Introduction to Big Data Science

12-3 Period Understanding Long-Short Term Memory (LSTM) Networks

Contents

- Sequence Data and RNN
- Problem of Long Term Dependency
- LSTM Networks
- Core Idea behind LSTM
- Working Steps of LSTM
- Variants on LSTM

Sequence Data

Sequence data

- We don't understand one word only
- We understand based on the previous words + this word. (time series)
- NN/CNN cannot do this

Sequence Data

- We don't understand one word only
- We understand based on the previous words + this word. (time series)
- NN/CNN cannot do this

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Network

Recurrent Neural Network

We can process a sequence of vectors **x** by applying a recurrence formula at every time step:

(Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector h:

$$h_t = f_W(h_{t-1}, x_t)$$

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$

$$y_t = W_{hy} h_t$$

Notice: the same function and the same set of parameters are used at every time step.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Problem of Long Term Dependencies

- ◆ If we are trying to predict the last word in "the clouds are in the sky," we don't need any further context – it's pretty obvious the next word is going to be sky.
- ◆ In such cases, where the gap between the relevant information and the place that it's needed is small, RNNs can learn to use the past information.

Problem of Long Term Dependencies

- ◆ An example: To predict the last word in the text "I grew up in France... I speak fluent French." Recent information suggests that the next word is probably the name of a language, but if we want to narrow down which language, we need the context of France, from further back.
- ◆ It's entirely possible for the gap between the relevant information and the point where it is needed to become very large.
- Unfortunately, as that gap grows, RNNs become unable to learn to connect the information!

LSTM Network

◆ Long Short Term Memory networks – usually just called "LSTMs" – are a special kind of RNN, capable of learning long-term dependencies. They were introduced by Hochreiter & Schmidhuber (1997), and were refined and popularized by many people in following work.1 They work tremendously well on a large variety of problems, and are now widely used.

The repeating module in a standard RNN contains a single layer.

LSTM Network

- ◆ LSTMs are explicitly designed to avoid the long-term dependency problem. Remembering information for long periods of time is practically their default behavior, not something they struggle to learn!
- ◆ All recurrent neural networks have the form of a chain of repeating modules of neural network. In standard RNNs, this repeating module will have a very simple structure, such as a single tanh layer.

The repeating module in a standard RNN contains a single layer.

LSTM Network

The repeating module in an LSTM contains four interacting layers.

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Variants on LSTM

$$f_t = \sigma \left(W_f \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_i \right)$$

$$o_t = \sigma \left(W_o \cdot [\boldsymbol{C_t}, h_{t-1}, x_t] + b_o \right)$$

Variants on LSTM

$$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$$

Variants on LSTM

◆A slightly more dramatic variation on the LSTM is the Gated Recurrent Unit, or GRU, introduced by Cho, et al. (2014).

Additional Explanation on LSTM

Additional Explanation on LSTM

Figure 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used in the hidden layers of a recurrent neural network.

Additional Explanation on LSTM

Figure 1: Illustration of (a) LSTM and (b) gated recurrent units. (a) i, f and o are the input, forget and output gates, respectively. c and \tilde{c} denote the memory cell and the new memory cell content. (b) r and z are the reset and update gates, and h and \tilde{h} are the activation and the candidate activation.