제2교시

수학 영역

5 지 선 다 형

- **1.** 두 집합 $A = \{1, 2, 4, 8, 16\}, B = \{1, 2, 3, 4, 5\}$ 에 대하여 집합 $A \cap B$ 의 원소의 개수는? [2점]

 - ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

- **2.** 두 다항식 $A = 5x^2 9x + 1$, $B = 2x^2 + 3x 4$ 에 대하여 A+2B를 간단히 하면? [2점]
- ① $9x^2 3x 7$ ② $9x^2 + 5x 5$ ③ $10x^2 3x 7$
- $\textcircled{4} \ 10x^2 3x 3$ $\textcircled{5} \ 11x^2 + 5x 7$

- **3.** 다항식 $x^3 8$ 이 $(x a)(x^2 + bx + 4)$ 로 인수분해될 때, 두 상수 a, b에 대하여 a+b의 값은? [2점]
- ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

4. 연립방정식

$$\left\{ \begin{array}{l} y = 2x + 3 \\ \\ x^2 + y = 2 \end{array} \right.$$

의 해를 x = a, y = b라 할 때, a + 3b의 값은? [3점]

- $\bigcirc -2$ $\bigcirc -1$ $\bigcirc 0$ $\bigcirc 1$ $\bigcirc 2$

- $b \le x \le 2$ 일 때, a-b의 값은? [3점]

- ① 17 ② 18 ③ 19 ④ 20
- ⑤ 21
- **5.** 두 상수 a, b에 대하여 부등식 $|x+a| \le 8$ 의 해가 | **7.** 복소수 0, i, -2i, 3i, -4i, 5i가 적힌 다트판에 3개의 다트를 던져 맞히는 게임이 있다. 3개의 다트를 모두 다트판에 맞혔을 때, 얻을 수 있는 세 복소수를 a, b, c라 하자. a^2-bc 의 최솟값은? $\left(\text{ 단, }i=\sqrt{-1}\text{ 이고 경계에 맞는 경우는 없다.}\right)[3\text{ 점]}$

- $\bigcirc -49$
- 2 47 3 45
- (4) -43

6. 전체집합 $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$ 에 대하여 조건 p가

p : x는 짝수 또는 6의 약수이다.

일 때, 조건 $\sim p$ 의 진리집합의 모든 원소의 합은? [3점]

- ① 11 ② 12 ③ 13 ④ 14 ⑤ 15

8. 두 실수 a, b에 대하여 a+b=3, $a^2+b^2=7$ 일 때, a^4+b^4 의 값은? [3점]

① 39

2 41

③ 43

4 45

⑤ 47

9. 삼차방정식 $x^3 + x^2 + x - 3 = 0$ 의 두 허근을 각각 z_1, z_2 라 할 때, $z_1z_1+z_2z_2$ 의 값은? (단, z_1 , z_2 는 각각 z_1 , z_2 의 켤레복소수 이다.) [3점]

① 2

2 4

3 6

4 8

⑤ 10

10. 좌표평면 위의 세 점 A(-2, 0), B(4, 0), C(1, 2)를 지나는 원이 있다. 이 원의 중심의 좌표를 (p,q)라 할 때, p+q의 값은? [3점]

11. 좌표평면 위의 두 점 A(1, 1), B(3, a)에 대하여 선분 AB의 | 12. 어느 가게에서 판매하는 각 과일 세트의 구성과 가격이 다음 수직이등분선이 원 $(x+2)^2 + (y-5)^2 = 4$ 의 넓이를 이등분할 때, 상수 a의 값은? [3점]

① 5 ② 6 ③ 7 ④ 8 ⑤ 9

표와 같을 때, D세트의 가격은? (단, 같은 종류의 과일 가격은 동일하다.) [3점]

구성	구성 과일 세트 구성			가격
세트	포도 (송이)	사과 (개)	바나나 (송이)	(원)
A세트	2	1	0	5,500
B세트	0	2	1	6,000
C세트	1	0	2	8,000
D세트	1	2	2	?

① 10,500 원

② 11,000 원 ③ 11,500 원

④ 12,000 원 ⑤ 12,500 원

13. 좌표평면에서 방정식 f(x, y) = 0이 나타내는 도형이 그림과 같은 $\mathbb T$ 모양일 때, 다음 중 방정식 f(x+1, 2-y)=0이 좌표 평면에 나타내는 도형은? [3점]

4

- 1
- $\overrightarrow{1}$ \overrightarrow{x}
- 3
- (5) 0

14. 두 실수 x, y에 대하여 두 조건 p, q가

 $p : 3x - 4y + 5 \ge 0$

 $q : x^2 + (y-a)^2 \le a^2$

일 때, p는 q이기 위한 필요조건이 되도록 하는 양수 a의 최댓값은? [4점]

① $\frac{2}{9}$ ② $\frac{1}{3}$ ③ $\frac{4}{9}$ ④ $\frac{5}{9}$ ⑤ $\frac{2}{3}$

15. 직선 $y=-\frac{1}{2}x-3$ 을 x축의 방향으로 a만큼 평행이동한 후 직선 y=x에 대하여 대칭이동한 직선을 l이라 하자. 직선 l이 원 $(x+1)^2 + (y-3)^2 = 5$ 와 접하도록 하는 모든 상수 a의 값의 합은? [4점]

① 14 ② 15 ③ 16 ④ 17 ⑤ 18

16. 일정 거리 안에 있는 물체를 감지할 수 있는 레이더의 화면이 그림과 같다. 레이더 화면의 중심에 레이더의 위치가 표시되고 있으며 레이더 화면의 중심에서 서쪽으로 30cm, 북쪽으로 20 cm 떨어진 지점에 본부의 위치가 표시되고 있다.

레이더 화면의 중심에서 서쪽으로 $30\,\mathrm{cm}$, 남쪽으로 $40\,\mathrm{cm}$ 떨어진 지점을 A, 레이더 화면의 중심에서 동쪽으로 $50\,\mathrm{cm}$ 떨어진 지점을 B라 하자. 어떤 물체가 레이더 화면의 A지점에서 나타 나서 B지점을 향해 일직선으로 지나갔다. 이 물체가 본부와 가장 가까워졌을 때의 레이더 화면상의 거리가 a cm 이다. a의 값은? (단, 레이더 화면은 평면에 원으로 표시되며 본부와 물체의 크기는 무시한다.) [4점]

- ② $24\sqrt{5}$
- $3 \frac{73\sqrt{5}}{3}$

- $4 \frac{74\sqrt{5}}{3}$
- ⑤ $25\sqrt{5}$

17. 모든 실수 x에 대하여 다항식 f(x)가 다음 조건을 만족시킨다.

- (7) f(x) < 0
- (나) $\{f(x+1)\}^2 9 = (x-1)(x+1)(x^2+5)$

다항식 f(x+a)를 x-2로 나눈 나머지가 -6이 되도록 하는 모든 상수 *a*의 값의 곱은? [4점]

- $\bigcirc -9$ $\bigcirc -7$ $\bigcirc -5$ $\bigcirc -3$ $\bigcirc -1$

18. 양수 k에 대하여 이차함수 $y = -\frac{x^2}{2} + k$ 의 그래프와 직선 y=mx 가 만나는 서로 다른 두 점을 각각 A , B 라 하자. 다음은 실수 m 의 값에 관계없이 $\frac{1}{\overline{OA}} + \frac{1}{\overline{OB}}$ 이 일정한 값을 갖기 위한 k의 값을 구하는 과정이다. (단, O는 원점이다.)

두 점 A, B의 x 좌표를 각각 α , $\beta(\alpha < 0 < \beta)$ 라 하면

 $lpha,\ eta$ 는 이차방정식 $-rac{x^2}{2}+k=mx$ 의 근이므로

이차방정식의 근과 계수의 관계에 의해

 $\alpha + \beta = -2m$, $\alpha\beta = -2k$

두 점 A, B는 직선 y = mx위의 점이므로

 $A(\alpha, m\alpha), B(\beta, m\beta)$

 $\overline{OA} = -\alpha \times (7)$, $\overline{OB} = \beta \times (7)$

$$\frac{1}{\overline{OA}} + \frac{1}{\overline{OB}} = \frac{1}{-\alpha \times (7)} + \frac{1}{\beta \times (7)}$$

$$= \frac{\alpha - \beta}{\alpha \beta \times (7)}$$

$$= \frac{-\sqrt{4m^2 + (1)}}{-2k \times (7)}$$

실수 m의 값에 관계없이 $\frac{1}{\overline{OA}} + \frac{1}{\overline{OB}}$ 이 갖는 일정한 값을

t라 하자.

$$t^2 = \frac{4m^2 + \boxed{(\downarrow\downarrow)}}{\left(2k \times \boxed{(7\downarrow)}\right)^2}$$
 이므로

이를 정리하면 $4(1-k^2t^2)m^2+4(2k-k^2t^2)=0$ ····· ① 따라서 \bigcirc 이 m 에 대한 항등식이므로 $k = \boxed{ (다) }$ 이다.

이때
$$\frac{1}{\overline{OA}} + \frac{1}{\overline{OB}} = \frac{1}{k}$$
 이다.

위의 (7), (4)에 알맞은 식을 각각 f(m), g(k)라 하고 (4)에 알맞은 수를 p라 할 때, $f(p) \times g(p)$ 의 값은? [4점]

- ① 2 ② $2\sqrt{5}$ ③ 10 ④ $10\sqrt{5}$ ⑤ 50

 $\mathbf{19}$. 최고차항의 계수가 양수인 다항식 f(x) 가 모든 실수 x 에 대하여

$${f(x)}^3 = 4x^2f(x) + 8x^2 + 6x + 1$$

을 만족시킬 때, <보기>에서 옳은 것만을 있는 대로 고른 것은? [4점]

- ---<보 기>-
- ㄱ. 다항식 f(x)를 x로 나눈 나머지는 1이다.
- ㄴ. 다항식 f(x)의 최고차항의 계수는 4이다.
- ㄷ. 다항식 $\{f(x)\}^3$ 을 x^2-1 로 나눈 나머지는 14x+13이다.
- ① ¬
- 2 L
- ③ ¬, ⊏

- ④ ∟, ⊏
- ⑤ ⊓, ∟, ⊏

20. 좌표평면 위에 원 $C: (x-1)^2 + (y-2)^2 = 4$ 와 두 점 A(4, 3), B(1, 7)이 있다. 원 C 위를 움직이는 점 P에 대하여 삼각형 PAB의 무게중심과 직선 AB사이의 거리의 최솟값은?

[4점]

- ① $\frac{1}{15}$ ② $\frac{2}{15}$ ③ $\frac{1}{5}$ ④ $\frac{4}{15}$ ⑤ $\frac{1}{3}$

21. $\overline{AB}=2\sqrt{3}$, $\overline{BC}=2$ 인 삼각형 ABC에서 선분 BC의 중점을 D라 할 때, $\overline{AD}=\sqrt{7}$ 이다. 각 ACB의 이동분선이 선분 AB와 만나는 점을 E, 선분 CE와 선분 AD가 만나는 점을 P, 각 APE의 이동분선이 선분 AB와 만나는 점을 R, 선분 PR의 연장선이 선분 BC와 만나는 점을 Q라 하자. 삼각형 PRE의 넓이를 S_1 , 삼각형 PQC의 넓이를 S_2 라 할 때, $\frac{S_2}{S_1}=a+b\sqrt{7}$ 이다. ab의 값은? (단, a, b는 유리수이다.) [4점]

 $\bigcirc -16$ $\bigcirc -14$ $\bigcirc -12$ $\bigcirc -10$ $\bigcirc -8$

단답형

22. (7+2i)(7-2i)의 값을 구하시오. (단, $i = \sqrt{-1}$) [3점]

23. 다항식 $x^3 + 5x^2 + 4x + 4$ 를 x - 2로 나눈 나머지를 구하시오. [3점]

24. 전체집합 $U = \{x \mid x = 10 \text{ 이하의 자연수}\}$ 의 두 부분집합 A, B에 대하여

$$A-B=\{2, 3\}, B-A=\{1, 4\}, (A\cup B)^C=\{6, 7, 8\}$$

을 만족시키는 집합 A의 모든 부분집합의 개수를 구하시오.

[3점]

26. 두 실수 x, y에 대하여 연립부등식

$$\begin{cases} y \le 0 \\ 2x + y \ge 0 \\ 4x - y \le 12 \end{cases}$$

의 영역을 좌표평면 위에 나타낼 때, 점 (x, y)가 존재하는 영역의 넓이를 구하시오. $[4 \ A]$

25. 이차함수 $y = x^2 + 2(a-4)x + a^2 + a - 1$ 의 그래프가 x축과 만나지 않도록 하는 정수 a의 최솟값을 구하시오. [3점]

27. 밑면의 반지름의 길이가 $9\,\mathrm{cm}$ 이고 높이가 $15\,\mathrm{cm}$ 인 원기동 모양의 통조림통이 있다. 이 통조림통을 밑면의 가로, 세로의 길이가 각각 $25\,\mathrm{cm}$, $18\,\mathrm{cm}$ 이고 높이가 $15\,\mathrm{cm}$ 인 직육면체 모양의 상자에 담고, 상자의 남은 공간에 높이가 $15\,\mathrm{cm}$ 인 원기동 모양의 통조림통을 한개만 더 담으려고 한다. 더 담으려고 하는 통조림통의 부피의 최댓값이 $a\pi\,\mathrm{cm}^3$ 일 때, a의 값을 구하시오. (단, 통조림통과 상자의 두께는 무시하고 통조림통의 일부가 상자 밖으로 벗어나지 않게 담는다.) $[4\,\mathrm{A}]$

28. 양수 a 에 대하여 이차함수 $y=2x^2-2ax$ 의 그래프의 꼭짓점을 A, x 축과 만나는 두 점을 각각 O, B 라 하자. 점 A 를 지나고 최고차항의 계수가 -1 인 이차함수 y=f(x) 의 그래프가 x 축과 만나는 두 점을 각각 B, C 라 할 때, 선분 BC 의 길이는 3 이다. 삼각형 ACB의 넓이를 구하시오. (단, O는 원점이다.) [4점]

- **29.** $2 \le x \le 4$ 에서 이차함수 $y = x^2 4ax + 4a^2 + b$ 의 최솟값이 4가 되도록 하는 두 실수 a, b에 대하여 2a + b의 최댓값을 M이라 하자. 4M의 값을 구하시오. [4 점]
- 30. 좌표평면 위에 두 원

$$C_1: x^2 + (y-4)^2 = 4$$

$$C_2: (x-6)^2 + (y-4+6\sqrt{3})^2 = 16$$

이 있다. 원 C_1 위를 움직이는 점 $\mathrm{P}(x_1,\,y_1)$ 과 원 C_2 위를 움직이는 점 $\mathrm{Q}(x_2,\,y_2)$ 가 다음 조건을 만족시킨다.

$$(7 \}) \ 0 \leq x_1 \leq 1 \, , \ \frac{2x_1 \! + \! x_2}{3} \! = \! 2$$

(나)
$$y_1 \le 4$$
, $y_2 \ge 4 - 6\sqrt{3}$

선분 PQ 가 그리는 도형의 넓이가 $a-b\pi$ 일 때, a+9b의 값을 구하시오. (단, a, b는 유리수이다.) [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.