${\bf Lab~Assignment:} \\ {\bf Design~of~a~KGP\text{-}miniRISC~Processor} \\$

Our processor KGP-miniRISC has the following Instruction Set Architecture (ISA). Assume that the processor has a 32 bit word, with all the registers and memory elements having 32 bit data. The address line of the memory is also 32 bits.

We are to develop first the op-code format for the above instruction set, identify the data path element and design the data path along with the control signals. Subsequently, we shall develop a single-cycle instruction execution unit for KGP-miniRISC.

Class	Instruction	Usage	Meaning
	Add	add rs,rt	$rs \leftarrow (rs) + (rt)$
	Comp	* /	$rs \leftarrow 2$'s Complement (rs)
Arithmetic	Add immediate	addi rs,imm	$ rs \leftarrow (rs) + imm$
	Complement Immediate	compi rs,imm	$rs \leftarrow 2$'s Complement (imm)
Logic	AND	and rs,rt	$rs \leftarrow (rs) \land (rt)$
	XOR	xor rs,rt	$rs \leftarrow (rs) \oplus (rt)$
	Shift left logical	shll rs, sh	$rs \leftarrow (rs)$ left-shifted by sh
	Shift right logical	shrl rs, sh	$rs \leftarrow (rs)$ right-shifted by sh
Shift	Shift left logical variable	shllv rs, rt	$rs \leftarrow (rs)$ left-shifted by (rt)
	Shift right logical	shrl rs, rt	$rs \leftarrow (rs)$ right-shifted by (rt)
	Shift right arithmetic	shra rs, sh	$rs \leftarrow (rs)$ arithmetic right-shifted by sh
	Shift right arithmetic variable	shrav rs, rt	$rs \leftarrow (rs)$ right-shifted by (rt)
	Load Word	lw rt,imm(rs)	$rt \leftarrow mem[(rs) + imm]$
Memory	Store Word	sw rt,imm,(rs)	$mem[(rs) + imm] \leftarrow (rt)$
	Unconditional branch	b L	goto L
	Branch Register	br rs	goto (rs)
	Branch on less than 0	bltz rs,L	if(rs) < 0 then goto L
Branch	Branch on flag zero	bz rs,L	if $(rs) = 0$ then goto L
	Branch on flag not zero	bnz rs,L	$if(rs) \neq 0$ then goto L
	Branch and link	bl L	goto L; $31 \leftarrow (PC)+4$
	Branch on Carry	bcy L	goto L if Carry = 1
	Branch on No Carry	bncy L	goto L if Carry $= 0$
Complex	Diff	diff rs, rt	$rs \leftarrow$ the LSB bit at which rs and rt differ

Proceed step-by-step as follows:

- 1. For the above Instruction set, evolve a suitable instruction format. Clearly specify the fields of the opcode and mention how each of the above instructions are to be encoded. Keep in mind, while deciding the op-code, you should keep provisions for adding more instructions to the ISA.
- 2. Identify the Data path elements and draw an architecture for the Arithmetic Logic Unit. Clearly differentiate between the data lines and control lines in your architecture diagram.
- 3. In the architecture diagram, draw the complete data path along with the control signals for a single cycle execution unit for the above ISA.
- 4. Write the truth table for the controller signals as a function of the opcode and the function code in the instruction format. Note that for a single cycle implementation of the controller there is no state and the design is purely combinational.

All your design files and design report should be submitted in a single zip archive.