

#### Probeklausur

# Mathematik I - Theoretische Grundlagen der Informatik

HWR Berlin, Wintersemester 2023/2024

Prof. Dr.-Ing. Sebastian Schlesinger

## Aufgabe 1 (Mengen und Funktionen)

(5 Punkte)

Gegeben seien die Mengen  $A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8\}$  und  $C = \{1, 2\}.$ 

- **1.** Geben Sie die Menge  $A \cup B$  an
- **2.** Geben Sie die Menge  $A \cap B$  an
- **3.** Geben Sie die Menge  $A \setminus B$  an.
- **4.** Was ist  $\mathcal{P}(C)$ ?
- **5.** Geben Sie eine bijektive Abbildung  $f: A \to \mathcal{P}(C)$  an.

#### Aufgabe 2 (Relationen)

(10 Punkte)

Gegeben seien die Relationen  $R, S \subseteq \{1, 2, 3, 4\}$  mit  $R = \{(1, 2), (3, 1), (4, 1)\}$  und  $S = \{(1, 2), (2, 1), (1, 3), (4, 3)\}$ .

- (i) Stellen Sie R und S als Graphen und Adjazenzmatrix dar.
- (ii) Geben Sie die Relation  $R \circ S$  an und stellen Sie sie auch als Graphen dar.
- (iii) Geben Sie die Relation  $S \circ R$  an und stellen Sie sie auch als Graphen dar.
- (iv) Ist *R* eine Äquivalenzrelation oder Ordnungsrelation? Begründen Sie Ihre Antwort.
- (v) Berechnen Sie die reflexiv-transitive Hülle von R.
- (vi) Ist die reflexiv-transitive Hülle von *R* eine Äquivalenzrelation oder Ordnungsrelation? Begründen Sie Ihre Antwort.

#### Aufgabe 3 (Äquivalenzrelation)

(5 Punkte)

Sei  $x \sim y \Leftrightarrow x = y \lor x = -y$  eine Relation auf  $\mathbb{Z} \times \mathbb{Z}$ .

- (i) Zeigen Sie, dass ~ eine Äquivalenzrelation ist.
- (ii) Bestimmen Sie die Quotientenmenge  $\mathbb{Z}/\sim$ .

### Aufgabe 4 (Ordnungen)

(7 Punkte)

Version: 2024-01-02 23:24:55+01:00

Sei ~ eine Relation auf  $(\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N})$ . Wir definieren  $(a, b) \sim (c, d) \Leftrightarrow a \leq c \wedge b \leq d$ .

- (i) Zeigen Sie, dass ~ eine Ordnungsrelation ist.
- (ii) Zeichnen Sie das Hasse-Diagramm für die Teilmenge  $\{0, 1, 2\} \times \{0, 1, 2\}$ .

(iii) Was sind die größten und kleinsten Elemente, maximalen und minimalen Elemente von  $\{0,1,2\} \times \{0,1,2\} \setminus \{(2,2)\}$ ?

Aufgabe 5 (Beweise) (6 Punkte)

Zeigen Sie

- (i)  $B \setminus (B \setminus A) = A \cap B$  für Mengen A, B.
- (ii)  $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$  für Abbildungen  $f : A \to B$  und  $B_1, B_2 \subseteq B$ . (Hinweis: Es ist  $f^{-1}(X) = \{a \in A \mid f(a) \in X\}$ .)