

Contrôle continu de dynamique

Afin de comprendre les traumatismes causés par le phénomène de « coup du lapin », il est nécessaire, de développer un dispositif expérimental particulier, permettant de générer des niveaux d'énergie faibles et non lésionnels à un volontaire. Ces faibles niveaux d'énergie correspondent à des accélérations et décélérations fixées à $\pm 0.3g$ pendant une durée de 1 seconde chacune.

Principe retenu pour la conception du Sled

Le principe retenu par les ingénieurs du bureau d'études pour concevoir le Sled (figure ci-dessous) est inspiré des crashtests réalisés dans le domaine automobile :

- une plateforme est animée d'un mouvement de translation horizontale par rapport au bâti ;
- un passager (volontaire ou mannequin) peut prendre place sur cette plateforme via un siège ;
- un dispositif de mise en mouvement permet d'atteindre les accélérations et décélérations attendues.

Hypothèses d'étude

- Pour cette étude, les ingénieurs du bureau d'études choisissent de **modéliser la liaison glissière** entre l'ensemble mobile \mathcal{S} et le bâti \mathcal{S}_0 dans le plan de symétrie $(\mathcal{O}, \overrightarrow{x_0}, \overrightarrow{y_0})$ de la figure ci-après par **deux contacts ponctuels en Aet en B,** de normale $\overrightarrow{y_0}$, distants de L.
- L'étude suivante est menée uniquement en phase d'accélération définie pour un essai avec un passager volontaire
- Le frottement est négligé

Paramétrage du mobile S du sled

Notations et données

- Le repère $R_0(0, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ associé au solide S_0 est supposé galiléen.
- Le repère $R_S(Gs, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ associé à l'ensemble mobile S de masse M_s .
- t, le temps, exprimé en secondes.
- $-m_S$, la masse de l'ensemble mobile S, G_S son centre de gravité tel que $x(t) = \overrightarrow{OG_S}$. $\overrightarrow{x_0}$.
- $-\overrightarrow{V_{G_S,S/S_0}} = v(t)$. $\overrightarrow{x_0}$, la vitesse du centre de gravité G_S de l'ensemble mobile S par rapport au bâti S_0 .
- $-\overrightarrow{a_{G_s,S/S_0}} = a(t)$. $\overrightarrow{x_0}$, l'accélération du centre de gravité G_S de l'ensemble mobile S par rapport au bâti S_0 .
- L'accélération de la pesanteur est telle que $\vec{g} = -g$. $\vec{y_0}$ avec g = 9.81 m.s⁻².
- Les actions transmissibles par les deux contacts ponctuels seront respectivement notées :

$$\left\{ \mathcal{T}_{A (S_0 \to S)} \right\} = \begin{cases} Y_A \cdot \overrightarrow{y_0} \\ \overrightarrow{0} \end{cases} \text{ et } \left\{ \mathcal{T}_{B (S_0 \to S)} \right\} = \begin{cases} Y_B \cdot \overrightarrow{y_0} \\ \overrightarrow{0} \end{cases}$$

— L'action mécanique motrice qui permet de mettre en mouvement l'ensemble mobile S par rapport au bâti S_0 est modélisée par un glisseur au point C, noté :

$$\{\mathcal{T}_{mot \to S}\} = \left\{ \begin{array}{l} \overrightarrow{R_{mot \to S}} = R.\overrightarrow{x_0} \\ \overrightarrow{0} \end{array} \right\} \text{ avec } R > 0 \text{ en phase d'accélération.}$$

— Les principales caractéristiques dimensionnelles indiquées sur la figure précédente ont été estimées pour avoir une position réaliste du volontaire dans un siège de voiture, D = 1000 mm, d = 220 mm et h = 1100 mm.

Détermination de l'effort normal Y_B

On se place au début de la phase d'accélération de translation avec : $\overline{a_{G_s,S/S_0}} = a_c$. $\overline{x_0}$ avec a_c = constante

- 1) Ecrire le torseur de l'action de la pesanteur $\{\mathcal{T}_{(g o S)}\}$ exprimé au point G_s
- 2) Ecrire le torseur de l'action de la pesanteur $\{\mathcal{T}_{(q \to S)}\}$ exprimé au point A
- 3) Ecrire les torseurs $\{T_{A(S_0 \to S)}\}$, $\{T_{B(S_0 \to S)}\}$, $\{T_{mot \to S}\}$ exprimés au point A
- 4) Isoler l'ensemble mobile S et effectuer l'inventaire des actions mécaniques extérieures qui s'appliquent sur cet ensemble.
- 5) Ecrire le torseur résultant des actions extérieures appliquées à S $\{\mathcal{T}_{(ext \to S)}\}$ exprimé au point A
- 6) Exprimer la résultante dynamique de l'ensemble mobile S dans son mouvement par rapport au bâti S_0
- 7) Démontrer que $\overrightarrow{\delta_{G_s \ S/S_0}}$ le moment dynamique en G_s de l'ensemble mobile S dans son mouvement par rapport au bâti S_0 est nul
- 8) Exprimer $\delta_{A\ S/S_0}$ le moment dynamique en A de l'ensemble mobile S dans son mouvement par rapport au bâti S_0 en fonction de son accélération a_c , de sa masse m_S et de la hauteur h
- 9) Ecrire le torseur dynamique $\{D_{(S/S_0)}\}$ de l'ensemble mobile S dans son mouvement par rapport au bâti S_0 exprimé au point A
- 10) Appliquer le principe fondamental de la dynamique à S_0 et en déduire trois équations faisant intervenir les composantes d'actions mécaniques Y_B et R
- 11) Exprimer la composante Y_B en fonction de M_S, a_C, R, d, L g et h
- 12) Exprimer la composante R en fonction de M_S et a_C

Détermination de la longueur L

- 13) Donner la condition sur Y_B qui traduit le non-basculement autour de l'axe $(A, \overline{z_0})$ de l'ensemble mobile S lors de la phase d'accélération.
- 14) En déduire la longueur minimale du guidage entre l'ensemble mobile S et le bâti S_0 en fonction de l'accélération a_c , de g et de paramètres géométriques pour garantir le non-basculement autour de l'axe $(A, \overrightarrow{z_0})$) lors de la phase d'accélération.

On donne ci-contre le graphe d'accélération du mobile S en fonction du temps.

On note $\overline{V_{G_s}}$, $s/S_0 = v(t)$. $\overline{x_0}$ la vitesse de G_s centre de gravité de S dans son mouvement par rapport à S_0 On se place dans la première phase

15) Sachant qu'à t = 0 le mobile a une vitesse nulle, déterminer l'expression de v(t) en fonction de a_c et de t

On note to l'instant de début de la phase d'accélération et t1 l'instant de fin de la phase d'accélération

- 16) Calculer l'énergie cinétique $T_{(S/S_0)}$ de l'ensemble mobile S dans son mouvement par rapport au bâti S_0 ainsi que sa variation entre les instants t_0 et t_1
- 17) Calculer l'énergie potentielle $U_{(S/S_0)}$ de l'ensemble mobile S ainsi que sa variation entre les instants t_0 et t_1
- 18) Calculer le travail des actions extérieures W_{ext} ainsi que sa variation entre les instants t₀ et t₁
- 19) Calculer le travail des actions extérieures Wint ainsi que sa variation entre les instants to et t1
- 20) Appliquer le théorème de l'énergie cinétique à S dans mouvement par rapport à S_0 et établir une relation qui permet d'exprimer la composante R en fonction de M_S , t_0 , t_1 et a_C . Retrouver l'expression établie à la question 12)

Rappels:

Le torseur $\{ au_{(2 o 1)}\}$ associé à l'action mécanique exercée en A, par un solide 2 sur un solide 1 sera noté :

$$\left\{\mathcal{T}_{(2\rightarrow1)}\right\} = A \left\{ \begin{array}{c} \overrightarrow{R_{2\rightarrow1}} \\ \overrightarrow{M_{A_{2\rightarrow1}}} \end{array} \right\} = A \left\{ \begin{array}{c} \overrightarrow{R_{2\rightarrow1}} = X_A.\overrightarrow{x} + Y_A.\overrightarrow{y} + Z_A.\overrightarrow{z} \\ \overrightarrow{M_{A_{2\rightarrow1}}} = L_A.\overrightarrow{x} + M_A.\overrightarrow{y} + N_A.\overrightarrow{z} \end{array} \right\}_{(x,y,z)} = A \left\{ \begin{array}{c} X_A & L_A \\ Y_A & M_A \\ Z_A & N_A \end{array} \right\}_{(x,y,z)}$$

Le torseur cinématique $\{v_{2/1}\}$ du mouvement d'un solide S par rapport à un repère R exprimé au point A sera noté :

$$\left\{v_{(S/R)}\right\} = \left\{\overrightarrow{\Omega_{S/R}}\right\} = \left\{\overrightarrow{\Omega_{S/R}} = \omega_x \cdot \overrightarrow{x} + \omega_y \cdot \overrightarrow{y} + \omega_z \cdot \overrightarrow{z}\right\}_{(x,y,z)} = \left\{\overrightarrow{\omega_x} \quad v_{Ax}\right\}_{(x,y,z)} = \left\{\overrightarrow{\omega_y} \quad v_{Ax}\right\}_{(x,y$$

Le torseur cinétique $\{C_{S/R}\}$ du mouvement d'un solide S par rapport à un repère R galiléen exprimé au point A sera noté :

$$\left\{C_{(S/R)}\right\} = \left\{\frac{m}{\overline{V_{GS/R}}} \overline{V_{GS/R}}\right\} = \left\{\frac{m}{\overline{V_{GS/R}}} = m \overrightarrow{AG} \wedge \overline{V_{AS/R}} + \overrightarrow{J_A}(S, \overline{\Omega_{S/R}})\right\}_{(x,y,z)} \overrightarrow{J_A} = \text{opérateur d'inertie de S en A}$$

Le torseur dynamique $\{D_{S/R)}\}$ du mouvement d'un solide S par rapport à un repère R galiléen exprimé au point A sera noté :

$$\left\{D_{(S/R)}\right\} = \left\{\frac{m \, \overrightarrow{\Gamma_{G_{S/R}}}}{\delta_{A_{S/R}}}\right\} = \left\{\frac{m \, \overrightarrow{\Gamma_{G_{S/R}}}}{\delta_{A(S/R)}} = \left[\frac{d}{dt} \, \overrightarrow{\sigma_{A(S/R)}}\right]_{R} + m.\overrightarrow{V_{A_{S/R}}} \wedge \overrightarrow{V_{G_{S/R}}}\right\}_{(x,y,z)}$$

L'énergie cinétique d'un solide S dans son mouvement par rapport à un repère R galiléen exprimé au point A sera noté :

$$T_{(S/R)} = \frac{1}{2} \left\{ C_{(S/R)} \right\} \otimes \left\{ v_{(S/R)} \right\} = \frac{1}{2} \left(m \overrightarrow{V_{G_{S/R}}} \cdot \overrightarrow{V_{A_{S/R}}} + \overrightarrow{\Omega_{S/R}} \cdot \overrightarrow{\sigma_{A_{S/R}}} \right)$$

Le théorème de l'énergie cinétique pour un ensemble de solides :

La dérivée, par rapport à la date t, de l'énergie cinétique galiléenne d'un ensemble (E) de solides est égale à la somme de la puissance galiléenne des actions mécaniques extérieures à (E) et des puissances des actions mutuelles entre chaque solide de (E)

$$\frac{d}{dt} \mathsf{T}_{(\mathsf{E}/\mathsf{Rg})} = P_{(\overline{E} \to E/Rg)} + \sum_{i,j=1}^{n} \mathsf{P}_{(\mathsf{S}_{i} \leftrightarrow \mathsf{S}_{j})}$$

avec T_(E/Rg) = énergie cinétique galiléenne de (E)

Ce théorème s'écrit également en faisant intervenir le travail des actions mécaniques entre deux dates t₁ et t₂:

$$T_{t_{2}(E/Rg)} - T_{t_{1}(E/Rg)} = W_{t_{1}(\overline{E} \to E/Rg)}^{t_{2}} + \sum_{\substack{i,j=1 \ i < j}}^{n} W_{t_{1}(S_{i} \leftrightarrow S_{j})}^{t_{2}} = Wext_{t_{1}}^{t_{2}} + Wint_{t_{1}}^{t_{2}}$$