ACMG-ClinVar Penetrance RMarkdown

James Diao, under the supervision of Arjun Manrai February 1, 2017

Contents

1.1 Collect ACMG Gene Panel 1.2 Download ClinVar VCF 1.3 Download 1000 Genomes VCFs 1.4 Import and Process 1000 Genomes VCFs	. 3 . 3 . 4 . 4 . 5 . 5
1.3 Download 1000 Genomes VCFs	. 3 . 4 . 4 . 5 . 5
1.3 Download 1000 Genomes VCFs	. 3 . 4 . 4 . 5 . 5
1.4 Import and Process 1000 Genomes VCFs	. 4 . 4 . 5 . 5
	. 4 . 5 . 5
1.5 Import and Process gnomAD/ExAC VCFs	. 5 . 5
1.6 Collect 1000 Genomes Phase 3 Populations Map	. 5 6
1.7 Merge ClinVar with gnomAD, ExAC, and 1000 Genomes	-
2 Plot Summary Statistics Across Populations	-
2.1 Distribution of Allele Counts	. 6
2.2 Overall Non-Reference Sites	
2.3 Fraction of Individuals with Pathogenic Sites	. 9
2.4 Common Pathogenic Variants by Ancestry	. 11
3 Penetrance Estimates	12
3.1 Bayes' Rule as a Model for Estimating Penetrance	. 12
3.2 Import Literature-Based Disease Prevalence Data	
3.3 Distribution of Prevalences	
3.4 Collect and Aggregate Allele Frequencies at the Disease-Level	
3.5 Penetrance as a Function of $P(V D)$	
3.6 Penetrance Estimates by Ancestry	
5.0 Fenetrance Estimates by Ancestry	

 $\textbf{Working Directory: /Users/jamesdiao/Documents/Kohane_Lab/2017-ACMG-penetrance/ACMG_Penetra$

1 Download, Transform, and Load Data

1.1 Collect ACMG Gene Panel

http://www.ncbi.nlm.nih.gov/clinvar/docs/acmg/

Table from ACMG SF v2.0 Paper 60 x 8 (selected rows):

	Phenotype	MIM_disorder	PMID_Gene_Reviews_entry
$\overline{\mathbf{N1}}$	Hereditary breast and ovarian cancer	604370 612555	20301425
N2	Hereditary breast and ovarian cancer	604370 612555	20301425
N3	Li-Fraumeni syndrome	151623	20301488
N4	Peutz-Jeghers syndrome	175200	20301443
N5	Lynch syndrome	120435	20301390

Table continues below

	Typical_age_of_onset	Gene	MIM_gene	Inheritance	Variants_to_report
$\overline{\mathrm{N1}}$	Adult	BRCA1	113705	AD	KP&EP
N2	Adult	BRCA2	600185	AD	KP&EP
N3	Child/Adult	TP53	191170	AD	KP&EP
N4	Child/Adult	STK11	602216	AD	KP&EP
N5	Adult	MLH1	120436	AD	KP&EP

ACMG-59 Genes:

##	[1]	BRCA1	BRCA2	TP53	STK11	MLH1	MSH2	MSH6	PMS2
##	[9]	APC	MUTYH	BMPR1A	SMAD4	VHL	MEN1	RET	PTEN
##	[17]	RB1	SDHD	SDHAF2	SDHC	SDHB	TSC1	TSC2	WT1
##	[25]	NF2	COL3A1	FBN1	TGFBR1	TGFBR2	SMAD3	ACTA2	MYH11
##	[33]	MYBPC3	MYH7	TNNT2	TNNI3	TPM1	MYL3	ACTC1	PRKAG2
##	[41]	GLA	MYL2	LMNA	RYR2	PKP2	DSP	DSC2	TMEM43
##	[49]	DSG2	KCNQ1	KCNH2	SCN5A	LDLR	APOB	PCSK9	ATP7B
##	[57]	OTC	RYR1	CACNA1S					

1.2 Download ClinVar VCF

ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/clinvar.vcf.gz

ClinVar is the central repository for variant interpretations. Relevant information from the VCF includes:

- (a) CLNSIG = "Variant Clinical Significance, 0 Uncertain, 1 Not provided, 2 Benign, 3 Likely benign, 4 Likely pathogenic, 5 Pathogenic, 6 Drug response, 7 Histocompatibility, 255 Other"
- (b) CLNDBN = "Variant disease name"
- (c) CLNDSDBID = "Variant disease database ID"
- (d) CLNREVSTAT = "Review Status, no_assertion, no_criteria, single criterion provided single submitter, mult criteria provided multiple submitters no conflicts, conf criteria provided conflicting interpretations, exp Reviewed by expert panel, guideline Practice guideline"
- (e) INTERP = Pathogenicity (likely pathogenic or pathogenic; CLNSIG = 4 or 5)

Processed ClinVar data frame 224657 x 17 (selected rows/columns):

VAR_ID	CHROM	POS	ID	REF	ALT	CLNSIG	INTERP
1_955619_G_	_C 1	955619		G	С	Likely_benign	FALSE
$1_957568_A_$	_G 1	957568		A	G	Uncertain_significance	FALSE
$1_957605_G_$	_A 1	957605		G	A	Likely_benign	TRUE
$1_957640_C_$	_T 1	957640	•	\mathbf{C}	${ m T}$	${\bf Uncertain_significance}$	FALSE

Table continues below

pathogenic	benign	CLNREVSTAT	CLNDSDBID
FALSE	TRUE	1	1
FALSE	TRUE	1	1
TRUE	FALSE	1	1
FALSE	TRUE	1	1

1.3 Download 1000 Genomes VCFs

 $\label{lem:condition} $$ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.[chrom].phase3_[version].20130502.genotypes.vcf.gz Downloaded 1000 Genomes VCFs are saved in: /Users/jamesdiao/Documents/Kohane_Lab/2017-ACMG-penetrance/1000G/$

Download report: region and successes: 59 x 6 (selected rows):

gene	name	chrom	start	end	downloaded
BRCA1	NM_007294	17	41196311	41277500	TRUE
BRCA2	NM_000059	13	32889616	32973809	TRUE
TP53	NM_000546	17	7571719	7590868	TRUE
STK11	NM_000455	19	1205797	1228434	TRUE
MLH1	NM_000249	3	37034840	37092337	TRUE

File saved as download_output.txt in Supplementary_Files

1.4 Import and Process 1000 Genomes VCFs

- (a) Unnest the data frames to 1 row per variant_ID key (CHROM_POSITION_REF_ALT).
- (b) Remove all insertions, deletions, CNV, etc, and keep only missense variants (1 REF, 1 ALT)
- (c) For 1000 Genomes: convert genomes to allele counts. For example: (0|1) becomes 1, (1|1) becomes 2. Multiple alleles are unnested into multiple counts. For example: (0|2) becomes 0 for the first allele (no 1s) and 1 for the second allele (one 2).

Processed 1000 Genomes VCFs: 141467 x 2516 (selected rows/columns):

GENE	AF_1000G	VAR_ID	CHROM	POS	ID	REF	ALT
BRCA1	0.004193290	17_41196363_0	C_T 17	41196363	rs8176320	С	Т
BRCA1	0.008386580	17_41196368_0	C_T 17	41196368	rs184237074	\mathbf{C}	Τ
BRCA1	0.000998403	$17_41196372_7$	Γ_C 17	41196372	rs189382442	${ m T}$	\mathbf{C}
BRCA1	0.342252000	17_41196408_0	G_A 17	41196408	rs12516	G	A
BRCA1	0.000399361	17_41196409_0	G_C 17	41196409	rs548275991	G	\mathbf{C}

Table continues below

HG00096	HG00097	HG00099	HG00100	HG00101	HG00102
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
1	0	1	1	0	2
0	0	0	0	0	0

1.5 Import and Process gnomAD/ExAC VCFs

- (a) Unnest the data frames to 1 row per variant_ID key (CHROM_POSITION_REF_ALT).
- (b) Remove all insertions, deletions, CNV, etc, and keep only missense variants (1 REF, 1 ALT)
- (c) Collect superpopulation-level allele frequencies: African = AFR, Latino = AMR, European (Finnish + Non-Finnish) = EUR, East.Asian = EAS, South.Asian = SAS.

Processed gnomAD VCFs: 96742 x 48 (selected rows/columns):

	GENE	AF_GNOMAD	VAR_ID
31769	TSC2	0.00002840	16_2135039_C_T
47688	MYBPC3	0.00014800	$11_47364151_C_T$
13817	APC	0.00002480	5_112102099_G_A
15049	APC	0.00000796	$5_112174945_G_T$
49978	MYH7	0.00000792	14_23898359_G_C

Processed ExAC VCFs: 59883 x 45 (selected rows/columns):

	GENE	AF_EXAC	VAR_ID
1072	BRCA1	0.000025080	17_41256121_G_A
12023	BMPR1A	0.000008244	10_88681482_T_A
24542	FBN1	0.000008292	15_48760566_T_C
37970	RYR2	0.000011970	1_237823390_T_C
189710	APOB	0.000008237	2_21238330_G_A

1.6 Collect 1000 Genomes Phase 3 Populations Map

This will allow us to assign genotypes from the 1000 Genomes VCF to ancestral groups. From: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.20130502. ALL.panel

Phase 3 Populations Map Table: 2504 x 4 (selected rows)

sample	pop	super_pop	gender
HG02854	GWD	AFR	male
HG03476	MSL	AFR	female
HG02577	ACB	AFR	female
NA10847	CEU	EUR	female
NA20520	TSI	EUR	male
HG02657	PJL	SAS	male

1.7 Merge ClinVar with gnomAD, ExAC, and 1000 Genomes

Breakdown of ClinVar Variants

Subset_ClinVar	Number_of_Variants
Total ClinVar	224300
LP/P	37994
ACMG LP/P	7256
ACMG LP/P in gnomAD	1180
ACMG LP/P in ExAC	810
ACMG LP/P in 1000 Genomes	91

Breakdown of ACMG-gnomAD Variants

Subset_gnomAD	Number_of_Variants
ACMG in gnomAD	96742
ClinVar-ACMG in gnomAD	15408
LP/P-ACMG in gnomAD	1180

Breakdown of ACMG-ExAC Variants

$Subset_gnomAD$	$Number_of_Variants$
ACMG in ExAC	59883
ClinVar-ACMG in ExAC	12039
LP/P-ACMG in ExAC	810

Breakdown of ACMG-1000G Variants

Subset_gnomAD	Number_of_Variants
ACMG in 1000G	141466
ClinVar-ACMG in 1000G	6292
LP/P-ACMG in 1000G	91

2 Plot Summary Statistics Across Populations

2.1 Distribution of Allele Counts

Allele Count Spectrum (1-20)

We can model this as a Poisson binomial- the summed occurance of variants with different allele frequencies. If we assume that the allele frequencies are approximately the same and that variants are independent, (may not be good assumptions), then the distribution follows $\operatorname{Binom}(n,p)$, n=# samples and p= allele frequency. Because n is large and p is small, we can then use a Poisson approximation to the binomial. The fit of this approximation may be tested by the Poissonness plot (Hoaglin 1980), or $\log(x_k) + \log(k!)$ vs. k. If $x_k = n \Pr(X = k) = n \left(\frac{\lambda^k e^{-k}}{k!}\right)$, then $\ln x_k + \ln k! = \ln n + k \ln \lambda - \lambda = \text{linear function of k}$. Despite some upward concavity, the plot demonstrates reasonable Poissonness, with correlation = 0.94.

Poissonness Plot

2.2 Overall Non-Reference Sites

2.2.0.1 For 1000 Genomes

Each individual has n non-reference sites, which can be found by counting. The mean number is computed for each population.

Ex: the genotype of 3 variants in 3 people looks like this:

	HG00366	HG00367	HG00368
Variant 1	2	1	1
Variant 2	2	1	1
Variant 3	1	0	0

Count the number of non-reference sites per individual:

HG00368	HG00367	HG00366
2	2	3

Note: the error bars denote standard deviation, not standard error.

2.2.0.2 For gnomAD/ExAC

The mean number of non-reference sites is E(V), where $V = \sum_{i=1}^{n} v_i$ is the number of non-reference sites at all variant positions v_1 through v_n .

At each variant site, the probability of having at least 1 non-reference allele is $P(v_i) = P(v_{i,a} \cup v_{i,b})$, where a and b indicate the 1st and 2nd allele at each site.

If the two alleles are independent, $P(v_{i,a} \cup v_{i,b}) = 1 - (1 - P(v_{i,a}))(1 - P(v_{i,b})) = 1 - (1 - AF(v_i))^2$

If all variants are independent, $E(V) = \sum_{i=1}^{n} 1 - (1 - AF(v_i))^2$ for any set of allele frequencies.

Ex: the allele frequencies of 3 variants across the 5 superpopulations looks like this:

	AFR	AMR	EAS	EUR	SAS
Variant 1 Variant 2	0.1	0.2	0	0	0.3
variant 2	0.2	U	0.3	U	0.1

The probability of having at least 1 non-reference site at each variant - (0|1) (1|0) or (1|1) is given by $1 - (1 - AF)^2$. Note that this is approximately 2 * AF when AF is small:

	AFR	AMR	EAS	EUR	SAS
Variant 1	0.19	0.36	0	0	0.51
Variant 2	0.36	0	0.51	0	0.19

By linearity of expectation, the expected (mean) number of non-reference sites is $\sum E(V_i) = \sum (columns)$.

AFR	AMR	EAS	EUR	SAS
0.55	0.36	0.51	0	0.7

2.3 Fraction of Individuals with Pathogenic Sites

2.3.0.1 For 1000 Genomes

We can count up the fraction of individuals with 1+ non-reference site(s) in each population. This is the fraction of individuals who would receive a positive genetic test result in at least 1 of the ACMG-59 genes.

Ex: the genotype of 3 variants in 3 people looks like this:

	HG00366	HG00367	HG00368
Variant 1	2	1	1
Variant 2	2	1	1
Variant 3	1	0	0

Count each individual as having a non-reference site (1) or having only reference sites (0):

HG00368	HG00367	HG00366
1	1	1

Mean = 1

2.3.0.2 For gnomAD/ExAC

The probability of having at least 1 non-reference site is P(X), where X indicates a non-reference site at any variant position v_1 through v_n .

Recall that $P(v_i) = P(v_{i,a} \cup v_{i,b}) = 1 - (1 - AF(v))^2$ when alleles are independent.

If all alleles are independent, $P(X) = P(\bigcup_{i=1}^n v_i) = 1 - \prod_{i=1}^n (1 - AF(v_i))^2$

Ex: the allele frequencies of 3 variants across the 5 superpopulations looks like this:

	AFR	AMR	EAS	EUR	SAS
Variant 1	0.1	0.2	0	0	0.3
Variant 2	0.2	0	0.3	0	0.1

The probability of having at least 1 non-reference site at each variant - (0|1) (1|0) or (1|1) is given by $1 - (1 - AF)^2$. Note that this is approximately 2 * AF when AF is small:

	AFR	AMR	EAS	EUR	SAS
Variant 1	0.19	0.36	0	0	0.51
Variant 2	0.36	0	0.51	0	0.19

The expected (mean) number of non-reference sites is given by $1 - \prod (1 - AF)^2$.

AFR	AMR	EAS	EUR	SAS
0.4816	0.36	0.51	0	0.6031

2.4 Common Pathogenic Variants by Ancestry

3 Penetrance Estimates

3.1 Bayes' Rule as a Model for Estimating Penetrance

Let V_x be the event that an individual has 1 or more variant related to disease x, and D_x be the event that the individual is later diagnosed with disease x.

In this case, we can define the following probabilities:

- 1. Prevalence = $P(D_x)$
- 2. Population Allele Frequency (PAF) = $P(V_x)$
- 3. Case Allele Frequency (CAF) = $P(V_x|D_x)$
- 4. Penetrance = $P(D_x|V_x)$

By Bayes' Rule, the penetrance of a variant related to disease x may be defined as:

$$P(D_x|V_x) = \frac{P(D_x) * P(V_x|D_x)}{P(V_x)} = \frac{(Prevalence)(Population \ Allele \ Frequency)}{(Case \ Allele \ Frequency)}$$

To compute penetrance estimates for each of the diseases related to the ACMG-59 genes, we will use the prevalence data we collected into Literature_Prevalence_Estimates.csv, allele frequency data from 1000 Genomes/ExAC/gnomAD, and a broad range of values for case allele frequency.

3.2 Import Literature-Based Disease Prevalence Data

Data Collection:

- 1. Similar disease subtypes were grouped together (e.g., the 8 different types of familial hypertrophic cardiomyopathy), resulting in 30 disease categories across 59 genes.
- 2. The search query "[disease name] prevalence" was used to find articles using Google Scholar.
- 3. Prevalence estimates were recorded along with URL, journal, region, publication year, sample size, first author, population subset (if applicable), date accessed, and potential issues. Preference was given to studies with PubMed IDs, more citations, and larger sample sizes.

Prevalence was recorded as reported: either a point estimate or a range. Values of varying quality were collected across all diseases.

Table of Literature-Based Estimates 22 x 20 (selected rows/columns):

Gene	Phenotype
APC	Familial adenomatous polyposis
MEN1	Multiple endocrine neoplasia type 1
MYH7 TPM1 MYBPC3 PRKAG2 TNNI3 MYL3 MYL2 ACT	CC1 Hypertrophic cardiomyopathy
STK11	Peutz-Jeghers syndrome

Table continues below

$Inverse_Prevalence$	${\bf Case_Allele_Frequency}$
31250	0.9
30000	0.9
500	0.6
25000	0.96

3.3 Distribution of Prevalences

Distribution of Inverse Prevalences (log-scale)

3.4 Collect and Aggregate Allele Frequencies at the Disease-Level

We define AF(disease) as the probability of having at least 1 variant associated with the disease. The variants can be assigned to diseases in two ways:

- (1) By associating it by MIM. An MIM code is assigned for around 31% of assertions in each dataset.
- (1) By associating it by MedGen. An MIM code is assigned for around 22% of assertions in each dataset.
- (2) By associating it by gene. All variants are associated with genes, but some variants may be designated as pathogenic for non-ACMG conditions.

The frequencies across the relevant variants can be aggregated in two ways:

- (1) By direct counting, from genotype data in 1000 Genomes.
- (2) AF(disease) = $1 \prod_{variant} (1 AF_{variant})$, from population data in 1000 Genomes, ExAC, or gnomAD (assumes independence).

MedGen vs. GENE

Ratio_1000G (red, top) computes AF(calculation in 1000 Genomes) / AF(counting in 1000 Genomes). Ratio_gnomAD (blue, bottom) computes AF(calculation in gnomAD) / AF(calculation in 1000 Genomes).

Ratios of Allele Frequencies from Different Methods

Sampling 1000 variants from all variants in 1000 Genomes to test deviations from independence assumptions. Repeat for 1000 trials and plot the distribution of disease-level allele frequencies (1000 points per disease). Only variants with allele frequency < 1% are evaluated. Since we look at 17 variants per disease, the maximum is approximately $1 - (1 - 0.01)^{34} \approx 0.29$

Differences in AF Methods: by Disease

Differences in AF Methods: by Disease (Outliers)

Testing Independence with Random Sampling


```
## 31 diseases x 1000 points = 31,000 points.
```

^{##} This plot has been downsampled 100x and contains 310 points.

^{##} AR (autosomal recessive) and XL (X-linked) diseases are colored in red.

^{##} Pearson correlation: 0.989

3.5 Penetrance as a Function of P(V|D)

The left end of the boxplot indicates P(V|D) = 0.01, the bold line in the middle indicates P(V|D) = point value, the right end of the boxplot indicates P(V|D) = 1.

gnomAD: Barplot of Min/Point/Max Penetrance

Note: Some diseases have mean theoretical penetrance = 1 because the assumed allelic heterogeneity is greater than is possible, given the observed prevalence and allele frequencies.

3.6 Penetrance Estimates by Ancestry

Radar Plot: Max Penetrance by Ancestry (gnomAD)

- ## [1] These are the top 10 diseases by summed allele frequencies. NULL values are not plotted.
- ## [1] Each radius is proportional to the penetrance of the disease in the given population.

Barplot: Penetrance by Ancestry (gnomAD)

Heatmap: Max Penetrance by Ancestry (gnomAD)

