*** Applied Machine Learning Fundamentals *** Clustering

Daniel Wehner, M.Sc.

SAPSE / DHBW Mannheim

Winter term 2020/2021

Find all slides on GitHub

Lecture Overview

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Probability Density Estimation

Unit V Regression

Unit VI Classification I

Unit VII Evaluation

Unit VIII Classification II

Unit IX Clustering

Unit X Dimensionality Reduction

Agenda for this Unit

Introduction

What is Clustering?
Clustering Strategies Overview

 \triangle k-Means

Introduction

k-Means Algorithm

Use Case: Image Compression
Problems and Issues

3 Hierarchical Clustering

Agglomerative Clustering Algorithm Agglomerative Clustering: Example

Distance Metrics between Clusters

Spectral Clustering

Motivation A Bit of Graph Theory Spectral Clustering Algorithm

6 Wrap-Up

Summary
Self-Test Questions
Lecture Outlook
Recommended Literature and further Reading
Meme of the Day

Section: Introduction

Clustering Introduction

- Clustering belongs to the category of unsupervised learning
- A clustering algorithm tries to **find structure** in the data
- Once the clusters are found, they first have to be interpreted...
- ...and can then be used for prediction purposes

A cluster must be **internally homogeneous**, but simultaneously **externally heterogeneous**. (Elements of one cluster have to be very similar, but must differ significantly from elements in other clusters.)

Example Use Cases for Clustering

- Behavioral segmentation
 - Customer segmentation (e.g. sinus milieus)
 - Creating profiles based on activity monitoring
- Sorting sensor measurements
 - Image grouping
 - Detection of activity types in motion sensors
- Inventory categorization
 - Grouping inventory by sales activity
 - Grouping inventory by manufacturing metrics
- Many, many more, ...

Clustering Strategies

- **1 EM-based clustering**, e.g.: *k*-Means
- ② Hierarchical clustering, e.g.:
 - Agglomerative clustering
 - Divisive clustering
- 3 Affinity-based clustering, e.g.:
 - Spectral clustering
 - DBSCAN

k-Means: Procedure

- The algorithm is an instance of vector quantization
 - It represent data points by a single vector (here: centroid) which is close to them
 - This is useful for compression!
- How to: Create k partitions ($\widehat{=}$ clusters) of the data set \mathcal{D} , such that the sum of squared deviations from the cluster centroids is **minimal**:

$$\min_{\mu_j} \sum_{j=1}^k \sum_{\mathbf{x}^{(i)} \in \mathcal{D}_j} \|\mathbf{x}^{(i)} - \mu_j\|^2$$
 (1)

• With $\mathcal{D}_i \equiv j^{th}$ cluster, $\mu_i \equiv$ centroid of j^{th} cluster

Introduction

k-Means

Wrap-Up

Result: Voronoi Diagram

- The dots represent cluster centroids
- The lines visualize the cluster boundaries
- For a new point we can easily determine to which cluster it has to be assigned

k-Means Algorithm

- Input: $\mathcal{D} = \{x^{(1)}, x^{(2)}, \dots, x^{(n)}\} \in \mathbb{R}^{n \times m}$, Number of clusters k
- Algorithm:
 - \bullet $t \leftarrow 1$
 - 2 Randomly choose k means $\mu_1^{\langle 1 \rangle}, \mu_2^{\langle 1 \rangle}, \ldots, \mu_k^{\langle 1 \rangle}$
 - 3 While not converged:
 - **3a** Assign each $\mathbf{x}^{(i)} \in \mathcal{D}$ to the closest cluster:

$$\mathcal{D}_{j}^{\langle t \rangle} = \left\{ \boldsymbol{x}^{(i)} : \|\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_{j}^{\langle t \rangle}\|^{2} \leqslant \|\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_{j^{*}}^{\langle t \rangle}\|^{2}; \ \forall j^{*} = 1, 2, \dots, k; \boldsymbol{x}^{(i)} \in \mathcal{D} \right\}$$

3b Update cluster centroids μ_i :

$$m{\mu}_j^{\langle t+1
angle} = rac{1}{|\mathcal{D}_i^{\langle t
angle}|} \sum_{m{x}^{(i)} \in \mathcal{D}_i^{\langle t
angle}} m{x}^{(i)}$$
 then update t : $t \longleftarrow t+1$

Image Compression

Original image

Compressed image

k-Means Issues

- The algorithm assumes all clusters are spherical (≠ affinity-based clustering)
- Does not have a notion of outliers (unlike DBSCAN)
- What is the correct value for $k? \Rightarrow Elbow-method$:
 - Measure sum of squared distances from data points to cluster centers (inertia)
 - Record results for different values for k and plot them
 - Search for the 'elbow point'

Elbow Method

Section: Hierarchical Clustering

Agglomerative Clustering Algorithm

- **1** Start with one cluster for each instance: $C = \{\{x^{(i)}\} : x^{(i)} \in X\}$
- 2 Compute distance $d(C_i, C_j)$ between all pairs of clusters C_i , C_j
- 3 Join clusters C_i and C_j with minimum distance into a new cluster C_p :

$$C_p = \{C_i, C_j\}$$

$$C = (C \setminus \{C_i, C_j\}) \cup \{C_p\}$$

- 4 Compute distances between C_p and all other clusters in C
- **5** If |C| > 1, goto 3

This is a dendrogram

Single Linkage

- Computing distances between clusters C_1 and C_2
- Single linkage:

$$d(C_1, C_2) = \min\{d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) : \mathbf{x}^{(i)} \in C_1, \mathbf{x}^{(j)} \in C_2\}$$

Complete Linkage

- Computing distances between clusters C_1 and C_2
- Complete linkage:

$$d(C_1, C_2) = \max\{d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) : \mathbf{x}^{(i)} \in C_1, \mathbf{x}^{(j)} \in C_2\}$$

Section: Spectral Clustering

Spectral Clustering

- Remember the disadvantage of k-Means? (spherical clusters)
- How can we cluster data without this assumption?
- ⇒ Affinity-based clustering

Affinity-based clustering assumes no shape of the resulting clusters. It is based on the connectedness of the data points.

- Spectral clustering is affinity-based
- Whenever you hear 'spectral': It has something to do with eigen-vectors

Example Data Set

What would be the result of k-Means?

82

 x_1

A short Introduction to Graphs

- A graph \mathcal{G} is a tuple $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- $\mathcal{V} = \{v_1, v_2, \dots, v_n\}$ is the set of n vertices (nodes)
- $\mathcal{E} \in \mathcal{V} \times \mathcal{V}$ the set of edges (connections between nodes)
- Adjacency matrix A
 - $A_{ij} = 1$, iff $(v_i, v_j) \in \mathcal{E}(v_i \text{ is a neighbor of } v_j)$
 - **A** is symmetric for undirected graphs, i. e. $A_{ij} = A_{ji}$
- The degree matrix $D = diag(d_1, d_2, ..., d_n)$ is a matrix of node degrees

$$d_i = \sum_{j=1}^n A_{ij}$$

A short Introduction to Graphs (Ctd.)

 For graph analysis it is often useful to compute the graph Laplacian matrix:

$$L = D - A$$

Example:

Example: Computation of A, D and L

$$m{A} = egin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 \ 1 & 0 & 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\boldsymbol{D} = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{L} = \begin{bmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{bmatrix}$$

How to get the Graph?

- There are at least two possibilities
 - \bullet ϵ -neighborhood graph
 - Connect all instances whose pairwise distances are smaller than ε
 - **Problem:** How to choose ε ?
 - **2** *k*-nearest neighbor graph
 - Connect instance $\mathbf{x}^{(i)}$ with instance $\mathbf{x}^{(j)}$, if $\mathbf{x}^{(j)}$ is among the k nearest neighbors of $\mathbf{x}^{(i)}$
 - Attention: This definition leads to a directed graph (Why?)
 ⇒ Can be ignored
 - Problem: How to choose k?
- Both approaches are used in practice

Spectral Clustering Algorithm

- Input: $\mathcal{D} = \{ \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(n)} \} \in \mathbb{R}^{n \times m}$, Number of clusters k
- Algorithm:
 - **1** Construct a similarity graph (adjacency matrix \boldsymbol{A} and degree matrix \boldsymbol{D})
 - 2 Compute the graph Laplacian matrix $\mathbf{L} = \mathbf{D} \mathbf{A}$
 - 3 Perform eigen-decomposition on L (to obtain the eigen-vectors Q)

$$\mathbf{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1}$$

4 Apply k-Means to the rows of matrix Q to obtain the clusters $\{C_1, C_2, \ldots, C_k\}$

Section: Wrap-Up

Summary

- Clustering belongs to the category of unsupervised learning
- With clustering we try to find structure in the data
- Different algorithms make different assumptions about the resulting clusters
- Clustering Strategies:
 - EM-based clustering (e.g. k-Means)
 - Affinity-based clustering (e.g. spectral clustering, DBSCAN)
 - Hierarchical clustering

Self-Test Questions

- What is clustering?
- 2 What is the definition of a cluster. Which properties should it have?
- 3 Describe the general procedure of k-Means. What are disadvantages?
- 4 What is a dendrogram?
- 6 How do we obtain the graphs for spectral clustering
- **6** What is affinity-based clustering. How does it differ from k-Means?
- How to calculate the graph Laplacian matrix?

Summary
Self-Test Questions
Lecture Outlook
Recommended Literature and further Reading
Meme of the Day

What's next...?

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Probability Density Estimation

Unit V Regression

Unit VI Classification I

Unit VII Evaluation

Unit VIII Classification II

Unit IX Clustering

Unit X Dimensionality Reduction

Recommended Literature and further Reading I

[1] Pattern Recognition and Machine Learning

Christopher Bishop. Springer. 2006.

 \rightarrow <u>Link</u>, cf. chapter 9

[2] Machine Learning: A Probabilistic Perspective

Kevin Murphy. MIT Press. 2012.

ightarrow Link, cf. chapter 25

Meme of the Day

Thank you very much for the attention!

Topic: *** Applied Machine Learning Fundamentals *** Clustering

Term: Winter term 2020/2021

Contact:

Daniel Wehner, M.Sc.
SAPSE / DHBW Mannheim
daniel.wehner@sap.com

Do you have any questions?