Ejercicio Tema 5

Ana Buendía Ruiz-Azuaga

June 9, 2022

1 Ejercicio Tema 5

Sea $\mathbb{F}_{32} = \mathbb{F}_2[\xi]_{\xi^5 + \xi^2 + 1}$. Cada uno de vosotros, de acuerdo a su número de DNI o similar, dispone de una curva elíptica sobre \mathbb{F}_{32} y un punto base dados en el Cuadro 6.1.

Mi dni es 77770080, luego tenemos que 77770080 mod $32 \equiv 0$, por lo que de acuerdo al cuadro 6.1 la curva elíptica con la que vamos a trabajar es $E(\xi^3, \xi)$ y el punto $Q = (\xi^4 + \xi + 1, \xi^4 + \xi^2 + \xi).$

$\mathbf{2}$ Apartado 1

Calcula, mediante el algoritmo de Shank o mediante el Algoritmo 9, $\log_Q O$ Vamos a usar el algoritmo de Shank.

Acotamos $|E| \le q + 1 + \lfloor 2\sqrt{q} \rfloor = 32 + 1 + \lfloor 2\sqrt{32} \rfloor = 44.$

Luego $f = \lceil \sqrt{44} \rceil = 7$.

Construimos la tabla usando sagemath:

0	0
Q	$(\xi^4 + \xi + 1, \xi^4 + \xi^2 + \xi)$
2Q	$(1,\xi^4+\xi^3+\xi^2+1)$
3Q	$(\xi^4 + \xi^2 + 1, \xi^4 + \xi^3)$
4Q	$(\xi+1,\xi+1)$
5Q	$(\xi^4 + \xi^3 + \xi^2 + \xi, \xi^4 + \xi^3 + \xi^2 + 1)$
6Q	$(\xi^4 + \xi^3 + \xi, \xi^3 + \xi)$

Ahora calculamos $-7Q=(\xi^3+\xi^2,\xi^2)$, que no está en la tabla, por lo que calculamos $2(-7Q)=(\xi^4+\xi^2+1,\xi^4+\xi^3)$, que se encuentra en la tabla, pues coincide con 3Q, luego $2(-7Q)=3Q\Rightarrow O=17Q\Rightarrow \log_Q O=17$.

3 Apartado 2

Para tu curva y tu punto base, genera un par de claves pública/privada para un protocolo ECDH.

Partimos de nuestra curva elíptica y el punto base asignados.

Comenzamos calculando el orden de la curva elíptica, que es |E| = hn con h pequeño y n primo. Tenemos que $|E|=34=2\cdot 17$ luego h=2 y n=17.

Ahora, Alice toma un número aleatorio a con $2 \le a < n$ y calcula $P_a = aQ$ y envía a Bob P_a .

$$a = 13$$
$$P_a = (\xi + 1, 0)$$

Ahora, Bob toma un número aleatorio b con $2 \le b < n$ y calcula $P_b = bQ$ y envía a Alice P_b . También calcula bP_a .

$$b = 10$$

$$P_b = (\xi^3 + \xi^2, \xi^2)$$

$$bP_a = (\xi^4 + \xi^3 + \xi, \xi^4)$$

Finalmente Alice calcula aP_b :

$$aP_b = (\xi^4 + \xi^3 + \xi, \xi^4)$$

La clave compartida es $(ab)Q = aP_b = bP_a = (\xi^4 + \xi^3 + \xi, \xi^4)$. Alice hace pública (E,Q,P_a) y, análogamente, Bob hace pública (E,Q,P_b) .

4 Apartado 3

Cifra el mensaje $(\xi^3+\xi^2+1,\xi^4+\xi^2)\in\mathbb{F}_{32}^2$ mediante el criptosistema de Menezes-Vanstone

Vamos a usar la clave de Alice a. Comenzamos seleccionando aleatoriamente $k \text{ con } 2 \le k < n.$

Calculamos kQ y definimos $(x_0, y_0) = k(aQ)$. Si $x_0y_0 = 0$ tomamos otro k. El cifrado es:

$$E(m_1, m_2) = (kQ, x_o m_1, y_0 m_2)$$

En este caso k = 2, luego tenemos

$$kQ = (1, \xi^4 + \xi^3 + \xi^2 + 1)$$

$$(x_0, y_0) = k(aQ) = 2 \cdot (13 \cdot (\xi^4 + \xi + 1, \xi^4 + \xi^2 + \xi)) = (\xi^3 + \xi^2 + \xi, \xi^4 + \xi^3 + 1)$$

Esto es válido ya que $x_0 \cdot y_0 = \xi^3 + \xi$. El mensaje a cifrar es $(m_1, m_2) = (\xi^3 + \xi^2 + 1, \xi^4 + \xi^2)$, luego tenemos que:

$$E(m_1, m_2) = ((1, \xi^4 + \xi^3 + \xi^2 + 1), \xi^3 + \xi^2, \xi)$$

5 Apartado 4

Descifra el mensaje anterior.

Para descifrar un criptograma (C_1,c_2,c_3) Alice debe calcular $a(C_1)=a(kQ)=k(aQ)=(x_0,y_0)$ y

$$D(C_1, c_2, c_3) = (x_0^{-1}c_2, y_0^{-1}c_3)$$

Tenemos que $a(C_1) = (x_0, y_0) = (\xi^3 + \xi^2 + \xi, \xi^4 + \xi^3 + 1)$. Luego

$$D(C_1, c_2, c_3) = (\xi^3 + \xi^2 + 1, \xi^4 + \xi^2)$$

.