

Planeamento

Quinto Trabalho Prático de Inteligência Artificial

Trabalho Elaborado Por:

Marlene Oliveira, Nº 25999 Pedro Mateus, Nº 26048 João Aiveca, Nº 26175

1. O vocabulario utilizado para descrever o problema na notação 31 kirs foi o seguinte:
Condições:
valor(a,va).
valor(b,vb).
valor(c,vc).
valor(d,vd).
valor(e,ve).
Acções:
accao(afectar_r(valor(R1,VR1),valor(R2,VR2)), [] ,[valor(R2,VR1)],[valor(R2,VR2)].
accao(somar_r(valor(R1,VR1),valor(R2,VR2),valor(R3,VR3)),[],[valor(R3,VR1+VR2)],[valor(R3,VR3)])
2. A representação dos estados é a seguinte:
• Estado 0:
estado([valor(a,va),valor(b,vb),valor(c,vc),valor(d,vd),valor(e,ve)]).
• <u>Estado 1</u> :
estado([valor(a,vb),valor(b,va),valor(c,vb),valor(d,vd),valor(e,ve)]).
• Estado 2:
estado([valor(a,vb),valor(b,va),valor(c,va+vb),valor(d,vc),valor(e,va)]).

3.

O diagrama anterior mostra o modo como o POP (Planeador de Ordem Parcial) resolve o problema de ir do estado zero para o estado um. As acções são representadas nas caixas ovais do diagrama e os estados são representados nas caixas rectangulares do diagrama.

A legenda do diagrama é a seguinte:

- Estado Inicial (estado 0): valor(a,va),valor(b,vb),valor(c,vc),valor(d,vd),valor(e,ve);
- Estado S3: valor(a,va), valor(b,vb), valor(c, vb), valor(d,vd), valor(e,ve);
- Estado S2: valor(a,va), valor(b,va), valor(c,vb), valord(d,vd), valor(e,ve);
- Estado Final (S1, ou seja, estado 1):
 valor(a,va),valor(b,vb),valor(c,vc),valor(d,vd),valor(e,ve);

Os <u>links</u> são os seguintes:

A <u>ordem</u> é a seguinte:

- **4.** A sequência de acções obtida com o POP é a seguinte:
 - Para chegar ao estado 1:
- $P = [s1-inicial,s3-afectar_r(valor(_,vb),valor(a,_)),s4-afectar_r(valor(_,va),valor(b,_)),s5-afectar_r(valor(_,vb),valor(c,_)),s2-final]$
 - Para chegar ao estado 2:
- $P = [s1-inicial,s3-afectar_r(valor(_,vb),valor(a,_)),s4-afectar_r(valor(_,va),valor(b,_)),s5-afectar_r(valor(_,va+vb),valor(c,_)),s6-afectar_r(valor(_,vc),valor(d,_)),s7-afectar_r(valor(_,va),valor(e,_)),s2-final]$