Möbiusove transformacije in periodični verižni ulomki

Nejc Zajc

Seminar, 14. 4. 2020

Verižni ulomki

Verižni ulomki so oblike

$$b_0 + \frac{a_1}{b_1 + \frac{a_2}{b_2 + \cdots}}.$$

Verižni ulomki

Enostavni verižni ulomki so

$$[b_0, b_1, b_2, \ldots] = b_0 + \frac{1}{b_1 + \frac{1}{b_2 + \cdots}} = \lim_{n \to \infty} [b_0, b_1, \ldots, b_n].$$

Njihove približke označujemo

$$c_n = [b_0, b_1, \dots, b_n] = b_0 + \frac{1}{b_1 + \frac{1}{\dots + \frac{1}{b_n}}}.$$

Periodični verižni ulomek označimo $\overline{[b_0,\ldots,b_{k-1}]}$.

Kvadratna iracionalna števila

Definicija

Realno število x je **kvadratno iracionalno število** (kvadratni iracional), če je iracionalno število in ničla kvadratnega polinoma P s celoštevilskimi koeficienti.

Kvadratna iracionalna števila

Definicija

Realno število x je **kvadratno iracionalno število** (kvadratni iracional), če je iracionalno število in ničla kvadratnega polinoma P s celoštevilskimi koeficienti.

Trditev

Verižni ulomek $[b_0, b_1, b_2, \ldots]$ je sčasoma periodičen natanko tedaj, ko je x kvadratni iracional.

Kvadratna iracionalna števila

Definicija

Realno število x je **kvadratno iracionalno število** (kvadratni iracional), če je iracionalno število in ničla kvadratnega polinoma P s celoštevilskimi koeficienti.

Trditev

Verižni ulomek $[b_0, b_1, b_2, \ldots]$ je sčasoma periodičen natanko tedaj, ko je x kvadratni iracional.

Trditev

Verižni ulomek $[b_0, b_1, b_2, \ldots]$ je periodičen natanko tedaj, ko je x kvadratni iracional, katerega algebraična konjugirana vrednost x^* leži na intervalu (-1,0).

Galois-ev izrek

Izrek (Galois-ev izrek)

Za x =
$$\overline{[b_0,\ldots,b_{k-1}]}$$
 velja $\overline{[b_{k-1},\ldots,b_0]} = -\frac{1}{x^*}$.

Möbiusova transformacija

Definicija

Funkcija g z domeno $\mathbb{C}_{\infty}=\mathbb{C}\cup\{\infty\}$ je **Möbiusova transformacija**, če jo lahko zapišemo v obliki

$$g(z) = \frac{az+b}{cz+d},$$

kjer so a, b, c in d kompleksna števila za katera velja ad - bc \neq 0. Če je c \neq 0, potem velja $g(\infty)=\frac{a}{c}$ in $g(-\frac{d}{c})=\infty$, sicer je $g(\infty)=\infty$.

Modularna grupa

Definicija

Modularna grupa Γ je grupa vseh Möbiusovih transformacij s celoštevilskimi koeficienti a, b, c in d, za katere velja ad - bc = 1.

Modularna grupa

Definicija

Modularna grupa Γ je grupa vseh Möbiusovih transformacij s celoštevilskimi koeficienti a, b, c in d, za katere velja ad - bc = 1.

Definicija

Loksodromične izometrije $\mathbb H$ so Möbiusove transformacije, ki ohranjajo $\mathbb H$ in imajo dve različni negibni točki.

Modularna grupa

Definicija

Modularna grupa Γ je grupa vseh Möbiusovih transformacij s celoštevilskimi koeficienti a, b, c in d, za katere velja ad - bc = 1.

Definicija

Loksodromične izometrije $\mathbb H$ so Möbiusove transformacije, ki ohranjajo $\mathbb H$ in imajo dve različni negibni točki.

Trditev

Realno število x je kvadratno iracionalno število natanko tedaj ko je negibna točka nekega loksodromičnega elementa g modularne grupe Γ . Tedaj je algebraična konjugirana vrednost x^* druga negibna točka g.

Dokaz izreka

Lema

Za funkcije s_i , $i \in \{1, ..., k\}$ oblike $s: z \mapsto b + 1/z$, kjer je $b \ge 1$, ima končni kompozitum $S = s_1 \cdots s_k$ privlačno negibno točko $\zeta \in (1, \infty)$ in odbojno negibno točko $\tilde{\zeta} \in (-1, 0)$.

Izrek (Galois-ev izrek)

$$Za \ x = \overline{[b_0, \dots, b_{k-1}]} \ velja \ \overline{[b_{k-1}, \dots, b_0]} = -\frac{1}{x^*}.$$