UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2018/2 Prova da área IIB

1 - 6	7	8	Total

Nome:	Cartão:	

 ${\bf Regras\ Gerais:}$

- $\bullet\,$ Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- $\bullet\,$ Justifique to do procedimento usado.
- $\bullet\,$ Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$

TTOPTI	Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$.				
1.	Linearidade	$\mathcal{F}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{F}\left\{f(t)\right\} + \beta \mathcal{F}\left\{g(t)\right\}$			
2.	Transformada da derivada	Se $\lim_{t\to\pm\infty} f(t) = 0$, então $\mathcal{F}\left\{f'(t)\right\} = iw\mathcal{F}\left\{f(t)\right\}$			
		Se $\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} f'(t) = 0$, então $\mathcal{F}\left\{f''(t)\right\} = -w^2 \mathcal{F}\left\{f(t)\right\}$			
3.	Deslocamento no eixo \boldsymbol{w}	$\mathcal{F}\left\{e^{at}f(t)\right\} = F(w+ia)$			
4.	Deslocamento no eixo \boldsymbol{t}	$\mathcal{F}\left\{f(t-a)\right\} = e^{-iaw}F(w)$			
5.	Transformada da integral	Se $F(0) = 0$, então $\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(w)}{iw}$			
6.	Teorema da modulação	$\mathcal{F}\{f(t)\cos(w_0t)\} = \frac{1}{2}F(w - w_0) + \frac{1}{2}F(w + w_0)$			
7.	Teorema da Convolução	$\mathcal{F}\{(f*g)(t)\} = F(w)G(w), \text{onde} (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$			
		$(F*G)(w) = 2\pi \mathcal{F}\{f(t)g(t)\}$			
8.	Conjugação	$\overline{F(w)} = F(-w)$			
9.	Inversão temporal	$\mathcal{F}\{f(-t)\} = F(-w)$			
10.	Simetria ou dualidade	$f(-w) = \frac{1}{2\pi} \mathcal{F}\left\{F(t)\right\}$			
11.	Mudança de escala	$\mathcal{F}\left\{f(at)\right\} = \frac{1}{ a } F\left(\frac{w}{a}\right), \qquad a \neq 0$			
12.	Teorema da Parseval	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) ^2 dw$			
13.	Teorema da Parseval para Série de Fourier	$\frac{1}{T} \int_0^T f(t) ^2 dt = \sum_{n = -\infty}^{\infty} C_n ^2$			

Séries e transformadas de Fourier:

	Forma trigonométrica	Forma exponencial
Série de Fourier	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos(w_n t) + b_n \sin(w_n t) \right]$	$f(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t},$
	onde $w_n = \frac{2\pi n}{T}$, T é o período de $f(t)$	onde $C_n = \frac{a_n - ib_n}{2}$
	$a_0 = \frac{2}{T} \int_0^T f(t)dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt,$	
	$a_n = \frac{2}{T} \int_0^T f(t) \cos(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(w_n t) dt,$	
	$b_n = \frac{2}{T} \int_0^T f(t) \sin(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt$	
Transformada de Fourier	$f(t) = \frac{1}{\pi} \int_0^\infty \left(A(w) \cos(wt) + B(w) \sin(wt) \right) dw, \text{ para } f(t) \text{ real,}$ onde $A(w) = \int_{-\infty}^\infty f(t) \cos(wt) dt \text{ e } B(w) = \int_{-\infty}^\infty f(t) \sin(wt) dt$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwt}dw,$ onde $F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt}dt$

Tabela de integrais definidas:

Tabela de integrais definidas:				
1. $\int_0^\infty e^{-ax} \cos(mx) dx = \frac{a}{a^2 + m^2} \qquad (a > 0)$	2. $\int_0^\infty e^{-ax} \sin(mx) dx = \frac{m}{a^2 + m^2} \qquad (a > 0)$			
3. $\int_0^\infty \frac{\cos(mx)}{a^2 + x^2} dx = \frac{\pi}{2a} e^{-ma} \qquad (a > 0, \ m \ge 0)$	4. $\int_0^\infty \frac{x \sec(mx)}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ma} \qquad (a \ge 0, \ m > 0)$			
5. $ \int_0^\infty \frac{\sin(mx)\cos(nx)}{x} dx = \begin{cases} \frac{\pi}{2}, & n < m \\ \frac{\pi}{4}, & n = m, & (m > 0, \\ n > 0) \\ 0, & n > m \end{cases} $	6. $ \int_0^\infty \frac{\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{2}, & m > 0 \\ 0, & m = 0 \\ -\frac{\pi}{2}, & m < 0 \end{cases} $			
7. $\int_0^\infty e^{-r^2 x^2} dx = \frac{\sqrt{\pi}}{2r} \qquad (r > 0)$	8. $\int_0^\infty e^{-a^2x^2} \cos(mx) dx = \frac{\sqrt{\pi}}{2a} e^{-\frac{m^2}{4a^2}} \qquad (a > 0)$			
9. $\int_0^\infty x e^{-ax} \sin(mx) dx = \frac{2am}{(a^2 + m^2)^2} \qquad (a > 0)$	10. $\int_0^\infty e^{-ax} \sin(mx) \cos(nx) dx =$			
	$=\frac{m(a^2+m^2-n^2)}{(a^2+(m-n)^2)(a^2+(m+n)^2)} (a>0)$			
11. $\int_0^\infty x e^{-ax} \cos(mx) dx = \frac{a^2 - m^2}{(a^2 + m^2)^2} \qquad (a > 0)$	12. $\int_0^\infty \frac{\cos(mx)}{x^4 + 4a^4} dx = \frac{\pi}{8a^3} e^{-ma} (\sin(ma) + \cos(ma))$			
13. $\int_0^\infty \frac{\sin^2(mx)}{x^2} dx = m \frac{\pi}{2}$	14. $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$			
15. $ \int_0^\infty \frac{\sin^2(ax)\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{4}, & (0 < m < 2a) \\ \frac{\pi}{8}, & (0 < 2a = m) \\ 0, & (0 < 2a < m) \end{cases} $	16. $ \int_0^\infty \frac{\sin(mx)\sin(nx)}{x^2} dx = \begin{cases} \frac{\pi m}{2}, & (0 < m \le n) \\ \frac{\pi n}{2}, & (0 < n \le m) \end{cases} $			
17. $\int_0^\infty x^2 e^{-ax} \operatorname{sen}(mx) dx = \frac{2m(3a^2 - m^2)}{(a^2 + m^2)^3} \qquad (a > 0)$	18. $\int_0^\infty x^2 e^{-ax} \cos(mx) dx = \frac{2a(a^2 - 3m^2)}{(a^2 + m^2)^3} (a > 0)$			
19. $\int_0^\infty \frac{\cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} (a > 0, m \ge 0)$	20. $\int_0^\infty \frac{x \sin(mx)}{(a^2 + x^2)^2} dx = \frac{\pi m}{4a} e^{-ma} (a > 0, \ m > 0)$			
21. $\int_0^\infty \frac{x^2 \cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a} (1 - ma) e^{-ma} (a > 0, m \ge 0)$	22. $\int_0^\infty xe^{-a^2x^2}\sin(mx)dx = \frac{m\sqrt{\pi}}{4a^3}e^{-\frac{m^2}{4a^2}} (a>0)$			

Frequências das notas musicais em hertz:

Nota \ Escala	2	3	4	5	6	7
Dó	65,41	130,8	261,6	523,3	1047	2093
Dó ‡	69,30	138,6	277,2	554,4	1109	2217
Ré	73,42	146,8	293,7	587,3	1175	2349
Ré #	77,78	155,6	311,1	622,3	1245	2489
Mi	82,41	164,8	329,6	659,3	1319	2637
Fá	87,31	174,6	349,2	698,5	1397	2794
Fá ‡	92,50	185,0	370,0	740,0	1480	2960
Sol	98,00	196,0	392,0	784,0	1568	3136
Sol #	103,8	207,7	415,3	830,6	1661	3322
Lá	110,0	220,0	440,0	880,0	1760	3520
Lá ‡	116,5	233,1	466,2	932,3	1865	3729
Si	123,5	246,9	493,9	987,8	1976	3951

Identidades Trigonométricas:

$$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2}$$
$$\sin(x)\sin(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$$
$$\sin(x)\cos(y) = \frac{\sin(x+y) + \sin(x-y)}{2}$$

Integraic

$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

• Questão 1 (1.0 ponto) Considere a função periódica de período T=1 cujo gráfico é esboçado abaixo:

Onde a e b são constantes positivas e menores que 1/2. Quando escrita em séries de Fourier

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(2\pi nt) + b_n \sin(2\pi nt) \right],$$

podemos afirmar que:

$$(\)\ \frac{a_0}{2}=a+b \ {\rm e} \ b_n=0 \ {\rm quando} \ a=-b \ {\rm e} \ n\geq 1.$$

()
$$a_0 = a + b$$
 e $a_n = 0$ quando $a = -b$ e $n \ge 1$.

(X)
$$\frac{a_0}{2} = a + b$$
 e $b_n = 0$ quando $a = b$ e $n \ge 1$.

()
$$a_0 = a + b$$
 e $b_n = 0$ quando $a = b$ e $n \ge 1$.

$$(\)\ \frac{a_0}{2}=a\ \mathrm{e}\ a_n=0\ \mathrm{quando}\ b=0\ \mathrm{e}\ n\geq 1.$$

() Nenhuma das anteriores.

$$() a_n = \frac{\sin(2\pi na) - \sin(2\pi nb)}{\pi n}$$

$$() a_n = \frac{\cos(2\pi na) - \cos(2\pi nb)}{\pi n}$$

()
$$a_n = \frac{\cos(2\pi na) + \cos(2\pi nb)}{\pi a}$$

(X)
$$a_n = \frac{\sin(2\pi na) + \sin(2\pi nb)}{\pi n}$$

() Nenhuma das anteriores.

 \bullet Questão 2 (1.0 pontos) As funções f(t) e g(t) modelam sinais de audio e seus diagramas de espectro de amplitudes são dados abaixo.

h(t) = f(3t),

- assinale as alternativas corretas. () h(t) modela um Ré ef(x)+g(x) modela um Lá 3.
 - () h(t) modela um Ré e f(x)+g(x) modela um Lá 4.
 - () h(t) modela um Ré e f(x) + g(x) modela um Lá 6.
 - (X) h(t) modela um Mi e f(x) + g(x) modela um Lá 3.
 - () h(t) modela um Mi e f(x) + g(x) modela um Lá 4.
 - () h(t) modela um Mi e f(x) + g(x) modela um Lá 6.
- (X) $E_h = E_f/3$.
- $() E_h = 3E_f.$
- $() E_h = E_f.$
- () Nenhuma das anteriores.

• Questão 3 (1.0 ponto) Considere

$$f(t) = \begin{cases} 0, & t < 0 \\ e^{-t}, & t \ge 0 \end{cases}$$

Assinale na primeira coluna $\mathcal{F}\{f(t)+f(-t)\}$ e, na segunda, $\mathcal{F}\{f(t)-f(-t)\}$. () $F(w)=\frac{1+iw}{1+w^2}$ () $F(w)=\frac{2}{1+w}$

()
$$F(w) = \frac{1+iw}{1+w^2}$$

()
$$F(w) = \frac{2}{1+w^2}$$

(X)
$$F(w) = \frac{2}{1+w^2}$$

()
$$F(w) = \frac{1+iw}{1+w^2}$$

()
$$F(w) = \frac{1 - iw}{1 + w^2}$$

(X)
$$F(w) = -\frac{2iw}{1+w^2}$$

()
$$F(w) = \frac{-2iw}{1+w^2}$$

()
$$F(w) = \frac{1 - iw}{1 + w^2}$$

() Nenhuma das anteriores.

() Nenhuma das anteriores.

• Questão 4 (1.0 pontos) Considere a função $f(t) = 1 + \sin(2\pi t) + \frac{8}{5}\sin(4\pi t) + \frac{6}{5}\cos(4\pi t)$. Assinale na primeira coluna o diagrama de espectro do módulo e, na segunda, o diagrama de espectro da fase.

• Questão 5 (2.0 pontos) Considere os diagrama de espectro de magnitudes das Transformadas de Fourier das funções $f_1(t)$, $f_2(t)$, $f_3(t)$ e $f_4(t)$ dados nos gráficos abaixo.

• Questão 5a (1.0 ponto) Assinale as alternativas que indiquem relações compatíveis com os diagramas dados.

()
$$f_1'(t) = f_3(t)$$

(X)
$$f_4(t) = f_1(t) (1 + 2\cos(40t))$$

(X)
$$f_1'(t) = f_2(t)$$

()
$$f_4(t) = f_1(t) (1 + \cos(40t))$$

()
$$f_2'(t) = f_1(t)$$

()
$$f_4(t) = 2f_1(t)\cos(40t)^2$$

()
$$f_3'(t) = f_1(t)$$

()
$$f_4(t) = 2f_1(t)\cos(20t)^2$$

() J3(c) - J1(c)

 $\bullet \ \mathbf{Quest\~ao} \ \mathbf{5b} \ (1.0 \ \mathrm{ponto}) \ \mathbf{Assinale} \ \mathrm{as} \ \mathrm{alternativas} \ \mathrm{que} \ \mathrm{indiquem} \ \mathrm{relaç\~aes} \ \mathrm{compat\'iveis} \ \mathrm{com} \ \mathrm{os} \ \mathrm{diagramas} \ \mathrm{dados}.$

()
$$f_4 = \sum_{k=-\infty}^{\infty} \delta(t - kT_a) f(kT_a), T_a = 15/\pi$$

(X)
$$f_1(t) * f_5(t) = 0$$

()
$$f_1(t) * f_1(t) = f_2(t)$$

()
$$f_1(t) * f_2(t) = f_3(t)$$

()
$$f_4(t) * f_5(t) = f_1(t)$$

() Nenhuma das anteriores.

()
$$f_5 = \sum_{k=-\infty}^{\infty} \delta(t - kT_a) f(kT_a), \quad T_a = 15/\pi$$

()
$$f_4 = \sum_{k=-\infty}^{\infty} \delta(t - kT_a) f(kT_a), T_a = \pi/15$$

()
$$f_5 = \sum_{k=-\infty}^{\infty} \delta(t - kT_a) f(kT_a), T_a = \pi/15$$

(X) Nenhuma das anteriores.

ullet Questão 6 (1.0 pontos) Resolva o seguinte problema de difusão de calor e trace um gráfico esboçando a evolução do perfil de temperatura u(x,t) com o tempo.

$$u_t(x,t) - 2u_{xx}(x,t) - u_x(x,t) = 0$$
$$u(x,0) = 1000\delta(x+1).$$

Solução: Aplicamos a transforma de Fourier na variável x, obtemos a seguinte expressão para a equação transformada

$$U_t(k,t) - (ik)U(k,t) - 2(ik)^2U(k,t) = 0$$

onde foi usada a propriedade da derivada. A condição inicial se torna:

$$U(k,0) = 1000 \int_{-\infty}^{\infty} \delta(x+1)e^{-ikx} dx = 1000e^{ik}$$

Portanto temos o seguinte problema de valor inicial:

$$U_t(k,t) = (-2k^2 + ik)U(k,t)$$
$$U(k,0) = 1000e^{ik}$$

cuja solução é

$$U(k,t) = 1000e^{ik}e^{(-2k^2+ik)t} = 1000e^{ik(t+1)}e^{-2k^2t}$$

A multiplicação por $e^{ik(t+1)}$ indica um deslocamento no eixo x. Logo precisamos calcular:

$$\begin{split} \mathcal{F}_{x}^{-1} \left\{ e^{-2k^{2}t} \right\} &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-2k^{2}t} e^{ikx} dk = \frac{1}{\pi} \int_{0}^{\infty} e^{-2k^{2}t} \cos(kx) dk \\ &= \frac{1}{\pi} \frac{\sqrt{\pi}}{2\sqrt{2t}} e^{-\frac{x^{2}}{8t}} = \frac{1}{2\sqrt{2\pi t}} e^{-\frac{x^{2}}{8t}} \end{split}$$

Portanto,

$$u(x,t) = \frac{500}{\sqrt{2\pi t}} e^{-\frac{(x+t+1)^2}{8t}}$$

- Questão 7 (3.0 pontos) Considere a função $h(t) = \cos(w_0 t) e^{-at^2}$ onde a é uma constante positiva.
 - a) (1.0 ponto) Calcule a transformada de Fourier F(w) quando $f(t) = e^{-at^2}$ onde a é uma constante positiva.
 - b) (1.0 ponto) Esboce os gráficos de f(t) e |F(w)| para a=1, a=2 e a=3.
 - c) (1.0 ponto) Calcule H(w) e esboce os gráficos de h(t) e |H(w)| para a=1 e $w_0=10$.

Solução: a)

$$\mathcal{F}\left\{e^{-at^2}\right\} = \int_{-\infty}^{\infty} e^{-at^2} e^{-iwt} dt = 2 \int_{0}^{\infty} e^{-at^2} \cos(wt) dt$$
$$= \frac{\sqrt{\pi}}{\sqrt{a}} e^{-\frac{w^2}{4a}}.$$

Solução: b)

Solução: c)

$$H(w) = \frac{\sqrt{\pi}}{2}e^{-\frac{(w-10)^2}{4}} + \frac{\sqrt{\pi}}{2}e^{-\frac{(w+10)^2}{4}}$$

