

KIT-Fakultät für Informatik

Prof. Dr. Mehdi Tahoori, Prof. Dr. Wolfgang Karl

Musterlösungen zur Klausur

Digitaltechnik und Entwurfsverfahren (TI-1)

und

Rechnerorganisation (TI-2)

am 29. März 2023, 11:00 – 13:00 Uhr

Name:	Vorname:	Matrikelnummer:	
Bond	James	007	

Digitaltechnik und Ent	wurfsverfahren (Tl	-1)
Aufgabe 1		9 von 9 Punkten
Aufgabe 2		10 von 10 Punkten
Aufgabe 3		5 von 5 Punkten
Aufgabe 4		12 von 12 Punkten
Aufgabe 5		9 von 9 Punkten
Rechnerorganisation (7	ΓI-2)	
Aufgabe 6		7 von 7 Punkten
Aufgabe 7		5 von 5 Punkten
Aufgabe 8		15 von 15 Punkten
Aufgabe 9		6 von 6 Punkten
Aufgabe 10		7 von 7 Punkten
Aufgabe 11		5 von 5 Punkten
Gesamtpunktzahl:		90 von 90 Punkten
	Note:	1,0

Aufgabe 1 Schaltfunktionen

(9 Punkte)

1.

Die Primimplikate sind:

1.
$$(d \lor b)$$

2.
$$(b \lor a)$$

2.
$$(b \lor a)$$
 3. $(\overline{d} \lor a)$

2. Konjunktive Minimalformen: es existiert nur eine KMF und sie lautet:

$$\begin{array}{rcl} y_{KMF} & = & \mathbf{1} \wedge \mathbf{3} \\ & = & (d \vee b) \wedge (\overline{d} \vee a) \end{array}$$

3. Ausgangsgleichung für das Nelson-Verfahren: Die kürzeste Gleichung ist die KMF (siehe Aufgabenteil 1.2)

4 P.

1 P.

1 P.

4.

Nr.	gebildet aus	Würfel				gestrichen wegen
1		1	1	_	1	
2		1	0	_	1	
3		1	0	_	0	$\subset 9$
4		0	1	1	_	
5		0	0	1	1	⊂ 7
6	2,1	1	_	_	1	
7	5,4	0	_	1	1	⊂ 10
8	6,4	_	1	1	1	⊂ 10
9	6,3	1	0	_	_	
10	7,6	_	_	1	1	

Die Menge der Primimplikanten: $\{\overline{d}cb, da, d\overline{c}, ba\}$

Aufgabe 2 Schaltnetze und CMOS-Technologie (10 Punkte)

1 P.

1. *y* :

$$\begin{array}{rcl} y & = & \overline{d}\,\overline{a}\,(1) \,\vee\,\overline{d}\,a\,(\overline{c}) \,\vee\,d\,\overline{a}\,(0) \,\vee\,d\,a\,(\overline{c}\,\vee\,b) \\ & = & \overline{d}\,\overline{a} \,\vee\,\overline{d}\,a\,\overline{c} \,\vee\,d\,a\,\overline{c} \,\vee\,d\,a\,b \end{array}$$

2. Minimalform von y:

$$y = \overline{d}\,\overline{a} \vee \overline{d}\,a\,\overline{c} \vee d\,a\,\overline{c} \vee d\,a\,b$$
$$= \overline{d}\,\overline{a} \vee d\,b\,a \vee \overline{c}\,a\,(d \vee \overline{d})$$
$$= \overline{d}\,\overline{a} \vee d\,b\,a \vee \overline{c}\,a$$

3 P.

3. Minimalform von y in NAND-Form:

$$y = \overline{\overline{d}\,\overline{a} \vee db\,a \vee \overline{c}\,a}$$

$$= \overline{\overline{d}\,\overline{a} \wedge \overline{db\,a} \wedge \overline{c}\,\overline{a}}$$

$$= \text{NAND}_3 \left(\text{NAND}_2(\overline{d}, \overline{a}), \, \text{NAND}_3(d, b, a), \, \text{NAND}_2(\overline{c}, a) \right)$$

$$(\overline{x} = x \wedge x)$$

Schaltnetz:

4. Realisierung von $g(x_1, x_2, x_3)$ mit NAND-Gattern:

$$g(x_1, x_2, x_3) = \overline{x_1 \wedge x_2 \wedge x_3}$$

$$= \overline{(x_1 \wedge x_2) \wedge x_3}$$

$$= \overline{(x_1 \wedge x_2)} \overline{\wedge} x_3$$

$$= \overline{(x_1 \wedge x_2)} \overline{\wedge} x_3$$

$$= \overline{(x_1 \overline{\wedge} x_2)} \overline{\wedge} x_3$$

Schaltbild:

5. CMOS-Realisierung eines 2:1-Multiplexers:

Schaltfunktion: $z(c, b, a) = \bar{c} a \vee c b$

CMOS-Schaltbild:

2 P.

Aufgabe 3 Laufzeiteffekte

(5 Punkte)

1.

2. Typ des Fehlers und Behebungsmöglichkeit:

Es tritt ein Hasardfehler beim Übergang $B_7 \to B_5$ zum Zeitpunkt t_1 auf.

Es handelt sich hierbei um einen Übergang, bei dem nur eine Variable b ihren Wert wechselt \Rightarrow Der Übergang ist frei von Funktionshasards; der Hasardfehler tritt nicht aufgrund eines Funktionshasards auf und kann nur durch einen Strukturhasard bedingt sein \Rightarrow **1-statischer Strukturhasard**.

Behebung:

- Satz von Eichelberger: Realisierung der Schaltfunktion als die Disjunktion aller Primimplikanten (Fehlender Primiplikantca in die Realisierung aufnehmen, d. h. $y=b\,a\,\vee\,c\,\bar{b}\,\vee\,c\,a$
- Die beim Übergang konstant bleibenden Eingangsvariablen (a und c) über ein zusätzliches UND-Gatter verknüpfen und das Ergebnis mit dem Ausgang des Schaltnetzes ODER-verknüpfen.

Aufgabe 4 Schaltwerke

(12 Punkte)

1. (a) Das Schaltwerk ist synchron

1 P.

1 P.

(b) Maximale Anzahl der Zustände ist: $2^4 = 16$ Zustände

4 P.

2 P.

(c) Verläufe der Signale a, b, c und d:

2. (a) Automatengraph:

(b) Kodierte Ablauftabelle:

q_2^t	q_1^t	q_0^t	q_2^{t+1}	q_1^{t+1}	q_0^{t+1}	e_2^t	e_1^t	e_0^t
0	0	0	1	1	1	1	1	1
0	0	1	0	0	0	0	0	1
0	1	0	0	0	1	0	1	1
0	1	1	0	1	0	0	0	1
1	0	0	0	1	1	1	1	1
1	0	1	1	0	0	0	0	1
1	1	0	1	0	1	0	1	1
1	1	1	1	1	0	0	0	1

1 P.

(c) Minimalformen der Ansteuerfunktionen der Flipflops: Aus der Ablauftabelle ablesbar.

$$\begin{array}{lllll} e_2^t & = & \overline{q}_2^t \; \overline{q}_1^t \; \overline{q}_0^t \; \vee \; q_2^t \; \overline{q}_1^t \; \overline{q}_0^t \; = \; \overline{q}_1^t \; \overline{q}_0^t \\ e_1^t & = & \overline{q}_0^t \\ e_0^t & = & 1 \end{array}$$

2 P.

(d) Schaltbild des Zählers:

Aufgabe 5 Rechnerarithmetik

(9 Punkte)

1 P.

1. Anzahl der Prüfbits:

Aufwand:
$$2^k > m + k + 1$$
. Hier: $m = 200 \Rightarrow k = 8$

2 P.

2. Carry Ripple-Addierer und Carry Lookahead-Addierer:

Bei Carry Ripple-Addierern muss bei der Addition einer Stelle auf den Übertrag aus den vorhergehenden Stelle gewartet werden. Die Additionszeit ist proportional zur Anzahl der Stellen.

Bei Carry Lookahead-Addierern werden alle Überträge direkt aus den Eingangsvariablen berechnet.

2 P.

- 3. -70 als 7-Bit-Zweierkomplement Zahl: $+70 = 100~0110_2 \Rightarrow$ Es sind mindestens 8 Bit zur Darstellung von -70 als Zweierkomplementzahl notwendig.
 - -70 mit minimaler Bitanzahl: $+70 = 0100 \ 0110 \Rightarrow -70 = 1011 \ 1001 + 1 = 1011 \ 1010$
 - -70 als 16-Bit Zweierkomplementzahl: 1111 1111 1011 1010

- 4. 1000 0011 0101 1000 0000 0000 0000 0101
 - (a) BCD: 83 580 005
 - (b) Vorzeichenlose Dualzahl: $2^{31} + 2^{25} + 2^{24} + 2^{22} + 2^{20} + 2^{19} + 2^2 + 2^0$
 - (c) Gleitkomma-Zahl im IEEE-754-Standard in einfacher Genauigkeit:

$$VZ = 1$$

$$Char = 000\ 0011\ 0 = 6$$

$$Exp = Char - 127 = -121$$

$$M = 101\ 1000\ 0000\ 0000\ 0000\ 0101 \Rightarrow$$

$$Z = (-1)^{1} \cdot (1,101\ 1000\ 0000\ 0000\ 0000\ 0101) \cdot 2^{-121}$$
$$= -(1+2^{-1}+2^{-3}+2^{-4}+2^{-21}+2^{-23}) \cdot 2^{-121}$$

Aufgabe 6 RISC-V

(7 Punkte)

1. Zeichnung der Hardware-Komponenten:

2. Inhalte der Zielregister:

Befehl	Zielregister = (z. B. x7 = 0x0000 F00A)
addi x1, zero, 0x69	x1 = 0x0000 0069
lui x2, 0x06	x2 = 0x0000 6000
andi x3, x1, 0x0a	x3 = 0x0000 0008
srai x4, x2, 8	x4 = 0x0000 0060
xor x5, x4, x3	x5 = 0x0000 0068
slt x6, x5, x2	x6 = 0x0000 0001

4 P.

${\bf Aufgabe~7} \quad \textit{MIMA-Architektur}$

(5 Punkte)

```
1. Takt: IAR \rightarrow SAR; IAR \rightarrow X; R = 1
2. Takt: Eins \rightarrow Y; R = 1
3. Takt: ALU auf Addieren; R = 1
4. Takt: Z \rightarrow IAR
5. Takt: SDR \rightarrow IR
```

Aufgabe 8 Cache-Speicher

(15 Punkte)

1. (a) Blockgröße in Bytes: 3 Bit Byte-Offset \Rightarrow Blockgröße $= 2^3 = 8$ Byte

1 P. 2 P.

(b) Cache-Organisation:

12 Bit Index-Feld \Rightarrow Es lassen sich $2^{12}=4$ Ki Sätze im Cache adressieren.

Assoziativität =
$$\frac{128\ KiByte}{4\ Ki\cdot 8\ Byte} = 4$$

Der Cache ist als 4-fach assoziativer Speicher (4-way set associative) organisiert.

3 P.

2. Speicherbedarf:

Für jede Zeile sind (Tag + 1 Statusbit + Daten pro Zeile) Bits erforderlich.

- Daten pro Zeile 8 Byte \times 8 = 64 Bit
- Tag = 32 4 3 = 25 Bit (4 Bit Satzindex und 3 Bit Byte-Offset)

Speicherbedarf für eine Zeile: 25 + 1 + 64 Bit = 90 Bits

Speicherbedarf für den gesamten Cache: 90 Bits \cdot 16 \cdot 2 = 2880 Bits = 360 Byte

4 P.

3.

Adresse	0	8	40	52	4	8	52	32	2
read/write	r	r	W	r	r	r	W	W	r
Index	0	2	2	5	1	2	5	0	0
Tag	0	0	1	1	0	0	1	1	0
Byte-Offset	0	0	0	0	0	0	0	0	2
Hit/Miss	Miss	Miss	Miss	Miss	Miss	Hit	Hit	Miss	Hit

4. Direkt-abgebildeter Cache mit 16 Speicherblöcken:

Adresse	Hilfsspalte (Binär)	Tag	Index	Offset	Hit/Miss
0x04	0ъ0000 0100	0	1	0	Miss
0x34	0b0011 0100	0	d	0	Miss
0xcf	0b1100 1111	3	3	3	Miss
0x02	0b0000 0010	0	0	2	Miss
0x4c	0b0100 1100	1	3	0	Miss
0xcf	0b1100 1111	3	3	3	Miss
0x84	0b1000 0100	2	1	0	Miss
0xb6	0b1011 0110	2	d	2	Miss
0xb5	0b1011 0101	2	d	1	Hit
0x07	0ъ0000 0111	0	1	3	Miss

4 P.

Aufgabe 9 Virtuelle Speicherverwaltung

(6 Punkte)

1. Unterteilung der virtuellen Adresse:

31 1	10	9 0
Virtuelle Seiten-Nummer		Byte-Nummer (Offset)
22 Bit		10 Bit

2. Physikalische Adressen:

7	Virtuelle	Physikalische		
Adresse	Seitennummer	Seitennummer	Adresse	
1023	0	3	$3 \cdot 1024 + 1023 = 4095$	
1024	1	1	$1 \cdot 1024 + 0 = 1024$	
4204	4	2	$2 \cdot 1024 \cdot 108 = 2156$	
6200	6	0	$0 \cdot 1024 + 56 = 56$	

1 P.

3. Breite des Tags:

Seitengröße ist 4 Ki Byte \Rightarrow Byte-Offset ist 12 Bit breit.

Der Tag ist dann (32 - 12) = 20 Bits breit

Aufgabe 10 Pipelining

(7 Punkte)

1. Echte Datenabhängigkeiten (True Dependence):

$$S_1 \to S_3$$
 (t1)
 $S_2 \to S_3$ (t2) $S_2 \to S_4$ (t2) $S_2 \to S_6$ (t2)
 $S_3 \to S_6$ (t3) $S_3 \to S_9$ (t3)
 $S_5 \to S_7$ (t4)
 $S_6 \to S_8$ (t5)

2. Behebung der Konflikte:

4 P.

Aufgabe 11 Verschiedenes

(5 Punkte)

1 P.

1. RISC Befehlssatzarchitekturen versuchen die mittlere Anzahl der Zyklen pro Instruktion CPI auf 1 zu minimieren.

2 P.

- 2. Komponenten eines allgemeinen Schnittstellenbausteins:
 - Statusregister
 - Steuerregister
 - Befehlsregister
 - Ausführungseinheit
 - Datenbuspuffer
 - Steuerwerk

1 P.

- 3. Aufgaben der Busarbitrierung:
 - Gewährleistet, dass nur eine aktive Komponente die Kontrolle über den Bus besitzt
 - Priorisierung der zu einem Zeitpunkt von mehreren aktiven Komponenten kommenden Anforderungssignale

1 P.

4. Hauptunterschied zwischen PCI und PCI-E: PCI ist als Bus und PCI-E als Punkt-zu-Punkt Verbindung implementiert.