Metallurgical Kinetics

Determination of order and rate constant of a reaction

Satadal Ghorai

Department of Metallurgical and Materials Engineering
National Institute of Technology
Durgapur-713209

DISCLAIMER

The study materials/presentations are solely meant for academic purposes and they can be reused, reproduced, modified, and distributed by others for academic purposes only with proper acknowledgements

First Order Reaction

Let us consider a first order reaction

 $A \longrightarrow Products$

Initially, a

At time t, a-x x

$$a - x$$

Rate equation for first order reaction: -d[A]/dt = k[A]

$$-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{d}t} = -\frac{\mathrm{d}(a-x)}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}t}$$

$$\frac{dx}{dt} = k(a - x)$$
 or $\frac{dx}{(a - x)} = kdt$

$$k = \frac{1}{t} \ln \frac{a}{a - x}$$

$$k = \frac{2.303}{t} \log \frac{a}{a - x}$$

The units is measured as (time)-1 and can be represented as (sec)-1, (min)-1, (hour)-1

Determination of First Order Rate Constant

Substitution Method:

Experimentally determine (a-x) values at different time, t. These values are substituted in equation and an average value of the rate constant is determined.

$$k = \frac{2.303}{t} \log \frac{a}{a - x}$$

• Graphical method:

$$\log{(a - x)} = -\frac{k}{2.303}t + \log{a}$$

• Half life method:

The time required for the concentration of reactant to decrease by a fifty percent of the initial concentration

Substituting $t = t_{1/2}$ when x = a/2,

$$k = \frac{2.303}{t_{1/2}} \log \frac{a}{a - a/2}$$

$$t_{1/2} = \frac{2.303 \log 2}{k}$$

Independent of initial concentration of reactant

Example:

• 50 min is required to complete 25% of a first order. if the initial concentration of the reactant is 5×10^3 mol dm⁻³, what will be concentration at the end of another 50 min?

Ans.

•
$$(a-x) = 5 \times 10^3 - (5 \times 10^3) *0.25 = 3.75 \times 10^3$$

•
$$k = \frac{2.303}{50} \log \frac{5 \times 10^3}{3.75 \times 10^3} = 5.575 \times 10^{-3} \text{ min}^{-1}$$

Concentration after another 50min. Total time = 100 min

•
$$(a - x) = ae^{-kt} = 2.81 \times 10^3 \text{mol/dm}^3$$

Example

Decomposition of a reactant at a constant temperature, T

[A], mole/dm³	Rate, mole dm ⁻³ sec ⁻¹
0.15	0.05
0.6	0.2
1.2	0.4
2.1	0.7

Find the order of reaction. Calculate rate constant and the rate of decomposition of A, when [A] = 0.45 mol dm⁻³.

Ans.

•
$$-\frac{d[A]}{dt} \propto [A]$$
 First order

•
$$k = \frac{-\frac{d[A]}{dt}}{[A]} = \frac{0.05}{0.15} = 0.33 \text{ sec}^{-1}$$

•
$$-\frac{d[A]}{dt} = k[A] = 0.33 \ sec^{-1} \times 0.45 \ mole \ dm^{-3}$$

= 0.1485 mole $dm^{-3}sec^{-1}$

Problem

• Removal of sulfur from hot metal at a constant temperature

Time, min	[S]	
0	1000	
4	860	
15	825	
33	568	
63	448	
91	208	
151	72	
234	27	

Assuming 1st order reaction kinetics, calculate rate constant

Home Work

$$[S] + (O^{2-}) = (S^{2-}) + [O]$$

$$[S] + 2e^- = (S^{2-})$$

$$(O^{2-}) = [O] + 2e^{-}$$

1. Transfer of sulfur from the bulk of the metal phase to the slag-metal interface

2. Transfer of O²⁻ from bulk of the slag phase to the interface

- 3. Chemical reaction at the interface
- 4. Transfer of oxygen from the interface to the bulk metal
- 5. Transfer of S2- from the interface to the slag phase

Argon

Second Order Reaction having Different Initial Concentrations

Rate of reaction:

$$\frac{dx}{dt} = k(a - x)(b - x)$$

$$\frac{dx}{(a-x)(b-x)} = kdt$$

Using method of partial fraction:

$$\frac{1}{(a-x)(b-x)} = \frac{p}{(a-x)} + \frac{q}{(b-x)}$$

$$\frac{dx}{(b-a)(a-x)} - \frac{dx}{(b-a)(b-x)} = kdt$$

On integration:

$$1/(b-a) \ln a/(a-x) - 1/(b-a) \ln b/(b-a) \ln b/(b-x) = kt$$

Rearranging

$$k = \frac{1}{(a-b)t} \ln \left\{ \frac{b(a-x)}{a(b-x)} \right\}$$

$$k = \frac{2.303}{(b-a)t} \log \left\{ \frac{(b-x)a}{b(a-x)} \right\}$$

Second Order Reaction

$$A + B \xrightarrow{k} Products$$

Initial concentration of each reactant A and B is same

$$\frac{dx}{dt} = k (a - x)(a - x) = k (a - x)^2$$

$$\frac{dx}{(a-x)^2} = kdt$$

 $\frac{dx}{(a-x)^2} = kdt$ On integrating and putting x=0 at t=0,

$$\frac{1}{(a-x)} = kt + \frac{1}{a}$$

$$k = \frac{1}{t} - \frac{x}{a(a-x)}$$

Half life Method

$$k = \frac{1}{t_{1/2}} \cdot \frac{a/2}{a(a-a/2)}$$

$$t_{1/2} = \frac{1}{ka}$$

Graphical Method

The unit of rate constant is (conc.)-1 (time)-1 or mol-1 dm3 sec-1

Example

• For a second order reaction, both the reactant have same initial concentration of 0.02 mol. dm⁻³. The rate constant was found to be 5.55 mol⁻¹dm³min⁻¹. Calculate the fraction of the reaction after 30 min and time required for 30% reaction.

Ans.

$$k = \frac{1}{t} \frac{x}{(a - x)}$$

Assume f is the fraction of reaction, so x=af

Example

• 30% of a second order reaction is completed in 30 min. Calculate the rate constant and final concentration after 60 min of a reaction

Ans.

$$k = \frac{1}{t} \left[\frac{1}{a - x} - \frac{1}{a} \right]$$

Let a = 100, x = 30 and a - x = 70. Putting the values in above, we get $k = 1.42 \times 10^{-4} \text{ mol}^{-1} \text{dm}^{3} \text{min}^{-1}$.

Further

$$k = \frac{1}{60} \left[\frac{1}{a - x} - \frac{1}{100} \right]$$

$$a - x = 1.16\%$$

Third Order Reaction

Consider the reaction: three reactants are involved with same initial concentrations

$$\begin{array}{cccccc}
A & + & B & + & C & \xrightarrow{k} & \text{Products} \\
a & & a & & a & & 0 \\
(a-x) & (a-x) & (a-x) & & x
\end{array}$$

Rate =
$$\frac{dx}{dt} = k(a - x)^3$$

On rearranging and integrating

$$k = \frac{1}{2t} \left(\frac{1}{(a-x)^2} - \frac{1}{a^2} \right)$$

Units of rate constant is (conc.)⁻² (time)⁻¹ or generally mol⁻² lit²sec⁻¹ or mol⁻² dm⁶ sec⁻¹

• Half life period: $t = t_{1/2}$ when x = a/2

$$t_{1/2} = \frac{3}{2ka^2}$$

• Graphical method:

$$\frac{1}{(a-x)^2} = 2kt + \frac{1}{a^2}$$

Three reactants with different initial concentrations

$$\begin{array}{ccccc} A & + & B & + & C & \rightarrow \text{Products} \\ a & b & c & 0 \\ (a-x) & (b-x) & (c-x) & x \end{array}$$

$$\frac{dx}{dt} = k(a-x)(b-x)(c-x)$$

Integrated with help of partial

fractions
$$\frac{2.303}{t(a-b)(b-c)(c-a)} \left[(b-c)ln \frac{a-x}{a} + (c-a)ln \frac{b-x}{b} + (a-b)ln \frac{c-x}{c} \right]$$

Zero Order Reactions

 $A \rightarrow Product$

Rate Equation

$$\frac{dx}{dt} = k$$

$$x = kt$$
 or $k = \frac{x}{t}$

Unit of rate constant as mol dm^{-3} sec⁻¹ or conc. $(time)^{-1}$

• Half life method:

$$t_{1/2} = \frac{a}{2k}$$

$$2N H_3 \xrightarrow{W} N_2 + 3H_2$$

$$rate = k [NH_3]^0$$

• Graphical method:

Example

• For a zero order reaction 50% completed in 20min. Calculate the time required to complete 90% reaction

Ans.

Let
$$a = 100 \text{ mol dm}^-$$

$$k = \frac{50}{20} = \frac{5}{2}$$

For 90% reaction:

$$\frac{5}{2} = \frac{90}{t}$$

t=36 min

Examples of fractional order

o-H₂
$$\longrightarrow$$
 p-H₂ rate = $k [0-H_2]^{3/2}$
 $2 Sb H_3 \longrightarrow 2 Sb + 3 H_2$ rate = $k [Sb H_3]^{0.6}$
 $C_2H_4 + I_2 \longrightarrow C_2H_4I_2$ rate = $-\frac{d[I_2]}{dt} = k[C_2H_4][I_2]^{3/2}$

Negative order

$$2 O_{3} \longrightarrow 3 O_{2} \qquad \text{rate} = -\frac{d [O_{3}]}{d t} = k \frac{[O_{3}]^{2}}{[O_{2}]}$$

$$O Cl^{-} + I^{-} \longrightarrow Cl^{-} + O I^{-} \text{ rate} = -\frac{d [O Cl]}{d t} = k \frac{[O Cl^{-}][I^{-}]}{[OH^{-}]}$$

$$Hg_{2}^{2^{+}} + Tl^{3^{+}} \longrightarrow 2 Hg^{2^{+}} + Tl^{+} \text{ rate} = -\frac{d [Tl^{3^{+}}]}{d t} = k \frac{[Hg_{2}^{2^{+}}][Tl^{3^{+}}]}{[Hg^{2^{+}}]}$$

Example

$$O Cl^- + I^- \longrightarrow O I^- + Cl^-$$

S. No	[OCl-]	[I -]	[OH-]	Rate /10 - 4
1	0.0017	0.0017	1.0	1.75
2	0.0034	0.0017	1.0	3.50
3	0.0017	0.0034	1.0	3.50
4	0.0017	0.0017	0.5	3.50

• Determine order of the reaction

Ans.

Rate =
$$[O Cl^{-}]^{x} [I^{-}]^{y} [OH^{-}]^{z}$$

$$1.75 \times 10^{-4} = [0.0017]^{x} [0.0017]^{y} [1]^{z}$$

$$3.5 \times 10^{-4} = [0.0034]^{x} [0.0017]^{y} [1]^{z}$$

$$3.5 \times 10^{-4} = [0.0017]^{x} [0.0034]^{y}[1]^{z}$$

$$3.5 \times 10^{-4} = [0.0017]^{x} [0.0017]^{y} [0.5]^{z}$$

$$x = 1, y = 1$$
 and $z = -1$

Experimental conditions

$$2 \ H \ I \longrightarrow H_2 + I_2$$
 homogeneous gas phase, $n=2$
 $2 \ H \ I \longrightarrow H_2 + I_2$ on gold, heterogeneous, $n=0$
 $2 \ H \ I \longrightarrow H_2 + I_2$ on platinum, heterogeneous, $n=1$

General

$$nA \xrightarrow{k} Product$$

$$-dc/dt = kc^n$$

$$\int \frac{dc}{c^n} = k \int dt$$

$$dx/dt = k (a - x)^n$$

$$\int dx/(a-x)^n = \int kdt$$

Dimensionless Rate equation

$$\alpha = \frac{C_0 - C}{C_0 - C_\infty}$$

$$C_{\infty}=0$$

$$C = C_0(1 - \alpha)$$

Rate equation

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = \frac{k \cdot C_0^n \cdot (1 - \alpha)^n}{C_0} = k' \cdot (1 - \alpha)^n$$

$$n = 0$$
 $n = 1$
$$\alpha = kt \qquad -\ln(1 - \alpha) = kt$$

In general, the integral form of the rate equation is written as

$$g(\alpha) = kt$$

$A \rightarrow B$,

Time,min	[A]	
0	1	
15	0.86	
30	0.8	
45	0.68	
60	0.57	

Temperature Effect on Reaction Rate

 The height of the energy barrier over which the reactants must pass on the way to becoming products is known as the activation energy

Reaction rates vary with temperature

Arrhenius Equation

The rates of most reactions vary with temperature

$$k = Ae^{-E_a/RT}$$

$$\ln k = -\frac{E_a}{\text{RT}} + \ln A$$

At 1000K, $1/T=0.001 K^{-1}$ at 1005K, $1/T=0.00095 K^{-1}$

k is the rate constant,
A is the frequency factor (or pre-exponential factor),
R is the molar gas constant,
Ea is the activation energy, and
T is the temperature (K).

$$\ln k_1 = \ln A - \frac{E_a}{RT_1}$$

$$\ln k_2 = \ln A - \frac{E_a}{RT_2}$$

$$\ln k_1 - \ln k_2 = \left(\ln A - \frac{E_a}{RT_1}\right) - \left(\ln A - \frac{E_a}{RT_2}\right)$$

$$\ln \frac{k_2}{k_1} = \frac{E_a(T_2 - T_1)}{RT_1T_2}$$

Example

The reduction of iron ore-coal composite pellet proceeds with an activation energy of about 56 KJ/mole. How much faster is the reduction reaction at 950°C than 850°C

Different form

$$r_i = f_1(\text{temperature}) \cdot f_2(\text{composition})$$

= $k \cdot f_2(\text{composition})$

At the same concentration, but at two different temperatures,
 Arrhenius' law indicates that

$$\ln \frac{r_2}{r_1} = \ln \frac{k_2}{k_1} = \frac{\mathbf{E}}{\mathbf{R}} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

• Now, the rate is inversely proportional to the reaction time, or rate ∞ l/time so

$$\ln \frac{r_2}{r_1} = \ln \frac{t_1}{t_2} = \frac{\mathbf{E}}{\mathbf{R}} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

Example

• To complete a reaction, 30 min is required when temperature is set at 63°C, but if it is heated to 74°C it only needs 15 s for the same result. Find the activation energy?

Answer

$$\ln \frac{30}{0.25} = \frac{\mathbf{E}}{8.314} \left(\frac{1}{336} - \frac{1}{347} \right)$$

$$E = 422\,000\,\text{J/mol}$$

at 400 K
$$-r_A = 2.3 p_A^2$$
 where
$$\begin{cases} -r_A = \left[\frac{\text{mol}}{\text{m}^3 \cdot \text{s}}\right] \\ p_A = [\text{atm}] \end{cases}$$

$$\ln \frac{k_2}{k_1} = \ln \frac{2.3}{2.3} = 0$$

$$p_A = \frac{n_A}{V} \mathbf{R} T = C_A \mathbf{R} T$$

Steps to be followed

- The concentration of a reactant or product after various time intervals at a constant temperature
- Fit the data to find the appropriate rate law
- Determine the rate constant at the temperature
- Study the reaction over as wide a range of temperature as possible, repeating steps 1-3
- Fit the rate constants to the Arrhenius equation and determine the activation energy

A high temperature favors the reaction of higher activation energy, a low temperature favors the reaction of lower activation energy.

