泊松分布

张朝龙

目录

1	定义	1
2	泊松分布与二项分布之间的关系	1
3	泊松分布的期望和方差	2
4	计算泊松分布	3

1 定义

在 二项分布 一文中,我们介绍了二项分布的定义和性质。在本文中,我们给出泊松分布,并分析泊松分布和二项分布之间的联系。

定义 1.1 如果一个取值于0,1,2,...的随机变量对某一个 λ ,其分布如下:

$$p(i) = P\{X = i\} = e^{-\lambda} \frac{\lambda^i}{i!}, i = 0, 1, 2, \dots$$
 (1.1)

则称该随机变量未服从参数λ的泊松随机变量。

显然:

$$\sum_{i=0}^{\infty} p(i) = \sum_{i=0}^{\infty} e^{-\lambda} \frac{\lambda^{i}}{i!} = 1$$
 (1.2)

2 泊松分布与二项分布之间的关系

泊松分布在各个领域都有广泛应用,这是由于当n足够大,p充分小,np保持适当的大小时,参数为(n,p)的二项随机变量可以近似的看做参数为 $\lambda=np$ 的泊松随机变量。

假设X是一个服从参数为(n,p)的二项随机变量,并记 $\lambda=np$,那么:

$$P\{X = i\} = \binom{n}{i} p^{i} (1 - p)^{n - i}$$
(2.1)

$$= \frac{n!}{(n-i)!i!} (\frac{\lambda}{n})^i (1 - \frac{\lambda}{n})^{n-i}$$
 (2.2)

$$= \frac{n(n-1)\dots(n-i+1)}{n^i} \frac{\lambda^i}{i!} \frac{(1-\lambda/n)^n}{(1-\lambda/n)^i}$$
 (2.3)

 $\exists n \to \infty$ 时,观察上式:

$$e^{-\lambda} \approx (1 - \lambda/n)^n \tag{2.4}$$

$$1 \approx \frac{n(n-1)\dots(n-i+1)}{n^i} \tag{2.5}$$

$$1 \approx (1 - \frac{\lambda}{n})^i \tag{2.6}$$

因此有:

$$P\{X = i\} \approx e^{-\lambda} \frac{\lambda^i}{i!} \tag{2.7}$$

独立重复n次试验,每次成功的概率为p,当n充分大,而p足够小,使得np保持适当的话,那么成功的次数近似的服从参数为 $\lambda = np$ 的泊松分布,这个 λ 值通常凭经验确定。

以下的例子大都服从泊松分布:

- 1. 一本书里一页或若干页中印刷错误的数量;
- 2. 某地区居民活到100岁的人数;
- 3. 一天中拨错电话号码的次数;
- 4. 一家便利店里每天卖出狗粮饼干的盒数;
- 5. 某一天进入一个邮局的顾客数;

3 泊松分布的期望和方差

回忆在上一章节中我们假设 $np = \lambda$,而二项分布的期望是np,另外二项分布的方差是 $np(1-p) = \lambda(1-p)$ 当p很小时, $\lambda(1-p)$ 近似为 λ 。所以我们猜测

泊松分布的均值和方差都是λ。接下来,证明这一点:

$$E[X] = \sum_{i=0}^{\infty} \frac{ie^{-\lambda}\lambda^i}{i!}$$
 (3.1)

$$= \lambda \sum_{i=1}^{\infty} \frac{e^{-\lambda} \lambda^{i-1}}{(i-1)!}$$
 (3.2)

$$= \lambda \tag{3.3}$$

上面的推导过程中使用了哑元变量替换。接下来推倒泊松分布的方差:

$$E[X^2] = \sum_{i=0}^{\infty} \frac{i^2 e^{-\lambda \lambda^i}}{i!}$$
(3.4)

$$=e^{-\lambda}\sum_{i=0}^{\infty}\frac{\lambda^{i}i}{(i-1)!}$$
(3.5)

$$= e^{-\lambda} \sum_{i=0}^{\infty} \left[\frac{\lambda^{i}(i-1)}{(i-1)!} + \frac{\lambda^{i}}{(i-1)!} \right]$$
 (3.6)

$$= e^{-\lambda} \sum_{i=0}^{\infty} \lambda \frac{\lambda^{i-1}(i-1)}{(i-1)!} + e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^{i-1}\lambda}{(i-1)!}$$
(3.7)

$$= \lambda E[X] + \lambda \tag{3.8}$$

$$= \lambda^2 + \lambda \tag{3.9}$$

根据方差公式:

$$Var(X) = E[X^{2}] - (E[x])^{2} = \lambda$$
(3.10)

(3.11)

4 计算泊松分布

如果X服从参数为 λ 的泊松分布,则:

$$\frac{P\{X=i+1\}}{P\{X=i\}} = \frac{e^{-\lambda} \lambda^{i+1}/(i+1)!}{e^{-\lambda} \lambda^{i}/i!}$$
(4.1)

$$=\frac{\lambda}{i+1}\tag{4.2}$$

因此,我们有递推式:

$$P\{X = i+1\} = \frac{\lambda}{i+1} P\{X = i\}$$
 (4.3)