peptides and results with PKC-theta Fig 1. Examples of two test sets of

A. P+1 test set

B. P+2 test set

ı		1	ď	Position P+1	n P+1			
	Symbolic Representation:	K	pres	entati		ddddRdd-S-?dd	-Pdd	
						Ratio to		
	Peptide Sequence	9	nce	ပ	CPM	Mean	Log	Log Score
	dddRdd-S-	۵	pp	29	£ 3	70	-1.26	-1.26 ± 0.03
	dddRdd-S-	Z	pp	88	£	90	-0.87	-0.87 ± 0.04
3	ddddRdd-S-	O	qq	158	+ 4	1.0	-0.03	± 0.04
_	dddRdd-S-	Ľ	qq	nh.	6+1	3 (± 0.04
Ю	dddRdd-S-	X	pp	F2.	+ 18	,		₹ 0.08
9	dddRdd-S-	I	pp	163	+ 10	1.0	0.01	€0.0 ∓
	ddddRdd-S-	S	qq	136	ဗ +I	8.0	-0.24	± 0.03
8	dddRdd-S-		þþ	90	+3	9.0	-0.85	± 0.07
6	ddddRdd-S-	_	pp	24.8	± 18		F. : (+)	± 0.11
10	dddRdd-S-	ı	pp	464	8 +1	23	1 1057	€0.0 ∓
7	dddRdd-S-	3	qq	135	9 =	8.0	-0.25	± 0.07
12	dddRdd-S-	G	dd	93	±2	9.0	-0.79	± 0.03
5	dddRdd-S-	¥	A dd	26	+I	9.0	-0.73	± 0.10

			Position P+2			
	Symbolic	Repre	Symbolic Representation: c	ddddRdd-S-F?d	-F?d	
				Ratio to		
	Peptide Sequence	nce	CPM	Mean	Log Score	ore
٢	ddddRdd-S-F	рq	186 ± 11	90	-1:12 ±	₹ 0.08
Ŋ	dddRdd-S-F N	P N	** ± 22		+1	0.04
ო	ddddRdd-S-F	ت ط	229 ± 7	9.0	₹ 28.0	0.05
4	dddRdd-S-F	Rd	38 ± 38		+1	0.05
40	ddddRdd-S-F	Ka	ans ± 25		+1	0.05
9	ddddRdd-S-F	Ha	35 + 35		+1	90.0
~	ddddRdd-S-F	Sd	431 ± 10	1.1	∓ 60.0	± 0.05
00	ddddRdd-S-F	p	148 ± 3	0.4	-1.46 ±	± 0.03
6	dddRdd-S-F	r q	489 ± 5	1.2	0.27 ±	0.01
9	dddRdd-S-F	Fd	543 ± 19	1.3	0.42 ±	0.07
11	dddRdd-S-F	PM	459 ± 3	1.1	0.18 ±	0.01
12	ddddRdd-S-F	Gd	195 ± 2	0.5	-1.05 ±	± 0.01
13	ddddRdd-S-F	P Y	201 ± 7	9.0	-1.01 ±	± 0.07

Fig 2: A superset of test sets designed for analysis of PKC specificity from P-4 to P+3

	RxxS	Set P+1	P+1	dddRdd-S-2dd	ddd Rdd-S-Ddd dddd Rdd-S-Ddd dddd Rdd-S-Bdd ddd Rdd-S-Hdd ddd Rdd-S-Hdd ddd Rdd-S-Pdd ddd Rdd-S-Pdd ddd Rdd-S-Pdd ddd Rdd-S-Fdd ddd Rdd-S-Fdd ddd Rdd-S-Fdd
	RRE-E-F	Set P-2	PO	dddAdAd-?-Fdd	dddd R dd-S-F dd
÷	-S-F	Set P-3	P-3	dddd2dd-S-Fdd	dddd Ddd-S-Fdd dddd Cdd-S-Fdd dddd Rdd-S-Fdd dddd Rdd-S-Fdd ddd Rdd-S-Fdd ddd Cdd-S-Fdd ddd Cdd-S-Fdd ddd Cdd-S-Fdd ddd Cdd-S-Fdd ddd Cdd-S-Fdd ddd Cdd-S-Fdd
		Set P-3	P+3	dddRdd-S-Fd?	dddd Rdd-S-FdD dddd Rdd-S-FdD dddd Rdd-S-FdR dddd Rdd-S-FdR dddd Rdd-S-FdR dddd Rdd-S-FdP dddd Rdd-S-FdP dddd Rdd-S-FdP dddd Rdd-S-FdF dddd Rdd-S-FdF dddd Rdd-S-FdF
		Set P-2	P+2	ddddBdd-S-F?d	ddddBdd-S-FDd ddddBdd-S-F d ddddBdd-S-F d ddddBdd-S-FKd ddddBdd-S-FKd ddddBdd-S-FPd ddddBdd-S-FLd ddddBdd-S-FLd ddddBdd-S-FCd
ddd?R??-S-F??	Rxx-S-F	Set P-1	P-1	ddddBd?-S-Fdd	ddddRdD-S-Fdd ddddRd -S-Fdd ddddRdR-S-Fdd ddddRdR-S-Fdd ddddRdR-S-Fdd ddddRdP-S-Fdd ddddRdP-S-Fdd dddGRdP-S-Fdd dddGRdP-S-Fdd
dı		Set P-2	P-2	ddddR?d-S-Fdd	ddddRDd-S-Fdd ddddR d-S-Fdd ddddRRd-S-Fdd ddddRRd-S-Fdd ddddRRd-S-Fdd ddddRRd-S-Fdd ddddRRd-S-Fdd ddddRRd-S-Fdd ddddRRd-S-Fdd ddddRRd-S-Fdd
		Set P-4	P-4	ddd?Rdd-S-Fdd	dddDRdd-S-Fdd ddd Rdd-S-Fdd dddRRdd-S-Fdd dddRRdd-S-Fdd dddRRdd-S-Fdd dddRRdd-S-Fdd dddRRdd-S-Fdd dddRRdd-S-Fdd dddRRdd-S-Fdd dddRRdd-S-Fdd
Symbolic Representation	r and ph sph rylatable Residues	Set	P siti n	Symbolio Representati n f Set	ther residues in class E T IMAV Y
Syml Represe	Anch rand ph Resi	ชั	PS	Symi Representa	giev seds seubises? notifica group a midsiiw make a make a midsiiw make

of a collection of peptides designed for analysis of PKC specific Fig 3: Raw Counts For In Vitro phosphorylation by PKC-theta

Residue	4	3	2	-1	5 2	+1	+2	+3
D	26	7.63	419	767			1341	Marine Control
M	422	153	477	651		(3(0)		610
Ö	114		493	472		158	576	358
R		1. 1. 1.	310 2					
Ж		111		F (1)				
Н	573	117		461		163		909
S	433	06	389	371	461	136	431	31.34
	439	66	458	376		E C	4 6 13	3777
Ţ	040		347	413			489	715
Ł	741		SV2	348			543	647
M	721	151	3110	。1067		135	459	470
9	517	127	449	672			明明	409
E.	380 -	-84	362	878			- 20J	711
essa.				·	402			
Geo Mean For Set	572	133	509	481	430	161	406	488

Fig 4: Ratio to Mean for PKC-theta

		7	¥	-	FC	+1	+2	+3
		1.6	8.0	90		* F :0	3 40	9.0
	0.7	1.1	6.0	1.4		90		1.3
	0.7		1.0	1.0		1.0	. (I)(i)	0.7
R			err (
X		6.0		7,5				
I	1.0	6.0	::	1.0		1.0		1.0
S (9.0	0.7	8.0	8.0	1.1	0.8	1.1	9.0
	8.0	7.0	0.9	8.0			0.4	0.5
	1.	9.0	7.0	6.0			1.2	1.5
	1.3	5.23	0.5	2.0			1.3	1.3
M	1.3	1.1	9.0	9.0		0.8	1.1	1.0
9	6.0	1.0	0.9	1.4		9.0	0.5	8.0
	0.7	9.0	0.7	1.4		9.0	0.5	1.5
<u>.</u>					6.0			

Fig 5: Position-specific scoring matrix for PKC-theta

rix for PKC-theta	70 +1 +2 +3 -0.9 0.3 0.0 0.8 0.4 0.1 0.8 0.1 0.3 0.2 0.1 0.4 0.4 0.8 -1.1 0.3	0.1 0.2 0.1 0.7 -1.3 -1.1 0.9 0.3 0.3 0.6 0.4 0.4 0.4 0.7 -1.0 0.6
4 3 3	0.4 0.2 4 0.5 0.2 4 0.0 0.2 0 0.1 0.2 0 0.2 0.6 0 0.4 0.6 0 0.4 0.5 0 0.4 0.5 0 0.3 0.2 0 0.1 0.1 0 0.3 0.2 0 0.6 0.7 0 0.6 0.7 0 0.6 0.7 0 0.6 0.7 0	0.4 0.6 0.4 0.4 -1.0 0.8 0.3 0.7 0.2 0.7 0.6 0.2 0.2 0.7 0.6 0.2 0.4 0.7 0.6 0.2 0.4 0.7 0.6 0.5 0.6 0.7 0.6 0.5
Residue	Fxperimentally beniminateb	Extrapolated

designed to extend analysis of PKC specificity Fig 6. A superset of degenerate peptides

	Sup rs t:	ت			Superset A	set A		
	Anch r d	P			Rxx-S-F	-S-F		
	R sidu	S						
	S		Set P-7	Set P-6	Set P-5	Set P+4	Set P.5	S t P•6
	Position	e c	P-7	P-6	5-đ	P+4 ·	P+5	P+6
	Symbolic	0	dddd?Rdd-S-Fdd	dddddR?d-S-Fdd	ddddda?-S-Fdd	ddRdd-S-F?dddd	ddRdd-S-F?dddd	dddRdd-S-Fd?dd
Repr s	, ntatio	s ntation of Set						
		Other						
		residues in						
	Rs	class						
	a	E	9D999R99-S-F99	99D99R99-S-F99	999D9R99-S-F99	99R99-S-F99D99	99R99-S-F999D9	99R99-S-F9999D
u	₹	-	9.4399R39-S-F99	99 M 99 R 99-5-F99	999 N 9 R 99- S-F99	99R39-S-E99N99	99R99-S-F999N9	99R99-S-F9999M
	1,2		94:999R99-S-F99	99@99R99-S-F99	999@9R99-S-F99	99R99-S-F99Q99	99R99-S-F999Q9	99R99-S-F9999@
	Œ		9R999R99-S-F99	99R99R99-S-F99	999R9R99-S-F99	99R99-S-F99R99	99R99-S-F999R9	99R99-S-F9999R
	¥		9K999H99-5-F99	99K99R99-S-F99	999K3R99-S-F99	99R99-S-F99K99	99R99-S-F999K9	99R99-S-F9999K
e4:	I		9H999R99-S-F99	99H99B99-S-F99	999H9R99-S-F99	99R99-S-F99H99	99R99-S-F999H9	99R99-S-F9999H
	S	 	9599B99-5-F99	99S99R99-S-F99	999 S 9 R 99- S-F99	99R99-S-F99S99	99R99 -S- F999 S9	99R99-S-F9999S
			9 999R99-S-F99	99 99R99-S-F99	999 9R99-S-F99	99R99-S-F99 99	99R99-S-F999 9	99R99-S-F9999
ojs:		IMV	9L999R99-S-F99	99L99R99-S-F99	999L9R99-S-F99	99R99-S-F99L93	99R99-S-F999L9	99 H 99- S-F 9999L
	L.	> -	9F999R99-S-F99	99F99R99-S-F99	999F9R99-S-F99	99R99-S-F99F99	99R99-S-F999F9	99R99-S-F9999F
Jii (>		9V999R99-S-F99	99¥99R99-S-F99	999V9R99-S-F99	99R99-S-F99V99	99R99-S-F999W9	99R99-S-E9999V
N	(5		9G999H99-S-F99	99 G 99 R 99- S-F99	999G9R99-S-F99	99R99-S-F99G99	99R99-S-F999G9	99R99-S-F9999G
	J.		9 A 999 R 99- S-F99	99 A 99 R 99-S-F99	999 A 9R 99- S-F99	99R99-S-F99A93	99R99-S-F999A9	99R99-S-F9999A

Fig 7. Extension of Position-specific scoring matrix for PKC-theta

9+ 4+ +5 +6	0.9 0.3 0.4 0.4		0.2 0.1	0.2 0.2 0.0 0.3	0.0	9.0	0.1 1 0.2 0.0	0.4 0.4 0.2 0.1		0.0 0.0 0.1	0.5 0.6 0.3 0.3		0.1 0.3 0.1 0.1		0.5 0.8 0.5 1.1	0.2 0.0 0.0 0.1	10 11 11 11 UT
9- 1-	9.0 6.0		0.1 0.1	-0.2 0.0	40	0.4	0.1 0.1	0.0 0.1		0.5 0.3	0.0 0.5		0.0 0.3		0.9 0.4	0.4 0.1	0.0 40.2
Residue	Q	ш	H	Ø	R	¥	I	S	L		7	E	4	>	M	ťΰ	(
						Ą				eri ete	_	3					

Fig 8. Sequence Logo vs PSSM Logo

Fig 9. Testing our predictions for PKC-theta and Scansite prediction for PKC-delta against results for PKC-delta

Fig 10: Comparison of our scoring with Scansite scoring for PKC-delta

Criteria:

Positive score: better than 1st percentile

Positive phosphorylation: better than 10% of max

Ours

Scansite

		Measure	Measured activity			Measured act	d act
		Positive	Negative		,	Positive	Neg
Prediction Positi	Positive	21	P	Prediction Positive	Positive	10	
score	Negative	2	48	score	Negative	12	
Total Scored	ored	_	75	Total Scored	cored		35
Sensitivity	vity	ĵ	92	Sensitivity	ivity		22
Specificity	city	5	91	Specificity	icity	3	45

		Measure	Measured activity
		Positive	Negative
Prediction	Positive	10	16
score	Negative	12	18
Total Scored	cored		75
Sensitivity	ivity		. 70
Specificity	ficity	7	45

Fig 12. The d??R??S????d superset of test sets with 1 anchor position

d??R??-S-???d	Ree-S	Set P-1 Set P-2 Set P-3 Set P-4	P-1 P+1 P-2 P+3 P+4	dddRd?-S-ddddd dddRdd-S-?dddd dddRdd-S-d?ddd dd?Rdd-S-ddd?Rdd-S-ddd?d		dddRdr.Sddddd dddRdd-SHdddd dddRdd-SdRddd dddRdd-SddRdd dddRdd-SdddAg dddRdd-SdddAg dddRdd-SdddAg dddRdd-SdddAg dddRdd-SddHd dddRdd-SddHd dddRdd-SddHd dddRdd-SddHd dddRdd-SddHd dddRdd-SddHd dddRdd-SddGDd dddRdd-SddGDG dddRdd-SddDDG ddDDG-SddDDG ddDDG-SddDDG ddDDG-SddDDG ddDDG-SddDDG ddDDG-SddDDG ddDDG-SddDDG ddDDG-SddDDG ddDDG-SdDDG ddDDG-SdDDDG ddDDG-SdDDDG ddDDG-SdDDDG ddDDG-SdDDDG ddDDG-SdDDDG ddDDG-SdDDDG ddDDG-SdDDDG ddDDG-SdDDDG ddDDDG-SdDDDG ddDDG-SdDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
-		Set P-2	P-2	dddR?d-S-ddddd da		ddd RRd-S-ddddd dd ddd RRd-S-ddddd dd ddd RBD-S-ddddd dd ddd RBC-S-ddddd dd ddd RBC-S-ddddd dd ddd RBC-S-ddddd dd ddd RBC-S-ddddd dd ddd RRd-S-ddddd dd ddd RRd-S-ddddd dd
		Set P-4	P-4	dd?Rdd-S-ddddd		dd RR dd- S-ddddd dd HR dd- S-ddddd dd D Rdd- S-ddddd dd S Rdd- S-ddddd dd S Rdd- S-ddddd dd B Rdd- S-ddddd dd FR dd- S-ddddd dd FR dd- S-ddddd dd Rdd- S-ddddd dd Rdd- S-ddddd
		Set P-5	P-5	d?dRdd-S-ddddd		d Rd Rdd-S-dddddd Hd Rdd-S-dddddddddddddddddddddddddddddddd
Symbolic Representation	Anch r and phosph rylatable Residues	Set	P siti n	Symbolic Representati n f Set	Other residues Res in class	# ¥ +
Rep	Anch ran			Repres	E	grav tadt zeubizeR noitizog eldairav a nidtiiv

Fig 13. PSSM Logo from analysis of d??R??S????d superset of peptides with AKT1

Fig 14: Issues related to abundance of residues in degenerate positions

				Percent by	sequencing	15.8		5.9	6.1	3.8	9.2	2.7	1.6	8.9	9.1	2.7	3.0	3.7	3.9	5.9	4.6	3.1	3.5	0.2	
		Reagent	parts	per	hundred	80	0	ഥ	ഗ	ঘ	œ	ব	ব	ဖ	ထ	7	ঘ	ഥ	ယ	ယ	∞	യ	ব	7	7
			Estimated	incorporation	efficiency	1.1		1.0	1.2	1.2	1.0	6.0	0.7	1.1	0.9	7:	1.0	1.0	1.2	1.1	-	0.8	0.8		6
sab	Plan 3	-	Abundance	in PKC	substrates	9.9	0.8	5.8	7.3	3.2	~	1.7	33.3	7.1	8.9	6:1	2.9	7.6	2.8	8.9	12.2	5.9	4.3	0.3	
Target percentages	Plan 2	-	Abundance	In Human	Proteome	7.1	2.4	4.5	6.8	3.6	6.9	2.7	4.2	5.7	9.8	2.2	3.5	6.5	4.8	5.8	8.4	5.4	5.9	1.3	7.5
T	Plan 1			Equal	Abundance	5	co.	IJ	ഹ	ഹ	'n	'n	Ŋ	ъ	'n	വ	Ð.	Ŋ	ស	ស	5	Ŋ	ro.	ch.	ιſ
	Amino Acid				Name	Alanine	Cysteine	Aspartic	Glutamic	Phenylalanin	Glycine	Histidine	Isoleucine	Lysine	Leucine	Methionine	Asparagine	Proline	Glutamine	Arginine	Serine	Threonine	Valine	Tryptophane	Tyrosine
	Ami				Code	∢	O	_	Ш	ഥ	ග —	I	_	¥		Σ	z	<u>а</u>	ø	α	ഗ	F	>	*	>

SHP-1 by Western blot with pPKC antibody which is FIG. 15: Detection of specific phosphorylation of augmented following stimulation by the T-cell receptor

FIG. 17: Scores derived from different test sets tested at different times are reproducible and scores extrapolated for untested residues can be adequate

Fig 18: Scoring a peptide

Protein	Sequence	P0 Central	Ľ	9	35	4	63	~	7	8	[🗧	7	Ţ.	4	5	ې	Score total	Percentile
MADOVE	лазия з далили	460	¥	¥	×	포	¥	~	н	S	ц	×	7	s	щ	¥		0
	NAMARK-3-FARSFR	133	-1-			-	.02	-:	0.0	0.1		-			0.1		4.	

proteins encoded by 15651 human genes Fig 19. Distribution of PKC scores sites in

algorithm correctly predicts sites on Fig 20: The PKC site prediction MARCKS

7

10

ω

ဖ

Predicti n (Percentile)

台 2 2

9 8

nth Ser/Thr

10

0

N

PKA

more and great divergence seen with AKT1 and PKA and classical PKC isoforms, but atypical PKC differs FIG. 21. High similarity in specificity between novel

		Corr	Correlation (arithmetic)	arithm	etic)	
	alpha	delta	epsilon	zeta	AKT1	РКА
alpha		98'0	0.89	0.69	0.38	0.29
delta	0.86			0.73	0.63	0.35
epsilon	0.89			0.76	0.50	88'0
zeta	0.69	0.73	0.76		0.35	0.28
AKT1	0.38	0.63	0.50	0.35		0.51
PKA	0.29	0.35	0.38	0.28	0.51	

Fig 22. Differences between PSSM Logos of different kinases analyzed with the same peptide collections

Fig 23. Prediction for PKC-zeta predicts PKC-zeta better than PKC-delta 8 8 8 8 8 8 8 8 8 Measured phosphorylation zeta Measured phosphorylation delta Measured phosphorylation zeta 8 Prediction (percentile) zeta \widehat{a} 20 8 8 9 8 යු 8 8 8 ႘ Measured phosphorylation delta Measured phosphorylation zeta

FIG. 24. Scoring changes in peptides that are less phosphorylated by PKC-zeta than PKC-delta

Peptide		measured phosphorylation	Predicted percentile	7	9	47	4	က	7	- -	0	+	+5	÷	*	÷	9
				A	A		×	i	æ	Ŀ	S	>	조	×	포	0	ш
~	difference	34	4.8	0.1	0.4	0.2	0	0	0.1		0.1	0.3	9.0-	-0.7	6.1	0.5	0.1
-	zeta	_	5.0	9.7	9.0		8.0	•	1.9	-1.6	0.2	0.4	<u>1</u> ق	1.5	1.0	-0.5	0.5
	delta	35) /	0.0	-0.2		0.8	•	1.8	-0.2	0.1	0.7	1. 3	0.8	0.9	0.0	4.0
_				×	-		Ж	R		9	S	>	E	æ	F		S
·	difference	34	-1.5	-0.2	0.1	*,	0	-0.7	0.4	•	. .	0.3	D.3	-0.5	9.0	0.2	
4	zeta	*	2.0	9.0	9.0	-1.4	0.8	2.5	9.0	1.5	0.2	0.4	1.1	1.3	1.0	0.5	-0.4
	delta	38	0.5	0.4	0.5	0.7		1.8	-0.2	0.5	0.1	0.7	8.0	0.8	0.4	0.0	0.2
				9	A		_	ď	æ	S	S	-	æ	z	⋖	≖	
۲,	difference	9	-1.6	0.1	0.4	-		10.7	0.1	-0.3	.	0.3	4	0	0.2	9.0	
>	zeta	m	2.0	0.3	9.0	-1.4	_	2.5	1.9	0.1	0.2	0.4	3.6	0.3	0.5	1.0	
	delta	13	0.4	0.4	-0.2	_	_	1.8	1.8	-0.4	0.1	0.7	1.6	0.3	0.3	0.2	
				A	9	S	Ŧ	×	~		S	-	포	포	_	>	
7	difference	12	2.5	0.2				0.1	0.2	1.1	0.1	0.4	0.1	-0.3	 _	-0.3	
r	zeta	2	3.0	-0.7		_	0.4	0.3	1.6	0.5	0.2	0.3	1.2	7:	-1,3	9.0	
	delta	14	0.5	0:0		_	_	0.7	1.8	0.4	0.1	0.7	1.3	0.8	9.0-	0.3	
					3	_	9	×	ĸ	æ	S	×	Ä	ĸ	×	X	R
ĸ	difference	. 44	2.2		57)		0.1	0	0.1	0.9	D.1	-0.3	9.0	-0.5	0.1	0.2	0.3
>	zeta	æ	3,0		-1.3		0.1	-0.5	1.9	1.6	0.2	1.0	-1.6	1.3	1:0	0.3	1.0
	delta	22	9.0		-0.4	0.5	-0.2	-0.5	1.8	0.7	0.1	0.7	-1.0	0.8	6.0	0.5	0.7
				٠.,		-	>	¥	ĸ	e= :	S		×	R	G	K	
ĸ	difference	27	-1.7	0.1	0.5		0.3	0	0.1	0.7	0.1	0.3	9.0	0.5	9.0	0.2	
>	zeta	S,	2.0	0.1	0.5	0.8	0.1	0.7	1.9	1.2	0.2	0.4	1.9	1.3	9.0	0.3	0.9
	delta	32	0.3	0.0	0.0		0.2	0.7	1.8	0.5	0.1	0.7	1.3	0.8	0.0	0.5	0.3

using the PKC superset FIG. 25 Position-specific residue preference for PKG determined PKA and

_OZQKXINUª≯Q∢⊢

Fig 26. Use of peptides to analyze mutant constructs and altered

constructs and altered conditions for kinase assay Fig 27. Details of changes observed with mutant

FIG. 28 details of residue references for PKC-theta depend on anchor and phosphorylation residues

based on ??R??T???? with only 4 query residues FIG. 29 Results for ROK-alpha with test sets

FIG. 30. Details of the R-Pair Anchor optimization set

to noiti	-7 -6 -5	-6 RRddddd3ddd	Pos -5 RdRddddSddd dRRddddSddd	Position of 2nd R -5 -4 -3 -2 ld RdRddddSddd RddRddSddd RdddRdSddd dRRddddSddd dRdRddSddd dRdddRdSddd ddRRdddSddd ddRddRddSddd ddRddRdSddd	RdddRddSddd dRddRddSddd dRdRddSddd	-2 RddddRdSddd dRddRdSddd ddRdRdSddd
	4-				dddRRddSddd	dddRRddSddd dddRdRdSddd
ď	-3		·			ddddRRdSddd

			Position of 2nd R	of 2nd R	
		-1	+1	+2	+3
	-7	RdddddRSddd	RddddddSRdd	RdddddRSddd RdddddSRdd RdddddSdRd RddddddSddR	Rddddddddl
י ר צ	9	dRddddRSddd	dRdddddSRdd	dRddddRSddd dRddddSRdd dRddddGdRd dRddddSddR	dRdddddSddl
sI ,	15	ddRdddRSddd	ddRddddSRdd	ddRdddRSddd ddRddddSRdd ddRddddSddR	ddRddddSddR
10	4	dddRddRSddd	dddRdddsRdd	dddRddRSddd dddRdddSRdd dddRdddSddR	dddRdddSddR
, π	Ę	dddRdRSddd	dddRddSRdd	ddddRdRSddd dddaRddsRdd ddddRddSddR	ddddRddSddR
oŗą	-2	ddddRRSddd	ddddRdSRdd	ddddarrsddd ddddardsrad ddddrasard ddddardsddr	dddddRdSddR
is.	7	. "	dddddRSRdd	dddddarsRdd dddddarsdrd ddddddrsddr	ddddddRSddR
. T.	+1			ddddddsRRd ddddddsRdR	dddddddsRdR
Τ,	+2				dddddddRR

FIG. 31: R-Pair set results for PKA

FIG. 32: R-Pair set reveals positions associated with the high preference for R

which is augmented following stimulation by the T-FIG. 33: Detection of specific phosphorylation of LIMK-2 by Western blot with the pPKC antibody cell receptor

FIG. 34: Detection of phosphorylation of MLK3 by Western blot with pPKC antibody

FIG. 35 Diagram of a computerized system in conjunction with which embodiments of the invention may be implemented

