Θεωρείστε τη μηχανή Atwood του σχήματος.

- (α) Να γραφούν οι τρεις εξισώσεις F=mα. Θεωρείστε θετική τη φορά προς τα πάνω.
- (β) Να βρεθεί η επιτάχυνση της μεσαίας μάζας (2m) συναρτήσει των επιταχύνσεων των δύο άλλων μαζών.
- (γ) Να βρεθούν και οι τρεις επιταχύνσεις

(α) Να γραφούν οι τρεις εξισώσεις F=mα.

$$\sum F = m_1 a_1 = T - m_1 g$$

$$\Rightarrow m_1 a_1 = T - m_1 g$$

$$\sum F = m_2 a_2 = T + T - m_2 g$$
 $\sum F = m_3 a_3 = T - m_3 g$

$$\Rightarrow m_2 a_2 = 2T - m_2 g$$

$$\sum F = m_3 a_3 = T - m_3 g$$

$$\Rightarrow m_3 a_3 = T - m_3 g$$

Τρεις εξισώσεις αλλά με 4 αγνώστους: α₁,α₂,α₃,Τ 1 ακόμα εξίσωση

(β) "Αρχή διατήρησης του νήματος" και η επιτάχυνση της μάζας m2

- ✓ Έστω η μάζα m₁ κινείται κατά y₁ προς τα πάνω και η μάζα m₃ κινείται κατά y₃ προς τα πάνω.
- Το νήμα όμως δεν "χάνεται", άρα μήκος νήματος ίσο με y₁+y₃ πρέπει να εμφανιστεί στη μεσαία περιοχή.
- ✓ Αφού υπάρχουν 2 τμήματα νήματος, το καθένα θα πρέπει να επιμηκυνθεί κατά (y₁+y₃)/2.

Η μάζα m₂ πηγαίνει προς τα κάτω κατά το ίδιο διάστημα y₂. Επομένως μπορούμε να βρούμε την επιτάχυνσή της.

$$a_2 = \frac{d\mathbf{v}}{dt} = \frac{d}{dt} \left(\frac{dy_2}{dt} \right) \Rightarrow a_2 = \frac{d}{dt} \left(\frac{d[-(y_1 + y_3)/2]}{dt} \right) = -\frac{1}{2} \left(\frac{d}{dt} \left(\frac{dy_1}{dt} \right) + \frac{d}{dt} \left(\frac{dy_3}{dt} \right) \right)$$

$$a_2 = -\frac{\left(a_1 + a_3\right)}{2}$$

(γ) Οι επιταχύνσεις των τριών μαζών και η τάση Τ του νήματος

Τώρα έχουμε 4 εξισώσεις με 4 αγνώστους:

$$a_{1} = \frac{T - mg}{m}$$

$$a_{2} = \frac{2T - 2mg}{2m} = \frac{T - mg}{m}$$

$$a_{3} = \frac{T - 3mg}{3m}$$

$$a_{4} = -\frac{a_{1} + a_{3}}{2}$$
(5)
$$a_{5} = a_{1}$$

$$a_{6} = a_{1}$$
(6)

Από τις (6) και (3) έχουμε: $T = 3m(-3a_1) + 3mg \Rightarrow T = -m(9a_1 - 3g)$ (7) Από τις (1) και (7) έχουμε: $a_1 = \frac{-m(9a_1 - 3g) - mg}{m} \Rightarrow 10ma_1 = 2mg \Rightarrow a_1 = \frac{g}{5}$

Αντικαθιστώντας στις (5),(6) και (7) $a_2 = \frac{g}{5}$ $a_3 = -\frac{3g}{5}$ $T = +\frac{6}{5}mg$

Δυνάμεις τριβής

Οι δυνάμεις αυτές είναι πολύ σημαντικές

Σκεφθείτε πόσο δύσκολο είναι να περπατήσετε πάνω σε πάγο.

Η τριβή αναπτύσσεται μεταξύ 2 επιφανειών που έρχονται σε επαφή και η μία αρχίζει να κινείται σε σχέση με τη άλλη.

Η διεύθυνσή τους είναι αντίθετη της φοράς κίνησης

Δεν ξέρουμε τι ακριβώς συμβαίνει αλλά υπάρχουν μερικοί εμπειρικοί κανόνες

\Box Στατική τριβή $F_{\rm s} \leq \eta_{\rm s} N$

Η δύναμη της τριβής είναι ανάλογη της κάθετης δύναμης (αντίδρασης της επιφάνειας) και ανεξάρτητη της ταχύτητας ή του εμβαδού επαφής

Η σταθερά η_s δίνει μια μέγιστη τιμή.

Προσοχή: η δύναμη της στατικής τριβής έχει οποιαδήποτε τιμή με μέγιστη τιμή: n_sN που λαμβάνεται τι στιγμή που θα κινηθεί το σώμα

Η δύναμη F_s δεν θα 'ναι ίση με η_sN αν τραβήξουμε με μια μικρή F

Δυνάμεις τριβής

\Box Κινητική τριβή $F_k = \eta_k N$

Η δύναμη της τριβής είναι ανάλογη της κάθετης δύναμης (αντίδρασης επιφάνειας) και ανεξάρτητη της ταχύτητας ή του εμβαδού επαφής (προσέγγιση)

Η σταθερά η_κ εξαρτάται από το είδος και των 2 επιφανειών σε επαφή

Οι προηγούμενοι εμπειρικοί νόμοι καλοί για τους σκοπούς μας. Γενικά $\eta_{\varsigma} > \eta_{\kappa}$

Μπορούμε να κρατήσουμε κάτι που κινείται με μικρότερη δύναμη από αυτή που χρειάστηκε για να το θέσουμε σε κίνηση

Τριβή

Ποιά δύναμη απαιτείται ώστε το σώμα να κινείται με σταθερή ταχύτητα.
 Η μάζα του βιβλίου είναι 1kg, ο συντελεστής στατικής τριβής η_s=0.84 και ο συντελεστής της κινητικής τριβής η_κ=0.75.

Παράδειγμα επιταχυνόμενης κίνησης

Ένα τρακτέρ Τ μάζας m_T =300Kg τραβά ένα βαγονάκι μάζας m_B =400kg με σταθερή δύναμη σε οριζόντιο δρόμο. Το σύστημα κινείται με σταθερή επιτάχυνση 1.5m/s².

Να βρεθεί η καθαρή δύναμη που ασκείται στο τρακτέρ και στο βαγονάκι

$$F_{\tau\rho} = m_T a \Rightarrow F_{\tau\rho} = 300 kg \times 1.5 m/s^2 = 450 N$$

 $F_{\beta\alpha\gamma} = m_B a \Rightarrow F_{\beta\alpha\gamma} = 400 kg \times 1.5 m/s^2 = 600 N$

Παράδειγμα δύναμης με γωνία

Ένα άτομο σπρώχνει ένα κιβώτιο μάζας 15kg με σταθερή ταχύτητα κατά μήκος ενός δαπέδου. Ο συντελεστής κινητικής τριβής δαπέδου-κιβωτίου είναι η_κ=0.4. Το άτομο σπρώχνει το κιβώτιο με γωνία 25°.

 $\Rightarrow N = B + F_{\alpha\tau} \sin(\theta)$

Η κάθετη δύναμη είναι μεγαλύτερη από το βάρος