Theory of Computation - Comprehensive Study Notes

1. Automata Theory and Regular Languages

1.1 Finite Automata (FA)

- **Definition**: Simplest model of computation that reads input step-by-step
- Key features:
 - Always in one or more of a finite number of states
 - Reads input string symbol-by-symbol
 - Changes state based solely on current state and input symbol
 - No internal memory beyond current state
 - Only accepts/rejects input strings (no output)

1.2 Deterministic Finite Automata (DFA)

- **Formal definition**: 5-tuple (Q, Σ , δ , q₀, F) where:
 - Q: finite set of states
 - Σ: finite alphabet (input symbols)
 - δ : Q × Σ \rightarrow Q (transition function)
 - q₀: start state
 - F: set of accepting states

• Key restrictions:

- Always in exactly one state
- Each state has exactly one transition for each input symbol
- Language accepted by DFA: $L(M) = \{w \mid \delta(q_0, w) \in F\}$
- **Regular language**: A language accepted by some DFA

1.3 Non-Deterministic Finite Automata (NFA)

- Formal definition: 5-tuple (Q, Σ , δ , q₀, F) where:
 - $\delta: Q \times \Sigma \to P(Q)$ (transition function returns a set of states)

• Key features:

- Can be in multiple states simultaneously
- Some transitions can be missing
- String accepted if ANY path leads to an accepting state

• Transition function for strings:

- $\delta(q, \epsilon) = \{q\}$ for every state q
- $\delta(q, xa) = \bigcup_{i=1}^k \delta(q_i, a)$ where $\delta(q, x) = \{q_1, q_2, ..., q_k\}$
- Language accepted by NFA: $L(M) = \{w \mid \delta(q_0, w) \cap F \neq \emptyset\}$

1.4 NFAs with ε-transitions

- Extends NFA with spontaneous transitions (without reading input)
- Transition function: $\delta \colon Q \times (\Sigma \cup \{\epsilon\}) \to P(Q)$
- ε-closure: Set of all states reachable from q using only ε transitions
- Transition function extension:
 - $\delta(q, \epsilon) = \epsilon$ -CLOSURE(q)
 - $\delta(q, xa) = \epsilon$ -CLOSURE($\bigcup_{i=1}^m \delta(p_i, a)$) where $\delta(q, x) = \{p_1, p_2, ..., p_m\}$

1.5 Equivalence of FA Types

- **Theorem**: DFAs, NFAs, and NFAs with ϵ -transitions all recognize exactly the same class of languages (regular languages)
- Subset Construction (NFA to DFA conversion):
 - States of DFA = Power set of NFA states
 - Transition function: $\delta(r, a) = \bigcup (i=1 \text{ to } n) \delta'(p'i, a)$ where r = [p'1, p'2, ..., p'n]
 - Accepting states: Any set containing at least one accepting state of the NFA
 - Can have up to 2^n states if NFA has n states

1.6 Regular Expressions

• Formal definition:

- 1. \emptyset is a regular expression with $L(\emptyset) = \emptyset$
- 2. ε is a regular expression with L(ε) = { ε }
- 3. For any $a \in \Sigma$, a is a regular expression with $L(a) = \{a\}$
- 4. If r and s are regular expressions, then:
 - r+s is a regular expression with $L(r+s) = L(r) \cup L(s)$ (union)
 - rs is a regular expression with L(rs) = L(r)L(s) (concatenation)
 - r* is a regular expression with L(r*) = L(r)* (Kleene star)
- Precedence rules: * (highest), concatenation, + (lowest)
- Equivalence: Regular expressions describe exactly the same languages as finite automata

1.7 Pumping Lemma for Regular Languages

- Purpose: Tool to prove languages are NOT regular
- **Statement**: For any regular language L, there exists a positive integer n such that any string w ∈ L with |w| ≥ n can be written as w = xyz where:
 - $1. |xy| \le n$
 - 2. |y| > 0
 - 3. For all $i \ge 0$, $xy^iz \in L$
- **Usage pattern** (proof by contradiction):
 - 1. Assume L is regular, so pumping lemma applies
 - 2. Take arbitrary pumping length n
 - 3. Find a string $w \in L$ with $|w| \ge n$
 - 4. Consider all possible divisions w = xyz satisfying conditions 1 and 2
 - 5. Show there exists an i where xyⁱz ∉ L
 - 6. Conclude L is not regular
- **Example**: $L = \{0^n1^n \mid n \ge 0\}$ is not regular
 - Take $w = 0^n 1^n$ (length 2n)
 - For any division with $|xy| \le n$, y must contain only 0's
 - For i = 2, xy^2z has more 0's than 1's, so $xy^2z \notin L$
 - Therefore, L is not regular

2. Turing Machines and Computability

2.1 Basic Turing Machine Model

• Components:

- Finite state control (state set Q)
- One-way infinite tape divided into cells
- Tape head scanning one cell at a time
- Input alphabet Σ and tape alphabet Γ ($\Sigma \subset \Gamma$)
- Blank symbol $B \in \Gamma$ (not in Σ)
- **Formal definition**: 7-tuple (Q, Σ , Γ , δ , q_0 , B, F) where:
 - Q: finite set of states
 - Σ: input alphabet
 - Γ : tape alphabet ($\Sigma \subset \Gamma$)
 - δ : Q × Γ \rightarrow Q × Γ × {L, R} (transition function)
 - q₀: start state
 - B \in Γ - Σ : blank symbol
 - F ⊆ Q: set of accepting states

• One move consists of:

- 1. Reading symbol in current cell
- 2. Changing state
- 3. Overwriting symbol in cell
- 4. Moving tape head left or right

• Computation terminates when:

- 1. Machine enters accepting state (string accepted)
- 2. Machine halts in non-accepting state (string rejected)
- 3. Machine tries to move left off tape (rejected)
- 4. Machine never halts (neither accepted nor rejected)

2.2 TM Variations (All Equivalent in Power)

- Two-way infinite tape TM: Tape extends infinitely in both directions
- Multi-tape TM: Multiple tapes, each with its own head

2.3 Non-Deterministic Turing Machines (NDTM)

- **Definition**: 7-tuple with δ : $Q \times \Gamma \rightarrow P(Q \times \Gamma \times \{L,R\})$
- Two equivalent definitions:
 - 1. **Standard**: Multiple possible moves at each step
 - 2. **Verifier**: Two-stage operation (guessing and checking)

Time Complexity:

- Time to accept: Minimum time over all accepting computations
- Time complexity T(n): Maximum over all accepted strings of length n

2.4 Turing Machines as Function Computers

- **Encoding integers**: In unary (n is encoded as 0^n)
- **Encoding tuples**: (i₁, i₂, ..., i_k) encoded as 0^i₁10^i₂1...10^i_k
- Function computation: $f(i_1,...,i_k) = m$ if TM halts with 0^m on its tape

2.5 Decidability and Recognizability

- Partially decidable language (recognizable/recursively enumerable):
 - A language L where a TM exists that accepts all strings in L
 - The TM may not halt for strings not in L
- Totally decidable language (decidable/recursive):
 - A language L where a TM exists that accepts all strings in L and rejects all strings not in L
 - The TM always halts

• Unrecognizable language:

• No TM can be constructed to accept it

2.6 Church's Thesis

- Every function that conforms to intuitive notion of "computable" can be computed by a Turing Machine
- Modern computers can't compute anything beyond what Turing Machines can compute

3. Undecidability

3.1 **Encoding Turing Machines**

- TMs can be encoded as binary strings
- Transitions $\delta(q_i, X_j) = (q_k, X_l, D_m)$ encoded as $0^i10^j10^k10^l10^m$
- Multiple transitions separated by 11
- Entire encoding wrapped with 111 at start and end

3.2 Diagonalization Language (Not Partially Decidable)

- Let M_i be the i-th TM (based on standard enumeration)
- Ld = $\{w_i \mid M_i \text{ does not accept } w_i\}$, where w_i is the i-th binary string

• Proof by contradiction:

- Assume Ld is partially decidable, so some TM M_i accepts it
- Consider whether w_i ∈ Ld:
 - If $w_i \in Ld$, then M_i doesn't accept w_i (definition of Ld)
 - But M_i must accept w_i (since it accepts Ld) contradiction
 - If w_i ∉ Ld, then M_i accepts w_i (definition of Ld)
 - But this means w_i ∈ Ld contradiction
- Therefore Ld cannot be partially decidable

3.3 Universal Turing Machine and Universal Language

- Universal TM U simulates any TM M on input w
- Universal Language Lu = {(M, w) | M accepts w}

• Properties:

- Lu is partially decidable (by Universal TM)
- Lu is not totally decidable (proven by reduction from Ld)

3.4 Key Properties of Languages

- 1. If L is totally decidable, \bar{L} is also totally decidable
- 2. If both L and \bar{L} are partially decidable, then L is totally decidable
- 3. If L is partially decidable but not totally decidable, then \bar{L} is not partially decidable

3.5 The Halting Problem

- Halting Language = {(M, w) | M halts on input w}
- Properties:
 - Partially decidable
 - Not totally decidable
 - Its complement is not partially decidable

3.6 Other Undecidable Problems

1. Post's Correspondence Problem:

- Given two sequences of strings (w₁,...,w_k) and (x₁,...,x_k), is there a sequence of indices where corresponding strings concatenate to form the same string?
- Partially decidable but not totally decidable

2. Integer Solutions to Multivariate Polynomials:

- Given a polynomial P(x₁,...,x_r) with integer coefficients, determine if there exist integer values for which P=0
- Partially decidable but not totally decidable

4. Complexity Theory

4.1 Asymptotic Complexity

- O Notation: f(n) = O(g(n)) if \exists positive integers c and n_0 such that $f(n) \le cg(n)$ for all $n \ge n_0$
- Purpose: Estimate time complexity focusing on growth rate
- Examples:
 - $5n^3 + 2n^2 + 22n + 6 = O(n^3)$
 - $4n^2 + 3n = O(n^2)$
 - $2^n + n^2 = O(2^n)$

4.2 Time and Space Complexity

- Time complexity: Number of steps a TM takes to decide an input
- **Space complexity**: Number of cells visited during computation
- For any instance, space required ≤ time required
- Usually expressed as functions of input size n
- Consider worst-case complexity for inputs of size n

4.3 Time Complexity Classes

- **DTIME(t(n))**: Languages decided by TMs with time complexity O(t(n))
- **Practical impact**: For input size n = 100
 - n: 100ns
 - n²: 10μs
 - n³: 1ms
 - 2ⁿ: 10²²years

4.4 Class P

- **Definition**: Languages decidable in polynomial time
 - $P = \bigcup_{k=1}^{\infty} DTIME(n^k)$
- Significance: "Easy" or "tractable" problems
- Robustness: Class P is invariant under reasonable modifications to the TM model
 - Multi-tape TM with time O(t(n)) can be simulated by single-tape TM in O(t²(n))

4.5 Class NP

- **Definition**: Languages decidable by NDTM in polynomial time
 - NP = $U_{k=1}^{\infty} NTIME(n^k)$
- Characterization: Problems with solutions verifiable in polynomial time
- **Relationship to P**: P ⊆ NP (whether P = NP is a major open question)
- **Theorem**: If $L \in NP$, there exists a deterministic TM that decides L with time complexity $2^p(n)$
 - Every NP problem has at least an exponential-time deterministic solution

4.6 NP-Completeness

- **Polynomial reduction**: $A \leq_{\rho} B$ means A can be transformed to B in polynomial time
 - If $A \leq_{\rho} B$ and $B \in P$, then $A \in P$
 - Transitive: If $A \leq_{\rho} B$ and $B \leq_{\rho} C$, then $A \leq_{\rho} C$
- NP-Complete language: Language L such that:
 - 1. L ∈ NP
 - 2. Every language in NP is polynomial-time reducible to L
- **Significance**: If any NP-Complete problem is in P, then P = NP

4.7 Important NP-Complete Problems

1. **SATISFIABILITY (SAT)**:

- First proven NP-complete problem (Cook, 1971)
- Given Boolean formula φ, is there an assignment that makes φ true?

2. **3SAT**:

- Variant of SAT where formula is in 3-CNF (clauses with exactly 3 literals)
- Proved NP-complete by reduction from SAT

3. **VERTEX-COVER**:

- Given graph G and integer k, is there a set of k vertices touching all edges?
- Proved NP-complete by reduction from 3SAT

4. **HAMPATH**:

- Given graph G and vertices v_i, v_j, is there a path visiting all vertices exactly once?
- Example of problem in NP (solution easily verifiable)

5. **CLIQUE**:

- Given graph G and integer k, does G contain a clique of size k?
- A clique is a subset of vertices where every two vertices are connected
- Proved NP-complete by reduction from 3SAT

4.8 Proving NP-Completeness

To prove a language C is NP-Complete:

- 1. Show C is in NP
- 2. Show some known NP-Complete problem B is polynomial-time reducible to C (B \leq_{ρ} C)