Lecture 4: The Data Lecture

Prof. Robert Brunner

Quinn Jarrell Sameet Sapra

Getting Data

- A lot of free, large, published data is out there already
 - Easy to get
 - Trusted
 - Densely populated (for the most part)
- But sometimes you need to fetch data yourselves
 - Now you need to be more cautious
 - What data is good?
 - Where are you getting the data from? Is it a trusted source?

Premade Data

- There are a lot of good data sources already
- If you can, use them instead of getting your own data
 - It has been cleaned
 - It is typically easier to download
 - There are other papers you can look to for examples of how they manipulated it

Data Licensing

- Can you use any data?
- Check data sources for restrictions (commercial uses, foreign uses, etc)
- MIT License
 - You can do anything with it as long as you keep the license and copyright
 - One of the most easy to use licensing
- GPLv2/v3
 - If you use it, you must distribute the source of anything built with it
 - Must include copyright, license, link to the original, and details of your changes
 - Sorta like a virus, anything that uses it must then become GPL
 - Actually a good thing when you want to keep software/data completely open
 - But companies typically hate it for obvious reasons

Decoding Data

- You are used to text data in either ASCII or UTF-8 format
 - Normal data that your text editor can read
- There is a lot of rarer data formats
 - Excel files, pdfs, zip, tar, ... and a billion more
- Two main different types of encoding
 - Encoding on top of ASCII/UTF-8 like CSV, JSON, XML
 - Binary encodings like excel, jpg, anything that's not text
 - Text ASCII/UTF-8 are binary encodings themselves

Dirty Data

- So you got your hands on this data set
- But some of the values are missing, corrupted, wrong, duplicated
- You get a better answer by improving the quality of the values in your dataset
- So let's look at some examples of bad data

Missing Data Example

	Missingvalues									
							/ \	11		
PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	ricket	Fare	Cabin	Embarked
1	0	3	male	22	1	0	A/5 21171	7.15		s
2	1	1	female	38	1	9	PC 17599	71.2033	C85	С
3	1	3	female	26	0	0	STON/O2. 3101282	7.925	-	s
4	1	1	female	35	1	0	113803	53.1	C123	s
5	0	3	male	35	0	0	373450	8.05	4	s
6	0	3	male	-	0	0	330877	8.4583		Q

Missing Data Example

- Either drop the rows with empty data or fill in default values
 - Strategy depends on whether or not you can safely define a default value
- If you drop too much data, it can skew the data
 - Leads to biased results
- Watch out for missing data
 - Sometimes it is not a coincidence, it's a pattern

Many values mean the same thing

▽ Fil	₹ Filter										
	country	iso2 [‡]	iso3 [‡]	year [‡]	new [‡]	sex [‡]	age [‡]	ер 🗦	rel [‡]	sn [‡]	sp ‡
1	Afghanistan	AF	AFG	1980	new	m	014	NA	NA	NA	NA
2	Afghanistan	AF	AFG	1981	new	m	014	NA	NA	NA	NA
3	Afghanistan	AF	AFG	1982	new	m	014	NA	NA	NA	NA
4	Afghanistan	AF	AFG	1983	new	m	014	NA	NA	NA	NA
5	Afghanistan	AF	AFG	1984	new	m	014	NA	NA	NA	NA
6	Afghanistan	AF	AFG	1985	new	m	014	NA	NA	NA	NA
7	Afghanistan	AF	AFG	1986	new	m	014	NA	NA	NA	NA
8	Afghanistan	AF	AFG	1987	new	m	014	NA	NA	NA	NA
9	Afghanistan	AF	AFG	1988	new	m	014	NA	NA	NA	NA
10	Afghanistan	AF	AFG	1989	new	m	014	NA	NA	NA	NA
Showing 1 to 10 of 101,360 entries											

Redundant Values Strategy

- Just pick the columns of data that you need
- Be consistent with what columns you pick so your data is uniform

Duplicates Example

_

	UserName	Location	Salary			
	Suresh	KL	6000 4000			
	Dasari	Hyderabad				
	Prasanthi	Chennai	17000			
	Nagaraju	Hyderabad	40000			
	SureshDasari	Chennai	20000			
	SureshDasari	Chennai	20000			
	SureshDasari	Chennai	20000			
	Mahesh	Vijayawada	10000			
	Madav	Nagpur	15000			
*	NULL	NULL	NULL			

Duplicate Examples Strategy

- Check if you have processed a row before you process it again
- "Reducing" can help

Evaluating Quality of Data

- Idea: Run exploratory scripts/commands on your unclean data to learn more about it (especially if it's really big)
- Check for:
 - Percent of missing/corrupted/duplicate data
 - Outliers in numeric data
- See if others have commented on the quality of the data

Sampling your data

- Don't experiment with all your data at first
- Take samples, use unix tools like head, tail, etc.
 - The cluster has a script called sample which takes 1% of a file
- You want to test your code fast

Scraping

- When our data source isn't a nicely downloaded file
- Get it straight from the Internet
- Multithread it
- Run it on a cluster (Not Hadoop)

Scraping Tools / Libraries

- BeautifulSoup
- Scrapy
- Potential Issues:
 - Rate limits (Exceed request limits)
 - o Is it always legal?

```
1 from bs4 import BeautifulSoup
```

2 import requests

3

4 r = requests.get("https://en.wikipedia.org/wiki/Main_Page")

5 soup = BeautifulSoup(r.text, "html.parser")

6 other_areas = soup.find("div", {"id": "mp-other"})

7 for li in other_areas.find_all("li"):

8 print li.find("b").text

Relational Data

- If data is structured like SQL
 - Has rows and columns
 - It has relationships like IDs which tie together separate columns
- Use Hive or Postgres or something similar to process it
 - You want a traditional SQL database

Document like Data

- Is not inherently structured
- Basically a bunch of text data
- You normally have it when you get raw data
- Parse it as XML
 - (using BeautifulSoup, for example)

```
<contact>
  <firstname>Bob</firstname>
  <lastname>Smith</lastname>
  <phone type="Cell">(123)
555-0178</phone>
  <phone type="Work">(890)
555-0133</phone>
  <address>
   <type>Home</type>
   <street1>123 Back St.</street1>
   <city>Boys</city>
   <state>AR</state>
   <zip>32225</zip>
   <country>US</country>
  </address>
 </contact>
```

Document-like Data Examples

```
FirstName: "Bob",
Address: "5 Oak St.",
Hobby: "sailing"
}
```

OR

2009-06-30 23:59:57 http://twitter.com/faithkenia QUILT FOR SALE - Nine 9 patch variation vintage bed guilt hand guilted - Go to http://bit.ly/81tnp

2009-06-30 23:59:57 http://twitter.com/lnjnana Wanting to sell a timeshare, \$5000, Cabo.

2009-06-30 23:59:57 http://twitter.com/twisted4you @YoungQ Still waiting for my chance to meet ya. I've been to 5 shows during Full Service and no love from Rob. Hope to meet ya in Houston!

2009-06-30 23:59:58 http://twitter.com/troubledyouth1 Trying to figure out how to best use this. Is it worth my time?

Data processing pipelines

Transferring all that data

- When data gets really really big, HTTP downloads and USBs don't cut it
- If you have a super fast network between the computers
 - Use a torrent system
 - Use HDFS distributed copy
- Otherwise

"Never underestimate the bandwidth of a station wagon full of tapes hurtling down the highway" - Andrew S. Tanenbaum

Anonymizing Datasets

- If you ever reach the point where you are releasing a sensitive dataset
 - Reduce the accuracy of identifiable columns
 - Ex: instead of an exact age, state a range the age is in
 - K-Anonymity Make sure any record does not have a unique set of identifiable columns.
 - Ex: If you have columns of location, age, gender make sure every record has at least N
 other records which have the same values
 - Average values which are close to each other
 - Encrypt or hash or with a salt

Deanonymizing Datasets

- How not to do anonymization
 - NYC released a ton of taxi data with license numbers and medallion IDs.
 - They hashed identifiable data using the MD5 hash function
 - Unfortunately license numbers and medallion IDs follow a pattern
 - So you can use MD5 to generate every possible hash and deanonymize it
 - Like rainbow tables
- Netflix has a database of ratings for movies
 - You can deanonymize by tracking correlation between IMDB ratings and Netflix ratings

Lab 3 - Twitter

- We're giving you a large set of tweets from Twitter over several months.
- This is the first real dataset which you do not want to run on your laptop
- We want to stress test the server more so for this week's lab only use the cluster for testing
- Use the `sample` script so you don't test on all the data at once

Debugging Hadoop

The stack traces are very very long, but there are a few easy ones

Error Launching job : Input path does not exist:

Load the input file into HDFS using hdfs dfs -copyFromLocal

Error Launching job: Output directory hdfs://192-168-100-234.local:8020/out3 already exists

Delete the folder or rename your output folder

hdfs dfs -rm -r out3

More debugging

java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 1

If it happened and map % was less than 100% it's an error in your map script

If it happened and map % == 100 it's probably your reducer script

Use unix commands to test on a sample of data

head book.txt | ./mapper.py # for mapper error

head book.txt | ./mapper.py | sort -n -k 1 | ./reducer.py | sort -n -k 2 | tail -10 # for reducer error