Quadtrees

Motivation

Wie findet man schnell die Nachbarn zum roten Punkt

Übersicht

Aufbau eines Quadtree

Explizite rekursive Konstruktion

Wurzelknoten σ_{root} , allgemein: $\sigma:=[x_\sigma:x_\sigma'] imes[x_\sigma:x_\sigma']$ $\sigma_{NW},\sigma_{NO},\sigma_{SW},\sigma_{NO}$ sind Kinder von σ

Punkte $p \in P$ werden in den Kindern von σ gespiechert:

$$egin{aligned} x_{mid} &:= rac{x_{\sigma} + x_{\sigma}'}{2} \quad y_{mid} := rac{y_{\sigma} + y_{\sigma}'}{2} \ P_{NW} &:= \{ p \mid p_x \leqslant x_{mid} \ \& \ p_y \leqslant y_{mid} \ \& \ p \in P \} \ P_{NO} &:= \{ p \mid p_x > x_{mid} \ \& \ p_y \leqslant y_{mid} \ \& \ p \in P \} \ P_{SW} &:= \{ p \mid p_x \leqslant x_{mid} \ \& \ p_y > y_{mid} \ \& \ p \in P \} \ P_{SO} &:= \{ p \mid p_x > x_{mid} \ \& \ p_y > y_{mid} \ \& \ p \in P \} \end{aligned}$$

Punkt einfügen

Algorithmus

```
function insertPoint (Tree t, Point p) {
  if(t.size <= UNITSIZE && t.point != null) return false</pre>
  if(t.childs == null && t.point == null) {
    t.point = p
  } else if(t.childs == null && t.point != null) {
    t.createChilds()
    t.insertPointToChilds(p)
    t.insertPointToChilds(t.point)
  } else {
    t.insertPointToChilds(p)
  return true
```

Punkt einfügen

Laufzeit

Satz

Eine Quadtree der Tiefe d , welcher n Punkte speichert, kann in der Zeit O((d+1)n) erzeugt werden und hat O((d+1)n) Knoten.

	SW [2]	SO [3]	
NO	NW	NO	NW
[1]	[0]	[1]	[0]
SO	SW	SO	SW
[3]	[2]	[3]	[2]
	NW [0]	NO [1]	

Richtung und Position zu Enum übersetzen:

```
Enum Pos = {NW=0, NO=1, SW=2, SO=3}
Enum Direction = {NORTH=0, EAST/OST=1, SOUTH=2, WEST=3}

//getInsideNeighbour
function gINeighbour (Direction d, Position t) {
    return <correctDirection>
}
```

glNeighbour(NORTH, Pos.SW) return Pos.NW

gINeighbour(NORTH, Pos.N0) return -1 (no Neighbour found)

	SW [2]	SO [3]	
NO [1]	NW [0]	NO [1]	NW [0]
SO [3]	ម SW [2]	so [3]	SW [2]
	NW [0]	NO [1]	

Richtung und Position zu Enum übersetzen:

```
Enum Pos = {NW=0, NO=1, SW=2, SO=3}
Enum Direction = {NORTH=0, EAST/OST=1, SOUTH=2, WEST=3}

//getOutsideNeighbour
function gONeighbour (Direction d, Position t) {
    return <correctDirection>
}
```

gONeighbour(NORTH, Pos.SW) return -1 //no Neighbour found

gONeighbour(NORTH, Pos.N0) return Pos.S0

Algorithmus

```
Enum Direction = \{N = 0, 0 = 1, S = 2, W = 3\}
Enum Pos = \{NW = 0, NO = 1, SW = 2, SO = 3\}
function findNeighbour(Tree t, Direction d) {
  if(t.parent == null) return null;
  else if(gINeigbour(d, t.position) != -1) {
    return t.parent.childs[gINeigbour(d, t.position)
  } else {
    out = t.parent.getNeighbour(d)
    if(out == null || out.childs == null) {
      return out
    } else {
      return out.childs[g0Neighbour(d, t.position)
} } }
```

Laufzeit

Satz

Sei T ein Quadtree der Tiefe d, so kann für einen Knoten v der Nachbar in gegebener Richtung in O(d+1) gefunden werden.

Grafische Darstellung

Baumdarstellung

Algorithmus

```
function balance(QTree root) {
 List l = root.getLeavesRecursive();
  for (Qtree t in l){
    for(direction = 0; direction < 4, direction++) {</pre>
      neighbour = t.getNeighbour(direction)
      if(neighbour != null && neighbour.childs != null){
        if(smallChildsAdjacent(neighbour,direction)) {
          t.addChilds()
          l.append(t.getChilds())
          l.append(getNeighboursWithoutChilds(t))
          if(t.point != null)
            t.insertPointToChilds(t.point)
          break;
```

Laufzeit

Satz

Sei T ein Quadtree mit m Knoten, dann hat der balancierte Quadtree T' O(m) Knoten und kann in O((d+1)m) aus T konstruiert werden.

Bedingungen und Vorgaben:

- Polygon Ecken haben nur die Winkel 0°, 45°, 90° und 135°.
- Es wird, wenn möglich, ein nicht-uniformes Netz erzeugt
- Ein Quadtree, der eine Kante eines Polygons enthält, wird aufgeteilt, bis das Kind mit der Polygonkante Minimalgröße hat.
- Das gewünschte Netz muss aus einem Balancierten Graphen erzeugt werden.

Polygone haben nur bestimmte Winkel

Polygonkante schneidet Quadrate an Seiten

Es wird ein nicht-uniformes Netz erzeugt

Nicht-uniformes Netz unnötig aufwändig

Es wird bis auf Minimalgröße aufgelöst

Polygonkante schneidet Quadrate an Seiten

Erzeugung aus balanciertem Graph

Unbalancierte Netzberechnung erzeugt unvollständiges Netz

Algorithmus

```
function insertLine (Qtree t, Line l) {
  if(t.size <= UNITSIZE) {</pre>
    if(lineCrossesSquare(t, l) || lineTouchesNorW(t,l));
      t.insertLineSegment(l);
    return;
  if(this.childs != null) {
    t.insertLineInChilds(l);
  } else if(lineIntersectsSquare(t,l) {
    t.addChilds();
    t.insertLineInChilds(l);
```

Laufzeit

Satz

Sei M ein Menge disjunkter polygonaler Komponenten im Quadrat $[0:U] \times [0:U]$, mit den vorher genannten Anforderungen, so lässt sich ein Netz mit $O(p(S)\log U)$ Dreiecken für M erzeugen. Hierbei ist p(S) die Summe der Perimeter der Komponenten von M, und das Netz kann in $O(p(S)\log^2 U)$ erzeugt werden.

Sources

Books

Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars (2008). Computational Geometry (3rd revised ed.). Springer-Verlag. ISBN 3-540-77973-6. 1st edition (1997): ISBN 3-540-61270-X

Algorythms

https://stackoverflow.com/questions/9043805/test-if-two-lines-intersect-javascript-function Line Intersection von Dan Fox

Images

created with https://www.draw.io/ (licence free)