Creación de complejos simpliciales

Rafael Villarroel

2021-01-28 15:00 -0500

El complejo de completas de una gráfica

Sea G una gráfica (simple, finita). Una completa de G es $C \subseteq V(G)$ tal que si $x_1, x_2 \in C$, entonces $x_1 \sim x_2$. Observemos que si C_1 es completa de G y $C_2 \subseteq C_1$, entonces

 C_2 es completa. El complejo $\Delta(G)$ se define como el complejo simplicial sobre V(G) cuyos simplejos son las completas de G. Si tenemos un complejo simplicial Δ y existe una gráfica G

Si tenemos un complejo simplicial Δ y existe una gráfica G tal que $\Delta = \Delta(G)$, decimos que Δ es un complejo simplicial de completas. (En inglés, Δ se llama flag complex o clique complex). Ejemplos. Sea G la gráfica donde el conjunto de vértices es $V(G) = \{a, b, c, d, e, f\}$, y el conjunto de aristas es:

que $\mathcal{F}(\Delta(G)) = \{abf, acf, ade, aef\}$. Tarea. Muestra que existe un complejo simplicial Δ tal que no existe gráfica G con $\Delta(G) = \Delta$.

 $E(G) = \{ab, ac, ad, ae, af, bf, cf, de, ef\}$. Entonces se tiene

no existe grafica G con $\Delta(G) = \Delta$.

Larga Determina un criterio para que un complejo simplicial.

El complejo orientado de una digráfica

Una gráfica dirigida *D* (o digráfica) consta de un conjunto de vértices y un conjunto de flechas, las cuales son parejas ordenadas de vértices.

Por ejemplo, consideremos la gráfica dirigida con vértices $\{1,2,3,4\}$ y cuyas flechas sean $\{(1,2),(2,3),(3,1),(2,4)\}$. Sea D una gráfica dirigida (cada arista tiene exactamente una dirección). Vamos a formar un complejo simplicial $\Delta^{\rightarrow}(D)$ sobre V(D), donde $\sigma \subseteq V(D)$ es un simplejo si la subdigráfica dirigida de D inducida por σ es completa y sea acíclica (es decir, que no tenga ciclos dirigidos).

Tarea. Muestra que una digráfica completa y acíclica tiene un *sumidero* y una *fuente*. (Un sumidero es un vértice a donde todas sus flechas llegan, una fuente es un vértice de donde todas sus aristas salen)

Sea P un conjunto parcialmente ordenado (copo) [es decir un conjunto donde hay una relación reflexiva, transitiva y antisimétrica]. Formaremos un complejo simplicial $\Delta(P)$ donde los simplejos son los subconjuntos de P que sean totalmente ordenados (es decir, donde cualesquiera dos son comparables).

Sea V un espacio vectorial y sea $S \subseteq V$ un conjunto finito de vectores. Definimos un complejo simplicial $\Delta(S)$ sobre S donde los simplejos sean los conjuntos linealmente independientes.

Ejemplo.
$$V = \mathbb{R}^3$$
, $S = \{(1, 1, 1), (1, 1, 0), (1, 0, 0), (1, 2, -3), (3, 0, 0)\}.$

La gráfica de intersección

Sea \mathcal{C} una colección de subconjuntos de un conjunto X. (Es decir $\mathcal{C} \subseteq \mathcal{P}(X)$). Sea G la gráfica con vértices \mathcal{C} , donde declaramos $C_1 \sim C_2$ si $C_1 \neq C_2$ y $C_1 \cap C_2 \neq \emptyset$ (la gráfica G se llama la gráfica de intersección de la colección \mathcal{C}). A partir de la gráfica G formamos $\Delta(G)$, la cual podríamos denotar como $\Delta(\mathcal{C})$.

Ejemplo: Sea $X = \{1, 2, 3, 4, 5\}$. Sea $C = \{\{2, 3, 5\}, \{2, 3, 4, 5\}, \{2, 4\}, \{1\}, \{2\}\}$.

El nervio

Sea \mathcal{C} una colección de subconjuntos de un conjunto X. Definimos un complejo simplicial $\mathcal{N}(\mathcal{C})$ con vértices \mathcal{C} , donde $\sigma \subseteq \mathcal{C}$ es un simplejo si $\cap \sigma \neq \emptyset$.

Ejemplo Sea $X = \{1, 2, 3, 4, 5\}$ y sea

$$C = \{\{1, 2\}, \{2, 3\}, \{1, 3\}, \{3, 4, 5\}\}.$$