# Computer Vision

Lecture 02 컴퓨터비전 역사, 최신기술, 넘파이, 텐서

황선희



# 목차

- 1. 인간의 시각
- 2. 컴퓨터 비전이란?
- 3. 컴퓨터 비전 기술 개발의 어려움
- 4. 컴퓨터 비전의 역사 및 최신기술 현황
- 5. 컴퓨터 비전기술 활용해보기
- 6. 넘파이(Numpy)와 텐서(Tensor)

# 다음 이미지에 대한 1)설명과 2)관련하여 떠오르는 것들을 상상해보세요.



# 1. 인간의 시각

- 인간의 오감 중 시각은 가장 강력한 인지 기능
  - 이미지를 보고 객체 및 상황에 대한 인식
    - 수영복 착용, 다이빙 선수, 다이빙을 위해 뛰어드는 모습
  - 이미지 바깥의 장면에 대한 추론
    - 하단에 깊은 수영장
  - 다음에 등장할 장면에 대한 예측
    - 물 속으로 빠지는 장면
  - 주변 장면 및 분위기에 대한 상상
    - 환호하는 관중들, 평가하는 심사위원들
  - 더 나아가, 전문가의 경우 다이빙 점수를 분석
    - 안정성, 각도, 높이, 공간자세 등



그림 1-1 인간이 쉽고 정확하게 해석할 수 있는 영상



# 1. 인간의 시각

- 시각은 오감 중 가장 뛰어난 감각, 인간의 시각 의존도는 60~80%로 높음
- 인간이 시각 정보를 처리하는 과정
  - 물체에서 반사된 빛이 수정체(lens)를 통해 눈 내부로 들어와 망막(retina)에 투영됨
  - 망막은 빛을 화학신호로 변환하며, 망막에서 인식된 정보는 시신경을 통해 1차 시각 피질로 전달됨
  - 전달된 신호는, 등쪽경로(dorsal pathway)와 배쪽경로(ventral pathway)로 나뉘어 전달됨
    - 등쪽 경로(녹색)는 주로 물체의 움직임, 배쪽 경로(보라색)는 주로 물체의 부류를 알아냄
  - 시각정보의 전달 시간은 약 0.15초 소요: 눈 → 뇌(전달) → 반응(대응)









배쪽 등쪽의 의미

그림: http://www.aistudy.co.kr/physiology/brain/occipital\_lobe.htm



# 1. 인간의 시각

- 인간 시각의 강점
  - 1. 시각 정보의 분류, 검출, 분할, 추적, 행동분석 등에 능숙함
  - 2. 양안을 통해 3차원 이미지를 인식할 수 있음
  - 3. 변하는 장면(조명, 움직임 등)에 대한 해석이 빠르고 강건함
  - 4. 시각지능과 다른 지능요소(언어, 음성 등)를 결합하여 의사결정 수준을 높임
  - 5. 어느 영역을  $\frac{1}{2}$  (attention)해서 관찰할 지, 사전 행동(proactive)에 능숙
  - 6. 대상정보(target)와 속성정보(attribute)를 관찰하는 과정 등에, 과업(task) 전환이 빠름
  - 7. 팔을 움직여서 물건을 집을 수 있는 다중작업(물체인식, 신체 제어 등) 처리 능력이 뛰어남



그림 1-1 인간이 쉽고 정확하게 해석할 수 있는 영상









3차원 시각정보 인식







시각 정보들 중 특정 영역에 주의하여 관찰 (다이빙 동작을 하는 사람들)



대상과 표정정보를 동시에 인식 (웃는 아기)

# 1. 인간의 시각

- 인간 시각의 한계
  - 착시현상이 발생 (실제 정보를 왜곡하여 인식)
  - 정밀 측정에 오차 (정량적 단위를 정확하게 파악하지 못함)
  - 시야가 한정됨 (수평으로 약 180도, 수직으로 약 120도 범위)
  - 피로해지고 퇴화 (성능의 한계)



그림 1-3 인간 시각의 착시 현상(출처: 영문 위키피디아 'optical illusion')





- 컴퓨터 비전은 인간의 시각을 흉내 내는 컴퓨터 프로그램
  - 인공지능의 중요한 구성 요소 (비전 기능이 없는 디바이스는 성능의 한계가 존재함)
  - 파란 테두리 상자는 수업 교재의 범위



- 현재 컴퓨터 비전 기술로 인간에 필적하는 시각구현은 불가능 (Multi-task, Real-time)
- 제한된 태스크에 대해서는 인간성능에 가깝거나 뛰어넘는 기술이 무궁무진함



## • 대표적 응용분야

| 분야       | <u>활용</u> 영역                                                               |
|----------|----------------------------------------------------------------------------|
| 농업       | 과일 수확, 잡초 제거, 자율 트랙터, 작물성장 모니터링, 축사 모니터링 등                                 |
| 의료       | 질병 진단, 병변 위치 찾기(Localization), 수술 계획, 재활 도우미, 세포 분석 등                      |
| 교통       | 교통 흐름 분석, 도로 상황 인식, 주차 관리, 자율주행(ADAS) 등                                    |
| 스마트 공장   | 장비진단, 작업자 안전, 공장 내 자율주행, 로봇 비전, 불량 검사(Machine Vision, Defect Inspection) 등 |
| 스포츠      | 경기 분석, 선수 행동 분석, 경기 비디오 요약, 심판 판정 등                                        |
| 유통       | 고객 행동 분석 등                                                                 |
| 보안       | 얼굴인식, 지문인식, 홍채인식, 정맥인식, 보행인식, 귀 모양 인식, 필적인식 등                              |
| 에너지      | 모듈상태 감시, 동물침입 감시 등                                                         |
| 엔터테인먼트   | 장면 제작 (그래픽스), 게임화면 분석 등                                                    |
| 환경       | 오염된 곳 검출, 환경 재앙 예측, 청결상태 인식 등                                              |
| 우주과학     | 로봇 자율주행, 채집 광물 분류 등                                                        |
| 감시       | 범죄현장 판단, 안전보안 등                                                            |
| 예술       | 이미지 생성, 영상 생성, 이미지 편집 등                                                    |
| 가사       | 라이다 영상 등을 활용하여 청소에 도움 등                                                    |
| 휴머노이드 로봇 | 장애물 인식, 자율주행 등                                                             |



## • 대표적 응용기술







(a) 과일 수확 드론

(b) 혈관 분할

(c) 자율주행

비전기술

과일의 위치정보 인식 로봇 팔 움직임

혈관 이미지 분할 3차원 이미지 모델링 사람/사물(동물,신호 등) 감지 대상 추적

관련기업

자동수확농장 (스마트팜) 높은 위치 수확필요농장 병원시스템 개발업체 등 자율주행 SW개발업체

병원,

자동차회사,



## • 대표적 응용기술







(d) 불량 검사

(e) 선수의 행동 분석

(f) 고객의 동선 분석

비전기술

기계, 부품 등 결함 검출 결함 위치 분할

선수 인식 비디오기반 행동 인식 사람검출 및 추적

관련기업

공장 (스마트팩토리), SI개발업체 비디오분석 업체, 콘텐츠 제작사 영상보안 업체



## • 대표적 응용기술







(g) 얼굴 인식 보안

(h) 태양광 모니터링

(i) 게임 플레이(알파스타)

비전기술

얼굴검출(위치찾기) 얼굴인식(비교) 상태 감지 침입 감지

게임상황 인식 그래픽스

관련기업

생체보안기술 개발기관 얼굴인식 개발업체 영상보안 업체

게임회사



## • 대표적 응용기술







(j) 지형 모니터링

(k) 화성 탐사선

(1) 광장 감시

비전기술

청결상태 감지 재난상태 감지 객체(광물, 장애물)인식

사람 검출/인식 동선 추적

관련기업

환경관련 기업 스마트팜/건설 관련 기업 우주 연구소

영상보안 업체 통계수집 업체



## • 대표적 응용기술







(m) 에드몽 벨라미

(n) 청소 로봇

(o) 휴머노이드 로봇

비전기술

생성기술

객체(장애물 등)인식

객체(장애물 등) 인식

관련기업

마케팅 업체 콘텐츠 제작업체 로봇 개발업체 (청소로봇, 서빙로봇 등) 로봇개발업체 방위산업체



# 3. 컴퓨터 비전 기술 개발의 어려움

- 컴퓨터 비전은 세상의 변화무쌍함(비전 정보의 다양함)으로 인해 기술 개발의 어려움이 존재함
  - 환경(밤낮, 날씨 등)변화, 보는 위치(view-point)와 방향의 변화, 강체와 연성 물체
  - 원자부터 우주까지 긴 스펙트럼에서 비전 데이터를 수집
  - 컴퓨터 비전 데이터 크기의 방대함 (텍스트의 경우 한글 1글자는 2byte = 16bit, 이미지는 1픽셀당 1byte)



그림 1-6 컴퓨터 비전이 인식해야 하는 영상은 아주 큰 숫자 배열

- 인공지능 기술의 불완전함으로 인해 기술 개발이 어려움
  - 지식 표현, 추론, 계획, 학습이 유기적으로 동작할 때만 강한 인공지능 가능
  - 모든 분야에서 사람 수준을 넘는 강한 인공지능은 아직 개발 중. 단, 특정 분야에 대해서는 사람을 대체하는 중



# 3. 컴퓨터 비전 기술 개발의 어려움

• 다양한 정보를 포함하는 비전 데이터



웨딩 키워드로 검색한 이미지 (미국식 웨딩)



인도의 웨딩 이미지 검색결과



# 3. 컴퓨터 비전 기술 개발의 어려움

• 다양한 정보를 포함하는 비전 데이터



손글씨 데이터 예시 (AlHub)



뷰포인트/차종의 다양함 (DVM Car Dataset)



- 신문 산업에서 태동한 디지털 영상 (1920년) 해저 케이블로 사진 전송
- 스캐너를 통해 디지털 영상을 SEAC컴퓨터에 저장 (1957년)
  - 5cmx5cm 사진에서 획득한 176x176 디지털 영상 (컴퓨터 비전의 태동)
- 현재는 100% 비전 기반 자율주행 차량(테슬라)이 존재



(1957년)

그림 1-7 컴퓨터 비전의 발전

세계 최초의 디지털 영상(1920년)



- 전통적인 컴퓨터 비전 기술 기반 이미지 처리 (Image Processing)
  - 1986년 John Canny가 개발한 Canny Edge Detection 이미지의 윤곽을 검출하기 위한 기술



캐니 에지 검출 결과



- 캘리포니아 대학교 교수



- 전통적인 컴퓨터 비전 기술 기반 이미지 분류
  - 특징추출: Haar cascade (2001년), HOG (histogram of gradient, 2005년), SIFT(scale-invariant feature transform, 1999년), SURF (speeded up robust features, 2006년)
  - 기계학습: SVM (support vector machine, 1995년), Adaboost (1997년), ANN (artificial neural network, 1943년)





• 컴퓨터비전 기술의 발전 (Deep Learning to Transformer)





- LeNet (1998) Yann LeCun
  - 전통적인 컴퓨터 비전 기술 기반 분류 모델을 개선하기 위해 만들어진 CNN







- 뉴욕대 교수
- META 수석 AI 과학자 부사장
- 제프리 힌튼 교수 제자



- AlexNet (2012) Alex Khrizevsky
  - 전통적인 컴퓨터 비전 기술 기반 분류 모델을 개선하기 위해 만들어진 CNN



Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–1000.



- 최근 연구 없음
- 제프리 힌튼 교수 제자



- 컴퓨터비전 분야의 가장 유명한 Challenge이자 데이터셋 ImageNet
  - 이미지넷 프로젝트는 시각적 개체 인식 소프트웨어 연구에 사용하도록 설계된 대규모 시각적 데이터베이스로, 이 프로젝트에서는 어떤 물체가 묘사되어 있는지를 나타내기 위해 1,400만 개가 넘는 이미지에 손으로 주석을 달았으며, 최소 100만 개 이상의 이미지에 경계 상자도 제공된다. (위키백과)





- YOLO(You Only Look Once) 2018~현재까지 지속해서 업데이트 되고 있는 대표적인 컴퓨터 비전 모델 (객체 검출로 시작하여, 다양한 Task로 확장됨)
  - https://docs.ultralytics.com/ko



- YOLO 창시자 Joseph Redmon의 이야기
  - https://pjreddie.com/



- Stability 사의 Stable Diffusion (2022년부터 ~ version 3까지 개발)
  - https://stability.ai/





https://openai.com/index/sora/





보안뉴스

## '데이터 3법'의 주요 내용

#### 개인정보보호법 개정안

- 가명정보 개념 도입, 상업적 목적으로 활용 가능
- 개인정보 관리감독 개인정보보호위원회로 일원화
- 통합법제컨트롤타워 있어야 GDPR 인증

### 신용정보법 개정안

- 가명정보 금융분야 빅데이터 분석에 이용 가능
- 가명정보 주체 동의없이 활용 허용

#### 정보통신망법 개정안

■ 온라인상개인정보감독기능개인정보보호위원회로이관

[이미지=iclikcart]

한국의 인공지능 기술 수준

데이터 3법 (2020)





#### CES에서 엔비디아가 강조한 3가지 키워드



Consumer

#### · AI의 일상과 시대!

- PC 성능 극대화하는 라이브러리
- '텐서RT-LLM'라이브러리. 소프트웨어 만으로 '라마2' '미스트랄' 보다 성능 5배 앞서
- 텐서 코어 GPU, LLM, 워크스테이션용 툴로 수백만 명에게 차세대 AI 제공 목표



Automotive

#### •차량 생산과 소비도 AI로

- 가속 컴퓨팅, 생성형 AI 등 기술 혁신으로 자동차 산업 변화 중
- '엔비디아 옴니버스' 중심 기업과 고객 관점에서 모두 만족하는
- 자동차 컨피규레이터가 제공하는 디지털과 실제 경험 간 간격 좁히기



Robotics

#### •더 빠르고 편한 로봇 생산

- 더 스마트한 로봇 구현하는 로봇 구현 플랫폼 '엔비디아 아이작'
- 비용 절감 및 개발 단순화에
- AI를 통해 스마트 로봇 공학 가속화 가능

TECHSORLD www.epnc.co.kr/ m.post.naver.com/r



## Digital

디지털 헬스케어 분야 관련 다양한 웨어러볼 및 솔루션 등장

#### Robotics

산업 현장과 개인 일상 생활 속 로봇 기술의 활용범위 확장

### **Automobile**

글로벌 오토쇼로 불리는 최첨단 모빌리티 전시

## Generative

다양한 생성형 AI 기술, 플랫폼 및 솔루션 사업 부상

## On-device

온디바이스 AI로 더욱 확대되는 일상 속 AI 기술의 영향력 강조

#### Net Zero

넷제로(탄소중립) 목표 달성 및 ESG 실행을 위한 기업의 움직임 확대

Source: 삼정KPMG 경제연구원







1월 9~12일(현지시간) 장소

미국 라스베이거스

1967년부터 미국 소비자기술협회(CTA)주관으로 매년 1월 열리는 세계 최대 가전·IT(정보기술)박람회. 올해 CES는 'All Together, All On,'을 주제로 개최됐다.



- 올해 최초 혁신상 부분에 AI 분야 신설
- 가전, 자동차, 건설기계, 에너지 등 전 산업 분야에 걸쳐 AI 기술 대전



- 전체 참여 업체 4100여개사 가운데 약 10%가 모빌리티 업체
- 전통 자동차 회사는 물론 가전, 빅테크 기업들도 모빌리티 부스 마련

 $\mathbf{A}$ ct

- 미래 먹거리 찾기 위해 발로 뛴 국내 기업 총수들
- 부스 투어, 고객사 미팅부터 비전 발표까지 종횡무진



# 5. 컴퓨터 비전기술 활용해보기

- 실습1 Segment Anything (by Meta, Facebook)
  - https://segment-anything.com/demo
  - 사진 준비. 구글에서 다양한 객체가 포함된 이미지이를 다운받거나 폰으로 촬영한 사진 사용
  - 실험. 데모 페이지에 접속해서 객체 별 Segment를 분할하고, 객체 이미지만 저장해보기







# 5. 컴퓨터 비전기술 활용해보기

- 실습2 Image2Image Demo
  - https://affinelayer.com/pixsrv/
  - 실험. 스케치로부터 이미지 생성, layout으로부터 이미지 생성





# 5. 컴퓨터 비전기술 활용해보기

- 실습3 Gen (by runway)
  - Welcome to Runway Runway (runwayml.com)
  - 실험. 텍스트를 입력하여 비디오 생성해보기 (로그인 필요, 무료 크레딧으로 생성 가능)

| Keyword    | Output    |
|------------|-----------|
| Low angle  | PLETHONY  |
| High angle | CO PARTY. |



- Numpy: 파이썬에서 고성능 수치 계산을 위한 패키지로, 특히 배열 연산 처리에 용이한 기능을 제공하며, 데이터 과학, 인공지능, 기계 학습, 과학적 컴퓨팅에서 널리 사용되는 라이브러리
- Tensor: 다차원 배열을 의미하며, NumPy의 배열과 유사하지만 GPU 가속을 통해 더 빠른 연산이 가능하며, 딥러닝에서 데이터를 표현하고 처리하는 기본 단위 (Pytorch)
- Numpy Array와 Pytorch의 Tensor
  - Array: Numpy에서 배열은 1차원, 2차원, n차원의 데이터를 저장하는 컨테이너로, Pytorch의 텐서는 Numpy의 배열과 거의 동일한 개념
  - Tensor: Pytorch의 텐서는 다차원 배열로, 배열 연산과 거의 동일하게 동작하지만 GPU를 활용해 더 빠른 처리 가능

```
import numpy as np
import torch

# NumPy 배열 생성
np_array = np.array([1, 2, 3])

# PyTorch 텐서 생성 (NumPy 배열과 유사)
torch_tensor = torch.tensor([1, 2, 3])
```



- 브로드캐스팅(Broadcasting)
  - 브로드캐스팅은 서로 다른 크기의 배열 간에도 연산을 수행할 수 있게 해주는 기능
  - Pytorch의 텐서도 같은 규칙을 따르므로, 브로드캐스팅을 이해하면 텐서 연산에 매우 유리함

```
import numpy as np
import torch

# NumPy 브로드캐스팅 예제
np_array = np.array([1, 2, 3])
np_broadcast = np_array + 1 # [2, 3, 4]

# PyTorch에서 동일한 연산
torch_tensor = torch.tensor([1, 2, 3])
torch_broadcast = torch_tensor + 1 # [2, 3, 4]
```



- 차원과 축 조작
  - 차원(Dimension): 다차원 배열에서 각 배열이 몇 차원인지를 의미하며, NumPy에서는 ndim 속성을 사용해 차원을 확인할 수 있음
  - 축(Axis): 배열에 대한 특정 축에 대해 연산을 수행할 때 이 값을 활용. 예를 들어, 2차원 배열에서 행 (row)이나 열(column)을 기준으로 합계를 구할 수 있음

```
import numpy as np
import torch
np_array = np.array([[1, 2, 3], [4, 5, 6]])
print(np array.ndim) # 2
# 축을 기준으로 합계 구하기
sum_along_axis0 = np.sum(np_array, axis=0) # 각 열의 합
sum_along_axis1 = np.sum(np_array, axis=1) # 각 행의 합
torch_tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(torch_tensor.dim()) # 또는 tensor.shape
sum_along_axis0_torch = torch.sum(torch_tensor, dim=0)
sum_along_axis1_torch = torch.sum(torch_tensor, dim=1)
```



- 배열 슬라이싱 및 인덱싱
  - Numpy의 배열은 파이썬의 리스트와 유사하게 슬라이싱이 가능하며, Tensor도 동일함
  - 슬라이싱(Slicing): 배열의 일부를 선택하여 새로운 배열을 만드는 방법
  - 인덱싱(Indexing): 배열에서 특정 위치에 있는 값을 선택하는 방법

```
import numpy as np
import torch
# NumPy 배열 슬라이싱
np_array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
slice_np = np_array[1:, :2] # 두 번째 행부터 첫 번째, 두 번째
열까지 선택
# PyTorch 텐서 슬라이싱
torch_tensor = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
slice torch = torch tensor[1:, :2]
```



- 배열 연산
  - NumPy에서는 배열 간의 덧셈, 곱셈, 나눗셈 등의 연산을 지원하며, Pytorch도 동일함. 두 배열(또는 텐서) 간의 요소별 연산(element-wise operation)은 딥러닝 모델을 구현할 때 자주 사용됨

```
import numpy as np
import torch
# NumPy 배열 연산
np_array1 = np.array([1, 2, 3])
np_array2 = np.array([4, 5, 6])
sum_np = np_array1 + np_array2 # [5, 7, 9]
# PyTorch 텐서 연산
torch_tensor1 = torch.tensor([1, 2, 3])
torch_tensor2 = torch.tensor([4, 5, 6])
sum_torch = torch_tensor1 + torch_tensor2 # [5, 7, 9]
```



- 배열 변형 및 재구성 (Reshaping)
  - 데이터의 형상을 변경하는 기능으로, 딥러닝 모델에서 매우 중요함. Reshape 함수는 배열의 차원을 변형 하여 원하는 모양으로 데이터를 재구성할 수 있게 함

```
import numpy as np import torch

# NumPy 배열 변형 
np_array = np.array([1, 2, 3, 4, 5, 6]) 
reshaped_np = np_array.reshape((2, 3)) # (2, 3) 배열로 변형 
# PyTorch 텐서 변형 
torch_tensor = torch.tensor([1, 2, 3, 4, 5, 6]) 
reshaped_torch = torch_tensor.view(2, 3)
```



- 랜덤 데이터 생성
  - Numpy와 유사하며, Pytorch를 활용하여 신경망을 학습시킬 때 무작위 초기화가 중요한 역할을 함

```
import numpy as np
import torch

# NumPy에서 랜덤 데이터 생성
random_np = np.random.rand(3, 3)

# PyTorch에서 랜덤 데이터 생성
random_torch = torch.rand(3, 3)
```



# 프로그래밍 실습 문제 1

- 크기는 3×4, Random 값을 가진 텐서(Tensor)를 생성
- 생성된 텐서의 두 번째 열을 모두 0으로 변경
- 텐서의 모든 원소를 합한 값을 계산하여 print

# 프로그래밍 실습 문제 2

- 크기는 5×5, Random 값을 가진 텐서(Tensor)를 생성
- 생성된 텐서에서 값이 0.5보다 큰 경우만 추출하여 1차원 텐서로 출력하기

# 프로그래밍 실습 문제 3

- 크기는 4×4, Random 값을 가진 Numpy 배열(Array)을 생성
- 생성된 배열을 Tensor로 변환하고 파일로 저장하기
- 저장된 파일을 불러와 원본 텐서와 동일한지 확인 (비교함수 적용)