Is Actinium Really Happening?

Richard Zimmermann

Chrysalium Consulting, Lalaye, France; MEDraysintell, Louvain-la-Neuve, Belgium; and Oncidium Foundation, Mont-Saint-Guibert, Belgium

he most recent survey (1) related to α -radiotherapy development showed that 27 molecules labeled with ²²⁵Ac are presently under development, among which 13 have already reached human test level. The first ²²⁵Ac-labeled molecule has entered the clinical phase III stage (2) and might reach the market by 2028. These molecules cover the most important indications that are studied with β-emitting radionuclides, but it is obvious that each single ¹⁷⁷Lulabeled drug will be explored as a ²²⁵Ac-labeled analog. Among the 35 ¹⁷⁷Lu-labeled molecules that have already reached the clinical stage, an estimated dozen have a high chance to reach the market before 2030, not even taking into account all the generics. Actiniumlabeled drugs will follow the same trend, with a delay of about 5 v. A global target of half a million patients represents only 1% of the 5-y prevalence of cumulated cancers (Global Cancer Observatory; https:// gco.iarc.fr), which remains realistic in terms of share of the market compared with surgery, external radiotherapy, or chemotherapy.

Evaluation of further needs is based on today's average patient dose of 100 kBq/kg. At least 10–12 MBq at end of bombardment must be produced per dose, taking into account losses during handling and transport and labeling yields. On the basis of an average of 3 doses for a full treatment, each patient will need a total of 30–36 MBq of ²²⁵Ac at end of bombardment. In other words, 3,000 GBq at end of bombardment would be sufficient to treat 100,000 patients each year. Industry will have to guarantee capacity for 5–6 times this yearly amount by 2032.

Over the past few years, several large investments were made in 5 different technologies to develop large-scale production of ²²⁵Ac. The different routes have been described in the literature (3,4). Already-operating sites and new-development units for technologies A–E are summarized in Table 1 with their production capacities.

THE 5 TECHNOLOGIES

Technology A

Carrier-free ²²⁵Ac has been produced through the natural decay of ²²⁹Th. The 3 sites that can presently produce high-quality ²²⁵Ac (United States, Russia, and Germany) will not significantly increase their production capacity. Only Russia is planning such capacity improvement, but the additional amount will remain insignificant compared with the future demand. Fortunately, the war has not (yet) altered access of ²²⁵Ac to U.S. patients in clinical trials from

Received May 1, 2023; revision accepted Jul. 25, 2023.

Russian sources. In the United States, the company TerraPower obtained access to larger amounts of ²²⁹Th that still need to be purified and plans stepwise progress over the next 10 y, although the output will still be only a small fraction of the future need. If alternative routes become successful, this generator route will not remain competitive, but for the time being, it remains the largest source of very clean ²²⁵Ac.

Technology B

The ²³²Th activation programs (United States and Canada) have progressed well. A very high capacity can be reached, and the technology might allow production of several terabecquerels per year. Unfortunately, this product remains contaminated with ²²⁷Ac (halflife, 21.8 y). The mixture can be used for development purpose up to clinical phase II without limitation, but cleaner forms of ²²⁵Ac will be preferred in routine applications and as marketed forms. Specifications limit the ²²⁷Ac threshold to 2%, a level that was demonstrated not to affect patients (5,6). Release of radioactive waste from patients in the waste tanks of hospitals is the real issue. Although European authorities will probably recommend, if not constrain, users to avoid ²²⁷Ac, in the United States this radionuclide needs to be added to the radioactive waste and will directly affect the level of the decommissioning financial assurance that is supposed to be in place at the user's end. A similar situation was experienced in the past when the industry was given a choice between no-carrier-added ¹⁷⁷Lu and ^{177m}Lu-contaminated carrier-added ¹⁷⁷Lu. ²²⁵Ac/²²⁷Ac might find better applications in the development of ²²⁵Ac/²¹³Bi generators, provided that the industry becomes interested in ²¹³Bi.

Technology C

In the thorium activation process B, 225 Ra as a by-product can easily be separated from the mixture, allowing indirect access to clean 225 Ac through its decay. Unfortunately, yields are limited to only 10% compared with the 225 Ac/ 227 Ac mix, generating high levels of waste and limiting financial attractiveness.

Technology D

Accelerator production is possible by irradiating ²²⁶Ra targets using small cyclotrons. Several large-scale production sites are now under construction, supported by companies in the United States and Europe. Eventually, large amounts of ²²⁵Ac might be produced per week, in theory more than 4 TBq a month (7), but realistically a tenth of this figure would allow us to stay on the safe side, with cooling of larger targets becoming the limiting factor.

Technology E

More recent developments have shown that photoconversion technology not only is a way to generate very clean ²²⁵Ac but also

For correspondence or reprints, contact Richard Zimmermann (richard. zimmermann@chrysalium.com).

Published online Aug. 17, 2023.

COPYRIGHT © 2023 by the Society of Nuclear Medicine and Molecular Imaging. DOI: 10.2967/jnumed.123.265907

TABLE 1Technologies Under Development and Operating Sites for ²²⁵Ac Production, Including Estimated Present and 2032 Capacities

Technology		Yearly production capacity (GBq/y/site)			
	Source	2023	2032	Total (GBq/y) in 2032	Comment
A: [(²³³ U→) ²²⁹ Th→ ²²⁵ Ac] (generator)	ORNL, United States	26	26	Up to 3,000 [80]	Highest quality of <i>nca</i> ²²⁵ Ac; may enter price competitivity
	IPPE, Russia	37 (est.)	150 (est. 2025) to 300 (est. 2030)		
	JRC-ITU, Germany	11	11		
	TRIUMF, Canada	0.4	0.4		
	TerraPower, United States	>10	≤2,700		
	Pantera, Belgium	0	>70		TerraPower source
B: [²³² Th(p,x) ²²⁵ Ac+ ²²⁷ Ac] (high-energy accelerator)	BNL/ORNL LANL; Tri-Lab, United States	16.7	Potential, >3,700	>9,000 [>240]	Contaminated with ²²⁷ Ac (0.2% EOB - ~1.5% at calibration); not suitable for large scale routine use
	CNL/TRIUMF, Canada; BWXT/ITM, United States/Germany	>1	Idem >3,700		
	INR, Russia		≤1,000		
	SpectronRx, United States	>1	>200		
	Others: Arronax, France; IsoDar, Japan; CIAE, China	First GBq in 2024	Potential, >200 each		
C: $[++^{225}Ra\rightarrow^{225}Ac]$ (as side product)	\sim 10% of above; CNL/TRIUMF, Canada	0.3	>370 (theory)	>370 [>10]	High level of waste - expensive
D: [²²⁶ Ra(p,2n) ²²⁵ Ac] (cyclotron)		First GBq		>4,500 [>120]	Additional sites under evaluation in other countries (Asia)
	SpectronRx, United States	2023	>500		
	Ionetix, United States	2023	1,900		
	Eckert&Ziegler, Germany	2024	550		
	Alfarim, Netherlands	2025	450-850		
	N-MediPhysics, Japan	>2023	>500		
	KIRAMS, South Korea	>2025	>500		
D: [²²⁶ Ra(d,3n) ²²⁵ Ac] (linear accelerator)	Nusano, United States		≤160,000		Under evaluation
E: $[^{226}\text{Ra}(\gamma,n)^{225}\text{Ra} \rightarrow ^{225}\text{Ac}]$ (photoconverter)	NorthStar, United States	2023	3,700–15,000	>37,000 [>1,000]	Rhodotron: nca ²²⁵ Ac
	Pantera, Belgium	2027	3,700-5,000		
	TerraPower, United States	2029	3,700–5,000		
	Niowave, United States	2023	≤18,000		Linac: nca 225Ac
	Hitachi, Japan	>2024	>3,700		
F: [²²⁶ Ra(n,2n) ²²⁵ Ra→ ²²⁵ Ac] (n from d on beryllium target)	Nusano, United States		≤44,000		Under evaluation

ORNL = Oak Ridge National Laboratory; nca = no carrier added; IPPE = I.I. Leypunsky Institute of Physics and Power Engineering, Obninsk; est. = estimated; JRC-ITE = Joint Research Centre–Institute for Transuranium Elements; TRIUMF = TRI University Meson Facility; BNL = Brookhaven National Laboratory; LANL = Los Alamos National Laboratory; EOB = end of bombardment; CNL = Canadian Nuclear Laboratories; BWXT = BWX Technologies Inc.; ITM = Isotope Technologies Munich SE; INR = Institute for Nuclear Research of the Russian Academy of Science; CIAE = China Institute of Atomic Energy; KIRAMS = Korea Institute of Radiological and Medical Sciences. Data in brackets are curies.

should allow large-capacity production. Facilities are under construction in the United States and Europe.

ISSUES TO BE SOLVED

Even if high capacity and reliable access to ²²⁵Ac is confirmed from 2025 on, production of actinium still raises a series of other issues, some of which are on their way to being solved.

Access to Larger Amounts of ²²⁶Ra

Although access and handling of ²³²Th does not seem to be an issue, access to larger amounts of ²²⁶Ra remains questionable. Most of the companies are on their way to finding a solution, either by getting access to domestic (waste) stocks or by extracting radium from older devices (e.g., paintings, radiotherapy tools, and older brachytherapy material). In the worst case, this issue should also be solved by 2025.

Need for Additional Safety Investments

Handling of ²²⁶Ra is a more complex issue because this radionuclide generates the gas ²²²Rn, which is difficult to store and trap. The increase in patients will proportionally lead to a higher need for radium and higher production of radon, leading to the need for additional safety investments.

Risk of Explosion and Contamination

Cyclotron and photoconversion technologies may face the risk of explosion of the radioactive radium target as cooling will remain difficult and the limiting factor, leading to potential contamination with long-half-life radionuclides. The increase in capacity will therefore be performed stepwise, and the upper limit remains theoretic.

Potential Toxicity and Limited Therapeutic Efficacy

 ^{225}Ac is an α -emitter that decays through a 6-step cascade to stable ^{209}Bi , releasing consecutively 4 α - and 2 β -particles. Recoil effects and the restricted capacity of chelators to trap decay products limit therapeutic efficacy to the first emitted α -particle. The additional α - and β -particles released by the daughter radionuclides decay elsewhere in the body. ^{223}Ra shows a similar profile, and the associated drug (Xofigo) was approved by the authorities without a request for additional studies. Potential toxic effects simply define the level of the maximum tolerated dose.

Contamination Issues

It is still not clear whether patients eventually will be handled on an outpatient basis or will be required to stay in shielded rooms, but patients treated with ²²⁵Ac (half-life, 9.92 d) cannot be kept sufficiently long at therapeutic centers to collect all their waste until full decay. Releasing this waste in nature is not a problem if the

number of treated patients remains low. The situation becomes different if millions of doses are used yearly and a fraction is disseminated in nature. We yet have a few years for the authorities at the national level to think seriously about this issue, which is not specific to ²²⁵Ac and will—over the long term—also affect other longhalf-life radionuclides, including ¹³¹I, ¹⁷⁷Lu, and ¹⁶¹Tb (8). This issue creates an opening for a next generation of radiotherapeutic agents with shorter half-lives such as ⁶⁷Cu, ²¹¹At, and ²¹²Pb, but this is another story.

CONCLUSION

Altogether, the worldwide ²²⁵Ac production capacity by 2032, estimated largely above 25 TBq (670 Ci), should be sufficient to produce at least 2 million patient doses a year. With an additional investment remaining below \$100 million (e.g., accelerator), another 300,000 doses could be produced per new site. The situation is much more comfortable than for ¹⁷⁷Lu and ¹⁶¹Tb, for which access to reactors will soon become the bottleneck. In the meantime, ²²⁵Ac-labeled radiopharmaceuticals are just the beginning of a success story spanning 15-plus years.

DISCLOSURE

No potential conflict of interest relevant to this article was reported.

REFERENCES

- Goethals PE, Zimmermann R. Nuclear Medicine Report and Directory. 9th ed. MEDraysintell; 2022.
- Study of RYZ101 compared with SOC in pts w inoperable SSTR+ well-differentiated GEP-NET that has progressed following 177Lu-SSA therapy (ACTION-1). ClinicalTrials.gov website. https://clinicaltrials.gov/ct2/show/NCT05477576. Published July 28, 2022. Updated July 12, 2023. Accessed August 2, 2023.
- Morgenstern A, Apostolidis C, Bruchertseifer F. Supply and clinical application of actinium-225 and bismuth-213. Semin Nucl Med. 2020;50:119–123.
- 4. Radchenko V, Morgenstern A, Jalilian AJ, et al. Production and supply of α -particle-emitting radionuclides for targeted α -therapy. *J Nucl Med.* 2021;62:1495–1503.
- Jiang Z, Revskaya E, Fisher DR, et al. In vivo evaluation of free and chelated accelerator-produced actinium-225: radiation dosimetry and toxicity results. Curr Radiopharm. 2018;11:215–222.
- Sgouros G, He B, Ray N, et al. Dosimetric impact of Ac-227 in acceleratorproduced Ac-225 for alpha-emitter radiopharmaceutical therapy of patients with hematological malignancies: a pharmacokinetic modeling analysis. *EJNMMI Phys.* 2021;8:60.
- Robertson AK, Ramogida CF, Schaffer P, Radchenko V. Development of ²²⁵Ac radiopharmaceuticals: TRIUMF perspectives and experiences. *Curr Radiopharm*. 2018;11:156–172.
- Zimmermann R. Alpha-emitters from an industrial perspective: 2023–2032. Presented at: TAT12 Conference; March 1, 2023; Cape Town, South Africa.