Institute for Analysis and Scientific Computing

Lothar Nannen, Conrad Gößnitzer, Michael Innerberger, Markus Wess

Numerik von Differentialgleichungen - Kreuzlübung 1

Übungstermin: 18.3.2020 11. März 2020

Aufgabe 1:

Gegeben sei das Anfangswertproblem $y'(t) = ty(t), t \in [0, T], \text{ mit } y(0) = 1.$

- a) Reformulieren Sie das Problem als Fixpunktproblem $y = \Phi(y)$ und nutzen Sie eine Fixpunktiteration der Form $y_{k+1} = \Phi(y_k)$ zur Berechnung der Lösung.
- b) Lösen Sie das Anfangswertproblem approximativ mit dem expliziten Euler-Verfahren in einer Programmiersprache Ihrer Wahl. Verwenden Sie dazu eine äquidistante Zerlegung des Intervalls [0,1]. Untersuchen Sie dabei den Fehler zum Endzeitpunkt t=1 in Abhängigkeit von der Anzahl der Zerlegungspunkte.

Aufgabe 2:

Seien $A, M \in \mathbb{R}^{n \times n}$ symmetrisch, positiv definit und $f \in C([0, T], \mathbb{R}^n)$. Weiter sei $y_{y_0} \in C^1([0, T], \mathbb{R}^n)$ Lösung des Anfangswertproblems

$$My'(t) = -Ay(t) + f(t), t \in [0, T], y(0) = y_0$$

zu einem beliebigen $y_0 \in \mathbb{R}^n$. Zeigen Sie elementar, dass $y_0 \mapsto y_{y_0}(t)$ für jedes $t \in [0,T]$ Lipschitzstetig mit Lipschitz-Konstante 1 bezüglich der von M induzierten Norm $\|\cdot\|_M : x \mapsto \sqrt{x^\top M x}$ ist. Ist das Problem in diesem Sinne gut konditioniert?

Aufgabe 3:

Sei $y \in C^1(\mathbb{R}_{\geq 0}, \mathbb{R})$ Lösung des Anfangswertproblems

$$y'(t) = \lambda y(t), \quad t > 0, \qquad y(0) = y_0$$

mit einem $\lambda < 0$. Sei h > 0 eine konstante Schrittweite, $t_j := jh$, $j \in \mathbb{N}_0$, und $y_j^{\rm e}$ bzw. $y_j^{\rm i}$ die Approximationen an $y(t_j)$ aus dem expliziten bzw. impliziten Eulerverfahren. Untersuchen Sie in Abhängigkeit von λ und h das Verhalten von $y_j^{\rm e}$ bzw. $y_j^{\rm i}$ für $j \to \infty$ und vergleichen Sie es mit dem der exakten Lösung $y(t_j)$.

Aufgabe 4:

Beweisen Sie folgende Variation des Satzes 1.3 aus der Vorlesung: f sei bezüglich des zweiten Argumentes nur einseitig Lipschitz-stetig, d.h. es existiert ein $L_+ \in \mathbb{R}$ mit

$$\langle f(t,y) - f(t,z), y - z \rangle_2 \le L_+ ||y - z||_2^2, \qquad (t,y), (t,z) \in J \times \Omega.$$

Weiter sei auch z eine Lösung der Differentialgleichung z'=f(t,z) (d.h. $\delta=0$ in Satz 1.3). Dann gilt

$$||y(t) - z(t)||_2 < ||y(t_0) - z(t_0)||_2 e^{L_+(t-t_0)}, \quad t > t_0.$$

Aufgabe 5:

Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch und $y \in C^1([0,T],\mathbb{R}^n)$ Lösung des Anfangswertproblems

$$y'(t) = Ay(t), t \in [0, T], y(0) = y_0.$$

Berechnen Sie die Lipschitz-Konstante sowie die einseitige Lipschitz-Konstante der zugehörigen Funktion f und vergleichen Sie die Aussage aus dem Satz 1.3 mit der Aussage aus Aufgabe 4. *Hinweis:* Symmetrische Matrizen sind diagonalisierbar.