Exercise 1

a) Compute idf

The value of the idf (inverse document frequency) for a particular term T is given by

$$idf_T = \log\left(\frac{n}{df_T}\right),\,$$

where n is the total number of documents in the corpus, in our example n = 10'000, and df_T denotes the document frequency of term T, i.e. the number of documents that contain T. From our example we have the following document frequencies:

$$df_{T_1} = 100,$$

 $df_{T_2} = 200,$
 $df_{T_3} = 200,$
 $df_{T_4} = 100.$

From this we can directly compute the idf-values for all our 4 terms:

$$\operatorname{idf}_{T_1} = \operatorname{idf}_{T_4} = \log_{10} \left(\frac{10'000}{100} \right) = 2,$$

 $\operatorname{idf}_{T_2} = \operatorname{idf}_{T_3} = \log_{10} \left(\frac{10'000}{200} \right) \approx 1.69897$

b) Compute tf-idf weighting

The tf-idf for a term T_k and a document d_j is given by

$$tf\text{-}idf_{kj} = tf_{kj} \cdot idf_{T_k}$$

where t_{kj} denotes the number of occurrences of term T_k in document d_j , i.e. the numbers that are given in the table. With the above formula we get the following tf-idf weights:

Document \Term	T_1	T_2	T_3	T_4
D_1	$4 \cdot 2 = 8$	$4 \cdot 1.69897 = 6.79588$	0	$1 \cdot 2 = 2$
D_2	8	$2 \cdot 1.69897 = 3.39794$	$10 \cdot 1.69897 = 16.9897$	$5 \cdot 2 = 10$
D_3	8	3.39794	$2 \cdot 1.69897 = 3.39794$	$30 \cdot 2 = 60$

Table 1: tf-idf values

c) Order of documents for query (T_3, T_4)

Assume we have a document D_4 consisting only of the two terms T_3 and T_4 . We can compute the tf-idf value for this document as follows:

Term	T_3	T_4	
tf-idf	$1 \cdot 1.69897 = 1.69897$	$1 \cdot 2 = 2$	

The terms T_1 and T_2 will of course have a tf-idf of 0 because neither of them occur in the given document. Representing each document as a vector of the above computed tf-idf weights gives the following vectors:

$$D_1 = (8, 6.79588, 0, 2),$$

$$D_2 = (8, 3.39794, 16.9897, 10),$$

$$D_3 = (8, 3.3979, 3.39794, 60),$$

$$D_4 = (0, 0, 1.69897, 2)$$

We can compare two documents by comparing their relativ angle – or rather by looking at the cosine between two vector, which can be found by building the dot product between two normalized vectors:

$$(v_1, v_2) = \cos(\theta) \cdot |v_1| \cdot |v_2|$$

$$\iff \cos(\theta) = \frac{(v_1, v_2)}{|v_1| \cdot |v_2|},$$

where (v_1, v_2) denotes the dot product between two vectors v_1 and v_2 , i.e.

$$\sum_{i} v_1^{(i)} \cdot v_2^{(i)},$$

and $|v_i|$ is given by $\sqrt{(v_i, v_i)}$.

Using this comparison scheme, we can compute scores for the comparison of D_4 with all the other documents. We start by computing the lengths of the single vectors:

$$|D_1| = \sqrt{8^2 + 6.79588^2 + 0^2 + 2^2} \approx 10.6857$$

 $|D_2| \approx 21.5452$
 $|D_3| \approx 60.7214$
 $|D_4| \approx 2.62421$

The cosine similarities are now given by

$$\begin{aligned} &\cos\mathrm{Sim}(D_1,D_4) = \frac{(D_1,D_4)}{|D_1|\cdot |D_4|} = \frac{8\cdot 0 + 6.79588\cdot 0 + 0\cdot 1.69897 + 2^2}{10.6857\cdot 2.62421} = \frac{2^2}{10.6857\cdot 2.62421} \approx 0.1426 \\ &\cos\mathrm{Sim}(D_2,D_4) = \frac{16.9897\cdot 1.69897 + 10\cdot 2}{21.5452\cdot 2.62421} \approx 0.8643 \\ &\cos\mathrm{Sim}(D_3,D_4) = \frac{3.39794\cdot 1.69897 + 60\cdot 2}{60.7214\cdot 2.62421} \approx 0.7893 \end{aligned}$$

Therefore we have the ordering $D_2 > D_3 > D_1$, which means that document D_4 is most similar to D_2 .