

DSAA2011 Machine Learning

L3 Supervised Learning: Regression and Classification II

Dr. Zixin Zhong

Data Science and Analytics Thrust Information Hub Hong Kong University of Sceience and Technology (Guangzhou)

February 21, 2025

Syllabus

Week #	Topic	Lecturer
1	Introduction + course Info	Zixin
2-4	Supervised learning: regression and classification	Zixin
5	Model evaluation and choice + feature selection	Zixin
6	Boosting methods	Weikai
	Midterm-29 March (Sat): save your day and mark it o	n calendar!
7-8	Unsupervised learning: clustering	Weikai
9	Active learning We	
10-11	Markov and graphical models	Weikai
12-13	Online learning	Zixin
14	Final exam	

Zixin Zhong (HKUTS-GZ) February 21, 2025

Office hours (weekly, starting from 11 Feb)

Time	Venue	Instructor/TA	Email	
7-8PM Wed	Rm E2-301	Weiwen CHEN	wchen948@connect.hkust-gz.edu.cn	
(7-8PM Tue)		Guanghua LI	gli945@connect.hkust-gz.edu.cn	
		Yang LUO	yluo208@connect.hkust-gz.edu.cn	
		Chunming MA	cma859@connect.hkust-gz.edu.cn	
		Jingyi PAN	jpan305@connect.hkust-gz.edu.cn	
		Liangwei WANG	lwang344@connect.hkust-gz.edu.cn	
		Yifan ZHANG	yzhang854@connect.hkust-gz.edu.cn	
3-4PM Fri	Rm W1-316	Weikai Yang	weikaiyang@hkust-gz.edu.cn	
	Rm W1-308	Zixin Zhong	zixinzhong@hkust-gz.edu.cn	

♡ Please show respect and appreciation to our TAs!

Zixin Zhong (HKUTS-GZ) February 21, 2025

Recap of Lecture 2

- Maximum likelihood estimation (MLE)
- Least squares and linear regression
 - Linear regression with multiple outputs
 - Linear regression and MLE

Zixin Zhong (HKUTS-GZ) February 21, 2025

Maximum likelihood estimation (MLE)

- Consistency, as the sample size increases to infinity, the estimator will converge to the true parameter value: $\hat{\theta}_{MI} \xrightarrow{p} \theta$ as $n \to \infty$.
 - We say $X_n \stackrel{p}{\longrightarrow} X$ as $n \to \infty$ if

$$\lim_{n\to\infty}\Pr(|X_n-X|>\varepsilon)=0\ \forall \varepsilon>0.$$

- Unbiasedness. MLE is not necessarily unbiased, but in certain cases, it can be unbiased.
 - ▶ We say an estimator of a given parameter is unbiased if its expected value is equal to the true value of the parameter.

Zixin Zhong (HKUTS-GZ)

Maximum likelihood estimation (MLE)

- Efficiency. MLE is asymptotically efficient in large samples, i.e., it achieves the lowest possible variance among all unbiased estimators.
 - Cramér-Rao Lower Bound (CRLB): theoretical lower bound for the variance of any unbiased estimator.
- Asymptotic Normality. MLE is asymptotically normal:

$$\sqrt{n}(\hat{\theta}_{\mathrm{ML}} - \theta) \stackrel{d}{\longrightarrow} \mathcal{N}(0, I(\theta)^{-1}).$$

- ▶ $I(\theta)$: Fisher information of θ (larger information \Longrightarrow smaller variance).
- We say $X_n \stackrel{d}{\longrightarrow} X$ as $n \to \infty$ if

$$\lim_{n\to\infty}F_{X_n}(x)=F_X(x)\ \forall x\ \text{at which}\ F_X(x)\ \text{is continuous}.$$

6 / 70

• Model Sensitivity. MLE is sensitive to model assumptions, and incorrect assumptions can lead to biased or inconsistent estimates.

Zixin Zhong (HKUTS-GZ) February 21, 2025

Maximum likelihood estimation (MLE)

- Consistency. as the sample size increases to infinity, the estimator will converge to the true parameter value: $\hat{\theta}_{\mathrm{ML}} \stackrel{p}{\longrightarrow} \theta$ as $n \to \infty$.
- Unbiasedness. MLE is not necessarily unbiased, but in certain cases, it can be unbiased.
- Efficiency. MLE is asymptotically efficient in large samples, i.e., it achieves the lowest possible variance among all unbiased estimators.
- Asymptotic Normality. MLE is asymptotically normal: $\sqrt{n}(\hat{\theta}_{\mathrm{ML}} \theta) \stackrel{d}{\longrightarrow} \mathcal{N}(0, I(\theta)^{-1}).$
- Model Sensitivity. MLE is sensitive to model assumptions, and incorrect assumptions can lead to biased or inconsistent estimates.

Zixin Zhong (HKUTS-GZ) February 21, 2025

Linear regression

• Learning/Training: Given a dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ where $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$, the least squares solution (with offset) is

$$\overline{\mathbf{w}}^* = egin{bmatrix} b^* \ \mathbf{w}^* \end{bmatrix} = (\mathbf{X}^ op \mathbf{X})^{-1} \mathbf{X}^ op \mathbf{y} \in \mathbb{R}^{d+1}$$

where the design matrix and target vector are

$$\mathbf{X} = \begin{bmatrix} -\overline{\mathbf{x}}_1^\top - \\ -\overline{\mathbf{x}}_2^\top - \\ \vdots \\ -\overline{\mathbf{x}}_m^\top - \end{bmatrix} = \begin{bmatrix} 1 & -\mathbf{x}_1^\top - \\ 1 & -\mathbf{x}_2^\top - \\ \vdots & \vdots \\ 1 & -\mathbf{x}_m^\top - \end{bmatrix} \in \mathbb{R}^{m \times (d+1)} \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \in \mathbb{R}^m.$$

ullet Prediction/Testing: Given a new feature vector (sample, example) $\mathbf{x}_{\mathrm{new}}$, the prediction based on the least squares solution is

$$\hat{y}_{ ext{new}} = egin{bmatrix} 1 \ \mathbf{x}_{ ext{new}} \end{bmatrix}^{ op} \overline{\mathbf{w}}^* = b^* + \mathbf{x}_{ ext{new}}^{ op} \mathbf{w}^*.$$

8 / 70

Zixin Zhong (HKUTS-GZ) February 21, 2025

Linear regression with multiple outputs

- Suppose there are h outputs we want to predict (above h = 1).
- Given a dataset $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m$ where $\mathbf{x}_i \in \mathbb{R}^d$ (column vector) and $\mathbf{y}_i \in \mathbb{R}^{1 \times h}$ (row vector), the model to be used is

$$\underbrace{ \begin{bmatrix} y_{1,1} & y_{1,2} & \dots & y_{1,h} \\ y_{2,1} & y_{2,2} & \dots & y_{2,h} \\ \vdots & \vdots & \ddots & \vdots \\ y_{m,1} & y_{m,2} & \dots & y_{m,h} \end{bmatrix}}_{\mathbf{Y} \in \mathbb{R}^{m \times h}} = \underbrace{ \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,d} \\ 1 & x_{2,1} & \dots & x_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{m,1} & \dots & x_{m,d} \end{bmatrix}}_{\mathbf{X} \in \mathbb{R}^{m \times (d+1)}} \underbrace{ \begin{bmatrix} b_1 & b_2 & \dots & b_h \\ w_{1,1} & w_{1,2} & \dots & w_{1,h} \\ \vdots & \vdots & \ddots & \vdots \\ w_{d,1} & w_{d,2} & \dots & w_{d,h} \end{bmatrix} }_{\mathbf{W} \in \mathbb{R}^{(d+1) \times h}}$$

- When h=1, this particularizes to standard linear regression.
- This is exactly h separate linear regression problems.

Zixin Zhong (HKUTS-GZ)

Linear regression with multiple outputs

- Suppose there are h outputs we want to predict (above h = 1).
- Given a dataset $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m$ where $\mathbf{x}_i \in \mathbb{R}^d$ (column vector) and $\mathbf{y}_i \in \mathbb{R}^{1 \times h}$ (row vector), the model to be used is

$$\underbrace{ \begin{bmatrix} y_{1,1} & y_{1,2} & \dots & y_{1,h} \\ y_{2,1} & y_{2,2} & \dots & y_{2,h} \\ \vdots & \vdots & \ddots & \vdots \\ y_{m,1} & y_{m,2} & \dots & y_{m,h} \end{bmatrix}}_{\mathbf{Y} \in \mathbb{R}^{m \times h}} = \underbrace{ \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,d} \\ 1 & x_{2,1} & \dots & x_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{m,1} & \dots & x_{m,d} \end{bmatrix}}_{\mathbf{X} \in \mathbb{R}^{m \times (d+1)}} \underbrace{ \begin{bmatrix} b_1 & b_2 & \dots & b_h \\ w_{1,1} & w_{1,2} & \dots & w_{1,h} \\ \vdots & \vdots & \ddots & \vdots \\ w_{d,1} & w_{d,2} & \dots & w_{d,h} \end{bmatrix} }_{\mathbf{W} \in \mathbb{R}^{(d+1) \times h}}$$

- When h=1, this particularizes to standard linear regression.
- This is exactly h separate linear regression problems.

Zixin Zhong (HKUTS-GZ)

Linear regression with multiple outputs

• Learning/Training: Least Squares Solution

$$\overline{oldsymbol{\mathsf{W}}}^* = (oldsymbol{\mathsf{X}}^{ op} oldsymbol{\mathsf{X}})^{-1} oldsymbol{\mathsf{X}}^{ op} oldsymbol{\mathsf{Y}} \in \mathbb{R}^{(d+1) imes h}.$$

• Prediction/Testing: Given a new feature vector $\mathbf{x}_{\text{new}} \in \mathbb{R}^d$, we can predict its h outputs as

$$\hat{\mathbf{y}}_{ ext{new}} = egin{bmatrix} 1 \ \mathbf{x}_{ ext{new}} \end{bmatrix}^ op \overline{\mathbf{W}}^* \in \mathbb{R}^{1 imes h}$$

- The k-th $(1 \le k \le h)$ component of $\hat{\mathbf{y}}_{new}$ is the prediction of the k-th output based the dataset $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m$.
- \odot Is the matrix $\mathbf{X}^{\top}\mathbf{X}$ invertible?

Zixin Zhong (HKUTS-GZ)

- Assume $y_i = \mathbf{w}^{\top} \mathbf{x}_i + b + e_i$ for each data point i and error $e_i \sim \mathcal{N}(0, \sigma^2)$.
- Likelihood function for the entire dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ is

$$L\left(\mathbf{W}, \sigma^{2} \mid \{y_{i}, \mathbf{x}_{i}\}\right) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{\left(y_{i} - \mathbf{W}^{\top} \mathbf{x}_{i}\right)^{2}}{2\sigma^{2}}\right)$$

• If **X** has full column rank, $\mathbf{X}^{\top}\mathbf{X}$ is invertible and the maximizer $(\hat{\mathbf{w}}, \hat{\sigma}^2)$ is:

$$\begin{split} \hat{\mathbf{w}} &= (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} \quad \text{(least squares solution)}, \\ \hat{\sigma}^2 &= \frac{1}{m}\sum_{i=1}^m (y_i - \left[1 \ x_i^{\top}\right] \cdot \hat{\mathbf{w}})^2 = \frac{1}{m}(\mathbf{X}\hat{\mathbf{w}} - \mathbf{y})^{\top}(\mathbf{X}\hat{\mathbf{w}} - \mathbf{y}). \end{split}$$

MLE of distribution of error: $e_i \sim \mathcal{N}(0, \hat{\sigma}^2) = \mathcal{N}(0, (\mathbf{X}\hat{\mathbf{w}} - \mathbf{y})^{\top}(\mathbf{X}\hat{\mathbf{w}} - \mathbf{y})/m)$.

Zixin Zhong (HKUTS-GZ)

• If $\mathbf{X} = \begin{bmatrix} \overline{\mathbf{x}}_1^\top \ \overline{\mathbf{x}}_2^\top \ \dots \ \overline{\mathbf{x}}_n^\top \end{bmatrix}^\top$ has full column rank, $\mathbf{X}^\top \mathbf{X}$ is invertible and

$$\frac{\partial}{\partial \overline{\mathbf{w}}} \log L(\overline{\mathbf{w}}, \sigma^2 \mid \{y_i, \mathbf{x}_i\}) = \frac{1}{\sigma^2} \sum_{i=1}^m \left(y_i - \overline{\mathbf{w}}^\top \overline{\mathbf{x}}_i \right) \overline{\mathbf{x}}_i = \mathbf{0}_{(d+1) \times 1}$$
(0.1)

$$\Rightarrow \overline{\mathbf{w}}^* = (\mathbf{X}^{ op}\mathbf{X})^{-1}\mathbf{X}^{ op}\mathbf{y}.$$

Zixin Zhong (HKUTS-GZ)

• If $\mathbf{X} = [\overline{\mathbf{x}}_1^\top \overline{\mathbf{x}}_2^\top \dots \overline{\mathbf{x}}_n^\top]^\top$ has full column rank, $\mathbf{X}^\top \mathbf{X}$ is invertible and

$$\frac{\partial}{\partial \overline{\mathbf{w}}} \log L\left(\overline{\mathbf{w}}, \sigma^2 \mid \{y_i, \mathbf{x}_i\}\right) = \frac{1}{\sigma^2} \sum_{i=1}^m \left(y_i - \overline{\mathbf{w}}^\top \overline{\mathbf{x}}_i\right) \overline{\mathbf{x}}_i = \mathbf{0}_{(d+1)\times 1} \qquad (0.1)$$

$$\Rightarrow \overline{\mathbf{w}}^* = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}.$$

Proof. Firstly, (0.1) can be rewritten as $\sum_{i=1}^{m} \left(\overline{\mathbf{w}}^{\top} \overline{\mathbf{x}}_{i}\right) \overline{\mathbf{x}}_{i} = \sum_{i=1}^{m} y_{i} \overline{\mathbf{x}}_{i}$.

Zixin Zhong (HKUTS-GZ) February 21, 2025

Proof. Firstly, (0.1) can be rewritten as $\sum_{i=1}^{m} \left(\overline{\mathbf{w}}^{\top} \overline{\mathbf{x}}_{i}\right) \overline{\mathbf{x}}_{i} = \sum_{i=1}^{m} y_{i} \overline{\mathbf{x}}_{i}$. Then observe that

$$\sum_{i=1}^{m} y_i \overline{\mathbf{x}}_i = \begin{bmatrix} \overline{\mathbf{x}}_1 & \overline{\mathbf{x}}_2 & \dots & \overline{\mathbf{x}}_n \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \mathbf{X}^{\top} \mathbf{y},$$

Zixin Zhong (HKUTS-GZ) February 21, 2025 14/70

Proof. Firstly, (0.1) can be rewritten as $\sum_{i=1}^{m} \left(\overline{\mathbf{w}}^{\top} \overline{\mathbf{x}}_{i}\right) \overline{\mathbf{x}}_{i} = \sum_{i=1}^{m} y_{i} \overline{\mathbf{x}}_{i}$. Then observe that

$$\begin{split} \sum_{i=1}^{m} y_{i} \overline{\mathbf{x}}_{i} &= \begin{bmatrix} \overline{\mathbf{x}}_{1} & \overline{\mathbf{x}}_{2} & \dots & \overline{\mathbf{x}}_{n} \end{bmatrix} \cdot \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} = \mathbf{X}^{\top} \mathbf{y}, \\ \sum_{i=1}^{m} \left(\overline{\mathbf{w}}^{\top} \overline{\mathbf{x}}_{i} \right) \overline{\mathbf{x}}_{i} &= \sum_{i=1}^{m} \left(\overline{\mathbf{x}}_{i}^{\top} \overline{\mathbf{w}} \right) \overline{\mathbf{x}}_{i} = \sum_{i=1}^{m} \overline{\mathbf{x}}_{i} \left(\overline{\mathbf{x}}_{i}^{\top} \overline{\mathbf{w}} \right) = \sum_{i=1}^{m} \left(\overline{\mathbf{x}}_{i} \overline{\mathbf{x}}_{i}^{\top} \right) \overline{\mathbf{w}} = \left(\sum_{i=1}^{m} \overline{\mathbf{x}}_{i} \overline{\mathbf{x}}_{i}^{\top} \right) \overline{\mathbf{w}} \\ &= \begin{bmatrix} \overline{\mathbf{x}}_{1} & \overline{\mathbf{x}}_{2} & \dots & \overline{\mathbf{x}}_{m} \end{bmatrix} \cdot \begin{bmatrix} \overline{\mathbf{x}}_{1}^{\top} \\ \overline{\mathbf{x}}_{2}^{\top} \\ \dots \\ \overline{\mathbf{v}}^{\top} \end{bmatrix} \cdot \overline{\mathbf{w}} = \mathbf{X}^{\top} \mathbf{X} \overline{\mathbf{w}}. \end{split}$$

Zixin Zhong (HKUTS-GZ) February 21, 2025

Proof. Firstly, (0.1) can be rewritten as $\sum_{i=1}^{m} \left(\overline{\mathbf{w}}^{\top} \overline{\mathbf{x}}_{i}\right) \overline{\mathbf{x}}_{i} = \sum_{i=1}^{m} y_{i} \overline{\mathbf{x}}_{i}$. Then observe that

$$\sum_{i=1}^{m} y_{i} \overline{\mathbf{x}}_{i} = \begin{bmatrix} \overline{\mathbf{x}}_{1} & \overline{\mathbf{x}}_{2} & \dots & \overline{\mathbf{x}}_{n} \end{bmatrix} \cdot \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} = \mathbf{X}^{\top} \mathbf{y},$$

$$\sum_{i=1}^{m} (\overline{\mathbf{w}}^{\top} \overline{\mathbf{x}}_{i}) \overline{\mathbf{x}}_{i} = \sum_{i=1}^{m} (\overline{\mathbf{x}}_{i}^{\top} \overline{\mathbf{w}}) \overline{\mathbf{x}}_{i} = \sum_{i=1}^{m} \overline{\mathbf{x}}_{i} (\overline{\mathbf{x}}_{i}^{\top} \overline{\mathbf{w}}) = \sum_{i=1}^{m} (\overline{\mathbf{x}}_{i} \overline{\mathbf{x}}_{i}^{\top}) \overline{\mathbf{w}} = (\sum_{i=1}^{m} \overline{\mathbf{x}}_{i} \overline{\mathbf{x}}_{i}^{\top}) \overline{\mathbf{w}}$$

$$= \begin{bmatrix} \overline{\mathbf{x}}_{1} & \overline{\mathbf{x}}_{2} & \dots & \overline{\mathbf{x}}_{m} \end{bmatrix} \cdot \begin{bmatrix} \overline{\mathbf{x}}_{1}^{\top} \\ \overline{\mathbf{x}}_{2}^{\top} \\ \dots \\ \overline{\mathbf{x}}^{\top} \end{bmatrix}} \cdot \overline{\mathbf{w}} = \mathbf{X}^{\top} \mathbf{X} \overline{\mathbf{w}}.$$

Then (0.1) can be further rewritten as $\mathbf{X}^{\top}\mathbf{X}\overline{\mathbf{w}} = \mathbf{X}^{\top}\mathbf{y}$.

Zixin Zhong (HKUTS-GZ)

Theorem 0.1 (Central limit theorem (CLT))

Suppose $X_1, X_2, X_3 ...$ is a sequence of i.i.d. random variables with $\mathrm{E}\left[X_i\right] = \mu$ and $\mathrm{Var}\left[X_i\right] = \sigma^2 < \infty$. Then, as $n \to \infty$, the distribution of $\sqrt{n}\left(\bar{X}_n - \mu\right)$ converges to $\mathcal{N}\left(0, \sigma^2\right)$:

$$\sqrt{n}\left(\bar{X}_{n}-\mu\right) \xrightarrow{d} \mathcal{N}\left(0,\sigma^{2}\right)$$

Zixin Zhong (HKUTS-GZ) February 21, 2025 15 / 70

Theorem 0.1 (Central limit theorem (CLT))

Suppose $X_1, X_2, X_3 ...$ is a sequence of i.i.d. random variables with $\mathrm{E}\left[X_i\right] = \mu$ and $\mathrm{Var}\left[X_i\right] = \sigma^2 < \infty$. Then, as $n \to \infty$, the distribution of $\sqrt{n}\left(\bar{X}_n - \mu\right)$ converges to $\mathcal{N}\left(0, \sigma^2\right)$:

$$\sqrt{n}\left(\bar{X}_{n}-\mu\right) \xrightarrow{d} \mathcal{N}\left(0,\sigma^{2}\right)$$

• We say $X_n \xrightarrow{d} X$ as $n \to \infty$ if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x) \ \forall x \ \text{at which} \ F_X(x) \ \text{is continuous}.$$

Zixin Zhong (HKUTS-GZ) February 21, 2025 15 / 70

Theorem 0.1 (Central limit theorem (CLT))

Suppose $X_1, X_2, X_3 \dots$ is a sequence of i.i.d. random variables with $E[X_i] = \mu$ and Var $[X_i] = \sigma^2 < \infty$. Then, as $n \to \infty$, the distribution of $\sqrt{n} (\bar{X}_n - \mu)$ converges to $\mathcal{N}(0,\sigma^2)$:

$$\sqrt{n}\left(\bar{X}_n-\mu\right) \xrightarrow{d} \mathcal{N}\left(0,\sigma^2\right)$$

• We say $X_n \xrightarrow{d} X$ as $n \to \infty$ if

$$\lim_{n\to\infty}F_{X_n}(x)=F_X(x)\ \forall x\ \text{at which}\ F_X(x)\ \text{is continuous}.$$

• In the case $\sigma > 0$, CLT implies that the cumulative distribution functions (cdf) of $\sqrt{n}(\bar{X}_n - \mu)$ converge pointwise to the cdf of the $\mathcal{N}(0, \sigma^2)$ distribution:

$$\lim_{n\to\infty} \mathbb{P}\left[\sqrt{n}\left(\bar{X}_n - \mu\right) \le z\right] = \lim_{n\to\infty} \mathbb{P}\left[\frac{\sqrt{n}\left(\bar{X}_n - \mu\right)}{\sigma} \le \frac{z}{\sigma}\right] = \Phi\left(\frac{z}{\sigma}\right)$$

where $\Phi(z)$ is the standard normal cdf evaluated at z. Zixin Zhong (HKUTS-GZ)

Outline

- Linear classification
 - Linear models for binary classification
 - Linear models for multi-class classification

- 2 Polynomial regression
- 3 Ridge regression

Zixin Zhong (HKUTS-GZ) February 21, 2025

Outline

- Linear classification
 - Linear models for binary classification
 - Linear models for multi-class classification

- 2 Polynomial regression
- Ridge regression

Zixin Zhong (HKUTS-GZ) February 21, 2025

Linear models for binary classification

- Main idea: to treat binary classification as regression where each label y_i can only take on -1 or +1.
- If in testing/prediction, $\overline{\mathbf{x}}_{\text{new}}^{\top}\overline{\mathbf{w}}^*$ is positive (resp. negative), predict that $\hat{y}_{\text{new}} = +1$ (resp. $\hat{y}_{\text{new}} = -1$). For example, distinguishing between cats and dogs.

Zixin Zhong (HKUTS-GZ) February 21, 2025

Linear models for binary classification

- Main idea: to treat binary classification as regression where each label y_i can only take on -1 or +1.
- If in testing/prediction, $\overline{\mathbf{x}}_{\mathrm{new}}^{\top}\overline{\mathbf{w}}^*$ is positive (resp. negative), predict that $\hat{y}_{\mathrm{new}}=+1$ (resp. $\hat{y}_{\mathrm{new}}=-1$). For example, distinguishing between cats and dogs.
- Learning/Training: given a dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ (where each $y_i \in \{+1, -1\}$), learn the weights using least squares

$$\overline{\mathbf{w}}^* = egin{bmatrix} b^* \ \mathbf{w}^* \end{bmatrix} = (\mathbf{X}^ op \mathbf{X})^{-1} \mathbf{X}^ op \mathbf{y} \in \mathbb{R}^{d+1}.$$

Zixin Zhong (HKUTS-GZ) February 21, 2025

Linear models for binary classification

- Main idea: to treat binary classification as regression where each label y_i can only take on -1 or +1.
- If in testing/prediction, $\overline{\mathbf{x}}_{\mathrm{new}}^{\top}\overline{\mathbf{w}}^*$ is positive (resp. negative), predict that $\hat{y}_{\mathrm{new}}=+1$ (resp. $\hat{y}_{\mathrm{new}}=-1$). For example, distinguishing between cats and dogs.
- Learning/Training: given a dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ (where each $y_i \in \{+1, -1\}$), learn the weights using least squares

$$\overline{\mathbf{w}}^* = egin{bmatrix} b^* \ \mathbf{w}^* \end{bmatrix} = (\mathbf{X}^ op \mathbf{X})^{-1} \mathbf{X}^ op \mathbf{y} \in \mathbb{R}^{d+1}.$$

• Prediction/Testing: given a new data sample $\mathbf{x}_{\text{new}} \in \mathbb{R}^d$, its predicted label is

$$\hat{y}_{\text{new}} = \operatorname{sign}\left(\overline{\mathbf{x}}_{\text{new}}^{\top}\overline{\mathbf{w}}^{*}\right) = \operatorname{sign}\left(\begin{bmatrix}1\\\mathbf{x}_{\text{new}}\end{bmatrix}^{\top}\overline{\mathbf{w}}^{*}\right) \in \{+1, -1\}.$$

18 / 70

Zixin Zhong (HKUTS-GZ) February 21, 2025

The sign function

For example,

- If the raw prediction $\overline{\mathbf{x}}_{\text{new}}^{\top} \overline{\mathbf{w}}^* = 0.2$, the predicted class is +1;
- If the raw prediction $\overline{\mathbf{x}}_{\text{new}}^{\mathsf{T}} \overline{\mathbf{w}}^* = -0.8$, the predicted class is -1;
- If the raw prediction $\overline{\mathbf{x}}_{\text{new}}^{\top}\overline{\mathbf{w}}^* = 0.0$, we declare error.

Zixin Zhong (HKUTS-GZ) February 21, 2025

• Dataset (\mathbf{x}_i, y_i) , i = 1, 2, 3, 4 includes the samples

$$\mathbf{x}_1 = -7$$
, $\mathbf{x}_2 = -5$, $\mathbf{x}_3 = 1$, $\mathbf{x}_4 = 5$
 $y_1 = -1$, $y_2 = -1$, $y_3 = +1$, $y_4 = +1$

- Here, m = 4 and d = 1 (scalar features).
- Design matrix and target vector are

$$\mathbf{X} = \begin{bmatrix} 1 & -7 \\ 1 & -5 \\ 1 & 1 \\ 1 & 5 \end{bmatrix} \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix}$$

Zixin Zhong (HKUTS-GZ)

• Dataset (\mathbf{x}_i, y_i) , i = 1, 2, 3, 4 includes the samples

$$\mathbf{x}_1 = -7$$
, $\mathbf{x}_2 = -5$, $\mathbf{x}_3 = 1$, $\mathbf{x}_4 = 5$
 $y_1 = -1$, $y_2 = -1$, $y_3 = +1$, $y_4 = +1$

- Here, m = 4 and d = 1 (scalar features).
- Design matrix and target vector are

$$\mathbf{X} = \begin{bmatrix} 1 & -7 \\ 1 & -5 \\ 1 & 1 \\ 1 & 5 \end{bmatrix} \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix}$$

• The linear system $X\overline{w} = y$ is overdetermined and there is no solution for \overline{w} because

$$\operatorname{rank}(\boldsymbol{\mathsf{X}}) < \operatorname{rank}(\tilde{\boldsymbol{\mathsf{X}}}) \text{ where } \tilde{\boldsymbol{\mathsf{X}}} = [\boldsymbol{\mathsf{X}} \ \boldsymbol{\mathsf{y}}].$$

Zixin Zhong (HKUTS-GZ) February 21, 2025

• Using some numerical software, we can find the least square approximation

$$\overline{\mathbf{w}}^* = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} = \begin{bmatrix} 0.2967 \\ 0.1978 \end{bmatrix}.$$

• If we want to predict what's the label for $\mathbf{x}_{new} = -2$, we plug $\mathbf{x}_{new} = -2$ into the learned affine model to get

$$\hat{y}_{\text{new}} = \operatorname{sign} \left(\begin{bmatrix} 1 \\ \mathbf{x}_{\text{new}} \end{bmatrix}^{\top} \overline{\mathbf{w}}^{*} \right)$$

$$= \operatorname{sign} \left(1 \times (0.2967) + (-2) \times (0.1978) \right)$$

$$= \operatorname{sign} (-0.0989) = -1.$$

• So we predict that the label of the new test point $\mathbf{x}_{\rm new} = -2$ is $\hat{y}_{\rm new} = -1$ (negative class).

Zixin Zhong (HKUTS-GZ) February 21, 2025

The predicted label of new point $\mathbf{x}_{\mathrm{new}}$ is $\mathrm{sign}(\overline{\mathbf{x}}_{\mathrm{new}}^{\top}\overline{\mathbf{w}}^*) = -1$ as $\overline{\mathbf{x}}_{\mathrm{new}}^{\top}\overline{\mathbf{w}}^*$ is negative.

Zixin Zhong (HKUTS-GZ)

Python demo: linear model for binary classification

```
import numpy as np
from numpy.linalg import inv
X = np.array([[1,-7], [1,-5], [1,1], [1,5]])
y = np.array([[-1], [-1], [1], [1])
## Linear regression for classification
w = inv(X.T @ X) @ X.T @ y
print("Estimated w")
print(w)
print("\n")
Xt = np.arrav(\lceil \lceil 1, -2 \rceil \rceil)
v predict = Xt @ w
print("Predicted v")
print(y predict)
print("\n")
y class predict = np.sign(y predict)
print("Predicted y class")
print(y class predict)
```


Zixin Zhong (HKUTS-GZ) February 21, 2025

- \spadesuit Main idea for binary classification: to treat binary classification as regression where each label y_i can only take on -1 or +1.
- Learning/Training: given a dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ (where each $y_i \in \{+1, -1\}$), learn the weights using least squares

$$\overline{\mathbf{w}}^* = egin{bmatrix} b^* \ \mathbf{w}^* \end{bmatrix} = (\mathbf{X}^ op \mathbf{X})^{-1} \mathbf{X}^ op \mathbf{y} \in \mathbb{R}^{d+1}.$$

• Prediction/Testing: given a new data sample $\mathbf{x}_{\text{new}} \in \mathbb{R}^d$, its predicted label is

$$\hat{y}_{\mathrm{new}} = \mathrm{sign}\left(\overline{\mathbf{x}}_{\mathrm{new}}^{\top}\overline{\mathbf{w}}^*\right) = \mathrm{sign}\left(\begin{bmatrix}1\\\mathbf{x}_{\mathrm{new}}\end{bmatrix}^{\top}\overline{\mathbf{w}}^*\right) \in \{+1, -1\}.$$

⊙ How can we apply linear models for multi-class classification? Any guess?

Zixin Zhong (HKUTS-GZ) February 21, 2025 24/70

How can we apply linear models for multi-class classification?

Any guess?

Zixin Zhong (HKUTS-GZ)

• Suppose we want to distinguish among cats, dogs and birds. These are labelled as 1, 2, 3 respectively.

Zixin Zhong (HKUTS-GZ) February 21, 2025 26 / 70

- Suppose we want to distinguish among cats, dogs and birds. These are labelled as 1, 2, 3 respectively.
- Idea: to do one-hot encoding of the labels, say $\{1, 2, \dots, C\}$, where C > 2 is the number of classes.
- If sample i has class 1, its label vector is

$$\mathbf{y}_i = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \end{bmatrix}$$

• If sample i has class 2, its label vector is

$$\mathbf{y}_i = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \end{bmatrix}$$

• If sample i has class C, its label vector is

$$\mathbf{y}_i = \begin{bmatrix} 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

Zixin Zhong (HKUTS-GZ)

Linear models for multi-class classification

• Stack all these label vectors into the $m \times C$ label matrix

$$\mathbf{Y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \vdots \\ \mathbf{y}_m \end{bmatrix} = \begin{bmatrix} y_{1,1} & y_{1,2} & \cdots & y_{1,C} \\ y_{2,1} & y_{2,2} & \cdots & y_{2,C} \\ \vdots & \vdots & \ddots & \vdots \\ y_{m,1} & y_{m,2} & \cdots & y_{m,C} \end{bmatrix}$$

- This is a $\{0,1\}$ -valued matrix with m (number of samples) rows and C (number of classes) columns.
- Essentially, we are doing C separate linear classification problems.
- Each determining the "likelihood" of whether we are in class $k \in \{1, 2, ..., C\}$.

Zixin Zhong (HKUTS-GZ) February 21, 2025

Linear models for multi-class classification

• (Training/Learning) The design matrix X is the same. If it has full column rank, find the least squares solution

$$\overline{\mathbf{W}}^* = (\mathbf{X}^{ op}\mathbf{X})^{-1}\mathbf{X}^{ op}\mathbf{Y} \in \mathbb{R}^{(d+1) imes C}.$$

• (Testing/Prediction) Given a new feature vector $\mathbf{x}_{\text{new}} \in \mathbb{R}^d$, we have

$$\hat{y}^{ ext{new}, ext{reg}}[:,k] = \begin{bmatrix} 1 \\ \mathbf{x}_{ ext{new}} \end{bmatrix}^{ op} \overline{\mathbf{W}}^*[:,k] \quad \forall k \in \{1,2,\ldots,C\}$$

• What's the next step?

Zixin Zhong (HKUTS-GZ)

Linear models for multi-class classification

• (Training/Learning) The design matrix **X** is the same. If it has full column rank, find the least squares solution

$$\overline{\mathbf{W}}^* = (\mathbf{X}^{ op}\mathbf{X})^{-1}\mathbf{X}^{ op}\mathbf{Y} \in \mathbb{R}^{(d+1) imes C}.$$

• (Testing/Prediction) Given a new feature vector $\mathbf{x}_{\text{new}} \in \mathbb{R}^d$, we have

$$\hat{y}^{\mathrm{new,reg}}[:,k] = \begin{bmatrix} 1 \\ \mathbf{x}_{\mathrm{new}} \end{bmatrix}^{\top} \overline{\mathbf{W}}^{*}[:,k] \quad \forall k \in \{1,2,\ldots,C\}$$

and predict its class as

$$\hat{y}_{\text{new}} = \underset{k \in \{1, 2, \dots, C\}}{\operatorname{arg max}} \left(\begin{bmatrix} 1 \\ \mathbf{x}_{\text{new}} \end{bmatrix}^{\top} \overline{\mathbf{W}}^{*} [:, k] \right) \in \{1, 2, \dots, C\}$$

where $\overline{\mathbf{W}}^*[:,k] \in \mathbb{R}^{d+1}$ is the k-column of $\overline{\mathbf{W}}^*$.

Numerical example for multi-class classification

• Our m = 4 feature vectors are

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \mathbf{x}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \quad \mathbf{x}_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \quad \mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Each is of dimension d=2.

• The raw classes (there are C = 3 of them) are

$$y_1 = \text{cat}$$
, $y_2 = \text{dog}$, $y_3 = \text{cat}$, $y_4 = \text{bird}$.

• First encode the raw classes into numerical classes, e.g.,

$$y_1 = 1$$
, $y_2 = 2$, $y_3 = 1$, $y_4 = 3$.

Thus cat $\equiv 1$, $dog \equiv 2$, $bird \equiv 3$.

• One-hot encoding in operation!

$$\mathbf{y}_1 = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \end{bmatrix}, \ \mathbf{y}_2 = \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} \end{bmatrix}, \ \mathbf{y}_3 = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \end{bmatrix}, \ \mathbf{y}_4 = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}.$$

Numerical example for multi-class classification

• Design matrix (with bias all-ones column) and target matrix are

$$\mathbf{X} = egin{bmatrix} 1 & 1 & 1 \ 1 & -1 & 1 \ 1 & 1 & 3 \ 1 & 1 & 0 \end{bmatrix} \in \mathbb{R}^{m imes (d+1)} \qquad \mathbf{Y} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{bmatrix} \in \mathbb{R}^{m imes C}.$$

• (Training/Learning) Least squares approximation

$$\overline{\mathbf{W}}^* = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y} = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.2857 & -0.5 & 0.2143 \\ 0.2857 & 0 & -0.2857 \end{bmatrix} \in \mathbb{R}^{(d+1) \times C}$$

Zixin Zhong (HKUTS-GZ)

Numerical example for multi-class classification

- (Prediction/Testing) Given a new sample $\mathbf{x}_{new} = \begin{bmatrix} 0 & -1 \end{bmatrix}^{\top}$.
- For each k = 1, 2, 3, calculate $\begin{bmatrix} 1 \\ \mathbf{x}_{\text{new}} \end{bmatrix}^{\top} \overline{\mathbf{W}}^*[:, k]$.
- We obtain

$$\begin{bmatrix} \mathbf{1} \\ \mathbf{x}_{\mathrm{new}} \end{bmatrix}^{\top} \overline{\mathbf{W}}^{*}[:,1] = \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \\ -\mathbf{1} \end{bmatrix}^{\top} \begin{bmatrix} \mathbf{0} \\ 0.2857 \\ 0.2857 \end{bmatrix} = -0.2857, \begin{bmatrix} \mathbf{1} \\ \mathbf{x}_{\mathrm{new}} \end{bmatrix}^{\top} \overline{\mathbf{W}}^{*}[:,2] = \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \\ -\mathbf{1} \end{bmatrix}^{\top} \begin{bmatrix} 0.5 \\ -0.5 \\ 0 \end{bmatrix} = 0.5,$$
$$\begin{bmatrix} \mathbf{1} \\ \mathbf{x}_{\mathrm{new}} \end{bmatrix}^{\top} \overline{\mathbf{W}}^{*}[:,3] = \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \\ -\mathbf{1} \end{bmatrix}^{\top} \begin{bmatrix} 0.5 \\ 0.2143 \\ -0.2857 \end{bmatrix} = 0.7857.$$

• Its predicted class is

$$\hat{y}_{\text{new}} = \operatorname*{\mathsf{arg\,max}}_{k \in \{1,2,3\}} \left(\begin{bmatrix} 1 \\ \mathbf{x}_{\text{new}} \end{bmatrix}^\top \overline{\mathbf{W}}^* [:,k] \right) = 3 \in \{1,2,3\}.$$

Column position $k \in \{1, 2, 3\}$ of the largest number: predicted class label.

Python demo: setting up and one-hot encoding

```
import numpy as np
from numpy.linalg import inv
from sklearn.preprocessing import OneHotEncoder
X = np.array([[1, 1, 1], [1, -1, 1], [1, 1, 3], [1, 1, 0]])
y_class = np.array([[1], [2], [1], [3]])
y_{onehot} = np.array([[1, 0, 0], [0, 1, 0], [1, 0, 0], [0, 0, 1]])
print("One-hot encoding manual")
print(y class)
print(y_onehot)
print("\n")
print("One-hot encoding function")
onehot encoder = OneHotEncoder(sparse=False)
print(onehot encoder)
Ytr onehot = onehot encoder.fit transform(y class)
print(Ytr_onehot)
```

- sparse=False: determine the datatype of output matrix
- version 1.2 of OneHotEncoder: sparse was renamed to sparse_output

Zixin Zhong (HKUTS-GZ) February 21, 2025

Python demo: training and testing

```
print("Estimated W")
W = inv(X.T @ X) @ X.T @ Ytr_onehot
print(W)
X \text{ test} = \text{np.array}(\lceil \lceil 1, 0, -1 \rceil \rceil)
vt est = X test@W:
print("\n")
print("Test")
print(yt est)
#yt class = [[1 \text{ if } y == max(x) \text{ else } 0 \text{ for } y \text{ in } x] \text{ for } x \text{ in } yt \text{ est } ]
#print("\n")
#print("class label test")
#print(yt class)
print("\n")
print("Predicted class label test using argmax")
print(np.argmax(yt est)+1)
```


Zixin Zhong (HKUTS-GZ) February 21, 2025

Python demo: training and testing

```
print("Estimated W")
W = inv(X.T @ X) @ X.T @ Ytr onehot
print(W)
X_test = np.array([[1, 0, -1]])
yt_est = X_test@W;
print("\n")
print("Test")
print(yt_est)
#vt class = [[1 \text{ if } v == max(x) \text{ else } 0 \text{ for } v \text{ in } x] \text{ for } x \text{ in } vt \text{ est } ]
#print("\n")
#print("class label test")
#print(vt class)
print("\n")
print("Predicted class label test using argmax")
print(np.argmax(yt_est)+1)
```

 \odot Check: is $\mathbf{X}^{\top}\mathbf{X}$ invertible?

Raises:

LinAlgError

If α is not square or inversion fails.

Zixin Zhong (HKUTS-GZ) February 21, 2025

Outline

- - Linear models for binary classification
 - Linear models for multi-class classification
- Polynomial regression

Zixin Zhong (HKUTS-GZ)

Zixin Zhong (HKUTS-GZ) February 21, 2025

Sometimes affine functions do not do a good job!

Zixin Zhong (HKUTS-GZ) February 21, 2025

Sometimes affine functions do not do a good job!

Data points come from a quadratic. Class of affine functions is not sufficiently rich.

Zixin Zhong (HKUTS-GZ) February 21, 2025 35 / 70

Sometimes affine functions do not do a good job!

Data points come from a cubic. Class of affine functions is not sufficiently rich.

Zixin Zhong (HKUTS-GZ) February 21, 2025 36 / 70

Sometimes affine functions do not do a good job!

Data points come from a cubic. Class of affine functions is not sufficiently rich.

Zixin Zhong (HKUTS-GZ) February 21, 2025 36 / 70

Sometimes affine functions do not do a good job!

Data points come from a cubic. Class of affine functions is not sufficiently rich.

Zixin Zhong (HKUTS-GZ) February 21, 2025 36 / 70

XOR dataset in d = 2 dimensions.

$$\mathbf{x}_1 = \begin{bmatrix} +1 & +1 \end{bmatrix}^{\top}$$

$$\mathbf{x}_2 = \begin{bmatrix} -1 & +1 \end{bmatrix}^{\top}$$

$$\mathbf{x}_3 = \begin{bmatrix} +1 & -1 \end{bmatrix}^{\top}$$

$$\mathbf{x}_4 = \begin{bmatrix} -1 & -1 \end{bmatrix}^{\top}$$

XOR dataset in d = 2 dimensions.

$$\mathbf{x}_1 = \begin{bmatrix} +1 & +1 \end{bmatrix}^{\top}$$

$$\mathbf{x}_2 = \begin{bmatrix} -1 & +1 \end{bmatrix}^{\top}$$

$$\mathbf{x}_3 = \begin{bmatrix} +1 & -1 \end{bmatrix}^{\top}$$

$$\mathbf{x}_4 = \begin{bmatrix} -1 & -1 \end{bmatrix}^{\top}$$

- XOR (exclusive OR) logical operation
- fundamental binary operation in Boolean logic
- output: 1 when the inputs are different, and 0 when the inputs are the same

XOR dataset in d = 2 dimensions.

$$\mathbf{x}_1 = \begin{bmatrix} +1 & +1 \end{bmatrix}^{\top}$$

$$\mathbf{x}_2 = \begin{bmatrix} -1 & +1 \end{bmatrix}^{\top}$$

$$\mathbf{x}_3 = \begin{bmatrix} +1 & -1 \end{bmatrix}^{\top}$$

$$\mathbf{x}_4 = \begin{bmatrix} -1 & -1 \end{bmatrix}^{\top}$$

37 / 70

- No linear/affine classifier can separate the training samples without error.
- The quadratic function $f(x_1, x_2) = x_1x_2$ (product of first and second components) can separate the training samples without error.

Zixin Zhong (HKUTS-GZ) February 21, 2025

• We would like to model nonlinear decision boundaries or surfaces.

Zixin Zhong (HKUTS-GZ) February 21, 2025

- We would like to model nonlinear decision boundaries or surfaces.
- A polynomial function of order 2 with d = 1 variables

$$f_{\mathbf{w}}(x) = w_0 + w_1 x + w_2 x^2$$
 $\mathbf{w} = (w_0, w_1, w_2)$

• A polynomial function of order p with d=1 variables

$$f_{\mathbf{w}}(x) = w_0 + w_1 x + w_2 x^2 + \ldots + w_p x^p$$
 $\mathbf{w} = (w_0, w_1, \ldots, w_p)$

• A polynomial function of order 1 with d = 2 variables

$$f_{\mathbf{w}}(x_1, x_2) = w_0 + w_1 x_1 + w_2 x_2$$
 $\mathbf{w} = (w_0, w_1, w_2)$

• A polynomial function of order 2 with d = 2 variables

$$f_{\mathbf{w}}(x_1, x_2) = w_0 + w_1 x_1 + w_2 x_2 + w_{1,2} x_1 x_2 + w_{1,1} x_1^2 + w_{2,2} x_2^2$$

 $\mathbf{w} = (w_0, w_1, w_2, w_{1,2}, w_{1,1}, w_{2,2})$

• For example, a polynomial function of order 2 in dimension d=2

$$f_{\mathbf{w}}(x_1, x_2) = w_0 + w_1 x_1^{1} + w_2 x_2^{1} + w_{1,2} x_1^{1} x_2^{1} + w_{1,1} x_1^{2} + w_{2,2} x_2^{2}$$

$$\mathbf{w} = (w_0, w_1, w_2, w_{1,2}, w_{1,1}, w_{2,2})$$

Each term in $f_{\mathbf{w}}(x_1, x_2)$ is called a monomial (a product of constants and variables).

The maximum sum of powers (degree) of the x_1, x_2 terms is 2, e.g.,

$$\deg(w_2x_2^1) = 0 + 1 = 1, \quad \deg(w_{1,2}x_1^1x_2^1) = 1 + 1 = 2, \quad \deg(w_{2,2}x_2^2) = 0 + 2 = 2.$$

Zixin Zhong (HKUTS-GZ) February 21, 2025

• For example, a polynomial function of order 2 in dimension d=2

$$f_{\mathbf{w}}(x_1, x_2) = w_0 + w_1 x_1^{1} + w_2 x_2^{1} + w_{1,2} x_1^{1} x_2^{1} + w_{1,1} x_1^{2} + w_{2,2} x_2^{2}$$

$$\mathbf{w} = (w_0, w_1, w_2, w_{1,2}, w_{1,1}, w_{2,2})$$

Each term in $f_{\mathbf{w}}(x_1, x_2)$ is called a monomial (a product of constants and variables).

The maximum sum of powers (degree) of the x_1, x_2 terms is 2, e.g.,

$$\deg(w_2x_2^1) = 0 + 1 = 1, \quad \deg(w_{1,2}x_1^1x_2^1) = 1 + 1 = 2, \quad \deg(w_{2,2}x_2^2) = 0 + 2 = 2.$$

• In general, for *d*-variable quadratic (order-2) model,

$$f_{\mathbf{w}}(x_1, x_2, \dots, x_d) = w_0 + \sum_{i=1}^d w_i x_i + \sum_{1 \le i \le j \le d} w_{i,j} x_i x_j.$$

• For *d*-variable, cubic model,

$$f_{\mathbf{w}}(x_1, x_2, \dots, x_d) = w_0 + \sum_{i=1}^d w_i x_i + \sum_{1 \le i \le j \le d} w_{i,j} x_i x_j + \sum_{1 \le i \le j \le k \le d} w_{i,j,k} x_i x_j x_k$$

[Optional to know] How many terms are there here?

Zixin Zhong (HKUTS-GZ) February 21, 2025

• For *d*-variable, cubic model,

$$f_{\mathbf{w}}(x_1, x_2, \dots, x_d) = w_0 + \sum_{i=1}^d w_i x_i + \sum_{1 \le i \le j \le d} w_{i,j} x_i x_j + \sum_{1 \le i \le j \le k \le d} w_{i,j,k} x_i x_j x_k$$

[Optional to know] How many terms are there here?

$$\binom{d-1}{0} + \binom{d}{1} + \binom{d+1}{2} + \binom{d+2}{3} = \binom{d+3}{3}.$$

• For *d*-variable, cubic model,

$$f_{\mathbf{w}}(x_1, x_2, \dots, x_d) = w_0 + \sum_{i=1}^d w_i x_i + \sum_{1 \le i \le j \le d} w_{i,j} x_i x_j + \sum_{1 \le i \le j \le k \le d} w_{i,j,k} x_i x_j x_k$$

[Optional to know] How many terms are there here?

$$\binom{d-1}{0} + \binom{d}{1} + \binom{d+1}{2} + \binom{d+2}{3} = \binom{d+3}{3}.$$

• For a d-variable, order-p polynomial, there are

$$\binom{d+p}{p}$$
 terms.

The point is that if d and/or p is large, this is a very large number.

Generalized Linear Discriminant Function

$$f_{\mathbf{w}}(\mathbf{x}) = w_0 + \sum_{i=1}^d w_i x_i + \sum_{1 \le i \le j \le d} w_{i,j} x_i x_j + \sum_{1 \le i \le j \le k \le d} w_{i,j,k} x_i x_j x_k$$

Zixin Zhong (HKUTS-GZ)

Generalized Linear Discriminant Function

$$f_{\mathbf{w}}(\mathbf{x}) = w_0 + \sum_{i=1}^d w_i x_i + \sum_{1 \le i \le j \le d} w_{i,j} x_i x_j + \sum_{1 \le i \le j \le k \le d} w_{i,j,k} x_i x_j x_k$$

e i-th $(1 \leq i \leq d)$ component $f_{\mathbf{w}}(\mathbf{x}) = \mathbf{P}\mathbf{w} = \begin{bmatrix} \mathbf{p}_1^{\top}\mathbf{w} \\ \vdots \\ \mathbf{p}_m^{\top}\mathbf{w} \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \\ \vdots \\ w_{i,j} \\ \vdots \\ w_{i,j,k} \\ \vdots \end{bmatrix}$ • Noting that $x_{l,i}$ is the *i*-th $(1 \le i \le d)$ component of the *l*-th $(1 \le l \le m)$ sample, we can stack this into

$$f_{\mathsf{w}}(\mathsf{x}) = \mathsf{Pw} = egin{bmatrix} \mathsf{p}_1^{ op} \mathsf{w} \ dots \ \mathsf{p}_m^{ op} \mathsf{w} \end{bmatrix}$$

and

$$\mathbf{v}_{l}^{\top}\mathbf{w} = \begin{bmatrix} 1 & x_{l,1} & \dots & x_{l,d} & \dots & x_{l,i}x_{l,j} & \dots & x_{l,i}x_{l,j}x_{l,k} & \dots \end{bmatrix}$$

Zixin Zhong (HKUTS-GZ) February 21, 2025

Note that the polynomial matrix

$$\mathbf{P} = \mathbf{P}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m) = egin{bmatrix} -\mathbf{p}_1^ op - \\ -\mathbf{p}_2^ op - \\ dots \\ -\mathbf{p}_m^ op - \end{bmatrix} \in \mathbb{R}^{m imes inom{d+p}{p}}$$

is a function of the data samples $\{x_1, x_2, \dots, x_m\}$.

• For an *d*-variable, order-*p* polynomial, the matrix **P** is of size $m \times {d+p \choose p}$.

Zixin Zhong (HKUTS-GZ) February 21, 2025

Note that the polynomial matrix

$$\mathbf{P} = \mathbf{P}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m) = egin{bmatrix} -\mathbf{p}_1^{ op} - \ -\mathbf{p}_2^{ op} - \ dots \ -\mathbf{p}_m^{ op} - \end{bmatrix} \in \mathbb{R}^{m imes inom{d+p}{p}}$$

is a function of the data samples $\{x_1, x_2, \dots, x_m\}$.

- For an *d*-variable, order-*p* polynomial, the matrix **P** is of size $m \times {d+p \choose p}$.
- When we do not use a polynomial, then for a d-variable, order-1 polynomial (affine model), \mathbf{P} is of size $m \times {d+1 \choose 1} = m \times (d+1)$.

Zixin Zhong (HKUTS-GZ) February 21, 2025

• Note that the polynomial matrix

$$\mathbf{P} = \mathbf{P}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m) = egin{bmatrix} -\mathbf{p}_1^ op - \ -\mathbf{p}_2^ op - \ dots \ -\mathbf{p}_m^ op - \end{bmatrix} \in \mathbb{R}^{m imes inom{d+p}{p}}$$

is a function of the data samples $\{x_1, x_2, \dots, x_m\}$.

- For an *d*-variable, order-*p* polynomial, the matrix **P** is of size $m \times {d+p \choose p}$.
- When we do not use a polynomial, then for a d-variable, order-1 polynomial (affine model), \mathbf{P} is of size $m \times {d+1 \choose 1} = m \times (d+1)$.
- Offset term $w_0 = b$ is automatically taken into account in an order-1 polynomial.

Zixin Zhong (HKUTS-GZ) February 21, 2025 42/70

Data set:
$$\mathbf{x}_1 = \begin{bmatrix} +1 & +1 \end{bmatrix}^{\top} \quad \mathbf{x}_2 = \begin{bmatrix} -1 & +1 \end{bmatrix}^{\top} \quad \mathbf{x}_3 = \begin{bmatrix} +1 & -1 \end{bmatrix}^{\top} \quad \mathbf{x}_4 = \begin{bmatrix} -1 & -1 \end{bmatrix}^{\top}$$
 and $y_1 = y_4 = +1, y_2 = y_3 = -1.$

Data set:
$$\mathbf{x}_1 = \begin{bmatrix} +1 & +1 \end{bmatrix}^{\top} \quad \mathbf{x}_2 = \begin{bmatrix} -1 & +1 \end{bmatrix}^{\top} \quad \mathbf{x}_3 = \begin{bmatrix} +1 & -1 \end{bmatrix}^{\top} \quad \mathbf{x}_4 = \begin{bmatrix} -1 & -1 \end{bmatrix}^{\top}$$
 and $y_1 = y_4 = +1, y_2 = y_3 = -1.$

• Second-order polynomial in d = 2 variables

$$f_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_{1,2} x_1 x_2 + w_{1,1} x_1^2 + w_{2,2} x_2^2 = \mathbf{p}^{\top} \mathbf{w}$$

where

$$\mathbf{w} = \begin{bmatrix} w_0 & w_1 & w_2 & w_{1,2} & w_{1,1} & w_{2,2} \end{bmatrix}$$
$$\mathbf{p} = \begin{bmatrix} 1 & x_1 & x_2 & x_1x_2 & x_1^2 & x_2^2 \end{bmatrix}$$

Can stack the 4 training samples into the polynomial matrix

Zixin Zhong (HKUTS-GZ) February 21, 2025

Data set:
$$\mathbf{x}_1 = \begin{bmatrix} +1 & +1 \end{bmatrix}^{\top} \quad \mathbf{x}_2 = \begin{bmatrix} -1 & +1 \end{bmatrix}^{\top} \quad \mathbf{x}_3 = \begin{bmatrix} +1 & -1 \end{bmatrix}^{\top} \quad \mathbf{x}_4 = \begin{bmatrix} -1 & -1 \end{bmatrix}^{\top}$$
 and $y_1 = y_4 = +1, y_2 = y_3 = -1.$

• Second-order polynomial in d = 2 variables

$$f_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_{1,2} x_1 x_2 + w_{1,1} x_1^2 + w_{2,2} x_2^2 = \mathbf{p}^{\top} \mathbf{w}$$

where

$$\mathbf{w} = \begin{bmatrix} w_0 & w_1 & w_2 & w_{1,2} & w_{1,1} & w_{2,2} \end{bmatrix}$$
$$\mathbf{p} = \begin{bmatrix} 1 & x_1 & x_2 & x_1x_2 & x_1^2 & x_2^2 \end{bmatrix}$$

Can stack the 4 training samples into the polynomial matrix

• Notice that the pink column perfectly distinguishes the training points.

Zixin Zhong (HKUTS-GZ) February 21, 2025

• We can compute the weight vector (with $\lambda = 0$)

$$\mathbf{w}^* = \mathbf{P}^{ op}(\mathbf{P}\mathbf{P}^{ op})^{-1}\mathbf{y} = egin{bmatrix} 0 \ 0 \ 1 \ 0 \ 0 \end{bmatrix}$$

Zixin Zhong (HKUTS-GZ) February 21, 2025 44 / 70

• We can compute the weight vector (with $\lambda = 0$)

$$\mathbf{w}^* = \mathbf{P}^{ op}(\mathbf{P}\mathbf{P}^{ op})^{-1}\mathbf{y} = egin{bmatrix} 0 \ 0 \ 1 \ 0 \ 0 \end{bmatrix}$$

Recall that

• Note that \mathbf{w}^* picks out the coefficient $w_{1,2}$ corresponding x_1x_2 .

The XOR example revisited

ullet Given a new test sample $old x_{
m new} = egin{bmatrix} 0.2 & 0.5 \end{bmatrix}^ op$, the polynomial vector associated to $old x_{
m new}$ is

$$\begin{aligned} \boldsymbol{p}_{\text{new}} &= \begin{bmatrix} 1 & x_{\text{new},1} & x_{\text{new},2} & x_{\text{new},1} x_{\text{new},2} & x_{\text{new},1}^2 & x_{\text{new},1}^2 \end{bmatrix}^\top \\ &= \begin{bmatrix} 1 & 0.2 & 0.5 & 0.1 & 0.04 & 0.25 \end{bmatrix}^\top \end{aligned}$$

Zixin Zhong (HKUTS-GZ)

The XOR example revisited

• Given a new test sample $\mathbf{x}_{\mathrm{new}} = \begin{bmatrix} 0.2 & 0.5 \end{bmatrix}^{\top}$, the polynomial vector associated to $\mathbf{x}_{\mathrm{new}}$ is

$$\begin{aligned} \boldsymbol{p}_{\text{new}} &= \begin{bmatrix} 1 & x_{\text{new},1} & x_{\text{new},2} & x_{\text{new},1} x_{\text{new},2} & x_{\text{new},1}^2 & x_{\text{new},1}^2 \end{bmatrix}^\top \\ &= \begin{bmatrix} 1 & 0.2 & 0.5 & 0.1 & 0.04 & 0.25 \end{bmatrix}^\top \end{aligned}$$

Its predicted label is

$$\hat{y}_{\text{new}} = \text{sign} \left(\mathbf{p}_{\text{new}}^{\top} \mathbf{w}^* \right)$$

= $\text{sign}(0 \times 1 + 0 \times 0.2 + 0 \times 0.5 + \frac{1}{1} \times 0.1 + 0 \times 0.04 + 0 \times 0.25)$
= 1.

Zixin Zhong (HKUTS-GZ)

The XOR example revisited

ullet Given a new test sample $old x_{
m new} = \begin{bmatrix} 0.2 & 0.5 \end{bmatrix}^{ op}$, the polynomial vector associated to $old x_{
m new}$ is

$$\mathbf{p}_{\text{new}} = \begin{bmatrix} 1 & x_{\text{new},1} & x_{\text{new},2} & x_{\text{new},1} x_{\text{new},2} & x_{\text{new},1}^2 & x_{\text{new},2}^2 \end{bmatrix}^{\top}$$

$$= \begin{bmatrix} 1 & 0.2 & 0.5 & 0.1 & 0.04 & 0.25 \end{bmatrix}^{\top}$$

• Its predicted label is

$$\begin{split} \hat{y}_{\text{new}} &= \text{sign} \left(\mathbf{p}_{\text{new}}^{\top} \mathbf{w}^{*} \right) \\ &= \text{sign} (0 \times 1 + 0 \times 0.2 + 0 \times 0.5 + \frac{1}{1} \times 0.1 + 0 \times 0.04 + 0 \times 0.25) \\ &= 1. \end{split}$$

ullet Intuitively this is because the product of $oldsymbol{x}_{\mathrm{new}}$'s coordinates is positive.

Python demo for XOR: training/learning

```
2 import numpy as np
 3 from numpy.linalg import inv
 4 from numpy.linalg import matrix rank
 5 from sklearn.preprocessing import PolynomialFeatures
 6 X = np.array([[1, 1], [-1, 1], [1, -1], [-1, -1]])
 7 \ v = np.array([[1], [-1], [-1], [1]])
 8 ## Generate polynomial features
 9 \text{ order} = 2
10 poly = PolynomialFeatures(order)
11 print(poly)
12 P = poly.fit transform(X)
13 print("matrix P")
14 print(P)
```


Zixin Zhong (HKUTS-GZ) February 21, 2025

Python demo for XOR: prediction/testing

```
15 print("Under-determined system")
16 print(matrix rank(P))
17 PY = np.vstack((P.T, v.T))
18 print(matrix rank(PY.T))
19
20 ## dual solution m < d (without ridge)
21 w dual = P.T @ inv(P @ P.T) @ v
   print("Unique constrained solution, no ridge")
23 print(w dual)
24 #print(np.around(w dual,3))
```


Zixin Zhong (HKUTS-GZ) February 21, 2025

Summary of polynomial regression

• Learning/Training:

$$\mathbf{w}^* = \mathbf{P}^{ op}(\mathbf{P}\mathbf{P}^{ op})^{-1}\mathbf{y}$$

where

$$\mathbf{P} = \mathbf{P}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m) = egin{bmatrix} -\mathbf{p}_1^ op - \\ -\mathbf{p}_2^ op - \\ dots \\ -\mathbf{p}_m^ op - \end{bmatrix} \in \mathbb{R}^{m imes inom{d+p}{p}}$$

Prediction/Testing: Given a new sample x_{new}

$$\hat{y}_{\mathrm{new}} = \mathbf{p}_{\mathrm{new}}^{\top} \mathbf{w}^*.$$

Zixin Zhong (HKUTS-GZ) February 21, 2025

Summary of polynomial regression/classification

- For regression applications:
 - Learn continuous-valued y by using either primal or dual forms
 - Prediction:

$$\hat{y}_{\mathrm{new}} = \mathbf{p}_{\mathrm{new}}^{\top} \mathbf{w}^*.$$

- For classification applications:
 - ▶ Learn discrete-valued $y \in \{-1, +1\}$ (for binary classification) or one-hot encoded Y (for $y \in \{1, 2, \dots, C\}$ for multi-class classification) using either primal or dual forms
 - Binary prediction

$$\hat{y}_{\text{new}} = \operatorname{sign}\left(\mathbf{p}_{\text{new}}^{\top}\mathbf{w}^{*}\right)$$

► Multi-class prediction

$$\hat{y}_{\mathrm{new}} = \argmax_{k \in \{1, 2, \dots, C\}} \left(\mathbf{p}_{\mathrm{new}}^{\top} \mathbf{W}^{*}[:, k] \right)$$

Zixin Zhong (HKUTS-GZ)

Outline

- - Linear models for binary classification
 - Linear models for multi-class classification
- Ridge regression

Zixin Zhong (HKUTS-GZ)

How can we predict our academic performance in the coming semester?

Hours studied

Extracurricular activities

Sleep hours

Previous scores

51 / 70

Zixin Zhong (HKUTS-GZ) February 21, 2025

How can we predict our academic performance in the coming semester?

Hours studied

ZZ

Sleep hours

Previous scores

- Subject
- Commute time
- Age
- Male/Female
- Family income
-

Zixin Zhong (HKUTS-GZ)

Extracurricular activities

- This is the case of modern datasets which have many variables/attributes (d is large) and few samples (m is small).
- What happens to the least squares estimate?

$$\overline{\mathbf{w}}^* = (\mathbf{X}^ op \mathbf{X})^{-1} \mathbf{X}^ op \mathbf{y} \in \mathbb{R}^{d+1}$$
?

Recall that this was obtained from minimizing

$$J(\overline{\mathbf{w}}) = \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}_i) - y_i)^2 = (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y})^{\top} (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y})$$

over
$$\overline{\mathbf{w}} = \begin{bmatrix} b, \mathbf{w}^{\top} \end{bmatrix}^{\top} \in \mathbb{R}^{d+1}$$
.

Zixin Zhong (HKUTS-GZ) February 21, 2025

- This is the case of modern datasets which have many variables/attributes (d is large) and few samples (m is small). 变量多样本小,用岭回归
- What happens to the least squares estimate?

$$\overline{\mathbf{w}}^* = (\mathbf{X}^{ op}\mathbf{X})^{-1}\mathbf{X}^{ op}\mathbf{y} \in \mathbb{R}^{d+1}$$
?

Recall that this was obtained from minimizing

$$J(\overline{\mathbf{w}}) = \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}_i) - y_i)^2 = (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y})^{\top} (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y})$$

over
$$\overline{\mathbf{w}} = \begin{bmatrix} b, \mathbf{w}^{\top} \end{bmatrix}^{\top} \in \mathbb{R}^{d+1}$$
.

• The design matrix $\mathbf{X} \in \mathbb{R}^{m \times (d+1)}$ is very "wide".

Zixin Zhong (HKUTS-GZ) February 21, 2025

- This is the case of modern datasets which have many variables/attributes (*d* is large) and few samples (*m* is small).
- What happens to the least squares estimate?

$$\overline{\mathbf{w}}^* = (\mathbf{X}^ op \mathbf{X})^{-1} \mathbf{X}^ op \mathbf{y} \in \mathbb{R}^{d+1}$$
?

Recall that this was obtained from minimizing

$$J(\overline{\mathbf{w}}) = \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}_i) - y_i)^2 = (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y})^{\top} (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y})$$

over
$$\overline{\mathbf{w}} = \begin{bmatrix} b, \mathbf{w}^{\top} \end{bmatrix}^{\top} \in \mathbb{R}^{d+1}$$
.

- The design matrix $\mathbf{X} \in \mathbb{R}^{m \times (d+1)}$ is very "wide".
- Question: what is the coincidence?

Zixin Zhong (HKUTS-GZ) February 21, 2025

- This is the case of modern datasets which have many variables/attributes (*d* is large) and few samples (*m* is small).
- What happens to the least squares estimate?

$$\overline{\mathbf{w}}^* = (\mathbf{X}^ op \mathbf{X})^{-1} \mathbf{X}^ op \mathbf{y} \in \mathbb{R}^{d+1}$$
?

Recall that this was obtained from minimizing

$$J(\overline{\mathbf{w}}) = \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}_i) - y_i)^2 = (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y})^{\top} (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y})$$

over
$$\overline{\mathbf{w}} = \begin{bmatrix} b, \mathbf{w}^{\top} \end{bmatrix}^{\top} \in \mathbb{R}^{d+1}$$
.

- The design matrix $\mathbf{X} \in \mathbb{R}^{m \times (d+1)}$ is very "wide".
- **X** is highly unlikely to have full column rank $\Longrightarrow (\mathbf{X}^{\top}\mathbf{X})^{-1}$ does not exist.

Ů

Zixin Zhong (HKUTS-GZ) February 21, 2025

- Model possess too many features
- Go beyond the linear model, even an infinite-dimensional model

Zixin Zhong (HKUTS-GZ) February 21, 2025

- Model possess too many features
- Go beyond the linear model, even an infinite-dimensional model
- Stabilize and robustify the solution

Zixin Zhong (HKUTS-GZ) February 21, 2025

New objective function for ridge regression

 Recap of linear regression: We average the square of the errors over all training samples. This defines the objective or loss function

$$\operatorname{Loss}(\mathbf{w},b) = \frac{1}{m} \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}_i) - y_i)^2.$$

Zixin Zhong (HKUTS-GZ) February 21, 2025 54/70

New objective function for ridge regression

 Recap of linear regression: We average the square of the errors over all training samples. This defines the objective or loss function

$$\operatorname{Loss}(\mathbf{w},b) = \frac{1}{m} \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}_i) - y_i)^2.$$

• Ridge regression: For a fixed $\lambda > 0$, consider

$$J(\overline{\mathbf{w}}) = \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i=0}^{d} w_j^2$$
$$= (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y})^{\top} (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y}) + \lambda \overline{\mathbf{w}}^{\top} \overline{\mathbf{w}}$$

Note that $w_0 = b$, the offset or bias.

Zixin Zhong (HKUTS-GZ)

New objective function for ridge regression

• Ridge regression: For a fixed $\lambda \geq 0$, consider

$$J(\overline{\mathbf{w}}) = \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i=0}^{d} w_j^2$$
$$= (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y})^{\top} (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y}) + \lambda \overline{\mathbf{w}}^{\top} \overline{\mathbf{w}}$$

Note that $w_0 = b$, the offset or bias.

- The term $\lambda \overline{\mathbf{w}}^{\top} \overline{\mathbf{w}}$ encourages the weight vector to have small components (also known as shrinkage.
- The new objective results in ridge regression or Tikhonov regularization.
- When $\lambda = 0$, we recover usual linear regression.

Zixin Zhong (HKUTS-GZ) February 21, 2025 54/70

Recall that we wish to solve

$$\overline{\mathbf{w}}^* = \operatorname*{arg\,min}_{\overline{\mathbf{w}} = [b,\mathbf{w}]^\top} \ (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y})^\top (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y}) + \lambda \overline{\mathbf{w}}^\top \overline{\mathbf{w}}.$$

Zixin Zhong (HKUTS-GZ) February 21, 2025

Recall that we wish to solve

$$\overline{\mathbf{w}}^* = \mathop{\mathrm{arg\,min}}\limits_{\overline{\mathbf{w}} = [b,\mathbf{w}]^{ op}} (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y})^{ op} (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y}) + \lambda \overline{\mathbf{w}}^{ op} \overline{\mathbf{w}}.$$

• Expanding the objective, we obtain

$$\begin{split} (\boldsymbol{\mathsf{X}}\overline{\boldsymbol{\mathsf{w}}} - \boldsymbol{\mathsf{y}})^\top (\boldsymbol{\mathsf{X}}\overline{\boldsymbol{\mathsf{w}}} - \boldsymbol{\mathsf{y}}) + \lambda \overline{\boldsymbol{\mathsf{w}}}^\top \overline{\boldsymbol{\mathsf{w}}} &= \overline{\boldsymbol{\mathsf{w}}}^\top \boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{X}} \overline{\boldsymbol{\mathsf{w}}} - \overline{\boldsymbol{\mathsf{w}}}^\top \boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{y}} - \boldsymbol{\mathsf{y}}^\top \boldsymbol{\mathsf{X}} \overline{\boldsymbol{\mathsf{w}}} + \boldsymbol{\mathsf{y}}^\top \boldsymbol{\mathsf{y}} + \lambda \overline{\boldsymbol{\mathsf{w}}}^\top \overline{\boldsymbol{\mathsf{w}}} \\ &= \overline{\boldsymbol{\mathsf{w}}}^\top \boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{X}} \overline{\boldsymbol{\mathsf{w}}} + \overline{\boldsymbol{\mathsf{w}}}^\top (\lambda \boldsymbol{\mathsf{I}}) \overline{\boldsymbol{\mathsf{w}}} - 2 \overline{\boldsymbol{\mathsf{w}}}^\top (\boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{y}}) + \boldsymbol{\mathsf{y}}^\top \boldsymbol{\mathsf{y}} \\ &= \overline{\boldsymbol{\mathsf{w}}}^\top (\boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{X}} + \lambda \boldsymbol{\mathsf{I}}) \overline{\boldsymbol{\mathsf{w}}} - 2 \overline{\boldsymbol{\mathsf{w}}}^\top (\boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{y}}) + \boldsymbol{\mathsf{y}}^\top \boldsymbol{\mathsf{y}} \end{split}$$

Zixin Zhong (HKUTS-GZ) February 21, 2025

Recall that we wish to solve

$$\overline{\mathbf{w}}^* = \mathop{\mathrm{arg\,min}}\limits_{\overline{\mathbf{w}} = [b,\mathbf{w}]^ op} (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y})^ op (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y}) + \lambda \overline{\mathbf{w}}^ op \overline{\mathbf{w}}.$$

• Expanding the objective, we obtain

$$\begin{split} (\boldsymbol{\mathsf{X}}\overline{\boldsymbol{\mathsf{w}}} - \boldsymbol{\mathsf{y}})^\top (\boldsymbol{\mathsf{X}}\overline{\boldsymbol{\mathsf{w}}} - \boldsymbol{\mathsf{y}}) + \lambda \overline{\boldsymbol{\mathsf{w}}}^\top \overline{\boldsymbol{\mathsf{w}}} &= \overline{\boldsymbol{\mathsf{w}}}^\top \boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{X}} \overline{\boldsymbol{\mathsf{w}}} - \overline{\boldsymbol{\mathsf{w}}}^\top \boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{y}} - \boldsymbol{\mathsf{y}}^\top \boldsymbol{\mathsf{X}} \overline{\boldsymbol{\mathsf{w}}} + \boldsymbol{\mathsf{y}}^\top \boldsymbol{\mathsf{y}} + \lambda \overline{\boldsymbol{\mathsf{w}}}^\top \overline{\boldsymbol{\mathsf{w}}} \\ &= \overline{\boldsymbol{\mathsf{w}}}^\top \boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{X}} \overline{\boldsymbol{\mathsf{w}}} + \overline{\boldsymbol{\mathsf{w}}}^\top (\lambda \boldsymbol{\mathsf{I}}) \overline{\boldsymbol{\mathsf{w}}} - 2 \overline{\boldsymbol{\mathsf{w}}}^\top (\boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{y}}) + \boldsymbol{\mathsf{y}}^\top \boldsymbol{\mathsf{y}} \\ &= \overline{\boldsymbol{\mathsf{w}}}^\top (\boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{X}} + \lambda \boldsymbol{\mathsf{I}}) \overline{\boldsymbol{\mathsf{w}}} - 2 \overline{\boldsymbol{\mathsf{w}}}^\top (\boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{y}}) + \boldsymbol{\mathsf{y}}^\top \boldsymbol{\mathsf{y}} \end{split}$$

• Differentiating w.r.t. $\overline{\mathbf{w}}$ and setting the result to zero yields

$$2(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})\overline{\mathbf{w}}^* = 2(\mathbf{X}^{\top}\mathbf{y}) \iff \overline{\mathbf{w}}^* = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

Zixin Zhong (HKUTS-GZ) February 21, 2025

Recall that we wish to solve

$$\overline{\mathbf{w}}^* = \mathop{\mathrm{arg\,min}}\limits_{\overline{\mathbf{w}} = [b,\mathbf{w}]^{ op}} (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y})^{ op} (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y}) + \lambda \overline{\mathbf{w}}^{ op} \overline{\mathbf{w}}.$$

• Expanding the objective, we obtain

$$\begin{split} (\boldsymbol{\mathsf{X}}\overline{\boldsymbol{\mathsf{w}}} - \boldsymbol{\mathsf{y}})^\top (\boldsymbol{\mathsf{X}}\overline{\boldsymbol{\mathsf{w}}} - \boldsymbol{\mathsf{y}}) + \lambda \overline{\boldsymbol{\mathsf{w}}}^\top \overline{\boldsymbol{\mathsf{w}}} &= \overline{\boldsymbol{\mathsf{w}}}^\top \boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{X}} \overline{\boldsymbol{\mathsf{w}}} - \overline{\boldsymbol{\mathsf{w}}}^\top \boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{y}} - \boldsymbol{\mathsf{y}}^\top \boldsymbol{\mathsf{X}} \overline{\boldsymbol{\mathsf{w}}} + \boldsymbol{\mathsf{y}}^\top \boldsymbol{\mathsf{y}} + \lambda \overline{\boldsymbol{\mathsf{w}}}^\top \overline{\boldsymbol{\mathsf{w}}} \\ &= \overline{\boldsymbol{\mathsf{w}}}^\top \boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{X}} \overline{\boldsymbol{\mathsf{w}}} + \overline{\boldsymbol{\mathsf{w}}}^\top (\lambda \boldsymbol{\mathsf{I}}) \overline{\boldsymbol{\mathsf{w}}} - 2 \overline{\boldsymbol{\mathsf{w}}}^\top (\boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{y}}) + \boldsymbol{\mathsf{y}}^\top \boldsymbol{\mathsf{y}} \\ &= \overline{\boldsymbol{\mathsf{w}}}^\top (\boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{X}} + \lambda \boldsymbol{\mathsf{I}}) \overline{\boldsymbol{\mathsf{w}}} - 2 \overline{\boldsymbol{\mathsf{w}}}^\top (\boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{y}}) + \boldsymbol{\mathsf{y}}^\top \boldsymbol{\mathsf{y}} \end{split}$$

• Differentiating w.r.t. $\overline{\mathbf{w}}$ and setting the result to zero yields

$$2(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})\overline{\mathbf{w}}^* = 2(\mathbf{X}^{\top}\mathbf{y}) \quad \Longleftrightarrow \quad \overline{\mathbf{w}}^* = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

55 / 70

• For any $\lambda > 0$, $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}$ is always invertible (why?) so the calculation above is legitimate.

Zixin Zhong (HKUTS-GZ) February 21, 2025

Why?

Proposition 3.1

The vector space consisting of only the zero vector has dimension 0.

Proposition 3.1

The vector space consisting of only the zero vector has dimension 0.

Proof. Apply the definition of dimension.

Proposition 3.1

The vector space consisting of only the zero vector has dimension 0.

Proof. Apply the definition of dimension.

Definition 3.2 (Definite matrix)

Let **A** denote a square matrix in $\mathbb{R}^{n \times n}$. **A** is said to be **positive-definite** if

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} > 0$$
 for all $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$.

A is said to be negative-definite if

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} < 0 \text{ for all } \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}.$$

Proposition 3.3

If $A \in \mathbb{R}^{n \times n}$ is positive-definite or negative-definite, then A is invertible.

Proposition 3.3

If $A \in \mathbb{R}^{n \times n}$ is positive-definite or negative-definite, then A is invertible.

Proof. (I) If A is positive-definite, $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ implies that

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = 0 \} = \{ \mathbf{0} \}. \tag{3.1}$$

Proposition 3.3

If $A \in \mathbb{R}^{n \times n}$ is positive-definite or negative-definite, then A is invertible.

Proof. (I) If A is positive-definite, $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ implies that

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = 0 \} = \{ \mathbf{0} \}. \tag{3.1}$$

Hence, $\dim(\mathcal{N}(\mathbf{A})) = 0$

Proposition 3.3

If $A \in \mathbb{R}^{n \times n}$ is positive-definite or negative-definite, then A is invertible.

Proof. (I) If A is positive-definite, $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ implies that

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = 0 \} = \{ \mathbf{0} \}. \tag{3.1}$$

Hence, $\dim(\mathcal{N}(\mathbf{A})) = 0$ and $\operatorname{rank}(\mathbf{A}) = \dim(\mathcal{R}(\mathbf{A})) = n - \dim(\mathcal{N}(\mathbf{A})) = n$.

Proposition 3.3

If $A \in \mathbb{R}^{n \times n}$ is positive-definite or negative-definite, then A is invertible.

Proof. (I) If A is positive-definite, $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ implies that

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = 0 \} = \{ \mathbf{0} \}. \tag{3.1}$$

Hence, $\dim(\mathcal{N}(\mathbf{A})) = 0$ and $\operatorname{rank}(\mathbf{A}) = \dim(\mathcal{R}(\mathbf{A})) = n - \dim(\mathcal{N}(\mathbf{A})) = n$. Therefore, A is invertible.

(II) Case where A is negative-definite can be similarly proven.

Proof.

ullet $\mathbf{X}^{ op}\mathbf{X} + \lambda \mathbf{I} \in \mathbb{R}^{(d+1) imes (d+1)}$ is a square matrix.

Proof.

- $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I} \in \mathbb{R}^{(d+1)\times(d+1)}$ is a square matrix.
- To show $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I} \in \mathbb{R}^{(d+1)\times(d+1)}$ is invertible, it is sufficient to show that $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I} \in \mathbb{R}^{(d+1)\times(d+1)}$ is positive-definite or negative definite.

Zixin Zhong (HKUTS-GZ) February 21, 2025

Proof.

- $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I} \in \mathbb{R}^{(d+1)\times(d+1)}$ is a square matrix.
- To show $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I} \in \mathbb{R}^{(d+1)\times (d+1)}$ is invertible, it is sufficient to show that $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I} \in \mathbb{R}^{(d+1)\times (d+1)}$ is positive-definite or negative definite.
- For all $\mathbf{z} \in \mathbb{R}^{(d+1)\setminus\{\mathbf{0}\}}$.

$$\mathbf{z}^{\top}(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})\mathbf{z} = \mathbf{z}^{\top}(\mathbf{X}^{\top}\mathbf{X})\mathbf{z} + \mathbf{z}^{\top}(\lambda \mathbf{I})\mathbf{z} = (\mathbf{X}\mathbf{z})^{\top}(\mathbf{X}\mathbf{z}) + \lambda \mathbf{z}^{\top}\mathbf{z} > 0.$$
(3.2)

Zixin Zhong (HKUTS-GZ) February 21, 2025

Proof.

- $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I} \in \mathbb{R}^{(d+1)\times(d+1)}$ is a square matrix.
- To show $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I} \in \mathbb{R}^{(d+1)\times (d+1)}$ is invertible, it is sufficient to show that $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I} \in \mathbb{R}^{(d+1)\times (d+1)}$ is positive-definite or negative definite.
- For all $\mathbf{z} \in \mathbb{R}^{(d+1)\setminus\{\mathbf{0}\}}$

$$\mathbf{z}^{\top}(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})\mathbf{z} = \mathbf{z}^{\top}(\mathbf{X}^{\top}\mathbf{X})\mathbf{z} + \mathbf{z}^{\top}(\lambda \mathbf{I})\mathbf{z} = (\mathbf{X}\mathbf{z})^{\top}(\mathbf{X}\mathbf{z}) + \lambda \mathbf{z}^{\top}\mathbf{z} > 0.$$
(3.2)

• Hence, $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}$ is positive-definite and hence invertible.

Zixin Zhong (HKUTS-GZ) February 21, 2025

• Training/Learning: Minimizing the ridge regression objective $J(\overline{\mathbf{w}}) = (\mathbf{X}\overline{\mathbf{w}} - \mathbf{y})^{\top}(\mathbf{X}\overline{\mathbf{w}} - \mathbf{y}) + \lambda \overline{\mathbf{w}}^{\top}\overline{\mathbf{w}}$ yields

$$\overline{\mathbf{w}}^* = (\mathbf{X}^{ op}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{ op}\mathbf{y}.$$

 \bullet Testing/Prediction: Given a new test sample \mathbf{x}_{new} , its prediction is

$$\hat{y}_{ ext{new}} = egin{bmatrix} 1 \ \mathbf{x}_{ ext{new}} \end{bmatrix}^{ op} \overline{\mathbf{w}}^*.$$

Zixin Zhong (HKUTS-GZ) February 21, 2025

The solution is known as the

[Primal Form]
$$\overline{\mathbf{w}}^* = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{d+1})^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

Use I_{d+1} to emphasize that the identity matrix is of size $(d+1) \times (d+1)$.

Zixin Zhong (HKUTS-GZ) February 21, 2025

The solution is known as the

[Primal Form]
$$\overline{\mathbf{w}}^* = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{d+1})^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

Use I_{d+1} to emphasize that the identity matrix is of size $(d+1) \times (d+1)$.

• Q: What is the problem with inverting the $(d+1) \times (d+1)$ matrix $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{d+1}$?

Zixin Zhong (HKUTS-GZ) February 21, 2025

The solution is known as the

[Primal Form]
$$\overline{\mathbf{w}}^* = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{d+1})^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

Use I_{d+1} to emphasize that the identity matrix is of size $(d+1) \times (d+1)$.

- Q: What is the problem with inverting the $(d+1) \times (d+1)$ matrix $\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I}_{d+1}$?
- d > m is very large. Inverting the $(d + 1) \times (d + 1)$ matrix is not advisable!
- This takes $\approx d^3$ operations (multiplications and additions). [You don't need to know why.]

The solution is known as the

[Primal Form]
$$\overline{\mathbf{w}}^* = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{d+1})^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

Use I_{d+1} to emphasize that the identity matrix is of size $(d+1) \times (d+1)$.

- Q: What is the problem with inverting the $(d+1) \times (d+1)$ matrix $\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I}_{d+1}$?
- d > m is very large. Inverting the $(d+1) \times (d+1)$ matrix is not advisable!
- This takes $\approx d^3$ operations (multiplications and additions). [You don't need to know why.]
- If m > d, we can still use

$$\overline{\mathbf{w}}^* = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{d+1})^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

Zixin Zhong (HKUTS-GZ) February 21, 2025

Ridge regression in dual form

• Fact: For every $\lambda > 0$.

$$(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{d+1})^{-1}\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\top}(\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I}_{m})^{-1}\mathbf{y}.$$
(P-D)

• Training/Learning: So when d > m (modern datasets), we use the

[Dual Form]

$$\overline{\mathbf{w}}^* = \mathbf{X}^{\top} (\mathbf{X} \mathbf{X}^{\top} + \lambda \mathbf{I}_m)^{-1} \mathbf{y}.$$

Zixin Zhong (HKUTS-GZ)

Ridge regression in dual form

• Fact: For every $\lambda > 0$.

$$(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{d+1})^{-1}\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\top}(\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I}_{m})^{-1}\mathbf{y}.$$
(P-D)

• Training/Learning: So when d > m (modern datasets), we use the

[Dual Form]
$$\overline{\mathbf{w}}^* = \mathbf{X}^\top (\mathbf{X} \mathbf{X}^\top + \lambda \mathbf{I}_m)^{-1} \mathbf{y}.$$

• Testing/Prediction: Given a new test sample x_{new} , its prediction is

$$\hat{y}_{ ext{new}} = egin{bmatrix} 1 \ \mathbf{x}_{ ext{new}} \end{bmatrix}^{ op} \overline{\mathbf{w}}^*.$$

• To show (P-D), we use the Woodbury formula

$$(\mathbf{I} + \mathbf{U}\mathbf{V})^{-1} = \mathbf{I} - \mathbf{U}(\mathbf{I} + \mathbf{V}\mathbf{U})^{-1}\mathbf{V}.$$

Zixin Zhong (HKUTS-GZ)

Ridge regression in dual form [exercise]

Apply the Woodbury formula

$$(\mathbf{I} + \mathbf{U}\mathbf{V})^{-1} = \mathbf{I} - \mathbf{U}(\mathbf{I} + \mathbf{V}\mathbf{U})^{-1}\mathbf{V}$$

to show

$$(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{d+1})^{-1}\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\top}(\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I}_{m})^{-1}\mathbf{y}.$$
(P-D)

d和m谁更小选谁

Ridge regression in dual form [exercise]

Note that $\mathbf{X} \in \mathbb{R}^{m \times (d+1)}$. Starting from $\mathbf{X}^{\top} (\mathbf{X} \mathbf{X}^{\top} + \lambda \mathbf{I}_m)^{-1} \mathbf{y}$, we have $\mathbf{X}^{\top} \left(\mathbf{X} \mathbf{X}^{\top} + \lambda \mathbf{I}_{m} \right)^{-1} \mathbf{y}$ $=\lambda^{-1}\mathbf{X}^{\top}\left(\mathbf{I}_{m}+\lambda^{-1}\mathbf{X}\mathbf{X}^{\top}\right)^{-1}\mathbf{y}$ $= \lambda^{-1} \mathbf{X}^{\top} \left[\mathbf{I}_m - \lambda^{-1} \mathbf{X} \left(\mathbf{I}_{d+1} + \lambda^{-1} \mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{X}^{\top} \right] \mathbf{y}$ $\mathbf{x} = \lambda^{-1} \left(\mathbf{X}^{ op} \mathbf{y} - \mathbf{X}^{ op} \mathbf{X} \left(\mathbf{X}^{ op} \mathbf{X} + \lambda \mathbf{I}_{d+1}
ight)^{-1} \mathbf{X}^{ op} \mathbf{y} \right)$ $= \lambda^{-1} \left(\mathbf{I}_{d+1} - \mathbf{X}^{\top} \mathbf{X} \left(\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I}_{d+1} \right)^{-1} \right) \mathbf{X}^{\top} \mathbf{y}$ $= \lambda^{-1} \left[\mathbf{I}_{d+1} - \left(\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I}_{d+1} \right) \left(\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I}_{d+1} \right)^{-1} + \lambda \mathbf{I}_{d+1} \left(\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I}_{d+1} \right)^{-1} \right] \mathbf{X}^{\top} \mathbf{y}$

where (3.3) follows from the Woodbury matrix identity with
$$\mathbf{U} \equiv \lambda^{-1} \mathbf{X}$$
 and $\mathbf{V} \equiv \mathbf{X}^{\top}$.

Zixin Zhong (HKUTS-GZ)

 $= \left(\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I}_{d+1} \right)^{-1} \mathbf{X}^{\top} \mathbf{y}$

(3.3)

Python demo: ridge regression

	Previous Scores	Hours Studied	Extracurricular Activities_bool	Sleep Hours	Sample Question Papers Practiced	Performance Index
0	99	7	1	9	1	91.0
1	82	4	0	4	2	65.0
2	51	8	1	7	2	45.0
3	52	5	1	5	2	36.0
4	75	7	0	8	5	66.0
5	78	3	0	9	6	61.0
6	73	7	1	5	6	63.0
7	45	8	1	4	6	42.0
8	77	5	0	8	2	61.0
9	89	4	0	4	0	69.0
10	91	8	0	4	5	84.0
11	79	8	0	6	2	73.0
12	47	3	0	9	2	27.0
13	47	6	0	4	2	33.0
14	79	5	0	7	8	68.0

Zixin Zhong (HKUTS-GZ) February 21, 2025

Python demo: ridge regression

```
X = df bool[['Previous Scores',
 'Hours Studied'.
 'Extracurricular Activities_bool',
 'Sleep Hours',
 'Sample Question Papers Practiced']].to numpy(copy=True)
v = df bool[['Performance Index']].to numpv(copv=True)
# split the data into training and test samples
X train, X test, y train, y test = sklearn.model selection.train test split(
   X, v, test size=0.3)
clf = Ridge(alpha=1.0).fit(X train, y train)
```


Zixin Zhong (HKUTS-GZ) February 21, 2025 66 / 70

Python demo: ridge regression

```
for i in range(10):
   X true = X test[i,:].reshape(1, -1)
   y true = y test[i]
    y pred = clf.predict(X true)
    print('%d-th new sample:' % (i+1))
    print('True v: %.3f' % v true[0])
    print('Predicted y: %.3f' % y pred[0])
    print('======')
1-th new sample:
True y: 36.000
Predicted v: 33.970
2-th new sample:
True y: 26.000
Predicted y: 25.063
========
```


Ridge regression (polynomial form)

- Ridge regression in primal form (when $m > d' = \binom{p+d}{p}$)
 - ► Learning/Training:

$$\mathbf{w}^* = (\mathbf{P}^{ op}\mathbf{P} + \lambda \mathbf{I})^{-1}\mathbf{P}^{ op}\mathbf{y}$$

► Prediction/Testing: Given a new sample **x**_{new}

$$\hat{y}_{ ext{new}} = \mathbf{p}_{ ext{new}}^ op \mathbf{w}^*$$

where \mathbf{p}_{new} is the polynomial vector associated to \mathbf{x}_{new} .

- Ridge regression in dual form (when $m < d' = \binom{p+d}{p}$)
 - ► Learning/Training:

$$\mathbf{w}^* = \mathbf{P}^{ op} (\mathbf{P} \mathbf{P}^{ op} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

► Prediction/Testing: Given a new sample **x**_{new}

$$\hat{y}_{\text{new}} = \mathbf{p}_{\text{new}}^{\top} \mathbf{w}^*.$$

Zixin Zhong (HKUTS-GZ)

Ridge regression (polynomial form)

- Primal Form
 - ► Learning/Training

$$\mathbf{w}^* = (\mathbf{P}^ op \mathbf{P} + \lambda \mathbf{I})^{-1} \mathbf{P} \mathbf{y}$$

Prediction/Testing

$$\hat{\mathit{y}}_{\mathrm{new}} = \mathbf{p}_{\mathrm{new}}^{ op} \mathbf{w}^*$$

- Dual Form
 - ► Learning/Training

$$\mathbf{w}^* = \mathbf{P}^{ op} (\mathbf{P} \mathbf{P}^{ op} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

► Prediction/Testing:

$$\hat{\mathbf{y}}_{ ext{new}} = \mathbf{p}_{ ext{new}}^{ op} \mathbf{w}^*$$

• Useful Python packages and functions sklearn.preprocessing PolynomialFeatures, np.sign, sklearn.model_selection train_test_split, sklearn.preprocessing OneHotEncoder, pandas

Thanks for listening

- 1. Tell us your question/feedback via QR code/Email/Teams.
- 2. Lab reminder: 4:30-5:30PM Thur, same classroom.

• Slides credit: some slides are adapted from (alphabetical order) Dan Klein and Pieter Abbeel (UC Berkelev), Haivun He (Cornell) and Tommi S. Jaakkola (MIT).

February 21, 2025