医用工学概論

第14回 安全対策

電気的安全

電撃への安全性に対する考え方

電撃:生体への通電によって起こる興奮性細胞(組織)の反応

心室細動の閾値

マクロショック

ミクロショック

100 mA

 $100 \mu A$

- 体表の最小感知電流 1 mA(< マクロショックにおける心室細動の閾値)
- ・ ミクロショックにおける心室細動の閾値

に基づいて、(心臓,あるいは体表への) 装着部 が規定されている.

医用電気機器のクラス分類

B: クラスⅡ機器 ── 保護接地に依存しない

C:内部電源機器 — 電池電源で フローティングする(ただし 充電しながら使用できる機器

は対象とならない)

A: クラス I 機器 —— 保護接地を必要とする

クラス別	保護手段	追加保護手段	備考
クラス【機器	基礎絶緣	保護接地(アース)	保護接地設備が必要、接地形 2 極コンセント(3 P コンセ ント)

多く医用電気機器は、 クラスI機器

補強絶縁 使用上の設備による制限なし クラスII機器 基礎絶緣 内部贯源 外部電源に接続するときはク 大地(こ逃す 内部電源機器 基礎絶縁 ラスlまたはクラスⅡ機器と(漏雷対策) して働くこと

追加保護手段: 基礎絶縁

電気的安全を保つための手段

が破壊されても

装着部の形別分類と適用範囲

形別分類	患者漏れ電流(正常状態	<u>ş</u>) •	外部からの流入	適用範囲
B形 BF形 CF形	100 μA 100 μA 10 μA ミクロショック	-	保護なし フローティング フローティング	体表にのみ適用する 体表にのみ適用する 直接心臓に適用できる
•故障時(2	は、この5倍量まで許容され	.る	安全係	数: 10 倍
記号	説明	_		
†	B形装着部		る 面に電極などを	装 善 オス 燐 哭
*	BF形装着部	- 1430	(田)に 电1型/46で	衣/目9~2/1成台
		_		

心臓を直接対象とした機器

B:Body, F:Floating, C:Cor

CF形装着部

フローティング(浮動化)回路:他の回路と 接地 を共有しない回路 → 漏れ電流対策

医用接地方式

機器を使用する医用室(検査室,病室,手術室など)には,医用接地センタ から分岐した接地端子を持つ3Pコンセントを設備しなければならない.

EPRシステム(等電位化システム)

患者が触れる可能性のある2点間の電位差を零に近づけ、 漏れ電流 を抑えるための接地システム

カテーテル検査室, CCU, ICU, 心臓手術室では必須

A) $10 \mu A$, B) 10 mV

非常電源設備

停電時 に、電源復旧までの間、電源供給を行うための電源設備

非常電源の配電設備には、蓄電池と自家発電器がある.

無停電

源装置(UPS)

電源供給の重要性よって、「一般」「特別」「瞬時特別」と分類されている.

		用途(例)	
0 秒以内	10 時間以上	重要機器・照明	
0 秒以内	10 時間以上	生命維持装置	
.5 秒以内	10 分以上 (一般または特別と連結)	手術灯	
() 秒以内	0 秒以内 10 時間以上	

10分以上

p. 160

故障率曲線

バスタブカーブ

初期故障 期間: 製造時の欠陥や部品の不具合による故障

偶発故障 期間: 偶発的不具合による故障(安定期)

摩耗故障 期間: 機器に規定される耐用寿命による故障

電磁的な安全

電磁両立性 EMC (Electro Magnetic Compatibility)

電磁妨害を与えず、影響を受けないことが求められ

る。

• エミッション Emission

電磁妨害 EMI (Electro Magnetic Interference)

イミュニティ Immunity

電磁感受性 EMS (Electro Magnetic Susceptibility)