线性算子与线性泛函

算子代数-习题

第四章 线性算予和线性泛函 123 | 设 $T:C[0,1] \longrightarrow C[0,1]$ 由 | (Tx)(t) = y(t) = $\int_{-\infty}^{t} x(\tau)d\tau$, $t \in [0,1]$ | (Tx)(t) = y(t) = $\int_{-\infty}^{t} x(\tau)d\tau$, $t \in [0,1]$ | (Tx)(t) = t) = t0, t1 | t2 | t3 | t4 | t3 | t4 | t5 | t6 | t7 | t7 | t8 | t7 | t8 | t8 | t9 | t

开映射与闭图像-习题

的交仍然稠.

 $\|x\|_{Y} \le \|\widetilde{T}^{-1}\| \|x\|_{X}.$ $\|T_x\|_{Y} \leq \| ilde{T}^{-1}\| \|x\|_X$,从而 T 有界。 $\|T_x\|_{Y} \leq \| ilde{T}^{-1}\| \|x\|_X$,从而 T 有界。 $_1$ 给定 $(X,\|\cdot\|),(Y,\|\cdot\|),T:\mathcal{D}(T)\to Y$ 是有界线性算子. 若 Y 是 B 空间. T是闭算子. 证明 $\mathcal{D}(T)$ 是闭集. 2者线性闭算子有逆,证明逆算子是闭的. $_3$ 给定 $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y), T$ 是 $X \to Y$ 的线性闭算子. 证明. (a)X 内的任一自列紧集在 T 之下的象是 Y 内的闭集. (b)Y 内任一自列紧集在 T 之下的原象在 X 内闭. $_4$ 若 $_T$ 是 $_X$ $_Y$ 的闭算子,证明 $_N(T) = \{x \in X : Tx = 0\}$ 是闭子空间. 5已知 $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y), T_1$ 是 $X \to Y$ 的闭算子, $T_2 \in \mathcal{B}(X, Y)$. 证明 T_1+T_2 是闭的. 6 设 X,Y 是数域 \mathbb{K} 上的线性空间, $G \subset X \times Y$ 是积空间内的非空线性 子集. 为了使 G 是由 X 的某个子集到 Y 的线性算子的图像, 当且仅当 $(0,y) \in G \Longrightarrow y = 0$ 7 给定 B 空间 $(X,\|\cdot\|_X),(Y,\|\cdot\|_Y),T$ 是 $\mathscr{D}(T)\longrightarrow Y$ 的闭算子, $\mathscr{R}(T)$ 是 Y内的第二纲集. 证明: (1) $\mathcal{R}(T) = Y$; (2) T 是开映射. 8 给定 B 空间 $(X,\|\cdot\|_X),(Y,\|\cdot\|_Y),T$ 是 $\mathscr{D}(T)\longrightarrow Y$ 的线性算子. 证明: 若 $\mathscr{D}(T)$ 是 $(X, \|\cdot\|_X)$ 内的第二纲集,则 T 的有界性与闭性等价. 9 设 T 是由 B 空间 X 到 B 空间 Y 内的有界线性算子,若 T^{-1} 有界,则 10 证明 Baire **纲定理**: 设 X 是完备的距离空间. 则 X 中任意可数个稠开集 $\mathcal{R}(T^*) = X^*.$

习题三点。

- 1 设 $(X, \|\cdot\|_X)$ 为 B 空间, $(Y, \|\cdot\|_Y)$ 为赋范空间. $T_n \in \mathcal{B}(X,Y)$,且 $\sup_n \|T_n\| = \infty$. 证明:存在一点 $x_0 \in X$,使 $\sup \|T_n x_0\|_{Y} = \infty$.
- 2 设 $(X, \|\cdot\|)$ 为 B 空间, $\{x_n\} \subset X$. 若对每一 $f \in X^*$, 数列 $\{f(x_n)\}$ 有界,
- 3 设 X,Y 都是 B 空间, $T_n \in \mathcal{B}(X,Y), n=1,2,\cdots$ 证明以下三个命题两两 等价: 新芸学段的上 X 争义第个一系分额 (4) 10 16 14 (X 3 + V) 18
 - $(1)\{||T_n||\}$ 有界;
 - $(2)\{\|T_nx\|\}$ 对每一 $x \in X$ 有界;
 - $(3)\{|g(T_nx)|\}$ 对每一 $x \in X, g \in Y^*$ 是有界的.
- 4 若积分 $\int_a^b f(t)g(t)dt$ 对每一 $g(t) \in L^2[a,b]$ 有限, 证明 $f \in L^2[a,b]$.
- $\mathbf{5}$ 若数列 $\{a_n\}$ 对每一 $\{x_n\}\in\ell^p(1\leqslant p<\infty)$ 都使得 $\sum_{n=1}^\infty a_nx_n$ 收敛,则 ${a_n} \in \ell^{p'}, \frac{1}{p} + \frac{1}{p'} = 1.$
- 6 设 $T_n \in \mathscr{B}(X,Y), (X,\|\cdot\|_X)$ 是 B 空间. 若 X 内有个第二纲集 A, 使对每 $\uparrow x \in A$ 有 $\sup_{n} ||T_n x|| < \infty$, 则 $\sup_{n} ||T_n|| < \infty$.
- 7 设 $\{x_n\}\subset X, X$ 是 B 空间. 若对每一 $f\in X^*$ 级数 $\sum\limits_{n=1}^{\infty}|f(x_n)|<\infty$, 证明: 存在一常数 M > 0 使 $\sum_{n=1}^{\infty} |f(x_n)| \leqslant M||f||, \forall f \in X^*$.
- 8 设 $x \in C_{2\pi}$, $s_n(x)$ 是 x 的 Fourier 级数部分和,记 $\sigma_n(x) = \frac{1}{n+1} \sum_{n=0}^{n} s_k(x)$. 证明: $\|x-\sigma_n(x)\|_c \to 0$, $\forall x \in C_{2\pi}$.
- 9 给定 B 空间 X,Y. 设 $T\in \mathcal{B}(X,Y)$. 如果 $\mathcal{R}(T)=Y,$ $\mathcal{D}(T)=X,$ 证明 T^* 有有界逆.
- 10 设 $(X, \|\cdot\|_X)$ 是 B 空间, f 是 X 上的泛函,满足以下条件: $(1)f(x)\geqslant 0,\quad \forall\, x\in X;$

 - $(2)f(x+y) \leqslant f(x) + f(y);$
 - $(3)f(\alpha x) = |\alpha|f(x);$
- (4) 若 $||x_n x||_X \to 0$, 则 $f(x) \le \limsup f(x_n)$.
 - 证明: 存在一常数 K > 0 使 $f(x) \leq K ||x||_X$, $\forall x \in X$.

- $_1$ 已知 X,Y 为线性赋范空间, $T \in \mathcal{B}(X,Y)$. 若 $x_n \stackrel{w}{\longrightarrow} x$, 则 $Tx_n \stackrel{w}{\longrightarrow} Tx$.
- $_2$ 给定 $(X,\|\cdot\|)$, $\{x_n\}\subset X$. 若对每一 $f\in X^*$, 数列 $\{f(x_n)\}$ 都是基本列,就 称 $\{x_n\}$ 是弱基本列.
 - (1) 证明弱基本列是有界的,
- (2) 若 X 的任一弱基本列都弱收敛,就称 X 是弱完备的。证明自反空间是 弱完备的.
- $_3$ 设 $_A$ \subset $(X,\|\cdot\|)$. 若 $_A$ 的任一非空子集都含有弱基本列,则 $_A$ 为有界集.
- 4 证明: 在 ℓ^1 内序列的弱收敛等价于依范收敛.
- 5 证明: 在 $L^2[0,1]$ 内若 $x_n \xrightarrow{w} x_0$ 且 $\|x_n\| \to \|x_0\|$, 则 $\|x_n x_0\| \to 0$.
- 6 ℓ^p $(1 内的点列 <math>\{x^{(n)}\}_{n=1}^\infty$ 弱收敛到 $x^{(0)}$ 当且仅当
 - $(1)\|x^{(n)}\| \leqslant K, n = 1, 2, \cdots, K > 0$ 是某个常数;
- (2) $\lim_{k \to \infty} x_k^{(n)} = x_k^{(0)} \quad k = 1, 2, \cdots$

$$x^{(n)} = (x_1^{(n)}, \cdots, x_k^{(n)}, \cdots), \quad x^{(0)} = (x_1^{(0)}, \cdots, x_k^{(0)}, \cdots).$$

- 7 证明: $L^p(0,1),\;\ell^p,\;$ 当 $1\leqslant p<\infty$ 时是弱完备的. 问空间 C[0,1] 是不是弱 完备的?
- 8 证明: 若X是自反空间,则X的任何有界序列 $\{x_n\}$ 内必定含有弱收敛的 子列. 有界序列看成X**中元素后能被球Br包住,而Br弱星紧
- 9 若 X 是自反的,则对任一 $f \in X^*$ 必存在 $x^* \in X$, $\|x^*\| = 1$,使得 用Hahn-Banach在 X^{**} 中构造xhat $f(x^*) = ||f||.$
- 10 对应于每一正整数 n, 在 [a, b] 内取 n 个点:

$$a \le t_1^{(n)} < t_2^{(n)} < \dots < t_n^{(n)} \le b,$$

同时给定一组实数 $\alpha_1^{(n)}, \dots, \alpha_n^{(n)}$. 对任一 $f \in C[a, b]$, 置

$$Q_n(f) = \sum_{k=1}^{n} \alpha_k^{(n)} f(t_k^{(n)}).$$

(1) 证明: $Q_n(f)$ 是 C[a,b] 上的线性连续泛函,且

$$||Q_n|| = \sup_{\|f\| \le 1} |Q_n(f)| = \sum_{k=1}^n |\alpha_k^{(n)}|.$$

(2) 置
$$Q(f) = \int_{0}^{b} f(t)dt$$
. 证明: 为使

$$\lim_{n\to\infty} Q_n(f) = Q(f), \ \forall f \in C[a,b],$$

- 必须且只需满足以下条件:
- ① 存在常数 K > 0, 使

$$\sum_{k=1}^{n} |\alpha_k^{(n)}| \leqslant K, \quad n = 1, 2, 3, \cdots$$

- $egin{array}{c} @ \lim_{n \to \infty} Q_n(t^k), & orall k = 0, 1, 2, \cdots \end{array}$
- (3) 证明: 任给 [a,b] 的 n 分点 $a \leq t_1^{(n)} < \cdots < t_n^{(n)} \leq b$, 必存在数组 $lpha_1^{(n)},\cdots,lpha_n^{(n)}$ (e

$$Q_n(t^k) = Q(t^k), \quad k = 0, \cdots, n-1.$$

(4) 证明: 给定了 [a,b] 的分点组序列后, 如果对于每个自然数 n, 系数组 $(\alpha_1^{(n)},\cdots,\alpha_n^{(n)})$ 都按 (3) 的条件选取,则对如此规定的 $Q_n(f)$ 欲使

$$Q_n(f) \longrightarrow Q(f), \ \ \forall f \in C[a,b],$$

当且仅当存在常数 K > 0 使得

$$\sum_{k=1}^{n} |\alpha_k^{(n)}| \leqslant K, n = 1, 2, 3, \dots$$

习题四

- 1 已知 M 是内积空间 U 的子空间. 若每个 $x \in U$ 在 M 上都存在正交投影,则 M 是闭集.
- 2 给定 $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ 及 $\mathcal{B}(X, Y)$. 设 $T \in \mathcal{B}(X, Y)$. T 的二次伴随算子 T^{**} 定义为 $(T^*)^*$. T^{**} 是 X^{**} 到 Y^{**} 的线性有界算子. 证明: 当 X, Y 分别自然嵌入 X^{**}, Y^{**} 时, T^{**} 是 T 的保范延拓,即

$$T^{**}(\pi(x)) = T(x), \ \forall x \in X, \quad ||T^{**}|| = ||T||.$$

- 3 设 T 是 Hilbert 空间 H 到 H 的线性算子. 若 (Tx,y)=(x,Ty), 则 T 是首伴的.
- 4 设 H 是 Hilbert 空间. 若 $T \in \mathcal{B}(H)$, 证明: $||TT^*|| = ||T^*T|| = ||T||^2$.
- 5 设 $L^2[0,1]$ 是平方可和的复函数空间,定义 $T:(Tx)(t)=tx(t),\ t\in[0,1]$ $x\in L^2[0,1]$. 证明 T 是自伴的.