

rRNA Gene Cluster

FIG. 1

101 TCCAGTAGTT CAATAGAGAG ACTAGTG ATAGTTTATA ACATTGTCCA
151 200
AGGGTGGAG GGGGATGCGC GAAATCGATG TGACGTTG GTCAAAGATG
201 250
CTCGCGAAAG CTGCACATCA ATTCGCACA TGGCGAAAT TGACTTGCAG
251 300
GTGGTATAA AAGTTGATGT AGGCCATGTG GCTCGATTTC AACCATATGG
301 350
GTATGCTTCT GAGGATGGG TGTTACAGTG GACCATATGA GGTAGGTCAT
351 400
TTGGAGATGT CACCAAAATG GTCTAAATCT GCGCATTCCA TTTAAGTGAA
401 450
TTTAAGTGAA ATTTAAGTGA ATTTTACTTA AAATTGACCT TTTTCGTTGC
451 500
GCAGATTGG CGTGGTGATG GGTGACGCGG CGAATTTTT AAAAAAGAGG
500 550
TATATCGCGT GCTATTGTA TTTTGGTAT CACCGCGTCA CCAATCACCA
551 600
TTGACGGTTT CTTTTTCGAA GTTTTCCGG ATTATTGCAT TTTTTATATA
600 650
ATTGTGGGTG GCTGATTCTT GCGAAAGGAC TGTTGTGATG TCCGAGTTCC
651 700
CAAATTGGGA GTTTTGGAC ATCACTCCTG ATCTGCCGGC GGCGATCAGG
700 750
ATGACTGACA TTTCGATATA TTTTGGGTAT TCGATAGCTG CCAAATCGGT
751 800
CAGCGTCGAG TATTCCGGTT TATTCGAAGG ATTCAATGATA TTGCAAAATA
800 850
TCATTGATT TCATGGGGTT TTGTATTAGT ACCCGCTCAT TGTGGAAAG
851 900
TCGGGTGGAT TTATCTTACC CGCAAATCTA ATACAAGATT TGCATGATGC
900 950
AGCAATAGAC CAAGGTTAGT ATAGCAGTTG TATTTATACG ACTAGTTATG
951 1000
CAAACCCCTTT GTGTTTTTG TTGCGACTCT TGGCGTGAAC CGGAAGACCG
1000 1050
GACCTCGCTT TCGACTATTC ATCTTGATG GATATGAGAT CGCAAGGGTA
1051 1100
TCGCTTCGTG CGATATTTAG TGACCATCAG AGCACGCTAC GACTTTTGAT
1100 1150
TATATCCTTG GATTTAATCG GAAGCTCGCA AGCATTGCAT TGATGCAATC

FIG. 2

.....AGAGTT TCAACAAACAT TCGGATTGAAACATGTCA ACAATTCA
#51
ACAGAAATTG ACAACATTGT CACAAATTCT CAAATTGGAC AACATTGGAC
#101
AAAAAATTCAC AACATACATT GGACAACAGT GGACAACGAA CCCAAACCCG
#151
ACAACATTGT CCAGGGGGAT AGGGGGTGAA AAAGCAGTGC CGGCAAAGTC
#201
GAAAGATGTC AAGTTGGAAT GCGGCTCAAATTCGTCATTT GTGTAAATCC
#251
GCAATTTGC CAATGTCAAATTTGCAAAT GTGCAATTGCAAAATGTGC
#301
AATTTGCCA ATGTGCAATT TTGCAAATGC GCAATTTGC AAATCCGCAA
#351
TTTGCAAAT GTGCAATTGCAAAATCAC CAAATGAAAAA TCGTCCAAGT
#401
CGAATTGGAG GCGTGGTGAC ATGGTCCCGG GATCCCTGG TTACAGTGGAA
#451
CAATATCCCA GCAATATTGCT GTGTAATTG GAGTTCGCT GTTTGGCAA
#501
ATTTTGAGTC TGAAAAAAAAAATGCAAAT GCGCAAAGGG GGTGAAGGAA
#551
AAAAAAGCAC CCCCAGGT AAAATTCCCT TTAAGTCCCT TCGCATTG
#601
CAAAATTTC AAAAATTGTT GCAAATGCGC TTTGTTATT TGGCCGGTTC
#651
ATTGGTGTCA AAAGTTGCCT GGGGTGGTTA CACAATGCAC GGAATTGGTT
#701
GGAAGTTGTG TGATTGAAAA TTGGTGTGTG CACACAATTGCGCATTG
#751
CAAAAATTGCG CAAATTGGAC AAAAAAGGGT CGCGCACAGT CAAATTGCGC
#801
AAATTCAC TTGAAGTGAG TGCGCATTG TGGGGCAGAA ATGTGGTGAC
#851
AGCATCGTTT TTTATAATAA ATATTCTATA TTTAGTATCT TTATTATAAT
#901
TTGCTGTAC CAATCACCAT TTTAGAATT TTATTTTTT ATGTTTAGT
#951
GACCGCGGGA TTTTTGCAA AGTACTATYG TGATGTTGA GTTGGTTGAA
#1001
ATGGGCAATT TAGAACATCA TCAGAAATCG CTGAATAGTG ATTTTGAGT
#1051
TTGACTGTTT GAAGTGTGTTT GGGTATTGCG CAGCTGCCAA ATCGGTCAAGC
#1101
GTCGAATATA ATAGCATTGTT TGTGTGTATA TGATATTAG CGATATCATT
#1151
GGAATCATGG GGTTTGTAT TAGTACCCGC TCATTGTGGG AATGTCGGGT
#1201
GGTTCAATAT CACCTGCAAATTTAACAG GATTGCGATG ATGCAGCGAC
#1251
TGACCGGGGT TGGTATAATA GCTGATTATT CGGCTTATTA TGCAAGACCTA
#1301
TCGTGTTAGT AGTTGCGACT CTTGGCGTGA ACCGGAAGAC CGGAACCTGAA
#1351
ATTGCACTAT TTACGTCCGT AAACAGGAGA TTTCAAGAAT ATTGCACATT
#1401
TTGCGTGATA TAAACGTGAT CATCTGAGCA CGCTTCGACT CTTGGATATC
#1451
TGCTAATCAG CCGTCATCTG AGAGCTCGCA AGCATTGCAA TTGATGCAAT
#1501

FIG. 3

151 AAAAGTATGC GAAAAGTTCT TGTCA~~AP~~ GACAGTGTGT GAAAAAAACTG
151 200
151 AAAAGTCCA CTCAACATTG CATTATGCCA TTTGCCACTC AACATTGTCC
201 250
201 AGGGGGATAG GGGGTAAAA AGTATCGCAG TCCAACTGAA AAGATGCTAA
251 300
251 GTTGAAATGC GGCGCAAATT CATCACTTGA GTTGCAGAAA TCCCTAAAGT
301 350
301 CGAATTGGC ACTCGGTGAC ATGATCGGGA ATTTCCCTGG TTACAGTGGT
351 400
351 CAAATCCCAG CAATTTGGC AAAGTTTTG AGTTTCGCAC TTTTCGAAA
401 450
401 TTTCGTGTCT GAAAAAAA TTTCAACTTT GCGCAAAGGG GTCAAAGGG
451 500
451 AAAAAAGCAC CCTCAAAAGG AAATTCCTT TTAATCCCT TTGAAAAAAA
500 550
500 TGCGCAAAGT TAAATTGCG AAAATTCGA TTTTCTCATA TGACCGATTA
551 600
551 GTTGGTGCCA GATGGTAGTC GGGATGGTTA CACGGTGCAC GGAACTCGTT
600 650
600 GGAAGTTCTG GAGTTACGAA TTGGTCCCGT CACCACAATT TGCGCATT
651 700
651 TGAAATTGCG CAAATTGCG AAAAAAGCAG CGCGCAAAGT TAAATTGTGC
700 750
700 GAAAATTGAC TTTCAGGTG TGCGCAAAT TTGGGGTGAA AAAGTGGTGA
751 800
751 CAGCATCAGA ATTATAATAA ATAATCTATA ATCTAGTTCT TTTATTATAA
800 850
800 TTAGCTGTCA CCAATCACCA TTTGAGATT TTTATTTTT TATGTTTTAG
851 900
851 TGACCGCGGT ATTTTTCCA GAGTACTATC GTGATGTCTG AGTTGTCTAA
900 950
900 AACGGCAATT TCAGAACATT ACCAGAAAAC ACTGAATAGT GGTTCTGAG
951 1000
951 TCTGACTGTT TGAAGTGTGTT TGGGTATTG GCAGCTGCCA ATTGGTCAG
1000 1050
1000 GGTTGAATAT ACTAACATT CTGTGTGTAT ATGGTATTAA GCGATATCAT
1051 1100
1051 TGGAATCATG GGGTTTGTA TTAGTACCCG CTCATTGTGG GAAAGTCGGG
1100 1150
1100 TGGTTCAATA TCACCTGCAA ATTTAATACA GGATTTGCAT GATGCAGCGA
1151 1200
1151 CTGACCGGGG TTAGTATAAT AGCTGATTAT TCGGCTTATT ATGCAGACCT
1200 1250
1200 ATCGTGTGTTAG TAGTTGCGAC TCTTGGCGTG AACCGGAAGA CCGGAACCTG
1251 1300
1251 ATTTCGACTA TTTACGTCCG TAACACGTCC GTAAACAGGA GATTTCAGGA
1300 1350
1300 ATATTGCACA TTTTGTGTGA TATAATCGTG ATCATCTGAG CACGCTTCGA
1351 1400
1351 CTCTTGAATA TTTGTTAAC ACCGATATT CGGGAGCTCG CAAGCATTG
1400 1450
1400 AATTGATGCA ATC

FIG. 4

Prim	Sequence	Target
300 F	5'-CACTTGTATTGTGAAGCACCC-3'	
300 R	5'-TTG GTG ACA TCT CCA AAT GAC-3'	
500 F	5'-ATGCTAGCCCATAAGAACAGT-3'	<i>Perkinsus marinus</i>
500 R	5'-ATGCTAGCCCACATCACAGC-3'	
NTS7	5'-AAGTCGAATTGGAGGCGTGGTGAC-3'	
NTS6	5'-ATTGTGTAACCACCCCCAGGC-3'	<i>Perkinsus andrewsi</i>
PM5	5'-ATGCTAGCCC ATAGAACAGT-3'	<i>P. marinus</i> type I
PM7	5'-CAT CTC CAA ATG ACC TAC CT-3'	<i>P. marinus</i> type I
PM6	5'-ATGCTAGCCC ACATCACAGC-3'	<i>P. marinus</i> type II
PM8	5"-CAT CTC CAA ATG ACC TAC CA-3'	<i>P. marinus</i> type II

FIG. 5

P.sp. *P.o.* *P.a.* *P.m.*
M d a d a d a d a M

FIG. 7

Samples

	1	2	3	4	
M	a	b	a	b	a
	b	M			

1 50
Type-I CACTTGTATT GTGAAGCACC CAATGCTAGC CCATAGAACCA GICCAGTAGT
Type-II CACTTGTATT GTGAAGCACC CAATGCTAGC CCACATCACA GCCCAGTAGT

51 100
Type-I TCAATAGAGA GACTAGTGAA CATAGTTAT AACATTGTCC AAGGGGTGGA
Type-II TCAATAGAGA GACGAGTGAA CATAGTTAT AACATTGTCC AAGGGGTGGA

101 150
Type-I GGGGGATGCG CGAAATCGAT GTGCACGTTT GGTCAAAGAT GCTCGCGAAA
Type-II GGGGGATGCG CGAAATCGAT GTGCACGTTT GGTCAAAGAT GCTCGCGAAA

151 200
Type-I GCTGCACATC AATTTCGCAC ATGGGCGAAA TTGACTTGCA GGTGGGTATA
Type-II GCTGCACATC AATTTCGCAC ATGGGCGAAA TTGACTTGCA GGTGGGTATA

201 250
Type-I AAAGTTGATG TAGGCCATGT GGCTCGATTT CAACCATATG GGTATGCTTC
Type-II AAAGTTGATG TAGGCCATGT GGCTCGATTT CAACCATATG GGTATGCTTC

251 300
Type-I TGAGGATGGG GTGTTACAGT GGACCATATG AGGTAGGTCA TTTGGAGATG
Type-II TGAGGATGGG GTGTTACAGT GGACCATATG TGGTAGGTCA TTTGGAGATG

301
Type-I TCACCAA
Type-II TCACCAA

Samples

FIG. 12

Samples

FIG. 15

Samples

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 - + -

#51
>P. atlanticus.AGTTAGTCCAC TAGAGAGCCA AGTCGACAAT CTCTACAACA TTGTCCAAGG
#101

>P. atlanticus.GGGAAAGGGG GGCGCCGCAA GTTGACCTGC AGCAGAGGGAA AAAGATGCTG
#151

>P. atlanticus.AGTTTGCTG CACCCCAACT TTGCGCACTT GGCGAAGTTG ACTTGCAGGC
#201

>P. atlanticus.GAGGGTAAAA GATGCTATGG TTGGTTGCGG ACCAAGTTCG CCGTGTGGGT
>PA690F-Text ATGCTATGG TTGGTTGCGG ACC
#251

>P. atlanticus.CATCATTATC GAGGTCTGTG GTGACGATGG ACTAGTTTT AGGGATTTC
#301

>P. atlanticus.CGGAGGTGTC ACCACGGACC CCCCAACTTT GCGCACGGGG GGTACTCAAT
#351

>P. atlanticus.TTTAAGTGAATTTAAGTAA AATTACTTA AAATTCACGT TTTTGGGTGC
#401

>P. atlanticus.GCAAAGTTGA GGTGGTACT GGTGACACGA AAATTTAAA AAAGAGAGAT
#451

>P. atlanticus.ATTAAAAAAA TATTTATATT TTCTGTGTCA CGTGTCAACC AGTCACCACA
#501

>P. atlanticus.GGGCGTAATT TTCCGGAAA TTTCAAGATT TTCCGGAAAA ATTGCATTT
#551

>P. atlanticus.GGGGTAAATA GTGTCGTCA GAATTTGCC AAAGGACTGT CGTGATGTC
#601

>P. atlanticus.GAGTTCCCAA ATTGAGGGTT TTTGGACATC GCTCTGAAAT CGCTAACGGC
#651

>P. atlanticus.GTTTCAGATT TCCGACTTT CGACATATTC TGGGTATTTG ATAGCTGCCA
#701

>P. atlanticus.AATCGGTCA CGTCGAATAT TCCATATTT CGAAGGATAT ATGATATCGC
#751

>P. atlanticus.GAGATATCAT TGGATTTCAT GGGTTTTGT ATTAGTACCC GCTCATTGTG
>PER1-Text TAGTACCC GCTCATTGTG
#801

>P. atlanticus.GGAAAGTCGG GTGAATTAT TCAACCCGCA AATCTAATAC AAGATTTGCA
>PER1-Text G
#851

>P. atlanticus.TGATGCAGCG ACTGACCGGG GTGAGTGTAG CAGCTGTTCT ACGGCTTGCT
<PA690R-Text GCTGTTCT ACGGCTTGCT
#901

>P. atlanticus.ACGCAGACCT ATCGTGTAG TAGTGCAC TCTTGGCGTG AACCGGAAGA
<PA690R-Text AC
#951

>P. atlanticus.CCGGACCTCG CTTTCGACTA TTCATTCCGA TGAATATGAG ATTGCAAGGG
#1001

>P. atlanticus.TATCGCTTCG TGCGATATTT AGTGATCATC AGAGCACGCT ACGACTTCAG
#1051

>P. atlanticus.TATATCCTCG GATACACAGA AGCTCGCAAG CATTGCATGA TGCAATC
<PER2-Text AGCTCGCAAG CATTGCA
#1101

FIG. 17

>P. andrewsi-S.TGCATGTCTA AGTATAAGCT TAAACGGCG AACTGCGAA TGGCTCATTA
#1

>P. andrewsi-S.AAACAGTTAT AGTTTATTG GTGATCGATT ACTATTTGGA TAACCGTAGT
#101

>P. andrewsi-S.AATTCTAGAG CTAATACATG CGTCAAGGCC CGACTTCGGA AGGGCTCCGT
#151

>P. andrewsi-S.TTATTAGATA CAGAACCAAC CTAGCTCCGC CTAGTCCTTG TTGGTGATTC
#201

>P. andrewsi-S.ATAATAACCC GGCGAATCGC ACGGCTTGTC CGGCGATGGA CCATTCAAGT
#251

>P. andrewsi-S.TTCTGACCTA TCAGCTATGG ACGGTAGGGT ATTGGCCTAC CGTGGCGTTG
#301

>P. andrewsi-S.AC GGTAACG GGGATTAGG GTTCGATTCC GGAGAGGGAG CCTGAGAAC
#351

>P. andrewsi-S.GACTACCACA TCTAAGGAAG GCAACAGGCC CGCAAATTAC CCAATCCTGA
#401

>P. andrewsi-S.TACAGGGAGG TAGTGACAAG AAATAACAAT ACAGGGCAAT TCTGTCTTGT
#451

>P. andrewsi-S.AATTGGAATG AGTAGATTTT AAATCTCTTT ACGAGTATCA ATTGGAGGGC
#501

>P. andrewsi-S.AAGTCTGGTG CCAGCAGGCC CGGTAATTCC AGCTCCAATA GCGTATATTA
#551

>P. andrewsi-S.AAGTTGTTGC GTTAAAAAG CTCGTAGTTG GATTCTGCC TTGGCGACC
>SSU3F-Text AGTTG GATTCTGCC TTGGCG
#601

>P. andrewsi-S.GGTCCACCTT TCCTACGGGT TAGTTGGTA CCAGGTTGA CCTTGGCTTT
#651

>P. andrewsi-S.TTCTTGGGAT TCGTGCTCAC GCACTTAACG GTGCCTGAC CGTGTCCAA
#701

>P. andrewsi-S.GACTTTACT TTGAGGAAAT TAGAGTGTGTT CAAGCAGGCT TATGCCGTGA
#751

>P. andrewsi-S.ATACATTAGC ATGGAATAAT AGGATATGAC TTTGGTCATA TTTTGTGGT
#801

>P. andrewsi-S.TTCTAGGACT GAAGTAATGA TTAATAGGGA CAGTCGGGG CATTCGTATT
#851

>P. andrewsi-S.TAACGTCAAG AGGTGAAATT CTTGGATTTG TTAAAGACGA ACTACTGCGA
#901

FIG.18A

>P. andrewsi-S.AAGCATTGCAAGGATGTT ATTGATC AAGAACGAAA GTTAGGGAT
#1

>P. andrewsi-S.CGAAGACGAT CAGATACCGT CCTAGTCTTA ACCATAAACT ATGCCGACTA
#1001

>P. andrewsi-S.GGGATTGGGA GTCGTTAATT TTAGACGCTC TCAGCACCTC GTGAGAAATC
#1051

>P. andrewsi-S.AAAGTCTTG GGTTCCGGGG GGAGTATGGT CGCAAGGCTG AAACTTAAAG
#1101

>P. andrewsi-S.GAATTGACGG AAGGGCACCA CCAGGAGTGG AGCCTGCAGGC TTAATTGAT
#1151

>P. andrewsi-S.TCAACACGGG AAAACTCACC AGGTCCAGAC ATAGGAAGGA TTGACAGATT
>SSU4F-Text ACC AGGTCCAGAC ATAGGAAGG
#1201

>P. andrewsi-S.GATAGCTCTT TCTTGATTCT ATGGGTGGTG GTGCATGGCC GTTCTTAGTT
#1251

>P. andrewsi-S.GGTGGAGTGA TTTGTCTGGT TAATTCCGTT AACGAACGAG ACCTTAACCT
#1301

>P. andrewsi-S.GCTAAATAGT TCGGTGAAAT CTTGTATTTC ACCGCTACTT CTTAGAGGGA
#1351

>P. andrewsi-S.CTTTGTGTGT TTAACACAAG GAAGCTTGAG GCAATAACAG GTCTGTGATG
#1401

>P. andrewsi-S.CCCTTAGATG TTCTGGGCTG CACGCCGCT ACACGTGACAC GATCAACGAG
#1451

>P. andrewsi-S.TATTCCTTG CCCGGTAGGG TTAGGGTAAT CTTTGAAAT CGTGTGTC
#1501

>P. andrewsi-S.TAGGGATAGA CGATTGCAAT TATTGCTTT CAACGAGGAA TTCCTAGTAA
#1551

>P. andrewsi-S.ATGCAAGTCA TCAGCTTGCG TTGATTACGT CCTGCCCTT TGTACACACC
#1601

>P. andrewsi-S.GCCCCTCGCT CCTACCGATT GAGTGATCCG GTGAGCTGTC CGGACTGCGA
#1651

>P. andrewsi-S.TTAGTTCACT TTCTGTTCTT TTGCGGGAA GTTCTGCAAACCTTATCACT
#1701

>P. andrewsi-S.TAGAGGAAGG AGAAGTCGTA ACAAGGTTTC CGTAGGTGAA CCTGCAGAAG
#1751

.....
>P. andrewsi-S.GATCATTC

FIG. 18B

ACACCGATTCA ATTCTCTGAG AAACCAGCGG TCTCTGTAAA AGGAGATGGG
#1
ATCTCCGCTT TGTTTAGATC CCCACACCTG ACCGCTTAA CGGGCCGGGT
#51
AGGTGCATAA CTTCTATGAA CCAATTGTAC TAGTCTAAAG TATCCAATAT
#101
CCTTTGGAT TTTGGTATT CAAAACGAAA TTCCAAACTC TCAACGATGG
#151
ATGCCCTCGGC TCGAGAATCG ATGAAGGACCG CAGCGAAGTG CGATAAGCAC
#201
TGCAGATTGC AGAATTCCGT GAACCAGTAG AAATCTCAAC GCATACTGCA
#251
CAAAGGGAT TTATCCTCTT TGTACATACA TATCAGTGTC GCTCTCTTC
#301
CCGATACAAA CATTGGTTG ATTTACAATC AACATTATGC TTTGTATCCC
#351
GCTTGGATTTC CTTTATTGGG ATCCGCTGTG TGCGCTTGCT GACACAGGCG
#401
CATTAATTG CAAGGCTATA ATACTACTGT ACTGTAGCCC CTTCGCAAGA
#451
AGGACTGCGC TAGTGAGTAT CTTGGATGC TCGCGAACTC GACTGTGTTG
#501
TGGTTGATTTC CGTGTCTCTC GATCACCGCA TTCATCGCTT CAACGCATTA
#551
TGTCAAATT GATGAATGCA GAGAGTTGTT TATGAATTAC GCGATCGCTT
#601
TGGTCTCAGA ATCGTTACTA TAGCACGCTT GTCGGTTGCT AACCTGGCAA
#651
TATGTCATCA TT
#701

FIG. 19

Primers to claim									
	PCR	Name	Forward Primer (5'-3')	Position ¹	Name	Reverse Primer (5'-3')	Position ¹	Amplicon Size (bp)	Publication
<i>Perkinsus species</i>									
<i>Perkinsus marinus</i>	Species specific	300F	CAC TTG TAT TGT GAA GCA CCC	60-80	300R	TTG GTG ACA TCT CCA AAT GAC	346-366	307	Marsh et al. J. Parasitol. 1995 81(4):577-83. Robledo et al. J. Parasitol. 1999 85(4):650-6.
<i>Perkinsus atlanticus</i>	Species specific	PA690F	ATG CTA TGG TTG GTT GCG GAC C	262-283	PA690R	GTA GCA AGC CGT AGA ACA GC	933-952	691	Robledo et al. J. Parasitol. 2000 86(5):972-8
<i>Perkinsus andrewsi</i> ²	Species specific	NTS7	AAG TCG AAT TGG AGG CGT GGT GAC	447-470	NTS6	ATT GTG TAA CCA CCC CAG CG	717-736	290	Coss et al. J. Euk. Microbiol. 2001 48:52-61
<i>Perkinsus marinus</i>	Generic	PER1	TAG TAC CCG CTC AT(TC) GTG G	827-845	PER2	TGC AAT GCT TGC GAG CT	1123-1139	313	
<i>Perkinsus atlanticus</i>	Generic	PER1	TAG TAC CCG CTC ATT GTG G	833-851	PER2	TGC AAT GCT TGC GAG CT	1121-1137	305	
<i>Perkinsus andrewsi</i>	Generic	PER1	TAG TAC CCG CTC ATT GTG G	1121-1239	PER2	TGC AAT GCT TGC GAG CT	1523-1539	319	

¹Relative to the NTS sequence

²*Perkinsus* sp. (*Macoma balthica*)

FIG. 20

Primers to claim					
	PCR	Name	Forward Primer (5'-3')	Position	Name
<i>Perkinsus species</i>		SSU3F	AGT TGG ATT TCT GCC TTG CGC G	626-647	SSU4F
<i>Perkinsus andrewsi</i>	Sequencing				Reverse Primer (5'-3') ACC AGG TCC AGA CAT AGG AAG G

FIG. 21