Машинное обучение

Занятие 6. Кластеризация

На прошлых занятиях

- Методы обучения с учителем: линейные модели, решающие деревья, случайные леса, ...
- Дано: матрица «объекты-признаки» X и ответы y
- Найти: модель a(x)

Обучение с учителем (supervised learning)

- Для каждого объекта известен ответ (класс или число)
- Даны примеры объектов с ответами
- Нужно построить модель, которая будет предсказывать ответы для новых объектов

Обучение без учителя (unsupervised learning)

- Даны объекты
- Нужно найти в них внутреннюю структуру
- Примеры:
 - Кластеризация
 - Обнаружение аномалий
 - Тематическое моделирование
 - Визуализация
 - Предсказание следующего кадра видео
 - •
- Ближе к обучению в реальной жизни

Обучение с учителем и без учителя

Обучение без учителя: предсказание кадра

Обучение без учителя: кластеризация

Case 2. Оптимизация воронки продаж

ШАГІ

Анализ данных, в т.ч. транзакционных Way4, ЦОД, кред. фабрика

ШАГІІ

Выявление паттернов и сегментация клиентов по характеристикам

ШАГ III

Формирование продуктовых предложений на базе характеристик клиента

МЕТОДЫ алгоритмы кластеризации, визуализация данных большой размерности с использованием LargeVis

ЭКОНОМИЧЕСКИЙ ЭФФЕКТ

- ✓ Рост эффективности воронки продаж
- ✓ Рост лояльности клиентов

КЛАСТЕРИЗАЦИЯ КЛИЕНТОВ ПО ХАРАКТЕРУ ТРАНЗАКЦИЙ

В ЗАВИСИМОСТИ ОТ КЛАСТЕРА КЛИЕНТА ПРЕДЛОЖИТЬ РЕЛЕВАНТНЫЙ ПРОДУКТ

Паттерн	Продукт
1. Частая конвертация валют	Мультивалютный счет
2. Частые перелеты Аэрофлотом	Карта «Аэрофлот Бонус»
3. Частые поездки заграницу	Страховка для выезжающих за рубеж
4. Переводы в благотворительные фонды	Карта «Подари жизнь»

https://habrahabr.ru/article/318152/

Кластеризация

- Дано: матрица «объекты-признаки» X
- Найти:
 - 1. Множество кластеров Y
 - 2. Алгоритм кластеризации a(x), который приписывает каждый объект к одному из кластеров
- Каждый кластер состоит из похожих объектов
- Объекты из разных кластеров существенно отличаются

Отличия

Обучение с учителем

- Цель: минимизация функционала ошибки
- Множество ответов известно заранее
- Конкретные способы измерения качества

Кластеризация

- Нет строгой постановки
- Множество кластеров неизвестно
- Правильные ответы отсутствуют (в большинстве случаев) нельзя измерить качество

Зачем кластеризовать?

- Маркетинг: искать похожих клиентов
- Модерация: проверять только одно сообщение из кластера
- Соц. опросы: выделять группы схожих анкет
- Соц. сети: искать сообщества

• Выявлять типы людей и формировать поведенческие паттерны для каждого типа

Виды кластеризации

Форма кластеров

Форма кластеров

Различия в результатах работы

Иерархическая кластеризация

- Задача кластеризации новостей по содержанию.
- Постановка 1: в один кластер должны попадать новости на одну тему

Батыршин сыграет вместо Хабарова у «Магнитки» в матче с «Салаватом»

Место в третьей паре защиты «Магнитки» на третью встречу плейофф Кубка Гагарина с «Салаватом Юлаевым» занял защитник Рафаэль Батыршин, сообщает из Уфы корреспондент «Чемпионата» Павел Панышев. Травмированный Ярослав Хабаров выбыл на неопределённый срок. Для форварда Оскара Осалы сезон закончен.

Футболисты ЦСКА проиграли «Долгопрудному» в товарищеском матче

Футболисты московского ЦСКА со счетом 2:3 проиграли клубу второго дивизиона "Долгопрудный" в товарищеском матче, который состоялся в Москве на стадионе "Октябрь". У армейцев забитыми мячами отличились Александр Цауня (15-я минута) и Сергей Ткачев (54).

- Задача кластеризации новостей по содержанию.
- Постановка 2: в один кластер должны попадать новости об одном «большом» событии

Скриншот с сайта РИА Новости (ria.ru)

- Задача кластеризации новостей по содержанию.
- Постановка 3: в один кластер должны попадать тексты об одной и той же новости

11:41, 08 ФЕВРАЛЯ 2014

Открытие Олимпиады в Сочи посмотрели несколько миллиардов человек

Олимпиада в Сочи открыта

Церемония открытия Олимпиады в Сочи. Онлайн-репортаж

- Чтобы проверить, выполняются ли требования, нужно делать разметку данных
- Для новостей: показывать асессору пары документов и спрашивать, относятся ли они к одному кластеру

Кластеризация как основная задача

Кластеризация как вспомогательная задача

Цель: улучшение распознавания

5 5 5

«Жёсткая» и «мягкая» кластеризации

Кластеризация для выделения «тем»

«Жесткая» и «мягкая» кластеризации

Кластеризация для выделения «тем»

0.2

0.3

Типы задач кластеризации

- Форма кластеров, которые нужно выделять
- Плоская или древовидная структура
- Размер кластеров
- Конечная задача или вспомогательная
- Жесткая или мягкая кластеризация

- Дано: выборка x_1, \dots, x_ℓ
- Параметр: число кластеров K
- Начало: случайно выбрать K центров кластеров c_1 , ..., c_K
- Повторять по очереди до сходимости:
 - Шаг А: отнести каждый объект к ближайшему центру $y_i = \arg\min_{j=1,\dots,K} \rho(x_i,c_j)$
 - Шаг Б: переместить центр каждого кластера в центр тяжести

$$c_{j} = \frac{\sum_{i=1}^{\ell} x_{i} [y_{i} = j]}{\sum_{i=1}^{\ell} [y_{i} = j]}$$

Выбор числа кластеров

• Качество кластеризации: внутрикластерное расстояние

$$J(C) = \sum_{i=1}^{t} \rho(x_i, c_{y_i})$$

- Зависит от *К*
- Нужно подобрать такое K, после которого качество меняется не слишком сильно

Выбор числа кластеров

Выбор числа кластеров

Особенности K-Means

- Может работать с большими объёмами данных
- Подходит для кластеров с простой геометрией
- Требует выбора числа кластеров

Алгомеративная иерархическая кластеризация

ИЕРАРХИЧЕСКАЯ АГЛОМЕРАТИВНАЯ КЛАСТЕРИЗАЦИЯ

ИЕРАРХИЧЕСКАЯ АГЛОМЕРАТИВНАЯ КЛАСТЕРИЗАЦИЯ

- Дано: выборка объектов x₁, ..., x_n
- Начало: считаем, что каждый объект представляет собой отдельный кластер.
- Повторяем:
 - 1. Считаем расстояние между кластерами.
 - 2. Объединяем в один кластер два ближайших кластера.
 - 3. Повторяем п.2, пока не образуется один мета-кластер
 - 4. Визуализируем в виде дендрограммы

РАССТОЯНИЯ МЕЖДУ КЛАСТЕРАМИ

- Расстояние ближайшего соседа
- Расстояние дальнего соседа
- Среднее расстояние
- Расстояние между центрами
- Расстояние Уорда

$$\Delta = \sum_i {(x_i - ar{x})^2} - \sum_{x_i \in A} {(x_i - ar{a})^2} - \sum_{x_i \in B} {(x_i - ar{b})^2}$$

- Тоже отличный метод
- Не требует задания явного числа кластеров
- Хорошо визуализируется (если не много объектов)
- Может быть избыточной, т.к. строится полная иерархия вложений кластеров.

Density-based clustering

Основные, граничные и шумовые точки

Параметры DBSCAN

- Размер окрестности (eps)
- Минимальное число объектов в окрестности для определения основных точек

DBSCAN

- 1. Выбрать точку без метки
- 2. Если в окрестности меньше N точек, то пометить как шумовую
- 3. Создать новый кластер, поместить в него текущую точку
- 4. Для всех точек из окрестности S: (a) если точка шумовая, то отнести к данному кластеру, но не использовать для расширения; (б) если точка основная, то отнести к данному кластеру, а её окрестность добавить к S
- 5. Перейти к шагу 1

(b) Core, border, and noise points.

DBSCAN: результаты работы

Пример

Пример

Особенности DBSCAN

- Находит кластеры произвольной формы
- Может работать с большими объёмами данных
- Нужно подбирать размер окрестности (eps) и минимальное число объектов в окрестности

Резюме

- Кластеризация задача без строгой постановки и без строгих критериев качества
- Много разновидностей в подходах
- Методы: K-Means, DBSCAN и др