

Geometría de curvas y superficies Segundo del grado en Matemáticas, UAM, 2020-2021 Examen parcial, 8 de abril de 2021

Apellidos:	
Nombre:	
DNI/NIE:	
Firma:	

Comentarios:

- Todas las respuestas deben estar debidamente justificadas y detalladas.
- Cada uno de los cinco ejercicios vale dos puntos.
- Los ejercicios están divididos en dos apartados, excepto el segundo que tiene cuatro.
- Únicamente podrá utilizarse, como material de apoyo al examen, el resumen de curvas y un resumen personal de un folio por una cara.
- Este cuadernillo completo se depositará al terminar el examen en una caja preparada al efecto.
- No se podrá abandonar el examen hasta trascurridos 30 minutos desde su inicio.
- La duración del examen es de dos horas.

Ejercicio 1. Sea $\gamma(s)$, con s>0, una curva birregular, parametrizada por longitud de arco, cuya traza está incluida en el plano XY, y cuya curvatura (plana) viene dada por

$$\kappa(s) = \frac{1}{2\sqrt{s}}, \qquad s > 0.$$

a) (1 punto) Sabiendo que $\gamma'(\pi^2)=(-1,0)$, escribe la expresión del vector tangente a $\gamma(s)$ para cada s>0.

b) (1 punto) Sabiendo que, además, $\gamma(\pi^2)=(-2,2\pi)$, escribe la expresión explícita de $\gamma(s)$.

Comentario:

$$\int u \cos u \, du = \cos u + u \sin u + C, \qquad \int u \sin u \, du = \sin u - u \cos u + C.$$

Ejercicio 2. Considérese la curva

$$\gamma(s) = \left(\frac{1}{\sqrt{3}}\cos s + \frac{1}{\sqrt{2}}\sin s, \ \frac{1}{\sqrt{3}}\cos s - \frac{1}{\sqrt{2}}\sin s, \ \frac{1}{\sqrt{3}}\cos s\right), \quad s \in I,$$

donde I = (-10, 10).

a) (0.5 puntos) Comprueba que s es parámetro de longitud de arco.

b) (0.5 puntos) Calcula la curvatura de $\gamma(s)$ en cada $s \in I$.

c) (0.5 puntos) Comprueba que $\pmb{\gamma}$ es una curva plana.
d) (0.5 puntos) Comprusho que o parametrios una cincumferencia : Qué redia
d) (0.5 puntos) Comprueba que $\pmb{\gamma}$ parametriza una circunferencia. ¿Qué radio iene?

Ejercicio 3. a) (1 punto) Sea $\gamma: (0,1) \to \mathbb{R}^3$ birregular, parametrizada por longitud de arco, y tal que su traza está contenida en la esfera centrada en el origen y de radio R > 0. Comprueba que la curvatura de γ es siempre $\geq 1/R$.

b) (1 punto) Sea $\alpha \colon (0,1) \to \mathbb{R}^3$ una curva birregular parametrizada por longitud de arco. Definimos otra curva $\beta \colon (0,1) \to \mathbb{R}^3$ por $\beta(t) = \alpha'(t)$. Se pide probar que la curvatura de β es siempre ≥ 1 .

Ejercicio 4. En este ejercicio consideramos el helicoide, parametrizado como

$$\mathbb{X}(u,\theta) = (u\cos\theta, u\sin\theta, \theta), \qquad u,\theta \in \mathbb{R}.$$

a) (1 punto) Disponemos de un rectángulo de papel de dimensiones $3 \times (2\pi)$. Demuestra que ese rectángulo no basta para cubrir el tramo del helicoide de coordenadas $u \in (0,3)$, $\theta \in (0,2\pi)$ que se muestra en la figura.

b) (1 punto) Considera las dos siguientes curvas sobre el helicoide:

$$egin{aligned} & oldsymbol{lpha}_1(t) = \mathbb{X}(1,t), & t \in (0,2\pi), \\ & oldsymbol{lpha}_2(t) = \mathbb{X}(t,t), & t \in (0,\pi), \end{aligned}$$

que aparecen dibujadas en la siguiente figura.

Halla las coordenadas espaciales del punto en el que se cortan y calcula con qué ángulo lo hacen.

Ejercicio 5. Considera la parametrización $\mathbb X$ dada por

$$X(u, v) = (u + v, u - v, uv), \quad u, v > 0.$$

y sea $S\subset\mathbb{R}^3$ la superficie imagen de X. Definimos la curva

$$\boldsymbol{\gamma}(t) = \Big(t + \frac{1}{t}, t - \frac{1}{t}, 1\Big), \text{ para } t > 0.$$

a) (1 punto) Comprueba que la traza de $\pmb{\gamma}$ está contenida en S y que es una curva regular.

b) (1 punto) Demuestra que, para cualquier t>0, el plano osculador en $\pmb{\gamma}(t)$ no es tangente a S en ese punto.

Hojas extra para cálculos. (Sucio. No es parte de la entrega. No se corrige)