College Football Bowl Games

Dataset link: https://www.kaggle.com/code/mattop/college-football-bowl-games-eda-wordcloud/notebook (https://www.kaggle.com/code/mattop/college-football-bowl-games-eda-wordcloud/notebook)

Prepared by: Appurva Talashilkar

Problem Statement: Overall performance of each team from the year(1902-2022)

Tabular data includes:

year: Year of game. date: Date of game. day: Day of the week. winner_tie: Winner of game/tied. winner_rank: Rank of winning team. winner_points: Total points scored by winning team. loser_tie: Loser of game/tied. loser_rank: Rank of losing team. loser_points: Total points scored by losing team. attendance: Total number of people at bowl game mvp: Most valuable player, position, team, name sponsor: Sponsor of game.

In [16]:

```
#LOADING LIBRARIES
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

In [17]:

df=pd.read_csv("collegefootballbowl.csv")
df

Out[17]:

	id	year	date	day	winner_tie	winner_rank	winner_points	loser_tie	loser_r
0	1	2021	12/29/2021	Wed	Oklahoma	14	47	Oregon	
1	2	2020	12/29/2020	Tue	Texas	20	55	Colorado	r
2	3	2019	12/31/2019	Tue	Texas	NaN	38	Utah	
3	4	2018	12/28/2018	Fri	Washington State	12	28	Iowa State	
4	5	2017	12/28/2017	Thu	Texas Christian	13	39	Stanford	
•••									
1522	1523	2004	12/30/2004	Thu	Northern Illinois	NaN	34	Troy	ı
1523	1524	2003	12/30/2003	Tue	Fresno State	NaN	17	UCLA	ı
1524	1525	2002	12/31/2002	Tue	Fresno State	NaN	30	Georgia Tech	r
1525	1526	2001	12/31/2001	Mon	Michigan State	NaN	44	Fresno State	

	id	year	date	day	winner_tie	winner_rank	winner_points	loser_tie	loser_r
1526	1527	2000	12/31/2000	Sun	Air Force	NaN	37	Fresno State	,
1527 rows × 14 columns									

EDA(Exploratory Data Analysis

In [18]:

df.head()

Out[18]:

	id	year	date	day	winner_tie	winner_rank	winner_points	loser_tie	loser_rank	los
0	1	2021	12/29/2021	Wed	Oklahoma	14	47	Oregon	15	
1	2	2020	12/29/2020	Tue	Texas	20	55	Colorado	NaN	
2	3	2019	12/31/2019	Tue	Texas	NaN	38	Utah	12	
3	4	2018	12/28/2018	Fri	Washington State	12	28	lowa State	25	
4	5	2017	12/28/2017	Thu	Texas Christian	13	39	Stanford	15	

In [19]:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1527 entries, 0 to 1526
Data columns (total 14 columns):
                    Non-Null Count Dtype
#
     Column
     _____
                    _____
                    1527 non-null
 0
     id
                                    int64
 1
     year
                    1527 non-null
                                    int64
 2
    date
                    1527 non-null
                                    object
    day
 3
                    1527 non-null
                                    object
 4
     winner tie
                    1527 non-null
                                    object
 5
                    754 non-null
     winner_rank
                                    object
     winner points 1527 non-null
 6
                                    int64
 7
     loser_tie
                    1527 non-null
                                    object
 8
     loser rank
                    671 non-null
                                    object
 9
     loser points
                    1527 non-null
                                    int64
 10
     attendance
                    1518 non-null
                                    float64
                    1358 non-null
 11
    mvp
                                    object
 12
     sponsor
                    820 non-null
                                    object
                    1527 non-null
 13
     bowl name
                                    object
```

dtypes: float64(1), int64(4), object(9)

In [20]:

df.describe()

memory usage: 167.1+ KB

Out[20]:

	id	year	winner_points	loser_points	attendance
count	1527.000000	1527.000000	1527.000000	1527.000000	1518.000000
mean	764.000000	1991.286182	30.253438	17.092338	49487.574440
std	440.951244	24.437900	12.111077	10.395141	23552.602532
min	1.000000	1901.000000	0.000000	0.000000	0.000000
25%	382.500000	1976.000000	21.000000	10.000000	31383.000000
50%	764.000000	1998.000000	30.000000	16.000000	49056.000000
75%	1145.500000	2011.000000	38.000000	24.000000	68321.500000
max	1527.000000	2021.000000	70.000000	61.000000	106869.000000

In [21]:

df.columns

Out[21]:

In [22]:

df.dropna()

Out[22]:

	id	year	date	day	winner_tie	winner_rank	winner_points	loser_tie	lose
0	1	2021	12/29/2021	Wed	Oklahoma	14	47	Oregon	
3	4	2018	12/28/2018	Fri	Washington State	12	28	Iowa State	
4	5	2017	12/28/2017	Thu	Texas Christian	13	39	Stanford	
5	6	2016	12/29/2016	Thu	Oklahoma State	13	38	Colorado	
6	7	2015	1/2/2016	Sat	Texas Christian	11	47	Oregon	
•••				•••					
1427	1428	1996	12/30/1996	Mon	Colorado	8	33	Washington	
1429	1430	1994	12/30/1994	Fri	Michigan	20	24	Colorado State	
1434	1435	1989	12/29/1989	Fri	Penn State	18	50	Brigham Young	
1435	1436	1988	12/30/1988	Fri	Oklahoma State	12	62	Wyoming	

	id	year	date	day	winner_tie	winner_rank	winner_points	loser_tie	lose
1504	1505	2008	12/23/2008	Tue	Texas Christian	11	17	Boise State	
269 rows × 14 columns									

In [23]:

df.isnull().sum()

Out[23]:

id	0
year	0
date	0
day	0
winner_tie	0
winner_rank	773
winner_points	0
loser_tie	0
loser_rank	856
loser_points	0
attendance	9
mvp	169
sponsor	707
bowl_name	0
dtype: int64	

In [24]:

df.dropna(inplace=True)
df.head()

Out[24]:

	id	year	date	day	winner_tie	winner_rank	winner_points	loser_tie	loser_rank	los
0	1	2021	12/29/2021	Wed	Oklahoma	14	47	Oregon	15	
3	4	2018	12/28/2018	Fri	Washington State	12	28	Iowa State	25	
4	5	2017	12/28/2017	Thu	Texas Christian	13	39	Stanford	15	
5	6	2016	12/29/2016	Thu	Oklahoma State	13	38	Colorado	11	
6	7	2015	1/2/2016	Sat	Texas Christian	11	47	Oregon	15	

In [25]:

```
sns.distplot(df.attendance)
plt.axvline(df.attendance.mean(), color="black")
plt.axvline(df.attendance.median(), color="green")
plt.show()
```


In [26]:

```
sns.distplot(df.winner_points)
plt.axvline(df.winner_points.mean(), color="black")
plt.axvline(df.winner_points.median(), color="green")
plt.show()
```


In [27]:

```
sns.distplot(df.loser_points)
plt.axvline(df.loser_points.mean(), color="black")
plt.axvline(df.loser_points.median(), color="green")
plt.show()
```


In [28]:

```
df.attendance.describe(percentiles = [0.25,0.50,0.75,0.85,0.90,1])
```

Out[28]:

count	269.000000
mean	67146.888476
std	15555.305191
min	0.000000
25%	59815.000000
50%	70016.000000
75%	74682.000000
85%	78576.000000
90%	83031.600000
100%	95173.000000
max	95173.000000

Name: attendance, dtype: float64

In [29]:

```
df['day'].value_counts()
```

Out[29]:

Mon 62
Fri 50
Sat 41
Thu 38
Wed 38
Tue 37
Sun 3
Name: day, dtype: int64

In [30]:

```
sns.barplot(x = 'day',y = 'attendance',data = df)
```

Out[30]:

<AxesSubplot:xlabel='day', ylabel='attendance'>

In [31]:

```
sns.barplot(x = 'day',y = 'winner_points',data = df)
```

Out[31]:

<AxesSubplot:xlabel='day', ylabel='winner_points'>

In [32]:

```
sns.barplot(x = 'day',y = 'loser_points',data = df)
```

Out[32]:

<AxesSubplot:xlabel='day', ylabel='loser_points'>

In [33]:

df.columns

Out[33]:

In [34]:

```
x=df.drop(['date','day','winner_tie','loser_tie','mvp','sponsor','bowl_name','winner
y=df['attendance']
x
```

Out[34]:

	id	year	winner_points	loser_points
0	1	2021	47	32
3	4	2018	28	26
4	5	2017	39	37
5	6	2016	38	8
6	7	2015	47	41
1427	1428	1996	33	21
1429	1430	1994	24	14
1434	1435	1989	50	39
1435	1436	1988	62	14
1504	1505	2008	17	16

269 rows × 4 columns

In [35]:

```
У
Out[35]:
0
        59121.0
3
        60675.0
        57653.0
        59815.0
5
        64569.0
1427
        54749.0
1429
        59453.0
1434
        61113.0
        60718.0
1435
        34628.0
1504
Name: attendance, Length: 269, dtype: float64
```

TTS(TRAIN TEST SPLIT)

In [36]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_stat
X_train = X_train.replace((np.inf, -np.inf, np.nan), 0).reset_index(drop=True).replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().replace().repl
```

In [37]:

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
num_vars = ['winner_points','loser_points']
X_train[num_vars] = scaler.fit_transform(X_train[num_vars])
X_test[num_vars] = scaler.transform(X_test[num_vars])
X_test.head()
```

Out[37]:

		id	year	winner_points	loser_points
14	09	1410	2014	0.626866	0.875000
10	62	1063	2012	0.447761	0.479167
3	37	338	2020	0.462687	0.354167
9	17	918	2017	0.761194	1.000000
9	15	916	2019	0.373134	0.562500

In [38]:

```
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
```

(215, 4) (54, 4) (215,) (54,)

In [39]:

df.describe()

Out[39]:

	id	year	winner_points	loser_points	attendance
count	269.000000	269.000000	269.000000	269.000000	269.000000
mean	661.245353	2005.609665	33.918216	19.929368	67146.888476
std	414.018331	9.609544	10.884777	10.381466	15555.305191
min	1.000000	1985.000000	3.000000	0.000000	0.000000
25%	246.000000	1998.000000	26.000000	13.000000	59815.000000
50%	730.000000	2006.000000	34.000000	20.000000	70016.000000
75%	1028.000000	2014.000000	41.000000	27.000000	74682.000000
max	1505.000000	2021.000000	70.000000	49.000000	95173.000000

In []:

In [40]:

X_train.columns

Out[40]:

Index(['id', 'year', 'winner_points', 'loser_points'], dtype='object')

In []:

In [41]:

X_train.describe()

Out[41]:

	id	year	winner_points	loser_points
count	215.000000	215.000000	215.000000	215.000000
mean	653.906977	2005.111628	0.458938	0.408818
std	418.007111	9.736558	0.162556	0.217117
min	1.000000	1985.000000	0.000000	0.000000
25%	244.000000	1997.500000	0.343284	0.270833
50%	724.000000	2006.000000	0.462687	0.375000
75%	1051.500000	2013.000000	0.567164	0.562500
max	1505.000000	2021.000000	1.000000	1.000000

In [42]:

X_test.describe()

Out[42]:

	id	year	winner_points	loser_points
count	54.000000	54.000000	54.000000	54.000000
mean	690.462963	2007.592593	0.471531	0.440586
std	400.195976	8.896721	0.163204	0.213014
min	8.000000	1987.000000	0.238806	0.000000
25%	339.500000	2000.250000	0.373134	0.322917
50%	821.000000	2007.500000	0.440299	0.437500
75%	936.500000	2017.000000	0.544776	0.578125
max	1427.000000	2020.000000	0.940299	1.020833

```
In [43]:
```

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X_train, y_train)
lr.score(X_train,y_train)
```

Out[43]:

0.03354321250299419

In [44]:

```
from sklearn.linear_model import Ridge
ridge=Ridge()
ridge=Ridge(alpha=189)
ridge.fit(X_train,y_train)
print('Train: ',ridge.score(X_train,y_train))
print('Test: ',ridge.score(X_test,y_test))
```

Train: 0.033286218997407246 Test: 0.02479032575121498

DECISION TREE

THERE IS NO CO LINEARITY IN DATA SO WE WILL USE DT

In [45]:

```
catcols=list(df.select_dtypes(include=['object']).head())
df=pd.get_dummies(df, columns=catcols, drop_first=True)
df.head()
```

Out[45]:

	id	year	winner_points	loser_points	attendance	date_1/1/1987	date_1/1/1988	date_1/1/1990
0	1	2021	47	32	59121.0	0	0	(
3	4	2018	28	26	60675.0	0	0	(
4	5	2017	39	37	57653.0	0	0	(
5	6	2016	38	8	59815.0	0	0	(
6	7	2015	47	41	64569.0	0	0	(

5 rows × 675 columns

In [46]:

```
dtx=df.drop(['attendance'], axis=1)
dty=df['attendance']
```

```
In [ ]:
```

```
In [47]:
```

```
from sklearn.model_selection import train_test_split
dtxt,dtxte,dtyt,dtyte = train_test_split(dtx,dty, test_size = 0.2, random_state = 2)
```

In [48]:

```
from sklearn.tree import DecisionTreeRegressor
dtmodel = DecisionTreeRegressor(random_state=0)
dtmodel.fit(dtxt,dtyt)
```

Out[48]:

DecisionTreeRegressor(random_state=0)

In [49]:

```
print(dtmodel.score(dtxt,dtyt))
print(dtmodel.score(dtxte,dtyte))
```

1.0

0.37473410128085227

There is overfiiting in data because of absence of colinearity

```
In [ ]:
```