Optimization Methods (CS1.404), Spring 2024 Lecture 22

Naresh Manwani

Machine Learning Lab, IIIT-H

April 8th, 2024

Second Order Necessary Conditions

Theorem

Let \mathbf{x}^* be a local minimum of the optimization problem described below.

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
s.t. $h_j(\mathbf{x}) \le 0, \ j = 1 \dots l$

$$e_i(\mathbf{x}) = 0; \ i = 1 \dots m$$

where $f(\mathbf{x}) \in \mathbb{C}^2(\mathbb{R}^n)$, $h_j \in \mathbb{C}^2(\mathbb{R}^n)$, $j=1\ldots I$ and $e_i \in \mathbb{C}^2(\mathbb{R}^n)$, $i=1\ldots m$. Suppose that \mathbf{x}^* is regular, which means $\nabla h_j(\mathbf{x}^*)$, $j \in I(\mathbf{x}^*)$ and $\nabla e_i(\mathbf{x}^*)$, $i \in \{1,\ldots,m\}$ are linearly independent, where $I(\mathbf{x}^*) = \{j \in \{1,\ldots,I\} \mid h_j(\mathbf{x}^*) = 0\}$.

① Then there exist $\lambda^* = [\lambda_1^* \ \dots \ \lambda_l^*]^{\top} \in \mathbb{R}_+^l$ and $\mu^* = [\mu_1^* \ \dots \ \mu_m^*]^{\top} \in \mathbb{R}^m$, such that

$$abla f(\mathbf{x}^*) + \sum_{j=1}^{I} \lambda_j^* \nabla h_j(\mathbf{x}^*) + \sum_{i=1}^{m} \mu_i^* \nabla e_i(\mathbf{x}^*) = \mathbf{0}$$
 $\lambda_i^* h_i(\mathbf{x}^*) = 0, \ j = 1 \dots I$

② and $\mathbf{y}^{\top}[\nabla^2 f(\mathbf{x}^*) + \sum_{j=1}^l \lambda_j^* \nabla h_j^2(\mathbf{x}^*) + \sum_{i=1}^m \mu_i^* \nabla e_i^2(\mathbf{x}^*)] \mathbf{y} \ge 0$ for all $\mathbf{y} \in \hat{\mathcal{T}}(\mathbf{x}^*)$ where

$$\hat{T}(\mathbf{x}^*) = \{ \mathbf{y} \in \mathbb{R}^n \mid \nabla h_i(\mathbf{x}^*)^\top \mathbf{y} = 0, \ j \in I(\mathbf{x}^*); \ \nabla e_i(\mathbf{x}^*)^\top \mathbf{y} = 0, \ i = 1 \dots m \}.$$

Proof

- Proof of part 1, we have already seen it. To prove part 2, we note that because \mathbf{x}^* is a regular local minimizer of f on the set $\{\mathbf{x} \in \mathbb{R}^n \mid h_j(\mathbf{x}) \leq 0, \ j=1\dots l; \ e_i(\mathbf{x})=0, \ i=1\dots m\}$, it is also a regular minimizer of f on the set $\hat{S} = \{\mathbf{x} \in \mathbb{R}^n \mid h_i(\mathbf{x}) \leq 0, \ j \in I(\mathbf{x}^*); \ e_i(\mathbf{x})=0, \ i=1\dots m\}$.
- Note that the latter set only contains equality constraints. Therefore, from Lagrange's theorem, there exist vectors $\lambda^* \in \mathbb{R}^l_+$ and $\mu^* \in \mathbb{R}^m$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{j=1}^{l} \lambda_j^* \nabla h_j(\mathbf{x}^*) + \sum_{i=1}^{m} \mu_i^* \nabla e_i(\mathbf{x}^*) = \mathbf{0}$$

where for all $j \notin I(\mathbf{x}^*)$, we have $\lambda_i^* = 0$.

- Suppose $y \in \hat{T}(x^*)$ where $\hat{T}(x^*)$ is tangent space to \hat{S} at x^* .
- Because $h_j \in \mathbb{C}^2(\mathbb{R}^n), \ j=1\dots I$ and $e_i \in \mathbb{C}^2(\mathbb{R}^n), \ i=1\dots m$, there exists a twice continuously differentiable curve $\{\mathbf{x}(t) \mid t \in (a,b)\}$ on \hat{S} such that $\mathbf{x}(t^*) = \mathbf{x}^*$ and $\mathbf{x}'(t^*) = \mathbf{y}$ for some $t^* \in (a,b)$.
- Since $\mathbf{x}^* = \mathbf{x}(t^*)$ is local minimizer of f, thus t^* is local minimizer of function $\phi(t) = f(\mathbf{x}(t))$. From second order necessary condition for unconstrained minimization, we get $\frac{d^2\phi}{dt^2}(t^*) \geq 0$. Using, $\frac{d\phi}{dt}(t) = \nabla f(\mathbf{x}(t))^{\top}\mathbf{x}'(t)$, we get

$$\frac{d^2\phi}{dt^2}(t^*) = \frac{d}{dt} [\nabla f(\mathbf{x}^*)^\top \mathbf{x}'(t^*)] = \mathbf{x}'(t^*)^\top \nabla^2 f(\mathbf{x}^*) \mathbf{x}'(t^*) + \nabla f(\mathbf{x}^*)^\top \mathbf{x}''(t^*)
= \mathbf{y}^\top \nabla^2 f(\mathbf{x}^*) \mathbf{y} + \nabla f(\mathbf{x}^*)^\top \mathbf{x}''(t^*) \ge 0$$

Proof - Continue

• We know that $\forall t \in (a, b), e_i(\mathbf{x}(t)) = 0, i = 1 \dots m$ and $h_j(\mathbf{x}(t)) = 0, \ \forall j \in I(\mathbf{x}^*)$. Thus, we have $\frac{d^2}{dt^2} \left[\sum_{j=1}^{I} \lambda_j^* h_j(\mathbf{x}(t)) + \sum_{i=1}^{m} \mu_i^* e_i(\mathbf{x}(t)) \right] = 0.$

$$\begin{split} &\frac{d^2}{dt^2} \left[\sum_{j=1}^{l} \lambda_j^* h_j(\mathbf{x}(t)) + \sum_{i=1}^{m} \mu_i^* e_i(\mathbf{x}(t)) \right] = \frac{d}{dt} \left[\sum_{j=1}^{l} \lambda_j^* \frac{d}{dt} h_j(\mathbf{x}(t)) + \sum_{i=1}^{m} \mu_i^* \frac{d}{dt} e_i(\mathbf{x}(t)) \right] \\ &= \frac{d}{dt} \left[\sum_{j=1}^{l} \lambda_j^* \nabla h_j(\mathbf{x}(t))^\top \mathbf{x}'(t) + \sum_{i=1}^{m} \mu_i^* \nabla e_i(\mathbf{x}(t))^\top \mathbf{x}'(t) \right] \\ &= \sum_{j=1}^{l} \lambda_j^* \frac{d}{dt} \left\{ \nabla h_j(\mathbf{x}(t))^\top \mathbf{x}'(t) \right\} + \sum_{i=1}^{m} \mu_i^* \frac{d}{dt} \left\{ \nabla e_i(\mathbf{x}(t))^\top \mathbf{x}'(t) \right\} \\ &= \sum_{j=1}^{l} \lambda_j^* \left[\mathbf{x}'(t)^\top \nabla^2 h_j(\mathbf{x}(t)) \mathbf{x}'(t) + \nabla h_j(\mathbf{x}(t))^\top \mathbf{x}''(t) \right] \\ &+ \sum_{j=1}^{m} \mu_i^* \left[\mathbf{x}'(t)^\top \nabla^2 e_i(\mathbf{x}(t)) \mathbf{x}'(t) + \nabla e_i(\mathbf{x}(t)) \mathbf{x}''(t) \right] = 0 \end{split}$$

Proof - Continue

• In particular, the above is also true at $t=t^*$. Thus, using $\mathbf{x}(t^*)=\mathbf{x}^*$ and $\mathbf{x}'(t^*)=\mathbf{y}$.

$$\sum_{j=1}^{l} \lambda_{j}^{*} \left[\mathbf{y}^{\top} \nabla^{2} h_{j}(\mathbf{x}^{*}) \mathbf{y} + \nabla h_{j}(\mathbf{x}^{*})^{\top} \mathbf{x}''(t^{*}) \right]$$

$$+ \sum_{i=1}^{m} \mu_{i}^{*} \left[\mathbf{y}^{\top} \nabla^{2} e_{i}(\mathbf{x}^{*}) \mathbf{y} + \nabla e_{i}(\mathbf{x}^{*}) \mathbf{x}''(t^{*}) \right] = 0$$
(2)

Adding eq.(1) and eq.(2), we get

$$\mathbf{y}^{\top} \left[\nabla^{2} f(\mathbf{x}^{*}) + \sum_{j=1}^{l} \lambda_{j}^{*} \nabla^{2} h_{j}(\mathbf{x}^{*}) + \sum_{i=1}^{m} \mu_{i}^{*} \nabla^{2} e_{i}(\mathbf{x}^{*}) \right] \mathbf{y}$$

$$+ \left[\nabla f(\mathbf{x}^{*}) + \sum_{j=1}^{l} \lambda_{j}^{*} \nabla h_{j}(\mathbf{x}^{*}) + \sum_{i=1}^{m} \mu_{i}^{*} \nabla e_{i}(\mathbf{x}^{*}) \right]^{\top} \mathbf{x}''(t^{*}) \geq 0$$

• But, by Lagrange theorem, $\nabla f(\mathbf{x}^*) + \sum_{j=1}^I \lambda_j^* \nabla h_j(\mathbf{x}^*) + \sum_{i=1}^m \mu_i^* \nabla e_i(\mathbf{x}^*) = \mathbf{0}$. Therefore,

$$\mathbf{y}^{\top} \left[\nabla^2 f(\mathbf{x}^*) + \sum_{j=1}^{l} \lambda_j^* \nabla^2 h_j(\mathbf{x}^*) + \sum_{i=1}^{m} \mu_i^* \nabla^2 e_i(\mathbf{x}^*) \right] \mathbf{y} \ge 0$$

INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY H T D I LABA D

Which proves the result.

Second Order Sufficiency Conditions

Theorem

Consider the optimization problem described below.

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

$$s.t. \ h_j(\mathbf{x}) \le 0, \ j = 1...l$$

$$e_i(\mathbf{x}) = 0; \ i = 1...m$$

where $f(\mathbf{x}) \in \mathbb{C}^2(\mathbb{R}^n)$, $h_j \in \mathbb{C}^2(\mathbb{R}^n)$, $j=1\ldots l$ and $e_i \in \mathbb{C}^2(\mathbb{R}^n)$, $i=1\ldots m$. Suppose there exist a feasible point \mathbf{x}^* , $\mathbf{\lambda}^* = [\lambda_1 \ \lambda_2 \ \ldots \ \lambda_l]^\top \in \mathbb{R}^l$, and $\boldsymbol{\mu} = [\mu_1 \ \mu_2 \ \ldots \ \mu_m]^\top \in \mathbb{R}^m$, such that

$$\nabla f(\mathbf{x}^*) + \sum_{j=1}^{l} \lambda_j \nabla h_j(\mathbf{x}^*) + \sum_{i=1}^{m} \mu_i \nabla e_i(\mathbf{x}^*) = \mathbf{0}$$

2 Also, for all $\mathbf{y} \in \tilde{T}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*), \ \mathbf{y} \neq \mathbf{0}$, we have $\mathbf{y}^\top \nabla^2 \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) \mathbf{y} > 0$. where

$$\tilde{\mathcal{T}}(\boldsymbol{x}^*,\boldsymbol{\lambda}^*,\boldsymbol{\mu}^*) = \{\boldsymbol{y} \in \mathbb{R}^n \mid \nabla h_j(\boldsymbol{x}^*)^\top \boldsymbol{y} = 0, \ j \in \hat{l}(\boldsymbol{x}^*,\boldsymbol{\lambda}^*,\boldsymbol{\mu}^*); \ \nabla e_i(\boldsymbol{x}^*)^\top \boldsymbol{y} = 0, \ i = 1 \dots m\}.$$

for
$$\hat{l}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \{ j \in \{1, \dots, l\} \mid h_i(\mathbf{x}^*) = 0, \lambda_i^* > 0 \}.$$

Then x* is a local minimizer.

Test Positive Definiteness in a Subspace

• In the second-order sufficiency conditions requires that $\mathbf{d}^{\top} \nabla^2 \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) \mathbf{d} > 0$ for all $\mathbf{d} \in \tilde{\mathcal{T}}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*), \ \mathbf{d} \neq \mathbf{0}$, where

$$\begin{split} \tilde{\mathcal{T}}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) &= \{\mathbf{d} \in \mathbb{R}^n \mid \nabla h_j(\mathbf{x}^*)^\top \mathbf{d} = 0, \ j \in \hat{I}; \ \nabla \mathbf{e}_i(\mathbf{x}^*)^\top \mathbf{d} = 0, \ i = 1 \dots m\}. \\ \text{for } \hat{I} &= \{j \in \{1, \dots, l\} \mid h_j(\mathbf{x}^*) = 0, \lambda_j^* > 0\}. \end{split}$$

• Let
$$Q = \nabla^2 \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$
 and $A = \begin{bmatrix} \nabla e_1(\mathbf{x}^*)^\top \\ \vdots \\ \nabla e_m(\mathbf{x}^*)^\top \\ \nabla h_{j_1}(\mathbf{x}^*)^\top \\ \vdots \\ \nabla h_{j_{|\hat{I}|}}(\mathbf{x}^*)^\top \end{bmatrix}$.

• Then, second-order sufficiency conditions requires that $\mathbf{d}^{\top}Q\mathbf{d}>0$, $\forall \mathbf{d}\neq \mathbf{0}$ such that $A\mathbf{d}=\mathbf{0}$. (In this case, the subspace is the null space of matrix A.) This test itself might be a nonconvex optimization problem.

Test Positive Definiteness in a Subspace

- Consider any vector $\mathbf{u} \in \mathbb{R}^n$ can be decomposed into two orthogonal components: (a) one which lies in the null space of matrix A, (b) one which lies in the space spanned by the rows of A.
 - If we project u in the row space of A, we can get the component of u which lies in the row space of A. The corresponding projection matrix is P = A^T(AA^T)⁻¹A.
 - Thus, the component of \mathbf{u} in the null space of A is $\mathbf{u} A^{\top} (AA^{\top})^{-1} A \mathbf{u} = [I A^{\top} (AA^{\top})^{-1} A] \mathbf{u}$.
- Thus, **d** is in the null space of matrix A if and only if $\mathbf{d} = (I A^{\top}(AA^{\top})^{-1}A)\mathbf{u} = P_A\mathbf{u}$ for some $\mathbf{u} \in \mathbb{R}^n$.
- Thus, the test becomes whether or not

$$\mathbf{u}^{\top} P_A Q P_A \mathbf{u} > 0, \ \forall \mathbf{u} \in \mathbb{R}^n.$$

ullet That is, we just need to test positive definiteness of matrix P_AQP_A as usual.

Dual Problem

Consider the optimization problem

$$egin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} & f(\mathbf{x}) \ s.t. & h_j(\mathbf{x}) \leq 0, \ j = 1 \dots I \ e_i(\mathbf{x}) = 0; \ i = 1 \dots m \end{aligned}$$

where $f(\mathbf{x})$, h_j , $j = 1 \dots l$ and e_i , $i = 1 \dots m$ are sufficiently smooth functions over \mathbb{R}^n

- This problem is referred as primal problem. Let p^* be the optimal value of the above problem.
- The Lagrangian of the problem is

with the equality constraints.

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) + \sum_{i=1}^{l} \lambda_{j} h_{j}(\mathbf{x}) + \sum_{i=1}^{m} \mu_{i} e_{i}(\mathbf{x})$$

where $\lambda = [\lambda_1 \dots \lambda_I]^{\top} \in \mathbb{R}_+^I$ are nonnegative Lagrange multipliers associated with the inequality constraints and $\mu = [\mu_1 \dots \mu_m]^{\top} \in \mathbb{R}^m$ are the Lagrange multipliers associated

4 D F 4 D F 4 D F 4 D F

Dual Problem

• The dual objective function $g:\mathbb{R}^{I}_{+}\times\mathbb{R}^{m}\to\mathbb{R}\cup\{\infty\}$ is defined to be

$$g(\lambda, \mu) = \min_{\mathbf{x}} \ \mathcal{L}(\mathbf{x}, \lambda, \mu)$$

- Note that above minimization problem can be unbounded, i.e., there may be values (λ, μ) for which $g(\lambda, \mu) = -\infty$.
- We define the domain of dual function as

$$dom(g) = \{(\lambda, \mu) \in \mathbb{R}'_+ \times \mathbb{R}^m \mid g(\lambda, \mu) > -\infty\}$$

• The **Dual Problem** is defined as

$$g^* = \max \ g(\lambda, \mu)$$

 $s.t. \ (\lambda, \mu) \in dom(g)$

Theorem: Convexity of the Dual Problem

Domain of dual function g is convex and g is a concave function over the dom(g).

Example 1: Linear Programming

Consider the linear programming problem

$$\min_{\mathbf{x}} \mathbf{c}^{\top} \mathbf{x}$$
 $s.t. A\mathbf{x} < \mathbf{b}$

where $\mathbf{c} \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}$, and $\mathbf{b} \in \mathbb{R}^m$. We assume that the problem is feasible (which means, constraint set is nonempty).

• The Lagrangian function is

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{c}^{\top} \mathbf{x} + \boldsymbol{\lambda}^{\top} (A\mathbf{x} - \mathbf{b})$$

where $\lambda = [\lambda_1 \ \dots \ \lambda_m]^\top \in \mathbb{R}_+^m$ are nonnegative Lagrange multipliers associated with the inequality constraints

• The dual objective function is

$$\begin{split} g(\lambda) &= \min_{\mathbf{x}} \ \mathcal{L}(\mathbf{x}, \lambda) = \min_{\mathbf{x}} \ \mathbf{c}^{\top} \mathbf{x} + \lambda^{\top} (A\mathbf{x} - \mathbf{b}) \\ &= \min_{\mathbf{x}} \ (\mathbf{c} + A^{\top} \lambda)^{\top} \mathbf{x} - \mathbf{b}^{\top} \lambda \\ &= \begin{cases} -\mathbf{b}^{\top} \lambda, & \mathbf{c} + A^{\top} \lambda = \mathbf{0} \\ -\infty, & \text{else} \end{cases} \end{split}$$

• The dual problem is

$$egin{aligned} \mathsf{max} & -\mathbf{b}^{ op} oldsymbol{\lambda} \\ s.t. & \mathbf{c} + A^{ op} oldsymbol{\lambda} &= \mathbf{0} \\ oldsymbol{\lambda} &\geq \mathbf{0} \end{aligned}$$

Example 2: Strictly Convex Quadratic Programming

Consider the linear programming problem

$$\min_{\mathbf{x}} \frac{1}{2} \mathbf{x}^{\top} Q \mathbf{x} + \mathbf{c}^{\top} \mathbf{x}$$

$$s.t. A \mathbf{x} < \mathbf{b}$$

where $Q \in \mathbb{R}^{n \times n}$ is positive definite, $\mathbf{c} \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$.

The Lagrangian function is

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = \frac{1}{2}\mathbf{x}^{\top}Q\mathbf{x} + \mathbf{c}^{\top}\mathbf{x} + \boldsymbol{\lambda}^{\top}(A\mathbf{x} - \mathbf{b}) = \frac{1}{2}\mathbf{x}^{\top}Q\mathbf{x} + (A^{\top}\boldsymbol{\lambda} + \mathbf{c})^{\top}\mathbf{x} - \mathbf{b}^{\top}\boldsymbol{\lambda}$$

where $\lambda = [\lambda_1 \ \dots \ \lambda_m]^{\top} \in \mathbb{R}_+^m$ are nonnegative Lagrange multipliers.

 To find the dual function, we minimize the Lagrangian with respect to x. The minimizer is attained at the stationary point which is the solution to

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = Q\mathbf{x}^* + A^{\top}\boldsymbol{\lambda} + \mathbf{c} = \mathbf{0} \Rightarrow \mathbf{x}^* = -Q^{-1}(A^{\top}\boldsymbol{\lambda} + \mathbf{c})$$

• Using $g(\lambda) = \min_{\mathbf{x}} \ \mathcal{L}(\mathbf{x}, \lambda) = \mathcal{L}(\mathbf{x}^*, \lambda)$, we obtain

$$g(\lambda) = \frac{1}{2} (A^{\top} \lambda + \mathbf{c})^{\top} Q^{-1} Q Q^{-1} (A^{\top} \lambda + \mathbf{c}) - (A^{\top} \lambda + \mathbf{c})^{\top} Q^{-1} (A^{\top} \lambda + \mathbf{c}) - \mathbf{b}^{\top} \lambda$$
$$= -\frac{1}{2} \lambda^{\top} A Q^{-1} A^{\top} \lambda - (A Q^{-1} \mathbf{c} + \mathbf{b})^{\top} \lambda - \mathbf{c}^{\top} Q^{-1} \mathbf{c}$$

• The dual problem is

$$\begin{aligned} \max \ &-\frac{1}{2} \boldsymbol{\lambda}^{\top} \boldsymbol{A} \boldsymbol{Q}^{-1} \boldsymbol{A}^{\top} \boldsymbol{\lambda} - (\boldsymbol{A} \boldsymbol{Q}^{-1} \mathbf{c} + \mathbf{b})^{T} \boldsymbol{\lambda} - \mathbf{c}^{\top} \boldsymbol{Q}^{-1} \mathbf{c} \\ s.t. \ &\boldsymbol{\lambda} \geq \mathbf{0} \end{aligned}$$

Weak Duality Theorem

Theorem

Consider the primal problem

$$p^* = \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
 $s.t. \ h_j(\mathbf{x}) \le 0, \ j = 1...l$
 $e_j(\mathbf{x}) = 0; \ i = 1...m$

and dual problem

$$d^* = \max \ g(oldsymbol{\lambda}, oldsymbol{\mu})$$
 s.t. $(oldsymbol{\lambda}, oldsymbol{\mu}) \in \mathit{dom}(g)$

where $g(\pmb{\lambda},\pmb{\mu}) = \min_{\mathbf{x}} \ \mathcal{L}(\mathbf{x},\pmb{\lambda},\pmb{\mu}).$ Then,

$$d^* \leq p^*$$

Example

Consider the problem

min
$$x_1^2 - 3x_2^2$$

 $s.t. x_1 = x_2^3$

- Substituting $x_1 = x_2^3$ into the objective function, the resulting unconstrained optimization problem is $\min_{x_2} x_2^6 3x_2^2$.
- The stationary points are $x_2 = 0, \pm 1$. Thus, the candidates for optimal solution are (0,0), (1,1), (-1,-1).
- It is can be easily verified that the optimal solutions are (1,1) and (-1,-1) with optimal value $p^* = -2$.
- Let us consider the dual problem. The Lagrangian is

$$\mathcal{L}(x_1, x_2, \mu) = x_1^2 - 3x_2^2 + \mu(x_1 - x_2^3) = x_1^2 + \mu x_1 - 3x_2^2 - \mu x_2^3$$

- Obviously, for any value of $\mu \in \mathbb{R}$, $\min_{x_1,x_2} \mathcal{L}(x_1,x_2,\mu) = -\infty$.
- Hence, the dual optimal value is $d^* = -\infty$, which is an extremely poor lower bound on the primal optimal value $p^* = -2$.

Geometric Interpretation

 We can give a simple geometric interpretation of the dual function in terms of the set

$$\mathcal{G} = \{(h_1(\mathbf{x}), \dots, h_l(\mathbf{x}), e_1(\mathbf{x}), \dots, e_m(\mathbf{x}), f(\mathbf{x})) \in \mathbb{R}^l \times \mathbb{R}^m \times \mathbb{R} \mid \mathbf{x} \in \mathbb{R}^n\}$$

which is the set of values taken on by the constraint and objective functions.

• The optimal value p^* of primal problem is easily expressed in terms of G

$$p^* = \inf\{t \mid (\mathbf{u}, \mathbf{v}, t) \in \mathcal{G}, \mathbf{u} \leq \mathbf{0}, \mathbf{v} = \mathbf{0}\}$$

ullet To evaluate the dual function at (λ,μ) , we minimize the affine function

$$(\boldsymbol{\lambda}, \boldsymbol{\mu}, 1)^{\top}(\mathbf{u}, \mathbf{v}, t) = \sum_{j=1}^{l} \lambda_{j} h_{j} + \sum_{i=1}^{m} \mu_{i} e_{i} + f$$

over $(\mathbf{u}, \mathbf{v}, t) \in \mathcal{G}$.

Thus, we have

$$g(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf \; \{ (\boldsymbol{\lambda}, \boldsymbol{\mu}, 1)^{\top} (\mathbf{u}, \mathbf{v}, t) \; | \; (\mathbf{u}, \mathbf{v}, t) \in \mathcal{G} \}$$

• In particular, we see that if the infimum is finite, then the inequality $(\lambda, \mu, 1)^{\top}(\mathbf{u}, \mathbf{v}, t) \geq g(\lambda, \mu)$ defines a supporting hyperplane to \mathcal{G} .

Geometric Interpretation

- Now suppose $\lambda \geq \mathbf{0}$, Then, we see that $t \geq (\lambda, \mu, 1)^{\top}(\mathbf{u}, \mathbf{v}, t)$ if $\mathbf{u} \leq \mathbf{0}$ and $\mathbf{v} = \mathbf{0}$.
- Therefore,

$$\begin{split} \rho^* &= \inf\{t \mid (\mathbf{u}, \mathbf{v}, t) \in \mathcal{G}, \mathbf{u} \leq \mathbf{0}, \mathbf{v} = \mathbf{0}\} \\ &\geq \inf\{(\boldsymbol{\lambda}, \boldsymbol{\mu}, 1)^\top (\mathbf{u}, \mathbf{v}, t) \mid (\mathbf{u}, \mathbf{v}, t) \in \mathcal{G}, \mathbf{u} \leq \mathbf{0}, \mathbf{v} = \mathbf{0}\} \\ &\geq \inf\{(\boldsymbol{\lambda}, \boldsymbol{\mu}, 1)^\top (\mathbf{u}, \mathbf{v}, t) \mid (\mathbf{u}, \mathbf{v}, t) \in \mathcal{G}\} \\ &= g(\boldsymbol{\lambda}, \boldsymbol{\mu}) \end{split}$$

OM

• Thus, we have weak duality.

Geometric Interpretation with one inequality constraint

- This graph assumes $\lambda \geq 0$.
- We first see that the optimal value p^* is given by the tangent horizontal line that indicates the minimum value when $u \le 0$ (when all constraints are satisfied).
- For a given λ , the line $\lambda u + t = g(\lambda)$ provides the lower bound on the objective value for each $x \in \mathbb{R}^n$.
- The line has slope $-\lambda$. Since we defined $\lambda \geq 0$, $-\lambda \leq 0$. The line is always tangent to at least one point on the boundary of \mathcal{G} .
- We may compute u from our constraint $h_1(\mathbf{x})$, and we may also compute $g(\lambda)$ by minimizing $(\lambda, 1)^{\top}(u, t)$.

