2008~2009 学年第一学期 《复变函数与积分变换》课程考试试卷(A卷)

院(系)专业班级学	선号	姓名
-----------	----	----

考试日期: 2008 年 11 月 24 日

考试时间: 晚上 7:00~9:30

题号	11	111	四	五	六	七	八	总分
得分								

得 分	
评卷人	

- 人填空题(每空2分,共20分)

- 1. 复数 $\frac{-2+3i}{3+2i}$ 的主辐角为_____.
- 2. 函数 $f(z) = x^3 3xy^2 + i(y^3 3x^2y)$ 在何处可导? ______, 何处解析? ______.
- 3. Ln(-3+4*i*)的值为_____.
- 4. 级数 $\sum_{n=1}^{+\infty} \frac{i^n}{n}$ 是否收敛? _____; 是否绝对收敛? _____.
- 5. 函数 $f(z) = e^{\frac{z}{z-1}}$ 在 z = 0 点展开成泰勒(Taylor)级数的收敛半径为_____.
- 6. 区域 $D = \{z : -\pi < \text{Im } z < 0\}$ 在映射 $w = e^z$ 下的像为_____.
- 7. 映射 $f(z) = 2z^3 + 3z^2$ 在 z = i 处的旋转角为_____.
- 8. 函数 $f(t) = \delta(t-1)(t-2)^2 \cos t$ 的 Fourier 变换为_____.

得 分 评卷人

二、计算题 (每题 5 分, 共 20 分)

1.
$$\oint_{|z|=3} \frac{z^{15}}{(z^2+1)^2(z^4+1)^3} dz$$

$$2. \oint_{|z|=3} z \cos \frac{1}{z} dz$$

3.
$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{a + \cos\theta} \quad (a > 1)$$

$$4. \int_0^{+\infty} \frac{\cos x}{x^2 + 5} \, \mathrm{d}x$$

得 分	
评卷人	_

三、(14 分)已知 $u(x,y) = x^2 + ay^2 + xy$, 求常数 a 以及二元函数 v(x,y), 使得 f(z) = u + iv 为 解析函数且满足条件 f(i) = -1 + i.

得 分	
评卷人	

四、 $(14 \, f)$ 将函数 $f(z) = \frac{1}{1+z^2}$ 分别在 z=0 点 和 z=-i 点展开为洛朗(Laurent)级数.

得 分 评卷人

五、(6 分)求区域 $D = \{z: \operatorname{Re} z > 0, \operatorname{Im} z > 0\}$ 在映射 $w = \frac{z^2 + i}{z^2 - i}$ 下的像.

得 分	
评卷人	

六、(10 分)求把区域 $D = \{z: |z| < 1, 0 < \arg z < \frac{3\pi}{2}\}$ 映射到上半平面的共形映射.

得 分	
评卷人	

七、(10分)利用 Laplace 变换求解微分方程:

$$x''(t) - 2x'(t) - 4x(t) = 0$$
, $x(0) = 0$, $x'(0) = 1$.

得分	
评卷人	

人、(6分)已知幂级数 $\sum_{n=0}^{+\infty} a_n z^n$ 的系数满足: $a_0 = a_1 = 1, \quad a_n = a_{n-1} + a_{n-2}, (n \ge 2),$

$$a_0 = a_1 = 1$$
, $a_n = a_{n-1} + a_{n-2}$, $(n \ge 2)$,

该级数在 $|z| < \frac{-1+\sqrt{5}}{2}$ 内收敛到函数 f(z), 证明:

$$\frac{1}{2\pi i} \oint_{|\xi|=0.6} \frac{1+\xi^2 f(\xi)}{(\xi-z)(1-\xi)} \, \mathrm{d}\xi = f(z) \,, \quad (|z|<0.6) \,.$$