Учреждение	образования	Белорусский	государств	венный ун	ниверситет
	информа	атики и радис	электрони	ки	

Кафедра метрологии и стандартизации

Лабораторная работа Э.3Б "Измерение напряжений и уровней сигналов с помощью электронных вольтметров и измарителей уровня"

Проверил: доц. кафедры Батай Л. Е. Выполнил: ст. группы 120602

1 Цели работы

- 1. Изучение принципов работы электронных вольтметров.
- 2. Изучение методов измерения напряжений электронными вольтметрами.
- 3. Изучение причин возникновения методических погрешностей, связанных с измерением напряжения переменного тока с помощью электронных вольтметров.
- 4. Приобретение практических навыков при работе с генератором Г4-117, электронными вольтметрами В3-38A, В7-28.

2 Приборы, используемые в работе

No	Наименование	Тип	Заводской	Основные технические характеристики			
1	Г	T4 117	номер	П			
1	Генератор	Γ4-117		Диапазон генерируемых частот:			
	сигналов			20 Гц 10 МГц			
	низкочастотный			Относительная погрешность установки:			
				$\pm (0,02f+1) \; \Gamma \Pi;$			
				на участке 100 200 Гц:			
				$\pm (0,02f+4)$ Гц.			
				Основная погрешность установки			
				выходного напряжения по шкале			
				стрелочного индикатора не превышает 10%			
				от номинального конечного значения			
				соответствующей шкалы.			
2	Вольтметр	B7-28		Диапазон измеряемых напряжений:			
	универсальный			$10^{-4}300 \text{ B}.$			
	цифровой			Относительная погрешность измерения			
				переменного напряжения:			
				$\pm (0,25+0,15*U_{PR}/U_V)$ при 2060 Гц			
				$\pm (0,15+0,05*U_{PR}/U_V)$ при $605\cdot 10^3$ Гц			
				$\pm (0,35+0,05*U_{PR}/U_V)$ при 520 к Γ ц			
				$\pm (0,5+0,1*U_{PR}/U_{V})$ при 20100 кГц			
3	Милливольтметр	B3-38		Приведенная погрешность прибора:			
				$\pm 2,5\%$ при 1300 мВ			
				±4% при 1300 B			
4	Милливольтметр	B3-40		Приведенная погрешность прибора:			
				$\pm 1,5\%$ при 1300 мВ			
				$\pm 2,5\%$ при $0,10,3$ мВ			
				±4% при 1300 B			
5	Милливольтметр	B4-12		Диапазон измерения: 0, 03300 В			
	импульсного			Приведенная погрешность прибора:			
	тока			$\pm 1,5\%$ при 1300 мВ			
				$\pm 2,5\%$ при $0,10,3$ мВ, 1300 В			
				$\pm 4\%$ при $0,031$ мВ			
				при диапазоне частот: $451 \cdot 10^6$ Гц			

6	Электронно-	C1-72	Диапазон измеряемых значений			
	лучевой		напряжения: 31000 мВ			
	осциллограф		Приведенная погрешность не превышает:			
			$\pm 4\%$ при измерении амплитуд напряжений			
			импульсов длительностью $0, 4300$ мкс и			
			амплитуды синусоидальных импульсов в			
			области частот $5001 \cdot 10^6$ Гц,			
			$\pm 6\%$ при измерении амплитуд напряжений			
			импульсов длительностью $0, 10, 4$ мкс и			
			амплитуды синусоидальных импульсов в			
			области частот 15 МГц			

Данные о вольтметрах, необходимые для расчета:

- Милливольтметр ВЗ-38 имеет детектор средневыпрямленного значения, шкала прибора проградуирована в среднеквадратических значениях.
- Микровольтметр имеет детектор среднеквадратического значения, шкала прибора проградуирована в среднеквадратических значениях.
- Милливольтметр В4-12 предназначен для измерения амплитудных значений.

3 Теоретические сведения

Инструментальная погрешность имеет различные формы: абсолютную (Δ), относительную (δ) и приведённую (γ):

$$\Delta_i = |X_i - Q| \tag{1}$$

$$\delta_i = \frac{\Delta_i}{Q} * 100\% = \gamma_i * \frac{X_N}{Q} \tag{2}$$

$$\gamma_i = \frac{\Delta_i}{X_N} * 100\% \tag{3}$$

где X_N — нормируемое значение, которое согласно ГОСТ 8.401-80 следует выбирать равным пределу измерения,

Q – действительное значение величины,

 X_{i} – показание прибора.

Входное сопротивление R_V и входная емкость C_V вольтметра В7-28 определяется по следующим формулам:

$$R_V = R_0 * \frac{U_{R_V} - 1}{U_{G_H}} \tag{4}$$

$$C_V = C_0 * (\frac{U_{G_B}}{U_{C_V}} - 1) \tag{5}$$

где R_V – активное сопротивление,

 C_V – входная емкость,

 $U_{C_{V}},\,U_{R_{V}}$ – показания вольтметра,

 U_{G_H} – напряжение генератора на нижней частоте,

 U_{G_B} – напряжение генератора на верхней частоте,

 C_0 , R_0 – известные сопротивление и емкость, включенные в схему.

Коэффициенты амплитуды K_a и формы K_f рассчитываются по формулам:

$$K_f = \frac{U_{CK}}{U_{CB}} \tag{6}$$

$$R_a = \frac{U_m}{U_{CK}} \tag{7}$$

Рисунок 3.1. Принципиальная схема установки

B4-12 B3-40 B3-38
$$U_m = U_V \qquad U_{CK} = U_V \qquad U_{CB} = U_V/1.11$$

$$\delta_{B4-12} = \gamma * \frac{U_{pr.B4-12}}{U_{B4-12}} \qquad \delta_{B3-40} = \gamma * \frac{U_{pr.B3-40}}{U_{B3-40}} \qquad \delta_{B3-38} = \gamma * \frac{U_{pr.B3-38}}{U_{B3-38}}$$

$$\gamma = \pm 4\% \qquad \gamma = \pm 1,5\% \qquad \gamma = \pm 2,5\%$$

4 Результаты измерений

1. Измерить переменные напряжения с помощью вольтметра В7-28. Оценить инструментальные погрешности измерения переменных напряжений.

№ п/п	f , к Γ ц	U, B	U_{PR} , B	U_V , B	δ_U , %	δ_U , %
1						
2						
3						
4						

Таблица 2: Результаты измерений

2. Определить входное сопротивление R_{V} и входную емкость C_{V} вольтметра B7-28.

U_G ,	f_H ,	U_{GH} ,	R_0 ,	U_{RV} ,		$\langle R_V \rangle$,	f_B , к Γ ц		C_0 ,			$\langle C_V \rangle$,
В	Гц	В	кОм	В	В	кОм	кГц	В	пΦ	В	пΦ	пΦ

Таблица 3: Результаты измерений

3. Определить для заданных сигналов различной формы пиковое U_m , среднеквадратическое U_{CK} , средневыпрямленное U_{CB} значения напряжения, коэффициент амплитуды K_a и коэффициент формы K_f .

Номер точки	1	2	3	4	5
U_{B4-12} , мВ					
$U_{PR_{B4-12}}$, мВ					
U_{B3-40} , мВ					
$U_{PR_{B3-40}}$, м ${ m B}$					
U_{B3-38} , мВ					
$U_{PR_{B3-38}}, { m MB}$					
U_m , мВ					
U_{CK} , м ${f B}$					
U_{CB} , м ${ m B}$					
K_a					
K_f					
$\delta_{U_{B4-12}}, \%$					
$\delta_{U_{B3-40}}, \%$					
$\delta_{U_{B3-38}}, \%$					

Таблица 4: Результаты измерений

5 Вывод

В ходе лабораторной работы:

- Изучены принцип работы вольтметров.
- Приобретены практические навыки работы с генераторами, электронными вольтметрами и осциллографами.

•