

SSC MARCH 2020

MATHEMATICS

GEOMETRY – PART II						
Time all	owed: 2 ho	urs		Maximum marks: 40		
General	Instruction	ns:				
(i)	All questi	ions are compulsory.				
(ii)	-	Use of calculator is not allowed.				
(iii)	The numl	The numbers to the right of the questions indicate full marks.				
(iv)		In case MCQ's Q. No. 1(A) only the first attempt will be evaluated and will				
(21)	be given		and and more accounts a wine	0.0000000000000000000000000000000000000		
(v)	For every	For every MCQ, the correct alternative (A), (B), (C) or (D) of answers with sub question number is:				
1 (A	() Four alte	rnative answer are	given for every sub – a	uestion. Select the correct		
		write the alphabet				
anei	nauve anu	write the alphabet	of that answer.	[4]		
						
		•	e Pythagorean triple?			
(A) ((1, 5, 10)	(B)(3,4,5)	(C) $(2,2,2)$ (D	(5, 5, 2)		
A may		4.5)				
AllS	wer: (B) (3	, 4, 5)				
(!!)T	·•1	.e	2 2			
				uch each other externally.		
Wha	at is the dis	tance between their	centres?			
$(\mathbf{A})4$	4. 4 cm	(B) 2.2 cm	(C) 8.8 cm	(D)8.9 cm		
Ans	wer: (C) 8.8	3 cm				
(iii)	Dista	nce of point (-3, 4) f	rom the origin is			
(\mathbf{A})		(B) 1	(C) -5	(D) 5		
(11)			(C) 3	(D) 3		
	(D) F					
Ans	wer: (D) 5					
(iv)	Find	the volume of a cub	e of side 3 cm· *			
	_			(D) 23		
(A) 2	27 cm ³	(B) 9 cm ³	(C) 81 cm ³	(D) 3 cm ³		
Ans	wer: Answe	er is not given due to	the change in reduced sy	llabus.		
-	/	5	<i>y</i>			
(B) S	Solve the fo	[4]				

(i) The ratio of corresponding sides of similar triangles is 3:5, then find the ratio of their areas.

Answer: Ratio of areas of similar triangles = (Ratio of corresponding sides of similar triangles) 2

$$=\frac{3^2}{5}$$

Ratio of their areas =
$$\frac{9}{25}$$

(ii) Find the diagonal of a square whose side is 10 cm.

Answer: Let
$$\Box$$
 ABCD is a square
$$l(AB) = l(BC) = l(CD) = l(AD) = 10 \text{ cm}$$
 In $\triangle aBC$, (Given)
$$AC^2 = AB^2 + BC^2$$
 (Pythagoras theorem)
$$AC^2 = AB^2 + AB^2$$
 (: $AB = BC$)

$$\therefore AC = \sqrt{2} AB$$

$$= \sqrt{2} (10) cm \qquad (AB = 10cm)$$

Diagonal of the square AC = 14.14 cm

(iii) \square ABCD is cyclic. If $\angle B = 110$, then find measure of $\angle D$.

$$∴ m∠B + m∠D = 180°
∴ 110° + m∠D = 180°
(Given, m∠B = 110°)$$

$$\begin{array}{ccc} \therefore & \text{m} \angle D = & 180^{\circ} - & 110^{\circ} \\ & \text{m} \angle D = & 70^{\circ} \end{array}$$

(iv) Find the slope of the line passing through the points A (2, 3) and B (4, 7).*

Answer: Answer is not given due to the change is reduced syllabus.

2. (A) Complete and write the following activities (Any two): **[4]**

(i) In the figure given, 'O' is the centre of the circle, seg PS is a tangent segment and S is the point of contact. Line PR is a secant. If PQ = 3.6, QR = 6.4, find PS.*

Answer: Answer is not given due to the change is reduced syllabus.

(ii) If $\sec \theta = \frac{25}{7}$, find the value of $\tan \theta$.

Solution: $1 + \tan^2 \theta = \sec^2 \theta$

$$\therefore 1 + tan^2\theta = \left(\frac{25}{7}\right)^{\square}$$

$$\therefore \tan^2 \theta = \frac{625}{49} - \square$$

$$=\frac{625-49}{49}$$

$$=\frac{\square}{49}$$

$$\tan \theta = \frac{\Box}{7}$$

..... (by taking square roots)

Answer: $1 + \tan^2 \theta = \sec^2 \theta$

$$\therefore 1 + \tan^2 \theta = \left(\frac{25}{7}\right)^{2}$$

$$\therefore \tan^2 \theta = \frac{625}{49} - \boxed{1}$$

$$=\frac{625-49}{49}=\frac{576}{49}$$

$$\tan \theta = \frac{24}{7}$$

.... by taking square roots

(iii) In the figure given, O is the centre of the circle. Using given information complete the following table:*

Type of arc	Name of the arc	Measure of the arc
Minor arc		
Major arc		

Answer:

Type of arc	Name of the arc	Measure of the arc
Minor arc	Arc AXB	100°
Major arc	Arc AYB	260°

(B) Solve the following sub – questions (Any four):

[8]

(i) In ΔPQR , NM \parallel RQ. If PM = 15, MQ = 10, NR = 8, then find PN.

Answer: Given NM ∥ RQ

: Equation (i) becomes,

$$\frac{PN}{8} = \frac{15}{10}$$

$$\therefore PN = \frac{15 \times 8}{10} = \frac{15 \times 4}{5} = 3 \times 4$$

(ii) In \triangle MNP, \angle MNP = 90° seg NQ \perp seg MP. If MQ = 9, QP = 4, then find NQ.

Answer: In \triangle MNP, \angle MNP = 90°, seg NQ \perp seg MP

 ∴ According to right angled triangle geometric mean sub theorem

$$NQ^2 = MQ \times QP$$

$$= 9 \times 4 = 36$$

$$\therefore$$
 NQ = $\sqrt{36}$

= 6 unit

(iii) In the figure given above, M is the centre of the circle and seg KL is a tangent segment. L is a point of contact. If MK = 12, $KL = 6\sqrt{3}$, then find the radius of the circle.

Answer: In given figure,

... (Tangent theorem)

$$\therefore$$
 m \angle MLK = 90°

In right – angled Δ MLK

$$MK^2 = ML^2 + LK^2$$

(According to Pythagoras theorem)

$$\therefore (12)^2 = ML^2 + (6\sqrt{3})^2$$

$$144 = ML^2 + 108$$

$$\therefore ML^2 = 144 - 108 = 36$$

$$\therefore$$
 ML = 6

 \therefore Radius ML = 6 unit

(iv) Find the co-ordinate of midpoint of the segment joining the points (22, 20) and (0, 16).

Answer: Given points are (22, 20) and (0, 16)

Let,
$$x_1 = 22$$
, $x_2 = 0$, $y_1 = 20$, $y_2 = 16$

We know, Midpoint =
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

= $\left(\frac{22 + 0}{2}, \frac{20 + 16}{2}\right)$
= $\left(\frac{22}{2}, \frac{36}{2}\right)$
= $(11, 18)$

(v) A person is standing at a distance of 80 metres from a Church and looking at its top. The angle of elevation is of 45. Find the height of the Church. *

Answer:

Let, AB be the height of the church.

$$\angle ACB = 45^{\circ}, BC = 80 \text{ m}$$

In right angled \triangle ABC, we have,

$$\tan 45^{\circ} = \frac{AB}{BC}$$

$$\Rightarrow 1 = \frac{AB}{80}$$

$$\Rightarrow 1 = \frac{AB}{80}$$

$$\Rightarrow$$
 AB = 80 m

- 3. (A) Complete and write the following activities (Any one): [3]
- (i) In the given figure, X is any point in the interior of the triangle. Point X is joined to the vertices of triangle. seg PQ | seg DE, seg QR | seg EF. Complete the activity and prove that seg PR | seg DF.

Proof: In ΔXDE

$$\therefore \frac{XP}{PD} = \frac{\square}{QE} \qquad \qquad (Basic propationality theorem) \qquad (i)$$

$$\therefore \frac{XP}{PD} = \boxed{ } \qquad \qquad \dots [From (i) and (ii)]$$

Answer: In ΔXEF

$$\therefore \ \frac{\text{XQ}}{\overline{\text{QE}}} = \frac{\text{XR}}{\overline{\text{RF}}} \qquad \qquad \dots \left(\overline{\text{Basic proportionality theorem}} \right) \dots (ii)$$

$$\therefore \frac{XP}{PD} = \frac{\overline{XR}}{\overline{RF}} \qquad \qquad \dots [From (i) and (ii)]$$

(ii) If A (6,1), B (8,2), C (9,4) and D (7,3) are the vertices of \Box ABCD, show that \Box ABCD is a parallelogram. *

Answer: Given A (6, 1), B (8, 2), C (9, 4) and D (7, 3)

AB =
$$\sqrt{(8-6)^2 + (2-1)^2}$$
 [: Distance = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$]
= $\sqrt{2^2 + 1^2} = \sqrt{5}$
BC = $\sqrt{(9-8)^2 + (4-2)^2}$
= $\sqrt{1^2 + 2^2} = \sqrt{5}$
CD = $\sqrt{(7-9)^2 + (3-4)^2}$
= $\sqrt{2^2 + (-1)^2} = \sqrt{5}$
DA = $\sqrt{(7-6)^2 + (3-1)^2}$
= $\sqrt{1^2 + (2)^2} = \sqrt{5}$
::AB = BC = CA = DA

Hence, ABCD is a parallelogram.

(B) Solve the following sub – questions (Any two):

[8]

(i) If $\triangle PQR$, point S is the mid – point of side QR. If PQ = 11, PR = 17, PS = 13, find QR.

Answer: In $\triangle PQR$, point S is the mid – point of side QR.

∴ Segment PS is median of ∆PQR

According to Apollonius's theorem

$$PQ^2 + PR^2 = 2PS^2 + 2QS^2$$

As per given values,

$$\therefore (11)^2 + (17)^2 = 2(13)^2 + 2QS^2$$

$$121 + 289 = 2(169) + 2QS^2$$

$$410 = 338 + 2QS^2$$

$$\therefore 2QS^2 = 410 - 338 = 72$$

$$\therefore QS^2 = \frac{72}{2} = 36$$

$$\therefore$$
 QS = 6 unit (i)

$$\therefore 2QS = QR \qquad (\because QS = SR)$$

$$\therefore QR = 2 \times (6)$$
 [From equation (i)]

$$\therefore$$
 QR = 12 unit

- : Length of side QR is 12 unit.
- (ii) Prove that, tangent segments drawn from an external point to the circle are congruent.

Answer: Point O is the centre of the circle and point P is external to the circle. Segment PA and segment PB are tangent segments to the circle. Point A and point B are touch points of the tangent segments.

Prove: $PA \cong PB$

Construction: Draw OA, OB and OP.

Proof: : Each tangent of a circle is perpendicular to the radius drawn through

the

point of contact (Theorem)

∴ Radius OA ⊥ AP and, Radius OB ⊥ BP(i)

 \therefore m \angle PAO = 90° and m \angle PBO = 90°

∴ ΔPAO and ΔPBO are right – angled triangles.
 Now in ΔPAO and ΔPBO,

OA = OB (: Radius of same circle) $\angle PAO = \angle PBO$ [Using (i)] Hypotenuse OP = Hypotenuse OP (: common side)

 $\therefore \Delta PAO \cong \Delta PBO$ (RHS conguruency criterion)

 \therefore line PA \cong line PB (\because corresponding sides of Congruent triangles)

Line PA and line PB are tangent.

Hence proved.

(iii) Draw a circle with radius 4.1 cm. Construct tangents to the circle from a point at a distance 7.3 cm from the centre.

Answer:

Steps of construction:

Step 1: Draw a circle of radius 4.1 cm with centre O.

Take a point P in the exterior of the Step 2: circle such that OP = 7.3 cm

Step 3: Draw segment OP, draw perpendicular bisector

of segment OP to get its midpoint M.

Step 4: Draw a circle with radius OM and centre M.

Step 5: Name the point of intersection of the two circles as A and B.

Step 6: Join PA and PB.

Thus, PA and PB are required tangents.

Answer: Radius of each coin, $r = \frac{2}{2} = 1$ cm

Thickness of each coin, $h = 2 \text{ mm} = \frac{2}{10} = 0.2 \text{ cm} (1 \text{ cm} = 10 \text{ mm})$ Let the number of coins made be n.

It is given that a metal parallelopiped is melted to make the coins.

 \therefore n × Volume of metal in each coin = Volume of the metal cuboid

$$\Rightarrow n = \frac{\text{Volume of the metal cuboid}}{\text{Volume of metal in each coin}}$$

$$\Rightarrow n = \frac{16 \times 11 \times 10}{1000}$$

$$\Rightarrow$$
 n = $\frac{16 \times 11 \times 10}{\pi r^2 h}$

$$\Rightarrow n = \frac{\frac{16 \times 11 \times 10}{22}}{\frac{22}{7} \times 1 \times 1 \times 0.2} = 2800$$

Thus, the number of coins made are 2800.

4. Solve the following sub – questions (Any two):

[8]

(i) In ΔABC, PQ is a line segment intersecting AB at P and AC at Q such that seg PQ \parallel seg BC. If PQ divides \triangle ABC into two equal parts having equal areas, find $\frac{BP}{AB}$

Answer: In above figure $\triangle ABC$, PQ \parallel BC

$$A - P - B$$
 and $A - Q - C$

and ar
$$(\Delta APQ) = ar (\Box PBCQ) ...$$

In ΔAPQ and ΔABC

$$\angle A = \angle A$$
 (common angle)

$$\angle APQ = \angle ABC$$
 (corresponding angle)

∴
$$\triangle APQ \sim \triangle ABC$$
 (A – A similarity test)

$$\therefore \frac{\operatorname{ar} (\Delta \operatorname{ABC})}{\operatorname{ar} (\Delta \operatorname{APQ})} = \frac{\operatorname{AB}^2}{\operatorname{AP}^2}$$
 (Theorem of areas of similar triangles) (i)

Now,

$$ar(\Delta APQ) = ar(\Box PBCQ)$$
 (Given)

$$\therefore \frac{\text{ar}\left[\Box PBCQ\right]}{\text{ar}\left[\Delta APQ\right]} = \frac{1}{1}$$

Adding 1 on both sides,

$$\frac{\operatorname{ar}\left[\Box \operatorname{PBCQ}\right] + \operatorname{ar}\left(\Delta \operatorname{APQ}\right)}{\operatorname{ar}\left(\Delta \operatorname{APQ}\right)} = \frac{1+1}{1} = \frac{2}{1}$$

$$\therefore \frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta APO)} = \frac{2}{1} \quad \dots \text{ (ii) } [\because \operatorname{ar}(\Delta APQ) + \operatorname{ar}(\Box PBCQ) = \operatorname{ar}(\Delta ABC)]$$

: From (i) and (ii)

$$\therefore \frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta APQ)} = \frac{2}{1} = \frac{AB^2}{AP^2}$$

$$\frac{AB}{AP} = \frac{\sqrt{2}}{1}$$
 (by taking square roots on both sides)

Let
$$AB = \sqrt{2}x$$
 (iii)

and
$$AP = 1x$$

Now,
$$BP = AB - AP$$

: BP =
$$\sqrt{2} x - 1x = (\sqrt{2} - 1)x$$
 (iv)

From (iii) and (iv)

$$\therefore \qquad \frac{BP}{AB} = \frac{(\sqrt{2}-1)}{\sqrt{2}}$$

(ii) Draw a circle of radius 2.7cm and draw a chord PQ of length 4.5 cm. Draw tangents at point P and Q without using centre.

Answer:

Step of construction:

Step 1 : Draw a circle of with centre

O and radius 2.7 cm

Step 2 : Draw a chord PQ of length

4.5 cm

Step 3 : Taking a point R on the major

arc

QP, join PR and QR.

Step 4 : Make $\angle QPT = \angle PRQ$ and

 \angle PQS = \angle PRQ.

Step 5 : Produce TP to L and SQ to M.

Hence, TPL and SQM are the required tangents.

(iii) In the figure given □ ABCD is a square of side 50 m. Points P, Q, R, S are midpoints of side AB, side BC, side CD, side CD, side AD respectively. Find area of

shaded region.*

Answer: Answer is not given due to the change in reduced syllabus.

- **5.** Solve the following sub questions (Any one):
- (i) Circles with centres A, B and C touch each other externally. If AB =
- 3 cm, BC = 3 cm, CA = 4 cm, then find the radii of each circle.

[3]

Answer: Suppose radius of circle with centre A is x cm

: Radius of circle with centre
$$B = (3 - x)$$
 cm (: $AB = 3$ cm) and radius of circle with centre $C = (4 - x)$ cm (: $CA = 4$ cm)

$$\therefore$$
 (3-x) + (4-x) = BC = 3

$$\therefore 3 - x + 4 - x = 3$$

$$\therefore \quad 7 - 2x = 3$$

$$\therefore 2x = 7 - 3$$

$$\therefore$$
 2x = 4

$$\therefore$$
 x = 2

$$\therefore$$
 Radius of circle with centre A = 2cm

$$\therefore \text{ Radius of circle with centre B} = (3 - x)$$
$$= (3 - 2)$$

$$= 1 \text{ cm}$$

$$\therefore$$
 Radius of circle with centre C = $(4 - x)$

$$= (4 - 2)$$

= 2 cm

(ii) If
$$\sin \theta + \sin^2 \theta = 1$$

Show that:
$$\cos^2 \theta + \cos^4 \theta = 1$$

Answer:
$$\sin \theta + \sin^2 \theta = 1$$

But
$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\sin \theta + \sin^2 \theta = \sin^2 \theta + \cos^2 \theta$$

Now as per given relation

$$\sin \theta + \sin^2 \theta = 1$$

$$\therefore \quad \cos^2\theta + (\cos^2\theta)^2 = 1$$

$$\therefore \qquad \cos^2\theta + \cos^4\theta = 1$$