ESO-208A Assignment 2 Rishi Kachhwaha, 200793

Q1) Test data

Test data:
$$4x_1 + 2x_2 = 10$$

$$2x_1 + 4x_2 + x_3 = 11.5$$

$$x_2 + 5x_3 = 4.5$$

Input

3

4 2 0 10

2 4 1 11.5

0 1 5 4.5

Output

Gauss Elimination (without pivoting)

Gauss Elimination without Pivoting:

1.500000

2.000000

0.500000

Gauss Elimination (with partial pivoting)

Gauss Elimination with Partial Pivoting:

1.500000

2.000000

0.500000

Dolittle method (without pivoting)

Dolittle Method:

1.500000

2.000000

0.500000

L:

1.000000	0.000000	0.000000
0.500000	1.000000	0.000000
0.000000	0.333333	1.000000

U:

4.000000	2.000000	0.000000
0.000000	3.000000	1.000000
0.000000	0.000000	4.666667

Crout Method (without pivoting)

Crout Method:

1.500000

2.000000

0.500000

L:

1.000000	0.000000	0.000000
0.500000	3.000000	0.000000
0.000000	1.000000	4.666667

U:

4.000000	2.000000	0.000000
0.000000	1.000000	0.333333
0.000000	0.000000	1.000000

Cholesky Decomposition (without pivoting) Cholesky Method :

1.500000

2.000000

0.500000

L:

2.000000	0.000000	0.000000
1.000000	1.732051	0.000000
0.000000	0.577350	2.160247

U:

2.000000	1.000000	0.000000
0.000000	1.732051	0.577350
0.000000	0.000000	2.160247

Q2) Test data

Test Case:

$$A = \begin{bmatrix} 8 & -1 & -1 \\ -1 & 4 & -2 \\ -1 & -2 & 10 \end{bmatrix}$$

Maximum iterations: 50

Maximum relative approximate error: 0.001%

Find Eigenvalue closest to: 8

Input

Output

Power Method

Power Method:

Eigenvalue: 10.778672

Eigenvector:

-0.267485 -0.255625 1.000000

Iterations: 30.000000

Iteration 1.000000 : 7.000000 Iteration 2.000000 : 8.857143 Iteration 3.000000 : 9.870968 Iteration 4.000000 : 10.297386

Iteration 5.000000: 10.477944 Iteration 6.000000: 10.568391 Iteration 7.000000 : 10.623473 Iteration 8.000000 : 10.661701 Iteration 9.000000: 10.689930 Iteration 10.000000 : 10.711272 Iteration 11.000000: 10.727521 Iteration 12.000000: 10.739905 Iteration 13.000000 : 10.749333 Iteration 14.000000: 10.756501 Iteration 15.000000 : 10.761944 Iteration 16.000000: 10.766072 Iteration 17.000000 : 10.769201 Iteration 18.000000 : 10.771570 Iteration 19.000000 : 10.773364 Iteration 20.000000 : 10.774721 Iteration 21.000000: 10.775747 Iteration 22.000000 : 10.776523 Iteration 23.000000: 10.777110 Iteration 24.000000 : 10.777554 Iteration 25.000000: 10.777890 Iteration 26.000000: 10.778143 Iteration 27.000000: 10.778335 Iteration 28.000000: 10.778480 Iteration 29.000000 : 10.778589 Iteration 30.000000 : 10.778672

Inverse Power Method

Inverse Power Method:

Eigenvalue: 3.074933

Eigenvector:

0.269593 1.000000 0.327737

Iterations: 12.000000

^{*}The method is slow to convergence

Iteration 1.000000 : 2.500000 Iteration 2.000000 : 2.887701 Iteration 3.000000 : 3.010374 Iteration 4.000000 : 3.052061 Iteration 5.000000 : 3.066700 Iteration 6.000000 : 3.071940 Iteration 7.000000 : 3.073839 Iteration 8.000000 : 3.074534 Iteration 9.000000 : 3.074790 Iteration 10.000000 : 3.074885 Iteration 11.000000 : 3.074920 Iteration 12.000000 : 3.074933

*The method is faster because the eigenvector corresponds close to $\left[\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$, the starting vector.

Inverse Power Method with Shift

Inverse Power Method:

Eigenvalue:

8.146131

Eigenvector:

0.935570 -0.308527 0.171816

Iterations:

4.000000

Iteration 1.000000 : 8.182574 Iteration 2.000000 : 8.146411 Iteration 3.000000 : 8.146131 Iteration 4.000000 : 8.146131

This method is again efficient since it targets the eigenvector to be found and is also fast because the eigenvector happens to be close to the starting vector.

QR Decomposition

QR Decomposition Method:

Eigen Values:

10.778678 8.146319 3.074941

Iterations: 23

As can be seen, the method is extremely tedious and computationally heavy. But it gives the eigenvalues and eigenvectors of a matrix directly. So due to less assumptions in its methodology, it becomes complex but much more useful for high dimensional vector spaces where taking assumptions is not humanely possible.