

ETR0328_015

Low ESR Caps Compatible High Speed LDO Voltage Regulator with ON/OFF Switch

GENERAL DESCRIPTION

The XC6221 series is a high accuracy, low noise, high speed, low dropout CMOS regulator with high ripple rejection. The series includes a reference voltage source, an error amplifier, a current limiter, and a phase compensation circuit.

The CE function enables the entire circuit to be in stand-by state by inputting low level signal. As for the XC6221B/D stand-by mode, the electric charge at the output capacitor (CL) will be discharged by the internal auto-discharge switch, and as a result the V_{OUT} pin quickly returns to the V_{SS} level. The output stabilization capacitor (C_L) is also compatible with low ESR ceramic

Output voltage is selectable in 0.05V increments within a range of 0.80V~5.00V, using the laser trimming technology set in factory.

The current limiter's fold-back circuit also operates as a short circuit protection and an output current limiter at the output pin. The series achieves a fast response with only 25 µ A of low power consumption. Also the series has low dropout voltage characteristics, which is 80mV at I_{OUT} =100mA and V_{OUT} =3.0V.

With the use of small USP-4 and ultra small USPN-4 packages, a small footprint circuit can be designed.

APPLICATIONS

Smart phones / Mobile phones

Portable game consoles

Digital still cameras / Camcorders

Digital audio equipments

Mobile devices / terminals

FEATURES

Maximum Output Current Dropout Voltage

Operating Voltage Range Output Voltage Range

Accuracy

: <u>+</u>2% (V_{OUT} ≥1.50V) (Standard) +30mV (V_{OUT} 1.45V) (Standard) ±1% (V_{OUT} ≥2.00V) (High Accuracy) +20mV (V_{OUT} 1.95V) (High Accuracy)

: 200mA < Up to 250mA (TYP.)>

: 80mV@ I_{OUT}=100mA,V_{OUT}=3.0V

: 0.80V~5.00V (0.05V increments)

Low Power Consumption : 25 µ A (TYP.) **Stand-by Current** : Less than 0.1 µ A **High Ripple Rejection** : 70dB @ 1kHz **CE Function** : CE Active High

> Standby current below 0.1 µ A C_L High-Speed Auto-Discharge

(XC6221B/D)

: 1.6V ~ 6.0V

CE Pin internally pulled-down

(XC6221C/D)

Low ESR Capacitor Low Output Noise

Operating Ambient Temperature : -40 ~+85

Packages

: USP-4, SOT-25, SSOT-24

: 1.0 µ F ceramic capacitor

USPN-4

: EU RoHS Compliant, Pb Free **Environmentally Friendly**

TYPICAL APPLICATION CIRCUIT

TYPICAL PERFORMANCE **CHARACTERISTICS**

Load Transient Response

PIN CONFIGURATION

*It is recommended that the heat dissipation pad of the USP-4 package is soldered by using the reference mount pattern and metal mask pattern for mounting strength. The mount pattern should be electrically opened or connected to the $V_{\rm SS}$ (No.2) pin.

PIN ASSIGNMENT

	PIN NU	MBER		PIN NAME	FUNCTIONS
USP-4	SOT-25	SSOT-24	USPN-4	FIN INAIVIE	FUNCTIONS
4	1	4	4	V _{IN}	Power Input
1	5	3	1	V _{OUT}	Output
2	2	2	2	V_{SS}	Ground
3	3	1	3	CE	ON/OFF Control
-	4	-	-	NC	No Connection

CE PIN LOGIC CONDITION

PIN NAME	DESIGNATOR	CONDITIONS
CE	Н	1.2V V _{CE} 6.0V
J GE	L	V _{CE} 0.3V

^{*} V_{CE} : CE pin voltage

PIN FUNCTION ASSIGNMENT

XC6221A/B (CE no pull-down resistor)

CE LEVEL	IC OPERATION
HIGH	ON
LOW	OFF
OPEN	Undefined state

XC6221C/D (CE pull-down resistor)

CE LEVEL	IC OPERATION	
HIGH	ON	
LOW	OFF	
OPEN	UFF	

PRODUCT CLASSIFICATION

Ordering Information

XC6221 - (*1)

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION					
		Α	No CE pull-down resistor without C _L auto discharge					
	Time of Decidates	В	No CE pull-down resistor with C _L auto discharge					
	Type of Regulator	С	CE pull-down resistor without C _L auto discharge					
		D	CE pull-down resistor with C _L auto discharge					
	Output Voltage	08 ~ 50	ex.) V _{OUT} = 3.00V = 3, = 0					
		2	+30mV @ 0.80V V _{OUT} 1.40V When 0.1V steps such as V _{OUT} =0.80V =0, =8, =2					
			±2% @ V _{OUT} ≥1.50V When 0.1V steps such as V _{OUT} =3.00V =3, =0, =2					
	Output Accuracy	Α	<u>+</u> 30mV @ 0.85V V _{OUT} 1.45V When 0.05V steps such as V _{OUT} =0.85V =0, =8, =A					
			±2% @ V _{OUT} ≥1.55V When 0.05V steps such as V _{OUT} =3.05V =3, =0, =A					
		1	±20mV @ 0.80V V _{OUT} 1.90V When 0.1V steps such as V _{OUT} =0.80V =0, =8, =1					
			±1% @ V _{OUT} ≥2.00V When 0.1V steps such as V _{OUT} = 3.00V =3, =0, =1					
		В	±20mV @ 0.85V V _{OUT} 1.95V When 0.05V steps such as V _{OUT} =0.85V =0, =8, =B					
			±1% @ V _{OUT} ≥2.00V When 0.05V steps such as V _{OUT} = 3.05V =3, =0, =B					
			USP-4 (3,000/Reel)					
		GR-G	USP-4 (3,000/Reel)					
	5 .	MR	SOT-25 (3,000/Reel)					
- (*1)	Packages (Order Unit)	MR-G	SOT-25 (3,000/Reel)					
	(/	NR	SSOT-24 (3,000/Reel)					
		NR-G	SSOT-24 (3,000/Reel)					
		7R-G	USPN-4 (5,000/Reel)					

^(*1) The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully EU RoHS compliant.

 $^{^{(\}mbox{\tiny $^{\prime}$}2)}$ The range of the output voltage of USPN-4 package is 1.20V $~V_{\mbox{\scriptsize OUT}}~$ 5.00V.

BLOCK DIAGRAMS

XC6221A Series

XC6221B Series

XC6221C Series

XC6221D Series

ABSOLUTE MAXIMUM RATINGS

Ta=25

				14-25	
PARAME	TER	SYMBOL	RATINGS	UNITS	
Input Vo	Itage	V _{IN}	V _{SS} -0.3 ~ +6.5	V	
Output C	urrent	I _{OUT}	400 ^(*1)	mA	
Output Vo	oltage	V _{OUT}	$V_{SS} - 0.3 \sim V_{IN} + 0.3$	٧	
CE Input \	/oltage	V_{CE}	V _{SS} – 0.3 ~ +6.5	V	
	USP-4		120		
	USP-4		1000(PCB mounted) ^(*2)		
	SOT-25		250		
Dower Dissipation			600(PCB mounted) ^(*2)	mW	
Power Dissipation	SSOT-24	Pd	150	IIIVV	
			500(PCB mounted) ^(*2)		
	LICONI 4		100		
	USPN-4		600(PCB mounted) ^(*2)		
Operating Ambien	Operating Ambient Temperature		- 40 ~ + 85		
Storage Tem	perature	Tstg	- 55 ~ +125		

^{*1} I_{OUT} Pd / (V_{IN} - V_{OUT})

^{*}Diodes inside the circuit are an ESD protection diode and a parasitic diode.

^{*2} These values are example data which is taken with the PCB mounted. Please refer to pages 21 to 24 for details.

ELECTRICAL CHARACTERISTICS

XC6221A/B/C/D series Ta=25

AC622 TA/B/C/D series							1a=25
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage	V _{OUT(E)}	1.50V <u>≤</u> V _{OUT(T),} V _{CE} =V _{IN} , I _{OUT} =10mA	VOUT(T) (*4)		x 1.02	V	
(Standard)	(* 2)	V _{OUT(T)} ≤1.45V, V _{CE} =V _{IN} , I _{OUT} =10mA	-0.03 (*3)		+0.03	v	
Output Voltage	V _{OUT(E)}	$2.00V \leq V_{OUT(T)}$, $V_{CE} = V_{IN}$, $I_{OUT} = 10$ mA	x 0.99 (*3) V _{OUT(T)}		x 1.01	V	
(High Accuracy)	(^ 2)	V _{OUT(T)} ≤1.95V, V _{CE} =V _{IN} , I _{OUT} =10mA	-0.02 (*3)	(*4)`´	+0.02 (*3)	V	
Output Current	I _{OUTMAX}	$V_{CE}=V_{IN}, V_{IN}=V_{OUT(T)}+1.0V, \\ 0.80V \leq V_{OUT(T)} \leq 5.00V$	200	250	-	mA	
Load Regulation	$\triangle V_{OUT}$	V _{CE} =V _{IN} ,0.1mA I _{OUT} 100mA	-	10	40	mV	
Dropout Voltage (*5)	Vdif	V _{CE} =V _{IN,} I _{OUT} =100mA	Refer to	the volta	ge chart	mV	
Supply Current	I _{DD}	$V_{CE}=V_{IN}$, $V_{IN}=V_{OUT(T)}+1.0V$	-	25	50	μΑ	
Standby Current	I _{STB}	$V_{IN}=6.0V$, $V_{CE}=V_{SS}$	1	0.01	0.10	μΑ	
Line Regulation	△V _{OUT} / (△V _{IN} • V _{OUT})	V _{OUT(T)} +0.5V V _{IN} 6.0V 1.10V V _{OUT(T)} , V _{CE} =V _{IN} , I _{OUT} =10mA 1.6V V _{IN} 6.0V V _{OUT(T)} 1.05V, V _{CE} =V _{IN} , I _{OUT} =10mA	-	0.01	0.20	%/V	
Input Voltage	V _{IN}	1 001(1) 11001, 1001 1111, 1001 101111	1.6	-	6.0	V	
Output Voltage Temperature Characteristics	$\triangle V_{OUT} / (\triangle Topr \cdot V_{OUT})$	V _{CE} =V _{IN,} I _{OUT} =30mA, -40 <u>≤</u> Topr <u>≤</u> 85	-	± 100	-	ppm/	
Ripple Rejection Rate	PSRR	$\begin{split} &V_{\text{IN}} {=} 5.75 V_{\text{DC}} {+} 0.5 V_{\text{P}} {-} \text{pAC} \\ &4.75 V V_{\text{OUT(T)}} \\ &V_{\text{CE}} {=} V_{\text{IN}}, I_{\text{OUT}} {=} 30 \text{mA}, f {=} 1 \text{kHz} \\ &V_{\text{IN}} {=} \{V_{\text{OUT(T)}} {+} 1.0\} V_{\text{DC}} {+} 0.5 V_{\text{P}} {-} \text{pAC} \\ &4.05 V V_{\text{OUT(T)}} 4.70 V \\ &V_{\text{CE}} {=} V_{\text{IN}}, I_{\text{OUT}} {=} 30 \text{mA}, f {=} 1 \text{kHz} \\ &V_{\text{IN}} {=} \{V_{\text{OUT(T)}} {+} 1.0\} V_{\text{DC}} {+} 0.5 V_{\text{P}} {-} \text{pAC} \\ &0.85 V V_{\text{OUT(T)}} 4.00 V \\ &V_{\text{CE}} {=} V_{\text{IN}}, I_{\text{OUT}} {=} 30 \text{mA}, f {=} 1 \text{kHz} \\ \end{split}$	-	60		dB	
		V_{IN} =1.85 V_{DC} +0.5 V_{P} -pAC $V_{OUT(T)}$ =0.80 V V_{CE} = V_{IN} , I_{OUT} =30mA, f=1kHz					
Limit Current	I _{LIM}	V _{CE} =V _{IN}	200	250	-	mA	
Short Current	I _{SHORT}	V_{CE} = V_{IN} , V_{OUT} is short-circuited at the V_{SS} level	-	30	-	mA	
CE High Level Voltage	V_{CEH}		1.2	-	6.0	V	
CE Low Level Voltage	V_{CEL}		-	-	0.3	V	
CE High Level Current	I _{CEH}	V _{CE} =V _{IN} (XC6221A/B)	-0.1	-	0.1	μА	
5 = 1g = 5101 0 arrorn	·OEII	V _{CE} =6.0V (XC6221C/D)	1.03	1.03 - 2		Pr. / ,	
CE Low Level Current	I _{CEL}	V _{CE} =V _{SS}	-0.1	-	0.1	μA	
CL Auto-Discharge Resistance	R _{DCHG}	V_{IN} =6.0V, V_{OUT} =4.0V, V_{CE} = V_{SS}	-	780	-		

- * 1: Unless otherwise stated regarding input voltage conditions, V_{IN}=V_{OUT(T)} + 1.0V.
- * 2: V_{OUT (E)} = Effective output voltage
- (The output voltage when an amply stabilized "V_{OUT (T)} + 1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value.) * 3: The relation between V_{OUT (E)} and V_{OUT (T)} is shown in the voltage chart E-0 and E-1.

- * 3: The relation between V_{OUT (E)} and V_{OUT (T)} is snown in the voltage chart E-0 and E-1.

 * 4: V_{OUT (T)} = Nominal output voltage

 * 5: Vdif = {V_{IN1}^(T)-V_{OUT1}^(F)}

 * 6: V_{OUT1} is the voltage equal to 98% of the normal output voltage when amply stabilized V_{OUT (T)} +1.0V are input at the V_{IN} pin.

 * 7: V_{IN1} is the input voltage when V_{OUT1} appears at the V_{OUT} pin while input voltage is gradually decreased.

 * 8: For the XC6221B/D series only. The XC6221A/C series discharges by resistors R1 and R2 only as shown in the block diagrams.

 * 9: For operating supply current of the XC6221C/D, a current through the pull-down resistor should be considered in addition to the supply current value mentioned above. supply current value mentioned above.

OUTPUT VOLTAGE CHART

NOMINAL OUTPUT VOLTAGE (V)	OUTPUT VOLTAGE (Standard) V _{OUT(E)} (V)		GE OUTPUT VOLTAGE (High Accuracy) V _{OUT(E)} (V)		DROPOUT VOLTAGE Vdif (mV)	
	MIN.	MAX.	MIN.	MAX.	TYP.	MAX.
0.80	0.7700	0.8300	0.7800	0.8200	500	850
0.85	0.8200	0.8800	0.8300	0.8700	300	830
0.90	0.8700	0.9300	0.8800	0.9200	410	750
0.95	0.9200	0.9800	0.9300	0.9700	410	730
1.00	0.9700	1.0300	0.9800	1.0200		
1.05	1.0200	1.0800	1.0300	1.0700	330	650
1.10	1.0700	1.1300	1.0800	1.1200	330	030
1.15	1.1200	1.1800	1.1300	1.1700		
1.20	1.1700	1.2300	1.1800	1.2200		
1.25	1.2200	1.2800	1.2300	1.2700	230	410
1.30	1.2700	1.3300	1.2800	1.3200	230	410
1.35	1.3200	1.3800	1.3300	1.3700		
1.40	1.3700	1.4300	1.3800	1.4200	200	260
1.45	1.4200	1.4800	1.4300	1.4700	200	360
1.50	1.4700	1.5300	1.4800	1.5200	100	200
1.55	1.5200	1.5800	1.5300	1.5700	180	290
1.60	1.5700	1.6300	1.5800	1.6200		250
1.65	1.6200	1.6800	1.6300	1.6700	400	
1.70	1.6700	1.7300	1.6800	1.7200	160	
1.75	1.7200	1.7800	1.7300	1.770		
1.80	1.7700	1.8300	1.7800	1.8200		210
1.85	1.8200	1.8800	1.8300	1.8700	405	
1.90	1.8700	1.9300	1.8800	1.9200	- 125	
1.95	1.9200	1.9800	1.9300	1.9700	1	
2.00	1.9600	2.0400	1.9800	2.0200		
2.05	2.0090	2.0910	2.0295	2.0705		
2.10	2.0850	2.1420	2.0790	2.1210		
2.15	2.1070	2.1930	2.1285	2.1715		
2.20	2.1560	2.2440	2.1780	2.2220	44.5	405
2.25	2.2050	2.2950	2.2275	2.2725	115	195
2.30	2.2540	2.3460	2.2770	2.3230		
2.35	2.3030	2.3970	2.3265	2.3735		
2.40	2.3520	2.4480	2.3760	2.4240		
2.45	2.4010	2.4990	2.4255	2.4745		
2.50	2.4500	2.5500	2.4750	2.5250		
2.55	2.4990	2.6010	2.5245	2.5755	1	
2.60	2.5480	2.6520	2.5740	2.6260		
2.65	2.5970	2.7030	2.6235	2.6765	1	
2.70	2.6460	2.7540	2.6730	2.7270	1 05	170
2.75	2.6950	2.8050	2.7225	2.7775	95	170
2.80	2.7440	2.8560	2.7720	2.8280	1	
2.85	2.7930	2.9070	2.8215	2.8785	1	
2.90	2.8420	2.9580	2.8710	2.9290	1	
2.95	2.8910	3.0090	2.9205	2.9795	1	

^{*}The range of the output voltage of USPN-4 package is 1.20V V_{OUT(T)} 5.00V.

OUTPUT VOLTAGE CHART (Continued)

NOMINAL OUTPUT VOLTAGE (V)	OUTPUT VOLTAGE (Standard) V _{OUT(E)} (V)				DROPOUT VOLTAGE Vdif (mV)	
	MIN.	MAX.	MIN.	MAX.	TYP.	MAX.
3.00	2.9400	3.0600	2.9700	3.0300		
3.05	2.8990	3.1100	3.0195	3.0805		
3.10	3.0380	3.1620	3.0690	3.1310		
3.15	3.0870	3.2130	3.1185	3.1815		
3.20	3.1360	3.2640	3.1680	3.2320		
3.25	3.1850	3.3150	3.2175	3.2825		
3.30	3.2340	3.3660	3.2670	3.3330		
3.35	3.2830	3.4170	3.3165	3.3835		
3.40	3.3320	3.4680	3.3660	3.4340		
3.45	3.3810	3.5190	3.4155	3.4845		
3.50	3.4300	3.5700	3.4650	3.5350		
3.55	3.4790	3.6210	3.5145	3.5855		
3.60	3.5280	3.6720	3.5640	3.6360		
3.65	3.5770	3.7230	3.6135	3.6855		
3.70	3.6260	3.7740	3.6630	3.7370		
3.75	3.6750	3.8250	3.7125	3.7875		
3.80	3.7240	3.8760	3.7620	3.8380		
3.85	3.7730	3.9270	3.8115	3.8885		
3.90	3.8220	3.9780	3.8610	3.9390		
3.95	3.8710	4.0290	3.9105	3.9895		
4.00	3.9200	4.0800	3.9600	4.0400	80	140
4.05	3.9690	4.1310	4.0095	4.0905		
4.10	4.0180	4.1820	4.0590	4.1410		
4.15	4.0670	4.2330	4.1085	4.1915		
4.20	4.1160	4.2840	4.1580	4.2420		
4.25	4.1650	4.3350	4.2075	4.2925		
4.30	4.2140	4.3860	4.2570	4.3430		
4.35	4.2630	4.4370	4.3065	4.3935		
4.40	4.3120	4.4880	4.3560	4.4440		
4.45	4.3610	4.5390	4.4055	4.4945		
4.50	4.4100	4.5900	4.4550	4.5450		
4.55	4.4590	4.6410	4.5045	4.5955		
4.60	4.5080	4.6920	4.5540	4.6460		
4.65	4.5570	4.7430	4.6035	4.6965		
4.70	4.6060	4.7940	4.6530	4.7470		
4.75	4.6550	4.8450	4.7025	4.7975		
4.80	4.7040	4.8960	4.7520	4.8480		
4.85	4.7530	4.9470	4.8015	4.8985		
4.90	4.8020	4.9980	4.8510	4.9490		
4.95	4.8510	5.0490	4.9005	4.9995		
5.00	4.9000	5.1000	4.9500	5.0500		

OPERATIONAL EXPLANATION

<Output Voltage Control>

The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET connected to the V_{OUT} pin, is then driven by the subsequent output signal. The output voltage at the V_{OUT} pin is controlled & stabilized by a system of negative feedback. The current limit circuit and short protect circuit operate in relation to the level of output current. Further, the IC's internal circuitry can be shutdown via the CE pin's signal.

<Input and Output Capacitors>

The XC6221 needs an output capacitor C_L for phase compensation. Values required for the phase compensation are shown in the chart below. If a loss of the capacitance happens, the stable phase compensation may not be obtained. Please ensure to use a capacitor which does not depend on bias or temperature too much. For a stable power input, please connect an input capacitor C_{IN} of $1.0 \, \mu$ F between the V_{IN} pin and the V_{SS} pin.

Except USPN-4

OUTPUT VOLTAGE (V)	OUTPUT CAPACITOR VALUE
0.80V ~ 1.15V	C _L 4.7 μ F
1.20V ~ 1.35V	C _L 2.2 µ F
1.40V ~ 4.00V	C _L 1.0 µ F
4.05V ~ 5.00V	C _L 2.2 µ F

USPN-4

OUTPUT VOLTAGE (V)	OUTPUT CAPACITOR VALUE
1.20V ~ 4.00V	C _L 2.2µF
4.05V ~ 5.00V	C _L 4.7µF

<C_L Auto-Discharge Function>

XC6221B/D series can discharge the electric charge in the output capacitor (C_L), when a low signal to the CE pin, which enables the whole IC circuit to be turned off, is inputted via the N-channel transistor and C_L auto-discharge resistance (R_{DCHG}) located between the V_{OUT} pin and the V_{SS} pin (cf. BLOCK DIAGRAM). The C_L auto-discharge resistance (R_{DCHG}) value is set at 780 (V_{OUT} =4.0V @ V_{IN} =6.0V at typical). The discharge time of the output capacitor (C_L) is set by the C_L auto-discharge resistance (R_{DCHG}) and the output capacitor (C_L). By setting the time constant of the C_L auto-discharge resistance value [R_{DCHG}] and the output capacitor value (C_L) as (= C_L x R_{DCHG}), the output voltage after discharge via the N-channel transistor is calculated by the following formula.

$$V = V_{OUT(E)} x e^{-t/}$$
, or $t = In(V/V_{OUT(E)})$

where

V : Output voltage after discharge

 $V_{OUT\,(E)}$: Output voltage

t : Discharge time

: C_L auto-discharge resistance R_{DCHG} × Output capacitor value C_L

OPERATIONAL EXPLANATION (Continued)

<Current Limiter, Short-Circuit Protection>

The XC6221 series' fold-back circuit operates as an output current limiter and a short protection circuit for the output pin. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. When the output pin is short-circuited to the V_{SS} pin, the current falls and reaches about 30mA.

<CE Pin>

The XC6221 internal circuitry can be shutdown via the CE pin signal. In shutdown mode, output at the V_{OUT} pin will be pulled down to the V_{SS} level via R1 & R2. However, with the XC6221B/D series, the C_L auto-discharge resistor is connected in parallel to R1 and R2 while the power supply is applied to the V_{IN} pin. Therefore, time until the V_{OUT} pin reaches the V_{SS} level is shorter. For the XC6221A/B, the output voltage becomes unstable, when the CE pin is left open. For the XC6221C/D, the output voltage becomes V_{SS} level because the CE pin is short-circuited to V_{SS} via an internal pull-down resistor. However, the CE input current will be increased via a pull-down resistor when the IC operates. If this IC is used with the correct output voltage for the CE pin, the logic is fixed and the IC will operate normally. However, the supply current may increase as a result of shoot-through current in the IC's internal circuitry when a medium voltage is input.

NOTES ON USE

- 1. Please use this IC within the stated maximum ratings. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please wire the input capacitor (C_{IN}) and the output capacitor (C_L) as close to the IC as possible.
- 3. Torex places an importance on improving our products and its reliability.

 However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.

TEST CIRCUITS

Circuit 1: Output Voltage, Output Current, Dropout Voltage, Input/Operating Voltage, Line Regulation, Load Regulation, Current Limit, Short Current, CL Discharge Resistance

Circuit 2: Supply Current, Stand-by Current

Circuit 3: Ripple Rejection Rate

TEST CIRCUITS (Continued)

Circuit 4: CE "H" "L" Level Voltage, CE "H" "L" Level Current

TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

XC6221x182

 $V_{IN}=V_{CE}=2.8V$

 $C_{IN}=C_L=1.0 \mu F (ceramic)$

400

(2) Output Voltage vs. Input Voltage

(2) Output Voltage vs. Input Voltage (Continued)

(3) Dropout Voltage vs. Output Current

(4) Output Voltage vs. Ambient Temperature

(5) Supply Current vs. Input Voltage

(6) CL-Discharge Resistance vs. Ambient Temperature

(7) Load Transient Response

(8) Line Transient Response

(9) Input Rise Characteristics

(10) CE Rise Characteristics

(11) Ripple Rejection Rate

PACKAGING INFORMATION

USP-4

1.0±0.05

SOT-25

SSOT-24

USPN-4

USP-4 Reference Pattern Layout

USP-4 Reference Metal Mask Design

USPN-4 Reference Pattern Layout

(unit: mm)

USPN-4 Reference Metal Mask Design

(unit:mm)

USP-4 Power Dissipation

Power dissipation data for the USP-4 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit:mm)

2. Power Dissipation vs. Ambient temperature

Ambient Temperature()	Power Dissipation Pd(mW)	Thermal Resistance (/W)
25	1000	100.00
85	400	100.00

• SOT-25 Power Dissipation

Power dissipation data for the SOT-25 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board Ambient: Natural convection Soldering: Lead (Pb) free

Board : Dimensions $40\times40\text{mm}$ (1600mm^2 in one side) Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

(Board of SOT-26 is used) Material : Glass Epoxy (FR-4)

Thickness: 1.6mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Ambient Temperature ()	Power Dissipation Pd (mW)	Thermal Resistance (/W)
25	600	166.67
85	240	100.07

• SSOT-24 Power Dissipation

Power dissipation data for the SSOT-24 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board Ambient: Natural convection Soldering: Lead (Pb) free

Board : Dimensions $40 \times 40 \text{mm}$ (1600mm^2 in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Ambient Temperature ()	Power Dissipation Pd (mW)	Thermal Resistance (/W)
25	500	200.00
85	200	200.00

USPN-4 Power Dissipation

Power dissipation data for the USPN-4 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as one of reference data taken in the described condition.

Measurement Condition (Reference data)

Condition: Mount on a board Ambient: Natural convection Soldering: Lead (Pb) free

Dimensions 40 x 40 mm (1600 mm² in one side) Board:

Copper (Cu) traces occupy 50% of the front and 50% of the back.

The copper area is divided into four block, one block is 12.5%

of total.

The USPN-4 package has for terminals.

Each terminal connects one copper block in the front and

one in the back.

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit:mm)

2. Power Dissipation vs. Ambient temperature

Ambient Temperature()	Power Dissipation Pd(mW)	Thermal Resistance (/W)	
25	600	166 67	
85	240	166.67	

MARKING RULE

SOT-25 / USP-4

represents product series

MARK	PRODUCT SERIES
3	XC6221A/B****
0	XC6221C/D****

represents type of regulator

	MARK							
OUTPUT VOLTAGE	0.1V INCREMENTS	OUTPUT VOLTAGE	PRODUCT SERIES					
V _{OUT} =0.80 ~ 3.00V	V _{OUT} =3.10 ~ 5.00V	V _{OUT} =0.85 ~ 3.05V V _{OUT} =3.15 ~ 4.95V						
V	Α	E	L	XC6221A/C****				
X	В	F	M	XC6221B/D****				

represents output voltage

MARK	(OUTPUT VOLTAGE (V)				OUTPUT VOLTAGE (V)			V)
0	-	3.10	1	3.15	F	1.60	4.60	1.65	4.65
1	-	3.20	-	3.25	Н	1.70	4.70	1.75	4.75
2	-	3.30	-	3.35	K	1.80	4.80	1.85	4.85
3	-	3.40	-	3.45	L	1.90	4.90	1.95	4.95
4	-	3.50	-	3.55	М	2.00	5.00	2.05	-
5	-	3.60	-	3.65	N	2.10	-	2.15	-
6	-	3.70	-	3.75	Р	2.20	-	2.25	-
7	0.80	3.80	0.85	3.85	R	2.30	-	2.35	-
8	0.90	3.90	0.95	3.95	S	2.40	ı	2.45	-
9	1.00	4.00	1.05	4.05	Т	2.50	-	2.55	-
Α	1.10	4.10	1.15	4.15	U	2.60	-	2.65	-
В	1.20	4.20	1.25	4.25	V	2.70	ı	2.75	-
С	1.30	4.30	1.35	4.35	Х	2.80	-	2.85	-
D	1.40	4.40	1.45	4.45	Y	2.90	-	2.95	-
E	1.50	4.50	1.55	4.55	Z	3.00	-	3.05	-

represents production lot number

01, ..., 09, 10, 11, ...99, 0A, ...,0Z, 1A, ... 9Z, A0, ..., Z9, AA, ..., ZZ repeated.

(G, I, J, O, Q, W excluded)

*No character inversion used.

MARKING RULE (Continued)

SSOT-24(Without bar) / USPN-4

represents type of regulator and output voltage range.

MARK	TYPE OF REGULATOR	OUTPUT VOLTAGE RANGE(V)	OUTPUT VOLTAGE ACCURACY	PRODUCT SERIES
9	Α	0.80 ~ 3.00	1/2(0.1VStep)	XC6221A081/2** ~ XC6221A301/2**
D	Α	3.10 ~ 4.00	1/2(0.1VStep)	XC6221A311/2** ~ XC6221A401/2**
0	Α	4.10 ~ 5.00	1/2(0.1VStep)	XC6221A411/2** ~ XC6221A501/2**
Α	Α	0.85 ~ 3.05	A/B(0.05VStep)	XC6221A08A/B** ~ XC6221A30A/B**
Е	Α	3.15 ~ 3.95	A/B(0.05VStep)	XC6221A31A/B** ~ XC6221A39A/B**
0	Α	4.05 ~ 4.95	A/B(0.05VStep)	XC6221A40A/B** ~ XC6221A49A/B**
В	В	0.80 ~ 3.00	1/2(0.1VStep)	XC6221B081/2** ~ XC6221B301/2**
F	В	3.10 ~ 4.00	1/2(0.1VStep)	XC6221B311/2** ~ XC6221B401/2**
Р	В	4.10 ~ 4.80	1/2(0.1VStep)	XC6221B411/2** ~ XC6221B481/2**
U	В	4.90 ~ 5.00	1/2(0.1VStep)	XC6221B491/2** ~ XC6221B501/2**
С	В	0.85 ~ 3.05	A/B(0.05VStep)	XC6221B31A/B** ~ XC6221B39A/B**
Н	В	3.15 ~ 3.95	A/B(0.05VStep)	XC6221B40A/B** ~ XC6221B49A/B**
8	В	4.05 ~ 4.35	A/B(0.05VStep)	XC6221B31A/B** ~ XC6221B39A/B**
Н	В	4.45 ~ 4.75	A/B(0.05VStep)	XC6221B40A/B** ~ XC6221B49A/B**
Z	В	4.85 ~ 4.95	A/B(0.05VStep)	XC6221B40A/B** ~ XC6221B49A/B**

^{*} The range of the output voltage of USPN-4 package is 1.20V $V_{OUT(T)}$ 5.00V.

represents output voltage

 $XC6221A^{*****}$ (0.8 ~ 5.0V) 、 $XC6221B^{*****}$ (0.8 ~ 4.0V)

MARK	OU	TPUT V	OLTAGE	(V)	MARK	OU ⁻	TPUT V	OLTAGE	(V)
0	ı	3.10	ı	3.15	F	1.60	4.60	1.65	-
1	-	3.20	-	3.25	Н	1.70	4.70	1.75	-
2	-	3.30	-	3.35	K	1.80	4.80	1.85	-
3	1	3.40	1	3.45	L	1.90	4.90	1.95	-
4	-	3.50	-	3.55	М	2.00	5.00	2.05	-
5	-	3.60	-	3.65	N	2.10	-	2.15	4.05
6	-	3.70	-	3.75	Р	2.20	-	2.25	4.15
7	0.80	3.80	0.85	3.85	R	2.30	•	2.35	4.25
8	0.90	3.90	0.95	3.95	S	2.40	-	2.45	4.35
9	1.00	4.00	1.05	-	Т	2.50	-	2.55	4.45
Α	1.10	4.10	1.15	-	U	2.60	-	2.65	4.55
В	1.20	4.20	1.25	-	V	2.70	-	2.75	4.65
С	1.30	4.30	1.35	-	Х	2.80	-	2.85	4.75
D	1.40	4.40	1.45	-	Y	2.90	-	2.95	7.85
Е	1.50	4.50	1.55	-	Z	3.00	-	3.05	4.95

XC6221B***** (4.05 ~ 5.0V)

MARK	OUT	OUTPUT VOLTAGE (V)						
0	4.10	-	ı	-				
1	4.20	-	ı	-				
2	4.30	-	-	-				
3	4.40	-	-	-				
4	4.50	-	-	-				
5	4.60	-	-	-				
6	4.70	-	-	-				
7	4.80	-	-	-				
8	-	-	-	-				
9	-	4.05	4.45	-				
Х	4.90	4.15	4.55	4.85				
Υ	5.00	4.25	4.65	4.95				
Z	-	4.35	4.75	-				

represents production lot number

01, ..., 09, 10, 11, ..., 99, 0A, ..., 0Z, 1A, ..., 9Z, A0, ..., Z9, AA, ..., ZZ repeated.

(G, I, J, O, Q, W excluded)

*No character inversion used.

MARKING RULE (Continued)

SSOT-24(With bar) / USPN-4

represents type of regulator and output voltage range.

MARK	TYPE OF REGULATOR	OUTPUT VOLTAGE RANGE(V)	OUTPUT VOLTAGE ACCURACY	PRODUCT SERIES
0	С	0.80 ~ 3.70	1/2(0.1VStep)	XC6221C081/2** ~ XC6221C371/2**
1	С	3.80 ~ 5.00	1/2(0.1VStep)	XC6221C381/2** ~ XC6221C501/2**
2	С	0.85 ~ 3.75	A/B(0.05VStep)	XC6221C08A/B** ~ XC6221C37 A/B**
3	С	3.85 ~ 4.95	A/B(0.05VStep)	XC6221C38 A/B** ~ XC6221C50 A/B**
4	D	0.80 ~ 3.70	1/2(0.1VStep)	XC6221D081/2** ~ XC6221D371/2**
5	D	3.80 ~ 5.00	1/2(0.1VStep)	XC6221D381/2** ~ XC6221D501/2**
6	D	0.85 ~ 3.75	A/B(0.05VStep)	XC6221D08A/B** ~ XC6221D37 A/B**
7	D	3.85 ~ 4.95	A/B(0.05VStep)	XC6221D38 A/B** ~ XC6221D50 A/B**

^{*}The range of the output voltage of USPN-4 package is 1.20V V_{OUT(T)} 5.00V.

represents output voltage

MARK	(DUTPUT V	OLTAGE	(V)	MARK	0	UTPUT V	OLTAGE (V)
0	0.80	3.80	0.85	3.85	F	2.30	-	2.35	-
1	0.90	3.90	0.95	3.95	Н	2.40	-	2.45	-
2	1.00	4.00	1.05	4.05	K	2.50	-	2.55	-
3	1.10	4.10	1.15	4.15	L	2.60	ı	2.65	-
4	1.20	4.20	1.25	4.25	M	2.70	-	2.75	-
5	1.30	4.30	1.35	4.35	N	2.80	-	2.85	-
6	1.40	4.40	1.45	4.45	Р	2.90	-	2.95	-
7	1.50	4.50	1.55	4.55	R	3.00	-	3.05	-
8	1.60	4.60	1.65	4.65	S	3.10	-	3.15	-
9	1.70	4.70	1.75	4.75	Т	3.20	-	3.25	-
Α	1.80	4.80	1.85	4.85	U	3.30	-	3.35	-
В	1.90	4.90	1.95	4.95	V	3.40	-	3.45	-
С	2.00	5.00	2.05	-	X	3.50	-	3.55	-
D	2.10	-	2.15	1	Y	3.60	1	3.65	-
Е	2.20	-	2.25	-	Z	3.70	-	3.75	-

represents production lot number

01, ..., 09, 10, 11, ..., 99, 0A, ..., 0Z, 1A, ..., 9Z, A0, ..., Z9, AA, ..., ZZ repeated. (G, I, J, O, Q, W excluded)

*No character inversion used.

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.