Modeling the Source of Ionizing Radiation in the Circumgalactic Medium

Liam Becker

Mentor: Dr. Yakov Faerman

Adviser: Prof. Matthew McQuinn

What is a Galaxy?

What is a Galaxy?

- The Circumgalactic Medium (CGM) is a non-uniform cloud of gas surrounding a galaxy
- Much larger than the central galaxy:
 - Milky Way Diameter: 100,000 ly
 - CGM Diameter:2 million ly

Why is the CGM Important?

- CGM interfaces between gas within galaxies and gas between galaxies
 - Gas condenses and cools into clouds, accreted into the central galaxy to form stars
- Could possibly shed light on the transformation from star-forming to quiescence.

Why is the CGM Important?

- CGM interfaces between gas within galaxies and gas between galaxies
 - Gas condenses and cools into clouds, accreted into the central galaxy to form stars
- Could possibly shed light on the transformation from star-forming to quiescence.

- Emission Spectra & Absorption Lines
 - Atoms and molecules absorb light in distinct and detectable ways
 - Can determine which elements are present along a line of sight

- Ionizing Radiation
 - Atoms/Molecules lose electrons when struck by high energy radiation, becoming ionized
 - Can be ionized many times in a row, each with distinct absorption features
- By determining the composition of gas clouds, the conditions can be determined
 - Cold clouds in thermal equilibrium

$$U \equiv \frac{\Phi}{nc}$$

Radiation Flux

Ionization State

Gas Density

- Ionizing Radiation
 - Atoms lose electrons when struck by high energy radiation, becoming ionized
 - Can be ionized many times in a row, each with distinct absorption features
- By determining the composition of gas clouds, the conditions can be determined

Plotting the Data

$$\Phi_{tot} = \Phi_{UVB} + \Phi_{gal}$$

$$\Phi_{tot} = \Phi_{UVB} + \Phi_0 \times SFR$$

$$y = b + m$$

Plotting the Data

$$\Phi_{tot} = \Phi_{UVB} + \Phi_{gal}$$

$$\Phi_{tot} = \Phi_{UVB} + \Phi_0 \times SFR$$

$$y = b + m \times x$$

Gas Density Profiling

- Using same scaling for gas density across all galaxies doesn't make much sense
 - Galaxies with high SFR should need more gas

$$\Phi \propto U \times n$$

$$\Phi \propto U \times n \times SFR^{\beta}$$

 $\sim SFR$

Gas Density Profiling

- Using same scaling for gas density across all galaxies doesn't make much sense
 - Galaxies with high SFR should need more gas

$$\Phi \propto U \times n$$

$$\Phi \propto U \times n \times SFR^{\beta}$$

 Φ_{toi}

Further Research + Q&A

Further Research:

- Fitting power law to the data
- Statistical analysis
 - Different ways of choosing best fit
 - Finding optimal value of β
- Investigate the behaviors of quiescent vs. star-forming galaxies
 - o Other factors in gas density

