpha|_L = \sqrt[n]{|N_{L/K}(\alpha)|}, \ n = [L:K]$$

and L is complete w.r.t. $|\cdot|_L$.

Corollary 30. Let K be a complete valued field. If M/K is an algebraic extension of K, then $|\cdot|$ extends uniquely to an absolute value on M.

Corollary 31. In the setting of Theorem 16, if $\sigma \in \operatorname{Aut}(L/K)$ then $|\sigma(\alpha)|_L = |\alpha|_L \ \forall \alpha \in L$

Definition 32. Let K be a valued field and V a vector space over K. A **norm** on V is a function $||\cdot||: V \to \mathbb{R}_{\geq 0}$ such that

- i. $||x|| = 0 \iff x = 0$
- ii. $||\lambda x|| = |\lambda| \, ||x|| \, \forall \lambda \in K, x \in V$
- iii. $||x + y|| \le \max(||x||, ||y||) \ \forall x, y, \in V$

Two norms $||\cdot||, ||\cdot||'$ are **equivalent** if they induce the same topology on V $\iff \exists C, D > 0 \text{ s.t. } C ||x|| \le ||x||' \le D ||x|| \ \forall x \in V.$

Proposition 33. Let K be a complete valued field and V a finite dimensional K-vector space. Let x_1, \ldots, x_n be a basis of V, then if $x = \sum a_i x_i \in V$,

$$||x||_{\max} = \max_{i} |a_i|$$

defines a norm on V, and V is complete w.r.t $\|\cdot\|_{\max}$.

Moreover, if $||\cdot||$ is any norm on V, then $||\cdot||$ is equivalent to $||\cdot||_{\max}$ and hence V is complete w.r.t $||\cdot||$.

Lemma 34. Let K be a valued field. Then \mathcal{O}_K is integrally closed in K.

Corollary 35. Let K be a complete valued field, L/K finite. Equip L with $|\cdot|_L$ extending $|\cdot|$ on K. Then \mathcal{O}_L is the integral closure of \mathcal{O}_K inside L.

1.3 Newton Polygons

Definition. $S \subset \mathbb{R}^2$ is lower convex if

- i. $(x,y) \in S \implies (x,z) \in S \ \forall z \ge y$
- ii. S is convex

Given any $T \subset \mathbb{R}^2$, there exists a minimal lower convex $LCH(T) \supseteq T$ $(LCH(T) = \bigcap_{T \subset S', S' \text{lower convex } S')$.

Definition. Let $f(x) = a_0 + a_1 x + \cdots + a_n x^n \in K[x]$ where K is a valued field, v a valuation on K.

Define the **Newton polygon** of
$$f$$
 as $LCH\left(\left\{(i,v(a_i))\middle|\begin{array}{c}i=0,1,\ldots,n\\a_i\neq 0\end{array}\right\}\right)$.

Definition. The horizontal length of a line segment is called the **multiplicity**. Line segments have a **slope**.

Theorem 36. Let K be a complete valued field, v a valuation on K, $f(x) = a_0 + a_1x + \cdots + a_nx^n \in K[x]$. Let L be the splitting field of f over K, equipped with the unique extension w of v.

If $(r, v(a_r)) \to (s, v(a_s))$ is a line segment of the Newton polygon of f with slope $-m \in \mathbb{R}$, then f has precisely s - r roots of valuation m.

Proof. Dividing by a_n only shifts the NP vertically, so wlog $a_n = 1$.

Number the roots of f s.t.

$$v(\alpha_1) = \dots = v(\alpha_{s_1}) = m_1$$

 $v(\alpha_{s_1+1}) = \dots = v(\alpha_{s_2}) = m_2$
 $\vdots \qquad \vdots \qquad \vdots$
 $v(\alpha_{s_t+1}) = \dots = v(\alpha_{s_1}) = m_{t+1}$

where $m_1 < m_2 < \cdots < m_{t+1}$, and the α_i are the roots of f with multiplicity.

$$\begin{split} &v(a_n) = v(1) = 0 \\ &v(a_{n-1}) = v(\sum_i a_i) \ge \min_i v(\alpha_i) = m_1 \\ &v(a_{n-2}) \ge \min_{i \ne j} v(\alpha_i \alpha_j) = 2m_1 \\ &v(a_{n-s_1}) = v(\sum_{i_1, \dots i_{s_1} \text{ distinct }} \alpha_{i_1} \dots \alpha_{i_{s_1}}) = s_1 m_1 \\ &v(a_{n-s_1-1}) \ge \min v(\alpha_{i_1} \dots \alpha_{i_{s_1+1}}) = s_1 m_1 + m_2 \\ &\vdots \\ &v(a_{n-s_2}) = \min v(\alpha_{i_1} \dots \alpha_{i_{s_2}}) = s_1 m_1 + (s_2 - s_1) m_2 \end{split}$$

etc. Drawing the lines between the points (n,0), $(n-s_1,s_1m_1)$, ... gives the NP of f.

The first line segment has length $n-(n-s_1)=s_1$ and slope $\frac{0-s_1m_1}{n-(n-s_1)}=-m_1$. For $k \geq 2$, the kth line segment has length $(n-s_{k-1})-(n-s_k)=s_k-s_{k-1}$ and slope

$$\frac{(s_1 m_1 + \sum_{i=1}^{k-2} (s_{i+1} - s_i) m_{i+1}) - (s_1 m_1 + \sum_{i=1}^{k-1} (s_{i+1} - s_i) m_{i+1})}{(n - s_{k-1}) - (n - s_k)}$$

$$= \frac{-(s_k - s_{k-1}) m_k}{s_k - s_{k-1}} = -m_k$$

Corollary 37. If f is irreducible, then the NP has a single line segment.

Proof. we need to show that all roots have the same valuation. Let α, β be roots in the splitting field L. Then $\exists \sigma \in \operatorname{Aut}(L/K)$ s.t. $\sigma(\alpha) = \beta$. So $v(\alpha) = v(\sigma(\alpha)) = v(\beta)$ by Corollary 30.

Definition 38. Let K be a valued field with valuation v. K is a **discretely valued field** (DVF) if $v(K^{\times}) \subset \mathbb{R}$ is a discrete subgroup of \mathbb{R} ($\iff v(K^{\times})$ is infinite cyclic).

Definition 39. A complete DVF with finite residue field is called a **local field**.

Let K be a DVF. $\pi \in K$ is called a **uniformiser** if $v(\pi) > 0$ and $v(\pi)$ generates $v(K^{\times})$ ($\iff v(\pi)$ has minimal positive valuation).

Proposition 40. Let K be a DVF, uniformiser π . Let $S \subset \mathcal{O}_K$ be a set of coset representatives of $\mathcal{O}_k/\mathfrak{m}_K = k_K$ containing 0. Then

- 1. The non-zero ideals of \mathcal{O}_K are $\pi^n \mathcal{O}_K$, $n \geq 0$
- 2. \mathcal{O}_K is a PID with unique prime π (up to units), $\mathfrak{m}_K = \pi \mathcal{O}_K$
- 3. The topology on \mathcal{O}_K induced by $|\cdot|$ is the π -adic topology
- 4. If K is complete, then \mathcal{O}_K is π -adically complete
- 5. If K is complete, then any $x \in K$ can be written uniquely as

$$x = \sum_{n \gg -\infty}^{\infty} a_n \pi^n$$

with $a_n \in S$ and $|x| = |pi|^{-\inf\{n \mid a_n \neq 0\}}$

6. The completion \hat{K} of K is a DVF, π is a uniformiser and

$$\mathcal{O}_K/\pi^n\mathcal{O}_K \xrightarrow{\sim} \mathcal{O}_{\hat{K}}/\pi^n\mathcal{O}_{\hat{K}}$$

via the natural map.

Proof. The same as for \mathbb{Q}_p and \mathbb{Z}_p (use π instead of p). Note that $|\hat{K}| = |K|$ by Ex 9, sheet 1 ($\Longrightarrow \hat{K}$ is a DVF).

Proposition 41. Let K be a DVF. Then K is a local field $\iff \mathcal{O}_K$ is compact

Proof. \mathcal{O}_K compact $\implies \pi^{-n}\mathcal{O}_K$ is compact $\forall n \geq 0 \ (\pi \text{ uniformiser}).$

$$\mathcal{O}_K \cong \pi^{-n}\mathcal{O}_K \implies K = \bigcup_{n\geq 0}^{\infty} \pi^{-n}\mathcal{O}_K$$
 is complete.

Also $\mathcal{O}_K \twoheadrightarrow k_K$ and this map is continuous when k_K is given the discrete topology. So k_K is compact and discrete $\implies k_K$ finite.

Conversely, we seek to prove that K local $\Longrightarrow \mathcal{O}_K$ is sequentially compact (\iff compact). Note that $\mathcal{O}_K/\pi^n\mathcal{O}_K$ is finite $\forall n \geq 0$ (induction and $\pi^{n-1}\mathcal{O}_K/\pi^n\mathcal{O}_K \cong \mathcal{O}_K/\pi\mathcal{O}_K$).

Let (x_i) be a sequence in \mathcal{O}_K . \exists a subsequence (x_{1i}) which is constant modulo π . Keep going: choose a subsequence $(x_{n+1,i})$ of (x_{ni}) s.t. $(x_{n+1,i})$ is constant mod π^{n+1} .

Then $(x_{ii})_{i=1}^{\infty}$ converges: it's Cauchy since $|x_{ii} - x_{jj}| \leq |\pi|^j \ \forall j \leq i$, and K is complete.

Definition 42. A ring R is called a **discrete valuation ring** (DVR) if it is a PID with a unique prime element (up to units).

Proposition 43. R is a DVR \iff R \cong \mathcal{O}_K for some DVF K.

Proof. The reverse implication is contained in Proposition 42.

Suppose R is a DVR, π prime. $\forall x \in R \setminus \{0\}$, $\exists ! u \in R^{\times}$, $n \in \mathbb{Z}_{\geq 0}$ such that $x = \pi^n u$ by uniqueness of prime factorisation.

Define
$$v(x) = \begin{cases} n & \text{if } x \neq 0 \\ \infty & \text{if } x = 0 \end{cases} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}.$$

v defines a discrete valuation of $R \implies v$ extends uniquely to $K = \operatorname{Frac}(R)$. It remains to show that $R = \mathcal{O}_K$. First, note that $K = R[\frac{1}{\pi}]$. Any non-zero element looks like $\pi^n u$, $u \in R^{\times}$, $n \in \mathbb{Z}$, so it is invertible.

Then
$$v(\pi^n u) = n \in \mathbb{Z}_{\geq 0} \iff \pi^n u \in R$$

 $\therefore R = \mathcal{O}_K.$

Definition 44. Let K be a valued field with residue field k_K . K has equal characteristic if $\operatorname{char} K = \operatorname{char} k_K$, mixed characteristic otherwise (\Longrightarrow $\operatorname{char} K = 0$, $\operatorname{char} k_K > 0$).

Definition 45. Let R be a ring of characteristic p. R is **perfect** if the Frobenius map $x \mapsto x^p$ is an automorphism of R.

Theorem 46. Let K be a complete DVF of equal characteristic p and assume that k_K is perfect. Then $K \cong k_K[[T]]$ (as DVFs).

Corollary 47. Let K be a local field of equal characteristic p. Have $k_K \cong \mathbb{F}_q$ for some q a power of p, and $K \cong \mathbb{F}_q((T))$.

Definition 48. Let K be a DVF. The **normalised valuation** v_K on K is the unique valuation on K in the given equivalence class s.t. $v_K(\pi) = 1$ for any uniformiser π .

Lemma 49. Let R be a ring and let $x \in R$. Assume that R is x-adically complete and that R/xR is perfect of characteristic p.

Then $\exists ! map [-] : R/xR \to R such that$

$$[a] \equiv a \mod x$$
$$[ab] = [a][b] \ \forall a, b \in R/xR$$

Moreover if R has characteristic p, then [-] is a ring homomorphism.

Proof. Let $a \in R/xR$. $\exists ! \ a^{p^{-n}} \in R/xR \ \forall n \geq 0$ since R/xR is perfect. Now lift arbitrarily: take $\alpha_n \in R$ such that $\alpha_n \equiv a^{p^{-n}} \mod x$.

Put $\beta_n = \alpha_n^{p^n}$.

Claim: $\lim_{n\to\infty} \beta_n$ exists and is independent of choices. Call this [a].

Note that if the limit exists no matter how the α_n are chosen, then it is independent of the choices.

Want to prove $\beta_{n+1} - \beta_n \to 0$ x-adically.

$$\beta_{n+1} - \beta_n = (\alpha_{n+1}^p)^{p^n} - (\alpha_n)^{p^n}$$

$$\alpha_{n+1}^p \equiv (a^{p^{-n-1}})^p \equiv a^{p^{-n}} \equiv \alpha_n \mod x$$

The binomial theorem, R/xR characteristic p and induction \Longrightarrow

$$(\alpha_{n+1}^p)^{p^n} \equiv \alpha_n^{p^n} \mod x^{n+1}$$

i.e. $\beta_{n+1} - \beta_n \equiv 0 \mod x^{n+1}$ so $\lim_{n \to \infty} \beta_n$ exists.

Multiplicativity: if $b \in R/xR$, with $\gamma_n \in R$ lifting $b^{p^{-n}} \ \forall n \geq 0$, then $\alpha_n \gamma_n$ lifts $(ab)^{p^{-n}} = a^{p^{-n}} b^{p^{-n}}$

$$\implies [ab] = \lim_{n \to \infty} \alpha_n^{p^n} \lim_{n \to \infty} \gamma_n^{p^n} = [a][b]$$

 $[a] \equiv a \mod x$:

$$\lim_{n\to\infty}\alpha_n^{p^n}\equiv\lim_{n\to\infty}(a^{p^{-n}})^{p^n}\equiv\lim_{n\to\infty}a\equiv a\mod x$$

Uniqueness: let $\phi: R/xR \to R$ be another map with these properties.

$$[a] = \lim_{n \to \infty} \phi(a^{p^{-n}})^{p^n} = \lim_{n \to \infty} \phi(a) = \phi(a)$$

since $\phi(a^{p^{-n}}) \equiv a^{p^{-n}} \mod x$ and ϕ is multiplicative.

Finally, if R has characteristic p, then $\alpha_n + \gamma_n$ lifts $a^{p^{-n}} + b^{p^{-n}} - (a+b)p^{-n}$, so

$$[a+b] = \lim_{n \to \infty} (\alpha_n + \gamma_n)^{p^n} = \lim_{n \to \infty} \alpha_n^{p^n} + \gamma_n^{p^n} = [a] + [b]$$

So [-] is additive and multiplicative and (check!) [1] = 1, so it's a homomorphism.

Definition 50. [-]: $R/xR \to R$ is called the **Teichmüller map/lift** and [x] is called the **Teichmüller lift/representative** of x.

Proof of Theorem 48. K is a complete DVF. We want to prove that $\mathcal{O}_K \cong k_K[[T]]$.

 $\mathcal{O}_K \operatorname{char} p \implies [-]: k_K \hookrightarrow \mathcal{O}_K$ is an injective ring homomorphism.

Choose a uniformiser $\pi \in \mathcal{O}_K$. Then $k_K = \mathcal{O}/\pi \mathcal{O}_K$, \mathcal{O}_K π -adically complete. Now define

$$k_K[[T]] \to \mathcal{O}_K$$

$$\sum_{n=0}^{\infty} a_n T^n \mapsto \sum_{n=0}^{\infty} [a_n] \pi^n$$

It's a bijection by one of the basic properties of complete DVFs, check it's a homomorphism. $\hfill\Box$

Fact: let F be a field of characteristic p. Then F is perfect \iff every finite extension of F is separable.

 \mathbb{F}_q is perfect for every $q = p^n$.

1.4 *Witt Vectors*

Definition 51. Let A be a ring. A is called a **strict p-ring** if A is p-torsionfree, p-adically complete and A/pA is perfect.

Proposition 52. Let $X = \{x_i | i \in I\}$ be a set. Let

$$\begin{split} B &= \mathbb{Z}[x_i^{p^{-\infty}} \mid i \in I] \\ &= \bigcup_{n=0}^{\infty} \mathbb{Z}[x_i^{p^{-n}} \mid i \in I] \end{split}$$

(Note that $\mathbb{Z}[x_i \mid i \in I] \subseteq \mathbb{Z}[x_i^{p^{-1}} \mid i \in I] \subseteq ...$) and let A be the p-adic completion of B. Then A is a strict p-ring, and $A/pA \cong \mathbb{F}_p[x_i^{p^{-\infty}} \mid i \in I]$ (think of as 'universal perfect rings').

Lemma 53. Let A and B be strict p-rings and let $f: A/pA \to B/pB$ be a ring homomorphism. Then $\exists !$ homomorphism $F: A \to B$ such that $f \equiv F \mod p$. F is explicitly given by $F(\sum_{n=0}^{\infty} [a_n]p^n) = \sum_{n=0}^{\infty} [f(a_n)]p^n$.

Theorem 54. Let R be a perfect ring. Then $\exists !$ (up to isomorphism) strict p-ring W(R) (called the **Witt vectors** of R) such that $W(R)/pW(R) \cong R$. Moreover, if R' is another perfect ring the reduction mod p map gives a bijection

$$Hom_{Ring}(W(R), W(R')) \xrightarrow{\sim} Hom_{Ring}(R, R')$$

Proposition 55. A complete DVR A of mixed characteristic with perfect residue field and such that p is a uniformiser is the same as a strict p-ring A such that A/pA is a field.

Definition 56. Let R be a mixed characteristic DVR with normalised valuation v_R . The integer $v_R(p)$ where p is the characteristic of the residue field of R is called the **absolute ramification index** of R.

Corollary 57. Let R be a CDVR of mixed characteristic with absolute ramification index 1 and perfect residue field k. Then $R \cong W(k)$.

Lemma 53'. Let A be a strict p-ring and let B be a p-adically complete ring. If $f: A/pA \to B/pB$ is a ring homomorphism, then $\exists !$ ring homomorphism $F: A \to B$ with $f \equiv F \mod p$.

Theorem 58. Let R be a CDVR of mixed characteristic with perfect residue field k and uniformiser π . Then R is finite over W(k).

Corollary 59. Let K be a mixed characteristic local field. Then K is a finite extension of \mathbb{Q}_p .

2 Some p-adic Analysis

Recall the power series

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{x!}$$
$$\log(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$

Proposition 60. Let K be a complete valued field with absolute value $|\cdot|$, and assume that $K \supseteq \mathbb{Q}_p$, $|\cdot||_{\mathbb{Q}_p} = |\cdot|_p$. Then $\exp(x)$ converges for $|x| < p^{-\frac{1}{p-1}}$ and $\log(1+x)$ converges for |x| < 1, and they define continuous maps

$$\exp: \left\{ x \in K \mid |x| < p^{-\frac{1}{p-1}} \right\} \to \mathcal{O}_K$$
$$\log: \left\{ x \in K \mid |x| < 1 \right\} \to K$$

Proof. $v = -\log_p |\cdot|$, this extends v_p .

 $\log: v(n) \leq \log_n n \implies$

$$v(\frac{x^n}{n}) \ge n \cdot v(x) - \log_p n \to \infty$$

if v(x) > 0.

exp: $v(n!) = \frac{n - s_p(n)}{p-1}$. Then

$$v(\frac{x^n}{n!}) \ge n \cdot v(x) - \frac{n}{p-1} = n(v(x) - \frac{1}{p-1}) \ge 0$$

and $\to \infty$ as $n \to \infty$ if $v(x) > \frac{1}{p-1}$.

For continuity, we use uniform convergence as in the real case.

Lemma 53". Let A be a strict p-ring, B a ring with element $x \in B$ such that B is x-adically complete and B/xB is perfect of characteristic p. If $f: A/pA \to B/pB$ is a ring homomorphism, then $\exists !$ ring homomorphism $F: A \to B$ with $f \equiv F \mod p$.

Let $n \geq 1$.

$$\binom{x}{n} = \frac{x(x-1)\dots(x-n+1)}{n!}$$

is a polynomial in x, and so defines a continuous function $\mathbb{Z}_p \to \mathbb{Q}_p$, $x \mapsto \binom{x}{p}$.

Since $\binom{x}{n} \in \mathbb{Z}$ if $x \in \mathbb{Z}_{\geq 0}$, by the density of $\mathbb{Z}_{\geq 0} \subset \mathbb{Z}_p$ we must have $\binom{x}{n} \in \mathbb{Z}_p \forall x \in \mathbb{Z}_p$.

When n = 0, set $\binom{x}{0} = 1 \forall x \in \mathbb{Z}_p$.

2.1 Mahler's Theorem

Theorem 61 (Mahler). Let $f: \mathbb{Z}_p \to \mathbb{Q}_p$ be a continuous function. Then \exists a unique sequence $(a_n)_{n\geq 0}$ with $a_n \in \mathbb{Q}_p$, $a_n \to 0$ such that

$$f(x) = \sum_{n=0}^{\infty} a_n \binom{x}{n} \ \forall x \in \mathbb{Z}_p$$

and $\sup_{x \in \mathbb{Z}_p} |f(x)|_p = \max_{n=0,1,\dots} |a_n|_p$.

Let $\mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p) = \{ f : \mathbb{Z}_p \to \mathbb{Q}_p \text{ cts} \}$. This is a \mathbb{Q}_p -vector space.

If $f \in \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$, set $||f|| = \sup_{x \in \mathbb{Z}_p} |f(x)|_p$. \mathbb{Z}_p compact $\implies f$ is bounded, so the supremum exists and is attained.

Let c_0 denote the set of sequences $(a_n)_{n=0}^{\infty}$ in \mathbb{Q}_p such that $a_n \to 0$. This is a \mathbb{Q}_p -vector space, with a norm $||(a_n)|| = \max_{n=0,1,\dots} |a_n|_p$, and c_0 is complete w.r.t $||\cdot||$.

Define $\triangle : \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p) \to \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$ by $\triangle f(x) = f(x+1) - f(x)$. By induction,

$$\triangle^n f(x) = \sum_{i=0}^n (-1)^i \binom{n}{i} f(x+n-i)$$

Note that \triangle defines a linear operator on $\mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$, and

$$|\triangle f(x)|_p = |f(x+1) - f(x)|_p \leq ||f|| \implies ||\triangle f|| \leq ||f|| \text{ or } ||\triangle|| \leq 1$$

Definition 62. Let $f \in \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$. The **nth Mahler coefficient** $a_n(f) \in \mathbb{Q}_p$ is defined by

$$a_n(f) = \triangle^n f(0) = \sum_{i=0}^n (-1)^i \binom{n}{i} f(n-i)$$

Lemma 63. Let $f \in \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$. Then $\exists k \geq 1$ such that $\left| \left| \triangle^{p^k} f \right| \right| \leq \frac{1}{p} ||f||$.

Proof. If f = 0 there's nothing to prove, so wlog ||f|| = 1 (by scaling). Then we want to show that $\triangle^{p^k} f(x) \equiv 0 \mod p \ \forall x \in \mathbb{Z}_p$, some $k \geq 1$.

$$\Delta^{p^k} f(x) = \sum_{i=0}^{p^k} (-1)^i \binom{p^k}{i} f(x + p^k - i) \equiv f(x + p^k) - f(x) \mod p$$

because $\binom{p^k}{i} \equiv 0 \mod p$ for $i = 1, 2, \dots, p^k - 1$ and $(-1)^{p^k} \equiv -1 \mod p$.

Now \mathbb{Z}_p compact $\Longrightarrow f$ is uniformly continuous, so $\exists k$ such that $|x-y|_p \le p^{-k} \Longrightarrow |f(x)-f(y)|_p \le \frac{1}{p} \ \forall x,y \in \mathbb{Z}_p$. Take this k, and we're done. \square

Proposition 64. The map $f \mapsto (a_n(f))_{n=0}^{\infty}$ defines an injective norm-decreasing linear map $\mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p) \to c_0$.

Proof. First we prove that $a_n(f) \to 0$. We have $|a_n(f)|_p \le ||\triangle^n f||$, so it suffices to prove that $||\triangle^n f|| \to 0$. Since $||\triangle|| \le 1$, $||\triangle^n f||$ is monotonically decreasing, so it suffices to find a subsequence $\to 0$.

Apply Lemma 63 repeatedly to get k_1, k_2, \ldots such that

$$\left| \left| \triangle^{p^{k_1 + \dots + k_n}} f \right| \right| \le \frac{1}{p^n} \left| \left| f \right| \right|$$

This gives the desired subsequence.

Note that $|a_n(f)|_p \leq ||\triangle^n f|| \leq ||\triangle||$, so $||(a_n(f))_n|| = \max_{n=0,1,\dots} |a_n(f)|_p \leq ||f||$, so the map is norm-decreasing. Linearity follows from the linearity of \triangle .

Injectivity: assume $a_n(f) = 0 \ \forall n \geq 0$. Then $a_0(f) = f(0) = 0$, and by induction $f(n) = \triangle^n f(0) = a_n(f) = 0 \ \forall n \geq 0$. So f = 0 by continuity since $\mathbb{Z}_{\geq 0} \subseteq \mathbb{Z}_p$ is dense.

We will prove that the linear maps

$$f \mapsto (a_n(f))$$

$$\mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p) \rightleftharpoons c_0$$

$$f_a(x) = \sum_{n=0}^{\infty} a_n \binom{x}{n} \leftrightarrow (a_n) = a$$

are mutual inverses and norm-preserving.

Lemma 65. We have $\binom{x}{n} + \binom{x}{n-1} = \binom{x+1}{n} \ \forall n \in \mathbb{Z}_{\geq 1} \ and \ x \in \mathbb{Z}_p$.

Proof 1. True when $x \in \mathbb{Z}_{\geq n}$, and then the lemma follows by the density of $\mathbb{Z}_{\geq n} \subset \mathbb{Z}_p$ and continuity.

Proof 2. True when $x \in \mathbb{Z}_{\geq n}$, and both sides are polynomials which agree on an infinite set of points \implies equal as elements of $\mathbb{Q}[x]$. Now evaluate. \square

Now let $a = (a_n)_{n=0}^{\infty} \in c_0$. Define $f_a : \mathbb{Z}_p \to \mathbb{Q}_p$,

$$f_a(x) = \sum_{n=0}^{\infty} a_n \binom{x}{n}$$

This is a uniformly convergent series, so $f_a \in \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$.

Proposition 66. $a \mapsto f_a$ defines a norm-decreasing linear map $c_0 \to \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$. Moreover, $a_n(f_a) = a_n \ \forall n \geq 0$.

Proof. Linearity is clear.

Norm decreasing:

$$|f_a(x)|_p = \left| \sum_{n=0}^{\infty} a_n \binom{x}{n} \right|$$

$$\leq \sup_n |a_n|_p \left| \binom{x}{n} \right|_p$$

$$\leq \sup_n |a_n|_p = ||a|| \ \forall x \in \mathbb{Z}_p$$

 $\implies ||f_a|| \le ||a||.$

Inverses: $\forall k \in \mathbb{Z}_{\geq 0}$ define $a^{(k)} = (a_k, a_{k+1}, a_{k+2}, \dots)$

$$\Delta f_a(x) = f_a(x+1) - f_a(x)$$

$$= \sum_{n=1}^{\infty} a_n \left(\binom{x+1}{n} - \binom{x}{n} \right)$$

$$= \sum_{n=1}^{\infty} a_n \binom{x}{n-1} \text{ by Lemma 65}$$

$$= \sum_{n=0}^{\infty} a_{n+1} \binom{x}{n} = f_{a^{(1)}}(x)$$

Iterating, $\triangle^k f_a = f_{a^{(k)}} \implies$

$$a_n(f_a) = \triangle^n f_a(0) = f_{a^{(n)}}(0) = a_n$$

Summing up:

$$F(f) = (a_n(f))$$

$$V = \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p) \stackrel{F}{\rightleftharpoons} c_0 = W$$

$$G(a) = f_a$$

We know: F is injective and norm-decreasing, $FG = id_W$ and G is norm-decreasing.

Lemma 67. In this situation, $GF = id_V$ and F and G are norm-preserving.

Proof. Let $v \in V$. Then $F(v - GFv) = Fv - Fv = 0 \implies v = GFv$ since F is injective. So $GF = \mathrm{id}_V$.

Norm-preserving: $v \in V$, have $||Fv|| \le ||v||$, but also $||Fv|| \ge ||GFv|| = ||v||$, so F is norm preserving. Same proof for G.

This finishes the proof of Mahler's Theorem.

3 Ramification Theory for Local Fields

The characteristic of the residue field of any local field from now on will be p (unless stated otherwise).

3.1 More on Finite Extensions

Recall: let R be a PID and let M be a f.g. R-module. Assume that M is torsion free. Then $\exists ! n \geq 0$ such that $M \cong R^n$. Moreover, if $N \subseteq M$ is a submodule, then N is finitely generated and $N \cong R^m$, with $m \leq n$.

Proposition 68. Let K be a local field, L/K finite of degree n. Then \mathcal{O}_L is a finite, free \mathcal{O}_K -module of rank n (i.e. $\mathcal{O}_L \cong \mathcal{O}_K^n$ as \mathcal{O}_K -modules), and k_L/k_K is an extension of degree $\leq n$. Moreover, L is a local field.

Proof. Choose a K-basis $\alpha_1, \ldots, \alpha_n$ of L. Let $||\cdot||$ denote the maximum norm $||\sum_{i=1}^n x_i \alpha_i|| = \max_{i=1,\ldots,n} |x_i|$ on L as in Proposition 33. $||\cdot||$ is equivalent to $|\cdot|$ (the extended absolute value on L) as K-norms, so $\exists r > s > 0$ such that

$$M = \{x \in L \mid ||x|| \le s\} \subseteq \mathcal{O}_L \subseteq N = \{x \in L \mid ||x|| \le r\}$$

Increasing r and decreasing s as necessary wlog $r=|a|,\ s=|b|$ for some $a,b\in K^{\times}$. Then

$$M = \bigoplus_{i=1}^{n} \mathcal{O}_{K} b \alpha_{i} \subseteq \mathcal{O}_{L} \subseteq N = \bigoplus_{i=1}^{n} \mathcal{O}_{K} a \alpha_{i}$$

 $\implies \mathcal{O}_L$ is f.g. and free of rank n over \mathcal{O}_K .

Since $\mathfrak{m}_K = \mathfrak{m}_L \cap \mathcal{O}_K$, we have a natural injection

$$k_K = \mathcal{O}_K/\mathfrak{m}_K \hookrightarrow \mathcal{O}_L/\mathfrak{m}_L = k_L$$

Since \mathcal{O}_L is generated over \mathcal{O}_K by n elements, k_L is generated by n elements over k_K , i.e. $[k_L:k_K] \leq n$.

L a local field: k_L/k_K is finite and k_K finite $\implies k_L$ is a finite field. L is complete by Theorem 29.

Let v_K be the normalised valuation on K, w the extension of v_K to L. Then $w(\alpha) = \frac{1}{n}v_K(N_{L/K}(\alpha))$, so

$$w(L^{\times}) \subseteq \frac{1}{n}v(K^{\times}) = \frac{1}{n}\mathbb{Z}$$

 \implies it's discrete.

Definition 69. Let L/K be a finite extension of local fields. The **inertia** degree of L/K is

$$f_{L/K} = [k_L : k_K]$$

Let v_L be the normalised valuation on L and π_K a uniformiser of K. The integer

$$e_{L/K} = v_L(\pi_K)$$

is called the **ramification index** of L/K.

Theorem 70. Let L/K be a finite extension of local fields. Then $[L:K] = e_{L/K} f_{L/K}$ and $\exists \alpha \in \mathcal{O}_L$ such that $\mathcal{O}_L = \mathcal{O}_K[\alpha]$.

Proof. Write $e = e_{L/K}$, $f = f_{L/K}$.

 k_L/k_K is separable, so $\exists \bar{\alpha} \in k_L$ such that $k_L = k_K(\bar{\alpha})$. Let $\bar{f}(x) \in k_K[x]$ be the minimal polynomial of $\bar{\alpha}$ over k_K , and let $f \in \mathcal{O}_K[x]$ be a monic lift of \bar{f} with deg $f = \deg \bar{f}$.

Claim: $\exists \alpha \in \mathcal{O}_L$ lifting $\bar{\alpha}$ and such that $v_L(f(\alpha)) = 1$ (always ≥ 1).

Let $\beta \in \mathcal{O}_L$ be any lift of $\bar{\alpha}$. If $v(f(\beta)) = 1$, then set $\alpha = \beta$. If not, set $\alpha = \beta + \pi_L$ (π_L uniformiser of L).

 $f(\alpha) = f(\beta + \pi_L) = f(\beta) + f'(\beta)\pi_L + b\pi_L^2$ for some $b \in \mathcal{O}_L$ (Taylor expanding around β).

Since $v_L(f(\beta)) \ge 2$ and $v_L(f'(\beta)) = 0$, we have $v_L(f(\alpha)) = 1$. Put $\pi = f(\alpha)$ (uniformiser of L).

We claim that $\alpha^i \pi^j$, $i = 0, \dots, f - 1$, $j = 0, \dots, e - 1$ are an \mathcal{O}_K -basis of \mathcal{O}_L . Linear independence: assume $\sum_{i,j} a_{ij} \alpha^i \pi^j = 0$ for some $a_{ij} \in K$, not all 0.

Put $s_j = \sum_{i=0}^{f-1} a_{ij} \alpha^i \ \forall j. \ 1, \alpha, \dots, \alpha^{f-1}$ are linearly independent over K since there reductions are linearly independent over k_K . So $\exists j$ such that $s_j \neq 0$.

Claim: $e|v_L(s_i)$ if $s_i \neq 0$.

Let k be such that $|a_{kj}|$ is maximal, then $a_{kj}^{-1}s_j = \sum_{i=0}^{f-1} a_{kj}^{-1}a_{ij}\alpha^i \implies a_{kj}^{-1}s_k \not\equiv 0 \mod \pi_L$ because $1, \bar{\alpha}, \ldots, \bar{\alpha}^{f-1}$ are linearly independent over k_K .

$$\implies v_L(a_{kj}^{-1}s_j) = 0 \implies v_L(s_j) = v_L(a_{kj}) = v_L(a_{kj}^{-1}s_j)$$

$$\in v_L(K^{\times})$$

$$= ev_L(L^{\times}) = e\mathbb{Z}$$

Now write $\sum_{i,j} a_{ij} \alpha^i \pi^j = \sum_{j=0}^{e-1} s_j \pi^j = 0$. If $s_j \neq 0$, we have $v_L(s_j \pi^j) = v_L(s_j) + j \in j + e\mathbb{Z}$.

 \implies no two non-zero terms in $\sum_{j=0}^{e-1} s_j \pi^j$ have the same valuation.

 $\implies \sum_{j=0}^{e-1} s_j \pi^j \neq 0$, which is a contradiction.

Claim $\mathcal{O}_L = \bigoplus_{i,j} \alpha^i \pi^j$.

Set $M = \bigoplus_{i,j} \alpha^i \pi^j$ and $N = \bigoplus_{i=0}^{f-1} \mathcal{O}_K \alpha^i$. Then $M = N + \pi + N + \dots + \pi^{e-1} N$. Since $1, \bar{\alpha}, \dots, \bar{\alpha}^{f-1}$ span k_L over k_K we must have $\mathcal{O}_L = N + \pi \mathcal{O}_L$.

Iterate:
$$\mathcal{O}_L = N + \pi(N + \pi \mathcal{O}_L)$$

 $= N + \pi N + \pi^2 \mathcal{O}_L$
 $= \dots$
 $= N + \pi N + \dots + \pi^{e-1} N + \pi^e \mathcal{O}_L$
 $= M + \pi_K \mathcal{O}_L (\pi_K \text{ uniformiser of } K)$

Iterate: $\mathcal{O}_L = M + \pi_K^n \mathcal{O}_L \ \forall n \geq 1 \implies M$ is dense in \mathcal{O}_L . But M is the closed unit ball in $V = \bigoplus_{ij} K \alpha^i \pi^j \subseteq L$ w.r.t the maximum norm on V w.r.t the basis $\alpha^i \pi^j$.

Proposition 33 and Theorem 29 $\implies M$ is complete both w.r.t the maximum norm and $|\cdot|$ on L.

 $\implies M \subseteq L$ is closed.

 $\implies M = \mathcal{O}_L.$

Finally, since $\alpha^i \pi^j = \alpha^i f(\alpha)^j$ is a polynomial in α , have $\mathcal{O}_L = \mathcal{O}_K[\alpha]$. \square

Corollary 71. Let M/L/K be finite extensions of local fields. Then $f_{M/K} = f_{L/K}f_{M/L}$ and $e_{M/K} = e_{L/K}e_{M/L}$.

Proof.
$$[k_M:k_K] = [k_M:k_L][k_L:k_K]$$
 by multiplicativity of degrees.
$$e_{M/L}e_{L/K} = \frac{[M:L]}{f_{M/L}}\frac{[L:K]}{f_{L/K}} = \frac{[M:K]}{f_{M/K}} = e_{M/K}.$$

Definition 72. Let L/K be a finite extension of local fields. L/K is unramified if $e_{L/K} = 1$ (or $f_{L/K} = [L:K]$), and totally ramified if $f_{L/K} = 1$.

Theorem 73. Let K be a local field. For each finite extension l/k_K there is a unique (up to isomorphism) finite unramified extension L/K with $k_L \cong l$ over k_K .

Moreover, L/K is Galois with $Gal(L/K) \cong Gal(l/k_K)$.

Proof. Existence: let $\bar{\alpha}$ be a primitive element of l/k_K with minimal polynomial $\bar{f} \in k_K[x]$. Take a monic lift $f \in \mathcal{O}_K[x]$ of \bar{f} (deg $f = \deg \bar{f}$).

Put $L = K(\alpha)$ where α is a root of f. \bar{f} irreducible $\implies f$ irreducible $\implies [L:K] = [l:k_K]$.

Moreover, k_L contains a root of \bar{f} (the reduction of α). So $l \hookrightarrow k_L$ over $k_K \implies [L:K] \ge [k_L:k_K] = [L:K]$.

$$\implies L/K$$
 is unramified and $k_L \cong l$ over k_K .

Uniqueness and Galois property follows from:

Lemma 74. Let L/K be a finite unramified extension of local fields and let M/K be a finite extension. Then there is a natural bijection

$$\operatorname{Hom}_{K-alg}(L,M) \xrightarrow{\sim} \operatorname{Hom}_{k_K-alg}(k_L,k_M)$$

 $(\varphi: L \to M \text{ restricts to } \varphi: \mathcal{O}_L \to \mathcal{O}_M, \text{ then take reductions}).$

Proof. By uniqueness of extended absolute values (Theorem 29) any K-algebra homomorphism $\phi: L \to M$ is an isometry for the extended absolute values.

Thus $\varphi(\mathcal{O}_L) \subseteq \mathcal{O}_M$, $\varphi(\mathfrak{m}_L) \subseteq \varphi(\mathfrak{m}_M)$ so we get the induced k_K -algebra homomorphism $\bar{\varphi}: k_L \to k_M$. This gives

$$\operatorname{Hom}_{K-alg}(L,M) \to \operatorname{Hom}_{k_K-alg}(k_L,k_M)$$

Bijectivity: let $\bar{\alpha} \in k_L$ be a primitive element over k_K , $\bar{f} \in k_K[x]$ its minimal polynomial, $f \in \mathcal{O}_K[x]$ a monic lift of \bar{f} and $\alpha \in \mathcal{O}_L$ the unique root of f which lifts to $\bar{\alpha}$ (Hensel's Lemma).

Then $k_L = k_L(\bar{\alpha})$ and $L = K(\alpha)$.

$$\begin{array}{cccc} \varphi & & \operatorname{Hom}_{K-alg}(L,M) & \longrightarrow & \operatorname{Hom}_{k_K}(k_L,k_M) & & \hat{\varphi} \\ \downarrow & & \downarrow & & \downarrow & & \downarrow \\ \varphi(\alpha) & & \{x \in M \,|\, f(x) = 0\} & \longrightarrow & \{\bar{x} \in k_M \,|\, \bar{f}(\bar{x}) = 0\} & & \bar{\varphi}(\bar{\alpha}) \end{array}$$

This is a bijection by Hensel's Lemma, since \bar{f} is separable.

Proof of 73 cont. Uniqueness: $k_L \cong k_M$ over k_K , L/K, M/K unramified. Then $\bar{\phi}$ lifts to a K-embedding $\phi: L \hookrightarrow M$ and $[L:K] = [M:K] \implies \phi$ an isomorphism.

 $\text{Galois: } |\text{Aut}_K(L)| = |\text{Aut}_{k_K}(k_L)| = [k_L:k_K] = [L:K] \implies L/K \text{ Galois.}$

Also, ${\rm Aut}_K(L) \to {\rm Aut}_{k_K}(k_L)$ is really a homomorphism (so an isomorphism). \Box

Proposition 75. Let K be a local field, L/K finite unramified, M/K finite. Say $L, M \subset$ fixed algebraic closure \bar{K} of K. Then LM/M is unramified. Any subextension of L/K is unramified over K. If M/K is unramified, then LM/K is unramified.

Proof. Let $\hat{\alpha}$ be a primitive element of k_L/k_K , $\bar{f} \in k_K[x]$ the minimal polynomial of $\hat{\alpha}$, $f \in \mathcal{O}_K[x]$ a monic lift of \bar{f} , $\alpha \in \mathcal{O}_L$ the unique root of f lifting $\hat{\alpha}$. Then $L = K(\alpha)$ so $LM = M(\alpha)$.

Let \bar{g} be the minimal polynomial of $\bar{\alpha}$ over k_M . Then $\bar{g}|\bar{f} \implies f = gh$ in $\mathcal{O}_M[x]$ by Hensel's Lemma. g monic, lifts $\bar{g} \implies g(\alpha) = 0$ and g irreducible in M[x].

So g is the minimal polynomial of α over $M \Longrightarrow$

$$[LM:M] = \deg g = \deg \bar{g} \le [k_{LM}:k_M] \le [LM:M]$$

 \implies have equalities, LM/M unramified.

The second claim follows from the multiplicativity of $f_{L/K}$ and $e_{L/K}$ (Corollary 71), as does the third ($[LM:K]=[LM:M][M:K]=f_{LM/M}f_{M/K}=f_{LM/K} \Longrightarrow LM/K$ unramified).

Corollary 76. Let K be a local field, L/K finite. Then \exists a unique maximal subfield $K \subseteq T \subseteq L$ such that T/K is unramified. Moreover, $[T:K] = f_{L/K}$.

Proof. Existence: T is the composite of all unramified subextensions of L/K (use Proposition 75).

Have $[T:K] = f_{T/K} \le f_{L/K}$ by Corollary 71.

Let T'/K be the unique unramified extension with residue field extension k_L/k_K . Then $id: k_{T'} = k_L \to k_L$ lifts to a K-embedding $T' \stackrel{\varphi}{\hookrightarrow} L$, by Lemma 74.

Then
$$[T:K] \ge [\varphi(T'):K] = f_{L/K} \implies [T:K] = f_{L/K}.$$

3.2 Totally Ramified Extensions

Recall

Theorem 77 (Eisenstein's Criterion). Let K be a local field, $f(x) = x^n + \cdots + a_0 \in \mathcal{O}_K[x]$, π_K uniformiser of K. If $\pi_K|a_{n-1},\ldots,a_0$ and $\pi_K^2 \nmid a_0$, then f is irreducible.

Note that if L/K finite, v_K a normalised valuation on K and w the unique extension of v_K to L. Then $e_{L/K}^{-1} = w(\pi_L) = \min_{x \in \mathfrak{m}_L} w(x)$.

A polynomial $f(x) \in \mathcal{O}_K[x]$ satisfying the assumptions of Eisenstein's criterion is called an **Eisenstein polynomial**.

Proposition 78. Let L/K be a totally ramified extension of local fields. Then $L = K(\pi_L)$ and the minimal polynomial of π_L over K is Eisenstein.

Conversely, if $L = K(\alpha)$ and the minimal polynomial of α over K is Eisenstein, then L/K is totally ramified and α is a uniformiser of L.

Proof. First part: n = [L : K], v_K a normalised valuation on K and w the unique extension of v_K to L. Then

$$[K(\pi_L):K]^{-1} \le e_{K(\pi_L)/K}^{-1} = \min_{x \in \mathfrak{m}_K(\pi_L)} w(x) \le \frac{1}{n}$$

$$\implies [K(\pi_L):K] \ge [L:K] \implies L = K(\pi).$$

Let $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in \mathcal{O}_K[x]$ be the minimal polynomial of π_L over K.

$$\pi_L^n = -(a_0 + a_1(\pi_L) + \dots + a_{n-1}\pi_L^{n-1})$$

So $1 = w(\pi_L^n) = w(a_0 + a_1\pi_L + \dots + a_{n-1}\pi_L^{n-1}) = \min_{i=0,1,\dots,n-1}(v_K(a_i) + \frac{i}{n})$ $\implies v_K(a_i) \ge 1 \ \forall i \text{ and } v_K(a_0) = 1, \text{ so } f \text{ is Eisenstein.}$

Converse: $L = K(\alpha)$, n = [L : K]. Let $g(x) = x^n + b_{n-1}x^{n-1} + \cdots + b_0 \in \mathcal{O}_K[x]$ be the minimal polynomial of α . g irreducible \implies all roots have the same valuation, so

$$1 = w(b_0) = n \cdot w(\alpha) \implies w(\alpha) = \frac{1}{n}$$

$$\implies e_{L/K}^{-1} = \operatorname{min}_{x \in \mathfrak{M}_L} w(x) \leq \tfrac{1}{n} = [L:K]^{-1}$$

 $\implies [L:K] = e_{L/K} = n$, so L/K is totally ramified and α is a uniformiser.

We've show that if L/K is a totally ramified extension of local fields, then $L = K(\pi_L)$. In fact, $\mathcal{O}_L = \mathcal{O}_K[\pi_L]$ (see proof of Theorem 70).

$\mathbf{3.3}$ - The Unit Group $\mathcal{O}_K^{ imes}$

Let K be a local field. For each $s \in \mathbb{Z}_{>1}$, set

$$U_K^{(s)} = U^{(s)} = 1 + \pi_K^S \mathcal{O}_K$$

where π_K is a uniformiser of K. Put $U_K = U_K^{(0)} = U^{(0)} = O_K^{\times}$.

Proposition 79. We have $U_K/U_K^{(1)} \cong (k_K^{\times}, \cdot)$ and $U_K^{(s)}/U_K^{(s+1)} \cong (k_K, +)$.

Proof. We have a surjective homomorphism $\mathcal{O}_K^{\times} \to k_K^{\times}$ which is just reduction mod π_K , and the kernel is $1 + \pi_K \mathcal{O}_K = U_K^{(1)}$.

For the second part, define a surjection

$$U_K^{(s)} \to k_K$$

$$1 + \pi_K^s x \mapsto x \mod \pi_K$$

This is a group homomorphism: writing $\pi = \pi_K$,

$$(1+\pi^S x)(1+\pi^s y) = 1+\pi^s (x+y+\pi^s xy) \mapsto x+y+\pi^s xy \equiv x+y \mod \pi$$
 The kernel is $1+\pi^{s+1}\mathcal{O}_K = U_K^{s+1}$.

3.4 The Inertia Group

Proposition 80. If L/K is a finite Galois extension of local fields, then \exists a surjective homomorphism $Gal(L/K) \to Gal(k_L/k_L)$.

Proof. Lemma 74 gives us a homomorphism

Let T/K be the maximal unramified subextension of L/K.

$$\operatorname{Gal}(L/K) \longrightarrow \operatorname{Gal}(k_L/k_K)$$

$$\downarrow \qquad \qquad \left\| (k_T = k_L) \right\|$$

$$\operatorname{Gal}(T/K) \stackrel{\sim}{\longrightarrow} \operatorname{Gal}(k_T/k_K)$$

 \implies surjectivity.

Definition 81. In the setting of proposition 80, the kernel $I(L/K) = \operatorname{Gal}(L/T)$ of $\operatorname{Gal}(L/K) \to \operatorname{Gal}(k_L/k_K)$ is called the **inertia group** of L/K (Trivial \iff L/K unramified).

The field T is (sometimes) called the **inertial field** of L/K.

Lemma 82. Let L/K be a finite Galois extension of local fields. Let $x \in k_L$ and $\sigma \in Gal(L/K)$ with image $\bar{\sigma} \in Gal(k_L/k_K)$. Then

$$[\bar{\sigma}(x)] = \sigma([x])$$

In particular, $\sigma([x]) = [x] \ \forall x \in k_L \iff \sigma \in I(L/K)$.

Proof. The map

$$x \mapsto \sigma^{-1}([\bar{\sigma}(x)])$$
 $k_L \to \mathcal{O}_L$

is multiplicative and $\sigma^{-1}([\bar{\sigma}(x)]) \equiv x \mod \pi_L$ $\implies \sigma^{-1}([\bar{\sigma}(x)]) = [x]$ by uniqueness of [-].

3.5 Higher Ramification Groups

Let L/K be a finite Galois extension of local fields, v_L a normalised valuation on L.

Definition 83. Let $s \in \mathbb{R}_{\geq -1}$. Define the s-th ramification group of L/K by

$$G_s(L/K) = \{ \sigma \in \operatorname{Gal}(L/K) \mid v_L(\sigma(x) - x) \ge s + 1 \ \forall x \in \mathcal{O}_L \}$$

We could have defined these only for $s \in \mathbb{Z}_{\geq -1}$. Note that $G_{-1}(L/K) = \operatorname{Gal}(L/K)$, $G_0(L/K) = I(L/K)$.

Proposition 84. Notation as above, π_L a uniformiser of L. Then $G_{s+1}(L/K)$ is a normal subgroup of $G_s(L/K)$ $\forall s \in \mathbb{Z}_{s \geq 0}$ and the map

$$\frac{G_s(L/K)}{G_{s+1}(L/K)} \to \frac{U_L^{(s)}}{U_L^{(s+1)}}$$
$$\sigma \mapsto \frac{\sigma(\pi_L)}{\pi_L}$$

is a well-defined injective group homomorphism, independent of the choice of π_L .

Proof. Define $\phi: G_s(L/K) \to \frac{U_L^{(s)}}{U_L^{(s+1)}}$ by $\sigma \mapsto \frac{\sigma(\pi_L)}{\pi_L}$. $\sigma \in G_s(L/K)$, $\sigma(\pi_L) = \pi_L + \pi_L^{s+1} x$ for some $x \in \mathcal{O}_L \Longrightarrow$

$$\frac{\sigma(\pi_L)}{\pi_L} = 1 + \pi_L^s x \in U_L^s$$

Now let $u \in \mathcal{O}_L^{\times}$. Then $\sigma(u) = u + \pi_L^{s+1} y$ for some $y \in \mathcal{O}_L$, so

$$\frac{\sigma(\pi_L u)}{\pi_L u} = \frac{(\pi_L + \pi_L^{s+1} x)(u + \pi_L^{s+1} y)}{\pi_L u}$$
$$= (1 + \pi_L^s x)(1 + \pi_L^{s+1} u^{-1} y)$$
$$\equiv (1 + \pi_L^s x) = \frac{\sigma(\pi_L)}{\pi_L} \mod U_L^{(s+1)}$$

So ϕ is independent of the choice of π_L .

It's a homomorphism:

$$\phi(\sigma\tau) = \frac{\sigma(\tau(\pi_L))}{\pi_L}$$

$$= \frac{\sigma(\tau(\pi_L))}{\tau(\pi_L)} \frac{\tau(\pi_L)}{\pi_L}$$

$$\equiv \frac{\sigma(\pi_L)}{\pi_L} \frac{\tau(\pi_L)}{\pi_L} = \phi(\sigma)\phi(\tau) \mod U_L^{s+1}$$

We have

$$\operatorname{Ker} \phi = \{ \sigma \in G_s(L/K) \mid v_L(\sigma(\pi_L) - \pi_L) \ge s + 2 \}$$

$$\subseteq \{ \sigma \in G_s(L/K) \mid v_L(\sigma(z) - z) \ge s + 2 \ \forall \in \mathcal{O}_L \}$$

$$= G_{s+1}(L/K)$$

Conversely, let $x \in \mathcal{O}_L$ and write $x = \sum_{n=0}^{\infty} [x_n] \pi_L^n$, $x_n \in k_L$. Write $\sigma(\pi_L) = \pi_L + \pi_L^{s+2} y$, $y \in \mathcal{O}_L$. Let $\sigma \in \text{Ker } \phi \subseteq I(L/K)$.

By Lemma 82,

$$\sigma(x) - x = \sum_{n=1}^{\infty} [x_n]((\pi_L + \pi_L^{s+2}y)^n - \pi_L^n)$$

$$= \pi_L^{s+2}y \sum_{n=1}^{\infty} [x_n]((\pi_L + \pi_L^{s+2}y)^{n-1} + (\pi_L + \pi_L^{s+2}y)^{n-2}\pi_L + \dots + \pi_L^n)$$

so
$$v_L(\sigma(x) - x) \ge s + 2$$
, so $\sigma \in G_{s+1}(L/K)$.

Corollary 85. Gal(L/K) is soluble.

Proof. Note that $\bigcap_s G_s(L/K) = \{id\}$, so $(G_s(L/K))_{s \in \mathbb{Z}_{\geq -1}}$ is a subnormal series of $\operatorname{Gal}(L/K)$ and $\frac{G_s(L/K)}{G_{s+1}(L/K)}$ is abelian.

Let L/K be a finite Galois extension of local fields. Then $G_1(L/K)$ is a p-group (since $\frac{G_s(L/K)}{G_{s+1}(L/K)} \hookrightarrow k_L \ \forall s \in \mathbb{Z}_{\geq} 1$) and $\frac{G_0(L/K)}{G_1(L/K)} \hookrightarrow k_L^{\times}$, which has order prime to p.

 $\implies G_1(L/K)$ is the unique Sylow p-subgroup of $G_0(L/K)$.

 $G_1(L/K)$ is called the **wild inertia group** and $\frac{G_0(L/K)}{G_1(L/K)}$ is called the **tame** quotient.

Proposition 86. Let M/L/K be finite extensions of local fields, M/K Galois. Then $G_s(M/K) \cap \operatorname{Gal}(M/L) = G_s(M/L)$.

Proof.

$$G_s(M/L) = \{ \sigma \in \operatorname{Gal}(M/L) \mid v_M(\sigma(x) - x) \ge s + 1 \}$$
$$= G_s(M/K) \cap \operatorname{Gal}(M/L)$$

3.6 Quotients

Let L/K be a finite Galois extension of local fields. Pick $\alpha \in \mathcal{O}_L$ such that $\mathcal{O}_L = \mathcal{O}_K[\alpha]$. set $i_{L/K}(\sigma) = v_L(\sigma(\alpha) - \alpha)$ for $\sigma \in \operatorname{Gal}(L/K)$.

If
$$g(x) = \sum_{i=0}^{m} b_i x^i \in \mathcal{O}_K[x]$$
, then

$$v_L(\sigma(g(\alpha)) - g(\alpha)) = v_L\left(\sum_{i=1}^m b_i(\sigma(\alpha)^i - \alpha^i)\right) \ge v_L(\sigma(\alpha) - \alpha)$$

 $\implies i_{L/K}(\sigma)$ is independent of α , and

$$G_s(L/K) = \{ \sigma \in \operatorname{Gal}(L/K) \mid i_{L/K}(\sigma) \ge s+1 \}$$

Proposition 87. Let M/L/K be finite extension of local fields, M/K and L/K Galois. Then

$$(*) \qquad i_{L/K}(\sigma) = e_{M/L}^{-1} \sum_{\substack{M/K \\ \tau \in \operatorname{Gal}(M/K) \\ \tau|_L = \sigma}} i_{M/K}(\tau) \ \forall \sigma \in \operatorname{Gal}(L/K)$$

Proof. If $\sigma = 1$, both sides $= \infty$. Assume $\sigma \neq 1$. Let $\mathcal{O}_M = \mathcal{O}_K[\alpha]$, $\mathcal{O}_L = \mathcal{O}_K[\beta]$, $\alpha \in \mathcal{O}_M$, $\beta \in \mathcal{O}_L$.

$$\implies e_{M/L}i_{L/K}(\sigma) = e_{M/L}v_L(\sigma(\beta) - \beta) = v_M(\sigma(\beta) - \beta).$$

$$\tau \in \operatorname{Gal}(M/K) \implies i_{M/K}(\tau) = v_M(\tau(\alpha) - \alpha).$$

Fix τ such that $\tau|_L = \sigma$. Set $H = \operatorname{Gal}(M/L)$. Then

(RHS of *)
$$\cdot e_{M/L} = \sum_{g \in H} (\tau(g(\alpha)) - \alpha) = v_M (\prod_{g \in H} (\tau(g(\alpha)) - \alpha))$$

Set $b = \sigma(\beta) - \beta = \tau(\beta) - \beta$ and $a = \prod_{g \in H} (\tau(g(\alpha))) - \alpha)$. We want to prove $v_M(b) = v_M(a)$.

General observation: let $z \in \mathcal{O}_L$, write $z = \sum_{i=0}^h z_i \beta^i$, $z_i \in \mathcal{O}_K$. Then $\tau(z) - z = \sum_{i=1}^n z_i (\tau(\beta)^i - \beta^i)$ is divisible by $\tau(\beta) - \beta = b$.

Now let $F(x) \in \mathcal{O}_L[x]$ be the minimal polynomial of α over L. Explicitly, $F(x) = \prod_{g \in H} (x - g(\alpha))$.

We have $(\tau F)(x) = \prod_{g \in H} (x - \tau(g(\alpha)))$ [τF is the polynomial obtained from F by applying τ to all coefficients], then all coefficients of $\tau F - F$ are of the form $\tau(z) - z$ for some $z \in \mathcal{O}_L \implies$ they are divisible by b.

$$\implies b|(\tau F - F)(a) = \pm a \implies b|a$$

Conversely, pick $f \in \mathcal{O}_K[x]$ such that $f(\alpha) = \beta$. Since $f(\alpha) - \beta = 0$, $f(x) - \beta = F(x)h(x)$ for some $h(x) \in \mathcal{O}_L[x]$.

Then
$$(f - \tau(\beta))(x) = (\tau F - \tau(\beta))(x) = (\tau F)(x)(\tau(h))(x)$$
. Set $x = \alpha$:
 $-b = \beta - \tau(\beta) = (\pm a)\tau h(\alpha) \implies a|b$.

Let L/K be a finite Galois extension of local fields. Define $\eta_{L/K}: [-1, \infty) \to [-1, \infty)$ by

$$\eta_{L/K}(s) = \int_0^s \frac{dx}{|G_0(L/K): G_x(L/K)|}$$

When $-1 \le x < 0$, our convention is that $\frac{1}{|G_0L/K:G_xL/K|} = |G_x(L/K):G_0(L/K)|$ which is just = 1 when -1 < x < 0.

$$\implies \eta_{L/K}(s) = s \text{ if } -1 \le s \le 0.$$

Proposition 88. Let $G = \operatorname{Gal}(L/K)$. Then $\eta_{L/K}(s) = \left(e_{L/K}^{-1} \sum_{\sigma \in G} \min(i_{L/K}(\sigma), s+1)\right) - 1$, for $s \in [-1, \infty)$.

Proof. Let RHS = $\theta(s)$. Look at $s \mapsto \min(i_{L/K}, s+1)$.

 $\implies \theta(s)$ is piecewise linear and break points are integers (same for $\eta_{L/K}$).

Have

$$\theta(0) = \frac{\#\{\sigma \in G \mid i_{L/K}(\sigma) \ge 1\}}{e_{L/K}} - 1 = 0 = \eta_{L/K}(0)$$

If $s \in [-1, \infty) \setminus \mathbb{Z}$,

$$\theta'(s) = e_{L/K}^{-1} \# \{ \sigma \in G \, | \, i_{L/K}(\sigma) \ge s+1 \} = \frac{1}{|G_0L/K : G_sL/L|} = \eta'_{L/K}(s)$$

$$\implies \theta(s) = \eta_{L/K}(s).$$

Theorem 89 (Herbrand). Let M/L/K be finite extensions of local fields, M/K and L/K Galois. Set $H = \operatorname{Gal}(M/L)$ and $t = \eta_{L/K}(s)$, $s \in [-1, \infty)$.

Then $\frac{G_s(M/K)H}{H} = G_t(L/K)$.

Proof. Put $G = \operatorname{Gal}(M/K)$. Choose $\tau \in G$ such that $i_{M/K}(\tau) \geq i_{M/K}(\tau g)$ for all $g \in H$. Put $m = i_{M/K}(\tau)$, $\sigma = \tau|_L$.

Claim: $i_{L/K}(\sigma) - 1 = \eta_{M/L}(m-1)$.

If
$$g \in G_{m-1}(M/L) \le H$$
, then $i_{M/K}(g) \ge m$, so
$$i_{M/K}(\tau g) = v_M(\tau g(\alpha) - \alpha)$$
$$= v_M(\tau g(\alpha) - g(\alpha) + g(\alpha) - \alpha)$$
$$\ge \min(v_M(\tau g(\alpha) - g(\alpha)), v_M(g(\alpha) - \alpha))$$
$$= \min(i_{M/K}(\tau g), i_{M/K}(g)) = m$$

If $g \in H \backslash G_{m-1}(M/L)$, then $i_{M/K}(g) < m$ and $i_{M/K}(\tau g) = i_{M/K}(g)$. In either case, $i_{M/K}(\tau g) = \min(m, i_{M/K}(g))$. By Proposition 87, $i_{L/K}(\sigma) = e_{M/L}^{-1} \sum_{g \in H} \min(m, i_{M/K}(g))$.

By Proposition 88,

$$\eta_{M/L}(m-1) = \left(e_{M/L}^{-1} \sum_{g \in H} \min(i_{M/K}, m)\right) - 1 = i_{L/K}(\sigma) - 1$$

This proves the claim.

Now

$$\begin{split} \sigma \in \frac{G_s(M/K)H}{H} &\iff \tau \in G_s(M/K) \iff i_{M/K}(\tau) - 1 \geq s \\ &\iff \eta_{M/L}(i_{M/K}(\tau) - 1) \geq \eta_{M/L}(s) = t \text{ since } \eta_{M/L} \text{ strictly increasing} \\ &\iff i_{L/K}(\sigma) - 1 \geq t \iff \sigma \in G_t(L/K) \end{split}$$

Let L/K be a Galois extension of local fields. $\eta_{L/K}: [-1,\infty) \to [-1,\infty)$ is continuous, strictly increasing, $\eta_{L/K}(-1) = -1$ and $\eta_{L/K}(s) \to \infty$ as $s \to \infty$, so it is invertible. Set $\chi_{L/K} = \eta_{L/K}^{-1}$.

Definition 90. L/K as before. The **upper numbering** of the ramification groups of L/K is defined by

$$G^{t}(L/K) = G_{\chi_{L/K}(t)}(L/K)$$

for $t \in [-1, \infty)$. The previous numbering is called the **lower numbering**.

Lemma 91. Let M/L/K be finite extension of local fields, M/K and L/K Galois. Then $\eta_{M/K} = \eta L/K \circ \eta M/L$, hence $\chi_{M/K} = \chi_{M/L} \circ \chi_{L/K}$.

Proof. Let $s \in [-1, \infty)$, set $t = \eta_{M/L}(s)$ and $H = \operatorname{Gal}(M/L)$. By Theorem 89,

$$G_t(L/K) \cong \frac{G_s(M/K)H}{H}$$
$$\cong \frac{G_s(M/K)}{H \cap G_s(M/K)}$$
$$= \frac{G_s(M/K)}{G_s(M/L)}$$

Thus

$$\frac{\#G_s(M/K)}{e_{M/K}} = \frac{\#G_t(L/K)}{e_{L/K}} \cdot \frac{\#G_s(M/L)}{e_{M/L}}$$

so

$$\begin{split} \eta'_{M/K}(s) &= \frac{\#G_s(M/K)}{e_{M/K}} \\ &= \frac{\#G_t(L/K)}{e_{L/K}} \cdot \frac{\#G_s(M/L)}{e_{M/L}} \\ &= \eta'_{L/K}(t) \eta'_{M/L}(s) = (\eta_{L/K} \circ \eta_{M/L})'(s) \end{split}$$

whenever these derivatives make sense.

Since $\eta_{L/K}(\eta_{M/L}(0)) = \eta_{L/K}(0) = 0 = \eta_{M/K}(0)$, we get $\eta_{M/K} = \eta_{L/K} \circ \eta_{M/L}$.

Corollary 92. Keep the notation of Lemma 91 and its proof. Let $t \in [-1, \infty)$. Then

$$\frac{G^t(M/K)H}{H} = G^t(L/K)$$

Proof. Put $s = \chi_{L/K}(t)$. Then, by Theorem 89 and Lemma 91,

$$\frac{G^{t}(M/K)H}{H} \stackrel{\text{def}}{=} \frac{G_{\chi_{M/K}(t)}(M/K)H}{H}$$

$$\stackrel{89}{=} G_{\eta_{M/L}(\chi_{M/K}(t))}(L/K)$$

$$\stackrel{91}{=} G_{s}(L/K) \stackrel{\text{def}}{=} G^{t}(L/K)$$

4 Local Class Field Theory

This is the study of abelian extensions (i.e. extensions with abelian Galois groups) of local fields.

4.1 Infinite Galois Theory

Definition 93. Let L/K be an algebraic field extension. We say that L/K is **seperable** if, for every $\alpha \in L$, the minimal polynomial $f_{\alpha} \in K[x]$ is seperable. We say L/K is **normal** if f_{α} splits into linear factors in L[x] for every $\alpha \in L$.

L/K is **Galois** if it is normal and seperable. If so, we write $\operatorname{Gal}(L/K) = \operatorname{Aut}_K(L)$.

Definition 94. Let M/K be a Galois extension. $U \subseteq \operatorname{Gal}(M/K)$ is open if for every $\sigma \in U$, $\exists L/K$ a finite subextension of M/K such that $\sigma \operatorname{Gal}(M/L) \subseteq U$.

These sets form the open sets of a topology on Gal(M/K) called the **Krull** topology. G = Gal(M/K) is a topological group w.r.t. the Krull topology.

Proposition 95. Let M/K be a Galois extension. Then Gal(M/K) is compact and Hausdorff, and if $U \subseteq Gal(M/K)$ is an open subset such that $1 \in U$, then there exists an open normal subgroup $N \subseteq Gal(M/K)$ such that $N \subseteq U$.

Remarks. 1. When M/K is finite, the Krull topology is discrete.

- 2. Topological groups with the properties in Proposition 95 are called **profinite**.
- 3. Last part: by definition, $\exists L/K$ a finite subextension of M/K such that $\operatorname{Gal}(M/L) \subseteq U$. Let L' be the Galois closure of L over K, then $\operatorname{Gal}(M/L') \subseteq \operatorname{Gal}(M/L) \subseteq U$, and $\operatorname{Gal}(M/L')$ is open and normal.

Definition 96. Let I be a set with a partial order \leq . We say that I is a **directed system** if $\forall i, j \in I \exists k \text{ such that } i \leq k \text{ and } j \leq k$.

Definition 97. Let I be a directed system. An **inverse system** (of topological groups) indexed by I is a collection of topological groups G_i , $i \in I$ and continuous homomorphisms $f_{ij}: G_j \to G_i \ \forall i, j \in I$ with $i \leq j$ such that

- 1. $f_{ii} = id_{G_i}$
- 2. $f_{ik} = f_{ij} \circ f_{jk}$ when $i \leq j \leq k$

We define the **inverse limit** of the system (G_i, f_{ij}) to be

$$\lim_{i \in I} G_i = \left\{ (g_i) \in \prod_{i \in I} G_i \, | \, f_{ij}(g_j) = g_i \, \, \forall i \le j \right\} \subseteq \prod_{i \in I} G_i$$

It's a group under coordinate-wise multiplication and a topological space when given the subspace topology of the product topology on $\prod_{i \in G_i} G_i$. This makes $\lim_{i \in I} G_i$ into a topological group.

Proposition 98. Let M/K be a Galois extension. The set I of finite Galois subextensions L/K of M/K is a directed system under inclusion. If $L, L' \in I$ with $L \subseteq L'$, then we have a map $\cdot|_{L}^{L'} : \operatorname{Gal}(L'/K) \to \operatorname{Gal}(L/K)$. Then $(\operatorname{Gal}(L/K), \cdot|_{L}^{L'})_{L \in I, L \subset L'}$ is an inverse system, and the map

$$\operatorname{Gal}(M/K) \to \varprojlim_{L \in I} \operatorname{Gal}(L/K)$$

$$\sigma \mapsto (\sigma|_L)_{L \in I}$$

is an isomorphism of topological groups.

Theorem 99 (Fundamental Theorem of Galois Theory). Let M/K be Galois. The map $L \mapsto \operatorname{Gal}(M/L)$ defines a bijection between subextensions L/K of M/K and closed subgroups of $\operatorname{Gal}(N/K)$, with inverse $H \mapsto M^H$.

Moreover, L/K is finite \iff Gal(M/L) is open, and L/K Galois \iff Gal(M/L) is normal, and then

$$\sigma \mapsto \sigma|_{L}$$

$$\frac{\operatorname{Gal}(M/K)}{\operatorname{Gal}(M/L)} \xrightarrow{\sim} \operatorname{Gal}(L/K)$$

and Gal(M/L) is closed.

4.2 Unramified Extensions and Weil Groups

Definition 100. Let K be a local field, M/K an algebraic extension. M/K is unramified (or totally ramified) if L/K is unramified (or totally ramified) for every finite subextension L/K of M/K.

In general, an algebraic extension M/K has a maximal unramified subextension $T = T_{M/K}/K$, which is Galois.

If L/K is a finite unramified extension of local fields with $q = \#k_K$, then $\operatorname{Gal}(L/K) \xrightarrow{\sim} \operatorname{Gal}(k_L/k_K) \ni x \mapsto x^q$, so $\operatorname{Gal}(L/K)$ is cyclic with a canonical generator $\operatorname{Frob}_{L/K}$, which is a lift of $x \mapsto x^q$. This is called the (arithmetic) **Frobenius element** of L/K.

Frob is compatible in towers: if M/L/K are finite unramified extensions of local fields, then $\operatorname{Frob}_{M/K}|_{L} = \operatorname{Frob}_{L/K}(x \mapsto x^q \text{ on } k_M \text{ restricts to } x \mapsto x^q \text{ on } k_L, q = \#k_K).$

 \implies for M/K an arbitrary unramified extension, we get

$$\operatorname{Frob}_{L/K} \in \varprojlim_{L/K} \operatorname{Gal}(L/K) \cong \operatorname{Gal}(M/K)$$
 finite subexts of M/K

so we get an element $\operatorname{Frob}_{M/K} \in \operatorname{Gal}(M/K)$. It is the unique lift of $x \mapsto x^{\#k_K}$ on k_M/k_K .

Remarks. Let K be a local field, M/K unramified.

$$\begin{array}{ccc}
\operatorname{Gal}(M/K) & \xrightarrow{\operatorname{red.}} & \operatorname{Gal}(k_M/k_K) \\
\downarrow \downarrow & & \downarrow \downarrow \\
\varprojlim \operatorname{Gal}(L/K) & \xrightarrow{\operatorname{red.}} & \varprojlim \operatorname{Gal}(k_L/k_K)
\end{array}$$

$$\implies \operatorname{Gal}(M/K) \stackrel{\sim}{\to} \underline{\lim} \operatorname{Gal}(k_L/k_K)$$

Note that finite subextensions of M/K biject with finite subextensions of k_M/k_K . So $\mathrm{Frob}_{M/K}$ is the unique lift of $x \mapsto x^{\# k_K}$ on k_M .

Definition 101. Let K be a local field, M/K Galois, $T = T_{M/K}/K$ the maximal unramified subextension of M/K. The **Weil Group** W(M/K) of M/K is

$$W(M/K) = \{ \sigma \in \operatorname{Gal} M/K \mid \sigma \mid_T = \operatorname{Frob}_{T/K}^n, \text{ some } n \in \mathbb{Z} \}$$

We define a topology on W(M/K) by saying that U is open $\iff \forall \sigma \in U \; \exists L/T$ a finite extension such that $\sigma \operatorname{Gal}(L/T) \subset U$.

$$\operatorname{Gal}(M/T) \longrightarrow W(M/K) \longrightarrow \operatorname{Frob}_{T/K}^{\mathbb{Z}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Gal}(M/K) \longrightarrow \operatorname{Gal}(T/K)$$

Discrete topology on $\operatorname{Frob}_{T/K}^{\mathbb{Z}} \leadsto \operatorname{topology}$ of W(M/K).

Proposition 102. Let K be a local field, M/K Galois. Then W(M/K) is dense in Gal(M/K). If L/K is a finite subextension of M/K, then $W(M/L) = W(M/K) \cap Gal(M/L)$. If L/K is also Galois, then $\frac{W(M/K)}{W(M/L)} \xrightarrow{\sim} Gal(L/K)$, via restriction.

Proof. Density: need to sho that, for every finite Galois subextension L/K of M/K, W(M/K) surjects onto Gal(L/K) (via restriction).

Let
$$T = T_{M/K}$$
, then $T_{L/K} = T \cap L$. Then

$$\operatorname{Gal}(M/T) \longrightarrow W(M/K) \longrightarrow \operatorname{Frob}_{T/K}^{\mathbb{Z}} \cong (x \mapsto x^{\#k_K})^{\mathbb{Z}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Gal}(T/L \cap T) \longrightarrow \operatorname{Gal}(L/K) \longrightarrow \operatorname{Gal}(T \cap L/K) \cong \langle x \mapsto x^{\#k_K} \rangle$$

Chasing the diagram implies surjectivity in the middle.

Second part: let L be as in the first part. $LT_{M/K} \subseteq T_{M/L}$.

 $\implies \operatorname{Frob}_{T_{M/L}/L}^{\mathbb{Z}} = \operatorname{Frob}_{T_{M/K}/K}^{\mathbb{Z}} \cap \operatorname{Gal}(T_{M/L}/L) \text{ (and } T_{M/L} = L \cdot T_{M/K}).$ If $\sigma \in \operatorname{Gal}(M/L)$, then

$$\begin{split} \sigma \in W(M/K) &\iff \sigma|_{T_{M/L}} \in \operatorname{Frob}_{T_{M/L}/L}^{\mathbb{Z}} \\ & \overset{\operatorname{above}}{\Longleftrightarrow} \ \sigma|_{T_{M/K}} \in \operatorname{Frob}_{T_{M/K}/K}^{\mathbb{Z}} \\ & \iff \sigma \in W(M/K) \end{split}$$

Third part: now L/K is Galois as well.

 $\operatorname{Gal}(M/L)$ is normal in $\operatorname{Gal}(M/K) \implies W(M/L)$ is normal in W(M/K) by the second part.

$$\frac{W(M/K)}{W(M/L)} = \frac{W(M/K)}{W(M/K) \cap \operatorname{Gal}(M/K)}$$

$$\cong \frac{W(M/K) \operatorname{Gal}(M/L)}{\operatorname{Gal}(M/L)}$$

$$= \frac{\operatorname{Gal}(M/K)}{\operatorname{Gal}(M/L)}$$

$$\cong \operatorname{Gal}(L/K)$$

Since $W(M/K) \operatorname{Gal}(M/L) = \operatorname{Gal}(M/K)$ by density (first part).

4.3 Main Theorems of Local Class Field Theory

Let K be a local field. A Galois extension L/K is called **abelian** if Gal(L/K) is abelian.

Fix an algebraic closure \bar{K} of K, and all algebraic extensions considered are subfields of \bar{K} . Let K^{sep} be the separable closure of K inside \bar{K} .

If L/K and M/K are Galois, then LM/K is Galois and

$$\operatorname{Gal}(LM/K) \hookrightarrow \operatorname{Gal}(L/K) \times \operatorname{Gal}(M/K)$$

 $\sigma \mapsto (\sigma|_L, \sigma_M)$

In particular, L/K and M/K abelian $\implies LM/K$ is abelian.

 $\implies \exists$ maximal abelian extension K^{ab} of K.

Notes that $K^{ur} := T_{K^{sep}/K} \subseteq K^{ab}$. Put $\operatorname{Frob}_K = \operatorname{Frob}_{K^{ur}/K}$.

Theorem 103 (Local Artin Reciprocity). There exists a unique topological isomorphism $\operatorname{Art}_K: K^{\times} \xrightarrow{\sim} W(K^{ab}/K)$, characterised by

- 1. $\operatorname{Art}_K(\pi_K)|_{K^{ur}} = \operatorname{Frob}_K(\pi_K \text{ any uniformiser})$
- 2. $\operatorname{Art}_K(N_{L/K}(x))|_L = id_L \ \forall L/K \ finite \ abelian, \ x \in L^{\times}$

Moreover, if M/K is finite, then $\operatorname{Art}_M(x)|_{K^{ab}} = \operatorname{Art}_K(N_{M/K}(x)) \ \forall x \in M^{\times}$, and Art_K induces an isomorphism

$$\frac{K^{\times}}{N_{M/K}(M^{\times})} \stackrel{\sim}{\longrightarrow} \operatorname{Gal}((M \cap K^{ab})/K)$$

Write $N(L/K) = N_{L/K}(L^{\times})$ for L/K finite.

Theorem 104. L/K finite $\implies N(L/K) = N((L \cap K^{ab})/K)$, and $[K^{\times} : N(L/K)] \leq [L : K]$ with equality $\iff L/K$ abelian.

Proof. Put $M = L \cap K^{ab}$. Have

$$\frac{K^{\times}}{N(L/K)} \xrightarrow[\mathrm{Art}_{K}]{\sim} \mathrm{Gal}(M/K) \xleftarrow[\mathrm{Art}_{K}]{\sim} \frac{K^{\times}}{N(M/K)}$$

Since $N(L/K) \subseteq N(M/K)$, we are done.

Theorem 105. Let L/K be a finite extension, M/K abelian. Then $N(L/K) \subseteq N(M/K) \iff M \subseteq L$.

Proof. By Theorem 104, wlog L/K abelian (replace it with $L \cap K^{ab}$). \iff is clear. Assume that $N(L/K) \subseteq N(M/K)$ and let $\sigma \in \operatorname{Gal}(K^{ab}/L)$.

Then $W(K^{ab}/L)=\mathrm{Art}_K(N(L/K))\subseteq\mathrm{Art}_K(N(M/K))\implies \exists m\in M^{\times}$ such that $\sigma=\mathrm{Art}_K(N_{M/K}(x)).$

Then
$$\sigma|_M = id_M$$
 by Theorem 103.

Theorem 106. let L/K, M/K be finite abelian extensions of a local field K. Then $N(LM/K) = N(L/K) \cap N(M/K)$ and $N(L \cap M/K) = N(L/K) \cdot N(M/K)$.

Theorem 107 (Existence Theorem). For every open subgroup $H \subseteq K^{\times}$ of finite index, $\exists ! L/K$ finite abelian such that H = N(L/K).

Summary:

$$\left\{ \begin{array}{c} \text{Open finite} \\ \text{index subgroups} \\ \text{of } K^{\times} \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \text{Finite abelian} \\ \text{extensions} \\ L/K \end{array} \right\}$$

$$H \longmapsto (K^{ab})^{\text{Art}_K(H)}$$

$$N(L/K) \longleftrightarrow L/K$$

Goal for the rest of the course: indicate how one can explicitly construct the field K^{ab} and Art_K (Lubin-Tate theory).

Lemma 108. Let L/K be a finite abelian extension. Then

$$e_{L/K} = (\mathcal{O}_L^{\times} : N_{L/K}(\mathcal{O}_L^{\times}))$$

Proof. Let $x \in L^{\times}$, w valuation on L extending v_K . n = [L:K].

$$v_K(N_{L/K}(x)) = nw(x) = f_{L/K}v_L(x)$$

Thus
$$\frac{K^{\times}}{N(L/K)} \xrightarrow{v_K} \frac{\mathbb{Z}}{f_{L/K}(\mathbb{Z})}$$
Kernel = $\frac{\mathcal{O}_K^{\times} N(L/K)}{N(L/K)} \cong \frac{\mathcal{O}_K^{\times}}{\mathcal{O}_K^{\times} \cap N(L/K)} = \frac{\mathcal{O}_K^{\times}}{N_{L/K}(\mathcal{O}_L^{\times})}$

$$\implies n \stackrel{\text{LCFT}}{=} (K^{\times} : N(L/K)) = f_{L/K}(\mathcal{O}_K^{\times} : N_{L/K}(\mathcal{O}_L^{\times}))$$

$$\implies (\mathcal{O}_K^{\times} : N_{L/K}(\mathcal{O}_L^{\times})) = e_{L/K}$$

Corollary 109. L/K finite abelian. Then L/K unramified $\implies N_{L/K}(\mathcal{O}_L^{\times}) = \mathcal{O}_K^{\times}$.

Fix a uniformiser π_K . $K^{\times} \cong \langle \pi_K \rangle \times \mathcal{O}_K^{\times}$ (topologically as well). To construct K^{ab} , we need extensions with norm groups $\langle \pi_K^m \rangle \times U_K^{(n)}$ for all $m, n \in \mathbb{Z}_{\geq 0}$. Suffices to consider $\langle \pi_K^m \rangle \times \mathcal{O}_K^{\times}$ and $\langle \pi_K \rangle \times U_K^{(n)}$.

By Lemma 108, $\langle \pi_K^m \rangle \times \mathcal{O}_K^{\times}$ is the norm group of the unique unramified extension of degree m. So we need to focus on $\langle \pi_K \rangle \times U_K^{(n)}$ (note the groups depend on the choice of π_K).

 $K = \mathbb{Q}_p, \, \pi_K = p, \, \zeta_{p^n}$ a primitive root of 1:

 $L_n = \mathbb{Q}_p(\zeta^n)$ is the field with norm group $\langle p \rangle \times (1 + p^n \mathbb{Z}_p)$.

Put
$$\mathbb{Q}_p(\zeta_{p^{\infty}}) = \bigcup_{n=1}^{\infty} \mathbb{Q}_p(\zeta_{p^n})$$
. We have

$$Gal(\mathbb{Q}_{p}(\zeta_{p^{\infty}})/\mathbb{Q}_{p}) \xrightarrow{\sim} \varprojlim_{n} Gal(\mathbb{Q}_{p}(\zeta_{p^{n}})/\mathbb{Q}_{p}) \qquad (\sigma_{m}, \sigma_{m}(\zeta_{p^{n}}) = \zeta_{p^{n}}^{m})$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \\
\mathbb{Z}_{p}^{\times} \xrightarrow{\sim} \xrightarrow{\sim} \xrightarrow{\sim} \varprojlim_{n} (\mathbb{Z}/p^{n}\mathbb{Z})^{\times} \qquad \qquad m$$

Explicitly, if $m \in \mathbb{Z}_p^{\times}$, $m = a_0 + a_1 p + \dots$, $a_i \in \{0, \dots, p-1\}$, $a_0 \neq 0$ then $\operatorname{Art}_{\mathbb{Q}_p}(m) = \sigma_m$,

$$\sigma_m(\zeta_{p^n}) = \zeta_{p^n}^{a_0 + a_1 p + \dots + a_{n-1} p^{n-1}}$$

$$= \lim_{k \to \infty} \zeta_{p^n}^{a_0 + a_1 p + \dots + a_k p^k} := \zeta_{p^n}^m$$

for all m, n.

$$\mathbb{Q}_{p}^{\times} \xrightarrow{\sim} W(\mathbb{Q}_{p}^{ab}/\mathbb{Q}_{p}) = W(\mathbb{Q}_{p}^{ur} \cdot \mathbb{Q}_{p}(\zeta_{p^{\infty}})/\mathbb{Q}_{p}) \qquad \sigma$$

$$\mathbb{Q} \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\langle p \rangle \times \mathbb{Z}_{p}^{\times} \xrightarrow{\sim} W(\mathbb{Q}_{p}^{ur}/\mathbb{Q}_{p}) \times \operatorname{Gal}(\mathbb{Q}_{p}(\zeta_{p^{\infty}})/\mathbb{Q}_{p}) \qquad (\sigma|_{\mathbb{Q}_{p}^{ur}}, \sigma|_{\mathbb{Q}_{p}(\zeta_{p^{\infty}})})$$

$$\langle p^{n}, m \rangle \longmapsto (\operatorname{Frob}_{\mathbb{Q}_{p}}^{n}, \sigma_{m})$$

Theorem 110 (Local Kronecker-Weber Theorem).

$$\mathbb{Q}_p^{ab} = \bigcup_{n \in \mathbb{Z}_{\geq 1}} \mathbb{Q}_p(\zeta_n)$$

(Since
$$\mathbb{Q}_p^{ur} = \bigcup_{\substack{n \in \mathbb{Z}_{\geq 1} \\ (n,p)=1}} \mathbb{Q}_p(\zeta_n)$$
, Q2 sheet 3).

Definition 111. Let K be a local field, M/K a Galois extension. Define, for $s \in \mathbb{R}_{\geq -1}$,

$$G^s(M/K) = \{ \sigma \in \operatorname{Gal}(M/K) \mid \sigma|_L \in G^s(L/K) \text{ where Galois subextensions of } M/K \}$$

Note that $G^s(M/K) = \varprojlim_{L/K} G^s(L/K)$.

 $K = \mathbb{Q}_p$, write \mathbb{Q}_{p^n} for the unramified extension of degree n of \mathbb{Q}_p . Q11 on sheet $3 \Longrightarrow$

$$G^{s}(\mathbb{Q}_{p}(\zeta_{p^{m}})/\mathbb{Q}_{p}) = \begin{cases} \operatorname{Gal}(\mathbb{Q}_{p^{n}}(\zeta_{p^{m}})/\mathbb{Q}_{p}) & s = -1 \\ \operatorname{Gal}(\mathbb{Q}_{p^{n}}(\zeta_{p^{m}})/\mathbb{Q}_{p^{n}}) \cong \operatorname{Gal}(\mathbb{Q}_{p}(\zeta_{p^{m}})/\mathbb{Q}_{p}) & -1 < s \leq 0 \\ \operatorname{Gal}(\mathbb{Q}_{p^{n}}(\zeta_{p^{m}})/\mathbb{Q}_{p^{n}}(\zeta_{p^{k}})) & k - 1 < s \leq k, \ k = 1, \dots, m - 1 \\ 1 & s > m - 1 \end{cases}$$

Which corresponds to

$$\begin{cases} \langle p \rangle \times \mathbb{Z}_p^{\times} / \langle p^n \rangle \times (1 + p^m \mathbb{Z}_p) & s = -1 \\ \langle p^n \rangle \times \mathbb{Z}_p^{\times} / \langle p^n \rangle \times (1 + p^m \mathbb{Z}_p) & -1 < s \le 0 \\ \langle p^n \rangle \times (1 + p^k \mathbb{Z}_p) / \langle p^n \rangle \times (1 + p^m \mathbb{Z}_p) & k - 1 < s \le k, \ k = 1, \dots, m - 1 \\ 1 & s > m - 1 \end{cases}$$

under $Art_{\mathbb{Q}_n}$.

Theorem 112. $G^s(\mathbb{Q}_p^{ab}/\mathbb{Q}_p) = \operatorname{Art}_{\mathbb{Q}_p}(1+p^n\mathbb{Z}_p) \left(=\operatorname{Art}_{\mathbb{Q}_p}(U^{(n)})\right)$ where $n-1 < s \leq n, n \in \mathbb{Z}_{\geq 0}$.

Corollary 113. Let L/\mathbb{Q}_p be a finite abelian extension. Then

$$G^{s}(L/\mathbb{Q}_{p}) = \operatorname{Art}_{\mathbb{Q}_{p}} \left(\frac{N(L/\mathbb{Q}_{p})(1+p^{n}\mathbb{Z}_{p})}{N(L/\mathbb{Q}_{p})} \right)$$

$$\begin{aligned} & \textit{for } n-1 < s \leq n. \\ & (\text{Art}_{\mathbb{Q}_p} : \frac{\mathbb{Q}_p^{\times}}{N(L/\mathbb{Q}_p)} \overset{\sim}{\longrightarrow} \text{Gal}(L/\mathbb{Q}_p)) \end{aligned}$$

It follows that $L \subseteq \mathbb{Q}_{p^n}(\zeta_{p^m})$ for some $n \iff G^s(L/\mathbb{Q}_p) = 1 \ \forall s > m-1$.

4.4 Formal Groups

Let R be a ring.

Write

$$R[[X_1, \dots, X_n]] = \left\{ \sum_{k_1, \dots, k_n \in \mathbb{Z}_{\geq 0}} a_{k_1, \dots, k_n} X_1^{k_1} \dots X_n^{k_n} \mid a_{k_1, \dots, k_n} \in R \right\}$$

the ring of formal power series in n variables over R.

Definition 114. A (one-dimensional, commutative) **formal group** over R is a power series $F(X,Y) \in R[X,Y]$ such that

1.
$$F(X,Y) = X + Y \mod(X^2, XY, Y^2)$$

2.
$$F(X,Y) = F(Y,X)$$
 (commutativity)

3.
$$F(X, F(Y, Z)) = F(F(X, Y), Z)$$
 (associativity)

If F is a formal group over \mathcal{O}_K , K a complete valued field, then F(x,y) converges for all $x, y \in \mathfrak{m}_K$, so \mathfrak{m}_K becomes a (semi)group under the multiplication

$$(x,y) \mapsto F(x,y) \in \mathfrak{m}_K$$

For example,

- 1. $\hat{\mathbb{G}}_a(X,Y) = X + Y$, the formal additive group
- 2. $\hat{\mathbb{G}}_m(X,Y) = X + Y + XY$, the formal multiplicative group

Note that X + Y + XY = (1 + X)(1 + Y) - 1. If K is a complete valued field then

$$\mathfrak{m}_K \xrightarrow{\sim} 1 + \mathfrak{m}_K$$
$$x \mapsto 1 + x$$

and the rule $(x, y) \in \mathfrak{m}_K^2 \mapsto x + y + xy \in \mathfrak{m}_K$ is just the usual multiplication on $1 + \mathfrak{m}_K$ transported to \mathfrak{m}_K via the bijection above.

Lemma 115. Let R be a ring and F a formal group over R. Then

1.
$$F(X,0) = X$$
 (existence of identity)

2.
$$\exists i(X) \in XR[[X]]$$
 such that $F(X, i(X)) = 0$ (inverses)

Proof. Example sheet 4

Definition 116. Let R be a ring, F,G formal groups over R. A homomorphism $f: F \to G$ is an element $f \in R[[X]]$ such that $f(X) \equiv 0 \mod X$ and

$$f(F(X,Y)) = G(f(X), f(Y))$$

The endomorphisms $f: F \to F$ form a ring $\operatorname{End}_R(F)$ with addition $+_F$ given by

$$(f +_F g)(X) = F(f(X), g(X))$$

and multiplication

$$(f \circ g)(X) = f(g(X))$$

Definition 117. Let \mathcal{O} be a ring. A **formal** \mathcal{O} -module F is a formal group F with a ring homomorphism

$$\mathcal{O} \to \operatorname{End}_{\mathcal{O}}(F)$$
 $a \mapsto [a]_F$

such that

$$[a]_F(X) \equiv aX \mod X^2$$

Now let K be a local field, $q = \#k_K$ and $\pi \in \mathcal{O}_K$ a uniformiser.

Definition 118. A Lubin-Tate module over \mathcal{O}_K with respect to π is a formal \mathcal{O}_K -module F such that $[\pi]_F(X) \equiv X^q \mod \pi$

Think of this condition as 'uniformiser \iff Frobenius'.

 $\hat{\mathbb{G}}_m$ is a Lubin-Tate \mathbb{Z}_p -module with respect to p. If $a \in \mathbb{Z}_p$, define

$$[a]_{\hat{\mathbb{G}}_m}(X) = (1+X)^a - 1 = \sum_{n=1}^{\infty} {a \choose n} X^n$$

Note that $(1+X)^a - 1 \equiv aX \mod X^2$. That $a \mapsto [a]_F$ is a ring homomorphism follows from the identities

$$((1+X)^a)^b = (1+X)^{ab}$$

$$(1+X)^a(1+X)^b = (1+X)^{a+b}$$

So $\hat{\mathbb{G}}_m$ is a formal \mathbb{Z}_p -module, and

$$[p]_{\hat{\mathbb{G}}_m}(X) = \sum_{n=1}^p \binom{p}{n} X^n \equiv X^p \mod p$$

So $\hat{\mathbb{G}}_m$ is a Lubin-Tate \mathbb{Z}_p -module for p.

Definition 119. A Lubin-Tate series for π is a power series $e(X) \in \mathcal{O}_K[[X]]$ such that $e(X) \equiv \pi X \mod X^2$, and $e(X) \equiv X^q \mod \pi$. We denote the set of Lubin-Tate series for π by \mathcal{E}_{π} .

Inside \mathcal{E}_{π} we have the polynomials

$$uX^{q} + \pi(a_{q-1}X^{q-1} + \dots + a_{2}X^{2}) + \pi X$$

with $u \in U_K^{(1)}$ and $a_2, \ldots, a_{q-1} \in \mathcal{O}_K$. These are called **Lubin-Tate polynomials**.

For example, $X^q + \pi X$.

If $K = \mathbb{Q}_p$, $\pi = p$ then $(1+X)^p - 1$ is a Lubin-Tate polynomial.

Note that, by definition, if F is a Lubin-Tate \mathcal{O}_K -module for π , then $[\pi]_F$ is a Lubin-Tate series for π .

Proposition 120. Let $e_1, e_2 \in \mathcal{E}_{\pi}$ and a linear form $L(X_1, \ldots, X_n) = \sum_{i=1}^n a_i X_i$, $a_i \in \mathcal{O}_K$. Then $\exists !$ power series $F(X_1, \ldots, X_n) \in \mathcal{O}_K[[X_1, \ldots, X_n]]$ such that

$$F(X_1, ..., X_n) \equiv L(X_1, ..., X_n) \mod (X_1, ..., X_n)^2$$

 $e_1(F(X_1, ..., X_n)) = F(e_2(X_1), ..., e_2(X_n))$

Now let $e, e_1, e_2 \in \mathcal{E}_{\pi}$ and $a \in \mathcal{O}_K$. Proposition 120 $\implies \exists ! \ F_e(X, Y) \in \mathcal{O}_K[X, Y]$ and $[a]_{e_1, e_2}(X) \in \mathcal{O}_K[[X]]$ such that

$$F_e(X,Y) \equiv X+Y \mod (X,Y)^2, \ e(F_e(X,Y)) = F_e(e(X),e(Y))$$

$$[a]_{e_1,e_2}(X) \equiv aX \mod X^2, \ e_1([a]_{e_1,e_2}(X)) = [a]_{e_1,e_2}(e_2(X))$$
 If $e_1=e_2=e$, write $[a]_e=[a]_{e,e}$.

Theorem 121. The Lubin-Tate \mathcal{O}_K -modules for π are precisely the series F_e for $e \in \mathcal{E}_{\pi}$, with formal \mathcal{O}_K -module structure given by $a \mapsto [a]_e$.

Moreover, if $e_1, e_2 \in \mathcal{E}_{\pi}$ and $a \in \mathcal{O}_K$, then $[a]_{e_1, e_2}$ is a homomorphism $F_{e_2} \to F_{e_1}$. If $a \in \mathcal{O}_K^{\times}$, then it is an isomorphism with inverse $[a^{-1}]_{e_2, e_1}$.

Proof (sketch). If F is a Lubin-Tate \mathcal{O}_K -module for π , then $e = [\pi]_F \in \mathcal{E}_{\pi}$ and F satisfies the properties that characterise F_e , so Proposition 120 $\Longrightarrow F = F_e$. For the remaining parts, one has to verify

1.
$$F_e(X,Y) = F_e(Y,X)$$

2.
$$F_e(X, F_e(Y, Z)) = F_e(F_E(X, Y), Z)$$

3.
$$[a]_{e_1,e_2}(F_{e_2}(X,Y)) = F_{e_1}([a]_{e_1,e_2}(X),[a]_{e_1,e_2}(Y))$$

4.
$$[ab]_{e_1,e_3}(X) = [a]_{e_1,e_2}([b]_{e_2,e_3}(X))$$

5.
$$[a+b]_{e_1,e_2}(X) = F_{e_1}([a]_{e_1,e_2}(X),[b]_{e_1,e_2}(X))$$

6.
$$[\pi]_e(X) = e(X)$$

for all $e, e_1, e_2, e_3 \in \mathcal{E}_{\pi}$ and $a, b \in \mathcal{O}_K$.

The proof of these all follow the same pattern: show that LHS and RHS satisfy the same 'characterising properties' in Proposition 120 and use uniqueness. \Box

4.5 Lubin-Tate Extensions

Recall \bar{K} , a fixed algebraic closure of K. Let $\bar{\mathfrak{m}} = \mathfrak{m}_{\bar{K}}$, the maximal ideal in $\mathcal{O}_{\bar{K}}$.

Proposition 122. If F is a formal \mathcal{O}_K -module, then $\bar{\mathfrak{m}}$ becomes an \mathcal{O}_K -module under the operations $+_F$, \cdot .

$$x +_F y = F(x, y)$$
 $x, y \in \bar{\mathfrak{m}}$

$$a \cdot x = [a]_F(x) \quad a \in \mathcal{O}_K, x \in \bar{\mathfrak{m}}$$

which we denote \mathfrak{m}_F .

Proof. Note that if $x, y \in \bar{\mathfrak{m}}$, then F(x, y) is a series in $K(x, y) \subseteq \bar{K}$ with coefficients of absolute value < 1 and $\to 0$, so it converges to an element in $\mathfrak{m}_{K(x,y)} \subseteq \bar{\mathfrak{m}}$. The rest follows from the definitions.

Let F be a Lubin-Tate \mathcal{O}_K -module for π .

Definition 123. Let $n \geq 1$. The group F(n) of $\pi^{\mathbf{n}}$ -division points of F is defined to be

$$F(n) = \{x \in \bar{\mathfrak{m}}_F \mid \pi^n \cdot x = 0\}$$
$$= \ker[\pi^n]_F$$

For example, $F = \hat{\mathbb{G}}_m$, $K = \mathbb{Q}_p$, $\pi = p$:

$$p^n \cdot x = (1+x)^{p^n} - 1, x \in \bar{\mathfrak{m}}_{\hat{\mathbb{G}}_m}$$

So $\hat{\mathbb{G}}_m(n) = \{\zeta_{p^n}^i - 1 \mid i = 0, 1, \dots, p^n - 1\}, \zeta_{p^n} \in \mathbb{Q}_p \text{ primitive } p^n\text{-th root.}$ So $\hat{\mathbb{G}}_m(n)$ generates $\mathbb{Q}_p(\zeta_{p^n})$. **Lemma 124.** Let $e(X) = X^q + \pi X$, $f_n(X) = (e \circ \cdots \circ e)(X)$ (composed n times).

Then f_n has no repeated roots.

Proof. Let $x \in \bar{K}$.

Claim: if $|f_i(x)| < 1$ for $i = 0, \dots, n-1$ then $f'_n(x) \neq 0$.

Induction on n. n = 1: assume |X| < 1, then

$$f'_{1}(X) = e'(X)$$

$$= qX^{q-1} + \pi$$

$$= \pi(1 + \frac{q}{\pi}X^{q-1}) \neq 0$$

since $\left| 1 + \frac{1}{\pi} X^{q-1} \right| < 1$.

Induction step:

$$f'_{n+1}(X) = (qf_n(X)^{q-1} + \pi)f'_n(X)$$
$$= \pi(1 + \frac{q}{\pi}f_n(X)^{q-1})f'_n(X)$$

By induction $f'_n(X) \neq 0$, and by assumption $|f_n(X)| < 1$, so the same argument works.

We now prove the lemma by showing that if $f_n(X) = 0$, then $|f_i(X)| < 1 \ \forall i = 0, 1, ..., n-1$. By induction,

$$f_n(X) = X^{q^n} + \pi g_n(X)$$

for some $g_n \in \mathcal{O}_K[X]$.

It follows that if $f_n(X) = 0$, then $|X| < 1 \implies |f_i(X)| < 1 \,\forall i$.

Proposition 125. F(n) is a free $\mathcal{O}_K/\pi^n\mathcal{O}_K$ -module of rank 1.

Proof. By Theorem 121 all Lubin-Tate modules for π are isomorphic \Longrightarrow all the \mathcal{O}_K -modules F(n) are isomorphic. By definition $\pi^n \cdot F(n) = 0$, so F(n) is an $\mathcal{O}_K/\pi^n\mathcal{O}_K$ -module.

Choose $F = F_e$, $e(X) = X^q + \pi X$. F(n) consists of the roots of the polynomial $f_n(X) = e^n(X)$, which os of degree q^n and has no repeated roots (Lemma 124).

So $\#F(n) = q^n$.

If $\lambda_n \in F(n) \setminus F(n-1)$, then we have a homomorphism

$$\mathcal{O}_K \to F(n)$$

 $a \mapsto a \cdot \lambda_n$

with kernel $\pi^n \mathcal{O}_K$ by choice of λ_n . By counting we get an \mathcal{O}_K -module isomorphism $\mathcal{O}_K/\pi^n \mathcal{O}_K \xrightarrow{\sim} F(n)$ as desired.

Corollary 126. We have isomorphisms

$$\mathcal{O}_K/\pi^n\mathcal{O}_K\cong \mathrm{End}_{\mathcal{O}_K}(F(n))$$

$$U_K/U_K^{(n)} \cong \operatorname{Aut}_{\mathcal{O}_K}(F(n))$$

Given a Lubin-Tate \mathcal{O}_K -module F for π , consider $L_{n,\pi} = L_n = K(F(n))$ of π^n -division points of F. We have inclusions $F(n) \subseteq F(n+1) \, \forall n$, so $L_n \subseteq L_{n+1}$. The field L_n only depends on π and **not** on F. To see this, let G be another Lubin-Tate \mathcal{O}_K -module, and let $f: F \to G$ be an isomorphism of formal \mathcal{O}_K -modules.

Then $G(n) = f(F(n)) \subseteq K(F(n)) \implies K(G(n)) \subseteq K(F(n))$. By symmetry, K(G(n)) = K(F(n)).

Theorem 127. L_n/K is a totally ramified abelian extension of degree $q^{n-1}(q-1)$ with Galois group $Gal(L_n/K) \cong Aut_{\mathcal{O}_K}(F(n)) \cong U_K/U_K^{(n)}$.

Here $\forall \sigma \in \operatorname{Gal}(L_n/K) \exists ! \ u \in U_K/U_K^{(n)} \ \text{such that } \sigma(\lambda) = [u]_F(\lambda) \ \forall \lambda \in F(n).$ Moreover, if $F = F_e$, where $e(X) = X^q + \pi(a_{q-1}X^{q-1} + \dots + a_2X^2) + \pi X$, and $\lambda_n \in F_n \backslash F_{n-1}$, then λ_n is a uniformiser of L_n and

$$\phi_n(X) = \frac{e^n(X)}{e^{n-1}(X)} = X^{q^{n-1}(q-1)} + \dots + \pi$$

is the minimal polynomial of λ_n . In particular, $N_{L_n/K}(-\lambda_n) = \pi$.

Proof. If $e(X) = X^q + \pi(a_{q-1}X^{q-1} + \dots + a_2X^2) + \pi X$, set $F = F_e$. Then $\phi_n(X) = \frac{e^n(X)}{e^{n-1}(X)} = e^{n-1}(X)^{q-1} + \pi(a_{q-1}e^{n-1}(X)^{q-2} + \dots + a_2e^{n-1}(X)) + \pi$ is an Eisenstein polynomial of degree $q^{n-1}(q-1)$. If $\lambda_n \in F(n) \setminus F(n-1)$ then λ_n is a root of $\phi_n(X)$, so $K(\lambda_n)/K$ is totally ramified of degree $q^{n-1}(q-1)$ and λ_n is a uniformiser, and $N_{K(\lambda_n)/K}(-\lambda_n) = \pi$.

Now let $\sigma \in \operatorname{Gal}(L_n/K)$. σ induces a permutation of F(n), which is \mathcal{O}_{K} linear:

$$\sigma(x) +_F \sigma(y) = F(\sigma(x), \sigma(y)) = \sigma(F(x, y)) = \sigma(x +_F y)$$
$$\sigma(a \cdot x) = \sigma([a]_F(X)) = [a]_F(\sigma(x)) = a \cdot \sigma(x)$$

for all $x, y \in \mathfrak{m}_{L_n}$ and $a \in \mathcal{O}_K$.

So we have an injection $\operatorname{Gal}(L_n/K) \hookrightarrow \operatorname{Aut}_{G_K}(F(n)) \cong U_K/U_K^{(n)}$ of groups. Since

$$\#(U_K/U_K^{(n)})) = q^{n-1}(q-1) = [K(\lambda_n) : K] \le [L_n : K] = \#\operatorname{Gal}(L_n/K)$$

we must have equality and $\operatorname{Gal}(L_n/K) \xrightarrow{\sim} U_K/U_K^{(n)}$, moreover $K(\lambda_n) = L_n$.

41

 $K = \mathbb{Q}_p, \ \pi = p$, recall that $\hat{\mathbb{G}}_m(n) = \{\zeta_{p^n}^i - 1 | i = 0, \dots, p^n - 1\}, \ \zeta_{p^n}$ primitive p^n -th root of 1. The theorem gives $\operatorname{Gal}(\mathbb{Q}_p(\zeta_{p^n})/\mathbb{Q}_p) \cong (\mathbb{Z}/p^n\mathbb{Z})^{\times}$, given by, if $a \in \mathbb{Z}_{\geq 0}$, (a, p) = 1 then

$$\sigma_a(\zeta_{p^n}^i - 1) = [a]_{\hat{\mathbb{G}}_m(n)}(\zeta_{p^n}^i - 1)$$
$$= (1 + (\zeta_{p^n}^i - 1))^a - 1$$
$$= \zeta_{p^n}^{ia} - 1$$

so this agrees with the isomorphism $\operatorname{Gal}(\mathbb{Q}_p(\zeta_{p^n})/\mathbb{Q}_p) \cong (\mathbb{Z}/p^n\mathbb{Z})^{\times}$ constructed by hand.

Back to the general situation: set $L_{\infty} = \bigcup_{n=1}^{\infty} L_n$, we have

$$\operatorname{Gal}(L_{\infty}/K) \xrightarrow{\sim} \varprojlim_{n} \operatorname{Gal}(L_{n}/K) \xrightarrow{\sim} \lim_{n} U_{K}/U_{K}^{(n)} \cong U_{K}$$
$$\sigma \longmapsto (\sigma|_{L_{n}})_{n}$$

This is $\operatorname{Art}_K|_{L_\infty}$.

Theorem 128 (Generalised Local Kronecker-Weber Theorem).

$$K^{ab} = K^{ur} \cdot L_{\infty} \ \forall \pi$$

Theorem 129.

$$N(L_n/K) = \langle \pi \rangle \times U_K^{(n)}$$

Full Artin map for K:

$$(\pi^m, u) \longmapsto (\operatorname{Frob}_K^m, \sigma_u)$$

where $\sigma_u(\lambda) = [u]_F(\lambda)$ for all $\lambda \in \bigcup_{n=1}^{\infty} F(n)$.

Lemma 130. The following diagram commutes $(m \ge n)$

$$\begin{array}{ccc} \operatorname{Gal}(L_m/K) & \xrightarrow{\sim} & U_K/U_K^{(m)} \\ & & \downarrow^{quotient} \\ \operatorname{Gal}(L_n/K) & \xrightarrow{\sim} & U_K/U_K^{(n)} \end{array}$$

Proof. Let $u \in U_K$, $\sigma = \sigma_u \in \operatorname{Gal}(L_m/K)$. Then $\sigma_u(\lambda) = [u]_F(\lambda)$ for all $\lambda \in F(m) \implies \sigma_u(\lambda) = [u]_F(\lambda)$ for all $\lambda \in F(n) \subseteq F(m)$

So
$$\sigma_u|_{L_n}$$
 corresponds to u under $\operatorname{Gal}(L_n/K) \cong U_K/U_K^{(n)}$.

Corollary 131. If $m \ge n$, then under the isomorphism $\operatorname{Gal}(L_m/K) \cong U_K/U_K^{(m)}$ we have $\operatorname{Gal}(L_m/L_n) \cong U_K^{(n)}/U_K^{(m)}$.

Proof. Look at the kernels of the vertical maps in the diagram in Lemma 130.

4.6 Ramification Groups of L_n/K

Theorem 132.

$$G_s(L_n/K) = \begin{cases} \operatorname{Gal}(L_n/L) & -1 \le s \le 0 \\ \operatorname{Gal}(L_n/L_k) & q^{k-1} < s \le q^k - 1, \ k = 1, \dots, n - 1 \\ 1 & s > q^{n-1} - 1 \end{cases}$$

Proof. By Corollary 131, $\operatorname{Gal}(L_n/L_k) \cong U_K^{(k)}/U_K^{(n)}$ under $\operatorname{Gal}(L_n/K) \cong U_K/U_K^{(n)}$.

In particular, $G_1(L_n/K)$ is a Sylow *p*-subgroup of $\mathrm{Gal}(L_n/K)$, so we must have $G_1(L_n/K) \cong U_K^{(1)}/U_K^{(n)}$.

$$\implies G_1(L_n/K) = \operatorname{Gal}(L_n/L_1)$$

$$\implies G_s(L_n/K) = \operatorname{Gal}(L_n/L_1) \text{ for } 0 < s \le 1$$

Let $\sigma = \sigma_u \in G_1(L_n/K), u \in U_K^{(1)}/U_K^{(n)}$.

Write $u = 1 + \epsilon \pi^k$, $\epsilon \in U_K$, some $k = k(u) \ge 1$. Let $\lambda \in F(n) \setminus F(n-1)$ (F a choice of Lubin-Tate \mathcal{O}_K -module for π), λ is a uniformiser of L_n and $\mathcal{O}_{L_n} = \mathcal{O}_K[\lambda]$.

We have

$$\sigma_u(\lambda) = [u]_F(\lambda)$$

$$= [1 + \epsilon \pi^k]_F(\lambda)$$

$$= F(\lambda, [\epsilon \pi^k]_F(\lambda))$$

If $k \geq n$, $\sigma = 1$ so $v_{L_n}(\sigma(\lambda) - \lambda) = \infty$. If k < n, then $[\epsilon \pi^k]_F(\lambda) = [\epsilon]_F([\pi^k]_F(\lambda)) \in F(n-k) \setminus F(n-k-1)$ so $[\epsilon \pi^k]_F(\lambda)$ is a uniformiser of L_{n-k} .

 L_n/L_{n-k} is totally ramified of degree q^k , so $[\epsilon \pi^k]_F(\lambda) = \epsilon_0 \lambda^{q^k}$, $\epsilon_0 \in \mathcal{O}_{L_n}^{\times}$.

Recall that F(X,0) = X, F(0,Y) = Y, so

$$F(X,Y) = X + Y + XYG(X,Y), G(X,Y) \in \mathcal{O}_K[[X,Y]]$$

So

$$\begin{split} \sigma(\lambda) - \lambda &= F(\lambda, [\epsilon \pi^k]_F(\lambda)) - \lambda \\ &= F(\lambda, \epsilon_0 \lambda^{q^k}) - \lambda \\ &= \lambda + \epsilon_0 \lambda^{q^k} + \epsilon_0 \lambda^{q^k+1} G(\lambda, \epsilon_0^{q^k}) - \lambda \\ &= \epsilon_0 \lambda^{q^k} + \epsilon_0 \lambda^{q^k+1} G(\lambda, \epsilon_0^{q^k}) \end{split}$$

$$\Rightarrow v_{L_n}(\sigma(\lambda) - \lambda) = q^k$$
So $i_{L_n/K}(\sigma_u) \ge s + 1 \iff q^{k(u)} - 1 \ge s$

$$\Rightarrow G_s(L_n/K) = \{ \sigma_u \in G_1(L_n/K) \mid q^{k(u)} - 1 \ge s \}$$

$$= \begin{cases} \operatorname{Gal}(L_n/L_k) & q^{k-1} - 1 < s \le q^k - 1 \text{ for } k = 1, \dots, n - 1 \\ 1 & s > q^{n-1} - 1 \end{cases}$$

Corollary 133.

$$G^{t}(L_{n}/K) = \begin{cases} \operatorname{Gal}(L_{n}/K) & -1 \le t \le 0\\ \operatorname{Gal}(L_{n}/L_{k}) & k-1 < t \le k, \ k = 1, 2, \dots, n-1\\ 1 & t > n-1 \end{cases}$$

Proof. Invert:

$$\chi_{L_n/K}(t) = \begin{cases} t & -1 \le t \le 0\\ q^{q-1}(q-1)(t-(k-1)) + q^{k-1} - 1 & k-1 < t \le k, \ k = 1, 2, \dots, n-1\\ q^{q-1}(q-1)(t-(n-1)) + q^{n-1} - 1 & t > n-1 \end{cases}$$

$$\eta_{L_n/K}(s) = \begin{cases} s & -1 \le s \le 0\\ (k-1) + \frac{s - (q^{k-1})}{q^{k-1}(q-1)} & q^{k-1} - 1 \le s \le q^{k-1} - 1\\ (n-1) + \frac{s - (q^{n-1})}{q^{n-1}(q-1)} & s \ge q^{n-1} - 1 \end{cases}$$

$$\implies G^t(L_n/K) = G_{\chi_{L_n/K}(t)}(L_n/K)$$
 is as claimed.

In other words,

$$G^{t}(L_{n}/K) = \begin{cases} \operatorname{Gal}(L_{n}/L_{\lceil t \rceil}) & -1 < t \leq n \\ 1 & t \geq n \end{cases}$$

where $\lceil t \rceil = \text{smallest integer } m \text{ such that } t \leq m \text{ (here } L_0 = K).$ So

$$\operatorname{Art}_{K}^{-1}(G^{t}(L_{n}/K)) = \begin{cases} U_{K}^{(\lceil t \rceil)}/U_{K}^{(n)} & -1 \leq t \leq n \\ 1 & t \geq n \end{cases}$$

Corollary 134. When t > -1, $G^t(K^{ab}/K) = \operatorname{Gal}(K^{ab}/K^{ur} \cdot L_{\lceil t \rceil})$ and $\operatorname{Art}_K^{-1}(G^t(K^{ab}/K) = U_K^{(\lceil t \rceil)})$.

Proof. Recall from examples class:

Lemma 135. If L/K is a finite unramified extension and M/K is a finite totally ramified extension, then LM/L is totally ramified and

$$\operatorname{Gal}(LM/L) \cong \operatorname{Gal}(M/K)$$

 $\sigma \mapsto \sigma|_{M}$

and $G^t(LM/L) \cong G^t(M/K)$ via this isomorphism (t > -1).

Proof cont. Let K_M/K be the unramified extension of degree m. By the Lemma and Corollary 133,

$$G^{t}(K_{m}L_{n}/K) \cong G^{t}(L_{n}/K) = \begin{cases} \operatorname{Gal}(L_{n}/L_{\lceil t \rceil}) & 1 < t \leq n \\ 1 & t \geq n \end{cases}$$

$$\Longrightarrow G^{t}(K_{m}L_{n}/K) = \begin{cases} \operatorname{Gal}(K_{m}L_{n}/K_{m}L_{\lceil t \rceil}) & -1 < t \leq n \\ 1 & t \leq n \end{cases}$$

$$\Longrightarrow G^{t}(K^{ab}/K) = G^{t}(K^{ur}L_{\infty}/K)$$

$$= \varprojlim_{m,n} G^{t}(K_{m}L_{n}/K)$$

$$= \varprojlim_{m,n} \operatorname{Gal}(K_{m}L_{n}/K_{m}L_{\lceil t \rceil})$$

$$= \operatorname{Gal}(K^{ur}L_{\infty}/K^{ur}L_{\lceil t \rceil}) = \operatorname{Gal}(K^{ab}/K^{ur}L_{\lceil t \rceil})$$

and

$$\operatorname{Art}_{K}^{-1}(\operatorname{Gal}(K^{ab}/K^{ur}L_{\lceil t \rceil})) = \operatorname{Art}_{K}^{-1} \left(\lim_{\substack{m,n \\ n \geq \lceil t \rceil}} \operatorname{Gal}(K_{m}L_{n}/K_{m}L_{\lceil t \rceil}) \right)$$

$$= \lim_{\substack{m,n \\ n \geq \lceil t \rceil}} \operatorname{Art}_{K}^{-1} \operatorname{Gal}(K_{m}L_{n}/K_{m}L_{\lceil t \rceil})$$

$$= \lim_{\substack{m,n \\ n \geq \lceil t \rceil}} U_{K}^{(\lceil t \rceil)}/U_{K}^{(\lceil t \rceil)} = U^{(\lceil t \rceil)}$$

Corollary 136. Let M/K be a finite abelian extension. Then, under $\operatorname{Art}_K: \frac{K^{\times}}{N(M/K)} \xrightarrow{\sim} \operatorname{Gal}(M/K)$,

$$G^{t}(M/K) = \operatorname{Art}_{K} \left(\frac{U_{K}^{(\lceil t \rceil)} N(M/K)}{N(M/K)} \right) \qquad (t > 1)$$

 ${\it Proof.}$

$$G^{t}(M/K) = \frac{G^{t}(K^{ab}/K)G(K^{ab}/M)}{G(K^{ab}/M)}$$
$$= \operatorname{Art}_{K} \left(\frac{U_{K}^{(\lceil t \rceil)}N(M/K)}{N(M/K)}\right)$$