Travel insurance Project

https://drive.google.com/drive/folders/1MNre59Ma59HLxKIhUgSa7adhNDjJ9T1V?usp=sharing (https://drive.google.com/drive/folders/1MNre59Ma59HLxKIhUgSa7adhNDjJ9T1V?usp=sharing)

In this project we create a model that can predict for whether a customer can claim for Travel Insurance or not.

case study:

Insurance companies take risks over customers. Risk management is a very important aspect of the insurance industry. Insurers consider every quantifiable factor to develop profiles of high and low insurance risks. Insurers collect vast amounts of information about policyholders and analyse the data. As a Data scientist in an insurance company, you need to analyse the available data and predict whether to approve the insurance or not.

About Dataset

Feature Description

ID Unique identifier

Agency Agency name

Agency Type Type of travel insurance agency

Distribution Channel Online/Offline distribution channel

Product Name Travel insurance product name

Duration Duration of travel

Destination Destination of travel

Net sales Net sales of travel insurance policies

Commission The commission received by travel insurance agency

Gender Traveller's gender

Age Traveller's Age

In [1]:

```
# Basic Imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Cross-Validation
from sklearn.model_selection import train_test_split
# LabelEncoding
from sklearn.preprocessing import LabelEncoder
# Evaluation
from sklearn.metrics import classification_report
# Scaling
from sklearn.preprocessing import MinMaxScaler
# Ridge, Lasso
from sklearn.linear_model import Ridge, Lasso
# Logistic Regression
from sklearn.linear_model import LogisticRegression
# Decision Tree
from sklearn.tree import DecisionTreeClassifier
# GridSearchCV
from sklearn.model_selection import GridSearchCV
# Boosting, RandomForest
from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier, RandomForestCl
from xgboost import XGBClassifier
# Ensemble
from sklearn.ensemble import VotingClassifier, BaggingClassifier
# Feature Selection
from sklearn.feature_selection import chi2, SelectKBest
from sklearn.svm import LinearSVC, SVC
# Skewness
from scipy.stats import skew
# Over and Under Sampling
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler
from collections import Counter
# Pickle
import pickle
# Ignore Warnings
import warnings
warnings.filterwarnings("ignore")
```

In [2]:

```
# Reading the data and viewing a small part of it to get some understanding of the data.

df = pd.read_csv("E:\MLcsv\data.csv")
print(df.shape)
df.head(8)
```

(50553, 12)

Out[2]:

	ID	Agency	Agency Type	Distribution Channel	Product Name	Claim	Duration	Destination	Net (Sales
0	3433	CWT	Travel Agency	Online	Rental Vehicle Excess Insurance	0	7	MALAYSIA	0.0
1	4339	EPX	Travel Agency	Online	Cancellation Plan	0	85	SINGAPORE	69.0
2	34590	CWT	Travel Agency	Online	Rental Vehicle Excess Insurance	0	11	MALAYSIA	19.8
3	55816	EPX	Travel Agency	Online	2 way Comprehensive Plan	0	16	INDONESIA	20.0
4	13816	EPX	Travel Agency	Online	Cancellation Plan	0	10	KOREA, REPUBLIC OF	15.0
5	50349	CWT	Travel Agency	Online	Rental Vehicle Excess Insurance	0	64	THAILAND	49.5
6	9921	JZI	Airlines	Online	Value Plan	0	23	JAPAN	-69.0
7	21923	JZI	Airlines	Online	Basic Plan	0	31	HONG KONG	26.0
4									•

In [3]:

We will get a list of the number of unique values for each column
df.nunique()

Out[3]:

ID	50553
Agency	16
Agency Type	2
Distribution Channel	2
Product Name	25
Claim	2
Duration	444
Destination	102
Net Sales	1053
Commision (in value)	964
Gender	2
Age	88
dtype: int64	

In [4]:

```
# We will check for null values and the Dtype of each feature.

df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50553 entries, 0 to 50552
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	ID	50553 non-null	int64
1	Agency	50553 non-null	object
2	Agency Type	50553 non-null	object
3	Distribution Channel	50553 non-null	object
4	Product Name	50553 non-null	object
5	Claim	50553 non-null	int64
6	Duration	50553 non-null	int64
7	Destination	50553 non-null	object
8	Net Sales	50553 non-null	float64
9	Commision (in value)	50553 non-null	float64
10	Gender	14600 non-null	object
11	Age	50553 non-null	int64

dtypes: float64(2), int64(4), object(6)

memory usage: 4.6+ MB

In [5]:

```
((df.isnull().sum())*100)/len(df)
```

Out[5]:

ID	0.000000
Agency	0.000000
Agency Type	0.000000
Distribution Channel	0.000000
Product Name	0.000000
Claim	0.000000
Duration	0.000000
Destination	0.000000
Net Sales	0.000000
Commision (in value)	0.000000
Gender	71.119419
Age	0.000000

71% of the Gender column have null values.

We will drop the column as there does not seem to be any other feature that could help us with filling in the missing data.

```
In [6]:
```

dtype: float64

```
df.drop("Gender", axis=1, inplace=True)
```

In [7]:

```
# Having a look at all the unique values of each feature.
for cols in df:
   print("\n{:20} - {}" .format(cols.title(), df[cols].unique()))
 'VENEZUELA' 'IRAN, ISLAMIC REPUBLIC OF' 'CAYMAN ISLANDS']
Net Sales
                     - [ 0.
                                69.
                                       19.8 ... 145.
                                                         42.4
                                                                12.58]
Commission (In Value) - [1.7820e+01 0.0000e+00 1.1880e+01 2.9700e+01 2.4150
e+01 9.1000e+00
 4.5000e+00 2.3760e+01 1.9600e+00 9.5700e+00 6.3000e+00 1.5500e+01
4.0000e+00 7.3800e+00 7.7000e+00 4.3100e+00 1.4440e+01 3.1000e-01
4.7520e+01 6.0000e+00 4.1580e+01 1.2950e+01 8.1300e+00 2.7360e+01
 5.4000e+01 3.7400e+00 8.3800e+00 2.5600e+00 9.7500e+00 4.6300e+00
 1.3650e+01 3.1200e+01 1.5000e+01 9.7340e+01 1.2400e+01 6.8080e+01
 2.8130e+01 6.7500e+00 1.4700e+01 3.2180e+01 1.1020e+01 3.5640e+01
 1.0500e+01 4.8800e+00 1.5600e+01 5.6300e+00 1.8000e+01 2.5510e+01
 5.9400e+00 5.5300e+00 5.8450e+01 6.4380e+01 3.8000e-01 1.6250e+01
 6.5340e+01 1.2090e+01 4.0250e+01 1.4000e+01 1.3380e+01 1.6653e+02
 2.7300e+01 4.5500e+01 1.2250e+01 6.3210e+01 5.0000e+00 5.8800e+00
 1.1700e+01 1.8600e+00 5.9400e+01 1.8200e+01 9.2000e+00 1.7750e+01
 1.8600e+01 5.3460e+01 3.7500e+00 1.7710e+01 4.8300e+01 1.7150e+01
 1.0000e+01 3.3800e+00 1.3250e+01 3.0450e+01 8.1000e+00 1.3100e+00
 1.5750e+01 7.7000e-01 8.8800e+00 3.6000e-01 1.1250e+01 1.2000e+01
```

In [8]:

```
# Checking for correlation

df.corr()
```

Out[8]:

	ID	Claim	Duration	Net Sales	Commision (in value)	Age
ID	1.000000	0.040265	0.029771	0.084391	0.114668	0.009026
Claim	0.040265	1.000000	0.076442	0.138323	0.102009	-0.012106
Duration	0.029771	0.076442	1.000000	0.437004	0.349193	0.003212
Net Sales	0.084391	0.138323	0.437004	1.000000	0.657851	0.039119
Commision (in value)	0.114668	0.102009	0.349193	0.657851	1.000000	0.119167
Age	0.009026	-0.012106	0.003212	0.039119	0.119167	1.000000

We will also drop the ID column.

Each value is unique and does not seem to affect the data.

In [9]:

```
df.drop("ID", axis=1, inplace=True)
```

```
In [10]:
```

```
# Having a look at how many claims and non-claims are present in the dataset.
print(df["Claim"].value_counts(), "\n")
(df["Claim"].value_counts()*100)/len(df)
0
     49812
1
       741
```

Out[10]:

98.534212 0 1.465788 1

Name: Claim, dtype: float64

Name: Claim, dtype: int64

We can see that there is a huge imbalance between the claims and non-claims. We will build a baseline model before we perform Over Sampline and Under Sampling.

```
In [11]:
```

```
# Finding out how many customers have their age input as over 100yrs old
len(df[df["Age"] > 100])
Out[11]:
```

795

Values above 100 years would most likely be outliers. Here we take the mean of all customers above the age of 70, and replace the values over 100yrs with the new mean value

```
In [12]:
```

```
# Over here, create a variable to calculate the mean of all Senior customers.
mean_senior = df["Age"][df["Age"] > 70].mean()
```

We will now separate the categorical and numerical data.

In [13]:

```
df.nunique()
Out[13]:
Agency
                            16
                             2
Agency Type
Distribution Channel
                             2
Product Name
                            25
Claim
                             2
Duration
                           444
Destination
                           102
                          1053
Net Sales
Commission (in value)
                           964
                            88
Age
dtype: int64
```

Apart from the target, "Claim", there are two more features that are bivariate - "Agency Type" and "Distribution Channel".

We could look to perform Hot Encoding on them.

We will separate the Categorical and Numerical features, and explore them further.

In [14]:

```
cat = ["Agency", "Agency Type", "Distribution Channel", "Product Name", "Destination"]
num = ["Duration", "Net Sales", "Commission (in value)", "Age"]
```

In [15]:

```
for cols in cat:
    if (cols == "Product Name") or (cols == "Destination"):
        plt.figure(figsize=(20,30))
        sns.countplot(data=df, hue=df["Claim"], y=cols)
    else:
        plt.figure(figsize=(12,12))
        sns.countplot(data=df, hue=df["Claim"], x=cols)
    plt.xticks(rotation=90)
    plt.show()
```


In [16]:

```
for cols in num:
    plt.figure(figsize=(8,8))
    sns.boxplot(data=df, x="Claim", y=cols)
    plt.show()

5000 -

4000 -

2000 -
```

We would need to manage only some of the outliers, and not all as it could lead to a lot of data loss.

In [17]:

```
df.describe()
```

Out[17]:

	Claim	Duration	Net Sales	Commision (in value)	Age
count	50553.000000	50553.000000	50553.000000	50553.00000	50553.000000
mean	0.014658	49.425969	40.800977	9.83809	40.011236
std	0.120180	101.434647	48.899683	19.91004	14.076566
min	0.000000	-2.000000	-389.000000	0.00000	0.000000
25%	0.000000	9.000000	18.000000	0.00000	35.000000
50%	0.000000	22.000000	26.500000	0.00000	36.000000
75%	0.000000	53.000000	48.000000	11.55000	44.000000
max	1.000000	4881.000000	810.000000	283.50000	118.000000

In [18]:

```
for cols in num:
    skew_cols = skew(df[cols])
    print("{:<25} : {}" .format(cols, skew_cols))
    plt.figure(figsize=(8,8))
    sns.distplot(df[cols])
    plt.show()</pre>
```

Duration

: 22.872063891229274

In [19]:

```
for cols in num:
    print("\n", cols)
    print(df[cols].value_counts().sort_index())
```

```
Duration
-2
             1
-1
            2
0
            54
 1
          647
 2
         1181
4815
             1
 4829
             1
4844
             1
4857
             1
             1
4881
Name: Duration, Length: 444, dtype: int64
Net Sales
-389.00
            1
-291.75
           2
-289.00
           1
-287.10
           1
-259.20
           1
539.00
           1
599.00
           5
 666.00
           2
           1
682.00
810.00
Name: Net Sales, Length: 1053, dtype: int64
Commision (in value)
          28079
0.00
              11
0.02
               1
0.04
0.05
              9
              10
0.09
209.95
              2
210.21
              33
262.60
               2
               6
262.76
Name: Commission (in value), Length: 964, dtype: int64
Age
         2
0
         4
1
2
         1
3
         4
5
         3
85
         9
         3
86
87
         6
88
         4
```

118 795

Name: Age, Length: 88, dtype: int64

There is some skewness within the data. This will be handled later on.

In [20]:

```
# The entries where the duration is -ve, we will drop those rows.

duration = df[df["Duration"] < 0].index
df.drop(duration, inplace=True)</pre>
```

In [21]:

```
df[(df["Net Sales"] < 0) & (df["Claim"] == 0)]</pre>
```

Out[21]:

	Agency	Agency Type	Distribution Channel	Product Name	Claim	Duration	Destination	Net Sales	(
6	JZI	Airlines	Online	Value Plan	0	23	JAPAN	-69.0	_
128	EPX	Travel Agency	Online	Cancellation Plan	0	192	CANADA	-80.0	
139	EPX	Travel Agency	Online	2 way Comprehensive Plan	0	55	CHINA	-77.0	
173	CWT	Travel Agency	Online	Rental Vehicle Excess Insurance	0	198	NETHERLANDS	-9.9	
336	CWT	Travel Agency	Online	Rental Vehicle Excess Insurance	0	109	AUSTRALIA	-19.8	
50121	CWT	Travel Agency	Online	Rental Vehicle Excess Insurance	0	81	JAPAN	-99.0	
50149	ART	Airlines	Online	24 Protect	0	2	MALAYSIA	-1.4	
50177	CWT	Travel Agency	Online	Rental Vehicle Excess Insurance	0	75	UNITED STATES	-49.5	
50394	JZI	Airlines	Online	Basic Plan	0	15	VIET NAM	-22.0	
50399	CWT	Travel Agency	Online	Rental Vehicle Excess Insurance	0	135	AUSTRALIA	-49.5	
525 rov	vo v 10 o	olumno							

525 rows × 10 columns

In [22]:

```
df[(df["Net Sales"] < 0) & (df["Claim"] == 1)]</pre>
```

Out[22]:

	Agency	Agency Type	Distribution Channel	Product Name	Claim	Duration	Destination	Net Sales	Com (in
6597	EPX	Travel Agency	Online	Cancellation Plan	1	28	SPAIN	-10.0	
26666	JZI	Airlines	Online	Basic Plan	1	3	HONG KONG	-22.0	
30272	EPX	Travel Agency	Online	2 way Comprehensive Plan	1	128	KOREA, REPUBLIC OF	-37.0	

LabelEncoding, One Hot Encoding, Frequency Encoding

In [23]:

```
# Label Encoding

for cols in cat:
    le = LabelEncoder()
    df[cols] = le.fit_transform(df[cols])

df.head(8)
```

Out[23]:

	Agency	Agency Type	Distribution Channel	Product Name	Claim	Duration	Destination	Net Sales	Commision (in value)	Ag
0	6	1	1	16	0	7	56	0.0	17.82	3
1	7	1	1	10	0	85	79	69.0	0.00	3
2	6	1	1	16	0	11	56	19.8	11.88	7
3	7	1	1	1	0	16	38	20.0	0.00	3
4	7	1	1	10	0	10	47	15.0	0.00	2
5	6	1	1	16	0	64	88	49.5	29.70	3
6	9	0	1	24	0	23	43	-69.0	24.15	2
7	9	0	1	8	0	31	34	26.0	9.10	6
4										•

```
# Frequency Encoding
```

```
fe = df.groupby('Destination').size()/len(df)
df.loc[:,'Dest Freq'] = df['Destination'].map(fe)
```

```
df.drop(columns='Destination',axis=1,inplace=True)

fe_1 = df.groupby('Agency').size()/len(df)
df.loc[:,'Agency Freq'] = df['Agency'].map(fe_1)
df.drop(columns='Agency',axis=1,inplace=True)

fe_2 = df.groupby('Product Name').size()/len(df)
df.loc[:,'Product Name Freq'] = df['Product Name'].map(fe_2)
df.drop(columns='Product Name',axis=1,inplace=True)
```

```
# One-Hot Encoding

df = pd.get_dummies(df, columns=["Agency Type", "Distribution Channel"], drop_first=True)
df.head()
```

```
In [24]:
X = df.drop("Claim", axis=1)
y = df["Claim"]
```

Train, Test, Split

Function to train, test, and split

```
In [25]:
```

```
def tts(X, y):
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1
    return X_train, X_test, y_train, y_test
```

Fit and Predict

Function to fit and predict the model, and to display the report

```
In [26]:
```

```
def model_sel(model, X_train, X_test, y_train, y_test):
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    return classification_report(y_test, y_pred)
```

Function where all the models will be defined and then passed to 'model_sel' for the model to be created.

```
In [27]:
```

```
def models(X_train, y_train, X_test="None", y_test="None", sampled="No"):
    if sampled == "No":
        X_train, X_test, y_train, y_test = tts(X_train, y_train)
   else:
        pass
   lr = LogisticRegression()
   dtc = DecisionTreeClassifier()
   abc = AdaBoostClassifier(n_estimators=100)
   gbc = GradientBoostingClassifier(n estimators=100)
   xbc = XGBClassifier(n estimators=200, reg alpha=1)
   rfc = RandomForestClassifier()
   lsvc = LinearSVC(random state=1)
   svc = SVC(random_state=1)
   print("{} \n {}\n" .format("LOGISTIC REGRESSION", model_sel(lr, X_train, X_test, y_train)
   print("{} \n {}\n" .format("DECISION TREE", model_sel(dtc, X_train, X_test, y_train, y_
   print("{} \n {}\n" .format("ADABOOST", model_sel(abc, X_train, X_test, y_train, y_test)
   print("{} \n {}\n" .format("GRADIENT BOOST", model_sel(gbc, X_train, X_test, y_train, y
   print("{} \n {}\n" .format("XGBOOST", model_sel(xbc, X_train, X_test, y_train, y_test))
   print("{} \n {}\n" .format("RANDOM FOREST", model_sel(rfc, X_train, X_test, y_train, y_
   print("{} \n {}\n" .format("LINEAR SVM", model_sel(lsvc, X_train, X_test, y_train, y_te
   print("{} \n {}\n" .format("SVM", model sel(svc, X train, X test, y train, y test)))
   return lr, abc, gbc, xbc, rfc, lsvc, svc
```

Manual Under Sampling

We will match the number of non-claims to claims. Below are the steps

- 1. Get the count of undersampled and oversampled Claims.

- 2. Create new variable that will randomly select the same number of oversampled Cl aims as there is undersampled.

- 3. Concatenate the two into a numpy array.

- 4. Create a new DataFrame taking the indexes from the concatenated array.<br
- 5. Use this DataFrame to run the models.

In [28]:

```
def sampling(df):
    min_claim = len(df[df["Claim"] == 1])
    min_claim_ind = df[df["Claim"] == 1].index

maj_claim_ind = df[df["Claim"] == 0].index

random_major = np.random.choice(maj_claim_ind, min_claim, replace=False)

sample_ind = np.concatenate([min_claim_ind, random_major])

under_sample = df.loc[sample_ind]

# print(sns.countplot(data=under_sample, x="Claim"))

X = under_sample.loc[:, df.columns!="Claim"]
y = under_sample.loc[:, df.columns=="Claim"]

lr, abc, gbc, xbc, rfc, lsvc, svc = models(X, y)
return lr, abc, gbc, xbc, rfc, lsvc, svc, X, y
```

Over Sampling

The number of minority values will be made to equal the number of majority values.

In [29]:

```
def over_sample():
    X = df.drop("Claim", axis=1)
    y = df["Claim"]
    print(Counter(y))
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1
    oversample = RandomOverSampler(sampling_strategy='minority')
    X_over, y_over = oversample.fit_resample(X_train, y_train)
    print(Counter(y_over))

lr, abc, gbc, xbc, rfc, lsvc, svc = models(X_over, y_over, X_test, y_test, "Yes")
    return lr, abc, gbc, xbc, rfc, lsvc, svc, X_over, y_over
```

Under Sampling

The number of majority values will be reduced down to equal the number of minority values.

```
In [30]:
```

```
def under_sample():
    X = df.drop("Claim", axis=1)
    y = df["Claim"]
    print(Counter(y))
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1
    undersample = RandomUnderSampler(sampling_strategy='majority')
    X_under, y_under = undersample.fit_resample(X_train, y_train)
    print(Counter(y_under))

lr, abc, gbc, xbc, rfc, lsvc, svc = models(X_under, y_under, X_test, y_test, "Yes")
    return lr, abc, gbc, xbc, rfc, lsvc, svc, X_under, y_under
```

```
def samp_model_sel(model, X_train, y_train, X_test, y_test):
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    return classification_report(y_test, y_pred)
```

```
def samp_models(X, y, X_test, y_test):
    lr = LogisticRegression()
    dtc = DecisionTreeClassifier()
    abc = AdaBoostClassifier(n estimators=100)
    gbc = GradientBoostingClassifier(n_estimators=100)
    xbc = XGBClassifier(n_estimators=200, reg_alpha=1)
    rfc = RandomForestClassifier()
    lsvc = LinearSVC(random state=1)
    svc = SVC(random state=1)
    print("{} \n {}\n" .format("LOGISTIC REGRESSION", samp_model_sel(lr, X, y, X_test,
y_test)))
    print("{} \n {}\n" .format("DECISION TREE", samp_model_sel(dtc, X, y, X_test,
y_test)))
    print("{} \n {}\n" .format("ADABOOST", samp_model_sel(abc, X, y, X_test, y_test)))
    print("{} \n {}\n" .format("GRADIENT BOOST", samp_model_sel(gbc, X, y, X_test,
y test)))
    print("{} \n {}\n" .format("XGBOOST", samp_model_sel(xbc, X, y, X_test, y_test)))
    print("{} \n {}\n" .format("RANDOM FOREST", samp_model_sel(rfc, X, y, X_test,
y_test)))
    print("{} \n {}\n" .format("LINEAR SVM", samp_model_sel(lsvc, X, y, X_test, y_test)))
    print("{} \n {}\n" .format("SVM", samp model sel(svc, X, y, X test, y test)))
    return lr, abc, gbc, xbc, rfc, lsvc, svc
```

GridSearchCV

By passing the model along with parameters that it can carry, this function will iterate using the model parameters, and deliver the best model.

```
In [31]:
```

```
def gridsearch(model, paramater, X, y):
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1

    gscv = GridSearchCV(estimator=model, param_grid=parameter)
    gscv.fit(X_train, y_train)
    y_pred = gscv.predict(X_test)
    print(classification_report(y_test, y_pred))
    print(gscv.best_estimator_)
    return gscv
```

First Baseline Models

We will build four models - No Sampling, Manual Under Sampling, Over Sampled, Under Sampled.

In [32]:

```
# Without Sampling
```

lr, abc, gbc, xbc, rfc, lscv, svc = models(X, y)

LOGISTIC REGR	FSSTON			
LOGISTIC KLUK	precision	recall	f1-score	support
	,			
0	0.99	1.00	0.99	14952
1	0.00	0.00	0.00	213
accuracy			0.99	15165
macro avg	0.49	0.50	0.50	15165
weighted avg	0.97	0.99	0.98	15165
DECISION TREE				
	precision	recall	f1-score	support
0	0.99	0.98	0.99	14952
1	0.05	0.06	0.06	213
accuracy			0.97	15165
macro avg	0.52	0.52	0.52	15165
weighted avg	0.97	0.97	0.97	15165
ADABOOST				
1.07.100031	precision	recall	f1-score	support
0	0.99	1.00	0.99	14952
1	0.00	0.00	0.00	213
accuracy			0.99	15165
macro avg	0.49	0.50	0.50	15165
weighted avg	0.97	0.99	0.98	15165
GRADIENT BOOS	т			
GRADIENI BOOS	precision	recall	f1-score	support
0	0.99	1.00	0.99	14952
1	0.00	0.00	0.00	213
accuracy			0.99	15165
macro avg	0.49	0.50	0.50	15165
weighted avg	0.97	0.99	0.98	15165
XGB00ST				
	precision	recall	f1-score	support
0	0.99	1.00	0.99	14952
1	0.00	0.00	0.00	213
accuracy			0.98	15165
macro avg	0.49	0.50	0.50	15165
weighted avg	0.97	0.98	0.98	15165

RANDOM FOREST				
	precision	recall	f1-score	support
0	0.99	1.00	0.99	14952
1	0.16	0.02	0.04	213
accuracy			0.98	15165
macro avg	0.57	0.51	0.52	15165
weighted avg	0.97	0.98	0.98	15165
LINEAR SVM				
	precision	recall	f1-score	support
0	0.99	1.00	0.99	14952
1	0.00	0.00	0.00	213
-	0.00	0.00	0.00	213
accuracy			0.99	15165
macro avg	0.49	0.50	0.50	15165
weighted avg	0.97	0.99	0.98	15165
SVM				
SVIII	precision	recall	f1-score	support
	precision	rccair	11 30010	suppor c
0	0.99	1.00	0.99	14952
1	0.00	0.00	0.00	213
accuracy			0.99	15165
macro avg	0.49	0.50	0.50	15165
weighted avg	0.97	0.99	0.98	15165

In [33]:

With manual Under Sampling

lr_sample, abc_sample, gbc_sample, xbc_sample, rfc_sample, lsvc_sample, svc_sample, X, y =

sp	.,		,	p_0,	,
LOGISTIC	REGRE			64	
		precision	recall	†1-score	support
	0	0.69	0.80	0.74	227
	1	0.75	0.63	0.68	218
accur	racy			0.71	445
macro	-	0.72	0.71	0.71	445
weighted	avg	0.72	0.71	0.71	445
DECISION	TREE				
		precision	recall	f1-score	support
	0	0.67	0.66	0.66	227
	1	0.65	0.66	0.65	218
accur	racy			0.66	445
macro	avg	0.66	0.66	0.66	445
weighted	avg	0.66	0.66	0.66	445
ADAB00ST					
		precision	recall	f1-score	support
	0	0.72	0.78	0.75	227
	1	0.75	0.69	0.72	218
accur	racy			0.74	445
macro	avg	0.74	0.74	0.74	445
weighted	avg	0.74	0.74	0.74	445
GRADIENT	BOOST				
		precision	recall	f1-score	support
	0	0.72	0.75	0.73	227
	1	0.73	0.70	0.71	218
accur	racy			0.72	445
macro	avg	0.72	0.72	0.72	445
weighted	avg	0.72	0.72	0.72	445
XGB00ST					
		precision	recall	f1-score	support
	0	0.73	0.74	0.74	227
	1	0.73	0.72	0.73	218
accur	racy			0.73	445
macro	_	0.73	0.73	0.73	445
weighted	avg	0.73	0.73	0.73	445

RANDOM FOREST				
	precision	recall	f1-score	support
0	0.74	0.76	0.75	227
1	0.74	0.72	0.73	218
accuracy			0.74	445
macro avg	0.74	0.74	0.74	445
weighted avg	0.74	0.74	0.74	445
LINEAR SVM				
	precision	recall	f1-score	support
0	0.74	0.69	0.71	227
1	0.70	0.75	0.72	218
accuracy			0.72	445
macro avg	0.72	0.72	0.72	445
weighted avg	0.72	0.72	0.72	445
SVM				
	precision	recall	f1-score	support
0	0.66	0.82	0.73	227
1	0.75	0.56	0.64	218
accuracy			0.69	445
macro avg	0.70	0.69	0.68	445
weighted avg	0.70	0.69	0.68	445
weighted avg	0.70	0.05	0.00	777

In [34]:

```
# Over Sampled
```

lr_over, abc, gbc_over, xbc_over, rfc_over, lsvc_over, svc_over, X, y = over_sample()

Counter({0: 49809, 1: 741})
Counter({0: 49809, 1: 49809})
LOGISTIC REGRESSION

Counter({		809, 1: 49809 SSTON	9})		
10013110	INLUNE.	precision	recall	f1-score	support
	0	0.99	0.84	0.91	14952
	1	0.05	0.62	0.10	213
accur	acy			0.84	15165
macro	avg	0.52	0.73	0.50	15165
weighted	avg	0.98	0.84	0.90	15165
DECISION	TREE				
		precision	recall	f1-score	support
	0	1.00	1.00	1.00	14952
	1	0.83	1.00	0.91	213
accur	-			1.00	15165
macro	_	0.92	1.00	0.95	15165
weighted	avg	1.00	1.00	1.00	15165
ADABOOST					
		precision	recall	f1-score	support
	0	1.00	0.81	0.89	14952
	1	0.05	0.73	0.10	213
accur	-			0.81	15165
macro	_	0.52	0.77	0.49	15165
weighted	avg	0.98	0.81	0.88	15165
GRADIENT	BOOST				
		precision	recall	f1-score	support
	0	1.00	0.82	0.90	14952
	1	0.06	0.76	0.11	213
accur	-			0.82	15165
macro	_	0.53	0.79	0.51	15165
weighted	avg	0.98	0.82	0.89	15165
XGB00ST					
		precision	recall	f1-score	support
	0	1.00	0.96	0.98	14952
	1	0.25	1.00	0.40	213
accur	асу			0.96	15165
macro	_	0.63	0.98	0.69	15165
weighted	avg	0.99	0.96	0.97	15165

RANDOM FOREST				
	precision	recall	f1-score	support
0	1.00	1.00	1.00	14952
1	0.83	1.00	0.91	213
accuracy			1.00	15165
macro avg	0.92	1.00	0.95	15165
weighted avg	1.00	1.00	1.00	15165
LINEAR SVM				
	precision	recall	f1-score	support
0	0.99	0.29	0.45	14952
1	0.02	0.87	0.03	213
accuracy			0.30	15165
macro avg	0.51	0.58	0.24	15165
weighted avg	0.98	0.30	0.44	15165
SVM				
	precision	recall	f1-score	support
0	0.99	0.81	0.89	14952
1	0.05	0.67	0.09	213
accuracy			0.81	15165
macro avg	0.52	0.74	0.49	15165
weighted avg	0.98	0.81	0.88	15165

In [35]:

Under Sampled

```
lr_under, abc_under, gbc_under, xbc_under, rfc_under, lsvc_under, svc_under, X, y = under_s
Counter({0: 49809, 1: 741})
Counter({0: 528, 1: 528})
LOGISTIC REGRESSION
               precision
                             recall f1-score
                                                  support
           0
                    0.99
                              0.84
                                         0.91
                                                   14952
           1
                    0.05
                              0.62
                                         0.10
                                                     213
    accuracy
                                         0.84
                                                   15165
   macro avg
                    0.52
                              0.73
                                         0.50
                                                   15165
                                         0.90
weighted avg
                    0.98
                              0.84
                                                   15165
DECISION TREE
               precision
                             recall
                                     f1-score
                                                  support
           0
                    0.99
                              0.68
                                         0.81
                                                   14952
           1
                    0.03
                              0.66
                                         0.05
                                                     213
                                         0.68
                                                   15165
    accuracy
                                         0.43
   macro avg
                    0.51
                              0.67
                                                   15165
                              0.68
                                         0.80
                                                   15165
weighted avg
                    0.98
ADABOOST
                precision
                             recall f1-score
                                                  support
           0
                    0.99
                              0.78
                                         0.88
                                                   14952
           1
                    0.04
                              0.72
                                         0.08
                                                     213
                                         0.78
                                                   15165
    accuracy
                                         0.48
   macro avg
                    0.52
                              0.75
                                                   15165
weighted avg
                    0.98
                              0.78
                                         0.86
                                                   15165
GRADIENT BOOST
                             recall
                                     f1-score
               precision
                                                  support
           0
                    0.99
                              0.80
                                         0.89
                                                   14952
           1
                    0.05
                              0.71
                                         0.09
                                                     213
                                         0.80
                                                   15165
    accuracy
   macro avg
                    0.52
                              0.76
                                         0.49
                                                   15165
weighted avg
                    0.98
                              0.80
                                         0.88
                                                   15165
XGBOOST
                precision
                             recall
                                     f1-score
                                                  support
           0
                    0.99
                              0.75
                                         0.85
                                                   14952
           1
                    0.04
                              0.71
                                         0.07
                                                     213
                                         0.75
                                                   15165
    accuracy
   macro avg
                    0.52
                              0.73
                                         0.46
                                                   15165
```

0.84

15165

0.98

weighted avg

RANDOM FOREST				
	precision	recall	f1-score	support
0	0.99	0.76	0.86	14952
1	0.04	0.69	0.07	213
accuracy			0.76	15165
macro avg	0.52	0.72	0.47	15165
weighted avg	0.98	0.76	0.85	15165
LINEAR SVM				
	precision	recall	f1-score	support
0	1.00	0.10	0.19	14952
1	0.02	0.99	0.03	213
accuracy			0.12	15165
macro avg	0.51	0.54	0.11	15165
weighted avg	0.98	0.12	0.19	15165
SVM				
SVN	precision	recall	f1-score	support
0	0.99	0.81	0.89	14952
1	0.04	0.54	0.07	213
accuracy			0.81	15165
macro avg	0.52	0.68	0.48	15165
weighted avg	0.98	0.81	0.88	15165

Result

The scores are all zero for the base model without Sampling. For all the sampling models, the scores increased drastically. Over Sampled models produced the best results. Going forward, we will not run the models where no sampling is done.

Outliers

those over 100yrs will be replaced by the mean of Senior aged customers, and where the Duration is more that 360 will be replaced by 360.

In [36]:

```
df["Age"][df["Age"] > 60] = mean_senior
```

```
In [37]:
```

```
df["Duration"][df["Duration"] > 360] = 360
```

```
In [38]:
```

```
X = df.drop("Claim", axis=1)
y = df["Claim"]
```

In [39]:

```
# lr_out, abc_out, gbc_out, xbc_out, rfc_out, lsvc_out, svc_out = models(X, y)
```

In [40]:

Manual Under Sampling and Outliers

lr_out_sample, abc_out_sample, gbc_out_sample, xbc_out_sample, rfc_out_sample, lsvc_out_sam

4				
LOGISTIC REGRE	ESSION precision	recall	f1-score	support
	•			• •
0	0.72	0.83	0.77	227
1	0.79	0.66	0.72	218
_	0.75	0.00	0.72	210
266112261			0.75	445
accuracy	0.75	0.74	0.75	445
macro avg	0.75	0.74	0.74	445
weighted avg	0.75	0.75	0.74	445
DECISION TREE				
	precision	recall	f1-score	support
	•			
0	0.65	0.63	0.64	227
1	0.62	0.64	0.63	218
-	0.02	0.01	0.05	210
accuracy			0.63	445
accuracy	0.62	0.62	0.63	
macro avg	0.63	0.63		445
weighted avg	0.63	0.63	0.63	445
ADABOOST				
	precision	recall	f1-score	support
0	0.75	0.78	0.76	227
1	0.76	0.73	0.75	218
accuracy			0.76	445
_	0.76	0.75	0.75	445
macro avg				
weighted avg	0.76	0.76	0.75	445
GRADIENT BOOST				
	precision	recall	f1-score	support
0	0.74	0.78	0.76	227
1	0.76	0.72	0.74	218
accuracy			0.75	445
macro avg	0.75	0.75	0.75	445
weighted avg	0.75	0.75	0.75	445
weighted avg	0.75	0.75	0.75	773
VCDOOCT				
XGB00ST			C1	
	precision	recall	f1-score	support
		_	_	
0	0.73	0.74	0.74	227
1	0.73	0.72	0.72	218
accuracy			0.73	445
macro avg	0.73	0.73	0.73	445
weighted avg	0.73	0.73	0.73	445
- 0	· -			

RANDOM FOREST				
	precision	recall	f1-score	support
0	0.75	0.78	0.76	227
1	0.76	0.72	0.74	218
accuracy			0.75	445
macro avg weighted avg	0.75 0.75	0.75 0.75	0.75 0.75	445 445
8				
LINEAR SVM				
	precision	recall	f1-score	support
0	0.74	0.52	0.61	227
1	0.62	0.81	0.70	218
accuracy			0.66	445
macro avg	0.68	0.67	0.66	445
weighted avg	0.68	0.66	0.66	445
SVM				
	precision	recall	f1-score	support
0	0.68	0.77	0.72	227
1	0.72	0.62	0.67	218
accuracy			0.70	445
macro avg	0.70	0.70	0.69	445
weighted avg	0.70	0.70	0.69	445

In [41]:

Over Sampling and Outliers lr_out_over, abc_out_over, gbc_out_over, xbc_out_over, rfc_out_over, lsvc_out_over, svc_out Counter({0: 49809, 1: 741}) Counter({0: 49809, 1: 49809}) LOGISTIC REGRESSION precision recall f1-score support 0 0.99 0.84 0.91 14952 1 0.05 0.63 0.10 213 accuracy 0.83 15165 macro avg 0.52 0.74 0.50 15165 weighted avg 0.90 0.98 0.83 15165 **DECISION TREE** precision recall f1-score support 0 0.99 0.99 14952 1.00 1 0.53 1.00 0.69 213 0.99 15165 accuracy macro avg 0.76 0.99 0.84 15165 0.99 0.99 15165 weighted avg 0.99 **ADABOOST** precision recall f1-score support 0.89 0 1.00 0.80 14952 1 0.05 0.73 0.09 213 0.80 15165 accuracy 0.77 0.49 macro avg 0.52 15165 weighted avg 0.98 0.80 0.88 15165 **GRADIENT BOOST** recall f1-score precision support 0 1.00 0.83 0.90 14952 1 0.06 0.75 0.11 213 0.83 15165 accuracy macro avg 0.53 0.79 0.51 15165 weighted avg 0.98 0.83 0.89 15165 **XGBOOST** precision recall f1-score support 0 1.00 0.96 0.98 14952 1 0.24 1.00 0.39 213 0.96 15165 accuracy

0.98

0.68

0.97

15165

15165

0.62

0.99

macro avg

weighted avg

RANDOM FOREST				
	precision	recall	f1-score	support
0	1.00	0.99	0.99	14952
1	0.53	1.00	0.69	213
accuracy			0.99	15165
macro avg	0.76	0.99	0.84	15165
weighted avg	0.99	0.99	0.99	15165
LINEAR SVM				
	precision	recall	f1-score	support
0	0.99	0.97	0.98	14952
1	0.08	0.20	0.12	213
accuracy			0.96	15165
macro avg	0.54	0.58	0.55	15165
weighted avg	0.98	0.96	0.97	15165
SVM			_	
	precision	recall	f1-score	support
0	0.99	0.81	0.89	14952
1	0.05	0.66	0.09	213
accuracy			0.81	15165
macro avg	0.52	0.74	0.49	15165
weighted avg	0.98	0.81	0.88	15165

In [42]:

```
# Under Sampling and Outliers
lr_out_under, abc_out_under, gbc_out_under, xbc_out_under, rfc_out_under, lsvc_out_under, s
Counter({0: 49809, 1: 741})
Counter({0: 528, 1: 528})
LOGISTIC REGRESSION
               precision
                             recall f1-score
                                                  support
           0
                    0.99
                              0.85
                                         0.91
                                                   14952
           1
                    0.05
                              0.62
                                         0.10
                                                     213
    accuracy
                                         0.84
                                                   15165
   macro avg
                    0.52
                              0.74
                                         0.51
                                                   15165
weighted avg
                                         0.90
                    0.98
                              0.84
                                                   15165
DECISION TREE
               precision
                             recall
                                     f1-score
                                                  support
                                         0.79
           0
                    0.99
                              0.66
                                                   14952
           1
                    0.03
                              0.66
                                         0.05
                                                     213
                                         0.66
                                                   15165
    accuracy
   macro avg
                    0.51
                              0.66
                                         0.42
                                                   15165
                              0.66
                                         0.78
                                                   15165
weighted avg
                    0.98
ADABOOST
                precision
                             recall f1-score
                                                  support
           0
                    1.00
                              0.78
                                         0.88
                                                   14952
           1
                    0.05
                              0.73
                                         0.09
                                                     213
                                         0.78
                                                   15165
    accuracy
                              0.76
                                         0.48
   macro avg
                    0.52
                                                   15165
                              0.78
weighted avg
                    0.98
                                         0.87
                                                   15165
GRADIENT BOOST
                             recall
                                     f1-score
               precision
                                                  support
           0
                    0.99
                              0.78
                                         0.88
                                                   14952
           1
                    0.04
                              0.71
                                         0.08
                                                     213
                                         0.78
                                                   15165
    accuracy
   macro avg
                    0.52
                              0.75
                                         0.48
                                                   15165
weighted avg
                    0.98
                              0.78
                                         0.87
                                                   15165
XGBOOST
                precision
                             recall
                                     f1-score
                                                  support
           0
                    0.99
                              0.73
                                         0.84
                                                   14952
           1
                    0.03
                              0.67
                                         0.07
                                                     213
                                         0.73
                                                   15165
    accuracy
```

0.70

0.45

0.83

15165

15165

0.51

0.98

macro avg

weighted avg

RANDOM FOREST				
	precision	recall	f1-score	support
0	0.99	0.75	0.86	14952
1	0.04	0.66	0.07	213
accuracy			0.75	15165
macro avg	0.52	0.71	0.46	15165
weighted avg	0.98	0.75	0.85	15165
LINEAR SVM				
	precision	recall	f1-score	support
0	1.00	0.37	0.54	14952
1	0.02	0.92	0.04	213
accuracy			0.38	15165
macro avg	0.51	0.65	0.29	15165
weighted avg	0.98	0.38	0.53	15165
SVM				
	precision	recall	f1-score	support
0	0.99	0.79	0.88	14952
1	0.04	0.55	0.07	213
accuracy			0.79	15165
macro avg	0.51	0.67	0.48	15165
weighted avg	0.98	0.79	0.87	15165

Skewness

In [43]:

In [45]:

```
print("{:<15} : {}" .format("Duration", skew(df["Duration"])))
print("{:<15} : {}" .format("Commission (in value)", skew(df["Commission (in value)"])))
print("{:<15} : {}" .format("Age", skew(df["Age"])))</pre>
```

Duration : 1.6361035948952554 Commission (in value) : 1.3513398200630384 Age : 1.9417002579049916

In [46]:

```
X = df.drop("Claim", axis=1)
y = df["Claim"]
```

In [47]:

```
# lr_skew, abc_skew, gbc_skew, xbc_skew, rfc_skew, lsvc_skew, svc_skew = models(X, y)
```

In [48]:

Manual Under Sampling and Skewing

lr_skew_sample, abc_skew_sample, gbc_skew_sample, xbc_skew_sample, rfc_skew_sample, lsvc_sk

`					
LOGISTIC	REGRE	SSION			
		precision	recall	f1-score	support
		•			
	0	0.70	0.82	0.76	227
	1	0.77	0.63	0.69	218
accur	-	0.74		0.73	445
macro		0.74	0.73	0.72	445
weighted	avg	0.74	0.73	0.73	445
DECISION	TREE				
DECISION	INLL	precision	recall	f1-score	support
		p. cc1510		. 1 300. 0	зарро. с
	0	0.68	0.70	0.69	227
	1	0.67	0.65	0.66	218
accur	racy			0.67	445
macro	_	0.67	0.67	0.67	445
weighted	avg	0.67	0.67	0.67	445
ADADOOCT					
ADAB00ST		precision	nocall	f1-score	cuppont
		precision	recarr	TI-Score	support
	0	0.71	0.74	0.73	227
	1	0.72	0.69	0.70	218
	_				
accur	racy			0.71	445
macro	-	0.71	0.71	0.71	445
weighted	avg	0.71	0.71	0.71	445
GRADIENT	BOOST				
		precision	recall	f1-score	support
	0	0.70	0.72	0.72	227
	0 1	0.70 0.71	0.73 0.67	0.72	227 218
	1	0.71	0.07	0.03	210
accur	racv			0.70	445
macro	-	0.70	0.70	0.70	445
weighted	_	0.70	0.70	0.70	445
•					
XGB00ST				_	
		precision	recall	f1-score	support
	^	0.70	0.70	0.70	227
	0	0.70	0.70	0.70	227
	1	0.69	0.68	0.69	218
accur	าลดง			0.69	445
macro	-	0.69	0.69	0.69	445
weighted	_	0.69	0.69	0.69	445
	~.6	3.05	0.00	0.05	1-15

RANDOM FOREST				
	precision	recall	f1-score	support
0	0.71	0.72	0.71	227
1	0.70	0.70	0.70	218
accuracy			0.71	445
macro avg	0.71	0.71	0.71	445
weighted avg	0.71	0.71	0.71	445
0				
LINEAR SVM				
	precision	recall	f1-score	support
0	0.59	0.89	0.71	227
1	0.75	0.37	0.49	218
accuracy			0.63	445
macro avg	0.67	0.63	0.60	445
weighted avg	0.67	0.63	0.60	445
SVM				
	precision	recall	f1-score	support
0	0.67	0.76	0.71	227
1	0.71	0.61	0.66	218
accuracy			0.69	445
macro avg	0.69	0.69	0.69	445
weighted avg	0.69	0.69	0.69	445

In [49]:

```
# Over Sampling and Skewing
lr_skew_over, abc_skew_over, gbc_skew_over, xbc_skew_over, rfc_skew_over, lsvc_skew_over, s
Counter({0: 49809, 1: 741})
Counter({0: 49809, 1: 49809})
LOGISTIC REGRESSION
               precision
                             recall f1-score
                                                  support
           0
                    0.99
                              0.83
                                         0.91
                                                   14952
           1
                    0.05
                              0.63
                                         0.10
                                                     213
    accuracy
                                         0.83
                                                   15165
   macro avg
                    0.52
                              0.73
                                         0.50
                                                   15165
                                         0.90
weighted avg
                    0.98
                              0.83
                                                   15165
DECISION TREE
               precision
                             recall
                                     f1-score
                                                  support
           0
                              0.99
                                         0.99
                                                   14952
                    1.00
           1
                    0.53
                              1.00
                                         0.69
                                                     213
                                         0.99
                                                   15165
    accuracy
   macro avg
                    0.76
                              0.99
                                         0.84
                                                   15165
                              0.99
                                         0.99
                                                   15165
weighted avg
                    0.99
ADABOOST
                precision
                             recall f1-score
                                                  support
                                         0.89
           0
                    1.00
                              0.81
                                                   14952
           1
                    0.05
                              0.75
                                         0.10
                                                     213
                                         0.81
                                                   15165
    accuracy
                              0.78
                                         0.49
   macro avg
                    0.52
                                                   15165
                              0.81
weighted avg
                    0.98
                                         0.88
                                                   15165
GRADIENT BOOST
                             recall
                                     f1-score
               precision
                                                  support
           0
                    1.00
                              0.82
                                         0.90
                                                   14952
           1
                    0.06
                              0.75
                                         0.11
                                                     213
                                         0.82
                                                   15165
    accuracy
   macro avg
                    0.53
                              0.79
                                         0.50
                                                   15165
weighted avg
                    0.98
                              0.82
                                         0.89
                                                   15165
XGBOOST
                precision
                             recall
                                     f1-score
                                                  support
           0
                    1.00
                              0.96
                                         0.98
                                                   14952
           1
                    0.24
                              1.00
                                         0.39
                                                     213
                                         0.96
                                                   15165
    accuracy
   macro avg
                    0.62
                              0.98
                                         0.69
                                                   15165
```

0.99

weighted avg

0.97

15165

RANDOM FOREST				
	precision	recall	f1-score	support
0	1.00	0.99	0.99	14952
1	0.53	1.00	0.69	213
accuracy			0.99	15165
macro avg	0.76	0.99	0.84	15165
weighted avg	0.99	0.99	0.99	15165
LINEAR SVM				
	precision	recall	f1-score	support
0	1.00	0.01	0.02	14952
1	0.01	1.00	0.03	213
accuracy			0.03	15165
macro avg	0.51	0.51	0.03	15165
weighted avg	0.99	0.03	0.02	15165
SVM				
	precision	recall	f1-score	support
0	0.99	0.83	0.90	14952
1	0.05	0.66	0.09	213
accuracy			0.82	15165
macro avg	0.52	0.74	0.50	15165
weighted avg	0.98	0.82	0.89	15165

In [50]:

Under Sampling and Skewing

```
lr_skew_under, abc_skew_under, gbc_skew_under, xbc_skew_under, rfc_skew_under, lsvc_skew_un
Counter({0: 49809, 1: 741})
Counter({0: 528, 1: 528})
LOGISTIC REGRESSION
               precision
                             recall f1-score
                                                  support
           0
                    0.99
                              0.81
                                         0.89
                                                   14952
           1
                              0.65
                    0.05
                                         0.09
                                                     213
    accuracy
                                         0.81
                                                   15165
                                         0.49
   macro avg
                    0.52
                              0.73
                                                   15165
weighted avg
                    0.98
                              0.81
                                         0.88
                                                   15165
DECISION TREE
                             recall
               precision
                                     f1-score
                                                  support
                    0.99
           0
                              0.67
                                         0.80
                                                   14952
           1
                    0.03
                              0.62
                                         0.05
                                                     213
                                         0.67
                                                   15165
    accuracy
                    0.51
                              0.64
                                         0.43
                                                   15165
   macro avg
weighted avg
                    0.98
                              0.67
                                         0.79
                                                   15165
ADABOOST
                             recall
                                     f1-score
               precision
                                                  support
           0
                    0.99
                              0.76
                                         0.86
                                                   14952
           1
                    0.04
                              0.68
                                         0.07
                                                     213
                                         0.76
    accuracy
                                                   15165
                                         0.47
                    0.52
                              0.72
                                                   15165
   macro avg
weighted avg
                    0.98
                              0.76
                                         0.85
                                                   15165
GRADIENT BOOST
               precision
                             recall
                                     f1-score
                                                  support
                    0.99
                              0.76
                                         0.86
                                                   14952
           0
           1
                    0.04
                              0.69
                                         0.08
                                                     213
                                         0.76
    accuracy
                                                   15165
   macro avg
                    0.52
                              0.73
                                         0.47
                                                   15165
weighted avg
                    0.98
                              0.76
                                         0.85
                                                   15165
XGBOOST
                precision
                             recall f1-score
                                                  support
           0
                    0.99
                              0.72
                                         0.83
                                                   14952
           1
                    0.03
                              0.69
                                         0.06
                                                     213
                                         0.72
    accuracy
                                                   15165
```

0.51

macro avg

0.45

2/4/2020			rravei insurano	ce project file - Ji
weighted avg	0.98	0.72	0.82	15165
RANDOM FOREST				
	precision	recall	f1-score	support
0	0.99	0.75	0.85	14952
1	0.04	0.69	0.07	213
accuracy			0.75	15165
macro avg weighted avg	0.52 0.98	0.72 0.75	0.46 0.84	15165 15165
mergineed avg	0.20	0.75		13103
LINEAR SVM				
	precision	recall	f1-score	support
0	0.99	0.94	0.97	14952
1	0.06	0.25	0.10	213
accuracy			0.94	15165
macro avg weighted avg	0.52 0.98	0.60 0.94	0.53 0.95	15165 15165
weighted avg	0.30	0.54	0.93	13103
SVM				
3411	precision	recall	f1-score	support
0	0.99	0.80	0.89	14952
1	0.04	0.57	0.07	213
accuracy			0.80	15165
macro avg weighted avg	0.52 0.98	0.68 0.80	0.48 0.87	15165 15165
mergineed avg	0.50	0.00	0.07	10100

Performing Chi-squared test

```
In [51]:
```

```
len(df.columns)
Out[51]:
```

```
In [52]:
```

```
X = df.drop("Claim", axis=1)
y = df["Claim"]
```

```
In [53]:
```

```
X_cols = []
for col in X:
    X_cols.append(col)
```

In [54]:

```
def model_chi(model, X):
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1
    chi_test = SelectKBest(score_func=chi2, k=6)

    X_train_chi = chi_test.fit_transform(X_train, y_train)
    X_test_chi = chi_test.transform(X_test)

    model.fit(X_train_chi, y_train)
    y_pred = model.predict(X_test_chi)

    print(classification_report(y_test, y_pred))

    num = 0

for each in chi_test.scores_:
        print("{:2} {:20} - {}" .format(num, X_cols[num], each))
        num += 1
```

In [55]:

Ir chi, abc chi, gbc chi, xbc chi, rfc chi = model new(X)

RandomForest still has the best score.

```
In [56]:
```

```
X = df.drop("Claim", axis=1)
y = df["Claim"]
```

```
In [57]:
```

```
X_cols = []
for col in X:
    X_cols.append(col)
```

```
In [58]:
```

```
# lr_chi, abc_chi, gbc_chi, xbc_chi, rfc_chi = model_new(X)
```

Scaling

In [59]:

```
df_old = df.copy(deep=True)
```

In [60]:

```
mm = MinMaxScaler()

X = df.drop("Claim", axis=1)
cols = X.columns.to_list()
df[cols] = mm.fit_transform(df[cols])
```

In [61]:

```
df.head()
```

Out[61]:

	Agency	Agency Type	Distribution Channel	Product Name	Claim	Duration	Destination	Net Sales	Commision (in value
0	0.400000	1.0	1.0	0.666667	0	0.139443	0.554455	0.324437	0.25071
1	0.466667	1.0	1.0	0.416667	0	0.485913	0.782178	0.381985	0.000000
2	0.400000	1.0	1.0	0.666667	0	0.174801	0.554455	0.340951	0.204707
3	0.466667	1.0	1.0	0.041667	0	0.210819	0.376238	0.341118	0.000000
4	0.466667	1.0	1.0	0.416667	0	0.166667	0.465347	0.336947	0.000000
4									>

In [62]:

```
X = df.drop("Claim", axis=1)
y = df["Claim"]
```

In [63]:

```
# lr_scale, abc_scale, gbc_scale, xbc_scale, rfc_scale, lsvc_scale, svc_scale = models(X, y
```

In [64]:

```
# Manual Under Sampling and Scalling
```

lr_scale_sample, abc_scale_sample, gbc_scale_sample, xbc_scale_sample, rfc_scale_sample, ls

LOGISTIC	REGRE	SSION			
		precision	recall	f1-score	support
	0	0.68	0.78	0.73	227
	1	0.73	0.63	0.67	218
accui	racy			0.70	445
macro	-	0.71	0.70	0.70	445
weighted	avg	0.71	0.70	0.70	445
DECISION	TREE				
		precision	recall	f1-score	support
	0	0.70	0.64	0.67	227
	1	0.65	0.71	0.68	218
accui	racy			0.67	445
macro	avg	0.68	0.67	0.67	445
weighted	avg	0.68	0.67	0.67	445
.p.poos=					
ADAB00ST			11	C1	
		precision	recall	f1-score	support
	0	0.72	0.74	0.73	227
	1	0.72	0.71	0.71	218
accui	racy			0.72	445
macro	avg	0.72	0.72	0.72	445
weighted	avg	0.72	0.72	0.72	445
GRADIENT	BOOST	precision	recall	f1-score	sunnont
		precision	recarr	11-30016	support
	0	0.71	0.76	0.74	227
	1	0.73	0.68	0.70	218
accui	racy			0.72	445
macro	_	0.72	0.72	0.72	445
weighted	avg	0.72	0.72	0.72	445
XGB00ST					
Adboost		precision	recall	f1-score	support
	0	0.69	0.69	0.69	227
	1	0.68	0.68	0.68	218
accui	racy			0.69	445
macro	-	0.69	0.69	0.69	445
weighted	_	0.69	0.69	0.69	445

RANDOM FOREST				
	precision	recall	f1-score	support
0	0.70	0.72	0.71	227
1	0.70	0.68	0.69	218
accuracy			0.70	445
macro avg	0.70	0.70	0.70	445
weighted avg	0.70	0.70	0.70	445
LINEAR SVM				
	precision	recall	f1-score	support
0	0.70	0.81	0.75	227
1	0.76	0.63	0.69	218
accuracy			0.72	445
macro avg	0.73	0.72	0.72	445
weighted avg	0.73	0.72	0.72	445
SVM				
	precision	recall	f1-score	support
0	0.70	0.82	0.76	227
1	0.78	0.63	0.70	218
accuracy			0.73	445
macro avg	0.74	0.73	0.73	445
weighted avg	0.74	0.73	0.73	445

In [65]:

```
# Over Sampling and Scalling
lr_scale_over, abc_scale_over, gbc_scale_over, xbc_scale_over, rfc_scale_over, lsvc_scale_o
Counter({0: 49809, 1: 741})
Counter({0: 49809, 1: 49809})
LOGISTIC REGRESSION
                precision
                              recall f1-score
                                                  support
                               0.83
           0
                    0.99
                                         0.91
                                                   14952
           1
                               0.63
                    0.05
                                         0.09
                                                     213
    accuracy
                                         0.83
                                                   15165
                                         0.50
   macro avg
                    0.52
                               0.73
                                                   15165
weighted avg
                    0.98
                               0.83
                                         0.89
                                                   15165
DECISION TREE
                              recall
                                     f1-score
                precision
                                                  support
           0
                               0.99
                                         0.99
                    1.00
                                                   14952
           1
                    0.53
                               1.00
                                         0.69
                                                     213
                                         0.99
                                                   15165
    accuracy
                    0.76
                               0.99
                                         0.84
                                                   15165
   macro avg
weighted avg
                    0.99
                               0.99
                                         0.99
                                                   15165
ADABOOST
                              recall
                                      f1-score
                precision
                                                  support
           0
                    1.00
                               0.80
                                         0.89
                                                   14952
           1
                    0.05
                               0.73
                                         0.09
                                                     213
                                         0.80
                                                   15165
    accuracy
                               0.76
                                         0.49
                                                   15165
   macro avg
                    0.52
weighted avg
                    0.98
                               0.80
                                         0.87
                                                   15165
GRADIENT BOOST
                precision
                              recall
                                     f1-score
                                                  support
                               0.82
                                         0.90
                                                   14952
           0
                    1.00
            1
                    0.06
                               0.76
                                         0.10
                                                     213
                                         0.82
    accuracy
                                                   15165
   macro avg
                    0.53
                               0.79
                                         0.50
                                                   15165
weighted avg
                    0.98
                               0.82
                                         0.89
                                                   15165
XGBOOST
                precision
                              recall f1-score
                                                  support
                    1.00
           0
                               0.96
                                         0.98
                                                   14952
           1
                    0.24
                               1.00
                                         0.39
                                                     213
                                         0.96
    accuracy
                                                   15165
```

0.62

macro avg

0.68

2/4/2020			Travel Insurance	ce project file -
weighted avg	0.99	0.96	0.97	15165
RANDOM FOREST				
TO MEST	precision	recall	f1-score	support
0	1.00	0.99	0.99	14952
1	0.53	1.00	0.69	213
accuracy			0.99	15165
macro avg	0.76	0.99	0.84	15165
weighted avg	0.99	0.99	0.99	15165
LINEAR SVM				
	precision	recall	f1-score	support
0	0.99	0.84	0.91	14952
1	0.05	0.63	0.10	213
accuracy			0.83	15165
macro avg	0.52	0.74	0.50	15165
weighted avg	0.98	0.83	0.90	15165
SVM				
	precision	recall	f1-score	support
0	0.99	0.84	0.91	14952
1	0.06	0.67	0.10	213
accuracy			0.84	15165
macro avg	0.53	0.76	0.51	15165
weighted avg	0.98	0.84	0.90	15165

In [66]:

```
# Under Sampling and Scalling
lr_scale_under, abc_scale_under, gbc_scale_under, xbc_scale_under, rfc_scale_under, lsvc_sc
Counter({0: 49809, 1: 741})
Counter({0: 528, 1: 528})
LOGISTIC REGRESSION
               precision
                             recall f1-score
                                                  support
           0
                    0.99
                              0.82
                                         0.90
                                                   14952
           1
                              0.63
                    0.05
                                         0.09
                                                     213
    accuracy
                                         0.82
                                                   15165
                                         0.50
   macro avg
                    0.52
                              0.73
                                                   15165
weighted avg
                    0.98
                              0.82
                                         0.89
                                                   15165
DECISION TREE
                             recall
               precision
                                     f1-score
                                                  support
           0
                    0.99
                              0.68
                                         0.80
                                                   14952
           1
                    0.03
                              0.66
                                         0.05
                                                     213
                                         0.68
                                                   15165
    accuracy
                    0.51
                              0.67
                                         0.43
                                                   15165
   macro avg
weighted avg
                    0.98
                              0.68
                                         0.79
                                                   15165
ADABOOST
                             recall
                                     f1-score
               precision
                                                  support
           0
                    0.99
                              0.77
                                         0.87
                                                   14952
           1
                    0.04
                              0.70
                                         0.08
                                                     213
                                         0.77
                                                   15165
    accuracy
                              0.74
                                         0.47
                                                   15165
   macro avg
                    0.52
weighted avg
                    0.98
                              0.77
                                         0.86
                                                   15165
GRADIENT BOOST
               precision
                             recall
                                     f1-score
                                                  support
                    0.99
                                         0.87
                                                   14952
           0
                              0.77
           1
                    0.04
                              0.69
                                         0.08
                                                     213
                                         0.77
    accuracy
                                                   15165
                    0.52
                              0.73
                                         0.47
                                                   15165
   macro avg
weighted avg
                    0.98
                              0.77
                                         0.86
                                                   15165
XGBOOST
                precision
                             recall f1-score
                                                  support
                                         0.85
           0
                    0.99
                              0.73
                                                   14952
           1
                    0.04
                              0.70
                                         0.07
                                                     213
                                         0.73
    accuracy
                                                   15165
```

0.52

macro avg

0.46

2/4/2020			Travel Insurance	ce project file - Ju
weighted avg	0.98	0.73	0.83	15165
RANDOM FOREST				
NANDON TOREST	precision	recall	f1-score	support
0 1	0.99 0.04	0.76 0.65	0.86 0.07	14952 213
-	0.01	0.03	0.07	213
accuracy macro avg	0.52	0.71	0.76 0.47	15165 15165
weighted avg	0.98	0.76	0.85	15165
LINEAR SVM				
	precision	recall	f1-score	support
0	0.99	0.84	0.91	14952
1	0.05	0.64	0.10	213
accuracy			0.83	15165
macro avg	0.52	0.74	0.50	15165
weighted avg	0.98	0.83	0.90	15165
SVM				
	precision	recall	f1-score	support
0 1	0.99 0.06	0.86 0.62	0.92 0.11	14952 213
accuracy macro avg	0.53	0.74	0.86 0.52	15165 15165
weighted avg	0.98	0.86	0.91	15165

Saving best model in a file through Pickle

```
In [67]:
```

```
file = open("TravelInsurance.ser", "wb")
pickle.dump(rfc_under, file)
file.close()
```

<hr>>

Verdict

Version 1) Following are the process involved -

- a) Read and analyzed dataset.
- b) Removed 'Gender' as it had 71% null values.
- c) Performed Label Encoding.
- d) Created defintions for fitting and predicting models.
- e) Skewness, Outliers, Scaling, Chi-Squared Test, Boosting.

Result -The scores achieved for each and every model in this version was zero (as you can see below). A different approach was required.

LOGISTIC R	EGRE:	SSION			
		precision	recall	f1-score	support
	0	0.99	1.00	0.99	14952
	1	0.00	0.00	0.00	213
accura	су			0.99	15165
macro a	vg	0.49	0.50	0.50	15165
weighted a	vg	0.97	0.99	0.98	15165
DECISION TO	REE				
		precision	recall	f1-score	support
	0	0.99	0.98	0.99	14952
	1	0.05	0.06	0.06	213
accura	су			0.97	15165
macro a	vg	0.52	0.52	0.52	15165
weighted a	vg	0.97	0.97	0.97	15165
ADABOOST					
		precision	recall	f1-score	support
	0	0.99	1.00	0.99	14952
	1	0.00	0.00	0.00	213
accura	_			0.99	15165
macro a	_	0.49	0.50	0.50	15165
weighted a	vg	0.97	0.99	0.98	15165
GRADIENT BO	OOST				
		precision	recall	f1-score	support
	0	0.99	1.00	0.99	14952
	1	0.00	0.00	0.00	213
accura	су			0.99	15165
macro a	vg	0.49	0.50	0.50	15165
weighted a	vg	0.97	0.99	0.98	15165

XGBOOST				
	precision	recall	f1-score	support
0	0.99	1.00	0.99	14952
1	0.00	0.00	0.00	213
accuracy			0.98	15165
macro avg	0.49	0.50	0.50	15165
weighted avg	0.97	0.98	0.98	15165
RANDOM FOREST				
	precision	recall	f1-score	support
0	0.99	1.00	0.99	14952
1	0.16	0.02	0.04	213
accuracy			0.98	15165
macro avg	0.57	0.51	0.52	15165
weighted avg	0.97	0.98	0.98	15165
LINEAR SVM				
	precision	recall	f1-score	support
0	0.99	1.00	0.99	14952
1	0.00	0.00	0.00	213
accuracy			0.99	15165
macro avg	0.49	0.50	0.50	15165
weighted avg	0.97	0.99	0.98	15165
SVM				
	precision	recall	f1-score	support
0	0.99	1.00	0.99	14952
1	0.00	0.00	0.00	213
accuracy			0.99	15165
macro avg	0.49	0.50	0.50	15165
weighted avg	0.97	0.99	0.98	15165

Version 2

From this version onwards, Sampling techniques were added. This helped increase the score value greatly. The definition added was 'sampling(df)'. This technique manually applied undersampling. Some of the best scores achieved are shown below. Also, updates we done to Boosting. Along with other models, they were added to Bagging Classifier with parameters, and then passed to GridSearchCV. It is important to note that Sampling should only be done on the Training data, and not on the entire dataset.

Adaboost Baseline Sampling

ADABOOST	precision	recall	f1-score	support
0	0.75	0.76	0.76	227
1	0.75	0.73	0.74	218
accuracy macro avg weighted avg	0.75 0.75	0.75 0.75	0.75 0.75 0.75	445 445 445

RandomForest Skew Sampling

RANDOM FOREST				
	precision	recall	f1-score	support
0	0.74	0.75	0.75	227
1	0.74	0.73	0.73	218
accuracy			0.74	445
macro avg	0.74	0.74	0.74	445
weighted avg	0.74	0.74	0.74	445

XGBoost and RandomForest Scaling Sampling

XGBOOST				
	precision	recall	f1-score	support
0	0.74	0.74	0.74	227
1	0.73	0.73	0.73	218
accuracy			0.73	445
macro avg	0.73	0.73	0.73	445
weighted avg	0.73	0.73	0.73	445
RANDOM FOREST				
	precision	recall	f1-score	support
0	0.75	0.79	0.77	227
1	0.77	0.72	0.74	218
accuracy			0.76	445
macro avg	0.76	0.76	0.76	445
weighted avg	0.76	0.76	0.76	445

Gradient Boosting GridSearch Sampling

	precision	recall	f1-score	support
0 1	0.75 0.73	0.74 0.75	0.74 0.74	227 218
accuracy macro avg weighted avg	0.74 0.74	0.74 0.74	0.74 0.74 0.74	445 445 445

GradientBoostingClassifier(max_depth=6, n_estimators=46)

LinearSVC Baseline Sampling

LINEAR SY	VΜ				
		precision	recall	f1-score	support
	0	0.96	0.23	0.37	227
	1	0.55	0.99	0.71	218
accur	racy			0.60	445
macro	avg	0.76	0.61	0.54	445
weighted	avg	0.76	0.60	0.54	445

LinearSVC Outliers Sampling

LINEAR SVM						
		precision	recall	f1-score	support	
	0	0.83	0.43	0.56	227	
	1	0.60	0.91	0.73	218	
accur	acy			0.66	445	
macro	avg	0.72	0.67	0.64	445	
weighted	avg	0.72	0.66	0.64	445	

Final Version

Here, we added the function 'under_sample()' and 'over_sample()'. All Boosting, Bagging, and GridSearch code blocks were changed to Raw in this version. Reason being that Over Sampling greatly increased the score values right from the Baseline models (screenshot below) onwards, especially for DecisionTree and RandomForest.

DECISION TREE				
	precision	recall	f1-score	support
0 1	1.00 0.83	1.00 1.00	1.00 0.91	14952 213
accuracy macro avg weighted avg	0.92 1.00	1.00	1.00 0.95 1.00	15165 15165 15165
RANDOM FOREST	precision	recall	f1-score	support
0 1	1.00 0.83	1.00	1.00 0.91	14952 213
accuracy macro avg weighted avg	0.92 1.00	1.00	1.00 0.95 1.00	15165 15165 15165

Overall, RandomForest produced the best results. Even after some EDA and Preprocessing, the scores achieved for DecisionTree and RandomForest after each EDA process were almost identical, although there was a bit of variance in scores between the models. For this, we saved the model 'rfc_under' into a serial file through Pickle.