Basic Linear Algebra Review

Matrices

An $m \times n$ matrix is a table of numbers with m rows, n columns:

► Example: 2 × 3 matrix:

$$\begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \end{pmatrix}$$

Example: 3 × 3 "square" matrix:

$$\begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$

Matrix Notation

We use upper-case letters for matrices.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

- Sometimes use subscripts to denote particular elements: $A_{13} = 3$, $A_{21} = 4$
- \triangleright A^T denotes the transpose of A:

$$A^{T} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

Matrix Addition and Scalar Multiplication

- We can add two matrices only if they are the same size.
- Addition occurs elementwise:

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} + \begin{pmatrix} 7 & 8 & 9 \\ -1 & -2 & -3 \end{pmatrix} = \begin{pmatrix} 8 & 10 & 12 \\ 3 & 3 & 3 \end{pmatrix}$$

Scalar multiplication occurs elementwise, too:

$$2 \cdot \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{pmatrix}$$

Matrix-Matrix Multiplication

- We can multiply two matrices A and B only if # cols in A is equal to # rows in B
- If $A = m \times n$ and $B = n \times p$, the result is $m \times p$.
 - ► This is **very useful**. Remember it!
- The low-level definition. the *ij* entry of the product is:

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Matrix-Matrix Multiplication Example

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 5 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 6 \\ 1 & 3 \\ 4 & 8 \end{pmatrix}$$

- What is the size of AB?
- \triangleright What is $(AB)_{12}$?

Matrix-Matrix Multiplication Properties

- ▶ Distributive: A(B + C) = AB + AC
- Associative: (AB)C = A(BC)
- Not commutative in general: AB ≠ BA

Identity Matrices

► The *n* × *n* identity matrix *I* has ones along the diagonal:

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

- ▶ If A is $n \times m$, then IA = A.
- ▶ If B is $m \times n$, then BI = B.

Vectors

- ► An d-vector is an $d \times 1$ matrix.
- ightharpoonup Often use arrow, lower-case letters to denote: \vec{x} .
- ▶ Often write $\vec{x} \in \mathbb{R}^d$ to say \vec{x} is a d vector.
- Example. A 4-vector:

$$\begin{pmatrix} 2 \\ 1 \\ 5 \\ -3 \end{pmatrix}$$

Geometric Meaning of Vectors

A vector $\vec{u} = (u_1, ..., u_d)^T$ is an arrow to the point $(u_1, ..., u_d)$:

- The length, or norm, of \vec{u} is $\|\vec{u}\| = \sqrt{u_1^2 + u_2^2 + ... + u_d^2}$.
- A unit vector is a vector of norm 1.

Dot Products

► The **dot product** of two *d*-vectors \vec{u} and \vec{v} is:

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v}$$

Using low-level matrix multiplication definition:

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^{n} u_i v_i$$
$$= u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

Dot Product Example

$$\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad \vec{v} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \qquad \vec{u} \cdot \vec{v} =$$

Geometric Interpretation of Dot Product

Which of these is another expression for the norm of \vec{u} ?

a)
$$\vec{u} \cdot \vec{u}$$

b) $\sqrt{\vec{u}^2}$

c)
$$\sqrt{\vec{u} \cdot \vec{u}}$$

d) \vec{u}^2

Properties of the Dot Product

- ► Commutative: $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- Distributive: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$
- Linear: $\vec{u} \cdot (\alpha \vec{v} + \beta \vec{w}) = \alpha \vec{u} \cdot \vec{v} + \beta \vec{u} \cdot \vec{w}$

Matrix-Vector Multiplication

- ► Special case of matrix-matrix multiplication.
- Result is always a vector with same number of rows as the matrix.
- One view: a "mixture" of the columns.

$$\begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = a_1 \begin{pmatrix} 1 \\ 3 \end{pmatrix} + a_2 \begin{pmatrix} 2 \\ 4 \end{pmatrix} + a_3 \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$

Matrices and Functions

- Matrix-vector multiplication takes in a vector, outputs a vector.
- An $m \times n$ matrix is an encoding of a function mapping \mathbb{R}^m to \mathbb{R}^n .
- Matrix multiplication evaluates that function.

Today

- How do we predict salary given multiple features?
 - years of experience, number of internships, GPA, etc.
- We'll need to use some linear algebra...

CSE 151A Intro to Machine Karning

Lecture 07 – Part 01
Setup

Today

- How do we predict salary given multiple features?
 - years of experience, number of internships, GPA, etc.

Using Multiple Features

We believe salary is a function of experience and GPA.

- I.e., there is a function H so that:
 salary ≈ H(years of experience, GPA)
- Recall: *H* is a **prediction rule**.
- Our goal: find a good prediction rule, H.

Example Prediction Rules

$$H_1$$
(experience, GPA) = \$40,000 × $\frac{\text{GPA}}{4.0}$ + \$2,000 × (experience)

$$H_2$$
(experience, GPA) = \$60,000 × 1.05^(experience+GPA)

$$H_3$$
(experience, GPA) = $sin(GPA) + cos(experience)$

Linear Prediction Rule

We'll restrict ourselves to linear prediction rules:

$$H(\text{experience}, \text{GPA}) = w_0 + w_1 \times (\text{experience}) + w_2 \times (\text{GPA})$$

Can add more features, too¹:

$$H(\text{experience, GPA, # internships}) = w_0 + w_1 \times (\text{experience}) + w_2 \times (\text{GPA}) + w_3 \times (\text{# of internships})$$

▶ Interpretation of w_i : the weight of feature x_i .

¹In practice, might use tens, hundreds, even thousands of features.

Feature Vectors

▶ In general, if $x_1, ..., x_d$ are d features:

$$H(x_1, ..., x_d) = w_0 + w_1 x_1 + w_2 x_2 + ... + w_d x_d$$

Nicer to pack into a feature vector and parameter vector:

$$\vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix} \qquad \vec{W} = \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \\ w_d \end{pmatrix}$$

Augmented Feature Vectors

The augmented feature vector $Aug(\vec{x})$ is the vector obtained by adding a 1 to the front of \vec{x} :

$$\vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix} \quad \text{Aug}(\vec{X}) = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix} \quad \vec{W} = \begin{pmatrix} w_0 \\ w_2 \\ \vdots \\ w_d \\ w_d \end{pmatrix}$$

► Then:

$$H(x_1, ..., x_d) = w_0 + w_1 x_1 + w_2 x_2 + ... + w_d x_d$$

= Aug(\vec{x}) · \vec{w}

Example

Recall the prediction rule:

$$H_1$$
(experience, GPA) = \$40,000 × $\frac{\text{GPA}}{4.0}$ + \$2,000 × (experience)

► This is linear. If x_1 is experience, x_2 is GPA, then:

$$\vec{W} = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 2,000 \\ 10,000 \end{pmatrix}$$

Prediction for 2 years experience, 3.0 GPA:

$$\operatorname{Aug}(\vec{x}) = \begin{pmatrix} \\ \end{pmatrix} \qquad H(\vec{x}) = \operatorname{Aug}(\vec{x}) \cdot \vec{w} = \begin{pmatrix} \\ \end{pmatrix}$$

The Data

For each person, collect 3 features, plus salary:

Person #	Experience	GPA	# Internships	Salary
1	3	3.7	1	85,000
2	6	3.3	2	95,000
3	10	3.1	3	105,000

We represent each person with a data vector:

$$\vec{x}^{(1)} = \begin{pmatrix} 3 \\ 3.7 \\ 1 \end{pmatrix}, \qquad \vec{x}^{(2)} = \begin{pmatrix} 6 \\ 3.3 \\ 2 \end{pmatrix}, \qquad \vec{x}^{(3)} = \begin{pmatrix} 10 \\ 3.1 \\ 3 \end{pmatrix}$$

Notation

- $ightharpoonup \vec{x}^{(i)}$ is the *i*th data vector.
- $\triangleright x_i^{(i)}$ is the jth feature in the ith data vector.
- ► If there are *d* features:

$$\vec{X}^{(i)} = \begin{pmatrix} x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_d^{(i)} \end{pmatrix}$$

Geometric Interpretation

The General Problem

- ► Have *n* training examples: $(\vec{x}^{(1)}, y_1), ..., (\vec{x}^{(n)}, y_n)$
- We want to find a good linear prediction rule:

$$H(\vec{x}) = \vec{w} \cdot Aug(\vec{x})$$

► To do so, we'll minimize the mean squared error:

$$R_{sq}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (H(\vec{x}^{(i)}) - y_i)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} ((\vec{w} \cdot Aug(\vec{x}^{(i)})) - y_i)^2$$

The Risk

- With d features, we have d + 1 parameters: $w_0, w_1, ..., w_d$.
- ► The risk $R_{sq}(\vec{w})$ is a function from \mathbb{R}^{d+1} to \mathbb{R}^1 .
- ▶ It is a (d + 1)-dimensional hypersurface.
- ▶ No hope of visualizing it directly when $d \ge 2$.

Let \vec{e} be such that e_i is the (signed) error on ith example:

$$e_i = (\vec{w} \cdot \text{Aug}(\vec{x}^{(i)})) - y_i$$

► Then:

$$R_{sq}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \left[\left(\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \right) - y_i \right]^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} e_i^2$$

Let \vec{e} be such that e_i is the (signed) error on ith example:

$$e_i = (\vec{w} \cdot \text{Aug}(\vec{x}^{(i)})) - y_i$$

► Then:

$$R_{sq}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \left[\left(\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \right) - y_i \right]^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} e_i^2$$

► Define $\vec{y} = (y_1, ..., y_n)^T$. Then:

$$\vec{e} = \begin{pmatrix} (\vec{w} \cdot \operatorname{Aug}(\vec{x}^{(1)})) - y_1 \\ (\vec{w} \cdot \operatorname{Aug}(\vec{x}^{(2)})) - y_2 \\ \vdots \\ (\vec{w} \cdot \operatorname{Aug}(\vec{x}^{(n)})) - y_n \end{pmatrix} =$$

 \triangleright \hat{h} is the vector of predictions.

► So far:
$$R_{SG}(\vec{w}) = \frac{1}{n} ||\vec{e}||^2$$
, and $\vec{e} = \vec{h} - \vec{y}$.

► Therefore:

$$R_{\text{sq}}(\vec{w}) = \frac{1}{n} ||\vec{h} - \vec{y}||^2$$

 \vec{w} is hidden inside of \vec{h} , let's pull it out.

▶ Define the **design matrix** X:

$$X = \begin{pmatrix} \operatorname{Aug}(\vec{x}^{(1)}) & \cdots & \\ \operatorname{Aug}(\vec{x}^{(2)}) & \cdots & \\ \vdots & & \vdots \\ \operatorname{Aug}(\vec{x}^{(n)}) & \cdots & \end{pmatrix} = \begin{pmatrix} 1 & x_1^{(1)} & x_2^{(1)} & \dots & x_d^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} & \dots & x_d^{(2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_1^{(n)} & x_2^{(n)} & \dots & x_d^{(n)} \end{pmatrix}$$

► Then $\vec{h} = X\vec{w}$.

Rewriting the Mean Squared Error

► The mean squared error is:

$$R_{sq}(\vec{w}) = \frac{1}{n} ||X\vec{w} - \vec{y}||^2$$

where X is the **design matrix** containing the data, \vec{w} is the **parameter vector**, and \vec{y} is the vector of **observations** (or right answers).

► To minimize MSE: take derivative (gradient), set to zero, solve.

Minimizing the MSE: Gradient Edition

The vector of partial derivatives is called the gradient:

$$\left(\frac{\partial R_{\text{sq}}}{\partial w_0}(\vec{w}), \quad \frac{\partial R_{\text{sq}}}{\partial w_1}(\vec{w}), \quad \frac{\partial R_{\text{sq}}}{\partial w_2}(\vec{w}), \quad ..., \quad \frac{\partial R_{\text{sq}}}{\partial w_d}(\vec{w})\right)^T$$

- ► Written: $\nabla_{\vec{W}} R_{sq}(\vec{W})$ or $\frac{dR_{sq}}{d\vec{W}}(\vec{W})$
- Strategy:
 - 1. Compute the gradient of $R_{sq}(\vec{w})$.
 - 2. Set it to zero and solve for \vec{w} .

CSE 151A Intro to Machine Learning

Lecture 07 – Part 02 The Gradient

Minimizing the MSE: Gradient Edition

The vector of partial derivatives is called the gradient:

$$\left(\frac{\partial R_{\text{sq}}}{\partial w_0}(\vec{w}), \quad \frac{\partial R_{\text{sq}}}{\partial w_1}(\vec{w}), \quad \frac{\partial R_{\text{sq}}}{\partial w_2}(\vec{w}), \quad ..., \quad \frac{\partial R_{\text{sq}}}{\partial w_d}(\vec{w})\right)^T$$

- ► Written: $\nabla_{\vec{W}} R_{sq}(\vec{W})$ or $\frac{dR_{sq}}{d\vec{W}}(\vec{W})$
- Strategy:
 - 1. Compute the gradient of $R_{sq}(\vec{w})$.
 - 2. Set it to zero and solve for \vec{w} .

Minimizing the MSE

We want to compute:

$$\frac{d}{d\vec{w}} \left[R_{sq}(\vec{w}) \right] = \frac{d}{d\vec{w}} \left[\| X \vec{w} - \vec{y} \|^2 \right]$$

Step 1: Rewrite squared norm using dot product. Recall:

$$(A + B)^{T} = A^{T} + B^{T}$$

$$(AB)^{T} = B^{T}A^{T}$$

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

$$(\vec{u} + \vec{v}) \cdot (\vec{w} + \vec{z}) = \vec{u} \cdot \vec{w} + \vec{u} \cdot \vec{x} + \vec{v} \cdot \vec{w} + \vec{v} \cdot \vec{z}$$

$$||\vec{u}||^{2} = \vec{u} \cdot \vec{u}$$

Step 1: Rewriting squared norm

$$\|X\vec{w} - \vec{y}\|^2 =$$

Step 2: Take gradients

$$\frac{d}{d\vec{w}} \left[R_{\text{sq}}(\vec{w}) \right] = \frac{d}{d\vec{w}} \left[\vec{w}^T X^T X \vec{w} - 2 \vec{y}^T X \vec{w} + \vec{y}^T \vec{y} \right]$$

Claim

$$\qquad \qquad \frac{d}{d\vec{w}} \left[\vec{w}^T X^T X \vec{w} \right] = 2X^T X \vec{w}$$

$$\qquad \qquad \frac{d}{d\vec{w}} \left[\vec{y}^T X \vec{w} \right] = X^T \vec{y}$$

$$ightharpoonup \frac{d}{d\vec{w}} \left[\vec{y}^T \vec{y} \right] = 0$$

Example

Show $\frac{d}{d\vec{w}} [\vec{y}^T X \vec{w}] = X^T \vec{y}$

Step 2: Take gradients

$$\frac{d}{d\vec{w}} \left[R_{\text{sq}}(\vec{w}) \right] = \frac{d}{d\vec{w}} \left[\vec{w}^T X^T X \vec{w} - 2 \vec{y}^T X \vec{w} + \vec{y}^T \vec{y} \right]$$

The Normal Equations

To minimize $R_{sq}(\vec{w})$, set gradient to zero, solve for \vec{w} :

$$2X^T X \vec{w} - 2X^T \vec{y} = 0 \implies X^T X \vec{w} = X^T \vec{y}$$

- ► This is a system of equations in matrix form, called the **normal equations**.
- ► Solution²: $\vec{w} = (X^T X)^{-1} X^T \vec{y}$.

²Don't actually compute inverse! Use Gaussian elimination.

Regression with Multiple Features

- ► We want to find \vec{w} which minimizes $||X\vec{w} \vec{y}||^2$.
- The answer: $\vec{w} = (X^T X)^{-1} X^T \vec{y}$.

CSE 151A Intro to Machine Kearning

Lecture 07 – Part 03 Interpreting Weights

Interpreting \vec{w}

- ▶ With d features, \vec{w} has d + 1 entries.
- \triangleright w_0 is the bias.
- \triangleright $w_1, ..., w_d$ each give the weight of a feature.

$$H(\vec{x}) = w_0 + w_1 x_1 + ... + w_d x_d$$

Sign of w_i tells us about relationship between *i*th feature and outcome.

Example: Predicting Sales

- For each of 26 stores, we have:
 - net sales,
 - ▶ size (sq ft),
 - ▶ inventory,
 - advertising expenditure,
 - district size,
 - number of competing stores.

Goal: predict net sales given size, inventory, etc.

To begin...

 $H(\text{size, competitors}) = w_0 + w_1 \times \text{size} + w_2 \times \text{competitors}$

What will be the sign of w_1 and w_2 ?

 $H(\text{size, competitors}) = w_0 + w_1 \times \text{size} + w_2 \times \text{competitors}$

Interpreting Weights

Which has the greatest effect on the outcome?

A) size:	$W_1 = 16.20$
B) inventory:	$w_{2} = 0.17$
C) advantiaina	11 [2

- C) advertising: $w_3 = 11.53$ D) district size: $w_4 = 13.58$ E) competing stores: $w_5 = -5.31$ C) advertising:

Which features are most "important"?

- Not necessarily the feature with largest weight.
- Features are measured in different units, scales.
- ► We should **standardize** each feature.

Standard Units

- Standardize each feature (store size, inventory, etc.) separately.
- No need to standardize outcome (net sales).
- Solve normal equations. The resulting $w_0, w_1, ..., w_d$ are called the **standardized** regression coefficients.
- ► They can be directly compared to one another.

Fitting Non-Linear Patterns

Fit a 4th-order polynomial to the data:

- Fit rule of the form $H(x) = w_1 x^4 + w_0$.

 - ► Define $z_i = x_i^4$. ► Use $w_1 = \frac{\sum (z_i \bar{z})(y_i \bar{y})}{\sum (z_i \bar{z})^2}$ and $w_0 = \bar{y} w_1 \bar{z}$.

The Result

- The rule $H(x) = w_1 x^4 + w_0$ underfits the data.
- ► We need a more complicated rule:

$$H(x) = w_4 x^4 + w_3 x^3 + w_2 x^2 + w_1 x + w_0$$

The Trick

- Treat x, x^2 , x^3 , x^4 as different features.
- Create design matrix:

$$X = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 & x_1^4 \\ 1 & x_2 & x_2^2 & x_2^3 & x_2^4 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & x_n^3 & x_n^4 \end{pmatrix}$$

- Solve $X^T X \vec{w} = X^T \vec{w}$ for \vec{w} , as usual.
- Works for more than just polynomials.

Polynomial Regression

- More complicated patterns can be fit with higher-order polynomials.
- ► If there are *n* points, a *n* + 1 degree polynomial can fit them exactly.
- But for high-order polynomials, it becomes very hard to solve the normal equations (numerical accuracy).

Polynomial Regression with Multiple Features

Suppose we want to fit a rule of the form:

$$H(\text{size, competitors}) = w_0 + w_1 \text{size} + w_2 \text{size}^2 \\ + w_3 \text{competitors} + w_4 \text{competitors}^2 \\ = w_0 + w_1 s + w_2 s^2 + w_3 c + w_4 c^2$$

Make design matrix:

$$X = \begin{pmatrix} 1 & s_1 & s_1^2 & c_1 & c_1^2 \\ 1 & s_2 & s_2^2 & c_2 & c_2^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & s_n & s_n^2 & c_n & c_n^2 \end{pmatrix}$$

Where c_i and s_i are the competitors and size of the *i*th store.