Лекция 6. Пространство \mathbb{R}^n .

Определение 1. Пространство \mathbb{R}^n - *n-мерное действительное пространство* — это множество упорядоченных всех наборов $x = (x_1, ..., x_n)$, где $x_k \in \mathbb{R}$, k = 1, 2, ..., n.

Числа x_k называются координатами точки (вектора) $x \in \mathbb{R}^n$.

Из курса линейной алгебры известно, что пространство \mathbb{R}^n - это линейное пространство относительно операций сложения: $x+y=(x_1+y_1,\dots,x_n+y_n)$, где $x=(x_1,\dots,x_n)$, $y=(y_1,\dots,y_n)$, и умножения на скаляр $\lambda\in\mathbb{R}$: $\lambda x=(\lambda x_1,\dots,\lambda x_n)$. Это пространство является евклидовым относительно скалярного произведения $(x,y)=x_1y_1+\dots+x_ny_n$; в нем можно ввести норму: $\|x\|=\sqrt{(x,x)}=\sqrt{(x_1)^2+\dots+(x_n)^2}$ и расстояние (метрику): $\rho(x,y)=\|x-y\|=\sqrt{(x_1-y_1)^2+\dots+(x_n-y_n)^2}$.

Определение 2. Открытым *п-мерным шаром* радиуса R с центром в точке $x^0 = (x_1^0, ..., x_n^0)$ называется множество $B_R(x^0) = \{x \in \mathbb{R}^n \mid \rho(x, x^0) < R\}$.

Замкнутым п-мерным шаром радиуса R с центром в точке x^0 называется множество $\bar{B}_R(x^0) = \{x \in \mathbb{R}^n \mid \rho(x, x^0) \leq R\}.$

Множество $S_R(x^0) = \{x \in \mathbb{R}^n \mid \rho(x, x^0) = R\}$ называется *п-мерной сферой* радиуса R с центром в точке x^0 .

Множество $\Pi_d(x^0)=\{x=(x_1,...,x_n)\in\mathbb{R}^n\mid |x_1-x_1^0|< d_1,...|x_n-x_n^0|< d_n\},$ где $d_1>0,...,d_n>0$, называется *открытым п-мерным параллелепипедом* размера $d=(d_1,...,d_n)$ с центром в точке x^0 .

Определение 3. ε -окрестностью точки $x^0 \in \mathbb{R}^n$ называется открытый шар радиуса $\varepsilon > 0$ с центром в точке x^0 . Для обозначения ε -окрестности часто применяют специальное обозначение $B_{\varepsilon}(x^0)$ или просто $B(x^0)$. Множество $\overset{0}{B_{\varepsilon}}(x^0) = B_{\varepsilon}(x^0) \setminus \{x^0\}$ называется проколотой ε -окрестностью точки x^0 . Понятия внутренней, внешней, граничной точки, а также открытого и замкнутого множества в \mathbb{R}^n полностью аналогичны соответствующим понятиям в \mathbb{R}^2 и \mathbb{R}^3 .

Точка x^0 называется npedeльной точкой множества $A \subset \mathbb{R}^n$, если для любого числа $\varepsilon>0$ найдется точка $x\in A$ такая, что $x\in \overset{0}{B}_{\varepsilon}(x^0)$.

Приведем несколько эквивалентных определений замкнутого множества (в дальнейшем мы сможем пользоваться тем из определений, которое нам будет удобно в данный момент).

Утверждение 1. Следующие утверждения эквивалентны:

- 1) Множество A замкнуто;
- 2) множество A содержит все свои предельные точки;
- 3) множество A содержит все свои граничные точки.

Доказательство. Докажем сначала следствие 1) \Rightarrow 2). Пусть точка $x^0 \in \mathbb{R}^n \backslash A$. Тогда существует число $\varepsilon_0 > 0$ такое, что $B_{\varepsilon_0}(x^0) \subset \mathbb{R}^n \backslash A$ (так как дополнение к замкнутому множеству открыто). Значит, $B_{\varepsilon_0}(x^0) \cap A = \emptyset$. Это означает, что точка x^0 не является предельной точкой множества A (поскольку в любой окрестности предельной точки

должен содержаться хотя бы один элемент множества). Значит, A содержит все свои предельные точки.

- $2)\Rightarrow 3)$. Пусть x^0 граничная точка множества A. Тогда для любого $\varepsilon>0$ пересечение ε -окрестности точки x^0 с множеством A не пусто. Пусть $x^0\not\in A$. Тогда получаем, что для любого $\varepsilon>0$: $\overset{0}{B}_{\varepsilon}(x^0)\cap A\neq\varnothing$. Это означает, что x^0 предельная точка A. Но по условию множество A содержит все свои предельные точки. Мы пришли к противоречию. Значит, A должно содержать все свои граничные точки.
- $3) \Rightarrow 1)$. Пусть точка $x^0 \in \mathbb{R}^n \backslash A$. Тогда x^0 внешняя точка множества A (так как по условию A содержит все свои внутренние и граничные точки). Значит, существует число $\varepsilon_0 > 0$ такое, что $B_{\varepsilon_0}(x^0) \subset \mathbb{R}^n \backslash A$ (по определению внешней точки). Это означает, что множество $\mathbb{R}^n \backslash A$ открыто. Значит, множество A замкнуто. Утверждение полностью доказано.

Определение 4. Множество $A \subset \mathbb{R}^n$ называется *ограниченным*, если существует число R > 0 такое, что $A \subset B_R(0)$.

Определение 5. *Непрерывной кривой* в \mathbb{R}^n называется множество $L = \{x = (x_1, ..., x_n) \in \mathbb{R}^n \mid x_1 = \varphi_1(t), ..., x_n = \varphi_n(t)\},$ где $t \in [\alpha, \beta]$ и все функции $\varphi_k(t)$ непрерывны на отрезке $[\alpha, \beta]$.

Говорят, что точки $x^1 = (x_1^1, ..., x_n^1)$ и $x^2 = (x_1^2, ..., x_n^2)$ можно соединить непрерывной кривой, если существуют такие функции $\varphi_k(t)$, k = 1, 2, ..., n, непрерывные на отрезке $[\alpha, \beta]$, что $x_1^1 = \varphi_1(\alpha), ..., x_n^1 = \varphi_n(\alpha)$, $x_1^2 = \varphi_1(\beta), ..., x_n^2 = \varphi_n(\beta)$.

Определение 6. Множество $A \subset \mathbb{R}^n$ называется *линейно связным*, если любые две точки этого множества можно соединить непрерывной кривой, целиком лежащей внутри A.

Областью называется открытое линейно связное множество.

Определение 7. Если каждому натуральному числу поставить в соответствие какуюлибо точку пространства \mathbb{R}^n , то полученное множество точек $x^1, x^2, ..., x^m, ...$ называется nocnedoвameльностью точек \mathbb{R}^n и обозначается $\{x^m\}_{m=1}^\infty$ или просто $\{x^m\}$.

Говорят, что последовательность $\left\{x^{m}\right\}$ *сходится*, если существует точка $a\in\mathbb{R}^{n}$ такая, что для любого $\varepsilon>0$ найдется натуральное число $N=N(\varepsilon)$ такое, что для любого натурального $m\geq N$ выполнено: $\rho(x^{m},a)<\varepsilon$. Точка a называется *пределом* последовательности. Обозначение: $\lim_{m\to\infty}x^{m}=a$ или $x^{m}\xrightarrow[m\to\infty]{}a$.

Лемма 1. Последовательность $\{x^m\}$ сходится к точке $a=(a_1,...,a_n)$ тогда и только тогда, когда $x_1^m \xrightarrow[m \to \infty]{} a_1, ..., x_n^m \xrightarrow[m \to \infty]{} a_n,$ где $x^m=(x_1^m,...,x_n^m)$ (т.е. последовательность сходится тогда и только тогда, когда она сходится покоординатно).

Доказательство. Необходимость. Пусть $\lim_{m \to \infty} x^m = a$. Значит, для любого $\varepsilon > 0$ найдется $N = N(\varepsilon)$ такое, что для любого $m \ge N$ выполнено: $\sqrt{(x_1^m - a_1)^2 + \ldots + (x_n^m - a_n)^2} < \varepsilon$. Тогда очевидно, что для любого $m \ge N$: $\left|x_1^m - a_1\right| < \varepsilon$, $\left|x_n^m - a_n\right| < \varepsilon$. Значит, $x_1^m \xrightarrow[m \to \infty]{} a_1, \ldots, x_n^m \xrightarrow[m \to \infty]{} a_n$.

Достаточность. Пусть $x_1^m \xrightarrow[m \to \infty]{} a_1, \ldots, x_n^m \xrightarrow[m \to \infty]{} a_n$. Тогда для любого $\varepsilon > 0$ существует натуральное число $N_1 = N_1(\varepsilon)$ такое, что для любого $m \ge N_1$: $\left| x_1^m - a_1 \right| < \frac{\varepsilon}{\sqrt{n}}$. И так далее. Наконец, существует $N_n = N_n(\varepsilon)$ такое, что для любого $m \ge N_n$: $\left| x_n^m - a_n \right| < \frac{\varepsilon}{\sqrt{n}}$. Пусть $N = \max\{N_1, \ldots, N_n\}$. Тогда для любого $m \ge N$ имеем: $\sqrt{(x_1^m - a_1)^2 + \ldots + (x_n^m - a_n)^2} < \sqrt{n \cdot \frac{\varepsilon^2}{n}} = \varepsilon$. Значит, $x^m \xrightarrow[m \to \infty]{} a$. Лемма 1 доказана.

Определение 8. Последовательность $\{x^m\}$ называется фундаментальной, если для любого $\varepsilon > 0$ существует натуральное число $N = N(\varepsilon)$ такое, что для любого натурального $m \ge N$ и для любого натурального p выполнено: $\rho(x^{m+p}, x^m) < \varepsilon$.

Лемма 2. Последовательность $\{x^m\}$ является фундаментальной тогда и только тогда, когда фундаментальна каждая из координатных последовательностей $\{x_1^m\}, \ldots, \{x_n^m\}$.

Доказательство леммы 2 аналогично доказательству леммы 1. Оно предоставляется читателю в качестве упражнения.

Теорема 1 (критерий Коши сходимости последовательности). Последовательность $\{x^m\}$ точек пространства \mathbb{R}^n сходится тогда и только тогда, когда она является фундаментальной.

Доказательство. Последовательность фундаментальна тогда и только тогда, когда она фундаментальна покоординатно (лемма 2). Каждая из координатных последовательностей является обычной числовой последовательностью. Она сходится тогда и только тогда, когда она фундаментальна (критерий Коши сходимости числовой последовательности). Но последовательность точек \mathbb{R}^n сходится тогда и только тогда, когда она сходится покоординатно (лемма 1). Значит, последовательность точек пространства \mathbb{R}^n сходится тогда и только тогда, когда она является фундаментальной. Теорема доказана.

Определение 9. Последовательность $\{x^m\}$ точек пространства \mathbb{R}^n *ограничена*, если существует число R>0 такое, что $x^m\subset B_R(0)$ для любого натурального m.

Определение 10. Пусть $m_1 < m_2 < ... < m_k < ...$, где $m_1, m_2, ..., m_k, ...$ - натуральные числа. Последовательность $x^{m_1}, x^{m_2}, ..., x^{m_k}, ...$ называется подпоследовательностью последовательности $\{x^m\}$.

Теорема 2 (Больцано-Вейерштрасса). Из любой ограниченной последовательности $\{x^m\}$ точек пространства \mathbb{R}^n можно выделить сходящуюся подпоследовательность.

Доказательство. Последовательность $\left\{x^{m}\right\}$ ограничена, значит, существует число R>0 такое, что $\sqrt{\left(x_{1}^{m}\right)^{2}+\ldots+\left(x_{n}^{m}\right)^{2}}< R$ для любого натурального m. Тогда очевидно, что для любого $m\geq N$: $\left|x_{1}^{m}\right|< R$, $\left|x_{n}^{m}\right|< R$, то есть числовые последовательности $\left\{x_{1}^{m}\right\}$, ..., $\left\{x_{n}^{m}\right\}$ ограничены.

Выделим из последовательности $\{x_1^m\}$ сходящуюся подпоследовательность $\{x_1^{m_{k_1}}\}$, $x_1^{m_{k_1}} \xrightarrow[k_1 \to \infty]{} a_1$ (теорема Больцано-Вейерштрасса для числовых последовательностей).

Рассмотрим последовательность $\left\{x_2^{m_{k_1}}\right\}$. Она ограничена (как подпоследовательность ограниченной последовательности), значит, из нее можно выделить сходящуюся подпоследовательность $\left\{x_2^{m_{k_2}}\right\}$, $x_2^{m_{k_2}} \xrightarrow[k_2 \to \infty]{k_2 \to \infty} a_2$. И так далее. В конце концов, из последовательности $\left\{x_n^{m_{k_{n-1}}}\right\}$ выделим сходящуюся подпоследовательность $\left\{x_n^{m_{k_n}}\right\}$, $x_n^{m_{k_n}} \xrightarrow[k_n \to \infty]{k_n \to \infty} a_n$.

Рассмотрим последовательность $\left\{x^{m_{k_n}}\right\}$. Так как все последовательности ее координат сходятся: $x_1^{m_{k_n}} \xrightarrow[k_n \to \infty]{} a_1, \ldots, x_n^{m_{k_n}} \xrightarrow[k_n \to \infty]{} a_n$, то сама последовательность также сходится к точке $a = (a_1, \ldots, a_n)$ (лемма 1). Теорема доказана.