Communication Complexity

by Omid Yaghoubi on February 8, 2023

0

» Two-Party Communication Complexity

- * X, Y, Z are finite
- * $f: X \times Y \rightarrow Z$
- * (alice) $x \in X$ and (bob) $y \in Y$
- * f(x, y) = ?

$$\downarrow 0 \uparrow 1 \downarrow 1 \uparrow 0 \downarrow 1$$

» Protocol

- * Specifies whether the execution terminated
- Specifies what is the output
- * Specifies what message the sender (Alice or Bob) [1]
- Transcript: The sequence of bits sent back and forth
- * Let $s_{\pi}(x,y)$ denote the transcript $\pi(x,y)$

$$\begin{array}{ll} \textit{A}: & \textit{X} \times \underbrace{\{0,1\}^*}_{\text{Transcript}} \rightarrow \{0,1\} \\ \textit{B}: & \textit{Y} \times \underbrace{\{0,1\}^*}_{\text{Transcript}} \rightarrow \{0,1\} \\ \textit{N}: & \underbrace{\{0,1\}^*}_{\text{Transcript}} \rightarrow \{\textit{A},\textit{B},\textit{STOP}\} \end{array}$$

» Example: Naïve or

OR function

$$\mathit{OR}(x,y) = 1 \Leftrightarrow (x_1 \lor x_2 \lor \dots \lor x_n) \lor (y_1 \lor y_2 \lor \dots \lor y_n) = \mathit{True}$$

- * Alice sends x to Bob
- * Bob computes z = f(x, y) and send z to Alice
- (1) $N(\epsilon) = A$ $\Rightarrow A(00, \epsilon) = 0$
- (2) N(0) = A $\Rightarrow A(00,0) = 0$
- (3) N(00) = B $\Rightarrow B(01,00) = 1$
- (4) $N(001) = STOP \Rightarrow A(00,001) = B(01,001) = 1 = \pi(00,01)$

» Cost and Communication Complexity

- * π computes f iff $\forall (x, y) : f(x, y) = \pi(x, y)$
- * Cost: Worst case (over all $(x, y) \in X \times Y$) of $|s_{\pi}(x, y)|$ (example?)
- * Communication complexity of f: The cost of best π which computes f

$$cost(\pi) \coloneqq \max_{\{(\textbf{\textit{x}}.\textbf{\textit{y}}) \in \textbf{\textit{X}} imes \textbf{\textit{Y}}: |\textbf{\textit{x}}| = |\textbf{\textit{y}}| = n\}} |\textbf{\textit{s}}_{\pi}(\textbf{\textit{x}},\textbf{\textit{y}})|$$

$$D(f) := \min_{\{\pi:\pi \text{ computes } f\}} cost(\pi)$$

» Naïve solution

For every $f: X \times Y \rightarrow Z$:

$$D(f) \leq \lceil \log X \rceil + \lceil \log Z \rceil$$

$$D(f) \le \lceil \log Y \rceil + \lceil \log Z \rceil$$

Upper bound

- * Parity
- * Majority
- * Median
- * Pcc

Upper bound

- * Parity
- * Majority
- * Median
- * Pcc

» PARITY

$$extit{PARITY}(x,y) = \left(\sum_{i=1}^n x_i + \sum_{i=1}^n y_i
ight) \mod 2$$

 $D(PARITY) \le 2$

Alice
$$\stackrel{\left(\sum\limits_{i=1}^{n} \varkappa_{i}\right) \mod 2}{\longrightarrow}$$
 Bob

Bob
$$\xrightarrow{\left(\sum\limits_{i=1}^{n}y_{i}\right)}$$
 mod 2

» PARITY

 $D(PARITY) \ge 2$

- * Suppose D(PARITY) < 2
- * (wlog) $N(\epsilon) = A$
- * $A(x, b) = A(x, A(x, \epsilon)) = PARITY(x, y)$
- * PARITY(x, y) not depends on y!
- Flip one bit in y to change PARITY(x, y)(Contradiction!)

Corollary: D(PARITY) = 2

Upper bound

- * Parity
- * Majority
- * Median
- * Pcc

» MAJORITY

$$extit{MAJ}(\mathbf{x},\mathbf{y}) = 1 \Leftrightarrow *_1(\mathbf{x}.\mathbf{y}) \geq *_0(\mathbf{x}.\mathbf{y})$$
 $D(extit{MAJ}) \leq O(\log n)$

- Alice $\stackrel{\sharp_1 \mathcal{X}}{\longrightarrow}$ Bob
- 2. Bob $\xrightarrow{\#_1 y}$ Alice

Upper bound

- * Parity
- * Majority
- * Median
- * Pcc

» Median problem

- * Characteristic vector: $\mathbf{s}_i = 1 \Leftrightarrow i \in [\mathbf{s}]$
- * Input: $[x] \subseteq \{2, 4, \dots, \overline{2n}\}$
- * Input: $[\mathbf{y}] \subseteq \{1, 3, \dots, 2n-1\}$
- * Goal: Median $\{[x] \cup [y]\}$
- * Note: $x, y \in \{0, 1\}^n$ (Real inputs!)
- * Note: $[x] \cup [y] \subset \{1, 2, ..., 2n\}$
- * Naïve : $D(MED) < n + \lceil \log 2n \rceil$

» Median protocol

Claim: $D(MED) \leq O(\log^2 n)$!

Idea: Binary search!

Protocol:

- 1. Suppose $MED(x, y) \in [i, j]$
- 2. $mid = \lfloor \frac{i+j}{2} \rfloor$
- 3. Alice: $R_x = |[mid + 1, j] \cap [x]|$ and $L_x = |[i, mid] \cap [x]|$
- 4. Bob : $R_y = |[mid + 1, j] \cap [y]|$ and $L_y = |[i, mid] \cap [y]|$
- $_{5.}$ Alice $\stackrel{L_{x}, R_{x}}{\longrightarrow}$ Bob
- 6. Bob $\stackrel{L_y, R_y}{\longrightarrow}$ Alice
- 7. Update [i,j] to [i,mid] or [mid+1,j]

[2]

» Cost of protocol

- * $|L_x| + |R_x| + |L_y| + |R_y| \le 4. \lceil \log 2n \rceil$
- * Number of iterations $\leq O(\log 2n)$
- * Hence $D(MED) \leq O(\log^2 n)$

Upper bound

- * Parity
- * Majority
- * Median
- * **P**cc

$$P^{cc} := \{f : D(f) = O(poly(\log n))\}$$

 $MED \in P^{cc}$

Lower bound

- * EQUALITY
- $* \ \ \text{Fooling set method}$

Lower bound

- * EQUALITY
- Fooling set metho

» EQUALITY

- * $EQ(x, y) = 1 \Leftrightarrow x = y$
- * $D(EQ) \le n+1$ (Naïve)
- * Claim: $D(EQ) \ge n$

» Mix and match lemma

If

$$s_{\pi}(x,y) = s_{\pi}(x',y')$$

then

$$s_{\pi}(x,y) = s_{\pi}(x',y') = s_{\pi}(x,y') = s_{\pi}(x',y)$$

Proof: By induction on length of the transcript.

Intuition: ::

» Induction Step

* By assumption:

$$s_{\pi}(x,y) = s_{\pi}(x',y') = b_1, b_2, \ldots, b_i, b_{i+1}, \ldots, b_k$$

* By induction hypothesis:

$$s_{\pi}(x,y)[1,i] = s_{\pi}(x',y')[1,i] = s_{\pi}(x,y')[1,i] = s_{\pi}(x,y')[1,i] = s_{\pi}(x',y)[1,i] = b_1,b_2,\ldots,b_i$$

* (wlog) $N(b_1,b_2,\ldots,b_i)=A$

$$*$$
 $s_{\pi}(\mathbf{x}',\mathbf{y})[\mathbf{i}+1] = A(\mathbf{x}',\mathbf{b}_1,\mathbf{b}_2,\ldots,\mathbf{b}_i)$

*
$$\mathbf{s}_{\pi}(\mathbf{x}, \mathbf{y}')[\mathbf{i}+1] = \mathbf{A}(\mathbf{x}, \mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_{\mathbf{i}})$$

$$\begin{array}{rcl} \mathbf{s}_{\pi}(\mathbf{x}, \mathbf{y})[i+1] & = & \mathbf{s}_{\pi}(\mathbf{x}', \mathbf{y}')[i+1] \\ & = & A(\mathbf{x}, b_1, b_2, \dots, b_i) \\ & = & A(\mathbf{x}', b_1, b_2, \dots, b_i) \\ & = & \mathbf{s}_{\pi}(\mathbf{x}, \mathbf{y}')[i+1] \\ & = & \mathbf{s}_{\pi}(\mathbf{x}', \mathbf{y})[i+1] \\ & = & b_{i+1} \end{array}$$

» Corollary

Corollary: If the previous lemma holds and π computes f then:

$$f(x, y) = f(x', y') = f(x', y) = f(x, y')$$

Proof:

- $(1) \quad f(x,y) \quad = \quad \pi(x,y) \quad = \quad A(x,s_{\pi}(x,y)) \quad = \quad B(y,s_{\pi}(x,y))$
- (2) $f(x', y') = \pi(x', y') = A(x', s_{\pi}(x, y)) = B(y', s_{\pi}(x, y))$
- $(3) f(x',y) = \pi(x',y) = A(x',s_{\pi}(x,y)) = B(y,s_{\pi}(x,y))$
- $(4) \quad f(x,y') \quad = \quad \pi(x,y') \quad = \quad A(x,s_{\pi}(x,y)) \quad = \quad B(y',s_{\pi}(x,y))$

» Lower bound for *EQ*

Claim: $D(EQ) \ge n$

- * Assume D(EQ) < n
- * $|\{s : |s| < n\}| = 2^n 1$
- * $2^n 1$ distinct transcripts
- * $FS := \{(x, x) : x \in \{0, 1\}^n\}$
- * $|FS| = 2^n$
- * By Pigeonhole Principle :

$$\exists \{(\textit{x},\textit{x}),(\textit{y},\textit{y})\} \subseteq \textit{FS} \text{ s.t } \textit{x} \neq \textit{y} \text{ and } \textit{s}_{\pi}(\textit{x},\textit{x}) = \textit{s}_{\pi}(\textit{y},\textit{y})$$

* By previous lemma

$$s_{\pi}(x,x)=s_{\pi}(y,y)=s_{\pi}(x,y)=s_{\pi}(y,x)$$

* Hence EQ(x, x) = EQ(x, y) which is a contradiction

Г

Lower bound

- * EQUALIT\
- $* \ \ \text{Fooling set method}$

» Fooling set

- * $FS \subset X \times Y$
- * For all $\{(x,y),(x',y')\}\subseteq FS \Rightarrow f(x,y)=f(x',y')$
- * $f(x,y) \neq f(x',y) \vee f(x,y) \neq f(x,y')$
- * $cost(\pi) \ge \lceil \log |FS| \rceil$

Applications

* Turing machines

Applications

* Turing machines

$$PAL \coloneqq \{ \mathbf{w} \in \{0,1\}^* : \mathbf{w} = \mathbf{w}^R \}$$

Claim: $PAL \in \Omega(n^2)$ (one-tape TM)

Idea: $D(EQ) \ge n \Rightarrow PAL \in \Omega(n^2)$ [1]

$X_1 \dots X_{\frac{n}{3}}$	3	$X_{\frac{2n}{3}+1}$ X_n	<u> </u>
First	Middle	Last	
	$\frac{n}{3}$ $\leq i \leq \frac{2n}{3}$		

- $\overline{* EQ(x,y) = 1} \Leftrightarrow x0^m y^R \in PAL$
- * Suppose cross(i) = k
- * Claim: $\exists \pi$ s.t. computes *EQ* and $cost(\pi) \leq k \cdot \lceil \log |Q| \rceil + 1$
- * $D(EQUALITY) \ge m$
- * Hence $k \cdot \lceil \log |Q| \rceil + 1 \ge m$
- * $m = \frac{n}{3} \Rightarrow k \in \Omega(n)$
- * $\frac{n}{3}$ different choices for *i*
- * Hence $PAL \in \Omega(n^2)$

» Matrix form

» M_{EQ}

» M_{EQ}

$$m{M}_{EQ_{2^3 imes 2^3}} \coloneqq egin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \ \end{pmatrix}$$

Thank you!

- E. Kushilevitz, "Communication complexity," in *Advances in Computers*, vol. 44, pp. 331–360, Elsevier, 1997.
- A. Rao and A. Yehudayoff, *Communication Complexity:* and Applications.

 Cambridge University Press, 2020.