# Solución numérica de ecuaciones diferenciales ordinarias.

Fidel Alejandro Navarro Salazar

12 de mayo de 2019

### 1. Introducción

En este trabajo se utilizaran las bibliotecas de Numpy y SciPy para la solución numérica de ecuaciones diferenciales.

En este caso se trabajara con un sistema de masa resorte, que consistirá en dos masa y tres resortes.

## 2. Función Odeint de SciPy

Las ecuaciones diferenciables de este problema se resolveran por medio de la función .ºdeint" de SciPy, Para ello se utilizaron las notas de R. Fitzpatrick [1], donde se modela un problema similar.

### 3. Solución

Para la solución de las ecuaciones del sistema se utilizaron las siguiemtes condiciones iniciales

 $m_1 = 1,0$   $m_2 = 1,0$   $k_1 = 1,0$   $k_2 = 1,0$   $k_3 = 1,0$   $b_1 = 0,0$   $b_2 = 0,0$   $L_1 = 1,0$   $x_1 = 1,0$   $y_1 = 0,0$   $x_2 = 0,0$   $y_2 = 0,0$ 

Donde m es la masa de cada respectivo bloque, k es la constante del resorte, b es le coeficiente de fricción, L es la longitud natural del resorte, y x y y son las posiciones iniciales.

La solución obtenida por odeit puede ser visualizada en la figura 1.

También se trabajó el problema con otras condiciones iniciales, estas son:



Figura 1: Solución a las ecuaciones diferenciales del problema con las condiciones iniciales establecidas

$$m_1 = 1,0$$

$$m_2 = 1,0$$

$$k_1 = 1,0$$

$$k_2 = 2,0$$

$$k_3 = 3,0$$

$$b_1 = 0,5$$

$$b_2 = 0,1$$

$$L_1 = 1,0$$

$$L_2 = 0,9$$

$$x_1 = 1,0$$

$$y_1 = 1,0$$

$$y_2 = 0,0$$

$$y_2 = 0,0$$

La solución obtenida por odeit para este problema puede ser visualizada en la figura 2.

## Referencias

[1] Richard Fitzpatrick. (2013). Two Spring-Coupled Masses, de UTexas Sitio web: https://farside.ph.utexas.edu/teaching/315/Waves/node18.html



Figura 2: Solución a las ecuaciones diferenciales del problema 2 con las condiciones iniciales establecidas