实验六 比例求和运算电路

GeorgeDong32

一、实验目的

- 1. 掌握用集成运算放大电路组成比例、求和电路的特点及性能。
- 2. 学会上述电路的测试和分析方法。

二、实验仪器

- 1. 数字万用表
- 2. 示波器
- 3. 信号发生器

三、预习要求

- 1. 计算表 6.1 中的 Uo 和 Af
- 2. 估算表 6.3 的理论值
- 3. 估算表 6.4、表 6.5 中的理论值
- 4. 计算表 6. 6 中的 Uo 值
- 5. 计算表 6. 7 中的 Uo 值
 - 1、6.1电压器值电路

理论上伯尔扬况下 Uo都等于Ui AF=1

2、3、兄点中数据

4. 对于国6.4 所产的反相扩充电路.

5. 对图6.5的运行双端输入扩充略

四、实验内容

1. 电压跟随电路 实验电路如图 6.1 所示。

图 6.1 电压跟随电路

按表 6.1 连接电路,将+12V、-12V接入集成运放工作区,实验并测量记录。

U _I (V)		-2	-0.5	0	+0.5	1
11 (1/)	$R_L = \infty$	-1.998	-0.498	0	0.498	1.999
U ₀ (V)	$R_L=5k1$	-1.997	-0.495	0	0.496	1.997

2. 反相比例放大器

实验电路如图 6.2 所示。

图 6.2 反相比例放大电路

(1) 按表 6.2 内容实验并测量记录。

表 6.2

直流输入电压 U _I (mV)		30	100	300	1000	3000
	理论估算(V)	-0.3	-1	-3	-10	-30
输出电压 Uo	实际值(V)	-0.313	-0.999	-3.05	-9.91	-10. 25
	误差(mV)	13	1	50	90	运放饱和

(2) 按表 6.3 要求实验并测量记录。

表 6.3

	测试条件	理论估算值	实测值
$\Delta \mathrm{U}_0$		-8V	-8.204
ΔU_{AB}	R_L 开路,直流输入信	0	0
ΔU_{R2}	号 U _I 由 0 变为 800mV	0	0
ΔU_{R1}		0.8V	0.799
ΔU_{0L}	R _L 由开路变为 5k1, U _I =800mV	0	0

(3)测量图 6.2 电路的上限截止频率。

截止频率为 17.2KHz

3. 同相比例放大电路

电路如图 6.3 所示

(1) 按表 6.4 和 6.5 实验测量并记录。

图 6.3 同相比例放大电路

表 6.4

	理论估算(V)	0.33	1. 1	3. 3	11. 1	33. 3
输出电压 Uo	实际值(V)	0.316	1.062	3. 321	10.98	\
	误差(mV)	14	38	9	20	运放饱和

表 6.5

	测试条件	理论估算值	实测值
$\Delta \mathrm{U}_0$		8.8V	8.869
ΔU_{AB}	R _L 开路,直流输入信	0	0
ΔU_{R2}	号 U _I 由 0 变为 800mV	0	0
ΔU_{R1}		0.8V	0. 795
$\Delta \mathrm{U}_{0\mathrm{L}}$	R _L 由开路变为 5k1, U _I =800mV	0	0

(2) 测出电路的上限截止频率

截止频率为 16.3KHz

4. 反相求和放大电路。

实验电路如图 6.4 所示。

按表 6.6 内容进行实验测量,并与预习计算比较。

表 6.6

$U_{I1}(V)$	0.3	-0. 3
$U_{I2}(V)$	0. 2	0.2
U _O (V)	-4. 946	0.983
估算(V)	-5	1

5. 双端输入求和放大电路 实验电路为图 6.5 所示。

图 6.5 双端输入求和电路

表 6.7

U _{I1} (V)	1	2	0. 2
$U_{12}(V)$	0.5	1.8	-0.2
Uo(V)	-4. 978	-1.936	-4.052
估算(V)	-5	-2	-4

按表 6.7 要求实验并测量记录。

五、实验报告

1. 总结本实验中5种运算电路的特点及性能。

- 1. 都是基于继承运算放大器构建的运算电路,具有输入电阻大,输出电阻小的特点
- 2. 频带宽,可放大信号范围大
- 3. 具有双端输入和双端输出的差分放大电路,对共模信号有很强的抑制作用

2. 分析理论计算与实验结果误差的原因。

- 1. 器件有温漂和制造误差
- 2. 实际电源输出略低于设置值
- 3. 电路中的各个元件的实际值和标称值存在误差