Homework 1: Convex learning problems

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Exercise 1. Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex and β -smooth function.

(1) Show that for $v, w \in \mathbb{R}^d$

$$f(v) - f(w) \in \left(\left\langle \nabla f(w), v - w \right\rangle, \left\langle \nabla f(w), v - w \right\rangle + \frac{\beta}{2} \|v - w\|^2 \right)$$

(2) Show that for $v, w \in \mathbb{R}^d$ such that $v = w - \frac{1}{\beta} \nabla f(w)$, it is

$$\frac{1}{2\beta} \left\| \nabla f\left(w\right) \right\|^{2} \le f\left(w\right) - f\left(v\right)$$

(3) Additionally assume that f(x) > 0 for all $x \in \mathbb{R}^d$. Show that for $w \in \mathbb{R}^d$,

$$\|\nabla f\left(w\right)\| \le \sqrt{2\beta f\left(w\right)}$$

Solution.

(1) If $f: \mathbb{R}^d \to \mathbb{R}$ is β -smooth then it is

$$f(v) \le f(w) + \langle \nabla f(w), v - w \rangle + \frac{\beta}{2} \|v - w\|^2$$

 $f(v) - f(w) \le \langle \nabla f(w), v - w \rangle + \frac{\beta}{2} \|v - w\|^2$

If it is convex then it is

$$f(v) \ge f(w) + \langle \nabla f(w), v - w \rangle$$
$$f(v) - f(w) \ge \langle \nabla f(w), v - w \rangle$$

Together these conditions imply upper and lower bounds

$$f(v) - f(w) \in \left(\left\langle \nabla f(w), v - w \right\rangle, \left\langle \nabla f(w), v - w \right\rangle + \frac{\beta}{2} \|v - w\|^2 \right)$$

(2) For $v, w \in \mathbb{R}^d$ such that $v = w - \frac{1}{\beta} \nabla f(w)$, it is

$$f(v) \leq f(w) + \langle \nabla f(w), v - w \rangle + \frac{\beta}{2} \|v - w\|_{2}^{2} \quad \text{(due to smoothness)}$$

$$\iff f(w) - f(v) \leq f(w) - f(v)$$

$$\iff \langle \nabla f(w), v - w \rangle + \frac{\beta}{2} \|v - w\|_{2}^{2} \leq f(w) - f(v)$$

$$\iff \left\langle \nabla f(w), \frac{1}{\beta} \nabla f(w) \right\rangle + \frac{\beta}{2} \left\| \frac{1}{\beta} \nabla f(w) \right\|_{2}^{2} \leq f(w) - f(v)$$

$$\iff \frac{1}{2\beta} \|\nabla f(w)\|^{2} \leq f(w) - f(v)$$

$$\|\nabla f(w)\|^{2} \leq 2\beta \left(f(w) - f(v) \right)$$

as $f(\cdot) \geq 0$

$$\left\|\nabla f\left(w\right)\right\|^{2} \le 2\beta f\left(w\right)$$

(3) From part 2, this is obvious because f(x) > 0 for all $x \in \mathbb{R}^d$, as

$$\|\nabla f(w)\|^{2} \le 2\beta f(w) \Leftrightarrow \|\nabla f(w)\| \le \sqrt{2\beta f(w)}$$

Exercise 2. Let $f: \mathbb{R}^d \to \mathbb{R}$ be a λ -strongly convex function. Assume that w^* is a minimizer of f i.e.

$$w^* = \operatorname*{arg\,min}_{w} \left\{ f\left(w\right) \right\}$$

Show that for any $w \in \mathbb{R}^d$ it holds

$$f(w) - f(w^*) \ge \frac{\lambda}{2} \|w - w^*\|^2$$

Hint: Use the definition of λ -strongly convex function, properly rearrange it, and ...

Solution. We use the definition of λ -strongly convex function; i.e. for all w, u, and $\alpha \in (0,1)$ we have

$$f\left(\alpha w + (1 - \alpha)u\right) \le \alpha f\left(w\right) + (1 - \alpha)f\left(u\right) - \frac{\lambda}{2}\alpha\left(1 - \alpha\right)\left\|w - u\right\|^{2} \Leftrightarrow \frac{f\left(\alpha w + (1 - \alpha)u\right) - f\left(u\right)}{\alpha} \le f\left(w\right) - f\left(u\right) - \frac{\lambda}{2}\left(1 - \alpha\right)\left\|w - u\right\|^{2}$$

For $u = w^*$ it is

$$\frac{f(\alpha w + (1 - \alpha) w^*) - f(w^*)}{\alpha} \le f(w) + f(w^*) - \frac{\lambda}{2} (1 - \alpha) \|w - w^*\|^2$$

When $a \to 0$

$$\frac{\lambda}{2}\alpha \left(1 - \alpha\right) \left\|w - w^*\right\|^2 \to 0$$

I know that w^* is the minimizer of f. So 0 is the minimizer of g with $g(a) = f(aw + (1 - \alpha)w^*)$ hence when $a \to 0$

$$\frac{f(\alpha w + (1 - \alpha) w^*) - f(w^*)}{\alpha} \to \frac{\mathrm{d}}{\mathrm{d}\alpha} g(\alpha) \Big|_{\alpha = 0}$$

$$0 \le f(w) + f(w^*) - \frac{\lambda}{2} \|w - w^*\|^2$$

which concludes the proof.