气体中的声速测量

陆思锐*

实验时间: October 27, 2015

指导老师: 朱美红, 郭旭波

摘要

作为机械波,声音的传播实际上是在弹性介质中振动状态的传播,因此声音的速度 也取决于传递它的介质。本实验通过行波近似下的相位比较法和驻波假设下的振幅极值法 对声速进行测量,并与理论值进行对比,了解声波在空气中传播速度与空气状态参量的关 系,掌握在液体和气体中测量声速的装置和基本方法。

关键词: 声速, 声波, 行波, 驻波

^{*}清华大学物理系 基科 52 班 2015012206

1 实验数据 2

1 实验数据

无论是行波法还是驻波法,都会得到一组记录卡尺位置的数据 l_j 以及对应的序号 j. 在处理数据时应计算以下回归直线的斜率 b_1 :

$$l_j = b_0 + b_1 j$$

线性拟合可以得到不确定度,根据 b_1 就可以得到声波的波长。

频率 f 为读出, 不确定度为

$$U_f = 0.05\% f + 2(\delta f)$$

其中 δf 是数字显示末位等于"1"时的量值。在本实验中,数字显示的末位为百分之一赫兹,所以 $\delta f = 0.01 Hz$. 最终的声速不确定度就是波长不确定度与频率不确定度的复合

$$U_v/v = \sqrt{(U_\lambda/\lambda)^2 + (U_f/f)^2}$$

1.1 行波近似下的相位比较法

频率读出为

$$f = 40830.0Hz$$

相对不确定度按公式计算为

$$U_f = 0.05\% f + 2(\delta f) = 20.615 Hz$$

相对不确定度为 0.0504%, 于是频率 f 为

$$f = (4.083 \pm 0.002) \times 10^4 Hz$$

表 1: 行波近似下的相位比较法

y/mm	0.44	9.56	18.07	26.8	35.43	43.93	52.39	60.97	69.22	77.49	86.13	94.85	103.11	111.31	119.33
数	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

经过数据处理得到: 斜率 $b_1=8.486357143\times 10^{-3}m$, 斜率标准差 $s_{b_1}=2.1172527m\times 10^{-5}$ 计算 t 因子为

$$t(0.05, 13) = 2.160368656$$

于是 A 类不确定度为 $U_{\lambda}=ts_{b_1}=4.573\times 10^{-5}m$ 、从而波长 λ 为

$$\lambda = (8.486 \pm 0.045) \times 10^{-3} m$$

1 实验数据

相对不确定度为 $U_{\lambda}/\lambda = 0.53\%$, 根据公式计算出

$$v = \lambda f = 346.48m/s$$

$$U_v = v\sqrt{(U_\lambda/\lambda)^2 + (U_f/f)^2} = 1.844m/s$$

3

从而声速测量值为

$$v = (346.5 \pm 1.8)m/s$$

1.2 驻波假设下的振幅极值法

频率读出为

$$f = 40830.0Hz$$

相对不确定度按公式计算为

$$U_f = 0.05\% f + 2(\delta f) = 20.615 Hz$$

相对不确定度为 0.0504%, 于是频率 f 为

$$f = (4.083 \pm 0.002) \times 10^4 Hz$$

表 2: 驻波假设下的振幅极值法

y(cm)	62.15	66.62	70.9	75.47	79.71	83.96	88.04	92.33	96.35	100.93
数	1	2	3	4	4	6	7	8	9	10

经过数据处理得到: 斜率 $b_1=4.280242424\times 10^{-3}m$, 斜率标准差 $s_{b_1}=0.020189825\times 10^{-3}$ 计算 t 因子为

$$t(0.05, 8) = 2.306$$

于是 A 类不确定度为 $U_{\lambda}=ts_{b_1}=4.655\times 10^{-5}m$ 、从而波长 λ 为

$$\lambda = (8.560 \pm 0.092) \times 10^{-3} m$$

相对不确定度为 $U_{\lambda}/\lambda = 1.07\%$ 根据公式计算出

$$v = \lambda f = 349.50 m/s$$

$$U_v = v \sqrt{(U_{\lambda}/\lambda)^2 + (U_f/f)^2} = 3.91 m/s$$

从而声速测量值为

$$v = (349.5 \pm 3.9)m/s$$

2 讨论

4

1.3 经验公式值

实验室中空气温度: t = 24.0 摄氏度,实验前后相对湿度为 32.0%,33.0%,取平均值得到空气相对湿度为:r = 32.5%则饱和蒸汽压为

$$\lg p_s = 10.286 - 1780/(237.3 + t) = 3.4739$$

得到

$$p_s = 32.2625 Pa$$

则理论上的声速为

$$v_t = 331.5\sqrt{(1+t/T_0)(1+0.16(rp_s)/p)} = 345.759m/s$$

理论值在两个实验值的置信区间里面。

2 讨论

2.1 空气中理论声速与实际声速之间的误差分析

- 1. 理论公式的适用性。理论计算公式适用于理想气体,空气并不是理想气体。
- 2. 色散现象会导致速度与频率有关。
- 3. 在数据测量和读取的时候可能会存在偏差。

2.2 空气中两种声速测量方法的结果差异分析

- 1. 反射声波与入射声波形成的稳定声场并不均匀;并不是平面波。这也是为什么第二个实验误差更大,当 *x_i* 较小的时候尤其明显,这也是为什么选取了中间一段的数据
- 2. 声信号强度随传播距离增大而逐渐衰减,因此驻波振幅变化也会与信号衰减有关。
- 3. 在数据测量和读取的时候可能会存在偏差。

参考文献

[1] 朱鹤年. 新概念基础物理实验讲义. 清华大学出版社, 2013.