Example_5.9_1910.06490

October 20, 2019

The goal of this worksheet is to justify Example 5.9 in arxiv:1910.06490. We are going to give a plane curve of type (4,6;6,6). The example has equation in a number field K with primitive element α with minimal polynomial $t^4 - 2t^3 - 2t^2 + 18t + 21$. This extension contains the field of cubic roots of unity; the number $\zeta := \frac{1}{6}\alpha^3 - \frac{2}{3}\alpha^2 + \frac{1}{2}\alpha + 2$ is a primitive cubic root of unity.

```
[1]: S.<t>=QQ[]
pol=t^4 - 2*t^3 - 2*t^2 + 18*t + 21
K.<alpha>=NumberField(pol)
zeta=1/6*alpha^3 - 2/3*alpha^2 + 1/2*alpha + 2
zeta.minpoly()
```

[1]: $x^2 + x + 1$

For the construction, we need a nodal cubic C_3 . We provide a parametrization.

```
[2]: R. <x,y,z>=K[]
f=x*y*z+x^3-y^3
sb={x:t,y:t^2,z:t^3-1}
f.subs(sb)
```

[2]: 0

We skip the long construction of a curve C_4 with has a singular point P_0 of type \mathbb{A}_3 and such that it intersects C_3 at two common smooth points with intersection number 6.

[4]: (9219/250*alpha^3 - 18186/125*alpha^2 + 26649/250*alpha + 55566/125)*x^4 + (3262/125*alpha^3 - 13048/125*alpha^2 + 41034/125*alpha + 27468/125)*x^3*y -

```
80746/125*x^2*y^2 + (-1694/25*alpha^3 + 18256/125*alpha^2 + 5838/125*alpha - 117264/125)*x*y^3 + (-9051/250*alpha^3 + 18102/125*alpha^2 - 28161/250*alpha - 16191/25)*y^4 + (-188/5*alpha^3 + 564/5*alpha^2 - 564/5*alpha - 66276/125)*x^3*z + (-4428/125*alpha^3 + 17364/125*alpha^2 - 12588/125*alpha - 53484/125)*x^2*y*z + (-4312/125*alpha^3 + 17248/125*alpha^2 - 13632/125*alpha - 15384/25)*x*y^2*z + (-188/5*alpha^3 + 564/5*alpha^2 - 564/5*alpha - 55924/125)*y^3*z + (41/5*alpha^3 - 164/5*alpha^2 + 99/5*alpha + 762/5)*x^2*z^2 - 4676/125*x*y*z^2 + (-37/5*alpha^3 + 32*alpha^2 - 27*alpha - 432/5)*y^2*z^2 + (-8/5*alpha^3 + 4*alpha^2 - 108/5)*x*z^3 + (-4/5*alpha^3 + 16/5*alpha^2 - 36/5*alpha - 48/5)*y*z^3 + z^4
```

We check the property of intersection number.

- [5]: g.subs(sb).factor()
- [5]: (t^2 + (-2/15*alpha^3 + 8/15*alpha^2 6/5*alpha 8/5)*t 1/6*alpha^3 + 2/3*alpha^2 1/2*alpha 2)^6

Let us compute the singular points

- [6]: jacobianideal=g.jacobian_ideal().minimal_associated_primes() jacobianideal
- [6]: [Ideal (z, $42*x + (9*alpha^3 28*alpha^2 + 11*alpha + 116)*y)$ of Multivariate Polynomial Ring in x, y, z over Number Field in alpha with defining polynomial $t^4 2*t^3 2*t^2 + 18*t + 21$
- [7]: a1=K(x.reduce(jacobianideal[0])(y=1))

The singular point P_0 is $\left[-\frac{3}{14}\alpha^3 + \frac{2}{3}\alpha^2 - \frac{11}{42}\alpha - \frac{58}{21}:1:0\right]$. To check its type we define a 2-variable ring (an affine chart for which the singular point is the origin). We look for the tangent cone of this point of multiplicity 2.

```
[8]: T.<u,v>=K[]
p0=g(y=1,z=u,x=v+a1)
tangentcone=sum(p0.monomial_coefficient(m)*m for m in [v^2,u*v,u^2]).factor()[0]
tangentcone
```

[8]: $(u + (-13/18*alpha^3 + 20/9*alpha^2 - 5/6*alpha - 28/3)*v, 2)$

We perform a change of coordinates to get a more accurate Newton polygon

```
[9]: a2=-tangentcone[0].monomial_coefficient(v)^-1
   p0=g(y=1,z=u,x=v+a1+a2*u)
   p0.newton_polytope()
```

[9]:

A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices

Together with the below computation, we get the confirmation that P_0 is of type \mathbb{A}_3 .

```
[10]: newtonprincipal=sum(p0.monomial_coefficient(m)*m for m in [v^2,u^2*v,u^4]) newtonprincipal.discriminant(v)
```

[10]: 12288/78125*u^4

The following computation ensures that $x - a_1y - a_2z = 0$ is the tangent line of C_4 at the singular point P_0 .

```
[11]: g(x=a1*y+a2*z)
```

[11]: -16/3125*z⁴

We perform a projective change of coordinates for which $P_0 = [0:1:0]$ and the tangent line of C_4 at P_0 is z = 0.

```
[12]: change={x:z+a1*y+a2*x,z:x}
```

[13]: c4=g.subs(change)

[14]: c4.jacobian_ideal().minimal_associated_primes()

[14]: [Ideal (z, x) of Multivariate Polynomial Ring in x, y, z over Number Field in alpha with defining polynomial $t^4 - 2*t^3 - 2*t^2 + 18*t + 21$]

```
[15]: c4(z=0)
```

[15]: -16/3125*x⁴

```
[16]: c3=f.subs(change)
```

Let us consider the rational 2 : 1 map $\sigma : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$, $\sigma([x:y:z]) := [xz:y^2:z^2]$. The strict preimages of C_3 and C_4 are C_6 and D_4 , respectively.

```
[17]:  d4=R(c4(x=x*z,y=y^2,z=z^2)/z^4) 
c6=R(c3(x=x*z,y=y^2,z=z^2))
```

```
[18]: c6.jacobian_ideal().minimal_associated_primes()
```

- [18]: [Ideal (z, y) of Multivariate Polynomial Ring in x, y, z over Number Field in alpha with defining polynomial t^4 2*t^3 2*t^2 + 18*t + 21,

 Ideal (y, 18*x + (13*alpha^3 40*alpha^2 + 15*alpha + 168)*z) of Multivariate Polynomial Ring in x, y, z over Number Field in alpha with defining polynomial t^4 2*t^3 2*t^2 + 18*t + 21]
- [19]: d4.jacobian_ideal().minimal_associated_primes()
- [19]: [Ideal (z, y, x) of Multivariate Polynomial Ring in x, y, z over Number Field in alpha with defining polynomial $t^4 2*t^3 2*t^2 + 18*t + 21$

The curve C_6 is not smooth, but it intersects the smooth curve D_4 at four points with intersection number 6.

```
[20]: c6.resultant(d4).factor()
```

[20]: ((-53263902703616/224482040752766143798828125*alpha^3 + 53263902703616/74827346917588714599609375*alpha^2 - 53263902703616/74827346917588714599609375*alpha - 2111493986320384/224482040752766143798828125)) * (y^4 + (85/24*alpha^3 - 85/6*alpha^2 + 35/8*alpha + 70)*y^2*z^2 + (775/48*alpha^3 - 5375/96*alpha^2 + 125/4*alpha + 6475/32)*z^4)^6

It is not hard to check that no conic is tangent to the curves at the four points.

[]: