МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учебно-методическое объединение по образованию в области информатики и радиоэлектроники

УТВЕРЖДАЮ
Первый заместитель Министра образования
Республики Беларусь
В.А.Богуш
15.09.2015
Регистрационный № ТД-І.1280/тип.

КОМПЬЮТЕРНЫЕ СЕТИ

Типовая учебная программа по учебной дисциплине для специальности
1-40 05 01 Информационные системы и технологии (по направлениям)

COLIACOBAHO	СОГЛАСОВАНО
Начальник Управления	Начальник Управления
бытовой техники и электроники	высшего образования
Министерства промышленности	Министерства образования
Республики Беларусь	Республики Беларусь
А.С.Турцевич	С.И.Романюк
15.04.2015	15.09.2015
СОГЛАСОВАНО	СОГЛАСОВАНО
Председатель Учебно-	Проректор по научно-методической
методического объединения	работе Государственного учреждения
по образованию в области	образования «Республиканский
информатики и радиоэлектроники	институт высшей школы»
М.П. Батура	И.В.Титович
26.03.2015	04.09.2015
	Эксперт-нормоконтролер
	Н.П.Захарова
	28.08.2015

СОСТАВИТЕЛИ:

В.А.Федосенко, декан факультета повышения квалификации и переподготовки Института информационных технологий «Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук, доцент;

В.Н.Комличенко, заведующий кафедрой экономической информатики Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук, доцент;

Т.М.Унучек, старший преподаватель кафедры экономической информатики Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники»;

А.А.Бутов, доцент кафедры экономической информатики «Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук, доцент.

РЕЦЕНЗЕНТЫ:

Кафедра информационных систем и технологий учреждения образования «Белорусский государственный технологический университет» (протокол №8 от 09.02.2015);

Б.А.Железко, зав. кафедрой экономической информатики учреждения образования «Белорусский государственный экономический университет», кандидат технических наук, доцент

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ В КАЧЕСТВЕ ТИПОВОЙ:

Кафедрой экономической информатики учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (протокол №10 от 05.01.2015);

Научно-методическим советом учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (протокол № 6 от 20.03.2015);

Научно-методическим советом по информационным системам и технологиям Учебно-методического объединения по образованию в области информатики и радиоэлектроники (протокол №3 от 06.02.2015).

Ответственный за выпуск: Е.П. Сапогова

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ХАРАКТЕРИСТИКА УЧЕБНОЙ ДИСЦИПЛИНЫ

Типовая учебная программа «Компьютерные сети» разработана для студентов учреждений высшего образования, обучающихся по специальности 1-40 05 01 «Информационные системы и технологии (по направлениям)» в соответствии с требованиями образовательного стандарта ОСВО 1-40 05 01-2013 и типовых учебных планов по направлениям специальности.

Подготовка современного специалиста требует уверенного владения возможностями, предоставляемыми компьютерными технологиями. Изучение настоящей дисциплины обеспечивает подготовку специалиста, владеющего фундаментальными знаниями и практическими навыками в области компьютерных сетей и сетевого программирования.

ЦЕЛЬ, ЗАДАЧИ, РОЛЬ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цели дисциплины:

- теоретическая и практическая подготовка, обеспечивающая получение знаний по основам компьютерных сетей;
- получения практических навыков программирования сетевых протоколов;
 - получение навыков проектирования компьютерных сетей.

Задачи дисциплины:

- подготовка специалиста, имеющего устойчивые навыки использования локальных и глобальных компьютерных сетей;
- формирование базовых навыков проектирования компьютерных сетей, эффективного использования и настройки сетевого оборудования;
 - формирование навыков программирования сетевых технологий.

Для изучения дисциплины «Компьютерные сети» необходимы знания, получаемые при изучении дисциплины «Основы алгоритмизации и программирования». В свою очередь учебная дисциплина «Компьютерные сети» является базой для таких учебных дисциплин, как «Программирование сетевых приложений», «Визуальные средства разработки программных приложений», «Распределенные информационные системы».

ТРЕБОВАНИЯ К УРОВНЮ ОСВОЕНИЯ СОДЕРЖАНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

В результате изучения дисциплины «Компьютерные сети» формируются следующие компетенции:

академические:

- уметь применять базовые научно-теоретические знания для решения теоретических и практических задач;
 - владеть системным и сравнительным анализом;
 - владеть исследовательскими навыками;
 - уметь работать самостоятельно;
 - быть способным порождать новые идеи (обладать креативностью);
 - владеть междисциплинарным подходом при решении проблем;
- иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером;
 - обладать навыками устной и письменной коммуникации;
 - уметь учиться, повышать свою квалификацию в течение всей жизни;
- использовать основные законы естественнонаучных дисциплин в профессиональной деятельности;
- -владеть основными методами, способами и средствами получения, хранения, переработки информации с использованием компьютерной техники;
- на научной основе организовывать свой труд, самостоятельно оценивать результаты своей деятельности;

социально-личностные:

– уметь работать в команде;

профессиональные:

- владеть современными методами, языками, технологиями и инструментальными средствами проектирования и разработки программных продуктов;
- владеть принципами и основными навыками, приемами, методами настройки, адаптации и сопровождения программных средств;
- проводить анализ и обосновывать выбор технических, программных средств и систем для автоматизированной поддержки процессов профессиональной деятельности;
- осуществлять контроль эффективности использования вычислительных средств и информационных систем в профессиональной деятельности;
 - анализировать и оценивать собранные данные;
 - пользоваться глобальными информационными ресурсами;
 - владеть современными средствами инфокоммуникаций.

В результате изучения учебной дисциплины студент должен:

знать:

- основные концепции построения локальных и глобальных сетей; методы объединения компьютеров и устройств в сети;
- основные функции и режимы взаимодействия компьютеров, аппаратное и программное обеспечение сети;
- основные протоколы, методы организации, способы объединения компьютеров в сети;

- виды топологий сети и основные реализуемые алгоритмы взаимодействия узлов;
 - способы передачи, методы кодирования и защиты данных;
- принципы разработки программ организации клиент-серверного взаимодействия, методы разработки программ распределенной обработки данных;
- перспективные направления развития компьютерных сетей и сетевых технологий, методы использования сетей и сетевых технологий в будущей профессиональной деятельности;

уметь:

- анализировать уровень эффективности сетевых решений;
- эффективно использовать операционные системы и предлагать сетевые решения для разрабатываемых прикладных задач;
- разрабатывать программы взаимодействия для работы в архитектуре клиент сервер для организации клиент-серверного взаимодействия и распределенной обработки данных;
- использовать различные протоколы при разработке программных средств;

владеть:

- методами разработки и обоснования конфигурации сети, оценки трафика в сегментах, выбором сетевого оборудования и программного обеспечения;
- техникой конфигурирования локальных сетей, реализации сетевых протоколов с помощью программных средств;
- базовыми методами и программными средствами разработки сетевых приложений;
- методиками постановки и решения задачи проектирования или модернизации локальной или корпоративной вычислительной сети;
- навыками работы с информацией в локальных и глобальных компьютерных сетях.

Программа рассчитана на объем 108 учебных часов, их них 66 – аудиторных. Примерное распределение аудиторных часов по видам занятий: лекций – 34 часа, лабораторных занятий – 32 часа.

Программа разработана без учета часов, отводимых на проведение текущей аттестации, определенной типовыми учебными планами.

ПРИМЕРНЫЙ ТЕМАТИЧЕСКИЙ ПЛАН УЧЕБНОЙ ДИСЦИПЛИНЫ

Наименование раздела, темы	Всего	Лек-	Лабора-
	аудит.	ции,	торные
	часов	Ч.	занятия,
			Ч.
Раздел 1. Общие принципы построения	6	6	
компьютерных сетей			

Наименование раздела, темы	Всего	Лек-	Лабора-
	аудит.	ции,	торные
	часов	Ч.	занятия,
			Ч.
Тема 1. Определение компьютерной сети.	2	2	
Обобщенная схема функционирования сети			
Тема 2. Классификация, характеристики	2	2	
компьютерных сетей			
Тема 3. Понятие протокола и применение сетевых	1	1	
протоколов для взаимодействия объектов сети			
Тема 4. Требования, предъявляемые к	1	1	
современным сетям			
Раздел 2. Локальные компьютерные сети	20	12	8
Тема 5. Классификация локальных сетей	1	1	
Тема 6. Топологии локальных сетей: физическая и	3	1	2
логическая. Достоинства и недостатки. Выбор			
топологии.			
Тема 7. Среда передачи: проводная и	4	2	2
беспроводная. Коаксиальный кабель, витая пара,			
оптоволокно. Радиоволны, микроволны,			
инфракрасное излучение.			
Тема 8. Методы доступа к среде передачи:	2	2	
конфликтные и бесконфликтные.			
Тема 9. Модель взаимодействия открытых систем.	4	2	2
Стеки протоколов.			
Тема 10. Базовые технологии локальных сетей.	6	4	2
Раздел 3. Объединения сетей и глобальные сети	40	16	24
Тема 11. Принципы межсетевого взаимодействия	10	2	8
Тема 12. Сети TCP/IP	10	2	8
Тема 13. Глобальные сети и перспективные	8	4	4
сетевые технологии.			
Тема 14. Глобальная сеть Интернет	12	8	4
Итого:	66	34	32

СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Раздел 1. ОБЩИЕ ПРИНЦИПЫ ПОСТРОЕНИЯ КОМПЬЮТЕРНЫХ СЕТЕЙ

Тема 1. ОПРЕДЕЛЕНИЕ КОМПЬЮТЕРНОЙ СЕТИ. ОБОБЩЕННАЯ СХЕМА ФУНКЦИОНИРОВАНИЯ СЕТИ

Телекоммуникация, коммуникационная сеть, информационная сеть, вычислительная сеть. Компьютерная сеть (определение, назначение, цель использование). Предпосылки и причины появления сетей. Обобщенная схема функционирования сети.

Тема 2. КЛАССИФИКАЦИЯ, ХАРАКТЕРИСТИКИ КОМПЬЮТЕРНЫХ СЕТЕЙ

Локальные, корпоративные, региональные и глобальные компьютерные сети. Особенности построения и функционирования, отличия. Конвергенция сетей.

Тема 3. ПОНЯТИЕ ПРОТОКОЛА И ПРИМЕНЕНИЕ СЕТЕВЫХ ПРОТОКОЛОВ ДЛЯ ВЗАИМОДЕЙСТВИЯ ОБЪЕКТОВ СЕТИ

Основные принципы построения сети. Многоуровневый подход к решению задачи обмена сообщениями между компьютерами. Основные понятия о протоколе. Стек протоколов. Модель OSI.

Тема 4. ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К СОВРЕМЕННЫМ СЕТЯМ

Требования, предъявляемые к современным вычислительным сетям. Проблемные ситуации, возникающие в различных типах сетей, методы и средства их решения. Производительность, надежность и безопасность. Расширяемость и масштабируемость. Прозрачность, управляемость и совместимость.

Раздел 2. ЛОКАЛЬНЫЕ КОМПЬЮТЕРНЫЕ СЕТИ

Тема 5. КЛАССИФИКАЦИЯ, ЛОКАЛЬНЫХ СЕТЕЙ

Сети с централизированным управлением, иерархические сети: одноранговые и с выделенным сервером (сравнительный анализ, области применения). Технология клиент-сервер. Виды серверов.

Тема 6. ТОПОЛОГИИ ЛОКАЛЬНЫХ СЕТЕЙ: ФИЗИЧЕСКАЯ И ЛОГИЧЕСКАЯ. ДОСТОИНСТВА И НЕДОСТАТКИ. ВЫБОР ТОПОЛОГИИ

Понятие топологии при построении компьютерных сетей. Логическая и физическая топологии сети. Топология шина, особенности реализации, коллизия, разделение передающей среды, надежность, безопасность, стоимость реализации. Передающая среда для построения сети по топологии звезда, ограничения, стоимость и безопасность реализации сети. Топологии, в которых отсутствуют коллизии. Особенности реализации топологии кольцо, стоимость и безопасность. Сотовая, полносвязная, древовидная и петлевая топологии, как производные топологии, основанные на трех базовых. Области их использования, примеры.

Тема 7. СРЕДА ПЕРЕДАЧИ: ПРОВОДНАЯ И БЕСПРОВОДНАЯ. КОАКСИАЛЬНЫЙ КАБЕЛЬ, ВИТАЯ ПАРА, ОПТОВОЛОКНО. РАДИОВОЛНЫ, МИКРОВОЛНЫ, ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ

Проводная и беспроводная среда передачи. Коаксиальный кабель, как основная среда для реализации сети по топологии шина. Основные конструктивные элементы, помехозащищенность, технологичность,

проблемы обслуживания и монтажа, стоимость. Витая пара, как основная среда для построения сети по топологии звезда. Категории витой пары, отличия, конструктивные элементы, помехозащищенность, ограничения и стоимость реализации. Принцип функционирования оптических сред передачи даны. Одномодовый и многомодовый (с линейным и градиентным коэффициентом преломления) кабель. Скорости, особенности монтажа, расстояния, модернизация, стоимость и безопасность реализации сети на базе оптоволоконного кабеля. Радиосети. Радиорелейные сети. Спутниковая связь. Сети транкинговой связи. Инфракрасные беспроводные сети, скорости, расстояния и особенности реализации. Структура, классификация, протоколы систем мобильной связи.

Методы передачи данных на физическом уровне. Основы кодирование сигналов. Физическое кодирование. Потенциальное и импульсное кодирование. Аналоговая модуляция и методы аналоговой модуляции. Цифровое кодирование. Логическое кодирование. Дискретная модуляция аналоговых сигналов.

Тема 8. МЕТОДЫ ДОСТУПА К СРЕДЕ ПЕРЕДАЧИ: КОНФЛИКТНЫЕ И БЕСКОНФЛИКТНЫЕ

Классификация методов доступа к среде передачи. Метод доступа CSMA/CD. Метод доступа CSMA/CA. Метод доступа приоритету. Маркерные методы доступа.

Тема 9. МОДЕЛЬ ВЗАИМОДЕЙСТВИЯ ОТКРЫТЫХ СИСТЕМ. СТЕКИ ПРОТОКОЛОВ

Многоуровневая модель OSI, модель и взаимодействие протоколов. Примеры протоколов. Сетевые протоколы. Стеки протоколов.

Тема 10. БАЗОВЫЕ ТЕХНОЛОГИИ ЛОКАЛЬНЫХ СЕТЕЙ

Стандарты локальных сетей. Подуровни канального уровня модели OSI. История появления и характеристика сетей Ethernet. Ограничения и правила построения сетей Ethernet. Расчет времени оборачиваемости сигнала и сокращение межкадрового расстояния. Преодоление ограничений топологий на основе произведенных расчетов. Особенности выбора оборудования и комбинации производных топологий для оптимального функционирования сети. Коммутируемые сети Ethernet. Скоростные версии Ethernet. Сетевые технологии локальных сетей: 100VG AnyLan, ArcNet, Token Ring, FDDI. Ограничения и правила построения кольцевых сетей.

Раздел 3. ОБЪЕДИНЕНИЯ СЕТЕЙ И ГЛОБАЛЬНЫЕ СЕТИ

Тема 11. ПРИНЦИПЫ МЕЖСЕТЕВОГО ВЗАИМОДЕЙСТВИЯ

Гетерогенность и проблемы межсетевого взаимодействия. Основные подходы к организация межсетевого взаимодействия. Мультиплексирование стеков протоколов. Место размещения средств межсетевого взаимодействия.

Особенности согласования сетей на транспортном уровне. Источники и типы неоднородностей в транспортной подсистеме. Средства согласования физического уровня. Средства согласования на канальном уровне. Сетевые устройства: повторители, концентраторы, мосты, коммутаторы, маршрутизаторы.

Тема 12. СЕТИ ТСР/ІР

Принципы объединения сетей с помощью протоколов сетевого уровня. Семейство протоколов TCP/IP. Транспортные протоколы TCP и UDP. Протокол межсетевого взаимодействия IP, версии протокола. Адресация в IP-сетях. Использование масок и подсетей. Разрешение IP адресов в Ethernet сетях. Маршрутизация IP-адресов. Фрагментация IP-пакетов. Типы протоколов обмена маршрутной информацией. Протоколы DHCP, OSPF, RIP, ARP, RARP. Протокол ICMP. IPv6 как развитие стека TCP/IP.

Тема 13. ГЛОБАЛЬНЫЕ СЕТИ И ПЕРСПЕКТИВНЫЕ СЕТЕВЫЕ ТЕХНОЛОГИИ

Методы коммутации. Коммутация каналов. Коммутация сообщений. Коммутация пакетов. Мультиплексирование, виды мультиплексирования. Плезиохронная и синхронная цифровые иерархии. Передача данных по выделенным линиям. Построение компьютерных сетей на основе телефонных сетей с коммутацией каналов. Сети ISDN. Компьютерные глобальные сети с коммутацией пакетов. Сети X.25, Frame Relay. Технология ATM, основные принципы технологии ATM, стек протоколов ATM, классы сервиса. Обобщенная структура телекоммуникационной сети. Сеть доступа. Транспортная сеть. Сетевое управление. Сетевой интеллект.

Тема 14. ГЛОБАЛЬНАЯ СЕТЬ ИНТЕРНЕТ

История возникновения и развития. Определение. Принципы построения глобальной компьютерной сети Интернет. Сервисы сети Интернет. Всемирная паутина. URL. Протокол НТТР. Электронная почта. Протоколы электронной почты, почтовые клиенты, безопасность. Протокол передачи файлов. Сетевое управление в IP-сетях.

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

ЛИТЕРАТУРА

ОСНОВНАЯ

- 1. Компьютерные сети. Принципы, технологии, протоколы. / Олифер В.Г., Олифер Н. А. –4-е изд., испр. и доп. СПб. Издательство: Питер, 2014. 944 с.
- 2. Таненбаум Э. Компьютерные сети.— 5-е изд., СПб.: Издательство: Питер, 2014.- 960 с.

- 3. Фейт С. ТСР/IР. Архитектура, протоколы, реализация (включая IPv6 и IP Security). М.: Издательство: Лори, 2014.- 424 с.
- 4. Компьютерные сети. Лабораторный практикум: пособие/ В.Н. Комличенко [и др.]. Минск: БГУИР, 2013. -76 с.

ДОПОЛНИТЕЛЬНАЯ

- 5. Кенин А. Самоучитель системного администратора. СПб.: БХВ-Петербург, 2012. 512 с.
- 6. Бройдо В.Л. , Ильина О.П. Вычислительные системы, сети и телекоммуникации. 4-е изд., испр. и доп. СПб. Издательство: Питер, 2011. $560 \, \mathrm{c}$.
- 7. Компьютерные сети: в 2 т. Т. 1. Системы передачи данных / Р.Л. Смелянский. М.: Издательский центр «Академия», 2011. 304 с.
- 8. Компьютерные сети : в 2 т. Т. 2. Том 2. Сети ЭВМ / Р.Л.Смелянский. М. : Издательский центр «Академия», 2011. 240 с.
- 9. Компьютерные сети. Учебное пособие/ А.В. Кузин. 3-е изд., испр. и доп. М.: ФОРУМ: ИНФРА-М, 2011. 192 с.
- 10. Алиев Т. И. Сети ЭВМ и телекоммуникации. СПб.: СПбГУ ИТМО, $2011.-400~\mathrm{c}$.
- 11. Смирнова Е. В., Козик П. В. Технологии современных сетей Ethernet. Методы коммутации и управления потоками данных. СПб.: БХВ-Петербург, 2012.-272 с.
- 12. Одом У. Официальное руководство Cisco по подготовке к сертификационным экзаменам CCNA ICND2, 2-е изд.: пер. с англ. М.: ООО «И.Д.Вильямс», 2011. 736 с.

МЕТОДЫ (ТЕХНОЛОГИИ) ОБУЧЕНИЯ

Основные методы (технологии) обучения, отвечающие целям и задачам дисциплины:

- проблемное обучения (проблемное изложение, вариативное изложение, частично-поисковый метод), реализуемое на лекционных занятиях;
- учебно-исследовательская деятельность, творческий подход, реализуемые на лабораторных занятиях.

ОРГАНИЗАЦИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

При изучении дисциплины рекомендуется использовать следующие формы самостоятельной работы:

- выполнение письменных контрольных работ;
- подготовка студента к выступлению по определенной теме.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

- 1. Реализации серверов на основе последовательной обработки запросов.
- 2. Обработка пользовательских запросов без установления логического соединения.
 - 3. Реализация серверов на основе параллельной обработки запросов
- 4. Механизмы управления параллельной обработкой пользовательских запросов
- 5. Методы оптимизации обработки пользовательских запросов в клиент-серверных приложениях.
 - 6. Многопроцессная обработка пользовательских запросов
 - 7. Моделирование компьютерной сети с помощью Packet Tracer.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ КОМПЬЮТЕРНЫХ ПРОГРАММ

В процессе обучения используется программное обеспечение Microsoft Visual C++, Packet Tracer.

ДИАГНОСТИКА КОМПЕТЕНЦИЙ СТУДЕНТА

Типовыми учебными планами направлений специальности в качестве формы текущей аттестации по учебной дисциплине «Компьютерные сети» предусмотрен экзамен. Оценка учебных достижений студента производится по десятибалльной шкале.

Для промежуточного контроля по учебной дисциплине и диагностики компетенций студентов используются следующие формы:

- отчеты по лабораторным работам с их устной защитой;
- контрольные работы;
- устный опрос;
- электронные тесты;
- доклады на конференциях;
- оценивание на основе модульно-рейтинговой системы.