Index Class

- 1. Classification problems
- 2. Types of Errors
- 3. Metrics of classification problems

Classification problems

Classification is the problem of identifying to which of a set of categories (sub-populations) a new observation belongs.

The prediction outcome is normally in the form of class <u>probability</u>.

- 1the event is predicted to happen
- 0 the event is not predicted to happen

Metrics - Types of errors

- True positives: predicted = 1, real = 1
- True negative: predicted = 0, real = 0
- False positive: predicted = 1, real = 0
- False negative: predicted = 0, real = 1

Metrics - Types of errors

		Predicted	
		Negative (N)	Positive (P)
O etwal	Negative -	True Negative (TN)	False Positive (FP) Type I Error
Actual	Positive +	False Negative (FN) Type II Error	True Positive (TP)

Metrics - Confusion Matrix

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Metrics - Confusion Matrix

Un estudio investigó 1250 hombres, con sospecha de cáncer de próstata, a los cuales se les realizó una biopsia, 920 dieron positivo a la biopsia y 330 dieron negativo, al finalizar el seguimiento del estudio se confirmó que de los que dieron positivo realmente 750 hombres tenían cáncer de próstata y la prueba tuvo 40 resultados falsos negativos.

Metrics - Types of errors

```
Accuracy (ACC) = \Sigma True positive + \Sigma True negative \Sigma Total population
```

True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$

Specificity (SPC),
Selectivity, True

negative rate (TNR) $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$

Threshold change metrics

Metrics - ROC Curve

A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its discrimination <u>threshold</u> is varied.

1-Specificity = False Positive Rate Sensitivity = True Positive Rate

Metrics - AUC

The AUC represents a model's ability to discriminate between positive and negative classes.

1 is the best result
0.5 is as good as random

Metrics - AUC

